Problemas de Ceros.

Método de la bisección y método de punto fijo.

- (1) Usar el método de la bisección para hallar los ceros de las funciones siguientes en los intervalos indicados con un error menor que $\epsilon = 10^{-5}$. Hacerlo usando los dos criterios de parada vistos en los apuntes: (i) $|f(x_n)| \le \epsilon \text{ y (ii) } |x_n - x_{n-1}| \le \epsilon.$

 - $f(x) = x 3^{-x}$, para $0 \le x \le 1$. $f(x) = e^x x^2 + 2x 3$, para $0 \le x \le 2$.
- (2) Usar el método de la bisección para hallar el primer cero $\hat{x} > 0$ tal que tan x = x. Calcularlo con un error menor que $\epsilon = 0.0001$. Usar el criterio de parada $|x_n - x_{n-1}| \le \epsilon$.
- (3) Queremos resolver la ecuación $f(x) = x^3 4x + 1 = 0$ para x entre 0 y 1. Para ello usamos el método del punto fijo $x_n = g_i(x_{n-1})$ con las funciones g siguientes: (i) $g_1(x) = \frac{x^3+1}{4}$; (ii) $g_2(x) = \sqrt[3]{4x-1}$; (iii) $g_3(x) = \sqrt{4 - \frac{1}{x}}.$
 - a) Demostrar que algebraicamente es equivalente que x verifique que f(x) = 0 a que x verifique $x = q_i(x)$, con i = 1, 2, 3.
 - b) Considerar $x_0 = 0.5$, ¿cuál de las sucesiones asociadas al método del punto fijo con $g = g_i$, i = 1, 2, 3converge a un cero de f en el intervalo [0,1].
 - c) ¿Podríais dar una explicación teórica a lo observado en el apartado anterior?
- (4) Para cada una de las ecuaciones siguientes, determinar el intervalo [a, b] donde el método del punto fijo converge. Hallar el punto fijo con un error de $\epsilon = 10^{-6}$ usando el criterio de parada $|x_n - x_{n-1}| \le \epsilon$.
 - a) $x \cos x = 0$.
 - b) $x^2 e^{\frac{x}{2}} = 0$, donde 0 < x < 3.
- (5) Demostrar que si A>0 es un número real positivo, la sucesión definida por

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}, \ n \ge 1,$$

converge a \sqrt{A} siempre que $x_0 > 0$.

Indicación: Definir $g(x) = \frac{1}{2}x + \frac{A}{2x}$. Hallar un intervalo [a, b] tal que si $x \in [a, b]$, entonces $g(x) \in [a, b]$. Probar con $[a, b] = \left[\sqrt{A}, \infty\right)$.

Estudiar el caso $x_0 < 0$.