Homework 6

蒋翌坤 20307100013

- 1. (a) We can take a look at the second derivative. $\frac{d^2}{db^2} \sum_{i=1}^n (y_i x_i^T b)^2 = 2 \sum_{i=1}^n x_i^2 > 0$ $(x_i \neq 0, x_i^2 = (x_{i1}^2, \dots, x_{ip}^2)^T)$. Since the second derivative is a positive constant, which means the function is convex. Therefore, the minimum is unique at the point where the first derivative is 0, thus guaranteed $\hat{\beta}$ to be unique.
- (b) The geometric interpretation of $\hat{\beta}$ is that under the transformation X, vector $\hat{\beta}$ is closest to vector y.

When solving the least squares problem, we get a system of linear equations by letting derivative equal zero: $X^T y - X^T X \hat{\beta} = 0$. For this system of linear equations to have an existing and unique solution, we need $X^T X$ to have full rank, that is $\operatorname{rank}(X^T X) = p$. So we need to assume $\operatorname{rank}(X^T X) = p$ to guarantee the existence and uniqueness of $\hat{\beta}$.

- 2. Let $X^TX = PDP^T$, P orthogonal and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_p)$, λ_i is eigenvalue of X^TX , so $\operatorname{Cov}(\hat{\beta}) = \sigma^2(X^TX)^{-1} = \sigma^2PD^{-1}P^T$. Suppose λ_a is very small, then λ_a^{-1} is very large. So, $\operatorname{Var}(\hat{\beta}_i) = \sum_{j=1}^p p_{ij}^2 \lambda_j^{-1}$ is very large. Therefore, the effect of a small eigenvalue is that every $\hat{\beta}_i$ has a large variance.
- 3. Suppose there are another linear unbiased estimator $\tilde{\beta}$, we can write it as $\tilde{\beta} = Ay = Cy + \hat{\beta}$ for some $A = C + (X^T X)^{-1} X^T$. For $\tilde{\beta}$ to be unbiased, we need $\mathbb{E}(\tilde{\beta}) = C\mathbb{E}(y) + \beta = \beta \Rightarrow CX\beta = 0 \Rightarrow CX = 0$.

$$\operatorname{Cov}(\hat{\beta}) = \sigma^2(X^T X)^{-1}$$

$$\text{Cov}(\tilde{\beta}) = \text{Cov}(Cy + \hat{\beta}) = \text{Cov}((C + (X^TX)^{-1}X^T)y) = \sigma^2(C + (X^TX)^{-1}X^T)(C + (X^TX)^{-1}X^T)^T = \sigma^2(CC^T + CX(X^TX)^{-1} + (X^TX)^{-1}X^TC^T + (X^TX)^{-1}) = \sigma^2CC^T + \text{Cov}(\hat{\beta})$$

For any constant v, $\operatorname{Var}(v^T\tilde{\beta}) = v^T\operatorname{Cov}(\tilde{\beta})v = \sigma^2v^TCC^Tv + \operatorname{Var}(v^T\hat{\beta}). \ v^TCC^Tv = (C^Tv)^T(C^Tv) \ge 0$, it equals 0 iff $C^Tv = 0 \Rightarrow C = 0$. so for any $\tilde{\beta} \neq \hat{\beta}, \ C \neq 0$, $\operatorname{Var}(v^T\tilde{\beta}) > \operatorname{Var}(v^T\hat{\beta})$. Therefore, $\hat{\beta}$ is the best linear unbiased estimator.

4.
$$\mathbb{E}(e^{T}e) = \mathbb{E}(y^{T}(I-H)^{T}(I-H)y) = \beta^{T}X^{T}(I-H)^{T}(I-H)X\beta + \operatorname{tr}((I-H)^{T}(I-H)\sigma^{2}I)$$

 $(I-H)X\beta = (I-X(X^{T}X)^{-1}X^{T})X\beta = X\beta - X(X^{T}X)^{-1}X^{T}X\beta = 0,$
 $H^{T} = (X(X^{T}X)^{-1}X^{T})^{T} = X(X^{T}X)^{-1}X^{T} = H,$
 $H^{2} = X(X^{T}X)^{-1}X^{T}X(X^{T}X)^{-1}X^{T} = X(X^{T}X)^{-1}X^{T} = H,$
 $(I-H)^{T}(I-H) = (I-H)^{2} = I-H,$
 $\operatorname{tr}(H) = \operatorname{tr}(X(X^{T}X)^{-1}X^{T}) = \operatorname{tr}(X^{T}X(X^{T}X)^{-1}) = \operatorname{tr}(I_{p}) = p,$
so $\operatorname{tr}((I-H)^{T}(I-H)\sigma^{2}I) = \sigma^{2}\operatorname{tr}(I-H) = \sigma^{2}(n-\operatorname{tr}(H)) = \sigma^{2}(n-p)$
Therefore, $\frac{\mathbb{E}(e^{T}e)}{n-p} = \sigma^{2}$

5. For every b, we can order $e_i = y_i - x_i^T b$ and get $e_{(1)}, \ldots, e_{(n)}$, suppose $e_{(m)} < 0 \le e_{(m+1)}$ for some m (if m = 0, then $e_{(1)} \ge 0$; if m = n, then $e_{(n)} < 0$), then $\sum_{i=1}^{n} |e_i| = \sum_{j=m+1}^{n} e_{(j)} - \sum_{i=1}^{m} e_{(i)}$. Under this condition, $\arg \min_b$ can easily be found since it is a linear function of b. Note that we can divide \mathbb{R}^p into $\mathcal{S}_0, \mathcal{S}_1, \ldots, \mathcal{S}_n$ such that when $b \in \mathcal{S}_m$, $e_{(m)} < 0 \le e_{(m+1)}$. Therefore, we can find the overall $arg \min_b$ by checking all $b \in \mathcal{S}_0, \mathcal{S}_1, \ldots, \mathcal{S}_n$.