Лабораторная работа №2 Введение в эволюционные вычисления

Цель работы

Целью данной лабораторной работы является получение студентом представления об возможностях применения эволюционных алгоритмов для решения различных классов задач и программных средств для их разработки.

Оборудование и программное обеспечение

- браузер с доступом к сети Интернет
- Java JDK версии 1.8 и выше
- Watchmaker framework версии 0.7.1

Ход работы

Подготовка

Склонируем репозиторий https://github.com/dwdyer/watchmaker и откроем его в Intellij Idea с JDK >=1.8 Структура репозитория:

Bits count

- Задача: посчитать кол-во битов в строке заданной длины. Алгоритм останавливается, когда находит оптимальное значение
- Script
- Решения закодированы битовыми строками (BitString реализация битовой строки фиксированной длины в Java)

Размерность	Run1	Run2	Run3	Run4	Run5	Среднее
20	28	24	27	36	17	26,4
50	5498	1060	2719	628	7764	3533,8
100	985621	207926	22196260	5393117	7319307	7220446,2

Travelling salesman problem

- Задача: найти кратчайший путь, проходящий через все точки (города)
- Script

Setection strategy	Population size	Elitism	Number of generations	Distance	Time*	Route
Truncation	300	3	100	10494.0km	0.058s	Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen -> Amsterdam -> Brussels -> Luxembourg -> Paris -> London -> Dublin - > Lisbon
Truncation	300	3	500	10494.0km	0.248s	Luxembourg -> Paris -> London -> Dublin - > Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen -> Amsterdam -> Brussels -> Luxembourg
Truncation	500	3	100	10494.0km	0.105s	Rome -> Madrid -> Lisbon -> Dublin -> London -> Paris -> Luxembourg -> Brussels -> Amsterdam -> Copenhagen -> Stockholm -> Helsinki -> Berlin -> Vienna -> Athens -> Rome
Rank	500	3	100	10494.0km	0.089s	Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen -> Amsterdam -> Brussels -> Luxembourg -> Paris -> London -> Dublin - > Lisbon -> Madrid -> Rome -> Athens -> Vienna

Setection strategy	Population size	Elitism	Number of generations	Distance	Time*	Route
Tournament	500	3	100	10615.0km	0.091s	Paris -> London -> Dublin -> Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Helsinki -> Stockholm -> Copenhagen -> Berlin -> Amsterdam - > Brussels -> Luxembourg -> Paris
Stochastic Universal Sampling	500	100	3	11418.0km	0.095s	Stockholm -> Copenhagen -> Paris -> London -> Dublin - > Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Luxembourg -> Brussels -> Amsterdam -> Berlin - > Helsinki -> Stockholm
Stochastic Universal Sampling	500	100	8	10494.0km	0.083s	Helsinki -> Berlin -> Vienna -> Athens -> Rome -> Madrid -> Lisbon -> Dublin -> London -> Paris -> Luxembourg -> Brussels -> Amsterdam -> Copenhagen -> Stockholm -> Helsinki

^{*}указано среднее время по 3 запускам

- Population size. Отвечает за начальный размер популяции. Чем больше размер популяции, тем дольше работает алгоритм
- Elitism. Отвечает за копирование небольшого числа наиболее подходящих кандидатов, в следующее поколение. В экспериментах, представленных в таблице, видно, что при увеличении значения этого параметра, результат становится лучше на некоторых selection strategy.
- Number of generations. Отвечает за кол-во поколений. Чем выше значение, тем дольше работает, но вероятнее сойдется к лучшему решению.

Mona Lisa

• Задача: Построить из полупрозрачных многоугольников картину, напоминающую Мона Лизу.

• Script

Качество	Итерация	Фитнес	Кол-во полигонов/углов	Фото
Оригинал				
Плохое	3757	352616.9	13/90	
Среднее	3757	222741.2	30/199	

Качество	Итерация	Фитнес	KOJI-RO	Фото
	• •		полигонов/углов	

Хорошее 3757 189899.0 48/357

Q/A

- 1. К какому типу по структуре решений относится каждая из рассмотренных задач?
- BitsCount бинарный
- Travelling salesman problem древовидный
- Mona Lisa комбинаторный
- 2. Как закодированы решения в задаче комивояжера?
- Протяженность маршрута fitness
- Список городов в заданном порядке решения
- 3. Что в задаче Mona Lisa является генотипом и фенотипом?
- Генотип набор многоугольников
- Фенотип изображение