

Reconhecimento de Imagens utilizando IA

Feliphe Galiza Especialista em Inteligência Artificial no beOn Claro

Agenda

- Visão geral
- Aplicações
- Desafios
- Inteligência Artificial aplicada ao reconhecimento de imagens
- Classificação de imagens utilizando Deep Learning
- Detecção de objetos
- Segmentação de instâncias
- Demo Detecção de objetos e segmentação de instâncias utilizando o Tensorflow

Reconhecimento de imagens – Visão geral

Reconhecimento de imagens – Aplicações

SegFuse: Dynamic Driving Scene Segmentation

Reconhecimento de imagens – Aplicações

Reconhecimento de imagens – Aplicações

Desafios

Reconhecimento de imagens - Desafios

Por que visão computacional é uma tarefa tão simples?

Variação de ponto de vista

Condições de iluminação

Variação de escala

Deformação

Confusão de fundo

Oclusão

Variação intra-classe

Reconhecimento de imagens - Desafios

Por que visão computacional é uma tarefa tão simples?

Chihuahua ou muffin? Bagel? Esfregão?

Reconhecimento de imagens utilizando Inteligência Artificial

Inteligência Artificial – Deep Learning

Inteligência Artificial – Treinamento vs Inferência

Reconhecimento de imagens - IA

CAT DOG

Reconhecimento de imagens - IA

DADOS

ALGORITIMOS

INFRAESTRUTURA

Labelimg: https://github.com/tzutalin/labelimg#labelimg

Classificação de imagens

Classificação – Visão Geral

Tumor Size

Classificação – Visão Geral

Classificação - Representação de imagens RGB

Classificação - Redes Neurais Convolucionais (CNNs)

Classificação de imagens - Convolução

Classificação de imagens - Convolução (Kernels)

be On

Tarefa

Kernel

Imagem Original

Resultado

Borrar uma imagem

1	1	1	1	1	1
1	0	0	0	0	1
1	0	0	0	0	1
1	0	0	0	0	1
1	1	1	1	1	1

Detectar bordas de objeto

-1	-1	-1
-1	8	-1
-1	-1	-1

Detectar objetos

-1	0	0	
0	1	0	
0	0	0	

Classificação de imagens - Não linearidade

def relu(x):
if x < 0:
 return 0
else:
 return x</pre>

Classificação de imagens - Pooling

Classificação de imagens - Camada totalmente conectada

Detecção de Objetos

Detecção de Objetos

CNNs para detecção de objetos

GATO: (x, y, w, h)

CACHORRO_1: (x, y, w, h) CACHORRO_2: (x, y, w, h) GATO: (x, y, w, h)

PATO_1: (x, y, w, h) PATO_2: (x, y, w, h)

PATO_3: (x, y, w, h)

. . .

Detecção de objetos

Demo

Material de apoio

https://github.com/beonclaro/Campus-Mobile

Dúvidas?