Question 1
Not answered
Marked out of
1.00
Friag question

🌣 Edit

Let Y_n be a sequence of independent Poisson random variables with parameter $\lambda_n=1/\sqrt{n}$ Study the convergence in quadratic mean of Y_n :

Select one:

- ${}^{\bigcirc}$ a. $Y_n \stackrel{L_2}{\longrightarrow} 1/\sqrt{n}$
- $^{ extstyle }$ b. $Y_n \stackrel{L_2}{\longrightarrow} 1/n$
- C C. $Y_n \stackrel{L_2}{\longrightarrow} 0$
- ${}^{\bigcirc}$ d. $Y_n \stackrel{L_2}{\longrightarrow} 1$

The correct answer is: $Y_n \stackrel{L_2}{\longrightarrow} 0$

Question **2**Not answered
Marked out of 1.00

 $\operatorname{\mathbb{P}}$ Flag question

Edit question

Let X_1 and X_2 be two random variables with distribution $X_1 \sim N(0,2)$ and $X_2 \sim N(-2,1)$ (parameters are mean and variance) and covariance -1. Compute $COV(X_1+X_2,X_1-X_2)$:

Select one:

- a. 1
- b. -2
- c. -1
- O d. 2

The correct answer is: 1

Question **3**Not answered
Marked out of
1.00

♥ Flag question✿ Edit

Let X be a Bernoulli r.v. with parameter $\frac{1}{2}$.

Find the moment generating functions of $Y=rac{1}{2}+rac{X}{2}$

Select one:

$$M_Y(t) = rac{1}{2}(1+e^{rac{t}{2}})$$

$$\circ$$
 b. $M_Y(t)=rac{1}{2}(e^t+e^{rac{t}{2}})$

$$\circ$$
 c. $M_Y(t) = rac{1}{2} + rac{1}{2}(e^t + e^{-t})$

$$\bigcirc$$
 d. $M_Y(t)=rac{1}{2}(e^{rac{3t}{2}})$

The correct answer is: $M_Y(t)=rac{1}{2}(e^t+e^{rac{t}{2}})$

Question **4**Not answered
Marked out of 1.00

♥ Flag question

Edit question

Let X have the probability density function given by

$$f_X(x)=rac{x}{2}$$

with $X \in [0,2]$. Find the density function of Y=6X-3 :

Select one:

$$\bigcirc$$
 a. $f_Y(y)=rac{3+y}{2}rac{1}{6}$

$$\circ$$
 b. $f_Y(y)=rac{3+y}{12}rac{1}{6}$

$$\bigcirc$$
 C. $f_Y(y)=rac{3+y}{6}|rac{1}{6}|$

$$\bigcirc$$
 d. $f_Y(y)=rac{3+y}{12}rac{1}{3}$

The correct answer is: $f_Y(y)=rac{3+y}{12}rac{1}{6}$

Question **5** Marked out of

Flag question

🖨 Edit question

Let heta be the parameter of a population random variable X that follows a continuous uniform distribution on the interval [heta-2, heta+1], and let $X=(X_1,\ldots,X_n)$ be a simple random sample. Given the estimator $T(X) = \bar{X} + \frac{1}{2}$, decide if it is weakly consistent:

- \circ a. T(X) is weakly consistent because $E[T(X)] = \theta$ and $Var[T(X)] = \frac{1}{n}$
- \circ b. T(X) is weakly consistent because $E[T(X)] = \theta$ and $Var[T(X)] = \frac{3}{4n}$
- \circ c. T(X) is not weakly consistent because its variance goes to infinity
- \circ d. T(X) is not weakly consistent because E[T(X)]
 eq heta

The correct answer is: T(X) is weakly consistent because $E[T(X)] = \theta$ and $Var[T(X)] = \frac{3}{4\pi}$

Question 6 Not answered Marked out of 1.00

♥ Flag question 🖨 Edit

A random variable X is supposed to follow a continuous distribution whose density function is

$$f(x; \theta) = \theta x^{\theta-1},$$

for 0 < X < 1.

A sample of 4 observations, ($X_1=0.2$, $X_2=0.5$, $X_3=0.7$, $X_4=0.8$) is collected from X. Apply the method of the moments to find an estimate of the parameter θ :

Select one:

- $\hat{ heta}$ a. $\hat{ heta}_M=1.22$
- \odot b. $\hat{ heta}_M=0.55$
- \odot c. $\hat{ heta}_M=2.5$
- \odot d. $\hat{ heta}_M=0.667$

The correct answer is: $\hat{ heta}_M=1.22$

Question **7**

Not answered Marked out of

Flag question

Edit question

Let $\{Y_n\}$ be a sequence of independent Exponential random variables with parameter $\lambda_n=rac{n}{2}.$

Find the value of n such that $Pr\{Y_n>0.25\}\leq 0.80$:

Select one:

- ${ extstyle }$ a. n=15
- \circ b. n=10
- \odot c. n=8
- \odot d. n=5

The correct answer is: n=10

Question 8

Not answered Marked out of

Flag question

Edit question

Let $X = (X_1, X_2)^ op$ be a random vector with joint density

$$f(x_1, x_2) = kx_2$$

where $0 < x_1 < x_2 < 1$.

Compute k:

Select one:

- lacksquare a. k=2
- \circ b. $k=x_1$
- \circ c. $k=\frac{1}{3}$
- \odot d. k=3

The correct answer is: k=3

Question **9**Not answered
Marked out of 1.00

Flag question

Indicate which of the following definitions is false. The convergence in mean of order 4 implies:

Select one:

- o a. the convergence in quadratic mean
- $\, igcup$ b. the convergence in mean of order 3
- o c. the almost sure convergence
- $\, \bigcirc \,$ d. the convergence in distribution

The correct answer is: the almost sure convergence