2102333: ระบบควบคุมเชิงเส้น 1 และปฏิบัติการ ห้องปฏิบัติการพื้นฐานระบบควบคุม ภาควิชาวิศวกรรมไฟฟ้า จุฬาลงกรณ์มหาวิทยาลัย

การทดลองที่ 4 การออกแบบตัวควบคุม PID

หมายเลขกลุ่ม	ตอนเรียน	คะแนน	/20
1. ชื่อ	1. รหัสนิสิ	ଡ଼	
2. ชื่อ	2. รหัสนิสิ	ମ	
3. ชื่อ	3. รหัสนิสิ	ମ	

วัตถุประสงค์

- 1. สามารถออกแบบตัวควบคุมด้วยวิธีทางเดินราก เมื่อกำหนดคุณสมบัติของผลตอบสนองแบบขั้นบันได
- 2. เข้าใจ และออกแบบตัวควบคุม PID ด้วยวิธี Ziegler-Nichol

การออกแบบตัวควบคุมแบบ PD โดยวิธีทางเดินราก

วิธีออกแบบตัวควบคุมโดยวิธีทางเดินรากเป็นวิธีที่อาศัยการเลือกตำแหน่งของโพล โดยสามารถเลือกจากสมรรถภาพ ที่ถูกกำหนดโดยสมการ 2, 3 และ 4 ด้วยเงื่อนไขขนาด และมุม พิจารณาระบบมอเตอร์จากการทดลองที่ 3 จะได้ ระบบมอเตอร์ ที่มีฟังก์ชันถ่ายโอนคือ $\frac{\Omega(s)}{E_a(s)}=\frac{K}{\tau s+1}$ จากความสัมพันธ์ระบหว่างความเร็วเชิงมุมกับตำแหน่งของ มุม จะได้ $\theta(t)=\int_0^t \omega(\tau)d\tau$ จะได้ระบบมอเตอร์ที่มีฟังก์ชันถ่ายโอนใหม่คือ $G(s)=\frac{\Theta(s)}{E_a(s)}=\frac{K}{s(\tau s+1)}$ และเลือก ตัวควบคุม $C(s)=K_P+K_Ds$

รูปที่ 1: แผนภาพกรอบของการควบคุมตำแหน่งของมอเตอร์วงปิด

เมื่อหาแผนภาพของระบบวงปิดในรูปที่ 1 จะได้ฟังก์ชันถ่ายโอนดังสมการ 1 เมื่อดูจากสมการ เราจะเลือก K_P และ K_D

$$H(s) = \frac{(K_P + K_D s)K}{\tau s^2 + (K_D K + 1)s + K_P K} \tag{1}$$

สมการที่ใช้ในการทดลอง

1. Maximum overshoot:

$$M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \tag{2}$$

2. Settling time (5 %):

$$t_s = \frac{3.2}{\zeta \omega_n} \tag{3}$$

3. Rise time:

$$t_r = \frac{1.8}{\omega_n} \tag{4}$$

ตัวอย่างการออกแบบตัวควบคุมแบบ PD โดยวิธีทางเดินราก

ให้ระบบวงเปิดที่ต้องการออกแบบคือ

$$G(s) = \frac{16}{s(0.2s+1)}$$

และมีข้อกำหนดการออกแบบประกอบด้วย $M_P=30\%$ และ $t_s=1~{
m s}$ ขั้นตอนที่ 1 เลือกตำแหน่งของโพลจากการเลือกข้อกำหนดดังนี้

1. หาค่า $\zeta: M_P = 10\% \Rightarrow \zeta = 0.5912$

2. หาค่า ω_n : $t_s=0.05~{\rm S} \Rightarrow \omega_n=3.2/0.05\zeta \Rightarrow \omega_n=178.77$

3. $s_0 = -\zeta \omega_n \pm j\omega \sqrt{1-\zeta^2} = -3.2 \pm j8.347$

<u>ขั้นตอนที่ 2</u> คำนวณหามมชดเชย heta เมื่อตำแหน่งของ Pole อยู่ที่ s_0 จากโพลของ G(s) จะได้

$$\angle(s_0 - (-5)) = \angle(-3.2 + j8.347 + 5) = 77.83^{\circ}$$

 $\angle(s_0 - 0) = \angle(-3.2 + j8.347) = 110.97^{\circ}$

นำมุมที่ได้พล๊อตลงบนระนาบเชิงซ้อนได้ดังรูปที่ 2 จะสังเกตุว่ามุมทั้งสองยังไม่ตรงเงื่อนไขของมุม จึงต้องเติม Zero โดยเลือกให้อยู่บนเส้นจำนวนจริง

รูปที่ 2: ตำแหน่งของ Pole และ Zero

ต่อมาคำนวณมุมชดเชยเมื่อเพิ่มมุมที่ขาดหายไปจาก z จะได้ว่า

$$\sum \angle (s - p) = 180^{\circ} + \angle (s - z)$$

$$77.83^{\circ} + 110.97^{\circ} = 180^{\circ} + \theta$$

$$\theta = 8.8^{\circ}$$

ขั้นตอนที่ 3 คำนวณหาตำแหน่งของ zero เพื่อหาค่า T_D จากรูปที่ 2 เลือกลากเส้นจาก s_0 ลงมายังเส้น จำนวนจริงจะทราบรูปสามเหลี่ยมมุมฉาก เราจะสามารถหาตำแหน่งของ z ได้

จากสมการที่ 1 ตำแหน่งของ Zero สามารถเขียนใหม่ได้เป็น

$$(K_P + K_D s) = K_P (1 + T_D s)$$

โดย $K_D=K_PT_D$ เราสามารถบอกได้ว่า ตำแหน่งของ Zero จะอยู่ตำแหน่ง $(\frac{1}{T_D},0)$ ต่อมาจะเป็นการ คำนวณหาค่า T_D จะได้

$$-\frac{1}{T_d} = -3.2 - 8.347 \cot(8.8^{\circ})$$
$$-\frac{1}{T_d} = -57.11$$
$$T_d = 0.0175$$

<u>ขั้นตอนที่ 4</u> หาค่า K_P จากเงื่อนไขขนาดของระบบที่ตำแหน่ง Pole ใหม่ จะต้องมีค่าเท่ากับ 1 จะได้ว่า

$$|K_P||T_ds_0 + 1||G(s_0)| = 1$$

$$K_P = \left| \frac{s_0(0.2s_0 + 1)}{16(T_ds_0 + 1)} \right|$$
= 1

เพราะฉะนั้น $K_P=1$ และ $K_D=0.0175$

การออกแบบตัวควบคุม PID ด้วยวิธี Ziegler-Nichol

การควบคุมความเร็วเชิงมุมของมอเตอร์เมื่อคิดผลของเวลาประวิง

รุปที่ 3: แผนภาพการควบคุมวงปิดของการควบคุมความเร็วมอเตอร์

จากการทดลองที่ 3 เราได้ทำการวิเคราะห์ระบบควบคุมความเร็วมอเตอร์โดยการประมาณฟังก์ชันถ่ายโอนของ ระบบให้อยู่ในรูปของ

$$G(s) = \frac{K}{\tau s + 1} \tag{5}$$

เมื่อ K และ au คือ อัตราขยายกระแสตรง และ ค่าคงตัวเวลาของระบบ ตามลำดับ อย่างไรก็ตาม ระบบมีการ ประวิงเวลา (time delay) เนื่องจากข้อจำกัดด้านการสุ่มตัวอย่างและการประมวลสัญญาณ จึงทำให้ ฟังก์ชันถ่าย โอนมีรูปแบบเป็นแบบจำลองอันดับหนึ่งที่มีการประวิงเวลา ดังสมการ (6)

$$G(s) = \frac{Ke^{-T_d s}}{\tau s + 1} \tag{6}$$

เมื่อ T_d คือ เวลาประวิงของระบบ กำหนดฟังก์ชั่นถ่ายโอนของตัวควบคุม PID อยู่ในรูปของ

$$C(s) = K_P \left(1 + \frac{1}{T_I s} + T_D s \right)$$

การจูนตัวควบคุม PID ด้วยวิธีของ Ziegler-Nichols แบบวงเปิด

รูปที่ 4: ผลตอบสนองขั้นบันไดของระบบวงเปิด

รูปที่ 4 แสดงผลตอบสนองขั้นบันไดของระบบวงเปิดจาก Simscape และจากระบบที่ไม่มีการประวิงเวลา $K(1-e^{t/ au})$ จากรูปแสดงให้เห็นถึงการประวิงเวลาในช่วงแรกของการป้อนสัญญานให้แก่ระบบ การออกแบบตัวควบคุม PID ด้วยวิธีของ Ziegler-Nichols มีจุดประสงค์เพื่อให้ผลตอบสนองวงรอบปิดมีผลตอบสนองในแบบขนาดลดลง หนึ่งในสี่ (quarter amplitude decay) ซึ่งสามารถเลือกพารามิเตอร์ได้โดยใช้สูตรในตารางที่ 1

ตารางที่ 1: สูตรการหาพารามิเตอร์ของตัวควบคุม PID ด้วยวิธีของ Ziegler-Nichols แบบวงเปิด

ชนิดของตัวควบคุม	K_P	T_I	T_D
ตัวควบคุม P	$\frac{1}{RL}$		
ตัวควบคุม PI	$\frac{0.9}{RL}$	$\frac{L}{0.3}$	
ตัวควบคุม PID	$\frac{1.2}{RL}$	2L	0.5L

เมื่อ $L=T_d$ และ R=K/ au สำหรับระบบอันดับหนึ่งที่มีการประวิงเวลา

การทดลองที่ 4 การออกแบบตัวควบคุม PID

หมายเลขกลุ่ม	ตอนเรียน	คะแนน /20	
1. ชื่อ	1. รหัสนิสิต		
2. ชื่อ	2. รหัสนิสิต		
3. ชื่อ	3. รหัสนิสิต		

การทดลองที่ 1 การออกแลบตัวควบคุม PD ด้วยวิธีเชิงราก

ขั้นตอนการทดลอง

- 1. ออกแบบค่า K_P และ K_D เพื่อควบคุมตำแหน่งของมอเตอร์ **ด้วยวิธีทางเดินราก** พร้อมทั้งแสดงผลตอบ สนองด้วย Simulink (แสดงวิธีทำให้เรียบร้อยลงในรายงาน โดยไม่ต้องคำนึงถึงผลของ Load)
- 2. แสดงผลตอบสนองด้วย Simscape จากระบบที่เคยทำไว้ในไฟล์ก่อนหน้า โดยเชื่อต่อบล็อคควบคุมตำแหน่ง วงปิดแบบ PID
- 3. ใช้ค่า K_P และ K_D ที่ได้จากการออกแบบเพื่อหาผลตอบสนองวงปิดของระบบมอเตอร์บน Simscape เมื่อ สัญญาณอ้างอิงมีขนาดเท่ากับ 90 องศา
- 4. นำข้อมูลที่ได้จากการทดลองข้อที่ 4 เพื่อออกแบบตัวควบคุมโดยให้ผลตอบสนองจาก Simscape อยู่ในขอบเขต ที่กำหนดไว้
- 5. ทำการออกแบบตัวควบคุมใหม่ โดยไม่ต้องคำนวณด้วยวิธีทางเดินรากที่ทำให้สมรรถนะดียิ่งขึ้น

[s]

6. แสดงกราฟผลตอบสนอง และสัญญาณขาเข้าของทุกการทดลองแต่ละข้อ โดยตั้งชื่อกราฟ ระบุชื่อแกนให้ ถูกต้อง รวมทั้งอภิปรายผลการทดลอง

บันทึกผลการทดลอง

1. เขียนฟังก์ชันถ่ายโอนของระบบควบคุมตำแหน่ง

 $\bullet \ K = \qquad \qquad [{\rm rad/sV}]$

ullet ฟังก์ชั้นถ่ายโอนของชุดทดลอง G(s)=

- 2. จงออกแบบตัวควบคุมเมื่อกำหนดให้
 - (a) มีค่า M_P น้อยกว่า 20 %
 - (b) มีค่า t_s น้อยกว่า 0.02 s (5 %)
 - (c) มีค่า t_r น้อยกว่า 0.01 s

เลือกพารามิเตอร์ของระบบที่ต้องการออกแบบได้เป็น

 $\zeta = ,\omega_n = ,T_D =$

Last updated: October 12, 2021

3. จงออกแบบ Gain ใหม่จากการทดลองก่อนหน้าโดยไม่ต้องคำนวณ (ถ้าผลจากข้อ 2 อยู่ในเงื่อนไขแล้วให้ ปรับใหม่ โดยสมรรถนะดีกว่า 2 ใน 3 ข้อ)

ตารางที่ 2: ผลการทดลองการออกแบบตัวควบคุม

การทดลอง (K_P , K_D ,	(K_I)			M_p (%)	t_s (s)	t_r (s)
วิธีทางเดินราก (,	,0)				
ออกแบบใหม่ (,	,)			

- 4. พล็อตกราฟผลการทดลองสัญญาณตำแหน่งของมอเตอร์ของทุกกรณีให้อยู่ในกราฟเดียวกัน
- 5. พล็อตกราฟผลการทดลองสัญญาณควบคุมของระบบของทุกกรณีให้อยู่ในกราฟเดียวกัน
- 6. จงวิเคราะห์และวิจารณ์ผลการทดลอง

การทดลองที่ 2 การออกแบบตัวควบคุมด้วยวิธี Ziegler-Nichol

ขั้นตอนการทดลอง

- 1. วัดค่า Time delay และออกแบบตัวควบคุม P, PI, และ PID ด้วยวิธี **Ziegler-Nichols แบบวงเปิด** (ใช้ หน่วย SI ในการคำนวณ)
- 2. แสดงผลตอบสนองด้วย Simulink (แสดงวิธีทำให้เรียบร้อยลงในรายงาน โดยคิดกรณี Load = 0%) โดย กำหนดให้สัญญาณอ้างอิงขึ้นบันไดมีค่าเท่ากับ 200 rad/sec
- 3. แสดงผลตอบสนองด้วย Simscape จากระบบที่เคยทำไว้ในไฟล์ก่อนหน้า โดยเชื่อต่อบล็อคควบคุมตำแหน่ง วงปิ๊ดแบบ PID
- 4. ใช้ค่าที่ได้จากข้อ 1 เพื่อหาผลตอบสนองที่แท้จริงของชุดทดลอง โดยเลือกควบคุมความเร็ว จะเริ่มต้นจาก ความเร็วเป็น 0 rad/sec ไปยัง 200 rad/sec

บันทึกผลการทดลอง

1. วัดค่าประวิงเวลาจากการทดลอง

• Time Delay =

[s]

2. การออกแบบตัวควบคุม P

- $K_P =$
- บันทึกผลการทดลองลงในตารางที่ 2

ตารางที่ 3: ผลการทดลองเมื่อเลือกตัวควบคุม P ด้วยวิธีของ Ziegler-Nichols แบบวงเปิด

ค่าที่วัดได้	$M_p~(\%)$	$t_r(s)$	t_s (s)	e_{ss} (rad/sec)
Simscape				

3. การออกแบบตัวควบคุม PI

• $K_P =$

และ $K_I =$

• บันทึกผลการทดลองลงในตารางที่ 3

ตารางที่ 4: ผลการทดลองเมื่อเลือกตัวควบคุม PI ด้วยวิธีของ Ziegler-Nichols แบบวงเปิด

ค่าที่วัดได้	M_p (%)	$t_r(s)$	$t_s(s)$	e_{ss} (rad/sec)
Simscape				

4. การออกแบบตัวควบคุม PID

•
$$K_P=$$
 , $K_I=$ และ $K_D=$

• บันทึกผลการทดลองลงในตารางที่ 4

ตารางที่ 5: ผลการทดลองเมื่อเลือกตัวควบคุม PID ด้วยวิธีของ Ziegler-Nichols แบบวงเปิด

ค่าที่วัดได้	M_p (%)	$t_r(s)$	$t_s(s)$	e_{ss} (rad/sec)
Simscape				

- 5. พล็อตกราฟผลการทดลองสัญญาณความเร็วของมอเตอร์ของทั้งสามกรณีให้อยู่ในกราฟเดียวกัน
- 6. พล็อตกราฟผลการทดลองสัญญาณควบคุมของระบบของทั้งสามกรณีให้อยู่ในกราฟเดียวกัน
- 7. วิเคราะห์และวิจารณ์ผลการทดลอง