

Single-cell epigenomics Practice - sciATAC-seq

Ecole thématique 2019 | sincellTE

Morgane Thomas-Chollier, Nicolas Servant, Nathalie Lehmann

Data processing: general workflow

Single-cell epigenomic public pipelines

SCREW - single cell DNA methylation reproducible workflow: https://github.com/Epigenomics-Screw/Screw

SCASAT - single cell ATAC-seq preprocessing and analysis pipeline: https://github.com/ManchesterBioinference/Scasat

Dr.seq2 - QC and analysis pipeline for ATAC-seq and Drop-ChIP (among others) https://github.com/ChengchenZhao/DrSeq2

Specific bioinformatics tools for scATAC-seq

Destin (nov. 2018) https://www.biorxiv.org/content/10.1101/461905v1

Cis-topic https://www.biorxiv.org/content/10.1101/370346v1

ChromVar (Schep et al, Nature Methods, 2017)

Performs clustering, motifs discovery, differential accessibility analysis https://github.com/GreenleafLab/chromVAR

scabc (Zamanighomi et al, BiorXiv, 2017)

Unsupervised clustering to classify scATAC-seq data and discover regions of open chromatin specific to cell identity

https://github.com/timydaley/scABC

Cicero (Pliner et al, BiorXiv, 2017)

Statistical method that connects regulatory elements to target genes

Aim of the practice

• The goal is to get a first try at manipulating scATAC-seq data

- The tutorial was made by the authors of a recent sciATAC-seq paper (E. Furlong's lab)
 - Chromatin Cell Atlas of the Developing Fly Embryo

WARNING: We have tested and commented this published code

E. Furlong group's paper*

LETTER

*Cusanovich et al, Nature, 2018

doi:10.10

The *cis*-regulatory dynamics of embryonic development at single-cell resolution

Darren A. Cusanovich¹*, James P. Reddington²*, David A. Garfield²†*, Riza M. Daza¹, Delasa Aghamirzaie¹, Raquel Marco-Ferreres², Hannah A. Pliner¹, Lena Christiansen³, Xiaojie Qiu¹, Frank J. Steemers³, Cole Trapnell¹, Jay Shendure^{1,4}§ & Eileen E. M. Furlong²§

sciATAC-seq 20,000 cells - 3 embryonic stages Drosophila melanogaster

Web access to the Chromatin Cell Atlas of the Developing Fly Embryo (shiny app): http://shiny.furlonglab.embl.de/scATACseqBrowser/

Let's have a closer look on the data

- Data originates from the Chromatin Cell Atlas of the Developing Fly Embryo
 - o 3 different stages of development (2-4, 6-8, 10-12 hours after egg laying)
 - More than 20,000 nuclei among the 3 stages
 - From the binary matrix (genomic loci x cells) of 6-8h developmental stage
- Analyses that can be reproduced:
 - preprocessing (fastq, barcodes processing, alignment, count reads overlapping windows => produce window matrix): https://github.com/shendurelab/fly-atac
 - Most figures of the paper: https://shendurelab.github.io/fly-atac/docs/

Use case 1: Cell clustering based on patterns of chromatin accessibility

open this website:

https://shendurelab.github.io/fly-atac/docs

connect to R:

http://rstudio-singlecell.sb-roscoff.fr/

What is SVD?

Single Value Decomposition = dimension reduction method use in Principal Component Analysis

Clustering and LSI

More info on LSI in dimension reduction: https://www.youtube.com/watch?v=Bxlzbck51SU

Use case 2: Dimension reduction with t-SNE

Another single cell R object: CellDataSet (monocle)

The CellDataSet object was derived from the ExpressionSet class

```
• E.g.:
      cds <- newCellDataSet(exprs(...),
                             phenoData = ..., featureData = ...)
      slotNames (cds)
      ?CellDataSet
      head(fData(cds))
      head(pData(cds))
```

See http://cole-trapnell-lab.github.io/monocle-release/