Geometric Interpretation of Tate's Algorithm

Here f is a Weierstrass model, ψ is the associated weighted linear series viewed as a rational map to $\overline{\mathcal{M}}_{1,1}$, φ is a twisted morphism from the universal tuning stack $\mathcal C$ which induces a stable stack-like model $h:\mathcal Y\to\mathcal C$ where $g:Y\to\mathcal C$ is the twisted model via coarse moduli maps, $\hat f$ is a resolution of Y, and f' is the relative minimal model obtained by contracting relative (-1)-curves.

Suppose that normalized base multiplicity m = 3. This occurs if and only if $(\nu(a_4), \nu(a_6)) = (1, \ge 2)$. Then $r = 12/\gcd(3, 12) = 4$ and $a = 3/\gcd(3,12) = 1$. Thus the stabilizer of the twisted curve acts on the central fiber of the twisted model via the character $\mu_4 \to \mu_4$, $\zeta_4 \mapsto \zeta_4^{-1}$. In particular, the central fiber E of Y has j=1728. The μ_4 action on E has two fixed points, and there is an orbit of size two with stabilizer $\mu_2 \subset \mu_4$. Let E_0 be the image of Ein the twisted model Y. As E appears with multiplicity 4, Y has $\frac{1}{4}(-1,-1)$ quotient singularities at the images of the the fixed points and a $\frac{1}{2}(-1,-1)$ singularity at the image of the orbit of size two. Each of these singularities is resolved by a single blowup to obtain \hat{X} with central fiber $4\tilde{E}_0 + E_1 + E_2 + E_3$ where E_i are the exceptional divisors of the resolution for i = 1, 2, 3 and $E_1^2 = E_2^2 = -4$ with $E_3^2 = -2$. Then \tilde{E}_0 is a (-1)-curve so it needs to be contracted. After this contraction E_2 becomes a (-1) curve and must also be contracted. Since E_i for i = 1, 2, 3 are incident and pairwise transverse after blowing down \tilde{E}_0 , then the images of E_1 and E_2 must be tangent after blowing down E_3 . Moreover, they are now (-2)-curves and the relatively minimal model for type III.

Tate's Algorithm via Twisted Morphisms

Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

If $\operatorname{char}(K) \neq 2,3$. Then the twisting condition (r,a) and the order of vanishing of j at $j=\infty$ determine the Kodaira fiber type, and (r,a) is in turn determined by $m=\min\{3\nu(a_4),2\nu(a_6)\}$.

$\gamma:(u(a_4),\ u(a_6))$	Reduction type with $j \in \overline{M}_{1,1}$	Γ : (<i>r</i> , <i>a</i>)
$(\geq 1,1)$	II with $j = 0$	(6,1)
$(1, \geq 2)$	III with $j = 1728$	(4,1)
(≥ 2, 2)	IV with $j = 0$	(3, 1)
(2,3)	$I_{k>0}^*$ with $j=\infty$	(2,1)
	I_0^* with $j \neq 0, 1728$	
$(\geq 3, 3)$	I_0^* with $j=0$	(2,1)
$(2, \geq 4)$	I_0^* with $j = 1728$	(2,1)
(≥ 3, 4)	IV^* with $j=0$	(3, 2)
$(3,\geq 5)$	III^* with $j = 1728$	(4, 3)
(≥ 4, 5)	II^* with $j=0$	(6,5)

Geometric Meaning of Height Moduli Framework

- 1. So one can run the resolution / minimal model. As these are algebraic surfaces it can be done over char(K) = p > 0
- 2. A twisted morphism $\varphi: \mathcal{C} \to \overline{\mathcal{M}}_{1,1}$ with its twisting data Γ from the universal tuning stack \mathcal{C} induces a stable stack-like model $h: \mathcal{Y} \to \mathcal{C}$ as a unique pullback of the universal family $p: \overline{\mathcal{E}} \to \overline{\mathcal{M}}_{1,1}$. All the ensuing birational geometry is natural.
- 3. True purpose of a **representable classifying morphism** is in the <u>universal principle</u> that φ intrinsically contains all the algebro-geometric data necessary to uniquely determine a fibration with singular fibers. This is the very essence of the inner arithmetic of rational points on moduli stacks over K.

\mathcal{A} lgebraic \mathcal{G} eometry \cap \mathcal{T} opology \iff \mathbb{A} rithmetic

- 1. Consider the fact that $\overline{\mathcal{M}}_{1,1}$ could have been any other algebraic stack \mathcal{X} (such as $\overline{\mathcal{M}}_g$ or $\overline{\mathcal{A}}_g$) which is the representing object for certain moduli functor as the fine moduli stack together with the universal family $p:\overline{\mathcal{E}}\to\mathcal{X}$.
- 2. Representable classifying morphisms as twisted morphisms $\varphi: \mathcal{C} \to \mathcal{X}$ uniquely determines certain families of varieties (of algebraic curves or abelian varieties) with non-abelian stabilizers $(g \geq 2)$. And they naturally have corresponding "Tate's algorithm", counting statements and so on.
- 3. Geometrizing $\mathcal{X}(K)$ leads to Height moduli space $\mathcal{M}_n(\mathcal{X}, \mathcal{L})$ and once we have a **space** (AG), we compute its **invariants** (AT) naturally having various kinds of **consequences** (NT).

Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

$$\begin{split} \left\{ \mathcal{W}_{n=1}^{\min}(\mathcal{P}(\vec{\lambda})) \right\} &= \{ \mathbb{P}^{N} \} (\mathbb{L}^{|\vec{\lambda}|} - \mathbb{L}) + \mathbb{L}^{N+1} \{ \mathbb{P}^{|\vec{\lambda}|-N-2} \} \\ \left\{ \mathcal{W}_{n \geq 2}^{\min}(\mathcal{P}(\vec{\lambda})) \right\} &= \mathbb{L}^{(n-2)|\vec{\lambda}|+N+2} (\mathbb{L}^{|\vec{\lambda}|-1} - 1) \{ \mathbb{P}^{|\vec{\lambda}|-1} \} \end{split}$$

Take $|\vec{\lambda}|=10$ and N=1 as $\overline{\mathcal{M}}_{1,1}\cong \mathcal{P}(4,6)$ over $\mathbb{Z}[1/6]$.

1. When n = 1, X is a **Rational elliptic surface**.

$$\left\{\mathcal{W}_{1}^{\min}\right\} \!\!=\!\! \mathbb{L}^{11} \!+\! \mathbb{L}^{10} \!+\! \mathbb{L}^{9} \!+\! \mathbb{L}^{8} \!+\! \mathbb{L}^{7} \!+\! \mathbb{L}^{6} \!+\! \mathbb{L}^{5} \!+\! \mathbb{L}^{4} \!+\! \mathbb{L}^{3} \!-\! \mathbb{L}$$

2. When n = 2, X is algebraic K3 surface with elliptic fibration (i.e., **Projective elliptic K3 surface with moduli dim. 18**).

$$\left\{\mathcal{W}_{2}^{\min}\right\} = \mathbb{L}^{21} + \mathbb{L}^{20} + \mathbb{L}^{19} + \mathbb{L}^{18} + \mathbb{L}^{17} + \mathbb{L}^{16} + \mathbb{L}^{15} + \mathbb{L}^{14} + \mathbb{L}^{13} - \mathbb{L}^{11} - \mathbb{L}^{10} - \mathbb{L}^{9} - \mathbb{L}^{8} - \mathbb{L}^{7} - \mathbb{L}^{6} - \mathbb{L}^{5} - \mathbb{L}^{4} - \mathbb{L}^{3} + \mathbb{L}^{10} + \mathbb{L}$$

$$= \mathbb{L}(\mathbb{L}^2 - 1) \Big(\mathbb{L}^{18} + \mathbb{L}^{17} + 2\mathbb{L}^{16} + 2\mathbb{L}^{15} + 3\mathbb{L}^{14} + 3\mathbb{L}^{13} + 4\mathbb{L}^{12} + 4\mathbb{L}^{11} + 5\mathbb{L}^{10} + 4\mathbb{L}^9 + 4\mathbb{L}^8 + 3\mathbb{L}^7 + 3\mathbb{L}^6 + 2\mathbb{L}^5 + 2\mathbb{L}^4 + \mathbb{L}^3 + \mathbb{L}^2 \Big)$$