## Условия задач

## 9 класс

## Задача 9-1. «Физика на кухне»

Нагреватель электрочайника находится внутри воды, поэтому все теплота, выделяемая нагревателем, идет на нагрев воды и корпуса чайника. Обозначим мощность нагревателя  $P_0$ . Можно считать, что она не зависит от температуры воды в чайнике t. Мощность нагревателя можно регулировать. Мощность теплоты, уходящей от чайника в окружающий воздух  $P_1$ , пропорциональна разности температур воды и окружающего воздуха  $t_0$ :

$$P_1 = \beta(t - t_0), \tag{1}$$

где  $\beta$  - постоянный коэффициент теплоотдачи.

При заданной мощности нагревателя температура воды достигает некоторого предельного значения  $\bar{t}$ , которое будем называть <u>стационарной температурой</u>.





Температура кипения воды  $t_{\kappa un} = 100^{\circ}C$ .



Далее считайте эту величину известной и используйте ее при решении задачи.

- 1.2 При какой минимальной мощности нагревателя вода в чайнике закипит?
- 1.3 Постройте график зависимости стационарной температуры воды  $\bar{t}$  в чайнике от мощности нагревателя  $P_0$ .

Теперь рассмотрим процесс нагревания чайника, т.е. зависимость его температуры t от времени<sup>2</sup>  $\tau$  .

1.4 Получите уравнение, описывающее малое изменение температуры воды  $\Delta t$  за малый промежуток времени  $\Delta \tau$ . Понятно, что величина  $\Delta t$  должна зависеть от температуры воды в чайнике t.

<sup>&</sup>lt;sup>1</sup> Теплоемкость тела называется количество теплоты, которое требуется, чтобы нагреть тело на 1° Цельсия. Не путайте с удельной теплоемкостью вещества.

 $<sup>^2</sup>$  Будем обозначать время буквой au , чтобы отличить от температуры t .

- $1.5~{
  m B}$  чайник заливают воду при комнатной температуре и включают нагреватель, мощность которого установлена на величину  $P_0=1500\,{
  m Bm}\,.$
- 1.5.1 Постройте схематический график зависимости температуры воды от времени  $t(\tau)$ . Приближенно эту зависимость можно заменить на два прямолинейных участка. Постройте такой приближенный график на этом же рисунке.
- 1.5.2 Оцените время нагревания воды от комнатной температуры до температуры кипения.
- 1.5.3 Оцените, какая доля теплоты (в процентах) уйдет в окружающее пространство за время закипания воды в чайнике.