Pumping lemma Let L be a regular constant k such the	r Language. Then, hat given any strin	there exists a positive ng uvwEL with 12/2k satisfying
we have the decomp	bosition $V = \chi Y Z$	satisfying
	1 0	
$(2) y \leq k$		
(3) UXYZWEL	for all $i \geq 0$.	
		introduction of u and
$\omega = \alpha \qquad b \qquad \lceil k/2 \rceil$	_3 cares	introduction of u and forces pump in lont
$\omega = \alpha'$		may proof simplificati
$\omega = ab$	1 case	

W

1

W= E

of u and wo mp in lont simplification

Note: While using the lemma, forget about the DFA.

Grame with the demon

Demon

1. Assume Lis regular.

2. Declaren K

3. Prépare uvu EL with

4. v = xyZ, $1 \le |y| \le |x|$ $uxy^{1}zw \in L$ for all i > 0

5. Choose i for a contradiction

$$L = \{a, ab\}$$

of states in 4.

Demon Giver you

k = 3.

Example 2
$$l_2 = \{ah^2 \mid n \geqslant 0\}$$

Assume that l_2 is regular. Let k be a PLC for l_2 .

Take $u = \epsilon$, $v = a^2$, $\omega = \epsilon$ ($k^2 \geqslant k$ for all $k > 0$)

We have $v = xy \neq k$ with $1 \leq |y| \leq k$

and $u = xy \neq k$ and $u = k \geq k$.

Take $i = 2$ $|y| = l$
 $u = k^2 + l \neq k^2$
 $u = k^2 + l \leq k^2 + k$
 $u = k^2 + l \leq k^2 + k$
 $u = k^2 + k \leq k^2 + 2k + 1 \leq (k+1)^2$

 $L_3 = \left\{ \begin{array}{c} a^m b^n \\ \end{array} \right\} \quad m, n > 0, \quad m \neq n \right\}$ Example 3 Suppose L3 is reg. Let le le a PLC for L3. U = E, $V = \alpha$, $\omega = 6$ V = xyz $1 \le |y| \le k$ $uxy^i \ge \omega \in L$ $\forall i \ge 0$ $\forall No confrol$ on y or |y| Take l = 1To not think u = E, v = a, w = bk+l Replay with demonstration of the v = k v = k+l Replay with demonstration of the object v = k+l v = k+l Replay with demonstration v = k+l v = k+l Replay with demonstration v = k+l Replay with demonstration v = k+l Replay with demonstration v = k+l v = k+l v = k+l Replay with demonstration v = k+l v = k+l v = k+l v = k+l Sharenfee k+l Sharenfee k+l v = k+l v = k+l v = k+l v = k+l Sharenfee k+l v = k+l v =1 \le |y'| \le k Demon doer hot Shavantee l'=l

$$u = \epsilon, \quad v = \alpha, \quad \omega = b$$

$$v = xy^{2} \quad |y| = \ell \quad 1 \le \ell \le k$$

$$u \times y^{2} \ge \omega \in L \quad \forall i > 0$$

$$Take \quad i = (k!/\ell) + 1$$

$$\Rightarrow \text{ an integer}$$

$$u \times y^{2} \ge \omega = \alpha$$

$$u \times y^{2} \ge \omega = \alpha$$