Determining the Structure of Length-k Steenrod Operations as A(r)-Modules

The Steenrod Algebra \mathcal{A} is the algebra of stable natural endomorphisms of the $\mathbb{Z}/2$ -cohomology functor; it is generated by elements Sq^{2^i} . Let $\mathcal{A}(k)$ be the subalgebra generated by the Sq^{2^i} for $i \leq k$. Consider the modules L(k) spanned by sequences of Steenrod operations of length k. Welcher proved that L(k) is a free module over $\mathcal{A}(k-1)$. We are interested in finding the structure of L(k) as an $\mathcal{A}(r)$ -module for any r. We conjecture that L(k) is built as an $\mathcal{A}(r)$ -module out of $\mathcal{A}(r)//\mathcal{A}(r-k)$, in the sense that it has an increasing filtration with quotients isomorphic to $\mathcal{A}(r)//\mathcal{A}(r-k)$, and present partial results towards that claim. In addition, we prove some interesting commutation relations in the Steenrod algebra relating to representations of Steenrod Algebra elements in Wood's Z-basis.