جلسهٔ هفتم: چرا احتمالات؟

دورهٔ آموزشی «علم داده» Data Science Course

مدرس: محمد فزونی عضو هیات علمی دانشگاه گنبد کاووس پائیز ۱۳۹۹

دربارهٔ من

Mohammad Fozouni (Ph.D.)
Dep. of Math & Statistics
Gonbad Kavous University

- fozouni@hotmail.com
- https://m-fozouni.ir
- http://profs.gonbad.ac.ir/fozouni/en
- https://www.aparat.com/elmedade

#data_science_fozouni

Probability and Finance

Tie-ins to Finance

Option pricing

Option:

An agreement between two parties for the price of a stock or item at a future point in time

It allows one of the sides to decide

Option pricing

One of the parties at a clear disadvantage

How much we are willing to pay to receive that pact? (Highest premium)

Google Example

10 stocks \$1,100 each in a week 40% + \$1,200 60% \$1,000

Google Example

Decision Tree Payoffs Call \$1,200 Not call -> - \$100 **Price** - \$1,100 \$1,000 Not call - \$100

We write losses as a negative number

Expected Payoffs

E(P) < 0

E(P) = 0

E(P) > 0

Disadvantageous (Avoid buying this option)

"Fair deal"
(You expect to make as much as you paid)

Favourable (Go through with the deal)

(vo un ough with the deal)

Google Example

Payoffs

Pricing an Option

Investors can charge a higher premium to make a "fair deal"

Probability and Statistics

Statistics

Statistics focuses predominantly on samples and incomplete data

Uncertainty

Expected value

Prediction intervals

Concrete Data Science **Statistics Probability** General

Statistics

Experimental data

 Many useful concepts based on probability theory

Express the likelihood of the population mean being within that interval

Confidence Intervals

To calculate these Cls we must know:

Mean, variance and standard deviation

A good understanding of probability is crucial

London Example

Hypothesis Testing

Three crucial requirements for hypothesis testing

Mean, variance and type of the distribution

We can validate similar statements to a specific degree of certainty

Knowing the Type of a Distribution

MATHEMATICAL MODELING

Mathematical Modeling

An extension of statistics that data scientists deal with

Probability and Data Science

Expected Values

An extremely fast paced trial-and-error process

The more predictions it makes, the more precise they become

Forcasting

Data science:

An expansion of probability, statistics, and programming that implements computational technology to solve more advanced questions

it is fundamental to understand PROBABILITY

certain