

Extracting Effective Subnetworks with Gumbel-Softmax

Robin **Dupont**Mohammed Amine **Alaoui**Hichem **Sahbi**Alice **Lebois**

Sorbonne Université & Netatmo Netatmo Sorbonne Université Netatmo

Table of Content

- Why Lightweight Neural Networks?
- Lightweight Networks Design via Pruning
- Our Method
- Results
- Sum Up

Why Lightweight Neural Networks?

Why Lightweight Neural Networks?

Server

- Powerful
- Handle full size models 🧠

Embedded device

- Limited resources in
- Require lightweight models

Lightweight Networks Design via Pruning

Lightweight Networks Design via Pruning

Before pruning

After pruning

- Pruning removes weights
- **Unstructured** pruning
- Yields sparse and lightweight models

Lightweight Networks Design via Pruning

Standard pruning pipelines

- 3 steps procedure train - prune - fine-tune
- Pruning criterion depends on the method
- Fine-tuning needed

Our pruning pipeline

- No weight training 🔔
- Topology selection only

Layer equation :
$$\mathbf{z}_\ell = g_\ell((m{m}_\ell\odotm{w}_\ell)\otimes\mathbf{z}_{\ell-1})$$
 binary masks tensor weights tensor

coefficient follows bernoulli distribution : $~m \sim \mathcal{B}(p_{\mathrm{sel}})$

Sampling is **not differentiable** 1

Probability for a **weight** of **being selected**

Probability reparametrization:

$$p_{\mathrm{Sel}} = \sigma(\hat{m})$$
 Learnt variable Sigmoid ensures $0 \leq p_{\mathrm{sel}} \leq 1$

Probability reparametrization : $\,p_{
m Sel} = \sigma(\hat{m})\,$

Naive Gumbel-Softmax formulation:

$$m = \text{STGS}\left(\left[\frac{\log(\sigma(\hat{m}))}{\log(1 - \sigma(\hat{m}))}\right]\right)$$

Combination of log and exponential functions:

Numerical instabilitiesComputationally intensive

Our Method - ASLP

Probability reparametrization :
$$\,p_{
m Sel} = \sigma(\hat{m})\,$$

Our formulation **Arbitrarily Shifted Log Parameterization** (ASLP)

$$m = \text{STGS}\left(\left[\begin{array}{c} \hat{m} \\ 0 \end{array}\right]\right)$$

- Numerically stable
- Less computationally intensive

Our Method - ASLP

Our formulation:
$$m = \mathrm{STGS}\left(\left| \begin{array}{c} \hat{m} \\ 0 \end{array}\right|\right)$$

Arbitrary unknown constant that shifts log probabilities

$$\begin{bmatrix} \hat{m} \\ 0 \end{bmatrix} = \begin{bmatrix} \log(\sigma(\hat{m})) + c \\ \log(1 - \sigma(\hat{m})) + c \end{bmatrix} \implies p_{\text{sel}} = \sigma(\hat{m})$$

Adding a constant does not change the result of STGS

Same reparametrization

Our Method - Smart rescale

- Scaling learnt per layer
- Mitigates the change of variance due to pruning
- Improves performances
- Reduces number of epochs needed for convergence

Results

Results

CIFAR 10

WR = Weight Rescale, SC = Signed Constant

Results

CIFAR 100

	Conv2	Conv4	Conv6
EP	40.9	51.1	53.2
ASLP	43.4	51.7	52.8

Table 1: Edge Popup and ASLP on CIFAR100

Results for WR+SC

Sum Up

Sum Up

- Lightweight networks are useful for embedded devices
- Our method prunes untrained networks topology selection only
- We use Gumbel Softmax for differentiable sampling
- ASLP: simpler formulation, less computationally intensive, numerically stable
- Smart Rescale: improves performances, reduces number of epochs
- Our method yields lightweight networks without weight training.

Thanks you!

Robin **Dupont**Mohammed Amine **Alaoui**Hichem **Sahbi**Alice **Lebois**

Sorbonne Université & Netatmo Netatmo Sorbonne Université Netatmo