Reference: <u>Introduction to Theoretical Computer Science</u> by Boaz Barak Formatting:

- Definitions
- · Nontrivial results / intermediate steps
- Emphasis, emphasis

Chapter 1: Math background

- Layering of DAG: Let G = (V, E) be a directed graph. A layering of G is $f: V \to \mathbb{N}$ such that $\forall u \to v: f(u) < f(v)$
 - A layering is **minimal** of $\forall v \in V$, v has no in-neighbors $\Longrightarrow f(v) = 0$, else $\exists u \to v : f(u) = f(v) 1$
- Topological Sort Theorem: G acyclic $\iff \exists$ minimal layering of G
- Asymptotic Notation: for $f, g : \mathbb{N} \to \mathbb{R}_+$
 - $f = O(g) \iff \exists a, N_0 \in \mathbb{N} : \forall n > N_0, f(n) \le a \cdot g(n)$
 - $f = \Theta(G) \iff f = O(g), g = O(f)$
 - $f = \Omega(g) \iff g = O(f)$
 - $f = o(g) \iff \forall \epsilon > 0, \exists N_0 : f(n) < \epsilon \cdot g(n)$
 - $f = \omega(g) \iff g = o(f)$
- For finite set $\Sigma, \Sigma^* \equiv \bigcup \Sigma^i$

Chapter 2: Representation

- Cantor's Theorem: no surjective function from a set S to its power set $\mathcal{P}(S)$
 - Now for each $S' \subseteq S \in \mathcal{P}(S)$, $s \in S' \leftrightarrow g : S \to \{0,1\}$ where $g(s \in S) = 1 \iff s \in S' \in \mathcal{S}$.
 - Suppose there is surjection $h:S\to\{0,1\}^S$, then $\sigma:S\to\{0,1\}$ defined by $\sigma(s)=\neg \lceil h(s)\rceil (s)$ cannot be in $\mathrm{Im}(h)$
 - Suppose $\exists s_0 \in S : h(s_0) = \sigma$, then $\sigma(s_0) \neq [h(s_0)](s_0) \implies \sigma \neq h(s_0)$
 - Corollary: set of boolean functions $\{0,1\}^* \to \{0,1\}$ is uncountable
 - $\{0,1\}^* \cong \mathbb{N}$ and $\{f: \{0,1\}^* \to \{0,1\}\} = \{0,1\}^{\{0,1\}^*} \cong \mathscr{P}(\mathbb{N})$
- A **representation scheme** for a set $\mathcal O$ is a pair of functions E,D where $E:\mathcal O\to\{0,1\}^*$ and $D:\{0,1\}^*\to\mathcal O$ such that $D\circ E=I_{\mathcal O}$
- For strings $y, y' \in \{0,1\}^*$, y is a **prefix** of y' if $\exists y'' \in \{0,1\} : yy'' = y'$
- $E: \mathcal{O} \to \{0,1\}^*$ is **prefix-free** if $\forall o, o' \in \mathcal{O}: E(o)$ is not prefix of E(o')

- Prefix-free encoding \Longrightarrow tuple encoding: $E'((o_1, \ldots, o_k)) = E(o_1) \ldots E(o_k)$
- For every encoding $E: \mathcal{O} \to \{0,1\}^*$ there exists prefix-free encoding E'
 - Let *S* be a prefix-free encoding of \mathbb{N} , then E'(o) = S(|E(o)|)E(o)
- · Computational tasks are boolean functions up to representation
 - Computational tasks are <u>mathematical objects</u>
- · Algorithms are physically realizable specifications which compute functions
 - Algorithms may be specified irrespective of physical specification (i.e. as mathematical objects whose existence manipulation are physically realizable), but elementary operations (if, for,...,) must be inherently physically realizable

Chapter 3: Defining computation

- A **boolean circuit** with n inputs, m outputs, and s gates is a labeled DAG G=(V,E) with s+n vertices such that:
 - Exactly *n* input vertices have no in-neighbors labeled $x[0] \dots x[n-1]$.
 - Each input has at least one out-neighbor
 - Other s vertices are gates allowing parallel edges (e.g.
 - Exactly m output gates with no out-neighbors are labeled $Y[0] \dots Y[m-1]$
- A s-line **straight-line program** is a list of tuples $L = \left((i_0, i_1, i_2) \in \mathbb{N}^3\right)$ corresponding to the sequence of instructions $x_{i_0} = \operatorname{NAND}(x_{i_1}, x_{i_2})$
- Introducing NAND $(a, b) = \neg(a = b = 1) = NOT(AND(a, b))$
- Boolean circuits
 ⇔ Straight-line programs
 - · Straight-forward conversion
- Two sets of gates A, B are equivalent $A \cong B$ if they compute the same set of functions
 - ≅ is an equivalence relation (reflexive, symmetric, transitive)

Chapter 4: Syntactic sugar and computing every function

- Syntactic sugar: f is computable by the set of functions $S \iff S \cong S \cup \{f\}$
 - $\{NAND\} \cong \{AND, OR, NOT\}$
 - NOT(a) = NAND(a, a), AND(a, b) = NOT(NAND(a, b))
 - {if, NAND} \cong {NAND}: if(a, b, c) = $a?b: c = (a \land b) \lor (\neg a \land c)$
- Define Lookup_k: $\{0,1\}^{2^k+k} \to \{0,1\}$ so $\forall x \in \{0,1\}^{2^k}, i \in \{0,1\}^k, \text{Lookup}(x,i) = x_i$
 - Lemma: Exists $O(2^k)$ -sized circuit which computes Lookup,

- Induction: base step $\operatorname{Lookup}_1(x_0,x_1,i_0)=\operatorname{if}(\neg i_0,x_0,x_1)$ and $\operatorname{Lookup}_{k+1}=\operatorname{if}(\neg i_0,\operatorname{Lookup}_k(x_0,\ldots,x_{2^k-1},i_1,\ldots,i_k),\operatorname{Lookup}_k(x_{2^k},\ldots,x_{2^{k+1}-1},i_1,\ldots,i_k))$
- Theorem: boolean circuits compute every finite function
 - Proof: $f(y_0, ..., y_{n-1}) = \text{Lookup}_n(...[x_i = f(i)]..., y_0, ..., y_{n-1})$
 - Corollary: $|\operatorname{SIZE}_{n,m}(10mn \cdot 2^n)| = 2^{2^n}$. We can do better: $|\operatorname{SIZE}_{n,m}(10 \cdot 2^n/n)| = 2^{2^n}$
 - Alternative proof: Inductively assume every $f:\{0,1\}^n \to \{0,1\}$ is computable, then $\forall f':\{0,1\}^{n+1} \to \{0,1\}$. Let $f'_1(x_0,\ldots,x_{n-1})=f'(1,x_0,\ldots,x_{n-1})$ and $f'_0(x_0,\ldots,x_{n-1})=f'(0,x_0,\ldots,x_{n-1})$: both are computable, and $f(x_0,\ldots,x_n)=\left(\neg x_0 \wedge f'_0(x_1,\ldots,x_n)\right) \vee \left(x_1 \wedge f'_1(x_1,\ldots,x_n)\right)$
 - Corresponding bound is $O(m2^n)$
- $\forall n, m, s \in \mathbb{N} : \mathrm{SIZE}_{n,m}(s) = \{f : \{0,1\}^n \to \{0,1\}^m \mid f \text{ computable with } \leq s \text{ gates} \}$ is the size class of functions with n inputs, m outputs and s gates.
 - SIZE_n(s) \equiv SIZE_{n,1}(S), and SIZE(s) $\equiv \bigcup_{n,m}$ SIZE_{n,m}(s)

Chapter 5: Code as Data, Data as Code

- · Representation of programs may be used as inputs to other programs
- $\forall f \in \text{SIZE}(s), \exists P \text{ computing } f \text{ such that string representation of } P \text{ has length } O(s \log s)$
 - Given s-line straight-line program L, there are at most 3s variables. Representing each variable takes at most $O(\log s)$ characters, so we need $O(s \log s)$ to represent L
- Program size bound on number of computable functions: $|SIZE_{n,m}(s)| \le 2^{O(s \log s)}$
 - Define $\phi: \mathrm{SIZE}_{\mathrm{n,m}}(s) \to \mathbb{N}^{3s}$ so that given $f, \phi(f)$ is the smallest size-s straight-line program which computes f, ϕ is injective, and $|\mathrm{SIZE}_{n,m}(s)| \le |\mathrm{Im}(\phi)| \le 2^{O(s\log s)}$
- Theorem: maximum size of program computing arbitrary $f: \{0,1\}^n \to \{0,1\}$ is $\Theta(2^n/n)$
 - $\bullet \quad \text{Lower bound: } \exists \delta \in \mathbb{R}_+, N_0 \in \mathbb{N} : \forall n \geq N_0, \left| \{0,1\}^{\{0,1\}^n} \right| \geq \text{SIZE}_n \left(\delta 2^n / n \right)$
 - Let $0 < \delta < 1$, then substitute $s \mapsto \delta 2^n/n$ and unrolling the definition of O yields $\exists c > 0, N_0 \in \mathbb{N} : \forall n > N_0 : \mathrm{SIZE}_n\left(\delta 2^n/n\right) \leq 2^{c\delta 2^n/n \cdot \log(\delta 2^n/n)} \leq 2^{c\delta 2^n}.$ Choose $\delta < 1/c \text{ to yield } \left| \mathrm{SIZE}_n\left(\delta 2^n/n\right) \right| \leq 2^{2^n}$
 - Upper bound: we showed that any $f:\{0,1\}^n \to \{0,1\}$ computable using $O(n2^n)$ —the best bound $O(2^n/n)$ suffices to provide the upper bound
- Size Hierarchy Theorem: for sufficiently large n and $10n < s < 0.1 \cdot 2^n/n$, $SIZE_n(s) \subseteq SIZE(s+10n)$
 - Let $f^*: \{0,1\}^n \to \{0,1\}$ be the function such that $f^* \notin \mathrm{SIZE}_n(0.1 \cdot 2^n/n)$. Consider a class of functions $\{f_i \mid i \in [2^n-1]\}$ such that $f_i(x) = (x < i)?f^*(x): 0$
 - f_0 is constant 0, while $f_{2^n-1}=f^*$
 - Now $f_{i+1}(x) = (x = i+1)?f^*(x): f_i(x)$ and recursion incurs O(n) overhead
- An **interpreter** EVAL_{s,n,m}(px) = P(x), where $|p| = O(s \log s)$, |x| = n, and p is the string representing program P, is a single *function* which evaluates *arbitrary programs of certain size*
 - Efficient computation of interpreters: computing $\text{EVAL}_{s,n,m}: \{0,1\}^{O(s\log s)+n}$ takes $O(s^2\log s)$ lines
 - Proof: there are s lines and O(s) variables. Consider a variable *lookup* table; iteratively reference and update the table for each of s lines. Total complexity is $s^2 \log s$
 - Lookup is O(s): recall lookup takes linear time w.r.t. size of table
 - Update is $O(s \log s)$: s to iterate over the elements and $O(\log s)$ to check index equality

Chapter 6: DFA and regular expressions

- We now consider computation over *unbounded* inputs $\{0,1\}^*$
 - We may compute $f:\{0,1\}^* \to \{0,1\}$ via an infinite collection of circuits $\{C_i \text{ computing } f_i\}$
 - · But we want a finitely describable process!
- Deterministic Finite Automaton $M=(T,\mathcal{S})$ with C states
 - Transition function $T: [C] \times \{0,1\} \rightarrow [C]$
 - $\mathcal{S} \subseteq [C]$ are accepting states
 - Computing M(x): initially $s_0=0$ and $\forall i\in\{1,...,|x|\}:s_i\mapsto T(s_i,x_i)$; output $s_{|x|}\in^?\mathscr{S}$
- · Lemma: single-pass constant-memory algorithms are DFA-computable
 - Proof: [C] denotes all possible configurations of memory (for n-bit memory $C = 2^n 1$)
- Number of DFA-computable functions are countable
 - Characterizations of DFAs are finite ⇒ set of all DFAs is countable
 - · Corollary: exists non-DFA-computable functions
- A **regular expression** e over alphabet Σ is a string over $\Sigma \cup \{(,),|,*,\emptyset,"\}$ either:
 - $e \in \Sigma$: single literal in alphabet
 - e = e' | e'': logical or
 - e = e'e'': concatenation of regular expressions
 - $e = e'^*$: repetition of expressions
 - $e = \emptyset$: any expression; e = "": no expression
- The function $\Phi_e:\Sigma^* o \{0,1\}$ evaluates whether its input match regular expression e
- A function f is **regular** if exists regular expression e : $\Phi_e = f$
- Single-pass constant-memory algorithm computes regular functions:
 - Time-complexity: for each reg-ex e and character σ there exists $e[\sigma]:\Phi_e(\sigma s)=\Phi_{e[\sigma]}(s)$
 - Each recursion incurs O(1) overhead in computing $e[\sigma]$
 - Memory-complexity: Memoization of restrictions is O(|e|) and constant w.r.t. n
- Lemma: Regular functions are DFA-computable
 - Corollary: $\exists e': \Phi_{e'} = \neg \circ \Phi_e$: flip the accepting gates of DFA computing Φ_e
 - Closure of regular expressions: $\forall f: \{0,1\}^n \to \{0,1\}, \exists e': \Phi_{e'} = f \circ ((\Phi_{e1} \dots \Phi_{en}))$
 - Regular expressions closed under not and or
 - Corollary: REGEQ : REGEQ $(e, e') \equiv (\Phi_e = \Phi_{e'})$ is computable
- · Lemma: DFA-computable functions are regular
 - Let $A=(T,\mathcal{S})$: $\forall v,w\in [C]$, define $F_{v,w}:\{0,1\}^*\to\{0,1\}$ such that $F_{v,w}(x)=1\iff$ DFA starting from v will reach w upon input x

- $\bullet \quad \text{Define } F_{v,w}^t: \forall t \in [C], F_{v,w}^t(x) = 1 \iff F_{v,w} = 1 \text{ and intermediate states} \subseteq [t]$
 - *v*, *w* are not counted as intermediate!
- $F_{v,w}^0$ is regular: \emptyset ,0,1,0 | 1 depending on $T(v,(x\in\{0,1\}))=^?w$
- Inductive step: assume $\forall v', w' \in [C], F^t_{v',w'} = \Phi_{R^t_{v',w'}}$, the newly introduced state is t
 - Then the shortest path $v \to w$ is either: ... $\implies R_{v,w}^{t+1} = R_{v,w}^{t} \mid \left(R_{v,t}^{t}\left(R_{t,t}^{t}\right)^{*}R_{t,w}^{t}\right)$
 - Contained in [t]: path corresponds to $R_{v,w}^t$
 - v
 ightarrow t
 ightarrow w : path corresponds to $R_{v,t}^{\,t} \left(R_{t,t}^{\,t}\right)^* R_{t,w}^{\,t}$
- . Note that $F_{v,w}^C=F_{v,w}, A(x)=\bigcup_{s\in\mathcal{S}}F_{0,s}(x).$ Then $A=\Phi_{\bigcup_{s\in\mathcal{S}}R_{0,s}^C}$
- Theorem: $f:\{0,1\}^* \to \{0,1\}$ DFA-computable $\iff f$ regular
- Pumping Lemma: every regular function must have a length threshold above which a truevalued input string invok es the * operator
 - $\bullet \quad \forall f = \Phi_e, \exists p \in \mathbb{N}: \exists x,y,z \in \{0,1\}^*: |y| \geq 1, |xy| \leq p, \forall k \in \mathbb{N}, f(xy^kz) = 1$
 - Using at disproving a function is regular using contradiction.

Chapter 7: Turing machines

- · What happens to our description of computation when time is no longer canonical?
- Examine our requirements for an algorithm:
 - Finitely enumerable set of elementary operations (elementary / physically realizable?)
 - · Potentially unlimited working memory for inputs and intermediate results
 - Pointer to modifiable portion of memory
 - · Instructions to begin, repeat, and stop
- · Alan Turing, 1936. An intuitive mathematical formalism of computation
 - · A person writing on scratch papers up to binary representation of brain and scrap
- A **Turing Machine** with k states, alphabet $\Sigma \supseteq \{0,1, \triangleright, \emptyset\}$, and transition function $\delta_M : [k] \times \Sigma \to [k] \times \Sigma \times \{L, R, S, H\}$, on input x, outputs M(x) via the process:
 - Initialize $T = (\triangleright, x_0, \dots, x_{n-1}, \emptyset, \emptyset \dots); i = s = 0$
 - · Repeat:
 - $(s', \sigma', D) = \delta_M(s, T[i])$
 - ullet Use T to compute new internal state, memory content, and direction of header
 - $s \mapsto s, T[i] \mapsto \sigma'$

$$D = \begin{bmatrix} L \\ R \\ S \end{bmatrix} \implies i \mapsto \begin{bmatrix} i-1 \\ i+1 \\ i \end{bmatrix}; D = H \implies HALT$$

- Upon HALT, $M(x) = T_{n < \min\{i : T_i \neq \emptyset, T_{i+1} = \emptyset\}}$, else $M(x) = \bot$
- Remarks: internal state space [k] is finite!
- Given Turing machine over Σ and internal state space [k], a **configuration** of M is a string $\alpha \in \bar{\Sigma}^*$ where $\bar{\Sigma} = \Sigma \times (\{\,\cdot\,\} \cup [k])$ so that there is exactly one $i_0: \alpha_{i_0} = (\sigma \in \Sigma, s \in [k])$ otherwise $i \neq i_0 \iff \alpha_i = (\sigma', \cdot)$
 - " \cdot " are the placeholders. $T[i]=\alpha_{i,0}$ and head is at i_0
- Lemma: Turing machines have finite transition functions
 - Let $\Phi_M: \bar{\Sigma}^* \to \bar{\Sigma}^*$ denote transition between subsequent configurations of a Turing machine, then there exists $\psi_M: \bar{\Sigma}^3 \to \bar{\Sigma}$ satisfying $\forall i, \psi_M(\alpha_{i-1}, \alpha_i, \alpha_{i+1}) = \Phi_M(\alpha)_i$
 - Configuration changes are locally restricted to the immediate vicinity of tape head.
 - · Tape change only possible at head position, and head indicator only possible in vicinity
- A function $f: \{0,1\}^* \to \{0,1\}^*$ is **computable** if there exists a Turing machine computing its restriction onto defined domain.

7

- Unlike circuits, Turing machines may fail to halt on some inputs
- $R \equiv$ the set of all computable functions
- Introducing NAND-TM language

- Broad-brush idea: NAND-TM

 NAND-CIRC + loops + arrays
- A NAND-TM program P is a sequence of lines a = NAND(b, c) ending with $\text{MOD_JUMP}(a, b)$. Variables may be array variables $X[i], Y[i], X_{\text{blank}}[i], Y_{\text{blank}}[i]$, or additional scalar or array variables.
- Computational process P(x)
 - $X[i] = x_i, X_{\text{blank}}[i] = (i \ge |x|)$, all other variables and i are 0
 - Execute until $MOD_JUMP(a, b) = \{S, R, L, H\}$ and execute corresponding action
- GOTO as syntactic sugar:
 - Introduce program counter to indicate which lines should be executed; natural execution increments the program counter; GOTO simply corresponds to changing the counter
 - GOTO unlocks complex loop constructs such as WHILE, FOR, etc
- Uniformity: computing task across different input lengths with the same instructions.
 - TM's and DFA are uniform, while collection of circuits are not
 - Uniformity implies truly universal interpreters

Chapter 8: Equivalent models of uniform computation

RAM Machine

- Memory array M of unbounded size, each cell stores a $word \in \{0,1\}^w \cong [2^w]$
- Constant number of **registers** r_0, \ldots, r_{k-1} each containing a single word
- · Operations:
 - Data movement: $r_i := M_i, M_i := r_i$
 - · Computations on registers

NAND-RAM

- Variables are non-negative integer values $\in [0, T-1]$: T is number of executed steps
- Integer-indexed access to integer arrays; basic arithmetic operations; loop constructs
- NAND-RAM ≅ NAND-TM
 - Gory details (Pg 290?)
 - Reference via $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}; f(x, y) = (x + y)(x + y + 1)/2 + x$
- Let \mathscr{F} be the set of all partial functions $\{0,1\}^* \to \{0,1\}^*$. A **computational model** is a map $\mathscr{M}: \{0,1\}^* \to \mathscr{F}$. A program $P \in \{0,1\}^*$ \mathscr{M} -computes $F \in \mathscr{F} \iff \mathscr{M}(P) = F$
 - Note that algorithms are finite strings, so \mathcal{M} cannot be surjective!
 - \mathcal{M} is **Turing complete** if there exists computable map $\phi:\{0,1\}^* \to \{0,1\}^*$ such that for every TM N as a string computing F, $(M \circ \phi)(N) = F$
 - i.e. computes all Turing-computable functions
 - \mathcal{M} is **Turing equivalent** if it is Turing complete and exists computable map from each P in \mathcal{M} to the Turing machine which computing $\mathcal{M}(P)$
- A one-dimensional **cellular automaton** over $\Sigma \supset \{\emptyset\}$ is described by transition rule $r: \Sigma^3 \to \Sigma$ satisfying $r(\emptyset, \emptyset, \emptyset) = \emptyset$. A *configuration* is a function $A: \mathbb{Z} \to \Sigma$, and computation proceeds via $A \mapsto A': A'(i) \equiv \Sigma(A(i-1), A(i), A(i+1))$
 - A configuration is finite if only finitely many entries are nonzero
- Theorem: One-dimensional automata are Turing complete
 - For each M over Σ and state space [k], take automaton over $\Sigma' \supset \{\emptyset = (\emptyset, \cdot)\} \cup \overline{\Sigma}$ with transition function $A = \psi_M$
- *λ*-calculus: Alonzo Church
 - Anonymous definition of functions and functions as first-class objects
 - $f(x) = x \times x, f(3) \leftrightarrow (\lambda x \cdot x \times x)3$
 - Creating multi-argument functions via currying
 - $\lambda x \cdot (\lambda x \cdot x + y)$ corresponds to g(x, y) = x + y: taking the first argument y creates a partial function $\lambda x \cdot x + y$

- A λ **expression** is either a single variable identifier or expression of the following forms:
 - $e = (e \ e')$: Apply e to e'. Application is left-associative: $fg \ h = (fg) \ h$
 - Abstraction: $e = \lambda x \cdot e'$
- λ expressions may be evaluated by repeatedly applying the following rules:
 - β reduction: $(\lambda x \cdot y) z \to y[x \mapsto z]$ (replace all occurrences of x in y by z)
 - α conversion: $\lambda x . z \iff \lambda y . z[x \mapsto y]$
 - Evaluation protocols:
 - Call by name (lazy evaluation): eval $[(\lambda x \cdot y)z] = \text{eval}(y[x \mapsto z])$
 - Call by value (eager evaluation): $eval[(\lambda x.y)z] = eval(y[x \mapsto eval(z)])$
 - Evaluation may encounter infinite loops such as $(\lambda x \cdot xx)(\lambda x \cdot xx)$
- Syntactic λ sugar: Church encoding
 - $1 \equiv \lambda x \cdot (\lambda y \cdot x), \ 0 \equiv \lambda x \cdot (\lambda y \cdot y)$. Then if $(\text{cond}, a, b) \equiv \text{cond } a b$
 - pair $x y \equiv \lambda x \cdot \lambda y \cdot (\lambda g \cdot gxy)$ satisfies (pair x y) z = z x y
 - head $p \equiv p \mid 1$ satisfies head (pair $x \mid y$) = x. Similarly tail $p = p \mid 0$
 - $\text{nil} \equiv \lambda x.1$. Define ispairnil $\equiv \lambda p.p(\lambda x.\lambda y.0)$. Where ispairnil p = (p = ? nil)
 - Encoding numerals: Let i + 1 = pair 1 i, then i 1 = tail i
 - **Y combinator:** Define Y s.t. Y f is a fixed point of $f \iff Yf = f(Yf)$
 - $Y \equiv \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$. Then $Yf = f((\lambda x.f(xx))(\lambda x.f(xx))) = f(Yf)$
 - Define recursive functions f as F(f, x) where self-referencing calls are replaced by f
 - e.g. $g(x) \equiv (x = 0)?1 : xg(x 1) \leftrightarrow F \equiv [\lambda f. \lambda x. (x = 0)?1 : x \cdot f(x 1)]$
 - Then $g(2) = YF = F(YF) = 2 \cdot (YF) = 2 \cdot 1 = 2$
 - Then reduce = $\lambda g \cdot \lambda L$ if (isempty (tail L)) (tail L) [g (head L) (reduce (tail L))]
 - map = λg . reduce $(\lambda x . \lambda y . pair (g x) y)$
 - *Y*-combinator \rightarrow reduce \rightarrow map \rightarrow filter...
- λ -expression e computes F if $\forall x \in \{0,1\}^*, e\langle x_0,\ldots,x_{n-1},\perp \rangle \cong \langle y_0,\ldots,y_{m-1},\perp \rangle$
 - Inputs and outputs are λ -lists (think oCAML!)
- λ calculus is Turing-equivalent: Simulating TM
 - λ -calculus computes NAND thus every finite function, including TM's transition function
 - λ -calculus also supports conditional-dependent recursion.

Chapter 9: Universality and Uncomputability

- Universal Turing Machine Interpreter
 - Exists TM U s.t. on every string M representing a TM and $x \in \{0,1\}^*$, U(Mx) = M(x)
 - Representation of TM with k states $\Sigma = \{\sigma_0, \dots, \sigma_{l-1}\}$, and (finite) δ_M is trivial
 - · Trivial proof since we can finitely characterize the operation of TM
 - Remark: every $s \in \{0,1\}^*$ can correspond to a (can-be-trivial) TM!
- Existence of uncomputable functions
 - · One way: Cardinality argument
 - Let U be the universal TM, then $F^*(x) = 1 U(x, x)$ (if no-halt then 0) is uncomputable
- Halting problem: $HALT: \{0,1\}^* \to \{0,1\}^*$ s.t. $\forall M \in \{0,1\}^*, HALT(M,x)$ computes whether TM M halts on input x. HALT is uncomputable:
 - Assume $\exists M_{\rm HALT}$, then $M_{F^*}(x) = M_{\rm HALT}(x,x)?1 U(x,x):0$ computes F^* if $M_{\rm HALT}$ computes HALT
 - Assume $\exists M_{\text{HALT}}$. Define $P: P(x) = M_{\text{HALT}}(x, x)$?nohalt: halt
 - $M_{\rm HALT}(P,P)=1 \implies M_{\rm HALT}(P,P)=0$ and vice versa -> contradiction
- Proof by reduction: f uncomputable \iff (HALT computable) \implies f computable)
- Variants of the halting problem
 - HALT0 problem: HALT0(M) = $(M(0) = ^{?} \bot)$
 - HALT0 computable \implies HALT computable: given M, x, define $M_x: M_x(0) = U(M, x)$; output HALT $(M, x) = P(M_x, 0)$
- M, M' functionally equivalent $M \cong M' \iff \forall x \in \{0,1\}^*, M(x) = M'(x)$ including halts!
- $F: \{0,1\}^* \to \{0,1\}^*$ is semantic if $\forall M, M' \in \mathbb{N}: M \cong M' \implies F(M) = F(M')$
 - In other words, F semantic \iff exists extension $\tilde{F}: \{0,1\}^*/\cong \to \{0,1\}^*$
- Rice's theorem: Nontrivial semantic functions are uncomputable
 - F nontrivial semantic $\implies \exists M_0: F(M_0) \neq F(INF)$ where INF is the TM that never halts
 - Without loss of generality let $F(INF) = 1, F(M_0) = 0$
 - Assuming access to A computing F, then P below computes HALT0:
 - Given $N \in \{0,1\}^*$, construct TM G(N) which given x executes:
 - Compute N(0)
 - Return $M_0(x)$
 - Return F(G(N))
 - $N(0) = \bot \iff F(G(N)) = F(INF) = 1$

Chapter 10: Context-free Grammar

- · The more expressive a computational model is, the less semantic questions we can answer
- Given alphabet Σ , a **context-free grammar (CFG)** over Σ is a triple (V, R, s) s.t.
 - V denote variables, disjoint from Σ : $V \cap \Sigma = \emptyset$. Initial variable $s \in V$
 - R are rules: $\forall r \in R, r = (v \in V, z \in (\Sigma \cup V)^*) \leftrightarrow v \Rightarrow z \implies z$ can be derived from v
 - Remarks: $v \in V$ are like "types", $s \in V$ is the type to interpret the input in, and $r \in R$ denotes how types can possibly be composed of each other
- · Example: CFG of arithmetic expressions
 - $\Sigma = \{(,), +, -, \times, \div, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$
 - $V = \{\text{expr, number, digit, operation}\}, s = \text{expr}$
 - Rules: operation $\Rightarrow + |-| \times | \div$, digit $\Rightarrow 0 | \dots | 9$, number \Rightarrow digit | digit number, expr \Rightarrow number | expr operation expr | (expr)
- Another example: CFG of matching parentheses: match ⇒ Ø | match match | (match)
- Given CFG G = (V, R, s) over Σ and $\alpha, \beta \in (\Sigma \cup V)^*$, β can be derived in one step from α , $\alpha \Rightarrow_G \beta \iff \exists (v \Rightarrow z) \in R : \beta = \alpha[v \mapsto z]$. Derivability in general denoted by $\alpha \Rightarrow_G^* \beta$
- $x \in \Sigma^*$ is **matched** by G if x can be derived from $s: s \Rightarrow_G^* x$.
- CFG as computational model: G computes $\Phi_G(x) = (s \Rightarrow_G^* x?)$
 - $F: \Sigma^* \to \{0,1\}$ is context free if $\exists G: F = \Phi_G$
- · Context-free grammar is computable
 - Reduce to **Chomsky normal form** $u \Rightarrow vw$: add auxiliary variables if necessary.
 - · Simple matching over possible partitions and rules
- CFG is more expressive than reg-ex
 - Induction over length of *e*: simple base case.
 - $e = e'e'', e = e'|e'', e = (e')^*$ corresponds to simply adding new rules
- CFG for palindrome: $p \Rightarrow \emptyset \mid 0 p 0 \mid 1 p 1$
 - Non-palindrome: $p \Rightarrow \emptyset \mid 0 p 0 \mid 1 p 1; d = 0 p 1 \mid 1 p 0; n = d \mid 0 n \mid 1 n \mid n 0 \mid n 1$
- · Context-free pumping lemma
 - A long enough matching string must have repeated variables in its derivation
 - $\forall G + (V, R, s), \exists n_0, n_1 \in \mathbb{N} : \forall x \in \Sigma^*, |x| > n_0, \Phi_G(x) = 1 \implies$ existence of partition $x = abcde : |b| + |c| + |d| \le n_1, |b| + |d| > 1, \forall k \in \mathbb{N}, \Phi_G(ab^kcd^ke) = 1$
 - Assume a long-enough string, then by pigeon-hole principle there must be repeated derivation $v \Rightarrow bvd$ for which $v \Rightarrow c$
 - Example: EQ: $\{0,1,;\}^* \to \{0,1\}, EQ(y) = (\exists x : y = x; x)$ cannot be pumped

Chapter 11: Proofs and Computation, Gödel's Incompleteness Theorem

- Mathematical statements are strings $s \in \{0,1\}^*$ whose truth depend on (defined) properties of abstract objects, and not on empirical facts
 - Properties such as "will halt," "is prime," etc.
- Given $\mathcal{T} \subseteq \{0,1\}^*$ be the set of mathematical statements which are considered true. An algorithm V constitutes a **proof system for** \mathcal{T} if it is:
 - **Sound**: $\forall x \notin \mathcal{T}, w \in \{0,1\}^*, V(x,w) = 0$. Proofs cannot prove untrue statements
 - **Effective**: $\forall x, w \in \{0,1\}^*, V$ halts with an output of 0 or 1
 - *V* is **complete** if every statement is provable
 - · Remarks:
 - Truthfulness of statements are given a priori independent of the proof system
 - A proof system is a classifier of true statements: soundness requires that it makes no false positive mistakes, effectiveness requires it produces output given a candidate proof.
 - A true statement $x \in \mathcal{T}$ may be unprovable w.r.t. V if $\forall w \in \{0,1\}^*, V(x,w) = 0$
 - A complete proof system must produce the truth status of any statement in finite time
- Completely provable \Longrightarrow computable: given $\mathcal{T} \subseteq \{0,1\}^*$, existence of a complete proof system for $\mathcal{T} \implies \Phi_{\mathcal{T}}(x) = (x \in \mathcal{T})$ is computable
 - Assume $\forall x \in \{0,1\}^*, \exists \neg x \in \{0,1\}^* : x \in \mathcal{T} \iff \neg x \notin \mathcal{T} (\neg x \text{ is the logical negation})$
 - Our assumption seems sound, but must it hold for every set of true statements?
 - Let V be a complete proof system for \mathcal{T} . Given each x, look for proofs of x, $\neg x$ —our search process must halt because one of them must be true and V is complete.
- Given any proof system V, we can design a true statement x^* that is not provable by V:
 - x^* is true $\iff x^*$ does not have a proof in V
 - Fixed-point trick to solve the problem of self-reference (arithmetic is better than syntax here)
 - Why would we wish to prescribe arbitrary truth statements given a proof system? (Kind of like change the labels of our data after being given a classifier)
- Quantified Integer Statements (QIS) are statements with no unbound variables which only uses integers, variables, operators (+, -, =, *, >, <), logical operations AON, and $\exists_{x \in \mathbb{N}}, \forall_{y \in \mathbb{N}}$
 - QIS $\subseteq \{0,1\}^*$, and we can similarly use syntactic sugar
- Quantified Mixed Statements (QMS) is QIS additionally allowing $\forall_{a \in \{0,1\}^*}, \exists_{a \in \{0,1\}^*}, a_i, |a|$
- Theorem: Φ_{OMS} is uncomputable
 - Proof idea: $\Phi_{\rm OMS}$ computable \implies HALT0 computable
 - A program halts on zero iff a sequence of configurations $H=(\alpha_0,\dots,\alpha_{T-1})$ s.t. α_0 is a valid starting configuration with input 0, α_{T-1} is halting configuration, and $\alpha_{t+1}=\text{NEXT}(\alpha_t)$

- Concretely, $\mathrm{HALT0}(M) = \Phi_{\mathrm{QMS}}(\,\exists_{H \in \{0,1\}^*} H \, \mathrm{encodes} \, \mathrm{halting} \, \mathrm{sequence} \, \mathrm{with} \, \mathrm{input} \, \mathrm{zero})$
- Define QMS for NEXT : $\Sigma^* \to \Sigma^*$: it is produced by convolving a local function $\Sigma^3 \to \Sigma$
 - · Define QMS over local function, and use universal quantifier to mimic convolution
- Similarly, use universal quantifier to check valid transition over sequence, and finally validate beginning and ending configurations.
- Theorem: Φ_{OIS} computable $\implies \Phi_{OMS}$ computable: reducing QMS to QIS
 - Encode every string $x \in \{0,1\}^*$ by $(X,|x|) \in \mathbb{N}^2$ such that $\exists \text{QIS coord}: \operatorname{coord}(X,i) = i < |X|?(x_i = ^? 1):0$
 - Then $\forall_{x \in \{0,1\}^*} \mapsto \forall_{X \in \mathbb{N}} \forall_{n \in \mathbb{N}}, |x| \mapsto n, x_i \mapsto \operatorname{coord}(X, i)$
 - Constructible prime sequence: exists primes p_i s.t. $\exists \text{QIS PSEQ}(p,i) = (p=^?p_i)$
 - Then $X = \prod_{x_i=1} p_i$, $\operatorname{coord}(X,i) = \exists_{p \in \mathbb{N}} \operatorname{PSEQ}(p,i) \land (X \% p = 0)$
 - Corollary: Φ_{QMS} is uncomputable.
 - Corollary: There is no complete proof system for QMS $\subseteq \{0,1\}^*$
 - · i.e. we cannot prove every QMS.