www.careeryuga.com

Course No.	Course Name	L-T-P -Credits	Year of Introduction
CS302	Design and Analysis of Algorithms	3-1-0-4	2015

Course Objectives

- 1. To introduce the concepts of Algorithm Analysis, Time Complexity, Space Complexity.
- 2. To discuss various Algorithm Design Strategies with proper illustrative examples.
- 3. To introduce Complexity Theory.

Syllabus

Introduction to Algorithm Analysis, Notions of Time and Space Complexity, Asymptotic Notations, Recurrence Equations and their solutions, Master's Theorem, Divide and Conquer and illustrative examples, AVL trees, Red-Black Trees, Union-find algorithms, Graph algorithms, Divide and Conquer, Dynamic Programming, Greedy Strategy, Back Tracking and Branch and Bound, Complexity classes

Expected outcome

Student is able to

- 1. Analyze a given algorithm and express its iime and space complexities in asymptotic notations.
- 2. Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem.
- 3. Design algorithms using Divide and Conquer Strategy.
- 4. Compare Dynamic Programming and Divide and Conquer Strategies.
- 5. *Solve Optimization problems using Greedy strategy.*
- 6. Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems.
- 7. Classify computational problems into P, NP, NP-Hard and NP-Complete.

Text Books

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press [Modules 1,2,6]
- 2. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Computer Algorithms, Universities Press, 2007 [Modules 3,4,5]

References

- 1. AnanyLevitin, Introduction to the Design and Analysis of Algorithms, Pearson, 3rd Edition.
- 2. Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms using C++ Psuedocode, Second Edition.
- 3. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms, Pearson Education, 1999.
- 4. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education.

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks %
I	Introduction to Algorithm Analysis Time and Space		15 %
	Complexity- Elementary operations and		
	Computation of Time Complexity- Best, worst and		
	Average Case Complexities- Complexity Calculation		
	of simple algorithms	04	
	Recurrence Equations: Solution of Recurrence		
	Equations - Iteration Method and Recursion Tree	04	
	Methods,		
II	Master's Theorem(Proof not required) - examples,		459/
	Asymptotic Notations and their properties-		
	Application of Asymptotic Notations in Algorithm	04	
	Analysis- Common Complexity Functions		
	AVL Trees - rotations, Red-Black Trees insertion and		15%
	deletion (Techniques only; algorithms not expected).		
	B-Trees - insertion and deletion operations. Sets-	05	
	Union and find operations on disjoint sets.		
	FIRST INTERNAL EXAM		
Ш	Graphs - DFS and BFS traversals, complexity,		15%
	Spanning trees - Minimum Cost Spanning Trees,		
	single source shortest path algorithms, Topological	07	
	sorting, strongly connected components.		
	· ·		

	Divide and Conquer: The Control Abstraction, 2 way Merge sort, Strassen's Matrix Multiplication, Analysis	04				
IV	Dynamic Programming: The control Abstraction- The		15%			
	Optimality Principle- Optimal matrix multiplication,	04				
	Bellman-Ford Algorithm					
SECOND INTERNAL EXAM						
V	Analysis, Comparison of Divide and Conquer and					
	Dynamic Programming strategies	02				
	Greedy Strategy: - The Control Abstraction- the					
	Fractional Knapsack Problem,	04	20%			
	Minimal Cost Spanning Tree Computation- Prim's					
	Algorithm – Kruskal's Algorithm.	03				
	Back Tracking: -The Control Abstraction - The N					
VI	Queen's Problem, 0/1 Knapsack Problem	03				
	Branch and Bound: Travelling Salesman Problem.	03				
	Introduction to Complexity Theory :-Tractable and		20%			
	Intractable Problems- The P and NP Classes-	03				
	Polynomial Time Reductions - The NP- Hard and NP-					
	Complete Classes					
	END SEMESTER EXAM					

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18

www.careeryuga.com

b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.

4. Part C

- a. Total marks: 12
- b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.

5. Part D

- a. Total marks: 18
- b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.