CS~601.442/642-Modern~Cryptography

Homework 5

Deadline: November 1; 2020, 11:59 PM EST

Instructor: Abhishek Jain

- 1. (10 points) Let (Gen, Sign, Verify) be a multi-message UF-CMA secure digital signature scheme that can be used to sign messages of length n. Consider the following new scheme for signing messages of length 2n:
 - $\mathsf{Gen}'(1^n)$: Compute $(\mathsf{sk}_1,\mathsf{pk}_1) \leftarrow \mathsf{Gen}(1^n)$ and $(\mathsf{sk}_2,\mathsf{pk}_2) \leftarrow \mathsf{Gen}(1^n)$. Set $\mathsf{sk} \coloneqq (\mathsf{sk}_1,\mathsf{sk}_2)$ and $\mathsf{pk} \coloneqq (\mathsf{pk}_1,\mathsf{pk}_2)$. Output $(\mathsf{sk},\mathsf{pk})$.
 - Sign' (m, sk) : Parse $\mathsf{sk} := (\mathsf{sk}_1, \mathsf{sk}_2)$. Compute $\sigma_1 \leftarrow \mathsf{Sign}(m[0:n], \mathsf{sk}_1)$ and $\sigma_2 \leftarrow \mathsf{Sign}(m[n:2n], \mathsf{sk}_2)$. Output $\sigma := \sigma_1 || \sigma_2$.
 - Verify'(σ , pk): Parse pk := (pk₁, pk₂) and $\sigma := \sigma_1 || \sigma_2$. Compute $b_1 \leftarrow \text{Verify}(\sigma_1, \text{pk}_1)$ and $b_2 \leftarrow \text{Sign}(\sigma_2, \text{pk}_2)$. Output $b := b_1 \wedge b_2$.

Show that (Gen', Sign', Verify') is **not** a UF-CMA secure digital signature scheme.

- 2. (a) (10 points) Let (Gen, Sign, Verify) be a multi-message UF-CMA secure digital signature scheme. Consider the following new scheme:
 - $\operatorname{\mathsf{Gen}}'(1^n)$: Compute and output $(\mathsf{sk}, \mathsf{pk}) \leftarrow \operatorname{\mathsf{Gen}}(1^n)$.
 - Sign'(m, sk): Compute $\sigma \leftarrow \text{Sign}(m, sk)$ and output $\sigma' := \sigma || \sigma$.
 - Verify' (σ, pk) : Parse $\sigma := \sigma_1 || \sigma_2$. Compute $b \leftarrow \text{Verify}(\sigma_1, pk)$. If $\sigma_1 = \sigma_2$ and b = 1, output 1, else output 0.

Show that (Gen', Sign', Verify') is also a multi-message UF-CMA secure digital signature scheme.

- (b) (10 points) In the class we saw that PRFs imply MACs. You have to show that the converse is not true, i.e., a MAC scheme may not be a PRF. More specifically, given a UF-CMA secure MAC scheme (Gen, Tag, Verify), show that (Gen, Tag) is not necessarily a PRF.
- 3. (15 points) Let $\left\{h_i: \{0,1\}^{2n} \mapsto \{0,1\}^n\right\}_{i\in\{0,1\}^n}$ be a collision resistant hash function family that compresses 2n bits to n bits. Show that for a randomly sampled i, h_i is a **one-way function**.
- 4. Order-preserving hash functions (or encryption schemes resp.) are functions/schemes, where the hashed output (or ciphertexts resp.) follow the same lexicographic order as the messages. Such a property would be extremely useful for computing on encrypted database. In this question, we will see why this property is hard to achieve.
 - (a) (5 points) Let $\mathcal{E} := (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ be a public key encryption scheme such that for each $m_1, m_2 \in \mathcal{M}$, if $m_1 \leq m_2$, then $\mathsf{Enc}(\mathsf{pk}, m_1) \leq \mathsf{Enc}(\mathsf{pk}, m_2)$, where \mathcal{M} is the message space and pk is the public key generated by the Gen algorithm. Show that \mathcal{E} is not semantic secure.

(b) **(10 points)** Suppose a function $H: \{0,1\}^{2n} \mapsto \{0,1\}^n$ has the following property. For each $x,y \in \{0,1\}^{2n}$, if $x \leq y$, then $H(x) \leq H(y)$. Show that H is not collision resistant (describe how to efficiently find a collision in such a function).

Hint: Binary search, always recursing on a range that is guaranteed to contain a collision.