Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 6 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i)
$$h: V(G) \rightarrow V(H)$$

 $v_1 \mapsto w_1$
 $v_2 \mapsto w_2$
 $v_3 \mapsto w_1$
 $v_4 \mapsto w_3$
 $v_5 \mapsto w_2$

- (ii) Zu zeigen ist:
 - (i) Graph G ist 3-färbbar ⇒ es existiert ein Homomorph. von G nach H
 - (ii) es existiert ein Homomorph. von G nach $H \Rightarrow$ Graph G ist 3-färbbar

H ist 3-färbbar mit folgender Farbbelegung

c:
$$V(H) \rightarrow \{r, g, b\}$$

 $c(w_1) \mapsto r$
 $c(w_2) \mapsto g$
 $c(w_3) \mapsto b$

(i) Da G 3-färbbar ist, gilt:

 $\exists c' : V(G) \rightarrow \{r,g,b\}$. c' ist eine 3-Färbung von G

Daraus kann man nun folgenden Homomorphismus h bilden:

$$h: V(G) \rightarrow V(H)$$

$$h(v) \mapsto \begin{cases} w_1, & c'(v) = r \\ w_2, & c'(v) = g \\ w_3, & c'(v) = b \end{cases}$$

Beweis der Richtigkeit des gebildeten h:

Es muss gelten:

$$\forall \{u, v\} \in E(G). \{h(u), h(v)\} \in E(H)$$

Da nach Annahme alle Knoten einer Kante aus G verschiedenfarbig sind, gilt:

$$(1) \ \forall \{u,v\} \in E(G). \ h(u) \neq h(v)$$

Des Weiteren gilt:

$$(2) \ \forall \ u \in \{w_1, w_2, w_3\}. \ \forall \ v \in \{w_1, w_2, w_3\} \setminus \{u\}. \ \{u, v\} \in E(H)$$

Aus (1) und (2) folgt:

$$\forall \{u,v\} \in E(G). \{h(u),h(v)\} \in E(H)$$

(ii) Da ein Homomorphismus h von G nach H existiert, gilt:

$$(*) \forall \{u,v\} \in E(G). \{h(u),h(v)\} \in E(H)$$

Daraus kann man nun folgende 3-Färbung c' ableiten:

$$c': V(G) \rightarrow \{r,g,b\}$$

$$c'(v) \mapsto c(h(v))$$

Beweis der Richtigkeit der 3-Färbung c':

Es gilt:

$$(**) \forall \{u,v\} \in V(G). h(u) \neq h(v)$$

Würde dies nicht gelten, würde das bedeuten, dass $\{h(u), h(u)\} \in E(H)$ sein würde, da aber H irreflexiv ist, wäre das ein Widerspruch. Aus (*) und (**) folgt:

$$\forall \{u,v\} \in V(G). \ c(h(u)) \neq c(h(v)) \Leftrightarrow \forall \{u,v\} \in V(G). \ c'(u) \neq c'(v)$$

 \Rightarrow c' ist eine passende 3-Färbung für G \Rightarrow G ist 3-färbbar

Aufgabe 4

Wir definieren n = |V(G)|. Es werden n Variablen eingeführt, die jeweils n Indizes haben mit der Namensgebung $X_{i,j}$. Die Idee ist, dass diese $n \times n$ Matrix aus Variablen einen Pfad definiert, indem man jeweils genau eine Variable der n Variablen mit 1 belegt, alle anderen mit 0. Nun würden die Variablen $X_{i,j}$ und $X_{i+1,k}$ für die Kante $\{j,k\}$ stehen. φ muss folgendes leisten:

1. Jede Variable definiert genau einen Knoten.

$$\varphi_1 = \bigwedge_{0 \le i < n} \bigvee_{j \in V(G)} \left(X_{i,j} \land \left(\bigwedge_{k \in V(G) \setminus \{j\}} \neg X_{i,k} \right) \right)$$

Jede Klausel hat die Grösse n, es werden n mal n Klauseln gebildet $\Rightarrow \varphi_1 \in \mathcal{O}(n^3)$

2. Jeder Knoten kommt genau einmal vor:

$$\varphi_2 = \bigwedge_{j \in V(G)} \bigvee_{0 \le i < n} \left(X_{i,j} \land \left(\bigwedge_{i' \in \{0, \dots, n-1\} \setminus \{i\}} \neg X_{i',j} \right) \right)$$

Jede Klausel hat die Grösse n, es werden n mal n Klauseln gebildet $\Rightarrow \varphi_2 \in \mathcal{O}(n^3)$

3. Die Kanten existieren und bilden einen geschlossenen Pfad:

$$\varphi_3 = X_{n-1,0} \bigwedge_{0 \le i < n} \bigvee_{\{k,l\} \in E(G)} X_{i,k} \wedge X_{i+1,l}$$

Jede Klausel hat die Grösse 2, es werden n mal maximal $\binom{n}{2}$ Klauseln gebildet $\Rightarrow \varphi_3 \in \mathcal{O}(n^3)$ φ wird nun als Konjunktion des Ganzen definiert:

$$\varphi(G) = \varphi_1 \wedge \varphi_2 \wedge \varphi_3$$

 $\varphi(G)$ genau erfüllbar wenn ein Hamilton Kreis in G existiert. Da für φ_{1-3} gezeigt wurde, dass es polynomiellen Aufwand hat, ist der Aufwand φ zu bilden auch polynomiell, da n^2 Variablen eingeführt wurden, wäre der Aufwand um eine Belegung zu finden $\mathcal{O}(n^2)$