Introdução à Ciência dos Dados Ciência da Computação – UFV/Florestal

Aula Prática 08 Regressão Linear

Objetivo: extrair correlação entre atributos de dados reais por meio de regressão **Pré-requisitos:** linguagem de programação Python, Linux, estatística

Meta: ao final da prática, o aluno será capaz de preparar dados e extrair correlações interessantes a partir da aplicação de técnicas de regressão linear

Roteiro

Caso ainda não esteja instalado, instalar módulo Scikit-learn:

Vamos utilizar como exemplo um conjunto de dados que contém várias características e os preços de imóveis da cidade de Boston. O objetivo da regressão é gerar um modelo de regressão que permita prever o preço de um imóvel com base em suas características.

Importar as bibliotecas a serem utilizadas

```
import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import sklearn
import seaborn as sns
```

O conjunto de dados está disponível diretamente na biblioteca scikit-learn

```
1 # Bouston Housing data set: disponível no scikitlearn
   2 from sklearn.datasets import load_boston
   3 boston = load_boston()
   1 # o objeto boston é um dicionário
   2 print boston.keys()
   3 print boston.data.shape
   4 print boston.feature_names
   5 print boston.DESCR
              'feature_names', 'DESCR', 'target']
(506, 13)
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
'B' 'LSTAT']
Boston House Prices dataset
Notes
Data Set Characteristics:
      :Number of Instances: 506
      :Number of Attributes: 13 numeric/categorical predictive
      :Median Value (attribute 14) is usually the target
      :Attribute Information (in order):
            - CRIM per capita crime rate by town
            - ZN
                              proportion of residential land zoned for lots over 25,000 sq.ft.
            - ZN proportion of residential land zoned for lots over 25,000 sq.ft.

- INDUS proportion of non-retail business acres per town

- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

- NOX nitric oxides concentration (parts per 10 million)

- RM average number of rooms per dwelling

- AGE proportion of owner-occupied units built prior to 1940

- DIS weighted distances to five Boston employment centres index of accessibility to radial highways

- TAX full-value property-tax rate per $10,000

- PTRATIO pupil-teacher ratio by town
            - PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
             - LSTAT
             - MEDV
                             Median value of owner-occupied homes in $1000's
```

• É preciso converter os dados para o formato de DataFrame do Pandas

```
# converter os dados de Boston para um DataFrame do pandas
df = pd.DataFrame(boston.data, columns=boston.feature_names)
df.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

```
# boston.target contém os preços dos imóveis, que são os valores
# a serem previstos.
# Colocar o preço como uma coluna adicional do data frame
df['PRICE'] = boston.target
f.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

- Os preços dos imóveis estão no campo *target* do conjunto original. Então, vamos colocar os preços como uma nova coluna (lembre, o preço é a variável dependente que queremos estimar utilizando regressão)
- Primeiro, vamos avaliar a relação entre algumas variáveis e o preço do imóvel

<seaborn.axisgrid.PairGrid at 0x7fal28039cc0>

• Vamos olhar individualmente para o RM (Número de Quartos)

```
# Verificar a relação entre o número de quartos (RM) e o preço
plt.scatter(df.RM, df.PRICE)
plt.xlabel("Numero medio de quartos (RM)")
plt.ylabel("Price")
plt.title("Relacao entre numero de quartos e preco")
plt.show()
```


 Vamos visualizar a correlação par-a-par entre as variáveis, usando o coeficiente de Pearson em uma matriz de correlação

<matplotlib.axes._subplots.AxesSubplot at 0x7fa1343fac18>

• Usar regressão linear para calcular o coeficiente da reta representando a relação entre RM e PRICE (regressão simples, com uma única variável independente)

```
# Criar um modelo de regressão utilizando RM (independente) e PRICE (dependente)
from sklearn.linear_model import LinearRegression
X = df.RM
Y = df.PRICE
Im = LinearRegression()
Im.fit(X.values.reshape(-1,1),Y)
print('Coeficiente estimado: ', lm.coef_)
print('R2 (score): ', lm.score(X.values.reshape(-1,1),Y))
('Coeficiente estimado: ', array([ 9.10210898]))
('R2 (score): ', 0.48352545599133429)
```

- (RZ (SCOLE): , 0.40332343399133429)
- Ou seja, a cada aumento de uma unidade em RM (número de quartos), o preço aumenta em 9.10 o preço. O R2 (coeficiente de determinação) é de 0.48. Ou seja, 52% da variação do preço não é explicada pelo RM.
- Agora vamos fazer a regressão multi-variada. Para isso, vamos separar os atributos independentes (X) e o atributo dependente preço (Y), e criar uma instância da classe LinearRegression

```
# Criar o modelo de regressão utilizando como Y (variável dependente) o preço,
# e X (variáveis independentes) como todos os outros atributos.
# Utilizar a calsse LinearRegression da biblioteca sklearn
from sklearn.linear_model import LinearRegression
X = df.drop('PRICE',axis = 1)
Y = df.PRICE
lm = LinearRegression()
lm.fit(X,Y)
print('R2 (score): ', lm.score(X.values,Y))
R2 (score): 0.7406426641094095
```

Mostrar os coeficientes estimados para todas as variáveis independentes

```
# Mostrar os coeficientes da regressão.
print("Intercept %.3f " % lm.intercept_)
coeff_df = pd.DataFrame(lm.coef_, X.columns, columns=['Coefficient'])
coeff df
```

Intercept 36.459

	Coefficient
CRIM	-0.108011
ZN	0.046420
INDUS	0.020559
CHAS	2.686734
NOX	-17.766611
RM	3.809865
AGE	0.000692
DIS	-1.475567
RAD	0.306049
TAX	-0.012335
PTRATIO	-0.952747
В	0.009312
LSTAT	-0.524758

Equação: PRICE = 36.49 + CRIM * -0.10 + ZN * 0.04 + + LSTAT * -0.52

Vamos prever o preço de um imóvel. Como o parâmetro para predict é um DataFrame, devemos converter o primeiro elemento de X em um objeto 2D.

```
1 # Prever preço de um imóvel em que não se sabe o preço, mas se conhece
  2 # as outras características. Vamos prever o preço do primeiro imóvel
  3 lm.predict(X.loc[1].values.reshape(1,-1))
array([ 25.0298606])
```

• Vamos utilizar outra biblioteca para obter mais resultados estatísticos

```
# Podemos utilizar uma outra biblioteca com mais detalhes estatísticos
 import statsmodels.api as sm
 X = df.drop('PRICE',axis = 1)
 y = df.PRICE
 X = sm.add constant(X)
 results = sm.OLS(y,X).fit()
 print(results.summary())
                                                  OLS Regression Results
 ______
                                                                PRICE R-squared:
 Dep. Variable:
                                                                                                                                                        0.741

        Model:
        OLS
        Adj. R-squared:
        0.734

        Method:
        Least Squares
        F-statistic:
        108.1

        Date:
        Mon, 05 Oct 2020
        Prob (F-statistic):
        6.72e-135

        Time:
        22:26:36
        Log-Likelihood:
        -1498.8

        No. Observations:
        506
        AIC:
        3026.

No. Observations:
Df Residuals:
Df Model:
                                                                       492 BIC:
                                                                                                                                                        3085.
                                                                       13
 Covariance Type: nonrobust
 ______
                       coef std err t P>|t| [0.025 0.975]

        const
        36.4595
        5.103
        7.144
        0.000
        26.432
        46.487

        CRIM
        -0.1080
        0.033
        -3.287
        0.001
        -0.173
        -0.043

        ZN
        0.0464
        0.014
        3.382
        0.001
        0.019
        0.073

        INDUS
        0.0206
        0.061
        0.334
        0.738
        -0.100
        0.141

        CHAS
        2.6867
        0.862
        3.118
        0.002
        0.994
        4.380

        NOX
        -17.7666
        3.820
        -4.651
        0.000
        -25.272
        -10.262

        RM
        3.8099
        0.418
        9.116
        0.000
        2.989
        4.631

        AGE
        0.0007
        0.013
        0.052
        0.958
        -0.025
        0.027

        DIS
        -1.4756
        0.199
        -7.398
        0.000
        -1.867
        -1.084

        RAD
        0.3060
        0.066
        4.613
        0.000
        0.176
        0.436

        TAX
        -0.0123
        0.004
        -3.280
        0.001
        -0.020
        -0.055

        PTRATIO
        -
 ______
 Omnibus: 178.041 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB):
                                                            0.000 Jarque-Bera (JB):
1.521 Prob(JB):
                                                                                                                                                 783.126
                                                                                                                                             8.84e-171
 Skew:
                                                                 8.281 Cond. No.
 Kurtosis:
                                                                                                                                               1.51e+04
 ______
```

 Podemos ver que "INDUS" e "AGE" apresentaram um valor-p alto, o o intervalo de confiança inclui o zero. Então, podemos remover essas duas variáveis, e vamos ver que o resultado não muda.

```
# AGE e INDUS estão com p-valor muito alto, e o intervalo de confiança inclui o zero.
# Então, vamos remover essas variáveis para ver os resultados
X = df.drop('PRICE',axis = 1)
X = X.drop('AGE',axis = 1)
X = X.drop('INDUS',axis = 1)
y = df.PRICE
X = sm.add_constant(X)
results = sm.OLS(y,X).fit()
print(results.summary())
# Manteve o mesmo R^2
```

OLS Regression Results

OLS Regression Results								
Dep. Varia	ble:	PR	ICE R-squa	red:	0.741			
Model:			OLS Adj. R	-squared:	0.735			
Method:		Least Squa	res F-stat	istic:		128.2		
Date:	Mor	n, 05 Oct 2	020 Prob (F-statistic	:):	5.54e-137		
Time:		22:28	:36 Log-Li	kelihood:		-1498.9		
No. Observ	ations:		506 AIC:			3022.		
Df Residua	ls:		494 BIC:			3072.		
Df Model:			11					
Covariance	Type:	nonrob	ust					
	coef	std err	t	P> t	[0.025	0.975]		
const	36.3411	5.067	7.171					
CRIM	-0.1084				-0.173	-0.044		
ZN	0.0458	0.014	3.390	0.001	0.019	0.072		
CHAS	2.7187	0.854	3.183	0.002	1.040	4.397		
NOX	-17.3760	3.535	-4.915	0.000	-24.322	-10.430		
RM	3.8016	0.406	9.356	0.000	3.003	4.600		
DIS	-1.4927	0.186	-8.037	0.000	-1.858	-1.128		
RAD	0.2996	0.063	4.726	0.000	0.175	0.424		
TAX	-0.0118	0.003	-3.493	0.001	-0.018	-0.005		
PTRATIO	-0.9465	0.129	-7.334	0.000	-1.200	-0.693		
В	0.0093	0.003	3.475	0.001	0.004	0.015		
LSTAT	-0.5226	0.047	-11.019	0.000	-0.616	-0.429		
Omnibus:		178.	430 Durbin	-Watson:		1.078		
Prob(Omnib	us):	0.	000 Jarque	-Bera (JB):		787.785		
Skew:	•		523 Prob(J			8.60e-172		
Kurtosis:			300 Cond.			1.47e+04		

Atividades

1. Utilizar o conjunto de dados weatherHistory.csv, que contém o histórico de variáveis relacionadas ao clima da cidade de Szede, Hungria, entre 2006 e 2016.

- a) Primeiramente, faça uma análise exploratória dos dados, entendendo as variáveis e suas características. Crie gráficos par-a-par das variáveis para tentar identificar possíveis relações lineares entre elas:
- b) Qual a equação linear e o coeficiente de determinação que representa a temperatura em termos da umidade?
- c) Qual a equação linear e o coeficiente de determinação que representa a temperatura em termos da umidade e velocidade do vento?
- d) Qual a equação linear e o coeficiente de determinação que representa a temperatura aparente em termos da temperatura, da velocidade do vento e da umidade?
- e) Quais variáveis do dataset você indica para serem utilizadas para prever a umidade? Explique sua resposta.