Transceivers Xilinx

Introducción

Este documento tiene como objetivo explicar los conceptos básicos sobre el uso de transceivers de Xilinx.

Puertos básicos

Nombre	Dirección	Tamaño	Función
gtwiz_reset_clk_freerun_in	In	1	Entrada de reloj del sistema, nunca superior a 250MHz
gtwiz_userclk_tx_active_in	In	1	Entrada de activación de Tx. Esta entrada tiene que estar sincronizada. Activa a nivel alto.
gtwiz_userclk_rx_active_in	In		Entrada de activación de Rx. Esta entrada tiene que estar sincronizada. Activa a nivel alto.
gtwiz_reset_all_in	In	1	Reset global del Transceiver
gtwiz_userdata_tx_in	In	32/40 x N.º canal	Salida de datos por el Transceiver
gtwiz_userdata_rx_out	Out	32/40 x N.º canal	Entrada de datos por el transceiver
gtrefclk00_in	In	1	Reloj de referencia, este reloj no tiene mucho valor. Viene de la salida de un IBUFGDS_GTE3 con entrada de los relojes del MGT.
gthrxn_in	In	1	Entradas que vienen del
gthrxp_in	In	1	exterior. No se define el pin en el XDC de este puerto. (es posible que está sea la entrada exterior del transceiver)
gthtxn_out	Out	1	Salidas que vienen del
gthtxp_out	Out	1	exterior. No se define el pin en el XDC de este puerto. (es posible que está sea la salida exterior del transceiver)

rxoutclk_out	Out	1	Reloj de salida de Rx,
_	_		va a un BUFG_GT Reloj de salida de Tx,
txoutclk_out	Out	1	va a un BUFG_GT
rxusrclk_in	In	1	Reloj de Rx. Este reloj proviene de un
rxusrclk2_in	In	1	BUFG_GT del puerto de salida rxoutclk_out. El reloj útil para el trabajo en FPGA es el rxusrclk2_in
txusrclk_in	In	1	Reloj de Tx. Este reloj
txusrclk2_in	In	1	proviene de un BUFG_GT del puerto de salida txoutclk_out. El reloj útil para el trabajo en FPGA es el txusrclk2_in
<señales de="" entrada=""></señales>	In		Señales activas a '1', se pueden meter a un VIO, con el reloj de txusrclk2_in o rxusrclk2_in
<señales de="" salida=""></señales>	Out	<>>	Señales activas a '1', se pueden meter a un ILA o a un VIO, con el reloj de txusrclk2_in o rxusrclk2_in
rx8b10ben_in*	In	1	Señal de habilitación de la codificación 8b/10b para RX, activa a nivel alto
tx8b10ben_in*	In	1	Señal de habilitación de la codificación 8b/10b para RX, activa a nivel alto
rxcommadeten_in**	In	1	Señales de habilitación
rxmcommaalignen_in**	In	1	de la alineación de los datos recibidos. Por
rxpcommaalignen_in**	In	1	norma general siempre a '1'.
rxbyteisaligned_out**	Out	1	Señales de
rxbyterealign_out**	Out	1	comprobación de la alineación de los datos.
rxcommadet_out** ^{,(2)} ***	Out	1	Se pueden dejar en abierto.

txctrl0_in*	In	8 x N.º Transceiver	Señales para alineación. No son necesarias, se ponen a '0'.
txctrl1_in*	In	8 x N.º Transceiver	
txctrl2_in*	In	8 x N.º Transceiver	Señal de transmisión de coma al receptor. Se utiliza el reloj de transmisión para enviarlo. Solo es necesario transmitir en los 4 primeros bits (el resto se obvian), solo tiene que transmitir durante la cabecera un "0001".
rxctrl0_out*	Out	8 x N.º Transceiver	Señales de recepción de
rxctrl1_out*	Out	8 x N.º Transceiver	la coma. No son necesarias, se dejan abiertas (<i>open</i>)
rxctrl2_out*	Out	8 x N.º Transceiver	Señal de recepción de la coma. Esta señal es fundamental para conocer el desfase de los datos. El transmisor emite un "0001", y dependiendo de cómo se recibe se conoce el desalineamiento. Ejemplo: si se recibe un "0100", quiere decir que tienes los datos partidos en dos.
rxctrl3_out*	Out	8 x N.º Transceiver	Señal de recepción de los datos de control. No es necesaria, se puede dejar al aire.

^{*} Estas señales aparecen al activar la codificación 8b/10b del transceiver.

NOTA: no se puede activar una señal de control sin activar previamente el 8b/10b

^{**} Estas señales aparecen al activar la detección de coma del transceiver.

^{***} Esta señal es activa a nivel alto durante dos ciclos de reloj, el primero es el ciclo de reloj anterior a la coma y el segundo es el de la coma, por lo que se puede utilizar para manejar la recepción de datos si fuera necesario.

Relojes

Reloj para Freerun

Con un reloj diferencial se utiliza un IBUFGDS que convierte la señal en una señal de una línea, después, se pasa por un PLL para rebajarla a 100MHz, y por último, se utiliza un BUFG para conseguir la señal CLK_FREERUN.

• Reloj para referencia

Para conseguir el reloj de referencia *gtrefclk00_in* se tiene que coger las señales de reloj diferenciales del transceiver a 125MHz y se pasan por un IBUFGDS_GTE3 (IBUFGDS_GTE4 para los MPSoCs).

Relojes de trabajo

Los relojes de trabajo y fundamentales del transceiver provienen de los puertos de salida del propio transceiver, estos puertos son el *rxoutclk_out* y el *txoutclk_out*. Estos relojes se pasan cada uno por un **BUFG_GT**, dónde se pueden dividir sus frecuencias en caso de ser necesario. Estos relojes son también entradas del propio transceiver por los puertos r*xusrclk_in*, *rxusrclk2_in*, *txusrclk_in* y *txusrclk2_in*. Estos relojes tienen que estar sincronizados entre '1' y '2' (aunque no tengan la misma frecuencia). El reloj útil para la FPGA es el '2'.

Alineamiento

Para el sistema de alineamiento dependen de varios parámetros.

El primero y fundamental para empezar es la señal *rxctrl2_out*, esta señal de 8 bits*(de los que los 4 primeros NO se utilizan)* nos indica cuál es el desalineamiento de los datos de entrada. Hay que tener en cuenta que el transmisor solo emite en el envío de la cabecera el dato "0001". Bien, pues al recibir este dato se comprueba cuál es el desalineamiento.

• Si el dato es "0001"(1) quiere decir que no existe desalineación del dato recibido.

```
..., < dato_ant(31:0) > , < dato_act(31:0) > , < dato_sig(31:0) > , ...
```

• Si el dato es "0010"(2) quiere decir que los tres primeros bytes pertenecen al dato, y el último byte pertenece al dato anterior, siendo este el primer byte del dato anterior.

```
..., < dato_act(23:0), dato_ant(31:24)>, < dato_sig(23:0), dato_act(31:24)>, ...
```

• Si el dato es "0100"(4) quiere decir que el dato recibido es la mitad del dato real, la otra mitad del dato viene con el dato siguiente tal que así:

```
..., < dato_act(15:0), dato_ant(31:16)>, < dato_sig(15:0), dato_act(31:16)>, ...
```

• Si el dato es "1000"(8) quiere decir

```
..., < dato_act(7:0), dato_ant(31:8)>, < dato_sig(7:0), dato_act(31:8)>, ...
```

Es importante tener en cuenta la alineación de los datos recibidos, pero también que los datos se pueden desalinear sobretodo al principio, o al recibir una coma entre medio de la comunicación. Por ello es necesario valorar la opción de añadir un **checksum** al final del envío de cada trama.

También, es necesario tener en cuenta que cuando se recibe el carácter coma, se puede producir un desalineamiento de la cabecera, yéndose parte del dato a dato previo a la recepción del carácter, por lo que se hace necesario plantearse utilizar un dato nulo o <u>dummy</u> para poder realinear bien los datos.

Envío

Para hacer el envío se recomienda el uso de una máquina de estados como la siguiente.

Esta máquina de estados manda en el estado **SEND_DUMMY** el dato *x"FF000055"*, *que es un dato que se va perder en la comunicación*. En el estado **SEND_HEADER** manda el dato *x"FF0000BC"* y también manda el dato *"0001"* por la línea control *(el resto de estados mantienen esta línea a cero)*, que va al puerto, *rxctrl2_out*.

Después, en **SEND_DATA** se mandan los datos que se quiere transmitir, y por último el **SEND_CHECKSUM** para garantizar que la alineación no ha sido alterada durante la transmisión de los datos.

Enables

- **gtwiz_reset_tx_done_out** : señal de salida de reset del transceiver para el envío de datos. Esta señal se pone a nivel alto cuando los demás resets de transmisión están a '0'.
- **gtwiz_reset_rx_done_out** : señal de salida de reset del transceiver para la recepción de datos. Esta señal se pone a nivel alto cuando los demás resets de recepción están a '0'.
- **gtwiz_reset_tx_pll_and_datapath_in** : señal de entrada de reset para tx, al activarlo la señal *gtwiz_reset_tx_done_out* se pone a nivel bajo
- **gtwiz_reset_tx_datapath_in** : señal de entrada de reset para tx, al activarlo la señal *qtwiz_reset_tx_done_out* se pone a nivel bajo
- **gtwiz_reset_all_in** : esta señal de entrada solo afecta a la configuración inicial
- **gtwiz_reset_rx_datapath_in** : esta señal no influye en dejar de recibir datos
- **gtwiz_reset_rx_pll_and_datapath_in** : esta señal no influye en dejar de recibir datos

Arraque

Para el arranque se puede utilizar una máquina de estados como la siguiente, esta espera a que todo este correcto para empezar la comunicación.

Ejemplos de fabricante para relojes(documentación):

