TD 7 : Chaîne de Markov, récurrence et mesure stationnaire

Exercice 1:

Retour à l'exercice 5 de la feuille 6. On considère la file d'attente des requêtes à un serveur informatique : X_n représente la taille de la file d'attente à l'instant n et ξ_{n+1} le nombre de requêtes qui arrivent entre n et n+1 $((\xi_n)_{n\geqslant 1}$ suite *i.i.d.* de loi μ).

- 1. Soit ϕ la fonction génératrice de ξ_1 et G_n celle de X_n . Donner une relation liant G_{n+1} à G_n et ϕ .
- 2. Montrer qu'il existe une unique probabilité invariante dont on déterminera la fonction génératrice, si et seulement si, $\mathbf{E}\left[\xi_1\right] < 1$.

Corrigé:

1. Par définition de la fonction génératrice on a

$$\begin{split} G_{n+1}(s) &= \mathbf{E}\left[s^{X_{n+1}}\right] = \mathbf{E}\left[s^{X_n - \mathbf{1}_{\{X_n \geqslant 1\}} + \xi_{n+1}}\right], \\ &= \mathbf{E}\left[s^{X_n - \mathbf{1}_{\{X_n \geqslant 1\}}}\right] \phi(s) \\ &= \phi(s) \left(\mathbf{E}\left[s^{X_n - 1} \mathbf{1}_{\{X_n \geqslant 1\}}\right] + \mathbf{E}\left[s^{X_n} \mathbf{1}_{\{X_n = 0\}}\right]\right). \end{split}$$

En utilisant l'écriture $G_n(s) = \sum_k \mathbf{P}\left[X_n = k\right] s^k$ on prouve que

$$G_{n+1}(s) = \phi(s) \left(G_n(0) + \frac{1}{s} \left(G_n(s) - G_n(0) \right) \right)$$

2. Par définition une probabilité stationnaire π vérifie $\pi Q = \pi$ ou de façon équivalente $G_{\pi}(s) = G_{\pi Q}$ où G_{μ} est la fonction génératrice d'une probabilité μ . Soit π une probabilité et supposons X_n de loi π . Alors X_{n+1} est de loi πQ et π est une probabilité stationnaire si et seulement si $G_{n+1}(s) = G_n(s)$ i.e. si et seulement si G_{n+1} est solution de

$$G(s) = \phi(s) \left(G(0) + \frac{1}{s} \left(G(s) - G(0) \right) \right) \tag{*}$$

ou de façon équivalente

$$G(s) = G(0) \frac{\phi(s)}{\phi(s) - s \frac{1 - \phi(s)}{1 - s}}.$$

- Comme ϕ est fonction génératrice de ξ_1 on a $\phi(1)=1$ et $\phi'(1)=\lim_{s\to 1}\frac{1-\phi(s)}{1-s}=\mathbf{E}\left[\xi_1\right]$.

 Si $\mathbf{E}\left[\xi_1\right]>1$ alors toute solution de (*) vérifie $\lim_{s\to 1}G(s)<0$. Or $G_{n+1}(1)=1$ donc G_{n+1} ne peut être solution de (*).
- Si $\mathbf{E}[\xi_1] = 1$ alors toute solution de (*) vérifie $\lim_{s \to 1} |G(s)| = +\infty$ donc G_{n+1} ne peut pas vérifier
- Si $\mathbf{E}[\xi_1] < 1$ alors G_{n+1} est solution de (*) avec $G(0) = 1 \mathbf{E}[\xi_1]$ i.e. $G_{n+1}(s) = (1 \mathbf{E}[\xi_1]) \frac{\phi(s)}{\phi(s) s^{\frac{1-\phi(s)}{2}}}$.

Exercice 2:

Soit $(X_n)_{n\geq 0}$ définie sur **Z** par la récurrence suivante

$$X_0 = 0$$
, $X_{n+1} = X_n + Z_{n+1}$,

avec $(Z_n)_{n\geqslant 1}$ une suite *i.i.d.* de loi de Bernoulli $\mathbf{P}[Z_1=1]=p=1-\mathbf{P}[Z_1=-1]$.

- 1. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov et déterminer P son noyau de transition.
- 2. Calculer pour tout $n \ge 0$, $\mathbf{P}_0[X_n = 0]$.
- 3. Montrer que la chaîne est irréductible.

4. En utilisant la formule de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

montrer que $\mathbf{E}_0[N_0] = \infty$ si et seulement si $p = \frac{1}{2}$.

5. Etudier la récurrence en fonction du paramètre p.

Corrigé:

- 1. La suite $(Z_n)_{n\geqslant 1}$ est une suite i.i.d. et X_{n+1} s'écrit comme une fonction déterministe de X_n et de Z_{n+1} donc la suite $(X_n)_{n\geqslant 0}$ est une chaîne de Markov sur \mathbf{Z} . Le noyau de transition est donné pour tout $x,y\in\mathbf{Z}$ par $P(x,y)=p\mathbf{1}_{\{x+1\}}(y)+(1-p)\mathbf{1}_{\{x-1\}}(y)$.
- 2. Tout d'abord si n est impair $\mathbf{P}_0[X_n=0]=0$ car pour revenir en 0 le nombre de sauts à droite $(Z_j$ positif) doit être égal au nombre de sauts à gauche $(Z_j$ négatif).

Soit n = 2k, $k \ge 0$. Alors il y a k sauts vers la droite et k sauts vers la gauche, il y a donc C_{2k}^k chemins partant de 0 et revenant en 0. Chaque chemin a une probabilité $p^k(1-p)^k$ donc

$$\mathbf{P}_0[X_{2k}=0] = C_{2k}^k p^k (1-p)^k, \quad k \geqslant 0$$

- 3. Soit $n \in \mathbf{N}^*$, alors $\mathbf{P}_0[X_n = n] = \mathbf{P}[Z_1 = 1, \dots, Z_n = 1] = p^n > 0$ donc $P^n(0, n) > 0$ i.e. $0 \leadsto n$. De même $\mathbf{P}_n[X_n = 0] = (1 p)^n > 0$ donc $P^n(n, 0) > 0$ i.e. $n \leadsto 0$. Les points n et 0 communiquent pour tout $n \in \mathbf{N}^*$. De la même façon, -n et 0 communiquent dont la chaîne est irréductible.
- 4. On a

$$\mathbf{E}_{0}[N_{0}] = \mathbf{E}_{0}\left[\sum_{n\geqslant 0}\mathbf{1}_{\{X_{n}=0\}}\right] = 1 + \sum_{n\geqslant 1}\mathbf{P}_{0}[X_{n}=0]$$

donc $\mathbf{E}_0\left[N_0\right]=\infty$ ssi la série $\sum_{n\geqslant 1}\mathbf{P}_0\left[X_n=0\right]$ diverge. Or d'après Stirling on a

$$\mathbf{P}_{0}[X_{2k} = 0] = \frac{2k!}{k!k!} p^{k} (1-p)^{k} \sim \sqrt{4\pi k} \left(\frac{2k}{e}\right)^{2k} \frac{1}{2\pi k \left(\frac{k}{e}\right)^{2k}} p^{k} (1-p)^{k}$$
$$\sim \frac{1}{\sqrt{\pi k}} \left(4p(1-p)\right)^{k}.$$

Donc la série diverge ssi $p = \frac{1}{2}$.

5. D'après la question précédente, on sait que la chaîne est récurrente ssi $p=\frac{1}{2}$ (car c'est le seul cas où 0 est récurrent). Il existe donc une mesure stationnaire m unique. Or la mesure m(i)=1 pour tout $i\in \mathbf{Z}$ vérifie l'équation mQ=m (i.e. m(i-1)Q(i-1,i)+m(i+1)Q(i+1,i)=m(i)) c'est donc l'unique mesure stationnaire. Cette mesure est de masse infinie $(m(\mathbf{Z})=+\infty)$ donc la chaîne est irréductible récurrente nulle.

Exercice 3:

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur **N** de noyau de transition Q défini pour un $p\in]0,1[$ par

$$\begin{cases} Q(0,1) = 1 \\ Q(n, n+1) = p, \quad Q(n, n-1) = 1 - p, \quad \forall n \ge 1 \end{cases}$$

- 1. Ecrire la dynamique de la chaîne de Markov. Quelle est la différence avec la dynamique de l'exercice précédent?
- 2. La chaîne est-elle irréducitble?
- 3. Montrer que la chaîne est transiente si $p > \frac{1}{2}$.
- 4. Soit $p < \frac{1}{2}$. Déterminer l'unique probabilité réversible. Qu'en déduit-on sur la récurrence de la chaîne?
- 5. Que peut-on dire dans le cas $p = \frac{1}{2}$?

Corrigé:

1. Soit $(Z_n)_{n\geqslant 1}$ une suite de v.a. *i.i.d.* de loi $\mathbf{P}[Z_1=1]=p=1-\mathbf{P}[Z_1=-1]$. Alors étant donné $X_0\sim \mu$ indépendant de $(Z_n)_{n\geqslant 1}$ on définit X_{n+1} par

$$X_{n+1} = (X_n + Z_{n+1}) \mathbf{1}_{\{X_n \geqslant 1\}} + \mathbf{1}_{\{X_n = 0\}},$$

= $X_n + Z_{n+1} \mathbf{1}_{\{X_n \geqslant 1\}} + \mathbf{1}_{\{X_n = 0\}}.$

C'est une marche aléatoire sur N avec barrière de réflexion en 0.

- 2. Pour tout $n \ge 0$, on a $P^n(0,n) = p^{n-1} > 0$ donc $0 \leadsto n$ et $P^n(n,0) = (1-p)^{n-1} > 0$ donc $0 \sim n$. La chaîne est donc irréductible.
- 3. Par la loi des grands nombres. En effet on vérifie que $X_{n+1} \geqslant X_n + Z_{n+1}$ donc $X_n \geqslant X_0 + \sum_{k=1}^n (X_k X_{k-1}) = X_0 + \sum_{k=1}^n Z_k$. Par la loi de grands nombres on a $\frac{1}{n} \sum_{k=1}^n Z_k = \mathbf{E}[Z_1] = 2p-1$ donc $\lim_n X_n = +\infty$ dès que 2p-1>0 *i.e.* $p>\frac{1}{2}$.
- 4. Une probabilité π est dite réversible si

$$\forall i, j \in \mathbf{N}, \quad \pi(i)Q(i,j) = \pi(j)Q(j,i).$$

Si une telle mesure π existe elle vérifie pour tout $n \ge 1$

$$\pi(0)Q(0,1) = \pi(1)Q(1,0) \quad \Leftrightarrow \quad \pi(1) = \frac{\pi(0)}{1-p}$$

$$\pi(n)Q(n,n+1) = \pi(n+1)Q(n+1,n) \quad \Leftrightarrow \quad \pi(n+1) = \pi(n)\frac{p}{1-n}.$$

La solution unique a ce système est donné par $\pi(n) = \pi(0) \frac{1}{1-p} \left(\frac{p}{1-p}\right)^{n-1}$ pour tout $n \ge 1$. La constante $\pi(0)$ est la constante de normalisation de façon à avoir $\pi(\mathbf{N}) = 1$. En effet comme $p < \frac{1}{2}$ on a $\frac{p}{1-p} < 1$ et $\pi(0) = \frac{1-2p}{2(1-p)}$. La probabilité π est réversible donc stationnaire, et la chaîne est donc récurrente positive.

5. Dans le cas $p=\frac{1}{2}$ la chaîne est récurrente nulle.

Exercice 4:

Soit X une μ -P chaîne de Markov sur E dénombrable. Soit $\psi: E \to F$ une application dans F dénombrable.

- 1. On suppose ψ bijective. Montrer que si $Y_n = \psi(X_n)$ alors $(Y_n)_{n\geqslant 0}$ est une ν -Q chaîne de Markov sur F. Déterminer la loi initiale ν et la matrice de transition Q.
- 2. On suppose ψ surjective telle que pour tout $j \in F$

$$P(x, \psi^{-1}(j)) = P(y, \psi^{-1}(j))$$
 si $\psi(x) = \psi(y)$. (*)

Montrer que $Y_n = \psi(X_n)$ est une ν -Q chaîne de Markov où pour tout $i, j \in F$

$$Q(i,j) = P(x, \psi^{-1}(j))$$
 avec $x \in \psi^{-1}(i)$.

3. Dans les 2 cas précédents, montrer que si π est une probabilité stationnaire pour P alors la loi image $\pi \circ \psi^{-1}$ est une probabilité stationnaire pour Q.

Corrigé:

1. Comme ψ est bijective donc inversible, on a pour tout $n \ge 0$ et tous $y_0, \ldots, y_{n+1} \in F$

$$\mathbf{P}[Y_{n+1} = y_{n+1} \mid Y_n = y_n, \dots, Y_0 = y_0] = \mathbf{P}[\psi(X_{n+1}) = y_{n+1} \mid \psi(Y_n) = y_n, \dots, \psi(Y_0) = y_0]$$

$$= \mathbf{P}[X_{n+1} = \psi^{-1}(y_{n+1}) \mid X_n = \psi^{-1}(y_n), \dots, X_0 = \psi^{-1}(y_0)]$$

$$P(\psi^{-1}(y_n), \psi^{-1}(y_{n+1})),$$

donc $(Y_n)_{n\geqslant 0}$ est une chaîne de Markov sur F de transition $Q(x,y)=P(\psi^{-1}(x),\psi^{-1}(y))$. La loi initiale ν est l'image de μ par ψ , $\nu=\mu\circ\psi^{-1}$.

2. On a pour tout $n \ge 0$ et tous $y_0, \ldots, y_{n+1} \in F$

$$\mathbf{P}[Y_{n+1} = y_{n+1} \mid Y_n = y_n, \dots, Y_0 = y_0] = \mathbf{P}[\psi(X_{n+1}) = y_{n+1} \mid \psi(Y_n) = y_n, \dots, \psi(Y_0) = y_0]$$

$$= \mathbf{P}[X_{n+1} \in \psi^{-1}(y_{n+1}) \mid X_n \in \psi^{-1}(y_n), \dots, X_0 \in \psi^{-1}(y_0)]$$

$$= \mathbf{P}[X_{n+1} \in \psi^{-1}(y_{n+1}) \mid X_n \in \psi^{-1}(y_n)],$$

d'après la propriété de Markov pour $(X_n)_{n\geqslant 0}$. Or $\psi^{-1}(y_n)=\bigcup_k x_k$ où $x_k\in E$ pour tout k donc

$$\mathbf{P}\left[X_{n+1} \in \psi^{-1}(y_{n+1}) \mid X_n \in \psi^{-1}(y_n)\right] = \sum_{x, \psi(x) = y_n} P(x, \psi^{-1}(y_{n+1})) \mathbf{P}\left[X_n = x \mid X_n \in \psi^{-1}(y_n)\right],$$

et d'après la propriété (*) satisfaite par P, $\mathbf{P}[Y_{n+1} = y_{n+1}]Y_n = y_n, \dots, Y_0 = y_0 = P(x_0, \psi^{-1}(y_{n+1}))$ où $x_0 \in \psi^{-1}(y_n)$. La suite $(Y_n)_{n \geqslant 0}$ est donc bien une ν -Q chaîne de Markov avec $\nu = \mu \circ \psi^{-1}$.

3. Soit $\tilde{\pi} = \pi \circ \psi^{-1}$ alors $\tilde{\pi}(y) = \pi(\psi^{-1}(y)) = \sum_{x,\psi(x)=y} \pi(x)$. Il faut montrer $\tilde{\pi} = \tilde{\pi}Q$ i.e.

$$\tilde{\pi}(y_2) = \sum_{y_2 \in F} \tilde{\pi}(y_1) Q(y_1, y_2).$$

Or
$$\tilde{\pi}(y_1)Q(y_1, y_2) = \sum_{x_1, \psi(x_1) = y_1} \sum_{x_2, \psi(x_2) = y_2} \pi(x_1)P(x_1, x_2)$$
. On conclut facilement.

Exercice 5:

Retour à l'exercice 6 de la feuille 5. On considère d balles (d>1) numérotées de 1 à d et réparties dans deux urnes A et B. L'état initial des urnes est de X_0 balles dans l'urne A et donc de $d-X_0$ balles dans l'urne B. Un changement d'état est modélisé de la façon suivante : « on tire un numéro de balle selon la loi uniforme sur $\{1,2,\ldots,d\}$ et à un tirage i on déplace la balle numéro i d'une urne à l'autre. »

Le nombre de balles dans l'urne A après n changement d'états est noté X_n et la chaîne de Markov $(X_n)_{n\geq 0}$ est appelée chaîne d'Ehrenfest.

- 1. Rappeler la matrice de transition P de la chaîne $(X_n)_{n\geq 0}$.
- 2. En résolvant $\pi P = \pi$ déterminer la probabilité stationnaire π .
- 3. Exprimer en fonction de π , $\lim_n P^n(x,y)$ pour tout couple d'états (x,y).
- 4. On modifie maintenant le changement d'état de la chaîne : « on tire un numéro de balle selon la loi uniforme sur $\{1, 2, \dots, d\}$ et à un tirage i on déplace la balle numéro i d'une urne à l'autre **avec probabilité** $\frac{1}{2}$ ».

Refaire l'exercice pour cette chaîne d'Ehrensfest modifiée.

Corrigé:

- 1. On a $P(x, x + 1) = \frac{d-x}{d}$ si $x \le d-1$ et $P(x, x 1) = \frac{x}{d}$ si $x \ge 1$.
- 2. On cherche une mesure stationnaire $\pi = (\pi(0), \dots, \pi(d))$ qui doit vérifier $\pi P = \pi$ i.e. pour tout 0 < k < d,

$$\pi(k) = \pi(k-1)P(k-1,k) + \pi(k+1)P(k+1,k),$$

 $\pi(0) = \frac{\pi(1)}{d}$, et $\pi(d) = \frac{\pi(d-1)}{d}$. On résoud explicitement, itérativement, $\pi(1) = d\pi(0)$, $\pi(2) = \frac{d(d-1)}{2}\pi(0)$, ..., $\pi(k) = C_d^k\pi(0)$. On a $\sum_{k=0}^d \pi(k) = \pi(0) \sum_{k=0}^d C_d^k = \pi(0)2^d < +\infty$ donc la mesure stationnaire est la probabilité (renormalisée) $\pi(k) = \frac{C_d^k}{2^d}$.

3. La chaîne est irréductible récurrente positive. Il est clair que $P^n(x,y)=0$ si |y-x| est impair et $P^{2n+1}(x,y)$ si |y-x| est pair. La chaîne est dite de période 2 et on a $\lim P^{2n}(x,y)=2\pi(y)$ si |y-x| est pair et $\lim P^{2n+1}(x,y)=2\pi(y)$ si |y-x| est impair.