ProblemSet 4 – Finite fields and codes

George McNinch

due 2024-03-29

1. Let q be a power of a prime p > 3 and let $k = \mathbb{F}_q$.

For a homogeneous polynomial $F \in k[X,Y,Z,W]$, let us write

$$V(F) = \{ P = (x : y : z : w) \in \mathbb{P}^2_k \mid F(x, y, z, w) = 0 \}$$

for the set of roots of F in \mathbb{P}^2_k .

For $a \in k^{\times}$, consider the polynomial

$$F_a = XY + Z^2 - aW^2 \in k[X, Y, Z, W].$$

a. If $4 \mid q-1$ show that

$$|V(F_a)| = |V(X^2 + Y^2 + Z^2 - aW^2)|$$

Hint: First show that $X^2 + Y^2 + Z^2 - aW^2$ is obtained from F_a by a linear change of variables.

b. If a = 1, show that $|V(F_1)| = q^2 + 2q + 1$.

Hint: Making a linear change of variables, first show that $|V(F_1)| = |V(G)|$ where G = XY + ZW.

To count the points (x:y:z:w) in V(G), first count the points with xy=0 (and hence also zw=0), and then the points with $xy\neq 0$.

Let $S=\{a^2\mid a\in k\}.$

- c. Show that $|S| = \frac{q+1}{2}$. Conclude that there are $q \frac{q+1}{2} = \frac{q-1}{2}$ non-squares in k.
- d. If $a\in S$, show that $|V(F_a)|=|V(F_1)|=q^2+2q+1.$
- e. If $a \in k$, $a \notin S$, show for any $\alpha \in k^{\times}$ that there are exactly q+1 pairs $(c,d) \in k \times k$ with $c^2-ad^2=\alpha$.

Hint: We may identify $\ell = \mathbb{F}_{q^2} = \mathbb{F}_q[\sqrt{a}]$. Under this identification, the norm homomorphism $N = N_{\ell/k} : \ell^{\times} \to k^{\times}$ is given by the formula

$$N(c+d\sqrt{a})=(c+d\sqrt{a})(c-d\sqrt{a})=c^2-ad^2.$$

On the other hand, by Galois Theory, we have $N(x) = x \cdot x^q = x^{1+q}$ for any $x \in \ell$. Thus $N(\ell^{\times}) = k^{\times}$ and $|\ker N| = q + 1$.

f. If $a \in k$, $a \notin S$ show that $|V(F_a)| = q^2 + 1$

Hint: Notice that the equation $Z^2-aW^2=0$ has no solutions $(z:w)\in\mathbb{P}^1_k$, and use (e) to help count.

- 2. Let $f = T^{11} 1 \in \mathbb{F}_4[T]$.
 - a. Show that $T^{11}-1$ has a root in \mathbb{F}_{4^5} .
 - b. If $\alpha \in F_{4^5}$ is a primitive element i.e. an element of order 4^5-1 , find an element $a=\alpha^i \in \mathbb{F}_{4^5}$ of order 11, for a suitable i.
 - c. Show that the minimal polynomial g of a over \mathbb{F}_4 has degree 5, and that the roots of g are powers of a. Which powers?

1

- d. Show that $f = g \cdot h \cdot (T-1)$ for another irreducible polynomial $h \in \mathbb{F}_4[T]$ of degree 5. The roots of h are again powers of a. Which powers?
- e. Show that $\langle f \rangle$ is a $[11,6,d]_4$ code for which $d \geq 4$.
- $\textbf{3. Consider the following variant of a Reed-Solomon code: let } \mathcal{P} \subset \mathbb{F}_q \text{ be a subset with } n = |\mathcal{P}| \text{ and write } \mathcal{P} = \{a_1, \cdots, a_n\}.$

Let $1 \leq k \leq n$ and write $\mathbb{F}_q[T]_{< k}$ for the space of polynomial of degree $\leq k,$ and let

$$C \subset \mathbb{F}_q^n$$
 be given by

$$C=\{(p(a_1),\cdots,p(a_n))\mid p\in \mathbb{F}_q[T]_{< k}.$$

- a. Prove that C is a $[n, k, n-k]_q$ -code.
- b. If $P = \mathbb{F}_q^{\times}$, prove that C is a cyclic code.
- c. If q=p is prime and if $P=\mathbb{F}_p$, prove that C is a cyclic code.