$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12 1948.0 -12 11 1961.0 -11 10 1973.9 -10 9 1986.5 -9 8 1999.0 -8 7 2011.2 -7 6 2023.3 -6 5 2035.2 -5 4 2046.8 -4	
11 1961.0 -11 10 1973.9 -10 9 1986.5 -9 8 1999.0 -8 7 2011.2 -7 6 2023.3 -6 5 2035.2 -5 4 2046.8 -4	
10 1973.9 -10 9 1986.5 -9 8 1999.0 -8 7 2011.2 -7 6 2023.3 -6 5 2035.2 -5 4 2046.8 -4	
9 1986.5 -9 8 1999.0 -8 7 2011.2 -7 6 2023.3 -6 5 2035.2 -5 4 2046.8 -4	
8 1999.0 -8 7 2011.2 -7 6 2023.3 -6 5 2035.2 -5 4 2046.8 -4	
7 2011.2 -7 6 2023.3 -6 5 2035.2 -5 4 2046.8 -4	
5 2035.2 -5 4 2046.8 -4	
4 2046.8 -4	
-	
3 2058.3 -3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 2080.5 -1	
0 2101.8 1	
1 2112.2 2	
2 2122.2 3	
3 2132.1 4	
4 2141.7 5	
5 2151.1 6	
6 2160.2 7	
7 2169.2 8	
8 2177.8 9	
9 2186.2 10	
10 2194.3 11	
11 2202.2 12	
12 2209.8 13	

Рис. 1: Обработка результатов по ур. (I.2) полосы $0 \to 1$

J	$\nu\left(P_{J}\right)$	$\nu\left(R_{J}\right)$	m
11	3986.2		-11
10	4001.4		-10
9	4016.0		-9
8	4030.3		-8
7	4044.1		-7
6	4057.5		-6
5	4070.5		-5
4	4083.0		-4
3	4095.1		-3
2	4106.8		-2
1	4118.0		-1
0		4139.2	1
1		4149.0	2
2		4158.5	3
3		4167.4	4
4		4176.0	5
5		4184.0	6
6		4191.6	7
7		4198.8	8
8		4205.3	9
9		4211.4	10
10		4217.1	11

Рис. 2: Обработка результатов по ур. (I.2) полосы $0 \to 2$

1 Отнесение колебательного спектра

$$\nu (1 \to 0) = 2088.15 \text{cm}^{-1}, \nu (2 \to 0) = 4122.75 \text{cm}^{-1}$$

$$\nu (1 \to 0) = \omega_e - 2\omega_e x_e \qquad \qquad \omega_e = 3\nu (1 \to 0) - \nu (2 \to 0) = 2141.70 \text{cm}^{-1}$$

$$\nu (2 \to 0) = 2\omega_e - 6\omega_e x_e \qquad \Longrightarrow \qquad \omega_e x_e = \frac{1}{2} \left(2\nu (1 \to 0) - \nu (2 \to 0) \right) = 26.775 \text{cm}^{-1}$$

$$v_{max} + \frac{1}{2} = \frac{\omega_e}{2\omega_e x_e} \qquad \Longrightarrow \qquad v_{max} = 39$$

$$D_e = E_{v_{max}} = \omega_e \left(v_{max} + \frac{1}{2} \right) - \omega_e x_e \left(v_{max} + \frac{1}{2} \right)^2 = 42821.46 \text{cm}^{-1} = 5.309 \text{ 9B}$$

2 Анализ вращательной структуры колебательных полос

В приближении жесткого ротатора:

$$\begin{split} \nu_P\left(\nu',\nu'',J\right) &= E'\left(\nu',J-1\right) - E''\left(\nu'',J\right) \approx \nu_{\nu',\nu''} - \left(B'+B''\right)J + \left(B'-B''\right)J^2 \\ \nu_R\left(\nu',\nu'',J\right) &= E'\left(\nu',J+1\right) - E''\left(\nu'',J\right) \approx \nu_{\nu',\nu''} + \left(B'+B''\right)\left(J+1\right) + \left(B'-B''\right)\left(J+1\right)^2 \\ \nu\left(\nu',\nu'',J\right) &= \nu_{\nu',\nu''} + \left(B'+B''\right)m + \left(B'-B''\right)m^2 = \nu_{\nu',\nu''} + c_1m + c_2m^2 \\ B' &= \frac{1}{2}\left(c_1+c_2\right) \\ B'' &= \frac{1}{2}\left(c_1-c_2\right) \end{split}$$

С учетом центробежного искажения:

$$E_{\nu,J} = E_{vib} + B_v \left(J \left(J + 1 \right) \right) - D_v \left[J \left(J + 1 \right) \right]^2$$

$$\nu \left(\nu', \nu'', J \right) = \nu_{\nu',\nu''} + (B' + B'') m + (B' - B'' - D' + D'') m^2 - 2 \left(D' + D'' \right) m^3 - (D' - D'') m^4 =$$

$$= \nu_{\nu',\nu''} + c_1 m + c_2 m^2 + c_3 m^3 + c_4 m^4$$

$$D' = -\frac{1}{2} c_4 - \frac{1}{4} c_3$$

$$D'' = \frac{1}{2} c_4 - \frac{1}{4} c_3$$

$$B' = \frac{1}{2} \left(c_1 + c_2 - c_4 \right)$$

$$B'' = \frac{1}{2} \left(c_1 - c_2 + c_4 \right)$$

	Ур. (І.3)	Ур. (І.4)	Лит. данные
$\nu_{01} \; ({\rm cm}^{-1})$	2091.26	2091.27	2090.7980
$\nu_{02} \; ({\rm cm}^{-1})$	4128.82	4128.80	4127.2309
$\omega_e \; (\mathrm{cm}^{-1})$	2144.96	2145.01	2145.1630
$\omega_e x_e \; (\mathrm{cm}^{-1})$	26.85	26.87	27.18252
v_{max}	39	39	
D_e (\ni B)	5.311	5.307	4.4855
$B' \ (\nu' = 1) \ (\text{cm}^{-1})$	5.249	5.278	5.279816
$B' (\nu' = 2) (cm^{-1})$	5.163	5.171	5.168106
$B''(\nu''=0)(cm^{-1})$	5.361, 5.386	5.391, 5.395	5.392261
$B_e (\mathrm{cm}^{-1})$	5.417	5.447	5.448794
$D_e (cm^{-1})$		$1.28 \cdot 10^{-4}$	$1.39 \cdot 10^{-4}$
R_e (A)	1.278	1.275	1.274581

3 Построение потенциала Морзе

$$\begin{split} V_{Morse}(R) &= D_e \left(1 - \exp\left(-\beta \left(R - R_e\right)\right)\right)^2 \\ E_v &= \omega_e \left(v + \frac{1}{2}\right) - \omega_e x_e \left(v + \frac{1}{2}\right)^2 \\ \frac{dE_v}{dv} \left(v_{max}\right) &= 0 \quad \Longrightarrow \quad v_{max} + \frac{1}{2} = \frac{\omega_e}{2\omega_e x_e} \\ D_e &= E_{v_{max}} = \omega_e \left(v_{max} + \frac{1}{2}\right) - \omega_e x_e \left(v_{max} + \frac{1}{2}\right)^2 = \frac{\omega_e^2}{4\omega_e x_e} \\ \beta &= 0.2435576 \sqrt{\mu \omega_e x_e} = 1.7416 \text{\AA} \end{split}$$

Рис. 3: График функции потенциальной энергии

4 Распределение интенсивностей во вращательной структуре

$$\frac{N_J}{N_0} = (2J+1) \exp\left(-\frac{BchJ(J+1)}{kT}\right)$$

$$\frac{1}{N_0} \frac{dN_J}{dJ} = 0 \implies J_{max} = \sqrt{\frac{kT}{2Bhc}} - \frac{1}{2}$$

Рис. 4: Относительная заселенность уровней (синий); относительная интенсивность переходов в экспериментальном спектре (красный)

5 Расчет колебательно-вращательных переходов изотопозамещенной молекулы

	Переход	ν(расч.)	ν(эксп.)
Молекула <i>HCl</i>	$7 \rightarrow 6$	2721.18	2727.7796
$\rho = 0.7172$	$6 \rightarrow 5$	2747.34	2752.0353
$\omega_e(\text{расч.}) = 2990.728 \text{cm}^{-1}$	$5 \rightarrow 4$	2772.63	2775.7609
$\omega_e(\text{эксп.}) = 2990.9460 \text{cm}^{-1}$	$4 \rightarrow 3$	2797.06	2798.9432
$\omega_e x_e (\text{расч.}) = 52.199 \text{cm}^{-1}$	$3 \rightarrow 2$	2820.63	2821.5691
$\omega_e x_e$ (эксп.) = 52.8186см^{-1}	$2 \rightarrow 1$	2843.33	2843.6254
$B_e(\text{расч.}) = 10.593\text{см}^{-1}$	$1 \rightarrow 0$	2865.16	2865.0991
B_e (эксп.) = 10.5934см^{-1}	$0 \rightarrow 1$	2906.24	2906.2479
$B'(\text{расч.}) = 10.053\text{см}^{-1}$	$1 \rightarrow 2$	2955.20	2925.8977
$B'($ эксп. $) = 10.136223 $ см $^{-1}$	$2 \rightarrow 3$	2943.86	2944.9146
$B''(\text{расч.}) = 10.458 \text{cm}^{-1}$	$3 \rightarrow 4$	2961.37	2963.2864
$B''($ эксп. $) = 10.440254 $ см $^{-1}$	$4 \rightarrow 5$	2978.02	2981.0013
	$5 \rightarrow 6$	2993.80	2998.0473
	$6 \rightarrow 7$	3008.72	3014.4130
	$7 \rightarrow 8$	3022.77	3030.0870

6 Литература

1. Rank, D. H., Eastman, D. P., Rao, B. S., Wiggins, T. A. (1962). Rotational and vibrational constants of the HCl³⁵ and DCl³⁵ molecules. J. of the Opt. Soc. of Am., 52, 1.