Point Processing & Modeling

LIDAR

Batiments, etc

Table tournantes

Kinect

Source: Google Raoul Rañoa / @latimesgraphics

Google car

Système fait avec une lampe et un crayon... http://www.vision.caltech.edu/bouguetj/ICCV98/

Occlusions, parties transparentes ou réfléchissantes

Quantification, popping

Direction du scan http://www.adamdealva.com/

Différents types de bruit, différents artifacts

 \longrightarrow

Différents algorithmes de traitement

Recherche de voisinages Euclidiens

Plus proche voisin

K (ici, 5) plus proches voisins

Voisins a distance < R

Voisins a distance < R

K (ici, 5) plus proches voisins

K plus proches voisins peuvent être dans un voisinage très éloigné, et mal distribués!

Recherche de voisinages Euclidiens : Structures

Parcours linéaire : le plus simple, le plus stupide, aucune structure a stocker.

Recherche de voisinages Euclidiens : Structures

Grille uniforme : très simple, dépend de la taille de la cellule, gâche des espaces vides → pas adaptés a des points distribués sur une surface

Recherche de voisinages Euclidiens : Structures

Grille hiérarchique (quadtree en 2D, octree en 3D): construction simple, query simple, adaptatif → adapté a des points distribués sur une surface

Représentation « sparse » des octrees

kd-tree: construction simple, query un peu compliquée mais efficace, adaptatif → adapté a des points distribués sur une surface

kd-tree: chaque nœud stocke l'axe de subdivision (par ex, « x »), une équation décrivant sa géométrie (par ex, « x=4 »), et des pointeurs vers ses deux nœuds fils

Kd-tree: recherche du plus proche voisin

• Identifier la feuille dans laquelle tombe le point

 En remontant l'arbre, verifier si les cellules voisines peuvent contenir des points plus proches

Kd-tree : recherche du plus proche voisin

```
NNS(q: point, n: node, p: point, w: distance) : point {
if n.left = null then {leaf case}
   if distance(q,n.point) < w then return n.point else return p;
else
   if w = infinity then
     if q(n.axis) < n.value then
        p := NNS(q, n.left, p, w);
        w := distance(p,q);
        if q(n.axis) + w > n.value then p := NNS(q, n.right, p, w);
     else
        p := NNS(q, n.right, p, w);
        w := distance(p,q);
        if q(n.axis) - w < n.value then p := NNS(q, n.left, p, w);
   else //w is finite//
      if q(n.axis) - w < n.value then
      p := NNS(q, n.left, p, w);
      w := distance(p,q);
      if q(n.axis) + w > n.value then p := NNS(q, n.right, p, w);
   return p
```

Ressources extérieures utilisées :

Kd-tree

- Permet la recherche du plus proche voisin
- Permet la recherche des k plus proches voisins
- Permet la recherche des voisins dans une boule
- Complexite de construction : n log(n)
- Complexite de query : log(n)
- Librairies open source existantes
- Code fourni pour le TP de la semaine prochaine

Questions?

Estimation des normales

- Parfois, on ne dispose que de points 3D, sans leur vecteur normal.
- Certaines définitions de surface en ont besoin.
- Utile pour le rendu de pointsets.
- Définit l'intérieur et l'extérieur de manière consistante.

Estimation des normales

Estimation des normales

Orientation consistente

- Le vecteur propre x est défini a son orientation près
- Approche gloutonne par propagation locale
- Approche par grahcut (étiquette binaire pour chaque sommet : correctement oriente, ou mal oriente)

Questions?

Modèles de surfaces de points

Définition par projection

Définition par projection

Définition par projection

Stratégie de projection par MLS :

Stratégie de projection par MLS:

1) Trouver le plan qui approxime au mieux le voisinage

Stratégie de projection par MLS:

- 1) Trouver le plan qui approxime au mieux le voisinage
- 2) Projeter le point dessus

Stratégie de projection par MLS :

- 1) Trouver le plan qui approxime au mieux le voisinage
- 2) Projeter le point dessus
- 3) Recommencer (go to 1)

Stratégie de projection par MLS :

- 1) Trouver le plan qui approxime au mieux le voisinage
- 2) Projeter le point dessus
- 3) Recommencer (go to 1)

Stratégie de projection par MLS:

- 1) Trouver le plan qui approxime au mieux le voisinage
- 2) Projeter le point dessus
- 3) Recommencer (go to 1)
- 4) Après n itérations, on obtient la projection

 A chaque itération k, on cherche les plus proches voisins, et on définit des poids vis a vis d'eux (les points lointains sont donc ignorés)

On trouve le plan qui passe au mieux par ces points (ACP)

pondérée)
$$c = \sum_{p_i \in NN(x)} w_i p_i / \sum_{p_i \in NN(x)} w_i$$

$$C = \sum_{p_i \in NN(x)} w_i (p_i - c) \cdot (p_i - c)^T \in \mathbb{R}^{3x3}$$

$$n = eig_3(C)$$

- On projette sur ce plan : $x_{k+1} = x_k \frac{(x_k c)^T \cdot n}{||n||^2} n$
- « Moving Least Squares » car les poids varient en fonction de la position du point x k au fil des itérations {k}, et qu'on approxime « aux moindres carrés » la géométrie voisine.

X

$$w_i = \phi(||x - p_i||)$$

:Influence du point d'entrée sur x

X

$$w_i = \phi(||x - p_i||)$$

:Influence du point d'entrée sur x

$$\phi(r) = e^{\frac{-r^2}{h^2}}$$

X

$$w_i = \phi(||x - p_i||)$$

:Influence du point d'entrée sur x

$$\phi(r) = e^{\frac{-r^2}{h^2}}$$

$$\phi(r) = (1 - \frac{r}{h})^4 \cdot (1 + 4\frac{r}{h})$$

X

$$w_i = \phi(||x - p_i||)$$

:Influence du point d'entrée sur x

 p_i

$$\phi(r) = e^{\frac{-r^2}{h^2}}$$

$$\phi(r) = (1 - \frac{r}{h})^4 \cdot (1 + 4\frac{r}{h})$$

$$\phi(r) = \left(\frac{r}{h}\right)^{-w}$$

X

$$w_i = \phi(\|x - p_i\|)$$

:Influence du point d'entrée sur x

 p_i

$$\phi(r) = e^{\frac{-r^{2}}{h^{2}}}$$

$$\phi(r) = (1 - \frac{r}{h})^{4} \cdot (1 + 4\frac{r}{h})$$

→ Surface approximant les points d'entrée

 $\phi(r) = \left(\frac{r}{h}\right)^{-w}$

→ Surface interpolant les points d'entrée

« Point set surfaces »

- Modernes définitions de surfaces de points considèrent que le nuage d'entrée doit être équipé de normales.
- On utilise $\begin{cases} c(x) = \sum_{p_i \in NN(x)} w_i p_i / \sum_{p_i \in NN(x)} w_i \text{ a la place de la PCA.} \\ n(x) = \sum_{p_i \in NN(x)} w_i n_i / || \sum_{p_i \in NN(x)} w_i n_i || \end{cases}$

52

« Point set surfaces »

- Modernes définitions de surfaces de points considèrent que le nuage d'entrée doit être équipé de normales.
- On utilise $c(x) = \sum_{p_i \in NN(x)} w_i p_i / \sum_{p_i \in NN(x)} w_i \text{ a la place de la PCA.}$ $n(x) = \sum_{p_i \in NN(x)} w_i n_i / ||\sum_{p_i \in NN(x)} w_i n_i||$

« Point set surfaces »

- Modernes définitions de surfaces de points considèrent que le nuage d'entrée doit être équipé de normales.
- On utilise $c(x) = \sum_{p_i \in NN(x)} w_i p_i / \sum_{p_i \in NN(x)} w_i \text{ a la place de la PCA.}$ $n(x) = \sum_{p_i \in NN(x)} w_i n_i / ||\sum_{p_i \in NN(x)} w_i n_i||$

- On peut definir une fonction implicite $f(x) = (x c(x))^T \cdot n(x)$ (la surface est alors le « 0-set » de cette fonction).
- Avec un noyau tres singulier, on s'attend a pouvoir interpoler points ET normales.
- Ce schéma de PSS est généralement appelé SPSS (Simple Point Set Surface)

« Point set surfaces » : problemes du schéma standard

Impossible d'obtenir des surfaces interpolantes convexes.

On trouve les plus proches voisins

On considère leurs plans tangents

On projette le point sur ces plans tangents

On moyenne **ces points projetés plutôt que les points d'entrée** pour calculer le centroïde

On peut maintenant considérer un plan de projection dont le centroïde n'est pas nécessairement à l'intérieur de l'enveloppe convexe des points d'entrée.

On utilise

$$\begin{cases}
\widetilde{p}_{i}(x) = x - ((x - p_{i})^{T} \cdot n_{i}) n_{i} \\
c(x) = \sum_{p_{i} \in NN(x)} w_{i} \widetilde{p}_{i}(x) / \sum_{p_{i} \in NN(x)} w_{i} \\
n(x) = \sum_{p_{i} \in NN(x)} w_{i} n_{i} / \| \sum_{p_{i} \in NN(x)} w_{i} n_{i} \|
\end{cases}$$

- Schémas populaires de projection itérative :
 - Simple: $x_{k+1} = project(x_k, (c(x_k), n(n_k)))$
 - « Presque orthogonal » : $x_{k+1} = project(x, (c(x_k), n(n_k)))$

Extension: $\widetilde{p}_i(x,s) = s \, \widetilde{p}_i(x) + (1-s) \, p_i$

Application au filtrage, analogie avec le filtrage Gaussien d'images

Questions?

• Idée principale : projeter sur des sphères plutôt que des plans

- Idée principale : projeter sur des sphères plutôt que des plans
- « Algebrique », car une sphère dégénère mal vers un plan (le centre est a l'infini...), mais son équation algébrique dégénère continûment vers celle du plan...

- Idée principale : projeter sur des sphères plutôt que des plans
- « Algebrique », car une sphère dégénère mal vers un plan (le centre est a l'infini...), mais son équation algébrique dégénère continûment vers celle du plan...

$$||X-c||^2-r^2=0$$

Eq standard d'une sphère

$$(||c||^2-r^2)+X^T.(-2c)+||X||^2=0$$
 Eq revisitée

- Idée principale : projeter sur des sphères plutôt que des plans
- « Algebrique », car une sphère dégénère mal vers un plan (le centre est a l'infini...), mais son équation algébrique dégénère continûment vers celle du plan...

$$||X-c||^2-r^2=0$$

Eq standard d'une sphère

$$(||c||^2-r^2)+X^T.(-2c)+||X||^2=0$$
 Eq revisitée

$$d+n^T.X=0$$

Eq standard d'un plan

- Idée principale : projeter sur des sphères plutôt que des plans
- « Algebrique », car une sphère dégénère mal vers un plan (le centre est a l'infini...), mais son équation algébrique dégénère continûment vers celle du plan...

$$||X-c||^2-r^2=0$$

Eq standard d'une sphère

$$(||c||^2-r^2)+X^T.(-2c)+||X||^2=0$$

Eq revisitée

$$d+n^T.X=0$$

Eq standard d'un plan

$$(1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T = 0$$

Eq générale d'une sphère algébrique

$$(1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T = f(X)$$

Eq générale d'une sphère algébrique

$$f(X)=0$$
 Pour les points sur la sphère

$$\nabla f(X)$$
 Normale pour X sur la sphère

$$\nabla f(X) = u_{123} + 2 u_4 X$$

$$(1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T = f(X)$$

Eq générale d'une sphère algébrique

$$f(X)=0$$
 Pour les points sur la sphère

$$\nabla f(X)$$
 Normale pour X sur la sphère

$$\nabla f(X) = u_{123} + 2 u_4 X$$

Fitting en deux temps d'une sphère a un ensemble de points : $\{w_i$, p_i , $n_i\}$

1) Minimiser
$$\sum_{i} w_{i} \|\nabla f(p_{i}) - n_{i}\|^{2}$$
 (cela définit u₁₂₃, et u₄)

2) Minimiser
$$\sum_{i} w_{i} (f(p_{i}))^{2}$$
 (cela définit u₀)

Stratégie adoptée par :

[Guennebaud et al. 2008] Dynamic Sampling and Rendering of APSS

1) Minimiser
$$\sum_{i} w_{i} ||\nabla f(p_{i}) - n_{i}||^{2} \quad \text{(cela définit u}_{123}, \text{ et u}_{4}\text{)}$$

$$f(X) = (1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T \longrightarrow \nabla f(X) = (I_3, 2X).(u_{123}, u_4)^T = (I_3, 2X).U$$

1) Minimiser $\sum_{i} w_{i} ||\nabla f(p_{i}) - n_{i}||^{2}$ (cela définit u₁₂₃, et u₄)

$$f(X) = (1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T \longrightarrow \nabla f(X) = (I_3, 2X).(u_{123}, u_4)^T = (I_3, 2X).U$$

Or
$$\sum_{i} w_{i} \|\nabla f(p_{i}) - n_{i}\|^{2} = \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot \nabla f(p_{i}) - 2 \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot n_{i} + const$$

1) Minimiser
$$\sum_{i} w_{i} ||\nabla f(p_{i}) - n_{i}||^{2}$$
 (cela définit u₁₂₃, et u₄)

$$f(X) = (1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T \longrightarrow \nabla f(X) = (I_3, 2X).(u_{123}, u_4)^T = (I_3, 2X).U$$

Or
$$\sum_{i} w_{i} \|\nabla f(p_{i}) - n_{i}\|^{2} = \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot \nabla f(p_{i}) - 2 \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot n_{i} + const$$

$$\longrightarrow \text{Minimiser} \quad \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot \nabla f(p_{i}) - 2 \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot n_{i}$$

qui vaut
$$U^T.(\sum_i w_i(I_3,2p_i)^T.(I_3,2p_i)).U-2(\sum_i w_i(I_3,2p_i)^T.n_i)^T.U$$

1) Minimiser
$$\sum_{i} w_{i} ||\nabla f(p_{i}) - n_{i}||^{2}$$
 (cela définit u₁₂₃, et u₄)

$$f(X) = (1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T \longrightarrow \nabla f(X) = (I_3, 2X).(u_{123}, u_4)^T = (I_3, 2X).U$$

Or
$$\sum_{i} w_{i} \|\nabla f(p_{i}) - n_{i}\|^{2} = \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot \nabla f(p_{i}) - 2 \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot n_{i} + const$$

Minimiser
$$\sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot \nabla f(p_{i}) - 2 \sum_{i} w_{i} \nabla f(p_{i})^{T} \cdot n_{i}$$

qui vaut $U^{T} \cdot (\sum_{i} w_{i} (I_{3}, 2p_{i})^{T} \cdot (I_{3}, 2p_{i})) \cdot U - 2(\sum_{i} w_{i} (I_{3}, 2p_{i})^{T} \cdot n_{i})^{T} \cdot U$

 \rightarrow Quadrique en U (le minimum est donné par A^{-1} . B)

si
$$Q(U) = U^{T} . A . U - 2B^{T} . U + C$$

Minimiser l'équation de position

1) Minimiser
$$\sum_{i} w_{i}(f(p_{i}))^{2}$$
 (cela définit u₀)

$$f(X) = (1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T$$

$$f(p_i) = u_0 + (p_i^T, ||p_i||^2) \cdot (u_{123}, u_4)^T = u_0 + \alpha_i$$

$$\longrightarrow$$
 Minimiser $\sum_{i} w_{i} (u_{0} + \alpha_{i})^{2}$

Minimiser l'équation de position

1) Minimiser
$$\sum_{i} w_{i}(f(p_{i}))^{2}$$
 (cela définit u₀)

$$f(X) = (1, X^T, ||X||^2).(u_0, u_{123}, u_4)^T$$

$$f(p_i) = u_0 + (p_i^T, ||p_i||^2) \cdot (u_{123}, u_4)^T = u_0 + \alpha_i$$

$$\longrightarrow$$
 Minimiser $\sum_{i} w_{i} (u_{0} + \alpha_{i})^{2}$

$$\longrightarrow$$
 Simple barycentre : $u_0 = -\sum_i w_i \alpha_i / \sum_i w_i$

Solution exacte

$$u_{4} = \frac{1}{2} \frac{\left(\sum_{i} w_{i} p_{i}^{T} \cdot n_{i}\right) - \left(\sum_{i} w_{i} p_{i}\right)^{T} \cdot \left(\sum_{j} w_{j} n_{j}\right) / \left(\sum_{k} w_{k}\right)}{\left(\sum_{i} w_{i} p_{i}^{T} \cdot p_{i}\right) - \left(\sum_{i} w_{i} p_{i}\right)^{T} \cdot \left(\sum_{j} w_{j} p_{j}\right) / \left(\sum_{k} w_{k}\right)}$$

$$\begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = \frac{\sum_{i} w_{i} (n_{i} - 2u_{4} p_{i})}{\sum_{i} w_{i}} \qquad u_{0} = \frac{-\sum_{i} w_{i} ([u_{1} u_{2} u_{3}] + p_{i}^{T}) \cdot p_{i}}{\sum_{i} w_{i}}$$

Note:

- Si on force $u_4 = 0$, on cherche le meilleur plan défini par les points les plus proches de x, avant de projeter x dessus.
- On retrouve dans ce cas la le modèle SPSS (qui est moins bon que HPSS...)
- → APSS étend le modèle SPSS (d'une autre manière que HPSS)

Taille du noyau approximant variant

Comparaison

Édition de courbure

$$u_{4} = \beta \frac{1}{2} \frac{\left(\sum_{i} w_{i} p_{i}^{T} \cdot n_{i}\right) - \left(\sum_{i} w_{i} p_{i}\right)^{T} \cdot \left(\sum_{j} w_{j} n_{j}\right) / \left(\sum_{k} w_{k}\right)}{\left(\sum_{i} w_{i} p_{i}^{T} \cdot p_{i}\right) - \left(\sum_{i} w_{i} p_{i}\right)^{T} \cdot \left(\sum_{j} w_{j} p_{j}\right) / \left(\sum_{k} w_{k}\right)}$$

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \frac{\sum_i w_i (n_i - 2 u_4 p_i)}{\sum_i w_i}$$

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \frac{\sum_i w_i (n_i - 2u_4 p_i)}{\sum_i w_i} \qquad u_0 = \frac{-\sum_i w_i ([u_1 u_2 u_3] + p_i^T) \cdot p_i}{\sum_i w_i}$$

 $\beta = 1$

Estimation des normales et fonction implicite

Pour les nuages non-orientes, les auteurs proposent de fitter des spheres aux points sans les normales, de definir la normale ainsi, et de propager l'orientation (distinction des zones convexes et concaves)

Questions?

