Lecture 9: CS677

Sept 19, 2017

Admin

- HW2 due Sept 24, 9AM
- Exam 1, Oct 10, class period
 - Closed book, closed notes
 - Topics: whatever we cover until Oct 5
 - A detailed list will be provided later
- Make-up classes
 - No classes on Oct 24 and 26 (ICCV)
 - Make up classes on Oct 13 and Oct 20
 - OHE 3:30-5:00 pm

Review

- Previous class
 - F-H graph-based agglomerative algorithm
 - Energy minimization methods
 - Grabcut
 - Canny edge detection
 - Line linking and iterative end-point fit
- Today's objective
 - Hough transform
 - SIFT features

Fitting Without Linking

- Linking may create very short segments if many edgels are missing
 - Global view may allow linking of these edgels
 - e.g. only one of every three points along a line is detected
- Hough Transform
 - Line representation $(\sin \theta) x + (\cos \theta) y = d$

- Different choices of θ , d > 0 give different lines
- For any (x_i, y_i) there is a one parameter family of lines through this point, given by: $(\sin \theta) x_i + (\cos \theta) y_i = d$
- Each point gets to vote for each line in the family; if there is a line that has lots of votes, that should be the line passing through the points

Mechanics of the Hough transform

- Construct an array representing θ , d
- For each point, render the curve (θ, d) into this array, adding one at each cell
- Difficulties
 - how big should the cells
 be? (too big, and we
 cannot distinguish
 between quite different
 lines; too small, and noise
 causes lines to be missed)

- How many lines?
 - count the peaks in the Hough array
- Who belongs to which line?
 - tag the votes
- Difficulties:
 - Right selection of cell size
 - With extensive noise,
 accidental peaks may be
 stronger than peaks due to
 real lines

Hough Transform for Curves

- A transform can be defined for any analytical curve
 - Circle, three unknowns (center, radius)
 - Ellipse (center, orientation, major and minor axis lengths)
 - Polynomials, quadrics, implicit functions...
- Dimension of Hough space equals number of unknown parameters
 - Filling high dimensional spaces is computationally expensive
 - Probability of finding intersections is reduced
 - Random sampling may be used to reduce cost
- Generalized Hough transform can be applied to fit any analytical model to a set of data points

Corner Features

- Corner-like features can be useful for various tasks, such as matching of points in stereo/motion images as they are more distinct than edge features
- Some corner-like features claim to be invariant to normally observed differences in images
 - Scale, rotation, affine transformation
- Can we detect corners locally (w/o finding corresponding lines)?
 - Gradient at a corner should be large
 - In a small neighborhood, gradient direction should swing sharply (corresponding to the line directions)
- Two common implementations:
 - Harris Corner Detector (cited by >14K authors)
 - SIFT features (cited by >40K authors!)

Harris Corner Detector

Key Idea: examine how intensity changes in neighborhood of a point

Different for flat, edge and corner points

"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

Figure from notes by Prof. Freeman, MIT

SIFT Features

- Determine key points
 - Extrema of DoG
 - Scale at which extrema found define scale of keypoint
 - DoG approximates filtering with Laplacian of Gaussians
 - Shown in previous work to give scale independent points
 - Clean up of keypoints
 - Low contrast, being on edge
- Find dominant gradient direction in neighborhood of a keypoint
 - All other directions measured respect to this direction
- Histogram of gradients in neighborhood
 - 4 x4 cells, 8 orientations (128D descriptor)
 - Total of 132 features (four for location, scale and orientation)