

Deep Learning in Applications

Lecture 11: Deep Reinforcement Learning

Radoslav Neychev

Harbour.Space University 22.07.2019, Barcelona, Spain

References

These slides are almost the exact copy of Practical RL course week 4 slides. Special thanks to YSDA team for making them publicly available.

Original slides link: week04 approx rl

Recap: Q-learning

Action value Q(s,a) is the expected total reward **G** agent gets from state **s** by taking action **a** and following policy π from next state.

$$\pi(s)$$
: $argmax_a Q(s,a)$

Recap: Q-learning

$$Q(s_t, a_t) \leftarrow \alpha \cdot (r_t + \gamma \cdot max_{a'} Q(s_{t+1}, a')) + (1 - \alpha) Q(s_t, a_t)$$

$$\pi(s)$$
: $argmax_a Q(s,a)$

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

How to optimize?

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

For tabular Q(s,a)

$$\nabla L = 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]$$

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

For tabular Q(s,a)

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Something's sooo wrong!

Given <**s**,**a**,**r**,**s**'> minimize

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$
 const

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

const

For tabular Q(s,a)

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

For tabular Q(s,a)

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Gradient descent step:

$$Q(s,a) := Q(s,a) - \alpha \cdot 2[Q(s_t,a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1},a'))]$$

For tabular Q(s,a)

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Gradient descent step:

$$Q(s,a) := Q(s,a)(1-2\alpha) + 2\alpha(r_t + \gamma \cdot max_{a'}Q(s_{t+1},a'))$$

For tabular Q(s,a)

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]^2$$

$$\nabla L \approx 2 \cdot [Q(s_t, a_t) - (r_t + \gamma \cdot max_a, Q(s_{t+1}, a'))]$$

Gradient descent step:

$$Q(s,a) := Q(s,a)(1-2\alpha) + 2\alpha(r_t + \gamma \cdot max_{a'}Q(s_{t+1},a'))$$

Real world

How many states are there? approximately

Real world

$$|S| \approx 2^{8.210.160} = 729179546432630...$$

80917 digits:)

Problem:

State space is usually large, sometimes continuous.

And so is action space;

However, states do have a structure, similar states have similar action outcomes.

Problem:

State space is usually large, sometimes continuous.

And so is action space;

Two solutions:

- Binarize state space (last week)
- Approximate agent with a function (crossentropy method)

Problem:

State space is usually large, sometimes continuous.

And so is action space;

Two solutions:

- Approximate agent with a function
 Let's pick this one

From tables to approximations

- Before:
 - For all states, for all actions, remember Q(s,a)
- Now:
 - Approximate Q(s,a) with some function
 - e.g. linear model over state features

$$argmin_{w,b}(Q(s_t,a_t)-[r_t+\gamma\cdot max_{a'}Q(s_{t+1},a')])^2$$

Trivia: should we use classification or regression model? (e.g. logistic regression Vs linear regression)

From tables to approximations

- Before:
 - For all states, for all actions, remember Q(s,a)
- Now:
 - Approximate Q(s,a) with some function
 - e.g. linear model over state features

$$argmin_{w,b}(Q(s_t,a_t)-[r_t+\gamma\cdot max_{a'}Q(s_{t+1},a')])^2$$

• Solve it as a **regression** problem!

MDP again

Approximate Q-learning

Q-values:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} \hat{Q}(s_{t+1}, a')$$

Objective:

$$L = (Q(s_t, a_t) - [r + \gamma \cdot max_{a'} Q(s_{t+1}, a')])^2$$

Gradient step:

$$W_{t+1} = W_t - \alpha \cdot \frac{\delta L}{\delta w}$$

Approximate Q-learning

Q-values:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} \hat{Q}(s_{t+1}, a')$$

Objective:

$$L = (Q(s_t, a_t) - [r + \gamma \cdot \max_{a'} Q(s_{t+1}, a')])^2$$

consider const

Gradient step:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{\partial L}{\partial \mathbf{w}_t}$$

Approximate SARSA

Objective:

$$L = (Q(s_t, a_t) - \hat{Q}(s_t, a_t))^2$$
consider const

Q-learning:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot \max_{a'} Q(s_{t+1}, a')$$

SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot Q(s_{t+1}, a_{t+1})$$

Expected Value SARSA:

$$\hat{Q}(s_t, a_t) = ???$$

Approximate SARSA

Objective:

$$L = (Q(s_t, a_t) - \hat{Q}(s_t, a_t))^2$$
consider const

Q-learning:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot \max_{a'} Q(s_{t+1}, a')$$

SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot Q(s_{t+1}, a_{t+1})$$

Expected Value SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot E_{a' \sim \pi(a|s)} Q(s_{t+1}, a')$$

Deep RL 101

Architectures

Given **(s,a)** Predict Q(s,a) Given **s** predict all q-values Q(s,a0), Q(s,a1), Q(s,a2)

Architectures

Given **(s,a)** Predict Q(s,a) Given **s** predict all q-values Q(s,a0), Q(s,a1), Q(s,a2)

Trivia: in which situation does **left** model work better? And right?

Architectures

Needs one forward pass for **each action**

Works if action space is large efficient when not all actions are available from each state

Needs one forward pass for **all actions** (faster)

What kind of network digests images well?

Deep learning approach: DQN

TSNE makes every slide 40% better

- Embedding of pre-last layer activations
- Color = $V(s) = max \ a \ Q(s,a)$

How bad it is if agent spends next 1000 ticks under the left rock? (while training)

Problem

- Training samples are not "i.i.d",
- Model forgets parts of environment it hasn't visited for some time
- Drops on learning curve
- Any ideas?

Multiple agent trick

Idea: Throw in several agents with shared **W**.

Multiple agent trick

Idea: Throw in several agents with shared **W**.

- Chances are, they will be exploring different parts of the environment,
- More stable training,
- Requires a lot of interaction

Trivia: your agent is a real robot car. Any problems?

Experience replay

Idea: store several past interactions <s,a,r,s'>
Train on random subsamples

Any +/- ?

Replay buffer

Experience replay

Idea: store several past interactions <s,a,r,s'>
Train on random subsamples

- Atari DQN: >10^5 interactions
- Closer to i.i.d pool contains several sessions
- Older interactions were obtained under weaker policy

Better versions coming next week

Replay buffer

Summary so far

to make data closer to i.i.d.

Use one or several of

- experience replay
- multiple agents
- Infinitely small learning rate :)

advanced stuff coming next lecture

An important question

- You approximate Q(s,a) with a neural network
- You use experience replay when training

Trivia: which of those algorithms will fail?

- Q-learning
- SARSA

- CEM
- Expected Value SARSA

An important question

- You approximate Q(s,a) with a neural network
- You use experience replay when training

Agent trains off-policy on an older version of him

Trivia: which of those algorithms will fail?

Off-policy methods work, On-policy is super-slow (fail)

Q-learning

- CEM

- SARSA

Expected Value SARSA

When training with on-policy methods,

- use no (or small) experience replay
- compensate with parallel game sessions

Deep learning meets MDP

- Dropout, noize
 - Used in experience replay only: like the usual dropout
 - Used when interacting: a special kind of exploration
 - You may want to decrease p over time.
- Batchnorm
 - Faster training but may break moving average
 - Experience replay: may break down if buffer is too small
 - Parallel agents: may break down under too few agents
 <same problem of being non i.i.d.>

Final problem

Left or right?

Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state (e.g. human field of view).

Any ideas?

Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state (e.g. human field of view).

 However, we can try to infer hidden states from sequences of observations.

$$s_t \simeq m_t : P(m_t | o_t, m_{t-1})$$

Intuitively that's agent memory state.

Partially observable MDP

N-gram heuristic

Idea:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

e.g. ball movement in breakout

· One frame

· Several frames 48

N-gram heuristic

Idea:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

e.g. ball movement in breakout

· One frame

· Several frames 50

Alternatives

Ngrams:

- Nth-order markov assumption
- Works for velocity/timers
- Fails for anything longer that N frames
- Impractical for large N

Alternative approach:

- Infer hidden variables given observation sequence
- · Kalman Filters, Recurrent Neural Networks
- · More on that in a few lectures

Autocorrelation

Target is based on prediction

Q(s, a) correlates with Q(s', a)

Target network

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$
 where Θ^{-} is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

Target network

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$
 where Θ^{-} is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

Target network

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$
 where Θ^{-} is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

Soft target network:

Update Θ^- every step:

$$\Theta^{-} = (1 - \alpha)\Theta^{-} + \alpha\Theta$$

Playing Atari with Deep Reinforcement Learning

(2013, Deepmind)

4 last frames as input

Update weights using:

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$

Update Θ^- every 5000 train steps

10⁶ last transitions

We use "max" operator to compute the target

$$L(s, a) = (Q(s, a) - (r + \gamma \max_{a'} Q(s', a')))^{2}$$

We have a problem

(although we want $E_{s \sim S, a \sim A}[L(s, a)]$ to be equal zero)

Normal distribution 3*10⁶ samples

mean: ~0.0004

Normal distribution 3*10° x 3 samples Then take maximum of every tuple mean: ~0.8467

Normal distribution 3*10⁶ x 10 samples Then take maximum of every tuple mean: ~1.538

Suppose true Q(s', a') are equal to **0** for all a'

But we have an approximation (or other) error $\sim N(0,\sigma^2)$

So Q(s, a) should be equal to **0**

But if we update Q(s,a) towards $r + \gamma \max_{a'} Q(s',a')$ we will have overestimated $Q(s,a) > \mathbf{0}$ because

$$E[\max_{a'} Q(s', a')] > = \max_{a'} E[Q(s', a')]$$

Double Q-learning (NIPS 2010)

$$y = r + \gamma \max_{a'} Q(s', a')$$

Q-learning target

$$y = r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a'))$$

- Rewritten Q-learning target

Idea: use two estimators of q-values: Q^A, Q^B They should compensate mistakes of each other because they will be independent Let's get argmax from another estimator!

$$y = r + \gamma Q^A(s', \operatorname{argmax}_a Q^B(s', a'))$$
 - Double Q-learning target

Double Q-learning (NIPS 2010)

Algorithm 1 Double Q-learning

```
1: Initialize Q^A, Q^B, s
 2: repeat
       Choose a, based on Q^A(s,\cdot) and Q^B(s,\cdot), observe r, s'
 3:
       Choose (e.g. random) either UPDATE(A) or UPDATE(B)
 4:
 5:
       if UPDATE(A) then
         Define a^* = \arg \max_a Q^A(s', a)
 6:
         Q^A(s,a) \leftarrow Q^A(s,a) + \alpha(s,a) \left(r + \gamma Q^B(s',a^*) - Q^A(s,a)\right)
 8:
       else if UPDATE(B) then
         Define b^* = \arg \max_a Q^B(s', a)
 9:
         Q^B(s,a) \leftarrow Q^B(s,a) + \alpha(s,a)(r + \gamma Q^A(s',b^*) - Q^B(s,a))
10:
       end if
11:
     s \leftarrow s'
12:
13: until end
```

Deep RL with Double Q-learning

(Deepmind, 2015)

Idea: use main network to choose action!

$$y_{dqn} = r + \gamma \max_{a'} Q(s', a', \Theta^{-})$$

$$y_{ddqn} = r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a', \Theta), \Theta^{-})$$

	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

Experience Replay

State	Action	Reward	Next state
s_0	a_0	0	s_1
s_1	a_1	0	s_2
s_(n-1)	a_(n-1)	0	s_n
s_n	a_n	100	s_(n+1)
s_(n+1)	a_(n+1)	0	s_(n+2)

Prioritized Experience Replay

(2016, Deepmind)

Idea: sample transitions from xp-replay cleverly

We want to set probability for every transition. Let's use the absolute value of TD-error of transition as a probability!

$$\begin{split} & \text{TD-error } \delta = Q(s,a) - (r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s',a',\Theta), \Theta^-)) \\ & p = |\delta| \\ & P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha} \text{ where } \alpha \text{ is the priority parameter (when } \alpha \text{ is 0 it's the uniform case)} \end{split}$$

Do you see the problem?

Transitions become non i.i.d. and therefore we introduce the bias.

Prioritized Experience Replay

(2016, Deepmind)

Solution: we can correct the bias by using importance-sampling weights

$$w_i = \left(\frac{1}{N} \cdot \frac{1}{P(i)}\right)^{\beta}$$
 where β is the parameter

So we sample using
$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$
 and multiply error by w_i

Prioritized Experience Replay

(2016, Deepmind)

Additional details

We also normalize weights by $1/\max_i w_i$ (here is no mathematical reason)

When we put transition into experience replay, we set maximal priority $p_t = \max_{i < t} p_i$

Double Q-learning visualization

(2016, Deepmind)

Idea: change the network's architecture.

Recall:

Advantage Function A(s,a) = Q(s,a) - V(s)

So, Q(s,a) = A(s,a) + V(s)

Do you see the problem?

(2016, Deepmind)

Here is one extra freedom degree!

Example:

Which one is good?

(2016, Deepmind)

Solution: require $\max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha)$ to be equal to zero!

So the **Q-function** is computed as:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha) \right)$$

(2016, Deepmind)

Solution: require $\max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha)$ to be equal to zero!

So the **Q-function** is computed as:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha) \right)$$

Authors of this papers also introduced this way to compute Q-values:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$

They wrote that this variant increases stability of the optimization (The fact that this loses the original semantics of Q doesn't matter)

Asynchronous Methods for Deep RL

(2016, Deepmind)

Rainbow

(2017, Deepmind)

Double DQN

Prioritized DQN

Dueling DQN

Distributional DQN

Noisy DQN

multi-step DQN

DQN

Algorithm	Median	
DQN	79.5%	
Double DQN	117%	
Rainbow	223%	

Distributed Prioritized Experience Replay

n-step DQN

R2D2 (2018, Deepmind)

Reward re-scaling

Dueling DQN

Median performance: 1920% of human performance!

Thanks for your attention!