Pitfalls of Machine Learning in production

Antoine Sauray - Nantes Machine Learning Meetup - 7/10/19

Who am I?

Antoine Sauray 🌂 @asauray

Software engineer, Scala dev

Founder of Hyperplan ML platform

We are hosted at the Halle 6 in Ile de Nantes

Previously worked at iAdvize as ML Engineer

4 years exp in mobile dev (Android and iOS native)

Software engineering

Machine Learning

Machine Learning is a small part of your system

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

"Hidden Technical Debt in Machine Learning Systems" - 2015

Machine Learning is a small part of your system

Not Machine Learning

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

"Hidden Technical Debt in Machine Learning Systems" - 2015

Machine Learning is hard to put in production

O'Reilly survey - August 2018

Machine Learning creates more tech debt

"ML systems have a special capacity for incurring technical debt, because they have **all of the maintenance problems** of traditional code plus an additional set of **ML-specific issues.**"

ML practices

Strong abstractions

OOP, FP Hexagonal architecture

Tooling

Version Control
Testing frameworks
Monitoring
Logging
CI

Deployments

CD A/B tests

ML practices

Strong abstractions

OOP, FP Hexagonal architecture

Tooling

Version Control
Testing frameworks
Monitoring
Logging
CI

Deployments

CD A/B tests

?

+ specific ML issues
Python
drift concept
etc.

Uber Engineering Blog v Research v Engineering Offices v

Uber

"ML as software engineering"

Scaling Machine Learning at Uber with Michelangelo

Q

In September 2017, we published an article introducing Michelangelo, Uber's Machine Learning Platform, to the broader technical community. At that point, we had over a year of production experience under our belts with the first version of the platform, and were working with a number of our teams to build, deploy, and operate their machine learning (ML) systems.

As our platform matures and Uber's services grow, we've seen an explosion of ML deployments across the company. At any given time, hundreds of use cases representing thousands of models are deployed in production on the platform. Millions of predictions are made every second, and hundreds of data scientists, engineers, product managers, and researchers work on ML solutions

Sign up for Uber Engineering updates:

clochard.guillaume@gmail.com

Popular Articles

Uber's Big Data Platform: 100+ Petabytes with Minute Latency October 17, 2018

Meet Michelangelo: Uber's Machine Learning Platform September 5, 2017

Introducing Ludwig, a Code-Free Deep Learning Toolbox

Why Uber Engineering Switched from Postgres to MySQL July 26, 2016

Introducing AresDB: Uber's GPU-Powered Open Source, Real-time Analytics Engine

January 29, 2019

Google

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips {dsculley, gholt, dgg, edavydov, toddphillips}@google.com Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison {ebner, vchaudhary, mwyoung, jfcrespo, dennison}@google.com Google, Inc.

Abstract

Machine learning offers a fantastically powerful toolkit for building useful complex prediction systems quickly. This paper argues it is dangerous to think of these quick wins as coming for free. Using the software engineering framework of technical debt, we find it is common to incur massive ongoing maintenance costs in real-world ML systems. We explore several ML-specific risk factors to account for in system design. These include boundary erosion, entanglement, hidden feedback loops, undeclared consumers, data dependencies, configuration issues, changes in the external world, and a variety of system-level anti-patterns.

Diving into issues

Diving into issues

Collaboration

Data dependencies

Training and Serving Skews

Bad and good patterns

How to track experiments?

What algorithm has been trained?

When?

On what data?

With which set of parameters?

How can we compare them?

- Avoid repeating same experiments
- Reuse code

Working with others

Mobile apps

Working with others

Teams of engineers and researchers have different goals

Data scientists and researchers seek **quality**, at the cost of simplicity Dev and ops like seek **simplicity**, at the cost of performance

Data Dependencies

Data Dependencies

Unstable Data dependencies

A model can consume signals from:

- An algorithm (possibly ML) that updates over time
- An application that may receive updates

000000 Algorithm Business app Model

CACE: Change Anything Changes Everything

Data Dependencies

Underutilized Data dependencies

Keep the features to a strict minimum reduces the multicollinearity risk.

- Legacy Features can be forgotten
- Features can be added as bundles
- o-Features are complex and bring little value

Underutilized dependencies can be detected via exhaustive **leave-one-feature-out** evaluations.

According to the TensorFlow doc, 4 skews:

- Schema
- Feature
- Distribution
- Scoring and Serving

Schema skew

Example: after a migration/the deprecation of a field.

This may be undetected and cause you model to silently fail.

```
{
    "surfaceAppartement": 70,
}

{
    "surfaceAppartement": null,
    "appartmentSurface": 70
}
```

Feature skew

When different teams implement the machine learning models and the documentation is nonexistent or insufficient.

This is even more important **when serving on multiple platforms** with different teams.

```
features = {
    # is this milliseconds or
    # seconds ?
    'video_duration': 10
}
prediction =
    clf.predict(features)
```

Distribution skew

When the distribution of feature values is different between training and serving.

When data scientists train their algorithms with a faulty sampling mechanism.

When a different corpus is used for training to overcome lack of initial data.

Scoring and Serving skew

A Direct Feedback loop can help you measure the results of your algorithm and generate training data for later.

But! Models may influence the data they will be trained on later.

Exploration / Exploitation trade off

Scoring and Serving skew

Hardcoded thresholds can lead to errors because they are model specific.

If model is automatically trained with new batches of data, the previous threshold is invalidated

But thresholds can be learnt.

```
def keep_above_threshold(prediction, t):
    for p in predictions:
        if p.prob > t:
            yield p

clf = load('model1.joblib')
predictions = clf.predict(features)
return keep_above_threshold(predictions, 0.6)
```

```
clf = load('model2.joblib')
predictions = clf.predict(features)
return keep_above_threshold(predictions, 0.6)
```

Bad: Glue code

Wikipedia: "... executable code that serves solely to «adapt» different parts of code that would otherwise be incompatible".

Problems

Maintenance is hard Complexity is high

Bad: Pipeline jungle

When thinking about data collection after creating the algorithms.

It is often hard to gather data in real time for the execution of the algorithm.

- Many collection steps
- SQL Join everywhere
- Intermediate results

This is **fragile**

→ Rethink the pipeline as a whole

Bad: Dead experimental codepath

Shortcuts taken by developers to implement features faster.

Avoid conditional branching in production because of

- Cyclomatic complexity
- Things break unexpectedly

```
if customer_id == "1":
    # but customer 1 does not exist anymore
    return clf1.predict(data)
else:
    return clf2.predict(data)
```

Bad: **No Abstraction**

Client handle different APIs for the same problem.

- More code client side
- Duplication of code in APIs
- Failover and AB tests are managed on the client

Good: Abstraction

An interface between the client and the models

Advantages:

- Start with simple heuristics to get data early
- Add data on the API schema progressively
- Ship a new model safely with rollbacks
- Write less code on the client side

Heuristic

Model 2

Model 3

Transformations

API

Schema

Client

Platforms

The basics

We have some basics tools like classic software

Versioning

- Git LFS
- DVC

Tracking platforms

- Weights and biases <u>wandb.com</u>
- Datmo <u>github.com/datmo/datmo</u>
- MLFlow Tracking

TensorFlow Extended

End-to-end platform for deploying production ML pipelines

Since 2018

TensorFlow Extended

End-to-end platform for deploying production ML pipelines

Since 2018

TensorFlow Data Validation

Get started →

TensorFlow Transform

Get started →

TensorFlow Model Analysis

Get started →

TensorFlow Serving

Get started →

TensorFlow Extended

Tracking and Reproducibility

X

Skew Detection

(schema, feature, distribution)

Consistent Pipeline (Training & Serving)

(only tf.Serving and Apache Beam)

Multiple Deployment Targets

(API, browser, on device)

Multi Framework

(possible via TensorFlow 2.0)

MLFlow

Machine Learning Platform for ML Lifecycle management

v1: summer 2019

MLFlow

Tracking and Reproducibility

V

Skew Detection

X

Consistent Pipeline (Training & Serving)

(via save_model)

Multiple Deployment Targets

(only REST API)

Michelangelo (closed source)

Since 2016

"Seamlessly build, deploy, and operate machine learning solutions at Uber's scale"

eng.uber.com/michelangelo

Michelangelo (closed source)

l lher

Tracking and Reproducibility

Skew Detection

Consistent Pipeline (Training & Serving)

with a compiled DSL 🗸

Multiple Deployment Targets

NA

FB Learner Flow (closed source)

A platform capable of easily reusing algorithms in different products, scaling to run thousands of simultaneous custom experiments, and managing experiments with ease.

<u>engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone</u>

FB Learner Flow (closed source)

Skew Detection

NA

Consistent Pipeline (Training & Serving)

NA

Multiple Deployment Targets

NA

Hyperplan

A Proxy for Machine Learning

Serve your algorithms in production

- Skew detection
- Feedback loop
- AB Testing

Still under active development

Hyperplan

Tracking a	nd Repro	ducibility
------------	----------	------------

X

Skew Detection

(schema, feature, distribution)

Consistent Pipeline (Training & Serving)

X

Multiple Deployment Targets

V

To sum up

To sum up

TensorFlow Extended and MLFlow are great for big orgs

TFX has a proven record for solving production issues, but only with TensorFlow MLFlow is still young and targets many problems, pick what you need

Uber and Facebook?

Designed specifically for their org, huge platforms

Hyperplan is made for small and medium orgs

Benefits of monitoring at a small cost

References

Machine Learning: The High Interest Credit Card Of Technical Debt, 2014

Hidden Technical Debt in Machine Learning Systems, (Google) 2015

Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications, First Edition (O'Reilly)

The State of Machine Learning Adoption in the Enterprise (O'Reilly)

TensorFlow Docs https://www.tensorflow.org/tfx

MLFlow Docs https://www.mlflow.org/docs/latest/index.html

Merci!

@asauray - <u>hyperplan.io</u>