1. Amazon Sales Data

Description

This dataset contains information on **1K+** Amazon products, including their ratings, reviews, and other details.

Features

- product id: Unique identifier for each product
- **product_name**: Name of the product
- category: Category of the product
- discounted_price: Discounted price of the product
- actual price: Actual price of the product
- discount percentage: Percentage of discount for the product
- rating: Rating of the product (1-5)
- rating count: Number of people who voted for the Amazon rating
- **about product**: Description of the product
- user id: ID of the user who wrote the review
- user_name: Name of the user who wrote the review
- review_id: Unique identifier for the review
- review title: Short review title
- review_content: Full content of the review
- img link: Image link of the product
- **product_link**: Official website link for the product

Source

Amazon Sales Data

```
In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In []: dfl=pd.read_csv("./amazon.csv")
dfl
```

Out[]:		product_id	product_name	cate
	0	B07JW9H4J1	Wayona Nylon Braided USB to Lightning Fast Cha	Computers&Accessories Accessories&Peripher
	1	B098NS6PVG	Ambrane Unbreakable 60W / 3A Fast Charging 1.5	Computers&Accessories Accessories&Peripher
	2	B096MSW6CT	Sounce Fast Phone Charging Cable & Data Sync U	Computers&Accessories Accessories&Peripher
	3	B08HDJ86NZ	boAt Deuce USB 300 2 in 1 Type-C & Micro USB S	Computers&Accessories Accessories&Peripher
	4	B08CF3B7N1	Portronics Konnect L 1.2M Fast Charging 3A 8 P	Computers&Accessories Accessories&Peripher
	1460	B08L7J3T31	Noir Aqua - 5pcs PP Spun Filter + 1 Spanner	Home&Kitchen Kitchen&HomeAppliances WaterP
	1461	B01M6453MB	Prestige Delight PRWO Electric Rice Cooker (1 	Home&Kitchen Kitchen&HomeAppliances SmallKi
	1462	B009P2LIL4	Bajaj Majesty RX10 2000 Watts Heat Convector R	Home&Kitchen Heating,Cooling&AirQuality Room
	1463	B00J5DYCCA	Havells Ventil Air DSP 230mm Exhaust Fan (Pist	Home&Kitchen Heating,Cooling&AirQuality Far
	1464	B01486F4G6	Borosil Jumbo 1000-Watt Grill Sandwich Maker (Home&Kitchen Kitchen&HomeAppliances SmallKi

1465 rows × 16 columns

Q1. What is the average rating for each product category?

```
In [ ]: dfl.columns
Out[ ]: Index(['product_id', 'product_name', 'category', 'discounted_price',
                'actual_price', 'discount_percentage', 'rating', 'rating_count',
                'about_product', 'user_id', 'user_name', 'review_id', 'review_titl
        e',
                'review content', 'img link', 'product link'],
              dtype='object')
In [ ]: df1["rating"] = df1["rating"].replace('|', float('nan')).astype("float64")
In [ ]: df1["rating"]
                 4.2
Out[]: 0
                 4.0
        1
        2
                 3.9
        3
                4.2
        4
                4.2
        1460
                4.0
        1461
                4.1
        1462
                3.6
        1463
                4.0
                4.3
        1464
        Name: rating, Length: 1465, dtype: float64
        Average rating for each category:
In [ ]: | average rating=dfl.groupby("category")["rating"].mean()
In [ ]: average rating.round(2)
```

```
Out[]: category
        Car&Motorbike|CarAccessories|InteriorAccessories|AirPurifiers&Ionizers
        Computers&Accessories|Accessories&Peripherals|Adapters|USBtoUSBAdapters
        Computers&Accessories|Accessories&Peripherals|Audio&VideoAccessories|PCHead
                                                     3.50
        Computers&Accessories|Accessories&Peripherals|Audio&VideoAccessories|PCMicr
        ophones
                                                     3.60
        Computers&Accessories|Accessories&Peripherals|Audio&VideoAccessories|PCSpea
        kers
        OfficeProducts|OfficePaperProducts|Paper|Stationery|Pens,Pencils&WritingSup
        plies|Pens&Refills|GelInkRollerballPens
        OfficeProducts|OfficePaperProducts|Paper|Stationery|Pens,Pencils&WritingSup
        plies|Pens&Refills|LiquidInkRollerballPens
        OfficeProducts|OfficePaperProducts|Paper|Stationery|Pens,Pencils&WritingSup
        plies|Pens&Refills|RetractableBallpointPens
                                                     4.30
        OfficeProducts|OfficePaperProducts|Paper|Stationery|Pens,Pencils&WritingSup
        plies|Pens&Refills|StickBallpointPens
                                                     4.13
        Toys&Games|Arts&Crafts|Drawing&PaintingSupplies|ColouringPens&Markers
        4.30
        Name: rating, Length: 211, dtype: float64
In [ ]: print("Overall average rating:",average rating.mean())
      Overall average rating: 4.129893157821581
In [ ]: dfl.columns
       Index(['product id', 'product name', 'category', 'discounted price',
Out[ ]:
               'about product', 'user id', 'user_name', 'review_id', 'review_titl
        e',
               'review content', 'img link', 'product link'],
              dtype='object')
       Q2 What are the top rating count products by category?
In [ ]: df1["rating count"].fillna(0, inplace=True)
In [ ]: df1["rating count"].replace(",", "", regex=True, inplace=True)
        #df1["rating"] = df1["rating"]
```

In []: df1["rating count"].astype("int64")

```
Out[ ]: 0
                24269
        1
                43994
        2
                7928
        3
                94363
        4
                16905
                . . .
        1460
                 1090
        1461
                 4118
        1462
                  468
        1463
                 8031
        1464
                 6987
        Name: rating_count, Length: 1465, dtype: int64
In [ ]: df1["rating_count"] = df1["rating_count"].astype(int)
        df_2 = df1[df1["rating_count"].notnull()]
In [ ]: df_2
```

Out[]:		product_id	product_name	cate
	0	B07JW9H4J1	Wayona Nylon Braided USB to Lightning Fast Cha	Computers&Accessories Accessories&Peripher
	1	B098NS6PVG	Ambrane Unbreakable 60W / 3A Fast Charging 1.5	Computers&Accessories Accessories&Peripher
	2	B096MSW6CT	Sounce Fast Phone Charging Cable & Data Sync U	Computers&Accessories Accessories&Peripher
	3	B08HDJ86NZ	boAt Deuce USB 300 2 in 1 Type-C & Micro USB S	Computers&Accessories Accessories&Peripher
	4	B08CF3B7N1	Portronics Konnect L 1.2M Fast Charging 3A 8 P	Computers&Accessories Accessories&Peripher
	1460	B08L7J3T31	Noir Aqua - 5pcs PP Spun Filter + 1 Spanner	Home&Kitchen Kitchen&HomeAppliances WaterP
	1461	B01M6453MB	Prestige Delight PRWO Electric Rice Cooker (1 	Home&Kitchen Kitchen&HomeAppliances SmallKi
	1462	B009P2LIL4	Bajaj Majesty RX10 2000 Watts Heat Convector R	Home&Kitchen Heating,Cooling&AirQuality Room
	1463	B00J5DYCCA	Havells Ventil Air DSP 230mm Exhaust Fan (Pist	Home&Kitchen Heating,Cooling&AirQuality Far
	1464	B01486F4G6	Borosil Jumbo 1000-Watt Grill Sandwich Maker (Home&Kitchen Kitchen&HomeAppliances SmallKi

 $1465 \text{ rows} \times 16 \text{ columns}$

Top 10 rating_count products by rating_counts:

Out[

]:		category	product_name	rating_cou
	12	Electronics HomeTheater,TV&Video Accessories C	AmazonBasics Flexible Premium HDMI Cable (Blac	4269
	47	Electronics HomeTheater,TV&Video Accessories C	Amazon Basics High-Speed HDMI Cable, 6 Feet	4269
	65	Electronics HomeTheater,TV&Video Accessories C	Amazon Basics High-Speed HDMI Cable, 6 Feet (2	42697
	684	Electronics HomeTheater,TV&Video Accessories C	AmazonBasics Flexible Premium HDMI Cable (Blac	42697
	352	Electronics Headphones,Earbuds&Accessories Hea	boAt Bassheads 100 in Ear Wired Earphones with	3637:
	400	Electronics Headphones,Earbuds&Accessories Hea	boAt Bassheads 100 in Ear Wired Earphones with	3637
	584	Electronics Headphones,Earbuds&Accessories Hea	boAt BassHeads 100 in-Ear Wired Headphones wit	3637:
	370	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9 Activ (Carbon Black, 4GB RAM, 64GB Sto	3138:
	371	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9A Sport (Coral Green, 2GB RAM, 32GB Sto	3138
	473	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9A Sport (Carbon Black, 2GB RAM, 32GB St	31383

Out[]:		category	product_name	rating_
	12	Electronics HomeTheater,TV&Video Accessories C	AmazonBasics Flexible Premium HDMI Cable (Blac	4
	65	Electronics HomeTheater,TV&Video Accessories C	Amazon Basics High-Speed HDMI Cable, 6 Feet (2	4
	47	Electronics HomeTheater,TV&Video Accessories C	Amazon Basics High-Speed HDMI Cable, 6 Feet	4
	684	Electronics HomeTheater,TV&Video Accessories C	AmazonBasics Flexible Premium HDMI Cable (Blac	4
	400	Electronics Headphones,Earbuds&Accessories Hea	boAt Bassheads 100 in Ear Wired Earphones with	3
	1344	Home&Kitchen Heating,Cooling&AirQuality RoomHe	Longway Blaze 2 Rod Quartz Room Heater (White,	
	1309	Home&Kitchen Heating,Cooling&AirQuality RoomHe	Khaitan ORFin Fan heater for Home and kitchen	
	1459	Home&Kitchen Kitchen&HomeAppliances Vacuum,Cle	NGI Store 2 Pieces Pet Hair Removers for Your	
	324	Computers&Accessories Accessories&Peripherals	REDTECH USB- C to Lightning Cable 3.3FT, [Apple	

1465 rows × 3 columns

282

```
In []: #top 10 rating_count products by category:
    top_10_products = df_2.groupby("category").apply(lambda x: x.nlargest(10, "r
    top_10_products = top_10_products[["category", "product_name", "rating_count
    top_10_products.sort_values(by="rating_count",ascending=False)[0:20]
```

Computers&Accessories|Accessories&Peripherals|...

Amazon Brand - Solimo 65W

Fast Charging Braide...

288	Electronics HomeTheater,TV&Video Accessories C	Amazon Basics High-Speed HDMI Cable, 6 Feet	4269
287	Electronics HomeTheater,TV&Video Accessories C	AmazonBasics Flexible Premium HDMI Cable (Blac	4269
289	Electronics HomeTheater,TV&Video Accessories C	Amazon Basics High-Speed HDMI Cable, 6 Feet (2	4269
290	Electronics HomeTheater,TV&Video Accessories C	AmazonBasics Flexible Premium HDMI Cable (Blac	4269
249	Electronics Headphones,Earbuds&Accessories Hea	boAt Bassheads 100 in Ear Wired Earphones with	3637
250	Electronics Headphones,Earbuds&Accessories Hea	boAt Bassheads 100 in Ear Wired Earphones with	3637
251	Electronics Headphones,Earbuds&Accessories Hea	boAt BassHeads 100 in-Ear Wired Headphones wit	3637
426	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9 Activ (Carbon Black, 4GB RAM, 64GB Sto	3138
427	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9A Sport (Coral Green, 2GB RAM, 32GB Sto	3138
429	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9A Sport (Coral Green, 3GB RAM, 32GB Sto	3138
428	Electronics Mobiles&Accessories Smartphones&Ba	Redmi 9A Sport (Carbon Black, 2GB RAM, 32GB St	3138

category	product	name	rating	COL
cateudiv	DIOGUCE	Hallie	Iauiiu	COL

		P	
252	Electronics Headphones,Earbuds&Accessories Hea	boAt Bassheads 225 in Ear Wired Earphones with	2731
548	Home&Kitchen Kitchen&Dining KitchenTools Manua	Pigeon Polypropylene Mini Handy and Compact Ch	2705
153	Computers&Accessories ExternalDevices&DataStor	SanDisk Cruzer Blade 32GB USB Flash Drive	2531
204	Electronics Accessories MemoryCards MicroSD	SanDisk Extreme SD UHS I 64GB Card for 4K Vide	2050
253	Electronics Headphones,Earbuds&Accessories Hea	JBL C100SI Wired In Ear Headphones with Mic, J	1925
254	Electronics Headphones,Earbuds&Accessories Hea	JBL C100SI Wired In Ear Headphones with Mic, J	1925
255	Electronics Headphones,Earbuds&Accessories Hea	JBL C100SI Wired In Ear Headphones with Mic, J	1925
154	Computers&Accessories ExternalDevices&DataStor	SanDisk Ultra Dual 64 GB USB 3.0 OTG Pen Drive	1891
256	Electronics Headphones,Earbuds&Accessories Hea	boAt Airdopes 121v2 in-Ear True Wireless Earbu	1809

Q3 What is the distribution of discounted prices vs. actual prices?

```
In [ ]: df1[["discounted_price","actual_price"]]
```

Out[]:		discounted_price	actual_price
	0	₹399	₹1,099
	1	₹199	₹349
	2	₹199	₹1,899
	3	₹329	₹699
	4	₹154	₹399
	1460	₹379	₹919
	1461	₹2,280	₹3,045
	1462	₹2,219	₹3,080
	1463	₹1,399	₹1,890
	1464	₹2,863	₹3,690

1465 rows × 2 columns

```
In [ ]: DP=df1["discounted_price"].str.replace("₹","").str.replace(",","").astype("f
Out[]: 0
                  399.0
         1
                  199.0
         2
                  199.0
         3
                  329.0
                  154.0
                  . . .
         1460
                  379.0
         1461
                 2280.0
         1462
                 2219.0
         1463
                 1399.0
         1464
                 2863.0
         Name: discounted_price, Length: 1465, dtype: float64
In [ ]: AP=df1["actual_price"].str.replace("₹","").str.replace(",","").astype("float
        \mathsf{AP}
```

```
Out[]: 0
                 1099.0
         1
                  349.0
         2
                 1899.0
         3
                  699.0
                  399.0
                  . . .
         1460
                  919.0
         1461
                 3045.0
         1462
                 3080.0
         1463
                 1890.0
         1464
                 3690.0
         Name: actual price, Length: 1465, dtype: float64
In [ ]: sns.scatterplot(x=DP,y=AP,palette="deep")
        plt.title("distribution of discounted prices vs. actual prices")
        plt.show()
       <ipython-input-23-638b52f7ab08>:1: UserWarning: Ignoring `palette` because n
       o `hue` variable has been assigned.
         sns.scatterplot(x=DP,y=AP,palette="deep")
```

distribution of discounted prices vs. actual prices

Insight: As we can clearly see through the Scatterplot, as the actual price increases, Discounted price increases simultaneously. More precisely actual price and discounted price are linearly related.

Q4. How does the average discount percentage vary across categories?

```
In [ ]: dfl.columns
Out[ ]: Index(['product id', 'product name', 'category', 'discounted price',
                'actual_price', 'discount_percentage', 'rating', 'rating_count',
                'about product', 'user id', 'user name', 'review id', 'review titl
        e',
                'review content', 'img_link', 'product_link'],
              dtype='object')
In [ ]: df1['discount_percentage'] = df1['discount_percentage'].str.replace("%", "")
        average discount by category = dfl.groupby("category")["discount percentage"
In [ ]: average discount by category.sort values(ascending=False)
Out[]: category
        Electronics|Mobiles&Accessories|MobileAccessories|Décor|PhoneCharms
        Computers&Accessories|Accessories&Peripherals|Cables&Accessories|CableConne
        ctionProtectors
        Electronics | Headphones, Earbuds & Accessories | Earpads
        Electronics|Headphones,Earbuds&Accessories|Adapters
        88.0
        Computers&Accessories|Accessories&Peripherals|Keyboards,Mice&InputDevices|K
        eyboard&MiceAccessories|DustCovers
                                                  87.5
        OfficeProducts|OfficeElectronics|Calculators|Basic
        Home&Kitchen|Kitchen&HomeAppliances|SmallKitchenAppliances|SmallAppliancePa
        rts&Accessories|StandMixerAccessories
        Electronics|HomeAudio|MediaStreamingDevices|StreamingClients
        0.0
        Electronics|Cameras&Photography|Accessories|Film
        Toys&Games|Arts&Crafts|Drawing&PaintingSupplies|ColouringPens&Markers
        Name: discount percentage, Length: 211, dtype: float64
In [ ]: d mean=df1["discount percentage"].mean()
        d mean
Out[]: 47.69146757679181
In [ ]: more than average = (average discount by category >= average discount by cat
        less than average (average discount by category < average discount by cated
        print("more than average:",more than average)
        print("less than average:",less than average)
       more than average: 115
       less than average: 96
```

Insight:Hence as per the study, there are 115 out of 211 categories which are having "average discount percentage" greater than or equal to overall mean viz: 47.69, while on the other hand, there are 96 categories out of 211, which are having less "average discount percentage" than 47.69 (overall mean).

Q5. What are the most popular product names?

```
In [ ]: dfl.columns
Out[ ]: Index(['product_id', 'product_name', 'category', 'discounted_price',
               'actual price', 'discount percentage', 'rating', 'rating count',
               'about product', 'user id', 'user name', 'review id', 'review titl
        e',
               'review content', 'img link', 'product link'],
              dtype='object')
In [ ]: df 5=df1[["product name","rating","rating count"]]
In [ ]: df 5.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1465 entries, 0 to 1464
      Data columns (total 3 columns):
       # Column Non-Null Count Dtype
       --- -----
                        -----
           product name 1465 non-null
                                        object
       1 rating 1464 non-null float64
           rating count 1465 non-null
                                        int64
       dtypes: float64(1), int64(1), object(1)
      memory usage: 34.5+ KB
In [ ]: #As the most popular product also have highest rating count
        Most popular products=df 5.sort values(by="rating count",ascending=False)
```

Finding top 20 popular product

```
In [ ]: Most_popular_products.head(20)
```

Out[]:		product_name	rating	rating_count
	12	AmazonBasics Flexible Premium HDMI Cable (Blac	4.4	426973
	65	Amazon Basics High-Speed HDMI Cable, 6 Feet (2	4.4	426973
	47	Amazon Basics High-Speed HDMI Cable, 6 Feet	4.4	426973
	684	AmazonBasics Flexible Premium HDMI Cable (Blac	4.4	426972
	400	boAt Bassheads 100 in Ear Wired Earphones with	4.1	363713
	352	boAt Bassheads 100 in Ear Wired Earphones with	4.1	363713
	584	boAt BassHeads 100 in-Ear Wired Headphones wit	4.1	363711
	370	Redmi 9 Activ (Carbon Black, 4GB RAM, 64GB Sto	4.1	313836
	371	Redmi 9A Sport (Coral Green, 2GB RAM, 32GB Sto	4.1	313836
	473	Redmi 9A Sport (Carbon Black, 2GB RAM, 32GB St	4.1	313832
	566	Redmi 9A Sport (Coral Green, 3GB RAM, 32GB Sto	4.1	313832
	760	boAt Bassheads 225 in Ear Wired Earphones with	4.1	273189
	1028	Pigeon Polypropylene Mini Handy and Compact Ch	4.1	270563
	588	SanDisk Cruzer Blade 32GB USB Flash Drive	4.3	253105
	864	SanDisk Extreme SD UHS I 64GB Card for 4K Vide	4.5	205052
	347	JBL C100SI Wired In Ear Headphones with Mic, J	4.1	192590
	479	JBL C100SI Wired In Ear Headphones with Mic, J	4.1	192589
	598	JBL C100SI Wired In Ear Headphones with Mic, J	4.1	192587
	718	SanDisk Ultra Dual 64 GB USB 3.0 OTG Pen Drive	4.3	189104
	591	boAt Airdopes 121v2 in-Ear True Wireless Earbu	3.8	180998

Q6. What are the most popular product keywords?

```
#Top 20 most popular product keywords used are:
 top keywords=word count.value counts().head(20)
 print(top keywords)
and
         5590
the
         4342
to
         3995
with
         3837
         3226
for
of
         2200
         1905
а
         1888
your
         1880
is
         1481
         1372
in
usb
         1346
         1326
you
         1256
cable
         1026
          983
or
          980
on
          956
it
          900
          891
can
Name: count, dtype: int64
```

Q7. What are the most popular product reviews?

Out[]:		product_name	about_product	rating_count	review_title	review_content
	12	AmazonBasics Flexible Premium HDMI Cable (Blac	Flexible, lightweight HDMI cable for connectin	426973	It's quite good and value for money,Works well	I am using it for 14 days now The experience
	65	Amazon Basics High-Speed HDMI Cable, 6 Feet (2	HDMI A Male to A Male Cable: Supports Ethernet	426973	It's quite good and value for money,Works well	I am using it for 14 days now The experience
	47	Amazon Basics High-Speed HDMI Cable, 6 Feet	Please select appropriate display resolution &	426973	It's quite good and value for money,Works well	I am using it for 14 days now The experience
	684	AmazonBasics Flexible Premium HDMI Cable (Blac	Flexible, lightweight HDMI cable for connectin	426972	It's quite good and value for money,Works well	I am using it for 14 days now The experience
	400	boAt Bassheads 100 in Ear Wired Earphones with	The perfect way to add some style and stand ou	363713	Best value for money,HEAD PHONE POUCH NOT RECE	The sounc quality of this earphone are really

Q8. What is the correlation between discounted_price and rating?

<ipython-input-41-d9cf8363ce57>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df_8["discounted_price"]=df_8["discounted_price"].str.replace("₹","").str.replace(",","").astype(float)

Out[]:		discounted_price	rating
	0	399.0	4.2
	1	199.0	4.0
	2	199.0	3.9
	3	329.0	4.2
	4	154.0	4.2
	1460	379.0	4.0
	1461	2280.0	4.1
	1462	2219.0	3.6
	1463	1399.0	4.0
	1464	2863.0	4.3

1465 rows × 2 columns

```
In [ ]: df_8.corr()
```

 Out[]:
 discounted_price
 rating

 discounted_price
 1.000000
 0.120337

 rating
 0.120337
 1.000000

```
In [ ]: sns.scatterplot(x=df_8["discounted_price"],y=df_8["rating"],color="r")
   plt.title("Correlation between Rating and Discounted_price")
   plt.show()
```

Correlation between Rating and Discounted price

Insight and Conclusion: As per the above studies suggest that Rating and Discounted price has very weak positive correlation of 0.12, which suggest that as the rating increases the increase in discounted price also happens slightly, But a the correlation is not so strong we should keep other factors in mind too. There may be other factors such as product quality, brand reputation, or market demand that influence both the rating and the discounted price of a product. So, it's always a good idea to consider multiple factors before drawing any conclusions.

Q9. What are the Top 5 categories based on the highest ratings?

```
In [ ]: df_9=df1[["category","rating","rating_count"]]
    df_9
```

Out[]:		category	rating	rating_count
	0	Computers&Accessories Accessories&Peripherals	4.2	24269
	1	Computers&Accessories Accessories&Peripherals	4.0	43994
	2	Computers&Accessories Accessories&Peripherals	3.9	7928
	3	Computers&Accessories Accessories&Peripherals	4.2	94363
	4	Computers&Accessories Accessories&Peripherals	4.2	16905
	1460	Home & Kitchen Kitchen & Home Appliances Water Purif	4.0	1090
	1461	Home & Kitchen Kitchen & Home Appliances Small Kitch	4.1	4118
	1462	Home & Kitchen Heating, Cooling & Air Quality Room He	3.6	468
	1463	Home & Kitchen Heating, Cooling & Air Quality Fans E	4.0	8031
	1464	Home&Kitchen Kitchen&HomeAppliances SmallKitch	4.3	6987

1465 rows × 3 columns

```
In [ ]: df_9.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1465 entries, 0 to 1464
Data columns (total 3 columns):
Column Non-Null Count Dtype

0 category 1465 non-null object 1 rating 1464 non-null float64 2 rating_count 1465 non-null int64 dtypes: float64(1), int64(1), object(1)

memory usage: 34.5+ KB

Top 5 category based on rating:

```
In [ ]: df_9.sort_values(by="rating",ascending=False).head(5)
```

Out[]:		category	rating	rating_count
	324	Computers&Accessories Accessories&Peripherals	5.0	0
	174	Computers&Accessories Accessories&Peripherals	5.0	5
	775	Computers&Accessories Accessories&Peripherals	5.0	23
	1145	Home & Kitchen Heating, Cooling & Air Quality Water H	4.8	53803
	1201	Home&Kitchen Kitchen&HomeAppliances SmallKitch	4.8	28

Top 5 category based on rating_count:

In []: df 9.sort values(by="rating count",ascending=False).head(5)

Out[]:		category	rating	rating_count
	12	Electronics Home Theater, TV&Video Accessories C	4.4	426973
	65	Electronics Home Theater, TV&Video Accessories C	4.4	426973
	47	Electronics Home Theater, TV&Video Accessories C	4.4	426973
	684	Electronics Home Theater, TV&Video Accessories C	4.4	426972
	400	Electronics Headphones.Earbuds&Accessories Hea	4.1	363713

Q10.Identify any potential areas for improvement or optimization based on the data analysis.

Answer - Based on the data analysis, some potential areas for improvement or optimization could be:

- 1. Improving the product's rating by addressing any issues mentioned in the reviews.
- 2. Increasing the number of rating counts to provide a more accurate representation of customer satisfaction.
- 3. Enhancing the product descriptions to better highlight its features and benefits.
- 4. Adjusting the pricing strategy to maximize the discount percentage and attract more customers.

2. Spotify Data: Popular Hip-hop Artists and Tracks

Description

The dataset titled "**Spotify Data: Popular Hip-hop Artists and Tracks**" provides a curated collection of approximately 500 entries showcasing the vibrant realm of hip-hop music. These entries meticulously compile the most celebrated hip-hop tracks and artists, reflecting their significant influence on the genre's landscape. Each entry highlights not only the popularity and musical composition of the tracks but also the creative prowess of the artists and their profound impact on global listeners.

Application in Data Science

This dataset serves as a valuable resource for various data science explorations:

- **Trend Analysis**: Analyze the popularity dynamics of hit hip-hop tracks over recent years.
- **Network Analysis**: Explore collaborative patterns among top artists and uncover insights into the genre's evolving collaborative landscape.
- **Predictive Modeling**: Develop models to forecast track popularity based on diverse features, offering insights for artists, producers, and marketers.

Features (Column Descriptors)

- **Artist**: The name of the artist, providing direct attribution to the creative mind behind the track.
- **Track Name**: The title of the track, encapsulating its identity and essence.
- **Popularity**: A numeric score reflecting the track's reception and appeal among Spotify listeners.
- **Duration (ms)**: The track's length in milliseconds, detailing the temporal extent of the musical experience.
- **Track ID**: A unique identifier within Spotify's ecosystem, enabling direct access to the track for further exploration.

Source

Spotify Data: Popular Hip-hop Artists and Tracks

```
In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [4]: df2=pd.read_csv("./spotify.csv")
df2
```

\cap	14	Γ	/	1	
Uί	ЛL	L	+	J	=

	Artist	Track Name	Popularity	Duration (ms)	Track ID
0	Drake	Rich Baby Daddy (feat. Sexyy Red & SZA)	92	319191	1yeB8MUNeLo9Ek1UEpsyz6
1	Drake	One Dance	91	173986	1zi7xx7UVEFkmKfv06H8x0
2	Drake	IDGAF (feat. Yeat)	90	260111	2YSzYUF3jWqb9YP9VXmpjE
3	Drake	First Person Shooter (feat. J. Cole)	88	247444	7aqfrAY2p9BUSiupwk3svU
4	Drake	Jimmy Cooks (feat. 21 Savage)	88	218364	3F5CgOj3wFlRv51JsHbxhe
435	French Montana	Splash Brothers	44	221863	3fBsEOnzwtlkpS0LxXAZhN
436	Fat Joe	All The Way Up (feat. Infared)	64	191900	7Ezwtgfw7khBrpvaNPtMoT
437	A\$AP Ferg	Work REMIX (feat. A\$AP Rocky, French Montana,	69	283693	7xVLFuuYdAvcTfcP3lG3dS
438	Diddy	Another One Of Me (feat. 21 Savage)	65	220408	4hGmQboiou09EwhcTWa0H6
439	Rick Ross	Stay Schemin	68	267720	0nq6sfr8z1R5KJ4XUk396e

440 rows \times 5 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 440 entries, 0 to 439
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Artist	440 non-null	object
1	Track Name	440 non-null	object
2	Popularity	440 non-null	int64
3	Duration (ms)	440 non-null	int64
4	Track ID	440 non-null	object

dtypes: int64(2), object(3)
memory usage: 17.3+ KB

In [8]: df2.head()

Out[8]:

	Artist	Track Name	Popularity	Duration (ms)	Track ID
0	Drake	Rich Baby Daddy (feat. Sexyy Red & SZA)	92	319191	1yeB8MUNeLo9Ek1UEpsyz6
1	Drake	One Dance	91	173986	1zi7xx7UVEFkmKfv06H8x0
2	Drake	IDGAF (feat. Yeat)	90	260111	2YSzYUF3jWqb9YP9VXmpjE
3	Drake	First Person Shooter (feat. J. Cole)	88	247444	7aqfrAY2p9BUSiupwk3svU
4	Drake	Jimmy Cooks (feat. 21 Savage)	88	218364	3F5CgOj3wFlRv51JsHbxhe

1.Identify the top 5 popular artists based on the mean popularity of their tracks. Show the mean popularity of tracks for the top 5 popular artists Using BarPlot.

```
Out[14]: Artist
                           20
         Drake
         Travis Scott
                           12
         21 Savage
                           11
         ¥$
                           11
         Lil Nas X
                           11
         Arizona Zervas
                           1
         Fivio Foreign
                            1
         Pressa
                            1
         David Guetta
                            1
         Diddy
                            1
         Name: count, Length: 115, dtype: int64
In [32]: df_1=df2[["Artist","Popularity"]].groupby("Artist").mean().round(2)
         Top_Popular_Artist=df_1.reset_index().sort_values(by="Popularity",ascending=
         Top_Popular_Artist
Out[32]:
```

	Artist	Popularity
113	cassö	92.00
104	Trueno	89.00
24	David Guetta	87.00
103	Travis Scott	87.00
114	¥\$	86.09
89	RAYE	55.00
107	Wyclef Jean	54.50
7	Arizona Zervas	54.00
52	Justin Bieber	49.00
85	Pressa	29.00

115 rows × 2 columns

```
In [33]: top_5_Popular_Artist=Top_Popular_Artist.head(5)
top_5_Popular_Artist
```

Out[33]:		Artist	Popularity
	113	cassö	92.00
	104	Trueno	89.00
	24	David Guetta	87.00
	103	Travis Scott	87.00
	114	¥\$	86.09

```
In [42]: #Plot a bar
plt.figure(figsize=(8,4))
sns.barplot(x=top_5_Popular_Artist["Artist"],y=top_5_Popular_Artist["Popular
for i, count in enumerate(top_5_Popular_Artist["Popularity"]):
    plt.text(i,count,str(count),ha="center",va="bottom")
plt.title("mean popularity of tracks for the top 5 popular artists Using Bar plt.show()
```


2. Determine the top 5 popular songs based on their popularity ratings. Display the popularity ratings of the top 5 popular songs using BarPlot.

```
In [44]: df2.columns
Out[44]: Index(['Artist', 'Track Name', 'Popularity', 'Duration (ms)', 'Track ID'],
    dtype='object')
In [47]: df_2=df2[["Track Name", "Popularity"]]
    df_2
```

Out[47]:		Track Name	Popularity
	0	Rich Baby Daddy (feat. Sexyy Red & SZA)	92
	1	One Dance	91
	2	IDGAF (feat. Yeat)	90
	3	First Person Shooter (feat. J. Cole)	88
	4	Jimmy Cooks (feat. 21 Savage)	88
	435	Splash Brothers	44
	436	All The Way Up (feat. Infared)	64
	437	Work REMIX (feat. A\$AP Rocky, French Montana,	69
	438	Another One Of Me (feat. 21 Savage)	65
	439	Stay Schemin	68

440 rows × 2 columns

In [56]: Top_popular_songs=df_2.sort_values(by="Popularity",ascending=False).drop_dup
Top_popular_songs

Out[56]:		Track Name	Popularity
	40	Lovin On Me	97
	280	CARNIVAL	96
	70	redrum	96
	30	FE!N (feat. Playboi Carti)	93
	0	Rich Baby Daddy (feat. Sexyy Red & SZA)	92
	407	911 (feat. Mary J. Blige)	48
	225	On Me - Remix	47
	413	Splash Brothers	44
	231	Intentions	35
	207	Attachments (feat. Coi Leray)	29

413 rows × 2 columns

```
In [57]: Top_5_popular_songs=Top_popular_songs.head(5)
Top_5_popular_songs
```

Out[57]:		Track Name	Popularity
	40	Lovin On Me	97
	280	CARNIVAL	96
	70	redrum	96
	30	FE!N (feat. Playboi Carti)	93
	0	Rich Baby Daddy (feat. Sexyy Red & SZA)	92

```
In [69]: plt.figure(figsize=(8,4))
    sns.barplot(x=Top_5_popular_songs["Track Name"],y=Top_5_popular_songs["Popul
    plt.xticks(rotation=5)
    for i,count in enumerate(Top_5_popular_songs["Popularity"]):
        plt.text(i,count,str(count),va="bottom",ha="center")
    plt.show()
```


3.Find the top 5 trending genres based on the mean popularity of tracks within each genre. Visualize the mean popularity of tracks for the top 5 trending genres.

```
In [73]: mean_popularity_by_artist = df2.groupby('Artist')['Popularity'].mean().reset
mean_popularity_by_artist
```

Out[73]:		Artist	Popularity
	0	*NSYNC	67.000000
	1	2 Chainz	72.000000
	2	21 Savage	84.181818
	3	A Boogie Wit da Hoodie	80.000000
	4	A\$AP Ferg	69.000000
	•••		
	110	Young Nudy	67.000000
	111	Young Thug	73.750000
	112	benny blanco	72.000000

cassö

¥\$

115 rows × 2 columns

113

114

```
In [116... top_5_artists = mean_popularity_by_artist.nlargest(5, 'Popularity').round(2)
top_5_artists
```

92.000000

86.090909

Out[116...

	Artist	Popularity
113	cassö	92.00
104	Trueno	89.00
24	David Guetta	87.00
103	Travis Scott	87.00
114	¥\$	86.09

```
In [118... #Visualize the mean popularity of tracks for the top 5 artists
    plt.figure(figsize=(6, 4))
    sns.barplot(x='Artist', y='Popularity', data=top_5_artists, color='r',width=
    plt.xlabel('Artist')
    plt.ylabel('Mean Popularity')
    plt.title('Mean Popularity of Tracks for Top 5 Artists')
    for i,count in enumerate(top_5_artists["Popularity"]):
        plt.text(i,count,str(count),ha="center",va="bottom")
    plt.show()
```

Mean Popularity of Tracks for Top 5 Artists

4.Identify the top 5 longest songs among the tracks of the top 5 popular artists.Represent the duration of the top 5 longest songs among the tracks of the top 5 popular artists using BarPlot.

\sim		-7	\cap	^	
() (17	- 1	(·)		

	Artist	Popularity
0	*NSYNC	67.000000
1	2 Chainz	72.000000
2	21 Savage	84.181818
3	A Boogie Wit da Hoodie	80.000000
4	A\$AP Ferg	69.000000
110	Young Nudy	67.000000
111	Young Thug	73.750000
112	benny blanco	72.000000
113	cassö	92.000000
114	¥\$	86.090909

115 rows × 2 columns

```
In [110... top_5_artists = mean_popularity_by_artist.nlargest(5, 'Popularity')
   top_5_artist_tracks =df2[df2["Artist"].isin(top_5_artists['Artist'])].drop_c
   top_5_artist_tracks
```

	Artist	Track Name	Popularity	Duration (ms)	Track ID
7	Travis Scott	MELTDOWN (feat. Drake)	86	246133	67nepsnrcZkowTxMWigSbb
30	Travis Scott	FE!N (feat. Playboi Carti)	93	191700	42VsgltocQwOQC3XWZ8JNA
31	Travis Scott	I KNOW ?	92	211582	6wsqVwoiVH2kde4k4KKAFU
32	Travis Scott	MY EYES	91	251249	4kjl1gwQZRKNDkw1nl475M
33	Travis Scott	goosebumps	89	243836	6gBFPUFcJLzWGx4lenP6h2
37	Travis Scott	SICKO MODE	87	312820	2xLMifQCjDGFmkHkpNLD9h
38	Travis Scott	TELEKINESIS (feat. SZA & Future)	86	353754	1i9lZvlaDdWDPyXEE95aiq
140	cassö	Prada	92	132359	59NraMJsLaMCVtwXTSia8i
173	Travis Scott	SKITZO (feat. Young Thug)	78	366592	0bkV1iQHSxBaksUqgEkcbc
200	David Guetta	Baby Don't Hurt Me	87	140017	3BKD1PwArikchz2Zrlp1qi
215	Travis Scott	CIRCUS MAXIMUS (feat. The Weeknd & Swae Lee)	77	258842	4GL9GMX9t7Qkprvf1YighZ
241	Trueno	Mamichula - con Nicki Nicole	89	219201	0TUW9faHNaBmi89wsYGp9y
260	¥\$	CARNIVAL	96	264324	3w0w2T288dec0mgeZZqoNN
261	¥\$	BURN	89	111458	04CyMEHliadfQWMUJb1w99
262	¥\$	FUK SUMN	88	209577	5tEaVciE2GnR28aN6W9cLS
263	¥\$	BACK TO ME	86	295471	1icgLGTpX2fQXKRe4D7w2b
264	¥\$	STARS	84	115238	347AQK5Lyhn6RvB8tBGYxt
265	¥\$	DO IT	83	225000	2iGvsJuc2mC4mDVOVMNAP6
266	¥\$	TALKING	81	185110	1eaqMiiUn2P7MnqJK4XeK0
267	¥\$	PAID	82	195117	2y4ZR0BUAVePljHSsZylgj
268	¥\$	PAPERWORK	82	145785	2yyO7EKRr7c3txi4xCXUFk
269	¥\$	VULTURES	80	276986	3SIRBp4RRQ2AO5H4NO7xfq

In [112... #Sorting the tracks by duration and selecting the top 5 longest songs
top_5_longest_songs = top_5_artist_tracks.nlargest(5, 'Duration (ms)')
top_5_longest_songs

Out[112...

		Artist	Track Name	Popularity	Duration (ms)	Track ID
	173	Travis Scott	SKITZO (feat. Young Thug)	78	366592	0bkV1iQHSxBaksUqgEkcbc
	38	Travis Scott	TELEKINESIS (feat. SZA & Future)	86	353754	1i9lZvlaDdWDPyXEE95aiq
	37	Travis Scott	SICKO MODE	87	312820	2xLMifQCjDGFmkHkpNLD9h
	263	¥\$	BACK TO ME	86	295471	1icgLGTpX2fQXKRe4D7w2b
	269	¥\$	VULTURES	80	276986	3SIRBp4RRQ2AO5H4NO7xfq

```
In [120... #Visualizing the duration of the top 5 longest songs using a bar plot
   plt.figure(figsize=(8, 4))
   sns.barplot(x='Track Name', y='Duration (ms)', data=top_5_longest_songs, col
   plt.title('Duration of Top 5 Longest Songs')
   plt.xticks(rotation=15)
   for i,count in enumerate(top_5_longest_songs["Duration (ms)"]):
      plt.text(i,count,str(count),ha="center",va="bottom")
   plt.show()
```


5.Determine the top 5 most danceable songs based on their danceability scores.Illustrate the danceability

scores of the top 5 most danceable songs using PieChart.

```
In [124... df 5=pd.read csv("/content/top2018.csv")
In [127... df 5.head(3)
                                  id
                                                     artists danceability energy key
Out[127...
                                       name
                                        God's
               6DCZcSspjsKoFjzjrWoCd
                                                       Drake
                                                                     0.754
                                                                             0.449
                                                                                    7.0
                                         Plan
                                        SAD! XXXTENTACION
          1 3ee8|mje8o58CHK66QrVC
                                                                     0.740
                                                                             0.613
                                                                                    8.0
                                     rockstar
                                        (feat.
          2
               0e7ipj03S05BNilyu5bRz
                                                 Post Malone
                                                                     0.587
                                                                             0.535
                                                                                    5.0
                                          21
                                     Savage)
In [126... df 5.columns
Out[126... Index(['id', 'name', 'artists', 'danceability', 'energy', 'key', 'loudnes
          s',
                  'mode', 'speechiness', 'acousticness', 'instrumentalness', 'livenes
          s',
                 'valence', 'tempo', 'duration ms', 'time signature'],
                dtype='object')
In [133... #top_danceable_song=df_5[["name","danceability"]].sort_values(by="danceability"]
          top danceable song=df 5[["name","danceability"]].nlargest(5,"danceability")
          top 5 danceable song=top danceable song.head(5)
          top 5 danceable song
Out[133...
                                          name danceability
          91
                                      Yes Indeed
                                                        0.964
          55 FEFE (feat. Nicki Minaj & Murda Beatz)
                                                        0.931
          19
                           Look Alive (feat. Drake)
                                                        0.922
          18
                                       Moonlight
                                                        0.921
          61
                                        Nonstop
                                                        0.912
In [141... #Plot piechart
          plt.figure(figsize=(6,6))
          plt.pie(top 5 danceable song['danceability'], labels=top 5 danceable song['na
          plt.show()
```


In []:

This notebook was converted to PDF with convert.ploomber.io