Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий Кафедра прикладной математики

Отчет защищен	с оценкой	
Преподаватель_	2023 г.	(подпись)
` <u></u> "		

Отчет по расчетной работе по дисциплине «Объектно-ориентированное программирование»

Студент гр. ПИ-02 Чередов Р.А.

Ассистент кафедры ПМ, Рахманин Д.С.

Оглавление

1.	Задание	3
2.	Описание предметной области:	
3.	Объекты, интерфейсы и классы проектируемой системы	5
3.1.	Перечень классов и объектов и их краткое описание	5
4.	Пример реализации подсистемы на основе принципаделегирования	8
4.1.	Диаграмма классов	8
4.2.	Описание классов	10
4.3.	Текст программы	10
Стат	ическое делегирование	10
Дина	амическое делегирование	11
Прок	сси	12
4.4.	Тесты программы	13
5.	Список литературы	14

1. Задание

Суммарный отчет по лабораторным работам 2, 3 и 4 представляется в форме расчетного задания по анализу и проектированию каркаса системы.

Отчет:

Описание предметной области:

- Общая характеристика решаемых задач в предметной области;
- Характеристика поставленной задачи;
- Действующие объекты и функционал;
- Возможные расширения системы.

Объекты, интерфейсы и классы проектируемой системы:

- Перечень классов и объектов;
- Назначение классов;
- Основные методы классов;
- Отношения между классами.

Пример реализации подсистемы на основе принципа делегирования:

- Диаграмма классов;
- Назначение классов;
- Логи работы программы.

2. Описание предметной области:

2.1. Общая информация

В настоящее время более чем когда-либо актуальной проблемой является вопрос повышения уровня сохранности человеческих жизней за счет оптимизации расположения сотовых вышек и обработки данных сотовой связи. Система сети сотовой связи — это емкостное понятие в состав которого входит большое количество подсистема и мероприятий.

В основном системы сети сотовой связи делятся на подсистемы:

- РТ (радиотелефон сети сотовой связи)
- БС (базовая станция)
- ЛС (линия связи)
- ЦКС (центр коммутации связи)

Система ЦКС состоит:

- Сервер
- Терминалы
- Оборудование передачи данных (мосты, маршрутизаторы и т.д.)

Система ЛС:

• Коаксиальные провода

Система БС:

- Антенно-фидерное устройство
- Модули приемопередатчиков
- Контролер для каждого модуля приемопередатчика
- Базовый контроллер
- Автономный ретранслятор
- Соединительная линия с сетью общего пользования
- Контроллеры
- Терминал «менеджер системы»
- Пульт диспетчера

Система РТ:

• Стандартный телефон пользования

2.2. Перечень задач

Основными задачами перед разрабатываемым ПО являются:

- Нужно реализовать управление всеми элементами системы сотовой связи.
- Нужно реализовать возможность наблюдения за текущими статусами элементов сотовой связи
- Нужно реализовать возможность получения данных о местонахождения абонента сотовой связи
- Нужно реализовать возможность получения о технических неисправностях сети сотовой связи
- Хранения объема данных о выходов абонента в сеть за последние полгода, а именно ближайшее расположение с вышкой

2.3 Анализ обрабатываемых данных

Каждая подсистема будет работать со своим набором данных, поступающим из входного потока.

- Конфигурационный файл для системы комплексной обработки данных включает: дата и время, время прохода и предположительное расстояние абонента до вышек.
- Входные данные с пульта диспетчера состоящие из: запроса с пульта и ФИО пользователя.
- Входные данные с коаксиальных кабелей, то есть раз в час происходит проверка кабелей путем PING, если доходит до конца и не происходит разрыв, возвращается PING с сообщением enable, иначе False с примерным местом пробоя.
- Данные в базе данных о последнем выходе в сеть абонентов, каждая сотовая вышка сохраняет эти данные и только одна из них помечается как ближайшая вышка последнего выхода абонента в сеть, если эта вышка находилась в +-100м от абонента, то такие данные помечаются флагом, а также в эти данные входит направление, для определения сектора сот. Данные хранятся полгода.

2.4 Краткая характеристика применяемых алгоритмов

Быстрый поиск в сети сотовой связи:

По запросу в базу данных, находится последняя ближайшая сотовая вышка. У каждой сотовой вышки есть её координаты. Если последний выход абонента в сеть помечен флагом, то начинается поиск человека в +-100м от вышки.

Полный поиск в сети сотовой связи:

Для обнаружения местоположения абонента сотовой сети, подается запрос в базу данных, найти данного абонента, по последнему зарегистрированному выходу в сеть.

После этого производится нахождения ближайшей сотовой вышки к последнему выходу абонента.

Каждая вышка имеет 3 подключенных вышки, формируется треугольник с нужной нам вышкой в центре.

В данных о последнем выходе абонента в сеть имеется направление, что дает нам понять в каком секторе из сотовых вышек начать поиски.

После определения сектора, подается запрос на данный сектор сотовых вышек, с получением данных о данном пользователе.

Представить данные можно в виде правильного шестиугольника.

Проведем ближайшее расстояние до вышек из вершин и получаем точное местоположение с последним выходом абонента в сеть. Погрешность 25 метров.

3. Объекты, интерфейсы и классы проектируемой системы

3.1. Перечень классов и объектов и их краткое описание

Модель состоит из нескольких объектов:

- Телефон
- Базовая станция
- Линяя связи
- Коммутационный центр
- Система контроля центра
- Система безопасности

Можно выделить следующие классы:

- Класс pager
 - о Поля
 - Id
 - Три вышки
 - Флаг на дальность
 - о Методы
 - Связаться с ближайшей вышкой
 - Связаться с тремя другими вышками

- Класс phone
 - о Поля
 - Id
 - Три вышки
 - Флаг на дальность
 - о Методы
 - Связаться с ближайшей вышкой
 - Связаться с тремя другими вышками
- Класс base station
 - о Поля
 - Id
 - Абоненты в сети
 - о Методы
 - Связь с телефоном
 - Проверка на дальность
 - Сформировать пакет данных
 - Передать данные по линии связи
- Класс commutation_line
 - о Поля
 - Id
 - Пакет данных
 - о Методы
 - Передача пакета данных в центр связи
- Класс commutation_centre
 - о Поля
 - Пакет данных с линии связи
 - Пакет данных для решения
 - Сигнал
 - о Методы
 - Распаковка пакета данных
 - Передача пакета данных в систему безопасности
 - Обработка пакета данных для решения
 - Передача данных для решения
 - Реагирование на Систему контроля
 - Передача сигналу от системы контроля к системе безопасности
- Класс security_system
 - о Поля

- Телефон
- Занятая вышка
- Флаг 100 метров
- Координаты вышек
- о Методы
 - Формирования пакета данных по запросу
 - Передача пакета данных
- Класс Complex_control_system
 - о Поля
 - Сигнал
 - о Методы
 - Формирование сигнала из класса event
 - Передача сигнала в коммутационный цетр
- Класс Event
 - о Поля
 - Выбор эвента
 - о Методы
 - Передача эвента в систему контроля
- Класс result
 - о Поля
 - Абонент
 - Местоположение
 - о Методы
 - Получение данных

Пример реализации подсистемы на основе принципа делегирования

4.1. Диаграмма классов

4.2. Описание классов

Интерфейс IMSG и ICALL реализуют функцию звонка и смс для класса Device, в который наследуют Phone и Pager

Интерфейс FarorNear. Наследующие его класс Far и near отвечающие за внутренности пакета данных. BrainStation- мозг базовой станции.

Line – класс описывающий основную функцию работы линии передачи. Прокси этого класса LineProxy проверяет статус линии связи.

4.3. Текст программы

Статическое делегирование

```
using namespace std;
class IMSG {
public:
      virtual void msg() = 0; // интерфейс не имеет реализации
};
class ICALL {
public:
      virtual void call() = 0; // интерфейс не имеет реализации
};
class MSGT : public IMSG {
      // класс поведения для устройств, которые умеют писать смс
public:
      void msg() {
             printf("I am message!\n");
};
class MSGF : public IMSG {
      // класс поведения для устройств, которые не умеют писать смс
public:
      void msg() {
             printf("I am dont message!\n");
class CALLT : public ICALL {
      // класс поведения для устройств, которые HE умеют call
public:
      void call() {
             printf("I can call...\n");
};
class CALLF : public ICALL {
      // класс поведения для устройств, которые HE умеют call
public:
      void call() {
             printf("I can not call...\n");
class Device {
                     // абстрактный класс устройства
public:
      IMSG* msgaction;
      ICALL* callaction;
      Device() {}
      ~Device();
      // делегируем выполнение операции классам поведения :
      void performcall() { callaction->call(); }
      void performmsg() { msgaction->msg(); }
};
class Phone : public Device {
public:
      Phone() {
```

```
callaction = new CALLT();
              msgaction = new MSGT();
       }
};
class Pager : public Device {
public:
       Pager() {
              callaction = new CALLF();
              msgaction = new MSGT();
       }
};
int main() { // создаем объекты устройств
    printf(" devices\n");
       Phone Phone1;
       Pager Pager2;
       Phone1.performcall();
       Phone1.performmsg();
       Pager2.performcall();
       Pager2.performmsg();
}
                Динамическое делегирование
#include <iostream>
#include <string>
using namespace std;
class farornear
public:
       virtual string readinformation() = 0;
};
class BrainStation
{
public:
       void ChekInfo(farornear* rc)
       {
              info = rc;
       }
       string readinformation()
       {
              if (info)
              {
                     return info->readinformation();
              }
              return "Не установлен ";
private:
       farornear* info = nullptr;;
};
class Far : public farornear
public:
       string readinformation() override
       {
              return "Направление";
};
class Near : public farornear
public:
       string readinformation() override
       {
              // create pdf report logic
              return "Gps";
       }
};
```

```
int main()
       setlocale(LC_ALL, "Russian");
       Far Far;
       Near Near;
       BrainStation BrainStation;
       BrainStation.ChekInfo(&Far);
       BrainStation.ChekInfo(&Near);
       cout << BrainStation.readinformation() << endl;</pre>
       return 0;
}
                 Прокси
class LineUP {
    // класс, для которого создадим Ргоху
public:
    virtual void packetinfo() = 0;
class Line : public LineUP {
    // настоящий класс для обработки данных
public:
    int a;
    virtual void packetinfo() {
        if (a == 1) {
            cout << "i dont have package\n";</pre>
        }
        else {
            cout << "i have package: " << endl;</pre>
    Line(int inA) { a = inA;}
};
class LineProxy : public LineUP {
private:
    Line* prox;
    void status() { cout << "im ready" << endl; }</pre>
public:
    virtual void packetinfo() { cout << "No " << endl; }</pre>
    LineProxy(int inA ) {
        prox = new Line(inA);
        // здесь Proxy создает реальный объект M1
    ~LineProxy() { delete prox; }
};
int main() {
    LineUP* t = new Line(0);
    LineUP* p = new LineProxy(1);
    cout << "Line\n";</pre>
    t->packetinfo();
    cout << "\LineProxy\n";</pre>
    p->packetinfo();
    delete p;
    delete t;
    return 0;}
```

4.4. Тесты программы

```
devices
I can call...
I am message!
I can not call...
I am message!

Консоль отладки Microsoft Visual Studio

Gps

Консоль отладки Microsoft Visual Studio

Направление

Line
i have package:
LineProxy
No
```

5. Список литературы

- 1. Тихвинский В.О., Терентьев С.В., Юрчук А.Б. Сети мобильной связи LTE. Технологии и архитектура. М: Эко-Трендз, 2010. 284 с.
- 2. Степутин, А. Н., Николаев А.Д. Мобильная связь на пути к 6G. В 2 томах. Том2 / А.Н. Степутин, А.Д. Николаев. –3-е изд. Москва-Вологда: Инфра-Инженерия, 2020. 420 с. : ил.
- 3. Рыжков А.Е., Сиверс М.А., Воробьев В.О., Гусаров А.С., Слышков А.С., Шуньков Р.В. Системы и сети радиодоступа 4G: LTE, WiMax. СПб: Линк, 2012. 226 с.