

Department of Mathematics, IIT Patna MA - 101: Mathematics-I (MSE-Paper)

Time: 2 Hours

Maximum Marks: 30

Roll No .:

There are Twelve questions in this paper. Attempt all questions. No mark will be awarded for answers without proper justification.

- (1) Prove that the supremum of a non-empty bounded set which is not an element of the set is a cluster point of the set. Give an example of a non-empty set whose supremum is a member of the set but not the cluster point of the set.

 [3]
- (2) Let $X = (x_n)$ be a sequence of reals that converges to x and suppose that $x_n \ge 0$. Then, prove that the sequence $(\sqrt{x_n})$ of positive square roots converges and $\lim(\sqrt{x_n}) = \sqrt{x}$. [3]
- (3) Discuss the nature of the series

$$\frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots; \ x > 0$$

[3]

- (4) Let I = [a, b] be closed bounded interval and let $f: I \to \mathbb{R}$ be a continuous function. Then prove that f is bounded on I. Further, give an example of a discontinuous function which is defined on a closed bounded interval but which is unbounded. [4]
- (5) Let $f:[a,b] \to \mathbb{R}$ be continuous at a point c where a < c < b and $f(c) \neq 0$ then there exists a $\delta > 0$ such that f(x) has the same sign as f(c) for all $x \in (c \delta, c + \delta)$. [3]
- (6) (a) Using the definition of a limit of a sequence show that $\lim_{\log(n+1)} = 0$. [2]
 - (b) Suppose that $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and that f(r) = 0 for every rational number r. Prove that f(x) = 0 for all $x \in \mathbb{R}$.
- (7) Write the MVT. Using this prove that $f' = g' \Rightarrow f = g + c$, where c is a constant. [1.5]
- For a function f, it is given that f(0) = 1, $f'(x) = \frac{1}{1+x}$. Find constant bounds A and B such that $A \le f(4) \le B$. [Hint: Use MVT]
- (9) Using Cauchy's MVT prove the L'Hospital rule under the required conditions to evaluate $\lim_{x\to a} \frac{f(x)}{g(x)}$ in case of $\frac{0}{0}$ and a is finite. [2]
- (10) Using all the steps of the graphing procedure, trace the curve $f(x) = \frac{x}{\ln x}$; x > 0. [2].
- (11) Assuming that the petrol burnt (per hour) in driving a motor boat varies as the cube of its velocity, show that the most economical speed when going against a current of c km/h is $\frac{3c}{2} \text{ km/h}$. [2].
- (12) Using Newton method find positive root of equation $x^2 = 5$. (Apply 2 iterations only). [1]