siano f, g: D = R -> R xo p.to di accumulazione per D

se lim
$$\frac{f(x)}{g(x)} = 1$$
 si dice the f e asintotica a g per x->xo

es.
$$d(x) = x^2 - \tau$$
 $d(x) = x^2$

$$g \in asintotica$$
 a $g \neq x \rightarrow \pm \infty$ $g \neq x \rightarrow x \rightarrow x$

$$\frac{x_0^2-1}{x_0^2}=1$$
 non é mai vero in R, solo in \overline{R} in $+e-\infty$

$$0. 1 - \cos x \sim \frac{x^2}{2} \qquad \left(\frac{1 - \cos x}{x^2} \rightarrow \frac{1}{2}\right)$$

se lim $\frac{f(x)}{3(x)} = 0$ si dice the $f \in [0]$ piccolo di $g \neq x \rightarrow x_0$ $x \rightarrow x_0 = 0$ si strive f = 0(g), per $x \rightarrow x_0$

Es.
$$f(x) = e^{x}$$
 $g(x) = x+1$

$$\begin{cases}
y = 0 \\
0
\end{cases}$$

$$\begin{cases}
y = x \\
0
\end{cases}$$

$$\begin{cases}
x = x \\
0
\end{cases}$$