Algèbre linéaire

Table des matières

I	Systèmes d'équations linéaires	2
1	Résolution 1.1 Équivalence de systèmes	
II	Chapitre 2 : Espaces vectoriels	3
2	Notion d'espace vectoriel	3
	2.1 Définitions	3
	2.2 Sous-espace vectorel	5
	2.3 Sous espace engendré	
	2.4 Intersections	6
	2.5 Somme de sous espaces vefctoriels	7
3	Familles libres, génératrices et bases	7
	3.1 Familles libres, génératrices	7

Première partie

Systèmes d'équations linéaires

Soit K, un corps.

Définition 1. Un système d'équations linéaires à n inconnues et p équations est un système d'équations de la forme :

(S)
$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1 \\ \dots \\ a_{n,1}x_{n,1} + \dots + a_{n,n}x_{n,n} = b_n \end{cases}$$

avec avec $a_{i,j}$ et b_i des éléments de \mathbb{K} et x_i sont les inconnues.

Définition 2. Une solution est le n-uplet $(x_1, ..., x_n)$ tel que x... sont solutions de toutes les équations.

Définition 3. Les $b_1,...,b_p$ sont appelés seconds membres.

Remarque 1. à priori, $n \neq p$

1 Résolution

1.1 Équivalence de systèmes

Pour résoudre, on se ramène à un système équivalent plus simple :

$$(S) \Leftrightarrow (S')$$

 $(S)\Leftrightarrow (S')$ signifie que les deux systèmes ont les mêmes solutions.

1.2 Méthode du pivot de Gauss

On ne change pas les solutions en faisant une des trois opérations suivantes :

- changer l'ordre des équations
- multiplier une équation par un élément $\lambda \in \mathbb{K} \setminus \{0\}$
- Ajouter à une équation un multiple d'une autre

ou toute opération qui peut se décomposer en une série de telles opérations Méthode du pivot de Gauss :

— Si
$$a_{1,1} \neq 0$$

Notation. $a_{1,1}$ est alors appelé le pivot pour tout i strictement supérieur à 1, on remplace la ligne L_i par $L_i - \frac{a_{i,1}}{a_{1,1}}$ À la fin, on obtient un système dit échelonné, c'est-à-dire de la forme :

$$\left\{ a'_{1,j_1}x_{j_1}+...+a'_{1,n}x_n=b'1\right.$$

Deuxième partie

Chapitre 2: Espaces vectoriels

Soit \mathbb{K} , un corps (\mathbb{R} , \mathbb{C} , ou autre)

2 Notion d'espace vectoriel

2.1 Définitions

Définition 4. vague $Un \mathbb{K}$ -espace vectoriel est un ensemble d'éléments appelés vecteurs tels qu'on puisse les additionner entre eux et les multiplier par des scalaires, c'est-à-dire des éléments de \mathbb{K} avec des relations naturelles de compatibilité

Définition 5. $Un \mathbb{K}$ -espace vectoriel est un ensemble E muni de deux lois :

— une loi de composition interne :

$$+: E \times E \rightarrow E$$

 $(u, v) \mapsto u + v$

— une loi de composition externe :

$$: \mathbb{K} \times E \to E$$
$$(\lambda, u) \mapsto \lambda \cdot v$$

Ces lois vérifient:

- $\forall u, v, w \in E$, (u + v) + w = u + (v + w)la loi + est donc associative
- $\forall u, v \in E, u + v = v + u$ la loi + est donc commutative
- $\exists 0_E \in E$, $\forall u \in E$, $u + 0_E = 0_E + u = u$ la loi + admet un élément neutre
- $\forall u \in E, \exists v \in E, u + v = v + u = 0_E$ chaque élément de E admet, par +, un inverse ou opposé
- *la loi* · *est associative* — $\forall \lambda, \mu \in \mathbb{K}, \ \forall u \in E, \ (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$
- la loi · est distributive à gauche — $\forall \lambda \in \mathbb{K}, \ \forall u, v \in E, \ (u+v) \cdot \lambda = \lambda \cdot u + \lambda \cdot v$ la loi · est distributive à droite
- ∀ $u \in E$, $1 \cdot u = u$ la loi · admet un élément neutre

Remarque 2. Dans le troisième axiome, l'élément neutre est unique. Dans le quatrième axiome, le vecteur v est en fait unique, on le note – u. **Proposition 1.** *On a également,* $\forall u \in E$, $\forall \lambda \in \mathbb{K}$:

1.
$$\lambda \cdot 0_E = 0_E$$

$$2. \ 0_{\mathbb{K}} \cdot u = 0_E$$

3.
$$\lambda \cdot u = 0_E \Rightarrow \lambda = 0_{\mathbb{K}} \text{ ou } u = 0_E$$

4.
$$(-\lambda) \cdot u = \lambda \cdot (-u) = -(\lambda \cdot u)$$

Démonstration. 1.

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E)$$
$$= \lambda \cdot 0_E + \lambda \cdot 0_E$$
$$= \lambda \cdot 0_E + 0_E$$

$$\lambda \cdot 0_E = O_E$$

2.

$$0_{\mathbb{K}} \cdot u = (0_{\mathbb{K}} + 0_{\mathbb{K}}) \cdot u$$
$$= 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}} \cdot u$$
$$= 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}}$$

$$0_{\mathbb{K}} \cdot u = O_{\mathbb{K}}$$

3. Si $\lambda = 0_{\mathbb{K}}$, cf. 2 Si $\lambda \neq 0$, alors $\lambda^{-1} \in \mathbb{K}$,

$$0 = \lambda^{-1} \cdot 0 = \lambda^{-1} (\lambda \cdot u) = (\lambda^{-1} \cdot \lambda) \cdot u = 1 \cdot u = u$$

Notation. *On note souvent :*

-
$$0_E = 0$$
 et $0_K = 0$
- $u - v = u + (-v)$

Lemme 1. $\forall u, v, w \in E, u + w = v + w \Rightarrow u = v$

Démonstration.

$$v = (u + w) - w$$
$$= u + (w - w)$$
$$= u + 0_E$$
$$= u$$

donc v = u

Remarque 3. — Pour $\lambda \in \mathbb{K}$ et $u \in E$ $u \cdot \lambda$ ne veut rien dire.

— Pour $u, v \in E$ $u \cdot v$ ne veut rien dire

Exemple. 1/Pour les lois de compositions internes et externes usuelles,

- K est un K-espace vectoriel
- $-\mathbb{K}^n$ est un \mathbb{K} -espace vectoriel
- plus généralement, si E_1 et E_2 sont des $E_1 \times E_2$ est un \mathbb{K} -espace vectoriel 2/ Soit E, un \mathbb{K} -espace vectoriel et A, un ensemble qualconque,

— $\mathcal{F}(A, E)$, l'ensemble des applications de A dans E, est un \mathbb{K} -espace vectoriel

$$\forall f_1, f_2 \in \mathscr{F}(A, E), \ \forall \lambda \in \mathbb{K},$$

$$f_1 + f_2 : A \to E$$

$$a \mapsto f_1(a) + f_2(a)$$

$$\lambda \cdot f_1 : A \to E$$

$$a \mapsto \lambda \cdot f_1(a)$$

- $Si \mathbb{K} = \mathbb{R}$ et $A = I \subset \mathbb{R}$, un intervalle, on peut avoir $\mathcal{F}(I, \mathbb{R})$
- $Si \mathbb{K} = \mathbb{R}$ et $A = \mathbb{N}$, on a $\mathscr{F}(\mathbb{N}, \mathbb{R})$, l'ensemble des suites numériques

 $3/\mathbb{K}[X]$, l'ensemble des polynômes

 $4/M_{n,p}(\mathbb{K})$, l'ensemble des matrices à coefficient dans \mathbb{K} , à n lignes et p colonnes.

Remarque 4. \mathbb{R}^2 , munit de la loi + usuelle et $\lambda \cdot (x_1, x_2) = (\lambda \cdot x_1, 0)$ n'est pas un \mathbb{K} -espace vectoriel, pourquoi?

2.2 Sous-espace vectorel

Définition 6. *Soit E, un* \mathbb{K} *-espace vectoriel, et F* \subset *E.*

F est un sous espace vectoriel de E s'il s'agit d'un \mathbb{K} -espace vectoriel pour les lois + et \cdot de E.

- -- $\forall u, v \in F, u + v \in F$
- $\forall \lambda \in \mathbb{K}, \forall u \in F, \lambda \cdot u \in F$
- -+ et \cdot vérifient les propriétés des lois de composition interne et externe des espaces vectoriels

Propriété 1. F est un sous-espace vectoriel de E si :

- F ≠ Ø
- -- $\forall u, v \in F, u + v \in F$
- $\forall u \in F, \forall \lambda \in \mathbb{K}, \lambda \cdot u \in F$

Remarque 5. — On a vu que $0_E \in F$

 Les deux derniers points de la définition de sous-espace vectoriel sont équivalents à :

$$\forall u, v \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda u + \mu v \in F$$

ou encore à :

$$\forall u, v \in F, \forall \lambda \in \mathbb{K}, \lambda u + v \in F$$

Remarque 6. Dans la plupart des cas, pour montrer qu'un ensemble (avec les lois +, ·) est un espace vectoriel, on montre qu'il s'agit d'un sous-espace vectoriel d'un \mathbb{K} -espace vectoriel connu.

Exemple. $-E = \mathbb{K}^n \ et \ a_1, ..., a_n \in \mathbb{K}$

- $F = \{(x_1, ..., x_n) \mid a_1x_1 + ... + a_nx_n = 0\}$ est un sous-espace vectoriel de E.
- K[X], les suites de K nulles à partir d'un certain rang, est un sous-espace vectoriel de l'ensemble des suites de K

2.3 Sous espace engendré

Définition 7. Une combinaison linéaire de $v_1,...,v_p$ est un élément de la forme $\sum_{i=1}^p \lambda_i v_i = \lambda_1 v_1 + ... + \lambda_p v_p$ avec $\lambda_1,...,\lambda_p \in \mathbb{K}$.

Remarque 7. Une combinaison linéaire de $(v_i)_{i\in I}$ est une combinaison linéaire au sens précédent d'une sous famille finie.

Exemple. Dans $\mathbb{K}[X] = \{1, X, X^2, ..., X^n, ...\}$, une combinaison linaire est un polynôme.

Définition 8. Soient $v_1, ..., v_p \in E$

$$vect(v_1,...,v_p) = \{combinaisons\ linéaires\ de\ v_1,...,v_p\} = \{\sum_{i=1}^p \lambda_i \, v_i \ / \ \lambda_1,...,\lambda_p \in \mathbb{K}\}$$

Proposition 2. $vect(v_1,...,v_p)$ est un sous espace vectoriel de E.

Exemple. Cas particulier:

p = 1, vect(v) est alors une droite vectorielle. p = 2,

2.4 Intersections

Proposition 3. Soient F_1 , F_2 des sous-espaces vectoriels de E, alors, $F_1 \cap F_2$ est un sous espace vectoriel:

$$F_1 \cap F_2 = \{x \in E \mid x \in F_1 \ et \ x \in F_2\}$$

Démonstration. — $0 ∈ F_1$ et $0 ∈ F_2$, donc $0 ∈ F_1 ∩ F_2$

- l'intersection est donc non vide
- Soient $u, v ∈ F_1 ∩ F_2$ et $\lambda, \mu ∈ \mathbb{K}$

On montre que $\lambda u + \mu v \in F_1 \cap F_2$

 $\lambda u + \mu v \in F_1$ car F_1 est un sous espace vectoriel

 $\lambda u + \mu v \in F_2$ car F_2 est un sous espace vectoriel

application:

L'ensemble des solutions d'un système d'équations linéaires homogène (sans second membre) à n inconnues (et p équations) est un sous espace vectoriel de \mathbb{K}^n .

 $\it D\'{e}monstration$. Intersection des sous espaces vectoriels est solution de chaque équations

Remarque 8. Attention,

- En général, l'union de sous espaces vectoriels n'est pas un sous espaces vectoriels (sauf cas triviaux)
- Le complémentaire d'un sous-espace vectoriel n'est jamais un sous-espace vectoriel (étant privé du 0)

2.5 Somme de sous espaces vefctoriels

Définition 9. Soient F_1 , F_2 , des sous espaces vectoriels, on définit :

$$F_1 + F_2 = \{f_1 + f_2 / f_1 \in F_1, f_2 \in F_2\}$$

Remarque 9. $F_1 + F_2$ est un sous-espace vectoriel de E

Exemple.

Proposition 4. Si $F_1 = vect(v_1, ..., v_{p_1})$ et $F_2 = vect(w_1, ..., w_{p_2})$, alors,

$$F_1 + F_2 = vect(v_1, ..., v_{p_1}, w_1, ..., w_{p_2})$$

Démonstration. Soit $u \in F_1 + F_2$

$$\exists f_1 \in F_1, \exists f_2 \in F_2, / u = f_1 + f_2$$

 $\exists f_1 \in F_1, \exists f_2 \in F_2, / u = f_1 + f_2$

Remarque 10. $F_1 - F_2$ n'est pas intéressant : $\{f_1 + (-f_2) \mid f_1 \in F_1, f_2 \in F_2\} = F_1 + F_2$

Remarque 11. $F_1 + F_2 \neq F_1 \cup F_2$

3 Familles libres, génératrices et bases

3.1 Familles libres, génératrices

Définition 10. On dit que $(v_1, ..., v_p)$ est une famille génératrice de E si $vect(v_1, ..., v_p) = E$

Vocabulaire. *E est dit finiement engendré s'il existe une famille génératrice finie.*

Remarque 12. intuitivement, $(v_1, ..., v_p)$ est génératrice si elle "voit" tous les éléments de E.

Remarque 13. A priori, il peut y avoir plusieurs manières d'écrire un élément de E

Exemple. Pour
$$E = \mathbb{R}^2$$
, $e_1 = (1,0)$, $e_2 = (0,1)$, $e_3 = (1,1)$, on $a e_3 = e_1 + e_2$ la famille $\{e_1, e_2, e_3\}$ est génératrice.

calcul pratique:

trouver une famille génératrice d'un sous espace vectoriel défini par des équations.

Exemple. $(x, y, z) \in \mathbb{R}^3 / x + y + z = 0$ *On résoud le système*