

PHYSICS

VERANO UNI 2021

ESTÁTICA

Para responder a la cuestión planteada debemos conocer que es el EQUILIBRIO MECÁNICO de los cuerpos.

Es el estado mecánico donde un cuerpo se encuentra en R E P O S O o esta desarrollando un M. R. U.

EQUILIBRIO ESTÁTICO

EQUILIBRIO CINÉTICO

• ¿QUÉ CAUSA EL EQUILIBRIO MECÁNICO?

Son las F U E R Z A S que actúan sobre un cuerpo o que se ejercen en el cuerpo que estamos analizando.

Ahora analicemos la interacción en este caso

Luchador "B"

Luchador "A"

Acción del luchador A sobre el luchador B

Acción del luchador B sobre el luchador A

En la interacción la fuerza surge en pares o de a dos, las cuales las denominamos como las fuerzas de A C C I Ó N y de R E A C C I Ó N.

Acción del luchador A sobre el luchador B

Facción

Acción del luchador B sobre el luchador A

F_{Reacción}

 $\vec{F}_{Acción}$ $\vec{F}_{Reacción}$

Son de igual módulo.

Las fuerzas de acción y de reacción cumplen con:

De direcciones opuestas.

Actúan en cuerpos diferentes.

Tercera ley de Newton

FUERZAS MÁS USUALES

FUERZA DE GRAVEDAD

Aquella con la cual la Tierra atrae a todos los cuerpos que se encuentran en su superficie o cerca de ella hacia su centro.

FUERZAS MÁS USUALES

FUERZA DE TENSIÓN

FUERZA DE REACCIÓN NORMAL

Aquella que surge cuando existe superficies en contacto, se caracteriza por ser perpendicular a dichas superficies y se grafica de la manera siguiente.

FUERZA ELÁSTICA

Aquella que surge cuando un resorte es estirado o comprimido, el vector que lo representa se grafica así:

Resorte comprimi do

El módulo se obtiene con:

DIAGRAMA DE CUERPO LIBRE

1. Realice el Diagrama de Cuerpo Libre del bloque (D) en el sistema mostrado que se encuentra en equilibrio

RESOLUCIÓN:

I. Aislando al bloque D del sistema:

III. Graficando al vector representa a la que fuerza de tensión del cable que sostiene al bloque:

representa a la fuerza de gravedad:

II. Graficando al vector que

Para que un cuerpo o sistema se encuentre en equilibrio mecánico de traslación, es decir, no se traslade (reposo) o se traslade con velocidad constante (MRU) se debe cumplir que la resultante de todas las fuerzas que actúan sobre él debe ser nula.

$$\sum \vec{F}_{En \text{ el cuerpo}} = \vec{0}$$

De forma practica:

$$\sum F_{(\to)} = \sum F_{(\leftarrow)}$$

$$\sum F_{(\uparrow)} = \sum F_{(\downarrow)}$$

Realice el DCL del bloque de 4 kg.

 $g = 10 \text{ m/s}^2$

RESOLUCIÓN

DCL SOBRE EL BLOQUE

Si las superficies son lisas y el sistema está en equilibrio, haga el DCL del bloque B e indique la alternativa correcta.

В

RESOLUCIÓN

DCL SOBRE EL BLOQUE

El cuerpo se encuentra en equilibrio mecánico. Determine la masa del bloque A. Las superficies son lisas y las poleas ideales.

Por condición de equilibrio mecánico

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$mg = 50N$$

$$m = 5 kg$$

Se muestran tres bloques en equilibrio. Determine el módulo de la fuerza que ejerce el bloque C al bloque B.

 $m_A = m_B = 2 \text{ kg y } m_C = 1 \text{ kg; g} = 10$ m/s^2

RESOLUCIÓN

DCL SOBRE EL SISTEMA

Por condición de equilibrio mecánico

$$\Sigma F(\tau) = \Sigma F(\tau)$$

$$R = 20N + 20N$$

$$R = 40N$$

Determine el módulo de la fuerza de reacción entre la esquina y la barra de 5 kg en reposo si el resorte está estirado 5 cm. g = 10 m/s²

DCL SOBRE LA BARRA

CALCULO DE F_F

$$F_{E} = 5.5 \text{ N}$$

$$F_{F} = 25 \text{ N}$$

Por condición de equilibrio mecánico

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$R + 25N = 50N$$

$$R = 25 N$$

RESOLUCIÓN

Un sistema masa - resorte se encuentra en equilibrio en la situación A y al colocar otro bloque idéntico al anterior (m = 10 kg) alcanza el equilibrio en la situación B. Determine la constante de rigidez del resorte. g = 10 m/s²

El sistema mostrado se encuentra en equilibrio. Determine la masa del bloque A. Considere superficies lisas.

POR EQUILIBRIO

DCL sobre la cuña

DCL sobre el bloque

POR EQUILIBRIO MECÁNICO

mg = 20 N

Determine la fuerza que debe ejercer la persona para que esté a punto de elevarse el bloque de 120 kg. Considere poleas ideales. $g = 10 \text{ m/s}^2$

RESOLUCIÓN

Por equilibrio mecánico

3F = 1200 N

F = 400 N

Un cilindro homogéneo de 7 kg es puesto en equilibrio tal como se muestra, deformando al resorte ideal de rigidez 10 N/cm en 5 cm. Determine el módulo de la fuerza que ejerce el piso al cilindro. g = 10 m/s²

RESOLUCIÓN

fn = 40 N

Determine la deformación del resorte de K = 100 N/cm en el sistema en reposo. Superficies lisas. $g = 10 \text{ m/s}^2$

RESOLUCIÓN

$$F_{E} = 400 \text{ N}$$

$$100N/cm(x) = 400 N$$

$$x = 4 cm$$

Si el sistema se encuentra en reposo, determine la masa de B.

RESOLUCIÓN

La barra que se muestra permanece en reposo. Determine el valor de la reacción del plano liso. $g = 10 \text{ m/s}^2$; $m_{\text{barra}} = 8 \text{ kg}$

RESOLUCIÓN

Determine el módulo de la fuerza F para que el bloque mostrado permanezca en reposo. $g = 9.8 \text{ m/s}_2$; m = 10 kg

RESOLUCIÓN

DCL SOBRE BLOQUE

F= 98 N

La barra que se muestra permanece en reposo. Si la magnitud de la reacción de la pared es de 19,6 N ¿qué masa presenta la barra. Considere superficies lisas. g = 9,8 m/s²

Para la esfera de masa M en reposo, calcule el máximo valor de F. Considere superficies lisas. .

RESOLUCIÓN

DCL SOBRE LA ESFERA

DEL TRIANGULO