LFSR testing WriteTEXRunFSR(output, lfsr, ist, 5, strGen, gen):

	step		state		sequence		
	num	\mathcal{S}_2	\mathcal{S}_1	\mathcal{S}_0	\mathcal{S}_0		
	0	0000	1000	0011	0011		
				1000	1000		
	2	0100		0000	0000		
	3	0101 0111	0100	0101	0101		
	4	0111	0101	0100	0100		
Table 1: LFSR with feedback $y^3 + y + \alpha^3$ over \mathbb{F}_{2^4} with basis $B = [\beta_i] = [\alpha^3, \alpha^6, \alpha^{12}, \alpha^9]$							

where $\alpha = \omega^1 + \omega^3$ and ω is a root of $x^4 + x^3 + x^2 + x + 1$.

The whole sequence: 0011, 1000, 0000, 0101, 0100

state sequence step S_2 S_1 S_0 S_0 α^3 α^8 α^8

$$\begin{array}{|c|c|c|c|c|c|}\hline \text{num} & \mathcal{S}_2 & \mathcal{S}_1 & \mathcal{S}_0 & \mathcal{S}_0 \\ \hline 0 & 0 & \alpha^3 & \alpha^8 & \alpha^8 \\ 1 & \alpha^5 & 0 & \alpha^3 & \alpha^3 \\ 2 & \alpha^6 & \alpha^5 & 0 & 0 \\ 3 & \alpha^5 & \alpha^6 & \alpha^5 & \alpha^5 \\ 4 & \alpha^{14} & \alpha^5 & \alpha^6 & \alpha^6 \\ \hline \end{array}$$
 Table 2: LFSR with feedback $y^3 + y + \alpha^3$ over \mathbb{F}_{2^4} where generator where $\alpha = \omega^1 + \omega^3$

LFSR testing WriteTEXRunFSRByGenerator(output, lfsr, ist, 5, strGen,

and ω is a root of $x^4 + x^3 + x^2 + x + 1$.

gen):

The whole sequence: α^8 , α^3 , 0, α^5 , α^6