

Max - Min Heap

- Öncelikli kuyruk konusunu hatırlayın. Kuyruğa sonradan eklenmesine rağmen öncelik seviyesine göre önce çıkabiliyordu.
- Öncelik kuyruğu oluşturmada farklı veri yapıları benimsenebilir.
 Yığınlar bunlardan sadece biridir.
- Tam ikili ağaç, yığıt kurmak amacıyla kullanılabilir. Yığınlar ise bir dizide gerçekleştirilebilir.
- Yığını dizide tam ikili ağaç yapısını kullanarak gerçekleştirdiğimizde yığın, dizinin 1. elemanından başlar, 0. indis kullanılmaz. Dizi sıralı değildir, yalnız 1. indisteki elemanın en öncelikli (ilk alınacak) eleman olduğu garanti edilir.

Max - Min Heap

 Yığın denince aklımıza complete binary tree gelecek, search tree değil. Hatırlayalım; tam ikili ağacın tüm düzeyleri dolu, son düzeyi ise soldan sağa doğru doludur. İkili arama ağacı ile yığın arasında ise bir bağlantı yoktur.

Tanım:

- Tam ikili ağaçtaki her düğümün değeri çocuklarından küçük değilse söz konusu ikili ağaç maksimum yığın (max heap) olarak isimlendirilir.
- Tam ikili ağaçtaki her düğümün değeri, çocuklarından büyük değilse söz konusu ikili ağaç minimum yığın (min heap) olarak isimlendirilir.

Max - Min Heap

Maksimum Öncelikli Kuyruğa Öğe Ekleme

- o Sırasıyla 15, 109, 107, 3, 15 değerleri eklenecektir. En iyi durumda $\Omega(1)$ 'de de ekleme yapılır (3'ün eklemesi).
- Mevcut tüm elemanlardan daha büyük bir öğe eklendiğinde ise yeni öğenin köke kadar kaydırılması gerekeceği için O(Ign)'de ekleme yapıldığını görüyoruz (109'un eklenmesi). Yani karmaşıklığın üst sınırı Ign, alt sınırı ise 1 olur. Gerçekte karmaşıklık bu ikisi arasında değişebilir. Bu durumda zaman karmaşıklığı O(Ign) 'dir.