VAGUE BY DESIGN:

PERFORMANCE EVALUATION AND LEARNING FROM WAGES

SAET: 18 JUNE 2023

Franz Ostrizek, Sciences Po

INTRODUCTION

- · Performance evaluation is a key aspect of labor contracts and organization design
 - · Many ways to evaluate: Shop floor control, consumer scores, product testing, sales,...
 - · Digitization provides a growing number of possibilities
- · Performance evaluations are an important source of information in the workplace
- Inform the firm about the worker's performance
 - Necessary basis of incentivizing effort via performance pay
 - · Classic results show more information is better Holmström '79, Grossman&Hart '83
- Inform the worker about his performance
 - Learn about ability/match with the job
 - · Confidence in his capability to succeed and sense of agency

THIS PAPER

Dual role of performance evaluation: basis of incentives and agent learning

- How do these two aspects interact?
- $\boldsymbol{\cdot}$ How to optimally design performance evaluation when it shapes worker confidence?

THIS PAPER

Dual role of performance evaluation: basis of incentives and agent learning

- How do these two aspects interact?
- How to optimally design performance evaluation when it shapes worker confidence?
- Two-period model of moral hazard with uncertain match-specific ability
- Principal designs evaluation of output and contingent wages
 - · Fully flexible evaluation: Could observe true contribution to profits
 - Commitment to performance pay
- Learning about the agent's ability based on these evaluations

Dual role of performance evaluation: basis of *incentives* and agent *learning*

Dual role of performance evaluation: basis of incentives and agent learning

 $\boldsymbol{\cdot}$ Agent learning imposes a cost on the principal

Dual role of performance evaluation: basis of incentives and agent learning

- Agent learning imposes a cost on the principal
- · Binary case: Optimal evaluation is noisy & tough

Dual role of performance evaluation: basis of incentives and agent learning

- Agent learning imposes a cost on the principal
- · Binary case: Optimal evaluation is noisy & tough
- · General case:
 - · lower censorship
 - · use information about effort, shroud information about ability

ROAD MAP

- Literature
- · 2x2 Model
 - · Transformation to Belief Space
 - Terminal Period: Agent Learning Imposes a Cost on the Principal
 - · Initial Period: Optimal Evaluation Noisy and Though
- · General Case
- Extensions

RELATED LITERATURE

- Design of information
 Kolotilin et al. '22, Doval&Skreta forthcoming and performance pay:
 Georgiadis&Szentes '20, Hoffmann et al. '21, Li&Yang '20
- Implicit incentives and information design: Ely&Szydlowski '20, Hörner&Lambert '21, Smolin '20
- More information can increase the cost of incentives: Fang&Moscarini '05, Jehiel '14, Nafziger '09, Meyer&Vickers '97

2x2 Model

THE MODEL

- Two time periods $t \in \{1, 2\}$, common discount factor δ .
- Agent
 - · risk averse with utility index $u = \sqrt{w}$ (this talk) and reservation utility U
 - observable but nonverifiable effort $e_t \in \{0, 1\}$ at cost $c \cdot e$
 - time-invariant ability $\theta \in \{\theta_{\rm H}, \theta_{\rm L}\}$, high with prior probability μ .
- Principal
 - risk neutral
 - implements high effort

- Output is
 - high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$ heta = heta_{ extsf{L}}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a+b+\Delta a+\Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$

- Output is
 - high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$ heta = heta_{ extsf{L}}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a + b + \Delta a + \Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$

- Output is
 - high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$\theta = \theta_{L}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a + b + \Delta a + \Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$

- Output is
 - high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$\theta = \theta_{L}$	а	a + b
$ heta= heta_{H}$	$a + \Delta a$	$a+b+\Delta a+\Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$

- Output is
 - high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$ heta = heta_{ extsf{L}}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a+b+\Delta a+\Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

• Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$

INFORMATION, CONTRACTS AND COMMITMENT

- At the beginning of each period, the principal commits to a contract (S, p, w) consisting of
 - a signal structure $S, p(s|y_t)$, and
 - \cdot wages w as a function the signal.

INFORMATION, CONTRACTS AND COMMITMENT

- At the beginning of each period, the principal commits to a contract (S, p, w) consisting of
 - a signal structure $S, p(s|y_t)$, and
 - · wages w as a function the signal.
- · Agent observes the contract and makes participation and effort decision

INFORMATION, CONTRACTS AND COMMITMENT

- At the beginning of each period, the principal commits to a contract (S, p, w) consisting of
 - a signal structure $S, p(s|y_t)$, and
 - · wages w as a function the signal.
- · Agent observes the contract and makes participation and effort decision
- Output is not observed
- · Principal and agent observe the signal realization, wages, and effort
- Update beliefs to $\hat{\mu}(s) \in [\underline{\mu}, \bar{\mu}]$

THE CONTRACTING PROBLEM

First Period

$$\Pi_{1} = \max_{S, \rho, w} \mathbb{E}[y|e = 1, \mu] + \int_{S} p(s|e = 1, \mu) \left(\Pi_{2}(\hat{\mu}(s)) - w(s) \right) ds \tag{1}$$

s.t.
$$\int_{S} p(s|e=1,\mu)u(w(s)) ds - c \ge U$$
 (P₁)

$$\int_{S} p(s|e=1,\mu)u(w(s)) \, ds - c \ge \int_{S} p(s|e=0,\mu)u(w(s)) \, ds \tag{IC}_{1}$$

Second Period

$$\Pi_2(\hat{\mu}) = \max_{S,p,w} \mathbb{E}[y|e=1,\hat{\mu}] - \int_S p(s|e=1,\hat{\mu})w(s) ds$$
(2)

s.t.
$$\int_{S} p(s|e=1,\hat{\mu})u(w(s)) \, \mathrm{d}s - c \ge U \tag{P_2}$$

$$\int_{S} p(s|e=1,\hat{\mu})u(w(s)) \, ds - c \ge \int_{S} p(s|e=0,\hat{\mu})u(w(s)) \, ds \qquad (IC_{2})$$

$$\begin{aligned} \max_{S,\rho,w} & \mathbb{E}[y|e=1] + \mathbb{E}_{\rho} \bigg(\Pi_{2}(\hat{\mu}(s)) - w(s) \bigg) \\ \text{s.t. } & \mathbb{E}_{\rho} u(w(s)) - c \geq U \\ & \mathbb{E}_{\rho} \frac{p(s|e=1) - p(s|e=0)}{p(s|e=1)} u(w(s)) \geq c \end{aligned} \tag{P_{1}}$$

$$\max_{S,p,w} \mathbb{E}[y|e=1] + \mathbb{E}_p \left(\Pi_2(\hat{\mu}(s)) - w(s) \right)$$
s.t. $\mathbb{E}_p u(w(s)) - c \ge U$ (P₁)
$$\mathbb{E}_p \frac{p(s|e=1) - p(s|e=0)}{p(s|e=1)} u(w(s)) \ge c$$
 (IC₁)
$$y \xrightarrow{p} s \xrightarrow{\Delta(Y)} \Delta(Y)$$
posterior $\in \Delta(\Theta)$ score $\in \mathbb{R}$

$$\max_{S,\rho,w} \mathbb{E}[y|e=1] + \mathbb{E}_p \left(\Pi_2(\hat{\mu}(s)) - w(s) \right)$$
s.t. $\mathbb{E}_p u(w(s)) - c \ge U$ (P₁)
$$\mathbb{E}_p \frac{p(s|e=1) - p(s|e=0)}{p(s|e=1)} u(w(s)) \ge c$$
 (IC₁)

$$\max_{S,\rho,w} \mathbb{E}[y|e=1] + \mathbb{E}_{\rho} \left(\Pi_{2}(\hat{\mu}(s)) - w(s) \right)$$
s.t. $\mathbb{E}_{\rho} u(w(s)) - c \ge U$ (P₁)
$$\mathbb{E}_{\rho} \frac{p(s|e=1) - p(s|e=0)}{p(s|e=1)} u(w(s)) \ge c$$
 (IC₁)

$$\Delta\Delta(\Theta) \longleftrightarrow \Delta(\mathbb{R})$$

Proposition

The contracting problem can be written as a choice of a distribution over posteriors, m, with mean μ and support on $[\mu, \bar{\mu}]$ and a mapping from posteriors to wages.

- Wages deterministic as a function of the posterior: $w(s) \mapsto w(\hat{\mu})$
- Probability over signal realizations on-path: $p(s|e_t=1,\mu)\mapsto m(\hat{\mu})$
- · Score:

$$\begin{split} p(\mathbf{s}|e_t = 1, \mu) - p(\mathbf{s}|e_t = 0, \mu) \mapsto \left(b + \Delta b\mu\right) \left(p(\mathbf{s}|\mathbf{y}_{\mathsf{H}}) - p(\mathbf{s}|\mathbf{y}_{\mathsf{L}})\right) \\ \mapsto \left(b + \Delta b\mu\right) \frac{\hat{\mu} - \mu}{(\Delta a + \Delta b)\mu(1 - \mu)} m(\hat{\mu}) \end{split}$$

THE PROBLEM IN BELIEF SPACE

$$\Pi_{1} = \max_{m,w} \mathbb{E}[y|e = 1, \mu] + \int m(\hat{\mu}) \left(\delta \Pi_{2}(\hat{\mu}) - w(\hat{\mu})\right) d\hat{\mu}$$

$$\text{s.t.} \int u(w(\hat{\mu}))m(\hat{\mu}) d\hat{\mu} - c \ge U$$

$$\int \left(b + \Delta b\mu\right) \frac{\hat{\mu} - \mu}{(\Delta a + \Delta b)\mu(1 - \mu)} u(w(\hat{\mu}))m(\hat{\mu}) d\hat{\mu} \ge c$$

$$\int \hat{\mu} m(\hat{\mu}) d\hat{\mu} = \mu; \quad \text{supp}(m) \subset [\underline{\mu}, \overline{\mu}]$$
(BP)

THE FINAL PERIOD

- · Pure incentive problem, no motive to shape learning
- · Classic result of Grossman and Hart (1983):

Proposition

The optimal evaluation in the final period is fully informative.

THE IMPACT OF INFORMATION

- · The last period induces the continuation value $\int \Pi_2(\hat{\mu}) m(\hat{\mu}) \,\mathrm{d}\hat{\mu}$
- $\boldsymbol{\cdot}$ What is the impact of more information about the agent's type?

THE IMPACT OF INFORMATION

- \cdot The last period induces the continuation value $\int\!\Pi_2(\hat{\mu})m(\hat{\mu})\,\mathrm{d}\hat{\mu}$
- · What is the impact of more information about the agent's type?
 - 1. Principal can tailor the contract to the agent's ability
 - Filter out the impact of ability: contract less risky
 - Increases continuation profit
 - 2. Agent has more information when choosing effort
 - More expensive to satisfy incentive compatibility
 - Decreases continuation profit

THE IMPACT OF INFORMATION

- · The last period induces the continuation value $\int \Pi_2(\hat{\mu}) m(\hat{\mu}) \,\mathrm{d}\hat{\mu}$
- · What is the impact of more information about the agent's type?
 - 1. Principal can tailor the contract to the agent's ability
 - Filter out the impact of ability: contract less risky
 - Increases continuation profit
 - 2. Agent has more information when choosing effort
 - More expensive to satisfy incentive compatibility
 - · Decreases continuation profit

scales with Δa : impact of ability

scales with Δb : interaction of effort and ability

THE IMPACT OF AGENT LEARNING

· Second-period IC:

$$u(w_H) - u(w_L) = \frac{c}{b + \hat{\mu}\Delta b}$$

THE IMPACT OF AGENT LEARNING

· Second-period IC:

$$u(w_H) - u(w_L) = \frac{c}{b + \hat{\mu}\Delta b}$$

- Required bonus inversely proportional to a linear function of beliefs
 - · Optimistic agent cheaper to motivate
 - · Uncertain agent is cheaper to motivate
 - · Given change in belief has a larger effect at low beliefs

LEARNING IS COSTLY

Proposition

If the technology is log-supermodular, Π_2 , is strictly concave in the posterior belief. Furthermore, it is more concave at low posteriors, $\Pi_2''' > 0$.

- · Strong complementarity of effort and ability: Agent learning dominates
- Principal has an incentive to conceal information
- Information aversion strongest at the bottom: avoid pessimistic agents

SOLVING THE FULL PROBLEM

- · First period: Incentives and learning
 - · Incentives: More informative evaluation decreases agency cost this period
 - · Learning: More informative evaluation increases agency cost next period

SOLVING THE FULL PROBLEM

- · First period: Incentives and learning
 - · Incentives: More informative evaluation decreases agency cost this period
 - · Learning: More informative evaluation increases agency cost next period
- Information design problem, with:
 - Endogenous payoffs (wages are designed)
 - Additional constraints (participation and incentive compatibility)
- · Binary state does not guarantee binary evaluation (Le Treust&Tomala, 2019)

THE OPTIMAL CONTRACT

Theorem 1

The optimal contract in the first period is (essentially) unique, with a binary ($S = \{G, B\}$) and tough evaluation structure. Let $\sigma \in [0, 1)$ denote the degree of vagueness. The optimal contract consists of

- a good evaluation and associated high wage, only if output was good,
- a bad evaluation and associated low wage: always after output was bad, with prob. σ after output was good.

PROOF OF THEOREM 1: OUTLINE

$$\mathcal{L}(w, m; \underbrace{(\lambda_P, \lambda_{IC})}_{\lambda})$$

Lagrangian of the contracting problem including (P) and (IC)

Concavification of the partially maximized Lagrangian (Georgiadis&Szentes '20)

PROOF OF THEOREM 1: OUTLINE

$$\mathcal{L}(w, m; \lambda)$$

Optimal Wages given m, λ : Standard moral hazard problem $\mapsto w^*(\hat{\mu}; \lambda)$ objective is an expectation given λ : $\mathcal{L}(w^*(\hat{\mu}; \lambda), m; \lambda) = \int \ell^*(\hat{\mu}; \lambda) m(\hat{\mu}) \, \mathrm{d}\hat{\mu}$

Information Design given λ : Concavification of $\ell^* \mapsto m^*(\hat{\mu}; \lambda)$ $m^*(\cdot; \lambda)$ binary and tough for all λ

Duality: \mapsto Solution exists and features of m^* hold in the optimal contract

INFORMATION DESIGN

- · Unconstrained information design
- Payoff $\ell^*(\hat{\mu}; \lambda)$

•
$$\frac{\partial^3}{\partial \hat{\mu}^3} \ell^*(\hat{\mu}; \lambda) > 0$$

- · Convex $\implies m$ fully informative
- Concave-convex: For low μ , learning effect dominates $\implies m$ tough
- This for given λ , but $\lambda(m)$!

BINARY AND NOISY

- Optimal evaluation is binary
 - Motive to control learning does not add complexity to the evaluation
 - · Data aggregated into a pass-fail signal
- Noisy evaluation can be optimal
 - Preserve agent's uncertainty
- The optimal noise is asymmetric
 - · Tough evaluation: Avoid unwarranted praise, embrace unwarranted reprimand
 - "Drill-sergeant mentality" is part of optimal organization design
- Prevent very low posteriors
 - · Costly to motivate, change in posterior has a large effect
- Result of joint design of evaluation and wages

WHAT IF EFFORT AND ABILITY ARE NOT STRONG COMPLEMENTS?

- Intermediate case: Weak complements/substitutes
 - · More information increases the continuation value
 - Fully informative evaluation
- Strong substitutes: $\frac{\Delta b}{b} + \frac{\Delta a}{1-a} < 0$
 - · More information decreases the continuation value
 - Noisy and lenient evaluation
- · Lenient Evaluation
 - Let some failures slip (but punish others harshly)
 - Lack of reprimand not very informative: Avoids complacency

The General Case

POSTERIOR SPACE

Consider now a general $Y \subset \mathbb{R}$ with pdf $f(y|e, \mu)$

$$\max_{S,p,w} \mathbb{E}[y|e=1] + \mathbb{E}_p \left(\Pi_2(\hat{\mu}(S)) - w(S) \right)$$
s.t. $\mathbb{E}_p u(w(S)) - c \ge U$ (P₁)

$$\mathbb{E}_{p} \frac{p(s|e=1) - p(s|e=0)}{p(s|e=1)} u(w(s)) \ge c \tag{IC}_{1}$$

POSTERIOR SPACE

- · Rewrite the program as a choice of $\Phi \in \Delta \Delta Y$
- · Let $\mu \in [0,1]^{|Y|}$, $\mathbf{x} \in \mathbb{R}^{|Y|}$ denote the vector of posteriors and scores given \mathbf{y}

$$\max_{w,\Phi} \mathbb{E} \left(\Pi_2(\boldsymbol{\mu} \cdot \boldsymbol{\phi}) - w(\boldsymbol{\phi}) \right)$$
s.t. $\mathbb{E} u(w(\boldsymbol{\phi})) - c \ge U$ (P₁)
$$\mathbb{E} \left(\boldsymbol{x} \cdot \boldsymbol{\phi} \right) u(w(\boldsymbol{\phi})) \ge c$$
 (IC₁)
$$\mathbb{E} \boldsymbol{\phi} = f(\cdot|1, \mu_0)$$

- Can learn about the optimal structure of evaluation from looking at μ and x

- \cdot Can learn about the optimal structure of evaluation from looking at μ and x
- · "Learning about effort (only) is always desirable"
 - Suppose $\mu(y) = \mu(y')$ and $x(y) \neq x(y')$.
 - Then y and y' are not pooled in any optimal evaluation structure.

- \cdot Can learn about the optimal structure of evaluation from looking at μ and x
- "Learning about effort (only) is always desirable"
 - Suppose $\mu(y) = \mu(y')$ and $\mathbf{x}(y) \neq \mathbf{x}(y')$.
 - Then y and y' are not pooled in any optimal evaluation structure.
- The 1-dimensional case: The following are equivalent
 - $\cdot x \in \operatorname{span}(\mu, 1)$
 - there is a bijection between feasible distributions over posteriors and feasible distributions over scores
 - $f = f(\cdot|0,0) + g(e,\theta)(f(\cdot|1,1) f(\cdot|0,0))$

- \cdot Can learn about the optimal structure of evaluation from looking at μ and x
- "Learning about effort (only) is always desirable"
 - Suppose $\mu(y) = \mu(y')$ and $\mathbf{x}(y) \neq \mathbf{x}(y')$.
 - Then y and y' are not pooled in any optimal evaluation structure.
- The 1-dimensional case: The following are equivalent
 - $\cdot x \in \operatorname{span}(\mu, 1)$
 - there is a bijection between feasible distributions over posteriors and feasible distributions over scores
 - $f = f(\cdot|0,0) + g(e,\theta)(f(\cdot|1,1) f(\cdot|0,0))$
- \cdot 1-dim: Sufficiently strong complementarities $\implies \Pi_2'''>0 \implies$ lower censorship

Extensions

EXTENSIONS

- Principal can acquire private information
 - $\boldsymbol{\cdot}$ Principal-preferred equilibrium: outcome-equivalent to optimal contract

EXTENSIONS

- Principal can acquire private information
 - · Principal-preferred equilibrium: outcome-equivalent to optimal contract
- · Effort not observable
 - · Potentially 3rd, uninformative, evaluation
 - $\boldsymbol{\cdot}$ Tough and binary structure preserved conditional on informative evaluation

- Principal can acquire private information
 - · Principal-preferred equilibrium: outcome-equivalent to optimal contract
- · Effort not observable
 - · Potentially 3rd, uninformative, evaluation
 - Tough and binary structure preserved conditional on informative evaluation
- · Long-run commitment
 - · Robust to commitment to continuation value, observed by the agent
 - Full-commitment difficult: belief-manipulation & belief-dependent costs of delay

- Principal can acquire private information
 - · Principal-preferred equilibrium: outcome-equivalent to optimal contract
- · Effort not observable
 - · Potentially 3rd, uninformative, evaluation
 - Tough and binary structure preserved conditional on informative evaluation
- · Long-run commitment
 - · Robust to commitment to continuation value, observed by the agent
 - Full-commitment difficult: belief-manipulation & belief-dependent costs of delay
- Many periods
 - · Not analytically tractable: lack of control over shape of continuation value
 - · Numerically: Same structure within period; noisier evaluation early in the relationship

CONCLUSION

- Outcome of performance evaluation is a crucial source of information
 - about effort: Incentives
 - \cdot about the agent's ability: Confidence

CONCLUSION

- Outcome of performance evaluation is a crucial source of information
 - · about effort: Incentives
 - · about the agent's ability: Confidence
- · Tension between those two channels (learning about the importance of effort)
 - · As much information as possible about effort
 - As little information as possible about ability

- · Outcome of performance evaluation is a crucial source of information
 - · about effort: Incentives
 - · about the agent's ability: Confidence
- Tension between those two channels (learning about the importance of effort)
 - · As much information as possible about effort
 - · As little information as possible about ability
- Optimal Performance Evaluation
 - · Noisy, even though wages could condition on true y
 - Strong complementarity: avoid very low posterior beliefs (tough/lower-censorship)

OUTLOOK

- · Preference across given information sources: conduct, not results!
 - · Salary differences between workers: mostly driven by types, so should be concealed
- · Affects task design: Harder/easier to keep agents motivated
- Career Concerns: informationally opposite forces
 - information about effort and ability inseparably intertwined
 - here: source of friction; CC: source of incentives

Thank You!

UTILITY FUNCTION

- Sufficient condition on utility function
- $w = u^{-1}$, "cost of utility"

Assumption 1

- 1. (No incentives at probability zero) $\frac{w(x)}{x} \to \infty$ as $x \to \infty$.
- 2. (Decreasing curvature) $w''' \leq 0$.
- 3. (Bounded changes in curvature) $\frac{w'''(u_H)}{w''(u_H)} \ge -A$.

- Satisfied for CRRA $u(x) = \frac{x^{1-\gamma}}{1-\gamma}$
 - if $\gamma \leq 1/2$ and U sufficiently large.
 - Always satisfied for $\gamma=\frac{1}{2}$

STEP 1: OPTIMAL WAGES

- Let $\mathcal{L}(m, w; (\lambda_P, \lambda_{IC}))$ denote the Lagrangian associated to the problem.
- \cdot Solving for the optimal wage given λ yields

$$W^*(\hat{\mu}, \lambda) = U'^{-1} \left(\left(\lambda_P + \lambda_{IC} \frac{b + \Delta b \mu}{(\Delta a + \Delta b) \mu (1 - \mu)} (\hat{\mu} - \mu) \right)^{-1} \right)$$

• Partially maximized Lagrangian, $\sup_{w} \mathcal{L}(m, w; (\lambda_P, \lambda_{IC}))$, is posterior separable

$$\begin{split} \mathcal{L}(m, w^*(\hat{\mu}, \lambda); (\lambda_P, \lambda_{IC})) &= \int \bigg\{ P_{\mu}^1 Y + \delta \Pi_2(\hat{\mu}) - w^*(\hat{\mu}, \lambda) \\ &+ \lambda_P \left(u(w^*(\hat{\mu}, \lambda)) - c - U \right) \\ &+ \lambda_{IC} \left(\frac{b + \Delta b \mu}{(\Delta a + \Delta b) \mu (1 - \mu)} \left(\hat{\mu} - \mu \right) u(w(\hat{\mu}, \lambda)) - c \right) \bigg\} m(\hat{\mu}) d\hat{\mu} \end{split}$$

STEP 2: INFORMATION DESIGN

- · Unconstrained information design problem with payoff $\ell^*(\hat{\mu}; \lambda)$
- · The objective is either convex or concave-convex since

$$\frac{\partial^{3}}{\partial \hat{\mu}^{3}} \ell^{*}(\hat{\mu}; \lambda) = \lambda_{IC} \left(\frac{b + \Delta b \mu}{(\Delta a + \Delta b) \mu (1 - \mu)} \right) \frac{\partial^{2}}{\partial \hat{\mu}^{2}} u(w(\hat{\mu}; \lambda)) + \delta \Pi_{2}^{"'}(\hat{\mu}) > 0$$

Lemma

For any λ_{IC} , there exists a unique solution to the information design problem. It induces at most two posteriors: the highest feasible posterior $\bar{\mu}$ with probability $m(\bar{\mu}) \in [0, \frac{\mu - \mu}{\bar{\mu} - \mu}]$ and a low posterior, $\mu^* \in [\underline{\mu}, \mu]$ with $m(\mu^*) \in [\frac{\bar{\mu} - \mu}{\bar{\mu} - \mu}, 1]$.

STEP 2: INFORMATION DESIGN

STEP 3: STRONG DUALITY

• We need to show strong duality in the general problem, i.e.

$$\inf_{\lambda \geq 0} \sup_{\textit{w},\textit{m} \text{ s.t. (BP)}} \mathcal{L}(\textit{m},\textit{w};\lambda) = \sup_{\textit{w},\textit{m} \text{ s.t. (BP)}} \inf_{\lambda \geq 0} \mathcal{L}(\textit{m},\textit{w};\lambda)$$

Two steps: [1] Wages

Lemma

The wage setting problem satisfies strong duality, i.e.

$$\sup_{W} \inf_{\lambda \geq 0} \mathcal{L}(m, W; \lambda) = \inf_{\lambda \geq 0} \sup_{W} \mathcal{L}(m, W; \lambda).$$

STEP 3: STRONG DUALITY

· We need to show strong duality in the general problem, i.e.

$$\inf_{\lambda \geq 0} \sup_{\mathbf{W}, m \text{ s.t. (BP)}} \mathcal{L}(m, \mathbf{W}; \lambda) = \sup_{\mathbf{W}, m \text{ s.t. (BP)}} \inf_{\lambda \geq 0} \mathcal{L}(m, \mathbf{W}; \lambda)$$

• Two steps: [2] Information Design

Lemma

The information design problem satisfies strong duality, i.e.

$$\sup_{m \text{ s.t.}(\mathrm{BP})}\inf_{\lambda \geq 0} \int \ell^*(\hat{\mu};\lambda) m(\hat{\mu}) \,\mathrm{d}\hat{\mu} = \inf_{\lambda \geq 0} \sup_{m \text{ s.t.}(\mathrm{BP})} \int \ell^*(\hat{\mu};\lambda) m(\hat{\mu}) \,\mathrm{d}\hat{\mu}.$$

A SIMPLIFIED PROBLEM

· Define a simplified problem, using binary and tough evaluation

$$\max_{m_1, m_2, \mu_1, w_1, w_2} \mathbb{E}[y_1 | e = 1, \mu] + m_1 (\Pi_2(\mu_1) - w_1) + m_2 (\Pi_2(\bar{\mu}) - w_2)$$
(4)

s.t.
$$m_1 u(w_1) + m_2 u(w_2) - c \ge U$$
 (P)

$$\frac{b + \Delta b\mu}{(\Delta a + \Delta b)\mu(1 - \mu)} \sum_{i} m_{i}(\mu_{i} - \mu)u(w_{i}) \ge c \tag{IC}$$

$$m_1\mu_1 + m_2\bar{\mu} = \mu; \quad m_1 + m_2 = 1; \quad \mu_1 \ge \underline{\mu}$$
 (BP)

◆ back

COMPLEMENTS AND SUBSTITUTES BACK

SUBSTITUTES: CONDITION ON UTILITY BACK

Assumption (1*)

- 1. (No incentives at probability zero) $\frac{w(x)}{x} \to \infty$ as $x \to \infty$.
- 2. (Increasing curvature) $w''' \ge 0$.
- 3. (Bounded changes in curvature)

$$\frac{3(b+\mu\Delta b)\Delta b}{c(a\Delta b-b\Delta a)} \geq \frac{w'''(u_L)}{w''(u_L)},$$

where
$$u_L = U - \frac{a + \mu \Delta a}{b + \mu \Delta b} c$$
.

PRIVATE INFORMATION OF THE PRINCIPAL

- Principal chooses
 - · Evaluation structure: observed by agent, basis of performance pay and learning
 - · Private evaluation: not observed by agent, basis of learning only for principal
- · Joint distribution over posteriors: $m_P(\mu_P, \hat{\mu})$
 - · Agent observes $m(\hat{\mu}) = \int m_P(\mu_P,\hat{\mu}) \,\mathrm{d}\mu_P$
- Dynamic game with incomplete information
- · Agent updates belief based on
 - · First-period evaluation
 - Second-period contract offer

PRIVATE INFORMATION OF THE PRINCIPAL

- Unique PBE with passive beliefs: outcome equivalent to optimal contract without private information acquisition
 - · Passive beliefs: no updating based on contract offer
 - Principal preferred*
- · Private information either revealed or not useful
 - If private information isn't used to adjust second period contract: irrelevant
 - Information used to adjust contract offer: revealed to agent
 - Better to also use it as a basis of performance pay

^{*}Among equilibria that satisfy no-holdup: No rent for the agent in the second period on path.

PRIVATE INFORMATION OF THE PRINCIPAL

- Unique PBE with passive beliefs: outcome equivalent to optimal contract without private information acquisition
 - · Passive beliefs: no updating based on contract offer
 - Principal preferred*
- · Private information either revealed or not useful
 - If private information isn't used to adjust second period contract: irrelevant
 - Information used to adjust contract offer: revealed to agent
 - Better to also use it as a basis of performance pay
- · Remains an equilibrium when principal has to acquire private information
- Unique[†] when private information acquisition strategy observed

d back

^{*}Among equilibria that satisfy no-holdup: No rent for the agent in the second period on path.

[†]Under no-holdup and no-signaling-what-you-don't-know.

- · Suppose effort is not observed by the principal
- · After a deviation to low effort, signal s
 - · Principal has posterior

$$\hat{\mu}(s) = \mu \frac{p(s|y_L) + (a+b+\Delta a + \Delta b) \left[p(s|y_H) - p(s|y_L) \right]}{p(s|y_L) + (a+b+(\Delta a + \Delta b)\mu) \left[p(s|y_H) - p(s|y_L) \right]}$$

· Agent interprets signal differently:

$$\mu \frac{p(s|y_L) + (a + \Delta a) [p(s|y_H) - p(s|y_L)]}{p(s|y_L) + (a + \Delta a\mu) [p(s|y_H) - p(s|y_L)]}$$

Agent has private information about the posterior

- Incentive compatibility in the second period:
 - · Slack if agent more optimistic
 - Violated if agent more pessimistic
- · "Belief-manipulation motive"
- · Double deviations optimal
- First-period IC dynamic: Kink in the principal's objective at prior μ

$$\int \left\{ \frac{(b+\mu\Delta b)}{\mu(1-\mu)\Delta b} \left(\hat{\mu}-\mu\right) u(w(\hat{\mu})) - \left[1 - \frac{(b+\mu\Delta b)}{\mu(1-\mu)\Delta b} \left(\hat{\mu}-\mu\right)\right] \max\{0, c\Delta b \frac{\mu-\hat{\mu}}{b+\hat{\mu}\Delta b}\} \right\} m(\hat{\mu}) d\hat{\mu} \geq c$$

- Under $u = \sqrt{\cdot}$ and $\Delta a = 0$: At most three evaluation outcomes
 - · Neutral signal: Not informative about effort and ability[‡]
 - · Conditional on informative evaluation: binary and tough
- Intuition: Avoid outcomes that allow generation of private information

◆ back

[‡]In simulations: Never used.

- Under $u = \sqrt{\cdot}$ and $\Delta a = 0$: At most three evaluation outcomes
 - Neutral signal: Not informative about effort and ability[‡]
 - · Conditional on informative evaluation: binary and tough
- · Intuition: Avoid outcomes that allow generation of private information
- More complicated with long-run contracting:
 - Principal can induce a learning motive by providing excessive bonuses in t=2
 - · Joint design of information and wages in both periods

d back

[‡]In simulations: Never used.

LONG RUN COMMITMENT: CONTINUATION VALUE

- Principal commits to contract: (S, p, w, v)
 - a signal structure S, p(s|y), realization conditional on contemporaneous output
 - · wages w, and
 - $\cdot\,$ continuation value v as a function the signal.

LONG RUN COMMITMENT: CONTINUATION VALUE

- Principal commits to contract: (S, p, w, v)
 - a signal structure S, p(s|y), realization conditional on contemporaneous output
 - · wages w, and
 - \cdot continuation value \mathbf{v} as a function the signal.
- Assume $u(x) = 2\sqrt{x}$
 - Theorem 1 goes through, delaying payments does not affect the mechanism
 - · Optimal evaluation: binary and weakly tough

LONG RUN COMMITMENT: FULL COMMITMENT

- Principal commits to long-run contract: $(S_1 \times S_2, p, w)$
 - a signal space $S_1 \times S_2$, p progressively measurable wrt y_t ,
 - and wages w, progressively measurable wrt s_t .
- · Difficult:
 - · Agent acquires private info after shirking (effort unobservable to the contract), and
 - the principal can commit to excess bonuses in t=2 (to induce a learning motive).
 - ⇒ Characterizing the optimum requires joint design in both periods.

LONG RUN COMMITMENT: FULL COMMITMENT

- Principal commits to long-run contract: $(S_1 \times S_2, p, w)$
 - a signal space $S_1 \times S_2$, p progressively measurable wrt y_t ,
 - and wages w, progressively measurable wrt s_t .
- · Difficult:
 - · Agent acquires private info after shirking (effort unobservable to the contract), and
 - the principal can commit to excess bonuses in t=2 (to induce a learning motive).
 - ⇒ Characterizing the optimum requires joint design in both periods.
- · Optimum is not tractable. Effect is still in place:
 - Consider optimal contract without fully informative evaluation
 - Bonus for high output in period 1 optimally split between both periods
 - · Principal can postpone information, but it is costly

MANY PERIODS

MANY PERIODS SACK

UTILITY FUNCTION BACK

Assumption (Bounded changes in curvature)

$$\frac{w'''(u_H)}{w''(u_H)} \ge -\frac{3(b+\mu\Delta b)\Delta b}{c((1-a)\Delta b+b\Delta a)},$$

where
$$u_H = U + \frac{1-a-\mu\Delta a}{b+\mu\Delta b}c$$
.

UNDERCONFIDENCE: WHEN IS LEARNING COSTLY?

Proposition

The effect of learning on the principal's continuation value is ambiguous.

- There exists a threshold \bar{U} such that the continuation value is increasing in information if $U \geq \bar{U}$, and
- there exists a threshold $\bar{b} > 0$ such that it is decreasing if $b < \bar{b}$.

∢ back