Matthias Mayr 04/20/2010

Instructions, how to use SimControl.m and Input Files:

1 Introduction

This document describes, how the control routine SimControl works and what it is good for. In addition, it explains how you can set up your own examples.

2 SimControl

2.1 Used modules

The routine SimControl controls the work flow in an xfem-computation. First, a brief overview of the used modules.

2.1.1 comp_geo

comp_geo generates the background mesh. Input parameters for this module are saved in xfeminputdata_comp_geo.mat. The parameters are:

IFmeshstructure	mesh structure (structured, unstructured or GMSH)
IFshapegeometryID	shape of geometry
IFlength	length of rectangle
IFheight	heigth of rectange
IFnldivx	number of elements in x-direction
IFnldivy	number of elements in y-direction
IFfilename_msh_file	filename for mesh-file with mesh data from GMSH
IFdatasetp	dataset for matrix p (contains coords of centroid of
	grains)

Different matrices p are stored in <code>comp_geo\vdata_multi.m</code>. The main routine of <code>comp_geo</code> is <code>main_comp_geo.m</code>. The results (mesh data) are saved to the file <code>my_new_mesh.mat</code>. The result file has to be copied and pasted to the <code>preprocess</code> directory.

2.1.2 preprocess

The main routine main_preprocess.m manages the appliance of Dirichlet and Neumann Boundary Conditions (DBCs and NBCs) and assigns material properties to each element. Input data are load from xfeminputdata_preprocess.mat. These parameters are:

Matthias Mayr 04/20/2010

IFDirichletBCs	ID for a set of DBCs
IFNeumannBCs	ID for a set of NBCs
IFMatSet	ID for a set of material properties

The mesh my_new_mesh.mat is load, too. The boundary conditions are stored in separate files for each kind and each example, located in the folder preprocess\Boundary_Conditions. The material data are stored in MaterialProperties.m.

Results of this routine are stored to <code>my_new_mesh_with_BCs.mat</code>. The result file has to be copied and pasted to the XFEM directory.

2.1.3 XFEM

The main routine $main_xfem.m$ manages the assembly and solution process. Some prostprocessing is done, too. Input data is load from $xfeminputdata_xfem.mat$. These parameters are:

IFsliding_switch	inidcates, wheter and which kind of sliding is admitted	
IFSolverType	explicit (0) or implicit (1) solver	
IFmaxiter	maximum number of iterations for implicit solver	
IFconvtol	convergenz criteria for implicit solver	

The mesh with boundary conditions (my_new_mesh_with_BCs.mat) is load, too. After the computation, you can run some scripts to visualize the results: showmesh.m, showdeform.m, showdeform2.m, xx_stress.m

2.2 Operating mode of SimControl.m

SimControl.m initializes some variabeles to specify the example, which has to be solved, and then calls the three routines main_comp_geo.m, main_preprocess.m and main_xfem.m in sequence. It also manages the copying process of the result files between the subdirectories. You can specify, which of the three modules shall be executed. Perhaps, you do not want to run the background mesh generation each time, when you only changed some boundary conditions.

To choose the example, you want to solve, you have to give the filename of the appropriate input file to the variable filename_input_file without the file extension .m. To start the simulation, the current working directory has to be the one, in which SimControl.m is saved. Just run the script SimControl.m to start the computation.

Matthias Mayr 04/20/2010

3 Input Files

The data to define the examples and the code to solve the examples are quite separated. The databases are included in the code, the selection of the data is outsourced to the input file.

Input files are scripts, that initialize some variables, which configure your example. A full list and description of these variables and IDs can be found in InputFileRoutine.m.

Important: Always start a new example in InputFileRoutine.m, so that the ID list is always up-to-date in this file.

To set up a new example, open InputFileRoutine.m and configure all IDs the way, you want (Remark: Input parameter names are indicated with IF at the beginning of the variable's name.). After setting the parameters, do not forget to update the databases, from which data shall be load. These database are

- a) preprocess\MaterialProperties.m
 - Add addition cases to the switch-case-structure.
- b) preprocess\applybcs.m
 - Add additional cases to the switch-case-structures for DBCs and NBCs.
- c) preprocess\Boundary_Conditions
 Make new files for DBCs and NBCs. Indicate them with an appropriate file
 name and the ending _DBC.m or _NBC.m.

After running a first simulation with the input file InputFileRoutine.m to check, if it works properly, saved it as <code>inp_NAME#_MSHX_MSHY.m</code>, where <code>NAME</code> is the name of the example, <code>#</code> is a number, <code>MSHX</code> is the number of elements in x-direction and <code>MSHY</code> is the number of elements in y-direction. Save this file to the same directory as the control routine <code>SimControl.m</code>.

Now, you can run this example by choosing its file name in the SimControl variable filename input file.