WO 2005/122896 1 PCT/JP2005/009913

明細書

皮下血流測定に基づく個人認証方法及び個人認証装置 技術分野

[0001] 本発明は、皮下血流を測定することを特徴とする個人認証方法とそれに用いる装置に関する。特に、指腹の血流マップから指紋に相当するパターンを抽出し、本人認証を行う方法と装置に関するものである。

背景技術

- [0002] 指紋による本人認証は、古くからある目視による方法に代わって、レーザー等を用い、パターンを画像としてコンピュータに入力して解析する様々な方法が今日まで開発されてきた。指紋を検出するセンサ部分も多数の手法が提案され、山と谷の散乱角の違いと全反射条件を組み合わせて、指紋パターンを直接イメージセンサに取り込む光学的方法や、接触面の電荷分布の差を検出する半導体センサを利用して、パターンを抽出する方法も実用化されている。また指先や手のひらの静脈パターンを、近赤外光を利用して抽出して個人認証する方法も提案され、製品化も進んでいる。しかし何れの方法もまだ完全ではなく、偽造との戦いが続いている。
- [0003] 一方、レーザーを生体に向けて照射すると、その反射散乱光の強度分布は、血球などの移動散乱粒子によって動的なレーザースペックル(ランダムな斑点模様)を形成する。このパターンを、結像面においてイメージセンサで検出し、各画素における模様の時間変化を定量化し、マップ状に表示することで、生体表面近傍の毛細血管の血流分布を画像化できることが知られている。そして、かかる現象を利用して、皮膚の下や眼底の血流マップを測定する技術や装置は、本発明者らによっていくつか提案されている。しかしながら、これらの文献では、血流マップを指紋パターンと結びつけて個人認証に用いるという概念と方法・手段については、何ら開示も示唆もなされていない。

[0004] 特許文献1:特開平5-73666号公報

特許文献2:特開平8-16752号公報

特許文献3:特開2003-331268号公報

特許文献4:特公平5-28133号公報

特許文献5:特公平5-28134号公報

特許文献6:特開平4-242628号公報

特許文献7:特開平8-112262号公報

特許文献8:特開2003-164431号公報

特許文献9:特開2003-180641号公報

発明の開示

発明が解決しようとする課題

[0005] 指紋パターンは静脈パターンより形状が複雑であるため、より確度の高い個人認証方法を構成できる可能性があるが、指紋を型に取るなど、指腹と同じ形状を偽造すれば、破られるおそれがある。この問題を解決するためには、何らかの生体情報を併用することが効果的である。本発明では、レーザー散乱を利用した血流測定技術により指腹部の血流分布を測定したときに、指紋の凹凸によって皮下血流分布が空間的に変調される性質を利用して指紋パターンを抽出し、あるいは更に血流の拍動に基づく情報も同時に抽出し、これらを用いた確度の高い個人認証方法と装置を提供しようとするものである。

課題を解決するための手段

- [0006] 本発明の一つの課題は、皮下血流を測定することを特徴とする個人認証方法であって、(1)レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像する工程、(2)レーザースペックルの各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を求め、その数値を2次元マップとして指腹の血流マップを得る工程、(3)血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・判定する工程、からなる個人認証方法と、それぞれの工程を実行する装置を構築することによって達成される。
- [0007] 本発明のもう一つの課題は、皮下血流を測定することを特徴とする個人認証方法であって、(1)レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した

光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像する工程、(2)レーザースペックルの各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を求め、その数値を2次元マップとして指腹の血流マップを得る工程、(3)血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・判定する工程、及び、(4)全体あるいはある領域内の平均血流の経時変化を求め、予め定められた基準と比較・判定する工程、からなる個人認証方法とそれぞれの工程を実行する装置を構築することによって達成される。

発明の効果

[0008] 本発明の指紋センシング技術は、生体固有の血流情報を用いて指紋のパターンを描き、また、そのパターンは心拍に同期して時間的に変動することを利用したものであり、このように2次元パターンと時間軸を組み合わせたモデルは、偽造が非常に難しい。また指紋のパターンが得られた後は、従来の指紋パターンの比較方法・技術をそのまま利用できるという利点がある。

図面の簡単な説明

[0009] [図1]指腹の皮膚断面を示した説明図である。

[図2]血流マップを利用した本発明の実施方法を示した説明図である。

符号の説明

- [0010] 1 角質層
 - 2 皮下の血管層
 - 3 角質層の山の部分
 - 4 角質層の谷の部分
 - 5 半導体レーザー
 - 6 照射光学系
 - 7 指腹
 - 8 レーザースポット
 - 9 結像レンズ
 - 10 イメージセンサ

- 11 解析用パーソナルコンピュータ
- 12 ディスプレイ
- 13 指紋に相当する指腹の血流マップ

発明を実施するための最良の形態

- [0011] 生体情報の中でも血流から得られる情報は、本人が生きた状態でセンサを操作しなければ認証できないという特徴がある。本発明は、レーザー散乱を利用した血流測定技術により、指紋の凹凸によって空間的に変調された皮下血流を測定するものであるが、皮下血流を測定するために、先ず、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像する。そして、レーザースペックルをイメージセンサを用いて連続的に走査し、各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を算出し、得られた数値を2次元マップとして指腹の血流マップを得る。次に、血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・判定する。本発明の他の態様においては、以上の工程に付加して、全体あるいはある領域内の平均血流の経時変化を求め、予め定められた基準と比較・判定する工程も加えられる。本発明においては、必要に応じ、得られた血流マップあるいは指紋パターンを表示する工程、あるいは表示する手段を組み入れても良い。
- [0012] 本発明をより具体的に説明すると、例えば、半導体レーザーなどの小型のレーザー 光源から出た光を、光学系を通して拡げ、指腹の広い面積に照射する。この照射スポットを、レンズを通してCCDカメラなどの受光面に結像する。CCDカメラから得られる映像信号を、A/D変換してパソコンやマイコンに取り込み、各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を算出し、必要な場合にはマップ状に表示して、血流マップデータとする。かくして表現される指腹の皮下にある毛細血管の血流のマップには、後述する作用・原理により指紋パターンが浮き出てくるので、このデータを予め登録されているデータと比較し、個人認証を行う。本発明において、血流マップとして現れた指紋パターンを、予め登録されている個人デ

ータと比較・判定する方法・手段としては、特別なものである必要はなく、従来知られている方法・手段を用いることができる。

- [0013] 本発明において得られる血流マップは、本来的には生体から得られる情報であるから、本発明の請求項1の方法だけでも、従来の単に指紋パターンだけで個人認証を行う方法・手段よりも、偽造が難しい。しかし、本発明の請求項2の発明では、更に、(4)として、全体あるいはある領域内の平均血流の経時変化を求め、予め定められた基準と比較・判定する工程、をプラスしているので、より偽造が難しいという特徴を有する。また、ある領域内の平均血流の経時変化として、例えば、波形を採用した場合には、予め生体に特徴的な波形の基準を定めておき、それとの比較・判定をすることによって、被験者の生死を判定することができる。この基準には、例えば、波の形、振幅、周期などを利用することができる。
- [0014] 本発明の作用・現象は次の様に考えられる。レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光をレンズを介してイメージセンサ上に結像すると、この像面には皮膚組織や血球などから散乱された光が干渉し合って、ランダムな斑点模様(レーザースペックル)が生じる。この斑点模様は散乱粒子の移動によって刻々変化し、その時間変化は粒子の速度、すなわち血流速度に比例する。この性質を利用し、各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を求め、得られた数値を2次元マップとして表示することで血流マップが得られる。この数値は、レーザーが皮膚に入射してから内部の血球で散乱して、皮膚表面から外に出てくるまでに通った光路内にある、散乱粒子の平均速度に比例する。従って角質層など血流の少ない部分を長く通過するほど、受光量の変動は少なく、その時間変化は遅くなる。また血球は心拍に同期して速度が変動するため、各走査ごとに読みとられる受光量の時間的変化は、心臓の収縮期には速く、拡張期には遅くなる。
- [0015] 以上の関係を図面を用いて説明する。図1は指腹の皮膚の断面図で、1は角質層、2は皮下の血管組織、3は角質層の山の部分、4は角質層の谷の部分である。組織の指紋は角質層表面の細かい山と山、あるいは谷と谷をつなげ、模様として眺めたものであるが、この凹凸の山の部分3は角質層が厚いために血流の時間変化率は低く

表示され、逆に谷の部分では直下にある速い血流を反映し、血流の時間変化率は 高く表示される。この性質を利用して、指紋パターンを得ることができ、更に血流の時間変化率は心拍に同期して周期的に変動する。

- [0016] 本発明では、レーザー散乱光の時間変動成分を検出して血流値を解析するので、 仮に指腹を当てる窓部分が多少汚れていても、散乱光の変動成分には大きな影響 が無く、血流マップを取り出すことができるという利点がある。
- [0017] 本発明によれば、前記のごとき各工程からなる個人認証方法を実行するための装置が提供される。本発明の装置は、レーザー光束を拡げて指腹に照射する照射手段と、多数の画素を有し指腹からの反射光を受光する受光手段と、この受光手段で得られた前記各画素の出力を記憶する記憶手段と、この記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次分布を指紋パターンとして記憶する第2の記憶手段と、この第2の記憶手段に記憶された指紋パターンを、予め登録されている個人データと比較・判定する手段、を具備することを特徴とする個人認証装置である。そして更に、かかる装置にプラスして、全体あるいはある領域内の平均血流の経時変化を求め、予め定められた基準と比較・判定する手段、を具備することを特徴とする個人認証装置である。
- [0018] 照射手段としては、例えば、半導体レーザーから出射した光をレンズを通して拡げ 、指腹の広い領域を一度に照射する。受光手段としては、ラインセンサやエリアセン サ等のイメージセンサが用いられる。センサからの電気信号は、A/D変換した後、 マイコンやパソコンの記憶部に記憶される。数秒間にわたり連続して画像信号を記憶 部に取りこみ、マイコンやパソコンにあらかじめ設定されたプログラムにより、連続する 2枚の画像の差を求めて、受光量の時間変化の速さを演算する。または画像のぶれ 率、すなわちイメージセンサの露光時間内で光量が高速に変化すると、信号が積分 され、逆に2画面の差が減少する性質を利用して受光量の時間変化の速さを演算す る。演算結果は各画素の配置に従って、パソコンの画面上に二次元のカラーマップと して表示することもできる。演算した値を、あるいは表示手段に表示された指紋パタ ーンを、予め登録されている個人の指紋パターンと比較・判定する手段には、従来公

WO 2005/122896 7 PCT/JP2005/009913

知の各種の手段を用いることができる。また指腹のある領域について平均した血流値の数秒間にわたる経時変化を求め、例えば、この血流変化の波の形、振幅、周期などを比較・判定の基準として利用できる。

実施例

- [0019] 図2は、本発明装置の一例であって、5は半導体レーザー、6は照射光学系、7は 指腹、8はレーザースポット、9は結像レンズ、10はイメージセンサ、11は解析用パー ソナルコンピュータ、12はディスプレイ、13は指紋に相当する血流マップである。
- [0020] 指腹から散乱されたレーザーは、イメージセンサ上にランダムな干渉縞模様(レーザースペックル)を形成し、この模様は血流によって刻々変化し、角質層の薄い部分ほど速く変化する。血流の変化の速い部分を結んでいくと、指紋の谷の部分をつなげたものになり、指紋のパターンが得られる。指紋を抽出した結果は、図2の13のようにディスプレイ12上で観察することができる。
- [0021] このように血流マップから指紋パターンを抽出し、予め登録してある個人データと、公知の方法・手段を用いて比較し、本人であるかどうかを精度良く確認することができる。更に観察視野内の血流の時間変化率は、心拍に同期して時間変化し、その振幅や波形もディスプレイ上で観察することができる。このように血流マップから指紋パターンを抽出し、予め登録してある個人データと比較し、本人であるかどうかを精度良く確認すると共に、血流の時間変化率の波の形等も抽出して、予め定められている基準と比較して生死を判定できるという特徴がある。

産業上の利用可能性

[0022] 本発明による個人認証方法は、複雑な指紋パターンと生体情報を組み合わせているため、偽造が難しい。この利点を生かして、高度なセキュリティ管理を要求される施設の入退室監視や、出入国管理等に利用できる。

請求の範囲

- [1] 皮下血流を測定することを特徴とする個人認証方法であって、
 - (1)レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像する工程、
 - (2)レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを得る工程、
 - (3)血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・判定する工程、

からなる個人認証方法。

- [2] 皮下血流を測定することを特徴とする個人認証方法であって、
 - (1)レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像する工程、
 - (2)レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを得る工程、
 - (3) 血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・判定する工程、及び
 - (4)全体あるいはある領域内の平均血流の経時変化を求め、予め定められた基準と比較・判定する工程、

からなる個人認証方法。

- [3] レーザー光束を拡げて指腹に照射する照射手段と、多数の画素を有し指腹からの 反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶す る記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化 の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の 二次元分布を指紋パターンとして記憶する第2の記憶手段と、該第2の記憶手段に 記憶された指紋パターンを、予め登録されている個人データと比較・判定する手段、 を具備することを特徴とする個人認証装置。
- [4] レーザー光束を拡げて指腹に照射する照射手段と、多数の画素を有し指腹からの 反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶す

WO 2005/122896 9 PCT/JP2005/009913

る記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化 の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の 二次元分布を指紋パターンとして記憶する第2の記憶手段と、該第2の記憶手段に 記憶された指紋パターンを、予め登録されている個人データと比較・判定する手段、 及び、全体あるいはある領域内の平均血流の経時変化を算出し、予め定められた基準と比較・判定する手段、を具備することを特徴とする個人認証装置。

補正書の請求の範囲

[2005年9月5日 (05. 09. 05) 国際事務局受理:出願当初の請求の範囲3,4は 補正された;他の請求の範囲は変更なし。(2頁)]

- 1. 皮下血流を測定することを特徴とする個人認証方法であって、
- (1) レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系 を用いてイメージセンサ上にレーザースペックルとして結像する工程、
- (2) レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、 その数値を2次元マップとして指腹の血流マップを得る工程、
- (3) 血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・ 判定する工程、

からなる個人認証方法。

- 2. 皮下血流を測定することを特徴とする個人認証方法であって、
- (1) レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系 を用いてイメージセンサ上にレーザースペックルとして結像する工程、
- (2) レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、 その数値を2次元マップとして指腹の血流マップを得る工程、
- (3) 血流マップとして現れた指紋パターンを、予め登録されている個人データと比較・ 判定する工程、及び
- (4)全体あるいはある領域内の平均血流の経時変化を求め、予め定められた基準と比較 ・判定する工程、

からなる個人認証方法。

- 3. (補正後)レーザー光束を拡げて指腹に照射する照射手段と、多数の画素を有し指腹の皮下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を指紋パターンとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された指紋パターンを、予め登録されている個人データと比較・判定する手段、を具備することを特徴とする個人認証装置。
- 4. (補正後) レーザー光束を拡げて指腹に照射する照射手段と、多数の画素を有し指腹の皮下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得ら

補正された用紙(条約第19条)

れた演算結果の二次元分布を指紋パターンとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された指紋パターンを、予め登録されている個人データと比較・判定する手段、及び、全体あるいはある領域内の平均血流の経時変化を算出し、予め定められた基準と比較・判定する手段、を具備することを特徴とする個人認証装置。

第19条(1)の規定に基づく説明書

補正後の請求項3と4は共に、もとの「指腹からの反射光」という表現を、「指腹の皮下の血管層からの反射光」という表現に訂正したものです。明細書の段落 [0006] と [0007] の記載から明らかなとおり、請求項1と2の個人認証方法を実行するための装置が、それぞれ請求項3と4に対応して記載されています。そして、本発明は、「レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像する」ものですから、請求項3と4の装置における受光手段は、当然、「皮下にある血管層から反射した光」を受光するものです

請求項3と4は、この点を明確にするために補正したものです。

見解書において、文献1~3のいずれにも、「血管層から反射した光」を「イメージセンサ上にレーザースペックルとして結像」して「指腹の血流マップを得る」構成は記載も示唆もされていないと認定され、請求項1と2は、新規性、進歩性とも認められています。従って、補正後の請求項3と4も、同じ理由で、新規性と進歩性が認められるものと考えます。

[図1]

[図2]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/009913

CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ A61B5/117, G06T1/00, 5/50 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁷ A61B5/117, G06T1/00, 5/50 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α JP 2003-144420 A (NEC Corp.), 1,2 Y 20 May, 2003 (20.05.03), 3,4 Full text; all drawings JP 2-5190 A (Fujitsu Ltd.), Α 1,2 10 January, 1990 (10.01.90), Y 3.4 Full text; all drawings Α JP 2001-266134 A (NEC Corp.), 1 - 428 September, 2001 (28.09.01), Full text; all drawings Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive "L" step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is "O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 15 June, 2005 (15.06.05) 28 June, 2005 (28.06.05) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT Information on patent family members P 2003-144420 A 2003.05.20 CN 1417751 A 2003.05.14 US 6885439 B2 2005.04.26

JP 2003-144420 A	2003.05.20	CN 1417751 A US 6885439 B2 US 2003/90650 A1	2003.05.14 2005.04.26 2003.05.15
JP 2-5190 A	1990.01.10	JP 2747489 B2	1998.05.06
JP 2001-266134 A	2001.09.28	JP 3627615 B2	2005.03.09

A. 発明の属する分野の分類(国際特許分類(IPC)) Imt.Cl.⁷ A61B5/117, G06T1/00, 5/50

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ A61B5/117, G06T1/00, 5/50

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献					
引用文献の		関連する			
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号			
A Y	JP 2003-144420 A (日本電機株式会社) 2003.05.20 全文,全図	1, 2 3, 4			
A Y	JP 2-5190 A (富士通株式会社) 1990.01.10 全文,全図	1, 2 3, 4			
A	JP 2001-266134 A (日本電機株式会社) 2001.09.28 全文,全図	1-4			

□ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

15.06.2005

国際調査報告の発送日

28. 6. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

2Q 9405

上田 正樹

電話番号 03-3581-1101 内線 3290

国際調査報告 パテントファミリーに関する情報

国際出願番号 PCT/JP2005/009913

JP 2003-144420 A	2003. 05. 20	CN 1417751 A US 6885439 B2 US 2003/90650 A1	2003. 05. 14 2005. 04. 26 2003. 05. 15
	1990. 01. 10	JP 2747489 B2	1998. 05. 06
JP 2001-266134 A	2001. 09. 28	JP 3627615 B2	2005. 03. 09