IENSAM
E SUPÉRIEURE D'ARTS ET MÉTIERS

CONCOURS D'ENTREE EN 1^{ERE} ANNEE DES ANNEES PREPARATOIRES DE

	L'ENSAM
NOM	1
PRENOM	
CNE (ou) CODE MASSAR	

DIRECTIVES:

- L'épreuve de mathématique = questions à réponses précises (1/2 et 2/2) Répondre sur la feuille « fiche des réponses » (2/2)

BARE	- · · · · · · · · · · · · · · · · · · ·	ne réponse fausse ou pas de réponse : 0pts	
Q1	Calculer la limite : $Q1 = \lim_{n \to +\infty} \left(\frac{n}{n^3 + 1} + \frac{2n}{n^3 + 2} + \frac{3n}{n^3 + 3} + \dots + \frac{n \cdot n}{n^3 + n} \right)$	أحسب النهاية: $Q1 = \lim_{n \to +\infty} \left(\frac{n}{n^3 + 1} + \frac{2n}{n^3 + 2} + \frac{3n}{n^3 + 3} + \dots + \frac{n \cdot n}{n^3 + n} \right)$	10
Q2	Soit $n\in\mathbb{N}$. On pose $u_n=\frac{1}{(2n+1)(2n-1)}$ et $S_n=u_0+u_1+\cdots+u_n$. Calculer $Q_2=\lim_{n\to\infty}S_n$	$S_n=u_0+u_1+\cdots+u_n$ يكن n من $\mathbb{S}_n=u_0+u_1+\cdots+u_n$ و $u_n=rac{1}{(2n+1)(2n-1)}$ يكن و نضع $Q_2=\lim_{n o\infty}S_n$	
Q3	Soit g définie par $g(x) = \ln \left(\frac{2\sqrt{2}x}{1+x^2}\right)$. Est-ce que la courbe de la fonction g admet un point d'inflexion ? si oui, déterminer son abscisse.	نعتبر الدالة g المعرفة بما يلي: $\ln\left(\frac{2\sqrt{2}x'}{1+x^2}\right)$. هل منحنى الدالة g يقبل نقطة انعطاف؟ إذا كان الجواب نعم، يجب تحديد أفصولها.	
Q4	Soit f la fonction définie par $f(x)=\ln\frac{e^{x}-3}{e^{2x}+7}$ et de courbe (C_f) . Déterminer la nature de la branche infinie de (C_f) au voisinage de $+\infty$?	نعتبر الدالة f المعرفة بما يلي: $f(x)=\ln\frac{e^{X}-3}{e^{2X}+1}$ وليكن $f(C_f)$ منحنى f . حدد طبيعة الغرع اللانهائي لل $f(C_f)$ بجوار $f(C_f)$ بجوار $f(C_f)$	
Q5	Soit h la fonction définie par $h(x) = \ln(x + \sqrt{x^2 + 1})$. Calculer $h^{-1}(0)$.	$h^{-1}(0)$ نعتبر الدالة h المعرفة بما يلي: $\ln(x + \sqrt{x^2 + 1})$ أحسب	50
	Calculer la limite :	أحسب النهاية:	
Q6	$Q_6 = \lim_{x \to 0} \frac{\sqrt[3]{x+8} - 2}{x}$	$Q_6 = \lim_{x \to 0} \frac{\sqrt[3]{x + 8} - 2}{x}$	60
Q7	Soient $\alpha\in\mathbb{R}$ et α une solution de l'équation $z^2-2\cos(\alpha)$ $z=-1$. Pour tout $n\in\mathbb{N}$, calculer $Q_7=a^n+\frac{1}{c^n}$	ليكن α عددا حقيقيا و a حلا للمعادلة $z^2-2\cos(\alpha)$ $z=-1$ لكل a من a ، أحسب ليكن a عددا حقيقيا و $Q_7=a^n+\frac{1}{a^n}$	70
	Soient $a = i\sqrt{3}$ et $b = \sqrt{3}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ et soit $\lambda = r(\cos\theta + i\sin\theta)$ avec $\theta \in]0,\pi[$ et	$r>0$ و $\theta\in]0,\pi[$ بحيث $\lambda=r(\cos\theta+i\sin\theta)$ بحيث $b=\sqrt{3}\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$ و $a=i\sqrt{3}$	8.7
Q8	$r>0$. Déterminer r et θ pour que les 3 nombres complexes a,λ et b soient, dans cet ordre, les 3 termes consécutifs d'une suite géométrique.	حدد r و θ لكي تُكُون اللّعداد العقدية a و λ و b ،في هذا الترتيب، a حدود متوالية لمتتالية هندسية.	80
Q9	Calculer la limite : $Q_9 = \lim_{x \to +\infty} \left(\tan \frac{\pi x}{2x+1} \right)^{\frac{1}{x}}$	$Q_9 = \lim_{x o +\infty} \left(an rac{\pi x}{2x+1} ight)^{rac{1}{x}}$	90
Q10	En utilisant l'intégration par parties, calculer l'intégrale suivante : $Q_{10} = \int_{-\pi}^{\pi} x \cos^4 x \sin x dx$	باستعمال المكاملة بالأجزاء، أحسب التكامل التالي: $Q_{10} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos^4 x \sin x dx$	10
Q11	Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t^n \tan t \ dt$. Calculer $Q_{11} = \lim n I_n - 1$.	J_0 $Q_{11}=\lim_{n o\infty}nl_n-1$ أحسب النهاية $l_n=\int_0^1t^n\tan tdt$:لكل $l_n\in\mathbb{N}$ لكل	111
	On considère l'équation différentielle suivante :	نعتبر المعادلة التفاضلية التالية:	114
Q12	$y'' - 4y' + 20y = 0$ avec $y(0) = 2$ et $\int_0^{\pi} y(t)dt = 0$	$\int_{0}^{\pi} y(t)dt = 0 \text{if } y(0) = 2 \text{if } y'' - 4y' + 20y = 0$	120
	Calculer $y\left(\frac{\pi}{2}\right)$. (On donne $\int_0^{\pi} e^{at} \sin bt' dt = -\frac{be^{a\pi} \cos(b\pi) - ae^{a\pi} \sin(b\pi) - b}{a^2 + b^2}$)	$\int_0^{\pi} e^{at} \sin bt \ dt = -\frac{be^{a\pi}\cos(b\pi) - ae^{a\pi}\sin(b\pi) - b}{a^2 + b^2}$. $y\left(\frac{\pi}{2}\right)$	1.20
Q13	Soit $\mathcal S$ l'ensemble des solutions de l'équation : $\sin(9x) + \sin(5x) + 2\sin^2 x = 1$ Déterminer $card(\mathcal S \cap]-\pi,0[)$.	نعتبر المعادلة التالية: $\sin(9x) + \sin(5x) + 2\sin^2 x = 1$ حدد عدد حلول هذه المعادلة في المجال $-\pi$, $-\pi$, $-\pi$	130
Q14	Résoudre, dans $\left]0,\frac{\pi}{2}\right[$, l'inéquation suivante : $2(\sin x)(\tan x)-3>0$	حل في $\left]0,\frac{\pi}{2}\right[$ المتراجحة التالية: $2(\sin x)(\tan x)-3>0$	140
Q15	Une boite A contient 3 jetons numérotés $1,2,4$. Une boite B contient 6 jetons numérotés $0,3,3,5,5,5$. On tire au hasard un jeton de A , on lit le nombre a porté sur le jeton, puis on remet ce jeton tiré dans A . On effectue la même opération pour B , soit b le numéro du jeton tiré de B . A ce couple (a,b) on associe le point $M(a,b)$. Quelle est la probabilité pour que $M(a,b)$ soit situé sur l'ellipse d'équation $\frac{x^2}{16} + \frac{y^2}{12} = 1$.	تحتوي علبة A على B بيدقات مرقمة B ، B وتحتوي علبة B على B بيدقات مرقمة B ، B ، B ، B ، B ، B ، B , B ،	150
Q16	Soit n un nombre entier naturel impair supérieur ou égal à a . Une boite contient a boules blanches numérotées de a a a et elle contient a boules noires numérotées de a a a a a a a boules de la boite. Soit a a a a probabilité de l'évènement : a obtenir deux boules dont la somme des numéros est a a 0. Quelle est la valeur de a 1 pour laquelle a 2 est maximale.	ليكن n عددا صحيحا طبيعيا فرديا أكبر من أو يساوي 2 . تحتوي علبة على n كرة بيضاء مرقمة من 1 إلى n وعلى $n+1$ كرة سوداء مرقمة من 1 إلى $n+1$. نسحب عشوائيا وآنيا كرتين من العلبة. ليكن n احتمال الحدث: الحصول على كرتين مجموع رقميهما هو n . ماهي قيمة n التي من أجلها n له قيمة قصوية.	160
Q17	Soient a et b des entiers. Déterminer tous les couples (a,b) tels que : $7^a-3\times 2^b=1$	ليكن a و b عنصرين من \mathbb{N} . حدد جميع الأزواج (a,b) التي تحقق: a عنصرين من \mathbb{N} عنصرين من a عنصرين من a عنصرين من a	170
218	On considère, dans l'espace, les points $A(1,0,1)$, $B(0,1,0)$, $C(0,1,1)$ et $D(1,1,0)$ et la droite (Δ) qui passe par D et dont le vecteur directeur est $\vec{\mathcal{U}}(1,1,-1)$. Déterminer l'intersection du plan (ABC) avec la droite (Δ) .	نعتبر في الفضاء النقط: $A(1,0,1)$ و $B(0,1,0)$ و $B(0,1,0)$ و المستقيم (Δ) المار من D و الموجه بالمتجهة $\vec{u}(1,1,-1)$. حدد تقاطع المستوى (Δ) و المستقيم (Δ) المار	180
219	On considère, dans l'espace, les points $A(2, -3, -3)$, $B(3, -2, 2)$, $C(1,1,0)$ et $D(-1,0,-1)$. Calculer le volume de $DABC$.	نعتبر في الفضاء النقط: $A(2,-3,-3)$ و $B(3,-2,2)$ و $A(2,-3,-3)$ و $B(3,-2,2)$. احسب حجم رباعي الأوجه $A(2,-3,-3)$	190
	Le rectangle représenté est formé de 9 carrés. Le petit carré noir a 1,5 cm de côté et le carré hachuré a 15 cm de côté. Quelles sont les deux dimensions L (longueur) et l (largeur) du rectangle ?	يتكون المستطيل الممثل جانبه من 9 مربعات. L طول هذا المستطيل وليكن L عرضه. طول ضلع المربع الأسود الصغير هو L 1,5 L وطول ضلع المخدش هو L 1.5 L المربع المخدش هو L 1.5 L والمدب L و L و L و L و L و L	200