Introduzione a UNIX

Università di Modena e Reggio Emilia

Prof. Nicola Bicocchi (nicola.bicocchi@unimore.it)

Total Market Share

Total Operating System Market Share Worldwide, by Month

(Desktop, Mobile, Tablet, Console) 100 Market Share (%) 50 Windows → Android -- ios → OS X **─** Unknown - Linux - Symbian OS → Series 40 **★** BlackBerry OS - Samsung - Nokia Unknown - Chrome OS - Playstation ★ Sony Ericsson **→** KaiOS - Xbox → Nintendo - Other

Mobile Market Share

Genealogia famiglia Unix

Architettura interna

- Sistema Operativo
 - Kernel: mediatore fra applicazioni e hardware
 - Sistema base: gestisce la fase di boot ed un insieme di funzionalità minime
- Programmi applicativi

Struttura a guscio

- Applicativi: browser, email, programme ufficio, compilatori
- Sistema base: librerie di sistema, sistema di boot, shell, terminale
- Kernel: gestione processi, filesystem, memoria, IPC

Interazione Kernel - Applicazioni

Applicazione

- Applicazioni richiedono servizi al kernel (system calls)
- Kernel elabora la risposta e risponde all'applicazione

Funzionalità principali OS

Memory File Device Processor Management Management Management Management Secondary 1/0 Command Security Storage Interpretation management management Communication Networking Job accounting @ guru99.com Management

Monolitici, Micro, Ibridi

Quanto è complesso un kernel?

- 20K SLOC (XV6)
- https://github.com/mit-pdos/xv6-public
- 30M SLOC (Linux Kernel 5)
- https://www.kernel.org/

4.4.1

Megabytes

version 0.95

94 Mar

16

May

Mar

0.96b

1.1.13

1.0

75 90 105 120 135

Linux kernel map functionalities human interface system processing storage networking memory layers processes memory access HI char devices interfaces core files & directories sockets access kernel/signal.c sys_fork sys_kill sys_kill user sys_brk sys_mmap.shm vm ops access System Call Interface sys_shmctl sys_shmat space /proc /sysfs /dev linux/uaccess.h sysfs_ops /proc/net/ interfaces sg_proc_seq_show_dev system calls and system files rt cache seg show cdev map sys epoll create sys_capset fb_fops /proc/meminfo /proc/self/maps cdev sys_reboot sock joetl Virtual File System protocol families threads virtual memory **Device Model** security/ security INIT_WORK | queue_work | security capset may open virtual inode security socket create unix family ops kthread create inode permission bus_type device_create kernel thread security inode create security_ops thread info inet_dgram_ops inet stream ops socket file ops driver_register debugging synchronization memory device driver page cache networking socket mapping sys_ptrace log_buf splice bridges storage sock_sendpage nfs file operations register kprobe tcp_sendpage kmem cache alloc smb_fs_type module vma link cifs file ops sock splice read mm_struct kgdb_breakpoint oprofile_init iscsi_tcp_transport tcp_splice_read vm_area_struct kernel param protocols HI subsystems system run Scheduler logical memory logical file systems task struct logical udp_sendinsg udp_sendinsg ucp_v4_rcv functions implementations video device kfree setup_timer ip_queue_xmit run_init_process activate_task_ abstract devices generic HW access **Page Allocator** network interface interrupts core block devices gendisk **HID class drivers** dev_queue_xmit device register_netdev net_device vers/input/ drivers/media/ init_scsi kmem_cache_init kmem_cache_alloc do_timer tick_periodic setup_irq control scsi device console get_free_pages scsi driver kbd alloc_netdev_mq ieee80211_alloc_hw fb_ops sd fons ether_setup ieee80211_rx usb_storage_driver vm_stat totalram_pages try_to_free_pages netif carrier on ieee80211_xmit HI peripherals device access CPU specific physical memory disk controller network setup_arch x86_init trap_init device drivers and bus drivers operations device drivers hardware usbnet_probe interfaces native init IRQ switch to ipw2100_pci_init_one . zd1201_probe e1000_xmt_frame set_intr_gate atkbd drv system call drivers, registers and interrupts Scsi Host ahci pci driver out_of_memory die e1000_intr aic94xx_init num_physpages do_page_fault CPU user peripherals 1/O mem **1/O** memory disk controllers network controllers electronics

Filosofia UNIX

KISS principle

- Keep It Simple, Stupid
- In riferimento al codice sorgente di un programma, significa mantenere uno stile di progettazione semplice e lineare demandando le ottimizzazioni al compilatore o a successive fasi dello sviluppo.
- In ambito UNIX, tanti semplici strumenti in grado di funzionare in modo orchestrato piuttosto che una sola struttura monolitica.
- Richiama in parte il principio filosofico del Rasoio di Occam: a parità di fattori la spiegazione più semplice è da preferire.
- https://en.wikipedia.org/wiki/Unix_philosophy

Multiutenza e Multitasking

Multitasking

- Un sistema operativo multitasking permette di eseguire più programmi (task) contemporaneamente. Ad esempio, se viene chiesto al sistema di eseguire due processi, A e B, la CPU eseguirà per qualche istante il processo A, poi per qualche istante il processo B, poi tornerà ad eseguire il processo A e così via.
- Il componente del Kernel delegato a questa funzione viene chiamato scheduler

Multiutenza

- Un sistema multiutente può essere utilizzato contemporaneamente da utenti diversi. Ad ogni utente del sistema viene assegnato uno username, una password, e una cartella personale
 - /Users/nomeutente (macOS)
 - /home/nomeutente (Linux)

Console e terminali

Terminale testuale

- Con il termine console o terminale si definisce una coppia tastiera/video collegata alla macchina.
- Storicamente, per rendere accessibile una macchina da più utenti, era possibile collegare più tastiere e video allo stesso computer.
- Oggi i terminali sono virtuali.

Terminale testuale

```
chris@ubuntu:~

chris@ubuntu:~$ bash --version

GNU bash, version 4.3.46(1)-release (x86_64-pc-linux-gnu)

Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <a href="http://gnu.org/licenses/gpl">http://gnu.org/licenses/gpl</a>.

This is free software; you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

chris@ubuntu:~$
```


Terminale grafico

- Esistono terminali più evoluti, i cosiddetti terminali grafici che permettono di utilizzare un'interfaccia grafica (GUI) per eseguire le operazioni di input/output.
- Windows dispone di un solo terminale grafico, i sistemi Unix ne hanno diversi intercambiabili (X Window System).
- https://www.tecmint.com/best-linux-desktop-environments/

Terminale grafico

Perchè usare il terminale testuale?

- Accesso completo alla configurazione del sistema e dei servizi
- Automatizzazione e scripting
- Basso consumo di risorse computazionali
- Esistono applicazioni in cui un terminale grafico non viene installato perchè inutile (non esiste monitor) o per risparmiare risorse (apparati rete/applicazioni IoT)

Apertura e chiusura sessioni

login

woodstock login: nicola

Password: *****

Last login: Fri Mar 06 10:27:08 on ttyS2

\$_ ← shell prompt

shell

- Programma che permette di far interagire l'utente con il sistema opertivo tramite comandi
 - resta in attesa di un comando...
 - esegue commando alla pressione di <ENTER>
- La shell è un interprete di comandi
 - interpreta ed esegue comandi inseriti da tastiera o da file
 - linguaggio di scripting

Ciclo di esecuzione shell

Quale shell?

- La shell non è unica, un sistema può metterne a disposizione varie
 - Bourne shell (/bin/bash)
 - C shell (/bin/csh)
 - Fish shell (/bin/fish)
- Ogni utente può indicare la shell preferita. La scelta viene memorizzata in /etc/passwd (file di sistema contenente le informazioni degli utenti)
- Dopo il login, per ogni utente viene generato un processo shell dedicato

passwd

Per modificare la password dell'utente in esecuzione è possibile utilizzare il comando passwd [OPTION] [USER]

```
$ passwd
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
```


logout

- Per uscire da una shell si può utilizzare il comando exit (che invoca la system call exit() per quel processo). In alternativa:
 - exit
 - CTRL+D
- Per rientrare, va effettuato un nuovo login

shutdown

- Varie possibilità
 - \$ sudo shutdown --halt now
 - \$ sudo shutdown --reboot now
 - \$ sudo halt
 - \$ sudo reboot
- Trattandosi di modifica al sistema (lo spegnimento coinvolge tutti gli utenti) sono necessari diritti di amministrazione
 - sudo cmd (esecuzione di un singolo comando)
 - sudo -i (shell interattiva)

Manuale in linea

man

- Esiste un manuale on-line (man), consultabile per informazioni su ogni comando Linux. Indica:
 - formato del comando (input) e risultato atteso (output)
 - descrizione delle opzioni
 - possibili restrizioni
 - file di sistema interessati dal comando
 - comandi correlati
 - eventuali bug per uscire dal manuale
- Per uscire premere q

apropos

 Per cercare una pagina di manuale di cui non si conosce il nome, è possibile usare il comando apropos per cercare tutte le pagine che contengono una keyword specifica

```
$ apropos man
```

\$ apropos top

Utenti e gruppi

Concetto di gruppo

- Sistema multiutente ⇒ problemi di privacy e di possibili interferenze: necessità di proteggere/nascondere informazioni
- Concetto di gruppo (staff, utenti, studenti): possibilità di lavorare sugli stessi documenti
- Ogni utente appartiene a un gruppo principale ma può far parte anche di gruppi secondari a seconda delle esigenze e configurazioni

Utenti

- Ogni utente è identificato univocamente all'interno del sistema mediante uno username. Gli utenti del sistema sono distribuiti in più gruppi; ogni utente fa parte di almeno un gruppo.
- Esiste un utente privilegiato, il cui username è **root**, che viene assegnato all'amministratore del sistema. **root** può modificare la configurazione dell'intero sistema.

sudo

\$ sudo apt-get update

\$ ← Prompt utente normale

Eleva i diritti di esecuzione (da utente a root) per un solo commando. *Per aggiornare il sistema sono necessari diritti di amministrazione*

\$ sudo -i

← Prompt utente root

Eleva i diritti di esecuzione in modo permanente

/etc/passwd

Username: username dell'utente

Password: la x indica che la password cifrata è presente nel file

/etc/shadow

User ID (UID): ID utente

Group ID (GID): ID del gruppo (primario) dell'utente

User ID Info: Informazioni aggiuntive

Home directory: percorso assoluto home directory utente

Command/shell: percorso assoluto shell utente

nicola : x : 1000 : 1000 : Nicola B.,,, : /home/nicola : /bin/bash

/etc/group

Group name: nome del gruppo

Password: generalmente non utilizzato. Si possono definire password di gruppo.

Group ID (GID): ID del gruppo

Group List: lista degli utenti che appartengono al gruppo

adm:x:4:syslog,nicola

sudo : x : 27 : nicola

nicola : x : 1000 :

whoami, id

```
who-am-I mostra il nome utente corrente
$ whoami
nicola

id mostra UID, GID, gruppi secondari
$ id
uid=1000(nicola) gid=1000(nicola)
groups=1000(nicola),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),126(sambashare)
```


Protezione dei file

- Multiutenza implica necessità di regolare gli accessi alle informazioni. Per ogni file, esistono 3 tipi di utilizzatori:
 - proprietario, user
 - gruppo del proprietario, group
 - tutti gli altri utenti, others
- Per ogni utilizzatore, si distinguono tre modi di accesso al file:
 - lettura (r)
 - scrittura (w)
 - esecuzione (x) (per una directory significa list del contenuto)
- Ogni file è marcato con UID e GID del proprietario
- 12 bit di protezione

File e metadati

```
host133-63:~ marco$ ls -1
                                   tot. spazio occupato (blocchi)
  total(8)
                3 paolo prof
                                  102 May 18 22:49 Desktop
  drwx----
                3 paolo prof
  drwx----
                                  102 May 18 22:49 Documents
                                   29 May 19 00:10 fl.txt
                1 pippo stud
   -rw-r--r--
                                    0 May 18 22:53 f2
                1 marco nerdz
   -rw-r--r--
                                                        nome file
                                        data ultima modifica
                                 dimensione (byte)
                 proprietario
                           gruppo
          numero di (hard) link
     permessi
tipo di file
```


Bit di protezione

12	11	10	9	8	7	6	5	4	3	2	1
0	0	0	1	1	1	1	0	0	1	0	0
SUID	SGID	Sticky	R	W	X	R	W	Х	R	W	X
			User			Group			Others		
			PERMESSI								

chmod, chown

chmod [opzioni] mode file

Assegna diritti ad un file

\$ chmod 0755 /home/nicola/test

0	0	0	1	1	1	1	0	1	1	0	1
SUID	SGID	Sticky	R	W	X	R	W	X	R	W	X
			User			Group			Others		

chown [opzioni] owner:group file

Assegna proprietario e gruppo ad un file

\$ chown nicola:nicola /home/nicola/test

SUID, SGID, Sticky

- SUID (Set User ID)
 - Si applica a un file di programma eseguibile solamente
 - Se attivo, l'utente che esegue il programma viene considerato il proprietario di quel file (solo per la durata della esecuzione)
 - È necessario per consentire lettura/scrittura su file di sistema, che l'utente non avrebbe il diritto di leggere/ modificare.
 - Esempio: passwd (vedi diritti /etc/passwd)
- SGID: come SUID bit, per il gruppo
- Sticky: il sistema cerca di mantenere in memoria l'immagine del programma, anche se non è in esecuzione

adduser, deluser

\$ sudo adduser utente Aggiunge un nuovo utente al sistema

\$ sudo deluser utente Rimuove un utente dal sistema

In alternativa, è sempre possible modificare manualmente i file /etc/passwd e /etc/group e usare il commando passwd per aggiornare la password

Processi

Utenti e Processi

- Ogni operazione eseguita su una macchina Unix viene effettuata a nome e per conto di un determinato utente. Non esistono task o programmi funzionanti in modalità anonima!
- Ogni programma viene eseguito per conto di un determinato utente e pertanto ne acquisisce tutti i permessi ed i vincoli.

\$ ps aux

Avvio del sistema

Flussi dati standard

- I comandi UNIX si comportano come FILTRI
- Un filtro è un programma che riceve un ingresso da un input e produce il risultato su uno o più output

Esecuzione commando (processo)

- \$ ls
- I comandi principali del sistema si trovano nelle directory /bin oppure /usr/bin
- Possibilità di realizzare nuovi comandi (scripting). Per ogni comando, la shell genera un processo figlio dedicato alla sua esecuzione
- Il processo padre attende la terminazione del comando (foreground) o prosegue in parallelo (background)

Formato invocazione

- nome comando opzioni argomenti
- \$ Is -I filename
- Convenzione nella rappresentazione della sintassi comandi:
 - se un'opzione o un argomento possono essere omessi, si indicano tra quadre [opzione]
 - se due opzioni/argomenti sono mutuamente esclusivi, vengono separati da |. Ad esempio: arg1 | arg2
 - quando un argomento può essere ripetuto n volte, si aggiungono dei puntini argomento...

ps

Un processo utente in genere viene attivato a partire da un comando (da cui prende il nome). Tramite ps si può vedere (staticamente) la lista dei processi attivi. Per una rappresentazione continua si utilizza top.

nicola@ubuntu:~\$ ps

PID TTY TIME CMD

5527 pts/0 00:00:00 bash

7595 pts/0 00:00:00 ps

top – linea #1

- Ora attuale (21:34:21)
- Uptime della macchina (3:51)
- Utenti attualmente connessi (2 users)
- Media del carico di sistema. i 3 valori si riferiscono a: ultimo minuto, ultimi 5 minuti, ultimi 15 minuti.

```
ÎNG
```

top - 21:34:21 up 3:51, 2 users, load average: 1.01, 0.41, 0.25
Tasks: 134 total, 1 running, 133 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.7%us, 0.3%sy, 0.0%ni, 99.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 508488k total, 466596k used, 41892k free, 59132k buffers
Swap: 407548k total, 2516k used, 405032k free, 234228k cached

top – linea #2

- Processi totali in esecuzione (134 total)
- Processi attivi (1 running)
- Processi dormienti (133 sleeping)
- Processi in stop (0 stopped)
- Processi che aspettano di essere gestiti dal processo padre (0 zombie)


```
top - 21:34:21 up 3:51, 2 users, load average: 1.01, 0.41, 0.25
Tasks: 134 total, 1 running, 133 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.7%us, 0.3%sy, 0.0%ni, 99.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 508488k total, 466596k used, 41892k free, 59132k buffers
Swap: 407548k total, 2516k used, 405032k free, 234228k cached
```

top – linea #3

- Percentuale del carico dei processi utente (0.7%us)
- Percentuale del carico dei processi di sistema (0.3%sy)
- Percentuale del carico dei processi con priorità di aggiornamento nice (0.0%ni)
- Percentuale di inattività della cpu (99.0%id)
- Percentuale dei processi in attesa di operazioni I/O (0.0%wa)

```
ÎNG
```

```
top - 21:34:21 up 3:51, 2 users, load average: 1.01, 0.41, 0.25
Tasks: 134 total, 1 running, 133 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.7%us, 0.3%sy, 0.0%ni, 99.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 508488k total, 466596k used, 41892k free, 59132k buffers
Swap: 407548k total, 2516k used, 405032k free, 234228k cached
```

Filesystem

Tutto è file

- File come risorsa logica costituita da sequenza di bit, a cui viene dato un nome
- Astrazione che consente di trattare allo stesso modo entità fisicamente diverse come file di testo, dischi rigidi, stampanti, direttori, tastiera, video, ...
 - Ordinari: archivi di dati, comandi, programmi sorgente
 - Directory: contengono riferimenti a file
 - Speciali: dispositivi hardware, FIFO, soft links

Tutto è file

- È possibile nominare un file con una qualsiasi sequenza di caratteri (max 255), a eccezione di '.' e '..'
- È sconsigliabile utilizzare per il nome di file dei caratteri speciali, ad es. metacaratteri e segni di punteggiatura
- Ad ogni file possono essere associati uno o più nomi simbolici (link) ma ad ogni file è associato un solo i-node

File di testo, file binario

- **Tipo di file**: lo specifico tipo di informazione contenuta all'interno di file ordinari (audio, immagini, testo)
 - File di testo: leggibile da un essere umano. I dati contenuti rappresentano caratteri (ASCII o Unicode)
 - File binario: richiede specifica interpretazione di un software per essere letto (mp3, jpg, mp4)
- Estensione: i caratteri terminali del nome di un file (di solito 3)
 che su alcuni sistemi, ad esempio Windows ne rappresentano il
 tipo

Struttura file system

- Ogni sottocartella di / rappresenta un gruppo di file con uno scopo preciso
- Varia fra i sistemi. In generale:
 - /bin binari essenziali (sistema di base)
 - /etc file di configurazione
 - /home home degli utenti
 - /proc interfaccia verso il kernel
 - /tmp file temporanei
 - /usr binari non essenziali (applicazioni)
 - /var log di sistema

Struttura file system

- All'atto del login, l'utente comincia ad operare all'interno di una specifica directory (/home/nomeutente)
- In seguito è possibile cambiare directory
- Il sistema operativo mette a disposizione comandi per orientarsi e navigare all'interno del filesystem (cd, pwd)

Nomi assoluti e relativi

- Ogni utente può specificare un file attraverso:
 - nome relativo: è riferito alla posizione dell'utente nel file system (direttorio corrente)
 - nome assoluto: è riferito alla radice della gerarchia. Inizia SEMPRE con /
- Nomi particolari:
 - direttorio corrente (visualizzato da pwd)
 - .. direttorio 'padre'
 - ~ home utente

Nomi assoluti e relativi

nome assoluto: /home/local/README

nome relativo: ../local/README

i-node

Links

- Le informazioni contenute in un file possono essere visibili attraverso nomi diversi, tramite "riferimenti" (link) allo stesso file fisico
- Il sistema operativo considera e gestisce la molteplicità possibile di riferimenti: se un file viene cancellato, le informazioni sono veramente eliminate solo se non ci sono altri link a esso
- Due tipi di link:
 - link fisici (\$ In src dst)
 - link simbolici (\$ In −s src dst)

cp vs ln vs ln -s

\$ cp /home/nicola/f1 /home/nicola/f2

cp vs ln vs ln -s

\$ ln /home/nicola/f1 /home/nicola/f2

cp vs ln vs ln -s

\$ ln -s /home/nicola/f1 /home/nicola/f2

stat

• Fornisce una rappresentazione dettagliata dello stato di un file. Il formato di output è configurabile.

\$ stat /etc/passwd

File: /etc/passwd

Size: 2462 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d **Inode**: 132607 **Links**: 1

Access: (0644/-rw-r--r--) **Uid**: (0/ root) **Gid**: (0/ root)

Access: 2020-04-03 08:17:01.642000837 -0700

Modify: 2020-03-09 06:49:17.914593212 -0700

Change: 2020-03-09 06:49:17.918592969 -0700

Birth: -

Composizione filesystem

mount

- Un file system (contenuto su qualsiasi dispositivo) per essere utilizzato deve essere montato su un file system esistente, usando una directory come punto di attacco.
 - Ad esempio, per le chiavette USB
- La directory di aggancio prende il nome di mount point.

umount

- Il file system può essere staccato dal suo mount point tramite l'operazione di unmount (inversa di mount).
- Per motivi di efficienza, le scritture su di un file system sono eseguite in blocco, al momento più favorevole.
- Estrarre fisicamente un dispositivo senza aver smontato il suo file system può portare corruzione dei dati!

Esempio mount

Installazione pacchetti

apt

- apt è il comando per la gestione (update/search/show/install/remove) di pacchetti in distribuzioni derivate da Debian
- /etc/apt/sources.list contiene la lista dei repository attivi
- L'installazione o la rimozione di software di sistema richiede diritti di amministrazione (sudo)

apt

- apt update aggiorna lista dei pacchetti disponibili
- apt search *pkgname* cerca pacchetti in base a parole chiave
- apt show pkgname mostra i dettagli di un pacchetto
- apt install pkgname installa un pacchetto e le sue dipendenze
- apt remove pkgname rimuove un pacchetto
- apt autoremove rimuove pacchetti inutili (dipendenze di pacchetti rimossi in precedenza)
- apt clean rimuove tutti i pacchetti scaricati

apt

```
$ sudo apt update
$ sudo apt search mc
$ sudo apt install mc
$ mc
```

\$ sudo apt remove mc \$ sudo apt autoremove \$ sudo apt clean

