FEAL-4 Basic Differential Attack

- If $A_0 \oplus A_1 = 0$ then $F(A_0) = F(A_1)$, p=1.
- If $A_0 \oplus A_1 = 0x80800000$ then $F(A_0) \oplus F(A_1) = 0x02000000$, p=1
- Choose (P₀, P₁):
- $P_0 \oplus P_1 = 0 \times 8080000080800000$
- P'= $P_0 \oplus P_1$, C'= $C_0 \oplus C_1$
- L'=0x02000000⊕Z', Y'=0x80800000 ⊕ X'
- For C= (L,R) we have $Y = L \oplus R$
- Solve for sub-key K₃: Z'= 0x02000000⊕L'
- Compute $Y_0 = L_0 \oplus R_0$, $Y_1 = L_1 \oplus R_1$
- Guess K₃ and compute guessed Z₀, Z₁
 - Note: $Z_i = F(Y_i \oplus K_3)$
- Compare true Z' to guessed Z'

