Properties of Inequality

If a > b and $c \ge d$, then a + c > b + d.

If a > b and c > 0, then ac > bc and $\frac{a}{c} > \frac{b}{c}$.

If a > b and c < 0, then ac < bc and $\frac{a}{c} < \frac{b}{c}$.

If a > b and b > c, then a > c.

If a = b + c and c > 0, then a > b.

Example 2

Given: AC > BC; CE > CD

Prove: AE > BD

Proof:

Statements

1.
$$AC > BC$$
; $CE > CD$

$$2. AC + CE > BC + CD$$

$$3. AC + CE = AE; BC + CD = BD$$

4.
$$AE > BD$$

- Reasons

 1. Given
- 2. A Prop. of Ineq.
- 3. Segment Addition Postulate
- 4. Substitution Prop.

Example 3

Given: $\angle 1$ is an exterior angle of $\triangle DEF$.

Prove: $m \angle 1 > m \angle D$; $m \angle 1 > m \angle E$

Proof:

Statements

$$1. \ m \angle 1 = m \angle D + m \angle E$$

2.
$$m \angle 1 > m \angle D$$
; $m \angle 1 > m \angle E$

Reasons

- 1. The measure of an ext. \angle of a \triangle equals the sum of the measures of the two remote int. \triangle .
- 2. A Prop. of Ineq.

Example 3 above proves the following theorem.

Theorem 6-1 The Exterior Angle Inequality Theorem

The measure of an exterior angle of a triangle is greater than the measure of either remote interior angle.