

M. Hohle:

Physics 77: Introduction to Computational Techniques in Physics

<u>syllabus:</u>	- Introduction to Unix & Python	(week 1 - 2)
	- Functions, Loops, Lists and Arrays	(week 3 - 4)
	- Visualization	(week 5)
	- Parsing, Data Processing and File I/O	(week 6)
	- Statistics and Probability, Interpreting Measurements	(week 7 - 8)
	- Random Numbers, Simulation	(week 9)
	- Numerical Integration and Differentiation	(week 10)
	- Root Finding, Interpolation	(week 11)
	- Systems of Linear Equations	(week 12)
	- Ordinary Differential Equations	(week 13)
	- Fourier Transformation and Signal Processing	(week 14)
	- Capstone Project Presentations	(week 15)

the problem:

Interpolation

Smoothing Root Finding

How to interpolate?

- polynomials (1st order = linear)
- piecewise polynomials
- trigonometric functions
- exponential functions
- rational functions

called "basis functions"

note: interpolation is not fitting!

the problem:

linear interpolation

$$y_{int} = y_i + m (x_0 - x_i)$$

$$y_{int} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

quadratic interpolation

$$y_{int} = y_i + m (x_0 - x_i) + a (x_0 - x_i)^2$$

this time we need one more reference point for calculating a

Interpolation

Root Finding

the problem:

quadratic interpolation

$$y_{int} = y_i + m (x_0 - x_i) + a (x_0 - x_i)^2$$

this time we need **one more** reference point for calculating **a**

Interpolation

Smoothing Root Finding

all three reference points need to fit the same parabola

$$y_i = c + mx_i + a x_i^2$$

$$y_{i+1} = c + mx_{i+1} + a x_{i+1}^2$$

$$y_{i+2} = c + mx_{i+2} + ax_{i+2}^2$$

solving for c, m and a

×

Taylor expansion

the problem:

linear interpolation:
$$y_{int} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

quadratic interpolation:

$$y_i = c + mx_i + a x_i^2$$

 $y_{i+1} = c + mx_{i+1} + a x_{i+1}^2$ solving for c, m and a
 $y_{i+2} = c + mx_{i+2} + a x_{i+2}^2$

Root Finding

Maybe there is a closed (= general) solution/method? → Lagrange Polynomials

$$y_{i} = y_{int} + y'_{int}(x_{i} - x_{0}) + \sigma(\Delta x^{2})$$

$$y_{i+1} = y_{int} + y'_{int}(x_{i+1} - x_{0}) + \sigma(\Delta x^{2})$$

$$y_{int} = \frac{y_i(x_{i+1} - x_0)}{(x_{i+1} - x_i)} - \frac{y_{i+1}(x_i - x_0)}{(x_{i+1} - x_i)} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

Maybe there is a closed (= general) solution/method? → Lagrange Polynomials

Interpolation

Smoothing Root Finding

$$y_i = y_{int} + y'_{int}(x_i - x_0) + \sigma(\Delta x^2)$$

Taylor expansion

$$y_{i+1} = y_{int} + y'_{int}(x_{i+1} - x_0) + \sigma(\Delta x^2)$$

$$y_{int} = \frac{y_i(x_{i+1} - x_0)}{(x_{i+1} - x_i)} - \frac{y_{i+1}(x_i - x_0)}{(x_{i+1} - x_i)} = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x_0 - x_i)$$

$$y_{i} = y_{int} + y'_{int}(x_{i} - x_{0}) + y''_{int}(x_{i} - x_{0})(x_{i} - x_{0})/2 + \sigma(\Delta x^{3})$$

$$y_{i+1} = y_{int} + y'_{int}(x_{i+1} - x_{0}) + y''_{int}(x_{i+1} - x_{0})(x_{i+1} - x_{0})/2 + \sigma(\Delta x^{3})$$

$$y_{i+2} = y_{int} + y'_{int}(x_{i+2} - x_{0}) + y''_{int}(x_{i+2} - x_{0})(x_{i+2} - x_{0})/2 + \sigma(\Delta x^{3})$$

Taylor expansion

$$y_{int} = \frac{(x_0 - x_{i+1})(x_0 - x_{i+2})}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{(x_0 - x_i)(x_0 - x_{i+2})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{(x_0 - x_i)(x_0 - x_{i+1})}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

Maybe there is a closed (= general) solution/method? → Lagrange Polynomials

Interpolation

Smoothing Root Finding

$$y_{int} = \frac{(x_0 - x_{i+1})(x_0 - x_{i+2})}{(x_i - x_{i+1})(x_i - x_{i+2})} y_i + \frac{(x_0 - x_i)(x_0 - x_{i+2})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} y_{i+1} + \frac{(x_0 - x_i)(x_0 - x_{i+1})}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})} y_{i+2}$$

for any polynomial of n-th order:

$$y_{int} = \frac{(x_0 - x_{i+1})(x_0 - x_{i+2}) \dots (x_0 - x_{i+n})}{(x_i - x_{i+1})(x_i - x_{i+2}) \dots (x_i - x_{i+n})} y_i + \frac{(x_0 - x_i)(x_0 - x_{i+2}) \dots (x_0 - x_{i+n})}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2}) \dots (x_{i+1} - x_{i+n})} y_{i+1} + \frac{(x_0 - x_i)(x_0 - x_{i+2}) \dots (x_0 - x_{i+n})}{(x_{i+n} - x_i)(n - x_{i+2}) \dots (x_0 - x_{i+n-1})} y_{i+n}$$

$$y_{int} = L(x_0) = \sum_{j=0}^{n} y_j \prod_{\substack{0 \le m < n \\ m \ne j}} \frac{x_0 - x_m}{x_j - x_m}$$

Lagrange Polynomials

 $y_{int} = L(x_0) = \sum_{j=0}^{n} y_j \prod_{\substack{0 \le m < n \\ m \ne j}} \frac{x_0 - x_m}{x_j - x_m}$

Lagrange Polynomials

Interpolation

Smoothing Root Finding

- computation is simple
- but not efficient for large n
- \rightarrow only considering data points close to x_0
- → reduces approximation accuracy

Newton's Interpolating Polynomials

fitting n+1 data points to nth order polynomial

→ fitting the n+1 coefficients:

$$a_0 = y_i$$

$$a_1 = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

$$a_2 = \frac{\frac{y_{i+2} - y_{i+1}}{x_{i+2} - x_{i+1}} - \frac{y_{i+1} - y_i}{x_{i+1} - x_i}}{x_{i+2} - x_i}$$

...and so on

Interpolation

Smoothing Root Finding

Root Finding & Interpolation

check out InterpolateExamples.py

Interpolation Smoothing

Root Finding

from scipy import interpolate

```
= interpolate.interp1d(x, y)
xint = np.arange(left, right, 0.1)
yint = I(xint)
plt.plot(xint, yint, c = 'r', linewidth = 3, alpha = 0.3,\
                                                    label = 'interpolation')
plt.scatter(x, y, marker = 'x', c = 'k', label = 'actual data')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('linear interpolation')
plt.show()
```


check out

yint = I(xint)

InterpolateExamples.py

Interpolation Smoothing

Root Finding

from scipy import interpolate

```
I = interpolate.interp1d(x, y)
xint = np.arange(left, right, 0.1)
```

```
plt.plot(xint, yint, c = 'r', linewidth =
```

```
plt.scatter(x, y, marker = 'x', c = 'k',
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('linear interpolation')
plt.show()
```



```
Interpolation
check out
                              InterpolateExamples.py
                                                                        Root Finding
from scipy import interpolate
     = interpolate.interp1d(x, y, kind = 2)
                                                               quadratic interpolation
xint = np.arange(left, right, 0.1)
yint = I(xint)
plt.plot(xint, yint, c = r', linewidth = 3, alpha = 0.3,\
                                                     label = 'interpolation')
plt.scatter(x, y, marker = 'x', c = 'k', label = 'actual data')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.title('linear interpolation')
plt.show()
```


check out

InterpolateExamples.py

Interpolation
Smoothing
Root Finding

from scipy import interpolate

```
I = interpolate.interp1d(x, y, kind = 2)
xint = np.arange(left, right, 0.1)
yint = I(xint)
```

quadratic interpolation

```
plt.plot(xint, yint, c = 'r', linewidth =

plt.scatter(x, y, marker = 'x', c = 'k',
 plt.xlabel('x')
 plt.ylabel('y')
 plt.legend()
 plt.title('linear interpolation')
 plt.show()
```


Interpolation

Smoothing Root Finding

spline interpolation

Interpolation

Root Finding

A shape (piecewise polynomials, usually cubic) that minimizes the curvature **k** under the constraint of passing through all reference points

$$\kappa = \frac{\frac{d^2y}{dx^2}}{\left(1 + \left[\frac{dy}{dx}\right]^2\right)^{3/2}}$$

$$s_{i}(x_{i}) = s_{i+1}(x_{i}) = y_{i}$$

$$s'_{i}(x_{i}) = s'_{i+1}(x_{i})$$

$$s''_{i}(x_{i}) = s''_{i+1}(x_{i})$$

Interpolation

spline interpolation

Root Finding A shape (**piecewise** polynomials, usually cubic) that minimizes the curvature **K** under the constraint of passing through all reference points

$$\kappa = \frac{\frac{d^2 y}{dx^2}}{\left(1 + \left[\frac{dy}{dx}\right]^2\right)^{3/2}}$$

x needs to be sorted in ascending order * stands for unpacking zipped objects

Interpolation

Smoothing Root Finding

Interpolation
Smoothing
Root Finding

when interpolating

→ you don't want to interpolate noise

many noise filter are low pass filter

Root Finding & Interpolation

smoothing filter:

Algorithm	Overview and uses	Pros	Cons
Additive smoothing	used to smooth categorical data.		
Butterworth filter	Slower roll-off than a Chebyshev Type I/Type II filter or an elliptic filter	 More linear phase response in the passband than Chebyshev Type I/ Type II and elliptic filters can achieve. Designed to have a frequency response as flat as possible in the passband. 	requires a higher order to implement a particular stopband specification
Chebyshev filter	Has a steeper roll-off and more passband ripple (type I) or stopband ripple (type II) than Butterworth filters.	Minimizes the error between the idealized and the actual filter characteristic over the range of the filter	Contains ripples in the passband.
Digital filter	Used on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal		
Elliptic filter			
Exponential smoothing	 Used to reduce irregularities (random fluctuations) in time series data, thus providing a clearer view of the true underlying behaviour of the series. Also, provides an effective means of predicting future values of the time series (forecasting).[3] 		

Smoothing
Root Finding

moving averages

Smoothing
Root Finding

better: → weighted average

→ data points further away from reference point have lower weights w

$$y_{int} = \frac{d_{0i}}{\mathbf{x}} \times \mathbf{x}$$

$$y_{int} \sim \sum_{i=1}^{I} w_i y_i \qquad w_i \sim$$

data points further away from reference point have lower weights \boldsymbol{w}

$$y_{int} \sim \sum_{i=1}^{I} w_i y_i \qquad w_i \sim \frac{1}{d_{0i}}$$

Interpolation
Smoothing
Root Finding

```
L = np.random.uniform(0,1,(100,1))
D = np.zeros((len(L),len(L)))
for ii, i in enumerate(L):
    for jj, j in enumerate(L):
        D[ii,jj] = i - j
```


But that is very inefficient!

data points further away from reference point have lower weights \boldsymbol{w}

$$y_{int} \sim \sum_{i=1}^{I} w_i y_i \qquad w_i \sim \frac{1}{d_{0i}}$$

Interpolation
Smoothing
Root Finding

check out:

SmoothGaussKernel.py
SmoothExamples.py

import numpy as np

Smoothing
Root Finding

def SmoothGaussKernel(x, xint, y, sigma):

```
Dx = np.tile(x.transpose(), (len(xint), 1))
Dxint = np.tile(xint.transpose(), (len(x), 1))
```

```
D = Dx.transpose() - Dxint
```

```
W = np.exp(-(D**2)/(sigma))
W = W/np.sum(W)
yint = np.dot(W.transpose(), y)
Scale = np.max(y)/np.max(yint)
return yint*Scale
```

determining how distances are been weighted. Here: normal distribution aka kernel

SmoothExamples.py

Interpolation
Smoothing
Root Finding

root finding: finding the zeros of a polynomial

Interpolation Smoothing Root Finding

How many roots does a polynomial have?

How many roots does a polynomial have?

 $f_N(x) = \sum_{i=0}^{N} a_i x^i = \alpha \prod_{i=1}^{N} (x - x_i)$

factored form

Smoothing
Root Finding

 x_i : zeros

- a polynomial of Nth order has N roots (real & complex)
- for $N \ge 5$: no analytical solutions
- for N is odd: at least one real zero

$$f(x) = x^3 = (x - x_1)(x - x_2)(x - x_3)$$

zeros:
$$x_1 = x_2 = x_3 = 0$$

one zero with multiplicity m = 3

How many roots does a polynomial have?

factored form Smoothing
Root Finding

 x_i : zeros

 $f_N(x) = \sum_{i=0}^{N} a_i x^i = \alpha \prod_{i=1}^{N} (x - x_i)$

- a polynomial of Nth order has N roots (real & complex)
- for $N \ge 5$: no analytical solutions
- for N is odd: at least one real zero

$$f(x) = x^2 - 2x + 1 = (x - x_1)(x - x_2)$$

zeros:
$$x_1 = x_2 = 1$$

one zero with multiplicity m = 2

How many roots does a polynomial have?

Root Finding factored form

 x_i : zeros

- a polynomial of **Nth order** has **N roots** (real & complex)
- for $N \ge 5$: no analytical solutions

 $f_N(x) = \sum_{i=0}^{N} a_i x^i = \alpha \prod_{i=1}^{N} (x - x_i)$

for N is odd: at least one real zero

$$f(x) = x^2 - x - 2 = (x - x_1)(x - x_2)$$

zeros:
$$x_1 = 2$$
, $x_2 = -1$

two zeros with multiplicity m = 1 each

Root Finding & Interpolation

methods:

Root finding [edit]

Main article: Root-finding algorithm

- Bisection method
- False position method: and Illinois method: 2-point, bracketing
- Halley's method: uses first and second derivatives
- ITP method: minmax optimal and superlinear convergence simultaneously
- Muller's method: 3-point, quadratic interpolation
- Newton's method: finds zeros of functions with calculus
- · Ridder's method: 3-point, exponential scaling
- · Secant method: 2-point, 1-sided

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Interpolation Smoothing

Root Finding

Root Finding & Interpolation

Newton's method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Interpolation Smoothing Root Finding

methods:

Root finding [edit]

Main article: Root-finding algorithm

- Bisection method
- False position method: and Illinois method: 2-point, bracketing
- Halley's method: uses first and second derivatives
- ITP method: minmax optimal and superlinear convergence simultaneously
- Muller's method: 3-point, quadratic interpolation
- . Newton's method: finds zeros of functions with calculus
- Ridder's method: 3-point, exponential scaling
- · Secant method: 2-point, 1-sided

Smoothing

Root Finding

Bisection:

assumption: root is within interval $[x_{left}, x_{right}]$

Interpolation
Smoothing
Root Finding

Smoothing
Root Finding

if
$$f(x_{center}) \cdot f(x_{left}) < 0$$

$$-x_{left} \rightarrow x_{left}$$

- set x_{right} to x_{center}
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

Smoothing Smoothing

Root Finding

if
$$f(x_{center}) \cdot f(x_{left}) < 0$$

- $-x_{left} \rightarrow x_{left}$
- set x_{right} to x_{center}
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

Root Finding

if
$$f(x_{center}) \cdot f(x_{left}) < 0$$

- $-x_{left} \rightarrow x_{left}$
- set x_{right} to x_{center}
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

either we end up with the same situation, or...

Interpolation Smoothing

Root Finding

if
$$f(x_{center}) \cdot f(x_{left}) > 0$$

- set x_{left} to x_{center}
- $-x_{right} \rightarrow x_{right}$
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

Smoothing

Root Finding

if
$$f(x_{center}) \cdot f(x_{left}) > 0$$

- set x_{left} to x_{center}
- $-x_{right} \rightarrow x_{right}$
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

Smoothing

Root Finding

if
$$f(x_{center}) \cdot f(x_{left}) > 0$$

- set x_{left} to x_{center}
- $-x_{right} \rightarrow x_{right}$
- reset $x_{center} = 0.5 (x_{left} + x_{right})$

...and so on...

Bisection:

Root Finding

- robust: always finds a root
- easy to implement (recursion), see Bisection.py
- slow: converges linearly (accuracy increases by factor of 2 for each step n) with n required for a certain accuracy
- **Newton's method**: since slope of the function points to next $x_{n+1} \rightarrow$ converges quadratically
- needs derivative → evaluation numerically
- convergence depends on initial guess \rightarrow might not converge!

Root Finding & Interpolation

methods:

Root Finding

Root finding [edit]

Main article: Root-finding algorithm

- Bisection method
- False position method: and Illinois method: 2-point, bracketing
- Halley's method: uses first and second derivatives
- ITP method: minmax optimal and superlinear convergence simultaneously
- Muller's method: 3-point, quadratic interpolation
- Newton's method: finds zeros of functions with calculus
- Ridder's method: 3-point, exponential scaling
- Secant method: 2-point, 1-sided

M. Hohle:

