MATH 721 PROBLEM LIST (LAST UPDATED ON 2025-09-12)

- 1. If p is a prime number, prove that the nonzero elements of \mathbb{Z}_p form a multiplicative group of order p-1. Show that this statement is false if p is not a prime.
- 2. (a) Prove that the relation given by $a \sim b \iff a b \in \mathbb{Z}$ is an equivalence relation on the additive group \mathbb{Q} .
 - (b) Prove that \mathbb{Q}/\mathbb{Z} is an infinite abelian group.
- 3. Let p be a prime number and let $\mathbb{Z}(p^{\infty})$ be the following subset of the group \mathbb{Q}/\mathbb{Z} :

$$\mathbb{Z}(p^{\infty}) = \{ \overline{(a/b)} \in \mathbb{Q}/\mathbb{Z} \mid, a,b \in \mathbb{Z} \text{ and } b = p^i \text{ for some } i \ge 0 \}$$

Prove that $\mathbb{Z}(p^{\infty})$ is an infinite subgroup of \mathbb{Q}/\mathbb{Z} .

- 4. If G is a finite group of even order, prove that G has an element of order two.
- 5. Let Q_8 be the multiplicative group generated by the complex matrices

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

Observe that $A^4 = B^4 = I_2$ and $BA = AB^3$. Prove that Q_8 is a group of order 8.

- 6. Let G be a group and let Aut(G) denote the set of all automorphisms of G.
 - (a) Prove that Aut(G) is a group with composition of functions as binary operation.
 - (b) Prove that $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_6) \cong \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_p) \cong \mathbb{Z}_{p-1}$ (p prime)
- 7. Let G be an infinite group that is isomorphic to each of its proper subgroups. Prove that $G \cong \mathbb{Z}$.
- 8. Let G be the multiplicative group of 2×2 invertible matrices with rational entries. Show that

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

have finite orders but AB has infinite order.

- 9. Let G be an abelian group containing elements a and b of orders m and n, respectively. Prove that G contains an element of order lcm(m, n).
- 10. Let H, K be subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.
- 11. Let H, K be subgroups of finite index of a group G such that [G:H] and [G:K] are relatively prime. Prove that G=HK.

- 12. Let H, K, N be subgroups of G such that $H \subseteq N$. Prove that $HK \cap N = H(K \cap N)$.
- 13. Let H, K, N be subgroups of G such that $H \subseteq K, H \cap N = K \cap N$ and HN = KN. Prove that H = K.
- 14. Let H be a subgroup of G. For $a \in G$, prove that aHa^{-1} is a subgroup of G that is isomorphic to H.
- 15. Let G be a finite group and H a subgroup of G of order n. If H is the only subgroup of G of order n, prove that H is normal in G.
- 16. If H is a cyclic normal subgroup of a group G, then every subgroup of H is normal in G.
- 17. What is $Z(S_n)$ for $n \geq 2$?
- 18. If H is a normal subgroup of G such that H and G/H are finitely generated, then G is finitely generated.
- 19. If N is a normal subgroup of G, [G:N] is finite, H is a subgroup of G, |H| is finite, and [G:N] and |H| are relatively prime, then H is a subgroup of N.
- 20. If N is a normal subgroup of G, |N| is finite, H is a subgroup of G, [G:H] is finite, and and [G:H] and |N| are relatively prime, then N is a subgroup of H.
- 21. If G is a finite group and H, K are subgroups of G, then

$$[G:H\cap K] \le [G:H][G:H]$$

22. If H, K, L are subgroups of a finite group G such that $H \subseteq K$, then

$$[K:H] \ge [L \cap K:L \cap H]$$

- 23. Let H, K be subgroups of a group G. Assume that $H \cup K$ is a subgroup of G. Prove that either $H \subseteq K$ or $K \subseteq K$.
- 24. Let G be an abelian group, H a subgroup of G such that G/H is an infinit cyclic group. Prove that $G \cong H \times G/H$.