ന	a٨	A 1 A	ПΙ	10

1. Среди указанных ниже величин найдите пренебрежимо малые (negl), супер-полиномиальные (sup) и полиномиально-ограниченные (poly-b) (в теоретическом смысле):

Nº	Задание	Ответ	Ответ		
		negl	sup	poly-b	
а	f(n) = 7				
b	f(n) = 0.0000018				
С	$f(n) = 1024^{128}$				
d	$f(n) = n^{-16n}$				
е	$f(n) = n^{-1}$				
f	$f(n) = 1/(n\log(n))$				
g	f(n) = n!				
h	$f(n) = n^{-1024} + 2^{-0.0000000001*\log(n)}$				
i	$f(n) = n^{n^2}$				
	Не заполнять!	/ 9	/ 9	/ 9	

2. Пусть A — эффективный алгоритм, позволяющий пересказывать следующий бит r[i+1] по битам $r[0\dots i]$ для некоторого генератора G. Т.е. величина $Adv_{pred}[A,G]=\epsilon$ не пренебрежимо малая. Определим игру на предсказание предыдущего бита: имя биты $r[k+1,\dots,k+i]$ предсказать бит r[k]. (определяется аналогично игре на определение следующего бита). Постройте эффективный алгоритм B, позволяющий выиграть игру на предсказание прошлого бита, используя алгоритм A. Найдите $Adv_{pred_prev}[B,G]$ — преимущество алгоритма B в игре на предсказание прошлого бита (определяется аналогично Adv_{pred}).

Nº	Задание	Ответ	
a	$Adv_{pred_prev}[B,G]$		
	Не заполнять!	/ 2	/ 2

3. Выберите верные утверждения:

Nº	Задание	Ответ
a	Если алгоритм противника A в некоторой игре против ${ m E}$	
	эффективный, то величина $Adv[A,\mathrm{E}]$ – пренебрежимо малая	
b	Любая пренебрежимо малая – полиномиально ограничееная	
С	Любая полиномиально ограниченная – пренебрежимо малая	
d	Аддитивный одноразовый блокнот переменной длины –	
	семантически стойкий шифр	
е	Пусть A алгоритм от параметра λ . На вход алгоритма подали вход	
	длинной 2^{λ} , он детерминированно выполнился за время $t(\lambda)$, не	
	являющимся полиномиально ограниченным от λ . A – точно не	
	эффективный.	
f	Пусть A алгоритм от параметра λ . На вход алгоритма подали вход	
	длинной λ , он детерминированно выполнился за время $t(\lambda)=$	
	$\lambda^{156} + \lambda^{56} \log(\lambda^{-1} \log(\lambda^{65.6}) + 74$, A – эффективный.	
g	Любой эффективный алгоритм — полиномиально ограничен	
	памятью	

h	Если G и G' на (S,T) стойкие PRG, то для $r \leftarrow G(s), r' \leftarrow G'(s)$ $r' \approx_p r$ (последовательности статистически неразличимы).	
	Не заполнять!	/8

4. Пусть $G: K \to \{0,1\}^n$ — стойкий PRG. Пусть $G'(k_1,k_2) = G(k_1) \land G(k_2)$, где \land - побитовый AND. Рассмотрим следующий статистический тест на $\{0,1\}^n$: A(x) = LSB(x), где LSB(x) - получает последний бит вектора $x \in \{0,1\}^n$. Каково преимущество алгоритма A? $(Adv_{PRG}[A,G]$ - ?)

	Ответ	
Не заполнять!	/1	

5. Пусть E=(E,D) – абсолютно стойкий шифр на (K,M,C): $M=C,K=\{0,1\}^n$ Является ли E'=(E',D'): $E((k_1,k_2),m)=E(k_1,k_2)||E(k_2,m)$ абсолютно стойким шифром? Если нет продемонстрируйте атаку с преимуществом равным 1.

	Ответ
Не заполнять!	/2

6. Пусть $G: \{0,1\}^s \to \{0,1\}^n$ – стойкий PRG. Какие из следующих алгоритмов является семантически стойкими? Для каждого алгоритма предоставить доказательство стойкости или атаку.

Nº	Задание	Ответ
а	G'(k) = G(k) G(k)	
b	$G^{\prime(k)}=G(k)\oplus 1^n,$	
	par(a) — чётность сообщения a	
С	G'(k) = rev(G(k)),	
	rev(m) — смена порядка битов на обратный	
d	G'(k) = G(k) 0	
е	G'(k) = G(0)	
f	$G'(k,k') = G(k) \lor G(k')$, \lor -побитовый OR	
g	G'(k,k') = G(k) G(k')	
h	$G'(k,k') = G(k) \oplus G(k')$	
i	E'(k,k') = k G(k')	
	Не заполнять!	/9

7. E=(E,D) —шифр на (K,M,C). Пусть имеется возможность случайно выбирать шифртекст равновероятно из C. Рассмотрим игру: Противник посылает сообщение $m\in M$ претенденту. Претендент вычисляет $b\stackrel{R}{\leftarrow}\{0,1\}, k\stackrel{R}{\leftarrow}K, c_0\stackrel{R}{\leftarrow}E(k,m), c_1\stackrel{R}{\leftarrow}C, c\leftarrow c_b$ и отправляет c противнику, который затем вычисляет бит $b'\in\{0,1\}$, являющегося результатом игры. Определим $Adv_{ctDist}=|\Pr[b'=b]-1\backslash 2|$. Определим E — стойкий шифр с псевдослучайными шифртекстами (pseudo-random ciphertext secure), если для любых противников величина Adv_{ctDist} — пренебрежимо малая.

Формально докажите или опровергните утверждения ниже.

Nº	Задание	Ответ	
a	Если E — стойкий шифр с псевдослучайными шифртекстами, то он		
	всегда семантически стойкий		
b	Одноразовый блокнот - стойкий шифр с псевдослучайными		
	шифртекстами		
С	Невозможно построить шифр, который будет семантически		
	стойким, но не стойким с псевдослучайными шифртекстами.		
	Не заполнять!	/3	/3