CS 302 Automata Theory Fall 2016

Answers to Midterm

Question 1 (35 points)

$$E = ((1+1.0).0)*$$

(b) (20 pts) No it is an NFA.

σ	q	q'
0	1* (A)	Ø
1	1*	2,3
0	2,3 (B)	1,2
1	2,3	Ø
0	1,2* (C)	1
1	1,2*	2,3
0	Ø(D)	Ø
1	Ø	Ø

(c) (10 pts)

The *DFA* is a minimal state machine by the table below.

	A	В	С	D
A		X	X	X
В			X	X
С				X
D				

Question 2 (30 points)

Given n choose $w = \theta^n 1^n \in L_1$, then w = xyz and since $|xy| \le n$ and $|y| > \theta$ we have $xy = \theta^p$ and $y = \theta^q$ with $p \le n$ and $q > \theta$ and $z = \theta^{n-p} 1^n$ and therefore for $i = \theta$ $xy^iz = xz = \theta^{p-q+n-p} 1^n = \theta^{n-q} 1^n \notin L_1$ since $q > \theta$, a contradiction to pumping lemma! For L_2 the following DFA accepts L_2 which therefore is a regular language

Question 3 (35 points)

(a)(15 pts) The product machine $X \times Y$ is given below

(b)(20 pts) $L_X \cap L_Y = \emptyset \Leftrightarrow$ the state 2B (which is the only element of $F_X \times F_Y$) is not reachable from 1A (which is the initial state (s_X, s_B)) in $X \times Y$; which clearly is the case.