Содержание

Ι	Определения	9
1	Диффеоморфизм	10
2	Формулировка теоремы о локальной обратимости в терминах систем уравнений	11
3	Формулировка теоремы о неявном отображении в терминах систем уравнений	12
4	Простое k -мерное гладкое многообразие в \mathbb{R}^m	13
5	Касательное пространство к k -мерному многообразию в \mathbb{R}^m	14
6	Относительный локальный максимум, минимум, экстремум	15
7	Формулировка достаточного условия относительного экстремума	16
8	Поточечная сходимость последовательности функций на множестве	17
9	Равномерная сходимость последовательности функций на множестве	18
10	Равномерная сходимость функционального ряда	19
11	Формулировка критерия Больцано-Коши для равномерной сходимости	20
12	Степенной ряд, радиус сходимости степенного ряда, формула Адамара	21
13	Кусочно-гладкий путь	22
14	Векторное поле	23
15	Интеграл векторного поля по кусочно-гладкому пути	24

16 Потенциал, потенциальное векторное поле	25
17 Локально потенциальное векторное поле	26
18 Похожие пути	27
19 Интеграл локально-потенциального векторного поля по произвольному пути	28
20 Гомотопия путей связанная и петельная	29
21 Односвязная область	30
22 Полукольцо, алгебра, сигма-алгебра	31
23 Объем	32
24 Ячейка	33
${f 25}\ {f K}$ лассический объем в ${\Bbb R}^m$	34
26 Мера, пространство с мерой	35
27 Полная мера	36
28 Сигма-конечная мера	37
29 Дискретная мера	38
II Теоремы	39
30 Лемма о "почти локальной инъективности"	40
30.1 Показатальство	40

31	Теорема о сохранении области	41
	31.1 Доказательство	41
32	Следствие о сохранении области для отображений в пространство меньшей размерно-	
	сти	42
	32.1 Доказательство	42
33	Теорема о гладкости обратного отображения	43
	33.1 Доказательство	43
34	Лемма о приближении отображения его линеаризацией	44
	34.1 Доказательство	44
35	Теорема о локальной обратимости	45
	35.1 Доказательство	45
36	Теорема о неявном отображении	46
	36.1 Доказательство	46
37	Теорема о задании гладкого многообразия системой уравнений	48
	37.1 Доказательство	48
38	Следствие о двух параметризациях	5 0
	38.1 Доказательство	50
39	Лемма о корректности определения касательного пространства	51
	39.1 Доказательство	51
40	Касательное пространство в терминах векторов скорости гладких путей	52

	40.1 Доказательство	52
41	Касательное пространство к графику функции и к поверхности уровня	53
42	Необходимое условие относительного локального экстремума	54
	42.1 Доказательство	54
43	Вычисление нормы линейного оператора с помощью собственных чисел	55
	43.1 Доказательство	55
44	Теорема Стокса-Зайдля о непрерывности предельной функций. Следствие для рядов	56
	44.1 Доказательство	56
	44.2 Следствие для рядов	56
	44.2.1 Доказательство	56
45	Метрика в пространстве непрерывных функций на компакте, его полнота	57
	45.1 Доказательство	57
46	Теорема о предельном переходе под знаком интеграла. Следствие для рядов	58
	46.1 Доказательство	58
	46.2 Следствие для рядов	58
	46.2.1 Доказательство	58
47	Правило Лейбница дифференцирования интеграла по параметру	59
	47.1 Доказательство	59
48	Теорема о предельном переходе под знаком производной. Дифференцирование функ-	
	ционального ряда	60

	48.1 Доказательство	60
	48.2 Дифференцирование функционального ряда	60
	48.2.1 Доказательство	61
49	Признак Вейерштрасса равномерной сходимости функционального ряда	62
	49.1 Доказательство	62
50	Дифференцируемость гамма функции	63
	50.1 Доказательство	63
51	Теорема о предельном переходе в суммах	64
	51.1 Доказательство	64
52	Теорема о перестановке двух предельных переходов	65
	52.1 Доказательство	65
53	Признак Дирихле равномерной сходимости функционального ряда	66
	53.1 Доказательство	66
54	Теорема о круге сходимости степенного ряда	67
	54.1 доказательство	67
55	Теорема о непрерывности степенного ряда	68
	55.1 Доказательство	68
56	Теорема о дифференцировании степенного ряда. Следствие об интегрировании. При-	
	мер	69
	56.1 Доказательство	69

	56.2 C	ледствие об интегрировании	69
	56.3 П	Гример	70
57	Свойс	ства экспоненты	71
	57.1 C	ледствие	71
58	Метод	д Абеля суммирования рядов. Следствие	72
	58.1 Д	[оказательство	72
	58.2 C	уледствие	72
	5	8.2.1 Доказательство	72
59	Едино	ственность разложения функции в ряд	73
	59.1 Д	[оказательство	73
60	Разло	эжение бинома в ряд Тейлора	74
	60.1 Д	[оказательство	74
61	Teope	ма о разложимости функции в ряд Тейлора	7 5
	61.1 Д	[оказательство	75
62	Teope	ма Коши о перманентности метода средних арифметических	76
	62.1 Д	(ополнительное определение	76
	62.2 4	Рормулировка	76
	62.3 Д	[оказательство	76
63	Прост	гейшие свойства интеграла векторного поля по кусочно-гладкому пути	77
	63.1 Д	[оказательство	78

64	l Обобщенная формула Ньютона–Лейбница	79
	64.1 Доказательство	79
65	Xарактеризация потенциальных векторных полей в терминах интегралов	80
	65.1 Доказательство	80
66	6 Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре	81
	66.1 Необходимое условие потенциальности гладкого поля	81
	66.2 Лемма Пуанкаре	81
	66.2.1 Доказательство	81
	66.3 Следствие к лемме Пуанкаре	81
	66.3.1 Доказательство	81
67	7 Лемма о гусенице	82
	67.1 Доказательство	82
68	3 Лемма о равенстве интегралов по похожим путям	83
	68.1 Доказательство	83
69	Лемма о похожести путей, близких к данному	84
	69.1 Доказательство	84
70	Равенство интегралов по гомотопным путям	85
	70.1 Доказательство	85
71	. Теорема о резиночке	86
	71.1 Доказательство	86

72	Теорема Пуанкаре для односвязной области	87
	72.1 Доказательство	87
73	Свойства объема: усиленная монотонность, конечная полуаддитивность	88
	73.1 Доказательство	88
74	Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности	89
	74.1 Доказательство	89
7 5	Теорема о непрерывности снизу	90
	75.1 Доказательство	90
7 6	Теоремы о непрерывности сверху	91
	76.1 Доказательство	91

Часть І

Определения

1 Диффеоморфизм

 $\mathit{Oбласть}\ \mathtt{B}\ \mathbb{R}^m$ — открытое связное множество.

$$f:\mathop{O}\limits_{{
m obs.}}\subset\mathbb{R}^m o\mathbb{R}^m-$$
 диффеоморфизм, если:

- 1. f обратима;
- 2. f дифференцируема;
- 3. (f^{-1}) тоже дифференцируема.

2 Формулировка теоремы о локальной обратимости в терминах систем уравнений

$$\begin{cases} f_1(x_1,\ldots,x_m)=y_1\\ \dots & \text{все } f_i:\mathbb{R}^m\to\mathbb{R} \text{ и } f_i\in C^1.\\ \\ f_m(x_1,\ldots,x_m)=y_m \end{cases}$$

Пусть при $y=(b_1,\dots,b_m)$ существует единственное решение $x=(a_1,\dots,a_m),$ что $\det\left(\frac{\partial f_i}{\partial x_j}(a)\right) \neq 0.$

Тогда для y_0 близких к (b_1, \ldots, b_m) существует решение (x_1, \ldots, x_m) близкое к (a_1, \ldots, a_m) и зависимое от y, причём оно гладкое.

3 Формулировка теоремы о неявном отображении в терминах систем уравнений

$$\begin{cases} f_1(x_1, \dots, x_m, y_1, \dots, y_n) = 0 \\ \dots & f_i \in C^r \left(\underset{\text{otkp.}}{O} \subset \mathbb{R}^{m+n}, \mathbb{R} \right). \end{cases}$$

$$f_n(x_1, \dots, x_m, y_1, \dots, y_n) = 0$$

x=a и y=b удовлетворяют системе уравнений, а также $\det\left(\frac{\partial f_i}{\partial y_j}(a,b)\right) \neq 0.$ Тогда

 $\exists U(a)$ и $\exists V(b)$ такие, что $\exists ! \varphi : U(a) \to V(b)$ класса C^r , что $\forall x \in U(a)$ верно $(x, \varphi(x))$ — решение этой системы.

4 Простое k-мерное гладкое многообразие в \mathbb{R}^m

1. $M \subset \mathbb{R}^m$ — простое k-мерное многообразие в \mathbb{R}^m (непрерывное), если оно гомеоморфно открытому множеству из \mathbb{R}^k , т.е.:

$$\exists \mathop{O}\limits_{\text{откр.}} \subset \mathbb{R}^{k \leqslant m}$$
 и $\exists \Phi : O \to M$ такое, что

- Φ сюрьекция;
- Φ непрерывное;
- Φ обратимо и Φ^{-1} непрерывно.
- 2. $M \subset \mathbb{R}^m$ простое k-мерное C^r -гладкое многообразие, если:

$$\exists \mathop{O}_{\text{otkp.}} \subset \mathbb{R}^{k \leqslant m}, \, \Phi: O \to M \colon$$

- Φ гомеоморфизм;
- $\Phi \in C^r(O, \mathbb{R}^m)$ гладкость;
- $\forall t \in O$ верно, что rang $\Phi'(t) = k$ невырожденность.

5 Касательное пространство к k-мерному многообразию в \mathbb{R}^m

 $M\subset\mathbb{R}^m-k$ -мерное многообразие, $p\in M$ и $\Phi:\mathbb{R}^k\to\mathbb{R}^m$ — параметризация, $\Phi(t_0)=p$. Тогда $\Phi'(t_0)\left(\mathbb{R}^k\right)$ называется $\mathit{касательным}$ $\mathit{пространством}$ к k-мерному многообразию M в точке p. Обозначается $\mathit{Tp}(M)=\left\{\Phi'(t_0)h,\;h\in\mathbb{R}^k\right\}$.

6 Относительный локальный максимум, минимум, экстремум

$$f:E\subset\mathbb{R}^{m+n} o\mathbb{R},\,\Phi:E o\mathbb{R}^n$$
. Тогда

 $x_0 \in E, \ \Phi(x_0) = 0$ — точка относительного локального максимума f, если

$$\exists U(x_0): \forall x \in U(x_0) \cap E$$
 и $\Phi(x) = 0$ верно $f(x) \leqslant f(x_0)$.

Аналогично определяется минимум.

7 Формулировка достаточного условия относительного экстрему-

 \mathbf{ma}

$$f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \, \Phi: E \to \mathbb{R}^n, \, f, \, \Phi \in C^1.$$

Пусть $a \in E$: rang $\Phi'(a) = n$ и $\lambda \in \mathbb{R}^n$ и верно

$$\begin{cases} f'(a) - \lambda \Phi'(a) = 0 \\ \Phi(a) = 0 \end{cases}$$

Если $h=(h_x,h_y)\in\mathbb{R}^{m+n}$ удовлетворяет $\Phi'(a)h=0$, то можно выразить $h_y=\psi(h_x)$.

Рассмотрим квадратичную форму $Q(h_x) = d^2G(a,(h_x,\psi(h_x)))$, где $G = f - \lambda \Phi$ (форма Лагранжа). Тогда в зависимости от квадратичной формы можно узнать информацию о самой точке a:

- ullet Q положительно определенная точка локального минимума;
- ullet Q отрицательно определенная точка локального максимума;
- ullet Q неопределенная нет экстремума;
- в остальных случаях недостаточно информации.

8 Поточечная сходимость последовательности функций на множестве

 $f_n: X \to \mathbb{R}$, если $\exists f: E \subset X \to \mathbb{R}$, что для любого $x_0 \in E$ предел $\lim_{n \to +\infty} f_n(x_0) = f(x_0)$, то $f_n \xrightarrow[n \to +\infty]{} f \ cxo\partial umc$ я поточечно на E.

9 Равномерная сходимость последовательности функций на множестве

 $f,\,f_n:X o\mathbb{R},\,E\subset X,\,$ тогда f_n — равномерно cxodumcя на E к функции f если

$$M_n := \sup_{x \in E} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$$

Обозначается как $f_n \rightrightarrows f$ на множестве E.

10 Равномерная сходимость функционального ряда

- 1. Функциональный ряд cxodumcs nomoчeчно на E, если для любого $x \in E$ сумма $\sum_{n=0}^{+\infty} u_n(x)$ сходится к сумме S(x);
- 2. Функциональный ряд cxodumcs равномерно на E (к сумме S(x)), если $S_n(x) \rightrightarrows S(x)$ на E, где $S_n(x)$ последовательность частичных сумм.

11 Формулировка критерия Больцано–Коши для равномерной сходимости

Функциональный ряд $\sum u_n$ равномерно сходится на E эквивалентно следующему утверждению:

$$\forall \varepsilon > 0: \exists N: \forall m \geqslant n \geqslant N$$
 и $\forall x \in E: \left|\sum_{k=n}^m u_k(x)\right| < \varepsilon$

12 Степенной ряд, радиус сходимости степенного ряда, формула Адамара

$$a_n\in\mathbb{R}$$
 (или \mathbb{C}), $B(z_0,r)\subset\mathbb{R}$ (или \mathbb{C}), тогда $\sum_{n=0}^{+\infty}a_n(z-z_0)^n$ называют $cmenehhым$ рядом.

Назовём R радиусом сходимости степенного ряда, если:

- ullet при $|z-z_0| < R$ ряд абсолютно сходится;
- ullet при $|z-z_0|>R$ ряд расходится.

$$R=rac{1}{\displaystyle\lim_{n
ightarrow+\infty}\sqrt[n]{|a_n|}}-$$
 формула Адамара.

13 Кусочно-гладкий путь

 $\gamma: [a,b] \to \mathbb{R}^m$ — кусочно-гладкий путь, если существует такое дробление $a=t_0 < t_1 < \ldots < t_n = b$, что для любого $i \in [1,n]$ путь $\gamma \big|_{[t_{i-1},t_i]}$ — гладкий (в точка t_{i-1} и t_i есть односторонние производные).

14 Векторное поле

 $V:E\subset\mathbb{R}^m\to\mathbb{R}^m$ — векторное поле. По умолчанию считается, что V — непрерывное.

15 Интеграл векторного поля по кусочно-гладкому пути

V — векторное поле в E, E — открытое, γ — кусочно-гладкий путь в E. Тогда

$$I(V,\gamma) := \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt = \int_{a}^{b} V_{1}(\gamma(t)) \gamma'_{1}(t) + \ldots + V_{m}(\gamma(t)) \gamma'_{m}(t) dt$$

интеграл векторного поля V по кусочно-гладкому пути γ .

16 Потенциал, потенциальное векторное поле

 $O\subset\mathbb{R}^m$ — область, $V:O o\mathbb{R}^m$. Тогда V — потенциальное векторное поле, а f — его потенциал, если $f\in C^1\left(O,\mathbb{R}\right)$ и grad f=V в области O.

17 Локально потенциальное векторное поле

 $V:O\subset\mathbb{R}^m o\mathbb{R}^m$ — локально потенциальное векторное поле, если O — область, а $\forall x\in O:\exists U(x),$ что V в U(x) — потенциальное поле.

18 Похожие пути

V — локально потенциальное векторное поле, $\gamma, \overline{\gamma}: [a,b] \to O$ — непрерывны. Тогда γ и $\overline{\gamma}$ — похожи, если у этих путей имеется одинаковая V-гусеница, т.е. существует такие дробления t_0, t_1, \ldots, t_n и $\overline{t_0}, \overline{t_1}, \ldots, \overline{t_n}$, что $a = t_0 = \overline{t_0}$ и $b = t_n = \overline{t_n}$, и шары B_1, B_2, \ldots, B_n , а также для любого $k \in [1,n]$ $\gamma|_{[t_{k-1},t_k]} \subset B_k$ и $\overline{\gamma}|_{[\overline{t_{k-1}},\overline{t_k}]} \subset B_k$.

19 Интеграл локально-потенциального векторного поля по произвольному пути

 $I(V,\gamma)=I(V,\overline{\gamma})=\int\limits_a^b\langle V\left(\overline{\gamma}(t)\right),\overline{\gamma}'(t)\rangle dt$ — интеграл локально векторное поля V по произвольному пути γ , где $\overline{\gamma}$ — похожий на γ кусочно-гладкий путь. В условиях соответствующей леммы такой всегда существует.

20 Гомотопия путей связанная и петельная

 $\gamma_0,\ \gamma_1:[a,b] o O,\$ тогда гомотопия — это отображение $\Gamma:[a,b] imes[0,1] o O$ — непрерывное, такое что $\Gamma(\cdot,0)=\gamma_0(\cdot)$ и $\Gamma(\cdot,1)=\gamma_1(\cdot).$

Гомотопия связанная: $\gamma_0(a)=\gamma_1(a),\ \gamma_0(b)=\gamma_1(b)$ и $\forall u\in[0,1]\ \Gamma(a,u)=\gamma_0(a)$ и $\Gamma(b,u)=\gamma_0(b).$

Гомотопия петельная: $\gamma_0(a)=\gamma_0(b),\,\gamma_1(a)=\gamma_1(b)$ и $\forall u\in[0,1]$ $\Gamma(a,u)=\Gamma(b,u).$

21 Односвязная область

 $O\subset\mathbb{R}^m$ — односвязная область, если O — область и любой замкнутый путь гомотопен постоянному.

22 Полукольцо, алгебра, сигма-алгебра

X — множество, $\mathcal{P}\subset 2^X$ — полукольцо если:

- 1. $\varnothing \in \mathcal{P}$;
- 2. $\forall A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$;
- 3. $\forall A_1, A_2 \in \mathcal{P}$ существует конечное число $B_1, B_2, \ldots, B_k \in \mathcal{P}$, что $A_1 \setminus A_2 = \bigsqcup_{i=1}^k B_i$.

 \mathcal{A} — алгебра подмножеств X, если:

- 1. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$;
- 2. $X \in \mathcal{A}$.

 σ -алгебра ${\cal A}$, если это алгебра и ещё выполнено третье свойство:

$$\forall A_1, A_2, A_3, \ldots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{+\infty} A_i \in \mathcal{A}.$$

Можно вместо объединения потребовать пересечение, поскольку из одного следует другое

23 Объем

 $\mu:\mathcal{P} o\overline{\mathbb{R}}-a\partial\partial umu$ вная, если:

- 1. μ не принимает одновременно бесконечности разных знаков;
- 2. $\mu(\emptyset) = 0;$
- 3. $\forall A_1,\,A_2,\,\ldots,\,A_n\in\mathcal{P}$ дизъюнкты, если $A=\bigsqcup A_n\in\mathcal{P}$, тогда $\mu A=\mu A_1+\mu A_2+\ldots+\mu A_n.$

 $\mu-$ объём, если:

- 1. $\mu: \mathcal{P} \to \overline{\mathbb{R}};$
- 2. $\mu \ge 0$;
- 3. μ аддитивная.

24 Ячейка

 $a,b \in \mathbb{R}^m,\, [a,b) = \{x \in \mathbb{R}^m : \forall i: a_i \leq x_i < b_i\}$ — ячейка.

${f 25}$ Классический объем в ${\Bbb R}^m$

$$\mu[a,b) = \prod_{i=1}^{m} (b_i - a_i).$$

26 Мера, пространство с мерой

 $\mu:\mathcal{P}\to\overline{\mathbb{R}}$ — мера, если μ — объём, а также выполнено свойство cчётной аддитивности, т.е.:

$$\forall A,\,A_1,\,A_2,\,\ldots$$
, где A_i — дизъюнкты и $A=\bigsqcup_{i=1}^{+\infty}A_i\Rightarrow \mu A=\sum_{i=1}^{+\infty}\mu A_i.$

 (X,\mathcal{A},μ) — пространство с мерой, если \mathcal{A} — σ -алгебра на множестве X, а μ — мера на $\mathcal{A}.$

27 Полная мера

 $(X,\mathcal{A},\mu),\,\mu$ — полная мера, если $\forall E\in\mathcal{A}$ и $\mu E=0$ верно, что $\forall e\in E:e\in\mathcal{A}$ и $\mu e=0.$

28 Сигма-конечная мера

$$(X,\mathcal{P},\mu),\,\mu-\sigma$$
-конечная, если можно представить $X=\bigcup_{k=1}^{+\infty}B_k,$ где $\mu B_k<+\infty.$

29 Дискретная мера

X — множество, $A_1,\ A_2,\ \dots$ — точки множества $X,\ h_1,\ h_2,\ \dots\geq 0,\ \mathcal{P}=2^X,$ и для любого $B\subset\mathcal{P}$ $\mu B=\sum_{i:A_i\in B}h_i.$

Часть II

Теоремы

30 Лемма о "почти локальной инъективности"

 $F:O\subset\mathbb{R}^m o\mathbb{R}^m$ — дифференцируема в точке $x_0\in O,$

 $\det F'(x_0) \neq 0,$

O — область.

Тогда $\exists c, \delta > 0 : \forall h : |h| < \delta : |F(x_0 + h) - F(x_0)| \ge c \cdot |h|$

30.1 Доказательство

 $|F(x_0 + h) - F(x_0)| = |F'(x_0)h + \alpha(h)|h| \ge |F'(x_0)h| - |\alpha(h)||h| \ge (\widetilde{c} - |\alpha(h)|)|h| \ge \frac{c}{2}|h|$

Возьмём в качестве $\widetilde{c} = \frac{1}{\|(F'(x_0))^{-1}\|}.$

Пусть при $|h| < \delta$ будет верно, что $|\alpha(h)| < \frac{\widetilde{c}}{2}.$

31 Теорема о сохранении области

$$F:O\subset\mathbb{R}^m o\mathbb{R}^m,$$
 где O — открыто,

для любого $x \in O$ выполняется $\det F'(x) \neq 0$. Тогда F(O) — открыто.

31.1 Доказательство

Пусть $x_0 \in O$ и $y_0 = F(x_0) \in F(O)$, необходимо проверить, что y_0 — внутренняя точка F(O).

По лемме о "почти локальной инъективности" существуют такие c и δ , что для любого $h \in \overline{B(0,\delta)}$ верно $|F(x_0+h)-F(x_0)| \geq c|h|$ (и в частности $F(x_0+h) \neq F(x_0)$ при $|h|=\delta$).

$$r := \frac{1}{2} \text{dist } (y_0, F(S(x_0, \delta))) > 0$$

Проверим, что $B(y_0,r)\subset F(O)$. Пусть $y\in B(y_0,r)$ и g(x):=|F(x)-y| — функция на $\overline{B(x_0,\delta)}$.

- 1. На $S(x_0, \delta)$ верно, что $|F(x) y| \ge r$
- 2. При $x=x_0$ выполняется, что $|F(x_0)-y|=|y_0-y|< r,$ по теореме Вейерштрасса g достигается минимума внутри шара $B(x_0,\delta).$

Пусть $l:x\mapsto \left|F(x)-y\right|^2$ — достигает минимума таким же образом.

Найдём минимум с помощью необходимого условию экстремума, т.е. производная должна быть равна 0.

$$\begin{cases} l'_{x_1} = 0 & 2(f_1(x_1, \dots, x_m) - y_1) \cdot \frac{\partial f_1}{\partial x_1} + \dots + 2(f_m(x_1, \dots, x_m) - y_m) \cdot \frac{\partial f_m}{\partial x_1} = 0 \\ \dots \\ l'_{x_m} = 0 & 2(f_1(x_1, \dots, x_m) - y_1) \cdot \frac{\partial f_1}{\partial x_m} + \dots + 2(f_m(x_1, \dots, x_m) - y_m) \cdot \frac{\partial f_m}{\partial x_m} = 0 \end{cases}$$

Поскольку матрица F'(x) невырожденная по условию, то получаем, что $f_i(x) - y = 0$ для всех i.

32 Следствие о сохранении области для отображений в пространство меньшей размерности

$$F: O \subset \mathbb{R}^m \to \mathbb{R}^l$$
, где $l < m$ и $F \in C^1(O)$,

rang F'(x) = l при всех $x \in O$.

Тогда F(O) — открыто.

32.1 Доказательство

В точке x_0 и в окрестности ранг реализован на первых l столбцах.

Пусть
$$\widetilde{F} = \begin{pmatrix} F \\ x_{l+1} \\ \dots \\ x_m \end{pmatrix} : O \to \mathbb{R}^m$$

$$(x_1,\ldots,x_m)\mapsto (F(x_1,\ldots,x_m),x_{l+1},\ldots,x_m)$$

$$\det \widetilde{F}(x_0) = \det F(x_0) \neq 0,$$
а также $\forall x \in U(x_0).$

Значит $\widetilde{F}(U(x_0))$ открыто в \mathbb{R}^m , а $F(U(x_0))$ — проекция на \mathbb{R}^l .

33 Теорема о гладкости обратного отображения

$$T \in C^r(O, \mathbb{R}^m) \ (r = 1, 2, ..., +\infty).$$

Пусть T — обратимо, $\det T'(x) \neq 0$ при $x \in O$. Тогда

 $T^{-1} \in C^r$ и при этом $\left(T^{-1}\right)'(y_0) = \left(T'(x_0)\right)^{-1}$ при $y_0 = T(x_0)$.

33.1 Доказательство

Индукция по r:

• База r = 1:

 $S = T^{-1}$ — обратное отображение, S — непрерывно (по теореме о сохранении области).

O — открытое $\Rightarrow T(O)$ — открытое, значит $T: \mathbb{R}^m_{(1)} \to \mathbb{R}^m_{(2)}$, а $S: \mathbb{R}^m_{(2)} \to \mathbb{R}^m_{(1)}$, значит и S^{-1} — тоже открытое.

 $T(O) = O_1, y_0 \in O_1$, верно ли, что S — дифференцируема в y_0 ? Обозначим $A = T'(x_0)$.

По лемме о почти локальной инъективности $\exists c, \delta : x \in B(x_0, \delta)$, что $|T(x) - T(x_0)| \ge c|x - x_0|$

По определению дифференцирования $T(x) - T(x_0) = A(x - x_0) + \alpha(x)|x - x_0|$

$$S(y) - S(y_0) = A^{-1}(y - y_0) + A^{-1}\alpha(S(y))|S(y) - S(y_0)|.$$

Пусть
$$\beta = A^{-1}\alpha(S(y))|S(y) - S(y_0)|$$

Пусть y близко к $y_0: |x-x_0| = |S(y)-S(y_0)| < \delta$ — по непрерывности S'.

$$\left|\beta(y)\right| = \left|x - x_0\right| \cdot \left|A^{-1}\alpha\left(S(y)\right)\right| \leq \frac{1}{c}\left|T(x) - T(x_0)\right| \cdot \left\|A^{-1}\right\|\alpha\left(S(y)\right)\right| = \frac{\left\|A^{-1}\right\|}{c}\left|\alpha\left(S(y)\right)\right| \left|y - y_0\right| = o(\left|y - y_0\right|)$$
при $y \to y_0$.

$$|T(x) - T(x_0)| \ge c|x - x_0| \Rightarrow |x - x_0| \le \frac{1}{c}|T(x) - T(x_0)|.$$

 $S': y \xrightarrow{C^1} T^{-1}(y) = x \xrightarrow{C^1} T'(x) \xrightarrow{C^{\infty}} (T'(x))^{-1} = S'.$

• Индукционный переход без доказательства:

$$r=1\Rightarrow r=2$$
, т.е. $T\in C^2\Rightarrow S\in C^2$, т.е. $S'\in C^1$, а также $T\in C^1$ и $S\in C^1$.

34 Лемма о приближении отображения его линеаризацией

$$T \in C^1(O, \mathbb{R}^m), x_0 \in O.$$

Тогда для любого
$$h \mid T(x_0+h) - T(x_0) - T'(x_0)h \mid \leq M \cdot |h|$$
, где $M = \sup_{z \in [x_0, x_0+h]} \|T'(z) - T'(x_0)\|$.

34.1 Доказательство

$$|F(x)-F(x_0)| \leq \sup_{z \in [x_0,x]} \|F^{-1}(z)\| \cdot |x-x_0|$$
 — по теореме Лагранжа.

$$F(x) = T(x) - T'(x_0) \cdot X$$

$$F'(x) = T'(x) - T'(x_0)$$

$$|T(x_0+h)-T(x_0)-T'(x_0)h|=|F(x_0+h)-F(x_0)| \le \sup_{z\in[x_0,x_0+h]} ||F'(z)|||h|.$$

35 Теорема о локальной обратимости

$$T\in C^{1}\left(O,\mathbb{R}^{m}\right),\,x_{0}\in O$$
и $\det T'(x_{0})\neq 0.$ Тогда

$$\exists U(x_0): Tig|_{U(x_0)}$$
 — диффеоморфизм.

35.1 Доказательство

Достаточно доказать, что $\exists U(x_0)$, что $T\big|_{U(x_0)}$ — обратимо (и для любого $x \in U(x_0)$ $\det T'(x) \neq 0$).

$$T'(x_0)$$
 — обратимо, значит $\exists c>0: \forall h \; |T'(x_0)h|\geq c|h|$, где $c=\frac{1}{\|T'(x_0)^{-1}\|}$.

Возьмём $U = B(x_0, r) \subset O$ так, что при $x \in U$ и было верным:

$$\det T'(x) \neq 0$$
 и $||T'(x) - T'(x_0)|| < \frac{c}{4}$.

Проверим, что $T|_{U}$ — взаимно-однозначное отображение.

$$x,y\in U$$
 и $y=x+h$

$$T(y) - T(x) = (T(x+h) - T(x) - T'(x)h) + (T'(x)h - T'(x_0)h) + T'(x_0)h$$

(Здесь и ниже римскими цифрами отображается номер скобки в выражении сверху)

$$|T(y) - T(x)| \ge |T'(x_0)h| - |I| - |II| \ge c|h| - \frac{c}{2}|h| - \frac{c}{4}|h| = \frac{c}{4}|h| \ne 0.$$

$$|I| \ge M|h|$$

$$|T(x_0+h)-T(x_0)-T'(x_0)h| \le M|h|$$

$$M = \sup ||T'(z) - T'(x_0)||, z \in [x_0, x_0 + h]$$

$$M \leq \frac{c}{2}$$
.

36 Теорема о неявном отображении

 $F: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n, F \in C^r(O, \mathbb{R}^n),$

 $(a,b) \in O$ и F(a,b) = 0,

 $\det F_u'(a,b) \neq 0.$

Тогда:

1. Существует открытое $P \in \mathbb{R}^m, \ a \in P$ и также существует открытое $Q \in \mathbb{R}^n, \ b \in Q$ такие, что $\exists ! \varphi : P \to Q - C^r$ -гладкое, такое, что $\forall x \in P \ F(x, \varphi(x)) = 0.$

2.
$$\varphi'(x) = -\left(F_y'(x,\varphi(x))\right)^{-1} \cdot F_x'(x,\varphi(x)).$$

36.1 Доказательство

1. $\Phi: O \to \mathbb{R}^{m+n}$

$$(x,y) \mapsto (x,F(x,y))$$

$$\Phi' = \begin{pmatrix} \mathbb{E} & 0 \\ F'_x & F'_y \end{pmatrix}, \det \Phi'(a, b) \neq 0$$

 $\exists \widetilde{U}(a,b) : \Phi ig|_{\widetilde{U}} -$ диффеоморфизм.

$$\widetilde{U}=P_1 imes Q$$
, где $a\in P_1,\,b\in Q.$

(a)
$$\widetilde{V} = \Phi\left(\widetilde{U}\right)$$
 — открыто;

(b)
$$\exists \psi = \Phi^{-1} : \widetilde{V} \to \widetilde{U};$$

(c) Φ не меняет первую координату, значит ψ тоже не меняет,

$$\psi(u,v) = (u,H(u,v)), \, H: \widetilde{V} \to \mathbb{R}^n, \, H \in C^r;$$

(d) "ось x" и "ось u" одно и то же \mathbb{R}^m ,

$$P := (\mathbb{R}^m \times \{O_n\}) \cap \widetilde{V}$$
 — открыто в \mathbb{R}^m ;

(e)
$$\psi(x) := H(x,0) : P \to Q : F(x,\psi(x)) = 0$$
 — единственно,

$$x \in P, y \in Q \ F(x,y) = 0, (x,y) = \psi(\Phi(x,Y)) = \psi(x,0) = (x,H(x,0)).$$

2.
$$F(x, \varphi(x)) = 0, F \circ H = 0,$$

$$\begin{pmatrix} F'_x & F'_y \end{pmatrix} \begin{pmatrix} E \\ \varphi'(x) \end{pmatrix} = 0 \Rightarrow F'_x + F'_y \varphi'(x) = 0,$$

$$F'_y \varphi' = -F'_x$$

$$\varphi' = -(F'_y)^{-1} F'_x$$

37 Теорема о задании гладкого многообразия системой уравнений

 $M \subset \mathbb{R}^m$, зафиксируем $1 \le k < m$ и $1 \le r \le +\infty$.

Тогда $\forall p \in M$ эквивалентны следующие два утверждения:

1. $\exists U \subset \mathbb{R}^m$ — открытое, $p \in U$,

 $M \cap U$ — простое k-мерное C^r -гладкое многообразие;

2. $\exists \widetilde{U} \subset \mathbb{R}^m$ — открытое, $p \in \widetilde{U}$,

что существуют функции $f_1,\,f_2,\,\ldots,\,f_{m-k}:\widetilde{U}\to\mathbb{R}\in C^r$ такие, что

$$x \in M \cap \widetilde{U} \iff f_1(x) = 0, f_2(x) = 0, \dots, f_{m-k}(x) = 0$$
 и (grad $f_1(p), \dots$, grad $f_{m-k}(p)$) — ЛНЗ.

37.1 Доказательство

• $1 \Rightarrow 2$:

Существует параметризация $\Phi \in C^r (O \subset \mathbb{R}^k, \mathbb{R}^m),$

 $\varphi_1,\ldots,\varphi_m$ — координатные функции Φ и $p=\Phi(t_0),$ rang $\Phi'(t_0)=k.$

Можно считать, что $\left(\frac{\partial \varphi_i}{\partial t_i}(t_0)\right)$ — невырождена.

$$\mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^{m-k}.$$

$$L: \mathbb{R}^m \to \mathbb{R}^k$$
 — проекция, $x \mapsto (x_1, \dots, x_k)$.

 $L \circ \Phi$ имеет невырожденный производный оператор в точке t_0 .

 $\exists w(t_0)$ — окрестность $t_0, \exists V \in \mathbb{R}^k$ — открытое и $L \circ \Phi : w \to V$ — диффеоморфизм.

 $L(w) \to V$ — взаимно-однозначеное отображение, т.е. $\Phi(w)$ — график некоторого отображения $H: V \to \mathbb{R}^{m-k}$.

Пусть $\psi = (L \circ \Phi)^{-1} : V \to w, \psi \in C^r$.

Если $\widetilde{x} \in V$, то $(\widetilde{x}, H(\widetilde{x})) = \Phi(w(\widetilde{x})) \Rightarrow H \in C^r$.

 $\Phi(w)$ — открыто в M, \exists открытое $\widetilde{U} \in \mathbb{R}^m$ такое, что $\widetilde{U} \cap M = \Phi(w)$ (можно считать, что $\widetilde{U} \subset V \times \mathbb{R}^{m-k}$.

$$f_j:\widetilde{U}\to\mathbb{R},\,f_j(x)=H_j\left(L(x)
ight)-x_{k+j},$$
 если $x\in\widetilde{U}\cap M\Leftrightarrow$ все $f_j(x)=0.$

$$\begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \dots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \dots & 0 \\ \frac{\partial H_2}{\partial x_1} & \dots & \frac{\partial H_2}{\partial x_k} & 0 & -1 & \dots & 0 \\ \dots & & & & & & \\ \frac{\partial H_{m-k}}{\partial x_1} & \dots & \frac{\partial X_{m-k}}{x_k} & 0 & 0 & \dots & -1 \end{pmatrix}, \text{ где } m-k \text{ строчек и все они ЛНЗ.}$$

• $2 \Rightarrow 1$:

Из предыдущего пункта у нас есть система уравнение, для которой верно, что grad $f_i(p)$ — ЛНЗ, можно считать, что $\det\left(\frac{\partial f_i}{\partial x_{k+j}}(p)\right)_{i,j=1..m-k} \neq 0$.

По теореме о неявном отображении $\exists H: P \to Q$, где P — окрестность $(p_1, ..., p_k)$, а Q — окрестность $(p_{k+1}, ..., p_m)$,

что $\forall (x_1, ..., x_k) \in P$ точка $(x_1, ..., x_k, H_1(x_1, ..., x_k), H_2(x_1, ..., x_k), ..., H_{m-k}(x_1, ..., x_k))$ удовлетворяет системе уравнений.

 $\Phi: P \to \mathbb{R}^m$,

 $u\mapsto (u,H(u))$ — параметризация нашего многообразия, $(P\times Q)\cap M$.

38 Следствие о двух параметризациях

 $M\subset \mathbb{R}^m-k$ -мерное простое C^r -гладкое многообразие, $p\in M,\, U$ — открытое в $M,\, p\in U.$

$$\Phi_1: O_1 \subset \mathbb{R}^k \to U \cap M$$
,

 $\Phi_2: O_2 \subset \mathbb{R}^k \to U \cap M$ (оба отображние "на" и даже гомеоморфизм)

 $(\phi_i \in C^r\left(O_i, \mathbb{R}^m\right))$. Тогда существует диффеоморфизм $\psi: O_1 \to O_2$ и $\Phi_1 = \Phi_2 \circ \psi$.

38.1 Доказательство

Для случая, когда rang $\Phi_1'(p)$ и rang $\Phi_2'(p)$ на одном и том же наборе столбцов (во всех точках O_1 и O_2).

Тогда $\Phi_1 \circ L$ и $\Phi_2 \circ L$ — тоже диффеоморфизмы.

Дальше всё очевидно, что $\Phi_1 = \Phi_2 \circ (L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1).$

39 Лемма о корректности определения касательного пространства

 $\Phi:O\subset\mathbb{R}^k o\mathbb{R}^m-C^r$ -параметризация $U(p)\cap M,\ p\in M,\ \Phi(t_0)=p,\ M$ — простое k-мерное гладкое многообразие в \mathbb{R}^m . Тогда образ оператора $\Phi'(t_0):\mathbb{R}^k o\mathbb{R}^m$ — это k-мерное подпространство в \mathbb{R}^m , не зависящее от Φ .

39.1 Доказательство

 Φ — параметризация, значит rang $\Phi'=k$, значит образ k-мерный. Если есть параметризацция Φ_2 , можно считать, что существует диффеоморфизм ψ , что $\Phi_2=\Phi\circ\psi$, и при этом $\Phi'_2=\Phi'\cdot\psi'$, где ψ' — невырожденный, значит Φ'_2 совпадает с Φ' .

40 Касательное пространство в терминах векторов скорости гладких путей

 $v\in Tp(M)\subset \mathbb{R}^m\Longleftrightarrow$ существует гладкий путь $\gamma_v:[-1,1]\to M,\,\gamma'(0)=v$ и $\gamma(0)=p.$

40.1 Доказательство

 Φ — параметризация в окрестности $P, \Phi(t_0) = p.$

- =
 - $\phi(t) = \Phi^{-1}(\gamma(t))$ соответствующий путь в E.

Путь гладкий, значит $\gamma'(t) = \Phi(\phi(t))' = \Phi'(\phi(t)) \cdot \phi'(t), \ \gamma'(0) = \Phi'(t_0)w$, что и требовалось доказать.

 $\bullet \Rightarrow$

$$v \in T_p(M) \to \exists w \in \mathbb{R}^k : \Phi'(t_0)w = v.$$

Рассмотрим путь $\gamma(t) = \Phi(t_0 + wt)$: $\gamma'(0) = \Phi'(t_0)w$, что и требовалось доказать.

41 Касательное пространство к графику функции и к поверхности уровня

Касательное пространство к графику $f:O\subset\mathbb{R}^m\to\mathbb{R}$, где $f\in C^1$ в точке $p=(x_0,f(x_0))$ задаётся уравнением

$$y - f(x_0) = f_1'(x_1)(x - x_1) + \ldots + f'm(x_m)(x - x_m).$$

Касательное пространство к поверхности уровня функции $f:\mathbb{R}^3 \to \mathbb{R}$ задаётся уравнением

$$f'_x(x_0)(x-x_0) + f'_y(y_0)(y-y_0) + f'_z(z_0)(z-z_0) = 0.$$

42 Необходимое условие относительного локального экстремума

$$f: E \subset \mathbb{R}^{m+n} \to \mathbb{R},$$

 $\Phi: E \to \mathbb{R}^n, \, a \in E$ и $\Phi(a) = 0$ — точка относительно локального экстремума.

rang
$$\Phi'(a) = n$$
, и f , $\Phi \in C^1(E)$.

Тогда
$$\exists \lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$$
, что

$$\begin{cases} f'(a) - \lambda \cdot \Phi'(a) = 0 \\ \Phi(a) = 0 \end{cases}$$

42.1 Доказательство

Пусть rang $\Phi'(a)$ реализован на столбцах x_{m+1}, \ldots, x_{m+n}

$$a=(a_1,\dots,a_m,a_{m+1},\dots,a_{m+n})=(a_x,a_y)$$
 и $\left(\frac{\partial\Phi}{\partial y}\right)$ — невырожденная матрица $n\times n.$

По теореме о неявном отображении $\varphi:U(a_x)\to V(a_y)$ и $\forall x\in U(a_x)$ $\Phi(X,\varphi(X))=0$. Кстати, $U(x)\cap M_\Phi$ простое m-мерное многообразие. Тогда $a_x=(a_1,\dots,a_m)$ — точка локального экстремума для функции $g(x)=f(x,\varphi(x))$. Тогда

$$\begin{cases} f_x'(a) + f_y'(a)\varphi'(a_x) = 0 \\ \Phi_x'(a) + \Phi_y'(a) \cdot \varphi'(a_x) = 0 \end{cases}$$

$$\forall \lambda \in \mathbb{R}^n \ \lambda \cdot \Phi_x' + \lambda \cdot \Phi_y' \cdot \varphi' = 0$$

$$(f_x' - \lambda \Phi_x') + (f_y' - \lambda \Phi_y') \cdot \varphi' = 0$$
, подставляем $\lambda := f_y'(a) \cdot \left(\Phi_y'(a)\right)^{-1}$.

43 Вычисление нормы линейного оператора с помощью собственных чисел

 $A\in {
m Lin}\;(\mathbb{R}^m,\mathbb{R}^n)$, тогда $\|A\|=\max\sqrt{\lambda}$, где λ — собственные числа A^TA .

43.1 Доказательство

$$||A||^2 = \max |Ax|^2 = \max \langle Ax, Ax \rangle = \max \langle A^T Ax, x \rangle.$$

44 Теорема Стокса—Зайдля о непрерывности предельной функций. Следствие для рядов

 $f_n, \, f_0: X \to \mathbb{R}, \, X$ — метрическое пространство, $c \in X, \, f_n$ — непрерывно в точке $c. \, f_n \rightrightarrows f_0$ на X. Тогда f_0 — непрерывна в точке c.

44.1 Доказательство

 $|f_0(x)-f_0(c)| \leq |f_0(x)-f_n(x)| + |f_n(x)-f_n(c)| + |f_n(c)-f_0(c)| < 3\varepsilon$ (китайский эпсилон), поскольку по непрерывности из условия

 $\forall \varepsilon > 0 : \exists U(c) : \forall x \in U(c) : |f_0(x) - f_0(c)| < \varepsilon.$

44.2 Следствие для рядов

 $u_n:X \to \mathbb{R}$ непрерывно в $x_0 \in X$, где X — метрическое пространство/

 $\sum u_n(x)$ — равномерно сходится на $X,\,S(x)=\sum u_n(x).$ Тогда S(x) непрерывно в $x_0.$

44.2.1 Доказательство

 $S_n(x) \rightrightarrows S(x) \Rightarrow S(x)$ — непрерывно в x_0).

45 Метрика в пространстве непрерывных функций на компакте, его полнота

X — метрическое пространство, комактен. $f_1,\,f_2:X\to\mathbb{R},\,f_1,\,f_2$ — непрерывен на X.

$$ho(f_1,f_2)=\max_{x\in X}|f_1(x)-f_2(x)|$$
 — метрика в $C(x)$, тогда пространство $(C(x),
ho)$ — полное.

45.1 Доказательство

 $f_n \in C(x)$ — фундаментальная последовательность

$$\forall \varepsilon > 0 : \exists N : \forall n, m > N : \max_{x \in X} |f_n(x) - f_m(x)| < \varepsilon \Rightarrow \forall x \in X.$$

 $f_n(x)$ — фундаментальная вещественна последовательность, значит $\forall x \in X: \exists \lim_{n \to +\infty} f_n(x) = f(x)$.

$$\forall \varepsilon > 0 : \exists N : \forall m, n > N : \forall x |f_n(x) - f_m(x)| < \varepsilon \Rightarrow |f_n - f(x)| < \varepsilon$$

46 Теорема о предельном переходе под знаком интеграла. Следствие для рядов

$$f_n \in C[a,b]$$

$$f_n \rightrightarrows f$$
 на $[a,b]$.

Тогда
$$\int\limits_a^b f_n o \int\limits_a^b f$$

46.1 Доказательство

$$\left|\int\limits_a^b f_n - \int\limits_a^b f\right| \leq \int\limits_a^b |f_n - f| \leq \max_{x \in [a,b]} |f_n(x) - f(x)| \cdot (b-a) \to 0 \ (a,b \in \mathbb{R}, \ \text{He B } \overline{\mathbb{R}})$$

46.2 Следствие для рядов

$$u_n \in C[a,b]$$

$$\sum u_n(x)$$
 равномерно сходится на $[a,b]$

$$S(x) = \sum_{n=1}^{+\infty} u_n(x), x \in [a, b]$$

Тогда
$$\int\limits_{a}^{b}S(x)dx=\sum\limits_{n=1}^{+\infty}\int\limits_{a}^{b}u_{n}(x)dx$$

$$(\sum u_n$$
 — равномерно сходится, u_n — непрерывно $\Rightarrow S(x)$ непрерывно $\Rightarrow \int S(x)$ имеет смысл)

46.2.1 Доказательство

$$\int\limits_a^b S_n(x) dx \to \int\limits_a^b S(x) dx$$
 по основной теореме,

$$\sum_{k=1}^{n} \int_{-\infty}^{b} u_k(x) dx \to \sum_{k=1}^{+\infty} \int_{-\infty}^{b} u_k(x) dx.$$

47 Правило Лейбница дифференцирования интеграла по параметру

$$f: [a,b] \times [c,d] \to \mathbb{R}$$

$$f,\,f_y'$$
 — непрерывны на $[a,b] imes [c,d],\,\Phi(y)=\int\limits_a^bf(x,y)dx$

Тогда
$$\Phi$$
 — дифференцируема на $[c,d]$ и $\Phi'(y)=\int\limits_a^b f_y'(x,y)dx$

47.1 Доказательство

$$\frac{\Phi\left(Y+\frac{1}{n}\right)-\Phi(y)}{\frac{1}{n}}=\int\limits_{a}^{b}\frac{f\left(x,y+\frac{1}{n}\right)-f(x,y)}{\frac{1}{n}}dx=\int\limits_{a}^{b}f_{y}'\left(x,y+\frac{\Theta}{n}\right)dx, \text{ что есть }\int\limits_{a}^{b}g_{n}dx.$$

$$g_n(x,y)
ightrightarrows f_y'(x,y)$$
 для $x \in [a,b].$

$$\Theta = a_x, \ 0 \le a_x \le 1.$$

48 Теорема о предельном переходе под знаком производной. Дифференцирование функционального ряда

 $f_n \in C^1\langle a,b \rangle$ и $f_n \to f_0$ поточечно на $\langle a,b \rangle,\, f_n'
ightharpoonup arphi$ на $\langle a,b \rangle.$ Тогда

1.
$$f_0 \in C^1\langle a, b \rangle$$

2.
$$f_0' = \varphi$$
 на $\langle a, b \rangle$

48.1 Доказательство

$$x_0,\,x_1\in\langle a,b
angle,\,f_n'
ightrightarrowsarphi$$
 на $[x_0,x_1],\int\limits_{x_0}^{x_1}f_n'
ightarrow\int\limits_{x_0}^{x_1}arphi$

$$f_n(x_0) - f_n(x_0) \xrightarrow[n \to +\infty]{} \int\limits_{x_0}^{x_1} arphi,$$
 и $f_n(x_1) - f_n(x_0) o f_0(x_1) - f_0(x_0),$ значит

$$\int\limits_{x_0}^{x_1}\varphi=f_0(x_1)-f_0(x_0),\ f_0$$
— первообразная для $\varphi,\ \varphi$ — непрерывна, значит $f')-\varphi.$

48.2 Дифференцирование функционального ряда

 $u_n \in C^1(\langle a, b \rangle)$

1.
$$\sum u_n(x) = S(x) \ x \in \langle a,b \rangle$$
 (поточечная сходимость)

2.
$$\sum u_n'(x) = \varphi(x)$$
 равномерно сходится при $x \in \langle a,b \rangle$.

Тогда

1.
$$S(x) \in C^1(\langle a, b \rangle)$$

2.
$$S'(x) = \varphi(x)$$
 при $x \in \langle a, b \rangle$

T.e.
$$\left(\sum_{n=1}^{+\infty} u_n(x)\right)' = \sum_{n=1}^{+\infty} u'_n(x)$$

48.2.1 Доказательство

Следует из основной теоремы.

$$f_n \leftrightarrow S_n$$
 и $f_0 \leftrightarrow S$.

$$f_n(x) o f_0(x)$$
 и $f_n'
ightharpoonup arphi$ и $\sum_{k=1}^n u_k'(x) = \left(\sum_{k=1}^n u_k(x)
ight)' = f_n'$

49 Признак Вейерштрасса равномерной сходимости функционального ряда

 $\sum u_n$ и $u_n:X\to\mathbb{R}.$ Также пусть существует вещественная последовательность c_n

- 1. $|u_n(x)| \le c_n \ \forall x \in X;$
- 2. $\sum c_n$ сходится.

Тогда $\sum u_n(x)$ — равномерно сходится на X

49.1 Доказательство

Равномерно сходится тогда и только тогда $R_n \rightrightarrows 0$

$$\sup_{x\in X}\left|\sum_{k=n}^{+\infty}u_k(x)\right|\leq \sum_{k=n}^{+\infty}c_k\xrightarrow[n\to+\infty]{}0\text{ как остаток сходящегося ряда.}$$

50 Дифференцируемость гамма функции

 $\Gamma(x)$ бесконечно дифференцируется на $(0, +\infty)$.

50.1 Доказательство

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}.$$

$$-\ln\Gamma(x) = \ln x + \gamma x + \sum_{k=1}^{+\infty} \Big(\ln\Big(1+\frac{x}{k}\Big) - \frac{x}{k}\Big), \text{ обозначим за } u_k = \Big(\ln\Big(1+\frac{x}{k}\Big) - \frac{x}{k}\Big).$$

$$u'_k(x) = \frac{1}{x+k} - \frac{1}{k} = -\frac{x}{k(k+x)}.$$

$$|u_k'(x)| \leq \frac{M}{k(k+M)}, \sum \frac{M}{k(k+M)}$$
 — сходится по признаку Вейерштрасса.

 $\sum u_k'(x)$ равномерно сходится при $x\in(0,M),$ где M — какое угодно.

$$-\frac{\Gamma'(x)}{\Gamma(x)} = \frac{1}{x} + \gamma - \sum \frac{x}{k(k+x)}.$$

51 Теорема о предельном переходе в суммах

 $u_n: E \subset X \to \mathbb{R}, \, x_0$ — предельная точка $E, \, X$ — метрическое пространство.

1.
$$\forall n : \exists \lim_{x \to x_0} u_n(x) = a_n;$$

2.
$$\sum u_n(x)$$
 равномерно сходится на E .

Тогда

1.
$$\sum a_n$$
 — сходится;

2.
$$\sum a_n = \lim_{x \to x_0} \left(\sum_{n=1}^{+\infty} u_n(x) \right)$$
.

51.1 Доказательство

1.
$$\sum a_n - \text{сходится}$$

$$S_n(x) = \sum_{k=1}^n u_k(x), S_n^a = \sum_{k=1}^n a_k.$$

Достаточно проверить, что последовательность S_n^a фундаментальная.

$$\left| S_{n+p}^a - S_n^a \right| \le \left| S_{n+p}^a - S_{n+p}(x) \right| + \left| S_{n+p}(x) - S_n(x) \right| + \left| S_n(x) - S_n^a \right| < \varepsilon$$

2. Сводим к предыдущей теореме

$$\widetilde{u_n}(x) := \begin{bmatrix} u_n(x), x \neq x_0, x \in E \\ a_n, x = x_0 \end{bmatrix}$$

 $\widetilde{u_n}$ — непрерывна в точке x_0 . Остаётся только проверить, что $\sum \widetilde{u_n}(x)$ равномерно сходится в $E \cup \{x_0\}$

$$\sup_{x \in E \cup \{x_0\}} \left| \sum_{k=n}^{+\infty} \widetilde{u_k}(x) \right| \le \sup_{x \in E} \left| \sum_{k=n}^{+\infty} u_k(x) \right| \to 0$$

52 Теорема о перестановке двух предельных переходов

 $f_n: E\subset X o \mathbb{R},\, x_0$ — предельная точка E, и

1.
$$f_n \rightrightarrows S(x)$$
 при $n \to +\infty$ на E ;

$$2. f_n(x) \xrightarrow[x \to x_0]{} A_n$$

Тогда

1.
$$\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$$

2.
$$S(x) \xrightarrow[x \to x_0]{} A$$

52.1 Доказательство

$$\sum_{k=1}^{n} u_k = f_n, \, a_k := A_k - A_{k-1}$$

Тогда
$$\sum a_n - \operatorname{сходится} \Rightarrow \exists \sum (A_k - A_{k-1}) \Leftrightarrow \exists \lim_{n \to +\infty} A_n$$

$$f(x,y) \rightrightarrows f(x)$$
 при $y \to y_0$ на множестве E , т.е.

$$\forall \varepsilon > 0: \exists > 0: \forall y: 0 < |y - y_0| < \delta: \forall x \in E: |f(x, y) - f(x, y_0)| < \varepsilon$$

53 Признак Дирихле равномерной сходимости функционального ряда

$$\sum a_n(x)b_n(x), x \in X.$$

- 1. $\exists C_a: \forall N: \forall x \in X: \left|\sum_{n=1}^N a_n(x)\right| \leq C_a,$ частичные суммы ряда $\sum a_n(x)$ равномерно ограничены.
- 2. $b_n \rightrightarrows 0$ при $n \to +\infty$ на множестве $X, \forall x: b_n(x)$ монотонная. Тогда $\sum a_n(x)b_n(x)$ равномерно сходится на X.

53.1 Доказательство

$$\sum_{N \le k \le M} a_k b_k = A_M b_M - A_{N-1} b_{N-1} + \sum_{k=N}^{M-1} (b_k - b_{k+1}) A_k$$

$$\left| \sum_{k=N}^{M} a_k b_k \right| \leq |A_M b_M| + |A_{N-1} b_N| + \left| \sum_{k=N} (b_k - b_{k+1}) A_k \right| \leq C_A \left(|b_M| + |b_N| \right) + \sum_{k=N} (b_k - b_{k+1}) A_k \leq C_a \left(|b_M| + |b_N| + |b_N| + |b_N| + |b_N| \right) \rightarrow c$$

- 1. $\sum_{n=1}^{+\infty} a_n(x)$ равномерно сходится $x \in X$;
- 2. $\exists C_B: \forall x \forall n: |b_n(x)| \leq C_m$ при каждом x $b_n(x)$ монотонна. $\sum a_n b_n$ равномерно сходится/

54 Теорема о круге сходимости степенного ряда

 $\sum a_n(z-z_0)^n,$ тогда выполнено одно из трёх условий:

- 1. ряд сходится только при $z=z_0;$
- 2. ряд сходится при любых $z \in \mathbb{C}$;
- 3. $\exists R \in (0, +\infty)$ такое, что при $|z-z_0| < R$ абсолютно сходится, при $|z-z_0| > R$ расходится, при $|z-z_0| = R$ может как сходится, так и расходится.

54.1 доказательство

Изучим $\sum a_n(z-z_0)^n$ на абсолютная сходимость.

$$\overline{\lim_{n \to +\infty}} \sqrt[n]{|a_n||z - z_0|^n} = \overline{\lim}|z - z_0| \sqrt[n]{|a_n|} = |z - z_0| \sqrt[n]{|a_n|}$$

- 1. $\overline{\lim} \sqrt[n]{a_n} = +\infty$, тогда при $z=z_0$ ряд абсолютно сходится, при $z \neq z_0$ ряд расходится;
- 2. $\overline{\lim} \sqrt[n]{a_n} = 0$, тогда при любых z ряд сходится абсолютно;
- $3. \ \overline{\lim}\sqrt[n]{a_n} \ \text{конечен, тогда при } |z-z_0| < \frac{1}{\overline{\lim}\sqrt[n]{a_n}} \text{сходится, при } |z-z_0| > \frac{1}{\overline{\lim}\sqrt[n]{a_n}} \text{расходится.}$ Тогда обозначим $R = \frac{1}{\overline{\lim}\sqrt[n]{|a_n|}} - \text{формула Адомара.}$

Множество сходимости степенного ряда — это открытый круг радиуса R и некоторые точки на окружности.

55 Теорема о непрерывности степенного ряда

$$\sum a_n (z - z_0)^n, \ 0 < R \le +\infty.$$
 Тогда

- 1. 0 < r < R тогда ряд равномерно сходится на $\overline{B(z_0,r)};$
- 2. $f(z) = \sum a_n (z z_0)^n$ непрерывен в $B(z_0, R)$.

55.1 Доказательство

- 1. По признаку Вейерштрасса $|a_n(z-z_0)^n| \leq |a_n| \cdot r^n$, ряд $\sum |a_n| r^n$ абсолютно сходится;
- 2. Очевидно из предыдущего пункта.

56 Теорема о дифференцировании степенного ряда. Следствие об интегрировании. Пример

Обозначим за A ряд $\sum_{n=0}^{+\infty}a_n(z-z_0)^n$ и за A' ряд $\sum_{n=1}^{+\infty}na_n(z-z_0)^{n-1},\,0< R\leq +\infty$ — радиус сходимости для (A). Тогда

- 1. (A') имеет тот же радиус сходимости R;
- 2. Пусть $f(z) = \sum a_n (z-z_0)^n$, $z \in B(z_0,R)$. Тогда $\forall z \in B(z_0,R)$ f дифференцируема и $f'(z) = \sum na_n(z-z_0)^{n-1}$.

56.1 Доказательство

1. $\sum \alpha_n x^n$ и $\sum \alpha_n x^{n+1}$ имеют одинаковый радиус сходимости, т.к. $x \cdot S_N(x) = \widetilde{S_N(x)}$. Пределы этих сумм существуют для одинаковых x, значит и радиус сходимости один и тот же.

$$R_{A'} = \frac{1}{\overline{\lim} \sqrt[n]{n a_n}} = \frac{1}{\overline{\lim} \sqrt[n]{n} \sqrt[n]{a_n}} = R.$$

2. $a \in B(z_0, R)$, проверим, что существует f'(a). Возьмём r < R и $a \in B(z_0, r)$. Также пусть $w = z - z_0$ и $w_0 = a - z_0, \, |z - z_0| < r$ и $|a - z_0| < r$, тогда

$$\lim \frac{f(z) - f(a)}{z - a} = \sum a_n \frac{(z - z_0)^n - (a - z_0)^n}{(z - z_0) - (a - z_0)} = \sum a_n \frac{w^n - w_0^n}{w - w_0}$$
 и

$$\left| a_n \frac{w^n - w_0^n}{w - w_0} \right| \le |a_n| n r^{n-1}.$$

Заметим, что $\sum n|a_n|r^{n-1}$ сходится, т.к. ряд (A') при $z=z_0+r$ сходится абсолютно по признаку Вейерштрасса, ряд равномерно сходится в круге $B(z_0,r)$.

$$\lim_{z \to a} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{n \to \infty} \sum_{n=0}^{+\infty} \dots = \sum_{n=1}^{+\infty} n = \lim_{z \to a} \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} a_n n(z - z_0)^{n-1}.$$

56.2 Следствие об интегрировании

 $f(x) = \sum a_n (x - x_0)^n$, $a_n \in \mathbb{R}$, $x_0 \in \mathbb{R}$, x — тоже вещественное и лежит в $(x_0 - R, x_0 + R)$.

Тогда при почленном интегрировании $\sum a_n \frac{(x-x_0)^{n+1}}{n+1}$ — ряд имеет тот же радиус сходимости и к тому

же
$$\int_{0}^{x} \left(\sum_{n=0}^{+\infty} a_n (x - x_0)^n \right) dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x - x_0)^{n+1}$$

56.3 Пример

Разложить $\mathrm{arcctg}\,x$ в степенной ряд в окрестности $x_0=0$ (это же ряд Тейлора)

$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2} = -(1-x^2+x^4-x^6+\ldots) = -1+x^2-x^4+x^6+\ldots \ (|x|<1)$$

 $\operatorname{arcctg} x = \frac{\pi}{2} - x + \frac{x^3}{3} - \frac{x^5}{5} + \dots$ (не забудем, что при возврате к первообразной не надо забывать про константу).

57 Свойства экспоненты

Обозначим $\exp(z)=\sum_{n=0}^{+\infty}\frac{z^n}{n!},\,R=+\infty,$ сходится при всех $z\in\mathbb{C}.$

1.
$$\exp(0) = 1$$
;

2.
$$(\exp z)' = \exp z$$

$$\lim_{z \to 0} \frac{e^z - 1}{z} = (e^z)' \Big|_{z=0} = 1;$$

3.
$$\overline{\exp(z)} = \exp(\overline{z})$$
 комплексное, $\overline{\sum \frac{z^n}{n!}} = \sum \frac{\overline{z}^n}{n!};$

4.
$$\exp(z+w) = \exp(z) \cdot \exp(w)$$

$$\exp(z+w) = \sum_{n=0}^{+\infty} \frac{(z+w)^n}{n!} = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{z^k}{k!} \frac{w^{n-1}}{(n-k)!}\right) = \left(\sum \frac{z^k}{k!}\right) \left(\sum \frac{w^k}{k!}\right)$$

57.1 Следствие

$$\forall z \in \mathbb{C} \exp(z) \neq 0.$$

58 Метод Абеля суммирования рядов. Следствие

$$\sum c_n - \text{сходящийся ряд, } f(x) = \sum c_n x^n, \, -1 < x < 1 \ (\Leftrightarrow R \geq 1). \text{ Тогда } \sum c_n = \lim_{x \to 1-0} f(x).$$

58.1 Доказательство

При $x \in (0,1), \sum c_n x^n$ — сходится по признаку Абеля,

 $\sum a_n b_n$, $\sum a_n$ — сходится, b_n — монотонно ограниченная, что чему сопоставить очевидно. Осталось проверить, что $\sum c_n x^n$ непрерывен на [0,1], т.е. равномерную сходимость $\sum c_n x^n$ на [0,1].

 $\sum a_n(x)$ — равномерно сходится, b_n — монотонная при каждом фиксированном $x, \exists C_b : \forall n : \forall x : |b_n(x)| \leq C_b$.

58.2 Следствие

$$\sum a_n = A, \sum b_n = B, c_n := a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$$
, известно, что $\sum c_n = C$. Тогда $A \cdot B = C$.

58.2.1 Доказательство

$$f(x) = \sum a_n x^n, g(x) = \sum b_n x^n, h(x) = \sum c_n x^n, x \in [0, 1].$$

x < 1 ряды для f и g абсолютно сходится, значит $f(x) \cdot g(x) = h(x)$ при $x \to 1$.

59 Единственность разложения функции в ряд

f единственным образом раскладывается в степенной ряд в окрестности x_0 (если можно, конечно, разложить его).

Потому что
$$a_n := \frac{f^{(n)}(x_0)}{n!}$$

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots \Rightarrow f \in C^{+\infty}(U(x_0)).$$

$$x := x_0 \Rightarrow a_0 = f(x_0).$$

$$f'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \dots, x := x_0 \Rightarrow a_1 = f'(x_0)$$
 и $a_2 = \frac{f''(x_0)}{2!}$ и т.д.

60 Разложение бинома в ряд Тейлора

 $\sigma \in \mathbb{R}$, тогда при |x| < 1

$$(1+x)^{\sigma} = 1 + \sigma x + \frac{\sigma(\sigma-1)}{2}x^2 + \ldots + \frac{\sigma(\sigma-1)\ldots(\sigma-n+1)}{n!}x^n + \ldots$$

$$S'(x)(1+x) = \sigma S(x)$$

$$f(x) = \frac{S(x)}{(1+x)^{\sigma}} = const$$

$$f' = \frac{S'(x)}{(1+x)^{\sigma}} - \frac{\sigma S(x)}{(1+x)^{\sigma+1}} = \frac{0}{(1+x)^{\sigma+1}} \Rightarrow \frac{S(x)}{(1+x)^{\sigma}} = const$$

$$f(0) = 1 \to S(x) = (1+x)^{\sigma}.$$

61 Теорема о разложимости функции в ряд Тейлора

 $f \in C^{\infty}([x_0 - h, x_0 + h])$. Тогда эквивалентны следующие утверждения:

- 1. f раскладывается в ряд Тейлора в окрестности x_0 ;
- 2. $\exists \delta, C, A > 0 : \forall n : \left| f^{(n)}(x) \right| < C \cdot A^n \cdot n!$ при $|x x_0| < \delta$.

61.1 Доказательство

1 ← 2

Оценим остаток в форме Лагранжа
$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n)}(\overline{x})}{n!} (x-x_0)^n$$

$$\left|\frac{f^{(n)}(\overline{x})}{n!}(x-x_0)^n\right| \leq \frac{CA^n n!}{n!}|x-x_0|^n \to 0 \text{ при } |A(x-x_0)| < 1 \text{ и } |x-x_0| < \frac{1}{n}.$$

Таким образом,
$$|x-x_0| < \min\left(\frac{1}{A}, \delta\right), r_n \to 0.$$

• $1 \Rightarrow 2$

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
. Пусть при $x = x_1 \neq x_0$ ряд сходится.

$$\frac{f^{(n)}(x_0)}{n!}(x_1-x_0)^n \to 0$$
, т.е. меньше C_1 по модулю.

$$\left| f^{(n)}(x_0) \right| \le C_1 \cdot n! \cdot \frac{1}{|x_1 - x_0|^n} B^n$$

$$f^{(m)}(x) = \sum_{n=-\infty}^{+\infty} \frac{f^{(n)}(x_0)}{(n-m)!} (x_0) (x-x_0)^{n-m}$$

$$\left| f^{(m)}(x) \right| \leq \sum_{n=m}^{+\infty} \frac{|f^{(n)}(x_0)|}{(n-m)!} |x-x_0|^{n-m} \leq \sum_{n=m}^{\infty} \frac{C_1 B^n n!}{(n-m)!} |x-x_0|^{n-m} = C_1 B^n \sum_{n=m}^{+\infty} n(n-1) \dots (n-m+1) \dots$$

1)
$$|B(x-x_0)|^{n-m} = C_1 \cdot \frac{m!B^m}{|1-(B(x-x_0))|^{(m+1)}} \le C_1 m!B^m 2^{m+1} = (2C_1)m!(2B)^m.$$

62 Теорема Коши о перманентности метода средних арифметических

62.1 Дополнительное определение

$$\sum_{n=0}^{+\infty} a_n, \, S_n = a_0 + a_1 + \ldots + a_n.$$

$$\sigma_n = \frac{1}{n+1} (S_0 + S_1 + \ldots + S_n).$$

Если существует $\lim_{n\to +\infty} \sigma_n = S$, то S называется суммой ряда $\sum a_n$ в смысле метода средних арифметических (или по Чезаро).

62.2 Формулировка

 $\sum a_n = S \Rightarrow \sum a_n = S$ в смысле метода средних арифметических.

$$\forall \varepsilon > 0 : \exists N_1 > 0 : \forall n > N_1 : |S_n - S| < \varepsilon$$

$$\sigma_n - S = \frac{1}{n+1} \sum_{i=0}^n (S_i - S), \ |\sigma_n - S| \le \frac{1}{n+1} \sum_{i=0}^n |S_i - S| = \frac{\sum_{i=0}^{N_1} (S_i - S)}{n+1} + \frac{\sum_{i=N_1+1}^n |S_i - S|}{n+1} < 2\varepsilon.$$

63 Простейшие свойства интеграла векторного поля по кусочногладкому пути

1. Линейность по полю:

$$\forall \alpha, \beta \in \mathbb{R}, U, V$$
 — векторные поля, тогда
$$I(\alpha U + \beta V, \gamma) = \alpha I(U, \gamma) + \beta I(V, \gamma).$$

2. Аддитивность при дроблении пути:

$$\gamma: [a, b] \to \mathbb{R}^m, \ a < c < b,$$

$$\gamma_1 := \gamma \big|_{[a, c]}, \ \gamma_2 := \gamma \big|_{[c, b]} \ \mathbf{и}$$

$$I(V, \gamma) = I(V, \gamma_1) + I(V, \gamma_2).$$

3. Замена параметра:

$$\varphi:[p,q]\to[a,b], \text{ сюрьекция, }\varphi\in C^1\left([p,q]\right),\,\varphi(p)=a,\,\varphi(q)=b,$$

$$\gamma:[a,b]\to\mathbb{R}^m,\,\widetilde{\gamma}=\gamma\circ\varphi,\,\widetilde{\gamma}(s)=\gamma(\varphi(s)).$$

$$I\left(V,\gamma\right)=I\left(V,\overline{\gamma}\right).$$

4. $\gamma_1:[a,b] \to \mathbb{R}^m \ \gamma_2:[c,d] \to \mathbb{R}^m$ — гладкие пути,

 $\gamma_1(b) = \gamma_2(c) \Rightarrow \gamma = \gamma_2 \gamma_1$ — кусочно-гладкий путь (в точке b путь γ может быть и не гладким).

$$\gamma(t) = \begin{cases} \gamma_1(t), t \in [a, b] \\ \gamma_2(t - b + c), t \in [b, b + d - c] \end{cases}$$
Torus $I(V, \gamma) = I(V, \gamma_1) + I(V, \gamma_2)$

Тогда
$$I(V,\gamma) = I(V,\gamma_1) + I(V,\gamma_2)$$
.

5.
$$\gamma:[a,b]\to\mathbb{R}^m,$$

$$\gamma^-(t)=\gamma(a+b-t),\,t\in[a,b].$$
 Тогда $I\left(V,\gamma^-\right)=-I\left(V,\gamma\right).$

6. Оценка интеграла по пути:

$$\gamma:[a,b]\to\mathbb{R}^m,\,L:=\gamma\left([a,b]\right)-$$
 носитель пути. Тогда
$$|I\left(V,\gamma\right)|\leq \max_{x\in L}|V(x)|\cdot l(\gamma).$$

63.1 Доказательство

1. Из определения в силу линейности скалярного произведения;

2.
$$\int_{a}^{b} = \int_{c}^{c} + \int_{c}^{b}$$
;

3.
$$I(V,\gamma) = \int_{a}^{b} V_{1}(\gamma(t)) \gamma'_{1} + \ldots + V_{m}(\gamma(t)) \gamma'_{m} dt = \int_{p}^{q} \left(V_{1}(\widetilde{\gamma}(s)) \gamma'_{1}(\varphi(s)) + \ldots + V_{m}(\widetilde{\gamma}(s)) \gamma'_{m}(\varphi(s))\right) \varphi'(s) ds = I(V,\widetilde{\gamma}):$$

4.
$$\int_{a}^{b+d-c} \langle V(\gamma(t)), \gamma'(t) \rangle dt = \int_{a}^{b} + \int_{b}^{b+d-c} \int_{a}^{b} + \int_{c}^{d} \langle V(\gamma_{2}(\tau)), \gamma'_{2}(\tau) \rangle d\tau;$$

5.
$$I(V, \gamma^{-}) = \int_{a}^{b} \langle V(\gamma(a+b-t)) \cdot (-\gamma'(a+b-t)) \rangle dt = -\int_{a}^{b} \langle V, (\gamma(\tau)), \gamma'(\tau)(-d\tau) \rangle = -I(v, \gamma);$$

$$6. \left| \int_{a}^{b} \langle V(\gamma), \gamma' \rangle dt \right| \leq \int_{a}^{b} |\langle V, \gamma' \rangle| dt \leq \int_{a}^{b} |V(\gamma(t))| |\gamma'(t)| dt \leq \max -x \in L |V(x)| \cdot \int_{a}^{b} |\gamma'(t)| dt.$$

64 Обобщенная формула Ньютона-Лейбница

 $V:O\subset\mathbb{R}^m o\mathbb{R}^m,$ потенциальное векторное поле, f — потенциал, $\gamma[a,b] o O$ — кусочно-гладкий путь, $\gamma(a)=A,\,\gamma(b)=B.$ Тогда

$$\int_{\gamma} V_1 dx_1 + \ldots + V_m dx_m = f(B) - f(A).$$

64.1 Доказательство

1.
$$\gamma$$
 — гладкий, $\phi(t)=f(\gamma(t)),$ $\phi'=f'\gamma'=\langle \operatorname{grad} f,\gamma'\rangle=\langle V\left(\gamma(t)\right),\gamma'(t)\rangle=f(B)-f(A).$

2. кусочно-гладкий

$$I(V,\gamma) = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} \dots = \sum_{k=1}^{n} f(\gamma(t_k)) - f(\gamma(t_{k-1})) = f(\gamma(t_n)) - f(\gamma(t_0)) = f(B) - f(A).$$

65 Характеризация потенциальных векторных полей в терминах интегралов

V — векторное поле в O. Тогда эквивалентны следующие утверждения:

- 1. V потенциальное;
- 2. Интеграл $\int\limits_{\gamma}V_1dx_1+\ldots+V_mdx_m$ не зависит от пути в O;
- 3. Для любого кусочно-гладкого замкнутого пути верно, что $\int\limits_{\gamma}V_1dx_1+\ldots+V_mdx_m=0.$

65.1 Доказательство

- $1 \Rightarrow 2$ формула Ньютона-Лейбница;
- $2 \Rightarrow 3$ очевидно;
- $3 \Rightarrow 2$ очевидно;
- $2 \Rightarrow 1$ фиксируем $A \in O$, $\forall x \in O$ фиксируем кусочно-гладкий путь γ_x , $f(x) := \int\limits_{\gamma_x} V_1 dx_1 + \ldots + V_m dx_m$. Надо проверить, что f потенциал.

Достаточно проверить, что $f'_{x_1}(x) = V_1(x)$ при всех x.

$$\gamma_0' = (h, 0, \dots, 0)$$

$$f(x+he_1) - f(x) = \int_{\gamma_0} V_d x_1 + \ldots + V_m dx_m = \int_0^1 V_1(x_1 + th, \ldots, x_m) h dt = V_1(x_1 + \alpha h, x_2, \ldots, x_m) h(1-\alpha) \rightarrow V_1(x_1, \ldots, x_m).$$

66 Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре

66.1 Необходимое условие потенциальности гладкого поля

V — гладкое потенциальное векторное поле в $O\subset \mathbb{R}^m$, тогда $\forall x\in O$ и $\forall k,j$ $(1\leq k,j\leq m)$ верно $\frac{\partial v_k}{\partial x_j}=\frac{\partial v_j}{\partial x_k}.$

66.2 Лемма Пуанкаре

$$O\subset \mathbb{R}^m$$
 — выпуклое, $V:O o \mathbb{R}^m,\,V\in C^1(O)$ и верно $\forall k,\,l:rac{\partial v_k}{\partial x_l}=rac{\partial v_l}{\partial x_k}.$ Тогда V — потенциально.

66.2.1 Доказательство

$$A \in O, \gamma_x : [0,1] \to O, \gamma_v(t) = A + t(x-A), (\gamma_x)' = x - A.$$

$$f(x) := \int_{\gamma_x} \sum v_i dx_i = \int_0^1 \sum v_i (A + t (x - A)) (x_i - A_i) dt, I(x) = \int_a^b f(c, x) dt \text{ if } I'(x) = \int_a^b f'_x dt.$$

$$\frac{\partial f}{\partial x_i} = \int_0^1 v_i (A + t(x - A)) + \sum_i \frac{\partial v_i}{\partial x_j} (A + t(x - A)) t(x_i - A_i) dt = \int_0^1 (tv_j (A + t(x - A)))'_t dt - tv_j (A + t(x - A)) \Big|_{t=0}^{t=1} = v_j(x).$$

66.3 Следствие к лемме Пуанкаре

O — открытое множество в $\mathbb{R}^m,\,V\in C^1(O)$ и верное $\forall k,\,l: rac{\partial v_k}{\partial x_l}=rac{\partial v_l}{\partial x_k},$ тогда оно локально-потенциальное.

$$I(v,\gamma) = \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt.$$

67 Лемма о гусенице

 $O \subset \mathbb{R}^m, \ \forall x \in O$ задана окрестность U(x) и $\gamma:[a,b] \to O$ — непрерывный путь. Тогда существует дробление $a=t_0 < t_1 < t_2 < \ldots < t_n=b$ и шары $B_k \subset O, \ \forall k \in [1,n]: \gamma \big|_{[t_{k-1},t_k]} \subset B_k.$

67.1 Доказательство

 $\forall c \in [a,b]$ фиксируем $B_c = B\left(\gamma(c),r_c\right) \subset U\left(\gamma(c)\right).$

$$\overline{\alpha}_c = \inf \left(\alpha \in [a, b] : \gamma \bigg|_{[a, c]} \subset B_c \right),$$

$$\overline{\beta}_c = \sup \left(\beta \in [a, b] : \gamma \bigg|_{[c, b]} \subset B_c \right).$$

Заузим $\overline{\alpha}_c < \alpha_c < c < \beta_c < \overline{\beta}_c, \bigcup (\alpha_c, \beta_c)$ — открытое покрытие [a, b].

В точке c=a $\alpha_c=a$, в точке c=b $\beta_c=b,$ $[a,b]\subset\bigcup_{finite}(\alpha_c,\beta_c).$

Удалим лишние наложение, т.е. удалим такие пары $(\alpha_i, \beta_i) \subset \bigcup_{i \neq j} (\alpha_j, \beta_j)$. Тогда $\forall (\alpha_c, \beta_c)$ существует уни-

кальная точка $d_c \in (\alpha_c, \beta_c$ и $\gamma igg|_{[t_{k-1}, t_k]} \subset B_{C_k}.$

68 Лемма о равенстве интегралов по похожим путям

 $V:O o\mathbb{R}^m$ — локально потенциальное векторное поле, $\gamma,\overline{\gamma}$ — похожие, кусочно гладкие пути, $\gamma(a)=\overline{\gamma}(a)$ и $\gamma(b)=\overline{\gamma}(b)$, тогда

$$\int\limits_{\gamma} \sum V_i dx_i = \int\limits_{\overline{\gamma}} \sum V_i dx_i.$$

68.1 Доказательство

Берём V-гусеницу, f_k — потенциал в B_k , необходимо согласовать потенциалы, $f_k = f_{k+1}$ на $B_k \cap B_{k+1}$,

$$\int_{\gamma} \sum v_i dx_i = \sum_{k=1}^n \int \left(v_1 dx_1 + \ldots + v_m dx_m \right) = \sum f_k \left(\gamma(t_k) \right) - f_k \left(\gamma(t_{k-1}) \right) = f \left(\gamma(b) \right) - f \left(\gamma(a) \right).$$

69 Лемма о похожести путей, близких к данному

 $\gamma:[a,b] o O\subset\mathbb{R}^m$. Тогда $\exists \delta>0,$ если $\overline{\gamma}$ и $\overline{\overline{\gamma}}:[a,b] o O,$ таковы, что $\forall t\in[a,b]\ |\gamma(t)-\overline{\gamma(t)}|<\delta$ и $|\gamma(t)-\overline{\overline{\gamma}}(t)|<\delta,$

то $\gamma, \overline{\gamma}$ и $\overline{\overline{\gamma}}$ — похожи.

69.1 Доказательство

Берём V-гусеницу для γ , тогда $\gamma\left([t_{k-1},t_k]\right)$ — компактное множество в B_k , тогда $\exists \delta_k$ — окрестность этого компакта в B_k , возьмём $\delta:=\min_{1\leq k\leq n}\delta_k$.

70 Равенство интегралов по гомотопным путям

V — локально потенциальное векторное поле в $O \subset \mathbb{R}^m, \, \gamma_0$ и γ_1 — гомотопно связанные, тогда $I(V,\gamma_0) = I(V,\gamma_1).$

70.1 Доказательство

 Γ — гопотопия, $\gamma_u(t) = \Gamma(t,u), \ t \in [a,b]$ и $u \in [0,1].$ $\Phi(u) = I(V,\gamma_1).$ Проверим Φ — локально постоянно, т.е. $\forall u_0 : \exists w(u) : \forall u \in w(u_0) \cap [0,1]$ верно $\Phi(u) = \Phi(u_0).$ Γ — равномерное непрерывно, тогда

$$\forall \delta>0: \exists \sigma>0: \forall t,t': |t-t'|<\sigma \text{ и } \forall u,u': |u-u'|<\sigma \text{ выполнено } |\Gamma(t,u)-\Gamma(t',u')| \frac{\delta}{2}.$$

Берём δ из предыдущей леммы для пути γ_{u_0} и $(u-u_0)< t$ для любого $t\in [a,b], |\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2}$ и $|\gamma_u(t)-\gamma_{u_0}(t)|<\frac{\delta}{2}\Rightarrow \gamma_u$ и γ_{u_0} — похожи. Подберём $\overline{\gamma}_u$ и $\overline{\gamma}_{u_0}$ — кусочно гладкие, $\frac{\delta}{4}$ близко к γ_u и γ_{u_0} , $\forall t: |\gamma(t)-\overline{\gamma}(t)|<\delta$, значит $\overline{\gamma}_u$ и $\overline{\gamma}_{u_0}$ — похожи.

$$I(V, \gamma_u) = I(V, \overline{\gamma}_{u_0}) = I(V, \overline{\gamma}_{u_0}) = I(V, \gamma_0).$$

71 Теорема о резиночке

 $O=\mathbb{R}^2\setminus\{(0,0)\},\,\gamma:[0,2\pi] o O,\,\gamma(t) o(\cos t,\sin t)$ — петля. Тогда эта петля нестягиваема.

$$V(x,y):=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right),\,\frac{\partial v_1}{x}=\frac{\partial v^2}{y}\to V \,-\,\text{локально потенциальное},$$

$$I(V,\gamma) = \int_{0}^{2\pi} \frac{-\sin t}{\cos^2 t + \sin^2 t} (-\sin t) + V_1(\gamma(t))\gamma_1'(t) + \frac{\cos t}{1} \cos t dt = 2\pi \neq 0.$$

72 Теорема Пуанкаре для односвязной области

O-односвязная область в $\mathbb{R}^m, V-$ локально потенциальное векторное поле в O. Тогда V- потенциально в O.

72.1 Доказательство

 γ_0 — кусочно-гладкий замкнутый путь, значит гомотопен постоянному пути, значит $I(V,\gamma_0)=I(V,$ постоянному пути) = 0. т.е. выполняется критерий потенциальности вектроного поля.

73 Свойства объема: усиленная монотонность, конечная полуаддитивность

 $\mu: \mathcal{P} \to \overline{\mathbb{R}}$ — объем. Тогда

- 1. Усиленная монотонность: $\forall A,\ A_1,\ A_2,\ \dots,\ A_n\in\mathcal{P},\ \mathrm{все}\ A_i$ дизъюнкты и $\bigcup_{i=1}^n A_i\subset A,\ \mathrm{тогдa}$ $\sum_{i=1}^n \mu A_i \leq \mu A;$
- 2. Конечная полуаддитивность: $\forall A,\, A_1,\, A_2,\, \dots,\, A_n \in \mathcal{P},\,$ все A_i дизъюнкты и $A \subset \bigcup_{i=1}^n A_i,\,$ тогда $\mu A \leq \sum_{i=1}^n \mu A_i;$
- 3. $A, B, (A \setminus B) \in \mathcal{P}, \mu B < +\infty \Rightarrow \mu (A \setminus B) \geq \mu A \mu B.$

1.
$$A \setminus \bigsqcup_{i=1}^{n} A_i = \bigsqcup_{finite} B_l, B_l \in \mathcal{P}, A = \bigsqcup_{i=1}^{n} A_i \sqcup \bigsqcup_{finite} B_k, \mu A = \sum \mu A_i + \sum \mu B_l \ge \sum \mu A_i.$$

- 2. $B_k = A \cap A_k \in \mathcal{P}, \ A = \bigcup_{k=1}^n B_k$ сделаем это объединением дизъюнктов, $C_1 := B_1, \ C_2 := B_2 \setminus B_1$ и т.д., $A = \bigsqcup_{k,j} D_{kj}, \ \mu A = \sum_{k} \mu D_{kj}, \$ фиксируем k и получаем $\sum \mu D_{kj} = \mu C_k \le \mu B_k \le \mu A_k$ и получаем $\mu A \le \sum \mu A_k$;
- 3. $B \subset A \bowtie \mu(A \setminus B) + \mu B = \mu A$;
 - $B\not\subset A,\ A\setminus B=A\setminus (A\cap B),$ причём $A\cap B\in \mathcal{P},$ и $\mu\left(A\setminus B\right)=\mu A-\mu\left(A\cap B\right)\geq \mu A-\mu B.$

74 Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности

 $\mu:\mathcal{P} o\overline{\mathbb{R}}$ — объём. Тогда эквивалентны:

- 1. μ счётная аддитивная (т.е. μ мера);
- 2. μ счётная полуаддитивность : $A,\,A_1,\,A_2,\,\ldots\in\mathcal{P}$ и $A\subset\bigcup_{i=1}^{+\infty}A_i\Rightarrow\mu A\leq\sum\mu A_i.$

- $1\Rightarrow 2$ 5 формул $A=\bigcup A_k$ (будут написаны позже)
- $2 \Rightarrow 1$ $A = \bigsqcup A_i, \text{ надо проверить } \mu A = \sum \mu A_i, \text{ усиленная монотонность: } \mu A \geq \sum_{i=1}^n \mu A_i, \text{ по условию } \mu A \leq \sum_{i=1}^{+\infty} \mu A_i \Rightarrow \mu A = \sum \mu A_i.$

75 Теорема о непрерывности снизу

 $\mathcal{A}-$ алгебра, $\mu:\mathcal{A}\to\overline{\mathbb{R}}-$ объём. Тогда эквивалентны следующие утверждения:

- 1. μ мера, т.е. выполняется счётная аддитивность;
- 2. μ непрерывна снизу, т.е. $A, A_1, A_2, \ldots \in \mathcal{A}, A_1 \subset A_2 \subset A_3 \subset \ldots, A = \bigcup_{i=1}^{+\infty} A_i$ и $\mu A = \lim_{i \to +\infty} \mu A_i$.

75.1 Доказательство

• $1 \Rightarrow 2$

$$B_1:=A_1,\;\ldots,\;B_k:=:=A_k\setminusigcup_{i=1}^{k-1}A_i,\;$$
тогда B_i — дизъюнкты, тогда $A_k=igsup_{i=1}^kB_i$ и $a=igsup_{i=1}^{+\infty}B_i,\;\mu A=\sum_{i=1}^{+\infty}\mu B_i=\lim_{n\to+\infty}\sum_{i=1}^n\mu B_i.$

• $2 \Rightarrow 1$

$$C=igsqcup C_i$$
, верно ли, что $\mu C=\sum_{i=1}^{+\infty}\mu C_i,\ A_k=igsqcup_{i=1}^k C_i,\ A_1\subset A_2\subset A_3\subset\dots$ и $\bigcup A_i=A,$

$$\mu A = \lim_{N \to +\infty} \mu A_N = \lim \sum_{i=1}^N \mu C_i = \sum_{i=1}^{+\infty} \mu C_i.$$

76 Теоремы о непрерывности сверху

 $\mathcal{A}-$ алгебра, $\mu:\mathcal{A}\to\overline{\mathbb{R}}-$ конечный объём $(\mu X<+\infty)$, тогда эквивалентны следующие утверждения:

- 1. μ мера, т.е. выполняется счётная аддитивность;
- 2. μ непрерывна сверху, т.е. $A, A_1, A_2, ... \in \mathcal{A}, A_1 \supset A_2 \supset ..., A = \bigcap_{i=1}^{+\infty} A_i, \mu A = \lim_{i \to +\infty} \mu A_i;$
- 3. μ непрерывна сверху на пустом множестве, т.е. $A_1, \ldots, A_n, \ldots \in \mathcal{A}, A_1 \supset A_2 \supset A_3 \supset \ldots, \bigcap_{i=1}^{+\infty} A_i = \emptyset.$

76.1 Доказательство

• $1 \Rightarrow 2$

$$B=A_1\setminus A,\, B_k:=A_1\setminus A_k,\,$$
тогда $B_1\subset B_2\subset B_3\subset\dots$ и $\bigcup B_k=B,\, \mu B=\lim_{k\to+\infty}\mu B_k,\, \mu A_1-\mu A=\lim_{k\to+\infty}(\mu A_1-\mu A_k)\Rightarrow\mu A=\lim_{k\to+\infty}\mu A_k.$

• $2 \Rightarrow 3$

Очевидно.

• $3 \Rightarrow 1$

$$C = \bigsqcup C_i, \text{проверить, что } \mu C = \sum \mu C_i, A_1 \supset A_2 \supset A_3 \supset \ldots, A_k = \bigsqcup_{i=k+1}^{+\infty} C_i = C \setminus \left(\bigsqcup_{i=1}^k C_i\right) \Rightarrow A_k \in \mathcal{A}.$$

$$\bigcap A_k = \varnothing \Rightarrow \mu A_k \to 0, C = \bigsqcup_{i=k+1}^k C_i \sqcup A_k \text{ if } \mu C = \sum_{i=k+1}^k \mu C_i + \mu A_k, k \to +\infty \Rightarrow \mu C = \sum \mu C_i.$$