IN THE SPECIFICATION

Kindly amend the specification as follows.

Amend the paragraph on page 10 beginning at line 9 as follows.

As the number of base stations increase, the number of possible "hopping" pathways also increase. A backward-learning, spanning tree algorithm is used to select the "hopping" pathway with the lowest "cost" to a given destination. A detailed description of this algorithm can be found in co-pending application U.S. Serial Number 07/769,425, entitled "A RADIO FREQUENCY LOCAL AREA NETWORK" filed October 1, 1991 in the names of Meier et al. (Attorney Docket No. 91 P 668), which is incorporated herein by reference. Basically to summarize, a "cost" is assigned to every direct communication link in the network. This "cost" factor takes into account the communication bandwidth of a particular link. Next, the spanning tree algorithm using backward learning identifies the "hopping" pathway of lowest "cost" from any source to any destination. Whenever any direct link is faulty or a "hopping point" (a base station for example) is moved or breaks down, an alternative low "cost" pathway can be used. This provides an inherent redundancy to the network.

IN THE ABSTRACT

Please delete the abstract and replace it with the substitute abstract on the following page.