2 – Linguagens Regulares

Aula 03

Sumário

Capítulo 2 – Linguagens Regulares

- 2.1. Definição
 - 2.1.1. Linguagem Tipo 3
 - 2.1.2. Sistema de estados finitos
- 2.2. Formalismos
 - 2.2.1. Autômatos
 - a. Autômato Finito Determinístico (AFD)
 - b. Autômato Finito Não-Determinístico
 - c. Autômato Finito com Movimentos Vazios
 - d. Equivalência entre autômatos
 - e. Minimização de autômatos
 - 2.2.2. Expressão Regular
 - 2.2.3. Gramática Regular

Sumário

Capítulo 2 – Linguagens Regulares

2.1. Definição

2.1.1. Linguagem Tipo 3

- 2.1.2. Sistema de estados finitos
- 2.2. Formalismos
 - 2.2.1. Autômatos
 - a. Autômato Finito Determinístico (AFD)
 - Estrutura
 - Função de transição
 - Definição matemática
 - Construção de um AFD
 - Tabela de transição
 - Funcionamento de um autômato (AFD)
 - Condições de parada
 - Função Programa estendida
 - Autômatos equivalentes

Hieraquia Chomsky

Retomando

- Além das restrições da linguagem tipo 2, 1, 0
- Deve ser Linear à direita ou à esquerda

```
A \rightarrow aB \mid a

B \rightarrow Ba \mid a

A \rightarrow ABa, Não pode
```

- Um facilitador nessa classificação da linguagem tipo 3 é o Autômato
- DEFINIÇÃO: L é uma linguagem regular, se e somente se, existe pelo menos um autômato finito determinístico que aceita L

- Estudaremos três abordagens (Formalismos):
 - 1. Autômato finito
 - 2. Expressão regular
 - 3. Gramática regular

- Estudaremos três abordagens (Formalismos):
 - 1. Autômato finito
 - Formalismo operacional ou reconhecedor
 - Basicamente um sistema de estados finitos
 - 2. Expressão regular
 - Formalismo denotacional (funcional) ou gerador
 - Defindas a partir de três elementos:
 - Conjuntos básicos, Concatenação, União
 - 3. Gramática regular
 - Formalismo axiomático ou gerador
 - Gramática com restrições da forma das regras de produção

- Característica
 - Classe de linguagem mais simples (hierarquia Chmosky)
 - Utilizado principalmente na Análise Léxica
 - Algoritmos de reconhecimento (autômato), geração e conversão tem:
 - pouca complexidade
 - facil implementação
 - grande eficiencia

- Característica
 - Classe de linguagem mais simples (hierarquia Chmosky)
 - Utilizado principalmente na Análise Léxica
 - Algoritmos de reconhecimento (autômato), geração e conversão tem:
 - pouca complexidade
 - facil implementação
 - grande eficiencia
 - Qualquer autômato finito é igualmente eficiente
 - Qualquer solução é ótima
 - A menos que haja redundância de estados

- Característica
 - Classe de linguagem mais simples (hierarquia Chmosky)
 - Utilizado principalmente na Análise Léxica
 - Algoritmos de reconhecimento (autômato), geração e conversão tem:
 - pouca complexidade
 - facil implementação
 - grande eficiencia
 - Qualquer autômato finito é igualmente eficiente
 - Qualquer solução é ótima
 - A menos que haja redundância de estados
 - Caso exista, elimina-se com o: Autômato finito mínimo

- Característica
 - Limitações de expressividade

Por exemplo:

- Não contempla palavras de dublo balanceamento
 - { wⁿ wⁿ | w é toda palavra em {a,b} }
 - ((()))

- Característica
 - Limitações de expressividade

Por exemplo:

- Não contempla palavras de dublo balanceamento
 - { wⁿ wⁿ | w é toda palavra em {a,b} }
 - ((()))
 - Linguagens de programação em geral são não-regulares

- Característica
 - Limitações de expressividade
 - Por exemplo:
 - Não contempla palavras de dublo balanceamento
 - { wⁿ wⁿ | w é toda palavra em {a,b} }
 - ((()))
 - Linguagens de programação em geral são não-regulares
 - Se um problema é não-regular mas tem uma solução regular
 - Pode-se considerar para este problema
 - As propriedade da classe regular
 - Eficiência e simplicidade dos algoritmos regulares

Sumário

Capítulo 2 – Linguagens Regulares

- 2.1. Definição
 - 2.1.1. Linguagem Tipo 3
 - 2.1.2. Sistema de estados finitos
- 2.2. Formalismos
 - 2.2.1. Autômatos
 - a. Autômato Finito Determinístico (AFD)
 - Estrutura
 - Função de transição
 - Definição matemática
 - Construção de um AFD
 - Tabela de transição
 - Funcionamento de um autômato (AFD)
 - Condições de parada
 - Função Programa estendida
 - Autômatos equivalentes

Sistema de estados finitos

- Modelo matemático de sistema com entradas e saídas discretas
- Composto por entrada e estados
- Não tem memória

Sistema de estados finitos

- Modelo matemático de sistema com entradas e saídas discretas
- Composto por entrada e estados
- Não tem memória
- Número finito e predefinido de estados
- A máquina só pode estar em um estado por vez

Sistema de estados finitos

- Modelo matemático de sistema com entradas e saídas discretas
- Composto por entrada e estados
- Não tem memória
- Número finito e predefinido de estados
- A máquina só pode estar em um estado por vez

Exemplos:

- Elevador
 - Estados:
 - guarda o "andar corrente"
 - e "direção de movimento"
 - Entrada:
 - lista de requisições pendentes

Sumário

Capítulo 2 – Linguagens Regulares

- 2.1. Definição
 - 2.1.1. Linguagem Tipo 3
 - 2.1.2. Sistema de estados finitos

2.2. Formalismos

- 2.2.1. Autômatos
 - a. Autômato Finito Determinístico (AFD)
 - Estrutura
 - Função de transição
 - Definição matemática
 - Construção de um AFD
 - Tabela de transição
 - Funcionamento de um autômato (AFD)
 - Condições de parada
 - Função Programa estendida
 - Autômatos equivalentes

Autômato Finito

- É um sistema de estados finitos
 - Estados: Numero finito e predefinido
 - Entrada: bem definida

Autômato Finito

- É um sistema de estados finitos
 - Estados: Numero finito e predefinido
 - Entrada: bem definida
- Tipos: (são todos equivalentes)
 - Determinístico
 - Não determinístico
 - Com movimentos vazios

Autômato Finito

- É um sistema de estados finitos
 - Estados: Numero finito e predefinido
 - Entrada: bem definida
- Tipos: (são todos equivalentes)
 - Determinístico
 - A partir de um determinado estado e do simbolo lido
 - Pode assumir um único estado
 - Não determinístico
 - A partir de um determinado estado e do simbolo lido
 - Pode assumir um conjunto de estado
 - Com movimentos vazios
 - A partir de um determinado estado e sem ler um simbolo
 - Pode assumir um conjunto de estado

- É composto por:
 - Fita
 - Unidade de controle
 - Programa, função programa ou transição

- É composto por:
 - Fita
 - Dispositivo de entrada
 - Contém a informação a ser processada
 - Unidade de controle
 - Programa, função programa ou transição

- É composto por:
 - Fita:
 - Dispositivo de entrada
 - Contém a informação a ser processada
 - Unidade de controle
 - Reflete o estado corrente da máquina
 - Possui unidade leitura, cabeça da fita
 - Acessa uma célula da fita de cada vez
 - Movimenta-se exclusivamente para direita
 - Programa, função programa ou transição

- É composto por:
 - Fita:
 - Dispositivo de entrada
 - Contém a informação a ser processada
 - Unidade de controle
 - Reflete o estado corrente da máquina
 - Possui unidade leitura, cabeça da fita
 - Acessa uma célula da fita de cada vez
 - Movimenta-se exclusivamente para direita
 - Programa, função programa ou transição
 - Comanda as leituras
 - Define o estado da máquina

- Fita
 - Dividida em celulas
 - Cada célula armazena um simbolo
 - Os simbolos pertencem a um alfabeto
 - NÃO é possível gravar na fita
 - A palavra a ser processada ocupa toda a fita

а	а	b	С	С	b	а	а
1	I .	l .	l .	I .	I .		

- Unidade de controle
 - Número finito de estados
 - Leitura
 - Lê o simbolo de cada célula
 - Lê apenas um por vez
 - Move a cabeça sempre pra direita
 - Posição inicial da cabeça: é a célula mais a esquerda

а	а	b	С	С	b	а	а
---	---	---	---	---	---	---	---

- Função de transição
 - A partir do estado corrente e do simbolo lido
 - Ela define o novo estado do autômato
 - Ex:

$$\delta(q1, b) = q4$$

- Função de transição
 - A partir do estado corrente e do simbolo lido
 - Ela define o novo estado do autômato
 - Ex: $\delta(q1, b) = q4$
 - Lê-se:
 - Se o estado atual é o q1 e o simbolo lido foi "b" vá para o estado q4

- Função de transição
 - A partir do estado corrente e do simbolo lido
 - Ela define o novo estado do autômato
 - Ex:

$$\delta(q1, b) = q4$$

- Lê-se:
- Se o estado atual é o q1 e o simbolo lido foi "b" vá para o estado q4

$$\delta(p, a) = q$$

- Se o estado atual é o p e o simbolo lido foi "b" vá para o estado q

- Exemplo de Automato finito em diagrama
- Este automato tem apenas uma função de transição

$$\delta(p, a) = q$$

Definição Matemática:

$$M = (\Sigma, Q, \delta, q0, F)$$

- Σ, é um alfabeto
- Q, é o conjunto de estados possíveis do automato (finito)
- δ, é uma função de transição

$$\delta : Qx\Sigma \to Q$$

- q0, estado inicial
- F, subconjunto de Q, conjunto dos estados finais

- Por convenção
 - O estado inicial

- Os estados finais

- Por convenção
 - O estado inicial

Os estados finais

- Função de transição por tabela
 - Ex: $\delta(p, a) = q$

δ	a	
р	q	
q		

 Exemplo: Construa um autômato finito determinístico que aceite qualquer palavra do no alfabeto {a, b} que possua como subpalavra aa ou bb

- Exemplo: Construa um autômato finito determinístico que aceite qualquer palavra do no alfabeto {a, b} que possua como subpalavra *aa* ou *bb*
- Ou seja, queremos:

L = { w | w possui **aa** ou **bb** como subpalavra }

- Exemplo: Construa um autômato finito determinístico que aceite qualquer palavra do no alfabeto {a, b} que possua como subpalavra *aa* ou *bb*
- Ou seja, queremos:

L = { w | w possui *aa* ou *bb* como subpalavra }

Autômato finito

• Autômato finito, definição:

$$M = (\Sigma, Q, \delta, q0, F)$$

• M1 = $({a,b}, {q0,q1,q2,qf}, \delta, q0, {qf})$

δ	a	b
q0	q1	q2
q1	qf	q2
q2	q1	qf
qf	qf	qf

Sumário

Capítulo 2 – Linguagens Regulares

- 2.1. Definição
 - 2.1.1. Linguagem Tipo 3
 - 2.1.2. Sistema de estados finitos
- 2.2. Formalismos
 - 2.2.1. Autômatos

a. Autômato Finito Determinístico (AFD)

- Estrutura
- Função de transição
- Definição matemática
- Construção de um AFD
- Tabela de transição
- Funcionamento de um autômato (AFD)
- Condições de parada
- Função Programa estendida
- Autômatos equivalentes

- Estado q0, leu **a**, para onde vai?
- $\delta(q0, a) = ?$

- Estado q0, leu a, para onde vai? R: Para estado q1
- $\delta(q0, a) = q1$

- Estado q1, leu b, para onde vai?
- $\delta(q1, b) = ?$

- Estado q1, leu b, para onde vai? R: Para estado q2
- $\delta(q1, b) = q2$

- Estado q2, leu **b**, para onde vai?
- $\delta(q2, b) = ?$

- Estado q2, leu b, para onde vai? R: Para estado qf
- $\delta(q2, b) = qf$

- Estado q2, leu b, para onde vai? R: Para estado qf
- $\delta(q2, b) = qf$ ACABOU?

- Estado q2, leu **b**, para onde vai? R: Para estado qf
- $\delta(q2, b) = qf$ ACABOU?
- NÃO. Só aceita quando:
 - Está num estado final
 - A entrada foi toda processada

- Estado qf, leu **a**, para onde vai?
- $\delta(qf, a) = ?$

- Estado qf, leu a, para onde vai? R: Para estado qf
- $\delta(qf, a) = qf$

- Estado qf, leu a, para onde vai? R: Para estado qf
- $\delta(qf, a) = qf$
- FIM!
- A palavra abba foi aceita.
- Logo pode-se dizer que ela pertence a Linguagem L

- Condições de parada
 - Um autômato recebe uma entrada w, ela pode ser:
 - Aceita
 - Rejeitada

- Condições de parada
 - Um autômato recebe uma entrada w, ela pode ser:
 - Aceita
 - Após processar o último símbolo, assume um estado final

a b b a

- Condições de parada
 - Um autômato recebe uma entrada w, ela pode ser:
 - Aceita
 - Após processar o último símbolo, assume um estado final
 - Rejeitada
 - Após processar o último símbolo, assume um estado não final

a b b a

- Condições de parada
 - Um autômato recebe uma entrada w, ela pode ser:
 - Aceita
 - Após processar o último símbolo, assume um estado final
 - Rejeitada
 - Após processar o último símbolo, assume um estado não final
 - Função de transição indefinida para algum parametro (estado e simbolo)

a b c a

Não sabe o que fazer ao ler o simbolo "c"

• E agora, como fazer um autômato?

- E agora, como fazer um autômato?
- Não tem regra
- Força bruta, tentativa e erro

- E agora, como fazer um autômato?
- Não tem regra
- Força bruta, tentativa e erro
- Lembrando que:
 - Não tem memória
- Dicas:
 - o estado atual pode te ajudar e funcionar como memória.
 - Escreva algumas sentenças que serão aceitas

- Exercício:
 - $L = \{ w \mid w \text{ possui um número par de } \boldsymbol{a} \in \boldsymbol{b} \}$

- Exercício:
 - $L = \{ w \mid w \text{ possui um número par de } \boldsymbol{a} \in \boldsymbol{b} \}$
 - Algumas sentenças
 - aa <aceita>
 - abba <aceita>
 - abab <aceita>
 - abbaa <rejeitada>

- Exercício:
 - $L = \{ w \mid w \text{ possui um número par de } \boldsymbol{a} \in \boldsymbol{b} \}$
 - Algumas sentenças
 - aa <aceita>
 - abba <aceita>
 - abab <aceita>
 - abbaa <rejeitada>

- Exercício:
 - $L = \{ w \mid w \text{ possui um número par de } \boldsymbol{a} \in \boldsymbol{b} \}$

Numero impar de **a** e **b**

Logo, pra voltar ao estado final terá que passar por outros 2 **a** e **b**

Exercícios

- a) $\{w \in \{0,1\}^* \mid w \text{ tem tamanho 3}\}$
- b) $\{w \in \{0,1\}^* \mid w \text{ tem tamanho maior que 3}\}$
- c) $\{w \in \{0,1\}^* \mid w \text{ tem tamanho múltiplo de 3}\}$
- d) $\{w \in \{0,1\}^* \mid cada\ 0\ de\ w\ \'e\ imediatamente\ seguido\ de,\ no\ mínimo\ dois\ 1's\}$
- e) $\{w \in \{0,1\}^* \mid w \text{ NÃO contém 000 nem 111}\}$
- f) $\{w \in \{0,1\}^* \mid \text{ os últimos três símbolos de } w \text{ NÃO são } 000\}$
- g) $\{w \in \{a,b\}^* \mid w \text{ não contém ab}\}$
- h) $\{w \in \{a,b\}^* \mid w \text{ tem tamanho multiplo de 3 não contém ab}\}$

Exercícios

e) $\{w \in \{0,1\}^* \mid w \text{ NÃO contém 000 nem 111}\}$

f) $\{w \in \{0,1\}^* \mid \text{ os últimos três símbolos de } w \text{ NÃO são 000}\}$

