

Framebuffer Model

- Raster Display: 2D array of picture elements (pixels)
- Pixels individually set/cleared (greyscale, color)
- Window coordinates: pixels centered at integers

When to clip?

- Perspective Projection: 2 conceptual steps:
 - 4x4 matrix
 - Homogenize
 - In fact not always needed
 - Modern graphics hardware performs most operations in 2D homogeneous coordinates

homogenize
$$x * d/z$$

1

$$\left(\begin{array}{c} x \\ y \\ I \end{array}\right) =$$

$$\begin{vmatrix} x \\ y \\ 1 \\ z/d \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

y

 \boldsymbol{z}

1

When to clip?

- Before perspective transform in 3D space
 - Use the equation of 6 planes
 - Natural, not too degenerate
- · In homogeneous coordinates after perspective transform (Clip space)
 - Before perspective divide (4D space, weird w values)
 - Canonical, independent of camera
 - The simplest to implement in fact
- In the transformed 3D screen space after perspective division
 - Problem: objects in the plane of the camera MIT EECS 6 837 Durand and Cutle

Working in homogeneous coordinates

- In general, many algorithms are simpler in homogeneous coordinates before division
 - Clipping
 - Rasterization

MIT FECS 6 837 Durand and Cutler

Today

- Why Clip?
- Line Clipping
- · Polygon clipping
- · Line Rasterization

MIT FFCS 6 837 Durand and Cutlet

Implicit 3D Plane Equation

- Plane defined by:
 - point p & normal n OR normal n & offset d OR 3 points

• Implicit plane equation Ax+By+Cz+D=0

MIT EECS 6.837, Durand and Cutler

Homogeneous Coordinates

• Homogenous point: (x,y,z,w) infinite number of equivalent homogenous coordinates: (sx, sy, sz, sw)

• Homogenous Plane Equation: $Ax+By+Cz+D=0 \rightarrow H=(A,B,C,D)$ Infinite number of equivalent plane expressions: $sAx+sBy+sCz+sD = 0 \rightarrow H = (sA,sB,sC,sD)$

Point-to-Plane Distance

- If (A,B,C) is normalized: d = H•p = H^Tp (the dot product in homogeneous coordinates)
- d is a *signed distance*positive = "inside"
 negative = "outside"

MIT EECS 6 837 Durand and Cutler

Clipping a Point with respect to a Plane

- If $d = H \cdot p \ge 0$ Pass through
- If $d = H \cdot p < 0$: Clip (or cull or reject)

MIT EECS 6.837, Durand and Cutler

Clipping with respect to View Frustum

- Test against each of the 6 planes
 - Normals oriented towards the interior
- Clip (or cull or reject) point p if any $H \cdot p < 0$

Recall: When to clip?

- Before perspective transform in 3D space
 - Use the equation of 6 planes
 - Natural, not too degenerate
- In homogeneous coordinates after perspective transform (Clip space)
 - Before perspective divide (4D space, weird w values)
 - Canonical,independent of camera
 - The simplest to implement in fact
- In the transformed 3D screen space after perspective division
 - Problem: objects in the plane of the camera
 MIT EECS 6.837, Durand and Cutler

Questions?

- You are now supposed to be able to clip points wrt view frustum
- Using homogeneous coordinates

Line – Plane Intersection

• Explicit (Parametric) Line Equation

 $L(t) = P_0 + t * (P_1 - P_0)$ $L(t) = (1 t) * P_0 + t * P_1$

- How do we intersect?

 Insert explicit equation of line into implicit equation of plane
- Parameter *t* is used to interpolate associated attributes (color, normal, texture, etc.)

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If $H \cdot p > 0$ and $H \cdot q < 0$
- If $H \cdot p < 0$ and $H \cdot q > 0$
- If $H \cdot p > 0$ and $H \cdot q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If H•p > 0 and H•q < 0 - clip q to plane
- If $H \cdot p < 0$ and $H \cdot q > 0$
- If $H \cdot p > 0$ and $H \cdot q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If $H \cdot p > 0$ and $H \cdot q < 0$ - clip q to plane
- If $H \bullet p < 0$ and $H \bullet q > 0$
- clip p to plane • If $H \cdot p > 0$ and $H \cdot q > 0$
- If H•p < 0 and H•q < 0

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If H•p > 0 and H•q < 0 - clip q to plane
- If $H \cdot p < 0$ and $H \cdot q > 0$ - clip p to plane
- If $H \bullet p \ge 0$ and $H \bullet q \ge 0$ - pass through
- If $H \cdot p < 0$ and $H \cdot q < 0$

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If H•p > 0 and H•q < 0 - clip q to plane
- If $H \cdot p < 0$ and $H \cdot q > 0$ - clip p to plane
- If $H \cdot p > 0$ and $H \cdot q > 0$ - pass through
- If $H \bullet p < 0$ and $H \bullet q < 0$ - clipped out

Questions? • You are now supposed to be able to clip segments wrt view frustum

Questions?

• You are now supposed to be able to make clipping efficient using outcodes

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Line Clipping
- Polygon clipping
- · Line Rasterization

Weiler-Atherton Clipping

- Compute intersection points
- Mark points where polygons enters clipping window (green here)

Clipping While there is still an unprocessed entering intersection Walk" polygon/window boundary

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw) $\,$
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

While there is still an unprocessed entering intersection

Walk" polygon/window boundary

Walking rules

While there is still an unprocessed entering intersection

Walk" polygon/window boundary

Walking rules

While there is still an unprocessed entering intersection

Walk" polygon/window boundary

Walking rules

While there is still an unprocessed entering intersection

Walk" polygon/window boundary

Weiler-Atherton Clipping

• Importance of good adjacency data structure (here simply list of oriented edges)

Robustness, precision, degeneracies

- What if a vertex is on the boundary?
- What happens if it is "almost" on the boundary?
 Problem with floating point precision
- Welcome to the real world of geometry!

Clipping

- Many other clipping algorithms:
- Parametric, general windows, region-region, One-Plane-at-a-Time Clipping, etc.

MIT EECS 6.837, Durand and Cutler

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Line Clipping
- Polygon clipping
- Line Rasterization

MIT EECS 6.837, Durand and Cutler

Scan Converting 2D Line Segments

- Given:
 - Segment endpoints (integers x1, y1; x2, y2)
- Identify:
 - Set of pixels (x, y) to display for segment

MIT EECS 6.837, Durand and Cutler

Line Rasterization Requirements

- Transform **continuous** primitive into **discrete** samples
- Uniform thickness & brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

MIT EECS 6.837, Durand and Cutler

Algorithm Design Choices

- Assume:
 - m = dy/dx, 0 < m < 1
- Exactly one pixel per column
 - fewer → disconnected, more → too thick

Algorithm Design Choices

- Note: brightness can vary with slope
 - What is the maximum variation?
- How could we compensate for this?
 - Answer: antialiasing

Naive Line Rasterization Algorithm

- Simply compute y as a function of x
 - Conceptually: move vertical scan line from x1 to x2
 - What is the expression of y as function of x?
 - Set pixel (x, round (y(x)))

Efficiency

- Computing y value is expensive y = y1 + m(x - x1)
- Observe: y += m at each x step (m = dy/dx)

Bresenham's Algorithm (DDA)

- Select pixel vertically closest to line segment
 - intuitive, efficient, pixel center always within 0.5 vertically
- · Same answer as naive approach

MIT EECS 6.837. Durand and Cutler

Bresenham's Algorithm (DDA)

- Observation:
 - If we're at pixel P (x_p, y_p) , the next pixel must be either E (x_p+1, y_p) or NE (x_p, y_p+1)
 - Why?

MIT EECS 6.837, Durand and Cutler

Bresenham Step

- Which pixel to choose: E or NE?
 - Choose E if segment passes below or through middle point M
 - Choose NE if segment passes above M

Bresenham Step

• Use decision function D to identify points underlying line L:

$$D(x, y) = y$$
- mx - b

- positive above L

- zero on L

- negative below L

 $D(p_x, p_y)$ = vertical distance from point to line

MIT EECS 6.837, Durand and Cutler

Bresenham's Algorithm (DDA)

• Decision Function:

$$D(x, y) = y - mx - b$$

• Initialize:

error term
$$e = -D(x,y)$$

• On each iteration:

update
$$x$$
: $x' = x+1$
update e : $e' = e + m$

y' = y (choose pixel E) if $(e \le 0.5)$:

y' = y + (choose pixel NE) e' = e - 1if (e > 0.5):

MIT EECS 6.837, Durand and Cutler

Summary of Bresenham

• initialize x, y, e

• for $(x = x1; x \le x2; x++)$

- plot (x,y)

– update x, y, e

- Generalize to handle all eight octants using symmetry
- Can be modified to use only integer arithmetic

MIT FFCS 6 837 Durand and Cutler

Line Rasterization

- We will use it for ray-casting acceleration
- · March a ray through a grid

MIT FECS 6 837 Durand and Cutler

Grid Marching vs. Line Rasterization

Must examine every cell the line touches

Best discrete approximation of the line

MIT EECS 6.837, Durand and Cutler

Questions?

Circle Rasterization

- Generate pixels for 2nd octant only
- Slope progresses from $0 \rightarrow -1$
- Analog of Bresenham Segment Algorithm

Circle Rasterization

• Decision Function:

$$D(x, y) = x^2 + y^2 - R^2$$

• Initialize:

error term
$$e = -D(x,y)$$

• On each iteration:

update x: x' = x + 1

update x:
$$x' = x + 1$$

update e: $e' = e + 2x + 1$

if
$$(e \ge 0.5)$$
: $y' = y$ (choose pixel E)

if
$$(e \ge 0.5)$$
: $y' = y$ (choose pixel E)
if $(e < 0.5)$: $y' = y - I$ (choose pixel SE), $e' = e + 1$

MIT EECS 6.837, Durand and Cutler

Philosophically

Discrete differential analyzer (DDA):

- Perform incremental computation
- Work on derivative rather than function
- Gain one order for polynomial
 - Line becomes constant derivative
 - Circle becomes linear derivative

MIT FECS 6 837 Durand and Cutler

Questions?

MIT FECS 6 837 Durand and Cutler

Antialiased Line Rasterization

- Use gray scales to avoid jaggies
- Will be studied later in the course

High-level concepts for 6.837

- Linearity
- Homogeneous coordinates
- Convexity
- Discrete vs. continuous

Thursday

Polygon Rasterization & Visibility