UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea		
racimatea		

Numărul legitimației de bancă Numele Prenumele tatălui

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

varianta ${f B}$

- 1. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 2x + m, & x \le 1 \\ e^x e, & x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (4 pct.)
 - a) nu există; b) m = 3; c) m = 3/2; d) m = 4; e) m = 0; f) m = 1.
- 2. Să se rezolve inecuația $\sqrt{x} < 1$. (4 pct.)
 - a) [0,1]; b) $[0,\infty)$; c) nu are soluții; d) (0,1); e) [0,1); f) (-1,1).
- 3. Expresia $E = \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{3} \sqrt{2}}$, are valoarea (4 pct.)
 - a) $3\sqrt{2}$; b) $2\sqrt{2}$; c) 2; d) $2\sqrt{3}$; e) 3; f) $3\sqrt{3}$.
- 4. Să se calculeze $\lim_{n\to\infty} (\sqrt{n^2+n} \sqrt{n^2+1})$. (4 pct.)
 - a) ∞ ; b) $-\frac{1}{2}$; c) nu există; d) -1; e) $\frac{1}{2}$; f) 1.
- 5. Fie ecuația $x^2 ax + 4 = 0$, unde $a \in \mathbb{R}$ este un parametru. Dacă soluțiile x_1 și x_2 ale ecuației verifică egalitatea $x_1 + x_2 = 5$, atunci (4 pct.)
 - a) a = 4; b) a = 0; c) $x_1 = x_2$; d) a < 0; e) a = 5; f) $x_1, x_2 \notin \mathbb{R}$.
- 6. Soluțiile ecuației $9^x 4 \cdot 3^x + 3 = 0$ sunt (4 pct.)

a)
$$x_1 = 0$$
, $x_2 = 1$; b) $x_1 = 3$; c) nu există; d) $x_1 = 1$, $x_2 = 3$; e) $x_1 = 0$, $x_2 = 3$; f) $x_1 = -1$, $x_2 = -3$.

- 7. Să se determine $m, n \in \mathbb{R}$ astfel încât ecuația $x^4 + 3x^3 + mx^2 + nx 10 = 0$ să admită soluția $x_1 = i$. (4 pct.)
 - a) m = 0, n = 0; b) m = -10, n = 3; c) m = 3, n = -10; d) m = 1, n = -1; e) m = -9, n = 3;
 - f) m = -3, n = 10.
- 8. Să se calculeze termenul al zecelea al progresiei aritmetice cu primul termen $a_1 = 5$ și rația r = 2. (4 pct.) a) 18; b) 30; c) 25; d) 20; e) 10; f) 23.
- 9. Să se calculeze $\int_0^1 \frac{x^2}{x^3 + 1} dx$. (4 pct.)

a)
$$\frac{\ln 2}{3}$$
; b) $\ln 2$; c) $2 \ln 2$; d) $3 \ln 2$; e) $\frac{\ln 3}{2}$; f) $\frac{\ln 3}{4}$.

10. Dacă
$$(a,b)$$
 este o soluție a sistemului de ecuații
$$\begin{cases} x+y=2\\ xy=1 \end{cases}$$
, atunci (4 pct.)

a)
$$a^2b^2 = 2$$
; b) $a^2 + b^2 = 2$; c) $a^2 + b^2 = 1$; d) $a^2 + b^2 = 3$; e) $a^2 + b^2 < 0$; f) $a \ne b$.

11. Fie
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{x^2}{x^2 + 1}$. Să se calculeze $f'(1)$. (4 pct.)

a) 0; b)
$$-\frac{1}{4}$$
; c) $\frac{1}{2}$; d) $\frac{1}{4}$; e) 1; f) $-\frac{1}{2}$.

12. Pe R se definește legea de compoziție
$$x * y = xy + 2ax + by$$
. Să se determine relația dintre a și b astfel încât legea de compoziție să fie comutativă. (4 pct.)

a)
$$a = 2b$$
; b) $a - b = 2$; c) $a = b$; d) $a = \frac{b}{2}$; e) $a + b = 1$; f) nu există.

13. Să se calculeze valoarea minimă a funcției
$$f: \mathbf{R} \to \mathbf{R}$$
, $f(x) = \sqrt{4x^2 + 28x + 85} + \sqrt{4x^2 - 28x + 113}$. (8 pct.)

a)
$$8\sqrt{6}$$
; b) $9\sqrt{5}$; c) 19; d) $12\sqrt{3}$; e) $14\sqrt{2}$; f) 20.

14. Fie
$$f: \mathbb{C} \to \mathbb{C}$$
, $f(z) = z^2 + z + 1$. Să se calculeze $f\left(\frac{-1 + i\sqrt{3}}{2}\right)$. (8 pct.)

a) 0; b)
$$\sqrt{3}$$
; c) -1; d) 1+i; e) i; f) 1-i.

15. Să se rezolve ecuația
$$\begin{vmatrix} 2 & x & 0 \\ x & -1 & x \\ 2 & -5 & 4 \end{vmatrix} = 0$$
. (8 pct.)

a)
$$x_1 = 0$$
, $x_2 = 3$; b) $x_1 = 0$; c) $x_1 = 3$; d) $x_1 = -5/2$; e) $x_1 = 0$, $x_2 = 4$; f) $x_1 = 1$, $x_2 = 4$.

16. Să se calculeze limita șirului
$$a_n = \sum_{k=1}^n \frac{k(k+1)}{2x^{k-1}}$$
, unde $|x| > 1$. (6 pct.)

a)
$$\infty$$
; b) $\frac{1}{x-1}$; c) $\frac{x^3}{(x-1)^3}$; d) $\frac{x^2}{(x-1)^2}$; e) $\frac{1}{x}$; f) $\frac{x}{x-1}$.

17. Se consideră funcția
$$f:[0,\infty)\to \mathbb{R}$$
, $f(x)=\int_x^{x+1}\frac{t^2}{\sqrt{t^4+t^2+1}}dt$. Decideți: (6 pct.)

- a) f(0) = 0; b) f este impară; c) f este convexă; d) graficul lui f admite o asimptotă orizontală;
- e) f are două puncte de extrem; f) graficul lui f admite o asimptotă oblică.

18. Să se calculeze
$$\lim_{x\to 0} \frac{(x-1)^2 - 1}{x}$$
. (6 pct.)

a)
$$-2$$
; b) nu există; c) 2; d) $-\infty$; e) ∞ ; f) 1.