Complementar de Conjuntos

José Antônio O. Freitas

MAT-UnB

Dados dois conjuntos A e E

Dados dois conjuntos $A \in E$ tais que $A \subseteq E$,

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar**

Definiç<u>ão</u>

$$C_E(A) =$$

$$C_E(A) = \{x \in E$$

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

1) Se
$$A = E$$
,

Dados dois conjuntos $A \in E$ tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

1) Se
$$A = E$$
, então $C_A(A) = \{x \in A \}$

Dados dois conjuntos $A \in E$ tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

1) Se
$$A = E$$
, então $C_A(A) = \{x \in A \mid x \notin A\}$

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

1) Se
$$A = E$$
, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

- 1) Se A = E, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.
- 2) $(A^{C})^{C} =$

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

- 1) Se A = E, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.
- 2) $(A^C)^C = \{x \in E \}$

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

- 1) Se A = E, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.
- 2) $(A^C)^C = \{x \in E \mid x \notin A^C\}$

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

- 1) Se A = E, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.
- 2) $(A^C)^C = \{x \in E \mid x \notin A^C\} = \{x \in E \mid x \in A\} = A$

Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o **complementar** de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

- 1) Se A = E, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.
- 2) $(A^C)^C = \{x \in E \mid x \notin A^C\} = \{x \in E \mid x \in A\} = A$

Sejam $A = \{1, 2, 3, 4\}$

Sejam
$$A = \{1, 2, 3, 4\}$$
 e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$.

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$,

Sejam
$$A = \{1, 2, 3, 4\}$$
 e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C}=C_{E}(A)$$

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

 $A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos.

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$,

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova:

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$.

Sejam $A=\{1,2,3,4\}$ e $E=\{1,2,3,5,4,0,8,9\}$. Primeiro note que $A\subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$ e como $A \subseteq B$,

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$ e como $A \subseteq B$, então $x \notin A$.

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$ e como $A \subseteq B$, então $x \notin A$. Daí por definição $x \in C_E(A)$,

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$ e como $A \subseteq B$, então $x \notin A$. Daí por definição $x \in C_E(A)$, ou seja, $C_E(B) \subseteq C_E(A)$.

Sejam $A = \{1, 2, 3, 4\}$ e $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$. Primeiro note que $A \subseteq E$, daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

Proposição

Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in C_E(B)$. Assim $x \notin B$ e como $A \subseteq B$, então $x \notin A$. Daí por definição $x \in C_E(A)$, ou seja, $C_E(B) \subseteq C_E(A)$.

Proposição

Sejam A, B e E três conjunto

Proposição

Sejam A, B e E três conjunto tais que $A \subseteq E$

Proposição

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

i)
$$(A \cup B)^C = A^C \cap B^C$$

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

- i) $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova:

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$i) \ (A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^C \subseteq A^C \cap B^C$$
.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^C \subseteq A^C \cap B^C. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^C \subseteq A^C \cap B^C. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$. Com isso, $y \notin A$

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$. Com isso, $y \notin A$ e $y \notin B$,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$. Com isso, $y \notin A$ e $y \notin B$, ou seja, $y \notin A \cup B$,

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$. Com isso, $y \notin A$ e $y \notin B$, ou seja, $y \notin A \cup B$, logo $y \in (A \cup B)^C$.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$. Com isso, $y \notin A$ e $y \notin B$, ou seja, $y \notin A \cup B$, logo $y \in (A \cup B)^C$. Desse modo

$$A^{C} \cap B^{C} \subseteq (A \cup B)^{C}$$
.

Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

- $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

Prova: Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^{\mathcal{C}} \subseteq A^{\mathcal{C}} \cap B^{\mathcal{C}}. \tag{1}$$

Por outro lado, se $y \in A^C \cap B^C$, então $y \in A^C$ e $y \in B^C$. Com isso, $y \notin A$ e $y \notin B$, ou seja, $y \notin A \cup B$, logo $y \in (A \cup B)^C$. Desse modo

$$A^{\mathcal{C}} \cap B^{\mathcal{C}} \subseteq (A \cup B)^{\mathcal{C}}. \tag{2}$$

Portanto,

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja
$$x \in (A \cap B)^C$$
.

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$,

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja
$$x \in (A \cap B)^C$$
. Logo $x \notin A \cap B$, assim $x \notin A$

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$.

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$.

$$(A \cup B)^C = A^C \cap B^C.$$

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A\cap B)^C\subseteq A^C\cup B^C.$$

$$(A \cup B)^C = A^C \cap B^C.$$

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado.

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$,

$$(A \cup B)^C = A^C \cap B^C.$$

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$.

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$,

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$,

$$(A \cup B)^C = A^C \cap B^C$$
.

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$, logo $y \in (A \cap B)^C$.

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$, logo $y \in (A \cap B)^C$. Desse modo

$$A^{\mathcal{C}} \cup B^{\mathcal{C}} \subseteq (A \cap B)^{\mathcal{C}}$$
.

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$, logo $y \in (A \cap B)^C$. Desse modo

$$A^{\mathcal{C}} \cup B^{\mathcal{C}} \subseteq (A \cap B)^{\mathcal{C}}. \tag{4}$$

Portanto.

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$, logo $y \in (A \cap B)^C$. Desse modo

$$A^{\mathcal{C}} \cup B^{\mathcal{C}} \subseteq (A \cap B)^{\mathcal{C}}. \tag{4}$$

Portanto, de (3) e (4) temos

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$, logo $y \in (A \cap B)^C$. Desse modo

$$A^{\mathcal{C}} \cup B^{\mathcal{C}} \subseteq (A \cap B)^{\mathcal{C}}. \tag{4}$$

Portanto, de (3) e (4) temos

$$(A\cap B)^{C}=A^{C}\cup B^{C},$$

$$(A \cup B)^C = A^C \cap B^C$$
.

Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{3}$$

Por outro lado, se $y \in A^C \cup B^C$, então $y \in A^C$ ou $y \in B^C$. Daí, $y \notin A$ ou $y \notin B$, ou seja, $y \notin A \cap B$, logo $y \in (A \cap B)^C$. Desse modo

$$A^{\mathcal{C}} \cup B^{\mathcal{C}} \subseteq (A \cap B)^{\mathcal{C}}. \tag{4}$$

Portanto, de (3) e (4) temos

$$(A\cap B)^{C}=A^{C}\cup B^{C},$$

como queríamos.■

