WEAK MULTI VIEW SUPERVISION

FOR SURFACE MAPPING ESTIMATION

*<u>Nishant Rai^{1,2}</u> Rodrigo Ortiz Cayon¹ *Aidas Liaudanskas¹ Matteo Munaro¹ Srinivas Rao¹ Stefan Holzer¹

' FYUSION

Nishant and Aidas have <u>contributed equally</u>
Work done during <u>Nishant's internship at Fyusion</u>

Dense Correspondence

Middle of Chin

Upper left Eye

Middle of mouth/lips

- Now that we have covered the basics
- The next question is how can a model learn to do this?
- How to predict which pixel maps to which point on our surface?

- Earlier approaches rely heavily on supervision
- Recent work by Kulkarni et al [2] tackles this problem without the need for dense supervision
- Learn models predictive the surface mapping through consistency cycles
- However still limitations related to a fixed template shape

- We propose our approach which simultaneously predicts the underlying 3D shape
- Allows for using multiple views of instances to improve performance
- Aim: Learn dense correspondence along with 3D structure under a multi-view setting with minimal supervision

WHY DO WE WANT THIS?

- Currently need too much data to learn!
- Need to create labels for each catergory specific dataset
- Not possible to label all such images with 3d annotations manually!
- Extending to new categories is very effort intensive

Synthetic Multi View images with Dense Annotations for evaluation

APPROACH

Weakly supervised learning of surface mapping and shape through Multi
View images

Synthetic Multi View images with Dense Annotations for evaluation

APPROACH

Weakly supervised learning of surface mapping and shape through Multi View images

Cars

Planes

Synthetic Multi View images with Dense Annotations for evaluation

APPROACH

Weakly supervised learning of surface mapping and shape through Multi View images

HOW DO WE DO IT?

• Network with Encoder, UV head (a.k.a. Top-Down) and 3D shape head (a.k.a. PosMap)

HOW DO WE DO IT?

- Both heads trained using ground truth labels
- Give them the expected output for each instance
- Don't want to use supervision anymore!
- How to predict something without exactly knowing its value?

Reprojection Cycle

Deformed Meshes

HOW DO WE DO IT?

> Multi View Consistency

Reprojection Cycle

Deformed Meshes

HOW DO WE DO IT?

Multi View Consistency

REPROJECTION

Assume we know the true top-down mapping and underlying 3D car shape

REPROJECTION

REPROJECTION

• The network can directly be part of the reprojection cycle!

HOW DOWE DO IT - PUTTING IT TOGETHER

HOW DOWE DO IT - PUTTING IT TOGETHER

HOW DOWE DO IT - PUTTING IT TOGETHER

REPROJECTION - RESULTS

Approach	UV-Pck@ 0.01 0.03 0.1 AUC				
	0.01	0.03	0.1	AUC	
Learning UVs with fixed mesh Learning only UVs	5.3 12.1	32.2 48.6	90.6 91.1	94.0 94.8	
		94.9		<u>'</u>	

Benefits of reprojection compared to full supervision

Reprojection Cycle

Deformed Meshes

HOW DO WE DO IT?

Multi View Consistency

DEFORMED MESHES

- Revisit our fixed mesh assumption
- Is it possible to constrain predicting 3D structures?
- Solution: Predict deformation over mean shape

DEFORMED MESHES

- Model deformation as a cubic field
- Predict a 32x32x32 cube representing deformations
- Can deform different regions differently

DEFORMED MESHES - RESULTS

Approach	PosMap-Pck@				
	AUC	0.1	0.03		
Mean-Fixed Mesh	96.2	97.6	42.7		
Unconstrained	97.6	99.8	74.8		
Deformed Mesh	98.0	99.9	82.0		

Benefits of our deformation module

Reprojection Cycle

Deformed Meshes

HOW DO WE DO IT?

> Multi View Consistency

MULTI VIEW CONSISTENCY

- Haven't explored relationships between different viewpoints of same object yet
- · Multi-view contains more information than a single-view image

Use Multi-View Information to get the complete picture

MULTI VIEW CONSISTENCY

- Can we argue something about the same car part in two different images?
- Yes! They should map to the same point in the top-down view

2D to 3D association

Camera Reprojection

MULTIVIEW CONSISTENCY - RESULTS

Approach		UV-Pck@ 0.01 0.03 0.1 AUC				
Single-view Reprojection with Fixed Mesh	5.3	32.2	90.6	94.0		
Multi-view Reprojection with Fixed Mesh	5.8	34.0	90.8	94.2		

Benefits of multi view reprojection

Reprojection Cycle

Deformed Meshes

OVERALL MODEL

Multi View Consistency

RESULTS

Annuacah	UV-Pck@			
Approach		0.03	0.1	AUC
Single-view Reprojection with Fixed Mesh		32.2	90.6	94.0
Multi-view Reprojection with Fixed Mesh		34.0	90.8	94.2
Deformed Single-view Reprojection	13.5 13.4	57.8	96.0	95.7
Deformed Multi-view Reprojection		58.4	96.2	95.9

RESULTS

Annroach	UV-I	Pck@	PosMap-Pck@		
Approach	0.03	0.1	0.03	0.1	
CSM*	32.2	90.6	71.7	98.6	
Our Approach	58.4	96.2	72.7	98.6	
Fully Supervised	94.9	99.5	82.0	99.8	

CONCLUSIONS AND FUTURE WORK

- Learned how to exploit reprojection cues in a multi view setting
- Able to effectively learn 3D structure as well as see improvements in surface mapping
- We hope our released dataset encourages research in this direction
- Allows for stronger evaluations of comparable methods

REFERENCES

- I. Deformation Fields: http://www.meyumer.com/deformation-flow-3D-conv-net.html
- 2. Canonical Surface Mapping: https://nileshkulkarni.github.io/csm/
- 3. Identity recognition using 4D Facial Dynamics: dynamics: dynface4d.isr.uc.pt/database.php
- 4. What is Camera Calibration: http://www.mathworks.com/help/vision/ug/camera-calibration.html

THANK YOU! QUESTIONS?