KJG

Równania różniczkowe zwyczajne

Opracowanie zagadnień na egzamin

Spis treści

1.	Twie	erdzenia	2
	1.1.	Ciągła zależność od parametru	2
	1.2.	Różniczkowalna zależność od parametru	3
	1.3.	Rozwiązania przez szeregi potęgowe wokół punktu regularnego	3
	1.4.	Twierdzenie spektralne dla funkcji analitycznych	5
	1.5.	Twierdzenie o asymptotycznym zachowaniu $\ \mathbf{e}^{\mathbf{At}}\ $	5
	1.6.	Twierdzenie o minimach funkcji Lapunowa i stabilności	5
2.	Zagadnienia		6
	2.1.	Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone	6
	2.2.	Metoda Frobeniusa	7
	2.3.	Rozwiązania układów liniowych jednorodnych	7
	2.4.	Rozwiązywanie równań liniowych niejednorodnych	7
	2.5.	Hiperboliczność i stabilność punktów równowagi	7
	2.6.	Zagadnienia brzegowe	7
3.	Przykłady		8
	3.1.	Rozwiązywanie równań metodą szeregów potęgowych	8
	3.2.	Równania na wariację	8
	3.3.	Potoki – policzenie i zastosowanie własności w konkretnych sytuacjach .	8
	3.4.	Wzory Liouville'a i Abela	8
	3.5.	Zastosowania twierdzenia spektralnego, macierze spektralne	8
	3.6.	Całki pierwsze, funkcje Lapunowa – zastosowanie do badania stabilności	8

1.1. Ciagła zależność od parametru

Twierdzenie 1.1.1 (O ciągłej zależności od parametru). Niech

$$y' = f(y, t, \lambda), \qquad f \colon \mathbb{R}^{m+1} \times \mathbb{R}^l \supset U \times B_l(\lambda_0, c) \longrightarrow \mathbb{R}^m,$$

gdzie f jest funkcją ciągłą oraz c>0. Niech $y(t,\lambda_0)$ będzie rozwiązaniem równania $y'=f(y,t,\lambda_0)$ z warunkiem początkowym (y_0,t_0) określonym na zwartym przedziałe I zawierającym t_0 . Wybierzmy b>0 i rozważmy zbiór

$$R_b = \{(y, t) : t \in I \text{ oraz } ||y - y(t, \lambda_0)|| < b\}.$$

Załóżmy dalej, że

1. Istnieje $L \geq 0$, że dla wszystkich $(y_1, t), (y_2, t) \in R_b$ jest:

$$||f(y_1, t, \lambda_0) - f(y_2, t, \lambda_0)|| \le L \cdot ||y_1 - y_2||.$$

2. Dla dowolnego $\varepsilon > 0$ istnieje $\delta > 0$, że dla $(y, t) \in R_b$ zachodzi:

$$\forall \lambda \ \|\lambda - \lambda_0\| < \delta \implies \|f(y, t, \lambda) - f(y, t, \lambda_0)\| < \varepsilon.$$

Wówczas istnieje stała $c^* > 0$ taka, że

- 1. Jeśli $\|\lambda \lambda_0\| < c^*,$ to $y(t,\lambda)$ jest określone na I.
- 2. Jeśli $\lambda_n \to \lambda_0,$ to $y(t,\lambda_n) \rightrightarrows y(t,\lambda_0)$ na I.

Dowód. W dowodzie wykorzystamy poniższy lemat.

Lemat 1.1.2. Przy założeniach twierdzenia przypuśćmy, że

- 1. Na pewnym przedziale $J \subset I$ jeśli $t \in J$, to $(y(t,\lambda),t) \in R_b$.
- 2. Dla każdego $\varepsilon > 0$ oraz $(y,t) \in R_b$ zachodzi $||f(y,t,\lambda) f(y,t,\lambda_0)|| \le \varepsilon$. Wtedy dla każdego $t \in J$ jest

$$||y(t,\lambda) - y(t,\lambda_0)|| \le \varepsilon \cdot e^{L|t-t_0|} \cdot |t-t_0|.$$

Dowód.

$$||y(t,\lambda) - y(t,\lambda_0)|| = \left\| \int_{t_0}^t f(y(u,\lambda), u, \lambda) du - \int_{t_0}^t (y(u,\lambda_0), u, \lambda_0) du \right\|$$

$$\leq \left| \int_{t_0}^t \left\| f(y(u,\lambda), u, \lambda) - (y(u,\lambda_0), u, \lambda_0) \right\| du \right|$$

$$\leq \left| \int_{t_0}^t \left\| f(y(u,\lambda), u, \lambda) - (y(u,\lambda), u, \lambda_0) \right\| du \right|$$

$$+ \left| \int_{t_0}^t \left\| f(y(u,\lambda), u, \lambda_0) - (y(u,\lambda_0), u, \lambda_0) \right\| du \right|$$

$$\leq \left| \int_{t_0}^t \varepsilon du \right| + \left| \int_{t_0}^t L \cdot \left\| y(u,\lambda) - y(u,\lambda_0) \right\| du \right|$$

$$\leq \underbrace{\varepsilon \cdot |t - t_0|}_{K} + \left| \int_{t_0}^t L \cdot \left\| y(u,\lambda) - y(u,\lambda_0) \right\| du \right|$$

Wybierzmy $\varepsilon>0$ taki, że $\varepsilon\cdot |I|\cdot e^{L|I|}\leq \frac{b}{2}$ oraz oznaczmy $c^*=\min(c,\delta_\varepsilon)$. Weźmy $\lambda>0$ taką, że $\|\lambda-\lambda_0\|<\delta_\varepsilon$. Niech J będzie maksymalnym podprzedziałem I, na którym zachodzi:

$$\forall t \in J \quad (y(t,\lambda),t) \in R_b.$$

Wtedy z lematu 1.1.2 dostajemy

$$\forall t \in J \quad ||y(t,\lambda) - y(t,\lambda_0)|| \le \frac{b}{2}$$

Przypuśćmy, że jeden z końców J, nazwijmy go α , należy do wnętrza I. Wówczas z twierdzenia 2.1.5, $y(t,\lambda)$ przedłuża się na przedział \widetilde{J} zawierający α we wnętrzu. Co więcej, ponieważ $\|y(t,\lambda)-y(t,\lambda_0)\|$ jest funkcją ciągłą względem t, to pozostaje mniejsza od t na pewnym otoczeniu α . Zatem J nie był przedziałem maksymalnym, chyba że J=I. Pokazaliśmy więc pierwszą część tezy.

Przystąpmy teraz do dowodu części drugiej. Jeśli $\lambda_n \to \lambda_0$, to z założenia drugiego istnieje ciąg $\varepsilon_n \to 0$ taki, że

$$\forall (y,t) \in R_b \ \forall n \ \|f(y,t,\lambda) - f(y,t,\lambda_0)\| < \varepsilon_n.$$

Z lematu 1.1.2 dostajemy

$$\forall t \in I \quad ||y(t,\lambda) - y(t,\lambda_0)|| \le \varepsilon_n \cdot |I| \cdot e^{L|I|} \xrightarrow{n \to \infty} 0.$$

1.2. Różniczkowalna zależność od parametru

Twierdzenie 1.2.1 (o różniczkowalnej zależności od parametru). Niech

$$y' = f(y, t, \lambda),$$
 $f: \mathbb{R}^{m+1} \times \mathbb{R} \supset U \times (\lambda_0 - c, \lambda_0 + c) \longrightarrow \mathbb{R}^m,$

gdzie f jest funkcją ciągłą względem y,t,λ oraz klasy C^1 względem y,λ . Ustalmy warunek początkowy (y_0,t_0) i oznaczmy przez $y(t,\lambda)$ rozwiązanie równania

$$\frac{\partial y(t,\lambda)}{\partial t} = f(y,t,\lambda)$$

z warunkiem początkowym $y(t_0,\lambda)=y_0$, określone na ustalonym i zwartym przedziale I. Wówczas na przedziale I istnieje ciągła funkcja

$$z(t, \lambda_0) = \frac{\partial y(t, \lambda)}{\partial \lambda} \Big|_{\lambda = \lambda_0}$$

oraz zachodzi równość

$$\frac{\partial z(t,\lambda_0)}{\partial t} = \frac{\partial^2 y(t,\lambda)}{\partial t \partial \lambda} \Big|_{\lambda=\lambda_0} = \frac{\partial^2 y(t,\lambda)}{\partial \lambda \partial t} \Big|_{\lambda=\lambda_0}.$$

1.3. Rozwiązania przez szeregi potęgowe wokół punktu regularnego

Rozważmy równanie

$$a_2(t)y'' + a_1(t)y' + a_0(t)y = 0,$$
 (1.3.1)

gdzie a_2, a_1, a_0 są analityczne w pewnym punkcie t_0 .

Definicja 1.3.1. Powiemy, że t_0 jest punktem regularnym wtedy i tylko wtedy, gdy $a_2(t_0) \neq 0$. W przeciwnym wypadku t_0 nazwiemy punktem osobliwym.

W przypadku regularnym równanie (1.3.2) sprowadza się do

$$y'' + p(t)y' + q(t)y = 0, (1.3.2)$$

gdzie p i q są analityczne w punkcie t_0 , czyli

$$p(t) = \sum_{n=0}^{\infty} p_n (t - t_0)^n, \qquad q(t) = \sum_{n=0}^{\infty} q_n (t - t_0)^n.$$

Twierdzenie 1.3.2. Każde rozwiązanie równania (1.3.2) jest analityczne w kole, w którym oba szeregi p(t) i q(t) zbiegają. Co więcej, analityczna funkcja

$$y(t) = \sum_{n=0}^{\infty} c_n (t - t_0)^n$$

jest rozwiązaniem wtedy i tylko wtedy, gdy

$$c_{n+2} = -\frac{1}{(n+1)(n+2)} \left(\sum_{k=0}^{n} c_{k+1}(k+1) p_{n-k} + \sum_{k=0}^{n} c_k q_{n-k} \right).$$
 (1.3.3)

Dowód. Dla ustalenia uwagi niech $t_0 = 0$ oraz $y(t) = \sum_{n=0}^{\infty} c_n t^n$. Wtedy

$$y'(t) = \sum_{n=0}^{\infty} (n+1)c_{n+1}t^n, \qquad y''(t) = \sum_{n=0}^{\infty} (n+1)(n+2)c_{n+2}t^n.$$

Z iloczynu Cauchy'ego¹ dostajemy

$$p(t)y'(t) = \left(\sum_{n=0}^{\infty} p_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} (n+1)c_{n+1} t^n\right) = \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} (k+1)c_{k+1} p_{n-k},$$

$$q(t)y(t) = \left(\sum_{n=0}^{\infty} q_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} c_n t^n\right) = \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} c_k q_{n-k}.$$

Rozpisując lewą stronę równania (1.3.2), dostajemy

$$\sum_{n=0}^{\infty} t^n \left((n+1)(n+2)c_{n+2} + \sum_{k=0}^{n} (k+1)c_{k+1}p_{n-k} + \sum_{k=0}^{n} c_k q_{n-k} \right) = 0.$$

Z analityczności, dla każdego $n \geq 0$ jest

$$(n+1)(n+2)c_{n+2} + \sum_{k=0}^{n} (k+1)c_{k+1}p_{n-k} + \sum_{k=0}^{n} c_k q_{n-k} = 0,$$

co dowodzi wzoru (1.3.3).

Relacja rekurencyjna (1.3.3) zadaje współczynniki c_n dla $n \geq 2$, jeśli wybrane zostały c_0 , c_1 . Zauważmy, że $c_0 = y(t_0)$, $c_1 = y'(t_0)$. Zatem dobierając c_0 oraz c_1 możemy otrzymać dowolny warunek początkowy dla y, co pozwala uzyskać każde rozwiązanie wysycone. Pozostaje pokazać, że przy dowolnym wyborze c_0 , c_1 relacja (1.3.3) prowadzi do szeregu Taylora funkcji analitycznej w kole $D(t_0, R)$.

Wybierzmy 0 < r < R. Wtedy funkcje p, q są zbieżne w $\overline{D}(t_0, r)$ oraz

$$\sum_{n=0}^{\infty} |p_n| r^n < \infty, \qquad \sum_{n=0}^{\infty} |q_n| r^n < \infty.$$

Z powyższego, istnieją stałe $L_p,\,L_q$ takie, że dla dowolnego $n\geq 0$ jest

$$|p_n|r^n \le L_p, \qquad |q_n|r^n \le L_q.$$

$$\frac{1}{1} \left(\sum_{n=0}^{\infty} a_n \right) \cdot \left(\sum_{n=0}^{\infty} b_n \right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Niech $0 < \rho < r$ oraz $\gamma_n = |c_n|\rho^n$, $\Gamma_n = \max\{\gamma_j : j = 1, \dots, n\}$. Wtedy

$$\begin{split} |\gamma_{n+2}| &\leq \frac{\rho^{n+2}}{(n+1)(n+2)} \Biggl(\sum_{k=0}^{n} (k+1) \cdot |c_{k+1}| \cdot |p_{n-k}| + \sum_{k=0}^{n} |c_{k}| \cdot |q_{n-k}| \Biggr) \\ &\leq \frac{\rho^{n+2}}{(n+1)(n+2)} \Biggl(\sum_{k=0}^{n} (n+1) \cdot \frac{\gamma_{k+1}}{\rho^{k+1}} \cdot \frac{L_{p}}{r^{n-k}} + \sum_{k=0}^{n} \frac{\gamma_{k}}{\rho^{k}} \cdot \frac{L_{q}}{r^{n-k}} \Biggr) \\ &\leq \frac{\rho^{n+2}}{(n+1)(n+2)} \Biggl((n+1) \sum_{k=0}^{n} \frac{\Gamma_{n+1}}{\rho^{k-n} \rho^{n+1}} \cdot \frac{L_{p}}{r^{n-k}} + \sum_{k=0}^{n} \frac{\Gamma_{n}}{\rho^{k-n} \rho^{n}} \cdot \frac{L_{q}}{r^{n-k}} \Biggr) \\ &\leq \frac{\rho L_{p}}{n+2} \Gamma_{n+1} \sum_{k=0}^{n} \left(\frac{\rho}{r} \right)^{n-k} + \frac{\rho^{2} L_{q}}{(n+1)(n+2)} \Gamma_{n} \sum_{k=0}^{n} \left(\frac{\rho}{r} \right)^{n-k} \\ &\leq \left(\frac{\rho L_{p}}{n+2} + \frac{\rho^{2} L_{q}}{(n+2)(n+1)} \right) \Gamma_{n+1} \sum_{k=0}^{n} \left(\frac{\rho}{r} \right)^{n-k} \\ &\leq \underbrace{\left(\frac{\rho L_{p}}{n+2} + \frac{\rho^{2} L_{q}}{(n+2)(n+1)} \right) \cdot \left(\frac{1}{1-\frac{\rho}{r}} \right) \Gamma_{n+1}. \end{split}$$

Wyrażenie (*) zbiega do zera, gdy $n \to \infty$. Zauważmy, że

$$\exists N \ \forall n \geq N \quad \gamma_{n+2} \leq \Gamma_{n+1} \implies \Gamma_{n+2} = \Gamma_{n+1}.$$

Oznacza to, że ciąg Γ_n jest stały od pewnego miejsca i ograniczony przez pewne $\overline{\Gamma}$. Wtedy $|c_n|\rho^n \leq \overline{\Gamma}$. Zatem jeśli $|t| < \rho$, to z kryterium Cauchy'ego jest

$$\sqrt[n]{|c_n|\cdot|t|^n} = \sqrt[n]{|c_n|\cdot\rho^n}\cdot\sqrt[n]{\frac{|t|^n}{\rho^n}} \leq \sqrt[n]{\overline{\Gamma}}\cdot\left|\frac{t}{\rho}\right| < 1.$$

Szereg $\sum c_n t^n$ jest zbieżny w kole o promieniu ρ . Ponieważ ρ może być dowolnie bliskie R, to suma kół wypełnia koło otwarte o promieniu R.

1.4. Twierdzenie spektralne dla funkcji analitycznych

Twierdzenie 1.4.1 (Hamilton-Cayley). $\chi_A(A) = 0$.

Twierdzenie 1.4.2 (spektralne dla wielomianów). Dla każdej macierzy A istnieją macierze spektralne $M_{j,l}$ takie, że dla dowolnego wielomianu f zachodzi

$$f(A) = \sum_{i=1}^{n} \sum_{l=0}^{q_j-1} M_{j,l} \cdot \frac{d^{(l)}f(z)}{dz^l} \bigg|_{z=\lambda_j} = \sum_{i=1}^{n} \sum_{l=0}^{q_j-1} M_{j,l} \cdot f^{(l)}(\lambda_j).$$

1.5. Twierdzenie o asymptotycznym zachowaniu $\|\mathbf{e}^{\mathbf{A}\mathbf{t}}\|$

1.6. Twierdzenie o minimach funkcji Lapunowa i stabilności

2. Zagadnienia

2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone

Twierdzenie 2.1.1 (Peano). Niech y' = f(y,t), gdzie $y(t_0) = y_0$ oraz

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła i oznaczmy

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla $\alpha = \min(a, b/M)$ istnieje rozwiązanie y(t) określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$, spełniające warunek początkowy $y(t_0) = y_0$.

Twierdzenie 2.1.2 (Picard-Lindelöf). Niech $y' = f(y,t), y(t_0) = y_0$, gdzie

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła oraz lipszycowska ze względu na y, to znaczy

$$\exists L \ \forall (y_1, t), (y_2, t) \in H \quad ||f(y_1, t) - f(y_2, t)|| \le L \cdot ||y_1 - y_2||.$$

Oznaczmy ponadto

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla dowolnego $\alpha < \min(a, b/M, 1/L)$ istnieje dokładnie jedno rozwiązanie zagadnienia Cauchy'ego z warunkiem początkowym $y(t_0) = y_0$ określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$.

Lemat 2.1.3 (o zgodności rozwiązań). Niech y' = f(y,t), gdzie funkcja $f: U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Niech $(y_0, t_0) \in U$. Jeśli $y_1(t), y_2(t)$ są rozwiązaniami określonymi odpowiednio na I_1, I_2 , spełniającymi ten sam warunek początkowy $y_1(t_0) = y_2(t_0) = y_0$, to $y_1 \equiv y_2$ na $I_1 \cap I_2$.

Lemat 2.1.4 (o przedłużaniu przez koniec). Niech y' = f(y,t), gdzie funkcja $f: \mathbb{R}^{m+1} \supset U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Niech y(t) – rozwiązanie, T – koniec Dm y, granica $\lim_{t\to T} y(t) = y_T$ istnieje oraz $(y_T,T)\in U$. Wówczas y rozszerza się na przedział zawierający T we wnętrzu.

Twierdzenie 2.1.5 (o przedłużaniu przez koniec). Niech y' = f(y,t), gdzie $f: \mathbb{R}^{m+1} \supset U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Przypuśćmy, że rozwiązanie y(t) jest określone na pewnym przedziale, którego końcem jest $T \in \mathbb{R}$. Przypuśćmy dalej, że istnieje zbiór zwarty $K \subset U$ oraz $\varepsilon > 0$, taki, że

$$\forall t \in \text{Dm } y \cap [T - \varepsilon, T + \varepsilon] \quad (y(t), t) \in K.$$

Wtedy y rozszerza się na przedział zawierający T we wnętrzu.

Twierdzenie 2.1.6 (o rozwiązaniu wysyconym). Niech y'=f(y,t), gdzie funkcja $f\colon \mathbb{R}^{m+1}\supset U\to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y oraz $(y_0,t_0)\in U$. Wówczas istnieje rozwiązanie y_{\max} zwane wysyconym, określone na przedziale otwartym, spełniające warunek początkowy $y_{\max}(t_0)=y_0$ i takie, że jeśli y jest dowolnym rozwiązaniem spełniającym warunek $y(t_0)=y_0$, to $\mathrm{Dm}\,y\subset\mathrm{Dm}\,y_{\max}$ oraz y jest obcięciem y_{\max} .

2. Zagadnienia 7

2.2. Metoda Frobeniusa

2.3. Rozwiązania układów liniowych jednorodnych

Definicja 2.3.1. Równaniem liniowym nazywamy równanie postaci

$$\frac{dy}{dt} = A(t)y + B(t),$$

gdzie A(t) jest macierzą $m \times m$, zaś B(t) wektorem z \mathbb{R}^m o ciągłych współczynnikach, określonym na przedziale otwartym $I \subset \mathbb{R}$.

Definicja 2.3.2. Równanie y' = A(t)y nazywamy *jednorodnym*, zaś równanie y' = A(t)y + B(t) (odpowiadającym) niejednorodnym.

Twierdzenie 2.3.3. Zbiór rozwiązań równania jednorodnego jest podprzestrzenią liniową $C^0(I, \mathbb{R}^m)$, a zbiór rozwiązań równania niejednorodnego jej wartwą.

Niech V oznacza zbiór rozwiązań wysyconych równania y' = A(t)y.

Stwierdzenie 2.3.4. Następujące warunki są równoważne dla zbioru $\{y_1, \ldots, y_n\} \subset V$:

- 1. Zbiór jest liniowo niezależny.
- 2. Dla dowolnego $t \in I$ zbiór $\{y_1(t), \dots, y_n(t)\}$ jest liniowo niezależny w \mathbb{R}^m .
- 3. Istnieje $t \in I$, że zbiór $\{y_1(t), \dots, y_n(t)\}$ jest liniowo niezależny w \mathbb{R}^m .

2.4. Rozwiązywanie równań liniowych niejednorodnych

2.5. Hiperboliczność i stabilność punktów równowagi

2.6. Zagadnienia brzegowe

3. Przykłady

- 3.1. Rozwiązywanie równań metodą szeregów potęgowych
- 3.2. Równania na wariację
- 3.3. Potoki policzenie i zastosowanie własności w konkretnych sytuacjach
- 3.4. Wzory Liouville'a i Abela
- ${\bf 3.5.}\ {\bf Zastosowania}\ {\bf twierdzenia}\ {\bf spektralnego},\ {\bf macierze}\ {\bf spektralne}$
- 3.6. Całki pierwsze, funkcje Lapunowa zastosowanie do badania stabilności