Examen (Session principale)

Filière : GLSI A.U : 2021-2022 Niveau : Deuxième année Date : 00-00-2022

Matière : Fondements de l'intelligence artificielle Durée : 00H Enseignants: R. GUESMI, M. SAKKARI Documents : non autorisés

Exercice 1: 8 puzzle problème utilisant Hill-climbing (6 pts)

 Soit un plateau 3×3 avec 8 tuiles (chaque tuile a un numéro de 1 à 8) et un espace vide. L'objectif est de placer les numéros sur des tuiles pour correspondre à la configuration finale en utilisant l'espace vide. Nous pouvons glisser un tuile à gauche, à droite, au-dessus et en dessous dans l'espace vide.

2	8	3
1	6	4
7		5

Configuration initiale

1	2	3
8		4
7	6	5

Configuration finale

• Soit la fonction objectif f(c)=nombre de tuiles bien placés + n. Le niveau de configuration n est incrémenté de 1 à chaque passage.

Question 1 (5 points):

Donner la suite des configurations selon la méthode hill-climbing de **c** parcourues.

★ n=1:

	actu	ıelle,	n=1	possibles (c'est-à-dire niveau suivant),n=2										
		c=1		c=2 ?				c=3 ?				c=4 ?		
	2	8	3	2	8	3		2	8	3		2	8	3
Configuration	1	6	4	1		4		1	6	4		1	6	4
garation	7		5	7	6	5			7	5		7	5	
f(c)	4+1=5			<u>5+2=7</u> ∨				3+2=5				3+2=5		

→ suite des configurations de c parcourues : 1

★ n=2:

	a	ctu	ielle,	n=2	possibles (c'est-à-dire niveau suivant),n=3				
			c=2		à déterminer				
	2	2	8	3					
Configuration	1			4	à déterminer				
garane	7	,	6	5					
f(c)	7				à déterminer				

- → suite des configurations de c parcourues : 1→2
- ★ n=3

Question 2 (1 point): Quelle configuration **c** trouverait la méthode hill-climbing?

Exercice 2: MiniMax (3 pts)

Question 1 (1 point): Compléter les phrases suivantes à l'aide des mots choisis dans la liste ci-dessous.

• la racine, terminal, profondeur d'abord, le plus court chemin, le coup parfait,largeur d'abord, déterministe, admissible, discret

Un jeu à deux joueurs est défini classiquement comme un arbre qui a comme noeuds des positions. Chaque noeud est un noeud «joueur» ou un noeud «opposant».

- > Si un noeud n'a pas de fils, c'est un noeud
- ➤ l'objectif de la méthode MiniMax est de trouver pour un jeu à information parfaite.
- ➤ l'algorithme MiniMax utilise la recherche en

Question 2 (2 points): donner la trace d'exécution (état final seulement) de l'agorithme MiniMax pour l'exemple suivant. Quelle résultat peut-on déduire ?

Exercice 3: A* pour la recherche dans un graphe (11 points)

Considérez la carte suivante. L'objectif est de trouver le chemin le plus court de A vers G. On donne également trois heuristiques, h1, h2 et h3.

Noeud	Α	В	С	D	Е	F	G
h1	10	5	10	10	5	3	0
h2	10	8	11	6	2	5	0
h3	10	6	11	9	2	4	0

Soit la classe Graph suivante :

```
# 1-Définir notre graph
class Graph:
    # Initialiser la classe
    def __init__(self, graph_dict=None, directed=True):
        self.graph_dict = graph_dict or {}
        self.directed = directed
        ...
    def connect(self, A, B, distance=1):
        self.graph_dict.setdefault(A, {})[B] = distance
        if not self.directed:
        self.graph_dict.setdefault(B, {})[A] = distance
        ...
        real figuration of the self.graph_dict.setdefault(B, {})[A] = distance
        real figuration of the self.graph_dict.setdefault(B, {})[A] = distance
        real figuration of the self.graph_dict.setdefault(B, {})[A] = distance
        real figuration of the self.graph_dict.setdefault(B, {})[A] = distance
```

Questions:

- 1. Donner les instructions qui permettent :
 - de créer les listes open et closed.(0.5 point)
 - de créer le nœud de départ et le nœud objectif, sachant que le constructeur def __init__(self, name:str, parent:str), est utilisé pour créer un objet Node. (1 point)
 - d'jouter le nœud de départ à la liste open.(0.5 point)
 - de créer un objet Graph. (0.5 point)
 - de créer les connexions de ce graphe (1.5 point)
 - de créer les heuristiques pour chaque node. (1 point)
- 2. Est-ce que h1, h2 et h3 sont admissibles ? Justifier. (2 points)
- 3. Quelles relations de dominance existent entre ces trois heuristiques? (1 point)
- 4. Appliquer la recherche A* en utilisant h1. Donner la suite des noeuds développés. (3 points)

Bon travail