DSCA paper report3

資工四 B03902125 林映廷

問題敘述:

假如有一個人的集合 $P = \{P_1, P_2, ... P_n\}$, P 為線性有序,即前一個元素比後一個元素還小, $P_1 < P_2 < ... < P_n$,以及另一個工作的集合 $J = \{J_1, J_2, ... J_n\}$, J 為部分有序,即有些元素前者比後者小,但並非全部,例如可能只有 $J_1 < J_2$, $J_1 < J_n$,但並無 $J_2 < J_n$ 。假如今天有一個函數 f 可以把 P 集合的元素對應到 J 集合,使得 $f(P_i) < f(P_j)$,則 $P_i < P_j$,且 $i \neq j$,則 $f(P_i) \neq f(P_j)$,但是要讓代價函數 $\sum_{i,j} C_{ij} X_{ij}$ 最小,其中若 P_i 對應到 J_j , $X_{ij} = 1$,反之為 D_i 0。今天就是要找到一個符合上述條件的對應函數 D_i 亦即找到一個 cost 和為最小的 topologically sorted sequence。

解題方法:

Step1.

The following are all the topologically sorted sequences:

 J_1, J_2, J_3, J_4

 J_1, J_2, J_4, J_3

 J_1, J_3, J_2, J_4

 J_2, J_1, J_3, J_4

 J_2, J_1, J_4, J_3

假設 J 的 partial ordering 的關係如上圖,被箭頭指向者較大,反之則較小,如上是 $J_1 < J_3$, $J_1 < J_4$, $J_2 < J_4$ 。一個 topologically sorted sequence 是部分元素前者比後者小,並非全部。上圖已列出 J 所有的 topologically sorted sequences。 Step2.

FIGURE 5-22 A tree representation of all topologically sorted sequences corresponding to Figure 5-21.

可以建構一個 tree 列出 J 所有的 topologically sorted sequences。

Step2-1.取一個不會超過其他元素的元素。如圖 5-21,可以選擇 J_1 或 J_2 。

Step2-2.讓他當這個 tree 的一個 node。

Step2-3.從 partial set 刪掉這個元素。

Step3.

先將 cost matrix 每列扣掉該列最小值,再每行扣掉該行最小值,但要注意 matrix 內每個元素不得為負,即該行或該列遇到元素為 0,就不用做扣掉的動作。

TABLE 5-1 A cost matrix for a personnel assignment problem.

Jobs Persons	1	2	3	4
1	29	19	17	12
2	32	30	26	28
3	3	21	7	9
4	18	13	10	15

TABLE 5-2 A reduced cost matrix.

Jobs Persons	1	2	3	4	
1	17	4	5	0	
2	6	1	O	2	Total = 54
3	0	15	4	6	
4	8	O	0	5	

如 TABLE 5-1,每列最小值 $12 \times 26 \times 3 \times 10$,之後第二行會有最小值 3。每列、每行都扣完以後把 12+26+3+10+3=54,該值極為 tree 一開始的下界。 Step4.

FIGURE 5-23 An enumeration tree associated with the reduced cost matrix in Table 5-2.

搜尋整個 tree 找出帶有最小 cost 和的 topologically sorted sequences。如上圖, 先往右邊找,cost 會累加,下界也會跟著越來越高,找到 leaf,這個累加的 cost 會變成上界。接著,往左邊找的時候,此時的下界為 71,比上界為 70 還高, 故可以提早結束。此時,我們要找的答案為 $J_2J_1J_4J_3$ 。

心得與反思:

如果 cost matrix 沒有變成如 Table 5-2 的 reduced cost matrix,今天這個 brunch and bound 會在搜尋整棵 tree 上花費更多的時間複雜度,因為下界從 0 開始,則 TABLE 5-23 左邊的下界會變成 29,比此時上界為 70 還要低,故左邊可以繼續搜尋。因此,brunch and bound 的精髓在於找到一個 reduced cost matrix,且盡可能讓下界越高越好,上界越低越好,才可能縮短搜尋範圍,降低時間複雜度。