Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕ	Г_Информатика и системы управления
	Системы обработки информации и управления (ИУ5)
кафедга _	Системы обработки информации и управления (иту 3)

ОТЧЕТ по лабораторной работе

«Разведочный анализ данных. Исследование и визуализация данных» ДИСЦИПЛИНА: «Технологии машинного обучения»

Выполнил: студент гр. ИУ5-62Б_	(_	Кудрявцев С.Д.
• • =	(Подпись)	(Ф.И.О.)
Проверил:	(Гапанюк Ю.Е.
•	(Подпись)	(Ф.И.О.)

Лабораторная работа №1

▼ 1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных Diabets dataset https://scidatasets Для каждого из n = 442 больных сахарным диабетом были получены десять исход массы тела, среднее артериальное давление и шесть измерений сыворотки крови, а также количественная мера прогрессирования заболевания через год после исходного уровня.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")

data = pd.read_csv('data/diabetes.tab.txt', sep="\t")
```

→ 2) Основные характеристики датасета

```
# Первые 5 строк датасета data.head()
```

•		AGE	SEX	BMI	ВР	S1	S2	S 3	S4	S 5	S6	Υ
	0	59	2	32.1	101.0	157	93.2	38.0	4.0	4.8598	87	151
	1	48	1	21.6	87.0	183	103.2	70.0	3.0	3.8918	69	75
	2	72	2	30.5	93.0	156	93.6	41.0	4.0	4.6728	85	141
	3	24	1	25.3	84.0	198	131.4	40.0	5.0	4.8903	89	206
	4	50	1	23.0	101.0	192	125.4	52.0	4.0	4.2905	80	135

Размер датасета - 442 строки, 11 колонок data.shape

(442, 11)

total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))

🕒 Всего строк: 442

.. -

Список колонок data.columns

```
Index(['AGE', 'SEX', 'BMI', 'BP', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'Y'], dt
```

Список колонок с типами данных data.dtypes

```
AGE
         int64
SEX
         int64
BMI
       float64
       float64
BP
S1
         int64
S2
       float64
S3
       float64
S4
       float64
S5
       float64
         int64
S6
Υ
         int64
dtype: object
```

Проверим наличие пустых значений

Цикл по колонкам датасета

for col in data.columns:

Количество пустых значений - все значения заполнены
temp_null_count = data[data[col].isnull()].shape[0]
print('{} - {}'.format(col, temp null count))

AGE - 0 SEX - 0

BMI - 0

BP - 0

S1 - 0

S2 - 0

S3 - 0

S4 - 0

S5 - 0

S6 - 0

Y - 0

Основные статистические характеристки набора данных data.describe()

	AGE	SEX	BMI	ВР	S1	S2	S
count	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.00000
mean	48.518100	1.468326	26.375792	94.647014	189.140271	115.439140	49.78846
std	13.109028	0.499561	4.418122	13.831283	34.608052	30.413081	12.93420

min 19.000000 1.000000 18.000000 62.000000 97.000000 41.600000 22.00000 25% 38.250000 1.000000 84.000000 164.250000 96.050000 40.25000 23.200000 # Определим уникальные значения для целевого признака

data['SEX'].unique()

array([2, 1], dtype=int64)

→ 3) Визуальное исследование датасета

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='S1', y='S2', data=data)
```



```
<matplotlib.axes._subplots.AxesSubplot at 0xe70c610>
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='S1', y='S2', data=data, hue='Y')
```

<matplotlib.axes._subplots.AxesSubplot at 0xfd81e70>

Гистограмма

fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['S1'])

<matplotlib.axes._subplots.AxesSubplot at 0xfd816b0>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

4 3 cells hidden

▼ "Парные диаграммы"

sns.pairplot(data)

▶ Ящик с усами

Отображает одномерное распределение вероятности.

▶ Violin plot

Похоже на предыдущую диаграмму, но по краям отображаются распределения плотности
4 cells hidden

4) Информация о корреляции признаков

data.corr()

	AGE	SEX	BMI	ВР	S1	S2	S 3	S4
AGE	1.000000	0.173737	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841
SEX	0.173737	1.000000	0.088161	0.241010	0.035277	0.142637	-0.379090	0.332115
ВМІ	0.185085	0.088161	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807

BP 0.335428 0.241010 0.395411 1.000000 0.242464 0.185548 -0.178762 0.257650 data.corr(method='pearson')

	AGE	SEX	BMI	ВР	S1	S2	S 3	S 4
AGE	1.000000	0.173737	0.185085	0.335428	0.260061	0.219243	-0.075181	0.203841
SEX	0.173737	1.000000	0.088161	0.241010	0.035277	0.142637	-0.379090	0.332115
ВМІ	0.185085	0.088161	1.000000	0.395411	0.249777	0.261170	-0.366811	0.413807
ВР	0.335428	0.241010	0.395411	1.000000	0.242464	0.185548	-0.178762	0.257650
S1	0.260061	0.035277	0.249777	0.242464	1.000000	0.896663	0.051519	0.542207
S2	0.219243	0.142637	0.261170	0.185548	0.896663	1.000000	-0.196455	0.659817
S3	-0.075181	-0.379090	-0.366811	-0.178762	0.051519	-0.196455	1.000000	-0.738493
S4	0.203841	0.332115	0.413807	0.257650	0.542207	0.659817	-0.738493	1.000000
S5	0.270774	0.149916	0.446157	0.393480	0.515503	0.318357	-0.398577	0.617859
S6	0.301731	0.208133	0.388680	0.390430	0.325717	0.290600	-0.273697	0.417212
Υ	0.187889	0.043062	0.586450	0.441482	0.212022	0.174054	-0.394789	0.430453

data.corr(method='kendall')

	AGE	SEX	BMI	ВР	S1	S2	S3	S 4
AGE	1.000000	0.146580	0.136535	0.242111	0.182220	0.153612	-0.073846	0.160898
SEX	0.146580	1.000000	0.080424	0.215733	0.022809	0.110208	-0.326188	0.297335
ВМІ	0.136535	0.080424	1.000000	0.281770	0.194171	0.198583	-0.249831	0.335625
BP	0.242111	0.215733	0.281770	1.000000	0.188067	0.140253	-0.131014	0.205948
S1	0.182220	0.022809	0.194171	0.188067	1.000000	0.717229	0.010695	0.393367
S2	0.153612	0.110208	0.198583	0.140253	0.717229	1.000000	-0.133332	0.503579
S3 -	-0.073846	-0.326188	-0.249831	-0.131014	0.010695	-0.133332	1.000000	-0.638633
S4	0.160898	0.297335	0.335625	0.205948	0.393367	0.503579	-0.638633	1.000000
S5	0.180544	0.143172	0.344720	0.268863	0.356268	0.242250	-0.311775	0.485410
S6	0.201784	0.168199	0.266373	0.264566	0.227139	0.194082	-0.200545	0.307397
Υ	0.130709	0.030630	0.391195	0.289352	0.154016	0.129665	-0.278884	0.324734

data.corr(method='spearman')

8		AGE	SEX	BMI	ВР	S1	S2	S 3	S 4
	AGE	1.000000	0.177463	0.200554	0.350859	0.262524	0.221711	-0.106973	0.221017
	SEX	0 177463	1 000000	0 098079	0 261508	ი ი2779ი	0 134695	-0 394584	0 337524

<u> </u>	0.11.1-100	1.000000	0.0000.0	0.201000	0.021100	0.10-,000	0.00 100 1	0.00.02
ВМІ	0.200554	0.098079	1.000000	0.397985	0.287829	0.295494	-0.371172	0.459068
ВР	0.350859	0.261508	0.397985	1.000000	0.275224	0.205638	-0.191033	0.280799
S1	0.262524	0.027790	0.287829	0.275224	1.000000	0.878793	0.015308	0.520674
S2	0.221711	0.134695	0.295494	0.205638	0.878793	1.000000	-0.197435	0.652283
S3	-0.106973	-0.394584	-0.371172	-0.191033	0.015308	-0.197435	1.000000	-0.789694
S4	0.221017	0.337524	0.459068	0.280799	0.520674	0.652283	-0.789694	1.000000
S5	0.265176	0.174625	0.491609	0.396071	0.512864	0.349947	-0.450420	0.640390
S6	0.296235	0.203277	0.384664	0.381219	0.332173	0.286483	-0.290863	0.413700
Υ	0.197822	0.037401	0.561382	0.416241	0.232429	0.195834	-0.410022	0.448931

sns.heatmap(data.corr())

Вывод значений в ячейках sns.heatmap(data.corr(), annot=True, fmt='.3f')

<matplotlib.axes._subplots.AxesSubplot at 0x2ccbdf70>

```
AGE -1.000.174.1850.3350.2660.2190.076.2040.2710.3020.188 - 1.0
SEX -0.174.0000.0880.2410.0350.1430.379.3320.1500.2080.043 - 0.8
BMI -0.1850.0841.0000.3950.2560.2610.3667.4140.44460.3890.586 - 0.6
```

```
sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

<matplotlib.axes. subplots.AxesSubplot at 0x31c7b790>

```
AGE -1.0000.1740.1850.3350.2600.2150.070.2040.2710.3020.188
                                                                     0.8
SEX -0.174.000.080.240.030.1430.370.3320.1500.200.043
BMI -0.180.08(1.00(0.39\tilde{0.264}0.36(0.414).44(0.38\tilde{0.38}0.586
                                                                    - 0.6
 BP -0.3350.2410.395,0000.2420.1840.179.2580.3930.3900.44
                                                                    -0.4
 S1 -0.260.030.2500.242.0000.8970.050.5420.5160.3260.21
                                                                    - 0.2
 S2 =0.2190.1430.2610.1840.8971.0000.190.6640.3180.2910.174
                                                                    - 0.0
 S3 -0.075.379.3670.179.0520.19(1.00(0.738.3940.274).395
 S4 =0.2040.3320.4140.2580.5420.666<mark>0.73</mark>1.0000.6180.4170.430
                                                                    - -0.2
 S5 -0.27 0.15 0.44 60.39 30.51 60.31 (0.39 0.61 8.00 00.46 50.566
                                                                   - -0.4
 S6 -0.3020.2080.3890.3900.3260.2910.2710.4170.4651.0000.382
                                                                   - -0.6
   Y -0.180.040.586.440.212.174<mark>0.39</mark>0.430.5660.382.000
      AGE SEX BMI BP S1 S2 S3 S4 S5 S6
```

```
# Треугольный вариант матрицы
mask = np.zeros like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu indices from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril indices from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

<matplotlib.axes. subplots.AxesSubplot at 0x31ae5f10>


```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
fig.suptitle('Корреляционные матрицы, построенные различными методами')
ax[0].title.set_text('Pearson')
```

ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')

Корреляционные матрицы, построенные различными методами

