Сингулярное разложение

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Определение сингулярного разложения
- 2 Сокращенное сингулярное разложение
- ③ Применения сингулярного разложения
- 4 Простейшая рекомендательная система

Сингулярное разложение

Сингулярное разложение (singular value decomposition, SVD):

Каждая матрица $X \in \mathbb{R}^{N \times D}$, rank X = R, может быть разложена:

$$X = U\Sigma V^T$$

где

- $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$
- $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}, \ \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_R \ge 0$
- $U^TU = I, V^TV = I, I \in \mathbb{R}^{R \times R}$ единичная матрица.

Эквивалентно:

$$X = \sum_{i=1}^{R} \mathbf{u}_i \sigma_i \mathbf{v}_i^T$$

где u_i - i-ая колонка U and v_i^T - i-ая строка V^T .

Интерпретация сингулярного разложения

- ullet Столбцы U ортонормированный базис столбцов X
- ullet Строки V^T ортонормированный базис строк X
- Σ важности базисных векторов.

SVD дает компактное представление низкоранговой матрицы.

Столбцы V=главные компоненты X

$$X^TX = \left(U\Sigma V^T\right)^TU\Sigma V^T = \left(V\Sigma U^T\right)U\Sigma V^T = V\Sigma^2 V^T$$

Домножая на V, получим 1

$$X^T X V = V \Sigma^2 V^T V = V \Sigma^2 \tag{1}$$

- V состоит из CB $X^T X$, отвечающих C3 $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$ это R главных компонент.
- U коэффициенты разложения объектов-строк X по главным компонентам.

 $^{^{1}}$ Сингулярные значения X - корень из СЗ $X^{T}X$, равные $\sigma_{1},...\sigma_{R}.$

Нахождение U

$$XX^T = U\Sigma V^T \left(U\Sigma V^T\right)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$

Домножая справа на U, получим

$$XX^TU = U\Sigma^2U^TU = U\Sigma^2.$$

U состоит из CB XX^T , отвечающих C3 $\sigma_1^2, \sigma_2^2, ... \sigma_R^2.$

SVD: существование & единственность

Теорема 1

Для $\forall X \in \mathbb{R}^{N \times D}$ сингулярное разложение существует.

Теорема 2

Сингулярное разложение единственно с точностью до знака $<=>X^TX \in \mathbb{R}^{D \times D}$ содержит D уникальных CB.

С точностью до знака означает, что мы всегда можем одновременно поменять знаки u_i и v_i^T для $\forall i=1,2,...R$.

Содержание

- Определение сингулярного разложения
- Окращенное сингулярное разложение
- Применения сингулярного разложения

Сокращенное сингулярное разложение

Сокращенное сингулярное разложение порядка K (truncated SVD): убрать наименее важные столбцы U и строки V^T .

• Важность измеряется $\sigma_1, \sigma_2, ...\sigma_R$. diag $\{\sigma_1, \sigma_2, ...\sigma_K, \sigma_{K+1}, ...\sigma_R\} \longrightarrow {\sf diag}\{\sigma_1, \sigma_2, ...\sigma_K, 0, 0, ...0\}$

$$X = \sum_{i=1}^{R} \mathbf{u}_{i} \sigma_{i} \mathbf{v}_{i}^{T} \approx \sum_{i=1}^{K} \mathbf{u}_{i} \sigma_{i} \mathbf{v}_{i}^{T}$$

Сокращенное сингулярное разложение

Упрощение до ранга $K \leq R$:

$$X_K = U_K \Sigma_K V_K \approx X$$

$$\begin{split} \Sigma &= \textit{diag} \{ \sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R \} \longrightarrow \textit{diag} \{ \sigma_1, \sigma_2, ... \sigma_K \} = \Sigma_K \\ U &= [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K \\ V &= [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \longrightarrow [v_1, v_2, ... v_K] = V_K \end{split}$$

Свойства сокращенного сингулярного разложения

Норма Фробениуса для матриц

$$||X||_F^2 = \sum_{n=1}^N \sum_{d=1}^D x_{nd}^2$$

ullet Для матрицы X и её аппроксимации \widehat{X} можем измерить

ошибка аппроксимации
$$=\left\|\widehat{X}-X\right\|_F^2$$

Теорема 3

Пусть $X \in \mathbb{R}^{N \times D}$ аппроксимируется $\widehat{X}_K = U_K \Sigma_K V_K$. Тогда:

- $X_K = \arg\min_{B: \operatorname{rank} B \leq K} \|X B\|_F^2$

Выбор порядка аппроксимации К

Теорема 4

Для \forall матрицы X и её разложения $X = U\Sigma V^T$, $\Sigma = diag\{\sigma_1, ... \sigma_R\}$:

$$||X||_F^2 = \sum_{i=1}^R \sigma_i^2$$

- Пусть $X = U \Sigma V^T$, $\Sigma = diag\{\sigma_1, ...\sigma_R\}$
- Аппроксимация $\hat{X}_K = U \Sigma_K V^T$, $\Sigma_K = diag\{\sigma_1, ... \sigma_K, 0, 0, ... 0\}$.
- Ошибка аппроксимации $X-\widehat{X}_K=U\widetilde{\Sigma}V^T$, где $\widetilde{\Sigma}=diag\{0,0,...\sigma_{K+1},...\sigma_R\}$, поэтому

$$\left\|X - \widehat{X}_K\right\|_F^2 = \sum_{i=K+1}^R \sigma_i^2$$

Выбор порядка аппроксимации К

Используя теорему 4, выберем K, дающую относительную ошибку меньше порога:

$$K = \arg\min_{K} \left\{ \frac{\left\| X - \widehat{X}_{K} \right\|_{F}^{2}}{\left\| X \right\|_{F}^{2}} = \frac{\sum_{i=K+1}^{R} \sigma_{i}^{2}}{\sum_{i=1}^{R} \sigma_{i}^{2}} < threshold \right\}$$

Содержание

- 1 Определение сингулярного разложения
- 2 Сокращенное сингулярное разложение
- Применения сингулярного разложения
- Простейшая рекомендательная система

Снижение размерности

- ullet строки U дают компактное представление объектов X.
- $x_n \in \mathbb{R}^D \longrightarrow u_n \in \mathbb{R}^K$, K < D.

Экономия памяти

Рассчитайте стоимость хранения $X \in \mathbb{R}^{N \times D}$, предполагая $N \geq D$:

представление Х	требования по памяти
исходная Х	?
полностью сингулярно разложенная Х	?
сокращенно синг. разложенная ранга К	?

Пример: сжатие чёрно-белых изображений²

 $^{^{2}}$ Первоисточник.

Пример: сжатие цветных изображений³

 $^{^{3}}$ Сжатие - независимо по R,G,B каналам.

Вычислительные затраты

- Умножение Ха
 - X нормализованное представление документов
 - q нормализованный поисковый запрос

представление Х	сложность Ха
исходная Х	?
полностью сингулярно разложенная Х	?
сокращенно синг. разложенная ранга K	?

Нахождение похожих объектов и похожих признаков

- Похожие объекты имеют похожие признаки.
- Похожие признаки совстречаются в объектах.
- Пример: обработка текстов.
 - сингулярное разложение дает высокоуровневое семантическое представление документов
 - можем сравнивать документы на семантическом уровне
 - синонимы объединяются
 - можем сравнивать слова

Содержание

- Определение сингулярного разложения
- 2 Сокращенное сингулярное разложение
- ③ Применения сингулярного разложения
- 4 Простейшая рекомендательная система

Построение рекомендаций фильмов

	Терминатор	Гладиатор	Рэмбо	Титаник	История любви	Спеши любить
Андрей	4	5	5	0	0	0
Иван	4	4	5	0	0	0
Сергей	5	5	4	0	0	0
Анна	0	0	0	5	5	5
Мария	0	0	0	5	5	4
Наталья	0	0	0	4	5	4

Сингулярное разложение

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$

$$\Sigma = diag\{(14. 13.7 1.2 0.6 0.6 0.5)\}$$

$$V^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Сокращенное сингулярное разложение (K=2)

$$U_2 = \begin{pmatrix} 0. & 0.6 \\ 0. & 0.5 \\ 0. & 0.6 \\ 0.6 & 0. \\ 0.6 & 0. \\ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_2 = \mathsf{diag}\{ \begin{pmatrix} 14. & 13.7 \end{pmatrix} \}$$

$$V_2^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Перешли в на семантический уровень "тем"

- темы среди фильмов боевик / мелодрама
- темы среди людей мужчины / женщины

Построение рекомендаций

• Требуется построить рекомендации фильмов для нового человека:

$$x = (5 \ 0 \ 0 \ 0 \ 0 \ 0)$$

• Отображаем x в пространство тем фильмов y (снижение размерности):

$$y = V_2^T x = \begin{pmatrix} 0 & 2.7 \end{pmatrix}$$

Построение рекомендаций: отображаем у в исходное пространство всех оценок:

$$\hat{x} = yV_2^T = \begin{pmatrix} 1.5 & 1.6 & 1.6 & 0 & 0 \end{pmatrix}$$

Заключение

- Сингулярное разложение $X = U \Sigma V^T$, $U^T U = I$, $V^T V = I$, $\Sigma = \text{diag}\{\sigma_1, ... \sigma_R\}$ существует $\forall X$.
- ullet Сокращенное сингулярное разложение порядка K
 - решает задачу: $X_K = \arg\min_{B: \operatorname{rank} B \leq K} \|X B\|_F^2$
 - извлекает тематическую структуру объектов и признаков
 - разложение по темам=главным компонентам: снижение размерности
 - сокращает
 - расходы по памяти
 - расходы на вычисления
 - позволяет построить простую рекомендательную систему
 - недостаток: отсутствие оценки=0 трактуется как оценка.