Estimates of SAUC with CR, 3 True Settings of ${\bf c}$

$$(\tau_1^2,\tau_2^2)=(1,4)$$

Yi

2021 - 06 - 07

Table 1: Estimates of SAUC when true $c_1 = c_2$

			S = 25		S = 50		S = 200	
No.		True	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
1	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = c_2)$ Proposed $(c_1 = 0)$ Reistma _O Reistma _P	0.564	0.591 (0.484, 0.670) 0.596 (0.503, 0.672) 0.660 (0.593, 0.717) 0.676 (0.615, 0.727) 0.567 (0.517, 0.615)	99.5 99.9 83.7 99.9 99.9	0.567 (0.493, 0.631) 0.582 (0.512, 0.639) 0.658 (0.608, 0.699) 0.670 (0.629, 0.708) 0.563 (0.529, 0.595)	99.9 99.8 71.6 99.9 100.0	0.563 (0.523, 0.607) 0.574 (0.537, 0.610) 0.663 (0.641, 0.686) 0.673 (0.653, 0.692) 0.566 (0.546, 0.583)	99.8 98.9 24.9 100.0 100.0
2	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = c_2)$ Proposed $(c_1 = 0)$ Reistma _O Reistma _P	0.620	0.634 (0.558, 0.702) 0.637 (0.566, 0.699) 0.690 (0.633, 0.735) 0.699 (0.649, 0.739) 0.621 (0.579, 0.658)	99.7 99.5 83.9 99.8 99.8	0.624 (0.566, 0.669) 0.631 (0.581, 0.679) 0.692 (0.658, 0.721) 0.700 (0.664, 0.729) 0.619 (0.591, 0.648)	99.5 99.6 66.1 99.9 100.0	0.619 (0.583, 0.651) 0.624 (0.595, 0.649) 0.692 (0.675, 0.704) 0.697 (0.681, 0.711) 0.619 (0.605, 0.633)	99.5 98.9 21.2 100.0 99.9
3	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = c_2)$ Proposed $(c_1 = 0)$ Reistma _O Reistma _P	0.828	0.840 (0.796, 0.873) 0.835 (0.795, 0.871) 0.853 (0.819, 0.883) 0.872 (0.842, 0.892) 0.829 (0.799, 0.850)	99.9 99.8 98.0 100.0 100.0	0.837 (0.799, 0.863) 0.836 (0.804, 0.863) 0.858 (0.832, 0.877) 0.873 (0.852, 0.888) 0.826 (0.807, 0.845)	99.7 99.7 96.7 99.7 99.9	0.830 (0.811, 0.846) 0.829 (0.813, 0.845) 0.863 (0.850, 0.873) 0.872 (0.863, 0.880) 0.827 (0.819, 0.836)	99.8 99.9 87.6 99.9 100.0
4	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = c_2)$ Proposed $(c_1 = 0)$ Reistma _O Reistma _P	0.846	0.852 (0.818, 0.877) 0.850 (0.819, 0.876) 0.864 (0.838, 0.885) 0.873 (0.853, 0.892) 0.846 (0.824, 0.864)	99.5 99.4 97.5 99.9 100.0	0.850 (0.827, 0.868) 0.850 (0.829, 0.868) 0.866 (0.850, 0.880) 0.874 (0.861, 0.887) 0.845 (0.833, 0.858)	99.5 99.7 95.8 99.8 99.9	0.848 (0.836, 0.859) 0.848 (0.837, 0.858) 0.870 (0.861, 0.877) 0.876 (0.869, 0.882) 0.846 (0.839, 0.852)	99.5 100.0 82.5 100.0 100.0
5	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = c_2)$ Proposed $(c_1 = 0)$ Reistma _O Reistma _P	0.892	0.891 (0.869, 0.909) 0.892 (0.872, 0.909) 0.889 (0.862, 0.909) 0.904 (0.888, 0.919) 0.891 (0.873, 0.905)	99.6 99.6 99.4 99.9 99.8	0.891 (0.875, 0.905) 0.893 (0.879, 0.905) 0.893 (0.873, 0.907) 0.907 (0.897, 0.916) 0.891 (0.879, 0.901)	99.6 99.8 99.3 100.0 100.0	0.892 (0.884, 0.899) 0.892 (0.885, 0.899) 0.897 (0.888, 0.904) 0.908 (0.903, 0.913) 0.892 (0.886, 0.897)	99.7 99.2 98.3 99.9 99.9
6	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = c_2)$ Proposed $(c_1 = 0)$ Reistma _O Reistma _P	0.877	0.877 (0.852, 0.896) 0.878 (0.858, 0.896) 0.873 (0.848, 0.893) 0.888 (0.870, 0.903) 0.875 (0.858, 0.891)	99.7 99.5 99.0 99.9 100.0	0.876 (0.861, 0.890) 0.879 (0.864, 0.892) 0.877 (0.859, 0.891) 0.890 (0.877, 0.901) 0.877 (0.865, 0.889)	99.8 99.9 99.1 99.8 99.8	0.878 (0.870, 0.885) 0.878 (0.872, 0.885) 0.881 (0.871, 0.888) 0.891 (0.886, 0.896) 0.877 (0.872, 0.883)	99.1 99.6 97.3 100.0 100.0

Note:

Proposed $(hatc_1, hatc_2)$ is the proposed model estimating (c_1, c_2) ; Proposed $(c_1 = c_2)$ is the proposed model correctly specifying that $c_1 = c_2$; Proposed $(c_1 = 1)$ is the proposed model misspecifying that $(c_1, c_2) = (1, 0)$; Reitsma model based on the observed studies; and Reitsma_P is Reitsma model based on the population studies.

Table 2: Estimates of SAUC when true $c_1 = 1$

			S = 25		S = 50		S = 200	
No.		True	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
1	$\begin{array}{c} \text{Proposed } (\hat{c}_1, \hat{c}_2) \\ \text{Proposed } (c_1 = 1) \\ \text{Proposed } (c_1 = c_2) \\ \text{Reistma}_O \\ \text{Reistma}_P \end{array}$	0.564	0.596 (0.523, 0.657) 0.585 (0.520, 0.651) 0.621 (0.575, 0.672) 0.648 (0.606, 0.693) 0.567 (0.517, 0.615)	99.6 99.8 99.8 100.0 99.9	0.570 (0.514, 0.624) 0.573 (0.522, 0.622) 0.625 (0.588, 0.660) 0.648 (0.616, 0.677) 0.563 (0.529, 0.595)	99.3 99.8 99.5 100.0 100.0	0.562 (0.532, 0.588) 0.568 (0.541, 0.591) 0.644 (0.627, 0.661) 0.651 (0.635, 0.667) 0.566 (0.546, 0.583)	98.0 99.0 98.4 100.0 100.0
2	$\begin{array}{c} \text{Proposed } (\hat{c}_1, \hat{c}_2) \\ \text{Proposed } (c_1 = 1) \\ \text{Proposed } (c_1 = c_2) \\ \text{Reistma}_O \\ \text{Reistma}_P \end{array}$	0.620	0.635 (0.569, 0.685) 0.637 (0.579, 0.687) 0.653 (0.607, 0.695) 0.675 (0.637, 0.713) 0.621 (0.579, 0.658)	99.9 99.7 100.0 100.0 99.8	0.626 (0.579, 0.667) 0.630 (0.586, 0.665) 0.656 (0.622, 0.683) 0.674 (0.647, 0.700) 0.619 (0.591, 0.648)	99.5 99.9 99.7 100.0 100.0	0.620 (0.600, 0.642) 0.621 (0.604, 0.639) 0.666 (0.652, 0.681) 0.674 (0.662, 0.687) 0.619 (0.605, 0.633)	98.6 99.7 98.9 100.0 99.9
3	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 1)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.828	0.836 (0.800, 0.866) 0.833 (0.798, 0.864) 0.845 (0.818, 0.870) 0.861 (0.838, 0.884) 0.829 (0.799, 0.850)	99.6 99.9 99.4 100.0 100.0	0.834 (0.804, 0.857) 0.832 (0.804, 0.856) 0.848 (0.829, 0.867) 0.862 (0.847, 0.878) 0.826 (0.807, 0.845)	99.6 99.7 99.3 99.8 99.9	0.829 (0.814, 0.843) 0.829 (0.816, 0.841) 0.852 (0.841, 0.861) 0.864 (0.856, 0.871) 0.827 (0.819, 0.836)	99.1 99.9 99.0 99.8 100.0
4	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 1)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.846	0.852 (0.828, 0.872) 0.850 (0.823, 0.871) 0.857 (0.834, 0.874) 0.869 (0.849, 0.884) 0.846 (0.824, 0.864)	99.6 99.5 99.7 100.0 100.0	0.851 (0.832, 0.867) 0.851 (0.831, 0.865) 0.858 (0.842, 0.871) 0.870 (0.858, 0.882) 0.845 (0.833, 0.858)	99.4 99.5 99.8 99.8 99.9	0.848 (0.838, 0.858) 0.846 (0.837, 0.855) 0.860 (0.851, 0.868) 0.870 (0.864, 0.876) 0.846 (0.839, 0.852)	99.4 99.5 99.3 99.8 100.0
5	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 1)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.892	0.901 (0.883, 0.918) 0.895 (0.870, 0.914) 0.908 (0.892, 0.923) 0.913 (0.897, 0.927) 0.891 (0.873, 0.905)	99.1 99.4 99.5 100.0 99.8	0.899 (0.886, 0.912) 0.893 (0.877, 0.908) 0.910 (0.900, 0.919) 0.915 (0.905, 0.923) 0.891 (0.879, 0.901)	99.0 99.4 99.3 100.0 100.0	0.895 (0.886, 0.903) 0.892 (0.884, 0.900) 0.912 (0.907, 0.917) 0.915 (0.911, 0.920) 0.892 (0.886, 0.897)	95.4 99.9 95.5 99.9
6	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 1)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.877	0.889 (0.867, 0.907) 0.882 (0.855, 0.901) 0.895 (0.877, 0.911) 0.898 (0.880, 0.913) 0.875 (0.858, 0.891)	99.2 99.3 99.9 99.9 100.0	0.887 (0.873, 0.900) 0.879 (0.863, 0.895) 0.895 (0.884, 0.907) 0.899 (0.887, 0.910) 0.877 (0.865, 0.889)	99.5 99.4 99.3 99.8 99.8	0.883 (0.873, 0.892) 0.878 (0.870, 0.887) 0.896 (0.891, 0.902) 0.900 (0.895, 0.905) 0.877 (0.872, 0.883)	97.9 99.8 98.4 99.7 100.0

Note:

Proposed $(hatc_1, hatc_2)$ is the proposed model estimating (c_1, c_2) ; Proposed $(c_1 = c_2)$ is the proposed model correctly specifying that $c_1 = c_2$; Proposed $(c_1 = 1)$ is the proposed model misspecifying that $(c_1, c_2) = (1, 0)$; Reitsma model based on the observed studies; and Reitsma_P is Reitsma model based on the population studies.

Table 3: Estimates of SAUC when true $c_1 = 0$

			S = 25		S = 50		S = 200	
No.		True	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
1	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 0)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.564	0.475 (0.373, 0.596) 0.563 (0.467, 0.656) 0.474 (0.362, 0.577) 0.568 (0.470, 0.663) 0.567 (0.517, 0.615)	99.9 99.7 99.7 100.0 99.9	0.488 (0.398, 0.568) 0.561 (0.499, 0.625) 0.476 (0.385, 0.560) 0.569 (0.502, 0.634) 0.563 (0.529, 0.595)	99.1 99.7 99.4 99.9 100.0	0.533 (0.483, 0.571) 0.562 (0.533, 0.593) 0.487 (0.439, 0.543) 0.569 (0.539, 0.601) 0.566 (0.546, 0.583)	98.9 99.6 99.1 100.0 100.0
2	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 0)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.620	0.562 (0.444, 0.647) 0.621 (0.550, 0.687) 0.554 (0.447, 0.643) 0.631 (0.558, 0.696) 0.621 (0.579, 0.658)	99.9 99.9 99.9 99.9 99.8	0.560 (0.484, 0.629) 0.621 (0.568, 0.670) 0.554 (0.471, 0.620) 0.631 (0.578, 0.680) 0.619 (0.591, 0.648)	100.0 99.8 99.8 100.0 100.0	0.593 (0.556, 0.624) 0.619 (0.596, 0.640) 0.564 (0.507, 0.613) 0.632 (0.607, 0.654) 0.619 (0.605, 0.633)	99.3 99.3 98.8 99.9 99.9
3	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 0)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.828	0.797 (0.707, 0.848) 0.828 (0.771, 0.864) 0.784 (0.690, 0.845) 0.831 (0.770, 0.867) 0.829 (0.799, 0.850)	99.8 99.8 99.6 100.0 100.0	0.806 (0.742, 0.845) 0.831 (0.796, 0.859) 0.789 (0.723, 0.838) 0.835 (0.796, 0.863) 0.826 (0.807, 0.845)	99.3 99.0 99.2 99.7 99.9	0.818 (0.795, 0.836) 0.827 (0.813, 0.842) 0.798 (0.763, 0.824) 0.831 (0.816, 0.846) 0.827 (0.819, 0.836)	99.4 99.3 99.7 99.9 100.0
4	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 0)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.846	0.825 (0.777, 0.864) 0.844 (0.811, 0.873) 0.822 (0.771, 0.863) 0.850 (0.816, 0.878) 0.846 (0.824, 0.864)	99.5 99.7 99.9 99.9 100.0	0.834 (0.799, 0.856) 0.848 (0.824, 0.865) 0.826 (0.787, 0.854) 0.852 (0.829, 0.871) 0.845 (0.833, 0.858)	99.9 99.9 99.9 100.0 99.9	0.841 (0.827, 0.853) 0.846 (0.834, 0.856) 0.835 (0.813, 0.850) 0.852 (0.840, 0.862) 0.846 (0.839, 0.852)	99.9 99.7 99.5 100.0 100.0
5	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 0)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.892	0.878 (0.852, 0.897) 0.888 (0.869, 0.904) 0.876 (0.849, 0.895) 0.888 (0.869, 0.905) 0.891 (0.873, 0.905)	99.2 99.7 99.6 99.9 99.8	0.883 (0.863, 0.897) 0.890 (0.878, 0.902) 0.880 (0.861, 0.895) 0.892 (0.879, 0.903) 0.891 (0.879, 0.901)	99.6 99.6 99.9 100.0 100.0	0.890 (0.881, 0.896) 0.892 (0.885, 0.898) 0.886 (0.876, 0.893) 0.893 (0.887, 0.899) 0.892 (0.886, 0.897)	99.9 99.2 99.5 100.0 99.9
6	Proposed (\hat{c}_1, \hat{c}_2) Proposed $(c_1 = 0)$ Proposed $(c_1 = c_2)$ Reistma _O Reistma _P	0.877	0.865 (0.838, 0.885) 0.874 (0.854, 0.892) 0.865 (0.839, 0.886) 0.877 (0.857, 0.894) 0.875 (0.858, 0.891)	99.8 100.0 99.9 99.9 100.0	0.869 (0.851, 0.884) 0.876 (0.862, 0.889) 0.869 (0.852, 0.884) 0.879 (0.865, 0.891) 0.877 (0.865, 0.889)	99.8 99.8 99.7 100.0 99.8	0.875 (0.868, 0.882) 0.877 (0.871, 0.883) 0.875 (0.867, 0.882) 0.880 (0.874, 0.886) 0.877 (0.872, 0.883)	99.6 99.5 99.7 99.9 100.0

Note:

Proposed $(hatc_1, hatc_2)$ is the proposed model estimating (c_1, c_2) ; Proposed $(c_1 = c_2)$ is the proposed model correctly specifying that $c_1 = c_2$; Proposed $(c_1 = 1)$ is the proposed model misspecifying that $(c_1, c_2) = (1, 0)$; Reitsma model based on the observed studies; and Reitsma_P is Reitsma model based on the population studies.