ON THE SPECIALIZATION THEOREM FOR ABELIAN VARIETIES

RANIA WAZIR

ABSTRACT. In this note, we apply Moriwaki's arithmetic height functions to obtain an analogue of Silverman's Specialization Theorem for families of Abelian varieties over K, where K is any field finitely generated over \mathbb{Q} .

Let k be a number field and $\pi: \mathcal{A} \to \mathcal{B}$ be a proper flat morphism of smooth projective varieties over k such that the generic fiber \mathcal{A}_{η} is an Abelian variety defined over $k(\mathcal{B})$. For almost all absolutely irreducible divisors D/k on \mathcal{B} , $\mathcal{A}_D := \mathcal{A} \times_{\mathcal{B}} D$ is also a flat family of Abelian varieties, and our goal is to compare the Mordell-Weil rank of \mathcal{A}_{η} with the Mordell-Weil rank of the generic fiber of \mathcal{A}_D . In fact, if we fix a projective embedding of \mathcal{A} , \mathcal{B} into \mathbb{P}^N , and an integer M > 0, then we can show that for all but finitely-many divisors D of degree less than M, the rank of the generic fiber of \mathcal{A}_D is at least the rank of \mathcal{A}_{η} .

This result is a an amusing example of the height machine in action. The main issue is to rephrase the problem in terms of Abelian varieties over function fields, and define the "right" height functions; the proofs then follow verbatim as in [?].

Assume now that we also have a proper, flat morphism $f: \mathcal{B} \to \mathcal{X}$ with generic fiber a smooth, irreducible curve C defined over $K:=k(\mathcal{X})$. Composition gives a flat morphism $g:=f\circ\pi:\mathcal{A}\to\mathcal{X}$ whose generic fiber is a smooth, irreducible variety A defined over K, and by base extension we have a flat morphism $\rho:A\to C$, whose generic fiber is \mathcal{A}_{η} . Observe that in this setting, divisors $D\in \mathrm{Div}(\mathcal{B})$ such that $f(D)=\mathcal{X}$ correspond to points on C. The next proposition (based on a classical geometric argument, see [?, Proposition 5.1]) shows that, up to replacing \mathcal{B} and \mathcal{A} by birationally equivalent varieties, we can always reduce to this situation.

Proposition 0.1. Let V be a smooth projective variety of dimension n defined over k. Then, there exist finitely many birationally equivalent varieties $\nu_i : \tilde{\mathcal{V}}_i \to \mathcal{V}$ and proper flat morphisms $f_i : \tilde{\mathcal{V}}_i \to \mathbb{P}^{n-1}$ such that:

- (1) The generic fiber of f_i is a smooth, irreducible curve C_i defined over $k(\mathbb{P}^{n-1})$.
- (2) Let \mathcal{U}_i be an affine open dense subset of \mathcal{V} such that ν_i is an isomorphism on \mathcal{U}_i , and let $\mathcal{U} := \cap \mathcal{U}_i$. Then for all divisors $D \in \text{Div}(\mathcal{V})$ such that $D \cap \mathcal{U} \neq \emptyset$, there exists an i such that $f_i(D') = \mathbb{P}^{n-1}$, where $D' := \overline{\nu_i^{-1}(D \cap \mathcal{U}_i)}$.

Proof. Consider an embedding $\mathcal{V} \hookrightarrow \mathbb{P}^N$, and take a linear projection inducing a finite morphism $\phi: \mathcal{V} \to \mathbb{P}^n$. Let $p_0 \in \mathbb{P}^n$ be a point outside the ramification locus of ϕ , let $\mu_0: \tilde{\mathbb{P}}_0 \to \mathbb{P}^n$ be the blow-up at p_0 , and $\mu_0': \tilde{\mathbb{P}}_0 \to \mathbb{P}^{n-1}$ be the associated morphism. If $\nu_0: \tilde{\mathcal{V}}_0 \to \mathcal{V}$ is the blow-up of \mathcal{V} at the points $\phi^{-1}(p_0)$, then we have a morphism $\tilde{\phi}_0: \tilde{\mathcal{V}}_0 \to \tilde{\mathbb{P}}_0$ which, when composed with μ_0' , gives a fibration in curves $f_0:=\mu_0'\circ\tilde{\phi}_0: \tilde{\mathcal{V}}_0 \to \mathbb{P}^{n-1}$.

¹⁹⁹¹ Mathematics Subject Classification. 11G40, 14K15.

Key words and phrases. Abelian fibrations, Mordell-Weil rank, Specialization Theorems, arithmetic height functions.

Next, let D' be the proper transform of D under the blow-up μ_0 . Then $f_0(D') \neq \mathbb{P}^{n-1}$ if and only if D is a cone with vertex $V_D \ni p_0$. Since the vertex of a cone is a linear subspace, the highest dimensional vertex is a hyperplane. Therefore, if we choose n+1 points $p_0, \ldots p_n$ not all lying in a hyperplane, we see that for all divisors D in \mathbb{P}^n , we can find a morphism f_i such that $f_i(D') = \mathbb{P}^{n-1}$. Since ϕ is a finite morphism, the same holds for divisors in \mathcal{V} . \diamondsuit

The geometric proposition above allows us to reduce our problem to the following situation: Let K be a field finitely generated over \mathbb{Q} , and let C be a smooth projective curve defined over K. Suppose A is a smooth projective variety equipped with a proper flat morphism $\rho: A \to C$, such that the generic fiber A_{ρ} is an Abelian variety with Chow trace (τ, B) . Let $x \in C(\overline{K})$ be a point for which the fiber A_x is nonsingular. Then the specialization map

$$\sigma_x: A(C/K) \to A_x(\overline{K})$$

is a homomorphism from the group of sections, to the group of points on the fiber.

Theorem 0.1. Let Γ be a finitely generated free subgroup of A(C/K) which injects in $A(C/K)/\tau B(K)$. Then the set

$$\{x \in C(\overline{K}) : \sigma_x \text{ is not injective on } \Gamma\}$$

is a set of bounded height in $C(\overline{K})$. In particular, if $d \geq 1$, then σ_x is injective for all but finitely many $x \in \cup_{[L:K] \leq d} C(L)$. Furthermore, if A_ρ has trivial Chow trace, this shows that, excluding a finite number of points $x \in C$, the Mordell-Weil rank of the special fibers A_x is at least that of the generic fiber A_ρ .

The proof of this theorem is based on being able to measure the variation of certain height functions in a family of Abelian varieties. We briefly describe the necessary height functions below, before outlining the major steps in the proof.

Arithmetic Height. We consider the arithmetic height functions on K introduced by Moriwaki [?], and, as much as possible, stick to Moriwaki's notation and terminology. Let Z be a normal projective arithmetic variety whose function field is K, and fix nef C^{∞} -hermitian line bundles $\overline{H}_1, \overline{H}_2, ..., \overline{H}_d$ on Z. The collection $(Z; \overline{H}_1, \overline{H}_2, ..., \overline{H}_d)$ is called a polarization of Z, and will be denoted by \overline{Z} .

Now suppose that X is a smooth projective variety over K, and L a line bundle on X. If \mathcal{X} is a projective arithmetic variety over Z and $\overline{\mathcal{L}}$ a hermitian line bundle on \mathcal{X} with $\mathcal{X}_K = X$ and $\mathcal{L}_K = L$ then the pair $(\mathcal{X}, \overline{\mathcal{L}})$ is a model for (X, L), and we can define a height function using Arakelov intersection theory, as follows: $h_{(\mathcal{X}, \overline{\mathcal{L}})}^{\overline{Z}} : X(\overline{K}) \to \mathbb{R}$ via

$$h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{Z}}(P) := \frac{\widehat{\operatorname{deg}}\left(\widehat{c}_{1}(\overline{\mathcal{L}}\big|_{\Delta_{P}}) \cdot \widehat{c}_{1}(f^{*}\overline{H}_{1}\big|_{\Delta_{P}}) \cdots \widehat{c}_{1}(f^{*}\overline{H}_{d}\big|_{\Delta_{P}})\right)}{[K(P):K]},$$

where Δ_P is the Zariski closure of the point P in $\operatorname{Spec}(\overline{K}) \xrightarrow{P} X \hookrightarrow \mathcal{X}$, and $f: \mathcal{X} \to Z$ is the canonical morphism. Furthermore, if the polarization Z is big (as defined in [?, Section 2]), then $h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{Z}}$ is an arithmetic height function, and denoted by $h_{(\mathcal{X},\overline{\mathcal{L}})}^{\operatorname{arith}}$. In fact, [?, Corollary 3.3.5] shows that, up to a bounded function, the height $h_{(\mathcal{X},\overline{\mathcal{L}})}^{\overline{Z}}$ does not depend on the choice of model $(\mathcal{X},\overline{\mathcal{L}})$ for (X,L), and hence we will denote the arithmetic height function simply by $h_{(X,L)}^{\operatorname{arith}}$, or $h_L^{\operatorname{arith}}$ when X is understood.

Proposition 0.2 (Height Machine). Let X be a smooth projective variety over K, and L a line bundle on X. Then the arithmetic height function h_L^{arith} satisfies the following properties:

- (1) If M is another line bundle on X, then $h_{L\otimes M}^{\rm arith}=h_L^{\rm arith}+h_M^{\rm arith}+O(1)$, while $h_{L\otimes -1}^{\rm arith}=-h_L^{\rm arith}+O(1)$. (2) Let Bs(L) denote the base locus of L, and set $SBs(L):=\cap_{n>0}Bs(L^{\otimes n})$. Then $h_L^{\rm arith}$
- is bounded below on $(X \backslash SBs(L))(\overline{K})$, and in particular:
 - (a) If L is ample, then h_L^{arith} is bounded below. (b) If $L = \mathcal{O}_X$ then $h_L^{\text{arith}} = O(1)$.
- (3) If N is any number, and R a positive integer, then the set

$$\left\{P \in X(\overline{K})|h_L^{\operatorname{arith}}(P) \le N \text{ and } [K(P):K] \le R\right\}$$

is finite.

(4) Let $q: X \to Y$ be a morphism of smooth, projective varieties over K, and M a line bundle on Y: then

$$h_{(X,q^*(M))}^{\operatorname{arith}}(P) = h_{(Y,M)}^{\operatorname{arith}}(q(P)) \qquad \textit{for all } P \in X(\overline{K}).$$

- (5) If L is ample, and M is any line bundle on X, then there is a constant c such that $h_M^{\text{arith}} < ch_L^{\text{arith}} + O(1)$
- (6) Suppose X is a smooth projective curve over K, and if D is a divisor write $h_D^{\rm arith}$ for $h_{L(D)}^{\text{arith}}$, where L(D) is the line bundle associated to D. If D is of degree d > 0, and E is a divisor of degree e, then

$$\lim_{h_D^{\text{arith}}(t) \to \infty} \frac{h_E^{\text{arith}}(t)}{h_D^{\text{arith}}(t)} = \frac{e}{d}.$$

Proof. Properties (1)-(3) are [?, Proposition 3.3.7], while Property (4) is [?, Theorem 4.3]. To prove Property (5), we start with the definition of arithmetic height, and note that if $f: Y \to B$ is the canonical morphism on Y, then the canonical morphism on X is given by $f' = f \circ q$:

$$h_{(X,q^*(M))}(P) := \frac{\widehat{\operatorname{deg}}\left((f'^*)\left(\widehat{c}_1(\overline{H}_1)\cdots\widehat{c}_1(\overline{H}_d)\right)\cdot\widehat{c}_1(q^*(\overline{M}))\cdot(\Delta_P,0)\right)}{[K(P):K]}$$

$$= \frac{\widehat{\operatorname{deg}}\left((q^*\circ f^*)\left(\widehat{c}_1(\overline{H}_1)\cdots\widehat{c}_1(\overline{H}_d)\right)\cdot q^*\widehat{c}_1(\overline{M})\cdot(\Delta_P,0)\right)}{[K(P):K]}$$

$$= \frac{\operatorname{deg}(\Delta_P \to \Delta_{q(P)})\widehat{\operatorname{deg}}\left((f^*)\left(\widehat{c}_1(\overline{H}_1)\cdots\widehat{c}_1(\overline{H}_d)\right)\cdot\widehat{c}_1(\overline{M})\cdot(\Delta_{q(P)},0)\right)}{[K(P):K]}$$

$$= h_{(Y,M)}(q(P)),$$

where the third equation follows from the Projection formula ([?, Proposition 1.3]), and the final step is again by definition.

To prove Property (6), we note that there is some constant a such that $L^{\otimes a} \otimes M^{\otimes -1}$ is ample. Hence, by Property (3.a) we have $h_{L^{\otimes a} \otimes M^{\otimes -1}} > O(1)$. The result now follows by Properties (1) and (2).

Finally, the proof of Property (7) is very similar to the proof for heights over number fields (see for example [?, Chapter 4, Corollary 3.5]). \Diamond

If A/K is an Abelian variety, then we can also define a canonical height \hat{h}_L^{arith} , which has the following properties:

Proposition 0.3 (Canonical Height Machine). (1) If M then $\hat{h}_{L\otimes M}^{\rm arith} = \hat{h}_{L}^{\rm arith} + \hat{h}_{M}^{\rm arith}$, while $\hat{h}_{L\otimes -1}^{\rm arith} = -\hat{h}_{L}^{\rm arith}$. If we assume furthermore that L is ample, then we have: (1) If M is another line bundle on A,

- (3) There is a constant c, such that if M is another line bundle on A, then ĥ_M^{arith} ≤ cĥ_L^{arith}.
 (4) ĥ_L^{arith}(x) ≥ 0 for all x ∈ A(K̄), and equality holds if and only if x is a torsion point.

Proof. This is [?, Propositions 3.4.1 and 3.4.2]. He proves these under the condition that L is a symmetric line bundle, but the proofs hold verbatim for L anti-symmetric, hence for all line bundles L. \diamondsuit

Geometric Height. Since K is a global field, and C/K is a smooth projective curve, K(C) is also a global field, and we can define the geometric height $h_{K(C)}^{\text{geom}}$ so that, for any $x \in K(C), \ h_{K(C)}^{\text{geom}}([x,1])$ is the degree of the morphism $[x,1]: C \to \mathbb{P}^1$. If A is an Abelian variety defined over K, then we also have a canonical height $\hat{h}_{K(C)}^{\mathrm{geom}}$, which is non-degenerate on $A(\overline{K})/(\tau B(K) + A_{\text{tors}})$ [?, Chapter 6, Theorem 5.4]. Both $h_{K(C)}^{\text{geom}}$ and $\hat{h}_{K(C)}^{\text{geom}}$ satisfy the usual properties of heights/canonical heights, see [?, Chapter 3].

Equipped with these height functions, the proof of the following theorems then proceeds exactly as in [?], and leads to a proof of Theorem 0.1:

Fix a line bundle L on A, and let $h_{(A,L)}^{\text{arith}}$ be the associated arithmetic height function. For each $t \in C(\overline{K})$ let L_t be its restriction to A_t , and D_{ρ} be its restriction to the generic fiber A_{ρ} . Let $C^0 \subset C$ be an affine open subset such that for all $t \in C^0(\overline{K})$, the fiber A_t is an Abelian variety. Then there is a geometric canonical height

$$\hat{h}_{(A_0,D_0)}^{\text{geom}}: A_{\rho}(K(C)) \to \mathbb{R},$$

and for each $t \in C^0(\overline{K})$, an arithmetic canonical height

$$\hat{h}_{(A_t,L_t)}^{\text{arith}}: A_t(\overline{K}) \to \mathbb{R}.$$

Set $U := \pi^{-1}(C^0)$. The canonical heights $\hat{h}_{(A_t,L_t)}^{\text{arith}}$ on the good fibers A_t can be fitted together to give a "canonical height" on $U(\overline{K})$, $\hat{h}_L:U(\overline{K})\to\mathbb{R}$. If we fix also a line bundle M on C, then

Theorem 0.2. There is a constant c, depending on M, L, and the family $A \to C$, such that

$$\left|\hat{h}_L(P) - h_L^{\text{arith}}(P)\right| < ch_M^{\text{arith}}(P) + O(1)$$
 for all $P \in U(\overline{K})$.

(The O(1) depends on the choice of heights h_L^{arith} and h_M^{arith} but not on P.)

Consider now the case where C is a smooth projective curve over K, and fix an arithmetic height on C as follows: Let D be a divisor on C with deg D > 0, and define

$$h_C^{\text{arith}} := \frac{1}{\deg D} h_{(C,D)}^{\text{arith}}.$$

Theorem 0.3. With notation as above, fix a section $P \in A(C)$. Then

$$\lim_{\substack{t \in C^0(\overline{K}) \\ h_C^{\operatorname{arith}}(t) \to \infty}} \frac{\hat{h}_{(A_t, L_t)}^{\operatorname{arith}}(P_t)}{h_C^{\operatorname{arith}}(t)} = \hat{h}_{(A_\rho, D_\rho)}^{\operatorname{geom}}(P_\rho).$$

Note that by Property (7) of arithmetic heights, this result does not depend on the choice of arithmetic height on C.

Finally, we observe that in the case that A is an elliptic surface, another crank of the height machine yields the following sharpened estimate \hat{a} la Tate [?] for Theorem 0.3:

Theorem 0.4. Assume that $\pi: A \to C$ is an elliptic surface, and assume that $P \in A(C/K)$ is a section. Then

$$\hat{h}_{(A_t,L_t)}^{\text{arith}}(P_t) = \hat{h}_{(A_\rho,D_\rho)}^{\text{geom}}(P_\rho) h_C^{\text{arith}}(t) + O\left(\sqrt{h_C^{\text{arith}}(t)} + 1\right)$$

Tate's proof requires the existence of a good compactification of the Neron model, hence is not known to apply to families of higher dimensional Abelian varieties. However, in the case of number fields, Call[?, Theorem I], using a different approach, generalized the result to the case of a one-parameter family of Abelian varieties. It remains an interesting question whether an analogous estimate exists for a family of Abelian varieties over K.

Acknowledgments. The author would like to thank Alberto Albano, Joe Silverman, and Siman Wong for their useful advice and suggestions.

E-mail address: wazir@dm.unito.it

Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto $10,\,10123$ Torino, Italy.