CS 310-0

Homework Assignment No. 7

Due Fri 3/3/2000

1. If p is a prime number, prove that $\binom{p}{k} \equiv 0 \pmod{p}$ for every 0 < k < p. Then prove the following (rather trivial) form of the binomial theorem:

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$
.

2. Prove that the following Diophantine equation has no positive integer solutions:

$$x^3 + 4y^3 = 7z^3.$$

(Hint: think modulo some appropriate m.)

3. Consider the function $f(x) = x^2 - 3x + 2$. Find all integers x such that f(x) is a multiple of 12, i.e., solve the congruence:

$$x^2 - 3x + 2 \equiv 0 \pmod{12}$$
.

(Hint: You may start by solving the equation f(x) = 0 on \mathbb{Z}_{12} .)

4. Let m be an integer greater than 1 and relatively prime to 10. Then 1/m has a nonterminating periodic decimal representation. Let $l_{10}(m)$ be the length of the period in the decimal representation of 1/m—e.g., $1/7 = 0.142857142857... \Rightarrow l_{10}(7) = 6$,

 $1/11 = 0.09090909... \Rightarrow l_{10}(11) = 2$, etc. Prove:

(a) $l_{10}(m) = \min \{ n \in \mathbb{Z}^+ \mid 10^n \equiv 1 \pmod{m} \}.^1$

(b) If $n \in \mathbb{Z}^+$ then $10^n \equiv 1 \pmod{m} \Leftrightarrow l_{10}(m) \mid n$. In particular $l_{10}(m)$ divides $\phi(m)$, where ϕ is Euler's phi function.

(c) If p is a prime number different from 2 and 5, then either $l_{10}(p^2) = l_{10}(p)$ or $l_{10}(p^2) = p l_{10}(p)^2$

5. Let N be the number $N=4\uparrow\uparrow 4=4^{4^{4^4}}$. Find the two rightmost digits of N (in base 10).

6. A group of one thousand soldiers go to battle. After the fight their commander makes them form rows of 9 and notices that the last row has only 6 soldiers. Then he makes them form rows of 10 and they fit exactly. Then he makes them form rows of 11 and the last row ends up having only 1 soldier. How many soldiers were lost in the battle?

¹Note that $l_{10}(m)$ is the minimum $n \in \mathbb{Z}^+$ such that $\frac{10^n}{m} - \frac{1}{m}$ is an integer. ²As a matter of fact for most primes $l_{10}(p^2) = p \, l_{10}(p)$, but there are some exceptions, for instance $l_{10}(9) = l_{10}(3) = 1$ —can you think of other "exceptional" primes besides 3?

- 7. We have intercepted a secret message from the enemy encrypted with the RSA algorithm. The encoding is $A=01, B=02, C=03, \ldots, Z=26$, and the public encryption key used by the enemy is (n,e)=(31764071,17293841). For instance, the word DOG would be encrypted as follows. First it is encoded: DOG=041507. Then it is encrypted: $041507^{17293841} \equiv 19656874 \pmod{31764071}$. The encrypted message that we have intercepted is $m'=m^e=30151919 \pmod{31764071}$. Your mission is to decrypt the message. In order to do that, use the following steps (you will need some computer algebra system such as Maple to do the computations):³
 - 1) Find the prime factors p and q of n = 31764071.
 - 2) Find $\phi(n)$.
 - 3) Find $d = e^{-1}$ in $\mathbb{Z}_{\phi(n)}$. The decryption key is (n, d).
 - 4) Decrypt the secret message by computing $m'^d \equiv m \pmod{n}$.

³In Maple you may use "ifactor" to find the prime factors of n, and "mod" for computations modulo n. Remember to use the ampersand in expressions of the form " $a\&^{\hat{}}b \mod n$ " in Maple (so that Maple uses the efficient algorithm to compute powers modulo n.) Basically, the computations to be performed are: find p and q with "ifactor(n)", find $\phi(n) = (p-1)*(q-1)$ ", find $d = e\&^{\hat{}}(-1) \mod \phi(n)$ ", find $m = m'\&^{\hat{}}d \mod \phi(n)$ ". Finally, decode m.