xy 平面において,O を原点,A を定点 (1,0) とする.また,P,Q は円周  $x^2+y^2=1$  の上を動く 2 点であって,線分 OA から正の向きにまわって線分 OP に至る角と,線分 OP から正の向きにまわって線分 OQ に至る角が等しいという関係が成り立っているものとする.

点 P を通り x 軸に垂直な直線と x 軸との交点を R , 点 Q を通り x 軸に垂直な直線と x 軸の交点を S とする.実数 l を与えた時,線分 RS の長さが l と等しくなるような点 P , Q の位置は何通りあるか.

[解]  $\cos t=c$  ,  $\sin t=s$  とおく . ただし ,  $0\leq t<2\pi$  とする . すると P(c,s) ,  $Q(\cos 2t,\sin 2t)$  となる . 故に R(c,0) ,  $Q(\cos 2t,0)$  であるから ,

$$l = |c - \cos 2t| = |2c^2 - c - 1|$$
$$= |(2c + 1)(c - 1)| \equiv f(t)$$

## である.グラフは下図.



故に,t と c の関係に注意し,t と P,Q の位置関係が一対一対応であることより,求める場合の数は以下の通り. $\cdots$  (答)

| l           | c | t | 位置 |
|-------------|---|---|----|
| 0           | 2 | 3 | 3  |
| 0 < l < 9/8 | 3 | 6 | 6  |
| 9/8         | 2 | 4 | 4  |
| 9/8 < l < 2 | 1 | 2 | 2  |
| 2           | 1 | 1 | 1  |
| 2 < l       | 0 | 0 | 0  |