大数据计算及应用(六)

Link Analysis-1

Agenda

High dim. data

Locality sensitive hashing

Clustering

Dimensionali ty reduction

Graph data

PageRank, SimRank

Community Detection

Spam
Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs

Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Citation networks and Maps of science

[Börner et al., 2012]

Graph Data: Communication Nets

Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer
Science
Department
at Stanford

Stanford University

Web as a Graph

- ☐ Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- ☐ How to organize the Web?
- □ First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates Find relevant docs in a small and trusted set
 - ☐ Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

- 2 challenges of web search:
- □ (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- ☐ (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

☐ All web pages are not equally "important"

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank: The "Flow" Formulation

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - ☐ In-coming links? Out-going links?
- □ Think of in-links as votes:
 - <u>www.stanford.edu</u> has 23,400 in-links
 - <u>www.joe-schmoe.com</u> has 1 in-link
- □ Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- ☐ Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_i / n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_j = r_i/3 + r_k/4$$

PageRank: The "Flow" Model

- □ A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- \square Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

The web in 1839

"Flow" equations:

$$\mathbf{r}_{\mathrm{y}} = \mathbf{r}_{\mathrm{y}}/2 + \mathbf{r}_{\mathrm{a}}/2$$
 $\mathbf{r}_{\mathrm{a}} = \mathbf{r}_{\mathrm{y}}/2 + \mathbf{r}_{\mathrm{m}}$
 $\mathbf{r}_{\mathrm{m}} = \mathbf{r}_{\mathrm{a}}/2$

Solving the Flow Equations

- □ 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

 - Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$
- ☐ Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Flow equations:

$$\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{y}}/2 + \mathbf{r}_{\mathbf{m}}$$

$$r_m = r_a/2$$

PageRank: Matrix Formulation

- ☐ Stochastic adjacency matrix *M*
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - ☐ *M* is a column stochastic matrix
 - Columns sum to 1
- \square Rank vector r: vector with an entry per page
 - \blacksquare r_i is the importance score of page i
 - $\sum_i r_i = 1$
- □ The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

- Remember the flow equation:
- ☐ Flow equation in the matrix form

$$M \cdot r = r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Suppose page i links to 3 pages, including j

Eigenvector Formulation

☐ The flow equations can be written

$$r = M \cdot r$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - ☐ Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if:

$$Ax = \lambda x$$

■ We can now efficiently solve for r!
The method is called Power iteration

Example: Flow Equations & M

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2 + \mathbf{r}_{m}$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- ☐ Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^{\mathsf{T}}$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|x|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

d_i out-degree of node

□ Power Iteration:

- Set $r_i = 1/N$
- $\blacksquare \mathbf{1}: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- **2:** r = r'
- Goto 1

□ Example:

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = 1/3$$
1/3

	У	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2 + \mathbf{r}_{m}$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

□ Power Iteration:

- Set $r_j = 1/N$
- $\blacksquare \mathbf{1}: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- **2:** r = r'
- Goto 1

□ Example:

	У	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2 + \mathbf{r}_{m}$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

Iteration 0, 1

□ Power Iteration:

Set
$$r_i = 1/N$$

$$\blacksquare \mathbf{1}: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

- **2:** r = r'
- Goto 1

	У	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2 + \mathbf{r}_{m}$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

Iteration 0, 1, 2

Power Iteration:

- Set $r_i = 1/N$
- $\blacksquare \mathbf{1}: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- **2:** r = r'
- Goto 1

	У	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$
 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$
6/15
6/15
3/15

Iteration 0, 1, 2, 3 ...

Why Power Iteration works? (1)

□ Power iteration:

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

$$r^{(2)} = M \cdot r^{(1)} = M(Mr^{(0)}) = M^2 \cdot r^{(0)}$$

$$r^{(3)} = M \cdot r^{(2)} = M(M^2 r^{(0)}) = M^3 \cdot r^{(0)}$$

☐ Claim:

Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M

Why Power Iteration works? (2)

- \square Claim: Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M
- ☐ Proof:
 - Assume M has n linearly independent eigenvectors, $x_1, x_2, ..., x_n$ with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$
 - Vectors $x_1, x_2, ..., x_n$ form a basis and thus we can write: $r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$
 - $Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \dots + c_n x_n)$ $= c_1(Mx_1) + c_2(Mx_2) + \dots + c_n(Mx_n)$ $= c_1(\lambda_1 x_1) + c_2(\lambda_2 x_2) + \dots + c_n(\lambda_n x_n)$
 - Repeated multiplication on both sides produces

$$M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$$

Why Power Iteration works? (3)

- \square Claim: Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M
- ☐ Proof (continued):
 - Repeated multiplication on both sides produces $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \cdots + c_n(\lambda_n^k x_n)$

$$M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right]$$

- Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1} \dots < 1$ and so $\left(\frac{\lambda_i}{\lambda_1}\right)^k = 0$ as $k \to \infty$ (for all $i = 2 \dots n$).
- Thus: $M^k r^{(0)} \approx c_1 (\lambda_1^k x_1)$
 - \square Note if $c_1 = 0$ then the method won't converge

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

■ Let:

- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- lacksquare So, p(t) is a probability distribution over pages

The Stationary Distribution

- \square Where is the surfer at time t+1?
 - Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

- then p(t) is stationary distribution of a random walk
- Our original rank vector r satisfies $r = M \cdot r$
 - ■So, r is a stationary distribution for the random walk

Existence and Uniqueness

□ A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0

PageRank: The Google Formulation

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}}$$
 or equivalently $r = Mr$

- ☐ Does this converge?
- ☐ Does it converge to what we want?
- ☐ Are results reasonable?

Does this converge?

$$a \leftarrow b$$

☐ Example:

Iteration 0, 1, 2, ...

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(i)}}{d_i}$$

☐ Example:

Iteration 0, 1, 2, ...

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

☐ (2) Spider traps:

(all out-links are within the group)

- Random walked gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

- $\blacksquare \quad \mathsf{Set} \ r_j = 1$
- - And iterate

m is a spider trap

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2 + \mathbf{r}_{m}$$

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \frac{1/3}{1/3} \frac{2/6}{3/12} \frac{5/24}{3/24} \dots 0$$

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- □ The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to some random page
 - lacksquare Common values for $oldsymbol{eta}$ are in the range 0.8 to 0.9
- □ Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

■ Power Iteration:

- $\blacksquare \quad \mathsf{Set} \ r_j = 1$
- - And iterate

	y	a	m
у	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

☐ Example:

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- □ Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- ☐ Spider-traps are not a problem, but with traps PageRank scores are **not** what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- ☐ Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

☐ Google's solution that does it all:

At each step, random surfer has two options:

- With probability β , follow a link at random
- With probability $1-\beta$, jump to some random page
- ☐ PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o i} eta \; rac{r_i}{d_i} + (1 - eta) rac{1}{N}$$
 d_i ... out-degree of node i

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

☐ PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

☐ The Google Matrix *A*:

$$A=\beta~M+(1-\beta)\left[rac{1}{N}
ight]_{N imes N}^{[1/N]_{
m NxN}\dots {
m N}}$$
 by N matrix where all entries are 1/N

- \square We have a recursive problem: $r = A \cdot r$
 - And the Power method still works!
- \square What is β ?
 - In practice β =0.8,0.9 (make 5 steps on avg., jump)

Random Teleports (β = 0.8)

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold
 A, r^{old}, r^{new}
- ☐ Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - \square 10¹⁸ is a large number!

$$A = \beta \cdot M + (1-\beta) [1/N]_{N \times N}$$

$$A = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Matrix Formulation

- Suppose there are N pages
- \square Consider page i, with d_i out-links
- ☐ We have $M_{ji} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ji} = 0$ otherwise
- □ The random teleport is equivalent to:
 - Adding a teleport link from i to every other page and setting transition probability to (1-β)/N
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - **Equivalent:** Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

$$\square r = A \cdot r$$
, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$

$$\square r_j = \sum_{i=1}^N A_{ji} \cdot r_i$$

$$\square$$
 So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

Note: Here we assumed M has no dead-ends

 $[x]_N$... a vector of length N with all entries x

Sparse Matrix Formulation

■ We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- \square where [(1-β)/N]_N is a vector with all N entries (1-β)/N
- ☐ M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - Add a constant value (1- β)/N to each entry in r^{new}
 - lacktriangle Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

- \square Input: Graph G and parameter β
 - \blacksquare Directed graph G (can have spider traps and dead ends)
 - Parameter $\boldsymbol{\beta}$
- \square Output: PageRank vector r^{new}
 - Set: $r_j^{old} = \frac{1}{N}$
 - repeat until convergence: $\sum_{j} |r_{j}^{new} r_{j}^{old}| > \varepsilon$

 - **☐** Now re-insert the leaked PageRank:

$$\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

Sparse Matrix Encoding

- ☐ Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree destination nodes	
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm: Update Step

- \square Assume enough RAM to fit r^{new} into memory
 - Store rold and matrix M on disk
- □ 1 step of power-iteration is:

```
Initialize all entries of r^{new} = (1-\beta) / N

For each page i (of out-degree d_i):

Read into memory: i, d_i, dest_1, ..., dest_{di}, r^{old}(i)

For j = 1...d_i

r^{new}(dest_i) += \beta r^{old}(i) / d_i
```

0	r ^{new}	source degree destination				O)
1		0	3	1, 5, 6		1	-
2		1	4	17, 64, 113, 117		3	
4		2	2	13, 23		4	ŀ
5			_	10, 20		5)
6						6)

Analysis

- ☐ Assume enough RAM to fit *r*^{new} into memory
 - Store *r*^{old} and matrix *M* on disk
- □ In each iteration, we have to:
 - Read r^{old} and M
 - Write *r*^{new} back to disk
 - Cost per iteration of Power method:

$$= 2|r| + |M|$$

- □ Question:
 - What if we could not even fit r^{new} in memory?

Block-based Update Algorithm

- Break r^{new} into k blocks that fit in memory
- Scan M and rold once for each block

Analysis of Block Update

- □ Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- ☐ Total cost:
 - k scans of M and rold
 - Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- ☐ Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

Block-Stripe Update Algorithm

Break *M* into stripes! Each stripe contains only destination nodes in the corresponding block of *r*^{new}

Block-Stripe Analysis

- ☐ Break *M* into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- □ Cost per iteration of Power method:

$$= |M|(1+\varepsilon) + (k+1)|r|$$

Some Problems with Page Rank

- ☐ Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- ☐ Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities
- ☐ Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

Acknowledgement

- ☐ Slides are adapted from:
 - Prof. Jeffrey D. Ullman
 - Dr. Anand Rajaraman
 - Dr. Jure Leskovec

编程大作业-分组说明

分组 2023.3.25-2023.3.28 (人数与最终成绩无相关性,同组成员成绩相同)
 1~3人一组

3月27日(周一)24点前将本组组员信息(学号+姓名)发送至

邮箱: bigdatacomputing@163.com

逾期未发送分组情况则视为单人一组

3月30日(周四)发布最终分组情况

- 发布作业 2023.3.30
- 提交作业 2023.4.30

(分组情况和作业要求会在微信群里发布)