What we claim is:

1. A light emitting material for an organic electroluminescent device comprising an asymmetric anthracene derivative represented by the following general formula (1):

wherein, A^1 and A^2 each independently represents a substituted or unsubstituted aromatic hydrocarbon ring group having carbon atoms of 10 to 20 ring;

Ar¹ and Ar² each independently represents a hydrogen atom, a substituted or unsubstituted condensed aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50;

R¹ to R³ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted aromatic hetero ring group having ring atoms of 5 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

R⁹ to R¹⁰ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50,

a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and none of R⁹ and R¹⁰ is alkenyl group; Ar¹, Ar², R⁹ and R¹⁰ each may be a plural number, and two neighboring groups thereof may form a saturated or unsaturated ring structure; however, it is excluded a case where the groups at 9th and 10th positions of anthracene at the core in the general formula (1) are symmetrical at x-y axis of symmetry and bond each other.

- 2. The light emitting material for the organic electroluminescent device according to Claim 1, wherein, in the general formula (1), A¹ and A² each independently represents any one of 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group and 4-methyl-1-anthryl group.
- 3. The light emitting material for the organic electroluminescent device according to Claim 1, wherein, in the general formula (1), A¹ and A² each independently represents 1-naphthyl group, 2-naphthyl group or 9-phenanthryl group.
- 4. The light emitting material for the organic electroluminescent device according to Claim 2, wherein, in the general formula (1), Ar¹ and Ar² each independently represents any one of a hydrogen atom, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-3-yl group, p-terphenyl-3-yl group, m-terphenyl-3-yl group,

m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p-tolyl group, p-t-butylphenyl group, p-(2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4'-methylbiphenylyl group and 4"-t- butyl-p-terphenyl-4-yl group.

- 5. The light emitting material for the organic electroluminescent device according to Claim 3, wherein, in the general formula (1), Ar¹ and Ar² each independently represents any one of a hydrogen atom, 1-naphtyl group, 2-naphtyl group and 9-phenanthryl group.
- 6. The light emitting material for the organic electroluminescent device according to Claim 1, wherein, the asymmetric anthracene derivative comprises a naphtalene-1-yl group having a substituent at 4th position thereof and/or a substituted or unsubstituted condensed aromatic hydrocarbon ring group having ring carbon atoms of 12 to 20.
- 7. An organic electroluminescent device comprising at least one organic thin film layer, which contains at least a light emitting layer, which interposed between a pair of electrode consisting of an anode and a cathode, wherein a light emitting zone comprises the light emitting material for the organic electroluminescent device according to Claim 1 singly or as a component of a mixture thereof.
- 8. The organic electroluminescent device according to Claim 7, wherein, the light emitting layer contains the light emitting material for the organic electroluminescent device singly or as a component of a mixture thereof.
- 9. The organic electroluminescent device according to Claim 7, wherein, the organic thin film layer contains the light emitting material for the organic electroluminescent device.
- 10. The organic electroluminescent device according to any one of Claims 7 to 9, wherein, the light emitting layer contains additionally an arylamine compound.
- 11. The organic electroluminescent device according to any one of Claims 7 to 9, wherein, the light emitting layer contains additionally a styrylamine compound.

12. A material for an organic electroluminescence device comprises an asymmetric anthracene derivative represented by the following general formula (1'):

wherein, A¹' and A²' each independently represents a substituted or unsubstituted condensed aromatic hydrocarbon ring group having ring carbon atoms of 10 to 20, and at least one of A¹' and A²' represents a naphtalene-1-yl group having a substituent at 4th position thereof or a substituted or unsubstituted condensed aromatic hydrocarbon ring group having ring carbon atoms of 12 to 20; Ar¹ and Ar² each independently a hydrogen atom, or a substituted or unsubstituted aromatic hydrocarbon ring having ring carbon atoms of 6 to 50;

R¹ to R³ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted aromatic hetero ring group having ring atoms of 5 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

 R^9 to R^{10} each independently represents a hydrogen atom, a substituted or

unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and none of R⁹ and R¹⁰ is alkenyl group; Ar¹, Ar², R⁹ and R¹⁰ each may be a plural number, and two neighboring groups thereof may form a saturated or unsaturated ring structure; however, it is excluded a case where the groups at 9th and 10th positions of anthracene at the core in the general formula (1') are symmetrical at x-y axis of symmetry and bond each other.