PONENTE	PLATICA	LINKS	
	DESI	Little	
JORGE CERVANTES	Se presentará el proyecto DESI, asi como su relevancia científica, en donde		
	se discuten los aspectos relevantes de la cosmología de fondo y perturbativa que		
	puede medir el proyecto, y su importancia para la cosmología moderna.		
CELIA ESCAMILLA	(Teoría) Mathematica: CosmoEstadística. Se mostrará como hacer uso de	https://www.wolfram.com/mathematica/trial/	
	las herramientas de Mathematica Wolfram software para realizar cálculos es-		
	tadísticos con muestras de SNela y BAO. Además exploraremos el análisis de		
	parametrizaciones de la energía oscura y la influencia de los parámetros cos-		
	mológicos en efectos relativos como la tensión entre los datos.		
	(Ejercicios) Mathematica: CosmoEstadística.		
	- Implementacion de datos de CMB al análisis de parametrizaciones.		
	- Generación de datos usando Python/Mathematica (uso de GaPP).		
	- Introducción a reconstrucciones no paramétricas en Mathematica.		
	Estimación de parámetros cosmológicos con CosmoSIS		
FAVIO VAZQUEZ	En esta breve charla, se introducirá el paquete Cos-	https://github.com/FavioVazquez/cosmosis-mnec	
	moSIS como una de las alternativas para la estimación	IMPORTANTE: REALIZAR LA ENCUESTA PREVIAMENTE AL TALLER.	
	de parámetros cosmológicos. Es un framework open sour-		
	ce, el cual agrupa mucho de los códigos y conocimientos		
	computacionales en cosmología de los últimos años. Es un		
	software fácil de utilizar, entender y modificar, aparte que		
	hace muy sencilla la colaboración entre grupos de inves-		
	tigación y compartir códigos y módulos creados con otros		
	investigadores.		
	El rol del Big Data y Data Scientist en la		
	Cosmología		
FAVIO VAZQUEZ	Desde los principios de este siglo, las grandes compañías,		
	empresas, institutos de investigación, corporaciones científi-		
	cas y hasta gobiernos comenzaron a sacarle provecho a las		
	grandes cantidades de datos e información que habían re-		
	colectado durante su historia. Aunque el estudio, estadísti-		
	ca e inferencias a partir de los datos no es nada nuevo, las		
	nuevas metodologías y tecnologías del Big Data, nos han		
	permitido optimizar el modo en que analizamos y estu-		

	diamos grandes volúmenes de información. El Data Scien-		
	tist (o científico de datos) es el encargado de aplicar sus		
	conocimientos, experiencia y experticia para implementar		
	una infraestructura y el software necesario para obtener la		
	mayor cantidad de información relevante a partir de datos		
	recolectados de diversas fuentes. En esta charla se hablará		
	del conocimiento teórico, las metodologías, técnicas, len-		
	guajes y frameworks que deben manejarse para ser un Da-		
	ta Scientist. Se mostrará por último cómo estas tecnologías		
	y herramientas podrían ser aplicadas a la cosmología en		
	un futuro próximo.		
	CAMB para teorias tensoriales escalares		
	OAMS para teorias terisoriaios escalares		
ANA AVILEZ	En esta breve platica hablare sobre una modificacion del codigo CAMB		
	para teorias de gravedad modificada por un campo escalar.		
	Mostrare brevemente la implementacion de las		
	ecuaciones de movimiento asi como de una parametrizacion adecuaca		
	para teorias de este tipo. Mostrare la evolucion del campo		
	a nivel del background y sus perturbaciones calculada con CAMB.		
JUAN CARLOS	En esta plática revisaremos algunos fundamentos metodológicos	https://mini-taller.github.io/Mini-Taller-2017.github.io/assets/17-04.Cinvestav Taller.html	
MARTÍNEZ-OVANDO	asociados con el paradigma bayesiano de aprendizaje estadístico (inferencial y		
	predictivo). Prestaremos particular atención a la especificación de estructuras		
	de dependencia estocástica en modelación, así como a la revisión de herramientas		
	computacionales contemporáneas para su implementación práctica. La plática		
	intentará ser interactiva, por lo que varios ejemplos serán presentados en el		
	lenguaje de programación R junto con la revisión metodológica del paradigma.		
DUCLAN CARRACOV	Codest 2 co un ofdire de dessirie núblice con circulations de		
RUSLAN GABBASOV	Gadget-2 es un código de dominio público para simulaciones de	Las ligas a los programas para descargar:	
	N-cuerpos con la hidrodinámica SPH. Gadget-2 calcula las fuerzas	http://wwwmpa.mpa-garching.mpg.de/gadget/gadget-2.0.7.tar.gz	
	gravitacionales con un algoritmo de árbol jerárquico (opcionalmente en	http://wwwmpa.mpa-garching.mpg.de/gadget/n-genic.tar.gz	
	combinación con un esquema de partícula – malla para fuerzas	http://mirror.keystealth.org/gnu/gsl/gsl-1.16.tar.gz	
	gravitacionales largo alcance) y representa fluidos por medio de la	http://www.fftw.org/fftw-2.1.5.tar.gz	
	hidrodinámica de partículas suavizadas (SPH). Gadget-2 se puede	http://lastro.epfl.ch/misc/TP4/doc/_downloads/fof.tar.gz	
	utilizar para hacer frente a una ámplia gama de problemas	http://astro.dur.ac.uk/~jch/gadgetviewer/index.html	
	astrofísicamente interesantes que van desde sistemas de N-cuerpos,		
	medio interestelar turbulento, hasta interacción y colision de	Tutoriales:	

	galáxias y formación de estuctura del Universo a gran escala.	http://wwwmpa.mpa-garching.mpg.de/gad	get/
		http://obswww.unige.ch/lastro/misc/TP4/do	oc/rst/Exercices/Ex05.html
	En la primer parte de la charla se darán a conocer las principales	https://astrobites.org/2011/04/02/installing	-and-running-gadget-2/
	características del código y	http://astro.phy.vanderbilt.edu/~sinham/tutorials.html	
	una descripción general de los algorítmos utilizados. La segunda parte		
	estará dedicada a la		
	instalación y ejecución de un ejemplo de simulación cosmológica.		
MARIANA JABER	En esta charla mostraré el uso de herramientas que permitan interpretar y	http://nbodykit.readthedo	oon in/on/lateat/
WARIANA JADER			
	analizar datos provenientes de catálogos sintéticos ("mocks") o de censos	https://www.continuum.id	<u>o/downloads</u>
	de galaxias.	Readme	
	CAMB		
ERICK ALMARAZ	The Boltzmann code CAMB is a common tool used in cosmology	http://camb.info/readme.html	
	for solving the Einstein linear perturbation equations. It provides a complete		
	machinery for modeling the dynamical evolution of the universe considering all		
	its constituents. It is also the first step to be considered for making a MCMC		
	analysis in the CosmoMC framework. In this short talk I'll introduce the novice		
	to use the code. I'll give an overlook of the program to identify where the		
	physics is encoded, how to retrieve the outputs and what are the parts one has		
	to address if one wants to implement a non standard cosmology.		
	COSMOMC	http://cosmologist.info/cosmomc/	
	CosmoMC is one of the most used tools in cosmology to test	ifort, openmp, likelihood (SNe, BAO)	
	theoretical models against observations. In this second talk I'll complete my	, , , , , , , , , , , , , , , , , , , ,	
	exposition on CAMB by giving the basics to perform a MCMC analysis to		
	constrain a cosmological model.		
	Materia oscura con un campo escalar en el código CLASS		
LUIS UREÑA	Durante el último año ha habido un gran interés en el modelo de materia	https://github.com/lesgourg/class_public	
	oscura con un campo escalar ultra-ligero, lo que significa que tiene una masa d		
	alrededor de 10 -21 eV . Los estudios recientes del modelo incluyen, entre otro		
	los efectos que tendría esta hipótesis en la formación de estructura cosmológic		
	la estructura y evolución de galaxias enanas y de las galaxias en general, camb		
	en la señal del Lyman-alpha forest, etc. En esta plática revisaremos brevement		
	algunos de estos aspectos para el modelo, para enfocarnos después en los del		
	técnicos para incorporar un campo escalar de este tipo en el código CLASS		

	(Cosmic Linear Anisotropy Solving System) y obtener los perfiles característicos		
	de las anisotropias de temperatura y del mass power spectrum. Se recomienda		
	que antes de la plática se instale el código CLASS y se corran los ejemplos de		
	prueba recomendados para el mismo; tanto el código como la documentación		
	del mismo se pueden encontrar aquí:		
	Mejoras al algoritmo K-means y su aplicación en el área de Salud.		
JOAQUIN PÉREZ	Esta pequeña charla tiene tres objetivos: a) Divulgar los trabajos realizados		
	para mejorar algoritmos de agrupamiento (clustering), en particular K-Means,		
	desarrollados en el Centro Nacional de Investigación y Desarrollo Tecnológico, b)		
	Mostrar un ejemplo del uso de las mejoras en una aplicación de Minería de Datos		
	en el área de epidemiología, y c) buscamos interactuar con los asistentes para		
	identificar posibles problemas reales en cuya solución puedan contribuir nuestros		
	algoritmos mejorados, ya que se sabe que los algoritmos de agrupamiento pueden		
	ser usados en otros dominios.		
JOSUÉ DE SANTIAGO	En cata tallar accribirames un programa carte que nos permitirá entender los	https://mini-taller.github.io/Mini-Taller-2017.github.io/assets/REQUISITOS_JOSUE.pdf	
JOSUE DE SANTIAGO	En este taller escribiremos un programa corto que nos permitirá entender los conceptos básicos de los métodos de Monte Carlo con cadenas de Markov y en	Inteps://mini-tailer.gitinub.io/wini-Tailer-2017.gitinub.io/assets/REQ0IST103_3030E.pdi	
	particular el método de Metropolis. Usaremos datos del catálogo "Union 2" de		
	supernovas tipo la del Supernova Cosmology Project, con las cuales acotaremos el rango de parámetros de un modelo tipo LCDM plano.		
	errango de parametros de un modelo tipo ECDIM piano.		
ALBERTO VAZQUEZ	Una mejora importante al código SimpleMC, y en general al MCMC, es la	https://github.com/ja-vazquez/SimpleMC	
	implementación de un algoritmo tipo 'importance sampling', donde se asume que la	https://github.com/ja-vazquez/GM_Sampler	
	distribución de probabilidad esta dada por una suma de Gausianas. Éste nuevo	http://nbviewer.jupyter.org/github/ja-vazquez/GM_Sampler/blob/master/GM/GMSampler.ip	
	algoritmo esta diseñado de tal manera que permite evitar un periodo de bun-in y por		
	tanto disminuye enormemente el tiempo de computo, especialmente en el límite de		
	muchos (> 1000) CPUs. Otra de sus ventajas sobre algoritmos tipo MCMC es		
	que es trivialmente paralelizable sobre un conjunto grande de nodos computacionales.		
	Código Boltzmann para Materia Oscura Ultra Ligera con potencial Tipo Axión		
FRANCISCO LINARES			
	Se presentará la solución a las ecuaciones cosmológicas para materia oscura		
	de campo escalar con potencial trigonométrico. Para ello, la ecuación de Klein-		
	Gordon tanto para el background, como para las perturbaciones lineales del		
	campo escalar, fueron escritas como sistema dinámico, y se adaptó el código		

	Boltzmann CLASS para resolver dicho sistema. Se mostrarán los módulos de
	CLASS a considerar para la inclusión de las nuevas variables dinámicas y sus
	respectivas ecuaciones. Para finalizar, se mostrarán los resultados numéricos de
	este trabajo y se discutirán las implicaciones cosmológicas del modelo.
OCTAVIO VALENZUELA	Revisaré la estructura de códigos de Ncuerpos Particle Mesh que utilizan la
JULIO CLEMENTE	Comoving Lagrangian Approximation (COLA) Method y permiten a bajo costo
	computacional simular el crecimiento de la estructura cósmica a gran escala. Discutiré
	las limitantes de este tipo de códigos. En la 2a parte propondremos un ejemplo practico
	que podra analizarse con herramientas publicas dentro de Nbodykit.