Ve203 Discrete Mathematics (Fall 2016)

Assignment 6: Recurrence and Combinatrics

Date Due: 4:00 PM, Thursday, the 10th of Noevmber 2016

This assignment has a total of (27 Marks).

Exercise 6.1

In this question, assume that f is an increasing function satisfying the recurrence relation $f(n) = af(n/b) + cn^d$ with $a \ge 1$, $b \in \mathbb{N} \setminus \{0,1\}$, $c,d \in \mathbb{R}_+$. Our goal is to prove the Master Theorem 2.3.19 of the lecture.

- i) Show that if $a = b^d$ and n is a power of b, then $f(n) = f(1)n^d + cn^d \log_b n$. (2 Marks)
- ii) Show that if $a = b^d$, then $f(n) = O(n^d \log n)$.

 (1 Mark)
- iii) Show that if $a \neq b^d$ and n is a power of b, then

$$f(n) = C_1 n^d + C_2 n^{\log_b a},$$
 $C_1 = \frac{b^d c}{b^d - a},$ $C_2 = f(1) + \frac{b^d c}{a - b^d}.$

 $(2 \, \text{Marks})$

- iv) Show that if $a < b^d$, then $f(n) = O(n^d)$.

 (1 Mark)
- v) Show that if $a > b^d$, then $f(n) = O(n^{\log_b a})$. (1 Mark)

Exercise 6.2

A recursive algorithm for modular exponentiation is given in Example 3 of Section 4.4, page 312 of the textbook.

- i) Set up a divide-and-conquer recurrence relation for the number of modular multiplications required to compute aⁿ mod m, where a, m, n ∈ Z₊.
 (2 Marks)
- ii) Construct a big-O estimate for the number of modular multiplications required to compute $a^n \mod m$. (1 Mark)

Exercise 6.3

Prove that in a bit string, the string 01 occurs at most one more time than the string 10. (2 Marks)

Exercise 6.4

Consider the scheme for counting fractions shown below and let

$$\varphi \colon \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{N}^*, \qquad \qquad \varphi(p,q) = \frac{(p+q-1)(p+q-2)}{2} + p,$$

where $N^* = \mathbb{N} \setminus \{0\}$. The goal of this question is to prove that, in the scheme shown, traversing successive diagonals from top to bottom, the fraction p/q is indeed the $\varphi(p,q)$ th fraction encountered and that φ gives a bijection $N^* \times \mathbb{N}^* \to \mathbb{N}^*$.

i) Write the traversal of the fractions as a recursively defined sequence of pairs (p_n, q_n) .

(1 Mark)

ii) Prove that for any $(p,q) \in \mathbb{N}^* \times \mathbb{N}^*$ there exists an $n \in \mathbb{N}$ such that $(p,q) = (p_n,q_n)$.

(2 Marks)

- iii) Prove (by induction in n) that $\varphi(p_n, q_n) = n$. (2 Marks)
- iv) Deduce that φ is bijective.

 $(0.5 \, \text{Marks})$

v) Find the inverse of φ .

(2 Marks)

vi) How can φ be modified to give a bijective map $\mathbb{N} \times \mathbb{N}^* \to \mathbb{N}$?

(1 Mark)

vii) How can φ be modified to give a bijective map $\mathbb{Z} \times \mathbb{N}^* \to \mathbb{N}$?

 $(0.5 \, \text{Marks})$

Exercise 6.5

Show that the countable union of countable sets is countable, i.e., if $\{A_i\}_{i=0}^{\infty}$ is an infinite family of sets, each of which is countable, then $\bigcup_{i\in\mathbb{N}} A_i$ is countable. *Hint:* Let a_{ij} denote the *i*th element of A_j ... (2 Marks)

Exercise 6.6

Let M, N be finite sets with card $M = \operatorname{card} N$ and $M \subset N$. Prove that M = N. (2 Marks)

Exercise 6.7

Use the Pigeonhole Principle or Theorem 2.4.21 of the lecture to prove the following theorem:

Let M, N be finite sets with card $M > \operatorname{card} N$ and $f : M \to N$. Then f is not injective.

(2 Marks)