

AMERICAN INTERNATIONAL UNIVERSITY BANGLADESH

Final Term Project

Introduction To Data Science

Name: Shakib Sadat Shanto

ID: 20-43074-1

Section: D

Project Overview:

In this project, basic data analysis and preprocessing was conducted on selected dataset and K Nearest Neighbors algorithm was applied on the dataset using R programming language. Confusion matrix of the model have also been discussed in the Confusion Matrix section of the report.

Dataset Overview:

The dataset used for the project was collected from Kaggle. The name of the dataset is **Heart** Failure Prediction Dataset. Here is the URL of the dataset:

https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

The dataset contains 918 observations. It has 11 independent variables.

- 1. Age: age of the patient [years]
- 2. Sex: sex of the patient [M: Male, F: Female]
- 3. ChestPainType: chest pain type [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic]
- 4. RestingBP: resting blood pressure [mm Hg]
- 5. Cholesterol: serum cholesterol [mm/dl]
- 6. FastingBS: fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise]
- 7. RestingECG: resting electrocardiogram results [Normal: Normal, ST: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left ventricular hypertrophy by Estes' criteria]
- 8. MaxHR: maximum heart rate achieved [Numeric value between 60 and 202]
- 9. ExerciseAngina: exercise-induced angina [Y: Yes, N: No]
- 10. Oldpeak: oldpeak = ST [Numeric value measured in depression]
- 11. ST_Slope: the slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down: downsloping]
- 1 dependent or class variable.
- 1. HeartDisease: output class [1: heart disease, 0: Normal]

Data Analysis and Preprocess:

1. Importing Dataset:

Code:

dataset = read.csv('heart.csv')

Output:

•	Age	‡	Sex ‡	ChestPainType ‡	RestingBP ‡	Cholesterol ÷	FastingBS ‡	RestingECG ‡	MaxHR ‡	ExerciseAngina ‡	Oldpeak ‡	ST_Slope ‡	HeartDisease ‡
1		40	М	ATA	140	289	0	Normal	172	N	0.0	Up	
2		49		NAP	160	180	0	Normal	156	N	1.0	Flat	
3		37	М	ATA	130	283	0	ST	98	N	0.0	Up	
4		48		ASY	138	214	0	Normal	108	Υ	1.5	Flat	
5		54	М	NAP	150	195	0	Normal	122	N	0.0	Up	
6		39	М	NAP	120	339	0	Normal	170	N	0.0	Up	0
7		45		ATA	130	237	0	Normal	170	N	0.0	Up	
8		54	М	ATA	110	208	0	Normal	142	N	0.0	Up	0
9		37	М	ASY	140	207	0	Normal	130		1.5	Flat	
10		48		ATA	120	284	0	Normal	120	N	0.0	Up	0
11		37		NAP	130	211	0	Normal	142	N	0.0	Up	
12		58	M	ATA	136	164	0	ST	99	Υ	2.0	Flat	
13		39	М	ATA	120	204	0	Normal	145	N	0.0	Up	
14		49	М	ASY	140	234	0	Normal	140	Υ	1.0	Flat	
15		42		NAP	115	211	0	ST	137	N	0.0	Up	
16		54		ATA	120	273	0	Normal	150	N	1.5	Flat	0
17		38	М	ASY	110	196	0	Normal	166	N	0.0	Flat	
18		43		ATA	120	201	0	Normal	165	N	0.0	Up	0
19		60	М	ASY	100	248	0	Normal	125	N	1.0	Flat	
20		36	М	ATA	120	267	0	Normal	160	N	3.0	Flat	
21		43		TA	100	223	0	Normal	142	N	0.0	Up	
22		44	М	ATA	120	184	0	Normal	142	N	1.0	Flat	0

2. Structure of the Dataset:

Code:

str(dataset)

Output:

```
str(dataset)
'data.frame':
                  918 obs. of 12 variables:
                            40 49 37 48 54 39 45 54 37 48 ...
"M" "F" "M" "F" ...
$ Age
                    : int
$ Sex
                   : chr
                            "ATA" "NAP" "ATA" "ASY"
$ ChestPainType :
                     chr
                            140 160 130 138 150 120 130 110 140 120 ...
$ RestingBP
                      int
$ Cholesterol
                      int
                            289 180 283 214 195 339 237 208 207 284 ...
                            0 0 0 0 0 0 0 0 0 0 ...
"Normal" "Normal" "ST" "Normal"
  FastingBS
                      int
  RestingECG
                      chr
                            172 156 98 108 122 170 170 142 130 120 ...
"N" "N" "N" "Y" ...
                      int
  MaxHR
  ExerciseAngina:
                     chr
                            0 1 0 1.5 0 0 0 0 1.5 0 ...
"Up" "Flat" "Up" "Flat" ...
  01dpeak
                      num
$ ST_Slope
                      chr
                            0101000010.
$ HeartDisease
                      int
```

3. Attributes:

Code:

ls(dataset)

Output:

```
> ls(dataset)
[1] "Age" "ChestPainType" "Cholesterol" "ExerciseAngina" "FastingBS" "HeartDisease" "MaxHR"
[8] "Oldpeak" "RestingBP" "RestingECG" "Sex" "ST_Slope"
```

4. Unique Values of Categorical Attributes:

Code:

unique(dataset\$Sex)

unique(dataset\$ChestPainType)

unique(dataset\$RestingECG)

unique(dataset\$ExerciseAngina)

unique(dataset\$ST_Slope)

Output:

```
> unique(dataset$Sex)
[1] "M" "F"
> unique(dataset$ChestPainType)
[1] "ATA" "NAP" "ASY" "TA"
> unique(dataset$RestingECG)
[1] "Normal" "ST" "LVH"
> unique(dataset$ExerciseAngina)
[1] "N" "Y"
> unique(dataset$ST_Slope)
[1] "Up" "Flat" "Down"
```

5. Check for missing values:

Code:

colSums(is.na(dataset))

```
> colSums(is.na(dataset))
Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG
0 0 0 0 0 0 0 0 0

MaxHR ExerciseAngina Oldpeak ST_Slope HeartDisease
0 0 0 0 0
```

6. Encoding Categorical Values into Numeric Values:

Code:

```
\label{eq:continuous} \begin{split} dataset\$Sex &= factor(dataset\$Sex,\\ levels &= c("M","F"),\\ labels &= c(0,1)) \\ dataset\$ChestPainType &= factor(dataset\$ChestPainType,\\ levels &= c("ATA","NAP","ASY","TA"),\\ labels &= c(1,2,3,4)) \\ dataset\$RestingECG &= factor(dataset\$RestingECG,\\ levels &= c("Normal","ST","LVH"),\\ labels &= c(1,2,3)) \\ dataset\$ExerciseAngina &= factor(dataset\$ExerciseAngina,\\ levels &= c("N","Y"),\\ labels &= c(0,1)) \\ dataset\$ST\_Slope &= factor(dataset\$ST\_Slope,\\ levels &= c("Up","Flat","Down"),\\ labels &= c(1,2,3)) \\ \end{split}
```

*	Age :	Sex ‡	ChestPainType ‡	RestingBP ‡	Cholesterol ‡	FastingBS ‡	RestingECG [‡]	MaxHR ‡	ExerciseAngina ‡	Oldpeak ‡	ST_Slope [‡]	HeartDisease ‡
1	40	0		140	289	0		172	0	0.0		0
2	49	1	2	160	180	0		156	0	1.0	2	
3	37	0		130	283	0	2	98	0	0.0		0
4	48	1	3	138	214	0		108		1.5	2	
5	54	0	2	150	195	0		122	0	0.0		0
6	39	0	2	120	339	0		170	0	0.0		0
7	45			130	237	0		170	0	0.0		0
8	54	0		110	208	0		142	0	0.0		0
9	37	0	3	140	207	0		130		1.5	2	
10	48	1		120	284	0		120	0	0.0		0
11	37		2	130	211	0		142	0	0.0		0
12	58	0		136	164	0	2	99		2.0	2	
13	39	0		120	204	0		145	0	0.0		0
14	49	0	3	140	234	0		140		1.0	2	
15	42		2	115	211	0	2	137	0	0.0		0
16	54	1		120	273	0		150	0	1.5	2	0
17	38	0	3	110	196	0		166	0	0.0	2	
18	4	1		120	201	0		165	0	0.0		0
19	60	0	3	100	248	0		125	0	1.0	2	
20	36	0		120	267	0		160	0	3.0	2	
21	4	1	4	100	223	0	1	142	0	0.0	1	0

7. <u>Feature Scaling (Normalization):</u>

Code:

```
install.packages("caret")
```

library(caret)

process = preProcess(as.data.frame(dataset), method=c("range"))

dataset = predict(process, as.data.frame(dataset))

8. Outlier Detection and Removing:

Code:

boxplot(dataset)

Output:

Code:

```
summary (dataset \$ Resting BP)
```

$$Iqr_restingbp = .70-.60$$

$$upfen_restingbp = .70+1.5*Iqr_restingbp$$

upfen_restingbp

low_restingbp

summary(dataset\$Cholesterol)

 $Iqr_Cholesterol = 0.4428-0.2873$

upfen_Cholesterol = .4428+1.5*Iqr_Cholesterol

 $low_Cholesterol = 0.2873 - 1.5*Iqr_Cholesterol$

upfen_Cholesterol

low_Cholesterol

summary(dataset\$Oldpeak)

 $Iqr_Oldpeak = 0.4659-0.2955$

 $upfen_Oldpeak = 0.4659+1.5*Iqr_Oldpeak$

 $low_Oldpeak = 0.2955 \text{ -} 1.5*Iqr_Oldpeak$

upfen_Oldpeak

 $low_Oldpeak$

```
> summary(dataset$RestingBP)
  Min. 1st Qu.
                 Median
                           Mean 3rd Qu.
                                            Max.
 0.000
          0.600
                  0.650
                          0.662
                                  0.700
                                           1.000
> Iqr_restingbp = .70-.60
> upfen_restingbp = .70+1.5*Iqr_restingbp
> low_restingbp = .60-1.5*Iqr_restingbp
> upfen_restingbp
[1] 0.85
> low_restingbp
[1] 0.45
> summary(dataset$Cholesterol)
  Min. 1st Qu.
                 Median
                           Mean 3rd Qu.
                                            Max.
                                         1.0000
0.0000 0.2873 0.3698
                         0.3297
                                0.4428
> Iqr_Cholesterol = 0.4428-0.2873
> upfen_Cholesterol = .4428+1.5*Iqr_Cholesterol
> low_Cholesterol = 0.2873 -1.5*Igr_Cholesterol
> upfen_Cholesterol
[1] 0.67605
> low_Cholesterol
[1] 0.05405
> summary(dataset$01dpeak)
  Min. 1st Qu.
                 Median
                           Mean 3rd Qu.
                                            Max.
0.0000 0.2955
                 0.3636 0.3963 0.4659
                                         1.0000
> Iqr_0ldpeak = 0.4659-0.2955
> upfen_0ldpeak = 0.4659+1.5*Iqr_0ldpeak
> low_0ldpeak = 0.2955 -1.5*Igr_0ldpeak
> upfen_0ldpeak
[1] 0.7215
> low_Oldpeak
[1] 0.0399
```

Code:

```
dataset_rm_outlier = subset(dataset, dataset$RestingBP > low_restingbp & dataset$RestingBP < upfen_restingbp & dataset$Cholesterol > low_Cholesterol & dataset$Cholesterol < upfen_Cholesterol & dataset$Oldpeak > low_Oldpeak & dataset$Oldpeak < upfen_Oldpeak ) boxplot(dataset_rm_outlier) dataset = dataset_rm_outlier
```


_	Age [‡]	Sex ‡	ChestPainType [‡]	RestingBP ‡	Cholesterol ‡	FastingBS [‡]	RestingECG ‡	MaxHR [‡]	ExerciseAngina [‡]	Oldpeak [‡]	ST_Slope ‡	HeartDisease	‡
1	0.24489796			0.700	0.4792703			0.7887324		0.2954545			0
2	0.42857143			0.800	0.2985075			0.6760563	0	0.4090909			1
3	0.18367347			0.650	0.4693201			0.2676056		0.2954545			0
4	0.40816327			0.690	0.3548922	0		0.3380282		0.4659091			1
5	0.53061224			0.750	0.3233831			0.4366197		0.2954545			0
6	0.22448980			0.600	0.5621891	0		0.7746479	0	0.2954545			0
7	0.34693878			0.650	0.3930348			0.7746479		0.2954545			0
8	0.53061224			0.550	0.3449420			0.5774648	0	0.2954545			0
9	0.18367347			0.700	0.3432836			0.4929577		0.4659091			1
10	0.40816327			0.600	0.4709784	0		0.4225352	0	0.2954545			0
- 11	0.18367347			0.650	0.3499171			0.5774648		0.2954545			0
12	0.61224490			0.680	0.2719735			0.2746479		0.5227273			1
13	0.22448980			0.600	0.3383085			0.5985915		0.2954545			0
14	0.42857143			0.700	0.3880597	0		0.5633803		0.4090909			1
15	0.28571429			0.575	0.3499171			0.5422535		0.2954545			0
16	0.53061224			0.600	0.4527363	0		0.6338028	0	0.4659091			0
17	0.20408163			0.550	0.3250415			0.7464789		0.2954545			1
18	0.30612245			0.600	0.3333333	0		0.7394366	0	0.2954545			0
19	0.65306122			0.500	0.4112769			0.4577465		0.4090909			1
20	0.16326531			0.600	0.4427861	0		0.7042254	0	0.6363636			1
21	0.30612245		4	0.500	0.3698176			0.5774648		0.2954545			0
22	0.32653061			0.600	0.3051410	0		0.5774648	0	0.4090909			0
23	0.42857143	1	1	0.620	0.3333333	0	1	0.7323944	0	0.2954545	1		0

9. Summary and Histogram:

Code:

summary(dataset)

Output:

```
Sex
                                              ChestPainType
                                                                           RestingBP
                                                                                                        Cholesterol
                                                                                                                                         FastingBS
                                                                                                                                                                     RestingECG
         Age
                                                                                                                                                                                                MaxHR
                                                                                                                                                                                        Min. :0.07746
1st Qu.:0.43838
Median :0.56690
Mean :0.56847
3rd Qu.:0.70423
                                             1:159
2:163
3:332
4: 36
                                                                       Min. :0.4600
1st Qu.:0.6000
                                                                                                       Min. :0.1410
1st Qu.:0.3416
                                                                                                                                      Min. :0.0000
1st Qu.:0.0000
                                                                                                                                                                     1:419
2:110
3:161
            :0.0000
                               0:524
1st Qu.:0.3673
Median :0.5306
Mean :0.5025
3rd Qu.:0.6327
Max. :1.0000
                               1:166
                                                                       Median :0.6500
Mean :0.6544
3rd Qu::0.7000
Max. :0.8250
                                                                                                       Median :0.3897
                                                                                                                                      Median :0.0000
                                                                                                       Mean :0.3973
3rd Qu.:0.4511
Max. :0.6700
                                                                                                                                      Mean :0.1609
3rd Qu.:0.0000
                                                                                                                                                   :1.0000
                                                                                                                                                                                                      :1.00000
                                                                                                                                      Max.
                                                                                                                                                                                         Max.
                                                          Max. :0.8250
ST_Slope HeartDisease
1:336 Min. :0.<u>000</u>
ExerciseAngina
                                01dpeak
0:434
1:256
                           Min. :0.2841
1st Qu.:0.2955
                                                           2:325
                                                                           1st Qu.:0.000
                           Median :0.3409
                                                           3: 29
                                                                           Median :0.000
                                                                           Mean :0.458
3rd Qu.:1.000
Max. :1.000
                           Mean :0.3886
3rd Qu.:0.4659
                                         :0.7045
                           Max.
```

Code:

install.packages("Hmisc")

library(Hmisc)

hist.data.frame(dataset)

hist(dataset\$HeartDisease,xlab = 'Heart Disease(0 = "No", 1 = "Yes")',main = paste("Histogram of Heart Disease"), col=("lightblue"))

Model Building:

1. Splitting Dataset into Training and Test Set:

Code:

install.packages("caTools")

library(caTools)

```
set.seed(123)
split = sample.split(dataset$HeartDisease, SplitRatio = 0.80)
training_set = subset(dataset, split==TRUE)
test_set = subset(dataset, split==FALSE)
split
```

> sp	it																				
[1]	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE
[22]	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
[43]	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
[64]	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	TRUE
[85]	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE						
[106]	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE						
[127]	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE
[148]	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE
[169]	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE

Training Set:

_	Age ‡	Sex ‡	ChestPainType ‡	RestingBP ‡	Cholesterol ‡	FastingBS [‡] RestingE	CG [‡] MaxHR [‡] Exerci	seAngina [‡] Oldpeak [‡]	ST_Slope ‡	HeartDisease	‡
1	0.24489796	0		0.700	0.4792703	0 1	0.7887324 0	0.2954545			
2	0.42857143			0.800	0.2985075	0 1	0.6760563 0	0.4090909	2		
5	0.53061224	0		0.750	0.3233831	0 1	0.4366197 0	0.2954545			
8	0.53061224	0		0.550	0.3449420	0 1	0.5774648 0	0.2954545			0
9	0.18367347	0		0.700	0.3432836	0 1	0.4929577 1	0.4659091	2		
10	0.40816327			0.600	0.4709784	0 1	0.4225352 0	0.2954545			0
12	0.61224490	0		0.680	0.2719735	0 2	0.2746479 1	0.5227273	2		
13	0.22448980	0		0.600	0.3383085	0 1	0.5985915 0	0.2954545			0
14	0.42857143	0		0.700	0.3880597	0 1	0.5633803 1	0.4090909	2		
15	0.28571429			0.575	0.3499171	0 2	0.5422535 0	0.2954545			0
18	0.30612245			0.600	0.3333333	0 1	0.7394366 0	0.2954545			
19	0.65306122	0	3	0.500	0.4112769	0 1	0.4577465 0	0.4090909	2		
20	0.16326531	0		0.600	0.4427861	0 1	0.7042254 0	0.6363636	2		
21	0.30612245		4	0.500	0.3698176	0 1	0.5774648 0	0.2954545			0
22	0.32653061	0		0.600	0.3051410	0 1	0.5774648 0	0.4090909	2		
23	0.42857143			0.620	0.3333333	0 1	0.7323944 0	0.2954545			0
24	0.32653061	0		0.750	0.4776119	0 1	0.6338028 1	0.6363636	2		
26	0.16326531	0	2	0.650	0.3466003	0 1	0.8309859 0	0.2954545			0
27	0.51020408	0		0.620	0.4311774	0 2	0.3661972 1	0.6363636	2		
28	0.48979592	0		0.600	0.4709784	0 1	0.4084507 0	0.2954545			0
33	0.53061224	0		0.625	0.3714760	0 1	0.4366197 0	0.5227273	2		
34	0.26530612	0		0.650	0.2852405	0 2	0.4929577 0	0.5227273	2		
35	0.30612245			0.750	0.3084577	0 1	0.6619718 0	0.2954545			

Test Set:

*	Age ‡	Sex ‡	ChestPainType ‡	RestingBP ‡	Cholesterol ‡	FastingBS ‡	RestingECG [‡]	MaxHR [‡]	ExerciseAngina ‡	Oldpeak ‡	ST_Slope [‡]	HeartDisease	‡
3	0.18367347	0		0.650	0.4693201	0		0.2676056		0.2954545			
4	0.40816327			0.690	0.3548922	0		0.3380282		0.4659091			
6	0.22448980			0.600	0.5621891	0		0.7746479		0.2954545			
7	0.34693878			0.650	0.3930348	0		0.7746479		0.2954545			0
11	0.18367347			0.650	0.3499171	0		0.5774648		0.2954545			
16	0.53061224			0.600	0.4527363	0		0.6338028		0.4659091			0
17	0.20408163			0.550	0.3250415	0		0.7464789		0.2954545			
25	0.24489796	0		0.650	0.3565506	0		0.5492958		0.2954545			0
30	0.46938776			0.625	0.3117745	0		0.5985915		0.2954545			
32	0.57142857	0		0.650	0.2769486	0		0.3802817	0	0.2954545			0
37	0.75510204			0.700	0.5074627			0.1901408		0.4659091			
38	0.26530612			0.550	0.4145937	0		0.5774648		0.2954545			0
47	0.18367347			0.600	0.3698176	0		0.7605634		0.2954545			
48	0.44897959	0		0.700	0.3582090	0		0.7746479	0	0.2954545			0
52	0.38775510			0.600	0.3399668	0		0.2676056		0.5227273			
53	0.34693878	0		0.700	0.3714760			0.4366197	0	0.2954545			0
79	0.48979592	0		0.700	0.1658375	0		0.5492958		0.2954545			
83	0.71428571	0		0.750	0.3698176	0		0.3873239	0	0.2954545	2		
84	0.48979592	0		0.800	0.3250415	0		0.7394366		0.2954545			
85	0.57142857	0		0.750	0.3532338			0.4577465		0.4090909	2		
89	0.30612245	0	4	0.600	0.4825871	0		0.6690141		0.2954545			
95	0.22448980			0.550	0.3018242	0	2	0.8450704	0	0.2954545			0
106	0.59183673	0		0.700	0.4311774			0.5633803		0.2954545			

2. Applying KNN Classifier:

Code:

```
install.packages("class") \\ library(class) \\ y\_pred = knn(train = training\_set[,-12], \\ test = test\_set[,-12], \\ cl = training\_set[,12], \\ k = 7) \\
```

Confusion Matrix:

Code:

```
cm = table(test_set[,12], y_pred)
cm
```

```
> cm = table(test_set[,12], y_pred)
> cm
    y_pred
        0   1
        0   64   11
        1   9   54
```

Accuracy:

Code:

accuracy = sum(diag(cm))/nrow(test_set)
accuracy

Output:

```
> accuracy = sum(diag(cm))/nrow(test_set)
> accuracy
[1] 0.8550725
```

Confusion Matrix:

Correctly Classified Instances	118
Incorrectly Classified Instances	20

Correct	Classified As								
Classification	0	1							
0	64 (True Negatives)	11 (False Positives)							
1	9 (False Negatives)	54 (True Positives)							

After, applying KNN with value of K = 7, we can observe that it classifies 118 instances correctly from the available 138 instances of test dataset and classifies 20 instances incorrectly. The model was able to classify 64 instances as 0 (Normal) which were actually 0 (Normal) and classify 11 instances as 1 (heart diseases) which were actually 0 (Normal). The model predicts 9 instances as 0 (Normal) which were actually 1 (heart diseases) and predicts 54 instances as 1 (heart diseases) which were actually 1 (heart diseases).

So, finally the accuracy of the model would be, $\frac{Correctly\ Classified\ Instances}{Num\ of\ Instances\ in\ test\ set} = 118/138 = .855 * 100\% = 85.5\%$.