Questions de cours

Ensemble des points d'affixes z tels que $M(z), M(z^2), M(z^3)$ forment un triangle rectangle en M(z).

En utilisant la condition d'orthogonalité :

La condition est réalisée lorsque :

$$\frac{z^3-z}{z^2-z}=\frac{z(z+1)(z-1)}{z(z-1)}=z+1 \text{ est un imaginaire pur}$$

L'ensemble des points recherchés est donc la droite verticale passant par (-1,0) privée de ce point.

A(a) et B(b) sont deux points distincts du plan complexe. Ensemble des points M(z) tels que $\frac{z-a}{z-b}$ soit réel, puis imaginaire.

Rapport réel : le point B est une solution, les autres sont tels que A, B et M soient distincts et alignés, c'est donc finalement la droite (AB) privée du point (A).

Rapport imaginaire pur : le point B est encore solution, les autres sont tels que \overrightarrow{BM} et \overrightarrow{AM} sont orthogonaux, c'est donc finalement le cercle de diamètre AB privé du point A. (On peut aussi le retrouver en posant $z = \alpha + i\beta$ avec α, β réels.)

Théorème de réduction d'une similitude directe ÉNONCÉ

Une similitude directe $z \mapsto az + b$ *est* :

- 1) soit une translation si a=1
- 2) soit admet un unique point fixe Ω d'affixe $\omega = \frac{b}{1-a}$, et c'est alors une composée commutative de la rotation de centre Ω et d'angle $\arg(a)$ et de l'homothétie de centre Ω , de rapport |a|

PREUVE

Si a = 1, pas de question.

Sinon : Supposons donc $a \neq 1$. L'équation z = az + b admet une unique solution, la transformation géométrique associée transforme donc un unique point en lui-même, on dit que c'est son unique point fixe, d'affixe $\omega = \frac{b}{1-a}$

On peut alors déduire de :
$$\begin{cases} \omega = a\omega + b \\ z' = az + b \end{cases}$$
 Que :
$$(z' - \omega) = a(z - \omega) \Longleftrightarrow z' = |a|e^{i\arg(a)}(z - \omega) + \omega.$$

C'est donc bien la composée :

- * d'une rotation $(z \mapsto \omega + e^{i\theta}(z \omega))$
- * et d'une homothétie $(z \mapsto \omega + \lambda(z \omega), \lambda \in \mathbb{R})$

Le vecteur $\overline{\Omega(\omega)M(z)}$ est donc transformé en $\overline{\Omega(\omega)M(z')}$

Théorèmes à citer

Théorème pour l'exponentielle complexe

Soit $a \in \mathbb{C}^*$. L'ensemble des solutions de l'équation : $\exp(z) = a$ d'inconnue z est : $\{\ln(|a|) + i \arg(a) + 2ik\pi \mid k \in \mathbb{Z}\}$

Formules de Moivre et Euler

Soit $n \in \mathbb{N}, \theta \in \mathbb{R}$

Moivre:

$$e^{i\theta n} = (e^{i\theta})^n$$
, ou encore $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$

Euler:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Théorème de description des racines n-ièmes d'un complexe.

Soit $n \in \mathbb{N}^*$ et $z = \rho e^{i\theta}$ avec $\rho > 0$ un complexe non-nul.

- * 0 admet une unique racine n-ième qui est 0.
- * z possède n racines n-ièmes distinctes deux-à-deux : $\sqrt[n]{\rho} \exp \left(i \frac{\theta}{n} + \frac{2ik\pi}{n}\right)$ pour $k \in [\![0,n-1]\!]$

En particulier : l'ensemble des racines n-ièmes de l'unité est :

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \mid k \in \llbracket 0, n-1 \rrbracket \right\}$$

Alignement et Orthogonalité

Alignement:

Soit trois points distincts A,B et C du plan complexe, d'affixes respectives a,b et c.

Ces trois points sont alignés si, et seulement si, $\frac{c-a}{b-a}$ est réel.

Orthogonalité :

Soit deux vecteurs \vec{u} et \vec{v} d'affixes respectives u et v.

Ces deux vecteurs sont orthogonaux si, et seulement si, $u\overline{v}$ est imaginaire pur.

En particulier, soit A(a), B(b) et C(c) trois points distincts du plan complexe :

Alors \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux ssi : $\frac{c-a}{b-a}$ est imaginaire pur.

Théorème de réduction d'une similitude

La réduction d'une similitude directe est déjà dans la partie questions de cours Une similitude directe $z\mapsto az+b$ est :

- 1) soit une translation et une symétrie axiale sur l'axe des abscisses si a=1
- 2) soit admet un unique point fixe Ω d'affixe $\omega=\frac{b}{1-a}$, et c'est alors une composée commutative de la symétrie axiale sur l'axe des abscisses de la rotation de centre Ω et d'angle $\arg(a)$ et de l'homothétie de centre Ω , de rapport |a|