PHYS 631: Quantum Mechanics I (Fall 2020) Exercises 5 October 2020 (Monday, Week 2) Due Monday, 12 October 2020

Note: Remember that you'll submit the exercises together for the entire week, as a single pdf file, by next Monday.

Exercise 1. For a Hermitian operator Q with distinct eigenvalues q_1 and q_2 , prove that the corresponding eigenvectors $|q_1\rangle$ and $|q_2\rangle$ are orthogonal.

Hint: compute $\langle q_2|Q|q_1\rangle$ two ways.

Exercise 2. For a Hermitian operator Q with eigenvalues q_n (assume distinct eigenvalues for simplicity), prove that the eigenvectors are complete: any vector can be written as a superposition of the form

$$|\psi\rangle = \sum_{n} c_n |q_n\rangle. \tag{1}$$

To to this, define

$$|\psi'\rangle := |\psi\rangle - \sum_{n} \langle q_n |\psi\rangle |q_n\rangle,$$
 (2)

and compute $\langle \psi' | \psi' \rangle$. You should be able to show that $| \psi' \rangle$ is the null vector, which proves the result.