MAT02025 - Amostragem 1

AAS: propriedades dos estimadores

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

Relembrando

Relembrando

Amostragem aleatória simples

A amostragem aleatória simples¹ (AAS) é um processo para selecionar n unidades de N de modo que cada uma das ${}_{N}C_{n}$ amostras distintas tenha uma chance igual de ser extraída.

 $^{^1\}mathrm{Tamb\acute{e}m}$ conhecida como a $\mathrm{mostragem}$ casual simples ou a $\mathrm{mostragem}$ acidental irrestrita

Definições e notação

- As letras maiúsculas referem-se às características da população e as minúsculas às da amostra.
 - Para totais e médias, temos as seguintes definições.

Característica	População	Amostra			
Total	$Y_T = \sum_{i=1}^N Y_i = Y_1 + Y_2 + \ldots + Y_N$	$y_T = \sum_{i=1}^n Y_i = Y_1 + Y_2 + \ldots + Y_n$			
Média	$\overline{Y} = \frac{\sum_{i=1}^{N} Y_i}{N} = \frac{Y_1 + Y_2 + \dots + Y_N}{N}$	$\overline{y} = \frac{\sum_{i=1}^{n} Y_i}{n} = \frac{Y_1 + Y_2 + \dots + Y_n}{n}$			

Definições e notação

- A estimativa das três primeiras quantidades será discutida na primeira parte desta área.
- O símbolo "^" denota uma estimativa de uma característica da população feita a partir de uma amostra.
- ▶ De acordo com a relação acima, temos:

	Representação da estimativa
Média da população \overline{Y}	$\hat{\overline{Y}} = \overline{y} = \sum_{i=1}^{n} Y_i / n$
Total da população Y_T	$\hat{Y}_T = N\overline{y} = N\sum_{i=1}^n Y_i/n$
Índice da população R	$\hat{R} = \sum_{i=1}^{n} Y_i / \sum_{i=1}^{n} X_i$

Propriedades dos estimadores

- Como vimos, um método de estimativa é imparcial (não viciado, não enviesado, não tendencioso) se o valor médio da estimativa, tomado em todas as amostras possíveis de dado tamanho n, for exatamente igual ao valor verdadeiro da população.
- Se o método tiver que ser imparcial, irrestritamente, este resultado deve ser válido para qualquer população de valores finitos, Y_i, e para qualquer que seja n.
- Para investigar se \overline{y} é imparcial com a amostragem aleatória simples, calculamos o valor de \overline{y} para todas as amostras ${}_{N}C_{n}$ e encontramos a média das estimativas.
- O símbolo E denota essa média sobre todas as amostras possíveis.

Teorema

O valor média da amostra \overline{y} é uma estimativa sem tendência para \overline{Y} .

Demonstração. Por definição,

$$E(\overline{y}) = \sum_{i=1}^{N^{C_n}} [\overline{y}_i \times \pi_i]$$

$$= \sum_{i=1}^{N^{C_n}} \left[\overline{y}_i \times \frac{1}{N^{C_n}} \right] (\pi_i = 1/N^{C_n})$$

$$= \frac{1}{N!/[n!(N-n)!]} \sum_{i=1}^{N^{C_n}} \left[\frac{1}{n} \sum_{j=1}^{n} Y_j(i) \right]$$

$$= \frac{1}{n[N!/n!(N-n)!]} \sum_{i=1}^{N^{C_n}} [Y_1(i) + Y_2(i) + \dots + Y_n(i)]. \tag{1}$$

- Para avaliar essa soma, encontramos em quantas amostras qualquer valor específico Y_i aparece.
- ▶ Uma vez que existem (N-1) outras unidades disponíveis para o resto da amostra e (n-1) outros locais para preencher a amostra, o número de amostras contendo Y_j é

$$N_{-1}C_{n-1} = \frac{(N-1)!}{(n-1)!(N-n)!}.$$

► Portanto.

$$\sum_{i=1}^{N-n} [Y_1(i) + Y_2(i) + \dots + Y_n(i)] = {}_{N-1}C_{n-1} \times Y_1 + {}_{N-1}C_{n-1} \times Y_2 + \dots + {}_{N-1}C_{n-1} \times Y_N$$

$$= {}_{N-1}C_{n-1} \times (Y_1 + Y_2 + \dots + Y_N)$$

$$= {}_{N-1}C_{n-1} \times \sum_{j=1}^{N} Y_j$$

$$= \frac{(N-1)!}{(n-1)!(N-n)!} \times \sum_{j=1}^{N} Y_j.$$
(2)

► Combinando (2) com (1), temos

$$E(\overline{y}) = \frac{n!(N-n)!}{nN!} \times \frac{(N-1)!}{(n-1)!(N-n)!} \times \sum_{j=1}^{N} Y_j$$

$$= \frac{n(n-1)!(N-n)!}{nN(N-1)!} \times \frac{(N-1)!}{(n-1)!(N-n)!} \times \sum_{j=1}^{N} Y_j$$

$$= \frac{1}{N} \sum_{i=1}^{N} Y_j = \overline{Y}.$$
(3)

Corolário

 $\hat{Y}_T = N\overline{y}$ é um estimador imparcial do valor total populacional Y_T .

 Para casa: utilize o Teorema apresentado na aula para demonstrar o Corolário. └─ Um outro método de demonstração

Um outro método de demonstração

- ► Cornfield (1944)¹ sugeriu um método para verificar os principais resultados das amostras aleatórias simples, sem reposição, que nos permite utilizar os resultados padronizados da teoria das populações infinitas.
- Seja ai uma variável aleatória, e que assume o valor 1 se a i-ésima unidade for selecionada para a amostra, e assume valor 0 em caso contrário²

¹Cornfield, J. (1944). On Samples from Finite Populations. Journal of the American Statistical Association, 39(226), 236.

²Alguns autores utilizam a notação $Y_i = a_i Y_i^{obs} + (1 - a_i) Y_i^{aus}$, em que obs e aus represetam observado e ausente, respectivamente.

Exemplo

Considere mais uma vez a população de tamanho N=6, e $Y_1=2,\ Y_2=4,\ Y_3=6,\ Y_4=8,\ Y_5=10,\ Y_6=12$, e uma amostra aleatória simples, sem reposição, de tamanho n=2. Então,

			Indicadores de seleção					
Sorteio	Probabilidade	Amostra	a_1	a_2	<i>a</i> ₃	<i>a</i> ₄	a ₅	a ₆
1	1/15	(2,4)	1	1	0	0	0	0
2	1/15	(2,6)	1	0	1	0	0	0
:	į.	:	:	:	:	:	:	:
15	1/15	(10, 12)	0	0	0	0	1	1

► A média amostral pode ser expressa por

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{N} a_i Y_i,$$

em que o somatório abrange todas as N unidades da população.

- Nessa expressão, os a_i são variáveis aleatórias, e os Y_i constituem um conjuntos de números fixos.
- Note que

$$\begin{split} \Pr(a_i = 1) &= \frac{\# \text{amostras que incluem o i-ésimo elemento}}{\# \text{amostras que podem ser sorteadas}} \\ &= \frac{N-1}{N} \frac{C_{n-1}}{N} \\ &= \frac{(N-1)!}{(n-1)!(N-n)!} \times \frac{n!(N-n)!}{N!} = \frac{n}{N}. \end{split}$$

▶ E consequentemente, $Pr(a_i = 0) = 1 - \frac{n}{N}$.

▶ Dessa forma, a_i se distribui como uma variável binomial, em uma única tentativa³, com P = n/N. Portanto,

$$\mathsf{E}\left(a_{i}\right)=P=rac{n}{N},\quad\mathsf{Var}\left(a_{i}\right)=rac{n}{N}\left(1-rac{n}{N}
ight).$$

³Ou seja, uma variável com distribuição Bernoulli.

Assim,

$$\mathsf{E}(\overline{y}) = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^{N}a_{i}Y_{i}\right] = \frac{1}{n}\sum_{i=1}^{N}\mathsf{E}\left[a_{i}\right]Y_{i} = \frac{1}{n}\sum_{i=1}^{N}PY_{i} = \overline{Y}.$$

Para casa

► Refaça as demonstrações da aula de hoje.

Próxima aula

Variâncias dos estimadores.

Por hoje é só!

Bons estudos!

