Einfürung in die Funktionentheorie Hausaufgaben Blatt Nr. 2

Jun Wei Tan* and Lucas Wollman

Julius-Maximilians-Universität Würzburg

(Dated: May 5, 2024)

Aufgabe 1. (a) Skizzieren Sie die Menge

$$Q = \{ w \in \mathbb{C} : |\operatorname{Re} w| + |\operatorname{Im} w| = 1 \}.$$

- (b) Es sei $g : \mathbb{R} \to \mathbb{R}$, g(x) = |x|. Zeigen Sie, dass g in $x_0 \in \mathbb{R} \setminus \{0\}$ differenzierbar ist und bestimmen Sie $g'(x_0)$.
- (c) Es sei G ein Gebiet in \mathbb{C} , $f:G\to\mathbb{C}$ holomorph, $u:=\operatorname{Re} f$ und $v:=\operatorname{Im} f$. Zeigen Sie: Falls |u(z)|+|v(z)|=1 für jedes $z\in G$, so ist f konstant auf G.

Beweis. (a)

(b) Für $x_0 \in \mathbb{R} \setminus \{0\}$ gibt es eine Umgebung U um x_0 , so dass entweder g(x) = x oder g(x) = -x gilt. Daher ist der Grenzwert, durch den die Ableitung definiert ist, immer gleich der Grenzwert mit x oder -x. Die Ableitung ist also

$$g'(x_0) = \begin{cases} 1 & x_0 > 0, \\ -1 & x_0 < 0. \end{cases}$$

 $^{\ ^*} jun-wei.tan@stud-mail.uni-wuerzburg.de\\$

- (c) Das Bild in (a) enthält 4 Geraden. Wir betrachten zwei Fälle
 - (i) f(G) enthält keine der Ecken

In diesem Fall ist f(G) eine Teilmenge einer Strecke. Durch Verkettung mit einer linearen Funktion g(x) können wir das Bild als Teilmenge der reellen Achse betrachten, $g(f(G)) \subseteq \mathbb{R}$. f ist genau dann holomorph, wenn $g \circ f$ holomorph ist.

Aber $g \circ f$ muss dann konstant sein.

Lemma 1. Holomorphe funktionen $h : \mathbb{C} \to \mathbb{R}$ sind konstant.

Beweis.

$$h'(z_0) = \frac{\partial h}{\partial x} \Big|_{z_0}$$

$$= \lim_{x \to x_0} \frac{h(x + iy_0) - h(x_0 + iy_0)}{x - x_0} \in \mathbb{R}$$

$$h'(z_0) = \frac{\partial h}{\partial y} \Big|_{z_0}$$

$$= \lim_{y \to y_0} \frac{h(x + iy) - h(x + iy_0)}{iy - iy_0} \in \{0\} \times \mathbb{R} \subseteq \mathbb{C}$$

Das heißt: $h'(z_0) = 0$ für alle $z_0 \in \mathbb{C}$ und h ist konstant.

(ii) f(G) enthält mindestens eine der Ecken

Sei z_0 , sodass $f(z_0)$ die Ecke ist. Wir zeigen: f ist nicht im z_0 differenzierbar. Es gibt eine stetig differenzierbare Kurve $\gamma:(\alpha,\beta)\to\mathbb{C}$, so dass $z_0\in\gamma((\alpha,\beta))$. Dann ist $f(\gamma(t))$ nicht differenzierbar, ein Widerspruch, weil f holomorph ist und deswegen $\frac{\mathrm{d}}{\mathrm{d}t}(f(\gamma(t)))=f'(\gamma(t))\gamma'(t)$ gelten soll.

Aufgabe 2. (a) Es sei

$$g: \mathbb{C} \setminus \{-1\} \to \mathbb{R}, \qquad g(x) = \log\left(\frac{1}{|1+z|^2}\right).$$

Zeigen Sie, dass $f: \mathbb{D} \to \mathbb{C}$, $f(z) = \frac{\partial g}{\partial z}$ eine auf \mathbb{D} holomorphe Funktion definiert.

(b) Es sei

$$g: \mathbb{C} \to \mathbb{R}, \qquad g(z) = \log\left(\frac{1}{1+|z|^2}\right).$$

Definiert auch in diesem Fall $f: \mathbb{D} \to \mathbb{C}$, $f(z) = \frac{\partial g}{\partial z}$ eine auf \mathbb{D} holomorphe Funktion?

Beweis. (a) Definiere z = x + iy, also

$$|1 + z|^2 = |1 + x + iy|^2$$
$$= (1 + x)^2 + y^2$$

Die partielle Ableitungen sind

$$\frac{\partial g}{\partial x} = \frac{\partial}{\partial x} \log \left(\frac{1}{(1+x)^2 + y^2} \right)$$

$$= ((1+x)^2 + y^2) \frac{\partial}{\partial x} \frac{1}{(1+x)^2 + y^2}$$

$$= -\frac{2(1+x)}{(1+x)^2 + y^2}$$

$$\frac{\partial g}{\partial y} = -\frac{2y}{(1+x)^2 + y^2}$$

$$\frac{\partial g}{\partial x} = \frac{1}{2} \left(\frac{\partial g}{\partial x} - i \frac{\partial g}{\partial y} \right)$$

$$= -\left[\frac{1+x}{(1+x)^2 + y^2} - \frac{iy}{(1+x)^2 + y^2} \right]$$

$$= -\frac{1+x-iy}{1+2x+x^2+y^2}$$

$$= -\frac{1+x-iy}{(1+x+iy)(1+x-iy)}$$

$$= -\frac{1}{1+x+iy}$$

$$= -\frac{1}{1+z}$$

was offensichtlich holomorph ist.

(b) Wie üblich z = x + iy und damit $1 + |z|^2 = 1 + x^2 + y^2$. Die partielle Ableitungen sind

$$g(x,y) = \log\left(\frac{1}{1+x^2+y^2}\right)$$

$$\frac{\partial g}{\partial x} = -\frac{2x}{x^2+y^2+1}$$

$$\frac{\partial g}{\partial y} = -\frac{2y}{x^2+y^2+1}$$

$$\frac{\partial g}{\partial z} = -\left(\frac{x}{x^2+y^2+1} - i\frac{y}{x^2+y^2+1}\right)$$

$$f(x,y) = -\frac{x-iy}{1+x^2+y^2}$$

Die partielle Ableitungen von *f* sind

$$\frac{\partial f}{\partial x} = \frac{-x^2 + 2ixy + y^2 + 1}{(x^2 + y^2 + 1)^2}$$
$$\frac{\partial f}{\partial y} = -\frac{i(x^2 - 2ixy - y^2 + 1)}{(x^2 + y^2 + 1)^2}$$

Die Cauchy-Riemannsche Differentialgleichung

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}$$

gilt nicht, also *f* ist nicht holomorph.

Aufgabe 3. Gegeben sei $a \in \mathbb{D}$ und die Möbiustransformation

$$T_a: \mathbb{D} \to \mathbb{D}, \qquad T_a(z) = rac{a+z}{1+\overline{a}z}.$$

Ferner bezeichne $\mathbb{D}^+ := \{z \in \mathbb{D} : \operatorname{Im} z > 0\}$ die obere Einheitskreisscheibe. Zeigen Sie, dass $T_a(\mathbb{D}^+) \subseteq \mathbb{D}^+$ genau dann gilt, wenn $\operatorname{Im} a \geq 0$.

Beweis. " \Longrightarrow "

Wir beweisen: Wenn $\operatorname{Im} a < 0$, ist $T_a(\mathbb{D}^+) \not\subseteq \mathbb{D}^+$. Wenn $\operatorname{Im} a < 0$, ist $-a \in \mathbb{D}^+$. Damit gilt

$$T_a(-a)=0 \notin \mathbb{D}^+.$$

Jetzt ← . Die Umkehrabbildung ist

$$T_a^{-1}(z) = \frac{z - a}{1 - \overline{a}z}.$$

Wir betrachten das Bild des Rands. Zuerst betrachten wir das Bild von $[-1,1] \times \{0\} \subseteq \mathbb{C}$.

$$T_{a}(0) = a \in \overline{\mathbb{D}^{+}}$$

$$T_{a}(1) = \frac{1+a}{1+\overline{a}}$$

$$|T_{a}(1)| = 1 \qquad \text{siehe (1)}$$

$$\angle T_{a}(1) = \angle (1+a) - \angle (1+\overline{a})$$

$$= 2 \tan^{-1} \left(\frac{\operatorname{Im} a}{\operatorname{Re} a + 1}\right)$$

$$\geq 0 \qquad \operatorname{Im} a > 0$$

$$T_{a}(-1) = \frac{a-1}{1-\overline{a}}$$

$$|T_{a}(-1)| = 1 \qquad \text{siehe (1)}$$

$$\angle T_{a}(-1) = \angle (a-1) - \angle (1-\overline{a})$$

$$= 2 \tan^{-1} \left(\frac{\operatorname{Im} a}{\operatorname{Re} a - 1}\right)$$

$$\geq 0$$

Nebenrechnung:

$$|1 + a| = (1 + a)(1 + \overline{a})$$

$$= 1 + a + \overline{a} + |a|^{2}$$

$$= 1 + 2 \operatorname{Re} a + |a|^{2}$$

$$= 1 + 2 \operatorname{Re} \overline{a} + |\overline{a}|^{2}$$

$$= |1 + \overline{a}|$$
(1)

Daher sind $T_a(0)$, $T_a(1)$ und $T_a(-1)$ alle Elemente von \mathbb{D}^+ . Jetzt betrachten wir

$$T_a(i)=rac{a+i}{1-i\overline{a}}$$
 $|T_a(i)|=1$ auch ähnlich wie (1)

Der Rand $\partial \mathbb{D}^+$ wird auf einer Teilmenge von \mathbb{D}^+ abgebildet, also $T_a(\partial \mathbb{D}^+) \subseteq \mathbb{D}^+$. Aus einer ähnliche Rechnung erhalten wir, dass $T_a(-i) \in \mathbb{C} \setminus \overline{\mathbb{D}^+}$. Daher schließen wir, dass die Außenseite des $\overline{\mathbb{D}^+}$ wieder auf die Außenseite des $\overline{\mathbb{D}^+}$ abgebildet wird. Weil T_a bijektiv ist, muss das Innere des \mathbb{D}^+ nach \mathbb{D}^+ abgebildet werden, also $T_a(\mathbb{D}^+) \subseteq \mathbb{D}^+$.