Лабораторная работа №4

Математические основы защиты информации и информационной безопасности

Николаев Дмитрий Иванович, НПМмд-02-24

Содержание

1	Цел	ь работ	ы	5	
2	Теоретическое введение				
	2.1	Вычи	сление наибольшего общего делителя	6	
	2.2	2 Алгоритмы вычисления наибольшего общего делителя			
		2.2.1	Алгоритм Евклида	7	
		2.2.2	Бинарный алгоритм Евклида	8	
		2.2.3	Расширенный алгоритм Евклида	8	
			Расширенный бинарный алгоритм Евклида	9	
	2.3	Резюм	ме алгоритмов	10	
3	Выполнение лабораторной работы			11	
4	4 Выводы				
Сп	Список литературы				

Список иллюстраций

3.1	Код алгоритма Евклида на Julia	11
3.2	Код бинарного алгоритма Евклида на Julia	12
3.3	Код расширенного алгоритма Евклида на Julia	13
3.4	Код расширенного бинарного алгоритма Евклида на Julia (1/2)	13
3.5	Код расширенного бинарного алгоритма Евклида Евклида на Julia	
	(2/2)	14
3.6	Начальные данные для сравнения алгоритмов нахождения НОД на	
	Julia	14
3.7	Результат выполнения кода и сравнения алгоритмов нахождения	
	НОЛ на Julia	15

Список таблиц

1 Цель работы

Изучить работу алгоритмов вычисления наибольшего общего делителя: алгоритм Евклида, бинарный алгоритм Евклида, расширенный алгоритм Евклида, расширенный бинарный алгоритм Евклида, а также реализовать их программно.

2 Теоретическое введение

2.1 Вычисление наибольшего общего делителя

Пусть числа a и b целые и $b \neq 0$. Разделить a на b с остатком — значит представить a в виде $a=q\cdot b+r$, где $q,r\in\mathbb{Z}$ и $0\leq r\leq |b|$. Число q называется неполным частным, число r — неполным остатком от деления a на b.

Целое число $d\neq 0$ называется a_1,a_2,\ldots,a_k (обозначается $d=\text{HOД}(a_1,a_2,\ldots,a_k)$), если выполняются следующие условия:

- 1. каждое из чисел a_1, a_2, \dots, a_k делится на d;
- 2. если $d_1 \neq 0$ другой общий делитель чисел a_1, a_2, \dots, a_k , то d делится на d_1 . Например, НОД(12345, 24690) = 12345, НОД(12345, 54321) = 3, НОД(12345, 12541) = 1.

Ненулевые целые числа a и b называются accoциированными (обозначается $a\sim b$), если a делится на b и b делится на a.

Для любых целых чисел a_1, a_2, \dots, a_k существует наибольший общий делитель d, и его можно представить в виде линейной комбинации этих чисел:

$$d = c_1 \cdot a_1 + c_2 \cdot a_2 + \dots + c_k \cdot a_k, \quad c_i \in \mathbb{Z}.$$

Например, НОД чисел 91, 105, 154 равен 7. В качестве линейного представления можно взять:

$$7 = 7 \cdot 91 + (-6) \cdot 105 + 0 \cdot 154,$$
$$7 = 4 \cdot 91 + 1 \cdot 105 - 3 \cdot 154.$$

Целые числа a_1,a_2,\dots,a_k называются взаимно простыми в совокупности, если НОД $(a_1,a_2,\dots,a_k)=1$. Целые числа a и b называются взаимно простыми, если НОД(a,b)=1.

Целые числа a_1,a_2,\dots,a_k называются попарно взаимно простыми, если $\mathrm{HOД}(a_i,a_j)=1$ для всех $1\leq i\neq j\leq k.$

2.2 Алгоритмы вычисления наибольшего общего

делителя

Для вычисления наибольшего общего делителя двух целых чисел применяется способ повторного деления с остатком, называемый алгоритмом Евклида.

2.2.1 Алгоритм Евклида

Вход: целые числа $a, b; 0 < b \le a$.

Выход: d = HOД(a, b).

- 1. Положить $r_0 \leftarrow a$, $r_1 \leftarrow b$, $i \leftarrow 1$.
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i .
- 3. Если $r_{i+1}=0$, то положить $d \leftarrow r_i$. В противном случае положить $i \leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: d.

2.2.2 Бинарный алгоритм Евклида

Бинарный алгоритм Евклида является более быстрым при реализации на компьютере, поскольку использует двоичное представление чисел a и b. Он основан на следующих свойствах наибольшего общего делителя (считаем, что $0 < b \le a$):

- 1. Если оба числа a и b четные, то $\mathrm{HOД}(a,b) = 2 \cdot \mathrm{HOД}(\frac{a}{2},\frac{b}{2}).$
- 2. Если a нечетное, b четное, то $HOД(a,b) = HOД(a,\frac{b}{2})$.
- 3. Если оба числа a и b нечетные и a>b, то $\mathrm{HOД}(a,b)=\mathrm{HOД}(a-b,b).$
- 4. Если a = b, то HOД(a, b) = a.

Вход: целые числа $a, b; 0 < b \le a$.

Выход: d = HOД(a, b).

- 1. Положить $g \leftarrow 1$.
- 2. Пока оба числа a и b четные, выполнять $a \leftarrow \frac{a}{2}, b \leftarrow \frac{b}{2}, g \leftarrow 2g$ до получения хотя бы одного нечетного значения a или b.
- 3. Положить $u \leftarrow a$, $v \leftarrow b$.
- 4. Пока $u \neq 0$, выполнять следующие действия:
 - 1. Пока u четное, полагать $u \leftarrow \frac{u}{2}$.
 - 2. Пока v четное, полагать $v \leftarrow \frac{v}{2}$.
 - 3. При $u \geq v$, положить $u \leftarrow u v$. В противном случае положить $v \leftarrow v u$.
- 5. Положить $d \leftarrow v \cdot g$.
- 6. Результат: d.

2.2.3 Расширенный алгоритм Евклида

Вход: целые числа $a, b; 0 < b \le a$.

Выход: d = HOД(a,b) и такие целые числа x, y, что ax + by = d.

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, x_0 \leftarrow 1, x_1 \leftarrow 0, y_0 \leftarrow 0, y_1 \leftarrow 1, i \leftarrow 1.$
- 2. Разделить с остатком r_{i-1} на r_i , получив q_i и r_{i+1} : $r_{i-1} = q_i r_i + r_{i+1}$.
- 3. Если $r_{i+1}=0$, то положить $d\leftarrow r_i$, $x\leftarrow x_i$, $y\leftarrow y_i$. В противном случае положить $x_{i+1}\leftarrow x_{i-1}-q_ix_i$, $y_{i+1}\leftarrow y_{i-1}-q_iy_i$, $i\leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: d, x, y.

2.2.4 Расширенный бинарный алгоритм Евклида

Вход: целые числа $a, b; 0 < b \le a$.

Выход: d = HOД(a, b).

- 1. Положить $g \leftarrow 1$.
- 2. Пока числа a и b четные, выполнять $a \leftarrow \frac{a}{2}, b \leftarrow \frac{b}{2}, g \leftarrow 2g$ до получения хотя бы одного нечетного значения a или b.
- 3. Положить $u \leftarrow a, v \leftarrow b, A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1.$
- 4. Пока $u \neq 0$, выполнять следующие действия:
 - 1. Пока u четное:
 - 1. Положить $u \leftarrow \frac{u}{2}$.
 - 2. Если A и B четные, то положить $A\leftarrow\frac{A}{2}, B\leftarrow\frac{B}{2}$. В противном случае положить $A\leftarrow\frac{A+b}{2}, B\leftarrow\frac{B-a}{2}$.
 - 2. Пока v четное:
 - 1. Положить $v \leftarrow \frac{v}{2}$.
 - 2. Если C и D четные, то положить $C\leftarrow\frac{C}{2}, D\leftarrow\frac{D}{2}$. В противном случае положить $C\leftarrow\frac{C+b}{2}, D\leftarrow\frac{D-a}{2}$.
 - 3. Если $u \geq v$, положить $u \leftarrow u v$, $A \leftarrow A C$, $B \leftarrow B D$. В противном случае положить $v \leftarrow v u$, $C \leftarrow C A$, $D \leftarrow D B$.
- 5. Положить $d \leftarrow v \cdot g$, $x \leftarrow C$, $y \leftarrow D$.
- 6. Результат: d, x, y.

2.3 Резюме алгоритмов

- 1. **Алгоритм Евклида**: Это классический алгоритм, который повторяет деление с остатком, пока остаток не станет нулевым. Возвращает последний ненулевой остаток как НОД.
- 2. **Бинарный алгоритм Евклида**: Использует четность чисел и побитовые сдвиги для ускорения вычислений. Преимущество этого алгоритма заключается в эффективной работе на компьютерах с двоичной арифметикой.
- 3. Расширенный алгоритм Евклида: Помимо нахождения НОД, этот алгоритм вычисляет коэффициенты линейной комбинации ax+by= НОД(a,b).
- 4. **Расширенный бинарный алгоритм Евклида**: Сочетает подход бинарного алгоритма с расширенным, вычисляя также коэффициенты линейной комбинации, но с использованием более быстрых операций.

3 Выполнение лабораторной работы

Действуя согласно [1], реализуем все описанные алгоритмы на языке Julia.

Программные реализации алгоритма Евклида (Рис.[3.1]), бинарного алгоритма Евклида (Рис.[3.2]), расширенного алгоритма Евклида (Рис.[3.3]) и расширенного бинарного алгоритма Евклида (Рис.[3.4,3.5]) представлены на соответствующих картинках. После чего на начальных данных $a=91,\,b=105$ и с помощью пакета BenchmarkTools сравнены алгоритмы нахождения наибольшего общего делителя (Рис.[3.6]), где результаты представлены на Рис.[3.7].

```
using BenchmarkTools
"""Алгоритм Евклида нахождения НОД(a, b)"""
function GCD_Euclid(a::Int, b::Int)::Int
while b != 0
a, b = b, a % b
end
return a
end
```

Рис. 3.1: Код алгоритма Евклида на Julia

```
"""Бинарный алгоритм Евклида нахождения НОД(а, b)"""
function GCD_Binary_Euclid(a::Int, b::Int)::Int
    if a == 0 return b end
    if b == 0 return a end
    # Считаем количество делений на 2
    shift = 0
    while ((a | b) & 1) == 0
        a >>= 1
        b >>= 1
        shift += 1
    # Проверка первого числа на чётность
   while (a & 1) == 0
        a >>= 1
    end
   while b != 0
        while (b & 1) == 0
           b >>= 1
        if a >= b
           a, b = b, a - b
           a, b = a, b - a
    end
    return a << shift
end
```

Рис. 3.2: Код бинарного алгоритма Евклида на Julia

```
"""Расширенный алгоритм Евклида для нахождения НОД(a,b) и

чисел х и у таких, что выполняется ах + by = HOД(a,b)"""

function GCD_Extended_Euclid(a::Int, b::Int)::Tuple{Int, Int, Int}

if b == 0

return (a, 1, 0)

else

x0, x1, y0, y1 = 1, 0, 0, 1

while b != 0

q = div(a, b)

a, b = b, a % b

x0, x1 = x1, x0 - q*x1

y0, y1 = y1, y0 - q*y1

end

return (a, x0, y0)

end

red

end
```

Рис. 3.3: Код расширенного алгоритма Евклида на Julia

Рис. 3.4: Код расширенного бинарного алгоритма Евклида на Julia (1/2)

```
# Проверка второго числа на чётность
              while (v \& 1) == 0
                  v >>= 1
                   if ((C \mid D) \& 1) == 0
                      C \gg 1
                      D \gg 1
                   else
                       C = (C + b) \gg 1
                       D = (D - a) >> 1
              end
              # Сравнение двух получившихся чисел
                   u, v = u - v, v
                   A, B = A - C, B - D
              else
                   u, v = u, v - u
                   C, D = C - A, D - B
              end
          end
          return (v << shift, C, D)
      end
110
```

Рис. 3.5: Код расширенного бинарного алгоритма Евклида Евклида на Julia (2/2)

```
## Пример

112 а = 91

113 b = 105

114

115 # Алгоритм Евклида

116 println("НОД Евклида: ", GCD_Euclid(a, b))

117 @btime(GCD_Euclid(a, b))

118

119 # Бинарный алгоритм Евклида

120 println("НОД Бинарного Евклида: ", GCD_Binary_Euclid(a, b))

121 @btime(GCD_Binary_Euclid(a, b))

122

123 # Расширенный алгоритм Евклида

124 d, x, y = GCD_Extended_Euclid(a, b)

125 println("Расширенный Евклид: НОД=", d, ", x=", x, ", y=", y)

126 @btime(GCD_Extended_Euclid(a, b))

127

128 # Расширенный бинарный алгоритм Евклида

129 d_bin, x_bin, y_bin = GCD_Extended_Binary_Euclid(a, b)

130 println("Расширенный бинарный Евклид: НОД=", d_bin, ", x=", x_bin, ", y=", y_bin)

131 @btime(GCD_Extended_Binary_Euclid(a, b))
```

Рис. 3.6: Начальные данные для сравнения алгоритмов нахождения НОД на Julia

```
PS C:\Users\User\Documents\work\study\2024-2025\Математичthbase-infosec\labs\lab04\report\report> julia .\gcd.jl HOД ЕВКЛИДА: 7
18.938 ns (0 allocations: 0 bytes)
HOД БИНАРНОГО ЕВКЛИДА: 7
10.911 ns (0 allocations: 0 bytes)
Pасширенный ЕВКЛИД: HOД=7, x=7, y=-6
25.502 ns (0 allocations: 0 bytes)
Pасширенный бинарный ЕВКЛИД: HOД=7, x=52, y=-45
19.238 ns (0 allocations: 0 bytes)
PS C:\Users\User\Documents\work\study\2024-2025\Математичthbase-infosec\labs\lab04\report\report>
```

Рис. 3.7: Результат выполнения кода и сравнения алгоритмов нахождения НОД на Julia

4 Выводы

В ходе выполнения лабораторной работы я изучил работу алгоритмов вычисления наибольшего общего делителя: алгоритма Евклида, бинарного алгоритма Евклида, расширенного бинарного алгоритма Евклида, а также реализовал их программно.

Список литературы

Лабораторная работа № 4. Вычисление наибольшего общего делителя [Электронный ресурс]. Саратовский государственный университет имени Н.Г. Чернышевского, 2024.