

Overview

- What is it and how does it work?
- Quantitative analysis of multiple phases mixture
 - Amorphous content
- Atomic position & site occupancy
- Thermal displacement parameters
- Preferred orientation
- Crystallite size/strain

What is Rietveld refinement?

- Hugo Rietveld (1969)
- Quantitative refinement tool
 - Calculated pattern vs measured pattern
 - Variable model parameters
 - Least-squares refinement
 - Account for errors during measurement (shift, zero)
- Different from LeBail or Pawley (Profile) fitting
 - ▶ Ab initio crystal structure determination

We can simulate patterns pretty well!

Intensity of a diffracted peak depends on many parameters!

$$I_{(hkl)\alpha} = \frac{I_0 \lambda^3}{64\pi r} \left(\frac{e^2}{m_e c^2}\right)^2 \frac{M_{(hkl)}}{V_\alpha^2} \left|F_{(hkl)\alpha}\right|^2 \left(\frac{1 + \cos^2(2\theta)\cos^2(2\theta_m)}{\sin^2\theta\cos\theta}\right)_{hkl} \frac{v_\alpha}{\mu_s}$$

$$F_{hkl} = \sum_{j=1}^{m} N_j f_j \exp \left[2\pi i \left(h x_j + k y_j + l z_j \right) \right]$$

$$|f|^2 = \left(f_0 \exp\left[\frac{-B\sin^2\theta}{\lambda^2}\right] + \Delta f'\right)^2 + (\Delta f'')^2$$

Anomalous Scattering Factors f' & f" depends on radiation choice

Different instruments yield different peak shape

Quality of the Fit

- R_p is the difference between the observed and the calculated value
- $ightharpoonup R_{wp}$ weights the residual so the higher intensity peaks are more important than low intensity ones

$$R_{P} = \frac{\sum |y_{io} - y_{ic}|}{\sum y_{io}} \qquad R_{wp} = \left[\frac{\sum w_{i}(y_{io} - y_{ic})^{2}}{\sum w_{i}y_{io}^{2}}\right]^{1/2}$$

$$GOF = \chi^{2} = \left[\frac{R_{wp}}{R_{exp}}\right]^{2}$$

- ▶ R_p or R_{wp} should be < 10% or χ^2 < 4 for a good fit
- prism.mit.edu/xray/RietveldGOF.pdf

Multiple cycles required to find the true global minimum in error

- "A Rietveld refinement is never finished, only abandoned"
- P.W. Stephens

Quantitative Analysis of Multiple Phases Mixture

Quantitative Analysis of Multiple Phases Mixture

Weight Fraction: "SMZ" Method

- S is phase fraction, proportional to number of unit cells measured
- M is the molecular weight
- Z is the number of formula units per unit cell
- SMZ is proportional to the concentration

$$X_{\alpha} = \frac{S_{\alpha} M_{\alpha} Z_{\alpha}}{\sum SMZ}$$

How Good is the Quantitive Analysis?

CPD Rietveld QPA Round Robin Sample 1 Series Amoco Results

Te Fraction in Seawater Medium

Errors: absorption (transparency), sample volume (more powder)

Y₃Sc₄AlO₁₂ Intended Composition

Y₃Sc₅O₁₂ Intended Composition

Debye Equation for Amorphous Materials

Possible to determine percent amorphous material if standard is added in known amount.

$$I(\theta) = \sum_{n} f_{n}^{2}(\theta) + 2\sum_{i} \sum_{j} f_{i}(\theta) f_{j}(\theta) \left[\frac{\sin\left(\frac{4\pi r_{ij} \sin \theta}{\lambda}\right)}{\frac{4\pi r_{ij} \sin \theta}{\lambda}} \right]$$

Need radial distribution function to determine bond distances for analysis

Atomic Position & Site Occupancy

- - Anion/cation vacancies
- Lab XRD insufficient
 - Impurity wt%?
 - Volume change?
 - Cation site preference?
 - Meta-prism twist?

Figure 6 Twist angles of $A(1)O_6$ polyhedra in (a) models I and II, (b) chlorapatite, (c) fluorapatite, and (d) model III (as found in glaserite).

White et al, Structural derivation and crystal chemistry of apatites, Acta Cryst. B, **B59** I-16 2003

Atomic Position & Site Occupancy

- Stoichiometric composition should have highest thermal conductivity
 - Phase separation?

- Synchrotron diffraction
 - Improved signal to noise ratio
 - Improved resolution
 - Minimize anomalous scattering

Atomic Position & Site Occupancy

Thermal Displacement Parameters

- Thermal vibrations quantitatively studied in Rietveld refinement
 - V_{iso} or V_{ij} for anisotropic vibration
- Large U values could be due to rattling
 - Explanation of RE₂SrAl₂O₇ thermal conductivity?

Thermal Displacement Parameters

Compostion	La ₂ SrAl ₂ O ₇	Nd ₂ SrAl ₂ O ₇	Sm ₂ SrAl ₂ O ₇	Eu ₂ SrAl ₂ O ₇	Gd ₂ SrAl ₂ O ₇	Dy ₂ SrAl ₂ O ₇
Uiso A1	0.11(2)	0.21(5)	0.40(3)	0.20(1)	0.37(3)	0.96(2)
A1 (P2) occupancy	.73	.54	.43	.32	.25	.21
A2 (RS) occupancy	.27	.46	.56	.67	.72	.79

Preferential Orientation: Sr₂Nb₂O₇

Clearly textured to b-axis, but what is preferred orientation factor?

Preferential Orientation Sr₂Nb₂O₇

Note: Actual compound had small amount of La3+ doped on Sr2+ site

Size & Strain

First need to characterize the instrument shape parameters using a standard. Then use U,V,W to obtain integral breadth for Scherrer's & Stokes' equation.

$$D_v = K\lambda/\{\beta \cos \theta\}$$
 $\varepsilon = \beta/\{4 \tan \theta\}$

$$\{\beta_{obs} - \beta_{inst}\}\cos \theta = \lambda/D_v + 4 \epsilon \{\sin \theta\}$$

Williamson-Hall plot

- -Plot $\beta\cos(\theta)/\lambda$ against 4 $\sin(\theta)$
- -Slope & intercept give size and strain

Size & Strain

CeO₂ before and after micronizing

Volume weighted domain size, D_v , of broadened CeO_2 is 226 Å and maximum strain, e is 0.011%

Summary

- Rietveld refinement a valuable quantitative analysis tool for determining...
 - Crystal structure information
 - ▶ atomic positions, thermal displacement parameters, occupancy
 - Other information
 - Preferred orientation, size, strain, quantitative analysis (including amorphous material)

