TEST REPORT

Reference No. WTS14S1221309E

FCC ID...... 2ACQ5LTB210

Applicant : Revogi Innovation Co., Ltd.

Guangdong, China

Manufacturer: SkyRC Technology Co., Ltd.

Guihua, Guanlan, 518110, Baoan District, Shenzhen, China

Product Name : Smart LED Strip Controller

 Model No.
 LTB210

 Brand.
 Revogi

Standards.....: FCC CFR47 Part 15 Section 15.247:2014

Date of Receipt sample..... : Dec. 12, 2014

Date of Issue Dec. 31, 2014

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Philo Zhong

Zero Zhou / Project Engineer

Reference No.: WTS14S1221309E Page 2 of 39

2 Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

	COVER RACE	Page
1 2	TEST SUMMARY	
3	CONTENTS	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
6	CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	
7	RADIATED EMISSIONS	12
	7.1 EUT OPERATION	
8	BAND EDGE MEASUREMENT	10
9	8.1 TEST PRODUCE	
,	9.1 TEST PROCEDURE:	2
10	MAXIMUM PEAK OUTPUT POWER	24
	10.1 TEST PROCEDURE: 10.2 TEST RESULT: 10.2	
11		
	11.1 TEST PROCEDURE:	
12	ANTENNA REQUIREMENT	
13	RF EXPOSURE	3
1/1	PHOTOGRAPHS _MODEL TR210 TEST SETUP	3

Reference No.: WTS14S1221309E Page 4 of 39

	14.1	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	33
	14.2	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	
15	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	35
	15.1	Model LTB210 External View	35
	15.2	Model LTB210 - Internal Photos	37
	15.3	RF Modul F Photos	30

Reference No.: WTS14S1221309E Page 5 of 39

4 General Information

4.1 General Description of E.U.T.

Product Name :Smart LED Strip Controller

Model No. :LTB210

Model Description : N/A

Bluetooth Version : 4.0(including Bluetooth low energy only)
Frequency Range : 2402-2480MHz, 40(BLE) Channels in total

Antenna installation : PCB Printed Antenna

Antenna Gain : 0 dBi

Type of Modulation : GFSK

EIRP : -0.1 dBm

The Lowest Oscillator :32.768kHz

4.2 Details of E.U.T.

Technical Data DC 12V

4.3 Channel List

BT BLE

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No. (MHz)		No.	(MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

Reference No.: WTS14S1221309E Page 6 of 39

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	BT BLE	1 Mbps	1/19/39	TX
Power Spectral Density	BT BLE	1 Mbps	1/19/39	TX
6dB Bandwidth	BT BLE	1 Mbps	1/19/39	TX
Band Edge	BT BLE	1 Mbps	1/19/39	TX
Frequency Range	BT BLE	1 Mbps	1/19/39	TX
Transmitter Spurious Emissions	BT BLE	1 Mbps	1/19/39	TX

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory 'has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Reference No.: WTS14S1221309E Page 7 of 39

5 Equipment Used during Test

5.1 Equipments List

Conducted Emissions Test Site 1#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.15,2014	Sep.14,2015		
2.	LISN	R&S	ENV216	101215	Sep.15,2014	Sep.14,2015		
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2014	Sep.14,2015		
Condu	cted Emissions Test \$	Site 2#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2014	Sep.14,2015		
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2014	Sep.14,2015		
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2014	Sep.14,2015		
4.	Cable	LARGE	RF300	-	Sep.15,2014	Sep.14,2015		
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2014	Sep.14,2015		
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2014	Sep.14,2015		
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2014	Apr.18,2015		
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2014	Sep.14,2015		
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2014	Apr.18,2015		
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2014	Apr.18,2015		
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2014	Mar.16,2015		
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2014	Apr.09,2015		
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#				
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date		
1	Test Receiver	R&S	ESCI	101296	Sep.15,2014	Sep.14,2015		
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2014	Sep.14,2015		
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2014	Sep.14,2015		
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2014	Sep.14,2015		

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

RF Conducted Testing								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2014	Sep.14,2015		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2014	Sep.14,2015		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2014	Sep.14,2015		

5.2 Description of Support Units

Equipment Manufacturer		Model No.	Series No.	
Adapter	Ktec	K1200100FU	N/A	

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
De diete d Occuriente Francisco de de	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S1221309E Page 9 of 39

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode(BT BLE), the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTS14S1221309E Page 10 of 39

Conducted Emission Test Result 6.4

Neutral line:

Reference No.: WTS14S1221309E Page 12 of 39

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.4:2003

Test Result: PASS
Measurement Distance: 3m

Limit:

Liiiit.	Littit.							
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist					
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m				
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80				
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40				
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40				
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾				
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾				
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾				
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾				

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode(BT BLE), the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS14S1221309E Page 14 of 39

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

	y=0. 00.00p	
Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	z	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS14S1221309E Page 15 of 39

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.

A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Reference No.: WTS14S1221309E Page 16 of 39

7.6 Summary of Test Results

BT BLE:

Test Frequency: 32.768kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Frequency Receiver Reading	Receiver		Turn	RX An	tenna	Corrected	Corrected		
	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	Low Channel 2402MHz								
166.63	23.25	PK	139	1.1	Н	17.01	40.26	43.50	-3.24
166.65	22.04	PK	257	1.3	V	17.01	39.05	43.50	-6.95
4804.00	53.91	PK	242	1.4	V	-1.06	52.85	74.00	-21.15
4804.00	47.80	Ave	242	1.4	V	-1.06	46.74	54.00	-7.22
7206.00	49.98	PK	346	1.1	V	1.33	51.31	74.00	-22.79
7206.00	45.42	Ave	346	1.1	V	1.33	46.75	54.00	-7.17

_	Receiver Detector	Turn	RX Antenna		Corrected	Corrected			
Frequency		Detector	Detector table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	Middle Channel 2440MHz								
166.63	23.76	PK	5	1.4	Н	17.01	40.77	43.50	-2.73
166.63	23.00	PK	288	1.5	V	17.01	40.01	43.50	-3.49
4880.00	53.23	PK	270	1.3	V	-0.62	52.61	74.00	-21.39
4880.00	47.11	Ave	270	1.3	V	-0.62	46.27	54.00	-7.73
7320.00	49.18	PK	353	1.3	V	2.21	51.39	74.00	-22.61
7320.00	45.48	Ave	353	1.3	V	2.21	47.69	54.00	-6.31

Reference No.: WTS14S1221309E Page 17 of 39

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	High Channel 2480MHz								
166.63	24.02	PK	81	1.9	Н	17.01	41.03	43.50	-2.47
166.63	23.07	PK	242	1.8	V	17.01	40.08	43.50	-3.42
4960.00	53.66	PK	324	1.6	V	-0.24	53.42	74.00	-20.58
4960.00	47.04	Ave	324	1.6	V	-0.24	46.80	54.00	-7.20
7440.00	50.75	PK	256	1.6	V	2.84	53.59	74.00	-20.41
7440.00	45.13	Ave	256	1.6	V	2.84	47.77	54.00	-6.23

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS14S1221309E Page 18 of 39

8 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB 558074 D01 v03r02 06/05/2014

Test Mode: Transmitting

8.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Test result plots shown as follows:

TX BLE: Band edge-right side

Reference No.: WTS14S1221309E Page 20 of 39

Reference No.: WTS14S1221309E Page 21 of 39

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB 558074 D01 v03r02 06/05/2014

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

Operation mode	Bandwidth (MHz)			
	Channel 1	Channel 20	Channel 40	
BT BLE	0.659	0.659	0.659	

Test result plot as follows:

Reference No.: WTS14S1221309E Page 24 of 39

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB 558074 D01 v03r02 06/05/2014

10.1 Test Procedure:

KDB 558074 D01 v03r02 06/05/2014

section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a)Set the RBW DTS bandwidth.
- b)Set VBW 3 RBW.
- c)Set span 3 x RBW
- d)Sweep time = auto couple.
- e)Detector = peak.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use peak marker function to determine the peak amplitude level.

section 9.1.2

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1 MHz.
- b)Set the VBW 3 RBW
- c)Set the span 1.5 x DTS bandwidth.
- d)Detector = peak.
- e)Sweep time = auto couple.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

Reference No.: WTS14S1221309E Page 25 of 39

10.2 Test Result:

	Test mode : TX BT BLE					
	10 Maximum Peak Output Power (dBm)					
2402MHz	2402MHz 2440MHz 2480MHz					
-4.32 -4.44 -5.19						
Limit						
	1W/30dBm					

Reference No.: WTS14S1221309E Page 27 of 39

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB 558074 D01 v03r02 06/05/2014

11.1 Test Procedure:

KDB 558074 D01 v03r02 06/05/2014 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

	Test mode : TX BT BLE					
	Power Spectral (dBm per 3kHz)					
2402MHz	2402MHz 2440MHz 2480MHz					
-20.76	-20.76 -20.17 -21.32					
Limit						
	8dBm per 3kHz					

Mode: TX BT BLE channel 0

Mode: TX BT BLE channel 39

Reference No.: WTS14S1221309E Page 29 of 39

12 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna fulfill the requirement of this section.

Reference No.: WTS14S1221309E Page 31 of 39

13 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ² or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

13.3 MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

Reference No.: WTS14S1221309E Page 32 of 39

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (numeric)	Max.Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
1.000	-0.1	0.79	0.000158	1

14 Photographs – Model LTB210 Test Setup

14.1 Photograph – Conducted Emission Test Setup Test Site 2#

14.2 Photograph – Radiation Spurious Emission Test Setup 32.768kHz ~30MHz Test Site 2#

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

15 Photographs - Constructional Details

15.1 Model LTB210 External View

Reference No.: WTS14S1221309E Page 36 of 39

15.2 Model LTB210 - Internal Photos

Reference No.: WTS14S1221309E Page 38 of 39

15.3 RF Module Photos

====End of Report=====