华东师范大学计算机科学技术系上机实验报告

 课程名称: 计算机组成与结构实践
 年级: 17 级
 上机实践成绩:

 指导教师: 金健
 姓名: 朱桐
 创新实践成绩:

1 实验目的

- 1. 掌握十六位机字与字节运算的数据传输格式
- 2. 验证 ALU 及标志位控制的组合功能
- 3. 熟悉 ALU 运算控制位的运用

2 实验设备

Dais-CMX16⁺ 设备一台

3 实验内容

使用手动搭接的方法,实现 ALU 的输入并且完成各种运算输出

4 实验原理

4.1 数据诵路

实验中所用的运算器数据通路如图 4.1 所示。ALU 运算器由 CPLD 描述。运算器的输出经过 2 片 74LS245 三态门与数据总线相连, 2 个运算寄存器 AX、BX 的数据输入端分别由 4 个 74LS574 锁存器锁存, 锁存器的输入端与数据总线相连, 准双向 I/O 输入输出端口用来给出参与运算的数据, 经 2 片 74LS245 三态门与数据总线相连。

4.2 运算器功能码

运算器功能吗如图 4.2 所示。我们通过设置不同的功能码完成各种不同的运算

5 实验步骤

5.1 ALU 输入

从 I/O 到总线的输入已经在上一次实验了解过了,这里与输出到通用寄存器组 CX 开启 RWX 不同的是,我们开启开关 AWX 和 BWX 控制总线到 ALU 的输入寄存器

Fig. 4.1: 运算器数据通路

5.2 算术运算

5.2.1 字运算

- 令 $MS_2S_1S_0 = K15K13K12K_{11} = 1011$, FUN 及总线单元显示 AX BX 的结果
- 令 $MS_2S_1S_0=K15K13K12K_{11}=1010$, FUN 及总线单元显示 AX BX 的结果

5.2.2 字节运算

我们通过控制 XP,W 来控制 AX,BX 的有效位来进行字节运算

5.3 逻辑运算

5.3.1 字运算

- 令 $MS_2S_1S_0=K15K13K12K_{11}=0010$, FUN 及总线单元显示 AX&BX 的结果
- 令 $MS_2S_1S_0 = K15K13K12K_{11} = 0011$, FUN 及总线单元显示 AX|BX 的结果

5.3.2 字节运算

我们通过控制 XP,W 来控制 AX,BX 的有效位来进行字节运算

算术运算

K15	K13	K12	K11	功能	
М	S2	Sl	s0		
1	0	1	0	RR	
1	0	0	1	RL	
1	0	1	0	A-B	
1	0	1	1	A+B	
1	1	0	0	RRC	
1	1	0	1	RLC	
1	1	1	0	A-B-C	
1	1	1	1	A+B+C	

逻辑运算

K15	K13	K12	K11	功能	
M	S2	S1	s0		
0	0	0	0	A	
0	0	0	1	A+1	
0	0	1	0	A&B	
0	0	1	1	A#B	
0	1	0	0	A=0	
0	1	0	1	A-1	
0	1	1	0	/A	
0	1	1	1	В	

Fig. 4.2: 运算器功能码

5.4 带进位运算

5.4.1 进位控制

- 按 [返回] 初始化进位标志 CY = 0
- 设置 CN = 1, 改变 XP, W
- 按单拍

其中进位控制编码如图5.1所示

进位标志位操作				进位		
K15	K14	K7	K6	DRCK	CY	功能说明
M	CN	ΧP	W	DRCR	01	
0	1	1	0	+	0	清零
0	1	0	0	+	1	置位
0	1	Х	1	+	/CY	取反

Fig. 5.1: 进位控制编码

5.4.2 进位运算

- $X_2X_1X_0 = 001, XPW = 11$
- $M = 1S_2S_1 = 11$
- S0 = 0 为减法,否则为加法

5.5 零标志

进行运算后, Z 标志按钮会随着运算结果变化而变化

5.6 ALU 到 BUS 和 BUS 到 IO

我们通过 $X_2X_1X_0=001$ 来设置总线的输入设备位 ALU,和上次实验一样,设置 IOW=1 并且给 IRCK 一个脉冲,便可完成总线到 I/O 的输出。

6 调试过程、结果与分析

6.1 实验要求

假设 CY 原来有值,在进行带进位加法时,加法结果可能会产生新的进位,也可能不产生。请分析这种情况,设计实验验证各种情况下加法完成后 CY 的值

6.2 分析

我们已经知道了手动控制 CY,和控制 CY 是否带入运算的方法,且 CY 于加法表示加法进位,减法表示减法进位。因此我们可以推断出

- 加法带进位运算 $MS_2S_1S_0=1111$, 若原来 AX=0001, BX=0003, CY=1, 则结果 DBUS=FUN=0005, 不产生新的进位
- 加法带进位运算 $MS_2S_1S_0 = 1111$, 若原来 AX = 000F, BX = 000F, CY = 1, 则结果 DBUS = FUN = 000F, 产生新的进位
- 减法带进位运算 $MS_2S_1S_0 = 1110$, 若原来 AX = 000F, BX = 000F, CY = 1, 则结果 DBUS = FUN = 000F, 产生新的进位
- 減法带进位运算 $MS_2S_1S_0 = 1110$, 若原来 AX = 000F, BX = 000E, CY = 1, 则结果 DBUS = FUN = 0000, 不产生新的进位

7 总结

8 附件