Improving Supply Chain Efficiency in the Market via Predictive Analysis Techniques

Deekshita Prakash Savanur, Gouri Benni, Krishna Sameera Surapaneni, Sonali Arcot Department of Applied Data Science, San Jose State University

DATA 270 : Data Analyst Process

Dr. Eduardo Chan

February 17, 2023

1. Proposed Research Problem

1.1 Problem Statement

In the current unbounded global universe supply chain management is key to ensure proper shipment of goods and delivery to the end user efficiently with minimized operational risks. However, many companies fail to achieve these end-to-end operations, as they depend upon multiple suppliers and vendors, each with their own data process and governance leading to poor collaboration and customer dissatisfaction.

Therefore, the problem is how to achieve flawless supply chain visibility from raw materials to the end consumer with readily available goods in the warehouse when in demand. This could culminate in long lead times, late shipment, inaccurate forecasting, poor data visibility and high logistics costs. This research aims to provide insights on how to improve supply chain efficiency through the use of predictive analytics, dashboard visibility and ultimately building a forecasting model which can predict demand and efficiently regulate the supply of goods in the warehouse, leveraging technologies like IoT and machine learning.

1.2. Proposed ML Models

Statistical forecasting models like exponential smoothing, double exponential smoothing, and ARIMA models, along with regression analysis models such as linear regression and adaptive boosting, can help to improve supply chain efficiency in the market via predictive analytics techniques. These models can be applied to historical data on sales, inventory, and production to identify trends, seasonality, and other patterns. Exponential smoothing and double exponential smoothing are time-series models that are commonly used to forecast demand, while ARIMA models can capture both time-series and external factors that influence demand.

Regression analysis models like linear regression can be used to identify the relationships between different variables, such as demand and price, while adaptive boosting can help to improve the accuracy of these models by combining multiple weaker models. By analyzing these models, companies can make data-driven decisions about inventory levels, production schedules, and supply chain optimization, reducing the risk of stockouts and overstocking. Furthermore, these predictive analytics techniques can help companies to identify potential supply chain disruptions and enable them to take preventive measures, such as alternate sourcing or safety stock planning, to minimize the impact of such disruptions. Overall, the application of statistical forecasting and regression analysis models in predictive analytics can significantly improve supply chain efficiency and enable companies to make better-informed decisions in the market.

2. Background Information

The supply chain industry is an essential part of modern life, facilitating the efficient and timely transportation of goods from manufacturers to consumers. This industry encompasses a range of activities, including procurement, transportation, warehousing, and distribution, that work in tandem to bring products to market. Our daily lives rely heavily on the supply chain to deliver the food we eat, the clothes we wear, the electronics we use, and many other products and services. Furthermore, the supply chain is a vital contributor to the economy, providing jobs, revenue, and supporting international trade. By optimizing the supply chain, companies can improve efficiency, reduce costs, and increase customer satisfaction, ultimately leading to a better quality of life for everyone.

To stay competitive, manufacturers and retailers across all industries must accurately predict product demand. Machine learning can be especially useful in forecasting sales for short-shelf-life and highly-perishable items, including those found in the fresh food, technology,

and fashion sectors. Compared to traditional statistical methods, machine learning can provide a greater level of accuracy in sales forecasting, leading to improved inventory management throughout the supply chain. This, in turn, can reduce the incidence of stockouts, improve product availability for consumers, and increase profitability. Therefore, machine learning offers a considerable advantage in predicting demand for various products.

Previously, to ensure prompt stock replenishment, improved capacity management, and optimum sales and revenue, demand forecasting was crucial to effective supply chain management. Additionally, it enhances management and decision-making while advancing future growth and expansion plans. An in-depth examination of the variables that may have an impact on a company's supply infrastructure is necessary for accurate demand forecasting. To maintain the business preparedness, continuity, and a great end-user experience, anticipating demand necessitates rigorous research of a number of variables, from sales history patterns to specific occasions in the commercial calendar (such as Christmas).

Tarallo et al. (2019) in their study discovered that makers and merchants of fast-moving consumer items can gain advantages from machine learning approaches, including deep learning. The key advantage is improved demand forecasting accuracy, which can result in cost savings, increased sales, and more customer satisfaction. Comparisons with conventional statistical methods revealed improved sales forecasting, adaptability to handle more data variables, and processing power for big data volumes.

In supply chains with abundant demand data, Aviv (2003) suggests a unified time-series paradigm for forecasting and stock management. It permits the development of time-series models which can capture enhanced information spaces and offers forecasting and replenishment techniques that can handle a broad range of product demand characteristics. It also provides a

simple framework for examining the advantages of various information-sharing strategies. The development of cost estimating processes and the analysis of information-rich supply chain systems with imperfect knowledge of the system characteristics are covered in this work. We can see from the cost expressions that the performance of a system, and in particular the performance of coordinated supply chains, is dependent on both the accuracy of the individual members' forecasts and the correlation between them.

3. Data Source/Datasets

3.1. Sample 1

http://data.un.org/Data.aspx?d=ComTrade&f= 11Code%3a19

Country or Area	Year	Commodity	Flow	Trade (USD)	Weight (kg)	Quantity Name	Quantity
Afghanistan	2018	Generators and alternators	Import	11395053.13	831888.682346215	Number of items	47830.29
Afghanistan	2018	Electric instant, storage and immersion water heaters	Import	14121694.08	1975848.36300013	Number of items	291781.99
Afghanistan	2018	Electric space heating nes and soil heating apparatus	Export	155902.25	0	Number of items	1650
Afghanistan	2018	Electric space heating nes and soil heating apparatus	Re-Export	502.25	0	Number of items	600
Afghanistan	2018	Electric smoothing irons	Import	4040529.56	240154.816843458	Number of items	802058
Afghanistan	2018	Electric smoothing irons	Export	1272.23	0	Number of items	250
Afghanistan	2018	Electric smoothing irons	Re-Export	1272.23	0	Number of items	250
Afghanistan	2018	Electro-thermic appliances, domestic, nes	Import	1975720.14	154764.675817025	Number of items	74633.86
Afghanistan	2018	Telephone sets	Import	6344.26	124.097909558753	Number of items	352
Afghanistan	2018	Unrecorded sound recording media except photo/magneti	Import	234148.06		No Quantity	0
Afghanistan	2018	Transmit-receive apparatus for radio, TV, etc.	Import	13846962.1	21675.9561241523	Number of items	436345.4
Afghanistan	2018	Transmit-receive apparatus for radio, TV, etc.	Export	23663.67	0	Number of items	181

UNdata Export 20230213 030535077

Fig 3.1. Dataset snapshot

The aforementioned dataset, gives users access to information about global trade for different nations. The Commodity Trade Statistics Database (COMTRADE), a database of information about international trade, served as the basis for the dataset, which was created by the United Nations Statistics Division. This dataset has 100,000 rows and 8 columns which

includes both categorical and numerical variables such as the country or territory, year, data flow, commodity, trade, weight, quantity name, and quantity.

3.2. Sample 2

https://archive.ics.uci.edu/ml/datasets/Daily+Demand+Forecasting+Orders

Daily_Demand_Forecasting_Orders											
Day of the week (Monday to Friday)	Non-urgent order	Urgent order	Order type A	Order type B	Order type C	Fiscal sector orders	Orders from the traffic controller sector	Banking orders (1)	Banking orders (2)		
4	316.307	223.270	61.543	175.586	302.448	0	65556	44914	188411		
5	128.633	96.042	38.058	56.037	130.580	0	40419	21399	89461		
6	43.651	84.375	21.826	25.125	82.461	1.386	11992	3452	21305		
2	171.297	127.667	41.542	113.294	162.284	18.156	49971	33703	69054		
3	90.532	113.526	37.679	56.618	116.220	6.459	48534	19646	16411		
4	110.925	96.360	30.792	50.704	125.868	79	52042	8773	47522		
5	144.124	118.919	43.304	66.371	153.368	0	46573	33597	48269		
6	119.379	113.870	38.584	85.961	124.413	15.709	35033	26278	56665		
2	218.856	124.381	33.973	148.274	162.044	1.054	66612	19461	103376		
3	146.518	101.045	36.399	43.306	168.723	865	58224	7742	82395		
4	178.433	102.793	45.706	111.036	124.678	194	47046	17299	108719		
5	145.865	91.180	43.851	66.277	133.440	6.523	66910	17768	36693		
6	170.566	114.412	43.339	136.434	128.405	23.200	32529	34002	78153		
2	220.343	141.406	46.241	120.865	196.296	1.653	34878	32905	117137		
3	193.768	141.854	56.519	136.709	143.644	1.250	57858	23956	101048		

Fig 3.2. Dataset snapshot

The Daily Demand Forecasting Orders dataset is a structured dataset containing data related to daily demand for products in a Brazilian company. The data is stored in CSV format and contains 60 rows and 13 columns. The dataset includes both numerical and categorical data types, including columns such as order date, product ID, order quantity, and delivery date. This dataset is intended for use in forecasting demand for products in an e-commerce business and includes data collected over a period of five months. It can be used to explore various aspects of demand forecasting, such as time-series analysis and regression modeling.

3.3. Sample 3

https://data.mendeley.com/datasets/8gx2fvg2k6/5#:~:text=Dataset%20of%20Supply%20Chain%

2C%20which%20allows%20the%20use,Structured%20Data%20with%20Unstructured%20Data

%20for%20knowledge%20generation

Туре	Delivery_Status	Customer_City	Customer_Country	Customer_Segment	Customer_State	Customer_Street	Department_Name	Market	Order_City	Order_Country	Order_Regio
DEBIT	Advance shipping	Caguas	Puerto Rico	Consumer	PR	5365 Noble Nectar Island	Fitness	Pacific Asia	Bekasi	Indonesia	Southeast As
TRANSFER	Late delivery	Caguas	Puerto Rico	Consumer	PR	2679 Rustic Loop	79 Rustic Loop Fitness Pac		Bikaner	India	South Asia
CASH	Shipping on time	San Jose	EE. UU.	Consumer	CA	8510 Round Bear Gate	Fitness	Pacific Asia	Bikaner	India	South Asia
DEBIT	Advance shipping	Los Angeles	EE. UU.	Home Office	CA	3200 Amber Bend	Fitness	Pacific Asia	Townsville	Australia	Oceania
PAYMENT	Advance shipping	Caguas	Puerto Rico	Corporate	PR	8671 Iron Anchor Corners	Fitness	Pacific Asia	Townsville	Australia	Oceania
TRANSFER	Shipping canceled	Tonawanda	EE. UU.	Consumer	NY	2122 Hazy Corner	Fitness	Pacific Asia	Toowoomba	Australia	Oceania
DEBIT	Late delivery	Caguas	Puerto Rico	Home Office	PR	1879 Green Pine Bank	Fitness	Pacific Asia	Guangzhou	China	Eastern Asia
TRANSFER	Late delivery	Miami	EE. UU.	Corporate	FL	7595 Cotton Log Row	Fitness	Pacific Asia	Guangzhou	China	Eastern Asia
CASH	Late delivery	Caguas	Puerto Rico	Corporate	PR	2051 Dusty Route	Fitness	Pacific Asia	Guangzhou	China	Eastern Asia
CASH	Late delivery	San Ramon	EE. UU.	Corporate	CA	9139 Blue Blossom Court	Fitness	Pacific Asia	Guangzhou	China	Eastern Asia
TRANSFER	Shipping canceled	Caguas	Puerto Rico	Corporate	PR	4058 Quiet Heights	Fitness	Pacific Asia	Tokio	Japón	Eastern Asia
TRANSFER	Late delivery	Freeport	EE. UU.	Consumer	NY	3243 Shady Corner	Fitness	Pacific Asia	Manado	Indonesia	Southeast As
TRANSFER	Late delivery	Salinas	EE. UU.	Corporate	CA	131 Sunny Treasure Green	Fitness	Pacific Asia	Manado	Indonesia	Southeast As
DEBIT	Late delivery	Caguas	Puerto Rico	Corporate	PR	2531 Wishing Square	Fitness	Pacific Asia	Sangli	India	South Asia
TRANSFER	Late delivery	Peabody	EE. UU.	Corporate	MA	6417 Silver Towers	Fitness	Pacific Asia	Sangli	India	South Asia
DEBIT	Late delivery	Caguas	Puerto Rico	Corporate	PR	257 Harvest Close	Fitness	Pacific Asia	Sangli	India	South Asia
PAYMENT	Late delivery	Canovanas	Puerto Rico	Corporate	PR	7342 Hazy Beacon Park	Fitness	Pacific Asia	Seúl	Corea del Sur	Eastern Asia

Fig 3.3. Dataset snapshot

The provided dataset contains comprehensive information on order details, spanning from the pricing of products to the specifics of shipping. This data is structured in CSV format, comprising 50+ columns and 180,520 rows. It encompasses both categorical and quantitative data, with columns including order status, product name, shipping method, and product price. However, there are a few instances of missing data that will need to be addressed. Once this data has been cleaned, it will be a valuable resource for accurate forecasting and analyzing past trends.

3.4. Sample 4

https://www.census.gov/data/tables/2015/econ/e-stats/2015-e-stats.html

		Value of Sales							erce as	Percent Distribution	
		2015		2014		Y/Y Percent Change		Percent of Total Sales		of E-commerce Sales	
NAICS Code	Description	Total Sales	E-commerce	Revised Total Sales	Revised E-Commerce	Total Sales	E-commerce Sales		2014	2015	
	Total Retail Trade	4,727,427	340,415	4,639,440	298,682	1.9	14.0	7.2	6.4	100.0	
441	Motor vehicles and parts dealers	1,095,412	29,716	1,020,851	27,362	7.3	8.6	2.7	2.7	8.7	
442	Furniture and home furnishings stores	106,779	691	99,718	599	7.1	15.4	0.6	0.6	0.2	
443	Electronics and appliance stores	102,108	1,331	103,518	1,304	-1.4	2.1	1.3	1.3	0.4	
444	Building materials and garden equipment and supplies stores	331,644	1,708	318,352	S	4.2	S	0.5	S	0.5	
445	Food and beverage stores	685,568	1,166	669,165	1,099	2.5	6.1	0.2	0.2	0.3	
446	Health and personal care stores	315,257	D	299,263	D	5.3	D	D	D	D	
447	Gasoline stations	443,817	D	538,790	D	-17.6	D	D	D	D	
448	Clothing and clothing accessories stores	255,831	4,107	250,409	3,801	2.2	8.1	1.6	1.5	1.2	
451	Sporting goods, hobby, book, and music stores	87,355	2,265	85,466	2,329	2.2	-2.7	2.6	2.7	0.7	
450								_	_	_	

Fig 3.4. Dataset snapshot

The dataset available through the link provided contains economic statistics data that has been compiled by the U.S. Census Bureau. The data is presented in tables and charts and covers various economic indicators for different sectors of the economy, including retail trade, wholesale trade, services, manufacturing, and more. The dataset is organized into numerous tables and charts that present the economic statistics in various formats such as percentages, ratios, and absolute numbers. The dataset can be downloaded in various file formats, including Excel and CSV, to enable users to analyze and manipulate the data using statistical software or programming languages.

References

Aviv, Y., 2003. A time-series framework for supply-chain inventory management. Operations *Research*, *51*(2), pp.210-227.

https://www.jstor.org/stable/4132401

Cadavid, J.P.U., Lamouri, S. and Grabot, B., 2018, July. Trends in machine learning applied to demand & sales forecasting: A review. In *International conference on information systems, logistics and supply chain*.

https://hal.science/hal-01881362/document

- Dhanush, G.A., Raj, K.S. and Kumar, P., 2021. Blockchain aided predictive time series analysis in supply chain systems. In *Innovations in Electrical and Electronic Engineering:**Proceedings of ICEEE 2021 (pp. 913-925). Springer Singapore.

 https://www.springerprofessional.de/en/blockchain-aided-predictive-time-series-analysis-in-supply-chain/19192386
- Khan, M.A., Saqib, S., Alyas, T., Rehman, A.U., Saeed, Y., Zeb, A., Zareei, M. and Mohamed,
 E.M., 2020. Effective demand forecasting model using business intelligence empowered with machine learning. *IEEE Access*, 8, pp.116013-116023.
 https://www.researchgate.net/publication/342326031_Effective_Demand_Forecasting_M
 https://www.researchgate.net/publication/342326031_Effective_Demand_Forecasting_M
 https://www.researchgate.net/publication/342326031_Effective_Demand_Forecasting_M

Parzen, E., 1961. An approach to time series analysis. *The Annals of Mathematical Statistics*, 32(4), pp.951-989.

https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-32/issue-4/An -Approach-to-Time-Series-Analysis/10.1214/aoms/1177704840.full

Schlegel, G.L., 2014. Utilizing big data and predictive analytics to manage supply chain risk. *The Journal of Business Forecasting*, 33(4), p.11.

https://www.proquest.com/docview/1657419126/fulltextPDF/C7AAA560ECD8424CPQ/1?accountid=10361

Sheremetov, L.B., González-Sánchez, A., López-Yáñez, I. and Ponomarev, A.V., 2013. Time series forecasting: applications to the upstream oil and gas supply chain. *IFAC Proceedings Volumes*, 46(9), pp.957-962.

https://www.sciencedirect.com/science/article/pii/S1474667016344123

Tarallo, E., Akabane, G.K., Shimabukuro, C.I., Mello, J. and Amancio, D., 2019. Machine learning in predicting demand for fast-moving consumer goods: An exploratory research. *IFAC-PapersOnLine*, 52(13), pp.737-742.

https://www.sciencedirect.com/science/article/pii/S240589631931153X

Zwißler, F. and Hermann, M., 2012. Supply chain risk management in the electronics industry.

Risk Management for the Future–Theory and Cases, pp.467-496.

http://www.doiserbia.nb.rs/Article.aspx?ID=0013-32641714121A#.Y-896i-U35g