上海大学 2011 ~ 2012 学年秋季学期试卷(A 卷	卷)
-------------------------------	----

成	
绩	

课程名: <u>线性代数(B)</u> 课程号: <u>01013010</u> 学分: <u>3</u> 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

题号	1	1 1	111	四	五.	六	七	八
得分								

- 一、填空题: (本大题含 10 小题,每小题 3 分,共 30 分) (提示:请在每小题的空格中填上正确答案。错填或不填均无分。)
- 1. 设 $\vec{\alpha}$ 和 $\vec{\beta}$ 为相互正交的单位向量,则内积 $\left[3\vec{\alpha}+\vec{\beta},\vec{\alpha}-\vec{\beta}\right]=$ _____;
- 2. 若三阶行列式的第1列元素依次为1,2,3,第2列元素的余子式依次为1,2,x,则

 $x = \underline{\hspace{1cm}}$

- 3. 由三维列向量 $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ 构成矩阵 $\mathbf{A} = (\vec{\alpha}, \vec{\beta}, \vec{\gamma})$ 和 $\mathbf{B} = 2(\vec{\alpha} + \vec{\beta}, \vec{\beta} + \vec{\gamma}, \vec{\gamma} + \vec{\alpha})$,若行列式 $|\mathbf{A}| = 1$,则行列式 $|\mathbf{B}| =$ _____;
- **4.** 设矩阵 **A** 满足 **A**² 2**A** 4**E** = **O**,则 (**A** + **E**)⁻¹ = ;
- 5. $\stackrel{\text{Tr}}{\bowtie} \mathbf{A} = \begin{bmatrix} 0 & \frac{1}{2} \\ 1 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mathbb{M} \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{B} \end{bmatrix}^{-1} = \underline{\qquad};$
- 6. 当 x = 时,矩阵 $\begin{pmatrix} 1 & 2 & 1 \\ 2 & x & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 的秩达到最小;

- 8. 设**A** 是三阶正交阵,则行列式 $||\mathbf{A}||\mathbf{A}^T + \mathbf{A}^*|| =$;
- 9. 设 **A** 的秩为 2 , $\vec{\eta}_1, \vec{\eta}_2, \vec{\eta}_3$ 是三元非齐次线性方程组 $\vec{A}\vec{x} = \vec{b}$ 的三个解,若 $\vec{\eta}_1 = (2,1,2)^T$ 以及 $\vec{\eta}_2 + \vec{\eta}_3 = (1,0,1)^T$,那么 $\vec{A}\vec{x} = \vec{b}$ 的通解 $\vec{x} = \vec{b}$;
- **10.** 设二阶方阵 **A** 的特征值为 1 和 2 ,且 $(0,1)^T$ 和 $(1,1)^T$ 分别为对应的特征向量,则

草 稿 纸

注: 教师应使用计算机处理试题的文字、公式、图表等; 学生应使用水笔或圆珠笔答题。

_						1
	、单项选择题:(本大题含 5 小题,每小题 2 (提示:在每小题列出的备选项中只有一个符合题错选、多选或未选均无分。)			后的括 号	号内 。	三、(本大题 8 分) 计算行列式 D = a b
1.	设 \mathbf{A} 和 \mathbf{B} 都 是 \mathbf{n} 阶 可 逆 矩 阵 , 则			()	b
	$\mathbf{A.} \left \mathbf{A} + \mathbf{B} \right = \left \mathbf{A} \right + \left \mathbf{B} \right $	В.	$ \mathbf{A} \mathbf{B} = \mathbf{B} \mathbf{A} $			解:
	C. $(A + B)^2 = A^2 + 2AB + B^2$	D.	$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{B}^{-1}$			
2.	设 A 是 $m \times n$ 矩阵,且 AB = AC ,则			()	
	A. 当A≠O时, B=C	В.	$\stackrel{\text{"}}{=} m = n $ 时, $\mathbf{B} = \mathbf{C}$			
	C. $\stackrel{\text{def}}{=} r(\mathbf{A}) = m$ 时, $\mathbf{B} = \mathbf{C}$	D.	$\stackrel{\text{"}}{\rightrightarrows} r(\mathbf{A}) = n$ 时, $\mathbf{B} = \mathbf{C}$			
3.	设非齐次线性方程组 $\vec{Ax} = \vec{b}$ 存在无穷多个解,则			()	
	A. A 的行向量组线性相关	В.	A 的行向量组线性无关			
	C. A 的列向量组线性相关	D.	A 的列向量组线性无关			
4.	设A和B是同阶的正交阵,则下列结论错误的是			()	草
	A. A + B 为正交阵	В.	AB 为正交阵			
	C. $\mathbf{A}^T \mathbf{B}^T$ 为正交阵	D.	当 A B < 0 时, A + B =	: 0		
5.	设 A 和 B 相似,则下列结论错误的是			()	
	A. \mathbf{A}^T 和 \mathbf{B}^T 也相似	В.	A 和B 有相同的特征值			
	C. A 和 B 都相似于相同的对角阵	D.	$ \mathbf{A} = \mathbf{B} $			

三、(本大题 8 分) 计算行列式
$$D = \begin{vmatrix} -a & a & b & b \\ a & -a & b & b \\ b & b & -a & a \\ b & b & a & -a \end{vmatrix}$$

稿 纸

					$\int 1$	0)		(1	0	0	0)	
ш	(木十斯	10	分)	戸知拓陸▲	_ 0	1		р С –	1	1	0	0	芋 v 满豆铂陈方积
四、(本大题 10 分)已知矩阵 A	1	0	,	B – C =	1	1	1	0	, 石 A M C 尼 件 刀 住				
					0	1			1	1	1	1)	

 $(\mathbf{C}^{-1}\mathbf{B} - \mathbf{E})\mathbf{X} = \mathbf{C}^{-1}\mathbf{A}$, 试求 \mathbf{X} (其中矩阵 \mathbf{C} 可逆, \mathbf{E} 是单位矩阵)。

解:

草 稿 纸

五、(本大题 12 分) 求向量组 $\vec{a}_1 = (1,1,2,3)^T$, $\vec{a}_2 = (1,-1,1,1)^T$, $\vec{a}_3 = (1,3,3,5)^T$, $\vec{a}_4 = (4,-2,5,6)^T$ 的秩和它的一个极大无关组,并将其它向量用此极大无关组线性表示。解:

六、(本大题 12 分) 试讨论 k 取何值时,线性方程组	$ \begin{cases} kx_1 + x_2 + x_3 = k \\ 2x_1 + 2x_2 + kx_3 = 0 \end{cases} $ $ \begin{cases} x_1 + 2x_2 + x_3 = 0 \end{cases} $ $ \begin{cases} x_1 + 2x_2 + x_3 = 0 \end{cases} $
有无穷多解,并在有无穷多解的情况下求出其通解。 解:	

七、(本大题 10 分) 设二次型 $f=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_3$ 经过一正交变换化为标准形 $f=y_2^2+2y_3^2$,试确定参数 a 以及所用的正交变换。

解:

八、(本大题 8 分) 设向量组 $\vec{\alpha}_1$, $\vec{\alpha}_2$, \cdots , $\vec{\alpha}_i$ 线性无关, $\vec{\beta}$ 是非零向量且满足 $[\vec{\beta}, \vec{\alpha}_i]$ = 0 (i = 1, \cdots , t),试证明向量组 $\vec{\alpha}_1$ + $\vec{\alpha}_2$ + \cdots + $\vec{\alpha}_i$ + $\vec{\beta}$, $\vec{\alpha}_1$, $\vec{\alpha}_2$, \cdots , $\vec{\alpha}_i$ 线性无关。证明:

草 稿 纸