

Why do we care?

NEWS 24 October 2019 Update <u>26 October 2019</u>

Millions of black people affected by racial bias in health-care algorithms

Study reveals rampant racism in decision-making software used by US hospitals – and highlights ways to correct it.

TECH

Google Photos labeled black people 'gorillas'

Jessica Guynn USA TODAY

Published 1:15 p.m. ET July 1, 2015 | Updated 2:10 p.m. ET July 1, 2015

Technical Background

- Motivated by the Disparate Impact (DI) doctrine
- Minority Protection
 - Protect (include) under-represented group in a cluster
- Restricted Dominance
 - Restrict a certain group to overpower in a cluster
- Goal: Minimize inequality of outcome
- Use the output of the variety of vanilla (conventional) clustering algorithms to and use it to balance the groups
 - The algorithm can have overlapping groups
 - Any vanilla (k, p)-clustering problem can be extended to accommodate fairness.

Definitions

- C = set of all (v) points of dimension d we want to cluster in a metric space (χ)
- $F \subseteq \chi$ be the set of possible 'k' cluster centers, $k \in \mathbb{Z}^+$
- d(v, S) = minimum distance between a point y ∈ set S and point v
- ϕ = Assignment C \rightarrow S, ϕ ^ = Fair assignment C \rightarrow S
- $L_p(S, \phi)$ = Objective function
- Δ = maximum number of groups a point can be a part of
- α_i = restricted dominance (RD) constraint for each group i
- β_i = minority protection (MP) constraint for each group i
- λ = additive violation of RD/MP constraint in the fair clustering

Fair (k, p) clustering

Assume (I) number of groups (C): C₁, C₂,..., C_I

The following constraints have to be satisfied:

$$|\{v \in C_i : \phi(v) = f\}| \le \alpha_i |\{v \in C : \phi(v) = f\}|$$
 (Upper Bound – Restricted dominance)
 $|\{v \in C_i : \phi(v) = f\}| \ge \beta_i |\{v \in C : \phi(v) = f\}|$ (Lower Bound – Minority protection)

The RD and MP constraint prevent under-representation / over-representation of any particular group within a cluster.

Linear programming formulation results in λ -additive violation for fair clustering:

$$\beta_i | \{ v \in C : \phi(v) = f \} | -\lambda \le | \{ v \in C_i : \phi(v) = f \} | \le \alpha_i | \{ v \in C : \phi(v) = f \} | +\lambda$$

Solution Technique

- 1. Use any Vanilla (k, p) clustering algorithm on the given data set (C)
- 2. Use LP 1 to solve the algorithm:

$$\min \sum_{v \in C, f \in S} d(v, f)^p x_{v, f}$$
 This is an LP relaxation of the assignment problem
$$\sum_{v \in C} x_{v, f} \leq \sum_{v \in C_i} x_{v, f} \leq \alpha_i \sum_{v \in C} x_{v, f} \ \forall f \in S, i \in [l]$$

$$\sum_{f \in S} x_{v, f} = 1 \ \forall v \in C$$

$$0 \leq x_{v, f} \leq 1$$

3. For each $x^*_{v,f} = 1$, set $\varphi^*(v) = f$ and remove v from C [and relevant $(C_i)s$].

4. Define:
$$T_f = \sum_{v \in C} x_{v,f}^* \ \forall f \in S$$
 & $T_{f,i} = \sum_{v \in C_i} x_{v,f}^* \ \forall f \in S, i \in [l]$

- 5. Construct LP 2 with decision variables for $x^*_{v,f} > 0$
- 6. While there exists $v \in C$ such that $\varphi^{(v)} = \emptyset$:
 - Solve LP2 and get the optimal value (x*_{v,f})

$$\mathsf{LP2} := \min \sum_{v \in C, f \in S} d(v, f)^p x_{v, f} \qquad x_{v, f} \in [0, 1], \ \forall v \in C, f \in S \qquad \text{(2a)}$$

$$\lfloor T_f \rfloor \leq \sum_{v \in C} x_{v, f} \leq \lceil T_f \rceil \qquad \forall f \in S, \forall i \in [\ell] \qquad \text{(2b)}$$

$$\lfloor T_{f, i} \rfloor \leq \sum_{v \in C_i} x_{v, f} \leq \lceil T_{f, i} \rceil \qquad \forall f \in S, \forall i \in [\ell] \qquad \text{(2c)}$$

$$\sum_{f \in S} x_{v, f} = 1 \qquad \forall v \in C \qquad \text{(2d)}$$

- For each $x^*_{v,f} = 0$, delete the $x^*_{v,f}$ variable from LP2
- For each $x^*_{v,f} = 1$, set $\varphi^*(v) = f$ and remove v from C
- for every $i \in [\ell]$ and $f \in S$, if $|x^*_{v,f}: 0 < x^*_{v,f} < 1, v \in C_i| \le 2(\Delta+1)$ remove the respective constraint in eq. (2c)
- for every $f \in S$, if $|x^*_{v,f}: 0 < x^*_{v,f} < 1, v \in C| \le 2(\Delta + 1)$ remove the respective constraint in eq. (2b)

Algorithm Flowchart

Application Example

- Worked with "bank" dataset from the original paper.
 - Number of clusters: k = 3, 4, 5 and 6
 - Protected groups: marital (single, married, and divorced) and default (Y/N)
 - Vanilla clustering approach used: k-means++, with three attributes

Metrics for evaluation of model:

- r_i = proportion of each group (i)
- r_i (f) = proportion of each group (i) with cluster center f
- $r_i(f) = |C_i(f)|/|C(f)|, r_i = |C_i|/|C|$
- Balance (f) = $min\{r_i/r_i(f), r_i(f)/r_i\}$

 Cost of fairness (COF) = objective value of fair clustering / objective value of vanilla clustering

Results

 Cost of fairness is observed to be slightly greater than 1 → Fair clustering is not expensive compared to vanilla k-means++!

 Balance values are close to one for most clusters → fairness is ensured!

 Although theoretical prediction of λ additive violation is 4Δ+3, it is observed that it does not cross 1 in practice → MD and RD constraints are violated only by a small margin!

