Introducing DataFrames

DATA MANIPULATION WITH PANDAS

Course outline

- Chapter 1: DataFrames
 - Sorting and subsetting
 - Creating new columns
- Chapter 2: Aggregating Data
 - Summary statistics
 - Counting
 - Grouped summary statistics

- Chapter 3: Slicing and Indexing Data
 - Subsetting using slicing
 - Indexes and subsetting using indexes
- Chapter 4: Creating and Visualizing Data
 - Plotting
 - Handling missing data
 - Reading data into a DataFrame

pandas is built on NumPy and Matplotlib

pandas is popular

¹https://pypistats.org/packages/pandas

Rectangular data

Name	Breed	Color	Height (cm)	Weight (kg)	Date of Birth
Bella	Labrador	Brown	56	25	2013-07-01
Charlie	Poodle	Black	43	23	2016-09-16
Lucy	Chow Chow	Brown	46	22	2014-08-25
Cooper	Schnauzer	Gray	49	17	2011-12-11
Max	Labrador	Black	59	29	2017-01-20
Stella	Chihuahua	Tan	18	2	2015-04-20
Bernie	St. Bernard	White	77	74	2018-02-27

pandas DataFrames

print(dogs)

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	24	2013-07-01
1	Charlie	Poodle	Black	43	24	2016-09-16
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
3	Cooper	Schnauzer	Gray	49	17	2011-12-11
4	Max	Labrador	Black	59	29	2017-01-20
5	Stella	Chihuahua	Tan	18	2	2015-04-20
6	Bernie	St. Bernard	White	77	74	2018-02-27

Exploring a DataFrame: .head()

print(dogs.head())

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	24	2013-07-01
1	Charlie	Poodle	Black	43	24	2016-09-16
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
3	Cooper	Schnauzer	Gray	49	17	2011-12-11
4	Max	Labrador	Black	59	29	2017-01-20

Exploring a DataFrame: .info()

print(dogs.info())

```
<class 'pandas.core.frame.DataFrame'> RangeIndex: 7
entries, 0 to 6
                           6 columns):
Data columns
                 (total
      Column
                           Non-Null Count
                                                 Dtype
                                                 object
                           7 non-null
      name
                           7 non-null
                                                 object
      breed
      color
                           7 non-null
                                                 object
      height_cm
                           7 non-null
                                                 int64
 3
      weight_kg
                           7 non-null
                                                 int64
      date_of_birth
                           7 non-null
                                                 object
dtypes: int64(2), object(4) memory
usage: 464.0+ bytes
```

Exploring a DataFrame: .shape

print(dogs.shape)

(7, 6)

Exploring a DataFrame: .describe()

print(dogs.describe())

	height_cm	weight_kg
count	7.000000	7.000000
mean	49.714286	27.428571
std	17.960274	22.292429
min	18.000000	2.000000
25%	44.500000	19.500000
50%	49.000000	23.000000
75%	57.500000	27.000000
max	77.000000	74.000000

Components of a DataFrame: .values

print(dogs.values)

Components of a DataFrame: .columns and .index

print(dogs.columns)

Index(['name', 'breed', 'color', 'height_cm', 'weight_kg', 'date_of_birth'], dtype='object')

dogs.index

RangeIndex(start=0, stop=7, step=1)

pandas Philosophy

There should be one -- and preferably only one -- obvious way to do it.

- The Zen of Python by Tim Peters, Item 13

¹https://www.python.org/dev/peps/pep-0020/

Sorting and subsetting

DATA MANIPULATION WITH PANDAS

Sorting

dogs.sort_values("weight_kg")

	name	breed	color	height_cm	weight_kg date_c	of_birth	
5	Stella	Chihuahua	Tan	18	2	2015-04-20	
3	Cooper	Schnauzer	Gray	49	17	2011-12-11	
0	Bella	Labrador	Brown	56	24	2013-07-01	
1	Charlie	Poodle Chow	Black	43	24	2016-09-16	
2	Lucy	Chow	Brown	46	24	2014-08-25	
4	Max	Labrador	Black	59	29	2017-01-20	
6	Bernie	St. Bernard	White	77	74	2018-02-27	

Sorting in descending order

dogs.sort_values("weight_kg", ascending=False)

	name	breed	color	height_cm	weight_kg	date_of_birth
6	Bernie	St. Bernard	White	77	74	2018-02-27
4	Max	Labrador	Black	59	29	2017-01-20
0	Bella	Labrador	Brown	56	24	2013-07-01
1	Charlie	Poodle	Black	43	24	2016-09-16
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
3	Cooper	Schnauzer	Gray	49	17	2011-12-11
5	Stella	Chihuahua	Tan	18	2	2015-04-20

Sorting by multiple variables

dogs.sort_values(["weight_kg", "height_cm"])

	name	breed	color	height_cm	weight_kg date_c	of_birth
5	Stella	Chihuahua	Tan	18	2	2015-04-20
3	Cooper	Schnauzer	Gray	49	17	2011-12-11
1	Charlie	Poodle	Black	43	24	2016-09-16
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
0	Bella	Labrador	Brown	56	24	2013-07-01
4	Max	Labrador St.	Black	59	29	2017-01-20
6	Bernie	Bernard	White	77	74	2018-02-27

Sorting by multiple variables

dogs.sort_values(["weight_kg", "height_cm"], ascending=[True, False])

	name	breed	color	height_cm	weight_kg date_c	of_birth
5	Stella	Chihuahua	Tan	18	2	2015-04-20
3	Cooper	Schnauzer	Gray	49	17	2011-12-11
0	Bella	Labrador	Brown	56	24	2013-07-01
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
1	Charlie	Poodle	Black	43	24	2016-09-16
4	Max	Labrador St.	Black	59	29	2017-01-20
6	Bernie	Bernard	White	77	74	2018-02-27

pandas with relevant values highlighted: Bella, Lucy and Charlie in descending order by height

Subsetting columns

dogs["name"]

```
0 Bella
1 Charlie
2 Lucy
3 Cooper
4 Max
5 Stella
6 Bernie
Name: name, dtype: object
```

Subsetting multiple columns

dogs[["breed", "height_cm"]]

	breed	height_cm	
1	Labrador	56	
2	Poodle	43	
3	Chow Chow	46	
4	Schnauzer	49	
5	Labrador	59	
6	Chihuahua	18	
7	St. Bernard	77	

```
cols_to_subset = ["breed", "height_cm"]
dogs[cols_to_subset]
```

	breed	height_cm	
1	Labrador	56	
2	Poodle	43	
3	Chow Chow	46	
4	Schnauzer	49	
5	Labrador	59	
6	Chihuahua	18	
7	St. Bernard	77	

Subsetting rows

```
dogs["height_cm"] > 50
```

```
0
        True
      False
      False
3
      False
4
        True
      False
5
6
        True
       height_cm,
Name:
                      dtype:
                                bool
```

Subsetting rows

dogs[dogs["height_cm"] > 50]

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	24	2013-07-01
4	Max	Labrador	Black	59	29	2017-01-20
6	Bernie	St. Bernard	White	77	74	2018-02-27

Subsetting based on text data

```
dogs[dogs["breed"] == "Labrador"]
```

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	24	2013-07-01
4	Max	Labrador	Black	59	29	2017-01-20

Subsetting based on dates

dogs[dogs["date_of_birth"] < "2015-01-01"]

	name	breed	color	height_cm	weight_kg date_c	of_birth
О	Bella	Labrador	Brown	56	24	2013-07-01
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
3	Cooper	Schnauzer	Gray	49	17	2011-12-11

Subsetting based on multiple conditions

```
is_lab = dogs["breed"] == "Labrador" is_brown =
dogs["color"] == "Brown" dogs[is_lab & is_brown]
```

```
name breed color height_cm weight_kg date_of_birth

O Bella Labrador Brown 56 24 2013-07-01
```

```
dogs[ (dogs["breed"] == "Labrador") & (dogs["color"] == "Brown") ]
```

Subsetting using .isin()

is_black_or_brown = dogs["color"].isin(["Black", "Brown"]) dogs[is_black_or_brown]

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	24	2013-07-01
1	Charlie	Poodle	Black	43	24	2016-09-16
2	Lucy	Chow Chow	Brown	46	24	2014-08-25
4	Max	Labrador	Black	59	29	2017-01-20

New columns

DATA MANIPULATION WITH PANDAS

Adding a new column

dogs["height_m"] = dogs["height_cm"] / 100 print(dogs)

	name	breed	color	height_cm	weight_kg	date_of_birth	height_m
0	Bella	Labrador	Brown	56	24	2013-07-01	0.56
1	Charlie	Poodle	Black	43	24	2016-09-16	0.43
2	Lucy	Chow Chow	Brown	46	24	2014-08-25	0.46
3	Cooper	Schnauzer	Gray	49	17	2011-12-11	0.49
4	Max	Labrador	Black	59	29	2017-01-20	0.59
5	Stella	Chihuahua	Tan	18	2	2015-04-20	0.18
6	Bernie	St. Bernard	White	77	74	2018-02-27	0.77

Doggy mass index

 $BMI = weight in kg/(height in m)^2$

dogs["bmi"] = dogs["weight_kg"] / dogs["height_m"] ** 2 print(dogs.head())

	name	breed	color	height_cm	weight_kg	date_of_birth	height_m	bmi	
0	Bella	Labrador	Brown	56	24	2013-07-01	0.56	76.530612	
1	Charlie	Poodle	Black	43	24	2016-09-16	0.43	129.799892	
2	Lucy	Chow Chow	Brown	46	24	2014-08-25	0.46	113.421550	
3	Cooper	Schnauzer	Gray	49	17	2011-12-11	0.49	70.803832	
4	Max	Labrador	Black	59	29	2017-01-20	0.59	83.309394	

Multiple manipulations

```
bmi_lt_100 = dogs[dogs["bmi"] < 100]
bmi_lt_100_height = bmi_lt_100.sort_values("height_cm", ascending=False)
bmi_lt_100_height[["name", "height_cm", "bmi"]]</pre>
```

	name	height_cm	bmi
4	Max	59	83.309394
0	Bella	56	76.530612
3	Cooper	49	70.803832
5	Stella	18	61.728395