Pracownia 26

Podstawy elektroniki, elektrotechniki i miernictwa

Rafał Łasocha

14 grudnia 2014

1 Zagadnienia teoretyczne

1.1 Kod binarny

Kod binarny to zapis liczby w systemie dwójkowym.

1.2 Kod BCD

Kod BCD polega na zapisie liczby dziesiętnej, jako zapis każdej z cyfr zapisu dziesiętnego za pomocą 4 bitów w kodzie binarnym.

1.3 Kod Graya

Kod dwójkowy charakteryzujący się tym, że reprezentacja dwóch kolejnych liczb różni się wartością dokładnie jednego bitu.

1.4 Kod 4221

Jest to kod BCD, ale poszczególne bity nie oznaczają 8, 4, 2, 1, ale 4, 2, 2, 1 - zauważmy, że ciągle możemy dzięki temu zapisać wszystkie cyfry od 0 do 9.

1.5 Kod XS-3

Jest to modyfikacja kodu BCD, taka że 0 nie koduje się na 0000, tylko na 0011 - innymi słowy, kod XS-3 to kod BCD przesunięty o 3, więc 0000 oznaczałoby w nim -3.

1.6 Kod U2

Jest to kod, który pozwala reprezentować liczby ujemne (jeden bit jest bitem znaku), istotną zaletą jest fakt, że w tej reprezentacji działa prosty algorytm dodawania. Dzięki temu, aby przejść z -1 do 0, wystarczy dodać jedynkę do liczby oznaczającej -1 (np. 1111 + 0001 = 0000).

1.7 Kod heksadecymalny

Kod binarny to zapis liczby w systemie szesnastkowym (z braku cyfr korzystamy z liter A..F dla wartości 10..15)

1.8 Dioda

Dioda jest elementem elektronicznym, który przewodzi prąd elektryczny niesymetrycznie, tj. w jedną stronę bardziej niż w drugą, z reguły chcemy całkowicie zablokować przepływ prądu w jednym kierunku.

1.9 Margines zakłóceń

Margines zakłóceń to maksymalna amplituda sygnału zakłócającego nie powodująca błędnego działania układu.

1.10 Bramka logiczna

Jest to układ scalony, wykonujący pewną prostą operację logiczną, np. te zgodne z Algebrą Boole'a.

1.11 Czas propagacji

Czas upływający od ustawienia wejść w układzie logicznym do ustawienia wyjść.

1.12 Algebra Boole'a

Jest to struktura algebraiczna działająca na zbiorze dwuelementowym $\{0,1\}$ oraz 3 operacjami: AND, OR oraz NOT.

2 Przebieg ćwiczenia

2.1 Translacja kodu dziesiętnego na kod binarny

Na początku trzeba było wykonać układ zamieniający kod dziesiętny na kod binarny. W tym celu musieliśmy przylutować diody w odpowiednich miejscach, tak aby LED świeciły wyświetlając odpowiedni kod. Dowiedzieliśmy się jak rozpoznać w którą stronę dioda pozwala na przepływ prądu.

Kod dziesiętny	Kod binarny
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

2.2 Układ kontroli parzystości

Następnie korzystając z zestawu UNILOG mieliśmy wykonać układ kontroli parzystości 8-bitowego słowa za pomocą bramek XOR.

A	В	С	D	Е	F	G	Н	Q
1	0	0	1	1	1	0	0	0
0	0	1	1	0	0	1	0	1
1	0	1	1	0	0	1	1	1

2.3 Przygotowanie układów

Następnie mieliśmy przygotować dwa układy podane w treści zadania. Poniższa tabela przedstawia tabelę prawdy obu układów. Kolumna Q przedstawia wyniki eksperymentalne, a Q_1 jakie wyniki powinny wyjść - jak widać się zgadzają.

A	В	Q	Q_1
0	0	0	0
1	0	1	1
0	1	$\mid 1 \mid$	1
0	0	0	0

2.4 Czas propagacji sygnału

W ostatniej części pracowni musieliśmy podłączyć oscyloskop do zestawu UNILOG i mierzyć czasy propagacji przez różne. Na początku mieliśmy wyznaczyć czas propagacji sygnału przez bramkę NOT, w tym celu zrobiliśmy układ skonstruowany z 4 bramek NOT połączonych szeregowych. Z oscyloskopu odczytaliśmy wartość $1.4 \cdot \frac{1}{100} \mu s$, do daje 3.5ns na jedną bramkę.

Następnie skonstruowaliśmy układ przedstawiony w zadaniu, jednak zamiast 5 bramek NOT użyliśmy 4 oraz zastąpiliśmy bramkę NOT-XOR (której nie było) bramką XOR. Wyszedł nam taki sam wynik jak w powyższym przykładzie.

3 Wnioski

Wygląda na to że zadania z kodem binarnym, układem kontroli parzystości i konstruowaniem zadanych wykładów zostały wykonane prawidłowo i wyniki potwierdzają wszystkie oczekiwania.

Jednakże w zadaniach dotyczących czasu propagacji sygnału mogło coś pójść nie tak. Wg różnych danych, bramki logiczne mają z reguły czas propagacji od około 3 do kilkudziesięciu ns. Nasz wynik 3.5ns na bramkę może wydawać się mało prawdopodobny, ale możliwy.

Niestety, w drugim zadaniu wyszedł nam dokładnie taki czas, a w tym zadaniu jest o jedną bramkę (XOR) więcej, więc wygląda na to że otrzymany wynik jest niepoprawny.