

TDA9981B

HDMI transmitter up to 150 MHz pixel rate with 3 \times 8-bit video inputs and 4 \times I²S-bus with S/PDIF

Rev. 01 — 4 July 2008

Product data sheet

1. General description

The TDA9981B is an HDMI transmitter (which also supports DVI) that enables a 3×8 -bit RGB or YCbCr video stream (with a pixel rate up to 150 MHz for the TDA9981BHL/15 version), up to 4 l²S-bus audio streams (with an audio sampling rate up to 192 kHz) and the additional information required by all the HDMI 1.2a standards.

In order to be compatible with most applications, the TDA9981B integrates a full programmable input formatter and color space conversion block. The video input formats accepted are YCbCr 4 : 4 : 4 (up to 3×8 -bit), YCbCr 4 : 2 : 2 semi-planar (up to 2×12 -bit), YCbCr 4 : 2 : 2 compliant with ITU656 and ITU656-like (up to 1×12 -bit).

For ITU656-like formats, double edges are supported so that data can be sampled on rising and falling edges.

The device can be controlled via an I²C-bus interface.

2. Features

- 3 × 8-bit video data input bus, CMOS and LV-TTL compatible
- Horizontal synchronization, vertical synchronization and Data Enable (DE) inputs or VREF, HREF and FREF could be used for input data synchronization
- Pixel rate clock input can be made active on one or both edges (selectable by I²C-bus)
- The TDA9981B has 4 I²S-bus audio input channels and 1 S/PDIF channel; audio sampling rate up to 192 kHz
- 250 MHz to 1.50 GHz HDMI transmitter operation
- Programmable input formatter and upsampler/interpolator allows input of any of the 4:4:4,4:2:2 semi-planar, 4:2:2 ITU656 and ITU656-like formats
- Programmable color space converter:
 - RGB to YCbCr
 - YCbCr to RGB
- Controllable via I²C-bus
- Low power dissipation
- 1.8 V and 3.3 V power supplies
- Power-down mode
- Hard reset

150 MHz pixel rate HDMI transmitter

3. Applications

- DVD players and recorders
- Set-Top Box (STB)
- AV receivers and amplifiers (repeater)
- Camcorders
- Digital still cameras
- Media players
- PVRs
- Media centers PCs, graphics add-in boards, notebook PCs
- Switches

4. Quick reference data

Table 1. Quick reference data

$$\begin{split} V_{DDA(FRO_3V3)} &= 3.0 \text{ V to } 3.6 \text{ V; } V_{DDA(PLL_3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDH(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDC(1V8)} = 1.65 \text{ V to } 1.95 \text{ V; } V_{PP} = 0 \text{ V; } T_{amb} = 0 \text{ °C to } 85 \text{ °C.} \end{split}$$
 Typical values are measured at $V_{DDA(FRO_3V3)} = V_{DDA(PLL_3V3)} = V_{DDH(3V3)} = V_{DDD(3V3)} = 3.3 \text{ V; } V_{DDC(1V8)} = 1.8 \text{ V; } V_{PP} = 0 \text{ V and } T_{amb} = 25 \text{ °C; } unless \text{ otherwise specified.} \end{split}$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TDA9981BHL/	8 and TDA9981BHL/15						
V _{DDA(FRO_3V3)}	free running oscillator 3.3 V analog supply voltage			3.0	3.3	3.6	V
V _{DDA(PLL_3V3)}	PLL 3.3 V analog supply voltage			3.0	3.3	3.6	V
$V_{DDD(3V3)}$	digital supply voltage (3.3 V)			3.0	3.3	3.6	V
$V_{\text{DDH(3V3)}}$	HDMI supply voltage (3.3 V)			3.0	3.3	3.6	V
$V_{DDC(1V8)}$	core supply voltage (1.8 V)			1.65	1.8	1.95	V
T _{amb}	ambient temperature			0	-	85	°C
TDA9981BHL/	8; up to 81 MHz						
$f_{clk(max)}$	maximum clock frequency		<u>[1]</u>	81	-	-	MHz
P _{cons}	power consumption		<u>[1]</u>	-	235	288	mW
P _{tot}	total power dissipation		<u>[1]</u>	-	369	438	mW
P_{pd}	power dissipation in Power-down mode			-	14	19	mW
TDA9981BHL/	15; up to 150 MHz						
f _{clk(max)}	maximum clock frequency		[2]	150	-	-	MHz
P _{cons}	power consumption		[2]	-	381.5	468	mW
P _{tot}	total power dissipation		[2]	-	515.5	618	mW
P _{pd}	power dissipation in Power-down mode			-	14	19	mW

^[1] Worst case: video input format: 720p at 60 Hz (RGB 4 : 4 : 4 embedded sync), video output format: 720p at 60 Hz (YCbCr 4 : 4 : 4).

TDA9981B_1 © NXP B.V. 2008. All rights reserved.

^[2] Video input format: 1080p (RGB 4 : 4 : 4 embedded sync, rising edge), video output format: 1080p (RGB 4 : 4 : 4).

150 MHz pixel rate HDMI transmitter

5. Ordering information

Table 2. Ordering information

Type number	Package								
	Name	Description	Version						
TDA9981BHL	LQFP80	plastic low profile quad flat package; 80 leads; body 12 × 12 × 1.4 mm	SOT315-1						

5.1 Ordering options

Table 3. Survey of type numbers

Extended type number	Sampling frequency (MHz)	Application
TDA9981BHL/8/C1xx	81	customer specific version
TDA9981BHL/15/C1xx	150	customer specific version

150 MHz pixel rate HDMI transmitter

(1) Block can be bypassed.

Block diagram

Product data sheet

Rev.

. 9

4 July 2008

150 MHz pixel rate HDMI transmitter

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 4. Pin description

Symbol	Pin	Type ^[1]	Description
HSYNC/HREF	1	1	horizontal synchronization or reference input
VSYNC/VREF	2	1	vertical synchronization or reference input
V_{PP}	3	Р	programming voltage if OTP memory is available (must always be connected to the ground of the digital core in normal operation)
AP7	4	1	audio port 7 input; auxiliary (AUX)
AP6	5	I	audio port 6 input; S/PDIF stream
AP5	6	I	audio port 5 input; optional master clock MCLK for S/PDIF

150 MHz pixel rate HDMI transmitter

 Table 4.
 Pin description ...continued

Symbol	Pin	Type[1]	Description
AP4	7	I	audio port 4 input; I ² S-bus port 3
AP3	8	I	audio port 3 input; I ² S-bus port 2
AP2	9	I	audio port 2 input; I ² S-bus port 1
AP1	10	I	audio port 1 input; I ² S-bus port 0
AP0	11	I	audio port 0 input; word select WS for I2S-bus
ACLK	12	I	audio clock input; clock SCK for I ² S-bus
V _{DDD(3V3)}	13	Р	supply voltage for input ports (3.3 V)
V _{SSD}	14	G	ground for input ports
V _{SSC}	15	G	ground for digital core
V _{DDC(1V8)}	16	Р	supply voltage for digital core (1.8 V)
INT	17	0	interrupt output (open drain); warns the external microprocessor that a special event has occurred; must be connected to a pull-up resistor; 5 V tolerant
HPD	18	I	hot plug detect input; 5 V tolerant
DDC_SDA	19	I/O	DDC-bus data input/output (open drain); must be connected to a pull-up resistor; 5 V tolerant
DDC_SCL	20	0	DDC-bus clock output (open drain); must be connected to a pull-up resistor; 5 V tolerant
TM	21	I	internal test mode input (must be connected to the ground of the digital core in normal operation)
V _{SSA(FRO_3V}	3) 22	G	analog ground for free running oscillator
V _{DDA(FRO_3V}	(3) 23	Р	analog supply voltage for free running oscillator (3.3 V)
EXT_SWING	G 24	I	external swing adjust input; a fixed resistor must be connected between this pin and pin $V_{DDH(3V3)}$ to set the HDMI output swing (see Section 8.14.1)
V _{SSH}	25	G	ground for HDMI transmitter
TXC-	26	0	negative clock channel for HDMI output
TXC+	27	0	positive clock channel for HDMI output
V _{DDH(3V3)}	28	Р	supply voltage for HDMI transmitter (3.3 V)
TX0-	29	0	negative data channel 0 for HDMI output
TX0+	30	0	positive data channel 0 for HDMI output
V_{SSH}	31	G	ground for HDMI transmitter
TX1-	32	0	negative data channel 1 for HDMI output
TX1+	33	0	positive data channel 1 for HDMI output
V _{DDH(3V3)}	34	Р	supply voltage for HDMI transmitter (3.3 V)
TX2-	35	0	negative data channel 2 for HDMI output
TX2+	36	0	positive data channel 2 for HDMI output
V_{SSH}	37	G	ground for HDMI transmitter
V _{DDA(PLL_3V3}	3) 38	Р	analog supply voltage for PLL (3.3 V)
V _{SSA(PLL_3V3}	39	G	analog ground reference for PLL
A1	40	I	I ² C-bus slave address input 1; bit 1
			12C hua alava addraga innut 0, hit 0
A0	41	I	I ² C-bus slave address input 0; bit 0

150 MHz pixel rate HDMI transmitter

 Table 4.
 Pin description ...continued

Symbol	Pin	Type[1]	Description
I2C_SCL	43	I	I ² C-bus clock input of device (open drain); must be connected to a pull-up resistor; 5 V tolerant
I2C_SDA	44	I/O	I ² C-bus data input/output of device (open drain); must be connected to a pull-up resistor; 5 V tolerant
V _{DDC(1V8)}	45	Р	supply voltage for digital core (1.8 V)
V _{SSA(PLL_1} \	_{/8)} 46	G	analog ground reference for PLL
V_{SSD}	47	G	ground for input ports
V _{DDD(3V3)}	48	Р	supply voltage for input ports (3.3 V)
VPC[7]	49	I	video port C input bit 7
VPC[6]	50	I	video port C input bit 6
VPC[5]	51	I	video port C input bit 5
VPC[4]	52	I	video port C input bit 4
VPC[3]	53	I	video port C input bit 3
VPC[2]	54	I	video port C input bit 2
VPC[1]	55	I	video port C input bit 1
VPC[0]	56	I	video port C input bit 0
VPB[7]	57	I	video port B input bit 7
VPB[6]	58	I	video port B input bit 6
V _{DDC(1V8)}	59	Р	supply voltage for digital core (1.8 V)
V_{SSC}	60	G	ground for digital core
VPB[5]	61	I	video port B input bit 5
VPB[4]	62	I	video port B input bit 4
VPB[3]	63	I	video port B input bit 3
VPB[2]	64	I	video port B input bit 2
VPB[1]	65	I	video port B input bit 1
VCLK	66	I	video pixel clock input
VPB[0]	67	I	video port B input bit 0
VPA[7]	68	I	video port A input bit 7
VPA[6]	69	I	video port A input bit 6
VPA[5]	70	ļ	video port A input bit 5
$V_{DDD(3V3)}$	71	Р	supply voltage for input ports (3.3 V)
V_{SSD}	72	G	ground for input ports
V_{SSC}	73	G	ground for digital core
V _{DDC(1V8)}	74	Р	supply voltage for digital core (1.8 V)
VPA[4]	75	I	video port A input bit 4
VPA[3]	76	l	video port A input bit 3
VPA[2]	77	I	video port A input bit 2
VPA[1]	78	I	video port A input bit 1
VPA[0]	79	I	video port A input bit 0
DE/FREF	80	l	video data enable input or field reference input

^[1] P = power supply; G = ground; I = input; O = output.

150 MHz pixel rate HDMI transmitter

8. Functional description

The TDA9981B is designed to convert digital data (video and audio) into an HDMI or a DVI stream. This HDMI stream can handle RGB, YCbCr 4: 4: 4 and YCbCr 4: 2: 2. The TDA9981B can accept at its inputs any of the following video modes:

- RGB
- YCbCr 4:4:4
- YCbCr 4 : 2 : 2 semi-planar
- YCbCr 4: 2: 2 ITU656 and ITU656-like

It can also handle audio. The TDA9981B can accept at its inputs any of the following audio buses:

- I²S-bus (4 lines): up to 8 audio channels
- S/PDIF (1 channel): L-PCM (IEC 60958) or compressed audio (IEC 61937)

8.1 System clock

The clock management is based on a set of two PLLs that generate the different clocks required inside the chip:

- PLL double edge can generate a clock at twice the VCLK input frequency to capture the data at the video input formatter.
- PLL serializer is a system clock generator, which enables the stream produced by the encoder to be transmitted on the HDMI data channel at ten times the sampling rate or more; see Section 8.14.2.

8.2 Video input processor

The TDA9981B has three video input ports VPA[7:0], VPB[7:0] and VPC[7:0]. The TDA9981B can reallocate and swap each of the 3 input channel ports by inverting the bus and swapping each port.

The TDA9981B can be set to latch data at either the rising or falling edge or both.

The video input formats accept (see Table 5):

- RGB
- YCbCr 4 : 4 : 4 (up to 3 × 8-bit)
- YCbCr 4: 2: 2 semi-planar (up to 2 × 12-bit)
- YCbCr 4:2:2 compliant with ITU656 and ITU656-like (up to 1 × 12-bit)

99 -	Table 5.										
981B_1	Color space	Format	Channels	Sync	Rising edge	Falling edge	Double edge[1]	Transmission input format	Max. pixel clock on pin VCLK (MHz)	Max. input format	Reference
	RGB	4:4:4	3×8 -bit	external	Χ				150		Table 6
				external		Χ			150		
				embedded	Χ				150		
				embedded		Χ			150		
	YCbCr	4:4:4	4 3×8 -bit	external	Χ				150		Table 7
				external		Χ			150	480p/576p 480p/576p	
				embedded	Χ				150		
				embedded		Χ			150		
	YCbCr	4:2:2	up to 1×12 -bit	external	Χ			ITU656-like	54.054	480p/576p	Table 8
			ITU656-like	external		Χ		ITU656-like	54.054	480p/576p	
				external			Χ	ITU656-like	27.027	480p/576p	Table 9
				embedded	Χ			ITU656-like	54.054	480p/576p	Table 10
				embedded		Χ		ITU656-like	54.054	480p/576p	
				embedded			Χ	ITU656-like	27.027	480p/576p	Table 11
			up to 2×12 -bit	external	Χ				148.5	1080p	Table 12
			semi-planar	external		Χ			148.5	1080p	
				embedded	Χ			SMPTE293M	148.5	1080p	Table 13

Χ

SMPTE293M 148.5

1080p

embedded

^[1] Double edge means both rising and falling edges.

150 MHz pixel rate HDMI transmitter

Table 6. RGB 4: 4: 4 mappings

RGB 4 : 4 : 4 (3×8 -bit) external synchronization single edge.

Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

Video port	A	Video port	В	Video port	C	Control		
Pin	RGB 4:4:4	Pin	RGB 4 : 4 : 4	Pin	RGB 4:4:4	Pin	RGB 4 : 4 : 4	
VPA[0]	B[0]	VPB[0]	G[0]	VPC[0]	R[0]	HSYNC/HREF	used	
VPA[1]	B[1]	VPB[1]	G[1]	VPC[1]	R[1]	VSYNC/VREF	used	
VPA[2]	B[2]	VPB[2]	G[2]	VPC[2]	R[2]	DE/FREF	used	
VPA[3]	B[3]	VPB[3]	G[3]	VPC[3]	R[3]			
VPA[4]	B[4]	VPB[4]	G[4]	VPC[4]	R[4]			
VPA[5]	B[5]	VPB[5]	G[5]	VPC[5]	R[5]			
VPA[6]	B[6]	VPB[6]	G[6]	VPC[6]	R[6]			
VPA[7]	B[7]	VPB[7]	G[7]	VPC[7]	R[7]			

150 MHz pixel rate HDMI transmitter

Table 7. YCbCr 4:4:4 mappings

YCbCr 4:4:4 (3×8-bit) external synchronization single edge.

Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

Video po	Video port A		ort B	Video po	ort C	Control		
Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	
VPA[0]	CB[0]	VPB[0]	Y[0]	VPC[0]	CR[0]	HSYNC/HREF	used	
VPA[1]	CB[1]	VPB[1]	Y[1]	VPC[1]	CR[1]	VSYNC/VREF	used	
VPA[2]	CB[2]	VPB[2]	Y[2]	VPC[2]	CR[2]	DE/FREF	used	
VPA[3]	CB[3]	VPB[3]	Y[3]	VPC[3]	CR[3]			
VPA[4]	CB[4]	VPB[4]	Y[4]	VPC[4]	CR[4]			
VPA[5]	CB[5]	VPB[5]	Y[5]	VPC[5]	CR[5]			
VPA[6]	CB[6]	VPB[6]	Y[6]	VPC[6]	CR[6]			
VPA[7]	CB[7]	VPB[7]	Y[7]	VPC[7]	CR[7]			

150 MHz pixel rate HDMI transmitter

Table 8. YCbCr 4:2:2 ITU656-like external synchronization single edge mappings

YCbCr: 2:2 ITU656-like external synchronization single edge.

Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video p	ort B		Control			
Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr 4 : 2 : 2 (ITU656-like)				Pin	YCbCr 4 : 2 : 2
VPA[0]	CB[0]	Y0[0]	CR[0]	Y1[0]	VPB[0]	CB[4]	Y0[4]	CR[4]	Y1[4]	HSYNC/HREF	used
VPA[1]	CB[1]	Y0[1]	CR[1]	Y1[1]	VPB[1]	CB[5]	Y0[5]	CR[5]	Y1[5]	VSYNC/VREF	used
VPA[2]	CB[2]	Y0[2]	CR[2]	Y1[2]	VPB[2]	CB[6]	Y0[6]	CR[6]	Y1[6]	DE/FREF	used
VPA[3]	CB[3]	Y0[3]	CR[3]	Y1[3]	VPB[3]	CB[7]	Y0[7]	CR[7]	Y1[7]		
VPA[4]	-	-	-	-	VPB[4]	CB[8]	Y0[8]	CR[8]	Y1[8]		
VPA[5]	-	-	-	-	VPB[5]	CB[9]	Y0[9]	CR[9]	Y1[9]		
VPA[6]	-	-	-	-	VPB[6]	CB[10]	Y0[10]	CR[10]	Y1[10]		
VPA[7]	-	-	-	-	VPB[7]	CB[11]	Y0[11]	CR[11]	Y1[11]		

150 MHz pixel rate HDMI transmitter

Table 9. YCbCr 4:2:2 ITU656-like external synchronization double edge mappings

YCbCr 4:2:2 ITU656-like external synchronization double edge.

Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video p	ort B			Control		
Pin	YCbCr	4:2:2	(ITU656	6-like)	Pin	YCbCr	4:2:2(ITU656-li	ke)	Pin	YCbCr 4 : 2 : 2
VPA[0]	CB[0]	Y0[0]	CR[0]	Y1[0]	VPB[0]	CB[4]	Y0[4]	CR[4]	Y1[4]	HSYNC/HREF	used
VPA[1]	CB[1]	Y0[1]	CR[1]	Y1[1]	VPB[1]	CB[5]	Y0[5]	CR[5]	Y1[5]	VSYNC/VREF	used
VPA[2]	CB[2]	Y0[2]	CR[2]	Y1[2]	VPB[2]	CB[6]	Y0[6]	CR[6]	Y1[6]	DE/FREF	used
VPA[3]	CB[3]	Y0[3]	CR[3]	Y1[3]	VPB[3]	CB[7]	Y0[7]	CR[7]	Y1[7]		
VPA[4]	-	-	-	-	VPB[4]	CB[8]	Y0[8]	CR[8]	Y1[8]		
VPA[5]	-	-	-	-	VPB[5]	CB[9]	Y0[9]	CR[9]	Y1[9]		
VPA[6]	-	-	-	-	VPB[6]	CB[10]	Y0[10]	CR[10]	Y1[10]		
VPA[7]	-	-	-	-	VPB[7]	CB[11]	Y0[11]	CR[11]	Y1[11]		

TDA9981B_1 © NXP B.V. 2008. All rights reserved.

150 MHz pixel rate HDMI transmitter

Table 10. YCbCr 4:2:2 ITU656-like embedded synchronization single edge mappings

YCbCr 4:2:2 ITU656-like embedded synchronization single edge.

Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video p	ort B			Control		
Pin	YCbCr	4:2:2	(ITU656	6-like)	Pin	YCbCr	4:2:2(ITU656-li	ke)	Pin	YCbCr 4 : 2 : 2
VPA[0]	CB[0]	Y0[0]	CR[0]	Y1[0]	VPB[0]	CB[4]	Y0[4]	CR[4]	Y1[4]	HSYNC/HREF	not used
VPA[1]	CB[1]	Y0[1]	CR[1]	Y1[1]	VPB[1]	CB[5]	Y0[5]	CR[5]	Y1[5]	VSYNC/VREF	not used
VPA[2]	CB[2]	Y0[2]	CR[2]	Y1[2]	VPB[2]	CB[6]	Y0[6]	CR[6]	Y1[6]	DE/FREF	not used
VPA[3]	CB[3]	Y0[3]	CR[3]	Y1[3]	VPB[3]	CB[7]	Y0[7]	CR[7]	Y1[7]		
VPA[4]	-	-	-	-	VPB[4]	CB[8]	Y0[8]	CR[8]	Y1[8]		
VPA[5]	-	-	-	-	VPB[5]	CB[9]	Y0[9]	CR[9]	Y1[9]		
VPA[6]	-	-	-	-	VPB[6]	CB[10]	Y0[10]	CR[10]	Y1[10]		
VPA[7]	-	-	-	-	VPB[7]	CB[11]	Y0[11]	CR[11]	Y1[11]		

Fig 7. Pixel encoding YCbCr 4:2:2 ITU656-like embedded synchronization single edge (rising edge) input

150 MHz pixel rate HDMI transmitter

Table 11. YCbCr 4:2:2 ITU656-like embedded synchronization double edge mappings

YCbCr 4 : 2 : 2 ITU656-like embedded synchronization double edge. Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video port B				Control		
Pin	YCbCr 4 : 2 : 2 (ITU656-like)		Pin	Pin YCbCr 4 : 2 : 2 (ITU656-like)		Pin	YCbCr 4 : 2 : 2				
VPA[0]	CB[0]	Y0[0]	CR[0]	Y1[0]	VPB[0]	CB[4]	Y0[4]	CR[4]	Y1[4]	HSYNC/HREF	not used
VPA[1]	CB[1]	Y0[1]	CR[1]	Y1[1]	VPB[1]	CB[5]	Y0[5]	CR[5]	Y1[5]	VSYNC/VREF	not used
VPA[2]	CB[2]	Y0[2]	CR[2]	Y1[2]	VPB[2]	CB[6]	Y0[6]	CR[6]	Y1[6]	DE/FREF	not used
VPA[3]	CB[3]	Y0[3]	CR[3]	Y1[3]	VPB[3]	CB[7]	Y0[7]	CR[7]	Y1[7]		
VPA[4]	-	-	-	-	VPB[4]	CB[8]	Y0[8]	CR[8]	Y1[8]		
VPA[5]	-	-	-	-	VPB[5]	CB[9]	Y0[9]	CR[9]	Y1[9]		
VPA[6]	-	-	-	-	VPB[6]	CB[10]	Y0[10]	CR[10]	Y1[10]		
VPA[7]	-	-	-	-	VPB[7]	CB[11]	Y0[11]	CR[11]	Y1[11]		

Fig 8. Pixel encoding YCbCr 4 : 2 : 2 ITU656-like embedded synchronization double edge (rising and falling) input

150 MHz pixel rate HDMI transmitter

Table 12. YCbCr 4:2:2 semi-planar external synchronization mappings

YCbCr 4:2:2 semi-planar external synchronization single edge.

Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.

Video p	ort A		Video po	ort B		Video po	ort C		Control	
Pin	YCbCr 4 semi-pla		Pin	YCbCr 4		Pin	YCbCr 4		Pin	YCbCr 4:2:2
VPA[0]	Y0[0]	Y1[0]	VPB[0]	Y0[4]	Y1[4]	VPC[0]	CB[4]	CR[4]	HSYNC/HREF	used
VPA[1]	Y0[1]	Y1[1]	VPB[1]	Y0[5]	Y1[5]	VPC[1]	CB[5]	CR[5]	VSYNC/VREF	used
VPA[2]	Y0[2]	Y1[2]	VPB[2]	Y0[6]	Y1[6]	VPC[2]	CB[6]	CR[6]	DE/FREF	used
VPA[3]	Y0[3]	Y1[3]	VPB[3]	Y0[7]	Y1[7]	VPC[3]	CB[7]	CR[7]		
VPA[4]	CB[0]	CR[0]	VPB[4]	Y0[8]	Y1[8]	VPC[4]	CB[8]	CR[8]		
VPA[5]	CB[1]	CR[1]	VPB[5]	Y0[9]	Y1[9]	VPC[5]	CB[9]	CR[9]		
VPA[6]	CB[2]	CR[2]	VPB[6]	Y0[10]	Y1[10]	VPC[6]	CB[10]	CR[10]		
VPA[7]	CB[3]	CR[3]	VPB[7]	Y0[11]	Y1[11]	VPC[7]	CB[11]	CR[11]		

150 MHz pixel rate HDMI transmitter

Table 13. YCbCr 4:2:2 semi-planar embedded synchronization mappings

YCbCr 4 : 2 : 2 semi-planar embedded synchronization single edge. Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.

Video p	ort A		Video port B			Video po	ort C		Control		
Pin	YCbCr 4 semi-pla		Pin	YCbCr 4 semi-pla		Pin	YCbCr 4 semi-pla		Pin	YCbCr 4:2:2	
VPA[0]	Y0[0]	Y1[0]	VPB[0]	Y0[4]	Y1[4]	VPC[0]	CB[4]	CR[4]	HSYNC/HREF	not used	
VPA[1]	Y0[1]	Y1[1]	VPB[1]	Y0[5]	Y1[5]	VPC[1]	CB[5]	CR[5]	VSYNC/VREF	not used	
VPA[2]	Y0[2]	Y1[2]	VPB[2]	Y0[6]	Y1[6]	VPC[2]	CB[6]	CR[6]	DE/FREF	not used	
VPA[3]	Y0[3]	Y1[3]	VPB[3]	Y0[7]	Y1[7]	VPC[3]	CB[7]	CR[7]			
VPA[4]	CB[0]	CR[0]	VPB[4]	Y0[8]	Y1[8]	VPC[4]	CB[8]	CR[8]			
VPA[5]	CB[1]	CR[1]	VPB[5]	Y0[9]	Y1[9]	VPC[5]	CB[9]	CR[9]			
VPA[6]	CB[2]	CR[2]	VPB[6]	Y0[10]	Y1[10]	VPC[6]	CB[10]	CR[10]			
VPA[7]	CB[3]	CR[3]	VPB[7]	Y0[11]	Y1[11]	VPC[7]	CB[11]	CR[11]			

Fig 10. Pixel encoding YCbCr 4:2:2 semi-planar embedded synchronization (rising edge) input

150 MHz pixel rate HDMI transmitter

8.3 Synchronization

The TDA9981B can be synchronized with Hsync/Vsync external inputs or with extraction of the sync information from embedded sync (SAV/EAV) codes inside the video stream.

8.3.1 Timing extraction generator

This block can extract the synchronization signals Href, Vref and Fref from Start Active Video (SAV) and End Active Video (EAV) in case of embedded synchronization in the data stream. Synchronization signals can be embedded in RGB, YCbCr 4:4:4:4, YCbCr 4:2:2 semi-planar (up to 2×12 -bit), YCbCr 4:2:2 ITU656 and ITU656-like (up to 1×12 -bit).

8.3.2 Data enable generator

The TDA9981B contains a Data Enable (DE) generator; this can generate an internal DE signal for a system which does not provide one.

8.4 Input and output video format

Due to the flexible video input formatter, the TDA9981B can accept a large range of input formats. This flexibility allows the TDA9981B to be compatible with the maximum possible number of MPEG decoders. Moreover, these input formats may be changed in many ways (color space converter, upsampler and downsampler) to be transmitted across the HDMI link. Table 14 gives the possible inputs and outputs.

	Table 14.	Use of color space	converter, upsa	ampler and do	wnsampler
--	-----------	--------------------	-----------------	---------------	-----------

Input			Output		
Color space	Format	Channels	Color space	Format	Channels
RGB	4:4:4	3×8 -bit	RGB	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit
			YCbCr	4:4:4	3×8 -bit
YCbCr	4:4:4	3×8 -bit	RGB	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit
			YCbCr	4:4:4	3×8 -bit
YCbCr	4:2:2	up to 1×12 -bit	YCbCr	4:2:2	2×12 -bit
			YCbCr	4:4:4	3×8 -bit
			RGB	4:4:4	3×8 -bit
		up to	YCbCr	4:2:2	2×12 -bit
		2 × 12-bit	YCbCr	4:4:4	3×8 -bit
			RGB	4:4:4	3×8 -bit

8.5 Upsampler

The incoming YCbCr 4:2:2 (2×12 -bit) data stream format could be upsampled into a 12-bit YCbCr 4:4:4 (3×12 -bit) data stream by repeating or linearly interpolating the chrominance pixels.

150 MHz pixel rate HDMI transmitter

8.6 Color space converter

The color space converter is used to convert input video data from one type to another color space (RGB to YCbCr and YCbCr to RGB). This block can be bypassed and each coefficient is programmable via the I²C-bus register.

$$\begin{bmatrix} Y \backslash G \\ C_B \backslash R \\ C_R \backslash B \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \times \begin{bmatrix} G \backslash Y \\ R \backslash C_B \\ B \backslash C_R \end{bmatrix} + \begin{bmatrix} Oin_{G \backslash Y} \\ Oin_{R \backslash C_B} \\ Oin_{B \backslash C_R} \end{bmatrix} + \begin{bmatrix} Oout_{Y \backslash G} \\ Oout_{C_B \backslash R} \\ Oout_{C_R \backslash B} \end{bmatrix}$$

8.7 Downsampler

This block works only with YCbCr input format; these filters downsample the C_B and C_R signals by a factor 2. A delay is added on the G/Y channel, which corresponds to the pipeline delay of the filters, to put the Y channel in phase with the C_B - C_R channel.

8.8 Audio input format

The TDA9981B is compatible with HDMI 1.2a (DVD support). The TDA9981B can carry audio in I²S-bus format (one stereo up to four stereo channels) or in S/PDIF format. S/PDIF or I²S-bus format can be selected via the I²C-bus. Only one audio format can be used at a time: either S/PDIF or I²S-bus. Table 15 shows the audio port allocation.

Table 15. Audio port configuration *All audio ports are LV-TTL compatible.*

•	•
Audio port	I ² S-bus and S/PDIF input configuration
AP0	WS (word select)
AP1	I ² S-bus port 0
AP2	I ² S-bus port 1
AP3	I ² S-bus port 2
AP4	I ² S-bus port 3
AP5	MCLK (master clock for S/PDIF)
AP6	S/PDIF input
AP7	AUX (internal test)
ACLK	SCK (I ² S-bus clock)

8.9 **S/PDIF**

The audio port AP6 is used for the S/PDIF feature. In this format the TDA9981B supports 2-channel uncompressed PCM data (IEC 60958) layout 0 or compressed bit stream up to 8 multichannels (Dolby Digital, DTS, AC-3, etc.) layout 1. The TDA9981B is able to recover the original clock from the S/PDIF signal (no need for an external clock). In addition it can also use an external clock (MCLK) to decode the S/PDIF signal.

8.10 I²S-bus

The TDA9981B supports the NXP I^2 S-bus format. There are four I^2 S-bus stereo input channels (AP1 to AP4), which enable 8 uncompressed audio channels to be carried. The I^2 S-bus input interface receives an I^2 S-bus signal including serial data, word select and

150 MHz pixel rate HDMI transmitter

serial clock. Various I²S-bus formats are supported and can be selected by setting the appropriate bits of the register. The I²S-bus input interface can receive up to 24-bit wide audio samples via the serial data input with a clock frequency of at least 32 times the input sample frequency f_s . Since the I²S-bus format is MSB aligned, audio data with an arbitrary precision can be received automatically. Audio samples with a precision better than 24 bits are truncated to 24 bits. If the input clock has a frequency of $32 \times f_s$, only 16-bit audio samples can be received. In this case, the 8 LSBs will be set to logic 0. The serial data signal carries the serial baseband audio data, sample by sample left/right interleaved. The word select signal WS indicates whether left or right channel information is transferred over the serial data line. The formats for 16-bit and 32-bit modes are shown in Figure 11.

8.11 Power management

The TDA9981B can be powered down via the I²C-bus register.

8.12 Interrupt controller

Pin INT is used to alert the microcontroller that a critical event concerning the HDMI has occurred (hot plug detect, RxSense). These interrupts are maskable.

Hot plug or unplug detect: pin HPD is the hot plug detection pin; it is 5 V input tolerant.

8.13 Initialization

Hard reset: after power-up, the TDA9981B is activated by a hard reset via pin RST_N. However, the TDA9981B has a power-on reset.

150 MHz pixel rate HDMI transmitter

8.14 HDMI

8.14.1 Output HDMI buffers

An external resistor must be used to set the HDMI output amplitude. It has to be connected between pin EXT_SWING and $V_{DDH(3V3)}$.

8.14.2 Pixel repetition

To transmit video formats with pixel rates below 25 MHz or to increase the number of audio sample packets in each frame, the TDA9981B uses pixel repetition to increase the transmitted pixel clock.

Table 16. Pixel repetition

PIX_REP[3]	PIX_REP[2]	PIX_REP[1]	PIX_REP[0]	Pixel repeated
0	0	0	0	no repetition
0	0	0	1	once
0	0	1	0	twice
0	0	1	1	3 times
0	1	0	0	4 times
0	1	0	1	5 times
0	1	1	0	6 times
0	1	1	1	7 times
1	0	0	0	8 times
1	0	0	1	9 times
1	0	1	Х	undefined
1	1	Х	Х	undefined

8.14.3 HDMI and DVI receiver discrimination

This information is located in the E-EDID receiver part, in the 'Vendor-Specific Datablock' within the first CEA EDID timing extension. If the 24-bit IEEE registration identifier contains the value 00 0C03h, then the receiver will support HDMI, otherwise the device will be treated as a DVI device. However, the TDA9981B does not have direct access to that information since E-EDID is read by an external microprocessor through the TDA9981B I²C-bus gate.

8.14.4 DDC channel

The DDC-bus pins DDC_SDA and DDC_SCL are 5 V tolerant and can work at standard mode (100 kHz).

8.14.4.1 E-EDID reading

In order to get receiver capabilities, the TDA9981B must read the E-EDID of the receiver. This is made possible by temporarily connecting the I²C-bus to the DDC lines, so that the microprocessor is able to read full EDID.

8.14.5 RxSense detection

The TDA9981B is able to sense the connectivity and working behavior of the receiver. The RxSense detection feature detects the presence of the 50 Ω pull-up resistor R_T on the TMDS clock channel of the downstream site.

150 MHz pixel rate HDMI transmitter

As long as the receiver is connected to the transmitter and powered up, bit RXS_FIL is set to logic 1.

When the cable is unplugged or the receiver site is powered off (assuming in this case that V_{DD} is switched off), the RxSense generates an interrupt inside the TDA9981B, changing the value of bit RXS_FIL to logic 0. This allows the application to stop sending unnecessary video content.

This feature is very useful when the receiver has recovered from an off state and does not generate an HPD HIGH-to-LOW-to-HIGH transition. In this particular case, RxSense will generate an interrupt so that the TDA9981B restarts sending video.

Remark: According to the HDMI specification, only the HPD interrupt allows the application to read the EDID. It is not mandatory to use RxSense to initialize the EDID reading procedure.

8.15 I²C-bus interface

The I^2C -bus pins $I2C_SDA$ and $I2C_SCL$ are 5 V tolerant and can work at fast mode (400 kHz).

9. I²C-bus register definitions

9.1 I²C-bus protocol

The registers of the TDA9981B can be accessed via the I^2C -bus. The TDA9981B is used as a slave device and both the fast mode 400 kHz and the standard mode 100 kHz are supported.

Bits A0 and A1 of the I²C-bus device address are externally selected by pins A0 and A1. The I²C-bus device address is given in Table 17.

Table 17. Device address

Device	address						R/W
A6	A5	A4	А3	A2	A1	A0	-
1	1	1	0	0	A1	A0	1/0

The I²C-bus access format is shown in Figure 13.

150 MHz pixel rate HDMI transmitter

For read access, the master writes the address of the TDA9981B, the subaddress to access the specific register and then the data.

10. Limiting values

Table 18. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{DD(3V3)}$	supply voltage (3.3 V)		-0.5	+4.6	V
$V_{DD(1V8)}$	supply voltage (1.8 V)		-0.5	+2.5	V
ΔV_{DD}	supply voltage difference		-0.5	+0.5	V
T_{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		0	85	°C
Tj	junction temperature		-	125	°C
V _{esd}	electrostatic discharge voltage	HBM	-2000	+2000	V

11. Thermal characteristics

Table 19. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air; JEDEC 4L board	50.6	K/W
R _{th(j-c)}	thermal resistance from junction to case		16.2	K/W

150 MHz pixel rate HDMI transmitter

12. Static characteristics

Table 20. Supplies

 $V_{DDA(FRO_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDA(PLL_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDH(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to$

Typical values are measured at $V_{DDA(FRO_3V3)} = V_{DDA(PLL_3V3)} = V_{DDH(3V3)} = V_{DDD(3V3)} = 3.3 \text{ V}; V_{DDC(1V8)} = 1.8 \text{ V}; V_{PP} = 0 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	ı	Min	Тур	Max	Unit
TDA9981BHL/8	and TDA9981BHL/15						
V _{DDA(FRO_3V3)}	free running oscillator 3.3 V analog supply voltage		,	3.0	3.3	3.6	V
V _{DDA(PLL_3V3)}	PLL 3.3 V analog supply voltage		,	3.0	3.3	3.6	V
V _{DDD(3V3)}	digital supply voltage (3.3 V)		;	3.0	3.3	3.6	V
V _{DDH(3V3)}	HDMI supply voltage (3.3 V)		;	3.0	3.3	3.6	V
V _{DDC(1V8)}	core supply voltage (1.8 V)			1.65	1.8	1.95	V
TDA9981BHL/8	; up to 81 MHz						
I _{DDA(FRO_3V3)}	free running oscillator 3.3 V analog supply current			-	-	0.5	mΑ
I _{DDA(PLL_3V3)}	PLL 3.3 V analog supply current		<u>[1]</u> .	-	3.5	4.5	mΑ
I _{DDD(3V3)}	digital supply current (3.3 V)			-	-	1.5	mΑ
I _{DDH(3V3)}	HDMI supply current (3.3 V)			-	14	14.5	mΑ
I _{DDC(1V8)}	core supply current (1.8 V)		<u>[1]</u> .	-	94	107.5	mΑ
f _{clk(max)}	maximum clock frequency		<u>[1]</u>	81	-	-	MHz
P _{cons}	power consumption		<u>[1]</u> .	-	235	288	mW
P _{tot}	total power dissipation		<u>[1]</u> .	-	369	438	mW
P _{pd}	power dissipation in Power-down mode			-	14	19	mW
TDA9981BHL/1	5; up to 150 MHz						
I _{DDA(FRO_3V3)}	free running oscillator 3.3 V analog supply current			-	-	0.5	mΑ
I _{DDA(PLL_3V3)}	PLL 3.3 V analog supply current		[2]	-	4	5	mΑ
I _{DDD(3V3)}	digital supply current (3.3 V)			-	-	3.5	mΑ
I _{DDH(3V3)}	HDMI supply current (3.3 V)			-	14	15	mA
I _{DDC(1V8)}	core supply current (1.8 V)		[2]	-	175	200	mA
f _{clk(max)}	maximum clock frequency		[2]	150	-	-	MHz
P _{cons}	power consumption		<u>[2]</u> .	-	381.5	468	mW
P _{tot}	total power dissipation		<u>[2]</u> .	-	515.5	618	mW
P _{pd}	power dissipation in Power-down mode			-	14	19	mW

^[1] Worst case: video input format: 720p at 60 Hz (RGB 4: 4: 4 embedded sync), video output format: 720p at 60 Hz (YCbCr 4: 4: 4).

^[2] Video input format: 1080p (RGB 4 : 4 : 4 embedded sync, rising edge), video output format: 1080p (RGB 4 : 4 : 4).

150 MHz pixel rate HDMI transmitter

Table 21. LV-TTL digital inputs and outputs

 $V_{DDA(FRO_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDA(PLL_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDH(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to$

Typical values are measured at $V_{DDA(FRO_3V3)} = V_{DDA(PLL_3V3)} = V_{DDH(3V3)} = V_{DDD(3V3)} = 3.3 \text{ V}; V_{DDC(1V8)} = 1.8 \text{ V}; V_{PP} = 0 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
_	lerant inputs: pins HSYNC	C, VSYNC, AP[7:0], ACLK, TM, A0, A1, VPA[7				
V _{IL}	LOW-level input voltage		-	-	0.8	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
I _{IL}	LOW-level input current		-1	-	+1	μΑ
I _{IH}	HIGH-level input current		-1	-	+1	μΑ
C _i	input capacitance		-	4.5	-	pF
5 V tolera	nt input: pin HPD					
V_{IL}	LOW-level input voltage		-	-	8.0	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
Ci	input capacitance		-	4.5	-	pF
Output: pi	in INT					
V _{OL}	LOW-level output voltage	$C_L = 10 \text{ pF}; I_{OL} = 2 \text{ mA}$	-	-	0.4	V

Table 22. TMDS outputs

 $V_{DDA(FRO_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDA(PLL_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDH(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to }$

Typical values are measured at $V_{DDA(FRO_3V3)} = V_{DDA(PLL_3V3)} = V_{DDH(3V3)} = V_{DDD(3V3)} = 3.3 \text{ V}; V_{DDC(1V8)} = 1.8 \text{ V}; V_{PP} = 0 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
TMDS output pins: TX0-, TX0+, TX1-, TX1+, TX2-, TX2+, TXC- and TXC+							
$V_{o(p-p)}$	peak-to-peak output voltage	single output; $R_{ext} = 610 \Omega$	400	510	600	mV	
V_{OH}	HIGH-level output voltage	(1 % tolerance) with test load and operating condition as in <i>HDMI</i>	3.125	3.3	3.475	V	
V_{OL}	LOW-level output voltage	1.2a specification	2.535	2.79	3.065	V	

150 MHz pixel rate HDMI transmitter

13. Dynamic characteristics

Table 23. Timing characteristics

 $V_{DDA(FRO_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDA(PLL_3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDH(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DD(3V3)} = 3.0 \text{ V to$

Typical values are measured at $V_{DDA(FRO_3V3)} = V_{DDA(PLL_3V3)} = V_{DDH(3V3)} = V_{DDD(3V3)} = 3.3 \text{ V}; V_{DDC(1V8)} = 1.8 \text{ V}; V_{PP} = 0 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$; unless otherwise specified.

	•									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
Clock inp	Clock inputs: pins VCLK, VPA[7:0], VPB[7:0] and VPC[7:0]; see <u>Figure 14</u> , <u>15</u> , <u>17</u> and <u>18</u>									
f _{clk(max)}	maximum clock frequency	TDA9981BHL/8	81	-	-	MHz				
		TDA9981BHL/15	150	-	-	MHz				
t _{su(D)}	data input set-up time		-0.25	-	-	ns				
t _{h(D)}	data input hold time		2.20	-	-	ns				
δ_{clk}	clock duty cycle	<u>"</u>	<u>l</u> 40	-	60	%				
DDC I ² C-I	ous; 5 V tolerant; master bus: pins DDC_S	SDA and DDC_SCL								
f _{SCL}	SCL clock frequency	standard mode	-	-	100	kHz				
Ci	capacitance for each I/O pin		-	7	-	pF				
I ² C-bus; 5	V tolerant; master bus: pins I2C_SDA ar	nd I2C_SCL								
f _{SCL}	SCL clock frequency	standard mode	-	-	100	kHz				
		fast mode	-	-	400	kHz				
Ci	capacitance for each I/O pin		-	7	-	pF				
TMDS ou	tput pins: TXC- and TXC+									
f _{clk(max)}	maximum clock frequency	TDA9981BHL/8	81	-	-	MHz				
		TDA9981BHL/15	150	-	-	MHz				
TMDS ou	tput pins: TX0–, TX0+, TX1–, TX1+, TX2– a	and TX2+								
f _{clk(max)}	maximum clock frequency	TDA9981BHL/8	810	-	-	MHz				
		TDA9981BHL/15	1.5	-	-	GHz				

 $^{[1] \}quad \delta_{\text{clk}} = t_{\text{clk}(H)} \, / \, (t_{\text{clk}(H)} + t_{\text{clk}(L)}).$

150 MHz pixel rate HDMI transmitter

13.1 Input format

In <u>Table 24</u> the port VPA has been mapped to CB (YUV space)/B (RGB space), VPB has been mapped to Y (YUV space)/G (RGB space) and VPC has been mapped to CR (YUV space)/R (RGB space).

Table 24. Input format

Table 24.	nput format								
Input pins	Signal	RGB	YUV						
		4:4:4[1]	4:4:4[2]	4:2:2	(semi-planar)[3]	4:2:2	(ITU656-li	ke) <mark>[4]</mark>	
Video port	A	'				•			
VPA[0]	CB[0]/B[0]	B[0]	CB[0]	Y0[0]	Y1[0]	CB[0]	Y0[0]	CR[0]	Y1[0]
VPA[1]	CB[1]/B[1]	B[1]	CB[1]	Y0[1]	Y1[1]	CB[1]	Y0[1]	CR[1]	Y1[1]
VPA[2]	CB[2]/B[2]	B[2]	CB[2]	Y0[2]	Y1[2]	CB[2]	Y0[2]	CR[2]	Y1[2]
VPA[3]	CB[3]/B[3]	B[3]	CB[3]	Y0[3]	Y1[3]	CB[3]	Y0[3]	CR[3]	Y1[3]
VPA[4]	CB[4]/B[4]	B[4]	CB[4]	CB[0]	CR[0]	L	L	L	L
VPA[5]	CB[5]/B[5]	B[5]	CB[5]	CB[1]	CR[1]	L	L	L	L
VPA[6]	CB[6]/B[6]	B[6]	CB[6]	CB[2]	CR[2]	L	L	L	L
VPA[7]	CB[7]/B[7]	B[7]	CB[7]	CB[3]	CR[3]	L	L	L	L
Video port	В								
VPB[0]	Y[0]/G[0]	G[0]	Y[0]	Y0[4]	Y1[4]	CB[4]	Y0[4]	CR[4]	Y1[4]
VPB[1]	Y[1]/G[1]	G[1]	Y[1]	Y0[5]	Y1[5]	CB[5]	Y0[5]	CR[5]	Y1[5]
VPB[2]	Y[2]/G[2]	G[2]	Y[2]	Y0[6]	Y1[6]	CB[6]	Y0[6]	CR[6]	Y1[6]
VPB[3]	Y[3]/G[3]	G[3]	Y[3]	Y0[7]	Y1[7]	CB[7]	Y0[7]	CR[7]	Y1[7]
VPB[4]	Y[4]/G[4]	G[4]	Y[4]	Y0[8]	Y1[8]	CB[8]	Y0[8]	CR[8]	Y1[8]
VPB[5]	Y[5]/G[5]	G[5]	Y[5]	Y0[9]	Y1[9]	CB[9]	Y0[9]	CR[9]	Y1[9]
VPB[6]	Y[6]/G[6]	G[6]	Y[6]	Y0[10]	Y1[10]	CB[10]	Y0[10]	CR[10]	Y1[10]
VPB[7]	Y[7]/G[7]	G[7]	Y[7]	Y0[11]	Y1[11]	CB[11]	Y0[11]	CR[11]	Y1[11]
Video port	С								
VPC[0]	CR[0]/R[0]	R[0]	CR[0]	CB[4]	CR[4]	L	L	L	L
VPC[1]	CR[1]/R[1]	R[1]	CR[1]	CB[5]	CR[5]	L	L	L	L
VPC[2]	CR[2]/R[2]	R[2]	CR[2]	CB[6]	CR[6]	L	L	L	L
VPC[3]	CR[3]/R[3]	R[3]	CR[3]	CB[7]	CR[7]	L	L	L	L
VPC[4]	CR[4]/R[4]	R[4]	CR[4]	CB[8]	CR[8]	L	L	L	L
VPC[5]	CR[5]/R[5]	R[5]	CR[5]	CB[9]	CR[9]	L	L	L	L
VPC[6]	CR[6]/R[6]	R[6]	CR[6]	CB[10]	CR[10]	L	L	L	L
VPC[7]	CR[7]/R[7]	R[7]	CR[7]	CB[11]	CR[11]	L	L	L	L

^[1] Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

^[2] Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

^[3] Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.

^[4] Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

150 MHz pixel rate HDMI transmitter

© NXP B.V. 2008. All rights reserved.

13.2 Example of supported video

The TDA9981B supports all EIA/CEA-861B, ATSC video input formats.

Table 25. Timing parameters for EIA/CEA-861B

TDA9981B_1

Format nr.	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
59.94 Hz syst	ems						
1 (VGA)	$640 \times 480p$	59.9401	800	525	31.4685	25.174825	1
2, 3	$720\times480p$	59.9401	858	525	31.4685	27	1
4	1280 × 720p	59.9401	1650	750	44.955	74.175824	1
5	$1920\times1080i$	59.9401	2200	1125	33.7163	74.175824	1
6, 7 (NTSC)	$720\times480i$	59.9401	858	525	15.7343	13.5	2
8, 9	$720\times240p$	59.9401	858	262	15.7043	13.474286	2
8, 9	$720\times240p$	59.9401	858	263	15.7642	13.525714	2
10, 11	720 × 480i	59.9401	858	525	15.7343	13.5	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
12, 13	720 × 240p	59.9401	858	262	15.7043	13.474286	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
12, 13	720 × 240p	59.9401	858	263	15.7642	13.525714	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
14, 15	1440 × 480p	59.9401	1716	525	31.4685	54	2
16[1]	1920 × 1080p	59.9401	2200	1125	67.4326	148.35165 ^[1]	1
60 Hz system	S						
1 (VGA)	640 × 480p	60	800	525	31.5	25.2	1
2, 3	720 × 480p	60	858	525	31.5	27.27	1
4	1280 × 720p	60	1650	750	45	74.25	1
5	1920 × 1080i	60	2200	1125	33.75	74.25	1
6, 7 (NTSC)	$720\times480i$	60	858	525	15.75	13.5135	2
8, 9	$720\times240p$	60	858	262	15.72	13.48776	2
8, 9	720 × 240p	60	858	263	15.78	13.53924	2
10, 11	720 × 480i	60	858	525	15.75	13.5135	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
12, 13	720 × 240p	60	858	262	15.72	13.48776	4, 5, 7[1], 8[1], 10[1]
12, 13	720 × 240p	60	858	263	15.78	13.53924	4, 5, 7[1], 8[1], 10[1]
14, 15	1440 × 480p	60	1716	525	31.5	54.054	2
16 ^[1]	1920 × 1080p	60	2200	1125	67.5	148.5 ^[1]	1
50 Hz system	S						
17, 18	720 × 576p	50	864	625	31.25	27	1
19	1280 × 720p	50	1980	750	37.5	74.25	1
20	1920 × 1080i	50	2640	1125	28.125	74.25	1
21, 22 (PAL)	720 × 576i	50	864	625	15.625	13.5	2
23, 24	720 × 288p	50	864	312	15.6	13.4784	2
23, 24	720 × 288p	50	864	313	15.65	13.5216	2

150 MHz pixel rate HDMI transmitter

 Table 25.
 Timing parameters for EIA/CEA-861B ...continued

Format nr.	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
23, 24	$720\times288p$	50	864	314	15.7	13.5648	2
25, 26	720 × 576i	50	864	625	15.625	13.5	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
27, 28	720 × 288p	50	864	312	15.6	13.4784	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
27, 28	720 × 288p	50	864	313	15.65	13.5216	4, 5, 7 ^[1] , 8 ^[1] , 10 ^[1]
27, 28	$720\times288p$	50	864	314	15.7	13.5648	2
29, 30	$1440 \times 576p$	50	1728	625	31.25	54	1
31[1]	1920 × 1080p	50	2640	1125	56.25	148.5[<u>1]</u>	1
Various syste	ems						
32	1920 × 1080p	23.976	2750	1125	26.973	74.175824	1
32	1920 × 1080p	24	2750	1125	27	74.25	1
33	1920 × 1080p	25	2640	1125	28.125	74.25	1
34	1920 × 1080p	29.97	2200	1125	33.716	74.175824	1
34	1920 × 1080p	30	2200	1125	33.75	74.25	1

^[1] Only for TDA9981BHL/15.

Table 26. Timing parameters for PC standards below 150 MHz

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
	$640\times350p$	85.080	832	445	37.861	31.500	-
	$640\times400p$	85.080	832	445	37.861	31.500	-
	$720\times400p$	85.039	936	446	37.927	35.500	-
0.31M3	$640\times480p$	59.940	800	525	31.469	25.175	-
VGA	$640\times480p$	72.809	832	520	37.861	31.500	-
	640 × 480p	75.000	840	500	37.500	31.500	-
	640 × 480p	85.008	832	509	43.269	36.000	-
0.48M3	800 × 600p	56.250	1024	625	35.156	36.000	-
SVGA	$800 \times 600p$	60.317	1056	628	37.879	40.000	-
	$800 \times 600p$	72.188	1040	666	48.077	50.000	-
	$800 \times 600p$	75.000	1056	625	46.875	49.500	-
	$800 \times 600p$	85.061	1048	631	53.674	56.250	-
0.48M3-R	800 × 600p	119.972	960	636	76.302	73.250	-
0.41M9	848 × 480p	60.000	1088	517	31.020	33.750	-
0.79M3	1024 × 768p	60.004	1344	806	48.363	65.000	-
XGA	1024 × 768p	70.069	1328	806	56.476	75.000	-
	$1024\times768p$	75.029	1312	800	60.023	78.750	-
	$1024 \times 768p^{[1]}$	84.997	1376	808	68.677	94.500	-
	$1024\times768i$	86.957	1264	817	35.522	44.900	-

150 MHz pixel rate HDMI transmitter

Table 26. Timing parameters for PC standards below 150 MHz ...continued

	- -						
Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
0.79M3-R XGA ^[1]	$1024 \times 768p^{[1]}$	119.989	1184	813	97.551	115.500	-
1.00M3 ^[1]	$1152 \times 864p^{[1]}$	75.000	1600	900	67.500	108.000	-
0.98M9-R	1280 × 768p	59.995	1440	790	47.396	68.250	-
	$1280 \times 768p^{[1]}$	119.798	1440	813	97.396	140.250	-
0.98M9	1280 × 768p	59.870	1664	798	47.776	79.500	-
	$1280 \times 768p^{[1]}$	74.893	1696	805	60.289	102.250	-
	$1280 \times 768p^{[1]}$	84.837	1712	809	68.633	117.500	-
1.02MA-R	1280 × 800p	59.910	1440	823	49.306	71.000	-
	$1280 \times 800p^{[1]}$	119.909	1440	847	101.563	146.250	-
1.02MA[1]	$1280 \times 800p^{[1]}$	59.810	1680	831	49.702	83.500	-
	$1280 \times 800p^{[1]}$	74.934	1696	838	62.795	106.500	-
	$1280 \times 800p^{[1]}$	84.880	1712	843	71.554	122.500	-
1.23M3[1]	$1280 \times 960p^{[1]}$	60.000	1800	1000	60.000	108.000	-
	$1280 \times 960p^{[1]}$	85.002	1728	1011	85.938	148.500	-
1.31M4	$1280 \times 1024p^{[1]}$	60.020	1688	1066	63.981	108.000	-
SXGA[1]	$1280 \times 1024p^{[1]}$	75.025	1688	1066	79.976	135.000	-
1.04M9[1]	$1360 \times 768p^{[1]}$	60.015	1792	795	47.712	85.500	-
1.04M9-R[1]	$1360 \times 768p^{[1]}$	119.967	1520	813	97.533	148.250	-
1.47M3-R[1]	$1400 \times 1050 p^{[1]}$	59.948	1560	1080	64.744	101.000	-
1.47M3[1]	$1400 \times 1050 p^{[1]}$	59.978	1864	1089	65.317	121.750	-
1.29MA-R[1]	$1440 \times 900p^{[1]}$	59.901	1600	926	55.469	88.750	-
1.29MA[1]	$1440 \times 900p^{[1]}$	59.887	1904	934	55.935	106.500	-
	1440 × 900p[1]	74.984	1936	942	70.635	136.750	-
1.76MA-R[1]	$1680 \times 1050p^{[1]}$	59.883	1840	1080	64.674	119.000	-
1.76MA[1]	$1680 \times 1050p^{[1]}$	59.954	2240	1089	65.290	146.250	-

^[1] Only for TDA9981BHL/15.

150 MHz pixel rate HDMI transmitter

13.3 Timing diagrams

150 MHz pixel rate HDMI transmitter

150 MHz pixel rate HDMI transmitter

14. Application information

150 MHz pixel rate HDMI transmitter

15. Package outline

LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm

SOT315-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.6	0.16 0.04	1.5 1.3	0.25	0.27 0.13	0.18 0.12	12.1 11.9	12.1 11.9	0.5	14.15 13.85	14.15 13.85	1	0.75 0.30	0.2	0.15	0.1	1.45 1.05	1.45 1.05	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT315-1	136E15	MS-026				00-01-19 03-02-25

Fig 22. Package outline SOT315-1 (LQFP80)

TDA9981B_1

150 MHz pixel rate HDMI transmitter

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

150 MHz pixel rate HDMI transmitter

16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 23</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 27 and 28

Table 27. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)					
	Volume (mm³)					
	< 350	≥ 350				
< 2.5	235	220				
≥ 2.5	220	220				

Table 28. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)							
	Volume (mm ³)							
	< 350	350 to 2000	> 2000					
< 1.6	260	260	260					
1.6 to 2.5	260	250	245					
> 2.5	250	245	245					

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 23.

150 MHz pixel rate HDMI transmitter

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

17. Soldering: additional information

The package of this device supports the reflow soldering process only.

18. Abbreviations

Table 29. Abbreviations

Acronym	Description
AC-3	Active Coding-3
ADC	Analog-to-Digital Converter
AV	Audio Video
CEC	Consumer Electronics Control
CMOS	Complementary Metal-Oxide Semiconductor
DAC	Digital-to-Analog Converter
DDC	Display Data Channel
DENC	Digital video ENCoder
DSP	Digital Signal Processor
DTS	Digital Theater Systems
DVD	Digital Versatile Disc
DVI	Digital Visual Interface
EAV	End of Active Video
E-EDID	Enhanced Extended Display Identification Data
HBM	Human Body Model
HDMI	High-Definition Multimedia Interface

150 MHz pixel rate HDMI transmitter

Table 29. Abbreviations ... continued

Acronym	Description
HDTV	High-Definition Television
HPD	Hot Plug Detect
IRQ	Interrupt ReQuest
LO	Local Oscillator
L-PCM	Linear Pulse-Code Modulation
LSB	Least Significant Bit
LV-TTL	Low-Voltage Transistor-Transistor Logic
MSB	Most Significant Bit
OTP	One-Time Programmable
PAL	Phase Alternating Line
PCM	Pulse-Code Modulation
PLL	Phase-Locked Loop
PVR	Personal Video Recorder
RGB	Red, Green, Blue
SAV	Start of Active Video
STB	Set-Top Box
S/PDIF	Sony/Philips Digital Interface
TMDS	Transition Minimized Differential Signaling
Tx	Transmitter
XGA	Extended Graphics Array
YUV	color space used by the NTSC and PAL systems
YCbCr	color space originally defined by the ITU-R BT.601

19. Revision history

Table 30. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TDA9981B_1	20080704	Product data sheet	-	-

150 MHz pixel rate HDMI transmitter

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TDA9981B_1 © NXP B.V. 2008. All rights reserved.

150 MHz pixel rate HDMI transmitter

22. Contents

1	General description
2	Features
3	Applications
4	Quick reference data 2
5	Ordering information
5.1	Ordering options
6	Block diagram 4
7	Pinning information 5
7.1	Pinning
7.2	Pin description 5
8	Functional description 8
8.1	System clock
8.2	Video input processor
8.3	Synchronization
8.3.1	Timing extraction generator
8.3.2	Data enable generator
8.4 8.5	Input and output video format
8.6	Color space converter
8.7	Downsampler
8.8	Audio input format
8.9	S/PDIF
8.10	I ² S-bus
8.11	Power management 20
8.12	Interrupt controller
8.13	Initialization
8.14	HDMI
8.14.1	Output HDMI buffers
8.14.2	Pixel repetition
8.14.3	HDMI and DVI receiver discrimination 21
8.14.4 8.14.4.1	DDC channel
8.14.4.1 8.14.5	E-EDID reading
8.1 4 .5	l ² C-bus interface
9	l ² C-bus register definitions
9 .1	I ² C-bus protocol
10	Limiting values
10	Thermal characteristics
12	Static characteristics
13	Dynamic characteristics
13.1	Input format
13.2 13.3	Example of supported video
	3 3
14	Application information
15	Package outline

16	Soldering of SMD packages	36
16.1	Introduction to soldering	36
16.2	Wave and reflow soldering	36
16.3	Wave soldering	36
16.4	Reflow soldering	37
17	Soldering: additional information	38
18	Abbreviations	38
19	Revision history	39
20	Legal information	40
20.1	Data sheet status	40
20.2	Definitions	40
20.3	Disclaimers	40
20.4	Trademarks	40
21	Contact information	40
22	Contents	41

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008. All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 July 2008 Document identifier: TDA9981B_1