Implement K-Means clustering/ hierarchical clustering on sales_data_sample.csv dataset. Determine the number of clusters using the elbow method.

Dataset link: https://www.kaggle.com/datasets/kyanyoga/sample-sales-data (https://www.kaggle.com/datasets/kyanyoga/sample-sales-data)

In [1]: import pandas as pd import numpy as np

In [20]: df = pd.read_csv('sales_data_sample.csv', encoding='unicode_escape')

In [22]: df.head()

Out[22]:

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	STATUS
(10107	30	95.70	2	2871.00	2/24/2003 0:00	Shipped
•	I 10121	34	81.35	5	2765.90	5/7/2003 0:00	Shipped
:	10134	41	94.74	2	3884.34	7/1/2003 0:00	Shipped
;	3 10145	45	83.26	6	3746.70	8/25/2003 0:00	Shipped
•	10159	49	100.00	14	5205.27	10/10/2003 0:00	Shipped

5 rows × 25 columns

4

24 DEALSIZE

memory usage: 551.5+ KB

```
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):
 #
    Column
                      Non-Null Count
                                      Dtype
---
                      -----
    -----
                                      ----
 0
    ORDERNUMBER
                      2823 non-null
                                      int64
 1
    QUANTITYORDERED
                      2823 non-null
                                      int64
 2
    PRICEEACH
                      2823 non-null
                                      float64
 3
    ORDERLINENUMBER
                      2823 non-null
                                      int64
                                      float64
 4
    SALES
                      2823 non-null
 5
    ORDERDATE
                      2823 non-null
                                      object
 6
    STATUS
                      2823 non-null
                                      object
 7
                                      int64
    QTR_ID
                      2823 non-null
 8
    MONTH ID
                      2823 non-null
                                      int64
 9
    YEAR ID
                      2823 non-null
                                      int64
 10 PRODUCTLINE
                      2823 non-null
                                      object
 11 MSRP
                      2823 non-null
                                      int64
 12 PRODUCTCODE
                      2823 non-null
                                      object
                                      object
 13 CUSTOMERNAME
                      2823 non-null
 14 PHONE
                      2823 non-null
                                      object
15 ADDRESSLINE1
                                      object
                      2823 non-null
                      302 non-null
                                      object
 16 ADDRESSLINE2
 17 CITY
                      2823 non-null
                                      object
18 STATE
                                      object
                      1337 non-null
 19 POSTALCODE
                      2747 non-null
                                      object
 20 COUNTRY
                      2823 non-null
                                      object
 21 TERRITORY
                      1749 non-null
                                      object
 22 CONTACTLASTNAME
                      2823 non-null
                                      object
 23 CONTACTFIRSTNAME 2823 non-null
                                      object
```

dtypes: float64(2), int64(7), object(16)

<class 'pandas.core.frame.DataFrame'>

```
In [5]: #Columns to Remove
to_drop = ['ADDRESSLINE1', 'ADDRESSLINE2', 'STATE', 'POSTALCODE', 'PHONE']
df = df.drop(to_drop, axis=1)
```

object

2823 non-null

```
In [6]: #Check for null values
         df.isnull().sum()
 Out[6]: ORDERNUMBER
                                  0
         QUANTITYORDERED
                                  0
                                  0
          PRICEEACH
                                  0
         ORDERLINENUMBER
         SALES
                                  0
         ORDERDATE
                                  0
                                  0
         STATUS
          QTR_ID
                                  0
                                  0
         MONTH ID
          YEAR ID
                                  0
                                  0
          PRODUCTLINE
         MSRP
                                  0
                                  0
          PRODUCTCODE
                                  0
         CUSTOMERNAME
         CITY
                                  0
         COUNTRY
                                  0
                               1074
         TERRITORY
         CONTACTLASTNAME
                                  0
         CONTACTFIRSTNAME
                                  0
                                  0
         DEALSIZE
          dtype: int64
In [25]:
         df.dtypes
Out[25]: ORDERNUMBER
                                 int64
         QUANTITYORDERED
                                 int64
          PRICEEACH
                               float64
         ORDERLINENUMBER
                                 int64
                               float64
         SALES
         ORDERDATE
                                object
         STATUS
                                object
         QTR_ID
                                 int64
         MONTH_ID
                                 int64
          YEAR_ID
                                 int64
          PRODUCTLINE
                                object
         MSRP
                                 int64
         PRODUCTCODE
                                object
         CUSTOMERNAME
                                object
          PHONE
                                object
                                object
          ADDRESSLINE1
         ADDRESSLINE2
                                object
                                object
         CITY
         STATE
                                object
         POSTALCODE
                                object
         COUNTRY
                                object
                                object
          TERRITORY
         CONTACTLASTNAME
                                object
         CONTACTFIRSTNAME
                                object
```

DEALSIZE

dtype: object

object

```
df['ORDERDATE'] = pd.to_datetime(df['ORDERDATE'])
In [27]: | #We need to create some features in order to create cluseters
         #Recency: Number of days between customer's latest order and today's date
         #Frequency : Number of purchases by the customers
         #MonetaryValue : Revenue generated by the customers
         import datetime as dt
         snapshot date = df['ORDERDATE'].max() + dt.timedelta(days = 1)
         df RFM = df.groupby(['CUSTOMERNAME']).agg({
              'ORDERDATE' : lambda x : (snapshot_date - x.max()).days,
              'ORDERNUMBER' : 'count',
             'SALES' : 'sum'
         })
         #Rename the columns
         df_RFM.rename(columns = {
             'ORDERDATE' : 'Recency',
              'ORDERNUMBER' : 'Frequency',
             'SALES' : 'MonetaryValue'
         }, inplace=True)
```

Out[28]:

In [28]:

Recency Frequency MonetaryValue

CUSTOMERNAME

df RFM.head()

In [26]: #ORDERDATE Should be in date time

7			
AV Stores, Co.	196	51	157807.81
Alpha Cognac	65	20	70488.44
Amica Models & Co.	265	26	94117.26
Anna's Decorations, Ltd	84	46	153996.13
Atelier graphique	188	7	24179.96

```
In [29]: # Divide into segments
    # We create 4 quartile ranges
    df_RFM['M'] = pd.qcut(df_RFM['MonetaryValue'], q = 4, labels = range(1,5))
    df_RFM['R'] = pd.qcut(df_RFM['Recency'], q = 4, labels = list(range(4,0,-1)))
    df_RFM['F'] = pd.qcut(df_RFM['Frequency'], q = 4, labels = range(1,5))

    df_RFM.head()
```

Out[29]:

	Recency	Frequency	MonetaryValue	M	R	F
CUSTOMERNAME						
AV Stores, Co.	196	51	157807.81	4	2	4
Alpha Cognac	65	20	70488.44	2	4	2
Amica Models & Co.	265	26	94117.26	3	1	2
Anna's Decorations, Ltd	84	46	153996.13	4	3	4
Atelier graphique	188	7	24179.96	1	2	1

```
In [30]: #Create another column for RFM score
df_RFM['RFM_Score'] = df_RFM[['R', 'M', 'F']].sum(axis=1)
df_RFM.head()
```

Out[30]:

	Recency	Frequency	MonetaryValue	M	R	F	RFM_Score
CUSTOMERNAME							
AV Stores, Co.	196	51	157807.81	4	2	4	10
Alpha Cognac	65	20	70488.44	2	4	2	8
Amica Models & Co.	265	26	94117.26	3	1	2	6
Anna's Decorations, Ltd	84	46	153996.13	4	3	4	11
Atelier graphique	188	7	24179.96	1	2	1	4

```
In [31]: def rfm_level(df):
    if bool(df['RFM_Score'] >= 10):
        return 'High Value Customer'

    elif bool(df['RFM_Score'] < 10) and bool(df['RFM_Score'] >= 6):
        return 'Mid Value Customer'
    else:
        return 'Low Value Customer'
    df_RFM['RFM_Level'] = df_RFM.apply(rfm_level, axis = 1)
    df_RFM.head()
```

Out[31]:

	Recency	Frequency	MonetaryValue	M	R	F	RFM_Score	RFM_Level
CUSTOMERNAME								
AV Stores, Co.	196	51	157807.81	4	2	4	10	High Value Customer
Alpha Cognac	65	20	70488.44	2	4	2	8	Mid Value Customer
Amica Models & Co.	265	26	94117.26	3	1	2	6	Mid Value Customer
Anna's Decorations, Ltd	84	46	153996.13	4	3	4	11	High Value Customer
Atelier graphique	188	7	24179.96	1	2	1	4	Low Value Customer

```
In [32]: # Time to perform KMeans
data = df_RFM[['Recency', 'Frequency', 'MonetaryValue']]
data.head()
```

Out[32]:

Recency	Frequency	N	lone	tary	Va	lue)
---------	-----------	---	------	------	----	-----	---

CUSTOMERNAME

AV Stores, Co.	196	51	157807.81
Alpha Cognac	65	20	70488.44
Amica Models & Co.	265	26	94117.26
Anna's Decorations, Ltd	84	46	153996.13
Atelier graphique	188	7	24179.96

Out[33]:

	Recency	Frequency	Monetary	√Value
--	---------	-----------	----------	--------

CUSTOMERNAME

AV Stores, Co.	5.278115	3.931826	11.969133
Alpha Cognac	4.174387	2.995732	11.163204
Amica Models & Co.	5.579730	3.258097	11.452297
Anna's Decorations, Ltd	4.430817	3.828641	11.944683
Atelier graphique	5.236442	1.945910	10.093279

In [34]: #Standardization from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(data_log) data_normalized = scaler.transform(data_log) data_normalized = pd.DataFrame(data_normalized, index = data_log.index, columns=data_log data_normalized.describe().round(2)

Out[34]:

	Recency	Frequency	MonetaryValue
count	92.00	92.00	92.00
mean	0.00	-0.00	0.00
std	1.01	1.01	1.01
min	-3.51	-3.67	- 3.82
25%	-0.24	-0.41	-0.39
50%	0.37	0.06	-0.04
75%	0.53	0.45	0.52
max	1.12	4.03	3.92

```
In [35]: #Fit KMeans and use elbow method to choose the number of clusters
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans

sse = {}

for k in range(1, 21):
    kmeans = KMeans(n_clusters = k, random_state = 1)
    kmeans.fit(data_normalized)
    sse[k] = kmeans.inertia_
```

C:\Users\Lenovo\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_N UM_THREADS=1.

warnings.warn(

```
In [36]: plt.figure(figsize=(10,6))
   plt.title('The Elbow Method')

plt.xlabel('K')
   plt.ylabel('SSE')
   plt.style.use('ggplot')

sns.pointplot(x=list(sse.keys()), y = list(sse.values()))
   plt.text(4.5, 60, "Largest Angle", bbox = dict(facecolor = 'lightgreen', alpha = 0.5))
   plt.show()
```



```
In [37]: # 5 number of clusters seems good
    kmeans = KMeans(n_clusters=5, random_state=1)
    kmeans.fit(data_normalized)
    cluster_labels = kmeans.labels_

    data_rfm = data.assign(Cluster = cluster_labels)
    data_rfm.head()
```

Recency Frequency MonetaryValue Cluster

Out[37]:

	-		-	
CUSTOMERNAME				
AV Stores, Co.	196	51	157807.81	3
Alpha Cognac	65	20	70488.44	0
Amica Models & Co.	265	26	94117.26	0
Anna's Decorations, Ltd	84	46	153996.13	3
Atelier graphique	188	7	24179.96	2

In []: