Leçon 121. Nombres premiers. Applications.

1. Généralité sur les nombres premiers

1.1. Les éléments premiers de l'anneau des entiers

- 1. DÉFINITION. Un nombre entier $n \in \mathbf{N}^*$ est premier s'il est supérieur à 2 et si ses seuls diviseurs positifs sont 1 et n.
- 2. Exemple. Les entiers 2, 3, 5 et 7 sont les quatre premiers nombres premiers.
- 3. Proposition. L'ensemble \mathscr{P} des nombres premiers est infini.
- 4. Proposition. Tout entier différent de ± 1 et 0 admet un diviseur premier.
- 5. PROPOSITION (lemme d'Euclide). Soient $n_1, \ldots, n_r \in \mathbf{N}^*$ des entiers. Un nombre premier p divise le produit $n_1 \cdots n_r$ si et seulement s'il divise un des entiers n_k .
- 6. Théorème. Tout entier $n \ge 2$ s'écrit de manière unique sous la forme

$$n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$$

pour des nombres premiers p_k avec $p_1 < \cdots < p_r$ et des entiers non nuls $\alpha_k \in \mathbf{N}^*$.

- 7. Exemple. On a $225 = 5^2 \times 7$ et $15 = 3 \times 5$.
- 8. DÉFINITION. Soit $n \in \mathbb{N}^*$ un entier. Il s'écrit sous la forme

$$n = \prod_{p \in \mathscr{P}} p^{v_p(n)}$$

pour une famille presque nulle d'entiers positifs $(v_p(n))_{p\in\mathscr{P}}$. Les quantités $v_p(n)$ sont les valuations p-adiques de l'entier n.

9. Théorème. Soient $a, b \in \mathbb{N}^*$ deux entiers. Alors les éléments

$$\prod_{p \in \mathscr{P}} p^{\min(v_p(a), v_p(b))} \qquad \text{et} \qquad \prod_{p \in \mathscr{P}} p^{\max(v_p(a), v_p(b))}$$

sont respectivement un PGCD et un PPCM des entiers a et b.

1.2. Des fonctions arithmétiques

10. DÉFINITION. La fonction indicatrice d'Euler est l'application

$$\varphi \colon \begin{vmatrix} \mathbf{N}^* \longrightarrow \mathbf{N}, \\ n \longmapsto |(\mathbf{Z}/n\mathbf{Z})^{\times}| = |\{k \in [1, n] \mid k \land n = 1\}|. \end{vmatrix}$$

- 11. Théorème. Soient $n \geqslant 2$ un entier et $a \in \mathbb{N}$ un entier premier avec n. Alors $a^{\varphi(n)} = 1 \mod n$.
- 12. PROPOSITION. Si l'entier p est premier, alors $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$. Par ailleurs, la fonction φ est arithmétiquement multiplicative, c'est-à-dire tout nombre $m, n \in \mathbf{N}^*$ premiers entre eux vérifie $\varphi(mn) = \varphi(m)\varphi(n)$. Enfin, elle vérifie

$$n = \sum_{d|n} \varphi(d).$$

13. COROLLAIRE. Soit $n \in \mathbf{N}^*$ un entier qu'on écrit sous la forme $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$. Alors

$$\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \cdots (p_r^{\alpha_r} - p_r^{\alpha_r - 1}).$$

14. DÉFINITION. Pour un entier $n \in \mathbf{N}^*$ écrit sous la forme $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, on pose

$$\mu(n) = \begin{cases} 1 & \text{si } n = 1, \\ 0 & \text{si } n \neq 1 \text{ et l'un des entiers } \alpha_i \text{ est } \geqslant 2, \\ (-1)^r & \text{sinon.} \end{cases}$$

L'application $\mu \colon \mathbf{N}^* \longrightarrow \{-1,0,1\}$ est la fonction de Möbius.

15. Proposition. La fonction μ est arithmétiquement multiplicative et vérifie

$$\forall n \geqslant 2, \qquad \sum_{d|n} \mu(d) = 1.$$

16. THÉORÈME (formule d'inversion de Möbius). Soient G un groupe abélien additif et $f: \mathbb{N}^* \longrightarrow G$ une application. Pour tout entier $n \in \mathbb{N}^*$, on pose

$$g(n) = \sum_{d|n} f(n).$$

Alors pour tout entier $n \in \mathbb{N}^*$, on a

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d).$$

17. APPLICATION. Pour tout entier $n \in \mathbb{N}^*$, on a

$$\varphi(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) d.$$

1.3. Recherche des nombres premiers, tests de primalité et non primalité

- 18. Proposition. Tout entier $n \ge 2$ qui n'est pas premier admet un diviseur premier entre les entiers 2 et $|\sqrt{n}|$.
- 19. ALGORITHME (méthode naïve). Pour savoir si un nombre $n \ge 2$ est premier, on teste s'il est divisible ou non par les entiers entre 2 et $\lfloor \sqrt{n} \rfloor$.
- 20. ALGORITHME (crible d'Ératosthène). On veut dresser la liste des nombres premiers jusqu'à un entier $N \ge 2$. Pour cela, si un entier $n \in [\![2,N]\!]$ est encore dans la liste, on teste s'il est premier ou non :
 - s'il est premier, on passe au suivant dans la liste;
 - sinon on le retire ainsi que tous ses multiples.
- 21. PROPOSITION. Soient $p \ge 2$ un entier et $a \in [1, p-1]$ un entier. Si le nombre p est premier, alors $a^{p-1} \equiv 1 \mod p$.
- 22. Remarque. La contraposée de cette proposition fournit un test de non-primalité : pour tout entier $n\geqslant 2$, s'il existe un entier $a\in [\![1,p-1]\!]$ tel que $a^{n-1}\not\equiv 1\mod n$, alors l'entier n n'est pas premier.
- 23. REMARQUE. Le problème de la factorisation d'un grand entier est difficile.
- 24. APPLICATION (système RSA). Soient p et q deux nombres premiers distincts. On pose n := pq. Soit $e \in \mathbf{Z}$ un entier premier avec $\varphi(n) = (p-1)(q-1)$. Soit $d \in \mathbf{Z}$ un inverse de e modulo $\varphi(n)$. Alors $m^{cd} \equiv m \mod n$ pour tout entier $m \in \mathbf{Z}$

26. Théorème (Dirichlet fort, admis). Pour tous entiers $a, b \in \mathbb{N}^*$ premiers entre eux, il existe une infinité de nombres premiers congrus à a modulo b.

27. THÉORÈME (des nombres premiers). Pour un entier $x \ge 1$, on note $\pi(x) \ge 2$ le nombre de nombres premiers $\le x$. Lorsque $x \longrightarrow +\infty$, on a

$$\pi(x) \sim \frac{x}{\ln x}$$
.

2. Théorie des corps finis

2.1. Caractéristique et sous-corps premiers

28. Proposition. Soit $n \in \mathbb{N}^*$ un entier non nul. Alors les propositions suivantes sont équivalentes :

- l'anneau $\mathbf{Z}/n\mathbf{Z}$ est un corps;
- l'anneau $\mathbf{Z}/n\mathbf{Z}$ est intègre;
- l'entier n est premier.

Pour un nombre premier p, on note $\mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}$ ce corps fini.

- 29. Proposition. La caractéristique d'un corps est soit nulle soit un nombre premier. En particulier, la caractéristique d'un corps fini est un nombre premier.
- 30. Contre-exemple. La réciproque du dernier point est fausse : le corps $\mathbf{F}_p(t)$ est infini et de caractéristique p.
- 31. COROLLAIRE. Soit K un corps de caractéristique $p \ge 0$.
 - Si p=0, alors il existe un morphisme de corps $\mathbf{Q} \longrightarrow K$;
 - Si p > 0, alors il existe un morphisme de corps $\mathbf{F}_p \longrightarrow K$.
- 32. COROLLAIRE. Un corps fini est de cardinal p^n pour un entier $n \in \mathbf{N}^*$.
- 33. Exemple. Soit K un corps fini de caractéristique p>0. Alors l'application

Frob_K:
$$K \longrightarrow K,$$
 $x \longmapsto x^p$

est un automorphisme de corps.

34. Théorème (Germain). Soit $p \ge 3$ un nombre premier tel que le nombre $q \coloneqq 2p+1$ soit premier. Alors il n'existe pas de triplet $(x,y,z) \in \mathbf{Z}^3$ tel que

$$xyz \not\equiv 0 \mod p$$
 et $x^p + y^p + z^p = 0$.

2.2. Construction des corps finis

- 35. Théorème. Soient p un nombre premier et $n \in \mathbb{N}^*$ un entier non nul. Alors il existe un unique corps de cardinal $q := p^n$ à isomorphisme près et il s'agit du corps de décomposition du polynôme $X^q X$ sur \mathbf{F}_p . On le note \mathbf{F}_q .
- 36. Exemple. Attention, le corps \mathbf{F}_q ne correspond pas à l'anneau $\mathbf{Z}/q\mathbf{Z}$.
- 37. EXEMPLE. Le corps \mathbf{F}_4 s'obtient comme le quotient $\mathbf{F}_2[X]/\langle X^2+X+1\rangle$.
- 38. THÉORÈME. Le groupe \mathbf{F}_q^{\times} est isomorphe au groupe cyclique $\mathbf{Z}/(q-1)\mathbf{Z}$.
- 39. THÉORÈME. Soient $m, n \in \mathbb{N}^*$ deux entiers non nuls. Alors il existe un morphisme de corps $\mathbf{F}_{p^m} \longrightarrow \mathbf{F}_{p^n}$ si et seulement si $m \mid n$.

2.3. Les carrés dans les corps finis

40. DÉFINITION. Soient p un nombre premier impair. Pour tout élément $a \in \mathbf{F}_p$, son symbole de Legendre est l'entier

$$\left(\frac{a}{p}\right) \coloneqq a^{(p-1)/2} = \begin{cases} 1 & \text{si } a \in \mathbf{F}_p^{\times 2}, \\ -1 & \text{si } a \in \mathbf{F}_p^{\times} \setminus \mathbf{F}_p^{\times 2}, \\ 0 & \text{si } a = 0. \end{cases}$$

41. EXEMPLE. En reprenant l'exemple précédent, on a $(\frac{2}{7}) = 1$ et $(\frac{-1}{7}) = (\frac{3}{7}) = -1$.

42. PROPOSITION. Pour tout élément $a \in \mathbf{F}_p^{\times}$, on a

$$|\{x \in \mathbf{F}_p \mid ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right).$$

43. Proposition. Pour tout nombre premier impair, on a

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$$
 et $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

Autrement dit.

- l'entier -1 est un carré modulo p si et seulement si $p \equiv 1 \mod 4$;
- l'entier 2 est un carré modulo p si et seulement si $p \equiv \pm 1 \mod 8$;
- 44. Théorème. L'application

$$a \in \mathbf{F}_p^{\times} \longmapsto \left(\frac{a}{p}\right) \in \{\pm 1\}$$

est un morphisme de groupes.

45. Théorème (loi de réciprocité quadratique). Soient p et q deux nombres premiers impairs. Alors

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)/2 \times (q-1)/2}.$$

46. Exemple. Avec les quatre derniers points, on trouve

$$\left(\frac{14}{23}\right) = \left(\frac{2}{23}\right)\left(\frac{7}{23}\right) = \left(\frac{7}{23}\right) = -\left(\frac{23}{7}\right) = -\left(\frac{2}{7}\right) = -1.$$

Ainsi l'entier 14 n'est pas un carré modulo 23.

3. Théorie des p-groupes

3.1. Les p-groupes

- 47. DÉFINITION. Soit p un nombre premier. Un p-groupe est un groupe fini dont le cardinal est une puissance de l'entier p.
- 48. Exemple. Le groupe diédral \mathbf{D}_4 d'ordre 4 est un 2-groupe.
- 49. LEMME. Soit G un p-groupe agissant sur un ensemble fini X. On note $X^G \subset X$ l'ensemble des points fixes sous cette action. Alors

$$|X^G| \equiv |X| \mod p.$$

- 50. Théorème (Cauchy). Tout groupe fini d'ordre divisible par un nombre premier p admet un élément d'ordre p.
- 51. Proposition. Le centre d'un p-groupe non trivial est non trivial.

3.2. Les théorèmes de Sylow

- 52. DÉFINITION. Soient G un groupe fini de cardinal n et p un diviseur premier de l'entier n. On note $n=p^{\alpha}m$ avec $p \nmid m$. Un p-sous-groupe de Sylow de G est un sous-groupe de cardinal p^{α} .
- 53. EXEMPLE. Un p-sous-groupe de Sylow du groupe $\mathrm{GL}_n(\mathbf{F}_p)$ est le groupe des matrices triangulaires supérieures dont les coefficients de la diagonale valent 1.
- 54. Théorème (Sylow). Soient G un groupe fini et p un diviseur de son ordre. Alors le groupe G contient au moins un p-sous-groupe de Sylow.
- 55. THÉORÈME (Sylow). Soient G un groupe fini de cardinal n et p un diviseur premier de l'entier n. On note $n=p^{\alpha}m$ avec $p\nmid m$. Alors
 - pour tout sous-groupe $H\subset G,$ il existe un p-sous-groupe de Sylow $S\subset G$ tel que $H\subset S$;
 - les p-sous-groupes de Sylow sont conjugués ;
 - le nombre de p-sous-groupes de Sylow vérifie $k \equiv 1 \mod p$ et $k \mid |G|$
- 56. COROLLAIRE. Soit S un p-sous-groupe de Sylow de G. Alors il est distingué si et seulement s'il est l'unique p-sous-groupe de Sylow de G.
- 57. APPLICATION. Un groupe d'ordre 63 n'est pas simple.

^[1] Éric Amar et Étienne Matheron. Analyse complexe. 2º édition. Cassini, 2020.

^[2] Josette Calais. Éléments de théorie des groupes. 3º édition. Presses Universitaires de France, 1998.

^[3] Serge Francinou, Hervé Gianella et Serge Nicolas. Algèbre 1. Cassini, 2001.

^[4] Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009.

^[5] Jean-Étienne ROMBALDI. Mathématiques pour l'agrégation. Algèbre et géométrie. 2e édition. De Boeck Supérieur, 2021.

^[6] Felix Ulmer. Théorie des groupes. 2º édition. Ellipses, 2021.