In this lab, we will go over the basic patterns of automata design that you will see through your study of the theory of computation. Studying these patterns should:

- Reinforce your knowledge of how finite automata operate.
- Give you a toolbox of fundamental patterns for designing automata.
- Give you a sense of what is possible and what is not possible with finite automata.

#1 Connect the Dots

Answer the following questions about the fundamental definitions that connect languages, machines, and computation.

- 1. What do the metavariables Σ and L traditionally represent? Give a concrete example that covers each.
- 2. What are the types of the five components of a finite automata: $(Q, \Sigma, \delta, q_0, F)$?
- 3. What does L(M) conventionally mean? If L(M) = A, what is the relationship between M and A?
- 4. If we want to prove that "M accepts string w," what we must we do?

#2 Tracing the Lines

Consider the following sample deterministic finite automata, D, over the alphabet $\Sigma = \{0, 1\}$:

- 1. Give execution traces, i.e., the series of states that the DFA steps through on the following input strings. Also state whether D accepts the given input string. Make sure to give each of your group members a chance to take the lead in creating these traces.
 - (a) 01100
 - (b) 101101
 - (c) 11111
 - (d) ϵ (the empty string)

- (e) 1010101
- 2. Importantly, we can each think of state of a finite automata as encoding a property about the current computation, i.e., some property of the set of characters read so far. Based on the traces you wrote above, give an appropriate property for each of q_0 , q_1 , q_2 , and q_3 solely in terms of the input read so far after arriving at that state, not about the various parts of the DFA.
- 3. Using these traces and the properties you wrote down for each state, give a formal description of L(D).

#3 DFA Design

For each language L_1 through L_7 , build a DFA that recognizes that language. Throughout, $\Sigma = \{0, 1\}$. Please formally specify δ and describe which states are accept states. You may specify δ as a table. I also encourage you to draw first each as a state diagram, but this needn't be typeset and turned in.

- 1. **Emptiness**: $L_1 = \emptyset$, i.e. the empty set of strings.
- 2. Everything: $L_2 = \Sigma^*$, i.e., the set of all possible strings.
- 3. Constants: $L_3 = \{0110\}$, the singleton set containing the string 0110.
- 4. Prefixes and Suffixes: $L_4 = \{01x10 \mid x \in \Sigma^*\}.$
- 5. Parity: $L_5 = \{ x \mid x \in \Sigma^*, x \text{ has an even number of 0s } \}.$
- 6. Counts: $L_6 = \{ x \mid x \in \Sigma^*, x \text{ contains } at \text{ least three 1s} \}.$
- 7. Constraints: $L_7 = \{ x \mid x \in \Sigma^*, x \text{ does not contain } 01 \}.$