The Industrial Trajectory Generation and Python API of pilz_industrial_motion

https://wiki.ros.org/pilz_robots

Movelt Workshop 2019 Macau, November 2nd 2019

Christian Henkel Advanced Development

Recap of "Safety Certified ROS-native Industrial Manipulator" @ ROSCon

ROS would be merely an afterthought

ROS as core component

Example Application: Visual Inspection

- Task: Inspect part features for large number of product variants
- Approach: Robot on-board camera supported on database to lookup poses and save results
- Strengths of ROS:
 - ► High-level control based on the adaption of State-Machine packages
 - ► Interface with other software components
 - ► Use of workspace based (OMPL) and deterministic (pilz_industrial_motion) motion planners

Current Setup

Inspection Poses

Demo Setup

Machine setup

FTP Industrial Trajectory Generation for Movelt!

Goal:

- Reproducible trajectories (PTP, LIN, CIRC)
- ► Fast computation
- Easy-to-use interface
 - ► Motion from RViz
 - Programming with Python API
 - ► Tutorials

Working for every robot which has a moveit_config.

Supported by ROSIN - ROS-Industrial Quality-Assured Robot Software Components. More information: rosin-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 732287.

Strengths of

The framework combines

- Kinematics module(s)
- Collision checking with the environment model
- Trajectory execution

Motion Types

LIN

Linear intrapolation in cartesian space

PTP

Linear intrapolation in joint space

CIRC

Circular intrapolation in cartesian space

Pilz CommandPlanner

Trapezoidal velocity profiles

Collision checking (no avoidance)

► Blend combines a sequence of commands: e.g. LIN-LIN

User-Interface: Python-API

- Easy-to-use
- Versioning
- Move Command
- Reference Poses or Joint Values
- Relative Motions
- Sequences with Blending

```
r = Robot(__REQUIRED_API_VERSION__)

# Simple ptp movement
r.move(Ptp(goal=[0, 0.5, 0.5, 0, 0, 0], vel_scale=0.4))

start_joint_values = r.get_current_joint_states()

# Relative ptp movement
r.move(Ptp(goal=[0.1, 0, 0, 0, 0, 0], relative=True, vel_scale=0.2))
r.move(Ptp(goal=Pose(position=Point(0, 0, -0.1)), relative=True))
r.move(Ptp(goal=[-0.2, 0, 0, 0, 0, 0], relative=True, acc_scale=0.2))
```

```
sequence = Sequence()
sequence.append(Lin(goal=Pose(position=Point(0.2, 0, 0.8)), vel_scale=0.1, acc_scale=0.1))
sequence.append(Circ(goal=Pose(position=Point(0.2, -0.2, 0.8)), center=Point(0.1, -0.1, 0.8), acc_scale=0.4))
sequence.append(Ptp(goal=pose_after_relative, vel_scale=0.2))
```

https://github.com/PilzDE/pilz_industrial_motion/blob/melodic-devel/pilz_robot_programming/examples/demo_program.py

With a focus on quality

Documentation

- Overview on wiki.ros.org/pilz_robots
- Tutorials
- ► API-Documentation

Tests

- Unit- and Integration tests (Travis-CI-Integration)
- ► ~100% code coverage

Summary / Outlook

- Industrial Trajectory Generation
 - LIN, PTP, CIRC
 - Blending
- Python API
 - Easy to use
 - Versatile

- Example using two planners
 - ompl + Pilz
 - LIN to approach
 - ompl in free space
- ► Movelt 2.0!
- World Movelt Day

Christian Henkel

Pilz GmbH & Co. KG Felix-Wankel-Straße 2 73760 Ostfildern, Germany Tel.: +49 711 3409-7860

a hankal@nilz.da

<u>c.henkel@pilz.de</u>

post@henkelchristian.de

Please visit

https://github.com/pilzde/pilz_robots

https://github.com/pilzde/pilz_industrial_motion

