SMIRNOV, V.N., starshiy prepodavatel

Choosing the size of working areas across the pitch under the conditions of the Prokop'yevsk-Kiselevsk area. Izv. vys. ucheb. zav.; gor. zhur. no.8:31-37 ¹61. (MIRA 15:5)

l. Kemerovskiy gornyy institut. Rekomendovana kafedroy razrabotki mestorozhdeniy poleznykh iskopayemykh Kemerovskogo gornogo instituta.

(Kuznetsk Basin---Coal mines and mining)

PETRENKO. A & , inwh.; SMIRNOV, V.N., inwh.

New systems of cinking operations. Mekh.i avtom.proizv. 15 no.11:

(MIRA 14:11)

(Mining engineering ..Technological innovations)

PETRENKO, A.A., gornyy inzh.; SMIRNOV, V.N., gornyy inzh.

Practice of using hardening filler in a mine. Gor. zhur. no.9:
(MIRA 15:9)
32-34 S '62.

(Mine filling)

ARMENSKIY, Ye.v.; BORODULIN, A.I.; RYBIN, V.M.; SMIRNOV, V.N.

Measuring the average energy of electrons of a low-energy
linear accelerator. Izm. tekh. no.ll:44-45 N 165.

(MIRA 18:12)

1: 8611-65 EWT(1)/EWG(v)/EWA(d)/EEC-4/EEC(t) ASD(a)-5/AFMD(t)/AFETR/ESD(t) GW 8/0269/64/000/003/0067/0068 ACCESSION NR: AR4038686 SOURCE: Ref. sh. Astron. Otd. vy*p., Abs. 3.51.506 AUTHOR: Smirnov, V. Q. TITLE: Photometric study of two meteor spectra by the Cook and Millman method CITED SOURCE: Tr. Odessk, uk-ta. Yestestv. N., v. 152, no. 8, 1962, 55-60 TOPIC TAGS: photometry, meteor, meteor stream, meteor spectrum TRANSLATION: A spectrophotometric analysis has been made of meteor spectra by the Cook-Millman method. The meteors (Perseids) were photographed on 12 August 1958 and 12 August 1960 by the station of the Odessa Astronomical Observatory "Botanicheskiy Sad" (a camera with F = 24, objective prism 17°) and the observatory base stations Mayky and Eryshanovka. The first spectrum had two flashes (H = 90.5 and 86.5 km). The angles formed between the meteor paths and the direction of dispersion were 60 and 50° respectively. Processing of 20 traces on a MF-4 microphotometer gave 27 and 26 lines. Calibration and standardization were accomplished using the spectra of bright stars come negative. Circumpolar stars were removed for determination of the error of the field of this same camera without a prism. The author has

ab-10 CCESSIC	IJP(c) AT ON NR: AP50043	(sp)-2/EPA(w)-2/EEC(t) 176	s/0056/65/0	+8/001/0072/0077	
UTHOR:	Kovan, I. A.; amenetskiy, D. A	Kozorovitskiy, L. L.;	Rusanov, V. D.; Smir		
		esonance in a toroidal	system	6	
OURCE:	Zhurnal eksper	rimental'noy i teoreti	cheskoy fiziki, v. 48		
emmlifi	cation, plasma	nic resonance, toroida heating, Tokomak			
ABSTRAC thors u	T: To provide ised a toroidal tation of magnemental setup is	better conditions for chamber with longitudi tosonic resonance has shown in Fig. 1 of th	never been considered e Enclosure. A larg	l previously. The e ratio of longi- was used to obtain	
me's i mun	n plasma stabili	to the field of the carry. The use of longitescribed by V. D. Shaft the plasma column.	(Atom onerg.	v. 13. 521. 1902)	

ACCESSION NR: AP5004376				
ASSOCIATION: None			SUB CODE: ME	
SURMITTED: 04Jul64		01 -	ATD PRESS: 3199	
NO REF SOV: 008	OTHER:	001.		
Card 3/4				

 Γ EWT(m)/SPF(c)/EPF(n)-2/EPR L 24218-65 Pr-4/Ps-4/Pu-4ACCESSION NR: AP5001268 \$/0089/64/017/006/0463/0474 (deceased)
AUTHOR: Kurchatov, I. V., Feynberg, S. M.; Dollezhal', N. A.; Aleshchenkov, P. I.; Drozdov, F. S.; Yeriel'yanov, I. Ya.; Zhirnov, A. D.; Kazachenko, M. A. Knyazeva, G. D.; Kondrat'yev, F. V.; Lavrenikov, V. D.; Morgunov, N. G.; Petunin, B. V.; Smirnov, V. P.; Talyzin, V. M.; Filippov, A. G.; Chikhladze, I. L.; Chulkov, P. M.; Shevelev, Ya. V. TITLE: Pulse graphite reactor IGR SOURCE: Atomnaya energiya, v. 17, no. 6, 1964, 463-474 TOPIC TAGS: pulse graphite reactor, high neutron flux pulse, nuclear reactor ABSTRACT: The paper is a summary of the SSSR #322a report at the International Conference on Peaceful Uses of Atomic Energy in Geneva, 1964. It represents an elaboration of the description of the pulse graphite reactor IGR given by S. M. Feinberg at the Second International Conference. The pulse reactors are used when a high neutron flux is desirable. The described reactor was in opera-Card 1/2

L 24218-65
ACCESSION NR: AP5001268
tion for several years, and is still working without failure. Orig. art. has: 6 figures
ASSOCIATION: None
SUBMITTED: 00 ENCL: 00 SUB CODE: NP'
NR REF SOV: 002 OTHER: 001

SMIRNOV, V.P.

"Die polatographische bestimmung von ftorothan(1,1,1,-trigluor--2-chlor-2-bromathan) im blut."

Report submitted to the Oscillopolatography Course and Polarography Symp. Jena, GDR 10-15 Sep 1962

VALETOV, V.V.; VESNIK, M.I.; GONCHAROV, I.S.; DMITROV, D.V.; LUNEV, A.A.;

MOKIN, M.I.; NESTEROV, S.N.; SMIRNOV, V.P.; ALEKSEYEV, S.A., retsenzent; KARKAZOV, A.G., retsenzent; KONDHATOVICH, V.M., retsenzent; LEVIN, B.M., retsenzent; MALIKOV, A.N., retsenzent; SEGALEVICH, S.M., retsenzent; SHPAGIN, A.I., retsenzent; SHTERN, L.T.,
retsenzent; YAKOBI, A.A., retsenzent; TIKHANOV, A.Ya., takhn. red.;
CHERNOVA, Z.I., tekhn. red.

THE REPORT OF THE PROPERTY OF

[Establishing norms for the consumption of materials in machinery manufacture; manual] Normirovanie raskhoda materialov v mashinostroenii; spravochnik. Pod red. V.V.Valetova. Moskva, Gos. nauchnotekhm. izd-vo mashinostroit. lit-ry. Vol.1. 1961. 583 p. (MIRA 15:2)

(Machinery industry)

SMIRNOV, V.P., inzh.; SHIBANOV, A.A., kand.tekhn.nauk

Using caisson shells made of panel-type elements. Transp. stroi. 14.
nc.7:16-18 Jl '64.

(MIRA 18:1)

SMIRNOV, Vladimir Petrovich. Prinimali uchastiye: LADITSKIY, V.F., kand.tekhn.nauk; SHAPKIN, I.F., kand.tekhn.nauk; MIKHAYLOVICH, A.M., inzh.. KNORRE, G.F., prof., doktor tekhn.nauk, zasluzhennyy deyatel' nauki i tekhniki, red.; VORONIN, K.P., tekhn.red.

[Boiler units] Kotel'nye ustanovki. Pod red. G.F.Knorre.
Moskva, Gos.energ.izd-vo. 1959. 303 p. (MIRA 12:8)
(Boilers)

SMIRNOV, Vyacheslav Pavlovich; ROSHCHINA, L., red.; NAZAROVA, V., mladshiy red.; NGGINA, N., tekhn. red.

[Tunisia; economic outline] Tunis; ekonomicheskii ocherk. Moskva, Izd-vo sotsial'no-ekon. lit-ry, 1962. 70 p.

(MIRA 15:6)

(Tunisia---Economic conditions)

SMIRNOV, V. ()

All-Union conference of industrial efficiency promoters, inventors, and innovators. Neftiantk 1 no.12:27 D 156. (MIRA 12:3)

(Petroleum industry)

SMIRNOV, V.P., inzhener.

Pasks of efficiency promoters and inventors. Stroi.pred.neft.prom.

1 no.3:28-30 My '56.

(Petroleum industry) (Petroleum workers)

SMIRNOV, V.P.; LETOV, G.S.

Outbreak of pulmonary plague in Gichigan in the Mongolian People's Republic. Izv.Irk.gos.mauch.-issl.protivochum.inst. 20:105-106
'59. (GICHIGAN (MONGOLIA)--PLAGUE)

(GICHIGAN (MONGOLIA)--PLAGUE)

Mignov, v.P.

Mignovi vides of chloropicrin disinfection of plagus infested hides of wild rodents. Izv.Irk.gos.nauch.-issl.protivochum. inst. 20:121-123 '59. (MIRA 13:7) (CHLOROPICRIN) (HIDES AND SKINS--DISINFECTION) (PLACUE)

From the diary of a physician infected with experimental plague.
Zhur. mikrobiol. epid. i immun. 40 no.5:68-72 My 163.

(MIRA 17:6)

l. Iz Irkutskogo protivochumnogo instituta Sibiri i Dal'nego Vostoka.

ROZHNOVSKIY, Al'bin Antonovich; VAGANOV, P.V., kand.tekhn.nauk, retsenzent; SMIRNOV, V.P., gornyy inzh., retsenzent; NEGANOV, I.I., gornyy inzh., red.; SKOROBOGACHEVA, A.P., red.izd-va; ZEF, Ye.M., tekhn.red.

[Placer mining] Razrabotka rossypnykh mestorozhdenii. Sverdlovsk.
Gos.nauchno-tekhn.izd-vo lit-ry po chernoi i tsvetnoi metallurgii.
1959. 336 p.
(Hydraulic mining) (Dredging) (Mining engineering)

SMIRNOV, V.P.; KULIKOVA, V.L.; SHCHEMUNOVA, Z.I.

Use of white rats for the determination of immunogenic properties of anticholera preparations. Zhur. mikrobiol., epid. i immun. 40 no.9:130 S'63. (MIRA 17:5)

l. Iz Irkutskogo naucimo-issledovatel'skogo protivochumnogo instituta Sibiri i Dal'nego Vostcka.

ACCESSION NR: AT4025314 S/0000/63/000/000/0237/0246

AUTHORS: Kovan, I. A.; Moskvin, Yu. L.; Rusanov, V. D.; Smirnov, V. P.

TITLE: Investigation of plasma parameters in a strong magnetic field with the aid of double electric probes

SOURCE: Diagnostika plazmy* (Plasma diagnostics); sb. statey. Moscow, Gosatomizdat, 1963, 237-246

TOPIC TAGS: plasma, plasma diagnostics, probe method, double probe method, plasma in strong magnetic field, probe method accuracy, Larmor radius, probe characteristic dimensions, charged particle density, electron temperature, saturation current, effect of probe size, probe current, probe current derivative

ABSTRACT: In view of the doubtful reliability of data obtained with probes on a plasma in a strong magnetic field, when the particle

Card 1/17

ACCESSION NR: AT4025314

Larmor radius is comparable with the probe characteristic dimension, the authors have checked on the probe readings by other diagnostic means. The plasma parameters measured were electron temperature and charged-particle density at saturation. The electron temperature was determined by plotting the derivative of the current with respect to the voltage against the probe voltage. The charged-particle density was measured by determining the saturation current and also by measuring the derivative of the probe current with respect to the voltage in the vicinity of zero voltage. The effect of the probe size was also investigated. It is shown that the probe measurements deviate from the others by as much as 40% and become particularly unreliable in strong magnetic fields. Orig. art. has: 5 figures.

ASSOCIATION: None

SUBMITTED: 190ct63

DATE ACQ: 16Apr64

ENCL: 01

SUB CODE: PH

NO REF SOV: 005

OTHER: 003

Card: 2/3 2

L 26662-65 EPA(w)-2/EWT(m)/EWA(m)-2 Pt-10/Pab-10 IJP(c)
ACCESSION NR: AT5002708 S/3092/64/000/002/0090/0103

AUTHORS: Alekseyev, A. G.; Mozin, I. V.; Smirnov, V. P.

TITLE: Method and apparatus for magnetic measurements in an electron synchrotron with hard focusing, in the field range 500--10,000 Oersted

SOURCE: Moscow. Nauchno-issledovatel'skiy institut elektrofizicheskoy apparatury. Elektrofizicheskaya apparatura; sbornik statey, no. 2, 1964, 90-103

TOPIC TAGS: electron synchrotron, hard focusing, magnetic field, magnetic measurement

ABSTRACT: In view of the close tolerances that the magnetic field of a 6-BeV synchrotron with hard focusing must satisfy, apparatus and a test measurement procedure were developed to measure the magnetic field with the required accuracy. The measurements consist

Card 1/2

L 26662-65 ACCESSION NR: AT5002708

 \bigcirc

of determining the distortion in the distribution of the field and the gradient along the equilibrium orbit, measurement of the distortion and distribution of the gradient along the radius of the magnet, measurement of the relative gradient on the equilibrium orbit in the center of the electromagnet. The principle of the method developed consists of integrating the voltage from coils placed in the time-varying magnetic field. The theoretical premises underlying the different measurements are developed, after which the design of the measuring coils is described and the circuitry of the electronic integrator is described. A circuit for selecting the level of the measured field is described and the measurement accuracy discussed. Orig. art. has: 5 figures and 31 formulas.

ASSOCIATION: None

SUBMITTED: 00

ENCL: 00

SUB CODE: NP, EM

NR REF SOV: 000

2/2

OTHER: 003

Card

nyandu basadan arang timban masadan barang menangkan barang tahun barang menangkan tahun

APPROVED FOR RELEASE: 08/24/2000

CIA-RDP86-00513R001651610016-4"

The Harles of the Control of the Con

KOVAN, I.A.; KOZOROVITSKIY, L.L.; RUSANOV, V.D.; SMIRNOV, V.P.; FRANK... KAMENETSKIY, D.A.

Magnetoacoustic resonance in a toroidal system, Znur. eksp. i teor. fiz. 48 no.1:72-77 Ja '65. (MIRA 18:4)

BEST CONTRACTOR OF THE PROPERTY OF THE PROPERT

AL'SHITS. I., ingh.-khimik; SMIRMOV, V., kand.tekhn.nauk, ingh.-khimik

Ship rescue boats made of glass-reinforced plastics. Mor.

flot 19 no.12:42-43 D '59. (MIRA 13:3)

(Boatbuilding) (Glass reinforced plastics)

SMIRNOV, Vladimir Petrovich; SHAPILOV, V.M., retsenzent; OSIFOVICH, F.A., red.; VITASHKINA, S.A., red.izd-va; RIDNAYA, I.V., tekhn.red.

[Mamufacture and assembly of ship systems from plastic materials] Izgotovlenie i montazh sudovykh sistem iz plastmass. Moskva, Izd-vo "Rechnoi transport," 1962. 65 p.

(MIRA 15:5)

(Marine pipe fitting)

(Pipe, Plastic)

SEMENOV, A.; SMIRNOV, V.P.; SHVEDCHIKOV, A.; SHVEDCHIKOV, A.; SEMENOV, A.

Plastics abroad. Plast.massy no.4:70-71 '62. (MIRA 15:4)
(Plastics)

ACCESSION NR: AP4018170

s/0191/64/000/003/0059/006

AUTHOR: Smirnov, V. P.; Sosunov, N.A.

TITLE: Electric resistance welding of plastics

SOURCE: Plasticheskiye massy*, no. 3, 1964, 59-61

TOPIC TAGS: resistance welding, electric resistance welding, plastic welding, plastic, pulsation welding, polyethylene tube welding, nichrome spiralling

ABSTRACT: One of the new methods for welding plastics is electric resistance welding with the use of special spirallings. This method, called pulsation welding, is already being used in a number of industries. This process consists of three stages: (1) preparation of the elements to be welded; (2) formation of the electric spiral and shaping it into plastic rings; (3) pulsation welding of the parts to be joined. The essence of this method is the joining of separate plastic parts by a layer with an electric spiral by means of flashing off contiguous surfaces. Plastics which have a high specific volumetric resistivity are welded by this method. These plastics include polyethylenes, polyamides, polystyrenes, etc. Polyethylene tubing, used as connecting pieces in polyethelene collar

ACCESSION NR: APho18170

assemblies and having nichrome spiralling shaped in it, is welded by electric resistance. These collars are made in the form of cylinders on metal drums. One of these adaptations is shown in Figure 1. A special device with a step-down transformer is used for this type of welding. The device also has a timer which assures the requisite holding time for heating of the spiral after the transformer is cut in. The electric circuit diagram of this device is shown in Figure 2. The welding sequence is as follows: a seat for the collar is prepared in the tubing elements which are to be welded; the collar with the spiral is placed in the seat of the union or pipe bell and the tube to be joined is inserted here; the ends of the spiral are introduced on the outside and are joined by the current source; the heated spiral fuses the polyethylene layer and tube surface sticking to it. After heating up to about 120 C, the feed current is cut off and welding is completed. The heat-up usually takes from 30 to 40 seconds. The welding is effected at 36 volts. The timer controls the holding and current cutoff. Orig. art. has:

ASSOCIATION: None

2/5

	IBIOIRI	70			. :
ACCESSION NR: AP4018170 SUPMITTED: 00		DATE ACQ: 27Mar64	ENCL: 02		
SUB CODE:			NO. REF. SOV: OOO	OTHER: 000	
	,	№ 2			
			•		
		•			
	•				•
				•	
Card 3/5		ξ.		b	

L 9242-66 EWT(1)/EWT(m)/T/EWP(t)/EWP(b) IJP(c) JD/GG

ACC NR: AP5022741 SOURCE CODE: UR/0181/65/007/009/2856/2858

AUTHOR: Smirnov, V. P.

ORG: Leningrad State University (Leningradskiy gosudarstvennyy universitet)

TITLE: Band structure of cuprous oxide

SOURCE: Fizika tverdogo tela, v. 7, no. 9, 1965, 2856-2858

TOPIC TAGS: crystal theory, cuprous oxide, energy band structure

ABSTRACT: This paper gives preliminary data from a theoretical calculation of the energy structure of cuprous oxide in an attempt to explain experimental data on optical and magneto-optical absorption in crystals of this compound. For the upper valence band, $E(\Gamma_{25}) = 0.151$ atomic units, and for the lower conduction band $E(\Gamma_{1}) = 0.240$ atomic units. This gives the width of the forbidden as 0.089 atomic units (=2.4 ev) which is very close to the experimentally observed value $\Delta E = 2.3$ ev. The theoretical data indicate that the Γ_{25} level originates about equally from the 2p-levels of oxygen and from the 3d-levels of copper. The next valence band (k = 0) is about 3 ev longer than the Γ_{25} band. However, it is not certain whether the symmetry of this band is Γ_{15} or Γ_{15} . These theoretical calculations (which were done on a digital computer) confirm Elliott's model (R. J. Elliott, Phys. Rev., 124, 340, 1961). Orig. art. has: 5 formulas.

SUB CODE: 20/

SUBM DATE: 09Apr65/

ORIG REF: 004/

OTH REF: 004

Card 1/1 m

IJP(c) EWT(m)/EWP(t)/ETI SOURCE CODE: UR/0181/66/008/008/2519/2519 I 06450-67 AP6026731 ACC NR AUTHOR: Smirnov, V. P. ORG: Leningrad State University im. A. A. Zhdanov (Leningradskiy gosudarstvennyy universitet) 2 TITIE: Band structure of the cuprous oxide crystal SOURCE: Fizika tverdogo tela, v. 8, no. 8, 1966, 2519 TOPIC TAGS: cuprous oxide, semiconductor band structure ABSTRACT: The energy bands (upper valence band and lower conduction band) in the cuprous oxide crystal along axes of second, third, and fourth order in K-space were calculated. Also calculated were constants characterizing the curvature of the energy surfaces at extremal points of the bands (with wave vector K = 0). The effective mass for the conduction band was found to be equal to 0.456 of the electron mass, and constants A, B and C for the triply degenerate valence band were found to be respectively equal to -1.073, -0.205 and 0.453. Consideration of spin-orbital interaction (in accordance with the perturbation theory) leads to splitting of the upper valence band into two bands, \(\Gamma^+\) and \(\Gamma^+\). The splitting is equal to 0.06 eV (the \(\Gamma^+\) band is higher than the \(\Gamma^+\) band). This agrees with the experiment in order of magnitude; the distance between the limits of the yellow and green series of the exciton in the cuprous oxide crystal is equal to 0.13 eV. The one-electron parameter \$ 3d was used in the Card 1/2

ALPHSEYER, AUGUS MOZIN, (LV.: SMIRNOV, V.F.

Mathod and apparatus for magnetic measurements in a strong-focusing electron synchrotron in the 500 of 10,000 oe. range.

Flektrofia. Spp. no.2x90~103 164. (MIRA 18;3)

KURCHATOV, I.V., [deceased]; FEYNBERG, S.M.; DOLLEZHAL', N.A.;

ALESHCHENKOV, P.I.; DROZDOV, F.S.; YEMEL'YANOV, I.Ya., ZHIRNOV,
A.D.; KAZACHENKO, M.A.; KNYAZEVA, G.D.; KONDRAT'YEV, F.V.;

LAVPENIKOV, V.D.; MORGUNOV, N.G.; PETUNIN, B.V.; SMIRNOV, V.P.;

TALYZIN, V.M.; FILIPPOV, A.G.; CHIKHLADZE, I.L.; CHUIKOV, P.M.;
SHEVELEV, Ya.V.

Pulse graphite reactor IGR. Atom. energ. 17 no.6:463 D 164 (MIRA 18:1)

SMIRMOV, V. P.

Glass Manufacture

Operation of glass furnaces without cleaning gas flues by fire. Med. prom. no. 5, 1952.

Monthly List of Russian Accessions, Library of Congress, Tecember 1952. Unclassified.

1.	 ř.	WOW,	V.P.

2. USSR (600)

4. Furnaces

7. Cleaning gas ducts without burning them out and with recuperation of the tar, Stek. i ker. 10 no. 5, 1953.

9. Monthly List of Russian Accessions, Library of Congress, APRIL 1953, Uncl.

USSR/Miscellaneous - Glass manufacture

Card 1/1 : Pub. 104 - 10/12

: Smirnov, V. P. Authors

Title : Gas heated annealing furnace

Periodical : Stek. i ker. 9, 30 - 31, September 1954

: Description of a new conveyer-type gas-heated furnace for the kilning Abstract

of glass products. Drawings.

Institution

SHIR-OV, V. P.

Submitted

AUTHOR:

Smirnov, V. P.

72-58-3-12/15

TITLE:

The Utilization Coefficient of Window Glass in Building

(Povysit' koeffitsiyent ispol'zovaniya okonnogo stekla

na stroykakh)

PERIODICAL: Steklo i Keramika, 1958, 😁 . . . , Nr 3, pp. 41-42 (USSR).

ABSTRACT:

Following a suggestion by the author, glass-blocks were ex-

perimentally manufactured in the following way in the Berezicheskiy

glassworksealeb" of the Council of National Economy of Kaluga: Sectors and blocks of 3 sections, as given in figures 1 and 2, were manufactured of sheets of window-glass of the dimensions 1000 x 500 x 3 mm. The weight of one section is 3,2 kilograms, that of a block 9,6 kilos and the quantity of glass required for one block is 1,8 m2. These sections which were manufactured in glassworks, can be installed in buildings. By that means, less glass is broken during transportation, and the glass-scrap can be utilized, and the manufacturing expenses will be reduced

Card 1/2

in this way. Furthermore, qualified workers manufacturing the

The Utilization Coefficient of Window Glass in Building Must be Increased

72 -58-3-12/15

wooden window-cases, will no longer be required for construction. The mounting of the glassblock is simple and no skilled worker is required. Nor is a first-class lumber required for this purpose, since the glass-blocks are walled immediately in the voids. Besides the savings of high-quality lumber and qualified workers, the luminous area of the aperture of the window increases and any thermal loss in winter is avoided due to a complete hermetical

There are 2 figures,

ASSOCIATION: Berezicheskiy stekol'nyy zavod

(Glassworks)

AVAILABLE:

1. Glass--Applications

Card 2/2

AUTHOR:	Smirnov, V. P.	507/72-58-7-12/19			
TITLE:	Common Salt - a Good Accelerator of Glass Melting (Povarennaya sol' khoroshiy uskoritel varki stekla)				
PERIODICAL:	Steklo i keramika, 1958, Nr 7,	pp. 40 + 41 (USSR)			
ABSTRACT:	M. P. Orlova, V. V. Pollyak and (Ref 1) state in their paper the additionally into the layer to of glass increases the output of glass increases the output of glass increases the output of the glass works By kiy Oktyabr'". The author assumption of glass molting be chlorided can be used successful of which is not inferior to the editor is, however, of different furthermore the use of fluoride measures which are not necessar	nat 0,5% F, introduced the basic composition of the tank furnaces by 10 - e of the usual glass is confirmed as well by tosh and "Veli- unes that for the particle the fluorides also cally the chemical activity at of the fluorides. The et opinion (Ref 1).			
Card 1/3	This is also confirmed by the a				

Common Salt - a Good Accelerator of Glass Melting SOV72-58-7-12/19

glass works Berezichi in the melting of medical glass. Still in 1946 common salt has been introduced into the layer exceeding the calculated composition by from 15 to 20 kg/per ton. The compositions of glass and layer are given in the table. The moisture content of the layer amounts to 3 - 4%. The glass melting is carried out in a tank furnace of the type "simpleks", at a maximum temperature of 1430° and in the case of a mass output of 500 kg/m² per day. By the introduction of common salt into the layer the output of the furnace was increased by 28% above the scheduled output; the quality of the glass mass was as well rapidly improved. Furthermore the preparation of the common salt is described as well as the melting process of the layer. There are 1 table and 1 reference, 1 of which is Soviet.

ASSOCIATION: Berezicheskiy stekolinyy zavod (Berezichi Glass Works)

Card 2/3

Common Salt - & Good Accelerator of Glass Melting SOV/72-58-7-12/19

- 1. Glass--Processing 2. Sodium chloride--Applications 3. Glass--Properties
- 4. Glass--Test results

Card 3/3

Tank furnace for making colored and superimposed glass. Stek. i ker. 18 no.2:12-14 F '61. (MIRA 14:3) (Glass furnaces) (Glass, Colored)

CHERKES, L.A.; STHUKOV, A.I.; VOLCAREV, M.N.; SMIRNOV, V.P.

Cirrhosis and tumors of the liver in choline and protein insufficiency. Vop.pit. 19 no.1:3-16 Ja-F '60. (MIRA 13:5)

1. Iz laboratorii patologicheskoy fiziologii (zav. - prof. L.A. Cherkes) Instituta pitaniya ANN SSSR i iz kafedry patologicheskoy anatomii (zav. - chlen-korrespondent ANN SSSR prof. A.I. Strukov) I Moskovskogo ordena Lenina meditsinskogo instituta imeni I.M. Sechenova.

(LIVER NEMPLASMS experimental)
(LIVER CHIRHOSIS experimental)
(CHOLINE deficiency)
(PROTEIN deficiency)
(NUTRITION DISOHDERS experimental)

SMIRNOV, V. P., Cand. Medic. Sci. (diss) "On Question of Primary Cancer of Liver (Clinical-anatomical and Experimental Investigation)," Moscow, 1961, 16 pp. (Acad. Med. Sci. USSR) 250 copies (KL Supp 12-61, 288).

SMIRNOV, V.P.

Experimental tumors of the liver in protein-choline insufficiency.

Arkh. pat. 23 no.2:51-59 '61. (MIRA 14:2)

(LIVERS-TUMORS) (PROTEINS) (CHOLINE)

Interconductive data on the characteristics of cancer of the Diver. Trudy 1-MMI 10:38-98 [62.]

1. therety patologicheskoy anatomit (cav. - chlen-korrespondent MMI 1998 prof. A.J. Strukov) I Moskovskogo ordena Lenina meditainskoro isustinta imeni Sechenova.

SMIRNOV, V.P., dotsent, kandidat tekhnicheskikh nauk.

Comparative characteristics of ash washing units used for low and

的一个人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们们就会

comparative characteristics of ash washing units used for the compound pressure hydraulic ash removal in heat-power electric plants.

[Trudy] MVTU no.15:90-135 '52.

(Steam power-plants) (Ash disposal)

SMIRNOV, V.P., kandidat tekhnicheskikh nauk, dotsent.

Adjustment and testing of the VS 175/210 type of ash-sluicing apparatus designed by V.P. Smirnov for periodical sluicing in hydraulic ash removal systems in thermal electric power plants.

[Trudy] MVTU no.59:88-108 '55. (MLRA 9:5)

(Ash disposal)

CIA-RDP86-00513R001651610016-4 "APPROVED FOR RELEASE: 08/24/2000 **的情况和我们的证明的我国的政治和政治的对应**对于自己的对于,他们就是不是一个人的,但是一个人们的,但是一个人们的,但是一个人们的,但是一个人们的,但是一个人们的

SMIRNOV, V.P., kandidat tekhnicheskikh nauk, dotsent. Adjustment and industrial testing of the experimental VS-3,0 continuous sluicing apparatus designed by V.P.Smirnov for hy-

draulic ash removal systems in thermal electric power plants. (MLRA 9:5) [Trudy] MVTU no.59:109-123 '55.

(Ash disposal)

SMIRNOV, V. P.

"Electrospark Strengthening of Cutting Tools," Avtomobil'naya i Traktornaya Promyshlennost' (1950) No 12, pp 17/20.

B-73331, 1 Apr 54

SMIRNOV, V. P.

"Electrolytic Deposition of Alloys on a Copper Base for Protective-Decorative and Technical Purposes." Sub 5 Nov 51, Moscow Inst of Nonferrous Metals and Gold imeni M. I. Kalinin Cand. Technical Sci.

Dissertations presented for science and engineering degrees in Moscow during 1951.

SO: Sum. No. 480, 9 May 55

SMIRNOV, V. I.

Electric Spark

Toughening dies by means of an electric spark. Avt. trakt. prom. No. 1, 1952

Monthly List of Russian Accessions, Library of Congress, June 1952 Unclassified

30862 5/054/61/000/004/002/009 B108/B138

24,7000(1143,1144,1385)

AUTHOR:

Smirnov, V. P.

TITLE:

Semi-classical approximation in band theory

PERIODICAL: Leningrad. Universitet. Vestnik. Seriya fiziki i khimii,

no. 4, 1961, 35 - 38

The author considers the uniform motion of a particle in a periodic potential field:

V(x) $\psi(x) = \varepsilon \psi(x)$ with V(x + a) = V(x). Functions corresponding to an allowed energy level have to fulfill the boundary conditions $\psi(a) = \lambda \psi(0)$, $\psi'(a) = \lambda \psi'(0)$ where $|\lambda| = 1$. This problem is solved in semi-classical approximation within one elementary cell (0,a). It is assumed that $\ell < V_{max}$

(Fig. 1). The domains I and II are interrelated by the formulas

Card 1/4

3 %(2 \$/054/61/000/004/002/009 B108/B138

Semi-classical approximation...

$$q^{-\frac{1}{2}} \exp\left(-\int_{x}^{x_{1}} q dx'\right) \sim 2p^{-\frac{1}{2}} \sin\left(\int_{x_{1}}^{x} p dx' + \frac{\pi}{4}\right),$$

$$q^{-\frac{1}{2}} \exp\left(\int_{x}^{x_{1}} q dx'\right) \sim p^{-\frac{1}{2}} \cos\left(\int_{x_{1}}^{x} p dx' + \frac{\pi}{4}\right);$$

$$(3)$$

and the domains III and II by

$$q^{-\frac{1}{2}} \exp\left(-\int_{x}^{x} q dx'\right) \sim 2p^{-\frac{1}{2}} \sin\left(\int_{x}^{x} p dx' + \frac{\pi}{4}\right).$$

$$q^{-\frac{1}{2}} \exp\left(\int_{x_{1}}^{x} q dx'\right) \sim p^{-\frac{1}{2}} \cos\left(\int_{x}^{x} p dx' + \frac{\pi}{4}\right). \tag{4}$$

where $q = (V(x) - \varepsilon)^{1/2}$, $V(x) > \varepsilon$ and $p = (\varepsilon - V(x))^{1/2}$, $V(x) < \varepsilon$. By linear combination of these expressions the author obtains the transcendental Card 2/4

30062 \$/054/61/000/004/002/009 B108/B138

Semi-classical approximation...

equation $\cos i \cdot ch(\lambda + \ln 2) = \cos ka = f(\xi)$ where

 $\beta \equiv \int_{x_1}^{x_2} p dx'$. The effective masses are determined by two-fold differentiation

of the above transcendental equation. Parameters b and c are introduced:

 $\left[-\frac{d^2}{dx^2} + bV\left(\frac{x}{c}\right)\right] \cdot \psi(x) = \xi_{\psi}(x).$ The depth of the potential well is

proportional to b, the lattice constant is proportional to c. The number of bands in the potential well is calculated as

$$n = \left[\frac{e\sqrt{b}}{\pi} \int_{0}^{a} \sqrt{V_{\text{max}} - V(x)} dx + \frac{1}{\pi} \arccos 0.8\right]. \tag{13}.$$

The author thanks Professor P. P. Pavinskiy for discussion. There are 2 figures and 3 references: 2 Soviet and 1 non-Soviet.

Card 3/4

30%8 \$/054/61/000/004/009/009 B102/B138

24,7000 (1138,1143, 1385)

AUTHOR:

Smirnov, V. P.

TITLE:

Effective mass calculation in band theory

PERIODICAL:

Leningrad. Universitet. Vestnik. Seriya fiziki i khimii, no. 4, 1961, 149 - 151

TEXT: A relation derived by P. P. Pavinskiy (Vestnik Leningr. un-ta,

no. 10, 1961), $m/m_1^* = 1 - 2\left(v^{\left(1\right)} \frac{du^{\left(1\right)}}{dx} dx\right)$, is used for variational calculation of the effective mass m_1^* . The problem is solved for one-dimensional motion of a particle in a periodic field V(x), with period a. The extremum of the 1-th band is assumed to be at k=0. Integration is carried out over a unit cell, $u^{\left(1\right)}$ is the normalized wave function at the bottom (or ceiling) of the 1-th band and $v^{\left(1\right)}$ is a periodic function, which satisfies the relation $A^{\left(1\right)}v^{\left(1\right)} = \left(-\frac{d^2}{dx^2} + V(x) - \epsilon_1\right)v^{\left(1\right)} = 2\frac{du^{\left(1\right)}}{dx}$, Card 1/4

S/054/61/000/004/009/009 B102/B138

Effective mass calculation...

where 1 is the energy at the bottom (ceiling) of the 1-th band. With $v^{(1)} = v_1^{(1)} + v_2^{(1)}$, $v_1^{(1)} = \frac{1-1}{2} \frac{(u^{(1)} \frac{du^{(1)}}{dx} \frac{dx}{dx} u^{(n)}}{u^{(n)}}$, (n = 1, 2, ...1), and $v^{(1)}$ can be determined from the condition $I(v_2^{(1)}) = -2 v_2^{(1)} \frac{du^{(1)}}{dx} 2^{dx}$, which gives the minimum of $v_2^{(1)}$ in the subspace $v_2^{(1)}$, in which the operator $v_2^{(1)}$ is positively definite. For the bottom of the band $v_2^{(1)}$ this minimum is given by $v_2^{(1)} = \frac{m}{m_1} - 1$, from which the effective mass

can be determined. A similar method can be also used in the threedimensional case, provided a relation analogous to (1) holds and the 1-th zone has an extremum at k = 0 and is not degenerate at this point. The periodic amplitude of the wave function satisfies

$$[-(\nabla - i\vec{k})^2 + V(\vec{r})] u_{\vec{k}}^{(t)}(\vec{r}) = \varepsilon_{\vec{l}}(\vec{k}) u_{\vec{k}}^{(t)}(\vec{r}). \tag{9}$$

and for small \vec{k} Card 2/4

S/054/61/000/004/009/009 B102/B138

Effective mass calculation...

$$u_{k}^{(l)}\left(\stackrel{\leftarrow}{r}\right) = u^{(l)}\left(\stackrel{\leftarrow}{r}\right) + i\sum_{\alpha}k_{\alpha}v_{\alpha}^{(l)}\left(\stackrel{\leftarrow}{r}\right) + \sum_{\alpha\beta}k_{\alpha}k_{\beta}w_{\alpha\beta}^{(l)}\left(\stackrel{\leftarrow}{r}\right) \tag{10}$$

$$\varepsilon_{l}(\tilde{k}) = \varepsilon_{l} + \sum_{\alpha\beta} k_{\alpha} k_{\beta} m \left(\frac{1}{m_{l}^{*}}\right)_{\alpha\beta}. \tag{11}$$

hold. From these equations the tensor of the reciprocal effective mass,

, can be determined:

etermined:
$$m\left(\frac{1}{m_l}\right)_{\alpha\beta} - \delta_{\alpha\beta} = \left(\int u^{(l)} dr\right)^{-1} \int u^{(l)} \left[\nabla_{\alpha} v_{\beta}^{(l)} + \nabla_{\beta} v_{\alpha}^{(l)}\right] dr.$$

If the coordinate axes coincide with the principle axes of this tensor,

$$m\left(\frac{1}{m_l^*}\right)_{ax} - 1 = 2\int u^{(l)} \left(\stackrel{\rightarrow}{r}\right) \nabla_a v_a^{(l)} \left(\stackrel{\rightarrow}{r}\right) d\stackrel{\rightarrow}{r}$$
 (16)

$$m\left(\frac{1}{m_l^*}\right)_{zz} = 1 - 2\int v_a^{(l)} \left(\stackrel{\leftarrow}{r}\right) \nabla_a u^{(l)} \left(\stackrel{\leftarrow}{r}\right) d\stackrel{\leftarrow}{r}.$$

Card 3/4

S/054/61/000/004/009/009 B102/B138

Effective mass calculation...

results. The author thanks Professor P. P. Pavinskiy for discussion.

There are 4 references: 3 Soviet and 1 non-Soviet. The reference to the English-language publication reads as follows: T. Bardeen. Chem. Phys., 6, 367, 1938.

Card 4/4

CIA-RDP86-00513R001651610016-4" APPROVED FOR RELEASE: 08/24/2000

31985 5/142/61/004/004/006/018 E192/E382

9,9700 (1327)

Bobrovnikov, M.S., Starovoytova, R.P. and AUTHORS:

Smirnov V.P.

The efficiency of excitation of surface waves by a TITLE

lumped source on an impedance plane

Izvestiya vysshikh uchebnykh zavedeniy, Radiotekhnika, v. 4, no. 4, 1961, 432 - 438 PERIODICAL:

The problem of lumped excitation of an infinite impedance plane by a magnetic current filament is considered.

The plane has an isotropic impedance and represents the simplest delay system. The impedance plane, whose surface coincides with the coordinate plane y, z (see Fig. 1), is excited by an infinitely long magnetic current filament j, which is parallel to the axis y, which is situated at a distance x_0

from the impedance plane; thus:

$$j^{m} = I^{m} \delta(x - x_{o}) \delta(z)$$

Card 1/65

TEXT:

31985 5/142/61/004/004/006/018 E192/E382

The efficiency of

where $x = x_0$ and z = 0 are the coordinates of the source, and I_{m} is the amplitude of the source.

Under these excitation conditions only the three field components are produced, namely - E_x , E_z and H_y . The component H_y

can be found by solving the Maxwell equations, while the other field components can be expressed in terms of Hy. The boundary condition at the impedance surface is:

$$E_z = Z H_{y/x=0}$$

where Z is the surface impedance. It is shown that the surface-wave component of the magnetic field is given by

Card 2/6 .

31985 S/142/61/004/004/006/018 E192/E382

The efficiency of

$$P_{\text{min}} = \frac{I^{m^2} k}{c} \left\{ \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(n - \frac{1}{2}\right)}{(1 - Q^2)^n (kx_0)^{n-1}} \times \left[\frac{1}{4} (1 - \zeta^2) I_{n-1} (2kx_0) - I_n (2kx_0) \left(n - \frac{1}{2}\right) \left(\frac{1}{4 kx_0} + \frac{Q}{2n-1}\right) \right] \right\}$$
(12)

where Z=-iQ. By analyzing the above formulae (and comparing the results with some experimental data) it is concluded that a plane electromagnetic wave impinging on an infinite uniform impedance plane does not excite surface wave On the other hand, when the surface waves are excited by a lumped source, the efficiency of excitation depends on the delay coefficient $\beta=h_0/k$ and the distance of the source

from the impedance plane. An optimum height for the source above the impedance plane can be determined for every given value of β . Thus, for example, for $\beta=1.25$ the highest Card 4/6

The efficiency of

31785 5/142/61/004/004/006/018 E192/E382

efficiency of $\eta=0.981$ is reached for $x_0/\lambda=0.16$. The excitation efficiency near to unity can be achieved for compratively low values of the delay coefficient ($\beta=1.05-1.2$).

There are 5 figures and 6 references: 2 Soviet-bloc and 4 non-Soviet-bloc. The four English-language references mentioned are: Ref. 1 - A.L. Cullen - PIEE, 1957, C 104, no. 6, 257; Ref. 2 - G.I. Rich, PIEE, 1955, B 102, no. 2, 237; Ref. 3 - A.L. Cullen, PIEE, August, 1955, 101, 4, 225 and Ref. 4 - I.W. Dunkan, IRE Trans., 1959, MTT-7, no. 2, 257

ASSOCIATION: Kafedra

Kafedra radiofiziki Tomskogo gos. universiteta im. V.V. Kuybysheva (Department of Radio Physics of Tomsk State University im. V.V. Kuybyshev)

SUBMITTED:

August 23, 1960 (initially)

November 3, 1960 (after revision)

Card 5/6'

1,0550

9.3700

5/142/62/005/003/001/009 E192/E382

Bobrovnikov, M.S. and Smirnov, V.P. AUTHORS:

Field in the near zone of the source for the case of TITLE:

lumped excitation of an impedance plane

Izvestiya vysshikh uchebnykh zavedeniy, PERIODICAL:

Radiotekhnika, v. 5, no. 3, 1962, 321 - 325

The general expression for the magnetic-field component H for the case of an infinite impedance plane whose TEXT:

surface coincides with the coordinate system γz (see Fig. 1) and is excited by a magnetic-current thread j^m , situated at from the impedance plane and parallel to the

axis y is in the form (Ref. 1. The authors and R.P.Starovoytova,

Izv. vuzov SSSR - Radiotekhnika, 1961, v.3, no. 4, 432):

Card 1/4

S/142/62/005/003/001/009 E192/E382

Field in the near zone

$$H_{y} = -\frac{2KI^{m}}{c} \int_{-\infty}^{\infty} \frac{\left(\cos x_{o}v - \frac{iKZ}{v}\sin x_{o}v\right)}{v + KZ} \cdot e^{ivx} \cdot e^{ihz} dh \quad (1)$$

$$II_{y} = -\frac{2KI^{m}}{c} \int_{-\infty}^{\infty} \frac{\left(\cos xv - \frac{iKZ}{v} \sin xv\right)}{v + KZ} \cdot e^{ivx} \cdot e^{ihz} \cdot dh$$
(2)

for
$$0 \leqslant x \leqslant x_0$$

Card 2/4

S/142/62/005/003/001/009 E192/E382

Field in the near zone

where I^m is the amplitude of the magnetic current, Z = iQ is the reactive impedance and $V = \sqrt{K^2 - h^2}$. The radiation field and the surface wave for the far zone in such a system was determined in Ref. 1. However, Eqs. (1) and (2) a system was determine the field in the near zone. The field is given by the general expression:

$$H_{y} = H_{y}^{\Pi} + A \int_{L} \frac{e^{ihZ}}{v + KZ} dh$$
 (6)

where the first component represents the surface wave, whilst the second component gives the non-surface wave. The integral can be evaluated comparatively easily and it is shown that the non-surface wave is approximately given by:

Card 3/4

S/142/62/005/003/001/009 E192/E382

Field in the near zone

$$H_{y}^{H\Pi} \sim H_{o} \cdot e^{iKZ + i\frac{\pi}{L_{1}}} \cdot \frac{1}{Q^{2}} \cdot \sqrt{\frac{1}{2\pi KZ}} \cdot \frac{1}{KZ}$$
 (14)

This shows that in the case of lumped excitation, the non-surface wave decreases as $1/(KZ)^{3/2}$, i.e. faster than for the case of an ideally conducting plane. The non-surface wave for the near zone was calculated by a digital computer and the results are given in a figure. There are $\frac{1}{2}$ figures.

ASSOCIATION: Laboratoriya radiofiziki SFTI pri Tomskom

gos. universitete im. V.V. Kuybysheva

(Radiophysics Laboratory, SFTI, of Tomsk State

University im. V.V. Kuybyshev)

SUBMITTED: June 5, 1961

Fig. 1:

Card 4/4

s/058/62/000/006/105/136 A062/A101

\$...

9,1700

AUTECH

Smirnov, V.F.

TIE

Directivity diagrams of horizontal ring antennas

FERIODICAL.

Referativnyy zhurnal, Fizika, no. 6, 1962, 16, abstract 6Zh113 ("Tr. Sibirsk, fiz. tekhn, in ta pri Tomskom un-te", 1960, no. 39, 72 - 76)

Results are given of a study of arrays of ring antennas, consisting TEXT · fazimuthally oriented vibrators, in which the current has an equal amplitude while the phase changes by $2\,\%$ along the circle on which they are arranged. An expression is actained for the electric field intensity of two vibrators arranged around a conducting cylinder. The current in the vibrators is distributed according to \sin max law, wherein a is the number of wavelengths that can be placed on the circle on which the vibrators are arranged. DirectMity diagrams are calculated for $\lambda/4$ vibrators at m = 0.4; 0.5; 1.0; 2.0; 3.00. It is noted that the directivity diagram which is near to the circular one ($E_{min}/E_{max}=0.7$) can be obtained by using two $\lambda/4$ vibrators, red in phase opposition. When increasing the length of the circle on which the vibrators are arranged, the directivity diagram objected at the nature.

compre translation)

FEL'DSHTEYN, A.L.; SMIRNOV, V.P.

Characteristic impedance of a rectangular wave guide. Radiotekhnika 18 no.4:78 Ap '63. (MIRA 16:5)

1, Deystvitel'nyy chlen Nauchno-tekhnicheskogo obshchestva radiotekhniki i elektrosvyazi imeni Popova. (Wave guides)

ACCESSION NR: AP4040750

s/0142/64/007/002/0171/0179

AUTHOR: Bobrovnikov, M. S.; Mironov, V. L.; Smirnov, V. P.

TITLE: Excitation of surface waves by a discretely-distributed non-projecting source

SOURCE: IVUZ. Radiotekhnika, v. 7, no. 2, 1964, 171-179

TOPIC TAGS: surface wave, directional pattern, antenna configuration, antenna directivity

ABSTRACT: An analysis is made of surface-wave launchers consisting of several arbitrarily spaced parallel unphased magnetic-current filaments imbedded in an impedance plane. The efficiency of surface-wave excitation of such a source is compared with that of a concentrated source. The amplitude ratios and phase relations at which no surface waves are excited, or at which the launched surface waves propagate in one direction only, are determined analytically. It is

Card 1/2

ACCESSION NR: AP4040750

shown in particular that in the case when there are only two current filaments, the surface-wave launching efficiency exceeds that of a concentrated source, and that directional launching of the surface waves is possible if the currents are properly phased. Orig. art. has: 10 figures and 16 formulas.

ASSOCIATION: None

SUBMITTED: 06Dec62

DATE ACQ:

ENCL: 00

SUB CODE: EC

NR REF SOV: 001

OTHER: 001

Card 2/2

I. 25751-65

ACCESSION NR: AP5002039

5/0142/64/007/005/0589/0596

AUTHOR: Bobrovnikov, M. S.; Mironov, V. L.; Smirnov, V. P.

TITLE: Exciting surface waves by continuously distributed nonsalient sources

SOURCE: IVUZ. Radiotekhnika, v. 7, no. 5, 1964, 589-596

TOPIC TAGS: surface wave, surface wave excitation

ABSTRACT: Two types are considered of continuously distributed nonsalient surface-wave exciters having spatial AM and FM of currents in the aperture of the source; these modulations permit attaining a high efficiency of excitation. One type permits obtaining a symmetrical excitation while the other, a directional excitation. Powers of two symmetrical surface waves, propagating to the right and to the left from the source, are given by formulas 17 and 18; the power of a directional surface wave is given by the integral formula 27. A practical realization of the surface-wave excitation is believed possible by using distributed-

Card 1/2

L 25751-65

ACCESSION NR: AP5002039

coupling systems (IRE Trans., 1961, MTT, v. 9, no. 6, 573). Orig. art. has:

8 figures and 34 formulas.

ASSOCIATION: none

SUBMITTED: 18Mar63

ENCL: 00

SUB CODE EC

NO REF SOV: 003

OTHER: 002

Card 2/2

SMIRNOV, Y.F., BODROVNIKOV, M.S.; GOSHIN, G.G.

Excitation of a system consisting of an impedance cylinder in an impedance plane by a magnetic current loop coaxial to the impedance cylinder. Radiotekh. i elektron. 9 no.10:1812-1820 C 'c4: (MIRA 17:11)

BOBROVNIKOV, M.S.; GOSHIN, G.G.; SMIRNOV, V.P.

Effective excitation of radial cylindrical surface waves.
Radiotekh. 1 elektron. 10 no.6:1023-1028 Je 165.

(MIRA 18:6)

Pd-1 DM UR/0089/65/018/005/0508/0509 EWT(1)/EWP(m)/EWA(d)/FCS(k)/EWA(1) ACCESSION NR: AP5020190 AUTHOR: Vilenskiy, V. D.; Smirnov, V. P. TITLE: Turbulent Couette flow SOURCE: Atomnaya energiya, v. 18, no. 5, 1965, 508-509 TOPIC TAGS: couette flow, turbulent flow, pressure gradient, flow velocity ABSTRACT: Couette flow in a flat duct under a longitudinal pressure gradient was studied considering the possibility of four types of flow based on the relation between the rate of motion at the wall and the magnitude and the direction of pressure gradient. Orig. art. has: 2 graphs, 1 formula. ASSOCIATION: none SUB CODE: ME ENCL: 00 SUBMITTED: 14Nov64 NA NR REF SOV: 000 OTHER: 000 SR. Card

FEL DSHTEYN, Aleksandr L'vovich; YAVICH, Lev Rafaelovich; SMIRNOV,
Vitaliy Petrovich; PERETS, R.I., red.; BUL'DYAYEV, W.A.,
tekhn. red.

[Manual on the elements of waveguide technology] Spravochnik po elementam volnovodnoi tekhniki. Moskva, Gosenergoizdat, 1963. 359 p. (MIRA 17:2)

SMIRNOV, V.P., inzhener, redakter; PEVZNER, A.S., redakter; TOKER, A.M., tekhnicheskiy redakter; SMOL'YAKOVA, M.V., tekhnicheskiy redakter.

是一个人,不是一个人,不是一个人,我们们也不会们,我们们也没有的人的人,我们也没有的人,我们就是我们的人,我们也没有一个人,我们也会会的一个人,我们也会会会的一个人

[Fire prevention norms in planning the construction of lumber-yards] Protivopozharnye normy stroitel'nego proektirovania skladov lesnykh materialov (N129-55). Moskva, Ges.izd-ve lit-ry pe stroit. i arkhitekture, 1955. 24 p. (MLRA 9:6)

1.Russia (1923- U.S.S.R.) Gosudarstvennyy komitet pe delam streitel'stva. (Fire prevention--Laws and regulations) (Lumberyards)