

Introduction to Data Mining

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. Subjective
 - Objective interestingness measures
 - Support, confidence, correlation, ...
 - Subjective interestingness measures: One man's trash could be another man's treasure
 - Query-based: Relevant to a user's particular request
 - Against one's knowledge-base: unexpected, freshness, timeliness
 - Visualization tools: Multi-dimensional, interactive examination

Limitation of the Support-Confidence Framework

- Are s and c interesting in association rules: "A ⇒ B" [s, c]?
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:
 2-way contingency table

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

- Association rule mining may generate the following:
 - play-basketball ⇒ eat-cereal [40%, 66.7%] (highers & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - ¬ play-basketball ⇒ eat-cereal [35%, 87.5%] (high s & higher c)

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

Lift is more telling than s & c

В

400

200

600

C

 $\sum_{col.}$

¬B

350

50

400

 \sum_{row}

750

250

1000

- Lift(B, C) may tell how B and C are correlated
 - Lift(B, C) = 1: B and C are independent
 - > 1: positively correlated
 - < 1: negatively correlated</p>

•	For our example,	$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$
		200/1000×750/1000
		$lift(B, \neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$

- Thus, B and C are negatively correlated since lift(B, C) < 1;
 - B and \neg C are positively correlated since lift(B, \neg C) > 1

Interestingness Measure: χ²

Observed value

Expected value

Another measure to test correlated eyents: χ²

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- General rules
 - $-\chi^2$ = 0: independent

		В	¬B	\sum_{row}
C	4	400 (450)	350 (300)	750
¬С	:	200 (150)	50 (100)	250
Σ_{col}		600	400	1000

 $-\chi^2$ > 0: correlated, either positive or negative, so it needs additional test

• Now,
$$\chi^2 = \frac{(400 - 450)^2}{450} + \frac{(350 - 300)^2}{300} + \frac{(200 - 150)^2}{150} + \frac{(50 - 100)^2}{100} = 55.56$$

- χ² shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- χ^2 is also more telling than the support-confidence framework

Lift and χ²: Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- χ^2 = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

		В ¬В		\sum_{row}
¬C 1000 100000 10100	C	100	1000	1100
	¬С	1000	100000	101000
∑ _{col.} 1100 101000 10210	$\sum_{col.}$	1100	101000	102100

null transactions

Contingency table with expected values added

	В	¬B	\sum_{row}
С	100 (11.85)	1000	1100
¬С	1000 (988.15)	100000	101000
$\sum_{col.}$	1100	101000	102100

Interestingness Measures & Null-Invariance

- Null invariance: Value does not change with the # of nulltransactions
- A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	X² and lift are not null-invariant
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes	Jaccard, consine,
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	AllConf,
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	MaxConf, and Kulczynski are null-invariant
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	measures
MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)},\frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes	-

 $\max\{s(A \cup B)/s(A), s(A \cup B)/s(B)\}$

7

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - D₄—D₆ differentiate the null-invariant measures
 - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

All 5 are null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100, 000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on those cases

Analysis of DBLP Coauthor Relationships

 Recent DB conferences, removing balanced associations, low sup, etc.

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315 (7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	12	120	12	0.100 (10)	0.316 (6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high,

Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Imbalance Ratio with Kulczynski Measure

- IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: $IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$
- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is neutral & balanced; D₅ is neutral but imbalanced
 - D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	0.5	0
D_5	1,000	100	10,000	100,000	0.09	0.29	0.5	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- Null-invariance is an important property
- Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

Discussion

Where do you want to use them?

Measure	Definition	Range	Null-Invariant
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes
Jaccard(A,B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes
MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)}, \frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes

 $\max\{ s(A \cup B) / s(A), s(A \cup B) / s(B) \}$

Summary

- Basic Concepts:
 - Frequent Patterns, Association Rules, Closed Patterns and Max-Patterns
- Frequent Itemset Mining Methods
 - The Downward Closure Property and The Apriori Algorithm
 - Extensions or Improvements of Apriori
 - Mining Frequent Patterns by Exploring Vertical Data Format
 - FPGrowth: A Frequent Pattern-Growth Approach
 - Mining Closed Patterns
- Which Patterns Are Interesting?—Pattern Evaluation Methods
 - Interestingness Measures: Lift and χ_2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

References

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00

References (cont.)

- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014
- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010