CLAIMS

1. Perfluorodiacylperoxides having the following structures:

wherein:

when R_f is F, R_f , R_f , are both $-CF_3$.

when R_f is -CF3, R_f , and R_f , are C.-C3 linear or branched perfluorooxyalkyl groups;

wherein:

 R_{ν} is selected from F, perfluorooxyalkyl, C_1-C_3 linear or branched perfluoroalkyl;

 X_1, X_2 are selected from F, perfluoroalkyl, $C_1 - C_3$ linear or branched perfluorooxyalkyl.

$$CF_2$$
 CX_3 $- C(0) - O - O - C(0) - CX_3 CF_2 CF_2 CF_2 CF_2 CF_2 $CF_2$$

wherein:

$$n = 1-3$$

 X_3 is selected from F, $C_1 - C_3$ linear or branched perfluoro-

#45 L

alkyl, with the proviso that for n=3, X_3 cannot be F; said perfluorodiacylperoxides meet the following condition: the thermal decomposition constants K_d (sec⁻¹) in the presence of water do not undergo substantial variations with respect to the thermal decomposition constants in absence of water.

- 2. A polymerization process of one or more fluorinated monomers wherein the perfluorodiacylperoxides according to claim 1 are used as polymerization initiators.
- 3. A polymerization process according to claim 2, wherein the polymerization is carried out in aqueous medium, in suspension, in emulsion or in microemulsion.
- 4. A polymerization process according to claims 2-3, wherein at temperatures of the order of 50°-80°C, the perfluoro-diacylperoxides of structure (C) or the compound of structure (A) having the formula:

are used.

5. A polymerization process according to claims 2-3, wherein at temperatures of the order of -20° - +25°C, the perfluorodiacylperoxides of structure (A) of formula:

are used, wherein when R_{f} is $-CF_3$, R_{f} , and R_{f} , are C_1-C_3 linear or branched perfluorooxyalkyl groups.

- 6. A polymerization process according to claims 2-5, wherein the fluorinated monomers are selected from:
 - C_2 - C_8 perfluoroolefins, such as tetrafluoroethylene (TFE), hexafluoropropene (HFP);
 - C_2 - C_8 hydrogenated fluoroolefins, such as vinyl fluoride (VF), vinylidene fluoride (VDF), trifluoroethylene, CH_2 =CH- R_f perfluoroalkylethylene, wherein R_f is a C_1 - C_6 perfluoroalkyl, hexafluoroisobutene;
 - C_2 - C_8 chloro-fluorolefins, such as chlorotrifluoroe-thylene (CTFE);
 - CF_2 =CFOR_f (per)fluoroalkylvinylethers (PAVE), wherein R_f is a C_1 - C_6 (per)fluoroalkyl, for example CF_3 , C_2F_5 , C_3F_7 ;
 - CF_2 =CFOX (per) fluoro-oxyalkylvinylethers, wherein X is: a C_1 - C_{12} alkyl, or a C_1 - C_{12} oxyalkyl, or a C_1 - C_{12} (per) fluorooxyalkyl having one or more ether groups;
 - perfluorodioxoles, such as 2,2,4trifluoro-5-trifluoromethoxy-1,3-dioxole (TTD), 2,2bis-trifluoromethyl-4,5-difluoro-dioxole (PPD);

- sulphonic monomers, such as CF₂=CFOCF₂CF₂SO₂F;
- fluorinated dienes such as CF₂=CFOCF₂CF₂CF=CF₂,

 CF₂=CFOCCl₂CF₂CF=CF₂, CF₂=CFOCF₂OCF=CF₂,

 CF₂=CFOCF₂OCCl=CF₂, CF₂=CFOC(CF₃)₂OCF=CF₂.
- 7. A polymerization process according to claims 2-6, wherein the perfluorodiacylperoxide initiator is fed in a continuous way or by a single addition at the starting of the polymerization.
- 8. A polymerization process according to claims 2-7, wherein the amount of perfluorodiacylperoxide initiator is in the range 0.0001%-5% by moles with respect to the amount of the fed monomers.