

Advanced Scikit-Learn

Andreas Mueller (NYU Center for Data Science, scikit-learn)

Overview

- Reminder: Basic sklearn concepts
- Model building and evaluation:
 - Pipelines and Feature Unions
 - Randomized Parameter Search
 - Scoring Interface
 - Bias Variance Tradeoff
- Out of Core learning
 - Feature Hashing
 - Kernel Approximation
- PyStruct Structured Prediction in Python

Get the notebooks!

https://github.com/amueller/pydata-nyc-advanced-sklearn http://nbviewer.ipython.org/github/amueller/pydata-nyc-advanced-sklearn

Reminder: Estimators

Classification / Regression

```
from sklearn.svm import SVC
clf = SVC()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```

Reminder: Estimators

Classification / Regression

```
from sklearn.svm import SVC # import
clf = SVC() # instantiate
clf.fit(X_train, y_train) # fit
y_pred = clf.predict(X_test) # apply
```

Reminder: Estimators

Classification / Regression

```
from sklearn.svm import SVC # import
clf = SVC() # instantiate
clf.fit(X_train, y_train) # fit
y_pred = clf.predict(X_test) # apply
```

Transformations

```
from sklearn.decomposition import PCA # import
trans = PCA(n_components=2) # instantiate
trans.fit(X) # fit
X_pca = clf.transform(X) # apply
```

Cross -Validation

```
from sklearn.cross_validation import cross_val_score
scores = cross_val_score(SVC(), X_train, y_train, cv=5)
print(scores)
>> [ 0.92 1. 1. 1. ]
```

Cross -Validation

Cross -Validation

Cross -Validated Grid Search

Pipelines

```
from sklearn.pipeline import make_pipeline

pipe = make_pipeline(StandardScaler(), SVC())
pipe.fit(X_train, y_train)
pipe.predict(X_test)
```

Combining Pipelines and Grid Search

Proper cross-validation

```
param_grid = {'svc__C': 10. ** np.arange(-3, 3), 'svc__gamma':
10. ** np.arange(-3, 3)}

scaler_pipe = make_pipeline(StandardScaler(), SVC())
grid = GridSearchCV(scaler_pipe, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
```

Do cross-validation over all steps. Keep a separate test set till the very end.

Combining Pipelines and Grid Search II

Searching over parameters of the preprocessing step

Feature Union

```
params = {'featureunion__tfidfvectorizer-1__ngram_range':
          [(1, 3), (1, 5), (2, 5)],
           'featureunion__tfidfvectorizer-2__ngram_range':
          [(1, 1), (1, 2), (2, 2)],
           'linearsvc__C': expon()}
       1.0
       0.8
       0.6
       0.2
```

```
rs = RandomizedSearchCV(text_pipe,
    param_distributions=param_distributins, n_iter=50)
```

Step-size free for continuous parameters Decouples runtime from search-space size Robust against irrelevant parameters

Step-size free for continuous parameters

Decouples runtime from search-space size Robust against irrelevant parameters

Step-size free for continuous parameters

Decouples runtime from search-space size

Robust against irrelevant parameters

Step-size free for continuous parameters Decouples runtime from search-space size Robust against irrelevant parameters

Step-size free for continuous parameters Decouples runtime from search-space size Robust against irrelevant parameters

Grid Layout

Important parameter

Random Layout

Important parameter

Source: Bergstra and Bengio

- Always use distributions for continuous variables.
- Don't use for low dimensional spaces.
- Future: Bayesian optimization based search.

Bias Variance Tradeoff (why we do cross validation and grid searches)

Bias and Variance

Bias and Variance

$$E[(y - \hat{f}(x))^{2}] = E[(f(x) - E[\hat{f}(x)])^{2}]$$

$$+ E[(\hat{f}(x) - E[\hat{f}(x)])^{2}] + E[\epsilon^{2}]$$

$$= Bias(\hat{f}(x))^{2} + Var(\hat{f}(x)) + \sigma^{2}$$

$$y_i = f(x_i) + \epsilon$$

Curve (over and under) fitting

RBF-SVM wigglyness

Bias Variance Tradeoff

aka overfitting vs underfitting

Validation Curves

train_scores, test_scores = validation_curve(SVC(), X, y,
param_name="gamma", param_range=param_range)

Learning Curves

train_sizes, train_scores, test_scores = learning_curve(
 estimator, X, y, train_sizes=train_sizes)

Scoring Functions

GridSeachCV cross_val_score validation_curve

Default: Accuracy (classification) R2 (regression)

Motivation: Imbalanced data 1:9

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])
```

Motivation: Imbalanced data 1:9

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])
cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])
```

Motivation: Imbalanced data 1:9

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])
cross_val_score(SVC(), X_train, y_train, scoring="roc_auc")
array([ 0.99961591,  0.99983498,  0.99966247])
```

Motivation: Imbalanced data 1:9

0.0

0.2

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
cross_val_score(SVC(), X_train, y_train, scoring="roc_auc")
array([ 0.99961591. 0.99983498. 0.999662471)
               0.8
               0.6
             표
               0.4
                                        acc:0.89 auc:1.00
               0.2
                                        acc:0.89 auc:0.59
```

0.4

0.6

FPR

acc:0.89 auc:0.50

0.8

1.0

Available metrics

```
print(SCORERS.keys())

>> ['adjusted_rand_score',
  'f1',
  'mean_absolute_error',
  'r2',
  'recall',
  'median_absolute_error',
  'precision',
  'log_loss',
  'mean_squared_error',
  'roc_auc',
  'average_precision',
  'accuracy']
```

Defining your own scoring

```
def my_super_scoring(est, X, y):
    return accuracy_scorer(est, X, y) - np.sum(est.coef_ != 0)
```

Defining your own scoring

```
def my_super_scoring(est, X, y):
    return accuracy_scorer(est, X, y) - np.sum(est.coef_ != 0)

def scoring_function(y_true, y_pred):
    return (np.abs(y_true - y_pred) < 2).mean()

tolerant_scoring = make_scorer(scoring_function)</pre>
```

Out of Core Learning

Or: save ourself the effort

```
Mem[||||||||
         23164/245759MT
Swp [
          0/0MB7
```

Think twice!

- Old laptop: 4GB Ram
- 1073741824 float32
- Or 1mio data points with 1000 features
- EC2: 256 GB Ram
- 68719476736 float32
- Or 68mio data points with 1000 features

Supported Algorithms

- All SGDClassifier derivatives
- Naive Bayes
- MinibatchKMeans
- IncrementalPCA
- MiniBatchDictionaryLearning

Out of Core Learning

```
sgd = SGDClassifier()

for i in range(9):
    X_batch, y_batch = cPickle.load(open("batch_%02d" % i))
    sgd.partial_fit(X_batch, y_batch, classes=range(10))
```

Possibly go over the data multiple times.

Stateless Transformers

- Normalizer
- HashingVectorizer
- RBFSampler (and other kernel approx)

Text data and the hashing trick

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

"You better call Kenny Loggins"

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

```
"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']
```

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

```
"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']

Sparse matrix encoding

aardvak better call you zyxst

[0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]
```

Hacking Trick

HashingVectorizer

"You better call Kenny Loggins" tokenizer ['you', 'better', 'call', 'kenny', 'loggins'] hashing [hash('you'), hash('better'), hash('call'), hash('kenny'), hash('loggins')] = [832412, 223788, 366226, 81185, 835749] Sparse matrix encoding [0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]

Out of Core Text Classification

```
sgd = SGDClassifier()
hashing_vectorizer = HashingVectorizer()

for i in range(9):
    text_batch, y_batch = cPickle.load(open("text_%02d" % I))
    X_batch = hashing_vectorizer.transform(text_batch)
    sgd.partial_fit(X_batch, y_batch, classes=range(10))
```

Kernel Approximations

Classifier linear → need only

$$\langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$$

Classifier linear → need only

$$\langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$$

Linear: $\langle x, x' \rangle$

Polynomial: $(\gamma \langle x, x' \rangle + r)^d$

RBF: $\exp(-\gamma |x - x'|^2)$

Sigmoid: $\tanh(\gamma \langle x, x' \rangle + r)$

Complexity

- Solving kernelized SVM:
 ~O(n samples ** 3)
- Solving linear (primal) SVM:
 ~O(n_samples * n_features)

n_samples large? Go primal!

Undoing the Kernel Trick

Kernel approximation:

$$\langle \hat{\phi}(x_i), \hat{\phi}(x_j) \rangle \approx k(x_i, x_j)$$

•
$$k = \exp(-\gamma |x - x'|^2)$$

 $\hat{\phi} = \text{RBFSampler}$

Usage

```
sgd = SGDClassifier()
kernel_approximation = RBFSampler(gamma=.001, n_components=400)

for i in range(9):
    X_batch, y_batch = cPickle.load(open("batch_%02d" % i))
    if i == 0:
        kernel_approximation.fit(X_batch)
    X_transformed = kernel_approximation.transform(X_batch)
    sgd.partial_fit(X_transformed, y_batch, classes=range(10))
```

Questions so far?

PyStruct – Structured Prediction in Python

Structured Prediction

$$y = (y_1, y_2, ...y_{n_k})$$

Applications: Multi-Label Classification

	Politics	Sports	Finance	Domestic	Religion
News Story1	1	0	0	1	1
News Story2	0	1	0	1	0
News Story3	0	0	1	0	0

	Owns Car	Smokes	Married	Self-Employed	Has Kids
Customer1	1	0	1	0	1
Customer2	1	1	0	1	0
Customer3	0	1	1	0	0

Applications: Sequence Tagging

Stroke cat.

Stroke cat.

Open trash can.

Put cat in trash can.

Applications: Image Segmentation

Pairwise Structured Models

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg \, max}} \ w^T \psi(x, y)$$

$$= \underset{y_1, y_2, \dots, y_n}{\operatorname{arg \, max}} \sum_{I} w_i^T \psi(x, y_i) + \sum_{(i,j) \in E} w_{i,j}^T \psi(x, y_i, y_j)$$

Pairwise Structured Models

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg \, max}} \ w^T \psi(x, y)$$

$$= \underset{y_1, y_2, \dots, y_n}{\operatorname{arg \, max}} \sum_{I} w_i^T \psi(x, y_i) + \sum_{(i,j) \in E} w_{i,j}^T \psi(x, y_i, y_j)$$

PyStruct Architecture

Estimator = Learner + Model + Inference

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg\,max}} \ w^T \psi(x, y)$$

PyStruct Architecture

Estimator = Learner + Model + Inference

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg\,max}} \ w^T \psi(x, y)$$

Sequence Tagging example

Sequence Tagging example

The Devil is in the Inference

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg\,max}} \ w^T \psi(x, y)$$

Easy: Dynamic Programming

The Devil is in the Inference

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg\,max}} \ w^T \psi(x, y)$$

Easy: Dynamic Programming

The Devil is in the Inference

$$\underset{y_1, y_2, \dots, y_n}{\operatorname{arg\,max}} \ w^T \psi(x, y)$$

HARD! AD3, QPBO, LP, Loopy BP,

Grid Graphs: Snakes

Grid Graphs: Snakes

Grid Graphs: Snakes

Input

Prediction w/o edge features

Ground Truth

Prediction with edge features

Classes of Inference Algorithms

```
Exact Algorithms
Max-Product (Chains, Trees) 'max-product'
Exhaustive (usually too expensive)
Relaxed algorithms + branch & bound
    ('ad3', {'branch_and_bound': True})
Relaxed
Linear Programming (slooow) 'lp'
Dual Decomposition 'ad3'
Approximate / heuristics
Loopy message passing 'max-product'
QPBO 'qpbo'
```

Classes of Inference Algorithms

```
Exact Algorithms
Max-Product (Chains, Trees) 'max-product'
Exhaustive (usually too expensive)
Relaxed algorithms + branch & bound
    ('ad3', {'branch_and_bound': True})
Relaxed
Linear Programming (slooow) 'lp'
Dual Decomposition 'ad3'
Approximate / heuristics
Loopy message passing 'max-product'
QPBO 'qpbo'
```

Install OpenGM for many more!

Search

Examples

Plotting the objective and constraint caching in 1-slack SSVM

Efficient exact learning of 1-slack SSVMs

SVM as CRF

Semantic Image Segmentation on Pascal VOC

Latent Dynamics CRF

SVM objective values

interactions on a 2d grid

Learning directed

Learning interactions on a 2d grid

OCR Letter sequence recognition

Crammer-Singer Multi-Class SVM

Latent SVM for odd vs. even digit classification

Mult-label classification

Latent Variable Hierarchical CRF

Binary SVM as SSVM

Comparing PyStruct and SVM-Struct

Thank you for your attention.