

Outline

- 1. Magnetism: a short introduction
- 2. What is DMI?
- 3. Effects of DMI

Outline

- 1. Magnetism: a short introduction
- 2. What is DMI?
- 3. Effects of DMI

1. Magnetism : a short introduction

Back to basics

Iron...

- can be strongly magnetized
- but not above a certain temperature T_c
 A magnet cut in halves = two magnets

Some interaction holds microscopic magnets together -> exchange

How can a ferromagnet have zero magnetization under T_c ?

-> domains

Magnetic domains

Heisenberg exchange (spins // to each other)

Dipole-dipole interaction (stray field cost energy)

Hubert & Schäffer (Springer, 2009)

1. Magnetism : a short introduction

The many scales of magnetism

Macroscopic magnetim

Domains (> 1 µm)
Mesoscopic arrangement
of magnetization

Domain walls (1 nm to 1 µm)
Boundaries between areas of same magnetization

Atomic level(< 1 nm)
Elementary magnetic moments (localized or travelling electrons)

1. Magnetism: a short introduction

• Thin-films basics

Magnetism of nearly 2D magnets:

Thin film = A few mono layers of FM on top of a substrate, possibly sandwiched between other metals or oxydes.

Stripe domains in (Ga,Mn)/As (MOKE microscopy)

Outline

- 1. Magnetism: a short introduction
- 2. What is DMI?
- 3. Effects of DMI

• Exchange : symmetric

Exchange interaction :

$$H = \sum_{\langle i,j \rangle} -J\vec{S}_i \cdot \vec{S}_j$$
Heisenberg

Heisenberg term (symmetric): favors parallel spins J>0 Ferromagnetic order J<0 Antiferromagnetic order

• Exchange : symmetric and antisymmetric

Exchange interaction :

$$H = \sum_{\langle i,j \rangle} \left[-J\vec{S}_i \cdot \vec{S}_j + \vec{D}_{ij} \cdot (\vec{S}_i \times \vec{S}_j) \right]$$
Heisenberg DMI

Heisenberg term (symmetric): favors parallel spins J > 0 Ferromagnetic order

J < 0 Antiferromagnetic order

Dzyaloshinskii-Moriya term (antisymmetric) : favors perpendicular spins.

The spins curl around the D vector, whose direction depends on the sign of the spin-orbit coupling and on the geometry.

History of DMI

In the 50's : some antiferromagnets display a small macroscopic magnetization... (e.g. hematite, α -Fe₂O₃).

Dzyaloshinskii: some canting of the spins is allowed if there is no inversion symmetry in the crystal

-> asymmetric term $\overrightarrow{D_{ij}} \cdot (\overrightarrow{S_i} \times \overrightarrow{S_j})$

Fig. 2. Projection of ion spins on (1) for α-Fe₂O₃.

Moriya : precise rules of symmetry to have $\vec{D} \neq \vec{0}$ and two-site model based on superexchange to calculate its value.

Fert & Levy: 3-site model based on RKKY interaction with Spin-Orbit Coupling

Dzyaloshinskii, J.Phys.Chem.Solids (1958) Moriya, Phys.Rev. (1960) Fert & Levy, Phys.Rev.Lett. (1980)

History of DMI

In the 50's: some antiferromagnets display a small macroscopic magnetization... (e.g. hematite, α -Fe₂O₃).

Dzyaloshinskii: some canting of the spins is allowed if there is no inversion symmetry in the crystal

-> asymmetric term $\overrightarrow{D_{ij}} \cdot (\overrightarrow{S_i} \times \overrightarrow{S_i})$

Fig. 2. Projection of ion spins on (1) for α-Fe₂O₃.

Moriya : precise rules of symmetry to have $\vec{D} \neq \vec{0}$ and two-site model based on superexchange to calculate its value.

Fert & Levy: 3-site model based on RKKY interaction with Spin-Orbit Coupling

Dzyaloshinskii, J.Phys.Chem.Solids (1958) Moriya, Phys.Rev. (1960) Fert & Levy, Phys.Rev.Lett. (1980) For theoreticians only!

• It's always better with a picture

DMI appears only when inversion symmetry is broken:

- Low-symmetry lattices
- Surface and interfaces

Interfacial DMI:

Fert et al., Nat.Nano. (2013)

Outline

- 1. Magnetism: a short introduction
- 2. What is DMI?
- 3. Effects of DMI

Domains walls

Domain wall = transition from an up to a down domain Size ≈ 10 nm

Malozemoff & Sloncewski (A.P. 1979)

Without DMI: the Bloch wall minimizes the stray field

With DMI: If D is larger than the stray field energy, Néel wall with a fixed chirality

Parois de Bloch (a) et de Néél (b).

Dzyaloshinskii Domain Walls

Chen et al., Nat.Com. (2013): Tailoring the chirality of magnetic DW by interface engineering

SP-LEEM observation of [Co/Ni]_n stacks on Pt or Ir

DMI (Ni/Heavy metal interface)

Stray field energy (grows with the thickness of the [Co/Ni] stack)

DDW dynamics

Motion of Dzyaloshinskii domain walls

Asymmetric domain growth in Pt/Co/Au

Skyrmions

Hrabec *et al.* Nat.Com. (2017) Stabilization of isolated hedgehog skyrmions in Pt/Co/Au/Co/Pt, observed by MFM.

Hedgehog skyrmion = Néel wall loop

-> Nice topological properties

Everschor, PhD thesis (2012)

Bulk chiral magnetic phases : MnSi

The interplay between Heisenberg exchange and DMI give rise to 3D chiral magnetic structures

Conical helices

Mühlbauer et al., Science (2011):

Phase diagram of MnSi under a magnetic field (neutron diffraction)

Bulk chiral magnetic phases : MnSi

A-phase: 6-fold symmetry -> Skyrmion lattice

Mühlbauer et al., Science (2009)

Observed in real space by Lorentz TEM on Fe_{0.5}Co_{0.5}Si

Yu et al., Nature (2010)

B20 cubic lattice constant : a = 4.56 ÅSkyrmion lattice constant : $\lambda = 190 \text{ Å}$

The end!

More slides

Micromagnetism of thin-films

Micromagnetism = mesoscopic description of spin configurations and dynamics

Heisenberg exchange :

$$H = -J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j \qquad \qquad e_{ex} = A \int \left[\left(\vec{\nabla} m_x \right)^2 + \left(\vec{\nabla} m_y \right)^2 + \left(\vec{\nabla} m_z \right)^2 \right] dV$$

Dipole-dipole interaction $e_K = K_{eff} (\vec{m} \cdot \vec{e}_K)^2 + \text{higher order terms}$ and anisotropy

More slides

Micromagnetism of thin-films

Interface between a ferromagnet and a heavy metal

$$\vec{D}_{ij} = D\hat{u}_{ij} \times \hat{u}_z$$

D lies in the plane of the interface

$$H_{DMI} = \sum_{\langle i,j \rangle} \overrightarrow{D}_{ij} \cdot (\overrightarrow{S}_i \times \overrightarrow{S}_j)$$

$$e_{DMI} = D_S \left[\left(m_x \frac{\partial m_z}{\partial x} - m_z \frac{\partial m_x}{\partial x} \right) + \left(m_y \frac{\partial m_z}{\partial y} - m_z \frac{\partial m_y}{\partial y} \right) \right]$$

Rohart et al., Phys.Rev.B (2013)