

Leon Brânzan, FCIM, UTM, leon.brinzan@iis.utm.md

Motivation

- 1. Drone production is on the rise
- 2. Drone research is on the rise
- Drone application is diversifying¹ (agriculture, monitoring, transportation etc.)
- 4. Drone manufacturing shows potential for investments²
- 5. Drone navigation models differ depending on form-factor, mode of operation, application

^[1] Role of Drone Technology Helping in Alleviating the COVID-19 Pandemic, https://www.mdpi.com/2072-666X/13/10/1593

^[2] Global drone industry market forecasts: analysts trim their growth predictions again,

Drone markets

[1] Commercial Drone Market Size, Share & Trends Analysis Report By Product, https://www.grandviewresearch.com/industry-analysis/global-commercial-drones-market [2] Commercial Drone Market - By Offering (Fixed Wing Drone, Rotary Blade Drone, Hybrid Drone), https://www.gminsights.com/industry-analysis/unmanned-aerial-vehicles-UAV-commercial-drone-market

Fixed-wing, rotary-wing, hybrid (VTOL1) aircraft

[1] Vertical Take-off and Landing (VTOL), https://www.easa.europa.eu/en/light/topics/vertical-take-and-landing-vtol

Rotary-wing form-factor dominance

Autonomous mode of operation dominance

Sensors

- 1. LIDAR¹ (expensive);
- 2. Radar (susceptible to signal interference);
- 3. Optical (depends on image recognition technology);
- 4. Laser rangefinder (single-beam or sweeping, limited capability);
- Bump (at that point it's too late).

LIDAR

- [1] Sensor-Fusion-Nanodegree, https://github.com/fanweng/Udacity-Sensor-Fusion-Nanodegree, https://github.com/fanweng/Udacity-Sensor-Fusion-Nanodegree
- [2] Create parametric 3D room scans with RoomPlan, https://developer.apple.com/videos/play/wwdc2022/10127/

RADAR

[1] Frequency Modulated Continuous Wave (FMCW) Radar for ADAS Applications, https://altair.com/resource/frequency-modulated-continuous-wave-fmcw-radar-for-adas-applications

FLIR

[1] Infrared Imaging Sensors, https://cecas.clemson.edu/cvel/auto/sensors/infrared-image.html

[2] DaCFN: divide-and-conquer fusion network for RGB-T object detection, https://link.springer.com/article/10.1007/s13042-022-01771-9

Sensing modalities comparison¹

Pros
Best for capturing range + distance
Day & night, adverse weatherproof
Potentially long range
Solid state, proven technology

Pros
Direct 3D information
Very accurate measurements
Al research well advanced
Can be high res, works in low light

Cons
Depends on lighting/visibility
Gets affected by shadows/reflections
No direct 3D (without stereo)
Gets dirty easily

Cons	
Limited classification capability	
Difficult to detect small objects	
Al research in the works	
Noisy	

Cons		
Expensive		
Ineffective in rain/fog		
Mechanical parts		

Sensor fusion¹

LWIR image at transition to runway tracking

SWIR image at transition to runway tracking

Canny edges in runway area (2X zoom)

Canny edges in runway area (2X zoom)

Bright spots in runway area (2X zoom)

- [1] https://www.sciencedirect.com/topics/engineering/sensor-fusion
- [2] Airborne FLIR sensors for runway incursion detection, https://www.researchgate.net/publication/252881980

Obstacle detection

- 1. Complete information about the environment
- 2. Incomplete information about the environment
- 3. Continuous data for obstacle detection
- Discrete data for obstacle detection

Relevant stat categories

- 1. How data is gathered (sensor technology)
- 2. How data is processed (sensor fusion, image recognition algorithms)
- 3. How decisions are made (controllers)
- 4. What algorithms are used (navigation strategies)

Methodology (patent search)

- 1. Keyword frequency analysis
- 2. Ratio of academic to commercial institutions
- 3. Yearly trends and changes
- 4. No. of filed patents per institution
- 5. Country of filing

Problems encountered

(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 109029417 B (45) 授权公告日 2021.08.10

- (21)申请号 201810489486.8
- (22) 申请日 2018.05.21
- (65) 同一申请的已公布的文献号 申请公布号 CN 109029417 A
- (43) 申请公布日 2018.12.18
- (73) 专利权人 南京航空航天大学 地址 210017 江苏省南京市秦淮区御道街 29号
- (72) 发明人 刘阳 王从庆 李翰
- (74) 专利代理机构 南京经纬专利商标代理有限 公司 32200

代理人 曹芸

(51) Int.CI. G01C 21/00 (2006.01) G01C 21/20 (2006.01)

(56) 对比文件

- CN 106595659 A, 2017.04.26
- CN 106803271 A,2017.06.06
- CN 103325108 A, 2013.09.25
- CN 107341814 A, 2017.11.10
- CN 106767785 A, 2017.05.31
- US 2017287162 A1,2017.10.05
- KR 101252680 B1,2013.04.08

Shaowu Yang .et al.Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles.《Robotics and Autonomous Systems》.2017,第116-134页.

Foster .et al.SVO: fast semi-direct monocular visual.《IEEE International Conference on Robotics and Automation (ICRA)》.2014,第15-22页.

审查员 朱敬敬

Problems encountered (cont.)

- (19) United States
- (12) Patent Application Publication (10) Pub. No.: US 2025/0109950 A1 ALLEN et al.

 - Apr. 3, 2025 (43) **Pub. Date:**

- SYSTEMS AND METHODS FOR NAVIGATING PATHS
- Applicant: Apple Inc., Cupertino, CA (US)
- Inventors: Matthew J. ALLEN. Menlo Park, CA (US): David A. KRIMSLEY. Sunnyvale, CA (US); Kevin M. LYNCH, Woodside, CA (US)
- Appl. No.: 18/900,718
- Filed: Sep. 28, 2024

Related U.S. Application Data

Provisional application No. 63/587.091, filed on Sep. 30, 2023.

Publication Classification

- (51) Int. Cl. G01C 21/34 (2006.01)G01C 21/36 (2006.01)G06V 20/58 (2022.01)
- (52) U.S. Cl. CPC G01C 21/3415 (2013.01); G01C 21/3691

(2013.01); G06V 20/58 (2022.01)

(57)ABSTRACT

In some embodiments, an electronic device navigates and/or travels using predetermined paths and/or impromptu paths. In some embodiments, the electronic device generates the impromptu paths based on characteristics, criteria, and/or factors relating to the environment of the electronic device. In some embodiments, the electronic device outputs indications of impromptu paths to be used for navigating and/or traveling.

The system further includes but not limited to: [0028]

[0029] Smart AIML Vertiport Homes

Autonomous Infrastructure

[0031] Vertiport Rail

[0032] VTOL Homes

[0033] Vertiport VTOL Parking Lots

[0034] VTOL Parking Meter

[0035] VTOL wireless charging station

VTOL storing meters

Anti-EMP [0037]

C-UAS and C-VTOL

Anti-RF [0039]

COUNTER-UAS [0040]

Non fungible and fungible tokens

on the blockchain [0042]

[0043] TIFFs

[0044] Gallium Nitride

[0045] Anti RF

DIGITAL TWINNING

[0047] AI

[0048]

[0049] Vertistops, Vertiportstops

vertiport university [0050]

Preliminary results

Total patents	143	1
China	82	0. 57 34
US	42	0. 29 37
S. Korea	8	0. 05 59
Japan	3	0. 02 09
Other	8	0. 05 59

Year of filing	Patents	Year of filing	Patents
2024	5 (3)	2018	15 (12)
2023	22 (8)	2017	9 (2)
2022	22 (9)	2016	10 (3)
2021	18 (7)	2015	4 (2)
2020	13 (7)	2014	8 (6)
2019	16 (6)	2010	1

Preliminary results

Organization	No. of patents	Online
Skydio Inc.	6	https://www.skydio.com/
Northwestern Polytechnical University	5	https://en.nwpu.edu.cn/
Beihang University	4	https://buaa.edu.cn/
Harbin University S&T	3	http://www.hrbust.edu.cn/
Jilin University	3	https://www.jlu.edu.cn/
SZ DJI Technology Co. Ltd.	3	https://www.dji.com/global

Conclusions

- 1. Lack of uniform air traffic management
- Lack of infrastructure
- 3. Lack of skilled human operators
- 4. Lack of comprehensive law framework (Beyond Visual Line of Sight flights etc.)