Lecture 16: Shortest Paths II - Dijkstra

Lecture Overview

- Review
- Shortest paths in DAGs
- Shortest paths in graphs without negative edges
- Dijkstra's Algorithm

Readings

CLRS, Sections 24.2-24.3

Review

d[v] is the length of the current shortest path from starting vertex s. Through a process of relaxation, d[v] should eventually become $\delta(s, v)$, which is the length of the shortest pathfrom s to v. $\Pi[v]$ is the predecessor of v in the shortest path from s to v.

Basic operation in shortest path computation is the relaxation operation

RELAX
$$(u, v, w)$$

if $d[v] > d[u] + w(u, v)$
then $d[v] \leftarrow d[u] + w(u, v)$
 $\Pi[v] \leftarrow u$

Relaxation is Safe

Lemma: The relaxation algorithm maintains the invariant that $d[v] \geq \delta(s, v)$ for all $v \in V$.

Proof: By induction on the number of steps.

Consider RELAX(u, v, w). By induction $d[u] \geq \delta(s, u)$. By the triangle inequality, $\delta(s, v) \leq \delta(s, u) + \delta(u, v)$. This means that $\delta(s, v) \leq d[u] + w(u, v)$, since $d[u] \geq \delta(s, u)$ and $w(u, v) \geq \delta(u, v)$. So setting d[v] = d[u] + w(u, v) is safe.

DAGs:

Can't have negative cycles because there are no cycles!

- 1. Topologically sort the DAG. Path from u to v implies that u is before v in the linear ordering.
- 2. One pass over vertices in topologically sorted order relaxing each edge that leaves each vertex.

$$\Theta(V+E)$$
 time

Example:

Figure 1: Shortest Path using Topological Sort.

Vertices sorted left to right in topological order

Process r: stays ∞ . All vertices to the left of s will be ∞ by definition

Process s: $t : \infty \to 2$ $x : \infty \to 6$ (see top of Figure 2)

Figure 2: Preview of Dynamic Programming

DIJKSTRA Demo

Figure 3: Dijkstra Demonstration with Balls and String.

Dijkstra's Algorithm

For each edge (u, v) ϵ E, assume $w(u, v) \geq 0$, maintain a set S of vertices whose final shortest path weights have been determined. Repeatedly select u ϵ V - S with $\underline{\text{minimum}}$ shortest path estimate, add u to S, relax all edges out of u.

Pseudo-code

```
Dijkstra (G, W, s) //uses priority queue Q

Initialize (G, s)

S \leftarrow \phi

Q \leftarrow V[G] //Insert into Q

while Q \neq \phi

do u \leftarrow \text{EXTRACT-MIN}(Q) //deletes u from Q

S = S \cup \{u\}

for each vertex v \in \text{Adj}[u]

do RELAX (u, v, w) \leftarrow \text{this} is an implicit DECREASE_KEY operation
```

Example

Figure 4: Dijkstra Execution

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in V-S to add to set S.

Correctness: We know relaxation is safe. The key observation is that each time a vertex u is added to set S, we have $d[u] = \delta(s, u)$.

Dijkstra Complexity

 $\Theta(v)$ inserts into priority queue

 $\Theta(v)$ EXTRACT_MIN operations

 $\Theta(E)$ DECREASE_KEY operations

Array impl:

 $\Theta(v)$ time for extra min

 $\Theta(1)$ for decrease key

Total: $\Theta(V.V + E.1) = \Theta(V^2 + E) = \Theta(V^2)$

Binary min-heap:

 $\Theta(\lg V)$ for extract min

 $\Theta(\lg V)$ for decrease key

Total: $\Theta(V \lg V + E \lg V)$

Fibonacci heap (not covered in 6.006):

 $\Theta(\lg V)$ for extract min

 $\Theta(1)$ for decrease key

amortized cost

Total: $\Theta(V \lg V + E)$