MATD11: Functional Analysis Assignment 3

Anmol Bhullar - 1002678140

March 6, 2018

Preface.

We may say $x_n \to x$ to say that $(x_n)_{n=1}^{\infty}$ is a sequence which converges to x. Instead of writing $(x_n)_{n=1}^{\infty}$, we may just say $(x_n)_1^{\infty}$ or even just (x_n) where context is clear. We may say fx instead of f(x) for any operator f.

P1.

Suppose M is a dense subspace in a Banach space X (meaning that the closure of M is all of X) and suppose that $T:M\to Y$ is linear, where Y is a Banach space, with $\|Tm\|_Y \leq K \|m\|_X$ for some $K<\infty$ and all $m\in M$. Show that T extends, in a unique way, to a bounded linear operator from X into Y.

Solution.

Note $\overline{M} = X$. Thus, by definition, we have that for all $x \in X$, there exist some sequence $(x_n)_1^{\infty}$ in M such that $x_n \to x$. Using this, define a mapping $T': X \to Y$ by $T'(x) = \lim_{n \to \infty} T(x_n)$. Supposing this mapping is well defined, it is clear that T' is then a mapping from X to Y because Y is a Banach space so if $\lim_n (T(x_n))$ converges, it converges to a point in Y and $\lim_n (T(x_n))$ converges since T is a continuous map (prop. 2.2). Note our definition of T' does not depend on our choice of (x_n) . To see why choose sequences $x_n \to x$ and $y_n \to x$ such that both $(x_n)_1^{\infty}$ and $(y_n)_1^{\infty}$ lie in M. Using uniqueness of limits in a Banach space (every Banach space is a metric space which are always Hausdorff), we know:

$$\lim_{n\to\infty}T(x_n)$$

only converges to one point, which is T'(x). Thus $x \mapsto T'(x)$ is actually a function. Furthermore,

$$\lim_{n \to \infty} T(x_n) = T'(x) \quad \text{and} \quad \lim_{n \to \infty} T(y_n) = T'(x)$$

is always true. Thus, we have that $\lim_{n\to\infty} T(x_n) = \lim_{n\to\infty} T(y_n)$ which implies the value of T'(x) is independent of our choice of sequence and so T' is a

well defined function (i.e. does not depend on our choice of sequence).

Now, we want to show that T' is a *continuous* extension of T. In order to do this, it suffices to show $T'|_M = T$ is true and T' is continuous on $X \setminus M$. $T'|_M$ is clearly a map from $M \to Y$ (recall $T' : X \to Y$) where $T'|_M(x \in M) = \lim_{n \to \infty} T(x_n)$ for some sequence $x_n \to x$ in M. Simply, choose the constant sequence $(x)_1^\infty$ since $x \in M$. Clearly, this converges to x. Then, note $\lim_{n \to \infty} T(x) = T(x)$ so that $T'|_M(x) = T(x)$ as wanted. It is left to show T' is continuous on $X \setminus M$.

Fix any $x \in X \setminus M$. We want to show:

$$\forall \epsilon > 0, \ \exists \ \delta > 0 \text{ such that if } 0 < |x - y| < \delta, \text{ then } |f(x) - f(y)| < \epsilon$$

Thus, choose $\epsilon > 0$, then for $\delta = \epsilon/K$ (if K = 0, then T is identically 0 (recall T is bounded by K) so that T' is identically zero because each T'(x) would then be a limit of zero's. Since T' is then identically 0, it is constant, therefore continuous), if $0 < |x - y| < \delta$, then:

$$\begin{aligned} \|T'(x) - T'(y)\|_Y &= \left\|\lim_{n \to \infty} T(x_n) - \lim_{n \to \infty} T(y_n)\right\|_Y & \text{where } x_n \to x, \ y_n \to y \\ &= \left\|\lim_{n \to \infty} [T(x_n) - T(y_n)]\right\|_Y & \text{linearity of the limit operator} \\ &= \left\|\lim_{n \to \infty} T(x_n - y_n)\right\|_Y & \text{linearity of } T \\ &= \lim_{n \to \infty} \|T(x_n - y_n)\|_Y & \text{continuity of } \|\cdot\| \\ &= \lim_{n \to \infty} K \|x_n - y_n\|_X < \lim_{n \to \infty} K \cdot \delta = \epsilon \end{aligned}$$

so that T' is continuous at x and since x was arbitrarily chosen, we have that T' is continuous on $X \backslash M$.

In order to show T' is a bounded linear operator from $X \to Y$, we first to show T' is linear. Choose a, b scalars and $x, y \in X$. Then, we show T'(ax+by) = aT'(x)+bT'(y). We know since $x \in X$ and $\overline{M} = X$, then there exists a sequence $x_n \to x$ and similarly $y_n \to y$, so that $ax_n \to ax$ and $by_n \to b$. In particular, $ax_n + by_n \to ax + by$ by elementary sequence properties. Therefore, we write:

$$T'(ax_n + by_n) = \lim_{n \to \infty} T(ax_n + by_n)$$

By linearity of T, $T(ax_n + by_n) = aT(x_n) + bT(y_n)$. Since $x_n \to x$, then $T'(x) = \lim_n T(x_n)$ and similarly, $\lim_n T(y_n) = T(y)$. Thus by linearity of the limit operator:

$$T'(ax_n + by_n) = \lim_{n \to \infty} [aT(x_n) + bT(y_n)]$$
$$= a \lim_{n \to \infty} T(x_n) + b \lim_{n \to \infty} T(y_n)$$
$$= aT'(x) + bT'(y)$$

so that T' is linear. Furthermore, since $T'|_{M} = T$, $T'|_{M}$ is bounded and so it is continuous (prop. 2.2). Also, since if x not in M, then it is already shown that T' is continuous on $X\backslash M$. Therefore, T' is continuous on both M and $X\backslash M$ implying that T' is continuous everywhere on X and so it is bounded on X (prop. 2.2).

Therefore, $T' \in \mathcal{B}(X,Y)$. Finally, T' extends T in a unique manner. Consider two distinct (don't agree on at least 1 point) maps T' and $T^{(2)}$ which extend T in a continuous manner such that it is linear and bounded. Then, since $T^{(2)}$ is continuous, we have that

$$\lim_{n \to \infty} x_n = x \implies \lim_{n \to \infty} T^{(2)}(x_n) = T^{(2)}(x)$$

So, choose some sequence $x_n \to x$ lying in M ($x \in M$ not required). Then since $T^{(2)}$ extends T, we have that $T(x_n) = T^{(2)}(x_n)$, so we have that

$$x_n \to x \implies \lim_{n \to \infty} T(x_n) = T^{(2)}(x)$$

but this is percisely the definition of T', so we obtain: $T'(x) = T^{(2)}(x)$. Since x is arbitrary, but T' and $T^{(2)}$ must differ on at least one point, we have a contradiction. Thus, $T^{(2)}$ does not exist and T' is then a uniquely defined function.

P2.

Let $\Lambda: X \to \mathbb{C}$ is a bounded linear functional on a normed linear space X. Recall that $\|\Lambda\|$ is defined as $\sup\{|\Lambda(x)|: \|x\| \le 1\}$. Show that

$$||\Lambda|| = \sup\{|\Lambda(x)| : ||x|| = 1\}$$
$$= \sup\{|\Lambda(x)/||x|| | : x \neq 0\}$$

Solution.

Let $\Lambda_1 = \sup\{|\Lambda(x)| : ||x|| = 1\}$ and $\Lambda_2 = \sup\{|\Lambda(x)/||x|| | : x \neq 0\}$. First note, $\{|\Lambda x| : ||x|| = 1\} \subseteq \{|\Lambda x| : ||x|| \leq 1\}$ and since the supremum of both sets exist, we obtain that $\Lambda \geq \Lambda_1$. Now, note for all $x \in X$ (not 0), x/||x|| has norm 1 and by linearity of Λ :

$$|\Lambda(\frac{x}{\|x\|})|=|\frac{1}{\|x\|}\Lambda(x)|=\frac{|\Lambda(x)|}{\|x\|}$$

Thus, we see that $\{|\Lambda(x)/\|x\| \mid : x \neq 0\}$ consists of vectors $|\Lambda(y)|$ where $\|y\| = 1$. Thus, $\{|\Lambda(x)/\|x\|| : x \neq 0\} \subseteq \{|\Lambda(x)| : \|x\| = 1\}$. As before, we get that $\Lambda_2 \leq \Lambda_1$. So far, we have that $\Lambda \geq \Lambda_1 \geq \Lambda_2$. To obtain that $\Lambda = \Lambda_1 = \Lambda_2$, it suffices to show that $\Lambda_2 \geq \Lambda$. Note, for $x \neq 0$, we have $|\Lambda(x)/\|x\|| \leq \Lambda_2$ and so $|\Lambda(x)| \leq \Lambda_2 \|x\|$ which implies Λ_2 is an upper bound of $\{|\Lambda(x)| : \|x\| \leq 1\}$ and since Λ is the *least* upper bound, it follows that $\Lambda_2 \geq \Lambda$. Thus, we obtain

$$\Lambda = \Lambda_1 = \Lambda_2$$

as wanted for $x \neq 0$. If x = 0, we still have $\Lambda_2 \geq \Lambda$ since for x = 0, $\Lambda(x) = 0$ (recall $0 \mapsto 0$ in linear maps) so if the least upper bound is 0 and $\Lambda \geq \Lambda_2$, then it must be that $\Lambda_2 = 0$ so we still obtain the equality stated above regardless.

P3.

Let X, Y and V be normed linear spaces and let $A \in \mathcal{B}(X, Y)$ and $B \in \mathcal{B}(Y, V)$. Prove that $BA \in \mathcal{B}(X, V)$ and $||BA|| \le ||B|| \, ||A||$.

Solution.

Choose any $x \in X$. Then $Ax \in Y$. Since $Ax \in Y$, then $B(Ax) \in V$. Since x arbitrary, we obtain that BA is a mapping $X \to V$. Choose $x, y \in X$ and scalars a, b. Then BA(ax + by) = B(aA(x) + bA(y)) by linearity of A and applying by linearity of B, we obtain: BA(ax + by) = B(aA(x)) + B(bA(y)) = aB(A(x)) + bB(A(y)) = aBA(x) + bBA(y). Therefore, BA is a linear map. Now, note that $\|BAx\| = \|B(Ax)\| \le \|B\| \|Ax\|$ and we know $\|B\|$ exists since $B \in \mathcal{B}(Y, V)$. Furthermore, $\|B\| \|Ax\| \le \|B\| (\|A\| \|x\|)$ for similar reasons. So we obtain that:

$$||BAx|| \le ||B|| \, ||A|| \, ||x||$$

which implies $||BA|| \le ||B|| ||A||$ (recall x arbitrary). In particular, this implies ||BA|| exists so that BA is a bounded linear operator. Thus, $BA \in \mathcal{B}(Y, V)$.

P4.

Let X be a Banach space. Let $\{A_n\}$ be a sequence in $\mathcal{B}(X)$ such that $\sum_{n=1}^{\infty} \|A_n\|$ converges. Prove that the series $\sum_{n=1}^{\infty} A_n$ converges to an operator $A \in \mathcal{B}(X)$ and $\|A\| \leq \sum_{n=1}^{\infty} \|A_n\|$.

Solution.

Define $Ax = \sum_{n=1}^{\infty} A_n(x)$. Claim: $A_n \to A \in \mathcal{B}(X)$. Therefore, the first property we show is that $\sum_{n=1}^{\infty} A_n(x)$ converges, i.e. Ax exists. Recall Cauchy Criterion for series, the sequence of partial sums of $\sum A_n x$ must be Cauchy. We prove this. Fix $x \in X$. $\sum_{n=1}^{\infty} \|A_n\|$ converges so, for any choice of $\epsilon > 0$, there exists N such that if n' > n > N, then $|\sum_{m=n}^{n'} \|A_m\|| < \epsilon$. From this, we get our choice of N to prove $\sum A_n x$ is Cauchy. Observe: Pick an $\epsilon' > 0$, then pick an N > 0 so that $|\sum_{m=N}^{N'} \|A_m\|| < \epsilon' / \|x\|$ for N' > N. Then for any n' > n > N:

$$\left\| \sum_{m=n}^{n'} A_m x \right\| \le \sum_{m=n}^{n'} \|A_m(x)\|$$

by the triangle inequality. Also, $||A_m(x)|| \le ||A_m|| \, ||x||$ since $A_m \in \mathcal{B}(X)$. Thus:

$$\left\| \sum_{m=n}^{n'} A_m x \right\| \le \sum_{m=n}^{n'} \|A_m\| \|x\| = \|x\| \left[\sum_{m=n}^{n'} \|A_m\| \right]$$
 (1)

Since the sum in the square bracket is less than $\epsilon'/\|x\|$, we have that:

$$\left\| \sum_{m=n}^{n'} A_m(x) \right\| < \epsilon'$$

so that the sequence of partial sums Cauchy converges. X is a Banach space so this sum converges to an element of X, thus Ax exists. It is left to show $A \in \mathcal{B}(X)$. To show ||A|| exists, recall each $A_n \in \mathcal{B}(X)$ and consider:

$$||A(x)|| = \left\| \lim_{n \to \infty} \sum_{i=1}^{n} A_n(x) \right\| = \lim_{n \to \infty} \left\| \sum_{i=1}^{n} A_n(x) \right\|$$

$$\leq \lim_{n \to \infty} \sum_{i=1}^{n} ||A_n(x)||$$

$$\leq \lim_{n \to \infty} \sum_{i=1}^{n} ||A_n|| ||x|| < \infty$$

since $\sum_{i=1}^{\infty}\|A_i\|$ converges so a constant $\|x\|$ multiplied by the sum should also converge, thus, $\|x\|$ ($\sum_{i=1}^{\infty}\|A_i\|$) = $\sum_{i=1}^{\infty}\|A_i\|$ $\|x\|$ should also converge. (note we actually used absolute convergence here). Thus,

$$||Ax|| \le \sum_{i=1}^{\infty} ||A_i|| \, ||x|| < \infty$$

which implies that ||A|| exists so that A is bounded. In particular, it shows $||A|| \leq \sum_{i=1}^{\infty} ||A_i||$. Now, we show that A is linear. This is done simply through definition, using the fact that each A_n is linear. Consider for scalars a, b and vectors $x, y \in X$:

$$A(ax + by) = \sum_{i=1}^{\infty} A_i(ax + by)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} A_i(ax + by)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} [aA_i(x) + bA_i(y)]$$

$$= a[\lim_{n \to \infty} \sum_{i=1}^{n} A_i(x)] + b[\lim_{n \to \infty} \sum_{i=1}^{n} A_i(y)]$$

$$= aA(x) + bA(y)$$

as wanted. Thus, $A \in \mathcal{B}(X)$.

P5.

Let X be a Banach space and let $A \in \mathcal{B}(X)$. Explain how to define e^A and prove that $e^A \in \mathcal{B}(X)$.

Solution.

Define $e^A: X \to X$ by $e^A = I + A + 1/2!A^2 + 1/3!A^3 + \ldots = \sum_{n=0}^{\infty} A^n/n!$ where I (or A^0) is the identity mapping and A^n is the composition of A with itself n times. As is usually the case, we first show e^A exists, i.e. the infinite sum converges to some element of $\mathcal{B}(X)$. Define the sequence $(e^A_n)_{n=1}^{\infty}$ to be the nth term in the sum e^A . By problem 3 and induction, we obtain that A^n is an operator in $\mathcal{B}(X)$. Since I is the identity map, it is clearly bounded and linear so $I \in \mathcal{B}(X)$. Note since $\mathcal{B}(X)$ is a vector space, we have that for any scalar a, and an operator A, $aA \in \mathcal{B}(X)$ and also that $\sum_{i=1}^k A^i \in \mathcal{B}(X)$ for all k (VS. closed over scalar mult. and vector addition). Combining all these facts, we get that for every k, $\sum_{i=1}^k e_i^A \in \mathcal{B}(X)$. Before going further, We show $\sum_{n=1}^{\infty} \|e_n^A\|$ converges. We prove this via the technique of Cauchy Criterion as was done in the last problem. Choose $\epsilon > 0$. Recall that the factorial function $n \mapsto n!$ increases much faster than a exponential function $x \mapsto e^x$, thus $\lim_{n\to\infty} \|A\|^n/n! = 0$. In fact, we can say for N > 0 such that $N! > 2^N$ (this implies $n! > 2^n$ for subsequent n > N), there exists some N' > N such that for all n > N': $\|A\|^n/n! < \epsilon/2^n$. Now, consider for all n' > n > N':

$$\left\| \sum_{i=n}^{n'} \|e_i^A\| \right\| = \sum_{i=n}^{n'} \|e_i^A\|$$
 (2)

which is true since the norm function always outputs non-negative values. Now, By problem 3, if $A \in \mathcal{B}(X)$, then $A^2 \in \mathcal{B}(X)$ and $||A^2|| \le ||A||^2$. Thus $||e_n^A|| = ||A^n/n!|| \le ||A||^n/n!$. Thus:

$$\begin{split} |\sum_{i=n}^{n'} \left\| e_i^A \right\| | &= \sum_{i=n}^{n'} \left\| A^i / i! \right\| \\ &= \sum_{i=n}^{n'} \left\| A \right\| / i! \\ &< \sum_{i=n}^{n'} \epsilon / 2^i = \epsilon [\sum_{i=n}^{n'} 1 / 2^i] \end{split}$$

By our geometric series knowledge, we know $\epsilon[\sum_{i=0}^{\infty} 1/2^i] = 2\epsilon$. Since this infinite sum is clearly larger than the finite sum from n to n'. We have that: $|\sum_{i=n}^{n'} \|e_i^A\|| < 2\epsilon$. This is sufficient to show that the sequence of partial sums Cauchy converge (if one wishes, they can easily make the desired sum less than ϵ but it is quite trivial as it amounts to re choosing our original ϵ). Thus, $\sum_{n=1}^{\infty} \|e_i^A\|$ converges as wanted.

We then have that for all k, $\sum_{i=1}^k e_i^A \in \mathcal{B}(X)$, and the sequence $(s_n)_1^\infty = (\sum_{i=1}^k e_i^A)_{k=1}^\infty$ of elements in $\mathcal{B}(X)$ such that $\sum_{i=1}^\infty \left\|e_i^A\right\|$ converges. Thus, by problem 4, (s_n) converges to an operator in $\mathcal{B}(X)$. Since s_n consists of the partial sums of e^A , it is clear $s_n \to e^A$ and by uniqueness of limits in Banach spaces (which $\mathcal{B}(X)$ is), we have that $e^A \in \mathcal{B}(X)$ as wanted.

P6.

A sequence $\{h_n\}$ in a Hilbert space \mathcal{H} is said to **converge weakly** to $h \in \mathcal{H}$ if

$$\lim_{n \to \infty} \langle h_n, g \rangle = \langle h, g \rangle$$

for every $g \in \mathcal{H}$.

- (a) If $\{e_n\}$ is an orthonormal sequence in \mathcal{H} , show that $e_n \to 0$ weakly.
- (b) Show that if $h_n \to h$ in norm, then $h_n \to h$ weakly. Show that the converse is false, but that if $h_n \to h$ weakly and $||h_n|| \to ||h||$, then $h_n \to h$ in norm.

Solution.

The claim we want to prove is: $\lim_{n\to\infty}\langle e_n,g\rangle=\langle 0,g\rangle$. But $\langle 0,g\rangle=0$, so we have to show $\lim_{n\to\infty}\langle e_n,g\rangle=0$. Choose any $\epsilon>0$ and fix any $g\in\mathcal{H}$. By Bessell's inequality, we have that

$$\sum_{n=1}^{\infty} \langle e_n, g \rangle \le \|g\|^2$$

which implies that the sum on the left side converges. By the zero test for series, we have that the sequence where the *n*th term is the *n*th term in the sum above goes to zero i.e. $\lim_{n\to\infty} \langle e_n, g \rangle = 0$. This is what we wanted to show.

To show that if $h_n \to h$ in norm, then $h_n \to h$ converges weakly, first fix $g \in \mathcal{H}$. Since $h_n \to h$ in norm, then for any choice of $\epsilon > 0$, there exists an N > 0 such that if n > N, then $||h_n - h|| < \epsilon$. Now, consider, for any n > N:

$$|\langle h_n, g \rangle - \langle h, g \rangle|^2 = |\langle h_n - h, g \rangle|^2$$

By Cauchy-Schwarz: $|\langle h_n - h, g \rangle|^2 = \|h_n - h\| \cdot \|g\| < \epsilon \cdot \|g\|$. Note, this $\|g\|$ is simply a constant so we can re choose our N so that if n > N, then $\|h_n - h\| < \epsilon^2 / \|g\|$. Thus, we have that $|\langle h_n, g \rangle - \langle h, g \rangle|^2 < \epsilon^2$ which of course, implies that:

$$|\langle h_n, g \rangle - \langle h, g \rangle| < \epsilon$$

so that $\langle h_n, g \rangle$ converges to $\langle h, g \rangle$ for all $g \in \mathcal{H}$ proving that $h_n \to h$ weakly.

To show the converse does not hold, examine any orthonormal sequence in a given Hilbert space¹ (e.g. l^2). We know that for any $n \ge 1$, $||e_n - 0|| = ||e_n|| = 1$.

¹It is a fact that an orthnormal sequence exists for every non-trivial Hilbert space, but the reader may choose a space for which they know one exists

This shows that for $0 < \epsilon < 1$, for all choices of N > 0, if n > N, then $||e_n|| \ge \epsilon$ implying that e_n does not converge to 0 in norm. Thus, the converse fails. In fact, using the idea of Cauchy sequences and the Parallelogram law, one can prove that $\{e_n\}$ does not converge to any point of the given Hilbert space.

Recall, $h_n \to h$ in norm means that $||h_n - h|| \to 0$. To do this, we need to establish a few small results. First, recall by Proposition 1.22 that $||h_n - h||^2 = ||h_n||^2 - 2\text{Re}\langle h_n, h\rangle + ||h||^2$. Next, we are given $||h_n|| \to h$ so it follows by elementary properties of sequences that $||h_n||^2 \to ||h||^2$. Finally, we are given $h_n \to h$ weakly. So, choose g = h, then $\langle h_n, h \rangle \to \langle h, h \rangle$. Finally, we are ready to prove (b). Note we use (the just now) established results without stating them:

$$||h_n - h||^2 = ||h_n||^2 - 2\operatorname{Re}\langle h_n, h \rangle + ||h||^2$$

$$\implies \lim_{n \to \infty} ||h_n - h||^2 = ||h||^2 + 2\operatorname{Re}\langle h, h \rangle + ||h||^2$$

$$= 2||h||^2 - 2||h||^2 = 0$$

Thus, $||h_n - h||^2 \to 0$ and by taking the square root of both sides (each term in $||h_n - h||^2$ is clearly positive), we obtain the desired result.

P7.

Let S be the forward shift on l^2 . Verify that S^* is the backward shift on l^2 .

Solution.

Let $x, y \in l^2$. By Theorem 2.12, since $S \in \mathcal{B}(l^2)$, there exists S^* so that $\langle Sx, y \rangle = \langle x, S^*y \rangle$. We prove this S^* is the backward shift. Let B denote the backward shift on l^2 .

If $x=(x_1,x_2,\ldots)$, then $Sx=(0,x_1,x_2,\ldots)$ so if $\langle x,y\rangle=\sum_{i=1}^\infty x_j\overline{y_j}$ (definition of inner product in l^2), then $\langle Sx,y\rangle=\sum_{i=1}^\infty x_{j-1}\overline{y_j}$ where $x_0:=0$. Thus, $\langle Sx,y\rangle=\sum_{i=2}^\infty x_{j-1}\overline{y_j}$.

Similar to before, if $y=(y_1,y_2,\ldots)$, then $By=(y_2,y_3,\ldots)$. So, $\langle x,By\rangle=\sum_{i=1}^{\infty}x_j\overline{y_{j+1}}$. This is the same as saying, $\sum_{i=2}^{\infty}x_{j-1}\overline{y_j}$.

Thus, $\langle Sx, y \rangle = \sum_{i=2}^{\infty} x_{j-1} \overline{y_j} = \langle x, By \rangle$ so that the adjoint of the forward shift is the backward shift as wanted.

P8.

Let \mathcal{H} be a Hilbert space and let $S, T \in \mathcal{B}(\mathcal{H})$. Determine whether $\langle Tx, x \rangle = \langle Sx, x \rangle$ for all $x \in \mathcal{H}$, implies S = T.

Solution.

S and T are in $\mathcal{B}(\mathcal{H})$ so by Theorem 2.12, there exists adjoints S^* and T^* in $\mathcal{B}(\mathcal{H})$. We first show $S^* = T^*$. Note for all $x, k \in \mathcal{H}$, we have:

$$\langle Sx, h \rangle = \langle x, S^*h \rangle$$
 and $\langle Tx, h \rangle = \langle x, T^*h \rangle$

In particular, if we choose x=h, we have that $\langle Sx,x\rangle=\langle Tx,x\rangle$. In particular, this equality shows that for all x=h, we have $S^*(x)=T^*(x)$. Since $S^{**}=S$, we obtain:

For all
$$x = h$$
, $S(x) = T(x)$

Since this holds for all $x \in \mathcal{H}$, we have that S = T as wanted.

P9.

Let \mathcal{H} be a Hilbert space and let $P: \mathcal{H} \to M$ be the orthogonal projection of \mathcal{H} onto a closed subspace M of \mathcal{H} . Verify that P is self-adjoint and that $P^2 = P$.

Solution.

We know that the projection map $P \in \mathcal{B}(\mathcal{H})$. Thus, by theorem 2.12, there exists some map $P^* \in \mathcal{B}(\mathcal{H})$ such that $\langle Px, y \rangle = \langle x, P^*y \rangle$. We show $P^* = P$. By the projection theorem, there exists another projection $Q: \mathcal{H} \to M^{\perp}$ such that, x = Px + Qx for every $x \in \mathcal{H}$. Choose $x, y \in \mathcal{H}$. Then:

$$\langle Px, y \rangle = \langle Px, Py + Qy \rangle = \langle Px, Py \rangle + \langle Px, Qy \rangle$$

and,

$$\langle x, Py \rangle = \langle Px + Qx, Py \rangle = \langle Px, Py \rangle + \langle Qx, Py \rangle$$

Note that $Qx \in M^{\perp}$ so that by definition since $Py \in M$, we have $\langle Qx, Py \rangle = 0$ and similarly, $\langle Px, Qy \rangle = 0$. Thus, we have that $\langle Px, y \rangle = \langle Px, Py \rangle = \langle x, Py \rangle$ as wanted. Thus, P is self-adjoint.

To show $P^2 = P$, it suffices to note that if $x \in M$, then Px = x. Thus, $P^2(x \in \mathcal{H}) = P(Px)$ where Px is then in M since $P: \mathcal{H} \to M$. Thus, P(Px) = Px. Since x is arbitrary, we have $P^2 = P$.

P10.

For A and B in $\mathcal{B}(\mathcal{H})$ we have (c) $(\alpha A)^* = \overline{\alpha} A^*$ for $\alpha \in \mathbb{C}$ and (d) $(AB)^* = B^*A^*$.

Solution.

(c) By theorem 2.12, there exists $(\alpha A)^* \in \mathcal{B}(\mathcal{H})$ such that for $h, k \in \mathcal{H}$: $\langle \alpha A h, k \rangle = \langle h, (\alpha A)^* k \rangle$. Recall the property of inner product that: $\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle$ and $\alpha \langle x, y \rangle = \langle \alpha x, y \rangle$. From this, consider:

$$\alpha \langle Ah, k \rangle = \langle \alpha(Ah), k \rangle = \langle (\alpha A)k, \rangle$$

where we can say $\alpha(Ah) = (\alpha A)h$ since A lies in a linear space and

$$\alpha \langle Ah, k \rangle = \alpha \langle h, A^*k \rangle = \langle h, \overline{\alpha}(A^*(k)) \rangle = \langle h, (\overline{\alpha}A^*)k \rangle$$

Thus, we have that $\langle (\alpha A)h, k \rangle = \langle h, (\overline{\alpha}A^*)k \rangle$ implying that the since adjoints are unique, the adjoint of αA is $\overline{\alpha}A^*$ i.e. $(\alpha A)^* = \overline{\alpha}A^*$ as wanted.

(d) By problem 3, we know that $AB \in \mathcal{B}(\mathcal{H})$, thus by theorem 2.12, it follows that there exists a mapping $(AB)^*$ such that it is the adjoint of AB. Note since $Bh \in \mathcal{H}$ for arbitrary $h \in \mathcal{H}$, we have that for any $k \in \mathcal{H}$:

$$\langle A(Bh), k \rangle = \langle Bh, A^*k \rangle$$

and as noted before, we have

$$\langle (AB)h, k \rangle = \langle h, (AB)^*k \rangle$$

Since A(Bh) = (AB)h just by definition of AB, we obtain from the two equalities above,

$$\langle Bh, A^*k \rangle = \langle h, (AB)^*k \rangle$$

Furthermore, note since B^* and A^* are in $\mathcal{B}(\mathcal{H})$, so there exists an adjoint for the map B^*A^* . Thus, we can say:

$$\langle B^*(A*k), h \rangle = \langle A^*k, (B^*)^*h \rangle = \langle A^*k, Bh \rangle$$

where $(B^*)^*$ by Prop. 2.13. Note for the above equality, we have:

$$\overline{\langle h, B^*(A^*k)\rangle} = \overline{\langle Bh, A^*k\rangle}$$

$$\implies \langle h, B^*(A^*k)\rangle = \langle Bh, A^*k\rangle$$

because the conjugate of a conjugate of a complex number is the complex number itself. Thus, we obtain:

$$\langle h, B^*(A^*k) \rangle = \langle h, (B^*A^*)k \rangle$$

so that $\langle ABh,k\rangle=\langle h,(AB)^*k\rangle=\langle h,B^*A^*k\rangle$ so that $(AB)^*=B^*A^*$ by uniquness of adjoints.

P11.

Show that T^{-1} is linear given a linear bijective mapping T between vector spaces X and Y.

Solution.

T is bijective so T^{-1} exists. We want to show for a,b scalars, $x,y \in Y$, that $T^{-1}(ax+by)=aT^{-1}(x)+T^{-1}(y)$. Since T is surjective, we have that there exist some $x' \in X$ such that T(x')=x and similarly, $T(y' \in X)=y$. In particular, T(ax')=aT(x')=ax and T(by')=bT(y')=by since T is linear. Thus, we can write $T^{-1}(ax+by)$ as $T^{-1}(aT(x')+bT(y'))$. Since T is linear, we have that,

$$T^{-1}(ax + by) = T^{-1}(T(ax') + T(by')) = T^{-1}(T(ax' + by'))$$

since T and T^{-1} are inverses, we have that $T^{-1}(T(ax' + by')) = ax' + by'$. However, $T^{-1}(x) = x'$ and similarly, $T^{-1}(y) = y'$ so,

$$T^{-1}(ax + by) = aT^{-1}(x) + bT^{-1}(y)$$

as wanted.