Topic 2: Basic Modelling (Version of 5th December 2018)

Pierre Flener and Jean-Noël Monette

Optimisation Group

Department of Information Technology Uppsala University Sweden

Course 1DL441:

Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:

Modelling for Combinatorial Optimisation

Outline

The MiniZinc Language

Modelling

Set Variables &Constraints 1. The MiniZinc Language

2. Modelling

Outline

The MiniZinc Language

Modelling

Set Variables &Constraints

1. The MiniZinc Language

2. Modelling

MiniZinc Model

The MiniZinc Language

Modelling

Set Variables &Constraints A MiniZinc model may comprise the following items:

- Parameter declarations
- Variable declarations
- Predicate and function definitions
- Constraints
- Objective
- Output command

The MiniZing

Set Variables &Constraints

Language

Modelling

Types for Parameters

MiniZinc is strongly typed. The parameter types are:

- int: integer
- bool: Boolean
- enum: enumeration
- float: floating-point number
- string: string of characters
- set of τ : set of elements of type τ , which is int, bool, enum, float, or string
- array $[\rho]$ of τ : possibly multidimensional array of elements of type τ , which is not an array; each range in ρ is an enumeration or an integer interval $\alpha . . \beta$

Example

The parameter declaration int: n declares an integer parameter of identifier n. One can also write par int: n in order to emphasise that n is a parameter.

The MiniZinc

Language Modelling

Set Variables &Constraints

Types for (Decision) Variables

Decision variables are implicitly existentially quantified: the aim is to find satisfying (optimal) values in their domains.

The variable types for decision variables are:

- int: integer
- bool: Boolean
- enum: enumeration
- float: floating-point number (not used in this course)
- set of enum and set of int: set

A possibly multidimensional array can be declared to have variables of any variable type, but it is itself not a variable.

Example

The variable declaration var int: n declares a decision variable of domain int and identifier n.

Tight variable domains may accelerate the solving: see the next slides for how to do that.

Literals

The MiniZinc

Modelling

Set Variables &Constraints The following literals (or: constants) can be used:

- Boolean: true and false
- Integers: in decimal, hexadecimal, or octal format
- Sets: between curly braces, for example {1,3,5}, or as integer intervals, for example 10..30
- 1d arrays: between square brackets, say [6,3,1,7]
- 2d arrays: A vertical bar | is used before the first row, between rows, and after the last row; for example [|11,12,13,14|21,22,23,24|31,32,33,34|]
- For higher-dimensional arrays, see slide 11

Careful: The indices of arrays start from 1 by default.

Declarations of Parameters and Variables

The MiniZinc Language

Modelling

```
1 int: n = 4;
2 par int: p;
3 p = 10;
4 set of int: Primes = {2,3,5,7,11,13};
5 var int: x;
6 var 0..23: hour = x + n;
7 var set of Primes: Taken;
```

- A parameter must be instantiated, once, to a literal; its declaration can be separated from its instantiation in the model (p), a datafile, the command line, or the IDE.
- A variable can be constrained at its declaration (hour).
- The domain of a decision variable can be tightened by replacing its type by a set of values of that type:
 - x must take an integer value.
 - hour must take an integer value between 0 and 23.
 - Taken must be a subset of {2,3,5,7,11,13}.

Array and Set Comprehensions

The MiniZinc Language

Modelling

Set Variables &Constraints An array or set can be built by a comprehension, using the notation $[\sigma|\gamma]$ or $\{\sigma|\gamma\}$, where σ is an expression evaluated for each element generated by the generator γ : a generator introduces one or more identifiers with values drawn from integer sets, optionally followed by a test.

Examples

```
1 [x * 2 | x in 1..8]
2     evaluates to [2,4,6,8,10,12,14,16]
3 [x * y | x, y in 1..3 where x < y]
4     evaluates to [2,3,6]
5 [x + 2*y | x in 1..3, y in 1..4]
6     evaluates to [3,5,7,9,4,6,8,10,5,7,9,11]
7 {x + 2*y | x in 1..3, y in 1..4}
8     evaluates to {3,4,5,6,7,8,9,10,11}</pre>
```


Indexing: Syntactic Sugar

For example,

sum(i, j in 1...5)(i*j)

is syntactic sugar for

sum([i*j | i, j in 1..5])

This works for any function or predicate that takes an array as unique argument. In particular:

```
forall(i in 1..9) (x[i+1] = x[i] + y[i]);
```

is syntactic sugar for

```
forall([x[i+1] = x[i] + y[i] | i in 1...9]);
```

where forall (array[int] of var bool: B) is a function that returns the conjunction of all expressions in B: it generalises the 2-ary logical-and connective $(/\)$.

Set Variables &Constraints

Modelling

The MiniZinc Language

Array Manipulation

The MiniZinc Language

Modelling

Set Variables &Constraints Changing the number of dimensions and their ranges, provided the numbers of elements match:

```
array1d(5..10,[|3,2|5,4|6,1|])
array2d(1..2,1..3,[2,7,3,7,4,9])
and so on, until array6d.
```

Tip: Try and keep your ranges starting from 1:

- It is easier to read a model under this usual convention.
- · Subtle errors may occur otherwise.
- \blacksquare Concatenation: for example, [1,2] ++ [3,4].

Subtyping

The MiniZinc Language

Modelling

Set Variables &Constraints A parameter can be used wherever a variable is expected. This extends to arrays: for example, a predicate or function expecting an argument of type <code>array[int]</code> of <code>var int</code> can be passed an argument of type <code>array[int]</code> of <code>int</code>.

The types bool and int are disjoint, but one can coerce from bool to int using the bool2int function:

bool2int(false) = 0 and bool2int(true) = 1.

This coercion is automatic but should be explicit for clarity.

In mathematics we use the Iverson bracket for this purpose: we define $[\phi] = 1$ iff formula ϕ is true, and $[\phi] = 0$ otherwise.

Option Variables

The MiniZinc Language

Modelling

Set Variables &Constraints An option variable is a decision variable that can also take the special value \perp , to be read "bottom".

A variable is declared optional with the keyword opt.

For example, var opt 1..4: x declares a variable x of domain $\{1, 2, 3, 4, \bot\}$.

We will not cover the use of option variables in this course. However, one can see them:

- In the documentation:

 var int is a subtype of var opt int.
- In error messages:
 This is probably a sign that a model is too complicated.

Constraints

The MiniZinc Language

Modelling

Set Variables &Constraints A constraint is the keyword constraint followed by a Boolean expression that must be true in every solution.

Examples

```
constraint x < y;
constraint sum(Q) = 0 /\ alldifferent(Q);
constraint if x < y then x = y else x > y endif;
```

Constraints separated by a semi-colon (;) are implicitly connected by the 2-ary logical-and connective ($/ \$).

What does constraint x = x + 1 mean? MiniZinc is declarative and has no destructive assignment: this equality constraint is not satisfied by any value for x.

Objective

The MiniZinc Language

Modelling

Set Variables &Constraints The solve item gives the objective of the problem:

- solve satisfy;
 The objective is to solve a satisfaction problem.
- solve minimize x;
 The objective is to minimise the value of variable x.
- solve maximize abs(x) * y;

 The objective is to maximise the value of the expression abs(x) * y.

MiniZinc does not support multi-objective optimisation yet: multiple objective functions must either be aggregated into a weighted sum, or be handled outside a MiniZinc model.

Output Command

The MiniZinc Language

Modelling

Set Variables &Constraints The output item prescribes what to print upon finding a solution: the keyword output is followed by a string array.

```
output [show(X)];
```

The function show returns a string representing the value of its argument expression.

```
output ["solution:"] ++ [if X[i]>0 then show(2*X[i])
++ ", " else " , " endif | i in 1..10];
```

The operator ++ concatenates two strings or two arrays.

```
"X = (X), " is equivalent to "X = "++show(X) ++",".
```


Tests

The MiniZinc Language

Modelling

Set Variables &Constraints Conditional expressions can be formulated as follows:

- Conditional: if θ then ϕ_1 else ϕ_2 endif
- Comprehension: [i | i in ρ where θ]

The expressions ϕ_1 and ϕ_2 must have the same type. Strong warning: The test θ after if or where can depend on variables: with great power comes great responsibility! For example:

```
enum N; set of int: M; array[N] of var M: X;
array[S] of var M: Y = [X[i] | i in N where X[i]>0];
constraint sum(Y) < 7;</pre>
```

This yields an error message with var opt (see slide 13) as the indices s cannot be determined when flattening and cannot just be set to s. But the following variant works:

```
constraint sum([X[i] | i in N where X[i]>0]) < 7;
```


Operators and Functions

The MiniZinc Language

Modelling

- Booleans: not, /\, \/, <->, ->, <-, xor, forall, exists, xorall, iffall, clause, bool2int Avoid arbitrarily nested Boolean expressions, such as forall...exists...forall...!
- Integers: +, -, *, div, mod, abs, pow, min, max, sum,
 product, =, <, <=, =>, >, !=, ...
 Avoid div, mod, and pow on variables, if possible!
- Sets: union, intersect, diff, symdiff, card, in, subset, superset, set2array, array_union, array intersect
- Strings: ++, concat, join
- Arrays: length, index_set, index_set_1of2, index_set_2of2,..., index_set_6of6, array1d, array2d,..., array6d

Predicates and Functions

The MiniZinc Language

Modelling

Set Variables &Constraints MiniZinc offers a large collection of predefined predicates and functions to enable a medium level at which models can be formulated: see Topic 3: Constraint Predicates.

Each predefined constrained function is defined by the use of the corresponding constraint predicate, possibly upon introducing a new variable.

Example

count (A, v) > m is replaced by count (A, v, c) / c > m.

It is also possible for modellers to define their own functions and predicates, as discussed at slide 24.

Reification

Reification enables the reasoning about the truth of a constraint or a Boolean expression.

Example

constraint x < y;

requires that x be smaller than y.

```
constraint b <-> x < y;
```

requires that the Boolean variable b be true if and only if (iff) x is smaller than y: the constraint x < y is said to be reified, and b is called its reification.

Reification is a powerful mechanism that enables:

- higher-level modelling;
- easier implementation of the logical connectives.

The MiniZinc Language Modelling

The expression bool2int (γ) , for a constraint or Boolean expression γ , is an integer expression, with the truth of γ represented by 1 and its falsity by 0.

The MiniZinc Language

Modelling

Set Variables &Constraints

Example (Cardinality constraint)

Constrain one or two of three constraints γ_1 , γ_2 , γ_3 to hold: bool2int (γ_1) +bool2int (γ_2) +bool2int (γ_3) in {1,2}

Reification comes with some drawbacks:

- Inference and relaxation may be poor: slow solving.
- Not all constraints can be reified in MiniZinc.

COCP / M4CO

Photo Problem)

An enumeration Persons of n people lines up for a photo. array[1..q,1..2] of Persons: Pref;

The MiniZinc Language

Modelling

Set Variables &Constraints Preference k in 1..q denotes that person Pref[k, 1] wants to be next to person Pref[k, 2]. Maximise the number of satisfied preferences.

Let decision variable Pos[p] denote the position in 1..n, in left-to-right order, of person p in Persons on the photo.

The array Pos must form a permutation of the positions:

```
constraint alldifferent(Pos);
```

The objective is:

```
solve maximize sum(k in 1..q)
( bool2int(abs(Pos[Pref[k,1]]-Pos[Pref[k,2]])=1));
```


Photo Problem)

An enumeration Persons of n people lines up for a photo. array[1..q,1..2] of Persons: Pref;

The MiniZinc Language Modelling

wodening

Set Variables &Constraints Preference k in 1..q denotes that person Pref[k, 1] wants to be next to person Pref[k, 2]. Maximise the number of satisfied preferences.

Let decision variable Pos[p] denote the position in 1..n, in left-to-right order, of person p in Persons on the photo.

The array Pos must form a permutation of the positions:

```
constraint alldifferent (Pos);
```

The objective is:

```
solve maximize sum(k in 1..q)
(          bool2int(abs(Pos[Pref[k,1]]-Pos[Pref[k,2]])=1));
```


Photo Problem)

An enumeration Persons of n people lines up for a photo. array[1..q,1..2] of Persons: Pref;

The MiniZinc Language Modelling

wodening

Set Variables &Constraints Preference k in 1..q denotes that person Pref[k, 1] wants to be next to person Pref[k, 2]. Maximise the number of satisfied preferences.

Let decision variable Pos[p] denote the position in 1..n, in left-to-right order, of person p in Persons on the photo.

The array Pos must form a permutation of the positions:

```
constraint alldifferent (Pos);
```

The objective is:

```
solve maximize sum(k in 1..q)
(          bool2int(abs(Pos[Pref[k,1]]-Pos[Pref[k,2]])=1));
```


Photo Problem)

An enumeration Persons of n people lines up for a photo. array[1..q,1..2] of Persons: Pref;

The MiniZinc Language Modelling

wodening

Set Variables &Constraints Preference k in 1..q denotes that person Pref[k, 1] wants to be next to person Pref[k, 2]. Maximise the number of satisfied preferences.

Let decision variable Pos[p] denote the position in 1..n, in left-to-right order, of person p in Persons on the photo.

The array Pos must form a permutation of the positions:

```
constraint alldifferent (Pos);
```

The objective is:

```
solve maximize sum(k in 1..q)
(          bool2int(abs(Pos[Pref[k,1]]-Pos[Pref[k,2]])=1));
```


The MiniZinc Language

Modelling

Set Variables &Constraints

Example (Soft Constraints: Weighted Photo Problem)

An enumeration Persons of n people lines up for a photo.

array[1..q,1..2] of Persons: Pref;

array[1..q] of int: Weight;

Preference k in 1..q denotes that person Pref[k,1]

wants to pay Weight[k] to be next to person Pref[k,2].

Maximise the weighted number of satisfied preferences.

Let decision variable Pos[p] denote the position in 1..n, in left-to-right order, of person p in Persons on the photo.

The array Pos must form a permutation of the positions:

```
constraint alldifferent (Pos);
```

The objective is:

```
solve maximize sum(k in 1..q)
(          bool2int(abs(Pos[Pref[k,1]]-Pos[Pref[k,2]])=1));
```


The MiniZinc Language

Modelling

Set Variables &Constraints

Example (Soft Constraints: Weighted Photo Problem)

An enumeration Persons of n people lines up for a photo.

array[1..q,1..2] of Persons: Pref;

array[1..q] of int: Weight;

Preference k in 1..q denotes that person Pref[k,1]

wants to pay Weight[k] to be next to person Pref[k,2].

Maximise the weighted number of satisfied preferences.

Let decision variable Pos[p] denote the position in 1..n, in left-to-right order, of person p in Persons on the photo.

The array Pos must form a permutation of the positions:

```
constraint alldifferent (Pos);
```

The objective is:

```
solve maximize sum(k in 1..q)
(Weight[k]*bool2int(abs(Pos[Pref[k,1]]-Pos[Pref[k,2]])=1));
```


Example (Sum of reified constraints)

The expression sum(i in 1..n) (bool2int(A[i]=v)) denotes the number of elements of array A that equal v.

This idiom is very common in constraint-based models. So:

Example (The count constraint predicate)

The constraint count(A, v, c) holds iff variable c has the number of variables of array A that equal variable v.

For other predicates, see Topic 3: Constraint Predicates.

Example (The count constrained function)

The expression count(A, v) denotes the number of variables of array A that equal variable v.

Functional constraint predicates are available as functions.

The MiniZinc Language

Modelling

Predicate and Function Definitions

The MiniZinc Language

Modelling

Set Variables &Constraints

```
Examples
```

```
function int: double(int: x);
function var int: double(var int: x);

predicate pos(var int: x);
function var bool: neg(var int: x);
```

A predicate can be used as a function returning var bool. For example, bool2int (pos(a)) can be used.

Function and predicate names can be overloaded.

The body of a predicate or function definition is an expression of the same type as the returned value.

The MiniZinc Language

Modelling

Set Variables &Constraints

```
Examples
```

```
function int: double(int: x) = 2 * x;
function var int: double(var int: x) = 2*x;

predicate pos(var int: x) = x > 0;
function var bool: neg(var int: x) = x < 0;</pre>
```

One can use if ... then ... else ... endif, predicates and functions, such as forall and exists, as well as let expressions (see next slide) in the body of a predicate or function definition.

Let Expressions

One can introduce local identifiers with a let expression.

Examples The MiniZing Language

```
Modelling
```

Set Variables &Constraints

```
1 function int: double(int: x) =
 let { int: y = 2 * x } in y;
3
4 function var int: double(var int: x) =
 let { var int: y = 2 * x } in y;
6
7 function var int: double(var int: x) =
   let { var int: y;
          constraint y = 2 * x
   } in y;
10
```

The 2nd and 3rd functions are equivalent: each use adds a decision variable to the model.

Constraints in Let Expressions

What is the difference between the next two definitions?

```
The MiniZinc 
Language
```

Modelling

Set Variables &Constraints

```
predicate posProd(var int: x, var int: y) =
let { var int: z; constraint z = x * y
} in z > 0;

predicate posProd(var int: x, var int: y) =
let { var int: z
} in z = x * y /\ z > 0;
```

Their behaviour is different in a negative context, such as not posProd(a,b):

- The 1st one then ensures a * b = z / z <= 0.
- The 2nd one then ensures a * b != z \/ z <= 0 and leaves a and b unconstrained

Using Predicates and Functions

Advantages of using predicates and functions in a model:

- Software engineering good practice:
 - Reusability
 - Readability
 - Modularity
- The model might be solved more efficiently:
 - Better common-subexpression elimination.
 - The definitions can be technology- or solver-specific.
 If a predefined constraint predicate is a built-in of a solver, then its solver-specific definition is empty!

The MiniZinc Language

Modelling

Remarks

The MiniZinc Language

Modelling

- The order of model items does not matter.
- One can include other files.
 Example: include "globals.mzn".
- The following functions are useful for debugging:
 - assert (θ , "error message") If the Boolean expression θ evaluates to false, then abort with the error message, otherwise return true.
 - trace ("message", ϕ)
 Print the message and return the expression ϕ .
 - . . .

Other Modelling Languages

The MiniZinc Language

Modelling

- OPL: https://www.ibm.com/analytics/ optimization-modeling-interfaces
- Comet: https://mitpress.mit.edu/books/constraint-based-local-search
- Essence and Essence':
 https://constraintmodelling.org
- Zinc: https://dx.doi.org/10.1007/s10601-008-9041-4
- AIMMS: https://aimms.com
- AMPL: https://ampl.com
- FICO Xpress Insight: https://www.fico.com/en/products/fico-xpress-insight
- GAMS: https://gams.com
- SMT-lib: http://www.smt-lib.org
-

Outline

The MiniZinc Language

Modelling

Set Variables &Constraints 1. The MiniZinc Language

2. Modelling

From a Problem to a Model

The MiniZinc Language

Modelling

Set Variables &Constraints What is a good model for a constraint problem?

- A model that correctly represents the problem
- A model that is easy to understand and maintain
- A model that is solved efficiently, that is:
 - short solving time to find one, all, or best solution(s)
 - · good solution within a limited amount of time
 - small search space (under constructive search)

Food for thought: What is correct, easy, short, good, ...?

Modelling Issues

The MiniZinc Language

Modelling

Set Variables &Constraints Modelling is still more an Art than a Science:

- Choice of the decision variables and their domains
- Choice of the constraint predicates, in order to model the objective function, if any, and the constraints
- Optional for CP and LCG:
 - Choice of the consistency for each constraint
 - Choice of the variable selection strategy for search
 - Choice of the value selection strategy for search

See Topic 8: Inference & Search in CP & LCG.

Make the model correct before making it efficient!

Choice of the Decision Variables

Examples (Alphametic Problems)

The MiniZinc Language

Modelling

Set Variables &Constraints SEND + MORE = MONEY:

Model without carry variables: 19 of 23 CP nodes visited:

$$1000 \cdot (S+M) + 100 \cdot (E+O) + 10 \cdot (N+R) + (D+E)$$

= 10000 \cdot M + 1000 \cdot O + 100 \cdot N + 10 \cdot E + Y

Model with carry variables: 23 of 29 CP nodes are visited:

$$D + E = 10 \cdot C_1 + Y \wedge N + R + C_1 = 10 \cdot C_2 + E$$

$$\wedge E + O + C_2 = 10 \cdot C_3 + N \wedge S + M + C_3 = 10 \cdot M + O$$

GERALD + DONALD = ROBERT:

The model with carry variables is more effective in CP: only 791 of 869 nodes are visited, rather than 13,795 of 16,651 search nodes for the model without carry variables.

Choice of the Constraint Predicates

The MiniZinc Language

Modelling

Set Variables &Constraints

Example (The alldifferent constraint predicate)

The constraint alldifferent ([A[i] | i in 1..n]) usually leads to faster solving than its definition by a conjunction of $\Theta(n^2)$ disequality constraints:

```
forall(i, j in 1..n where i < j) (A[i]!=A[j])
```

For more examples, see Topic 3: Constraint Predicates.

Guidelines: Reveal Problem Structure

The MiniZinc Language

Modelling

Set Variables &Constraints

- Use few decision variables.
- Give tight domains to the decision variables.
- Avoid division and power constraints (div, mod, pow).
- Avoid the disjunction of constraints $(\/\/, <-, ->, <->)$.
- Express the problem concisely (Topic 3: Constraint Predicates).
- Precompute solutions to a sub-problem into a table (Topic 3: Constraint Predicates, Topic 4: Modelling).
- Use implied constraints (Topic 4: Modelling).
- Use different viewpoints (Topic 4: Modelling).
- Exploit symmetries (Topic 5: Symmetry).

Careful: These guidelines of course have their exceptions! It is important to test empirically several combinations of model, solver, and solving technology.

Use Few Decision Variables

The MiniZinc Language

Modelling

Set Variables &Constraints When appropriate, use a single integer variable instead of an array of Boolean variables:

Example

Assume Joe must be assigned to exactly one task in 1..n:

- Use a single integer variable, var 1..n: joesTask, representing which task Joe is assigned to.
- Don't use array[1..n] of var bool:joesTask, each element joesTask[t] representing whether (true) or not (false) Joe is assigned to task t, plus count (joesTask, true) = 1.

When appropriate, use a single set variable instead of an array of Boolean or integer variables: see slides 46 and 48.

Give Tight Domains to the Variables

The MiniZinc Language

Modelling

Set Variables &Constraints Without doing all the work of the solver, manually tightening the domains of the variables may accelerate the solving. In particular, try and avoid var int:

Example

If the integer variable s represents the starting time of some task, then declare its domain with var 0..horizon: s, where horizon is suitably large, rather than var int: s.

Domain information may be exploited during flattening, so avoid setting a domain by constraints:

Counterexample

Do not reformulate var 0..horizon: s as follows:

```
var int: s; constraint 0<=s /\ s<=horizon;</pre>
```


Avoid Division and Power Constraints

The use of div and mod often slows the solving down. Try and use \star or table (see Topic 3: Constraint Predicates).

The MiniZinc Language

Example

Modelling

Set Variables &Constraints

```
constraint q = x \operatorname{div} k / r = x \operatorname{mod} k;
over variables x, q, r and parameter k is equivalent to
  constraint x = q * k + r; var 0..k-1: r;
Similarly,
  solve minimize sum(X) div n; % minimise the average
over n variables X[i] and parameter n is equivalent to
  solve minimize sum(X); % minimise the sum
  output [show(sum(X) div n)]; % output the average
```

Try and avoid constraints containing pow(x, y) for x^y .

Avoid the Disjunction of Constraints

The MiniZinc Language

Modelling

Set Variables &Constraints The disjunctive combination of constraints (with \setminus /, <-, ->, or <->) often makes the solving slow. Try and express disjunctive combinations of constraints otherwise.

Example

```
constraint x = 0 \/ x = 9;
is logically equivalent to
  constraint x in {0,9};
and, even better, to
```

var {0,9}: x;

Disjunction or other sources of slow solving may also be introduced by not, so try and avoid negation as well.

Example

The MiniZinc Language

Modelling

Set Variables &Constraints

```
constraint b \rightarrow x = 9;
constraint (not b) \rightarrow x = 0;
```

is logically equivalent to (recall that bool2int (true) =1)

```
constraint x = 9 * bool2int(b);
```

and to (note that array indexing starts at 1)

```
constraint x = [0, 9][1+bool2int(b)];
```

But beware of such premature fine-tuning of a model!

The following versions are clearer and often good enough:

```
constraint x = if b then 9 else 0 endif;
```

and

```
constraint if b then x=9 else x=0 endif;
```


Express the Problem Concisely

The MiniZinc Language

Modelling

Set Variables &Constraints Whenever possible, use a single predefined constraint predicate instead of a long-winded formulation.

Example (The alldifferent constraint predicate)

The constraint alldifferent ([A[i] | i in 1..n]) usually leads to faster solving than its definition by a conjunction of $\Theta(n^2)$ disequality constraints:

```
forall(i, j in 1... where i < j) (A[i]!=A[j])
```

For more examples, see Topic 3: Constraint Predicates.

Outline

The MiniZinc Language

Modelling

Set Variables &Constraints 1. The MiniZinc Language

2. Modelling

3. Set Variables & Constraints

Motivating Example 1

The MiniZinc Language Modelling

Set Variables &Constraints

Example (Agricultural experiment design, AED)

	plot1	plot2	plot3	plot4	plot5	plot6	plot7
barley							
corn							
millet							
oats							
rye							
spelt wheat							
wheat							

Constraints to be satisfied:

- 1 Equal growth load: Every plot grows 3 grains.
- 2 Equal sample size: Every grain is grown in 3 plots.
- 3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

Motivating Example 1

The MiniZinc Language

Modelling
Set Variables
&Constraints

Example (Agricultural experiment design, AED)

	plot1	plot2	plot3	plot4	plot5	plot6	plot7
barley	√	1	✓	_	_	_	_
corn	✓	_	_	✓	✓	_	_
millet	✓	_	_	_	_	✓	✓
oats	_	1	_	✓	_	✓	_
rye	_	1	_	_	✓	_	✓
spelt	_	_	✓	\	_	ı	✓
wheat	_	_	√	_	1	1	_

Constraints to be satisfied:

- 1 Equal growth load: Every plot grows 3 grains.
- 2 Equal sample size: Every grain is grown in 3 plots.
- 3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

Example (BIBD *integer* model: $\checkmark \rightsquigarrow 1$ and $- \rightsquigarrow 0$)

```
The MiniZinc
Language
Modelling
```

Set Variables &Constraints

```
1 int: nbrBlocks; int: nbrVarieties;
2 set of int: Blocks = 1..nbrBlocks;
3 set of int: Varieties = 1..nbrVarieties;
4 int: blockSize; int: sampleSize; int: balance;
5 array[Varieties,Blocks] of var 0..1: BIBD;
6 solve satisfy;
7 constraint forall(b in Blocks)
8 (blockSize = sum(BIBD[..,b]));
9 constraint forall(v in Varieties)
10 (sampleSize = sum(BIBD[v,.]));
11 constraint forall(v, w in Varieties where v < w)
12 (balance = sum(b in Blocks) (BIBD[v,b]*BIBD[e,b]));</pre>
```

At Topic 1: Introduction, we used count instead of sum.

Example (Instance data for our AED)

```
1 nbrBlocks = 7; nbrVarieties = 7;
2 blockSize = 3; sampleSize = 3; balance = 1;
```


The MiniZinc Language Modelling

Set Variables &Constraints

Example (Idea for another BIBD model)

barley	{plot1, plot2, plo	}	
corn	{plot1,	plot4, plot5	}
millet	{plot1,	plot6	s, plot7}
oats	{ plot2,	plot4, plot6	}
rye	{ plot2,	plot5,	plot7}
spelt	{ plo	plot7}	
wheat	{ plo	ot3, plot5, plot6	}

Constraints to be satisfied:

- 1 Equal growth load: Every plot grows 3 grains.
- Equal sample size: Every grain is grown in 3 plots.
- 3 Balance: Every grain pair is grown in 1 common plot.

COCP / M4CO - 46 -

The MiniZinc Language

Set Variables

&Constraints

Modelling

Example (BIBD set model: a block set per variety)

```
1 . . .
3 . . .
5 array[Varieties] of var set of Blocks: BIBD;
6 . . .
7 . . .
8 (blockSize =
    sum(v in Varieties)(bool2int(b in BIBD[v]));
10 (sampleSize = card(BIBD[v]));
11
12 (balance = card(BIBD[v] intersect BIBD[w]));
```

At Topic 1: Introduction, bool2int was not covered yet.

Example (Instance data for our AED)

```
1 nbrBlocks = 7; nbrVarieties = 7;
2 blockSize = 3; sampleSize = 3; balance = 1;
```


Motivating Example 2¹

The MiniZinc Language Modelling

Set Variables &Constraints

Example (Hamming code: problem)

The Hamming distance between two same-length strings is the number of positions at which the two strings differ. Examples: h(10001, 01001) = 2 and h(11010, 11110) = 1.

ASCII has codewords of m = 8 bits for $n = 2^m$ symbols, but the least Hamming distance is d = 1: no robustness!

Toward high robustness in data transmission, we want to generate a codeword of m bits for each of the n symbols of an alphabet, such that the Hamming distance between any two codewords is at least some given constant d.

¹Based on material by Christian Schulte

The MiniZinc Language Modelling

Set Variables &Constraints

Example (Hamming code: model)

We encode a codeword of m bits as the set of positions of its unit bits, the least significant bit being at position 1. Example: 10001 is encoded as $\{1,5\}$, and 01001 as $\{1,4\}$. In general: $b_m \cdots b_1$ is encoded as $\{1 \cdot b_1, \ldots, m \cdot b_m\} \setminus \{0\}$. So the Hamming distance between two codewords is u - i, where u is the size of the union of their encodings and i is the size of the intersection of their encodings, that is the size of the symmetric difference of their encodings. Hence:

```
array[1..n] of var set of 1..m: C;
constraint forall(i, j in 1..n where i < j)
  (card(C[i] symdiff C[j]) >= d);
```

Definition

A set (decision) variable takes a set as value, and has a set of sets as domain. For its domain to be finite, a set variable must be a subset of a finite set.

Set-constraint predicates exist for the following semantics:

■ Cardinality: |S| = n

■ Membership: $n \in S$

■ Equality: $S_1 = S_2$

■ Disequality $S_1 \neq S_2$

■ Subset: $S_1 \subseteq S_2$

■ Union: $S_1 \cup S_2 = S_3$

■ Intersection: $S_1 \cap S_2 = S_3$

■ Difference: $S_1 \setminus S_2 = S_3$

■ Symmetric difference: $(S_1 \cup S_2) \setminus (S_1 \cap S_2) = S_3$

■ Order: $S_1 \subseteq S_2 \vee \min((S_1 \setminus S_2) \cup (S_2 \setminus S_1)) \in S_1$

■ Strict order: $S_1 \subset S_2 \vee \min((S_1 \setminus S_2) \cup (S_2 \setminus S_1)) \in S_1$

where the S_i are set variables and n is an integer variable. Avoid set variables in M4CO: few solvers support them well.

Language Modelling

The MiniZinc

Set Variables &Constraints