Large-scale Logistic Regression and Linear Support Vector Machines Using Spark

Ching-Pei Lee National Taiwan University University of Illinois

Joint work with Chieh-Yen Lin, Cheng-Hao Tsai and Chih-Jen Lin IEEE 2014 Conference on Big Data, October 28, 2014

Outline

- Introduction
- Our approach
- Implementation design
- Related Works
- Discussions and Conclusions

Outline

- Introduction
- Our approach
- Implementation design
- Related Works
- Discussions and Conclusions

 Linear classification on one machine is a mature technique: millions of data can be trained in a few seconds.

- Linear classification on one machine is a mature technique: millions of data can be trained in a few seconds.
- What if the data are even bigger than the capacity of our machine?

- Linear classification on one machine is a mature technique: millions of data can be trained in a few seconds.
- What if the data are even bigger than the capacity of our machine?
- Solution 1: get a machine with larger memory/disk.

- Linear classification on one machine is a mature technique: millions of data can be trained in a few seconds.
- What if the data are even bigger than the capacity of our machine?
- Solution 1: get a machine with larger memory/disk.
 - The data loading time would be too lengthy.

- Linear classification on one machine is a mature technique: millions of data can be trained in a few seconds.
- What if the data are even bigger than the capacity of our machine?
- Solution 1: get a machine with larger memory/disk.
 - The data loading time would be too lengthy.
- Solution 2: distributed training.

Distributed Linear Classification

- In distributed training, data loaded in parallel to reduce the I/O time.
- With more machines, computation is faster.

Distributed Linear Classification

- In distributed training, data loaded in parallel to reduce the I/O time.
- With more machines, computation is faster.
- But communication and syncronization cost become significant.
- To keep the training efficiency, we need to consider algorithms with less communication cost, and examine implementation details carefully.

 We train logistic regression (LR) and L2-loss linear support vector machine (SVM) models on Apache Spark (Zaharia et al., 2010).

- We train logistic regression (LR) and L2-loss linear support vector machine (SVM) models on Apache Spark (Zaharia et al., 2010).
- Why Spark?

- We train logistic regression (LR) and L2-loss linear support vector machine (SVM) models on Apache Spark (Zaharia et al., 2010).
- Why Spark?
 - MPI (Snir and Otto, 1998) is efficient, but does not support fault tolerance.

- We train logistic regression (LR) and L2-loss linear support vector machine (SVM) models on Apache Spark (Zaharia et al., 2010).
- Why Spark?
 - MPI (Snir and Otto, 1998) is efficient, but does not support fault tolerance.
 - MapReduce (Dean and Ghemawat, 2008) supports fault tolerance, but is slow in communication.

- Why Spark?
 - Spark combines advantages of both frameworks.

- Why Spark?
 - Spark combines advantages of both frameworks.
 - Communications conducted in-memory.
 - Supports fault tolerance.

- Why Spark?
 - Spark combines advantages of both frameworks.
 - Communications conducted in-memory.
 - Supports fault tolerance.
- However, Spark is new and still under development.
- We therefore need to examine important implementation issues to ensure efficiency.

• Only the master-slave framework.

- Only the master-slave framework.
- Data fault tolerance: Hadoop Distributed File System (Borthakur, 2008).

- Only the master-slave framework.
- Data fault tolerance: Hadoop Distributed File System (Borthakur, 2008).
- Computation fault tolerance:

- Only the master-slave framework.
- Data fault tolerance: Hadoop Distributed File System (Borthakur, 2008).
- Computation fault tolerance: Read-only Resilient Distributed Datasets (RDD) and lineage (Zaharia et al., 2012).

Basic idea: reconduct operations recorded in lineage on immutable RDDs.

Outline

- Introduction
- Our approach
- Implementation design
- Related Works
- Discussions and Conclusions

Logistic Regression and Linear Support Vector Machine

- Given training instances $\{(y_i, \mathbf{x}_i)\}_{i=1}^l$, $y_i \in \{-1, 1\}$, $\mathbf{x}_i \in \mathbf{R}^n$.
- Linear classification: given C > 0,

$$\min_{\mathbf{w}} f(\mathbf{w}) \equiv \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{l} \xi(\mathbf{w}; \mathbf{x}_i, y_i)$$
$$\xi_{\text{SVM}}(\mathbf{w}; \mathbf{x}_i, y_i) \equiv \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)^2 \quad \text{and}$$
$$\xi_{\text{LR}}(\mathbf{w}; \mathbf{x}_i, y_i) \equiv \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i})$$

• We use a trust region Newton method to minimize $f(\mathbf{w})$ (Lin and Moré, 1999).

Trust Region Newton Method

• At iteration t, given iterate \mathbf{w}^t and trust region $\Delta_t > 0$, solve

$$\min_{\|\mathbf{d}\| \leq \Delta_t} \quad q_t(\mathbf{d}) \equiv \nabla f(\mathbf{w}^t)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{w}^t) \mathbf{d}$$

- $\mathbf{w}^{t+1} = \begin{cases} \mathbf{w}^t + \mathbf{d} & \text{if } \rho_t > \eta, \\ \mathbf{w}^t & \text{if } \rho_t \leq \eta. \end{cases}$
 - Adjust the trust region size by ρ_t .
 - If n is large: $\nabla^2 f(\mathbf{w}^t) \in \mathbf{R}^{n \times n}$ is too large to store.
 - Consider Hessian-free methods.

Trust Region Newton Method (cont'd)

- Use a conjugate gradient (CG) method.
- CG is an iterative method: only needs $\nabla^2 f(\mathbf{w}^t)\mathbf{v}$ for some $\mathbf{v} \in \mathbf{R}^n$ at each iteration.
- For LR and SVM, at each CG iteration we compute

$$abla^2 f(\mathbf{w}^t) \mathbf{v} = \mathbf{v} + C\left(X^T \left(D\left(X\mathbf{v}\right)\right)\right), \text{ where } X \equiv \left[egin{array}{c} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_l \end{array}
ight]$$

is the data matrix and D is a diagonal matrix with values determined by \mathbf{w}^t .

Distributed Hessian-vector Products

Data matrix X is distributedly stored

partition 1
$$\rightarrow$$
 X_1
partition 2 \rightarrow X_2

partition $p \rightarrow$ X_p

$$X^T D X \mathbf{v} = X_1^T D_1 X_1 \mathbf{v} + \dots + X_p^T D_p X_p \mathbf{v}$$

Distributed Hessian-vector Products

Data matrix X is distributedly stored

partition
$$1 \longrightarrow X_1$$
partition $2 \longrightarrow X_2$

partition $p \longrightarrow X_p$

$$X^T D X \mathbf{v} = X_1^T D_1 X_1 \mathbf{v} + \dots + X_p^T D_p X_p \mathbf{v}$$

- $p \ge (\# \text{slave nodes})$ for parallelization.
- Two communications per operation:
 - Master sends w^t and the current v to the slaves.
 - Slaves return $X_i^T D_i X_i \mathbf{v}$ to master.

Distributed Hessian-vector Products

Data matrix X is distributedly stored

partition
$$1 \longrightarrow X_1$$
partition $2 \longrightarrow X_2$
partition $p \longrightarrow X_p$

$$X^T D X \mathbf{v} = X_1^T D_1 X_1 \mathbf{v} + \dots + X_p^T D_p X_p \mathbf{v}$$

- $p \ge (\# \text{slave nodes})$ for parallelization.
- Two communications per operation:
 - Master sends \mathbf{w}^t and the current \mathbf{v} to the slaves.
 - **2** Slaves return $X_i^T D_i X_i \mathbf{v}$ to master.
- The same scheme for computing function/gradient.

Outline

- Introduction
- Our approach
- Implementation design
- 4 Related Works
- Discussions and Conclusions

Experimental Settings

• We evaluate the performance by the relative difference to the optimal function value:

$$\left|\frac{f(\mathbf{w})-f(\mathbf{w}^*)}{f(\mathbf{w}^*)}\right|.$$

- All the experiments use C = 1.
- We present LR results here.

Data Information

Density: avg. ratio of non-zero features per instance.

Data set	#instances	#features	density	#non-zeros
real-sim	72,309	20,958	0.25%	3,709,083
news20	19,996	1,355,191	0.03%	9,097,916
webspam	350,000	254	33.52%	29,796,333
ijcnn	49,990	22	59.09%	649,870
rcv1	20,242	47,236	0.16%	1,498,952
yahoo-japan	176,203	832,026	0.02%	23,506,415
yahoo-korea	460,554	3,052,939	0.01%	156,436,656
covtype	581,012	54	22.00%	6,901,775
epsilon	400,000			800,000,000
rcv1t	677,399	47,236	0.16%	49,556,258

Scala Issue: Loop structures

We use one node in this experiment.

RDD: map or mapPartitions

The second term of the Hessian-vector product

$$\sum\nolimits_{i=1}^{l} \mathbf{x}_i D_{i,i} \mathbf{x}_i^{\mathsf{T}} \mathbf{v} = \sum\nolimits_{i=1}^{l} a(y_i, \mathbf{x}_i, \mathbf{w}, \mathbf{v}) \mathbf{x}_i,$$

where $a(y_i, \mathbf{x}_i, \mathbf{w}, \mathbf{v}) = D_{i,i}\mathbf{x}_i^T\mathbf{v}$, can be computed by either **map** or **mapPartitions**.

RDD: map or mapPartitions

The second term of the Hessian-vector product

$$\sum\nolimits_{i=1}^{l} \mathbf{x}_i D_{i,i} \mathbf{x}_i^T \mathbf{v} = \sum\nolimits_{i=1}^{l} a(y_i, \mathbf{x}_i, \mathbf{w}, \mathbf{v}) \mathbf{x}_i,$$

where $a(y_i, \mathbf{x}_i, \mathbf{w}, \mathbf{v}) = D_{i,i}\mathbf{x}_i^T\mathbf{v}$, can be computed by either **map** or **mapPartitions**.

Algorithm 2 map implementation

```
1: data.map(new Function() {
2: call(y, x) { return a(y, x, w, v)x }
3: }).reduce(new Function() {
4: call(a, b) { return a + b }
5: })
```


RDD: map or mapPartitions (cont'd)

Algorithm 3 mapPartitions implementation

```
1: data.mapPartitions(new Function() {
      call(partition) {
          partitionHv = new DenseVector(n)
3:
         for each (y, x) in partition
4:
             partitionHv += a(y, \mathbf{x}, \mathbf{w}, \mathbf{v})\mathbf{x}
5:
6:
7: }).reduce(new Function() {
      call(\mathbf{a}, \mathbf{b}) { return \mathbf{a} + \mathbf{b} }
9: })
```


RDD: map or mapPartitions (cont'd)

Algorithm 4 mapPartitions implementation

```
1: data.mapPartitions(new Function() {
      call(partition) {
          partitionHv = new DenseVector(n)
3:
         for each (y, x) in partition
4:
             partitionHv += a(y, \mathbf{x}, \mathbf{w}, \mathbf{v})\mathbf{x}
5:
6:
7: }).reduce(new Function() {
      call(\mathbf{a}, \mathbf{b}) { return \mathbf{a} + \mathbf{b} }
9: })
```

- map: / sparse intermediate vectors.
- mapPartitions: p dense intermediate vectors.

RDD: map or mapPartitions (cont'd)

We use 16 nodes in this experiment.

- Master to slaves: Spark by default send \mathbf{w}^t and \mathbf{v} to each partition.
- The same \mathbf{w}^t is sent repeatedly in CG.

- Master to slaves: Spark by default send \mathbf{w}^t and \mathbf{v} to each partition.
- The same \mathbf{w}^t is sent repeatedly in CG.
- Use broadcast variables to improve.
 - Read-only variables shared among partitions in the same node.
 - Cached in the slave machines.

- Master to slaves: Spark by default send \mathbf{w}^t and \mathbf{v} to each partition.
- The same \mathbf{w}^t is sent repeatedly in CG.
- Use broadcast variables to improve.
 - Read-only variables shared among partitions in the same node.
 - Cached in the slave machines.
- Slaves to master: Spark by default collect results from each partition separately.

- Master to slaves: Spark by default send \mathbf{w}^t and \mathbf{v} to each partition.
- The same \mathbf{w}^t is sent repeatedly in CG.
- Use broadcast variables to improve.
 - Read-only variables shared among partitions in the same node.
 - Cached in the slave machines
- Slaves to master: Spark by default collect results from each partition separately.
- Use the coalesce function.
 - Merge partitions on the same node before communication

Broadcast Variables and coalesce

Outline

- Introduction
- Our approach
- Implementation design
- Related Works
- Discussions and Conclusions

MLlib in Spark

- MLlib is a machine learning library implemented in Apache Spark.
- A stochastic gradient method for LR and SVM (but default batch size is the whole data).

Comparison with MLlib

We use 16 nodes in this experiment.

MPI LIBLINEAR

 A C++/MPI implementation by Zhuang et al. (2014) of the distributed trust region Newton algorithm we discussed.

MPI LIBLINEAR

- A C++/MPI implementation by Zhuang et al. (2014) of the distributed trust region Newton algorithm we discussed.
- No fault tolerance.
- Should be faster than our implementation:

MPI LIBLINEAR

- A C++/MPI implementation by Zhuang et al. (2014) of the distributed trust region Newton algorithm we discussed.
- No fault tolerance.
- Should be faster than our implementation:
 - More computational efficient: implemented in C++.

<u>MPI LIBLINEAR</u>

- A C++/MPI implementation by Zhuang et al. (2014) of the distributed trust region Newton algorithm we discussed.
- No fault tolerance.
- Should be faster than our implementation:
 - More computational efficient: implemented in C++.
 - More communicational efficient: the slave-slave structure with all-reduce only communicates once per operation.

<u>MPI</u> LIBLINEAR

- A C++/MPI implementation by Zhuang et al. (2014) of the distributed trust region Newton algorithm we discussed.
- No fault tolerance.
- Should be faster than our implementation:
 - More computational efficient: implemented in C++.
 - More communicational efficient: the slave-slave structure with all-reduce only communicates once per operation.
- Should be faster, but need to know how large is the difference.

Spark versus MPI

Spark versus MPI (Cont'd)

Spark versus MPI (Cont'd)

Outline

- Introduction
- Our approach
- Implementation design
- Related Works
- Discussions and Conclusions

Weakness and Future Work

Integrating with MLlib (ongoing).

Weakness and Future Work

- Integrating with MLlib (ongoing).
- Feature-wise approach (Zhuang et al., 2014): communication cost can be reduced from O(n) to O(1) if $n \gg 1$.

Weakness and Future Work

- Integrating with MLlib (ongoing).
- Feature-wise approach (Zhuang et al., 2014): communication cost can be reduced from O(n) to O(I) if $n \gg I$.
- Comparing with other newly available optimization approaches implemented on Spark (I-bfgs, dual coordinate ascent (Jaggi et al., 2014), etc.)

Conclusions

- We consider a distributed trust region Newton algorithm on Spark for training LR and linear SVM.
- Many implementation issues are thoroughly studied with careful empirical examinations.
- Our implementation on Spark is competitive with state-of-the-art packages.
- Spark LIBLINEAR is an distributed extension of LIBLINEAR and it is available at http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/distributed-liblinear/.

