Lecture 14 – Combinational circuits 3

- The addition of two binary numbers in parallel implies that all the bits of the augend and addend are available for computation at the same time
- As in any combinational circuit, the signal must propagate through the gates before the correct output sum is available in the output terminals
- The total propagation time is equal to the propagation delay of a typical gate, times the number of gate levels in the circuit

- There are several techniques for reducing the carry propagation time in a parallel adder
- An obvious solution to this problem is to actually make the 2ⁿ truth-table, K-map and get a two level implementation (either SoP or PoS)
- The most widely used technique employs the principle of carry lookahead logic

• With the definition of P and G, we can write:

$$S_i = P_i + C_i$$
 and $C_{i+1} = G_i + P_i C_i$

- G_i is called a *carry generate*, and it produces a carry of 1 when both A_i and B_i are 1, regardless of the input carry C_i
- P_i is called a *carry propagate*, because it determines whether a carry into stage i will propagate into stage i+1

• We now write the Boolean functions for the carry outputs of each stage and substitute the value of each C_i from the previous equations:

$$C_0 = input \ carry$$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

- Each output carry is expressed in sum-of-products form only dependent on P and G, each function can be implemented with one level of AND gates followed by an OR gate
- This circuit can add in less time because C_3 does not have to wait for C_2 and C_1 to propagate; in fact, C_3 is propagated at the same time as C_1 and C_2
- This gain in speed of operation is achieved at the expense of additional complexity (hardware)

Carry lookahead generator

- Each sum output requires two XOR gates
- The output of the first XOR gate generates the P_i variable, and the AND gate generates the G_i variable
- The carries are propagated through the carry lookahead generator and applied as inputs to the second XOR gate
- All output carries are generated after a delay through only two levels of gates
- Thus, outputs S_1 through S_3 have equal propagation delay times

Revisit: Subtraction with Radix complements

- Subtraction using method of borrowing is less efficient when implemented with digital hardware
- Consider subtraction M-N in base r

- Here is the algorithm using Radix complement:
 - 1. Take radix complement of subtrahend N: $r^n N$
 - **2.** Add this to M: $(r^n N) + M = r^n + (M N) = r^n (N M)$
 - 3. If you get a carry in the (n+1)th digit, then the result is positive, discard the carry and you are done
 - 4. If you **do not** get a carry in the $(n+1)^{th}$ digit, then the result is **negative**. Take the radix complement of the number to get the answer, then put a negative sign

Binary subtractor

- The subtraction of binary numbers can be done most conveniently by means of complements
- Remember that the subtraction A B can be done by taking the 2's complement of B and adding it to A
- The 2's complement can be obtained by taking the 1's complement and adding 1 to the least significant pair of bits
- The 1's complement can be implemented with inverters, and a 1 can be added to the sum through the input carry

Binary subtractor

- The circuit for subtracting A B consists of an adder with inverters placed between each data input B and the corresponding input of the full adder
- The input carry C_0 must be equal to 1 when subtraction is performed
- The operation thus performed becomes: A + 1's complement of B + 1.
 - This is equal to A + 2's complement of B
- That gives A B if $A \ge B$ or the 2's complement of B A if A < B

Can we combine the binary adder & subtractor

• Both use the 4-bit full adder. In one case, we use B and in another we use inverted B

Binary adder-subtractor

- Here is some magic: The addition and subtraction operations can be combined into one circuit
- The mode input M controls the operation
- When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor
- When M = 0, the full adders receive the value of B, the input carry is 0, and the circuit performs A + B
- When M = 1, the full adders receive B' and $C_0 = 1$
- Thus, the B inputs are all complemented and a 1 is added through the input carry
- The circuit performs the operation A plus the 2's complement of B

Binary adder-subtractor

- Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a previous stage
- Since each input digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an input carry
- Suppose we apply two BCD digits to a four-bit binary adder
- The adder will form the sum in binary and produce a result that ranges from 0 through 19

	Bin	ary S	um			Decimal				
K	Z ₈	Z ₄	Z ₂	Z ₁	С	S 8	S ₄	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

- When the binary sum is equal to or less than 1001, the corresponding BCD number is identical, and therefore no conversion is needed
- When the binary sum is greater than 1001, we obtain an invalid BCD representation
- The addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required

	Bir	nary S	um			BCD Sum					
K	Z ₈	Z ₄	Z ₂	<i>Z</i> ₁	С	S 8	S ₄	S ₂	S ₁		
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	2	
0	0	0	1	1	0	0	0	1	1	3	
0	0	1	0	0	0	0	1	0	0	4	
0	0	1	0	1	0	0	1	0	1	5	
0	0	1	1	0	0	0	1	1	0	6	
0	0	1	1	1	0	0	1	1	1	7	
0	1	0	0	0	0	1	0	0	0	8	
0	1	0	0	1	0	1	0	0	1	9	
0	1	0	1	0	1	0	0	0	0	10	
0	1	0	1	1	1	0	0	0	1	11	
0	1	1	0	0	1	0	0	1	0	12	
0	1	1	0	1	1	0	0	1	1	13	
0	1	1	1	0	1	0	1	0	0	14	
0	1	1	1	1	1	0	1	0	1	15	
1	0	0	0	0	1	0	1	1	0	16	
1	0	0	0	1	1	0	1	1	1	17	
1	0	0	1	0	1	1	0	0	0	18	
1	0	0	1	1	1	1	0	0	1	19	

BCD adder - algorithm

	Bir	nary S	um			BCD Sum					
K	Z ₈	Z ₄	Z ₂	Z ₁	С	S 8	S ₄	S ₂	S ₁		
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	2	
0	0	0	1	1	0	0	0	1	1	3	
0	0	1	0	0	0	0	1	0	0	4	
0	0	1	0	1	0	0	1	0	1	5	
0	0	1	1	0	0	0	1	1	0	6	
0	0	1	1	1	0	0	1	1	1	7	
0	1	0	0	0	0	1	0	0	0	8	
0	1	0	0	1	0	1	0	0	1	9	
0	1	0	1	0	1	0	0	0	0	10	
0	1	0	1	1	1	0	0	0	1	11	
0	1	1	0	0	1	0	0	1	0	12	
0	1	1	0	1	1	0	0	1	1	13	
0	1	1	1	0	1	0	1	0	0	14	
0	1	1	1	1	1	0	1	0	1	15	
1	0	0	0	0	1	0	1	1	0	16	
1	0	0	0	1	1	0	1	1	1	17	
1	0	0	1	0	1	1	0	0	0	18	
1	0	0	1	1	1	1	0	0	1	19	

- It is obvious that a correction is needed when the binary sum has an output carry K = = 1
- The other six combinations from 1010 through 1111 that need a correction have a 1 in position Z_8
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z_8 , we specify further that either Z_4 or Z_2 must have a 1
- Thus, the condition for a correction and an output carry can be expressed by the Boolean function: $Cor = K + Z_8Z_4 + Z_8Z_2$
- When Cor = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the next stage

	Bir	nary S	um			BCD Sum					
K	Z ₈	Z ₄	Z ₂	Z ₁	С	S ₈	S ₄	S ₂	S ₁		
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	2	
0	0	0	1	1	0	0	0	1	1	3	
0	0	1	0	0	0	0	1	0	0	4	
0	0	1	0	1	0	0	1	0	1	5	
0	0	1	1	0	0	0	1	1	0	6	
0	0	1	1	1	0	0	1	1	1	7	
0	1	0	0	0	0	1	0	0	0	8	
0	1	0	0	1	0	1	0	0	1	9	
0	1	0	1	0	1	0	0	0	0	10	
0	1	0	1	1	1	0	0	0	1	11	
0	1	1	0	0	1	0	0	1	0	12	
0	1	1	0	1	1	0	0	1	1	13	
0	1	1	1	0	1	0	1	0	0	14	
0	1	1	1	1	1	0	1	0	1	15	
1	0	0	0	0	1	0	1	1	0	16	
1	0	0	0	1	1	0	1	1	1	17	
1	0	0	1	0	1	1	0	0	0	18	
1	0	0	1	1	1	1	0	0	1	19	

- The logic circuit that detects the necessary correction can be derived from the entries in the table
- It is obvious that a correction is needed when the binary sum has an output carry K = 1
- The other six combinations from 1010 through 1111 that need a correction have a 1 in position Z_8
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z_8 , we specify further that either Z_4 or Z_2 must have a 1
- Thus, the condition for a correction and an output carry can be expressed by the Boolean function: $Cor = K + Z_8Z_4 + Z_8Z_2$
- When Cor = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the next stage

Binary multiplier

- Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers
- The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit
- Each such multiplication forms a partial product
- Successive partial products are shifted one position to the left
- The final product is obtained from the sum of the partial products
- Consider a 2-bit x 2-bit multiplier.
 Number of inputs/outputs?

Binary multiplier

• The multiplicand bits are B_1 and B_0 , the multiplier bits are A_1 and A_0 , and the product is $C_3C_2C_1C_0$

