

Algèbre linéaire et analyse 1

(HLMA101 – Année universitaire 2020–2021)

Feuille d'exercices Nº4

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Soit F le plan vectoriel de \mathbb{R}^3 engendré par les vecteurs $\begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$. Écrire la définition paramétrique du plan affine \mathcal{P} dirigé par F passant par A(0,-1,1).

Question 2. On considère le plan $\mathcal{P} = \{(3 - t + 2s, 1 + 2t - 3s, t) \mid (s, t) \in \mathbb{R}^2\}$. Expliciter le plan vectoriel directeur de \mathcal{P} ainsi qu'un point appartenant à \mathcal{P} .

Question 3. Écrire la matrice $A = (a_{i,j})$ dans les cas suivants :

- (a) $1 \le i \le 3$, $1 \le j \le 4$, et $a_{i,j} = 2i 3j$;
- (b) A est la matrice à quatre lignes et quatre colonnes dont les coefficients diagonaux sont égaux à leur numéro de ligne et les coefficients extra-diagonaux sont égaux à 7.

numero de ligne et les coefficients extra-diagonaux sont egaux a 7. Question 4. Écrire les matrices des coefficients et augmentée du système : $\begin{cases} 5t + 6x - z = 56 \\ 2x + 5z + t - x - \frac{y}{2} = 1, \text{ puis écrire les } \\ 45z + 7y - 2 = 0 \end{cases}$

$$\begin{pmatrix} 2 & 0 \\ 4 & 5 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 0 & 0 \\ \frac{4}{3} & \frac{1}{3} & -\frac{1}{3} \end{pmatrix}.$$

2. Travaux dirigés

Exercice 1. Trouver une famille de vecteurs qui engendre le sous-espace vectoriel $E = \left\{ \begin{pmatrix} x+y+z \\ x-z \\ -z \\ 0 \end{pmatrix}, (x,y,z) \in \mathbb{R}^3 \right\}.$

Exercice 2. Donner une représentation sous forme paramétrique de la droite \mathcal{D} d'équation 4x + 2y = 8 dans le plan, puis du plan \mathcal{P} d'équation 2x + 3y - z = 7 dans l'espace, puis de l'intersection Δ des plans \mathcal{P}_1 d'équation x + y + 2z = 0 et \mathcal{P}_2 d'équation x - y - z = 1.

Exercice 3. Soient a, b et c trois réels avec $(a, b) \neq (0, 0)$ et soit D la droite du plan d'équation ax + by = c. Écrire la négation, la contraposée et la réciproque de l'énoncé suivant : « $(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, (x, y) \in D) \Rightarrow b \neq 0$ ». Ces énoncés sont ils vrais ou faux? Démontrer rigoureusement.

Exercice 4. Donner un système de deux équations linéaires caractérisant les points du plan de \mathbb{R}^4 passant par $P_0: (1,0,-1,0)$ et dirigé par le sous-espace engendré par les vecteurs

$$U = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} \text{ et } V = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. Révisions et approfondissement

Exercice 5. Donner une représentation sous forme paramétrique et une équation de la droite \mathcal{D}_1 du plan passant par les points $A_1(0,-1)$ et $A_2(1,2)$ et de la droite \mathcal{D}_2 parallèle à \mathcal{D}_1 passant par B(-1,0).

Exercice 6. Montrer que le sous-espace affine dirigé par le sous-espace engendré par $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ et passant par (1,1,1) est le plan d'équation x+2y+z=4.

Défi. On considère la famille de plans $(P_m)_{m\in\mathbb{R}}$ définis par les équations cartésiennes :

$$m^2x + (2m - 1)y + mz = 3$$

Montrer qu'il existe un unique point Q appartenant à tous les plans P_m .