

Seq2Seq / Encoder-Decoder / Attention

Преподаватель: Герард Костин

План

- Encoder Decoder
- Attention
- Self-Attention

Encoder-Decoder

• RNN: входная последовательность преобразуется в выходную последовательность взаимно однозначным образом (one2one).

• **Цель**: разработать архитектуру, способную генерировать соответствующие контексту выходные последовательности произвольной длины.

Приложения:

- Машинный перевод,
- Обобщение,
- Вопрос-Ответ,
- Диалоги.

Простая RNN сеть

Наиболее существенное изменение: новый набор весов U подключает скрытый слой из предыдущего временного шага к текущему скрытому слою.

RNN Применение

 Sequence Classification (Sentiment, Topic)

Sequence to Sequence

P(W I "...fox")

Softmax

Softmax

Sentence Completion - RNN

- Обученную модель можно использовать для создания новых последовательностей.
- Или для завершения заданной последовательности (пока не будет сгенерирован токен конца предложения <\ s>)

Расширенная (авторегрессия) генерация машинный перевод слово, генерируемое на каждом временном шаге, зависит от слова из

предыдущего шага.

• Данные обучения представляют собой параллельный текст, например, English / French

```
there lived a hobbit vivait un hobbit
```

• Построить языковую модель RNN на объединении входа и выхода

```
there lived a hobbit <\s> vivait un hobbit <\s>
```

Расширенная (авторегрессия) генерация -

• Перевод как завершение предложени

Encoder Decoder Networks

Ограничения

- E and D предполагается, что они имеют одинаковую внутреннюю структуру (RNN)
- Выход **E** единственная информация, доступная **D**
- Эта информация доступна **D** только на первом шаге.

- Encoder генерирует контекстное представление ввода (последнее состояние).
- Decoder принимает это состояние и авторегрессивно генерирует

Основы Encoder Decoder Сетей

- Encoder: принимает последовательность входов, х_{1:n} и создает на его основе последовательность контекстов, h_{1:n}
- 2. Контекстный вектор с: Функция от h_{1:n} КОторая передает контекст Декодеру
- Decoder: принимает контекст с на вход и генерирует последовательность скрытых состояний h_{1:m} из которых мы полчаем последовательность у_{1:m}

Encoder

Варианты архитектуры: Encoder

stacked Bi-LSTMs

• Контекстуализирован ные представления для каждого временного шага: скрытые состояния от верхних слоев от прямого и обратного проходов

Decoder Основы

воспроизводит выходную последовательность по одному элементу за раз

$$c = h$$

$$h_0^d = c$$

Decoder

Decoder Расширение

$$c = h_n^e$$
$$h_0^d = c$$

Decoder

 $y_{\rm m}$

Context доступен на каждом шаге

$$z_t = f(h_t^d)$$

 $y_t = \text{softmax}(z_t)$

Decoder: Как выбирается у?

- 4 наиболее вероятных «слова», декодированных из исходного состояния
- Подает каждый из них в декодере и хранит, 4 наиболее веротяные последовательности из двух слов
- Подает самое последнее слово в декодер и сохраняет, 4 наиболее веротяные последовательности из трех слов
- Когда генерируется EOS. Остановить последовательность и уменьшить Beam на 1

• ...

План

- Encoder Decoder
- Attention
- Self-attention

Переменный контекст: Attention

Context

Контекстный вектор с:

функция от $\mathbf{h}_{1:n}$ через которую контекст поступает в декодер

Делаем гибче:

- •Разный контекст на каждый **h**,
- •Гибко комбинируем контексты от **h**.

Attention (1): динамически производный

контекст

• Заменяем статичный контекст динамическим **с**_i

• полученный из скрытых состояний encoder в каждой точке і во время

варканирования

 Линейная комбинация

$$c_i = \sum_j \alpha_{ij} h_j^e$$

• α_{ij} Должен зависеть от

Attention (2): вычисляем с

• Вычислить вектор оценок, который фиксирует релевантность каждого скрытого состояния кодера для состояния декоде h_{i-1}^d

$$score(h_{i-1}^d, h_j^e)$$

• Простое сходство

$$score(h_{i-1}^d, h_j^e) = h_{i-1}^d \cdot h_j^e$$

• Предоставляет сети возможность узнать, какие аспекты сходства между состояниями decoder и encoder важны для текущего приложения. $score(h_{i-1}^d, h_j^e) \ = \ h_{t-1}^d W_s h_j^e$

 $-\operatorname{sormax}(h_{i-1}, \bar{h_i})$

 $c_i = \sum \alpha_{ij} h_j^2$

Attention (3): c_і от score к относительному весу

• Создаем вектор весов, нормализуя score

Цель достигнута: вычислить вектор контекста фиксированной длины для текущего состояния декодера, взяв средневзвешенное значение по всем скрытым состояниям кодера.

Attention: Summary2

