Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Optimizing Neural Networks

Class Logistics and Agenda

- Logistics
 - Grading
 - Team canvas assignment turn in
- Agenda:
 - Practical Multi-layer Architectures
 - Programming Examples and Adaptive Eta's
- Next Time: More MLPs

Class Overview, by topic

Review: Back propagation history

- 1986: Rumelhart, Hinton, and Williams popularize gradient calculation for multi-layer network
 - actually introduced by Werbos in 1982
- difference: Rumelhart et al. validated ideas with a computer
- until this point no one could train a multiple layer network consistently
- algorithm is popularly called **Back-Propagation**
- wins pattern recognition prize in 1993, becomes de-facto machine learning algorithm until: SVMs and Random Forests in ~2004
- would eventually see a resurgence for its ability to train algorithms for Deep Learning applications: **Hinton is widely considered the**

founder of deep learning

David Rumelharl

Geoffrey Hinton

Review: Back propagation

- Optimize all weights of network at once
- Steps:
 - 1. Forward propagate to get all **Z**(1), **A**(1)
 - 2. Get final layer gradient
 - 3. Back propagate sensitivities
 - 4. Update each W(1)

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

Review: Back Propagation Summary

Where is the problem of vanishing gradients introduced?

**Recall from Flipped Assignment!

Lightning Demo

07a. MLP Neural Networks with bias.ipynb

same as Flipped Assignment! with regularization and vectorization and mini-batching

A. $\mathbf{z} = \mathbf{W} \cdot \mathbf{a}_{bias}$ old notebooks

B. $\mathbf{z} = \mathbf{W} \cdot \mathbf{a} + \mathbf{b}$ new notebook!

Mini-batching

- Numerous instances to find one gradient update
 - solution: mini-batch

shuffle ordering each epoch and update W's after each batch

- **new problem**: mini-batch gradient updates can be erratic and there might be many local optima...
 - solutions:
 - · momentum
 - adaptive learning rate (cooling)

Momentum and Cooling Intuition

Momentum

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$$

Momentum

$$\rho_k = \alpha \nabla J(\mathbf{W}_k) + \beta \nabla J(\mathbf{W}_{k-1})$$

Nesterov's Accelerated Gradient

$$\rho_k = \underbrace{\beta \, \nabla J \left(\mathbf{W}_k + \alpha \, \nabla J(\mathbf{W}_{k-1}) \right)}_{\text{step twice}} + \alpha \, \nabla J(\mathbf{W}_{k-1})$$

Cooling (Learning Rate Reduction)

· Fixed Reduction at Each Epoch, k

$$\eta_k = \eta_0 \cdot d^{\lfloor rac{k_{max}}{k}
floor}$$
drop by d every $\eta_k = \eta_0^{(1+k\cdot d)}$ drop a little every epoch

- · Adjust on Plateau
 - · make smaller when J rapidly changes
 - · make bigger when J not changing much

Demo

07. MLP Neural Networks.ipynb

comparison:

mini-batch momentum adaptive learning rate L-BFGS (if time)

