A Chain Rule for the Randomness Deficiency Function

Samuel Epstein*

October 18, 2023

Abstract

This paper is an exposition of the addition equality theorem for algorithmic entropy in $[G\acute{0}1]$, applied to the Cantor space. This application implies that randomness deficiency of infinite sequences obeys the chain rule, analogous to the finite Kolmogorov complexity case. This is a generalization of van Lambalgen's Theorem. It is unclear whether this result is folklore, but in any case, this paper presents a dedicated proof of the equality. In addition, a dual integration trick shortens the proof.

1 Introduction

Prefix free Kolmogorov complexity, **K**, obeys the chain rule, with for $x, y \in \{0, 1\}^*$,

$$\mathbf{K}(x,y) =^+ \mathbf{K}(x) + \mathbf{K}(y|x, \mathbf{K}(x)).$$

In this paper, we apply the addition equality theorem for algorithmic entropy in [G01] to the specific case of infinite sequences. We also shorten the proof using an integration trick. The consequence to this is a result about randomness deficiency \mathbf{D} , where for computable probability μ , for infinite sequences, $\mathbf{D}(\alpha|\mu,x) = \sup_n -\log \mu(\alpha[0..n] - \mathbf{K}(\alpha[0..n]|x)$. The randomness deficiency over the space $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$, is $\mathbf{D}(\alpha,\beta|\mu,\nu) = \sup_n -\log \mu(\alpha[0..n]) -\log \nu(\beta[0..n]) -\mathbf{K}(\alpha[0..n]\beta[0..n])$. The discrete case for $\mathbf{d}(x|p) = -\log p(x) - \mathbf{K}(x)$ is trivial. The result detailed in this paper is as follows.

Theorem. ([G01]) Relativized to probabilities μ and ν over $\{0,1\}^{\infty}$,

$$\mathbf{D}(\alpha, \beta | \mu, \nu) =^{+} \mathbf{D}(\alpha | \mu) + \mathbf{D}(\beta | \nu, (\alpha, \lceil \mathbf{D}(\alpha | \mu) \rceil)).$$

This is a generalization of van Lambalgen's Theorem, which states (α, β) is ML random iff α is ML random and β is ML random with respect to α . If one were to take the complexities of the probabilities μ and ν into account (that is, they are no longer O(1)) then the theorem statement and proof become more nuanced. This generalization can be seen in [G01]. An open question is whether **D** follows the linear inequalities that parallel Shannon entropy \mathcal{H} , as Kolmogorov complexity was shown to do [HRSV00]:

Conjecture. Given $\{\alpha_1 \dots \alpha_n\} \in \{0,1\}^{\infty n}$, and random variables $\{\beta_1, \dots, \beta_n\}$ is it the case that over all $W \subseteq \{1, \dots, n\}$, and $\lambda_W \in \mathbb{R}$,

$$\sum_{W} \lambda_{W} \mathbf{D}(\alpha^{W}) \le 0 \Leftrightarrow \sum_{W} \lambda_{W} \mathcal{H}(\beta^{W}) \ge 0?$$

^{*}JP Theory Group. samepst@jptheorygroup.org

2 Results

For the nonnegative real function f, we use $<^+f$, $>^+f$, and $=^+f$ to denote < f+O(1), > f-O(1), and $= f \pm O(1)$. As shown in $[G\acute{0}1]$, $2^{\mathbf{D}(\alpha|\mu)} \stackrel{*}{=} \mathbf{t}_{\mu}(\alpha)$ where \mathbf{t}_{μ} is a universal lower computable μ -test. Furthermore, a modification of the proof Theorem 2.3.4 in $[G\acute{0}1]$ to the $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$ space can be used to show that $2^{\mathbf{D}(\alpha,\beta|\mu,\nu)} \stackrel{*}{=} \mathbf{t}_{\mu,\nu}(\alpha,\beta)$, where $\mathbf{t}_{\mu,\nu}$ is a universal lower computable test over $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$. For measure μ and lower continuous function f over $\{0,1\}^{\infty}$, we use the notation $\mu^x f(x) = \int_{x \in \{0,1\}^{\infty}} f(x) d\mu(x)$. Throughout this section, the universal Turing machine is assumed to be relativized to probabilities μ and ν over $\{0,1\}^{\infty}$. This means that there is an O(1) sized program that can compute $\mu(x\{0,1\}^{\infty})$ uniformly in $x \in \{0,1\}^*$, and similarly for ν .

Proposition 1 $\log \nu^y 2^{\mathbf{D}(x,y|\mu,\nu)} <^+ \mathbf{D}(x|\mu)$.

Proof. Let $f(x, \mu, \nu) = \log \nu^y 2^{\mathbf{D}(x, y | \mu, \nu)}$. The function f is lower computable and has $\mu^x 2^{f(x, \mu, \nu)} \leq 1$. The proposition follows from the universal properties of \mathbf{t}_{μ} , where $2^f \stackrel{*}{<} \mathbf{t}_{\mu}$.

Proposition 2 If i < j, then

$$i + \mathbf{D}(x|\mu, j) <^+ j + \mathbf{D}(x|\mu, i).$$

Proof. By the properties of \mathbf{D} , we have

$$\mathbf{D}(x|\mu, j) <^{+} \mathbf{D}(x|\mu, i) + \mathbf{K}(j - i) <^{+} \mathbf{D}(x|\mu, i) + j - i.$$

Definition 1 Let $F: \{0,1\}^{\infty} \to \mathbb{Z} \cup \{-\infty,\infty\}$ be a lower semicomputable function. An (μ, F) -test is a function $t: \{0,1\}^{\infty} \times \{0,1\}^{\infty} \to \mathbb{Z} \cup \{-\infty,\infty\}$ that is lower semicomputable and $\mu^x t(x,y) \le 2^{F(y)}$. There exists a maximal (μ, F) test, $\mathbf{t}_{(\mu,F)}$, such that $t \stackrel{*}{<} \mathbf{t}_{(\mu,F)}$.

Proposition 3 Let $F: \{0,1\}^{\infty} \to \mathbb{Z} | \cup \{-\infty,\infty\}$ be an upper semicomputable function,. For all x and with $\mathbf{t}_{(\nu,F)}(y) > -\infty$,

$$\mathbf{t}_{(\nu,F)}(x,y) \stackrel{*}{=} 2^{F(y)} \mathbf{t}_{\nu}(x|y,-F(y)).$$

Proof. To prove the inequality $\stackrel{*}{>}$, let $g(x,y,m) = \max_{i\geq m} 2^{-i}\mathbf{t}_{\nu}(x|y,i)$. This function is lower computable, and decreasing in m. The function $g(x,y) = g_{\nu}(x,y,-F(y))$ is lower semicomputable since -F is upper semi-computable. The multiplicative form of Proposition 2 implies

$$g(x, y, m) \stackrel{*}{=} 2^{-m} \mathbf{t}_{\nu}(x|y, m)$$
$$g(x, y) \stackrel{*}{=} 2^{F(y)} \mathbf{t}_{\nu}(x|y, -F(y)).$$

Since \mathbf{t}_{ν} is a test:

$$\nu^x 2^{-m} \mathbf{t}_{\nu}(x|y,m) \le 2^{-m}$$

 $\nu^x g(x,y) \stackrel{*}{<} 2^{F(y)},$

which implies $g(x,y) \stackrel{*}{<} \mathbf{t}_{(\nu,F)}(x,y)$ by the optimality of $\mathbf{t}_{(\nu,F)}$. We now consider the upper bound. Since, given fixed y, $2^{-F(y)}\mathbf{t}_{(\nu,F)}(x,y)$ is an x-test conditional on y and -F(y), we have

$$2^{-F(y)}\mathbf{t}_{(\nu,F)}(x,y) \stackrel{*}{<} \mathbf{t}(x|y,-F(y)).$$

The following Theorem is a specific case of Theorem 4.5.2 in [G01], to the Cantor space and with O(1) complexities for the probabilities. The proof is shortened by noting that f is a universal F-test.

Theorem 1 Relativized to probabilities μ and ν over $\{0,1\}^{\infty}$,

$$\mathbf{D}(x, y|\mu, \nu) =^+ \mathbf{D}(x|\mu) + \mathbf{D}(y|\nu, (x, \lceil \mathbf{D}(x|\mu) \rceil)).$$

Proof. Let $f(x,y) = 2^{\mathbf{D}(x,y|\mu,\nu)}$. Proposition 1 implies there exists $c \in \mathbb{N}$ with $\nu^y f(x,y) \le 2^{\mathbf{D}(x|\mu)+c}$. Let $F(x,\mu) = \lceil \mathbf{D}(x|\mu) \rceil$. Note that if h is a lower computable function such that $\nu^y h(x,y) \stackrel{*}{<} 2^{\mathbf{D}(x|\mu)}$, then $\mu^x \nu^y h(x,y) \stackrel{*}{<} \mu^x \mathbf{t}_{\mu}(x) \stackrel{*}{<} 1$, so $h \stackrel{*}{<} f$, so f is a universal F-test. Proposition 3 (swapping x and y) gives

$$\mathbf{D}(x, y | \mu, \nu) = \log f(x, y) =^{+} F(x) + \mathbf{D}(y | \nu, (x, -F(x)))$$
$$\mathbf{D}(x, y | \mu, \nu) =^{+} \mathbf{D}(x | \mu) + \mathbf{D}(y | \nu, (x, \lceil \mathbf{D}(x | \mu) \rceil)).$$

References

[GÓ1] P. Gács. Quantum Algorithmic Entropy. Journal of Physics A Mathematical General, 34(35), 2001.

[HRSV00] D. Hammer, A. Romashchenko, A. Shen, and N. Vereshchagin. Inequalities for shannon entropy and kolmogorov complexity. *Journal of Computer and System Sciences*, 60(2):442–464, 2000.