Problem Description

You are given a circuit C, you must convert it to a 3-CNF formula F such that C is satisfiable if and only if F is satisfiable.

(You must follow the conversion method given in class. Please refer to Tutorial 7, questions D1(b) and D1(c)).

There will be N variables and M gates. The variables will be numbered x_1 , x_2 , ..., x_N . The gate will be numbered g_1 , g_2 , ..., g_M . For every gate g_i , you must create a temporary variable x_{i+N} .

You may output the clause in any order. For each clause, you can output the literals in any order.

As you know, additional variables must be used to change a CNF to a 3-CNF. For any clause that only has 2 literals, you must use x_{N+M+1} . For any clause that only has 1 literal, you must use x_{N+M+1} and x_{N+M+2}

Input Format (Same as input format for C)

The first line will consist of an integer T, the number of test cases. T cases follow. For each case:

The first line will consist of two integers M and N separated by a space, the number of logic gates and the number of variables respectively. The gates are numbered from N+1...N+M. The output of the gate #N+M is the final output of the circuit.

M lines follow. Each line describes each logic gate. Each logic gate has the following format:

The first token will be either "AND", "OR", or "NOT", depending what is the gate.

If the first token is "NOT", it will be followed by a single integer representing the input index. Otherwise, it will be followed by two integers separated by a space representing the input index. Input index is an integer i represents the value of x_i (if $1 \le I \le N$), or the output of gate i (if $N + 1 \le i \le N + M$) Input index of gate i must be between 1 and N+i-1 inclusive

Output Format (Same as input format for A)

For each case, you have to output in the following format:

The first line will consist of two integers C and N, separated by a space, which represent the number of clauses and variables

respectively.

C lines follow. Each line describes each clause. Each clause has the following format:

The first integer K describes the number of literals in that clause. For this problem, because you must output 3-CNF formula, the value of K must be 3. The next K integers describe the literals. The number i represents literal x_i if i>0, or literal $-x_{-i}$ if i<0.

For example, $(x_1 \vee x_3 \vee -x_4)$ will be written as 3 1 3 -4.

If the format above is too complicated too understand, see the I/O sample.

Input Sample

1

2 3

OR 1 2

AND 4 3

Output Sample

14

 $3 \ 4 \ -1 \ 6$

 $3 \ 4 \ -1 \ -6$

 $3 \ 4 \ -2 \ 6$

 $3 \ 4 \ -2 \ -6$

3 - 4 1 2

3 -5 4 6

 $3 - 5 \ 4 - 6$

3 -5 3 6

3 -5 3 -6

3 5 -4 -3

3 5 6 7

 $3 \ 5 \ -6 \ 7$

3 5 6 -7

 $3 \ 5 \ -6 \ -7$

Constraint

Time Limit : 2s $1 \le T \le 15$ $1 \le N \le 15$ $1 \le M \le 100$

Score – (33 points)

There is only one test file for this problem.

Note

Java version used is "gcj-java-3.2.2". C++ version used is "g++ 4.4.7".