Quantization (2)

홍익대학교 컴퓨터공학과 C135283 이수현

Source: Prof. Song Han at MIT, Lecture Slide on TinyML and Efficient Deep Learning Computing

Contents

- Linear Quantization
- Post-Training Quantization (PTQ)
 - Quantization Granularity
 - Dynamic Range Clipping
 - Rounding
- Quantization-Aware Training (QAT)
- Binary and Ternary Quantization
- Mixed-Precision Quantization

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Binary	Decimal
01	1
00	0
11	-1
10	-2

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Quantization Granularity

· Per-Tensor Quantization

· Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

Symmetric Linear Quantization on Weights

- $|r|_{\text{max}} = |\mathbf{W}|_{\text{max}}$
- Using single scale S for whole weight tensor (Per-Tensor Quantization)
 - works well for large models
 - accuracy drops for small models
- Common failure results from
 - large differences (more than 100×) in ranges of weights for different output channels — outlier weight
- Solution: Per-Channel Quantization

Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019]

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Per-channel Weight Quantization

Example: 2-bit linear quantization

Quantized

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	О	0
1	0	1	1

1.92

Reconstructed

1.87

 $\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$

-1

-1.92

1.87 1.87

	2.12	0	2.12	0
1	О	0	-2.12	2.12
1	О	2.12	О	0
1	2.12	0	2.12	2.12

Quantized

Reconstructed

$$\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$$

VS-Quant: Per-vector Scaled Quantization

Hierarchical scaling factor

- $r = S(q Z) \rightarrow r = \gamma \cdot S_q(q Z)$
 - γ is a floating-point coarse grained scale factor
 - S_q is an integer per-vector scale factor
 - achieves a balance between accuracy and hardware efficiency by
 - less expensive integer scale factors at finer granularity
 - more expensive floating-point scale factors at coarser granularity
- · Memory Overhead of two-level scaling:
 - Given 4-bit quantization with 4-bit per-vector scale for every 16 elements, the effective bit width is 4 + 4 / 16 = 4.25 bits.

VS-Quant: Per-Vector Scaled Quantization for Accurate Low-Precision Neural Network Inference [Steve Dai, et al.]

Group Quantization

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

s: scale factors of different levels

Quantization Approach	Data Type	L0 Group Size	L0 Scale Data Type	L1 Group Size	L1 Scale Data Type	Effective Bit Width
Per-Channel Quant	INT4	Per Channel	FP16	-	-	4
VSQ	INT4	16	UINT4	Per Channel	FP16	4+4/16=4.25
MX4	S1M2	2	E1M0	16	E8M0	3+1/2+8/16=4
MX6	S1M4	2	E1M0	16	E8M0	5+1/2+8/16=6
MX9	S1M7	2	E1M0	16	E8M0	8+1/2+8/16=9

With Shared Microexponents, A Little Shifting Goes a Long Way [Bita Rouhani et al.]

Linear Quantization on Activations

- Unlike weights, the activation range varies across inputs.
- To determine the floating-point range, the activations statistics are gathered before deploying the model.

Collect activations statistics before deploying the model

- Type 1: During training
 - Exponential moving averages (EMA)
 - observed ranges are smoothed across thousands of training steps

Collect activations statistics before deploying the model

 Type 2: By running a few "calibration" batches of samples on the trained FP32 model

- outliers• spending dynamic range on the outliers hurts the representation ability.
 - use mean of the min/max of each sample in the batches
 - analytical calculation (see next slide)

Neural Network Distiller

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Collect activations statistics before deploying the model

- Type 2: By running a few "calibration" batches of samples on the trained FP32 model
 - minimize loss of information, since integer model encodes the same information as the original floating-point model.
 - loss of information is measured by Kullback-Leibler divergence (relative entropy or information divergence):
 - for two discrete probability distributions P, Q

$$D_{KL}(P||Q) = \sum_{i}^{N} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

 intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Minimize loss of information by minimizing the KL divergence

8-bit Inference with TensorRT [Szymon Migacz, 2017]

Minimize mean-square-error (MSE) using Newton-Raphson method

Optimal Clipping and Magnitude-aware Differentiation for Improved Quantization-aware Training [Sakr et al., ICML 2022]

Minimize mean-square-error (MSE) using Newton-Raphson method

Network	FP32 Accuracy	OCTAV int4 75.84	
ResNet-50	76.07		
MobileNet-V2	71.71	70.88	
Bert-Large	91.00	87.09	

Optimal Clipping and Magnitude-aware Differentiation for Improved Quantization-aware Training [Sakr et al., ICML 2022]

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

- Philosophy
 - Rounding-to-nearest is not optimal
 - Weights are correlated with each other. The best rounding for each weight (to nearest) is not the best rounding for the whole tensor

- What is optimal? Rounding that reconstructs the original <u>activation</u> the best, which may be very different
 - For weight quantization only
 - With short-term tuning, (almost) post-training quantization

Quantization-Aware Training

Train the model taking quantization into consideration

 To minimize the loss of accuracy, especially aggressive quantization with 4 bits and lower bit width, neural network will be trained/fine-tuned with quantized weights and activations.

 Usually, fine-tuning a pre-trained floating point model provides better accuracy than training from scratch.

Deep Compression [Han et al., ICLR 2016]

Quantization-Aware Training

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization-Aware Training

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

Straight-Through Estimator (STE)

 Quantization is discrete-valued, and thus the derivative is 0 almost everywhere.

$$\frac{\partial Q(W)}{\partial W} = 0$$

 The neural network will learn nothing since gradients become 0 and the weights won't get updated.

$$g_{\mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial O(\mathbf{W})} \cdot \frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}} = 0$$

 Straight-Through Estimator (STE) simply passes the gradients through the quantization as if it had been the identity function.

$$g_{\mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial Q(\mathbf{W})}$$

Quantization-Aware Training

Train the model taking quantization into consideration

- A full precision copy of the weights is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

these operations still run in full precision

INT8 Linear Quantization-Aware Training

		Post-Training	Quantization	Quantization-Aware Training		
Neural Network	Floating-Point	Asymmetric	Symmetric	Asymmetric	Symmetric Per-Channel	
		Per-Tensor	Per-Channel	Per-Tensor		
MobileNetV1	70.9%	0.1%	59.1%	70.0%	70.7%	
MobileNetV2	71.9%	0.1%	69.8%	70.9%	71.1%	
NASNet-Mobile	74.9%	72.2%	72.1%	73.0%	73.0%	

Binary/Ternary Quantization

Binarization

Deterministic Binarization

· directly computes the bit value based on a threshold, usually 0, resulting in a sign function.

$$q = \operatorname{sign}(r) = \begin{cases} +1, & r \ge 0 \\ -1, & r < 0 \end{cases}$$

Stochastic Binarization

- use global statistics or the value of input data to determine the probability of being -1 or +1
 - e.g., in Binary Connect (BC), probability is determined by hard sigmoid function $\sigma(r)$

$$q = \begin{cases} +1, & \text{with probability } p = \sigma(r) \\ -1, & \text{with probability } 1-p \end{cases}, \quad \text{where } \sigma(r) = \min(\max(\frac{r+1}{2},0),1)$$

harder to implement as it requires the hardware to generate random bits when quantizing.

Minimizing Quantization Error in Binarization

XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]

XNOR and Popcount operation

$$y_i = -n + \text{popcount}(W_i \times xnor x) \ll 1$$

= -4 + popcount(1010 \times nor 1101) \leftleq 1
= -4 + popcount(1000) \leftleq 1 = -4 + 2 = -2

input	weight	operations	memory	computation
R	R	+ ×	1×	1×
R	В	+-	~32× less	~2× less
B	В	xnor,	~32× less	~58× less

1	×					=	
1		-1	1	-1	1		
-1							
1							

XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]

Accuracy Degradation of Binarization

		Bit-V	Width	ImageNet
Neural Network	Quantization	w	А	Top-1 Accuracy Delta
	BWN	1	32	0.2%
AlexNet	BNN	1	1	-28.7%
	XNOR-Net	1	1	-12.4%
GoogleNet	BWN	1	32	-5.80%
	BNN	1	1	-24.20%
ResNet-18	BWN	1	32	-8.5%
	XNOR-Net	1	1	-18.1%

^{*} BWN: Binary Weight Network with scale for weight binarization

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016] XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]

^{*} BNN: Binarized Neural Network without scale factors

^{*} XNOR-Net: scale factors for both activation and weight binarization

Ternary Weight Networks (TWN)

Weights are quantized to +1, -1 and 0

ImageNet Top-1 Accuracy	Full Precision	1 bit (BWN)	2 bit (TWN)	
ResNet-18	69.6	60.8	65.3	

Ternary Weight Networks [Li et al., Arxiv 2016]

Mixed-Precision Quantization

Uniform Quantization

Mixed-Precision Quantization

Challenge: Huge Design Space

Solution: Design Automation

Solution: Design Automation

HAQ Outperforms Uniform Quantization

Mixed-Precision Quantized MobileNetV1

HAQ Supports Multiple Objectives

