

Oscillateur amorti

Julien Cubizolles

Lycée Louis le Grand

Mardi 16 novembre 2021

Oscillateur harmonique amorti par frottement visqueux
Régime libre
Régimes invocidat établi
Caractéristiques des réponses harmoniques

Oscillateur amorti

Julien Cubizolles

Lycée Louis le Grand

Mardi 16 novembre 2021

Oscillateur harmonique amorti par frottement visquei Régime lib Régime sinosoïdal étal Caractéristiques des rénonses harmonique

 une seule évolution pour un système du premier ordre : on va voir qu'un oscillateur harmonique amorti peut présenter 2 (3) types de régimes transitoires, selon l'intensité des phénomènes dissipatifs

- une seule évolution pour un système du premier ordre : on va voir qu'un oscillateur harmonique amorti peut présenter 2 (3) types de régimes transitoires, selon l'intensité des phénomènes dissipatifs
- que se passe-t-il en régime établi, ie avec une excitation extérieure dépendante du temps?

- une seule évolution pour un système du premier ordre : on va voir qu'un oscillateur harmonique amorti peut présenter 2 (3) types de régimes transitoires, selon l'intensité des phénomènes dissipatifs
- que se passe-t-il en régime établi, ie avec une excitation extérieure dépendante du temps?
- on va se limiter au cas d'un régime sinusoïdal établi pour lequel on pourra observer, dans certains cas le phénomène de résonance : l'amplitude de l'oscillateur devient bien supérieure à celle de l'excitation

- une seule évolution pour un système du premier ordre : on va voir qu'un oscillateur harmonique amorti peut présenter 2 (3) types de régimes transitoires, selon l'intensité des phénomènes dissipatifs
- que se passe-t-il en régime établi, ie avec une excitation extérieure dépendante du temps?
- on va se limiter au cas d'un régime sinusoïdal établi pour lequel on pourra observer, dans certains cas le phénomène de résonance : l'amplitude de l'oscillateur devient bien supérieure à celle de l'excitation
- la transformation de Fourier assure qu'on pourra ainsi décrire la réponse à n'importe quelle excitation

on retrouve ce modèle dans de nombreux domaines :

excitation de suspensions de voitures par une route accidentée

- excitation de suspensions de voitures par une route accidentée
- excitation des électrons d'un atome par le champ électromagnétique (bleu du ciel, laser)

- excitation de suspensions de voitures par une route accidentée
- excitation des électrons d'un atome par le champ électromagnétique (bleu du ciel, laser)
- excitation des marées par l'attraction gravitationnelle du soleil et de la lune (périodiques).

- excitation de suspensions de voitures par une route accidentée
- excitation des électrons d'un atome par le champ électromagnétique (bleu du ciel, laser)
- excitation des marées par l'attraction gravitationnelle du soleil et de la lune (périodiques).
- excitation électrocinétique par une tension sinusoïdale,

- excitation de suspensions de voitures par une route accidentée
- excitation des électrons d'un atome par le champ électromagnétique (bleu du ciel, laser)
- excitation des marées par l'attraction gravitationnelle du soleil et de la lune (périodiques).
- excitation électrocinétique par une tension sinusoïdale,
- excitation mécanique périodique (pousser une balançoire)

on retrouve ce modèle dans de nombreux domaines :

- excitation de suspensions de voitures par une route accidentée
- excitation des électrons d'un atome par le champ électromagnétique (bleu du ciel, laser)
- excitation des marées par l'attraction gravitationnelle du soleil et de la lune (périodiques).
- excitation électrocinétique par une tension sinusoïdale,
- excitation mécanique périodique (pousser une balançoire)
- excitation mécanique par une onde sonore (verre d'eau/

diapason)

on retrouve ce modèle dans de nombreux domaines :

- excitation de suspensions de voitures par une route accidentée
- excitation des électrons d'un atome par le champ électromagnétique (bleu du ciel, laser)
- excitation des marées par l'attraction gravitationnelle du soleil et de la lune (périodiques).
- excitation électrocinétique par une tension sinusoïdale,
- excitation mécanique périodique (pousser une balançoire)
- excitation mécanique par une onde sonore (verre d'eau/

diapason)

couplage des deux + rétroaction (Larsen)

- 1. Oscillateur harmonique amorti par frottement visqueux
- Régime libre
- 3. Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

- 1. Oscillateur harmonique amorti par frottement visqueux
- 1.1 Exemples
- 1.2 Amortissement par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- Caractéristiques des réponses harmoniques

point matériel lié à un ressort idéal, sans dissipation

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2) = \text{cste} \rightarrow \ddot{x} + \omega_0^2 x = \text{cste} \quad \text{pulsation} : \omega_0 = \sqrt{k/m}.$$

point matériel lié à un ressort idéal, sans dissipation

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2) = \text{cste} \rightarrow \ddot{x} + \omega_0^2 x = \text{cste} \quad \text{pulsation} : \omega_0 = \sqrt{k/m}.$$

circuit LC, sans dissipation

$$\frac{L\dot{q}^2}{2} + \frac{q^2}{2C} = \text{cste} \rightarrow \ddot{u_C} + \omega_0^2 u_C = 0 + \quad \text{pulsation} : \omega_0 = 1/\sqrt{LC}.$$

point matériel lié à un ressort idéal, sans dissipation

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2) = \text{cste} \rightarrow \ddot{x} + \omega_0^2 x = \text{cste} \quad \text{pulsation} : \omega_0 = \sqrt{k/m}.$$

circuit LC, sans dissipation

$$\frac{L\dot{q}^2}{2} + \frac{q^2}{2C} = \text{cste} \rightarrow \ddot{u_C} + \omega_0^2 u_C = 0 + \quad \text{pulsation} : \omega_0 = 1/\sqrt{LC}.$$

point matériel lié à un ressort idéal, sans dissipation

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2) = \text{cste} \rightarrow \ddot{x} + \omega_0^2 x = \text{cste} \quad \text{pulsation} : \omega_0 = \sqrt{k/m}.$$

circuit LC, sans dissipation

$$\frac{L\dot{q}^2}{2} + \frac{q^2}{2C} = \text{cste} \rightarrow \ddot{u_C} + \omega_0^2 u_C = 0 + \text{ pulsation} : \omega_0 = 1/\sqrt{LC}.$$

phénomènes dissipatifs $ightharpoonup \vec{F_f} = -\alpha \vec{X} \vec{e_r}$ en mécanique

point matériel lié à un ressort idéal, sans dissipation

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2) = \text{cste} \rightarrow \ddot{x} + \omega_0^2 x = \text{cste} \quad \text{pulsation} : \omega_0 = \sqrt{k/m}.$$

circuit LC, sans dissipation

$$\frac{L\dot{q}^2}{2} + \frac{q^2}{2C} = \text{cste} \rightarrow \ddot{u_C} + \omega_0^2 u_C = 0 + \text{ pulsation} : \omega_0 = 1/\sqrt{LC}.$$

phénomènes dissipatifs $\overrightarrow{F_f} = -\alpha \dot{X} \overrightarrow{e_x}$ en mécanique

 $ightharpoonup u_R = R\dot{q}$ en électrocinétique

- 1. Oscillateur harmonique amorti par frottement visqueux
- 1.1 Exemples
- 1.2 Amortissement par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- Caractéristiques des réponses harmoniques

Amortissement des oscillations en présence de causes d'amortissement

Amortissement des oscillations en présence de causes d'amortissement

• forces de frottement : $\vec{F_f} = -\alpha \dot{x} \vec{e_x}$

Amortissement des oscillations en présence de causes d'amortissement

- forces de frottement : $\vec{F_f} = -\alpha \dot{x} \vec{e_x}$
- effet Joule : $u = -R\dot{q}$

Définition (Équation canonique)

Un oscillateur harmonique d'élongation X et de pulsation propre ω_0 est dit amorti par frottement visqueux si X est solution de l'équation différentielle canonique :

$$\ddot{X} + \frac{\omega_0}{Q}\dot{X} + \omega_0^2 X = 0,$$

caractérisée par le facteur de qualité Q > 0, sans dimension.

Définition (Équation canonique)

Un oscillateur harmonique d'élongation X et de pulsation propre ω_0 est dit amorti par frottement visqueux si X est solution de l'équation différentielle canonique :

$$\ddot{X} + \frac{\omega_0}{Q}\dot{X} + \omega_0^2 X = 0,$$

caractérisée par le facteur de qualité Q > 0, sans dimension.

mécanique
$$Q = k/(\alpha \omega_0) = \sqrt{km}/\alpha$$
 électrocinétique $Q = 1/(RC\omega_0) = \sqrt{(L/C)}/R$

ortrait de phase (éponse à un échelon rois régimes de relaxation vers l'asymptote Illure des courbes spect énergétique spect énergétique sercies - change d'un dipèle RLC série

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Portrait de phase
Réponse à un échelon
Trois régimes de relaxation vers l'asymptote
Allure des courbes
Aspect énergétique

1. Oscillateur harmonique amorti par frottement visqueux

2. Régime libre

2.1 Portrait de phase

- 2.2 Réponse à un échelon
- 2.3 Trois régimes de relaxation vers l'asymptote
- 2.4 Allure des courbes
- 2.5 Aspect énergétique
- 2.6 Exercice : charge d'un dipôle RLC série
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Oscillateur harmonique amorti par frottement visqueux **Régime libre** Régime sinusoïdal établi Portrait de phase
Réponse à un échelon
Trois régimes de relaxation vers l'asymptot
Allure des courbes
Aspect énergétique
Exorcice - charge d'un dipôle RLC céric

En présence de dissipation, 3 types d'évolution sont possibles, selon la valeur du facteur de qualité Q (l'un des 3 est un cas particulier)

l'écart à l'attracteur $(X = 0, \dot{X} = 0)$ diminue,

- l'écart à l'attracteur $(X = 0, \dot{X} = 0)$ diminue,
- phénomène irréversible : courbe non symétrique, évolution non périodique

- l'écart à l'attracteur $(X = 0, \dot{X} = 0)$ diminue,
- phénomène irréversible : courbe non symétrique, évolution non périodique
- nombre infini de « tours » (pseudopériode) avant l'équilibre,

- l'écart à l'attracteur $(X = 0, \dot{X} = 0)$ diminue,
- phénomène irréversible : courbe non symétrique, évolution non périodique
- nombre infini de « tours » (pseudopériode) avant l'équilibre.
- pour Q élevé, faible diminution relative d'énergie $(-\Delta \mathcal{E}_{\mathsf{m}}/\mathcal{E}_{\mathsf{m}})$ par tour

Illustration : régime apériodique Q = 0.2 et Q = 0.4

la perte d'énergie est plus rapide

Illustration : régime apériodique Q = 0.2 et Q = 0.4

- la perte d'énergie est plus rapide
- la trajectoire ne fait plus le tour de l'attracteur

Illustration : régime apériodique Q = 0.2 et Q = 0.4

- la perte d'énergie est plus rapide
- la trajectoire ne fait plus le tour de l'attracteur
- on met toujours un temps infini pour se stabiliser à l'attracteur

Illustration : régime apériodique Q = 0.2 et Q = 0.4

- la perte d'énergie est plus rapide
- la trajectoire ne fait plus le tour de l'attracteur
- on met toujours un temps infini pour se stabiliser à l'attracteur
- le 3ecas a la même allure

1. Oscillateur harmonique amorti par frottement visqueux

2. Régime libre

- 2.1 Portrait de phase
- 2.2 Réponse à un échelon
- 2.3 Trois régimes de relaxation vers l'asymptote
- 2.4 Allure des courbes
- 2.5 Aspect énergétique
- 2.6 Exercice : charge d'un dipôle RLC série
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Réalisation

Excitation par une fonction de Heaviside : $Y(t) = X_{\infty}H(t)$:

$$\ddot{X} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 X = \omega_0^2 Y_0 H(t)$$

mécanique en lâchant la masse m initialement soutenue ou en déplaçant brutalement le point d'attache du ressort électrocinétique en excitant le dipôle par un échelon de tension le système évolue vers $X_{\infty} = Y_0$

Réalisation

1. Oscillateur harmonique amorti par frottement visqueux

2. Régime libre

- 2.1 Portrait de phase
- 2.2 Réponse à un échelon

2.3 Trois régimes de relaxation vers l'asymptote

- 2.4 Allure des courbes
- 2.5 Aspect énergétique
- 2.6 Exercice : charge d'un dipôle RLC série
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Régimes transitoires

Théorème (Régimes transitoires)

On distingue trois régimes transitoires :

régime apériodique pour $Q < \frac{1}{2}$

$$x(t) = X_{\infty} + e^{-\frac{\omega_0}{2Q}t} \left(X_1 \cosh \omega t + X_2 \sinh \omega t \right)$$

régime critique pour $Q = \frac{1}{2}$

$$x(t) = X_{\infty} + e^{-\omega_0 t} \left(X_1 + X_2 \omega_0 t \right)$$

régime pseudo-périodique amorti pour $Q > \frac{1}{2}$

$$x(t) = X_{\infty} + e^{-\frac{\omega_0}{2Q}t} \left(X_1 \cos \omega t + X_2 \sin \omega t \right) = X_{\infty} + Xe^{-\frac{\omega_0}{2Q}t} \cos \left(\omega t + \varphi \right)$$

avec :

$$\omega \equiv \omega_0 \sqrt{|\frac{1}{4Q^2} - 1|} = \frac{\omega_0}{2Q} \sqrt{|4Q^2 - 1|}$$

Caractéristiques

l'écart à l'asymptote $x - X_{\infty}$ décroît exponentiellement en un temps de l'ordre de $\frac{\max(Q;1/Q)}{\alpha}$

Caractéristiques

- l'écart à l'asymptote $x-X_{\infty}$ décroît exponentiellement en un temps de l'ordre de $\frac{\max(Q;1/Q)}{\omega_0}$
- quel que soit Q le régime transitoire dépend de deux paramètres (X_1, X_2) ou (X, φ) , déterminés par les conditions initiales

Caractéristiques

- l'écart à l'asymptote $x-X_{\infty}$ décroît exponentiellement en un temps de l'ordre de $\frac{\max(Q;1/Q)}{\alpha}$
- ▶ quel que soit Q le régime transitoire dépend de deux paramètres (X_1, X_2) ou (X, φ) , déterminés par les conditions initiales
- ▶ dans le cas Q = 1/2, on a artificiellement rajouté un ω_0 pour que les deux constantes X_1 et X_2 aient la même dimension, celle de X

Résistance et frottement critiques

Résistance critique

Un dipôle RLC série est caractérisé par une résistance critique $R_{\rm c}=2\sqrt{L/C}$. Soumis à un échelon de tension, la nature de son évolution temporelle dépend de $R-R_{\rm c}$. Elle est :

apériodique pour les forts amortissements ie $R > R_c \leftrightarrow Q < \frac{1}{2}$,

critique pour
$$R = R_c \leftrightarrow Q = \frac{1}{2}$$
,

pseudopériodique amorti pour les faibles amortissements ie $R < R_c \leftrightarrow Q > \frac{1}{2}$.

La «durée » du régime transitoire est minimale pour $R = R_c$, infinie pour Q = 0 et $Q \to \infty$.

Résistance et frottement critiques

Résistance critique

Un dipôle RLC série est caractérisé par une résistance critique $R_{\rm c}=2\sqrt{L/C}$. Soumis à un échelon de tension, la nature de son évolution temporelle dépend de $R-R_{\rm c}$. Elle est :

apériodique pour les forts amortissements ie $R > R_c \leftrightarrow Q < \frac{1}{2}$,

critique pour
$$R = R_c \leftrightarrow Q = \frac{1}{2}$$
,

pseudopériodique amorti pour les faibles amortissements ie $R < R_c \leftrightarrow Q > \frac{1}{2}$.

La « durée » du régime transitoire est minimale pour $R = R_c$, infinie pour Q = 0 et $O \to \infty$.

- ▶ dans un oscillateur mécanique, c'est le coefficient de frottement $\alpha_c = 2m\omega_0$ qui jouera le rôle de R_c
- $Arr R = 1 \text{ k}\Omega$, L = 10 mH, $C = 1 \mu\text{F} \rightarrow f_0 \equiv \omega_0/(2\pi) = 1.5 \text{ kHz et } Q = 0.1$

1. Oscillateur harmonique amorti par frottement visqueux

2. Régime libre

- 2.1 Portrait de phase
- 2.2 Réponse à un échelor
- 2.3 Trois régimes de relaxation vers l'asymptote

2.4 Allure des courbes

- 2.5 Aspect énergétique
- 2.6 Exercice : charge d'un dipôle RLC série
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Simulations

- Animation circuit BLC
- Animation oscillateur amorti

Régimes apériodique et critique

Régimes apériodique et critique

- ressemble à une exponentielle mais la tangente peut être nulle à l'origine
- un seul maximum ou minimum, dépasse au plus une fois l'asymptote (u_L et l'accélération)

Régime pseudopériodique amorti

Régime pseudopériodique amorti

- pseudopériodique car $x X_{\infty} = e^{-\frac{\omega_0 t}{2Q}} f(t)$ avec f(t) périodique de période $T = 2\pi/\omega$
- les passages par l'asymptote sont équidistants de $2\pi/\omega$
- infinité de maximas locaux/ dépassement de \((x∞ \)_

10

 t/T_0

Décrément logarithmique

Enveloppe exponentielle

En régime pseudopériodique amorti :

- l'amplitude des oscillations est « enveloppée » par des exponentielles de constante de temps $2Q/\omega_0$.
- Pour toute grandeur x, : la quantité $\ln \frac{x(t)-x_{\infty}}{x(t+2\pi/\omega)-x_{\infty}}$ est une constante, indépendante de t, nommée décrément logarithmique et notée δ . On a :

$$\delta = \frac{2\pi}{\sqrt{4Q^2 - 1}} \underset{Q \to \infty}{\simeq} \frac{\pi}{Q}$$

Allure des courbes

Décrément logarithmique

Enveloppe exponentielle

En régime pseudopériodique amorti :

- l'amplitude des oscillations est « enveloppée » par des exponentielles de constante de temps $2Q/\omega_0$.
- pour toute grandeur x, : la quantité $\ln \frac{x(t)-x_{\infty}}{x(t+2\pi/w)-x_{\infty}}$ est une constante, indépendante de t, nommée décrément logarithmique et notée δ . On a :

$$\delta = \frac{2\pi}{\sqrt{4Q^2 - 1}} \underset{Q \to \infty}{\simeq} \frac{\pi}{Q}$$

- l'enveloppe est atteinte avec une périodicité de $2\pi/\omega$, mais le contact n'est pas exactement sur les maxima locaux
- O peut être déterminé :

sous licence http://creativecommons.org/licenses/bv-nc-nd/2.0/fr/

- par la constante de l'exponentielle (si *Q* est élevé)

1. Oscillateur harmonique amorti par frottement visqueux

2. Régime libre

- 2.1 Portrait de phase
- 2.2 Réponse à un échelon
- 2.3 Trois régimes de relaxation vers l'asymptote
- 2.4 Allure des courbes
- 2.5 Aspect énergétique
- 2.6 Exercice : charge d'un dipôle RLC série
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Circuit LC oscillant

pas de source de dissipation, par analogie avec l'oscillateur mécanique :

Circuit LC oscillant

Équipartition de l'énergie

La somme des énergies électrostatique et magnétique se conserve dans un circuit LC oscillant. Elle est périodiquement transférée de la forme magnétique à la forme électrostatique à la pulsation $2\omega_0$. En moyenne temporelle :

$$2\left<\mathscr{E}_{\text{\'elec}}\right> = 2\left<\mathscr{E}_{\text{mag}}\right> = \frac{Q_0^2}{2C} = \frac{LI_0^2}{2}\text{,}$$

avec Q_0 la charge maximale du condensateur et I_0 l'intensité maximale du courant.

Oscillateur harmonique amorti par frottement visqueux **Régime libre** Régime sinusoïdal établi Portrait de phase
Réponse à un échelon
Trois régimes de relaxation vers l'asymptote
Allure des courbes
Aspect énergétique

Circuit LC oscillant

Circuit LC oscillant

en particulier : pas d'état asymptotique

Circuit LC oscillant

- en particulier : pas d'état asymptotique
- les énergies oscillent deux fois plus rapidement que u(t) et i(t)

Avec amortissement

Décroissance de l'énergie

L'énergie mécanique $\mathcal{E}_{\rm m}=\frac{1}{2}kX^2+\frac{1}{2}m\dot{X}^2$ d'un oscillateur harmonique amorti par frottement visqueux décroît avec le temps jusqu'à un équilibre d'élongation nulle $(X=0;\dot{X}=0)$.

$$\frac{\mathrm{d}\mathscr{E}_{\mathsf{m}}}{\mathrm{d}t} = \mathscr{P}\left(\overrightarrow{F_f}\right) = -\alpha v^2 \leqslant 0 \quad \frac{\mathrm{d}(\mathscr{E}_{\mathsf{mag}} + \mathscr{E}_{\mathsf{\acute{e}lec}})}{\mathrm{d}t} = -Ri^2 \leqslant 0.$$

- $X = x X_{\infty}$ dans le cas de la réponse à un échelon
- l'énergie est dissipée par effet Joule/ par frottement

Régime très faiblement amorti $Q \gg 1$

en régime très faiblement amorti : $Q \gg 1$

Régime très faiblement amorti $Q \gg 1$

Décroissance quasi-exponentielle

- l'évolution de la somme des énergie magnétique et électrostatique est peu différente d'une décroissance exponentielle de temps caractéristique Q/ω₀
- ▶ la diminution relative d'énergie par effet Joule sur une pseudo-période est inversement proportionnelle à O

1. Oscillateur harmonique amorti par frottement visqueux

2. Régime libre

- 2.1 Portrait de phase
- 2.2 Réponse à un échelon
- 2.3 Trois régimes de relaxation vers l'asymptote
- 2.4 Allure des courbes
- 2.5 Aspect énergétique
- 2.6 Exercice : charge d'un dipôle RLC série
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

Conditions initiales et asymptotiques

On considère le circuit de la figure ci-contre. L'interrupteur est initialement ouvert et le condensateur déchargé. On ferme l'interrupteur à l'instant t=0.

- a Établir les équations différentielles vérifiées par les tensions aux bornes de chacun des dipôles et le courant les traversant.
 - b Exprimer de deux manières différentes le facteur de qualité en fonction de la pulsation caractéristique ω_0 du circuit et des constantes de temps des dipôles R-C et R-L série.

Conditions initiales et asymptotiques

- 2 a Quelles seront les valeurs pour $t \gg Q/\omega_0$ et pour $t = 0^+$ de la tension u_C , de l'intensité i_L et de la tension u_L ?
 - b En déduire les conditions initiales des équations différentielles vérifiées par u_C , u_R et u_L .
 - c En déduire, pour le régime pseudopériodique amorti, l'expression, pour t > 0 de la tension u_C , en fonction uniquement de E, Q et ω_0 .

Correction

1 a

$$\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u_C}{\mathrm{d}t} + \omega_0^2 u_C = E \to \frac{\mathrm{d}^2 X}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}X}{\mathrm{d}t} + \omega_0^2 X = 0$$

b

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $Q = \omega_0 \frac{L}{R} = \frac{1}{RC\omega_0}$

2 a condensateur ↔ interrupteur ouvert, (bobine ↔ interrupteur fermé)

$$i = cste = 0 \rightarrow u_L = u_R = 0 \rightarrow u_C = E$$

b
$$i = cste = 0 \rightarrow u_L = u_R = 0 \rightarrow u_C = 0 : u_C(0) = 0, \frac{du_C}{dt}(0) = 0$$

Correction : expressions générales

$$\begin{split} u_C(t) &= E \left[1 - e^{-\omega_0 t/(2Q)} \left(\cos \left(\frac{\omega_0 t}{2Q} \sqrt{4Q^2 - 1} \right) + \frac{\sin \left(\frac{\omega_0 t}{2Q} \sqrt{4Q^2 - 1} \right)}{\sqrt{4Q^2 - 1}} \right) \right] \\ i(t) &= \frac{2E}{R} \frac{\sin \left(\frac{\omega_0 t}{2Q} \sqrt{4Q^2 - 1} \right)}{\sqrt{4Q^2 - 1}} e^{-\omega_0 t/(2Q)} \\ u_L(t) &= E e^{-\omega_0 t/(2Q)} \left(\cos \left(\frac{\omega_0 t}{2Q} \sqrt{4Q^2 - 1} \right) - \frac{\sin \left(\frac{\omega_0 t}{2Q} \sqrt{4Q^2 - 1} \right)}{\sqrt{4Q^2 - 1}} \right) \end{split}$$

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- 3.1 Équation canonique
- 3.2 Cadre mathématique
- 3.3 Réponse harmonique
- 3.4 Détermination
- 4. Caractéristiques des réponses harmoniques

Exemple en mécanique

Point matériel M de masse m en mouvement unidimensionnel vertical soumis dans $\mathcal T$ galiléen à :

- ▶ son poids $\overrightarrow{P} = m\overrightarrow{g}$
- une force de frottement visqueux $\vec{F_f} = -\alpha \dot{z} \vec{e}_z$
- ▶ la force de rappel d'un ressort dont l'autre extrémité A est mobile : z_A(t)

Exemple en mécanique

Point matériel M de masse m en mouvement unidimensionnel vertical soumis dans \mathcal{T} galiléen à :

- ▶ son poids $\overrightarrow{P} = m\overrightarrow{g}$
- une force de frottement visqueux $\vec{F_f} = -\alpha \dot{z} \vec{e}_z$
- ▶ la force de rappel d'un ressort dont l'autre extrémité A est mobile : z_A(t)

$$\frac{\mathrm{d}^2 z}{\mathrm{d}t^2} + \frac{\alpha}{m} \frac{\mathrm{d}z}{\mathrm{d}t} + \frac{k}{m} z = \frac{k}{m} z_A(t).$$

Exemple en mécanique

Point matériel M de masse m en mouvement unidimensionnel vertical soumis dans \mathcal{T} galiléen à :

- ▶ son poids $\vec{P} = m\vec{g}$
- une force de frottement visqueux $\overrightarrow{F_f} = -\alpha \dot{z} \overrightarrow{e}_z$
- ▶ la force de rappel d'un ressort dont l'autre extrémité A est mobile : z_A(t)

$$\frac{\mathrm{d}^2 z}{\mathrm{d}t^2} + \frac{\alpha}{m} \frac{\mathrm{d}z}{\mathrm{d}t} + \frac{k}{m} z = \frac{k}{m} z_A(t).$$

- ightharpoonup 2emembre variable $z_A(t)$
- équivalent à exercer directement sur M la force $\overrightarrow{F_A} = kz_A(t)$

Exemple en électrocinétique

circuit RLC série soumis à une tension excitatrice u(t) variable

Exemple en électrocinétique

circuit RLC série soumis à une tension excitatrice u(t) variable

$$\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{LC} u_C = \frac{u(t)}{LC}$$

Équation canonique

Définition (Équation canonique)

L'équation canonique d'un oscillateur harmonique forcé est :

$$\ddot{X} + \frac{\omega_0}{O}\dot{X} + \omega_0^2 X = \omega_0^2 Y(t),$$

avec Y(t) le terme dit de forçage ou excitateur.

Équation canonique

Définition (Équation canonique)

L'équation canonique d'un oscillateur harmonique forcé est :

$$\ddot{X} + \frac{\omega_0}{O}\dot{X} + \omega_0^2 X = \omega_0^2 Y(t),$$

avec Y(t) le terme dit de forçage ou excitateur.

on retrouve le régime libre et la réponse à un échelon pour Y(t) = cste.

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- 3.1 Équation canonique
- 3.2 Cadre mathématique
- 3.3 Réponse harmonique
- 3.4 Détermination
- 4. Caractéristiques des réponses harmoniques

Cadre mathématique

Théorème (Principe de superposition)

L'élongation d'un oscillateur harmonique forcé est solution d'une équation différentielle linéaire du deuxième ordre à coefficients réels constants et positifs et à second membre variable.

Les solutions vérifient donc le principe de superposition : si

$$\begin{cases} X_1(t) & \text{est une solution pour } Y_1(t) \\ X_2(t) & \text{est une solution pour } Y_2(t) \end{cases}$$

alors:

$$\lambda_1 X_1(t) + \lambda_2 X_2(t)$$
 sera une solution pour $\lambda_1 Y_1(t) + \lambda_2 Y_2(t)$,

quelles que soient les constantes λ_1 et λ_2 .

Solution générale

Théorème (Solution générale)

À un couple de conditions initiales $(X(t_0),\dot{X}(t_0))$ correspond une unique solution (le problème est dit déterministe). Cette solution sera la somme :

du régime transitoire un des régimes libres, solution de l'équation homogène Y(t) = 0.

- il peut être pseudopériodique amorti $(Q > \frac{1}{2})$, critique $(Q = \frac{1}{2})$ ou apériodique $(Q < \frac{1}{2})$,
- ▶ il s'amortit exponentiellement avec un temps caractéristique τ de l'ordre de $\max(Q/\omega_0; 1/(Q\omega_0))$.

du régime forcé une solution particulière, prépondérante pour $t \gg \tau$.

Conditions initiales

Conditions initiales

On établira les conditions initiales en utilisant la continuité de l'élongation X et de la vitesse \dot{X} assurées par les continuités :

mécanique de
$$\mathscr{E}_{pot} = \frac{1}{2}kx^2$$
 et $\mathscr{E}_{c} = \frac{1}{2}m\dot{x}^2$,

électrocinétique de
$$\mathscr{E}_{\text{élec}} = q^2/(2C)$$
 et $\mathscr{E}_{\text{mag}} = L\dot{q}^2/2$.

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- 3.1 Équation canonique
- 3.2 Cadre mathématique
- 3.3 Réponse harmonique
- 3.4 Détermination
- 4. Caractéristiques des réponses harmoniques

Excitation sinusoïdale

Réponse harmonique

Le régime établi d'un oscillateur de pulsation ω_0 excité par un signal sinusoïdal à la pulsation ω :

$$\ddot{X} + \frac{\omega_0}{Q}\dot{X} + \omega_0^2 X = \omega_0^2 Y_m \cos \omega t,$$

est une fonction sinusoïdale de même pulsation ω :

$$X(t) = X_m \cos(\omega t + \varphi).$$

C'est la réponse harmonique du système, indépendante des conditions initiales.

Excitation sinusoïdale

- right caractérisée par son amplitude X_m et son déphasage φ , qui dépendent tous les deux de ω (X_m dépend aussi de Y_m)
- en régime établi, l'excitation sinusoïdale apporte par période exactement l'énergie perdue par le terme dissipatif pour que l'énergie mécanique moyenne soit constante.
- fondamental car on verra que tout signal périodique peut être décrit comme une somme de fonctions sinusoïdales (décomposition de Fourier)

Évolution temporelle

- pulsation propre ω_0 ,
- excitation à $\omega = 2.2\omega_0$
- Q = 12
- réponse en trait gras
 - régime établi en traits fins interrompus
 - régime transitoire en trait fin continu

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- 3. Régime sinusoïdal établi
- 3.1 Équation canonique
- 3.2 Cadre mathématique
- 3.3 Réponse harmonique
- 3.4 Détermination
- 4. Caractéristiques des réponses harmoniques

Notation complexe

Définition (Forme exponentielle complexe)

La forme exponentielle complexe d'une fonction sinusoïdale réelle $X(t) = X_m \cos(\omega t + \varphi)$ est :

$$\underline{X}(t) = X_m e^{i(\omega t + \varphi)}$$
 ou $X_m e^{i(\omega t)}$ avec : $X_m \equiv X_m e^{i\varphi}$.

Notation complexe

Définition (Forme exponentielle complexe)

La forme exponentielle complexe d'une fonction sinusoïdale réelle $X(t) = X_m \cos(\omega t + \varphi)$ est :

$$\underline{X}(t) = X_m e^{j(\omega t + \varphi)}$$
 ou $\underline{X}_m e^{j(\omega t)}$ avec : $\underline{X}_m \equiv X_m e^{j\varphi}$.

Solutions complexe et réelle

Si $\underline{X}(t) = X_m e^{j(\omega t + \varphi)}$ est une solution complexe associée à $\omega_0^2 Y_m e^{+j\omega t}$, alors $X(t) = X_m \cos\left(\omega t + \varphi\right) = \operatorname{Re}\left(X_m e^{j(\omega t + \varphi)}\right)$ est une solution réelle associée à $\omega_0^2 Y_m \cos\left(\omega t\right)$.

De l'équation différentielle à l'équation algébrique

on transforme l'équation différentielle en équation algébrique

De l'équation différentielle à l'équation algébrique

on transforme l'équation différentielle en équation algébrique

On calcule alors:

$$\begin{split} \underline{X}_m &= \frac{Y_m}{\left(1 - u^2 + j\frac{u}{Q}\right)} \quad \text{avec} : u \equiv \frac{\omega}{\omega_0} \\ \frac{\underline{X}_m}{Y_m} &\equiv Re^{j\varphi} \text{ avec} : R = \frac{1}{\sqrt{(1 - u^2)^2 + \frac{u^2}{Q^2}}} \text{ ; } \varphi = -\text{arg}\left(1 - u^2 + j\frac{u}{Q}\right) \end{split}$$

On obtient alors la fonction réelle

$$X(t) = RY_m \cos(\omega t + \varphi)$$

- 1. Oscillateur harmonique amorti par frottement visqueux
- Régime libre
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques

- 1. Oscillateur harmonique amorti par frottement visqueux
- Régime libre
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques
- 4.1 Réponse en élongation
- 4.2 Réponse en vitesse

Définition (Réponse harmonique en élongation)

Le quotient $R(u) \equiv X_m(\omega)/Y_m$ des amplitudes de l'élongation du régime du régime sinusoïdal et du signal excitateur est nommé réponse harmonique en élongation du système.

Définition (Réponse harmonique en élongation)

Le quotient $R(u) \equiv X_m(\omega)/Y_m$ des amplitudes de l'élongation du régime du régime sinusoïdal et du signal excitateur est nommé réponse harmonique en élongation du système.

Comportements asymptotiques

Définition (Réponse harmonique en élongation)

Le quotient $R(u) \equiv X_m(\omega)/Y_m$ des amplitudes de l'élongation du régime du régime sinusoïdal et du signal excitateur est nommé réponse harmonique en élongation du système.

Comportements asymptotiques

 $v \ll 1 : R(u) \rightarrow 1 : la réponse suit exactement l'excitation.$

Comportements asymptotiques

- ▶ $u \ll 1$: $R(u) \rightarrow 1$: la réponse suit exactement l'excitation.
- ▶ $u \gg 1$: $R(u) \rightarrow 0$: l'excitation est trop rapide pour être suivie.

Comportements asymptotiques

- ▶ $u \ll 1 : R(u) \rightarrow 1 : la$ réponse suit exactement l'excitation.
- ▶ $u \gg 1$: $R(u) \rightarrow 0$: l'excitation est trop rapide pour être suivie.

Définition (Résonance en élongation)

La réponse harmonique en élongation d'un oscillateur harmonique amorti par frottement visqueux forcé à la pulsation ω présente un maximum pour $Q > 1/\sqrt{2}$. Il est dans ce cas atteint en :

$$\omega_{res} = \omega_0 \sqrt{1 - 1/(2Q^2)} \underset{Q \to \infty}{\longrightarrow} \omega_0,$$
 où il vaut :
$$R \max = \frac{X_m(\omega_{res})}{Y_m} = \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}} \underset{Q \to \infty}{\sim} Q.$$

On dit qu'on observe alors une résonance en élongation.

 l'amplitude de l'oscillateur devient très supérieure à celle de l'excitation

Variations de la phase φ

ightharpoonup : Re (R) peut changer de signe, on calculera φ selon :

$$\varphi\!=\!-\mathrm{arg}\left[1\!-\!u^2\!+\!j\frac{u}{Q}\right]\!=\!-\mathrm{arg}\left[j\big(j(u^2\!-\!1)\!+\!u/Q\big)\right]\!=\!-\pi/2\!-\!\arctan\!\left(\frac{Q(u^2\!-\!1)}{u}\right)$$

on peut également la déterminer par construction de Fresnel

Variations de la phase φ

ightharpoonup : Re (\underline{R}) peut changer de signe, on calculera φ selon :

$$\varphi = -\arg\left[1 - u^2 + j\frac{u}{Q}\right] = -\arg\left[j\left(j(u^2 - 1) + u/Q\right)\right] = -\pi/2 - \arctan\left(\frac{Q(u^2 - 1)}{u}\right)$$

on peut également la déterminer par construction de Fresnel

Comportements asymptotiques de φ

- ► $u \ll 1 \rightarrow \varphi = 0$: la réponse est en phase avec l'excitation
- ▶ $u \gg 1 \rightarrow \varphi = -\pi$: la réponse est en opposition de phase
- $u = 1 \rightarrow \varphi = -\pi/2$: l'élongation est en quadrature retard. L'excitation est en particulier maximale quand l'élongation est nulle et vice-versa.

Courbes des réponses en élongation

Limitation de l'amplitude

- $ightharpoonup R_{\max} \to \infty$ quand $Q \to \infty$
- ▶ dans un système réel, la force de rappel ne varie plus en -kX pour les élongations X trop importantes
- pour les trop grandes valeurs de X l'évolution peut ne plus être réversible, on peut même détruire le système (verre qui éclate, pont qui s'écroule...)

Exercice : Lecture de Qf_0

On considère un dipôle RLC alimenté par un générateur de tension fournissant une tension sinusoïdale d'amplitude E. Les courbes représentent l'amplitude et la déphasage par rapport au générateur de la tension aux bornes du condensateur quand on fait varier la fréquence f du générateur.

- 1 Déterminer l'amplitude E du générateur.
- 2 En déduire le facteur de qualité Q et la pulsation de résonance f_0 du dipôle.
- 3 Tracer l'allure des courbes si on avait Q = 10 et f_0 inchangée.

62/70

- 1. Oscillateur harmonique amorti par frottement visqueux
- 2. Régime libre
- Régime sinusoïdal établi
- 4. Caractéristiques des réponses harmoniques
- 4.1 Réponse en élongation
- 4.2 Réponse en vitesse

Réponse harmonique en vitesse

En notant la notation complexe de la dérivée temporelle $V(t) = \frac{dX}{dt}(t)$ de l'élongation (vitesse) selon $V(t) = V_m e^{i(\omega t + \varphi_V)}$. On a :

$$V_m = \omega X_m$$
 et $\varphi_V(\omega) = \varphi(\omega) + \pi/2$.

La vitesse est en quadrature avance par rapport à l'élongation. Le quotient $V_m(\omega)/(\omega_0 Y_m) = R_V(u)$ est nommé réponse harmonique en vitesse du système.

Réponse harmonique en vitesse

En notant la notation complexe de la dérivée temporelle $V(t) = \frac{dX}{dt}(t)$ de l'élongation (vitesse) selon $\underline{V}(t) = V_m e^{i(\omega t + \varphi_V)}$. On a :

$$V_m = \omega X_m$$
 et $\varphi_V(\omega) = \varphi(\omega) + \pi/2$.

La vitesse est en quadrature avance par rapport à l'élongation. Le quotient $V_m(\omega)/(\omega_0 Y_m) = R_V(u)$ est nommé réponse harmonique en vitesse du système.

Réponse harmonique en vitesse

En notant la notation complexe de la dérivée temporelle $V(t) = \frac{dX}{dt}(t)$ de l'élongation (vitesse) selon $\underline{V}(t) = V_m e^{i(\omega t + \varphi_V)}$. On a :

$$V_m = \omega X_m$$
 et $\varphi_V(\omega) = \varphi(\omega) + \pi/2$.

La vitesse est en quadrature avance par rapport à l'élongation. Le quotient $V_m(\omega)/(\omega_0 Y_m) = R_V(u)$ est nommé réponse harmonique en vitesse du système.

▶ $u \ll 1$: $R_V(u) \rightarrow 0$ car les oscillations sont de fréquence très faible.

Réponse harmonique en vitesse

En notant la notation complexe de la dérivée temporelle $V(t) = \frac{dX}{dt}(t)$ de l'élongation (vitesse) selon $\underline{V}(t) = V_m e^{i(\omega t + \varphi_V)}$. On a :

$$V_m = \omega X_m$$
 et $\varphi_V(\omega) = \varphi(\omega) + \pi/2$.

La vitesse est en quadrature avance par rapport à l'élongation. Le quotient $V_m(\omega)/(\omega_0 Y_m) = R_V(u)$ est nommé réponse harmonique en vitesse du système.

- ▶ $u \ll 1$: $R_V(u) \rightarrow 0$ car les oscillations sont de fréquence très faible.
- ▶ $u \gg 1$: $R_V(u) \rightarrow 0$ car l'amplitude des oscillations tend vers 0 plus vite que leur fréquence ne tend vers l'infini.

Résonance en vitesse

Résonance en vitesse

La réponse harmonique en vitesse d'un oscillateur harmonique amorti par frottement visqueux présente un maximum pour $\omega=\omega_0$. On a :

$$\frac{V_m(\omega_0)}{\omega_0 Y_m} = Q.$$

Résonance en vitesse

Résonance en vitesse

La réponse harmonique en vitesse d'un oscillateur harmonique amorti par frottement visqueux présente un maximum pour $\omega=\omega_0$. On a :

$$\frac{V_m(\omega_0)}{\omega_0 Y_m} = Q.$$

contrairement à la réponse en élongation :

- ▶ il y a résonance quel que soit Q,
- la résonance est toujours pour $\omega = \omega_0$

Courbes des réponses en vitesse

Phase

Indispensable

- équations canoniques avec Q, ω_0
- déterminations des régimes asymptotiques avec les équivalents (interrupteurs ouverts ou fermés)
- ▶ forme générale de la solution du 1^{er}ordre et sa courbe
- régime du deuxième ordre non amorti
- les 3 régimes du deuxième ordre amorti et les caractéristiques de leurs courbes
- l'enveloppe exponentielle
- ▶ le régime très faiblement amorti Q ≫ 1
- les interprétations énergétiques

Effondrement du pont de Tacoma

Exemple de code python I

Intégration numérique du mouvement d'un oscillateur harmonique amorti en régime sinusoïdal forcé

```
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def eadiff(w, t):
    x, v = w
    \# dx/dt = v
    \# dv/dt = -omega0**2 * x - O*x/omega0
    return [v, -(omega0**2*x) - ((omega0/Q)*v) + omega0**2*np.cos(omega*t)]
# Periode propre (en s)
T0 = 1
# Pulsation propre (en rad/s)
omega0 = 2 * np.pi / T0
omega = 2.2*omega0
# Date de fin et nombre de pas d'intégration
datefin, numpoints = 12, 10000
```

Exemple de code python II

```
t = np.linspace(0, datefin, numpoints)
plt.axis([0, datefin, -1.5, 1.5])
index = 1
0 = 12
coeff = 1/np.sqrt((1-(omega/omega0)**2)**2 + (omega/(omega0*Q))**2)
CI = [0, 0]
wsol = odeint(eadiff, CI, t)
x = wsol[:, 0]; v = wsol[:, 1]
reponse = x/coeff
dataReponse = [[t[i], reponse[i]] for i in range(len(t))]
# Affichage
plt.plot(t, reponse, 'b-', label = 'x (m)')
plt.legend()
plt.xlabel('t')
plt.show()
fichierNom = "oscillo-harmonique-force.csv"
index += 1
np.savetxt(fichierNom, dataReponse, delimiter="
```