Le groupe de Selmer des isogénies de hauteur un

D. Rössler

9 avril 2019

Résumé

On montre que le groupe de Selmer d'une isogénie de hauteur un entre deux variétés abéliennes définies sur le corps de fonctions d'une variété quasi-projective et lisse V sur un corps parfait k_0 de caractéristique p>0 peut être plongé dans le groupe des homomorphismes entre deux fibrés vectoriels naturels sur V.

1 Introduction

Soit V un schéma intègre, qui est quasi-projectif et lisse sur un corps parfait k_0 de caractéristique p>0. Soit K le corps de fonctions de V. Soit $\pi:\mathcal{A}\to V$ (resp. $\rho:\mathcal{B}\to V$) un schéma semiabélien sur V. On notera A (resp. B) sa fibre au-dessus du point générique de V. Soit $V_{\mathrm{ab}}\subseteq V$ l'ensemble des points $v\in V$ tels que \mathcal{A}_v est une variété abélienne sur $\kappa(v)$. On suppose que V_{ab} est un ouvert non vide et que son complément $E:=V\backslash V_{\mathrm{ab}}$ (muni de sa structure de sous-schéma fermé réduit) est un diviseur à croisements normaux au-dessus de k_0 , au sens de V

Si S est un schéma de caractéristique p, on notera

$$F_S:S\to S$$

l'endomorphisme de Frobenius absolu de S. Si G est un schéma en groupes sur un schéma S, on écrira $\epsilon_{G/S}:S\to G$ pour la section nulle et $\omega_G=\omega_{G/S}:=\epsilon_{G/S}^*(\Omega_{G/S})=\mathrm{Lie}(G)^\vee$ pour l'algèbre de coLie de G sur S.

Soit $\iota: \mathcal{A} \to \mathcal{B}$ une isogénie de hauteur un. On rappelle que ι est par définition de hauteur un si $\ker \iota$ est un schéma en groupes de hauteur un (par définition, cela veut dire que $\ker \iota$ est fini et plat et que $F_{\ker \iota} = 0$). On écrira $\Gamma := \ker \iota$.

En préparation de la formulation de notre résultat principal, on rappelle la proposition suivante, dont une variante est démontrée dans $[1, \S 2, \text{ "The second exact sequence"}]$ (voir aussi [10, III.3.5.6]). Nous en donnerons une démonstration dans la sous-section [2, 1]. On notera $[1, \S 2]$ le corps [4, 2] vu comme une [4, 2] le précomposée par [4, 2] le corps [4, 2] vu comme une [4, 2] le précomposée par [4, 2] le corps [4, 2] vu comme une [4, 2] le précomposée par [4, 2]

Proposition 1.1 (Artin-Milne). Il existe un homomorphisme de groupes canonique

$$\Phi_{\Gamma_K} = \Phi_{\iota_K} : H^1(K, \Gamma_K) \hookrightarrow \operatorname{Hom}_K(F_K^*(\omega_{\Gamma_K}), \Omega_{K^{[1]}/k_0})$$

qui est injectif.

Ici $H^1(K, \Gamma_K)$ est l'ensemble des classes d'isomorphisme de torseurs sous Γ_K et sur $\operatorname{Spec} K$. On rappelle que cet ensemble a une structure canonique de groupe commutatif.

Voici une description explicite de l'application Φ_{Γ_K} .

On remarque d'abord qu'on a isomorphisme canonique $\Omega_{K/k_0} \simeq \Omega_{F_K}$. Celui-ci provient de la suite exacte canonique

$$F_K^*(\Omega_{K/k_0}) \to \Omega_{K^{[1]}/k_0} \to \Omega_{F_K} \to 0,$$

où la première flèche s'annule.

Soit $\lambda: P \to \operatorname{Spec} K$ un torseur sous Γ_K . Le torseur $F_K^*(P)$ sous $F_K^*(\Gamma_K)$ est trivial d'après [10, III.3.5.7] et cette trivialisation est unique puisque $F_K^*(\Gamma_K)$ est un schéma en groupes infinitésimal. Il existe ainsi une unique flèche $\sigma: \operatorname{Spec} K \to P$ telle que $\lambda \circ \sigma = F_K$. La flèche σ induit un morphisme de différentielles

$$\sigma^*(\omega_{P/K}) \to \Omega_{F_K}$$

qui est par définition $\Phi_{\Gamma_K}(P)$, via les identifications $\Omega_{K^{[1]}/k_0} \simeq \Omega_{F_K}$ et $\sigma^*(\omega_{P/K}) \simeq F_K^*(\omega_{\Gamma_K})$.

Dans [1, Remark (2.7)], on trouve une description légérement différente de l'application Φ_{Γ_K} . Les deux descriptions coı̈ncident mais nous ne démontrerons pas cette coı̈ncidence.

On rappelle aussi l'existence de la suite "de Kummer"

$$0 \to \Gamma_K \to A(K) \xrightarrow{\iota_K} B(K) \xrightarrow{\delta_{\iota_K}} H^1(K, \Gamma_K) \xrightarrow{t} H^1(K, A)$$
 (1)

associée à ι_K (cf. [6, Appendix C.4]). On a une suite semblable pour le changement de base de A, B et ι_K à n'importe quel K-schéma S.

On rappelle aussi la définition suivante (cf. [6, Appendix C.4.1]) :

Définition 1.2. Le groupe de Selmer

$$\mathrm{Sel}(K, \iota_K) = \mathrm{Sel}_V(K, \iota_K) \subseteq H^1(K, \Gamma_K)$$

relativement à V est l'ensemble des classes d'isomorphismes de torseurs $\lambda: P \to \operatorname{Spec} K$ sous Γ_K tels que on a $P_{K_v} \in \delta_{K_v}(B(K_v))$ pour tout point $v \in V$ de codimension un.

On dit qu'un point $v \in V$ est de codimension un si sa clôture de Zariski est un sous-schéma fermé de codimension un. Un point de codimension un dans V définit une valuation discrète dans K et on note K_v la complétion de K le long de cette valuation.

Notons $V^{[1]}$ le schéma V vu comme un k_0 -schéma via la flèche de V dans $\operatorname{Spec} k_0$ qui est la composition de la flèche structurale avec F_{k_0} . On écrira $\Omega_{V^{[1]}/k_0}(\log E)$ pour le faisceau des formes différentielles de $V^{[1]}\backslash E$ sur k_0 à singularités logarithmiques le long de E. Le faisceau $\Omega_{V^{[1]}/k_0}(\log E)$ est cohérent et localement libre. Voir [7, Intro.] pour la définition et plus de détails sur cette notion.

On remarque qu'on a une flèche naturelle 'restriction à la fibre générique'

$$\rho: \operatorname{Hom}_{V}(F_{V}^{*}(\omega_{\Gamma}), \Omega_{V^{[1]}/k_{0}}(\log E)) \to \operatorname{Hom}(F_{K}^{*}(\omega_{\Gamma_{K}}), \Omega_{K^{[1]}/k_{0}})$$
(2)

qui est injective puisque V est intègre et les faisceaux cohérents en jeu sont sans torsion.

Nous sommes finalement en mesure d'énoncer le résultat dont la démonstration est l'objet de la présente note.

Théorème 1.3. Soit $m \geq 3$. Supposons que (p,m) = 1 et que $A[m](K) \simeq (\mathbb{Z}/m\mathbb{Z})^{2g}$. Alors $\Phi_{\iota_K}(\mathrm{Sel}_V(K,\iota_K)) \subseteq \mathrm{Im}(\rho)$.

Au vu du Théorème 1.3 et de l'injectivité de ρ , on a donc

Corollaire 1.4. Soit $m \geq 3$. On suppose que (p,m) = 1 et que $A[m](K) \simeq (\mathbb{Z}/m\mathbb{Z})^{2g}$. Il existe un homomorphisme canonique

$$\phi_{\iota_K} : \operatorname{Sel}(K, \iota_K) \hookrightarrow \operatorname{Hom}_V(F_V^*(\omega_\Gamma), \Omega_{V^{[1]}/k_0}(\log E))$$

qui est injectif.

On peut en déduire le

Corollaire 1.5 (du Corollaire 1.4). Supposons que $\dim(V) = 1$. Il existe alors un homomorphisme canonique

$$\phi_{\iota_K} : \operatorname{Sel}(K, \iota_K) \hookrightarrow \operatorname{Hom}_V(F_V^*(\omega_\Gamma), \Omega_{V^{[1]}/k_0}(E))$$

qui est injectif.

lci $\Omega_{V^{[1]}/k_0}(E) := \Omega_{V^{[1]}/k_0} \otimes \mathcal{O}(E)$, où $\mathcal{O}(E)$ est le fibré en droites associé à E. La démonstration du fait que le Corollaire 1.4 implique le Corollaire 1.5 est une variante de la fin de la démonstration du Théorème 1.3 (voir après le Lemme 2.11) et nous la laissons en exercice au lecteur.

Remarque 1.6. Il est probable que l'hypothèse $A[m](K) \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$ est inutile. Cette hypothèse est ici forcée par la nature de la démonstration, qui se fonde sur l'existence d'espaces de modules pour les variétés abéliennes munies de certaines structures de niveau. Elle ne joue pas un rôle important dans les applications.

On se demandera à raison s'il est toujours possible d'associer à une variété abélienne A/K des modèles V et \mathcal{B} comme plus haut, tels que V soit une variété *projective* sur k_0 . Nous répondons à cette question dans la remarque 2.6 plus bas.

La démonstration du Théorème 1.3 se fait en deux étapes.

On démontre d'abord (cf. sous-section 2.2) le cas particulier correspondant au morphisme de Frobenius relatif et au sous-groupe du groupe de Selmer donné par les torseurs provenant de points K-rationnels sur B. Dans ce cas ci, et avec la restriction supplémentaire que $\dim(V)=1$, un énoncé du même type se trouve déjà dans [14], dont on reprendra la méthode. Pour se ramener à (la généralisation de) l'énoncé démontré dans [14], on doit démontrer la compatibilité entre deux flèches définies de manière différentes. C'est ce qui est fait dans le Lemme 2.3 et le Corollaire 2.4.

La deuxième étape (cf. sous-section 2.3) du théorème consiste à se ramener au cas particulier démontré dans la première étape. Nous menons à bien cette réduction en remarquant que le morphisme Φ_{ι_K} est compatible de manière naturelle avec la composition d'isogénies de hauteur un et en remarquant que si un torseur se trouve dans le groupe de Selmer alors il est donné par un point rationnel si on accepte de passer à une extension finie séparable d'un certain type de K. Ceci est une conséquence du théorème d'approximation de Greenberg.

2 Démonstration du Théorème 1.3

2.1 Démonstration de la Proposition 1.1

Il nous faut montrer que Φ_{Γ_K} est un homomorphisme de groupes et que cet homomorphisme est injectif.

Nous commençons pas démontrer la première assertion, à savoir que Φ_{Γ_K} un homomorphisme de groupes. Soit

$$\lambda_P: P \to \operatorname{Spec} K$$

et

$$\lambda_{P'}: P' \to \operatorname{Spec} K$$

deux torseurs sous Γ_K . On considère $T:=P\times_{\operatorname{Spec} K}P'$ et on écrit $\lambda_T:T\to\operatorname{Spec} K$ pour le morphisme structural. Le schéma T est un torseur sous $\Gamma_K\times_K\Gamma_K$. On sait ([10, III.3.5.7]) qu'il existe des uniques morphismes $\sigma_P:\operatorname{Spec} K\to P$ et $\sigma_{P'}:\operatorname{Spec} K\to P'$ tels que

$$\lambda_P \circ \sigma_P = \lambda_{P'} \circ \sigma_{P'} = F_K.$$

Comme $\Gamma_K \times_K \Gamma_K$ est aussi un schéma en groupes infinitésimal, on sait aussi qu'il existe une unique flèche $\sigma_T : \operatorname{Spec} K \to T$ telle que $\lambda_T \circ \sigma_T = F_K$ et ainsi on doit avoir

$$\sigma_T = \sigma_P \times_K \sigma_{P'}$$
.

La somme $\lambda_Q:Q\to\operatorname{Spec} K$ de P et P' dans $H^1(K,\Gamma_K)$ est par définition le quotient de T par l'action de Γ_K sur T donnée en coordonnées par la formule

$$\gamma((p, p')) := (\gamma(p), \gamma^{-1}(p'))$$

(pour la représentabilité du quotient, cf. par ex. [13]). Soit $q:T\to Q$ le morphisme quotient. On sait à nouveau qu'il existe une unique flèche $\sigma_Q:\operatorname{Spec} K\to Q$ telle que $\lambda_Q\circ\sigma_Q=F_K$ et on voit donc que $q\circ\sigma_T=\sigma_Q$. On a ainsi un diagramme commutatif

La première ligne du diagramme (3) donne une application d'algèbres de Lie

$$F_K^*(\operatorname{Lie}(\Gamma_K)) \oplus F_K^*(\operatorname{Lie}(\Gamma_K)) \stackrel{(x,x')\mapsto x+x'}{\to} F_K^*(\operatorname{Lie}(\Gamma_K))$$

dont le dual est l'application

$$F_K^*(\omega_{\Gamma_K}) \stackrel{x \mapsto (x, x')}{\to} F_K^*(\omega_{\Gamma_K}) \oplus F_K^*(\omega_{\Gamma_K}).$$

On en déduit la première assertion.

Pour la deuxième assertion, il nous faut montrer que si

$$\lambda_P: P \to \operatorname{Spec} K$$

est un Γ_K -torseur et que $\Phi_{\Gamma_K}(P)=0$ alors P est un Γ_K -torseur trivial. Soit s le point fermé de P qui est l'image de σ_P , vu comme sous-schéma fermé réduit. Notons $\iota:s\to P$ le morphisme d'immersion et $\sigma_s:\operatorname{Spec} K\to s$ le morphisme tel que $\iota\circ\sigma_s=\sigma_P$.

Le morphisme σ_s et le morphisme structural de s donnent des extensions de corps

$$K \mid \kappa(s) \mid K^p = K.$$

Puisque le Γ_K -torseur P est topologiquement réduit au point s, il est trivial ssi l'extension $\kappa(s)|K^p$ est triviale, autrement dit si $\kappa(s)=K^p$. Rappelons maintenant que $\Phi_{\Gamma_K}(P)$ est provient de l'application naturelle $\sigma_P^*(\Omega_{P/K}) \to \Omega_{F_K}$. Cette application se factorise de la manière suivante :

$$\sigma_P^*(\Omega_{P/K}) = \sigma_s^*(\iota^*(\Omega_{P/K})) \to \sigma_s^*(\Omega_{s/K}) \to \Omega_{F_K}$$

où la première flèche est l'image réciproque par σ_s de la flèche surjective

$$\iota^*(\Omega_{P/K})) \to \Omega_{s/K}$$

induite par ι . On voit donc que l'application $\Phi_{\Gamma_K}(P)$ est nulle ssi l'application

$$\sigma_s^*(\Omega_{s/K}) \to \Omega_{F_K}$$

est nulle. Remarquons maintenant qu'on a une suite exacte canonique

$$\sigma_s^*(\Omega_{s/K}) \to \Omega_{F_K} \to \Omega_{\sigma_s} \to 0$$

On voit ainsi que $\Phi_{\Gamma_K}(P)$ est nulle ssi $\mathrm{rk}(\Omega_{F_K})=\mathrm{rk}(\Omega_{\sigma_s}).$ Selon [9, Th. 26.5, p. 202] on a

$$p^{\operatorname{rk}(\Omega_{\sigma_s})} = [K : \kappa(s)]$$

et aussi

$$p^{\operatorname{rk}(\Omega_{F_K})} = [K : K^p]$$

ce qui implique pour finir que $\Phi_{\Gamma_K}(P)$ est nulle ssi $\kappa(s)=K^p$, ce qu'on voulait démontrer.

Complément 2.1. Supposons donné un diagramme commutatif

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\iota} & \mathcal{B} \\
\downarrow^{a} & & \downarrow^{b} \\
\mathcal{A}_{1} & \xrightarrow{\iota_{1}} & \mathcal{B}_{1}
\end{array}$$

où \mathcal{A}_1 et \mathcal{B}_1 sont des schémas semiabéliens sur V, ι_1 est une isogénie de hauteur un et a et b sont des morphismes de schémas en groupes. Alors on a $a(\ker\iota)\subseteq\ker\iota_1$ et pour tout $w\in F_K^*(\omega_{\ker\iota_{1,K}})$ et $P\in H^1(K,\ker\iota_K)$, on a

$$(\Phi_{\iota_{1K}}(a_{*}(P)))(w) = (\Phi_{\iota_{K}}(P))(a^{*}(w)).$$

lci

$$a_*: H^1(K, \ker \iota) \to H^1(K, \iota_{1,K})$$

est l'application induite par a et

$$a^*: F_K^*(\omega_{\ker \iota_1 K}) \to F_K^*(\omega_{\ker \iota_K})$$

est l'application "image réciproque des formes différentielles par a".

Preuve: Soit $\lambda_P: P \to \operatorname{Spec} K$ un torseur sous $\ker \iota_K$. Comme plus haut, on sait ([10, III.3.5.7]) qu'il existe un unique morphisme $\sigma_P: \operatorname{Spec} K \to P$ tel que $\lambda_P \circ \sigma_P = F_K$. Notons $\Gamma_1:= \ker \iota_1$. Soit Q le quotient de $P \times_K \Gamma_{1,K}$ pour l'action de $\ker \iota_K = \Gamma_K$ donnée en coordonnées par la formule

$$(p,z) \mapsto (\gamma^{-1}(p), a(\gamma) + z) \tag{4}$$

On notera

$$q: P \times_K \Gamma_{1:K} \to Q$$

l'application quotient (qui est finie et plate). L'action de $\Gamma_{1,K}$ par translation sur le deuxième facteur est compatible avec l'action décrite dans (4) et Q hérite ainsi d'une action de $\Gamma_{1,K}$ qui en fait un torseur sous $\Gamma_{1,K}$. Par définition, ce torseur représente a(P). Soit $\lambda_Q:Q\to\operatorname{Spec} K$ le morphisme structural. On sait qu'il existe un unique morphisme $\sigma_Q:\operatorname{Spec} K\to P$ tel que $\lambda_Q\circ\sigma_Q=F_K$ et on a encore une fois un diagramme commutatif

qui donne un diagramme commutatif

$$\sigma_{Q}^{*}(\Omega_{Q/K}) \xrightarrow{} (\sigma_{P} \times 0)^{*}(\Omega_{P \times_{K} \Gamma_{1,K}/K})$$

$$\downarrow \sim \qquad \qquad \downarrow \sim \qquad \qquad \downarrow \sim$$

$$F_{K}^{*}(\omega_{\Gamma_{1,K}}) \xrightarrow{a^{*} \oplus 0} F_{K}^{*}(\omega_{\Gamma_{K}}) \oplus F_{K}^{*}(\omega_{\Gamma_{1,K}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

qui montre que l'application $F_K^*(\omega_{\Gamma_{1,K}}) \to \Omega_{F_K}$ (qui n'est autre que $\Phi_{\iota_{1,K}}(P)$) est donnée par $\Phi_{\iota_K}(P) \circ a^*$, comme espéré. \square

2.2 Le cas du morphisme de Frobenius relatif

On suppose maintenant, et ce jusqu'à jusqu'à nouvel avis, que

$$\iota = F_{A/V} : \mathcal{A} \to \mathcal{A}^{(p)} = \mathcal{B}$$

est le morphisme de Frobenius relatif.

Voir par ex. [8, 3.2.4, p. 94] pour la définition du morphisme de Frobenius relatif. Le schéma $\mathcal{A}^{(p)}$ est par définition le changement de base de \mathcal{A} par F_V .

Soit $x \in B(K) = A^{(p)}(K)$ et soit P le torseur sous Γ_K associé au K-schéma $\iota_K^*(x)$, où x est vu comme un sous-schéma fermé réduit de B et $\iota_K^*(x)$ est le changement de base de x par ι_K . Notons $u_x : P \hookrightarrow A$ l'immersion fermée naturelle. On a alors par construction une unique flèche $\tau_x : \operatorname{Spec} K \to P = \iota_K^*(x)$ telle que $\pi \circ u_x \circ \tau_x = F_K$. Si on note $K^{[1]}$ le corps K vu comme une k_0 -algèbre via l'application naturelle de k_0 dans K précomposée par F_{k_0} , ceci induit une application

$$\mu_x : \tau_x^*(u_x^*(\Omega_{A/k_0})) \to \Omega_{K^{[1]}/k_0}.$$

Par ailleurs, on a une suite exacte sur A

$$0 \to \pi^*(\Omega_{K/k_0}) \to \Omega_{A/k_0} \to \Omega_{A/K} \to 0$$

et la composition de l'inclusion $\pi^*(\Omega_{K/k_0}) \to \Omega_{A/k_0}$ avec μ_x est nulle car elle est induite par F_K . L'application μ_x induit donc une application

$$\tau_x^*(u_x^*(\Omega_{A/K})) \to \Omega_{K^{[1]}/k_0}$$

et comme on a canoniquement

$$\tau_x^*(u_x^*(\Omega_{A/K}))) \simeq \tau_x^*(\Omega_{\iota_K^*(x)/K}) \simeq F_K^*(\omega_{\Gamma_K})$$
(7)

et

$$\Omega_{K^{[1]}/k_0} \simeq \Omega_{F_K},$$

on obtient une application

$$\psi_x: F_K^*(\omega_{\Gamma_K}) \to \Omega_{F_K}$$

Lemme 2.2. On a $\psi_x = \Phi_{\iota_K}(P)$.

Preuve: On a un diagramme

dont les lignes sont exactes. On peut vérifier que ce diagramme commute en remplaçant A par un voisinage affine de x et en représentant les différentielles sous la forme d(f), où f est une fonction sur le voisinage affine. La commutativité du diagramme découle alors du fait que l'opération "image inverse d'une fonction" est fonctorielle et qu'elle commute avec l'opérateur $d(\cdot)$. Le lemme est une conséquence de la commutativité du diagramme. \square

On note maintenant qu'on a aussi un isomorphisme naturel

$$F_K^*(\omega_A) \simeq \tau_r^*(u_r^*(\Omega_{A/K})) \tag{8}$$

(puisqu'on a un isomorphismes canonique $\Omega_{A/K} \simeq \pi^*(\omega_A)$) qui donne en particulier un isomorphisme naturel

$$\alpha_x: F_K^*(\omega_A) \xrightarrow{\sim} F_K^*(\omega_{\Gamma_K})$$

via les isomorphismes (7).

On notera le point important suivant. Supposons le temps du prochain paragraphe que

$$x \in \mathcal{B}(V) \subseteq B(K)$$
.

Alors on peut remplacer $\operatorname{Spec} K$ par V (resp. A par \mathcal{A} , resp. B par \mathcal{B}) dans les calculs précédents et on voit que α_x s'étend alors en un isomorphisme

$$F_V^*(\omega_A) \xrightarrow{\sim} F_V^*(\omega_\Gamma)$$

et ψ_x en une flèche

$$F_V^*(\omega_\Gamma) \to \Omega_{F_V}$$
.

Lemme 2.3. La flèche α_x ne dépend pas de $x \in A^{(p)}(K)$.

 $\underline{\text{Preuve}}: \text{On va d\'emontrer cet \'enonc\'e par un argument de d\'eformation utilisant la propret\'e de } A. \text{Soit } F = F_{A \times_K A^{(p)}/A^{(p)}} \text{ et soit } \Delta: A^{(p)} \to A^{(p)} \times_K A^{(p)} \text{ le morphisme diagonal}.$

On a un diagramme commutatif

où les rectangles orthogonaux à la page sont cartésiens et où au_{Δ} est défini de telle manière que

$$F \circ \tau_{\Delta} = \Delta \circ F_{A^{(p)}}.$$

On a aussi un diagramme commutatif

où tous les carrés sont cartésiens. La flèche $A \to A \times_K A^{(p)}$ du diagramme (9) est une section de la flèche $A \times_K A^{(p)} \to A$ du diagramme (10). De même la flèche $A^{(p)} \to A^{(p)} \times_K A^{(p)}$ du diagramme (9) est une section de la flèche $A^{(p)} \times_K A^{(p)} \to A^{(p)}$ du diagramme (10) et la flèche x est une section de la flèche $A^{(p)} \to \operatorname{Spec} K$.

Soit

$$u_{\Delta}: F^*(\Delta_*(A^{(p)})) \hookrightarrow A \times_K A^{(p)}$$

l'immersion canonique dans $A \times_K A^{(p)}$ du changement de base de la diagonale $\Delta_*(A^{(p)})$ par F.

On a des isomorphismes canoniques

$$\tau_{\Delta}^*(u_{\Delta}^*(\Omega_{A\times_K A^{(p)}/A^{(p)}})) \simeq \tau_{\Delta}^*(\Omega_F) \simeq F_{A^{(p)}}^*(\omega_{\ker F})$$

et

$$F_{A^{(p)}}^*(\omega_{A\times_K A^{(p)}/A^{(p)}}) \simeq \tau_\Delta^*(u_\Delta^*(\Omega_{A\times_K A^{(p)}/A^{(p)}}))$$

analogues aux isomorphismes (7) et (8). On a donc un isomorphisme naturel

$$\alpha: F_{A(p)}^*(\omega_{A\times_K A^{(p)}/A^{(p)}}) \simeq F_{A(p)}^*(\omega_{\ker F})$$

analogue à l'isomorphisme α_x .

L'existence des diagrammes (9) et (10) et de leurs propriétés implique maintenant qu'on a un diagramme commutatif

$$F_{K}^{*}(\omega_{A}) \longrightarrow H^{0}(A^{(p)}, F_{A^{(p)}}^{*}(\omega_{A \times_{K} A^{(p)}/A^{(p)}})) \longrightarrow x^{*}(F_{A^{(p)}}^{*}(\omega_{A \times_{K} A^{(p)}/A^{(p)}})) \longrightarrow F_{K}^{*}(\omega_{A})$$

$$\downarrow^{H^{0}(\alpha)} \qquad \qquad \downarrow^{x^{*}(\alpha)} \qquad \qquad \downarrow^{\alpha_{x}}$$

$$F_{K}^{*}(\omega_{\Gamma_{K}}) \longrightarrow H^{0}(A^{(p)}, F_{A^{(p)}}^{*}(\omega_{\ker F})) \longrightarrow x^{*}(F_{A^{(p)}}^{*}(\omega_{\ker F})) \longrightarrow F_{K}^{*}(\omega_{\Gamma_{K}})$$

$$(11)$$

où la composition des flèches dans la première ligne (resp. la deuxième ligne) est l'identité. Par ailleurs, toutes les flèches horizontales dans le diagramme (11) sont des isomorphismes car A est propre, lisse et géométriquement connexe sur $\operatorname{Spec} K$. Le fait que α_x ne dépend pas de x découle maintenant du fait que $H^0(\alpha)$ ne dépend pas de x. \square

Corollaire 2.4. La flèche α_x s'étend en un isomorphisme $F_V^*(\omega_A) \to F_V^*(\omega_\Gamma)$.

<u>Preuve</u>: Puisque la flèche α_x ne dépend pas de x, nous pouvons sans restriction de généralité supposer que x est la section nulle. Dans ce cas là, la flèche α_x s'étend en un isomorphisme $F_V^*(\omega_{\mathcal{A}}) \to F_V^*(\omega_{\Gamma})$ par la remarque précédant le Lemme 2.3. \square

Théorème 2.5. La flèche

$$\Phi_{\iota_K}(P): F_K^*(\omega_{\ker F_{A/K}}) \to \Omega_{K^{[1]}/k_0}$$

s'étend en une flèche

$$\phi_{\iota_K}(P): F_V^*(\omega_{\ker F_{\mathcal{A}/C}}) \to \Omega_{V^{[1]}/k_0}(\log E).$$

Dans la preuve que l'on va lire, à la suite de L. Moret-Bailly on appellera "gros ouvert" un ouvert dont le complément est de codimension deux. On remplacera plusieurs fois de suite V par l'un de ses gros ouverts pendant la démonstration. Ceci est licite car si $u:V_{\circ}\hookrightarrow V$ est un gros ouvert de V et F est un fibré cohérent localement libre sur V alors on a $F\simeq u_*(u^*(F))$ puisque V est normal. En particulier, si F' est un autre fibré cohérent localement libre sur V alors toute flèche $u^*(F)\to u^*(F')$ s'étend à une flèche $F\to F'$ de manière unique.

<u>Preuve</u>: Nous rappelons d'abord quelques résultats démontrés dans [4]. On rappelle que m est par hypothèse un entier > 2.

- (1) il existe un espace de modules $A_{g,m}$ pour les variétés abéliennes sur k_0 munies d'une structure de niveau m;
- (2) il existe un schéma $A_{g,m}^*$ propre et lisse sur k_0 et une immersion ouverte $A_{g,m} \hookrightarrow A_{g,m}^*$, telle que le complément $D := A_{g,m}^* \backslash A_{g,m}$ (vu comme sous-schéma fermé réduit) est un diviseur à croisements normaux dans $A_{g,m}^*$;
- (3) il existe un schéma semiabélien G sur $A_{g,m}^*$, qui étend le schéma abélien $f:Y\to A_{g,m}$ provenant de la propriété universelle de $A_{g,m}$;
- (4) il existe un schéma régulier \bar{Y} et un morphisme propre $\bar{f}:\bar{Y}\to A_{g,m}^*$ qui étend f et le complément $F:=\bar{Y}\backslash Y$ (vu comme sous-schéma fermé reduit) est un diviseur à croisements normaux dans \bar{Y} ; de plus
- (5) il y a sur \bar{Y} une suite exacte de faisceaux localement libres

$$0 \to \bar{f}^*(\Omega^1_{A_{a,m}/k_0}(\log D)) \to \Omega^1_{Y/k_0}(\log F) \to \Omega^1_{Y/A_{a,m}}(\log F/D) \to 0,$$

qui étend la suite habituelle de faisceaux localement libres

$$0 \to f^*(\Omega^1_{A_{q,m}/k_0}) \to \Omega^1_{Y/k_0} \to \Omega^1_{Y/A_{q,m}} \to 0$$

sur $A_{g,m}$. Enfin il y a un isomorphisme

$$\Omega^1_{Y/A_{g,m}}(\log F/D) \simeq \bar{f}^*(\omega_G).$$

lci $\omega_G := \operatorname{Lie}(G)^{\vee}$ est le fibré tangent (relativement à $A_{g,m}^*$) de G restreint à $A_{g,m}^*$ via la section unité.

Voir [4, chap. VI, th. 1.1] pour la démonstration.

La donnée de A/K et de sa structure de niveau induit un morphisme $\phi: K \to A_{g,m}$ tel que $\phi^*Y \simeq A$, où l'isomorphisme préserve les structures de niveau. Appelons $\lambda: A \to Y$ le k_0 -morphisme correspondant. Le critère valuatif de propreté implique que le morphisme ϕ s'étend en un morphisme $\bar{\phi}: V_o \to A_{g,m}^*$, où V_o est un gros ouvert de V. On peut remplacer V par V_o (voir les remarques précédents la démonstration) et donc supposer que ϕ s'étend en un morphisme

 $\bar{\phi}: V \to A_{g,m}^*$. Par l'unicité des modèles semiabéliens (voir [12, IX, Cor. 1.4, p. 130]), on a un isomorphisme naturel $\bar{\phi}^*(G) \simeq \mathcal{A}$ (où $\bar{\phi}^*(G)$ est le changement de base de G par $\bar{\phi}$) et on a donc une égalité ensembliste $\bar{\phi}^{-1}(D) = E$ et un isomorphisme canonique $\bar{\phi}^*(\omega_G) \simeq \omega_{\mathcal{A}}$.

De façon analogue, soit $\bar{T}_x: V_\circ \to \bar{Y}$ l'extension du morphisme $\lambda \circ \tau_x$ à un gros ouvert V_\circ de V obtenue via le critère valuatif de propreté. À nouveau on peut remplacer V par V_\circ et ainsi supposer que \bar{T}_x est défini sur tout V. Par construction, on obtient maintenant une flèche

$$\bar{T}_x^*(\Omega^1_{\bar{Y}/k_0}(\log F)) \to \Omega^1_{V^{[1]}/k}(\log E)$$

et puisque la flèche induite

$$\bar{T}_x^*(f^*(\Omega^1_{A_{q,m}/k_0}(\log D))) = F_V^* \circ \bar{\phi}^*(\Omega^1_{A_{q,m}/k_0}(\log D)) \to \Omega^1_{V^{[1]}/k_0}(\log E)$$

s'annule (puisqu'elle s'annule génériquement), on obtient une flèche

$$\bar{T}_x^*(\Omega^1_{\bar{Y}/A_{a,m}^*}(\log F/D)) = F_V^* \circ \bar{\phi}^*(\omega_G) = F_V^{n,*}(\omega_A) \to \Omega^1_{V^{[1]}/k_0}(\log E),$$

qui, en vertu du Lemme 2.2 et du Corollaire 2.4 est bien l'extension cherchée.

Le Théorème 2.5 montre déjà que le Théorème 1.3 est vérifié pour $P = \iota_K^*(x)$.

Remarque 2.6. Soit L_0 le corps de fonctions d'une variété quasi-projective sur k_0 . Soit C/L_0 une variété abélienne. Alors il existe

- une extension de corps $L|L_0$ qui est finie et séparable;
- une variété projective U sur k_0 dont le corps de fonctions est L;
- un schéma semiabélien \mathcal{C} sur U tel que $\mathcal{C}_L \simeq C_L$;
- un ouvert U_{ab} tel que $U \setminus U_{ab}$ est un diviseur à croisements normaux et tel que $u \in U_{ab}$ ssi C_u est une variété abélienne.

Autrement dit, si on se donne une variété abélienne C/L_0 comme plus haut, il est possible après une extension finie et séparable L de L_0 de trouver un modèle de L qui est projectif et satisfait les hypothèses décrites dans le premier paragraphe de l'introduction.

Pour démontrer cette assertion, nous allons utiliser les notations de la démonstration du Théorème 2.5, en particulier en ce qui concerne les espaces de modules de variétés abéliennes.

Quitte à remplacer L_0 par une extension finie et séparable, on peut supposer qu'il existe $m \geq 3$ tel que (p,m)=1 et tel que $C[m](L_0) \simeq (\mathbb{Z}/m\mathbb{Z})^{2\dim(C)}$. Soit U_0 une variété quasi-projective sur k_0 telle que $\kappa(U_0)=L_0$. Quitte à restreindre la taille de U_0 , on peut supposer qu'il existe un k_0 -morphisme $h:U_0\to A^*_{\dim(C),m}$ tel que $(h^*(Y))_{L_0}=C$. On choisit maintenant une immersion ouverte $U_0\hookrightarrow \bar{U}_0$, où \bar{U}_0 est une variété projective sur

 k_0 . Considérons le graphe $\Gamma \subseteq U_0 \times_{k_0} A^*_{\dim(C),m}$ de h. La première projection $\Gamma \to U_0$ est un isomorphisme; il existe donc un unique point $\eta \in \Gamma$ s'envoyant sur le point générique de U_0 par la première projection. On définit maintenant U_1 comme la clôture de Zariski de η dans $\bar{U}_0 \times_{k_0} A^*_{\dim(C),m}$. La variété U_1 est par construction projective sur k_0 et la deuxième projection $U \to A^*_{\dim(C),m}$ la munit d'un schéma semiabélien \mathcal{C}_1 . Par ailleurs, elle est birationnelle à U_0 via la première projection $U_1 \to \bar{U}_0$. Écrivons D_1 pour l'image inverse de D par la deuxième projection $U_1 \to A^*_{\dim(C),m}$. On remplace maintenant U_1 par une altération $\alpha: U \to U_1$ génériquement étale telle que $\alpha^{-1}(D_1)$ est un diviseur à croisements normaux. Une pareille altération existe par le fameux théorème [3, Th. 4.1] de A.-J. de Jong. On rappelle qu'une altération est un k_0 -morphisme propre et dominant de variétés sur k_0 . On définit L comme le corps de fonctions de U. La variété U a toutes les propriété demandées.

2.3 Fin de la démonstration

On relaxe maintenant la condition que $\iota = F_{\mathcal{A}/V}$ et on suppose à nouveau seulement que ι est de hauteur un.

La stratégie de la preuve est de se ramener au cas où ι est le morphisme de Frobenius relatif et où le torseur est donné par un point rationnel. Nous aurons besoins de quelques résultats préliminaires.

Lemme 2.7. Pour que $P \in H^1(K, \Gamma_K)$ soit dans $\mathrm{Sel}_V(K, \iota)$ il faut et il suffit que pour tout point $v \in V$ de codimension un, il existe

- un schéma intègre U et un morphisme étale $U \to V$ dont l'image contient v;
- un point $u \in U$ tel que l'extension $\kappa(u)|\kappa(v)$ est de degré un ;
- un élément $x \in A(L)$, où L est le corps de fonctions de U, tel que $\delta_{\iota_L}(x) = P_L$ dans $H^1(L, \Gamma_L)$.

Preuve: Au vu de la suite exacte de Kummer (1), on voit que $P \in \operatorname{Sel}(K, \iota)$ ssi $t_v(P_{K_v}) = 0$ pour tout point de codimension un de V, en d'autres termes ssi pour tout point de codimension un v de V le torseur T (à isomorphisme prêt) sous A_K correspondant à t(P) a un point K_v -rationnel. Soit v un point de codimension un de V. Par le théorème d'approximation de Greenberg, le torseur T a un point K_v -rationnel ssi T a un point K_v -rationnel, où K_v , est la henselisation de K en V. Le lemme découle maintenant de la définition de la henselisation. \square

Soit L|K une extension finie et séparable de corps. En préparation du prochain lemme, on remarque que le diagramme

$$\begin{array}{ccc} \operatorname{Spec} L & \xrightarrow{F_L} \operatorname{Spec} L \\ & \downarrow & & \downarrow \\ \operatorname{Spec} K & \xrightarrow{F_K} \operatorname{Spec} K \end{array}$$

est cartésien. Pour vérifier cet énoncé, on note d'abord que le produit fibré

$$\operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} K$$

est topologiquement réduit à un point car il est fini et purement inséparable sur $\operatorname{Spec} L$ (car la propriété d'être fini et purement inséparable commute à tout changement de base). Par ailleurs, il est aussi lisse, puisqu'il est aussi le changement de base du morphisme lisse $\operatorname{Spec} L \to \operatorname{Spec} K$ à $\operatorname{Spec} K$. On conclut que $\operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} K$ est un corps et que le morphisme $\operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} K \to \operatorname{Spec} L$ est fini, purement inséparable et de degré $\operatorname{deg}(F_K)$. Par ailleurs, on a une flèche naturelle $\operatorname{Spec} L \to \operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} K$ et comme les morphismes F_L et $\operatorname{Spec} L \times_{\operatorname{Spec} K} \operatorname{Spec} K \to \operatorname{Spec} L$ sont tous deux de même degré, on conclut que cette flèche est un isomorphisme.

Lemme 2.8. Soit L|K une extension finie et séparable de corps. Soit P un torseur sous Γ_K et soit P_L le torseur sous Γ_L obtenu par changement de base. Soit

$$\beta_{L|K}: \operatorname{Hom}(F_K^*(\omega_{\Gamma_K}), \Omega_{F_K}) \to \operatorname{Hom}(F_L^*(\omega_{\Gamma_L}), \Omega_{F_L})$$

l'application obtenue en composant l'application de changement de base

$$\operatorname{Hom}(F_K^*(\omega_{\Gamma_K}), \Omega_{F_K}) \to \operatorname{Hom}((F_K^*(\omega_{\Gamma_K}))_L, (\Omega_{F_K})_L)$$

avec l'isomorphisme naturel $F_L^*(\omega_{\Gamma_L}) \simeq (F_K^*(\omega_{\Gamma_K}))_L$ sur le premier facteur et l'isomorphisme naturel $(\Omega_{F_K})_L \to \Omega_{F_L}$ sur le deuxième facteur. Alors

$$\Phi_{\iota_L}(P_L) = \beta_{L|K}(\Phi_{\iota_K}(P)).$$

<u>Preuve</u> : La vérification est élémentaire et nous l'omettons.

Soit $\beta: \mathcal{B} \to \mathcal{B}_1$ une isogénie de hauteur un telle que $\beta \circ \iota$ est aussi de hauteur un. On écrira $B_1 := \mathcal{B}_{1,K}$. On a un diagramme commutatif

L'application $H^1(K, \ker \iota_K) \to H^1(K, \ker \beta_K \circ \iota_K)$ est injective car son noyau est $H^0(K, \ker \beta_K)$, qui est nul puisque $\ker \beta_K$ est infinitésimal. On a un diagramme tout semblable avec K_v en place de K, pour toute valuation discrète v sur K. En examinant ces diagrammes et en tenant compte de la précédente remarque, on voit qu'on a une suite exacte

$$0 \to \operatorname{Sel}(K, \iota_K) \to \operatorname{Sel}(K, \beta_K \circ \iota_K) \to \operatorname{Sel}(K, \beta_K)$$

Par ailleurs, les morphismes naturels de différentielles donnent lieu à un complexe

$$0 \to \omega_{\ker \beta} \to \omega_{\ker \beta \circ \iota} \to \omega_{\ker \iota} \to 0$$

qui est exact en vertu de la classification des schémas en groupes de hauteur un par leurs algèbres de p-coLie (cf. [5, Exposé VIIA, rem. 7.5]). Ceci suggère le

Lemme 2.9. On a un diagramme commutatif

$$0 \longrightarrow \operatorname{Sel}(K, \iota_{K}) \longrightarrow \operatorname{Sel}(K, \beta_{K} \circ \iota_{K}) \longrightarrow \operatorname{Sel}(K, \beta_{K}) \longrightarrow \operatorname{Sel}(K, \beta_{K}) \longrightarrow \operatorname{Hom}(F_{K}^{*}(\omega_{\ker \iota_{K}}), \Omega_{F_{K}}) \longrightarrow \operatorname{Hom}(F_{K}^{*}(\omega_{\ker \beta_{K}}), \Omega_{F_{K}}) \longrightarrow 0$$

dont les colonnes et les lignes sont exactes.

 $\underline{\text{Preuve}}$: On doit seulement démontrer la commutativité du diagramme. Celle-ci est une conséquence immédiate du Complément 2.1. \Box

Soit $x \in B(K)$ et soit comme avant P le torseur sous Γ_K associé au K-schéma $\iota_K^*(x)$, où x est vu comme un sous-schéma fermé réduit de B et $\iota_K^*(x)$ est le changement de base de x par ι_K .

Théorème 2.10. Soit $n \geq 3$. Supposons que $A[n](K) \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$. La flèche

$$\Phi_{\iota_K}(P): F_K^*(\omega_{\Gamma_K}) \to \Omega_{F_K}$$

s'étend en une flèche

$$\phi_{\iota_K}: F_V^*(\omega_\Gamma) \to \Omega_{V^{[1]}/k_0}(\log E)$$

via l'isomorphisme canonique $\Omega_{F_K} \simeq \Omega_{K^{[1]}/k_0}$.

 $\underline{\mathsf{Preuve}}:\mathsf{Soit}\ \beta:\mathcal{B} o \mathcal{B}_1 = \mathcal{A}^{(p)}$ l'unique isogénie de hauteur un telle que

$$\beta_K \circ \iota_K = F_{A/K}$$
.

On remarque maintenant qu'on a une suite exacte

 $0 \to \operatorname{Hom}(F_V^*(\omega_{\ker \iota}), \Omega_{V^{[1]}/k_0}(\log E)) \overset{a_V}{\to} \operatorname{Hom}(F_V^*(\omega_{\ker \beta \circ \iota}), \Omega_{V^{[1]}/k_0}(\log E)) \overset{b_V}{\to} \operatorname{Hom}(F_V^*(\omega_{\ker \beta}), \Omega_{V^{[1]}/k_0}(\log E)) \to 0$ qui se restreint à une suite exacte

$$0 \longrightarrow \operatorname{Hom}(F_K^*(\omega_{\ker \iota_K}), \Omega_{K^{[1]}/k_0}) \xrightarrow{a_K} \operatorname{Hom}(F_K^*(\omega_{\ker \beta_K \circ \iota_K}), \Omega_{K^{[1]}/k_0}) \xrightarrow{b_K} \operatorname{Hom}(F_K^*(\omega_{\ker \beta_K}), \Omega_{K^{[1]}/k_0}) \longrightarrow 0$$

On sait par le Théorème 2.5 que $a_K(\Phi_{\iota_K}(P))$ se trouve dans

$$\operatorname{Hom}(F_V^*(\omega_{\ker\beta\circ\iota}), \Omega_{V^{[1]}/k_0}(\log E)) \subseteq \operatorname{Hom}(F_K^*(\omega_{\ker\beta_K\circ\iota_K}), \Omega_{K^{[1]}/k_0}).$$

Soit $e \in \operatorname{Hom}(F_V^*(\omega_{\ker \beta \circ \iota}), \Omega_{V^{[1]}/k_0}(\log E))$ l'élément correspondant. Puisque

$$b_K(a_K(\Phi_{\iota_K}(P))) = 0$$

on sait que $b_V(e)=0$ et donc e est l'image d'un élément e' dans $\operatorname{Hom}(F_V^*(\omega_{\ker\iota}),\Omega_{V^{[1]}/k_0}(\log\,E))$. L'image de e' dans $\operatorname{Hom}(F_K^*(\omega_{\ker\iota_K}),\Omega_{F_K})$ est par construction $\Phi_{\iota_K}(P)$, ce qui conclut la démonstration. \square

Preuve : (du Théorème 1.3.) Nous aurons besoin du

Lemme 2.11. Soit S un schéma noethérien, intègre et normal et H,J des faisceaux cohérents localement libres sur S. Soit K le corps de fonctions de S. Soit $m:H_K\to J_K$. Supposons que pour tout point $s\in S$ de codimension un, il existe

- un schéma intègre U et un morphisme étale $U \to S$ dont l'image contient s;
- un point $u \in U$ tel que l'extension $\kappa(u)|\kappa(v)$ est de degré un;
- une extension de $m_L: H_L \to J_L$ à un morphisme $H_U \to J_U$, où L est le corps de fonctions de U

Alors il existe une extension de m à un morphisme $H \to J$.

<u>Preuve</u>: (du Lemme 2.11) On remarque tout d'abord qu'un morphisme $H \to J$ est un section globale d'un faisceau, à savoir $\underline{\mathrm{Hom}}_S(H,J)$. Par ailleurs, si une extension m existe, elle est unique parce que S est intègre; il en est de même pour une extension de m à un ouvert de S. En mettant ensemble ces remarques, on voit qu'il suffit de montrer que pour tout point $s \in S$, on a

$$m \in \operatorname{Hom}_{\mathcal{O}_{S,s}}(H_{\mathcal{O}_{S,s}}, J_{\mathcal{O}_{S,s}}) \subseteq \operatorname{Hom}_K(H_K, J_K)$$
 (12)

Comme S est normal, il suffit même de montrer que (12) est vérifié pour tout point $s \in S$ qui est de codimension un. Soit donc $s \in S$ un point de codimension un. Choisissons un base de $H_{\mathcal{O}_{S,s}}$ et une base de $J_{\mathcal{O}_{S,s}}$ (elles existent parce que $\mathcal{O}_{S,s}$ est un anneau de valuation discrète).

Une fois ces bases fixées, le morphisme m est décrit par une matrice M dont les coefficients sont des éléments de K. Soit maintenant $U \to S$ comme dans l'énoncé du lemme. Le morphisme $U \to S$ donne un diagramme commutatif

Ici l'anneau $\widehat{\mathcal{O}}_{S,s}$ (resp. $\widehat{\mathcal{O}}_{U,u}$) est la complétion de l'anneau local $\mathcal{O}_{S,s}$ (resp. $\mathcal{O}_{U,u}$). Les corps \widehat{K} et \widehat{L} sont les anneaux de fractions de $\widehat{\mathcal{O}}_{U,u}$ et $\widehat{\mathcal{O}}_{U,u}$, respectivement. On notera que comme $\widehat{\mathcal{O}}_{S,s}$ est un anneau de valuation discret, les carrés supérieurs et inférieurs du diagramme (13) sont cartésiens. Enfin, comme $U \to S$ est étale et que $\kappa(u)|\kappa(s)$ est un extension de degré un, on voit que la flèche $\widehat{\mathcal{O}}_{S,s} \hookrightarrow \widehat{\mathcal{O}}_{U,u}$ est un isomorphisme.

Soit maintenant un coefficient $c \in K$ de la matrice M. Par hypothèse, l'image de c dans L est dans l'image de $\mathcal{O}_{U,u}$. On déduit que l'image de c dans k est dans l'image de k (comme le carré supérieur est cartésien) on voit ainsi que k est dans l'image de k (comme montrer. k

Fin de la démonstration du Théorème 1.3. On rappelle que la propriété d'un diviseur d'être à croisements normaux est par définition locale pour la topologie étale. Le Théorème 1.3 est donc une conséquence du Théorème 2.10, du Lemme 2.8, du Lemme 2.7 et du Lemme 2.11. □

Références

- [1] M. Artin and J. S. Milne, *Duality in the flat cohomology of curves*, Invent. Math. **35** (1976), 111–129, DOI 10.1007/BF01390135.
- [2] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, *Néron models*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990.
- [3] A. J. de Jong, *Smoothness, semi-stability and alterations*, Inst. Hautes Études Sci. Publ. Math. **83** (1996), 51–93.

- [4] Gerd Faltings and Ching-Li Chai, *Degeneration of abelian varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford.
- [5] Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 7, Société Mathématique de France, Paris, 2011 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original.
- [6] Marc Hindry and Joseph H. Silverman, *Diophantine geometry*, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction.
- [7] Luc Illusie, *Réduction semi-stable et décomposition de complexes de de Rham à coefficients*, Duke Math. J. **60** (1990), no. 1, 139–185.
- [8] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications.
- [9] Hideyuki Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid.
- [10] J. S. Milne, Arithmetic duality theorems, 2nd ed., BookSurge, LLC, Charleston, SC, 2006.
- [11] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980.
- [12] Michel Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, Vol. 119, Springer-Verlag, Berlin-New York, 1970 (French).
- [13] M. Raynaud, *Passage au quotient par une relation d'équivalence plate*, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 78–85 (French).
- [14] Damian Rössler, On the group of purely inseparable points of an abelian variety defined over a function field of positive characteristic, Comment. Math. Helv. **90** (2015), no. 1, 23–32.