"On the Impact of PMU Placement On Observability and Cross-Validation"

Daniel Gyllstrom, Elisha Rosensweig, and Jim Kurose University of Massachusetts Amherst USA e-Energy 2012

Talk Outline

- Background
- PMU Placement for Max Observability
- PMU Placement with Error Detection
- Approximation Algorithms
- Evaluation via Simulation

http://venturebeat.com/2010/10/29/super-grid-introduction/

http://venturebeat.com/2010/10/29/super-grid-introduction/

http://venturebeat.com/2010/10/29/super-grid-introduction/

http://venturebeat.com/2010/10/29/super-grid-introduction/

Phasor Measurement Unit (PMU) Sensor

PMU Sensors

phasor

PMU Sensors

high sampling rate: 10-60 samples/sec

measurements are synchronized

PMU Applications

- Postmortem analysis
- Power grid visualization
- Real-time distributed control

Detailed Look at Power Grid

Detailed Look at Power Grid

Example Power Grid

Example Power Grid

Terminology

- Node: system bus
 - <u>injection node</u>: power generation center or aggregation of loads + either pulls energy from grid or inserts energy into grid
 - <u>zero-injection node</u>: substation where electrical lines meet + does *not* insert or pull energy from grid
- Observed: if voltage phasor of node can be directly measured or calculated

Example Power Grid

PMU Placement Problem

- PMUs expensive
 - high cost of placing PMU on each node
- Solution
 - place PMUs on subset of nodes
 - indirectly observe non-PMU nodes using basic laws of electricity

Our Paper

- Define 2 Placement Problems:
 - maximize observed nodes while minimizing number of PMUs used
 - similar to Vertex-Cover

Our Paper

- PMU errors occur in practice
- Error detection
 - place PMUs "near" each other
- Define 2 more PMU placement problems
 - place PMUs for maximum observability and to allow error detection

Talk Outline

- Background
- PMU Placement for Max Observability
- PMU Placement with Error Detection
- Approximation Algorithms
- Evaluation via Simulation

Key for Figures

A node with a PMU

An unobserved node

An observed node

— Edge

If a node, ∇ , has a PMU, then ∇ and all of ∇ 's neighbors are observed

If a node, ∇ , has a PMU, then ∇ and all of ∇ 's neighbors are observed

If a node, v, has a PMU, then v and all of v's neighbors are observed

zero-injection node: substation where electrical lines meet + does not insert or pull energy from grid

MaxObserve Problem

- Input: G= (V,E) and k PMUs
- Output: placement of k PMUs to maximize number of observed nodes

MaxObserve Problem

- Input: G=(V,E) and k PMUs
- Output: placement of k PMUs to maximize number of observed nodes

Key Result: MaxObserve is NP-Complete

Reduce from Planar 3SAT (P3SAT)

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

replace each variable with set of nodes below (gadget)

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

Show maximum nodes observed iff PMUs place on nodes corresponding to satisfying instance of P3SAT

Related Work for MaxObserve

- Adapt proof technique of Brueni and Heath [4]
- Unrealistic assumption (Brueni and Heath [4], Aazami and Stilp [2])
 - all nodes zero-injection
 - in practice, ~5% nodes are zero-injection

Talk Outline

- Background
- PMU Placement for Max Observability
- PMU Placement with Error Detection
- Approximation Algorithms
- Evaluation via Simulation

Cross-Validation Rule 1

If PMUs placed on adjacent nodes, the PMUs cross-validate each other

Cross-Validation Rule 2

If two PMUs share a common neighbor, the two PMUs cross-validate each other

MaxObserve-XV

XV denotes cross-validation

- Input: G= (V,E) and k PMUs
- Output: placement of k PMUs so maximum number of nodes are observed, under the condition that each PMU is cross-validated

MaxObserve-XV

XV denotes cross-validation

- Input: G= (V,E) and k PMUs
- Output: placement of k PMUs so maximum number of nodes are observed, under the condition that each PMU is cross-validated

Key Result: MaxObserve-XV is NP-Complete

MaxObserve-XV is NP-Complete

- Reduce from Planar 3SAT (P3SAT)
 - new gadgets for variables nodes
 - require PMUs are cross-validated
- Proof details in paper

MaxObserve-XV Related Work

- Completely new problem
 - Chen and Abur [5] add PMUs so PMU loss can be tolerated
 - Vanfretti et al. [14] define cross-validation rules

Talk Outline

- Background
- PMU Placement for Max Observability
- PMU Placement with Error Detection
- Approximation Algorithms
- Evaluation via Simulation

greedy algorithm

Approximates MaxObserve

S: set of nodes with a PMU

2. iteratively add, v, to current solution S such that a PMU at v results in observation of max number of new nodes

xvgreedy algorithm

Approximates MaxObserve-XV

S: set of nodes with a PMU

2. iteratively add, $\{u,v\}$, to current solution S such that u and v are cross-validated and a PMU at results in observation of max number of new nodes

xvgreedy algorithm

Approximates MaxObserve-XV

S: set of nodes with a PMU

2. iteratively add, $\{u,v\}$, to current solution S such that u and v are cross-validated and a PMU at results in observation of max number of new nodes

Prove greedy and xvgreedy have polynomial running time

Talk Outline

- Background
- PMU Placement for Max Observability
- PMU Placement with Error Detection
- Approximation Algorithms
- Evaluation via Simulation

Simulation Setup

- Topologies
 - IEEE bus systems
 - synthetic graphs with same degree distribution
 - show results for synthetic topologies based on IEEE Bus 57
 - trends similar across other topologies

Simulation Setup

- Compare greedy solutions to brute-force optimal solution when possible
 - optimal: no cross-validation
 - xvoptimal: cross-validated PMUs

greedy within 98.6% of optimal

Number of PMUs

Refresher Slide

- Zero-injection node
 - substation where electrical lines meet
 - does not insert or pull energy from grid
 - node must be zero-injection to apply observability rule 2

Refresher Slide

- Zero-injection node
 - substation where electrical lines meet
 - does not insert or pull energy from grid
 - node must be zero-injection to apply observability rule 2

How does number of zero-injection nodes effect observability?

Vary # Zero-Injection Nodes

Vary # Zero-Injection Nodes

more zero-injection nodes reduces # of PMUs needed to observe all graph nodes

Conclusions

- Defined 4 new PMU placement problems
 - proved NP-Complete
- Presented 2 simple greedy approximations
- Simulations
 - greedy gives close to optimal solutions
 - cross-validation imposes small cost

The End

Thank You + Questions?

Backup Slides

Synthetic Graph Generation

- 1. start with IEEE graph
- 2. swap edges until new graph shares no edges with original

Output = same # number of nodes but new connectivity

Synthetic Graph Generation

- 1. start with IEEE graph
- 2. swap edges until new graph shares no edges with original

Output = same # number of nodes but new connectivity

Simulation Topologies

- IEEE Bus System 14, 30, 57, 118, and 300
- No results for brute-force optimal for larger topologies

IEEE Bus System 30

Why is XV Limited to 2-hops?

- Computing voltage phasor of non-PMU nodes
 - equations have variables to account for measurement error
- More than 2 Hops
 - have more unknowns that equations
 - => no error detection

Reduce from Planar 3SAT (P3SAT)

$$\phi = (\overline{v_1} \lor v_2 \lor v_3) \land (v_1 \lor \overline{v_2} \lor \overline{v_3})$$

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

replace each variable with set of nodes (gadget)

$$\phi = (\overline{v_1} \vee v_2 \vee v_3) \wedge (v_1 \vee \overline{v_2} \vee \overline{v_3})$$

replace each variable with set of nodes (gadget)

Show maximum nodes observed iff PMU pairs placed on nodes corresponding to satisfying instance of P3SAT. PMUs are cross-validated