

<u>Help</u> dougsweetser ▼

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Wiki</u>

☆ Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Dedicated problems

Previous		Z		Next >
Problem 3.7				
☐ Bookmark this page				
Homework due Nov 11, 2020 19:00 EST Problem 3.7				
2 points possible (graded)				
Evaluate the integrals (use pi for π and exp for exponential function). $\int_0^\infty rac{x-\sin x}{x^3} dx$				
$J0 = x^3$				
$\int_{-\infty}^{\infty} rac{e^{-iz}dz}{z^2+9}$				
$v-\omega z^{z+9}$				
Submit You have used 0 of 6 attempts				
	4.5	N		
	< Previous	Next >		

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal