

1 Allgemeines

 $|x+y| \le |x| + |y|$ Dreiecksungleichung $||x| - |y|| \le |x - y|$ $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ Cauchy-Schwarz-Ungleichung:

Arithmetische Summenformel

 $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$ Geometrische Summenformel

Bernoulli-Ungleichung $(1+a)^n > 1+na$

Binomialkoeffizient

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Binomische Formel

Äquivalenz von Masse und Energie $E=mc^2$

Wichtige Zahlen: $\sqrt{2}=1,41421$ $\pi=$ ist genau 3 e=2,71828 $\pi = 3.14159$

Fakultäten $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ 0! = 1! = 1

2 Mengen

Eine Zusammenfassung wohlunterschiedener Elemente zu einer Menge explizite Angabe: $A = \{1; 2; 3\}$ Angabe durch Eigenschaft: $A = \{n \in \mathbb{N} \mid 0 < n < 4\}$

2.1 Für alle Mengen A,B,C gilt:

- 1. $\emptyset \subseteq B$
- 2. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 3. $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $\mathbb{Q} = \{ \frac{p}{q} \mid p \in \mathbb{Z}; q \in \mathbb{N} \}$

Jede rationale Zahl $\frac{m}{m} \in \mathbb{Q}$ hat ein Dezimaldarstellung. $0,25\overline{54} =: a \rightarrow 10000a - 100a = 2554 - 25 \Rightarrow a(9900) =$ $2529 \Rightarrow a = \frac{2529}{9900} = \frac{281}{1100}$

3 Vollständige Induktion

Behauptung: f(n)=g(n) für $n_0\leq n\in\mathbb{N}$ IA: $n = n_0$: Zeige $f(n_0) = g(n_0)$. IV: Annahme f(n) = g(n) gilt für ein beliebiges $n \in \mathbb{N}$ IS: $n \to n+1$: Zeige $f(n+1) = f(n) \dots = g(n+1)$

4 Komplexe Zahlen

Eine komplexe Zahl $z=a+b\mathbf{i},\ z\in\mathbb{C},\quad a,b\in\mathbb{R}$ besteht aus einem Realteil $\Re(z)=a$ und einem Imaginärteil $\Im(z)=b$, wobei $\mathbf{i}=\sqrt{-1}$ die immaginären Einheit ist. Es gilt: $i^2=-1$ $i^4=1$

4.1 Kartesische Koordinaten

Rechenregeln:

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\mathbf{i}$$

$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)\mathbf{i}$$

Konjugiertes Element von z = a + bi: $\overline{z} = a - b\mathbf{i}$ $z\overline{z} = |z|^2 = a^2 + b^2$

Inverses Element: $z^{-1} = \frac{1}{z} \frac{\overline{z}}{\overline{z}z} = \frac{\overline{z}}{a^2 + b^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \mathbf{i}$

4.2 Polarkoordinaten

 $z=a+b\mathbf{i}\neq 0$ in Polarkoordinaten: $z = r(\cos(\varphi) + \mathbf{i}\sin(\varphi)) = r \cdot e^{\mathbf{i}\varphi}$ $r = |z| = \sqrt{a^2 + b^2} \quad \varphi = \arg(z) = \begin{cases} +\arccos\left(\frac{a}{r}\right), & b \ge 0\\ -\arccos\left(\frac{a}{r}\right), & b < 0 \end{cases}$

Multiplikation: $z_1 \cdot z_2 = r_1 \cdot r_2(\cos(\varphi_1 + \varphi_2) + \mathbf{i}\sin(\varphi_1 + \varphi_2))$ Division: $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + \mathbf{i} \sin(\varphi_1 - \varphi_2))$

n-te Potenz: $z^n = r^n \cdot e^{n\varphi \mathbf{i}} = r^n (\cos(n\varphi) + \mathbf{i}\sin(n\varphi))$ n-te Wurzel: $\sqrt[n]{z} = z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi + 2k\pi}{n} \right) \right)$

Logarithmus: $\ln(z) = \ln(r) + \mathbf{i}(\varphi + 2k\pi)$ (Nicht eindeutig!)

Anmerkung: Addition in kartesische Koordinaten umrechnen(leichter)!

5 Funktionen

Eine Funktion f ist eine Abbildung, die jedem Element x einer Definitionsmenge D genau ein Element y einer Wertemenge W zuordnet. $f: D \to W, x \mapsto f(x) := y$

Injektiv: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Surjektiv: $\forall y \in W \exists x \in D : f(x) = y$ (Alle Werte aus W werden angenommen.)

Bijektiv(Eineindeutig): f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar. Ableitung der Umkehrfunktion

f stetig, streng monoton, an x_0 diff'bar und $y_0 = f(x_0)$ $\Rightarrow (f^{-1})(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

5.1 Symmetrie einer Funktion f

Achsensymmetrie (gerade Funktion): f(-x) = f(x)**Punktsymmetrie** (ungerade Funktion): f(-x) = -f(x)

Regeln für gerade Funktion g und ungerade Funktion u: $q_1 \pm q_2 = q_3$ $u_1 \pm u_2 = u_3$ $g_1 \cdot g_2 = g_3$ $u_1 \cdot u_2 = g_3$ $u_1 \cdot g_1 = u_3$

5.2 Kurvendiskussion von $f: I = [a, b] \rightarrow \mathbb{R}$

Kandidaten für Extrama (lokal, global)

- 1. Randpunkte von I
- 2. Punkte in denen f nicht diffbar ist
- 3. Stationäre Punkte (f'(x) = 0) aus (a, b)

Lokales Maximum

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

- $f''(x_0) < 0$ oder
- $f'(x) > 0, x \in (x_0 \varepsilon, x_0)$ $f'(x) < 0, x \in (x_0, x_0 + \varepsilon)$

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

- $f''(x_0) > 0$ oder
- $f'(x) < 0, x \in (x_0 \varepsilon, x_0)$ $f'(x) > 0, x \in (x_0, x_0 + \varepsilon)$

Monotonie

 $f'(x) \stackrel{\geq}{\underset{(>)}{=}} 0 \rightarrow f$ (streng) Monoton steigend, $x \in (a,b)$ $f'(x) \leq 0 \rightarrow f$ (streng) Monoton fallend, $x \in (a, b)$

$$f''(x) \overset{\geq}{\underset{(>)}{\stackrel{}{>}}} 0 \to f \text{ (strikt) konvex, } x \in (a,b)$$
 $f''(x) \overset{\leq}{\underset{(<)}{\stackrel{}{>}}} 0 \to f \text{ (strikt) konkev, } x \in (a,b)$

 $f''(x_0) = 0$ und $f'''(x_0) \neq 0 \rightarrow x_0$ Wendepunkt $f''(x_0) = 0$ und Vorzeichenwechseln an $x_0 \to x_0$ Wendepunkt

5.3 Asymptoten von f

Horizontal: $c = \lim_{x \to +\infty} f(x)$ Vertikal: \exists Nullstelle a des Nenners : $\lim_{x \to a^{\pm}} f(x) = \pm \infty$ Polynomasymptote P(x): $f(x) := \frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)}$

5.4 Wichtige Sätze für stetige Fkt. $f:[a,b] \to \mathbb{R}, f \mapsto f(x)$

Zwischenwertsatz: $\forall y \in [f(a), f(b)] \exists x \in [a, b] : f(x) = y$ Satz von Rolle: Falls f(a) = f(b), dann $\exists x_0 : f'(x_0) = 0$ Mittelwertsatz: Falls f diffbar, dann $\exists x_0 : f'(x_0) = \frac{f(b) - f(a)}{b}$

 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \left[\frac{0}{0}\right] / \left[\frac{\infty}{\infty}\right] \to \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$

5.5 Polynome $P(x) \in \mathbb{R}[x]_n$

 $P(x)=\sum_{i=0}^n a_i x^i=a_n x^n+a_{n-1} x^{n-1}+\ldots+a_1 x+a_0$ Lösungen für $ax^2+bx+c=0$ Mitternachtsformel: $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x_1 + x_2 = -\frac{b}{a}$ $x_1 x_2 = \frac{c}{a}$

5.6 Trigonometrische Funktionen

$$\begin{split} f(t) &= A \cdot \cos(\omega t + \varphi_0) = A \cdot \sin(\omega t + \frac{\pi}{2} + \varphi_0) \\ & \sin(-x) = -\sin(x) & \cos(-x) = \cos(x) \\ & \sin^2 x + \cos^2 x = 1 & \tan x = \frac{\sin x}{\cos x} \\ e^{ix} &= \cos(x) + i\sin(x) & e^{-ix} = \cos(x) - i\sin(x) \\ \sin(x) &= \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) & \cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \\ & \sinh(x) &= \frac{1}{2} (-e^{-x} + e^x) & \cosh(x) = \frac{1}{2} (e^{-x} + e^x) \end{split}$$

Additionstheoreme

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos\left(x - \frac{\pi}{2}\right) = \sin x \qquad \sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$

x	0	30	45	60	90	120	135	150	180	270	360
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$	2π
sin	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	١.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	١.	0

5.7 Potenzen/Logarithmus

$$\ln(u^r) = r \ln u$$

6 Folgen

Eine Folge ist eine Abbildung $a: \mathbb{N}_0 \to \mathbb{R}, \ n \to a(n) =: a_n$ explizite Folge: (a_n) mit $a_n = a(n)$ rekursive Folge: (a_n) mit $a_0 = f_0$, $a_{n+1} = a(a_n)$

6.1 Monotonie

Im Wesentlichen gibt es 3 Methoden zum Nachweis der Monotonie Für (streng) monoton fallend gilt:

- 1. $a_{n+1} a_n \leq 0$
- 2. $\frac{a_n}{a_{n+1}} \stackrel{\geq}{\geq} 1$ \vee $\frac{a_{n+1}}{a_n} \stackrel{\leq}{\leq} 1$
- 3. Vollständige Induktion: $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$

6.2 Konvergenz

 (a_n) ist Konvergent mit Grenzwert a, falls: $\forall \epsilon > 0 \ \exists N \in \mathbb{N}_0$: $|a_n - a| < \epsilon \ \forall n > N$

Eine Folge konvergiert gegen eine Zahl $a: (a_n) \stackrel{n \to \infty}{\longrightarrow} a$

- Der Grenzwert a einer Folge (an) ist eindeutig.
- Ist (a_n) Konvergent, so ist (a_n) beschränkt
- Ist (a_n) unbeschränkt, so ist (a_n) divergent.
- Das Monotoniekriterium: Ist (a_n) beschränkt und monoton, so
- Das Cauchy-Kriterium: Eine Folge (an) konvergiert gerade dann, $\forall \epsilon > 0 \,\exists \, N \in \mathbb{N}_0 : |a_n - a_m| < \epsilon \,\forall n, m > N$

$$\forall \epsilon > 0 \,\exists \, N \in \mathbb{N}_0 : |a_n - a_m| < \epsilon \,\forall n, m \ge N$$

Regeln für konvergente Folgen $(a_n) \stackrel{n \to \infty}{\longrightarrow} a$ und $(b_n) \stackrel{n \to \infty}{\longrightarrow} b$: $(a_n + b_n) \xrightarrow{n \to \infty} a + b \quad (a_n b_n) \xrightarrow{n \to \infty} ab \quad (\frac{a_n}{b_n}) \xrightarrow{n \to \infty} \frac{a}{b_n}$ $(\lambda a_n) \xrightarrow{n \to \infty} \lambda a$ $(\sqrt{a_n}) \xrightarrow{n \to \infty} \sqrt{a}$ $(|a_n|) \xrightarrow{n \to \infty} |a|$

Grenzwert bestimmen:

- · Wurzeln: Erweitern mit binomischer Formel
- Brüche: Zähler und Nenner durch den Koeffizient höchsten Grades
- Rekursive Folgen: Fixpunkte berechnen. Fixpunkte sind mögliche Grenzwerte. Monotonie durch Vergleich a_{n+1} und a_n zeigen. Beschränktheit mit Induktion beweisen.

6.3 Wichtige Regeln

$$a_n = q^n \xrightarrow{n \to \infty} \begin{cases} 0 & |q| < 1 \\ 1 & q = 1 \\ \pm \infty & q < -1 \\ + \infty & q > 1 \end{cases}$$

$$a_n = \frac{1}{n^k} \to 0 \quad \forall k \ge 1$$

$$a_n = \left(1 + \frac{c}{n}\right)^n \to e^c$$

$$a_n = n\left(c^{\frac{1}{n}} - 1\right) = \ln c$$

$$a_n = \frac{n^2}{2^n} \to 0 \qquad (2^n \ge n^2 \quad \forall n \ge 4)$$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{n} = 1$$

6.4 Limes Inferior und Superior

Der Limes superior einer Folge $x_n \subset \mathbb{R}$ ist der größte Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n

Der Limes inferior einer Folge $x_n \subset \mathbb{R}$ der kleinste Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n

7 Reihen

$$\sum_{n=1}^{\infty}\frac{1}{n}=\infty$$

$$\sum_{n=0}^{\infty}q^n=\frac{1}{1-q} \qquad |q|<1$$
 Geometrische Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} \text{konvergent}, & \alpha > 1\\ \text{divergent}, & \alpha \leq 1 \end{cases}$$

7.1 Konvergenzkriterien

 $\sum_{n=0}^{\infty} a_n$ divergiert, falls $a_n
eq 0$ oder $\underset{\text{Minorante:}}{\text{Minorante:}} \exists \sum_{n=0}^{\infty} b_n (divergiert) \land a_n \geq b_n \quad \forall n \geq n_0$ $\sum_{n=0}^{\infty} (-1)^n a_n$ konvergiert, if (a_n) monoton fallende Nullfolge (Leibnitz) oder Majorante: $\exists \sum_{n=0}^{\infty} b_n = b \quad \land \quad a_n \leq b_n \quad \forall n \geq n_0$

Absolute Konvergenz($\sum_{n=0}^{\infty}|a_n|=a$ konvergiert), falls: 1. Majorante: $\exists \sum_{n=0}^{\infty}b_n=b \land |a_n| \leq b_n \ \forall n \geq n_0$ 2. Quotienten und Wurzelkriterium (BETRAG nicht vergessen!)

$$\rho:=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| \qquad \qquad \rho:=\lim_{n\to\infty}\sqrt[n]{|a_n|} \qquad \forall n>N$$

$$\mathsf{Falls} \begin{cases} \rho<1\Rightarrow \sum_{n=0}^\infty a_n \text{ konvergiert absolut} \\ \rho>1\Rightarrow \sum_{n=0}^\infty a_n \text{ divergiert} \\ \rho=1\Rightarrow \sum_{n=0}^\infty a_n \text{ keine Aussage m\"{o}glich} \end{cases}$$

Jede absolute konvergente Reihe $(\sum_{n=0}^\infty |a_n|)$ ist konvergent $(\sum_{n=0}^\infty a_n)$

8 Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot (x - c)^n$$

8.1 Konvergenzradius

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

$$R = \lim_{n \to \infty} \inf \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

$$f(x) \begin{cases} \text{konvergiert absolut} & |x - c| < R \\ \text{divergiert} & |x - c| > R \end{cases}$$

Bei reellen Reihen gilt:

 $\Rightarrow x$ konvergiert im offenen Intervall I = (c - R, c + R)

 \Rightarrow Bei x = c - R und x = c + R muss die Konvergenz zusätzlich überprüft werden.

Substitution bei $f(x) = \sum_{n=0}^{\infty} a_n \cdot x^{\lambda n}$ $w = x^{\lambda} \rightarrow x = w^{\frac{1}{\lambda}} \rightarrow R = (R_w)^{\frac{1}{\lambda}}$

8.2 Wichtige Potenzreiher

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!} = \frac{e^{iz} + e^{-iz}}{2}$$

9 Ableitung und Integra

f diffbar, falls f stetig und $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = f'(x_0)$ exist.

9.1 Ableitungsregeln:

Linearität:
$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x) \quad \forall \lambda, \mu \in \mathbb{R}$$
 Produktregel: $(f \cdot g)' = f'g + fg'$ Quotientenregel $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ Kettenregel: $(f(g(x)))' = f'(g(x))g'(x)$ Potenzreihe: $f:] -R + a, a + R [\to \mathbb{R}, f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n]$ $\Rightarrow f'(x) = \sum_{n=0}^{\infty} na_n(x-a)^{n-1}$ Tansentengleichung: $y = f(x_0) + f'(x_0)(x-x_0)$

9.2 Newton-Verfahren:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 mit Startwert x_0

9.3 Integrationsmethoden:

- Anstarren + Göttliche Eingebung
- Partielle Integration: $\int uv' = uv \int u'v$
- $\bullet \;$ Substitution: $\int f(g(x)) \, g'(x) \, \mathrm{d}x = \int f(t) \, \mathrm{d}t$
- Logarithmische Integration: $\int \frac{g'(x)}{g(x)} dx = \ln |g(x)|$
- Integration von Potenzreihen: $f(x) = \sum_{k=0}^\infty a_k (x-a)^k$ Stammfunktion: $F(x) = \sum_{k=0}^\infty \frac{a_k}{k+1} (x-a)^{k+1}$
- Brechstange: $t = \tan(\frac{x}{2})$ $dx = \frac{2}{1 + t^2} dt$ $\sin(x) \to \frac{2t}{1+t^2}$ $\cos(x) \to \frac{1-t^2}{1+t^2}$

9.4 Integrationsregeln

$$\int_a^b f(x) \mathrm{d}x = F(b) - F(a) \\ \int \lambda f(x) + \mu g(x) \, \mathrm{d}x = \lambda \int f(x) \, \mathrm{d}x + \mu \int g(x) \, \mathrm{d}x$$

		1
F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
e^x	e^x	e^x
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	sin(x)	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$
$x\arcsin(x) + \sqrt{1-x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $ $x \operatorname{arccot}(x) + \frac{1}{2} \ln \left 1 + x^2 \right $	$\arctan(x)$	$\frac{1}{1+x^2}$
$x \operatorname{arccot}(x) + \frac{1}{2} \ln \left 1 + x^2 \right $	$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
$\sinh(x)$	$\cosh(x)$	sinh(x)
$\cosh(x)$	sinh(x)	$\cosh(x)$

9.5 Rotationskörper

Volumen:
$$V=\pi\int_a^b f(x)^2\mathrm{d}x$$

Oberfläche: $O=2\pi\int_a^b f(x)\sqrt{1+f'(x)^2}\mathrm{d}x$

9.6 Uneigentliche Integrale

böse $\int_{b \to b\ddot{o}se}^{b\ddot{o}se} f(x)dx = \lim_{b \to b\ddot{o}se}^{b} \int_{c}^{b} f(x)dx$

9.8 Integration rationale Funktionen

Gegeben: $\int \frac{A(x)}{Q(x)} dx$ $A(x), Q(x) \in \mathbb{R}[x]$

Majoranten-Kriterium: $|f(x)| \le g(x) = \frac{1}{x^{\alpha}}$

 $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \begin{cases} \frac{1}{\alpha - 1}, & \alpha > 1 \\ \infty, & \alpha \le 1 \end{cases} \qquad \int_{0}^{1} \frac{1}{x^{\alpha}} dx \begin{cases} \frac{1}{\alpha - 1}, & \alpha < 1 \\ \infty, & \alpha \ge 1 \end{cases}$

CHW $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$

CHW $\int_{0}^{b} f(x) dx = \lim_{z \to 0+} \left(\int_{0}^{c-\varepsilon} f(x) dx + \int_{0}^{b} f(x) dx \right)$

9.7 Laplace-Transformation von $f:[0,\infty[\to\mathbb{R},\ s\mapsto f(s)]$

 $\mathcal{L} f(s) = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \lim_{s \to \infty} \int_{0}^{b} e^{-st} f(t) dt$

1. Falls, $\deg A(x) \geq \deg Q(x) \Rightarrow \text{Polynomdivision:}$ $\frac{A(x)}{O(x)} = P(x) + \frac{B(x)}{O(x)} \text{ mit } \deg B(x) < \deg Q(x)$

3. Partialbruchzerlegung $\frac{B(x)}{Q(x)} = \frac{\dots}{(x-a_n)} + \dots + \frac{\dots}{\dots}$

 $\min \ \lambda \ = \ x^2 + px + q, \quad \beta \ = \ 4q - p^2 \quad \text{und} \ p^2 \ < \ 4q!$ $\int \frac{1}{(x-a)^m} \, \mathrm{d}x \begin{cases} \ln |x-a| \,, & m=1 \\ \\ \frac{-1}{(m-1)(x-a)^{m-1}} & m \geq 2 \end{cases}$

4. Integriere die Summanden mit folgenden Funktionen

- Nullstellen in x einsetzen (Terme fallen weg
- · Ausmultiplizieren und Koeffizientenvergleich

10 Taylor-Entwicklung

Berechnung von A, B, C, \ldots

Man approximiert eine m-mal diffbare Funktion $f: I = [a, b] \rightarrow \mathbb{R}$ in $x_0 \in I$ mit dem m-ten Taylorpolynom:

$$T_m(x_0; x) = \sum_{i=0}^m \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

Taylor-Entw. von Polynomen/Potenzreihen sind die Funktionen selbst

Konvergenzradius:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

10.1 Das Restglied - die Taylorformel

Für (m+1)-mal stetig diffbare Funktionen gilt $\forall x \in I$: $R_{m+1}(x) := f(x) - T_{m,f,x_0}(x) =$ $= \frac{1}{m!} \int_{x_0}^x (x-t)^m f^{(m+1)}(t) dt \quad \text{(Integral darst.)}$ $= \frac{f^{(m+1)}(\xi)}{(m+1)!} (x-x_0)^{m+1} \quad \xi \in [x,x_0] \text{ (Lagrange)}$ Fehlerabschätzung: Wähle ξ und x so, dass $R_{m+1}(x)$ maximal wird.

11 Landau-Notation

- f(x) = o(g(x)) für $x \to a \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0$
- oder $0 \le \limsup_{x \to a} \left| \frac{f(x)}{g(x)} \right| < \infty$

Bei Taylor-Entwicklung

- $R_{m+1,f,x_0}(h) = f(x_0+h) T_{m,f,x_0}(h) = o(h^m)$ f muss m-mal differenzierbar sein
- $\int \frac{1}{(\lambda)^m} \mathrm{d}x \begin{cases} \frac{2}{\sqrt{\beta}} \arctan \frac{2x+p}{\sqrt{\beta}}, & m=1 \\ \frac{2x+p}{(m-1)(\beta)(\lambda)^{m-1}} + \frac{2(2m-3)}{(m-1)(\beta)} \int \frac{\mathrm{d}x}{(\lambda)^{m-1}}, & m \geq 2 \end{cases}$ $\bullet R_{m+1,f,x_0}(h) = f(x_0+h) T_{m,f,x_0}(h) = o(h^m)$ f muss m-mal differenzierbar sein $\bullet R_{m+1,f,x_0}(h) = f(x_0+h) T_{m,f,x_0}(h) = O(h^m)$ f muss (m+1) m differenzierbar sein

$\int \frac{Bx+C}{(\lambda)^m} \mathrm{d}x \begin{cases} \frac{B}{2} \ln(\lambda) + (C-\frac{Bp}{2}) \int \frac{\mathrm{d}x}{\lambda} \,, & m=1 \\ \frac{-B}{2(m-1)(\lambda)^{m-1}} + (C-\frac{Bp}{2}) \int \frac{\mathrm{d}x}{(\lambda)^{m-1}} \,, & m \geq 2 \end{cases}$

- $f = o(g) \Rightarrow f = O(g)$
- $f_1 = o(q)$ u. $f_2 = o(q)$ \Rightarrow $f_1 + f_2 = o(q)$
- $f_1 = O(q)$ u. $f_2 = O(q)$ \Rightarrow $f_1 + f_2 = O(q)$
- $f_1 = O(g)$ u. $f_2 = O(g)$ \Rightarrow $f_1 \cdot f_2 = O(g_1 \cdot g_2)$
- $f_1 = O(q)$ u. $f_2 = o(q)$ \Rightarrow $f_1 \cdot f_2 = o(q_1 \cdot q_2)$

11.2 Elementarfunktionen

$$e^x = \sum_{k=0}^{m} \frac{x^k}{k!} + O(x^{m+1})$$

• Trigonometrische Funktionen
$$\sin x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + O(x^{2m+3})$$

$$\cos x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k}}{(2k)!} + O(x^{2m+2})$$

$$\ln(1+x) = \sum_{k=1}^{m} \frac{(-1)^{k+1}}{k} x^k + O(x^{m+1})$$

Volumen:
$$V = \pi \int_a^b f(x)^2 dx$$

Oberfläche: $O = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx$

• *n*-fache reelle Nullstelle x_0 : $\frac{A}{x-x_0} + \frac{B}{(x-x_0)^2} + \dots$

Häufige Integrale nach Partialbruchzerlegung

9.9 Paratialbruchzerlegung

 $\int \frac{1}{x} dx = \ln|x| \qquad \qquad \int \frac{1}{x^2} dx = -\frac{1}{x^2}$

 $\int \frac{1}{a + a} dx = \ln|a + x|$ $\int \frac{1}{(a + a)^2} dx = -\frac{1}{a + a}$

 $\int \frac{1}{a-x} dx = -\ln|a-x| \qquad \int \frac{1}{(a-x)^2} dx = \frac{1}{a-x} 1$

 $\frac{B(x)}{O(x)} = \frac{\dots}{(x-x_0)} + \dots + \frac{\dots}{(x-x_0)}$

• *n*-fache komplexe Nullstelle: $\frac{Ax+B}{x^2+px+q} + \frac{Ax+B}{(x^2+px+q)^2}$

12 Kurven

Eine Kurve ist ein eindimensionales Objekt.

$$ec{\gamma}:[a,b] o\mathbb{R}^n, t\mapstoegin{pmatrix} \gamma_1(t)\ dots\ \gamma_n(t) \end{pmatrix}$$
 (Funktionenvektor)

- C⁰-Kurve: Positionsstetigkeit (geschlossene Kurve)
- C1-Kurve: Tangentialstetigkeit (stetig diffbar)
- C2-Kurve: Krümmungsstetigkeit (2 mal stetig diffbar)
- ullet regulär, falls $orall t \in [a,b]: \dot{\gamma}(t)
 eq \vec{0}$ (Keine Knicke)

Besondere Punkte von Kurven:

- ullet Singulär, falls $\dot{\gamma}(t)=ec{0}$ (Knick)
- Doppelpunkt, falls $\exists t_1, t_2: t_1 \neq t_2 \ \land \ \gamma(t_1) = \gamma(t_2)$
- Horizontaler Tangentenpunkt, falls $\dot{\gamma}_1(t) \neq 0 \ \land \ \dot{\gamma}_2(t) = 0$
- Vertikaler Tangentenpunkt, falls $\dot{\gamma}_1(t) = 0 \ \land \ \dot{\gamma}_2(t) \neq 0$

Bogenlänge einer Kurve: $L(\gamma) = \int_a^b \|\dot{\gamma}(t)\| \,\mathrm{d}t$

Umparametrisierung γ nach Bogenlänge $(\tilde{\gamma})$:

- $$\begin{split} \bullet \ \ & \text{Bogenlängenfunktion:} \ s(t) = \int\limits_a^t \|\dot{\gamma}(\tau)\| \ \mathrm{d}\tau \\ s: [a,b] \to [0,L(\gamma)], t \mapsto s(t) \end{split}$$
- $\tilde{\gamma}(t) = \gamma(s^{-1}(t))$ $\|\dot{\tilde{\gamma}}(t)\| = 1 \forall t$

Tangenteneineitsvektor an $\gamma(t):T(t)=\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ Krümmung von $\gamma:\kappa(t)=\left\|\frac{\mathrm{d}^2\gamma}{\mathrm{d}s^2}\right\|=\frac{\left\|\dot{T}(t)\right\|}{s'(t)}$

Vereinfachung im \mathbb{R}^2 $\gamma:[a,b] o\mathbb{R}^2, t\mapsto ig(x(t),y(t)ig)$

$$L(\gamma) = \int_a^b \sqrt{\dot{x}^2 + \dot{y}^2} \, \mathrm{d}t \qquad \qquad \tilde{\kappa}(t) = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}$$

Wenn γ nach der Bogenlänge umparametrisiert, gilt

$$\tilde{\kappa}(t) = \dot{x}\ddot{y} - \ddot{x}\dot{y}$$

13 Skalarfelder

Ein Skalarfeld ordnet jedem Vektor eines Vektorraums einen Wert zu. $f: D \subseteq \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n) \text{ Teilmengen von } \mathbb{R}^n : D = [a_1, b_1] \times \dots \times [a_n, b_n]$ Offene Kugelmenge vom Radius $r: B_r(x_0)$ Topologische Begriffe für $D \subset \mathbb{R}^n$

- ullet Das Komplement D^C von $D \colon D^C := \mathbb{R}^n \setminus D$
- innerer Punkt $x_0 \in \mathbb{R}^n$ des Inneren $\overset{\circ}{D}$ von D, falls $\exists \varepsilon > 0 : B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n \mid \|x x_0\| < \varepsilon\}$
- ullet Die Menge D heißt offen, falls $D=\overset{\circ}{D}$
- Randpunkt $x_0 \in \mathbb{R}^n$ des Rands ∂D von D, falls $\forall \varepsilon > 0$: $B_{\varepsilon}(x_0) \cap D \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap D^C \neq \emptyset \Rightarrow \partial D = \partial D^C$
- $\bullet \ \ \mathsf{Abschlu} \mathsf{B} \ \overline{D} \ \mathsf{von} \ D \colon \overline{D} = D \cup \partial D$
- $\bullet \;\; \mbox{Die Menge} \; D \; \mbox{ist abgeschlossen, falls} \; \partial D \subseteq D$
- \bullet beschränkt, falls $\exists \mu \in \mathbb{R} \forall x \in D: \|x\| < \mu$
- kompakt, falls D abgeschlossen und beschränkt ist.

Es gilt: Ist $D\subseteq\mathbb{R}^n$ offen, so ist D^C abgeschlossen. \mathbb{R} und \emptyset sind offen und abgeschlossen.