Notes on notation

sets are denoted with $\{ \dots \}$ \mathbb{Z} set of all integers $\{..., -2, -1, 0, 1, 2, ...\}$ \mathbb{R} set of all natural numbers $\{0, 1, 2, ...\}$ $\{x\}$ means x is not in the set ie. $\{1, 2, ...\}$ can be denoted as $\mathbb{R} \setminus \{0\}$ \in - element in set \exists - there exists

Theorems

Addition, multiplication and subtraction are closed $\forall x; x \in \mathbb{Z}$.

THM: The Division Algorithm

 \forall - for all

For $\frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{R} \setminus \{0\}$, there is some quotient $q \in \mathbb{R}$ and remainder $0 \le r < b$ such that,

$$a = bq + r$$

b is said to divide a if r=0. We denote this as b|a. If b does not divide a we say $b\nmid a$.

THM: Integer Combination "I.C Theorem"

If d|a and d|b then d|(ax + by) for $x, y \in \mathbb{Z}$.

Greatest Common Divisor: We denote $\gcd(x,y)$ simply as (x,y)

Notes to self: if in doubt, (x,y) = 1 (ie. 1 is best guess when you are too lazy too compute gcd). Also, (x,0) = x.

THM: Benzout's theorem:

For $a, b \in \mathbb{Z}$, (a,b) is the smallest positive integer of the form ax + by where $x, y \in \mathbb{Z}$.