Задача 1 (8 баллов)

Записать слабое решение уравнения Хопфа $u_t + uu_x = 0$ для плотности u(x, t) сохраняющейся величины при t > 0 с начальным условием

$$u(x, 0) = \begin{cases} 1 & \text{при } x < -1, \\ 0 & \text{при } -1 < x < 0, \\ 2 & \text{при } 0 < x < 1, \\ 0 & \text{при } x > 1. \end{cases}$$

Построить пространственно-временную диаграмму с характеристиками и положениями разрывов слабого решения.

Задача 2 (8 баллов)

Записать слабое решение уравнения $u_t + u^2 u_x = 0$ для плотности u(x, t) сохраняющейся величины при t > 0 с начальным условием

$$u(x, 0) = \begin{cases} 1 & \text{при } x < -1, \\ 0 & \text{при } -1 < x < 0, \\ 2 & \text{при } 0 < x < 1, \\ 1 & \text{при } x > 1. \end{cases}$$

Построить пространственно-временную диаграмму с характеристиками и положениями разрывов слабого решения. Примечание: необходимо лишь записать алгебраическое уравнение для положений разрывов, а выражать координаты разрывов в радикалах необязательно, однако необходимо найти асимптотики положений разрывов при $t \to \infty$ (главный и следующий за ним члены).

Задача 3 (7 баллов)

Записать слабое решение уравнения $u_t + u^2 u_x = 0$ для плотности u(x, t) сохраняющейся величины при t > 0 с начальным условием

$$u(x, 0) = \begin{cases} 0 & \text{при } x < -1, \\ -1 & \text{при } -1 < x < 0, \\ 1 & \text{при } 0 < x < 1, \\ 0 & \text{при } x > 1. \end{cases}$$

Построить пространственно-временную диаграмму с характеристиками и положениями разрывов слабого решения. Примечание: необходимо лишь записать алгебраическое уравнение для положения разрыва, а выражать координату разрыва в радикалах необязательно, однако необходимо записать асимптотики положений разрывов при $t \to \infty$ (главный и следующий за ним члены).

Задача 4 (6 баллов)

Записать слабое решение уравнения Хопфа $u_t + uu_x = 0$ для плотности u(x, t) сохраняющейся величины при t > 0 с начальным условием

$$u(x, 0) = \begin{cases} 1 - x^2 & \text{при } |x| < 1, \\ 0 & \text{при } |x| > 1. \end{cases}$$

Построить пространственно-временную диаграмму с характеристиками и положениями разрывов слабого решения.

Задача 5 (7 баллов)

Записать слабое решение уравнения $u_t + u + u^2u_x = 0$ для плотности u(x,t) распадающихся частиц (с периодом полураспада $\ln 2$) при t > 0 с начальным условием $u(x,0) = \frac{1}{\sqrt{|x|}}$. Построить пространственно-временную диаграмму с характеристиками и положениями разрывов слабого решения. Выразить зависимости положения разрыва и амплитуды волны от времени t. Указания: после получения решения методом характеристик удобно ввести новое время $\tilde{t} = \frac{1-\exp(-2t)}{2}$; можно использовать системы компьютерной алгебры для упрощения аналитических выражений при нахождении положения разрыва.

Задача 6 (4 балла)

Найти время и координату первого опрокидывания фронта в решении уравнения $u_t + u(1-u) u_x = 0$ для плотности u(x, t) сохраняющейся величины с начальным условием

$$u(x, 0) = \begin{cases} a(1 - x^2) & \text{при } |x| < 1, \\ 0 & \text{при } |x| > 1. \end{cases}$$

Задача 7 (3 балла)

Пусть u(x, t) есть слабое решение уравнения $u_t + u^k u_x = 0$ для плотности сохраняющейся величины с начальным условием u(x, 0) = f(x), k > 0. Доказать, что $v(x, t) = e^{-vt} u\left(x, \frac{1-e^{-kvt}}{kv}\right)$ есть слабое решение уравнения $v_t + vv + v^k v_x = 0$ для плотности распадающейся величины с тем же начальным условием v(x, 0) = f(x).

Задача 8 (5 баллов)

Записать слабое решение уравнения $u_t + vu + uu_x = 0$ для плотности u(x, t) распадающихся частиц при t > 0 с начальным условием

$$u(x, 0) = \begin{cases} 1 & \text{при } |x| > 1, \\ 2 - |x| & \text{при } |x| < 1 \end{cases}$$

и значениями параметра ν : а) $\nu=\frac{1}{2}$, б) $\nu=2$ (значение ν определяется период полураспада частиц $\frac{\ln 2}{\nu}$). Построить пространственно-временные диаграммы с характеристиками и положениями разрывов слабых решений. Выразить зависимости положения разрыва и амплитуды волны от времени t.

Указание: после получения решения методом характеристик удобно ввести новое время $\tilde{t} = \frac{1 - \exp(-\nu t)}{\nu}$.

Задачи 9 а), б) (9 баллов)

Поток автомобилей на шоссе описывается уравнением неразрывности $\frac{\partial \rho}{\partial t} + \frac{\partial q}{\partial x} = 0$, где ρ — линейная плотность автомобилей на шоссе (среднее количество автомобилей на единицу длины), q — плотность потока в направлении увеличения x. Изначально, при $t \to -\infty$, поток стационарен со средней скоростью автомобилей а) $v_0 = 50$ км/ч, б) $v_0 = 75$ км/ч. Вне

пространственно-временной области (клина) $0 < x < v_0$ t на шоссе открыты 4 полосы для движения и плотность потока связана с плотностью посредством функциональной зависимости $q = Q_{\rm I}(\rho), \, Q_{\rm I}(\rho) = a\rho \ln \frac{\rho_j}{\rho}, \,$ где ρ_j — максимальная плотность данного шоссе (при которой поток перестаёт двигаться) и a = 25 км/ч — некоторые постоянные параметры. В момент t = 0 в точке t = 0 половина — t = 0 в точке t = 0 половина — t = 0 в точке t = 0 половина — t = 0 потока связана с плотностью иной функциональной зависимостью t = 0 и t = 0 построить пространственно-временные диаграммы с характеристиками и положениями разрывов слабых решений. На диаграммах отобразить движения двух автомобилей, находившихся в моменты времени t = 1 мин, t = 0 мин в позиции t = 0 км и рассчитать время, за которое эти автомобили проедут t = 0 км и достигнут позиции t = 0 км.

Out[0]=

Задача 10 (7 баллов)

Определить, при каких условиях неоднородное уравнение Хопфа $u_t + uu_x = \frac{A}{a^2 + (x - Ut)^2}$ имеет гладкое решение для u(x, t) при начальном условии $u(x, t \to -\infty) = u_0$. Записать это гладкое решение. Считать U > 0, a > 0. Построить волновые профили при значениях параметров A = 1, $a = 2\pi$, $u_0 = 1$, U = 2, U = 2,

Задача 11 (3 балла)

Записать слабое решение уравнения Хопфа $u_t + uu_x = 0$ для плотности u(x, t) сохраняющейся величины при t > 0 и x = 0 с начальным и граничным условиями

$$u(x, 0) = 0$$
 при $x > 0$

И

$$u(0, t) = t$$
 при $t > 0$.

Построить пространственно-временную диаграмму с характеристиками и положениями разрывов слабого решения.

Задача 12 (7 баллов)

Найти положение разрыва в слабом решении уравнения Хопфа $u_t + au^\alpha u_x = 0$ для плотности u(x, t) сохраняющейся величины при t > 0 и x = 0 с начальным и граничным условиями

$$u(x, 0) = 0$$
 при $x > 0$

И

$$u(0, t) = bt^{\beta}$$
 при $t > 0$,

где $a>0,\,b>0,\,\alpha>0,\,\beta>0$. Указание: рассмотреть задачу как обобщение задачи 11.

Задача 13 (6 баллов)

Записать решение уравнения Бюргерса $c_t + cc_x = \nu c_{xx}$ для плотности волнового поля c(x, t) с начальным условием $c(x, 0) = A \sin kx$, где ν , A и k — положительные константы. Записать главный член асимптотики решения при $t \to \infty$. Построить графики, качественно описывающие эволюцию поля c(x, t) во времени для различных начальных значений эффективного числа Рейнольдса $Re = \frac{A}{2 \nu k} = 0.1$, 1 и 10.

Указания: использовать замену Коула — Хопфа, уравнение теплопроводности решать методом разделения переменных, выразить ответ через модифицированные функции Бесселя $I_n(z)$, используя их интегральное представление $I_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{z\cos\theta} \cos n\theta \, d\theta$ (для целых n).

Задача 14 (5 баллов)

Записать решение уравнения Бюргерса $c_t + cc_x = \nu c_{xx}$ для плотности волнового поля c(x, t) с начальным условием

$$c(x, 0) = \begin{cases} c_{-} & \text{при } x < 0, \\ c_{+} & \text{при } x > 0, \end{cases}$$

где v>0 и c_\pm — константы. Записать главный член асимптотики решения при $t\to\infty$ и фиксированных значениях $x-\frac{c_++c_-}{2}$ t. Построить графики, качественно описывающие эволюцию поля c(x,t) во времени при $c_-< c_+$ и $c_-> c_+$.

Указания: использовать замену Коула — Хопфа, выразить ответ через функцию ошибок.

Задача 15 (5 баллов)

Записать решение уравнения Бюргерса $c_t+cc_x=\nu c_{xx}$ для плотности волнового поля c(x,t) с начальным условием $c(x,0)=c_0+A\delta(x)$, где v>0, c_0 и A — константы и $\delta(x)$ — дельта-функция. Построить графики решений (серию зависимостей от x при разных t) для начальных чисел Рейнольдса $\mathrm{Re}=\frac{A}{2\,\nu}=0.1,1$ и 10 при $c_0=1$. Найти зависимость числа Рейнольдса от времени. Записать главный член асимптотики решения при $t\to\infty$ и фиксированных значениях $x-c_0\,t$.

Указания: использовать замену $c = c_0 + \tilde{c}$, $x = c_0 t + \tilde{x}$; использовать замену Коула — Хопфа; выразить ответ через функцию ошибок.

Задача 16 (5 баллов)

Записать решение уравнения Бюргерса $c_t + cc_x = c_{xx}$ для плотности волнового поля c(x, t) с начальным условием $c(x, 0) = \frac{2 + e^{20 + x/2}}{1 + e^{20 + x/2} + e^{20 + x}}$. Построить графики, качественно описывающие эволюцию поля c(x, t) во времени. Найти зависимость мощности потерь $\int_{-\infty}^{\infty} c_x^2 dx$ от времени.

Записать главный член асимптотики решения при $t \to \infty$ и фиксированных значениях x - t.

Задачи 17 а), б), в)

Записать интегро-дифференциальные уравнения для скалярного поля u(r,t) (или просто u(x,t) в одномерном случае), соответствующие следующим дисперсионным соотношениям (записанным для циклической частоты ω при действительных волновых векторах k или волновых числах k): а) $\omega = \Omega \operatorname{sign} k$, б) $\omega = ck$, в) $\omega = \alpha \sqrt{k}$, где Ω , α — постоянные и $k = |k| = \sqrt{k_x^2 + k_y^2}$, α — двумерный волновой вектор.

Задачи 18 а), б), в), г), д)

С помощью метода стационарной фазы определить главный член асимптотического разложения скалярного волнового поля u(x, t) при $t \to +\infty$ с начальными условиями $u(x, t = 0) = Ae^{-x^2/2a^2}$, $u_t(x, t = 0) = 0$ и дисперсионными соотношениемя:

а) $\omega^2 = gh$ (гравитационные волны на поверхности глубокой воды, g — ускорение свободного падения);

б) $\omega^2 = \alpha h^3$ (капиллярные волны на поверхности глубокой воды, $\alpha = T/\rho$ — отношение коэффициента поверхностного натяжения T и плотности ρ);

в) $\omega^2 = c^2 h^2 + \Omega^2$ (электромагнитные и электростатические волны в плазме, Ω — плазменная частота, c — скорость света для поперечных электромагнитных волн и тепловая скорость электронов для продольных электростатических волн; волны в волноводах и световодах: Ω — критическая частота, c — скорость света);

г) $\omega^2 = c^2h^2\big(1+l^2h^2\big)$ (гравитационные и капиллярные волны на поверхности мелкой воды, $c=\sqrt{gH}$ — корент из произведения ускорения свободного падения g и глубины H, $l=\sqrt{T/\rho gH^2-1/3}$, T — коэффициент поверхностного натяжения, ρ — плотность); д) $\omega^2 = c^2h^2/\big(1+l^2h^2\big)$.

Считать A, a, c, g, l, Ω , и α положительными константами. Построить пространственно-временные волновые диаграммы с линиями постоянной фазы и групповыми линиями, определить характерные скорости распространения переднего и заднего (если есть) волновых фронтов, оценить характерное количество волновых горбов в зависимости от времени t; определить, как движутся волновые горбы относительно волновых фронтов.