Political Methodology III: Model Based Inference

Justin Grimmer

Associate Professor Department of Political Science Stanford University

May 1st, 2017

Model Based Inference

- 1) Likelihood inference
- 2) Logit/Probit
- 3) Ordered Probit
- 4) Choice Models:
- 5) Count Models
 - Negative Binomial Regression
 - DGP
 - Quantities of Interest
 - Interpetation
 - Clustered Standard Errors
- 6) Survival Models

Event Count Outcomes

- Outcome: number of times an event occurs

$$Y_i \in \{0, 1, 2, 3, \dots, \}$$

- Examples:
 - 1) Number of militarized disputes a country is involved in
 - 2) Number of times a phrase is used
 - 3) Number of messages into a Congressional office
 - 4) Number of votes cast for a particular candidate
- Goal:
 - Model the rate at which events occur
 - Understand how an intervention (e.g. country becoming a democracy)
 affects rate
 - Predict number of future events

- The Poisson model assumes $E(Y_i \mid X_i) = Var(Y_i \mid X_i)$
- \blacksquare But for many count data, $\mathsf{E}(Y_i \mid X_i) < \mathsf{V}(Y_i \mid X_i)$
- Potential sources of overdispersion
 - 1 unobserved heterogeneity
 - 2 clustering
 - 3 contagion or diffusion
 - 4 (classical) measurement error
- Underdispersion could occur, but rare
- One solution to this is to modify the Poisson model by assuming:

$$\mathsf{E}(Y_i \mid X_i) = \lambda_i = \exp(X_i'\beta)$$
 and $\mathsf{Var}(Y_i \mid X_i) = V_i = \sigma^2 \lambda_i$

- This is called the overdispersed Poisson regression model
- When $\sigma^2 > 1$, this corresponds to the negative binomial regression model

- The Poisson model assumes $E(Y_i \mid X_i) = Var(Y_i \mid X_i)$
- But for many count data, $E(Y_i \mid X_i) < V(Y_i \mid X_i)$
- Potential sources of overdispersion:
 - unobserved heterogeneity
 - 2 clustering
 - 3 contagion or diffusion
 - 4 (classical) measurement error
- Underdispersion could occur, but rare
- One solution to this is to modify the Poisson model by assuming:

$$\mathsf{E}(Y_i \mid X_i) = \lambda_i = \exp(X_i'\beta)$$
 and $\mathsf{Var}(Y_i \mid X_i) = V_i = \sigma^2 \lambda_i$

- This is called the overdispersed Poisson regression model
- When $\sigma^2 > 1$, this corresponds to the negative binomial regression model

- The Poisson model assumes $E(Y_i \mid X_i) = Var(Y_i \mid X_i)$
- But for many count data, $\mathsf{E}(Y_i \mid X_i) < \mathsf{V}(Y_i \mid X_i)$
- Potential sources of overdispersion:
 - unobserved heterogeneity
 - 2 clustering
 - 3 contagion or diffusion
 - 4 (classical) measurement error
- Underdispersion could occur, but rare
- One solution to this is to modify the Poisson model by assuming:

$$\mathsf{E}(Y_i \mid X_i) = \lambda_i = \exp(X_i'\beta)$$
 and $\mathsf{Var}(Y_i \mid X_i) = V_i = \sigma^2 \lambda_i$

- This is called the overdispersed Poisson regression model
- When $\sigma^2 > 1$, this corresponds to the negative binomial regression model

- The Poisson model assumes $\mathsf{E}(Y_i \mid X_i) = \mathsf{Var}(Y_i \mid X_i)$
- But for many count data, $\mathsf{E}(Y_i \mid X_i) < \mathsf{V}(Y_i \mid X_i)$
- Potential sources of overdispersion:
 - 1 unobserved heterogeneity
 - 2 clustering
 - 3 contagion or diffusion
 - 4 (classical) measurement error
- Underdispersion could occur, but rare
- One solution to this is to modify the Poisson model by assuming:

$$\mathsf{E}(Y_i \mid X_i) = \lambda_i = \exp(X_i'\beta)$$
 and $\mathsf{Var}(Y_i \mid X_i) = V_i = \sigma^2 \lambda_i$

- This is called the overdispersed Poisson regression model
- When $\sigma^2 > 1$, this corresponds to the negative binomial regression model

- The Poisson model assumes $E(Y_i \mid X_i) = Var(Y_i \mid X_i)$
- But for many count data, $\mathsf{E}(Y_i \mid X_i) < \mathsf{V}(Y_i \mid X_i)$
- Potential sources of overdispersion:
 - 1 unobserved heterogeneity
 - 2 clustering
 - 3 contagion or diffusion
 - 4 (classical) measurement error
- Underdispersion could occur, but rare
- One solution to this is to modify the Poisson model by assuming:

$$\mathsf{E}(Y_i \mid X_i) = \lambda_i = \exp(X_i'\beta)$$
 and $\mathsf{Var}(Y_i \mid X_i) = V_i = \sigma^2 \lambda_i$

- This is called the overdispersed Poisson regression model
- When $\sigma^2 > 1$, this corresponds to the negative binomial regression model

Example: Social Network Survey Data

(Zheng, et al., 2006 *JASA*)

Negative Binomial Distribution

Suppose $Y_i \in \{0, 1, 2, \dots, \}$. If Y_i has pmf

$$p(y_i) = \frac{\Gamma\left(\frac{\lambda}{\sigma^2 - 1} + y_i\right)}{y_i!\Gamma\left(\frac{\lambda}{\sigma^2 - 1}\right)} \left(\frac{\sigma^2 - 1}{\sigma^2}\right)^{y_i} \left(\sigma^2\right)^{\frac{-\lambda}{\sigma^2 - 1}}$$

with $\lambda>0$ and $\sigma^2>1$ Then we will say

$$Y_i \sim \mathsf{NegBin}(\lambda, \sigma^2)$$
 $E[Y_i] = \lambda$ $\mathsf{Var}(Y_i) = \lambda \sigma^2$

Negative Binomial Regression

Suppose:

$$Y_i \sim \text{Negative Binomial}(\lambda_i, \sigma^2)$$

 $\lambda_i = \exp(\boldsymbol{X}_i'\boldsymbol{\beta})$

This implies a likelihood of:

$$L(\boldsymbol{\beta}|\boldsymbol{X},\boldsymbol{Y}) = f(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\beta})$$

$$= \prod_{i=1}^{N} f(Y_i|\boldsymbol{X}_i,\boldsymbol{\beta})$$

$$= \prod_{i=1}^{N} \frac{\Gamma\left(\frac{\lambda_i}{\sigma^2 - 1} + y_i\right)}{y_i!\Gamma\left(\frac{\lambda_i}{\sigma^2 - 1}\right)} \left(\frac{\sigma^2 - 1}{\sigma^2}\right)^{y_i} (\sigma^2)^{\frac{-\lambda_i}{\sigma^2 - 1}}$$

Optimize numerically. Usual theorems about asymptotic distributions apply.

Negative Binomial Regression

Negative Binomial Regression:

1) Careful! Variance is sometimes:

$$Var(Y_i|\boldsymbol{X}_i) = \lambda_i(1+\sigma^2\lambda_i)$$

2) Run in R using

library(MASS)
out<- glm.nb(Y~X)</pre>

Clustered Standard Errors

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, $\hat{\theta}$ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \hat{\theta} \to^p \theta^* \neq \ell$
- \blacksquare Instead, θ^* minimizes the "divergence" between f and g, defined as

$$[\log g(Y \mid \theta) - \log f(Y \mid \theta)]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- lacktriangle This heta is called the quasi-maximum likelihood estimator (QMLE)
- \blacksquare However, for some models and types of misspecification, θ_{QMLE} is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, θ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \theta \to^p \theta^* \neq 0$
- lacktriangle Instead, $heta^*$ minimizes the "divergence" between f and g, defined as:

$$[\log g(Y \mid \theta) - \log f(Y \mid \theta)]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- lacktriangle This heta is called the quasi-maximum likelihood estimator (QMLE)
- \blacksquare However, for some models and types of misspecification, θ_{QMLE} is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, θ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \theta \to^p \theta^* \neq 0$
- Instead, θ^* minimizes the "divergence" between f and g, defined as:

$$\mathsf{E}\left[\log g(Y\mid\theta) - \log f(Y\mid\theta)\right]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- lacktriangle This heta is called the quasi-maximum likelihood estimator (QMLE)
- However, for some models and types of misspecification, θ_{QMLE} is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, θ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \theta \to^p \theta^* \neq 0$
- Instead, θ^* minimizes the "divergence" between f and g, defined as:

$$\mathsf{E}\left[\log g(Y\mid\theta) - \log f(Y\mid\theta)\right]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- lacktriangle This heta is called the quasi-maximum likelihood estimator (QMLE)
- However, for some models and types of misspecification, θ_{QMLE} is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, $\hat{\theta}$ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \hat{\theta} \to^p \theta^* \neq \theta$
- Instead, θ^* minimizes the "divergence" between f and g, defined as:

$$\mathsf{E}\left[\log g(Y\mid\theta) - \log f(Y\mid\theta)\right]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- This $\hat{\theta}$ is called the quasi-maximum likelihood estimator (QMLE)
- However, for some models and types of misspecification, $\hat{\theta}_{QMLE}$ is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, $\hat{\theta}$ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \hat{\theta} \to^p \theta^* \neq \theta$
- \blacksquare Instead, θ^* minimizes the "divergence" between f and g , defined as:

$$\mathsf{E} \left[\log g(Y \mid \theta) - \log f(Y \mid \theta) \right]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- This $\hat{\theta}$ is called the quasi-maximum likelihood estimator (QMLE)
- \blacksquare However, for some models and types of misspecification, $\hat{\theta}_{QMLE}$ is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, $\hat{\theta}$ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \hat{\theta} \to^p \theta^* \neq \theta$
- Instead, θ^* minimizes the "divergence" between f and g, defined as:

$$\mathsf{E}\left[\log g(Y\mid\theta) - \log f(Y\mid\theta)\right]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- This $\hat{\theta}$ is called the quasi-maximum likelihood estimator (QMLE)
- \blacksquare However, for some models and types of misspecification, θ_{QMLE} is still consistent for true θ

- When the model is exactly correct, MLE is the best estimator
- But your model is usually wrong!
- What if you assumed $f(Y \mid \theta)$ but the true DGP is $g(Y \mid \theta)$?

- Generally, $\hat{\theta}$ maximizing $L_f = f$ is inconsistent: $\lim_{n\to\infty} \hat{\theta} \to^p \theta^* \neq \theta$
- \blacksquare Instead, θ^* minimizes the "divergence" between f and g, defined as:

$$\mathsf{E}\left[\log g(Y\mid\theta) - \log f(Y\mid\theta)\right]$$

- \longrightarrow "best possible" assuming g, but no guarantee θ^* is substantively close to θ
- This $\hat{\theta}$ is called the quasi-maximum likelihood estimator (QMLE)
- However, for some models and types of misspecification, $\hat{\theta}_{QMLE}$ is still consistent for true θ

Variance estimate:

lacksquare For $\hat{ heta}_{QMLE}$ we can show

$$\hat{\theta} \stackrel{\text{approx.}}{\sim} \mathsf{N} \left(\theta^*, A^{-1}BA^{-1} \right)$$

where
$$A = -\mathsf{E}[H(\theta^*)]$$
 and $B = \mathsf{E}[s(\theta^*)s(\theta^*)^\top]$

- If f=g, $\theta^*=\theta$ (consistency) and A=B (information equality) \longrightarrow We get $\hat{\theta}_{QMLE} \overset{\mathrm{approx.}}{\sim} \mathrm{N}(\theta,A^{-1})$
- \blacksquare Thus, as expected, $\hat{\theta}_{QMLE} = \hat{\theta}_{MLE}$
- If $f \neq g$, usually $A \neq B$
- So we need to estimate *A* and *B* separately and use a sandwich estimator for variance:

$$V(\widehat{\hat{\theta}_{QMLE}}) = \hat{A}^{-1}\hat{B}\hat{A}^{-1}$$

where $\hat{A} = -\sum_{i=1}^n H_i(\hat{\theta})$ and $\hat{B} = \sum_{i=1}^n s_i(\hat{\theta}) s_i(\hat{\theta})^{\top}$

Variance estimate:

lacksquare For $\hat{ heta}_{QMLE}$ we can show

$$\hat{\theta} \overset{\text{approx.}}{\sim} \ \mathsf{N}\left(\theta^*,\ A^{-1}BA^{-1}\right)$$
 where $A = -\mathsf{E}[H(\theta^*)]$ and $B = \mathsf{E}[s(\theta^*)s(\theta^*)^\top]$

- If f = g, $\theta^* = \theta$ (consistency) and A = B (information equality) \longrightarrow We get $\hat{\theta}_{QMLE} \stackrel{\mathrm{approx.}}{\sim} \mathsf{N}(\theta, A^{-1})$
- \blacksquare Thus, as expected, $\hat{\theta}_{QMLE} = \hat{\theta}_{MLE}$
- If $f \neq g$, usually $A \neq B$
- So we need to estimate *A* and *B* separately and use a sandwich estimator for variance:

$$V(\widehat{\hat{\theta}_{QMLE}}) = \hat{A}^{-1}\hat{B}\hat{A}^{-1}$$

where $\hat{A} = -\sum_{i=1}^n H_i(\hat{\theta})$ and $\hat{B} = \sum_{i=1}^n s_i(\hat{\theta}) s_i(\hat{\theta})^{\top}$

Variance estimate:

lacksquare For $\hat{ heta}_{QMLE}$ we can show

$$\hat{\theta} \overset{\text{approx.}}{\sim} \ \mathsf{N}\left(\theta^*,\ A^{-1}BA^{-1}\right)$$
 where $A = -\mathsf{E}[H(\theta^*)]$ and $B = \mathsf{E}[s(\theta^*)s(\theta^*)^\top]$

- If f = g, $\theta^* = \theta$ (consistency) and A = B (information equality) \longrightarrow We get $\hat{\theta}_{QMLE} \stackrel{\mathrm{approx.}}{\sim} \mathsf{N}(\theta, A^{-1})$
- \blacksquare Thus, as expected, $\hat{\theta}_{QMLE} = \hat{\theta}_{MLE}$
- If $f \neq g$, usually $A \neq B$
- So we need to estimate *A* and *B* separately and use a sandwich estimator for variance:

$$V(\widehat{\hat{\theta}_{QMLE}}) = \hat{A}^{-1}\hat{B}\hat{A}^{-1}$$

where $\hat{A} = -\sum_{i=1}^n H_i(\hat{\theta})$ and $\hat{B} = \sum_{i=1}^n s_i(\hat{\theta}) s_i(\hat{\theta})^{\top}$

Variance estimate:

lacksquare For $\hat{ heta}_{QMLE}$ we can show

$$\hat{\theta} \overset{\text{approx.}}{\sim} \ \mathsf{N}\left(\theta^*,\ A^{-1}BA^{-1}\right)$$
 where $A = -\mathsf{E}[H(\theta^*)]$ and $B = \mathsf{E}[s(\theta^*)s(\theta^*)^\top]$

- If f = g, $\theta^* = \theta$ (consistency) and A = B (information equality) \longrightarrow We get $\hat{\theta}_{QMLE} \stackrel{\mathrm{approx.}}{\sim} \mathsf{N}(\theta, A^{-1})$
- \blacksquare Thus, as expected, $\hat{\theta}_{QMLE} = \hat{\theta}_{MLE}$
- If $f \neq g$, usually $A \neq B$
- So we need to estimate *A* and *B* separately and use a sandwich estimator for variance:

$$V(\widehat{\hat{\theta}_{QMLE}}) = \hat{A}^{-1}\hat{B}\hat{A}^{-1}$$

where $\hat{A} = -\sum_{i=1}^n H_i(\hat{\theta})$ and $\hat{B} = \sum_{i=1}^n s_i(\hat{\theta}) s_i(\hat{\theta})^{\top}$

Variance estimate:

lacksquare For $\hat{ heta}_{QMLE}$ we can show

$$\hat{\theta} \overset{\text{approx.}}{\sim} \ \mathsf{N} \left(\theta^*, \ A^{-1}BA^{-1} \right)$$
 where $A = -\mathsf{E}[H(\theta^*)]$ and $B = \mathsf{E}[s(\theta^*)s(\theta^*)^\top]$

- If f=g, $\theta^*=\theta$ (consistency) and A=B (information equality) \longrightarrow We get $\hat{\theta}_{QMLE} \overset{\mathrm{approx.}}{\sim} \mathsf{N}(\theta,A^{-1})$
- \blacksquare Thus, as expected, $\hat{\theta}_{QMLE} = \hat{\theta}_{MLE}$
- If $f \neq g$, usually $A \neq B$
- So we need to estimate A and B separately and use a sandwich estimator for variance:

$$V(\widehat{\hat{\theta}_{QMLE}}) = \hat{A}^{-1}\hat{B}\hat{A}^{-1}$$

where $\hat{A} = -\sum_{i=1}^n H_i(\hat{\theta})$ and $\hat{B} = \sum_{i=1}^n s_i(\hat{\theta}) s_i(\hat{\theta})^{\top}$

Variance estimate:

lacksquare For $\hat{ heta}_{QMLE}$ we can show

$$\hat{\theta} \overset{\text{approx.}}{\sim} \ \mathsf{N} \left(\theta^*, \ A^{-1}BA^{-1} \right)$$
 where $A = -\mathsf{E}[H(\theta^*)]$ and $B = \mathsf{E}[s(\theta^*)s(\theta^*)^\top]$

- If f = g, $\theta^* = \theta$ (consistency) and A = B (information equality) \longrightarrow We get $\hat{\theta}_{QMLE} \stackrel{\mathrm{approx.}}{\sim} \mathsf{N}(\theta, A^{-1})$
- \blacksquare Thus, as expected, $\hat{\theta}_{QMLE} = \hat{\theta}_{MLE}$
- If $f \neq g$, usually $A \neq B$
- So we need to estimate A and B separately and use a sandwich estimator for variance:

$$V(\widehat{\hat{\theta}_{QMLE}}) = \hat{A}^{-1}\hat{B}\hat{A}^{-1}$$

where $\hat{A} = -\sum_{i=1}^n H_i(\hat{\theta})$ and $\hat{B} = \sum_{i=1}^n s_i(\hat{\theta}) s_i(\hat{\theta})^{\top}$

- Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- \blacksquare Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

- lacktriangle Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- \blacksquare Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

- Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- \blacksquare Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

- lacktriangle Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- \blacksquare Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

- Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- \blacksquare Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

- Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- \blacksquare Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

- lacktriangle Suppose that data are collected via cluster sampling, i.e., first sampling M clusters and then N_m within each cluster m
- There may be dependence between units within each cluster
- The correct likelihood would take into account this dependence:

$$l(\theta \mid Y) = \sum_{m=1}^{M} f_m(Y_{1m}, ..., Y_{N_m m} | \theta)$$

- This joint likelihood will be intractable for most models (e.g. logit)
- Instead, we could look at a quasi-log-likelihood:

$$l^*(\theta \mid Y) = \sum_{m=1}^{M} \sum_{i=1}^{N_m} f_i(Y_i \mid \theta)$$

$$\hat{B}^* = \sum_{m=1}^{M} \left\{ \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right) \left(\sum_{i=1}^{N_m} s_i(\hat{\theta}) \right)' \right\}$$

- $\hat{A}^{-1}\hat{B}^*\hat{A}^{-1}$ gives the cluster robust standard errors
- lacktriangleq Asymptotics is w.r.t. $M\Rightarrow$ may be badly behaved when M small

Survival analysis

What is Survival Analysis?

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model

 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

What is Survival Analysis?

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model

 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

What is Survival Analysis?

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model

 - Diermeier & Stevenson (1999 AJPS) Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

What is Survival Analysis?

- Analyze the length of time spent in a given state
- $Y_i \in [0, \infty)$: Duration, "time to an event"
- Suppose Y_i has density f(y).
- Example: Cabinet duration
 - Are cabinets more likely to dissolve early or late?
 - What factors predict the length of time until dissolution?
 - King, Alt, Burns & Laver (1990 AJPS) Exponential model
 - Warwick & Easton (1992 AJPS) Weibull model

 - Diermeier & Stevenson (1999 AJPS)Competing risks model
- One of the most sophisticated subfields of statistical modeling, developed in multiple disciplines
- We will only be able to scratch the surface

 \blacksquare Survival function: Probability of surviving at least up to time y

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(y)dy = 1 - \int_0^y f(y)dy = 1 - F(y)$$

- \blacksquare How likely am I to live at least y years?
- Properties:
 - \blacksquare S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) |_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

lacksquare Survival function: Probability of surviving at least up to time y

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(y)dy = 1 - \int_0^y f(y)dy = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$E(Y_i) = \int_0^\infty y f(y) dy$$

$$= y (F(y)|_0^\infty) - \int_0^\infty F(y) dy$$

$$= \int_0^\infty (1 - F(y)) dy$$

$$= \int_0^\infty S(y) dy$$

 \blacksquare Survival function: Probability of surviving at least up to time y

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(y)dy = 1 - \int_0^y f(y)dy = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) |_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

 \blacksquare Survival function: Probability of surviving at least up to time y

$$S(y) \equiv \Pr(Y_i > y) = \int_y^{\infty} f(y)dy = 1 - \int_0^y f(y)dy = 1 - F(y)$$

- How likely am I to live at least y years?
- Properties:
 - S(0) = 1 and $S(\infty) = 0$; monotonically decreasing
 - lacktriangle Area under S(y) is the average survival time:

$$\begin{split} \mathsf{E}(Y_i) &= \int_0^\infty y f(y) dy \\ &= y \left(F(y) |_0^\infty \right) - \int_0^\infty F(y) dy \\ &= \int_0^\infty (1 - F(y)) dy \\ &= \int_0^\infty S(y) dy \end{split}$$

One-to-one relationships with density and probability:

$$\begin{split} f(y) &= -\frac{d}{dy}S(y) \quad \text{and} \quad S(y) &= \int_y^\infty f(t)dt \\ \Pr(y \leq Y_i < y + h) &= S(y) - S(y + h) \end{split}$$

lacktriangle Hazard function: Instantaneous rate of leaving a state at time t conditional on survival up to that time

$$\lambda(y) \equiv \lim_{h \downarrow 0} \frac{\Pr(y \le Y_i < y + h \mid Y_i \ge y)}{h} = \frac{f(y)}{S(y)}$$

- "Force of mortality" what is the 'risk' that I die at time y given that I have lived up until y?
- Difficult to directly interpret, but useful for model checking, etc.
- One-to-one relationship with survival function:

$$\lambda(y) \ = \ -\frac{d}{dy} \log S(y) \quad \text{and} \quad S(y) \ = \ \exp\left(-\int_0^y \lambda(t) dt\right)$$

■ Hazard function: Instantaneous rate of leaving a state at time t conditional on survival up to that time

$$\lambda(y) \equiv \lim_{h \downarrow 0} \frac{\Pr(y \le Y_i < y + h \mid Y_i \ge y)}{h} = \frac{f(y)}{S(y)}$$

- "Force of mortality" what is the 'risk' that I die at time y given that I have lived up until y?
- Difficult to directly interpret, but useful for model checking, etc.
- One-to-one relationship with survival function:

$$\lambda(y) \ = \ -\frac{d}{dy} \log S(y) \quad \text{and} \quad S(y) \ = \ \exp\left(-\int_0^y \lambda(t) dt\right)$$

■ Shape of the survival curve

Expected (remaining) time to event (= life expectancy at age y):

$$\mu(y) \equiv \mathsf{E}(Y_i - y \mid Y_i > y) = \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- lacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- Shape of the survival curve
- Expected (remaining) time to event (= life expectancy at age y):

$$\mu(y) \ \equiv \ \mathsf{E}(Y_i - y \mid Y_i > y) \ = \ \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- lacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- Shape of the survival curve
- **Expected** (remaining) time to event (= life expectancy at age y):

$$\mu(y) \equiv \mathsf{E}(Y_i - y \mid Y_i > y) = \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- lacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- Shape of the survival curve
- **Expected** (remaining) time to event (= life expectancy at age y):

$$\mu(y) \equiv \mathsf{E}(Y_i - y \mid Y_i > y) = \frac{1}{S(y)} \int_y^\infty S(t) dt$$

- \blacksquare Given that I'm alive at y, how much longer should I expect to live?
- Predicted differences in the above
- Causal effects on survival outcomes:
 - One-shot treatment administered at the beginning of study period
 needs conditional ignorability given observed pre-trial covariates
 - Time-varying treatment, possibly given in response to covariates
 needs "sequential ignorability"

- \blacksquare Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c,\infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- \blacksquare Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

- \blacksquare Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c,\infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

- Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c, \infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

- Observation is right-censored when only the lower bound of duration is known: $Y_i \in (c, \infty)$
- The independent censoring assumption: Censored observations do not systematically differ from complete observations in terms of hazard rates
- A sufficient condition: $Y_i \perp \!\!\! \perp C_i \mid X_i$ where $C_i =$ time to censoring
- Either Y_i or C_i is actually observed
- Examples:
 - Random attrition of study sample
 - Study begins and ends at exogenously fixed calendar dates
 - Study ends after fixed duration (type I censoring)
 - Study ends after a fixed number of failures (type II censoring)
- Other types of censoring (left, interval) are less common

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n=314

- Notice the "bump"?
- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent?

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n=314

■ Notice the "bump"?

- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent?

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n = 314

- Notice the "bump"?
- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent? Justin Grimmer (Stanford University

Cabinet Duration Example: Censoring King, Alt, Burns, and Laver (1990 AJPS):

■ Y_i : Duration of parliamentary cabinets, n=314

- Notice the "bump"?
- Some cabinets end their lives "naturally"
- Others end because of constitutional interelection periods (CIEP)
- King et al. treat CIEPs as censored observations
- But is this "censoring" independent?

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- \blacksquare Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) \big/ S(t_{j-1})$
- Key relationships:

$$S(t_j) = \prod_{k=1}^{j} (1 - \lambda(t_k))$$

$$f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$$

Expected remaining time to event:

$$\mu(t_j) = E(Y_i - t_j | Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k)$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:

$$S(t_j) = \prod_{k=1}^{j} (1 - \lambda(t_k))$$

$$f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$$

Expected remaining time to event:

$$\mu(t_j) = \mathbb{E}(Y_i - t_j \mid Y_i > t_j)$$
$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k)$$

→□ → ←団 → ← 臣 → □ ● り へ ○

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:

■
$$S(t_j) = \prod_{k=1}^{j} (1 - \lambda(t_k))$$

■ $f(t_j) = S(t_{j-1}) - S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 - \lambda(t_k))$

■ Expected remaining time to event:

$$\mu(t_{j}) = E(Y_{i} - t_{j} | Y_{i} > t_{j})$$

$$= \frac{1}{S(t_{j})} \sum_{k=j+1}^{\infty} (t_{k} - t_{j}) f(t_{k})$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- \blacksquare Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: \ t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:
 - $S(t_j) = \prod_{k=1}^{j} (1 \lambda(t_k))$
 - $f(t_j) = S(t_{j-1}) S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 \lambda(t_k))$
- Expected remaining time to event

$$\mu(t_j) = \mathsf{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k)$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:
 - $\blacksquare S(t_j) = \prod_{k=1}^{j} (1 \lambda(t_k))$
 - $f(t_j) = S(t_{j-1}) S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 \lambda(t_k))$
- Expected remaining time to event:

$$\mu(t_j) = \mathsf{E}(Y_i - t_j \mid Y_i > t_j)$$

$$= \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k)$$

- Time is continuous but we observe discrete time: $t_1 < t_2 < \cdots$
- Density function: $f(t_j) = \Pr(Y_i = t_j)$
- Survival function: $S(t_j) = \Pr(Y_i > t_j) = \sum_{\{k: t_k > t_j\}} f(t_k)$
- Hazard function: $\lambda(t_j) = \Pr(Y_i = t_j \mid Y_i \ge t_j) = f(t_j) / S(t_{j-1})$
- Key relationships:
 - $\blacksquare S(t_j) = \prod_{k=1}^{j} (1 \lambda(t_k))$
 - $f(t_j) = S(t_{j-1}) S(t_j) = \lambda(t_j) \prod_{k=1}^{j-1} (1 \lambda(t_k))$
- Expected remaining time to event:

$$\begin{array}{lcl} \mu(t_j) & = & \mathsf{E}(Y_i - t_j \mid Y_i > t_j) \\ \\ & = & \frac{1}{S(t_j)} \sum_{k=j+1}^{\infty} (t_k - t_j) f(t_k) \end{array}$$

- 4 ロ ト 4 周 ト 4 E ト 4 E ト 9 Q ()

Estimating the Survival Curve Without a Model

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - lacksquare $d_j=\#$ of units that failed at time t_j
 - lacksquare $m_j=\#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

Estimating the Survival Curve Without a Model

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - lacksquare $d_j=\#$ of units that failed at time t_j
 - $lackbox{\textbf{m}} m_j = \#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

Estimating the Survival Curve Without a Model

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - lacksquare $d_j=\#$ of units that failed at time t_j
 - lacksquare $m_j=\#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

Estimating the Survival Curve Without a Model

- lacksquare Goal: Get the sense of what $S(t_j)$ looks like before introducing X_i
- lacktriangle Easy if no censoring; just count # of units failing at each t_j
- Censored observations make things a bit more complicated
- Setup:
 - Observed failure times: $t_1 < t_2 < \cdots < t_J$
 - lacksquare $d_j=\#$ of units that failed at time t_j
 - lacksquare $m_j=\#$ of units censored at time t_j
 - $r_j = \sum_{k=j}^J (d_k + m_k)$ = # of units at risk at time t_j , i.e., those that have neither failed nor been censored until right before t_j
- A natural estimate for the hazard function will then be:

$$\hat{\lambda}(t_j) = \widehat{\Pr}(Y_i = t_j \mid Y_i \ge t_j) = \frac{d_j}{r_j}$$

■ In fact, this is the MLE of $\lambda(t_i)$

Kaplan-Meier Estimator

■ This leads to the Kaplan-Meier estimator:

$$\widehat{S}(t_j) = \prod_{k=j}^{J} (1 - \hat{\lambda}(t_k)) = \prod_{k=j}^{J} \frac{r_k - d_k}{r_k}$$

■ Using the MLE derivation for $\hat{\lambda}(t_j)$, we obtain the Hessian-based estimate of the asymptotic variance:

$$\widehat{\mathrm{Var}(\widehat{S}(t_j))} \ = \ \widehat{S}^2(t_j) \sum_{k=j}^J \frac{d_k}{r_k(r_k-d_k)}$$

Kaplan-Meier Estimator

■ This leads to the Kaplan-Meier estimator:

$$\widehat{S}(t_j) = \prod_{k=j}^{J} (1 - \hat{\lambda}(t_k)) = \prod_{k=j}^{J} \frac{r_k - d_k}{r_k}$$

■ Using the MLE derivation for $\hat{\lambda}(t_j)$, we obtain the Hessian-based estimate of the asymptotic variance:

$$\widehat{\operatorname{Var}(\widehat{S}(t_j))} \ = \ \widehat{S}^2(t_j) \sum_{k=j}^J \frac{d_k}{r_k(r_k - d_k)}$$

Example: Time Until Commitment to IMF Article VIII

FIGURE 2. The Kaplan-Meier Survival Function Duration of Article XIV Status over Time

Simmons (2000 APSR)

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $E(Y_i \mid \mu_i) = \mu_i$ and Variance $Var(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- lacktriangle A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangle This changes nothing except that the sign of eta gets reversed
- The constant hazard assumption: λ_i does not vary across time

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- \blacksquare A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangleright This changes nothing except that the sign of eta gets reversed
- The constant hazard assumption: λ_i does not vary across time

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- lacksquare Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- \blacksquare A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangle This changes nothing except that the sign of eta gets reversed
- The constant hazard assumption: λ_i does not vary across time

- Suppose that failures occur according to a Poisson process (i.e. continuously, independently, and with constant probability)
- Then the "time to an event" follows the exponential distribution
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Exponential}(\mu_i)$ where $\mu_i = \exp(X_i'\beta)$
- Density: $f(y \mid \mu_i) = \frac{1}{\mu_i} \exp(-y/\mu_i)$
- Mean $\mathsf{E}(Y_i \mid \mu_i) = \mu_i$ and Variance $\mathsf{Var}(Y_i \mid \mu_i) = \mu_i^2$
- Survival function: $S(y) = \exp(-y/\mu_i)$
- Hazard function: $\lambda(y) = 1/\mu_i = \exp(-X_i'\beta)$ (constant in y)
- \blacksquare A common alternative parameterization: $\gamma_i \equiv 1/\mu_i$
- lacktriangleright This changes nothing except that the sign of eta gets reversed
- lacktriangle The constant hazard assumption: λ_i does not vary across time

MLE for the Exponential Model with Censoring

- Censoring indicator: $D_i = 1$ if censored
- Y_i is the censoring time (rather than failure time) if $D_i = 1$
- Likelihood function:

$$L_n(\beta \mid Y, X, D) = \prod_{i=1}^{n} \underbrace{\{f(Y_i \mid \mu_i)\}^{1-D_i} \cdot \{S(Y_i \mid \mu_i)\}^{D_i}}_{uncensored}$$

$$= \prod_{i=1}^{n} \left\{\frac{1}{\mu_i} \exp(-Y_i/\mu_i)\right\}^{1-D_i} \left\{\exp(-Y_i/\mu_i)\right\}^{D_i}$$

$$= \prod_{i=1}^{n} \exp\left\{-(1-D_i)X_i^{\top}\beta\right\} \exp\left\{-\exp(-X_i'\beta)Y_i\right\}$$

■ Log-likelihood, score and Hessian can be calculated as usual

MLE for the Exponential Model with Censoring

- Censoring indicator: $D_i = 1$ if censored
- Y_i is the censoring time (rather than failure time) if $D_i = 1$
- Likelihood function:

$$L_n(\beta \mid Y, X, D) = \prod_{i=1}^n \underbrace{\{f(Y_i \mid \mu_i)\}^{1-D_i}}_{uncensored} \cdot \underbrace{\{S(Y_i \mid \mu_i)\}^{D_i}}_{censored}$$

$$= \prod_{i=1}^n \underbrace{\{\frac{1}{\mu_i} \exp(-Y_i/\mu_i)\}^{1-D_i}}_{l} \underbrace{\{\exp(-Y_i/\mu_i)\}^{D_i}}_{l}$$

$$= \prod_{i=1}^n \exp\left\{-(1-D_i)X_i^{\top}\beta\right\} \exp\left\{-\exp(-X_i'\beta)Y_i\right\}$$

■ Log-likelihood, score and Hessian can be calculated as usual

◆□ → ◆問 → ◆ 章 → ■ ◆ 9 Q Q

MLE for the Exponential Model with Censoring

- Censoring indicator: $D_i = 1$ if censored
- Y_i is the censoring time (rather than failure time) if $D_i = 1$
- Likelihood function:

$$L_n(\beta \mid Y, X, D) = \prod_{i=1}^n \underbrace{\{f(Y_i \mid \mu_i)\}^{1-D_i}}_{uncensored} \cdot \underbrace{\{S(Y_i \mid \mu_i)\}^{D_i}}_{censored}$$

$$= \prod_{i=1}^n \underbrace{\{\frac{1}{\mu_i} \exp(-Y_i/\mu_i)\}^{1-D_i}}_{l} \underbrace{\{\exp(-Y_i/\mu_i)\}^{D_i}}_{l}$$

$$= \prod_{i=1}^n \exp\left\{-(1-D_i)X_i^{\top}\beta\right\} \exp\left\{-\exp(-X_i'\beta)Y_i\right\}$$

■ Log-likelihood, score and Hessian can be calculated as usual

(ロ) (回) (注) (注) (注) (注) (り)(()

Weibull Regression Model

- The constant hazard assumption is often too restrictive
- The Weibull model relaxes the assumption by introducing a "shape" parameter
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Weibull}(\mu_i, \alpha)$ where $\mu_i = \exp(X_i^\top \beta)$ and $\alpha > 0$
- Density: $f(y \mid \mu_i, \alpha) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1} \exp\{-(y/\mu_i)^{\alpha}\}$
- \blacksquare Reduces to the exponential model when $\alpha=1$
- Survival function: $S(y) = \exp\{-(y/\mu_i)^{\alpha}\}$
- Hazard function: $\lambda(y) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1}$
- The monotonic hazard assumption: increasing (decreasing) if $\alpha > 1$ (if $\alpha < 1$)
- Other parametric regression models:
 - Gompertz: Monotonic hazard
 - Log-normal, Log-logistic: Inverse U-shaped hazard

Weibull Regression Model

- The constant hazard assumption is often too restrictive
- The Weibull model relaxes the assumption by introducing a "shape" parameter
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Weibull}(\mu_i, \alpha)$ where $\mu_i = \exp(X_i^\top \beta)$ and $\alpha > 0$
- Density: $f(y \mid \mu_i, \alpha) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1} \exp\{-(y/\mu_i)^{\alpha}\}$
- lacktriangle Reduces to the exponential model when lpha=1
- Survival function: $S(y) = \exp\{-(y/\mu_i)^{\alpha}\}$
- Hazard function: $\lambda(y) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1}$
- The monotonic hazard assumption: increasing (decreasing) if $\alpha > 1$ (if $\alpha < 1$)
- Other parametric regression models:
 - Gompertz: Monotonic hazard
 - Log-normal, Log-logistic: Inverse U-shaped hazard

Weibull Regression Model

- The constant hazard assumption is often too restrictive
- The Weibull model relaxes the assumption by introducing a "shape" parameter
- Model: $Y_i \mid X_i \sim_{\mathsf{ind}} \mathsf{Weibull}(\mu_i, \alpha)$ where $\mu_i = \exp(X_i^\top \beta)$ and $\alpha > 0$
- Density: $f(y \mid \mu_i, \alpha) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1} \exp\{-(y/\mu_i)^{\alpha}\}$
- lacktriangle Reduces to the exponential model when lpha=1
- Survival function: $S(y) = \exp\{-(y/\mu_i)^{\alpha}\}$
- Hazard function: $\lambda(y) = \frac{\alpha}{\mu_i^{\alpha}} y^{\alpha-1}$
- The monotonic hazard assumption: increasing (decreasing) if $\alpha > 1$ (if $\alpha < 1$)
- Other parametric regression models:
 - Gompertz: Monotonic hazard
 - Log-normal, Log-logistic: Inverse U-shaped hazard

Cabinet Duration Example: Exponential or Weibull? King et al. (Exponential) vs. Warwick and Easton (Weibull)

■ Comparing density functions:

Cabinet Duration Example: Exponential or Weibull? King et al. (Exponential) vs. Warwick and Easton (Weibull)

■ Comparing hazard functions:

Semi-Parametric Regression for Survival Data

- Less restriction on the hazard function
- Time-varying covariates to further model stochastic risks
- Note that both exponential and Weibull models are proportional hazard models:

$$\lambda(y \mid X_i) = \underbrace{\lambda_0(y)}_{\text{baseline hazard}} \exp(X_i' \beta^*)$$

where
$$\lambda_0(y) \ = \ \begin{cases} 1 & ext{(exponential)} \\ \alpha y^{\alpha-1} & ext{(Weibull)} \end{cases}$$
 and $\beta^* = -\alpha \beta$

■ The Cox Proportional Hazard Model generalizes this model:

$$\lambda(y \mid X_i(y)) = \lambda_0(y) \exp(X_i(y)'\beta^*)$$

where

 $\lambda_0(y)$: Nonparametric baseline hazard common to all i across t

 \blacksquare $X_i(y)$: (Potentially) time-varying covariates

(Note: We omit * from hereon)

4 D > 4 A > 4 B > 4 B > B 9 9 9

Semi-Parametric Regression for Survival Data

- Less restriction on the hazard function
- Time-varying covariates to further model stochastic risks
- Note that both exponential and Weibull models are proportional hazard models:

$$\lambda(y \mid X_i) = \underbrace{\lambda_0(y)}_{\text{baseline hazard}} \exp(X_i^{'} \beta^*)$$

where
$$\lambda_0(y) = \begin{cases} 1 & \text{(exponential)} \\ \alpha y^{\alpha-1} & \text{(Weibull)} \end{cases}$$
 and $\beta^* = -\alpha \beta$

■ The Cox Proportional Hazard Model generalizes this model:

$$\lambda(y \mid X_i(y)) = \lambda_0(y) \exp(X_i(y)'\beta^*)$$

where

 $\lambda_0(y)$: Nonparametric baseline hazard common to all i across t

 \blacksquare $X_i(y)$: (Potentially) time-varying covariates

(Note: We omit * from hereon)

Semi-Parametric Regression for Survival Data

- Less restriction on the hazard function
- Time-varying covariates to further model stochastic risks
- Note that both exponential and Weibull models are proportional hazard models:

$$\lambda(y \mid X_i) = \underbrace{\lambda_0(y)}_{\text{baseline hazard}} \exp(X_i^{'} \beta^*)$$

where
$$\lambda_0(y) = \begin{cases} 1 & \text{(exponential)} \\ \alpha y^{\alpha-1} & \text{(Weibull)} \end{cases}$$
 and $\beta^* = -\alpha \beta$

■ The Cox Proportional Hazard Model generalizes this model:

$$\lambda(y \mid X_i(y)) = \lambda_0(y) \exp(X_i(y)'\beta^*)$$

where

 $lacktriangleq \lambda_0(y)$: Nonparametric baseline hazard common to all i across t

■ $X_i(y)$: (Potentially) time-varying covariates

(Note: We omit * from hereon)

4 D > 4 A > 4 B > 4 B > B = 900

Example: Hazards Accommodated by the Cox Model

- The Cox PH model allows flexible shapes of hazard functions
- Suppose we have one binary predictor $x \in \{0,1\}$ to model y:

2
$$\lambda(y \mid x) = \lambda_0(y) \exp[x\beta_1 + xy\beta_2]$$
 — interaction with time trend

$$\lambda(y \mid x) = \lambda_0(y) \exp[x\beta_1 + x(1.5 - y)\mathbf{1}\{y \le 1.5\}\beta_2]$$

—— allowing high initial risk

Note: In the figures, the relative risk (RR) stands for:

$$RR = \frac{\lambda(y \mid x = 1)}{\lambda(y \mid x = 0)} = \exp[g(y \mid x = 1) - g(y \mid x = 0)]$$

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\hfill\blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = risk$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- lacktriangle Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for eta
- For now, suppose that no two observations fail at the same time
- $\hfill\blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk set at time } t_j$

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk set at time } t_j$

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- lacktriangle Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for eta
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk}$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacksquare Take the log and maximize to obtain the estimate of eta

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- lacktriangle Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for eta
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk set at time } t_j$

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- \blacksquare Take the log and maximize to obtain the estimate of β

- Joint MLE for $\lambda_0(y)$ and β is difficult (because $\lambda_0(y)$ is nonparametric)
- Instead, consider the partial likelihood function which only contains information about non-censored observations
- Because of the independent censoring assumption, this should give us a consistent (although not efficient) estimate for β
- For now, suppose that no two observations fail at the same time
- $\ \blacksquare$ This implies we can unambiguously index observations by j
- Under this assumption, the partial likelihood function turns out to be:

$$L_P(\beta) = \prod_{j=1}^J \frac{\exp(X_i(t_j)^\top \beta)}{\sum_{k \in R(t_j)} \exp(X_k(t_j)^\top \beta)}$$

where $R(t_j) = \text{risk}$ set at time t_j

- Note that $\lambda_0(y)$ drops out of the partial likelihood
- lacktriangle Take the log and maximize to obtain the estimate of eta

Hypothesis tests, Model checking, and Likelihood models!