

planetmath.org

Math for the people, by the people.

a space is T1 if and only if every singleton is closed

Canonical name ASpaceIsT1IfAndOnlyIfEverySingletonIsClosed

Date of creation 2013-03-22 14:20:15 Last modified on 2013-03-22 14:20:15

Owner waj (4416) Last modified by waj (4416)

Numerical id 7

Author waj (4416) Entry type Proof Classification msc 54D10

 $Related\ topic \qquad A Space Is T1 If And Only If Every Subset A Is The Intersection Of All Open Sets Contains the Contains of t$

Say X is a http://planetmath.org/node/1852 T_1 topological space. Let's show that $\{x\}$ is closed for every $x \in X$:

The http://planetmath.org/T1Space T_1 axiom gives us, for every y distinct from x, an open U_y that contains y but not x. Since we're in a topological space, we can take the union of all these open sets to get a new open set,

$$U = \bigcup_{y \neq x} U_y.$$

 $\{x\}$ is the complement of U, closed because U is open: None of the U_y contain x, so U doesn't contain x. But any $y \neq x$ is in U, since $y \in U_y \subset U$. That takes care of that.

Now let's say we have a topological space X in which $\{x\}$ is closed for every $x \in X$. We'd like to show that T_1 holds:

Given $x \neq y$, we want to find an open set that contains x but not y. $\{y\}$ is closed by hypothesis, so its complement is open, and our search is over.