Data Structures & Algorithms – 1 (DSA 1)

Topic: Asymptotic Notation

Learn With Mahfuz

Asymptotic Notation

2. Big-omega
$$(\Omega) \longrightarrow Lower bound$$

- 4. o-notation (Little-oh)
- 5. _r-notation (Little-r)

O-notation (big-oh)

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

Ω -notation (big-omega)

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

Θ-notation (theta)

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

big-oh, big-omega, theta

Big-oh

$$f(n) \leq c \cdot g(n)$$

Theta

$$c_i g(n) \leq \xi(n) \leq c_2 \cdot g(n)$$

$$respective (1, C_1, C_2, N_6 \rightarrow + Ve)$$
 $respective (1, C_1, C_2, N_6 \rightarrow + Ve)$

How to remember?

Big-Oh (Upper Bound):

$$5(n) \leq c \cdot g(n)$$

C, C, C2, M, -> fre

 $N > 10^{\circ}$

Big-Omega (Lower Bound):

$$f(n) \geq c \cdot \gamma(n)$$

Theta (Tight Bound):

$$C_{1}^{*}\vartheta(n) \leq S(n) \leq C_{2}^{*}\vartheta(n)$$

More efficient (less time)

Function	Descriptor	Big-Oh
c	Constant	O(1)
$\log n$	Logarithmic	<i>O</i> (log <i>n</i>)
n	Linear	O(n)
$n \log n$	$n \log n$	$O(n \log n)$
n^2	Quadratic	$O(n^2)$
n^3	Cubic	$O(n^3)$
n^{k}	Polynomial	O(n ^k)
2^n	Exponential	$O(2^{n})$
n!	Factorial	O(n!)

Slower (more time)

Click here to go to the GitHub repository

Click here to see this video!

THANK YOU?

