Columbia geometry and topology seminar March 4, 2022

Counterexamples in 4-manifold topology

joint with D. Kasprowski & M. Powell

Diffeomorphic Homeomorphic htpy equiv

Manifolds will be closed, connected.

I 2: 3B45 sm, free (uvolution)

Cappell-Shaneson Fintushel-Stern

U 8m, compact, contractible, ∂U ≅ Z(3,5,19)

77: 245 sm, free inv.

Ruberman

$$R := \mathcal{U}/x \sim \mathcal{U}(x)$$

$$R \simeq RP^4$$

$$R \not\approx RP^4$$

U top, compact, contr 201 ≥ Zi(5,9,13)

32:225 sm, free involution

ks(R) ≠0 => £ not smoothable

Diffeomorphic Homeomorphic htpy equiv

$$RP^{4}, R \qquad RP^{4}, R$$

$$E(1), E(1)_{2,3} \qquad CP^{2}, *CP^{2}$$

$$K3 \text{ sunface}, \infty \qquad \text{envolubile}?$$

$$RP^{4} \# CP^{2} \text{ and } R\# *CP^{2}$$

$$S \text{ suncotrable [Ruberman-Stern]}$$

$$Fact: \exists \text{ knot } K \text{ s.t. } S_{1}^{3}(K) \cong \Xi(5,9,13)$$

$$Y_{1}(K) = S_{1}^{3}(K) = \Xi(5,9,13)$$

$$X_{1}(K) = S_{1}^{3}(K) = \Xi(5,9,13)$$

$$X_{2}(K) = \Sigma(5,9,13)$$

$$X_{3}(K) = \Sigma(5,9,13)$$

$$X_{4}(K) = \Sigma(5,9,13)$$

$$X_{4}(K) = \Sigma(5,9,13)$$

$$X_{5}(K) = \Sigma(5,9,13$$

Do I sm, orientable, simply connected, fake 4-mflds? No. [Wall+Freedman]

```
Do \exists sm, orientable, simply connected, fake 4-mflds?

Let lens spaces L, L' s.t. L \cong L' but L \not\cong L'.

[Turaev] L \times S' \cong L' \times S' but L \times S' \not\cong L' \times S'.
```

```
Homeomorphic
    Diffeomorphic
                                                      htpy equiv
                   RP^4, R
                                           RP4, P
                                          CP^2, *CP^2
                  E(1), E(1)2,3
                                         RP4#CP2, R#*CP2
                   K3 surface,∞
                                     Lxs', L'xs'; L~L', L*L'
Do 3 infinitely many sm, orientable, fake 4-mflds? Open.
   700 many TOP orientable, fake 4. mflds.
                     pas odd Lpig XS'
                                            M ~ Lpgxs1
                            70 ly many
        [Kwasik-Schultz]
                                              M& Lprgxs'.
```


Theorem [Kasprowski-Powell-R.]
$$\forall n \% 1 \exists SNisi=1$$
 such that

 N_i^* is closed, orientable, top 4 mild

 $\forall i \neq j^*$, N_i^* and N_j^* are -simple bomotopy equivalent

 $- top \cdot li$ -cobordant

 $Ti_1 \approx Ti_2 \approx Ti_3 \approx Ti_4 \approx Ti_2 \approx Ti_3 \approx Ti_3 \approx Ti_4 \approx Ti_5 \approx T$

Proof sketch

Let
$$M_{\Upsilon} = L_{\alpha,1} \times S^1$$
, $\pi_{\Upsilon} = \mathbb{Z}/a_{\Upsilon} \times \mathbb{Z}$, $n(\Upsilon) = \left\lfloor \frac{2^{\Upsilon-1}+4}{3} \right\rfloor + \left\lfloor \frac{\Upsilon}{a} \right\rfloor - 1$

The singery exact dequeuce(s):

$$\mathcal{N}(M_{\mathcal{T}} \times [0,1], \partial(M_{\mathcal{T}} \times [0,1]) \longrightarrow \mathcal{L}_{5}^{s}(\Pi_{\mathcal{L}}[\pi_{\mathcal{T}}]) \longrightarrow \mathcal{S}^{s}(M_{\mathcal{T}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Examples		Properties			Equivalence relations												
	şmc	orie	nted 1	edna	1× 52 +	S2-stab	ly homeo	CP2 stable	y diffeo	otopy eo	luiv. Je homot top.	h-cobord top.	scopords	int h-co	bordant	obordant comorphic diffeomorphic	
S^4 and $S^2 \times S^2$	/	/	1	Х	/	1	/	/	Х	X	×	×	Х	Х	Х	×	
$S^2 \times S^2$ and $S^2 \widetilde{\times} S^2$	1	1	1	1	X	/	×	/	X	×	X	X	X	X	X	X	
\mathbb{CP}^2 and $*\mathbb{CP}^2$	X	1	1	1	X	×	n/a	n/a	1	1	X	X	n/a	n/a	X	n/a	
$\mathbb{RP}^4 \# \mathbb{CP}^2$ and $\mathcal{R} \# * \mathbb{CP}^2$	1	X	×	1	/	/	1	/	1	1	X	X	X	X	X	X	
$K3\#\mathbb{RP}^4$ and $\#^{11}S^2\times S^2\#\mathbb{RP}^4$	1	X	×	1	/	/	×	/	1	1	/	/	X	X	1	×	
\mathbb{RP}^4 and R	1	X	×	1	/	/	×	/	1	1	/	1	X	X	1	X	
$L_{p,q_1} \times S^1, \dots, L_{p,q_k} \times S^1$, with $L_{p,q_1} \simeq L_{p,q_2}$ and $L_{p,q_1} \not\cong L_{p,q_2}$	1	✓	X	✓	✓	1	1	1	✓	1	X	X	×	×	X	×	
$E(1)$ and $E(1)_{2,3}$	/	1	/	1	/	1	1	/	1	1	/	/	/	/	1	×	
$\#^3E_8$ and Le	X	1	/	1	/	1	n/a	n/a	X	×	×	X	n/a	n/a	X	n/a	
Kreck-Schafer manifolds	/	1	×	/	/	/	1	/	X	×	×	×	X	X	X	×	
Teichner's $E \# E \# \#^k (S^2 \times S^2)$ and $*E \# *E \# \#^k (S^2 \times S^2)$	1	✓	X	✓	X	1	×	1	✓	1	×	X	×	X	X	X	
Akbulut's P and Q	1	×	×	1	/	1	×	1	1	1	1	✓	X	X	1	×	
$\mathcal{M}(L_{p,q} \times S^1), p \text{ odd}, \infty \text{ set}$?	1	×	/	1	1	n/a	n/a	/	1	X	X	n/a	n/a	X	n/a	
$\{M_r(\kappa)\}_{\kappa\in K}$?	1	X	/	/	/	n/a	n/a	1	1	/	X	n/a	n/a	X	n/a	

Questions?