

KANDIDAT

10264

PRØVE

TDT4300 1 Datavarehus og datagruvedrift

Emnekode	TDT4300
Vurderingsform	Hjemmeeksamen
Starttid	24.05.2022 13:00
Sluttid	24.05.2022 16:00
Sensurfrist	18.06.2022 21:59
PDF opprettet	27.04.2023 09:40

General Information

Oppgave Tittel		Oppgavetype		
i	General Instructions	Informasjon eller ressurser		

Datawarehouses and OLAP Operations

Oppgave	Tittel	Oppgavetype
1	Datawarehouses and OLAP Operations	Filopplasting

Data

Oppgave	Tittel	Oppgavetype
2	Data	Langsvar

Association Rule Mining

Oppgave	Tittel	Oppgavetype
3	FP-Growth Algorithm	Filopplasting

Clustering

Oppgave Tittel		Oppgavetype	
4	Hierarchical Clusterings	Langsvar	
5	DB Scan Clustering	Filopplasting	

Classification

Oppgave	Tittel	Oppgavetype
6	Decision Trees	Filopplasting

Datawarehouses and OLAP Operations

Totalt antall poeng: 20 poeng (=2+6+6+2+4)

De forente nasjoner (FN), i sitt initiativ for å håndtere klimaendringer, samler inn meteorologiske data fra hele verden. Du jobber som dataforsker i FN og har i oppgave å analysere globale værmeldinger for å identifisere uvanlige værmønstre (f.eks. hetebølger). De meteorologiske avdelingene til hvert land gir informasjon om temperatur i grader Celsius for hver større by fire ganger daglig (morgen, ettermiddag, kveld og natt). For å oppdage og forstå uvanlige værmønstre gir de også informasjon om luftkvalitet som en indeksverdi i [0, 201), vindhastighet i km/t, nedbør i mm/t, og UV-nivåer som indeksverdier i [1, 11). Med denne konteksten, svar på følgende spørsmål knyttet til dataanalyse:

- 1. Du har i oppgave å gi innsikt fra disse store værdataene. Du bestemmer deg for i utgangspunktet å bruke relasjonsdatabaseteknikker. Hva er problemer du vil møte når du prøver å "cross-tabulate" (f.eks. tilby drill-down og roll-up-funksjoner) dataene med tradisjonell SQL?
- 2. Gitt utfordringene med relasjonsdatabaseteknikker, bestemmer du deg for å lagre dine data i et datavarehus. For dette formålet må du først designe konsepthierarkier for de forskjellige attributtene i datasettet. Skriv ned hierarkiene du foreslår. Husk at for å komme opp med disse hierarkiene må kanskje mappe kontinuerlige attributter til kategoriske nivåer. Oppgi disse mappingene og evt. andre antagelser du gjør.
- 3. Basert på konsepthierarkiene opprettet ovenfor, utform et stjerneskjema for lagring av dataene i et datavarehus.
- 4. Gitt konsepthierarkiet du har designet, hvor mange cuboids vil være nødvendig for full materialisering av kuben?
- 5. På FNs kommende klimakonferanse (COP26) får du oppgaven med å presentere innsikten du har fått fra datasettet. Et av de viktige spørsmålene å svare på er: hva er økningen i gjennomsnittstemperaturen i år som sammenlignet med siste tiår over hele verden? Identifiser sekvensen av OLAP-operasjoner du må utføre på base-cuboiden for å finne økningen i gjennomsnittstemperaturen i år sammenlignet med forrige tiår i Europa da ekstreme forhold eksisterte når det gjaldt nedbør, luftkvalitet, UV-nivåer og vindhastigheter (dvs. "all" i den ene enden av konsepthierarkiene dine).

Hint:

For OLAP-operasjonene forventer vi at operasjoner av typen «Roll up, Drill down, Slice, Dice og Pivot» resulterer i subkuben for å visualisere svaret. For eksempel, for spørringen "hva er det totale datamaskinsalget i Florida for kvartal 1" er svaret:

Roll Up Location: City -> State; Roll Up Time : Weeks -> Quarter;

Dice: State = "Florida" AND Quarter = "Q1";

² Data

Totalt antall poeng: 10 poeng (= 4 x 2.5 poeng)

Du jobber som dataingeniør på Piazza, som er vert for en plattform hvor studenter som tilhører et emne kan stille og diskutere spørsmål. Du har i oppgave med å bygge et system for å analysere studentenes innlegg på Piazza for TDT4300 . Følgende spørsmål dukker opp i ditt forsøk på å bygge dette systemet:

- 1. For å analysere innlegg må du først modellere postattributtene. Hva kan være potensielle attributter som brukes til å modellere en post beregningsmessig?
- 2. Hva vil være den tilknyttede typen (f.eks. diskret, kontinuerlig, intervall osv.) til attributtene du har kommet frem til?
- 3. En viktig funksjonalitet på Piazza er å søke etter lignende innlegg basert på tekst. Basert på hva du vet om ulike typer datasett. Hvordan ville modellere teksten i innleggene slik at søkefunksjonalitet kan bli implementert? Hvordan vil det representere følgende spørsmålsutdrag: "How do we solve the question on Apriori algorithm?".
- 4. For å hjelpe både instruktørene og studentene tilbyr Piazza en funksjonalitet for å oppdage innlegg som stiller det samme spørsmålet. Basert på tekstmodell valgt ovenfor, hvilken likhetsmetrikk vil du velge for å implementere denne duplikatdeteksjonsfunksjonen?

Skriv ditt svar her

- 1. Some potential attributed that can be used are time, subject, topic (if assignment or lecture question), title, likes.
- 2. time: interval, subject: Continuous, topic: Discrete, title: Continuous, likes: Discrete
- 3. Would use Information Retrieval consepts and clean text and make keywords. And ofcourse make document with keywords to then be able to compare to other texts. "solve" "question" "apriori" "algorithm"
- 4. Would use cosine similarity to find similar documents using the text model above

Ord: 75

³ FP-Growth Algorithm

Totalt antall poeng: 20 poeng

Finn de frekvente elementsettene for transaksjonsdatabasen gitt i tabellen nedenfor ved hjelp av FPGrowth-algoritmen, med minimum støttetall lik 3.

tid	itemset	
t ₁	ACDEF	
t ₂	ABCDE	
t ₃	BCF	
t ₄	ACDEF	
t_5	DB	

Vis FPGrowth-prosedyren trinn for trinn, inkludert byggingen av FP-treet og de projiserte FP-trærne.

⁴ Hierarchical Clusterings

Totalt antall poeng: 5 poeng

Dendogrammer fanger kort og godt resultatet av en hierarkisk agglomerativ klynging. I bunn og grunn er et dendogram et binært tre. For et gitt sett med n punkter, hvor mange mulige dendogrammer kan oppregnes? Hint: Et tre med m noder inneholder m-1 kanter. Videre har et binært tre med n bladnoder n-1 interne noder.

Skriv ditt svar her

Given that dendogram is a binary tree there would be (2n)!/(n!*(n+1)!) different trees

Ord: 15

5 DB Scan Clustering

Totalt antall poeng: 20 poeng (=10+5+5)

Gitt punktene i figuren nedenfor og følgende parametere for DB Scan-algoritmen: **eps** = 2 og **minpts** = 2. Gitt også følgende avstandsfunksjon L_{min} :

$$L_{min}(x,y) = \min_{i=1}^d \left\{ |x_i - y_i|
ight\}$$

Som et eksempel på beregning av avstander anta $x=\langle 1,2 \rangle$ og $y=\langle 2,4 \rangle$. Deretter beregnes L_{min} som:

$$egin{aligned} L_{min}(x,y) &= \min_{i=1}^2 ig\{|x_i - y_i|ig\} \ &= \minig\{|1 - 2|, |2 - 4|ig\} \ &= \minig\{1, 2ig\} \ &= 1 \end{aligned}$$

Svar på følgende spørsmål:

- 1. Finn alle kjernepunktene for settet med punkter vist i figuren nedenfor.
- 2. To punkter sies å være tetthetsnåbare hvis det er en sekvens av kjernepunkter frem til destinasjonen. For eksempel er v tetthetnåbar fra u om det er en sekvens av kjernepunkter fra u til v. Er punktet j tetthetsnåbart fra punkt b i figuren under? Forklar resonnementet ditt.
- 3. Er tetthetsnåbarhet et symmetrisk forhold? Forklar resonnementet ditt.

⁶ Decision Trees

Totalt antall poeng: 25 poeng

Konstruer et beslutningstre ved å bruke Hunt's Algorithm for datasettet gitt i tabellen nedenfor der attributtet **Class** er klassifiseringsetiketten for hver post. Bruk Gini-indeksen for å bestemme de beste splittingene.

Instance	a_1	\mathfrak{a}_2	\mathfrak{a}_3	Class
1	M	X	A	YES
2	F	Y	В	YES
3	M	Y	С	YES
4	F	Y	C	YES
5	M	X	C	YES
6	F	Y	D	NO
7	M	Y	A	NO
8	F	X	A	NO
9	M	Y	A	NO
10	F	X	С	NO

