Assignment 3

Colin Gagich

December 1, 2014

 \mathbf{a}

Differentiating $y = Ce^{3t} + e^{-t}$ we get:

$$\frac{dy}{dt}y = 3Ce^{3t} - e^{-t}$$

Then, we re-arrange our first equation:

$$Ce^{3t} = y - e^{-t}$$

And substitute it into the second equation:

$$y' = 3(y - e^{-t}) - e^{-t}$$
$$y' = 3y - 4e^{-t}$$

Therefore $y = Ce^{3t} + e^{-t}$ is indeed a general analytic solution to the equation $y' = 3y - 4e^{-t}$.

 \mathbf{b})

Substituting the values y = 1 and t = 0 into $y = Ce^{3t} + e^{-t}$

$$1 = Ce^0 + e^0$$
$$1 = C + 1$$

Therefore C=0, substituting this back in the proposed solution we find the analytic solution is indeed $y=e^{-t}$

 $\mathbf{c})$

Using a computer program written in C[#] the following values were obtained: