

Machine Intelligence 2 5.1 Probability Density Estimation

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Density estimation

Density estimation is relevant

If p(x) is known, all predictable quantities can be deduced (mean, variance, higher order moments, p(x) in interval)...

Density estimation is difficult (without prior knowledge)

How can we estimate the density for each possible outcome?

2 strategies:

- parametric methods: model-based (e.g. Gaussian densities)
- 2 nonparametric methods: data driven (cf. Kernel density estimate)

(Nonparametric) Kernel density estimation

number of data points

"Gliding histograms"

Count the number of data points within a volume V centered on $\underline{\mathbf{x}}$.

Histogram kernel:

$$H(\underline{\mathbf{u}}) = \begin{cases} 1, & |u_j| < \frac{1}{2}, \forall j \in 1, \dots, n \\ 0, & \text{else} \end{cases}$$

Density estimate ("gliding histogram"):

$$\widehat{P}(\underline{\mathbf{x}}) = \underbrace{\frac{1}{h^n}}_{\substack{\text{normalization} \\ \text{("density"!)}}} \cdot \underbrace{\frac{1}{p} \sum_{\alpha=1}^{p} H\left(\underline{\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}}{h}\right)}_{\substack{\text{fraction of data points}}}$$

Histogram kernels lead to discontinuous pdf estimates \sim use other kernels for smooth pdf estimates.

Gaussian kernels

Gaussian kernel:

$$H(\underline{\mathbf{u}}) = \frac{1}{(2\pi)^{\frac{n}{2}}} \exp\left(-\frac{\underline{\mathbf{u}}^2}{2}\right)$$

Density estimate:

$$\begin{split} \widehat{P}(\underline{\mathbf{x}}) &= \frac{1}{h^n} \cdot \frac{1}{p} \sum_{\alpha=1}^p H\left(\frac{\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}}{h}\right) \\ &= \frac{1}{p} \sum_{\alpha=1}^p \frac{1}{\left(2\pi h^2\right)^{\frac{n}{2}}} \exp\left\{-\frac{\left(\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(\alpha)}\right)^2}{2h^2}\right\} \end{split}$$

Effects of kernel width

Choice of kernel width \Rightarrow model selection / validation

Parametric density estimation

observations: $\{\underline{\mathbf{x}}^{(\alpha)}\}, \alpha = 1, \dots, p$ parametrized family of pdfs: $\widehat{P}(\mathbf{x}; \mathbf{w}) \leftarrow \text{"generative model"}$ example: multivariate Gaussian

$$\widehat{P}(\underline{\mathbf{x}}; \underline{\underline{\boldsymbol{\mu}}}, \underline{\underline{\boldsymbol{\Sigma}}}) = \underbrace{\frac{1}{\sqrt{(2\pi)^N \det \underline{\boldsymbol{\Sigma}}}} \exp\left(-\frac{1}{2}(\underline{\mathbf{x}} - \underline{\boldsymbol{\mu}})^T \underline{\boldsymbol{\Sigma}}^{-1}(\underline{\mathbf{x}} - \underline{\boldsymbol{\mu}})\right)}_{\mathcal{N}(\underline{\mathbf{x}}; \underline{\boldsymbol{\mu}}, \underline{\boldsymbol{\Sigma}})}$$

comment

here: $\widehat{P}(\underline{\mathbf{x}};\underline{\mathbf{w}})$ for unconditional densities $P(\underline{\mathbf{x}}) \Rightarrow$ unsupervised learning

MI I: $\widehat{P}(y|\mathbf{x};\mathbf{w})$ for conditional densities $P(y|\mathbf{x}) \Rightarrow$ supervised learning

⇒ model Selection

Parametric density estimation

Generative model: parametrized family of pdfs: $\widehat{P}(\underline{\mathbf{x}};\underline{\mathbf{w}})$

Model selection

Select the model (set of parameters) which is most similar to the true density!

Kullback-Leibler-Divergence

$$D_{KL}\left[P(\underline{\mathbf{x}}), \widehat{P}(\underline{\mathbf{x}}; \underline{\mathbf{w}})\right] = \int d\underline{\mathbf{x}} P(\underline{\mathbf{x}}) \ln \frac{P(\underline{\mathbf{x}})}{\widehat{P}(\underline{\mathbf{x}}; \underline{\mathbf{w}})} = \min_{(\underline{\mathbf{w}})}$$

- $\mathbf{D}_{\mathrm{KL}} \geq 0 \text{ and } \mathrm{D}_{\mathrm{KL}} = 0 \text{ iff } \widehat{P}(\underline{\mathbf{x}};\underline{\mathbf{w}}) = P(\underline{\mathbf{x}})$
- distance measure between probability distributions

Model selection via Empirical Risk Minimization

$$D_{KL}(P, \hat{P}_{\underline{\mathbf{w}}}) \stackrel{!}{=} \min_{(\underline{\mathbf{w}})}$$

$$\begin{split} \underline{\mathbf{w}}^* &= \operatorname*{argmin}_{(\underline{\mathbf{w}})} \Big\{ \int d\underline{\mathbf{x}} P(\underline{\mathbf{x}}) \ln P(\underline{\mathbf{x}}) - \int d\underline{\mathbf{x}} P(\underline{\mathbf{x}}) \ln \widehat{P}(\underline{\mathbf{x}};\underline{\mathbf{w}}) \Big\} \\ &= \operatorname*{argmin}_{(\underline{\mathbf{w}})} \Big\{ \underbrace{-\int d\underline{\mathbf{x}} P(\underline{\mathbf{x}}) \ln \widehat{P}(\underline{\mathbf{x}};\underline{\mathbf{w}})}_{E_{[\underline{\mathbf{w}}]}^G} \Big\} \qquad \text{"cross entropy"} \\ &\qquad E^G \stackrel{!}{=} \min_{(\underline{\mathbf{w}})} \end{split}$$

Problem: $P(\mathbf{x})$ is unknown.

Model selection via Empirical Risk Minimization

 $\begin{array}{c|c} \text{mathematical} \\ \text{expectation } E^G \end{array} \longrightarrow \begin{array}{c|c} \text{empirical} \\ \text{average } E^T \end{array}$

"generalization cost" "training cost"

cost function:

$$E^{T} = -\frac{1}{p} \sum_{\alpha=1}^{p} \ln \widehat{P}(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}})$$

When is this a reasonable procedure? \rightarrow statistical learning theory (MII)

criterion for model selection

$$E^{T} = -\frac{1}{p} \sum_{\alpha=1}^{p} \ln \widehat{P}(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}}) \stackrel{!}{=} \min_{(\underline{\mathbf{w}})}$$

Optimization of the empirical risk

$$\underbrace{E_{[\underline{\mathbf{w}}]}^T}_{\substack{\text{total}\\ \text{cost}}} = -\frac{1}{p} \sum_{\alpha=1}^p \ln \widehat{P}\big(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\big) = \frac{1}{p} \sum_{\alpha=1}^p \underbrace{e_{[\underline{\mathbf{w}}]}^{(\alpha)}}_{\substack{\text{individua}\\ \text{cost}}}$$

standard procedures e.g. (stochastic) gradient descent – cf. MI I

$$\label{eq:delta_w} \text{"batch"-learning:} \quad \Delta\underline{\mathbf{w}} = -\varepsilon \frac{\partial E^T}{\partial \underline{\mathbf{w}}} \quad \begin{cases} \text{examples for gradient-based} \\ \text{"on-line"-learning:} \quad \Delta\underline{\mathbf{w}} = -\varepsilon \frac{\partial e^{(\alpha)}}{\partial \underline{\mathbf{w}}} \end{cases}$$

Validation

Minimized training cost underestimates the corresponding generalization cost

Overfitting:

 E^T small but E^G large \Rightarrow test-set method, n-fold cross-validation

Test-set method

$$\text{observations: } \left\{ \begin{array}{ll} \text{training data} & \left\{\underline{\mathbf{x}}^{(\alpha)}\right\}, \alpha = 1, \dots, p \\ \\ \text{test data} & \left\{\underline{\mathbf{x}}^{(\beta)}\right\}, \beta = 1, \dots, q \end{array} \right.$$

$$\widehat{E}^G = \frac{1}{q} \sum_{\beta=1}^q e^{(\beta)} \leftarrow \text{ estimate of } E^G$$

Test-set method

- $\blacksquare \ E_{(I)}^T > E_{(II)}^T \ \underline{\text{but}} \ E_{(I)}^G << E_{(II)}^G$
- Alternative method: n-fold cross-validation (MI I)

Comment

Validation methods are essential for estimating hyperparameters for non-parametric methods (e.g. Kernel density estimate).

The likelihood function

generative model

$$\widehat{P}(\underline{\mathbf{x}};\underline{\mathbf{w}}) \quad \text{probability density for the generation of one data point}$$

likelihood of the model = p(observations given the model) assuming iid. observations:

$$\widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}}) = \prod_{\alpha=1}^{p} \widehat{P}(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})$$

Model selection and Maximum Likelihood

$$\widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}}) \stackrel{!}{=} \max_{(\underline{\mathbf{w}})}$$

intuition: select the model which generates the observed data with high probability

in practice: minimization of the negative log-likelihood

$$p \cdot E_{[\underline{\mathbf{w}}]}^{T} = -\ln \widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\}; \underline{\mathbf{w}})$$
$$= -\sum_{\alpha=1}^{p} \ln \widehat{P}(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}})$$
$$\stackrel{!}{=} \min$$

equivalent to the minimization of the KL-divergence via ERM.

The multivariate Gaussian

$$\widehat{P}\left(\left\{\underline{\mathbf{x}}^{(\alpha)}\right\};\underline{\boldsymbol{\mu}},\underline{\boldsymbol{\Sigma}}\right) = \left(\frac{1}{\sqrt{(2\pi)^N\det\underline{\boldsymbol{\Sigma}}}}\right)^p \cdot \prod_{\alpha=1}^p \exp\left(-\frac{1}{2}\left(\underline{\mathbf{x}}^{(\alpha)} - \underline{\boldsymbol{\mu}}\right)^T\underline{\boldsymbol{\Sigma}}^{-1}\left(\underline{\mathbf{x}}^{(\alpha)} - \underline{\boldsymbol{\mu}}\right)\right)$$

$$\begin{split} E^{T}\left(\underline{\boldsymbol{\mu}},\underline{\boldsymbol{\Sigma}}\right) &= -\ln\widehat{P}\left(\left\{\underline{\mathbf{x}}^{(\alpha)}\right\};\underline{\boldsymbol{\mu}},\underline{\boldsymbol{\Sigma}}\right) \\ &= \frac{p\cdot N}{2}\ln(2\pi) + \frac{p}{2}\ln(\det\underline{\boldsymbol{\Sigma}}) + \frac{1}{2}\sum_{\alpha=1}^{p}\left(\underline{\mathbf{x}}^{(\alpha)} - \underline{\boldsymbol{\mu}}\right)^{T}\underline{\boldsymbol{\Sigma}}^{-1}\left(\underline{\mathbf{x}}^{(\alpha)} - \underline{\boldsymbol{\mu}}\right) \end{split}$$

minimization of E^T (necessary conditions):

$$\frac{\partial E^T}{\partial \boldsymbol{\mu}} = \underline{\mathbf{0}} \quad \Rightarrow \quad \underline{\boldsymbol{\mu}}^* = \frac{1}{p} \sum_{1}^{p} \underline{\mathbf{x}}^{(\alpha)}$$
 (empirical average)

$$\frac{\partial E^T}{\partial \underline{\Sigma}} = \underline{\mathbf{0}} \quad \Rightarrow \quad \underline{\Sigma}^* = \frac{1}{p} \sum_{\alpha=1}^p (\underline{\mathbf{x}}^{(\alpha)} - \underline{\boldsymbol{\mu}}^*) (\underline{\mathbf{x}}^{(\alpha)} - \underline{\boldsymbol{\mu}}^*)^T \quad \text{(empirical covariance matrix)}$$

remark: μ^* is unbiased, but $\underline{\Sigma}^*$ is a biased estimator (cf. section: 6.1 Model fitting)