

47 CFR PART 15 C - BLUETOOTH

TEST REPORT

of

GSM Phone

Trade Name:

TINNO

Brand Name:

TINNO

Model Name:

T510G

Report No.:

SZ10080009E03

FCC ID.:

XD6T510G

prepared for

SHENZHEN TINNO MOBILE TECHNOLOGY CO., LTD.

4/F, H-3 Building, OCT Eastern Industrial Park, NO.1 XiangShan East Road, Nan Shan District, Shenzhen, P.R.China.

prepared by

Shenzhen Morlah Communications Technology Co., Ltd.

Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China Tel: +86 755-86130398

Fax: +86 755 86130218

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.

TABLE OF CONTENTS

1.	TEST CERTIFICATION4
2.	GENERAL INFORMATION5
2.1	EUT Description5
2.2	Test Standards and Results6
2.3	Facilities and Accreditations
2.3.1	Facilities7
2.3.2	Test Environment Conditions
3.	47 CFR PART 15C REQUIREMENTS8
3.1	Number of Hopping Frequency8
3.1.1	Requirement8
3.1.2	Test Description8
3.1.3	Test Result 9
3.2	Peak Output Power10
3.2.1	Requirement
3.2.2	Test Description
3.2.3	EUT and Equipment setup:10
3.2.4	Test Result10
3.3	20dB Bandwidth
3.3.1	Definition
3.3.2	Test Description
3.3.3	EUT and Equipment setup:
3.3.4	Test Result 13
3.4	Carried Frequency Separation16
3.4.1	Definition
3.4.2	Test Description
3.4.3	EUT and Equipment setup:
3.4.4	Test Result 16
3.5	Time of Occupancy (Dwell time)18
3.5.1	Requirement
3.5.2	Test Description
3.5.3	EUT and Equipment setup:18

3.5.4	Test Result	18
3.6	Conducted Spurious Emissions	20
3.6.1	Requirement	20
3.6.2	Test Description	20
3.6.3	EUT and Equipment setup:	20
3.6.4	Test Result	20
3.7	Band Edge	24
3.7.1	Requirement	24
3.7.2	Test Description	24
3.7.3	Test Result	25
3.8	Conducted Emission	28
3.8.1	Requirement	28
3.8.2	Test Description	28
3.8.3	Test Result	29
3.9	Radiated Emission	31
3.9.1	Requirement	31
3.9.2	Test Description	31
3.9.3	Test Result	32

Change History						
Issue Date Reason for change						
1.0	September 6, 2010	First edition				
2.0	September 13, 2010	Add the information for DA 00-705				

1. TEST CERTIFICATION

Equipment under Test: GSM phone

Trade Name: TINNO Brand Name: TINNO Model Name: T510G

FCC ID: XD6T510G

Applicant: SHENZHEN TINNO MOBILE TECHNOLOGY CO., LTD.

4/F, H-3 Building, OCT Eastern Industrial Park, NO.1 XiangShan East

Road, Nan Shan District, Shenzhen, P.R.China.

Manufacturer: SHENZHEN TINNO MOBILE TECHNOLOGY CO., LTD

4/F, H-3 Building, OCT Eastern Industrial Park, NO.1 XiangShan East

Road, Nan Shan District, Shenzhen, P.R.China.

Test Standards: 47 CFR Part 15 Subpart C

Test Date(s): August 24, 2010 - September 11, 2010

Test Result: PASS

* We Hereby Certify That:

The equipment under test was tested by Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. The test data, data evaluation, test procedures and equipment configurations shown in this report were made in accordance with the requirement of related FCC rules.

The test results of this report only apply for the tested sample equipment identified above. The test report shall be invalid without all the signatures of the test engineer, the reviewer and the approver.

acation . Sen

Tested by:

(as cho

Dated: 2110.9.13

Cao Shaodong

Ni Yong

2010.09.13

Approved by:

Shu Luan

2. GENERAL INFORMATION

2.1 EUT Description

EUT Type..... GSM phone

Model Name T510G

Serial No. (n.a, marked #1 by test site)

Hardware Version V1.0 Software Version V0.21

Modulation Type.....: Frequency Hopping Spread Spectrum (FHSS)

intervals of 1MHz);

The frequency block is 2400MHz to 2483.5MHz.

Power Supply.....: Battery

Model Name: E500 Brand name: TINNO Capacitance: 1000mAh

Rated voltage: 3.7V

Ancillary Equipments...... AC Adapter (Charger for Battery)

Model Name: BMT30UA
Brand Name: TINNO

Serial No.: (n.a. marked #1 by test site)
Rated Input: ~ 100-240V, 50-60Hz, 120mA

Rated Output: = 5.0V, 500mA

Note 1: The EUT is a Mobile Phone, it contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.247(a)	Number of Hopping Frequency	PASS
2	15.247(b)	Peak Output Power	PASS
3	15.247(a)	20dB Bandwidth	PASS
4	15.247(a)	Carrier Frequency Separation	PASS
5	15.247(a)	Time of Occupancy (Dwell time)	PASS
6	15.247(c)	Conducted Spurious Emission	PASS
7	15.247(c)	Band Edge	PASS
8	15.207	Conducted Emission	PASS
9	15.209	Radiated Emission	PASS
	15.247(c)		

2.3 Facilities and Accreditations

2.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

2.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

3. 47 CFR PART 15C REQUIREMENTS

3.1 Number of Hopping Frequency

3.1.1 Requirement

According to FCC section 15.247(a)(1)(ii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 75 hopping frequencies.

3.1.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. EUT and Equipment setup:

The EUT has its hopping function enable, and the spectrum analyzer settings are displayed below:

Span = 80MHz, RBW = 1MHz, VBW>=RBW, Sweep Time = auto, Detector function = peak, trace = max hold.

C. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Service Simulator	Agilent	E5515C	GB43130131	2009.09	1year
Spectrum Analyzer	Agilent	E7405A	US44210471	2009.09	1 year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

3.1.3 Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

A. Test Verdict:

Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
2400 - 2483.5	79	75	Plot A	PASS

(Plot A: 2402MHz to 2480MHz)

3.2 Peak Output Power

3.2.1 Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

3.2.2 Test Description

See section 3.1.2 of this report.

3.2.3 EUT and Equipment setup:

The EUT was fixed in single channel, and the spectrum analyzer settings are displayed below:

Span = 5MHz, RBW = 1MHz, VBW>=RBW, Sweep Time = auto, Detector function = peak, trace = max hold.

3.2.4 Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

Channel Fragueray (MII-)		Measured Output Peak Power			Liı	Verdict	
Channel	Frequency (MHz)	dBm	W	Refer to Plot	dBm	W	verdict
0	2402	-7.94	0.16E-3	Plot A			PASS
39	2441	-9.19	0.12E-3	Plot B	30	1	PASS
78	2480	-9.10	0.12E-3	Plot C			PASS

(Plot A: Channel = 2402)

(Plot B: Channel = 2441)

(Plot C: Channel = 2480)

3.3 20dB Bandwidth

3.3.1 Definition

The 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

3.3.2 Test Description

See section 3.1.2 of this report.

3.3.3 EUT and Equipment setup:

The EUT was fixed in single channel, and the spectrum analyzer settings are displayed below:

Span = 2MHz, RBW = 10KHz, VBW>=RBW, Sweep Time = auto, Detector function = peak, trace = max hold.

3.3.4 Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

A. Test Verdict:

The maximum 20dB bandwidth measured is 787.50KHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (KHz)	Refer to Plot
0	2402	787.50	Plot A
39	2441	787.50	Plot B
78	2480	787.50	Plot C

(Plot A: Channel = 2402)

(Plot B: Channel = 2441)

(Plot C: Channel = 2480)

3.4 Carried Frequency Separation

3.4.1 Definition

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

3.4.2 Test Description

See section 3.1.2 of this report.

3.4.3 EUT and Equipment setup:

The EUT has its hopping function enable, and the spectrum analyzer settings are displayed below:

Span = 3MHz, RBW = 100KHz, VBW>=RBW, Sweep Time = auto, Detector function = peak, trace = max hold.

3.4.4 Test Result

The Bluetooth Module operates at hopping-on test mode.

For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (787.50KHz, refer to section 3.3.4), whichever is greater. So, the verdict is PASS.

(Plot A: Carried Frequency Separation)

3.5 Time of Occupancy (Dwell time)

3.5.1 Requirement

According to FCC section 15.247(a)(1)(iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

3.5.2 Test Description

See section 3.1.2 of this report.

3.5.3 EUT and Equipment setup:

The EUT was fixed in single channel, and the spectrum analyzer settings are displayed below:

Span = 0Hz, RBW = 1MHz, VBW>=RBW, Sweep Time = 10ms, Detector function = peak, trace = max hold.

3.5.4 Test Result

The average time of occupancy on any channel within the Period can be calculated with formulas (for DH5 package type):

```
{Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4s * {Number of Hopping Frequency}
```

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

A. Test Verdict:

Channel	Frequency	Pu	ılse Time	Total of Dwell	Limit (mg)	Verdict
Chamilei	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	verdict
0	2402	2.975	Plot A	317.33		PASS
39	2441	2.95	Plot B	314.67	400	PASS
78	2480	2.95	Plot C	314.67		PASS

B. Test Plot:

Note: the following plots record the Pulse Time of the Module carrier.

(Plot A: Channel = 2402)

(Plot B: Channel = 2441)

(Plot C: Channel = 2480)

3.6 Conducted Spurious Emissions

3.6.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.6.2 Test Description

See section 3.1.2 of this report.

3.6.3 EUT and Equipment setup:

The EUT was fixed in single channel, and the spectrum analyzer settings are displayed below:

RBW = 100KHz, VBW>=RBW, Sweep Time = auto, Detector function = peak, trace = max hold.

3.6.4 Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

A. Test Verdict:

	Eraguanav	Measured Max.		Limi	t (dBm)	
Channel	Frequency	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
	(MHz)	Emission (dBm)		Level	-20dBc Limit	
0	2402	-50.28	Plot A.1/A.2	-14.03	-34.0	PASS
39	2441	-51.69	Plot B.1/B.2	-13.4	-33.4	PASS
78	2480	-51.49	Plot C.1/C.2	-13.1	-33.1	PASS

B. Test Plot:

Note: the power of the Module transmitting frequency should be ignored.

(Plot A.1: Channel = 0, 30MHz to 4GHz)

(Plot A.2: Channel = 0, 4GHz to 25GHz)

(Plot B.1: Channel = 39, 30MHz to 4GHz)

(Plot B.2: Channel = 39, 4GHz to 25GHz)

(Plot C.1: Channel = 78, 30MHz to 4GHz)

(Plot C.2: Channel = 78, 4GHz to 25GHz)

3.7 Band Edge

3.7.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.7.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength..

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2009.9	1year
Receiver	Agilent	E7405A	US44210471	2009.9	1year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2009.9	2year
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2009.9	1year

3.7.3 Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest and highest channels are tested to verify the band edge emissions.

The antenna factor at 2440M is 32.5dB.

The cable loss plus the amplifier at 2440M is -29.7dB.

So the offset added here is 2.8dB.

A. Test Verdict:.

Channel	Frequency	Max. Emis Restricted Bar	Limit (d	Verdict		
	(MHz)	PK	AV	PK	AV	
0	2402	44.85	42.63	74	54	PASS
78	2480	38.08	36.83	74	54	PASS

(Plot A1: Channel = 0 PEAK)

(Plot A2: Channel = 0 AVERAGE)

(Plot B1: Channel = 78 PEAK)

(Plot B2: Channel = 78 AVERAGE)

3.8 Conducted Emission

3.8.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Eraguanay ranga (MHz)	Conducted Limit (dBµV)				
Frequency range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
0.50 - 30	60	50			

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.8.2 Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2003

The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading.

During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2009.09	1 year
LISN	Schwarzbeck	NSLK 8127	812744	2009.09	1 year
Service Supplier	R&S	CMU200	100448	2009.09	1 year
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)

3.8.3 Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

(Plot B: N Phase)

3.9 Radiated Emission

3.9.1 Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Eraguanay (MHz)	Field Strength	Measurement	Detector
Frequency (MHz)	$(\mu V/m)$	Distance (m)	
30 - 88	100	3	QP
88 - 216	150	3	QP
216 - 960	200	3	QP
960 - 1000	500	3	QP
Above 1000	500	3	AV

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

3.9.2 Test Description

A. Test Setup:

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2003). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

For the Test Antenna: In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength, the azimuth range of turntable was 0° to 360°, the receive antenna has two polarizations horizontal and vertical. When doing measurements above 1GHz, the EUT was placed within the 3dB beam width range of the horn antenna, and the EUT was tested in 3 orthogonal positions as recommended in ANSI C63.4 for Radiated Emissions and the worst-case data was presented.

The EUT operates at hopping-off test mode, and was tested in 3 orthogonal positions as recommended in ANSI C63.4 for Radiated Emissions and the worst-case data was presented below.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2009.9	1year
Receiver	Agilent	E7405A	US44210471	2009.9	1year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2009.9	2year
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2009.9	1year
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2009.9	1 year
Test Antenna - circular	R&S	AC004R1	0749.3000.03	2009.9	1 year

3.9.3 Test Result

A. Test Verdict for Harmonics:

The Fundamental Emissions

The field strength of {Fundamental Emission} listed below is recorded, and used in the next table.

Channal	Frequency	Frequency Fundamental Emission (dBµV/m)		Antenna	Refer to Plot	
Channel (MHz)		PK	AV	Polarization		
0	2402	82.29	73.25	Horizontal	Plot A.1	
0 2402	2402	81.09	72.46	Vertical	Plot A.2	

Channel	Frequency	Fundamental Em	ission (dBµV/m)	Antenna	Refer to Plot
Chaimei	(MHz)	PK	AV	Polarization	Kelei to Flot
20	2441	83.65	75.49	Horizontal	Plot B.1
39	39 2441	84.06	76.18	Vertical	Plot B.2
70	2490	83.50	75.36	Horizontal	Plot C.1
78 2480	<i>2</i> 480	81.94	73.08	Vertical	Plot C.2

The un-wanted Emissions:

Test result of channel: 0 (2402MHz)

Frequency	PK Level	Limits	Margin	Height	Azimuth	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(cm)	(deg)	Polarization
266.7 M	31.5	46	-14.5	156	100	Horizontel
332.6 M	31.92	46	-14.08	207	100	Horizontel
400.5 M	27.96	46	-18.04	69	100	Horizontel
598.4 M	35.41	46	-10.59	189	100	Horizontel
960.2 M	36.68	54	-17.32	293	100	Horizontel
2.680 G	46.31	54	-7.69	340	100	Horizontel
266.7 M	29.78	46	-16.22	144	100	Vertical
336.5 M	24.67	46	-21.33	166	100	Vertical
400.5 M	26.08	46	-19.92	186	100	Vertical
624.6 M	28.01	46	-17.99	186	100	Vertical
960.2 M	34.42	54	-19.58	0	100	Vertical
3.715 G	47.6	54	-6.4	235	100	Vertical

Test result of channel: 39 (2442MHz)

Frequency	PK Level	Limits	Margin	Height	Azimuth	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(cm)	(deg)	Polarization
249.2 M	30.98	46	-15.02	106	100	Horizontel
266.7 M	30.49	46	-15.51	85	100	Horizontel
332.6 M	31.85	46	-14.15	185	100	Horizontel
598.4 M	33.02	46	-12.98	133	100	Horizontel
960.2 M	34.6	54	-19.4	92	100	Horizontel
3.715 G	48.67	54	-5.33	43	100	Horizontel
37.8 M	26.74	40	-13.26	303	100	Vertical
266.7 M	29.18	46	-16.82	125	100	Vertical
336.5 M	26.07	46	-19.93	220	100	Vertical
400.5 M	27.08	46	-18.92	190	100	Vertical
624.6 M	27.78	46	-18.22	100	100	Vertical
960.2 M	34.58	54	-19.42	0	100	Vertical
3.715 G	47.95	54	-6.05	339	100	Vertical

Test result of channel: 78 (2480MHz)

Frequency	PK Level	Limits	Margin	Height	Azimuth	Antenna
(MHz)	$(dB \mu V/m)$	$(dB\mu V/m)$	(dB)	(cm)	(deg)	Polarization
266.7 M	31.72	46	-14.28	155	100	Horizontel
332.6 M	30.88	46	-15.12	217	100	Horizontel
404.4 M	26.42	46	-19.58	224	100	Horizontel
598.4 M	32.6	46	-13.4	192	100	Horizontel
960.2 M	37.19	54	-16.81	291	100	Horizontel
3.715 G	48.86	54	-5.14	359	100	Horizontel
266.7 M	30.45	46	-15.55	132	100	Vertical
336.5 M	25.39	46	-20.61	48	100	Vertical
400.5 M	25.16	46	-20.84	173	100	Vertical
624.6 M	28.27	46	-17.73	58	100	Vertical
960.2 M	34.41	54	-19.59	1	100	Vertical
1.057 G	31.73	54	-22.27	323	100	Vertical
3.715 G	47.9	54	-6.1	103	100	Vertical

(Plot A.2: Antenna Vertical)

Plot for Channel = 39

(Plot B.0: 9kHz to 30MHz)

(Plot C.2: Antenna Vertical)

** END OF REPORT **