Nested Models and Simulated Out-of-Sample Data

Nina Zumel Win-Vector, LLC

Outline

- What are Nested Models
 - Why do we care?
 - Types of Nested Models
- Examples of What Can Go Wrong
- Solutions
- Conclusion

What do We Mean by Nested Models?

- Use data to train several base models to predict outcome
- Use a "meta-model" to combine the base models' predictions into an overall prediction

Pro and Con

- Pro: Ensembles and Stacked models can improve performance over single models
 - Diversity of learning biases
- · Con: They can also produce inferior overall models
 - We'll cover ways to avoid this in this talk

- Any nested model can introduce undesirable bias, to a greater or lesser degree
- But nested models are useful and they are already everywhere
- This is basic statistical material, but it takes some care to properly apply it to modern data science workflows

Types of Nested Models

Ensemble Learning

- Boosting (AdaBoost 1996, Gradient Boosting 1999)
- Bagging (1996)
- Random Forest (1995)
- Several diverse (usually) low-complexity learners that vote on outcome (sum, weighted sum)
- Different algorithms: different ways of getting diversity

Stacked Models

- Wolpert, 1992; Breiman, 1996
- Super Learner (van der Laan, 2007)
- Extension of hyper-parameter tuning
- Strong learners, highercomplexity meta-model

Mixture of Experts

- Jacobs, 1991
- Data fusion, Sensor fusion
- Base models combined by weighted sum
- Weights are per-example (gating function)
- Often neural-net based

Other "nested models"

Any pre-model-fitting task that uses knowledge of outcome is a nested model

- Variable treatment
- Hyperparameter tuning
- Variable selection/stepwise methods
- Y-aware dimension reduction
- Y-aware scaling
 - http://www.win-vector.com/blog/2016/05/pcr_part2_yaware/

Example 1: Super Learner

- H2OEnsemble (R)
 - https://github.com/h2oai/h2o-3/ tree/master/h2o-r/ensemble
- Manages training of base models and meta-model to combine them
- Alternatives: SuperLearner,
 MLR (both in CRAN)

(Image: H2OEnsemble github)

The Prediction Task

- Predict whether a seismic event will occur in the next time interval
- 2584 rows, 19 features, ~6.5% target class prevalence
- http://archive.ics.uci.edu/ml/datasets/seismic-bumps

How It Can Fail

- Base learners:
 - Random Forest
 - Gradient Boosting
 - Logistic Regression (Elastic Net)
 - Deep Learning NN
- Meta-learner: Random Forest
- Base learners: AUC in 0.65-0.71 range (test set)
- Ensemble: AUC 0.61 on test

Issue: Meta-model complexity

- High-complexity meta-model can overfit
 - "Explain" unexplainable variance in training data
- Low-complexity meta-models have bounded excess generalization error
- Base models correlated
- Prefer non-negative weighted sum, or ridge regression
- AUC(RF) = 0.61; AUC(glm) = 0.73

Example 2: Effects/Impact Coding

- For categorical variables with many levels.
 - K levels = K-1 indicator vars
- Re-encode the categorical variable as a few numerical variables.

ZIP	PriceK	•••	SoldInMon
94127	\$1,122		Yes
94117	\$1,296		No
94127	\$1,370		Yes
94118	\$1,325		No

The Prediction Task

- Predict whether a listed house will sell within a month
- Input: ZIP, list price
- · 1000 houses, 100 zip codes
- P(sold) weakly dependent on price
- P(sold) independent of ZIP

Impact Model

ZIP	P(SoldIn Mon)	Impact
94117	0.6	0.2
94118	0.34	-0.06
94121	0.16	-0.24
94127	0.72	0.32
94132	1.0	0.6
Overall	0.4	0

ZIP	N_SoldIn Month	N_NotSold InMonth	LogDiff	IsRare
94117	60	40	0.41	No
94118	68	132	-0.66	No
94121	8	42	-1.6	No
94127	108	42	0.94	No
94132	1	0	1E+06	Yes

(Alternative model: count sold/not sold)

How It Can Fail

- Use training data to effects code
- Train a logistic regression model to predict
- AUC(Train) = 0.75
- AUC(Test) = 0.64
- Overfit

Issue: Nested Model Bias

```
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.01213 1.06276 8.480 < 2e-16 ***
## log(price) -0.73513 0.08693 -8.456 < 2e-16 ***
## zip_impact 0.98732 0.12683 7.785 6.99e-15 ***</pre>
```

- Effects model can memorize the training data
 - Rare levels
 - "Houses in 94132 always sell in a month"
- Full model may overestimate the value of effects-coded variable
 - Overfit

Hidden Degrees of Freedom

- High-complexity impact model posing as a lowcomplexity single variable.
- Same thing can happen when naively stacking models

True Complexity of ZIP variable

```
mod1 = glm(sold~zip, data=train,
family=binomial)

## [1] "Complexity (degrees of freedom): 96"

## [1] "% deviance explained: 20.8%"

## [1] "p-value on Chi^2 Test on model:
0.0725"
```

Apparent Complexity of ZIP (zip-impact)

```
mod2 = glm(sold~zip_impact, data=train,
family=binomial)
## [1] "Complexity (degrees of freedom): 1"
## [1] "% deviance explained: 7%"
## [1] "p-value on Chi^2 Test on model:
3.68e-10"
```


Why Do We Not Always Notice?

- 1. Problem not as obvious with ensembles
 - Lower complexity base models, simple model combination
 - Stacked learning: Higher-complexity models
- 2. We have noticed, we just ignore it.
 - Random Forests do tend to overfit

Solution 1: Train Base models on Different Data

- Split training set into train/ calibration
- Fit effects coding on calibration
- Train model on train
- AUC(Train) = 0.71, AUC(Test)=0.69
 - (vs 0.64 naive coding)

Solution 2: Simulate training models on different data

Impact Coding: CrossFrames

Data preparation package vtreat

- Fits impact code on training data
- Creates "CrossFrame" impact coding for fitting model
- AUC(Train) = 0.7, AUC(Test)=0.69
 (vs 0.64 naive coding)

Solution 3: Noise the Observations

Add noise to training data before passing to effects coding

ZIP code example

- Add synthetic observations to training data
- Use noisy training data to effects code, clean training data to model
- AUC(Train) = 0.71, AUC(Test)=0.68
 (vs 0.64 naive coding)

Differential Privacy

- Bilenko, Misha. "Big Learning made Easy with Counts!" *Machine Learning Blog* http://blogs.technet.com/b/machinelearning/archive/2015/02/17/big-learning-made-easy-with-counts.aspx
- Dwork, Cynthia, et.al. "The reusable holdout: Preserving validity in adaptive data analysis", Science, vol 349, no 6248 pp 636-638, August 2015.
 - Abstract: https://www.sciencemag.org/content/349/6248/636.abstract
- http://www.win-vector.com/blog/2015/11/our-differential-privacy-miniseries/

What about Smoothing/Regularization?

- Obscures rare values should work, right?
- •All three methods outperform Laplace smoothing/regularization
- The meta-model can sometimes undo smoothing
 - Performs no better than naive effects coding

Summary

- Training data reuse increases nested model bias.
- High-complexity models (base or meta) increase nested model bias.
- Use (simulated) out-of-sample data for meta-model training.
- Prefer lower-complexity models when feasible.

Nested Model Workflow

- 1. Use training data to train base models
- 2. Create (simulated) out-of-sample base model features
 - Calibration set; cross-frame; Laplacian noise
- 3. Train meta-model on out-of-sample features

	Base Model	Meta Model
Ensembles	(Usually) Low comp.	Sum (oblivious/"no complexity")
Stacked models	Arbitrary (High comp.)	Arbitrary (prefer Lower comp.)
Impact Coding	Impact code (High comp) Numerical var (Low comp)	Arbitrary (High comp)

	Base Model	Meta Model
Hyperparameter tuning	Arbitrary w/ varying ρ (high comp.)	Pick best ρ
Variable selection	Numerical var (low comp.) Categorical var (high comp) Model algo (prefer lower comp)	
Stepwise methods	Wariae With #Warei	Pick best (multiple times) (Very high complexity)

More Information

- Examples from talk: https://github.com/WinVector/NestedModelsTalk
- Cross-frames for impact coding (vtreat)
 - http://winvector.github.io/vtreathtml/vtreatCrossFrames.html
 - vtreat on CRAN
- Breiman, Leo. "Stacked Regressions," *Machine Learning, 24* p. 49-64 (1996). http://statistics.berkeley.edu/sites/default/files/tech-reports/367.pdf
- van der Laan, Alan, et.al. *Super Learner*. http://biostats.bepress.com/ucbbiostat/paper222/

Thank You!

