THE FARGUES-FONTAINE CURVE

YIFEI ZHAO

Let p be a prime. The Fargues–Fontaine curve is a geometrization of the field \mathbb{Q}_p . It takes as input a perfectoid field C of characteristic p, and in its schematic incarnation, assumes the body of a regular Noetherian scheme of Krull dimension 1. This scheme X_C lies over $\operatorname{Spec}(\mathbb{Q}_p)$, although it is more profitable to think of X_C as a relative curve parametrized by C. Its finite étale covers correspond bijectively to those of $\operatorname{Spec}(\mathbb{Q}_p)$. These notes serve the modest purpose of constructing X_C .

1. Tilts and untilts

1.1. Tilting.

1.1.1. Let A be a \mathbb{Z}_p -algebra. Define $A^{\flat} := \lim_{x \to x^p} (A/p)$. The construction $(-)^{\flat}$ defines a functor from \mathbb{Z}_p -algebras to \mathbb{F}_p -algebras, called *tilting*. Note that this construction only produces perfect \mathbb{F}_p -algebras. (Indeed, given $(x_i)_{i \geq 0} \in A^{\flat}$ so $x_{i+1}^p = x_i$, if its pth power vanishes then all $x_i = 0$, and $(x_i)_{i \geq 0}$ admits a pth power root by "shifting to the right.") In fact, one may view $(-)^{\flat}$ as the composition of the modulo p functor with the right adjoint to the forgetful functor from perfect \mathbb{F}_p -algebras to all \mathbb{F}_p -algebras (i.e., inverse limit along Frobenius).

On the other hand, starting with an \mathbb{F}_p -algebra B, one may functorially assign a \mathbb{Z}_p -algebra W(B) of (p-typical) Witt vectors. Note that this construction only produces p-adically complete \mathbb{Z}_p -algebras. The next Lemma tells us that when restricted to these categories, the functors $(-)^{\flat}$ and W determine one another.

Lemma 1.1.2. The functors $(-)^{\flat}$ and W define an adjunction:

W:
$$\{perfect \ \mathbb{F}_p \text{-algebras}\} \iff \{p\text{-adically complete } \mathbb{Z}_p \text{-algebras}\} : (-)^{\flat}.$$
 (1.1)

Proof. Suppose that A is a p-adically complete \mathbb{Z}_p -algebra and B is a perfect \mathbb{F}_p -algebra. Then any morphism $W(B) \to A$ determines a morphism $B \to A/p$ by modulo p, and since B is perfect, the latter is equivalent to a morphism $B \to \lim_{x \to x^p} (A/p)$.

It remains to show that any morphism $B \to A/p$ lifts uniquely to a morphism $W(B) \to A$. Since A is p-adically complete, it suffices to construct unique liftings for each $n \ge 0$:

$$A/p^{n} \longleftarrow W_{n+1}(B)$$

$$\uparrow \qquad \uparrow$$

$$A/p^{n+1} \longleftarrow \mathbb{Z}/p^{n+1}$$

$$(1.2)$$

It is enough to prove that the cotangent complex $\mathbb{L}_{W_{n+1}(B)/(\mathbb{Z}/p^{n+1})}$ vanishes for all $n \geq 0$. Since \mathbb{Z}/p^{n+1} is an extension of \mathbb{Z}/p by \mathbb{Z}/p^n and the cotangent complex is functorial with

Date: February 5, 2022.

1

respect to change of the base ring, we reduce to the case n=0. To prove $\mathbb{L}_{B/\mathbb{F}_p}=0$, we make use of the hypothesis that B is perfect, i.e., the pth power Frobenius $\varphi: B \to B$ is an isomorphism. This implies that the natural map:

$$\varphi^* \mathbb{L}_{B/\mathbb{F}_n} \to \mathbb{L}_{B/\mathbb{F}_n} \tag{1.3}$$

is a quasi-isomorphism. On the other hand, by replacing B with a simplicial resolution P^{\bullet} consisting of free \mathbb{F}_p -algebras, the map (1.3) is defined by $\varphi^*\Omega_{P^i/\mathbb{F}_p} \to \Omega_{P^i/\mathbb{F}_p}$ which is zero by the rule of calculus. This implies $\mathbb{L}_{B/\mathbb{F}_p} \cong 0$.

Remark 1.1.3. The unit of this adjunction $B \to W(B)^{\flat}$ is an isomorphism. In particular, perfect \mathbb{F}_p -algebras form a full subcategory of p-adically complete \mathbb{Z}_p -algebras.

1.1.4. Let us describe more explicitly the counit of this adjunction:

$$\theta: W(A^{\flat}) \to A,$$
 (1.4)

for a p-adically complete \mathbb{Z}_p -algebra A. From the proof above, we have seen that θ is the unique morphism that makes the following diagram commute:

$$\begin{array}{ccc}
W(A^{\flat}) & \xrightarrow{\theta} & A \\
\downarrow & & \downarrow \\
A^{\flat} & \xrightarrow{\text{ev}_0} & A/p
\end{array}$$
(1.5)

Here, ev₀ denotes the map sending $(x_i)_{i\geq 0} \in A^{\flat}$ to x_0 .

1.1.5. We shall see that θ also commutes with natural multiplicative maps $[-]: A^{\flat} \to W(A^{\flat})$ and $(-)^{\sharp}: A^{\flat} \to A$, which we will define. Let us recall that the reduction modulo p map defines a multiplicative bijection for any p-adically complete \mathbb{Z}_p -algebra A:

$$\lim_{x \to x^p} (A) \xrightarrow{\sim} \lim_{x \to x^p} (A/p). \tag{1.6}$$

Let $(-)^{\sharp}: A^{\flat} \to A$ denote the multiplicative map sending $(x_i)_{i\geq 0} \in \lim_{x\mapsto x^p}(A)$ to x_0 . If we view $(x_i)_{i\geq 0}$ by its image under (1.6), i.e., as $x=(\bar{x}_i)_{i\geq 0}$ where \bar{x}_i is the image of x_i in A/p, then how do we extract $x^{\sharp} \in A$?

If we lift \bar{x}_0 to A, the result differs from x_0 by some element of pA. If we lift \bar{x}_1 to A and then raise it to power p, this differs from x_0 by some element of p^2A . Continuing like this, we see that x_0 is given by $\lim_{n\to\infty} (x'_n)^{p^n}$ where $x'_n \in A$ is an arbitrary lift of \bar{x}_n . Said differently, each $(x'_n)^{p^n}$ comes by taking the unique (p^n) th root of $x \in A^{\flat}$, projecting it to A/p, and then raising to the (p^n) th power.

By the commutativity of (1.5), we could have alternatively taken an arbitrary lift of x^{1/p^n} to W(A^b), raise it to the power p^n , take the limit as $n \to \infty$, and send the result to A via θ . This shows that:

$$\theta([x]) = x^{\sharp},$$

where [x] denotes the Teichmüller lift of $x \in A^{\flat}$.

Remark 1.1.6. The above way of extracting the element $x_0 \in A$ from $x \in \lim_{x \to x^p} (A/p)$ can be repeated to extract x_1, x_2 , etc., and constitutes a proof that (1.6) is a bijection.

1.1.7. Let B be a perfect \mathbb{F}_p -algebra. Elements of W(B) can be uniquely represented as a formal power series:

$$[c_0] + [c_1]p + [c_2]p^2 + \cdots$$
 (1.7)

where $c_i \in B$ and $[c_i]$ denotes its Teichmüller lift. Indeed, given $x \in W(B)$, its projection to B is denoted by c_0 . Then $x - [c_0]$ lies in pW(B), so it is of the form px_1 for a unique $x_1 \in W(B)$. We let c_1 be the projection of x_1 in B, etc. The counit map θ , being a ring homomorphism, sends (1.7) to $\sum_{n\geq 0} c_n^{\sharp} p^n$.

Remark 1.1.8. In particular, θ is also uniquely characterized by the property of commuting [-] with $(-)^{\sharp}$ and being continuous. Note that because $(-)^{\sharp}$ is surjective modulo p, the map θ is surjective.

1.1.9. The Frobenius endomorphism φ_B on B induces an endomorphism of W(B) by functoriality. On power series representations, it is given by:

$$\varphi_{\mathbf{B}}(\sum_{n\geq 0} [c_n]p^n) = \sum_{n\geq 0} [c_n^p]p^n.$$

1.2. Perfectoid fields.

- 1.2.1. Recall that a topological field K is called *perfectoid* if its topology is induced from a non-archimedean absolute value $|\cdot|_K : K \to \mathbb{R}^{\geq 0}$ which is complete and satisfies:
 - (1) there exists some element $\varpi \in K$ with $|p|_K < |\varpi|_K < 1$;
 - (2) the Frobenius $\varphi: \mathcal{O}_{K}/p \to \mathcal{O}_{K}/p$ is surjective (where \mathcal{O}_{K} denotes the subring of elements with absolute value ≤ 1).

We will often view a perfectoid field K as being equipped with the absolute value $|\cdot|_{K}$. Sometimes we will even fix the "pseudo-uniformizer" ϖ as in (1). However, the data defining a perfectoid field only involve its topology.

Remark 1.2.2. The subring \mathcal{O}_K and its maximal ideal \mathfrak{m}_K can be characterized purely in terms of the topology on K: \mathcal{O}_K is the subring of power bounded elements and \mathfrak{m}_K is the subset of topologically nilpotent elements.

Remark 1.2.3. If K has characteristic p, then condition (1) says that there exists $\varpi \in K$ with $0 < |\varpi|_K < 1$ and condition (2) says that K is perfect. (It rules out finite fields with discrete topology.)

1.2.4. Given a perfectoid field K, we may consider \mathcal{O}_{K}^{\flat} and the absolute value $|\cdot|_{K}$ induces an absolute value $|\cdot|_{K^{\flat}}$ on \mathcal{O}_{K}^{\flat} given by $|x|_{K^{\flat}} := |x^{\sharp}|_{K}$.

Lemma 1.2.5 (Useful lemma). Let K be a perfectoid field. Then $|\cdot|_K: \mathcal{O}_K \to \mathbb{R}^{\geq 0}$ and $|\cdot|_{K^{\flat}}: \mathcal{O}_{K^{\flat}} \to \mathbb{R}^{\geq 0}$ have the same image.

Proof. Since $|x|_{K^{\flat}} = |x^{\sharp}|_{K}$, the image of $|\cdot|_{K^{\flat}}$ is contained in the image of $|\cdot|_{K}$. To prove the converse, we note that $(-)^{\sharp}: \mathcal{O}_{K}^{\flat} \to \mathcal{O}_{K}$ is surjective modulo p. Hence given any $x \in \mathcal{O}_{K}$ we may find $y \in \mathcal{O}_{K}^{\flat}$ with $y^{\sharp} \in x + p\mathcal{O}_{K}$. If $|p|_{K} < |x|_{K}$, this shows that $|y|_{K^{\flat}} = |x|_{K}$. Applying to x being the pseudo-uniformizer in K, it tells us that we have some $\varpi \in \mathcal{O}_{K}^{\flat}$ with $|p|_{K} < |\varpi|_{K^{\flat}} < 1$.

On the other hand, if $|x|_{K} \leq |p|_{K}$, then $x = (\varpi^{\sharp})^{n}x_{1}$ for some $x_{1} \in \mathcal{O}_{K}$ with $|p|_{K} < |x_{1}|_{K} < 1$ and $n \geq 0$. Since both ϖ^{\sharp} and x_{1} have values achieved by elements of \mathcal{O}_{K}^{\flat} , the same must hold for x.

Remark 1.2.6. By the way, you can prove that the image is dense in $\mathbb{R}^{\geq 0}$. Some people use this apparently stronger axiom instead of the existence of pseudo-uniformizer in the definition of a perfectoid field.

Proposition 1.2.7. Let K be a perfectoid field. Then the fraction field of \mathcal{O}_{K}^{\flat} is a perfectoid field of characteristic p with topology defined by $|\cdot|_{K^{\flat}}$.

Sketch of proof. It is clear that any $x \in \mathcal{O}_K^{\flat}$ with $|x|_{K^{\flat}} = 0$ is zero, so \mathcal{O}_K^{\flat} is an integral domain. To find an element $\varpi \in \mathcal{O}_K^{\flat}$ with $0 < |\varpi|_{K^{\flat}} < 1$, we simply apply Lemma 1.2.5. In fact, we might as well take ϖ with $|\varpi|_{K^{\flat}} = |p|_K$. The fact that the Frobenius is surjective on \mathcal{O}_K^{\flat}/p follows from the construction.

We claim that $\mathcal{O}_{K}^{\flat}[\frac{1}{\varpi}]$ is already a field. Indeed, the multiplicative monoid underlying \mathcal{O}_{K}^{\flat} is isomorphic to $\lim_{x \mapsto x^{p}} (\mathcal{O}_{K})$ so the multiplicative monoid underlying $\mathcal{O}_{K}^{\flat}[\frac{1}{\varpi}]$ is isomorphic to $\lim_{x \mapsto x^{p}} (K)$. It follows that every nonzero element has a multiplicative inverse. The fact that $\mathcal{O}_{K}^{\flat}[\frac{1}{\varpi}]$ is complete with respect to $|\cdot|_{K^{\flat}}$ follows from the ϖ -adic completeness of \mathcal{O}_{K}^{\flat} , which can be proved by identifying $\lim_{x \mapsto x^{p}} (\mathcal{O}_{K}/p)$.

By abuse of notation (and language), we denote the fraction field of \mathcal{O}_{K}^{\flat} by K^{\flat} and call it the *tilting* of K. The absolute value $|\cdot|_{K^{\flat}}$ extends to K^{\flat} . Note that for each $\varpi \in \mathcal{O}_{K}^{\flat}$ with $0 < |\varpi|_{K^{\flat}} < 1$, the field K^{\flat} can be identified with $\mathcal{O}_{K}^{\flat}[\frac{1}{\varpi}]$.

Proposition 1.2.8. Let K be a perfectoid field and K^{\flat} be its tilt. Then tilting defines an equivalence of categories:

$$\{perfectoid\ fields\ containing\ K\} \cong \{perfectoid\ fields\ containing\ K^{\flat}\}.$$

Proof. Let us read off the inverse functor from the adjunction of Lemma 1.1.2. Indeed, given finite extensions $K \subset L$ and $K^{\flat} \subset C$, maps of K^{\flat} -extensions $C \to L^{\flat}$ are equivalent to \mathcal{O}_{K}^{\flat} -algebra maps $\mathcal{O}_{C} \to \mathcal{O}_{L}^{\flat}$, which are equivalent to \mathcal{O}_{K} -algebra maps $W(\mathcal{O}_{C}) \otimes_{W(\mathcal{O}_{K}^{\flat})} \mathcal{O}_{K} \to \mathcal{O}_{L}$. If we know that $W(\mathcal{O}_{C}) \otimes_{W(\mathcal{O}_{K}^{\flat})} \mathcal{O}_{K}$ is the ring of integers in a perfectoid field, then the inverse functor must send C to the fraction field of $W(\mathcal{O}_{C}) \otimes_{W(\mathcal{O}_{C}^{\flat})} \mathcal{O}_{K}$.

Let us justify the statement about $W(\mathcal{O}_C) \otimes_{W(\mathcal{O}_K^{\flat})} \mathcal{O}_K$. This will use Lemma 2.1.4 below. Indeed, the kernel of $W(\mathcal{O}_K^{\flat}) \to \mathcal{O}_K$ is generated by a distinguished element ξ . It suffices to show that the image of ξ in $W(\mathcal{O}_C)$ is again distinguished. This follows from that fact that $\mathcal{O}_K^{\flat} \to \mathcal{O}_C$ preserves elements of absolute value in (0,1). In particular, this also shows that for any $\varpi \in \mathcal{O}_K^{\flat}$ with $0 < |\varpi|_{K^{\flat}} < 1$, we have:

$$\operatorname{Frac}(W(\mathcal{O}_C) \otimes_{W(\mathcal{O}_K^{\flat})} \mathcal{O}_K) \cong W(\mathcal{O}_K) \otimes_{W(\mathcal{O}_K^{\flat})} \mathcal{O}_K[\frac{1}{\tau_{\ell}}] \cong W(\mathcal{O}_C) \otimes_{W(\mathcal{O}_K^{\flat})} K.$$

Next, we shall prove that the unit and counit are both isomorphisms. Suppose $K \subset L$ is an extension of perfectoid fields, we argue that the canonical map $W(\mathcal{O}_L^{\flat}) \otimes_{W(\mathcal{O}_K^{\flat})} \mathcal{O}_K \to \mathcal{O}_L$ is bijective. By the argument above, we know that the source is the ring of integers in an untilt of \mathcal{O}_L^{\flat} , hence of Krull dimension 1. But the map is also surjective, so it must be an isomorphism.

In the other direction, suppose $K^{\flat} \subset C$ is an extension of perfectoid fields, we argue that the canonical map $\mathcal{O}_{C} \to (W(\mathcal{O}_{C}) \otimes_{W(\mathcal{O}_{K}^{\flat})} \mathcal{O}_{K})^{\flat}$ is bijective. This follows from the fact that any quotient of $W(\mathcal{O}_{C})$ by a distinguished element is an untilt of C (Lemma 2.1.4).

Remark 1.2.9. There is also a version of Proposition 1.2.8 which says that perfectoid spaces over K are equivalent to perfectoid spaces over K^{\flat} .

Proposition 1.2.8 also preserves finite extensions and their degrees. In fact, finite extensions of perfectoid fields are automatically perfectoid, so the equivalence induces an isomorphism $\operatorname{Gal}(\bar{K}/K) \cong \operatorname{Gal}(\bar{K}^{\flat}/\bar{K})$.

1.3. Untilts.

1.3.1. Even though Proposition 1.2.8 is known as the "tilting equivalence", it is not quite an equivalence on the nose: fixing the base K is crucial for the theorem to hold. Indeed, if we were to take a non-perfectoid field such as \mathbb{Q}_p (whose "tilt" is \mathbb{F}_p), the functor:

$$(-)^{\flat}: \{\text{perfectoid fields containing } \mathbb{Q}_p\} \to \{\text{perfectoid fields containing } \mathbb{F}_p\}$$
 (1.8)

is far from being an equivalence. Of course, you would expect this since \mathbb{Q}_p is a lot more complex than \mathbb{F}_p . (In particular, they have distinct Galois groups.)

However, Proposition 1.2.8 suggests that the relative complexity of the two categories in (1.8) only occurs in the fibral direction: once an "untilt" of K^{\flat} is fixed, the perfectoid fields containing it encode no more information than perfectoid fields containing the given K^{\flat} . This suggests that studying the fibers of (1.8) actually corresponds to studying \mathbb{Q}_p itself.

1.3.2. Suppose that C is a perfectoid field of characteristic p. An *untilt* of C is a pair (K, ι) where K is a perfectoid field and ι is an isomorphism $C \cong K^{\flat}$ of perfectoid fields (i.e., a continuous isomorphism). In particular, ι is equivalent to a continuous isomorphism:

$$\iota: \mathcal{O}_{\mathcal{C}} \cong \mathcal{O}_{\mathcal{K}}^{\flat}. \tag{1.9}$$

For an element ϖ of C with $|\varpi|_{\mathcal{C}} = |p|_{\mathcal{K}}$ (i.e., ϖ^{\sharp} differs from p by a unit), this isomorphism is even equivalent to just an isomorphism $\mathcal{O}_{\mathcal{C}}/\varpi \cong \mathcal{O}_{\mathcal{K}}/p$ (because $\mathcal{O}_{\mathcal{C}} \cong \lim_{x \mapsto x^p} (\mathcal{O}_{\mathcal{C}}/\varpi)$). However, I think that (1.9) is still the best way to view ι .

1.3.3. There is a self-map φ on the set of isomorphism classes of untilts defined by sending (K, ι) to $(K, \iota \circ \varphi_C)$, where φ_C denotes the Frobenius endomorphism $x \mapsto x^p$ on C. Note that there is a unique characteristic-p untilt of C given by (C, id). It is fixed by φ since φ_C is an automorphism of C.

Remark 1.3.4. The category of untilts of C has no nontrivial automorphisms. This is clear for the characteristic-p untilt. Suppose now that (K, ι) is a characteristic-0 untilt of C. Given $\psi : K \to K$ which induces the identity map on K^{\flat} , the restriction of ψ to \mathcal{O}_K lifts the reduction map $\mathcal{O}_K \to \mathcal{O}_K/p$. Since $W(\mathcal{O}_K^{\flat}) \to \mathcal{O}_K$ is surjective and the composition $\psi \circ \theta : W(\mathcal{O}_K^{\flat}) \to \mathcal{O}_K$ lifts $\mathcal{O}_K^{\flat} \to \mathcal{O}_K/p$, we must have $\psi = \mathrm{id}$ (see (1.5)). In other words, the category of untilts of C is equivalent to a set, and we will view it as such.

2. Functions on the set of untilts

2.1. The ring $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{|\varpi|}]$.

2.1.1. From now on, we fix a perfectoid field C of characteristic p. Write $\mathbf{A}_{\inf} := \mathrm{W}(\mathcal{O}_{\mathrm{C}})$. According to §1.1.7, elements of \mathbf{A}_{\inf} can be uniquely represented by power series $\sum_{n\geq 0} [c_n] p^n$ where $c_n \in \mathcal{O}_{\mathrm{C}}$. Suppose (K, ι) is an untilt of C. Then there is a surjective map:

$$\mathbf{A}_{\inf} \cong \mathrm{W}(\mathcal{O}_{\mathrm{K}}^{\flat}) \to \mathcal{O}_{\mathrm{K}},$$
 (2.1)

where the first isomorphism is induced from ι and the second map is the counit θ of (1.4). In particular, we see that (2.1) sends $\sum_{n\geq 0} [c_n] p^n$ to $\sum_{n\geq 0} c_n^{\sharp} p^n$. Here, the elements $c_n^{\sharp} \in \mathcal{O}_K$

are defined using ι . Clearly, the Frobenius endomorphism $\varphi_{\rm C}$ on ${\bf A}_{\rm inf}$ makes the following diagram commute:

$$\begin{array}{ccc} \mathbf{A}_{\inf} & \xrightarrow{\iota \circ \varphi_{\mathrm{C}}} & \mathbb{O}_{\mathrm{K}} \\ & & \downarrow \varphi_{\mathrm{C}} & & \downarrow \cong \\ & \mathbf{A}_{\inf} & \xrightarrow{\iota} & \mathbb{O}_{\mathrm{K}} \end{array}$$

Remark 2.1.2. We have now arrived at a familiar paradigm in algebraic geometry: \mathbf{A}_{inf} looks like the ring of functions on the set of untilts of C. For every untilt (K, ι) , one may restrict $f \in \mathbf{A}_{\text{inf}}$ to its "local ring" \mathcal{O}_K . The Frobenius endomorphism φ_C corresponds to pulling back functions along the self-map $(K, \iota) \mapsto (K, \iota \circ \varphi_C)$ on the set of untilts.

Since elements of \mathbf{A}_{inf} can be viewed as formal power series with coefficients in $\mathcal{O}_{\mathbf{C}}$, there is a close analogy between \mathbf{A}_{inf} and the ring of holomorphic functions on the open unit disc \mathbb{D} whose Taylor series has coefficients c_n of norm $|c_n| \leq 1$. This in turn suggests us to think of untilts as the open unit disc \mathbb{D} itself.

2.1.3. Digression. Let us discuss how to obtain maps like (2.1) out of the ring \mathbf{A}_{inf} . We call an element $\xi \in \mathbf{A}_{\text{inf}}$ distinguished if its Teichmüller expansion $\xi = \sum_{n \geq 0} [c_0] p^n$ satisfies $|c_0|_{\mathbf{C}} < 1$ and $|c_1|_{\mathbf{C}} = 1$. In particular, the image of ξ in $\mathcal{O}_{\mathbf{C}}$ is an element ϖ with $|\varpi|_{\mathbf{C}} < 1$. For such an element ξ , we consider the quotient:

$$0 \to (\xi) \to \mathbf{A}_{\rm inf} \to \mathbf{A}_{\rm inf}/\xi \to 0.$$

Then $\mathbf{A}_{\rm inf}/(\xi,p)$ is equipped with an isomorphism with $\mathcal{O}_{\rm C}/\varpi$. Hence $(\mathbf{A}_{\rm inf}/\xi)^{\flat} \cong \mathcal{O}_{\rm C}$, so the fraction field of $\mathcal{O}_{\rm K} := \mathbf{A}_{\rm inf}/\xi$ defines an until of $\rm C$.

Lemma 2.1.4. The above construction defines a bijection between ideals of $A_{\rm inf}$ generated by distinguished elements and untilts of C.

Proof. The mapping from ideals of \mathbf{A}_{inf} generated by distinguished elements to untilts of C has been defined in §2.1.3. To define the map in the other direction, we need to show that for every untilt (K, ι) , the kernel of (2.1) is generated by a distinguished element.

Let us first show that the kernel contains a distinguished element. Consider an element $\varpi \in \mathcal{O}_{\mathbf{C}}$ with $|\varpi|_{\mathbf{C}} = |p|_{\mathbf{K}}$ (Lemma 1.2.5). Then $\varpi^{\sharp} = \bar{x}p$ for some unit \bar{x} in $\mathcal{O}_{\mathbf{K}}$. Lift \bar{x} to $x \in \mathbf{A}_{\mathrm{inf}}$. Then $[\varpi] - xp$ belongs to the kernel and is distinguished. (One uses that x is necessarily invertible, as can be seen from the constant term in its Teichmüller expansion.) Knowing that $\xi := [\varpi] - xp$ is distinguished, we obtain a factorization of the map (2.1):

$$\mathbf{A}_{\mathrm{inf}} \to \mathbf{A}_{\mathrm{inf}}/\xi \to \mathfrak{O}_{\mathrm{K}}.$$

Since \mathbf{A}_{\inf}/ξ is the ring of integers in an untilt of C, hence of Krull dimension 1, the second map $\mathbf{A}_{\inf}/\xi \to \mathcal{O}_{K}$ must be bijective.

Remark 2.1.5. The unique characteristic-p untilt corresponds to the ideal (p) which is generated by any distinguished element with $c_0 = 0$.

2.1.6. If we go back to the heuristics that elements of \mathbf{A}_{\inf} define holomorphic functions on the open unit disk, it appears quite unnatural that we only consider power series $\sum_{n\geq 0} [c_n] p^n$ whose coefficients c_n have norm ≤ 1 . We could enlarge the ring to include power series with coefficients $c_n \in \mathbb{C}$ but $\{|c_n|\}_{n\geq 0}$ remains bounded. It turns out that this amounts to localizing \mathbf{A}_{\inf} at the Teichmüller lift of some pseudouniformizer ϖ (i.e., an element of \mathbb{C} with $0 < |\varpi|_{\mathbb{C}} < 1$).

Lemma 2.1.7. The natural inclusion $\mathbf{A}_{\inf}[\frac{1}{[\varpi]}] \to \mathrm{W}(\mathrm{C})$ has image given by formal power series $\sum_{n\geq 0} [c_n] p^n$ where $\{|c_n|\}_{n\geq 0}$ is bounded.

The evaluation map (2.1) for an untilt (K, ι) now extends to a map $\mathbf{A}_{\inf}[\frac{1}{[\varpi]}] \to K$. Indeed, this is because the image of $[\varpi]$ in \mathcal{O}_K is ϖ^{\sharp} , which is nonzero.

2.1.8. Let us fix an absolute value $|\cdot|_{C}$ on C defining its topology. Then any until (K, ι) inherits an absolute value $|\cdot|_{K}$ from the isomorphism $\iota: \mathcal{O}_{C} \cong \mathcal{O}_{K}^{\flat}$ and the multiplicative map $(-)^{\sharp}: \mathcal{O}_{K}^{\flat} \to \mathcal{O}_{K}$. This absolute value defines a "radius function" on the set of untilts, sending (K, ι) to $|p|_{K}$.

There is a unique point in this set whose radius is 0. It is the characteristic-p untilt (C, id) of C. Suppose that we throw this point away, which amounts to considering the localization $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{[\varpi]}]$. This ring consists of formal Laurent series $\sum_{n\gg-\infty}[c_n]p^n$ where $\{|c_n|\}_{n\in\mathbb{Z}}$ is bounded. Then any characteristic-0 untilt (K, ι) defines a map:

$$\mathbf{A}_{\inf}\left[\frac{1}{p}, \frac{1}{|\varpi|}\right] \to \mathbf{K}.\tag{2.2}$$

From now on, we shall let Y denote the set of isomorphism classes of characteristic-0 untilts of C. For $y \in Y$, we denote the image of $f \in \mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{|\varpi|}]$ under (2.2) by f(y).

2.1.9. Still not enough. The ring $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{[\varpi]}]$ is our first candidate for the "ring of functions" on Y. However, it creates a problem when we try to construct $X := Y/\varphi^{\mathbb{Z}}$. To see how this problem arises, let us consider the analogous problem in ordinary complex analysis.

The basic object is the punctured unit disk \mathbb{D} with an endomorphism $\varphi: \mathbb{D} \to \mathbb{D}$, $z \mapsto z^p$. In order to build $\mathbb{D}/\varphi^{\mathbb{Z}}$ as a projective variety we need to find a line bundle $\mathcal{O}(1)$ which is globally generated, so $\mathbb{D}/\varphi^{\mathbb{Z}}$ may be realized as $\operatorname{Proj}(\bigoplus_{n\geq 0} \operatorname{H}^0(\mathcal{O}(n)))$. A natural candidate for the graded ring $\bigoplus_{n\geq 0} \operatorname{H}^0(\mathcal{O}(n))$ is the following one: the space $\operatorname{H}^0(\mathcal{O}(n))$ consists of functions $f: \mathbb{D} \to \mathbb{C}$ such that $f(z^p) = p^n f(z)$. The simplest such function is $\log(z)^n$, which is *not* meromorphic at z = 0.

To translate this heuristics into our context, consider elements of $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{|\varpi|}]$ on which $\varphi_{\mathbf{C}}$ acts by multiplication by p. Writing such an element as a Laurent series $\sum_{n\gg-\infty}[c_n]p^n$, we must have $c_n^p=c_{n-1}$. Since $\varphi_{\mathbf{C}}$ is an isomorphism and $c_n=0$ for $n\ll 0$, we see that all c_n must vanish. This suggests that we must enlarge $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{|\varpi|}]$ to include "holomorphic functions which are not meromorphic at 0".

Remark 2.1.10. Elements of $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{[\varpi]}]$ on which $\varphi_{\mathbf{C}}$ acts as identity are equivalent to $\sum_{n \gg -\infty} [c_n] p^n$ where $c_n \in \mathbb{F}_p$. This is nothing but $\mathbb{Q}_p = \mathrm{W}(\mathbb{F}_p)[\frac{1}{p}]$.

2.2. The true ring of functions on Y.

2.2.1. For a real number $0 < \rho < 1$, define the *Gauss norm* of an element $f \in \mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{[\varpi]}]$ as $|f|_{\rho} := \sup\{|c_n|_{\mathbf{C}} \cdot \rho^n\}$, where $\sum_{n \gg -\infty} [c_n] p^n$ is the Laurent series representation of f. Since $\{|c_n|_{\mathbf{C}}\}_{n \in \mathbb{Z}}$ is bounded, the supremum is achieved by finitely many n.

Remark 2.2.2. The Gauss norm bounds the value of f(y) over untilts y with radius ρ . More precisely, say $y = (K, \iota)$ with induced absolute value $|\cdot|_K : K \to \mathbb{R}^{\geq 0}$ such that

 $|p|_{\rm K} = \rho$. Then there holds:

$$|f(y)|_{\mathcal{K}} = |\sum_{n \gg -\infty} c_n^{\sharp} p^n|_{\mathcal{K}} \le \sup\{|c_n^{\sharp}|_{\mathcal{K}} \cdot |p|_{\mathcal{K}}^n\} = |f|_{\rho}.$$

This bound tells us something else: given any sequence $f_n \in \mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{|\varpi|}]$ which is Cauchy under $|\cdot|_{\rho}$, the sequene $f_n(y) \in K$ is Cauchy under $|\cdot|_K$, which has a limit in K. In other words, the completion of $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{|\varpi|}]$ at the Gauss norm $|\cdot|_{\rho}$ yields functions which are still well-defined on points $y \in Y$ of radius ρ .

2.2.3. The ring B is defined to be the completion of $\mathbf{A}_{\inf}\left[\frac{1}{p}, \frac{1}{|\varpi|}\right]$ at all the Gauss norms $|\cdot|_{\rho}$ for $0 < \rho < 1$. Namely, it is the universal topological \mathbb{Q}_p -vector space receiving a morphism $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{\varpi}] \to \mathbf{B}$, such that any sequence $a_n \in \mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{\varpi}]$ which is Cauchy with respect to all the norms $|\cdot|_{\rho}$ $(0 < \rho < 1)$ has a limit in B.

It follows from the universal property that B has the structure of a topological \mathbb{Q}_p -algebra. Each $|\cdot|_{\rho}: \mathbf{A}_{\inf}[\frac{1}{n}, \frac{1}{|\pi|}] \to \mathbb{R}^{\geq 0}$ extends uniquely to a continuous map $|\cdot|_{\rho}: \mathbf{B} \to \mathbb{R}^{\geq 0}$. By Remark 2.2.2, for every characteristic-0 until $y = (K, \iota)$ of C, the evaluation map (2.2) extends to:

$$B \to K, \quad f \mapsto f(y).$$
 (2.3)

2.2.4. To get a feeling about the elements of B, we shall consider infinite Laurent series $f = \sum_{n \in \mathbb{Z}} [c_n] p^n$ with $c_n \in \mathbb{C}$. Such an object can be viewed as a sequence of elements in $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{|\varpi|}]$, so it makes sense to ask: under what condition does it converge in B? It turns out that \hat{f} converges in B if and only if:

- (1) $\limsup_{n\geq 0} |c_n|_{\mathcal{C}}^{1/n} \leq 1;$ (2) $\lim_{n\to\infty} |c_n|_{\mathcal{C}}^{-1/n} = 0.$

Indeed, these follow from that fact that f converges under $|\cdot|_{\rho}$ if and only if:

$$\lim_{n \to \infty} (|c_n|_{\mathcal{C}} \cdot \rho^n) = \lim_{n \to -\infty} (|c_n|_{\mathcal{C}} \cdot \rho^n) = 0.$$

Remark 2.2.5. Let $f = \sum_{n \in \mathbb{Z}} c_n z^n$ where $c_n \in \mathbb{C}$. Then the two conditions above are equivalent to the fact that f is the Laurent series of a holomorphic function on the open punctured unit disc $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$.

Remark 2.2.6. In contrast with $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{|\varpi|}]$, elements in B cannot be uniquely represented by formal Laurent series $f = \sum_{n \in \mathbb{Z}} [c_n] p^n$. (Example?)

2.2.7. One can rewrite B in a more finitary manner. For $0 < a \le b < 1$, we let $B_{[a,b]}$ denote the completion of $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{|\varpi|}]$ at Gauss norms $|\cdot|_{\rho}$ for $a \leq \rho \leq b$. Then $\mathbf{B}_{[a,b]}$ is isomorphic to the completion of $\mathbf{A}_{\inf}\left[\frac{1}{p},\frac{1}{\varpi}\right]$ at just the pair of Gauss norms $|\cdot|_a$ and $|\cdot|_b$. Indeed, this is because a sequence f_n which converges to f under both $|\cdot|_a$ and $|\cdot|_b$ also converges to f in $|\cdot|_{\rho}$ for all $a \leq \rho \leq b$. On the other hand, the universal property of B supplies a continuous homomorphism $B \to B_{[a,b]}$. One checks that the natural map below is an isomorphism of topological \mathbb{Q}_p -algebras:

$$\mathbf{B} \xrightarrow{\sim} \lim_{[a,b]\subset(0,1)} \mathbf{B}_{[a,b]}.$$

On the other hand, $B_{[a,b]}$ can be constructed completely algebraically when a,b belong to the image of $|\cdot|_{\mathcal{C}}: \mathcal{C} \to \mathbb{R}^{\geq 0}$.

Lemma 2.2.8. Suppose $\pi_a, \pi_b \in \mathcal{O}_{\mathbf{C}}$ with $a = |\pi_a|_{\mathbf{C}}$ and $b = |\pi_b|_{\mathbf{C}}$. Then $\mathbf{B}_{[a,b]}$ is canonically isomorphic to the p-adic completion of $\mathbf{A}_{\inf}[\frac{[\pi_a]}{p}, \frac{p}{[\pi_b]}]$.

3. The Fargues-Fontaine curve

3.1. The definition.

3.1.1. Let C be a perfectoid field of characteristic p. We have constructed a topological \mathbb{Q}_p -algebra B by completing the ring $\mathbf{A}_{\inf}[\frac{1}{p},\frac{1}{[\varpi]}]$ at Gauss norms $|\cdot|_{\rho}$ for all $0<\rho<1$. The Frobenius $\varphi_{\mathbf{C}}:\mathbf{C}\to\mathbf{C},\,x\mapsto x^p$ induces an endomorphism $\varphi:\mathbf{B}\to\mathbf{B}$ by functoriality of the construction. For $n\in\mathbb{Z}$, let $\mathbf{B}^{\varphi=p^n}$ denote the subring of elements $f\in\mathbf{B}$ with $\varphi(f)=p^nf$. The Fargues–Fontaine curve $\mathbf{X}_{\mathbf{C}}$ is defined to be:

$$X_C := \operatorname{Proj}(\bigoplus_{n \geq 0} B^{\varphi = p^n}).$$

For a finite extension $\mathbb{Q}_p \subset \mathcal{E}$, we define $\mathcal{X}_{\mathcal{C},\mathcal{E}}$ to be $\mathcal{X}_{\mathcal{C}} \times_{\operatorname{Spec}(\mathbb{Q}_p)} \operatorname{Spec}(\mathcal{E})$.

Remark 3.1.2. The Fargues–Fontaine curve X_C (or $X_{C,E}$) should be viewed as a relative curve over C which "geometrizes" $\operatorname{Spec}(\mathbb{Q}_p)$ (resp. $\operatorname{Spec}(E)$). More generally, one can use perfectoid rings (A, A^+) in characteristic p as test objects and construct a version of the Fargues–Fontaine curve $X_{S,E}$ for $S = \operatorname{Spa}(A, A^+)$.

I learned from Lin Chen that there is no terminal object in the category of perfectoid spaces in characteristic p, and consequently no "absolute Fargues-Fontaine curve."

3.2. The logarithm.

3.2.1. Following the heuristics of §2.1.9, we want to construct particular sections of $B^{\varphi=p}$ which play the role of $\log(z)$. This is indeed possible, and will take the form of a map:

$$1 + \mathfrak{m}_{\mathcal{C}} \to \mathcal{B}, \quad x \mapsto \log([x]),$$
 (3.1)

which takes multiplication to addition.

To construct (3.1), we recall that $\log(|x|)$ can be represented by a power series:

$$\log([x]) = \sum_{n>0} \frac{(-1)^{n+1}}{n} ([x] - 1)^n, \tag{3.2}$$

which may be viewed as a sequence of elements in the \mathbb{Q}_p -algebra $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{[\varpi]}]$. By definition of the ring B, the following Lemma suffices to define $\log([x])$.

Lemma 3.2.2. The power series (3.2) converges in the Gauss norm $|\cdot|_{\rho}$ for all $0 < \rho < 1$.

Proof. Let us first show that $|[x] - 1|_{\rho} < 1$. Indeed, consider the Teichmüller expansion of $[x] - 1 \in \mathbf{A}_{\inf}$ given by $\sum_{n \geq 0} [c_n] p^n$. We have $c_n \in \mathcal{O}_{\mathbf{C}}$ so $|c_n|_{\mathbf{C}} \leq 1$. On the other hand, $c_0 = x - 1$ which belongs to $\mathfrak{m}_{\mathbf{C}}$, so $|c_0|_{\mathbf{C}} < 1$. These observations combine to give:

$$|[x] - 1|_{\rho} = \sup\{|c_n|_{\mathcal{C}} \cdot \rho^n\}_{n>0} < 1.$$

Next, it suffices to prove that the Gauss norm of $\frac{(-1)^{n+1}}{n}([x]-1)^n$ goes to zero as $n\to\infty$. Writing $\alpha=|[x]-1|_\rho$, this norm is given by:

$$\left| \frac{(-1)^{n+1}}{n} \right|_{\rho} \alpha^n = \frac{1}{|n|_{\rho}} \alpha^n. \tag{3.3}$$

Let us recall that the restriction of $|\cdot|_{\rho}$ to $\mathbb{Q}_p \subset \mathbf{A}_{\inf}$ is given by $\rho^{v_p(\cdot)}$. Hence $\frac{1}{|n|_{\alpha}} =$ $(\rho^{-1})^{v_p(n)} \leq (\rho^{-1})^{\log_p(n)}$. (The equality is achieved when n is a power of p.) This implies that (3.3) is bounded above by $(\rho^{-1})^{\log_p(n)}\alpha^n$, which tends to zero as $n\to\infty$.

3.2.3. Let us note that $\log([x])$ belongs to the eigenspace $B^{\varphi=p}$. Indeed, it follows from the power series presentation (3.2) that $\varphi(\log([x])) = \log([x]^p) = p \log([x])$. The logarithm function allows us to formulate a structure theorem about the graded ring $\bigoplus_{n\in\mathbb{Z}} B^{\varphi=p^n}$.

Theorem 3.2.4. The following statements hold true:

- (1) for n < 0, the eigenspace $B^{\varphi = p^n}$ vanishes; (2) for n = 0, the natural map $\mathbb{Q}_p \to B^{\varphi = 1}$ is bijective;
- (3) for n > 0 and C algebraically closed, every nonzero element $f \in B^{\varphi = p^n}$ factors as a product:

$$f = \lambda \log([x_1]) \cdots \log([x_n]), \quad \lambda \in \mathbb{Q}_p^{\times} \text{ and } x_i \in 1 + \mathfrak{m}_{\mathbb{C}},$$
 (3.4)

which is unique up to reordering and multiplication by elements of \mathbb{Q}_n^{\times} .

The proof of Theorem 3.2.4 is quite involved and will be explained later. It contains, among other things, the statement that $(\log([x]))$ is a prime ideal in $\bigoplus_{n\geq 0} B^{\varphi=p^n}$ for any $x\in 1+\mathfrak{m}_{\mathbb{C}}$ (assuming that C is algebraically closed).

Remark 3.2.5. For $x \in 1 + \mathfrak{m}_{\mathbb{C}}$ and $a \in \mathbb{Q}_p^{\times}$, the exponent x^a is a well-defined element in $1 + \mathfrak{m}_{\mathbb{C}}$. Indeed, for $a \in \mathbb{Z}_p^{\times}$, we may write $x^a := \lim_n x^{a_n}$ where a_n is the reduction of a in \mathbb{Z}/p^n . Ambiguities like x^{p^n} converge to 1 since $x \in 1 + \mathfrak{m}_{\mathbb{C}}$. This operation extends to \mathbb{Q}_p^{\times} . Note that $\log([x^a]) = a \log([x])$.

3.2.6. When C is algebraically closed, the dictionary between distinguished elements and untilts (Lemma 2.1.4) can be enhanced as follows. There is a commutative diagram:

In this diagram, ξ stands for elements of the form $\sum_{n>0} [c_n] p^n \in \mathbf{A}_{inf}$ where $0 < |c_0| < 1$ and $|c_1| = 1$. The expression $\log(|x|)$ stands for elements of B defined by $x \in 1 + \mathfrak{m}_C$.

Like Theorem 3.2.4, constructing this commutative diagram is nontrivial business. The essential ingredient for doing both is a well-behaved notion of "divisors" for elements of B. In particular, the element $\log([x])$ has a divisor with only simple zeros $\sum_{n\in\mathbb{Z}}\varphi^n(y)$, for $y \in Y$ the untilt corresponding to the distinguished element:

$$\xi := 1 + [x^{\frac{1}{p}}] + \dots + [x^{\frac{p-1}{p}}].$$

The definition of divisors in turn relies on a version of the completed local rings on Y: this is Fontaine's period ring $B_{dR}^+(y)$ for $y \in Y$.

3.2.7. One can use the aforementioned facts to prove the following structure theorem about the Fargues–Fontaine curve X_C .

Corollary 3.2.8. Suppose C is algebraically closed. Then:

- (1) the closed points of X_C are in bijection with φ -orbits of characteristic-0 untilts of C;
- (2) the scheme X_C is regular, Noetherian, and of Krull dimension 1.

Proof. Let $\mathfrak{p} \neq (0)$ be a homogeneous prime ideal of $\bigoplus_{n\geq 0} \mathrm{B}^{\varphi=p^n}$. Then \mathfrak{p} contains some nonzero homogeneous element f in degree ≥ 1 which admits a product decomposition (3.4). Being prime, \mathfrak{p} contains one of the factors, say $\log([x])$ for some $x \in 1 + \mathfrak{m}_{\mathbb{C}}$. Then we must have $\mathfrak{p} = \log([x])$ since $\log([x])$ already defines a closed point.

This shows, in particular, that every point of X_C besides the generic point is closed. The corresponding prime ideals are all monogenic, which implies that X_C is Noetherian, regular, and of Krull dimension 1.

3.3. Divisors and B_{dR}^+ .

3.3.1. Suppose that $y = (K, \iota)$ is an untilt of C. Let $\xi \in \mathbf{A}_{inf}$ be a distinguished element it corresponds to under Lemma 2.1.4. Fix a pseudo-uniformizer ϖ of C. Define:

$$\mathrm{B}_{\mathrm{dR}}^+(y) := \lim_n ((\mathbf{A}_{\mathrm{inf}}/\xi^n)[\frac{1}{[\varpi]}]).$$

According to the heuristics of viewing Y as the unit disc and $\mathbf{A}_{\inf}[\frac{1}{[\varpi]}]$ as holomorphic functions, the element ξ corresponds to a local coordinate at y. Hence $\mathrm{B}^+_{\mathrm{dR}}(y)$ can be viewed as the formal completion at y. The following result justifies this heuristics.

Lemma 3.3.2. The ring $B_{dR}^+(y)$ is a discrete valuation ring whose maximal ideal is generated by the image of ξ . Its residue field $B_{dR}^+(y)/\xi$ is canonically isomorphic to K.

Remark 3.3.3. If y is the unique characteristic-p untilt of C, then we may take $\xi = p$ so $(\mathbf{A}_{\mathrm{inf}}/\xi^n)[\frac{1}{|\varpi|}]$ is isomorphic to $W_n(\mathcal{O}_C)[\frac{1}{|\varpi|}] \cong W_n(C)$. We thus find $B^+_{\mathrm{dR}}(y) \cong W(C)$.

If y is a characteristic-0 untilt of C, then $B_{dR}^+(y)$ is non-canonically isomorphic to $K[\![\xi]\!]$ by Cohen's structure theorem.

3.3.4. The rings $B_{dR}^+(y)$ allow us to define a notion of divisor associated to every nonzero $f \in B$. Namely, for every characteristic-0 until y, the evaluation map (2.3) extends to a commutative diagram:

$$\begin{array}{ccc}
 & \xrightarrow{\operatorname{res}_y} & \operatorname{B}_{\mathrm{dR}}^+(y) \\
 & & \downarrow \\
 & & K
\end{array}$$

We write $\operatorname{ord}_y(f)$ for the valuation of f in $B_{dR}^+(y)$. Then $\operatorname{Div}(f)$ is defined to be the formal sum $\sum_{y\in Y}\operatorname{ord}_y(f)\cdot y$.