Exploring Weather Trends

MAY 31, 2020

Mridul Sharma

New Delhi, 201301

Overview

I have been provided the temperature database from the udacity's project space from where I have extracted the data related to global temperature and my city temperature. I analyzed the temperature around the global with the city I live in by extracting the data from the database.

Goals

- 1. Extraction of data from the database and export to CSV file
- 2. Making a chart visualization based on extracted data
- 3. Observation based on chart

Tools Used:

- 1. SQL: To extract the data from the database
- 2. Python: For calculating moving average and plotting line chart (Pandas library for data processing and *matplotlib* for data visualization.
- 3. Jupyter Notebook: For writing python code and making observations
- 4. Google Sheets: Having a look at the data and writing project

STEP 1 - Extraction of Data from provided Database

```
SELECT *

FROM city_list

WHERE country = 'India'

{NOTE: i think the most preferable state is new delhi}

SELECT

c.year "Year",

c.avg_temp "New Delhi",

g.avg_temp "Global"

FROM global_data g

JOIN city_data c ON c.year = g.year
```

WHERE c.city = 'New Delhi'

The data was obtained as a CSV file named results.csv and the same was used for further analysis.

STEP 2 - Analyzing the CSV File

I selected Python for data processing and visualisation for this task.

I chose <u>pandas</u> library for data processing and <u>matplotlib</u> for visualisation. All operations were done in <u>Jupyter Notebooks</u> to create this document.

A- Importing the libraries

import matplotlib.pyplot as plt import pandas as pd %matplotlib inline

B- Creating Pandas Dataframe

py = pd.read_csv("results.csv")

C- <u>Getting insights from the data</u>

py.head()

	Year	New Delhi	Global
0	1796	25.03	8.27
1	1797	26.71	8.51
2	1798	24.29	8.67
3	1799	25.28	8.51
4	1800	25.21	8.48

py.columns.unique()

Removing Whitespace from Column names:

py.columns = ['Year', 'NewDelhi', 'Global']
py.info()

py.describe()

	Year	NewDelhi	Global
count	218.000000	201.000000	218.000000
mean	1904.500000	25.166269	8.403532
std	63.075352	0.594003	0.548662
min	1796.000000	23.700000	6.860000
25%	1850.250000	24.800000	8.092500
50%	1904.500000	25.140000	8.415000
75%	1958.750000	25.550000	8.727500
max	2013.000000	26.710000	9.730000

Removing NA values using dropna function:

py.dropna(axis=0, how='any', thresh=None, subset=None, inplace=True)

D- Calculating Moving Average using Rolling and Mean function

Using Window=10 sets a 10-year window for the moving average. This value was used because it smoothed the result chart optimally for further analysis among a set of other values.

```
py['NewDelhi'] = py.rolling(window=10)['NewDelhi'].mean()
py['Global'] = py.rolling(window=10)['Global'].mean()
```

E- Configuring Parameters of the Graph

```
params = {
   'legend.fontsize': 24,
   'figure.figsize': (18, 10),
   'axes.labelsize': 20,
   'axes.titlesize': 20,
    'xtick.labelsize': 'x-large',
   'ytick.labelsize': 'x-large'
}
plt.rcParams.update(params)
plt.title('\nLine Chart of New Delhi vs. Global Temperature')
plt.ylabel('Temperature')
plt.xlabel('Year')
plt.xticks(np.arange(1800, 2013, step=10))
plt.plot(py.Year, py.NewDelhi, linewidth=4, color='Red', ls = 'dashdot', label='New Delhi')
plt.plot(py.Year, py.Global, linewidth=4, color='green', ls = 'dashdot', label='Global')
plt.grid(True)
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.show()
```

F- Plotting the Line Chart

```
plt.plot(py.Year, py.NewDelhi, linewidth=4, color='Red', ls = '—', label='New Delhi')
plt.plot(py.Year, py.Global, linewidth=4, label='Global')
plt.grid(True)
Legend:
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.show()
```


OBSERVATIONS

- 1.In contrary to Global average, the city's temperature is considerably higher i.e. on an average, it is almost 17 degrees hotter than global average.
- 2. However, after observing the graph, it is clear that the temperature of the city as well as the Global temperature have risen steadily throughout the years.
- 3. The temperature has risen 3 degrees while the global temperature has also increased by an equivalent amount. This is evident from the Min and Max temperature recordings.
- 4. The ratio of the temperatures of the city and global average is also almost equal to 3 degrees i.e. the city's average temperature is almost 3 times the global average.
- 5. The Correlation coefficient between city's and Global temperature is 0.76 so we can conclude it is a positive but weak relationship and hence the temperature of the city cannot be estimated based on Global temperature.

References:

https://en.wikipedia.org/wiki/Climate_of_Delhi

https://www.yr.no/place/India/Delhi/New_Delhi/statistics.html