Cvičení 8 - 21.11.2024

červené - spolu

modré - samostatně

učebnice s. 180

Dosazovací metoda

- 6. Najděte vázané lokální extrémy funkce dvou proměnných f dané předpisem
 - (a) $f(x,y) = x^2 + 3y^2$ při vazební podmínce x 2y + 7 = 0
 - (b) $f(x,y) = e^{x^2 2y^2}$ při vazební podmínce x y 1 = 0
 - (c) $f(x,y) = e^{xy}$ při vazební podmínce $3 x^2 y = 0$
 - (d) $f(x,y) = \ln(x^2 + 3y^2)$ při vazební podmínce x 2y + 7 = 0
 - (e) $f(x,y) = \frac{1}{x^2} + \frac{1}{y^2}$ při vazební podmínce $\frac{1}{x} + \frac{1}{y} \frac{1}{4} = 0$
 - (f) $f(x,y) = 2x^2 + y^2$ při vazební podmínce $x^2 y 1 = 0$
 - (g) $f(x,y) = 1 + 2y y^2 + \frac{1}{3}x^3$ při vazební podmínce x + y 1 = 0
 - (h) $f(x,y) = e^{2x^3 9xy + 3y}$ při vazební podmínce x y 1 = 0
 - (i) $f(x,y) = 5 4x + \frac{1}{3}y$ při vazební podmínce $x^3 y = 0$

Metoda Lagrangeových multiplikátorů

- 7. Najděte vázané extrémy funkce f dané předpisem
 - (a) $f(x,y) = e^{2x-y}$ při vazební podmínce $x^2 + y^2 = 20$
 - b f(x,y) = 5 x y při vazební podmínce $x^2 + 3y^2 = 12$
 - (c) f(x,y) = x + 2y 1 při vazební podmínce $x^2 + y^2 = 5$
 - (d) $f(x,y) = \ln(x^2 + y^2)$ při vazební podmínce $9x^2 + y^2 = 9$
 - (e) $f(x,y) = x^2 + 2y + y^2$ při vazební podmínce $x^2 + y^2 = 9$
 - (f) $f(x,y) = e^{x-4y^2}$ při vazební podmínce $x^2 + 8y^2 = 9$
 - (g) $f(x,y) = \ln(3x^2 + y^2 + 1)$ při vazební podmínce $x^2 + y^2 = 1$
 - (h) $f(x,y) = e^{3x-y}$ při vazební podmínce $3x^2 + y^2 = 4$
 - (i) f(x,y,z) = 4x + 2y + 4z při vazební podmínce $x^2 + y^2 + z^2 = 9$
 - (j) f(x,y,z) = x + y + z 9 při vazební podmínce $x^2 + y^2 + z^2 = 3$
- (v d, e, f, g funguje i dosazovací metoda 🙂)

Výsledky

- 6. (a) f má v bodě A = [-3, 2] vázané lokální minimum,
 - (b) f má v bodě A = [2, 1] vázané lokální maximum,
 - (c) f má v bodě A = [1, 2] vázané lokální maximum a v bodě B = [-1, 2] vázané lokální minimum,
 - (d) f má v bodě A = [-3, 2] vázané lokální minimum,
 - (e) f má v bodě A = [8, 8] vázané lokální minimum,
 - (f) f má v bodě A = [0, -1] vázané lokální minimum,
 - (g) f má v bodě A = [0,1] vázané lokální maximum a v bodě B = [2,-1] vázané lokální minimum,
 - (h) f má v bodě A = [2,1] vázané lokální minimum a v bodě B = [1,0] vázané lokální maximum,
 - (i) f má v bodě A = [2, 8] vázané lokální minimum a v bodě B = [-2, -8] vázané lokální maximum.
- 7. (a) f má v bodě A = [-4, 2] vázané minimum a v bodě B = [4, -2] vázané maximum,
 - (b) f má v bodě A=[3,1] vázané minimum a v bodě B=[-3,-1] vázané maximum,
 - (c) f má v bodě A = [-1, -2] vázané minimum a v bodě B = [1, 2] vázané maximum,
 - (d) f má v bodech $A=[0,3],\ B=[0,-3]$ vázané maximum a v bodech $C=[1,0],\ D=[-1,0]$ vázané minimum,
 - (e) f má v bodě A = [0, -3] vázané minimum a v bodě B = [0, 3] vázané maximum,
 - (f) f má v bodě A=[3,0] vázané maximum a v bodech $B=[-1,1],\ C=[-1,-1]$ vázané minimum,
 - (g) f má v bodech $A=[0,1],\ B=[0,-1]$ vázané minimum a v bodech $C=[1,0],\ D=[-1,0]$ vázané maximum,
 - (h) f má v bodě A = [-1, 1] vázané minimum a v bodě B = [1, -1] vázané maximum,
 - (i) f má v bodě A=[-2,-1,-2] $(\lambda=1)$ vázané minimum a v bodě B=[2,1,2] $(\lambda=-1)$ vázané maximum,
 - (j) f má v bodě A=[-1,-1,-1] $(\lambda=\frac{1}{2})$ vázané minimum a v bodě B=[1,1,1] $(\lambda=-\frac{1}{2})$ vázané maximum.