EE2015: Electric Circuits and Networks

<u>Tutorial 4</u> (September 6, 2024)

Obtain the impedance and admittance parameters for the two-port network shown on the left.

- 2. (a) Find the h-parameters of the two-port network shown below.
 - (b) Find \mathbf{Z}_{out} if an input \mathbf{V}_s having source resistance of $R_s = 200\,\Omega$ is connected at 11'.

3.

Consider the two-port network shown on the left. Find its g-parameters.

4. Find the z and g parameters of a network if the T parameters are

$$T = \begin{bmatrix} 10 & 1.5\Omega \\ 2S & 4 \end{bmatrix}$$

5. The T parameters of the network N in the figure below are

$$T = \begin{bmatrix} 10 & 1.5\Omega \\ 2S & 4 \end{bmatrix}$$

The output port is connected to a variable load resistor R_L . Find R_L for maximum power transfer. What is the maximum power transferred?

6. A resistive symmetric two-port network N is shown on the right. It was observed that $y_{11} = 0.2 \,\mathrm{S}$ and $y_{12} = -0.05 \,\mathrm{S}$. Find the port voltages.

7.

Consider the two-port network shown on the left. Find the condition that k_1 , k_2 , R_1 , and R_2 should satisfy for the network to be reciprocal.

8. Consider the resistive two-port network N shown below on the left. When an independent source of $10\,\mathrm{V}$ was connected as shown, the measured voltage at port 2 was $2\,\mathrm{V}$. The same network N is now connected in the configuration shown on the right. Find the power dissipated in R_x in this configuration.

