Length n Probability Generation

Matthew Seguin

Summary

The goals of this document are:

- \bullet Explain what an probability vector of length n is and what properties such a vector has.
- Illustrate how to generate a random probability vector of length n.
- Analyze how to bias such a probability vector.
- Examine the distribution of the norms of such vectors.

Importing Libraries

library(tidyverse)
library(latex2exp)

Generator

```
prob_generator <- function(N, m = 1000, shape = NA){
   shape <- ifelse(is.na(shape), rep(1, N), shape)
   gams <- matrix(rgamma(n = N*m, shape = shape), nrow = N)
   probs <- t(t(gams)/colSums(gams))
   return(probs)
}</pre>
```

This just uses the Dirichlet distribution for generating the probabilities.

The intuition is that we generate $X_j \sim \text{Gamma}(\alpha_j, \lambda)$ for $j \in \{1, ..., n\}$ Then we consider the distribution of

$$p=(p_1,...,p_n)=\left(\frac{X_1}{S},...,\frac{X_n}{S}\right)$$
 where $S=\sum_{j=1}^n X_j.$

Note that this is an n-1 dimensional vector because we know $\sum_{j=1}^{n} p_j = \sum_{j=1}^{n} \frac{X_j}{S} = \frac{1}{S} \sum_{j=1}^{n} X_j = \frac{S}{S} = 1$. Quick note: once we know n-1 of the p_j we know the last one.

Furthermore we also know $X_j \geq 0$ for each $j \in \{1, ..., n\}$ (since X_j follows a gamma distribution) so

$$S = \sum_{j=1}^n X_j > X_j \ge 0$$
 for each $j \in \{1,...,n\}$ as well. Which then tells us that $p_j = \frac{X_j}{S} \ge 0$ and $p_j = \frac{X_j}{S} \le 1$.

So
$$p = (p_1, ..., p_n)$$
 is indeed a probability vector of length n .

The support of the Dirichlet distribution is the standard n-1 simplex. Which is given by

$$\Delta_{n-1} = \left\{ (p_1, ..., p_n) \in \mathbb{R}^n : \forall_{j \in \{1, ..., n\}} 0 \le p_j \le 1, \sum_{j=1}^n p_j = 1 \right\}.$$

Furthermore the density can be given by:

$$f_{p_1,...,p_n}(p_1,...,p_n) = \frac{1}{B(\alpha)} \prod_{i=1}^n x_j^{\alpha_j - 1} \text{ for } (p_1,...,p_n) \in \Delta_{n-1}$$

Where
$$B(\alpha) = \frac{\Gamma(\alpha_1)...\Gamma(\alpha_n)}{\Gamma(\alpha_1+...+\alpha_n)}$$
.

The special case where $\alpha_j = 1$ for each $j \in \{1, ..., n\}$ is essentially a uniform distribution over the standard k-1 simplex as the density is given by:

$$f_{p_1,...,p_n}(p_1,...,p_n) = \frac{1}{B(\alpha)} \prod_{j=1}^n x_j^{\alpha_j - 1} = \frac{1}{B(\alpha)} \prod_{j=1}^n x_j^{1-1} = \frac{1}{B(\alpha)} = \frac{\Gamma(\alpha_1 + ... + \alpha_n)}{\Gamma(\alpha_1)...\Gamma(\alpha_n)}$$
$$= \frac{\Gamma(n)}{(\Gamma(1))^n} = \frac{(n-1)!}{(0!)^n} = (n-1)! \text{ for } (p_1,...,p_n) \in \Delta_{n-1}$$

It is uniform since clearly the density does not depend on $p = (p_1, ..., p_n)$.

The above result uses the fact that $\Gamma(k) = (k-1)!$ for $k \in \{1, 2, ...\}$ which I will prove below:

$$\Gamma(k) = \int_0^\infty t^{k-1} e^{-t} dt$$

This clearly converges for $k-1 \ge 0$ i.e. for $k \ge 1$.

Now let $u(t) = t^{k-1}$ and $\frac{dv}{dt} = e^{-t}$ so that $\frac{du}{dt} = (k-1)t^{k-2}$ and $v(t) = -e^{-t}$. Then:

$$\Gamma(k) = \int_0^\infty t^{k-1} e^{-t} dt = u(t)v(t) \Big|_0^\infty - \int_0^\infty v(t) \frac{du}{dt} dt = -t^{k-1} e^{-t} \Big|_0^\infty + \int_0^\infty (k-1)t^{k-2} e^{-t} dt$$
$$= \lim_{t \to \infty} -\frac{t^{k-1}}{e^t} + 0 + (k-1) \int_0^\infty t^{(k-1)-1} e^{-t} dt = (k-1)\Gamma(k-1)$$

Which again converges for $k-1 \ge 1$ or equivalently $k \ge 2$.

Therefore if $k \ge 2$ then $\Gamma(k) = (k-1)\Gamma(k-1)$ which seems like a factorial, now we need our base case:

$$\Gamma(1) = \int_0^\infty t^{1-1} e^{-t} dt = \int_0^\infty e^{-t} dt = \int_{-\infty}^\infty f_T(t) dt = 1 = 0!$$
 where $T \sim \text{Exponential}(1)$

Therefore if k > 1 we know for

$$\Gamma(k) = (k-1)\Gamma(k-1) = \ldots = (k-1)\ldots(2)\Gamma(2) = (k-1)\ldots(2)(1)\Gamma(1) = (k-1)\ldots(2)(1) = (k-1)! \ \Box$$

Testing that this does indeed produce length n probability vectors.

There is always the issue of machine precision for floating point numbers so the sums can not be exactly one but we can make a simple tolerance based on machine epsilon.

```
tol <- 4.75*.Machine$double.eps
tol</pre>
```

[1] 1.054712e-15

```
for (i in 2:1000){
  test <- prob_generator(N = i)
  stopifnot(
    min(test) >= 0,
    max(abs(colSums(test) - 1)) <= tol
  )
}</pre>
```

As there are no errors we can see that all of these have non-negative probabilities and that they sum to 1 (within our tolerance based on machine imprecision) and hence define length n probability vectors.

How to Bias The Generated Probabilities

First recall that the standard $\alpha = (\alpha_1, ..., \alpha_n) = (1, ..., 1)$ will produce uniform probabilities over Δ_{n-1} (which is just Ω for length n probabilities). For several values of n let us examine the joint distribution of p_i and p_j under the standard α .

Distribution from the standard $\alpha = (\alpha_1, ..., \alpha_n) = (1, ..., 1)$

The n = 2 case is trivial as we will just have the line (p, 1 - p) so I will skip that case. In the symmetric case we don't need to look at all possible pairs of p_i and p_j we can just use one due to exchangeability.

• For n = 3:

This is exactly what we would expect. Since knowing p_i and p_j entirely determines the final probability and we know $p = (p_1, p_2, p_3)$ is uniform over $\Delta_{n-1} = \Delta_2$ we should see that this is a uniform distribution which it is here.

• For n = 4:

Again this is exactly what we would expect. $p = (p_1, ..., p_4)$ is now uniform over $\Delta_{n-1} = \Delta_3$. Given Here we are more likely to see smaller values of p_i and p_j since there are now 2 more probabilities we have to account for. So when we assign one of the probabilities the remaining ones must now sum to a value smaller than 1 and so we often see smaller values.

• For n = 5:

n = 5: Joint Distribution of (p_i, p_j) 1.00 0.75 $p_j = 0.50$ 0.000 0.00005

0.50

 p_i

0.25

0.00

Again this is exactly what we would expect. $p = (p_1, ..., p_5)$ is now uniform over $\Delta_{n-1} = \Delta_4$ and by a similar argument we will see smaller probabilities in this joint graph generally.

0.75

1.00

• This pattern of smaller probabilities being more likely continues for all $n \in \mathbb{N}$ again by the same reasoning as before.

Distribution when we change α

It is a well known fact that the marginal distribution of p_i from a Dirichlet distribution is a Beta $(\alpha_i, (\alpha_1 + ... + \alpha_n) - \alpha_i)$ random variable and therefore $\mathbb{E}[p_i] = \frac{\alpha_i}{\alpha_1 + ... + \alpha_n}$ and hence $\mathbb{E}[p] = \mathbb{E}[(p_1, ..., p_n)] = (\mathbb{E}[p_1], ..., \mathbb{E}[p_n]) = (\frac{\alpha_1}{\alpha_1 + ... + \alpha_n}, ..., \frac{\alpha_n}{\alpha_1 + ... + \alpha_n})$. This allows us to appropriately bias the expectation of the probabilities we get by changing the shape parameters for the gamma distributions used. For example if n = 3 and we want on average $p_1 = 2p_2$ then we would use $\alpha = (2\lambda, \lambda, \mu)$ to construct our probabilities. Below is a quick example with graphs (using n = 3 since before we had a uniform joint distribution there) to illustrate that this works. Now the pairs are not exchangeable so we need to examine each pair.

```
probs \leftarrow prob_generator(N = 3, m = 1000000, shape = c(2, 1, 3))
p_comp <- data.frame(p1 = probs[1,],</pre>
                     p2 = probs[2,],
                     p3 = probs[3,])
p_comp %>%
  ggplot(aes(x = p1, y = p2)) +
  geom_bin2d(aes(fill = after_stat(density)),
             bins = 300) +
  scale_fill_viridis_c() +
  labs(x = TeX("$p_1$"),
       y = TeX("$p_2$"),
       fill = TeX("f_{p_1,p_2} (p_1,p_2)),
       title = TeX("\$\ alpha = (2, 1, 3)\$: Joint Distribution of \$(p_1, p_2)\$")) +
  theme minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```


We see that p_1 is more often than not much larger than p_2 as expected.

We see that p_1 is more often than not slightly smaller than p_3 as expected.

We see that p_2 is more often than not significantly smaller than p_3 as expected.

Examining Distribution of the Square of the Euclidean Norm

Below are some graphs to analyze the distribution of $||p||^2$.

• First n=2:

```
probs <- prob_generator(N = 2, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

• Now n = 3:

```
probs <- prob_generator(N = 3, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

• Now n = 5:

```
probs <- prob_generator(N = 5, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

• Now n = 10:

```
probs <- prob_generator(N = 10, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

• Now n = 50:

```
probs <- prob_generator(N = 50, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

• Now n = 100:

```
probs <- prob_generator(N = 100, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

• Now n = 1000:

```
probs <- prob_generator(N = 1000, m = 1000000)</pre>
sq_norms <- data.frame(sq_norm = colSums(probs^2))</pre>
sq_norms %>%
  ggplot(aes(x = sq_norm)) +
  geom_histogram(aes(y = after_stat(density)),
                 fill = "lightblue",
                 bins = 100) +
  geom_density(col = "black",
               linewidth = 0.75) +
  labs(x = TeX("$||p||^2$"),
       y = "Frequency ",
       title = TeX("Distribution of Squared Euclidean Norm of $p$")) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5),
        axis.title = element_text(color = "black"),
        axis.title.y = element_text(angle = 0, vjust = 0.5))
```

Distribution of Squared Euclidean Norm of p

