

Michael Lehn Tobias Speidel SoSe 2019 Blatt 3, 25 Punkte

Übungen zur Höheren Mathematik II *

Abgabe am 14.05.2019 vor Beginn der Übung im Hörsaal 2

- 11. Betrachten Sie die multivariable Funktion $z(\theta,\phi)$ mit $z(\theta,\phi) = \sin(\theta)\cos(\phi)$ und den Substitutionen $\theta = st^2$ sowie $\phi = t$. Berechnen Sie unter diesen Bedingungen die beiden partiellen Ableitungen erster Ordnung von z bzgl. s und t.
- - 12. Die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ besitze bei $(0,1,1)^T$ die Ableitung (2,-1,4). Berechnen Sie $\frac{\mathrm{d}}{\mathrm{d}t} f(t,\mathrm{e}^t,\cos t)$. (4 Punkte)
 - 13. Beweisen Sie die folgende Aussage unter Verwendung des eindimensionalen Mittelwertsatzes aus HM1: Es sei $S \subseteq \mathbb{R}^n$ offen und $f: S \to \mathbb{R}^m$ überall auf S differenzierbar. Sei zudem $\boldsymbol{x}, \boldsymbol{y} \in S$ derart, dass das verbindende Liniensegment dieser Punkte in S enthalten ist, also $L(\boldsymbol{x}, \boldsymbol{y}) \subset S$. Dann gilt: $\forall \boldsymbol{a} \in \mathbb{R}^m \,\exists \, \boldsymbol{z} \in L(\boldsymbol{x}, \boldsymbol{y}) : \boldsymbol{a} \cdot [f(\boldsymbol{y}) f(\boldsymbol{x})] = \boldsymbol{a} \cdot [f'(\boldsymbol{z})(\boldsymbol{y} \boldsymbol{x})].$ (7 Punkte)
 - 14. Es sei $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ und $a \in A$. Zeigen Sie: Ist f partiell differenzierbar in einer Umgebung von a und sind alle partiellen Ableitungen von f stetig bei a, so ist f bei a total differenzierbar.

Hinweis: Vorlesung und Mittelwertsatz.

(5 Punkte)

15. Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) := \begin{cases} 0 & , (x,y) = (0,0), \\ xy\frac{x^2 - y^2}{x^2 + y^2} & , (x,y) \neq (0,0), \end{cases}$$

im Nullpunkt eine nicht-symmetrische Hesse-Matrix besitzt.

(6 Punkte)

^{*} Allgemein gilt: Ergebnisse sind immer zu begründen. Des Weiteren sind falsche Aussagen durch ein Gegenbeispiel zu widerlegen. Ergebnisse sind nachvollziehbar darzustellen und analytisch so weit wie möglich zu vereinfachen.

Ergänzende Aufgaben

A. Sei $f: D_i \subseteq \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2 - 6xy + 3y^3$. Bestimmen Sie alle lokalen und globalen Extrema sowie Sattelpunkte auf den Mengen D_i . Untersuchen Sie ggf. auch auf Randextrema mithilfe einer Parametrisierung der Randkurve.

a)
$$D_1 = \mathbb{R}^2$$
,

b)
$$D_2 = [-1, 1] \times [-1, 1]$$
.

- **B.** Gegeben sei die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit $\nabla f(1, \pi, 0) = (3, 1, 5)^T$. Berechnen Sie $\frac{d}{dt} f(t, 4 \arctan t, \log t) \Big|_{t=1}$.
- C. Gegeben sei die Abbildung der "Zylinderkoordinaten" mit

$$\boldsymbol{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \boldsymbol{\psi}(\varrho, \varphi, \tilde{z}) := \begin{pmatrix} \varrho \cos \varphi \\ \varrho \sin \varphi \\ \tilde{z} \end{pmatrix}, \quad \varrho \in [0, \infty), \quad \varphi \in (-\pi, \pi], \quad \tilde{z} \in \mathbb{R}.$$

wobei $\varrho := \sqrt{x^2 + y^2}$ den Abstand zur z-Achse, $\varphi = s(y)\arccos\left(x/\varrho\right)$ mit s(y) = 1 für $y \ge 0$ und s(y) = -1 für y < 0 den Polarwinkel und $z = \tilde{z}$ die Punkthöhe beschreibt.

- a) Skizzieren Sie die Abbildung ψ in einem geeigneten Koordinatensystem.
- b) Skizzieren und parametrisieren Sie die Koordinatenlinien der Zylinderkoordinaten.
- c) Berechnen Sie die Einheitsvektoren $e_{\varrho}, e_{\varphi}, e_{\bar{z}}$ in Zylinderkoordinaten und zeigen Sie, dass diese für festes ϱ, φ und \tilde{z} ein (lokales) Rechtssystem bilden, d.h. dass gilt: $e_{\varrho} \times e_{\varphi} = e_{\bar{z}}, e_{\bar{z}} \times e_{\varrho} = e_{\varphi}$ und $e_{\varphi} \times e_{\bar{z}} = e_{\varrho}$.
- d) Berechnen Sie den Gradienten ∇_{ψ} in Zylinderkoordinaten mithilfe von $(\nabla_{r}f) \circ \psi = \nabla_{\psi}(f \circ \psi)$.
- e) Berechnen Sie den Laplaceoperator Δ_{ψ} in Zylinderkoordinaten mithilfe von $(\Delta_{r}f) \circ \psi = \Delta_{\psi}(f \circ \psi)$. Folgende Aufgaben stellen einen kleinen Ausblick dar, die Ergebnisse werden allerdings später von großer Relevanz sein.
- f) Berechnen Sie die Jacobimatrix $J_{\pmb{\psi}}$ der Zylinderkoordinaten.
- g) Berechnen Sie die Funktionaldeterminante det $J_{\pmb{\psi}}$ der Zylinderkoordinaten.

Hinweis:

Der Laplaceoperator ist wie folgt definiert:
$$\Delta f(x_1, \dots, x_n) = \sum_{i=1}^n x_i$$

 $\left\{ \left(X_{1} Y_{1} \right) \geq \left(\frac{1}{x^{2} + y^{2}} \right) \right\}$

$$\frac{1}{\sqrt{4}} \left(\frac{1}{2} \circ \varphi \right) = \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right)$$

$$\frac{1}{2} \left(\frac{1}{2} \cdot \varphi \right) = \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2}$$