Are We There Yet? Iterative Methods for Solving Linear Systems

Nate DeMaagd, Kurt O'Hearn

MTH 499-02

April 8, 2013

Outline

Outline

• Overview of methods of solution: direct, indirect

Outline

- Overview of methods of solution: direct, indirect
- Theory on iterative methods for solving linear systems

- Overview of methods of solution: direct, indirect
- Theory on iterative methods for solving linear systems
- Description and examples of Richardson, Jacobi, and Gauss-Seidel methods

■ •99€ Iterative Methods for Solving Linear Systems

• Direct methods

- Direct methods
 - Execute a predetermined number of computations to produce a result

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps
 - Gives exact answer (within roundoff errors)

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps
 - Gives exact answer (within roundoff errors)
- Indirect methods

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps
 - Gives exact answer (within roundoff errors)
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps
 - Gives exact answer (within roundoff errors)
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result
 - \bullet Typically yield approximate solutions within some tolerance (\$\epsilon\$) or after a prescribed number of iterations

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps
 - Gives exact answer (within roundoff errors)
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result
 - Typically yield approximate solutions within some tolerance (ϵ) or after a prescribed number of iterations
 - Almost always are iterative in nature

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Example: Gaussian elimination with scaled partial pivoting
 - Solves Ax = b in a finite number of steps
 - Gives exact answer (within roundoff errors)
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result
 - Typically yield approximate solutions within some tolerance (ϵ) or after a prescribed number of iterations
 - Almost always are iterative in nature
 - Example: finding solutions to linear systems (today's topic!)

Developing A Simple Iterative Method

Developing A Simple Iterative Method

• Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible

Developing A Simple Iterative Method

- Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible
- ullet Introduce an invertible "splitting matrix" Q and rearrange to get

$$Qx = (Q - A)x + b$$

Developing A Simple Iterative Method

- Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible
- \bullet Introduce an invertible "splitting matrix" Q and rearrange to get

$$Qx = (Q - A)x + b$$

• Now define our iterative process as

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

Developing A Simple Iterative Method

- Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible
- \bullet Introduce an invertible "splitting matrix" Q and rearrange to get

$$Qx = (Q - A)x + b$$

• Now define our iterative process as

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

where k > 1 denotes the k^{th} step in the process

 \bullet Want: each successive iteration to produce a better approximation for x (i.e., converge)

Developing A Simple Iterative Method

- Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible
- \bullet Introduce an invertible "splitting matrix" Q and rearrange to get

$$Qx = (Q - A)x + b$$

• Now define our iterative process as

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

- \bullet Want: each successive iteration to produce a better approximation for x (i.e., converge)
- Also want: algorithms which guarantee convergence after satisfying some conditions

Developing A Simple Iterative Method

- Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible
- \bullet Introduce an invertible "splitting matrix" Q and rearrange to get

$$Qx = (Q - A)x + b$$

• Now define our iterative process as

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

- \bullet Want: each successive iteration to produce a better approximation for x (i.e., converge)
- Also want: algorithms which guarantee convergence after satisfying some conditions
- To achieve these ends, we seek Q such that:
 - $||x x^{(k)}|| \to 0$ rapidly, and
 - \bullet $x^{(k)}$ is easy to compute

Developing A Simple Iterative Method

- Want to solve: Ax = b for x with $A \in \mathbb{R}^{n \times n}$, A invertible
- \bullet Introduce an invertible "splitting matrix" Q and rearrange to get

$$Qx = (Q - A)x + b$$

• Now define our iterative process as

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

- \bullet Want: each successive iteration to produce a better approximation for x (i.e., converge)
- Also want: algorithms which guarantee convergence after satisfying some conditions
- \bullet To achieve these ends, we seek Q such that:
 - $||x x^{(k)}|| \to 0$ rapidly, and
 - \bullet $x^{(k)}$ is easy to compute
- Note: often the initial vector $x^{(0)}$ is an estimate of the solution or arbitrary (x=0)

• Recall iterative process $Qx^{(k)} = (Q - A)x^{(k-1)} + b$

- Recall iterative process $Qx^{(k)} = (Q A)x^{(k-1)} + b$
- Letting $k \to \infty$, solution is Qx = (Q A)x + b

- Recall iterative process $Qx^{(k)} = (Q A)x^{(k-1)} + b$
- Letting $k \to \infty$, solution is Qx = (Q A)x + b
- Assume Q and A nonsingular. So, Q^{-1} and A^{-1} exist and

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b$$

- Recall iterative process $Qx^{(k)} = (Q A)x^{(k-1)} + b$
- Letting $k \to \infty$, solution is Qx = (Q A)x + b
- Assume Q and A nonsingular. So, Q^{-1} and A^{-1} exist and

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b$$

• Taking limit of this gives solution

$$x = (I - Q^{-1}A)x + Q^{-1}b$$

- Recall iterative process $Qx^{(k)} = (Q A)x^{(k-1)} + b$
- Letting $k \to \infty$, solution is Qx = (Q A)x + b
- Assume Q and A nonsingular. So, Q^{-1} and A^{-1} exist and

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b$$

• Taking limit of this gives solution

$$x = (I - Q^{-1}A)x + Q^{-1}b$$

• Thus $x^{(k)} - x = (I - Q^{-1}A)(x^{(k-1)} - x)$

- Recall iterative process $Qx^{(k)} = (Q A)x^{(k-1)} + b$
- Letting $k \to \infty$, solution is Qx = (Q A)x + b
- \bullet Assume Q and A nonsingular. So, Q^{-1} and A^{-1} exist and

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b$$

• Taking limit of this gives solution

$$x = (I - Q^{-1}A)x + Q^{-1}b$$

- Thus $x^{(k)} x = (I Q^{-1}A)(x^{(k-1)} x)$
- Select vector norm and subordinate norm so that by repeated [[repeated what?]]

$$||x^{(k)} - x|| \le ||I - Q^{-1}A||^k ||x^{(0)} - x||$$

- Recall iterative process $Qx^{(k)} = (Q A)x^{(k-1)} + b$
- Letting $k \to \infty$, solution is Qx = (Q A)x + b
- \bullet Assume Q and A nonsingular. So, Q^{-1} and A^{-1} exist and

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b$$

• Taking limit of this gives solution

$$x = (I - Q^{-1}A)x + Q^{-1}b$$

- Thus $x^{(k)} x = (I Q^{-1}A)(x^{(k-1)} x)$
- Select vector norm and subordinate norm so that by repeated [[repeated what?]]

$$||x^{(k)} - x|| \le ||I - Q^{-1}A||^k ||x^{(0)} - x||$$

• Thus, if $||I - Q^{-1}A|| < 1$, then $\lim_{k \to \infty} ||x^{(k)} - x|| = 0$ [[How does this follow from the last step?]]

More General Conditions for Iterative Method Convergence

More General Conditions for Iterative Method Convergence

Theorem

The spectral radius of a matrix A, $\rho(A) = \max_{1 \le i \le n} |\lambda_i|$, satisfies

$$\rho(A) = \inf_{\|\cdot\|} \|A\|.$$

More General Conditions for Iterative Method Convergence

Theorem

The spectral radius of a matrix A, $\rho(A) = \max_{1 \leq i \leq n} |\lambda_i|$, satisfies

$$\rho(A) = \inf_{\|\cdot\|} \|A\|.$$

Theorem

For the linear system Ax = b with A invertible, define the iteration formula

$$x^{(k)} = Gx^{(k-1)} + c.$$

The sequence $\left[x^{(k)}\right]$ will converge to $(I-G)^{-1}c$ provided that $\rho(G) < 1$.

More General Conditions for Iterative Method Convergence

Theorem

The spectral radius of a matrix A, $\rho(A) = \max_{1 \leq i \leq n} |\lambda_i|$, satisfies

$$\rho(A) = \inf_{\|\cdot\|} \|A\|.$$

Theorem

For the linear system Ax = b with A invertible, define the iteration formula

$$x^{(k)} = Gx^{(k-1)} + c.$$

The sequence $\left[x^{(k)}\right]$ will converge to $(I-G)^{-1}c$ provided that $\rho(G) < 1$.

Corollary

The iteration formumla

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

will produce a convergent sequence provided that $\rho(I - Q^{-1}A) < 1$.