MATH1401

Fall 2021

Lecture 9

Functions

Class Checklist

- **HW 3 Due Date** : Friday: 9/24 9 PM
 - Graded Questions:1.1-1.7, 2.1-2.5, 2.7, 3.1,3.3, 4.3-4.5
- Lab 3 Due Date : Tuesday 9/21 9 PM
 - Graded Questions: 1.1,1.1.1, 3.1-3.2,4.1 4.3, all questions from section 2

- Quiz 6 Tuesday: 9/21 Covers Chapter 7
- Quiz 7 Thurday: 9/23 Covers Chapter 8

Charts Review

Review: Charts

Scatter plot: relation between numerical variables

Line graph: sequential data (over time, etc.)

Bar chart: distribution of categorical data

Histogram: distribution of numerical data

Bar Chart or Histogram?

To display a distribution:

Bar Chart

- Distribution of categorical variable
- Bars have arbitrary (but equal) widths and spacings
- height (or length) and area of bars proportional to the percent of individuals

Histogram

- Distribution of numerical variable
- Horizontal axis is numerical: to scale, no gaps, bins can be unequal
- Area of bars proportional to the percent of individuals;
 height measures density

(Demo)

Density

How to Calculate Height

The [6, 6.5) bin contains 263 out of 1324 sleepers

- "263 out of 1324" is 19.86%
- The bin is 6.5 6 = .5 hours wide

```
19.86 percent
Height of bar = -----
.5 hours
```

= 1.02 percent per hour

Height Measures Density

```
% in bin

Height = -----

width of bin
```

- The height measures the percent of data in the bin relative to the amount of space in the bin.
- Height measures density.
- Units: percent per unit on the horizontal axis

Area Measures Percent

Area of bar = % in bin = Height x width of bin

- "How many individuals in the bin?" Use area.
- "How crowded is the bin?" Use height.

Discussion Question

You have data about daily temperatures as shown. Which type of chart would show the answer to each question?

- Are there more cloudy than sunny days?
- What percentage of days have a high above 72°?
- Do hotter days tend to also have hotter nights?

Day	High	Low	Sky condition
1	55.1	43.7	Cloudy
2	57.2	46	Sunny
3	56.8	45.9	Cloudy

... (362 rows omitted)

(Demo)

Lecture 9 - Overview

- Defining Functions
 - arguments
 - body
 - return values
- Apply Method
 - Apply a function to each entry in a column

Lecture 9 – Programming Checklist

functions keywords

- def defines a new function
- doc strings function description
- body indentation by 4 spaces
- return returns a specified value

Apply Method

- Table_name.apply(function_to_apply, "column_name")
- Applys funtionc_to_apply to column "column_name"

Defining Functions

Def Statements

User-defined functions give names to blocks of code

```
Name
                Argument names (parameters)
def spread(values):
                              Return expression
     return max(values) - min(values)
Body
                      (Demo)
```

Discussion Question

What does this function do? What kind of input does it take? What output will it give? What's a reasonable name?

Apply

Apply

The apply method creates an array by calling a function on every element in input column(s)

- First argument: Function to apply
- Other arguments: The input column(s)

```
table_name.apply(function_name, 'column_label')
```

(Demo)