5.4 Lois et espérance conditionnelles

Soit Z = (X, Y) un couple aléatoire à densité f. Comme dans le cas de couples discrets (voir Definition 3.3.10), on peut définir la loi conditionnelle de Y sachant X = x. On rappelle que f_X et f_Y sont les densités de X et Y.

Définition 5.4.1 (Densité conditionnelle) Soit $x \in \mathbb{R}$ tel que $f_X(x) > 0$. La fonction $f_{Y|X=x} : \mathbb{R} \to \mathbb{R}$ définie par

$$\forall y \in \mathbf{R}:$$
 $f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}$

est une densité, appelée *densité conditionnelle* de Y sachant X = x. De manière similaire, si $y \in \mathbf{R}$ tel que $f_Y(y) > 0$, la densité conditionnelle $f_{X|Y=y}$ de X sachant Y = y est définie par $f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$.

Remarque 5.4.2 On remarque que $f_{Y|X=x}$ est bien une densité pour tout $x \in \mathbf{R}$ tel que $f_X(x) > 0$; en effet, en utilisant la Proposition 5.2.1, on a

$$\int_{-\infty}^{+\infty} f_{Y|X=x}(y) \, dy = \frac{1}{f_X(x)} \int_{-\infty}^{+\infty} f(x,y) \, dy = \frac{1}{f_X(x)} f_X(x) = 1.$$

Définition 5.4.3 (Espérance conditionnelle) On suppose maintenant que Y possède une espérance.

(i) Pour tout $x \in \mathbf{R}$ tel que $f_X(x) > 0$, le nombre réel $\mathbb{E}(Y|X=x)$, défini par

$$\boxed{\mathbb{E}(Y|X=x) = \int_{-\infty}^{+\infty} y f_{Y|X=x}(y) dy},$$

est appelé *espérance conditionnelle* de Y sachant X = x.

(ii) Soit N = $\{x \in \mathbf{R} \mid f_X(x) = 0\}$ et définissons $\psi : \mathbf{R} \to \mathbf{R}$ par $\psi(x) = \mathbb{E}(Y|X = x)$ pour $x \in \mathbf{R} \setminus N$ et $\psi(x) = 0$ pour $x \in N$. La variable aléatoire $\mathbb{E}(Y|X)$, définie par

$$\mathbb{E}(Y|X) = \psi(X),$$

est appelée espérance conditionnelle de Y sachant X.

Remarque 5.4.4 (i) Soit N = $\{x \in \mathbf{R} \mid f_X(x) = 0\}$. Alors $\mathbf{P}(X \in N) = \int_N f_X(t) dt = 0$. En notant A = $\{X \notin N\}$, on a donc $\mathbf{P}(A) = 1$. Ainsi, on a

$$\mathbb{E}(Y|X)(\omega) = \psi(X(\omega)) = \mathbb{E}(Y|X = X(\omega))$$

pour $\omega \in A$ et $\mathbb{E}(Y|X)(\omega) = 0$ pour $\omega \notin A$.

(ii) En échangeant les rôles de X et Y, on définit de manière similaire $\mathbb{E}(X|Y)$, l'espérance conditionnelle de X sachant Y.

L'espérance conditionnelle possède la propriéte fondamentale suivante.

Proposition 5.4.5 Soit Z = (X, Y) un couple aléatoire à densité f. On suppose que Y possède une espérance. Alors, on a

$$\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X)) = \int_{-\infty}^{+\infty} \mathbb{E}(Y|X=x) f_X(x) dx.$$

Démonstration On a, par la formule de transfert (Proposition 5.2.4)

$$\begin{split} \mathbb{E}(\mathbb{E}(\mathbf{Y}|\mathbf{X})) &= \int_{-\infty}^{+\infty} \psi(x) f_{\mathbf{X}}(x) dx = \int_{-\infty}^{+\infty} \mathbb{E}(\mathbf{Y}|\mathbf{X} = x) f_{\mathbf{X}}(x) dx \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f_{\mathbf{Y}|\mathbf{X} = x}(y) f_{\mathbf{X}}(x) dy dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \frac{f(x,y)}{f_{\mathbf{X}}(x)} f_{\mathbf{X}}(x) dy dx \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x,y) dy dx = \int_{-\infty}^{+\infty} y \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy \\ &= \int_{-\infty}^{+\infty} y f_{\mathbf{Y}}(y) dy = \mathbb{E}(\mathbf{Y}). \end{split}$$

Exemple 5.4.6 Reprenons l'Exemple 5.1.3 (voir aussi 5.2.2 et 5.4.6). On rappelle que la loi f de Z = (X, Y) est la loi uniforme sur le triangle

$$T = \{(x, y) \in \mathbf{R}^2 \mid x \ge 0, y \ge 0, 0 \le y \le 1 - x\}.$$

Pour $x \in]0,1[$, on a $f_X(x) = 2 - 2x > 0$ et

$$f_{Y|X=x}(y) = 2\frac{\mathbf{1}_{T}(x,y)}{2-2x} = \frac{1}{1-x}\mathbf{1}_{[0,1-x]}(y)$$

La loi de Y sachant X = x est donc la loi uniforme $\mathcal{U}([0, 1-x])$. On a ainsi

$$\mathbb{E}(\mathbf{Y}|\mathbf{X}=x) = \frac{1-x}{2}$$

et donc

$$\mathbb{E}(Y|X) = \frac{1-X}{2}.$$

Rappelons (vor Exemple 5.3.3) que $\mathbb{E}(Y) = \mathbb{E}(X) = 1/3$. On a donc bien

$$\mathbb{E}(\mathbb{E}(Y|X)) = \mathbb{E}\left(\frac{1-X}{2}\right) = \frac{1-1/3}{2} = 1/3 = \mathbb{E}(Y).$$

5.5 Sommes de variables aléatoires indépendantes

Soit Z = (X, Y) un couple aléatoire à densité. Supposons que X et Y sont **in-dépendantes.**

Nous voulons déterminer la densité de la v.a.r. X + Y.

Proposition 5.5.1 Soient X et Y des v.a.r. indépendantes, de densité f_X et f_Y respectivement. Alors X + Y est une v.a.r. continue de densité f_{X+Y} donnée par

$$\forall x \in \mathbf{R}: \qquad f_{X+Y}(x) = \int_{-\infty}^{+\infty} f_X(x-y) f_Y(y) dy.$$

Démonstration Soit f la densité de Z = (X, Y). Rappelons (voir Proposition 5.2.3) que, comme X et Y sont indépendants, on a $f(x, y) = f_X(x) f_Y(y)$ pour tout $(x, y) \in \mathbb{R}^2$. Calculons la fonction de répartition F_{X+Y} de X+Y. Soit $t \in \mathbb{R}$. Considérons le demi-plan

$$D = \{(x, y) \in \mathbf{R}^2 \mid x + y \le t\} = \{(x, y) \in \mathbf{R}^2 \mid x \le t - y\}.$$

On a

$$F_{X+Y}(t) = \mathbf{P}(X+Y \le t)$$

$$= \int_{D} f(x,y) dx dy = \int_{D} f_{X}(x) f_{Y}(y) dx dy =$$

$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{t-y} f_{X}(x) f_{Y}(y) dx \right) dy$$

$$= \int_{-\infty}^{+\infty} f_{Y}(y) \left(\int_{-\infty}^{t-y} f_{X}(x) dx \right) dy$$

$$= \int_{-\infty}^{+\infty} f_{Y}(y) \left(\int_{-\infty}^{t} f_{X}(s-y) ds \right) dy$$

$$= \int_{-\infty}^{t} \left(\int_{-\infty}^{+\infty} f_{X}(s-y) f_{Y}(y) ds \right) dy$$

Il s'ensuit que la densité f_{X+Y} de X+Y est $s\mapsto \int_{-\infty}^{+\infty}f_X(s-y)f_Y(y)\,ds.$

Remarque 5.5.2 La fonction $x \mapsto \int_{-\infty}^{+\infty} f_X(x-y) f_Y(y) dy$ comme dans la Proposition 5.5.1 est appelé le **produit de convolution** des fonctions f_X et f_Y .

Exemple 5.5.3 Soient X et Y des v.a.r. indépendantes, suivant toutes deux une loi normale centrée-réduite $\mathcal{N}(0,1)$. On a donc

$$f_{\rm X}(x) = f_{\rm Y}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

En se rappelant que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$, on a, pour la densité f_{X+Y} de X+Y:

$$f_{X+Y}(x) = \int_{-\infty}^{+\infty} f_X(x-y) f_Y(y) dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2}{2}} e^{-\frac{y^2}{2}} dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2+y^2}{2}} dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-(\frac{x^2}{2} - xy + y^2)} dy$$

$$= \frac{1}{2\pi} e^{-x^2/4} \int_{-\infty}^{+\infty} e^{-(y - \frac{x}{2})^2} dy$$

$$= \frac{1}{2\pi} e^{-x^2/4} \int_{-\infty}^{+\infty} e^{-(y - \frac{x}{2})^2} dy$$

$$= \frac{1}{2\pi} e^{-x^2/4} \int_{-\infty}^{+\infty} e^{-t^2} dt$$

$$= \frac{1}{2\pi} e^{-x^2/4} \sqrt{\pi} = \frac{1}{2\sqrt{\pi}} e^{-x^2/4}.$$

Ceci montre que X + Y ~ $\mathcal{N}(0,2)$. Plus généralement, avec un calcul similaire, on peut montrer que, si X ~ $\mathcal{N}(m_1,\sigma_1)$ et Y ~ $\mathcal{N}(m_2,\sigma_2)$, alors X + Y ~ $\mathcal{N}(m_1+m_2,\sigma_1+\sigma_2)$.

5.6 Changements de variables

Avant d'aborder le cas d'un couple aléatoire, traitons d'abord le cas d'une v.a.r. dans un cas particulier.

Proposition 5.6.1 Soit X une v.a.r. admettant une densité f_X . Soit $\phi: \mathbf{R} \to \mathbf{R}$ une bijection dérivable et strictement croissante (respectivement, décroissante). Alors la v.a.r. $\phi(X)$ admet un densité f_Y donnée par

$$\forall y \in \mathbf{R}: f_{Y}(y) = \frac{1}{\varphi'(\varphi^{-1}(y))} f_{X}(\varphi^{-1}(y))$$

(respectivement,

$$\forall y \in \mathbf{R}: \qquad f_{\mathbf{Y}}(y) = -\frac{1}{\varphi'(\varphi^{-1}(y))} f_{\mathbf{X}}(\varphi^{-1}(y)).$$

Démonstration Soit $y \in \mathbf{R}$. Supposons que φ est croissante Alors, en notant F_X et F_Y les fonctions de répartition de X et Y, on a

$$F_Y(y) = \mathbf{P}(\phi(X) \le y) = \mathbf{P}(X \le \phi^{-1}(y)) = F_X(\phi^{-1}(y)).$$

En dérivant F_Y , on obtient $f_Y(y) = \frac{1}{\varphi'(\varphi^{-1}(y))} f_X(\varphi^{-1}(y))$.

Supposons que φ est décroissante. Alors

$$F_Y(y) = \mathbf{P}(\phi(X) \le y) = \mathbf{P}(X \ge \phi^{-1}(y)) = 1 - F_X(\phi^{-1}(y)).$$

En dérivant F_Y , on obtient $f_Y(y) = -\frac{1}{\varphi'(\varphi^{-1}(y))} f_X(\varphi^{-1}(y))$.

Soit Z = (X, Y) un couple aléatoire à densité f. Posons D = $\{(x, y \in \mathbf{R}^2 \mid f(x, y) > 0\}$ et soit

$$\varphi: D \to \mathbf{R}^2$$
, $(x, y) \mapsto (\varphi_1(x, y), \varphi_2(x, y))$.

On cherche à determiner (sous certaines conditions) la densité du couple aléatoire $\phi(X,Y)$.

On supposera que $\phi:D\to\phi(D)$ est bijective, que ϕ est continûment dérivable. Soit $J(\phi)$ le déterminant de la matrice **matrice jacobienne** de ϕ , c-à-d

$$J(\varphi)(x,y) = \det \begin{pmatrix} \frac{\partial \varphi_1(x,y)}{\partial x} & \frac{\partial \varphi_2(x,y)}{\partial x} \\ \frac{\partial \varphi_1(x,y)}{\partial y} & \frac{\partial \varphi_2(x,y)}{\partial y} \end{pmatrix}$$

Proposition 5.6.2 Soit $f_{(X,Y)}$ la densité du couple (X,Y). Posons $T = \phi_1(X,Y)$ et $U = \phi_2(X,Y)$. La densité $f_{(T,U)}$ du couple aléatoire $(T,U) = \phi(X,Y)$ est donnée par la formule suivante :

$$f_{(T,U)}(t,u)) = \begin{cases} |J(\varphi^{-1})(t,u)|f_{(X,Y)}(\varphi^{-1}(t,u)) = \frac{1}{|J(\varphi)(\varphi^{-1}(t,u))|}f_{(X,Y)}(\varphi^{-1}(t,u)) & si(t,u) \in \varphi(D) \\ 0 & sinon. \end{cases}$$

Démonstration Omise

Exemple 5.6.3 (Coordonnées polaires) Soit (X, Y) un couple aléatoire à densité $f_{(X,Y)}$. Soit (R,Θ) le couple aléatoire te que $X = R\cos\Theta$ et $Y = R\sin\Theta$. Il s'agit ici du changement de variables en coordonnées polaires : φ est une bijection dérivable entre $\mathbb{R}^2 \setminus \{0\}$ et $]0, +\infty[\times[0, 2\pi[; l'expression de <math>\varphi^{-1}$ est simple : $\varphi^{-1}(r,\theta) = (r\cos\theta, r\sin\theta)$. On a

$$J(\varphi^{-1})(r,\theta) = \det\begin{pmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & r\cos\theta \end{pmatrix} = r$$

La densité de (R, Θ) est donc

$$f_{(R,\Theta)}(r,\theta)) = \begin{cases} r f_{(X,Y)}(r\cos\theta, r\sin\theta) & \text{si } (r,\theta) \in \varphi(D) \\ 0 & \text{sinon,} \end{cases}$$

où D = $\{(x, y \in \mathbf{R}^2 \mid f_{(X,Y)}(x, y) > 0\}.$

Supposons, par exemple, que X et Y soient indépendantes, toutes deux de loi $\mathcal{N}(0,1)$. La densité de (X, Y) est donnée par $f_{(X,Y)}(x,y) = \frac{1}{2\pi}e^{-(x^2+y^2)/2}$ Alors la densité de (R, Θ) est

$$f_{(R,\Theta)}(r,\theta)) = \frac{1}{2\pi} r e^{-r^2/2}$$

pour $(r, \theta) \in]0, +\infty[\times[0, 2\pi[$.