

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Bayesian Statistics and Data Analysis Lecture 5

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

It's all about expectations

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

It's all about expectations

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$

where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - 16116 51
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

It's all about expectations

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling Metropolis-Hastings
- MCMC Diagnostics

 - Convergence
 - Soff, MCSE, and autocorrelation
- Difficult geometries

It's all about expectations

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

• Monte Carlo methods which can sample from $p(\theta^{(s)}|y)$ using only $q(\theta^{(s)}|y)$

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics

 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D
 - Grid methods works in a few dimensions

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D
 - Grid methods works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - vvarm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D
 - Grid methods works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D
 - Grid methods works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D
 - Grid methods works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?
 - Markov chain Monte Carlo (Ch 11-12)

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Monte Carlo methods we have discussed so far
 - Inverse CDF works mainly for 1D
 - Grid methods works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?
 - Markov chain Monte Carlo (Ch 11-12)
 - Laplace, Variational*, EP* (Ch 4, 13*, next course)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

 Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...)=p(\theta_t|\theta_{t-1})$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...) = p(\theta_t|\theta_{t-1})$$

• $T_t(\theta_t \mid \theta_{t-1}) \equiv p(\theta_t | \theta_{t-1})$ is usually referred to as the transition distribution

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...) = p(\theta_t|\theta_{t-1})$$

- $T_t(\theta_t \mid \theta_{t-1}) \equiv p(\theta_t | \theta_{t-1})$ is usually referred to as the transition distribution
- Under some assumptions $p(\theta_t|\theta_{t-1})$ will converge (in total variation) to *one* stationary distribution $p(\theta)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...)=p(\theta_t|\theta_{t-1})$$

- $T_t(\theta_t \mid \theta_{t-1}) \equiv p(\theta_t | \theta_{t-1})$ is usually referred to as the transition distribution
- Under some assumptions $p(\theta_t|\theta_{t-1})$ will converge (in total variation) to *one* stationary distribution $p(\theta)$
- Goal in MCMC: Construct a transition distribution with $p(\theta|y)$ as the stationary distribution

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• Produce draws $\theta_{(t)}$ given $\theta_{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - reivic Diagnosti
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Produce draws $\theta_{(t)}$ given $\theta_{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - + combine sequence of easier Monte Carlo draws to form a Markov chain

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Produce draws $\theta_{(t)}$ given $\theta_{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - combine sequence of easier Monte Carlo draws to form a Markov chain
 - + converges (in total variation) to $p(\theta|y)$ as $t \to \infty$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Produce draws $\theta_{(t)}$ given $\theta_{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - combine sequence of easier Monte Carlo draws to form a Markov chain
 - + converges (in total variation) to $p(\theta|y)$ as $t \to \infty$
 - + central limit theorem holds for expectations

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - vicivic Diagnos
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Produce draws $\theta_{(t)}$ given $\theta_{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - + combine sequence of easier Monte Carlo draws to form a Markov chain
 - + converges (in total variation) to $p(\theta|y)$ as $t \to \infty$
 - + central limit theorem holds for expectations
 - draws are dependent
 - construction of an efficient Markov chains is not always easy

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - vvaiiii up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

MCMC summary

• Random variables $\theta_1, \theta_2, \ldots$ where θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)}) = p(\theta_t|\theta_{(t-1)})$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

MCMC summary

• Random variables $\theta_1, \theta_2, \ldots$ where θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)})=p(\theta_t|\theta_{(t-1)})$$

ullet Chain has to be initialized with some starting point $heta_0$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

MCMC summary

• Random variables $\theta_1, \theta_2, \ldots$ where θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)})=p(\theta_t|\theta_{(t-1)})$$

- Chain has to be initialized with some starting point θ_0
- Choose a transition distribution so the stationary distribution of the Markov chain is $p(\theta|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling - Metropolis-Hastings
- MCMC Diagnostics

 - Warm-up
 - Convergence
 - Seff, MCSE, and autocorrelation
- Difficult geometries

Subsection 1

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 -
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Alternate sampling from conditional distributions
- Basic algorithm, for $j \in \{1,...,J\}$

sample
$$\theta_{j,t}$$
 from $p(\theta_j|\theta_{-j,t-1},y)$, where $\theta_{-j,t-1}=(\theta_{1,t},\ldots,\theta_{j-1,t},\theta_{j+1,t-1},\ldots,\theta_{J,t-1})$

• Will converge (in total variation) to $p(\theta|y)$ as $N \to \infty$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - Wetropolis-Hastii
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Alternate sampling from conditional distributions
- Basic algorithm, for $j \in \{1,...,J\}$

sample
$$\theta_{j,t}$$
 from $p(\theta_j|\theta_{-j,t-1},y)$, where $\theta_{-j,t-1}=(\theta_{1,t},\ldots,\theta_{j-1,t},\theta_{j+1,t-1},\ldots,\theta_{J,t-1})$

- Will converge (in total variation) to $p(\theta|y)$ as $N \to \infty$
- j can be multiple (blocked) parameters
- 1D sampling (|j| = 1) is generally easy

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Alternate sampling from conditional distributions
- Basic algorithm, for $j \in \{1,...,J\}$

sample
$$\theta_{j,t}$$
 from $p(\theta_j|\theta_{-j,t-1},y)$, where $\theta_{-j,t-1} = (\theta_{1,t},\ldots,\theta_{j-1,t},\theta_{j+1,t-1},\ldots,\theta_{J,t-1})$

- Will converge (in total variation) to $p(\theta|y)$ as $N \to \infty$
- *j* can be multiple (blocked) parameters
- 1D sampling (|i| = 1) is generally easy
- Popular for discrete parameters

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Example: Bivariate Normal using Gibbs

$$p(\theta \mid y) \sim \mathcal{N}(\bar{y}, \frac{1}{n}\Sigma)$$
.

where Σ is known and $heta \in \mathcal{R}^2$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 -
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Example: Bivariate Normal using Gibbs

$$p(\theta \mid y) \sim \mathcal{N}(\bar{y}, \frac{1}{n}\Sigma)$$
.

where Σ is known and $\theta \in \mathcal{R}^2$

Using Gibbs sampling:

Given starting values $(\theta_1^{(0)}, \theta_2^{(0)})$, for t = 1, 2, ...:

$$\theta_1^{(t)} \, \sim \, \mathcal{N}\bigg(\bar{\textbf{y}}_1 + \frac{\rho}{\sigma_2}\big(\theta_2^{(t-1)} - \bar{\textbf{y}}_2\big), \,\, \frac{1}{\textit{n}}\bigg(\sigma_1 - \frac{\rho^2}{\sigma_2}\bigg)\bigg) \,,$$

$$\theta_2^{(t)} \ \sim \ \mathcal{N}\bigg(\bar{\mathbf{y}}_2 + \frac{\rho}{\sigma_1}\big(\theta_1^{(t)} - \bar{\mathbf{y}}_1\big), \ \frac{1}{n}\bigg(\sigma_2 - \frac{\rho^2}{\sigma_1}\bigg)\bigg) \,.$$

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Gibbs sampling

Draws — Steps of the sampler — 90% HPD

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune
- For not so easy conditionals, use e.g. inverse-CDF

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Gibbs sampling

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune
- For not so easy conditionals, use e.g. inverse-CDF
- Several parameters can be updated in blocks (blocking)

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Gibbs sampling

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune
- For not so easy conditionals, use e.g. inverse-CDF
- Several parameters can be updated in blocks (blocking)
- Slow if parameters are highly dependent in the posterior...

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Gibbs sampling

Draws — Steps of the sampler — 90% HPD

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Sampling conditional vs joint

- How about sampling θ jointly?
 - e.g. it is easy to sample from multivariate normal

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Sampling conditional vs joint

- How about sampling θ jointly?
 - e.g. it is easy to sample from multivariate normal
- Can we use that to form a Markov chain?

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs samplingMetropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Subsection 2

Metropolis-Hastings

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e.

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b)
 - (b) calculate acceptance ratio

$$r = \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b)
 - (b) calculate acceptance ratio

$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b)
 - (b) calculate acceptance ratio

$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

ie, if $p(\theta^*|y) > p(\theta_{t-1}|y)$ accept the proposal always and otherwise accept the proposal with probability r

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b)
 - (b) calculate acceptance ratio

$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

 rejection of a proposal increments the time t also by one ie, the new state is the same as previous

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and
- autocorrelation

Difficult geometries

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b)
 - (b) calculate acceptance ratio

$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

- rejection of a proposal increments the time t also by one ie, the new state is the same as previous
- ullet step c is executed by generating a random number from $\mathcal{U}(0,1)$

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. (Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b)
 - (b) calculate acceptance ratio

$$r = \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)}$$
 (c) set
$$\theta_t = \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

- rejection of a proposal increments the time *t* also by one ie, the new state is the same as previous
- step c is executed by generating a random number from $\mathcal{U}(0,1)$
- $p(\theta^*|y)$ and $p(\theta_{t-1}|y)$ have the same normalization terms, and thus instead of $p(\cdot|y)$, unnormalized $q(\cdot|y)$ can be used, as the normalization terms cancel out!

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Metropolis algorithm

- Example: one bivariate observation (y_1, y_2)
 - bivariate normal distribution with unknown mean and known covariance

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \middle| \ y \sim \mathcal{N} \left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

• proposal distribution $J_t(\theta^*|\theta_{t-1}) = \mathcal{N}(\theta^*|\theta_{t-1}, \sigma_p^2)$

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

 Intuitively more draws from the higher density areas as jumps to higher density are always accepted and only some of the jumps to the lower density are accepted

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Intuitively more draws from the higher density areas as jumps to higher density are always accepted and only some of the jumps to the lower density are accepted
- Theoretically
 - Prove that simulated series is a Markov chain which has unique stationary distribution
 - 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - b) aperiodic

c) recurrent / not transient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic

c) recurrent / not transient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic
 - = aperiodic (return times are not periodic)
 - holds for a random walk on any proper distribution (except for trivial exceptions)
 - c) recurrent / not transient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic
 - = aperiodic (return times are not periodic)
 - holds for a random walk on any proper distribution (except for trivial exceptions)
 - c) recurrent / not transient
 - = probability to return to a state i is 1 as $T \to \infty$
 - holds for a random walk on any proper distribution (except for trivial exceptions)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$: see book
 - Show detailed balance with respect to $p(\theta|y)$:

$$p(\theta|y) T(\theta|\theta') = p(\theta'|y) T(\theta'|\theta), \forall \theta, \theta'.$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - Wetropolis-Hastii
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$: see book
 - Show detailed balance with respect to $p(\theta|y)$:

$$p(\theta|y) T(\theta|\theta') = p(\theta'|y) T(\theta'|\theta), \forall \theta, \theta'.$$

- Intuition:
 - Think of $p(\theta|y)$ as the "mass" of probability at state θ .

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - metropolis musti
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$: see book
 - Show detailed balance with respect to $p(\theta|y)$:

$$p(\theta|y) T(\theta|\theta') = p(\theta'|y) T(\theta'|\theta), \forall \theta, \theta'.$$

- Intuition:
 - Think of $p(\theta|y)$ as the "mass" of probability at state θ .
 - $p(\theta|y)P(\theta,\theta')$ is the "flow" of mass from θ to θ' .

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - Wetropolis-Hastii
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$: see book
 - Show detailed balance with respect to $p(\theta|y)$:

$$p(\theta|y) T(\theta|\theta') = p(\theta'|y) T(\theta'|\theta), \forall \theta, \theta'.$$

- Intuition:
 - Think of $p(\theta|y)$ as the "mass" of probability at state θ .
 - $p(\theta|y)P(\theta,\theta')$ is the "flow" of mass from θ to θ' .
 - Detailed balance: the flow from θ to θ' equals the flow back from θ' to θ nothing accumulates or leaks.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - Wetropolis-Hastii
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$: see book
 - Show detailed balance with respect to $p(\theta|y)$:

$$p(\theta|y) T(\theta|\theta') = p(\theta'|y) T(\theta'|\theta), \quad \forall \theta, \theta'.$$

Here, $T(\theta'|\theta)$ denotes the one-step transition probability (or density).

- Intuition:
 - Think of $p(\theta|y)$ as the "mass" of probability at state θ .
 - $p(\theta|y)P(\theta,\theta')$ is the "flow" of mass from θ to θ' .
 - Detailed balance: the flow from θ to θ' equals the flow back from θ' to θ nothing accumulates or leaks.

More indepth in a proper Markov Theory course!

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Generalization of Metropolis algorithm for non-symmetric proposal distributions
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{p(\theta^*|y)/J_t(\theta^*|\theta_{t-1})}{p(\theta_{t-1}|y)/J_t(\theta_{t-1}|\theta^*)}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Generalization of Metropolis algorithm for non-symmetric proposal distributions
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{p(\theta^*|y)/J_t(\theta^*|\theta_{t-1})}{p(\theta_{t-1}|y)/J_t(\theta_{t-1}|\theta^*)} = \frac{p(\theta^*|y)J_t(\theta_{t-1}|\theta^*)}{p(\theta_{t-1}|y)J_t(\theta^*|\theta_{t-1})}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - metropons must
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 - ACMC D:
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used
- After the proposal distribution shape has been selected, it is important to select the scale
 - small scale
 - ightarrow many steps accepted, but the chain moves slowly due to small steps
 - big scale
 - \rightarrow long steps proposed, but many of those rejected and again chain moves slowly

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 -
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used
- After the proposal distribution shape has been selected, it is important to select the scale
 - small scale
 - ightarrow many steps accepted, but the chain moves slowly due to small steps
 - big scale
 - \rightarrow long steps proposed, but many of those rejected and again chain moves slowly

demo

Generic rule for rejection rate is 60-90%

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Gibbs sampling as a special case

- Specific case of Metropolis-Hastings algorithm
 - single updated (or blocked)
 - proposal distribution is the conditional distribution
 - \rightarrow proposal and target distributions are same
 - ightarrow acceptance probability is 1

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - $S_{\rm eff}$, MCSE, and
- autocorrelation
 Difficult geometries

Metropolis

- Usually doesn't scale well to high dimensions
 - if the shape doesn't match the whole distribution, the efficiency drops

- Draws—Steps of the sampler—90% HPI
- Draws-Steps of the sampler-90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs samplingMetropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - vvarm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Section 3

MCMC Diagnostics

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

What we want to know

1. Has the chains converged to the posterior distribution?

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
- Metropolis-Hastings
 MCMC Diagnostics
 - victivic Diagnosi
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

What we want to know

- 1. Has the chains converged to the posterior distribution?
- 2. How many efficient samples do I have?

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Subsection 1

Warm-up

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
- Metropolis-Hastings MCMC Diagnostics

 - Warm-up
 - Convergence
 - Saff, MCSE, and autocorrelation
- · Difficult geometries

Warm-up

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the Markov chain may be non-representative

Draws—Steps of the sampler—90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
- Metropolis-Hastings
 MCMC Diagnostics
 - VICIVIC DIAGNOSTIC
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Warm-up

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the Markov chain may be non-representative

• Draws—Steps of the sampler—90% HP

- Warm-up period = (non-representative) draws from the beginning of the Markov chain
 - remove warm-up before using samples for inference
 - warm-up may include phase for adapting algorithm parameters

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Warm-up

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the Markov chain may be non-representative

• Draws—Steps of the sampler—90% HP

- Warm-up period = (non-representative) draws from the beginning of the Markov chain
 - remove warm-up before using samples for inference
 - warm-up may include phase for adapting algorithm parameters
- Also called burn-in

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs samplingMetropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Subsection 2

Convergence

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Assesing convergence

Several Markov chains make convergence diagnostics easier

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Assesing convergence

- Several Markov chains make convergence diagnostics easier
- Start chains from different starting points preferably overdispersed

Remove warm-up draws and run chains long enough

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Several chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Several chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs samplingMetropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Several chains

Visual convergence check is not sufficient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- \widehat{R} or potential scale reduction factor (PSRF)
- Compare means and variances of the chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

- \widehat{R} or potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- \widehat{R} or potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and
 - autocorrelation
- · Difficult geometries

- \widehat{R} or potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• *M* chains, each having *N* draws

UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- *M* chains, each having *N* draws
- Within chains variance W

$$W = rac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = rac{1}{N-1} \sum_{n=1}^{N} (heta_{nm} - ar{ heta}_{.m})^2$

UNIVERSITET

- Monte Carlo recap
 Markov Chain Monte
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
- MCMC Diagnostics
 - ACIVIC DIAgnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- M chains, each having N draws
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^2,$$

where
$$\bar{\theta}_{.m} = \frac{1}{N} \sum_{n=1}^{N} \theta_{nm}$$
, $\bar{\theta}_{..} = \frac{1}{M} \sum_{m=1}^{M} \bar{\theta}_{.m}$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- M chains, each having N draws
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^2,$$
 where $\bar{\theta}_{.m} = \frac{1}{N} \sum_{n=1}^{N} \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{n=1}^{M} \bar{\theta}_{.m}$

• B/N is variance of the means of the chains

Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- M chains, each having N draws
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^{2},$$

where
$$\bar{\theta}_{.m} = \frac{1}{N} \sum_{n=1}^{N} \theta_{nm}$$
, $\bar{\theta}_{..} = \frac{1}{M} \sum_{m=1}^{M} \bar{\theta}_{.m}$

- B/N is variance of the means of the chains
- Estimate total variance $var(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• Estimate total variance $\mathrm{var}(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

• this *overestimates* marginal posterior variance if the starting points are overdispersed

UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - Seff, MCSE, and
 - autocorrelation
- Difficult geometries

• Estimate total variance $var(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- this overestimates marginal posterior variance if the starting points are overdispersed
- Given finite N, W underestimates marginal posterior variance
 - single chains have not yet visited all points in the distribution
 - when $N \to \infty$, $E(W) \to var(\theta|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• Estimate total variance $\mathrm{var}(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- this overestimates marginal posterior variance if the starting points are overdispersed
- Given finite N, W underestimates marginal posterior variance
 - single chains have not yet visited all points in the distribution
 - when $N \to \infty$, $E(W) \to var(\theta|y)$
- As $\widehat{\text{var}}^+(\theta|y)$ overestimates and W underestimates, compute

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+}{W}}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+}{W}}$$

- Estimates how much the scale could reduce if $N \to \infty$
- $\widehat{R} \to 1$, when $N \to \infty$
- If \widehat{R} is big (e.g., R > 1.01), keep sampling

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
- Metropolis-Hastings
 MCMC Diagnostics
 - 5.105.105
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

$$\widehat{R} = \sqrt{\frac{\widehat{\mathrm{var}}^+}{W}}$$

- Estimates how much the scale could reduce if $N \to \infty$
- $\widehat{R} \to 1$, when $N \to \infty$
- If \widehat{R} is big (e.g., R > 1.01), keep sampling
- If \widehat{R} close to 1, it is still possible that chains have not converged
 - if starting points were not overdispersed
 - distribution far from normal (especially if infinite variance)
 - just by chance when N is finite

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Additional \widehat{R} methods to assess convergence
- Split- \widehat{R}
 - Examines mixing and stationarity of chains
 - To examine stationarity chains are split to two parts: compare means and variances of the split chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
- Metropolis-Hastings
 MCMC Diagnostics
 - Warm-up
 - vvarm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Additional \widehat{R} methods to assess convergence
- Split- \hat{R}
 - Examines mixing and stationarity of chains
 - To examine stationarity chains are split to two parts: compare means and variances of the split chains
- Rank normalized \hat{R}
 - Does not requires that the target distribution has finite mean and variance

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

MCMC draws are dependent

Monte Carlo estimates still valid (central limit theorem)

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

- Estimation of Monte Carlo error is more difficult
 - evaluation of effective sample size, S_{eff} .

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

MCMC Autocorrelation

- Auto correlation function
 - describes the correlation given a certain lag
 - can be used to compare efficiency of MCMC methods

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Autocorrelation

Draws—Steps of the sampler—90% HPI

uppsala universitet

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Autocorrelation

-theta1 -theta2

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Autocorrelation

Draws—Steps of the sampler—90% HPI

-theta1 -theta2

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Autocorrelation

Draws—Steps of the sampler—90% HPI

uppsala universitet

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Autocorrelation

Draws—Steps of the sampler—90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- The autocorrleation can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\rm eff} = S/ au$, and au is sum of autocorrelations

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- The autocorrleation can be used to estimate Monte Carlo error in case of MCMC
- ullet For expectation $ar{ heta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\rm eff} = S/\tau$, and τ is sum of autocorrelations

 $\bullet \ \tau$ describes how many dependent draws correspond to one independent draw

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- The autocorrleation can be used to estimate Monte Carlo error in case of MCMC
- ullet For expectation $ar{ heta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\rm eff} = S/\tau$, and τ is sum of autocorrelations

- $m{ ilde{ au}}$ describes how many dependent draws correspond to one independent draw
- Here S = NM (in BDA3 N = nm and $n_{\rm eff} = N/ au$)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- The autocorrleation can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{ heta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\rm eff} = S/\tau$, and τ is sum of autocorrelations

- \bullet $\,\tau$ describes how many dependent draws correspond to one independent draw
- Here S = NM (in BDA3 N = nm and $n_{\text{eff}} = N/\tau$)
- BDA3 focuses on S_{eff} and not the Monte Carlo error directly

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

• Estimation of the autocorrelation using several chains

$$\hat{\rho}_{n} = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2 \hat{\text{var}}^{+}}$$

where $\hat{\rho}_{n,m}$ is autocorrelation at lag n for chain m

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Estimation of the autocorrelation using several chains

$$\hat{\rho}_{n} = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2 \hat{\text{var}}^{+}}$$

where $\hat{\rho}_{n,m}$ is autocorrelation at lag n for chain m

 \bullet BDA3 has slightly different and less accurate equation. The above equation is used in Stan 2.18+

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

• Estimation of the autocorrelation using several chains

$$\hat{\rho}_{n} = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2 \hat{\text{var}}^{+}}$$

where $\hat{\rho}_{n,m}$ is autocorrelation at lag n for chain m

- BDA3 has slightly different and less accurate equation.
 The above equation is used in Stan 2.18+
- Compared to a method which computes the autocorrelation from a single chain, the multi-chain estimate has smaller variance

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Estimating au

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

where $\hat{\rho}_t$ is empirical autocorrelation

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Estimating au

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

where $\hat{\rho}_t$ is empirical autocorrelation

- empirical autocorrelation function is noisy
- noise is larger for longer lags (less observations)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Estimating τ

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

where $\hat{\rho}_t$ is empirical autocorrelation

- empirical autocorrelation function is noisy
- noise is larger for longer lags (less observations)
- less noisy estimate is obtained by truncating

$$\hat{\tau} = 1 + 2\sum_{t=1}^{T} \hat{\rho}_t$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Geyer's adaptive window estimator of au

- Truncation T can be decided adaptively
 - for stationary, irreducible, recurrent Markov chain
 - let $\Gamma_m = \rho_{2m} + \rho_{2m+1}$, which is sum of two consequent autocorrelations
 - Γ_m is positive, decreasing and convex function of m

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Geyer's adaptive window estimator of au

- Truncation T can be decided adaptively
 - for stationary, irreducible, recurrent Markov chain
 - let $\Gamma_m = \rho_{2m} + \rho_{2m+1}$, which is sum of two consequent autocorrelations
 - Γ_m is positive, decreasing and convex function of m
- Initial positive sequence estimator (Geyer's IPSE)
 - Choose the largest m so, that all values of the sequence $\hat{\Gamma}_1, \ldots, \hat{\Gamma}_m$ are positive

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Effective sample size, $S_{\rm eff}$

Effective sample size $\mathrm{ESS} = S_{\mathsf{eff}} \approx S/\hat{ au}$

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Effective sample size, $S_{\rm eff}$

Effective sample size $ESS = S_{eff} \approx S/\hat{\tau}$

Cumulative averages

-theta1 - theta2 - - 95% interval for MCMC error ··· 95% interval for indepen

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}_t$$

$$\approx 24$$

$$\hat{S}_{\mathsf{eff}} = \frac{4500}{24} \approx 188$$

uppsala universitet

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- · Difficult geometries

Effective sample size, $S_{\rm eff}$

Effective sample size $ESS = S_{eff} \approx S/\hat{\tau}$

Cumulative averages

-theta1 - theta2 - - 95% interval for MCMC error · · · · 95% interval for indepen

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}_t$$

$$\approx 104$$

$$\hat{S}_{\text{eff}} = \frac{4500}{104} \approx 43$$

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Effective sample size, $S_{\rm eff}$

Effective sample size $ESS = S_{eff} \approx S/\hat{\tau}$

Cumulative averages

-theta1 - theta2 - - 95% interval for MCMC error · · · · 95% interval for indepen

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}_t$$

$$\approx 63$$

$$\hat{S}_{\text{eff}} = \frac{4500}{63} \approx 71$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs samplingMetropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

Section 4

Difficult geometries

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Nonlinear dependencies
 - optimal proposal depends on location

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location

demo

- Multimodal
 - difficult to move from one mode to another

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings
 -
- MCMC Diagnostics
 - Warm-up
 - Convergence
 - S_{eff}, MCSE, and autocorrelation
- Difficult geometries

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location

demo

- Multimodal
 - difficult to move from one mode to another

demo

- Long-tailed with non-finite variance and mean
 - central limit theorem for expectations does not hold