

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Cadmium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$		
	Baes and Mesmer, 1976	Powell et al., 2011	Brown and Ekberg, 2016
$Cd^{2+} + H_2O \rightleftharpoons CdOH^+ + H^+$	-10.08	-9.80 ± 0.10	-9.81 ± 0.10
$Cd^{2+} + 2 H_2O \rightleftharpoons Cd(OH)_2 + 2 H^+$	-20.35	-20.19 ± 0.13	-20.6 ± 0.4
$Cd^{2+} + 3 H_2O \rightleftharpoons Cd(OH)_3^- + 3 H^+$	<-33.3	-33.5 ± 0.5	-33.5 ± 0.5
$Cd^{2+} + 4 H_2O \rightleftharpoons Cd(OH)_4^{2-} + 4 H^+$	-47.35	-47.28 ± 0.15	-47.25 ± 0.15
$2 \text{ Cd}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{Cd}_2\text{OH}^{3+} + \text{H}^+$	-9.390	-8.73 ± 0.01	-8.74 ± 0.10
$4 \text{ Cd}^{2+} + 4 \text{ H}_2\text{O} \rightleftharpoons \text{Cd}_4(\text{OH})_4^{4+} + \text{H}^+$	-32.85		
$Cd(OH)_2(s) \rightleftharpoons Cd^{2+} + 2 OH^-$		-14.28 ± 0.12	
$Cd(OH)_2(s) + 2 H^+ \rightleftharpoons Cd^{2+} + 2 H_2O$	13.65	13.72 ± 0.12	13.71 ± 0.12

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 301.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 730–738.
- K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A.-K. Leuz, S. Sjöberg, and H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The $Cd^{2+} + OH^-$, Cl^- , CO_3^{2-} , SO_4^{2-} , and PO_4^{3-} systems (IUPAC Technical Report). Pure Appl. Chem., 83, 1163–1214 (2011).

Distribution diagrams

These diagrams have been computed at two Cd concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

