IITB RISC MULTI-STAGE PIPELINED MICROPROCESSOR

TEAM MEMBERS

ANUBHAV BHATLA
NEERAJ PRABHU
HARSHVARDHAN
OJAS PATIL

FLOW CHARTS

ADD/ADC/ADZ/NDU/NDC/NDZ

PC=>inc, IM_{em}-A inc=> PC IM_{em}-D=> IR IR₁₁₋₉=> RF-A1 IR₈₋₆=> RF-A2 PC=>r7 RF-D1=> ALU-A RF-D2=> ALU-B ALU-C=> RF-D3 IR₅₋₃=>RF-A3

ADL

PC=>inc, IM_{em}-A inc=> PC IM_{em}-D=> IR IR₁₁₋₉=> RF-A1 IR₈₋₆=> RF-A2 PC=>r7 RF-D1=> ALU-A RF-D2=> IS=> ALU-B ALU-C=> RF-D3 IR₅₋₃=>RF-A3

ADI

PC=>inc, IM_{em}-A inc=> PC IM_{em}-D=> IR IR₁₁₋₉=> RF-A1 IR₈₋₆=> RF-A3 PC=>r7 RF-D1=> ALU-A IR₅₋₀=> SE6=> ALU-B ALU-C=> RF-D3

ADI

PC=>inc, IM_{em} -A inc=> PC $IM_{\bar{e}m}$ -D=> IR PC=>r7 IR_{11-9} => RF-A3 IR_{8-0} => 7S=> RF-D3

LM

PC=>inc, IM_{em} -A inc=> PC $IM_{\bar{e}m}$ -D=> IR IR_{11-9} => RF-A1 PC=>r7 RF-D1=> inc, LMSM LMSM=> DM_{em} _A inc=> LMSM dec=> RF-A3 DM_{em} => RF-D3

SM

PC=>inc, IM_{em}-A inc=> PC $IM_{\bar{e}m}$ -D=> IR IR_{11-9} => RF-A1 dec=> RF-A2 PC=>r7 RF-D1=> inc, LMSM LMSM=> DM_{em}_A inc=> LMSM RF-D2=> DM_{em}-D_{in}

JLR

PC=>IM_{em}-A, inc IMem-D=> IR PC=>r7 inc=> RF-D3 IR₁₁₋₉=> RF-A3 IR₈₋₆=> RF-A2 RF-D2=> PC

JRI

 $PC=>IM_{em}-A$ IMem-D=>IR $IR_{11-9}=>RF-A1$ PC=>r7 RF-D1=>ALU-A $IR_{8-6}=>SE9=>ALU-B$ ALU-C=>PC

BEQ

PC=>inc, IM_{em} -A IMem-D=> IR IR_{11-9} => RF-A1 IR_{8-6} => RF-A2 PC=>r7 RF-D1=> ALU-A RF-D2=> ALU-B PC=> ALU-B IR_{5-0} => SE6=> ALU2-B if ALU-Z==1 then ALU2-C=> PC else inc=> PC

JAL

PC=>inc, IM_{em}-A IMem-D=> IR PC=>r7 INC=> RF-D3 IR₁₁₋₉=> RF-A3 IR₈₋₀=> SE9=> ALU2-B PC=> ALU2-A ALU2-C=> PC

LHI

PC=>inc, IM_{em}-A inc=> PC IM_{ēm}-D=> IR PC=>r7 IR₁₁₋₉=> RF-A3 IR₈₋₀=> 7S=> RF-D3

LW

PC=>inc, IM_{em} -A inc=> PC $IM_{\bar{e}m}$ -D=> IR IR_{8-6} => RF-A1 PC=>r7 IR_{11-9} => RF-A3 RF-D1=> ALU-A IR_{5-0} => SE6=> ALU-B ALU-C=> DM_{em} -A DM_{em} -D=> RF-D3

HAZARDS

For Hazard detection and mitigation, we have created 7 hazard blocks which work in the following manner:

Hazard BEQ

For the BEQ instruction, we need to branch if the zero flag is set in the Execution stage. Therefore we can have 4 possible cases:

- We predicted the branch as taken (match='1'), and the branch was taken (EXMEM_z='1'): The history bit will be set to '1' and the haz_BEQ to '0' since there was no hazard detected.
- We predicted the branch as taken (match='1'), but the branch was not taken (EXMEM_z='0'): The history bit will be set to '0' and the haz_BEQ to '1' since there was a hazard detected.
- We predicted the branch as not taken (match='0'), and the branch was taken (EXMEM_z='1'): The history bit will be set to '1' and the haz_BEQ to '1' since there was a hazard detected.
- We predicted the branch as not taken (match='0'), and the branch was not taken (EXMEM_z='0'): The history bit will be set to '0' and the haz_BEQ to '0' since there was no hazard detected.

Hazard_JAL

For the JAL instruction, we need to jump to the address PC+Imm.

Therefore we can have 2 possible cases:

- We predicted the jump as taken (match='1'), and the jump was taken (EXMEM_opcode="1001"): The history bit will be set to '1' and the haz_BEQ to '0' since there was no hazard detected.
- We predicted the branch as not taken (match='0'), and the branch was taken (EXMEM_opcode="1001"): The history bit will be set to '1' and the haz_BEQ to '1' since there was a hazard detected.

Hazard JLR

For the JLR instruction, we need to jump to the address in regB. Therefore we can have 2 possible cases:

- We predicted the jump as taken (match='1'), and the jump was taken (RF_D2=IFID_PC_Op): The history bit will be set to '1' and the haz_BEQ to '0' since there was no hazard detected.
- In every other case, the history bit will be set to '1' and the haz_BEQ to '1' since there was a hazard detected.

Hazard JRI

For the JRI instruction, we need to jump to the address Ra+Imm.

Therefore we can have 2 possible cases:

- We predicted the jump as taken (match='1'), and the jump was taken (ALU_C=IDRR_PC_Op): The history bit will be set to '1' and the haz_BEQ to '0' since there was no hazard detected.
- In every other case, the history bit will be set to '1' and the haz_BEQ to '1' since there was a hazard detected.

Hazard_EX

If we encounter an instruction of the form ADD/ADC/ADZ/ADL/NDU/NDC/NDZ R7, Ra, Rb with the necessary conditions or ADI Rx, R7, Imm6, we observe an R7 hazard and thus haz_EX will be set to '1' and '0' otherwise.

Hazard MEM

If we encounter an instruction of the form LW R7, Rx, Imm6, we observe an R7 hazard and thus haz_EX will be set to '1' and '0' otherwise.

Hazard_WB

If we encounter an instruction of the form LHI $\,$ R7 , Imm9, we observe an R7 hazard and thus haz_EX will be set to '1' and '0' otherwise.