Predicting Home Sale Prices in Greater Seattle

Leveraging a King County House Sales dataset for insights

Scatter Plot of Latitude & Longitude

Heat Map
Highlighting
Housing Density

King County House Sales Dataset

Original Dataset (Sales from 2014-2015)

- 21,597 instances of home sales (observations, rows)
- 21 columns or features

Cleaned Dataset

- 21,313 observations after removing 284 outliers (or extreme influencers)
- Maintained 98.7% of the data set (trimmed only 1.3% of the data)
- Included 10 of the original 21 features in our model as predictors of price

Model Description

Developed a model with 85% accuracy

- Important predictors...
 - Square footage of the home
 - Location
 - Lot size
 - Cumulative impact of condition, year built & renovation
- Outcome (or target) variable \rightarrow log of price

Training Data 75%

```
In [45]: model = ols(formula= formula, data=train).fit()
model.summary()
```

Out[45]:

OLS Regression Results

Dep. Varial	ble:	log_price			R-squared:		
Mod	del:	OLS			j. R-sqı	uared:	0.857
Meth	od: L	Least Squares			F-sta	itistic:	491.2
Da	ate: Thu	, 20 Jun 2	2019	Prob	(F-sta	tistic):	0.00
Tir	me:	10:3	7:31	Lo	g-Likeli	ihood:	3675.8
No. Observation	ns:	15	5984			AIC:	-6960.
Df Residuals:		15788				BIC:	-5454.
Df Model:		195					
Covariance Ty	pe:	nonrobust					
	coef	std err		t	D⊳l+l	[0.025	0.975]
	COGI				P> t	**************************************	0.975]
Intercept	41.8020	0.261	159.	971	0.000	41.290	42.314

Test Data

25%

In [46]: model = ols(formula= formula, data=test).fit()
 model.summary()

Out[46]:

OLS Regression Results

Dep. Variable:		log_price			R-so	0.865		
Model:		OLS			dj. R-so	0.860		
Method:		Least Squares			F-st	168.5		
Date: T		u, 20 Jun 2019 Prob			b (F-st	b (F-statistic):		
Tin	ne:	10:4	2:10	Log-Likelihood:			1468.4	
No. Observation	ns:	5	329			AIC:	-2545.	
Df Residuals:		5133				-1255.		
Df Model:								
Covariance Ty	nonro							
	coef	std err		t	P> t	[0.025	0.975]	
Intercent	41 1340	0.440	93.4	42	0.000	40 271	41 997	

Conclusions

- Location, location
 [Next iteration of model will leverage latitude & longitude]
- Major on the majors

[# of bathrooms, neighborhood & grade all captured by the proxy, square footage]

Questions?

Multicolinearity

```
In [17]: df['sqft living'].corr(df['sqft above'])
Out[17]: 0.8764477590354981
In [18]: df['sqft living'].corr(df['bathrooms'])
Out[18]: 0.7557576009502521
In [19]: df['sqft living'].corr(df['grade'])
Out[19]: 0.7627790466721344
In [20]: df['sqft_living'].corr(df['sqft_living15'])
Out[20]: 0.7564015282475002
```

.75 Threshold

```
In [29]: df_dropped['sqft_lot'].corr(df['sqft_lot15'])
Out[29]: 0.7881861189991689
```


Transforming a few features

