Proximity vs. Diversity

Team: SDMay21-31

Advisor/Client: Goce Trajcevski

Gabe Huinker, Jacob Spooner, Benjamin Huinker, Cris Marquez, Brad Gannon, Koushhik Kumar, Thomas Beckler

Project Vision

- Problem
 - Large Multivariate/Heterogeneous Datasets
 - Clustering and Visualizing
 - Weighted Proximity and Diversity
- Solution
 - Web Application
 - Customizable algorithms
 - Customizable distance metrics
- End Users
 - Researchers
 - Public

Technical Challenges

Large datasets on small machine

Dynamic data and simulations

Idea of Proximity and Diversity

Proximity vs. Diversity

- Time instances from a time series
 - Time interpolation
- Heterogeneous data and Relativization
 - Min and Max across their attributes in a simulation
- Proximity Weighted Euclidean Distance
 - $D(br,bb) = \sqrt{(W1 * (M1b/M2b-M1r/M2r)^2 + W2 * (L1b/L2b-L1r/L2r)^2)}$
- Diversity Threshold base

Functional Requirements

Secure data storage

Dynamic Datasets

Weighted Proximity and Diversity

Non-Functional Requirements

Publicly accessible

Intuitive Interface: Controls & Visuals

Fast Render Times

Constraints

No Funding: ISU-Provided VM

Large Datasets

2D and 3D graphs only

Standards

- IEEE 802.11-2020
- IEEE 802.3-2018
 - Web application uses wireless/ethernet network
- P2989
 - Login authentication required to access database
- IEEE 23026-2015
 - Maintenance required for the website

Risks and Risk Management

- Security Risks
 - Production environment breaches
 - Queries and algorithms
- Performance Risks
 - Queries and algorithms
- Risk Mitigation Strategies
 - Use features of Django
 - Create tests for runtimes

Task Decomposition

- Database Design
- Local and Production environment setup
- UI Implementation
- UI Functionality
- Backend Endpoints
- Algorithms
- Algorithm Query
- Data visualization
- Help Documentation

High-level System Design

- Web Application
- Client-Server Model
- HTTP Communication

Primary Frameworks

- Django (Backend)
- PostgreSQL (Database)
- nginx + gunicorn (Web server)
- Memcached (Caching)
- RabbitMQ + Celery (Async Work)
- Matplotlib (Data Visualization)
- Tailwind CSS (CSS Framework)
- Pyclustering, NumPy, Pandas (Data analysis)

- Proximity Attribute Selection
- Diversity Threshold Selection
- Algorithm Selection
- Data visualization
- Data table
- Admin interface

Project Plan - Progress Metrics/Tracking

- Progress is largely monitored through task completion
- Track progress through Github, Slack, and Google Drive
 - Codebase: Github
 - O Tasks: Kanban Github Project
 - Communication: Slack
 - Documentation: Google Drive

Project Plan - Milestones

- 1. Architecture Design (Oct. 25)
- 2. Finalize Design Document V1 (Nov. 15)
- 3. Implement UI (Feb. 23)
- 4. Finalize Database Design (Mar. 25)
- 5. Finalize Algorithm Solutions (Apr. 4)
- 6. Complete Testing (Apr. 20)
- 7. Final Software Version (Apr. 24)
- 8. Finalize Design Document (Apr. 25)

Unit Testing

- Algorithms Create Clustering Data
 - (Weighted) Euclidean algorithm
 - Relativised node attributes
- Business Logic Validate and Sanitize
 - Validate and ensure correct request
- Database Queries TimeFrame Query
 - One node per simulation
 - Correct index corresponding to time_percentage

Interface and Acceptance Testing

- 9 Pages
- Distance Functions
- User Interface
- Visualizations
- Assigning Weights and Thresholds
- Fast Response Times

Conclusion

• What we Accomplished:

- Proximity vs. Diversity with K-means
- Dynamic Datasets
- Secure data storage and fast response times

• Where to go from here:

- Higher dimensional graphs
- Multiple clustering algorithms
- Accommodate larger datasets and user loads

Conclusion - Team Member Contributions

Gabe Huinker:

- Server and System Architecture
- Algorithm Design and Implementation
- Database Design and Implementation
- Dataset Management

Jacob Spooner:

- Backend Setup and Maintenance
- Communication with Front End
- Data Validation and Processing
- Operation Manual

Brad Gannon:

- Algorithm Design and Implementation
- Algorithm Research
- Data Visualization Experimentation

Koushhik Kumar:

- Frontend Design and Implementation
- Designed Improved (Current) UI
- Coded & Styled Index & Datasets pages

Thomas Beckler:

- Designed Initial Index Page
- Frontend Developer
- User Manual
- Basic Poster Outline

Cristina Marquez:

- Initial Index Page Design and Implementation
- Frontend Developer
- Styled User Manual

Ben Huinker:

- Modified seed code to seed other databases
- Tested seeding and frontend
- Created test databases for project