

Matemática Para Computação

Prof. Me. Edimar Izidoro Novaes edimar.novaes@unicesumar.edu.br

DISTRIBUIÇÃO CONTÍNUA DE PROBABILIDADE

Distribuições contínuas

- Variáveis contínuas intervalo.
- Assumem infinitos valores.

Exemplo:

Probabilidade de uma pessoa ter 165 cm de altura.

 Variável aleatória agora é a altura e X pode assumir qualquer valor entre 0 e infinito.

Calcular a probabilidade de que X esteja compreendido entre dois pontos quaisquer.

Exemplo:

Podemos calcular a probabilidade de um indivíduo medir entre 160 cm e 170 cm.

Distribuição Normal

- Solução tabelas em que se entra com a variável reduzida ou variável padronizada Z e encontra-se F(Z) ou vice-versa.
- Após a padronização dos valores, a curva normal se apresentará no formato visto abaixo com $\mu = 0$ e $\sigma = 1$.

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

 Tabelas com diferentes integrais calculadas.
 Essa tabela nos fornece sempre a seguinte área sobre a curva.

$$Z = \frac{X_i - \mu}{\sigma}$$

 $\mu = média.$

 σ = desvio padrão.

 $x_i = \text{cada valor}$.

 Suponha que a média da taxa de falhas de dados é transmitida em lotes. Sabe-se que essa característica segue uma distribuição normal com média de 2 e desvio padrão igual a 0,5. Calcule as seguintes probabilidades:

•
$$\mu = 2$$

•
$$\sigma = 0.5$$
.

- a) De tomarmos um lote ao acaso e este ter uma taxa de falhas entre 2,0 e 2,5.
- Traduzindo para linguagem probabilística, queremos:
- P(2,0<x<2,5)
- Primeiramente, vamos padronizar os dados.

•
$$Z = \frac{X_i - \mu}{\sigma}$$
 e que

•
$$Z = \frac{2,5-2}{0,5} = 1$$

•
$$Z = \frac{2,0-2,0}{0,5} = 0$$

• P(2 < x < 2,5) = P(0 < z < 1) = 0,3413 ou 34,13%

Tabela dá direto o valor, uma vez que é exatamente a área desejada.

Como achar os valores

11 11	1 1 1 1 1		1 1 1 1	1 1 1 1 1			1 1 1 1 1		1 1 1 1	11111
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.191	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.225	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.258	0.2611	0.2642	0.2673	0.2704	0.2734	0.2784	0.2794	0.2823	0.2852
0.8	0.28 <mark>8</mark> 1	0.2910	0.2939	0.2967	0.2003	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.31 5 , <i>9</i>	0.3186	0.3242	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

b) De tomarmos um lote ao acaso e ter mais que uma taxa de falhas de 2,5.

P(x > 2.5) = P(z > 1) = 0.5 - 0.3413 = 0.1587

ou 15,87%

Metade da curva vale 0,5

c) De tomarmos um lote ao acaso e ter menos que uma taxa de falhas de 2,5.

- d) De tomarmos um lote ao acaso e este entre 1,5 e 2,5.
- P(1,5 < x < 2,5) = P(-1 < z < 1) = 0,3413 + 0,3413= 0,6826

Colocar o Link

http://users.nlink.com.br/~inicordei ro/AppletJar/FiniteOrderStatisticE xperiment.htm

Sequência numérica é todo conjunto de números dispostos em uma certa ordem. Uma sequência pode ser finita ou infinita.

Exemplos:

A sequência (2; 5; 8; 11), é uma sequência finita, pois é limitada, ou seja, inicia-se no termo 2 e termina no termo 11.

Já a sequência (-3; -2; -1; ...) é uma sequência infinita, pois é ilimitada, ou seja, inicia-se no termo -3 e não tem fim, o que é indicado pela reticencias.

Representação Genérica de uma Sucessão.

A representação genérica de uma sequência pode ser feita da seguinte maneira:

```
• (a_1, a_2; a_3; ...; a_{n-1}; a_n), em que:

a_1 - 1^0 termo
```

 $a_2 - 2^0$ termo

 $a_3 - 3^0$ termo

-

•

.

a_n – n-ésimo termo.

PROGRESSÃO ARITMÉTICA

Consideremos a sequência (2, 4, 6, 8, 10, 12, 14, 16).

Observamos que, a partir do segundo termo, a diferença entre qualquer termo e seu antecessor é sempre a mesma:

$$4-2=6-4=10-8=14-12=16-14=2$$
.

A diferença entre um termo e outro, diferença esta que é sempre constante, é chamada de razão da progressão e costuma ser

representada por r. Na PA dada,

temos que a razão é r = 2.

São exemplos de PA:

(5, 10, 15, 20, 25, 30) é uma PA de razão r = 5. (12, 9, 6, 3, 0, -3) é uma PA de razão r = -3. (2, 2, 2, 2, 2, ...) é uma PA de razão r = 0.

Assim como para uma sequência qualquer, usa-se algumas representações para os termos de uma PA. Para a sequência de números que obedecem a uma progressão aritmética, usa-se a indicação (a_1 , a_2 , a_3 , a_4 ,, a_n), em que:

- a_1 = primeiro termo.
- r = razão.
- n = número de termos
 (se for uma PA finita).
- a_n = último termo, termo geral ou n-ésimo termo .

Exemplo:

- PA (5, 9, 13, 17, 21, 25).
- $a_1 = 5$.
- r = 4.
- n = 6.
- $a_n = a_6 = 25$.

TERMO GERAL DE UMA PROGRESSÃO ARITMÉTICA

Uma PA de razão r pode ser escrita como PA (a_1 , a_2 , a_3 , a_4 ,, a_{n-1} , a_n).

Aplicando a definição de PA, podemos escrevê-la de outra forma:

PA
$$(a_1, a_1 + r, a_1 + 2r, a_1 + 3r, a_1 + 4r, ..., a_1 + (n-1)r)$$
.

Portanto o termo geral será:

$$a_n = a_1 + (n-1)r$$
, para $n \in N^*$

Exemplo:

Determine o quarto termo da PA (3, 9, 15,...).

Resolução: $a_1=3$ $a_2=9$ $r=a_2-a_1=9-3=6$

Então:

$$a_4 = a_1 + r + r + r => a_4 = a_1 + 3r => a_4 = 3 + 3.6 => a_4 = 3 + 18$$
, logo $a_4 = 21$.

Exemplo.

Determine o oitavo termo da PA na qual $a_3 = 8$ e r = -3.

Resolução:
$$a_3 = 8$$
 $r = -3$ $(a_1, ..., a_3, a_4, a_5, a_{6}, a_7, a_{8,...})$.
Então: $a_8 = a_3 + r + r + r + r + r = > a_8 = a_3 + 5r = > a_8 = 8 + 5$.(-3) $a_8 = 8 - 15 = > a_8 = -7$.

Em uma Progressão Aritmética, em que o primeiro termo é 23 e a razão é -6, qual a posição ocupada pelo elemento -13?

Temos que o primeiro termo $a_1 = 23$, a razão é r = -6, o último termo $a_n = -13$, o número de temos é n = ?

Usando o termo geral $a_n = a_1 + (n-1)r$ temos:

$$-13 = 23 + (n - 1).(-6)$$

$$-13 - 23 = -6n + 6$$

$$-36 - 6 = -6n$$

$$6n = 42 \text{ então } n=7.$$

O valor de x para que a sequência (2x, x+1, 3x) seja uma PA é?

Como a sequência precisa ser uma PA, então, temos a seguinte situação $a_2 - a_1 = a_3 - a_2$, ou seja,

$$x+1-2x = 3x - (x+1)$$

$$-x+1 = 3x - x - 1$$

$$-x-2x = -1-1$$

$$-3x = -2$$

$$x = \frac{2}{3}$$

SOMA DOS TERMOS DE UMA PROGRESSÃO ARITMÉTICA

- Consideremos a sequência (2, 4, 6, 8, 10, 12, 14, 16, 18, 20).
- Trata-se de uma PA de razão 2.
- Suponhamos que se queira calcular a soma dos termos dessa sequência, isto é, a soma dos 10 termos da PA (2, 4, 6, 8, ..., 18,20).
- Poderíamos obter essa soma manualmente, ou seja:

$$2+4+6+8+10+12+14+16+18+20 = 110$$
.

A soma dos termos de uma PA, pode ser calculada pela equação $S_n = \frac{(a_1 + a_n)n}{2}$, em que:

 S_n é a soma dos termos a ser calculada.

 a_1 é o primeiro termo da sequência.

 a_n é o último termo da sequência.

 ${\cal H}$ é o número termos da mesma.

Da PA (2, 4, 6, 8, 10, 12, 14, 16, 18, 20), temos peça equação $S_n = \frac{(a_1 + a_n)n}{2}$:

$$S_n = \frac{(2+20).10}{2} = \frac{22.10}{2} = 110$$

Exemplo.

Calcule a soma dos 50 primeiros termos da PA (2, 6, 10,...).

Resolução:

$$S_n = \frac{\left(2 + a_n\right).50}{2}$$

Precisaremos encontrar o último termo, ou seja, o a_{50} .

Pelo termo geral da PA $a_n = a_1 + (n-1)r$, teremos:

$$a_{50} = 2 + (50 - 1).4$$

$$a_{50} = 2 + 49.4$$

$$a_{50} = 2 + 196$$

$$a_{50} = 198$$

Substituindo na equação da soma, temos:

$$S_{50} = \frac{(2+198).50}{2}$$

$$S_{50} = \frac{200.50}{2}$$

$$S_{50} = 100.50$$

 $S_{50} = 5000$

$$S_{50} = 5000$$

Em uma prova de ciclismo, um ciclista percorre 20 km na primeira hora; 17 km na segunda hora e assim por diante, em progressão aritmética. Quantos quilômetros percorrerá em 5 horas?

Resolução:

$$a_1 = 20$$

$$r = a_2 - a_1 = 17 - 20 = -3$$
.

Precisaremos achar o quinto termos da sequência, logo:

$$a_5 = a_1 + 4r$$

$$a_5 = 20 + 4.-3$$

$$a_{5} = 20 - 12$$

$$a_{5} = 8$$
.

Aplicando a fórmula, temos:

$$S_n = \frac{(a_1 + a_n) \cdot n}{2} \Rightarrow \frac{(20 + 8) \cdot 5}{2} = \frac{28.5}{2} = 70$$

Logo ele percorreu em 5 horas 70 km.

PROGRESSÃO GEOMÉTRICA (PG)

É toda sequência de números reais ou complexos, em que cada termo a partir do segundo, é igual ao anterior, multiplicado por uma constante, constante esta que é denominada de razão.

Exemplos de sequências de números que estão em uma progressão geométrica:

```
1,2,4,8,16,32, ..., PG de razão 2.
```

5,5,5,5,5,5, ... PG de razão 1.

100,50,25, ... PG de razão ½.

2,-6,18,-54,162, ... PG de razão -3.

Os termos de uma progressão geométrica podem ser representados por:

$$a_1, a_2, a_3, ..., a_{n-1}, a_n$$

A razão de uma progressão geométrica é representada pela letra q e é obtida como:

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \dots = \frac{a_n}{a_{n-1}} = q$$

Na sequência 1,2,4,8,16, 32, ..., temos uma PG de razão 2, pois:

$$q = \frac{a_2}{a_1} = \frac{2}{1} = 2$$

Termo Geral de uma Progressão Geométrica

Para calcularmos qualquer termo de uma P.G., usamos a fórmula seguinte:

$$a_n = a_1.q^{n-1}$$
, em que:

 a_n representa o último termo da PG.

 a_1 representa o primeiro termo da PG.

q representa a razão da PG.

n representa o número de termos da PG.

Em uma progressão geométrica, temos que o 1º termo equivale a 4 e a razão igual a 3. Determine o 8º termo dessa P.G.

Usando o termo geral da P.G., temos.

$$a_n = a_1 \cdot q^{n-1}$$

$$a_8 = 4.3^{8-1} \implies a_8 = 4.3^7 \implies a_8 = 8748$$

Dada a PG (3, 9, 27, 81, ...), determine o 20° termo.

A razão será
$$q = \frac{a_2}{a_1} = \frac{9}{3} = 3$$

Substituindo no termo geral da PG, tem-se:

$$a_{20} = 3.3^{20-1} \implies a_{20} = 3.3^{19} \implies a_{20} = 3^{20}$$

Soma dos termos de uma Progressão Geométrica Finita

A soma dos n-primeiros termos de PG finita é dada por:

por:
$$S_n = \frac{a_1(q^n - 1)}{q - 1}$$

Ou quando temos o último termo, usa-se, também, a fórmula:

$$S_n = \frac{a_n \cdot q - a_1}{q - 1}$$

Calcular a soma dos 10 primeiros termos da PG (3; 6;...).

Nesse caso, usamos a equação $S_n = \frac{a_1(q^n - 1)}{q - 1}$, em que o primeiro termo é igual 3, o número de termos é 10 e a razão $q = \frac{6}{3} = 2$. Assim:

$$S_{10} = \frac{3(2^{10} - 1)}{2 - 1} \Rightarrow S_{10} = \frac{3(2^{10} - 1)}{1} = 3069$$

Exemplo.

Qual é a quantidade de elementos da P.G. finita (1, 2, 4, ...), sabendo que a soma dos termos dessa P.G. é 1023?

Vamos usar a equação $S_n = \frac{a_1(q^n - 1)}{q - 1}$ A razão da P.G. será $q = \frac{2}{1} = 2$

O primeiro termo vale 1, o número de termos será n, termo a ser encontrado e a soma é 1023.

Substituindo as informações na equação, teremos:

$$1023 = \frac{1(2^{n} - 1)}{2 - 1} \Rightarrow 1023 = 2^{n} - 1 \Rightarrow 1024 = 2^{n} \Rightarrow n = 10$$

Assim, a P.G. (1, 2, 4, ...) tem 10 elementos, sendo a soma desses 10 elementos igual a 1023.

Soma dos termos de uma Progressão Geométrica Infinita

A soma dos termos de uma P.G. infinita é quando a PG tem razão maior que -1 e menor que 1, ou seja, -1 < q < 1. Essa soma será calculada por:

$$S_n = \frac{a_1}{1 - q}$$

Exemplo:

Determine a soma dos termos $1, \frac{1}{3}, \frac{1}{9}, \dots$

Temos uma PG de razão $q = \frac{\frac{1}{3}}{1} = \frac{1}{3}$

O primeiro termo é 1. Como a razão é maior que -1 e menor que 1, nesse caso $\frac{1}{3}$, a soma será calculada pela equação:

$$S_n = \frac{a_1}{1 - q}$$

Substituindo os dados, temos:

$$S_n = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2} = 1,5$$

Exemplo.

Resolva a equação $x + \frac{x}{2} + \frac{x}{4} + \dots = 20$

Temos uma sequência em que os termos estão em uma PG com razão $\frac{1}{2}$, pois:

$$q = \frac{\frac{x}{2}}{x} = \frac{x}{2} \cdot \frac{1}{x} = \frac{1}{2}$$

O primeiro termo é x e a soma deles é 20. Substituindo na equação para somar os termos de uma PG infinita:

$$S_n = \frac{a_1}{1 - q}$$

$$20 = \frac{x}{1 - \frac{1}{2}} \Rightarrow 20 = \frac{x}{\frac{1}{2}} \Rightarrow x = 20.\frac{1}{2} \Rightarrow x = 10$$

Matemática Para Computação

Prof. Me. Edimar Izidoro Novaes edimar.novaes@unicesumar.edu.br