TEMA 2 L'eficiència dels algoritmes

PROGRAMACIÓ I ESTRUCTURES DE DADES

Tema 2. L'eficiència dels algoritmes

L'eficiència dels algoritmes

- 1. Noció de complexitat
 - Complexitat temporal, magnitud del problema i pas
- 2. Cotes de complexitat
 - Cota superior, inferior i mitjana
- 3. Notació asimptòtica
 - Ω , Ω , Θ
- 4. Obtenció de cotes de complexitat

DEFINICIÓ

- Cálcul de complexitat: determinació de dos paràmetres o funcions de cost:
 - Complexitat espacial: Quantitat de recursos espacials (memòria) que un algoritme consumeix o necessita per a la seua execució
 - Complexitat temporal: Quantitat de temps que un algoritme necessita per a la seua execució
- Possibilitat de fer
 - Valoracions
 - L'algoritme és: "bo", "el millor", "prohibitiu"
 - Comparacions
 - L'algoritme A és millor que el B

3

Tema 2. L'eficiència dels algoritmes

1. Noció de complexitat

COMPLEXITAT TEMPORAL

- Factors que afecten al temps d'execució:
 - Externs
 - La màquina en què s'ha d'executar
 - El compilador: variables i model de memòria
 - L'experiència del programador
 - Interns
 - El nombre d'instruccions associades a l'algoritme
- Temps d'execució : Temps(A) = C + f(T)
 - C és la contribució dels factors externs (constant)
 - -f(T) és una **funció** que depén de T (talla o magnitud del problema)

COMPLEXITAT TEMPORAL

- Talla o magnitud d'un problema:
 - Valor o conjunt de valors associats a l'entrada del problema que representa una mesura de la seua magnitud respecte d'altres entrades possibles
- Pas de programa:
 - Seqüència d'operacions amb contingut semàntic el cost de la qual és independent de la talla del problema
 - Unitat de mesura de la complexitat d'un algoritme
- Complexitat temporal:
 - Funció que expressa el nombre de passos de programa que un algoritme necessita executar per a qualsevol entrada possible en funció de la talla
 - No es tenen en compte els factors externs

5

Tema 2. L'eficiència dels algoritmes

1. Noció de complexitat

COMPLEXITAT TEMPORAL

- Complexitat temporal:
 - Funció que expressa el nombre de passos de programa que un algoritme necessita executar per a qualsevol entrada possible en funció de la talla

COMPLEXITAT TEMPORAL. Exemples

COMPLEXITAT TEMPORAL. Exemples

Resolució de sumatoris:

$$\sum_{i=m}^{n} C = C \cdot (n-m+1)$$

$$\sum_{i=1}^{n} i = \frac{(a_1 + a_n)n}{2} (S.P.A)$$

$$= \frac{(n+1+1)(n+1)}{2}$$

$$= \frac{(n+2)(n+1)}{2}$$

$$a_1=n+1$$

S.P.A $a_1 = n+1$ $a_n = 1$ $n^{\circ} \text{ termes} = n+1$ $a_1 = n+1$

Tema 2. L'eficiència dels algoritmes

1. Noció de complexitat

COMPLEXITAT TEMPORAL. Exercicis

CONCLUSIONS

- Només ens ocuparem de la complexitat temporal
- Normalment són objetius contraposats (complexitat temporal <--> complexitat espacial)
- Cálcul de la complexitat temporal:
 - a priori: comptant passos
 - a posteriori: generant instàncies per a distints valors i cronometrant el temps
- Es tracta d'obtindre la funció. Les unitats de mesura (pas, sg, msg ...) no són rellevants (tot es tradueix a un canvi d'escala)
- El nombre de passos que s'executen sempre és funció de la magnitud (o talla) del problema

Tema 2. L'eficiència dels algorismes

2. Cotes de complexitat

INTRODUCCIÓ

• Donat un vector X de *n* nombres naturals i donat un nombre natural z:

- Calcula l'index $i: X_i = z$

El número de vegades que s'executa el bucle "mientras" Calculeu el nombre de passos que realita depén de la grandària del vector i de la distribució interna dels elements

```
funcion BUSCAR (var X:vector[N]; z: N): devuelve N
         var i:natural fvar;
          comienzo
             i := 1;
            mientras (i \leq |X|) \land (X_i \neq Z) hacer
                i := i+1;
1 pas
             fmientras
             si i = |X| + 1 entonces devuelve 0
                                                    (*No encontrado*)
                          si no devuelve i
```

2. Cotes de complexitat

EL PROBLEMA

- No podem comptar el nombre de passos perquè depèn:
 - De la magnitud del problema |X|
 - De la instància del problema que es pretén resoldre (possible valor que puguen prendre les variables d'entrada)
- Exemple:

X	Z	Nº PASSOS
(0,1)	1	
(1, 2, 3)	1	
(2)	3	
(1,0,2,4)	3	
(1,0,2,4)	0	
(1,0,2,4)	1	

18

Tema 2. L'eficiència dels algoritmes

2. Cotes de complexitat

LA SOLUCIÓ: cotes de complexitat

- Quan apareixen diferents casos per <u>una mateixa talla genèrica</u> *n*, s'introdueixen les cotes de complexitat:
 - − **Cas pitjor**: $\underline{\text{cota superior}}$ de l'algoritme → $C_s(n)$
 - Cas millor: cota inferior de l'algoritme $\rightarrow C_i(n)$
 - − Terme mitjà: cota mitjana $\rightarrow C_m(n)$
- Totes són funcions de la magnitud del problema (n)
- La cota mitjana és difícil d'avaluar a priori
 - És necessari conèixer la distribució de la probabilitat d'entrada
 - No és la mitjana de la inferior i de la superior (ni estan totes ni tenen la mateixa proporció)

Tema 2. L'eficiència dels algoritmes

2. Cotes de complexitat

EXERCICI: cotes superior i inferior

```
funcion BUSCAR (var X:vector[N]; z: N): devuelve N
var i:natural fvar;
comienzo
    i:=1;

mientras (i ≤ | X | ) ∧ (Xi≠z) hacer
    i:=i+1;
fmientras

si i= | X | +1 entonces devuelve 0
    si no devuelve i

fin
(*No encontrado*)
```

- Talla del problema: nombre d'elements de X: n
- Hi ha cas millor i pitjor?
 - Cas millor: l'element està el primer: $X_1=z \rightarrow c_i(n)=1$
 - Cas pitjor: l'element no està: $\forall i$ 1≤ i ≤ |X|, $Xi \neq z \rightarrow c_s(n) = n+1$

$$1 + \sum_{i=1}^{n} 1 = 1 + (n-1+1) = n+1$$

Tema 2. L'eficiència dels algoritmes

20

2. Cotes de complexitat

EJERCICI: cotes superior e inferior

• Complexitat funció Buscar

2. Cotes de complexitat

CONCLUSIONS

- La **cota mitjana** no la calcularem. Només es parlarà de complexitat en el cas mitja quan la cota superior i la inferior coincideixen
- <u>L'estudi de la complexitat es fa per a magnituds grans del problema</u> per diversos motius:
 - Els resultats per a magnituds xicotetes o no són fiables o proporcionen poca informació sobre l'algoritme
 - És lògic invertir temps en el desenvolupament d'un bon algoritme només si es preveu que aquest farà un gran volum d'operacions
- La complexitat que resulta de magnituds grans de problema es denomina complexitat asimptòtica i la notació utilitzada és la notació asimptòtica

22

Tema 2. L'eficiència dels algoritmes

3. Notació asimptòtica

INTRODUCCIÓ

- Notació matemàtica utilitzada per a representar la complexitat espacial i temporal quan $n \to \infty$
- Es defineixen classes d'equivalència que engloben les funcions que "creixen de la mateixa forma"
- Es defineixen tres tipus de notació:
 - Notació O (big-omicron) ⇒ cas pitjor
 - Notació Ω (omega) ⇒ cas millor
 - Notació ⊕ (big-theta) ⇒ cas mitjà

3. Notació asimptòtica

Teorema de l'escala de complexitat

- $\Box f(n) + g(n) + t(n) \in O(Max(f(n), g(n), t(n)))$
- ☐ Exemples:
 - -10000000n + 1 pertany a O(n)
 - $-n^2 + \log n$ pertany a $O(n^2)$
 - $-n^3 + 2^n + n \log n$ pertany a $O(2^n)$
- $\hfill \square$ Vàlid per Notació Ω y Notació Θ

25

Tema 2. L'eficiència dels algoritmes

3. Notació asimptòtica

NOTACIÓ O: escala de complexitat

Complexitat	n = 32	n = 64
n^3	3 seg.	26 seg.
2 ⁿ	5 dies	58·10 ⁶ anys

• Temps de resposta per a dos valors de la talla i complexitats n^3 i 2^n .

(pas = 0,1 mseg.)

- Queda clara la necessitat del càlcul de complexitat

```
función POT_2 (n: natural): natural
   opción
                                                      Cost lineal
       n = 1: devuelve 2
      n > 1: devuelve 2 * POT 2(n-1)
   fopción
                                                         1 seg.
ffunción
función POT_2 (n: natural): natural
   opción
                                                    Cost exponencial
      n = 1: devuelve 2
      n > 1: devuelve POT_2(n-1)+POT_2(n-1)
                                                       miles d'anys
   fopción
ffunción
```

INTRODUCCIÓ

- Etapes per a obtindre les cotes de complexitat:
 - 1. Determinació de la TALLA o magnitud (de la instància) del problema
 - 2. Determinació del **CAS MILLOR I MITJOR**: instàncies per a les quals l'algoritme tarda més o menys
 - No sempre hi ha millor i pitjor cas, ja que hi ha algoritmes que es comporten de la mateixa forma per a qualsevol instància de la mateixa grandària
 - 3. Obtenció de les cotes per a cada cas. Mètodes:
 - compte de passos
 - relacions de recurrència (funcions recursives)

27

Tema 2. L'eficiència dels algoritmes

4. Obtenció de cotes de complexitat

INTRODUCCIÓ

función FACTORIAL (n:natural): natural

• La talla és *n* i no hi ha cas millor ni pitjor

función BUSCA (v: vector[natural]; x:natural)

- La talla és n=|v|
- cas millor: instàncies on x està en v[1]
- cas pitjor: instàncies on x no està en v
- Es tracta de delimitar amb una regió el temps que tarda un algoritme en executar-se

Exemples

1 paso

Cálcul del màxim d'un vector

```
funcion MÁXIMO (var v : vector[n]; n:entero) : entero
var i, max : entero fvar
comienzo
    max:=v[1]

para i:=2 hasta n hacer
    si v[i]>max entonces max:=v[i] fsi
fpara

devuelve max
fin
```

• determinar la talla del problema: n=grandària del vector

• Millor cas
$$c_i = 1 + \sum_{i=2}^n 1 = 1 + (n-2+1) = n \in \Omega(n)$$
 La condició v[i]>max MAI es compleix
$$c_s = 1 + \sum_{i=2}^n 2 = 1 + (n-2+1) = n \in \Omega(n)$$
• Pitjor cas
$$c_s = 1 + \sum_{i=2}^n 2 = 1 + (n-2+1) = n \in \Omega(n)$$

La condició v[i]>max SEMPRE es compleix

29

Tema 2. L'eficiència dels algoritmes

4. Obtenció de cotes de complexitat

Exemples

Búsqueda d'un element en un vector ordenat (Busca binària)

Exemples

- Determinar la talla del problema: n=grandària del vector
- Millor cas: x està en la meitat del vector
- **Pitjor cas**: x no està en el vector
- Complexitats
 - *millor cas:* $1+1=2 \in \Omega(1)$
 - pitjor cas
 - 1+u·1, on u és el nombre de vegades que s'executa el bucle
 - 1_eiteració: Talla=n 2_e iteració: Talla=n/2 3_e iteració: Talla=n/4
 -k-èsima interació: Talla=n/2^(k-1)

.

última iteració: Talla = 1 $(n/2^{(u-1)} = 1)$

És a dir, en l'última iteració nomes ens queda 1 element.
 Aïllant u:

 $u=log_2n+1$

 $1+u\cdot 1\exists 1+(\log_2 n+1)\in O(\log_2 n)$

Tema 2. L'eficiència dels algorismes

4. Obtenció de cotes de complexitat

Algoritmes d'ordenació

- Directes
 - Inserció directa
 - Inserció binària
 - Selecció directa
 - Intercanvi directe (bambolla)

Algoritmes d'ordenació

INSERCIÓ DIRECTA

- Divideix lògicament el vector en dues parts: origen i destí
- Començament:
 - *destí* té el primer element del vector
 - origen té els n-1 elements restants
- Es va prenent el primer element d'origen i s'insereix en destí en el lloc adequat, de manera que desti sempre està ordenat
- L'algoritme finalitza quan no queden elements en origen
- Característiques
 - cas millor: vector ordenat
 - cas pitjor: vector ordenat inversament

33

Tema 2. L'eficiència dels algoritmes

4. Obtenció de cotes de complexitat

Algoritmes d'ordenació

INSERCIÓ DIRECTA

•Es divideix el vector en dues parts: origen i destí

• En cada iteració, l'element a[i] del subvector "origen" s'insereix en la seua posició correcta del subvector "destí" a[1..i-1]

Algoritmes d'ordenació

INSERCIÓ DIRECTA

```
funcion INSERCION_DIRECTA (var a:vector[natural]; n: natural)
var i,j: entero; x:natural fvar
comienzo
   para i:=2 hasta n hacer
        x:=a[i]; j:=i-1
        mientras (j>0) \( \lambda (a[j]>x) \) hacer
        a[j+1]:=a[j]
        j:=j-1
        fmientras
        a[j+1]:=x
        fpara
fin
```

35

4. Obtenció de cotes de complexitat

Algoritmes d'ordenació

INSERCIÓ BINÀRIA

EL BUCLE mientras BUSCA EL LLOC DEL PRIMER ELEMENT D' ORIGEN EN DESTÍ.
EL COST D'AQUEST BUCLE SEMPRE ÉS log2(i) (CERCA BINÀRIA).
ILA SUMA PER A i=2...n DE log2(i) es pot aproximar com n*log2(n)

37

Algoritmes d'ordenació

INSERCIÓ BINÀRIA

- És una millora de l'algoritme d'inserció directa
- Canvia en un punt:
 - Quan es busca la posició on s'ha d'inserir l'element en el subvector "destí", es fa de forma dicotòmica: es dividieix el vector "destí" en dues parts de manera successiva fins que es troba la posició correcta.
 - Quan es troba la posició, la resta d'elements es mouen cap a la dreta.

38

4. Obtenció de cotes de complexitat

Algoritmes d'ordenació

SELECCIÓ DIRECTA

EN CADA ITERACIÓ, ES SELECCIONA EL MÍNIM D'**ORIGEN** I S'INTERCANVIA PER L'ÚLTIM DE **DESTÍ**.

```
funcion SELECCION_DIRECTA (var a:vector[natural]; n:natural)
var i, j, posmin: entero; min:natural fvar
comienzo

para i:=1 hasta n-1 hacer
    min:=a[i]; posmin:=i
    para j:=i+1 hasta n hacer
    si a[j]<min entonces
        min:=a[j]; posmin:=j
    fsi
    fpara
    a[posmin]:=a[i]; a[i]:=min
    fpara
fin</pre>
```

Aquest algoritme busca el menor element del subvector a[i..n-1] y ho intercanvia per l'element que està en la posició i

Algoritmes d'ordenació

INTERCANVI DIRECTE (bambolla)

Es fa un recorregut del vector de dreta a esquerra (n-i **posicions)** i s'intercanvia cada element per l'anterior si l'element actual es menor.

```
funcion INTERCAMBIO DIRECTO
                                (var a:vector[natural]; n:natural )
var i,j:entero fvar
comienzo
   para i:=2 hasta n hacer
       para j:=n hasta i hacer
si a[j]<a[j-1] entonces</pre>
               SWAP(a[j],a[j-1])
            fsi
       fpara
   fpara
fin
```

42