

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **03-075785**
(43)Date of publication of application : **29.03.1991**

(51)Int.Cl. **G03G 21/00**
G03G 5/00

(21)Application number : **01-212587** (71)Applicant : **RICOH CO LTD**
(22)Date of filing : **18.08.1989** (72)Inventor : **NIIMI TATSUYA**
UMEDA MINORU

(54) METHOD FOR RESTORING FATIGUE OF ELECTROPHOTOGRAPHIC SENSITIVE BODY

(57)Abstract:

PURPOSE: To prevent deterioration of acceptance potential characteristics by incorporating a specified compound at least in a photosensitive layer formed on a conductive substrate and heat treating the obtained electrophotographic sensitive body in the inside of an image forming apparatus or in an outer device.

CONSTITUTION: A good image can be obtained by incorporating in the photosensitive layer formed on the conductive substrate the compound represented by formula I or II in which Ar1 is an optionally substituted aromatic hydrocarbon or heterocyclic group; A is an optionally substituted N-substituted charbazolyl group or a group represented by formula III; R3 is H, alkyl, alkoy, aryloxy, dialkylamino, diarylamino, or halogen; each of R4 and R5 is optionally substituted alkyl or aryl; Ar is an aromatic hydrocarbon group or heterocyclic group; and (n) is an integer of 1 or 2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑪ 公開特許公報(A)

平3-75785

⑫ Int.Cl.⁵G 03 G 21/00
5/00

識別記号

1 1 7
1 0 1

庁内整理番号

7428-2H
7381-2H

⑬ 公開 平成3年(1991)3月29日

審査請求 未請求 請求項の数 1 (全63頁)

⑭ 発明の名称 電子写真感光体の疲労回復方法

⑮ 特 願 平1-212587

⑯ 出 願 平1(1989)8月18日

⑰ 発明者 新美達也 東京都大田区中馬込1丁目3番6号 株式会社リコー内
 ⑲ 発明者 梅田実 東京都大田区中馬込1丁目3番6号 株式会社リコー内
 ⑳ 出願人 株式会社リコー 東京都大田区中馬込1丁目3番6号
 ㉑ 代理人 弁理士 池浦敏明 外1名

明細書

1. 発明の名称

電子写真感光体の疲労回復方法

2. 特許請求の範囲

(1) 導電性支持体上に少なくとも一般式(I)又は一般式(II)で示される化合物を含有する感光層を設けてなる電子写真感光体を画像形成装置内もしくは、画像形成装置外で加熱処理することを特徴とする電子写真感光体の疲労回復方法。

(式中、 Ar^1 は置換もしくは無置換の芳香族炭化水素基または複素環基を表わし、Aは置換もしくは無置換のN-置換カルバゾリル基または

を表わす。)

(式中、 R^3 は水素原子、アルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、ジアリールアミノ基、またはハロゲン原子を、 R^4 及び R^5 置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を、Arは芳香族炭化水素基または複素環基を、nは1または2の整数を表わす。)

3. 発明の詳細な説明

【産業上の利用分野】

本発明は電子写真感光体を用いる画像形成装置に関し、更に詳しくは電子写真感光体の疲労回復方法の改良に関する。

【従来技術】

電子写真複写機に使用される感光体は、近年、安価、生産性、無公害性を利点とする有機系の感光材料を用いたものが使用始めている。

有機系の電子写真感光体には、ポリビニルカル

バゾール(PVK)に代表される光導電性樹脂、PVK-TNF(2,4,7トリニトロフルオレノン)に代表される電荷移動錯体型、フタロシアニン-バインダーに代表される顔料分散型、電荷発生物質と電荷輸送物質とを組合せて用いる機能分離型の感光体などが知られており、特に機能分離型の感光体が注目されている。

この様な、有機系感光体を、カールソンプロセスに適用した場合、帯電性が低く、電荷保持特性が悪い(暗減衰が大きい)上、繰返し使用による、これら特性の劣化が大きく、画像上に、濃度ムラ、カブリ、また反転現像の場合地汚れを生ずるという欠点を有している。

即ち、有機系感光体は、前露光疲労によって帯電性が低下する。この前露光疲労は主に電荷発生材料が吸収する光によって起こることから、光吸収によって発生した電荷が移動可能な状態で感光体内に残留している時間が長い程、またその電荷の数が多い程、前露光疲労による帯電性の低下が著しくなると考えられる。即ち、光吸収によって

保持性の低下について、感光体側の改善手段では、充分な感光体は得られていなかった。

特開昭51-111338号公報には、As₂Se₃感光体を、室温より10~30%高く、40℃を超えない温度に維持すると疲労(暗減衰)の速度が緩速化されることが開示されていて。

他方、複写装置の使用環境においても、高温高湿度下では、画像ボケ、画像ウスなどを生じ、また、低温時においては、感光体の結露、地汚れ等の問題を有している。

この環境依存性に関して、特開昭61-7843号公報には、感光層の支持体を面状発熱体として、比較的低温で加熱すると、高温高湿下における感光体の相対湿度を減少できることが、また特開昭62-121482号公報には感光体に温風、冷風をふきつける方法が開示されており、低温時の感光体への結露防止、高温時の感光体の劣化を防止できる方法が開示されているが、必ずしも満足すべき方法ではなかった。

〔発明が解決しようとする課題〕

発生した電荷が残留している状態で帯電操作をしても、残留しているキャリアの移動で表面電荷が中和される為、残留電荷が消費されるまで表面電位は上昇しない。従って、前露光疲労分だけ表面電位の上昇が遅れることになり、見かけ上の帯電々位は低くなる。

これらの欠点を改良する方法として、支持体と電荷発生層との間にSiO₂、Al₂O₃等の無機材料を、蒸着、スパッタリング、陽極酸化などの方法で設ける方法が公知であり、電荷発生層中にAl₂O₃を含有させたり(特開昭55-142354号公報)、同じく電荷発生層中に金属粉末を含有させることも公知である(特開昭60-214364号公報)。

また、下引層としてポリアミド樹脂(特開昭58-30757号公報、特開昭58-98739号公報)、アルコール可溶性ナイロン樹脂(特開昭60-196766号公報)、水溶性ポリビニルチラール樹脂(特開昭60-232553号公報)、ポリビニルチラール樹脂(特開昭58-106549号公報)などの樹脂層が提案されている。

しかしながら、繰返し使用による帯電性、電荷

本発明は、感光体の帯電性を改良することができるとともに、高温高湿度下での相対湿度を低下でき、かつ低温時の感光体の結露を防止し得る電子写真感光体の疲労回復方法を提供することを課題とする。

〔構成〕

本発明によれば、導電性支持体上に少なくとも一般式(I)又は一般式(II)で示される化合物を含有する感光層を設けてなる電子写真感光体を画像形成装置内もしくは、画像形成装置外で加熱処理することを特徴とする電子写真感光体の疲労回復方法が提供される。

〔式中、Ar¹は置換もしくは無置換の芳香族炭化水素基または複素環基を表わし、Aは置換もしくは無置換のN-置換カルバゾリル基または

換の芳香族炭化水素基または複素環基であり、R¹及びR²は置換もしくは無置換のアルキル基、

または置換もしくは無置換のアリール基である)を表わす。】

(式中、 R^1 は水素原子、アルキル基、アルコキシ基、アリールオキシ基、ジアルキルアミノ基、ジアリールアミノ基、またはハロゲン原子を、 R^2 及び R^3 置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を、 Ar は芳香族炭化水素基または複素環基を、 n は1または2の整数を表わす。)

本発明者らは、導電性支持体上に少なくとも有機感光層を設けてなる電子写真感光体に対して導電性劣化の欠点を解消すべく検討した結果、該電子写真感光体の感光層に前記一般式(I)又は一般式(II)で示される化合物を含有させると共に画像形成装置の内もしくは画像装置外で加熱しておくと、繰り返し使用前と同等の導電性位の立上りの遅れがなく、繰り返し使用しても鮮明な複写画像

が得られることを見出した。

一般に、感光体は程度の差はあるが、高温湿時における画像ボケ、画像ウスが発生し、又、低温時においては感光体の結露、低温低湿時には、画像地汚れが発生する。

また、感光層が有機系の感光体においては、くり返し使用をすると、導電性の立ち上がりの遅れが認められる。

しかし、本発明者らは暗所にて加熱することにより、くり返し使用をしても、初期と同じ程度の特性を示すことを見出した。この様な感光体の暗所における加熱処理(以降加熱処理あるいは処理と略す。)を達成する手段を以下に説明する。

画像形成装置内における感光体の加熱方法について述べる。この方法はプロセスと極めて密接な関係がある為、感光体の形状別について述べる必要がある。現行、使用されている感光体の形状は、大きく2つに分ける事ができる。1つはベルト状の感光体であり、もう1つは、円筒状の金属あるいは紙、プラスチックの表面を導電処理したもの

表面に感光層をコーティングしたものに分けられる。

まず、ベルト状感光体の加熱方法について述べる。通常、ベルト感光体の駆動系およびプロセスは第5図、あるいは第6図の様な形状になっているのが普通である。

第5図は従動ローラーが2本の場合の図を用いたが、場合によっては、1本あるいは複数本の場合も存在する。又、ベルトをある程度高回転にしたりすると、進行方向に垂直な方向(ベルトの厚み方向)の振動等を有する場合があり、それを防止する為に第6図中16の様な従動ローラーを用いる場合もある。

この様なセットされた感光体を加熱する方法としては、3つの方法があり、1つは、図中においてある空間を利用して、何らかの熱源を持ってきて、ベルトの内側あるいは外側より加熱する方法であり、2番目は、ローラーを(主に現像ローラーと接しないローラー)発熱体にし、感光体を加熱する方法であり、3番目は、ベルト自体が面状

発熱体である。1番目の具体的な方法としては、種々の方法は考えられるが、例えば、

(イ)赤外線ランプを感光体に照射する方法。(第7回)(その際、基板あるいは感光層中に赤外線吸収剤を含むとより好ましい。)

(ロ)熱風を当てる方法。

(ハ)高周波加熱を行なう方法。

(ニ)PTC発熱体を利用する方法。

等が挙げられる。

これらの方法のうち、赤外線ランプを使用する方法を第7回に示す。この方法は赤外線ランプをベルト状感光体に照射するものである。この方法によれば、例えばレーザープリンター用感光体等では感光体の吸収が近赤外まで延びている為、図中16の様なカットフィルターを用いて、赤外線より短い波長の光はカットする。又、17の様なカバーにて機内全体に光が漏れるのを防ぐ、また、効率を上げる為、18の様なミラーにて、赤外線は前面にのみ照射される。

次にローラーを発熱体にし、感光体を加熱する

方法について述べる。

このローラーを発熱体にする具体的な方法としては、種々のものが考えられるが、例えば、次のような手段が挙げられる。

- ・赤外線ランプ(赤外線を発光できるランプ)がローラー内部に内蔵されているもの。
- ・ヒートパイプがローラー内部に内蔵されているもの。(第8図)
- ・メカニカルシールを取りつけて、温水をローラー内部に流すもの。
- ・PTC特性を有する発熱体がローラー内に内蔵されているもの。
- ・ローラーが面状発熱体であるもの。
- ・抵抗加熱器がローラー内に内蔵されているもの。(第9図)
- ・高周波誘導加熱により加熱するもの。

これらの方法のうち、ヒートパイプを使用する方法と抵抗加熱器を使用する方法を各々第7図及び第8図に示す。

最後に、ベルト自体を面状熱体による方法につ

いて述べる。かかる方法には、ベルト支持体自体が面状発熱体である場合と、支持体の内側(あるいは感光層側でも可)に、面状発熱体をはりつけるかあるいはそのような塗料をコーティングするといった2通りの方法が考えられる。前者については、ベルト支持体が金属の面状発熱体であるか、あるいはベルト形成時において、プラスチックフィルム中にカーボン粉体あるいは金属ファイバー等を充填することにより、面状発熱体にすることができる。後者については、ベルト支持体の内面あるいは外面に、樹脂被中に例えば、カーボン粉体、金属ファイバー、金属フィラー等を分散した塗料をコーティングすることにより、同様の効果をもたらせることができる。

この様に作成した支持体を利用して、感光体を作成し、電流を流すことにより、前記のような外熱式のヒーターが無くとも感光体を加熱することも可能である。

次に、円筒状の金属あるいは紙、プラスチック上に導電層処理を施した支持体(以後、総称して

ドラムと言う。)の上に感光層を設けた感光体(示後、ドラム状感光体と言う。)の加熱方法について述べる。ドラム状感光体の加熱方法も種々考えられるが、大きくは2つに分類できる。1つは外熱式のヒーターを用いるものであり、もう1つは、ヒーターを用いず、ドラム自体が発熱体であるものである。前者の具体的な方法としては種々のものが考えられるが、例えば、

- ・赤外線ランプ(赤外線を発光できるランプ)をドラム内部に内蔵する、あるいは外面から照射する方法。
- ・ヒートパイプがドラム内部に内蔵されていて、内面より加熱する方法。
- ・ドラム開口部(両端)にメカニカルシールを取りつけて、温度調節が可能な循環装置(例えばクールニクス)にて、ドラム内部に液体を循環する方法。(第10図)
- ・抵抗加熱機がドラム内部に内蔵されているものを利用する方法。
- ・PTC特性を有する発熱体により加熱する方法。

(第11図)

- ・高周波誘導加熱を使用する方法。
- 等が挙げられる。

上記の方法によれば、両端の注入部と吐出部は回転せずに、感光体とメカニカルシール部とギヤ部のみが回転する。又、内部に循環する液体を水の様に比熱の大きな物を使用すれば、感光体の熱容量が大きくとも一様に加熱することができる。

又、上記の様なPTC特性を有する発熱体を使用すれば、低温時には抵抗が低く、電流がたくさん流れ、高温になると、抵抗が急激に増大し、電流が流れにくくなり、ある設定温度に対して、有効に、又、安全に加熱する事が出来るといった利点を有する。後者のドラムが発熱体であるという考え方とは、ベルト支持体が発熱体であるという考え方と同じであるので略す。

以上述べた方法は、画像形成装置内にて感光体を加熱する方法であり、加熱時に対する感光体以外への影響も考慮する必要がある為、又、感光体加熱設定温度に対して、Overheatを防ぐ手段とし

ても感光体冷却装置を併用することは非常に有効であり、もちろん使用しても差しつかえない。

次に画像形成装置外にて感光体を加熱し、疲労を回復する方法について述べる。感光体を画像形成装置外にて加熱処理する場合に、最低限必要な要件は、以下の2点である。

① 加熱装置を有する。

② 感光体を遮光した状態で加熱する事が出来る。

すなわち、例えば通常市販の乾燥機、オーブン等を利用して、部屋全体を遮光状態にする事が出来れば、感光体の疲労回復は出来る訳である。ところが、一般的にはそういう設定をした場合には、次の様な問題点が残される。

① うまいドラムセットを考えないと、感光体表面にキズがつく。

② 均一な加熱がむずかしい。

③ 一般のオフィス等には上記の様な加熱器はない。

従って、小型、軽量でかつ、上記欠点のない感光体の疲労回復専用装置が必要となる訳であるが

その一例を第12図(a)、(b)、(c)に示す。

第12図(a)は見取り図、第12図(b)はドアを取り除いた図、第12図(c)は真横からの断面図である(これらを総称して、後は第12図と呼ぶ)。第12図においては、熱源を面状発熱体を使用したが、熱を感光体に均一に与えられる方法であれば、どの様なものでも差しつかえない。又、ドラム受け治具は、第12図には面切りドラム用治具(図では、太さが2種まで可)を図示したが、ドラムの形状により治具をその都度変更する必要がある。

次に、今まで述べてきた感光体の加熱方法について、温度、条件等について説明する。今まで感光体の加熱疲労回復方法について述べたが、画像形成装置内の加熱する方法については、2つの方法がある。1つは、画像形成装置使用時間中に一定の温度を常に与えておくという方法であり、もう1つの方法は、一度高温にした後、ある温度まで下げて(通常は室温)使用する方法である。

前者においては、あまり高温でない温度(40-80°C程度)に感光体温度を保ち、使用しながら疲労

を回復させる方法(疲労を抑制する。)である。したがって、感光体をある一定の温度に制御する為には、加熱を開始し、ある所定温度に達したのち、小さい熱エネルギーを連続的に与える方法と、ある幅に温度コントロールするならば所定温度に達したら、熱エネルギー供給を止め、ある温度に下がったら(あるいはある時間が経過したら)再び熱エネルギーを与えるといった間欠的な方法もある。

次に後者について説明を行なう。

これは、感光体を常に加熱する訳ではなく、必要に応じて短時間高温にして、疲労を回復させる方法である。例えば、画像形成装置に電源を入れると、定着部を加熱するのに時間がかかる(いわゆるファーストコピー時間)のを利用し、この時に同時に感光体を加熱する方法や、例えば帯電直後の表面電位を検知する装置が入っていて、あるしきい電位よりも下がったら加熱する方法である。更には、いわゆる予熱時、つまり画像形成を行わない時間には加熱しておく、使用する時に温度を下げ使用する方法等がある。

加熱処理温度については、前者(つまり定常的に温度を与える方法)については、あまり高温になると感光体表面へのストレスが大きくなる為、好ましくは下限は40°C以上、更に好ましくは50°C以上とし上限は、好ましくは100°C以下、更に好ましくは80°C以下とするのがよい。

又、後者(非定常的に熱を与える方法)については、感光体の使用時外に加熱処理することにより、前者よりも高温にすることが出来る。好ましくは40°C以上、更に好ましくは50°C以上、上限は、好ましくは150°C以下、更に好ましくは120°C以下である。但し、後者の方法にて、かなり高温にする場合で画像形成装置内にて処理する場合には、加熱時間を短かくするか、画像形成を停止すべきであり、事前にその様な装置をあるいは機構を取りつける事が好ましい。

次に図面によって本発明で用いる電子写真感光体を説明する。

第1図は、本発明において使用する感光体の構成例を示す断面図であり、導電性支持体11上に、

感光層14を設けたものである。

第2図(a)、第2図(b)は、別の構成例を示す断面図であり感光層が電荷発生層21と、電荷輸送層22との積層で構成されている。

第3図および第4図は、更に別の構成例を示す断面図であり、第3図は、導電性支持体11と感光層14の間に中間層13を設けたもの、また第4図は、感光層14の上に保護層15を設けたものである。

導電性支持体11としては、体積抵抗 $10^{10} \Omega \text{ cm}$ 以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着又はスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレス等の板およびそれらをD.I., I.I., 押出し、引抜き等の工法で素管化後、切削、超仕上げ、研磨等で表面処理した管等を使用することができる。

次に感光層14について説明するが、先ず積層感

光層について述べる。積層感光層は電荷発生層21と電荷輸送層22からなる。

電荷発生層21は、電荷発生物質を主材料とした層で、必要に応じてバインダー樹脂を用いることもある。

バインダー樹脂としては、ポリアミド、ポリウレタン、ポリエステル、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ-N-ビニルカルバゾール、ポリアクリルアミドなどが用いられる。

電荷発生物質としては、例えば、シーアイピグメントブルー25[カラーインデックス(CI)21180]、シーアイピグメントレッド41(CI 21200)、シーアイアッシュレッド52(CI 45100)、シーアイベーシックレッド3(CI 45210)、さらに、ポルフィリン骨格を有するフタロシアニン系顔料、カルバゾール骨格を有するアゾ顔料(特開昭53-85033号公報に記載)、ジスチリルベンゼン骨格を有するアゾ

顔料(特開昭53-133455号公報に記載)、トリフェニルアミン骨格を有するアゾ顔料(特開昭53-132547号公報に記載)、ジベンゾチオフェン骨格を有するアゾ顔料(特開昭54-21728号公報に記載)、オキサジアゾール骨格を有するアゾ顔料(特開昭54-12742号公報に記載)、フルオレノン骨格を有するアゾ顔料(特開昭54-22834号公報に記載)、ビススチルベン骨格を有するアゾ顔料(特開昭54-17733号公報に記載)、ジスチリルオキサジアゾール骨格を有するアゾ顔料(特開昭54-2129号公報に記載)、ジスチリカルバゾール骨格を有するアゾ顔料(特開昭54-17734号公報に記載)、さらに、シーアイピグメントブルー16(CI 74100)等のフタロシアニン系顔料、シーアイバットブラウン5(CI 73410)、シーアイバットダイ(CI 73030)等のインジゴ系顔料、アルゴスカーレットB(バイオレット社製)、インダンスレンスカーレットR(バイエル社製)等のペリレン系顔料などが挙げられる。

これら電荷発生物質の中でも、特にアゾ顔料が好適である。更に、アゾ顔料の中でも一般式(a-1)

~(V)に示される中心骨格を持つトリスアゾ又はジスアゾ顔料が好ましい。

以上のような本発明に好ましく用いられるジスアゾ、あるいはトリスアゾ顔料の具体例を以下に示すが、簡略化のため、中心骨格及びカップラー残基(Cp)を別々に示し、それらの各々の番号の組合せでジスアゾあるいはトリスアゾ顔料を示す。

(例) (k-1)

括弧内の文字kは中心骨格を示し、1はカップラー残基Noを示す。

一般式	(イ)環置換位置	(ロ)環置換位置	(ハ)環置換位置
a-1	2	2'	3''
a-2	2	2'	2''
a-3	2	2'	1''
a-4	2	3'	3''
a-5	2	3'	2''
a-6	2	3'	1''
a-7	2	4'	3''
a-8	2	4'	2''
a-9	2	4'	1''
a-10	3	2'	2''
a-11	3	2'	1''
a-12	3	3'	2''
a-13	3	3'	1''
a-14	3	4'	2''
a-15	3	4'	1''
a-16	4	2'	1''
a-17	4	3'	1''
a-18	4	4'	1''

一般式	置換基 R
h-1	-H
h-2	-CH ₂ CH ₃
h-3	-CH ₂ CH ₂ OH
h-4	-CH ₂ CH ₂ CO

一般式	一般式 (l) における >B
(l)-1	>NH
(l)-2	>O
(l)-3	>S

一般式	置換基 R
j-1	-H
j-2	-OCH ₃
j-3	-Cl
j-4	-NO ₂

一般式	(二)環置換位置	(ホ)環置換位置	- $(CH=CH)_n$ のnの数
m-1	2	2'	1
m-2	2	3'	1
m-3	2	4'	1
m-4	3	3'	1
m-5	3	4'	1
m-6	4	4'	1
m-7	2	2'	2
m-8	2	3'	2
m-9	2	4'	2
m-10	3	3'	2
m-11	3	4'	2
m-12	4	4'	2
m-13	2	2'	3
m-14	2	3'	3
m-15	2	4'	3
m-16	3	3'	3
m-17	3	4'	3
m-18	4	4'	3
m-19	2	2'	4
m-20	2	3'	4

一般式	(二)環置換位置	(ホ)環置換位置	- $(CH=CH)_n$ のnの数
m-21	2	4'	4
m-22	3	3'	4
m-23	3	4'	4
m-24	4	4'	4
m-25	2	2'	5
m-26	2	3'	5
m-27	2	4'	5
m-28	3	3'	5
m-29	3	4'	5
m-30	4	4'	5

またさらに、一般式(a-1)~(w)におけるカップラーラーとしては、たとえばフェノール類、ナフトール類などのフェノール性水酸基を有する化合物、アミノ基を有する芳香族アミノ化合物あるいはアミノ基とフェノール性水酸基を有するアミノナフトール類、脂肪族もしくは、芳香族のエノール性ケトン基を有する化合物(活性メチレン基を有する化合物)などが用いられ、好ましくは、カップラーラー残基Cpが下記一般式(II)、(III)、(IV)、(V)、

(W)、(VII)、(VIII)、(IX)、(X)、(XI)、(XII)の一級式で表わされるものである。

(上記式(II)、(III)、(IV)および(V)中、X、Y₁、Z、nおよびnはそれぞれ以下のものを表わす。)

X:-OH、-N^{R₁}、または-NHSO₂-R₂

(R₁およびR₂は水素または置換もしくは無置換のアルキル基を表わし、R₂は置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表わす。)

Y₁:水素、ハロゲン、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、カルボキシ基、スルホ基、置換もしくは無置換のス

ルファモイル基または $-CON-Y_2$
 $\begin{array}{c} | \\ R_4 \end{array}$

[R_4 は水素、アルキル基またはその置換体、フェニル基またはその置換体を表わし、 Y_2 は炭化水素環基またはその置換体、複素環基またはその置換体、あるいは $-N=C\begin{array}{c} | \\ R_5 \\ \backslash \\ R_6 \end{array}$ （但し、 R_5 は炭化水素環基またはその置換体、複素環基またはその置換体あるいはスチリル基またはその置換体、 R_6 は水素、アルキル基、フェニル基またはその置換体を表わすか、あるいは R_5 及び R_6 はそれらに結合する炭素原子と共に環を形成してもよい。）を示す。】

Z:炭化水素環またはその置換体あるいは複素環またはその置換体

n:1または2の整数

m:1または2の整数

[上記式(IV)および(V)中、 R_4 は水素または置換もしくは無置換の炭化水素基を表わし、 Ar_2 は炭化水素環基またはその置換体を表わす。] 前記一般式(II)、(III)、(IV)または(V)のZの炭化水素環としてはベンゼン環、ナフタレン環などが例示でき、また置換基を有してもよい複素環としてはインドール環、カルバゾール環、ベンゾラン環、ジベンゾフラン環などが例示できる。Zの環における置換基としては塩素原子、臭素原子などのハロゲン原子が例示できる。

Y_2 または R_5 における炭化水素環基としては、フェニル基、ナフチル基、アントリル基、ビレニル基などが、また、複素環基としてはピリジル基、チエニル基、フリル基、インドリル基、ベンゾフラン基、カルバゾリル基、ジベンゾフラン基などが例示でき、さらに、 R_5 および R_6 が結合して形成する環としては、フルオレン環などが例示できる。

Y_2 または R_5 の炭化水素環基または複素環基あるいは R_5 および R_6 によって形成される環における置

[式(VI)中、 R_5 は置換もしくは、無置換の炭化水素基を表わし、Xは前記と同じである。]

[式(VII)中、A₁は芳香族炭化水素の2価基または窒素原子を環内に含む複素環の2価基を表わす。これらの環は、置換または無置換でもよい。Xは前記と同じ。]

[式中、 R_5 はアルキル基、カルバモイル基、カルボキシ基またはそのエステルを表わし、 Ar_2 は炭化水素環基またはその置換体を表わし、Xは前記と同じである。]

基としては、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、塩素原子、臭素原子などのハロゲン原子、ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基、トノフルオロメチル基などのハロメチル基、ニトロ基、シアノ基、カルボキシル基またはそのエステル、水酸基、 $-SO_3Na$ などのスルホン酸塩基などが挙げられる。

R_5 のフェニル基の置換体としては塩素原子または臭素原子などのハロゲン原子が例示できる。

R_5 または R_6 における炭化水素基の代表例としては、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、フェニル基などのアリール基またはこれらの置換体が例示できる。

R_5 または R_6 の炭化水素基における置換基としては、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、塩素原子、臭素原子などのハロゲン原子、水酸基、

ニトロ基などが例示できる。

Ar_1 または Ar_2 における炭化水素環基としては、フェニル基、ナフチル基などがその代表例であり、また、これらの基における置換基としては、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、ニトロ基、塩素原子、臭素原子などのハロゲン原子、シアノ基、ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基などが例示できる。

また、Xの中では特に水酸基が適當である。

上記カップラー残基の中でも好ましいのは上記一般式(III)、(VI)、(VII)、(VIII)および(X)で示されるものであり、この中でも一般式におけるXが水酸基のものが好ましい。また、この中でも一般式(X)

(Y₁およびZは前記に同じ。)

で表わされるカップラー残基が好ましく、さらに好ましくは一般式

(Z、Y₁およびR₁は前記と同じ。)

で表わされるカップラー残基である。

さらにまた、上記好ましいカップラー残基の中でも一般式(X III)または(X IV)

(Z、R₁、R₂およびR₄は前記に同じであり、またR₁₁としては上記のY₁の置換基が例示できる。)

で表わされるものが適當である。

以下に、カップラー残基(Cp)の例を示す。

カップラー残基No.

Cp

カップラー残基No.

Cp

カップラー発基No

Cp.

11

12

13

14

15

カップラー発基No

16

17

18

19

20

カップラー発基No

Cp.

21

22

23

24

25

カップラー発基No

Cp.

27

28

29

30

カップラー発基化

Cp

カップラー発基化

Cp

31

36

32

37

33

38

34

39

35

40

カップラー発基化

Cp

カップラー発基化

Cp

41

46

42

47

43

48

44

49

45

50

カップラー剤基團

C.P.

カップラー剤基團

C.P.

51

56

52

57

53

54

58

55

59

カップラー剤基團

C.P.

カップラー剤基團

C.P.

60

64

61

65

62

66

63

67

カップラー残基N_h

C.p.

カップラー残基N_h

C.p.

68

72

69

73

70

74

71

75

カップラー残基N_h

C.p.

カップラー残基N_h

C.p.

76

81

77

82

78

83

79

84

80

85

カップラー残基No.

C.P.

カップラー残基No.

C.P.

86

91

87

92

88

93

89

90

94

カップラー残基No.

C.P.

カップラー残基No.

C.P.

95

99

96

100

97

101

98

102

カップラー残基A

Cp

カップラー残基B

Cp

103

108

104

109

105

110

106

111

107

112

カップラー残基A

Cp

カップラー残基B

Cp

113

119

114

120

115

121

116

122

117

123

118

124

カップラー残基No.

Cp

カップラー残基No.

Cp

125

128

125

130

127

131

128

132

カップラー残基No.

Cp

カップラー残基No.

Cp

133

137

134

138

135

139

136

140

カップラー残基N_h

Cp

カップラー残基N_h

Cp

141

145

142

146

143

147

144

148

カップラー残基N_h

Cp

カップラー残基N_h

Cp

149

154

150

155

151

156

152

157

153

158

カップラー残基由

Cp

159

160

161

162

カップラー残基由

Cp

163

164

165

166

カップラー残基由

Cp

167

168

169

170

カップラー残基由

Cp

171

172

173

174

カップラーゼ基團

C.p.

カップラーゼ基團

C.p.

175

179

176

180

177

181

178

182

カップラーゼ基團

C.p.

カップラーゼ基團

C.p.

183

187

184

188

185

189

186

190

カップラー残基No

Cp

191

カップラー残基No

Cp

195

192

196

193

197

194

198

カップラー残基No

Cp

199

203

200

204

201

205

202

206

カップラー番号

C.P.

カップラー番号

C.P.

207

211

208

212

209

213

210

214

カップラー番号

C.P.

カップラー番号

C.P.

215

219

216

220

217

221

218

222

カップラー残基No

C.P.

カップラー残基No

C.P.

223

227

224

228

225

229

226

230

カップラー残基No

C.P.

カップラー残基No

C.P.

231

235

232

236

233

237

234

238

カップラー残基Na

Cp

239

240

241

242

カップラー残基Na

Cp

243

244

245

246

カップラー残基Na

Cp

247

251

248

252

249

253

250

254

カップラー残基No.

C.p.

カップラー残基No.

構造式

255

259

256

260

257

261

258

262

カップラー残基No.

構造式

カップラー残基No.

構造式

263

267

264

268

265

269

266

270

カップラー基

構造式

カップラー基

構造式

271

274

272

275

273

276

これらの電荷発生物質は単独で、あるいは2種以上併用して用いられる。

バインダー樹脂は、電荷発生物質100重量部に対して0~100重量部用いるのが適当であり、好ましくは0~50重量部である。

電荷発生層は、電荷発生物質を必要ならばバインダー樹脂とともに、テトラヒドロフラン、シクロヘキサン、ジオキサン、ジクロルエタン等の溶媒を用いてポールミル、アトライター、サンドミルなどにより分散し、分散液を適度に希釈して塗布することにより形成できる。塗布は、浸漬塗工法やスプレーコート、ビードコート法などを用いて行なうことができる。

電荷発生層の膜厚は、0.01~5μ程度が適当であり、好ましくは、0.1~2μである。

電荷輸送層22は、電荷輸送物質およびバインダー樹脂を適当な溶剤に溶解しない分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤やレベリング剤等を添加することもできる。

電荷輸送物質としては、一般式(I)又は一般式(II)で表わされる物質が用いられる。

以下に、これらの化合物について説明する。

本発明においては、前記したように電荷輸送物質として一般式(I)で示される化合物を用いる。

[上式中、 Ar^1 は置換もしくは無置換の芳香族炭化水素基または複素環基を表わし、Aは置換もしくは無置換のN-置換カルバゾリル基または、

$-\text{Ar}^2-\text{N}^{\text{R}^1\text{R}^2}$ (ただし、 Ar^2 は置換もしくは無置換の芳香族炭化水素基または複素環基であり、 R^1 及び R^2 は置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基である。)を表わす]

この場合、表わす Ar^1 の芳香族炭化水素基または複素環基としては、フェニレン基、ナフチレン基、アントリレン基、ビフェニレン基、チエニレン基、カルバゾリル基、またこれらの基における置換基としてはメチル、エチル、プロピル等の低

級アルキル基、エトキシ、メトキシ、プロポキシ基の低級アルコキシ基、ハロゲン原子等があげられる。AにおけるN-置換カルバゾリル基におけるN-置換基としては、低級アルキル基、フェニル基、低級アルキル基は低級アルコキシ基置換フェニル基が、またN-置換カルバゾリル基における置換基としては低級アルキル基があげられる。 Ar^2 の芳香族炭化水素基または複素環基としては、フェニレン基、ナフチレン基、ビフェニレン基、チエニレン基、またはこれらの基における置換基としてはメチル、エチル等の低級アルキル基があげられる。 R^1 及び R^2 における置換もしくは無置換のアルキル基としては、アルキル基、ベンジル基、置換ベンジル基が、アリール基としてはフェニル基があげられ、ベンジル基、フェニル基における置換基としては低級アルキル基、低級アルコキシ基、ハロゲン原子、シアノ基、フェニル基等があげられる。一般式(I)で示される化合物としては次の表-1に示す化学構造式のものが好ましく用いられる。

(I)

化合物No	A
1	
2	
3	
4	
5	
6	
7	

(I)

(ただし、 $-A=Ar^2-N(R^2)^2$)

化合物No	A		
	Ar ²	R ¹	R ²
8		-CH ₃	-CH ₃
9		-C ₂ H ₅	-C ₂ H ₅
10		-C ₂ H ₅	
11		-CH ₂ -	-CH ₂ -
12		-CH ₂ -	-CH ₂ -
13		-CH ₂ -	-CH ₂ -
14		-CH ₂ -	-CH ₂ -
15		-CH ₂ -	
16		-CH ₂ -	-
17		-CH ₂ -	-

化合物No	A		
	Ar ²	R ¹	R ²
18		-CH ₂ -	-
19			
20			-
21		-	-
22			-
23		-	-
24			-
25		-	-
26		-	-
27			
28		-	-
29		-	

化合物 No.	A		
	Ar ²	R ¹	R ²
30	-	-	-
31	-	-	-
32	-	-	-
33	-	-	-
34	-	-	-
35	-	-	-
36	-	-	-
37	-	-	-
38	-	-	-

化合物 No.	A		
	Ar ²	R ¹	R ²
39	-	-	-
40	-	-	-
41	-	-	-
42	-	-	-
43	-	-	-
44	-	-	-
45	-	-	-
46	-	-	-
47	-	-	-

化合物 No.	A		
	Ar ²	R ¹	R ²
48	-	-	-
49	-	-	-
50	-	-	-
51	-	-	-
52	-	-	-
53	-	-	-
54	-	-	-
55	-	-	-

化合物 No.	A		
	Ar ²	R ¹	R ²
56	-	-	-
57	-	-	-
58	-	-	-
59	-	-	-
60	-	-	-
61	-	-	-
62	-	-	-
63	-	-	-
64	-	-	-

化合物 No	A		
	Ar ²	R ¹	R ²
65			
66			
67			
68			
69			
70			
71			
72			
73			

化合物 No	A		
	Ar ²	R ¹	R ²
74			
75			
76			
77			
78			
79			
80			

化合物 No	A		
	Ar ²	R ¹	R ²
81			
82			
83			
84			
85			
86			
87			

化合物 No	A		
	Ar ²	R ¹	R ²
88			
89			
90			
91			
92			
93			
94			
95			

$A-\text{CH}_2\text{CH}_2-\text{Ar}^2-\text{CH}_2\text{CH}_2-A$

(I)

化合物No	Ar^1	A
96		
97		
98		
99		
100		
101		

化合物No	Ar^1	A
102		
103		
104		
105		
106		
107		

化合物No	Ar^1	A
108		
109		
110		
111		
112		
113		

 $A-\text{CH}_2\text{CH}_2-\text{Ar}^2-\text{CH}_2\text{CH}_2-A$ (ただし、 $-A=-\text{Ar}^2-\text{N}^{R^1}\text{R}^2$)

化合物No	A			
	Ar^1	Ar^2	R^1	R^2
114			$-\text{CH}_3$	
115			$-\text{CH}_2-\text{C}_6\text{H}_5$	$-\text{CH}_2-\text{C}_6\text{H}_5$
116			$-\text{CH}_2-\text{C}_6\text{H}_5$	
117			$-\text{CH}_2-\text{C}_6\text{H}_4-\text{OCH}_3$	$-\text{CH}_2-\text{C}_6\text{H}_4-\text{OCH}_3$
118			$-\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_3$	$-\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_3$
119				
120				$-\text{C}_6\text{H}_4-\text{CH}_3$

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
121				
122				
123				
124				
125				
126				
127				
128				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
129				
130				
131				
132				
133				
134				
135				
136				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
137				
138				
139				
140				
141				
142				
143				
144				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
145				
146				
147				
148				
149				
150				
151				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
152			-C ₆ H ₄ -CH ₃	-C ₆ H ₄ -CH ₃
153			-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃
154			-C ₆ H ₄ -C ₆ H ₅	-C ₆ H ₄ -C ₆ H ₅
155			-C ₆ H ₄ -Cl	-C ₆ H ₄ -Cl
156			-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃
157			-CH ₂ -C ₆ H ₅	-CH ₂ -C ₆ H ₅
158			-C ₆ H ₅	-C ₆ H ₅

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
159			-C ₆ H ₅	-C ₆ H ₄ -CH ₃
160			-C ₆ H ₄ -CH ₃	-C ₆ H ₄ -CH ₃
161			-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃
162			-C ₆ H ₄ -C ₆ H ₅	-C ₆ H ₄ -C ₆ H ₅
163			-C ₆ H ₄ -Cl	-C ₆ H ₄ -Cl
164			-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃
165			-CH ₂ -C ₆ H ₅	-CH ₂ -C ₆ H ₅
166			-CH ₂ -C ₆ H ₄ -CH ₃	-CH ₂ -C ₆ H ₄ -CH ₃
167			-C ₆ H ₅	-C ₆ H ₅

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
168			-C ₆ H ₅	-C ₆ H ₄ -CH ₃
169			-C ₆ H ₅	-C ₆ H ₄ -OCH ₃
170			-C ₆ H ₅	-C ₆ H ₄ -Cl
171			-C ₆ H ₅	-C ₆ H ₄ -C ₆ H ₅
172			-C ₆ H ₅	-C ₆ H ₄ -CH ₃
173			-C ₆ H ₅	-C ₆ H ₄ -OCH ₃
174			-C ₆ H ₄ -CH ₃	-C ₆ H ₄ -CH ₃
175			-C ₆ H ₄ -CH ₃	-C ₆ H ₄ -OCH ₃
176			-C ₆ H ₄ -CH ₃	-C ₆ H ₄ -CH ₃
177			-C ₆ H ₄ -CH ₃	-C ₆ H ₄ -C ₆ H ₅
178			-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
179			-C ₆ H ₄ -C ₂ H ₅	-C ₆ H ₄ -C ₂ H ₅
180			-CH ₂ -C ₆ H ₅	-CH ₂ -C ₆ H ₅
181			-C ₆ H ₅	-C ₆ H ₅
182			-C ₆ H ₅	-C ₆ H ₄ -CH ₃
183			-C ₆ H ₅	-C ₆ H ₄ -CH ₃
184			-C ₆ H ₅	-C ₆ H ₄ -OCH ₃
185			-C ₆ H ₅	-C ₆ H ₄ -C ₂ H ₅
186			-C ₆ H ₅	-C ₆ H ₄ -C ₆ H ₅
187			-C ₆ H ₅	-C ₆ H ₅

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
188				
189				
190				
191				
192				
193				
194				
195				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
196				
197				
198				
199				
200				
201				
202				
203				
204				
205				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
206				
207				
208				
209				
210				
211				
212				
213				
214				
215				
216				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
217				
218				
219				
220				
221				
222				
223				
224				
225				
226				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
227	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅	-C ₆ H ₅
228	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅	-C ₆ H ₅ -CH ₃
229	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅	-C ₆ H ₅ -CH ₃
230	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅	-C ₆ H ₄ -C ₆ H ₄ -
231	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -CH ₃	-C ₆ H ₅ -CH ₃
232	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -OCH ₃	-C ₆ H ₅ -OCH ₃
233	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -C ₂ H ₅	-C ₆ H ₅ -C ₂ H ₅
234	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -C ₆ H ₅	-C ₆ H ₅ -C ₆ H ₅
235	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-CH ₃	-CH ₃

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
236	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-CH ₃	-CH ₃ -CH ₃
237	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-OCH ₃	-OCH ₃
238	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-CH ₃ -C ₆ H ₅	-CH ₃ -C ₆ H ₅
239	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅	-C ₆ H ₅
240	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -CH ₃	-C ₆ H ₅ -Cl ₃
241	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -OCH ₃	-C ₆ H ₅ -OCH ₃
242	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₅ -C ₆ H ₅	-C ₆ H ₅ -C ₆ H ₅
243	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -S-C ₆ H ₄ -	-CH ₃ -C ₆ H ₅	-CH ₃ -C ₆ H ₅

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
243	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -S-C ₆ H ₄ -	-CH ₃ -C ₆ H ₅	-CH ₃ -C ₆ H ₅
244	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -S-C ₆ H ₄ -	-C ₆ H ₅	-C ₆ H ₅
245	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -S-C ₆ H ₄ -	-C ₆ H ₅ -CH ₃	-C ₆ H ₅ -CH ₃
246	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -S-C ₆ H ₄ -	-C ₆ H ₅ -OCH ₃	-C ₆ H ₅ -OCH ₃
247	-C ₆ H ₄ -C ₆ H ₄ -	-C ₆ H ₄ -S-C ₆ H ₄ -	-C ₆ H ₅ -C ₆ H ₅	-C ₆ H ₅ -C ₆ H ₅
248	-C ₆ H ₄ -C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -C ₆ H ₄ -	-CH ₃	-CH ₃ -C ₆ H ₅
249	-C ₆ H ₄ -C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -C ₆ H ₄ -	-CH ₃	-C ₆ H ₅
250	-C ₆ H ₄ -C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -C ₆ H ₄ -	-CH ₃ -C ₆ H ₅	-CH ₃ -C ₆ H ₅

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
251	-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃	-C ₆ H ₅	-C ₆ H ₅
252	-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃	-CH ₃ -C ₆ H ₅ -OCH ₃	-CH ₃ -C ₆ H ₅ -OCH ₃
253	-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃	-CH ₃ -C ₆ H ₅ -CH ₃	-CH ₃ -C ₆ H ₅ -CH ₃
254	-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃	-C ₆ H ₅	-C ₆ H ₅
255	-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃	-C ₆ H ₅	-C ₆ H ₅ -CH ₃
256	-C ₆ H ₄ -OCH ₃	-C ₆ H ₄ -OCH ₃	-C ₆ H ₅	-CH ₃ -C ₆ H ₅

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
257				
258				
259				
260				
261				
262				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
263				
264				
265				
266				
267				
268				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
269				
270				
271				
272				
273				
274				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
275				
276				
277				
278				
279				
280				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
281				
282				
283				
284				
285				
286				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
287				
288				
289				
290				
291				
292				
293				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
294				
295				
296				
297				
298				
299				

化合物 No	A			
	Ar ¹	Ar ²	R ¹	R ²
300				
301				
302				
303				
304				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
305				
306				
307				
308				
309				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
310				
311				
312				
313				
314				
315				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
316				
317				
318				
319				
320				
321				
322				

化合物 No.	A			
	Ar ¹	Ar ²	R ¹	R ²
323				
324				
325				

また、本発明において電荷移動物質として用い
る前記一般式(II)で表わされるアミノ化合物は、
例えば一般式(A)

(式中、R²、R⁴、R⁵、Ar、nは前記と同じ)

で表わされる不飽和アミノ化合物を水添させることによって製造される。

前記合成法で得られる一般式(II)で示されるアミノ化合物を以下に例示する。

化合物No.	R ²	n	Ar	R ⁴	R ⁵
1	H	1	-C ₆ H ₅ -	-CH ₃	-CH ₃
2	H	1	-C ₆ H ₅ -	-CH ₂ -C ₆ H ₅ -	-CH ₃
3	H	1	-C ₆ H ₅ -	-CH ₃	-C ₆ H ₅ -
4	H	1	-C ₆ H ₅ -	-CH ₂ -C ₆ H ₅ -	-CH ₂ -C ₆ H ₅ -
5	H	1	-C ₆ H ₅ -	-CH ₂ -C ₆ H ₅ -	-C ₆ H ₅ -
6	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₅ -
7	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₅ -CH ₃
8	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₅ -CH ₃
9	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₅ -CH ₃

化合物No.	R ²	n	Ar	R ⁴	R ⁵
10	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₅ -OCH ₃
11	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₄ -OCH ₃
12	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₄ -OCH ₃
13	H	1	-C ₆ H ₅ -	-C ₆ H ₄ -CH ₃ -	-C ₆ H ₄ -CH ₃ -
14	H	1	-C ₆ H ₅ -	-C ₆ H ₄ -CH ₃ -	-C ₆ H ₄ -CH ₃ -
15	H	1	-C ₆ H ₅ -	-C ₆ H ₄ -CH ₃ -	-C ₆ H ₄ -CH ₃ -
16	H	1	-C ₆ H ₅ -	-C ₆ H ₄ -OCH ₃ -	-C ₆ H ₄ -OCH ₃ -
17	H	1	-C ₆ H ₅ -	-C ₆ H ₄ -OCH ₃ -	-C ₆ H ₄ -OCH ₃ -

化合物No.	R ²	n	Ar	R ⁴	R ⁵
18	H	1	-C ₆ H ₅ -	-CH ₂ O-	-CH ₂ O-
19	H	1	-C ₆ H ₅ -	-C ₆ H ₄ -O-	-C ₆ H ₄ -O-
20	H	1	-C ₆ H ₅ -	-C ₆ H ₅ -	-C ₆ H ₄ -CH ₃ -
21	H	1	-C ₆ H ₅ -	-CH ₂ -	-CH ₃
22	H	1	-C ₆ H ₅ -	-CH ₂ -	-CH ₂ -C ₆ H ₅ -
23	H	1	-C ₆ H ₅ -	-CH ₂ -	-C ₆ H ₅ -
24	H	1	-C ₆ H ₅ -	-CH ₂ -	-C ₆ H ₅ -CH ₃

化合物No.	R ²	n	Ar	R ⁴	R ⁵	化合物No.	R ²	n	Ar	R ⁴	R ⁵
25	H	1				33	H	1			
26	H	1				34	H	1			
27	H	1				35	H	1			
28	H	1				36	H	1			
29	H	1				37	H	2			
30	H	1				38	H	2			
31	H	1		-CH ₃	-CH ₃	39	H	2			
32	H	1		-CH ₂ -	-CH ₂ -						

化合物No.	R ²	n	Ar	R ⁴	R ⁵	化合物No.	R ²	n	Ar	R ⁴	R ⁵
40	H	2				49	H	2			
41	H	2		-CH ₃	-CH ₃	50	H	2			
42	H	2		-CH ₃		51	H	2			
43	H	2		-CH ₂ -	-CH ₂ -	52	H	2			
44	H	2		-CH ₂ -		53	H	2			
45	H	2				54	H	2			
46	H	2				55	H	2			
47	H	2				56	H	2			
48	H	2									

化合物No	R ³	n	Ar	R ⁴	R ⁵
57	H	2			
58	p-CH ₃	1			
59	p-CH ₃	1			
60	p-CH ₃	1			
61	p-CH ₃	1			
62	p-CH ₃	1			
63	p-CH ₃	2			
64	p-CH ₃	2			
65	p-Cl	2			

化合物No	R ³	n	Ar	R ⁴	R ⁵
66	p-CH ₃	2			
67	p-CH ₃	1			
68	p-CH ₃	1			
69	p-CH ₃	1			
70	p-CH ₃	1			
71	p-OCH ₃	1			
72	p-OCH ₃	1			
73	p-OCH ₃	1			

化合物No	R ³	n	Ar	R ⁴	R ⁵
74	p-OCH ₃	2			

化合物No	R ³	n	Ar	R ⁴	R ⁵
83	m-OC ₆ H ₄	1			
84	m-OC ₆ H ₄	2			
85	m-OC ₆ H ₄	2			
86	m-OC ₆ H ₄	2			
87	m-OC ₆ H ₄	2			
88	m-OC ₆ H ₄	2			
89	p-Cl	2			

化合物No	R ³	n	Ar	R ⁴	R ⁵
80	m-OC ₆ H ₄	1			
81	m-OC ₆ H ₄	1			
82	m-OC ₆ H ₄	1			

化合物No	R ³	n	Ar	R ⁴	R ⁵
90	m-CH ₃	1			
91	m-CH ₃	1			

化合物No.	R ²	n	Ar	R ⁴	R ⁵
92	4-N(CH ₃) ₂	1			
93	4-N(C ₂ H ₅) ₂	1			
94	4-N [] [<td>1</td> <td></td> <td></td> <td></td>	1			
95	4-N [] [<td>1</td> <td></td> <td></td> <td></td>	1			
96	4-N [] [[<td>1</td> <td></td> <td></td> <td></td>	1			

これらの電荷輸送物質は、単独又は2種以上混和して用いられる。

バインダー樹脂としてはポリスチレン、ステレン-アクリロニトリル共重合体、ステレン-ブタジエン共重合体、ステレン-無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアクリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ-N-ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。

溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、モノクロルベンゼン、ジクロルエタン、塩化メチレンなどが用いられる。

電荷輸送層22の厚さは、5~50μ程度が適当である。

单層感光層の膜厚は、5~50μ程度が適当である。

なお、本発明において感光層14の上にさらに絶縁層を設けることも可能である。

また、本発明において第3図に示されるように、導電性支持体と、感光層との間に中間層13を設けることにより、本発明の第1の効果をいっそう向上させることが可能であり、また接着性を改良することもできる。

中間層13には、SiO₂、Al₂O₃等の無機材料を蒸着、スパッタリング、陽極酸化などの方法で設けたもののや、ポリアミド樹脂(特開昭58-30757号公報、特開昭58-98739号公報)、アルコール可溶性ナイロン樹脂(特開昭60-196766号公報)、水溶性ポリビニルブチラール樹脂(特開昭60-232553号公報)、ポリビニルアルコールなどの樹脂層を用いることができる。

また、上記樹脂中間層にZnO、TiO₂、ZnS等の顔料粒子を分散したのも、中間層として用いることができる。

次に感光層14が单層構成の場合について述べる。この場合も多くは電荷発生物質と電荷輸送物質よりなる機能分離型のものが挙げられる。

即ち、電荷発生物質および電荷輸送物質には先に示した化合物を用いることができる。

单層感光層は、電荷発生物質および電荷輸送物質およびバインダー樹脂を適当な溶剤に溶解しない分散し、これを塗布、乾燥することによって形成できる。また、必要により可塑剤やレベリング剤等を添加することもできる。

バインダー樹脂としては、先に電荷輸送層23で挙げたバインダー樹脂をそのまま用いるほかに、電荷発生層21で挙げたバインダー樹脂を混合して用いてもよい。

单層感光層は、電荷発生物質、電荷輸送物質およびバインダー樹脂をテトラヒドロフラン、ジオキサン、ジクロルエタン、シクロヘキサン等の溶媒を用いて分散機等で分散した塗工液を浸漬塗工法やスプレーコート、ビードゴートなどで塗工して形成できる。

更に本発明の中間層13として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。

中間層13の膜厚は0~5μが適当である。

保護層15に使用される樹脂としては、ABS樹脂、ACS樹脂、オレフィンビニル共重合体樹脂、塩素化ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、メタクリル樹脂、ポリメチルベンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ボリスチレン、AS樹脂、ブタジエン-ステレン樹脂、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等が挙げられる。

また、耐摩耗性の観点から添加剤としてポリテトラフルオロエチレン樹脂、フッ素系樹脂、シリコーン系樹脂を添加し、摩耗係数を下げ、耐摩耗性

並びに耐傷化性の向上を図ることでき、また酸化チタン、酸化錫、チタン酸カリウムの無機化合物を前記樹脂中に分散しても耐摩耗性が向上する。この表面保護層の膜厚は0.5~10μ、好ましくは1~5μである。

[実施例]

次に実施例によって本発明を更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。

実施例1

φ80mm、長さ340mmのアルミニウムドラムに、下記組成からなる中間層を0.3μ、電荷発生層0.1μ、電荷輸送層を20μを順次浸漬工法により塗布、乾燥した。

(1) 中間層塗工液

ポリビニルアルコール (電気化学工業:デンカポバールH-20)	2重量部
水	150重量部
メタノール	150重量部

(2) 電荷発生層塗工液

本発明における顔料No a-5-209 のアゾ顔料	
シクロヘキサン	2重量部
メチルエチルケトン	80重量部
以上の組成からなる混合物をポールミルにて48時間分散した後、塗工液とした。	18重量部

(3) 電荷輸送層塗工液

本発明における電荷輸送物質 No (I)-66	
ポリカーボネート (帝人:パンライト C-1400)	9重量部
塩化メチレン	10重量部
以上の様にして、感光体No 1を作成した。	81重量部

実施例2~22

実施例1で用いた顔料No a-5-209の代わりに、後記表-1に示すアゾ顔料を、又、実施例1で用いた電荷輸送物質No (I)-66の代わりに後記表-1に示す電荷輸送物質を用いた以外は、実施例1と同様にして、感光体No 2-22を作成した。以上の様に作成した感光体を、負帯電する様に改造した複写機(リコピーFT4080)に搭載し、第8図に示す様なヒ

ートパイプを使用し、ドラム温度が常に50±2℃になる様にセットした。又、複写機内にて、帯電直後のドラム表面電位が測定できる様に表面電位計のプローブをセットした。以上の様に条件を整えた後、20℃-60%RHの環境下で連続8000枚のコピーを行なった。

比較例1~22

上記実施例1~22において、ヒートパイプによるドラム温度制御を行なわない以外は全く同じ評価をした。尚、感光体表面電位測定は、コピースタート時(3~5枚目)と8000枚時に測定した。

実施例1~22と比較例1~22の結果を表-1に記す。

表-1

実施例 No.	感光体 No.	アゾ顔料 No.	電荷輸送物質 No.	初期電位 (-V)	8000枚 電位(-V)	比較例 No.	初期電位 (-V)	8000枚 電位(-V)
1	1	a-5-208	(1)-66	664	837	1	846	441
2	2	b-6	(1)-199	828	847	2	810	482
3	3	c-171	(1)-7	892	811	3	874	392
4	4	d-78	(1)-140	856	835	4	838	473
5	5	e-243	(1)-132	820	842	5	802	367
6	6	f-150	(1)-80	884	821	6	866	463
7	7	g-57	(1)-28	848	859	7	830	409
8	8	h-4-160	(1)-302	812	837	8	894	355
9	9	i-6	(1)-250	876	816	9	858	451
10	10	j-3-37	(1)-198	840	654	10	822	397
11	11	k-228	(1)-147	842	633	11	862	493
12	12	l-2-64	(1)-95	882	811	12	802	439
13	13	m-28-157	(1)-43	832	849	13	814	425
14	14	n-251	(1)-317	896	853	14	888	497
15	15	p-87	(1)-265	856	817	15	825	407
16	16	q-181	(1)-213	893	849	16	861	482
17	17	r-17	(1)-162	829	807	17	897	426
18	18	s-202	(1)-110	866	845	18	834	374
19	19	t-47	(1)-58	802	824	19	870	470
20	20	u-150	(1)-7	838	802	20	807	416
21	21	v-181	(1)-280	875	840	21	878	362
22	22	w-88	(1)-228	898	819	22	818	458

実施例 23

長さ340mm、直径120mmのアルミニウムドラムに、下記組成からなる中間層(3.5μ)、電荷発生層(0.2μ)、電荷輸送層(22μ)を順次塗布、乾燥した。

(1) 中間層塗工液

二酸化チタン 10重量部

ポリビニルブチラール 1重量部
(积水化学工業:エスレックBL-1)

トルイレン-2,4-ジイソシアネート 0.2重量部

2-ブタン 100重量部

4-メチル-2-ペンタノン 60重量部

以上の様に混合した液を12時間ボールミルで分散した後、塗工液とした。

(2) 電荷発生層塗工液

本発明における顔料No.a-17-253のアゾ顔料 3重量部

シクロヘキサン 160重量部

シクロヘキサン 40重量部

以上の様に混合した液を、36時間分散した後、塗工液とした。

(3) 電荷輸送層塗工液

本発明における電荷輸送物質

No.(1)-177

9重量部

ポリアリレート(ユニチカ:U-100)

11重量部

塩化メチレン

70重量部

クロロベンゼン

10重量部

以上の様にして感光体No.23を作成した。

実施例 24～44

実施例23で用いた顔料No.a-17-253の代わりに、後記表-2に示すアゾ顔料を、又、実施例23で用いた電荷輸送物質No.(1)-177の代わりに後記表-2に示す電荷輸送物質を用いた以外は、実施例23と同様にして、感光体No.24～44を作成した。以上の様に作成した感光体を負帯電する様に改造した複写機(リコピーフト7050)に搭載し、第9図に示すような抵抗加熱器を使用し、コピー5000枚ごとに、停止し、ドラム温度を100℃まで加熱し、別に設けたファンにて室温まで冷却するという条件で10010枚までコピーした。尚、環境条件は、25℃-45%RHであった。評価方法としては、10枚目と10010枚目の画像の黒ベタ部を市販のマクベス濃度計にて

画像濃度(以下I.Dと略す。)を測定した。

比較例 23~44

実施例23~44における加熱処理をしない他は、

全く同じ条件で評価した。但し、加熱処理に相当する時間コピーを停止し、感光体は休ませた。

実施例23~44、比較例23~44の結果を表-2に記す。

表-2

実施例 No.	感光体 No.	アソシエイト No.	電荷輸送物質 No.	I.D.	10枚目 I.D.	100枚目 I.D.	比較例 No.	10枚目 I.D.	100枚目 I.D.
23	23	a-17-253	(1)-177	1.43	1.39	23	1.43	0.63	
24	24	b-161	(1)-125	1.48	1.33	24	1.37	0.95	
25	25	c-68	(1)-73	1.39	1.43	25	1.46	0.77	
26	26	d-233	(1)-22	1.44	1.37	26	1.40	0.59	
27	27	e-140	(1)-295	1.50	1.47	27	1.45	0.91	
28	28	f-47	(1)-243	1.40	1.41	28	1.36	0.73	
29	29	g-212	(1)-132	1.45	1.36	29	1.42	0.55	
30	30	h-2-119	(1)-80	1.36	1.32	30	1.48	0.87	
31	31	i-26	(1)-28	1.41	1.41	31	1.39	0.69	
32	32	j-4-191	(1)-302	1.47	1.34	32	1.48	0.51	
33	33	k-99	(1)-250	1.41	1.39	33	1.42	0.83	
34	34	l-1-6	(1)-198	1.50	1.45	34	1.35	0.84	
35	35	m-16-171	(1)-147	1.37	1.41	35	1.44	0.66	
36	36	n-78	(1)-95	1.42	1.35	36	1.38	0.98	
37	37	p-243	(1)-43	1.48	1.45	37	1.47	0.80	
38	38	q-150	(1)-317	1.38	1.40	38	1.41	0.62	
39	39	r-57	(1)-265	1.44	1.34	39	1.46	0.94	
40	40	s-160	(1)-213	1.49	1.44	40	1.37	0.76	
41	41	t-44	(1)-162	1.38	1.38	41	1.44	0.58	
42	42	u-112	(1)-110	1.45	1.46	42	1.50	0.90	
43	43	v-19	(1)-58	1.35	1.40	43	1.40	0.72	
44	44	w-184	(1)-7	1.45	1.43	44	1.47	0.54	

実施例45

アルミニウム導電層を有するポリエステルフィルムを支持体に、下記組成からなる塗工液を順次塗布、乾燥し、電荷発生層(0.2μ)、電荷輸送層(18μ)を形成した。

(1) 電荷発生層塗工液

本発明における顔料 No-a-12-91
のアゾ顔料

ポリビニルブチラール(電気化学
工業:デンカブチラール#4000-1)

シクロヘキサン

メチルイソブチルケトン

以上の様に混合した液を、72時間分散した後、
塗工液とした。

(2) 電荷輸送層塗工液

本発明における電荷輸送物質
No (I)-77

ポリカーボネート
(帝人:パンライト K-1300)

テトラヒドロフラン

以上の様にして感光体 No 45を作成した。

実施例46～66

実施例45で用いた顔料 No-a-12-91の代わりに、

後記表-3に示すアゾ顔料を、又、実施例45で用いた電荷輸送物質 No (I)-77の代わりに後記表-3に示す電荷輸送物質を用いた以外は、実施例45と同様にして、感光体 No 46-66を作成した。又、以上の様に作成した No 45-66の感光体に導電層塗工及びベルト接合を行ない、実装用の感光体とした。以上の様に作成した感光体を複写機(リコピーフィ2050)に搭載した。現像直前の感光体の表面電位が測定できる様に表面電位計のプローブをセットした。第6図に示す様なプロセスにて、従来ローラを面状発熱体にし、感光体温度が $40 \pm 3^\circ\text{C}$ になる様にセットした。環状条件は、 $18^\circ\text{C} - 35\%RH$ である。この状態で7500枚の連続コピーを行ない、1枚目と7500枚目の表面電位を測定した。

比較例45～66

実施例45-66における温度コントロールを行な
わない他は、すべて同じ条件で評価した。

実施例45-66、比較例45-66の結果を表-3に記す。

表-3

実施例 No	感光体 No	アゾ顔料 No	電荷輸送物質 No	1枚目 表面電位 (-V)	7500枚目 表面電位 (-V)	比較例 No		1枚目 表面電位 (-V)	7500枚目 表面電位 (-V)
						1枚目 表面電位 (-V)	No		
45	45	a-12-91	(1)-77	838	859	45	855	438	
46	46	b-256	(1)-22	888	823	46	870	362	
47	47	c-83	(1)-295	852	831	47	834	422	
48	48	d-186	(1)-243	816	810	48	808	394	
49	49	e-235	(1)-251	880	848	49	862	480	
50	50	f-142	(1)-59	844	827	50	825	436	
51	51	g-187	(1)-192	808	805	51	850	382	
52	52	h-1-22	(1)-1	872	843	52	854	478	
53	53	i-116	(1)-134	836	822	53	818	424	
54	54	j-2-210	(1)-267	800	800	54	892	370	
55	55	k-46	(1)-75	864	839	55	846	466	
56	56	l-1-140	(1)-209	828	805	56	810	412	
57	57	m-5-234	(1)-17	892	829	57	874	467	
58	58	n-228	(1)-150	856	818	58	838	377	
59	59	p-73	(1)-283	820	856	59	802	437	
60	60	r-212	(1)-92	884	834	60	866	455	
61	61	r-29	(1)-225	848	813	61	830	401	
62	62	s-194	(1)-33	805	851	62	887	497	
63	63	t-101	(1)-165	869	830	63	851	443	
64	64	u-8	(1)-300	833	808	64	815	389	
65	65	v-173	(1)-108	897	846	65	879	485	
66	66	w-81	(1)-241	861	825	66	843	431	

実施例6~7

直径80mm、長さ340mmのアルミニウムドラムに下記組成からなる塗工液を順次塗布、乾燥し、電荷輸送層を15μ、電荷発生層を3μ、中間層を0.5μ、保護層を5μを形成した。

(1) 電荷輸送層塗工液

本発明における電荷輸送物質 No(I)-49	10重量部
ポリカーボネート (帝人:パンライト L-1250)	10重量部
テトラヒドロフラン	100重量部
シクロヘキサン	80重量部

(2) 電荷発生層塗工液

本発明における顔料 No a-16-246 のアゾ顔料	2重量部
ポリエステル (東洋紡績:バイロン200)	1重量部
シクロヘキサン	97重量部

以上の様に混合した液を40時間分散し、塗工液とした。

(3) 中間層塗工液

ポリアミド(東レ:CM-4000)	4重量部
-------------------	------

け、3000枚ごとにコピーを停止し、感光体温度を80℃まで加熱し、40℃まで冷却した後再びコピーを開始するといった方法で12001枚のコピーを行なった。10枚目の表面電位と12001枚目の表面電位を測定した。ランニング環境は、30℃-80%RHという条件にて行なった。フィルターはシャープカットフィルター(富士写真SC-72)を使用した。

比較例6~7~8

実施例67~88における温度コントロールを行なわない他は全く同じ評価をした。但し、3000枚ごとにコピーを停止し、実施例の加熱-冷却に要する時間は、感光体を休ませた。実施例67~88、比較例67~88の結果は、表-4に記す。

メタノール

100重量部

(4) 保護層塗工液

ステレン-メチルメタクリレート- 2-ヒドロキシエチルメタクリレート の共重合体	8重量部
--	------

導電性チタン

10重量部

トルエン

240重量部

ブタノール

60重量部

以上の様に混合した液を80時間分散し、塗工液とした。

以上の様にして、感光体No 67を作成した。

実施例6~8

実施例67で用いた顔料No a-16-246の代わりに後記表-4に示すアゾ顔料を、又は、実施例67で用いた電荷輸送物質No(I)-49の代わりに後記表-4に示す電荷輸送物質を用いた以外は実施例67と同様にして感光体No 68~88を作成した。

以上の様に作成した感光体を複写機(リコピーフT5510)に搭載した。帯電直後の表面電位が測定できる様に表面電位計のプローブをセットした。第7図に示すような赤外線ランプハウスを取りつ

表-4

実施例 No.	感光体 No.	アゾ顔料 No.	電荷輸送物質 No.	表面電位 (-V)	10枚目 表面電位 (-V)	1200枚目 表面電位 (-V)	表面電位 (-V)	比較例		1200枚目 表面電位 (-V)
								10枚目 表面電位 (-V)	表面電位 (-V)	
67	67	a-16-246	(1)-49	825	828	67	807	385		
68	68	b-153	(1)-183	889	823	68	871	387		
69	69	c-60	(1)-316	853	835	69	835	333		
70	70	d-225	(1)-124	817	813	70	898	358		
71	71	e-132	(1)-257	822	823	71	832	263		
72	72	f-39	(1)-66	852	785	72	872	318		
73	73	g-204	(1)-95	892	807	73	891	372		
74	74	h-3-112	(1)-228	873	829	74	855	277		
75	75	i-19	(1)-36	837	791	75	872	331		
76	76	j-1-184	(1)-170	841	813	76	809	386		
77	77	k-91	(1)-303	877	834	77	845	382		
78	78	l-2-256	(1)-111	813	833	78	882	292		
79	79	m-2-83	(1)-244	850	852	79	818	373		
80	80	n-186	(1)-53	886	829	80	854	298		
81	81	p-105	(1)-186	823	799	81	891	394		
82	82	q-217	(1)-319	859	838	82	888	335		
83	83	r-124	(1)-127	808	814	83	828	389		
84	84	s-32	(1)-261	848	836	84	882	294		
85	85	t-197	(1)-69	829	798	85	811	348		
86	86	u-104	(1)-202	893	819	86	875	253		
87	87	v-109	(1)-10	857	781	87	839	308		
88	88	w-212	(1)-144	821	803	88	803	362		

実施例 89

アルミニウム導電層を有するポリエステルフィルム支持体上に、下記組成からなる塗工液を順次塗布、乾燥し、中間層(0.2μ)電荷発生層(0.1μ)、電荷輸送層(20μ)を形成した。

(1) 中間層塗工液

ポリビニルアルコール(電気化学工業:デンカポーバル H-20)

水

2重量部

メタノール

200重量部

100重量部

(2) 電荷発生層塗工液

本発明における顔料No.a-3-83のアゾ顔料

3重量部

シクロヘキサン

87重量部

以上の様に混合した液を、60時間分散した液を塗工液とした。

(3) 電荷輸送層塗工液

本発明における電荷輸送物質No.(I)-277

10重量部

ポリカーボネート(帝人:パンライト K-1300)

10重量部

テトラヒドロフラン

90重量部

ジオキサン

90重量部

以上の様にして感光体No.89を作成した。

実施例 90～110

実施例89で用いた顔料No.a-3-83の代わりに、後記表-5に示すアゾ顔料を、又、実施例89で用いた電荷輸送物質No.(I)-277の代わりに後記表-5に示す電荷輸送物質を用いた以外は、実施例89と同様にして、感光体No.90-110を作成した。以上の様に作成したNo.89-110の感光体に導電層塗工及びベルト接合を行ない、実装用の感光体とした。この様に作成した感光体を複写機(リコピーフト2070)に搭載した。從動ローラー内にPTC特性を有する発熱体を設け、on-offにより、感光体温度が35±3℃になる様にセットした。環境条件は10℃-60%RHである。この状態で7000枚の連続コピーを行ない、5枚目と7000枚目の画像状態を評価した。

比較例 89～110

実施例89-110における温度コントロールを行なわない以外は全く同じ評価をした。実施例89-110、比較例89-110の結果は、表-5に記す。

実施例	感光体 No.	アソシケート No.	電荷輸送物質 No.	面像状態 No.	5枚目		7000枚目		比較例 No.	面像状態	7000枚目 面像状態
					面像状態	面像状態	面像状態	面像状態			
88	89	a-3-83	(1)-277	○	○	○	○	○	89	○	x-△
90	90	b-248	(1)-85	○	○	○	○	○	90	○	x
91	91	c-146	(1)-218	○	○	○	○	○	91	○	x
92	92	d-239	(1)-27	○	○	○	○	○	92	○	x
93	93	e-75	(1)-160	○	○	○	○	○	93	○	x
94	94	f-169	(1)-293	○	○	○	○	○	94	○	x
95	95	g-5	(1)-101	○	○	○	○	○	95	○	x
96	96	h-3-99	(1)-235	○	○	○	○	○	96	○	x
97	97	i-193	(1)-82	○	○	○	○	○	97	○	x
98	98	j-4-253	(1)-215	○	○	○	○	○	98	○	x
99	99	k-89	(1)-23	○	○	○	○	○	99	○	x
100	100	l-3-228	(1)-157	○	○	○	○	○	100	○	x
101	101	m-11-135	(1)-290	○	○	○	○	○	101	○	x
102	102	n-42	(1)-98	○	○	○	○	○	102	○	x
103	103	p-207	(1)-231	○	○	○	○	○	103	○	x
104	104	q-114	(1)-248	○	○	○	○	○	104	○	x
105	105	r-21	(1)-173	○	○	○	○	○	105	○	x
106	106	s-186	(1)-306	○	○	○	○	○	106	○	x-△
107	107	t-93	(1)-114	○	○	○	○	○	107	○	x
108	108	u-1	(1)-248	○	○	○	○	○	108	○	x
109	109	v-166	(1)-56	○	○	○	○	○	109	○	x
110	110	w-73	(1)-189	○	○	○	○	○	110	○	x-△

实施例 1 1 1

長さ 120 mm、直径 340 mm のアルミニウムドラムに、下記組成からなる塗工液を順次、塗布、乾燥し、中間層 (5μ)、電荷発生層 (0.3μ)、電荷輸送層 (25μ) を形成した。

(1) 中間層塗工液

二酸化チタン 10重量部

ポリビニルブチラール
(积水化学工業:エスレックBL-1)

トルイレン-2,4-ジイソシアネート 0.2重量部

2-ブタノン 100重量部

4-メチル-2-ペントノン 60重量部

以上の様に混合した液を
散した後、塗工液とした。

(2) 電荷發生層塗工液

本発明における顔料 No. a-8-238 のアゾ顔料

ポリエステル
(東洋紡績:バイロン200) 1重量部

シクロヘキサン 97重量部

(3) 電荷輸送層塗工液

本発明における電荷輸送物質
Na(I)-322

ポリアリレート(ユニチカ:U-100)
(帝人:バンライト C-1400)

塩化メチレン

クロロベンゼン 10重量部

以上の様にして感光

实施例 112~132

实施例 112~132

実施例111で用いた顔料Na-a-8-238の代わりに、
後記表-6に示すアゾ顔料を、又、電荷輸送物質Na
(I)-322の代わりに後記表-6に示す電荷輸送物質
を用いた以外は、実施例111と同様にして、感光
体Na 112~132を作成した。以上の様に作成した感
光体を負帯電する様に改造した複写機(リコピ一
FT6080)に搭載し、現像直前の感光体の表面電位
を測定できる様に表面電位計のプローブをセット
した。尚、連続コピー9990枚行ない、感光体を複
写機より取り出して、第12図に示すような疲労回
復装置にて、130°C-20分間、加熱処理を行ない、
室温まで冷却して、再び複写機に戻し、通算1000
枚までコピーを行ない、10枚目と10000枚目の表

面電位を測定した。環境条件は、25°C-50%RHであった。

比較例 111～132

実施例111-132における加熱処理を25°Cで行なった以外は(つまり室温と同じ)全く同じ評価をした。実施例111-132、比較例111-132の結果を表-6に記す。

表-6

実施例 No.	感光体 No.	アソ原料 No.	電荷輸送物質 No.	10枚目 表面電位 (-V)		10000枚目 表面電位 (-V)	比較例 No.	10枚目 表面電位 (-V)		10000枚目 表面電位 (-V)
				表面電位 (-V)	裏面電位 (-V)			表面電位 (-V)	裏面電位 (-V)	
111	111	a-8-238	(1)-322	865	835	111	857	360		
112	112	b-145	(1)-131	849	824	112	831	306		
113	113	c-52	(1)-71	813	802	113	895	311		
114	114	d-217	(1)-72	877	804	114	858	365		
115	115	e-124	(1)-105	841	826	115	823	270		
116	116	f-32	(1)-137	805	788	116	887	325		
117	117	g-197	(1)-170	869	810	117	851	379		
118	118	h-2-104	(1)-202	833	832	118	815	284		
119	119	i-109	(1)-235	897	794	119	878	338		
120	120	j-3-212	(1)-267	861	815	120	843	262		
121	121	k-135	(1)-1	825	785	121	807	322		
122	122	l-2-65	(1)-134	869	781	122	871	294		
123	123	m-20-230	(1)-150	846	789	123	842	271		
124	124	n-137	(1)-233	810	833	124	852	382		
125	125	p-44	(1)-300	874	795	125	862	287		
126	126	q-57	(1)-108	838	817	126	813	342		
127	127	r-135	(1)-241	802	838	127	897	396		
128	128	s-238	(1)-49	866	860	128	882	301		
129	129	t-189	(1)-316	830	822	129	893	355		
130	130	u-95	(1)-183	894	784	130	834	260		
131	131	v-105	(1)-124	858	827	131	875	367		
132	132	w-198	(1)-257	822	791	132	815	277		

実施例133

長さ80mm、直径340mmのアルミニウムドラムに、下記組成からなる塗工液を順次、塗布、乾燥し、中間層(0.3μ)、電荷発生層(0.2μ)、電荷輸送層(20μ)を形成した。

(1) 中間層塗工液

水溶性ポリビニルブチラール25% 50重量部
水溶液(積水化学工業:エスレックV-201)

水	150重量部
メタノール	200重量部

(2) 電荷発生層塗工液

本発明における顔料No.a-14-34のアゾ顔料 2重量部

水溶性ポリビニルブチラール (積水化学工業:エスレックBL-1)	0.7重量部
テトラヒドロフラン	80重量部
エチルセルソルブ	120重量部

(3) 電荷輸送層塗工液

本発明における電荷輸送物質
No.(I)-73 10重量部

ポリカーボネート (帝人:パンライトC-1400)	10重量部
------------------------------	-------

塩化メチレン

80重量部

以上の様にして感光体No.133を作成した。

実施例134~154

実施例133で用いた顔料No.a-14-34の代わりに、後記表-7に示すアゾ顔料を、又、電荷輸送物質No.(I)-73の代わりに後記表-7に示す電荷輸送物質を用いた以外は、実施例133と同様にして、感光体No.134~154を作成した。以上の様に作成した感光体を負帯電する様に改造した複写機(リコピーフト5050)に搭載し、高周波電源として2.45GHzのマグネットロンを用いて、別に設けた強磁性体(フェロックスプレーナ粒子を樹脂中に分散した板)に電極を設けた発熱体により感光体温度が50±2℃になる様にセットした。各条件をセットした後、複写機を繰り返し使用し、連続9000枚のコピーを行なった。環境は、23℃-50%RHであった。評価は、実施例-23に用いた方法と同じ方法にてI.D.値にて評価した。

比較例133~154

実施例133~154における高周波加熱を行なわな

い以外は全く同じ評価をした。実施例133~154。

比較例133~154の結果を表-7に記す。

表-7

実施例 No.	感光体 No.	アゾ顔料 No.	電荷輸送物質 No.	5枚目		9000枚目		比較例 No.		5枚目		9000枚目	
				I.D.値	I.D.値	I.D.値	I.D.値	I.D.値	I.D.値	I.D.値	I.D.値	I.D.値	I.D.値
133	133	a-14-34	(1)-73	1.46	1.43	1.33	1.39	0.72	0.72	0.72	0.72	0.72	0.72
134	134	b-126	(1)-132	1.36	1.38	1.34	1.45	0.54	0.54	0.54	0.54	0.54	0.54
135	135	c-222	(1)-250	1.42	1.32	1.35	1.36	0.86	0.86	0.86	0.86	0.86	0.86
136	136	d-58	(1)-43	1.47	1.42	1.36	1.50	0.68	0.68	0.68	0.68	0.68	0.68
137	137	e-152	(1)-162	1.37	1.36	1.37	1.41	0.50	0.50	0.50	0.50	0.50	0.50
138	138	f-21	(1)-280	1.43	1.46	1.38	1.39	0.82	0.82	0.82	0.82	0.82	0.82
139	139	g-124	(1)-73	1.48	1.35	1.39	1.38	0.64	0.64	0.64	0.64	0.64	0.64
140	140	h-4-75	(1)-251	1.39	1.44	1.40	1.36	0.96	0.96	0.96	0.96	0.96	0.96
141	141	i-241	(1)-134	1.44	1.38	1.41	1.42	0.78	0.78	0.78	0.78	0.78	0.78
142	142	j-1-148	(1)-17	1.44	1.42	1.42	1.44	0.60	0.60	0.60	0.60	0.60	0.60
143	143	k-55	(1)-225	1.38	1.32	1.43	1.45	0.92	0.92	0.92	0.92	0.92	0.92
144	144	l-1-220	(1)-108	1.45	1.46	1.44	1.47	0.74	0.74	0.74	0.74	0.74	0.74
145	145	m-23-127	(1)-316	1.40	1.40	1.45	1.41	0.93	0.93	0.93	0.93	0.93	0.93
146	146	n-34	(1)-95	1.45	1.35	1.46	1.35	0.75	0.75	0.75	0.75	0.75	0.75
147	147	p-199	(1)-303	1.35	1.44	1.47	1.44	0.57	0.57	0.57	0.57	0.57	0.57
148	148	q-106	(1)-186	1.41	1.39	1.48	1.47	0.89	0.89	0.89	0.89	0.89	0.89
149	149	r-13	(1)-69	1.46	1.33	1.49	1.47	0.71	0.71	0.71	0.71	0.71	0.71
150	150	s-179	(1)-277	1.37	1.34	1.50	1.39	0.53	0.53	0.53	0.53	0.53	0.53
151	151	t-86	(1)-160	1.42	1.43	1.51	1.45	0.85	0.85	0.85	0.85	0.85	0.85
152	152	u-251	(1)-82	1.47	1.35	1.52	1.36	0.67	0.67	0.67	0.67	0.67	0.67
153	153	v-158	(1)-290	1.42	1.45	1.53	1.45	0.89	0.89	0.89	0.89	0.89	0.89
154	154	w-65	(1)-173	1.36	1.36	1.54	1.49	0.81	0.81	0.81	0.81	0.81	0.81

実施例 155

φ80mm、長さ340mmのアルミニウムドラムに、下記組成からなる中間層を0.3μ、電荷発生層0.1μ、電荷輸送層を20μを順次浸漬工法により塗布、乾燥した。

(1) 中間層塗工液

ポリビニルアルコール (電気化学工業:デンカポバールH-20) 2重量部

水 150重量部

メタノール 150重量部

(2) 電荷発生層塗工液

本発明における顔料No.a-4-64のアゾ顔料 2重量部

シクロヘキサン 80重量部

メチルエチルケトン 18重量部

以上の組成からなる混合物をボールミルにて48時間分散した後、塗工液とした。

(3) 電荷輸送層塗工液

本発明における電荷輸送物質 No.(II)-30 9重量部

ポリカーボネート (帝人:パンライト C-1400) 10重量部

塩化メチレン

以上の様にして、感光体No.155を作成した。

実施例 156～176

実施例155で用いた顔料No.a-4-64の代わりに、後記表-8に示すアゾ顔料を、又、実施例155で用いた電荷輸送物質No.(II)-30の代わりに後記表-1に示す。電荷輸送物質を用いた以外は、実施例155と同様にして、感光体No.156～176を作成した。以上の様に作成した感光体を、負帯電する様に改造した複写機(リコピーフト4080)に搭載し、第8図に示すようにヒートパイプを使用し、ドラム温度が常に50±2°Cになる様にセットした。又、複写機内にて、帯電直後のドラム表面電位が測定できる様に表面電位計のプローブをセットした。以上の様に条件を整えた後、20°C-60%RHの環境下で連続8000枚のコピーを行なった。

比較例 155～176

上記実施例155～176において、ヒートパイプによるドラム温度制御を行なわない以外は全く同じ評価をした。尚、感光体表面電位測定は、コピー

スタート時(3-5枚目)と8000枚時に測定した。

実施例155-176と比較例155-176の結果を表-8に記す。

表-8

実施例	感光体	アソブ料	電荷輸送物質	初期電位	8000枚	比較例	初期電位	8000枚
No	No	No	No	(-V)	電位(-V)	No	(-V)	電位(-V)
155	155	a-64	(II)-30	878	848	155	890	692
156	156	b-177	(II)-91	806	788	156	983	570
157	157	c-14	(II)-57	934	838	157	836	599
158	158	d-128	(II)-22	862	802	158	909	628
159	159	e-241	(II)-84	890	766	159	981	577
160	160	f-78	(II)-49	918	830	160	976	606
161	161	g-191	(II)-15	846	794	161	856	555
162	162	h-4-36	(II)-76	974	758	162	984	613
163	163	i-38	(II)-41	902	822	163	822	565
164	164	j-2-141	(II)-7	830	786	164	960	597
165	165	k-255	(II)-68	958	750	165	888	606
166	166	l-2-92	(II)-34	886	758	166	816	577
167	167	m-13-205	(II)-95	814	798	167	944	662
168	168	n-42	(II)-31	942	779	168	872	557
169	169	p-155	(II)-69	870	843	169	800	586
170	170	q-268	(II)-53	998	807	170	928	615
171	171	r-105	(II)-69	864	771	171	856	564
172	172	s-218	(II)-8	944	835	172	984	593
173	173	t-56	(II)-43	982	799	173	912	623
174	174	u-169	(II)-78	910	763	174	840	621
175	175	v-6	(II)-17	945	827	175	968	573
176	176	w-119	(II)-52	817	791	176	895	616

実施例178

長さ340mm、直径120mmのアルミニウムドラムに、下記組成からなる中間層(3.5μ)、電荷発生層(0.2μ)、電荷輸送層(22μ)を順次塗布、乾燥した。

(1) 中間層塗工液

二酸化チタン	10重量部
ポリビニルブチラール (积水化学工業:エスレックBL-1)	1重量部
トルイレン-2,4-ジイソシアネート	0.2重量部
2-ブタノン	100重量部
4-メチル-2-ペンタノン	60重量部

以上の様に混合した液を12時間ボールミルで分散した後、塗工液とした。

(2) 電荷発生層塗工液

本発明における顔料No.a-13-232 のアゾ顔料	3重量部
シクロヘキサン	160重量部
シクロヘキサン	40重量部

以上の様に混合した液を、36時間分散した後、塗工液とした。

10010枚目の画像の黒ベタ部を市販のマクベス濃度計にて画像濃度(以下I.Dと略す。)を測定した。

比較例177~198

実施例177~198における加熱処理をしない他は、全く同じ条件で評価した。但し、加熱処理に相当する時間コピーを停止し、感光体は休ませた。

実施例177~198、比較例177~198の結果を表-9に記す。

(3) 電荷輸送層塗工液

本発明における電荷輸送物質 No.(II)-87	9重量部
ポリアリレート(ユニチカ:U-100)	11重量部
塩化メチレン	70重量部
クロロベンゼン	10重量部
以上の様にして感光体No.178を作成した。	

実施例178~198

実施例177で用いた顔料No.a-13-232の代わりに、後記表-9に示すアゾ顔料を、又、実施例177で用いた電荷輸送物質No.(II)-87の代わりに後記表-9に示す電荷輸送物質を用いた以外は、実施例177と同様にして、感光体No.178~198を作成した。以上の様に作成した感光体を負帯電する様に改造した複写機(リコピーFT7050)に搭載し、第9図に示すように抵抗加熱器を使用し、コピー5000枚ごとに、停止し、ドラム温度を100°Cまで加熱し、別に設けたファンにて室温まで冷却するという条件で10010枚までコピーした。尚、環境条件は、25°C-45%RHであった。評価方法としては、10枚目と

表-9

実施例 No.	感光体 No.	アゾ顔料 No.	電荷輸送物質 No.	1枚目		100枚目		比較例		10枚目		1000枚目	
				I.D.	I.D.	No.	I.D.	I.D.	I.D.	No.	I.D.	No.	I.D.
177	177	a-13-232	(II)-47	1.21	1.19	177	1.27	0.92					
178	178	b-70	(II)-65	1.32	1.45	178	1.38	0.99					
179	179	c-183	(II)-27	1.42	1.18	179	1.46	0.73					
180	180	d-20	(II)-79	1.49	1.34	180	1.22	0.88					
181	181	e-133	(II)-11	1.31	1.41	181	1.34	1.03					
182	182	f-246	(II)-72	1.46	1.27	182	1.29	0.77					
183	183	g-83	(II)-38	1.36	1.34	183	1.48	0.92					
184	184	h-197	(II)-3	1.25	1.08	184	1.37	1.06					
185	185	i-34	(II)-65	1.44	1.23	185	1.26	1.05					
186	186	j-2-147	(II)-30	1.33	1.38	186	1.46	0.81					
187	187	k-260	(II)-91	1.22	1.12	187	1.35	1.03					
188	188	l-2-97	(II)-57	1.42	1.25	188	1.24	1.08					
189	189	m-20-210	(II)-22	1.31	1.35	189	1.43	0.93					
190	190	n-48	(II)-84	1.20	1.21	190	1.32	1.07					
191	191	p-161	(II)-49	1.39	1.22	191	1.22	0.82					
192	192	q-274	(II)-15	1.28	1.38	192	1.41	0.96					
193	193	r-111	(II)-69	1.48	1.18	193	1.30	0.71					
194	194	s-60	(II)-35	1.37	1.43	194	1.49	0.85					
195	195	t-61	(II)-62	1.26	1.28	195	1.38	1.00					
196	196	u-89	(II)-27	1.45	1.42	196	1.28	1.09					
197	197	v-116	(II)-89	1.34	1.17	197	1.47	0.85					
198	198	w-144	(II)-54	1.24	1.31	198	1.36	1.05					

実施例 199

アルミニウム導電層を有するポリエステルフィルムを支持体に、下記組成からなる塗工液を順次織布、乾燥し、電荷発生層(0.2μ)、電荷輸送層(18μ)を形成した。

(1) 電荷発生層塗工液

本発明における顔料 No.a-1-172 のアゾ顔料

ポリビニルブチラール(電気化学工業:テンカブチラール#4000-1)

シクロヘキサン

10重量部

4重量部

メチルイソブチルケトン

500重量部

200重量部

以上の様に混合した液を、72時間分散した後、塗工液とした。

(2) 電荷輸送層塗工液

本発明における電荷輸送物質 No.(II)-19

10重量部

ポリカーボネート(帝人:パントライト K-1300)

10重量部

テトラヒドロフラン

180重量部

以上の様にして感光体 No.199を作成した。

実施例 200~220

実施例199で用いた顔料 No.a-1-172の代わりに、後記表-10に示すアゾ顔料を、又、実施例199で用いた電荷輸送物質 No.(II)-19の代わりに後記表-10に示す電荷輸送物質を用いた以外は、実施例199と同様にして、感光体 No.200-220を作成した。又、以上の様に作成した No.199-220の感光体に導電層塗工及びベルト接合を行ない、実装用の感光体とした。以上の様に作成した感光体を複写機(リコピーフT2050)に搭載した。現像直前の感光体の表面電位が測定できる様に表面電位計のプローブをセットした。第6図に示す様なプロセスにて、從来ローラを面状発熱体にし、感光体温度が 40 ± 3 ℃になる様にセットした。環状条件は、 $18^\circ C - 35\%$ RHである。この状態で7500枚の連続コピーを行ない、1枚目と7500枚目の表面電位を測定した。

比較例 199~200

実施例199-200における温度コントロールを行なわない他は、すべて同じ条件で評価した。

実施例199-200、比較例199-200の結果を表-10に記す。

表-10

実施例 No.	感光体 No.	アゾ顔料 No.	電荷輸送物質 No.	1枚目 表面電位 (-V)	750枚目 表面電位 (-V)	比較例 No.	1枚目 表面電位 (-V)	7500枚目 表面電位 (-V)
199	199	a-1-172	(II)-19	824	768	199	954	624
200	200	b-199	(II)-81	952	808	200	882	573
201	201	c-227	(II)-46	880	820	201	810	602
202	202	d-254	(II)-12	884	784	202	938	552
203	203	e-6	(II)-73	964	848	203	865	581
204	204	f-252	(II)-39	864	812	204	944	610
205	205	g-89	(II)-41	992	776	205	922	629
206	206	h-1-202	(II)-79	913	840	206	850	581
207	207	i-39	(II)-31	986	804	207	978	621
208	208	j-1-152	(II)-92	858	768	208	906	592
209	209	k-266	(II)-54	931	832	209	834	563
210	210	l-1-103	(II)-89	804	778	210	844	612
211	211	m-6-243	(II)-28	877	832	211	904	561
212	212	n-200	(II)-63	950	761	212	984	590
213	213	p-156	(II)-2	996	825	213	946	619
214	214	q-112	(II)-37	876	789	214	876	568
215	215	r-68	(II)-72	976	753	215	881	597
216	216	s-24	(II)-94	904	817	216	954	557
217	217	t-256	(II)-37	842	781	217	827	589
218	218	u-212	(II)-85	970	845	218	899	573
219	219	v-168	(II)-50	898	809	219	972	625
220	220	w-125	(II)-16	826	773	220	845	596

実施例 221

直径80mm、長さ340mmのアルミニウムドラムに下記組成からなる塗工液を順次塗布、乾燥し、電荷輸送層を15μ、電荷発生層を3μ、中間層を0.5μ、保護層を5μを形成した。

(1) 電荷輸送層塗工液

本発明における電荷輸送物質
No.(II)-77

ポリカーボネート
(帝人:パンライト L-1250)

10重量部

テトラヒドロフラン

10重量部

シクロヘキサン

80重量部

(2) 電荷発生層塗工液

本発明における顔料 No.a-5-81
のアゾ顔料

2重量部

ポリエステル
(東洋紡績:バイロン200)

1重量部

シクロヘキサン

97重量部

以上の様に混合した液を40時間分散し、塗工液とした。

(3) 中間層塗工液

ポリアミド(東レ:CM-4000)

4重量部

メタノール

100重量部

(4) 保護層塗工液

ステレン-メチルメタクリレート-
2-ヒドロキシエチルメタクリレート
の共重合体

8重量部

導電性チタン

10重量部

トルエン

240重量部

ブタノール

60重量部

以上の様に混合した液を80時間分散し、塗工液とした。

以上の様にして、感光体 No.221を作成した。

実施例 222～242

実施例221で用いた顔料 No.a-5-81の代わりに後記表-11に示すアゾ顔料を、又は、実施例221で用いた電荷輸送物質 No.(II)-77の代わりに後記表-11に示す電荷輸送物質を用いた以外は実施例221と同様にして感光体 No.222-242を作成した。

以上の様に作成した感光体を複写機(リコピーフT5510)に搭載した。帶電直後の表面電位が測定できる様に表面電位計のプローブをセットした。第7図に示した様な赤外線ランプハウスを取りつ

け、3000枚ごとにコピーを停止し、感光体温度を80°Cまで加熱し、40°Cまで冷却した後再びコピーを開始するといった方法で12001枚のコピーを行なった。10枚目の表面電位と12001枚目の表面電位を測定した。ランニング環境は、30°C-80%RHという条件にて行なった。フィルターはシャープカットフィルター(富士写真SC-72)を使用した。

比較例221～242

実施例221～242における温度コントロールを行なわない他は全く同じ評価をした。但し、3000枚ごとにコピーを停止し、実施例の加熱-冷却に要する時間は、感光体を休ませた。実施例221～242、比較例221～242の結果は、表-11に記す。

表-11

実施例 No.	感光体 No.	アソブ料 No.	電荷輸送物質 No.	表面電位 (-V)	10枚目 表面電位 (-V)	12001枚目 表面電位 (-V)	比歴例		10枚目 表面電位 (-V)	12001枚目 表面電位 (-V)
							No.	No.		
221	221	a-5-81	(II)-77	918	894	221	804	499		
222	222	b-37	(II)-42	816	858	222	828	554		
223	223	c-269	(II)-8	895	822	223	976	626		
224	224	d-225	(II)-69	858	862	224	849	592		
225	225	e-181	(II)-35	986	802	225	922	527		
226	226	f-137	(II)-62	924	814	226	955	533		
227	227	g-93	(II)-27	852	888	227	868	598		
228	228	h-4-49	(II)-89	980	825	228	940	484		
229	229	i-6	(II)-54	908	861	229	813	549		
230	230	j-3-238	(II)-13	836	897	230	956	615		
231	231	k-194	(II)-74	964	834	231	836	501		
232	232	l-3-150	(II)-40	892	835	232	916	500		
233	233	m-4-106	(II)-5	820	899	233	940	572		
234	234	n-62	(II)-66	948	832	234	868	464		
235	235	p-18	(II)-32	876	872	235	850	486		
236	236	q-250	(II)-93	804	891	236	832	619		
237	237	r-207	(II)-59	932	855	237	914	504		
238	238	s-163	(II)-24	860	872	238	896	570		
239	239	t-216	(II)-86	988	809	239	878	635		
240	240	u-243	(II)-51	916	845	240	980	521		
241	241	v-271	(II)-17	844	882	241	842	566		
242	242	w-23	(II)-21	924	818	242	924	472		

実施例243

アルミニウム導電層を有するポリエステルフィルム支持体上に、下記組成からなる塗工液を順次塗布、乾燥し、中間層(0.2μ)電荷発生層(0.1μ)、電荷輸送層(20μ)を形成した。

(1) 中間層塗工液

ポリビニルアルコール(電気化学 工業:デンカボバール H-20)	2重量部
水	200重量部
メタノール	100重量部

(2) 電荷発生層塗工液

本発明における顔料Na-a-16-50 のアゾ顔料	3重量部
シクロヘキサン	97重量部

以上の様に混合した液を、60時間分散した液を塗工液とした。

(3) 電荷輸送層塗工液

本発明における電荷輸送物質 Na(II)-50	10重量部
ポリカーボネート (帝人:パンライト K-1300)	10重量部
テトラヒドロフラン	80重量部

ジオキサン

90重量部

以上の様にして感光体No.243を作成した。

実施例244~264

実施例243で用いた顔料Na-a-16-50の代わりに、後記表-12に示すアゾ顔料を、又、実施例243で用いた電荷輸送物質Na(II)-50の代わりに後記表-5に示す電荷輸送物質を用いた以外は、実施例243と同様にして、感光体No.244~264を作成した。以上の様に作成したNo.243~264の感光体に導電層塗工及びベルト接合を行ない、実装用の感光体とした。この様に作成した感光体を複写機(リコピーフT2070)に搭載した。従動ローラー内にPTC特性を有する発熱体を設け、on-offにより、感光体温度が35±3°Cになる様にセットした。環境条件は10°C~60%RHである。この状態で7000枚の連続コピーを行ない、5枚目と7000枚目の画像状態を評価した。

比較例243~264

実施例243~264における温度コントロールを行なわない以外は全く同じ評価をした。実施例243~

264、比較例243~264の結果は、表-12に記す。

表-12

実施例 No.	感光体 No.	アゾ顔料 No.	電荷輸送物質 No.	5枚目		7000枚目		比較例 No.	6枚目	7000枚目
				画像状態	画像状態	画像状態	画像状態			
243	243	a-16-50	(II)-50	○	○	○	○	243	○	○
244	244	b-78	(II)-89	○	○-△	○	○	244	○	×
245	245	c-105	(II)-70	○	○	○	○	245	○	×
246	246	d-133	(II)-36	○	○	○	○	246	○	○
247	247	e-161	(II)-39	○	○	○	○	247	○	×
248	248	f-227	(II)-74	○	○	○	○	248	○	×
249	249	g-243	(II)-13	○	○-△	○	○	249	○	×
250	250	h-2-61	(II)-48	○	○	○	○	250	○	×
251	251	i-194	(II)-63	○-△	○-△	○-△	○-△	251	○-△	×
252	252	j-4-31	(II)-22	○	○	○	○	252	○	○
253	253	k-144	(II)-57	○	○	○	○	253	○	×
254	254	l-257	(II)-8	○	○	○	○	254	○-△	×
255	255	m-28-94	(II)-46	○	○	○	○	255	○	×
256	256	n-208	(II)-28	○	○	○	○	256	○	×
257	257	p-45	(II)-89	○	○	○	○	257	○	×
258	258	q-158	(II)-55	○	○	○	○	258	○	×
259	259	r-271	(II)-20	○	○	○	○	259	○	×
260	260	s-108	(II)-82	○	○-△	○-△	○-△	260	○	×
261	261	t-221	(II)-47	○	○	○	○	261	○	×
262	262	u-59	(II)-13	○	○-△	○-△	○-△	262	○	×
263	263	v-72	(II)-74	○	○	○	○	263	○	×
264	264	w-186	(II)-40	○	○	○	○	264	○	×

O: 良好 O-△: ほぼ良好 ×: 不良 ×-△: あまり良くない

実施例 265

長さ 120mm、直径 340mm のアルミニウムドラムに、下記組成からなる塗工液を順次、塗布、乾燥し、中間層 (5μ)、電荷発生層 (0.3μ)、電荷輸送層 (25μ) を形成した。

(1) 中間層塗工液

二酸化チタン	10重量部
ポリビニルブチラール (積水化学工業:エスレックBL-1)	1重量部
トルイレン-2,4-ジイソシアネート	0.2重量部
2-ブタノン	100重量部
4-メチル-2-ペントノン	60重量部

以上の様に混合した液を 12 時間ポールミルで分散した後、塗工液とした。

(2) 電荷発生層塗工液

本発明における顔料 No-a-10-23 のアゾ顔料	2重量部
ポリエステル (東洋紡績:バイロン200)	1重量部

シクロヘキサン	97重量部
---------	-------

(3) 電荷輸送層塗工液

本発明における電荷輸送物質

No (II)-52	9重量部
ポリアリレート(ユニチカ:U-100)	11重量部
塩化メチレン	70重量部
クロロベンゼン	10重量部

以上の様にして感光体 No 265を作成した。

実施例 266～286

実施例 265～286で用いた顔料 No-a-10-23の代わりに、後記表-13に示すアゾ顔料を、又、電荷輸送物質 No (II)-52の代わりに後記表-13に示す電荷輸送物質を用いた以外は、実施例 265と同様にして、感光体 No 266～286を作成した。

以上の様に作成した感光体を負帯電する様に改造した複写機(リコピーフト6080)に搭載し、現像直前の感光体の表面電位を測定できる様に表面電位計のプローブをセットした。尚、連続コピー9990枚行ない、感光体を複写機より取り出して、第12図に示すような疲労回復装置にて、130℃-20分間、加熱処理を行ない、室温まで冷却して、再び複写機に戻し、通算10000枚までコピーを行ない、10

枚目と10000枚目の表面電位を測定した。環境条件は、25°C-50%RHであった。

比較例 265~286

実施例265~286における加熱処理を25°Cで行なった以外は(つまり室温と同じ)全く同じ評価をした。実施例264~286、比較例264~286の結果を表-13に記す。

表-13

実施例 No.	感光体 No.	アソ類料 No.	電荷輸送物質 No.	10枚目 表面電位 (-V)		10000枚目 表面電位 (-V)		比較例 No.		10枚目 表面電位 (-V)		10000枚目 表面電位 (-V)	
				(II)-52	(II)-17	806	876	265	810	518	590	624	559
265	265	a-10-23											
266	266	b-136		(II)-17	868	840	266	892	810	518	590		
267	267	c-249		(II)-79	970	842	267	870	870	624			
268	268	d-386		(II)-44	852	882	268	952	892	590			
269	269	e-199		(II)-37	934	832	269	834	834	590			
270	270	f-36		(II)-71	816	896	270	916	916	476			
271	271	g-150		(II)-10	898	856	271	998	998	541			
272	272	h-4-263		(II)-44	980	893	272	880	880	607			
273	273	i-100		(II)-79	862	829	273	844	844	492			
274	274	j-1-213		(II)-68	944	866	274	864	864	558			
275	275	k-50		(II)-12	826	802	275	890	890	623			
276	276	l-1-163		(II)-51	908	817	276	858	858	536			
277	277	m-11-1		(II)-90	990	822	277	827	827	608			
278	278	n-114		(II)-34	872	852	278	995	995	518			
279	279	p-227		(II)-73	954	893	279	983	983	633			
280	280	q-64		(II)-17	836	873	280	931	931	562			
281	281	r-241		(II)-56	918	837	281	899	899	627			
282	282	s-141		(II)-21	800	841	282	868	868	513			
283	283	t-42		(II)-39	882	877	283	940	940	578			
284	284	u-219		(II)-21	964	813	284	972	972	464			
285	285	v-119		(II)-31	846	850	285	804	804	529			
286	286	w-20		(II)-70	928	886	286	836	836	595			

実施例287

長さ80mm、直径340mmのアルミニウムドラムに、下記組成からなる塗工液を順次、塗布、乾燥し、中間層(0.3μ)、電荷発生層(0.2μ)、電荷輸送層(20μ)を形成した。

(1) 中間層塗工液

水溶性ポリビニルブチラール25%	50重量部
水溶液(積水化学工業:エスレックV-201)	

水	150重量部
---	--------

メタノール	200重量部
-------	--------

(2) 電荷発生層塗工液

本発明における顔料No.a-18-177 のアゾ顔料	2重量部
-------------------------------	------

ポリビニルブチラール (積水化学工業:エスレックBL-1)	0.7重量部
----------------------------------	--------

テトラヒドロフラン	80重量部
-----------	-------

エチルセルソルブ	120重量部
----------	--------

(3) 電荷輸送層塗工液

本発明における電荷輸送物質 No.(II)-22	10重量部
-----------------------------	-------

ポリカーボネート (帝人:パンライトC-1400)	10重量部
------------------------------	-------

塩化メチレン

80重量部

以上の様にして感光体No.287を作成した。

実施例288~308

実施例287で用いた顔料No.a-18-177の代わりに、後記表-14に示すアゾ顔料を、又、電荷輸送物質No.(II)-22の代わりに後記表-14に示す電荷輸送物質を用いた以外は、実施例287と同様にして、感光体No.288~308を作成した。以上の様に作成した感光体を負帯電する様に改造した複写機(リコピーフィルム5050)に搭載し、高周波電源として2.45GHzのマグネットロンを用いて、別に設けた強磁性体(フェロックスプレー粒子を樹脂中に分散した板)に電極を設けた発熱体により感光体温度が50±2°Cになる様にセットした。各条件をセットした後、複写機を繰り返し使用し、連続9000枚のコピーを行なった。環境は、23°C-50%RHであった。評価は、実施例178に用いた方法と同じ方法にてI.D.値にて評価した。

比較例287~308

実施例287~308における高周波加熱を行なわな

い以外は全く同じ評価をした。実施例287~308。

比較例287~308の結果を表-14に記す。

表-14

実施例 No.	感光体 No.	アソシエ No.	電荷輸送物質 No.	5枚目		900枚目		比較例 No.	5枚目 I.D.値	900枚目 I.D.値	I.D.値	900枚目 I.D.値
				I.D.値	I.D.値	I.D.値	I.D.値					
287	287	a-18-177	(II)-22	1.41	1.12	287	1.36	0.85				
288	288	b-78	(II)-62	1.22	1.14	288	1.47	0.86				
289	289	c-255	(II)-5	1.43	1.26	289	1.46	1.01				
290	290	d-155	(II)-44	1.25	1.42	290	1.28	0.75				
291	291	e-56	(II)-84	1.37	1.34	291	1.45	0.90				
292	292	f-232	(II)-27	1.41	1.20	292	1.23	1.04				
293	293	g-133	(II)-66	1.30	1.21	293	1.43	0.79				
294	294	h-3-14	(II)-10	1.49	1.36	294	1.32	0.73				
295	295	i-191	(II)-49	1.39	1.10	295	1.21	0.89				
296	296	j-3-92	(II)-89	1.28	1.25	296	1.40	0.82				
297	297	k-268	(II)-32	1.47	1.39	297	1.29	0.76				
298	298	l-3-169	(II)-71	1.36	1.28	298	1.49	1.05				
299	299	m-15-70	(II)-15	1.25	1.14	299	1.38	0.80				
300	300	n-246	(II)-54	1.45	1.30	300	1.27	0.94				
301	301	p-128	(II)-93	1.34	1.06	301	1.46	1.09				
302	302	q-28	(II)-37	1.23	1.11	302	1.35	0.84				
303	303	r-205	(II)-76	1.42	1.40	303	1.25	0.88				
304	304	s-105	(II)-19	1.31	1.15	304	1.44	0.73				
305	305	t-6	(II)-59	1.21	1.29	305	1.33	1.01				
306	306	u-183	(II)-2	1.40	1.44	306	1.22	0.77				
307	307	v-83	(II)-41	1.28	1.19	307	1.41	0.93				
308	308	w-260	(II)-81	1.48	1.33	308	1.31	0.98				

〔効 果〕

本発明方法は前記構成からなるので次のような顕著な作用効果を奏する。

- (1) 有機感光体の繰り返し使用後の帯電特性の劣化を防ぐことができる。
即ち、複写機、プリンター等の画像濃度低下、画像濃度ムラ、あるいは反転現像時においては、地肌汚れのない良好な画像を得ることができる。
- (2) 高温高湿下で感光体雰囲気の相対湿度を下げ、画像ウスを防止することができる。
- (3) 低温時の感光体の結露および低温低湿時の画像地汚れを防止することができる。

4. 図面の簡単な説明

第1図、第2図(a)、第2図(b)、第3図及び第4図は本発明で用いる電子写真感光体の模式断面図である。

また、第5図~第12図(a)、(b)、(c)は各々本発明で使用する代表的な感光体の加熱方法の説明図である。

11…導電性支持体、13…中間層、14…感光層、

15…保護層、21…電荷発生層、22…電荷輸送層、31…ベルト状感光体、32…従動ローラー、34…駆動ローラー、35…現像ローラー、36…フィルター、37…カバー、38…ミラー、39…赤外線ランプ、41…発熱ローラー、42…ヒートパイプ、43…抵抗加熱器、51…ドラム状感光体、52…メカニカルシール部、53…回転用歯車、54…温度調節用液体の流れ、55…PTC特性を有する発熱体、61…加熱装置本体、62…遮光用パッキング、63…ドア、64…取っ手、65…蝶番、71…面状発熱体、72…ドラム受け治具。

特許出願人 株式会社 リコ一
代理人 弁理士 池浦敏明(ほか1名)

第1図

- 11:導電性基体
13:中間層(下引き層)
14:感光層
15:保護層
21:電荷蓄積層
22:電荷輸送層

第2図

第3図

第4図

第5図

第6図

第8図

第9図

第11図

第12図(a)

第12図(b)

第12図(c)

