Tanner Krebs, Gerardo Lopez, William Thornton

Math 314 Due: 11/0217

COSC/MATH - 314

Assignment 7

Problem 1:

- (a.) Find an integer x between 0 and 69 that satisfies simultaneously $x = 2 \pmod{7}$ and $x = 3 \pmod{10}$. (Note: by the Chinese Remainder Theorem, we know that there is such an integer.)
- **(b.)** Find another integer y (different from the x from (a)) such that $y = 2 \pmod{7}$ and $y = 3 \pmod{10}$.

Problem 2: Use the repeated squaring method to calculate each of the following (show the main steps for each calculation): $3^7 (mod 12)$, $16^{10} (mod 230)$, $5^{14} (mod 26)$, $4^{22} (mod 11)$, $3^{65} (mod 71)$.

Problem 3: Use Fermat?s Little Theorem (and other methods if you need) to calculate the following (all moduli are prime numbers): $99^{101} (mod101)$, $94^{66} (mod67)$, $4968732^{7540} (mod7541)$, $65^{144} (mod73)$, $65^{143} (mod73)$.

Problem 4: Show that $2^{56} + 3^{56}$ is divisible by 17.

Problem 5: Find three different integers a, b, and c such that $2^a = 2^b = 2^c = 1 \pmod{19}$.

Problem 6:

- (a.) Show that 2 is a primitive root (mod 11)
- (b.) Find all natural numbers x that satisfy the equation $2^{3x} = 2 \pmod{11}$. (Note: There are infinitely many natural numbers that satisfy the given equation. "Find all" means to present a description of all of them.)