OMRON ETHERNET Direct DAServer User's Guide

Ver 1.x Rev 1.4 DR 170 14

P.O. Box 38
FIN-00371 Helsinki Finland tel. int. + 358 9 5404940 fax int. + 358 9 5413541 www.klinkmann.com

Contents

Before You Begin	2
About This User Guide	2
Introduction	2
Overview	2
Communication Protocols	3
Application Communications Protocols	3
FINS Message Communication	
Accessing Items via the DAServer	
Features	
Demo Mode	6
Before starting the OMRON Ethernet DAServer	
Preparing the Hardware to be used with OMRON Ethernet DAServer	
Ethernet Unit Configuration Example for CS1 PLC	9
Example program for sending "unsolicited" data from PLC	14
Configuration	17
Getting Started Quickly with the DAServer	
Configuring the DAServer	
DASOmronEth Hierarchy in the DAServer Manager	
Enabling Software License Key for DASOmronEth	
Configuring Device Group Definitions	
Configuring Device Item Definitions	
Hot Configuration	
Item Names	
Item Name General Format	35
CS1/CJ1 PLCs	38
C200HX/C200HG/C200HE PLCs	40
CV-series PLCs	41
C/CPM2x PLCs	44
CQM1 PLCs	46
DAServer Standard System Items	
DAServer Global System Item	
DAServer Device-Specific System Items	
DAServer Device-Group-Specific System Items	50
Generic OPC Syntax	
Troubleshooting	
Monitoring Connectivity Status with the PLC	53
Monitoring the Status of DAS Conversations	
Using DDEStatus and IOStatus in Excel	54
Reading Values from the DAServer into Excel	
Writing Values to the DAServer from Excel	
Error Messages and Codes	
Server-Specific Error Codes	
FINS Response Codes	
Reference	
DAServer Architecture	
DAServers	
Plug-ins	

Component Environments	67
------------------------	----

Before You Begin

About This User Guide

This user's guide describes the user interface and functions of the KLINKMANN OMRON Ethernet Direct DAServer. It also provides you with the step-by-step procedures on how to configure and use the OMRON Ethernet Direct DAServer after it is installed.

The OMRON Ethernet Direct DAServer user's guide is organized in the following fashion:

- Contents
- **Introduction**: contains overview information about the OMRON Ethernet Direct DAServer and the environment in which it works.
- **Configuratio**n: contains a detailed description of the user interface elements of this DAServer in addition to its functionality.
- Item Names: describes the item naming conventions for targeted devices.
- **Troubleshooting**: provides information about error messages, codes, and conditions displayed by the OMRON Ethernet Direct DAServer.
- **Reference**: describes the DAServer architecture in general.
- Index

You can view this document on-line or you can print it, in part or whole, by using the Adobe Acrobat Reader's print facility.

CHAPTER 1

Introduction

This chapter provides you with an overview of the KLINKMANN OMRON Ethernet Direct DAServer, including the application- and bus-level communications protocols, item naming conventions and DAServer features.

Contents

- Overview
- Communications Protocols
- Accessing Items via the DAServer
- Features
- Demo Mode
- Network Environment and Conditions

Overview

The KLINKMANN OMRON Ethernet Direct DAServer (hereafter referred to as the "OMRON Ethernet DAServer" or "DASOmronEth" throughout the remainder of this user's guide) is a Microsoft ® Windows ® application program that acts as a FINS message communications protocol server. It allows other Windows application programs access to data from OMRON PLCs (also referred to as devices) over the OMRON Ethernet FA (Factory Automation) network.

The OMRON Ethernet Direct DAServer requires an Ethernet card and TCP/IP protocol installed on the computer to communicate with the Ethernet network. The OMRON Ethernet Direct DAServer can access to data from Controllers connected to the *Ethernet System* directly (with *Ethernet Unit* installed) or from Controllers interconnected to *Ethernet System* through SYSMAC LINK network or any other OMRON FA network (through *PC Gateway* - an OMRON Controller which has multiple Communications Units mounted, including the *Ethernet Unit*, and therefore that belongs to two networks and can thus function as an interface between them). The OMRON Ethernet Direct DAServer supports the Controller Memory Areas accessible by *FINS commands*.

No additions to Controller's user program are needed if OMRON Ethernet Direct DAServer is used in a poll (normal) mode, i.e. the DAServer sends read or write FINS command to Controller and Controller responds with corresponding response. The OMRON Ethernet Direct DAServer supports also the possibility to receive "unsolicited" data from Controller – in this case some additions in Controller program are needed. The DAServer "slave" mode can be established – at communication start-up DAServer requests data one time and after it - only unsolicited data can be received from Controller. At same time the writing of new values to Controller is still possible.

The OMRON Ethernet Direct DAServer can access to data from CS1/CJ1, CV-series and C200HX/C200HG/C200HE PLCs (directly from Ethernet network or inter-networked from other OMRON FA networks) as well as from C-series and CQM1 PLCs (only internetworked from other OMRON FA networks).

While the OMRON Ethernet Direct DAServer is primarily intended for use with Wonderware InTouch ® (Version 7.11 Patch 02 and later), it may be used by any

Microsoft Windows program capable of acting as a DDE, SuiteLink ™ or OPC client that can also coexist with FactorySuite ™ 2000 and greater.

Communication Protocols

The OMRON Ethernet Direct DAServer communicates with clients and PLCs using the following different communications protocols:

- Application communications protocols such as OPC, DDE and SuiteLink to communicate with clients located on either local or remote nodes.
- FINS message communications protocol to communicate with the Omron controllers over FA (Factory Automation) networks.

Important! This DAServer is compliant with the OPC Data Access (DA) 2.05 specification.

For more information about the DAServer architecture, see the Reference section.

Application Communications Protocols

The DAServer utilizes the following application communications protocols to communicate with the clients.

OPC

OPC (OLE for Process Control) is a non-proprietary set of standard interfaces based upon Microsoft's OLE/COM technology. This standard makes possible interoperability between automation/control applications, field systems/devices and business/office applications.

Avoiding the traditional requirement of software/application developers to write custom drivers to exchange data with field devices, OPC defines a common, high-performance interface that permits this work to be done once, and then easily reused by HMI, SCADA, control and custom applications. Over the network, OPC uses DCOM (Distributed COM) for remote communications.

SuiteLink

SuiteLink uses a TCP/IP-based protocol and is designed specifically to meet industrial needs such as data integrity, high throughput, and easier diagnostics. This TCP/IP standard is supported on Windows NT and Windows NT-technology-based operating systems (for example, Windows NT, Windows 2000, and Windows XP). SuiteLink is not a replacement for DDE, FastDDE, or NetDDE. The protocol used between a client and a server depends on your network connections and configurations. SuiteLink provides the following features:

- Value Time Quality (VTQ) places a time stamp and quality indicator on all data values delivered to VTQ-aware clients.
- Extensive diagnostics of the data throughput, server loading, computer resource consumption, and network transport are made accessible through the operating system's performance monitor. This feature is critical for the operation and maintenance of distributed industrial networks.
- Consistent high data volumes can be maintained between applications regardless if the applications are on a single node or distributed over a large node count.
- The network transport protocol is TCP/IP using Microsoft's standard WinSock interface.

FastDDE

FastDDE provides a means of packing many proprietary Wonderware Dynamic Data Exchange messages into a single Microsoft DDE message. This packing improves efficiency and performance by reducing the total number of DDE transactions required between a client and a server.

Although Wonderware's FastDDE has extended the usefulness of DDE for our industry, this extension is being pushed to its performance constraints in distributed environments.

DDE

DDE is a communications protocol developed by Microsoft to allow applications in the Windows environment to send/receive data and instructions to/from each other. It implements a Client/Server relationship between two concurrently running applications. The server application provides the data and accepts requests from any other application interested in its data. Requesting applications are called clients. Some applications such as InTouch and Microsoft Excel can simultaneously be both a client and a server.

NetDDE

NetDDE is a communications protocol that extends the standard DDE functionality to include communications over local area networks and through serial ports. Network extensions are available to allow DDE links between applications running on different computers connected via networks or modems.

For example, NetDDE supports DDE between applications running on IBM-compatible computers connected via LAN or modem, and DDE-aware applications running on non-IBM-compatible computers under operating environments such as VMS and UNIX.

FINS Message Communication

The FINS Messages system is developed by OMRON for its Factory Automation networks. FINS Communications allow PLCs on these networks to be controlled by reading and/or writing memory area data without the need to program these operations into the controller's user program.

Accessing Items via the DAServer

The method for accessing items through the DAServer depends on the communications protocol being used.

OPC

In the case of OPC communications, the protocol addresses an element of data in a conversation with six characteristics: node name, program name, group name, device group, link name, and item name.

- The node name (required for remote access) and device group are optional.
- A fully qualified OPC Item name (ItemID) is composed of the link name and item name.
- All other characteristics are specified through separate DAServer means.

To access an OPC item, the OPC client needs to connect to the DAServer (either inprocess or out-of-process) and create an OPC group defining the data-acquisition properties for the collection of items to be added. OPC groups can be either public or private. Public OPC groups are shared across multiple clients, whereas private OPC groups are local to a single client. Optionally, a device group, which indicates the access path to the items for read/write, can be specified from the DAServer.

The following briefly describes each characteristic of the OPC protocol:

- **node name**: Computer (host) name identifying a specific node on the network (for Remote Access ONLY).
- **program name**: The registered OPC server name uniquely identifying a specific server (ProgID). For this DAServer, the program name is **ArchestrA.OmronEth.1**.
- **group name**: The OPC group created from the client for organizing a collection of items logically with the same data acquisition properties between the client and the server, such as update rate.
- device group: Meaningful names configured in the DAServer under a specific controller for the common custom attributes between the DAServer and the device, such as update interval. If not specified from the client, the default device group using the global configuration attribute values from the DAServer is assumed. Functionally, a device group is equivalent to an access path (optional).
- **link name**: The set of hierarchy node names, representing the specific devices on a communications path link from the hierarchy root to a specific controller as configured for this DAServer under the DAServer Manager, separated by delimiters.
- item name: A specific data element, the leaf of the hierarchy tree of this DAServer, within the specified group. For example, when using this DAServer, an item can be a relay, timer, counter, register, and so on, in the controller.

DDE/SuiteLink

In the case of DDE/SuiteLink communications, the protocol addresses an element of data in a conversation that uses a four-part naming convention that includes the node name, application name, topic name, and item name. The fully qualified DDE/SuiteLink naming convention includes all four parts, although the node name part (required for remote access only) is optional. The following briefly describes each portion of this naming convention:

- **node name**: Computer (host) name identifying a specific node on the network (for Remote Access ONLY).
- **application name**: The name of the Windows program (this DAServer) that will be accessing the data element. In the case of data coming from or going to the Modicon devices via the DDE/SuiteLink PlugIn of this DAServer, the application name portion of the address is **DASOmronEth**.

• **topic name**: Meaningful names are configured in the DAServer to identify specific devices. These names are then used as the topic names in all conversations with that device. For example, **OmronPLC**. Topic name maps to a device group defined in the DAServer.

Note: You can define multiple device-group (topic) names for the same device (PLC) to poll different points at different rates.

• item name: A specific data element within the specified topic. For example, when using this DAServer, an item can be a relay, timer, counter, register, and so on, in the PLC. **Note:** The term "point" is used interchangeably with the term "item" in this user's guide. For more information on item/point names, see the Item Names section of this user's guide.

Features

The KLINKMANN OMRON Ethernet Direct DAServer provides the following features:

- The ability to communicate over multiple application-level protocols at the same time.
- The ability to add new application-level protocols on the fly.
- The ability to be configured remotely.
- New, robust diagnostic abilities.

For more in-depth information on the DAServer architecture, see the *Reference* section.

Demo Mode

Demo Mode allows you to test the functionality of the OMRON Ethernet Direct DAServer (with all features enabled) for 60 minutes. To use OMRON Ethernet Direct DAServer in unlimited mode, the **HASP key** or **Software License Key** is needed.

The **HASP** key is the USB or parallel key (dongle) to be installed into PC USB or parallel port and needs the HASP Device Driver to be installed on same computer. The **Software License Key** is16-character alphanumeric "computer-dependent" string, provided after purchasing the OMRON Ethernet Direct DAServer (for more information, see "**Enabling Software License Key for DASOmronEth**" section later in this manual.

Without HASP key installed or Software License Key entered, the OMRON Ethernet Direct DAServer will run 1-hour in **demo mode** with all features supported - after 1-hour DAServer stops the updating read/write on all device items and will reject the addition of any new items, but connected Clients can continue to function normally (for example, you can still add or remove an item, but its value is not updated).

After purchasing the OMRON Ethernet Direct DAServer, the appropriate HASP key or Software License Key is provided and no re-installation of DASOmronEth is needed.

Notes:

1. Unlike the previous OMRON Ethernet Direct DAServer versions (up to v1.18), the HASP Device Driver should be installed separately – as its installation is not included and not performed during the OMRON Ethernet Direct DAServer setup. The HASP Device Driver installation ("HASP Device Driver v4.99 for MS Windows 9x / ME / NT4 / 2000 / XP

/2003 installation package, Commandline Installation") can be obtained from Klinkmann software downloads page:

http://www.klinkmann.com/automation/klinkmann-software-products/communication-software-products-prices/

and it is located in "Additional and service software" section.

2. The \$SYS\$Licensed system item value with OMRON Ethernet Direct DAServer is not relevant.

CHAPTER 2

Before starting the OMRON Ethernet DAServer

This chapter contains instructions how to configure OMRON PLCs to be accessible by Omron Ethernet DAServer in OMRON Ethernet FA network.

Configuration example deals with local network. If data are to be accessed from remote networks then Relay Network Tables must be additionally configured in the PLC.

Contents

- Preparing the Hardware to be Used with Omron Ethernet DAServer
- Ethernet Unit Configuration Example for CS1 PLC
- Example program for sending "unsolicited" data from PLC

Preparing the Hardware to be used with OMRON Ethernet DAServer

The Omron Ethernet DAServer requires an Ethernet card and TCP/IP protocol supporting Windows Sockets interface to be installed on the computer to communicate with the OMRON PLCs over the Ethernet network.

Each connected OMRON Controller (with Ethernet Unit installed) must be configured to allow it to function as a node on the Ethernet network. This setup can be done by switches on the module and/or appropriate programming software.

The OMRON C200HX/C200HG/C200HE PLCs (except CPU11), CV-series PLCs, CS1 PLCs as well as CJ1 PLCs can be used as nodes on Ethernet network. The C200HX/C200HG/C200HE PLCs must be supplied with communication module: C200HW-PCS01-EV1 Ethernet Set or C200HW-PCU01 PC Card Unit supplied with the Ethernet PC Card (e.g. Kingston T.C. EtheRxEthernet PC Card models: KNE-PCM/M – for coaxial and twisted pair connection, KNE-PCM/T – for twisted pair connection). The CS1-series PLCs must be supplied with CS1W-ETN01 Ethernet Unit. The CJ1-series PLCs must be supplied with CJ1W-ETN11 Ethernet Unit. The CV-series PLCs must be supplied with CV500-ETN01 communication module.

The Ethernet PC Card installed in the C200HW-PCU01 PC Card Unit in the C200HX/C200HG/C200HE PLC is configured by software supplied with communication hardware.

Node number and Unit number of CV500-ETN01 (in CV-series PLC) is set by rotary switches on the module. Software (CVSS software, SYSWIN or CX-Programmer) is used to configure IP Address, Routing tables and IP Address tables.

Node number and Unit number of CS1W-ETN01 Ethernet Unit (in CS1-series PLC) is set by rotary switches on the front side of module. Local IP Address is set by switches SW1, SW2, ..., SW8 on the back side of module. Software (CX-Programmer) is used to configure Routing tables and IP Address tables.

Node number and Unit number of CJ1W-ETN11 Ethernet Unit (in CJ1-series PLC) is set by rotary switches on the front side of module. Software (CX-Programmer) is used to configure Routing tables, local IP Address and IP Address tables.

Configuration software tool, appropriate (and recommended) for all OMRON controllers is OMRON CX-Programmer Windows Programing Software (see "OMRON CX-Programmer Users Manual").

Ethernet Unit Configuration Example for CS1 PLC

Connect the computer to the PLC CPU unit with Host Link Cable. Install the CX-Programmer software.

Set IP Address table. Start CX-Programmer (from Start menu: Start/.../CX-Programmer/CX-Programmer). Create new project (option "New" in CX-Programmer's system menu). The "Change PLC" dialog box appears.

Enter PLC's name in the project (e.g. default name NewPLC1), PLC's model (e.g. CS1G) and set the communication type used to access the configured PLC (SYSMAC WAY - for serial communication).

Press "Work Online" pushbutton (or Ctrl+W) to establish communication to the PLC. (The same can be done the following: in treeview (on CX-Programmer main window) select the PLC (in example "NewPLC1(CS1G) Offline") and click the mouse right button. The PLC's menu appears. Click "Work Online".)

When CX-Programmer establishes communication with PLC, select "Operating Mode" (from PLC's menu) and set "Program" mode.

Note:

If you do not know (or have forgotten) the communication settings currently configured in the PLC, the **Auto Online** feature can be useful – from CX-Programmer's main menu select "PLC/Auto Online/Auto Online" and CX-Programmer will search for all possible settings until the proper ones are found; after that the current PLC program will be automatically uploaded to CX-Programmer and it will go to online state with operating mode set "Program" mode.

Double-click on "IO Table" in treeview. The "PLC IO Table - NewPLC1" dialog box appears. Select "Options" and click "Transfer from the PLC":

When IO Table is received, display the slot list under Main Rack (press "+" button in the "PLC IO Table - NewPLC1" dialog box). Select "Ethernet Unit(ET)(0)" and press the mouse right button. The Ethernet Unit menu appears:

Click "Unit Setup". The "Ethernet Unit CPU Bus Unit" dialog box appears:

Enter Address Conversion type, FINS UDP port number and Sub-net Mask. Edit the IP Address Table: the computer where Omron Ethernet DAServer is running must be added to the IP Address Table. To add it, press "Insert" button. The "Insert Router's IP Address" dialog box appears:

Enter the Node Number (in example 55) matching to the last octet in IP Address of computer where Omron Ethernet DAServer is running. Enter the IP Address of computer where Omron Ethernet DAServer is running (in example 195.2.103.55). Press "Ok".

Insert the Node Number and IP Address of PLC. (In case of CS1-series PLCs the Node Number must match with settings on the rotary switch on the front side of Ethernet communication unit, IP Address – must match with settings of rotary switches on the back side of Ethernet communication unit).

To complete the configuration: from the "Ethernet Unit CPU Bus Unit" (or from the "PLC IO Table - NewPLC1") dialog box select "Options" and click "Transfer to PLC".

Example program for sending "unsolicited" data from PLC

The PLC example program presented in Plcprg.cxp project incorporates the SEND(090) instruction for transferring unsolicited data from PLC to the OMRON ETHERNET DAServer (for programming details see SYSMAC CS1 Series CS1W-ETN01 Ethernet Unit OPERATION MANUAL, section 5).

The program transfers 10 words of data from D10 (notation in ladder diagram - D00010) from the PLC to the OMRON ETHERNET Server (into address D500). The computer where Omron Ethernet DAServer is running has the IP Address: 195.2.103.55 and the destination node number is assigned to 55 (37 in hex).

Comments on example program ladder diagram:

- (0) Periodically (once per second) the execution condition flag CIO 000000 turns ON. **Note:** There can be different logic to turn ON execution condition flag in real application.
- (1) If the Communication Port Enabled Flag for port 7 is ON, the send execution program will start when the execution condition flag CIO 000000 turns ON. Input CIO 120000 remains ON from the start of SEND execution until completion. *Note:* The CS1-series CPU Unit's Communication Port Enabled Flags are allocated the following way in Word A202: Bit 0 is associated with Port 0, Bit 1 is associated with Port 1, ..., Bit 7 is associated with Port 7. Bit's status OFF means execution enabled, ON means execution disabled.
- (2) Control data (D0, D1, ... D4) creation

Word	Contents	Meaning
D0000	00 0A	Number of send words = 10
D0001	00 00	Destination network number = 0 (local
		network)
D0002	37 00	Destination node number = 55 (37 hex)
		Destination unit address = 0
D0003	87 05	Response not required
		Communication port No = 7
		Number of retries = 5
D0004	00 64	Response monitor time = 10 s

Ten words with data from D10 from PLC are sent to D500 onwards on the local network, node number 55, unit address 0 (the computer where Omron Ethernet DAServer is running) – to receive all these data the items with addresses D500...D509 can be correspondingly activated for Omron Ethernet DAServer.

Important! With current example program an application will periodically toggle values of areas D500...D509 with values of areas D10...D19. This is because of DAServer time-

by-time poll area D500...D509 and time-by-time gets unsolicited command assigning to items D500...D509 values of PLCs D10...D19 area. Even if corresponding Controller is configured to be processed in slave mode – at communication start-up DAServer process several general data reading commands, accessing toggle effect. If your application does not need toggling effect – configure SEND(090) instruction so, that source area matches to destination area. In example – source data must start at D500, if data are sent to D500 onwards.

- (3) Reset the Input creation.
- (4) Turn ON error information flag CIO 001300 if error happens. In this case CIO 001300 is not mandatory; any other flag may be used. *Note:* The CS1-series CPU Unit's Communication Port Error Flags are allocated the following in Word A219: Bit 0 is associated with Port 0, Bit 1 is associated with Port 1, ..., Bit 7 is associated with Port 7. Bit's status OFF means Normal completion, ON means Abnormal completion.
- (5) The end of example program.

The example program ladder diagram is following:

CHAPTER 3

Configuration

Once the KLINKMANN Omron Ethernet DAServer has been installed, a small amount of configuration is required. This configuration is performed using the DAServer Manager hosted in the System Management Console after it is started through the **Programs** menu of the Windows **Start** button.

Before the DAServer is activated, the device hierarchy, simulating the physical hardware layout, must first be built to establish communications to each of the controllers. Once the Omron Ethernet hierarchy has been built, the respective devices for communications can be configured. Finally, the desired Device Groups for each controller may be created.

Note: To run the Omron Ethernet DAServer as a service, use the context menu on the DAServer name and select "Configure As Service". You can configure it as an auto service or manual service. For more information about configuring your DAServer as a service, see the "Activation/Deactivation/Service Component" of the DAServer Manager documentation.

Contents

- Getting Started Quickly with the DAServer
- Configuring the DAServer
- Configuring Device Group Definitions
- Configuring Device Item Definitions
- Hot Configuration

Getting Started Quickly with the DAServer

This section briefly describes the procedures required to prepare the Omron Ethernet DAServer for use. Detailed descriptions of each step can be found in later sections of this documentation. This section is intended for people who are familiar with DAServers.

Note: If you are not familiar with DAServer functionality, please proceed to the more-detailed procedures following this section.

The following procedures assume that you have:

• Configured the PLC with which you wish to communicate.

To prepare the Omron Ethernet DAServer

1. Install the KLINKMANN Omron Ethernet DAServer on Windows by running the **Setup.exe** program.

Note: DAServer installation instructions are included in a separate Help file (.chm extension).

Accept all the default settings during the installation.

Important! Since there are no default values for security settings, you must take note of the user name and password selected during the install.

- 2. Start the Wonderware DAServer Manager by selecting the **Programs** menu from the **Start** button on the taskbar.
- 3. Navigate to the **Wonderware** folder that contains the System Management Console, then click **System Management Consol**e.

- 4. From the **System Management Consol**e, find the Omron Ethernet DAServer in the **DAServer Manager** tree, the location in which it is installed.
- Under the Local branch node, the name of the DAServer is **Archestra.DASOmronEth.1**.
- See the DAServer Manager documentation for general information about working in this snap-in environment.
- 5. The new Omron Ethernet DAServer must now be configured.
- Before proceeding, determine the hierarchical structure of the network/PLC environment to which you plan to connect.
- 6. Right-click the **Configuration** object that already exists in the tree, and select **Add SOCKET Object** from the shortcut menu.
- A new SOCKET object is created as a node in the hierarchy tree and is named **New_SOCKET_000** by default.
- In this step, in addition to Step 7, the hierarchy entry is added in "edit mode," providing a convenient place for you to appropriately describe components of your specific hardware environment.
- If you do not rename the object at this time, a numeric sequencing system is applied.
- Any hierarchy entry can be renamed at a later time.
- 7. Right-click on the new **SOCKET** object, and from the shortcut menu, select **Add CONTROLLER Object**
- 8. Configure the respective device objects, created in the preceding steps, with the appropriate parameter values, if applicable.
- Optionally, the desired device groups can be created under the **Device Groups** tabbed page with each of the Controller objects.
- Desired device items can also be optionally created under the Device Items tabbed page with each of the Controller objects.

Note: The hierarchy entry is added in the "edit mode," providing a convenient place for you to appropriately describe components of your specific hardware environment. Both hierarchy node name and device group name are numerically sequenced by default. They can be renamed at any time.

The DAServer is now ready for use. In order to use the DAServer, you must activate it from the **DAServer Manager** using either the shortcut menu's **Activate Server** command from the **Archestra.DASOmronEth.1** node, or from OPC Client.

Note: To run the Omron Ethernet DAServer as a service, right-click on the **DAServer name** and select **Configure As Service** from the shortcut menu. You can configure it as an auto service or manual service. For more information about configuring your DAServer as a service, see the Activation/Deactivation/Service Component of the DAServer Manager documentation.

Configuring the DAServer

Note: This DAServer is hosted by DAServer Manager, a Microsoft Management Console (MMC) snap-in, which is a part of the ArchestrA System Management Console (SMC) suite of utilities. Many high-level functions and user-interface elements of the DAServer Manager are universal to all DAServers, and **only** the documentation for the DAServer Manager contains descriptions of those universal functions/UI elements. Therefore, reading the documentation for both the MMC and the DAServer Manager is critical to understanding this user's guide. To read the documentation about the MMC and

DAServer Manager, click the Help topics on the **SMC Help** menu. Both the MMC Help and the DAServer Manager Help are displayed. An Adobe Acrobat version of the DAServer Manager documentation (DAServerManager.pdf) is also available in the CD-ROM directory\User Docs\English.

Note: For better understand how to read and write data to the different OMRON controllers, please refer to the chapter *Before starting the Omron Ethernet DAServer*.

Note: The shortcut menu items described in this document typically represent only a subset of any actual shortcut menu. Most items in each shortcut menu are standard Windows commands. For more information about those commands, please see **Help**, by right-clicking the **System Management Console** icon.

To prepare the Omron Ethernet DAServer

1. Install the KLINKMANN Omron Ethernet DAServer on Windows by running the **Setup.exe** program.

Note: DAServer installation instructions are included in a separate Help file (.chm extension).

2. Accept all the default settings during the installation.

Important! Since there are no default values for security settings, you must take note of the user name and password selected during the install.

- 3. After the DAServer has been installed, start the System Manager Console by clicking the **Start** button on the Windows taskbar and pointing to **Programs**.
- 4. Point to the **Wonderware** folder that contains the System Management Console, then click **System Management Consol**e.
- 5. From the System Management Console tree, click on **DAServer Manager**.
- 6. Click on **Default Group**, then the **Local** node.
- Under the Local node, the DAServer name is ArchestrA.DASOmronEth.1

Note: See the DAServer Manager documentation for general information about working in this snap-in environment.

7. Before the DAServer is started, you must first build the device hierarchy to establish communications to each of the controllers.

Important! For step-by-step procedures on how to build the device hierarchy, please see the following section, "DASOmronEth Hierarchy in the DAServer Manager."

Note: Selecting the **Configuration** object of the hierarchy tree displays the **Global Parameters** configuration view for this DAServer. The default Poke Mode settings for the DAServer is Optimization mode. Configuration of all other global parameters as required for this DAServer. For more information about the **Global Parameters** dialog box, including descriptions of the different Poke Modes, see the DAServer Manager documentation. You can access that documentation by clicking the **DAServer Manager** icon and selecting the Help topics on the **Help** menu, and then navigating through the **DAServer Manager** book.

Important! Any Global Parameters that appear dimmed are either not supported or cannot be configured for this DAServer. Simulation Mode is not supported.

- 8. When the DASOmronEth hierarchy build has been completed, you can start configuring the respective devices for communications.
- 9. You may create the desired Device Groups for each controller by:
- Navigating to the object of interest in the **DAServer Manager** tree view.
- Clicking on the **Device Groups** tab.
- Right-clicking in the **Device Groups** dialog box and selecting the **Add** command from the shortcut menu.

Important! For step-by-step procedures on configuring Device Groups, please see the following section, "Configuring Device Group Definitions."

- 10. Finally, you may create the desired Device Items for each controller by:
- Navigating to the object of interest in the **DAServer Manager** tree view.
- Clicking on the **Device Items** tab.
- Right-clicking in the **Device Items** dialog box and selecting the **Add** command from the shortcut menu.

Important! For step-by-step procedures on configuring Device Items, please see the following section, "Configuring Device Item Definitions."

Note: When any configuration view is in an open state and you open the same server the second time, the DAServer locks the second instance of this same-server access for any update or configuration activities. Access to this second opening instance will resume after the first one has been closed.

The DAServer is now ready for use. In order to use the DAServer, you must activate it.

- If you are using an OPC Client, the DAServer can be auto-started.
- If you are using DDE/SuiteLink, you must start the DAServer either as a manual or automatic service.

• To activate the DAServer, right-click on **ArchestrA.DASOmronEth.1** and select **Activate Server** from the shortcut menu.

Note: To run the Omron Ethernet DAServer as a service, right-click on the **DAServer name** and select **Configure As Service** from the shortcut menu. You can configure it as an auto service or manual service. For more information about configuring your DAServer as a service, see the Activation/Deactivation/Service Component of the DAServer Manager documentation.

DASOmronEth Hierarchy in the DAServer Manager

Note: Before attempting to configure your DAServer, you should determine the hierarchical structure of your network/PLC environment.

The server-specific configuration portion of the DASOmronEth hierarchy tree under the DAServer Manager starts at the SOCKET object.

- 1. Configure the SOCKET object from the **Configuration** branch of the hierarchy after the DAServer has been installed.
- 2. Rename this object as appropriate.

Important! If you subsequently clear your configuration hierarchy, you must create this SOCKET object from the **Configuration** branch of the hierarchy. From this point, all of the following instructions apply.

To create SOCKET objects from the Configuration branch

- 1. Right-click on **Configuratio**n.
- 2. Select **Add SOCKET Object** from the shortcut menu.
- A new SOCKET object is created as a node in the hierarchy tree, and it is named **New_SOCKET_000** by default.
- 3. Rename the newly created object as appropriate, for example, "Socket1". The **Socket1** configuration view (right pane) is displayed.

Enter/modify SOCKET parameters.

Host Name (IP Addr.)

Enter the Computer's Internet Address (IP Address) if it has more than one. If there is only one Internet Address for computer then you can use default address 0.0.0.0.

Port Number

Enter the UDP Port Number used for communication with OMRON Controllers. The Port Number must match with *Port Number* configured in connected OMRON Controllers! (OMRON Controllers send responses to Port number, configured in PLC, even if request is received from different Port).

Note: The default port number is 9600.

From the SOCKET branch of the DAServer hierarchy, the CONTROLLER objects can be created. CONTROLLER represents the logical endpoint to the hardware hierarchy.

To add CONTROLLER to your Omron Ethernet hierarchy

- 1. Right-click on the **SOCKET** branch.
- 2. Select **Add CONTROLLER Object** from the shortcut menu. It is named "New_Controller_000" by default.
- 3. Rename it as appropriate, e.g. to "CS1" as used in following explanation this new CONTROLLER object name now will be used in the name of "Parameters" configuration view.

The "Parameters" configuration view is displayed:

This configuration view has 15 parameters (configuration requires proven network information, it can not be validated by the DAServer):

- Enter **Controller's Network Address** to each network in the OMRON system can be assigned an unique network address between 0 and 127. When communicating with a node on another (remote) network, the entered value must be consistent with the network address (non-zero) assigned in the routing tables. The network address of 0 indicates the *local* network. **Note:** The default Network Address is 0.
- Enter Controller's Node Address each OMRON Controller in Ethernet network
 must have its own unique node address between 1 and 126 (if Controller is internetworked via other OMRON FA network then Node Address can have different
 range. For example, if inter-networked via SYSMAC LINK network, the Node
 Address range is between 1 and 62. Care should be taken to select a node
 address that will not conflict with other devices in the system.

Note: If destination node is OMRON PLC with Ethernet Unit installed then **Controller Node Address** must be configured according to following rules:

- if automatic conversion of Ethernet Unit's IP address <u>is used</u> (also the node number setting rotary switch on the front panel of the Ethernet Unit is used) then **Controller Node Address** must be equal with the fourth byte (octet) of local IP address of Ethernet Unit:
- if automatic conversion of Ethernet Unit's IP address is not used (IP Address Table is used) then **Controller Node Address** must be equal with the Node number configured in the Ethernet Unit's IP Address Table.
- Enter Controller's IP Address. The Controller's IP Address must match with IP address configured at corresponding controller Ethernet Unit system setup.
- Enter Controller's Port Number. Enter the UDP Port Number used for communications with this OMRON controller. The Port Number must much with the Port Number set in the OMRON controller by appropriate Ethernet Unit configuration software. Note: The default port number is 9600.
- Enter Computer's Network Address the Local Network Address: the unique network address between 1 and 127 is assigned to each OMRON Ethernet network in the system. The entered value must be consistent with the network address assigned in the routing tables. When communicate only with nodes in the local network, you can set this Address to zero (default value).
- Select the Controller Series. The available series are: CS1/CJ1, C200HX/HG/HE, CV-series, C/CPM2X and CQM1. To select Controller Series, click on the combo box button and make your choice from the list. Note: Only PLCs of CS1/CJ1, C200HX/HG/HE and CV series are directly accessible in Ethernet network. All other series PLCs must be inter-networked to get data from them.
- Select Controller type. To select Controller type, click on the combo box button
 and make your choice from the list. The available types depends on selection in
 Controller Series combo box: CS1/CJ1 series offers 2 options (CS1 and CJ1),
 C200HX/HG/HE series offers one option (C200HX/HG/HE), CV-series offers 5
 options (CV500, CVM1-CPU01-E, CV1000, CV2000 and CVM1-CPU11-E),

C/CPM2x series offers 5 options (C200HS, C200H, C1000H, C2000H, CPM2x) and CQM1 series offers 1 option (CQM1).

- Enter Reply Timeout field the amount of time (in seconds) the PLC will be given to reply to commands from the DAServer. Note: The default value of 3 seconds should be sufficient for most configurations.
- Enter the value of the Access Delay (in milliseconds). This is a delay what Server
 will make in communication with the selected PLC after each read or write
 command execution. The default value of Access Delay is 0 (zero). Enter nonzero value in the Access Delay field only if you consider, that selected PLC is not
 fast enough to correctly react to the Server's frequently sent requests.

The main timing problems for PLC can cause the writing of separate Bit status into Word areas (for C200HX/C200HG/C200HE and CQM1 PLCs - into IR, LR, HR, AR, DM and EM areas; for CV-series PLCs - into CIO, G, A, D, E, EA...EH areas; for C/CPM2x PLCs - into IR, LR, HR, AR and DM areas; for CS1/CJ1 PLCs - into CIO, W, H, A, D, and E areas; (see *Item Names* section). Writing of the Bit status into Word area is performed by executing the following sequential steps:

- reading of corresponding Word value from PLC memory,
- setting a Bit to be written into the Word value,
- writing the changed Word value into PLC memory.

If **Access Delay** is 0 milliseconds, then Server tries to execute all steps as fast as Omron network can do it (with no pauses between processing steps). It can put the selected PLC into hard timing conditions.

If unsuccessful Bit writing happens time by time (you can recognize it by investigating error logging in ArchestrA Log Viewer utility, after checking DASProtFail flag in Log Flag Editor utility) - then the possible reason of fault may be the hard timing conditions in the accessed PLC. In this case the setting non-zero value for **Access Delay** can make communication processing more reliable.

Note: By setting the **PLC Access Delay** to non-zero value you can seriously reduce the real data update rate for selected PLC.

Enter the values of FINS Message Maximum Size for read and write commands. Any value from 16 to prompted maximum number of bytes is valid if PLC is accessed directly in local Ethernet network. If PLC is not accessed directly within local network (the network common to the PC and PLC), but inter-networked from other network then the maximum amount of data is limited by any network the data passes through, i.e. the network with the smallest capacity will determine the limit. The following is a maximum capacity of OMRON FA networks: Ethernet, Controller Link and Sysmac Net - 1986 bytes; Sysmac Link and Serial networks – 512 bytes. The greater value is configured the faster data update rate can be achieved. Therefore reduce the FINS Message Maximum Size value only if selected PLC has timing problems to process great amount of data in a short time period. The default value is 1986 bytes.

- Check or uncheck the Slave Mode check box to select the principles how to obtain data from corresponding controller. If Slave Mode is not checked (Master mode) DAServer polls data from controller all the time. In Slave Mode (if checked) DAServer requests data from Controller only once at communication start-up and then only waits for unsolicited messages from controller (writing to controller is still supported). Communication status is considered as good even if there is no unsolicited data received. To get more reliable communication status in Slave Mode activate the Watchdog message processing (details see later in this chapter) or time-by-time write values to PLC. With Watchdog activated Controller's communication status depends on success of Watchdog messages. Default processing mode is Master mode.
- Enter the necessary setting in **Gateway Count (GCT)** field (the default setting is 2). GCT setting specifies the number of allowed bridge passes in FINS commands sent to PLC; for example, GCT=7 is needed to support new CS/CJ-series CPU Units with Unit Ver. 2.0 or higher.
- If necessary configure **Watchdog**. The Watchdog would be useful in case the PLC internal program needs to check, whether there is communication with computer where Omron Ethernet DAServer is runnung or not. With Watchdog activated, DAServer time-by-time writes some predefined value (e.g. 255) into predefined address in PLC's memory (e.g. into D100). At the same time the PLC program must periodically check the current value in this memory address. If value is equal to Watchdog's predefined value, then PLC's program considers communication Status as Good and resets the check address to different (non-predefined) value, e.g. to 0. (It will allow to program to check communication state the next time.) If value differs from predefined, then PLC's program considers communication Status as Bad.

Note: Because of time synchronizing problems with PLC and PC it is recommended to consider the communication Status as Bad only after few consecutive test value mismatch cases, not immediately after the first mismatch.

To activate the Watchdog processing - set Watchdog **Time Interval** to non-zero value. Value entered in this field indicates the frequency (in seconds) the DAServer sends Watchdog message to corresponding PLC. This value must be a bit less as time interval the PLC program checks the value in watchdog address in the PLC.

Enter **Address to Write** field to indicate the watchdog address in PLCs memory that is used as Watchdog check address. **Address to Write** must be a valid item/point name (see Item Names section.)

Note: Use only Word memory areas for Watchdog. Do not take addresses not presented on current PLC configuration. Do not take addresses, used as PLC system areas or in PLC's program logic. Do not use specific areas, such as Step Area Present Values in CV-series PLCs, or IR or DR areas in CS1-series. If DAServer does not accept memory area for Watchdog – you will see error logging in ArchestrA System Management Console's Log Viewer.

Enter integer from 0 to 65535 into **Value to Write** field to set Watchdog predefined value. The same value PLC program expects to see in Watchdog check address.

Note: Default Watchdog state is "non-active", i.e. Watchdog **Time Interval** is equal to zero.

Note: In order to use the DAServer, you must activate it. See the DAServer Manager documentation for information about how to activate and deactivate the DAServer.

Enabling Software License Key for DASOmronEth

Enabling software licensing for Klinkmann Omron Ethernet Direct DAServer (DASOmronEth) differs from usual sequence used for other Klinkmann software – it is caused by reason the DASOmronEth configuration is done via Wonderware System Management Console (SMC).

After DASOmronEth is installed, the following steps are required to enable the software licensing:

1) After installation, Klinkmann DASOmronEth is added to list of installed DAServers in SMC DAServer Manager:

Now Klinkmann DASOmronEth can be configured by adding Socket and Controller Objects.

2) Select "Add License Object" from DASOmronEth "Configuration" pop-up:

The "New License Object Parameters" tab will appear:

Here the "Customer ID" is "computer-dependent" string generated by DASOmronEth and "Product ID" is DASOmronEth product code and version. Write down both the "Customer ID" and "Product ID"or Copy/Paste to e-mail when ordering the DASOmronEth.

3) After purchasing the DASOmronEth, you will get the software license key –16-character alphanumeric string. Open the "New License Object Parameters" tab again and Copy/Paste it to "Software Key" field:

The key validity indicator should change to "Valid key", indicating the software license now is enabled.

Configuring Device Group Definitions

The **Device Groups** tab in the DAServer Manager user interface is used to create a new device group or modify or delete existing device group definitions for an object. For DDE/SuiteLink communications, one or more device group definitions must exist for each PLC that the DAServer will communicate with.

Each device group (topic) definition should contain a unique name for the PLC associated with it.

Device Group Definitions

The **Device Groups** dialog box, which is displayed by clicking the **Device Groups** tab in the **Parameters** configuration view, is used to perform the following activities:

- Adding, defining, and deleting device groups.
- **Note:** When you add a new device group, enter a unique name.
- Configuring default update intervals.
- Editing update intervals for the objects.

Note: When you select another part of the DAServer tree hierarchy, you are prompted to save the modifications to the configuration set.

To create or add device groups

- 1. To create or add device groups, right-click in the **Device Groups** box.
- 2. Select the **Add** command from the shortcut menu.
- When you add a new device group, enter a unique name.

To make edits on device groups

Make edits on a device group name or update interval for an object as follows:

- In the **Name** column, double-click or press **F2** on the device group's name to be edited and make the edit.
- Double-click on the device group's value to be edited in the **Update Interval** column, and make the edit.
- To configure additional Device groups parameters right-click device group name and select **Edit** from the shortcut menu. The Device Group Parameters dialog box will appear:

The Device Group parameters dialog can be used to configure preferred Read mode and Write optimization mode.

If **Memory Area Read** is checked (default setting), then Server uses Memory Area Read FINS commands and maximum **(Read FINS Message Maximum Size – 14) / 2** consecutive words can be read from this Controller by one read command.

If **Multiple Memory Area Read** is checked then Server uses Multiple Memory Area Read FINS commands and maximum **128** <u>non-consecutive</u> words (also from different memory areas) can be read from this PLC by one read command.

Note: Even if **Multiple Memory Area Read** is configured - several memory areas are still accessed by general read commands.

If **Single Write** option is checked, then for each new write value a separate write message is created. The values in the PLC are changed by the DAServer in the same sequence as they are changed in the user (client) application. With this option the data update rate is low if application changes values very frequently, but sequence of value changes are guaranteed.

If Last Msg Multiple Write option is checked, then the same message can be used for the writing of new values into the consecutive memory addresses of the same memory area (for example, into D0, D1, D2...). Up to 124 consecutive values can be included in the same write command. The new value can be added only to the end of last write message. Therefore some values may be written into the PLC memory simultaneously even if the client application changes them step-by-step. With this option writing speed can be seriously increased, and sequence of value changes are partly guaranteed (several new values could be written into PLC memory simultaneously while application change it step-by-step). For example, the client application sequentially changes the values of following 248 items: D0, D1, ..., D247 and the values of following 248 items: 500R, 502R, ..., 994R. In this case the DAServer creates only four write messages to write the new values for all the changed items. If the values of the same Items are

changed in the following sequence: DM0, 500R, DM1, 502R, DM2, ... then DAServer creates a separate write message for each new write value.

If **Any Msg Multiple Write** option is checked, DAServer tries to include the new write value into any of previously created messages **ignoring the sequence** of data changing in the client application.

Important! With this option maximum writing speed is achieved, but this option **is not recommended** if data changing sequence is important for PLC program!

To delete device groups

Deleting a device group from the list can be performed as follows:

- 1. Right-click on the device group to be deleted.
- 2. Select the **Delete** command from the shortcut menu.

Note: When you select another part of the Omron Ethernet DAServer tree hierarchy, you are prompted to save the modifications to the configuration set.

To configure default update intervals

- 1. To configure a default update interval for the object, right-click in the **Device Groups** box.
- 2. Select **Config Default Update Interval** from the shortcut menu.

To edit update intervals

- To edit the update interval for an object, double-click its value in the **Update Interval** column and make the edit.
- Update Interval is the frequency (in milliseconds) that the DAServer acquires data from the topics associated with that device group.
- Different topics can be polled at different rates in a PLC by defining multiple devicegroup names for the same PLC and setting a different Update Interval for each device group.

Note: When you select another part of the Omron Ethernet DAServer tree hierarchy, you are prompted to save the modifications to the configuration set.

Scan-Based Message Handling

DAServers are based on the concept of polling a hardware device for information. This polling is driven by a need which is expressed in the form of requests from one or more clients. Once a particular piece of information has been requested by a client, the DAServer formulates its own request and sends that request to the hardware device. The DAServer then waits for a response to its request. Once the information has been received, the DAServer passes that information back to the client, and repeats the process until all clients have ceased requesting information.

The rate at which the DAServer will poll a particular device for a specific piece of information is defined in the device group (topic definition) inside the DAServer, using a parameter called the Update Interval. When setting this parameter, there is always a trade-off between the update speed of the device group and the resulting decrease in system responsiveness.

Since you more than likely want very fast response, the temptation is to set the Update Interval to a value close to 0 seconds. However, if every point is polled at this rate, the entire system will suffer due to slow response time. Therefore, you should compromise, and set the Update Interval to a more reasonable value. You could also create multiple device groups for each device, setting the Update Interval to different values, then assigning different items to different device groups depending on how quickly the values change and how quickly you want to see an update of those changes.

Some items, like alarms, change very infrequently but because of their importance require very fast updates. For those kinds of items, you should set the Update Interval at a very small value. If you desire an immediate response, set the Update Interval at 1.

Archiving Configuration Sets

After you have configured your DAServer, you can archive that specific configuration. You can archive more than one configuration set, and subsequently choose different configurations for different purposes.

To archive configuration sets

- 1. In the DAServer Manager, right-click on the **Configuration** node in the hierarchy below your DAServer.
- 2. Select **Archive Configuration Set** from the shortcut menu.
- 3. In the **Archive Configuration Set** configuration view, provide a Configuration Set Name.
- 4. Click Archive.
- All current configuration values are saved to the archived set.

Once you have archived at least one configuration set, you can select it for use.

To use different configuration sets from the current one

- 1. Make sure the DAServer is not running.
- 2. In the DAServer Manager, right-click the **Configuration** node in the hierarchy below your DAServer.
- 3. Select **Use Another Configuration Set** from the shortcut menu and click on a configuration set in the sub-menu.
- All parameters in the DAServer configuration hierarchy change to the chosen configuration set.

Configuring Device Item Definitions

The **Device Items** tab in the **Parameters** configuration view is used to define aliases to actual PLC items. The **Device Items** dialog box is the place where the following activities are performed:

- Creating new device item definitions for PLC items.
- Modifying the existing device items.
- Deleting device items.
- Archiving the created list of device items to a .csv file, a file with values separated by commas
- Bringing a .csv file into the Device Items tab.

Each device item definition should contain a unique name for the PLC associated with it.

Device Item Definitions

The **Device Items** dialog box, which is displayed by clicking the **Device Items** tab in the **CV500 Parameters** configuration view, is used to add, clear all, rename, delete, import and export device items. The **Device Items** dialog box has the following two columns:

- Name: This column defines the alias names to actual PLC items.
- **Item Reference**: The actual PLC item names, linked to the created aliases, are defined in this column.

For example, for Data Memory Area D100, the following entries can be created.

Name	Item Reference
D100_Unsigned	D100
D100_Signed	D100S

Note: When you create or add a new device item, a unique name needs to be entered for it.

To create or add device items

- 1. To create or add device items, right-click in the **Device Items** dialog box.
- 2. Select the **Add** command from the shortcut menu.
- A device item is created, and it is numerically named by default. For example, Item_0, Item 1, and so on.
- 3. Change the default name by double-clicking on it and entering the new name.
- Enter a unique name for the new device item.

To add item references

Item references for each of the device items that have been created can be added as follows:

- 1. In the **Item Reference** column, double-click on the area in the same horizontal line as the selected device item.
- 2. Type in the actual PLC item name in the frame that appears.
- 3. Click anywhere in the dialog box or press the **Enter** key to have the change take effect.

To rename a device item from the list

- 1. Right-click on the device item to be renamed.
- 2. Select the **Rename** command from the shortcut menu and enter the new device item name.
- 3. Click anywhere in the dialog box or press the **Enter** key to apply the change.

To delete a device item from the list

- 1. Right-click on the device item to be deleted.
- 2. Select the **Delete** command from the shortcut menu.
- The device item and its corresponding actual PLC item name will be deleted from the dialog box.

Note: When you select another part of the Omron Ethernet DAServer tree hierarchy, you are prompted to save the modifications to the configuration set.

To clear all device items

- 1. Right-click anywhere in the **Device Items** dialog box.
- 2. Select the **Clear All** command from the shortcut menu.
- All the device items listed in the dialog box, including their corresponding actual PLC item names, will be deleted.

To export device items

When you have a list of device items that needs to be archived, use the **Export** feature in the **Device Items** dialog box to archive the list.

- 1. To save the list, right-click anywhere in the **Device Items** dialog box.
- 2. Select the **Export** command from the shortcut menu.
- 3. Select the folder into which the list is to be saved.
- 4. Name the list to be archived.
- 5. Click the Save button.
- The whole list will be saved as a .csv file in Excel.

To import device items

The **Import** feature in the **Device Items** dialog box is used to bring an archived list of device items into the dialog box, when you need to utilize or reconfigure any of the device items on the archived list.

- 1. To import the list, right-click anywhere in the **Device Items** dialog box.
- 2. Select the **Import** command from the shortcut menu.
- 3. Select the archived list (.csv file) to be imported from the folder in which it is saved.
- 4. Click the **Open** button.
- The whole list will be brought into the **Device Items** dialog box.

Note: When the list to be imported contains duplicate names as found in the current list but the Item References are different, a dialog box will appear to prompt you to make a selection.

Hot Configuration

The Omron Ethernet DAServer is hot-configurable. The following hot-configuration functionality is incorporated in Omron Ethernet DAServer:

- Modifying Global Configuration parameters.
- Adding, deleting, or modifying device nodes (without affecting any other device nodes, excluding the children of the modified device nodes).
- Adding, deleting, or modifying device groups.

Limited support is provided for the hot configuration for the server-specific configuration parameters in this release. You can modify server-specific parameters while the server is active. However, to have those changes take effect, you have to restart the DAServer.

Note: If changes are made to server-specific parameters while the server is active, the DAServer will issue a warning message to the logger.

CHAPTER 4

Item Names

The Omron Ethernet DAServer supports item/point names consistent with the point naming conventions used by OMRON PLCs and programming software. The Server supports almost all memory areas of the following OMRON PLC types: CS1, CJ1, C200HX, C200HG, C200HE, CV-series, C-series, CPM2x and CQM1.

Contents

- Item Name General Format
- OMRON PLC's Item Naming
- DAServer Standard System Items
- Generic OPC Syntax

Item Name General Format

In this section the general Item naming conventions used by OMRON Ethernet DAServer are explained.

Each Integer, Discrete or Floating Point item generally may be described as:

PnS

Each item, representing bit in word, may be described as:

Pn:b (or Pn:bb or Pn.b or Pn.bb)

Each ASCII string item generally may be described as:

Pn-PhS

where:

- n specifies the Memory area word/bit address of the specific word, flag or bit or lowest-numbered address of ASCII string.
- **b** (**bb**) specifies the bit number in word (b can be 0...9 and bb can be 00...15). Number of digits in bit item name with separator is not relevant (leading zeroes are not necessary).
- **h** Specifies the highest -numbered address of ASCII string.
- **P** optionally used prefix, one, two or three characters before Memory area address, and designates the type of Memory area.
- **S** optionally used suffix a letter after address, which is used to change the default format of data. The following presents the OMRON Ethernet DAServer supported data formats and suffixes, indicating corresponding format.

Unsigned/Signed Format

The server interprets 16-bit word in a PLC in 16-bit unsigned format (value limits 0 to 65535) or signed format (value limits -32768 to 32767). Unsigned quantities may be read by one of two methods - by entering item name without suffix or appending the suffix '**U**' (or '**u**') to the item name. For example, channel DM100 in a PLC

contains 8000 hex. In this case item name DM100 or DM100U would be displayed in client as 32768. Signed quantities may be read from the same channel by appending the suffix '**S**' (or '**s**') to the item name. So, item name DM100S would be displayed in client as -32768.

BCD Format

To read/write data using BCD format - append the suffix 'B' (or 'b') to the item name, e.g. DM100B.

Long Format (Signed/BCD)

Two consecutive 16-bit words in a PLC can be interpreted as a 32-bit long integer. It can be formatted as either signed (-2,147,483,648 to 2,147,483,648) or BCD (0 to 99,999,999). To read/write an item in signed long format - append the letter 'L' (or 'I') to the item name. To read/write an item in BCD long format - append the letter 'M' (or 'm') to the item name. For example, if DM100 contains 0234 hex and DM101 contains 1356 hex, DM100L returns 324,403,764 and DM100M returns 13,560,234.

Note: Long format is not supported if Multiple Memory Area Read FINS commands are used.

Floating Point Format (IEEE/BCD)

Two consecutive 16-bit words in a PLC can be interpreted as a single precision floating point number. It is formatted as either IEEE (-3.402823 * 10^{38} to 3.402823 * 10^{38}) or BCD (0.0000001 * 10^{-7} to 0.9999999 * 10^{+7}). To read/write an item in IEEE floating point format, append one of the following letters to the item name: '**F**' or '**f**'. To read/write an item in BCD floating point format - append the letter '**G**' (or '**g**') to the item name. For example, if D100 contains 9620 hex and D101 contains 2436 hex in a CV500 PLC, D100F returns 3.959212 * 10-17 and D100G returns 0.4369620 * 102.

Floating point format is relevant only with items, indicating memory areas word contents.

Note: IEEE format is NOT supported in the C-Series PLC family **Note:** Floating point format is not supported if Multiple Memory Area Read FINS commands are used.

ASCII Strings Format

Multiple consecutive 16-bit words (block size of 1 to 29) in a PLC can be interpreted as a string of ASCII characters. The ASCII string is stored/retrieved from the lowest-numbered address to the highest and from the high-order byte to the low-order byte with each address. To define a range of words, use '-' (minus sign) between the two address locations. For example, DM10-DM12 indicates locations from DM10 to DM12. ASCII string characters can be specified to come from the high-order byte, low-order byte, or both bytes of the words:

Low-order Byte Only the low-order byte (LSB - least significant 8-bits) of each word is used for read. To use this format, append the suffix 'E' to the item name.

High-order Byte Only the high-order byte (MSB - most significant 8-bits) of each

word is used for read. To use this format, append the suffix 'D'

to the item name.

Both Bytes Both bytes of each word are used for read/write. To use this

format, append the suffix 'C' to the item name.

Note: All bytes in the specified memory range will be used. If the string is shorter than the range of memory specified, it will be padded with '\0'. If the string is longer than the range of memory specified, the string will be truncated.

For example, assume the following memory contents (numeric values shown in hex):

	MSB	LSB	
DM10	41	42	"AB"
DM11	43	44	"CD"
DM12	45	46	"EF"

Read:

DM10 – DM12C	returns ABCDEF
DM10 – DM11D	returns AC
DM10 - DM12E	returns BDF

Write:

DM10 - DM12C after written with "ABCD"

	MSB	LSB	
DM10	54	65	"AB"
DM11	73	74	"CD"
DM12	0	0	" "

DM10 - DM12E after written with "ABCDE"

	MSB	LSB	
DM10	0	41	"A"
DM11	0	42	"B"
DM12	0	43	"C"

Imortant Note!

Do not operate with item names, which have addresses outside really existing PLC data and memory area! It will lead to communication failures, because the DAServer recognizes item name error only if item name goes out of range represented in the item names table. Usually the information like following will be logged to logger if some item with address in inaccessible memory area is used (MRC:11 and SRC:03 informs about "Parameter error: the first address is in an inaccessible area")

<Socket.Controller>: FINS command 0101 failed (resp. error code 1103). Parameter error: the first address is in inaccessible area.

CS1/CJ1 PLCs

The following table lists the supported item names for the CS1/CJ1 PLCs:

			names for the CS1/CJ1		<u> </u>
Memory Area	Prefix	Tag Type	Range	Value Rang e	Format Suffix
CIO Area (Bit status)	CIO	Discrete	CIO0:00CIO6143:15 or 0.006143.15	0, 1	
CIO Area (Word contents)	CIO	Integer	CIO0 CIO6143 or 06143	(*)	usbfgl mdec
Work Area (Bit status)	W	Discrete	W0:00 W511:15	0, 1	
Work Area (Word contents)	W	Integer	W0 W511	(*)	usbfgl mdec
Holding Area (Bit status)	Н	Discrete	H0:00 H511:15	0, 1	
Holding Area (Word contents)	н	Integer	H0 H511	(*)	usbfgl mdec
Auxiliary Area (Bit status) (**)	A	Discrete	A0:00 A959:15	0, 1	
Auxiliary Area (Word contents) (**)	A	Integer	A0 A959	(*)	usbfgl mdec
Data Memory DM Area (Bit status)	D	Discrete	D0:00D32767:15	0, 1	
Data Memory DM Area (Word cont.)	D	Integer	D0D32767	(*)	usbfgl mdec
Expansion Data Memory (Bit status) (***)	E	Discrete	E0:00E32767:15	0, 1	
Expansion Data Memory (Word cont.) (***)	E	Integer	E0 E32767	(*)	usbfgl mdec
Expansion Data Memory (Bit status) (****)	Ez (z = A to M)	Discrete	Ez0:00Ez32767:15	0, 1	
Expansion Data Memory (Word cont.) (****)	Ez (z = A to M)	Integer	Ez0 Ez32767	(*)	usbfgl mdec
Timer Completion Flags (*****)	Т	Discrete	T0 T4095	0, 1	
Counter Completion Flags (*****)	С	Discrete	C0 C4095	0, 1	
Timer PVs	PVT	Integer	PVT0 PVT4095	(*)	usbfgl mdec
Counter PVs	PVC	Integer	PVC0 PVC4095	(*)	usbfgl mdec
Index Registers	IR	Long	IR0 IR15	(*)	m .
Data Registers (*****)	DR	Integer	DR0 DR15	(*)	usb

Item/point names, corresponding to CIO Area, may be without prefix.

- (*) Value range for unsigned integer is from 0 to 65535 (item/point name with suffix "**U**" ("**u**") or without suffix), for signed integers from –32768 to 32767 (item/point name with suffix "**S**" ("**s**")) and for 16-bit BCD is from 0 to 9999. The value range for long or 32-bit integer is from -2147483648 to 2147483647 and for 32-bit BCD is from 0 to 99999999. Default value range for Integer Tag Type is unsigned integer.
- (**) Data cannot be written to addresses A000...A447 in the Auxiliary Area.
- (***) Current bank only (Memory Area code 98 in Hex).
- (****) Extended memory bank 0 to bank C (in Hex), up to 13 banks supported depending on CPU type. The prefix **Ez** can be one of the following: EA, EB, EC, ED, EE, EF, EG, EH, EI, EJ, EK, EL or EM. For read operations (both for Bit status and Words) and for Word write operations the Memory Area codes A0...AC (in Hex) are used. For Bit writing the Memory Area codes 20...2C (in Hex) are used.

(*****) Read only.

(*****) Not supported on CJ1 controllers.

The following examples show the correct format for item names for CS1 and CJ1 PLCs:

CIO2:01 - CIO area (Bit status), word address 2, bit number 1.

257 - CIO Area (Word contents), word address 257

H62.10 - Holding Area (Bit), word address 62, bit number 10

D21 - Data Memory Area with word address 21

EA12 - Extended Data Memory bank 0 word address 12

EC48.10 - Extended Data Memory bank 2 word address 48, bit number 10

C200HX/C200HG/C200HE PLCs

The following table lists the supported item names for the **C200HX**, **C200HG** and **C200HE** PLCs.

Memory Area	Prefix	Tag Type	Address Range	Value Range	Suffix
Internal Relay Area 1, 2 Special Relay Area 1, 2 (Bit status)	IR	Discrete	IR0:00IR511:15 or 0.00511.15	0, 1	
Internal Relay Area 1, 2 Special Relay Area 1, 2 (Word contents)	IR	Integer	IR0 IR511 or 0511	(*)	usbfgl mdec
Link Relay Area (Bit status)	LR	Discrete	LR0:00LR63:15	0, 1	
Link Relay Area (Word contents)	LR	Integer	LR0 LR63	(*)	
Holding Relay Area (Bit status)	HR	Discrete	HR0:00 HR99:15	0, 1	
Holding Relay Area (Word contents)	HR	Integer	HR0 HR99	(*)	usbfgl mdec
Auxiliary Relay Area (Bit status)	AR	Discrete	AR0:00 AR27:15	0, 1	
Auxiliary Relay Area (Word contents)	AR	Integer	AR0 AR27	(*)	u s b f g l m d e c
Timer/Counter Area Completion Flag(****)	TC	Discrete	TC0 TC511	0, 1	
Timer/Counter Area (PV)	PV	Integer	PV0 PV511	(*)	usbfgl mdec
Data Memory Area (Bit status)(**)	DM	Discrete	DM0:00 DM9999:15	0, 1	
Data Memory Area (Word contents)(**)	DM	Integer	DM0 DM9999	(*)	usbfgl mdec
Extended Data Memory Area (Bit status)(***)	EM	Discrete	EM0:00 EM6143:15	0, 1	
Extended Data Memory Area Word contents(***)	EM	Integer	EM0 EM6143	(*)	usbfgl mdec

Item/point names, corresponding to Internal Relay/Special Relay Area may be without prefix.

- (*) Value range for unsigned integer is from 0 to 65535 (item/point name with suffix "**U**" ("**u**") or without suffix), for signed integers from –32768 to 32767 (item/point name with suffix "**S**" ("**s**")) and for 16-bit BCD is from 0 to 9999. The value range for 32-bit integer is from -2147483648 to 2147483647 and for 32-bit BCD is from 0 to 99999999. Default value range for Integer Tag Type is unsigned integer.
- (**) Memory area range DM7000...DM9999 is supported only if Expansion DM Area is allocated on the PLC.
- (***) Current bank only (Memory Area code 98).

(****) Read only

The following examples show the correct format for item names for C200HX, C200HG, C200HE PLCs and SYSMAC Board:

IR2:01 - Internal Relay Area (Bit status), word address 2, bit number 1.
257 - Special Relay Area (Word contents), word address 257
LR62.10 - Link Relay Area (Bit status), word address 62, bit number 10
DM21 - Data Memory Area (Word contents), word address 21

CV-series PLCs

The following table lists the supported item names for the **CV-series** PLCs:

Memory Area	Prefix	Tag Type	Address Range	Value Range	Suffix
Input/Output register area CIO (Bit status)	CIO	Discrete	CIO0:00 CIO2555:15 or 0.00 2555.15	0, 1	
Input/Output register area CIO (Word contents)	CIO	Integer	CIO0 CIO2555 or 02555	(*)	usbfgl mdec
Bus Link Area G (Bit status)	G	Discrete	G0:00 G255:15	0, 1	
Bus Link Area G (Word contents)	G	Integer	G0 G255	(*)	usbfgl mdec
Auxiliary Relay area A (Bit status)	Α	Discrete	A0:00 A511:15	0, 1	
Auxiliary Relay area A (Words)	Α	Integer	A0 A511	(*)	usbfgl mdec
Timer Completion flags TIM (**)	Т	Discrete	T0T1023(***)	0, 1	
Counter Completion flags CNT (**)	С	Discrete	C0 C1023(***)	0, 1	
Timer Present Value	PVT	Integer	PVT0 PVT1023(***)	(*)	usbfgl mdec
Counter Present Value	PVC	Integer	PVC0 PVC1023(***)	(*)	usbfgl mdec
Data Memory area (Bit status)	D	Discrete	D0:00 D24575:15 (****)	0, 1	
Data Memory area (Word contents)	D	Integer	D0D24575(****)	(*)	usbfgl mdec
Transition Area flags (**)	TN	Discrete	TN0 TN1023(***)	0,1	
Step Area Flag status (**)	ST	Integer	ST0ST1023 (***)	0,1,2,3	

Step Timer	PVS	Integer	PVS0	(*)	usbfgl
Present Value	_		PVS1023(***)		m d e c
Expansion area Current bank (Bit status)	E	Discrete	E0:00E32765:15	0, 1	
Expansion area Current bank (Word contents)	E	Integer	E0E32765	(*)	usbfgl mdec
Expansion area A (Bit status)	EA	Discrete	EA0:00 EA32765:15	0, 1	
Expansion area A (Word contents)	EA	Integer	EA0 EA32765	(*)	usbfgl mdec
Expansion area B (Bit status)	EB	Discrete	EB0:00 EB32765:15	0, 1	
Expansion area B (Word contents)	EB	Integer	EB0 EB32765	(*)	usbfgl mdec
Expansion area C (Bit status)	EC	Discrete	EC0:00 EC32765:15	0, 1	
Expansion area C (Word contents)	EC	Integer	EC0 EC32765	(*)	usbfgl mdec
Expansion area D (Bit status)	ED	Discrete	ED0:00 ED32765:15	0, 1	
Expansion area D (Word contents)	ED	Integer	ED0 ED32765	(*)	usbfgl mdec
Expansion area E (Bit status)	EE	Discrete	EE0:00 EE32765:15	0, 1	
Expansion area E (Word contents)	EE	Integer	EE0 EE32765	(*)	usbfgl mdec
Expansion area F (Bit status)	EF	Discrete	EF0:00 EF32765:15	0, 1	
Expansion area F (Word contents)	EF	Integer	EF0 EF32765	(*)	usbfgl mdec
Expansion area G (Bit status)	EG	Discrete	EG0:00 EG32765:15	0, 1	
Expansion area G (Word contents)	EG	Integer	EG0 EG32765	(*)	usbfgl mdec
Expansion area H (Bit status)	EH	Discrete	EH0:00 EH32765:15	0, 1	
Expansion area H (Word contents)	EH	Integer	EH0 EH32765	(*)	usbfgl mdec
Action Area Flag (**)	AC	Discrete	AC0AC2047 (*****)	0, 1	
Register Area contents IR (***)	IR	Integer	IR0IR2	(*)	usbfgl mdec
Register Area contents DR (**)	DR	Integer	DR0DR2 (***)	(*)	usbfgl mdec

Item/point names, corresponding to Input/Output register area CIO, may be without prefix.

- (*) Value range for unsigned integer is from 0 to 65535 (item/point name with suffix "**U**" ("**u**") or without suffix), for signed integers from 32768 to 32767 (item/point name with suffix "**S**" ("**s**")) and for 16-bit BCD is from 0 to 9999. The value range for 32-bit integer is from -2147483648 to 2147483647 and for 32-bit BCD is from 0 to 99999999. Default value range for Integer Tag Type is unsigned integer.
- (**) Read only. **Note:** with DR area item without suffix (or with suffixes u, s, b) are Read/Write.
- (***) Represented memory area ranges are for CV1000, CV2000 and CVM1-CPU11-E (except Transition Area and Step Area Flag status) type controllers. For models CV500 and CVM1-CPU01-E (except Transition Area and Step Area Flag status) accessible memory area ranges are 0:00...511:15 for Discrete items and 0...511 for Integer items. Transition Area TN and Step Area Flag status area ST are not supported on CVM1 PLCs.
- (****) Represented memory area ranges are for CV1000, CV2000 and CVM1-CPU11-E type controllers. For models CV500 and CVM1-CPU01-E accessible memory area ranges are 0...8191.
- (*****) Represented memory area ranges are for CV1000 and CV2000 type controllers only. For model CV500 accessible memory area ranges are 0...1023. With other CV-series PLCs not supported.

Expansion area Current bank as well as Expansion areas (from EA to EH) is relevant only with CV1000 and CV2000 PLCs.

Item names **IR** and **DR** are valid with following Omron PLC models: CV1000, CV2000 and CVM1-CPU11-E.

The configuration of the discrete data can be as follows:

Flag or Bit Status 0: Bit is OFF;

1: Bit is ON:

Step Status 0: INACTIVE;

1: HALT; 2: PAUSE; 3: EXECUTE:

The following examples show the correct format for item names for CV-series PLCs:

CIO1:15 - CIO area (Bit status), word address 1, bit number 15.

211 - CIO area (Word contents), word address 211

TN200 - Transition Area flag, address 200 ST0007 - Step Area Flag status, address 7 AC6 - Action Area Flag status, address 6

D3F - real (floating point) item, value is taken from words D3 and D4.

C/CPM2x PLCs

The following table lists the supported item names for the **C-series** PLCs:

Memory Area	Prefix	Tag Type	Range	Value Range	Format Suffix
CIO area (Bit status)	IR	Discrete	IR0:00IR511:15 or 0.00511.15 (**)	0, 1	
CIO area (Word contents)	IR	Integer	IR0 IR511 or 0511 (**)	(*)	usbfgl mdec
Latching Relay area (Bit status)	LR	Discrete	LR0:00 LR63:15	0, 1	
Latching Relay area (Word contents)	LR	Integer	LR0 LR63	(*)	usbfgl mdec
Holding Relay area (Bit status)	HR	Discrete	HR0:00 HR99:15	0, 1	
Holding Relay area (Word contents)	HR	Integer	HR0 HR99	(*)	usbfgl mdec
Auxiliary Relay area (Bit status)	AR	Discrete	AR0:00 AR27:15	0, 1	
Auxiliary Relay area (Word contents)	AR	Integer	AR0 AR27	(*)	usbfgl mdec
Completion flags for Timers/Counters(***)	TC	Discrete	TC0 TC511	0, 1	
Present Values for Timers/Counters	PV	Integer	PV0 PV511	(*)	usbfgl mdec
Data Memory area (Bit status)	DM	Discrete	DM0:0DM9999:15	0, 1	
Data Memory area (Word contents)	DM	Integer	DM0 DM9999	(*)	usbfgl mdec

Item/point names, corresponding to Input/Output register area CIO, may be without prefix.

- (*) Value range for unsigned integer is from 0 to 65535 (item/point name with suffix "**U**" ("**u**") or without suffix), for signed integers from –32768 to 32767 (item/point name with suffix "**S**" ("**s**")) and for 16-bit BCD is from 0 to 9999. The value range for 32-bit integer is from -2147483648 to 2147483647 and for 32-bit BCD is from 0 to 99999999. Default value range for Integer Tag Type is unsigned integer.
- (**) Represented memory area range is for C200HS type controller. For models C200H, C1000H and C2000H accessible memory area ranges are 0:00...255:15 for Discrete items and 000...255 for Integer items.

(***) Read only

The following table lists the supported item names for the **CPM2x** PLCs:

Memory Area	Prefix	Tag Type	Range	Value Range	Format Suffix
IR & SR areas (Bit status)(***)	IR	Discrete	IR0:00IR255:15 or 0.00255.15	0, 1	
IR & SR areas (Word contents) (***)	IR	Integer	IR0IR255 or 0255	(*)	usbfgl mdec
Latching Relay area (Bit status)	LR	Discrete	LR0:00 LR15:15	0, 1	
Latching Relay area (Word contents)	LR	Integer	LR0 LR15	(*)	usbfgl mdec
Holding Relay area (Bit status)	HR	Discrete	HR0:00 HR19:15	0, 1	
Holding Relay area (Word contents)	HR	Integer	HR0 HR19	(*)	usbfgl mdec
Auxiliary Relay area (Bit status)	AR	Discrete	AR0:00 AR23:15	0, 1	
Auxiliary Relay area (Word contents)	AR	Integer	AR0 AR23	(*)	usbfgl mdec
Completion flags for Timers/Counters(**)	TC	Discrete	TC0 TC255	0, 1	
Present Values for Timers/Counters	PV	Integer	PV0 PV255	(*)	usbfgl mdec
Data Memory area (Bit status) (****)	DM	Discrete	DM0:0DM6655:15	0, 1	
Data Memory area (Word contents) (****)	DM	Integer	DM0 DM6655	(*)	usbfgl mdec

Item/point names, corresponding to IR and SR areas, may be without prefix.

(*) Value range for unsigned integer is from 0 to 65535 (item/point name with suffix "**U**" ("**u**") or without suffix), for signed integers from –32768 to 32767 (item/point name with suffix "**S**" ("**s**")) and for 16-bit BCD is from 0 to 9999. The value range for 32-bit integer is from -2147483648 to 2147483647 and for 32-bit BCD is from 0 to 99999999. Default value range for Integer Tag Type is unsigned integer.

(**) Read only

- (***) Addresses 50 to 199 in IR & SR area in CPM2A/CPM2C PLCs and 20 to 199 in IR & SR area in CPM1/CPM1A/SRM1(-V2) PLCs are read only.
- (****) Addresses DM1024 to DM6143 in CPM1/CPM1A PCs and DM2048 to DM6143 in CPM2A/CPM2C/SRM1(-V2) PCs are read only.

The following examples show the correct format for item names for C/CPM2x PLCs:

IR2:01 - CIO area (Bit status), word address 2, bit number 1.

211 - CIO area (Word contents), word address 211.

LR62.10 - Latching Relay area (Bit status), word address 62, bit number 10.

DM21 - Data Memory area (Word contents), word address 21.

CQM1 PLCs

The following table lists the supported item names for the **CQM1** PLCs:

Memory Area	Prefix	Tag Type	Range	Value Range	Format Suffix
IR & SR area (Bit status)	IR	Discrete	IR0:00IR255:15 or 0.00 255.15 (**)	0, 1	
IR & SR area (Word contents)	IR	Integer	IR0 IR255 or 0 255 (**)	(*)	usbfgl mdec
LR area (Bit status)	LR	Discrete	LR0:00 LR63:15	0, 1	
LR area (Word contents)	LR	Integer	LR0 LR63	(*)	usbfgl mdec
HR area (Bit status)	HR	Discrete	HR0:00 HR99:15	0, 1	
HR area (Word contents)	HR	Integer	HR0 HR99	(*)	usbfgl mdec
AR area (Bit status)	AR	Discrete	AR0:00 AR27:15	0, 1	
AR area (Word contents)	AR	Integer	AR0 AR27	(*)	usbfgl mdec
Completion flags for Timers/Counters(***)	TC	Discrete	TC0 TC511	0, 1	
Present Values for Timers/Counters	PV	Integer	PV0 PV511	(*)	usbfgl mdec
DM area (Bit status)	DM	Discrete	DM0:0DM6655:15	0, 1	
DM area (Word contents)	DM	Integer	DM0DM6655	(*)	usbfgl mdec
EM area (Bit status)	EM	Discrete	EM0:0EM6143:15	0, 1	
EM area (Word contents)	EM	Integer	EM0EM6143	(*)	usbfgl mdec

Item/point names, corresponding to IR and SR areas, may be without prefix.

- (*) Value range for unsigned integer is from 0 to 65535 (item/point name with suffix "**U**" ("**u**") or without suffix), for signed integers from –32768 to 32767 (item/point name with suffix "**S**" ("**s**")) and for 16-bit BCD is from 0 to 9999. The value range for 32-bit integer is from -2147483648 to 2147483647 and for 32-bit BCD is from 0 to 99999999. Default value range for Integer Tag Type is unsigned integer.
- (**) Represented memory area available in CQM1H-CPU61 CPU.
- (***) Read only

The following examples show the correct format for item names for CQM1 PLCs:

IR2:1 - IR Input area (Bit status), word address 2, bit number 1.

102 - IR Output area (Word contents), word address 102 LR area (Bit status), word address 62, bit number 10

DM21 - DM area (Word contents), word address 21

DAServer Standard System Items

System Items provide you with easy access to the DAServer status and diagnostics information. They are treated just like ordinary items with respect to the client. However, in most cases these items are not directly acquired via the communications layer. System item values are usually generated through internal calculations, measurements, and the tracking of the DAS Engine.

No DAServer-specific system items are provided in this Omron Ethernet DAServer.

System items, like ordinary items, are defined by the following properties:

- Group (client group/OPC group): The arbitrary collection of items, not correlated.
- **Hierarchical location** (link name/OPC path. The hierarchical node section of the fully qualified OPC item ID.): The device the item is attached to.
- **Device group** (OPC access path/topic, or a Scan Group on a hierarchical branch.): A collection of items on the same physical location with the same protocol update rate. Example:

To check the status of an external device, the reference might be: DASOmronEth.Socket1.\$SYS\$Status

Note: This syntax does not refer to the access path/device group. As long as the data requested is from the same external device, the value will always be the same. **Note:** For DDE/SuiteLink clients, \$SYS\$Status always comes from the leaf level of a DAServer hierarchy branch, which is the destination PLC node. For OPC clients, \$SYS\$Status can be accessed at all hierarchy levels. \$SYS\$Status at the root level of the whole hierarchy tree is always good, as it represents the quality status of the local computer itself. Hence, for practical application, OPC clients should reference \$SYS\$Status at any hierarchy levels other than the root.

In the ArchestrA context, the device group plays the most important role of identifying the scope of any item (the device group defines the hierarchical location implicitly when using globally unique device-group names, which is required for DDE/SuiteLink compatibility).

All system items follow the same naming convention:

- All system items start with \$SYS\$.
- The DAS Engine scans and parses the name for system items.
- Parsing of the name is case-insensitive.

All system items can be accessed through subscriptions to a device group. However, while some system items return data for that device group, others are server-wide.

DAServer Global System Item

The following system item refers to specific information regarding a global condition of the DAServer.

System Item	Type/	Description	Values
Name	Access Rights		
\$SYS\$Licensed	Boolean/ Read	Binary status indication of the existence of a valid license for the	RANGE: 0, 1
	Reau	DAServer.	1: Valid license
		If FALSE, this item causes the DAServer to stop updating existing	exists.
		tags, to refuse activation of new tags,	0: No valid
		and to reject write requests in addition to setting quality for all items to BAD.	license exists.
		If TRUE, the DAServer functions as	
		configured.	
		All instances have the same value.	

Note: With Omron Ethernet DAServer Global System Item \$SYS\$Licensed is not relevant.

DAServer Device-Specific System Items

The following system items refer to specific information regarding the device(s) the DAServer is connected to.

System Item	Type/	Description	Values
Name	Access Rights		
\$SYS\$Status		Binary status indication of the connection state to the device (hierarchy level) the item is attached to. The device group (OPC access path/topic) does not affect the value. The status can be good even if individual items have errors. For DDE/SuiteLink clients, \$SYS\$Status always comes from the leaf level of a DAServer hierarchy branch, which is the destination PLC node. For OPC clients, \$SYS\$Status can be accessed at all hierarchy levels. \$SYS\$Status at the root level of the whole hierarchy tree is always good, as it represents	RANGE: 0, 1 1: DAServer connection to the device is intact. 0: Error communicating with the device.
		the quality status of the local computer itself. Hence, for	

\$SYS\$ErrorCode	Longint/ Read	practical application, OPC clients should reference \$SYS\$Status at any hierarchy levels other than the root. Detailed error code of the communications state to the device. The device group (OPC access path/topic) does not affect the value.	>= 0: Good status (0 is the default state – connected. >0: is some device state like: connecting, initializing, etc. <0: Error status
\$SYS\$ErrorText	String/ Read	Detailed error string of the communications state of the device. The device group (OPC access path/topic) does not affect the value.	(value indicates the error). Descriptive text for the communications state corresponding to the error code.
\$SYS\$StoreSettings	Integer/ ReadWrite	Used to make the temporary update interval changes via the \$SYS\$UpdateInterval item permanent. If the client pokes a value of 1 into this system item, the currently set update interval is written to the server's configuration file. The value of this system item clears to 0 after being set, if the configuration file write is successful. If the write fails, then the value is set to -1. If the update interval has been changed via the \$SYS\$UpdateInterval item and this item is not poked to 1, the DAServer uses the original update interval for that topic the next time it is started. Reading the item always provides 0. Read/Write values are persisted only if the user sets this system item. The values other than this persist only for the life of the DAServer.	RANGE: -1, 0, 1 -1: Error occurred during saving the configuration file. 0: Read value always if status is OK. 1: Persist settings (cleared immediately).

DAServer Device-Group-Specific System Items

The following system items refer to specific information regarding device groups that have been configured in the DAServer.

System Item	Type/	Description	Values
Name	Access		
\$SYS\$UpdateInterval	Rights DWord/	Used to access the currently	RANGE:
φοτοφορααιοπισται	ReadWrite	set update interval. It is the	12147483647
		current update interval of the	0: Topic inactive,
		device group in milliseconds.	no items are
		A client can poke new values	updated. Data
		into this item. The value of zero indicates	acquisition is stopped.
		that no non-system items on	>0: Expected
		that topic are updated (data	updated interval
		for these items are not	for the set of all
		acquired from the device).	items in the
CCVCCMovintoryal	DWord/	Lload to access the currently	device group. RANGE:
\$SYS\$MaxInterval	Read	Used to access the currently measured maximum update	02147483647
	rtodd	interval in milliseconds of all	0: If update
		items of the corresponding	interval is 0 or if
		device group. This item is	the status is
		read-only. The value of the	false.
		slowest item is displayed.	>0: Measured update interval
\$SYS\$WriteComplete	Integer/	Used to access the state of	RANGE: -1, 0, 1
	ReadWrite	pending write activities on the	, , ,
		corresponding device group.	1: Write
		On device group creation	complete (no
		(adding items to an OPC group), the value of this	writes are pending – initial
		system item is initially 1,	state).
		indicating all write activities	0: Writes are
		are complete – no pokes are	pending.
		pending.	-1: Writes
		If values are poked into any items of the device group, the	completed with errors.
		value of this item changes to	enois.
		0, indicating write activity is	
		currently in progress.	
		If the server has completed all	
		write activities, the value of this item changes to 1 if all	
		pokes were successful or to -1	
		if at least one poke has failed.	
		If the value of this item is not	
		zero, the client can poke 1 or -	
		1 to it (poke a 1 to clear errors,	

			_
		or a -1 to test a client reaction on write errors). If the value of this item is zero, it cannot be poked.	
\$SYS\$ReadComplete	Integer/ ReadWrite	Used to access the state of initial reads on all items in the corresponding device group. The value is 1 if all active items in a device group have been read at least once. If at least one item in the device group is activated, this item changes to 0. It changes to 1 if all items have been read successfully, or to -1 if at least one item has a non-good quality. Poking a 0 to this item resets the internal read states of all items in this device group. This resets this item to 0. If all items are read again after this poke, this item changes back to 1 or -1.	RANGE: -1, 0, 1 1: Read complete (all values have been read). 0: Not all values have been read1: All values have been read but some have a non-good quality.
\$SYS\$ItemCount	DWord/ Read	Used to access the number of items in the corresponding device group. This item is read-only.	RANGE: 02147483647 >=0: Number of active items.
\$SYS\$ActiveItemCoun t	DWord/ Read	Used to access the number of active items in the corresponding device group. This item is read-only.	RANGE: 02147483647 >=0: Number of active items.
\$SYS\$ErrorCount	DWord/ Read	Used to access the number of all items (active and inactive) that have errors (non-good OPC quality) in the corresponding topic. If the communications status of a device group is bad, all items have errors. This item is readonly.	RANGE: 02147483647 >=0: Number of all items (active and inactive) with errors.
\$SYS\$PollNow	Boolean/ ReadWrite	Poking a 1 to this item forces all items in the corresponding device group to be read immediately (all messages in this device group become due). This is useful if you want to force to get the newest values from the device, regardless of its update interval. This also works on	RANGE: 0, 1

device groups with a zero	
update interval (manual	
protocol triggering).	

Generic OPC Syntax

DAServer serves as a container for the OPC Groups, which provide the mechanism for containing and logically organizing OPC items. Within each OPC Group, an OPC-compliant client can register OPC items, which represent connections to data sources in the field device. In other words, all access to OPC items is maintained through the OPC Group.

The fully qualified name for an OPC item is called the Item ID (equivalent to Item Name). Generally, in OPC data acquisition DAServers, the syntax can be as follows:

AREA10.VESSEL1.TIC1.PLC.D100

where each component (delimited by a period) represents a branch or leaf of the field device's hierarchy. In this example:

- PLC is the name of the target PLC.
- D100 is the specific data point (Item) desired.
- An item is typically a single value such as an analog, digital, or string value.

The syntax for specifying a unique Item ID is DAServer-dependent. With Omron Ethernet DAServer Item ID example could be the following:

Unit1.CV500.D100

Item ID describes the syntax for defining the desired data point, OPC provides for another parameter, called Access Path, that defines optional specifications for obtaining that data. In DAServers, Access Paths are equivalent to Device Groups; it is this parameter that is used to define the update interval between the DAServer and the field device for accessing the values of data points in the PLC.

CHAPTER 5

Troubleshooting

This chapter describes the troubleshooting tools you can use to deal with the Omron Ethernet DAServer problems you may encounter.

The DAServer Manager provides access to diagnostics and other statistical data, and the Log Viewer provides access to event messages logged during the operation of a DAServer. Also, your client (for example, InTouch) can monitor connectivity with the PLC through the \$SYS\$Status item. Use these tools together with the following information to troubleshoot your Omron Ethernet DAServer.

Note: In order to determine the version of your DAServer, perform the following steps. Search for **DASOmronEth.dll**, right-click on the **File Name**, select **Properties** on the shortcut menu, and select the **Version** tab on the **Properties** dialog box. The version of your DAServer is listed under **File Versio**n.

Contents

- Monitoring Connectivity Status with the PLC
- Monitoring the Status of DAS Conversations
- Error Messages and Codes

Monitoring Connectivity Status with the PLC

The built-in discrete item, \$SYS\$Status, can be used to monitor the status of communications with the PLC. This item is set to:

- 0 (zero) when communications with the PLC fails.
- 1 (one) when communications is successful.

Note: For DDE/SuiteLink clients, \$SYS\$Status always comes from the leaf level of a DAServer hierarchy branch, which is the destination PLC node. For OPC clients, \$SYS\$Status can be accessed at all hierarchy levels. \$SYS\$Status at the root level of the whole hierarchy tree is always good, as it represents the quality status of the local computer itself. Hence, for practical application, OPC clients should reference \$SYS\$Status at any hierarchy levels other than the root.

Enter the following DDE reference formula in the appropriate place in your client:

=DASOmronEth|PLC!\$SYS\$Status

where:

DASOmronEth is the name of the DAServer application.

PLC is the exact device group defined in the DAServer for the PLC.

\$\$Y\$\$Status is the discrete item used to monitor the status of connectivity with the PLC.

Enter the following OPC item reference syntax when adding the item in your OPC client:

YourOPCAccessPath.\$SYS\$Status

where:

YourOPCAccessPath is the assembly of hierarchy node names leading to a specific controller device.

\$\$Y\$\$Status is the discrete item used to monitor the status of connectivity with the controller device.

Note: In the case of a PLC disconnect, the DAServer will retry three times before entering into slow poll mode. In the case of reply time-out, the DAServer will go into slow poll mode immediately.

Monitoring the Status of DAS Conversations

The **InTouch WindowViewer** supports built-in topic names, called **DDEStatus** and **IOStatus**, that can be used to monitor the status of specific DAS conversations.

For example, let us assume that **WindowViewer (VIE**W) is communicating with the Omron Ethernet DAServer to a PLC that has been defined in the DAServer with the topic name OmronPLC. The discrete items, **DDEStatus** and **IOStatus**, are set to:

- 0 (zero) when this DAS conversation failed.
- 1 (one) when this DAS conversation is successful.

Using DDEStatus and IOStatus in Excel

The status of communications between the PLC and InTouch can be read into Excel by entering the following DDE reference formula in a cell on a spreadsheet:

=view|DDEStatus!OmronPLC

or

=view|IOStatus!OmronPLC

where:

view is the name of the InTouch application.

[DDE][IO] Status is the built-in topic name used to monitor the status of communications between the DAServer and InTouch.

OmronPLC is the exact topic name defined in the server for the PLC.

Reading Values from the DAServer into Excel

Values may be read directly into Excel spreadsheets from the DAServer by entering a DDE formula into a cell using the following format:

=applicationname|<devicegroup>!itemname

Example formula:

=DASOmronEth|OmronPLC!'d100'

where:

DASOmronEth is the name of the DAServer application.

OmronPLC is the exact device group name defined in the DAServer for the PLC.

D100 is the actual location in the PLC that contains the data value. This is the item name.

In this example, each time the value of **<tagname>** changes in the PLC, the DAServer will automatically send the new value to the cell containing the formula in Excel.

Note: Refer to the Microsoft Excel manual for complete details on entering Remote Reference formulas for cells.

Writing Values to the DAServer from Excel

Values may be written to the DAServer from Microsoft Excel by creating an Excel macro that uses the **POKE** command. The proper command is entered in Excel as follows:

```
channel=INITIATE("applicationname", "topicname")
=POKE(channel, "itemname", Data_Reference)
=TERMINATE (channel)
=RETURN()
```

The following describes each of the above **POKE** macro statements:

channel=INITIATE("applicationname","topicname")

- Opens a channel to a specific topic name (defined in the DAServer) in a particular application name (the executable name less the **.ex**e).
- Assigns the number of that opened channel to **channel**.

Note: By using the **channel=INITIATE** statement, the word **channel** must be used in the **=POKE** statement instead of the actual cell reference. The **"application name"** and **"topic name"** portions of the formula must be enclosed in quotation marks.

=POKE(channel,"itemname", Data_Reference)

- **POKEs** the value contained in the **Data_Reference** to the specified item name (actual location in the PLC), via the **channel** number returned by the previously executed **INITIATE** function.
- Data Reference is the row/column ID of the cell containing the data value.

=TERMINATE(channel)

- Closes the channel at the end of the macro.
- Some applications have a limited number of channels; therefore, they should be closed when finished.
- Channel is the channel number returned by the previously executed INITIATE function.

=RETURN()

Marks the end of the macro.

Note: Refer to the .xlm sample Excel poke macro provided on the DAServer CD. Also refer to the Microsoft Excel manual for complete details on entering Remote Reference formulas for cells.

Error Messages and Codes

Generic DAServer error messages and Omron Ethernet-DAServer-specific messages are supported. Use the Log Flag data to customize the messages logged to the Log Viewer. See the Log Viewer online documentation for more information about using log flags. To troubleshoot DAServer problems, use the following error messages together with the DAServer Manager Diagnostics root data.

DAServer Error Messages

The following table lists all the generic-DAServer and Omron Ethernet-DAServer-specific error messages that are logged to the Log Viewer.

Error Message	Explanation	Probable Cause	Solution	Log Flag
OmronEthAdapter <sockname>: Invalid local Host Name (IP Address) <wrongname>. Further operate with Host name: 0.0.0.0 !!!</wrongname></sockname>	Windows Sockets API functions do not accept Host Name (IP Address) value.	Configured invalid Host Name (IP Addr.) parameter for SOCKET <sockname>.</sockname>	Enter correct Host Name or IP Address.	Error
<socket_ ControllerName>: Invalid PLC's IPAddress <wrongipaddress></wrongipaddress></socket_ 	Windows Sockets API functions do not accept Controller IP Address value.	Configured invalid Controller IP Address <wrongipaddress ></wrongipaddress 	Enter correct Controller IP Address.	Error
Socket < SockName> ::OnMessageToSend , Creating Eth. Socket get Error <error number="">: <error description=""></error></error>	Failed creating Ethernet Socket by Windows Sockets dlls	For reason - see Error description in the message. Most possible cause - Ethernet Port already occupied by other OMRON Ethernet DAServer socket or other application.	Solve problems mentioned in Error description. Avoid concurrently communicatio n through Sockets with equal Port numbers.	DASProtFail
<socket_ ControllerName>: Can not create Watchdog Message. Do not process Watchdog.</socket_ 	Failed creation of Watchdog message. Watchdog message is not processed until solving the problems.	Invalid Watchdog Address or Invalid Watchdog value. Watchdog Address area could be non- supported by current DAServer version.	Enter correct Watchdog Address (right Item name representing 2-bytes long Word memory area without suffix). Enter Watchdog.	Error

			value from 0	
< Socket_ ControllerName>: Invalid Watchdog Address <invalwdaddress> - must be valid Item name. Do not process Watchdog.</invalwdaddress>	Failed creation of Watchdog message. Watchdog message is not processed until solving the problems.	Invalid Watchdog Address configured.	to 65535. Enter right Watchdog Address (right Item name representing 2-bytes long Word memory area without suffix).	Error
HASP key not found!	DAServer does not find the valid HASP key installed	No/invalid HASP key	Install valid HASP key into parallel or USB port	DASProtWarn
HASP key not found, demo mode, will quit after 1 hour!	DAServer does not find valid HASP key installed. Server will run 1 hour in demo mode.	No/invalid HASP key installed	Install valid HASP key into parallel or USB port or restart Server after 1-hour demo expires.	DASProtWarn
HASP key not found!	DAServer does not find valid HASP key installed. If demo mode has been started, the Server stops communicate.	No/invalid HASP key installed	Install valid HASP key into parallel or USB port	DASProtWarn
Socket < SockName >: Message with service ID < number > not found.	Received response message with Service ID, that does not match with any of sent request messages ID.	Problems in Ethernet FA network or communication timing problems.	Configure greater communic. (reply) timeouts. Check the network.	DASProtFail
<socket_ ControllerName>: Invalid item name <invalid_itemname></invalid_itemname></socket_ 	The item name is invalid.	Item name does not correspond to Item naming conventions for OMRON Ethernet DAServer.	Use right Item name (see Item Names section in this manual)	DASProtFail
<socket_ ControllerName>: Read message for</socket_ 	Length of read message for Item (or length	Usually there shouldn't be any problems creating	Configure satisfactory max read	DASProtFail

Item <itemname> (<pointer item_class_obj.="" to="">) was not created: max allowed message's length <max_length> is not sufficient.</max_length></pointer></itemname>	of response message) exceeds max read message length, configured for Controller object.	read messages for such Item types as discrete, integer, long or floating point. When poll multiple consecutive 16-bit words as ASCII string Item – you could face this error condition if configuring too small max read message length.	message length for Controller object, or change item name (decrease number of words in ASCII string Item).	
<socket_ ControllerName>: CreatePokeMessage, cannot get Item's <itemname> (<pointer to<br="">Item_Class_Obj.>) value, error = <error_code></error_code></pointer></itemname></socket_ 	Creating write command failed.	Invalid value poked or DAServer processing error.	Check Item's value to poke. Repeat the poke processing.	DASProtFail
<socket_ ControllerName>: Write message for Item <itemname> (<pointer to<br="">Item_Class_Obj.>) was not created: max allowed message's Iength <max_length> is not sufficient.</max_length></pointer></itemname></socket_ 	Length of write message for Item (or length of response message) exceeds max. write message length, configured for Controller object.	Usually there shouldn't be any problems creating write messages for such Item types as discrete, integer, long or floating point. When poke multiple consecutive 16-bit words as ASCII string Item – you could face this error condition if configuring too small max write message length.	Configure satisfactory max write message length for Controller object, or change item name (decrease number of words in ASCII string Item).	DASProtFail
<socket_ ControllerName>: Write message for Item <itemname> (<pointer to<br="">Item_Class_Obj.>) was not created. Preparing of read command for bit writing failed.</pointer></itemname></socket_ 	Writing of new value into bit- of-word is processed in two steps: a) reading of corresponding word value, b) overwriting bit value in word	Timing problems or DAServer code processing problems.	Repeat poke processing.	DASProtFail

<socket_ controllername="">: Item <pointer item_class_obj.="" to=""> (<itemname>) read illegal BCD value <wrongvalue> hex,</wrongvalue></itemname></pointer></socket_>	and writing back modified word value into PLC's memory. Here the processing of first step failed. Data, received from PLC, cannot be converted into right BCD value. Assigned value		Take into account, when creating client application.	DASProtWarn
returning 19999. <socket_ controllername="">: Item <pointer item_class_obj.="" to=""> (<itemname>) read illegal BCD Long value <wrongvalue> hex, returning 199999999.</wrongvalue></itemname></pointer></socket_>	19999. Data, received from PLC, cannot be converted into right BCD Long value. Assigned value 199999999.		Take into account, when creating client application.	DASProtWarn
<socket_ ControllerName>: Item <pointer to<br="">Item_Class_Obj.> (<itemname>) read illegal BCD Floating Point value <wrongvalue> hex, returning 0.0.</wrongvalue></itemname></pointer></socket_ 	Data, received from PLC, cannot be converted into right BCD Floating Point value. Assigned value 0.0.		Take into account, when creating client application.	DASProtWarn
<pre><socket_ controllername="">: Attempting write out- of-range value <wrongvalue> into Item <itemname> (<pointer item_class_obj.="" to="">), clamp to <clamped value="">.</clamped></pointer></itemname></wrongvalue></socket_></pre>	Client application tries to write the value, invalid for current Item type.	This error conditions could happen writing new value into specific Item, for example, BCD Item, when invalid value "path through" standard clamping methods.	Avoid writing values out-of-range.	DASProtWarn

Note: Please contact Klinkmann Support (support@klinkmann.com) if you face any other error messages with Log Flag <u>"Error".</u>

Server-Specific Error Codes

There are following server-specific error codes, shown in the table, that augment those provided by the DAS Toolkit.

Error code	Logger Message	Log Flag
-10002	PLC timeout	DASProtFail
-10003	No Eth. Socket created	DASProtFail
-10004	PLC Fatal Error(*)	DASProtFail

Note: Error code can be monitored in client application as Item's \$SYS\$ErrorCode value, correspondingly **Logger Message** can be monitored as Item's \$SYS\$ErrorText value.

- (*) Fatal Error is set, if one of the following occasions permanently take place:
- mismatch of command codes in DAServer request and PLC's response messages,
- controller response contains response error code with either Relay Error Flag (bit #7 in response's MRC) set to ON, or PC Fatal Error Flag (bit #7 in response's SRC) set to ON.

FINS Response Codes

Additionally, there are FINS command response codes (Main response code MRC and Subcode SRC), generated by OMRON controllers, useful for communication troubleshooting. The following is example of error logging created by Omron Ethernet DAServer:

FINSSocket1.CV500: FINS command 0101 failed (error code 1101). Parameter error: an incorrect memory area or unavailable expansion mem. area has been used.

In above example FINS command response code (1101) is to be interpreted as following: MRC is 11 hex, SRC – 01 hex.

The accompanying table shows response codes, the server-specific strings generated by the DAServer to the logger, as well as recommended remedies. (Suggestions usually deals with configuring of OMRON PLC and/or FA network, yet several errors could be caused by Omron Ethernet DAServer configuration errors).

Main Code (Hex)	Sub- code (Hex)	Probable Cause	Remedy	Log Flag
00	00	Normal completion	-	-
00	01	Service was interrupted.	Check transmission area.	DASProtWarn
01: Local node error	01	Local node not part of network.	Add to network.	DASProtFail
	02	Token time-out, node	Set the local node's	DASProtFail

		number too large.	number below the maximum node number.	
	03	Send error caused by lack of available space in PLC internal buffers.	Reduce the traffic on the Ethernet Unit. Check user application.	DASProtFail
	05	Node number setting error.	Make sure the node number is within specified range and that there are no duplicate node numbers.	DASProtFail
	06	Node number duplication error.	Make sure that there are no duplicate node numbers.	DASProtFail
02: Remote node error	01	IP address of remote node was not set correctly in IP address table or IP router table.	Set IP address of remote node into IP address table, and, if internetwork transmission is required, into IP router table.	DASProtFail
	02	No node with the specified unit address.	Check the remote node's unit address and make sure the correct one is being used in the control data.	DASProtFail
	05	Message packet was corrupted by transmission error or response time-out (response watchdog timer interval too short) or transmission frame corrupted or PLC internal reception buffer full.	Check the protocol and controller status by reading them with FINS commands. Increase the number of transmit retry attempts. Increase the value for the response monitor time in the control data. Read out the error log and correct as required.	DASProtFail
03: Communic. Controller error	01	Error occured in the communications controler. ERC indicator is lit.	Take corrective action, referring to troubleshooting procedures in PLC manual.	DASProtFail
	02	CPU error occured in the PC at the destination node.	Check the CPU indicators at remote PLC and clear the error in the CPU (refer to the PLC's	DASProtFail

			operation manual)	
	04	Node number setting error.	Make sure the node number is within specified range and that there are no duplicate node numbers.	DASProtFail
04: Not executable	01	An undefined command has been used, or short frame (4 bytes) is being used for FINS header frame.	Check the command code and be sure code is supported by Unit to which command is sent.(*)	DASProtFail
05: Routing error	01	Destination node number is not set in the routing tables.	ımber is not set in the the routing tables.	
	02	Routing tables aren't registered.	Set the the routing tables at the relay nodes and remote node.	DASProtFail
	03	Routing table error.	Set the the routing tables correctly.	DASProtFail
	04	The maximum number of relay nodes (2) was exceeded in the command.	Redesign the network to reduce number of relay nodes.	DASProtFail
10: Command format error	01	The command is longer than the max. permissible length.	Check the command format and set it correctly.(*)	DASProtFail
	02	The command is shorter than the min. permissible length.	Check the command format and set it correctly.(*)	DASProtFail
	03	The designated number of data items differs from the actual number.	Check the number of items and data and make sure that they agree.(*)	DASProtFail
	05	An incorrect header has been used. (Data for another node was received. Attempt was made to send response to broadcast address)	Check the header parameters in the command and be sure the correct command format is used.(*)	DASProtFail
11: Parameter error	00	The parameter in the command data were incorrect or the	Check the parameters and be sure the socket number is between 1	DASProtFail

		UDP/TCP socket number was not within the proper range	and 8.	
	01	An incorrect memory area or unavailable expansion mem. area has been used.	Check the command's memory area code. Check whether right controller type configured in DAServer. Check whether controller does has polled memory areas.	DASProtFail
	03	The first address is in inaccessible area.	Set the first word that is in an accessible area. Check whether right controller type configured in DAServer.	DASProtFail
22: Status error	OF	The same socket service is already in progress at the specified socket number.	Use the socket status flag in PC memory to be sure that socket service has finished before starting services again. (Error deals with Ethernet communication programming in PLC's user program).	DASProtFail
	10	The specified socket is not open.	Open the socket.	DASProtFail
23: Environmen t error	05	IP address conversion failed.	Check the IP address and subnet mask in the System Setup and be sure that settings are correct.	DASProtFail
	07	IP address conversion is set for automatic conversion only.	Check the mode settings for System Setup. This error will be generated for the READ IP ADDRESS command only.	DASProtFail
25: Unit error	03	I/O setting error. (The I/O table differs from the actual Unit configuration).	Either change the actual configuration to match the registered one or generate I/O table again.	DASProtFail
	05	CPU bus error. (An error occurred during	Check the Units and cable connection and	DASProtFail

	data transfer between the CPU unit and a CPU Bus Unit).	issue the ERROR CLEAR command	
0A	An error occured during CPU Bus Unit data transfer.	Check the Units and cable connection and issue the ERROR CLEAR command	DASProtFail

Note: Refer to FINS Command's manual if face FINS error code missed in table.

^(*) If face this type of error – contact Klinkmann Support (support@klinkmann.com), because reason of problem could be caused by Omron Ethernet DAServer data processing problems.

CHAPTER 6

Reference

Contents

- DAServer Architecture
- Component Environments

DAServer Architecture

Note: DAServers are supported on Microsoft Windows 2000 and Windows XP only. NetDDE protocol is not supported by DAServers.

This DAServer is a collection of components that work in concert to provide communications access with hardware field devices. These components include:

- **DAServer Manager**: This is the Microsoft Management Console (MMC) snap-in, that is part of the ArchestrA System Management Console suite of utilities, supplied with the DAServer. It provides the necessary user-interface for diagnostics, configuration, and activation.
- Client Plug-ins: These are the components that are added to a DAServer to enable communications with clients. Examples are: OPC, DDE/Suitelink, and so on.
- DAS Engine: This is the library that contains all the common logic to drive data access.
- **Device Protocol**: This is the custom code provided by this DAServer to define the communications with a particular device.

DAServers

A DAServer is comprised of three physical parts (see the following figure). They are the following:

- Plug-in Component(s): Responsible for communicating with clients.
- DAS Engine: This common component is used by all DAServers.
- **PLC Protocol Layer**, DAServer-specific: This component is responsible for communicating with the hardware.

DAServer Architecture

Each physical part of a DAServer is comprised of a set of .exe and/or .dll modules. Wonderware provides the Plug-ins and the DAS Engine. The DAS Toolkit user creates the PLC Protocol Layer (DAServer-specific) modules. All three sets of modules are required for a fully functioning DAServer.

Plug-ins

Plug-ins provide a protocol-translation function for device integration clients. Typical Plug-ins communicate in DDE, SuiteLink, or OPC protocol, and serve as interfaces between their clients and the DAS Engine.

Note: Items of an array are not supported in the DDE/SL plug-in. These arrays are converted to HEX strings, which provide legacy behavior for DAServers that support this in the DAServer-specific code.

DAS Engine

The DAS Engine is a middleware component that exposes two sets of unique interfaces, one for communicating with the Plug-ins and the other one for communicating with the PLC Protocol Layer components.

PLC Protocol Layer

The PLC Protocol Layer provides a protocol-translation function for specific hardware, such as OMRON FinsGateway; and it serves as an interface between the DAS Engine and the hardware.

Component Environments

Stand-alone DAServers have the following characteristics:

- The DAS Engine is dynamically linked to the other DAServer components. In other words, a new DAS Engine (feature enhancement or bug fix) would not require relinking to the other components nor re-QA of those other components. When deployed to the system, the new DAS Engine would attach to all existing DAServer components.
- Newly deployed Plug-ins (feature enhancements or bug fixes) do not require relinking nor re-QA of associated components. Even new Plug-ins (for example, OPC Alarm & Events) would not require any development changes to the other components, and therefore no relinking in a customer-installed base. In fact, it is feasible to implement new functionality in a Plug-in to enhance the

DAServer without any involvement of the code of the other components.

- DAServers can be configured in one stand-alone configuration utility (DAServer Manager), and the DAServer Managerand is capable of displaying specific configuration views for all DAServers. This utility allows the browsing and editing of DAServers on different nodes.
- The DAServer Manager diagnostics tool displays generic diagnostic objects common to all DAServers, in addition to the DAServer-specific/DAServer-developer-defined diagnostic data. The DAServer data configuration format is XML. Any XML-enabled program (for example, XML Editor) can read this format.

KLINKMANN AUTOMATION Omron Ethernet Direct DAServer Revision History

Mar 2005	Rev 1.0	First Release
Dec 2005	Rev 1.1	"Computer Node" Address removed from
		CONTROLLER Object parameters configuration.
Oct 2007	Rev 1.2	"Gateway Count (GCT)" field added into
		CONTROLLER Object parameters configuration.
May 2009	Rev 1.3	Support for CS1/CJ1 Extended Memory bank 0 to bank
•		C (in Hex), up to 13 banks, added.
Mar 2011	Rev 1.4	Software protection description added in "Demo Mode"
		section. "Enabling Software License Key for
		DASOmronEth" section added.