Reg. No.	*			
----------	---	--	--	--

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, NOVEMBER 2023 First Semester

21MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2022-2023)

Note:

(i)

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

Part - B and Part - C should be answered in answer booklet. (ii)

Time: 3 Hours

 $PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

If $A = \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$, then the eigen values of A^{-1} are 1 1,2

(A)
$$3^2, 2^2, 5^2$$

(B)
$$\frac{1}{3}, \frac{1}{2}, \frac{1}{5}$$

(B)
$$\frac{1}{3}, \frac{1}{2}, \frac{1}{5}$$

(D) $\frac{1}{3^2}, \frac{1}{2^2}, \frac{1}{5^2}$

2. 1 1,2 Find the sum and product of the eigen values of $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

$$(C)$$
 3, 2

(D)
$$5, 3$$

3. If $A = \begin{pmatrix} 1 & 5 \\ 0 & 2 \end{pmatrix}$, then

(A)
$$A^2 = 3A - 2$$

(C) $A^2 = 3A - 2I$

(B)
$$A^2 = 3A + 2$$

(C)
$$A^2 = 3A - 2I$$

(B)
$$A^2 = 3A + 2$$

(D) $A^2 = 3A + 2I$

4. If A is an orthogonal matrix then

1 · 1 1 1,2

1 1,2

Max. Marks: 75 Marks BL CO PO

(A)
$$|A| = 0$$

(C)
$$A^2=I$$

(D)
$$A^T = A^{-1}$$

5. If u, v, w are functionally dependent functions of three independent variables 1 x, y and z then $\partial(u,v,w)/\partial(x,y,z)$ is

6. If
$$v = \tan^{-1} x + \tan^{-1} y$$
 then $\frac{\partial v}{\partial x}$ is

2 2 1,2

(A) $\frac{1}{1+x^2}$ (C) $\frac{1}{1+y^2}$

(B) $\frac{1}{x^2}$ (D) $\frac{1}{(1+x^2y^2)}$

7. If $f(x,y) = x^2 + y^2$ where $x = r\cos\theta$ and $y = r\sin\theta$ then $\frac{\partial f}{\partial \theta}$ is

2 2 1,2

(B) r^2

(A) r (C) 1

8. The stationary points of $x^2 + y^2 + 6x + 12$ are

1 1 2 1,2

1 1 3 1.2

(A) (3,0)

(C) (0,3)

(B) (0, -3) (D) (-3, 0)

Which of the following is the general solution to $\frac{d^2y}{dx^2} + \frac{3dy}{dx} - 10y = 0$

- $(A) \quad y = Ae^{2x} + Be^{5x}$
- (C) $y = Ae^{-2x} + Be^{-5x}$
- (B) $y = Ae^{-2x} + Be^{5x}$ (D) $y = Ae^{2x} + Be^{-5x}$

10. If $y_1 = \cos ax$, $y_2 = \sin ax$ then the value of $y_1y_2 - y_2y_1$ is

3 1,2

(A) -a

(B) 0

(C) a

(D) 1

11. The particular integral of $(D^2 + 16)y = \cos 4x$ is

1 2 3 1,2

(A) $\frac{x}{2}\sin 2x$

(B) $\frac{x}{8}\sin 4x$

(C) $\frac{x}{2}\cos 2x$

(D) $\frac{x}{\cos 4x}$

12. Complementary function of $(D^2 - 4D + 4)y = 8x^2$ is

(A) $(Ax+B)e^{2x}$

(B) $Ae^{2x} + Be^{-2x}$

(C) $(Ax + B)e^{-2x}$

(D) $(Ax+B)e^{-x}$

13. The curvature at any point of the circle is equal to ______of its radius.

(A) Square

(B) Same

(C) Reciprocal

(D) Constant

14. The envelope of $at^2 - ty + x = 0$, t is the parameter is

(A) $v^2 = 4ax$

(B) $x^2 = 4av$

(C) $x^2 = 4v$

(D) $v^2 = 4x$

15. The radius of curvature at any point on the curve $r = e^{\theta}$ is (A) $\sqrt{2}$ (C) r 16. $\int_{0}^{1} x^{6} (1-x)^{7} dx =$ (A) $\beta(9,8)$ (B) $\beta(6,7)$ (D) $\beta(7,8)$ (C) $\beta(7,6)$ 17. $\sum (-1)^n \sin(\frac{1}{n})$ converges by the following test. (A) Leibnitz's test (B) Ratio test (D) Integral test (C) Root test 18. $\lim_{n\to\infty} \left(n^{1/n}\right) =$ (A) n (B) 0 (C) 2 (D) 1 If $\sum_{n=0}^{\infty} u_n$ is convergent then (A) $\lim_{n \to \infty} u_n \neq 0$ (C) $u_n = 0$ (B) $\lim_{n\to\infty} u_n = 0$ (D) $u_n = \infty$ The series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ is (A) Convergent (B) Divergent (C) Oscillating (D) Monotonic $PART - B (5 \times 8 = 40 Marks)$ Answer ALL Questions 1 1,2 Find the eigen values and eigen vectors of $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. 21. a.

b. Find the inverse of $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 2 \end{pmatrix}$ using Cayley-Hamilton theorem.

22. a. Expand
$$x^2y + 3y - 2$$
 in powers of $(x-1)$ and $(y+2)$ upto second degree terms.

(OR)

b. If
$$u = f(x, y)$$
 where $x = e^r \cos \theta$, $y = e^r \sin \theta$. Show that
$$x \frac{\partial u}{\partial \theta} + y \frac{\partial u}{\partial r} = e^{2r} \frac{\partial u}{\partial y}.$$

23. a. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = 5x^2$$
.

(OR)

- b. Solve $y'' + y = \sec x$ by the method of variation of parameters.
- 24. a. Find the radius of curvature for the curve 8 3 4 1,2 $x = a(\cos t + t \sin t), y = a(\sin t t \cos t).$

(OR)

- b. Find the envelope of the family of lines $y = mx am^3$.
- 25. a. Test the convergence of $\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 1} n \right).$

(OR)

b. Test the convergence of the series

8 2 5 1,2

$$\frac{1}{2} + \frac{4}{9}x + \frac{9}{28}x^2 + \dots + \frac{n^2}{1 + n^3}x^n + \dots + to \infty, x > 0.$$

- 26. Reduce the quadratic form $-x^2 + y^2 + 4yz + 4zx$ to canonical form by orthogonal reduction and find the rank, index, signature and the nature of the quadratic form.
- 27. Find the greatest and the least distances of the point (3,4,12) from the unit

 15

 4

 2

 1,2

 sphere whose centre is at the origin.

* * * * *