C3UCB Draft Fall 2015

Contextual Combinatorial Cascading Bandit Experiment

1 Preliminary

1.1 Synthetic dataset

Let $\mathcal{S}=\{x\in\mathbb{R}^d:\|x\|_2=1\}$ be the unit ball of \mathbb{R}^d . Let $E=\{1,...,L\}$ be the set of all base arms. We randomly choose θ_* with $\|\theta_*\|_2=1$ and randomly assign a $\mu_i\in\mathcal{S}$ to i for any $i\in E$. At each time t, we choose $b_{t,i}\in\mathcal{S}$ randomly for any base arm i. Also we fix a constant h to balance weights of μ_i and disturbance $b_{t,i}$. Let $x_{t,i}=\frac{\mu_i+hb_{t,i}}{\|\mu_i+h\cdot b_{t,i}\|_2}$ be the context of base arm i at time t. And the weight for base arm i at time t is $w_t(i)=\theta_*^\top x_{t,i}+\epsilon_{t,i}$ where $\epsilon_{t,i}\sim N(\mu_i,\sigma_i)$ for fixed σ_i .

1.2 MovieLens

Let L be the number of all movies and let M be the number of all users. The MovieLens dataset is a big matrix $A \in \mathbb{R}^{M \times L}$ where $A(i,j) \in \{0,1\}$ denotes whether user i has watched movie j or not. We split A to be H+F by putting entry-1 of A to H and H with probability $\sim \operatorname{Ber}(p)$ for some fixed H. We can regard H as know information about history 'What users have watched' and regard H as future criterion. We use H to derive feature vectors of both users and movies by SVD decomposition $H = USV^{\top}$ where $H = UIV^{\top}$ where $H = UIV^{\top}$ where $H = UIV^{\top}$ as the context information of base arm $H = UIV^{\top}$ and $H = UIV^{\top}$ as the weight of base arm $H = UIV^{\top}$ as the weight of base arm $H = UIV^{\top}$.

Notice that for this case, fixed number of base arms, it might have problem if we use (u_{I_t}, v_j) as context information. Since to find the best arm, it is equivalent to find the best one with highest weights sum, so is equivalent to the best one with highest $\theta_v^\top x$.

The measurement for MovieLens is accuracy because we don't know the true θ_* .

2 Disjunctive case

2.1 Need to involve Contextual information

We experiment both on synthetic data and MovieLens. We compare our method with $\gamma_k = 1$ to the algorithm in Cascading Bandits(ICML'2015) with L = K = 0,

2.2 Need to involve position discount parameter γ

We experiment both on synthetic data and MovieLens. We compare our method with $\gamma_k = \gamma^{k-1}$ to the algorithm in Cascading Bandits(ICML'2015) with $L = K = \gamma_k = 1$.

2.3 Cascading Information

We experiment both on synthetic data and MovieLens. We compare our method with $\gamma_k = \gamma^{k-1}$ to the algorithm in Qin Lijing(2014) with $L = K = \gamma_k = 1$.

Algorithm	Cumulative Reward $\sum_{t=1}^{T} r_i$
Li	4342.73
Qin	4323.26
Monkey	1765.41
Kveton	1787.81
Perfect Play	N/A

Table 1: Cumulative reward w.r.t different baselines, under Movielens setting.

3 Conjunctive case

3.1 Need to involve Contextual information

We experiment on synthetic data. We compare our method with $\gamma_k = 1$ to the algorithm in Cascading Bandits(ICML'2015) with L = K = 0,

3.2 Need to involve position discount parameter γ

We experiment on synthetic data. We compare our method with $\gamma_k=\gamma^{k-1}$ to the algorithm in Cascading Bandits(ICML'2015) with $L=,K=,\gamma_k=1$.

3.3 Cascading Information

We experiment on synthetic data. We compare our method with $\gamma_k = \gamma^{k-1}$ to the algorithm in Qin Lijing(2014) with $L = K = \gamma_k = 1$.

4 Results

An example output, with T = 10000, is listed below.