Correction Mathématiques – Série D - 2025

Exercice 2

I. Un dé à 4 faces numérotées 1,2,3,et 4 est truqué.

 P_i : probabilité pour que la face i soit caché : $P_i = \frac{l}{L}$

1.a. Montrons que k = 10

La somme des événements élémentaires est égale à 1

$$P_1 + P_2 + P_3 + P_4 = 1 \Leftrightarrow \frac{1 + 2 + 3 + 4}{k} = 1 \Leftrightarrow k = 1 + 2 + 3 + 4 = 10$$
, D'où

k=10

b. Déduction de P₁, P₂, P₃, et P₄

$$P_i = \frac{i}{k} = \frac{i}{10}$$

$$P_1 = \frac{1}{10}$$
 $P_2 = \frac{2}{10} = \frac{1}{5}$ $P_3 = \frac{3}{10}$ $P_4 = \frac{4}{10} = \frac{2}{5}$

$$P_1 = \frac{1}{10} \quad P_2 = \frac{1}{5} \quad P_3 = \frac{3}{10} \quad P_4 = \frac{2}{5}$$

2. Épreuve : Lancer deux fois indépendamment du dé. On note par a le premier numéro caché et b le second.

X : Variable aléatoire égale à |a-b|

La loi de X:

Univers-image de X:

X	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

$$X(\Omega) = \{0,1,2,3\}$$

Loi de probabilité de X

Calcul de P(X=xi) $\forall x_i \in X(\Omega)$

Pour X = 0:
$$(a,b) \in \{(1,1),(2,2),(3,3),(4,4)\}$$

Pour X = 0:
$$(a,b) \in \{(1,1),(2,2),(3,3),(4,4)\}$$

$$P(X=0) = P_1^2 + P_2^2 + P_3^2 + P_4^2 = \left(\frac{1}{10}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{3}{10}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{1+4+9+16}{100} = \frac{3}{10}$$

Pour X = 1:
$$(a,b) \in \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)\}$$

$$P(X=1)=2P_1P_2+2P_2P_3+2P_3P_4=2\times\left(\frac{1}{50}+\frac{3}{50}+\frac{6}{50}\right)=\frac{20}{50}=\frac{2}{5}$$

Pour X = 2:
$$(a,b) \in \{(1,3),(2,4),(3,1),(4,2)\}$$

$$P(X=2)=2P_1P_3+2P_2P_4=2\times\left(\frac{3}{100}+\frac{2}{25}\right)=\frac{11}{50}$$

Pour X = 3:
$$(a,b) \in \{(1,4),(4,1)\}$$

$$P(X=3)=2P_1P_4=\frac{4}{50}=\frac{2}{25}$$

Xi	0	1	2	3	Total
$P(X=x_i)$	$\frac{3}{10}$	<u>2</u> 5	<u>11</u> 50	2 25	1

II. On considère une série statistique à deux variables (X,Y)

La droite de régression de x en y a pour équation x = 0.77y - 9.71. Et le coefficient de corrélation est r = 0.99.

1. Détermination de la moyenne arithmétique \overline{y} sachant que \overline{x} =8 *Sachant que* \overline{x} =0,77 \overline{y} -9,71 \Leftrightarrow 0,77 \overline{y} =17,71 \Leftrightarrow \overline{y} =23

$$\overline{y} = 23$$

2. Montrons que si a le coefficient directeur de la droite de régression de y en x et a' celui de x en y, alors $r^2 = aa'$

$$r = \frac{cov(X,Y)}{\sigma(X)\sigma(Y)} \quad a = \frac{cov(X,Y)}{V(X)} \quad a' = \frac{cov(X,Y)}{V(Y)}$$

$$r^{2} = \left[\frac{cov(X,Y)}{\sigma(X)\sigma(Y)}\right]^{2} = \frac{cov(X,Y)cov(X,Y)}{\sigma^{2}(X)\sigma^{2}(Y)} = \frac{cov(X,Y)}{\sigma^{2}(X)} \times \frac{cov(X,Y)}{\sigma^{2}(Y)} \quad Or \quad V(X) = \sigma^{2}(X) \quad et \quad V(Y) = \sigma^{2}(Y)$$

$$r^{2} = \frac{cov(X,Y)}{V(X)} \times \frac{cov(X,Y)}{V(Y)} = aa'$$

 $r^2 = aa'$

3. Une équation de la droite de régression de y en x de cette série y=ax+b

$$r^2 = aa'$$
 avec $a' = 0.77$ et $r = 0.99$ $\Rightarrow a = \frac{(0.99)^2}{0.77} = 1.27$
 $\overline{y} = a\overline{x} + b \Rightarrow b = 23 - 1.27 \times 8 = 12.84$

y = 1,27x + 12,84