\mathbf{C}	ontents		7.6 区间第 k 大 _ 无修改-主席树	
1	基础/配置/黑科技 1.1 一般母版	1	7.7 RMQ-ST	16
	1.3 位运算 1.4 离散化 1.5 Linux 对拍 1.6 vimrc 1.7 gdb	2 2 2 3 3	9.1 数学公式	L6 16 16 1'
2	数学 2.1 分数类 2.2 高精度类 2.3 矩阵类 2.4 筛素数-欧拉筛法 2.5 线性方程组-高斯消元 2.6 高阶代数方程求根-求导	3 3 3 4 5 5 6	9.1.6 其它	19 20 23 23 24 24
3	几何 3.1 平面几何类包	6 6 1	9.4 部分质数	24
4	DP	8	10.1 C	24 24
5	串 5.1 最长回文子串-Manacher	8 8 8	10.1.2 <cctype></cctype>	2! 2! 2!
6	图/树 6.1 单源最短路-Dijkstra 6.2 最短路-Floyd 6.3 单源最短路-SPFA 6.4 二分图最大匹配-匈牙利 6.5 有向图极大强连通分量-Tarjan 强连通 6.6 最大流-iSAP 6.7 最小生成树-Prim 6.8 最小生成树-Kruskal 6.9 树的直径-BFS 6.10 LCA-TarjanLCA	12 13 13	10.2 C++	2! 2! 2' 2' 2' 28
7	数据结构 7.1 并查集 7.2 区间和 _ 单点修改区间查询-树状数组 7.3 区间和 _ 区间修改单点查询-树状数组 7.4 区间和-线段树 7.5 平衡树-Treap	14 14 14 14 14		

1 基础/配置/黑科技

1.1 一般母版

```
1
 2
      Time:
      Prob:
      By RogerRo
 5
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
10
    #include<vector>
   #include<queue>
11
   | #include<set>
12
   #include<map>
13
14 | #include < cmath >
   | #include < algorithm >
15
   #include<ctime>
   #include<bitset>
17
18
   #define ll long long
   #define tr(i,l,r) for((i)=(l);(i)<=(r);++i)
   | #define rtr(i,r,l) for((i)=(r);(i)>=(l);--i)
    #define oo 0x7F7F7F7F
    using namespace std;
23
    int read()
24
    {
25
        int x=0; bool f=0;
26
        char ch=getchar();
27
        while (ch<'0'||ch>'9') {f|=ch=='-'; ch=getchar();}
28
        while (ch>='0'\&ch<='9') \{x=(x<<3)+(x<<1)+ch-'0'; ch=getchar(); \}
29
        return (x^{-1})+f;
30
31
    void write(int x)
32
        char a[20],s=0;
33
34
        if (x==0){putchar('0'); return ;}
        if (x<0) {putchar('-'); x=-x;}
35
36
        while (x) {a[s++]=x%10+'0'; x=x/10;}
37
        while (s—) putchar(a[s]);
38
39
    void writeln(int x){write(x); putchar('\n');}
    int main()
40
41
42
43
        return 0;
44
```

1.2 黑科技

```
#pragma GCC optimize(2)
  //g++开栈 放在main开头
  int __size__=256<<20;//256MB</pre>
  char *_p_=(char*)malloc(__size__)+__size__;
   __asm__ __volatile__("movq %0,%%rsp\n"::"r"(__p__));
  | / / c++ 开 栈
 #pragma comment(linker,"/STACK:102400000,102400000")
11
  #include <iomanip>
   ios base::sync with stdio(false);
  15
16
  //int128法
   ll mulmod(__int128 x,__int128 y,__int128 mod) //同理存在__float128
17
18
19
     return x*y%mod;
20
21
22
   //快速乘法
23
   ll mulmod(ll x,ll y,ll mod)
24
25
    ll ret = 0;
26
    for(;y;y>>=1)
27
28
     if (y&1) ret=(ret+x)%mod;
29
     x=(x+x)\%mod;
30
31
    return ret;
32
33
34
   //汇编法
35
   ll mulmod(ll x,ll y,ll mod) //注意!必须保证x,y都比mod小;可long,不可int
36
37
     ll ans=0;
38
     __asm__
39
40
        "movq %1,%%rax\n imulq %2\n idivq %3\n"
41
        :"=d"(ans):"m"(x),"m"(y),"m"(mod):"%rax"
42
     );
43
     return ans;
44
   int __gcd(int x,int y) //<algorithm>且g++才能用
```

1.3 位运算

```
int snoob2(int x) //g++
   {
10
11
      int t=x | (x-1);
      return (t+1) | (((~t&-~t)-1)>>(__builtin_ctz(x)+1));
12
13
   14
   int reverse(int x)
15
16
17
      x=((x\&0x55555555)<<1)|((x\&0xAAAAAAAA)>>1);
      x=((x\&0x33333333)<<2)|((x\&0xCCCCCCC)>>2);
18
19
      x=((x\&0x0F0F0F0F)<<4)|((x\&0xF0F0F0F0)>>4);
      x=((x\&0x00FF00FF)<<8)|((x\&0xFF00FF00)>>8);
20
21
      x=((x\&0x0000FFFF)<<16)|((x\&0xFFFF0000)>>16);
22
      return x;
23
   |int __builtin_popcount(unsigned int x); //1的个数
25
   int __builtin_clz(unsigned int x);
                                  //前缀0的个数
26
   |//x为int时,31-__builtin_clz(x) 等价于 int(log(x)/log(2))
   int builtin ctz(unsigned int x);
                                    //后缀0的个数
   | int __builtin_parity(unsigned int x); //1的个数%2
```

1.4 离散化

```
//dc[1,2,...]=[x1,x2,...]; rdc(x1,x2,...)=1,2,...
int n,a[maxn],dc[maxn];
int rdc(int x){return lower_bound(dc+1,dc+num+1,x)-dc;}
void init()
{
    //...
    memcpy(dc,a,(n+1)*sizeof(int));
    sort(dc+1,dc+n+1);
    num=unique(dc+1,dc+n+1)-(dc+1);
}
```

1.5 Linux **对拍**

```
1  g++ $2 -o 1.out
2  g++ $3 -o 2.out
3  cnt=0;
4  while true; do
5  g++ $1 -o dm.out
6  ./dm.out>dm.txt
7  ./1.out<dm.txt>1.txt
8  ./2.out<dm.txt>2.txt
9  if diff 1.txt 2.txt; then let "cnt+=1"; echo ${cnt};
10  else exit 0;
11  fi
12  done
```

1.6 vimrc

```
runtime! debian.vim
2
3
    if has("syntax")
     syntax on
    endif
6
    if filereadable("/etc/vim/vimrc.local")
     source /etc/vim/vimrc.local
9
    endif
10
11
12
    colo torte
13
    set nu
14
    set ts=4
    set sw=4
16
    map <C-A> ggVG"+y
17
    map <F2> :w<CR>
    map <F3> :browse e<CR>
18
    map <F4> :browse vsp<CR>
    map <F5> :call Run()<CR>
20
21
    func! Run()
22
      exec "w"
23
      exec "!g++ -Wall % -o %<"
24
      exec "!./%<"
25
   endfunc
```

1.7 gdb

```
//g++-g a.cpp -o a;gdb --args a 1
   int main(int gdb)
3
4
     if (gdb>1)
5
6
        freopen("in","r",stdin);
7
        freopen("out","w",stdout);
8
9
     //...
11
12
      return 0;
13
```

2 数学

2.1 分数类

```
int gcd(int x,int y){return y?gcd(y,x%y):x;}
struct frac
{
```

```
int x,y; //符号放在x
5
      frac adjust()
6
        if (!v) {x=0; return *this;}
8
        if (!x) {y=1; return *this;}
9
        int sg=(x>0?1:-1)*(y>0?1:-1);
        int t=gcd(x=abs(x),y=abs(y)); x=x/t*sg; y/=t;
10
11
        return *this;
12
13
      frac(){}
14
      frac(int a,int b){x=a;y=b;this->adjust();}
      frac(char *a,bool improp=0) //improp假分数
15
16
17
            int t,sg=1;
18
            if (*a=='-') {sg=-1; a++;}
19
            if (improp&&strchr(a,' ')) {sscanf(a,"%d %d/%d",&t,&x,&y); x+=t*y;}
20
            else if (strchr(a,'/')) sscanf(a,"%d/%d",&x,&y);
21
            else {sscanf(a,"%d",&x); y=1;}
22
            x*=sg; this->adjust();
23
24
      char* c_str(bool improp=0)
25
26
        char *res=new char[50](),t[50];
27
        this—>adjust();
        if (x==0) {res[0]='0'; return res;}
28
        if (x<0) {strcat(res,"-"); x=-x;}
29
        if (improp&&x/y&&x%y){sprintf(t,"%d ",x/y); strcat(res,t); x%=y;}
30
        sprintf(t,"%d",x); strcat(res,t);
31
32
        if (y!=1) {sprintf(t,"/%d",y); strcat(res,t);}
33
        return res;
34
35
36
    bool operator==(frac a,frac b){a.adjust();b.adjust();return a.x==b.x&&a.y==b.y
37
   bool operator!=(frac a,frac b){a.adjust();b.adjust();return !(a.x==b.x&&a.y==b
    bool operator>(frac a,frac b){if(a.x*b.x<=0)return a.x>b.x;return a.x*b.y>b.x*
   bool operator<(frac a,frac b){if(a.x*b.x<=0)return a.x<b.x;return a.x*b.y<b.x*</pre>
   frac operator+(frac a,frac b){return frac(a.x*b.y+a.y*b.x,a.y*b.y).adjust();}
   frac operator (frac a, frac b) {return frac(a.x*b.y-a.y*b.x,a.y*b.y).adjust();}
   frac operator*(frac a,frac b){return frac(a.x*b.x,a.y*b.y).adjust();}
43 | frac operator/(frac a,frac b){return frac(a.x*b.y,a.y*b.x).adjust();}
44
   const frac nonfrac=frac(0,0);
   const frac zerofrac=frac(0,1);
```

2.2 高精度类

```
//要sqrt就一定要len和dcm是偶数
//不可以出现如big x=y;的东西,必须分开成big x;x=y;
#define len 3000
#define dcm 2000
struct big
```

```
6
7
        int _[len+2];
8
9
        int& operator[](int x){return [x];}
10
        big(){memset(_,0,sizeof(int)*(len+2));}
11
        big(char*x)
12
13
            memset(_,0,sizeof(int)*(len+2));
14
            char *y=x+strlen(x)-1,*z=strchr(x,'.'),*i;
15
            if (!z) z=y+1;
16
            int t=dcm-(z-x);
17
            tr(i,x,y) if(i!=z&&t>=1&&t<=len) _[++t]=*i-'0';
       }
18
19
20
        big& operator=(const big&x){memcpy(_,x._,sizeof(int)*(len+2));return *this
21
        char* c str()
22
23
            char *s=new char[len]; int l,r,i=0,k;
24
            tr(l,1,len) if([l]>0||l==dcm) break;
25
            rtr(r,len,1) if([r]>0||r==dcm) break;
26
            tr(k,l,r){if(k==dcm+1)s[i++]='.';s[i++]=_[k]+'0';}
27
            s[i]=0; return s;
28
29
    void carry(int\timesx,int y){*(x-1)+=((\timesx+=y)+10000)/10-1000;\timesx=(\timesx+10000)%10;}
    int comp(big x,big y) //O(len)
32
33
        int i:
34
        tr(i,1,len) if (x[i]!=y[i]) break;
35
        return i>len?0:(x[i]>y[i]?1:-1);
36
37
    big operator+(big x,big y) //O(len)
38
39
        big z; int i;
40
        rtr(i,len,1) carry(&z[i],x[i]+y[i]);
41
        return z;
42
43
   big operator—(big x,big y) //O(len)
44
45
        big z; int i;
46
        rtr(i,len,1) carry(&z[i],x[i]-y[i]);
47
        return z;
48
49
    big operator*(big x,big y) //0(len^2)
50
51
        big z; int i,j;
52
        rtr(i,len,1) rtr(j,min(dcm+len-i,len),max(dcm+1-i,1))
53
            carry(&z[i+j-dcm],x[i]*y[j]);
54
        return z;
55
56
    big operator/(big x,big y) //0(len^2)
57
58
        big z,t,tmp[10]; int i,j,k;
59
        tr(k,1,9) tmp[k]=tmp[k-1]+y;
60
        tr(j,1,len-dcm) t[j+dcm]=x[j];
```

```
61
        tr(i,1,len)
62
63
64
            tr(k,1,len-1) t[k]=t[k+1];
65
            t[len]=++j<=len?x[j]:0;
66
            tr(k,1,9) if (comp(tmp[k],t)>0) break;
67
            z[i]=--k:
68
            t=t-tmp[k];
69
70
        return z;
71
72
    int sqrt_deal(big&y,int a,int b,int l)
73
74
        int t=a+y[b]%10-9;
75
        if(2*b>l)t=(y[2*b-l])/10;
76
        if (b>=0&&!(a=sqrt_deal(y,t/10,b-1,l))) y[b]+=(t+999)%10-y[b]%10;
77
        return a;
78
79
    big sqrt(big x) //0(len^2)
80
    {
        int l,t=dcm/2; big y,z; y=x;
81
82
        for(l=1;l<=len;l++)</pre>
83
            y[++l]+=10;
84
85
            while (!sqrt_deal(y,0,l,l)) y[l]+=20;
            z[++t]=y[l]/20; y[l]-=10;
86
87
88
        return z;
89
90
    big floor(big x)
91
92
        big z; z=x; int i;
93
        tr(i,dcm+1,len) z[i]=0;
94
        return z:
95
    big ceil(big x){return comp(x,floor(x))==0?x:floor(x+big("1"));}
```

2.3 矩阵类

```
//^是0(n^2.8)的矩阵乘法;一定要用引用传递mat,不然会爆
   #define maxn 130
   struct mat
3
4
5
       int n,m,a[maxn][maxn];
6
       mat(int nn=0,int mm=0):n(nn),m(mm){}
7
       int* operator[](int x){return a[x];}
8
    const mat nonmat(-1,-1);
   mat operator+(mat&a,mat&b)
10
11
   {
12
       if (a.n!=b.n||a.m!=b.m) return nonmat;
       mat c(a.n,a.m); int i,j;
13
       tr(i,1,a.n) tr(j,1,a.m) c[i][j]=a[i][j]+b[i][j];
14
15
       return c;
```

```
16 | }
   mat operator—(mat&a,mat&b)
18
19
       if (a.n!=b.n||a.m!=b.m) return nonmat;
20
       mat c(a.n,a.m); int i,j;
21
       tr(i,1,a.n) tr(j,1,a.m) c[i][j]=a[i][j]-b[i][j];
22
        return c:
23
24
   mat operator*(mat&a,mat&b)
25
26
       if (a.m!=b.n) return nonmat;
27
        mat c(a.n,b.m); int i,j,k;
28
       tr(i,1,a.n) tr(j,1,b.m)
29
30
           c[i][j]=0;
31
           tr(k,1,a.m) c[i][j]+=a[i][k]*b[k][j];
32
       }
33
        return c;
34
    36
    void _as(mat&a,int x1,int y1,mat&b,int x2,int y2,int nn,int mm,bool chnm=0) //
        assign
37
38
        int i,j; tr(i,1,nn) tr(j,1,mm) a[x1+i-1][y1+j-1]=b[x2+i-1][y2+j-1];
39
        if (chnm) {a.n=x1+nn-1; a.m=y1+mm-1;}
40
    void _st(mat&a,mat&b,mat&c,int n,int m,int k) //strassen
41
42
43
        if (n<=32||m<=32||k<=32){c=a*b;return;}</pre>
44
       c.n=n; c.m=m;
45
       n>>=1: m>>=1: k>>=1:
46
        mat all,al2,a21,a22,bl1,bl2,b21,b22,m1,m2,m3,m4,m5,m6,m7,t1,t2;
47
        _as(al1,1,1,a,1,1,n,k,1);
                                       as(a12,1,1,a,1,k+1,n,k,1);
48
        as(a21,1,1,a,n+1,1,n,k,1);
                                        as(a22,1,1,a,n+1,k+1,n,k,1);
49
        _as(b11,1,1,b,1,1,k,m,1);
                                        as(b12,1,1,b,1,m+1,k,m,1);
50
        as(b21,1,1,b,k+1,1,k,m,1);
                                       as(b22,1,1,b,k+1,m+1,k,m,1);
51
        t1=a11+a22;t2=b11+b22;
                                        _{st(t1,t2,m1,n,m,k)};
52
        t1=a21+a22;t2=b11;
                                       _{st(t1,t2,m2,n,m,k)};
53
        t1=a11;t2=b12-b22;
                                        _{st(t1,t2,m3,n,m,k)};
54
        t1=a22;t2=b21—b11;
                                       _{st(t1,t2,m4,n,m,k)};
55
       t1=a11+a12;t2=b22;
                                       _{st(t1,t2,m5,n,m,k)};
56
        t1=a21-a11;t2=b11+b12;
                                        _{st(t1,t2,m6,n,m,k)};
57
       t1=a12-a22;t2=b21+b22;
                                       _st(t1,t2,m7,n,m,k);
58
       t1=m1+m4; t1=t1-m5; t1=t1+m7;
                                       as(c,1,1,t1,1,1,n,m);
59
        t1=m3+m5:
                                        as(c,1,m+1,t1,1,1,n,m);
60
                                        as(c,n+1,1,t1,1,1,n,m);
61
        t1=m1-m2; t1=t1+m3; t1=t1+m6;
                                       as(c,n+1,m+1,t1,1,1,n,m);
62
    int __enlarge(int x){int t=1<<(31-__builtin_clz(x)); return t==x?x:(t<<1);}</pre>
63
    mat operator^(mat&a,mat&b)
64
65
66
        if (a.m!=b.n) return mat(-1,-1);
67
        int n=_enlarge(a.n), m=_enlarge(b.m), k=_enlarge(a.m);
68
        mat c; _st(a,b,c,n,m,k);
69
        c.n=a.n; c.m=b.m;
70
        return c;
```

71 | }

2.4 筛素数-欧拉筛法

O(N)

```
int prime[maxm],a[n];
    bool pprime[n];
    void EulerPrime()
3
4
5
      int i,j;
      tr(i,2,n) pprime[i]=1;
      tr(i,2,n)
8
9
        if (pprime[i]) prime[++m]=i;
10
        tr(j,1,m)
11
12
          if (i*prime[j]>n) break;
13
          pprime[i*prime[j]]=0;
14
          if (i%prime[j]==0) break;
15
16
     }
17
```

2.5 线性方程组-高斯消元

 $O(N^3)$

```
//待测
    int n,m;
   frac a[maxn][maxm],ans[maxn];
    void gauss()
5
6
        int i=1,j,k,x,y,arb=m;
        frac t;
8
        tr(j,1,m)
9
10
            tr(k,i,n) if (a[k][j]!=zerofrac) break;
            if (k>n) continue;
11
12
            arb——;
            if (k!=i) tr(y,j,m+1) swap(a[i][y],a[k][y]);
13
14
            tr(x,1,n) if(x!=i)
15
16
                t=a[x][j]/a[i][j];
17
                tr(y,j,m+1) a[x][y]=a[x][y]-a[i][y]*t;
18
            if (++i>n) break;
19
20
        }
        //-
21
22
        tr(i,1,n)
23
            tr(j,1,m) if (a[i][j]!=zerofrac) break;
24
            if (j>m&&a[i][j]!=zerofrac) {printf("No Solution.\n"); return;}
25
26
```

```
27
        if (arb) {printf("Arbitrary constants: %d\n",arb); return;}
28
29
        rtr(i,m,1)
30
31
            ans[i]=a[i][m+1];
32
            rtr(j,m,i+1) ans[i]=ans[i]-ans[j]*a[i][j];
33
            ans[i]=ans[i]/a[i][i];
34
35
        tr(i,1,m) printf("x[%d] = %s\n",i,ans[i].c_str());
36
```

2.6 高阶代数方程求根-求导

 $O(N^3 * S)$, S 取决于精度

```
│//求导至最高次为t时,a[t][i]表x^i的系数,ans[t]记录根;oo依题而定
   double a[maxn][maxn],ans[maxn][maxn];
   int n,anss[maxn];
    double get(int x,double y)
5
6
       int i; double res=0;
7
       rtr(i,x,0) res=res*y+a[x][i];
8
       return res;
9
    void dich(int x,double ll,double rr)
10
11
12
       if (cmp(get(x,ll))==0){ans[x][++anss[x]]=ll;return;}
13
       if (cmp(get(x,rr))==0){ans[x][++anss[x]]=rr;return;}
       if (cmp(get(x,ll)*get(x,rr))>0) return;
14
15
       double l=ll,r=rr,mid;
       while (l+eps<r) //亦可改为循环一定次数
16
17
18
           int tl=cmp(get(x,l)),tm=cmp(get(x,mid=(l+r)/2));
19
           if (tl==0) break;
20
           if (tl*tm>=0) l=mid; else r=mid;
21
22
       ans[x][++anss[x]]=l;
23
24
    void work()
25
26
       int i,j; double l,r;
27
       rtr(i,n-1,1) tr(j,0,i) a[i][j]=a[i+1][j+1]*(j+1);
28
       tr(i,0,n-1)
29
       {
30
31
           tr(j,1,anss[i]){dich(i+1,l,r=ans[i][j]); l=r;}
32
           dich(i+1,l,oo);
33
34
       tr(i,1,anss[n]) printf("%.10lf\n",ans[n][i]);
35
```

3 几何

3.1 平面几何类包

下面提到皮克公式: $S=I+\frac{B}{2}-1$ 描述顶点都在格点的多边形面积,I,B 分别为多边形内、边上格点

```
#define maxpn 100010
   #define nonx 1E100
   #define eps 1E-8
   const double pi=acos(-1.0):
    int cmp(double x)
7
8
       if (x>eps) return 1;
9
       if (x \leftarrow eps) return -1;
       return 0;
10
11
    double sqr(double a){return a*a;}
12
    int gcd(int a,int b){return a%b==0?b:gcd(b,a%b);}
    15
   struct point
   {
16
17
       double x,y;
18
       point(){}
19
       point(double a, double b) {x=a;y=b;}
20
21
       friend point operator+(point a,point b){return point(a.x+b.x,a.y+b.y);}
       friend point operator-(point a,point b) {return point(a.x-b.x,a.y-b.y);}
22
23
       friend point operator-(point a) {return point(-a.x,-a.y);}
       friend double operator*(point a,point b){return a.x*b.x+a.y*b.y;}
24
       friend point operator*(double a,point b){return point(a*b.x,a*b.y);}
25
       friend point operator*(point a,double b) {return point(a.x*b,a.y*b);}
26
27
       friend point operator/(point a,double b){return point(a.x/b,a.y/b);}
       friend double operator^(point a,point b){return a.x*b.y-a.y*b.x;}
28
       friend bool operator == (point a, point b) {return cmp(a.x-b.x) == 0&&cmp(a.y-b.
29
           y) == 0;
       friend bool operator!=(point a,point b){return cmp(a.x-b.x)!=0||cmp(a.y-b.
30
           v)!=0;}
31
   const point nonp=point(nonx,nonx);
33
   struct line
34
       point a,b;
35
36
       line(){}
37
       line(point pa,point pb){a=pa;b=pb;}
38
       point dir(){return b-a;}
39
   const line nonl=line(nonp,nonp);
   struct circle
41
42
   {
       point o; double r;
43
44
       circle(){}
45
       circle(point a,double b){o=a;r=b;}
46
47 | struct triangle//t 因triangle亦属polygon,故省去许多函数
```

```
48
49
       point a,b,c;
50
       triangle(){}
       triangle(point ta,point tb,point tc){a=ta;b=tb;c=tc;}
   struct polygon
55
       int n; point a[maxpn]; //逆时针!
56
       polygon(){}
57
       polygon(triangle t){n=3;a[1]=t.a;a[2]=t.b;a[3]=t.c;}
58
       point& operator[](int _){return a[_];}
59
   60
   double sqr(point a){return a*a;}
   double len(point a){return sqrt(sqr(a));} //模长
   point rotate(point a, double b) {return point(a.x*cos(b)-a.y*sin(b),a.x*sin(b)+a
       .v*cos(b));} //逆时针旋转
   double angle(point a,point b){return acos(a*b/len(a)/len(b));} //夹角
   point reflect(point a, point b) { return 2*a-b; } //以a为中心对称
   67
   point quad(double A,double B,double C)
68
69
       double delta=sqr(B)-4*A*C;
70
       if (delta<0) return nonp:</pre>
71
       return point((-B-sqrt(delta))/(2*A),(-B+sqrt(delta))/(2*A));
72
   point proj(point a, line b) { double t=(a-b.a)*b.dir()/sqr(b.dir()); return point(
       b.a+t*b.dir());} //垂足
   double dist(point a,line b){return ((a-b.a)^(b.b-b.a))/len(b.dir());}
       到线距离
   bool onray(point a,line b){return cmp((a-b.a)^b.dir())==0&&cmp((a-b.a)*b.dir()
       )>=0;} //判断点在射线上
   bool onseg(point a,line b){return cmp((a-b.a)^b.dir())==0&&cmp((a-b.a)*(a-b.b)
       )<=0;} //判断点在线段上
   bool online(point a, line b) {return cmp((a-b.a)^b.dir()) ==0;} //判断点在直线上
   bool parallel(line a, line b){return cmp(a.dir()^b.dir())==0;} //判断两线平
79
   point cross(line a, line b) //线交
80
81
       double t:
82
       if (cmp(t=a.dir()^b.dir())==0) return nonp;
83
       return a.a+((b.a-a.a)^b.dir())/t*a.dir();
84
85
   double S(circle a){return pi*sgr(a.r):} //面积
   double C(circle a){return 2*pi*a.r;} //周长
   line cross(line a, circle b) //线圆交
89
90
       point t=quad(sqr(a.dir()), 2*a.dir()*(a.a-b.o), sqr(a.a-b.o)-sqr(b.r));
91
       if (t==nonp) return nonl;
92
       return line(a.a+t.x*a.dir(),a.a+t.y*a.dir());
93
   int in(point a,circle b){double t=len(a-b.o);return t==b.r?2:t<b.r;} //点与圆
       位置关系 0外 1内 2上
   //line cross(circle a,circle b){}
96 //line tangent(point a,circle b){}
```

```
//pair<line,line> tangent(circle a,circle b){}
    //double unionS(int n,circle*a) //圆面积并
99
    //{}
    100
    double S(triangle a){return abs((a.b-a.a)^(a.c-a.a))/2;} //面积
101
    double C(triangle a){return len(a.a-a.b)+len(a.a-a.c)+len(a.a-a.c);} //周长
102
    circle outcircle(triangle a) //外接圆
103
104
105
        circle res; point t1=a.b—a.a,t2=a.c—a.a;
106
        double t=2*t1^t2;
107
        res.o.x=a.a.x+(sqr(t1)*t2.y-sqr(t2)*t1.y)/t;
108
        res.o.y=a.a.y+(sqr(t2)*t1.x-sqr(t1)*t2.x)/t;
        res.r=len(res.o-a.a);
109
110
        return res;
111
112
    circle incircle(triangle a) //内切圆
113
        circle res; double x=len(a.b-a.c),y=len(a.c-a.a),z=len(a.a-a.b);
114
115
        res.o=(a.a*x+a.b*y+a.c*z)/(x+y+z);
116
        res.r=dist(res.o,line(a.a,a.b));
        return res;
117
118
    | point gc(triangle a){return (a.a+a.b+a.c)/3;}  //重心
119
    point hc(triangle a){return 3*gc(a)-2*outcircle(a).o;} //垂心
120
    121
122
    double S(polygon a) //面积 O(n)
123
        int i; double res=0;
124
125
        a[a.n+1]=a[1]:
        tr(i,1,a.n) res+=a[i]^a[i+1];
126
127
        return res/2;
128
129
    double C(polygon a) //周长 O(n)
130
        int i; double res=0;
131
        a[a.n+1]=a[1];
132
133
        tr(i,1,a.n) res+=len(a[i+1]-a[i]);
        return res;
134
135
136
    int in(point a, polygon b) //点与多边形位置关系 0外 1内 2上 0(n)
137
138
        int s=0,i,d1,d2,k;
        b[b.n+1]=b[1];
139
140
        tr(i,1,b.n)
141
142
            if (onseg(a,line(b[i],b[i+1]))) return 2;
143
            k=cmp((b[i+1]-b[i])^(b[i]-a));
144
            d1=cmp(b[i].y-a.y);
145
            d2=cmp(b[i+1].y-a.y);
            s=s+(k>0\&d2<=0\&d1>0)-(k<0\&d1<=0\&d2>0);
146
147
148
        return s!=0;
149
    |point gc(polygon a) //重心 O(n)
150
151
    | {
152
        double s=S(a); point t(0,0); int i;
```

```
153
         if (cmp(s)==0) return nonp;
154
         a[a.n+1]=a[1];
155
         tr(i,1,a.n) t=t+(a[i]+a[i+1])*(a[i]^a[i+1]);
156
         return t/s/6;
157
158
     int pick_on(polygon a) //皮克求边上格点数 O(n)
159
160
         int s=0,i;
161
         a[a.n+1]=a[1];
162
         tr(i,1,a.n) s+=gcd(abs(int(a[i+1].x-a[i].x)),abs(int(a[i+1].y-a[i].y)));
163
         return s:
164
165
     int pick_in(polygon a){return int(S(a))+1-pick_on(a)/2;} //皮克求多边形内格点
166
167
     bool __cmpx(point a,point b){return cmp(a.x-b.x)<0;}
     bool cmpy(point a,point b){return cmp(a.v-b.v)<0;}
168
169
     double __mindist(point *a,int l,int r)
170
171
         double ans=nonx;
172
         if (l==r) return ans;
173
         int i,j,tl,tr,mid=(l+r)/2;
174
         ans=min(__mindist(a,l,mid),__mindist(a,mid+1,r));
175
         for(tl=mid;tl>=l&&a[tl].x>=a[mid].x-ans;tl--); tl++;
176
         for(tr=mid+1;tr<=r&&a[tr].x<=a[mid].x+ans;tr++); tr—;</pre>
177
         sort(a+tl+1,a+tr+1, cmpy);
178
         tr(i,tl,tr-1) tr(j,i+1,min(tr,i+4)) ans=min(ans,len(a[i]-a[j]));
179
         sort(a+tl+1,a+tr+1,__cmpx);
180
         return ans:
181
182
     double mindist(polygon a) //a只是点集 O(nlogn)
183
184
         sort(a.a+1,a.a+a.n+1,__cmpx);
185
         return __mindist(a.a,1,a.n);
186
187
     //line convex_maxdist(polygon a){}
     //polygon convex_hull(polygon a) //a只是点集 0(nlogn)
188
189
     //{
190
     //}
     //int convex_in(point a,polygon b){} //0外 1内 2上 0(logn)
     //polygon cross(polygon a,polygon b){}
192
193
     //polygon cross(line a,polygon b){}
     //double unionS(circle a,polygon b){}
195
     circle mincovercircle(polygon a) //最小圆覆盖 O(n)
196
197
         circle t; int i,j,k;
198
         srand(time(0));
199
         random shuffle(a.a+1,a.a+a.n+1);
200
         for(i=2,t=circle(a[1],0);i<=a.n;i++) if (!in(a[i],t))</pre>
201
         for(j=1,t=circle(a[i],0);j<i;j++) if (!in(a[j],t))</pre>
202
         for(k=1,t=circle((a[i]+a[j])/2,len(a[i]-a[j])/2);k<j;k++) if (!in(a[k],t))</pre>
203
         t=outcircle(triangle(a[i],a[i],a[k]));
204
         return t;
205
```

4 DP

5 串

5.1 最长回文子串-Manacher

O(N)

```
//st,s都从1开始!
            1 2 3 4 5 6 7 8
   // st: a b a
       s: 00a0b0a0
    // a: 0 0 1 2 3 2 1 0
    int a[2*maxl];
    char st[maxl],s[2*maxl];
    int manacher()
9
10
        int l=strlen(st+1),i,Mm,Mr=0,ans=0;
11
        memset(a,0,sizeof(a)); s[1]=0xFF;
12
        tr(i,2,2*l+2) s[i]=(i&1)*st[i/2];
13
        tr(i,1,2*l+2)
14
15
            if (i<Mr) a[i]=min(a[2*Mm-i],Mr-i);</pre>
16
            while (s[i-a[i]-1]==s[i+a[i]+1]) a[i]++;
17
            if (i+a[i]>Mr) {Mr=i+a[i]; Mm=i;}
18
            ans=max(ans,a[i]);
19
20
        return ans;
21
22
   int main()
23
24
        gets(st+1); printf("%d\n", manacher());
25
        return 0;
26
```

5.2 多模匹配-AC 自动机

求 n 个模式串中有多少个出现过,模式串相同算作多个, $O(\sum P_i + T)$

```
//maxt=文本串长, maxp=模式串长, maxn=模式串数
   struct ac{int s,to[26],fail;} a[maxn*maxp];
   int m,n;
    char ts[maxp],s[maxt];
    queue<int> b;
   void clear(int x)
7
    {
8
       a[x].s=a[x].fail=0;
9
       memset(a[x].to,0,sizeof(a[x].to));
10
11
   void ins(char *st)
12
13
       int i,x=0,c,l=strlen(st);
       tr(i,0,l-1)
14
15
```

```
16
            if (!a[x].to[c=st[i]-'a']) {a[x].to[c]=++m; clear(m);}
17
            x=a[x].to[c];
        }
18
19
        a[x].s++;
20
21
    void build()
22
23
        int i,h,t;
24
        tr(i,0,25) if (t=a[0].to[i]) b.push(t);
25
        while (b.size())
26
27
            h=b.front(); b.pop();
28
            tr(i,0,25)
29
            if (t=a[h].to[i])
30
31
                a[t].fail=a[a[h].fail].to[i];
32
                b.push(t);
33
            } else a[h].to[i]=a[a[h].fail].to[i];
34
35
36
    int cnt(char *st)
37
38
        int i,x=0,c,t,cnt=0,l=strlen(st);
39
        tr(i,0,l-1)
40
41
            c=st[i]-'a';
42
            while (!a[x].to[c]&&x) x=a[x].fail;
43
            x=a[x].to[c];
44
            for(t=x;t&&a[t].s>-1;t=a[t].fail) {cnt+=a[t].s; a[t].s=-1;}
45
       }
46
        return cnt;
47
48
    void work()
49
50
        int i;
51
        m=0; clear(0);
52
        scanf("%d",&n);
53
        tr(i,1,n)
54
55
            scanf("%s",ts); ins(ts);
56
57
        build();
58
        scanf("%s",s); printf("%d\n",cnt(s));
59
```

6 图/树

6.1 单源最短路-Dijkstra

```
不加堆,O(V^2 + E)
```

```
struct edge{int pre,x,y,d;} a[maxm];
int n,m,ah[maxn],d[maxn];
bool p[maxn];
```

```
void update(int x)
5
      int e;
      p[x]=true;
      for(e=ah[x];e>-1;e=a[e].pre)
8
9
        if (!p[a[e].y]&&(!d[a[e].y]||a[e].d+d[x]<d[a[e].y]))</pre>
10
          d[a[e].y]=a[e].d+d[x];
11
12
    void dijkstra()
13
14
      int i,j,t;
        memset(p,0,sizeof(p));
      update(1);
16
17
      d[0]=oo;
18
      tr(i,2,n)
19
20
        t=0;
21
        tr(j,1,n) if (!p[j]&&d[j]&&d[j]<d[t]) t=j;
22
        update(t);
23
24
      printf("%d\n",d[n]);
25
    加堆, O(ElogE + V)
```

```
typedef pair<int,int> pa;
    struct edge{int pre,x,y,d;} a[maxm];
   int n,m,ah[maxn],ans[maxn];
    priority_queue<pa, vector<pa>, greater<pa> >d;
    bool p[maxn];
    void dijkstra()
7
8
      int v,s,e;
9
        memset(p,0,sizeof(p));
10
      d.push(make_pair(0,1));
11
      while(!d.empty())
12
13
        v=d.top().second;
14
        s=d.top().first;
15
        d.pop();
16
        if (p[v]) continue;
17
        p[v]=1;
18
        ans[v]=s;
        for(e=ah[v];e>-1;e=a[e].pre)
19
20
          if (!p[a[e].y]) d.push(make_pair(s+a[e].d,a[e].y));
21
      printf("%d\n",ans[n]);
22
23
   }
```

6.2 最短路-Floyd

```
O(V^3 + E)
  void floyd()
2 | {
```

```
int i,j,k;
4
     tr(k,1,n) tr(i,1,n)
5
       if (a[i][k]) tr(j,1,n)
6
         if (i!=j&&a[k][j]&&(!a[i][j]||(a[i][j]&&a[i][k]+a[k][j]<a[i][j])))</pre>
7
                    a[i][j]=a[i][k]+a[k][j];
8
```

6.3 单源最短路-SPFA

不加优化, $O(VE + V^2) = O(kE)$

```
struct edge{int pre,x,y,d;} a[maxm];
    int n,m,last[maxn],d[maxn],b[maxn];
    bool p[maxn];
4
    void spfa()
5
6
      int h,t,e;
7
      memset(d,0x7F,sizeof(d));
        memset(p,0,sizeof(p));
      b[0]=1; p[1]=1; d[1]=0;
10
      h=n-1; t=0;
11
      while (h!=t)
12
13
        h=(h+1)%n;
        for (e=last[b[h]];e>-1;e=a[e].pre)
14
15
          if (d[a[e].x]+a[e].d<d[a[e].y])</pre>
16
17
            d[a[e].y]=d[a[e].x]+a[e].d;
18
            if (!p[a[e].y])
19
20
              t=(t+1)%n;
21
              b[t]=a[e].y;
22
              p[a[e].y]=1;
23
24
25
        p[b[h]]=0;
26
27
      printf("%d\n",d[n]);
28
```

SLF+LLL 优化, $O(VE+V^2)=O(kE)$

```
//a从1开始!
    struct edge{int pre,x,y,d;} a[maxm];
   int n,m,last[maxn],d[maxn],b[maxn];
    bool p[maxn];
5
    void spfa()
 6
 7
      int e,h,t,sum,num;
 8
      memset(d,0x7F,sizeof(d));
       memset(p,0,sizeof(p));
      b[0]=1; p[1]=1; d[1]=0;
11
      sum=0; num=1;
      h=0; t=0;
12
13
      while (num)
```

```
14
        while (d[h]*num>sum)
15
16
17
          t=(t+1)%n;
18
          b[t]=b[h];
19
          h=(h+1)%n;
20
21
        e=last[b[h]];
22
        p[b[h]]=0;
23
        num——;
24
        sum==d[a[e].x];
25
        h=(h+1)%n;
26
        for (;a[e].x;e=a[e].pre)
27
          if (d[a[e].x]+a[e].d<d[a[e].y])
28
29
             if (p[a[e].y]) sum—=d[a[e].y];
30
             d[a[e].y]=d[a[e].x]+a[e].d;
31
             sum+=d[a[e].y];
32
             if (!p[a[e].y])
33
               if (num && d[a[e].y]<d[b[h]])</pre>
34
35
36
                 h=(h+n-1)%n;
37
                 b[h]=a[e].y;
38
               } else
39
40
                 t=(t+1)%n;
41
                 b[t]=a[e].y;
42
43
               p[a[e].y]=1;
44
               num++;
45
46
47
48
      printf("%d\n",d[n]);
49
```

6.4 二分图最大匹配-匈牙利

O(VE)

```
struct edge{int x,y,pre;} a[maxm];
    int nx,ny,m,last[maxn],my[maxn];
    bool p[maxn]:
    int dfs(int x)
5
6
      for (int e=last[x];e>-1;e=a[e].pre)
7
        if (!p[a[e].y])
8
9
          int y=a[e].y;
10
          p[y]=1;
          if (!my[y]||dfs(my[y])) return my[y]=x;
11
12
13
      return 0;
14 | }
```

```
void hungary()
15
16
17
      int i,ans=0;
18
      memset(my,0,sizeof(my));
19
      tr(i,1,nx)
20
21
        memset(p,0,sizeof(p));
22
        if (dfs(i)) ans++;
23
24
      printf("%d\n",ans);
25
```

6.5 有向图极大强连通分量-Tarjan 强连通

```
O(V+E)
```

```
//ds, ss, gs分别是dfn, sta, group计数器;group记所属分量号码, size记分量大小;
        insta记是否在栈中
   struct edge{int x,y,pre;} a[maxm];
   int n,m,ah[maxn],ds,dfn[maxn],low[maxn],ss,sta[maxn],gs,group[maxn],size[maxn
    bool insta[maxn];
   void tarjan(int x)
6
7
       int e,y,t;
8
       dfn[x]=low[x]=++ds;
9
       sta[++ss]=x; insta[x]=1;
10
       for(e=ah[x];e>-1;e=a[e].pre)
11
12
           if (!dfn[y=a[e].y]) tarjan(y);
13
           if (insta[y]) low[x]=min(low[x],low[y]);
14
15
       if (low[x]==dfn[x])
16
           for(gs++,t=0;t!=x;t=sta[ss--]) {group[sta[ss]]=gs; size[gs]++;}
17
18
    void work()
19
20
       ds=ss=gs=0;
21
       int i; tr(i,1,n) if (!dfn[i]) tarjan(i);
22
```

6.6 最大流-iSAP

简版 (无 BFS, 递归, gap, cur), $O(V^2 * E)$

```
struct edge{int x,y,c,f,pre;} a[2*maxm];
int n,mm,m,last[maxn],d[maxn],gap[maxn],cur[maxn],ans;

void newedge(int x,int y,int c,int f)
{
    m++;
    a[m].x=x; a[m].y=y; a[m].c=c; a[m].f=f;
    a[m].pre=last[x]; last[x]=m;
}
void init()
```

```
10
      int i,x,y,c;
11
12
13
      memset(last,-1,sizeof(last));
      tr(i,1,mm)
14
15
16
        x=read(); y=read(); c=read();
17
        newedge(x,y,c,0);
18
        newedge(y,x,c,c);
19
20
      tr(i,1,n) cur[i]=last[i];
21
        memset(d,0,sizeof(d));
22
      memset(gap,0,sizeof(gap));
23
      gap[0]=n;
24
      ans=0;
25
26
    int sap(int x,int flow)
27
28
      int e,t;
29
      if (x==n) return flow;
      for (e=cur[x];e!=-1;e=a[e].pre)
30
31
        if (a[e].f<a[e].c && d[a[e].y]+1==d[x])
32
33
          cur[x]=e:
34
          if (t=sap(a[e].y,min(flow,a[e].c-a[e].f)))
35
36
             a[e].f+=t; a[e^1].f-=t; return t;
37
          }
38
39
      if (--gap[d[x]]==0) d[n]=n;
40
      d[x]=n;
41
      for (e=last[x];e!=-1;e=a[e].pre)
42
        if (a[e].f<a[e].c) d[x]=min(d[x],d[a[e].y]+1);</pre>
43
      cur[x]=last[x];
44
      ++gap[d[x]];
45
      return 0;
46
47
    int work()
48
49
        while (d[n] < n) ans+=sap(1,oo);
50
```

完全版(有 BFS, 非递归, gap, cur), $O(V^2 * E)$

```
int n,mm,m,ans,last[maxn],cur[maxn],pre[maxn],d[maxn],gap[maxn],b[maxn];
bool p[maxn];
struct edge{int x,y,c,f,pre;} a[2*maxm];
void newedge(int x,int y,int c,int f)
{
    m++;
    a[m].x=x; a[m].y=y; a[m].c=c; a[m].f=f;
    a[m].pre=last[x]; last[x]=m;
}
void init()
{
    int i,x,y,c;
```

```
13
      m=-1;
14
      memset(last,-1,sizeof(last));
15
      tr(i,1,mm)
16
17
        x=read(); y=read(); c=read();
18
        newedge(x,y,c,0);
19
        newedge(y,x,c,c);
20
21
22
    int aug()
23
24
      int x,flow=a[cur[1]].c-a[cur[1]].f;
25
      for (x=pre[n];x>1;x=pre[x]) flow=min(flow,a[cur[x]].c-a[cur[x]].f);
26
      return flow;
27
28
    void bfs()
29
30
      int h,t,e;
31
      memset(p,0,sizeof(p));
32
      b[1]=n; p[n]=1;
33
      h=0; t=1;
34
      while (h<t)
35
36
        h++;
37
        for (e=last[b[h]];e!=-1;e=a[e].pre)
38
          if (a[e].c==a[e].f && !p[a[e].y])
39
40
            b[++t]=a[e].y;
41
            p[a[e].y]=1;
42
            d[a[e].y]=d[a[e].x]+1;
43
44
45
46
    void sap()
47
48
      int x,e,flow;
49
      memset(d,0,sizeof(d));
50
      memset(gap,0,sizeof(gap));
51
      bfs();
52
      tr(x,1,n) gap[d[x]]++;
53
      ans=0;
54
      tr(x,1,n) cur[x]=last[x];
55
      x=1; pre[1]=1;
56
      while (d[1] < n)
57
58
        for (e=cur[x];e!=-1;e=a[e].pre)
59
          if (d[x]==d[a[e].y]+1 && a[e].f<a[e].c)</pre>
60
61
            cur[x]=e;
            pre[a[e].y]=x;
62
63
            x=a[e].y;
64
            break;
65
66
        if (e==-1)
67
68
          if (!(--gap[d[x]])) return;
```

```
69
          cur[x]=last[x];
70
          d[x]=n;
71
          for (e=last[x];e!=-1;e=a[e].pre)
            if (a[e].f<a[e].c) d[x]=min(d[x],d[a[e].y]+1);</pre>
72
73
          gap[d[x]]++;
74
          x=pre[x];
75
76
        if (x==n){
77
          flow=aug();
78
          for (x=pre[x];x>1;x=pre[x])
79
80
            a[cur[x]].f+=flow; a[cur[x]^1].f-=flow;
81
82
          a[cur[x]].f+=flow; a[cur[x]^1].f-=flow;
83
          ans+=flow;
84
          x=1;
85
86
     }
87
   }
```

6.7 **最小生成树-Prim**

不加堆,O(V+E)

```
struct edge{int x,y,d,pre;} a[maxm];
    int n,m,ah[maxn],d[maxn];
    bool p[maxn];
    void prim()
5
6
      int i,j,x,y,e,ans=0;
7
      memset(d,0x7f,sizeof(d)); d[1]=0;
      memset(p,0,sizeof(p));
9
      tr(i,1,n)
10
      {
11
12
        tr(j,1,n) if (!p[j]&&d[j]<d[x]) x=j;
        ans+=d[x];
13
        p[x]=1;
14
15
        for(e=ah[x];e>-1;e=a[e].pre)
16
          if (!p[y=a[e].y]) d[y]=min(d[y],a[e].d);
17
18
      printf("%d\n",ans);
19
```

加堆, O(V+E)

```
struct edge{int x,y,d,pre;} a[maxm];
typedef pair<int,int> pa;
priority_queue<pa,vector<pa>,greater<pa> >d;
int n,m,ah[maxn];
bool p[maxn];
void prim()
{
   int i,x,y,e,ans=0;
   pa t;
```

```
10
      while (!d.empty()) d.pop();
11
      d.push(make_pair(0,1));
12
      memset(p,0,sizeof(p));
13
      tr(i,1,n)
14
15
            while (!d.empty()&&p[d.top().second]) d.pop();
16
        t=d.top():
17
        ans+=t.first;
18
        p[x=t.second]=1;
19
        for(e=ah[x];e>-1;e=a[e].pre)
20
          if (!p[y=a[e].y]) d.push(make_pair(a[e].d,y));
21
22
     printf("%d\n",ans);
23
```

6.8 最小生成树-Kruskal

O(ElogE + E)

```
//a从1开始!
    struct edge{int x,y,d;} a[maxm];
    bool cmp(edge a,edge b){return a.d<b.d;}</pre>
   int n,i,j,m,fa[maxn];
    int gfa(int x){return x==fa[x]?x:fa[x]=gfa(fa[x]);}
    void kruskal()
7
8
      int ans,fx,fy;
9
      sort(a+1,a+m+1,cmp);
      tr(i,1,n) fa[i]=i;
11
      ans=0;
12
      tr(i,1,m)
13
       if ((fx=gfa(a[i].x))!=(fy=gfa(a[i].y)))
14
15
          fa[fx]=fy;
16
          ans+=a[i].d;
17
18
      printf("%d\n",ans);
19
```

6.9 树的直径-BFS

O(N)

```
struct edge{int x,y,d,pre;} a[2*maxn];
    int n,m,ah[maxn],d0[maxn],d1[maxn],b[maxn];
    bool p[maxn];
 4
    void bfs(int root,int *d)
5
6
      int h,t,e,y;
7
      memset(p,0,sizeof(p));
      h=0; t=1;
9
      b[1]=root;
10
      p[root]=1;
11
      while (h<t)
```

```
12
13
        h++;
14
        for (e=ah[b[h]];e>-1;e=a[e].pre)
          if (!p[y=a[e].y])
15
16
17
            b[++t]=y;
18
            p[y]=1;
19
            d[y]=d[a[e].x]+a[x].d;
20
21
      }
22
23
    void work()
24
25
      int i,s1,s2;
26
        memset(d0,0,sizeof(d0));
27
      memset(d1,0,sizeof(d1));
28
      bfs(1,d0); s1=1; tr(i,1,n) if (d0[i]>d0[s1]) s1=i;
29
      bfs(s1,d1); s2=1; tr(i,1,n) if (d1[i]>d1[s2]) s2=i;
30
        printf("%d %d %d\n",s1,s2,d1[s2]);
31
```

6.10 LCA-TarjanLCA

```
O(N+Q)
```

```
struct query{int x,y,pre,lca;} b[2*maxq];
    struct edge{int x,y,pre,d;} a[2*maxn];
    int n,q,am,bm,ah[maxn],bh[maxn],fa[maxn],dep[maxn];
    bool p[maxn];
    int gfa(int x){return fa[x]==x?x:fa[x]=gfa(fa[x]);}
    void tarjan(int x,int depth)
6
7
8
        int tmp,y;
9
        p[x]=1;
10
        dep[x]=depth;
11
        for(tmp=ah[x];tmp>-1;tmp=a[tmp].pre)
            if (!p[y=a[tmp].y])
12
13
                tarjan(y,depth+a[tmp].d);
14
15
                fa[y]=x;
16
17
        for(tmp=bh[x];tmp>-1;tmp=b[tmp].pre)
18
            if (p[y=b[tmp].y]) b[tmp].lca=b[tmp^1].lca=gfa(y);
19
20
    void work()
21
22
        memset(dep,0,sizeof(dep));
23
        memset(p,0,sizeof(p));
24
        tarjan(1,0);
        int i; tr(i,0,q-1) writeln(dep[b[2*i].x]+dep[b[2*i].y]-2*dep[b[2*i].lca]);
25
26
```

7 数据结构

RogerRo

7.1 并查集

```
int gfa(int x){return(fa[x]==x?x:fa[x]=gfa(fa[x]));}
```

7.2 区间和 单点修改区间查询-树状数组

O(NlogN + QlogN)

```
int n,a[maxn],f[maxn];
    char to:
    void modify(int x,int y)
 4
 5
        while (x \le n) \{f[x] += y; x += x \& -x;\}
6
7
    int sum(int x)
8
9
        int res=0;
10
        while (x) {res+=f[x]; x-=x&-x;}
11
        return res:
12
13
    void work()
14
15
        int q,i,tx,ty;
16
        n=read(); q=read();
17
        memset(f,0,sizeof(f));
18
        tr(i,1,n) modify(i,a[i]=read());
19
        tr(i,1,q)
20
        {
21
            tc=getchar(); tx=read(); ty=read();
22
            if (tc=='M') {modify(tx,ty-a[tx]); a[tx]=ty;}
23
            else writeln(sum(ty)-sum(tx-1));
24
        }
25
```

7.3 区间和 区间修改单点查询-树状数组

O(NlogN + QlogN)

```
int n,i,f[maxn];
2
    void modify(int x,int y)
3
4
        while (x) \{f[x]+=y; x-=x\&-x;\}
5
6
    int sum(int x)
7
8
        int res=0;
9
        while (x \le n) \{res + f[x]; x + x - x; \}
10
        return res;
11
12
   void work()
13
```

17

```
int q,i;
14
15
        n=read(); q=read();
16
        memset(f,0,sizeof(f));
        tr(i,1,q)
18
        {
19
            tc=getchar();
20
            if (tc=='M') {modify(read()-1,-1); modify(read(),1);}
21
            else writeln(sum(read()));
22
23
```

区间和-线段树

O(NloqN + QloqN)

struct node{int s,tag;} a[4*maxn];

```
int n;
3
    void update(int t,int l,int r)
4
5
        if (l!=r)
6
 7
            a[t<<1].tag+=a[t].tag;
8
            a[t<<1|1].tag+=a[t].tag;
9
10
        a[t].s+=(int)(r-l+1)*a[t].tag;
11
        a[t].tag=0;
12
13
    void add(int t,int l,int r,int x,int y,int z)
14
15
        if (x<=l&&r<=y) {a[t].tag+=z; return ;}
16
        a[t].s+=(int)(min(r,y)-max(l,x)+1)*z;
17
        update(t,l,r);
        int mid=(l+r)>>1;
18
19
        if (x<=mid) add(t<<1,1,mid,x,y,z);
        if (y>mid) add(t<<1|1,mid+1,r,x,y,z);</pre>
20
21
22
    int sum(int t,int l,int r,int x,int y)
23
    {
24
        int res=0;
25
        update(t,l,r);
        if (x<=l&&r<=y) return a[t].s;</pre>
26
27
        int mid=(l+r)>>1;
28
        if (x<=mid) res+=sum(t<<1,l,mid,x,y);
29
        if (y>mid) res+=sum(t<<1|1,mid+1,r,x,y);
30
        return res;
31
32
    void work()
33
    {
34
        int q,i,tx,ty; char tc;
35
        n=read(); q=read();
36
        tr(i,1,n) add(1,1,n,i,i,read());
37
        tr(i,1,q)
38
39
            tc=getchar(); tx=read(); ty=read();
40
            if (tc=='A') add(1,1,n,tx,ty,read());
```

```
41
            else writeln(sum(1,1,n,tx,ty));
42
       }
43
   |}
```

平衡树-Treap

```
struct node
1
2
 3
        node* ch[2];
 4
        int x,y,size;
 5
        int chsize(int d){return ch[d]?ch[d]->size:0;}
 6
 7
    node *root;
    void newnode(node *&t,int x)
 8
9
10
        t=new node;
11
        t->ch[0]=t->ch[1]=0;
12
        t\rightarrow x=x; t\rightarrow y=rand(); t\rightarrow size=1;
13
14
    void rot(node *&t,int d)
15
16
        node *tt=t->ch[!d];
17
        t->ch[!d]=tt->ch[d];
18
        tt->ch[d]=t;
19
        tt->size=t->size;
20
        t->size=t->chsize(0)+t->chsize(1)+1;
21
22
23
    void ins(node *&t,int x)
24
25
        if (!t) newnode(t,x);
26
        else {
27
             int d=t->x<x; ins(t->ch[d],x); ++t->size;
28
             if (t->ch[d]->y<t->y) rot(t,!d);
29
30
31
    void del(node *&t,int x)
32
33
        if (x==t->x)
34
        {
35
             if (!t->ch[0]||!t->ch[1])
36
37
                 node *tt=t; t=t->ch[t->ch[0]==0]; delete(tt);
38
                  return;
39
             } else
40
41
                 int d=t->ch[0]->y<t->ch[1]->y;
42
                 rot(t,d); del(t->ch[d],x);
43
44
        } else del(t\rightarrow ch[t\rightarrow x< x], x);
45
        ---t->size;
46
47
    node* kth(node *&t, int k)
48
```

7.6 区间第 k 大 无修改-主席树

struct node{int l,r,size;} a[maxm];

```
O(NlogN + QlogN)
```

```
int n,q,m,num,b[maxn],dc[maxn],root[maxn];
    int rdc(int x){return lower_bound(dc+1,dc+num+1,x)-dc;}
    void init()
5
    {
6
        int i;
        n=read(); q=read();
8
        tr(i,1,n) b[i]=read();
9
        memcpy(dc,b,(n+1)*sizeof(int));
10
        sort(dc+1,dc+n+1);
11
        num=unique(dc+1,dc+n+1)-(dc+1);
12
13
    int insert(int tx,int l,int r,int x)
14
15
        int t,mid=(l+r)>>1;
        a[t=++m]=a[tx]; a[t].size++;
16
17
        if (l==r) return t;
18
        if (x<=mid) a[t].l=insert(a[tx].l,l,mid,x);</pre>
        else a[t].r=insert(a[tx].r,mid+1,r,x);
19
20
        return t;
21
22
    int kth(int tx,int ty,int l,int r,int k)
    {
23
        int ds,mid=(l+r)>>1;
24
        if (l==r) return l;
25
26
        if (k<=(ds=a[a[ty].l].size—a[a[tx].l].size))
27
            return kth(a[tx].l,a[ty].l,l,mid,k);
28
        else return kth(a[tx].r,a[ty].r,mid+1,r,k-ds);
29
30
    void work()
    {
31
32
        int i,x,y,z;
33
        tr(i,1,n) root[i]=insert(root[i-1],1,num,rdc(b[i]));
34
        tr(i,1,q)
35
        {
36
            x=read(); y=read(); z=read();
37
            writeln(dc[kth(root[x-1],root[y],1,num,z)]);
38
39
```

7.7 RMQ-ST

```
O(NlogN) O(1)
```

```
| //!!注意!! builtin clz只有g++能用
   |//x为int时,31-__builtin_clz(x) 等价于        int(log(x)/log(2))
   |//x为ll时,63-__builtin_clzll(x) 等价于 (ll)(log(x)/log(2))
   int n,q,mn[maxn][maxln];
5
   void init()
6
7
        int i;
8
       n=read(); q=read();
9
        tr(i,1,n) mn[i][0]=read();
10
11
   void st()
12
13
        int i,j,ln;
14
       ln=31-__builtin_clz(n);
15
        tr(i,1,ln) tr(j,1,n-(1<< i)+1)
           mn[j][i]=min(mn[j][i-1],mn[j+(1<<(i-1))][i-1]);
16
17
18
    void work()
19
20
        int i,x,y,t;
21
        st();
22
       tr(i,1,q)
23
24
           x=read(); y=read();
25
           t=31-__builtin_clz(y-x+1);
26
            writeln(min(mn[x][t],mn[y-(1<t)+1][t]));
27
28
```

8 其它

8.1 n 皇后问题-构造

(输出任一方案),O(n)

```
void print(int x){writeb(++m); writeln(x);}
    void solve()
4
5
        int i;
6
        if (n%6!=2&&n%6!=3)
7
8
            for(i=2;i<=n;i+=2) print(i);
9
             for(i=1;i<=n;i+=2) print(i);</pre>
10
        } else
11
        {
            int k=n/2;
12
13
            if(k\%2==0)
14
15
                 for(i=k;i<=n;i+=2) print(i);
                 for(i=2;i<=k-2;i+=2) print(i);</pre>
16
```

```
for(i=k+3;i<=n-1;i+=2) print(i);</pre>
17
18
                   for(i=1;i<=k+1;i+=2) print(i);</pre>
19
                   if (n%2==1) print(n);
20
              } else
21
22
                   for(i=k;i<=n-1;i+=2) print(i);</pre>
23
                   for(i=1;i<=k-2;i+=2) print(i);</pre>
                   for(i=k+3;i<=n;i+=2) print(i);</pre>
24
25
                   for(i=2;i<=k+1;i+=2) print(i);</pre>
26
                   if (n%2==1) print(n);
27
28
29
```

9 纯公式/定理

- 9.1 数学公式
- 9.1.1 三角
- 复分析欧拉公式

$$e^{ix} = \cos x + i \sin x$$

(可简单导出棣莫弗定理)

■ 和差公式

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \qquad \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$$

■ 和差化积

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \qquad \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

■ 积化和差

$$\sin \alpha \sin \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2} \qquad \cos \alpha \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$$
$$\sin \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2} \qquad \cos \alpha \sin \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha + \beta)}{2}$$

■ 二、三、n 倍角(切比雪夫)

$$\begin{aligned} \sin 2\theta &= 2\sin\theta\cos\theta = \frac{2\tan\theta}{1+\tan^2\theta} \\ \cos 2\theta &= \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta} \\ \tan 2\theta &= \frac{2\tan\theta}{1-\tan^2\theta} = \frac{1}{1-\tan\theta} - \frac{1}{1+\tan\theta} \\ \sin 3\theta &= 3\sin\theta - 4\sin^3\theta \qquad \cos 3\theta = 4\cos^3\theta - 3\cos\theta \qquad \tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1-3\tan^2\theta} \end{aligned}$$

$$\sin n\theta = \sum_{k=0}^{n} \binom{n}{k} \cos^{k} \theta \sin^{n-k} \theta \sin \left[\frac{1}{2} (n-k)\pi \right]$$

$$= \sin \theta \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^{k} \binom{n-1-k}{k} (2\cos \theta)^{n-1-2k}$$

$$\cos n\theta = \sum_{k=0}^{n} \binom{n}{k} \cos^{k} \theta \sin^{n-k} \theta \cos \left[\frac{1}{2} (n-k)\pi \right]$$

$$= \frac{1}{2} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^{k} \frac{n}{n-k} \binom{n-k}{k} (2\cos \theta)^{n-2k}$$

■二、三次降幂

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2} \qquad \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \qquad \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \qquad \cos^3 \theta = \frac{3 \cos \theta + \cos 3\theta}{4}$$

■ 万能公式

$$t = \tan \frac{\theta}{2} \implies \sin \theta = \frac{2t}{1+t^2} \qquad \cos \theta = \frac{1-t^2}{1+t^2} \qquad \sin \theta = \frac{2t}{1-t^2} \qquad dx = \frac{2}{1+t^2} dt$$

■ 连郭

$$\begin{split} &\prod_{k=0}^{n-1} \cos 2^k \theta = \frac{\sin 2^n \theta}{2^n \sin \theta} \quad \prod_{k=0}^{n-1} \sin \left(x + \frac{k\pi}{n} \right) = \frac{\sin nx}{2^{n-1}} \\ &\prod_{k=1}^{n-1} \sin \left(\frac{k\pi}{n} \right) = \frac{n}{2^{n-1}} \quad \prod_{k=1}^{n-1} \sin \left(\frac{k\pi}{2n} \right) = \frac{\sqrt{n}}{2^{n-1}} \quad \prod_{k=1}^{n} \sin \left(\frac{k\pi}{2n+1} \right) = \frac{\sqrt{2n+1}}{2^n} \\ &\prod_{k=1}^{n-1} \cos \left(\frac{k\pi}{n} \right) = \frac{\sin \frac{n\pi}{2}}{2^{n-1}} \quad \prod_{k=1}^{n-1} \cos \left(\frac{k\pi}{2n} \right) = \frac{\sqrt{n}}{2^{n-1}} \quad \prod_{k=1}^{n} \cos \left(\frac{k\pi}{2n+1} \right) = \frac{1}{2^n} \\ &\prod_{k=1}^{n-1} \tan \left(\frac{k\pi}{n} \right) = \frac{n}{\sin \frac{n\pi}{2}} \quad \prod_{k=1}^{n-1} \tan \left(\frac{k\pi}{2n} \right) = 1 \quad \prod_{k=1}^{n} \tan \frac{k\pi}{2n+1} = \sqrt{2n+1} \end{split}$$

■ 其它

$$x + y + z = n\pi \Rightarrow \tan x + \tan y + \tan z = \tan x \tan y \tan z$$

$$x + y + z = n\pi + \frac{\pi}{2} \Rightarrow \cot x + \cot y + \cot z = \cot x \cot y \cot z$$

$$x + y + z = \pi \Rightarrow \sin 2x + \sin 2y + \sin 2z = 4 \sin x \sin y \sin z$$

$$\sin(x + y)\sin(x - y) = \sin^2 x - \sin^2 y = \cos^2 y - \cos^2 x$$

$$\cos(x + y)\cos(x - y) = \cos^2 x - \sin^2 y = \cos^2 y - \sin^2 x$$

$$\sum_{i=1}^{n} i = \frac{1}{2} n(n+1) \qquad \sum_{i=1}^{n} i^2 = \frac{1}{3} n(n+\frac{1}{2})(n+1) \qquad \sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2 = \frac{1}{4} n^2 (n+1)^2$$

$$\sum_{i=1}^{n} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} b_k (n+1)^{m+1-k}$$

$$= \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$$

■ 几何级数

$$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, \quad c \neq 1 \qquad \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, \quad |c| < 1$$

■ 调和级数

 H_n 表调和级数,

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

$$\sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4} \qquad \sum_{i=1}^{n} H_i = (n+1)H_n - n,$$

$$\sum_{i=1}^{n} \binom{i}{m} H_i = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1}\right)$$

■ 组合数

C(i,j) 0 1 2 3 4 5 6 7 8 9 10 11														
0	1	2	3	4	5	6	7	8	9	10	11			
1														
1	1													
1	2	1												
1	3	3	1											
1	4	6	4	1										
1	5	10	10	5	1									
1	6	15	20	15	6	1								
1	7	21	35	35	21	7	1							
1	8	28	56	70	56	28	8	1						
1	9	36	84	126	126	84	36	9	1					
1	10	45	120	210	252	210	120	45	10	1				
1	11	55	165	330	462	462	330	165	55	11	1			
	0 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11	0 1 2 1 1 1 1 2 1 1 3 3 1 4 6 1 5 10 1 6 15 1 7 21 1 8 28 1 9 36 1 10 45 1 11 55	0 1 2 3 1 1 1 1 1 2 1 1 1 3 3 1 1 4 6 4 1 5 10 10 1 6 15 20 1 7 21 35 1 8 28 56 1 9 36 84 1 10 45 120 1 11 55 165	0 1 2 3 4 1	0 1 2 3 4 5 1	0 1 2 3 4 5 6 1	0 1 2 3 4 5 6 7 1	0 1 2 3 4 5 6 7 8 1	0 1 2 3 4 5 6 7 8 9 1	0 1 2 3 4 5 6 7 8 9 10 1			

$$\sum_{k=0}^{n} {r+k \choose k} = {r+n+1 \choose n} \qquad \sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}$$

$$\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n}$$

s(i,j)	1	2	3	4	5	6	7	8
1	1							
2	1	1						
3	2	3	1					
4	6	11	6	1				
5	24	50	35	10	1			
6	120	274	225	85	15	1		
7	720	1764	1624	735	175	21	1	
8	5040	13068	13132	6769	1960	322	28	1

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)! \qquad \begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1} \qquad \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2} \qquad \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!$$

$$\begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}$$

$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m} (-1)^{m-k} \qquad \begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix}$$

$$\begin{bmatrix} n \\ \ell+m \end{bmatrix} \binom{\ell+m}{\ell} = \sum_{k=0}^{n} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} \binom{n}{k}$$

■ 第二类斯特林数

 ${n \atop k}$ 表第二类斯特林数,表基数为 n 的集合的 k 份划分方法数,

$${n \brace 1} = {n \brace n} = 1, {n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k}$$

S(i,j)	1	2	3	4	5	6	7	8
1	1							
2	1	1						
3	1	3	1					
4	1	7	6	1				
5	1	15	25	10	1			
6	1	31	90	65	15	1		
7	1	63	301	350	140	21	1	
8	1	127	966	1701	1050	266	28	1

$$\begin{cases}
n \\ 2
\end{cases} = 2^{n-1} - 1 \qquad \begin{cases}
n \\ n-1
\end{cases} = \binom{n}{2} \qquad \begin{bmatrix}
n \\ k
\end{cases} \ge \binom{n}{k}$$

$$\begin{cases}
n+1 \\ m+1
\end{cases} = \sum_{k} \binom{n}{k} \binom{k}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k}$$

$$\begin{cases}
n \\ m
\end{cases} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k} \qquad \binom{m+n+1}{m} = \sum_{k=0}^{m} k \binom{n+k}{k}$$

$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}$$

$$(n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \forall n \ge m$$

$$\begin{Bmatrix} n \\ n-m \end{Bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}$$

$$\begin{bmatrix} n \\ n-m \end{Bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}$$

$$\begin{Bmatrix} n \\ \ell+m \end{Bmatrix} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k}$$

■ 贝尔数

 B_n 表贝尔数,表基数为 n 的集合的划分方法数,

$$B_0 = 1, B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

n	0	1	2	3	4	5	6	7	8	9	10	11
B_n	1	1	2	5	15	52	203	877	4140	21147	115975	678570
$B_n =$	$\sum_{k=1}^{n}$	$\binom{n}{k}$	}	Е	$B_n = \frac{1}{2}$	$\frac{1}{e} \sum_{k=0}^{\infty}$	$\frac{k^n}{k!}$	$\sum_{n=1}^{\infty}$	$\sum \frac{B_n}{n!} x^r$	e^{e^x-1}	L	

p 是质数 $\Rightarrow B_{n+p} \equiv B_n + B_{n+1} \pmod{p}$

■ 卡特兰数

 C_n 表卡特兰数,

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad n \ge 0$$

n	0	1	2	3	4	5	6	7	8	9	10	11
C_n	1	1	2	5	14	42	132	429	1430	4862	16796	58786

$$C_n = {2n \choose n} - {2n \choose n+1} \quad \forall n \ge 1$$

$$C_{n+1} = \sum_{k=0}^n C_k C_{n-k} \quad \forall n \ge 0$$

大小为 n 的不同构二叉树数目为 C_n ; $n\times n$ 格点不越过对角线的单调路径(比如仅向右或上)数目为 C_n ;n+2 边凸多边形分成三角形的方法数为 C_n ;高度为 n 的阶梯形分成 n 个长方形的方法数为 C_n ;待进栈的 n 个元素的出栈序列种数为 C_n

■ 伯努利数

 b_n 表 n 次伯努利数,

$$b_0 = 1, \sum_{k=0}^{m} {m+1 \choose k} b_k = 0$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
b_n	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$

■ 斐波那契数列

 F_n 表斐波那契数列, $F_0 = 0, F_1 = F_2 = 1, F_n = F_{n-1} + F_{n-2}$

9.1.3 泰勒级数

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i \quad \frac{1}{1-cx} = \sum_{i=0}^{\infty} c^i x^i \quad \frac{1}{1-x^n} = \sum_{i=0}^{\infty} x^{ni} \quad \frac{x}{(1-x)^2} = \sum_{i=0}^{\infty} ix^i$$

$$\sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{k! z^k}{(1-z)^{k+1}} = \sum_{i=0}^{\infty} i^n x^i \qquad e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

$$\ln(1+x) = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^i}{i} \qquad \ln \frac{1}{1-x} = \sum_{i=1}^{\infty} \frac{x^i}{i}$$

$$\sin x = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!} \qquad \cos x = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i}}{(2i)!}$$

$$\tan^{-1} x = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)} \qquad (1+x)^n = \sum_{i=0}^{\infty} \binom{n}{i} x^i$$

$$\begin{split} \frac{1}{(1-x)^{n+1}} &= \sum_{i=0}^{\infty} \binom{i+n}{i} x^i & \frac{x}{e^x-1} &= \sum_{i=0}^{\infty} \frac{b_i x^i}{i!} \\ \frac{1}{2x} (1-\sqrt{1-4x}) &= \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i} x^i & \frac{1}{\sqrt{1-4x}} &= \sum_{i=0}^{\infty} \binom{2i}{i} x^i \\ \frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x}\right)^n &= \sum_{i=0}^{\infty} \binom{2i+n}{i} x^i & \frac{1}{1-x} \ln \frac{1}{1-x} &= \sum_{i=1}^{\infty} H_i x^i \\ \frac{1}{2} \left(\ln \frac{1}{1-x}\right)^2 &= \sum_{i=2}^{\infty} \frac{H_{i-1} x^i}{i} & \frac{x}{1-x-x^2} &= \sum_{i=0}^{\infty} F_i x^i \\ \frac{F_n x}{1-(F_{n-1}+F_{n+1})x-(-1)^n x^2} &= \sum_{i=0}^{\infty} F_{ni} x^i . \\ \frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} &= \sum_{i=0}^{\infty} (H_{n+i}-H_n) \binom{n+i}{i} x^i, \left(\frac{1}{x}\right)^{\frac{-n}{n}} &= \sum_{i=0}^{\infty} \binom{i}{n} x^i \\ x^{\overline{n}} &= \sum_{i=0}^{\infty} \binom{n}{i} x^i, (e^x-1)^n &= \sum_{i=0}^{\infty} \binom{i}{n} \frac{n! x^i}{i!} \\ \left(\ln \frac{1}{1-x}\right)^n &= \sum_{i=0}^{\infty} \binom{i}{n} \frac{n! x^i}{i!}, x \cot x &= \sum_{i=0}^{\infty} \frac{(-4)^i b_{2i} x^{2i}}{(2i)!} \\ \tan x &= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i} (2^{2i}-1) b_{2i} x^{2i-1}}{(2i)!}, \zeta(x) &= \sum_{i=1}^{\infty} \frac{1}{i^x} \\ \frac{1}{\zeta(x)} &= \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x}, \frac{\zeta(x-1)}{\zeta(x)} &= \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x} \end{split}$$

9.1.4 导数

■ 几个导数

$$(\tan x)' = \sec^2 x$$
 $(\arctan x)' = \frac{1}{1+x^2}$ $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$ $(\sinh x)' = \cosh x = \frac{e^x + e^{-x}}{2}$ $(\cosh x)' = \sinh x = \frac{e^x - e^{-x}}{2}$

■ 高阶导数

(莱布尼茨公式)

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

$$(x^{a})^{(n)} = x^{a-n} \prod_{k=0}^{n-1} (a-k) \qquad (\frac{1}{x})^{(n)} = (-1)^{n} \frac{n!}{x^{n+1}}$$

$$(a^{x})^{(n)} = a^{x} \ln^{n} a \ (a > 0) \qquad (\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^{n}}$$

$$(\sin(kx+b))^{(n)} = k^{n} \sin(kx+b + \frac{n\pi}{2}) \qquad (\cos(kx+b))^{(n)} = k^{n} \cos(kx+b + \frac{n\pi}{2})$$

9.1.5 积分表

$\blacksquare ax + b(a \neq 0)$

1.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C$$

2.
$$\int (ax+b)^{\mu} dx = \frac{1}{a(\mu+1)} (ax+b)^{\mu+1} + C(\mu \neq 1)$$

3.
$$\int \frac{x}{ax+b} dx = \frac{1}{a^2} (ax+b-b\ln|ax+b|) + C$$

4.
$$\int \frac{x^2}{ax+b} dx = \frac{1}{a^3} \left(\frac{1}{2} (ax+b)^2 - 2b(ax+b) + b^2 \ln|ax+b| \right) + C$$

5.
$$\int \frac{\mathrm{d}x}{x(ax+b)} = -\frac{1}{b} \ln \left| \frac{ax+b}{x} \right| + C$$

6.
$$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

7.
$$\int \frac{x}{(ax+b)^2} dx = \frac{1}{a^2} \left(\ln|ax+b| + \frac{b}{ax+b} \right) + C$$

8.
$$\int \frac{x^2}{(ax+b)^2} dx = \frac{1}{a^3} \left(ax + b - 2b \ln|ax+b| - \frac{b^2}{ax+b} \right) + C$$

9.
$$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

$\blacksquare \sqrt{ax+b}$

1.
$$\int \sqrt{ax+b} dx = \frac{2}{3a} \sqrt{(ax+b)^3} + C$$

2.
$$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3} + C$$

3.
$$\int x^2 \sqrt{ax+b} dx = \frac{2}{105a^3} (15a^2x^2 - 12abx + 8b^2) \sqrt{(ax+b)^3} + C$$

4.
$$\int \frac{x}{\sqrt{ax+b}} dx = \frac{2}{3a^2} (ax-2b)\sqrt{ax+b} + C$$

5.
$$\int \frac{x^2}{\sqrt{ax+b}} dx = \frac{2}{15a^3} (3a^2x^2 - 4abx + 8b^2) \sqrt{ax+b} + C$$

6.
$$\int \frac{\mathrm{d}x}{x\sqrt{ax+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} \right| + C & (b > 0) \\ \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{ax+b}{-b}} + C & (b < 0) \end{cases}$$

7.
$$\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax+b}}$$

8.
$$\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$$

9.
$$\int \frac{\sqrt{ax+b}}{x^2} dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}}$$

 $\blacksquare x^2 \pm a^2$

1.
$$\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

2.
$$\int \frac{\mathrm{d}x}{(x^2+a^2)^n} = \frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \int \frac{\mathrm{d}x}{(x^2+a^2)^{n-1}}$$

3.
$$\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

 $ax^2 + b(a > 0)$

1.
$$\int \frac{\mathrm{d}x}{ax^2 + b} = \begin{cases} \frac{1}{\sqrt{ab}} \arctan \sqrt{\frac{a}{b}}x + C & (b > 0) \\ \frac{1}{2\sqrt{-ab}} \ln \left| \frac{\sqrt{ax} - \sqrt{-b}}{\sqrt{ax} + \sqrt{-b}} \right| + C & (b < 0) \end{cases}$$

2.
$$\int \frac{x}{ax^2+b} dx = \frac{1}{2a} \ln |ax^2+b| + C$$

3.
$$\int \frac{x^2}{ax^2+b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^2+b}$$

4.
$$\int \frac{\mathrm{d}x}{x(ax^2+b)} = \frac{1}{2b} \ln \frac{x^2}{|ax^2+b|} + C$$

5.
$$\int \frac{dx}{x^2(ax^2+b)} = -\frac{1}{bx} - \frac{a}{b} \int \frac{dx}{ax^2+b}$$

6.
$$\int \frac{\mathrm{d}x}{x^3(ax^2+b)} = \frac{a}{2b^2} \ln \frac{|ax^2+b|}{x^2} - \frac{1}{2bx^2} + C$$

7.
$$\int \frac{dx}{(ax^2+b)^2} = \frac{x}{2b(ax^2+b)} + \frac{1}{2b} \int \frac{dx}{ax^2+b}$$

 $\blacksquare ax^2 + bx + c(a > 0)$

1.
$$\frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C & (b^2 > 4ac) \end{cases}$$

2.
$$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln|ax^2 + bx + c| - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$$

1.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{arsh} \frac{x}{a} + C_1 = \ln(x + \sqrt{x^2 + a^2}) + C$$

2.
$$\int \frac{\mathrm{d}x}{\sqrt{(x^2+a^2)^3}} = \frac{x}{a^2\sqrt{x^2+a^2}} + C$$

3.
$$\int \frac{x}{\sqrt{x^2+a^2}} dx = \sqrt{x^2+a^2} + C$$

4.
$$\int \frac{x}{\sqrt{(x^2+a^2)^3}} dx = -\frac{1}{\sqrt{x^2+a^2}} + C$$

5.
$$\int \frac{x^2}{\sqrt{x^2+a^2}} dx = \frac{x}{2} \sqrt{x^2+a^2} - \frac{a^2}{2} \ln(x+\sqrt{x^2+a^2}) + C$$

6.
$$\int \frac{x^2}{\sqrt{(x^2+a^2)^3}} dx = -\frac{x}{\sqrt{x^2+a^2}} + \ln(x+\sqrt{x^2+a^2}) + C$$

7.
$$\int \frac{dx}{x\sqrt{x^2+a^2}} = \frac{1}{a} \ln \frac{\sqrt{x^2+a^2}-a}{|x|} + C$$

8.
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{a^2 x} + C$$

9.
$$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$

10.
$$\int \sqrt{(x^2+a^2)^3} dx = \frac{x}{8} (2x^2+5a^2) \sqrt{x^2+a^2} + \frac{3}{8} a^4 \ln(x+\sqrt{x^2+a^2}) + C$$

11.
$$\int x\sqrt{x^2+a^2}dx = \frac{1}{2}\sqrt{(x^2+a^2)^3} + C$$

12.
$$\int x^2 \sqrt{x^2 + a^2} dx = \frac{x}{8} (2x^2 + a^2) \sqrt{x^2 + a^2} - \frac{a^4}{8} \ln(x + \sqrt{x^2 + a^2}) + C$$

13.
$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} + a \ln \frac{\sqrt{x^2 + a^2} - a}{|x|} + C$$

14.
$$\int \frac{\sqrt{x^2 + a^2}}{x^2} dx = -\frac{\sqrt{x^2 + a^2}}{x} + \ln(x + \sqrt{x^2 + a^2}) + C$$

1.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \frac{x}{|x|} \operatorname{arch} \frac{|x|}{a} + C_1 = \ln |x + \sqrt{x^2 - a^2}| + C_1$$

2.
$$\int \frac{\mathrm{d}x}{\sqrt{(x^2-a^2)^3}} = -\frac{x}{a^2\sqrt{x^2-a^2}} + C$$

3.
$$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$$

4.
$$\int \frac{x}{\sqrt{(x^2-a^2)^3}} dx = -\frac{1}{\sqrt{x^2-a^2}} + C$$

5.
$$\int \frac{x^2}{\sqrt{x^2 - a^2}} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$

6.
$$\int \frac{x^2}{\sqrt{(x^2 - a^2)^3}} dx = -\frac{x}{\sqrt{x^2 - a^2}} + \ln|x + \sqrt{x^2 - a^2}| + C$$

7.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-a^2}} = \frac{1}{a}\arccos\frac{a}{|x|} + C$$

8.
$$\int \frac{\mathrm{d}x}{x^2\sqrt{x^2-a^2}} = \frac{\sqrt{x^2-a^2}}{a^2x} + C$$

9.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$

10.
$$\int \sqrt{(x^2 - a^2)^3} dx = \frac{x}{8} (2x^2 - 5a^2) \sqrt{x^2 - a^2} + \frac{3}{8} a^4 \ln|x + \sqrt{x^2 - a^2}| + C$$

11.
$$\int x\sqrt{x^2-a^2}dx = \frac{1}{3}\sqrt{(x^2-a^2)^3} + C$$

12.
$$\int x^2 \sqrt{x^2 - a^2} dx = \frac{x}{9} (2x^2 - a^2) \sqrt{x^2 - a^2} - \frac{a^4}{9} \ln|x + \sqrt{x^2 - a^2}| + C$$

13.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|} + C$$

14.
$$\int \frac{\sqrt{x^2 - a^2}}{x^2} dx = -\frac{\sqrt{x^2 - a^2}}{x} + \ln|x + \sqrt{x^2 - a^2}| + C$$

$\blacksquare \sqrt{a^2 - x^2} (a > 0)$

1.
$$\int \frac{\mathrm{d}x}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a} + C$$

2.
$$\frac{\mathrm{d}x}{\sqrt{(a^2-x^2)^3}} = \frac{x}{a^2\sqrt{a^2-x^2}} + C$$

3.
$$\int \frac{x}{\sqrt{a^2-x^2}} dx = -\sqrt{a^2-x^2} + C$$

4.
$$\int \frac{x}{\sqrt{(a^2-x^2)^3}} dx = \frac{1}{\sqrt{a^2-x^2}} + C$$

5.
$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

6.
$$\int \frac{x^2}{\sqrt{(a^2-x^2)^3}} dx = \frac{x}{\sqrt{a^2-x^2}} - \arcsin \frac{x}{a} + C$$

7.
$$\int \frac{\mathrm{d}x}{x\sqrt{a^2-x^2}} = \frac{1}{a} \ln \frac{a-\sqrt{a^2-x^2}}{|x|} + C$$

8.
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C$$

9.
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

10.
$$\int \sqrt{(a^2-x^2)^3} dx = \frac{x}{8}(5a^2-2x^2)\sqrt{a^2-x^2} + \frac{3}{8}a^4 \arcsin \frac{x}{a} + C$$

11.
$$\int x\sqrt{a^2-x^2}dx = -\frac{1}{3}\sqrt{(a^2-x^2)^3} + C$$

12.
$$\int x^2 \sqrt{a^2 - x^2} dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a} + C$$

13.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} + a \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C$$

14.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \arcsin \frac{x}{a} + C$$

$\blacksquare \sqrt{\pm ax^2 + bx + c} (a > 0)$

1.
$$\int \frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}} \ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}| + C$$

2.
$$\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8\sqrt{a^3}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$$

3.
$$\int \frac{x}{\sqrt{ax^2+bx+c}} dx = \frac{1}{a} \sqrt{ax^2+bx+c} - \frac{b}{2\sqrt{ax^2+bx+c}} \ln|2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}| + C$$

4.
$$\int \frac{\mathrm{d}x}{\sqrt{c+bx-ax^2}} = -\frac{1}{\sqrt{a}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

5.
$$\int \sqrt{c + bx - ax^2} dx = \frac{2ax - b}{4a} \sqrt{c + bx - ax^2} + \frac{b^2 + 4ac}{8\sqrt{a^3}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C$$

6.
$$\int \frac{x}{\sqrt{c+bx-ax^2}} dx = -\frac{1}{a}\sqrt{c+bx-ax^2} + \frac{b}{2\sqrt{a^3}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

$$\blacksquare \sqrt{\pm \frac{x-a}{x-b}} \ \mathbf{g} \ \sqrt{(x-a)(x-b)}$$

1.
$$\int \sqrt{\frac{x-a}{x-b}} dx = (x-b)\sqrt{\frac{x-a}{x-b}} + (b-a)\ln(\sqrt{|x-a|} + \sqrt{|x-b|}) + C$$

2.
$$\int \sqrt{\frac{x-a}{b-x}} dx = (x-b)\sqrt{\frac{x-a}{b-x}} + (b-a)\arcsin\sqrt{\frac{x-a}{b-x}} + C$$

3.
$$\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-x}} + C \ (a < b)$$

4.
$$\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-x}} + C, (a < b)$$

■ 指数

1.
$$\int a^x dx = \frac{1}{\ln a} a^x + C$$

2.
$$\int e^{ax} dx = \frac{1}{a} a^{ax} + C$$

3.
$$\int xe^{ax} dx = \frac{1}{a^2}(ax - 1)a^{ax} + C$$

4.
$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

5.
$$\int xa^x dx = \frac{x}{\ln a}a^x - \frac{1}{(\ln a)^2}a^x + C$$

6.
$$\int x^n a^x dx = \frac{1}{\ln a} x^n a^x - \frac{n}{\ln a} \int x^{n-1} a^x dx$$

7.
$$\int e^{ax} \sin bx dx = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx - b \cos bx) + C$$

8.
$$\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C$$

9.
$$\int e^{ax} \sin^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx (a \sin bx - nb \cos bx) + \frac{n(n-1)b^2}{a^2 + b^2 n^2} \int e^{ax} \sin^{n-2} bx dx$$

10.
$$\int e^{ax} \cos^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \cos^{n-1} bx (a \cos bx + nb \sin bx) + \frac{n(n-1)b^2}{a^2 + b^2 n^2} \int e^{ax} \cos^{n-2} bx dx$$

■ 对数

1.
$$\int \ln x dx = x \ln x - x + C$$

2.
$$\int \frac{\mathrm{d}x}{x \ln x} = \ln \left| \ln x \right| + C$$

3.
$$\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x - \frac{1}{n+1}) + C$$

4.
$$\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx$$

5.
$$\int x^m (\ln x)^n dx = \frac{1}{m+1} x^{m+1} (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$$

■ 三角函数

- 1. $\int \sin x dx = -\cos x + C$
- 2. $\int \cos x dx = \sin x + C$
- 3. $\int \tan x dx = -\ln|\cos x| + C$
- 4. $\int \cot x dx = \ln|\sin x| + C$
- 5. $\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$
- 6. $\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x \cot x \right| + C$
- 7. $\int \sec^2 x dx = \tan x + C$
- 8. $\int \csc^2 x dx = -\cot x + C$
- 9. $\int \sec x \tan x dx = \sec x + C$
- 10. $\int \csc x \cot x dx = -\csc x + C$
- 11. $\int \sin^2 x \, dx = \frac{x}{2} \frac{1}{4} \sin 2x + C$
- 12. $\int \cos^2 x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$
- 13. $\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$
- 14. $\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$
- 15. $\int \frac{dx}{\sin^n x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$
- 16. $\int \frac{dx}{\cos^n x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$

17.

$$\int \cos^m x \sin^n x dx$$

$$= \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x dx$$

$$= -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+1} \int \cos^m x \sin^{n-2} x dx$$

- 18. $\int \sin ax \cos bx dx = -\frac{1}{2(a+b)} \cos(a+b)x \frac{1}{2(a-b)} \cos(a-b)x + C$
- 19. $\int \sin ax \sin bx dx = -\frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$
- 20. $\int \cos ax \cos bx dx = \frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$

21.
$$\int \frac{\mathrm{d}x}{a+b\sin x} = \begin{cases} \frac{2}{\sqrt{a^2-b^2}} \arctan\frac{a\tan\frac{x}{2}+b}{\sqrt{a^2-b^2}} + C & (a^2 > b^2) \\ \frac{1}{\sqrt{b^2-a^2}} \ln\left|\frac{a\tan\frac{x}{2}+b-\sqrt{b^2-a^2}}{a\tan\frac{x}{2}+b+\sqrt{b^2-a^2}}\right| + C & (a^2 < b^2) \end{cases}$$

22.
$$\int \frac{dx}{a+b\cos x} = \begin{cases} \frac{2}{a+b} \sqrt{\frac{a+b}{a-b}} \arctan\left(\sqrt{\frac{a-b}{a+b}} \tan\frac{x}{2}\right) + C & (a^2 > b^2) \\ \frac{1}{a+b} \sqrt{\frac{a+b}{a-b}} \ln\left|\frac{\tan\frac{x}{2} + \sqrt{\frac{a+b}{b-a}}}{\tan\frac{x}{2} - \sqrt{\frac{a+b}{b-a}}}\right| + C & (a^2 < b^2) \end{cases}$$

- 23. $\int \frac{\mathrm{d}x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C$
- 24. $\int \frac{dx}{a^2 \cos^2 x b^2 \sin^2 x} = \frac{1}{2ab} \ln \left| \frac{b \tan x + a}{b \tan x a} \right| + C$
- 25. $\int x \sin ax dx = \frac{1}{a^2} \sin ax \frac{1}{a} x \cos ax + C$
- 26. $\int x^2 \sin ax dx = -\frac{1}{a}x^2 \cos ax + \frac{2}{a^2}x \sin ax + \frac{2}{a^3}\cos ax + C$
- 27. $\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C$
- 28. $\int x^2 \cos ax dx = \frac{1}{a}x^2 \sin ax + \frac{2}{a^2}x \cos ax \frac{2}{a^3}\sin ax + C$

■ 反三角函数 (*a* > 0)

- 1. $\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 x^2} + C$
- 2. $\int x \arcsin \frac{x}{a} dx = (\frac{x^2}{2} \frac{a^2}{4}) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 x^2} + C$
- 3. $\int x^2 \arcsin \frac{x}{a} dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 x^2} + C$
- 4. $\int \arccos \frac{x}{a} dx = x \arccos \frac{x}{a} \sqrt{a^2 x^2} + C$
- 5. $\int x \arccos \frac{x}{a} dx = (\frac{x^2}{2} \frac{a^2}{4}) \arccos \frac{x}{a} \frac{x}{4} \sqrt{a^2 x^2} + C$
- 6. $\int x^2 \arccos \frac{x}{a} dx = \frac{x^3}{3} \arccos \frac{x}{a} \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 x^2} + C$
- 7. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} \frac{a}{2} \ln(a^2 + x^2) + C$
- 8. $\int x \arctan \frac{x}{a} dx = \frac{1}{2}(a^2 + x^2) \arctan \frac{x}{a} \frac{a}{2}x + C$
- 9. $\int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} \frac{a}{6}x^2 + \frac{a^3}{6} \ln(a^2 + x^2) + C$

9.1.6 其它

■ **克拉夫特不等式** 若二叉树有 n 个叶子,深度分别为 $d_1, d_2, ..., d_n$,则 $\sum_{i=1}^n 2^{-d_i} \le 1$,当且仅当叶子都有兄弟时取等

9.2 几何公式

9.2.1 平面几何

■ 三角形的长度

中线
$$m_a = \sqrt{\frac{1}{2}b^2 + \frac{1}{2}c^2 - \frac{1}{4}a^2}$$

高线长 $h_a = \frac{2\sqrt{s(s-a)(s-b)(s-c)}}{a}$
角平分线 $t_a = \frac{1}{b+c}\sqrt{(b+c+a)(b+c-a)bc}$
外接圆半径 $R = \frac{abc}{\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)}}$
内切圆半径 $r = \frac{\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)}}{2(a+b+c)}$

■ 三角形的面积

$$S = \frac{1}{2}ab\sin C = \frac{a^2\sin B\sin C}{2\sin(B+C)} = \sqrt{p(p-a)(p-b)(p-c)} = \frac{1}{2} \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}$$
, 其中 $p = \frac{a+b+c}{2}$

■ 三角形奔驰定理

$$P$$
 为 $\triangle ABC$ 中一点,且 $S_{\triangle PBC} \cdot \overrightarrow{PA} + S_{\triangle PAC} \cdot \overrightarrow{PB} + S_{\triangle PAB} \cdot \overrightarrow{PC} = \vec{0}$

■ 托勒密定理

狭义:凸四边形四点共圆当且仅当其两对对边乘积的和等于两条对角线的乘积 广义:四边形 ABCD 两条对角线长分别为 m,n,则 $m^2n^2=a^2c^2+b^2d^2-2abcd\cos(A+C)$

- 椭圆面积 $S = \pi ab$
- **弧微分** $ds = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \sqrt{1 + [f'(x)]^2} dx = \sqrt{r^2(\theta) + [r'(\theta)]^2} d\theta$
- **费马点** 三角形费马点是指与三顶点距离之和最小的点。当有一个内角不小于 120° 时,费马点为此角对应顶点;当三角形的内角都小于 120° 时,据三角形各边向外做正三角形,连接新产生的三点与各自在原三角形中所对顶点,则三线交于费马点。

9.2.2 立体几何

- **凸多面体欧拉公式** 对任意凸多面体,点、边、面数分别为 V, E, F,则 V E + F = 2
- **当 台体体积** $V = \frac{1}{3}h(S_1 + \sqrt{S_1S_2} + S_2)$
- 椭球体积 $V = \frac{4}{3}\pi abc$ (都是半轴)

■ 四面体体积

$$V = \frac{1}{6} \begin{vmatrix} p_x & p_y & p_z \\ q_x & q_y & q_z \\ r_x & r_y & r_z \end{vmatrix},$$
其中 $\vec{p} = \overrightarrow{OA}, \vec{q} = \overrightarrow{OB}, \vec{r} = \overrightarrow{OC};$
$$(12V)^2 = a^2d^2(b^2 + c^2 + e^2 + f^2 - a^2 - d^2) + b^2e^2(c^2 + a^2 + f^2 + d^2 - b^2 - e^2) + c^2f^2(a^2 + b^2 + d^2 + e^2 - c^2 - f^2) - a^2b^2c^2 - a^2e^2f^2 - d^2b^2f^2 - d^2e^2c^2,$$
其中 $a = AB, b = BC, c = CA, d = OC, e = OA, f = OB$

■ 旋转体 (一、二象限,绕 x 轴)

体积 $V=\pi\int_a^bf^2(x)\mathrm{d}x$ 侧面积 $F=2\pi\int f(x)\mathrm{d}s=2\pi\int_a^b\sqrt{1+[f'(x)]^2}\mathrm{d}x$ (空心) 质心

$$X = \frac{1}{M} \int_{\alpha}^{\beta} x(t)\rho(t)\sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$
$$Y = \frac{1}{M} \int_{\alpha}^{\beta} y(t)\rho(t)\sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$

(空心) 转动惯量

$$J_{x} = \int_{\alpha}^{\beta} y^{2}(t)\rho(t)\sqrt{[x'(t)]^{2} + [y'(t)]^{2}}dt$$
$$J_{y} = \int_{\alpha}^{\beta} x^{2}(t)\rho(t)\sqrt{[x'(t)]^{2} + [y'(t)]^{2}}dt$$

古鲁丁定理:平面上一条质量分布均匀曲线绕一条不通过它的直线轴旋转一周,所得 到的旋转体之侧面积等于它的质心绕同一轴旋转所得圆的周长乘以曲线的弧长。

9.3 经典博弈

■ Nim 博弈

问题:n 堆石子,每次取一堆中 x 个 (x > 0),取完则胜。 奇异态(后手胜): $a_1 xor a_2 xor ... xor a_n = 0$

■ Bash 博弈

问题:n 个石子,每次 x 个 $(0 < x \le m)$,取完则胜。 奇异态(后手胜): $n \equiv 0 \pmod{(m+1)}$

■ Wythoff 博弈

■ Fibonacci 博弈

问题:n 个石子,先手第一次取 x 个 (0 < x < n),之后每次取 x 个 $(0 < x \le L$ 一次取数的两倍),取完则胜。

奇异态(**先**手胜):n 不是斐波那契数

9.4 部分质数

100003, 200003, 300007, 400009, 500009, 600011, 700001, 800011, 900001, 1000003, 2000003, 3000017, 4100011, 5000011, 8000009, 9000011, 10000019, 20000003, 50000017, 50100007, 10000007, 100200011, 200100007, 250000019

10 语法

精选部分函数,无特别说明则为 98 标准

10.1 C

10.1.1 <cstdio>

```
-开关文件(流)
  FILE * fopen ( const char * filename, const char * mode );
   FILE * freopen ( const char * filename, const char * mode, FILE * stream );
   int fclose ( FILE * stream );
   // 1. fopen是载入流;freopen是流的重定向,将filename的文件载至stream
   // 2. mode可选"r"(read), "w"(write), "a"(append)...后可加"b"(binary), "+"(
       update)或"b+"
   int printf ( const char * format, ... );
   int scanf ( const char * format, ... );
   int fprintf ( FILE * stream, const char * format, ... );
11 | int fscanf ( FILE * stream, const char * format, ... );
12 | int sprintf ( char * str, const char * format, ... );
13 int sscanf ( const char * s. const char * format. ...):
   |size_t fread ( void * ptr, size_t size, size_t count, FILE * stream );
15
   |// 1. f~针对文件,s~针对cstring
   |// 2. 返回成功读入(输出)元素个数
   |// 3. 判断读入末尾:while (~scanf()), while (scanf()!=EOF)
17
   │// 4. scanf一个元素[前],忽略满足<cctype>isspace()的字符,注意读元素[后]的未
19 | // 5. scanf:%[*][width][length]specifier. *表读指定类型但不保存, width表读
       入最大字符数;%「ABC]仅读ABC三种字符,%「A-Z]只读大写字母,%「^ABC]表过滤ABC
```

```
20 |// 6. printf: %[flags][width][.precision][length]specifier.
         [flags]: -左对齐;+数字符号强制显示;0数前补0至列宽;(空格)正数前加空
21 | //
      格负数前加负号;#类型o/x/X前加0/0x/0X,类型e/E/f/g/G强制输出小数点,类型g/
      G保留尾部0
         specifier:d有符号十进制整;u无符号10进制整;o无符号8进制整;x/X无符号
22
  1//
      十六进制整(小/大写);e/E科学计数法double(e小/大写)
   // 7. printf时, 百分号‰, 单引号\', 双引号\", 反斜杠\\
   // 8. 输入特别难搞时,开大小为bufsize的数组buf,然后fread(buf,1,bufsize,
25
                              - 逐字符读写
   int getc ( FILE * stream );
   int getchar ( void );
   char * gets ( char * str );
   int putc ( int character, FILE * stream );
   int putchar ( int character );
   int puts ( const char * str );
  int ungetc ( int character, FILE * stream );
  // 1. ungetc退回字符到输入流中
33
34 // 2. getchar读进'\n', gets不读进'\n'
  │// 3. 注意以上对于文件末尾int返回值为EOF而非0
```

10.1.2 <cctype>

```
int toupper ( int c );
int tolower ( int c );
int is~ ( int c );
int is~ ( int c );
//isspace 空格' ', TAB'\t', 换行'\n', 回车'\r', '\v', '\f'
//isupper大写字母, islower小写字母, isalpha字母, isdigit数字
```

10.1.3 <cstring>

```
-修改-
   void * memset ( void * ptr, int value, size_t num );
   void * memcpy ( void * destination, const void * source, size_t num );
   char * strcpy ( char * destination, const char * source );
   char * strncpy ( char * destination, const char * source, size_t num );
   char * strcat ( char * destination, const char * source );
    char * strncat ( char * destination, const char * source, size t num );
   // 1. 以上在后面一定有'\0'的有strcpy, strcat和strncat,注意strncpy不自动加!
                                        -比较-
    int memcmp ( const void * ptr1, const void * ptr2, size t num );
    int strcmp ( const char * str1, const char * str2 );
    int strncmp ( const char * str1, const char * str2, size_t num );
                                        –查找-
13
    const void * memchr ( const void * ptr, int value, size_t num );
14
15
                               void * ptr, int value, size_t num );
         void * memchr (
16
    const char * strchr ( const char * str, int character );
17
         char * strchr (
                               char * str, int character );
18
    const char * strrchr ( const char * str, int character );
19
         char * strrchr (
                                char * str, int character );
20
   const char * strstr ( const char * str1, const char * str2 );
                               char * str1, const char * str2 );
21
         char * strstr (
```

10.1.4 <cstdlib>

```
-转换-
   double atof (const char* str);
   int atoi (const char * str);
   char * itoa ( int value, char * str, int base );
   │// 1. atof,atoi和itoa的十进制支持符号,itoa支持科学计数
   // 2. itoa非标!Linux下没有!
   void* malloc (size_t size);
   void free (void* ptr);
9
   // 1. e.g. int *p=(int*)malloc(100*sizeof(int));
11
   //
12
                 free(p);
   // 2. 退出函数不自动释放
13
14
   int abs (int n);
   void srand (unsigned int seed);
16
17
   int rand (void);
   void qsort (void* base, size_t num, size_t size,
18
19
              int (*compar)(const void*,const void*));
   void* bsearch (const void* key, const void* base,
20
21
                size_t num, size_t size,
                int (*compar)(const void*,const void*));
22
   │// 1. rand产生最大的数是RAND MAX,Linux下是2^31—1,Win下是32767
   // 2. qsort中compar返回负,则前一个变量排在前,0和正类此
   // 3. bsearch为二分,只能找base有没有key,基本废的
```

10.1.5 无头文件

10.2 C++

```
10.2.1 < iostream > / < ios >
```

```
-输入-
   istream& get (char& c);
3 | istream& get (char* s, streamsize n);
   istream& get (char* s, streamsize n, char delim);
  istream& getline (char* s, streamsize n );
   istream& getline (char* s, streamsize n, char delim );
   istream& read (char* s, streamsize n);
8 | istream& ignore (streamsize n = 1, int delim = EOF);
   int peek();
  istream& putback (char c);
11 | streampos tellg();
   istream& seekg (streampos pos);
   bool eof() const:
  // 1. get保留'/0', 而getline不保留
  // 2. ignore一直忽略字符,直到够n个或遇到delim停止
16 // 3. peek偷窥下一个字符
   // 4. streampos要用ll存, e.g.: t=cin.tellg(); ...; cin.seekg(t);
17
  // 5. while (!cin.eof(...))
19
   fmtflags setf (fmtflags fmtfl);
21 void unsetf (fmtflags mask);
22 | streamsize precision (streamsize prec);
  // cout.precision(...); cout<<...;</pre>
  |// 此处为精度,若设置fixed,则为小数点后保留位数
  |// 对于以下, e.g. cout<<dec<<...;
25
  │// 以下三个取消效果为函数名前加no
   ios_base& uppercase (ios_base& str);
28 | ios_base& showpos (ios_base& str);
  ios_base& showpoint (ios_base& str);
  |// 以下两个的取消效果,应用cout.unsetf(ios_base::floatfield);
31 | ios_base& scientific (ios_base& str);
32 | ios_base& fixed (ios_base& str);
33 | ios_base& dec (ios_base& str);
34 | ios_base& hex (ios_base& str);
35 | ios base& oct (ios base& str);
```

10.2.2 Containers

```
value_type& front();
   void push (const value_type& val);
19
   void pop();
   //---
20
                                      -deque-
   | size_type size() const;
   reference front();
22
23 | reference back();
   void push_front (const value_type& val);
   void push_back (const value_type& val);
26
   void pop_front();
27
   void pop_back();
   void clear();
   priority_queue
29
30
   template <class T, class Container = vector<T>, class Compare = less<typename
       Container::value_type> > class priority_queue;
    //默认Compare=less,即为大根堆
   size type size() const;
32
33 | const value_type& top() const;
   void push (const value_type& val);
34
35
   |void pop();
36
   | / /---
37
   // /multiset/map/multimap 类似
   template < class T, class Compare = less<T>, class Alloc = allocator<T> >
38
       class set:
   iterator begin();
   iterator end();
   //end是最后元素的下一个,即空
41
42 | size type size() const;
   iterator find (const value_type& val) const;
44 //找不到返回end()
45 | size_type count (const value_type& val) const;
   //0/1,除非是 multiset/multimap
46
   iterator lower bound (const value type& val) const;
   │//大于等于val的最小一个
   iterator upper_bound (const value_type& val) const;
   pair insert (const value_type& val);
   void erase (iterator position);
51
52 | size_type erase (const value_type& val);
   void erase (iterator first, iterator last);
54
   void clear();
   │//在 map/multimap里,at()只定义在 C++11,但operator门任用
55
56
   //--unordered set-
   │// 仅C++11! iterator被认为无太大意义而舍去 template < class Key, class Hash =
57
       hash<Key>, class Pred = equal_to<Key>, class Alloc = allocator<Key> >
       class unordered set;
   | size_type size() const noexcept;
   iterator find ( const key_type& k );
   | size_type count ( const key_type& k ) const;
61 //0/1
62
   pair insert ( const value_type& val );
63 | size_type erase ( const key_type& k );
64 void clear() noexcept:
65 | size_type bucket_count() const noexcept;
66 | float load_factor() const noexcept;
67
   float max_load_factor() const noexcept;
68 void max load factor ( float z );
```

```
69 void rehash ( size_type n );
```

10.2.3 <string>

```
3
         iterator begin();
   const_iterator begin() const;
5
         iterator end();
   const_iterator end() const;
7
         reverse iterator rbegin();
   const_reverse_iterator rbegin() const;
         reverse_iterator rend() noexcept;
   const reverse iterator rend() const noexcept;
   // 1. get保留'/0', 而getline不保留
12
   size_t size() const;
13
   bool empty() const;
   void resize (size t n);
   void resize (size_t n, char c);
   void clear();
17
   // 1. resize时若n大于原长,c指定则用c填充尾部至n,否则填充'\0'
18
19
   string& append (const string& str);
  string& append (const string& str, size_t subpos, size_t sublen);
22 | string& append (const char* s);
23 | string& append (const char* s, size_t n);
24 | string& append (size t n, char c);
25
   template <class InputIterator>
26
       string& append (InputIterator first, InputIterator last);
27
28
   string& assign (const string& str);
   string& assign (const string& str, size_t subpos, size_t sublen);
  string& assign (const char* s);
31
   string& assign (const char* s, size_t n);
  string& assign (size t n, char c);
33
   template <class InputIterator>
34
      string& assign (InputIterator first, InputIterator last);
35
   string& insert (size_t pos, const string& str);
36
   string& insert (size_t pos, const string& str, size_t subpos, size_t sublen);
   string& insert (size_t pos, const char* s);
   string& insert (size_t pos, const char* s, size_t n);
   string& insert (size_t pos, size_t n, char c);
   void insert (iterator p, size_t n, char c);
   iterator insert (iterator p, char c);
43
  template <class InputIterator>
44
      void insert (iterator p, InputIterator first, InputIterator last);
   string& erase (size_t pos = 0, size_t len = npos);
   iterator erase (iterator p);
48
   iterator erase (iterator first, iterator last);
49
  string& replace (size_t pos, size_t len, const string& str);
```

```
string& replace (iterator i1, iterator i2, const string& str);
   string& replace (size_t pos, size_t len, const string& str,
53
                    size_t subpos, size_t sublen);
54
    string& replace (size t pos, size t len, const char* s);
55
   string& replace (iterator i1, iterator i2, const char* s);
   string& replace (size_t pos, size_t len, const char* s, size_t n);
56
   string& replace (iterator i1, iterator i2, const char* s, size_t n);
   string& replace (size_t pos, size_t len, size_t n, char c);
   string& replace (iterator i1, iterator i2, size_t n, char c);
59
60
   template <class InputIterator>
     string& replace (iterator i1, iterator i2,
61
62
                      InputIterator first, InputIterator last);
63
64
   void swap (string& str);
                                         查询
65
   //-
66
   const char* c_str() const;
    const char* data() const;
   |//c_str()后有'\0'而data()没有,但data()效率更高
68
   //以下找不到返回string::npos
69
   | size_t find (const string& str, size_t pos = 0) const;
   | size_t find (const char* s, size_t pos = 0) const;
   | size_t find (const char* s, size_t pos, size_t n) const;
73 | size_t find (char c, size_t pos = 0) const;
   |//rfind只找pos开始或pos之前开始的
74
75 | size_t rfind (const string& str, size_t pos = npos) const;
   size t rfind (const char* s, size t pos = npos) const;
76
77
   size_t rfind (const char* s, size_t pos, size_t n) const;
78 | size t rfind (char c, size t pos = npos) const;
   | size_t find_first_of (const string& str, size_t pos = 0) const;
79
   size_t find_first_of (const char* s, size_t pos = 0) const;
   | size_t find_first_of (const char* s, size_t pos, size_t n) const;
   size_t find_first_of (char c, size_t pos = 0) const;
82
83 | size_t find_last_of (const string& str, size_t pos = npos) const;
   | size_t find_last_of (const char* s, size_t pos = npos) const;
84
   size_t find_last_of (const char* s, size_t pos, size_t n) const;
86 | size_t find_last_of (char c, size_t pos = npos) const;
   size_t copy (char* s, size_t len, size_t pos = 0) const;
87
88 | string substr (size_t pos = 0, size_t len = npos) const;
```

10.2.4 pb ds

```
using namespace __gnu_pbds
   #include<ext/pb_ds/priority_queue.hpp>
   template<
4
5
        typename Value Type,
        typename Cmp_Fn = std::less<Value_Type>,
6
7
        typename Tag = pairing_heap_tag,
        typename Allocator = std::allocator<char> >
8
    class priority queue:
    size_type size () const
   bool empty () const
11
12
   | void clear ()
13 point iterator push (const reference r val)
```

```
14 | void pop ()
   const_reference top () const
   void modify (point_iterator it, const_reference r_new_val)
   void erase (point iterator it)
17
   template < class Pred > size_type erase_if (Pred prd)
19
   void join (priority_queue &other)
   template < class Pred > void split (Pred prd, priority_queue & other)
   iterator begin ()
   const iterator begin () const
22
  literator end ()
24
   const iterator end () const
25
  |// 1. Tag:pairing_heap_tag, binary_heap_tag, binomial_heap_tag,
       rc_binomial_heap_tag, thin_heap_tag五种。常用前两种, binary_heap只能代替
       queue里的priority_queue(只push, pop, top等,否则线性),更复杂则采用
       pairing heap.
26
   // 2. 注意一定要__gnu_pbds::priority_queue, 不然会歧义报错
   // 3. erase if返回删除个数
   // 4. 关于Pred的用例:
28
29
   //
               bool p(int x){return x&1;}
30
   //
               a.erase_if(p);
   // 5. join的other会被清空
31
32
   / /---
33
   #include<Mext/pb_ds/assoc_container.hpp>
34
   #include<ext/pb_ds/tree_policy.hpp>
35
   template<
36
       typename Key,
37
       typename Mapped,
38
       typename Cmp_Fn = std::less<Key>,
39
       typename Tag = rb_tree_tag,
40
       template<
41
           typename Const_Node_Iterator,
42
           typename Node Iterator,
43
           typename Cmp_Fn_,
44
           typename Allocator_>
45
       class Node Update = null tree node update,
46
       typename Allocator = std::allocator<char> >
47
   class tree:
   iterator lower_bound (const_key_reference r_key)
   const_iterator lower_bound (const_key_reference r_key) const
   iterator upper_bound (const_key_reference r_key)
   const_iterator upper_bound (const_key_reference r_key) const
   iterator erase (iterator it)
   reverse iterator erase (reverse iterator it)
   reverse_iterator rbegin ()
   const reverse iterator rbegin () const
  reverse iterator rend ()
57
   const_reverse_iterator rend () const
   void join (basic tree &other)
59 void split (const_key_reference r_key, basic_tree &other)
  node_iterator node_begin ()
  const_node_iterator node_begin () const
  node_iterator node_end ()
   const_node_iterator node_end () const
   |// 1. Mapped设置为null_type(较旧版本为null_mapped_type)变set,即对iterator
       加星取值
65 |// 2. Tag:rb_tree_tag, splay_tree_tag, or ov_tree_tag三种,一般只用rb_tree
```

```
67
68
    template<
69
        typename Key,
        typename Mapped,
70
71
        typename Hash_Fn = std::hash<Key>,
        typename Eq_Fn = std::equal_to<Key>,
72
73
        typename Comb_Hash_Fn = direct_mask_range_hashing<>
        typename Resize_Policy = default explained below.
74
75
         bool Store_Hash = false,
         typename Allocator = std::allocator<char> >
76
77
    class cc_hash_table;
    template<
78
79
        typename Key,
80
        typename Mapped,
81
        typename Hash_Fn = std::hash<Key>,
82
        typename Eq Fn = std::equal to<Key>.
83
        typename Comb_Probe_Fn = direct_mask_range_hashing<>
84
        typename Probe_Fn = default explained below.
        typename Resize Policy = default explained below.
85
        bool Store_Hash = false,
86
87
        typename Allocator = std::allocator<char> >
   class gp_hash_table;
```

10.2.5 无头文件

// 3. Node_Update自带有///

```
// 以sort举例
struct t{int a;...} ar[n];
//重载operator<
bool operator<(const t&x,const t&y){return x.a<y.a;}
sort(a,a+n);
//比较函数
bool cmp(const t&x,const t&y){return x.a<y.a;}
sort(a,a+n,cmp);
//仿函数1 (重载operator())
struct cmp(){bool operator()(const t&x,const t&y){return x.a<y.a;}}
sort(a,a+n,cmp());
//仿函数2 (重载operator())
struct cmp(){bool operator()(const t&x,const t&y){return x.a<y.a;}}
sort(a,a+n,cmp());
//仿函数2 (重载operator())
struct cmp(){bool operator()(const t&x,const t&y){return x.a<y.a;}} p;
sort(a,a+n,p);
```

11 经典错误

= 和 == 混淆; scanf 没加 &; 爆数组/数据范围