ESC201A Assignment 8

Instructor Abhishek Gupta

2023-2024 Semester I

Topics

Binary numbers

Questions

- 1. Convert the following numbers into the number system indicated
 - (a) $(1010.011)_2$ to decimal

= 11111 010

- (b) (FA)₁₆ to decimal
- (c) (101110101101)₂ into hexadecimal
- (d) $(FA)_{16}$ to binary

And 1. (a)
$$(1010.011)_2$$

$$= (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{2}) + (0 \times 2^{2}) + (0 \times 2^{2}) + (1 \times 2^{2}) +$$

2. Convert the decimal number 27.25 into a binary number.

Ans 2

Ans 2.		27	remainder	*	
	2	13	1		
	2	6	1	27 = 11011	
	2	3	0		
	2	1	1	0.25	
	2	0	1	0. 5 X2	:. 0.25 = (-01) ₂
				1. 0 X2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(27.2	5)10	= (1101	1.01)2		

3. What is the largest decimal number that you can represent using 8bits? How many bits are required to represent decimal numbers less than or equal to 10^6 ?

Ano 3 dargest binary number that can be supresented using 8 bits is (11111111) = 255 det the number of buts be n. The largest binary number using these 8 bits is $2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2^{l} + 1$ = 2ⁿ-1 (Sum of a GP) From dre given condition, $2^{n} - 1 \ge 10^{6}$ $: n > \log_2(10^6 + 1)$ n = 20

- 4. Determine the number system in which the following arithmetic operations have been carried out. Give justifications for your answer.
 - 24+17=40(a)

Let the number system be
$$x$$
.

$$2x^{2} + 4x^{2} + 1xx^{2} + 7x^{2} = 4x^{2} + 0$$

$$\Rightarrow 11 = 4x - 3x$$

(b)
$$22 \times 5 = 132$$

(b)
$$22 \times 5 = 132$$

Let the number system be a.

$$(2x^{1}+2x^{2})(5x^{2})=(1x^{2}+3x^{1}+2x^{2})$$

$$\Rightarrow (2x+2)(5) = (x^2 + 3x + 2)$$

$$\Rightarrow 10x + 10 = x^2 + 3x + 2$$

$$\Rightarrow x(x-8)+1(x-8)=0$$

$$\Rightarrow (x+1)(x-8)=0$$

 $\alpha = -1$ is inadmissible.

$$\therefore \quad \chi = 8$$

- 5. Obtain 1's and 2's complement of the following binary numbers:
 - (a) 10000000
 - (b) 10101010
 - (c) 01110101
 - (d) 10011100

(a) 10000000

I's complement: 01111111

2's complement: 10000000

(b) 10101010

1's complement: 01010101

2's complement: 01010110

(c) 01110101

1's complement: 10001010

2's complement: 10001011

(d) 10011100

1's complement: 01100011

2's complement: 01100100

6. (a) What is the minimum number of bits required to represent -32 in 2's complement form?

 $\frac{dnv6}{(a)}(32)_{10} = (100000)_2 = (100000)_2 - 100000$

For -32, take 2's complement of +32

 $(-32)_{10} = (11000000)_2 - Six lits$

(b) 11011111 is a number in 2's complement. Is it positive or negative? What is its magnitude?

7. Carry out the following four operations using 8bit 2's complement representation: \pm 24 \pm 32

Verify that operations have been properly carried out.