

Цель проекта

Разработать модель для генерации MIDIтреков с возможностью выбора инструментов, сочетающую креативность и контроль пользователя

Задачи проекта

- Исследовать архитектуры нейросетей для генерации музыки (Transformers, RNN/LSTM, GAN)
- Собрать датасет MIDI-файлов с разметкой по инструментам (пианино, гитара, бас, скрипка и др.)
- Подготовить данные для обучения модели
- Обучить модель на мульти-инструментальных данных и оценить качество звучания
- Разработать интерфейс для интерактивного взаимодействия с пользователем

Существующие методы генерации музыки нейросетями

Метод	Пример работы	Преимущества	Недостатки
Рекуррентные сети (RNN/LSTM)	BachBot (генерация полифони- ческой музыки в стиле Баха)	Хорошо улавливают временные зависимости за счёт рекуррентных связей Относительно просты в реализации для коротких последовательностей	Страдают от "забывания" длинных последовательностей Генерируют предсказуемые паттерны Медленная генерация
Generative Adversarial Networks (GAN)	MuseGAN — генерация многодоро- жечных MIDI-треков GANSynth (Google Magenta) — генерация сырого аудио в реальном времени	Параллельная генерация всего трека (не пошаговая) Могут имитировать сложные распределения данных	Ресурсоёмкость Нет гарантии, что сгенерированный трек будет гармоничным — возможны какофонии
Transformers	Music Transformer (Magenta) — генерация фортепианных композиций Allegro music transformer - мульти-инструментальный музыкальный трансформер	Лучше других справляются с аккордами и контрапунктом. Механизм внимания сохраняет контекст на всём протяжении трека	Высокая вычислительная сложность Риск переобучения

Обоснование выбора Transformer-модели

Мы выбрали архитектуру Transformer, потому что она:

- Генерирует гармоничные треки за счёт анализа всей музыкальной структуры.
- Улавливает долгосрочные зависимости между аккордам и мелодией
- Даёт лучший quality/resource баланс по сравнению с RNN и GAN

Allegro transformer maker

- Гибкость генерации: Исходная модель поддерживает создание композиций с разными инструментами, что соответствует нашим требованиям.
- Трансформерная архитектура
- Модифицируемость: Архитектура позволила нам эффективно доработать модель под наши задачи

Мы выбрали датасет Lakh MIDI, потому что он:

- Содержит разнообразные жанры
- Включает не только монофонические мелодии
- Предоставляет чистые MIDI-файлы с разделенными треками инструментов

Шаг 1: Подготовка MIDI-файлов

1 Фильтрация:

Оставили только файлы размером < 250 КБ Удалили треки без чёткой разметки инструментов Только один ведущий инструмент на трек

О Нормализация:

Квантование времени - Все события привязаны к сетке 1/32 ноты Фиксация длительностей - Длительности кратны 1/32 Нормализация громкости - громкость округляется с шагом 15 (8-127) Группировка инструментов - 128 GM-патчей в 12 классов

3 Токенизация

Принцип кодирования следующий:

Каждое событие - 3 токена:

- Время (0-225)
- Длительность * 8 + громкость (256-511)
- Инструмент * 128 + нота (1280-2559)

Специальные токены:

- 3087 START
- 3073 Трек без ударных
- 3075 + N Маркер инструмента

Итоговый датасет

Объем:

10,000+ MIDI-треков

Формат:

Токенизированные последовательности

Модель

1. Основные параметры

```
SEQ_LEN = 512

BATCH_SIZE = 64

NUM_EPOCHS = 5

LEARNING_RATE = 2e-4
```

2. Структура

```
TransformerWrapper(
num_tokens=3088, #Размер словаря
max_seq_len=SEQ_LEN, #Макс. длина последовательности
attn_layers=Decoder(
dim=512, #Размерность эмбеддингов
depth=12, #Количество слоев
heads=10, #Головы внимания
use_flash_attn=True #Оптимизация внимания
)
```

Особенности:

Авторегрессия:

- Предсказывает каждый токен на основе предыдущих
- Аналогично GPT для текста

Оптимизации:

- Flash Attention быстрые вычисления
- DataParallel обучение на нескольких GPU

Слои:

- Эмбеддинги нот + позиции
- трансформер-блоки
- Нормализация и линейный слой

Оценка качества модели

Loss (Cross-Entropy)

- Главный индикатор обучения
- Чувствителен ко всем аспектам: высота ноты, инструмент, длительность

Accuracy

- Дополняет loss
- Показывает % идеально совпадающих предсказаний
- Особенно важен для контроля переобучения и сравнения разных архитектур

Разработка веб-интерфейса

Основные возможности:

- Выбор инструмента из 11 вариантов
- Возможность добавить барабанную дорожку к каждому инструменту

Гибкие параметры:

- Длина композиции
- Количество треков за раз

Температурный контроль креативности

Форматы вывода:

- MIDI-файл
- МРЗ для мгновенного прослушивания

