

Архитектура компьютера и операционные системы

Лекция 7. ISA MIPS

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- ISA
- Архитектура MIPS
- Домашнее задание

Многоуровневая архитектура

5. ЯВУ

• Компиляторы, Библиотеки

4. Язык ассемблера

• Ассемблер, Линкер (компоновщик), Отладчик

3. Уровень ОС

• Этот уровень и ниже — системное программирование

2. Машинный код (Instruction Set Arch, ISA)

•ОЗУ, Системная шина, ЦП

1. Микрокод процессора (микроархитектура)

• Внутренняя шина, Тракт данных, АЛУ

0. Схемы цифровой логики

• Логические вентили и схемы

-1. Уровень физических устройств

• Сфера электронной техники и радиофизики

ISA (Instruction Set Architecture)

Программа на языке FORTRAN 90

Программа на языке С

Программа на языке FORTRAN 90, скомпилированная в машинные команды

Программа на языке C, скомпилированная в машинные команды

Программное обеспечение

Аппаратное обеспечение

Уровень архитектуры набора команд

Программа из машинных команд выполняется микропрограммой или аппаратным обеспечением

Аппаратное обеспечение

ISA включает:

- Модели памяти
- Режимы адресации
- Регистры
- Машинные команды (инструкции)
- Взаимодействие с внешними устройствами ввода/ вывода
- Различные типы внутренних данных (например, с плавающей запятой, целочисленные типы и т . д.)
- Обработчики прерываний и исключительных состояний

Архитектура MIPS

- Apxитектура MIPS (Microprocessor without Interlocked Pipeline Stages) разработана Джоном Хеннесси и его коллегами в Стэнфорде в 1980-е годы в соответствии с концепцией RISC. Использовалась компаниями Silicon Graphics, Nintendo и Cisco.
- Д. Паттерсон, Дж. Хеннесси <u>Архитектура компьютера и</u> проектирование компьютерных систем
- Дэвид М. Харрис и Сара Л. Харрис <u>Цифровая</u>
 <u>схемотехника и архитектура компьютера</u>

Baikal-T1

Российская разработка на базе архитектуры МIPS.

■ Разработчик - ОАО «Байкал Электроникс», основано компанией "Т-Платформы" в 2015 году

DDR3 **PCle** PHY PHY MIPS MIPS Low-speed P5600 P5600 interfaces CPU CPU **GPIO** DDR3 PCle 3.0 controller controller I'C L2 cache (1 MB) SPI Fabric 1G Ethernet 10G Ethernet **USB 2.0** 1G Ethernet SATA 6G controller controller controller controller controller 10G Ethernet SATA 6G PHY PHY

Блок-схема Baikal-T1

Инструкции

- Группы инструкций
 - арифметические
 - логические
 - перемещение данных
 - условные и безусловные
- Операнды инструкций (пример)
 add <приемник>, < операнд1 >, < операнд2>
 add rd, rs, rt

Регистры

Название	Номер	Применение
\$zero	\$0	всегда хранит 0
\$at	\$1	временный регистр для языка ассемблера
\$v0—\$v1	\$2—\$3	значения функций и выражений
\$a0—\$a3	\$4—\$7	аргументы функций
\$t0—\$t7	\$8—\$15	временные
\$s0—\$s7	\$16—\$23	сохраненные временные значения
\$t8—\$t9	\$24—\$25	временные
\$k0—\$k1	\$26—\$27	зарезервирована для ядра операционной системы
\$gp	\$28	глобальный указатель
\$sp	\$29	указатель стека
\$fp	\$30	указатель фрейма
\$ra	\$31	адрес возврата

Отображение C в MIPS

Код на С

Код на ассемблере MIPS – пусть а, ... е находятся в регистрах \$s0, ... \$s4

a = (b+c)-(d+e);

- **add** \$t0, \$s1, \$s2
- **add** \$t1, \$s3, \$s4
- sub \$s0, \$t0, \$t1

Модель памяти

- адресуется в байтах;
- требования по выравниванию (адрес кратен 4);
- составные типы данных размещаются в памяти;
- переключаемый порядок байтов;
- Load-Store архитектура

Режимы адресации

Код на С

a[3]=b+a[2];

- Код на ассемблере MIPS
 - пусть b находится в регистре \$s2,
 - адрес начала массива а в \$s3
- lw \$t0, 8(\$s3)
- **add** \$t0, \$s2, \$t0
- sw \$t0, 12(\$s3)

- Непосредственные операнды в MIPS
- addi \$s0, \$s2, -1

Режимы адресации

непосредственный (англ.: immediate)

addi \$s0, \$s2, -1

регистровый (англ.: register-only)

add \$s0, \$s1, \$s2

базовый (англ.: base)

add \$s0, \$s1, 8(\$s2)

 относительно счетчика команд (англ.: PCrelative)

bne \$s3, \$s4, Else

псевдопрямой (англ.: pseudo-direct)

jal Sum

Переходы

■ Условные (branch)

beq rs, rt, L1 bne rs, rt, L1

• Сравнения slt rd, rs, rt slti rt, rs, const

■ Безусловные (jump)

j L1 jal ProcAddr jr \$ra

Set Less Than

$$R[rd] = (R[rs] < R[rt]) ? 1 : 0$$

Переходы (пример)

Код на С

- Код на ассемблере MIPS
 - пусть a, b и с находятся в регистрах \$s0-\$s2,

bne \$s3, \$s4, Else add \$s0, \$s1, \$s2 j Exit

Else: sub \$s0, \$s1, \$s2

Exit: . . .

Типы инструкций

- R (register)
 - Операнды 3 регистра, регистр назначения, первый аргумент и второй аргумент.
- I (immediate)
 - Операнды 2 регистра и число.
- J (jump)
 - Операнд 26 битный адрес, куда надо "прыгнуть".

Код инструкций

Имя							., .
формата	Поля						Комментарий
	6 бит	5 бит	5 бит	5 бит	5 бит	6 бит	= 32 бита
R-формат	opcode	rs	rt	rd	shamt	функция	Арифметика
І-формат	opcode	rs	rt	адрес/непоср. операнд			Ветвления +
т-формат	Орсоце	13	то и адрес/непоср. операнд				непоср.оп.
Ј-формат	opcode адрес для перехода (jump)					Безусловные п.	

• Пример

add \$t0, \$s1, \$s2

opcode	\$s1	\$s2	\$t0	0	Add	
0 17		18	8	0	32	
000000	10001	10010	01000	00000	100000	

Название	Номер
\$0	. 0
\$at	1
\$v0-\$v1	2–3
\$a0-\$a3	4–7
\$t0-\$t7	8–15
\$s0-\$s7	16–23
\$t8-\$t9	24-25
\$k0-\$k1	26–27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

Таблица кодов инструкций

MIPS Reference Data

CORE INSTRUCTI	ON SE	Т			OPCODE
		FOR-	- Hardward Company		/ FUNCT
NAME, MNEMO	NIC	MAT	OPERATION (in Verilog)		(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0/08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}

Домашнее задание

- Подготовка к тесту по лекциям:
 - читать 2.1–2.3, 2.5-2.8, 2.10 [Паттерсон и Хеннесси]
 - стр. 379- 385 книги Таненбаума и Остина
 - Таблица кодов инструкций MIPS
- Подготовка к лабораторному занятию 6
- Приложение В книги Таненбаума и Остина.