Cap. 5 - Circuitos Eléctricos DC

Esfera de plasma "Eye of the storm"

Uma **ddp entre 2 e 5 kV** com frequências entre 20 e 50 kHz são aplicadas entre a esfera central e a casca exterior (que está ligada à Terra). O globo contém gases inertes.

A ddp aplicada ioniza parcialmente os gases, criando um plasma que conduz corrente de cargas eléticas (corrente elétrica).

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Tópicos:

- Corrente eléctrica. Intensidade de corrente eléctrica, Densidade de corrente eléctrica.
- Mecanismos de limitação da velocidade dos electrões na matéria. Velocidade de arrastamento.
- Condutividade eléctrica. Resistência e resistividade. Lei de Ohm
- Energia dissipada numa resistência eléctrica (efeito de Joule).
- Amperímetro. Voltímetro
- · Leis de Kirchoff en circuitos dc.
- Circuitos RC.
- Carga e descarga do condensador

Condutores, isoladores, semicondutores, supercondutores

<u>Condutores</u> são materiais nos quais há portadores de carga eléctrica que se podem movimentar "livremente"

Exemplos?

Cerne (iões positivos)

Metais ou ligas metálicas

Portadores de carga: Electrões

Solução iónica

Portadores de carga: Catiões e aniões

Plasma

Portadores de carga: Electrões e catiões

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Exemplos? Silício, Germânio Exemplos? Silício, Germânio Semicondutor do tipo n Portadores de carga: Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

A corrente eléctrica entre A e B mantém-se apenas enquanto houver uma diferença de potencial entre A e B.

No caso de uma ddp provocada por um condensador carregado, quando se ligam as placas através de um condutor, a corrente de cargas elétricas é transitória

Para haver uma **corrente eléctrica constante permanente** entre A e B seria necessário um <u>mecanismo</u> que mantenha a diferença de potencial entre A e B.

Algo que forneça energia ao sistema: uma bateria, uma pilha, ... uma fonte ...

Sentido do fluxo de eletrões

O sentido da corrente elétrica convencionalmente é o oposto ao sentido preferencial dos eletrões! Que é o sentido do campo elétrico.

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Quando as cargas elétricas negativas (ou positivas) têm sempre o mesmo sentido, a corrente elétrica é contínua (dc = direct current).

.Velocidade de arrastamento(Vd)

Num curto intervalo de tempo Δt , todos as partículas com velocidade de arrastamento (drift velocity) v_d, no volume v_d Δt A cruzam a área A

$$\Delta Q = nqAv_d\Delta t$$

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Supondo que existem partículas unidade por de volume, cada uma com carga q, como poderemos obter a carga total que cruza a área A?

$$I = nqAv_d$$
 \bigwedge
Carga de cada portador

Número de portadores /unidade de volume

E a corrente será...
$$I = \frac{\Delta Q}{\Delta t} = nqAv_d$$

Exemplo:

O metal usado nos fios condutores geralmente é o cobre. Algunss fios de laboratório tem um raio de 0.815mm. Calcule a velocidade de arrastamento (drift velocity) dos eletrões quando o fio é percorrido pela corrente de 1 A. Admita que por cada átomo de cobre existe um electrão livre. $(M_{cobre} = 63.5 \text{ g/mol}; \rho_{cobre} = 8.93 \text{ g/cm}^3)$

densidade de portadores de carga (m⁻³)

$$v_d = \frac{I}{nqA}$$

Uma vez que há 1 eletrão livre por átomo de Cu:

$$\rho = \frac{nM}{N_{\rm A}} \Leftrightarrow n = \frac{\rho N_{\rm A}}{M}$$

$$n = \frac{8.93 \times 6.02 \times 10^{23}}{63.5} = 8.5 \times 10^{28}$$
 Átomos/m³ ou eletrões livres/m³

Densidade de Corrente eléctrica (J)

Dividindo a corrente pela área da secção reta do condutoe, obtem-se a **densidade de corrente** (J): $J = \frac{I}{A} = nqv_d$

A densidade de corrente é importante em termos de projectos de sistemas eléctricos. Veremos que os condutores eléctricos possuem uma resistência elétrica finita, e por isso dissipam energia como calor. A densidade de corrente deve permanecer suficientemente baixa para prevenir que o condutor funda ou queime, ou que o isolamento do condutor se degrade.

5.2. Condutores óhmicos. Lei de Ohm. Resistência Eléctrica (R). Condutividade (σ) e Resistividade (ρ) eléctricas

Quando é estabelecida uma ddp (ΔV) entre os terminais de um condutor, estabelece-se um campo elétrico (\vec{E}), uma corrente elétrica (I).

Se a **ddp** (ΔV) é constante, o módulo do **campo eléctrico** (E) e a **intensidade de corrente** (I) são também constantes.

Qundo num condutor, a densidade de corrente (I) é diretamente proporcional ao módulo do campo elétrico aplicado (E), diz-se que o condutor é Ohmico.

Lei de Ohm

Georg Simon Ohm

1789-1854

Electromagnetismo EE (2018/19)

Cap 5: Corrente elétrica DC

Dentro de determinados limites, para muitos materiais condutorea, a ddp nos terminais condutor é directamente proporcional à corrente eléctrica que o percorre.

Versão da Lei de Ohm

Estes são materiais óhmicos.

Exemplo de um material não óhmico.

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Os condutores apresentam uma resistência elétrica finita.

A resistência eléctrica dos condutores óhmicos depende do material que o constituem, mas também da geometria dos condutores.

Vimos que:

$$R = \frac{L}{A} \frac{1}{\sigma}$$

mas:

s:
$$\rho = \frac{1}{\sigma}$$
 Resistividade (característica dos materiais

A condutividade eléctrica (σ) é o inverso da resistividade

Quais as unidades SI de resistividade?

$$R = \frac{L}{A} \frac{1}{\sigma} = \rho \frac{L}{A}$$

Checkpoint

Um determinado condutor óhmico cilíndrico de níquel-crómio ($\rho = 10^{-6}~\Omega$ m) tem um raio de 0.65 mm.

- a) Calcule o comprimento necessário para que o condutor tenha uma resistência elétrica de 2 Ω .
- b) Preencha a tabela abaixo, tendo em conta que V representa uma ddp aplicada nos terminais de um condutor cilíndrico de níquel-crómio

L (m)	r (mm)	V (V)	I (A)	
2.65	0.65	1	0.5	$R=2\Omega$
5.30	0.65	1	0.25	$R=4\Omega$
2.65	1.30	1	2.0	$R = 0.5\Omega$
2.65	0.65	2.0	1	$R=2\Omega$

$$R = \rho \frac{L}{A}$$

$$L = \frac{RA}{\rho L}$$

$$R = \rho \frac{L}{A}$$
 $L = \frac{RA}{\rho L}$ $L = \frac{2 \times \pi (0.65 \times 10^{-3})^2}{10^{-6}} = 2.65 \text{ m}$

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Símbolos de resistência elétricas:

Símbolos de resistência elétricas variáveis:

Resistividade de alguns materiais				
Material	ρ @ ~20°C (Ω m)	Coeficiente de temperatura (K ⁻¹)		
Cu	1.7 x 10 ⁻⁸	3.9 x 10 ⁻³		
Ag	1.6 x 10 ⁻⁸	3.8 x 10 ⁻³		
Al	2.8 x 10 ⁻⁸	3.9 x 10 ⁻³		
Fe	10 x 10 ⁻⁸	5.0 x 10 ⁻³		
Ge	0.45	-4.8 x 10 ⁻²		
Si	640	-7.5 x 10 ⁻²		
Madeira	108 - 1014	-		
Vidro	1010 - 1014	-		
Água do mar	0.2	-		
Água engarrafada	20 a 2000	-		
Água desion.	1.8 x 10 ⁵	-		

1014

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

Teflon

supercondutores

Em alguns materiais a resistividade cai abruptamente para baixas temperaturas, para valores quase nulos (cerca de $4x10^{-25}$ W.m, valores cerca de 10^{17} vezes menores que a resistividade do cobre).

Como $R \approx 0$ a corrente pode persistir num supercondutor sem existir um diferença de potencial aplicada.

Pequeno magnete que levita sobre um disco supercondutor de $Ba_2Cu_3O_7$, a 77 K.

Electromagnetismo EE (2018/19) Cap 5: Corrente elétrica DC

17