

Typical operations involved during instruction execution

- Transfer a word of data from one processor register to another or to the ALU
- Perform an arithmetic or a logic operation and store the result in a processor register
- Fetch the contents of a given memory location and load them into a processor register
- Store a word of data from a processor register into a given memory location

Register Transfers

Example: Transferring the content of register of R₁ to the content of register of R₄

MOV R1,R4

(Input and output gating signals are used here)

- Enable the output of register R1 by setting R1_{out} to 1. This places the contents of R1 on the processor bus.
- Enable the input of register R4 by setting R4_{in} to 1. This loads data from the processor bus into register R4.

Internal processor

Figure 7.2 Input and output gating for the registers in Figure 7.1.

Performing and Arithmetic or Logic Operation

- 1. Rlout, Yin
- 2. R2_{out}, SelectY, Add, Z_{in}
- 3. Zour, R3in

Example: Add the content of registers
 R1 to R2 and store
 the result in register
 R3

Fetching a word from Memory

Example: Mov (R1), R2

Assumptions:

- 1. Output of MAR is available at all times
- 2. Each step can be completed in one clock cycle except Step 3
- 3. Control Signal Called MFC (Memory Function Complete) is used to take care of speed difference between Processor and Memory
- 1. $MAR \leftarrow [R1]$
- 2. Start a Read operation on the memory bus
- 3. Wait for the MFC response from the memory
- 4. Load MDR from the memory bus
- 5. $R2 \leftarrow [MDR]$

- 1. R1_{out}, MAR_{in}, Read
- 2. MDR_{inE} , WMFC
- 3. MDR_{out}, R2_{in}

Figure 7.4 Connection and control signals for register MDR.

Timing of Memory Read Operation

Figure 7.5 Timing of a memory Read operation.

Storing a word in Memory

Example: Move R2,(R1)

- 1. $R1_{out}$, MAR_{in}
- 2. R2_{out}, MDR_{in}, Write
- 3. MDR_{outE} , WMFC

Execution of complete instruction Add (R3), R1

Figure 7.1 Single-bus organization of the datapath inside a processor.

Step	Action
1	PCout, MARin, Read, Select4, Add, Zin
2	$\mathbf{Z}_{out},\mathbf{PC}_{in},\mathbf{Y}_{in},\mathbf{WMFC}$
3	$\mathrm{MDR}_{out},\mathrm{IR}_{in}$
4	$R3_{out}$, MAR_{in} , Read
5	R1 _{out} , Y _{in} , WMFC
6	MDR _{out} , SelectY, Add, Z _{in}
7	\mathbf{Z}_{out} , $\mathbf{R1}_{in}$, \mathbf{End}
* *	

Figure 7.6 Control sequence for execution of the instruction Add (R3),R1.

Instruction Fetch: Steps 1-3
Instruction Execution: Steps 4-7

Executing Branch Instruction

- Branch instruction replaces the address of the PC with the branch address
- This value is obtained by adding offset X to the updated value of PC
- The offset value is the difference between the branch target address and the address of the instruction following the branch instruction
- For conditional branch instruction Branch<0, step 4
 is replaced by

Offset-field-of-IR_{out}, Add, Z_{in} , If N = 0 then End

Step	Action
1	PC _{out} , MAR _{in} , Read, Select4, Add, Z _{in}
2	\mathbf{Z}_{out} , \mathbf{PC}_{in} , \mathbf{Y}_{in} , WMFC
3	MDR_{out} , IR_{in}
4	Offset-field-of-IR $_{out}$, Add, \mathbf{Z}_{in}
5	Z_{out} , PC_{in} , End
(about Ma NMO) (samman manusus manusus matulbeshebetathe d a anneas i morninga manusus marror man	

Figure 7.7 Control sequence for an unconditional Branch instruction.

Multiple Bus Organization

- To *reduce the number of steps* needed multiple internal paths are provided to perform *many steps in parallel*
- Three ports for register file, two for output and one for input
- Can be performed in a single step(clock cycle)
- There is no need of registers Y and Z here
- If needed ALU may pass one of its two input operands unmodified to Bus C (control signals: R=A or R=B)
- Incrementor unit eliminates the need for Adding 4 to PC
- Constant 4 to MUX before ALU can still be useful for incrementing other memory addresses, in instructions such as LoadMultiple and StoreMultiple

Figure 7.8 Three-bus organization of the datapath.

Ex. Add R4,R5,R6 on Three-Bus Processor

- Step 1-3 Instruction Fetch
- Step 4 Instruction execution
- Advantage: Number of clock cycles needed to perform an instruction are significantly reduced using multiple buses

Home Work:

 Write the step wise control signals for the same instruction using single-bus processor

Step Action PCout, R=B, MARin, Read, IncPC WMFC MDRoutB, R=B, IRin R4outA, R5outB, SelectA, Add, R6in, End

Figure 7.9 Control sequence for the instruction Add R4,R5,R6 for the three-bus organization in Figure 7.8.