INTRODUCTION TO COMPUTER GRAPHICS LECTURE 1 Computer Graphics OUTPUT 1 data known as model Simulated output The equation of the object to be simulated Example: Animated movies called the model /30 data. Computer Vision Vector / Rondom Sam / Scanning: from the contents if the 20 input is Example: face recognition 20 for the drawing, but Digital image processing risi for field outer. triplemy to add 21 Large OUTPUT Processed image with filters and after copeffects Homorraw image Example: Adobe Photoshop, Adobe after effects.







In the case of drawing a line, the line segment is defined by the stenting point (the coordinate) on the ending point (the coordinate).



But how does a display outputs this information through the use of pixels?



Stant point

But how do He select which pixel to turn on?

THE DEBMING PLADELIHMS -> SCAD CONVENSION Few considerations: and a primarily to see out of looking as possible et out per boundab si 2) The calculations should be asimpasymilers out mo as possible. & In scan conversion Algorithms, there's generally Position/coordinate of a pixel (21,4) two ovtputs ration rotz) RGB value of a pixel (The color) sxig Loubivibnic Also, the line that we draw using a computer is 2 vector . Since the direction is defined. > stant Point To Hay I will Lexis (4,-4) dy 2 carries the Doubling to me select which pixel ( direction ( mor of the/-re defined the direction.

## Equations of a line : 15) 1547



where, 
$$m = \frac{y_1 - y_0}{x_1 - x_0}$$

the constant c, can be figured out by pugging in the value of the stant lend coordinates.

Ø

Example of a simple approach to calculate each pixel





$$(7,5)$$
 $(2)$  The value of  $c_s^2$ 
 $c = y_1 - 1 m \cdot x_1$ 
 $c = 2 - 3/5 \cdot 2 = 4/5$ 

the step size ofoc by one (+1) and calculate the value of- y across it.

Equations of a line (8,x) laxing  $\rightarrow$  y(2) = 2 (2,2)(3,3)  $\rightarrow$  y(3) = 2.6  $\approx$  3 Those are the pixels that (44,3) → y(4) = 3,2 ≈ 3 p we draw. (5/14) → y (5) = 3.8 ≈ 4 (6,4) -> y (6) = 4.4 ≈ 4 (7,5) → 4 (7) =15 fo 31/ While this might be a very simple approach, the algorithm is way too slow since: The equation y=mx+b/y=mx+c, requires the multiplication of m and a in every Step -> we also need to Round off the resulting y coordinates. Q well hear a faster approach . (3) Now calculate y for each value of a s. s. show we will increase (i) y(3) = (3/5 · 3) + 1/5 = (3/5) = (5) £ (ii) the chep size of pur (11) and for se (ii) A(d) = (30 + (b - 3.5)) = (b) A(d) colculate the value · ti 220120 p -/8 (i) y(f)=(35.4)+(15=1)4=3.8 In = 22 = 24+ (9-38) = (9) F (0) 3 = B = 81 + (F. 30) + (F) (F)

## DDA (Digital Differential Algorithm)

The DDA Algorithm is an incremental approach in order to speed up scan convension. Simply calculate y boxed yk and the deciding factor here is the gradient (m). let assume we want to Iraw the following line: (mn) (x, ,y,) (7, 12) ← 01-3(3,5) At Ni Tento to sular ant ni enigenia []  $m = \frac{(y_2 - y_1)}{(x_2 - y_1)}$   $m = \frac{(y_2 - y_1)}{(x_2 - y_1)}$   $m = \frac{(y_2 - y_1)}{(x_2 - y_1)}$   $m = \frac{(y_2 - y_1)}{(x_2 - y_1)}$ first, so, m= 12-5 74= 14 (= 9 + m + 1) m = 1+x " m=-1, for line

of There are two conditions to DDA if gradient on is (-1 <m <1) - increment of a mill be by 1 the next value (1) I the current value of 2 why we increase x if -1<m<1, then the (G) We Know, angle of the less than 45 and we increase x by 1 to y= mx + C, get accurate line I plugging in the value of XK+1 in the ean or get you (18-11) y Kt1 = m (x Kt1)+C =) y = m (n +1)+c X= Wonis =) y<sub>K+1</sub> = m(x<sub>K</sub>)+ m+ C =) yk+1 = m.2k+c/+m We know, YK = MAK+C 4K+1)= 4K+m So, if -1 (m <1 mo-1, for line

For this condition, why we increase y by 1?
if m>1, then the angle of the greater than 45 and we increase y by 1 to get

| evansel. | accurate line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2)       | of m lies outside the range ? - increment of y will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|          | So, y = y + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|          | & $y=mx+c \longrightarrow also, x=\frac{y-c}{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|          | =) $y_{k+1} = m(x_{k+1}) + c$ and pries and a word (P) (2,F-).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|          | $3) y_{k+1} = m \cdot x_{k+1} + C = 7 - C = 100$ $3) y_{k} - C + 1 = m \cdot x_{k+1}$ $3) y_{k} - C + 1 = m \cdot x_{k+1}$ $4) y_{k} - C + 1 = m \cdot x_{k+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | $\frac{1}{2} \frac{1}{2} \frac{1}$ |  |
|          | $\frac{1}{2} \propto_{K+1} = \frac{y_K - c}{m} + \frac{1}{2} m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | $(m-1)$ $\chi_{K+1} = \chi_{K} + \chi_{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          | So, for m outside the range: (1) Lower & (m) & (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|          | 9K+1 = 9K (119-) + 2 12- 9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|          | $2  x_{11} = x_{11} + x_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | $\begin{bmatrix} -3 & 2.6 & 3 & (-3.3) \\ -2 & 2 & (-2.2) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|          | $\begin{bmatrix} -2 & 2 & 2 & (-2,2) \\ 1 & 1 & 1 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | (5. H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

| sd llin                 | USO, the Lim < 18 spilor ofherwise so 2010 mm fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                         | 1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  2 |  |  |  |
|                         | 9 KH = 9 K + M   9 KH = 9 K + 1 = 11 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 3.4                     | 2 = 00 , oals < x 21 x m = y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Q1                      | Draw a line using DDA for: $P_{1}(-7,5)$ $P_{2}(-2,2)$ $(-7,5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                         | $8 m = \frac{2-5}{-2+7} = \frac{-3}{5} = \frac{5+5-11}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                         | Since m is in the range: the value of $(-1 \le m \le 1)$ the value of $(-1 \le m \le 1)$ $= x_k + 1$ $= x_k + 1$ $= x_k + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| y K+1 (=19K+m) = 1+1 (= |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                         | negative we don't                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         | 2(41) y(+m) y(round off): )PIXELINE shipture no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                         | $\begin{bmatrix} -3 \\ -2 \end{bmatrix}$ $\begin{bmatrix} 2.6 \\ 2 \end{bmatrix}$ $\begin{bmatrix} -3,3 \\ (-2,2) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

$$Q^2$$

Hhat if the line was in the opposite direction?

$$m = \frac{5-2}{-7+2} = \frac{3}{-5} = \boxed{-0.6}$$

in range (-16m < 1)

|    | O         |
|----|-----------|
| Tx | decreases |

(-2,2)

| α <sub>k</sub> (-)) | y <sub>k</sub> (-m) | Uk (round off)                                  | PIXEL   |
|---------------------|---------------------|-------------------------------------------------|---------|
| -2                  | 2                   | r <u>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u> | (-2, 2) |
| -3                  | 2.6                 | 3                                               | (-3, 3) |
| - 4                 | 3.2                 | 3                                               | (-4,3)  |
| -5                  | 3,8                 | 4                                               | (-5,4)  |
| -6                  | 4.4                 | 4                                               | (-6,4)  |
| -7                  | 5                   | 5                                               | (-7,5)  |
|                     |                     |                                                 |         |
|                     |                     |                                                 |         |

Ly increases

since & decreases
we will use MK+1=MKinstead
since y increase
and the value of m
is negative we will

use  $y_{K+1} = y_K - m$ instead.

Pseudo Code for DDA

DDA 
$$(x_0, y_0, x_1, y_1)$$
  $\frac{(y_1 - y_0)}{m = (x_1 - x_0)}$ ; if  $(m \le 1, 28, m \ge -1)$   $\frac{3}{2}$  while  $(x_0 \le x_1)$   $\frac{3}{2}$ 

yo = yo+m draw (20, 40)

# else {2

while (yo < y)) {

ko=xo+(1/m)

yo=yo+1

draw(xo,yo)

}

