Test Cases for frames.py

Author: Sanket Chirame

Date: 9/5/2018

1. Test cases for lation:

- a. Test_cases_file: Take data from file "test-data/test_latlon.json". Check the latitude and longitude for extreme cases of ecef vectors. Also verify that the returned data type is a tuple.
 - i. North pole
 - ii. South pole
 - iii. Intersection of equator and 0 deg longitude
 - iv. Intersection of equator and 180 deg longitude
 - v. Intersection of equator and 90 deg longitude
 - vi. Intersection of equator and and -90 deg longitude
- b. Test_z_symmetry_lat: Set ecef vector as [sin(k), cos(k), 13 .0] Change k from 1 to 6. Latitude should remain same for all cases
- c. Test_independnt_of_radius: Use different value of radius with same direction cosines. Both latitude and longitude should remain unchanged.

2. Test Cases for Ecif2Ecef:

- a. Test_orthogonality_of_matrix: calculate transformation of x,y,z axis and construct matrix using it. Do this for different time values. Check if matrix is orthogonal.
- Test_at_zero_time: Set time such that (time from launch + time between equinox to launch) is zero. This achieves the situation when ecif and ecef are aligned.
 Thus transformed vector is identical to initial.
- c. Test_periodicity: Change time by 2*pi/w_earth. The transformed vector should be same for both t = t0 and t = t+ 2pi/w
- d. Test_cases_from_file_e2e: Randomly chosen vectors are given as input. The transformed vector is explicitly calculated using formula.

3. Test cases for Ecef2Ecif:

- a. Test_cases_from_file_e2e: Randomly chosen vectors are given as input. The transformed vector is explicitly calculated using formula.
- b. Test_inverse: Verify if ecef2ecif(ecif2ecef()) gives back the same vector.

4. TestEcif2Orbit:

- a. Test_e2o_matrix_orthogonality: calculate transformation of x,y,z axis and construct matrix using it. Do this for different position, velocity values. Check if matrix is orthogonal
- b. Test_check_pos_vel_transformatio: Verify if position and velocity values are transformed according to definition.
 - i. $Z_{orb} = unit(r)$
 - ii. Y orb = unit(cross(v, r))
 - iii. $X_{orb} = cross(Y_{orb}, Z_{orb})$