

Single Image Deblurring with Adaptive Dictionary Learning

Zhe Hu, Jia-Bin Huang, Ming-Hsuan Yang

Electrical Engineering and Computer Science, University of California, Merced zhu@ucmerced.edu, jbhuang@ieee.org, mhyang@ucmerced.edu

Introduction

• The image blur problem can be modeled by latent image I convolving with a spatial-invariant kernel **K**:

- Non-blind deconvolution problem: Given **B** and **K**, find **I**
- Blind deconvolution problem: Given B, find K and I (ill-posed, multiple solutions, priors needed)

Motivation

Impose image sparsity prior

$$\min ||\alpha||_{\mathbf{0}}, \quad \text{s.t.} \quad ||\mathbf{I} - \mathbf{D}\alpha||_{\mathbf{2}} \le \epsilon$$
 (1)

- Adaptive dictionary
 - fixed**D** → ignoring the information on input image adaptive **D** → exploiting structure/details on input image
- ullet Avoid computing deconvolution by enforcing consistent lpha

$$B \approx D_B \cdot \alpha$$
 \updownarrow same coefficients α (2)

where D_B and D_I denote the dictionaries for blurred and latent images, and $D_B = K \otimes D_I$.

• Given \boldsymbol{B} , \boldsymbol{K} and $\boldsymbol{D_I}$,

Algorithm

Formulation

Joint optimization problem of K and α with I_1 regularization:

$$\min_{K,\alpha} \|B - K \otimes D_{I}\alpha\|_{2}^{2} + \lambda \|\alpha\|_{0}$$

$$\Leftrightarrow \min_{K,\alpha} \|B - K \otimes D_{I}\alpha\|_{2}^{2} + \lambda \|\alpha\|_{1}$$
(3)

Iterative Optimization

Figure: Algorithm flowchart

 \blacktriangleright Estimating α with fixed **D** and **K** using sparse representation

$$\alpha^{(n+1)} = \min_{\alpha} \|b - (K^{(n)} \otimes D_I^{(n)})\alpha\|_2^2 + \lambda \|\alpha\|_1$$

$$= \min_{\alpha} \|B - D_B^{(n)}\alpha\|_2^2 + \lambda \|\alpha\|_1$$
(4)

▶ Updating **D** with fixed **K** and α using K-SVD algorithm

$$d_{i}^{(n+1)} = \min \| I^{(n)} - D^{(n)} \alpha^{(n+1)} \|_{2}^{2}$$

$$= \min_{d_{i}} \| I^{(n)} - (d_{i} \alpha_{i}^{n+1}) + \sum_{j \neq i} d_{j}^{(n)} \alpha_{j}^{(n+1)}) \|_{2}^{2}$$

$$= \min_{d_{i}} \| E_{i}^{(n+1)} - d_{i} \alpha_{j}^{(n+1)} \|_{2}^{2}$$
(5)

► Recovering *K* with reconstructed *I*

First reconstruct latent image I with coefficients α from (4) and dictionary D from (5),

$$I^{(n+1)} = D^{(n+1)}\alpha^{(n+1)} \tag{6}$$

After that, use Tikhonov regularization to solve kernel estimation problem:

$$K^{(n+1)} = \arg\min_{K} ||B - K \otimes I^{(n+1)}||_{2}^{2}$$
 (7)

Quantitive Experimental Results

RMSE on testing images

Methods	Koala	Babara	Castle1	Castle2
Fergus	5.41	5.53	7.87	6.58
Shan	6.57	7.02	7.46	7.21
Ours	5.10	4.61	6.73	6.94

More information can be found at

http://eng.ucmerced.edu/people/zhu

Qualitative Experimental Results

Motion Blur Kernel

(5) Randomly Generated Kernel

(b) Fergus

(c) Shan

(d) Ours