Tema 4: Análisis sintáctico ascendente

Procesamiento de Lenguajes

Dept. de Lenguajes y Sistemas Informáticos Universidad de Alicante

Análisis sintáctico ascendente: un ejemplo

El análisis sintáctico ascendente trata de reconstruir la inversa de una derivación por la derecha de la cadena de entrada Ejemplo: int a,b,c;

¿Cómo funciona el análisis ascendente?

El analizador, cuando llega un token de la entrada, puede hacer dos cosas:

Si el token es una parte derecha de una regla (o completa una parte derecha en construcción), se puede deshacer la regla. Esta acción se denomina reducción

$$egin{array}{cccc} {\sf ACCION} & & & & & & \\ \hline {\it int} & & {\it reducir} & {\it T} &
ightarrow {\it int} & & & & \\ {\it T} & & & & & & & \end{array}$$

Si no se puede completar una parte derecha, se acumula a lo que se está construyendo. Esta acción se denomina desplazamiento

TOKEN		Acción
a	T	desplazar a
,	T id(a)	desplazar,
b	T id(a) coma	desplazar b
;	T id(a) coma id(b)	desplazar ;
	T id(a) coma id(b) pyc	reducir $L \rightarrow \mathbf{pyc}$
	T id(a) coma id(b) L	reducir $L \rightarrow \mathbf{coma}$ id L
	T id(a) L	reducir $D \rightarrow T$ id L
	D	

Algoritmo de análisis ascendente por desplazamiento-reducción

- Se utiliza una pila de estados en la que se almacenan las partes derechas en construcción. Cada estado representa un prefijo de una parte derecha, y se asocian a un símbolo terminal o no terminal.
- Consultando unas tablas y el estado en la cima de la pila, el algoritmo puede realizar las siguientes acciones:
 - Aceptar: la cadena de entrada es correcta
 - Desplazar: se apila un nuevo estado en la pila
 - Reducir: se "deshace" una regla, para lo que se desapilan tantos estados como símbolos tenga la parte derecha, y se apila un estado asociado a la parte izquierda
 - Error: error sintáctico
- Existen varias formas de construir esas tablas, estudiaremos una de ellas más adelante

Ejemplo de tablas

- (1) $D \rightarrow T \text{ id } L$

- \rightarrow pyc

	Acción							IR A	
	int	float	id	coma	рус	\$	D	T	L
0	d3	d4					1	2	
1						aceptar			
2			d5						
3			r2						
4			r3						
5				d7	d8				6
6						r1			
7			d9						
8						r5			
9				d7	d8				10
10						r4			

Ejemplo de tablas (2)

	Acción							IR A	
	int	float	id	coma	рус	\$	D	Τ	L
0	d3	d4					1	2	
1						aceptar			
2			d5						
3			r2						
4			r3						
5				d7	d8				6
6						r1			
7			d9						
8						r5			
9				d7	d8				10
10						r4			

PILA	TOKEN	Acción			
0	int	d3	02579	рус	d8
0 3	id(a)	r2	025798	\$	r5
0 2	id(a)	d5	0257910	\$	r4
025	coma	d7	0 2 5 6	\$	r1
0257	id(b)	d9	0 1	\$	aceptar

Ejemplo de tablas (3)

	Acción							IR A	
	int	float	id	coma	рус	\$	D	Τ	L
0	d3	d4					1	2	
1						aceptar			
2			d5						
3			r2						
4			r3						
5				d7	d8				6
6						r1			
7			d9						
8						r5			
9				d7	d8				10
10						r4			

PILA	TOKEN	Acción			
0	int	d3	0 T id coma id	рус	d8
0 int	id(a)	r2	0 T id coma id pyc	\$	r5
0 <i>T</i>	id(a)	d5	0 T id coma id L	\$	r4
0 <i>T</i> id	coma	d7	0 <i>T</i> id <i>L</i>	\$	r1
0 T id coma	id(b)	d9	0 <i>D</i>	\$	aceptar

Algoritmo de análisis por desplazamiento-reducción

```
push(0)
a := siguienteToken()
REPETIR
     sea s el estado en la cima de la pila
     SI Accion[s, a] = di ENTONCES
         push(i)
         a := siguienteToken()
     SI NO SI Accion[s, a] = rk ENTONCES
         PARA i := 1 HASTA Longitud Parte Derecha(k) HACER pop()
         sea p el estado en la cima de la pila
         sea A la parte izquierda de la regla k
         push(Ir_A[p, A])
     SI NO SI Accion[s, a] = aceptar ENTONCES
         fin del analisis
     SLNO
         error()
     FIN SI
HASTA fin del analisis
```

Método SLR de construcción de tablas de análisis

Existen varios métodos para construir tablas de análisis, y uno de los más sencillos es el método SLR.

Definiciones:

 Item: una regla de la gramática con un
 en alguna posición de la parte derecha, antes y/o después de un símbolo. Ejemplo:

IMPORTANTE: Si la regla es $A \rightarrow \epsilon$, el único ítem es: $A \rightarrow \bullet$

Método SLR de construcción de tablas de análisis (2)

Definiciones:

- Clausura de un conjunto de ítems I, clausura(I):
 - Todos los ítems de / pertenecen a clausura(/)
 - ② Si $A \to \alpha \bullet B\beta$ es un ítem de clausura(I), se añaden todos los ítems derivados de las reglas de B con el punto al principio: $B \to \bullet \alpha_1, B \to \bullet \alpha_2, \dots$
 - Se repite el paso anterior hasta que no se añaden nuevos ítems a clausura(I)

Ejemplo:

Método SLR de construcción de tablas de análisis (3)

Definiciones:

Función Ir_A: dado un conjunto de ítems I y un símbolo A, la función Ir_A(I, A) devuelve un conjunto de ítems que se obtiene, para cada ítem de I de la forma B → α • Aβ, añadiendo clausura({B → αA • β}) al conjunto resultado Ejemplo:

Método SLR de construcción de tablas de análisis (4)

Definiciones:

- Colección canónica de conjuntos de ítems, C: dada una gramática, la colección canónica de conjuntos de ítems se construye de la siguiente manera:
 - **1** Añadir una regla $X \to S$ a la gramática (temporalmente)
 - ② Añadir el conjunto $I_0 = \text{clausura}(\{X \rightarrow \bullet S\})$ a la colección C
 - ② Para cada conjunto de ítems I_i de C, y para cada símbolo gramatical A (terminal y no terminal) para el que exista en I_i un elemento del tipo B → α Aβ, añadir Ir_A(I_i, A) a C si no se había añadido antes
 - Repetir la anterior operación hasta que no se añadan más conjuntos nuevos a la colección de conjuntos de ítems C = {I₀, I₁,...}

Método SLR de construcción de tablas de análisis (5)

Ejemplo de colección canónica de conjuntos de ítems, C:

```
\begin{array}{lll} I_0 &=& \operatorname{clausura}(\{X \to \bullet D \}) = \{X \to \bullet D \ , \\ D \to \bullet T \ \operatorname{id} \ L \ , T \to \bullet \operatorname{int} \ , \\ T \to \bullet \operatorname{float} \ \} \\ I_1 &=& Ir\_A(I_0, D) = \{X \to D \bullet \} \\ I_2 &=& Ir\_A(I_0, T) = \{D \to T \bullet \operatorname{id} \ L \ \} \\ I_3 &=& Ir\_A(I_0, \operatorname{int}) = \{T \to \operatorname{int} \bullet \} \\ I_4 &=& Ir\_A(I_0, \operatorname{float}) = \{T \to \operatorname{float} \bullet \} \\ I_5 &=& Ir\_A(I_2, \operatorname{id}) = \{D \to T \ \operatorname{id} \bullet L \ , \\ L \to \bullet \operatorname{coma} \ \operatorname{id} \ L \ , L \to \bullet \operatorname{pyc} \ \} \end{array}
```

Método SLR de construcción de tablas de análisis (6)

Método SLR de construcción de tablas de análisis (7)

Autómata reconocedor de prefijos viables

Construye el autómata reconocedor de prefijos viables para la siguiente gramática:

Método SLR de construcción de tablas de análisis (8)

Construcción de las tablas de análisis:

- Construir el autómata reconocedor de prefijos viables. Cada estado del autómata es un estado del analizador
- Introducir las transiciones del autómata en las tablas:
 - Si el símbolo de la transición es un terminal, hay que meter un desplazamiento al estado destino en la tabla ACCIÓN
 - Si el símbolo es un no terminal, hay que meter el estado destino en la tabla IR A
- Si en un estado hay un ítem con el al final, hay que introducir una reducción por esa regla en ese estado con todos los símbolos que pertenezcan a los SIGUIENTES de la parte izquierda de la regla

Método SLR de construcción de tablas de análisis (9)

Construcción de las tablas de análisis (2):

- Las casillas vacías de la tabla ACCIÓN son errores sintácticos (los símbolos esperados son las casillas no vacías de ese estado)
- Si se llega a una casilla vacía en la tabla IR A hay un error en la construcción de las tablas

Conflictos en las tablas SLR

Cuando se construyen las tablas se pueden producir dos tipos de conflictos:

- desplazamiento-reducción: en una casilla en la que hay un desplazamiento también corresponde poner una reducción
- reducción-reducción: en una casilla hay que poner dos reducciones (porque en ese estado hay que reducir por dos reglas diferentes y hay símbolos comunes en los siguientes de las partes izquierdas)

Estos conflictos indican que la gramática no es SLR, por lo que se puede optar por:

- Utilizar otro método para la construcción de las tablas: LR(1), LALR(1),...
- elegir una de las opciones, p.ej. desplazar en los conflictos desplazamiento-reducción, o reducir por la primera regla en los reducción-reducción, y probar el analizador

Diseña la tabla de análisis SLR para la siguiente gramática:

Una vez hayas diseñado la tabla, realiza la traza del analizador con la cadena:

```
if 11
  if 22
    print 33
  else
    print 44
  fi
fi
```

Diseña la tabla de análisis SLR para la siguiente gramática:

$$\begin{array}{ccccc} (1) & \mathcal{S} & \longrightarrow & \mathcal{L} \text{ , } \mathcal{S} \\ (2) & \mathcal{S} & \longrightarrow & \mathcal{L} \end{array}$$

$$(2)$$
 $S \rightarrow L$

$$(3) \quad L \quad \longrightarrow \quad (L)$$

$$(3)$$
 L \longrightarrow (L) (4) L \longrightarrow \mathbf{a} \downarrow L

$$(5) \quad L \quad \longrightarrow \quad \epsilon$$

Una vez hayas diseñado la tabla, realiza la traza del analizador con la cadena:

Diseña la tabla de análisis SLR para la siguiente gramática:

Una vez hayas diseñado la tabla, realiza la traza del analizador con la cadena:

id+id*id