Grupo ARCOS

Departamento de Informática

Universidad Carlos III de Madrid

Lección 3a

procesos, periféricos, drivers y servicios ampliados

Diseño de Sistemas Operativos Grado en Ingeniería Informática y Doble Grado I.I. y A.D.E.

En el tema 2 se introducía el funcionamiento interno del núcleo del sistema operativo: interrupciones software, llamadas al sistema, excepciones e interrupciones hardware

system_lib \

K

En el tema 2 se insistía del funcionamiento interno del núcleo del sistema operativo en que

no siempre todo lo que hay que hacer está en una única localización

system_lib

l

K

Primero conocer qué hay que hacer (qué modelo de funcionamiento se desea tener) y luego cómo desplegarlo en el sisten

y luego cómo desplegarlo en el sistema operativo (datos + funciones)

system_lib

Objetivos...

En el tema 3 se introducirá los aspectos del funcionamiento relativos a la **gestión de procesos**...

system_lib

U

Crear proceso

. . . .

Objetivos...

En el tema 3 se introducirá los aspectos del funcionamiento relativos a la **gestión de dispositivos**...

Proceso

system_lib

U

Atender dispositivo

. . .

A recordar...

Antes de clase

Clase

Después de clase

Preparar los pre-requisitos.

Estudiar el material asociado a la bibliografía: las transparencias solo no son suficiente. Preguntar dudas (especialmente tras estudio).

Ejercitar las competencias:

- Realizar todos los ejercicios.
- Realizar los cuadernos de prácticas y las prácticas de forma progresiva.

Ejercicios, cuadernos de prácticas y prácticas

	Ejercicios	Cuadernos de prácticas	Prácticas ✓
b	Grado en Ingeniería Informática Diseño de Sistemas Operativos [30] Planificación y procesos Grupo:	DISEÑO DE SISTEMAS OPERATIVOS GRADO EN INGENIERÍA INFORMÁTICA DOBLE GRADO EN INGENIERÍA INFORMÁTICA Y ADMINISTRACIÓN DE EMPRESAS uc3m Universidad Carlos III de Madrid	DISEÑO DE SISTEMAS OPERATIVOS GRADO EN INGENIERÍA INFORMÁTICA
С	Grado en Ingenieria Informática Diseño de Sistemas Operativos Dict Drivers y servicios amplitados Grupo: — NIA: —— Nombre y spellidos: Ejercicio 1 Una compañía de accesorios informáticos ha creado un ratón y su correspondiente driver para sistema operativo básico (como el que está siendo presentado en pseudocódigo en la asignatura) cuya funcionalidad definida por su interfaz al usuario es: • Funciones open/glosc Para establecer el acceso al ratón o liberario • Función (pog/ Para obtaner la posición actual del ratón. Se ha fabricado una nueva versión del ratón que permite configurar la precisión del mismo indicando la distancia entre posiciones consecutivas. Por tanto, resulta necesario modificar el driver del ratón para añadir dicha funcionalidad. Para realizar esto disponemos de la función: Modificar precision (int. valor) 7	Introducción a un driver de teclado con Linux/Ubuntu	Universidad Carlos III de Madrid Planificación de procesos David del Río Astorga

Lecturas recomendadas

- I. Carretero 2007:
 - ı. Сар.7

- I. Tanenbaum 2006(en):
 - I. Cap.3
- 2. Stallings 2005(en):
 - I. Parte tres
- 3. Silberschatz 2006:
 - Cap. Sistemas de E/S

Contenidos

- Procesos
- Periféricos

Contenidos

- Procesos
- Periféricos

Introducción

Introducción

Concepto de proceso

Concepto de proceso

Proceso

- Programa en ejecución
- ▶ Unidad de procesamiento gestionada por el S.O.

Introducción

- recursos
- multiprogramación protección/compartición

 - jerarquía de procesos
- multitarea
- multiproceso

Memoria

Recursos asociados

- Zonas de memoria
 - Al menos: código, datos y pila
- Archivos abiertos
- Señales

Disco

- recursos
- multiprogramación protección/compartición
 - jerarquía de procesos
- multitarea
- multiproceso

Memoria

Multiprogramación

- Tener varias aplicaciones en memoria
- Si una aplicación se bloquea por E/S, entonces se ejecuta mientras otra hasta que quede bloqueada
 - Cambio de contexto voluntario (C.C.V.)
- Eficiencia en el uso del procesador
- Grado de multiprogramación = número de aplicaciones en RAM

- recursos
- multiprogramación protección/compartición
 - jerarquía de procesos
- multitarea
- multiproceso

Memoria

Protección / Compartición

- El espacio de direcciones privado por aplicación, pero
- Posibilidad de comunicar datos entre dos aplicaciones
 - Paso de mensajes
 - Compartición de memoria

- recursos
- multiprogramación protección/compartición

 - jerarquía de procesos
- multitarea
- multiproceso

Jerarquía de procesos

- Creación de proceso
 - Como copia de otro proceso existente
 - A partir del programa en disco
 - Como proceso en el arranque
- Grupo de procesos que comparten mismo tratamiento

- recursos
- multiprogramación protección/compartición
 - jerarquía de procesos
- multitarea
- multiproceso

Memoria

Multitarea

- Cada proceso se ejecuta un quantum de tiempo (Ej.: 5 ms) y se rota el turno para ejecutar procesos no bloqueados
 - Cambio de contexto involuntario (C.C.I.)
- Reparto del uso del procesador
 - Parece que todo se ejecuta a la vez

- recursos
- multiprogramación protección/compartición

 - jerarquía de procesos
- multitarea
- multiproceso

Multiproceso

- Se dispone de varios procesadores (multicore/multiprocesador)
- Además del reparto de cada CPU (multitarea) hay paralelismo real entre varias tareas (tantas como procesadores)
 - Se suele usar planificador y estructuras de datos separadas por procesador con algún mecanismo de equilibrio de carga

Introducción

Estructuras de datos

Requisitos	Información (en estructuras de datos)	
Recursos	Zonas de memoria (código, datos y pila)Archivos abiertosSeñales activas	
Multiprogramación	Estado de ejecuciónContexto: registros de CPULista de procesos	
Protección / Compartición	 Paso de mensajes Cola de mensajes de recepción Memoria compartida Zonas, locks y conditions 	
Jerarquía de procesos	 Relación de parentesco Conjuntos de procesos relacionados Procesos de una misma sesión 	
Multitarea	 Quantum restante Prioridad	
Multiproceso	Afinidad	

Estructuras de datos

2. Funciones: de gestión internas

Requisitos Información (en estructuras de datos)		Funciones (internas, servicio y API)
Recursos	Zonas de memoria (código, datos y pila)Archivos abiertosSeñales activas	 Diversas funciones internas Diversas funciones de servicio para memoria, ficheros, etc.
Multiprogramación	Estado de ejecuciónContexto: registros de CPULista de procesos	Int. hw/sw de dispositivosPlanificadorCrear/Destruir/Planificar proceso
Protección / Compartición	 Paso de mensajes Cola de mensajes de recepción Memoria compartida Zonas, locks y conditions 	 Envío/Recepción mensaje y gestión de la cola de mensaje API concurrencia y gestión de estructuras de datos
o Jerarquía de procesos	 Relación de parentesco Conjuntos de procesos relacionados Procesos de una misma sesión 	 Clonar/Cambiar imagen de proceso Asociar procesos e indicar proceso representante
Multitarea	 Quantum restante Prioridad	Int. hw/sw de relojPlanificadorCrear/Destruir/Planificar proceso
Multiproceso	Afinidad	Int. hw/sw de relojPlanificadorCrear/Destruir/Planificar proceso

2. Funciones: de gestión internas

3. Funciones: de servicio

Funciones: API de servicio

- fork, exit, exec, wait, ...
- pthread_create, pthread...

- Creación de proceso
- Destrucción de proceso
- Cambio de imagen
- Espera por el fin de otro proceso
- Etc.
- Estados y cambios de contexto
- Colas de procesos
- Planificación
- Etc.

kernel

Introducción

resumen

Principales estructuras de datos

Don't forget that Linux became only possible because 20 years of OS research was carefully studied, analyzed, discussed and thrown away.

(Ingo Molnar)

izquotes.com

Información en el sistema operativo

Información para un proceso

BCP: entrada de la tabla de procesos

Gestión de proceso

Registros generales

- Contador de programa
- Registro de estado
- Puntero de pila

Identificador del proceso

- Proceso padre
- Grupo de proceso
- Prioridad
- Parámetros del planificador
- Señales
- Instante inicio de ejecución
- Tiempo de uso de CPU
- Tiempo hasta siguiente alarma

- Process Control Block (PCB / BCP)
 - Estructura de datos con la información necesaria para gestionar un proceso en particular
 - Manifestación de un proceso en el kernel
- Thread Control Block (TCB / BCT)
 - Similar al BCP para cada hilo de un proceso

BCP: entrada de la tabla de procesos

Gestión de proceso

- Registros generales
- Contador de programa
- Registro de estado
- Puntero de pila
- Identificador del proceso
- Proceso padre
- Grupo de proceso
- Prioridad
- Parámetros del planificador
- Señales
- Instante inicio de ejecución
- Tiempo de uso de CPU
- Tiempo hasta siguiente alarma

Tabla de procesos

- **Process Identification (PID)**
 - Identificador de cara a los usuarios
 - Número positivo de 16 bits (32767) dinámicamente asignado, reusado no de forma inmediata
- Address of process descriptor (APD)
 - Identificación dentro del kernel
 - Existe mecanismo PID -> APD (Ej.: hash)

Dónde: información del proceso

- La información de cada proceso está en el BCP...
- ▶ Información fuera del BCP:
 - Por razones de eficiencia
 - Para compartir información entre procesos

Tabla de procesos

Tabla de memora

Tabla de E/S

Tabla de ficheros

- Ejemplos:
 - Tabla de segmentos y páginas de memoria
 - Tabla de punteros de posición de ficheros
 - Lista de peticiones a dispositivos

Dónde: información del proceso

Tabla de punteros de posición de ficheros:

- Describe la posición de lectura/escritura de los ficheros abiertos
- La compartición de estado del fichero entre procesos obliga a que sea externa al BCP
- elemento de la tabla que contiene la información del fichero abierto: el i-nodo y la posición de lectura/escritura.

Información del proceso

resumen

Tabla de procesos

Gestión de proceso

- Registros generales
- Contador de programa
- Registro de estado
- Puntero de pila
- Identificador del proceso
- Proceso padre
- Grupo de proceso
- Prioridad

0

- Parámetros del planificador
- Señales
- Instante inicio de ejecución
- Tiempo de uso de CPU
- Tiempo hasta siguiente alarma

Tabla de ficheros

Gestión de ficheros

- Directorio raíz
- Directorio de trabajo
- Descriptores de ficheros
- Identificador de usuario
- Identificador de grupo

Tabla de memoria

Gestión de memoria.

- Puntero al seg. de código
- Puntero al seg. de datos
- Puntero al seg. de pila

Información del proceso

Linux

Servicios del sistema operativo

inicialización y finalización de procesos

Creación de procesos

- Un proceso se crea:
 - Durante el arranque del sistema
 - ▶ Hilos del kernel + primer proceso (Ej.: init, swapper, etc.)
 - Cuando un proceso existe hace una llamada al sistema para crear otro:
 - Cuando el sistema operativo comienza un nuevo trabajo
 - Cuando un usuario arranca un nuevo programa
 - Cuando durante la ejecución de un programa se necesite

Finalización de procesos

Un proceso termina:

- De forma voluntaria:
 - Finalización normal
 - Finalización con error
- De forma involuntaria:
 - Finalizado por el sistema (Ej.: excepción, sin recursos necesarios)
 - Finalizado por otro proceso (Ej.: a través de llamada al sistema)
 - Finalizado por el usuario (Ej.: control-c por teclado)
 - ▶ En Unix/Linux se usan señales como mecanismo
 - ▶ Se pueden capturar y tratar (salvo SIGKILL) para evitar finalizar involuntariamente

Creación y terminación de procesos Llamadas al sistema

Linux

Windows

Servicios del sistema operativo

inicialización y finalización de procesos

Creación de procesos

Linux: clone

"Clona al proceso padre y da una nueva identidad al hijo"

Cambio de imagen de un proceso

Linux: exec

exec:

"Cambia la imagen de memoria de un proceso usando como 'recipiente' uno previo"

Terminación de procesos

Linux: exit

"Termina la ejecución de un proceso y libera los recursos"

Creación de procesos

Windows: CreateProcess

Contenidos

- Procesos
- Periféricos

Introducción

Introducción

Concepto de periférico

Periférico:

- Todo aquel dispositivo externo que se conecta a una CPU a través de la unidades o módulos de entrada/salida (E/S).
- Permiten almacenar información o comunicar el computador con el mundo exterior.

Clasificación de periféricos (por uso)

Comunicación:

- Hombre máquina
 - □ (Terminal) teclado, ratón, ...
 - □ (Impresa) plotter, escáner, ...
- Máquina máquina (Módem, ...)
- Medio físico máquina
 - ☐ (Lectura/accionamiento) x (analógico/digital)

Almacenamiento:

- Acceso "directo" (Discos, DVD, ...)
- Acceso secuencial (Cintas)

Introducción

Estructura general de un periférico

Compuesto de:

- Dispositivo
 - Hardware que interactúa con el entorno
- Módulo de Entrada/Salida
 - También denominado controlador
 - Interfaz entre dispositivo y la CPU, que le oculta las particularidades de este

Periférico = Dispositivo + Controlador

Ejemplo Disco duro

qué son

Las unidades o módulos de E/S realizan la conexión de la CPU con los dispositivos periféricos.

necesidad

- Son necesarios debido a:
 - Gran variedad de periféricos.
 - Los periféricos son 'raros'

- Los periféricos son 'muy lentos'
- Formatos y tamaños de palabra de los periféricos distintos a los del computador al que se conectan.

estructura

Interfaz
Ofrece la interacción entre
CPU y unidad de E/S

Lógica general de interacción Controla el protocolo de interacción entre CPU y unidad de E/S

Lógica específica de dispositivo
 Gestión específica de dispositivo

estructura: interfaz

Interacción entre CPU y Unidad de E/S a través de:

- ▶ 3 **tipos** de registros:
 - Registro de control
 - Ordenes para el periférico
 - Registro de estado
 - Estado desde de la última orden
 - Registro de datos
 - Datos intercambiados CPU/periférico
- ▶ 1 **tipo** de línea de interrupción:
 - Interrupción de aviso

aspectos a conocer

Interfaz

- ▶ (I) Direccionamiento:
 - ▶ Conjunto, separado
- ▶ (2) Unidad de transferencia:
 - Carácter, bloque
- Lógica general de interacción
 - (3) Interacción computador-controlador:
 - Programada, Interrupciones, DMA

(1/3) Direccionamiento de E/S

Espacio de memoria conjunto

Los registros del 'controlador' se proyectan en memoria y usando un conjunto de direcciones de memoria se acceden a dichos registros.


```
Ej: int * rctrl = 0x105A;
(*rctl) = 1;
```

Espacio de memoria separado (puertos)

Con instrucciones ensamblador especiales (In/Out) se acceden a las direcciones de E/S (denominadas puertos) que representan los registros del 'controlador'.

Mem.

Ej: out(0x105A, I);

(2/3) Unidad de transferencia

Dispositivos de bloque:

- <u>Unidad</u>: bloque de bytes
- Acceso: secuencial o directo
- Operaciones: leer, escribir, situarse, ...
- ▶ Ejemplos: "cintas" y discos

- <u>Unidad</u>: caracteres (ASCII, Unicode, etc.)
- Acceso: secuencial
- ▶ Operaciones: get, put,....
- Ejemplo: terminales, impresoras, etc.

funcionamiento

Interacción computador-controlador definida:

- Protocolo de interacción entre CPU y unidad de E/S
- > 3 tipos principales de interacción:
 - Programada
 - Interrupciones
 - DMA

(3/3) Interacción con computador

- ► E/S programada o directa
 - ▶ CPU no hace otra cosa que E/S: espera → transfiere -
- E/S por interrupciones
 - CPU no espera, sólo transfiere
- E/S por DMA (acceso directo a memoria)
 - CPU no espera, no transfiere, le avisan del fin de los datos transferidos
 - □ Controlador de periférico más sofisticado (más costoso, mejor rendimiento)

, polling'

□ Busca reducir la sobrecarga al transferir bloques de información

resumen de las características fundamentales

Unidad de transferencia

- De bloques
- De caracteres

Direccionamiento

- Proyectados en memoria
- Mediante puertos
- Interacción computador-controlador
 - ► E/S programada o directa
 - E/S por interrupciones
 - ► E/S por DMA

Introducción

Estructuras de datos

2. Funciones: de gestión internas

3. Funciones: de servicio

3. Funciones: API de servicio

Implicaciones en el sistema operativo

(1 y 2) Estructuras de datos + funciones de gestión internas= controlador (driver)

Implicaciones en el sistema operativo

(1 y 2) Estructuras de datos + funciones de gestión internas= controlador (driver)

El controlador implementa la interacción computador-controlador

Impacto en el sistema operativo en el tratamiento de dispositivos

▶ E/S programada o directa

► E/S por interrupciones

▶ E/S por DMA

E/S programada

E/S programada

- Información de control I
 - 0: leer
 - : escribir
- Información de estado
 - 0: dispositivo ocupado
 - 1: dispositivo (dato) listo
- **Datos**
 - Dato del dispositivo

```
petición:
for (i=0; i<100; i++)
    // pedir siguiente lectura
    out(0x500, 0);
    // bucle de espera
    do {
      in(0x508, &(p.status)); // ¿listo?
    } while (0 == p.status));
    // leer dato
    in(0x50C, &(p.datos[i]));
```


E/S programada

```
// read(fichero,datos, I 00);
                                       for (i=0; i<100; i++) {
                                            out(0x500, 0);
                                            do {
                                              in(0x508, &p.status);
                                            } while (0 == p.status);
                                            in(0x50C, &p.datos[i]);
// read(fichero,datos, I 00);
```

Impacto en el sistema operativo en el tratamiento de dispositivos

► E/S programada o directa

► E/S por interrupciones

▶ E/S por DMA

E/S por interrupciones

- Información de control I
 - ▶ 0: leer
 - ▶ l: escribir
- Información de estado
 - 0: dispositivo ocupado
 - I: dispositivo (dato) listo
- Datos
 - Dato del dispositivo

```
petición:
    // pedir lectura
    p.contador = 0;
    p.neltos = 100;
    out(0x500,0); // leer

// cambio de contexto voluntario (C.C.V.)
...
```

```
INT_05: in(0x508, &(p.status)); // leer estado
    in(0x50C, &(p.datos[p.contador])); // leer dato
    if ((p.contador<p.neltos) && (p.status==OK))
    {
        out(0x500,0); // leer
        p.contador++;
    } else { // poner proceso peticionario a listo }
    ret_int # restore registers & return</pre>
```


E/S por interrupciones

Impacto en el sistema operativo en el tratamiento de dispositivos

► E/S programada o directa

► E/S por interrupciones

► E/S por DMA

Coordinación entre CPU y Módulos de E/S para acceder a memoria

Cada dato transferido a memoria supone:

- Pedir permiso para acceder a memoria (BUSRQ)
- Esperar el permiso (BUSACK)
- Transfiere a memoria
- Desactiva petición de permiso (BUSRQ)

Una vez transferido todos los datos:

• Generar una interrupción (INT) para avisar a la CPU

Unidad de E/S Control 1 0x0500Control 2 0x0504Control 3 0x05080x050C Estado 0x0510**Datos**

- Información de control I
 - 0: leer, 1: escribir
- Información de control 2
 - Dirección memoria
- Información de control 3
 - Número elementos
- Información de estado
 - 0: dispositivo ocupado
 - 1: dispositivo (dato) listo
- **Datos**
 - Dato del dispositivo

```
petición:
     // Programar la petición del bloque
    out(0x500,0);
                          // leer
    out(0x504,p.datos); // dirección vector
    out(0 \times 508, 100); // n° elementos
     // Cambio de contexto voluntario (C.C.V.)
```

```
INT 05: // leer estado
           in(0 \times 50C, \&p.status);
           if (p.status ...
          // poner proceso peticionario a listo
           ret_int # restore registers & return
```


Principales tipos de protocolos

- Petición -> respuesta individual
 - Mayoría de dispositivos
- Solo petición
 - Ej.: tarjeta gráfica
 - E/S programada (rápidos o tiempo real)
- Solo respuesta
 - Ej.: reloj
 - E/S por interrupciones (generan datos sin petición previa)
- Petición -> respuesta compartida
 - Ej.: disco duro

Grupo ARCOS

Departamento de Informática

Universidad Carlos III de Madrid

Lección 3a

procesos, periféricos, drivers y servicios ampliados

Diseño de Sistemas Operativos Grado en Ingeniería Informática y Doble Grado I.I. y A.D.E.

