

Integrated circuits

Book IC01N New series

1985

Radio, audio and associated systems

Bipolar, MOS

NEW HANDBOOK SERIES

Elcoma – Philips Electronic Components and Materials Division – embraces a world-wide group of companies operating under the following names:

IBRAPE
Miniwatt
Signetics
Mullard
PHILIPS

Elcoma offers you a technological partnership in developing your systems to the full. A partnership to which we can bring

- world-wide production and marketing
- know-how
- systems approach
- continuity
- broad product line
- fundamental research
- leading technologies
- applications support
- quality

RADIO, AUDIO AND ASSOCIATED SYSTEMS BIPOLAR, MOS

	page
ntroduction	1
Selection guide	
Functional index	5
Numerical index	11
General	
Type designation	19
Rating systems	21
Handling MOS devices	
Device data	27
Package outlines	737

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating		
T2a	Transmitting tubes fo	or communications, glass types	
T2b	Transmitting tubes fo	r communications, ceramic types	
T3	Klystrons		
T4	Magnetrons for micro	wave heating	
T5	Cathode-ray tubes Instrument tubes, mo	nitor and display tubes, C.R. tubes for spe	ecial applications
T6	Geiger-Müller tubes		
T7	Gas-filled tubes (will r	not be reprinted)	
T8	graphic display, mono television, component	bes, black and white TV picture tubes, col echrome monitor tubes for data graphic di is for black and white television and mono	our monitor tubes for data splay, components for colour chrome data graphic display
Т9		procedure a missido of word no time exhaudione ultipliers, wood shed soft no basel another.	
T10	Plumbicon camera tub	nord between ad live as truppes bas solver pes and accessories	
T11	Microwave semicondu	ctors and components	
T12	Vidicon and Newvicor	n camera tubes	
T13	Image intensifiers		
T14	Infrared detectors	Data collations on these subjects are Data Handbooks will be published in	
T15	Dry reed switches	= === rialidooki viii oo pablished iii	1000.
T16	Manachroma tubos an	d dofloction units	

Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 bet	Diodes Small-signal germanium diodes, small-signal sil voltage reference diodes, tuner diodes, rectifie	icon diodes, voltage regulator diodes (< 1,5	5 W),
S2a	Power diodes		
S2b	Thyristors and triacs		
S3	Small-signal transistors		
S4a	Low-frequency power transistors and hybrid r		
S4b	High-voltage and switching power transistors		
S5	Field-effect transistors		
S6	R.F. power transistors and modules		
S7 0	Surface mounted semiconductors		
S8 01	Devices for optoelectronics Photosensitive diodes and transistors, light-emsensitive devices, photoconductive devices.	itting diodes, displays, photocouplers, infra	red
S9	Power MOS transistors		
S10	Wideband transistors and wideband hybrid IC	modules	
S11	Microwave semiconductors (to be published in At present available in Handbook T11	this series in 1985)	
S12	Surface acoustic wave devices		

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXIST	ING SERIES		Superse	ded by:
IC1	Bipolar ICs for radio and audio equipment			IC01N
IC2	Bipolar ICs for video equipment			IC02N
IC3	ICs for digital systems in radio, audio and v	ideo equipment	and bas ICO1N and	I ICO2N
IC4	Digital integrated circuits CMOS HE4000B family			
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX		designs	IC08N
IC6	Professional analogue integrated circuits			
IC7	Signetics bipolar memories			
IC8	Signetics analogue circuits			IC11N
IC9	Signetics TTL logic		ICO9N and	
IC10	Signetics Integrated Fuse Logic (IFL)			
IC11	Microprocessors, microcomputers and perip	heral circuitry		

NEW SE	RIES	
IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
IC02N	Video and associated systems Bipolar, MOS	(published 1985)
IC03N	Telephony equipment Bipolar, MOS	(published 1985)
IC04N	HE4000B logic family more souther valid masses furging larges halved a menu CMOS	
IC05N	HE4000B logic family uncased integrated circuits CMOS	
IC06N	High-speed CMOS; PC54/74HC/HCT/HCU Logic family	(published 1985)
IC07N	PC54/74HC/HCU/HCT uncased integrated circuits HCMOS	
IC08N	10K and 100K logic family ECL	(published 1984)
IC09N	Logic series TTL TTL TTL TTL TTL TTL TTL TTL TTL TT	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Linear LSI exoriongeo billos bos	(published 1985)
IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS	
IC13N	Semi-custom Integrated Fuse Logic	(published 1985)
IC14N	Microprocessors microcontrollers & peripherals	
IC15N	Logic series FAST TTL applied Jucoff agree-09, 18, 00 and ROM agree 0	(published 1094)
Note		
Books av	vailable in the new series are shown with their date of publication.	

COMPONENTS AND MATERIALS (GREEN SERIES)

The g	reen series of data handbooks comprises:		
C1	Programmable controller modules PLC modules, PC20 modules		
C2	Television tuners, coaxial aerial input ass	emblies, surface acoustic wave filters	
C3	Loudspeakers		
C4	Ferroxcube potcores, square cores and cr	ross cores at bearing visual signi acons an	
C5	Ferroxcube for power, audio/video and a		
C6	Synchronous motors and gearboxes		
C7	Variable capacitors	The second secon	
C8	Variable mains transformers		
C9	Piezoelectric quartz devices		
C10	Connectors		
C11	Non-linear resistors Voltage dependent resistors (VDR), light coefficient thermistors (NTC), positive te	dependent resistors (LDR), negative tempera emperature coefficient thermistors (PTC)	ture
C12	Potentiometers, encoders and switches		
C13	Fixed resistors		
C14	Electrolytic and solid capacitors		
C15	Ceramic capacitors		
C16	Permanent magnet materials		
C17	Stepping motors and associated electroni		
C18	Direct current motors		
C19	Piezoelectric ceramics		
C20	Wire-wound components for TVs and mo		
C21	Assemblies for industrial use HNIL FZ/30 series, NORbits 60-, 61-, 90		
C22	Film capacitors		

INTRODUCTION

This new edition of the data handbook for radio, audio and associated systems has been expanded to include MOS as well as bipolar integrated circuits as the use of MOS circuits in radio and audio equipment is becoming more and more widespread (remote control, digital tuning, etc.).

This volume contains an index, associated information and package outlines.

The data handbook now includes dedicated radio, audio circuits and general purpose products (microcontrollers, display circuits, etc.) that find application in these systems. Full specifications are provided for the dedicated circuits; in some cases the general purpose circuits have short-form specifications. More detailed information can be found in the relevant data sheets and handbooks.

I²C bus compatible ICs

Some of the ICs in this handbook are I²C bus compatible (indicated by the logo shown below). The following clause applies:

Purchase of Philips' I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specifications defined by Philips.

INTRODUCTION

This new edition of the data handbook for radio, audio and associated systems has been expanded to include MOS as well as bipolar integrated circuits as the use of MOS circuits in radio and audio equipment is becoming more and more videspread (remote control, digital tuning, etc.).

This volume contains an index, associated information and package outlines

The data handbook now includes dedicated radio, audio circuits and general purpose products (microcontrollers, display circuits, etc.) that find application in these systems. Full specifications are provided for the dedicated circuits; in some cases the general purpose circuits have short-form specifications. More detailed information can be found in the relevant data sheets and handbooks.

PC bus compatible IC:

Some of the ICs in this handbook are I²C bus compatible (indicated by the logo shown below). The following clause applies:

Purchase of Philips' 1°C components conveys a license under the Philips' 1°C patent to use the components in the 1°C system provided the system conforms to the 1°C specifications defined by Philips. FUNCTIONAL AND NUMERICAL INDEX

	SELECTION GUIDE BY FUNCTION	
86	PLL frequency synthesizer	SAA1056P
type number	description (ITOMY2) resisentings vaneuper LLIA grinning orber	page
AM channels		
TDA1072A	AM receiver circuit 20 3.0 = 68 48 vd rebivio xHD 1 evisiones	421
TEA5550	AM car radio receiver circuit	681
TEA5570	RF/IF circuit for AM/FM radio Circuit MA bestages at	Ava 705
FM channels		
TCA420A	FM/IF combination and lostrop general sonaled beas emuloy as be-	A 245
TDA1574	integrated FM tuner for radio circuits	
TDA1576	FM/IF amplifier (glegopsto owd x A) dotiwe aspurce isopia	547
TDA7000	FM radio circuit; f _i = 70 kHz; V _o = 75 mV; DIL-18	A 4 609
TDA7010T	FM radio circuit; $f_i = 70 \text{ kHz}$; $V_0 = 75 \text{ mV}$; SO-16	A450 617
TDA7020T	FM stereo/mono radio circuit; f _i = 76 kHz; V _o = 90 mV	625
TEA5560	FM/IF system gar gluonis neitoubs seion 388 *valio	693
TEA5570	RF/IF circuit for AM/FM radio	705
TEA6000	FM/IF system and μ C-based tuning interface; I ² C bus compatible	723
AM/FM combined	Dolby* B&C switch and preamplifler Dolby* B&C noise reduction circuit	
TEA5570	RF/IF circuit for AM/FM radio	705
12710070	frequency response in relation to TEADEGS; T	705
Stereo decoders		
TDA1005A; AT	frequency multiplex PLL stereo decoder	307
TDA1578A	time multiplex PLL stereo decoder	A0 10 559
TEA5580	PLL stereo decoder anotherlags bellenism of refligms	719
		DA1011-
Interference suppr	2 to 6 W audio power amplifier, Vo > 1,2 V (preemplifier snozer	
TDA1001B; BT	interference and noise suppression circuit for FM receivers	287

Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Fransisco.
 California (U.S.A.).

type number	description	page
Tuning circuits		
HEF4750V	frequency synthesizer	27
HEF4751V	universal divider	29
SAA1056P	PLL frequency synthesizer	99
SAA1057	radio tuning PLL frequency synthesizer (SYMO II)	107
SAA1300	tuner switching circuit	143
SAB1164P	sensitive 1 GHz divider-by-64; $R_0 = 1 \text{ k}\Omega$	211
SAB1165P	sensitive 1 GHz divider-by-64; $R_0 = 0.5 \text{ k}\Omega_{100000000000000000000000000000000000$	211
SAB1256P	sensitive 1 GHz divider-by-256	213
TDA1574	integrated FM tuner for radio circuits TMA 101 HU0H0 THER	539
DC controlled au	dio circuits	
TCA730A -	-d.c. volume and balance stereo control circuit	263
	d.c. treble and bass stereo control circuit	277
TDA1029	signal-sources switch (4 x two channels)	395
TDA1074A -	dual tandem electronic potentiometer circuit	437
TDA1524A	stereo-tone/volume control circuit	507
TDA3810	spatial, stereo and pseudo-stereo sound circuit	605
TEA0651	Dolby* B&C noise reduction circuit; THD max. 0,1%	637
TEA0652	Dolby* B&C noise reduction circuit; THD max. 0,2%	637
TEA0653T	Dolby* B noise reduction circuit; 2-channel	655
TEA0654	Dolby* B&C switch and preamplifier	637
TEA0665; T	Dolby* B&C noise reduction circuit	661
TEA0666; T	Dolby* B&C noise reduction circuit; changed	
	frequency response in relation to TEA0665; T	671
Audio power amp	olifiers neboseb oareta JJ9 velgiflum voneupert	
TDA1010A	6 W audio power amplifier in car and 10 W audio power	
	amplifier in mains-fed applications	327
TDA1011	2 to 6 W audio power amplifier; V _O > 0,7 V (preamplifier)	345
TDA1011A	2 to 6 W audio power amplifier; $V_0 > 1.2 \text{ V}$ (preamplifier)	357
TDA1013A	4 W audio power amplifier with d.c. volume control	369
TDA1015	1 to 4 W audio power amplifier	373
TDA1020	12 W car radio power amplifier	389
TDA1510	24 W BTL or 2 x 12 W stereo car radio power amplifier	467
TDA1512; Q	12 to 20 W hi-fi audio power amplifier	473
TDA1515A TDA1520; Q	24 W BTL or 2 x 12 W stereo car radio power amplifier 20 W hi-fi audio power amplifier; I _{fot} = 54 mA	470 485
TDA1520A; AQ TDA2611A	20 W hi-fi audio power amplifier; I _{tot} = 70 mA 5 W audio power amplifier	491
TDA7050T	mono/stereo power amplifier (low voltage)	591 633

^{*} Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Fransisco, California (U.S.A.).

INDEX

type number	description	page
Recorder (cassette	e) amplifiers/control circuits	
TDA1002A	recording and playback amplifier	297
TDA1012	recording/playback and 2 W audio power amplifier	365
TDA1016	recording/playback and 2 W audio power amplifier with thermal	protection 383
TDA1508	auto-reverse car radio cassette deck steering circuit	459
TDA1522		497
Motor speed cont	rol circuits notificated operation transmitter for infrared operations	
SAK150BT	low voltage infrared remots control transmitter (RC-5)	800EAA2
161		217
TDA1059B	motor speed regulator with thermal shut-down ($V_{ref} = 1,3 \text{ V}$)	409
TDA1059C	motor speed regulator (V _{ref} = 1,1 V)	415
TDA1506	motor regulator and function controller for car cassette systems	447
TDA1533	PLL motor speed control circuit for hi-fi applications	519
TDA1559A	motor speed regulator	melloning 531
Display drivers		
PCF2100	LCD duplex driver; 40 segments	MA884018; WP
PCF2110	LCD duplex driver; 40 segments and 2 LEDs	67
PCF2111	LCD duplex driver; 64 segments	69
PCF2112	LCD driver; 32 segments	71
PCF8576	universal LCD driver for low multiplex rates	93CA9 73
. 01 0070	(1 · 1 to 1 · 4) · I ² C bus interface	95
PCF8577	LCD direct driver (32 segments) or duplex	
		97
SAA1060	single critic art work statement average and single	
SAA1062A; AT	LED display/interface circuit LCD display/interface circuit	117
SAA1063	fluorescent display/interface circuit	119
Additional option	al circuits	
PCF8573	clock/calendar with serial I/O; I ² C bus interface	95548 91

INDEX

type number	description	page
Remote control sy	ystems artiumia lonnios\rieftitiques (
General purpose		
SAF1032P	receiver/decoder for infrared operation	215
SAF1039P	remote transmitter for infrared operation	215
Sophisticated syst	stereo casatte head preamplifier and equalizer	
SAA3004	remote control transmitter for infrared operation	147
SAA3006	low voltage infrared remote control transmitter (RC-5)	149
SAA3027	infrared remote control transmitter (RC-5)	151
SAA3028	infrared remote control transcoder (RC-5); I ² C bus compatible	153
TDA3047	infrared receiver circuit; V _O = positive	601
TDA3048	infrared receiver circuit; V _O = negative	603
Microcontrollers		
MAB8400B; WP	single-chip 8-bit μC; 128 RAM bytes	31
MAB8401B; WP	like MAB8400 but with 8-bit LED-driver	31
MAB8411P; T	single-chip 8-bit μ C; 1K ROM/64 RAM bytes	31
MAB8421P; T	single-chip 8-bit μC; 2K ROM/64 RAM bytes	
PF	plus 8-bit LED driver	31
MAB8422P	single-chip 8-bit μC; 2K ROM/64 RAM bytes	33
MAB8441P; T	single-chip 8-bit μC; 4K ROM/128 RAM bytes plus 8-bit LED driver	21
MAB8442P	single-chip 8-bit μC; 4K ROM/128 RAM bytes	31
MAB8461P	single-chip 8-bit µC; 6K ROM/128 RAM bytes	55
117	plus 8-bit LED driver than sost samily signib G3.1	000131
MAF8411P	single-chip 8-bit μC; 1K ROM/64 RAM bytes;	
121	extended temperature	31
MAF8421P	single-chip 8-bit μC; 2K ROM/64 RAM bytes	
	plus 8-bit LED-driver; extended temperature	31
MAF8422P	single-chip 8-bit μC; 2K ROM/64 RAM bytes;	
MAFOAAOOD	extended temperature	33
MAF84A22P	single-chip 8-bit μC; 2K ROM/64 RAM bytes;	22
MAF8441P	reduced frequency; extended temperature single-chip 8-bit μC; 4K ROM/128 RAM bytes	33
	plus 8-bit LED driver; extended temperature	31
MAF8442P	single-chip 8-bit μC; 4K ROM/128 RAM bytes;	
	extended temperature	33
MAF84A42P	single-chip 8-bit μC; 4K ROM/128 RAM bytes;	
	reduced frequency; extended temperature	33
MAF8461P	single-chip 8-bit μC; 6K ROM/128 RAM bytes	
	plus 8-bit LED driver; extended temperature	31

type number	description	page
Compact Disc di	gital audio circuits	
SAA7000	interpolation and muting circuit for CD*	155
SAA7010 SAA7011	demodulator for CD*; Z_0 typical 5 k Ω demodulator for CD*; Z_0 typical 15 k Ω	165
SAA7011	error corrector for CD*	177 189
SAA7030	digital filter for CD*	203
TDA1540D; P	14-bit DAC with 85 dB S/N ratio	525
Speech synthesiz	zers	
MEA8000	voice synthesizer	35
OM8200	low cost speech demonstration board	55
OM8201	speech demonstration box	59
OM8210	speech analysis/editing system	61
PCF8200	voice synthesizer (2nd generation)	75
8.4° 11		
Miscellaneous		
OM200/S2	integrated amplifier for use in hearing aids	49
SAA1099	stereo sound generator for sound effects	
	and music synthesis; μC controlled	127
PCD8571	128 x 8-bit static RAM; I ² C bus interface	65
PCF8570	256 x 8-bit static RAM; I ² C bus interface	89
PCF8574	remote 8-bit I/O for I ² C bus	93
TAA263	low-level amplifier	225
TAA320	integrated MOST amplifier	229
TAA320A	integrated MOST level sensor	239
TDA1579	traffic warning (VWF) decoder circuit	573
TDA1589	traffic control messages and warning tone circuit	583

^{*} Compact Disc digital audio system.

900 voice synthesizer (2nd generation)	

^{*} Compact Disc digital audio system

NUMERICAL INDEX

type number	description description	package	page
HEF4750VD	frequency synthesizer	SOT-135A	27
HEF4751VP	universal divider	SOT-117	29
HEF4751VD	universal divider	SOT-135A	29
HEF4751VT	Tuniversal divider	SO-28; SOT-136A	29
MAB8400B	single-chip 8-bit μC; 128 RAM bytes	28/28 "Piggy back"	31
MAB8400WP	single-chip 8-bit μC; 128 RAM bytes	68-PLCC; SOT-188A	31
MAB8401B	like MAB8400 but with 8-bit LED driver	28/28 "Piggy back"	31
MAB8401WP	like MAB8400 but with 8-bit LED-driver	68-PLCC; SOT-188A	31
MAB8411P	single-chip 8-bit μC; 1K ROM/64 RAM bytes	SOT-117A	31
MAB8411T MAB8421P	single-chip 8-bit μC; 1K ROM/64 RAM bytes single-chip 8-bit μC; 2K ROM/64 RAM bytes	SO-28;SOT-136A	31
68	plus 8-bit LED driver	SOT-117A	31
MAB8421T	single-chip 8-bit μC; 2K ROM/64 RAM bytes	IBIS IND-8 X OOS 1001	
16	plus 8-bit LED driver	SO-28; SOT-136A	31
MAB8422P MAB8441P	single-chip 8-bit μC; 2K ROM/64 RAM bytes single-chip 8-bit μC; 4K ROM/128 RAM bytes	SOT-146	33
	plus 8-bit LED driver	SOT-117A	31
MAB8441T	single-chip 8-bit μC; 4K ROM/128 RAM bytes		
	plus 8-bit LED driver	SO-28; SOT-136A	31
MAB8442P	single-chip 8-bit μC; 4K ROM/128 RAM bytes	SOT-146	33
//AB8461P	single-chip 8-bit μC; 6K ROM/128 RAM bytes	MIND COT LOS I TA TES	
	plus 8-bit LED driver	SOT-117A	31
//AF8411P	single-chip 8-bit μC; 1K ROM/64 RAM bytes;		
	extended temperature	SOT-117A	31
//AF8421P	single-chip 8-bit μ C; 2K ROM/64 RAM bytes		
4 A F O 4 O O D	plus 8-bit LED-driver; extended temperature	SOT-117A	31
//AF8422P	single-chip 8-bit μC; 2K ROM/64 RAM bytes;		
/AF84A22P	extended temperature	SOT-146	33
MAF04AZZF	single-chip 8-bit µC; 2K ROM/64 RAM bytes; reduced frequency; extended temperature	SOT-146	
/AF8441P	single-chip 8-bit μ C; 4K ROM/128 RAM bytes	501-146	33
	plus 8-bit LED driver; extended temperature	SOT-117A	31
/AF8442P		301-117A	31
1AF0442F	single-chip 8-bit μC; 4K ROM/128 RAM bytes; extended temperature	COT 140	
/AF84A42P	single-chip 8-bit μ C; 4K ROM/128 RAM bytes;	SOT-146	33
171 047421	reduced frequency; extended temperature	SOT 146	22
1AF8461P	single-chip 8-bit µC; 6K ROM/128 RAM bytes	SOT-146	33
	plus 8-bit LED driver; extended temperature	SOT-117A	

type number	description		package	page
MEA8000	voice synthesize	r	SOT-101A	35
OM200/S2	integrated ampli	ifier for use in hearing aids	SOT-20*	49
OM8200		demonstration board	p.c.b.	55
OM8201	speech demonst		p.c.b.	59
OM8210	speech analysis/	editing system	p.c.b.	61
PCD8571D	ann Inen	c RAM: I ² C bus interface	SOT-151A	65
PCD8571P		c RAM; I ² C bus interface	COTOTA	05
PCD8571T		c RAM; I ² C bus interface	SO-8L; SOT-176	
PCF2100P		1901		
PCF2100F	ETHERT STORY		SOT-117D OVI	
PCF21001		ver; 40 segments	SO-28; SOT-136A	
PCF2110T		ver; 60 segments and 2 LEDs	SOT-129	69
PCF2111P	AND A CANADA THE MEDIA	ver; 60 segments and 2 LEDs	VSO-40; SOT-158A	69
	MINISTER MANAGEMENT	TENTO USA NOS RINVIUS	SOT-129	
PCF2111T		ver; 64 segments (33) 310-8 min and 00		71
PCF2112P		segments WAR ARMOR XI : Ou rid-	SOT-129	73
PCF2112T	LCD driver; 32 s		VSO-40; SOT-158A	73
PCF8200	voice synthesize	r (2nd generation)	SOT-101A	75
PCF8570P		c RAM; I ² C bus interface	SOT-97A	89
PCF8570T		c RAM; I ² C bus interface		89
PCF8573P	clock/calendar v	vith serial I/O; I ² C bus interface	SOT-38	91
PCF8573T		vith serial I/O; I ² C bus interface		91
PCF8574P	remote 8-bit I/O	for I2C bus AR SST MOR NA ON HIGH	SOT-38	93
PCF8574T	remote 8-bit I/O	for I ² C bus	SO-16L; SOT-162A	93
PCF8576T	universal LCD d	river for low multiplex rates		
	(1:1 to 1:4);	I ² C bus interface	VSO-56; SOT-190	95
PCF8577P; AP	LCD direct drive	er (32 segments) or duplex		
		ents); I ² C bus interface 10 H M8 On Hd	SOT-129	97
PCF8577T; AT				
	driver (64 segme	ents); I ² C bus interface	VSO-40; SOT-158A	97

^{*} The package outline is included in the device data sheet.

type number	description	package	page
SAA1056P SAA1057	PLL frequency synthesizer radio tuning PLL frequency synthesizer	SOT-38Z	A0101/99
ene	(SYMO II)	SOT-102HE	107
SAA1060	LED display/interface circuit	00T 404 4	110/117
SAA1062A	LCD display/interface circuit	0.000 4.400	119
SAA1062AT	LCD display/interface circuit	00 00 00T 100	
SAA1063 SAA1099	fluorescent display/interface circuit		121 STOTAG
	and music synthesis; µC controlled	SOT-102CS	127
SAA1300	tuner switching circuit	SOT-142B	143
SAA3004P	remote control transmitter for infrared operation	SOT-146	147
SAA3004T	remote control transmitter for infrared operation	SO-20; SOT-163	
SAA3006	low voltage infrared remote control		
ERE	transmitter (RC-5)	SOT-117	149
SAA3027 SAA3028	infrared remote control transmitter (RC-5) infrared remote control transcoder (RC-5);	SOT-117	151
	I ² C bus compatible mediation largest disw not sluge	SOT-38Z	153
SAA7000	interpolation and muting circuit for CD**	SOT-102CS	155
SAA7010	demodulator for CD**; Z _O typical 5 kΩ	SOT-117	165
SAA7011	demodulator for CD**; Z_{Ω} typical 15 k Ω	SOT-117	177
SAA7020	error corrector for CD**	SOT-129	189
SAA7030	digital filter for CD **	SOT-101A	203
SAB1164P	sensitive 1 GHz divider-by-64; $R_0 = 1 \text{ k}\Omega$	SOT-97A	211
SAB1165P	sensitive 1 GHz divider-by-64; $R_0 = 0.5 \text{ k}\Omega$	SOT-97A	211
SAB1256P	sensitive 1 GHz divider-by-256	SOT-97A	213
SAF1032P	receiver/decoder for infrared operation	SOT-102A	215
SAF 1039P	remote transmitter for infrared operation	SOT-38Z	215
SAK150BT	servo-motor control circuit	SO-14; SOT-108.	
		Committee and the same of the	A STREET A PE
TAA263	low-level amplifier	TO-72; SOT-18/	
TAA320 TAA320A	integrated MOST level appear	TO-18; SOT-18/	
	integrated MOST level sensor	TO-18; SOT-18/	13* 239
TCA420A	FM/IF combination	SOT-38	245
TCA730A	d.c. volume and balance stereo control circuit	SOT-38	263
TCA740A	d.c. treble and bass stereo control circuit	SOT-38	277
TDA1001B	interference and noise suppression circuit for FM receivers	SOT-38	287
TDA1001BT	interference and noise suppression circuit		EEGFAU
	for FM receivers	SO-16; SOT-109	4 287
TDA1002A	recording and playback amplifier	SOT-38	297
TDA1005A	frequency multiplex PLL stereo decoder	SOT-38	307
TDA1005AT	frequency multiplex PLL stereo decoder	SO-16; SOT-109	4 307

^{*} The package outline is included in the device data sheet.
** Compact Disc digital audio system.

type number	description	package	page
TDA1010A	6 W audio power amplifier in car and		
	10 W audio power amplifier in mains-fed		
	applications	SOT-110B	327
TDA1011		Inflyslasib d3U	0801AA
119	V ₀ > 0,7 V (preamplifier)	SOT-110B	345
TDA1011A	2 to 6 W audio power amplifier;	milyalqsib QQJ Ti	AA1082A
101	V ₀ > 1,2 V (preamplifier)	SOT-110B	357
TDA1012	recording/playback and 2 W audio power		AATONS
505	amplifier a belloutees Outsies		365
TDA1013A		pnidatiwe sadur	00E1AA
C1.5-1	volume control		369
TD 4 1015	1 to 4 W audio power amplifier		PAROCAA
TDA1015			373
TDA1016	recording/playback and 2 W audio power		AA3008
TD 4 1000	amplifier with thermal protection	SOT-38WE-2	383
TDA1020	12 W car radio power amplifier		389
TDA 1029	signal-sources switch (4 x two channels)	SOT-38	395
TDA1059B	motor speed regulator with thermal shut-down	,	
881	(V _{ref} = 1,3 V)		409
TDA1059C	motor speed regulator (V _{ref} = 1,1 V)		
TDA1072A	AM receiver circuit	SOT-38	421
TDA1074A	dual tandem electronic potentiometer circuit	SOT-102HE	437
TDA1506	motor regulator and function controller	TOT OO	AA7030
TD 4 1 5 0 0	for car cassette systems	SOT-38	447
TDA1508	auto-reverse car radio cassette deck	00T 400UF	ASSITESE
	steering circuit	SOT-102HE	459
TDA1510	24 W BTL or 2 x 12 W stereo car radio		
	power amplifier	SOT-141B	467
TDA1512	12 to 20 W hi-fi audio power amplifier	SOT-131B	473
TDA15120	12 to 20 W hi-fi audio power amplifier	SOT-157B	473
TDA1515A	24 W BTL or 2 x 12 W stereo car radio		
	power amplifier	SOT-141B	479
TDA1520	20 W hi-fi audio power amplifier; I _{tot} = 54 mA	SOT-131A	485
TDA1520Q	20 W hi-fi audio power amplifier; I _{tot} = 54 mA	SOT-157A	485
TDA1520A	20 W hi-fi audio power amplifier; I _{tot} = 70 mA	SOT-131A	491
TDA1520AQ	20 W hi-fi audio power amplifier; I _{tot} = 70 mA	SOT-157A	491
TDA1522	stereo cassette head preamplifier and equalizer	SOT-142	497
TDA1524A	stereo-tone/volume control circuit	SOT-102HE	507
TDA1533	PLL motor speed control circuit for hi-fi		
	applications	SOT-102CS	E10
TDA1540D	14-bit DAC with 85 dB S/N ratio	SOT-102CS	519
TDA1540P	14-bit DAC with 85 dB S/N ratio	SOT-117BE	525
TDA1559A	motor speed regulator	TO-126; SOT-32*	525
TDA1574	integrated FM tuner for radio circuits	SOT-102HE	531
10/110/7	integrated i wi tuner for radio circuits	301-102HE	539

^{*} The package outline is included in the device data sheet.

type number	description	package	page
TDA1576 TDA1578A TDA1579 TDA1589 TDA2611A	FM/IF amplifier time multiplex PLL stereo decoder traffic warning (VWF) decoder circuit traffic control messages and warning tone circuit 5 W audio power amplifier	SOT-102HE SOT-102HE SOT-102HE SOT-102HE SOT-110B	547 559 573 583 591
TDA3047P TDA3047T TDA3048P TDA3048T TDA3810	infrared receiver circuit; V_0 = positive infrared receiver circuit; V_0 = positive infrared receiver circuit; V_0 = negative infrared receiver circuit; V_0 = negative spatial, stereo and pseudo-stereo sound circuit	SOT-38 SO-16L; SOT-162A SOT-38 SO-16L; SOT-162A SOT-102HE	601 603 603 605
TDA7000 TDA7010T TDA7020T	FM radio circuit; $f_i = 70 \text{ kHz}$; $V_0 = 75 \text{ mV}$; DIL-18 FM radio circuit; $f_i = 70 \text{ kHz}$; $V_0 = 75 \text{ mV}$; SO-16 FM stereo/mono radio circuit; $f_i = 76 \text{ kHz}$;	SOT-108HE SO-16; SOT-109A	609 617
TDA7050T	V _O = 90 mV mono/stereo power amplifier (low voltage)	SO-16; SOT-109A SO-8; SOT-96A	625 633
TEA0651 TEA0652 TEA0653T TEA0654 TEA0665	Dolby* B&C noise reduction circuit; THD max. 0,1% Dolby* B&C noise reduction circuit; THD max. 0,2% Dolby* B noise reduction circuit; 2-channel Dolby* B&C switch and preamplifier Dolby* B&C noise reduction circuit	SOT-102HE SOT-102HE SO-20; SOT-163A SOT-101A SOT-117	637 637 655 637 661
TEA0665T TEA0666	Dolby* B&C noise reduction circuit Dolby* B&C noise reduction circuit; changed frequency response in relation to TEA0665	SO-28; SOT-136A SOT-117	661
TEA0666T TEA5550 TEA5560	Dolby* B&C noise reduction circuit; changed frequency response in relation to TEA0665T AM car radio receiver circuit FM/IF system	SO-28; SOT-136A SOT-38 SOT-142	671 681 693
TEA5570 TEA5580 TEA6000	RF/IF circuit for AM/FM radio PLL stereo decoder FM/IF system and µC-based tuning interface;	SOT-38 SOT-38	705 719

^{*} Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Fransisco, California (U.S.A.).

	SOT-108HE SO-16; SOT-109A SO-16; SOT-108A SO-25; SOT-96A	

Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Francisco, California (U.S.A.).

GENERAL

Type designation Rating systems Handling MOS devices

PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.

A basic number consists of:

THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER

1. DIGITAL FAMILY CIRCUITS

The FIRST TWO LETTERS identify the FAMILY (see note 1).

2. SOLITARY CIRCUITS

The FIRST LETTER divides the solitary circuits into:

S: Solitary digital circuits

T: Analogue circuits

U: Mixed analogue/digital circuits

The SECOND LETTER is a serial letter without any further significance except 'H' which stands for hybrid circuits.

3. MICROPROCESSORS

The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:

... Microcomputer

Central processing unit

MB : Slice processor (see note 2)

MD: Correlated memories

ME: Other correlated circuits (interface, clock, peripheral controller, etc.)

4. CHARGE-TRANSFER DEVICES AND SWITCHED CAPACITORS

The FIRST TWO LETTERS identify the following: ed year XIAAU2 AATTAL OWT a ylevilen

NH : Hybrid circuits

NL : Logic circuits 1000032

NM : Memories

NS: Analogue signal processing, using switched capacitors

NT: Analogue signal processing, using CTDs

NX : Imaging devices

NY: Other correlated circuits

Notes

- A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
- 2. By 'slice processor' is meant: a functional slice of microprocessor.

TYPE DESIGNATION

THIRD LETTER

It indicates the operating ambient temperature range. The letters A to G give information about the temperature:

A: temperature range not specified

B: 0 to + 70 °C C: -55 to + 125 °C D: -25 to + 70 °C E: -25 to + 85 °C F: -40 to + 85 °C

G: -55 to +85 °C

If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter 'A'.

Example: the range 0 to + 75 °C can be indicated by 'B' or 'A'.

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:

A VERSION LETTER

Indicates a minor variant of the basic type or the package. Except for 'Z', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:

C : for cylindrical
D : for ceramic DIL

F: for flat pack
L: for chip on tape

P: for plastic DIL

Q: for QIL

T: for miniature plastic (mini-pack)

U: for uncased chip

Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.

FIRST LETTER: General shape

SECOND LETTER: Material

C : Cylindrical C : Metal-ceramic C : Metal-ceramic

D: Dual-in-line (DIL)

E: Power DIL (with external heatsink)

G: Glass-ceramic (cerdip)

M: Metal

F: Flat (leads on 2 sides)

F: Flat (leads on 4 sides)

F: Flat (leads on 4 sides)

K : Diamond (TO-3 family)

M: Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)

Q: Quadruple-in-line (QIL)

R: Power QIL (with external heatsink)

S : Single-in-line T : Triple-in-line

A hyphen precedes the suffix to avoid confusion with a version letter.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED and treamples not be a state of to see a first and the another and the second of the sec

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

RATING SYSTEMS

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

Caution

Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

Storage and transport

Store and transport the circuits in their original packing. Alternatively, use may be made of a conductive material or special IC carrier that either short-circuits all leads or insulates them from external contact.

Testing or handling

Work on a conductive surface (e.g. metal table top) when testing the circuits or transferring them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord or chain. Connect all testing and handling equipment to the same surface.

Signals should not be applied to the inputs while the device power supply is off. All unused input leads should be connected to either the supply voltage or ground.

Mounting

Mount MOS integrated circuits on printed circuit boards after all other components have been mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential. If it is impossible to ground the printed-circuit board the person mounting the circuits should touch the board before bringing MOS circuits into contact with it.

Soldering

Soldering iron tips, including those of low-voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board.

Static charges

Dress personnel in clothing of non-electrostatic material (no wool, silk or synthetic fibres). After the MOS circuits have been mounted on the board proper handling precautions should still be observed. Until the sub-assemblies are inserted into a complete system in which the proper voltages are supplied, the board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device it is recommended that conductive clips or conductive tape be put on the circuit board terminals.

Transient voltages

To prevent permanent damage due to transient voltages, do not insert or remove MOS devices, or printed-circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges

Beware of voltage surges due to switching electrical equipment on or off, relays and d.c. lines.

HANDLING MOS DEVICES.

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertisless be damaged by accidental over-voltages. In storing and handling them, the following presentions are recommended.

Caution

Testing or hardling and mounting call for special attention to personal safety. Personnal handling MOS devices should normally be connected to ground via a resistor.

Storage and transport

Store and transport the circuits in their original packing. Alternatively, use may be made of a conductive material or special IC carrier that either short-circuits all feeds or insulates them from external contact.

Testing or handling

Work on a conductive surface (e.g. metal table top) when testing the circuits or transferring them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord or chain. Connect all testing and transfer equipment to the same surface.

Signals should not be applied to the inputs while the device power supply is off. All unused input leads should be connected to either the supply voltage or ground.

pniznuoN

Mount MOS integrated circuits on printed circuit boards after all other components have been mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential. If it is impossible to ground the printedcircuit board the person mounting the circuits should touch the board before bringing MOS circuits are contact with it.

Soldering

Soldaring iron tips, including those of low-voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board,

Static charges

Dress personnal in clothing of non-electrostatic material (no wool, silk or synthetic fibres). After the viole for should still be observed, and circuits have been mounted on the board proper handling precautions should still be observed. Intil the sub-assemblies are inserted into a complete system in which the proper voltages are supplied, he board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device it is recommended that conductive clips or conductive tage be gut on the circuit board terminals.

Transient voltages

To prevent permanent damage due to translant voltages, de not insert or remove MOS devices, or oriented-circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges

Seware of voltage surges due to switching electrical equipment on ort ortal relays and e.c. tines-

DEVICE DATA

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

FREQUENCY SYNTHESIZER

The HEF4750V frequency synthesizer is one of a pair of LOCMOS devices, primarily intended for use in high-performance frequency synthesizers, e.g. in all communication, instrumentation, television and broadcast applications. A combination of analogue and digital techniques results in an integrated circuit that enables high performance. The complementary device is the universal divider type HEF4751V.

Together with a standard prescaler, the two LOCMOS integrated circuits offer low-cost single loop synthesizers with full professional performance. Salient features offered (in combination with HEF4751V) are:

- Wide choice of reference frequency using a single crystal.
- High-performance phase comparator low phase noise low spurii.
- System operation to > 1 GHz.
- Typical 15 MHz input at 10 V.
- Flexible programming:

frequency offsets

ROM compatible

fractional channel capability.

- Programme range 6½ decades, including up to 3 decades of prescaler control.
- Division range extension by cascading.
- Built-in phase modulator.
- · Fast lock feature.
- Out-of-lock indication.
- · Low power dissipation and high noise immunity.

APPLICATION INFORMATION

Some examples of applications for the HEF4750V in combination with the HEF4751V are:

- VHF/UHF mobile radios.
- HF s.s.b. transceivers.
- Airborne and marine communications and navaids.
- Broadcast transmitters.
- High quality radio and television receivers.
- High performance citizens band equipment.
- Signal generators.

SUPPLY VOLTAGE

rating	recommended operating
-0,5 to + 15	9,5 to 10,5 V

Fig. 1 Pinning diagram.

HEF4750VD: 28-lead DIL; ceramic (cerdip) (SOT-135A).

ring recommended operating .

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

UNIVERSAL DIVIDER

The HEF4751V is a universal divider (U.D.) intended for use in high performance phase lock loop frequency synthesizer systems. It consists of a chain of counters operating in a programmable feedback mode. Programmable feedback signals are generated for up to three external (fast) ÷ 10/11 prescaler.

The system comprising one HEF4751V U.D. together with prescalers is a fully programmable divider with a maximum configuration of: 5 decimal stages, a programmable mode M stage (1 ≤ M ≤ 16, nondecimal fraction channel selection), and a mode H stage (H = 1 or 2, stage for half channel offset). Programming is performed in BCD code in a bit-parallel, digit-serial format.

To accommodate fixed or variable frequency offset, two numbers are applied in parallel, one being subtracted from the other to produce the internal programme.

The decade selection address is generated by an internal programme counter which may run continuously or on demand. Two or more universal dividers can be cascaded, each extra U.D. (in slave mode) adds two decades to the system. The combination retains the full programmability and features of a single U.D. The U.D. provides a fast output signal FF at output OFF, which can have a phase jitter of ± 1 system input period, to allow fast frequency locking. The slow output signal FS at output OFS, which is jitter-free, is used for fine phase control at a lower speed.

Fig. 1 Pinning diagram.

SUPPLY VOLTAGE

HEF4751VP: 28-lead DIL; plastic (SOT-117).

HEF4751VD: 28-lead DIL: ceramic (cerdip) (SOT-135A).

HEF4751VT: 28-lead mini-pack; plastic (SO-28; SOT-136A).

recommended rating operating -0.5 to +184,5 to 12,5 V

FAMILY DATA

see Family Specifications

IDD LIMITS category LSI

29

Fig. 2 Block diagram.

see Family Specifications

FAMILY DATA

IDD LIMITS category LSI

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

SINGLE-CHIP 8-BIT MICROCONTROLLER

DESCRIPTION

The MAB84XX family of microcontrollers is fabricated in NMOS. The family consists of 8 devices:

- MAB8400 128 RAM bytes, external program memory
- MAB8401 like 8400 but with 8-bit LED-driver (10 mA), emulation of MAB/F8422/42* possible
- MAB/F8411 1K ROM/ 64 RAM bytes
- MAB/F8421 2K ROM/ 64 RAM bytes plus 8-bit LED-driver
- MAB/F8441 4K ROM/128 RAM bytes plus 8-bit LED-driver
- MAB/F8461 6K ROM/128 RAM bytes plus 8-bit LED-driver

Each version has 20 quasi-bidirectional I/O port lines, one serial I/O line, one single-level vectored interrupt, an 8-bit timer event counter and on-board clock oscillator and clock circuits. Two 20-pin versions, MAB/F8422 and MAB/F8442* are also available.

This microcontroller family is designed to be an efficient controller as well as an arithmetic processor. The instruction set is based on that of the MAB8048. The microcontrollers have extensive bit handling abilities and facilities for both binary and BCD arithmetic.

For detailed information see the "Users manual Single-chip microcomputers" (supplied upon request).

* See data sheet on MAB/F8422/42.

Features

- 8-bit: CPU, ROM, RAM and I/O in a single 28-lead DIL package
- 1K, 2K, 4K or 6K ROM bytes plus a ROM-less version
- 64 or 128 RAM bytes
- 20 quasi-bidirectional I/O port lines
- Two testable inputs: one of which can be used to detect zero cross-over, the other is also the
 external interrupt input
- Single level vectored interrupts: external, timer/event counter, serial I/O
- Serial I/O that can be used in single or multi-master systems (serial I/O data via an existing port line and clock via a dedicated line)
- 8-bit programmable timer/event counter
- Internal oscillator, generated with inductor, crystal, ceramic resonator or external source
- Over 80 instructions (based on MAB8048) all of 1 or 2 cycles
- Single 5 V power supply (± 10%)
- Operating temperature ranges: 0 to + 70 °C
 —40 to + 85 °C
 —40 to + 110 °C
 MAF84XX family
 MAF84AXX family

PACKAGE OUTLINES

MAB8400/01B: 28-lead 'Piggy-back' package (with up to 28-pin EPROM on top)
MAB8400/01WP: 68-lead plastic leaded chip-carrier (PLCC) (SOT-188A)
MAB/F8411/21/41/61P: 28-lead DIL; plastic (SOT-117D)

Fig. 4(a) Block diagram of the MAB84XX family.

Fig. 4(b) Replacement for dotted part in Fig. 4(a) Fig. 4(c) Replacement of dotted part in Fig. 4(a) for the MAB8401WP bond-out version, for the MAB8400B/01B 'Piggy-back' version.

This data sheet contains advance information and specifications are subject to change without notice.

MAB8422/42 MAF8422/42 MAF84A22/A42

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

SINGLE-CHIP 8-BIT MICROCONTROLLER

The MAB8422/8442 is a high-performance microcontroller incorporating dedicated hardware, memory capacity and I/O lines. This dedication means a microcontroller can be economically installed in high-volume products where its main function is control.

The MAB8422/8442 is a 20 pin, single-chip 8-bit microcontroller that has been developed from the 28 pin MAB8420/8440 microcontrollers. The versions are:

- MAB8422 2K ROM/64 RAM bytes
- MAB8442 4K ROM/128 RAM bytes

Each version has 15 I/O port lines comprising one 8-bit parallel port (P0), one 2-bit parallel port (P10 and P11 that are shared with the serial I/O lines SDA and SCL), one 3-bit parallel port (P20-P22) and two input lines (INT/T0 and T1).

The serial I/O interface is I²C compatible and therefore the MAB8422/8442 can operate as a slave or a master in single and multi-master systems. Conversion from parallel to serial data when transmitting, and vice versa when receiving, is done mainly in software. There is a minimum of hardware for the serial I/O implemented. This hardware is controlled by the status of the SDA and SCL lines and can be read or written under software control. Standard software for I²C-bus control is available on request.

Features

- 8-bit: CPU, ROM, RAM and I/O
- 20 pin package
- MAB8422: 2K ROM/64 RAM bytes
- MAB8442: 4K ROM/128 RAM bytes
- 13 quasi-bidirectional I/O port lines
- Two testable inputs INT/TO and T1
- High current output on PO (IOI = 10 mA at VOI = 1 V)
- One interrupt line combined with the testable input line INT/TO
- Single-level interrupts: external, timer/event counter, serial I/O
- I²C-compatible serial I/O that can be used in single or multi-master systems (serial I/O data and clock via P10 and P11 port lines, respectively)
- · 8-bit programmable timer/event counter
- Internal oscillator, generated with inductor, crystal, ceramic resonator or external source
- Over 80 instructions (based on MAB8048)
- All instructions 1 or 2 cycles, cycle time dependent on oscillator frequency
- Single 5 V power supply
- 0 to 70 °C operating temperature range, also versions for -40 to 85 °C and -40 to 110 °C

PACKAGE OUTLINES

MAB/F8422/42P: 20-lead DIL; plastic (SOT-146). MAF84A22/A42P: 20-lead DIL; plastic (SOT-146).

Fig. 1 Block diagram of the MAB8422/8442.

VOICE SYNTHESIZER

GENERAL DESCRIPTION

The MEA8000 is a 24-pin N-MOS integrated circuit for generating good quality speech from digital code with a programmable bit rate. The circuit is primarily intended for applications in microprocessor controlled systems, where the speech code is stored separately.

Features

- Interfaces easily with most popular microprocessors and microcomputer
- 8-bit wide data bus
- 32-bit wide data buffer holding speech frame codes
- Digital filter of 8th order with 3 programmable formant frequencies, one fixed formant frequency, and 4 programmable formant bandwidths
- Programmable amplitudes
- Programmable duration of each frame; 8, 16, 32 or 64 ms
- Synthesis occupies less than 1% of control processor time
- Capable of sophisticated unvoiced sound generation
- Crystal controlled oscillator or external (TTL) clock
- Minimal external audio filter requirement
- Single + 5 V power supply

QUICK REFERENCE DATA

E/W contloctor	60 10 10			aud s	reb - La	15.50
parameter	condition	symbol	min.	typ.	max.	unit
Supply voltage	pin 13	V _{DD}	4,5	5,0	5,5	V
Supply current	no audio load	IDD	-rugni	30	50	mA
Inputs						
Input voltage	HIGH	VIH	2,0	uest e <u>n</u> abl	VDD	V
Input voltage	LOW	VIL	-0,5	emanneo	0,8	V
Input capacitance		Cl	_ total	liogo lenns	/ TUI	pF
Outputs		lounes\esti	dner			
Output voltage	$-I_{OH} = 100 \mu A$	VOH	2,4	uqtuo ribe	sqs	V
Output voltage	I _{OL} = 1,6 mA	VOL	andino :	ernal clock	0,4	V
Capacitance		CL	-	- 63	30	pF
Operating ambient					test	
temperature range		T _{amb}	0	-	+ 70	oC

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

Fig. 1 Block diagram.

FUNCTIO	NAL DE	SCRI	PTION (pin number)	
Control				
D0 to D7	(10	to 3)	Data bus to which command or speech can be written.	
D7	(3)		Data port via which the status can be read.	
CE	(12)		Chip enable (chip select).	
W	(23)		Write. W mig vns no poV of rose	
R/W	(22)		Read/Write	
			The control signals W and R/W allow connections to most or microprocessors (see timing diagrams).	microcomputers
A0 00	(11)		Data/control input: discriminates between speech code in (A0 = '0') and command register (A0 = '1') during a 'write	
REQ	(2)		Data request (open drain output); output signal which foll status REQ bit, but only if enabled by either the ROE bit register or the external $\overline{\text{REQEN}}$ pin.	
REQEN	(14)		Request enable input; $\overline{REQEN} = '0'$ enables the status RE independent of the status of the command register.	Q output,
Timing				
OSC IN	(16)			
OSC OUT	(17)		Connections for internal clock oscillator; nominal crystal f	requency 4 MHz.
CLK IN	(18)	-	Clock input for external clock, TTL compatible, 4 MHz.	
CLK OUT	(21)		A buffered output for the internal clock cycle (which is eddivided by 3). May be used as a clock, for a microprocesso	
Output				
REF	(19)		Input pin for biasing the audio output level. This reference derived from a resistor to the positive supply.	e current can be
OUT	(20)		Speech output; this output is a 64 kHz pulse, modulated in amplitude. It is configured as a current sink with a saturate about 3 V .	
Supply				
V _{DD}	(13)		Single supply voltage, nominally 5 V, but battery operatio	n is possible.
VSS	(1)		Ground.	
TEST	(24)		Used for testing purposes. Changes other pin functions. Maground for user operation.	ust be tied to
NC	(15)		It is recommended to ground this pin.	

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage range	elect).	V _{DD} aldere girl	-0,5	+ 7	V
Voltage with respect to VSS	on any pin	V _I	-0,5	+7	V
Output voltage	pins 2 and 20	VREQ, VOUT		15	V
Storage temperature range	tsee themoretsee	T _{stq}	-20	+ 125	oC
Operating ambient temperature range	discriminator la	Tamb	0	+ 70	oC

Request enable input; RECEN = '0' enables the status REO output, independent of the status of the command register,	
Connections for internal clock oscillator; nominal crystal frequency 4 MHz.	
Ground.	
It is recommended to ground this pin.	

iputs and outputs are protected against electrostatic charge in normal handling. However, to b itally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see fandling MOS Devices').

CHARACTERISTICS

 T_{amb} = 25 °C; V_{DD} = 5 V, unless otherwise specified; all voltages referenced to V_{SS}

parameter	conditions		symbol	min.	typ.	max.	unit
30	30110113	RWI	3,11101		-11-	siden	n asin'é
Symbol	30						
Supply voltage –	note 1		V _{DD}	4,5	5,0	5,5	Vo
Supply current -	no audio l	oad and	IDD	-	30	50	mA
Inpute	30						orl staC
Inputs D0 to D7, A0, \overline{CE} , \overline{W} ,				note 5			виреР
R/W, REQEN, CLK IN		MRI		8 ston			super
Input voltage HIGH			VIH	2,0	_	V _{DD}	V
Input voltage LOW	0.00		VIL	-0,5	_	0,8	V
Input leakage current	note 2		IIR		_	10	
Input capacitance			CI	Vatori		7 poisso	
- I sales and				Teton			
Outputs	0						
D7 (I/O), CLK OUT							seque?
Output voltage HIGH	-I _{OH} = 10	00 μΑ	VOH	2,4	-	Odin	V
Output voltage LOW	I _{OL} = 1,6	mA	VOL	-	-	0,4	V
Output load capacitance			CL	-	-	50	pF
REQ							801
Output voltage HIGH	open drain	br qu to y	VOH	влинедо с	o e u oime	13,2	V
Output voltage LOW	I _{OL} = 1,6	mA	VOL	-	_	0,4	V
Output load capacitance			CL			50	1
Audio output	higher that t		apput losed to				
Reference current	pin 19; no	te 8	Ince			0.3	mA
	TUGINO MET		REF			0,3	DENS THE
Output current 30 00 1	peak value		iffied at a los	ede a V O			
	IDEE = 0	mA	IOUT	D ENGINEE		n two data	
	IREF = 0,	1 mA	OUT	10_1 8 10		rester_that rd 50 <u>n</u> F.	the same a second
Out	I _{REF} = 0,		OUT	REF pint	5		11111
Output voltage	pin 20; for linear oper note 3;		. 7 6,5 1	may sair			- During
	I _{REF} = 0,	1 mA	Vout	2,5	-	13,2	V
Oscillator							
Crystal frequency	internal		fXTAL	_ 11		4,00	MH:
Clock frequency	external		741742			4.00	MH

TIMING CHARACTERISTICS (note 4) (Figs 6 and 7)

parameter	condition		symbol	min.	typ.	max.	unit
Write enable	min.	sympol	twR	200	_	1919	ns
Address set-up			tAS	30	-	- 16	ns
Address hold			tAH	30	-	egatiov y	ns
Data set-up for write			tos	150	-	#RETTUD Y	ns
Data hold for write			tDH	30	-	-	ns
Request hold	note 5		tRH	-	- 107 1	350	ns
Request next	note 6 clock freq = 3,84 MH		^t RN	-	EK IN-	3 Agostov	μs
Read enable			tRD	200	VV	J_agatlov	ns
Data delay for read	note 7		tDD	note 2	_ Iner	150	ns
Data floating for read	note 7		tDF	-	-	150	ns
Request valid before write			tRV	0	-	- 27	ns
Request output enable response			tROE	_	- TU	750	ns
Control set-up			tcs	HOI	- WO	20	ns
Control hold			tCH	_10 ₁	-	20	ns

Notes

- The circuit will continue to operate from a supply of up to 6,5 V, but without necessarily meeting the specification.
- 2. This is also valid for $V_{DD} = 0 V$.
- 3. This permits the connection of the output load to a supply higher than that supplying the synthesizer.
- 4. Timing reference level is 1,5 V.
- 5. An external pull-up resistor is required, as this is an open drain output. The time (t_{RH}) to reach 2,0 V is specified at a load to 5 V of 3,3 k Ω and 50 pF.
- 6. Between two data write operations of one speech frame.
- 7. Levels greater than 2,0 V for a '1' or less than 0,8 V for a '0' are reached with a load of one TTL input and 50 pF.
- 8. Typical voltage level at the REF pin is 2,5 V.

OPERATION PRINCIPLE

The MEA8000 has been designed for a vocal tract modelling technique of voice synthesis. This method gives the lowest possible bit rate for speech quality which is acceptable for most industrial applications.

Figure 3 shows a simplified electronic model of the human vocal tract as a formant synthesizer. A combination of a periodic signal, representing the pitch of the original speech, and an aperiodic signal, representing the unvoiced sound in the speech. Both these signals are fed to a variable filter comprising four resonantors (via an amplifier which controls the amplitude of the synthesized sound). The resonators model the sound in accordance with the formats in the original speech. Each resonator is controlled by two parameters, one for the resonant frequency and one for the bandwidth.

The information required to control the synthesizer is:

- pitch - amplitude excitation source (vocal cords) - voice/unvoiced source selector filter control spectrum shaping (vocal tract)

A good replica of the original speech is obtained by periodic updating of this control information.

Fig. 3 Electronic model of human vocal tract.

OPERATION

Speech is generated by suitable filtering of a relatively low frequency sawtooth waveform for voiced sounds, or of random noise for unvoiced sounds. New parameters for both the digital waveform generator and the digital filter are supplied to the synthesizer in coded groups of 4 bytes via the data bus. The code group also contains the duration of the next speech frame to be produced (8, 16, 32) or 64 ms).

The output sample rate is 64 kHz or 8 times the internal sample rate with linear interpolation in between. This greatly reduces the need for an external analogue output filter.

Modes of operations of all flowers, and all foot by the state of the basis of the b

- 1. STOP mode: characterised by a silent output and the status REQ bit set to '1'. This mode is entered from power up or by STOP command. The mode is entered automatically if at the end of an active speech frame the next four parameter bytes are not yet received while the CONT bit in the command register is a '0'. In the latter case the final speech frame will be repeated once but with a decaying amplitude and the same pitch.
- 2. ACTIVE mode: a speech sample is being produced.
- 3. CONTINUOUS mode: entered if an active speech frame is finished and new data is not supplied in time while the CONT bit in the command register is a '1'. The synthesizer will repeat the last speech frame indefinitely until all four new data bytes are received, or a STOP command, or a reset of the CONT bit.

Speech code input buffer

Speech code is written to the synthesizer when \overline{CE} and \overline{W} are both '0', while \overline{R}/W = '1' and A0 = '0'. Also the status \overline{REQ} bit must read a '1', otherwise the synthesizer is still busy and will not react to a data write operation.

Starting from the STOP mode, the first data will be interpreted as a starting value for the PITCH.

Thereafter every four successive data bytes are treated as a group of speech code. The coded speech frame format is shown in Fig. 4.

7Z80540

Fig. 4 Format of coded speech frame.

code	bits	parameter
PITCH	8	initial value for pitch
FD DAO	2	speech frame duration
PI	5	pitch increment (rate of change) or noise selection
AMPL	4	amplitude
FM1	5	frequency of 1st formant
FM2	5	frequency of 2nd formant
FM3	3	frequency of 3rd formant
FM4	0	frequency of 4th formant (fixed)
BW1	2	bandwidth of 1st formant
BW2 ov not mnot svew /	_	bullattiati of Elia formati
DVVO	2 Tod not mere	bandwidth of 3rd formant
BW4	2	bandwidth of 4th formant

During each data write operation, the status REQ bit will be cleared to '0'. No status along a supplied and

It appears within a few microseconds, requesting the next byte of the group.

The request for the first byte of the next group always appears shortly after the beginning of the current speech frame, and all four bytes must be provided before it finishes. This leaves the control circuit (i.e. microprocessor) enough time to use polling, instead of interrupts, as the minimum time of a speech is 8 ms.

When in the STOP mode the synthesizer will commence producing sound after receipt of 1 + 4 bytes.

Status bit

The status bit is accessed at $\overline{CE} = \overline{R}/W = '0'$.

The status of W and AO are arbitrary.

Pin D7 reveals the request for a (next) speech code byte: '0' = busy, '1' = request for data.

Command register

A command is written to the synthesizer at $\overline{CE} = \overline{W} = '0'$ while A0 = $\overline{R}/W = '1'$.

D7	D6	D5	D4 arugni ado	D3	D2	D1 stuge	D0
			STOP	CONT enable	CONT	ROE enable	ROE
		QABA	'0' = INVALID	00 = INV 01 = INV		00 = INVA 01 = INVA	
	NOT USE			10 = SLOW STOP		10 = DISA REQ	BLE OUTPUT
			'1' = STOP	11 = CONTINUE		11 = ENABLE REQ OUTPL	

STOP Stop mode. This results in an immediate reset of the synthesizer to the STOP mode. The ROE and CONT are not affected by this command.

CONT Continuous mode. This bit can be set or cleared only if the corresponding CONT enable bit is programmed as a '1'. In the continuous mode the synthesizer will not revert to the STOP mode if all four parameters are not received before the end of the current speech frame, but repeat it indefinitely.

If CONT = '1' the last frame will be repeated once with decaying amplitude and the same pitch before the stop mode is entered.

ROE Request Output Enable. This can be set or cleared only if the corresponding ROE enable bit is a '1'. ROE determines whether the request in the status bit appears on the REQ pin.

Note: the same can be achieved by connecting the REQEN pin (request enable) to a '0'.

After power on, the command register bits CONT and ROE will both be zero. Thus power on equals the command 00011010 = 1 A (hexadecimal).

Control signals

With the three control signals \overline{CE} , \overline{W} and \overline{R}/W the synthesizer is made compatible with most microprocessors and microcomputers.

CR	\overline{W}	R/W	A0	Operation
0	0	1	0	WRITE DATA
0	0	1	1	WRITE COMMAND
0	×	0	X	READ STATUS
0	1	1	X	1
1	X	X	X	3-STATE DATA BUS

Power supply

During (slow) power up or power down the circuit will not produce any spurious sound. As soon as the supply is high enough for reliable operation, the circuit will be in the STOP mode with ROE = CONT = '0'.

Timing diagrams

The control signals \overline{CE} , \overline{R}/W and \overline{W} have been specified to enable easy interface to most microprocessors and microcomputers. For instance, with connection to an MAB8048 microcomputer the R/W and W inputs can be used as the RD and WR strobe inputs.

Fig. 5 Typical waveforms of the control signals.

Fig. 7 Write timing.

(a) Minimum system of single chip microcomputer with voice ROM on board.

(b) MEA8000 as a microprocessor peripheral.

(c) Applications using separate voice ROMs.

Fig. 8 Typical applications.

Fig. 9 Typical output applications.

Fig. 10 Oscillator/clock configurations.

Fig. 9. Typical output applications

Fig. 10 Oscillator/clock configurations

INTEGRATED AMPLIFIER for use in ear hearing aids

Monolithic integrated circuit amplifier in a plastic envelope, primarily intended for use in ear hearing aids.

	INSTAL	ucput cu
max.		
max.	Daqiae 5	mA
max.	25	mW
typ.	1	mA
>	77	dB
typ.	85	dB
>	0,2	mW
>	20	kHz
	>	> 20

PACKAGE OUTLINE (Dimensions in mm) SOT-20

CIRCUIT DIAGRAM

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage

ship pairped toe al eau V1-3 Output voltage

Input voltage

max. max.

max.

Currents

Output current Input current

 I_2

max. max.

5 mA 5 mA

Power dissipation

Power derating curve

Temperatures

Storage temperature

Ambient temperature (see derating curve above)

-20 to +80

Tamb

Tstg

OC. -20 to +80

¹⁾ This value may be exceeded during inductive switch-off for transient energies < 10 µWs.

CHARACTERISTICS at V_{1-3} = 1, 3 V; I_2 = 0, 7 mA and T_{amb} = 25 o C unless otherwise specified

Supply currents (no signal)	T	< 1,1	mA
Suppry currents (no signar)	Itot I ₁	typ. 0,30	
Transducer gain at f = 1 kHz		5 s Jon on 77	dB 1)
Total distortion at f = 1 kHz			
are of 250 9 C the maximum permissible Wu 001 = $_{0}$ P soldered and is at least 0.5 mm from the seal.		typ. 4 6	%
$P_{O} = 200 \mu\text{W}$	d _{tot}		%
Noise figure at $R_S = 5 \text{ k}\Omega$			
B = 400 to 3200 Hz	F	typ. 2,5	dB dB 2)
Cut-off frequency (-3 dB)	f_c	> (Am) 20	kHz
Value of R _F to adjust I ₂ at 0,7 mA	RF	170 to 1000 typ. 400	$k\Omega$ $k\Omega$
Test circuit			

$$G_{tr} = \frac{P_o}{V_i^2/4 R_S}$$

¹⁾ The transducer gain is defined as the ratio of the output power in the load |Z| = 1,5 k Ω and the available input power of the source with $R_S = 5 \text{ k}\Omega$.

²⁾ Due to special processing and pre-measuring, the flutter-noise level is extremely low.

SOLDERING RECOMMENDATIONS

1. Iron soldering

At a maximum iron temperature of 300 °C the maximum permissible soldering time is 3 seconds, provided the solder spot is at least 0,5 mm from the seal and the leads are not soldered at the same time. Soldering in immediate subsequence is allowed.

2. Dipsoldering

At a maximum solder temperature of 250 °C the maximum permissible soldering time is 3 seconds, provided the soldered spot is at least 0,5 mm from the seal.

CHARACTERISTICS

The graph applies to test circuit on previous page.

63

April 1973

This data sheet contains advance information and specifications are subject to change without notice.

LOW COST SPEECH DEMONSTRATION BOARD

GENERAL DESCRIPTION

The low cost speech demonstration board is designed to add voice output to existing card based electronic equipment with the minimum of additional effort and components. The majority of components used are of the CMOS type with low power consumption making the board suitable for battery operation.

Applications include speech evaluation and speech demonstration.

FEATURES

- PCF8200 speech synthesizer
 - Male and female speech of very high quality
 - CMOS technology
 - Extended operating temperature range
 - Programmable speaking speed
- Low current consumption
 - All major components use CMOS technology (PCF8200, 80C39 and 27C64)
- Very large vocabulary up to 12 minutes
 - 4 EPROM sockets
 - EPROM selection for 27C16 to 27C256
- Low data rates for synthesizer (average 1500 bits per second)
- Easy interfacing
- 8-bit parallel data bus/key switch input
- Volume control, speaker connection
- Control signals (e.g. RESET, BUSY etc etc)
- Simple operating modes
 - ROM selection
 - Word sequence within a ROM
 - Repeat last utterence
 - Control software is readily customizeable
 - To implement parameter download from external source
- Single Eurocard size PC board
- Single + 5 V supply
- Low cost

APPLICATIONS

- OEM design-in
- May be simply used with many card systems for speech evaluation
- Speech demonstration
 - Particularly simple when used with the OM8201 (Speech Demonstration Box)

OPERATION

HARDWARE DESCRIPTION and work life bas executed notificitanomals of behastid are shrow seed

The main controlling microprocessor is an 80C39 running at 6 MHz. This device supplies all of the main controlling signals for the board operation and the interfacing to any external system. Four sockets are provided for EPROMS which contain speech coding. These may be 27C16 types, through to 27C256 types; the sockets will be a low insertion force type to allow for easy customizing. The board will be supplied with one socket occupied by a 27C64 which will contain the control program and some speech examples. All four EPROM sockets must contain the same EPROM type.

The speech synthesizer PCF8200 converts the coding into a speech output. This synthesizer has been designed to simulate the human vocal tract using five formants for male and four formants for female speech. Periodic updating of the parameters for these formants can produce very high quality speech.

The output of the synthesizer can be fed into an audio amplifier, TDA7050, via a resistor-capacitor filter network which provides a frequency cut-off above 5 kHz of about 25 dB. The configuration of the audio amplifier used on this board gives an output of 140 mW peak power into a 25 Ω speaker from Ω a 5 V supply.

Connections are made to the board via a standard DIN/IEC connector. This allows access to the 8-bit parallel data bus so that speech coding from an external source may be used, if implemented, and allows the selection of speech phrases by an external system, such as a microcomputer or even a bank of switches. The same connector also permits the addition of a volume control, loudspeaker, a high impedance audio output, and power supply. The control signals RESET, BUSY, WAIT and DS are also taken to the outside of the board. There is also a loudspeaker plug on the board.

All components are contained on a standard single Eurocard, and therefore suitable for rack mounted equipment.

SOFTWARE DESCRIPTION

All the software required to operate the board is contained in the only EPROM supplied. The software is written in modular from so that it is possible for a customer to alter or add to any particular function which suits his applications. An industrial standard microprocessor was chosen so that readily available development systems could be used to facilitate this modification.

There are four main modes of operation:

- ROM Selection
- Word Sequence
- Repeat Word
- Speaking Speed Selection

These modes are all controlled by software.

ROM Selection mode permits access to an individual EPROM and pronounces the first utterence from that EPROM.

Word Sequence gives the next word (activated by repeated access to the same EPROM) and if continually exercised will keep looping on the words in that EPROM.

The Repeat Word command allows indefinate repetition of the last utterance pronounced.

The Speaking Speed Selection allows the utterence to be pronounced at a different speed.

The software also controls the address sequencing within the utterance and ensures that the required data is supplied to the synthesizer.

DEAELOBWEML DYLY

There are also some examples of words/utterences encoded in the remainder of the supplied EPROM. These words are intended for demonstration purposes and will show the features of the synthesizer when selected. The main features being illustrated are:

- Male speech in several languages among the best not speech and not stempt pullerance nism
- Female speech in several languages and desegn risk now delich with ORNE and beblivery are are believed and
- Programmable speaking speed an especial not reset wat a set the steplace and resolve 885000 or republic

ORDERING INFORMATION

Product name: Low Cost Speech Demonstration Board

Type number: OM8200 and of stnamol suit galau tost lagov asmud and statumic of banglash

Ordering code: tales 1 9337 541 30000 illique olbus as othi bet ed as resisenting est to tuquo ent.

est to notwoughno ent. Stock to the code to the code to tuquo you upon a selivor distribution.

Orders should be placed with your local Philips/Signetics agency. In based and no beau sulfilams of bus

Connections are made to the board via a standard DIM/IEC connector. This allows access to the job parallel data bus so that speech coding from an external source may be used, if implemented, and allows the selection of speech phrases by an external system, such as a microcomputer or even tank of switches. The same connector also permits the addition of a volume control, loudspeaker, and for such a power supply. The control signals RESET, BUSY WAIT and Did in pedance audio output, and power supply. The control signals RESET, BUSY WAIT and Did in also taken to the outside of the board. There is also a loudspeaker plug on the board.

All components are contained on a standard single Eurocard, and therefore suitable for rack mounted equipment.

MOTTINGED DESCRIPTION

All the software required to operate the board is contained in the only EPROM supplied. The software is written in modular from so that it is possible for a customer to alter or add to any particular function which suits his applications. An industrial standard microprocessor was chosen so that readily available development exceed to the last of facilitate this good fination.

There are four main modes of operation:

- ROM Selection
 - ecaenbes prow
 - Repeat Word
- Speeking Speed Selection

I nese modes are au controlled by software.

NOM Selection mode permits access to an individual EPROM and pronounces die first ultereno from that EPROM.

World Sequence gives the next word (activated by repeated access to the same EPROM) and if continual

The Repeat Word command allows indefinate repetition of the last utterance pronounced.

The Speaking Speed Selection allows the utterence to be pronounced at a different speed.

The software also controls the address sequencing within the utterance and ensures that the required data is supplied to the synthesizer.

This data sheet contains advance information and specifications are subject to change without notice.

SPEECH DEMONSTRATION BOX

GENERAL DESCRIPTION

Speech demonstration box OM8201 is designed to be used in conjunction with the low cost speech demonstration board OM8200. The box contains all the necessary components to drive the board. The combination of these two components make an extremely attractive demonstration unit.

FEATURES

- Low cost
- Can use unmodified OM8200 board which allows access to all features of the OM8200
- Single + 9 V supply
 - Low power consumption therefore permits battery operation
 - External power supplies may also be used
 - Voltage is regulated and dropped to a standard + 5 V for the OM8200 board
- Simple mechanical construction
 - Allows easy access to the OM8200 for changing EPROMS
- Contains all peripherals needed to drive the OM8200

HARDWARE DESCRIPTION

The box contains a set of eight keypad switches which are connected to the data bus. Four switches can select which EPROM your speech data is derived from. Repeated pressing of an EPROM switch increments the expression number which will be uttered. To repeat the last expression, a separate switch must be activated.

It is possible in the PCF8200 to change the rate of speaking to 73%, 123% or 145% of the normal speed. A switch has been included on the box which will sequence through the speed options making the same utterance every time.

One of the two remaining switches is the master reset for the program and the other is for future enhancements of the box.

Included in the box are, the volume control for the amplifier, the loudspeaker, and a high impedance audio output.

The final piece of electronics is the power supply. This can be supplied from a + 9 V internal battery or from a + 9 V external supply. The + 9 V is regulated to a + 5 V supply which is then fed to other parts of the box and to the OM8200.

The box is of simple construction and allows easy access to the OM8200 for changing of EPROMS.

SOFTWARE DESCRIPTION

There is no software in the OM8201. The software of the OM8200 may be used in an unmodified form without any problems. However, if changes have been made to the control program of the OM8200 then different functions for the switches of the box can be achieved.

This data these contains advance information and pacifications are subject to chance without notice

Fig. 1 Schematic diagram.

ORDERING INFORMATION

Product name: Speech Demonstration Box

Type number: OM8201

Ordering code: 9337 541 40000

N.B. OM8200 must be ordered as well if this box is to be used in demonstration mode.

The order number for the OM8200 is 9337 541 30000.

Orders should be placed with your local Philips/Signetics agent.

This data sheet contains advance information and specifications are subject to change without notice.

SPEECH ANALYSIS/EDITING SYSTEM

GENERAL DESCRIPTION

The OM8210 is a speech analysing/editing system, and comprises of a speech adapter box and associated software. The system uses the HP9816S personal computer.

The OM8210 and the HP9816S function together to produce speech coding for the PCF8200.

The system has many commands available, mostly single key operations, which gives it flexability.

FEATURES

- Input sampling of analogue speech signals
- Speech analysis
- Graphic parameter representation
- Parameter editing screen
- Conversion of parameters to PCF8200 synthesizer
- EPROM programming
- Parameter storage on floppy disc
- Speech output via PCF8200 voice synthesizer

Fig. 1 Block diagram.

DEVELOPMENT DATA

Speach output via PCF8200 voice synthesizer

HARDWARE DESCRIPTION

The hardware for the OM8210 is contained in an attractive box with access to all the interconnections (IEC 625, interface loudspeaker, headphones, tape input, and EPROM socket), from the front panel. There are four single Eurocards and a power supply forming the speech adapter box. These cards are:

- Analogue Card
- Synthesizer Card
- EPROM Card
- Control Card

Analogue Card

On this card, the level of the recorded audio input signal is adjusted by an electronic potentiometer. Before the audio is sampled, frequencies higher than half the sampling frequency are removed by a switched capacitor filter of the type normally used for codecs. A 12-bit analogue-to-digital converter (ADC) produces the digital samples that are sent to the control card. An 8-bit digital-to-analogue converter (DAC) on the analogue card allows the sampled speech to be output. The audio input signal, the sampled speech and the synthesized speech are selected by an analogue multiplexer, filtered, and adjusted for volume before reproduction by a loudspeaker.

The use of integrated electronic potentiometers and codec filters substantially reduces the number of components required while maintaining high performance.

Synthesizer Card

This card accommodates the PCF8200 voice synthesizer and a small amount of peripheral components and a socket for the MEA8000 voice synthesizer.

EPROM Programmer Card

This card allows four different types of EPROM (2716, 2732, 2732A and 2764) to be programmed under software control. All the hardware to generate the programming voltages and the programming waveforms are on this card.

Control Card

This card performs three functions:

- IEC 625/IEEE 488 interface
- Control sequencer
- Clock generator

The IEC/IEEE interface is a simple talker/listener implementation with a HEF4738 circuit.

An FPLA control sequencer provides the handshake signals for IEC/IEEE interface and the chip enable signals for the rest of the system (the ADC, the DAC, the synthesizer and control circuits).

The filter sampling frequency is generated with a software programmable PLL frequency synthesizer. The speech sampling frequency is derived from the filter sampling frequency by frequency division. Hence, the filter frequency cut-off and the sample rate of the ADC and the DAC are automatically linked.

The hardware includes all the necessary cables, adapter plug, loudspeaker, headphone and power supply.

SOFTWARE DESCRIPTION

The software for this speech coding system has been developed and arranged for optimum user convenience. There are eight modes available.

Each mode and each command in the mode is selected by single key entries. Commands that can destroy data have to be confirmed before they are executed. More than 100 commands are available. The modes are:

Sample Mode Samples and digitizes the recorded speech, the amplitude can be checked and

speech segments selected. The sampled speech is stored in a memory and can

be displayed or made audible.

Analysis Mode Generates speech parameters from samples, The analysis selects the voiced/

unvoiced sections, extracts the formants (5 for male and 4 for female),

amplitude, and the pitch, and quantisizes the speech parameters.

Parameter Speech parameters are displayed graphically on the VDU and can be edited to Edit Mode correct errors in the analysis, improve speech quality by altering contours

correct errors in the analysis, improve speech quality by altering contours, or amplitudes, concatenate sounds and optimize data rate by editing the frame

duration.

Code Mode Generates PCF8200 code and permits the arrangement of utterences in the

optimum order of application. This mode also generates the address map at the

head of the EPROM.

EPROM Mode Used to program/read EPROMS with data for the code memory also possible is a

new check, bit check and verification commands.

File Mode Stores speech parameters or codes on disc, can also assemble code speech segment

from an already existing library.

Media Mode For diskette initialization and making back-up copies.

Option Mode Allows the system configuration to be read or changed.

The software is supplied on two diskettes, one labelled 'BOOT' which wakes up the system and also contains the system library routines. The other diskette labelled 'SPEECH' contains the speech program, the disc initialization and the file handler programs. The 'BOOT' disc is not required during operation, giving a free disc drive with the system for a diskette to store speech parameter files.

Computer System

The following equipment is required to make a complete editing system:

- HP9816S-630 (optimum computer type)
- HP9121D (dual floppy disc)
- Additional memory card for the HP9816S (512 k bytes total required)

ORDERING INFORMATION

Product name: Speech Analysis/Editing System

Type number: OM8210

Ordering code: 9337 561 50000

The Hewlett Packard computer should be purchased from your local agents. The OM8210 should be ordered through your local Philips/Signetics agent.

DEVELOPMENT DATA

SOFTWARE DESCRIPTION

The software for this speech coding system has been developed and arranged for optimum user convenience. There are eight modes evailable.

Each made and each command in the mode is selected by single key entries. Commands that can destroy data have to be confirmed before they are executed. More than 100 commands are available.

The modes are:

Sample Mode Samples and digitizes the recorded speech, the amplitude can be checked speech is stored in a memory and

Analysis Mode Generates speech parameters from samples. The analysis selects the voiced/
unvoiced sections, extracts the formants (5 for male and 4 for female),

Speech parameters are displayed graphically on the VDU and can be edited to correct errors in the analysis, improve speech quality by altering contours,

or amplitudes, concernate sounds and optimize data rate by editing the fram

Ode Mode Generates PCF8200 code and permits the arrangement of utterances in the optimum order of application. This mode also generates the address map at the

Used to program/read EPROMS with data for the code memory also possible is

new check, on check and with tearon obtained assemble ande speech segment

Stores speech parameters or codes on disc, can also assentine uses apreside a from an already existing library.

Allows the system configuration to be read or changed.

The software is supplied on two dislettes, one lebelled 'BOOT' which wakes up the system and also contains the system library routines. The other diskette labelled 'SPEECH' contains the speech program, the disc initialization and the file handler programs. The 'BOOT' disc is not required during operation, giving a free disc drive with the system for a diskette to store speech parameter files.

Constant Stations

The following and property is required to make a complete editing system:

- HP9816S-630 (optimum computer type

_ HPR121D (dust floory disc)

_ Additional memory card for the HP98165 (512 k bytes total required)

ORDERING INFORMATIO

Speech Analysis/Editing System

terueu tanbour

ntegua

Type number

popular ser sero

Ordering code:

The Hewlett Packard computer should be purchased from your local agents. The OM8210 should be ordered through your local Philips/Signatics agent. This data sheet contains advance information and specifications are subject to change without notice,

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

128 x 8-BIT STATIC RAM

GENERAL DESCRIPTION

The PCD8571 is a low power 1024-bit static CMOS RAM organized as 128 words by 8-bits. Addresses and data are transferred serially via a two-line bidirectional bus (I2C). The built-in word address register is incremented automatically after each written or read data byte. Three address pins AO, A1, A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the bus without additional hardware.

Features

- Operating supply voltage Low data retention voltage
- Low standby current
- Power saving mode
- 2,5 V to 6 V min. 1,0 V
- max. 5 µA typ. 50 nA
- Serial input/output bus (1²C)
- Address by 3 hardware address pins
- Automatic word address incrementing
- 8-lead DIL package

Applications

- Telephony
- Radio and television
- Video cassette recorder General purpose
- RAM expansion for stored numbers in repertory dialling
- (e.g. PCD3340 applications)
- channel presets
- RAM expansion for the microcomputer families MAB8400 and PCF84C00

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCD8571P: 8-lead DIL; plastic (SOT-97A).

PCD8571D: 8-lead DIL; ceramic (cerdip) (SOT-151A).

PCD8571T: 8-lead mini-pack (SO-8L; SOT-176).

Operating supply voltage

. Low standby current

Video cassatte recorde

PININING

1 to 3	A0 to A2	address inputs
4	VSS	negative supply
5	SDA	serial data line 12 C bus
6	SCL	serial clock line
7 20022011	TEST	test input for test speed-up; must be connected to VSS when not in use
		(power saving mode, see Fig. 14 and 15)
8	VDD	positive supply

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute Max	imum System (IEC 13	34)		
Supply voltage range (pin 8)	VDD	-0,8 to	+8,0	V
Voltage range on any input	V _I	-0,8 to V _{DD}	+0,8	V
D.C. input current (any input)	± 11.000	max.	10	mA
D.C. output current (any output)	± 10	max.	10	mA
Supply current (pin 4 or pin 8)	± IDD; ISS	max.	50	mA
Power dissipation per package	P _{tot}	max.	300	mW
Power dissipation per output	P	max.	50	mW
Storage temperature range	T _{stg}	-65 to	+ 150	oC
Operating temperature range	Tamb	-25 to	+ 70	oC

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LCD DUPLEX DRIVER

GENERAL DESCRIPTION

The PCF2100 is a single chip, silicon gate CMOS circuit designed to drive an LCD (Liquid Crystal Display) with up to 40 segments in a duplex manner; specially for low voltage applications. A three-line bus structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

Features

- 40 LCD-segment drive capability
- Supply voltage 2,25 to 6,5 V
- Low current consumption

- Serial data input
 Serial data input
- CBUS control
- One-point built-in oscillator
- Expansion possibility

PACKAGE OUTLINES

PCF2100P: 28-lead DIL; plastic (SOT-117D).

PCF2100T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage with respect to VSS V_{DD} $V_$

HANDLING blupid COU as swith at be

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS

 $\rm V_{DD}$ = 2,25 to 6,5 V; $\rm V_{SS}$ = 0 V; $\rm T_{amb}$ = -40 to + 85 °C; $\rm R_{o}$ = 1 M Ω ; $\rm C_{o}$ = 680 pF; unless otherwise specified

parameter	condition		symbol	min.	typ.	max.	unit
Supply current	no external loa	d	IDD	-	10	50	μΑ
Supply current	no external loa T _{amb} = -25 to	THE PERSON NAMED IN COLUMN	I _{DD}	-		30	μΑ
Display frequency	see Fig. 8; T = (680 μs	fLCD	60	80	100	Hz
D.C. component of LCD drive	with respect to	V _{SX}	V _{BP}	-	± 10	-	mV
Load on each segment	BOATTOV		S BNAJ	BACKE	-	10	MΩ
driver Load on each backplane				-		500	pF MΩ
driver	large target 1		T.A.		N234	5	nF
Input voltage HIGH	1 .		VIH	2	- BJ	_	V
Input voltage LOW	see Fig. 9		VIL		-ATA	0,6	V
Rise time V _{BP} to V _{SX}	max. load		t _r	-	20	-	μs
Inputs CLB, DATA, DLEN	see note on nex	t page					
Rise and fall times	see Fig. 2		t _r , t _f	-	-	10	μs
CLB pulse width HIGH	see Fig. 2		tWH	1	_	-	μs
CLB pulse width LOW	see Fig. 2		twL	9	-	_	μs

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LCD DUPLEX DRIVER SOUTH TO DESCRIPTION OF THE PROPERTY OF THE

GENERAL DESCRIPTION

The PCF2110 is a single chip, silicon gate CMOS circuit designed to drive 2 LEDs (Light Emitting Diodes) and an LCD (Liquid Crystal Display) with up to 60 segments in a duplex manner; specially for low voltage applications. A three-line bus structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

Features

- 60 LCD-segment drive capability
- Two LED-driver outputs
- Supply voltage 2,25 to 6,5 V
- Low current consumption

- Serial data input
- CBUS control
- One-point built-in oscillator
- Expansion possibility

PCF2110P: 40-lead DIL; plastic (SOT-129).

PCF2110T: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage with respect to VSS	V _{DD}	-0,3 to 8	V
Voltage on any pin	Vn	$V_{SS} = 0.3 \text{ to } V_{DD} + 0.3$	V
Operating ambient temperature range	T _{amb}	-40 to +85	oC
Storage temperature range	T _{stg}	-55 to + 125	oC

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS

 V_{DD} = 2,25 to 6,5 V; V_{SS} = 0 V; T_{amb} = -40 to + 85 °C; R_o = 1 M Ω ; C_o = 680 pF; unless otherwise specified

parameter	condition	symbol	min.	typ.	max.	uni
Supply current	no external load	IDD	_	10	50	μΑ
Supply current	no external load;					
	$T_{amb} = -25 \text{ to} + 85 ^{\circ}\text{C}$	IDD	-	-	30	μΑ
Display frequency	see Fig. 9; $T = 680 \mu s$	fLCD	60	80	100	Hz
D.C. component	H 124 053	18 58	0 100			
of LCD drive	with respect to V _{SX}	VBP	-	± 10	-	m\
Load on each segment	JUDGIANA TORNOS		-	-	10	MS
driver	BDATJOV BRBVIS	D B THAN	DECAR	-	500	pF
Load on each backplane		1	-	-	1	MS.
driver	20H0TA	TAT	-	-	5	nF
Input voltage HIGH	see Fig. 10	VIH	2	-	-	V
Input voltage LOW	Bathelia 835/195	VIL	RTHOS.	-	0,6	V
Rise time	JOHTMO		1	1 1 "		
V _{BP} to V _{SX}	max. load	t _r	-	20	-	μs
LED outputs S31, S32	$V_{DD} = 3 V;$ $T_{amb} = 25 {}^{\circ}C$					
Output resistance	V _{OL} = 0,2 V; see Fig. 4	Rout	-	_	25	Ω
Drain voltage	N-channel OFF	VLED	- , 3	-	8	V
Drain current	maximum value	LEDmax	_	-	50	mA
Total power dissipation		P _{tot}	_	-	400	mV
Inputs CLB, DATA, DLEN	see note on next page					
Input capacitance	for SOT-129 package	CIN	_	_	10	pF
	for SOT-158A package	CIN	-	-	5	pF
Rise and fall times	see Fig. 2	t _r , t _f	_	-	10	μs
CLB pulse width HIGH	see Fig. 2	twH	1	- DOMEST	HT00-36	μs
CLB pulse width LOW	see Fig. 2	twL	9	COUNTY	1700 at	μs

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LCD DUPLEX DRIVER 22V of the gest of the specific violation of the spe

GENERAL DESCRIPTION

The PCF2111 is a single chip, silicon gate CMOS circuit designed to drive an LCD (Liquid Crystal Display) with up to 64 segments in a duplex manner; specially for low voltage applications. A three-line bus structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

Features

- 64 LCD-segment drive capability
- Supply voltage 2,25 to 6,5 V
- Low current consumption 03: 22M 1 = 08: 39 88 + of 04 = 4mg T: V 0 = 22V: V 8.8 of 85.5 = 00V
- Serial data input
- CBUS control
- One-point built-in oscillator

PACKAGE OUTLINES

PCF2111P: 40-lead DIL; plastic (SOT-129).

PCF2111T: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage with respect to VSS	XELIGIO VDD	-0,3 to 8	V
Voltage on any pin	V _n	$V_{SS} - 0.3$ to $V_{DD} + 0.3$	٧
Operating ambient temperature range	T _{amb}	-40 to +85	oC
Storage temperature range	T _{stg}	-55 to + 125	oC

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS

 V_{DD} = 2,25 to 6,5 V; V_{SS} = 0 V; T_{amb} = -40 to + 85 °C; R_o = 1 M Ω ; C_o = 680 pF; unless otherwise specified

parameter	condition	symbol	min.	typ.	max.	unit
Supply current	no external load	I _{DD}	-	10	50	μΑ
Supply current	no external load; T _{amb} = -25 to +85 °C	IDD	-	-	30	μΑ
Display frequency	see Fig. 8; T = 680 μs	fLCD	60	80	100	Hz
D.C. component of LCD drive	with respect to V _{SX}	V _{BP}	198	± 10	_	mV
Load on each segment driver	SEMENT ANALOGUE	8 3MA)		_	10 500	MΩ pF
Load on each backplane driver	DRIVERS VOLTAGE		=		1 5	MΩ nF
Input voltage HIGH	see Fig. 9	V _{IH} V _{IL}	2	Majk eus	- 0.6	V
Rise time V _{BP} to V _{SX}	max, load	tr	HTVIQO	20	_	μs
Inputs CLB, DATA, DLEN	see note on next page	7-	+ 1			
Input capacitance	for SOT-129 package	CIN	-	-	10	pF
	for SOT-158A package	CIN	-	-	5	pF
Rise and fall times	see Fig. 2	tr, tf	-	-	10	μs
CLB pulse width HIGH	see Fig. 2	twH	1	-	-	μs
CLB pulse width LOW see Fig. 2		twL	9	_	_	μs

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LCD DRIVER

GENERAL DESCRIPTION

The PCF2112 is a single chip, silicon gate CMOS circuit designed to drive an LCD (Liquid Crystal Display) with up to 32 segments in direct drive; specially for low voltage applications. A three-line bus structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

Features

- 32 LCD-segment drive capability.
- Supply voltage 2,25 to 6,5 V.
- Low current consumption. QM 1 = 08 :30 d8 + or Q4— = dmsT :V Q = paV .V d. 8 or 85.5 = nnV
- Serial data input.
- CBUS control.
- One-point built-in oscillator.
- Expansion possibility.

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF2112P: 40-lead DIL; plastic (SOT-129).

PCF2112T: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage with respect to VSS V_{DD} $V_$

The PCF2112 is a single chip, silicon gate CMOS circuit designed to drive an LCD (Liquid DNIJDNAH

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS

 V_{DD} = 2,25 to 6,5 V; V_{SS} = 0 V; T_{amb} = -40 to + 85 °C; R_o = 1 M Ω ; C_o = 1,5 nF; unless otherwise specified.

parameter	condition	symbol	min.	typ.	max.	unit
Supply current	no external load	IDD	_	10	50	μΑ
Supply current	no external load; T _{amb} = -25 to +85 °C	I _{DD}	-		30	μΑ
Display frequency	T = 1,5 ms	fLCD	30	40	50	Hz
Output resistance of each segment	GOJ TVS	Rs	-	_	10	kΩ
Output resistance of backplane	$\begin{cases} I_0 = 10 \ \mu A \end{cases}$	R _{BP}	48	7-	2	kΩ
Input voltage HIGH Input voltage LOW	see Fig. 8	VIH VIL	2		0,6	V
Inputs CLB,DATA,DLEN	see note on next page	112			0,0	
Input capacitance	for SOT-129 package for SOT-158A package	C _{IN}	ue	= 1/3	10	pF pF
Rise and fall times	see Fig. 2	t _r , t _f	тиоз	AT	10	μs
CLB pulse width HIGH	see Fig. 2	tWH	1	-	-	μs
CLB pulse width LOW	see Fig. 2	tWL	9	-	-	μs

This data sheet contains advance information and specifications are subject to change without notice.

VOICE SYNTHESIZER

GENERAL DESCRIPTION

The PCF8200 is a CMOS integrated circuit for generating good quality speech from digital code with a programmable bit rate. The circuit is primarily intended for applications in microprocessor controlled systems, where the speech code is stored separately.

Applications include automotive, telephony, personal computers, annunciators, aids for the handicapped, and general industrial devices.

Features

- Male and female speech with good quality
- Speech-band from 0 to 5 kHz
- Bit-rate between 455 bits/second and 4545 bits/second
- Programmable frame duration
- Programmable speaking speed
- CMOS technology
- Operating temperature range -40 to +85 °C
- Single 5 V supply with low power consumption and power-down stand-by mode
- Interfaces easily with most popular microcomputers and microprocessors through 8 bit parallel bus or I²C bus
- Software readable status word (parallel bus or I²C bus)
- BUSY-signal and REQN-signal hardware readable
- Internal low-pass filter and 11-bit D/A converter

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply voltage	V _{DD}	- L	5		V
Supply current	IDD		10	t.b.f.	mA
Supply current (stand-by)	IDD(SB)	38-	200	9 1	μΑ
Inputs					
Input voltage	VIH	2,0	<u>_</u> L	V _{DD}	V
Input voltage	VIL	0		0,8	V
Input capacitance	CI		7		pF
Outputs (D5 to D7)					
Output voltage high	Voh	3,5	13.7	V _{DD}	V
Output voltage low	VOL	0	3 1 1	0,4	V
Load capacitance Operating ambient	CL	1- 1		80	pF
temperature range	T _{amb}	-40	-	+ 85	oC

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

PINNING VDD-A supply VREF supply 3 OUT output VSS-A supply 5 NC not connected 2 23 6 TEST input 7 OSCI input 8 OSCO output 9 SERN/PAR input 10 REQN output 11 BUSY output 12 supply VSS-D 13 CEN input 14 RN/W input 15 WN input 16 SDA/D7 input/output 16 17 SCL/D6 input/output 15 18 D5 input/output 11 19 D4 input 14 20 D3 input **DEVELOPMENT DATA** 12 13 21 D2 input 22 D1 input 23 D0 input 24 VDD-D Supplying (023, 123) noting-been to notion it is a noticed smart. I alde I

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage*	V _{DD}	min.	-0,3	max.	7,5	V
Input voltage*	VI	min.	-0,3	max.	7,5	V
Output voltage*	Vo	min.	-0,3	max.	7,5	V
Operating ambient temperature range	Tamb			-40 to	+ 85	oc
Storage temperature range	T _{stg}			-55 to	+ 125	oC

^{*} Any pin with respect to VSS.

FUNCTIONAL DESCRIPTION

The synthesizer has been designed for a vocal tract modelling technique of voice synthesis. An excitation signal is fed to a series of resonators. Each resonator simulates one of the formants in the original speech. It is controlled by two parameters, one for the resonant frequency and one for the bandwidth. Five formants are needed for male speech and four for female speech. The output of this system is defined by the excitation signal, the amplitude values and the resonator settings. By periodic updating of all parameters very high quality speech can be produced.

OPERATION

Speech characteristics change quite slowly, therefore the control parameters for the speech synthesizer can be adequately updated every few tens of milliseconds with interpolation during the interval to ensure a smooth changeover from one parameter value to the next. In the PCF8200 the standard-frame duration can be set to 8,8, 10,4, 12,8 or 17,6 milliseconds with the speed-option, speaking speed, in the command-register.

The duration of each individual speech frame is programmable to be 1, 2, 3 or 5 times the standard-frame duration.

	10	01	00	11	FS1, FS0
00	8,8	10,4	12,8	17,6	ms
01	17,6	20,8	25,6	35,2	ms
10	26,4	31,2	38,4	52,8	ms
11	44,0	52,0	64,0	88,0	ms
FD1, FD0					

Table 1. Frame duration as a function of speed-option (FS1, FS0) and frame-duration (FD1, FD0).

The excitation signal is a random noise source for unvoiced sounds and a programmable pulse generator for voiced sounds. Both sources have an amplitude modulator which is updated 8 times in one speech-frame by linear interpolation. The pitch is updated every 1/8 of a standard frame.

The excitation signal is filtered with a five formant filter for male speech and a four formant filter for female speech. The formant filter is a cascade of all second-order sections. The control parameters, formant-frequency and formant-bandwidth, are updated eight times per speech frame by linear interpolation.

A block diagram of the formant synthesizer is shown in Fig. 3.

The filter output is upsampled to 80 kHz and filtered with a digital low-pass filter. Before the signal is digital to analogue converted (DAC), with an 11-bit switched capacitor DAC, the signal is multiplied with a DAC-amplitude factor. The use of a digital filter means that no external audio filtering is required for low-medium applications and minimal filtering is required for those applications requiring very high quality speech.

Fig. 3 Block diagram of formant synthesizer.

DATA FORMAT

Three types of format are used for data transfer to the synthesizer.

DAC-amplitude factor

The DAC-amplitude factor is one byte, which is used to optimize the digital speech signal to the 11-bit DAC. It is the first byte after a STOP or a BADSTOP or V_{DD} on. Table 2 indicates the amplitude factor.

byte	factor	dB	
01110000	3,5	10,88	
10110000	3,25	10,24	
00110000	3,0	9,54	
11010000	2,75	8,97	
01010000	2,5	7,96	
10010000	2,25	7,04	
00010000	2,0	6,02	
11100000	1,75	4,86	
01100000	1,5	3,52	
10100000	1,25	1,94	
00100000	1,0	0,00	
11000000	0,75	-2,50	
01000000	0,5	-6,02	
10000000	0,25	-12,04	
00000000	0,0		
11110000	HEX code	FO and is no	t allowed as a DAC amplitude

Table 2 DAC amplitude factor.

Start pitch

The second byte after a STOP or BADSTOP, or $V_{\mbox{DD}}$ on is the start pitch. It is a one byte start value for the on-chip pitch-period generator.

Frame Data

The frame data is a five byte block which contains the filter and source information:

pitch increment/decrement value		5 bits
amplitude		4 bits
frame duration		2 bits
frequency of 1st formant		5 bits
frequency of 2nd formant		5 bits
frequency of 3rd formant		3 bits
frequency of 4th formant		3 bits
frequency of 5th formant		1 bit
bandwidth of 1st formant		3 bits
bandwidth of 2nd formant		3 bits
bandwidth of 3rd formant		2 bits
bandwidth of 4th formant		2 bits
bandwidth of 5th formant	duration of a l	2 bits
		1011111

40 bits = 5 bytes

The frame-data bits are organized as shown in Fig. 4.

It is not allowed to set byte 0 to the hexadecimal value E0.

Fig. 4 Format of frame-date.

CONTROL FORMAT

Command Write

A command write consists of two bytes, and it may occur before a data block. The four bits which can be written are shown in Fig. 5.

Fig. 5 Control write: first byte fixed, second byte control.

FS0, FS1 speed option

FS1	FS0	speech	standard-frame
F51		speed	duration
0	0	100%	12,8 ms
0	1	123%	10,4 ms
1	0	145%	8,8 ms
1	1	73%	17,6 ms

MN/F, male/female option

MN/F = 0 male quantization table

= 1 female quantization table

STOP

STOP = 1 stop; repeat last complete frame with amplitude = 0 (no excitation signal)

- = 0 if the frame data is not sent within the duration of a half frame, there will be a BADSTOP:
 - 1. REQN = 1 STOP = 0
 - 2. Repeat last frame with amplitude = 0
 - 3. BUSY = 0

Three status bits can be read out at any time without a preceding byte (E0). So and this is shown in Fig. 6.

Fig. 6 Status read.

REQN = 1 No data required

= 0 Synthesizer requesting for new data

BUSY = 1 Busy (an utterance is pronounced)

= 0 Idle, REQN will set to 1; the synthesizer is in STOP or BADSTOP mode

STOP The STOP bit is the same as the stop bit written to the synthesizer during a command write.

STOP = 1, BUSY = 0 stopped by the user.

STOP = 0, BUSY = 0 BADSTOP because the data was not sent in time.

After initial power-up the status/command register is set to the following status:

FS0. FS1 = 0 Standard-frame duration of 12.8 ms

MN/F = 0 Male quantization table

STOP = 1

BUSY = 0 Idle

REQN = 1 No data required

INTERFACE PROTOCOL

Data can be written to the synthesizer when REQN = 0 or, when REQN = 1 and BUSY = 0. Figure 7 shows the interface protocol of the synthesizer.

In parallel mode the synthesizer is activated by sending the DAC-amplitude factor. In serial mode the DAC-amplitude factor can be sent as soon as the synthesizer is powered-up.

The I²C transmitter/receiver will then acknowledge. When the request for the pitch-byte occurs the byte must be provided within the duration of a half standard frame. If the byte is not provided in time a BADSTOP will be generated.

During each data write operation, the status bit REQN will be set to '1'.

Within a frame data block, it disappears within a few microseconds, asking for the next byte of that block. If the bytes of frame data are not provided within the time-duration of a half frame, a BADSTOP will be generated.

12C ADDRESS

On chip there is a I2C slave receiver/transmitter with the address:

7 6 5 4 3 2 1 0 0 0 1 0 0 0 0 R/W The synthesizer will be set to power-up on a parallel-write sequence.

PAR-mode:

The input-latches are active so they can receive the first byte

SER-mode: The I²C transmitter/receiver will not acknowledge until the synthesizer has powered-

up. To power up the synthesizer a parallel write sequence (Fig. 9) must be made to the synthesizer by using external logic for the control lines; at least one line must be

toggled, CEN, while WN = 0 and RN/W = 1.

The synthesizer can be set to permanent power-up by hard-wired control pins

(CEN = 0, RN/W = 1, WN = 0).

POWER DOWN MODE

When BUSY = 0 the synthesizer will be set to power-down. In the power-down mode the status/command register will be retained.

In power-down mode the clock-oscillator is switched off. After initial V_{DD} the synthesizer is in power-down mode,

SERN/PAR

SERN/PAR is hard-wired to V_{DD} or V_{SS}.

HANDLING

All inputs and outputs are protected against electrostatic charge under normal handling conditions.

 T_{amb} = -45 to + 85 °C; supply voltage (V_{DD} to V_{SS}) = 4,5 V to 5,5 V with respect to V_{SS}, otherwise specified

pecified					
parameter	symbol	min.	typ.	max.	unit
Supply	- 1,9	YREF		ce voltage	Refere
Supply voltage Supply current Standby current Inputs	V _{DD} I _{DD} I _{DD(SB)}	4,5 - -	5,0 10 200	ekage curr.h.d.t	mA μA
CEN, RN/W, WN, OSCI				HotH agaztov	Output
Input voltage HIGH Input voltage LOW Input leakage current	VIH VIL 0	2,0	_	Voltage L QQV = 3,2 mA) 8,0	Vuo Vol
V _{in} = 0 to 5,5 V Rise and fall times (note 2) Input capacitance	I _{IR} t _{rf} C _I	-10 - -	_ (d	10 somir list a 50 7	ns pF
PARALLEL MODE Input Characteristics (D0 to D7)	0,86 x VREI	TUO		m external load characteristics (1) (Figs 8 and 9)	Minimu Timing
Input voltage HIGH Input voltage LOW Input leakage current (V _{in} = 0 to 5,5 V,	200 HIV 150 JIV	2,0 0 8W 20 HQ		VDD side 0,8	V V
output off) Input capacitance	IIR CI	-10 GR	15	able 01 as for read (7 te eting for read 7	μA pF
Output Characteristics (D5 to D7 only)	- 0	OF CS			(note Control
Output voltage HIGH (IOH = -100 µA) Output voltage LOW	V _{OH}	3,5		V _{DD} vd wen) w	Control REQne same
(I _{OL} = 3,2 mA) Load capacitance Add Rise and fall times (note 3)	VOL CL trf	0 V8 - H8	ERISTICS	80 50	V pF ns
SERIAL MODE		000 1140			
Input Characteristics (SDA and SDL)	t for a '0' are re	8,0 marks as	ra'l' or la	reference level is 1 reater than 2 V fo id 50 pF	2. Levels g
Input voltage HIGH Input voltage LOW Input leakage current (V _{in} = 0 to 5,5 V,	V _{IH} V _{IL}	3,0	ns V 0,0 n		
output off) Input capacitance	I _{IR}	-10 -	-	10 10	μA pF
Output Characteristics (SDA only, open drain)					
Output voltage LOW (IOL = 3 mA)	V _{OL}	0	_	0,4	V

parameter	symbol	min.	typ.	max.	unit
OSCILLATOR	SS) = 4,5 V to 5	A OL OQA)	apariov yluga	28 ; J ^Q GB + 03 GF	beifficeds
Crystal frequency VREF	fXTAL	t.b.f.	6	t.b.f.	MHz
Reference voltage	V _{REF}	1,9	-	V _{DD} -1,5 1,25	V
Input leakage current	I IIR	- aa,	t.b.f.		Supply
Outputs REQN, BUSY		00(\$8)			
Output voltage HIGH (IOH = 100 µA) Output voltage LOW	V _{OH}	3,5	-	V _{DD}	
(I _{QL} = 3,2 mA) Load capacitance	V _{OL}	0 -	1	0,4 80	V pF
Rise and fall times (note 3) OUT	trf	- 8	g c	50 asmir list i	ns
Output voltage Minimum external load	Vout	0,66 x V	REF	1,34 x V _{REF}	V
Timing characteristics (note 1) (Figs 8 and 9)					
Write enable Data set-up for write	twr	200 150	V -	Itage HIGH -	ns
Data hold for write	^t DS ^t DH	30		licage current	ns
Read enable Data delay for read (note 2)	t _{DD}	200	1 1	150	ns ns
Data floating for read (note 2)	tDF	_		150	ns
Control set-up Control hold	tcs	0	-	a D7 only)	115
REQ new (new byte of the	^t CH	HO	V		HOI)
same speech frame) REQ Valid	t _{RN}	0	t.b.f. (≈ 3	oltage LOW (us
REQ Hold	t _{RV}	- 30	250	t.b.f. eonetice	THE PERSON NAMED IN

NOTES TO THE CHARACTERISTICS

- 1. Timing reference level is 1,5 V; supply 5 V ± 10%; temperature range of -40 °C to 85 °C.
- 2. Levels greater than 2 V for a '1' or less than 0,8 V for a '0' are reached with a load of one TTL input and 50 pF.
- 3. Rise and fall times between 0,6 V and 2,2 V levels.

Fig. 7 Interface protocol.

Timing diagrams

The control signals CE, R/W and W have been specified to enable easy interface to most microprocessors and microcomputers. For instance with connection to an MAB8048 microcomputer the R/W and W inputs can be used as the RD and WR strobe inputs.

Typical connection of control signals.

Fig. 8 Read timing.

Fig. 9 Write timing.

Fig. 10 Typical application configuration with parallel interface.

Fig. 11 Typical application configuration with series interface.

Fig. 12 An example of an output configuration.

Fig. 13 Oscillator clock configurations.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

256 x 8-BIT STATIC RAM

GENERAL DESCRIPTION

The PCF8570 is a low power 2048-bit static CMOS RAM organized as 256 words by 8-bits. Addresses and data are transferred serially via a two-line bidirectional bus (I²C). The built-in word address register is incremented automatically after each written or read data byte. Three address pins A0, A1, A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the bus without additional hardware.

Features

- Operating supply voltageLow data retention voltage
- Low standby current
- Power saving mode
- 2,5 V to 6 V min. 1,0 V max. 15 μA
- typ. 50 nA
- Serial input/output bus (1²C)
- Address by 3 hardware address pins
- Automatic word address incrementing
- 8-lead DIL package

Applications

- Telephony
- Radio and television
- Video cassette recorder
- General purpose

RAM expansion for stored numbers in repertory dialling (e.g. PCD3343 applications)

channel presets

RAM expansion for the microcontroller families MAB8400 and PCF84C00

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8570P: 8-lead DIL; plastic (SOT-97A).

PCF8570T: 8-lead mini-pack plastic (SO-8L; SOT-176).

· Low standby current

PINNING

1 to 3	A0 to A2	address inputs
4	VSS	negative supply
5	SDA	serial data line
6	SCL	serial data line I ² C bus
7	TEST	test input for test speed-up; must be connected to VSS when not in us
8	V _{DD}	(power saving mode, see Figs 14 and 15) positive supply

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

a byte. Three address pins AO, A1, A2 are

PCF8573

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

CLOCK/CALENDAR WITH SERIAL I/O

GENERAL DESCRIPTION

The PCF8573 is a low threshold, monolithic CMOS circuit that functions as a real time clock/calendar in the Inter IC (I²C) bus-oriented microcomputer systems. The device includes an addressable time counter and an addressable alarm register, both for minutes, hours, days and months. Three special control/status flags, COMP, POWF and NODA, are also available. Information is transferred serially via a two line bidirectional bus (I²C). Back-up for the clock during supply interruptions is provided by a 1,2 V nickel cadmium battery. The time base is generated from a 32,768 kHz crystal-controlled oscillator.

Features

- Serial input/output bus (1²C) interface for minutes, hours, days and months
- Additional pulse outputs for seconds and minutes
- Alarm register for presetting a time for alarm or remote switching functions
- Battery back-up for clock function during supply interruption
- Crystal oscillator control (32,768 kHz)

QUICK REFERENCE DATA

Supply voltage range (clock)	V _{DD} -V _{SS1}		1,1 to 6,0	V
Supply voltage range (I ² C interface)	$V_{DD}-V_{SS2}$		2,5 to 6,0	V
Crystal oscillator frequency	f _{osc}	typ.	32,768	kHz

PACKAGE OUTLINES

PCF8573P: 16-lead DIL; plastic (SOT-38).

PCF8573T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).

Fig. 1 Block diagram.

PCF8574

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

REMOTE 8-BIT I/O FOR I2C BUS

GENERAL DESCRIPTION

The PCF8574 is a single-chip silicon gate CMOS circuit. It provides remote I/O expansion for the MAB8400 and PCF8500 microcomputer families via the two-line serial bidirectional bus (I²C). It can also interface microcomputers without a serial interface to the I²C bus (as a slave function only). The device consists of an 8-bit quasi-bidirectional port and an I²C interface.

The PCF8574 has low current consumption and includes latched outputs with high current drive capability for directly driving LEDs. It also possesses an interrupt line (INT) which is connected to the interrupt logic of the microcomputer on the I²C bus. By sending an interrupt signal on this line, the remote I/O can inform the microcomputer if there is incoming data on its ports without having to communicate via the I²C bus. This means that the PCF8574 can remain a simple slave device.

2,5 V to 6 V

max. 10 μA

Features

- Operating supply voltage
- · Low stand-by current consumption
- Bidirectional expander
- Open drain interrupt output
- 8-bit remote I/O port for the I²C bus
- Peripheral for the MAB8400 and PCF8500 microcomputer families
- · Latched outputs with high current drive capability for directly driving LEDs
- Address by 3 hardware address pins for use of up to 8 devices (up to 16 possible with mask option)

Fig. 1 Block diagram,

PACKAGE OUTLINES

PCF8574P: 16-lead DIL; plastic (SOT-38).

PCF8574T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).

Operating supply voltage

PINNING

Fig. 2 Pinning diagram.

Fig. 3 Simplified schematic diagram of each port.

This data sheet contains advance information and specifications are subject to change without notice.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

UNIVERSAL LCD DRIVER FOR LOW MULTIPLEX RATES

GENERAL DESCRIPTION

The PCF8576 is a peripheral device which interfaces to almost any liquid crystal display (LCD) having low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 40 segments and can easily be cascaded for larger LCD applications. The PCF8576 is compatible with most microprocessors and communicates via a two-line bidirectional bus (I²C). Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

Features

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or 2/3/4 backplane multiplexing
- Selectable display bias configuration: static, 1/2 or 1/3
- 40 segment drives: up to twenty 8-segment numeric characters; up to ten 15-segment alphanumeric characters; or any graphics of up to 160 elements
- 40 x 4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- LCD and logic supplies may be separated
- Wide power supply range: from 2 V for low-threshold LCDs and up to 9 V for guest-host LCDs and high-threshold (automobile) twisted nematic LCDs
- Low power consumption
- Power-saving mode for extremely low power consumption in battery-operated and telephone applications
- I²C bus interface
- TTL/CMOS compatible
- Compatible with any 4-bit, 8-bit or 16-bit microprocessors
- May be cascaded for large LCD applications (up to 2560 segments possible)
- Optimized pinning for single plane wiring in both single and multiple PCF8576 applications
- Space-saving 56-lead plastic mini-pack (VSO-56)
- Very low external component count (at most one resistor, even in multiple device applications)
- Compatible with Philips/Videlec chip-on-glass technology
- Manufactured in silicon gate CMOS process

PACKAGE OUTLINES

PCF8576T: 56-lead mini-pack; plastic (VSO-56; SOT-190).

PCF8576U: uncased chip in tray

96

Fig. 1 Block diagram.

PCF8577 PCF8577A

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LCD DIRECT/DUPL EX DRIVER WITH I2C BUS INTERFACE

GENERAL DESCRIPTION

The PCF8577 is a single chip, silicon gate CMOS circuit. It is designed to drive liquid crystal displays with up to 32 segments directly, or 64 segments in a duplex manner.

The two-line I²C bus interface substantially reduces wiring overheads in remote display applications. Bus traffic is minimized in multiple IC applications by automatic address incrementing, hardware subaddressing and display memory switching (direct drive mode).

The PCF8577 and PCF8577A differ only in their slave address.

Features

- Direct/duplex drive modes with up to 32/64 LCD-segment drive capability per device
- Operating supply voltage: 2,5 to 9 V
- Low power consumption
- 12 C bus interface
- Optimized pinning for single plane wiring
- Single-pin built-in oscillator
- Auto-incremented loading across device sub-address boundaries
- · Display memory switching in direct drive mode
- May be used for I² C bus output expander
- System expansion up to 256 segments (512 segments with PCF8577A)
- Power-on-reset sets all segments off (to blank)

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8577P, PCF8577AP: 40-lead DIL; plastic (SOT-129).

PCF8577T, PCF8577AT: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

Hardware sub-address A0, A1, A2

The hardware sub-address lines A0, A1, A2 are used to program the device sub-address for each PCF8577 on the bus. Lines A0 and A2 are shared with OSC and BP2 respectively to reduce pin-out requirements.

- A0/OSC Line A0 is defined as LOW (logic 0) when this pin is used for the local oscillator or when connected to V_{SS} . Line A0 is defined as HIGH (logic 1) when connected to V_{DD} .
- A1 Line A1 must be defined as LOW (logic 0) or as HIGH (logic 1) by connection to V_{SS} or V_{DD} respectively.
- A2/BP2 In the direct drive mode the second backplane signal BP2 is not used and the A2/BP2 pin is exclusively the A2 input. Line A2 is defined as LOW (logic 0) when connected to V_{SS} or, if this is not possible, by leaving it unconnected (internal pull-down). Line A2 is defined as HIGH (logic 1) when connected to V_{DD} .

In the duplex drive mode the second backplane signal BP2 is required and the A2 signal is undefined. In this mode device selection is made exclusively from lines A0 and A1.

PLL FREQUENCY SYNTHESIZER

The integrated circuit SAA1056P together with a suitable prescaler (e.g. SAA1059) and a loop filter forms a complete PLL frequency synthesizer for AM/FM radio tuning systems.

Features

- Bus control for the selection of 17-bit words.
- 17-bit latch, for data storage.
- Control lines TTL compatible by means of level shifters.
- Decoupled oscillator frequency output (system clock for other ICs).
- Choice of 4 reference frequencies.

QUICK REFERENCE DATA

Maximum input frequency 4 MHz

Fig. 1 Block diagram.

16-lead DIL; plastic (SOT-38Z).

PACKAGE OUTLINE

GENERAL DESCRIPTION

The integrated circuit SAA1056P, together with a suitable prescaler (32/33) and loop-filter, forms a complete synthesizer function for AM/FM radio tuning systems.

The circuit comprises the following blocks:

- A dividing circuit formed by a 5-bit binary Swallow counter and a 10-bit binary programmable divider.
- b. A frequency/phase detector which, via an external loop-filter, generates the control voltage for the voltage-controlled oscillator (VCO). The detector also gives a lock indication.
- A 13-bit binary reference frequency divider. This divider delivers the reference frequency to the frequency/phase detector.
- d. The decoder delivers the dividing number for the reference divider. Depending on the logic state of the 2 inputs (REFI, REFE), four different dividing ratios (160, 400, 800 and 8000) for the reference frequencies can be fed to the frequency/phase detector.
- e. A reference frequency oscillator. Together with a 4 MHz crystal a stable frequency is generated, from which the reference frequencies are derived. The 4 MHz signal is also available at a decoupled output as a system clock for other ICs.
- f. A 17-bit latch to store the data for the dividing number of the programmable divider (block a) and 2 bits for reference frequency choice.
- g. A 16-bit shift register to receive the serial data for the latch.
- h. A bus control to protect the data transfer against interferences.
- Level shifters for the control inputs DATA, DLEN, CLB and REFE so no external interface is necessary between the SAA1056P on 9 V and the other ICs on 5 V.
- k. Synchronization circuit for loading the latches.

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) 05- = dama T : V 0 = 22 V

Supply voltage range (V _{DDI} < V _{DD}) Input voltage range Input current (d.c.)		V _{DD} V _I ± I _I	-0,3 to + max.	VDD	
Output current (d.c.)		± 10	max.	10	mA
Current from VDDI to VDD (d.c.)		1	max.	10	mA
Power dissipation per output		PO	max.	100	mW
Total power dissipation per package		P _{tot}	max.	240	mW
Operating ambient temperature range		Tamb	-20 to	+80	oC
Storage temperature range		T _{stg}	-55 to	+ 150	oC

D.C. CHARACTERISTICS

 $V_{SS} = 0$; $T_{amb} = -20$ to +80 °C; unless otherwise specified

2.110	1.1	-	92 197	0	018		rise/fell time
	V _{DD} V	symbol	Jymin.ew	typ.	max.		conditions
Supply voltages	- 200	V _{DD}	8 4,5	9	10 5,5	V	Output CMOD Open-drain, n-channel fail time
Supply current	10	I _{DD}	-	-	100	μΑ	$\begin{cases} I_O = 0; V_I = V_{DD} \\ \text{or } V_{DDI} \text{ or } V_{SS} \end{cases}$
Inputs without level shifters; FIN, QRZ, TEST		260	HWP				HDIH wildth HIGH
input voltage LOW		V _{IL} V _{IH}	0 0,7 V _{DD}		0,3 V _{DD}	V V	pulse width LOW
20.20 - 0.0	10	-ИЕ -ИЕ		-0	1	μΑ μΑ	V ₁ = 10 V iii list sair V ₁ = 0
Inputs with level shifters DATA, CLB, DLEN, REF at V _{DDI} = 4,5 to 5,5 V	E						
input voltage LOW input voltage HIGH	8 to 10 8 to 10	V _{IL} V _{IH}	0 0,8 V _{DDI}	_	0,2 V _{DDI}	V V	1
input current HIGH input current LOW	10 10	I _{IH}	_	_	1 1	μΑ μΑ	$V_I = V_{DDI}$ $V_I = 0$
Output CMOD open-drain, n-channel			2005				
output voltage LOW 400	8 to 10	VOL	_	_	0,5	V	I _{O1} = 5,5 mA
output leakage current	10	IOR	-	_	20	μΑ	V _O = 10 V
Outputs LOC, FU, FDN	+	1	= 3q0r				
output voltage HIGH output voltage LOW	8 to 10 8 to 10	V _{OH} V _{OL}	V _{DD} -0,5	_	- 0,5	V V	-I _O = 2,5 mA I _O = 5,5 mA
Output OSC							
output voltage HIGH output voltage LOW	8 to 10 8 to 10	V _{OL}	V _{DD} -1	28 V	-	V V	$-I_0$ = 1,2 mA; QRZ at V_{SS} I_0 = 2 mA; QRZ at V_{DD}
Output CLO	Jius	rio 1291 I	Output CLC				
output voltage HIGH output voltage LOW	8 to 10 8 to 10	V _{OH}	V _{DD} -1	-	1	V V	$-I_0 = 1,2 \text{ mA}$ $I_0 = 4 \text{ mA}$

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = -20 \text{ to } + 80 \text{ °C}$; unless otherwise specified and follow sometimes and assume partial $T_{amb} = -20 \text{ to } + 80 \text{ °C}$; unless otherwise specified

	V _{DD}	symbol	min.	typ. max.	conditions
Inputs without level shifters; FIN, QRZ	± 1			o Vog (d.c.)	Output current (d.c.) Current from VDD1 Power dissipation pe
input frequency	9 8 to 10	fi	4	MHz	Total power dissipat
duty factor	8 to 10	δ	45	- 55 %	Operating ambient to
rise/fall time	8 to 10	t _r , t _f	_	- 50 ns	Storage temperature
Inputs with level shifter DATA, CLB, DLEN, RE	FE				D.C. CHARACTERI
rise/fall time	8 to 10	t _r , t _f	_	- 1 μs	
pulse width	p. water .q	tWH, tWL	500	-g√ - ns	$\begin{cases} at 0.8 \times V_{DD} \text{ resp.} \\ 0.2 \times V_{DD} \text{ levels} \end{cases}$
Output CMOD open-drain, n-channel	01 0	8	oov		(C. = 25 pE
fall time	8 to 10	tf	1000 A	- 20 ns	$\begin{cases} C_L = 25 \text{ pF} \\ R_L = 1.2 \text{ k}\Omega \pm 20\% \end{cases}$
Output CLO	007 -		agi		Supply gurent
pulse period	8 to 10	T	250	ns	1
pulse width HIGH	_	twH	90	ns	see Figs 3 and 4
pulse width LOW	Conveo -	tWL	90	_ or 8− ns	input voltage LCM
Output LOC, FU, FDN	/ 00V -	9.7 VDD	HIV		input voltage HTG
rise/fall time or - V	8 to 10	t _r , t _f	-1111 ml	- 20 ns	$\begin{cases} C_L = 25 \text{ pF} \\ R_L = 10 \text{ k}\Omega \pm 10\% \end{cases}$

Fig. 3 Output CLO test circuit.

Fig. 4 Output voltage (VOUT) of Fig. 3 as a function of time.

OPERATION DESCRIPTION

Data inputs (DLEN and DATA)

The SAA1056P accepts the serial 17-bit data word synchronized with the clock burst (CLB), are offered at the data input DATA. However, a command is accepted only when the data line enable input DLEN is HIGH at the same time.

Fig. 5 Pulse diagram of the 17-bit data word. To offer notativib taswol =

OPERATION DESCRIPTION (continued)

Each data word must start with a leading zero. The SAA1056P checks the data word for the correct length (17 bits) including leading zero. The data word contains 15 bits as a binary coded ratio for the programmable divider. The first 10 bits program the 10-bit programmable divider and the next 5 bits program the Swallow counter (see Fig. 6). The 16th bit (REFI) determines the ratio of the reference divider in conjunction with the logic signal at input REFE.

Fig. 6 Organization of a data word.

Setting the reference divider (input REFE and control-bit REFI)

The reference divider can be set to four different ratios, using the two signals REFE and REFI.

control bit REFI	input REFE	dividing ratio N _{ref}	reference frequency at f _{OSC} = 4 MHz; f _{ref}
1	1	160	25 kHz
1	0	400	10 kHz
0	1	800	5 kHz
0	0	8000	0,5 kHz

Input frequency divider (FIN)

The input frequency is applied to input FIN for further processing in the circuit. It is divided in the Swallow counter and the 10-bit programmable divider corresponding to the received data word. The division ratio of the dividing circuit is given by the following equation:

$$N = N_S + P \times N_P$$
 with: $N_P \le N_S$; $0 \le N_S \le 31$

in which:

N = division ratio of total divider

Ns = value for the Swallow counter

P = lowest division ratio of prescaler and to mangally salust a plan

Np = division ratio of the 10-bit programmable divider.

In combination with the 32/33 divider (SAA1059), the minimum and maximum dividing number can be calculated:

Count mode output for prescaler (CMOD)

Depending on the received data word, the 5-bit Swallow counter generates a signal for setting the prescaler.

0 = divide by low dividing number 1 = divide by high dividing number.

The signal appears about 150 ns after the input pulse FIN (see Fig. 7).

Fig. 7 Timing of the CMOD signal.

Phase detector (frequency up/down) and lock detector outputs (FDN, FU, LOC)

The frequency/phase detector outputs FDN and FU generate a control voltage via an external loop for the voltage-controlled oscillator (VCO).

FDN: phase detector output, frequency down

0 = active

1 = inactive

FU: phase detector output, frequency up

0 = inactive

1 = active

Output LOC generates an extra signal if the loop is locked.

0 = loop unlocked

1 = loop locked.

Fig. 8 A practical digital frequency synthesizer for a radio receiver.

RADIO TUNING PLL FREQUENCY SYNTHESIZER

The SAA1057 is a single chip frequency synthesizer IC in I²L technology, which performs all the tuning functions of a PLL radio tuning system. The IC is applicable to all types of radio receivers, e.g. car radios, hi-fi radios and portable radios.

Features

- On-chip prescaler with up to 120 MHz input frequency.
- On-chip AM and FM input amplifiers with high sensitivity (30 mV and 10 mV respectively).
- Low current drain (typically 16 mA for AM and 20 mA for FM) over a wide supply voltage range (3,6 V to 12 V).
- On-chip amplifier for loop filter for both AM and FM (up to 30 V tuning voltage).
- On-chip programmable current amplifier (charge pump) to adjust the loop gain.
- Only one reference frequency for both AM and FM.
- High signal purity due to a sample and hold phase detector for the in-lock condition.
- High tuning speed due to a powerful digital memory phase detector during the out-lock condition.
- Tuning steps for AM are: 1 kHz or 1,25 kHz for a VCO frequency range of 512 kHz to 32 MHz.
- Tuning steps for FM are: 10 kHz or 12,5 kHz for a VCO frequency range of 70 MHz to 120 MHz.
- Serial 3-line bus interface to a microcomputer.
- Test/features.

OUICK REFERENCE DATA

Supply voltage ranges	VCC1 VCC2	3,6 to 12 3,6 to 12	
	VCC3	V _{CC2} to 31	
Supply currents	CC1 + CC2 CC3	typ. 18 typ. 0,8	
Input frequency ranges of and avoides of morribno	detector for the in-lock of	nple and hold phase (DD slope)	
at pin FAM at pin FFM word reformable SE and reserved of	FAM FFM	512 kHz to 32 70 to 120	100000000000000000000000000000000000000
Maximum crystal input frequency	fXTAL	> 4	MHz
Operating ambient temperature range	Tamb	-25 to +80	oC

BUS: this circultry consists of a format control part, a 16-bit shift register and two 15-bit latches.

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Fig. 1 Block diagram.

GENERAL DESCRIPTION

The SAA1057 performs the entire PLL synthesizer function (from frequency inputs to tuning voltage output) for all types of radios with the AM and FM frequency ranges.

The circuit comprises the following:

- Separate input amplifiers for the AM and FM VCO-signals.
- A divider-by-10 for the FM channel.
- A multiplexer which selects the AM or FM input.
- A 15-bit programmable divider for selecting the required frequency.
- A sample and hold phase detector for the in-lock condition, to achieve the high spectral purity of the VCO signal.
- A digital memory frequency/phase detector, which operates at a 32 times higher frequency than
 the sample and hold phase detector, so fast tuning can be achieved.
- An in-lock counter detects when the system is in-lock. The digital phase detector is switched-off automatically when an in-lock condition is detected.
- A reference frequency oscillator followed by a reference divider. The frequency is generated by a 4 MHz quartz crystal. The reference frequency can be chosen either 32 kHz or 40 kHz for the digital phase detector (that means 1 kHz and 1,25 kHz for the sample and hold phase detector), which results in tuning steps of 1 kHz and 1,25 kHz for AM, and 10 kHz and 12.5 kHz for FM.
- A programmable current amplifier (charge pump), which controls the output current of both the digital and the sample/hold phase detector in a range of 40 dB. It also allows the loop gain of the tuning system to be adjusted by the microcomputer.
- A tuning voltage amplifier, which can deliver a tuning voltage of up to 30 V.
- BUS; this circuitry consists of a format control part, a 16-bit shift register and two 15-bit latches.
 Latch A contains the to be tuned frequency information in a binary code. This binary-coded number, multiplied by the tuning spacing, is equal to the synthesized frequency. The programmable divider (without the fixed divide-by-10 prescaler for FM) can be programmed in a range between 512 and 32 767 (see Fig. 3). Latch B contains the control information.

OPERATION DESCRIPTION

Control information

The following functions can be controlled with the data word bits in latch B. For data word format and bit position see Fig. 3.

FM FM/AM selection; '1' = FM, '0' = AM

REFH reference frequency selection; '1' = 1,25 kHz, '0' = 1 kHz (sample and hold phase detector)

CP3 CP2

control bits for the programmable current amplifier

CP1 (see section Characteristics)

CPO)

SB2 enables last 8 bits (SLA to T0) of data word B;

'1' = enables, '0' = disables; when programmed '0', the last 8 bits

of data word B will be set to '0' automatically

SLA load mode of latch A; '1' = synchronous, '0' = asynchronous

PDM1 | PDM0 | phase detector mode assivab tartso not begun a and DFI as nariw sau to ad mis aidT. harrismed

PDM1	PDM0	digital phase detector
0	X	automatic on/off
1d %s	0	on s
1	1	off

BRM bus receiver mode bit; in this mode the supply current of the BUS receiver will be switched-off automatically after a data transmission (current-draw is reduced); '1' = current switched; '0' = current always on

T3 test bit; must be programmed always '0'

T2 test bit; selects the reference frequency (32 or 40 kHz) to the TEST pin

T1 test bit; must be programmed always '0'

TO test bit; selects the output of the programmable counter to the TEST pin

ТЗ	T2	T1	ТО	TEST (pin 18)
0	0	0	0	1
0	1	0	0	reference frequency
0	0	0	1	output programmable counter
0	1	0	1	output in-lock counter '0' = out-lock '1' = in-lock

Fig. 2 BUS format.

(1) During the zero set-up time (t_{LZsu}) CLB can be LOW or HIGH, but no transient of the signal is permitted. This can be of use when an I^2C bus is used for other devices on the same data and clock lines.

Fig. 3 Bit organization of data words A and B.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage; logic and analogue part	V _{CC1} ; V _{CC2}	-0,3 to 13,2 V
Supply voltage; output amplifier	V _{CC3}	V _{CC2} to + 32 V
Total power dissipation	P _{tot}	max. 800 mW
Operating ambient temperature range	T _{amb}	-30 to +85 °C
Storage temperature range	T _{stg}	-65 to + 150 °C

CHARACTERISTICS

 $V_{EE} = 0 \text{ V}$; $V_{CC1} = V_{CC2} = 5 \text{ V}$; $V_{CC3} = 30 \text{ V}$; $V_{amb} = 25 \text{ °C}$; unless otherwise specified

hold circuit	symbol	min.	typ.	max.		conditions
Supply voltages	V _{CC1}	3,6	5	12	V	E 901
out of output amplifier.	V _{CC2}	3,6	5	12	٧	005 4
tput of output amplifier	VCC3	V _{CC2}	-	31	V	FN S SAA105
Supply currents*		7 Vot			181	7) 100,
AM mode refiligms fugal			16	-	mA	} Itot = ICC1 + ICC:
FM mode sugnitioners is	tot	8 156	20	ATAC	mA) PDM = '0'
sitive supply voltage of	ICC3	0,3	0,8	1,2	mA	IOUT = 0
Operating ambient					o or	₹ 130 ^V
temperature of to poliques	Tamb	-25	-	+ 80	oC	
RF inputs (FAM, FFM)		11 FAR				
AM input frequency	fFAM A	512 kHz		32	MHz	Pig. 4 Pinning
FM input frequency 208	fFFM M	70	-	120	MHz	
Input voltage at FAM	Vi (rms)	30	-	500	mV	
Input voltage at FFM	Vi (rms)	10	_	500	mV	
Input resistance at FAM	Ri	oo⊻ er	2		kΩ	
Input resistance at FFM	Ri	_	135	_	Ω	
Input capacitance at FAM	Ci	17 XTM	3,5		pF	
Input capacitance at FFM	Ci	18 TES	3	-	pF	
Voltage ratio allowed between selected and non-selected input			-30		dB	TINGS viting values in accorda
non-selected input		is mumbish	30			
Crystal oscillator (XTAL)						see note 1
Maximum input frequency	fXTAL	4	-	-	MHz	oply voltage; output an
Crystal series resistance	R _s	-	-	150	Ω	al power dissipation trating ambient temper
BUS inputs (DLEN, CLB, DATA)						rage temperature range
Input voltage LOW	VIL	0	_	0,8	V	
Input voltage HIGH	VIH	2,4	_	V _{CC1}	V	
Input current LOW	-IIL	-	-	10	μΑ	V _{IL} = 0,8 V
Input current HIGH	TIH	_	_	10	μΑ	V _{IH} = 2,4 V

^{*} When the bus is in the active mode (see BRM in Control Information), 4,5 mA should be added to the figures given.

CHARACTERISTICS (continued)

 $V_{EE} = 0 \text{ V}; V_{CC1} = V_{CC2} = 5 \text{ V}; V_{CC3} = 30 \text{ V}; T_{amb} = 25 \text{ °C}; unless otherwise specified}$

conditions	symbol	min.	typ.	lodmy max	ζ.	conditions
BUS inputs timing (DLEN, CLB, DATA)					m	see also Fig. 2 and note 2
Lead time for CLB to DLEN	tCLBlead	1	-	_	μs	Output current of t
Lead time for DATA to		.0				dig. phase detect
the first CLB pulse	tTlead	-0,5	-	-	μs	Current gain of PCA
Set-up time for DLEN						CP3 CP2 CP1
VCCS > 5 V (or BLD of)	tCLBlag1	0 5		- Gp1	μs	0 0 0 19
CLB pulse width HIGH	tCLBH	5	-	- Gp2	μs	P2 0 0 0 P
CLB pulse width LOW	tCLBL	5		GP3 GP4	μs	P4 0 1 1
Set-up time for DATA		2				1 1 1 1 89
to CLB	^t DATAlead	2	-		μs	Ratio between the o
Hold time for DATA to CLB	^t DATAhold	0		A	μs	current of S/H in
Hold time for DLEN to CLB	^t DLENhold	2	-		μs	and the voltage of
Set-up time for DLEN to		1.1				ETCB
CLB load pulse shoot-ni	tCLBlag2	2		- AVTCB	μs	next transmission
Busy time from load pulse		-			μs	(after word 'B'
to next start of transmission	tDIST	5	-	VIV	μs	to other device
Busy time asynchronous mode		0,3			ms	or
synchronous mode	^t DIST	1,3		TUOV	ms	next transmission to SAA1057
Am I = TUO	^t DIST	1,3	Vees	TUOV	ms	after word 'A'
Am 1,0 = TUO1		- 1-				(see also note 5)
Sample and hold circuit						Maximum output cu
(TR, TCA, TCB)						see also notes 3; 4
Minimum output voltage	VTCA,	_	1,3		V	Output voltage LOV
	VTCB					Output voltage HIG
Maximum output voltage	VTCA,	-	_	V _{CC2} -0,7	V	Output purrent OFF
Capacitance at TCA	VTCB			1101		
(external)	C _{TCA}		450	2,2	nF nF	REFH = '1'
Discharge time at TCA	t _{dis}	_		5	μs	REFH = '1'
	t _{dis}	-	_	6,25	μs	REFH = '0'
Resistance at TR	RTR	100			Ω	external
Voltage at TR during	Bb —	70				THOVA\capVA
discharge	VTR	68	0,7	-	٧	AVCC3/AVOUT
Capacitance at TCB	CTCB	_	-	10	nF	external
Bias current into TCA, TCB	Ibias	_	-	10	nA	in-lock

CHARACTERISTICS (continued)

 $V_{EE} = 0 \text{ V}; V_{CC1} = V_{CC2} = 5 \text{ V}; V_{CC3} = 30 \text{ V}; T_{amb} = 25 \text{ °C}; unless otherwise specified}$

			symbol	min.	typ.		conditions			
	-	mabl fier (rent						BUS inputs timing (OLEN, CLS, DATA)
Out	tput	curre	nt of	the						Lead time for CLS to DLE
C	dig. p	hase	detec	tor	± Idig	-	0,4	_	mA	Load time for DATA to
Cur	rent	gain	of PC	Α						the first CLB pulse
-	СРЗ	CP2	CP1	CP0						Set-up time for DLEN
P1	0	0	0	0	G _{P1}	-	0,023	Tgs/8-40		V _{CC2} ≥ 5 V (only for P1)
P2	0	0	0	1	G _{P2}		0,07	нада		CLB pulse width HIGH .
P3	0	0	1	0	G _P 3		0,23	18.0		CL8 pulse width LOW
P4 P5	0	1	1	0	Gp4	_	0,7	-		Set up time for DATA
	io br	1 1	n the	output	G _{P5}			SSIATAC		to CLB
				nto PC		-				Hold time for DATA to CL
				on		-				Hold time for DLEN to Ct.
(TCE	3			STCB	-	1,0	-	$\mu A/V$	Set-up time for DLEN to
Off	set v	oltage	e on 7	ГСВ	ΔVTCB		- 2	500 1.10	V	in-lock salva hast 8.19
0	iman	BY D	e: /1	NI OUT						Busy time from load pulse
				N,OUT		-	a			f in-lock; equal to
		oltage			VIN	-	1,3		V	internal reference voltage
	100	volta	ges		1,,	1 1		TEIC		asynchronous mode
	ninin naxir				VOUT	V _{CC3}	_2 _	0,5	V	-I _{OUT} = 1 mA
	naxir				VOUT	VCC3		_	V	I _{OUT} = 0,1 mA
Max	imur	n out	put c	urrent	± IOUT	5	_		mA	V _{OUT} = ½ V _{CC3}
					00.					(TR, TCA, TCB)
		tput (Minimum output voltage
		volta			VTL	8,1_		0,5	V	shears andron mountain
Out	tput	volta	ge HI	GH	VTH	-	-	12	V	Maximum output voltage
Out	tput	curre	nt OF	F	Toff	-	-	10	μΑ	VTH
Out	put	curre	nt ON	30	ITon	150		AOT		V _{TL} ACT is excitance of TCA (external)
Rip	ple r	ejecti	on**		8					Discharge time at TCA
а	t frip	ple =	100	Hz	8,75	- 1				
Δ	VVC	21/4	Vou	Ω.		-	77	A T	dB	Resistance at TR
Δ	VCC	22/4	Vou	Г		_	70	-	dB	Voltage at TR during
			Vou		-	0,7	60	81	dB	V _{OUT} ≤ V _{CC3} -3 V

^{*} Open collector output.

^{**} Measured in Fig. 6.

NOTES

1. Pin 17 (XTAL) can also be used as input for an external clock.

The circuit for that is given in Fig. 5. The values given in Fig. 5 are a typical application example.

Fig. 5 Circuit configuration showing external 4 MHz clock.

- 2. See BUS information in section 'operation description'.
- 3. The output voltage at TCB and TCA is typically $^{1}_{2}$ V $_{CC2}$ +0,3 V when the tuning system is in-lock via the sample and hold phase detector. The control voltage at TCB is defined as the difference between the actual voltage at TCB and the value calculated from the formula $^{1}_{2}$ V $_{CC2}$ +0,3 V.
- 4. Crystal oscillator frequency fXTAL = 4 MHz.
- 5. The busy-time after word "A" to another device which has more clock pulses than the SAA1057 (> 17) must be the same as the busy-time for a next transmission to the SAA1057. When the other device has a separate DLEN or has less clock pulses than the SAA1057 it is not necessary to keep to this busy-time, 5 μ s will be sufficient.

APPLICATION INFORMATION

Initialize procedure

Either a train of at least 10 clock pulses should be applied to the clock input (CLB) or word B should be transmitted, to achieve proper initialization of the device.

For the complete initialization (defining all control bits) a transmission of word B should follow. This means that the IC is ready to accept word A.

Synchronous/asynchronous operation

Synchronous loading of the frequency word into the programmable counter can be achieved when bit 'SLA' of word B is set to '1'. This mode should be used for small frequency steps where low tuning noise is important (e.g. search and manual tuning). This mode should not be used for frequency changes of more than 31 tuning steps. In this case asynchronous loading is necessary. This is achieved by setting bit 'SLA' to '0'. The in-lock condition will then be reached more quickly, because the frequency information is loaded immediately into the divider.

Restrictions to the use of the programmable current amplifier

The lowest current gain (0,023) must not be used in the in-lock condition when the supply voltage V_{CC2} is below 5 V (CP3, CP2, CP1 and CP0 are all set to '0'). This is to avoid possible instability of the loop due to a too small range of the sample and hold phase detector in this condition (see also section 'Characteristics').

Transient times of the bus signals

When the SAA1057 is operating in a system with continuous activity on the bus lines, the transient times at the bus inputs should not be less than 100 ns. Otherwise the signal-to-noise ratio of the tuning voltage is reduced.

(1) Values depend on the tuner diode characteristics.

Fig. 6 Application example of the SAA1057PLL frequency synthesizer module.

ynchronous loading of the frequency word into the programmable counter can be achieved when bit ynchronous loading of the frequency word into the programmable counter can be achieved when bit i.A. of word B is set to '1'. This mode should be used for small frequency steps where low tuning no important (e.g. search and manual runing). This mode should not be used for frequency changes of one than 31 tuning steps. In this case asynchronous loading is necessary. This is achieved by setting it 'SLA' to '0'. The in-lock condition will then be reached more quickly, because the frequency infor ation is loaded immediately into the divider.

estrictions to the use of the programmable current emplifier
be lowest current gain (0.023) must not be used in the in-lock condition when the supply voltage of the best of the sample and hold phase detector in this condition (see also section theracteristics').

LED DISPLAY/INTERFACE CIRCUIT

Features

Fig. 1 Block diagram.

- Driving 7, 14, 16-segment displays.
- Driving linear displays, bar graph displays for analogue functions.
 - Serial to parallel decoder.
 - Bus control for the selection of 18-bit words to not selection of 18-bit words.
 - 2 x 16-bit latch.
 - Duplex operation for two modes of output: static (16 bit) or dynamic (2 x 16 bit).
 - Data transfer control.
 - 2 outputs for higher output current (80 mA).

QUICK REFERENCE DATA nob si sedolel ereb ad lo sno ni no

Supply voltage range Operating ambient temperature range	VCC T _{amb}			
Manipular in the formula of the second				
Maximum input frequency	†1	typ.	50 kHz	
Supply current	¹cc	typ.	60 mA	
Output current	10	<	40 mA	
Output current (Q8 and Q16 only)	10	<	80 mA	

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

GENERAL DESCRIPTION

The integrated circuit SAA1060 is primarily designed to drive the display unit of a digital tuning system. It can also be used as a 16-bit serial to parallel decoder. Since the device has no decoder (this is handled by a microcomputer), it has many applications:

- driving 7-segment displays
- driving 14-segment displays
- driving linear displays, e.g. pointer, bar graph
- static output of switch-functions
- digital to analogue converter, with external R-2R network
- extension of the number of outputs for microprocessors or microcomputers.

Data transmission is initiated by means of a burst of clock pulses (CLB), a data line enable signal (DLEN) and the data signal (DATA). The bus control circuit distinguishes between interference and valid data by checking word length (17 bits) and the leading zero. This allows different bus information to be supplied on the same bus lines for other circuits (e.g. SAA1056 with 16 bits).

The last bit (bit 17) of the data word contains the information which of the two internal latches will be loaded. The input LOEX determines if the latched data of selected latches is presented directly to the outputs, or synchronized with the data select signal DUP.

The output stages are n-p-n transistors with open collectors. The current capability is designed for the requirements of duplex operation. Two of the outputs (Q_8 and Q_{16}) are arranged for double current, so that 2×2 segments can be connected in parallel.

OPERATION DESCRIPTION

Data inputs (DLEN, DATA)

The SAA1060 processes serially the 18-bit data words synchronized with the clock burst (CLB) and applied to the data input DATA. A command will be accepted only when the data line enable input (DLEN) is HIGH (see Fig. 3).

Fig. 2 Organization of a data word.

Condition for 17th bit: 1 x 2 imanyb to (tid 81) of output: static (18 bit) or dynamic (2 x 17th bit: 1 x 17th bit

- 0 = load data latch B
- 1 = load data latch A

The loading of the accepted information in one of the data latches is done by the 19th clock pulse, when DLEN is LOW.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LCD DISPLAY/INTERFACE CIRCUIT

GENERAL DESCRIPTION

The SAA1062A is designed to drive a Liquid Crystal Display (LCD) of a digital tuning system. It contains a shift register with programmable length (18 or 21 bits), latches, both synchronized or static, exclusive-OR segment drivers (17 or 20 bits), an I.f. oscillator and a backplane driver for the LCD. The circuit is designed to be driven by a 3 bus structure from a microcomputer and can also be used as a programmable 17 or 20 bits serial-to-parallel decoder. It is also capable of storing 40 bits of information.

Features

- Driving 7 to 20-segment displays.
- Driving linear displays.
- Serial to parallel decoder of digital signals.
- Bus control for the selection of 18/21-bit words.
- 17/20-bit latch.
- A.C. segment drive.
- On-chip oscillator.

QUICK REFERENCE DATA

Supply voltage range Operating ambient temperature range		V _{CC} 4,2 to 5,5 T _{amb} -20 to +70			
Maximum input frequency	fį	typ.	50 kH	Hz	
Supply current	- Icc	typ.	3,5 m	A	
Output current (Q ₁ to Q ₂₀)	IQ	>	60 μΑ	Α	

PACKAGE OUTLINES

SAA1062A: 28-lead DIL; plastic (SOT-117).

SAA1062AT: 28-lead mini-pack; plastic (SO-28; SOT-136A).

FLUORESCENT DISPLAY/INTERFACE CIRCUIT

GENERAL DESCRIPTION

The SAA1063 is designed to drive the display unit of a digital tuning system. It contains a 17-bit shift register, latches, display multiplexers and output stages, capable of driving 4½ decades of a 7 segment fluorescent display in duplex mode. The decoding for the display is carried out in the data input (microcomputer).

Features

- Driving 4½ decades of a seven segment display in duplex mode.
- Microcomputer compatible.
- 17-bit shift register.
- D.C. and duplex operation.

QUICK REFERENCE DATA

upply voltage range VCC perating ambient temperature range Tamb		4 to 5,5 -20 to +80		
Maximum input frequency	fi	min.	50	kHz
Supply current	Icc	typ.	20	mA
Output current	IQ	max.	1,5	mA
Maximum output voltage swing	VQmax	min.	34,5	V

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A)

Fig. 1 Block diagram, Insert indicates structure of logic elements.

box A forsi to stratnos off of bell Fig. 2 Pinning diagram. If because a softbox of box on a biggin

PINNING

1.	Q1		13.	Q9	segment drive outputs
2.	Q6	segment drive outputs	14.	Q16	segment arive outputs
3.	02		15.	VEE	ground
4.	LOEX	mode selection	16.	010	
5.	DLEN	bus enable	17.	Q15	segment drive outputs
6.	Vcc	+5 V power supply	18.	80	
7.	DUPLEX	duplex input	19.	VEE	ground
8.	DATA	data input	20.	Q11	
9.	CLOCK	bus clock input	21.	Q14	
10.	Q5		22.	Q7	segment drive outputs
11.	Q3	segment drive outputs	23.	012	
12.	Q4		24.	Q13	

OPERATION DESCRIPTION

The input information for this device consists of a data bus with 17 bit words, an external clock synchronized with the data bus and an enable signal. The data format of these signals is given in Fig. 3. These signals are handled by the BUS CONTROL circuit in which the decision is taken as to whether these signals are valid for this device. It contains a leading zero detector (start condition of reception) and a data-length control. Leading zero is detected when the data signal is LOW and the DLEN signal HIGH, during the first HIGH period of the clock signal. During the HIGH period of the DLEN signal, the length control determines if the clock signal consists of 18 pulses. This last function permits the user to supply other information on the same signal lines.

Furthermore the bus control prevents the device accepting interference on the signal lines. If leading zero is detected the shift register is reset and then the data is written into this register. The reset position of the first bit of the register is shifted into the last bit, if the length of the data and the clock input is correct. Incorrect length of the information is detected by checking the value of the last bit of the register. If the data transmission has been accepted properly, the bus control stage generates a valid pulse (LOVP). This pulse enables the load control circuit to load the contents of the register into one of the two latches. When the load bit of the data word is HIGH the register contents are loaded into latch A; when this load bit is LOW the register contents are loaded into latch B. When the data information is accepted this load bit is written into the first bit of the shift register.

In duplex mode the load pulse is synchronised by the duplex signal, to avoid current transients in the output stages during the loading of the latches. The duplex mode operates in one of two mode conditions. When LOEX (pin 4) is LOW the duplex mode condition is selected; when LOEX is HIGH the d.c. mode condition is selected. The output stages are switched to the contents of latch A and latch B respectively.

When the duplex input (pin 7) is LOW the contents of latch A can be found on the output, when this input is HIGH the contents of latch B are found on the output.

In the duplex mode condition the output stages are capable of driving 32 duplexed segments of a fluorescent display. However, in the d.c. mode condition the output stages can only drive 16 segments of the display and two SAA1063 devices are required to drive a 4½ decade display unit.

Notes

- 1. The display segment is blanked by a HIGH data bit.
- 2. In duplex mode the period between the two data words must be greater than 21 ms. 3. Shaded timing periods are 'don't care' levels. 4. $\tau_1 > 4 \,\mu s$ if a continuous clock is used. τ_2 and $\tau_3 > 4 \,\mu s$. $\tau_4 > 2 \,\mu s$.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage VCC V max. Total power dissipation at T_{amb} = 80 °C 900 mW Ptot max. -20 to +80 Operating ambient temperature range Tamb -55 to +125 oC Storage temperature range T_{stg}

CHARACTERISTICS

 $V_{EE} = 0 \text{ V}$; $V_{CC} = 5 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	ゴー	conditions
Supply voltage	Vcc	4	5	5,5	V	
Supply current	Icc	-	20	- [mA	
Inputs LOEX, DLEN, DATA, CLOCK	hword	2 2				
input voltage HIGH	VIH	2	_	5	V	+
input voltage LOW	VIL	0	-	0,8	V	
input current	-IIH	-	-	20	μΑ	$(V_I = 0 V)$
max. input frequency	f _i	50	-	- 1	kHz	*
DUPLEX						1
input voltage HIGH	VIH	0,8	_	20	V	
input voltage LOW	VIL	-6	-	0,4	V	
input current HIGH	_ 4H	0,01	-	12	mA	4
input frequency	f _i	-	50		Hz	
Outputs Q1 to Q16						
output voltage HIGH	-V _{OH}	30	-		V	Ι ₀ < 0,7 μΑ
output voltage LOW	VOL	4,5	-		V	1 ₀ = 1 mA
output current	IOL	0 1		1,5	mA	

MICROPROCESSOR CONTROLLED STEREO SOUND GENERATOR FOR SOUND EFFECTS AND MUSIC SYNTHESIS

GENERAL DESCRIPTION

The SAA1099 is a monolithic integrated circuit designed for generation of stereo sound effects and music synthesis.

Features

- Six frequency generators eight octaves per generator 256 tones per octave
- Two noise generators
- Six noise/frequency mixers
- Twelve amplitude controllers
- Two envelope controllers
- Two 6-channel mixers/current sink analogue output stages
- TTL input compatible
- Readily interfaces to 8-bit microcontroller
- Minimal peripheral components
- Simple output filtering

Applications

- Consumer games systems
- Home computers
- Electronic organs
- Arcade games
- Toys
- Chimes/alarm clocks

QUICK REFERENCE DATA

Supply voltage (pin 18) VDD 5 V typ. Supply current (pin 18) IDD typ. 55 mA Reference current (pin 6) Iref 250 μΑ Total power dissipation Ptot 450 mW Operating ambient temperature range 0 to + 70 °C Tamb

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102CS).

128

PINNING

Fig. 2 Pinning diagram.

PIN DESIGNATION

DEVELOPMENT DATA

PIN	DESIGNATION	
1	WR	Write Enable: active LOW input which operates in conjunction with $\overline{\text{CS}}$ and A0 to allow writing to the internal registers.
2	anoi CS al arad i becubord salon si	Chip Select: active LOW input to identify valid \overline{WR} inputs to the chip. This input also operates in conjunction with \overline{WR} and A0 to allow writing to the internal registers.
3	en be mi OA with with frequency	Control/Address select: input used in conjunction with \overline{WR} and \overline{CS} to load data to the control register (A0 = 0) or the address buffer (A0 = 1).
4	OUTRONW NO DE	Right channel output: a 7-level current sink analogue output for the 'right' component. This pin requires an external load resistor.
5	OUTL	Left channel output: a 7-level current sink analogue output for the 'left' component. This pin requires an external load resistor.
6	1 _{ref}	Reference current supply: used to bias the current sink outputs.
7	DTACK	Data Transfer Acknowledge: open drain output, active LOW to acknowledge successful data transfer. On completion of the cycle DTACK is set to inactive.
8	CLK	Clock: input for an externally generated clock at a nominal frequency of 8 MHz.
9	VSS	Ground: 0 V. bell engage outputs generator outputs led V. V. O : Ground:
10-1	7 D0-D7	Data: Data bus input.
18	V _{DD}	Power supply: + 5 V typical.

FUNCTIONAL DESCRIPTION

The following sections provide a detailed functional description of the SAA1099 as shown in the block diagram. Fig. 1.

Frequency generators

Six frequency generators can each select one of 8 octaves and one of 256 tones within an octave. A total frequency range of 30 Hz to 7,74 kHz is available. The outputs may also control noise or envelope generators. All frequency generators have an enable bit which switches them on and off, making it possible to preselect a tone tone and to make it inaudible when required.

The frequency ranges per octave are:

Noise generators

The two noise generators both have a programmable output. This may be a software controlled noise via one of the frequency controlled generators or one of three pre-defined noises. There is no tone produced by the frequency generator when it is controlling the noise generator. The noise produced is based on double the frequency generator output, i.e. a range of 61 Hz to 15,6 kHz. In the event of a pre-defined noise being chosen, the output of noise generator 0 can be mixed with frequency generator 0, 1 and 2; and the output of noise generator 1 can be mixed with frequency

generator 3, 4 and 5. In order to produce an equal level of noise and tone outputs (when both are mixed) the amplitude of the tone is increased. The three pre-defined noises are based on a clock frequency of 7,8 kHz, 15,6 kHz or 31,25 kHz.

Noise/frequency mixers

Six noise/frequency mixers each with four selections

- Channel off of WOJ wins inque nich nage sets
- Frequency only
- Noise only raupe it tenimon is as alcolo between by villamente na not sugni estado.
- Noise and frequency

Each mixer channel has one of the frequency generator outputs fed to it, three channels use noise generator 0 and the other three use noise generator 1.

Amplitude controllers

Each of the six channel outputs from the mixer is split up into a right and left component giving effectively twelve amplitude controllers. An amplitude of 16 possible levels is assigned to each of the twelve signals. With this configuration a stereo effect can be achieved by varying only the amplitude component. The moving of a sound from one channel to the other requires, per tone, only one update of the amplitude register contents.

When an envelope generator is used, the amplitude levels are restricted. The number of levels available is then reduced to eight. This is achieved by disabling the least significant bit (LSB) of the amplitude control.

Envelope controllers

Two of the six tone generators are under envelope control. This applies to both the left and right outputs from the tone generator.

The envelope has the following eight possible modes:

- Amplitude is zero
- Single attack
- Single decay
- Single attack-decay (triangular)
- Maximum amplitude
- Continuous attack
- Continuous decay
- Continuous attack-decay

The timing of the envelope controllers is programmable using one of the frequency generators (see Fig. 1). When the envelope mode is selected for a channel its control resolution is halved for that channel from 16 levels to 8 levels by rounding down to the nearest even level.

There is also the capability of controlling the 'right' component of the channel with inverse of the 'left' component, which remains as programmed.

A direct enable permits the start of an envelope to be defined, and also allows termination of an envelope at any time. The envelope rate may be controlled by a frequency channel (see Fig. 1), or by the microprocessor writing to the address buffer register. If the frequency channel controlled is OFF (NE = FE = 0) the envelope will appear at the output, which provides an alternative 'non-square' tone capability. In this event the frequency will be the envelope rate, which provided the rate is from the frequency channel, will be a maximum of 1 kHz. Higher frequencies of up to 2 kHz can be obtained by the envelope resolution being halved from 16 levels to 8 levels. Rates quoted are based on the input of a 8 MHz clock.

Six-channel mixers/current sink analogue output stages

Six channels are mixed together by the two mixers allowing each one to control one of six equally weighted current sinks, to provide a seven level analogue output.

Command/control select

In order to simplify the microprocessor interface the command and control information is multiplexed. To select a register in order to control frequencies, amplitudes, etc. the command-register has to be loaded. The contents of this register determines to which register the data is written in the next control-cycle. If a continuous update of the control-register is necessary, only the control-information has to be written (the command-information does not change).

If the command/control select (A0) is logic 0, the byte transfer is control; if A0 is logic 1, the byte transfer is command.

Interface to microprocessor

The SAA1099 is a data bus based I/O peripheral. Depending on the value of the command/control signal (A0) the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ signals control the data transfer from the microprocessor to the SAA1099. The data-transfer-acknowledge ($\overline{\text{DTACK}}$) indicates that the data transfer is completed. When, during the write cycle, the microprocessor recognizes the $\overline{\text{DTACK}}$, the bus cycle will be completed by the processor.

* Equivalent to discharging a 250 of papacitor through a 1 k Ω series resistor.

Electrostatic handling*

-0.3 to +7.5 V

-55 to + 125 °C Tstg 0 to + 70 °C Tamb -1000 to +1000 V

VDD

^{*} Equivalent to discharging a 250 μ F capacitor through a 1 k Ω series resistor.

D.C. CHARACTERISTICS

 V_{DD} = 5 V; T_{amb} = 0 to 70 °C; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit	
Supply	symbol			103	11 110 184	
Supply voltage	V _{DD}	4,5	5,0	5,5	V	
Supply current - 0	IDD	_	55	90	mA	
Reference current (note 1)	Iref	100	250	400	μΑ	
en – oa	WEAT		list RW o	up time t	380 O)	
INPUTS	1W2			W time		
Input voltage HIGH	VIH	2,0	sein RWs	6,0	V	
Input voltage LOW		-0,5	From WR		V	
Input leakage current	± 1 _{L1}	- H	H AW me	10	μΑ	
Input capacitance	CI	- н	all AW m	10	pF	
OUTPUTS - O	WHGI	нан й	W mont en	us hold til	ota bi	
DTACK (open drain; note 2)	wag	HPIH	FW most vi	leb sain Š	DAT	
Output voltage LOW	YOZ		note 8)	emit el:	SAD SR	
at I _{OL} = 3,2 mA	VOL	0	- (0 exer	0,4	V	
Voltage on pin 7 (OFF state)	V ₇₋₉	-0,3	_	6,0	V	
Output capacitance (OFF state)	CO	- 19	ng (see Fig.	10	pF	
Load capacitance	CL	_	_	150	pF	
Output leakage current (OFF state)	-ILO	-	-	10	μΑ	
Audio outputs (pins 4 and 5)	MOT					
With fixed I _{ref} (note 3)			animinat	ha charac	1 02 55	
One channel on lameter to had lanimon	I ₀₁ /I _{ref}	90	t <u>a</u> stenos l	125	%	
Six channels on	1 ₀₆ /6xI _{ref}	85	0	120	%	
areas as beneath (-G) entertained had a finite	oo ici	or betoetete nt value het	Almouro a sm	of with L	ne sin	
With $I_{ref} = 250 \ \mu A$; $R_L = 1.1 \ k\Omega \ (\pm 5\%)$	AUT END GOT GOOD	isly	andiradion	s tie ni (à	24 (59	
One channel on	101/Iref	95	-	115	%	
Six channels on	1 ₀₆ /6×1 _{ref}	90	-	110	%	
Output current one channel on	1 ₀₁ de besseur	238	0 = 10 kg	288	μΑ	
Output current six channels on	106	1,38	oirouk panio	1,65	mA	
With resistor supplying I _{ref} (note 4)	and a regularity (1910)	101110 00	yino sui	tested val	sigms	
Output current one channel on	IO1 haw on h	155	neter only	270	μΑ	
Output current six channels on	106	0,94	- 1113 at 20 / 2 8	1,65	mA	
Load resistance and pullique and pullbact	Russing Ass	600	s cycle u n	u d mumir	Ω	
D.C. leakage current all channels off	-ILO	ssible to se	2 11 XO	10	μΑ	
Maximum current difference between left and right current sinks (note 5)	+10	all	nust be use	15	%	
Signal-to-noise ratio (note 6)	± IOmax S/N		tbf	15		
orginal to Horse ratio (Hote o)	3/14	_	LDI	1-	dB	

A.C. CHARACTERISTICS

 $V_{DD} = 5 \text{ V}$; $T_{amb} = 0 \text{ to } 70 \text{ }^{\circ}\text{C}$; timing measurements taken at 2,0 V for a logic 1 and 0,8 V for a logic 0 unless otherwise specified (see waveforms Figs 3 and 4)

parameter	symbol	min.	typ.	max.	unit
Bus interface timing (see Fig. 3)	ogV			voltage	gddng
A0 set-up time to CS fall	tASC	0	-	menuo i	ns
CS LOW to WR fall	tcsw	30	Hoton) #	nce cu m a	ns
A0 set-up time to WR fall	tASW	50	-	-	ns
WR LOW time	tWL	100	-	- 0	ns
Data bus valid to WR rise	tBSW	100	_ H0	In sparior	ns
DTACK fall delay from WR fall (note 7)	tDFW	0	_ W	85	ns
A0 hold time from WR HIGH	tAHW	0	_ then	us egskage cu	ns
CS hold time from WR HIGH	tCHW	0	- 18	rapacitand	ns
Data bus hold time from WR HIGH	tDHW	0	-	- 271	ns
DTACK rise delay from WR HIGH	tDRW	0	rain; note 2	100	ns
Bus cycle time (note 8)	tCY	2CP	- WO.	l u psilov i	ugtuC
Bus cycle time (note 9)	tCY	8CP	_ At	01 = 3,2 =	18
V 0,8 - 8,0-	V7.9		(OFF state	C niq no s	estlo\
Clock input timing (see Fig. 4)	00	(53)		capacitar	rugau (
Clock period	tCLK	120	125	255	ns
Clock LOW time	tHIGH	55	HIGH Merns	leakage d	ns
Clock HIGH time	tLOW	55	-	_	ns

Notes to the characteristics

- Using an external constant current generator to provide a nominal I_{ref} or external resistor and connected to V_{DD}.
- 2. This output is short-circuit protected to VDD and VSS.
- Measured with I_{ref} a constant value between 100 and 400 μA; load resistance (R_L) allowed to match E24 (5%) in all applications via:

$$R_L = \frac{0.27775 \pm 0.03611}{I_{ref}}$$

- 4. Measured with R $_{ref}$ = 10 k Ω (± 5%) connected between I $_{ref}$ and V $_{DD};$ R $_{L}$ = 820 Ω (± 5%); OUTR and OUTL short-circuit protected to V $_{SS}.$
- 5. Left and right outputs must be driven with identical configuration.
- 6. Sample tested value only.
- 7. This timing parameter only applies when no wait states are required; otherwise parameter is invalid.
- 8. The minimum bus cycle time of two clock periods is for loading all registers except the amplitude registers.
- The minimum bus cycle time of eight clock periods is for loading the amplitude registers. In a system using DTACK it is possible to achieve minimum times of 500 ns. Without DTACK the parameter given must be used.

yd lannaria a no gand amae Fig. 3 Bus interface waveforms. If they benglass are exhablems and

Fig. 4 Clock input waveform.

APPLICATION INFORMATION

Device operation

The SAA1099 uses pulse width modulation to achieve amplitude and envelope levels. The twelve signals are mixed in an analogue format (6 'left' and 6 'right') before leaving the chip. The amplitude and envelope signals chop the output at a minimum rate of 62,5 kHz, compared with the highest tone output of 7,74 kHz. Simple external low-pass filtering is used to remove the high frequency components.

Rates quoted are based on the input of a 8 MHz clock.

A data bus based write only structure is used to load the on-board registers. The data bus is used to load the address for a register, and subsequently the data to that register. Once the address is loaded multiple data loads to that register can be performed.

The selection of address or data is made by the single address bit A0, as shown in register maps Table 1 and Table 2.

The bus control signals \overline{WR} and \overline{CS} are designed to be compatible with a wide range of microprocessors, a \overline{DTACK} output is included to optimise the interface with an S68000 series microprocessor. In most bus cycles \overline{DTACK} will be returned immediately, this applies to all register address load cycles and all except amplitude data load cycles. With respect to amplitude data, a number of wait cycles may need to be performed, depending on the time since the previous amplitude load. \overline{DTACK} will indicate the number of required waits.

Register description (see Tables 2 and 3)

The amplitudes are assigned with 'left' and 'right' components in the same byte, on a channel by channel basis. The spare locations that are left between blocks of registers is to allow for future expansion, and should be written as zero's. The tone within an octave is defined by eight bits and the octave by three bits. Note that octaves are paired (0/1, 2/3 etc.). The frequency and noise enables are grouped together for ease of programming. The controls for noise 'colour' (clock rate) are grouped in one byte.

The envelope registers are positioned in adjacent locations. There are two types of envelope controls, direct acting controls and buffered controls. The direct acting controls always take immediate effect, and are:

- Envelope enable (reset)
- Envelope resolution (16/8 level)

The buffered controls are acted upon only at the times shown in Fig. 5 and control selection of:

- Envelope clock source
- Waveform type
- Inverted/non-inverted 'right' component

Table 1 External memory map

select	1 6 15	data bus inputs							
A0	D7	D6	D5	D4	D3	D2	D1	D0	operations
0	D7	D6	D5	D4	D3	D2	D1	DO	data for internal registers
1	X	X	X	A4	A3	A2	A1	A0	internal register address

Where X = don't care state.

Table 2 Internal register map.

register			(data bus	inputs				operations
address	D7	D6	D5	D4	D3	D2	D1	D0	operations
00	AR03	AR02	AR01	AR00	AL03	AL02	AL01	AL00	amplitude 0 right channel; left channel
01	1	1	1	1	1	1.	1	1 char	amplitude 1 right/left
02	2	2	2	2	2	2	2	2	amplitude 2 right/left
03	3	3	3	3	3	3	3	3	amplitude 3 right/left
04	4	4	4	4	4	4	4	4	amplitude 4 right/left
05	5	5	5	5	5	5	5	5	amplitude 5 right/left
06	X	X	X	X	X	X	X	X	Latt ALau 1=0.5) 0.0 (
07	X	X	X	X	X	X	X	X	0 0 0
08	F07	F06	F05	F04	F03	F02	F01	F00	frequency of tone 0
09	1	1	1	1	1	1	1	1	frequency of tone 1
0A	2	2	2	2	2	2	2	2	frequency of tone 2
OB	3	3	3	3	3	3	3	3	frequency of tone 3
OC	4	4	4	4	4	4	4	4	frequency of tone 4
0D	F57	F56	F55	F54	F53	F52	F51	F50	frequency of tone 5
0E	X	X	X	X	X	X	X	X	616 A-0.1-0.6
OF	X	X	X	X	X	X	X	X	02; On1; On0 3 bits
10	X	012	011	010	X	002	001	000	octave 1; octave 0
11	X	032	031	030	X	022	021	020	octave 3; octave 2
12	X	052	051	050	X	042	041	040	octave 5; octave 4
13	X	X	X	X	X	X	X	X	
14	X	X	FE5	FE4	FE3	FE2	FE1	FE0	frequency enable
15	X	X	NE5	NE4	NE3	NE2	NE1	NE0	noise enable
16	X	X	N11	N10	X	X	N01	N00	noise generator 1;
			1217	210,11	S AFIA	0,01	63443 26	Adjust	noise generator 0
17	X	X	X	X	X	X	X	X	turner) in
18	E07	X	E05	E04	E03	E02	E01	E00	envelope generator 0
19	E17	X	E15	E14	E13	E12	E11	E10	envelope generator 1
1A	X	X	X	X	X	X	X	X	ezion na
1B	X	X	X	X	X	X	X	X	= 0.6) NEo
1C	X	X	X	X	X	X	X	SE	sound enable (all channels
1D	X	X	X	X	X	X	X	X	ort : MnO 2 bits
1E	X	X	X	X	X		X	X	= 0,1) These
1F	X	X	X	X	X	X	X	X	Tal/I

Where:

All don't cares (X) should be written as zero's.

00 to 1F block of registers repeats eight times in the block between addresses 00 to FF (full internal memory map).

APPLICATION INFORMATION (continued)

Table 3 Register description

bit	description 19 90 80 40		80				
ARn3; ARn2;	4 bits for amplitude control	ARD	AROZ				
ARn1; ARn0	of right channel		- 1				
(n = 0,5)	0 0 0 0 minimum amplitude (off)		2				
	1 1 1 1 maximum amplitude		8				
e 4 right/luft.	4 4 8 6 . 4 . anditud	þ.	A				
ALn3; ALn2;	4 bits for amplitude control		a				
ALn1; ALn0	of left channel		×				
(n = 0,5)	0 0 0 0 minimum amplitude (off)		X				
	1 1 1 1 maximum amplitude		803				
e a. A great to y	1 1 1 1 frequence	1	- 6				
Fn7 to Fn0	8 bits for frequency control		2				
(n = 0,5)	of the six frequency generators		3				
	0 0 0 0 0 0 0 0 lowest frequency		4				
	1 1 1 1 1 1 1 1 highest frequency		888				
0.0.0.1.0.0	alice X X X X X X	X	X				
On2; On1; On0	3 bits for octave control		X				
(n = 0,5)	0 0 0 lowest octave (30 Hz to 60 Hz)		012				
	0 0 1 (60 Hz to 122 Hz)		032				
	0 1 0 (122 Hz to 244 Hz) 0 1 1 (244 Hz to 488 Hz)		052				
	(244 112 to 400 112)		X				
	1 0 0 (489 Hz to 976 Hz)	685	X				
	1 0 1 (978 Hz to 1,95 kHz	MES	X				
	1 1 0 (1,95 kHz to 3,90 kH 1 1 1 highest octave (3,91 kHz to 7,81 kHz	lz)	X				
U 103618	A Secon X X X X X	X	X				
FEn () Totstenep	frequency enable bit (one tone per generator)		X				
(n = 0,5)	FEn = 0 indicates that frequency 'n' is off		X				
NEn	XXXXXXX	×	X				
	noise enable bit (one tone per generator)		X				
(n = 0,5)	NEn = 0 indicates that noise 'n' is off	X	X				
Nn1: Nn0	2 hits for poise generator control		X				
(n = 0,1)	2 bits for noise generator control.	o (agl	/\ X				
(11 – 0,1)	Nn1 Nn0 clock frequency (kHz)	These bits select the noise generator rate (noise 'colour') Nn1 Nn0 clock frequency (kHz)					
	0 0 31,3						
	0 1 15,6						
	1 0 7,6 1 1 61 to 15,6 (frequency generator						

S
-
V
0
7
ш
~
0_
0
0
_
111
-
>
111
-
13

bit	description (baunimos) MOITAMRO-IMI MOITA					
En7; En5 to En0	7 bits for envelope control					
(n = 0,1)	En0 0 left and right component have the same envelope					
	1 right component has inverse of envelope that is applied to left					
	component					
	En3 En2 En1					
	0 0 zero amplitude					
	0 0 1 maximum amplitude					
	0 1 0 single decay					
	0 1 1 repetitive decay					
	1 0 0 single triangular					
	1 0 1 repetitive triangular					
	1 1 0 single attack					
	1 1 repetitive attack					
	En4					
	0 4 bits for envelope control (maximum frequency = 976 Hz)					
	1 3 bits for envelope control (maximum frequency = 1,95 kHz)					
	En5					
	0 internal envelope clock (frequency generator 1 or 4)					
	1 external envelope clock (address write pulse)					
	En7					
	0 reset (no envelope control)					
	1 envelope control enabled					
SE	SE sound enable for all channels					
	(reset on power-up to 0)					
	0 all channels disabled					
	1 all channels enabled					
	an originated					

Note

All rates given are based on the input of a 8 MHz clock.

Notes to Fig. 5

- (1) The level at this time is under amplitude control only (En7 = 0; no envelope).
- (2) When the generator is active (En7 = 1) the maximum level possible is 15/16ths of the amplitude level, rounded down to the nearest eight. When the generator is inactive (En7 = 0) the level will be 16/16ths of the amplitude level.
- (3) After position (3) the buffered controls will be acted upon when loaded.
- (4) At positions (4) the buffered controls will be acted upon if already loaded.
- (5) Waveforms 'a' to 'h' show the left channel (En0 = 0; left and right components have the same envelope).

Waveform 'i' shows the right channel (En0 = 1; right component inverse of envelope applied to left).

Fig. 6 Typical application circuit diagram.

Notes to Fig. 5

- (1) The level at this time is under amplitude control only (En7 = 0; no envelope).
- (2) When the generator is active (En7 = 1) the maximum level possible is 15/16ths of the amplitude level, rounded down to the nearest eight. When the generator is injective (Εn7 = 0) the level will be 16/16ths of the amplitude level.
 - (3) After position (3) the buffered controls will be acted upon when loaded,
 - (4) At positions (4) the buffered controls will be acted upon if already loaded.
 - (5) Waveforms 'a' to 'h' show the left channel (£n0 = 0; left and right components have the same envelope).

Veveform 'i' shows the right channel (En0 = 1; right component inverse of envelope applied to eft).

Fig. 6 Typical application circuit diagram

TUNER SWITCHING CIRCUIT

The SAA1300 is for switching on and off the supply lines of various circuit parts via an I^2C bus signal. Furthermore, it can be used to supply current for switching diodes in radio and television tuners. It contains 5 output stages, which are capable of supplying up to 100 mA in the ON state or sinking up to $-100~\mu A$ in the OFF state.

Current limiting and short-circuit protection are included. The output stages are driven by a shift register/latch combination which is loaded via data from the 1²C bus. A power-on reset of the latches ensures the OFF state of the output stages (OUT 2 to OUT 5) without data reception from the 1²C bus. A subaddressing system allows the connection of up to three circuits on the same 1²C bus lines; one of the outputs (OUT 1, pin 7) can also be used as an input to select the device via a simple internal A/D converter.

Fig. 1 Block diagram.

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-142B).

PINNING

pin no.	symbol	function
1	GND	Ground GIA SWITCHING GIR CHING
2	Vp	positive supply
3	OUT 5	
4	OUT 4	
5	OUT 3	outputs
6	OUT 2	The SAA1300 is for switching on and off the supply lines of various circuit par Furthermore, it can be used to supply current for switching diodes in radio and
711.818	OUT 1	output and subaddressing input
8	SDA	cerial data line
9	SCL	serial clock line 1
		The first transfer of the state

12°C BUS INFORMATION wood A land O'L arts mort stab air behalf at right mortanidmen right lives again Address, first byte state of the output stages (OUT 2 to OUT 5) without data receptor to state OFF state of the output stages.

01000 A B 0 where.

Α	В	function	condition
0	0	general address	OUT 1 = output
0	1	OUT 1 = input	address accepted if Vour 1 = Vour 1 (LOW)
1	0	OUT 1 = input	address accepted if Vout 1 = Vout H (HIGH)
1	1	OUT 1 = input	address accepted if Vout 1 = Vout M (MEDIUM)

Data, second byte

OUT 5, OUT 4, OUT 3, OUT 2, OUT 1, X, X, X

The I/O output stage (OUT 1) is switched as an input stage after a power-on reset. It depends on the contents of the first data transmission whether the output stage is switched as an output or remains as an input.

RATINGS

Limiting values in accordance with the Absolute Maximum System	m (IEC 134)			
Supply voltage	Vp	max.	13,2	V
Input voltage range at SDA, SCL	VI	-0,5 to +	13,7	V
Input voltage range at OUT 1	VI	-0,5 to +	12,5	V
Output voltage range at OUT 1 to OUT 5	Vo	-0,5 to +	12,5	V
Input current at SDA, SCL	1	max.	20	mA
Input current at OUT 1	11	max.	20	mA
Total power dissipation	Ptot	max.	650	mW
Storage temperature range	T _{stg}	-40 to 4	125	oC
Operating ambient temperature range	Tamb	-20 to	+ 80	oC

CHARACTERISTICS

 $V_P = 8 \text{ V}$; $T_{amb} = 25 \text{ °C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 2)					
Supply voltage range	Vp	4	-	12	V
Supply current	lp	-	10	-	mA
Power-on reset level output stage in "OFF" condition	V _{PR}	_	_	3,5	V
Maximum power dissipation*	P _{max}	-	650	-	mW
Inputs SDA, SCL (pins 8 and 9)					
Input voltage HIGH	VIH	2,8	_	Vp + 0,5	V
Input voltage LOW	VIL	0	_	1,8	V
Input current HIGH	-I _{IH}	_	-	50	μΑ
Input current LOW	IH	-	-	0,1	μΑ
Acknowledge sink current	IACK	2,5	_	-	mA
Maximum input frequency	f _{i max}	100	-		kHz
Outputs OUT 1 to OUT 5 (pins 3 to 7)					
Maximum output current; source : "ON"	loso	+ 100	-	+ 150	mA
Maximum output current; source : "ON" T _{amb} = 80 °C	I _{Oso}	60	-	_	mA
Output voltage HIGH at IOso	VOH		_	Vp -2	V
Output current; sink: "OFF"	l _{Osi}	-100	-300		μΑ
Output voltage LOW at IOsi	VOL	-	_	100	mV
Output voltage MEDIUM at $I_0 = 12,5 \text{ mA}$	V _{OM}	-	-	V _P −0,5	V
OUT 1 used as subaddressing input					
Input voltage HIGH (code 1 0)	VOUT 1H	0,72 Vp	_	VP	V
Input voltage MEDIUM (code 1 1)	VOUT 1M	0,39 V _P	-	0,61 V _P	V
Input voltage LOW (code 0 1)	VOUT 1L	0	_	0,28 V _P	V

^{*} Outputs must not be driven simultaneously at maximum source current.

This data sheet contains advance information and specifications are subject to change without notice.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

REMOTE CONTROL TRANSMITTER

GENERAL DESCRIPTION

The SAA3004 transmitter IC is designed for infrared remote control systems. It has a total of 448 commands which are divided into 7 sub-system groups with 64 commands each. The sub-system code may be selected by a press button, a slider switch or hard wired.

The SAA3004 generates the pattern for driving the output stage. These patterns are pulse distance coded. The pulses are infrared flashes or modulated. The transmission mode is defined in conjunction with the sub-system address. Modulated pulses allow receivers with narrow-band preamplifiers for improved noise rejection to be used. Flashed pulses require a wide-band preamplifier within the receiver.

The SAA3004 has the following features:

- Flashed or modulated transmission
- 7 sub-system addresses
- Up to 64 commands per sub-system address
- High-current remote output at V_{DD} = 6 V (-I_{OH} = 40 mA)
- Low number of additional components
- Key release detection by toggle bits
- Very low stand-by current (< 2 μA)
- Operational current < 2 mA at 6 V supply
- Wide supply voltage range (4 to 11 V)
- Ceramic resonator controlled frequency (typ. 450 kHz)
- Encapsulation: 20-lead plastic DIL or 20-lead plastic mini-pack (SO-20)

PACKAGE OUTLINES

20-lead DIL; plastic (SOT-146C1). 20-lead mini-pack; plastic (SO-20; SOT-163AC3).

Fig. 1 Transmitter with SAA3004.

INPUTS AND OUTPUTS

Key matrix inputs and outputs (DRVON to DRV6N and SENON to SEN6N)

The transmitter keyboard is arranged as a scanned matrix. The matrix consists of 7 driver outputs and 7 sense inputs as shown in Fig. 1. The driver outputs DRV0N to DRV6N are open drain N-channel transistors and they are conductive in the stand-by mode. The 7 sense inputs (SEN0N to SEN6N) enable the generation of 56 command codes. With 2 external diodes all 64 commands are addressable. The sense inputs have P-channel pull-up transistors, so that they are HIGH until they are pulled LOW by connecting them to an output via a key depression to initiate a code transmission.

Address mode input (ADRM)

The sub-system address and the transmission mode are defined by connecting the ADRM input to one or more driver outputs (DRV0N to DRV6N) of the key matrix. If more than one driver is connected to ADRM, they must be decoupled by a diode. This allows the definition of seven sub-system addresses as shown in Table 3. If driver DRV6N is connected to ADRM the data output format of REMO is modulated or if not connected, flashed.

The ADRM input has switched pull-up and pull-down loads. In the stand-by mode only the pull-down device is active. Whether ADRM is open (sub-system address 0, flashed mode) or connected to the driver outputs, this input is LOW and will not cause unwanted dissipation. When the transmitter becomes active by pressing a key, the pull-down device is switched off and the pull-up device is switched on, so that the applied driver signals are sensed for the decoding of the sub-system address and the mode of transmission.

This data sheet contains advance information and specifications are subject to change without notice.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

LOW VOLTAGE INFRARED REMOTE CONTROL

TRANSMITTER (RC-5)

GENERAL DESCRIPTION

The SAA3006 is intended as a general purpose (RC-5) infrared remote control system for use where only low supply voltages are available. The device can generate 2048 different commands and utilizes a keyboard with a single-pole switch per key. The commands are arranged so that 32 systems can be addressed, each system containing 64 different commands.

The circuit response to legal (one key pressed at a time) and illegal (more than one key pressed at a time) keyboard operation is specified later in this publication (see KEY ACTIVITIES).

Features

- Low supply voltage requirements
- Very low current consumption
- For infrared transmission link
- Transmitter for 32 x 64 commands
- One transmitter controls 32 systems
- Transmission biphase technique
- Short transmission times; speed-up of system reaction time
- Single-pin oscillator input
- Input protection
- Test mode facility

QUICK REFERENCE DATA

Supply voltage range	V _{DD} 2 to 7	
Input voltage range	V_1 0,5 to $(V_{DD} + 0,5)$ V^*	F
Input current	±I _I max. 10 mA	4
Output voltage range	V_{O} -0,5 to (V_{DD} + 0,5) V^{*}	
Output current	± I _O max. 10 mA	A
Operating ambient temperature range	T _{amb} -25 to +85 °C	

^{*} VDD + 0,5 V not to exceed 9 V.

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).

Fig. 1 Block diagram.

V D handy of the V 3 D 4 moV 5

This data sheet contains advance information and specifications are subject to change without notice.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

INFRARED REMOTE CONTROL TRANSMITTER (RC-5)

GENERAL DESCRIPTION

The SAA3027 is intended for a general purpose (RC-5) infrared remote control system. The device can generate 2048 different commands and utilizes a keyboard with a single-pole switch per key. The commands are arranged so that 32 systems can be addressed, each system containing 64 different commands.

The circuit response to legal (one key pressed at a time) and illegal (more than one key pressed at a time) keyboard operation is specified later in this publication (see KEY ACTIVITIES).

Features

- Transmitter for 32 x 64 commands
- One transmitter controls 32 systems
- Very low current consumption
- For infrared transmission link
- Transmission by biphase technique
- Short transmission times; speed-up of system reaction time
- · LC oscillator; no crystal required
- Input protection
- Test mode facility

QUICK REFERENCE DATA

Supply voltage range	V _{DD}	4,75 to 12,6	V
Input voltage range	ATAV ₁	-0.5 to (V_{DD} +	0,5) V*
Input current	± 11	max. 10	mA
Output voltage range	Vo	-0.5 to (V_{DD} +	0,5) V*
Output current	± IO	max.10	mA
Operating ambient temperature range	T _{amb}	-25 to $+85$	oC

^{*} VDD + 0,5 V not to exceed 15 V.

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).

Fig. 1 Block diagram.

.V nr + 0,5 V not to exceed 15 V.

SAA3028

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

INFRARED REMOTE CONTROL TRANSCODER (RC-5)

GENERAL DESCRIPTION

The SAA3028 is intended for use in general purpose (RC-5) remote control systems. The main function of this integrated circuit is to convert RC-5 biphase coded signals into equivalent binary values. Two input circuits are available: one for RC-5 coded signals only; the other is selectable to accept (1) RC-5 coded signals only, or (2) RC-5 (extended) coded signals only. The input used is that at which an active code is first detected. Coded signals not in RC-5/RC-5(ext) format are rejected. Data input and output is by serial transfer, the output interface being compatible for I²C bus operation.

Features

- Converts RC-5 or RC-5(ext) biphase coded signals into binary equivalents
- Two data inputs, one fixed (RC-5), one selectable (RC-5/RC-5(ext))
- Rejects all codes not in RC-5/RC-5(ext) format
- 12 C output interface capability
- Power-off facility
- Master/slave addressable for multi-transmitter/receiver applications in RC-5(ext) mode
- · Power-on-reset for defined start-up

QUICK REFERENCE DATA

Supply voltage ra	ange and leanedo-M			V _{DD}	4,5 to	5,5 V		
Supply current (quiescent) at			00V 181				
$V_{DD} = 5,5 V;$	T _{amb} = 25 °C			IDD	max.	200 μΑ		
Operating ambient temperature range		MAZ		Tamb				
	oscillator input	osci	8	04 (1)	SAABOSB	HAZ 4		

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38Z).

Fig. 1 Block diagram.

This data sheet contains advance information and specifications are subject to change without notice.

INTERPOLATION AND MUTING CIRCUIT FOR COMPACT DISC DIGITAL AUDIO SYSTEM

GENERAL DESCRIPTION

The SAA7000 interpolation and muting circuit descrambles and separates data into left and right channels and minimizes the effects of erroneous data on the performance of the Compact Disc Digital Audio System. Minor errors (those present in one data sample only) are replaced with audio data obtained by interpolation; more persistent errors are removed by muting.

Features

- Descrambles data from error corrector SAA7020 and formats into left and right channels
- Minimizes the effect of erroneous data samples
- 16-bit serial data input (two's complement)
- Smoothed transitions before and after muting
- Interpolated data replaces single erroneous data samples
- Serial output for digital-to-analogue converters (DACs) or filter circuits
- Generates crystal-derived timing signals for system master data clock (4,2336 MHz), serving error corrector SAA7020 and digital filter SAA7030
- Selectable output format: offset binary or two's complement; 14 or 16-bit word

Fig. 1 Block diagram.

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102CS).

FUNCTIONAL DESCRIPTION

The SAA7000 is used in the Compact Disc system to reconstruct audio data by interpolation if the error corrector SAA7020 is unable to correct a data sample, or mutes the data when it passes consecutive erroneous data samples. Errors are indicated by an error flag (UNEC) from the SAA7020; when no error flag occurs, the data value through SAA7000 is unaffected.

Data samples (at DAEC, clocked in by $\overline{\text{CLEC}}$) are first descrambled and then separated into left and right channels. A similar descramble and separation is performed on the error flag (UNEC).

If, for either left or right channels, a single 'error' is flagged between two 'good' data samples then linear interpolation is used to replace the erroneous value. If two or more adjacent samples are flagged, then the samples in error are muted. Beginning thirty samples before the first of the consecutive errors, the data value of the samples is attenuated smoothly to zero following a (0 to π) cosine curve. After the error burst, the next thirty samples are smoothly returned to full level following a (π to 2π) cosine curve. The muting is applied simultaneously to data in both left and right channels regardless of the source of the error.

The data (good or processed) is formatted into two's complement or offset binary to match the DACs in use. This selection is made with a special function of the data input (DAEC, see Fig. 6). The data is then fed to the left and right outputs (DLCF and DRCF) and is clocked out by the output clock (CLCF). Strobes (STR1 and STR2) are generated for the DACs and the digital filter (SAA7030). Fourteen or sixteen-bit DACs can be accommodated by the use of the select input (14/16).

The SAA7000 automatically synchronizes to the error detector SAA7020 output using the frame sync pulse (FSEC) for internal timing reset and feeds a 2 x bit-rate clock (CLOX) to the system.

	Pin functio	ns	HANDLING
	pin no.	mnemonic	description of species of standards between the arright base street
	1 591	V _{BB}	Back bias supply voltage: -2,5 V ± 20%.
		FSEC = 22V;(8613 + or 6.0- p	Frame sync pulse (active HIGH) received from SAA7020 at the start of a data frame (12 data samples). FSEC is used to synchronize the descrambler to the data frames. For re-synchronization to occur, two consecutive FSEC pulses must be received each having a pulse width of approximately 6 CLOX cycles and the leading edge of the second pulse must be one data frame later than that of the first. FSEC is also used to synchronize the internal
			clock to the CLEC clock input, so aligning the gap in the internal clock to the FSEC pulse (see Fig. 4).
	3 A 9'Z	CLEC	Input data clock used to load serial data at DAEC into the input shift register. After a data sample has been loaded CLEC is held LOW to give a gap of 16 CLOX cycles (see Fig. 4). The period of the CLEC clock is
			2 x the period of a CLOX cycle.
	4 20 00 4	DAEC	Serial data samples are received at DAEC in two's complement form. The data is in 16-bit words separated by gaps; each word comprising two 8-bit symbols. The DAEC input is also used to select the output format; during the CLEC gap, a HIGH level at DAEC selects two's complement and a LOW level selects offset binary format (see Fig. 4).
DEVELOPMENT DATA	5	UNEC	Error flag indicating unreliable data from SAA7020. During the period when data is clocked in at DAEC, UNEC is LOW only if the present 8-bit symbol is valid. During the period of the CLEC gap, UNEC is LOW only if the whole of the data word due to arrive 5 frames later is valid.
OPN	6	CLOX	Buffered XTAL1 clock output.
EVEL	7	XTAL2	Main clock crystal drive output. This pin should remain disconnected if a crystal is not used.
	8	XTAL1	Clock input from crystal circuit or for externally derived clock.
	9	VSS	Ground (0 V).
	10	V_{DD2}	Positive supply voltage: + 12 V ± 10%.
	11	STR2	Active HIGH strobe pulse of 2 CLOX cycles duration occurring every 24 CLOX cycles and used to strobe data to the DACs. This pin should be left disconnected if SAA7030 is not used.
	12	STR1	Active HIGH strobe pulse of 2 CLOX cycles duration occurring every 96 CLOX cycles — after each pair of data words have been clocked out. It is used to strobe data to SAA7030, or to the DACs if SAA7030 is not used. Both STR1 and STR2 are re-synchronized to XTAL1 to minimize jitter.
	13	DLCF	Left channel data output; format in two's complement or offset binary, as selected at DAEC.
	14	CLCF	Clock burst output of either 14 or 16 bits, as selected at pin 16. It is used to clock data from DLCF and DRCF (data is valid on CLCF falling edge, see Fig. 5).
	15	DRCF	Right channel data output; format is two's complement or offset binary, as selected at DAEC.
	16	14/16	Selects 14 or 16-bit bursts of output clock CLCF.
	17	TEST	This pin should be held LOW to ensure normal operation.
	18	V_{DD1}	Positive supply voltage: +5 V ± 10%.

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

data frame (12 data samples). FSEC is used to synchronize the disparation of sparation of the control of the co

RATINGS				
Limiting values in accordance with the Absolute Maximum Rating Syste	em (IEC 1	34); V _{SS} = 0 V		
Supply voltage 1 range (pin 18) a broose and to eath pulbed and this as		-0.3 to $+7.5$	V	
Supply voltage 2 range (pin 10)	V _{DD2}	-0.3 to $+15$	V	
Back bias supply voltage range (pin 1)	V _{BB}	-4 to + 0.3	V	
Input voltage range OAAC as such listes book or been alook stab to		-0.3 to $+7.5$	V	
Output voltage range in CEUO herbsol good and signus stab a red A herb				
at $V_1 = -0.3$ to + 6.5 V; $T_{amb} = 25$ °C	VO	-0.3 to $+7.5$	V	
Output current			mA	
Operating ambient temperature range	Tamb	-20 to +70	oC	
Storage temperature range position of beau data at much DBAC and palod	Tsta	-55 to + 125	oC	

CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = -20 \text{ to} + 70 \text{ }^{\circ}\text{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supplies		717	(4	time (FSEC on)	lat sugg
Supply voltage 1 (pin 18)	V _{DD1}	4,5	5,0	5,5	V
Supply voltage 2 (pin 10)	V _{DD2}	10,8	12,0	13,2	V
Back bias supply voltage (pin 1)	-V _{BB}	2,0	2,5	3,0	V
Supply current 1 (pin 18)	I _{DD1}	30	70	140	mA
Supply current 2 (pin 10)	I _{DD2}	2 H831	5	10	mA
Back bias supply current (pin 1)	-I _{BB}	_		500	μΑ
Inputs (except V _{BB})		23111		MEC to FSEC se	AFCA
Input voltage LOW	VILOR	-0,3	emir bi	+ 0,8	V
Input voltage HIGH	VIH	2,4	_	6,5	V
Input current (note 1)	+325 1	-1	-	+ 1	μΑ
Input capacitance (not XTAL1)	CI	-	- 68.5	7	pF
Outputs DLCF, DRCF, CLCF, CLOX, STR1, STR2 (note 2)	30	Jxo		nek I,OW	
Output voltage LOW at -IOL = 1,6 mA	V _{OL}	0 HXO		0,4	V
Output voltage HIGH at IOH = 0,2 mA	VOH	3,0		V _{DD1} + 0,5	V
Load capacitance	CL	- REO!	- (0.6)	150	pF
Output XTAL2		1801		robe fall time	s fuqtut
Operating frequency using ODO Corystal oscillator (Fig. 3)	fXTAL	3,0	4,2336	4,5	MHz
Operating frequency using driven input applied to XTAL1	f _{IN}	3,0	4,2336	4,5 MOJ eder	MHz
Input XTAL1					Lune
Input clock LOW	tIXL	40	auto Ae	STRI, STR2 de) % of
Input clock HIGH	tIXH	40	_		period
Crystal amplifier (pins 7 and 8)	TAH				Poriod
Mutual conductance at 5 MHz	gm	1,5			A /A
Bandwidth of mutual conductance	giii	1,5			mA/V
at minimum 3 dB	Bgm	10	_		MHz
Input capacitance	CI	_	LT	10	pF
Output capacitance	CO	_		7	pF
Feedback capacitance	CFB	-		5	pF
Input leakage current	11	-1	_	+ 1	μΑ
Output current at 5 MHz	I _o	-1		+1	mA
Small signal gain at 5 MHz	Av	-4	_		

parameter	symbol	min.	typ.		unit
nputs DAEC, UNEC, CLEC, FSEC	12811129028 9	esse mana o adel	3-014	or oz- = dmi	1 1 A n = 85
Input rise time (FSEC only)	tiR	_iodmys	_	100	19ns TISTED
nput fall time (FSEC only)	tIF	_	-	100	ns lague
CLEC HIGH	tICH	100		age 1 (pig 18	
CLEC LOW	tichor	100		age 2 (pil) 10	
DAEC to CLEC set-up time	tIDS	40		aps Hov ylqqu	
CLEC to DAEC hold time	tIDH 08	40			ns
FSEC HIGH (note 3)	tFSH	4 CLOX		0.01.01	Supply cur
	1011	periods		periods + 190	
		-400	LT HOUSE.		ns
DAEC/UNEC to FSEC set-up time	tUFS	0	-		ns
FSEC to DAEC/UNEC hold time	tUFH	8 CLOX periods			input volta
(note 3)	1-	+ 325	-		ns man
		10	HIAT	itance (not)	
Output CLOX (notes 4 and 5)			.70.00		
Output clock LOW	toxL	30	_	TRI, STR2	S DKONO
Output clock HIGH	toxH	30	-	age LOW as	period
output clock rise time	toxR	TOV	-	50 _{Am a,1}	
Output clock fall time	toxf	-	-		nsugnuo
Outputs STR1, STR2 (note 6)	3.0				0 = HO!
Output strobe rise time	tosa	73	10	20	ns
Output strobe fall time	tosf	_	6	20 S.JA	TXns quo
Output strobe HIGH	tosh	1 CLOX	2 CLOX	4 CLOX	Operating
	3,0	period		periods	
		+ 50		requency usin	
Output strobe LOW	tosL	10 MI	HIATX	beliggs tug	CLOX
CLOX to STR1, STR2 delay time	tXSL	0	_	- 13	A Tos
10 20 1	tXSH	- JXIJ	_		locus tugni
boheq	40	HXI ²	1	нон	input clack
Ац 1+ —					
	1-				

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Outputs CLCF, DLCF, DRCF (note 4)			90.7		
Output rise time	toR	5 -	- 1	50	ns
Output fall time	tOF	-	- 1	40	ns
Output data clock HIGH	toch	120	-	1-1	ns
Output data clock LOW	tocL	120	-		ns
DLCF, DRCF to CLCF set-up time	tops	50	_	_	ns
CLCF to DLCF, DRCF hold time	tODH	100	-		ns
CLCF LOW prior to STR1 (note 3)	tCSL	52	60	F	CLOX periods

NOTES TO THE CHARACTERISTICS

- 1. $V_1 = -0.3$ to + 6.5 V; $T_{amb} = 25$ °C.
- All outputs, except XTAL2, are short-circuit protected to V_{DD1} and V_{SS}. Output XTAL2 is protected to V_{SS} only.
- Input timings assume that CLOX output (pin 6) is used to drive SAA7020 CLOX input. CLEC period is twice the CLOX period.
- 4. Output load capacitance is 50 pF.
- 5. XTAL1 (pin 8) is driven by an external clock.
- 6. Output load capacitance is 30 pF on STR1, STR2 outputs.

(1) Catalogue number of crystal is 6416 009 00111.

Fig. 3 Crystal oscillator circuit.

- (1) When HIGH indicates unreliability of data word that will follow five frames later.
- (2) When HIGH indicates unreliability of current symbol.

Fig. 5 Typical output waveforms.

DEVELOPMENT DATA

- (1) CLEC remains LOW for a minimum period of approximately 16 CLOX periods.
- (2) Data during this time is used to determine the format of the output from SAA7000; when DAEC is HIGH a two's complement format is selected, when LOW an offset binary format is selected.
- (3) Input timings assume that CLOX output (pin 6) is used to drive SAA7020 CLOX input. CLEC period is twice the CLOX period.

Fig. 6 Input waveforms. Reference levels are 0,8 V and 2,4 V; $t_{\mbox{\scriptsize IR}}$ and $t_{\mbox{\scriptsize IF}}$ apply to FSEC waveform only.

Fig. 7 Optional clock input waveform at XTAL1 (pin 8).

Fig. 8 Output waveforms. Reference levels are 0,8 V and 2,4 V. Output loadings on STR1 and STR2 are 30 pF; output loadings on CLOX, $\overline{\text{CLCF}}$, DLCF and DRCF are 50 pF.

Fig. 7 Optional plack input wavelorm at XTAL1 (pin 8).

DEMODULATOR FOR COMPACT DISC DIGITAL AUDIO SYSTEM

GENERAL DESCRIPTION

The SAA7010 demodulates and decodes the pulse code modulated input signal into digital data for the Compact Disc Digital Audio system. A 4,3 MHz (typical) clock locked to the disc rate is also produced.

Features

- Phase-locked loop clock regenerator with frequency detector for locking
- High-frequency level detector with adaptive slicer for input data
- Built-in drop-out detector to prevent error propagation in adaptive slicer
- Outputs to subcoding microprocessor
- Fully protected timing synchronization to incoming data

Fig. 1 Block diagram.

PACKAGE OUTLINE

28-lead DIL; package (SOT-117).

DEVELOPMENT DATA

FUNCTIONAL DESCRIPTION

The SAA7010 demodulator forms the front-end of the Compact Disc Digital Audio system, supplying demodulated data and timing signals to the error corrector (SAA7020) and to the subcoding microprocessor.

The detected signal from the disc is amplified and filtered externally and then converted to a digital signal via the level detector. The level detector is an adaptive data slicer which relies on the nature of the modulation system to determine the optimum slicing level.

A frequency detector and a phase detector provide the coarse and fine control signals for the phase-locked loop (PLL) system. The loop gain is supplied by an internal operational amplifier which drives a voltage-controlled oscillator (VCO) running at twice the input data rate (typically 8,6436 MHz). The VCO output is divided by two by a clock generator in the timing and control circuits and the resulting output is used to clock the input shift register and the timing chain. This clock signal completes the PLL loop when it is compared with the incoming data in the phase detector.

After phase detection the data is clocked into the 23-bit input shift register which then detects the frame sync pattern. Within the timing and control circuits are minimum and maximum data length detectors which provide frequency limit signals for the frequency detector.

Also within the timing and control circuits are two divide-by-588 counters, one master and one slave, two divide-by-17 symbol rate counters and a lock indication counter. The frame sync signal is used to reset the divide-by-588 slave counter. This counter and one divide-by-17 symbol rate counter supply timing signals for clocking the EFM (eight-to-fourteen modulation) decoder and the subcoding output circuits. The data is read from the input shift register in 14-bit symbols which are first latched and then decoded into 8-bit data words. The subcoding part of the data consists of one word per frame (Fig. 3), so the output SDATA comprises a burst of 8 data bits accompanied by a 2,1906 MHz clock burst signal SBCL (Fig. 4). One bit of this subcoding output data is replaced by a subcoding frame sync bit which is decoded from one of two special EFM codes. The displaced bit (the pause (P) bit) is latched to its own output via a debounce circuit to remove erroneous changes.

The divide-by-588 slave counter also provides a sync coincidence pulse which occurs when two detected sync pulses are precisely one frame apart (588 clock cycles). The sync coincidence pulse is used to reset the lock indication counter and disable the FD output from the frequency detector. If the system goes out of lock, the sync pulses cease and the lock indication counter counts frame periods. After 63 frame periods with no sync coincidence pulse, the lock indication counter enables the frequency detector output.

(1) Merging and low frequency suppression bits.

Fig. 3 Data input signal.

FUNCTIONAL DESCRIPTION (continued)

A delayed version of the sync coincidence pulse resets the divide-by-588 master counter. This counter is reset only by coincident sync pulses or sync pulses which occur during a predetermined 'window' at the start of each frame and is therefore protected from accidental reset by erroneous sync patterns. The window is wide enough to allow PLL bit-slips but narrow enough to avoid false sync signals generated by corrupt data. The divide-by-588 master counter may be allowed to free-run by taking CRI input (pin 11) LOW to inhibit the reset signal.

The divide-by-588 master counter and the second divide-by-17 symbol rate counter are used to time the data and clock outputs to the error corrector SAA7020 (Fig. 5). In this way, even if the data has been corrupted, the timing signals will be correct and are only re-synchronized after a complete frame has been sent to SAA7020.

The data output to SAA7020 comprises thirty-two 8-bit symbols per frame, with half-bit gaps between each symbol and a much longer gap during the frame sync period. It is this longer gap that changes in length when corrupt data upsets the timing system.

Pin functio	ns glue alst Jugi	
pin no.	mnemonic	description
1	V _{BB}	Back bias supply voltage: -2,5 V ± 20%.
2 yanaup	SDATA	Subcoding data push-pull output. An 8-bit burst of data (including a 1-bit subcoding frame sync) is output serially once per frame coincident with SBCL.
3	SBCL	Subcoding bit clock push-pull output. An 8-bit burst clock, typically at 2,1609 MHz, is used to synchronize the subcoding data.
4	SWCL	Subcoding word clock push-pull output. A square-wave signal at data frame rate (7,35 kHz) used to synchronize the subcoding words and the pause (P) bit.
		Subcoding pause bit push-pull output. This signal is derived from the encoded subcoding word and is used to indicate a music pause. A debounce circuit is incorporated to eliminate erroneous data.
6	HFD/TEST	External high-frequency detector input. When this signal is HIGH the frequency detector output (FD) and phase detector are enabled. When pin 6 is connected to V _{DD2} , the device enters TEST mode.
7 ad (HFI1	Level detector input. A signal of between 0,25 and 2,5 V (peak-to-peak value) is required to drive the level detector correctly.
8	FBolveb 20M gn	Current feedback from the level detector.
9	n.c.	Not connected.
10	HFI2	Alternative input to the level detector.
11	CRI	Counter reset inhibit signal input. When LOW, this signal allows the divide-by-588 master counter to free-run and causes pin 27 output to be converted to DEFM. During power-up, pin 11 should be held HIGH for 10 ms.
12	PD2	Phase detector reference signal, maximum impedance 10 k Ω .
13	PD1	Phase detector output signal, maximum impedance 10 k Ω . The differential d.c. content of PD1 and PD2 signals is a measure of the phase difference between the data and the internal 4,3218 MHz clock.
14	V _{SSD}	Digital ground. Main ground terminal.
15	V_{DD2}	Positive supply voltage: $+$ 12 V \pm 10%.
	pin no. 1 2 3 4 5 4 5 10 11 12 13	pin no. mnemonic 1 VBB 2 SDATA 3 SBCL 4 SWCL 5 P 6 HFD/TEST 7 HFI1 8 FB 9 n.c. 10 HFI2 11 CRI 12 PD2 13 PD1 14 VSSD

pin no.	mnemonic	description (beunings) NOTTERORED JANOTTONUS
16	OA1	Operational amplifier non-inverting input.
17	OA2	Operational amplifier inverting input.
18	OA3	Operational amplifier source follower output.
19 Inis	V _{SSA}	Analogue ground. Ground terminal for operational amplifier and VCO only. Connected internally to VSSD via a 25 Ω (nominal) resistor.
ta has	equinter a100V for way, even if the da red after a complete	Voltage-controlled oscillator amplifier input. The amplifier is a simple inverter operating up to 10 MHz. Frequency control is achieved via an external tuned circuit using variable capacitance diodes.
21 neewded ni segn	VCO2 ages and their risks, serio serio geo regno	Voltage-controlled oscillator amplifier output. The load for the inverting transistor may be turned off for test purposes by reducing VDD2 to 0 V.
22	CEFM	Internal 4,3218 MHz clock generator push-pull output.
23	FD	Frequency detector three-state push-pull output. This output has a 1 k Ω (typical) impedance when active but assumes a high impedance state once the system is in lock.
	FSDE and of data (included) once per frame co	Frame sync signal push-pull output (to SAA7020). It provides a positive-going pulse at the end of each data frame. Typical frequency = 7,35 kHz.
25 ts viles	SSDE	Symbol sync signal push-pull output for each data symbol. Typical frequency = 254 kHz.
	CLDE de la composition della c	Data bit clock push-pull output (to SAA7020). An 8-bit clock burst at 2,1609 MHz (typical) which is used to synchronize the data to SAA7020 (see Fig. 5).
27 ada n	DADE/DEFM	Data push-pull output (to SAA7020). Serial data comprising 32×8 -bit symbols per frame, synchronized to $\overline{\text{CLDE}}$ (see Fig. 5). This output is converted to DEFM when $\overline{\text{CRI}}$ (pin 11) is LOW. DEFM is the digital signal appearing at the output of the level detector.
28 edz H	V _{DD1}	Positive supply voltage: +5 V ± 10%.

Level detector input. A signal of between 0,25 and 2,5 V (peDILIDIAH

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

RATINGS

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134);

VSSA = VSSD = 0 V.

Supply voltage 1 range (pin 28)

Supply voltage 2 range (pin 15)

Back bias supply voltage range (pin 1)

Input voltage range

Output voltage range (except FD, OA3)

Output voltage range (FD, OA3 only)

Output current (each output)

Operating ambient temperature range

Storage temperature range

V_{DD1} -0,3 to +7,5 V

 V_{DD2} -0,3 to + 15 V V_{BB} -4 to + 0,3 V

V₁ = -0,3 to +7,5 V

-0.3 to + 7.5

 $V_0 = -0.3 \text{ to } +7.5 \text{ V}$

 $V_0 = -0.3 \text{ to } + 15 \text{ V}$ $V_0 = -0.3 \text{ to } + 15 \text{ V}$ $V_0 = -0.3 \text{ to } + 15 \text{ V}$

 T_{amb} max. 10 mA T_{amb} -20 to +70 °C

 T_{sta} -55 to + 125 °C

CHARACTERISTICS

 $V_{SSA} = V_{SSD} = 0 \text{ V}$; $T_{amb} = -20 \text{ to} + 70 \text{ }^{\circ}\text{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
V _{1(p-p)} 0,25 - 2,5 SILIPOUS				co-peak value	(peal
Supply voltage 1 (pin 28)	V _{DD1}	4,5	5,0	5,5	V
Supply voltage 2 (pin 15)	V _{DD2}	10,8	12,0	13,2	٧
Back bias supply voltage (pin 1)	-V _{BB}	2,0	2,5	3,0	V
Supply current 1 (pin 28)	IDD1	30	60	150	mA
Supply current 2 (pin 15)	I _{DD2}	4	8	21 JAMOIT	mA
Back bias supply current (pin 1)	-I _{BB}	-	-	500	μΑ
DIGITAL CIRCUITS MIDV		1	e range	n-mode voltag	DERMO
Input HFD, CRI				ffset voltage	iput o
Input voltage LOW	VIL	-0,3	_	+ 0,8	V
Input voltage HIGH	VIH	2,4	(d ato	6,5	V
Input current (note 1)	11	-1	-	+ 1	μΑ
Input capacitance OA FIAMO	CI	_	on ratio	7 jen abom-n	pF
40 48 A				(J.c.) nisp qo	pl mag
Outputs DADE/DEFM, CLDE, FSDE, SSDE, SBCL, SDATA, P, SWCL, CEFM (note 2)		1	738 745a	ndwidth prodi 8/décade roil-	
Output voltage LOW at			4114	Litra shedenin	0.000
-I _{OL} = 1,6 mA	VOL	0	-	0,4 EAO	V
Output voltage HIGH at		Am 1 =	101-1	voltage LOW e	tuqtu
I _{OH} = 0,2 mA	VOH	3,0	HO! 18	V _{DD1} + 0,5	V
Load capacitance	CL	-	-	150	pF

parameter Appropriate Appropri	symbol	min.	typ.	max.	unit
DIGITAL CIRCUITS (continued)				.V 0 = 088	SAA =
Output FD 100V			pin 28)	Itage i range	w yiqq
Output voltage LOW at		Det.	pin 15)	Itage 2 range	
$-I_{OL} = 100 \mu\text{A}$	VOL	O nig	anner :	0,5	Vdo
Output voltage HIGH at				egner age	
$I_{OH} = 100 \mu\text{A}$	VOH	8,0	77(90)	$V_{DD2} + 0,5$	Vingi
Output leakage current at VO = 0 to 6 V (note 3)	± 1L	(vino		Itage range (F rrent (each bu	μΑ
Output impedance	ZO	-	1	amblent temp	kΩ
Jamb -20 to +70 oc		range	8111819		
Outputs PD1, PD2			25	imperature ran	
Output impedance	Z _O	-	5	10 POLITICIST	kΩ
LEVEL DETECTOR boilings salwards	70 °C unless	20 to 4	- = dm	SSD = 0 V; T	/ = AS
Inputs HFI1, HFI2				187	emered
A.C. input voltage range (peak-to-peak value)	V _{I(p-p)}	0,25	_	2,5	Vens
Innut conscitores	C _I	-	- (80	7a) I session	pF
			(81	voltage 2 (pin	
Output PB		13	mint on	slov vlagus sa	μΑ
Output current at VFB = 2 V	IFB	-	150	current (pin	μΑ
OPERATIONAL AMPLIFIER (note 4)				current 2 (pin	
Inputs OA1, OA2		- (†	nig) ini	muo ylqqua aum	Back bi
Common-mode voltage range	VCIM	1,5	-	6,0	
Input offset voltage	± VIOF	-	20	FD, CRI -	mV
Input current (note 1)	± 11	-	-	1 _{WOJ} epstic	μΑ
Input offset current (note 5)	± IIOF	-	-	0,1	μΑ
Input capacitance	CI	-	-	7 _{eton) tremu}	pF
Common-mode rejection ratio	CMRR	40	-	- eonstioson	dB
Open loop gain (d.c.)	Α	40	-	-	dB
Gain bandwidth product (20 dB/dècade roll-off)	ssDE, te 2)	FSDE FM (to	6, CLD	DADE/DEFI DATA, P, <u>S</u> W	MHz
Output OA3			31	voltage LÖW = 1,6 mA	output -loi
Output voltage LOW at $-I_{OL}$ = 1 mA	VOL	0	- fs	voltage HIGP:	V
Output voltage HIGH at IOH = 1 mA	VOH	8.0	_	VDD2 + 0,5	VO

D
-
V
0
-
Z
LLI
5
0
0
~
111
_
-
Ш

parameter		symbol	min.	typ.	max.	unit
VCO	A CONTRACTOR				(continued)	
Input VCO1, output VCO2					0	
Mutual conductance at 100 kHz		gm	1,5	_ (8 s	rise time (cor	mA/V
Bandwidth (-3 dB cut-off)		B _{am}	20	_ (8 s	ton) smit litt	MHz
Input capacitance		CI	- 19	GIFTS N	7 DEFM. CE	pF
Output capacitance		CO	_ 10	- 12	7	pF
Feedback capacitance		CFB	-	(84	5	pF
Input leakage current (note 1)		± 11	-	_	1	μΑ
Output current at 10 MHz		± 10	_	1		mA
Small-signal voltage gain			01 ste	al amit	DEFM hotel	
at 100 kHz		Av	4	-	_amit idel	V/V
TIMING					OW time	
Operating frequency (except VCO)		Forma	0.1		5	MHz
Operating frequency (VCO only)		FCEFM FVCO	0,1	ACTER	10	MHz
Outputs CLDE, DADE, SSDE, FSD (Fig. 6 and note 6)	ive is 150 pF.	втедо веп	ds rad	trotecti	nort-elrouit	
		medo zem	pasd ne	MOTEORIS		
Output rise time		tOR	niight namme	nLPoqn o∡idale		
Output fall time		tOF	400	0-11-514	= 25 °C_	10.00
CLDE period CLDE HIGH time		tOCP	150	Hg		
CLDE HIGH time		tOCH			emains LOW	
		tocL	150		um cile tid e	
DADE/SSDE/FSDE to CLDE set-up		tods			loading = 15	
CLDE to DADE/SSDE/FSDE hold		tODH	100		LOOV pring	CEFN
SSDE LOW time (note 7)		tSSL	40		DITYLA BURNI	1
CLDE LOW time during FSDE (Fig	. 5 and note 8)	tocg	16	46		period
Outputs SBCL, SDATA, P, SWCL (
Output rise time (SBCL, SDATA) (tOR	-	-	50	ns
Output fall time (SBCL, SDATA) (tOF	-	-	40	ns
Output rise time (P, SWCL) (note 9		tosr	-	-	200	ns
Output fall time (P, SWCL) (note 9)	tosf	-	-	200	ns
SBCL HIGH time		^t OCH	150	-	-	ns
SBCL LOW time		tocL	150	-	- 1	ns
SDATA to SBCL set-up time		tods	100	-	-	ns
P to SWCL set-up time		tODSP	1	-	-	ns
SBCL to SDATA hold time		tODH	100	-	500	ns
SBCL to SWCL hold time		tswH	0	-	-	μs
SWCL duty cycle (tHIGH/tperiod)			40	50	60	%

NOTES TO THE CHARACTERISTICS

- 1. At $T_{amb} = 25$ °C; $V_{IN} = -0.3$ to +6.5 V; $V_{DD1} = 6.5$ V.
- Short-circuit protected to V_{DD1} and V_{SS}. The maximum load capacitance that can be applied to before short-circuit protection becomes operative is 150 pF.
- 3. At Tamb = 25 °C; output in high impedance state.
- 4. All tests performed within common-mode voltage range.
- 5. At Tamb = 25 °C.
- 6. Output loading = 50 pF.
- 7. SSDE remains LOW for only one negative edge of CLDE.
- 8. Excessive bit-slip may cause gap to disappear. CLDE remains LOW when FSDE is HIGH.
- 9. Output loading = 150 pF.
- 10. Free running VCO frequency tuned to nominal and PLL in lock with a typical application circuit.

DEVELOPMENT DATA

Fig. 6 Timing of waveform outputs to SAA7020.

Fig. 7 Timing of waveform outputs for subcoding: reference levels are 0,8 and 2,4 V; SBCL and SDATA output loading = 50 pF; SWCL and P output loading = 150 pF; SWCL has a 50% duty cycle.

Fig. 8 Timing of EFM output waveforms: output loading = 50 pF; reference levels are 0,8 and 2,4 V.

Fig. 7 Timing of waveform outputs for subgoding: reference levels are 0,8 and 2,4 V; SBCL and SDATA output loading = 60 pF; SWCL and P output loading = 160 pF; SWCL has a 50% duty evole

This data sheet contains advance information and specifications are subject to change without notice.

DEMODULATOR FOR COMPACT DISC DIGITAL AUDIO SYSTEM

GENERAL DESCRIPTION

The SAA7011 demodulates and decodes the pulse code modulated input signal into digital data for the Compact Disc Digital Audio system. A separate pin for eight-to-fourteen modulation (EFM) digital output is provided and a 4,3 MHz (typical) clock locked to the disc rate is produced.

Features

- Phase-locked loop clock regenerator with frequency detector for locking
- High frequency level detector with adaptive slicer for input data
- Built-in drop-out detector to prevent error propagation in adaptive slicer
- Outputs to subcoding microprocessor
- · Fully protected timing synchronization to incoming data

Fig. 1 Block diagram.

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).

DEVELOPMENT DATA

- 1		1		PINNII	NG	
V _{BB} 1	U	28 V _{DD1}		1	V _{BB}	back bias supply
DATA 2		27 DADE		2 70	SDATA	subcoding data output
SBCL 3		26 CLDE		3	SBCL	subcoding bit clock output
SWCL 4		25 SSDE		4	SWCL	subcoding word clock output
		E		5	P	subcoding pause bit output
P 5		24 FSDE	al hatalulyon e	6	HFD	high-frequency detector input
HFD 6		23 FD		701 nig	HEL SEA.	level detector non-inverting input
HFI 7	SAA7011	22 CEFM	d to the disc n	8	HFI (Isolgy)	level detector inverting input
HFI 8	SAA / 011	21 VCO2		9	FB	level detector inverted feedback output
FB 9 FB 10		20 VCO1 19 V _{SSA}		10	FB date of	level detector non-inverted feedback output
DEFM 11		18 OA3		11	DEFM	EFM digital output
PD2 12		17 OA2		12	PD2	phase detector reference output
PD1 13		16 OA1		13	PD1	phase detector signal output
				14	VSSD	digital ground
V _{SSD} 14		15 V _{DD2}		15	V _{DD2}	+ 12 V supply
In Voor	7Z9028	3		16	OA1	operational amplifier non- inverting input
Fig. 2	Pinning d	iagram.		17	OA2	operational amplifier inverting input
-				18	OA3	operational amplifier source-
				19	VSSA	analogue ground
				20	VCO1	voltage-controlled oscillator amplifier input
			L L	21	VCO2	voltage-controlled oscillator amplifier output
			. R100030	22	CEFM	4,3218 MHz clock output
				23	FD	frequency detector output
				24	FSDE	frame sync signal output
			10804	25	SSDE	symbol sync signal output
				26	CLDE	data bit clock output
				27	DADE	serial data output

FUNCTIONAL DESCRIPTION

The SAA7011 demodulator forms the front-end of the Compact Disc Digital Audio system, supplying demodulated data and timing signals to the error corrector (SAA7020) and to the subcoding microprocessor.

The detected signal from the disc is amplified and filtered externally and then converted to a digital signal via the level detector. The level detector is an adaptive data slicer which relies on the nature of the modulation system to determine the optimum slicing level.

A frequency detector and a phase detector provide the coarse and fine control signals for the phase-locked loop (PLL) system. The loop gain is supplied by an internal operational amplifier which drives a voltage-controlled oscillator (VCO) running at twice the input data rate (typically 8,6436 MHz). The VCO output is divided by two by a clock generator in the timing and control circuits and the resulting output is used to clock the input shift register and the timing chain. This clock signal completes the PLL loop when it is compared with the incoming data in the phase detector.

After phase detection the data is clocked into the 23-bit input shift register which then detects the frame sync pattern. Within the timing and control circuits are minimum and maximum data length detectors which provide frequency limit signals for the frequency detector.

Also within the timing and control circuits are two divide-by-588 counters, one master and one slave, two divide-by-17 symbol rate counters and a lock indication counter. The frame sync signal is used to reset the divide-by-588 slave counter. This counter and one divide-by-17 symbol rate counter supply timing signals for clocking the EFM (eight-to-fourteen modulation) decoder and the subcoding output circuits. The data is read from the input shift register in 14-bit symbols which are first latched and then decoded into 8-bit data words. The subcoding part of the data consists of one word per frame (Fig. 3), so the output SDATA comprises a burst of 8 data bits accompanied by a 2,1906 MHz clock burst signal SBCL (Fig. 4). One bit of this subcoding output data is replaced by a subcoding frame sync bit which is decoded from one of two special EFM codes. The displaced bit (the pause (P) bit) is latched to its own output via a debounce circuit to remove erroneous changes.

The divide-by-588 slave counter also provides a sync coincidence pulse which occurs when two detected sync pulses are precisely one frame apart (588 clock cycles). The sync coincidence pulse is used to reset the lock indication counter and disable the FD output from the frequency detector. If the system goes out of lock, the sync pulses cease and the lock indication counter counts frame periods. After 63 frame periods with no sync coincidence pulse, the lock indication counter enables the frequency detector output.

Fig. 3 Data input signal.

(1) merging and low frequency suppression bits.

FUNCTIONAL DESCRIPTION (continued)

A delayed version of the sync coincidence pulse resets the divide-by-588 master counter. This counter is reset only by coincident sync pulses or sync pulses which occur during a predetermined 'window' at the start of each frame and is therefore protected from accidental reset by erroneous sync patterns. The window is wide enough to allow PLL bit-slips but narrow enough to avoid false sync signals generated by corrupt data.

The divide-by-588 master counter and the second divide-by-17 symbol rate counter are used to time the data and clock outputs to the error corrector SAA7020 (Fig. 5). In this way, even if the data has been corrupted, the timing signals will be correct and are only re-synchronized after a complete frame has been sent to SAA7020.

The data output to SAA7020 comprises thirty-two 8-bit symbols per frame, with half-bit gaps between each symbol and a much longer gap during the frame sync period. It is this longer gap that changes in length when corrupt data upsets the timing system.

	Pin function	O). It providean	
	pin no.	mnemonic	description stab rises to bre affi to salue gridg
	1 Issi	V _{BB}	Back bias supply voltage: -2,5 V ± 20%.
4		SDATA Noolo sid-8 nA	Subcoding data push-pull output. An 8-bit burst of data (including a 1-bit subcoding frame sync) is output serially once per frame coincident with SBCL.
DAT.	3 aid-8 x 5	SBCL E mishqmoo s	Subcoding bit clock push-pull output. An 8-bit burst clock, typically at 2,1609 MHz, is used to synchronize the subcoding data.
DEVELOPMENT DATA	4	SWCL	Subcoding word clock push-pull output. A square-wave signal at data frame rate (7,35 kHz) used to synchronize the subcoding words and the pause (P) bit.
DEVEL	5 ed or	P ling, However,	Subcoding pause bit push-pull output. This signal is derived from the encoded subcoding word and is used to indicate a music pause. A debounce circuit is incorporated to eliminate erroneous data.
	6	HED SOM	External high-frequency detector input. When this signal is HIGH the frequency detector output (FD) and phase detector are enabled.
	7	HFI	Level detector non-inverting input. A differential signal of between 1,0 and 2,5 V (peak-to-peak value) is required to drive the level detector correctly.
	8	HFI	Level detector inverting input.
	9	FB	Level detector inverted feedback output. The outputs $\overline{\text{FB}}$ and FB have a typical impedance of 10 k Ω and will default to 0,5 x V _{DD1} when a drop-out is detected.
	10	FB	Level detector non-inverted feedback output.
	11	DEFM	EFM digital output from the level detector.
	12	PD2	Phase detector reference signal, typical impedance 15 k Ω .
	13	PD1	Phase detector output signal, typical impedance 15 k Ω . The differential d.c. content of PD1 and PD2 signals is a measure of the phase difference between the data and the internal 4,3218 MHz clock.
	14	V _{SSD}	Digital ground. Main ground terminal.
	15	V_{DD2}	Positive supply voltage: + 12 V ± 10%.
	16	OA1	Operational amplifier non-inverting input.
	17	OA2	Operational amplifier inverting input.

pin no.	mnemonic	description
18	OA3	Operational amplifier source follower output.
19 wobni	V _{SSA}	Analogue ground. Ground terminal for operational amplifier and VCO only. Connected internally to VSSD via a 25 Ω (nominal) resistor.
20 als	VCO1	Voltage-controlled oscillator amplifier input. The amplifier is a simple inverter operating up to 10 MHz. Frequency control is achieved via an external tuned circuit using variable capacitance diodes.
21 smart et	VCO2	Voltage-controlled oscillator amplifier output. The load for the inverting transistor may be turned off for test purposes by reducing V_{DD2} to 0 V.
22	CEFM	Internal 4,3218 MHz clock generator push-pull output.
23	FD que jour	Frequency detector three-state push-pull output. This output has a 1 k Ω (typical) impedance when active but assumes a high impedance state once the system is in lock.
24	FSDE	Frame sync signal push-pull output (to SAA7020). It provides a positive-going pulse at the end of each data frame. Typical frequency = 7,35 kHz.
25	SSDE	Symbol sync signal push-pull output for each data symbol. Typical frequency = 254 kHz,
26 ANN T	CLDE	Data bit clock push-pull output (to SAA7020). An 8-bit clock burst at 2,1609 MHz (typical) which is used to synchronize the data to SAA7020 (see Fig. 5).
27	DADE	Data push-pull output (to SAA7020). Serial data comprising 32 \times 8-bit symbols per frame, synchronized to $\overline{\text{CLDE}}$ (see Fig. 5).
28 _{entr bra}	V _{DD1}	Positive supply voltage: + 5 V ± 10%.

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

V_{DD1} -0,3 to +7,5 V

 $V_{DD2} -0.3 \text{ to } + 15 \text{ V}$

 $V_0 = -0.3 \text{ to } + 15 \text{ V}$

 T_{amb} -20 to +70 °C

-4 to +0.3 V $V_1 = -0.3 \text{ to } + 7.5 \text{ V}$

-0.3 to +7.5 V

max. 10 mA

-55 to + 125 °C

VRR

10

Tstg

Vo

RATINGS

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134);

VSSA = VSSD = 0 V

Supply voltage 1 range (pin 28)

Supply voltage 2 range (pin 15)

Back bias supply voltage range (pin 1)

Input voltage range

Output voltage range (except FD, OA3)

Output voltage range (FD, OA3 only)

Output current (each output)

Operating ambient temperature range

Storage temperature range

CHARACTERISTICS

 $V_{SSA} = V_{SSD} = 0 \text{ V}$; $T_{amb} = -20 \text{ to} + 70 \text{ °C}$ unless otherwise specified

◁
—
Ø
0
-
1
7
111
ш
S
~
Harrie .
\circ
ш
>
111
-

parameter	symbol	min.	typ.	max.	unito
SUPPLIES d.S - 0.7 (g-g)1V				faulev hasg-o	-Alasu)
Supply voltage 1 (pin 28)	V _{DD1}	4,5	5,0	5,5	V
Supply voltage 2 (pin 15)	V _{DD2}	10,8	12,0	13,2	V V
Back bias supply voltage (pin 1)	-V _{BB}	2,0	2,5	3,0	VuqtuO
Supply current 1 (pin 28)	I _{DD1}	30	60	150	mA
Supply current 2 (pin 15)	I _{DD2}	4	8	21	mA
Back bias supply current (pin 1)	-I _{BB}	d eston)	RBIAL	500	μΑ
DIGITAL CIRCUITS A,T MIOV			range	mode voltage	Common
Input valtage LOW	V	-0,3	_	epstlov is	
The state of the s	V _{IL}	2,4		+ 0,8	
Input current (note 1)	II II	-1	10.03	6,5 + 1	μΑ
Input capacitance	CI	-	ת המונים	7 sejer ebom	
Outputs DADE, CLDE, FSDE, SSDE, SBCL, SDATA, P, SWCL, CEFM (note 2)				gain (d.c.) Width produc	Gein benu
Output voltage LOW at -IOL = 1,6 mA	VOL	0	- (1	0,4	V
Output voltage HIGH at IOH = 0,2 mA	VOH	3,0	101-	V _{DD1} + 0,5	ny jugist
Load capacitance GOV - 0.8 HOV	CL	Am I	HO!	150	pF

parameter	symbol	min.	typ.	max.	unit
DIGITAL CIRCUITS (continued)	NUMBER EXTROSO	9017 113	WV 9311	A 0 = QS	sv gnau sV = As
Output FD or 8,0— rooV			n 28)	age 1 range (p	play yate
Output voltage LOW at COV -IOL = 100 µA	VOL	0,1 mis		0,5	
Output voltage HIGH at IOH = 100 µA	Voн	8,0	73 tos	V _{DD2} + 0,5	V
Output leakage current at VO = 0 to 6 V (note 3)	± IL	_tylno	0A <u>3</u>	G1) epitar ega	μΑ
Output impedance	ZO	-	1 (200	ent (each out	kΩ
Tamb -20 to +70 °C		egne	ature	mbient tempe	e gniten
Outputs PD1, PD2 Output impedance	z _O	-	15	perature range — ERISTICS	kΩ
LEVEL DETECTOR beilioga esiwren	O OC unives of	+ ot 05	-= 4	T:V0 = 02	eV = Ad
Inputs HFI, HFI					
A.C. input voltage range (peak-to-peak value)	V _{I(p-p)}	1,0	_	2,5	V
Input offset current (note 4)	IDF	-0,2		+0,2	μΑ
Input capacitance		-	(č	7 Itage 2 (pin 1	pF
Outputs FB, FB 0.8 8.5 0.5 88V-		(1	niq) e	supply voltag	ack bias
Output impedance at 08 08 rgg	ZO	-	10	Caiq) I mem	kΩ
OPERATIONAL AMPLIFIER (note 5)			- (8	rrent 2 (pin 1	upply or
Inputs OA1, OA2		- (1	niq) t	supply curren	ack bias
Common-mode voltage range	VCIM	1,5	_	6.0 IUORIO	VIIDI
Input offset voltage	± VIOF	_	20	_	mV
Input current (note 1)		_	_	1 WOJ ega	μА
Input offset current (note 4)		_	_	0.1HBIH sgs	μΑ
Input capacitance	101	_	_	71 eron) men	pF
Common-mode rejection ratio		40	_	acitance	dB
Open loop gain (d.c.)	A JOSE	40	8083	TOJO HOAG	dB
Gain bandwidth product (20 dB/decade roll-off)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(S s)	5	SWCL, ČEF	MHz
Output OA3				Am å,1	101-
Output voltage LOW at $-I_{OL}$ = 1 mA	VOL	0	_	1 Am S.0	VHO
Output voltage LOW at $-10L = 1 \text{ mA}$ Output voltage HIGH at $10H = 1 \text{ mA}$	VOH	8,0	_	V _{DD2} + 0,5	V

	-
<	ι
۲	-
<	Γ
)
H	-
2	
ш	J
5	=
5	-
7	5
-	í
ш	ī
7	ï
ú	i
)

parameter			symbol	min.	typ.	max.	unit
VCO						(beunitnes)	TIMING
Input VCO1, output VCO2						9	
Mutual conductance at 100 kHz		80ª .	gm	1,5	_ (8	storr) smit st	mA/V
Bandwidth (-3 dB cut-off)			Bam	20	_ (8	eton) emit le	MHz
Input capacitance			CI	- (8	(F)	7 35 MASO	pF
Output capacitance			CO	_	- (8)	7 m smit s	
Feedback capacitance			CFB	_	- (8	5	
Input leakage current (note 1)			± II	Teton	smit :	CEFM set L	
Output current at 10 MHz			± 10	ion sto	1 _{ami}	Hort MESC	
Small-signal voltage gain			-0	OT BOO	el miles	BH time	
at 100 kHz			Av	4	-		V/V
TIMING							
Operating frequency (except VC	(0)		FCEFM	0,1	RETO	THE CHA 6	MHz
Operating frequency (VCO only)			Fvco	0,2	v	= 25 0001	MHz
(Fig. 6 and note 6) Output rise time			tOR	ni rigiri	ni_nuq1	50	ns
Output fall time			tOF	-	_	40	ns
CLDE period			tocp	400	nida	w beamoned	ns
CLDE HIGH time			toch	150	- ,44	badling = 50 t	ns
CLDE LOW time			tocL	150	ino re	WOJ aniems	ns
DADE/SSDE/FSDE to CLDE se	t-up t	ime	tops	100	95080	yem qile-sid b	ns
CLDE to DADE/SSDE/FSDE ho	old tir		todh	100	_,4q	bading = 150	ns
SSDE LOW time (note 7)			tSSL	penus y	3	int OOV point	CEFM
CLDE LOW time during FSDE (Fig. 5	and note 8)	tocg	16	46	-	period
Outputs SBCL, SDATA, P, SWC	L (Fig	g. 7)					
Output rise time (SBCL, SDATA	(no	te 6)	tOR	-	-	50	ns
Output fall time (SBCL, SDATA	(no	te 6)	tOF	-	-	40	ns
Output rise time (P, SWCL) (not	e 9)		tosr	-	-	200	ns
Output fall time (P, SWCL) (not	e 9)		tosf	-	-	200	ns
SBCL HIGH time			toch	150	-	-	ns
SBCL LOW time			tocL	150	-	-	ns
SDATA to SBCL set-up time			tods	100	-	-	ns
P to SWCL set-up time			tODSP	1	-	-	ns
SBCL to SDATA hold time			tODH	100	-	500	ns
SBCL to SWCL hold time			tswH	0	-	-	μs
SWCL duty cycle (tHIGH/tperio	4)			40	50	60	%

NOTES TO THE CHARACTERISTICS

- 1. At $T_{amb} = 25$ °C; $V_{IN} = -0.3$ to +6.5 V; $V_{DD1} = 6.5$ V.
- Short-circuit protected to V_{DD1} and V_{SS}. The maximum load capacitance that can be applied before short-circuit protection becomes operative is 150 pF.
- 3. At Tamb = 25 °C; output in high impedance state.
- 4. At Tamb = 25 °C.
- 5. All tests performed within common-mode voltage range.
- 6. Output loading = 50 pF.
- 7. SSDE remains LOW for only one negative edge of CLDE.
- 8. Excessive bit-slip may cause gap to disappear. CLDE remains LOW when FSDE is HIGH.
- 9. Output loading = 150 pF.
- 10. Free running VCO frequency tuned to nominal and PLL in lock with a typical application circuit.

Fig. 6 Timing of waveform outputs to SAA7020.

Fig. 7 Timing of waveform outputs for subcoding: reference levels are 0,8 and 2,4 V; SBCL and SDATA output loading = 50 pF; SWCL and P output loading = 150 pF; SWCL has a 50% duty cycle.

Fig. 8 Timing of EFM output waveforms: output loading = 50 pF; reference levels are 0,8 and 2,4 V.

Fig. 7 Timing of waveform outputs for subcoding: reference levels are 0.8 and 2,4 V; SBCL and SDATA output feeding = 50 pF; SWCL and P output leading = 150 pF; SWCL has a 50% duty cycle

SAA7020

ERROR CORRECTOR FOR COMPACT DISC DIGITAL AUDIO SYSTEM

GENERAL DESCRIPTION

The SAA7020 detects and corrects errors in digital data received from the demodulator (SAA7010). The data is received serially in frames of 32×8 -bit symbols and, after processing, is transmitted in a 16-bit serial format to the interpolating and muting circuit (SAA7000). An error flag is generated to warn of data in which errors have not been corrected.

Features

- Internal timing and control circuits
- Serial data input and output
- 8-bit bidirectional data bus to external RAM (2K x 8 bits)
- Corrects up to seven erroneous frames of data
- Generates error flag to identify unreliable data
- Provides a motor speed control output which stabilizes the input data rate and eliminates wow and flutter.

Fig. 1 Block diagram.

PACKAGE OUTLINE

40-lead DIL; plastic (SOT-129).

FUNCTIONAL DESCRIPTION

The SAA7020 error corrector receives data samples from the Compact Disc Digital Audio demodulating system (SAA7010), processes the data samples and then passes them to the interpolating and muting circuit (SAA7000). The processing detects erroneous data and then, if possible, corrects the errors. If error correction is not possible, a flag (UNEC) is generated to warn of unreliable data output. The SAA7020 also controls the motor speed of the disc drive servo.

Serial data received from the demodulator (SAA7010) is arranged in frames of 32 x 8-bit symbols; 24 of the symbols contain audio samples, the remaining eight symbols contain parity information for error detection/correction. The data (DADE) is clocked into the input register array at the demodulator rate by CLDE. The input register array comprises a register which accumulates symbols ready for parallel output to an external RAM and a FIFO register which acts as a jitter reduction circuit.

The jitter reduction circuit uses the difference between the input data rate (CLDE) and the system data rate (derived from CLOX) to generate the motor speed control signal MCES (Fig. 3). This forms a feedback loop with the disc drive motor to control the disc speed and hence the input data rate. In this way unwanted effects such as wow and flutter are eliminated from the Compact Disc system, the FIFO being capable of handling deviations from the system data rate of up to \pm 2 frames.

An 8-bit bidirectional bus is used for transferring data to and from the external RAM (2K x 8 bits) and an 11-bit bus for addressing. Three bits control the RAM; write enable WEER, output enable OEER and chip enable CEER (the latter is for operation with dynamic RAMs).

The error correction process makes use of data interleaving and two Reed-Solomon codes, C1 and C2. The C1 decoder can correct one erroneous symbol in a 32-symbol frame after de-interleaving; the C2 decoder can correct two erroneous symbols in a group of 28 symbols. Input data is de-interleaved and read from the RAM by the C1 decoder where syndromes are formed to check for erroneous symbols. If one error is detected it is corrected and the data is written back to the RAM with some parity symbols being discarded. If more than one error is detected the data is written back to the RAM unchanged but internal C1 flags are set to mark these symbols as unreliable. The data in the RAM is then further de-interleaved and read back to the C2 decoder. The symbols are then checked for errors as previously, if one error is detected it is corrected and the symbols are again written back to the RAM. If two error flags are detected erasure correction is attempted when the flags are received from C1. The corrected data is then written back to the RAM. If more than two symbols are in error the data is written back to the RAM unchanged but a flag is set to mark these symbols as unreliable. At this stage the remaining parity bits are discarded.

After processing, the data is held in the RAM to give a 5-frame delay so that the error warning flag UNEC can be sent to the interpolation and muting circuit (SAA7000). The UNEC flag is also output when SMSE is active, this warns of data to be immediately muted. At the end of the 5-frame delay, the data is read back to the output shift register to be serially shifted out at DAEC.

Pin function	ns	
pin no.	mnemonic	description and adaptive stable subset to be used to the OCON A AZ and T
1 polition b	V _{BB}	Back bias supply voltage: -2,5 V ± 20%.
2	FSEC	Frame sync pulse output, data is valid on the falling edge (Figs 5 and 9).
3	C1F	This output pin flags uncorrectable C1 errors.
4 alodnostor ation for serion for the y for	MCES SE TO E	Motor control error signal; this open drain output provides a pulse width modulated signal to control the rate of data entry. If the data rate has been correct for a period, MCES duty cycle = 50%; if low, the duty cycle < 50%; if high, the duty cycle > 50% (Fig. 3).
5 atab mataya	DADE (3010)	Serial data input. The data is clocked in by CLDE in 8-bit symbols, the most-significant bit first (Figs 4 and 6).
6 sams	CLDE 2 2 2 2	Data clock input, data is accepted into DADE on the negative transition of CLDE (Figs 4 and 6).
bne (stid 8	Prames ANN (2K x l ER, output anable	Input indicating the last bit of a symbol. A symbol is counted and clocked in when SSDE is LOW during the negative transition of CLDE; for correct operation, SSDE must remain LOW for only one negative transition in eight (Figs 4 and 6).
8 1 and C2.	FSDE	Input indicating the end of a data frame. Indication is given when FSDE is HIGH during a negative transition of CLDE.
9-19 Nodmye	A0ER-AAER	Eleven address outputs to the external RAM. When data is being received at DADE, CLDE, etc. then addresses A0ER to AAER are completely exercised every four frames allowing refresh to be automatic for dynamic RAMs (Figs 7 and 8).
20	V _{SS}	formation of flags are set to mark these symbols as unreliable. The Johnson
21 laudivend	V _{DD2}	Positive supply voltage: + 12 V ± 10%.
22	TEST2	Test input. Connect to V _{DD1} or V _{DD2} for normal operation.
23	CLOX	System clock input, typical frequency = 4,2336 MHz (Fig. 6).
24	WEER	Write enable output to external RAM; when LOW, SAA7020 is writing to the RAM (Fig. 7).
25 manus	OEER WAS S	Output enable to external RAM; when HIGH, memory output buffers must be in the high impedance state (Figs 7 and 8).
26	CEER	Chip enable output for use with dynamic memories (Figs 7 and 8).
27	CLEC	Output data clock; data is valid on the falling edge (Figs 5 and 9).
28-35	D0ER-D7ER	Input/output ports for 8-bit bidirectional bus from/to external RAM. The outputs are in the high impedance state when OEER is LOW (Figs 7 and 8).
36	UNEC	Error flag output; when HIGH, indicates that output data is unreliable. During active data output (i.e. when CLEC is operating) UNEC applies to each symbol of 8 bits of data output at that time. Before each data word of two symbols is output, UNEC applies to the whole data word that will follow in five frames time.

FUNCTIONAL DESCRIPTION (continued)

pin	no.	mnemor	nic	description of longs selvendro seeing 00 00 4 or 00- = dmsT 1V 0 = 22V
37		DAEC		Serial data output, Data is clocked out by CLEC and is in 16-bit words separated by gaps. Each word is in two's complement format with the
				most-significant bit first and comprises two 8-bit symbols. Data is valid on the falling edge of CLEC. During the gap between the data words, the state of pin 38 (GAP) acts as an output from DAEC (Figs 5 and 9).
38		GAP		The input level at this pin is reflected in the state of the output from
				DAEC between data words and is used to control the output format of
				the SAA7000. When GAP is HIGH, DAEC gap level is HIGH, and vice versa (Fig. 5).
39		SMSE		Select muting input. If SMSE is held LOW, the UNEC output will be
				held HIGH causing the interpolation and muting circuit (SAA7000) to mute the data.
40		V _{DD1}		Positive supply voltage: + 5 V ± 10%.
.0		וטטי		WO_1 sparlov rugal

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

RATINGS

Limiting values in accordance with	the Absolute Maximum	Rating System (IEC 134);	VSS = 0 V
------------------------------------	----------------------	--------------------------	-----------

mining raided in addordance with the /	Dooraco	maximani ii	dening of stern (120	1011, 55	0	
Supply voltage 1 range (pin 40)			V _{DD1}	-0.3 to +	7,5	٧
Supply voltage 2 range (pin 21)			V _{DD2}	-0,3 to -	+ 15	٧
Back bias supply voltage range (pin 1)			V_{BB}	-4 to +	- 0,3	٧
Input voltage range (except TEST)			VI	-0.3 to +	7,5	V
Input voltage range (TEST only)			(A b V) = 310	-0.3 to	+ 15	V
Output voltage range (except MCES)			Vo	-0.3 to +	7,5	V
Output voltage range (MCES only) applie	ed 0.8					
through a 10 k Ω resistor			Vo	-0,35 to	+ 15	V
Output current			10	max.	10	mA
Operating ambient temperature range			T _{amb}	-20 to -	+ 70	oC
Storage temperature range			T _{stg}	-55 to +	125	oC

CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = -20 \text{ to} + 70 \text{ °C}$ unless otherwise specified elegistics of simons on might

parameter	symbol	min.	typ.	max.	unit
Supplies Supplies	olt first at	ignificant tallion ed	dzom dz no		
Supply voltage 1 (pin 40)	V _{DD1}	4,5		5,5	V
Supply voltage 2 (pin 21)	V _{DD2}	10,8	12,0	13,2 9AD	V
Back bias supply voltage (pin 1)	-V _{BB}	2,0	2,5	3,0	V
Supply current 1 (pin 40)	I _{DD1}	(A7000, W Fla. 5),	145	280	mA
Supply current 2 (pin 21)	IDD2	muting in	14	26	mA
Back bias supply current (pin 1)	-I _{BB}	IGH carrel		500	μΑ
Inputs (except D0ER-D7ER)	+ :sostic	ne data. e supply y	mute I Positiv	voo roov	
Input voltage LOW	VIL	-0,3	-	+ 0,8	V
Input voltage HIGH (except SMSE)	VIH	2,4	-	6,5	VJON
Input voltage HIGH (SMSE only)	VIH	2,0	tected aga	6,5 16 atuqtuo	Va ztud
Input current (note 1) 10 20M pmilbred of	aproprie	cautique a	n <u>a</u> Ismaon	+11 of elderie	μΑ
Input capacitance	CI	-	-	7	pF
Input/output D0ER-D7ER					TINGS
Input voltage LOW	VIL	-0,3	th risiw so	+0,8	V
Input voltage HIGH	VIH	2,0	(C)P.:	6,5	V
Input current (notes 1 and 2)	h	-10	- 1753	+ 10	μΑ
Input capacitance	CI	-	nge (pin 1)	10	pF
Output voltage LOW at -IOL = 1,6 mA (notes 3 and 4)	VOL	0	(1831) (yino	0,4	V
Output voltage HIGH at			pt MCES)	age range (exce	fov 14q1
I _{OH} = 0,2 mA (notes 3 and 4)	VOH	3,0	S only)-sa	001	V sugi
Load capacitance (notes 3 and 4)	CL	-	-	150	pF
Outputs A0ER-AAER, WEER, OEER, CEER, DAEC, UNEC, FSEC, CLEC (notes 3 and 4)			ture range	mbient tempera perature range	
Output voltage LOW at -IOL = 1,6 mA	VOL	0	-,	0,4	V
Output voltage HIGH at IOH = 0,2 mA	Vон	3,0	_	V _{DD1} + 0,5	V
Load capacitance	CL	-	-	150	pF
Output MCES (open drain) (note 5)		1			
Output voltage LOW with pin 4 connected to V_{DD2} via a 10 k Ω resistor	VOL	0	_	0,4	V
Output current with output OFF and pin 4 connected to V_{DD2} via a 10 k Ω resistor; T_{amb} = 25 °C	ГОН	-	_	20	μΑ

D	
-	
D	
	١
H	
2	
ш	
\geq	
0	
C	١
Ш	
>	
W	

parameter	min	symbol	min.	typ.	max.	unit
Input CLOX (note 6)				AAER,	terfaces ADER-	RAM in
Operating frequency	1	fIN	3,0	4,2336	4,5	MHz
Input clock LOW		tIXL	40	_	(\ bns 4 (8 s	ns
Input clock HIGH		^t IXH	40	-	rise time	ns
Inputs DADE, CLDE, SSDE, FSDE (note 7)	390				9.07	Gyele ti
Input rise time		tIR	-	-	50	ns
Input fall time	88	tie 1901	_	_	50 min Hou	ns
CLDE period	265	tICP	1 CLOX	_	20 amit WO	μs
	0	EDAT	period	mit qu-tea	AER to CEER	ADER-A
CLDE HIGH	300	tICH	100	hold tirms	ADER-AAER	ns 333
CLDE LOW	85	tICL	100	mi qu-tes	VER to OCER	ns 00
DADE/SSDE/FSDE to CLDE set-up tir		tIDS	50	smill blod	DOER-DZER	ns
CLDE to DADE/SSDE/FSDE hold time		tIDH	80	AAER :en	VER to ADER	ns 300
SSDE LOW time		tSSL	- somit b	1 8370	AER to DOES	CLDE
	0	2001	autra l	taa meet	BELL BEST	period
CLDE gap after FSDE		tFCG	6	(A8 mont	лага изоо о	CLOX
an 001	0				BRIE STATE	i Baac
Input SMSE (note 7)	-25			AER valid	A-FISCA of WO	Haau
Input rise time		^t IR	-	1	100	μs
Input fall time	892	tIF	-	1	100	μs
CMCE to LINEC output dolay time	-	tSMD	-	-	20 amis WO	CLOX periods
	100		9	dist do-toe	AER to CEER	period
Outputs CLEC, DAEC, UNEC, FSEC (notes 3, 4, 7 and 8)	08		9	set up tin	AER to WEER ACER.AAER	4.0ER-A
Output rise time		tOR	_	- amis	50	ns
Output fall time	-	^t OF	_	- 2010	40	ns
CLEC HIGH	-	t _{OCH}	130	er up timu	350	ns
CLEC LOW	-	toch	130	Smit blot	#310-8300	ns
FSEC HIGH	-	tFSH	6 CLOX		6 CLOX	D 75 3 3 4
an -	1	тгэп	periods	y time	periods	n inne
	150		-180	mit qu-tae	+ 180	ns
CLEC to FSEC delay time		tCFD	3 CLOX	emit blor	3 CLOX	VEER S
	100		periods -300	output and output in	periods + 300	ns
DAEC/UNEC to FSEC set-up time	00	tUFS	100	_	ngedance state	ns
FSEC to DAEC/UNEC hold time		^t UFH	12	-	-	CLOX

parameter	symbol	min.	typ.	max.	unit
RAM interfaces A0ER-AAER,				LOX (note 6)	input C
DOER-D7ER, OEER, CEER, WEER	1 _{IN}			ng frequency	
(notes 3, 4 and 7)	IXP			ock LOW	
Output rise time	tOR	-	-	30 HOH HO	ns
Output fall time	tOF	-	-	25	ns
Cycle time	tC	390	SDE, 7 <u>2</u> 0	670 JO JO JO A	ns
Read cycle timing	RI ²			se time	Input ri
CEER HIGH time	tCEH	65	- 11	- emit II	ns
CEER LOW time XOJO ?	tCEL	265	-	- boins	ns
AOER-AAER to CEER set-up time	tACS	0	-	-	ns
CEER to A0ER-AAER hold time	tACH	300	-	- 8911	ns
DOER-D7ER to OEER set-up time	toos	85	-	_ wo	ns
DEER to DOER-D7ER hold time	tDOH	Oamit dr	tes 3013	SDE/PSDE to	ns
DOER-D7ER to A0ER-AAER set-up time	tDAS	85 mis 6	PSDE Ingli	DADE/SSDE	ns
AOER-AAER to DOER-D7ER hold time	tDAH	0	-	_ lame	ns
DEER to DOER-D7ER from RAM active	toLZ	0	-	-	ns
OEER to DOER-D7ER from RAM high	6031			ap after PSDE	
impedance state	tOHZ	0	-	100	ns
OEER LOW to A0ER-AAER valid	tOAD	-25	-	+ 25 gon) 38N	ns
Write cycle timing	N12			e time	in put rit
CEER HIGH time	tCEH	196	_	if time	ns sugal
CEER LOW time	tCEL	196	delay time	UNEC output	ns
AOER-AAER to CEER set-up time	tACS	100			ns
AOER-AAER to WEER set-up time	tAWS	50 03	UNEC, ES	CLEC, DAFE,	ns
WEER to AOER-AAER hold time	tAWH	50	_	3, 4, 7 and 8)	ns
WEER to CEER set-up time	twcs	50		ise time	ns
CEER to WEER hold time	tWCH	65	_	all time	ns
DOER-D7ER to CEER set-up time	tDCS	50		HOI	ns
CEER to DOER-D7ER hold time	tDCH	150	_	WC	ns
WEER to CEER recovery time	twR	65	_	_ HO	ns
DOER-D7ER to WEER set-up time	tows	150	_		ns
WEER to DOER-D7ER hold time	t _{DWH}	100	_	FSEC delay tin	ns
OEER to D0ER-D7ER output active		100	_	_	ns
OEER to DOER-D7ER output in	DUZ				
high impedance state 001	topz	20	entriquita	NEC to FSEC	ns Ac

NOTES TO THE CHARACTERISTICS

- 1. Measured from -0.3 to +6.5 V at $T_{amb} = 25$ °C; $V_{DD1} = 6.5$ V.
- 2. Input/output port in high impedance state (OFF); measured from 0 to 6 V at T_{amb} = 25 °C.
- 3. Output loading: 1 TTL gate + C_L = 50 pF.
- All outputs are protected against short-circuit to V_{SS} and V_{DD1}. The maximum load capacitance that can be applied before the short-circuit protection becomes active is 150 pF.
- 5. Phase detector gain for average MCES output voltage = 1,1 V per frame. Phase detector control range = ± 2 frames.
- 6. All maximum or minimum values assume respective frequency where appropriate.
- 7. Reference levels = 0,8 V and 2,4 V.
- 8. The DAEC level during the advanced UNEC period is defined by the state at pin 38 (GAP). If this state changes during CLEC LOW, the timings are applicable. If the state at pin 38 changes at other times, DAEC follows with a delay of between 20 and 500 ns.

198

November 1983

Fig. 3 MCES output waveforms: waveforms are updated each frame (576 CLOX periods); open drain output, rise times depend on external pull-up circuit. This output has an internal clamp to prevent the voltage at pin 4 (MCES) rising above $V_{DD2} + 1.8 V$ maximum.

DEVELOPMENT DATA

(1) When HIGH indicates unreliability of data word that will follow five frames later.

Fig. 5 Typical output waveforms to SAA7000.

⁽²⁾ When HIGH indicates unreliability of current symbol.

Fig. 6 Input waveform timing; reference levels = 0,8 V and 2,4 V.

Fig. 7 RAM interface write cycle timing; reference levels = 0,8 V and 2,4 V, output loading = 1 TTL gate and C_L = 50 pF.

Fig. 8 RAM interface read cycle timing; reference levels = 0,8 V and 2,4 V; output loading = 1 TTL gate and C_L = 50 pF; WEER is HIGH during read cycle.

- (1) CLEC remains LOW for 8 CLEC cycle periods.
- (2) DAEC level during this period is defined by the level on pin 38 (GAP). If GAP changes during CLEC active, the above timings apply. If GAP changes at other times, DAEC follows with a delay of 20 to 500 ns.

Fig. 9 Output waveform timing; reference levels = 0,8 V and 2,4 V, output loading = 1 TTL gate and C_1 = 50 pF.

Fig. 8 RAM interface read cycle timing; reference levels = 0.8 V and 2.4 V; output loading = 1 TTL gate and Ct = 50 pF; WEER is HIGH during read cycle.

(1) CLEC remains LOW for 8 CLEC cycle puriods

2) DAEC level during this period is defined by the level on pin 38 (GAP). If GAP changes during CLEC active, the above timings apply. If GAP changes at other times, DAEC follows with a delay of 20 to 500 ns.

Fig. 9 Output waveform fiming; reference levels = 0,8 V and 2,4 V, output loading = 1 TTL gate and Cr = 50 pF.

DIGITAL FILTER FOR COMPACT DISC DIGITAL AUDIO SYSTEM

GENERAL DESCRIPTION

The SAA7030 is a stereo interpolating digital filter designed for the Compact Disc Digital Audio system. The circuit incorporates two identical filters, each with a sampling rate of four times that of the normal digital audio sampling.

Features

- Suppresses spurious lobes in the audio spectrum
- Improves the signal quality for digital-to-analogue conversion
- Allows a low-order analogue post filter to be used after the digital-to-analogue convertor (DAC)
- Option of offset binary or two's complement data output format
- Electrically-selectable d.c. offset/no offset on data output
- Overflow detection and protection
- Directly compatible with the interpolation and muting circuit (SAA7000)
- Generates a latch output strobe to the DAC

aniomes sH Fig. 1 Block diagram. In local and all a months of the

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

FUNCTIONAL DESCRIPTION

The SAA7030 is a stereo interpolating filter which quadruples the data sample rate from 44.1 to 176,4 kHz and thus achieves the following:

- 1. It suppresses spurious spectrum lobes in the output data that occur between the baseband frequency and 176,4 ± 20 kHz. This allows the DAC to be followed by a low-cost filter of the linear phase. low order, analogue post filter type (a very high order, low-pass filter would otherwise be required to suppress the 44,1 ± 20 kHz lobe).
- 2. It performs noise-shaping so that a 14-bit DAC yields the same in-band quantizing signal-to-noise ratio as from a 16-bit DAC supplied with unprocessed 44,1 kHz samples.

The circuit incorporates two identical filters (one per channel). Each is a finite impulse response, linear phase transversal filter. The filter length is 96 bits with 16-bit data words and 12-bit coefficients. The composition of each filter is as follows:

serial-to-parallel input shift register; sixteen 24-bit shift registers for data storage; 96 x 12-bit coefficient ROM; and an application of the wollet blue it spbs 12 x 16-bit array multiplier; 28-bit accumulator; parallel-to-serial output shift register.

Overflow protection is incorporated in the filters so that, in the unlikely event of accumulator overflow, the output limits cleanly. Overflow only occurs if the input samples continuously reverse sign coincidently with the coefficients, so that the products of the two entered into the accumulator are continually of the same sign.

The data inputs may run asynchronously with the master clock (CLOX) provided that the data inputs are always complete before the rising edge of the 44,1 kHz input strobe (STR1). A 176,4 kHz output strobe (LAT) is provided, the rising edge of which follows the completion of the serial output data stream. This strobe pulse is timed to be used to gate the master clock (CLOX) if required.

The input OS provides selection of -3% d.c. offset or no offset of the data output voltage level. The format of the output data is selected via the input OB to be in offset binary or two's complement form.

_	_		100						
p	ā	n	-4	in	~	4 i	0	m	10

DATA	Pin func	tions						
DA	pin no.	mnemonic	description					
Z	1	V _{BB}	Back bias supply voltage: $-2,5 \text{ V} \pm 20\%$.					
OPME	2	OS	Offset select input. When connected to V_{DD1} , the data output has a fixed d.c. offset of -3% . When connected to V_{SS} , the data output has no offset.					
DEVELOPMENT	3	DLFD	Left channel data output. The data is 14-bit serial with most-significant bit first and is valid on the falling edge of the output clock (CLFD).					
	6	CLFD	Data clock output. Typical frequency = 4,2336 MHz (= CLOX). The falling edge of this clock defines output data valid.					
	7	LAT	Strobe output at 176,4 kHz. The rising edge of this pulse indicates that the output of a 14-bit data word is complete.					
	10	DRFD	Right channel data output (see DLFD).					
	11	ŌB	Offset binary/two's complement select input. When connected to V_{SS} , the output data is coded in offset binary. When connected to V_{DD1} , the output data is coded in two's complement.					
	12	VSS	Ground (0 V).					
	13	V _{DD2}	Positive supply voltage: + 12 V ± 10%.					
	14	TEST1	Test output; not used in normal operation.					
	15	TEST2	Test input; in normal operation this pin should be connected to VSS or VDD1.					
	16	TEST3	Test input; in normal operation this pin should be connected to VSS or VDD1.					
	17	DRCF	Right channel data input. Data should be 16-bit serial with most-significant-bit first and in offset binary code. It is valid on the falling edge of the input data clock (CLCF).					
	18	CLCF	Input data clock. The falling edge of this clock defines input data valid.					
	19	CLOX	Master clock input. Runs continuously at a typical frequency of 4,2336 MHz.					
	20	DLCF	Left channel data input (see DRCF).					

pin no.	mnemonic	description
21	STR1	Strobe input at 44,1 kHz. The internal timing chain of the SAA7030 is synchronized by the rising edge of STR1 which must be synchronous with CLOX within the tolerance specified in CHARACTERISTICS. The rising edge should follow the completion of the input data stream.
22	TEST4	Test input; in normal operation this pin should be connected to V _{DD1} .
23	TEST5	Test input; in normal operation this pin should be connected to V _{DD1} .
24	V _{DD1}	Positive supply voltage: + 5 V ± 10%,

Pins 4, 5, 8 and 9 have no internal connection. This is the purpose with a work several state of the purpose of

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

Limiting values in accordance with the Absolute Maxim	num Rating System (IEC 134); V _{SS} = 0 V
Supply voltage 1 range (pin 24)	V _{DD1} −0,3 to +7,5 V
Supply voltage 2 range (pin 13)	$V_{DD2} -0.3 \text{ to } + 15 \text{ V}$
Back bias supply voltage range (pin 1)	V _{BB} −4 to +0,3 V
Input voltage range	$V_1 = -0.3 \text{ to } + 7.5 \text{ V}$

Back bias supply voltage range (pin 1) $V_{BB} = -4 \text{ to } + 0.3 \text{ V}$ Input voltage range $V_{I} = -0.3 \text{ to } + 7.5 \text{ V}$ Output voltage range $V_{O} = -0.3 \text{ to } + 7.5 \text{ V}$ Output current $V_{O} = -0.3 \text{ to } + 7.5 \text{ V}$ Operating ambient temperature range $V_{O} = -20 \text{ to } + 70 \text{ C}$

Operating ambient temperature range T_{amb} $-20 \text{ to } +70 \text{ }^{\circ}\text{C}$ Storage temperature range T_{stg} $-55 \text{ to } +125 \text{ }^{\circ}\text{C}$

CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = -20 \text{ to} + 70 \text{ °C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supplies		T	OLFD, LA	CLFD, DRFD, I	
Supply voltage 1 (pin 24)	V _{DD1}	4,5	5,0	5,5	V
Supply voltage 2 (pin 13)	V _{DD2}	10,8	12,0	13,2	V
Back bias supply voltage (pin 1)	-V _{BB}	2,0	2,5	3,0	V
Supply current 1 (pin 24)	I _{DD1}	50	120	240	mA
Supply current 2 (pin 13)	I _{DD2}	3,5	8,0	15,0	mA
Back bias supply current (pin 1)	Hack				M U43
at $V_{DD1} \le 5.5 \text{ V}; V_{DD2} \le 13.2 \text{ V}$	-I _{BB}	-	-	500	μΑ
20 70 - ns	SGO		smit qu-te		REDA
Inputs - 021 08	HOO		amit plos		The second
Input voltage LOW	VILGIO	-0,3	-paisin 7	+ 0,8	V
Input voltage HIGH	VIH	2,0	mens o	6,5 ATTAL C	
Input current at T _{amb} = 25 °C;	STX				(note
$V_1 = -0.3 \text{ to } + 6.5 \text{ V}$	±IJRJX	-		1 gliriosen TAL o	
Input capacitance	CI	+ 1		OW to rising 7dg	
Outputs (note 1)	JOX		17		
Output voltage LOW at $-I_{OI}$ = 1,6 mA	VOL	-0,3		+ 0.4	V
Output voltage HIGH at I _{OH} = 0,2 mA	VOH	3,0		V _{DD1} + 0,5	V
Load capacitance	CI	3,0	50	150	pF
	-	- 0	50	0/150 H.J. 3HIT	þΓ
Input CLOX	to ygy or n		against si a the chui		
Operating frequency	fIX	1,0	4,23	4,5	MHz
Input clock LOW	tIXL	25	T/ C No.	97) are should a	(% of
Input clock HIGH	tIXH	25	The St. Stell	O TA I lo apt	tIXP

CHARACTERISTICS (continued)

parameter 200 188 231 marky 1885	symbol	min.	typ.	max.	unit
Inputs CLCF, DLCF, DRCF, STR1			in 29)	e i range (e 2 range (
CLCF frequency	fic	0,1	2,12	4,50	MHz
CLCF LOW time	tICL	75	_		ns
CLCF HIGH time	tICH	75	_		ns
DLCF/DRCF to CLCF set-up time	tIDS	25	_	- 10	no
CLCF to DLCF/DRCF hold time	tIDH	75	oneTenuter	bient remoi	ns
CLCF LOW to STR1 time	tCSL	0	- 6	eratura rang	ne
STR1 LOW time	tISL	4	-	-	CLOX
STR1 HIGH time	tISH	1	-	RISTICS	cycles
CLOX to STR1 rising	tXSL	-5	Do 01 + 91	amb = =20	ns
CLOX to STR1 HIGH	tXSH	-	-	55	ns
Outputs CLFD, DRFD, DLFD, LAT (notes 2 and 3)					
Output rise time (except LAT)	tOR	-	10	30	ns
Output fall time (except LAT)	tOF	-	8	15	ns
Output rise time (LAT only)	tLR	-	7		ns
Output fall time (LAT only)	tLF 100	_	6	10	ns
CLFD HIGH time	tOCH	40	75	mid) 2 men	ns
CLFD LOW time	tocL	40	105	uppry ource	ns
DRFD/DLFD to CLFD set-up time	tops	20	70	-	ns
CLFD to DRFD/DLFD hold time	tODH	50	120	_	ns
CLFD LOW prior to LAT rising	tCLD	100	350	MOT as	ns
CLOX to LAT starting to change	HIV			HOIH se	
(note 4)	tXLS	0	30	drug Tamb	ns
CLOX to LAT reaching final value	tXLF	0	80	3 to +45,5	ns
CLFD LOW to rising edge of CLOX	10	F0	400	citaince	nput capa
with rising edge to STR1 LAT HIGH time	tXCL	50	400	ote 1)	ns
LAT HIGH time	tLH	Am 8	T = 101-1	-	CLUX

NOTES TO THE CHARACTERISTICS

- 1. All outputs are protected against short-circuit to VSS and VDD1. The maximum load capacitance that can be applied before the short-circuit protection becomes active is 150 pF.
- 2. Output loading C_L = 50 pF.
- 3. Reference levels are 0,8 and 2 V.
- 4. Rising edge of LAT occurs in the first CLOX LOW period following the rising edge to STR1 and then recurs at every 24th CLOX cycle.

209

- (1) $\overline{\text{CLCF}}$ frequency (f_{IC}) = 1/t_{ICP}. The trailing edge of $\overline{\text{CLCF}}$ must occur 16 times between consecutive rising edges of STR1.
- (2) CLOX frequency $(f_{|X}) = 1/t_{|XP}$.

Fig. 4 Input waveform timing; reference levels are 0,8 and 2 V.

Fig. 5 Output waveform timing: reference levels are 0,8 and 2 V; output loading = 50 pF.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

SENSITIVE 1 GHz DIVIDER-BY-64

This silicon monolithic integrated circuit is a prescaler in current-mode logic. It contains an amplifier, a divide-by-64 scaler and an output stage. It has been designed to be driven by a sinusoidal signal from the local oscillator of a television tuner, with frequencies from 70 MHz up to 1 GHz, for a supply voltage of 5 V \pm 10% and an ambient temperature of 0 to 70 °C. It features a high sensitivity and low harmonic contents of the output signal. The difference between SAB1164 and SAB1165 is the output resistance (see Fig. 7)

Fig. 1 Block diagram. CTR6 = 6 binary dividers = (÷ 64).

QUICK REFERENCE DATA

Supply voltage (pin 8) [457 331] maray2 mumixeM stufeedA	Vcc	5 ±	10%	V
Input frequency range (pins 2 and 3)	fi	70 to 1	1000	MHz
Output voltage swing (pins 6 and 7)	$V_{o(p-p)}$	typ.	1	V
Supply current; unloaded (pin 8)	Icc	typ.	42	mΑ
Operating ambient temperature	T _{amb}	0 to	+ 70	oC

PACKAGE OUTLINES

SAB1164P: 8-lead DIL; plastic (SOT-97A). SAB1165P: 8-lead DIL; plastic (SOT-97A).

THERMAL RESISTANCE

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

The circuit contains an amplifier, a divide-by-64 scaler and an output stage. It has been designed to be driven by a sinusoidal signal from the local oscillator of a TV tuner, with frequencies from 70 MHz up to 1 GHz, for a supply voltage of 5 V \pm 10% and an ambient temperature of 0 to 70 °C.

The inputs are differential and are internally biased to permit capacitive coupling. For asymmetrical drive the unused input should be connected to ground via a capacitor.

The first divider stage will oscillate in the absence of an input signal; an input signal within the specified range will suppress this oscillation.

The output differential stage has two complementary outputs. The output voltage edges are slowed down internally to reduce the harmonic contents of the signal,

Wide, low-impedance ground connections and a short capacitive bypass from the V_{CC} pin to ground are recommended.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (d.c.) VCC max. 7 V V_i 0 to V_{CC} V Input voltage T_{stq} -55 to + 125 °C Storage temperature Junction temperature max. 125 °C

THERMAL RESISTANCE

From crystal to ambient

Rth c-a 120 K/W

D.C. CHARACTERISTICS

VEE = 0 V (ground); VCC = 5 V; Tamb = 25 °C unless otherwise specified.

The circuit has been designed to meet the d.c. specifications as shown below, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed-circuit board,

Output	VO	tage
HIGH	110	love

VOH max. VCC V LOW level max. Vcc-0,8 V VOL typ. 42 mA Supply current ICC max. 50 mA

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

SENSITIVE 1 GHz DIVIDER-BY-256

This silicon monolithic integrated circuit is a prescaler in current-mode logic. It contains an amplifier, a divide-by-256 scaler and an output stage. It has been designed to be driven by a sinusoidal signal from the local oscillator of a television tuner, with frequencies from 70 MHz up to 1 GHz, for a supply voltage of 5 V \pm 10% and an ambient temperature of 0 to 70 $^{\rm o}$ C. It features a high sensitivity and low harmonic contents of the output signal.

Fig. 1 Block diagram. CTR8 = 8 binary dividers = (÷ 256).

QUICK REFERENCE DATA

VCC	5 ± 10%	V
fi	70 to 1000	MHz
V _{o(p-p)}	typ. 1	V
Icc	typ. 47	mA
Tamb	0 to + 70	oC
	f _i V _{o(p-p)} I _{CC}	f_i 70 to 1000 $V_{O(p-p)}$ typ. 1 ICC typ. 47

PACKAGE OUTLINE

SAB1256P: 8-lead DIL; plastic (SOT-97A).

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

The circuit contains an amplifier, a divide-by-256 scaler and an output stage. It has been designed to be driven by a sinusoidal signal from the local oscillator of a TV tuner, with frequencies from 70 MHz up to 1 GHz, for a supply voltage of 5 V \pm 10% and an ambient temperature of 0 to 70 °C.

The inputs are differential and are internally biased to permit capacitive coupling. For asymmetrical drive the unused input should be connected to ground via a capacitor.

The first divider stage will oscillate in the absence of an input signal; an input signal within the specified range will suppress this oscillation.

The output differential stage has two complementary outputs. The output voltage edges are slowed down internally to reduce the harmonic contents of the signal.

Wide, low-impedance ground connections and a short capacitive bypass from the $V_{\mbox{CC}}$ pin to ground are recommended.

RATINGS				
Limiting values in accordance with the Absolute Maximu	ım System (IEC 134)			
Supply voltage (d.c.)	V _{CC}	max.	7	V
Input voltage	(Chy; Benic	0 to	Vcc	V
Storage temperature	T _{stg}	-55 to +	125	oC
Junction temperature	Tjulanaq	max,	125	oC
THERMAL RESISTANCE				
From crystal to ambient	R _{th c-a}	=	120	K/W

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

REMOTE CONTROL SYSTEM FOR INFRARED OPERATION

The SAF1032P (receiver/decoder) and the SAF1039P (transmitter) form the basic parts of a sophisticated remote control system (pcm: pulse code modulation) for infrared operation. The ICs can be used, for example, in TV, audio, industrial equipment, etc.

Features:

SAF1032P receiver/decoder:

- 16 programme selection codes
- automatic preset to stand-by at power 'ON', including automatic analogue base settings to 50% and automatic preset of programme selection '1' code
- 3 analogue function controls, each with 63 steps
- single supply voltage
- protection against corrupt codes.

SAF1039P transmitter:

- 32 different control commands
- static keyboard matrix
- current drains from battery only during key closure time
- two transmission modes selectable.

The devices are implemented in LOCMOS (Local Oxidation Complementary MOS) technology to achieve an extremely low power consumption.

Inputs and outputs are protected against electrostatic effects in a wide variety of device-handling situations. However, to be totally safe, it is desirable to take handling precautions into account.

Fig. 1 Pin designations.

PACKAGE OUTLINES

SAF1032P: 18-lead DIL; plastic (SOT-102A). SAF1039P: 16-lead DIL; plastic (SOT-38Z).

PINNING

To facilitate easy function recognition, each integrated circuit pin has been allocated a code as shown below.

SAF1032P

1	L3ØT	linear output	10	HØLD	control input
2	L2ØT	linear output	11	DATA	data input
3	L1ØT	linear output	12	MAIN	reset input
4	BIND	binary 8 output	13	ØSCI	clock input
5	BINC	binary 4 output	14	SELD	binary 8 output
6	BINB	binary 2 output	15	SELC	binary 4 output
7	BINA	binary 1 output	16	SELB	binary 2 output
8	TVØT	on/off input/output	17	SELA	binary 1 output
9	VSS	ncluding automatic analogue base sett	18	V _{DD}	
SAF	1039P				
4				TD 04	 single supply voltage
1	TRX0	keyboard input	9	TRØ1	oscillator control input
2	TRX1	keyboard input	10	TRØ2	oscillator control input
3	TRX2	keyboard input	11	TRSL	keyboard select line
4	TRX3	keyboard input	12	TRY3	keyboard input
5	TRDT	data output	13	TRY2	keyboard input
6	TINH	inhibit output/mode select input	14	TRY1	keyboard input
7	TRØS	oscillator output	15	TRY0	keyboard input

The devices are implemented in LIQOV 8 (1814) Oxfoation Complementary MOS) rectinology

SERVO-MOTOR CONTROL CIRCUIT

GENERAL DESCRIPTION

The SAK150BT is a bipolar integrated circuit intended for remote control applications in digital proportional systems or other closed-loop position control applications, in which it will translate the width of its input pulses into a mechanical position. It incorporates a linear one-shot for improved positional accuracy. The circuit has additional outputs for driving external p-n-p transistors to form a bidirectional bridge.

Features

- high output current
- bidirectional bridge output facility with single power supply
- adjustable deadband
- adjustable proportional range
- high linearity
- wide supply voltage range
- low standby supply current
- provides stabilized supply for external circuit

QUICK REFERENCE DATA

Supply voltage range	VCC		3 to 9	V
Supply current, standby, at V _{CC} = 4,8 V	Icc	typ.	3	mA
Stabilized supply voltage for external circuit	VZ	typ.	2	V
Output current at V _{CC} = 4,8 V	IQ	max.	500	mA
Operating ambient temperature range	Tamb	-20 1	to + 70	oC

PACKAGE OUTLINE

14-lead mini-pack; plastic (SO-14; SOT-108A).

Fig. 1 Block diagram. The blocks marked "&" are AND gates, the block marked "> 1" is an OR gate, the blocks with inputs marked S and R are set-reset flip-flops and the block marked "RESET AMP" may be considered as a high-gain amplifier for the upper input with the lower input giving a small shift of the switching level of the upper input. The triangles at some of the inputs and outputs are polarity indicators showing that the internal logic 1-state at that input or output corresponds with the external logic L-level (LOW). At inputs and outputs without polarity indicator the internal logic 1-state corresponds with the external logic H-level (HIGH).

FUNCTIONAL DESCRIPTION (See also Fig. 5) of box solutions and to not study it some still soft at

The SAK150BT has two sets of outputs on which it is capable of producing output pulses of variable width. The output arrangement is such that these output pulses can drive a servo-motor in both directions. The servo-motor actuates a potentiometer. The width of the output pulses is reduced to zero when the position of the potentiometer slider corresponds with the width of the input pulses.

The circuit operates as follows. The positive-going leading edges of the input pulses trigger a monostable element. Its output pulses have a duration that is a linear function of the position of the potentiometer slider. These pulses therefore will be referred to as feedback pulses.

The presence of both the input pulse and the feedback pulse switches on a current source of approx. 0,3 mA which charges an external capacitor C2 connected from RA (pin 4) to ground. The variation of the voltage on this capacitor after some time causes the output of the high-gain reset amplifier to change state and reset the two output flip-flops.

Fig. 3 Timing diagram.

Depending on the relative durations of input pulse and feedback pulse the following happens.

- Difference in duration of input pulse and feedback pulse less than the deadband time: no output signals generated.
- 2. Input pulse shorter than feedback pulse: outputs Q1 and QB1 activated.
- 3. Input pulse longer than feedback pulse: outputs Q2 and QB2 activated.

The trailing (negative-going) edge of the shorter of the two pulses (input pulse or feedback pulse) switches off the current source that charged C2. It further switches on the discharging of C2 via R2, connected to DIS (pin 3). As a consequence the output of the reset amplifier changes state after a short delay and no longer resets the flip-flops. Finally the logic bloc generates a signal which sets the appropriate output flip-flop but inhibits the output.

At the trailing edge of the longer of the two pulses the signal that has set one of the flip-flops changes state. This enables the corresponding output. It further finishes the discharging of C2 via R2. C2 will now be charged via R32. When the voltage on C2 reaches the switching level of the reset amplifier its output signal will reset the flip-flops again and this will terminate the output pulse (see Fig. 3). The duration of the output pulse is proportional with the charge required by C2 to reach the switching level of the reset amplifier, and this charge is proportional to the time that C2 has been discharged via R2, i.e. the difference in duration of the input pulse and the feedback pulse.

The maximum output pulse duration is reached when the output pulse is terminated by the next input pulse.

Supply: V_{CC}, V_{EE1}, V_{EE2} and V_Z (pins 8, 12, 7 and 2) served rebile retained notice of the notice of add

The SAK150BT contains a voltage stabilizer. This permits the circuit to be used over a very wide supply voltage range without substantial variation of its performance. The stabilized supply voltage is available at V_Z (pin 2) to supply an external peripheral circuit, e.g. a feedback potentiometer.

The circuit has two ground pins, one for the output stage (V_{EE2}) and one for the rest of the circuit (V_{EE1}).

Input I (pin 13)

Input pulses should be positive-going, i.e. the time that the input signal is HIGH is the input parameter. Usual values are 1 to 2 ms for the pulse to be HIGH and 20 ms for the pulse repetition time.

Feedback pulse duration: CMX, MF and RX (pins 1, 11 and 4)

The duration of the feedback pulse is determined by external capacitor C1 connected between CMX and MF. This capacitor is charged by a current source whose current is determined by external resistor R1 connected between RX and ground.

Fig. 4 Output current pulse duration.

The output current pulse duration t_Q as a function of the difference between input pulse duration t_{IH} and feedback pulse duration t_{FH} in Fig. 4. There is no output signal for differences less than the deadband time t_{db} . The maximum output pulse duration (t_{Qmax}) at outputs Q1 and Q2 is equal to t_{Cyc} - t_{dB} . The maximum pulse duration is reached at a pulse duration difference t_{prop} minus t_{IH} respectively t_{FH} .

Deadband time

The deadband time is the maximum difference in duration between the input pulse and the feedback pulse that will not give an output signal (see Fig. 4). The deadband time is determined by external resistor and capacitor R2 and C2 connected to RA and by the switching level V_{SW} of the reset amplifier and by its switching level shift ΔV_{SW} , according to the following approximative formula:

$$t_{db} \approx \text{R2} \times \text{C2} \times \text{In} \; (\frac{\text{V}_{SW} + \Delta \text{V}_{SW}}{\text{V}_{SW}}) \approx \frac{\text{R}_2 \times \text{C}_2}{50} \, .$$

Proportional range

The output pulse width is proportional to the difference of the input pulse and the internal pulse.

The range is

$$t_{prop} \approx R2 \times C2 \times ln \ (1 - \frac{(V_{CC}^* - V_{SW}) \ (e^{tCVC}/R3 \times C2 - 1)}{V_{SW}})$$
 in which: $V_{CC}^* = \frac{V_{CC} - V_Z}{R31 + R32} \times R31 + V_Z \ and \ R3 = \frac{R31 \times R32}{R31 + R32}.$

The maximum pulse width is limited by the beginning of the new input pulse. The minimum pulse width is

$$t_{Qmin} \approx R3 \times C2 \times ln \ (1 - \frac{\Delta V_{SW}}{V_{CC}^* - V_{SW} + \Delta V_{SW}}).$$

Outputs Q1, CB1, Q2 and QB2 (pins 10, 9, 6 and 5)

The outputs $\Omega 1$ and $\Omega 2$ are open-collector outputs capable of sinking up to 500 mA. The outputs $\Omega B1$ and $\Omega B2$ are intended to drive external p-n-p transistors. Together with the Ω outputs these p-n-p transistors may form a bidirectional bridge output with a single power supply, see Fig. 4.

RA1	III	62

Limiting values in accordance with the Absolute Ma	ximum Systen	n (IEC 134)			
Supply voltage, d.c.		VCC	max.	12	Voyo
Current at VZ		$-I_{VZ}$	max.	3	mA
Input voltage		V _I -V _I	max.	12 5	V
Voltage at CMX		-V _{CMX}	max.	5	٧
Current at CMX 10 W2V level gnidative edit yd bri		ICMX	max.	5	mA
Current at RX slumiol sylamixorgus polyollof adi		-I _{RX}	max.	1	mA
Voltage at MF		VMF	max.	12	٧
Current at MF		I _{MF}	max.		mA mA
Current at RA		I _{RA}	max.		mA mA
Output voltage, Q1 and Q2		Va	max.	24	
Output current, Q1 and Q2, repetitive peak		IQRM -IQ	max.	1111	mΑ μΑ
Output voltage, QB1 and QB2		VQB	max.	12	V
Output current, QB1 and QB2		I _{QB}	max.		mA mA
Storage temperature range		T _{stg}	-35 to	+ 125	oC
Operating ambient temperature range		T _{amb}	-20 to	+ 70	oC

CHARACTERISTICS $V_{CC} = 3 \text{ to } 9 \text{ V; V}_{EE1} = V_{EE2} = 0 \text{ V; T}_{amb} = -20 \text{ to } +70 \text{ °C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply: V _{CC} and V _Z (pins 8 and 2)		Work		Am De =	801
Supply current at V _{CC} = 4,8 V;		V 0,0			Output
T _{amb} = 25 °C; output stages OFF	1cc	- 18	3	ding phi	mA
Stabilized voltage output	VZ A			Jepstley	VIIIO
Variation with temperature	$\Delta V_Z/\Delta T$	-	6	Terrus	mV/K
Output current at $V_{CC} = 4.8 \text{ V for } \Delta V_Z = 60 \text{ mV}$	-IZ	-	V-8 = ;	aidV is)	1
Input I (pin 13)					LON
Input voltage					ADILISA
HIGH	VIH	2,4	-	- 10	V
LOW	VIL	-	-	0,6	V
Input current HIGH at V _I = 2,4 V	Чн			250	μΑ
LOW at V _I = 0,6 V	-IIL			30	μΑ
LOW at V - 0,0 V	-IIL			30	μΛ
External resistor pin RX (pin 14)	I DI				
Voltage at $-I_{RX} = 100 \mu\text{A}$	V _{RX}	88	0,7	-	V
Current range	IRX	10	-	200	μΑ
Monostable feedback pin MF (pin 11)					
Voltage at I _{MF} = 2 mA	VMF	510	4M III	300	mV
Output current	IMF	-	4.	3	mA
Reset amplifier pin RA (pin 4)					
Switching level of reset amplifier,	V _{sw}	MAZ.	1,9	1-	V
Shift of switching level	ΔV _{SW}	_	40	Dest.	mV
Input current	011				
HIGH	IRA	_	1 20	6	mA
LOW	-I _{RA}	-138 ^V	300	П	μΑ
External monostable capacitor pin CMX (pin 1)	0.00				
Current	ICMX	_ 1/2	-	1	mA
	-ICMX	-	IRX	-	mA
Outputs Q1 and Q2 (pins 10 and 6)	K1508T for				T a g
Output voltage at $V_{CC} = 4.8 \text{ V}$; $I_{QB} = 50 \text{ mA}$; $I_{Q} = 500 \text{ mA}$	VQ	j sine, e.g iometer f	450	550	mV
Output current at $V_{CC} = 4.8 \text{ V}$; $I_{QB} = 20 \text{ mA}$	IQ	_	_	500	mA

parameter	symbol	min.	typ.	max.	unit
Outputs QB1 and QB2 (pins 9 and 5)	A dme	0 = 633	A = 133	V;V 8.5	F = 00
Output voltage at V _{CC} = 4,8 V; I _{QB} = 50 mA	V _{QB}		1,2	1,9	V
Output current at V _{CC} = 4,8 V	IQB	ns 8 and 2 4,8 V;	-	50	mA
Discharging pin DIS (pin 3)	7	stages Of			maT
Output voltage LOW at I _{DIS} = 2 mA Output current	V _{DISL}		e ou <u>tr</u> uit emperati	300	mV
HIGH at V _{DIS} = 9 V	-IDISH	4,8 + for	- ODV 18	500	nA
LOW	IDISL	-	-	5	mA

APPLICATION INFORMATION

Fig. 5 Typical application of the SAK150BT for remote control of a model. The arrangement may be the last part at the receiving side, e.g. after a multi-channel time division multiplex system, to drive the steering motor. The potentiometer $R_{\rm p}$ is actuated by the motor.

LOW-LEVEL AMPLIFIER

The TAA263 is a semiconductor integrated amplifier in a 4-lead TO-72 metal envelope. It comprises a three-stage, direct coupled low-level amplifier for use from d.c. up to frequencies of $600~\rm kHz$.

QUICK REFERENCE DATA						
Supply voltage	o V _B	max.	8	V		
Output voltage	V3-4	max.	7	V		
Output current	I_3	max.	25	mA		
Transducer gain at P _O = 10 mW				6s Lim		
R_L = 150 Ω ; f = 1 kHz	Gtr	typ.	77	dB		
Operating ambient temperature	T _{amb}	-20 to -	+100	°C		

PACKAGE OUTLINE

Dimensions in mm

TO-72 (SOT-18/17)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage	v_{B}	max.	8	V	
Output voltage	V ₃₋₄	max.	7	V	
Input voltage	-V ₁₋₄	max.	1 5	V	

Currents

Output current	I ₃	max.	25	mA
Input current	I_1	max.	10	mA

Power dissipation

Total power dissipation up to $T_{amb} = 65$ ^{o}C

Temperatures

Storage temperature	1 stg	-33 (0 +123	C
Operating ambient temperature			
(see derating curve above)	T_{amb}	-20 to $+100$	°C

CHARACTERISTICS

Test circuit:

 $T_{amb} = 25$ °C

70 dB

77 dB

Currents

Output current
Total current drain (no signal)

 I_3 typ. 12 mA I_2+I_3 < 16 mA

Over-all small signal current gain

$$f = 1 \text{ kHz}$$

h_{f tot} typ. 5.10⁵

Transducer gain

$$f = 1 \text{ kHz}$$
; $P_0 = 10 \text{ mW}$

Output power at f = 1 kHz;
$$d_{tot}$$
 = 10% d_{tot} = 5%

$$P_{O}$$
 > 10 mW P_{O} > 8 mW

typ.

 G_{tr}

f = 450 kHz;
$$\Delta f$$
 = 5 kHz

 $[\]overline{1}$) Z \leq 10 Ω at f = 1 kHz

CHARACTERISTICS (continued)

Tamb = 25 °C

y parameters (point 4 common connection)

$$V_B = 6 \text{ V}$$
; $I_3 = 3 \text{ mA}$; $V_{3-4} = 4.2 \text{ V}$

f = 1 kHz

Input admittance
Transfer admittance

Output admittance

f = 450 kHz

Input conductance

Input capacitance

Transfer admittance

Phase angle of transfer admittance

Output conductance

Output capacitance

 $y_i = g_i$ typ. 20 $\mu\Omega^{-1}$

 $y_f = g_f$ typ. 11 Ω^{-1}

 $y_0 = g_0$ typ. 60 $\mu\Omega^{-1}$

g_i typ. 15 $\mu\Omega^{-1}$

C_i typ. 14 pF

 $|y_f|$ typ. 9.4 Ω^{-1} φ_f typ. 125°

go typ. 20 $\mu\Omega^{-1}$

Co typ. 13 pF

INTEGRATED MOST AMPLIFIER

The TAA320 is a silicon monolithic integrated circuit, consisting of a MOS transistor and an n-p-n transistor in a TO-18 metal envelope.

The device is primarily intended for audio amplifiers with a very high input resistance (e.g. for crystal pick-ups).

Besides this application the TAA320 is also suitable for other applications where a high input resistance is required, like impedance converters, timing circuits, microphone-amplifiers, etc.

QUICK REFERENCE DATA						
Drain-source voltage (V _{GS} = 0)		the same of the sa		V _{DYHOB} -		
Drain current	-I _D	max.	25	mA		
Gate-source voltage ————————————————————————————————————	-V _{GS}					
Gate-source resistance -V _{GS} up to 20 V; T _j up to 125 °C	rGS	>	100	GΩ		
Transfer admittance at f = 1 kHz $-I_D$ = 10 mA; $-V_{DS}$ = 10 V	Yfs	typ.	75	$m\Omega^{-1}$		

PACKAGE OUTLINE

Dimensions in mm

TO-18 (SOT-18/13)

Source connected to the case

Accessories supplied on request: 56246, 56263

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Tortageo					
Drain-source voltage (V _{GS} = 0)	-V _{DSS}	max.	20	V	
Gate-source voltage (I _D = 0)	-V _{GSO}	max.	20	V	
Non repetitive peak gate-source voltage ($t \le 10 \text{ ms}$)	-V _{GSM}	max.gs	100		
Current					

Drain current
$$-I_D = max$$
. $\sqrt{25}$ mA

Power dissipation

Total power dissipation up to
$$T_{amb} = 25 \, ^{o}C$$
 P_{tot} max. 200 mW

Temperatures

Operating ambient temperature -20 to +125 °C (see derating curve on page 8)

THERMAL RESISTANCE

From junction to ambient in free air

$$R_{\text{th }j-a} = 0.5 \text{ oC/mW}$$

CHARACTERISTICS $T_i = 25$ °C unless otherwise specified

Drain current

$$-V_{DS} = 20 \text{ V}; V_{GS} = 0$$
 $-I_{DSS}$ $\stackrel{\text{typ.}}{<}$ $\stackrel{5}{\sim}$ $\stackrel{\text{nA}}{\sim}$ $\stackrel{1}{\sim}$ $\stackrel{\mu A}{\sim}$

Gate-source voltage 1)

$$-I_D = 10 \text{ mA}$$
; $-V_{DS} = 10 \text{ V}$ $-V_{GS}$ $\begin{array}{c} \text{typ.} & 11 \text{ V} \\ 9 \text{ to} & 14 \text{ V} \end{array}$

Gate-source resistance

$$-V_{\rm GS}$$
 up to 20 V; T $_{\rm j}$ up to 125 °C $$\rm r_{\rm GS}$ $>$ 100 $~\rm G\Omega$

Equivalent noise voltage

y parameters at f = 1 kHz

NOTE OF BL

To exclude the possibility of damage to the gate oxide layer by an electrostatic charge building up on the high resistance gate electrode, the leads of the device have been short circuited by a clip. The clip has been arranged so that it need not be removed until the device has been mounted in the circuit.

¹⁾ $-V_{GS}$ decreases about 6 mV/ $^{\circ}$ C with increasing ambient temperature at a constant -ID.

APPLICATION INFORMATION 2 W audio amplifier with TAA320 and BD115

* The voltage dependent resistor (2322 552 03381) suppresses voltage transients that might otherwise exceed the safe operating limits of the BD115.

v_B	= 1	100	V
$I_{\mathbb{C}}$	typ.	50	mAgai
-ID	typ.	9.5	mA
		140	Outpul
		2.7	Н
		1.8	$k\Omega$
	$I_{\mathbf{C}}$	I _C typ.	I _C typ. 50 -I _D typ. 9.5 140 2.7

Performance at f = 1 kHz; feedback = 16 dB and or egament to villid acon and abulaxe of

Output power at dtot = 10% 11 about bala sies abdistalas				
(on primary of the output transformer) and quid outlined	Po	typ.	2.6	W
Input voltage for Po = 50 mW	V _i (rms)	typ.	13.5	mV
Input voltage for $P_0 = 2 W$	V _i (rms)	typ.	86	mV
Total distortion at $P_0 = 2 W$	d _{tot}	typ.	3.6	%
Minimum frequency response (-3 dB)		60 Hz	to 20	kHz
Signal-noise ratio at $P_0 = 2 W$		typ.	73	dB

Mounting instruction for BD115

Proper continuous operation is ensured up to T_{amb} = 50 o C, provided the BD115 is directly mounted on a 1.5 mm blackened Al. heatsink of 30 cm 2 with a clamping washer of type 56218.

If the transistor is mounted on a heatsink with a mica washer, the heatsink should have an area of 50 cm^2 .

Recommended diameter of hole in heatsink: 7.7 mm.

)-VGS decreases about 6 mV/°C with increasing ambient temperature at a constant -Ip.

232

APPLICATION INFORMATION (continued)

4 W audio amplifier with TAA320 and 2 transistors of type BD115.

Supply voltage	v_B	=	200	V
Collector current of a BD115	$I_{\mathbf{C}}$	typ.	52	mA
Drain current of TAA320	-I _D	typ.	8.6	mA
Performance at f = 1 kHz; feedback = 12 dB				
Output power at d _{tot} = 10%	Po	typ.	4.5	W
Input voltage for Po = 50 mW	V _i (rms)	typ.	7.5	mV
Input voltage for Po = 4 W	V _{i(rms)}	typ.	67	mV
Total distortion at Po = 4 W	d _{tot}	typ.	6	%
Minimum frequency response (-3 dB)		50 Hz	to 20	kHz
Signal-noise ratio at Po = 4 W		typ.	73	dB

INTEGRATED MOST LEVEL SENSOR

The TAA320A is a silicon monolithic integrated circuit, consisting of a p-channel enhancement type MOS transistor and an n-p-n transistor, in a TO-18 metal envelope. The device is intended for level sensors with a very high input resistance (e.g. timing circuits, thermostats, liquid level sensors, flame control circuits).

	QUICK REFERENCE DATA								
Drain	n-source	e voltage (V	GS = 0)	J 113577 DOMEST	-V _{DSS}	max. 20	es Vallo V		
Drain	n curren	nt xama			-I _D	max. 60	mA (
Gate -I _I	o = 10 n	voltage ¹) nA; -V _{DS} =		group 1:	-v _{GS}	typ. 10,6 10,0 to 11,2			
				group 2:	$-v_{GS}$	typ. 11, 3 10, 7 to 11, 9			
				group 3:	-V _{GS}	typ. 12,0 11,4 to 12,6	V		
				group 4:	-V _{GS}	typ. 12,7 12,1 to 13,3	V V		
Gate	cut-off	current at T	amb = 25 °C						
-V	GS = 20	$ \begin{array}{l} V ; I_{\hbox{\scriptsize D}} = 0 \\ V ; V_{\hbox{\scriptsize DS}} = 0 \end{array} $	818 T		$^{-I}_{GSO}$ $^{-I}_{GSS}$	typ. 1 typ. 1	pA pA		

PACKAGE OUTLINE

Dimensions in mm

TO-18 (SOT-18/13)

Accessories supplied on request: 56246; 56263

¹⁾ For explanation of the group codification see b under 'Notes'.

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages 04 X8M 2201/-

Drain-source voltage (VGS = 0)	$-v_{DSS}$	max.	20	V
Gate-source voltage $(I_D = 0)$	-V _{GSO}	max.	20	V
Non-repetitive peak gate-source voltage (t ≤10 ms)	±V _{GSM}	max.	100	V

Current

Drain current	$-I_D$	max.	60	mA
Peak drain current (t < 200 ms; δ 0,001)	$-I_{DM}$	max.	100	mA

Temperatures

Storage temperature 000	T _{stg}	-65 to +125	°C	
Operating ambient temperature (see curve below)	Tamb	-20 to +125	°C	

CHARACTERISTICS

 T_i = 25 $^{\circ}$ C unless otherwise specified

D	rain	curren	į

$-V_{DS} = 20 \text{ V}; V_{GS} = 0$	^{-I} DSS typ.	typ.	dm 5	nA
		30 1	μА	

Drain-source voltage 1)

$$-I_D = 10 \text{ mA}; -V_{GS} = 20 \text{ V}$$
 $-V_{DS} < 1 \text{ V}$
 $-I_D = 60 \text{ mA}; -V_{GS} = 20 \text{ V}$ $-V_{DS} < 1.5 \text{ V}$

Ga

D 00 mil. vGS = 20 v		- v DS		1,5	V
ate-source voltage (see note b)					
$-I_D = 10 \text{ mA}; -V_{DS} = 10 \text{ V}$	group 1:	-V _{GS}	typ. 10,0 to		V V
	group 2:	-V _{GS}	typ. 10,7 to		V
	group 3:	-V _{GS}	typ. 11,4 to		V V
	group 4:	-V _{GS}	typ. 12,1 to		V V

Gate cut-off current

$$-V_{GS} = 20 \text{ V}; I_{D} = 0$$
 $-I_{GSO}$ typ. 1 pA ²)
 $-V_{GS} = 20 \text{ V}; V_{DS} = 0$ $-I_{GSS}$ typ. 1 pA ²)

NOTES

- a. The leads are short-circuited by a clip to protect the oxide layer against damage due to accumulation (or build-up) of electrostatic charge on the high resistance gate electrode. The clip should not be removed until after the device is mounted.
- b. As a service to the customer the $\mbox{-}\mbox{V}_{GS}$ group to which a device belongs is identified by a numerical suffix (1, 2, 3 or 4), however, individual groups cannot be ordered separately.

- 1. See also upper graph on next page.
- 2. Being dependent on handling and ambient humidity. the quoted value applies only up to the time of shipping.

Efficient drying treatment is advised before the device is mounted, provided the application requires this low current.

HI-FI F.M./I.F. AMPLIFIER

The TCA420A is a monolithic integrated f.m./i.f. amplifier for car and hi-fi equipment provided with the following functions:

- limiter amplifier
- symmetrical quadrature detector
- symmetrical a.f.c. output
- field-strength indication output
- stereo decoder switching voltage
- adjustable side response suppression
- muting

QUICK REFERENCE DATA

Supply voltage (pin 11)	V _P	typ.	15	V
Supply current (pin 11)	lp	typ.	26	mA
Input limiting voltage (-3 dB); f _O = 10,7 MHz	Vilim	typ.	20	μV
A.F. output voltage (pin 5); $\Delta f = \pm 15 \text{ kHz}$; r.m.s. value	Vo(rms)	typ.	115	mV
Signal plus noise-to-noise ratio; $V_i > 1$ mV; $\Delta f = \pm 15$ kHz	S+N/N	typ.	72	dB
I.F. input voltage; Δf = ±15 kHz S + N/N = 26 dB	Vi	typ.	15	μV
S + N/N = 46 dB	Vi	typ.	45	μV
A.M. rejection; $V_i = 10 \text{ mV}$; $f_m = 1 \text{ kHz (f.m.)}$; $\Delta f = \pm 15 \text{ kHz}$	α	typ.	50	dB
Total distortion (single tuned circuit); $\Delta f = \pm 15 \text{ kHz}$	d _{tot}	typ.	0,1	%
Centre shift of f.m. detector curve	$\Delta f = f_{01} - f_{02} $	typ.	7	kHz
Field-strength indication range	ΔVi	typ.	70	dB
Supply voltage range (pin 11)	V _P		6 to 18	V
Ambient temperature range	T _{amb}	-30	to +80	oC

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

February 1980

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 11)	V _P = V ₁₁₋₁₆ max	. 18 V	/
Total power dissipation	P _{tot} max	. 720 m	nW
Storage temperature	T _{stg} –55	to +150 °	C
Operating ambient temperature	T _{amb} -30	to +80 o	C

CHARACTERISTICS

 $V_P=8 \text{ or } 15 \text{ V; } T_{amb}=25 \text{ }^{\circ}\text{C; } f_o=10.7 \text{ MHz; } \Delta f=\pm15 \text{ kHz; } f_m=1 \text{ kHz; } R_G=30 \text{ } \Omega; \text{ with de-emphasis } (C_{5-6}=10 \text{ nF}); \text{ adjustment conforms to adjustment procedure unless otherwise specified; the characteristics are valid for a TCA420A mounted on a printed-circuit board (see Figs 2, 3 and 4).}$

Supply voltage range (pin 11)	pply voltage range (pin 11)			6 to 18	V
		V _P =	8 V	V _P = 15 V	/
Supply current; $R_{7-16} = 5 \text{ k}\Omega$; pin 11	lp	typ.	21	20 1	mA mA
I.F. amplifier/detector					
Input voltages (d.c. value) V ₁₃₋₁₆ ; V ₁	4-16; V15-16	typ.	2,6	2,8	V
Input limiting voltage (–3 dB)	Vilim	typ.	20		μV μV
I.F. output voltage (peak-to-peak value)					μ. σ
V_i = 5 mV; f = 1 MHz; without detector circuit; Z_{1-16} = Z_{2-16} = 10 M Ω in parallel with 8 pF	V _{1-16(p-p)} V _{2-16(p-p)}	> ∫ typ.	300 350	320 375	
Output voltages (d.c. value)	V ₅₋₁₆ V ₆₋₁₆	typ.	4,7 5,0 5,3	8,3 9,5 11,0	٧
Output voltage difference (d.c. value) $V_i = 1 \text{ mV}; \Delta f = \pm 75 \text{ kHz}$	±V ₅₋₆	<	180	350	
A.F. output voltage; $V_i = 1 \text{ mV}$ (pins 5 and 6) $\Delta f = \pm 15 \text{ kHz}$	Vo	> typ.	60	95 115	mV mV
$\Delta f = \pm 40 \text{ kHz}$	Vo	typ.	160	307	m۷
$\Delta f = \pm 75 \text{ kHz}$	Vo	typ.	300	575	mν
Total distortion; $V_i = 1 \text{ mV}$; single tuned circuit; $Q_L = 1 \text{ mV}$	= 20				
with de-emphasis; C_{5-6} = 10 nF Δf = ±15 kHz Δf = ±40 kHz Δf = ±75 kHz	d _{tot} d _{tot} d _{tot}	< typ. typ.	0,1 0,18 0,45	0,1 0,18 0,45	%
without de-emphasis; C ₅₋₆ = 220 pF		,	0.1	0.1	0/
$\Delta f = \pm 15 \text{ kHz}$ $\Delta f = \pm 40 \text{ kHz}$	d _{tot}	< typ.	0,1	0,1	
$\Delta f = \pm 75 \text{ kHz}$	d _{tot}	typ.	0,65	0,65	

I. F. innue volter	iala Eila	D - '	0E0 U= 45 40 1	.11=		Vp=	8 V	$V_P = 15$	V
I.F. input voltage; s S+N/N = 26 dB;						110	issengo	de senoges	n abi
$\Delta f = \pm 15 \text{ kHz}$	with de	ompilas	, 05-6	ts rioisson	V; emoges	typ.	15	of spatiate	μV
$\Delta f = \pm 75 \text{ kHz}$					Vil = ard	typ.	5	Address Transaction	μV
S+N/N = 26 dB;	without	de-emp	hasis; C5-6 = 1	220 pF				3H ; 110 =	
$\Delta f = \pm 15 \text{ kHz}$, -3-0		Vi	typ.	20	20	μV
$\Delta f = \pm 75 \text{ kHz}$					V _i Vm	typ.	8	8	μV
S+N/N = 46 dB;	with de-	emphas	is; C ₅₋₆ = 10 r	nF				Mariov lost	
$\Delta f = \pm 15 \text{ kHz}$			01-21-		Vi	typ.	45	45	μV
$\Delta f = \pm 75 \text{ kHz}$					Vi	typ.	20	20	μV
S+N/N = 46 dB;	without	de-emp	hasis; C ₅₋₆ = 3	220 pF				en lamia su	
$\Delta f = \pm 15 \text{ kHz}$					Vi	typ.		65	μV
$\Delta f = \pm 75 \text{ kHz}$					Visa	typ.	30	30	μV
Signal plus noise-to									
B = 250 Hz to 16		i = 1 m	V					strength in	
with de-emphasis $\Delta f = \pm 15 \text{ kHz}$	S				S+N/N	(sur	74		dD
$\Delta f = \pm 75 \text{ kHz}$					S+N/N	typ.	74 88	12,303 (92)	dB dB
without de-emph	nacie				0.11/11	cyp.	00	- 00	u D
$\Delta f = \pm 15 \text{ kHz}$	10313				S+N/N	typ.	68	70	dB
$\Delta f = \pm 75 \text{ kHz}$					S+N/N	typ.	82	= 3 x 10 5 5 10 5	dB
Noise output voltag		nted cor	nform DIN454	05		= 120		to paint	
V _i = 0	810				Vno	typ.	7	12	m\
$V_i = 1 \text{ mV}$					Vno	typ.	30	The same of the sa	μV
A.M. rejection; with	h filter:	B = 700	Hz to 5 kHz						
$f_m = 70 \text{ Hz}; \Delta f =$	±15 kH	z (for f	.m.);					decoder s	
$f_m = 1 \text{ kHz; m}$	= 0,3 (fc	or a.m.)	; simultaneous	ly modulate				ence voltag	
$V_i = 0.3 \text{ mV}$ $V_i = 1 \text{ mV}$					α	typ.	52	1. CHEDISH CHE 21	dB
$V_i = 10 \text{ mV}$					α	typ.	40 52	the transfer to be used to \$1.00 to	dB dB
V _i = 100 mV						typ.		La Company of the Com	dB
Zero crossing shift	of f.m. o	letector	curve (see no	te)				stlov tugni	
$f_m = 70 \text{ Hz}; \Delta f =$						l = 5 kg		P16 = 3,9	IA.
$f_m = 1 \text{ kHz; m} =$	85% (fo	r a.m.)		$\Delta f =$	f ₀₁ - f ₀₂	typ.	9		kH:
Ostostor input imp	adanaa					0			
etector input imp					0 1			//2,25 pF	
Output resistance					R ₅₋₁₁ ;R ₆₋₁	typ.	3,3	3,3	K75

Note

Zero crossing shift is defined as the difference between frequencies f_{o1} at V_i = 1 mV and f_{o2} at V_i = 30 μ V.

CHARACTERISTICS (continued)					
Side response suppression		Vp:	= 8 V	Vp = 1	5 V
Input voltage for 10 dB side response suppression S1 = 'on' adjust R1, so V ₁₀₋₁₆ = 1,3 V at V _i = S1 = 'off'; R4 = 3,9 k Ω	V:/rma\	typ.	35	KHz	μV
Side response suppression level $\Delta f = \pm 15 \text{ kHz}$; $V_{j(rms)} = 1 \text{ mV}$ control voltage for $\Delta V_{o} = -1 \text{ dB}$ control voltage for $\Delta V_{o} = -10 \text{ dB}$	V12-16 V12-16	typ.	0,7	kHz	V _{ALIAN}
Muting 02 997				sHx	
reference signal at S2 = 'off';					
$V_{i(rms)} = 1 \text{ mV}; \Delta f = \pm 75 \text{ kHz}; R4 = 3.9 \text{ k}\Omega$	ΔV_{o}	typ.	-80	-80	dB
Field-strength indication					
Output voltages (d.c. value) $V_i = 0; I_{8-9} = 0; R_{8-16} = 4,3 \text{ k}\Omega$	V9-16 V8-16	typ.	1,75 1,90	1,85 2,00	
Field-strength indicator current Rindicator = $2 k\Omega$; adjust R2 so I _{8.9} = 0 at V _i = 0 and R3 = 0 measured at V _i (rms) = 120 mV	18-9 NOTE	> typ.	130 190	140	μΑ μΑ
Output resistance OE .qv	R _o R ₉₋₁₆	typ.	810 3,7	850	Ω $k\Omega$
Stereo decoder switching voltage			1 filter: 8 1 ± 15 kHz		
Reference voltage; without load: I ₇ = 0 barelubor				2,25	
Output voltage; I ₁₀ = I ₁₀ max	V ₁₀₋₁₆	typ.	1,70	1,90	V
Available output current	−l ₁₀ max	typ.	0,45	0,85	mA
Output voltage as a function of the i.f. input voltage	ΔV ₁₀₋₁₆		ob .m.1 30		
$R_{10-16} = 3.9 \text{ k}\Omega; R1 = 5 \text{ k}\Omega$	Vii		-0,9	-1,2	
Input voltage for V ₁₀₋₁₆ = 0,8 V	V _{i2}				
adjust R1 so $V_{10-16} = 1.3 \text{ V}$ at $V_{i(rms)} = 0$	Vi(rms)	typ.	98 150	100 200	μV μV
Input voltage for $V_{10-16} = 1.3 \text{ V}$ adjust R1 so $V_{10-16} = 0.8 \text{ V}$ at $V_{i(rms)} = 3 \text{ m}$	/ Vi(rms)	> typ. <	- 1,3 -		mV mV
Input resistance (pin 7)	R ₇₋₁₆	typ.	4	4,7	

R1 = preset potentiometer for adjusting output voltage V_{10-16} for mono/stereo switching of stereo decoder. S1 = side response suppression R2 = preset potentiometer for adjusting the zero level of the field-strength indicator current.

R3 = preset potentiometer for adjusting the maximum level of the field-strength indicator current.

S2 = output signal muting switch.

R4 = preset potentiometer for adjusting the side response suppression.

251

February 1980

(1) C₈ = C₅₋₆ (see Fig. 2). For mono: C8 = 10 nF. For stereo: C8 = 220 pF.

Fig. 3 Circuit diagram showing components arrangement for printed-circuit board (Fig. 4). The circuit is similar to the test circuit of Fig. 2.

Fig. 4 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 3.

Fig. 5 $V_P = 15 \text{ V}$; $f_m = 1 \text{ kHz}$; B = 250 Hz to 16 kHz; typical values.

Fig. 6 A.M. rejection; f.m.: $\Delta f = \pm 15$ kHz; $f_m = 70$ Hz. a.m.: m = 30%; $f_m = 1$ kHz; simultaneously modulated.

Fig. 7 Total distortion as a function of frequency deviation; single tuned circuit with Ω_L = 20; f_m = 1 kHz; C_{5-6} = 220 pF.

Fig. 8 Total distortion as a function of detuning; single tuned circuit with Q_L = 20; f_m = 1 kHz; C_{5-6} = 220 pF.

Fig. 9 Field-strength indication output voltages as a function of i.f. input voltage; R2 adjusted so V₈₋₉ = 0 at V_i = 0; $R_{indicator} + R2 = 2 k\Omega$; for V₈₋₁₆* definition see Fig. 11.

Fig. 9 Scale division of indicator as a function of i.f. input voltage; R2 adjusted so V_{8.9} = 0 at V₁ = 0; R_{indicator} = 2 k Ω ; R3 adjusted at indication 100%; indicator current = 140 μ A; see Fig. 11.

Fig. 12 Stereo decoder switching voltage as a function of i.f. input voltage; R4 = 3,9 k Ω ; ——— R1 adjusted so V₁₀₋₁₆ = 0 at V_i = 0; see Fig. 13.

Fig. 18 Example of the TCA420A when using a detector with two tuned circuits; f_0 = 10,7 MHz; L1 = L2 \approx 0,4 μ H; Q_0 = 70.

Adjustment of the detector:

When having an i.f. input signal on top of the limiter capability, L2 should be detuned, L1 should be adjusted to minimum distortion, and then L2 to minimum distortion.

Fig. 19 Total distortion as a function of detuning; circuit as Fig. 18; f_m = 1 kHz; C_{5-6} = 220 pF. V_o = 500 mV for a frequency deviation Δf = ±75 kHz and d_{tot} < 0,1%.

APPLICATION INFORMATION

Fig. 20 I.F. coupling circuit, using LC filter; L1 = L2 = 7 + 7 turns h.f. litz wire (5×0.04); L3 = 3 turns h.f. litz wire wound on L2 (5×0.04).

Fig. 21 I.F. coupling circuit, using ceramic filter; L1 = 14 turns h.f. litz wire (5×0.04), tab at 3 turns.

APPLICATION INFORMATION (continued)

(1) For mono: $C_{5-6} = 10 \text{ nF}$. For stereo: $C_{5-6} = 220 \text{ pF}$.

Fig. 22 Application example of using TCA420A.

D.C. VOLUME AND BALANCE STEREO CONTROL CIRCUIT

The TCA730A is a monolithic integrated circuit for controlling volume and balance in stereo amplifiers by means of a d.c. voltage.

Features:

- physiological volume control
- balance control
- internal amplifier
- high-ohmic signals inputs
- internal supply voltage stabilization
- · converter for the control voltage

QUICK REFERENCE DATA

Supply voltage (pin 8)	Vp	typ.	15	V
Supply current (pin 8)	lp .	typ.		mA
Input voltage range (r.m.s. value)	Vi(rms)	0,1 to		
Nominal input voltage; m = 1 (r.m.s. value)	Vi(rms)	typ.	0,5	V
Input resistance	R _i	typ.	250	$k\Omega$
Output voltage at nominal output power (r.m.s. value)	V _{o(rms)}	typ.	1	V
Volume control range	G _V	+20 to	-80	dB
Channel balance	ΔG_V	typ.	1	dB
Balance control range	G _V	+5 to	0 -7	dB
Total distortion at V _{O(rms)} = 1 V	d _{tot}	typ.	0,1	%
Channel separation	α	typ.	55	dB
Signal-to-noise ratio	S/N	typ.	67	dB
Frequency response (-1 dB)	Liveri	20 Hz t	o 20	kHz
Volume control voltage range	V ₁₃₋₁₅	2 to	9,5	V
Balance control voltage range	V ₁₂₋₁₅	2,5 to	9,0	V
Supply voltage range (pin 8)	V _P	13,5 to	16,5	V
Ambient temperature range	Tamb	-30 to	+80	oC

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram with external circuitry.

16-lead DIL; plastic (SOT-38)

RATINGS		
Limiting values in accordance with the Absolu	ute Maximum System (IEC 134)	
Supply voltage (pin 8)	Vp 8 b 7 - 18 max. 18	
Input voltages	V ₁₁₋₁₅ ; V ₁₄₋₁₅ min. (max. V ₁	V V
	V12 15, V12 1E	5 V
Total power dissipation	P _{tot} max. 900	0 mW
Storage temperature range	T _{stg} —55 to +150	o o C
Operating ambient temperature range	T _{amb} -30 to +80	O oC
CHARACTERISTICS		
V_P = 15 V; T_{amb} = 25 °C; measured in Fig. 1 switch off; f = 1 kHz; R_G = 22 k Ω ; R_L = 5,6	; balance control in mid-position ($V_{12-10} = 0$); ph $k\Omega$; unless otherwise specified.	ysiolog
Supply voltage range (pin 8)	V _P 13,5 to 16,5	5 V
Supply current	Vm 0at IP typ. 35 to 43	
Control range		
Voltage gain range	$G_{VOS} = G_{VOS} = 3$	
Voltage gain at $V_{13-15} = 9.5 \text{ V } (0.63 \text{ Vp})$	G _V typ. 20	dB dB
Voltage attenuation range	G _v 0 to -80	1/6/
Voltage attenuation at V ₁₃₋₁₅ = 3 V (0,2 V _P	HISV XSSC CUBRENT CONTROL STORY TO THE WAR THE CONTROL OF THE CONT	dB dB
Balance control range at $G_V = -10 \text{ dB}$	+ 5 to -7	
Control inputs		
Recommended control voltage range volume balance	V13-15 2 to 9,8 V12-15 2,5 to 9,0	- 1/
Control voltage for $G_V = -10 \text{ dB}$; $V_{12-10} = 0$	V ₁₃₋₁₅ 6,7 to 7,1	
Control voltage for balance 0 dB; V ₁₃₋₁₅ = 6	,9 V V ₁₂₋₁₀ typ. 0 ± 0,3	2 V
Internal supply voltage (0,35 Vp + 0,65 VBE	V ₁₀₋₁₅ typ. 5,5	
Output resistance (pin 10)	R _{o10} typ.	kΩ
Control current volume (V ₁₃₋₁₅ = 6,9 V)	l ₁₃ typ. 15	5 μΑ) μΑ
balance (V ₁₂₋₁₅ = 5,9 V)	112	3 μΑ 5 μΑ
Input resistance pin 13 (volume) pin 12 (balance)	113) kΩ) kΩ

CHARACTERISTICS (continued)				
Signal processing (AEI 331) metey2 mumixaM stufoedA ent n				
Frequency response (-1 dB)	f (8	20 Hz	to 20	kHz
Input resistance; $R_{11-10} = R_{14-10} = 270 \text{ k}\Omega$ (pins 11; 14)	Ri11;14	typ.	250	kΩ
Output resistance (pins 3; 5)	R ₀ 3;5	typ.	10	Ω
Maximum input voltage; $V_{o(rms)}$ < 1 V; d_{tot} = 0,7 % (r.m.s. value)	Vi(rms)	> typ.	1,3 1,7	
Maximum output voltage; $V_{i(rms)} < 1 \text{ V}$; $d_{tot} = 0.7\%$ (r.m.s. value)	Vo(rms)	> typ.	1,8 2,0	V
Nominal input voltage; m = 1 (r.m.s. value)	Vi(rms)	typ.	0,5	V
Nominal output voltage at nominal output power (r.m.s. value)	Vo(rms)	typ.	1	٧
Total distortion			T - 100	
V _O (rms) = 1 V; G _V = maximum	d _{tot}	typ.	0,07	
$V_{o(rms)} = 1 V; V_{i(rms)} = 1 V$	d _{tot}	typ.	0,2	%
$V_{o(rms)} = 50 \text{ mV}; V_{i(rms)} = 150 \text{ mV}$	d _{tot}	typ.	0,03	
$V_{o(rms)} = 50 \text{ mV}; V_{i(rms)} = 1 \text{ V}$	d _{tot}	typ.	0,2	%
Output noise voltage; $f = 20 \text{ Hz}$ to 20 kHz signal plus noise voltage (r.m.s. value) $G_V = -60 \text{ dB}$ $G_V = -10 \text{ dB}$ $G_V = \text{maximum}$ (+20 dB)	Vno(rms) Vno(rms) Vno(rms)	typ. typ. typ.	15	μV μV μV
noise voltage; weighted conform DIN45405 (peak value)	Far-grV to			
$G_V = -60 \text{ dB}$	V _{no(m)}	typ.	15	μV
$G_V = -10 \text{ dB}$	V _{no(m)}	typ.		μV μV
V13.1s 2 to 9.6 V	V _{no(m)}	typ.	230 350	
Channel separation; $G_V = \pm 20 \text{ dB}$; $V_i = V_0 < 1 \text{ V}$		_	EO	4D
f = 250 Hz to 12,5 kHz g / V	α α	typ.		dB dB
V ₁₃₋₁₅ = 8,8 V V ₁₂₋₁₀ typ. 0 ± 0,2 V		>		dB
f = 40 Hz to 16 kHz	α a V 35.01 ans	typ.		dB
Channel balance		typ	1	dB
$G_V = +15 \text{ to } -50 \text{ dB}$	ΔG_V	typ.		dB
$G_V < 50 \text{ dB}$	ΔG_V	typ.	2	dB

Amplifier characteristics				
Input resistance (pins 11 and 14)	R _{i11;14}	>	3	ΩM
D.C. output voltages (0,35 V _P - 1,35 V _{BE})	V ₃₋₁₅ ; V ₁₆₋₁₅	typ.	4,2	V _{ab}
(6,6 V _{BE})	V ₃₋₁₅ ; V ₁₆₋₁₅	typ.	4,6	V
Quiescent input currents (pins 1,2,6,7,11,14)	11; 12; 16; 17; 111; 114	typ.	0,5	μΑ μΑ
Input resistance (pins 1,2,6 and 7) of physiology; without external circuitry	R _{i1;2;6;7}	>	1	MΩ
Internal load resistance at outputs (pins 3,5,9,16)	R ₃₋₁₅ ; R ₅₋₁₅ ; R ₉₋₁₅ ; R ₁₀₋₁₅	typ.	2	kΩ
Maximum gain; no load out no smuleV & gi4	G ₃₋₁ ; G ₃₋₂ ; G ₅₋₆ ; G ₅₋₇	> typ.		dB dB

Fig. 2 Frequency response volume control with physiology.

Fig. 3 Volume control coves; without mixed physiology; balance = 0; $V_{12-10} = 0$.

--- G_{v tot}; G_{v 5-11}; G_{v 3-14}

--- G_{v 9-11}; G_{v 16-14}

7,5 k Ω 100 k Ω 100 k Ω 100 k Ω 1100 k Ω

Fig. 4 Volume adjustment curve; balance = 0; $V_{12-10} = 0$.

Fig. 5 Balance control curves; $G_{V \text{ tot}} = -10 \text{ dB } (V_{13-15} = 6.9 \text{ V})$; for balance = 0.

Fig. 6 Balance control range; $V_{12-15} = 2.5$ to 9.0 V.

- (1) $G_V = R2/R1$
- (2) $G_v = R42/R31$
- (3) $G_V = 1/2\pi \cdot R42 \cdot C42$
- (4) $G_V = 1/2\pi \cdot R41 \cdot C31 = 1/2\pi \cdot R31 \cdot C31$
- (5) $G_V \approx R41/R32$
- (6) $G_V \approx R41/R32$
- (7) $G_V = 1/2\pi \cdot R32 \cdot C31$

Fig. 7 Frequency response of the physiology part.

Fig. 8 Physiology control curve; f = 1 kHz; balance = 0; V₁₂₋₁₅ = 0.

Fig. 9 Total distortion as a function of r.m.s. input voltage; f = 1 kHz; R $_{L}$ = 5,6 k $\Omega.$

Fig. 10 Total distortion as a function of r.m.s. output voltage; f = 1 kHz; R $_{L}$ = 5,6 k Ω .

Fig. 11 The r.m.s. output voltage as a function of voltage gain; $P_{O(nom)}$ relative to $V_{O(rms)} = 1 \text{ V}$. without physiological volume control; —— with physiological volume control.

(1) RC network for limiting treble boost (linear: f_3 dB = 100 kHz).

Fig. 12 Application diagram for TCA730A and TCA740A. For printed-circuit board see Fig. 13.

275

Fig. 13 Printed-circuit board component side, showing component layout; for circuit diagram see Fig. 12.

APPLICATION INFORMATION (continued)

- (1) $C_{13-15} = C_{12-15} = 1 \mu F$ are intended for suppression of the noise when adjusting the mechanical potentiometers.
- (2) For rejecting noise, caused by switching on or off, corresponding muting switches can be used before or in the output power stage.

Fig. 14 Application example of TCA730A used for volume and balance control.

D.C. TREBLE AND BASS STEREO CONTROL CIRCUIT

The TCA740A is a monolithic integrated circuit for controlling treble and bass in stereo amplifiers by means of a d.c. voltage.

Features:

- two double potentiometer circuits
- feedback control
- internal amplifier
- high-ohmic signal inputs
- converter for the control voltages
- low-ohmic and short-circuit protected signal outputs

QUICK REFERENCE DATA

Supply voltage (pin 8)		VP	typ.	15	V
Supply current (pin 8)		lp	typ.	35	mA
Bass boost and cut at 40 Hz (ref. 1 kHz)			typ.	± 16	dB
Treble boost and cut at 16 kHz (ref. 1 kHz)			typ.	± 16	dB
Input/output voltage at d _{tot} = 0,7% (r.m.s. value)		Vi, o (rms)	typ.	2	V
Total distortion at $V_{o(rms)} = 1 \text{ V}$; linear frequency resp	oonse	d _{tot}	typ.	0,1	%
Channel separation		α	typ.	70	dB
Output signal plus noise voltage (r.m.s. value)		V _{no (rms)}	typ.	45	μV
Frequency response (-1 dB)		f	20 Hz	to 20	kH:
Treble/bass control voltage range		V ₁₂₋₁₆ ; V ₄₋₁₆	1,8	to 9,5	٧
Supply voltage range (pin 8)	10 kg	V _P	13,5 to	16,5	V
Ambient temperature range		T _{amb}	-30 to	08+0	oC

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

(1) 6,6 V_{BE}; V₁ = 4,6 V

(2) 0,31 Vp + 1,4 VBE; V2 = 5,6 V

Fig. 1 Block diagram with external circuitry.

RATINGS				
Limiting values in accordance with the Absolute Maxin	num System (IEC 134)			
Supply voltage (pin 8)	V _P	max.	18	V
Control voltages (pins 4 and 12)	V4-16	max.	12	٧
	-V ₄₋₁₆	max.	5	V
	V ₁₂₋₁₆ -V ₁₂₋₁₆	max.		V
Total power dissipation	P _{tot} egner egetlov	max.	900	mW
Storage temperature range	T _{stg}	-55 to	+ 150	oC
Operating ambient temperature range	T _{amb}	-30 t	to + 80	oC
CHARACTERISTICS OF STATE OF ST				
V_P = 15 V; T_{amb} = 25 °C; measured in Fig.1; in posit R_G = 60 Ω; R_L = 5,6 kΩ; f = 1 kHz; unless otherwise s		2-16 = 5,6	V);	
Supply voltage range (pin 8)	VP	13,5 1	to 16,5	V
Supply current (pin 8)	and 12) ql	typ.	34	mA
		25	5 to 45	mA
Signal processing				
Voltage gain at linear frequency response	G _v V 0,4 = V (8)	typ.	0	dB
Frequency response (-1 dB)	f (81 bns 41	20 Hz	z to 20	kHz
Maximum gain variation at f = 1 kHz at maximum bass/treble boost or cut	ΔG_{V}			
Bass boost at 40 Hz (ref. 1 kHz) V ₄₋₁₆ = 9,2 V	3,5,11 and 13)		15	dB dB
Bass cut at 40 Hz (ref. 1 kHz)		>		dB
V ₄₋₁₆ = 2 V		tvp.	16	dB
Treble boost at 16 kHz (ref. 1 kHz)		> 81-7	15	dB
V ₁₂₋₁₆ = 9,2 V		typ.		dB
Treble cut at 16 kHz (ref. 1 kHz)		>	15	dB
V ₁₂₋₁₆ = 2 V		typ.	16	dB
Total distortion				
$V_{o(rms)} = 100 \text{ mV}; f = 1 \text{ kHz}$ $V_{o(rms)} = 100 \text{ mV}; f = 40 \text{ Hz to } 16 \text{ kHz}$	d _{tot}	typ.	0,03	
V _{o(rms)} = 1 V; f = 1 kHz	d _{tot}	typ.	0,07	
		<	0,2	
$V_{o(rms)} = 1 V; f = 40 Hz to 16 kHz$	d _{tot}	typ.	0,2	
Input/output voltage at d _{tot} = 0,7 % (r.m.s. value)	$V_{i(rms)} = V_{o(rms)}$	typ.	1,6	V
Output signal plus noise voltage (r.m.s. value) f = 20 Hz to 20 kHz	V _{no(rms)}	410	40	\/
Output noise voltage; weighted conform	HO(HHS)	typ.	40	μV
DIN45405; peak value	V _{no(m)}	typ.	90 160	μV μV

CHARACTERIS	TICS (continued)				
Channel separation	(IEC 134) no				
f = 1 kHz	0.5.11		α	typ.	72 dB
f = 250 Hz to 1	em		α (4 and 12)	typ.	68 dB 50 dB
f = 40 Hz to 16	6 kHz		α	typ.	58 dB
				., p.	00 45
Control voltages					
Recommended co	ontrol voltage rang	e _{tot} q		>qissib	TOVI O OWER
treble/bass			V4-16 = V12-16	2	to 9,2 V
				< 0,	,66 V _P V
				typ.	5,6 V
	t linear frequency		10.01	5,4	to 5,8 V
O	=arcrV = araV		16,0) C; measured in Fig. 1; In positive (A) LO: f = 1 kHz; unless otherwise or	Vp to 1,4	(ABE)
V ₄₋₁₆ = V ₁₂₋₁	current c = 2 to 9 2 V		$I_4 = I_{12}$	typ.	6 μΑ
4-16 V12-1	6 - 2 10 3,2 V		14 - 112 (8 nig)	≤ns1 sp	25 μΑ
Input resistance (
V4-16 = V12-1	6 = 5,6 V		R _{i4;12}	typ.	800 kΩ
Amplifier charact	teristics				
		,			
	currents; $V_i = 4.6 \ V_j = 4.6 \ V_i = $	VO.	frequency response	typ.	0,6 μΑ
			11;12;16;17;19;110;114;115 (85)		
Input resistance (pins 1,2,6,7,9,10,1	14 and 15)	Ri 1;2;6;7;9;10;14;15	in var<	1 MΩ
Internal emitter r	esistance at outpu	ts	R3-16; R5-16; R11-16; R13-16	typ.	2 kΩ
Output resistance	e (pins 3,5,11 and	13)	Ro3;5;11;13-16 (sFix 1 .1s-	typ.	10 Ω
Maximum gain; n	n load		G _V	>	40 dB
waxiinam gam, n	o load		1 kHz)	typ.	43 dB
D.C. output volta				typ.	4.6 V
V4-16 = V12-16	$_{5} = 5,6 \text{ V (pins 3,5,1)}$	l 1 and 13)	V ₃₋₁₆ ; V ₅₋₁₆ ; V ₁₁₋₁₆ ; V ₁₃₋₁₆	4.3	to 4.9 V
					V _{BF}) V

Fig. 3 Bass control curve at f = 40 Hz.

Fig. 4 Treble control curve at f = 16 kHz.

(1) RC network for limiting treble boost (linear: f_{-3 dB} = 100 kHz). ### ### 27278948.1 (2) Capacitors are intended for suppression of the noise when adjusting the mechanical potentiometers.

Fig. 6 Application example of TCA740A used for treble and bass control.

284

(1) RC network for limiting treble boost (linear: $f_{3dB} = 100 \text{ kHz}$).

Fig. 7 Application diagram for TCA730A and TCA740A. For printed-circuit board see Fig. 8.

Fig. 8 Printed-circuit board component side, showing component layout; for circuit diagram see Fig. 7.

INTERFERENCE AND NOISE SUPPRESSION CIRCUIT FOR FM RECEIVERS

GENERAL DESCRIPTION

The TDA1001B is a monolithic integrated circuit for suppressing interference and noise in FM mono and stereo receivers.

Features

- Active low-pass and high-pass filters
- Interference pulse detector with adjustable and controllable response sensitivity
- Noise detector designed for FM i.f. amplifiers with ratio detectors or quadrature detectors
- Schmitt trigger for generating an interference suppression pulse
- Active pilot tone generation (19 kHz)
- Internal voltage stabilization

QUICK REFERENCE DATA

			1 1	
Supply voltage (pin 9)	V _P	typ.	12	٧
Supply current (pin 9)	lp	typ.	14	mA
A.F. input signal handling (pin 1) (peak-to-peak value)	V _{i(p-p)}	typ.		٧
Input resistance (pin 1)	Ri	min.	35	kΩ
Voltage gain (V ₁₋₁₆ /V ₆₋₁₆)	G_V	typ.	0,5	dB
Total harmonic distortion	THD	typ.	0,25	%
Bandwidth	В	typ.	70	kHz
Suppression pulse threshold voltage (peak value); R ₁₃ = 0	V _{i(tr)} OM	typ.	19	mV
Suppression pulse duration	t _s	typ.	27	μs
Supply voltage range (pin 9)	V _P	7,5	to 16	V
Operating ambient temperature range	T _{amb}	-30 to	+80	oC

PACKAGE OUTLINE

TDA1001B: 16-lead DIL; plastic (SOT-38).

TDA1001BT: 16-lead mini-pack; plastic (SO-16; SOT-109A).

Fig. 1 Block diagram.

PACKAGE OUTLINE

TDA1001BT: 16-lead mini-pack; plastic (SO-16; SOT-109A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltag	e (pin 9)
Input voltage	(pin 1)

Output current (pin 6)

Total power dissipation

Storage temperature range

Operating ambient temperature range

see derating curves Fig. 2

 T_{stg} -65 to +150 °C T_{amb} -30 to +80 °C

Fig. 2 Power derating curves.

in plastic DIL (SOT-38) package (TDA1001B)

----- in plastic mini-pack (SO-16; SOT-109A) package (TDA1001BT); mounted on a ceramic substrate of 50 x 15 x 0,7 mm.

TDA1001B TDA1001BT

CHARACTERISTICS

 $V_P = 12 \text{ V}$; $T_{amb} = 25 \text{ °C}$; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Input stage			(8)	urrent (par	a sugsi
Input impedance (pin 1) f = 40 kHz	Z _{i1}	-	45	gi zi b 190	kΩ
Input resistance (pin 1) with pin 2 not connected	R _{i1}	agrien snur	600	emperatur emblent	kΩ
Input bias current (pin 1) $V_{1-16} = 4.8 \text{ V}$	l _{i1}	_	6	15	μΑ
Output resistance (pin 2) unloaded	R _{o2}		low-ohm	ic	
Internal emitter resistance	R ₂₋₁₆	1	5,6	-	kΩ
Low-pass amplifier		102'9			
Input resistance (pin 3)	R _{i3}	10	_	-	MΩ
Input bias current (pin 3)	li3	1	-	7	μΑ
Output resistance (pin 4)	R _{o4}	1	-	5	Ω
Voltage gain (V ₄ /V ₃)	G _{v4/3}	-	1,1	- 1	-
Suppression pulse stage		20			
Input offset current at pin 5 during the suppression time t _s	l _{io5}	-	50	200	nA
Output stage					
Output resistance (pin 6)	R _o 6		low-ohm	ic	
Internal emitter resistance	R ₆₋₁₆	-	6	-	kΩ
Current gain (15/16)	G _{i5/6}	39V	85		dB
Pilot tone generation (19 kHz)	Sckage (1 DAID	3U1-36) p seck (SO 1	de minis		
Input impedance (pin 8)	IZi8l				Ω
Output impedance (pin 7) pin 8 open	Z ₀₇	150	_		kΩ
Output bias current (pin 7)	107	0,7	1	1,3	mA
Current gain (17/18)	G _{i7/8}	-	3	-	
High-pass amplifier					
Input resistance (pin 15)	R _{i15}	10	-	-	MΩ
Input bias current (pin 15)	li15	_	-	7	μΑ
Output resistance (pin 14)	R _{o14}	-	-	5	Ω
Voltage gain (V _{14/15})	G _{v14/15}	-	1,4	-	

parameter	symbol	min.	typ.	max.	unit
A.G.C. amplifier; interference and noise detectors	; measured in Eig	ie 1 ktil	= 25 °C;	dmsT;V	11=0
Internal resistance (pins 13 and 14)	R ₁₃₋₁₄	1,5	2,0	2,5	kΩ
Operational threshold voltage (uncontrolled); peak value (pin 14) of the interference pulse detector	± V14int m	(e niq)	15	qqus tas	mV
of the noise detector	± V14n m	-	6,5	- maq	mV
Output voltage (peak value; pin 11)	V ₁₁₋₁₆ M	5,2	5,8	6,4	V
Output control current (pin 12) (peak value)	I _{12M}	150	200	250	μΑ
Output bias current (pin 12)	l ₀₁₂	-	2,5	6	μΑ
Input threshold voltage for onset of control (pin 12) (Vi(tr)O + 3 dB)	V ₁₂₋₉ or:	360	425 0,66V _{BE}	500	mV
Suppression pulse generation (Schmitt trigger)	noissandde	e after e	t value) rence pui		
Switching threshold (pin 11) 1: gate disabled	V ₁₁₋₁₆	ound; ik-to <u>-p</u> ed	3,2	Fig. 3); ; tr)M =_10	100
2: gate enabled	V ₁₁₋₁₆	et 813 e	2,0	us soners	V
Switching hysteresis	41/	:√m 08	1,2	eveve _T ; \	V
Input offset current (pin 11)	lio11	-	- maritantus	100	nA
Output current (pin 10) gate disabled; peak value	I _{o10M}	0,6	in t. put	1,4	mA
Reverse output current (pin 10)	I _{R10}	sitov bio	se thresh	2	μΑ
Sensitivity (pin 10)	V ₁₀₋₁₆	2,5	to 8 mig) +	etion OF	V

APPLICATION INFORMATION

 V_P = 12 V; T_{amb} = 25 °C; f = 1 kHz; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	uni
Supply voltage range (pin 9)	V _P	7,5	12	16	V
Quiescent supply current (pin 9)	Ip (M	10	14	18	mA
Signal path		roerab sa	nd sous	he interfe	lio .
D.C. input voltage (pin 1)	V ₁₋₁₆	_	4,5	he noise d	V
Input impedance (pin 1); f = 40 kHz	Z _{i1}	35	paak val	agetlov t	kΩ
D.C. output voltage (pin 6)	V ₆₋₁₆	2,4	2,8	lostnop ti	V
Output resistance (pin 6)	R _o 6	403	low-ohmi	C	District C
Voltage gain (V ₆ /V ₁)	Gv6/1	0	0,5	1	dB
-3 dB point of low-pass filter	f(-3dB)	-	70	ontrol-(p	kH
Sensitivity for THD < 0,5%	(000)		(8)	E+0(m	(V)
(peak-to-peak value)	V _{i(p-p)}	1,2	1,8	uo noises	V
Residual interference pulse after suppression (see Fig. 3); pin 7 to ground; V _{i(tr)M} = 100 mV; (peak-to-peak value)	V6-16(p-p)	(11)	aig) blor	3	mV
Interference suppression at R13 = 0;	* 6-16(p-p)		bs		
notes 5 and 6; $V_{i(rms)}$ = 30 mV; f = 19 kHz (sinewave); $V_{i(tr)M}$ = 60 mV; f_r = 400 Hz	α_{int}	20	-	idene ets sta <u>v</u> ri gnir	dB
Interference processing		(11)		offset cur	
Input signal at pin 1; output signal at pin 10		91	(pin 10) (su alseo	f current	
Suppression pulse threshold voltage; control function OFF (pin 9 connected to pin 12);		(01 nk		Indino e	
r.m.s. value; note 1			10)	nig) yrivi	Sensi
measured with sinewave input signal f = 120 kHz; $-V_{10.9} > 1 \text{ V}$					
at R13 = 0 Ω	Vi(tr)rms	8	11	14	mV
at R13 = 2,7 k Ω	Vi(tr)rms	18	28,5	40	mV
voltage difference for safe triggering/ non-triggering (r.m.s. value)	ΔV _{i(rms)}	_	1	- 1	mV
measured with interference pulses $f = 400 \text{ Hz}$ (see Fig. 3); peak value at R13 = 0 Ω	Viv		19		mV
at R13 = $2.7 \text{ k}\Omega$	V _{i(tr)} M		45		m V
Suppression pulse duration (note 2)	V _{i(tr)M}	24		20	
Suppression pulse duration (note 2)	t _S	24	27	30	μs

parameters	symbol	min.	typ.	max.	unit
Noise threshold feedback control (notes 1 and 3)	pulped ship high-	er at the t	bivib aga	ditive volt	dqsə fore
Noise input voltage (r.m.s. value) f = 120 kHz sinewave	n which $R_S = 2 \text{ k}$ n which $R_S = 2 \text{ k}$	WHUSH	13/Rg) : 13/Rg) :	$\{1 + 1\} = \{1 + 1\}$	V _{if} y
for $V_{12-9} = 300 \text{ mV} = 114 \text{ bits} = 110.0 \text{ s}$ at R13 = 0 Ω	V _{ni(rms)}	2,3	3,3	4,3	mV
at R13 = 2,7 kΩ	V _{ni(rms)}	netral sette i	8,2	feedback	mV
for $V_{12-9} = 425 \text{ mV } (V_{i(tr)O} + 3 \text{ dB})$ at R13 = 0 Ω	V-:/>	d R12), an be adu	7,3	mined by	mV
at R13 = 2,7 kΩ	Vni(rms)	21 076 860I	16,5	m a dalw a	mV
for $V_{12-9} = 560 \text{ mV} (V_{i(tr)O} + 20 \text{ dB})$ at R13 = 0 Ω	V _{ni} (rms)	33	45	57	mV
at R13 = 2,7 k Ω	Vni(rms)	F_R) 24	107	nazing+lot	mV
Amplification control voltage by interference intensity (note 4) $ \begin{array}{l} V_{i(rms)} = 50 \text{ mV}; f = 19 \text{ kHz}; \\ V_{i(tr)M} = 300 \text{ mV}; r.m.s. \text{value} \\ \text{at repetition frequency } f_r = 1 \text{ kHz} \\ \text{at repetition frequency } f_r = 16 \text{ kHz} \end{array} $	Vo6(rms)	49	mone so	56 65	mV mV
at repetition frequency Tr = 16 KHz	V _{o6} (rms)	45		00	mV

Notes to application information

 The interference suppression and noise feedback control thresholds can be determined by R13 or a capacitive voltage divider at the input of the high-pass filter and they are defined by the following formulae:

$$\begin{split} &V_{i(tr)} = (1 + R13/R_S) \times V_{i(tr)O} \text{ in which } R_S = 2 \text{ k}\Omega; \\ &V_{ni} = (1 + R13/R_S) \times V_{niO} \text{ in which } R_S = 2 \text{ k}\Omega. \end{split}$$

- 2. The suppression pulse duration is determined by C11 = 2,2 nF and R11 = 6,8 k Ω .
- 3. The characteristic of the noise feedback control is determined by R12 (and R10).
- 4. The feedback control of the interference suppression threshold at higher repetition frequencies is determined by R10 (and R12).
- 5. The 19 kHz generator can be adjusted with R₇₋₁₆ (and R₇₋₈). Adjustment is not required if components with small tolerances are used e.g. $\Delta R < 1\%$ and $\Delta C < 2\%$.
- 6. Measuring conditions:

The peak output noise voltage ($V_{\text{no m}}$, CCITT filter) shall be measured at the output with a deemphazing time T = 50 μ s (R = 5 k Ω , C = 10 nF); the reference value of 0 dB is $V_{\text{o int}}$ with the 19 kHz generator short-circuited (pin 7 grounded).

Fig. 3 Measuring signal for interference suppression; at the input (pin 1) a square-wave is applied with a duration of $t_{tr} = 10 \, \mu s$ and with rise and fall times $t_r = t_f = 10 \, ns$.

Fig. 4 Application circuit diagram.

Fig. 4 Application circuit disease,

RECORDING AND PLAYBACK AMPLIFIER

This integrated circuit incorporates all amplifier circuits necessary for the record/playback functions, with the exception of the audio power output amplifier. It comprises:

- a preamplifier for microphone or playback,
- a recording amplifier with automatic level control,
- a dynamic limiter with a short limiting time.

Compared to its predecessor TDA1002, this type features an improved automatic level control circuit; the control range has been enlarged from 40 to 55 dB and the spread in control characteristic has been reduced to less than 2 dB.

QUICK REFERENCE DATA

Supply voltage range	V _P		4 to 12	V
Operating ambient temperature	T _{amb}	-25 t	o + 125	oC
Total quiescent current (V _P = 9 V)	tot	typ.	15	mA
Preamplifier				
Input impedance (pin 1)	$ Z_i $	typ.	16	kΩ
Open loop gain	Go	typ.	70	dB
Clipping level (pin 4); Vp = 9 V; r.m.s. value	V4-5(rms)	typ.	2	V
Equivalent noise input voltage RS = 500 Ω ; B = 300 Hz to 15 kHz	V _{n(rms)}	<	0,75	μV
Recording amplifier				
Input impedance (pin 8)	$ Z_i $	typ.	40	kΩ
Open loop gain	Go	typ.	80	dB
Clipping level (pin 9); Vp = 9 V; r.m.s. value	V ₉₋₁₀ (rms)	typ.	2	٧
Automatic Level Control (A.L.C.)				
Input impedance (pin 6) at low signal level at pin 8 at high signal level pin 8	Z _i Z _i	typ.	250 25	kΩ Ω
Control voltage				
V ₄₋₅ = 10 mV; f = 1 kHz; V _P = 9 V V ₄₋₅ = 1000 mV; f = 1 kHz; V _P = 9 V	V9-10 V9-10	typ.	250 750	
Limiting time (Fig. 12)	t ₁	typ.	10	ms
Level setting time (Fig. 12)	t _s	typ.	4	S
Recovery time (Fig. 13)	tr	typ.	35	S

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage preamplifier V_{16-5} max. 12 V Supply voltage recording amplifier V_{15-10} max. 12 V

Total power dissipation see derating curve Fig. 2

Storage temperature T_{stg} -65 to + 125 °C

Operating ambient temperature Tamb —25 to + 125 °C

Fig. 2 Power dissipation derating curve.

D.C. CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified.

Supply voltage recording amplifier V₁₅₋₁₀ 4 to 12 V

Supply voltage preamplifier V₁₆₋₅ 4 to 12 V

Quiescent current preamplifier; Vp = 9 V I16 typ. 5 mA

Output voltage recording amplifier Vg.10 typ. ½ Vp V

Output voltage preamplifier V_{4-5} typ. ½ V_{p} –0,35 V

A 0	CIL	ADA	OTE	DICT	100
A.L.	LH.	ABB	CLE	RIST	16.5

 T_{amb} = 25 °C; V_P = 9 V unless otherwise specified. Subject A self-this sometroops at each problem.

Preamplifier (note 1)			recording	playba	
Open loop voltage gain	Go	typ.	70	70	dB
Closed loop voltage gain at f = 1 kHz	G _c	typ.	38	45	dB
Output voltage (clipping level); r.m.s. value	V4-5(rms)	typ.	2	2	٧
Equivalent noise input voltage; r.m.s. value (note 2)	·V _n	<	0,75	0,75	μV
Input impedance (pin 1)	Z _i	typ.	16	16	kΩ
Total harmonic distortion f = 1 kHz; V ₄₋₅ = 150 mV f = 1 kHz; V ₄₋₅ = 500 mV	d _t	typ.	0,2	0,12	%
Amplitude response		flat: 20	Hz to 20 kHz	see Fig	g. 7
Recording amplifier (Fig. 9)					
with A.L.C.; unless otherwise specified.					
Open loop gain	Go	typ.		80	dB
Closed loop voltage gain at f = 1 kHz (note 3)	G _C	typ.		49	dB
Output voltage (clipping level); r.m.s. value	V9-10(rms)	typ.		2	V
Input impedance pin 8	Z _i	typ.		40	kΩ
Input impedance pin 6 low signal levels high signal levels	Z _i Z _i	typ.		250 25	kΩ Ω
Total harmonic distortion		see Fig.	11 CTERISTIC!		
Amplitude response (note 3)		see Fig.	10		
Automatic level control (see Fig. 8)					
V ₄₋₅ = 10 mV; f = 1 kHz V ₄₋₅ = 100 mV; f = 1 kHz V ₄₋₅ = 1000 mV; f = 1 kHz V ₄₋₅ = 2000 mV; f = 1 kHz	V9-10 V9-10 V9-10 V9-10	typ.		450 750	mV mV mV
Limiting time (see Fig. 12)	t	typ.			ms
Level setting time (see Fig. 12)	t _s				S
Recovery time (see Fig. 13)				35	
100 101 1 101	t _r	typ.		35	2

Notes

- 1. For recording see Fig. 3; for playback see Fig. 5. 2. R_S = 500 Ω ; bandwidth = 300 Hz to 15 kHz. 3. Pin 6 not connected to pin 8.

Fig. 3 Preamplifier used as microphone amplifier.

Fig. 4 Total harmonic distortion of preamplifier used for recording.

Fig. 5 Preamplifier used for playback.

Fig. 6 Total harmonic distortion of preamplifier used for playback at V_{4-5} = 150 mV.

Fig. 7 Amplitude response of preamplifier used for playback; typical values. $0\ dB$ = input voltage of 0,3 mV at f = 333 Hz. Dotted line according to DIN 45513.

Fig. 8 Automatic level control; for circuitry see Fig. 9; f = 1 kHz.

Fig. 10 Amplitude response of recording amplifier (A.L.C. not connected).

Fig. 11 Total harmonic distortion recording amplifier with A.L.C.; f = 1 kHz.

t_I = limiting time.t_S = level setting time.

Fig. 12 Output response at input level jumps.

t_r = recovery time.

Fig. 13 Output response at input level jumps.

FREQUENCY MULTIPLEX PLL STEREO DECODER

The TDA1005A is a high quality PLL stereo decoder based on the frequency-division multiplex (f.d.m.) principle, performing:

- excellent ACI (Adjacent Channel Interference) and SCA (Storecast) rejection
- very low BFC (Beat-Frequency Components) distortion in the higher frequency region

The circuit incorporates the following features:

- with simplified peripheral circuitry the circuit can perform as a time-division multiplex (t.d.m.) decoder, for use in economic medium and low-class apparatus
- for car radios: operation at a supply voltage of 8 V
- extra pin for smooth mono/stereo take-over without "clicks"
- automatic mono/stereo switching (minimum switching level is 16 mV), controlled by both pilot signal and field strength level
- low distortion in the loop resonance frequency region (≈ 300 Hz; THD = 0,2% typ.)
- external adjustment for obtaining optimum channel separation in the complete receiver
- internal amplification: t.d.m., 7 dB; f.d.m., 10 dB
- driver for stereo indicator lamp
- externally switchable: VCO-off or mono condition
- guaranteed VCO capture range (> 3,5% or 2,7 kHz)

QUICK REFERENCE DATA

Supply voltage range	V ₈₋₁₆		8	to 18	V
Supply voltage Ambient temperature	V8-16 T _{amb}	typ.		15 25	oC oC
Measured at V _{i(p-p)} = 1 V (MUX signal with 8% pilot)		1	t.d.m.	f.d.m.	
Channel separation at f = 1 kHz Carrier suppression	α	typ.	50	55	dB
at f = 19 kHz	α19	typ.	36	36	dB
at f = 38 kHz	α38	typ.	45	40	dB
at f = 76 kHz	α76	typ.	80	75	dB
ACI rejection at f = 114 kHz	α114	typ.	52	70	dB
SCA rejection at f = 67 kHz	α67	typ.	85	90	dB
VCO capture range Total harmonic distortion		>	3,5	3,5	%
f _m = 1 kHz	THD	typ.	0,2	0,1	%
f _m = 300 Hz to 10 kHz	THD	typ.	0,2	0,1	%
BFC suppression	dBFC	>	40	60	dB

PACKAGE OUTLINES

TDA1005A; 16-lead DIL; plastic (SOT-38).

TDA1005AT; 16-lead flat pack; plastic (SO-16; SOT-109A).

Fig. 1 Block diagram.

RATINGS

Limiting values in acc	ordance with the Abso	olute Maximum S	vstem (IEC 134)
------------------------	-----------------------	-----------------	-----------------

3	 ,				
Supply voltage		V ₈₋₁₆	max.	18	V
Indicator lamp voltage		V ₁₅₋₁₆	max.	22	V
Mono/stereo switching voltage		V ₁₄₋₁₆	max.	4	V
Indicator lamp current		115	max.	100	mA
Indicator lamp turn-on current (peak value)		115M	max.	200	mA
Total power dissipation		see derat	ing curve	Fig. 2	
Storage temperature		T _{stg}	-55 to	+ 150	oC
Operating ambient temperature (see also Fig. 2)		T _{amb}	-25 to	+ 150	oC

Fig. 2 Power derating curve.

A.C. CHARACTERISTICS and APPLICATION INFORMATION

 T_{amb} = 25 °C; V_{8-16} = 15 V (unless otherwise specified); see also Fig. 7 and Fig. 10. 11 soulest arithmid

	note	pin	parameter		t.d.m.	f.d.m.	unit
Channel separation see Figs 23 and 24	1, 2	2, 3	α	> typ.	40 50	45 55	dB dB
F.M.—I.F. roll-off correction range	1, 2				48 to 72		kHz
Input MUX-voltage; L = 1; R = 1 for THD < 0,35%	1, 2	11	V _{i(p-p)}	typ.	a Le ¹ noerature	emperature g e ^l mbient	V
Input impedance		11	z _i	> typ.	35 50	35 50	kΩ kΩ
Voltage gain per channel	1, 2		G _V	typ.	7	10	dB
Channel balance	1, 2		± ΔG _V	<	10	005 1	dB
Output voltage (r.m.s. value) L = 1; R = 1	1, 2	2 3	V ₂₋₁₆ (rms) V ₃₋₁₆ (rms)	>	0,61 0,61	0,97 0,97	V V
Output impedance	3	2, 3	Z _o	typ.	5,6 4 to 7	5,6 4 to 7	kΩ kΩ
Total harmonic distortion; see Figs 25 and 26 f _m = 1 kHz (all conditions) f _m = 1 kHz; L = 1; R = 1 f _m = 300 Hz to 10 kHz	1	2, 3 2, 3 2, 3	THD THD THD	typ. < typ.	0,2 0,35 0,2	0,1 0,35 0,1	% % %
Carrier suppression f = 19 kHz; without notch filter f = 19 kHz; with notch filter f = 38 kHz; without notch filter	1,9	2, 3	α ₁₉ α ₁₉ α ₃₈	typ.	36 60 40 72	36 60 38 72	dB dB dB
f = 38 kHz; with notch filter f = 57 kHz; without notch filter f = 57 kHz; with notch filter	1, 9 1 1, 9		α38 α57 α57	typ.	46 59	56 61	dB dB
f = 76 kHz; without notch filter	1		α76	typ.	80	75	dB
ACI rejection at f = 114 kHz at f = 190 kHz	4	2, 3	^α 114 ^α 190	typ.	52 55	70 74	dB dB
SCA rejection at f = 67 kHz	5	2,3	α67	typ.	85	90	dB
Ripple rejection; $f = 100 \text{ Hz}$; V8-16(rms) = 200 mV			RR	> typ.	40 50	40 50	dB dB

	note	pin	paramete	er	t.d.m.	f.d.m.	unit
VCO; adjustable with R ₇₋₁₆ nominal frequency	6	(58	fvco	typ.	76	76	kHz
capture range (deviation from 76 kHz centre frequency) 19 kHz pilot signal of 32 mV	6		. V 81	>1-8	:Am 03,5	3,5	%
temperature coefficient uncompensated compensated	6		−TC ± TC	typ.	450.10 ⁻⁶ 200.10 ⁻⁶	450.10 ⁻⁶ 200.10 ⁻⁶	K ⁻¹ K ⁻¹
Stereo/mono switch when equal to 19 kHz pilot-tone threshold voltage; adjustable with R ₁₃₋₈	7	11	Vi		10 to 100	10 to 100	to me
when equal to threshold voltage at R $_{13-8}$ = 620 k Ω for switching to stereo for switching to mono	t ed ns	11	V _i V _i	<	7 to 16	7 to 16	mV mV
hysteresis and a Tiniq galagean	8	11	ΔVi	typ.	2,5	2,5	dB
Smooth take-over circuit full mono full stereo of physics of the stereo	8	6	V ₆₋₁₆	< >	0,65	0,65	V

Notes

- 1. $V_{i(p-p)} = 1 \text{ V (MUX signal with 8\% pilot level)}$.
- 2. $f_m = 1 \text{ kHz}$.
- 3. At supply voltages of 8 to 11 V, resistors of 5,6 k Ω have to be connected from ground to pins 2 and 3.
- 4. Measured with a composite input signal: L = R; f_m = 1 kHz; 90% M-signal; 9% pilot signal; 1% spurious signal of 110 kHz (for α_{114}) or 186 kHz (for α_{190}).

ACI suppression is defined as: $20 \log \frac{V_0 \text{ (at 4 kHz)}}{V_0 \text{ (at 1 kHz)}}$.

- 5. Measured with a composite input signal: L = R; $f_m = 1 \text{ kHz}$; 80% S-signal; 9% pilot signal; 10% SCA carrier (67 kHz); $d_{13} = 20 \log \frac{V_o \text{ (at 9 kHz)}}{V_o \text{ (at 1 kHz)}}$.
- 6. See also Figs 7 and 10; compensated with RC network on pin 7.
- 7. Adjustable with R_{13.8}; see also Fig. 28; for field strength dependent input (pin 14) see next page.
- 8. $\Delta V_i = 20 \log \frac{\sqrt{11-16} \text{ (inter-of-states)}}{V_{11-16} \text{ (stereo/mono)}}$

For additional circuitry on pin 6 see Figs 7 and 10; for graph see Fig. 29.

9. For example of notch filter see Fig. 6.

D.C. CHARACTERISTICS

Tamb = 25 °C; V₈₋₁₆ = 15 V (unless otherwise specified)

Supply voltage range

Total current (except indicator lamp)

Power dissipation (operating)

at lamp current I₁₅ = 100 mA; V₈₋₁₆ = 18 V

Saturation voltage of lamp driver

at I₁₅ = 100 mA

Maximum lamp driver voltage

Switching voltage

to mono to stereo

hysteresis

8 to 18 V * P_{tot} < 570 mW V₁₅₋₁₆ typ. 0,9 V 22 V V₁₄₋₁₆ > 1,2 V ** V14-16 < 0,65 V V14-16 typ.

APPLICATION NOTES

1. Switching-off the VCO

If the internal gain is used with A.M. reception, the VCO can be switched off by connecting pin 9 via a 100 k Ω resistor to ground (no h.f. signal on the leads), or connecting pin 7 to ground.

2. Mono button

The decoder can be switched to the mono position by connecting pin 12 to ground. The VCO then remains operational so this possibility cannot be used with A.M. reception.

3. Economic periphery

- a. For a fixed stereo switching level of ≤ 16 mV a resistor of 620 kΩ can be connected between pin 13 and positive supply (+) instead of a potentiometer in series with a resistor.
- b. The 10 k Ω resistor connected in parallel with the stereo indicator lamp can be omitted, however, some TDA1005A circuits will switch to mono during lamp failure.
- c. The 10 μ F capacitor in series with a 1 k Ω resistor at pin 9 can be decreased to a 1 μ F capacitor, bearing in mind that the distortion will increase, especially around loop resonance.
- d. A MUX-input filter is not needed, if i.f. roll-off starts at a frequency of 62 kHz.

4. Printed-circuit boards

For both the f.d.m. and t.d.m. stereo decoder circuits a printed-circuit board layout is given as an example (Figs 8 and 11). Also for an active filter, which is mainly used with a t.d.m. decoder, a printed-circuit board layout is given in Fig. 4. The plant and 182 plantage are properly drive electropic and the printed-circuit board layout is given in Fig. 4.

5. Notch filter

If attention has to be paid for suppression of the 57 kHz signal (T.W.S. = Traffic Warning System) and the 19 kHz signal, an input filter can be used as given in Fig. 6.

At supply voltages of 8 to 11 V, resistors of 5,6 k Ω have to be connected from ground to pins

^{**} Maximum voltage for safe operation: $V_{14-16} < 4 V$.

APPLICATION INFORMATION

Fig. 3 Active filter circuit diagram.

32GIO: 33GIO: 33

Fig. 4 Printed-circuit board component side, showing component layout.

Fig. 5 Printed-circuit board showing track side.

- (1) Transistor to achieve low impedance driving of notch filter.
- (2) 33 nF will give common mode suppression of 19 kHz.
- (3) Coil: TOKO 10 PA, 700 turns, ϕ 0,07 mm Cu; case type: P06-0114; drumcore: AN01-0021; base 5 pins type: 07-0084-02; core type CAN02-0029.

Fig. 6 Example of using a 19 kHz tuned notch filter; for other input structures see Figs 13 to 21.

- 1. For other input structures see Figs 13 to 21; shown here is with RC-filter (Fig. 15).
- 2. The micropoco capacitor has a temperature coefficient of $125.10^{-6} \pm 60.10^{-6}$ K⁻¹.
- 3. In simplified circuits a fixed resistor (e.g. 620 k Ω) can be used for a guaranteed switching level of \leq 16 mV.
- 4. Either the LED circuit or an external stereo indicator can be used.

Fig. 7 Basic application circuit of a frequency-division multiplex (f.d.m.) stereo decoder.

- 1. Positive supply (+ 15 V).
- 2. Left output.
- 3. Ground.
- 4. Right output.
- 5. Mono/stereo switch.
- 6. MUX input.
- 7. External stereo indicator.

Fig. 8 Printed-circuit board component side of an f.d.m. decoder, showing component layout. For circuit diagram see Fig. 7.

Fig. 9 Printed-circuit board showing track side.

Notes

- 1. For other input structures see Figs 13 to 21; shown here is with RC-filter (Fig. 15).
- 2. The micropoco capacitor has a temperature coefficient of 125.10⁻⁶ ± 60.10⁻⁶ °C⁻¹.
- 3. In simplified circuits a fixed resistor (e.g. 620 kΩ) can be used for a guaranteed switching level of ≤ 16 mV.
- 4. Either the LED circuit or an external stereo indicator can be used.

Fig. 10 Basic application circuit of a time-division multiplex (t.d.m.) stereo decoder.

- 1. Positive supply (+ 15 V).
- 2. Left output.
- 3. Ground.
- 4. Right output.
- 5. Mono/stereo switch.
- 6. MUX input.
- 7. External stereo indicator.

Fig. 11 Printed-circuit board component side of a t.d.m. decoder, showing component layout. For circuit diagram see Fig. 10.

Fig. 12 Printed-circuit board showing track side.

INPUT STRUCTURES (see also Figs 7 and 10)

Fig. 13 Without filtering.

Fig. 15 With RC-filter for achieving i.f. roll-off (typ. 62 kHz).

Fig. 14 Printed-circuit board component side, showing component layout of Fig. 13.

Fig. 16 Printed-circuit board component side, showing component layout of Fig. 15.

Fig. 17 With 19 kHz notch filter.

Fig. 18 Printed-circuit board component side, showing component layout of Fig. 17.

1,5kΩ BC547

6

Fig. 22 Printed-circuit board component side, showing component layout of Fig. 21.

time-division multiplex system; adjusted at 1 kHz (R4 in Fig. 10)

--- frequency-division multiplex system; adjusted at 1 and 5 kHz (R4 and R10 in Fig. 7)

Conditions: $V_{8-16} = 15 \text{ V}$; $V_{i(p-p)} = 1 \text{ V}$.

Note: RC-filter for simulating the i.f. roll-off (typ. 62 kHz).

Fig. 23 Channel separation as a function of frequency.

Fig. 24 Channel separation at f = 1 kHz as a function of resistance between pins 5 and 10 for a t.d.m. system. For test circuit see Fig. 23.

(1) Audible interferences (BFC-distortion) and desired 12 kHz signal.

(2)
$$d_{BFC} = 20 \log \frac{V_{BFC}}{V \text{ (at 12 kHz)}}$$

Fig. 26 Spectrum at the decoder outputs; A for t.d.m.; B for f.d.m. $V_{i(p-p)} = 1 \text{ V; R} = 1; L = 0;$ m = 90% for f = 12 kHz; m = 10% for f = 19 kHz.

Frequency multiplex PLL stereo decoder

Fig. 27 Typical values of the capture range of the oscillator as a function of the pilot threshold voltage at MUX-input.

 $V_{8-16} = 15 \text{ V}; \Delta f_{VCO} = f_{VCO} - 76 \text{ kHz}$ where: $f_{VCO} = \text{modulated}$, free-running oscillator frequency; $\Delta f_{VCO} = \text{maximum } f_{VCO}$ deviation which will be captured if pilot signal (pin 11) is switched-on.

Fig. 28 Pilot input voltage switching level (stereo 'on') as a function of resistance between pins 8 and 13.

Fig. 29 Channel separation as a function of V_{6-16} at 1 kHz (smooth take-over).

Fig. 29 Chennel separation as a function of Va. 16 at 1 kHz (smooth take-over).

6 W AUDIO POWER AMPLIFIER IN CAR APPLICATIONS 10 W AUDIO POWER AMPLIFIER IN MAINS-FED APPLICATIONS

The TDA1010A is a monolithic integrated class-B audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is primarily developed as a 6 W car radio amplifier for use with 4 Ω and 2 Ω load impedances. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 10 W. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- low-cost external components
- good ripple rejection
- thermal protection

QUICK REFERENCE DATA

Supply voltage range	VP	6 to	24 \	V
Repetitive peak output current	IORM	max.	3 /	Α
Output power at pin 2; d_{tot} = 10% V_P = 14,4 V_I R $_L$ = 2 Ω V_P = 14,4 V_I R $_L$ = 4 Ω V_P = 14,4 V_I R $_L$ = 8 Ω	Po Po Po	typ. 6	,4 \ ,2 \ ,4 \	W
V_P = 14,4 V; R_L = 2 Ω ; with additional bootstrap resistor of 220 Ω between pins 3 and 4	Po	typ.	9 \	W
Total harmonic distortion at $P_0 = 1 \text{ W}$; $R_L = 4 \Omega$	d _{tot}	typ.	,2 9	%
Input impedance preamplifier (pin 8) power amplifier (pin 6)	Z _i Z _i	1 10	30 H	
Total quiescent current at V _P = 14,4 V	Itot	typ.	31 r	mΑ
Sensitivity for $P_0 = 5.8 \text{ W}$; $R_L = 4 \Omega$	Vi	typ.	10 r	mV
Operating ambient temperature	T _{amb}	-25 to + 1	50	оС
Storage temperature	T _{stg}	-55 to + 1	50	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage VP max. 24 VP
Peak output current VP IOM max. 25 AT

Repetitive peak output current I ORM max. 3 A
Total power dissipation see derating curve Fig. 2

Storage temperature T_{stg} -55 to + 150 °C

Operating ambient temperature T_{amb} -25 to +150 °C

A.C. short-circuit duration of load during sine-wave drive;

without heatsink at $V_P = 14,4 \text{ V}$ max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume Vp = 14,4 V; RL = 2 Ω ; T_{amb} = 60 °C maximum; thermal shut-down starts at T_j = 150 °C. The maximum sine-wave dissipation in a 2 Ω load is about 5,2 W. The maximum dissipation for music drive will be about 75% of the worst-case sine-wave dissipation, so this will be 3,9 W. Consequently, the total resistance from junction to ambient

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{3,9} = 23 \text{ K/W}.$$

Since Rth j-tab = 10 K/W and Rth tab-h = 1 K/W,

$$R_{th h-a} = 23 - (10 + 1) = 12 \text{ K/W}.$$

D.C. CHARACTERISTICS				
Supply voltage range (ACT 031) mstry2 mumixeM studoedA s	V _P	6 to	24	V
Repetitive peak output current	IORM	< spario	3	A
Total quiescent current at Vp = 14,4 V	I _{tot}	typ.	31	mA
A.C. CHARACTERISTICS				
T_{amb} = 25 °C; V_P = 14,4 V; R_L = 4 Ω ; f = 1 kHz unless otherw	ise specified; see	also Fig. 3.		
A.F. output power (see Fig. 4) at d _{tot} = 10%; measured at pin 2; with bootstrap				
$V_P = 14,4 \text{ V; R}_L = 2 \Omega \text{ (note 1)}$	Po savin	typ.	6,4	W
V_P = 14,4 V; R _L = 4 Ω (note 1 and 2)	Po	(> typ.	5,9 6,2	
$V_P = 14.4 \text{ V}; R_L = 8 \Omega \text{ (note 1)}$	Po	typ.	3,4	W
$V_P = 14,4 \text{ V}; \text{ R}_L = 4 \Omega;$ without bootstrap	Po	typ.	5,7	W
$V_P = 14.4 \text{ V}$; $R_L = 2 \Omega$; with additional bootstrap	(W)			
resistor of 220 Ω between pins 3 and 4	Po	typ.	9	W
Voltage gain preamplifier (note 3)	₈ G _{v1}	typ. 21 to		dB dB
power amplifier	G _{v2}	typ. 27 to		dB dB
total amplifier	G _{v tot}	typ. 51 to	-	dB dB
Total harmonic distortion at P _O = 1 W	d _{tot}	typ.	0,2	%
Efficiency at P _o = 6 W	η	typ.	75	%
Frequency response (-3 dB)	В	80 Hz to	15	kHz
Input impedance preamplifier (note 4)	Z _i	typ. 20 to		$k\Omega$
power amplifier (note 5)	Z _i	typ. 14 to		
Output impedance of preamplifier; pin 7 (note 5)	Z _o	typ.		
Output voltage preamplifier (r.m.s. value)	or the substraint	14 to		
$d_{tot} < 1\%$ (pin 7) (note 3)	V _{o(rms)}			
Noise output voltage (r.m.s. value; note 6) $R_S = 0 \Omega$	V _{n(rms)}	typ.	0,3	mV
$R_S = 8.2 \text{ k}\Omega$	V _{n(rms)}	typ	0,7	mV mV
Ripple rejection at f = 1 kHz to 10 kHz (note 7) at f = 100 Hz; C2 = 1 μ F	RR RR	> >	42 37	dB
Sensitivity for P _O = 5,8 W	Vi	typ.		mV
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)	14(rms)	typ.		mA
	.,,			

6 W audio power amplifier in car applications 10 W audio power amplifier in realra-fed applications

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Up to $P_0 \le 3 \text{ W}: d_{tot} \le 1\%$.
- 3. Measured with a load impedance of 20 k Ω .
- 4. Independent of load impedance of preamplifier.
- 5. Output impedance of preamplifier ($\left| \ Z_{0} \right|$) is correlated (within 10%) with the input impedance (|Z_i|) of the power amplifier.
- 6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 7. Ripple rejection measured with a source impedance between 0 and 2 $k\Omega$ (maximum ripple amplitude:
- 8. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 4 Output power of the circuit of Fig. 3 as a function of the supply voltage with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. R_L = 2 Ω ⁽¹⁾ has been measured with an additional 220 Ω bootstrap resistor between pins 3 and 4. Measurements were made at f = 1 kHz, d_{tot} = 10%, T_{amb} = 25 °C.

Fig. 5 See next page.

Total harmonic distortion in the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. R_L = 2 Ω (1) has been measured with an additional 220 Ω bootstrap resistor between pins 3 and 4. Measurements were made at f = 1 kHz, Vp = 14,4 V.

Fig. 5 For caption see preceding page.

Fig. 6 Frequency characteristics of the circuit of Fig. 3 for three values of load impedance; typical values. P_0 relative to 0 dB = 1 W; V_P = 14,4 V.

Fig. 7 Total power dissipation (solid lines) and the efficiency (dashed lines) of the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter (for R $_{L}$ = 2 Ω an external bootstrap resistor of 220 Ω has been used); typical values. $V_p = 14.4 \text{ V}$; f = 1 kHz.

Fig. 8 Thermal resistance from heatsink to ambient of a 1,5 mm thick bright aluminium heatsink as a function of the single-sided area of the heatsink with the total power dissipation as a parameter.

336

Fig. 9 Complete mono audio amplifier of a car radio.

Fig. 10 Track side of printed-circuit board used for the circuit of Fig. 9; p.c. board dimensions 92 mm \times 52 mm.

Fig. 11 Component side of printed-circuit board showing component layout used for the circuit of Fig. 9.

Fig. 12 Complete stereo car radio amplifier.

Fig. 13 Track side of printed-circuit board used for the circuit of Fig. 12; p.c. board dimensions 83 mm \times 65 mm.

Fig. 14 Component side of printed-circuit board showing component layout used for the circuit of Fig. 12. Balance control is not on the p.c. board.

Fig. 15 Channel separation of the circuit of Fig. 12 as a function of the frequency.

Fig. 17 Complete mains-fed ceramic stereo pick-up amplifier; for power supply see Fig. 16.

Fig. 18 Track side of printed-circuit board used for the circuit of Fig. 17 (Fig. 16 partly); p.c. board dimensions 169 mm x 118 mm.

7Z77935

Fig. 19 Component side of printed-circuit board showing component layout used for the circuit of Fig. 17 (Fig. 16 partly).

Fig. 20 Channel separation of the circuit of Fig. 17 as a function of frequency.

2 TO 6 W AUDIO POWER AMPLIFIER

The TDA1011 is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The device can deliver up to 6 W into 4 Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the very low applicable supply voltage of 3,6 V permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V _P	3,6 to 20 \		
Peak output current	IOM	max.	3	Α
Output power at d_{tot} = 10% V_P = 16 V ; R_L = 4 Ω V_P = 12 V ; R_L = 4 Ω V_P = 9 V ; R_L = 4 Ω V_P = 6 V ; R_L = 4 Ω	Po Po Po Po	typ. typ. typ. typ.	6,5 4,2 2,3 1,0	W W
Total harmonic distortion at $P_0 = 1$ W; $R_L = 4 \Omega$ Input impedance	d _{tot}	typ.	0,2	%
preamplifier (pin 8) power amplifier (pin 6)	Z _i Z _i	> typ.	100 20	kΩ kΩ
Total quiescent current	I _{tot}	typ.	14	mA
Operating ambient temperature	T _{amb}	-25 to	+ 150	oC
Storage temperature	T _{stg}	-55 to	+ 150	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage V_P max. 24 V

Peak output current IOM max. 3 A

Total power dissipation see derating curve Fig. 2

Storage temperature $T_{stg} = -55 \text{ to } + 150 \text{ } ^{\circ}\text{C}$ Operating ambient temperature $T_{stg} = -25 \text{ to } + 150 \text{ } ^{\circ}\text{C}$

A.C. short-circuit duration of load during sine-wave drive; $V_P = 12 \text{ V}$ t_{SC} max. 100 hours

Fig. 2 Power derating curve. (2 ason) Sh &- (senoges) vansupor?

HEATSINK DESIGN

Assume $V_P = 12 \text{ V}$; $R_L = 4 \Omega$; $T_{amb} = 60 \text{ °C maximum}$; $P_0 = 3.8 \text{ W}$.

The maximum sine-wave dissipation is 1,8 W.

The derating of 10 K/W of the package requires the following external heatsink (for sine-wave drive):

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150-60}{1,8} = 50 \text{ K/W}.$$

Since $R_{th\ j-tab}$ = 10 K/W and $R_{th\ tab-h}$ = 1 K/W, $R_{th\ h-a}$ = 50 – (10+1) = 39 K/W.

D.C. CHARACTERISTICS					
Supply voltage range		VP	3,6		
Repetitive peak output curren		IORM	< 906		
Total quiescent current at Vp		I _{tot}	typ.	14	
se derating curve Fig. 2					
A.C. CHARACTERISTICS	= 4 O. f = 1 kHz uplace otherwise enocifi				
A.F. output power at $d_{tot} = 1$	$= 4 \Omega$; f = 1 kHz unless otherwise specifically (note 1)	led; see also			
with bootstrap:					
$V_P = 16 \text{ V; R}_L = 4 \Omega$		Po	typ.	6,5	W
$V_P = 12 \text{ V}; R_1 = 4 \Omega$		Po	>	3,6	W
			typ.	4,2	W
$V_P = 9 V; R_L = 4 \Omega$		Po	typ.	2,3	W
$V_P = 6 V; R_L = 4 \Omega$		Po	typ.	1,0	W
without bootstrap: $V_P = 12 \text{ V}; R_L = 4 \Omega$		Po	typ.	3,0	W
Voltage gain:			typ.	23	dB
preamplifier (note 2)	Juoritivi	G _{v1}		to 25	
power amplifier		G _{v2}	typ. 27	29 to 31	dB dB
total amplifier		G _{v tot}	typ. 50	52 to 54	dB dB
Total harmonic distortion at P	o = 1,5 W oor + 03+	d _{tot}	typ.	0,3	
Frequency response; -3 dB (n	Fig. 2 Power dentiting curve (E sto	В	60 Hz 1		
Input impedance:					
preamplifier (note 4)		Z _{i1}	> tvn	100	kΩ
power amplifier					
	ation is 1,8 W. package requires the following external in				
Output voltage preamplifier (r					
d _{tot} < 1% (note 2)		Vo(rms)	>011	0,7	V
R _S = 0 Ω	llue; note 5)	V _{n(rms)}	typ.	0,2	mV
$R_S = 10 \text{ k}\Omega$		V _{n(rms)}	typ.		mV mV
Noise output voltage at f = 500 B = 5 kHz; $R_S = 0 \Omega$) kHz (r.m.s. value)	V _{n(rms)}	typ		μV
Ripple rejection (note 6)		· II(IIIS)	-7 12.		
f = 1 to 10 kHz f = 100 Hz; C2 = 1 μF		RR RR	typ.		dB dB
Bootstrap current at onset of o	clipping; pin 4 (r.m.s. value)	14(rms)	typ.		mA

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k Ω .
- 3. Measured at $P_0 = 1$ W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 4. Independent of load impedance of preamplifier.
- 5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 6. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude : 2 V).
- 7. The tab must be electrically floating or connected to the substrate (pin 9).

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Track side of printed-circuit board used for the circuit of Fig. 4; p.c. board dimensions 62 mm \times 48 mm.

Fig. 7 Component side of printed-circuit board showing component layout used for the circuit of Fig. 4.

Fig. 8 Total harmonic distortion as a function of output power across R_L ; —— with bootstrap; -- without bootstrap; f = 1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 9 Output power across R $_{\rm L}$ as a function of supply voltage with bootstrap; d $_{\rm tot}$ = 10%; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 10 Voltage gain as a function of frequency; P_{O} relative to 0 dB = 1 W; V_{P} = 12 V; R_{L} = 4 Ω .

Fig. 11 Total harmonic distortion as a function of frequency; P_0 = 1 W; V_P = 12 V; R_L = 4 Ω .

Fig. 13 Noise output voltage as a function of R2 (see Fig. 4); measured according to A-curve; capacitor C5 is adapted for obtaining a constant bandwidth.

Fig. 14 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; $R_S = 0$; typical values.

Fig. 15 Voltage gain as a function of R2 (see Fig. 4).

Fig. 14. Noise output voltage as a function of frequency; curve at total amplifier; curve bt power amplifier; B = 5 kHz; B_S = 0; typical values.

Fig. 16 Voltage gain as a function of R2 (see Fig. 4).

2 TO 6 W AUDIO POWER AMPLIFIER

The TDA1011A is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The device can deliver up to 6 W into 4 Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the low applicable supply voltage of 5,4 V permits 9 V applications. The power amplifier has an inverted input/output which makes the circuit optimal for applications with active tone control and spatial stereo. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	VP	5,4 to	o 20	V
Peak output current	IOM	max.	3	Α
Output power at d_{tot} = 10% V_P = 16 V ; R_L = 4 Ω V_P = 12 V ; R_L = 4 Ω V_P = 9 V ; R_L = 4 Ω V_P = 6 V ; R_L = 4 Ω	Po Po Po Po	typ. typ. typ.	6,5 4,2 2,3	W
Total harmonic distortion at $P_0 = 1$ W; $R_L = 4$ Ω	d _{tot}	typ.	0,2	
Input impedance preamplifier (pin 8)	Z _i	>	100	kΩ
Total quiescent current	I _{tot}	typ.	14	mA
Operating ambient temperature	T _{amb}	-25 to +	150	оС
Storage temperature	T _{stg}	-55 to +	150	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage Manifest Supply voltage

Peak output current

Total power dissipation

Storage temperature

Operating ambient temperature

A.C. short-circuit duration of load during sine-wave drive; V_P = 12 V

Vp max. 24 V

I_{OM} max. 3 A

see derating curve Fig. 2

T_{stg} -55 to + 150 °C

T_{amb} -25 to + 150 °C

t_{sc} max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume V_P = 12 V; R_L = 4 Ω ; T_{amb} = 60 °C maximum; P_O = 3,8 W.

The maximum sine-wave dissipation is 1,8 W.

The derating of 10 K/W of the package requires the following external heatsink (for sine-wave drive):

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{1.8} = 50 \text{ K/W}.$$

Since $R_{th j-tab} = 10 \text{ K/W}$ and $R_{th tab-h} = 1 \text{ K/W}$, $R_{th h-a} = 50 - (10 + 1) = 39 \text{ K/W}$.

D.C. CHARACTERISTICS					
Supply voltage range (\$61,031) mai		V _P sbros	5,4	to 20	V
Repetitive peak output current		IORM	< 996	2	Α
Total quiescent current at V _P = 12 V		I _{tot}	typ.		
A.C. CHARACTERISTICS					
$T_{amb} = 25 {}^{\circ}\text{C}; V_P = 12 V; R_L = 4 \Omega; f$	= 1 kHz unless otherwi	ise specified; see also	Fig. 3.		
A.F. output power at dtot = 10% (note	1)				
with bootstrap:					
$V_P = 16 \text{ V}; R_L = 4 \Omega$		Po	typ.	6,5	W
$V_P = 12 \text{ V}; R_1 = 4 \Omega$		Po	>	3,6	
7770070 9			typ.	4,2	
$V_P = 9 V; R_L = 4 \Omega$		Po	typ.	2,3	
$V_P = 6 V; R_L = 4 \Omega$		Po	typ.	1,0	W
without bootstrap: $V_P = 12 \text{ V}; R_L = 4 \Omega$		Po.	typ.	3,5	W
Voltage gain: preamplifier (note 2)		G _{v1}	typ.	23 to 25	dB dB
power amplifier (note 3)		G _{v2}	typ.	29	dB
total amplifier (note 3)		G _{v tot}	typ.	52	dB
Total harmonic distortion at P _o = 1,5 W	heatsink /	d _{tot}	typ.	0,3	%
Frequency response; -3 dB (note 4)		В	60 Hz 1	to 15	kHz
Input impedance:				100	kΩ
preamplifier (note 5)		Z _{i1}	typ.	200	
Output impedance preamplifier		Z ₀₁	typ.		kΩ
Output voltage preamplifier (r.m.s. valu	. 2 Power derating ci(s)	Fig			
$d_{tot} < 1\%$ (note 2)		Vo(rms)	>	1,2	V
Noise output voltage (r.m.s. value; note $R_S = 0 \Omega$	6) 6 – 09 ;mumixism 30 0	0 = μTΩ 4 = 18	= 12 V		mV
$R_S = 10 \text{ k}\Omega$		Vn(rms)	typ.		mV
Noise output voltage at f = 500 kHz (r.)	equires the following sa	V _{n(rms)}	typ.		III V
$B = 5 \text{ kHz}$; $R_S = 0 \Omega$	m.s. value)	V _{n(rms)}	typ.	8	μV
Ripple rejection (note 6)		0.0	Ol =	40	10
$f = 1 \text{ to } 10 \text{ kHz}$ AAA RE = $(T + 0T) = 100 \text{ Hz}$; $C2 = 1 \mu\text{F}$		RR RR	typ.		dB dB
Bootstrap current at onset of clipping; p	nin 4 (r.m.s. value)				mA
		¹ 4(rms)	typ.		
Stand-by current at maximum V _P (note	0)	I _{sb}	<	100	μΑ

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k Ω .
- 3. Measured with R2 = 20 k Ω .
- Measured at P_O = 1 W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 5. Independent of load impedance of preamplifier.
- 6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 7. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude: 2 V).
- 8. The total current when disconnecting pin 5 or short-circuited to ground (pin 9).
- 9. The tab must be electrically floating or connected to the substrate (pin 9).

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Total harmonic distortion as a function of output power across R_L ; —— with bootstrap; -- without bootstrap; f = 1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 7 Output power across R_L as a function of supply voltage with bootstrap; d_{tot} = 10%; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C1

Fig. 8 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; $R_S = 0$; typical values.

RECORDING / PLAY-BACK AND 2 W AUDIO POWER AMPLIFIER

The TDA1012 is a monolithic integrated audio power amplifier, preamplifier and A.L.C. circuit designed for applications in radio-recorders and recorders. The wide supply voltage range makes this circuit very suitable for d.c. and a.c. apparatus. The circuit is thermal protected and contains the following functions:

- Power amplifier
- Preamplifier
- · Automatic Level Control (A.L.C.) circuit
- Voltage stabilizer

QUICK REFERENCE DATA

Supply voltage range	6	VP	3,6 1	to 18 V
Total quiescent current at $V_p = 9 V$		I _{tot}	typ.	14 mA
Power amplifier				
Output power at $d_{tot} = 10 \%$ V _P = 9 V; R _L = 4 Ω		Po	typ.	2 W
Closed loop voltage gain		Gc	typ.	36 dB
Preamplifier				
Open loop voltage gain		Go	>+	66 dB
Minimum closed loop voltage gain		G _{c min}		31 dB
Output voltage at d _{tot} = 1 %		Vo	>	2 V
Automatic Level Control (A.L.C.)				
Gain variation for $\Delta V_i = 40 \text{ dB}$		ΔG_V	typ.	2 dB
Stabilized supply voltage				

PACKAGE OUTLINE

Output voltage

16-lead DIL; plastic with internal heat spreader (SOT-38WE-2).

V₁₁₋₁₅

typ.

4,2 V

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 4)

Non-repetitive peak output current (pin 2)

Storage temperature Crystal temperature

Total power dissipation

A.C. short-circuit duration of load during sine-wave drive; Vp = 12 V $V_{P} = V_{4-1}$

IOSM

max. 18 V

2 A

max.

Tstg T_{c}

-55 to +150 °C max. 150 °C

see derating curve Fig. 2

 t_{SC}

max. 100 hours

Fig. 2 Power derating curve.

THERMAL RESISTANCE

From junction to ambient

Rth j-a

= 55 K/W 86 04 = VA to 98

4 W AUDIO POWER AMPLIFIER WITH D.C. VOLUME CONTROL

The TDA1013A is a monolithic integrated audio amplifier circuit with d.c. volume control in a 9-lead single in-line (SIL) plastic package. The wide supply voltage range makes this circuit very suitable for applications in mains-fed apparatus such as television receivers and record players.

The d.c. volume control stage has a logarithmic control characteristic with a range of more than 80 dB; control can be obtained by means of a variable d.c. voltage between 3,5 and 8 V.

The audio amplifier has a well defined open loop gain and a fixed integrated closed loop gain. This offers an optimum in number of external components, performance and stability.

The SIL package (SOT-110B) offers a simple and low-cost heatsink connection,

QUICK REFERENCE DATA

	Viadu	STIE MIDIE DI	MODERAL	961 (.1.)
Supply voltage range	V _P	15	to 35	٧
Repetitive peak output current	IORM	max.	1,5	Α
Total sensitivity (d.c. control at max. gain) for Po = 2,5 W	dt dtivV:nebu	tvn	55	mV
Audio amplifier		age.		Suppl
Output power at d _{tot} = 10%				
$V_P = 18 \text{ V}; R_L = 8 \Omega$	Po	typ.	4,5	W
Total harmonic distortion at $P_0 = 2.5 \text{ W}$; $R_L = 8 \Omega$	d _{tot}	typ.	0,5	%
Sensitivity for P _O = 2,5 W	Vi	typ.	125	mV
D.C. volume control unit				
Gain control range	φ	NE ISBO	80	dB
Signal handling at dtot < 1% (xsen) 00 031 = 11 ((xsen) 00 031				
(d.c. control at 0 dB)	V _i	Series Se	1,2	V
Sensitivity for V _O = 125 mV at max. voltage gain	Vi	typ.	55	mV
Input impedance (pin 8) = US = VS = VS = VS = US = US = US = US	ma IZila da	typ.	250	kΩ

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

(1) Belongs to power supply.

Fig. 1 Basic application diagram also used as test circuit with R1 = 5.1 k Ω and C1 = 22 nF.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V _P	max.	35	V
Non-repetitive peak output current	IOSM	max.	3	Α
Repetitive peak output current	IORM	max.	1,5	Α
Storage temperature	a = .a ·w a c = T _{stg}	-55 to	+ 150	oc
Crystal temperature	Ti	-25 to	+ 150	oc
Total power dissipation	see dera	ting curve	Fig 2	

HEATSINK DESIGN

Assume $V_P = 18 \text{ V}$; $R_L = 8 \Omega$; $T_{amb} = 60 \text{ °C (max.)}$; $T_i = 150 \text{ °C (max)}$; for a 4 W application into an 8 Ω load, the maximum dissipation is about 2,5 W.

The thermal resistance from junction to ambient can be expressed as:

$$R_{th \ j-a} = R_{th \ j-tab} + R_{th \ tab-h} + R_{th \ h-a} = \frac{T_{j \ max} - T_{amb \ max}}{P_{max}} = \frac{150 - 60}{2,5} = 36 \text{ K/W}.$$

Since $R_{th i-tab} = 9$ K/W and $R_{th tab-h} = 1$ K/W, $R_{th h-a} = 36 - (9 + 1) = 26$ K/W.

CHARACTERISTICS

 $V_P = 18 \text{ V}$; $R_L = 8 \Omega$; f = 1 kHz; $T_{amb} = 25 \text{ °C}$; unless otherwise specified

Supply voltage	VP	typ. 18 V 15 to 35 V
Total quiescent current	I _{tot}	typ. 35 mA
Noise output voltage (see also note)	Vn	< 1,4 mV
Total sensitivity (d.c. control at maximum gain) for $P_0 = 2.5 \text{ W}$	Vi	38 to 69 mV typ. 55 mV
Frequency response (-3 dB) (4 db) (V slovanco niego soulav leology T E g) 3	f	35 Hz to 20 kHz

Audio amplifier

Repetitive peak output current	IORM	<	1,5	Α
Output power at d _{tot} = 10%	P_{O}	> typ.	4 4,5	W
Total harmonic distortion at P _O = 2,5 W	d_{tot}	typ.	0,5 1	% %
Voltage gain	G_V	typ.	30	dB
Sensitivity for P _O = 2,5 W	Vi	typ.	125	m۷
Input impedance (pin 5)	$ Z_i $	> typ.	100 250	$k\Omega \\ k\Omega$

Note

Measured in a bandwidth according to IEC 179-curve 'A'; $R_S = 5 \text{ k}\Omega$ and d.c. control at minimum gain.

CHARACTERISTICS (continued)

D.C. volume control unit				
Gain control range (see also Fig. 3)	φ	>	80	dB
Signal handling at d _{tot} < 1% (d.c. control at 0 dB)	Vi	>	1,2	٧
Sensitivity for V _O = 125 mV at max. voltage gain	Vi	typ.	55	mV
Input impedance (pin 8)	Z _i	> typ.	100 250	
Output impedance (pin 6)	Z ₀	100 to typ.	400 200	

Fig. 3 Typical values gain control; V_i at pin 7,

1 TO 4 W AUDIO POWER AMPLIFIER

The TDA1015 is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The very low applicable supply voltage of 3,6 V permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	VP		3,6 to 18	V
Peak output current	IOM	max.	2,5	Α
Output power at d_{tot} = 10% V_P = 12 V; R_L = 4 Ω V_P = 9 V; R_L = 4 Ω V_P = 6 V; R_L = 4 Ω	Po Po Po	typ. typ. typ.	4,2 2,3 1,0	W
Total harmonic distortion at $P_0 = 1$ W; $R_L = 4$ Ω Input impedance preamplifier (pin 8) power amplifier (pin 6)	d _{tot}	typ.	0,3 100 20	
Total quiescent current	I _{tot}	typ.	14	mΑ
Operating ambient temperature	Tamb	-25	to + 150	oC
Storage temperature	T _{stg}	-55	to + 150	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

374

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

Vp max. 18 V 2,5 A

Peak output current

Storage temperature

Total power dissipation

max. IOM

see derating curve Fig. 2

T_{stg} Tamb

-55 to + 150 °C -25 to + 150 °C

Operating ambient temperature A.C. short-circuit duration of load

during sine-wave drive; Vp = 12 V

t_{sc} max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $V_P = 12 \text{ V}$; $R_L = 4 \Omega$; $T_{amb} = 45 \, ^{\circ}\text{C}$ maximum.

The maximum sine-wave dissipation is 1,8 W.

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 45}{1.8} = 58 \text{ K/W}.3 \text{ scon (sufer a min) specified suggests)}$$

Where Rth i-a of the package is 45 K/W, so no external heatsink is required.

D.C. CHARACTERISTICS				
Supply voltage range	VP	3,6	to 18	V
Repetitive peak output current	IORM	< 900	2	
Total quiescent current at V _P = 12 V	I _{tot nois}		25	mA mA
A.C. CHARACTERISTICS				
T_{amb} = 25 °C; V_P = 12 V; R_L = 4 Ω ; f = 1 kHz unless otherwise specific				
A.F. output power at d _{tot} = 10% (note 1) with bootstrap:				
$V_{p} = 12 \text{ V}; R_{L} = 4 \Omega$	Po	typ.	4,2	W
$V_P = 9 V$; $R_L = 4 \Omega$	Po	typ.	2,3	W
$V_P = 6 V; R_L = 4 \Omega$	Po	typ.	1,0	W
without bootstrap: $V_P = 12 \text{ V}; R_L = 4 \Omega$	P _o a	typ.	3,0	W
Voltage gain: preamplifier (note 2)	G _{v1}	typ.	23	dB
power amplifier	G _{v2}	typ.	29	dB
total amplifier	G _{v tot}	typ.	52 to 55	dB dB
Total harmonic distortion at Po = 1,5 W	d _{tot}	typ.	0,3	
Frequency response; –3 dB (note 3)	В	60 Hz 1	to 15	kHz
Input impedance: 1081+ 081+ 08+ - preamplifier (note 4)	0 85- Z _{i1}	> typ.	100	
power amplifier	Z _{i2}	typ.	20	kΩ
Output impedance preamplifier	Z ₀₁	typ.	. 1	kΩ
Output voltage preamplifier (r.m.s. value) $d_{tot} < 1\% \text{ (note 2)}$	V _{o(rms)}	typ.	0,8	٧
Noise output voltage (r.m.s. value; note 5) NOLESS = SA - OST = and diff	R _{th} tab-ln [±]			
$R_S = 0 \Omega$	V _{n(rms)}	typ.	0,2	mV
$R_S = 10 \text{ k}\Omega$. Destupes at Anti-english required, which is very so no extended in the state of the stat	Vn(rms)	typ.	0,5	mV
Noise output voltage at f = 500 kHz (r.m.s. value) B = 5 kHz; R _S = 0 Ω	V _{n(rms)}	typ.	8	μV
Ripple rejection (note 6) f = 100 Hz	RR	typ.	38	dB

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k Ω .
- Measured at P_O = 1 W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 4. Independent of load impedance of preamplifier.
- 5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 6. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude : 2 V).
- 7. The tab must be electrically floating or connected to the substrate (pin 9).

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 1 to 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Total harmonic distortion as a function of output power across R_L ; —— with bootstrap; — — without bootstrap; f = 1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 7 Output power across R_L as a function of supply voltage with bootstrap; $d_{tot} = 10\%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 8 Voltage gain as a function of frequency; P_0 relative to 0 dB = 1 W; V_P = 12 V; R_L = 4 Ω .

Fig. 9 Total harmonic distortion as a function of frequency; $P_0 = 1 \text{ W}$; $V_P = 12 \text{ V}$; $R_L = 4 \Omega$.

Fig. 10 Ripple rejection as a function of R2 (see Fig. 4); $R_S = 0$; typical values.

Fig. 11 Noise output voltage as a function of R2 (see Fig. 4); measured according to A-curve; capacitor C5 is adapted for obtaining a constant bandwidth.

Fig. 12 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; R_S = 0; typical values.

Fig. 13 Voltage gain as a function of R2 (see Fig. 4).

RECORDING/PLAYBACK AND 2 W AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

The TDA1016 is a monolithic integrated audio power amplifier, preamplifier and A.L.C. circuit designed for applications in radio-recorders and recorders. The wide supply voltage range makes this circuit very suitable for d.c. and a.c. apparatus. The circuit incorporates the following features:

Features

- Power amplifier/monitor amplifier
- Preamplifier/record and playback amplifier
- Automatic Level Control (A.L.C.) circuit
- Voltage stabilizer
- Short-circuit (up to 12 V a.c.) and thermal protection.

QUICK REFERENCE DATA

Supply voltage range		Vp	3,6	6 to 15	V
Supply current; total quiesc	ent at $V_P = 6 V$	I _{tot}	typ.	10	mA
Operating ambient temperat	ture range	T _{amb}	-25	to 150	oC
Power amplifier					
Output power at $d_{tot} = 10\%$ Vp = 6 V; RL = 4 Ω	ó	Po	typ.	1	W
$V_P = 9 V; R_L = 4 \Omega$		meresib Porta I	typ.	2	W
Closed loop gain		G _c	typ.	36	dB
Preamplifier					
Open loop gain		Go	min.	70	dB
Minimum closed loop voltag	ge gain	G _{c min}	min.	35	dB
Output voltage at d _{tot} = 1%		Vo	min.	1	V
Automatic Level Control (A	.L.C.)				
Gain variation for $\Delta V_i = 40$	dB	ΔG_V	typ.	2	dB
Stabilized supply voltage					
Output voltage		V ₅₋₁₆	typ.	2,6	V

PACKAGE OUTLINE

16-lead DIL; plastic, with internal heat spreader (SOT-38WE-2).

Fig. 1 Block diagram with external components; also used as test circuit.

RATING									
			e with the	Absolute N	Maximum	System (IEC 134)			
Supply	voltage (pi	n 3)				VP	max.	18	V
Repetiti	ve peak or	tput curr				IORM	max.	1	Α
Non-rep	etitive pea	k output	current (p	in 1)		IOSM	max.	2	A
Total power dissipation						see dera	iting curve Fi	g. 2	
	ort-circuit								
	ave drive;		-			t _{sc}	max.		
	temperatur					T _c	max.	150	
	temperatu					T _{stg}	-55 to		
Operatir	ng ambient	temperat	ure range			T _{amb}	-25 to	+ 150	oC
THERM	AL RESIS	TANCE							
The pow	ver deratin	g curve (F	ig. 2) is ba	ased on the	following	data			
	nction to a		_	diot		W 8.0 = Rth i.a	ifnots <u>il</u> sinor	55	K/V
ΩM						til j-a		igmi fi	agni
			04 ₃			7280256			
			3			m.s. value)			
			Ptot	(Spring)		to 15 kHz			
			(w)			500 KHz			
			2	- nV					
			7.0	60		at f = 10 kHz			
			-1						
						mag spetic			
			35	nim o					
			1	bV.		198			
			-50	0	50				
				Fig 2 Pau	ou douation	T _{amb} (°C)			
					er deratir	ng curve.			
	ε.								

CHARACTERISTICS

 V_P = 6 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = 25 ^{o}C ; measured in test circuit Fig. 1; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 3)	(1 si	q) memu	sugue s	leag evirire	ger-ne
Supply voltage	VP	3,6	6	15	V
Supply current; total quiescent at Vp = 6 V	I _{tot}	sub bsol t	10	rt-circuit d ave d u ivt; \	m.A
Power amplifier					
Output power at d _{tot} = 10%* V _P = 6 V	Po	ออูกรา ธาน		amperetur g am <u>b</u> lent	
V _P = 9 V	Po	_	2 2	AL RESIS	W
Closed loop voltage gain	Gc	(a. 2) ts b	36	er deratino	dB
Total harmonic distortion at P _O = 0,5 W	d _{tot}	_		e or nation	%
Input impedance	Zi	0,5	-	_	MS
Ripple rejection at $f = 100 \text{ Hz}$ (R _S = 0 Ω)	RR	40	50	-	dB
Noise output voltage (r.m.s. value) $R_S = 0 \Omega$; B = 60 Hz to 15 kHz	V _{n(rms)}	-	90	200	μV
Noise output voltage at 500 kHz $R_S = 0 \Omega$; B = 5 kHz	Vn	(101)	8	-	μV
Preamplifier					
Open loop voltage gain at f = 10 kHz	Go	70	78		dB
Closed loop voltage gain	Gc	-1-	52	_	dB
Minimum closed loop voltage gain (when changing R _f)	G _{c min}	35	_	_	dB
Output voltage at d _{tot} = 1%	Vo	1	-	-	V
Output voltage with A.L.C. $V_i = 2 \text{ mV}$	Vo	0,45	0,5	0,55	V
Total harmonic distortion with A.L.C. $V_i = 2 \text{ mV}$	d _{tot}	_		1	%
V _i = 360 mV	d _{tot}		_	3	%
Signal-to-noise ratio related to $V_i = 1,2 \text{ mV}$; $R_S = 1 \text{ k}\Omega$; $B = 60 \text{ Hz}$ to 15 kHz	S/N	_	60		dB
Input impedance	Zi	100	4	_	kΩ
Ripple rejection at $f = 100 \text{ Hz}$; $R_S = 0 \Omega$	RR	50	54		dB
Output impedance **	Z ₀			50	Ω

Measured with an ideal coupling capacitor connected to the speaker load.
 ** Ip (effective value) must not exceed 1 mA.

parameter	symbol	min.	typ.	max.	unit
Automatic Level Control (A.L.C.) (see Fig. 3) **					
Gain variation for $\Delta V_i = 45 \text{ dB}$	ΔG_V	_	2	3	dB
Limiting time*	tį	- 3	****	50	ms
Level setting time*	ts	_	-	50	ms
Recovery time* ▲	t _r	-	100	-	S
Voltage stabilizer					
Output voltage	V11-15	-	2,6	-	V
Load current	111	-	-	1,5	m.A
Ripple rejection at f = 100 Hz	RR	40	-		dB

Fig. 3 Typical A.L.C. curve with R_S = 10 k Ω .

- * At ΔV_i = 40 dB with respect to V_i = 1,2 mV. ** A.L.C. tracking in stereo anode pin 6 interconnected to an RC, time constant has a typical spread within 7 dB.
- ▲ Without a shunt resistor across A.L.C. With 1 M Ω or 2,2 M Ω across A.L.C. recovery time becomes 22 or 50 seconds.

Output voltage			

CHOI = 48 diliu avaira C A A tealayT S aid

- DON'T FOR A CONTRACTOR OF THE STATE OF THE S
- A.L.C. tracking in stereo anode pin 6 interconnected to an RC, time constant has a typical spread within 7 d8.
 - Without a shunt go later across A.L.C.
 - With T MIZ et 3,2 MSz sotosz A,L.C. recovery time becomes 22 or 50 seconds.

12 W CAR RADIO POWER AMPLIFIER

The TDA1020 is a monolithic integrated 12 W audio amplifier in a 9-lead single in-line (SIL) plastic package. The device is primarily developed as a car radio amplifier. At a supply voltage of V_P = 14,4 V, an output power of 7 W can be delivered into a 4 Ω load and 12 W into 2 Ω .

To avoid interferences and car ignition signals coming from the supply lines into the IC, frequency limiting is used beyond the audio spectrum in the preamplifier and the power amplifier.

The maximum supply voltage of 18 V makes the IC also suitable for mains-fed radio receivers, tape recorders or record players. However, if the supply voltage is increased above 18 V (< 45 V), the device will not be damaged (load dump protected). Also a short-circuiting of the output to ground (a.c.) will not destroy the device. Thermal protection is built-in. As a special feature, the circuit has a low stand-by current possibility.

The TDA1020 is pin-to-pin compatible with the TDA1010.

QUICK REFERENCE DATA

Supply voltage range	VP	(6 to 18	V
Repetitive peak output current	IORM	<	4	Α
Output power at d_{tot} = 10% (with bootstrap) V_P = 14,4 V_r R _L = 2 Ω	Po	> typ.		W
$V_{P} = 14.4 \text{ V}; R_{L} = 4 \Omega$ $V_{P} = 14.4 \text{ V}; R_{L} = 8 \Omega$	Po	typ.	7 3,5	W
Output power at d_{tot} = 10% (without bootstrap) V_P = 14,4 V; R_L = 4 Ω	P _O	>	4,5	W
Input impedance preamplifier (pin 8) power amplifier (pin 6)	Z _i Z _i	typ.		kΩ kΩ
Total quiescent current at V _P = 14,4 V	I _{tot}	typ.	30	mΑ
Stand-by current	I _{sb}	<	1	mΑ
Storage temperature range	T _{stg}	−55 to	+ 150	oC
Storage temperature range Crystal temperature	T _C	max.	150	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

390

Fig. 1 Internal block diagram; the heavy lines indicate the signal paths.

PINNING

- 1. Negative supply (substrate)
- 2. Output power stage
- 3. Positive supply (Vp)
- 4. Bootstrap
- 5. Ripple rejection filter
- 6. Input power stage
- 7. Output preamplifier
- 8. Input preamplifier
- 9. Negative supply

RATINGS

Limiting values in accordance with the Absolute Maximum Sys	tem (IEC 134)		
Supply voltage; operating (pin 3)	VP	max.	18 V
Supply voltage; non-operating	V _P	max.	28 V
Supply voltage: load dump	Vp	max.	45 V

Supply voltage; load dump Vp max. 45 V
Non-repetitive peak output current I_{OSM} max. 6 A

Total power dissipation see derating curves Fig. 2

Storage temperature range of the storage temperature $T_{stg} = T_{stg} = -55 \text{ to} + 150 \text{ }^{\circ}\text{C}$ Crystal temperature $T_{c} = T_{c} =$

Short-circuit duration of load behind output electrolytic capacitor at 1 kHz sine-wave overdrive (10 dB); Vp = 14,4 V

t_{sc} max. 100 hours

Fig. 2 Power derating curves.

HEATSINK DESIGN EXAMPLE

The derating of 8 K/W of the encapsulation requires the following external heatsink (for sine-wave drive):

10 W in 2 Ω at $V_P = 14,4 \text{ V}$

maximum sine-wave dissipation: 5,2 W

T_{amb} = 60 °C maximum

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{5.2} = 17.3 \text{ K/W}$$

Since R_{th j-tab} + R_{th tab-h} = 8 K/W, R_{th h-a} = 17,3 - 8 \approx 9 K/W.

D.C. CHARACTERISTICS				
Supply voltage range (pin 3) 10311 mstav2 mumixal4 stuloadA an	VP	6 to	18	V
Repetitive peak output current	IORM	<q0 (egs)10<="" td=""><td>4</td><td>A</td></q0>	4	A
Total quiescent current at Vp = 14,4 V at Vp = 18 V		typ.	30	
A.C. CHARACTERISTICS				
T_{amb} = 25 °C; V_P = 14,4 V; R_L = 4 Ω ; f = 1 kHz; unless otherwis	e specified: see	also Fig 3		
Output power at d _{tot} = 10%; with bootstrap (note 1)	e specified, see	stuteream		
$V_P = 14.4 \text{ V; } R_L = 2 \Omega$	bolide Posel to	> typ.		W
			15E	138
$V_{P} = 14.4 \text{ V}; R_{L} = 4 \Omega$	Po	> typ.	_	W
$V_{p} = 14.4 \text{ V; R}_{1} = 8 \Omega$	Po		3,5	
Output power at d _{tot} = 1%; with bootstrap (note 1)	'0	cyp.	0,0	**
$V_P = 14.4 \text{ V}; R_L = 2 \Omega$	Po	typ.	9,5	W
$V_{P} = 14.4 \text{ V}; R_{L} = 4 \Omega$	Po	typ.	6	W
$V_{P} = 14,4 \text{ V}; R_{L} = 8 \Omega$	Po	typ.	3	W
Output voltage (r.m.s. value)				
$R_L = 1 \text{ k}\Omega$; $d_{tot} = 0.5\%$	Vo(rms)	typ.	5	V
Output power at d _{tot} = 10%; without bootstrap	Po	> "	4,5	W
Voltage gain preamplifier (note 2)	G _{v1}	typ. 17		dB dB
power amplifier	G _{v2}	typ. 29 28,5 to 30		dB dB
total amplifier	G _{v tot}	typ. 46,2 to 48		dB dB
Input impedance		tun	10	kΩ
preamplifier 081 000 00	Zi 0	typ. 28 to		
power amplifier	$ z_i $	typ. 28 to	-	$k\Omega$
Output impedance preamplifier	Z _o AX	typ. 2		
power amplifier	Z _o	typ.	50	mΩ
Output voltage (r.m.s. value) at dtot = 1%		> gV ts G	1	1/
preamplifier (note 2)	Vo(rms)	typ.	1.5	V
Frequency response	В	50 Hz to		
Noise output voltage (r.m.s. value; note 3)				
$R_S = 0 \Omega$ What $R_S = 8 - 8 = 0 \Omega$	V _{n(rms)}			mV mV
		typ. (1 5	mV

Ripple rejection (note 4)				
at f = 100 Hz; C2 = 1 μ F	RR	typ.	44	dB
at f = 1 kHz to 10 kHz	RR	> typ.		dB dB
Bootstrap current at onset of clipping (pin 4)				
$R_L = 4 \Omega$ and 2Ω	14	typ.	40	mΑ
Stand-by current (note 5)	I _{sb}	<	1	mΑ
Crystal temperature for -3 dB gain	T_{c}	>	150	oC

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 40 k Ω .
- 3. Measured according to IEC curve-A.
- 4. Maximum ripple amplitude is 2 V; input is short-circuited.
- 5. Total current when disconnecting pin 5 or short-circuited to ground (pin 9).
- 6. The tab must be electrically floating or connected to the substrate (pin 9).

(1) With R $_{L}$ = 2 $\Omega,$ preferred value of C8 = 2200 $\mu F.$

Fig. 3 Test circuit.

48 dB 54 dB	typ,		
150 ec			Crystal temperature for -3 d8 gain

Notes

- 1. Measured with an Ideal coupling espacitor to the speaker load.
 - DI UP to resistence of the Datum Barusasiu A
 - 3. Measured according to IEC curve-A.
 - 4. Maximum ripple amplitude is 2 V; input is short-circuited
- 5. Total current when disconnecting pin 5 or short circuited to ground (pin 9).
 - . The tab must be electrically floating or connected to the substrate (nin 9).

1) With Ru = 2 O. preferred value of CR = 2200 u.F.

Fig. 3 Test dircuit.

SIGNAL-SOURCES SWITCH

The TDA1029 is a dual operational amplifier (connected as an impedance converter) each amplifier having 4 mutually switchable inputs which are protected by clamping diodes. The input currents are independent of switch position and the outputs are short-circuit protected.

The device is intended as an electronic two-channel signal-source switch in a.f. amplifiers.

QUICK REFERENCE DATA

Supply voltage range (pin 14)		VP	6	to 23	V
Operating ambient temperature		T _{amb}	-30 to	+ 80	oC
Supply voltage (pin 14)		VP	typ.	20	V
Current consumption		114	typ.	3,5	mΑ
		Ŋ			
Maximum input signal handling (r.m.s. value)		V _{i(rms)}	typ.	6	V
Voltage gain		G_V	typ.	1	
Total harmonic distortion		d _{tot}	typ.	0,01	%
Crosstalk		α	typ.	70	dB
Signal-to-noise ratio		S/N	typ.	120	dB
SONTJOY NORTHOD	30A1.10		7		

Fig. 1. Sheek diseases

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

16-lead DLL; plastic (SOT-38).

RATINGS					
Limiting values in accordance with the Absol	ute Maximum System (IEC 134)			
Supply voltage (pin 14)		VP	max.	23	Voltavy
Input voltage (pins 1 to 8)		VI	max.	VP	
		$-V_{I}$	max.	0,5	V
Switch control voltage (pins 11, 12 and 13)		VS		0 to 23	٧
Input current		# II has 6	max.	20	mA
Switch control current		-I _S	max.	50	mA
Total power dissipation		P _{tot}	max.	800	mW
Storage temperature		T _{stg}	-55	to + 150	oC
Operating ambient temperature		Tamb	-30	to +80	oC .
CHARACTERISTICS					
V _P = 20 V; T _{amb} = 25 °C; unless otherwise s	specified				
Current consumption				35	mA
without load; $I_9 = I_{15} = 0$		114	typ.	2 to 5	
Supply voltage range (pin 14)		V_{P}		6 to 23	V
Signal inputs					
Input offset voltage					
of switched-on inputs $R_S \le 1 \text{ k}\Omega$		Vio	typ.	_	mV
118 1 1832		V 10	<	10	mV
Input offset current		15, 8-9	typ.	20	nA
of switched-on inputs		lio	<	200	
Input offset current					
of a switched-on input with respect to a		E-8 61	typ.	20	nA
non-switched-on input of a channel		lio	<	200	nA
Input bias current			typ.	250	nΑ
independent of switch position		lį	<	950	
Capacitance between adjacent inputs		С	typ.	0,5	pF
D.C. input voltage range		VI		3 to 19	V
Supply voltage rejection ratio; $R_S \le 10 \text{ k}\Omega$		SVRR	typ.	100	$\mu V/V$
Equivalent input noise voltage				(1) REMOVE	
$R_S = 0$; $f = 20$ Hz to 20 kHz (r.m.s. value)		V _{n(rms)}	typ.	3,5	μV
Equivalent input noise current f = 20 Hz to 20 kHz (r.m.s. value)		In(rms)	typ.	0,05	nA
Crosstalk between a switched-on input		To the			
and a non-switched-on input;			INDITE.	. lauran	LOW
measured at the output at R _S = 1 k Ω ; f = 1	1 KHZ	α	typ.	100	dB

CHARACTERISTICS (continued)

Signal amplifier

Voltage gain of a switched-on input	
at Ig = I ₁₅ = 0; R _L = ∞	
Current gain of a switched-on amplifier	

G _V	typ.		
Gi	typ.	10 ⁵	

Signal outputs

Ro	typ.	400	Ω
± 19; ± 1 ₁₅	typ.	5	mA
f	typ.	1,3	MHz
S	typ.	2	V/μs
		± lg; ± l ₁₅ typ. f typ.	$\pm lg; \pm l_{15}$ typ. 5 f typ. 1,3

Bias voltage

D.C. output voltage	V10-16 typ.			
Output resistance	R ₁₀₋₁₆	typ.	8,2 kΩ	

Switch control

switched-on	interconnected	control voltages					
inputs	pins	V11-16	V ₁₂₋₁₆	V ₁₃₋₁₆			
I-1, II-1	1-15, 5-9	Н	Н	Н			
1-2, 11-2	2-15, 6-9	Н	Н	L 20			
1-3, 11-3	3-15, 7-9	Н	L	High			
1-4, 11-4	4-15, 8-9	L	Н	Н			
1-4, 11-4	4-15, 8-9	L	s or Linearing	H.			
1-4, 11-4	4-15, 8-9	L	Hammaria	a to tikini a			
1-4, 11-4	4-15, 8-9	L	L	L			
1-3, 11-3	3-15, 7-9	Н	L	L			

In the case of offset control, an internal blocking circuit of the switch control ensures that not more than one input will be switched on at a time. In that case safe switching-through is obtained at $V_{SL} \le 1,5 \text{ V}$.

Control inputs (pins 11, 12 and 13)

Required voltage
HIGH
LOW
Input current
HIGH (leakage current)
LOW (control current)

-ISL

* V₁₀₋₁₆ is typically 0,5·V₁₄₋₁₆ + 1,5·V_{BE}.

** Or control inputs open (R_{11,12,13-16} > 33 M Ω).

$V_P = 20 \text{ V}$; $T_{amb} = 25 {}^{\circ}\text{C}$; measured in Fig. 1; $R_S = 47 {}^{\circ}\text{K}\Omega$;	$C_i = 0.1 \mu F$; R _{bias}	= 470 ks	Ω; RL	= 4,7 k
C _L = 100 pF (unless otherwise specified)				1.6 / 1
Voltage gain	G _V	typ.	-1,5	dB
Output voltage variation when switching	ΔV9-16;	typ.	10	mV
the inputs	ΔV ₁₅₋₁₆	<	100	
Total harmonic distortion				
over most of signal range (see Fig. 4)	d _{tot}	typ.	0,01	%
V _j = 5 V; f = 1 kHz	d _{tot}	typ.	0,02	%
$V_i = 5 \text{ V}; f = 20 \text{ Hz to } 20 \text{ kHz}$	d _{tot}	typ.	0,03	%
Output signal handling		>	5,0	\/
d _{tot} = 0,1%; f = 1 kHz (r.m.s. value)	Vo(rms)	typ.	5,0	
N :		Lyp.	5,5	V
Noise output voltage (unweighted) f = 20 Hz to 20 kHz (r.m.s. value)	V	tvn	5	μV
	V _{n(rms)}	typ.	5	μν
Noise output voltage (weighted)			10	\/
f = 20 Hz to 20 kHz (in accordance with DIN 45405)	Vn	typ.	12	μV
Amplitude response	ΔV9-16;			100 %
$V_i = 5 \text{ V}$; f = 20 Hz to 20 kHz; $C_i = 0.22 \mu\text{F}$	ΔV15-16	<	0,1	dB *
Crosstalk between a switched-on input	,,,,			
and a non-switched-on input;				
measured at the output at f = 1 kHz	α	typ.	75	dB **
Crosstalk between switched-on inputs				
and the outputs of the other channels	α	typ.	90	dB **

^{*} The lower cut-off frequency depends on values of R_{bias} and C_i.

** Depends on external circuitry and R_S. The value will be fixed mostly by capacitive crosstalk of the external components.

Fig. 2 Equivalent input noise current.

Fig. 3 Equivalent input noise voltage.

Fig. 4 Total harmonic distortion as a function of r.m.s. output voltage. — f = 1 kHz; — \cdot — \cdot f = 20 kHz.

Fig. 6 Noise output voltage as a function of input resistance; $G_V = 1$; t = 20 Hz to 20 GHz - V_D (output): - - - - V_D (Fig.)

Fig. 5 Output voltage as a function of supply voltage.

Fig. 6 Noise output voltage as a function of input resistance; $G_V = 1$; f = 20 Hz to 20 kHz. V_n (output); $- - - V_n$ (RS).

APPLICATION NOTES

Input protection circuit and indication

Fig. 7 Circuit diagram showing input protection and indication.

Unused signal inputs

Any unused inputs must be connected to a d.c. (bias) voltage, which is within the d.c. input voltage range; e.g. unused inputs can be connected directly to pin 10.

Circuits with standby operation

The control inputs (pins 11, 12 and 13) are high-ohmic at $V_{SH} \le 20 \text{ V (I}_{SH} \le 1 \mu\text{A})$, as well as, when the supply voltage (pin 14) is switched off.

Fig. 8 TDA1029 connected as a four input stereo source selector.

10

+ 100 μF (15 V)

BIAS

VOLTAGE

mute

SWITCH

CONTROL

12

rumble

filter

subsonic

7Z84185

on

Fig. 10 TDA1029 connected as a third-order active high-pass filter with Butterworth response and component values chosen according to the method proposed by Fjällbrant. It is a four-function circuit which can select mute, rumble filter, subsonic filter and linear response.

Switch control

function	V11-16	V12-16	V13-16
linear	Н	н	Н
subsonic filter 'on'	Н	Н	L
rumble filter 'on'	Н	10 L	X
mute 'on'	L	X	X

kΩ

January 1980 406

Fig. 11 Frequency response curves for the circuit of Fig. 10.

Fig. 11 Frequency response curves for the circuit of Fig. 10.

MOTOR SPEED REGULATOR WITH THERMAL SHUT-DOWN

The TDA1059B is a monolithic integrated circuit with a current limiter and with good thermal characteristics in a TO-126 plastic package for easy mounting. It is intended to regulate the speed of d.c. motors in record players, cassette recorders and car cassette recorders.

QUICK REFERENCE DATA

		As un	9 V
Supply voltage	$V_{P} = V_{2-1}$	typ.	,3 to 16 V
Internal reference voltage	V _{ref}	typ.	1,3 V
Drop-out voltage	V ₃₋₁	typ.	1,8 V
Limited output current	l3lim	typ.	0,6 A
Multiplication coefficient	k	typ.	9

PACKAGE OUTLINE

Fig. 1 TO-126 (SOT-32).

Pin 1 connected to metal part of mounting surface.

Dimensions in mm

(1) Within this region the cross-section of the leads is uncontrolled.

Fig. 2 Functional diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

Storage temperature

Operating ambient temperature (see Fig. 3 and note)

 $V_{P} = V_{2-1}$

max. 16 V

T_{stg} -55 to + 150 °C

T_{amb} -25 to + 130 °C

THERMAL RESISTANCE

From junction to case

From junction to ambient

 $R_{th j-c}$ = 10 K/W $R_{th j-a}$ = 100 K/W

Fig. 3 Power derating curve.

Note

At ambient temperatures above 130 $^{\rm oC}$, the crystal temperature limiter decreases the internal power consumption.

CHARACTERISTICS

 V_P = 9 V; T_{amb} = 25 °C; R20 = 0; heatsink with R_{th} = 100 K/W and after thermal stabilization; unless otherwise specified; see test circuit Fig. 4.

		min.	typ.	∨ max.	
Supply voltage	$V_P = V_{2-1}$	3,3	9	16	V
Internal reference voltage Vp = 3,3 V; I ₃ = 80 mA	V_{ref}	1,24	1,3	1,36	V
Drop-out voltage $I_3 = 80 \text{ mA}; \Delta V_{ref} = 5\%$	V ₃₋₁	5.18 <u>1</u> 815	1,8	2,06	V
Quiescent current; I ₃ = 0	Ia	1,8	2,3	2,8	mA
Limited output current*	l _{3lim}	0,3	0,6	1	Α
Multiplication coefficient I ₃ = 50 mA ± 10 mA	$k = \frac{\Delta l_3}{\Delta l_2}$	8,5	9	9,5	
Line regulation $V_P = 3.3 \text{ to } 16 \text{ V at } I_3 = 50 \text{ mA}$	ΔV ¢		ZE -	R20	
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta V_{P}$	-0,115	0	+0,115	%/V
multiplication coefficient variation $I_3 = 50 \pm 10 \text{ mA}$	$\frac{\Delta k}{k}/\Delta V_{p}$	_	0,86	-(%/V
input current variation; I ₃ = 50 mA	$\frac{\Delta I_2}{\Delta V_p}$	-15	0	+ 20	μA/V
Load regulation			11		
reference voltage variation I ₃ = 20 to 80 mA	$\frac{\Delta V_{ref}}{V_{ref}}$ / ΔI_3	0	19	38,5	%/A
multiplication coefficient variation $l_3 = 30 \pm 10$ to 70 ± 10 mA	$\frac{\Delta k}{k} / \Delta l_3$	-0,075	0	+ 0,075	%/mA
Temperature coefficient $I_3 = 50 \text{ mA}$; $T_{amb} = -15 \text{ to } +65 \text{ °C}$					
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}}$ / ΔT_{amb}	-0,03	0	+ 0,03	%/K
multiplication coefficient variation $\Delta I_3 = \pm 10 \text{ mA}$	$\frac{\Delta k}{k} / \Delta T_{amb}$	o re ant	0,008	-	%/K
input current variation	$\frac{\Delta I_2}{\Delta T_{amb}}$	-2	0	+ 2	μΑ/Κ

^{*} If the motor is stopped by a mechanical brake, the current limitation is effective in the supply voltage range. If the motor is short-circuited, the TDA1059B will be damaged if the supply voltage is higher than 10 V due to parasitic oscillations.

Fig. 4 Test circuit.

Note

For start operation: V_{ref} must start with final $V_P = 6.7 V$ and a time constant of $3 \tau = 100 \text{ ms}$ in which τ = R.C; R = source impedance, C = by-pass capacitor.

(2) Motor example (without diode D):

Catalogue no. 9904 120 01806; n = 2000 rev/min; R20 = 180 Ω (± 2%); R32 = 100 Ω + 100 Ω (variable).

Fig. 5 Example of using the TDA1059B in a d.c. motor speed regulation circuit,

Motor equations

 $E_m = \alpha_1 n$ where: α_1 , α_2 = motor constant n = n number of revolutions

 $R_{m} = motor\ resistance$ The back electromotive force (E_m) in Fig. 5 can be expressed (excluding diode D) as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + V_{ref} \left\{1 + \frac{R20}{R32} \left(1 + \frac{1}{k}\right)\right\} + R20.I_{o}$$

and including diode D, as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + \left(V_{ref} + V_{D}\right) \left\{1 + \frac{R20}{R32} \left(1 + \frac{1}{k}\right)\right\} + R20.I_{O}$$

Speed regulation is constant when $E_{\rm m}$ is independent of $I_{\rm m}$ variations; this will be obtained when R20 = $kR_{\rm m}$.

 $\rm E_m$, and therefore the motor speed, is regulated by R32. A practical condition for stability is R20 < kR $_m$.

$$l_m = E_m + R_m l_m$$

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + V_{ref} \left\{ 1 + \frac{R20}{R32} \left(1 + \frac{1}{k}\right) \right\} + R20 I_{0}$$

$$E_m = \left(\frac{R20}{k} - R_m\right) I_m + \left(V_{ref} + V_D\right) \left\{1 + \frac{R20}{R32} \left(1 + \frac{1}{k}\right)\right\} + R20 I_0$$

MOTOR SPEED REGULATOR

The TDA1059C is a monolithic integrated circuit with a current limiter and with good thermal characteristics in a TO-126 plastic package for easy mounting. It is intended to regulate the speed of d.c. motors in record players, cassette recorders and car cassette recorders.

QUICK REFERENCE DATA					
Suppy voltage	100	1	V _P = V ₂₋₁	typ.	9 V to 16 V
Internal reference voltage			V _{ref}	typ.	1,1 V
Drop-out voltage			V ₃₋₁	typ.	1,0 V
Limited output current			¹ 3lim	typ.	0,6 A
Multiplication coefficient			k	typ.	9

PACKAGE OUTLINE

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

Pin 1 connected to metal part of mounting surface.

(1) Within this region the cross-section of the leads is uncontrolled.

Fig. 2 Functional diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

max.

16 V

Storage temperature

Tstg

-55 to + 150 °C

Operating ambient temperature (see Fig. 3)

Tamb

-25 to + 150 °C

THERMAL RESISTANCE

From junction to case

From junction to ambient

Rth j-c Rth j-a

10 K/W 100 K/W

Fig. 3 Power derating curve.

CHARACTERISTICS

 $V_P = 9 \text{ V; } T_{amb} = 25 \, ^{\circ}\text{C; } R20 = 0$; heatsink with $R_{th} = 100 \text{ K/W}$ and after thermal stabilization; unless otherwise specified; see test circuit Fig. 4

		min.	typ.	max	* T 21
Supply voltage	$V_{P} = V_{2-1}$	2,5	9	15	V
Internal reference voltage $V_P = 2.5 \text{ V}; I_3 = 80 \text{ mA}$	V_{ref}	1,05	1,1	1,15	V
Drop-out voltage $I_3 = 80 \text{ mA}$; $\Delta V_{ref} = 2\%$	V ₃₋₁	274791.1	1,03	1,25	V
Quiescent current; I ₃ = 0	I_q	2,2	2,7	3,2	mA
Limited output current	l _{3lim}	0,3	0,45	1	Α
Multiplication coefficient $I_3 = 50 \text{ mA} \pm 10 \text{ mA}$	$k = \frac{\Delta l_3}{\Delta l_2}$	8,5	FAMRO 1	9,5	
Line regulation Vp = 2,5 to 15 V at I ₃ = 50 mA	A.V		hy V	R20	
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}}/\Delta V_{P}$	0,04	0,18	0,22	%/V
multiplication coefficient variation I ₃ = 50 ± 10 mA	$\frac{\Delta k}{k}/\Delta V_{P}$	-	0,86	1100	%/V
input current variation; I ₃ = 50 mA	$\frac{\Delta I_2}{\Delta V_P}$	0	15	30	μΑ/۷
Load regulation					
reference voltage variation I ₃ = 20 to 80 mA	$\frac{\Delta V_{ref}}{V_{ref}}/\Delta I_3$	0	30	45,5	%/A
multiplifaction coefficient variation $l_3 = 30 \pm 10$ to 70 ± 10 mA	$\frac{\Delta k}{k}/\Delta l_3$	-	0,04	-	%/mA
Temperature coefficient I ₃ = 50 mA; T _{amb} = -15 to +65 °C				,	
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}}/\Delta T_{amb}$	-0,036	0	+0,036	%/K
multiplication coefficient variation $\Delta I_3 = \pm 10 \text{ mA}$	$\frac{\Delta k}{k}/\Delta T_{amb}$	29801	0,008	-	%/K
input current variation	$\frac{\Delta I_2}{\Delta T_{amb}}$	_	4	-	μΑ/Κ

(1) Inclusion of D(8A220) is arbitrary; it permits compensation of unclasses of the mater resistant

(2) Motor example (without dipite D):

Note

For start operation: V_{ref} must start with final $V_p = 6$ V and a time constant of 3 $\tau = 100$ ms in which $\tau = R.C.$; R = source impedance, C = by-pass capacitor.

Fig. 4 Test circuit.

(2) Motor example (without diode D):

Catalogue no. 9904 120 01806; n = 2000 rev/min; R20 = 180 Ω (± 2%); R32 = 39 Ω + 47 Ω (variable).

Fig. 5 Example of using the TDA1059C in a d.c. motor speed regulation circuit.

Motor equations

 $E_m = \alpha_1 n$ where: α_1 , α_2 = motor constant n = number of revolutions

 $I_{m} = \alpha_{2}r$ $n = number of revo}$ r = motor torque

 $V_m = E_m + R_m I_m$ $E_m = back electromotive force$

R_m = motor resistance

The back electromotive force (E_m) in Fig. 5 can be expressed (excluding diode D) as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + V_{ref} \left\{1 + \frac{R20}{R32}\left(1 + \frac{1}{k}\right)\right\} + R20.I_{o}$$

and including diode D, as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + \left(V_{ref} + V_{D}\right) \left\{1 + \frac{R20}{R32}\left(1 + \frac{1}{k}\right)\right\} + R20. I_{O}$$

Speed regulation is constant when E_m is independent of I_m variations; this will be obtained when R20 = kR_m .

 E_{m} , and therefore the motor speed, is regulated by R32. A practical condition for stability is R20 \leq k R_{m}

$$E_m = \left(\frac{R20}{k} - R_m\right) I_m + V_{rigit} \left[1 + \frac{R20}{R32}\left(1 + \frac{1}{k}\right)\right] + R20. I_0$$

$$E_{m} = \left(\frac{820}{k} - R_{m}\right) I_{m} + \left(V_{ref} + V_{D}\right) \left[1 + \frac{820}{822} \left(1 + \frac{1}{k}\right)\right] + 820 I_{o}$$

AM RECEIVER CIRCUIT

GENERAL DESCRIPTION

The TDA1072A integrated AM receiver circuit performs the active and part of the filtering functions of an AM radio receiver. It is intended for use in mains-fed home receivers and car radios. The circuit can be used for oscillator frequencies up to 50 MHz and can handle r.f. signals up to 500 mV. R.F. radiation and sensitivity to interference are minimized by an almost symmetrical design. The voltage-controlled oscillator provides signals with extremely low distortion and high spectral purity over the whole frequency range even when tuning with variable capacitance diodes. If required, band switching diodes can easily be applied. Selectivity is obtained using a block filter before the i.f. amplifier.

Features

- Inputs protected against damage by static discharge
- · Gain-controlled r.f. stage
- Double balanced mixer
- Separately buffered, voltage-controlled and temperature-compensated oscillator, designed for simple coils
- Gain-controlled i.f. stage with wide a.g.c. range
- Full-wave, balanced envelope detector
- Internal generation of a.g.c. voltage with possibility of second-order filtering
- Buffered field strength indicator driver with short-circuit protection
- · A.F. preamplifier with possibilities for simple a.f. filtering
- Electronic standby switch

QUICK REFERENCE DATA

and the second s			4.1	200
Supply voltage range	VP	7,5 t	o 18	V
Supply current range	1 _P	15 t	o 30	mA
R.F. input voltage for $S + N/N = 6 dB$ at $m = 30\%$	Vi	typ.	1,5	μV
R.F. input voltage for 3% total harmonic CVA FM - FLAT VOCCOSA 20XXV distortion (THD) at m = 80%				
A.F. output voltage with V_i = 2 mV; f_i = 1 MHz; m = 30% and f_m = 400 Hz and at a work enough more	Vo(af)	typ.	310	mV
A.G.C. range: change of V _i for 1 dB change of V _{O(af)}		typ.	86	dB
Field strength indicator voltage at $V_i = 500 \text{ mV}$; $R_{L(9)} = 2.7 \text{ k}\Omega$	V _{IND}	typ.	2,8	V

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

(1) Coil data: TOKO sample no. 7XNS-A7523DY; L1 : N1/N2 = 12/32; Q_0 = 65; Q_B = 57. Filter data: Z_F = 700 Ω at R_{3-4} = 3 k Ω ; Z_1 = 4,8 k Ω .

Fig. 1 Block diagram and test circuit (connections shown in broken lines are not part of the test circuit).

FUNCTIONAL DESCRIPTION

Gain-controlled r.f. stage and mixer? printing Maximum Rating Paging Space with the Absolute Pa

The differential amplifier in the r.f. stage employs an a.g.c. negative feedback network to provide a wide dynamic range. Very good cross-modulation behaviour is achieved by a.g.c. delays at the various signal stages. Large signals are handled with low distortion and the S/N ratio of small signals is improved. Low noise working is achieved in the differential amplifier by using transistors with low base resistance.

A double balanced mixer provides the i.f. output signal to pin 1.

Oscillator

The differential amplifier oscillator is temperature compensated and is suitable for simple coil connection. The oscillator is voltage-controlled and has little distortion or spurious radiation. It is specially suitable for electronic tuning using variable capacitance diodes. Band switching diodes can easily be applied using the stabilized voltage V_{11-16} . An extra buffered oscillator output (pin 10) is available for driving a synthesizer. If this is not needed, resistor R_{1} (10) can be omitted.

Gain-controlled i.f. amplifier

This amplifier comprises two cascaded, variable-gain differential amplifier stages coupled by a band-pass filter. Both stages are gain-controlled by the a.g.c. negative feedback network.

Detector

The full-wave, balanced envelope detector has very low distortion over a wide-dynamic range. Residual i.f. carrier is blocked from the signal path by an internal low-pass filter.

A.F. preamplifier

This stage preamplifies the audio frequency output signal. The amplifier output has an emitter follower with a series resistor which, together with an external capacitor, yields the required low-pass for a.f. filtering.

A.G.C. amplifier

The a.g.c. amplifier provides a control voltage which is proportional to the carrier amplitude. Second-order filtering of the a.g.c. voltage achieves signals with very little distortion, even at low audio frequencies. This method of filtering also gives fast a.g.c. settling time which is advantageous for electronic search tuning. The a.g.c. settling time can be further reduced by using capacitors of smaller value in the external filter (C16 and C17). The a.g.c. voltage is fed to the r.f. and i.f. stages via suitable a.g.c. delays. The capacitor at pin 7 can be omitted for low-cost applications.

Field strength indicator output

A buffered voltage source provides a high-level field strength output signal which has good linearity for logarithmic input signals over the whole dynamic range. If the field strength information is not needed, R₁ (9) can be omitted.

Standby switch

This switch is primarily intended for AM/FM band switching. During standby mode the oscillator, mixer and a.f. preamplifier are switched off.

Short-circuit protection

All pins have short-circuit protection to ground.

RATINGS

Limiting values in accordance with the Absolute Maxin	num Rating System (IEC	134)		
Supply voltage	$V_P = V_{13-16}$	max.	20	V
Total power dissipation	P _{tot}	max.	875	mW
Input voltage	IV ₁₄₋₁₅ I	max.	12	V
	-V ₁₄₋₁₆ , -V ₁₅₋₁₆	max.	0,6	V
	V14-16, V15-16	max.	VP	V
Input current	114 , 115	max.	200	mA
Operating ambient temperature range	T _{amb}	-40 to	+80	oC
Storage temperature range	T _{stg}	-55 to	+ 150	oC
Junction temperature	zed voltage VereniTAn a	max.	+ 125	oC

THERMAL RESISTANCE

From junction to ambient

Rth j-a

driving a synthesizer, if this is not needed, resistor RL(10) can be omitted.

= 80 K/W

DEVICE CHARACTERISTICS

 $V_P = V_{13-16} = 8,5 \text{ V; } T_{amb} = 25 \text{ °C; } f_i = 1 \text{ MHz; } f_m = 400 \text{ Hz; } m = 30\%; \\ f_{if} = 460 \text{ kHz; } measured in test circuit of Fig. 1; unless otherwise specified$

parameter mail as a wol is	symbol of rose is	min.	typ.	max.	unit
Supplies				reiffilg	F. pream
Supply voltage and appropriations of Talan	V _P = V ₁₃₋₁₆	7,5	8,5	18	V
Supply current	Ip = I ₁₃	15	23	30	mA
R.F. stage and mixer					
Input voltage (d.c. value)	V14-16, V15-16	_	Vp/2	TOSTERC	V .0.0
R.F. input impedance at $V_i < 300 \mu V$	R14-16, R15-16	tica s es toctiou	5,5	sitrigmi s To boi	kΩ
	C ₁₄₋₁₆ , C ₁₅₋₁₆	n or lit to	25	n a nd i	pF
R.F. input impedance at V _i > 10 mV	R14-16, R15-16	ne a <u>q</u> c	8	earch_t	kΩ
	C ₁₄₋₁₆ , C ₁₅₋₁₆	is of U)	22	nnesxe :	pF
I.F. output impedance	R ₁₋₁₆	500	-	-	kΩ
	C ₁₋₁₆	-rusp	6	il <u>wi</u> daj	pF
Conversion transconductance before start of a.g.c.	In Vivb slore and	provide is av a	6,5	egstlov g ri okni	mA/V
Maximum i.f. output voltage, inductive coupling to pin 1	V _{1-13(p-p)}	,loest	5	160 (0).	R ,bebs
D.C. value of output current (pin 1) at $V_i = 0$ V	Tabasa MalimA no	<u>b</u> abna	1,2	ritoin is pr <u>ir</u> m	mA
A.G.C. range of input stage		6/8 918	30	a.f. pres	dB
R.F. signal handling capability: input voltage for THD = 3% at m = 80%	Vi(rms)	Total Control	500	it prote	mV

parameter	symbol (beunitme	min.	typ.	max.	unit V
Oscillator year and animal hode	1/2			16	demicrac
Frequency range	fosc	0,6	-	60	MHz
Oscillator amplitude (pins 11 to 12)	V ₁₁₋₁₂	_	130	150	mV
External load impedance	R _{12-11(ext)}	0,5	1000	200	kΩ
External load impedance for no oscillation	R _{12-11(ext)}	-	-	60	Ω
Ripple rejection at V _{P(rms)} = 100 mV; f _P = 100 Hz	V V			ngest	by-ttc
$(RR = 20 \log [V_{13-16}/V_{11-16}])$	RR	-V.0	55	<u>16</u> 1000	dB
Source voltage for switching diodes (6 x V _{BE})	V ₁₁₋₁₆	20 V	4,2	r <u>entari</u>	VIII
D.C. output current (for switching diodes)	-111	0	TOAR	20	mA
Change of output voltage at $\Delta I_{11} = 20$ mA (switch to maximum load)	ΔV ₁₁₋₁₆	<u>r</u> oc.	0,5	L= i	ERATIN V= B.5V
Buffered oscillator output				-	
D.C. output voltage	V ₁₀₋₁₆	_	0,7	_	V
Output signal amplitude	V ₁₀₋₁₆ (p-p)	_	320	V Jiviti	mV
Output impedance	R ₁₀	p i pt in	170	e n ion di	Ω
Output current	-I10(peak)	-11 1	7/1/8/	3	mA
I.F., a.g.c. and a.f. stages	V Ho da =	21 21 1 2	1011 02	mbar at	100
D.C. input voltage	V ₃₋₁₆ , V ₄₋₁₆	- 12	2,0	ble la fu	V
I.F. input impedance	R ₃₋₄ C ₃₋₄	2,4	3 7	3,9	kΩ pF
I.F. input voltage for THD = 3% at m = 80%	V ₃₋₄	1 <u>E</u> = m	90	T 38 J.	mV
Voltage gain before start of a.g.c.	V ₃₋₄ /V ₆₋₁₆	= m ;c	68	11 76 11	dB
A.G.C. range of i.f. stages: change of V ₃₋₄ for 1 dB change of V _{0(af)} ;		Descri		egai	n .0.0.4
$V_{3-4(ref)} = 75 \text{ mV}$	ΔV ₃₋₄	Vm 0	55	-	dB
A.F. output voltage at $V_{3-4(if)} = 50 \mu V$	Vo(af)	- mans	130	01 V 1	mV
A.F. output voltage at $V_{3-4(if)} = 1 \text{ mV}$	Vo(af)	7 m 90	310	TV Os	mV
A.F. output impedance (pin 6)	Z ₀	-	3,5	- Isnel	kΩ
Indicator driver			IJI-25	flow suc	suo 9.4
Output voltage at $V_i = 0 \text{ mV}$; $R_{L(9)} = 2.7 \text{ k}\Omega$	V ₉₋₁₆	m I e	20	150	mV
Output voltage at V_i = 500 mV; $R_{L(9)}$ = 2,7 k Ω	V ₉₋₁₆	2,5	2,8	3,1	V au
Load resistance	R _L (9)	1,5	Bit, Try Lay	1000 = 1	kΩ

Ripple rejection in V₁ = 2 mV; Verms) = 10 mV (p = 100 Hz (RR = 26 log = 2 Va(at)))

DEVICE CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Standby switch	pio [†]				susuper-
Viti UCL UCL	V 11-12	ns 11 to 12)	ude (pir	dilama)scillato
dillo	111 2 13		pedanos	mi bsol	xternal
on-voltage	V ₂₋₁₆	for no oscil	10016090	2,0	V
off-voltage	V ₂₋₁₆	3,5	1)9V 21	20	V
on-current at V ₂₋₁₆ = 0 V	-12	(Iamav)	BT-EFV	200	μΑ
off-current at V ₂₋₁₆ = 20 V	and 1/2/(28 V x 8	ning di odes (bitive 1	10	μΑ

 V_P = 8,5 V; f_i = 1 MHz; m = 30%; f_m = 400 Hz; T_{amb} = 25 °C; measured in Fig. 1; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
R.F. sensitivity	·V		plitude	ns lang	output s
R.F. input required for S + N/N = 6 dB	Law I	-	1,5	n <u>a</u> beqn	μV
R.F. input required for S + N/N = 26 dB	Vi	-	15	inentu	μV
R.F. input required for $S + N/N = 46 dB$	Vi	- 1	150	s bns	μV
R.F. input at start of a.g.c.	Vi	-	30		μV
R.F. large signal handling	R		sone	t imped	.F. inpu
R.F. input at THD = 3%; m = 80%	Vi		500	-	mV
R.F. input at THD = 3%; m = 30%	Vi	-	700	3% at	mV
R.F. input at THD = 10%; m = 30%	Vi	p.g.s to	900	ited nie	mV
A.G.C. range		s: change of			
Change of V _i for 1 dB change of V _{o(af)} ; V _{i(ref)} = 500 mV	ΔVi	(fs)oV to	86	ef) = 75	dB
Change of V _i for 6 dB change	The state of the				L.F. out
of $V_{o(af)}$; $V_{i(ref)} = 500 \text{ mV}$	ΔVi		0.		dB
Output signal	21	to mig	3011901	срин изк	000.773
A.F. output voltage at				driver	rotsolbr
$V_i = 4 \mu V; m = 80\%$	Vo(af)	-;Vm	130	a-gestle	mV
A.F. output voltage at $V_i = 1 \text{ mV}$	Vo(af)	240	310	390	mV
THD at $V_i = 1 \text{ mV}; m = 80\%$	d _{tot}	; <u>V</u> m 00	0,5	a_spatic	%
THD at $V_i = 500 \text{ mV}$; $m = 30\%$	d _{tot}	-	1	= 2,7 k)	%
Signal-to-noise ratio at V _i = 100 mV	(S + N)/N	-	58	elance -	dB
Ripple rejection at $V_i = 2 \text{ mV}$; $V_{P(rms)} = 100 \text{ mV}$; $f_P = 100 \text{ Hz}$ $(RR = 20 \log [V_P/V_{O(af)}])$	RR	_	38	_	dB

parameter	symbol beanting	min.	typ.	max.	unit
Unwanted signals					
Suppression of i.f. whistles at	202182	-	-		
$V_i = 15 \mu\text{V}$; m = 0% related to					
a.f. signal of m = 30%					
at $f_i \approx 2 \times f_{if}$	α2if	-	37	-	dB
at f _i ≈ 3 x f _{if}	α _{3if}	-	44	-	dB
I.F. suppression at r.f. input					N
for symmetrical input	α_{if}	-	40	-	dB
for asymmetrical input	α_{if}	-	40	-	dB
Residual oscillator signal at mixer output					
at fosc	I1(osc)	-	1	-	μΑ
at 2 x fosc	11(2osc)	-	1,1	-	μΑ

APPLICATION INFORMATION

- (1) Capacitor values depend on crystal type.
- (2) Coil data: 9 windings of 0,1 mm dia laminated Cu wire on TOKO coil set 7K 199CN; Q₀ = 80.

Fig. 2 Oscillator circuit using quartz crystal; centre frequency = 27 MHz.

APPLICATION INFORMATION (continued)

7287703 THD (%) 60

40

20

20

40

60

80

100

120

V_i (dB µV)

Fig. 3 A.F. output as a function of r.f. input in the circuit of Fig. 1; $f_i = 1$ MHz; $f_m = 400$ Hz; m = 30%.

Fig. 4 Total harmonic distortion and (S + N)/N as functions of r.f. input in the circuit of Fig. 1; m = 30% for (S + N)/N curve and m = 80% for THD curve.

Fig. 5 Total harmonic distortion as a function of modulation frequency at V_i = 5 mV; m = 80%; measured in the circuit of Fig. 1 with $C_{7-16(ext)}$ = 0 μ F and 2,2 μ F.

Fig. 6 Indicator driver voltage as a function of r.f. input in the circuit of Fig. 1.

Fig. 7 Typical frequency response curves from Fig. 1 showing the effect of filtering as follows:

with i.f. filter;

----- with a.f. filter;
---- with i.f. and a.f. filters.

Fig. 8 Car radio application with inductive tuning.

Fig. 9 A.F. output as a function of r.f. input using the circuit of Fig. 8 with that of Fig. 1.

APPLICATION INFORMATION (continued)

Fig. 10 Suppression of cross-modulation as a function of input signal, measured in the circuit of Fig. 8 with the input circuit as shown in Fig. 11. Curve is for Wanted $V_{O(af)}/U$ nwanted $V_{O(af)}=20$ dB; V_{rfw} , V_{rfu} are signals at the aerial input, V'_{aew} , V'_{aeu} are signals at the unloaded output of the aerial. Wanted signal (V'_{aew} , V_{rfw}): $f_i=1$ MHz; $f_m=400$ Hz; m=30%.

Unwanted signal (V'_{aeu} , V_{rfu}): $f_i = 900 \text{ kHz}$; $f_m = 400 \text{ Hz}$; m = 30%.

Effective selectivity of input tuned circuit = 21 dB.

Fig. 11 Input circuit to show cross-modulation suppression (see Fig. 10).

Fig. 12 Oscillator amplitude as a function of pin 11, 12 impedance in the circuit of Fig. 8.

Fig. 13 Total harmonic distortion and (S+N)/N as functions of r.f. input using the circuit of Fig. 8 with that of Fig. 1.

Fig. 14 Forward transfer impedance as a function of intermediate frequency for filters 1 to 4 shown in Fig. 15; centre frequency = $455 \, \text{kHz}$.

APPLICATION INFORMATION (continued)

Fig. 15 I.F. filter variants applied to the circuit of Fig. 1. For filter data, refer to Table 1.

Table 1 Data for I.F. filters shown in Fig. 15. Criterium for adjustment is $Z_F = maximum$ (optimum selectivity curve at centre frequency $f_0 = 455 \text{ kHz}$). See also Fig. 14.

filter no.	1	2		3	4	unit
Coil data	L1	L1	L1	L2	L1	
Value of C	3900	430	3900	4700	3900	pF
N1: N2	12:32	13 : (33 + 66)	15 : 31	29 : 29	13:31	
Diameter of Cu laminated wire	0,09	0,08	0,09	0,08	0,09	mm
Qo	65 (typ.)	50	75	60	75	
Schematic* of	12) (•32	13) (66 33 1	15) (31	29 (29	13) (•31	
windings	•	• / • 55	•	(N1) (N2)	• •	
Toko order no.	7XNS-A7523DY	L7PES-A0060BTG	7XNS-A7518DY	7XNS-A7521AIH	7XNS-A7519DY	
Resonators			MINISTER,			
Murata type	SFZ455A	SFZ455A	SFZ	455A	SFT455B	
D (typical value)	4	4	4		6	dB
RG, RL	3	3	3		3	kΩ
Bandwidth (-3 dB)	4,2	4,2	4,2	10 TONIO IV	4,5	kH:
S _{9kHz}	24	24	24		38	dB
Filter data		8		1 4 5 9 4 9	Winds.	
Z _I	4,8	3,8	4,2		4,8	kΩ
QB	57	40	52 (L1)	18 (L2)	55	
ZF	0,70	0,67	0,68		0,68	kΩ
Bandwidth (-3 dB)	3,6	3,8	3,6		4,0	kH
S _{9kHz}	35	31	36		42	dB
S _{18kHz}	52	49	54		64	dB
S _{27kHz}	63	58	66		74	dB

^{*} The beginning of an arrow indicates the beginning of a winding; N1 is always the inner winding, N2 the outer winding.

Fig. 16 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 1.

Fig. 17 Printed-circuit board showing track side.

DUAL TANDEM ELECTRONIC POTENTIOMETER CIRCUIT

GENERAL DESCRIPTION

The TDA1074A is a monolithic integrated circuit designed for use as volume and tone control circuit in stereo amplifiers. This dual tandem potentiometer IC consists of two ganged pairs of electronic potentiometers with the eight inputs connected via impedance converters, and the four outputs driving individual operational amplifiers. The setting of each electronic potentiometer pair is controlled by an individual d.c. control voltage. The potentiometers operate by current division between the arms of cross-coupled long-tailed pairs. The current division factor is determined by the level and polarity of the d.c. control voltage with respect to an externally available reference level of half the supply voltage. Since the electronic potentiometers are adjusted by a d.c. control voltage, each pair can be controlled by single linear potentiometers which can be located in any position dictated by the equipment styling. Since the input and feedback impedances around the operational amplifier gain blocks are external, the TDA1074A can performs bass/treble and volume/loudness control. It also can be used as a low-level fader to control the sound distribution between the front and rear loudspeakers in car radio installations.

Features

- High impedance inputs to both 'ends' of each electronic potentiometer
- Ganged potentiometers track within 0,5 dB
- Electronic rejection of supply ripple
- Internally generated reference level available externally so that the control voltage can be made to swing positively and negatively around a well-defined 0 V level
- The operational amplifiers have push-pull outputs for wide voltage swing and low current consumption
- The operational amplifier outputs are current limited to provide output short-circuit protection
- Although designed to operate from a 20 V supply (giving a maximum input and output signal level
 of 6 V), the TDA1074A can work from a supply as low as 7,5 V with reduced input and output
 signal levels

QUICK REFERENCE DATA

Supply voltage (pin 11)	VP	typ.	20	V
Supply current (pin 11)	l _P	typ.	22	m/
Input signal voltage (r.m.s. value)	Vi(rms)	max.	6	\vee
Output signal voltage (r.m.s. value)	Vo(rms)	max.	6	V
Total harmonic distortion	THD	typ.	0,05	%
Output noise voltage (r.m.s. value)	V _{no(rms)}	typ.	50	μV
Control range	$\Delta \alpha$	typ.	110	dB
Cross-talk attenuation (L/R) (2) beat (2 nig ts) (2) expansion land		typ.	80	dB
Ripple rejection (100 Hz) The assertion fugation and of mig te	α100	typ.	46	dB
Tracking of ganged potentiometers	ΔG_{V}	typ.	0,5	dB
Supply voltage range	V _P	7,5	to 23	V
Operating ambient temperature range	T _{amb}	-30 to	+80	oC

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Fig. 1 Block diagram and basic external components; I_{C1} (at pin 9) and I_{C2} (at pin 10) are control input currents; V_{c1} (at pin 9) and V_{c2} (at pin 10) are control input voltages with respect to $V_{ref} = V_{p/2}$ at pin 8; Z1 = Z2 = Z3 = Z4 = 22 k Ω ; the input generator resistance R_G = 60 Ω ; the output load resistance R₁ = 4,7 k Ω ; the coupling capacitors at the inputs and outputs are C_i = 2,2 μ F and C_O = 10 μ F respectively.

0 to Vp V

max. 800 mW

-55 to + 150 °C

-30 to +80 °C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)	
--	--

Supply voltage (pin 11) > 0 , Ω x ₹,4 < 1 , Я ; Ω 08 = 0 Я ; 8 .	OC measurqVm FI	max.	23 V
Control voltages (pins 9 and 10) Places selward assimus (V 5	± Vc1; ± Vc2	max.	1 V

Input voltage ranges (with respect to pin 18)	
at pins 3, 4, 5, 6, 13, 14, 15, 16	

THERMAL RESISTANCE

From crystal to ambient

R_{th cr-a} = solid 80 K/W

REMARK

The difference between the TDA1074 and its successor the TDA1074A is shown in Fig. 2 as the subdifferent component configuration at pin 8.

APPLICATION INFORMATION

Treble and bass control circuit DEF, marry a mumix of Absolute Maximum System (IEC tirritor) and a subject of the control circuit DEF, marry a mumix of the control circuit DEF, and the circuit DEF,

 $V_P = 20~V; T_{amb} = 25~^{o}C; measured in Fig.~3; R_G = 60~\Omega; R_L > 4.7~k\Omega; C_L < 30~pF; f = 1~kHz; with a linear frequency response (V_{c1} = V_{c2} = 0~V); unless otherwise specified$

parameter	symbol	min.	typ.	max.	unit
Supply current (without load)	l _P	14	22	30	mA
Frequency response (-1 dB) V _{C1} = V _{c2} = 0 V	f	10 agri	ange nperature e	20 000	Hz
Voltage gain at linear frequency response ($V_{c1} = V_{c2} = 0 \text{ V}$)	G _v *	_	O BOW	AL RESISTA	dB
Gain variation at $f = 1 \text{ kHz}$ at maximum bass/treble boost or cut at $\pm V_{C1} = \pm V_{C2} = 120 \text{ mV}$	ΔG _V *		± 1	ystal to ambi	dB
Bass boost at 40 Hz (ref. 1 kHz) 101AU V _C 2 = 120 mV		1074 and its n at pin.8	AGT edt na	rence betwe	itib s
Bass cut at 40 Hz (ref. 1 kHz) $-V_{c2} = 120 \text{ mV}$		-	17,5	_	dB
Freble boost at 16 kHz (ref. 1 kHz) $V_{c1} = 120 \text{ mV}$		-	16	_	dB
Freble cut at 16 kHz (ref. 1 kHz) $-V_{c1} = 120 \text{ mV}$		A TOTA OT	16	_	dB
Fotal harmonic distortion at V _{O(rms)} = 300 mV	μш	8			
f = 1 kHz (measured selectively)	THD		0,002	-	%
f = 20 Hz to 20 kHz	THD	-	0,005	-	%
at V _{o(rms)} = 5 V	THD	1334	0,015	0,1	%
f = 20 Hz to 20 kHz	THD	TEP 1	0,05	0,1	%
Signal level at THD = 0,7% (input and output)	Vi; o(rms)	5,5	6,2	_	V
Power bandwidth at reference level V _{o(rms)} = 5 V (-3 dB); THD = 0.1%	configuration				kHz
Output noise voltages signal plus noise (r.m.s. value);					
f = 20 Hz to 20 kHz	V _{no(rms)}	-	75	-	μV
noise (peak value); weighted to DIN 45 405; CCITT filter	V _{no(m)}	-	160	230	μV

^{*} $G_v = V_o/V_i$.

Treble and bass control circuit

parameter	symbol	min.	typ.	max.	unit
Cross-talk attenuation (stereo)					
f = 1 kHz	$\alpha_{\rm ct}$		86	<u> </u>	dB
f = 20 Hz to 20 kHz	α_{ct}		80	-	dB
Control voltage cross-talk to the outputs at f = 1 kHz;				-	
$V_{c1(rms)} = V_{c2(rms)} = 1 \text{ mV}$	$-\alpha_{\rm ct}$	-	20	_	dB
Ripple rejection at f = 100 Hz; V _{P(rms)} < 200 mV	α ₁₀₀	-	46	_	dB

Fig. 3 Application diagram for treble and bass control.

APPLICATION INFORMATION (continued)

Fig. 4 Frequency response curves; voltage gain (treble and bass) as a function of frequency.

Fig. 5 Control curve; voltage gain (bass) as a function of the control voltage (V_{c2}); f = 40 Hz.

Fig. 6 Control curve; voltage gain (treble) as a function of the control voltage (V_{c1}); f = 16 kHz.

curve no.	value of R
HT 1	10 kΩ
2	100 kΩ
3	220 kΩ
4	470 kΩ
5	1 ΜΩ

Fig. 7 Voltage gain $(G_V = V_O/V_i)$ control curves as a function of the angle of rotation (α) of a linear potentiometer (R); for curve numbers see table above; f = 40 Hz to 16 kHz.

Fig. 8 Circuit diagram for measuring curves in Fig. 7.

Fig. 9 Output signal level as a function of Vp; $\frac{1}{2}$ $\frac{1}{2$

Fig. 10 Total harmonic distortion as a function of the output level; Vp = 20 V; R $_{L}$ = 4,7 k Ω ; V $_{c1}$ = V $_{c2}$ = 0 V (linear, G $_{v\,tot}$ = 1). ——— f = 1 kHz; — — — f = 20 kHz.

Fig. 11 Power bandwidth at THD = 0,1%; reference level is 5 V (r.m.s.).

Fig. 12 Cross-talk as a function of frequency; linear treble/bass setting (V_{C1} = V_{C2} = 0 V); V_i = 5 V; R_G = 60 Ω ; R_L = 4,7 k Ω .

Application recommendations

- 1. If one or more electronic potentiometers in an IC are not used, the following is recommended:
- a. Unused signal inputs of an electronic potentiometer should be connected to the associated output,
 e.g. pins 3 and 4 to pin 2.
- b. Unused control voltage inputs should be connected directly to pin 8 (V_{ref}).
- Where more than one TDA1074A IC are used in an application, pins 1 can be connected together; however, pins 8 (V_{ref}) may not be connected together directly.
- 3. Additional circuitry for limiting the frequency response in the ultrasonic range.

(1) $f_{-3 dB} = 110 \text{ kHz}$ at linear setting

Fig. 13 Circuit diagram for frequency response limiting.

4. Alternative circuitry for limiting the gain of the treble control circuit in the ultrasonic range.

For R_{S1} = R_{S2} = 3,3 k Ω ; f_{-3 dB} \cong 1 MHz at linear setting For R_{S1} = R_{S2} = 0 Ω ; f_{-3 dB} \cong 100 kHz at linear setting

Fig. 14 Circuit diagram for limiting gain of treble control circuit.

Application recommendations

- I. If one or more electronic potentiometers in an IC are not used, the following is recommended;
- Unused signal inputs of an electronic potentiomeral should be connected to the associated output, e.g. pins 3 and 4 to pin 2.
 - b. Unused control voltage inputs should be connected directly to pin 8 (Vest).
- Where more than one TDA1074A 1C are used in an application, pins I can be connected together; however, pins 8(V_{ref}) may not be connected together directly.
 - 3. Additional circuitry for limiting the frequency response in the ultrasonic range

- (1) f_a dg = 110 kHz at linear setting
- Fig. 13 Circuit diagram for frequency response limiting.
- 4. Alternative circuitry for limiting the gain of the trible control circuit in the offraconic range

For Rgs = Rgs = 3.3 k(2) f $_{-3\,dB}$ = 1 MHz at linear setting for Rgs = Rgs = 0 Ω ; f $_{-3\,dB}$ = 100 kHz at linear setting

Fig. 14. Circuit diagram for limiting sain of trable control circuit.

MOTOR REGULATOR AND FUNCTION CONTROLLER FOR CAR CASSETTE SYSTEMS

The TDA1506 is for car radio/casette players. It incorporates the following functions:

- a motor speed regulator with a multiplication coefficient of k = 20,5.
- an electronic motor stop, controlled by commutator pulses;
- protection circuitry to avoid restarting of the motor after the set is switched to radio reception;
- playback indication;
- tape-end indication with intermittent light;
- fast-wind/rewind circuitry;
- two separately stabilized voltage regulators for the playback amplifier stages;
- a stabilized output voltage for the radio part;
- an automatic switch for switching the preamplifier supply outputs to zero and the radio supply output to a high level at tape-end;
- an output signal for auto-reverse;
- short-circuit protection for all pins to ground at T_{amb} = 30 °C maximum and between output and power supply pin;
- load dump protection.

During fast wind (or rewind) the voltage regulator for the second playback preamplifier is switched off. This feature allows application in an A.P.S.S. (Automatic Program Search System) set. At tape-end and at an externally chosen fixed time before motor stop, the automatic replay output gives a d.c. information signal. This signal may, e.g., be used to control the plunger in an automatic-reverse set. Automatic switching, with all switches to ground.

QUICK REFERENCE DATA

Supply voltage range	tu F	Vp	10	to 16	V	
Operating ambient temperature range		1 1				
at $V_P = 14,4 V$ at $V_P = 16 V$		T _{amb}		to +80 to +60		
Motor regulator						
Regulator supply voltage range		V ₆₋₃	3,2	to 12	V	
nternal reference voltage	V _{ref} =	V ₆₋₅	typ.	1,38	V	
Drop-out voltage		V ₄₋₃	<	1,8	V	
Multiplication coefficient $(\Delta I_4/\Delta I_6)$		k	typ.	20,5		
Stabilization radio						
Output voltage		V ₁₁₋₈	>	8,5	V	
Limited output current		111 lim	> -	45	mΑ	
Stabilization preamplifier I						
Output voltage		V ₁₀₋₈	>	7,7	V	
Limited output current		110 lim	>	2	mΑ	
Stabilization preamplifier II						
Output voltage		V9-8	>	8,7	V	
_imited output current		lg lim	>	20	mΑ	
Lamp driver						
Output voltage		V ₂₋₈	>	13	V	
Limited output current		¹ 2 lim	>	20	mΑ	

PACKAGE OUTLINE 16-lead DIL; plastic power (SOT-38).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage			VP	max.	24	V
Limited output current			¹ 4 lim	max.	1	Α
Power dissipation			see Fig. 2			
Storage temperature range		. 01	T _{stg}	−65 t	o + 150	oC
Junction temperature			T _j	max.	150	oC.
THERMAL RESISTANCE						
From junction to ambient			R _{th j-a}	=	55	K/W

Fig. 2 Power derating curve.

Note to Fig. 2

$$P_{tot} = \frac{T_{j \text{ max}} - T_{amb}}{R_{th \text{ j-a}}}$$

P_{tot} in playback position (see Figure 3):

$$\mathsf{P}_{tot} \approx \mathsf{I}_{12} \times \mathsf{V}_{P} + \mathsf{V}_{4\text{-}3} \Big(\mathsf{I}_{m} + \frac{\mathsf{V}_{ref}}{\mathsf{R}_{2}} \Big) + \Big(\mathsf{V}_{4\text{-}3} + \mathsf{V}_{ref} \Big) \Big(\frac{\mathsf{I}_{4}}{\mathsf{k}} + \mathsf{I}_{q} \Big) - \mathsf{I}_{2} \times \mathsf{V}_{2\text{-}8} - \mathsf{I}_{9} \times \mathsf{V}_{9\text{-}8} - \mathsf{I}_{10} \times \mathsf{V}_{10\text{-}8} + \mathsf{V}_{10} - \mathsf{V}_{10}$$

P_{tot} in radio reception is much lower than P_{tot} in playback.

CHARACTERISTICS

 $V_P = 14.4 \text{ V}$; $T_{amb} = 25 \, ^{o}\text{C}$; $I_4 = 70 \, \text{mA}$; $I_{11} = 45 \, \text{mA}$; $I_{10} = 0.3 \, \text{mA}$; $I_2 = 18 \, \text{mA}$; $I_9 = 2 \, \text{mA}$; unless otherwise specified; see test circuit Fig. 3.

	symbol	min.	typ.	max.	unit	conditions
General	2 pi 7 esa			100		pointeriesis sauce
Supply voltage	Vp	10 *	_	16	V	construction of the care of th
Current consumption	Sol.					bunction tenonerature
at playback	112	-	-	38	mA	14 = 0
at radio	112	-	-	64	mA	THERMAL RESISTANCE
Motor regulator	e-j rtr ^{El}					From junction to ambient
Supply voltage	V ₆₋₃	3,2	-	12	V	
Drop-out voltage	V4-3	-	-	1,8	V	$\Delta V_{ref} = \pm 2\%$
Internal reference voltage	$V_{ref} = V_{6-5}$	1,32	1,38	1,44	V	V ₆₋₃ = 8,7 V
Quiescent current	Iq	1-1-1	1,5	2,5	mA	$I_4 = 0$; $V_{6-3} = 8.7 \text{ V}$
Limited output current	14 lim	0,5	1-11	+	Α	V ₆₋₃ = 8,7 V
Multiplication coefficient	$k = \Delta I_4/\Delta I_6$	18,5	20,5	22,5		V ₆₋₃ = 8,7 V;
Line regulation variation		THE C				$\Delta I_4 = \pm 10 \text{ mA}$
V _{ref} versus V _P	$\frac{\Delta V_{ref}}{\Delta V_P} \times \frac{100\%}{V_{ref}}$	0	0,05	0,09	%/V	V _P = 3,2 to 12 V
k versus V _P	$\frac{\Delta k}{\Delta V_P} \times \frac{100\%}{k}$	0	0,3	0,6	%/V	$ V_P = 3.2 \text{ to } 12 \text{ V}$ $ \Delta I_4 = \pm 10 \text{ mA}$
I _q versus V _P	$\frac{\Delta I_{\rm q}}{\Delta V_{\rm P}} \times \frac{100\%}{I_{\rm q}}$	-	1,25	+	%/V	V _P = 3,2 to 12 V 1 ₄ = 0
Load regulation variation						
V _{ref} versus I ₄	$\frac{\Delta V_{ref}}{\Delta I_4} \times \frac{100\%}{V_{ref}}$	-0,037	-0,018	08	%/mA	I ₄ = 20 to 150 mA
k versus 14	$\frac{\Delta k}{\Delta l_4} \times \frac{100\%}{k}$	-0,02	0	+0,02	%/mA	$ I_4 = 20 \text{ to } 150 \text{ mA}$. $ \Delta I_4 = \pm 10 \text{ mA}$
Temperature coefficient variation						Note to Fig. 2
V _{ref} versus T _{amb}	$\frac{\Delta V_{ref}}{\Delta T_{amb}} \times \frac{100\%}{V_{ref}}$	0	0,025	0,045	%/K	$ T_{amb} = -20 \text{ to } +80 ^{\circ}\text{C}$ $ V_{6-3} = 8,7 ^{\vee}\text{C}$
k versus T _{amb}	$\frac{\Delta k}{\Delta T_{amb}} \times \frac{100\%}{k}$	-0,016	0,008	0,032	%/K	$T_{amb} = -20 \text{ to } +80 ^{\circ}\text{C}$ $V_{6-3} = 8,7; \Delta I_4 = \pm 10 \text{ mA}$
Iq versus Tamb	$\frac{\Delta I_{q-x}}{\Delta T_{amb}} \frac{100\%}{I_{q}}$	+5)(n	0,13	V)+(-	%/K	$T_{amb} = -20 \text{ to } +80 ^{\circ}\text{C}$ $V_{6-3} = 8,7 ^{\circ}\text{C}$
Saturation voltage fast winding	V7-4 sat	piaybau —	0,18	erlt 1986	V	I ₇ = 10 mA (max. 50 mA)
Input current (pin 5)	I ₅	-	19	_	μА	V ₆₋₃ = 8,7 V

^{*} For starting conditions: min. 6 V.

	symbol	min.	typ.	max.	unit	conditions TOARAM
Automatic motor stop						
Output current (pin 15)	115	0,4	-	0,9	mA	Double allersheeds a dead
Time constant	t _{st}	-	700	-	ms	C1 = 47 μ F ± 1%; Fig. 4
Switching level	V ₁₆₋₈		9	- 8-	V	Switching levels to playback
Stabilization radio	v			8-		to radio
Output voltage	V ₁₁₋₈	8,5	8,9	9,3	V	Input impedance
Limited output current	111 lim - 005	45	-	-	mA	Output current
Variation of V ₁₁₋₈	ΔV ₁₁₋₈	_	-	200	mV	V _P = 10,5 to 16 V
		-	100	-	mV/V	Vp = 10 to 10,5 V
Leakage current	111 5 -	_	_	0,5	μΑ	$R_{11-8} = 100 \text{ k}\Omega$
Tamb = -20 to +80 °C	111 - 8.8	_ 8	-	4	μА	$R_{11-8} = 100 \text{ k}\Omega$ $T_{amb} = 80 \text{ °C}$
Temperature coefficient	$\Delta V_{11-8}/\Delta T_{amb}$	-2	0	+2	mV/K	$T_{amb} = -20 \text{ to } +80 ^{\circ}\text{C}$
Stabilization preamp. I	(2) – EI			8		Output impedan-
Output voltage	V ₁₀₋₈	7,7	8,1	_	V	
Limited output current	I _{10 lim}	2	_	_	mA	
Variation V ₁₀₋₈ versus V _P		- ,	5	12	mV/V mV/V	V _P = 10,5 to 16 V V _P = 10 to 10,5 V
Stabilization preamp, II				1		de dominio (a)
Output voltage	V ₉₋₈	8,5	9,1	T EST E	V	Sesting 4.
Output voltage	Vg-8	_	0	0,5	V	fast rewind
Limited output current	lg lim	20	_	22	mA	学 C1 G3
Variation Vg.8 versus Vp	ΔV9-8/ΔVP	_	_	12	mV/V	$V_p = 10.5 \text{ to } 16 \text{ V}$
9-8 10100 17	$\Delta V_{9-8}/\Delta V_{P}$	-	10	-	mV/V	V _P = 10 to 10,5 V
Lamp driver						
Output voltage	V ₂₋₈	13	13,4	_	V	
Limited output current	l _{2 lim}	20	- 4	_	mA	1 2
Blinking time	t _b	-	0,5	_	S	C1 = 47 μ F; Fig. 4
Rejection voltage supply	ΔVp		0,3	-	V	(qV
Automatic replay output						
Output current; playback	11	_	7	10	μΑ	$V_{1-8} = V_{P}$
Output current; radio	11	300	500	_	μΑ	V ₁₋₈ ≥ 5 V
Delay time	t _d	_	380	_	ms	$C1 = 47 \mu F$; Fig. 4

closed: playbac:

\$1 open: radio recipror

S2 open: narmal speed

Fig. 3 Test oircuit

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.	unit	conditions
Radio playback switch		700			12/	Time constant
Switching levels						Switching lavel
to playback	V ₁₄₋₈	-	-	2	V	Vp = 10 to 16 V
to radio	V ₁₄₋₈	3,5	-	_	V	$T_{amb} = -20 \text{ to } +80 ^{\circ}\text{C}$
Input impedance	Z ₁₄₋₈	8.9 - 8.9	20	- 8	kΩ	Output voltage
Output current	114	8	200	- m	μΑ	V ₁₄₋₈ = 0
Fast wind switch		-			rVΔ	B-71V to notisheV
Switching levels		100				
normal to fast	V ₁₃₋₈		-	2	V	Vp = 10 to 16 V
fast to normal	V ₁₃₋₈	6	-	-	V	$T_{amb} = -20 \text{ to } +80 ^{\circ}\text{C}$
Output voltage; playback	V ₁₃₋₈	-	6,8	-	V	
Output current; fast wind	113	2 _ 0	500	TAV8-1	μΑ	V ₁₃₋₈ = 0
Output impedance	Z ₁₃₋₈	-	13	-	kΩ	Stabilization notantilidat2

S1 closed: playback

S1 open: radio reception

S2 closed: fast speed

S2 open: normal speed

C2 is only used with sets on which a fast rewind

key is available (C2 = 2,2 μ F).

C1 is 200 μ F maximum (typ. 47 μ F).

C3 = 100 nF.

Fig. 3 Test circuit.

Fig. 4 Waveforms showing signal levels and time constants.

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

APPLICATION INFORMATION

Fig. 5 Typical simplified application circuit diagram.

Fig. 6 Example of using the TDA1506 (only the motor regulation part is shown) in a d.c. motor speed regulation circuit.

Notes to Fig. 6

$$E_n = n \times C \times \phi$$

$$E_n = n \times C \times \phi$$

$$E_n = n \times C \times \phi$$

where: n = speed in revolutions per minute

C = motor constant

 ϕ = magnetic flux E_n = electromotive force

T = motor torque R_m = motor resistance

En can be expressed (excluding diode D) as:

$$E_n = I_m \left(\frac{R1}{k} - R_m \right) + V_{ref} \left\{ 1 + \frac{R1}{R2} \left(1 + \frac{1}{k} \right) \right\} + R1 \times I_q$$

For optimal regulation (dn/dT = 0), $\left(\frac{R1}{k} - R_{m}\right)$ should be zero.

However, if R1 = k x R $_{\rm m}$, the regulator will be oscillating, so for stability always R1 < k x R $_{\rm m}$.

R2 is determined by:

$$R2 = \frac{V_{ref} \times R1 \times \left(1 + \frac{1}{k}\right)}{E_{n} - (R1 \times I_{q}) - V_{ref} - I_{m}\left(\frac{R1}{k} - R_{m}\right)}$$

Example

$$E_n = E_{2400} = 5,24 \text{ V}(\pm 12,2\%)$$

$$R_{\rm m}$$
 = 25,6 Ω (±10%)

$$n = 2400 \text{ rev/min}$$

$$T = 1.3 \text{ mNm}$$

R1 = 430 Ω

$$R2' = 110 \Omega$$

$$R2'' = 220 \Omega$$

Fig. 7 Variation in motor speed (n is revolutions per minute) as a function of the applied motor torque at T_{amb} = 25 °C.

Fig. 8 Variation in motor speed (n is revolutions per minute) as a function of the ambient temperature at T = 1,3 mNm nominal and $V_P = 16 \text{ V}$.

: with diode D (see Fig. 6).

____ in the contract of the co

Fig. 9a $V_P = 10 V$.

Fig. 9b $V_P = 16 V$.

Fig. 9 Variation in motor speed (n is revolutions per minute) as a function of the ambient temperature without diode (see Fig. 6).

----: T = 1,30 mNm

----: T = 1,43 mNm

Fig. 8a Vp = 10 V.

Fig. 9 Variation in motor speed In is revolutions per minute) as a function of the ambient temperature without diode (see Fig. 6).

mVm T1, I = T :----

mP/m 0E,1 = T :-----

minm St. (1= T :-----

AUTO—REVERSE CAR RADIO CASSETTE—DECK STEERING CIRCUIT

GENERAL DESCRIPTION

The TDA1508 is a monolithic integrated circuit generating the steering signals needed for an autoreverse car radio cassette-deck.

The TDA 1508 incorporates the following functions:

- RC-oscillator generating the 250 kHz system clock
- Logic block (1² L)
- Power-on-reset circuit
- Input interface circuits
- Output interface circuits
- Two output voltage stabilizers
- 4 ms motor-pause-pulse
- Fast wind pulse
- Muting pulse
- 1024 ms clock pulse for cassette rotation control.

QUICK REFERENCE DATA

10. CA cassette contact input	Lindul	sippl tons um	reco TMC	100
Supply current standby (pin 12)	ISB	typ.	1,5	mA
Supply current (pin 7)	lp	max.	15	mA
Operating ambient temperature range	T _{amb}	-	-30 to +85	oC
Supply voltage range, standby (pin 12)	V _{SB}		3,5 to 18	V
Supply voltage range (pin 7)	VP		10 to 18	V

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Fig. 1 Pinning diagram

PINNING

1.	COM1	commutator logic input 1	10.	CA	cassette contact input
2.	COM2	commutator logic input 2	11.	FRW	fast rewind input
3.	MUTE	audio mute output	12.	VSB	standby supply control input
4.	NORMAL	motor control output	13.	SR	tape-end input
5.	REV	motor control output	14.	MR	manual reverse input
6.	VREC	recording power supply	15.	$\overline{V_F}$	radio mode input
7.	VP	linear part power supply	16.	OSC	oscillator RC input
8.	VRAD	radio power supply	17.	GND	ground
9.	FFW	fast forward wind input	18.	FAST	motor control output

QARV (Dary V) and thout rug to a Fig.2 Block diagram (1994) sent not sest to a legul (7 mig.

C = control for standby supply; D = debounce circuit; S = voltage stabilizer

FUNCTIONAL DESCRIPTION

General

The circuit incorporates an I^2 L logic block which generates any specific control signal and delay time needed in the auto-reverse car radio cassette-deck. A power-on reset element resets the I^2 L logic block when the standby supply V_{SB} is connected to the logic block. This standby voltage maintains the state of the logic part of the IC after the supply voltage for the linear part of the IC, V_P , has been switched off. The circuit uses an external RC network with an on-chip oscillator to generate a 250 Hz system clock.

Input interface circuits convert the $\overline{V_F}$, $\overline{COM1}$, $\overline{COM2}$, \overline{MR} , \overline{FRW} , \overline{FFW} , \overline{SR} and \overline{CA} information to I² L logic levels; output interface circuits activate the open-collector outputs REV, NORMAL, FAST and \overline{SR} . The n-p-n transistor at the MUTE output is switched by logic levels from the I² L logic block. Two output voltage stabilizers, supplied from Vp provide supply voltages for the radio part, V_{RAD}, and for the cassette deck pre-amplifiers, V_{RFC}, respectively.

Function

Each commutation applied to the cassette deck motor is preceded by a 4 ms motor-pause pulse. After any change in the direction of motor rotation a fast wind (FW) pulse (1020 ms) is generated. During the period of the FW pulse the motor supply voltage is increased, the motor speed also increasing at the same time.

Input signals

Signal 'bounce' is suppressed by means of a 32 ms control pulse.

V_F (pin 15). A LOW at this input causes the deck to enter the radio mode, where it provides traffic information. The cassette motor stops in the radio mode.

 \overline{SR} (pin 13) A LOW at the \overline{SR} input sets a latch and activates a 2-bit counter. Pulses from $\overline{COM1}$ and $\overline{COM2}$ enable the end of tapeside A to be recognized. When the end of tapeside A has been recognized the motor will reverse and tapeside B will be played. When both tapesides have been played the deck will revert to the radio mode. A HIGH at the \overline{SR} input initiates the endless auto-reverse playback mode. The \overline{SR} input can be used to indicate the operating mode (single or auto-reverse). If an external transistor is used in conjunction with a suitable LED indicator, the LED will light up when the \overline{SR} input goes LOW in the single playback mode.

MR (pin 14) manual reverse. A LOW at the MR input reverses the direction of the cassette.

FRW (pin 11) fast rewind. A LOW at the input causes the cassette to go into the fast rewind mode. When the FRW key has been released (HIGH at pin 11) the cassette player continues in the playback mode.

FFW (pin 9) fast forward wind. A LOW at this pin starts the fast forward wind; releasing the FFW key causes the cassette to re-enter the playback mode.

CA (pin 10) cassette contact. Inserting a cassette into the player gives a LOW at this input. The player will always start in the playback mode playing the sound track of the cassette which corresponds to the upper label of the cassette.

COM1 (pin 1) and COM2 (pin 2). The impulses at these inputs arise from the rotation of the cassette turntables. In conjunction with signals at SR the end of a tapeside can be recognized. The minimum rotational speed of the cassette turntables is also controlled using impulses at these pins. During a period of 1024 ms a minimum count of pulses has to be detected for continuous operation.

Vp (pin 7) supply voltage for linear part. When Vp is LOW the output functions (VREC, VRAD, NORMAL, REV, FAST, $\overline{\text{SR}}$ -indication) are inactive. The switching levels for Vp are shown in Fig. 5. The MUTE transistor remains active independent of the value of Vp, when the audio mute is required.

Output signals

FAST (pin 18), NORMAL (pin 4), REV (pin 5). These open-collector outputs steer the motor control of the cassette deck.

MUTE (pin 3). The audio output of the cassette is muted in the radio mode and during any change in motor rotation (reverse, fast forward wind, etc). The n-p-n transistor (Fig.2) is switched to Vp when muting is required. The audio frequency is muted up to 128 ms after the change of mode or motor rotation.

V_{REC} (pin 6), V_{RAD} (pin 8). These stabilized supply voltages are derived from V_P and provide power for the recording and radio part of the cassette system respectively When V_{RAD} is active V_{REC} is switched off and when V_{REC} is active V_{RAD} is switched off.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage linear (pin 7) $V_P = V_7$	
Supply voltage standby (pin 12) $V_{SB} = V$	12—17 max. 24 V
All inputs (pins 1,2,9,10,11,13,14 and 15) V _{1,2,9,1}	0,11,13,14,15–17 max. 24 V
	5,8,13,18–17 Marsh max. 24 Janes Vini
Storage temperature range T _{stg}	−55 to +150 °C
Operating ambient temperature range Tamb	-30 to +85 °C

CHARACTERISTICS

Supply voltage $V_P = 14 \text{ V}$; $V_{SB} = 18 \text{ V}$; $T_{amb} = 25 \text{ °C}$ (a right) VER (18 right) JAMRON (18 right) TEAST

parameter via goliub bis abom olbat adu i	symbol	o min.	typ.	max.	unit
Linear supply (pin 7)	muted up to 12	requency is	The audio	beniuper a	muting
Supply voltage linear	Vp	10	14	18	Later and and
Supply current linear	the case of a	i nese stat. odio meri o	a harmony	15	mA
for $I(V_{RAD})$ and $I(V_{REC}) = 0$	ctive VRAD is a	n Vasc is	adve bna lite	switched i	VREC
Supply standby (pin 12)	sulmiseMetules	ruA arit citia	eenshanaa		HATIN District I
Supply voltage standby	V _{SB}	3,5	- 1	18	
Supply current standby	ISB	_	1,5	2,5	mA
Power-on-reset	VsB = V12-1		see Fig.3	voltage stain	
Power-off-reset	V1,2,9,10,11,1	21 bns 41,	see Fig.4	ts (pins 1,2	uqni IIA
Time constant of RC-combination at	V3,4,5,6,8,13,		5,6,8,13 at	ts (pins 3,4	oqni IIA
V _{SB} for power-on-reset	τ gia ^T	300	egner e	utersqmst	μs
Oscillator	Tamb	egnange.	temperaturi	tneidms pr	Operati
Oscillator frequency (R $_{\rm X}$ = 820 k Ω ; C $_{\rm X}$ = 5,6 nF)	fosc	-	250	-	Hz
Oscillator frequency drift over					0/
temperature and supply voltage range	∆f _{osc} /f _{osc}	-20	-	+20	%
External components	R _X	680	820	-	kΩ
	Cx	-	5,6	22	nF
Oscillator a.c. voltage (peak-to-peak value)	V _{osc(p-p)}	-	-	1,0	V
Inputs					
COM1, FFW, FRW, MR					
COM2, V _F and SR					
HIGH (inactive)	VIH	2,5	_	VP	V
(for $V_{IH} < V_P - 1.5 V$)	-I _{IH}	50	100	200	μΑ
LOW (active)	VIL	_	_	0,6	V
	-116	50	100	200	μΑ

parameter	symbol	min.	typ.	max.	unit
Outputs	1				
NORMAL, REV (open collector)			A	M.	
Output active saturation voltage (I _{sat} < 7 mA)	V4-17sat V5-17sat	_	230	0,3	V
FAST	5—17sat	ne januar esta com	WO.	-,-	
	V ₁₈ —17sat	- 1	_	0,3	V
MUTE					
Output voltage (n-p-n transistor switched to Vp)	V3-17	-	V _P -2	_	V
Output current external resistor	-13	5	-	-	mA
Output inactive voltage	V ₃₋₁₇	0	Hall	_	V
Output inactive current	-l ₃	_	0	10	μΑ
SR as output stage (open collector)	4		193	,V	
Saturation voltage at I _{sat} = 1 mA	V ₁₃ —17sat	_	_	0,4	V
Inactive current	-1 ₁₃	_	-	10	μΑ
Stabilized output voltages			WOJ		
V _{RAD} voltage	V ₆₋₁₇	8,1	8,5	8,9	V
V _{REC} voltage	V8-17	8,1	8,5	8,9	V
Output current (foldback)	16 - 19 Power 16	,	_	_	mA
	18	45	-		mA
Ripple rejection, f = 100 Hz Vp = 10 to 18 V	V ₆₋₁₇ V ₇₋₁₇	_	-	20	mV/
	V ₈₋₁₇ V ₇₋₁₇			20	mV/
Temperature drift	V6-17 T _{amb}	-2	-	+2 🛕	mV/
	V8-17 T _{amb}	-2	_	+2	mV/
Input resistance (I = 50 mA)	Ri	_	1	w	Ω
Stabilizer inactive currents	-I _{RAD}	100	1 - 2	_	μΑ
		100			μΑ

Fig.3 Power-on-reset.

Fig.4 Power-off-reset.

Fig.5 Switching levels for supply voltage monitoring.

24 W BTL OR 2 x 12 W STEREO CAR RADIO POWER AMPLIFIER

The TDA1510 is a monolithic integrated class-B output amplifier in a 13-lead single in-line (SIL) plastic power package. The device is primarily developed for car radio applications, and also to drive low-impedance loads (down to 1,6 Ω). At a supply voltage Vp = 14,4 V, an output power of 24 W can be delivered into a 4 Ω BTL (Bridge Tied Load), or, when used as stereo amplifier, it delivers 2 x 12 W into 2 Ω or 2 x 7 W into 4 Ω .

Special features are:

- flexibility in use stereo as well as mono BTL
- high output power
- low offset voltage at the output (important for BTL)
- large useable gain variation
- very good ripple rejection
- load dump protection
- a.c. short-circuit safe to ground
- thermal protection

- internal limited bandwidth for high frequencies
- low stand-by current possibility, to simplify required switches
- low number and small sized external components
- high reliability

QUICK REFERENCE DATA

Supply voltage range (operating)		Vp		6	to 18	V
Supply voltage (non-operating)		VP	max.		28	V
Supply voltage (non-operating; load dump protection)		VP	max.		45	V
Repetitive peak output current		IORM	max.		4	Α
Total quiescent current		Itot	typ.		75	mΑ
Stand-by current		I _{sb}	<		2	mΑ
Switch-on current		Iso	typ.		0,35	mΑ
Input impedance		Z _i	>		1	$M\Omega$
Storage temperature range		T _{stg}	_	55 to	+ 150	oC
Crystal temperature		Tc	max.		150	oC
Bridge tied load application (BTL)		V_P	=	14,4	13,2	V
Output power at $R_L = 4 \Omega$ (with bootstrap)						
d _{tot} = 0,5%	\	Po	typ.	18	15	W
$d_{tot} = 10\%$		Po	typ.	24	20	W
Supply voltage ripple rejection; R _S = 0; f = 1 kHz		RR	typ.	50	50	dB
D.C. output offset voltage between the outputs		ΔV_{5-9}	<	50	50	mV
Stereo application						
Output power at d _{tot} = 10% (with bootstrap)						
$R_L = 4 \Omega$		P_{o}	typ.	7	6	W
$R_L = 2 \Omega$		Po	typ.	12	10	W
Output power at d _{tot} = 0,5% (with bootstrap)						
$R_1 = 4 \Omega$		P_{O}	typ.	5,5	4,5	W
$R_1 = 2 \Omega$		Po	typ.	9,0	7,5	
Channel separation		α	>	40		dB
Noise output voltage; $R_S = 10 \text{ k}\Omega$; according to IEC curv	re-A	Vn	typ.	0,2		mV

PACKAGE OUTLINE

13-lead SIL; plastic power (SOT-141B).

Fig. 1 Internal block diagram; the heavy lines indicate the signal paths. Pin 4 is internally connected.

150 °C

max.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) and accordance with the Absolute Maximum System (IEC 134) Supply voltage; operating (pin 10) Supply voltage; non-operating 28 V max. Supply voltage; during 50 ms (load dump protection) max. 45 V max. Peak output current IOM see derating curve Fig. 2

Total power dissipation

Storage temperature range

20 Ptot

.gy 12

Crystal temperature

Fig. 2 Power derating curves.

60

80 100 120

140 T_{amb} (°C)

HEATSINK DESIGN EXAMPLE

NO He to min. 20 1dHz

The derating of 3 K/W of the encapsulation requires the following external heatsink (for sine-wave drive):

24 W BTL (4 Ω) or 2 x 12 W stereo (2 Ω)

-20

0 20 40

maximum sine-wave dissipation: 12 W

T_{amb} = 65 °C maximum

$$R_{\text{th h-a}} = \frac{150 - 65}{12} - 3 = 4 \text{ K/W}.$$

 2×7 W stereo (4Ω)

maximum sine-wave dissipation: 6 W

T_{amb} = 65 °C maximum

$$R_{\text{th h-a}} = \frac{150 - 65}{6} - 3 = 11 \text{ K/W}.$$

D.C. CHARACTERISTICS				
Supply voltage range (pin 10)	Vp some		6 to 18	V
Repetitive peak output current	IORM	nia Sqo ;s	4	A
Total quiescent current	I _{tot}	typ.	75 150	mA mA
Stand-by current	I _{sb}	Samu	2	mA
Switch-on current (pin 11) at $V_{11} \le V_{10}$ (note 1)	I _{so}	typ.	0,35 0,8	mA mA
A.C. CHARACTERISTICS				
T _{amb} = 25 °C; V _P = 14,4 V; f = 1 kHz; unless otherwise specifie	d			
Bridge tied load application (BTL); see Fig. 3				
Output power at $R_L = 4 \Omega$ (with bootstrap)		CE .	15.5	14/
Vp = 14,4 V; d _{tot} = 0,5%	Po	typ.	15,5 18,0	
V _P = 14,4 V; d _{tot} = 10%	Po	> typ.	20 24	W
Vp = 13,2 V; d _{tot} = 0,5%	Po	typ.	15	W
V _P = 13,2 V; d _{tot} = 10%	Po	typ.	20	W
Open loop voltage gain	Go	typ.	75	dB
Closed loop voltage gain (note 2)	G _C	typ. 40	(±0,5)	dB
Frequency response at -3 dB (note 3)	В	20 Hz tor	min. 20	kHz
Input impedance (note 4)	Z _i	>	1	ΩM
Noise output voltage (r.m.s. value) at f = 20 Hz to 20 kHz R_S = 0 Ω	V _{n(rms)}	typ.	0,2	mV
$R_S = 10 \text{ k}\Omega$	V _{n(rms)}	typ.	0,35	mV mV
$R_S = 10 \text{ k}\Omega$; according to IEC 179 curve A	Vn	typ.	0,25	
Supply voltage ripple rejection (note 5) f = 100 Hz	RR	> typ.		dB dB
D.C. output offset voltage between the outputs	Δ ₅₋₉	< typ.		mV mV
Loudspeaker protection (if one of the 2 outputs is short-circuited to ground)		ос maxim. 0 —65		
maximum d.c. voltage (across the load)	ΔV ₅₋₉		0.7	V
Power bandwidth; $-1 dB$; $d_{tot} = 0.5\%$	В	30 H	z to 40	kHz

Stereo application; see Fig. 4						
Output power at d_{tot} = 10%; with V_P = 14,4 V ; R_L = 4 Ω	bootstrap (note 6)		Po	> typ.		W W
$V_P = 14,4 \text{ V; R}_L = 2 \Omega$			Po	> typ.	10 12	
$V_P = 13.2 \text{ V}; R_L = 4 \Omega$			Po	typ.	6	W
V _P = 13,2 V; R _L = 2 Ω			Po	typ.	10	W
Output power at dtot = 0,5%; with	bootstrap (note 6)					
$V_P = 14,4 \text{ V; } R_L = 4 \Omega$			Po	typ.	5,5	W
$V_{P} = 14,4 \text{ V; } R_{L} = 2 \Omega$	16.07%		Po	typ.	9,0	W
$V_P = 13,2 \text{ V; } R_L = 4 \Omega$			Po	typ.	4,5	W
$V_P = 13,2 \text{ V}; R_L = 2 \Omega$			Po	typ.	7,5	W
Output power at $d_{tot} = 10\%$; with $V_P = 14.4 \text{ V}$; $R_L = 4 \Omega$ (notes 6)	, 8 and 9)		Po	typ.	6	W
Frequency response; -3 dB (note			В	40 Hz to mi	n. 20	kHz
Supply voltage ripple rejection (no	te 5)					
f = 1 kHz			RR	typ.	50	dB
Channel separation; $R_S = 10 \text{ k}\Omega$; f	= 1 kHz		α	>	40	dB
	I KIIZ		и	typ.	50	dB
Closed loop voltage gain (note 7)			G_{c}	typ.	40	dB
Noise output voltage (r.m.s. value)	at f = 20 Hz to 20 k	Hz				
$R_S = 0 \Omega$			$V_{n(rms)}$	typ.	0,15	mV
$R_S = 10 \text{ k}\Omega$			V _{n(rms)}	typ.	0,25	mV
$R_S = 10 \text{ k}\Omega$; according to IEC co	urve A		Vn	typ.	0,2	mV

Notes

- 1. If $V_{11} > V_{10}$, then I_{11} must be ≤ 10 mA.
- Closed loop voltage gain can be chosen between 32 and 56 dB (BTL), and is determined by external components.
- 3. Frequency response externally fixed.
- 4. The input impedance in the test circuit (Fig. 3) is typ. 100 k Ω .
- 5. Supply voltage ripple rejection measured with a source impedance of 0 Ω (maximum ripple amplitude: 2 V).
- 6. Output power is measured directly at the output pins of the IC.
- Closed loop voltage gain can be chosen between 26 and 50 dB (stereo), and is determined by external components.
- 8. A resistor of 56 k Ω between pins 3 and 7 to reach symmetrical clipping.
- 9. Without bootstrap the 100 μ F capacitor between pins 5 and 6 (or 8 and 9) can be omitted. Pins 6, 8 and 10 have to be interconnected.

Fig. 3 Test and application circuit bridge tied load (BTL).

Fig. 4 Test and application circuit stereo mode.

(1) Belongs to power supply.

12 to 20 W HI-FI AUDIO POWER AMPLIFIER

The TDA1512 is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical power supplies for mains-fed apparatus.

Special features are:

- Thermal protection
- Low intermodulation distortion
- Low transient intermodulation distortion
- Built-in output current limiter
- Low input offset voltage
- Output stage with low cross-over distortion
- Single in-line (SIL) power package

QUICK REFERENCE DATA

Supply voltage range	VP	15	5 to 35 V
Total quiescent current at V _P = 25 V	I _{tot}	typ.	65 mA
Output power at d _{tot} = 0,7% sine-wave power			
$V_P = 25 \text{ V}; R_L = 4 \Omega$	Po	typ.	13 W
$V_P = 25 \text{ V}; R_L = 8 \Omega$	Po	typ.	7 W
music power Vp = 32 V; R _L = 4 Ω Vp = 32 V; R _I = 8 Ω	Po	typ.	21 W 12 W
VP - 32 V, NL - 0 32	Po	typ.	12 00
Closed-loop voltage gain (externally determined)	G _c	typ.	30 dB
Input resistance (externally determined)	Ri	typ.	20 kΩ
Signal-to-noise ratio at P _o = 50 mW	S/N	typ.	72 dB
Supply voltage ripple rejection at f = 100 Hz	RR	typ.	50 dB

PACKAGE OUTLINES

TDA1512: 9-lead SIL; plastic power (SOT-131B).

TDA1512Q: 9-lead SIL-bent-to-DIL; plastic power (SOT-157B).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V _P	max.	35	V	
Repetitive peak output current	IORM	max.	3,2	Α	
Non-repetitive peak output current	IOSM	max.	5	Α	
Total power dissipation	see derating	curve Fig. 2	V;RL=		
Storage temperature	T _{sta}	-55	to + 150	oC	

50 °C -25 to + 150 °C Operating ambient temperature Tamb

A.C. short-circuit duration of load during full-load sine-wave drive $R_1 = 0$; $V_P = 30 \text{ V with } R_i = 4 \Omega$

100 hours t_{sc} max.

mounted on infinite heatsink.

--- - mounted on heatsink of 6 K/W.

Fig. 2 Power derating curves.

THERMAL RESISTANCE

From junction to mounting base

D.C. CHARACTERISTICS				
Supply voltage range	th th qVosolute Maximum Syr		15 to 35	V
Total quiescent current at V _P = 25 V	I _{tot}	typ.	65	mA
A.C. CHARACTERISTICS				
$V_P = 25 \text{ V}$; $R_L = 4 \Omega$; $f = 1 \text{ kHz}$; T_{amb} : specified Output power sine-wave power at $d_{col} = 0.7 \%$	= 25 °C; measured in test circ	uit of Fig. 3; ur	less other	rwise
sine-wave power at d_{tot} = 0,7 % R_L = 4 Ω R_L = 8 Ω	Po Po	typ.	13 7	
music power at $V_P = 32 V$ $R_L = 4 \Omega$; $d_{tot} = 0.7 \%$ $R_L = 4 \Omega$; $d_{tot} = 10 \%$ $R_L = 8 \Omega$; $d_{tot} = 0.7 \%$ $R_L = 8 \Omega$; $d_{tot} = 10 \%$	Po Po Po	typ. typ. typ. typ.	21 25 12 15	W W W
Power bandwidth; -1.5 dB ; $d_{\text{tot}} = 0.7\%$		40	Hz to 16	kHz
Voltage gain open-loop closed-loop	G _o G _c	typ.		dB dB
Input resistance (pin 1)	R _i	>	100	
Input resistance of test circuit (Fig. 3)	Ri	typ.		kΩ
Input sensitivity for P _O = 50 mW for P _O = 10 W	V _i V _i	typ.	16 210	mV mV
Signal-to-noise ratio				
at P_0 = 50 mW; R_S = 2 k Ω ; f = 20 Hz to 20 kHz; unweighted	S/N	>	68	dB
weighted; measured according to IEC 173 (A-curve)	W.X & No American S/N	iom typ.	76	dB
Ripple rejection at f = 100 Hz	RR	typ.	50	dB
Total harmonic distortion at P _O = 10 W	d _{tot}	typ.	0,1 0,3	
Output resistance (pin 5)	Ro	typ.	0,1	Ω

Fig. 4 Output power as a function of the supply voltage; f = 1 kHz; $-d_{tot} = 0.7 \%; ---d_{tot} = 10 \%.$

Fig. 5 Total harmonic distortion as a function of the output power.

24 W BTL OR 2 x 12 W STEREO CAR RADIO POWER AMPLIFIER

The TDA1515A is a monolithic integrated class-B output amplifier in a 13-lead single in-line (SIL) plastic power package. The device is primarily developed for car radio applications, and also to drive low-impedance loads (down to 1,6 Ω). At a supply voltage Vp = 14,4 V, an output power of 24 W can be delivered into a 4 Ω BTL (Bridge Tied Load), or, when used as stereo amplifier, it delivers 2 x 12 W into 2 Ω or 2 x 7 W into 4 Ω .

Special features are:

- flexibility in use mono BTL as well as stereo
- high output power
- low offset voltage at the output (important for BTL)
- large usable gain variation
- very good ripple rejection

- internal limited bandwidth for high frequencies
- low stand-by current possibility (typ. 1 μA), to simplify required switches; TTL drive possible
- low number and small sized external components
- high reliability

The following currently required protections are incorporated in the circuit. These protections also have positive influence on reliability in the applications.

- load dump protection
- a.c. and d.c. short-circuit safe to ground up to Vp = 18 V
- thermal protection
- speaker protection in bridge configuration
- SOAR protection
- outputs short-circuit safe to ground in BTL
- reverse polarity safe

QUICK REFERENCE DATA

Supply voltage range (operating)	V _P		6	to 18	V
Supply voltage (non-operating)	VP	max		28	V
Supply voltage (non-operating; load dump protection)	VP	max		45	V
Repetitive peak output current	IORM	max		4	Α
Total quiescent current	I _{tot}	typ.		75	mA
Stand-by current	I _{sb}	typ.		1	μΑ
Switch-on current	I _{so}	<		100	μΑ
Input impedance	$ Z_i $	>			ΩM
Bridge tied load application (BTL)	V _P	=	14,4	13,2	V
Output power at $R_L = 4 \Omega$ (with bootstrap)					
$d_{tot} = 0.5\%$	Po	typ.	18	15	W
$d_{tot} = 10\%$	Po	typ.	24	20	W
Supply voltage ripple rejection; $R_S = 0 \Omega$; $f = 100 Hz$	RR	typ.	50	50	dB
D.C. output offset voltage between the outputs	$ \Delta V_{5-9} $	<	50	50	mV
Stereo application					
Output power at d _{tot} = 10% (with bootstrap)					
$R_L = 4 \Omega$	Po	typ.	7	6	W
$R_L = 2 \Omega$	Po	typ.	12	10	W
Output power at d _{tot} = 0,5% (with bootstrap)	O				
$R_L = 4 \Omega$	Po	typ.	5,5	4,5	W
$R_L = 2 \Omega$	Po	typ.	9	7,5	
Channel separation	α	>	40	1000	dB
Noise output voltage; R _S = 10 kΩ; according to IEC curve-A	Vn	typ.	0,2		mV

PACKAGE OUTLINE 13-lead SIL; plastic power (SOT-141B).

Fig. 1 Internal block diagram; the heavy lines indicate the signal paths.

18 V

10 V

max.

max.

RATINGS

Reverse polarity

Limiting values in accordance with the Absolute Maximum S	System (IEC 134)			
Supply voltage; operating (pin 10)	memus Vprive x	max.	18	V
Supply voltage; non-operating	Vp	max.	28	V
Supply voltage; during 50 ms (load dump protection)	VP	max.	45	V
Peak output current	IOM	max.	6	Α
Total power dissipation	see derat	ing curve	Fig. 2	
Storage temperature range	Teta	-55 to	+ 150	oC
Crystal temperature	8,0 ot 0 = 170 to 10	max.	150	oC

Fig. 2 Power derating curves.

HEATSINK DESIGN EXAMPLE

The derating of 3 K/W of the encapsulation requires the following external heatsink (for sine-wave drive):

 \sim 24 W BTL (4 Ω) or 2 x 12 W stereo (2 Ω)

A.C. and d.c. short-circuit safe voltage

maximum sine-wave dissipation: 12 W

Tamb = 65 °C maximum

$$R_{\text{th h-a}} = \frac{150-65}{12} - 3 = 4 \text{ K/W}.$$

2 x 7 W stereo (4 Ω)

maximum sine-wave dissipation: 6 W

Tamb = 65 °C maximum

$$R_{\text{th h-a}} = \frac{150-65}{6} - 3 = 11 \text{ K/W}.$$

D.C. CHARACTERISTICS				
Supply voltage range (pin 10)	VP		6 to 18	V
Repetitive peak output current	IORM	<	Supply volt	Α
Total quiescent current	I _{tot}	typ.	dlov ylagi 75	m/
Switching level 11 : OFF		10 < 000	slov ylag 1.8	V
ON	V ₁₁	m>100	uatuo sias 3	
Impedance between pins 10 and 6; 10 and 8	noi			
(stand-by position V ₁₁ < 1,8 V)	ZOFF	>	100	kΩ
Stand-by current at V ₁₁ = 0 to 0,8 V	I _{sb}	typ.		μΑ
per con	30	<		μΑ
Switch-on current (pin 11) at V ₁₁ ≤ V ₁₀ (note 1)	I _{so}	typ.		μΑ
DE XERT	30	<	100	μΑ
A.C. CHARACTERISTICS				
T_{amb} = 25 °C; V_P = 14,4 V; f = 1 kHz; unless otherwise spec	cified			
Bridge tied load application (BTL); see Fig. 3				
Output power at $R_L = 4 \Omega$ (with bootstrap)				
Vp = 14,4 V; d _{tot} = 0,5%	Po	>	15,5	W
to the state of th	10	typ.	18	W
V _P = 14,4 V; d _{tot} = 10%	Po	>	20	
		typ.	24	W
Vp = 13,2 V; d _{tot} = 0,5%	Po	typ.	15	W
V _P = 13,2 V; d _{tot} = 10%	Po	typ.	20	W
Open loop voltage gain	Go	typ.	75	dB
Closed loop voltage gain (note 2)	Gc	typ.	40 (± 0,5)	dB
Output power without bootstrap (note 9)				
$V_P = 14.4 \text{ V}; d_{tot} = 10 \%$	Po	typ.	15	
Vp = 14,4 V; d _{tot} = 0,5 %	Po	typ.	12	
Vp = 13,2 V; d _{tot} = 10 %	Po	typ.	12	
$V_p = 13.2 \text{ V; } d_{tot} = 0.5 \%$	Po	typ.		W
Frequency response at -3 dB (note 3)	BIMAX	20 Hz	to min. 20	kHz
Input impedance (note 4) mstas griwolici art zatiupas nota	Z _i	>	derating of	
Noise input voltage (r.m.s. value) at f = 20 Hz to 20 kHz				
$R_S = 0 \Omega$	V _{n(rms)}	typ.	0,2	mV
$R_S = 10 \text{ k}\Omega$	V _{n(rms)}	typ.	0,35	
$R_S = 10 \text{ k}\Omega$; according to IEC 179 curve A	Vn	< typ.	0,8	
Supply voltage ripple rejection (note 5)	'n	typ.	0,25	IIIV
f = 100 Hz	RR	>	42	dB
	dissipation: 61	typ.	50	dB
D.C. output offset voltage between the outputs	ΔV ₅₋₉	<	50	mV
Loudenada		typ.	2	mV
Loudspeaker protection (all conditions) maximum d.c. voltage (across the load)		9	But day	
	ΔV ₅₋₉	<	1	V
Power bandwidth; -1 dB; dtot = 0,5%	В		30 Hz to 40	kHz

Stereo application; see Fig. 4						
Output power at dtot = 10%; with bootstrap (note 6)					6	W
$V_P = 14,4 \text{ V}; \text{ R}_L = 4 \Omega$		Po		typ.		W
$V_P = 14,4 \text{ V}; R_1 = 2 \Omega$		р		>	10	W
VP - 14,4 V, NL - 232		Po		typ.	12	W
$V_P = 13.2 \text{ V}; R_L = 4 \Omega$		P_{o}		typ.	6	W
$V_P = 13.2 \text{ V}; R_L = 2 \Omega$		P_{o}		typ.	10	W
Output power at d _{tot} = 0,5%; with bootstrap (note 6)						
$V_P = 14,4 \text{ V}; R_L = 4 \Omega$		Po		typ.	5,5	W
$V_{p} = 14,4 \text{ V}; R_{L} = 2 \Omega$		P_{o}		typ.	9	W
$V_P = 13.2 \text{ V}; R_L = 4 \Omega$		Po		typ.	4,5	W
V _P = 13,2 V; R _L = 2 Ω		P_{o}		typ.	7,5	W
Output power at $d_{tot} = 10\%$; without bootstrap $V_P = 14,4 \text{ V}$; $R_L = 4 \Omega$ (notes 6, 8 and 9)		Po		typ.	6	W
Frequency response at -3 dB (note 3)		В		40 Hz to 1	min. 20	kHz
Supply voltage ripple rejection (note 5)		RR		typ.	50	dB
Channel separation; R _S = 10 k Ω ; f = 1 kHz				>	40	dB
Charmer separation, ng = 10 ksz, 1 = 1 knz		α		typ.	50	dB
Closed loop voltage gain (note 7)		Gc		typ.	40	dB
Noise output voltage (r.m.s. value) at f = 20 Hz to 20 k	Hz					
$R_S = 0 \Omega$		V _{n(r}	ms)	typ.	0,15	mV
$R_S = 10 \text{ k}\Omega$		V _{n(r}	ms)	typ.	0,25	mV
$R_S = 10 \text{ k}\Omega$; according to IEC 179 curve A		v_n		typ.	0,2	mV

Notes

- 1. The internal circuit impedance at pin 11 is > 5 k Ω if $V_{11} > V_{10}$.
- Closed loop voltage gain can be chosen between 32 and 56 dB (BTL), and is determined by external
 components. For further gain reduction see Application Report.
- 3. Frequency response externally fixed.
- 4. The input impedance in the test circuit (Fig. 3) is typ. 100 k Ω .
- 5. Supply voltage ripple rejection measured with a source impedance of 0 Ω (maximum ripple amplitude: 2 V).
- 6. Output power is measured directly at the output pins of the IC.
- 7. Closed loop voltage gain can be chosen between 26 and 50 dB (stereo), and is determined by external components.
- 8. A resistor of 56 k Ω between pins 3 and 7 to reach symmetrical clipping.
- 9. Without bootstrap the 100 μ F capacitor between pins 5 and 6 (8 and 9) can be omitted. Pins 6, 8 and 10 have to be interconnected.

Fig. 3 Test/application circuit bridge tied load (BTL).

Fig. 4 Test/application circuit stereo.

1. Belongs to power supply.

20 W HI-FI AUDIO POWER AMPLIFIER

The TDA1520 is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical or symmetrical power supplies for mains-fed apparatus. Special features are:

- Thermal protection
- Very low intermodulation distortion
- Very low transient intermodulation distortion
- Built-in output current limiter
- Low input offset voltage
- Output stage with low cross-over distortion
- Single in-line (SIL) power package
- · A.C. short-circuit protected

QUICK REFERENCE DATA

		the state of the s	
Supply voltage range	Vp	15 t	to 40 V
Total quiescent current at V _P = 33 V	I _{tot}	typ.	54 mA
Output power at d _{tot} = 0,5% sine-wave power			
$V_P = 33 \text{ V}; R_L = 4 \Omega$	Po	typ.	22 W
$V_P = 33 V; R_L = 4 \Omega$	Po	>	16 W
Vp = 33 V; R _L = 8 Ω	oq Fig. 1 Slmptifi	typ.	11 W
Closed-loop voltage gain (externally determined)	G_C	typ.	30 dB
Input resistance (externally determined by R ₈₋₁)	Ri	typ.	20 kΩ
Signal-to-noise ratio at P _O = 50 mW	S/N	typ.	75 dB
Supply voltage ripple rejection at f = 100 Hz	RR	typ.	60 dB

PACKAGE OUTLINE

TDA1520 : 9-lead SIL; plastic power (SOT-131A).

TDA1520Q: 9-lead SIL-bent-to-DIL; plastic power (SOT-157A).

Fig. 1 Simplified internal circuit diagram.

PINNING

- 1. Non-inverting input
- 2. Input ground (substrate)
- 3. Compensation
- 4. Negative supply (ground)
- 5. Output
- 6. Positive supply (Vp)
- 7. Internally connected
- 8. Ripple rejection
- 9. Inverting input (feedback)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V ES VP V TO	max.	44
Repetitive peak output current	IORM	max.	4 /
NI	0.00	LOUGH AND	P. C.

Total power dissipation see derating curve Fig. 2 Storage temperature
$$T_{\rm stq}$$
 -55 to $+150$ °C

$$R_L$$
 = 0; V_P = 28 V with R_i = 4 Ω and $f >$ 20 Hz

mounted on infinite heatsink.
— mounted on heatsink of 2,3 K/W.

Fig. 2 Power derating curves.

THERMAL RESISTANCE

From junction to mounting base

D.C. CHARACTERISTICS									
Supply voltage range (981 031) m						VP	0008 ni 15 to	0 40	V
Total quiescent current at Vp = 33 V						Itot			mA
A.C. CHARACTERISTICS						curren	typ.	54	mA
$V_P = 33 V$; $R_L = 4 \Omega$; $f = 1 \text{ kHz}$; T_{aml} specified	b = 25 °C;	measur	ed in	test cir	cuit	of Fig.	3; unless oth	nerw	ise
Output power sine-wave power at d _{tot} = 0,5%									
$R_L = 4 \Omega$							typ.		WOA
$R_L = 4 \Omega$ $R_L = 8 \Omega$						Po	typ		
Power bandwidth; –3 dB; d _{tot} = 0,5%						В	typ. 20 Hz to		
Voltage gain						В	20 112 10	20	KIIZ
open-loop						Go	typ.	74	dB
closed-loop						Gc	typ.	30	dB
Input resistance (pin 1)						Ri	>	1	$M\Omega$
Input resistance of test circuit (Fig. 3)						Ri	typ.	20	kΩ
Input sensitivity									
for $P_0 = 50 \text{ mW}$		1				Vi	typ.		mV
for P _o = 16 W						Vi	typ.	260	mV
Signal-to-noise ratio									
at P_0 = 50 mW; R_S = 2 k Ω ; f = 20 Hz to 20 kHz; unweighted						S/N	typ.	75	dB
weighted; measured according to						0/11	.,,,	, 0	u.b
IEC 179 (A-curve)						S/N	typ.	80	dB
Supply voltage ripple rejection at f = 1	00 Hz					RR	typ.	65	dB
Total harmonic distortion at $P_0 = 16 \text{ W}$	Valued etin					d _{tot}	typ. (0,01	%
Output resistance (pin 5)						Ro		0,01	
						Ro	<	0,1	Ω

- (1) Belongs to power supply.
- (2) In application to improve radio interference suppression.

Fig. 3 Test circuit/basic application circuit.

- 11 Relongs to power succity.
- (2) In application to improve radio interterance suppression,

Fig. 3 Test circuit/basic application circuit.

20 W HI-FI AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

The TDA1520A is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical or symmetrical power supplies for mains-fed apparatus.

Features

- Low input offset voltage
- Output stage with low cross-over distortion
- Single in-line (SIL) power package
- A.C. short-circuit protected
- Very low internal thermal resistance
- Thermal protection
- Very low intermodulation distortion
- Very low transient intermodulation distortion
- Complete SOAR protection

QUICK REFERENCE DATA

Supply voltage range		VP	15 to	50	V
Total quiescent current at Vp = 33 V		I _{tot}	typ.	70	mΑ
Output power at d _{tot} = 0,5% sine-wave power					
$V_P = 33 \text{ V}; R_1 = 4 \Omega$		Po	typ.	22	W
$V_{P} = 33 \text{ V}; R_{L} = 4 \Omega$		Po	> bnuo	20	W
$V_P = 42 \text{ V}; R_L = 8 \Omega$		Po	typ.	20	W
Closed-loop voltage gain (externally det	termined)	Gc	typ.	30	dB
Input resistance (externally determined	l by R ₈₋₁)	Ri	typ.	20	kΩ
Signal-to-noise ratio at P _O = 50 mW		S/N	typ.	76	dB
Supply voltage ripple rejection at f = 10	00 Hz	RR	typ.	60	dB

PACKAGE OUTLINE

TDA1520A: 9-lead SIL; plastic power (SOT-131A). TDA1520AQ: 9-lead SIL-bent-to-DIL; plastic power (SOT-157A).

Fig. 1 Simplified internal circuit diagram.

PINNING

- 1. Non-inverting input
- 2. Input ground (substrate)
- 3. Compensation
- 4. Negative supply (ground)
- 5. Output
- 6. Positive supply (V_P)
- 7. Not connected
- 8. Ripple rejection
- 9. Inverting input (feedback)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	max.	50	٧
Repetitive peak output current	IORM	max.	4	Α
Non-repetitive peak output current	IOSM	max.	5	A
Total power dissipation	see dera	ting curve	Fig. 2	
Storage temperature	T _{stg}	-55 to -	+ 150	oC
Operating ambient temperature	Tamb	-25 to -	+ 150	oC

Duration of a.c. short-circuit of load (R $_{L}$ = 0 Ω)

during full-load sine-wave drive at:

 $V_S = \pm 20 \text{ V (symmetrical)}$ and $R_{supply} = 0 \Omega$; or

 $V_S = 35 \text{ V (asymmetrical)}$ and $R_{supply} \ge 4 \Omega$

t_{sc} max. 100 hours

Fig. 2 Power derating curves.

THERMAL RESISTANCE

From junction to mounting base

$$R_{th j-mb} \leq 2 K/W$$

TDA1520A TDA1520AQ

D.C. CHARACTERISTICS				
Supply voltage range (AEI 33I) moreve murrixeM studgedA add ddi	VP	15 to	50	V
Total quiescent current at V _P = 33 V	I _{tot}	typ. ≤		
Minimum guaranteed output current (peak value)	IORM	ive pea≶or	3,2	A
A.C. CHARACTERISTICS				
$V_P = 33 \text{ V; R}_L = 4 \Omega$; f = 1 kHz; $T_{amb} = 25 \text{ °C}$; measured in test circuit specified		; unless oth		
Output power sine-wave power at $d_{tot} = 0.5\%$ RL = 4 Ω (Fig. 4)	Po	typ. V 0	22	
$R_L = 8 \Omega$; $V_P = 42 V$	Po	typ.		W
Power bandwidth at d _{tot} = 0,5% from P _O = 50 mW to 10 W	В	20 Hz to	20	kHz
Voltage gain open-loop closed-loop	G _o	typ.	-	dB dB
Internal resistance of pin 1 (at R ₁₋₈ = ∞)	Ri	>		MΩ
Input resistance of test circuit at pin 1 (Fig. 3)	Ri	typ.	20	kΩ
Input sensitivity for P _O = 16 W	Vi	typ.	260	mV
Signal-to-noise ratio at P_0 = 50 mW; R_{source} = 2 k Ω f = 20 Hz to 20 kHz; unweighted	S/N	typ.	76	dB
weighted; measured according to IEC 179 (A-curve)	S/N	typ.	80	dB
Ripple rejection at f = 100 Hz; $R_S = 0 \Omega$	RR	typ.	60	dB
Total harmonic distortion at P _O = 16 W	d _{tot}	typ. (0,01	%
Output resistance (pin 5)	Ro	typ.	0,01	Ω
Input offset voltage	V ₅₋₈	typ.		mV mV
Transient intermodulation distortion at P _o = 10 W	dTIM	typ. (0,01	%
Intermodulation distortion at P _O = 10 W	dIM	typ. (0,01	%
Slew rate	SR	typ.	9	V/μs

APPLICATION INFORMATION

Fig. 3 Test and application circuit.

Fig. 4 Output power (P_0) versus supply voltage (V_p) at f = 1 kHz, d_{tot} = 0,5%, G_v = 30 dB.

APPLICATION INFORMATION (continued)

Fig. 5 Total harmonic distortion (d_{tot}) versus output power (P_O) at V_p = 33 V, R_L = 4 Ω , f = 1 kHz.

Fig. 6 Total harmonic distortion (d_{tot}) versus operating frequency (f) at V_p = 33 V, R_L = 4 Ω , P_0 = 10 W (constant).

STEREO CASSETTE HEAD PREAMPLIFIER AND EQUALIZER

GENERAL DESCRIPTION

The TDA1522 is a playback amplifier for car radio/cassette players.

Features

- Two independent amplifiers with open loop gain of typ. 90 dB
- Internal d.c. feedback via a 140 k Ω resistor from output to feedback point 800% and 1
- A.C. characteristics that can be determined externally by an RC network
- Electronic on/off switching with transient suppression for switch on
- · Head input at d.c. ground that eliminates the input coupling capacitor
- Minimal external component requirement
- Stability down to a gain of 30 dB
- Low input noise
- Low distortion
- D.C. input current < 2 μA
- Wide supply voltage range

QUICK REFERENCE DATA

Supply voltage range (pin 8)			VP	7,5 to 23		V
Supply current (pin 8)			SOIP.	typ.	5	mA
Operating ambient temperature range			Tamb	-30 to	+85	oC
Total harmonic distortion			THD	typ.	0,05	%
Channel separation at R _S = 10 k Ω ; L _S =	0		α	min.	45	dB

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-142).

Fig. 1 Block diagram with external components; also used as test circuit.

Fig. 2 Printed-circuit board component side, showing component layout for circuit of Figure 1.

Fig. 3 Printed-circuit board, showing track side. Dimensions 75 mm x 65 mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range (pin 8)	VP	7,5 t	to 23	V
Power dissipation	P _{tot}	max.	800	mW
Feedback current (pins 3 and 7)	Ifb	max.	10	mA
Storage temperature range	T _{stg}	-55 to	+150	oC
Operating ambient temperature range	Tamb	-30 to	+85	oC

Note

All pins except 3 and 7 (feedback) can be connected to Vp (pin 8) or ground, (pin 5).

CHARACTERISTICS

Vp = 8,5 V; Tamb = 25 °C; test circuit Fig. 1 unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 8)					
Supply voltage range	VP	7,5	-	23	V
Supply current	lp	-	5	1	mA
Inputs (pin 4 or 6)	orla objecte	neamos	brand tis	mis-bern	
Noise input voltage (unweighted; r.m.s. value) at f = 20 Hz to 20 kHz*	V _{n(rms)}	_	1,6	_	μV
Noise input voltage at R _S = 0; f = 1 kHz*, **	Vn	-	5	- I	nV/√Hz
Noise input current at f = 1 kHz*, ▲	In	-	1,2	_	pA/√Hz
D.C. input current at pins 4 and 6	-14; -16	_	-	2	μΑ
Outputs (pin 1 or 9)					
Output voltage at V; = 0,3 mV; f = 315 Hz	Vo		0,72	L	V
at THD= 1%; f = 1 kHz	Vo	1,0	-	_	V
Output source current at $V_{2-5} \ge 7,5 \text{ V}$; mute OFF	-I ₀	5	10	_	mA
D.C. output voltage	Vo	_	3,7	_	V
Noise output voltage (weighted) at $R_S = 300 \Omega$; $L_S = 80 \text{ mH}$					
as DIN A (r.m.s. value)	V _{n(rms)}	-	700	-	μV
as CCITT (peak value)	V _{n(m)}	-	1200	-	μV
as CCIR (peak value)	V _{n(m)}	_	1600	_	μV
Noise output voltage (unweighted) at $R_S = 300 \Omega$; $L_S = 80 \text{ mH}$	sti proworls	hased til	uotio-baz	ig. 3. Pri	
as DIN 45405 (peak value)	V _{n(m)}	-	1800	_	μV

parameter	symbol	min.	typ.	max.	unit
Mute on/off characteristics (pin 2)* Mute ON voltage at mute switch closed	Vm	0	44 000.	1	V
Mute ON current at mute switch closed or V ₂₋₅ = 0 V	Im		2,7	_	μΑ
Mute OFF voltage at mute switch open	Vm	7,5	_	Vp	V
Impedance			159	h	
Input impedance** at f = 1 kHz	Z _i	200	- 0xtu	_	kΩ
Output impedance** at f = 1 kHz	Z _o	-	7000	1	kΩ
General structure 250					Vizg
Internal feedback resistor**	R _{fb}	100	140	180	kΩ
Open-loop voltage gain** at f = 315 Hz	G _V	_	90	_	dB
Channel separation at R _S = 10 k Ω ; L _S = 0; (note 1)	α	45	_	_	dB
Power supply ripple rejection at Vp(rms) = 0,1 V; f = 100 Hz (note 2)	RR	90	95	_	dB
Total harmonic distortion at f = 1 kHz; V _O = 0,72 V (note 3)	THD	_	0,05		%

Notes

- 1. Frequency range 300 Hz to 20 kHz.
- 2. Referred to the input.
- 3. Measured selective.

^{*} See also Fig. 5.

^{**} Applies to each amplifier. Is spealed londing to noting it as stock pout of a

Fig. 4 Test circuit for noise measurement.

Fig. 5 Muting depth as a function of control voltage at pin 2.

Fig. 6 Noise input voltage as a function of frequency.

Fig. 7 Noise input current as a function of frequency.

Fig. 8 Frequency response curve for the circuit in Figure 1.

Fig. 9 Simple mute application.

Fig. 10 Application for plop-free muting.

Fig. 10 Application for plop-free muting

STEREO-TONE/VOLUME CONTROL CIRCUIT

GENERAL DESCRIPTION

The device is designed as an active stereo-tone/volume control for car radios, TV receivers and mains-fed equipment. It includes functions for bass and treble control, volume control with built-in contour (can be switched off) and balance. All these functions can be controlled by d.c. voltages or by single linear potentiometers.

Features

- Few external components necessary
- Low noise due to internal gain
- Bass emphasis can be increased by a double-pole low-pass filter
- Wide power supply voltage range

QUICK REFERENCE DATA

Supply voltage (pin 3)	Vp = V ₃₋₁₈ ty	/p. 12	٧
Supply current (pin 3)	Ip = 13 ty	/p. 35	mA
Maximum input signal with d.c. feedback (r.m.s. value)	Vi(rms) ty	/p. 2,5	V
Maximum output signal with d.c. feedback (r.m.s. value)	Vo(rms)	/p. 3	V
Volume control range	G _V –	80 to + 21,5	dB
Bass control range at 40 Hz	ΔG_V ty	/p. ± 15	dB
Treble control range at 16 kHz	ΔG_V ty	/p. ± 15	dB
Total harmonic distortion	THD ty	/p. 0,3	%
Output noise voltage (unweighted; r.m.s. value) at f = 20 Hz to 20 kHz; Vp = 12 V; for max, voltage gain for voltage gain G _V = -40 dB	110(11113)	/p. 310 /p. 100	
Channel separation at G _V = -20 to + 21,5 dB		/p. 60	dB
Tracking between channels at G _V = -20 to + 26 dB	ΔG_{V} m	ax. 2,5	dB
Ripple rejection at 100 Hz	RR ty	/p. 50	dB
Supply voltage range (pin 3)	V _P = V ₃₋₁₈	7,5 to 16,5	V
Operating ambient temperature range	T _{amb}	-30 to + 80	oC

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

508

(1) Series resistor is recommended in the event of the capacitive loads exceeding 200 pF.

Fig. 1 Block diagram and application circuit with single-pole filter.

D.C. CHARACTERISTICS

Vp = V₃₋₁₈ = 12 V; T_{amb} = 25 °C; measured in Fig. 1; R_G \leq 600 Ω ; R_L \geqslant 4,7 k Ω ; C_L \leq 200 pF; unless otherwise specified

parameter	symbol	min.	typ.	max.	uni
Supply (pin 3)				1015	
Supply voltage	V _P = V ₃₋₁₈	7,5	- ARRES	16,5	V
Supply current					
at V _P = 8,5 V	lp = 13	19	27	35	m/
at Vp = 12 V minu shedheat 3.0 E nil	Ip = 13	25	35	45	m/
at Vp = 15 Vallenari langia beveromi not	Ip = 13	30	43	56	m/
D.C. input levels (pins 4 and 15)				201	
at V _P = 8,5 V	V4,15-18	3,8	4,25	4,7	V
at Vp = 12 V (3E) 331) murry murry	V4,15-18	5,3	5,9	6,6	V
at Vp = 15 V	V4,15-18	6,5	7,3	8,2	V
D.C. output levels (pins 8 and 11)			- 0	ower dissipatio	
under all control voltage conditions			epni	temperature n	
with d.c. feedback (Fig. 3)			4.05	no ambie was en	V
at V _P = 8,5 V	V8,11-18	3,3	4,25	5,2	V
at Vp = 12 V at Vp = 15 V	V8,11-18 V8,11-18	4,6 5,7	6,0 7,5	7,4 9,3	V
Pin 17	*0,11-10	٠,٠	,,,	0,0	
Internal potentiometer supply voltage	V	2.5	0.75	40	V
at Vp = 8,5 V	V ₁₇₋₁₈	3,5	3,75	4,0	V
Contour on/off switch (control by 117)				0.5	
contour (switch open) linear (switch closed)	-l ₁₇	1,5	-	0,5	m/
	-I ₁₇	1,5		10	m/
Application without internal potentiometer					
supply voltage at V _P ≥ 10,8 V (contour cannot be switched off)					
Voltage range forced to pin 17	V ₁₇₋₁₈	4.5		V _P /2-V _{BE}	V
D.C. control voltage range for volume,	17-10	.,0		- P/- BE	
bass, treble and balance					
(pins 1, 9, 10 and 16 respectively)					
at V ₁₇₋₁₈ = 5 V	V1,9,10,16	1,0	-	4,25	V
using internal supply	V1,9,10,16	0,25	-	3,8	V
Input current of control inputs	1-110				
(pins 1, 9, 10 and 16)	-I _{1,9,10,16}	_	_	5	μΑ

A.C. CHARACTERISTICS

 $V_P = V_{3-18} = 8,5 \text{ V; } T_{amb} = 25 \text{ °C; measured in Fig. 1; contour switch closed (linear position); } volume, balance, bass, and treble controls in mid-position; } R_G \leqslant 600 \Omega; R_L \geqslant 4,7 \text{ k}\Omega; C_L \leqslant 200 \text{ pF; } f = 1 \text{ kHz; unless otherwise specified}$

parameter	symbol	min.	typ.	max.	unit
Control range		0.7%	= Cl-IT-A	18 8 = W	13
Max. gain of volume (Fig. 5)	G _{v max}		21,5		dB
Volume control range; G _{V max} /G _{V min}	ΔG_V	90	100	181 - gV	dB
Balance control range; G _V = 0 dB (Fig. 6)	ΔG_V	BERRY 2.TT.	-40	40 14 <u>5 to</u>	dB
Bass control range at 40 Hz (Fig. 7)	ΔG_V	± 12	± 15	45 = qV	dB
Treble control range at 16 kHz (Fig. 8)	ΔG_V	± 12	± 15	VaT = aV	dB
Contour characteristics		see Fig	s 9 and 10	of sH OF =	-1
Signal inputs, outputs				Vp = 16 V = 40 Hz 15	
Input resistance; pins 4 and 15 (note 1)	note 3)	tons 2 and		diangle tur	muO.
at gain of volume control: $G_V = 20 \text{ dB}$ $G_V = -40 \text{ dB}$	R _{i4,15} R _{i4,15}	10	160	Vp = 2,5 \ = 1 kHz [].	
Output resistance (pins 8 and 11)	R _{08,11}	_201	- THD -	300	Ω
Signal processing		0.5%		Vp=12V	
Power supply ripple rejection at V _{P(rms)} ≤ 200 mV; f = 100 Hz; G _V = 0 dB	RR	35	50	Vp = 15 V	
Channel separation (250 Hz to 10 kHz) at $G_V = -20$ to $+21,5$ dB	α_{CS}	46	60	a partures	dB
Spread of volume control with constant control voltage V ₁₋₁₈ = 0,5 V ₁₇₋₁₈	ΔG _V			±3	glu O
Gain tolerance between left and right channel V ₁₆₋₁₈ = V ₁₋₁₈ = 0,5 V ₁₇₋₁₈	ΔG _{v,L-R}	areni nina	aton h	1,5	dB
Tracking between channels for G _v = 21,5 to -26 dB	N 45405 468-2 (peak	neitabes		noise w 1981, CC	la.
$f = 250 \text{ Hz to } 6.3 \text{ kHz; balance adjusted at } G_V = 10 \text{ dB}$	ΔG_V	e sest to 4	eps Nov II	2,5	dB

A.C. CHARACTERISTICS (continued)

parameter of tenth basels native tuones. pil at be	symbol	min.	typ.	max.	uni
Signal handling with d.c. feedback (Fig. 3)	beitic	vise spa	red to a	elnu ;sH	al =
Input signal handling at Vp = 8,5 V; THD = 0,5%; f = 1 kHz (r.m.s. value)	V _{i(rms)}	1,4	_	10/01	RETEC
at Vp = 8,5 V; THD = 0,7%; f = 1 kHz (r.m.s. value)	V _{i(rms)}	1,8	2,4	of range y io nieg	V
at Vp = 12 V; THD = 0,5%;	Vi(rms)	1,4	egner-le	ntrico en	V
at Vp = 12 V; THD = 0,7%; f = 40 Hz to 16 kHz (r.m.s. value)	V _{i(rms)}	2,0	3,2	n <u>lo</u> nno	٧
at V _P = 15 V; THD = 0,5%; f = 40 Hz to 16 kHz (r.m.s. value)	V _{i(rms)}	1,4	s agrien crer is cie	s control iur ci u rs	V
at Vp = 15 V; THD = 0,7%; f = 40 Hz to 16 kHz (r.m.s. value)	Vi(rms)	2,0	3.2	inpu±s,	V
Output signal handling (note 2 and note 3) at Vp = 8,5 V; THD = 0,5%;	(ems) (note 1)	El bos P		resistant	augni at s
f = 1 kHz (r.m.s., value)	Vo(rms)	1,8	2,0	-	٧
f = 1 kHz (r.m.s. value)	Vo(rms)	bne 8 a	2,2	5391897 31	٧
at Vp = 12 V; THD = 0,5%; f = 40 Hz to 16 kHz (r.m.s. value)	Vo(rms)	2,5	3,0	supply supply	V
at Vp. = 15 V; THD = 0,5%; f = 40 Hz to 16 kHz (r.m.s. value)	Vo(rms)	e 1;Vr o sH 08	3,5	(P(rms)	٧
Noise performance (V _P = 8,5 V)			S+ 601	$i_y = -20$	18
Output noise voltage (unweighted; Fig. 15) at f = 20 Hz to 20 kHz (r.m.s. value) for maximum voltage gain (note 4) for G _V = -3 dB (note 4) Output noise voltage; weighted as DIN 45405	Vno(rms) Vno(rms)	tiiw loo P V agett ne Tel n m 181-1	260 70	_ 140	μV μV
of 1981, CCIR recommendation 468-2 (peak value) for maximum voltage gain (note 4) for maximum emphasis of bass and treble	V _{no(m)}	ureis 6 dB 4z; bala	890	ing between $G_{\psi} = 21$ 250 Hz	μV
(contour off; $G_V = -40 \text{ dB}$)	V _{no(m)}	-	360	8 <u>b</u> 0f =	μV
Noise performance (V _P = 12 V)					
Output noise voltage (unweighted; Fig. 15) at $f = 20 \text{ Hz}$ to 20 kHz (r.m.s. value; note 5) for maximum voltage gain (note 4) for $G_V = -16 \text{ dB}$ (note 4)	V _{no(rms)} V _{no(rms)}	=	310 100	_ 200	μV μV
Output noise voltage; weighted as DIN 45405 of 1981, CCIR recommendation 468-2 (peak value) for maximum voltage gain (note 4)	V _{no(m)}		940		μV
for maximum emphasis of bass and treble (contour off; $G_{\rm W} = -40$ dB)	V _{no(m)}		400	_	μV

parameter	symbol	min.	typ.	max.	unit
Noise performance (V _P = 15 V)					1000
Output noise voltage (unweighted; Fig. 15) at $f = 20 \text{ Hz}$ to 20 kHz (r.m.s. value; note 5) for maximum voltage gain (note 4) for $G_V = 16 \text{ dB}$ (note 4)	Vno(rms)	=	350 110	220	μV μV
Output noise voltage; weighted as DIN 45405 of 1981, CCIR recommendation 468-2 (peak value) for maximum voltage gain (note 4) for maximum emphasis of bass and treble	V _{no(m)}	-	980	-	μV
(contour off; G _V = -40 dB)	V _{no(m)}	-	420	1-/1	μV

Notes to characteristics

1. Equation for input resistance (see also Fig. 4)

$$R_i = \frac{160 \text{ k}\Omega}{1 + G_V}$$
; $G_{V \text{ max}} = 12$.

- Frequencies below 200 Hz and above 5 kHz have reduced voltage swing, the reduction at 40 Hz and at 16 kHz is 30%.
- In the event of bass boosting the output signal handling is reduced. The reduction is 1 dB for maximum bass boost.
- 4. Linear frequency response.
- 5. For peak values add 4,5 dB to r.m.s. values.

Fig. 4 Input resistance (Ri) as a function of gain of volume control (Gv). Measured in Fig. 1.

7Z86924

0

G_V
(dB)

-20

0

1

2

3

V₁₆₋₁₈(V)

Fig. 5 Volume control curve; voltage gain (G_V) as a function of control voltage (V_{1-18}). Measured in Fig. 1 (internal potentiometer supply from pin 17 used); $V_P = 8,5 \ V$; $f = 1 \ kHz$.

Fig. 6 Balance control curve; voltage gain (G_v) as a function of control voltage (V_{16-18}) . Measured in Fig. 1 (internal potentiometer supply from pin 17 used); $V_P = 8,5 V$.

Fig. 7 Bass control curve; voltage gain (G_V) as a function of control voltage (V_{9-18}). Measured in Fig. 1 with single-pole filter (internal potentiometer supply from pin 17 used); $V_P = 8,5 \ V; f = 40 \ Hz$.

Fig. 8 Treble control curve; voltage gain (G_v) as a function of control voltage (V_{10-18}). Measured in Fig. 1 (internal potentiometer supply from pin 17 used); $V_P = 8,5 \ V$; $f = 16 \ kHz$.

Fig. 9 Contour frequency response curves; voltage gain (G_V) as a function of audio input frequency. Measured in Fig. 1 with single-pole filter; $V_P = 8.5 \text{ V}$.

Fig. 10 Contour frequency response curves; voltage gain (G_V) as a function of audio input frequency. Measured in Fig. 1 with double-pole filter; $V_P = 8,5 \text{ V}$.

Fig. 11 Tone control frequency response curves; voltage gain (G_V) as a function of audio input frequency. Measured in Fig. 1 with single-pole filter; $V_P = 8,5 \text{ V}$.

Fig. 12 Tone control frequency response curves; voltage gain (G_V) as a function of audio input frequency. Measured in Fig. 1 with double-pole filter; $V_P = 8.5 \text{ V}$.

Fig. 13 Total harmonic distortion (THD); as a function of audio input frequency. Measured in Fig. 1; $V_P = 8.5 \text{ V}$; volume control voltage gain at

$$G_V = 20 \log \frac{V_0}{V_i} = 0 \text{ dB}.$$

Fig. 14 Total harmonic distortion (THD); as a function of output voltage (V_0). Measured in Fig. 1; $V_P = 8.5 \text{ V}$; $f_i = 1 \text{ kHz}$.

⁽¹⁾ $V_P = 15 V$.

Fig. 15 Noise output voltage ($V_{no(rms)}$; unweighted); as a function of voltage gain (G_{v}). Measured in Fig. 1; f = 20 Hz to 20 kHz.

⁽²⁾ $V_P = 12 V$.

⁽³⁾ $V_P = 8,5 V$.

Fig. 14. Total harmonic distortion (THD); as a function of autput voltage (V_Q). Measured in Fig. 1; $V_P = 8.5 \text{ V}$; $f_1 = 1 \text{ kHz}$.

V = aV(1)

(2) Vn = 12 V

V 3.8 = aV (E)

Fig. 15. Noise output voltage ($V_{no(rms)}$; unweighted); as a function of voltage guin (G_g). Measured in Fig. 1; f = 20 Hz to 20 kHz.

PLL MOTOR SPEED CONTROL CIRCUIT FOR HI-FI APPLICATIONS

The TDA1533 is a monolithic integrated circuit intended for PLL motor speed control in several hi-fi applications; e.g. record players, cassette recorders, reel-to-reel, and operates in accordance with the phase-locked-loop (PLL) system.

The circuit incorporates the following functions:

- A quartz reference oscillator
- A synthesizer for adjustment of the phase detector reference frequency
- A programmable scaler for the several applications
- A digital memory phase detector
- A tacho-signal amplifier/limiter
- Two operational amplifiers for the external integration and loop filtering of the phase detector output.

QUICK REFERENCE DATA

8	V _P	1 5	9 to 11	V
	- Ip	typ.	50	mΑ
	f	<	5	MHz
	тс	<	0,1.10-6	K-1
- S	< v _I	-C),3 to + 10	V
	V _{i(p-p)}	>	> 10	mV
	G _V	typ.	10 000	
87	lbias	<	100	nΑ
	Vio	<	15	mV
	T _{sta}	-2	5 to + 125	oC
			0 to +60	oC
	AB WHIS WHIS	f TC HOW VI Vi(p-p) GV Ibias Vio Tstg	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102CS).

GENERAL DESCRIPTION (see also Fig. 1)

The crystal frequency (e.g. 4,8 MHz) is divided by the presettable 901 to 1099 divider. The scaler is used to obtain the reference signal for the digital memory phase detector. The tacho signal is derived from the tacho amplifier/limiter.

The output of the phase detector becomes HIGH on the positive-going edge of the reference signal, and it is floating on the first-coming positive edge of the tacho signal, if the angle between the edges is not more than 360°. The output becomes LOW if the first positive-going edge is the edge of the tacho signal, and it is floating on the first-coming positive edge of the reference signal. This means that the holding range is 720°.

The lock indication output is HIGH, except for the period between the two positive and the two negative-going edges of the tacho and reference signals.

The dividing number of the presettable divider depends on the state of its presets, thus on the position of the up/down counter.

A pull-up to the IC supply voltage of the reset input results into a reset of the up/down counter and dividing by 1000.

The up/down counter can be changed in position by means of the up/down input and the up/down control unit, and therefore the divisors of the presettable divider in a range from 901 to 1099. The clock of the up/down counter is available at the reset input as a 0,1 Vp to 0,8 Vp pulse. The timing diagram of the up/down counter is given in Fig. 2.

The up/down input and the scaler control inputs are 3-state inputs. The scaler truth table is given below. A HIGH level at the up/down input gives an increase, a LOW level a decrease, of the phase detector reference signal frequency.

The information at the up/down input will be internally forced on the state present, over a period of 250 ms. Together with the up/down clock at the reset pin, this offers the possibility of displaying the number of clock pulses used.

SCALER TRUTH TABLE

control	inputs	division
Α	В	ratio
12HV	н >	note 1
o.asHv-	Lavi	note 2
VF8.0	F	4 10
F	Н	. 8
F	L	2 0
Н	F	54
L	Н	10
VL 8.8	L <	20
MLTR	Fove	40

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

F = floating (pin open)

Notes

- 1. Test 1; general preset.
- 2. Test 2; fast clock via test pin (pin 2).

10

44 µA

typ.

sink

Tacho input				
Input voltage	VI	-0,3	to + 10	VgO
Input biasing current	lbias	typ.	0,5 5,0	μΑ μΑ
Input sensitivity (peak-to-peak value)	$V_{i(p-p)}$	>	10	mV
Offset voltage over temperature range	V _{io} V _{io}	typ.	0,1 2,0	mV mV
Offset current over temperature range	lio	typ.		nA nA
Tacho output (open collector)				
Output voltage HIGH	Vон	<(8b)	12	VISB
Output voltage LOW at 5 mA	VOL	<	0,5	V
Output sink current	Io	<	10	mA
Up/down - input/output				
Input voltage LOW	VIL	typ. -0,4 t	0 o + 0,4	V
Output voltage HIGH	Voн		3 to 10	V
Open voltage	Vo	100000000000000000000000000000000000000	0,7 to 0,8	
Output voltage HIGH at 0,5 mA	Voн	> typ.	8,5 9,0	
Output voltage LOW at 5 mA	VOL	<	0,5	V
Output sink current	avittel O	< 1ba	10	mΑ
Output source impedance	Z _o mountous	<	1,5	kΩ
Scaler inputs				
Input voltage LOW	VIL	typ. -0,4 to		V
Input voltage HIGH	VIH nurobagu	ation of	to 10	V
Open voltage sidiazog si nolitatione	bnoss vd slyste by second	0,6	0,7 to 0,8	V
Reset input/output				
Input voltage HIGH	VIH	> _{reduct}	9,5	
Output voltage LOW	VOL	typ.	0,3 0,5	
Output voltage HIGH	VOH	typ.	8	V

CHARACTERISTICS (continued)		
Operational amplifiers		
Voltage gain	G_V	typ. 10 000
Input bias current	bias	typ. 30 nA < 100 nA
Output sink current at V ₀ = 1 V	perature rolge	typ. 0,1 mA
Output source current at V _o = 9 V	I _o	> 15 mA typ. 20 mA
Input offset voltage	Vio	< 15 mV
Input offset voltage drift	$\Delta V_{io}/\Delta T_{o}$	0,25 mV/K
Bandwidth (3 dB)	В	HOTH spell 60 Hz

- (1) Start operation of up/down pin.
- (2) 1st clock pulse.
- (3) From this point on, restart of cycle by second excitation is possible.
- (4) 2nd clock pulse.
- (5) 3rd clock pulse.
- (6) 4th clock pulse.

Fig. 2 Timing diagram of up/down counter.

14-BIT DAC WITH 85 dB S/N RATIO

GENERAL DESCRIPTION

The TDA1540 is a monolithic integrated 14-bit digital to analogue converter (DAC). It incorporates a 14-bit input shift register with output latches, binary weighted current sources with switches and a reference source.

The IC features an improved switch circuitry which eliminates the need for a deglitcher circuit at the output. This results in a signal-to-noise ratio of typical 85 dB in the audio band.

QUICK REFERENCE DATA

	12	Mbit/s MHz K-1
nax min.	12	Mbit/s
	12	Mbit/s
nax min.		
typ.	0,5	μs
typ.	½ LSB	
typ.	85	dB
typ.	-17	V
typ.	-5	V
typ.	5	\vee
	typ. typ. typ. typ.	typ5 typ17 typ. 85 typ. ½ LSB

PACKAGE OUTLINES

TDA1540D: 28-lead DIL; ceramic (cerdip) (SOT-135A).

TDA1540P: 28-lead DIL; plastic (SOT-117BE).

FUNCTIONAL DESCRIPTION

The binary weighted current sources are obtained by a combination of a passive divider and a time division concept. Figure 1a gives the diagram of one divider stage. The total emitter current 4 l of the passive divider is divided into four more or less equal output currents.

The output currents of the passive divider are now interchanged during equal time intervals generated by means of a shift register. The average output currents are exactly equal as a result of this operation. A ripple on the output current, caused by a mismatch of the passive divider, is filtered by an a.c. low-pass filter, requiring an external filter capacitor.

The outputs of the dividers are combined to obtain the output currents I (\bar{l}_1) , I (\bar{l}_2) and 2I (\bar{l}_3) (see Fig. 1b). The current of the most significant bit is generated by an on-chip reference source. A binary weighted current network is formed by cascading the current division stages (see Fig. 2).

The interchanging pulses are generated by an on-chip oscillator and a 4-bit shift register. The binary currents are switched to the current output (pin 22) via diode-transistor switching stages; therefore, the voltage on the output pin must be 0 V \pm 10 mV. The output current can be converted into a voltage by means of a summing amplifier.

Figure 3 represents the data input format, and an application circuit is given in Fig. 4.

Fig. 1a Circuit diagram of one divider stage.

Fig. 1b Waveforms showing output currents I₁, I₂ and I₃ of Fig. 1a.

Fig. 3 Format of input signals.

RATINGS

Total power dissipation Storage temperature range

Operating ambient temperature range

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages	
with respect to GND (pin 6) at pin 4	
at pin 7	
at pin 11	
at pin 4 with respect to pin 11	1 1 1 1 1 1
at pin 7 with respect to pin 11	

V _{N1}	max.	-12	V
V _{N2}	max.	-20	V
V _{P1} -V _{N2}	max.	32	V
$V_{N1}-V_{N2}$	-1 t	0 + 20	V
Ptot	max.	600	mV
T _{stg}	-55 to	+ 125	oC
Tamb	-25 t	0 + 80	oC

12 V

CHARACTERISTICS (see application circuit Fig. 4)

T_{amb} = 25 °C; at typical supply voltages; unless otherwise specified

parameter	symbol min.		typ.	max.	unit
Supply voltages with respect to GND (pin 6)					
at pin 4	V _{P1}	3	5	7	V
at pin 7	V _{N1}	-4,7	-5	-7	V
at pin 11	V _{N2}	-16,5	-17	-18	V
Supply currents			RET	SHIPT REGIL	
at pin 4*	I _{P1}	alamete mente	12	14	mA
at pin 7	IN1	-	-20	-24	mA
at pin 11	I _{N2}	-	-11	-13	mA
Power dissipation	DOX.) DOM	ATAQ		
Total power dissipation	P _{tot}	A TAKE	350	410	mW
Temperature	BUND	n H H			
Operating ambient temperature range	T _{amb}	-20	-	+ 70	оС

^{*} When the output current is $\frac{1}{2}I_{FS}$ ($\frac{1}{2}$ full scale output current).

parameter	symbol	min.	typ.	max.	unit
Data input DATA (pin 1)	820pf	Hes	3001		
Input voltage HIGH	V _{IH}	2,0	-	7,0	V
Input voltage LOW	VIL	0 0	1-1 8 8	0,8	V
Input current HIGH at VIH	НН		_	50	μΑ
Input current LOW at VIL	II-IIL	_	TDATE	0,2	mA
Maximum input bit rate	BR _{max}	12	-	-	Mbits/s
Latch enable input LE (pin 2)	16 3 24 28		05 81 81 40	11	
Clock input CP (pin 28)	T T I				
Input voltage HIGH	VIH	2,0	100 47 22 h	7,0	V
Input voltage LOW	VII	0	-	0,8	V
Input current HIGH at VIH	ivarion noitsoi	g. 4. Agpi	P _	50	μΑ
Input current LOW at VIL	-IIL	_	_	0,2	mA
Maximum clock frequency	fCPmax	12	- 100	data in	MHz
Oscillator (pins 8 and 9)			nable input		2 LE 3 Vests
Oscillator frequency at C ₈₋₉ = 820 pF	fosc	100	e supply rey comper 061 on operational ampl	200	kHz 5.1 8
Analogue output Iout (pin 22)			agina ianoianatago c	briuo ig	GND 8
Output voltage compliance	Voc	-10	 Aiddns e 	+ 10	mV MV
Full scale current	IFS	3,8	4,01 capaci 10,4	4,2	mA
Zero scale current	± Izs	_	- eanereter	100	nA /
Full scale temperature coefficient T _{amb} = -20 to + 70 °C	TCFS	_	± 30 x 10-6	deta	2 C11-X
Settling time to ± ½LSB all bits on or off	t _{cs}	_	0,5	anos [μs εο Δ
Signal-to-noise ratio*	S/N	80	85		dB

^{*} Signal-to-noise ratio within 20 Hz and 20 kHz of a 1 kHz full scale sinewave, generated at a sample rate of 44 kHz.

Fig. 4 Application circuit.

^{*} i.c.: internally connected.

MOTOR SPEED REGULATOR

The TDA1559 is a 3 pins speed regulator circuit for d.c. motors. It is especially intended for low-voltage motors in battery operated cassette recorder systems and record players. The IC features a high multiplication coefficient (k = 21,5) and a low drop-out voltage (0,5 V). It also contains a current limiter and thermal shut-down.

QUICK REFERENCE DATA

Supply voltage	VP	max.	16	V
Internal reference voltage	V _{ref}	typ.	1,26	V
Drop-out voltage	V ₂₋₃	typ.	0,5	V
Limited output current	¹ 2 lim	typ.	0,7	Α
Multiplication coefficient	k	typ.	21,5	
Thermal limitation	T _{j lim}	typ.	145	oC
Operating ambient temperature range	T _{amb}	-25 to	+70	oC
			88	MITA

PACKAGE OUTLINE

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

Pin 1 connected to metal part of mounting surface.

(1) Within this region the cross-section of the leads is uncontrolled.

Fig. 2 Functional diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	$V_P = V_{1-3} \text{ max.}$ 16	V
Output current	l ₂ max. 1,2	Α
Storage temperature	T_{stq} —25 to +125	ОС
Junction temperature (limited by thermal limitation)	T _i max. 130	оС
Operating ambient temperature range	T_{amb} -25 to + 70	oC
THERMAL DESISTANCE		

R_{th j-c}

R_{th j-a}

10 K/W

100 K/W

THERMAL RESISTANCE

From junction to case
From junction to ambient

Fig. 3 Test circuit.

CHARACTERISTICS

 V_P = 9 V; I_2 = 70 mA; T_{amb} = 25 °C; R1 = 0; heatsink with R_{th} = 100 K/W and after thermal stabilization; unless otherwise specified; see test circuit Fig. 3.

	symbol	min.	typ.	max.	unit	conditions
Internal reference voltage	V _{ref} = V ₁₋₂	1,20	1,26	1,32	V	V _P = 2,1 V
Drop-out voltage	V ₂₋₃		0,5	0,7	V	
	V ₂₋₃	-	0,85	1,1	V	I ₂ = 400 mA
Quiescent current	Iq	0,8	1,3	1,8	mA	100
Limiting output current	¹ 2 lim	0,45	0,7	1	A	(x)
Multiplication coefficient*	$k = \frac{\Delta I_2}{\Delta I_1}$	19,3	21,5	24,3		$\Delta I_2 = \pm 10 \text{ mA}$
Thermal limitation	Tj lim	130	<	160	oC	V _{ref} = 1,2 V
Line regulation variation	۸٧ .	/			0	·
V _{ref} versus V _P	$\frac{\Delta V_{ref}}{\Delta V_{P}}$	0	0,9 0,07	2,0 0,16	mV/V %/V	Vp = 2,1 to 15 V
k-spread versus Vp	$\frac{\Delta k}{\Delta V_P}$	-0,3	+0,2	+1	%/V	$\Delta I_2 = \pm 10 \text{ mA}$ Vp = 2,1 to 15 V
I _q versus V _P	$\frac{\Delta I_q}{\Delta V_P}$	-	11 0,95	(- l	μΑ/V %/V	$I_2 = 0$ Vp = 2,1 to 15 V
Load regulation variation	ΔV_{ref}	-0.4	0	+0.4	V/A	
V _{ref} versus I ₂	$\frac{161}{\Delta I_2}$	-0,4		+0,03	%/mA	$l_2 = 50 \text{ to } 100 \text{ mA}$
k-spread versus I ₂	$\frac{\Delta k}{\Delta l_2}$	-0,05	0	+ 0,05	%/mA	$ 1_2 = 50 \text{ to } 100 \text{ mA}$ $ \Delta _2 = \pm 10 \text{ mA}$
Temperature coefficient						
variation	ΔV_{ref}	-0,2	0,1	+0,4	mV/K	1
V _{ref} versus T _{amb}	ΔT_{amb}	-0,02		+0,04	%/K	$T_{amb} = -5 \text{ to } +55 ^{\circ}\text{C}$
k-spread versus T _{amb}	$\frac{\Delta k}{\Delta T_{amb}}$	-0,03	0	+0,03	%/K	$T_{amb} = -5 \text{ to } +55 ^{\circ}\text{C}$ $\Delta I_2 = \pm 10 \text{ mA}$
L versus T	ΔI_q	_	-1,1		μΑ/Κ	$T_{amb} = -5 \text{ to } + 55 \text{ oc}$
Iq versus Tamb	ΔT_{amb}	-	0,08		%/K	12 = 0

^{*} There are 4 ranges of k-factors, indicated by either '1', '2', '3', or '4' on the package. Ordering a specific range is not possible.

^{1 = 19,3} to 20,5

 $^{2 = 20,3 \}text{ to } 21,5$

^{3 = 21,3} to 22,700 billiagr begat forom to do single and the regulation of using the 100 states and the states are states as a second states and the states are states as a second state are states as a secon

 $^{4 = 22,5 \}text{ to } 24,3$

APPLICATION INFORMATION

Fig. 4 Example of using the TDA1559 in a d.c. motor speed regulation circuit.

Notes to Fig. 4

$$E_n = n \times C \times \phi$$
 where: $n = \text{speed in revolutions per minute}$

$$I_{m} = T \times \frac{2\pi}{60} = \frac{1}{C.\phi}$$

C = motor constant

$$\phi$$
 = magnetic flux

 E_n = electromotive force (e.m.f.)

T = motor torque

R_m= motor resistance

En can be expressed as:

$$E_n = I_m \left(\frac{R1}{k} - R_m \right) + V_{ref} \left(1 + \frac{R1}{R2} \left(1 + \frac{1}{k} \right) \right) + R2 \times I_q$$

For optimal regulation (dn/dT = 0), $\left(\frac{R1}{k} - R_m\right)$ should be zero. However, if R1 = k x R_m, the regulator will be oscillating, so for stability always R1 < k x R_m. R2 is determined by:

$$R2 = \frac{V_{\text{ref}} \times R1 \times \left(1 + \frac{1}{k}\right)}{E_{\text{n}} - (R1 \times I_{\text{q}}) - V_{\text{ref}} - I_{\text{m}} \left(\frac{R1}{k} - R_{\text{m}}\right)}$$

Example:

$$E_n = E_{2000} = 3,58 \text{ V} \pm 11,6\%$$

$$R_{\rm m}$$
 = 13 Ω ± 10%

$$T = 1 \text{ mNm}$$

R1 = 220 Ω

$$R2' = 82 \Omega$$

 $R2'' = 220 \Omega$

When a diode (D = BA220) is connected is series with pin 1, then the expressions for R2 and $E_{\rm D}$ are:

$$\begin{split} \text{R2} = & \frac{\left(\text{V}_{ref} + \text{V}_D \right) \times \text{R1} \times \left(1 + \frac{1}{k} \right)}{\text{E}_n - \left(\text{R1} \times \text{I}_q \right) - \left(\text{V}_{ref} + \text{V}_D \right) - \text{I}_m \left(\frac{\text{R1}}{k} - \text{R}_m \right)} \\ \text{E}_n = & \text{I}_m \left(\frac{\text{R1}}{k} - \text{R}_m \right) + \left(\text{V}_{ref} + \text{V}_D \right) \left\{ 1 + \frac{\text{R1}}{\text{R2}} \left(1 + \frac{1}{k} \right) \right\} + \text{R2} + \text{I}_q \end{split}$$

Example:

$$E_n = E_{2000} = 3,58 \text{ V} \pm 11,6\%$$

$$R_m = 13 \Omega \pm 10\%$$

$$T = 1 \text{ mNm}$$

$$R1 = 220 \Omega$$

$$R2' = 160 \Omega$$

$$R2'' = 470 \Omega$$

Fig. 5 Variation in motor speed (n is revolutions per minute) as a function of the applied motor torque at $T_{amb} = 25$ °C.

Fig. 6 Variation in motor speed (n is revolutions per minute) as a function of the ambient temperature at T = 1 mNm nominal and $V_P = 9$ V.

----: with diode (D = BA220; see Fig. 4).

---: without diode.

Fig. 7a $V_P = 6 V$.

Fig. 7b $V_P = 9 V$.

Fig. 7 Variation in motor speed (n is revolutions per minute) as a function of the ambient temperature without diode (D = BA220; see Fig. 4).

----: T = 0,9 mNm

: T = 1,0 mNm ----: T = 1,1 mNm

Fig. 7a Vp = 6 V.

Fig. 7b Vp = 9 V.

Fig. 7 Variation in motor speed (n is revolutions per minuté) as a function of the ambient temperature without clode (D = 8A220; see Fig. 4).

INTEGRATED FM TUNER FOR RADIO RECEIVERS

GENERAL DESCRIPTION

The TDA1574 is a monolithic integrated FM tuner circuit designed for use in the r.f./i.f. section of car radios and home-receivers. The circuit comprises a mixer, oscillator and a linear i.f. amplifier for signal processing, plus the following additional features.

Features

- Keyed automatic gain control (a.g.c.)
- Regulated reference voltage
- Buffered oscillator output
- Electronic standby switch
- Internal buffered mixer driving

QUICK REFERENCE DATA

VP	J ₂	7 to 16	V
V ₁ , 2-4 NF	typ.		V dB
V ₆₋₄ Y22	typ.	2 1,5 + j2	V mS
V ₉₋₄	typ.	6	V
THD	typ.	-15	dBC
V ₁₀₋₄ NF	typ.	4,5 6,5	
V ₁₈₋₄	+ 0,5 to	V _P -0,3	V
	V1, 2-4 NF V6-4 Y22 V9-4 THD V10-4 NF	V1, 2-4 typ. NF typ. V6-4 typ. Y22 typ. V9-4 typ. THD typ. V10-4 typ. NF typ.	V1,2-4 typ. 1 NF typ. 9 V6-4 typ. 2 Y22 typ. 1,5+j2 V9-4 typ. 6 THD typ15 V10-4 typ. 4,5 NF typ. 6,5

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Coil data

- L1: TOKO MC-108, 514HNE-150014S14; L = 0,078 μH
- L2: ΤΟΚΟ MC-111, E516HNS-200057; L = 0,08 μH
- L3: TOKO coil set 7P, N1 = 5,5 + 5,5 turns, N2 = 4 turns

Fig. 1 Block diagram and test circuit.

V

oC mW

FUNCTIONAL DESCRIPTION

Mivor

The mixer circuit is a double balanced multiplier with a preamplifier (common base input) to obtain a large signal handling range and a low oscillator radiation.

Oscillator

The oscillator circuit is an amplifier with a differential input. Voltage regulation is achieved by utilizing the symmetrical tanh-transfer-function to obtain low order 2nd harmonics.

Linear IF amplifier

The IF amplifier is a one stage, differential input, wideband amplifier with an output buffer.

Keyed AGC

The AGC processor combines narrow- and wideband information via an RF level detector, a comparator and an ANDing stage. The level dependent, current sinking output has an active load, which sets the AGC threshold.

The AGC function can either be controlled by a combination of wideband and narrowband information (keyed AGC), or by a wideband information only, or by narrowband information only. If only narrowband AGC is wanted pin 3 should be connected to pin 5. If only wideband AGC is wanted pin 12 should be connected to pin 13.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) 1150 11 WOOD INCOME.

$V_P = V_{15-4}$	max. MV	18	1
V16, 17-4	max.	35	
V ₁₁₋₄	max.	23	1
V ₅₋₄	max.	17	1
V ₁₂₋₄	max.	7	1
P _{tot}	max.	800	1
T _{stg}	-55 to +	150	(
T _{amb}	-40 to	+ 85	(
	V16, 17-4 V11-4 V5-4 V12-4 Ptot T _{stg}	V16, 17-4 max. V11-4 max. V5-4 max. V12-4 max. Ptot max. Tstg -55 to +	V 16, 17-4 max. 35 V 11-4 max. 23 V 5-4 max. 7 V 12-4 max. 7 P tot max. 800 T stg -55 to + 150 T

THERMAL RESISTANCE

From junction to ambient (in free air)

Rth j-amb = 80	80 K/W
----------------	--------

Note

All pins are short-circuit protected to ground.

CHARACTERISTICS

 $V_P = V_{15-4} = 8,5 \text{ V}$; $T_{amb} = 25 \, {}^{o}\text{C}$; measured in test circuit Fig. 1; unless otherwise specified

parameter no.	symbol	min.	typ.	max.	unit
Supply (pin 15)					rotellia
Supply voltage	$V_P = V_{15-4}$	7	is an at	16	La Victor Se
Supply current (except mixer)					mA
Reference voltage (pin 5)	V ₅₋₄	3,9	4,1	4,4	V mear 1F m
Mixer and suggest and an object of the self-light bands	ential input, wid	e, differ	one sta	filer is a	ie IF ampl
D.C. characteristics					224
Input bias voltage (pins 1 and 2)	V _{1,2-4}	-	1	-	V
Output voltage (pins 16 and 17)	V16,17-4	4	The le	35	VANS
Output current (pin 16 + pin 17)	116 + 117	-	4,0	blo	mA
A.C. characteristics (f _i = 98 MHz)	mation only, or	ond info	dabiw	b or by	DDA bays
Noise figure who a 22A briedeblw ylno 11.3 r	NFetoennoo	ed_blue	1		
Noise figure including transforming network	NF		11	DSJOSENI	dB
3rd order intercept point	EMF1 _{IP3}	-	115	-	dBμV
Conversion power gain (SET DEI) mosey & mum	a Absolute Mari	dt ritiw s	prisbio	sos ni sec	niting val
$10 \log \frac{4 (V_{M(out)} 10,7 MHz)^{2}}{(EMF1 98 MHz)^{2}} \times \frac{RS1}{R_{ML}}$	Gp	_	14		dB
Input resistance (pins 1 and 2)	R _{1,2-4}	II migi	14	ru g ni rlat	Ωydbni
Output capacitance (pins 16 and 17)	C ₁₆ ,17	-			pF
Oscillator		pin 12			eld strengt
D.C. characteristics			- 18		tal power
Input voltage (pins 7 and 8)	V7,8-4	_	1,3	_	V
Output voltage (pin 6)	V ₆₋₄	enar en	2	es meide	V
A.C. characteristics (fosc = 108,7 MHz)					
Residual FM (Bandwidth 300 Hz to 15 kHz); de-emphasis = $50 \mu s$	Δf	free ar	2,2	ims of the	Hz

parameter	symbol	min.	typ.	max.	unit
Linear i.f. amplifier D.C. characteristics	fedmys			18	
Input bias voltage (pin 13)	V ₁₃₋₄	_	1.2	reamit bred	V
Output voltage (pin 10)	V ₁₀₋₄	_ Vm		~ _V = p.	
Output voltage (pill 10)	V 10-4			4=2V V	
A.C. characteristics (f _i = 10,7 MHz)	95.000				
Input impedance		15	HV 86 - 4	an server our	
	R ₁₄₋₁₃	240	300	360	Ω
	C ₁₄₋₁₃	_	13	-	pF
Output impedance	63.4				
	R ₁₀₋₄	240		360	
	C ₁₀₋₄	_	3	res 2 3, 4 a	pF
Voltage gain	EMPZ _{rms}	= 81112/9	A= 0-81 _A	2.4 = 0,1 V	
20 log V10-4 V14-13	GVIF	27		od popuje se	
$T_{amb} = -40 \text{ to} + 85 ^{\circ}\text{C}$	ΔG _{VIF}	Touley		- Tugrue si	
1 dB compression point (r.m.s. value)		1.000			
at V _P = 8,5 V	V _{10-4rms}	_	750	_3.00=	mV
at Vp = 7,5 V	V ₁₀₋₄ rms	_	550	-0.97 =	mV
Noise figure	Rg-15		BOV	ebeqmi ruq	
at R _S = 300 Ω	NF	_	6,5	yainu	dB
-15 - dac	THID		morth	a, traingem	
Keyed a.g.c.				ou eupert a	
D.C. characteristics	ls l		108 - ₁₉ 5	V = 0, V = 0	
Output voltage range (pin 18)	V ₁₈₋₄	0,5	-	V _P -0,3	V
A.G.C. output current		1 1		ge Wandiny s	
at $I_3 = \phi$ or		.0.13		ir; linear	
$V_{12-4} = 450 \text{ mV}; V_{18-4} = V_{P}/2$	^{−l} 18	25		100	
at $V_{3-4} = 2 V$ and				alor gaidati	
V ₁₂₋₄ = 1 V; V ₁₈₋₄ = V ₁₅₋₄	118	2	5 74 81 V	5 blomes	mA

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Narrowband threshold	Visa		e (pin 13	ias voltae	jugal
at V ₃₋₄ = 2 V; V ₁₂₋₄ = 550 mV	V ₁₈₋₄	_		1parlov	
at $V_{3-4} = 2 \text{ V}$; $V_{12-4} = 450 \text{ mV}$	V ₁₈₋₄	V _P -0,3	(f ₁ = 1	- variacterist	V
A.C. characteristics (f _i = 98 MHz)				onsbugm	rugni
Input impedance	R14-13				
	R ₃₋₄	-	4	-	kΩ
	C ₃₋₄	-	3	impe da n	pF
Wideband threshold (r.m.s. value) (see figures 2, 3, 4 and 5)	R10-4				
at $V_{12-4} = 0.7 \text{ V}$; $V_{18-4} = V_{p/2}$; $I_{18} = V_{p/2}$	= 0 EMF2 _{rms}	-	17	- nisp r	mV
Oscillator output buffer (pin 9)	2000			V10-4	Lac
D.C. output voltage	V9-4	-	6,0	9V1443	V
Oscillator output voltage (r.m.s. value)	ALAGA		00-58+0	b = -40 ac	maT
at R _L = ∞; C _L = 2 pF	V9-4(rms)	m.s. value)	110	impression s = 8,5 V	
at $R_L = 75 \Omega$	V9-4(rms)	30	50	7.5V	mV
D.C. output impedance	Rg-15	-	2,5	- erugi	kΩ
Signal purity	NE			2 008 = 3	FI 16
Total harmonic distortion	THD	- 1	-15	-	dBC
Spurious frequencies					(eyed
at EMF1 = 0,2 V; R_{S1} = 50 Ω	fS	- (81		aracterista voltage ra	dBC
Electronic standby switch (pin 11)			trent	output cu	0.0.
Oscillator; linear i.f. amplifier; a.g.c.			1	0 6 =	el 76
at $T_{amb} = -40 \text{ to} + 85 ^{\circ}\text{C}$	Bri-	8-4 = Vp/2	V;Vm	124 = 46	V
Input switching voltage				14 = 2 V	
for threshold ON; $V_{18-4} = \ge V_P - 3 V$	V ₁₁₋₄	O Marv	NBIV:	2,3	VV
for threshold OFF; $V_{18-4} = \leq 0.5 \text{ V}$	V11-4	3,3		23	V
Input current					
at ON condition; $V_{11-4} = 0 V$	-111	-	-	150	μΑ
at OFF condition; V ₁₁₋₄ = 23 V	111	-		10	μΑ
Input voltage					
at $I_{11} = \phi$	V11-4	-	_	4,4	V

Fig. 2 Keyed a.g.c. output voltage V₁₈₋₄ as a function of r.m.s. input voltage V₃₋₄. Measured in test circuit Fig. 1 at V₁₂₋₄ = 0,7 V; I₁₈ = ϕ .

Fig. 3 Keyed a.g.c. output voltage V_{18-4} as a function of input voltage V_{12-4} . Measured in test circuit Fig. 1 at $V_{3-4} = 2 \ V$; $I_{18} = \phi$.

Fig. 4 Keyed a.g.c. output current I₁₈ as a function of r.m.s. input voltage V₃₋₄. Measured in test circuit Fig. 1 at V₁₂₋₄ = 0,7 V; V₁₈₋₄ = 8,5 V.

Fig. 5 Keyed a.g.c. output current I_{18} as a function of input voltage V_{12-4} . Measured in test circuit Fig. 1 at $V_{3-4} = 2 \text{ V}$; $V_{18-4} = 8.5 \text{ V}$.

FM/IF AMPLIFIER CIRCUIT

The TDA1576 is a monolithic integrated f.m./i.f. amplifier circuit provided with the following functions:

- symmetrical limiting i.f. amplifier
- symmetrical quadrature demodulator
- internal muting circuit
- symmetrical a.f.c. output
- field-strength indication output
- detune-detector
- reference voltage output
- electronic smoothing of the supply voltage
- standby on/off switching circuit.

QUICK REFERENCE DATA

	801-4-1-05-1					
$f_0 = 10,7 \text{ MHz}; \Delta f = \pm 22,5 \text{ kHz}; f_m = 400 \text{ H}$	z; Q _L = 20; de-en	nphasis $\tau = 50 \mu s$				
Supply voltages (pin 1)		VP		8,5	1	5 V
Supply current		Ip §	typ.	16	1	8 mA
Sensitivity at -3 dB before limiting		v _i	typ.		22	μV
I.F. sensitivity for S + N/N = 26 dB S + N/N = 46 dB		V _i	typ.		8 35	μV μV
A.F. output voltage	(3) ¥ (4) < (4)	V ₀	typ.	67	1	5 mV
Total distortion single tuned circuit two tuned circuits		d _{tot}	typ.	C	0,1	%
Signal plus noise-to-noise ratio; V _i > 1 mV	10 B	S + N/N	typ.	76	8	0 dB
A.M. rejection		α	typ.		50	dB
A.F.C. offset drift		±Δf	typ.		3 6	kH:
Field-strength indication range		ΔV_i	typ.		90	dB
Permissible indicator (load) current		IL FE	<		2	mA
Supply voltage range (pin 1)		Vp	the second	7,!	5 to 2	0 V
Ambient temperature range		Tamb		-30	to +8	0 °C

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

- (1) For de-emphasis τ = 50 μ s: C_{8.9} = 6,8 nF. For stereo operation: C_{8.9} = 56 pF.
- (2) L = 0,38 μ H; Ω_0 = 70; Ω_L = 20; adjusted to minimum 2nd harmonic distortion (d₂); at V_i = 1 mV; coil: 6 turns CuL (0,25 mm) on coil former KAN (C).

Fig. 1 Block diagram and test circuit.

	AT	LAI	GS
n	AI	117	GO

	A STATE OF THE PARTY OF THE PAR		A to be a CA Care and a second	0 (150 404)
Limiting values	in accordance	with the	Absolute Maximum	System (IEC 134)

Litting val	iues ili accord	ance with the A	Apsolute Maximum	System (ILC 134)			
Supply volt	age (pin 1)			$V_P = V_{1-18}$	max.	23	V
Voltages at pin 2				V ₂₋₁₈ -V ₂₋₁₈	max.	V _P	
at pin 5				V ₅₋₁₈ -V ₅₋₁₈	max.	23	V
at pin 12				V ₁₂₋₁₈ -V ₁₂₋₁₈	max.		V
at pin 13				V ₁₃₋₁₈	max.	6	٧
at pin 14				V ₁₄₋₁₈ -V ₁₄₋₁₈	max. max.	23	V
Total power	r dissipation			P _{tot}	max.	800	mW
Storage tem	perature rang			T _{sto}	-55 to	+ 150	oc

THERMAL RESISTANCE

Operating ambient temperature range

From crystal to ambient

T_{amb} -30 to +80 °C

CHARACTERISTICS

 f_0 = 10,7 MHz; Δf = \pm 22,5 kHz; f_m = 400 Hz; R_S = 60 Ω ; de-emphasis τ = 50 μ s (Cg.g = 6,8 nF); T_{amb} = 25 °C; measured in Fig. 1, unless otherwise specified. The demodulator circuit is adjusted at minimum 2nd harmonic (d₂) distortion: V_i = 1 mV; Δf = \pm 75 kHz.

Supply voltage range (pin 1)		V _P = 8	3.5 V	7,5 to 20 V _P = 15 V	V aig 76
Supply current; without load $(I_{12} = I_{13} = 0)$	lp	typ.	16 to 23		mA mA
I.F. amplifier/detector					
Sensitivity at -3 dB before limiting	Vi	typ.	22 30		μV μV
I.F. sensitivity for S + N/N = 26 dB S + N/N = 46 dB	V _i V _i	typ.	8		μV
I.F. output voltage (peak-to-peak value) $V_i=1~\text{mV;}~Z_{3-18}=Z_{7-18}=1~\text{M}\Omega~\text{in}$ parallel with 10 pF	V _{3-7(p-p)}	typ.	680		mV
I.F. output resistance	R ₃₋₇	typ.			
Detector input impedance	R ₄₋₆ C ₄₋₆	typ.	30		pF
Output resistance	Rg; Rg	typ.	3,7		kΩ
D.C. output voltage	$V_{8-18} = V_{9-18}$	typ.	5,5	9,8	V
A.F. output voltage; $Q_L = 20$	Vo	typ.	67 to 75	135 120 to 150	mV mV
Total distortion single tuned circuit; Q _L = 20 two tuned circuits	d _{tot}	typ.	0,1 0,02		%
Signal plus noise-to-noise ratio B = 250 Hz to 15 kHz; V _i > 1 mV	S + N/N	typ.	76	80	dB
A.M. rejection; $V_i = 10 \text{ mV}$ f.m.: $f_m = 70 \text{ Hz}$; $\Delta f = \pm 22.5 \text{ kHz}$ a.m.: $f_m = 1 \text{ kHz}$; $m = 0.3$	α	typ.	54		dB*
I.F. input voltage range; $\alpha > 40 \text{ dB}$	Vi	-71-	0,5 to		mV
Hum suppression at f = 100 Hz Vp = V ₁₋₁₈ = 100 mV r.m.s.; C ₂₋₁₈ = 47 µF		>	43		dB
02-18 - 47 μ1	α100	typ.	48		dB
A.F.C. tuning slope at $Q_L = 20$	$\frac{\Delta V_{8-9}}{\Delta f_0}$	typ.	8,5	17	mV/kHz
A.F.C. offset voltages; $Q_L = 20$ at $V_i = 1 \text{ mV}$	± ΔV ₈₋₉	<	100	200	mV
at $V_i = 30 \mu V$ to 500 mV (reference at 1 mV and muting)	± ΔV ₈₋₉	typ.	25 50	50 100	mV mV

^{*} Simultaneously measured.

Field-strength indication

Indicator sensitivity; I $_{14}$ = 0 Field-strength indicator voltage R $_{13-18}$ = 3,6 k $_{\Omega}$; I $_{14}$ = 0 V $_{i}$ = 0

 $V_i = 250 \text{ mV}$

Available output current
Reverse voltage at the output

Detune-detector

Quiescent input current; V₁₀₋₉ = 0

for FM 'off'; V₅₋₁₈ > 3,5 V

Output voltage range

Available output current

Voltage gain: $\Delta V_{11}/\Delta(\pm V_{10-9})$ at $I_{11}=0.25$ mA Input offset voltage (pin 10) at $V_{11-18}=2.5$ V

Reference voltage

Output voltage; $-I_{12} = 1 \text{ mA}$ Available output current

Standby switch

Required control voltage within the rated ambient temperature and supply voltage ranges for FM 'on' for FM 'off'

Input switching current for FM 'on'

<

-15

100

μΑ

Fig. 2 Supply current consumption; without load.

Fig. 3 A.F. output voltage; V_i = 1 mV (i.f.); Δf = \pm 15 kHz; f_m = 400 Hz; typical values.

Fig. 4 Total distortion for single tuned circuit; V_i = 1 mV (i.f.); f_m = 400 Hz; adjusted at minimum 2nd harmonic distortion; typical values.

Fig. 5 A.F. output voltage level as a function of i.f. input voltage; S = signal voltage; N = noise voltage; $V_P = 15 V$; $f_m = 400 Hz$; B = 250 Hz to 16 kHz; $Q_L = 20$; $C_{8-9} = 6.8 nF$; typical values.

Fig. 6 Voltage at field-strength indicator output (proportional to V_{12-18}); $R_{13-18} = 3.6 \text{ k}\Omega$.

Fig. 7 Attenuation of output voltage (αV_0) as a function of the muting control voltage V_{11-18} .

Fig. 8 FM 'on'/FM 'off' stand-by switch; attenuation of output voltage (αV_0) as a function of control voltage V_{5-18} .

(1) Limited by external preset ($\alpha \cdot V_{12-18}$).

Fig. 9 Detune-detector output voltage; $V_P = 7.5$ to 20 V; $Q_L = 20$.

Fig. 10 Example of the TDA1576 when using a demodulator with two tuned circuits. Adjustment of the demodulator circuit is obtained with an i.f. signal which is higher than the 3 dB limiting level, L2 should be short-circuited or detuned, L1 should be adjusted to min. d2 distortion, and then L2 to min. d2 distortion. Coil data: L1 = L2 = 0,38 μ H; Q0 = 70; coil former KAN (C).

Fig. 11 Total distortion as a function of detuning; f_m = 400 Hz; C_{8.9} = 6,8 nF; Δ f = \pm 75 kHz; V₀ = 330 mV for a frequency deviation Δ f = \pm 75 kHz.

(1) For mono: C11 = 6,8 nF; for stereo: C11 = 56 pF.

Fig. 12 Application example of using TDA1576.

(1) For mono: C11 = 6.8 nF: for stereo: C11 = 56 nF.

Fig. 12 Application example of using TDA1576.

TIME MULTIPLEX PLL STEREO DECODER

GENERAL DESCRIPTION

The TDA1578A is a PLL stereo decoder based on the time-division multiplex principle.

Features

- adjustable input and output voltage levels
- automatic mono/stereo switching with hysteresis, controlled by both pilot signal and field strength level
- analogue control of mono/stereo change over
- pilot indicator driver
- analogue muting control
- muting indicator driver
- oscillator with decoupled frequency measurement output
- electronic smoothing of the supply voltage

QUICK REFERENCE DATA

Supply voltage (pin 8)	$V_{P} = V_{8-7}$	typ.	8,5	15	V
Supply current (pin 8)	Ip = Ig	typ.	21	30	mA
Multiplex input signal (adjustable)	V _{MUX(p-p)}	typ.	0,5	1	V
Input resistance (adjustable)	Ri	typ.		47	kΩ
A.F. output voltage (R = 15 k Ω)	Vo	typ.	0,75	1,5	V
Output resistance	Ro		low-	ohmic	
Spread in gain	ΔG_{V}	<		1	dB
Channel separation	α	typ.		50	dB
Total harmonic distortion	THD	<	0,3	0,1	%
Signal-to-noise ratio	S/N	typ.		90	dB
Carrier and harmonic suppression					
pilot signal; f = 19 kHz	α19	typ.		32	dB
subcarrier; f = 38 kHz	α38	typ.		50	dB
f = 57 kHz	α57	typ.		46	dB
f = 76 kHz	α76	typ.		60	dB
traffic radio (V.W.F.); f = 57 kHz SCA (Subsidiary Communications	α ₅₇ (VWF)	typ.		70	dB
Authorization); f = 67 kHz ACI (Adjacent Channel	α ₆₇	typ.		70	dB
Interference); f = 114 kHz	α114	typ.		80	dB
intermodulation; $f = 10/13 \text{ kHz}$	α_2, α_3	typ.		70	dB
Supply voltage range (pin 8)	V _P = V ₈₋₇		7,5 to	18	V
Operating ambient temperature range	T _{amb}		30 to +		оС

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

560

Fig. 1 Block diagram with external components; used as test circuit. Values given in parentheses are for Vp = 8,5 V.

RATINGS	S								
Limiting v	values in	accordance with	the Abs	solute Maximum S	system (IEC 134)			
Supply vo		0)			AV = a	P = V ₈₋₇	max.	20 V	100
						3;4;5-7	0	to 12 V	-
Indicator	driver ou	utput voltage				24 V			
Indicator	driver ou	utput current			V _{1;2-7} max.			30 m	A
Total pow	ver dissip	ation at Tamb	25 °C			tot	max.	1,2 W	1
Storage te							-55 to	+ 150 0	C
Operating	ambien	t temperature ra	nge		3,8T	3	-30 to		
			-			or) pin 8			
THERMA									
From crys	stal to ar	nbient 8,0			a,8R	th c-a	(peek ≠o-pi kΩ	80 K	/V
V									

CHARACTERISTICS (measured in Fig. 1)

Input signal: m = 100% ($\Delta f = \pm 75$ kHz); pilot signal: m = 9% ($\Delta f = \pm 6,75$ kHz); $\cos m = 300$ point of $\Delta f = \pm 100\%$

modulation frequency: 1 kHz; $V_{3-5} = V_{4-5} = 0 \text{ V}$; de-emphasizing time: $T = 50 \mu s$; oscillator adjusted to f_{osc} at a pilot voltage $V_i = 0 \text{ V}$; $T_{amb} = 25 \, ^{o}\text{C}$; unless otherwise specified

parameter	V _P (V)	symbol	min.	typ.	max.	unit
Supply voltage range (pin 8)	T-	V _P	7,5	- amo	18	Varot
Supply current (except output and indicator) pin 8	8,5 15	lp lp	- sgn	21 30	40	mA
Nominal multiplex input voltage (peak-to-peak value) $R_i = 47 \text{ k}\Omega$	8,5 15	V _{MUX(p-p)} V _{MUX(p-p)}	=	0,5 mblent 1,0	AL RES	
Overdrive reserve of input at THD = 1 % at THD = 0,3 %	8,5 15		3	6	_	dB dB
A.F. output voltage (r.m.s. value; mono without pilot) R ₁₅₋₁₈ = R ₁₆₋₁₇ = 15 k Ω	8,5 15	Vo(rms) Vo(rms)	_	0,75 1,5		V
$R_{15-18} = R_{16-17} = 24 \text{ k}\Omega$	8,5 15	Vo(rms) Vo(rms)	_	1,2 2,4		V
Overdrive reserve of output $R_{15-18} = R_{16-17} = 24 \text{ k}\Omega$	*		3	_	-1	dB
Spread in output voltage levels	*	± ΔV _O /V _O	_	_	1	dB
Difference of output voltage levels	*	± ΔV ₁₅₋₁₆ /V ₀	_	_	1	dB
Output resistance	*	Ro	low-ohr	mic		
Available output current pins 15 and 16	*	± I _o	_	_	_	mA
Modulation range at output (unloaded)	*	V _{15;16-7}	_	1 to V ₉₋₇ -1		V
Internal current limiting	*	I _o	-	15		mA
D.C. output voltage R ₁₅₋₁₈ = R ₁₆₋₁₇ = 24 k Ω	8,5 15	V _{15;16-7} V _{15;16-7}	3,6 7,0	4,1 7,7	4,6 8,4	V
D.C. current (pins 17 and 18)	8,5 15	^{-l} 17;18 ^{-l} 17;18	_	33 23	_	μΑ μΑ

^{*} $V_P = 8,5 \text{ or } 15 \text{ V}.$

parameter	V _P (V)	symbol	min.	typ.	max.	unit
Channel separation at V ₄₋₅ = 0 V	8,5 15	α	32 39	50 50	-	dB dB
Total harmonic distortion	8,5 15	THD THD	-	0,1 louis	0,3	%
Signal-to-noise ratio f = 20 Hz to 16 kHz	8,5 15	13/14	8 -	87 90	sk-to-peal stereo 'O	dB dB
Carrier and harmonic suppression at the output	8	D-Ulg-D	.8		O' onom	iot
pilot signal; f = 19 kHz	*	α19	-	32	-	dB
subcarrier; f = 38 kHz f = 57 kHz f = 76 kHz	* *	α38 α57 α76	40	50	hysteres on VVIOF time	dB dB
intermodulation (note 1) f _m = 10 kHz; spurious signal f _s = 1 kHz	-	NO 161			O, suow O, osasts O, 14'2 = 0	
PLL-filter Fig. 1 PLL-filter Fig. 2	*	α_2 α_2		50 70	sal meno Fig. 72	dB dB
$f_m = 13 \text{ kHz};$ spurious signal $f_s = 1 \text{ kHz}$	*	α3	8		estav pain	Switte
traffic radio (V.W.F.); f = 57 kHz (note 2)	315	α ₅₇ (VWF)		70		dB
SCA (Subsidiary Communications Authorization); f = 67 kHz (note 4)	*	5 -V4-6	.8	Bb 8 =	eration: o	
ACI (Adjacent Channel Interference) (note 3);	-	8-trvp	.2	= 26 dB	0	
f = 114 kHz f = 190 kHz	*	^α 114 ^α 190		80 52	egation to	-
Ripple rejection at the output; f = 100 Hz;		5 -V4-6 3 -V4-5			O' onomi	
$V_{P(rms)} = 100 \text{ mV (pin 8)}$	*		40	43	O'weren	dB
Voltage on filter capacitor without external load	*	V9-7		V _P -0,25	egallov lo	V
Source resistance	*	Rg-8	6	8 0 091518	10	kΩ

^{*} $V_P = 8,5 \text{ or } 15 \text{ V}.$

CHARACTERISTICS (continued)		
-----------------------------	--	--

parameter		V _P (V)	symbol	min.	typ.	max.	unit
Mono/stereo contro	ol lo		GHT	1.8	distortion	Va-5-PV	lsto T
Pilot threshold volt			GHT	113	TOD TOTAL		-
(peak-to-peak va			N/S	8.8	- inch	to-noise	lennia.
for stereo 'ON'		8,5	V _{i(p-p)}	10	21	30	mV
		15	V _{i(p-p)}	-	43	61	mV
for mono 'ON'		8,5	V _{i(p-p)}	6	15	had bas a	mV
		15	V _{i(p-p)}	12			HILLY
Switch hysteresis			el el		= 19 kHz	t signal;	DEIG
ViON/ViOFF		*	ΔVi	-	3 SHN BE =	CHRISTELL	dB
Switching time		-1.	087		= 57 kHz		
at C ₁₄₋₇ = 0,22	uF 00		97/0	1.	= 76 kHz		
for stereo 'ON'	m.	*	t _{st} ON	_	15 ton not	sluboma	ms
for mono 'ON'		*	t _m ON	_	121	m = 10 kg	ms
			III OIL		gnal (s = 1 kHz		
External mono/ster			50			LL-filter	
(see Fig. 12 and	note 5)		20		7 -914	LL-filter	
Switching voltage f	or	8,5	V14-7	-	- 2	0,7	V
external mono c	ontrol	15	V14-7	-	gnal $f_g = 1$ _ldHz	1,4	V
		*	or: -V4-5	315		fic ra <u>d</u> io	mV
Control voltage for	channel	(3)	6871789			= 57 kHz	
separation: $\alpha = 6$		8,5	-V ₄₋₅	_	120	Subsi <u>d</u> ian	mV
		15	-V4-5	-	130	s Author	mV
		*	ΔV4-5	_	(A sto)	± 20	mV
$\alpha = 2$	26 dB	8,5	-V ₄₋₅		70 ferredC	Adjacent	mV
		15	-V4-5	_	80	a) (sonere	mV
Control voltage					00	114 kHz	100
for mono 'ON'		8,5	-V ₄₋₅		240		m\/
TOT THORIO ON		15	-V4-5 -V4-5		070	cirosiar i	1
for stores (ON)					1001 1 000	F = T ; tuo	400
for stereo 'ON'		8,5 15	-V ₄₋₅		220 250	- Court	1/100
0 1 1 1 1		15			2021/08/1/19	BHIT NO III	POSTON
Control voltage dif- for $\alpha = 6$ dB: ste		0.5	19V	00		120	
ior α - o ub; ste	reo ON	8,5	ΔV4-7	80	100	120	mV

^{*} Vp = 8,5 or 15 V.

parameter	V _P (V)	symbol	min.	typ.	max.	unit
Muting circuit (see Fig. 13 and note 5)	aun .	loomys qV (V)			19390	letay
Control voltage for an						Oak
attenuation: $\alpha = 3 \text{ dB}$	8,5	-V ₃₋₅ -V ₃₋₅	I		ator from ustable—u	mV mV
	*	ΔV ₃₋₅		101	=nt to b	
α = 26 dB	8,5 15	-V ₃₋₅		255	r <u>e yoneup</u> o <u>ni</u> o lanner	mV mV
Attenuation					n) gainnun	Free
with $V_{3-5} = 0 \text{ V}$ with $-V_{3-5} = 450 \text{ mV}$	*	α	1	80	0,2	dB dB
LED driver output current at an attenuation: $\alpha = 3 \text{ dB}$	*	VA\peoiA	1,2		2,2	mA
Control voltage for I ₁ = 200 μA	8,5 15	-V ₃₋₅ -V ₃₋₅	1	The second second	a pilot±n n = 0,5=	mV mV
Control inputs	H	Stot		(teres) eq	ole lormo	PLL
Recommended voltage range	*	V3;4;5-7	0	_ 01 nis	4	V
Input bias current	*	13;4;5	-	10	100	nA
Indicator driver	-	V4-2	bfor	tung three		
Output saturation voltages			des	n-otolesci	enstiov tu	ntu O
at $I_1 = 20 \text{ mA}$; $V_{3-5} = 0 \text{ V}$	*	V _{1-7sat}	1 123	1,2	1,8	V
at I ₂ = 20 mA	*	V ₂ -7sat	-	0,5	1,0	V
Output leakage current	-	A. A.				
at $V_{1;2-7} = 24 \text{ V}$	*	11;2	-	20	-	μΑ

^{*} V_P = 8,5 or 15 V.

CHARACTERISTICS (continued) and lodanya gy

parameter	V _P (V)	symbol	min.	typ.	max.	unit
VCO				nes	of egatic	r lentre0
Oscillator frequency adjustable with R ₁₀₋₇	*	fosc	8	76	tion: or t	kHz
Spread of free-running frequency at nominal external circuitry	*	f _{osc}	71	26 dB	82	kHz
Free-running frequency dependency (note 6)					7 0 = au	Attenuati With V
with temperature	*	TC	-	1 x 10-4	(3.5 T.)	K-1
with supply voltage	*	$\Delta f_{\rm osc}/\Delta V_{\rm P}$	-	ris 4s themus	400	Hz/V
Capture and holding range for a pilot input voltage Vpil = 0,5 x Vpil nom		Δf/f	± 2	8b S	tion: a = strage 200 uA	% ************************************
PLL control slope (total)	*		1 2	4.5		100
		S _{tot}		4,5	237.00	kHz/μs
D.C. voltage at pin 10	p (V ₁₀₋₇ or:	-	2,1 3,2 V _{BE}	tov beign	V
Frequency measuring point;	The	3,8,51		1000	208000	asio rugn
internal switching threshold	*	V4-7	-	6	revist	V
		or:	-	9 V _{BE}	nairene	V TUOTUO
Output voltage (peak-to-peak value) at pin 4; R = 4,7 k Ω	*	V ₄₋₇ (p-p)	-	350	Am OS	mV
Output resistance	*	R ₄₋₇	_	5	Am 05	kΩ

^{*} $V_P = 8,5 \text{ or } 15 \text{ V}.$

Notes to the characteristics

1. Intermodulation suppression (BFC: Beat-Frequency Components)

$$\alpha_2 = \frac{V_{o(signal)} \text{ (at 1 kHz)}}{V_{o(spurious)} \text{ (at 1 kHz)}}; f_s = (2 \times 10 \text{ kHz}) - 19 \text{ kHz}$$

$$\alpha_3 = \frac{V_{o(signal)} \text{ (at 1 kHz)}}{V_{o(spurious)} \text{ (at 1 kHz)}}; f_s = (3 \times 13 \text{ kHz}) - 38 \text{ kHz}$$

measured with: 91% mono signal; f_m = 10 or 13 kHz; 9% pilot signal.

2. Traffic radio (V.W.F.) suppression

$$\alpha_{57(VWF)} = \frac{V_{o(signal)} \text{ (at 1 kHz)}}{V_{o(spurious)} \text{ (at 1 kHz ± 23 kHz)}}$$

measured with: 91% stereo signal; $f_m = 1 \text{ kHz}$; 9% pilot signal; 5% traffic subcarrier (f = 57 Hz, $f_m = 23 \text{ Hz AM}$, m = 60%).

3. ACI (Adjacent Channel Interference)

$$\alpha_{114} = \frac{V_{o \text{ (signal)}} \text{ (at 1 kHz)}}{V_{o \text{ (spurious)}} \text{ (at 4 kHz)}}; f_{S} = 110 \text{ kHz} - (3 \times 38 \text{ kHz)}$$

$$\alpha_{190} = \frac{V_{o(signal)} \text{ (at 1 kHz)}}{V_{o(spurious)} \text{ (at 4 kHz)}}; f_s = 186 \text{ kHz} - (5 x 38 \text{ kHz})$$

measured with: 90% mono signal; $f_m = 1 \text{ kHz}$; 9% pilot signal; $f_s = 110 \text{ or } 186 \text{ kHz}$, unmodulated).

4. SCA (Subsidiary Communications Authorization)

$$\alpha_{67} = \frac{V_{o(signal)} \text{ (at 1 kHz)}}{V_{o(spurious)} \text{ (at 9 kHz)}}; f_s = (2 \times 38 \text{ kHz}) - 67 \text{ kHz}$$

measured with: 81% mono signal; $f_{\rm m}$ = 1 kHz; 9% pilot signal; 10% SCA-subcarrier ($f_{\rm S}$ = 67 kHz, unmodulated).

5. Assuming
$$V_T = \frac{k \times T}{q} = 28,6 \text{ mV} \text{ at } T_j = 330 \text{ K}.$$

6. The effects of external components are not taken into account.

APPLICATION NOTES

- 1. When mono/stereo control and muting control are not used, pins 3, 4 and 5 have to be grounded.
- 2. In a receiver, channel separation adjustment can be obtained by:
 - a. A capacitor at pin 12 (C₁₂₋₇): phasing 19/38 kHz
 - b. RC or LCR filter at the input: frequency response compensation $(V_G = f(\omega))$
 - c. Feeding the output signals of the output amplifier to the inputs of the other channel.
- 3. PLL-filter for reduced intermodulation (α_2); see Fig. 2.
- 4. External mono 'ON' switch; see Fig. 3.
- 5. Switching 'OFF' the oscillator; see Fig. 4.

47 kΩ 7Z84698.1

Fig. 2 PLL-filter for α_2 = 70 dB at V_P = 15 V Fig. 3 (a) At pin 4; $-V_{4-5} > 300$ mV; (see also Fig. 1).

(b) at pin 14.

Fig. 4 The oscillator is switched-off when: $I_D > 100 \,\mu\text{A}$ (> 50 μA for $V_P = 8,5 \,\text{V}$) and $I_D < 1 \,\text{mA}$.

Fig. 5 Signal handling range at the input for I_{6nom} (\pm 75 kHz); $V_{9-7} = V_P$.

Fig. 7 D.C. current in the feedback loop of the output amplifier.

Fig. 6 Supply current comsumption at

Fig. 8 Total harmonic distortion (THD) as a function of the peak-to-peak input current at pin 6; Vp = 15 V; f_m = 1 kHz; V₃₋₅ = V₄₋₅ = 0 V.

Fig. 9 Total harmonic distortion (THD) as a function of the modulation frequency (f_m); $V_P = 15 \ V; I_{6(p-p)} = 21,5 \ \mu A.$

——— mono ———— stereo; L = —R; 91% + 9% pilot signal.

Fig. 10 Channel separation (α) as a function of the modulation frequency (f_m); V_P = 15 V; R_i = 47 k Ω ; V₄₋₅ = 0 V.

Fig. 11 Phase shift between pilot signal at the input and the internal carrier processing as a function of C₁₂₋₇.

Fig. 12 Mono/stereo control at $f_m = 1 \text{ kHz}$; α is the channel separation.

Vp = 8,5 V

Vp = 15 V

Fig. 13 Muting (V_0) and muting indicator current (I_1) as a function of V_{3-5} .

 V_0 in dB curves; — $V_P = 8.5 V$ ---- V_P = 15 V

I in mA curves for VpL/R_{bias1} (pin 1); – – – 22 V/1 k Ω – 14 V/680 Ω

----- 10 V/680 Ω

Fig. 14 Muting indicator current; $V_P = 8.5$ to 15 V; $V_{PL} = 14$ V.

$$-$$
 R_{bias1} = 680 Ω $-$ R_{bias1} = matched

Fig. 15 Application information for external circuitry to provide external mono/stereo and muting control.

Adjustment recommendations: Value V

at V_{i(hf)} = 100 μ V with P1 to α = 6 dB (channel separation), at V_{i(hf)} = 15 μ V with P2 to V_{o(af)} = -3 dB.

Fig. 16 Typical application circuit using TDA1578A for $V_P = 15 \text{ V}$.

TRAFFIC WARNING (VWF) DECODER CIRCUIT

The TDA1579 is intended for processing AM-modulated sub-carriers.

It incorporates the following functions:

- controllable selective sub-carrier amplifier (57 kHz)
- SK* decoder
- active BK/DK* filters
- BK/DK* decoder circuits (Schmitt trigger with switched hysteresis)
- BK/DK* threshold level switch for switch delay
- SK* indicator driver (LED)
- SK/DK* control outputs.
- * SK: Senderkennung = Transmitter Identification Code
- DK: Durchsagekennung = Announcement Identification Code
- BK: Bereichskennung = Area Identification Code.

These terms are used in the West German traffic warning system (Verkehrs Warnfunk).

QUICK REFERENCE DATA

DK switch-off delay Supply voltage range	^t dDK off V _P	7,5 to	750	-
DK swith-on delay	^t dDK on	typ.	750	
DK switch hysteresis	Δm_{DK}	typ.	3,6	dB
DK switch-on threshold level	mDKon	typ.	13	%
SK switch-off delay	^t dSKoff	typ.	750	ms
SK switch-on delay	^t dSKon	typ.	150	ms
SK switch hysteresis	Δm_{BK}	typ.	3,5	dB
SK switch-on threshold level	m _B Kon	typ.	42	%
Input voltage range (peak-to-peak value)	V _{i(p-p)}	> 4	2	V
Control level (-3 dB)	Visk	typ.	2,4	mV
Input impedance at f ≤ 57 kHz	Zi	> 12	100	kΩ
Nominal input voltage at f = 57 kHz	Visk	typ.	8	mV
Supply current (pin 7)	lp lp	typ.	6	mA
Supply voltage (pin 7)	VP	typ.	8,5	V

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

(1) L = 2,36 mH; Q_L = 70; C = 3,3 nF; f_O = 57 Hz; 224 turns 0,1 enamelled copper.

Fig. 1 Circuit diagram of a SK(BK)/DK decoder using the TDA1579. It also includes a BK high-pass filter and a DK band-pass filter.

RATINGS				
Limiting values in accordance with the Absolute Maximum Sy	stem (IEC 134)			
Supply voltage (pin 7) m and 251 = m (O eyes pilled AB not	$V_P = V_{7-18}$	max.		
Switch outputs (voltage and current)				
pin 1.1 or 8.7	V ₁₋₁₈	max.	23	
	11	max.	50	mA
pins 2 and 3	V _{2;3-18}	max.	18	
	12;3	max.	5	mA
negative voltage at pins 1, 2 and 3	-V _{1;2;3-18}	max.	0,5	V
or: negative current at pins 1, 2 and 3	-11;2;3	max.	10	mA
Signal input (voltage and current)				
pin 13	V ₁₃₋₁₈	max.	VP	
negative voltage at pin 13	-V ₁₃₋₁₈	max.	0,5	V
or: negative current at pin 13	-113	max.	10	mA
Total power dissipation	P _{tot}	max.	800	mW
Storage temperature range	T _{stg}	-55 to	+ 150	oC
Operating ambient temperature range	T _{amb}	-30 to	+80	oC

CHARACTERISTICS

 V_P = 8,5 V; T_{amb} = 25 °C; measured at nominal input signal: V_{iSK} = 8 mV, f = 57 kHz, amplitude modulated with f_m = 34,95 Hz, m = 0,6 (for BK, traffic area C), f_m = 125 Hz, m = 0,3 (for DK); unless otherwise specified.

uness otherwise specifica.				
Supply voltage range (pin 7)	Vp	7,5	5 to 12	V
Supply current (pin 7)	lp	typ.	6	mA mA
SK amplifier/decoder	ns 1, 2 and 3	Itage ot pi	ov ovite	gen
Input impedance; f ≤ 57 kHz	Z _i	s toerrup r	100	KZZ
Input voltage range (peak-to-peak value)	V _i (p-p)	>	2	٧
Input voltage at start of control $V_{09BK} = -3 dB$	Visk	typ.		mV*
Voltage gain; V9BK/V13SK	G _v 9-13	typ.	44	dB*
Spread in gain	$\pm \Delta G_{v9-13}$	<	2	dB
Gain control range	ΔG_V	> Tellingiage	40	dB
Output voltage; controlled	V _o 9BK	typ.	440	mV
3º 08 + ot 05- dms ^T	V ₀ 9DK	typ.	220	mV
BK circuit				
Switch-on threshold level; pin 3 blocked	V _o 5BKon	typ. 600	670 to 750	
Curitale hustonaria	V _o 5BKon	typ.	3,5	dB
Switch hysteresis	V _{o5BKoff}		3 to 4	dB
BK switch threshold level for BK (SK) off; pin 3 conducting	V _{4-18off}	typ. 0,8 t	0,88 to 0,97	
	or:	typ. 0,21	V ₈₋₁₈	
Switch output (pin 3) allowable load current	13	<	1,5	mA
saturation voltage at I ₃ = 1,5 mA	V _{3-18sat}	<	0,35	V
rejection voltage at $I_3 < 5 \mu\text{A}$	V ₃₋₁₈	>	18	V
Indicator driver (pin 1) allowable load current	11	<	40	mA
saturation voltage at I ₁ = 20 mA	V _{1-18sat}	<	0,8	
rejection voltage at I ₁ < 10 μA		>	23	
Tojection vortage at 17 10 µM	V ₁₋₁₈		23	V

^{*} Selectable by R₁₂₋₈ or Z₁₀₋₈.

DK-circuit							
Switched-on threshold level; pin 2	blocked		V ₁₅ DK on	typ. 600 to	670		
			V ₁₅ DK on				
Switch hysteresis			V ₁₅ DK off	typ. 3,1 to			
DK switch threshold level (Schmit	t trigger)	noxiam					
for DK off; pin 2 conducting			V _{16-18off} or:	typ. 1	0,6 V _{BE}	V	
Switch output (pin 2) allowable load current			12	n delay (no	1,5	mA	
saturation voltage at I ₂ = 1,5 m	Α		V _{2-18sat}	<	0,35	V	
rejection voltage at $I_2 < 5 \mu A$			V ₂₋₁₈	> (8) (8)	18		
BK and DK filter amplifiers							
Gain (open circuit) at f = 100 Hz			Go	> vm8	04	dB	
Current gain			Gi	>	120	dB	
Input bias current			±I _i	< constant	50	nA	
Output offset voltage							
at $R_{5-6} = R_{14-15} = 680 \text{ k}\Omega$			± √05-8; 15-8	valeo n	50	mV	
Available output current			±1 ₀	>	1	mA	
Output resistance			R _o (S ere	typ.	S. C. C. S. C. S.	$k\Omega$	
Allowable load capacitance			CL	<	50	pF	
Internal reference voltage							
Output voltage			V ₈₋₁₈	typ. 4,0 t	4,25 to 4,5	V	
SK (Voor) signal. The time he output signal at pin 3 (2) is			or:	typ. 0,5	5 · VP		
Internal resistor of voltage source			R ₈	<	5	Ω	
Available output current			-l ₈ +l ₈	g cond < ching (l<	0,6	mA mA	
Output short-circuit current			-l _{8sc} or:	typ. typ. Vp/		mA	
Reference current source							
Reference voltage			V ₁₇₋₁₈ or:	typ. typ. V ₈₋	3,6 18 ⁻ \		
Internal biasing resistor			R _{i17}	typ.		kΩ	
Allowable range of external refere	nce resis	tor	R ₁₇₋₁₈	180 to	270	kΩ	

The Electricate in a crimination (1 igo 2, o dild 4	.,				
SK switch-on threshold level		blacked	Fig. 2	Fig. 3	Fig. 4
at m _{BK} = 0,6	ViSKon	typ.	2,5	1,8	1,8 mV
at V _{iSK} = 8 mV	m _B Kon	typ.	0,42	0,32	0,32
SK switch hysteresis	mBK off	> typ. <	3,0 3,5 4,0	3,0 3,5 4,0	3,0 dB 3,5 dB 4,0 dB
SK switch-on delay (note 1)	^t dSK on	typ.	150	95 130	95 ms 130 ms
SK switch-off delay (note 2)	t _d SK off	typ.	750	380 500 620	380 ms 500 ms 620 ms
DK switch-on threshold level				020	3 Met 1 30
at $m_{DK} = 0.3$	ViSKon	typ.	1,5	1,5	- mV
at V _{iSK} = 8 mV	m _D K on	typ.	0,13	0,13	iain (open cit
DK switch hysteresis	mDKon mDKoff	> typ. <	3,1 3,6 4,1	3,1 3,6 4,1	dB dB dB
DK switch-on delay (note 1)	^t dDK on	typ.	750 1000	750 1000	- ms - ms
DK switch-off delay (note 2)	^t dDK off	> typ. <	600 750 1000	600 750 1000	- ms - ms - ms

Notes

- Measuring conditions for switch-on delay (t_{d on}).
 Pin 4 (16) is connected to ground via a switch. The circuit is in a transient state. The switch at pin 4 (16) is opened at the zero-crossing of the positive-going V_{OBK} (V_{ODK}) signal. The time between opening the switches and the positive switching-edge of the output signal at pin 3 (2) is defined as the switch-on delay t_{d on}.
- Measuring conditions for switch-off delay (t_{d off}).
 After finishing the measurement of t_{d on}, the SK-input signal is switched off at the zero-crossing of the negative-going V_{oBK} (V_{oDK}) signal (pins 11 and 8 are not short-circuited). The time between the input switching-off and the negative switching-edge of the output signal at pin 3 (2) is defined as the switch-off delay t_{d off}.

(1) L = 2,56 mH; $Q_1 = 70$; C = 3,3 nF.

Fig. 2 Typical application circuit using TDA1579. It includes SK(BK) and DK decoder with BK high-pass filter and DK band-pass filter.

Fig. 3 Typical application circuit using TDA1579 for SK(BK) and DK decoder with BK band-pass filter and DK band-pass filter; for further circuitry see Fig. 2.

Fig. 4 Typical application circuit using TDA1579 for SK(BK) decoder with BK band-pass filter.

Fig. 6 Voltage gain between pins 15 and 19 as a function of frequency; DK selection; f_0 = 125 Hz; Q \approx 18.

Fig. 7 Control characteristic of the SK amplifier at $V_P = 8.5 \text{ V}$; $m_{BK} = 60\%$ and $Q_L = 70$.

GENERAL FILTER CALCULATIONS

1. Gain Amplifier conditions: $G_{Q} >> G_{V}$ and $G_{Q} >> 2 \cdot Q^{2}$

		ymoupon to general to as of be	s 31 C1 = C2 = C1 risp s	C1 = C2 = C R2 << R1
2.		y 1	1	1
	ω_{r} =	$\sqrt{\frac{\text{R1} \cdot \text{R2}}{\text{R1} + \text{R2}} \cdot \text{R3} \cdot \text{C1} \cdot \text{C2}}$	$C \sqrt{\frac{R1 \cdot R2}{R1 + R2} \cdot R3}$	C√R2·R3
3.	Gain at $\omega = \omega_r$			E ₀₁
	−G _{vr} =	C2 R3 C1 + C2 R1	$\frac{1}{2} \cdot \frac{R3}{R1}$	$\frac{1}{2} \cdot \frac{R3}{R1}$
4.	Quality	$=\frac{\sqrt{\text{C1}\cdot\text{C2}}}{\text{C1}+\text{C2}}\cdot\sqrt{\frac{\text{R3}(\text{R1}+\text{R2})}{\text{R1}\cdot\text{R2}}}$	$\frac{1}{2}\sqrt{\frac{R3(R1+R2)}{R1\cdot R2}}$	1 R3 R2

5. Recommended components

C1 and C2: 5% MKC (metallized polycarbonate film capacitor)

R1, R2 and R3: 2% MR (metal film resistor)

or:

C1 and C2: 5% MKT (metallized polyester film capacitor)

R1, R2 and R3: 2% CR (carbon film resistor)

TRAFFIC CONTROL MESSAGES AND WARNING TONE CIRCUIT

The TDA1589 is for evaluation of operating signals and logic control signals of a traffic control (TC) message decoder.

Features

- mute of non-traffic control stations
- · restriction to traffic-control message reception
- LED display driver for MUTE indication
- control output for TC messages minimum volume
- delayed start of warning tone signal on failure of TC transmission. Also to be used to control a start
 of search tuning
- warning tone generator with automatic level control increasing volume in five steps
- interruption of cassette playback with motor stop during TC messages
- warning tone indicating failure of TC transmission also during cassette playback

QUICK REFERENCE DATA

Supply voltage (pin 10)	Vp	7,5	to 16	V
Supply voltage (pill 10)	VP	typ.	8,5	V
Supply current	IP V 30	typ.	4,5	mA
Narning tone maximum voltage	$V_{o(p-p)}$	typ.	4,3	V
Output LED driver current (pin 3)	13	typ.	30	mA
motor stop current (pin 5) as beaut a new ogmost laments	lock diagraph with a	typ.	30	mA
motor stop current (pin 6)	moltes 16 mobiles s	typ.	2	mA
MUTE display current (pin 8)	18	typ.	2	mA
start warning tone current (pin 13)	13	typ.	2	mA
Saturation voltage at output for				
minimum volume-on (pin 7)	V _{7 sat}	<	0,1	V

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Fig. 1 Block diagram with external components; used as test circuit.

BK = TC area identification code (BereichsKennung)

DK = TC message identification code (DurchsageKennung)

SK = TC station identification code (SenderKennung)

FUNCTIONAL DESCRIPTION

The automatic evaluation of traffic control signals is only possible during FM reception. The enable circuit will be active when pin 16 (FM on) is LOW. If traffic control messages are desired, pin 2 (TC on) must be switched to LOW.

FM radio mode

By operating the DK-toggle switch at pin 1 the DK flip-flop is set. This is displayed by a LED connected to pin 3. In the position "TC off" (pin 2 HIGH) it is not possible to set the DK flip-flop. Non-traffic control stations are muted. If a message is transmitted on the tuned TC station the minimum volume at pin 7 is exposed.

In case of BK-signal failure pin 13 changes to LOW after a delay of about 25 seconds. If pins 13 and 14 are then connected, an intermittent warning signal will be supplied at pin 12. The level increases automatically from -20 dB to 0 dB in 5 steps. (See Fig. 2.)

Cassette mode

If a TC message is delivered when TC is switched on (pin 16 and pin 2 LOW) and the DK flip-flop is set, the motor of the cassette player is stopped and the receiver automatically cuts in. The minimum volume is also set at the same time.

In case of BK-signal failure, the warning tone will be mixed into the cassette playback.

Protection

To avoid faulty switching, an internal latch will be set only if both DK (pin 18) and BK (pin 17) are HIGH. The latch will be reset if DK is changed to LOW independent of BK.

Reset of the DK-toggle flip-flop:

- by operating the DK-toggle (pin 1) twice
- by opening the TC-switch (pin 2)
- by switching to AM reception (pin 16)
- by switching off the cassette-player (pin 15)
- by switching power off or on.

Transmission monitoring

At reception failure of a TC-station BK at pin 17 will become LOW. After about 25 seconds the output (pin 13) will be set LOW to start the warning signal via the jumper between pins 13 and 14. In the mean-time the search-tuning can also be started. The warning tone stage gives a graduated signal with a level increasing in five steps from -20 dB to 0 dB in about 20 seconds. The frequency of the warning signal is about 600 Hz; tone period $\approx 80 \text{ ms}$; pause $\approx 560 \text{ ms}$.

If now another TC-message transmitter has been tuned the input BK (pin 17) becomes HIGH and the warning tone is stopped. Also when switching TC-off (pin 2 HIGH) or switching to AM reception (pin 16 HIGH) the warning tone will stop. The BK-signal has to be stable for more than 1 second to reset the just started 25-second-timer.

		inpu	its pin	numbe	ers			out	outs pi	n num	bers	
mode May Delias Bus as	16	2	15	no al a	17	18	7	5	6	8	13	3
AM RADIO	Н	X	X	X	X	X	Н	Н	DA 62	Н	Н	Н
FM RADIO TC off	L	Н	X	X	X	X	Н	Н	L	Hon	Н	Н
FM-TC on station without TC	pr L 100	oLald	X	X	PION	X	Litte	L	noHiso	q Litri	L*	ig bi
FM-TC on station with BK	L	L	X	Н	Н	L	Н	Н	L L	here	Н	Н
FM-TC on station with BK, DK			X	H	Hs B	H	Tetti	Line	H	H	Н	Н
FM-TC on station with BK DK-toggle operated MUTE	WL1S	nL; b	X	g, 2.) on (pi	Н	ieLei :	Her	lw Hier	85.00	abc	en sata	
FM-TC on station with BK, DK incoming message									il sms	t tite s	5 752 C	els s
FM-TC on station with BK DK-toggle operated twice			X						irlosiv ed L liv		etion old fa	(S D
FM-TC on and cassette station with BK, DK cassette switched on	L	L	5	X	Н	piwa ((pig)		oggle te DK	e DK-: ting ti	to to repera	sesF yd -
FM-TC on and cassette station with BK cassette switched on	L	L	_	×	(B)	(ar) niq) n	e-playe	ittesses H		ning su hing o	prise	yd -
FM-TC on and cassette station with BK									nhodia	iom m	daeim	mus)
cassette switched off	L	L	7	X	H	JE NS	Н	Н	VOJ 1	5	Н	5
function and state	AM/FM HIGH/LOW	TC on on = LOW	cassette off = H→L	DK toggle active = LOW	BK on = HIGH	DK on = HIGH	min. volume on = LOW	motor stop stop = LOW	motor stop stop = HIGH	MUTE on = LOW	warning tone on = LOW	DK display

^{*} After about 25 seconds.

Positive logic:

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

__ = positive-going transition

\ = negative-going transition

Functions of the control input	is .							
DK toggle operated								
chatter-proof by internal de of 10 to 20 ms	lay	pin 1						
TC (traffic control) released		pin 2	on	=	LOW			
Test condition clock rate 24 times faster		pin 11			to ground to Vp or o			
Start warning signal		pin 14	on all	⊞sl	LOW			
Reset of DK flip-flop by cassette player		pin 15	reset	=	HIGH to	LOW trai		
Reset of DK flip-flop by tuning AM band		pin 16	reset	=	HIGH			
BK input*		pin 17	on	= 1	HIGH			
DK input*		pin 18	on	=	HIGH			
Minimum volume		pin 7	on	=	LOW			
Motor stop (30 mA)		pin 5	stop	=	LOW			
Motor stop (2 mA)		pin 6	stop	= }	HIGH			
MUTE (volume off)		pin 8	on	= 1	LOW			
Warning tone		pin 13	on a	= 1	0111			
DK display		pin 3	on	=	LOW			
RATINGS								
Limiting values in accordance	with the Absolute Max	cimum Syst			4)			
Supply voltage (pin 10) Input voltages				VP		max.	16	V
pins 1, 2, 11, 14, 15, 16, 17	and 18			٧i		0 to	VP	٧
Output voltages pins 3, 5, 6, 8, 13				Vo		max.	23	V
Currents inputs 1, 2, 11, 14, 15, 16, outputs 6, 8, 13 outputs 3 and 5	17 and 18			li lo lo	nego) Ha	max. max. max.	10	
Storage temperature				T _{st}	g) (Y nig	-55 to +	150	oc
Operating ambient temperatur				Tar	mb	-30 to		

^{*} Open collector output of TC-decoder.

CHARACTERISTICS	Overland otherwise appointed (as Tim 4)		
	; unless otherwise specified (see Fig. 1)	reigh lennen	
Supply voltage range		VP	7,5 to 16 V
Supply current WO.		Ip beasels	typ. 4,5 mA < 6 mA
Control inputs ago to gV of			
Pins 1, 2, 11, 14, 15, 16, 17	and 18 no 41 nig		
Input voltage HIGH		VIH	3,5 V to V _P
Input voltage LOW		VIL	2 V
Input current HIGH V _i = 16 V		Iн	< 11A prim 1 μA
Input current LOW			
V _i = 0 V		-IIL	25 to 200 μA
Input resistance			linimum volume
V _i = 0 V		Ri	$<$ 08) $_{00}$ 10 $_{00}$ $k\Omega$
Control outputs			
DK-LED display and motor open collector outputs 3 a			
Output voltage LOW NO.		VOL	typ. 1 V < 1,5 V
Output current LOW		loL	typ. 30 m/
Output voltage HIGH (open $I_{OH} < 10 \mu A$		VOH	< 23 V
LF-MUTE, motor stop and v	varning signal start		
Output voltage LOW		VOL	< 0,35 V
Output current LOW			= 2 mA
Output voltage HIGH (open $I_{OH} < 1 \mu A$		VOH	E1 .8 .8 attention = 16 V
Minimum voltage (pin 7) (R	$z = 800 \Omega$. $R_1 = \infty$)	OII	
Output voltage LOW (for volume HIGH)		V ₇₋₄	< 0,1 V
Output voltage HIGH (for volume LOW)		V ₇₋₄	typ. 5 V
Warning signal (pin 12)			
f = 600 Hz; square-wave puls	ed; $R_S = 300 \Omega$		
Switching time on		t _{on}	typ. 80 ms
Switching time off		togf	typ. 560 ms
Output voltage during ton at maximum peak (R _L =	$k\Omega$)	V ₁₂₋₄	typ. 4,3 V
during Toff		V ₁₂₋₄	typ. 0 V

	Automat	tic level	control
--	---------	-----------	---------

Duration per level
Output level swing (in 5 steps)
Output current peak value

Oscillator (pin 9)

Frequency
Filter resistance
Filter capacitance
Oscillator frequency tolerance

t_p typ. 5 s

f

typ. 2400 Hz

R_o C_o

typ. $100 \text{ k}\Omega$ typ. 4,7 nF

Δf/f

-10 to + 10 %

fraffic control messages and warning tone circuit

(DA1589

Automatic level control

Duration per level

dats q ur) Bunks laket terfinn

Output current peak value

Gecillator (pin 9)

Prequency

and the second of the second o

Filter canacitance

Oscillator frequency tolerance

¹φ 1γp. 5 s ΔV12.4 -20 to 0 dB

Am 8 mys Mgti-

TVIL 2400 Hz

R_O typ. 100 kΩ

100 typ. 4,7 m

5 W AUDIO POWER AMPLIFIER

The TDA2611A is a monolithic integrated circuit in a 9-lead single in-line (SIL) plastic package with a high supply voltage audio amplifier. Special features are:

- possibility for increasing the input impedance
- single in-line (SIL) construction for easy mounting
- very suitable for application in mains-fed apparatus
- extremely low number of external components
- thermal protection
- well defined open loop gain circuitry with simple quiescent current setting and fixed integrated closed loop gain

QUICK REFERENCE DATA

Supply voltage range	Vp	6 t	o 35	V
Repetitive peak output current	IORM	<	1,5	Α
Output power at d_{tot} = 10% V_P = 18 V; R_L = 8 Ω V_P = 25 V; R_L = 15 Ω	P _o	typ.	4,5	W
Total harmonic distortion at $P_0 < 2$ W; $R_L = 8 \Omega$	d _{tot}	typ.	0,3	%
Input impedance	$ Z_i $	typ.	45	kΩ
Total quiescent current at V _P = 18 V	I _{tot}	typ.	25	mA
Sensitivity for $P_0 = 2.5 \text{ W}$; $R_L = 8 \Omega$	Vi	typ.	55	mV
Operating ambient temperature	T _{amb}	-25 to +	150	oC
Storage temperature	T _{stg}	-55 to +	150	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

Fig. 1 Circuit diagram; pin 3 not connected.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage Vp max. 35 V Non-repetitive peak output current IOSM max. 3 A T Repetitive peak output current IORM max. 1,5 A

Total power dissipation

Storage temperature

Operating ambient temperature

 1 ORM max. 1,5 A see derating curves Fig. 2 2 $T_{\rm sta}$ -55 to + 150 $^{\circ}$ C

T_{amb} -25 to + 150 °C

Fig. 2 Power derating curves.

HEATSINK EXAMPLE

Assume Vp = 18 V; R_L = 8 Ω ; T_{amb} = 60 °C maximum; T_j = 150 °C (max. for a 4 W application into an 8 Ω load, the maximum dissipation is about 2,2 W).

The thermal resistance from junction to ambient can be expressed as:

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{2,2} = 41 \text{ K/W}.$$

Since $R_{th j-tab} = 11 \text{ K/W}$ and $R_{th tab-h} = 1 \text{ K/W}$, $R_{th h-a} = 41 - (11 + 1) = 29 \text{ K/W}$.

D.C. CHARAC	TERISTICS	
Supply voltage	range	

Supply voltage range	es in secondar qV with the Abs		6 to 35	6 to 35 V	
Repetitive peak output current	IORM	<	1,5	Α	
Total quiescent current at V _P = 18 V	I _{tot}	typ.	25	mA	

A.C. CHARACTERISTICS

 T_{amb} = 25 °C; V_P = 18 V; R_L = 8 Ω ; f = 1 kHz unless otherwise specified; see also Fig. 3

A F					
A.F. output power at $d_{tot} = 10\%$ $V_P = 18 \text{ V}; R_L = 8 \Omega$	Po	typ.	4,5		
$V_P = 12 \text{ V}; R_L = 8 \Omega$ $V_P = 8,3 \text{ V}; R_L = 8 \Omega$ $V_P = 20 \text{ V}; R_L = 8 \Omega$ $V_P = 25 \text{ V}; R_L = 15 \Omega$	Po Po Po	typ. typ. typ. typ.	1,7 0,65 6	W	
Total harmonic distortion at P _O = 2 W	d _{tot}	typ.	0,3	%	
Frequency response		>	15	kHz	
Input impedance	Z _i	typ.	45	$k\Omega$ *	
Noise output voltage at R _S = 5 k Ω ; B = 60 Hz to 15 kHz	Vn	typ.		mV mV	
Sensitivity for P _O = 2,5 W	Vi	typ.	55 44 to 66	mV mV	

Fig. 3 Test circuit; pin 3 not connected.

^{*} Input impedance can be increased by applying C and R between pins 5 and 9 (see also Figures 6 and 7).

Fig. 4 Total harmonic distortion as a function of output power.

Fig. 5 Output power as a function of supply voltage.

Fig. 6 Input impedance as a function of frequency; curve a for C = 1 μ F, R = 0 Ω ; curve b for C = 1 μ F, R = 1 k Ω ; circuit of Fig. 3; C2 = 10 pF; typical values.

Fig. 7 Input impedance as a function of R in circuit of Fig. 3; $C = 1 \mu F$; f = 1 kHz.

Fig. 8 Total harmonic distortion as a function of R_S in the circuit of Fig. 3; P_O = 3,5 W; f = 1 kHz.

Fig. 9 Total power dissipation and efficiency as a function of output power.

Fig. 10 Ceramic pickup amplifier circuit.

Fig. 11 Total harmonic distortion as a function of output power; —— with tone control; --- without tone control; in circuit of Fig. 10; typical values.

Fig. 12 Frequency characteristics of the circuit of Fig. 10; —— tone control max. high; —— tone control min. high; P_0 relative to 0 dB = 3 W; typical values.

Fig. 13 Frequency characteristic of the circuit of Fig. 10; volume control at the top; tone control max. high.

Fig. 12 Frequency characteristics of the circuit of Fig. 10; —— tone control max. high; ——— tone control min, high; Pa relative to 0 dB = 3 W; typical values.

ig. 13. Frequency of a scientistic of the direct of Fig. 10; volume control at the top, tone control as high.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET JAMOITOMUSI INFRARED RECEIVER

The TDA3047 is for infrared reception with low power consumption. The difference between the TDA3047 and TDA3048 is the polarity of the output signal.

Features

- . H.F. amplifier with a control range of 66 dB
- Synchronous demodulator and reference amplifier
- · A.G.C. detector
- Pulse shaper
- Q-factor killing of the input selectivity, which is controlled by the a.g.c. circuit
- Input voltage limiter

QUICK REFERENCE DATA

Supply voltage (pin 8)	$V_{P} = V_{8-16}$	typ.	5 V
Supply current (pin 8)	lp = l8	typ.	2,1 mA
Input signal (peak-to-peak value) (100% AM; f = 36 kHz)	V ₂₋₁₅ (p-p)	0,02 t	o 200 mV
Output signal (peak-to-peak value)	V9-16(p-p)	typ.	4,5 V

Fig. 1 Block diagram of TDA3047.

PACKAGE OUTLINES

TDA3047P: 16-lead DIL; plastic (SOT-38).

TDA3047T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).

FUNCTIONAL DESCRIPTION O MOOR ATAC THAVELER SEE HOSTAMROSHI CELIATED ROS

The circuit operates from a 5 V supply and has a current consumption of 2 mA. The output is a current source which can drive or suppress a current of $> 75 \mu A$ with a voltage swing of 4,5 V. The Q-killer circuit eliminates distortion of the output pulses due to the decay of the tuned input circuit at high input voltages. The input circuit is protected against signals of > 600 mV by an input limiter. The typical input is an AM signal at a frequency of 36 kHz, Figures 3 and 4 show the circuit diagrams for the application of narrow-band and wide-band receivers respectively. Circuit description of the eight sections shown in Fig. 1 are given below.

Controlled h.f. amplifier

The input signal is amplified by the gain-controlled amplifier. This circuit comprises three d.c. amplifier stages connected in cascade. The overall gain of the circuit is approximately 83 dB and the gain control range is in the order of 66 dB. Gain control is initially active in the second amplifier stage and is transferred to the first stage as limiting in the second stage occurs, thus maintaining optimum signal-to-noise ratio. Offset voltages in the d.c. coupled amplifier are minimized by two negative feedback loops; these also allow the circuit to have some series resistance of the decoupling capacitor. The output signal of the amplifier is applied to the reference amplifier and to the synchronous demodulator inputs.

Reference amplifier

The reference amplifier amplifies and limits the input signal. The voltage gain is approximately 0 dB. The output signal of this amplifier is applied to the synchronous demodulator.

Synchronous demodulator

In the synchronous demodulator the input signal and reference signal are multiplied. The demodulator output current is $25 \,\mu\text{A}$ peak-to-peak. The output signal of the demodulator is fed to the input of the a.g.c. detector and to the input of the pulse-shaper circuit.

A.G.C. detector

The a.g.c. detector comprises two n-p-n transistors operating as a differential pair. The top level of the output signal from the synchronous demodulator is detected by the a.g.c. circuit. Noise pulses are integrated by an internal capacitor. The output signal is amplified and applied to the first and second stages of the amplifier and to the Q-factor killer circuit.

The pulse-shaper comprises two n-p-n transistors operating as a differential pair connected in parallel with the a.g.c. differential pair. The slicing level of the pulse shaper is lower than the slicing level of the a.g.c. detector. The output of the pulse-shaper is determined by the voltage of the capacitor connected to pin 11, which is applied directly to the output buffer.

Output buffer

The voltage of the pulse-shaper capacitor is fed to the base of the first transistor of a differential pair. To obtain a correct RC-5 code, a hysteresis circuit protects the output against spikes. The output at pin 9 is active high.

Q-factor killer

Figure 3 shows the Q-factor killer in the narrow-band application. In this application it is necessary to decrease the Q-factor of the input selectivity particularly when large input signals occur at pins 2 and 15. In the narrow-band application the output of the Q-factor killer can be directly coupled to the input; pin 3 to pin 2 and pin 14 to pin 15.

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

INFRARED RECEIVER

The TDA3048 is for infrared reception with low power consumption.

The difference between the TDA3048 and TDA3047 is the polarity of the output signal.

Feature

- . H.F. amplifier with a control range of 66 dB
- · Synchronous demodulator and reference amplifier
- · A.G.C. detector
- Pulse shaper
- Q-factor killing of the input selectivity, which is controlled by the a.g.c. circuit
- Input voltage limiter and based and miscless yillulated allocated miscless (85 86 for table of all all specific

QUICK REFERENCE DATA over vid best minim are sufficients beloaded as to select sufficient sufficients.

Supply voltage (pin 8)	$V_P = V_{8-16}$	typ.	5 V
Supply current (pin 8)	I _P = I ₈	typ.	2,1 mA
Input signal (peak-to-peak value) (100% AM; f = 36 kHz)	V _{2-15(p-p)}	0.02 t	o 200 mV
Output signal (peak-to-peak value)	V9-16(p-p)	typ.	4,5 V

Fig. 1 Block diagram of TDA3048.

PACKAGE OUTLINES

TDA3048P: 16-lead DIL; plastic (SOT-38).

TDA3048T: 16-lead mini-pack; plastic (SO-16L; SOT-162A).

FUNCTIONAL DESCRIPTION O MODE AT A THAT THE RELEVANT DATA ROOM OF MICHAEL PROPERTY.

Genera

The circuit operates from a 5 V supply and has a current consumption of 2 mA. The output is a current source which can drive or suppress a current of > 75 μ A with a voltage swing of 4,5 V. The Q-killer circuit eliminates distortion of the output pulses due to the decay of the tuned input circuit at high input voltages. The input circuit is protected against signals of > 600 mV by an input limiter. The typical input is an AM signal at a frequency of 36 kHz. Figures 3 and 4 show the circuit diagrams for the application of narrow-band and wide-band receivers respectively. Circuit description of the eight sections shown in Fig. 1 are given below.

Controlled h.f. amplifier

The input signal is amplified by the gain-controlled amplifier. This circuit comprises three d.c. amplifier stages connected in cascade. The overall gain of the circuit is approximately 83 dB and the gain control range is in the order of 66 dB. Gain control is initially active in the second amplifier stage and is transferred to the first stage as limiting in the second stage occurs, thus maintaining optimum signal-to-noise ratio. Offset voltages in the d.c. coupled amplifier are minimized by two negative feedback loops; these also allow the circuit to have some series resistance of the decoupling capacitor. The output signal of the amplifier is applied to the reference amplifier and to the synchronous demodulator inputs.

Reference amplifier

The reference amplifier amplifies and limits the input signal. The voltage gain is approximately 0 dB. The output signal of this amplifier is applied to the synchronous demodulator.

Synchronous demodulator

In the synchronous demodulator the input signal and reference signal are multiplied. The demodulator output current is $25 \,\mu\text{A}$ peak-to-peak. The output signal of the demodulator is fed to the input of the a.g.c. detector and to the input of the pulse-shaper circuit.

A.G.C. detector

The a.g.c. detector comprises two n-p-n transistors operating as a differential pair. The top level of the output signal from the synchronous demodulator is detected by the a.g.c. circuit. Noise pulses are integrated by an internal capacitor. The output signal is amplified and applied to the first and second stages of the amplifier and to the Ω -factor killer circuit.

Pulse-shaper

The pulse-shaper comprises two n-p-n transistors operating as a differential pair connected in parallel with the a.g.c. differential pair. The slicing level of the pulse shaper is lower than the slicing level of the a.g.c. detector. The output of the pulse-shaper is determined by the voltage of the capacitor connected to pin 11, which is applied directly to the output buffer.

Output buffer

The voltage of the pulse-shaper capacitor is fed to the base of the first transistor of a differential pair. To obtain a correct RC-5 code, a hysteresis circuit protects the output against spikes. The output at pin 9 is active *low*.

Q-factor killer

Figure 3 shows the Ω -factor killer in the narrow-band application. In this application it is necessary to decrease the Ω -factor of the input selectivity particularly when large input signals occur at pins 2 and 15. In the narrow-band application the output of the Ω -factor killer can be directly coupled to the input; pin 3 to pin 2 and pin 14 to pin 15.

SPATIAL, STEREO AND PSEUDO-STEREO SOUND CIRCUIT

The TDA3810 integrated circuit provides spatial, stereo and pseudo-stereo sound for radio and television equipment.

Features

• Three switched functions: spatial (widened stereo image)

stereo

pseudo-stereo (artificial stereo from a mono source)

- Offset compensated operational amplifiers to reduce switch noise
- LED driver outputs to facilitate indication of selected operating mode
- Start/stop circuit to reduce switch noise and to prevent LED-flicker
- TTL-compatible control inputs

QUICK REFERENCE DATA

Supply voltage (pin 18)	V _P	typ.	12 \	/
Supply current (LEDs off)	lp lp	typ.	6 r	mΑ
Operating ambient temperature range	T _{amb}	0 to	+ 70	C
Input signal (r.m.s. value)	Vi(rms)	< /	2 \	V
Total harmonic distortion (stereo)	THD	typ.	0,1 9	%
Channel separation (stereo)	α	typ.	70 0	dB
Gain (stereo)	G _V	typ.	0 0	dB

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

606

(1) Used in spatial mode for correction of high frequency only (optimal performance).

Fig. 1 Block diagram/test circuit showing external components; for control inputs to pins 11 and 12 see truth table.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 18) V_P max. 18 $V_{Storage}$ temperature range T_{stg} —25 to + 150 °C Operating ambient temperature range T_{amb} 0 to + 70 °C

THERMAL RESISTANCE

From crystal to ambient

R_{th cr-a} = 80 K/W

CHARACTERISTICS

 V_P = 12 V; T_{amb} = 25 ^{o}C ; test circuit Fig. 1 stereo mode (pin 11 to ground) unless otherwise specified. Output load: $R_{6-10,\,13-10}$ \geqslant 4,7 k Ω ; $C_{6-10,\,13-10}$ \leqslant 150 pF.

parameter Shuseq Island	symbol	min.	typ.	max.	unit
Supply voltage range (pin 18)	Vp	4,5	-	16,5	V
Supply current	lp	HOIH	6	12	mA
Reference voltage Input voltage (pin 2 or 17)	VS	5,3	6	6,7	٧
THD = 0,2% (stereo mode)	Vi(rms)	Nov-svirize	o sali erb	2000	V
Input resistance (pin 2 or 17)	Ri(spation	50	75	V 10-5,5	kΩ
Voltage gain V _O /V _i	G _V	-	0	on't care	dB
Channel separation (R/L)	α	60	70	_	dB
Total harmonic distortion f = 40 to 16 000 Hz; V _{O(rms)} = 1 V	THD	_	0,1	-	%
Power supply ripple rejection	RR	-	50	-	dB
Noise output voltage (unweighted) left and right output	V _{n(rms)}	-	10	_	μV
SPATIAL MODE (pins 11 and 12 HIGH) Antiphase crosstalk	α	_	50	_	%
Voltage gain	G _V	1,4	2,4	3,4	dB

PSEUDO-STEREO MODE

The quality and strength of the pseudo-stereo effect is determined by external filter components.

parameter	symbol	min.	typ.	max.	unit
CONTROL INPUTS (pins 11 and 12)	Maximum	me Absolute	F N31W SONE	(Bir riig) epi	ans grazar
Input resistance	Ri	70	120	ens: Furtere	kΩ
Switching current	-Ii	-	35	100	μΑ
LED DRIVERS (pins 7 and 8)				RESISTANC	ERMAL
Output current for LED	-10	10	12	15	mA
Forward voltage	VF	-	-	6	V

Truth table

DESWIGHT COUNTY	€ 150 pF.	Cs 10.13-10	LED	LED	solfled. Output los
mode	control ir	nput state	spatial	pseudo	
Typ: Smark: Gy1	pin 11	pin 12	pin 7	pin 8	parameter
Mono pseudo-stereo	HIGH	LOW	off	(81 niq) eq	Supply yoltage ran
Spatial stereo	HIGH	HIGH	on	off	Supply current
Stereo	LOW	X	off	off	agestov somersken

LOW = 0 to 0,8 V (the less positive voltage)
HIGH = 2 V to 5,5 V (the more positive voltage)

X = don't care

FM RADIO CIRCUIT

GENERAL DESCRIPTION

The TDA7000 is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components is important (small dimensions and low costs).

The IC has an FLL (Frequency-Locked-Loop) system with an intermediate frequency of 70 kHz. The i.f. selectivity is obtained by active RC filters. The only function which needs alignment is the resonant circuit for the oscillator, thus selecting the reception frequency. Spurious reception is avoided by means of a mute circuit, which also eliminates too noisy input signals. Special precautions are taken to meet the radiation requirements.

The TDA7000 includes the following functions:

- R.F. input stage
- Mixer
- Local oscillator
- I.F. amplifier/limiter
- Phase demodulator
- Mute detector
- Mute detecti
- Mute switch

QUICK REFERENCE DATA

Supply voltage range (pin 5)		VP	2,7 t	o 10	V
Supply current at Vp = 4,5 V		lp	typ.	8	mA
R.F. input frequency range		f _{rf}	1,5 to	110	MH
Sensitivity for -3 dB limiting (e.m.f. voltage)					
(source impedance: 75 Ω ; mute disa	abled)	EMF	typ.	1,5	μV
Signal handling (e.m.f. voltage) (source impedance: 75 Ω)	Fig. 1 Block diagram.	EMF	typ.	200	mV
A.F. output voltage at $R_L = 22 \text{ k}\Omega$		Vo	typ.	75	mV

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 5)

p max.

12 V

Oscillator voltage (pin 6)

 V_{6-5} $V_{p}-0.5$ to $V_{p}+0.5$ V

Total power dissipation

see derating curve Fig. 2

Storage temperature range

T_{stg}

 $-55 \text{ to} + 150 \text{ }^{\circ}\text{C}$

Operating ambient temperature range

Tamb

0 to +60 °C

Fig. 2 Power derating curve.

D.C. CHARACTERISTICS

Vp = 4,5 V; Tamb = 25 °C; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltage (pin 5)	VP	2,7	4,5	10	V
Supply current at Vp = 4,5 V	Тр	x6-3	8	_	mA
Oscillator current (pin 6)	16	h10	280	- 36	μΑ
Voltage at pin 14	V14-16	-	1,35	A is rubiwb	V
Output current at pin 2	12	d (sit n	60	Petral Clarke D	μΑ
Voltage at pin 2; $R_L = 22 \text{ k}\Omega$	V ₂₋₁₆		1,3	03 PO B	V

A.C. CHARACTERISTICS

 $V_P=4.5\ V; T_{amb}=25\ ^{\circ}C; \ measured\ in\ Fig.\ 4\ (mute\ switch\ open,\ enabled); \ f_{rf}=96\ MHz\ (tuned\ to\ max.\ signal\ at\ 5\ \mu V\ e.m.f.)\ modulated\ with\ \Delta f=\pm22.5\ kHz; \ f_m=1\ kHz; \ EMF=0.2\ mV\ (e.m.f.\ voltage\ at\ a\ source\ impedance\ of\ 75\ \Omega); \ r.m.s.\ noise\ voltage\ measured\ unweighted\ (f=300\ Hz\ to\ 20\ kHz); \ unless\ otherwise\ specified.$

parameter	symbol	min.	typ.	max.	unit
Sensitivity (see Fig. 3) dms ^T (e.m.f. voltage)		nge	прегавите та	mbient te	gnitstec
for -3 dB limiting; muting disabled	EMF	-	1,5	-	μV
for -3 dB muting	EMF	-	6	-	μV
for S/N = 26 dB	EMF	-	5,5	-	μV
Signal handling (e.m.f. voltage) for THD $<$ 10%; $\Delta f = \pm 75 \text{ kHz}$	EMF	_	200	_	mV
Signal-to-noise ratio	S/N	-	60	-	dB
Total harmonic distortion at $\Delta f = \pm 22,5 \text{ kHz}$	THD		0,7	_	%
at $\Delta f = \pm 75 \text{ kHz}$	THD	-	2,3	-	%
(ratio of the AM output signal referred to the FM output signal) FM signal: $f_m = 1 \text{ kHz}$; $\Delta f = \pm 75 \text{ kHz}$ AM signal: $f_m = 1 \text{ kHz}$; $m = 80\%$	AMS	Fig. 2	50	_	dB
Ripple rejection ($\Delta V_P = 100 \text{ mV}$; f = 1 kHz)	RR	-	10 801	ACTE <u>B</u> IS	dB
Oscillator voltage (r.m.s. value) at pin 6 Variation of oscillator frequency	V ₆₋₅ (rms)	red in Fig	250	Tamb = 2	mV
with supply voltage ($\Delta V_P = 1 V$)	Δf _{osc}	sV-	60	oftage (pin	kHz/V
Selectivity	S+300	-	45	Trents	dB
	S_300	gr -	35	4,5 V	dB
A.F.C. range	Δf_{rf}	a ⁺	± 300) m emuo i	kHz
Audio bandwidth at $\Delta V_0 = 3$ dB measured with pre-emphasis (t = 50 μ s)	В	γV gΓ	10	t pin 14 urrest at n	kHz
A.F. output voltage (r.m.s. value) at R _L = 22 k Ω	Vo(rms)	_V2	75	1 pin 2 <u>:</u> R	mV
Load resistance at Vp = 4,5 V	RL	_	_	22	kΩ
at Vp = 9,0 V	RL	_	_	47	kΩ

Fig. 3 A.F. output voltage (V_0) and total harmonic distortion (THD) as a function of the e.m.f. input voltage (EMF) with a source impedance (Rg) of 75 Ω : (1) muting system enabled; (2) muting system disabled.

Conditions: 0 dB = 75 mV; $f_{rf} = 96 MHz$.

for S + N curve: $\Delta f = \pm 22.5$ kHz; $f_m = 1$ kHz. for THD curve: $\Delta f = \pm 75$ kHz; $f_m = 1$ kHz.

Notes

- 1. The muting system can be disabled by feeding a current of about 20 µA into pin 1.
- 2. The interstation noise level can be decreased by choosing a low-value capacitor at pin 3. Silent tuning can be achieved by omitting this capacitor.

Fig. 4 Test circuit; for printed-circuit boards see Figs 5 and 6.

FM radio circuit TDA7000

Fig. 5 Track side of printed-circuit board used for the circuit of Fig. 4.

Fig. 6 Component side of printed-circuit board showing component layout used for the circuit of Fig. 4.

Fig. 5 Track side of printed-circuit board used for the circuit of Fig. 4

Fig. 6 Component side of printed-circuit board showing component leyout used for the circuit of Fig. 4.

FM RADIO CIRCUIT

GENERAL DESCRIPTION

The TDA7010T is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components is important (small dimensions and low costs).

The IC has an FLL (Frequency-Locked-Loop) system with an intermediate frequency of 70 kHz. The i.f. selectivity is obtained by active RC filters. The only function which needs alignment is the resonant circuit for the oscillator, thus selecting the reception frequency. Spurious reception is avoided by means of a mute circuit, which also eliminates too noisy input signals. Special precautions are taken to meet the radiation requirements.

The TDA7010T includes the following functions:

- · R.F. input stage
- Mixer
- Local oscillator
- I.F. amplifier/limiter
- Phase demodulator
- Mute detector
- Mute detector
- Mute switch

QUICK REFERENCE DATA

	and the second s		Acres de la constante de la co	
Supply voltage range (pin 4)	VP	2,7 t	o 10	٧
Supply current at Vp = 4,5 V	lp	typ.	8	mA
R.F. input frequency range	frf	1,5 to	110	MHz
Sensitivity for -3 dB limiting (e.m.f. voltage)				
(source impedance: 75 Ω ; mute disabled)	EMF	typ.	1,5	μV
Signal handling (e.m.f. voltage) (source impedance: 75 Ω)	EMF	typ.	200	mV
A.F. output voltage at R _L = 22 k Ω	Vo	typ.	75	mV

PACKAGE OUTLINE

16-lead mini-pack; plastic (SO-16; SOT-109A).

Fig. 1 Block diagram.

PACKAGE COTERS

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 4) V_P max. 12 V_P Oscillator voltage (pin 5) V_{6-5} V_{P} = 0,5 to V_P + 0,5 V_P Total power dissipation see derating curve Fig. 2 Storage temperature range V_{S-1} Total V_P = 0.5 to + 150 V_P C

Storage temperature range T_{stg} -55 to +150 °C Operating ambient temperature range T_{amb} 0 to +60 °C

Fig. 2 Power derating curve.

D.C. CHARACTERISTICS

Vp = 4,5 V; Tamb = 25 °C; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltage (pin 4)	VP	2,7	4,5	10	V
Supply current at Vp = 4,5 V	Ip Ot	5_8	8	- 9004	mA
Oscillator current (pin 5)	15	-	280	ra-trbiwbni	μΑ
Voltage at pin 12	V ₁₂₋₁₄	50 _{,08}) <u>B</u>	1,35	enquiting ben	V
Output current at pin 2	12	-	60	put voltage (μΑ
Voltage at pin 2; $R_L = 22 k\Omega$	V ₂₋₁₄	lo <u>V</u>	1,3	= 22 ±Ω_	V

A.C. CHARACTERISTICS

Vp = 4,5 V; T_{amb} = 25 °C; measured in Fig. 4 (mute switch open, enabled); f_{rf} = 96 MHz (tuned to max. signal at 5 μ V e.m.f.) modulated with Δ f = \pm 22,5 kHz; f_{m} = 1 kHz; EMF = 0,2 mV (e.m.f. voltage at a source impedance of 75 Ω); r.m.s. noise voltage measured unweighted (f = 300 Hz to 20 kHz); unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Sensitivity (see Fig. 3) (e.m.f. voltage)		egni	mperature n	er Ineidra	poisting (
for -3 dB limiting; muting disabled	EMF		1,5		μV
for -3 dB muting	EMF		6		μV
for S/N = 26 dB	EMF		5,5		μV
Signal handling (e.m.f. voltage)	LIVII		3,0		μν
for THD $<$ 10%; $\Delta f = \pm 75 \text{ kHz}$	EMF		200	_	mV
Signal-to-noise ratio	S/N		60		dB
Total harmonic distortion					
at Δf = ± 22,5 kHz	THD	_	0,7	_	%
at Δf = ± 75 kHz	THD		2,3	_	%
AM suppression of output voltage (ratio of the AM output signal referred to the FM output signal)	08	08	9		
FM signal: $f_m = 1 \text{ kHz}$; $\Delta f = \pm 75 \text{ kHz}$ AM signal: $f_m = 1 \text{ kHz}$; $m = 80\%$	AMS	_	50	_	dB
Ripple rejection ($\Delta V_p = 100 \text{ mV}$; f = 1 kHz)	RR	Fig. 2	10	NOTERIS	dB
Oscillator voltage (r.m.s. value) at pin 5	V ₅₋₄ (rms)	red in Fig	250	-dmsT	mV
Variation of oscillator frequency	Indu	10		10	
with supply voltage ($\Delta V_p = 1 V$)	Δf _{osc}	-	60	-	kHz/V
Selectivity	S+300	1V-	43	eltage <u>(p</u> ir	dB
	S_300	-	28	- Inerio	dB
A.F.C. range	Δf_{rf}	96	± 300	V 8,8 4	kHz
Audio bandwidth at $\Delta V_0 = 3 \text{ dB}$		al	(d nie	meraus y	
measured with pre-emphasis (t = $50 \mu s$)	B	\ <u>/</u> _	10	Ef nig ti	kHz
A.F. output voltage (r.m.s. value)		gl		t te themu	
at R _L = 22 k Ω	Vo(rms)	sV-	75	R S nig #	mV
Load resistance	_				
at V _P = 4,5 V	RL	-	- 1 3	22	kΩ
at Vp = 9,0 V	RL	-	-	47	kΩ

May 1983

Fig. 3 A.F. output voltage (V_0) and total harmonic distortion (THD) as a function of the e.m.f. input voltage (EMF) with a source impedance (Rg) of 75 Ω : (1) muting system enabled; (2) muting system disabled.

Conditions: 0 dB = 75 mV; $f_{rf} = 96 \text{ MHz}$.

for S + N curve: $\Delta f = \pm 22,5$ kHz; $f_m = 1$ kHz. for THD curve: $\Delta f = \pm 75$ kHz; $f_m = 1$ kHz.

Notes

1. The muting system can be disabled by feeding a current of about 20 μ A into pin 1.

Fig. 4 Test circuit; for printed-circuit boards see Figs 5 and 6.

FM radio circuit TDA7010T

Fig. 5 Track side of printed-circuit board used for the circuit of Fig. 4.

Fig. 6 Component side of printed-circuit board showing component layout used for the circuit of Fig. 4.

FM radio circuit

DAZOIOT

Fig. 5. Track side of printed-circuit board used for the circuit of Fig. 4

Fig. 6. Component side of printed circuit board showing component layout used for the circuit of Fig. A.

This data sheet contains advance information and specifications are subject to change without notice.

FM RADIO CIRCUIT

GENERAL DESCRIPTION

The TDA7020T integrated circuit is for FM portable radios, stereo as well as mono, where a minimum periphery is important in terms of small dimensions and low cost. The IC has a FLL (Frequency Locked Loop) system with an intermediate frequency of 76 kHz. The selectivity is obtained by active RC filters. The only function to be tuned is the resonant circuit of the oscillator. Interstation-noise as well as noise from receiving weak signals is reduced by a correlation mute system.

Special precautions have been taken to meet local oscillator radiation requirements. Because of the low intermediate frequency, low pass filtering of the MUX signal is required to avoid noise when receiving stereo. 50 kHz roll-off compensation, needed because of the low pass characteristic of the FLL, is performed by the integrated LF amplifier. For mono application this amplifier can be used to directly drive an earphone. The field-strength detector enables field-strength dependent channel separation control.

The TDA7020T includes the following functions:

- RF input stage
- Mixer
- Local oscillator
- IF amplifier/limiter
- Frequency detector
- Mute circuit

- Loop amplifier
- Internal reference circuit
- LF amplifier for:
 - mono earphone amplifier or
 - MUX filter
- field-strength dependent channel separation control facility

QUICK REFERENCE DATA

Supply voltage range (pin 4)	Vp	1	,8 to 6	V
Supply current at V _P = 3 V	lp /	typ.		mA
RF input frequency range	f _{rf} /	1,5	to 110	MHz
Sensitivity for -3 dB limiting (e.m.f. voltage) (source impedance: 75 Ω ; mute disabled)	EMF	typ.	4	μV
Signal handling (e.m.f. voltage) (source impedance: 75 Ω)	EMF	typ.	200	mV
AF output voltage	Vo	typ.	90	mV

PACKAGE OUTLINE

16-lead mini-pack; plastic (SO-16; SOT-109A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 4)	Vp sould max. 7 V	M
Oscillator voltage (pin 5)	V ₆₋₅ V _P -0,5 to V _P +0,5 V	
Storage temperature range	T _{stg} -55 to +150 °	C
Operating ambient temperature range	T _{amb} -10 to +70 °	С

THERMAL RESISTANCE

From junction to ambient Rth j-a 300 K/W

D.C. CHARACTERISTICS

V_P = 3 V; T_{amb} = 25 °C; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltage (pin 4)	V4-3	1,8	3,0	6	٧
Supply current at Vp = 3 V	-l3	-	6,3	$f = \pm 22$,	mA
Oscillator current (pin 5)	15	onette	250	unisonno	μΑ
Voltage at pin 13	V ₁₃₋₃	TSHall	0,9	MAHaa	V
Output voltage (pin 14)	V14-3	sidal I =	1,3	01_2/08	V

Fig. 2 Supply current as a function of the supply voltage.

A.C. CHARACTERISTICS (MONO OPERATION)

V_P = 3 V; T_{amb} = 25 °C; measured in Fig. 6; f_{rf} = 96 MHz modulated with Δ f = \pm 22,5 kHz; f_m = 1 kHz; EMF = 300 μ V (e.m.f. voltage at a source impedance of 75 Ω); r.m.s. noise voltage measured unweighted (f = 300 Hz to 20 kHz); unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Sensitivity (see Fig. 3) (e.m.f. voltage)		อยูกเลา อาเม	BISCHER	ig ambient IAL RESI	JansqC agasit
for -3 dB limiting; muting disabled	EMF	_	4,0	oz_noizan	μV
for -3 dB muting	EMF	_	5,0	BIDABAL	μV
for S/N = 26 dB	EMF	ni beruses	7085	oknaT;V	μV
Signal handling (e.m.f. voltage) for THD $<$ 10%; Δ f = \pm 75 kHz	EMF	_	200	- 10100	mV
Signal-to-noise ratio	S/N	_	60	-	dB
Total harmonic distortion at $\Delta f = \pm 22.5 \text{ kHz}$	THD	_	0,7	epation vi	
at $\Delta f = \pm 75 \text{ kHz}$	THD	_	2,3	$V\underline{E} = qV$	%
AM suppression of output voltage (ratio of AM signal: $f_m = 1 \text{ kHz}$; $m = 80\%$ to FM signal: $f_m = 1 \text{ kHz}$; $\Delta f = \pm 75 \text{ kHz}$)	AMS	_	(8 mig) 37 8 (8 mig) 37 50	ator curre ga at pin I ut voltaga	oloV
Ripple rejection ($\Delta V_p = 100 \text{ mV}$; f = 1 kHz)	RR	_	30	_	dB
Oscillator voltage (pin 5) r.m.s. value	V ₅₋₃ (rms)	- _{q1}	250	-	mV
Variation of oscillator frequency with supply voltage ($\Delta V_p = 1 \text{ V}$)	$\Delta f_{\rm osc}/\Delta V_{\rm P}$	(Ain)	5	_	kHz/\
with temperature	$\Delta f_{OSC}/\Delta T$		0,2	-	kHz/ł
Selectivity (without modulation;	S ₊₃₀₀	-	30	-	dB
test circuit Fig. 8)	S_300	- "	46	-	dB
AFC range	$\pm \Delta f_{rf}$	-	160	-	kHz
Mute range	$\pm \Delta f_{rf}$		120	-	kHz
Audio bandwidth at $\Delta V_0 = 3$ dB measured with pre-emphasis (t = 50 μ s)	В	-	10	_	kHz
AF output voltage (r.m.s. value) at $RL(pin 14) = 100 \Omega$; pin 16 open	V _{o(rms)}	0	90		mV
AF output current max. d.c. load	1-1-1-1	-100		+ 100	μΑ
max. a.c. load for THD = 10%; peak value	lo(dc)	Suppley o	3	-	mA

Fig. 3 Fieldstrength voltage (Vg.3) at R_S = 1 k Ω ; f = 96,75 MHz and supply voltage is 3 V.

Fig. 4 MONO operation. A.F. output voltage (V_0) and total harmonic distortion (THD) as a function of the e.m.f. input voltage (EMF) with a source impedance (R_S) of 75 Ω : (1) muting system enabled; (2) muting system disabled.

Conditions: 0 dB = 100 mV; f_{rf} = 96 MHz. for S + N curve: Δf = \pm 22,5 kHz; f_m = 1 kHz. for THD curve : Δf = \pm 75 kHz; f_m = 1 kHz.

A.C. CHARACTERISTICS (STEREO OPERATION)

VP=3~V; $T_{amb}=25~^{\circ}C$; measured in Fig. 7; $f_{rf}=96~MHz$ modulated with pilot $\Delta f=\pm 6,75~kHz$ and AF signal $\Delta f=\pm 22,5~kHz$; $f_{m}=1~kHz$; EMF=1 mV (e.m.f. voltage at a source impedance of 75 Ω); r.m.s. noise voltage measured unweighted (f=300 Hz to 20 kHz); unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Sensitivity (Fig. 3) (e.m.f. voltage) for S/N = 46 dB	EMF		300		μV
Signal-to-noise ratio	S/N		53	_	dB
Channel separation	α		20	-	dB
Pilot voltage level at pin 14	V _{pilot}		13,5		mV
AF level at output	VAF(RMS)		80		s mV
Selectivity without modulation (test circuit Fig. 8)	S+300 S-300		22 40		dB dB

notional a ze (CHT) notinotali alnon Fig. 5 STEREO operation. Igno, F.A. notinago OMOM, A pil

A.F. output Voltage (V_0) as a function of the e.m.f. input voltage (EMF). (1) Muting system enabled; (2) muting system disabled.

Fig. 6 Test circuit for MONO operation.

1) The AF output can be decreased by 5 dB by disconnection of the 100 nF capacitor of pin 16.

Fig. 7 Test circuit for STEREO operation.

Fig. 8 Test circuit.

Set-up with circuitry as Fig. 6 or Fig. 7. C_6 (100 nF) deleted and replaced by R6 = 100 k Ω ; V_i = 30 mV; f_i = 76 kHz.

Output: selective voltmeter; $R_i \ge 1 \text{ M}\Omega$; $C_i \le 8 \text{ pF}$; $f_0 = f_i$

$$S_{+300} = 20 \text{ lg} \frac{V_0 \mid (300 \text{ kHz} - f_i)}{V_0 \mid f_i}$$

$$S_{-300} = 20 \text{ lg} \frac{V_0 \mid (300 \text{ kHz} + f_i)}{V_0 \mid f_i}$$

LOW VOLTAGE MONO/STEREO POWER AMPLIFIER

GENERAL DESCRIPTION

The TDA7050T is a low voltage audio amplifier for small radios with headphones (such as watch, pen and pocket radios) in mono (bridge-tied load) or stereo applications.

Features

- Limited to battery supply application only (typ. 3 and 4 V)
- Operates with supply voltage down to 1,6 V
- No external components required
- Very low quiescent current
- Fixed integrated gain of 26 dB, floating differential input
- Flexibility in use mono BTL as well as stereo
- Small dimension of encapsulation (see package design example)

QUICK REFERENCE DATA

Supply voltage range	VP	1,6 to	6,0	V
Total quiescent current (at Vp = 3 V)	I _{tot}	typ.	3,2	mA
Bridge tied load application (BTL)				
Output power at $R_L = 32 \Omega$				
$V_P = 3 \text{ V; } d_{tot} = 10\%$	Po	typ.	140	mW
D.C. output offset voltage between the outputs	$ \Delta V $	max.	70	mV
Noise output voltage (r.m.s. value)				
at f = 1 kHz; R_S = 5 k Ω	V _{no(rms)}	typ.	140	μV
Stereo application				
Output power at $R_1 = 32 \Omega$				
$d_{tot} = 10\%; V_P = 3 V$	Po =	typ.	35	mW
$d_{tot} = 10\%$; $V_P = 4,5 V$	Po	typ.	75	mW
Channel separation at $R_S = 0 \Omega$; $f = 1 \text{ kHz}$	α	typ.	40	dB
Noise output voltage (r.m.s. value)				
at f = 1 kHz; $R_S = 5 k\Omega$	V _{no(rms)}	typ.	100	μV

PACKAGE OUTLINE

8-lead mini-pack; plastic (SO-8; SOT-96A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage AMA SEWOS OSSETS ONOM	VP	max.	6	V
Peak output current	IOM	max.	150	mA
Total power dissipation	see dera	ating curve F	ig. 1	
Storage temperature range	T _{stg}	-55 to +	150	oC
Crystal temperature	Tc	max.	100	oC
A.C. and d.c. short-circuit duration motivatings could be lead by $V_P = 3.0 \text{ V}$ (during mishandling)		max.	5	

Fig. 1 Power derating curve.

SO PACKAGE DESIGN EXAMPLE

To achieve the small dimension of the encapsulation the SO package is preferred with only 8 pins. Because a heatsink is not applicable, the dissipation is limited by the thermal resistance of the 8-pin SO encapsulation until:

$$\frac{T_{j \text{ max}} - T_{amb}}{R_{th j-a}} = \frac{100 - 60}{300} = 0.1 \text{ W}.$$

CHARACTERISTICS

 $V_P = 3 \text{ V}$; f = 1 kHz; $R_L = 32 \Omega$; $T_{amb} = 25 \, ^{\circ}\text{C}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage	VP	1,6		6,0	Voa
Total quiescent current	I _{tot}	-	3,2	4	mA
Bridge-tied load application (BTL); see Fig. 4					
Output power*					1 05
$V_P = 3.0 \text{ V; } d_{tot} = 10\%$	Po	-	140	-	mW
$V_P = 4,5 \text{ V}; d_{tot} = 10\% (R_L = 64 \Omega)$	Po		150	<u> </u>	mW
Voltage gain	G _V	N1 Av	32	-	dB
Noise output voltage (r.m.s. value)	spedance	ni bsol eri	e across	tput power	2.20
$R_S = 5 k\Omega$; $f = 1 kHz$	Vno(rms)	V) c pstlov	140	functi o n p	μV
$R_S = 0 \Omega$; $f = 500 \text{ kHz}$; $B = 5 \text{ kHz}$	V _{no(rms)}	nts we <u>re</u> in	tbf	eation_W	μV
D.C. output offset voltage (at $R_S = 5 k\Omega$)	IΔVI	= 25 °C.	dms 1 of	70	mV
Input impedance (at R _S = ∞)	Z _i	1 1/10	FAMINO	HON-IN	MΩ
Input bias current	l _i	-	40	-	nA
Stereo application; see Fig. 5					
Output power*	200		8	1	10
$V_P = 3.0 \text{ V; } d_{tot} = 10\%$	Po	-	35	1- 5	mW
$V_P = 4,5 \text{ V}; d_{tot} = 10\%$	Po	- 1	75	- 1	mW
Voltage gain	G _v	-	26	- 1	dB
Noise output voltage (r.m.s. value)		1	TDA7050		
$R_S = 5 k\Omega$; $f = 1 kHz$	V _{no(rms)}	-	100	-	μV
$R_S = 0 \Omega$; $f = 500 \text{ kHz}$; $B = 5 \text{ kHz}$	V _{no(rms)}	- 0	tbf	-	μV
Channel separation $R_S = 0 \Omega$; $f = 1 \text{ kHz}$	α	30	40	-	dB
Input impedance (at R _S = ∞)	Z _i	2	=	_	MΩ
Input bias current	l _i		20	-	nA

^{*} Output power is measured directly at the output pins of the IC. It is shown as a function of the supply voltage in Fig. 2 (BTL application) and Fig. 3 (stereo application).

Fig. 2 Output power across the load impedance (R_L) as a function of supply voltage (V_P) in BTL application, Measurements were made at f=1~kHz; $d_{tot}=10\%$; $T_{amb}=25~C$.

APPLICATION INFORMATION

Fig. 4 Application diagram (BTL); also used as test circuit.

Fig. 3 Output power across the load impedance (R_L) as a function of supply voltage (V_P) in stereo application. Measurements were made at f = 1 kHz; d_{tot} = 10%; T_{amb} = 25 °C.

Fig. 5 Application diagram (stereo); also used as test circuit.

DOLBY* B & C TYPE NOISE REDUCTION CIRCUITS

GENERAL DESCRIPTION

The TEA0651/TEA0652 and TEA0654 provide both, Dolby B and Dolby C type audio Noise Reduction (NR). The TEA0651/TEA0652 are NR signal processing ICs in 18-lead DIL packages. They can be used either as a stereo Dolby B NR circuit or as one channel of a switchable Dolby B & C NR circuit. In addition they provide NR ON/OFF switching.

The TEA0654 is a switching IC in a 24-lead DIL package. It contains the switching, the pre-amplifiers for playback and recording functions and a multiplex filter buffer amplifier. The circuits are pin compatible to Signetics NE651, NE652 and NE654 respectively.

Features

TEA0651/TEA0652

 Dual purpose IC for Dolby B & C NR systems:

switchable B/C type NR systems, B-type NR systems (stereo without preamplifiers), automotive entertainment systems (playback only) and portable applications

- Dual version for better matching between HIGH and LOW level stages in C-type NR or better channel matching for stereo B-type NR applications
- Full-wave rectifier
- No capacitive divider for side-chain filter needed
- Electronic switching for NR ON/OFF, B and C-type NR Dolby level
- Dolby level 0 dB = -6 dBm (387,5 mV) offers line output level option of 0 dBm (775 mV)

TEA0654

- · Electronic switching for playback/record
- Electronic switching for NR ON/OFF and B/C type NR
- No internal/external matching required for filter networks:
 - only one network for spectral skewing and deskewing necessary; only one network for anti-saturation necessary
- Excellent matching between record and playback
- Line output (monitor) level externally set by resistor ratio independent of internal
 Delby level
- Playback and record preamplifier and multiplex filter buffer amplifier included

PACKAGE OUTLINES

TEA0651/TEA0652: 18-lead DIL; plastic (SOT-102HE). TEA0654: 24-lead DIL; plastic (SOT-101A).

* Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, CA94111, U.S.A., from whom licensing and application information must be obtained. Dolby is a registered trademark of Dolby Laboratories Licensing Coporation.

Switching levels; see Fig. 2.

pin condition (test point 2)	functions switched for TEA0654 (pin 4)	functions switched for TEA0651/TEA0652 (pin 14)
the buffer emplifier included	open collector transistors at pins 7 and 8 switched on, at pins 22, 23, 24 switched off	ACKAGE OUTLINES ACKAGE
½V _{CC}	not applicable	stereo Dolby B, both channels active (Figs 15 and 16)
open (internally pulled to ¼V _{CC})	Dolby-B, open collector transistors at pins 7 and 8 switched off, at pins 22, 23, 24 switched on	Dolby-B, low level stage side chain muted
ground teaming		NR-OFF both side chains muted

- (1) Line output and record input programming resistors.
- (2) Optional capacitors.
- (3) Time constant for mode switch is optional, R20 is equal to 6,8 k Ω divided by number of switched channels.

Fig. 2 Dolby B/C NR system; switches shown in record position.

SYSTEM RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage 23 V VCC max. Storage temperature range -55 to + 150 °C Tstq -30 to +85 °C Operating ambient temperature range Tamb Total power dissipation TEA0651/TEA0652 600 mW Ptot max. 800 mW TEA0654 Ptot max.

SYSTEM CHARACTERISTICS

 V_{CC} = 14 V; f = 20 Hz to 20 kHz; T_{amb} = 25 °C; all levels with reference to 387,5 mV = 0 dB = -6 dBm at test point 1 in Fig. 2; record mode; unless otherwise specified; for graphs see Figs 10 to 16.

parameter	conditi	ons	*	min.	typ.	max.	unit
Stoom Stoom	mode	f(kHz)					
Supply voltage range	С	100	V _{CC} ; note 1	8	14	20	V
Input sensitivity	C to Car		record mode playback mode note 2	61 <u>7</u> 811 188	50 30	=	mV mV
Signal handling at record output note 3	С	7_5	V _{CC} = 8 V line output is -6 dBm	12			dB
	С	1 :	V _{CC} = 14 V THD - 1% line output is -6 dBm	Zos	18	AZBOAST.	dB
			V _{CC} = 14 V line output is 0 dB,	12		to neopi	dB
Signal-to-noise ratio (S/N)	С	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$R_S = 10 \text{ k}\Omega$ CCIR/ARM weighted	60	66	4	dB
Switching thresholds note 4	OFF	930	voltage at test point 2	MS EA	HET!	0,065 x V _{CC}	V
	В	-	voltage at test	0,2 x	0,25 x	0,3 x	
	С	_	point 2; note 5 voltage at	V _{CC}	V _{CC}	V _{CC}	V
	g to Minne		test point 2	VCC			V

Notes to system characteristics

- 1. Operation with minimum of 12 dB headroom; system remains functional to 6 V.
- 2. Attenuation between pins 2 and 3 of TEA0654 is 4 dB;
- 3. System headroom is determined by programmable monitor output level (pin 5 of TEA0654).
- 4. For a typical application see Fig. 10. Worst case considerations for the VCC range from 8 V to 20 V limit the optional external resistor to maximum 6,8 k Ω , divided by number of switched channels.
- 5. In the open position (B) of the mode switch pin 14 of TEA0651/TEA0652 is pulled to typical 0,25 × V_{CC} by pin 4 of TEA0654.

SYSTEM GRAPHS

Fig. 3 Encoder frequency response for C-mode.

Fig. 4 Encoder frequency response for B-mode.

Fig. 5 Total harmonic distortion as a function of frequency for B-mode.

Fig. 7 Total harmonic distortion as a function of frequency for NR OFF-mode.

Fig. 9 Supply current as a function of supply voltage. 1: TEA0651/TEA0652 and TEA0654; 2: TEA0651/TEA0652 only.

Fig. 6 Total harmonic distortion as a function of frequency for C-mode.

Fig. 8 Headroom at record output and line output (pins 14 and 5 of TEA0654); THD = 1%; f = 1 kHz, at line output levels 0 and —6 dB.

Fig. 10 Optional external time constant for mode switch.

TEA0651/TEA0652: DOLBY B/C TYPE NOISE REDUCTION PROCESSING CIRCUITS TO A RAHO

Note

For Dolby-C type application channel A is the HIGH level stage and channel B is the LOW level stage.

Fig. 12 Block diagram of TEA0651 and TEA0652.

CHARACTERISTICS FOR TEA0651/TEA0652

 V_{CC} = 14 V; f = 20 Hz to 20 kHz; T_{amb} = 25 °C; all levels with reference to 387,5 mV = 0 dB = -6 dBm at test point 1; test circuit Fig. 13; record mode; unless otherwise specified.

parameter	conditi	ons		min.	typ.	max.	unit
A lennario brus A lennario nia	mode	f(kHz)	A St	A Jaraf			MO OA
Supply voltage range	В	- 8	Vcc	8	14	20	V
Supply current I _{CC}	OFF	CND-	no input signal	_ваом [17	25	mA
Power supply ripple rejection ratio	В	1 870	test circuit Fig. 14	Terral B	60		dB
Voltage gain	OFF	1.81	note 1	-0,5		+ 0,5	dB
Signal handling at record output (note 4)	В	1 30	V _{CC} = 14 V THD = 1%	8.44	20	- 00	dB
	roferez contro	1 3 A JR	V _{CC} = 8 V THD = 1%	12	14		dB
		1 AT	V _{CC} = 6 V THD = 1%	lo ms	11	ig, 11 Pinn EAD651 <u>/</u> T	dB
Signal-to-noise ratio (S/N)	В	-	$R_S = 10 \text{ k}\Omega$, internal				9
el 8 is the LOW level stage.	WIENO DE	e afinir ra	CCIR/ARM weighted	2800500	90	fe adda nel	dB
Switching thresholds	OFF	- nov	voltage at pin 14	A 1970	A 700 2	0,065 x V _C C	V
	В	-	voltage at pin 14	0,2 x V _{CC}	0,25 x V _{CC}	0,3 x VCC	V
	С	-11	voltage at pin 14	0,85 x V _{CC}		4	V
Switching threshold for stereo B appl.	В	-L_×	voltage at		0,5 x V _{CC}	-	V
Channel matching	OFF	1 [TPL = 0 dB notes 2, 3	-0,5	+ 1	+ 0,5	dB
Channel separation	В	1	TPL = + 10 dB notes 2, 3	60	70	_	dB

Notes

- 1. Voltage gain is 20 log $\frac{\text{voltage at pin 1 (9)}}{\text{voltage at pin 2 (8)}}$
- 2. TPL is Test Point Level.
- 3. Test circuit Fig. 15, reference level at channel A and channel B test point.
- 4. Operation with minimum of 12 dB headroom; system remains functional to 6 V.

CHARACTERISTICS TEA0651 ONLY

parameter	conditi	ons		min.	typ.	max.	unit
	mode	f(kHz)	(xHz)	()7 ab	em		
Offset voltage	0°C	_	V9-15	-	3	6 gatlov	mV
Signal-to-noise ratio (S/N)	С	- Ω	(internal)			to-noise b (\$/N)	
	08	pin 9 72	weighted; pin 9	77	80	-	dB
Total harmonic	В	10	TPL = 0 dB	DL	8_	0,1	%
distortion (THD)	0,08	- 850	TPL = + 10 dB	-	0,05	0,1	%
Total harmonic	C	10	TPL = 0 dB	01_	2	0,1	%
distortion (THD)	0,15	-1 8b 8	TPL = + 10 dB	-	0,15	0,5	%
B-mode frequency	В	1-1 85.0	TPL = -20 dB	-17,3	-15,8	-14,3	dB
			TPL = -25 dB	-19,5	-18,0	-16,5	dB
			TPL = -40 dB	-30,2	-29,7	-28,2	dB
			TPL = -30 dB	-25,0	-23,5	-22,0	dB
			TPL = -40 dB	-32,9	-31,9		dB
			TPL = -20 dB	-14,2	-13,7	-13,2	dB
			TPL = -30 dB	-18,7	-18,2	-17,7	dB
			TPL = -20 dB	-14,6	-14,1	-13,6	dB
	diam'r.		TPL = -30 dB TPL = -40 dB	-19,1 -25,3	-18,6 -23,8	-18,1 -22,3	dB dB
		5	TPL = 0 dB	-3,3			dB
			TPL = 0 dB	-3,3 -18,1	-2,3 -17,1	-1,3 -16,1	dB
			TPL = -30 dB	-22,6	-21,6	-20,6	dB
	7 300 7		TPL = -40 dB	-28,0	-26,5	-25,0	dB

CHARACTERISTICS TEA0652 ONLY

parameter	condition	ons		min.	typ.	max.	unit
	mode	f(kHz)	(42)	it sb	oni		
Offset voltage	С	_	V ₉₋₁₅	-	10	voltage	mV
Signal-to-noise ratio (S/N)	С	- 0	$R_S = 10 \text{ k}\Omega$ (internal) CCIR/ARM				
	08	pin 9 77	weighted; pin 9	72	80	-	dB
Total harmonic distortion (THD)	В	_10 g	TPL = 0 dB TPL = + 10 dB	-	0,05	0,1	%
Total harmonic distortion (THD)	C	10	TPL = 0 dB TPL = + 10 dB	-	0,1 0,15	0,3	%
7 -28,2 08	ir- al	1 2 5 10	TPL = -20 dB TPL = -25 dB TPL = -40 dB TPL = -30 dB	-17,3 -19,5 -30,2 -25,0	-15,8 -18,0 -29,7 -23,5	-14,3 -16,5 -28,2 -22,0	dB dB dB
response	8.C 01	0,5	TPL = -40 dB TPL = -20 dB TPL = -30 dB	-33,4 -15,7 -20,2	-31,9 -13,7 -18,2	-30,4 -11,7 -16,2	dB dB dB
	11- 11	1 8b5 1 1 8b5 g 1 8b5	TPL = -20 dB TPL = -30 dB TPL = -40 dB	-16,1 -20,1 -25,8	-14,1 -18,6 -23,8	-12,1 -17,1 -21,8	dB dB dB
	2- 2	5 8	TPL = 0 dB TPL = -20 dB TPL = -30 dB TPL = -40 dB	-3,8 -19,1 -23,6	-2,3 -17,1 -21,6	-0,8 -15,1 -19,6 -24,5	dB dB dB

Fig. 13 Test circuit for TEA0651/0652, Encode mode. Operational amplifiers are NE5535.

Fig. 14 Test circuit for PSRR for TEA0651/TEA0652.

Fig. 15 Test and application circuit of TEA0651/TEA0652 for stereo Dolby B application, shown in encode mode.

Fig. 16 Typical application circuit for stereo Dolby B noise reduction shown in decode mode.

DATA OF TEA0654 DOLBY B & C TYPE NR SWITCHING CIRCUIT

Fig. 18 Block diagram of TEA0654.

7Z86133.2

CHARACTERISTICS FOR TEA0654

 V_{CC} = 14 V; f = 10 kHz; T_{amb} = 25 °C; test circuit Fig. 20; signals referenced to REF (pin 21); d.c. levels with reference to GND (pin 17); unless otherwise specified.

parameter	conditions	min.	typ.	max.	unit
Supply voltage range	V _{CC} (output level at buffer amplifier is + 6 dBm;	playback i playback i lavel at pi		er amplifie st amplifie stran.s. va	
	Dolby level is -6 dBm)	8 /	14	20	V
Supply current	Icc -	11	17	23	mA
Voltage gain of record amplifier	pins 1 to 2	_		eistance s ifier pin	
Input sensitivity of record amplifier (pin 1)	buffer amplifier output level (pin 5) is 775 mV r.m.s.; MPX filter	sories resig is necessar			
	insertion loss is 4 dB	43	50	58	mV
Voltage gain of playback amplifier		record: pi	22,25	_	dB
Input sensitivity of playback amplifier	h	Dolby-B:			
	775 mV r.m.s.	25	30	35	mV
Input resistance	pin 1 and 9	35	50	65	kΩ
Output noise at record output pin 14	$R_S = 10 \text{ k}\Omega$ at pin 1; CCIR/ARM weighted; record mode	Ī	20	40	μV
Signal handling	THD = 1%; record mode	4 19			
record and buffer amplifier; pins 2 and 5 (r.m.s. value)	input level at pin 1	4		-63	V
Voltage gain of	record: pins 6 to 14	L prof	0		dB
signal switches	playback: pins 14 to 20	- 17	0	-	dB
Output noise at buffer amplifier pin 5 (r.m.s. value)	$R_S = 10 \text{ k}\Omega \text{ at pin 9};$ CCIR/ARM weighted; playback mode		65	130	μV
Voltage gain difference between main and side chain op-amp	main chain op-amp output: pins 19 and 15; side chain op-amp output: pins 18 and 16; adjacent op-amps: pins	Z			
	19 and 18, pins 15 and 16	-0,3	0	+ 0,3	dB
Output noise of signal switches pins 11, 15, 16, 18, 19	$R_S = 1 k\Omega$ at pins 6, 14, 20; CCIR/ARM weighted; Fig. 19	_	2,5	- 6	μV
Signal handling of switches (pin 14) (r.m.s. value)	THD = 1% at pin 14; input level at pin 1	2	-	_	٧
Voltage gain of buffer amplifier	pins 3 to 5	n Tel Heeri	10	719	dB

levels

V_{CC}-1

0

34VCC + 1

record: pin 12

Dolby-C: pin 4

Dolby-B: pin 4

V

V

V

Vcc

Vcc

¾VCC-1

Fig. 20 Test circuit for $V_{CC} \ge 11,5$ V; switches in record position; external operational amplifier e.g. AD506LH.

Fig. 21 Modification of Fig. 20 for $V_{CC} \le 11,5 \text{ V}.$

Fig. 20. Test direuit for $V_{CC} \ge 11.5 \text{ V}$; switches in record position; external operational amplifier e.g. ADS061.H.

Fig. 21 Modification of Fig. 20 for $V_{CC} \le 11.5 \text{ V}$.

This data sheet contains advance information and specifications are subject to change without notice.

DOLBY B TYPE NOISE REDUCTION CIRCUIT

GENERAL DESCRIPTION

The TEA0653T is a monolithic bipolar IC designed for use in Dolby B type audio Noise Reduction (NR) systems. The device is a dual channel circuit.

Applications

- Automotive cassette players
- Home cassette decks
- Portable cassette players
- Video cassette recorders
- FM receivers

Features

- Dual processors provide optimum matching of channels
- No law adjustments required
- Full wave rectifier
- No capacitor required for side chain filter
- Electronic switching for NR ON/OFF
- Reference level 0 dB = 387,5 mV
- Minimum external components
- Easy to apply in 2 or 3 head systems
- Split supply operation is optional

QUICK REFERENCE DATA

	0.101818919.304740	4 4 5 5
Supply voltage	max.	20 V
Supply current	E lenneds restill typ. gesni	17 mA
Signal-to-noise ratio	typ.	90 dB
Storage temperature range	8 Isratis soution landes -55 t	o +150 °C
Operating ambient temperature range	-30 agstlov viggus svitizog	to +85 °C

PACKAGE OUTLINES

TEA0653T: 20-lead mini-pack; plastic (SOT-163A).

^{*} Available only to licensees of Dolby Laboratories Licensing Corporation, San Fancisco, CA94111, U.S.A., from whom licensing and application information must be obtained. Dolby is a registered trademark of Dolby Laboratories Licensing Corporation.

Fig. 1 Block diagram.

PINNING

1 2	OUT A M IN A	output channel A main chain input channel A	notificate OUT A 1	U	20 HP A
3	AC GND	a.c. ground channel A	MINA 2	witching for	19 INT A
5	SC A GND	side chain channel A ground	AC GND 3		18 CTRL A
6	SC B	side chain channel B	SC A 4		17 REF
7	AC GND N.C.	a.c. ground channel B no connection	GND 5		16 MODE
9	M IN B OUT B	main chain input channel B output channel B	SC B 6	TEA0653T	15 V _{CC}
11	HPB	high-pass filter channel B	AC GND 7		14 CTRL B
12	N.C.	integrating filter channel B no connection	N.C. 8		13 N.C.
14	CTRLB	control voltage channel B	MINB 9		12 INT B
15 16	V _{CC} MODE	positive supply voltage mode B/NR OFF switch input	OUT B 10		11 HP B
17 18	REF CTRLA	reference voltage control voltage channel A		7Z9281	3
19	INTA	integration filter channel A			
20	HP A	high-pass filter channel A			

Fig. 2 Pinning diagram.

· Dual processors provide optimum matching of channels

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

CHARACTERISTICS

 V_{CC} = 14 V; f = 20 Hz to 15 kHz; T_{amb} = 25 °C; all levels with reference to 387,5 mV = 0 dB = -6 dBm at test point A or B; test circuit Fig. 4; encode mode; unless otherwise specified.

parameter	condit	ions	0 0	min.	typ.	max.	unit
	mode	f(kHz)					
Supply			(01) I nig re ap	volta			
Supply voltage range	В	-	V _{CC} (note 4)	8	14	20	V
Supply current I _{CC}	OFF	-	no input signal	- Jes	17	25	mΑ
Power supply ripple rejection ratio	В	telmani t	test circuit Fig. 3	tereret	60	circui t f	dB
Voltage gain	OFF	1	note 1	-0,5	-	+0,5	dB
Signal handling at output (note 4)	В	1	V _{CC} = 14 V THD = 1%	-	20	-	dB
		1	V _{CC} = 8 V THD = 1%	12	14	-	dB
	10 + VB =	1 %	V _{CC} = 6 V THD = 1%	-	11	-	dB
Signal-to-noise ratio (S/N)	В		$R_S = 10 \text{ k}\Omega$ internal CCIR/ARM weighted	-	90		dB
Switching thresholds	OFF	TERNAL LEGRENCE	voltage at pin 16	-	-	0,065 xV _{CC}	٧
Switching threshold for stereo B appl.	В	TERBOAR	voltage at pin 16	-	0,5 ×VCC		V
Channel matching	OFF	RR = 20 top	TPL = 0 dB notes 2, 3	-0,5	-	+0,5	dB
Channel separation	В	1	TPL = 10 dB notes 2, 3	60	70		dB

CHARACTERISTICS (continued)

parameter	condit	conditions			typ.	max.	unit
VCC 8 to 20 V	mode	f(kHz)		500	er arms	voltage tempera	spply occor
Total harmonic distortion (THD)	В	10	TPL = 0 dB TPL = +10 dB	пштвте q —	0,05 0,08	0,1	%
B-mode frequency response	В	1 alavat	TPL = -20 dB	-17,3	-15,8		dB
	a zeeuta ;	2	TPL = -25 dB	-19,5	-18,0	-16,5	dB
		5	TPL = -40 dB TPL = -30 dB	-30,2 -25,0	-29,7 -23,5	-28,2 -22,0	- man

Notes

- 1. Voltage gain is 20 log $\frac{\text{voltage at pin 1 (10)}}{\text{voltage at pin 2 (9)}}$
- 2. TPL is Test Point Level.
- 3. Test circuit Fig. 3, reference level at channel A and channel B test point.
- 4. Operation with minimum of 12 dB headroom; system remains functional to 6 V.

Fig. 3 Test circuit for PSSR for TEA0653T.

Fig. 4 Test and application circuit for stereo Dolby B, shown in encode mode.

Fig. 5 Application circuit for stereo Dolby B, shown in decode mode.

This data sheet contains advance information and specifications are subject to change without notice.

DOLBY* B and C TYPE NOISE REDUCTION CIRCUIT

GENERAL DESCRIPTION

The TEA0665 is designed for use in Dolby B and Dolby C type audio Noise Reduction (NR) systems. The device provides the high and low level stages for one channel of a Dolby C-type NR system, including NR ON/OFF switching and all electronic switching necessary for Dolby C-type systems. In addition the TEA0665 includes a preamplifier for the record and playback functions and a multiplex buffer amplifier. The circuit offers two different line-output levels (--6 and 0 dBm) and a low-pass filter, which can be fed into the signal path in playback mode.

Features

- Few external components required
- Included RECORD/PLAY preamplifiers plus multiplex filter buffer amplifier
- Two different line-output levels
- All electronic switching

PACKAGE OUTLINES

TEA0665: 28-lead DIL; plastic (SOT-117).

TEA0665T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

* Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, CA94111, U.S.A., from whom licensing and application information must be obtained. Dolby is a registered trademark of Dolby Laboratories Licensing Corporation.

Fig. 1 Block diagram and application circuit.

CHARACTERISTICS

 V_{CC} = 14 V; f = 20 Hz to 15 kHz; T_{amb} = 25 °C; all levels with reference to 387,5 mV = 0 dB = -6 dBm at test point pin 7; test circuit Fig. 5; record mode; unless otherwise specified.

parameter	condit	ions		symbol	min.	typ.	max.	unit
	mode	f (kHz)	ב בואב סער	NEC IN	28]		1	M SEER IN
Supply	es uo eni	2	TUO BINLE OUT	MS 3008	[25]		4	nee
Supply voltage range	C	_	note 1	WE BECORE	1241		fan	r Tuo s
single dative result of	ide cha		8 SCSW	VCC	8	14	18	V
(split)	evel rigin		8 HF8.8C	Vcc	(±4)	(±7)	(±9)	V
Supply current	OFF	- 014	no input signal	I _{CC}		17	25	mA
Input sensitivity of record amplifier of playback amplifier	С		note 2 pin 26 pin 28	V _i V _i	43 25	50 30	57 35	mV mV
Signal handling of record output (note 3; see Fig. 8)		1	V _{CC} = 8 V THD = 1% V _{CC} = 14 V THD = 1%	LIS NOT	12	15	- 31	dB dB
Line output 1	layel wo		note 3	33	-0,5	0	+ 0,5	dB
Line output 2; amplifier gain V _O /V _i (pin 6 to pin 5)	lavel wo	G I	19 LLS AC GI 20 LLS SC	G _V	+ 5,5		+ 6,5	dB
Total harmonic	р Бабра		21 RECOUT		pergeit	gnion	9.2 9	
distortion and point		1	TPL = 0 dB* TPL = + 10 dB	THD	-	0,02	0,1	%
Total harmonic	1 20 ESS-1.3 F.S.		04 03					
distortion	В	1	TPL = 0 dB	THD	-	0,1	0,15	%
		10	TPL = + 10 dB TPL = 0 dB	THD	_	0,08	0,3	%
Total harmonic	briugh		ONA TO					
distortion	С	1	TPL = 0 dB TPL = + 10 dB	THD	_	0,15 0,13	0,3 0,5	%
Signal-to-noise ratio	С		R _S = 10 kΩ CCIR/ARM				88	MITA
	or oan	metayê m	weighted	S/N	62	66	zuulsv	dB

^{*} TPL is Test Point Level.

-	
V.	ι
H	-
<	ζ
0	١
H	_
ż	7
u	j
5	5
ā	
C)
_	J
ш	J
>	>
ш	1
	١

parameter	condit	ions		symbol	min.	typ.	max.	unit
	mode	f (kH	z) mataya (maonb	12 dB hei	to mun	rinim d	iw noit	Эрега
Frequency response	В	2	TPL = -25 dB	nd 3 is 3,	-19,0	-18,0	-17,0	dB
is used in playback mode	hostiff as	5	TPL = -40 dB	s in Vm 3	-30,7	-29,7	-28,7	dB
		10	TPL = -30 dB		-24,5	-23,5	-22,5	dB
	С	0,2	TPL =40 dB	sutport 2 t	-33,4	-31,9	-30,4	dB
		1	TPL = -30 dB	tuqtuo bi	-20,1	-18,6	-17,1	dB
		1	TPL = -20 dB	rugni riput	-16,1	-14,1	-12,1	dB
		5	TPL = -0 dB	+ 38V -	-3,8	-2,3	-0,8	dB
		5	TPL = -20 dB	1 - 38V	-19,1	-17,1	-15,1	dB
		5	TPL = -40 dB	oda switch	-28,5	-26,5	-24,5	dB
Switching thresholds			note 4; pin 24	- Vas -	38 Vcc	27 < 0	F: V26	RO!
for record			external voltage	V24-27	8,5	c < V	14	V
for playback				V24-27	0	(swite)	4 V 8.0	V
Switching thresholds			note 5; pin 25	V 1 + 381	- 55V	> 0.75	125-27	:0
en in to account.	OFF	eum 19	e constant resist	V ₂₅₋₂₇	0	10p acre	3,5	V
(switch in open position)	В			V ₂₅₋₂₇	-	7	-	V
(external voltage)	B			V ₂₅₋₂₇	6,3	7	7,7	٧
	C	1		V ₂₅₋₂₇	10,8	-	14	V
Switch input current	0		pin 25					
	OFF		V ₂₅₋₂₇ = 0 V	-l ₂₅	-	-	40	μΑ
	C		V ₂₅₋₂₇ = V _{CC}	125	-V	-	40	μΑ
Frequency response shift as a function of	C						1 1	
temperature deviation,	A.		126066 20		00			
range -40 to +85 °C,	100		- Dael	shorn eather	G 430			
measured as deviation from 25 °C	93	ME.	1 7 4	Δf		± 0,5		dB
as a function of				ΔΙ	L.	1 0,5	_	ub
voltage deviation,							140	mie
range 8 to 18 V,								
measured as deviation from 14 V			and the same of the	Δf		. 0 1		dB
	11011610	Striega	ode switch input	ΔΙ	-	± 0,1		aB
Input resistance		W.Y	pin 26	R ₂₆₋₂₇	35	50	65	kΩ
	DART		pin 28	R ₂₈₋₂₇	35	50	65	kΩ
Output resistance		7		20-27				
	-4-	1	pin 6	R ₆₋₂₇	-	160	220	Ω
		1	pin 21	R ₂₁₋₂₇	_	60	100	Ω

Notes to the characteristics

- 1. Operation with minimum of 12 dB headroom; system remains functional to 7 V.
- Attenuation between pins 1 and 3 is 3,5 dB (MPX-filter).
 Playback input sensitivity is 45 mV if a switchable MPX-low pass filter is used in playback mode (pins 2 and 3 short-circuited).
- System headroom is determined by the line output channel in use.
 For low supply voltages line output 2 (pin 6) will saturate at high signal levels. Headroom for line output 1 (pin 5) tracks with record output (pin 21).
- 4. The equation for REC/PB switch input voltage is:

5. The equation for C/B/OFF mode switch input voltage is:

OFF:
$$V_{25-27} < 0.38 V_{CC} - V_{BE} - 1 V$$
, in a stan-

B:
$$0.45 \text{ V}_{CC} < \text{V}_{25-27} < 0.55 \text{ V}_{CC}$$
 (external voltage),

B: 0,5 V_{CC} (switch in open position),

C: V25-27 > 0,75 VCC - VBE + 1 V. 35 mig : 8 and

The voltage drop across the external time constant resistor must be taken in to account.

7287776.1 Fig. 4 REC/PB switch input configuration.

Fig. 6 Supply current as a function of supply voltage; $I_{CC} = f(V_{CC})$; no input signal.

Fig. 8 Signal handling = $f(V_{CC})$ measured at REC OUT as a function of the supply voltage; THD = 1%.

-40 -60 10 10² 10³ 10⁴ f(Hz) 10⁵

Fig. 7 Power supply ripple rejection measured at REC OUT as a function of frequency; level at pin 15 = 100 mV (rms). R_G = 10 k Ω ; record mode; NR OFF.

Fig. 9 Encoder frequency response for B-mode.

Fig. 11 Total harmonic distortion measured at REC OUT as a function of frequency; for NR OFF mode; V_{CC} = 14 V; LPF 80 kHz.

DEVELOPMENT DATA

Fig. 13 Total harmonic distortion measured at REC OUT as a function of frequency; for C-mode; V_{CC} = 14 V; LPF 80 kHz.

Fig. 12 Total harmonic distortion measured at REC OUT as a function of frequency; for B-mode; V_{CC} = 14 V; LPF 80 kHz.

Fig. 14 Total harmonic distortion as a function of the record output level (pin21); for C-mode; $V_{CC} = 14 \text{ V}$; LPF 80 kHz.

Fig. 15 Crosstalk from record input (pin 26) to line output as a function of frequency in playback mode; record input level is 50 mV; NR OFF; R $_{G}$ = 10 k $\Omega.$

Fig. 11 Total hammonic distortion measured at REC OUT as a function of frequency; for NR OFF modes V ... = 14 V - LPF 80 kHz

Fig. 13 Total harmonic distortion measured at REC OUT as a function of frequency; for Courts Value 14 Vol. 25 90 Mar.

Fig. 12 Total harmonic distortion measured at REC OUT as a function of frequency; for 8-mode; V_{CC} = 14 V : LPF 80 kHz.

Fig. 14. Total harmonic distortion as a function of the record output level (pin21); for 6-mode; V_{CC} = 14. V; LPF 80 kHz.

Fig. 15 Crestalls from record input (pin 26) to filler output as function of frequency in playback mode, record input level is 50 mV; NR OFF, RG=10 x28.

This data sheet contains advance information and specifications are subject to change without notice.

DOLBY* B and C TYPE NOISE REDUCTION CIRCUIT

GENERAL DESCRIPTION

The TEA0666 is designed for use in Dolby B and Dolby C type audio Noise Reduction (NR) systems. The device provides the high and low level stages for one channel of a Dolby C-type NR system, including NR ON/OFF switching and all electronic switching necessary for Dolby C-type systems. In addition the TEA0666 includes a preamplifier for the record and playback functions and a multiplex buffer amplifier. The circuit offers two different line-output levels (--6 and 0 dBm) and a low-pass filter, which can be fed into the signal path in playback mode.

Features

- Few external components required
- Included RECORD/PLAY preamplifiers plus multiplex filter buffer amplifier
- Two different line-output levels
- · All electronic switching

PACKAGE OUTLINES

TEA0666: 28-lead DIL; plastic (SOT-117).

TEA0666T: 28-lead mini-pack; plastic (SO-28; SOT-136A).

 Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, CA94111, U.S.A., from whom licensing and application information must be obtained.
 Dolby is a registered trademark of Dolby Laboratories Licensing Corporation.

CHARACTERISTICS

 V_{CC} = 14 V; f = 20 Hz to 15 kHz; T_{amb} = 25 ^{o}C ; all levels with reference to 387,5 mV = 0 dB = -6 dBm at test point pin 7; test circuit Fig. 5; record mode; unless otherwise specified.

parameter	conditions			symbol	min.	typ.	max.	unit
	mode	f (kHz)	4 SSR	GNB			2	HI REAR
Supply	tuo enil	8	DO BUIL 8	NEC RK	102		H	BI RESS
Supply voltage range	С	-	note 1	WS SCION			1	551
single			B SCSW	VCC	8	14	18	V
(split)			9 HISSC	VCC	(±4)	(±7)	(±9)	V
Supply current	OFF	- 200	no input	EA.	22		10	s sc m
Tomong as sgare			signal	Icc	-	17	25	mA
Input sensitivity	С		note 2				1	
of record amplifier	nigh levi		pin 26	Vi		50	57	mV
of playback amplifier			pin 28	Vioa	25	30	35	mV
Signal handling	C	1	V _{CC} = 8 V	98 833	12	15	Im	10.11
of record output (note 3; see Fig. 8)	positive	1	THD = 1% V _{CC} = 14 V	TINI SUL		15		dB
(Hote 5, see Fig. 6)	lavel wa		THD = 1%			20		dB
Line output 1	eyel wo		note 3	LUS MIT	-0,5	0	+ 0,5	dB
Line output 2;	evel wo		alt STT BI	202	30		14	HERY.
amplifier gain V ₀ /V _i (pin 6 to pin 5)	svel wo	GP CP	19 LLS AC G 20 LLS SC	G _V	+ 5,5	+6	+ 6,5	dB
Total harmonic	- hanne		21 RECOUT	al	diagram	gerinn	g. 2 P	7
distortion	OFF	1	TPL = 0 dB*	THD	-	0,02		%
	020211111		TPL = + 10 dB	THD	-	0,05	0,3	%
Total harmonic	THIS ITEM		975 - 925					
distortion had a deli	В	1	TPL = 0 dB TPL = + 10 dB	THD	-	0,1	0,15	%
	node tse	10	TPL = 0 dB	THD	_	0,08	0,3	%
Total harmonic	at bhoca		M DBH BS			1,00	1	
distortion	C	1	TPL = 0 dB	THD	_	0,15	0,3	%
	losdyalı		TPL = + 10 dB	THD	-	0,13	0,5	%
Signal-to-noise ratio	C	System	$R_S = 10 \text{ k}\Omega$ CCIR/ARM	with the A	sansbr	boos n	seuley	niting
		W.	weighted	S/N	62	66	0gario	dB

^{*} TPL is Test Point Level.

-	۴
~	
-	
-	r
-	4
	١
_	
L-	_
1	2
11	7
ш	ě
5	5
=	-
C	٦
-	۲,
-	a
ш	J
=	7
-	2
H	1
-	Ξ
6	1

parameter			symbol	min.	typ.	max.	unit	
onal to 7 V.	mode	f (kH	z)	80 88 21	o mum	Marian Tab	SA LIMITE	mulio
Frequency response	В	2	TPL = -25 dB	ti Vm 8	-18,7	-18,0	-17,3	dB
	03141 660	5	TPL = -40 dB		-30,4	-29,7	-29,0	dB
	:9218	10	TPL = -30 dB	ris yd ben	-24,2	-23,5	-22,8	dB
	C	0,2	TPL = -40 dB	output 2	-32,9	-31,9	-30,9	dB
		1	TPL = -30 dB	output	-19,3	-18,6	-17,9	dB
		1	TPL = -20 dB	atteh input	-14,8	-14,1	-13,4	dB
		5	TPL = -0 dB	+ 98V -	-2,8	-2,3	-1,8	dB
		5	TPL = -20 dB	- 38A	-17,8	-17,1	-16,4	dB
		5	TPL = -40 dB	ode swite	-27,0	-26,5	-26,0	dB
Switching thresholds			note 4; pin 24	- 38 _A -	38 V CC	57 < 0	P: V28	HO.
for record			(external voltage	V24-27	8,5	- V > O	14	V
for playback				V24-27	0	ofives)	4	V
Switching thresholds			note 5; pin 25	/ 1 + 98V	- 30V	>0.75	V25-27	1:0
en in to account,	OFF			V ₂₅₋₂₇	0	4700 day	3,5	V
(switch in open position)	В			V ₂₅₋₂₇	-	7	-	V
(external voltage)	В			V ₂₅₋₂₇	6,3	7	7,7	V
	C			V ₂₅₋₂₇	10,8	-	14	V
Switch input current			pin 25					
	OFF		V ₂₅₋₂₇ = 0 V	-125	-	-	40	μΑ
F 1:6	C	J-	V ₂₅₋₂₇ = V _{CC}	125	- agV	-	40	μΑ
Frequency response shift as a function of	С		190 ₀₂ 1					
temperature deviation,	L		as		o in	po) E .		
range -40 to +85 °C,	4		Dagt ,		NA O TH			
measured as deviation from 25 °C	Y.			Δf		± 0.5		dB
as a function of	b			Δ.	1 100	- 0,5	7.91	UD
voltage deviation,								
range 8 to 18 V,								
measured as deviation from 14 V	roiterra		lade switch input	Δf	_	± 0,1		dB
				ΔΙ		1 0,1		UB
Input resistance			pin 26	R26-27	35	50	65	kΩ
	A LONG		pin 28	R ₂₈₋₂₇	35	50	65	kΩ
Output resistance				20-27				
			pin 6	R ₆₋₂₇	-	160	220	Ω
			pin 21	R ₂₁₋₂₇	-	60	100	Ω

Notes to the characteristics

- 1. Operation with minimum of 12 dB headroom; system remains functional to 7 V.
- Attenuation between pins 1 and 3 is 3,5 dB (MPX-filter).
 Playback input sensitivity is 45 mV if a switchable MPX-low pass filter is used in playback mode (pins 2 and 3 short-circuited).
- 3. System headroom is determined by the line output channel in use.

 For low supply voltages line output 2 (pin 6) will saturate at high signal levels. Headroom for line output 1 (pin 5) tracks with record output (pin 21).
- 4. The equation for REC/PB switch input voltage is:

REC:
$$V_{24-27} > 0.55 V_{CC} - V_{BE} + 1.5 V$$
,

PB:
$$V_{24-27} < 0.45 V_{CC} - V_{BE} - 1.5 V$$
.

5. The equation for C/B/OFF mode switch input voltage is:

B: $0.45 \text{ V}_{CC} < \text{V}_{25-27} < 0.55 \text{ V}_{CC}$ (external voltage),

B: 0,5 V_{CC} (switch in open position),

C: $V_{25-27} > 0.75 V_{CC} - V_{BE} + 1 V$.

The voltage drop across the external time constant resistor must be taken in to account.

Fig. 3 Mode switch input configuration.

Fig. 4 REC/PB switch input configuration.

SYSTEM GRAPHS

Fig. 6 Supply current as a function of supply voltage; $I_{CC} = f(V_{CC})$; no input signal.

Fig. 8 Signal handling = $f(V_{CC})$ measured at REC OUT as a function of the supply voltage; THD = 1%.

0 7292626 (dB) -20 -40 -60 10 10² 10³ 10⁴ f(Hz) 10⁵

Fig. 7 Power supply ripple rejection measured at REC OUT as a function of frequency; level at pin 15 = 100 mV (rms). R_G = 10 k Ω ; record mode; NR OFF.

Fig. 9 Encoder frequency response for B-mode.

Fig. 11 Total harmonic distortion measured at REC OUT as a function of frequency; for NR OFF mode; V_{CC} = 14 V; LPF 80 kHz.

DEVELOPMENT DATA

Fig. 13 Total harmonic distortion measured at REC OUT as a function of frequency; for C-mode; V_{CC} = 14 V; LPF 80 kHz.

Fig. 12 Total harmonic distortion measured at REC OUT as a function of frequency; for B-mode; $V_{\rm CC}$ = 14 V; LPF 80 kHz.

Fig. 14 Total harmonic distortion as a function of the record output level (pin21); for C-mode; V_{CC} = 14 V; LPF 80 kHz.

Fig. 15 Crosstalk from record input (pin 26) to line output as a function of frequency in playback mode; record input level is 50 mV; NR OFF; R $_{G}$ = 10 k $\Omega.$

Fig. 11 Total harmonic distortion measured at REC OUT as a function of frequency; for MR OFF mode: Ven. 2 16 V. 1 PF RO KHZ

Fig. 13 Total harmonic distortion measured at REC OUT as a function of frequency;

Fig. 12 Torul harmonic discortion measures at REC OUT as a function of frequency; for 5-mode: V_{CC} = 14 V LRF 80 kHz.

Fig. 14. Total harmonic distortion as a function of the record output level (pin.21); for C-mode, $V_{\rm CC}=14$ V; LPE 80 kHz.

Fig. 15. Crossralk from record input (pin 26) to line output as a function of frequency in playback mode; record input level is $50 \, \text{meV}_2$. NR OFF; $R_{CC} = 10 \, \text{kH}_2$.

AM CAR RADIO RECEIVER CIRCUIT

The TEA5550 is an a.m. radio circuit, primarily intended for use in car radios. The IC can reduce the costs in a car radio due to the following features:

- minimum periphery
- no extra r.f.-prestage is necessary
- · ceramic i.f. filter is used
- simple on/off switching method allows inexpensive band switching in a.m./f.m. radios

The TEA5550 incorporates the following functions:

- a double balanced mixer with large signal handling range and common mode rejection properties
- a 'one-pin' oscillator, permitting the use of variable capacitance diode tuning
- an i.f. amplifier, designed for ceramic filters
- an a.m. envelope detector
- a.g.c. stages
- a voltage stabilizer, for supplying the internal circuit current and an external current up to 20 mA
- a simple d.c. switch for a.m./f.m. radios

QUICK REFERENCE DATA

	-	1	-	-
Supply voltage range; unstabilized (pin 8)	VP	T	10,2 to 18	V
Supply voltage; stabilized (pin 9)*	V _{stab}	typ.	7,5 to 9	٧
Ambient temperature	T _{amb}	typ.	25	oC
Supply voltage (pin 8)	VP	typ.	14,4	V
R.F. condition: f _i = 1 MHz; m = 0,3; f _m = 1 kHz				
R.F. input voltage (pin 1)	.,		nd,	
$V_0 = 30 \text{ mV}$ S/N = 26 dB	V _i V _i	typ.		μV μV
S/N = 46 dB	Vi	typ.	160	
A.F. output voltage (pin 10)	4 4			TOTAL DE
V _i = 10 mV	Vo	typ.	180	m١
Total harmonic distortion over most of the a.g.c. range; m = 0,8	THD	typ.	1,2	%
R.F. signal handling				
THD = 10%; m = 0,8	Vi	typ.	400	m\
A.G.C. range; change of r.f. input voltage for 10 dB change of a.f. output voltage				
(reference V ₁₁ = 200 mV)	V _{i1} /V _{i2}	typ.	86	dB

^{*} Pins 8 and 9 have to be short-circuited externally.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) as = ams Town A.A. = qV

Supply voltages and a sale of Sale of belomen (1)		
pin 8	$V_P = V_{8-16}$	max. 24 V
pin 3	V ₃₋₁₆	max. 24 V
Non-repetitive peak output current (pin 9)	I _{9SM}	max. 100 mA
Total power dissipation	P _{tot}	max. 1100 mW
Storage temperature	T _{stg}	-65 to + 150 °C
Operating ambient temperature	T _{amb}	-30 to +85 °C

Note

Pins 4, 5, 12 and 13 are not allowed to be connected.

D.C. CHARACTERISTICS at V_i = 0

$V_P = 14,4 \text{ V}$; $T_{amb} = 25 {}^{\circ}\text{C}$; measured in Fig. 2		
Supply voltage range (unstabilized)*	Vp	10,2 to 18 V
Voltage at pin 9; -lg = 0	V ₉₋₁₆ = V _{stab}	typ. 8,7 V 8 to 9,2 V
Change in stabilization voltage (pin 9) at -lg = 0 to 20 mA	$\Delta V_{9-16} = \Delta V_{stab}$	typ. 50 mV

Change in stabilization voltage (pin 9) at -lg = 0 to 20 mA	$\Delta V_{9-16} = \Delta V_{stab}$	typ.		mV
at $V_P = 10.2$ to 14.4 V	$\Delta V_{9-16} = \Delta V_{stab}$	typ.	300	mV
Voltage at pin 10	V ₁₀₋₁₆ (01 nig) s	typ.	ni. 10 1,1	V
Voltage at pins 1 and 2	$V_{1-16} = V_{2-16}$	typ.	5,0	Viol
Voltage at pin 15	V ₁₅₋₁₆	typ.	V _{stab}	
Total supply current; $-l_9 = 0$	Itot	typ.	20	mA
Current drain pin 3 pin 15	lg yrillderg	typ.		mA mA
	115	typ.		
Current supplied from pin 9	-lg	<		mA
Power consumption; -Ig = 0	P	typ.	300	mW

^{*} A stabilized supply voltage of 7,5 to 9 V can also be applied at pin 9 (pin 8 short-circuited to pin 9).

A.C. CHARACTERISTICS

V_P = 14,4 V; T_{amb} = 25 °C; r.f. condition: f_i = 1 MHz, m = 0,3, f_m = 1 kHz; transfer impedance of the i.f. filter $Z_{tr} = v_6/i_3 = 850 \Omega$ (loaded with 3 k Ω); measured in Fig. 2; unless otherwise specified 1,5 to 6,5 µV R.F. input voltage; Vo = 30 mV R.F. sensitivity at R_S = 25 Ω for: V: S + N/N = 6 dB1,3 µV S + N/N = 20 dBVi typ. $8 \mu V$ 16 µV typ. S + N/N = 26 dBV; < 20 µV S + N/N = 46 dBV: 160 µV typ. S + N/N = 50 dB350 µV Vi typ. Input conductance at pin 1 $V_i = 0.1 \,\mathrm{mV}$ typ. 0,2 mS $V_i = 100 \text{ mV}$ gie. typ. 0,1 mS Input conductance at pin 6 0,3 mS 9ie typ. Output capacitance at pin 15 Coe typ. 20 pF A.G.C. range; change of r.f. input voltage for 10 dB change of a.f. output voltage (reference V_{i1} = 200 mV) V_{i1}/V_{i2} typ. 86 dB A.F. output voltage > 140 mV V_o $V_i = 10 \text{ mV}$ typ. 180 mV ΔV_0 typ. $\pm 2 dB$ Spread of a.f. output voltage A.F. output impedance (pin 10) typ. $2,7 k\Omega$ Total harmonic distortion at m = 0,8 $V_i = 16 \mu V$ THD < 2,5 % THD 1,2 % over most of the a.g.c. range (see also Figs 3 and 10) 3,5 % $V_i = 25 \text{ mV}$ THD typ. R.F. signal handling capability 350 mV THD = 10%; m = 0.8Vi 400 mV typ. 6 uid work pan 20 dB* I.F. suppression at $V_0 = 30 \text{ mV}$ typ. 35 dB* Oscillator voltage 250 mV typ. V₉₋₁₆ = 8 V; f_{osc} = 1468 kHz V₁₅₋₈ 300 mV

^{*} α = 20 log $\frac{V_{ia}}{V_{ib}}$, where: V_{ia} is input voltage at f = 468 kHz and V_{ib} is input voltage at f = 1 MHz.

APPLICATION INFORMATION

Figures 4 and 7 show the circuit diagrams of single-tuned and double-tuned AM channels respectively, using the TEA5550 and an r.f.-tuning unit (type ALPS). The i.f. filter consists of a single-tuned coil in combination with a ceramic filter (type SFT468).

Typical performance (measured in Figs 4 and 7)

 V_P = 14,4 V; T_{amb} = 25 °C; aerial signal conditions: f_o = 1 MHz; m = 0,3; f_m = 1 kHz (dummy aerial as shown in Figs 4 and 7)

N S S S S S S S S S S S S S S S S S S S		Fig. 4 single-tuning	Fig. 6 double-tuning	
R.F. input voltage for:				
S + N/N = 6 dB	Vi	4	4	μV
S + N/N = 26 dB	Vi	47	49	μV
A.F. output voltage (R _L = R6 = 22 k Ω) V _i = 1 mV	Vo	160	160	mV
Signal-to-noise ratio V _i = 1 mV	S/N	> 50	>50	dB
A.G.C. range; change of r.f. input voltage for 10 dB change of a.f. output voltage (reference V _{i1} = 200 mV); see Figs 3 and 10	V _{i1} /V _{i2}	88	88	dB
R.F. signal handling capability THD < 10%; m = 0,8; see Figs 3 and 10	Vi	1,5	1,5	V
Total harmonic distortion (over most of the a.g.c. range); m = 0,8; see Figs 3 and 10	THD	1,2	1,2	%
Oscillator voltage			9 1 2	
measured across the tank circuit	Vosc	250	250	mV
Total selectivity (r.f. and i.f.)	Sg	44	46	dB
Total bandwidth (r.f. and i.f.)	B _{3dB}	4,1	4,4	kHz
I.F. suppression at $V_i = 20 \mu V$			L.	
tuned frequency = 600 kHz	α	55	75	dB
= 1600 kHz	α	58	85	dB
Image rejection at $V_i = 20 \mu V$			12 70	
tuned frequency = 600 kHz		50	72	dB
= 1000 kHz		46	68	dB
= 1400 kHz		42	64	dB
Whistle at V _i = 5 mV 2 x i.ftweet		10	10	ID
3 x i.ftweet		-40 -48	-40 -48	dB dB
O X III. CHOOL		-40	-40	UD

Fig. 3 Typical signal and noise output voltages (V_0 is a.f. output voltage) as a function of the input voltage V_i . Also shown is the total harmonic distortion (THD). These curves are for a single-tuned AM channel; the dummy aerial is as shown in Fig. 4; $f_0 = 1$ MHz; $f_m = 1$ kHz; m = 0,3 (unless otherwise specified).

688

Fig. 4 Typical application circuit diagram for a single-tuned AM channel in car radio receivers using the TEA5550; S is AM/FM switch; for printed-circuit board see Figs 5 and 6.

Coil data: L1, L2 = tuning coils, ALPS unit MMK IIEII (for coil connections see Fig. 5)

L3 = trimming coil (4,7 μ H); catalogue number 3122 138 27460

L4 = padding coil (200 μ H); catalogue number 3111 118 23510

L5 = i.f. coil; catalogue number 3122 138 91481

Fig. 5 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 4.

Fig. 6 Printed-circuit board showing track side.

Fig. 8 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 7.

Fig. 9 Printed-circuit board showing track side.

692

Fig. 10 Typical signal and noise output voltages (V_0 is a.f. output voltage) as a function of the input voltage V_i . Also shown is the total harmonic distortion (THD). These curves are for a double-tuned AM channel; the dummy aerial is shown in Fig. 7; $f_0 = 1$ MHz; $f_m = 1$ kHz; m = 0.3 (unless otherwise specified).

FM/IF SYSTEM

GENERAL DESCRIPTION

The TEA5560 is a monolithic integrated FM/IF system circuit, intended for car radios and home-receivers equipped with a ratio detector.

The system incorporates the following functions:

- a three-stage i.f. limiting amplifier
- a 15 dB field-strength dependent muting circuit
- a field-strength dependent d.c. voltage for e.g.: mono/stereo switching channel separation control of a stereo decoder an indicator (I_{max} ≤ 1 mA)
- standby ON/OFF switching circuit
- a voltage stabilizer, for the internal circuit current and an external current up to 15 mA
- adjustable gain (ΔG = 15 dB)

QUICK REFERENCE DATA

Vp	10	V	
T _{amb}	typ.	25	оС
VP 271	typ.	14,4	V
fo			MHz
Vi	typ.		μV
S/N	typ.	80	dB
Vo	typ.	200	mV
THD	typ.	0,3	%
AMS	typ.		dB
	T _{amb} V _P f _o V _i S/N V _o THD	Tamb typ. Vp typ. fo Vi typ. S/N typ. Vo typ. THD typ.	T _{amb} typ. 25 Vp typ. 14,4 fo 10,7 Vi typ. 150 S/N typ. 80 Vo typ. 200 THD typ. 0,3

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-142). The tab (on top of the package) is connected to pin 9.

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

C								
pin 6	voltages				V _P = V ₆₋₉	max.	24	V
pin 7					V ₇₋₉	max.	aia) 24	V
Voltage	at pin 4				V ₄₋₉	max.	flov v 6	V
Voltage	at pin 5				V ₅₋₉	max.	9	V
Von-rep	etitive pe	eak outp	ut current	(pin 8)	-18SM	max.	100	mA
Total po	ower dissi	pation			P _{tot}	max.	1000	mW
Storage	temperat	ture rang	ge		T _{stg} Am at o	-55	to + 150	oc
Operati	ng ambiei	nt tempe	erature ran		T _{amb}		to +85	
THERM	0,1	LOTANO			V to 10,2 V			
	IAL RES							
-rom ju	inction to	ambien	nt (in free a	air) 88VA	Rth j-amb	ronf14,	28286 / 5	K/W
					8 nig m			

D.C. CHARACTERISTICS

Vp = 14,4 V; T_{amb} = 25 °C; measured in Fig. 2; unless otherwise specified

parameter San Bay = gV	symbol	min.	typ.	max.	unit
Supply (pin 6)					niq
Supply voltage *	$V_{P} = V_{6-9}$	10,2	14,4	18,0	V
Voltages				at pin 5	/oltage
at pin 8;18 = 0 **	V ₈₋₉	7,5	8,0	8,5	V
at pin 8 when -18 increases from 0 to 15 mA	ΔV ₈₋₉	_	200	300	mV
at pin 8 when Vp reduces from 14,4 V to 10,2 V	ΔV ₈₋₉	en enuser -	irgim az sin	1,0	V
at pin 8 when Vp increases from 14,4 V to 18,0 V	ΔV ₈₋₉	eezini) :	nsime o	200	mV
at pin 4 (level detector)	V ₄₋₉	-	-	100	mV
at pins 1, 2 and 3	V _{1,2,3-9}	-	2,4	-	V
Currents			1766		
Total supply current; -I8 = 0	Itot	15	20	30	mA
Current supplied from pin 8	-18	-	-	15	mA
Stand-by current; V ₅₋₉ = 0	I _{sb}	8	11	14	mA
Current into pin 5	15	1,0	1,5	2,0	mA
Current into pin 7	17	-	3,0	-	mA
Power consumption					
at - 18 = 0	P	_	300	-	mW

^{*} A stabilized supply voltage of 7 to 9 V can also be applied at pin 5 and 6 (linked); for this application pin 8 must not be connected.

** The temperature coefficient of the stabilized voltage at pin 8 is typical -2,3 mV/K.

A.C. CHARACTERISTICS

 V_P = 14,4 V; T_{amb} = 25 °C; V_i = 1 mV; f_o = 10,7 MHz; Δf = ± 22,5 kHz; f_m = 1 kHz; measured in Fig. 2; unless otherwise specified

parameter	symbpl	min.	typ.	max.	unit
I.F. part and ratio detector		4-65-			
Sensitivity at -3 dB before limiting (pin 1); (without muting) *	Vi	105	150	210	μV
Signal-to-noise S + N/S measured in a bandwidth of 60 Hz to 15 kHz at $V_i = 20 \mu\text{V}$ at $V_i = 150 \mu\text{V}$ at $V_i = 1 \text{mV}$ at $V_i = 1 \text{mV}$	S/N S/N S/N S/N	40	45 65 78 80	- - -	dB dB dB
A.F. output voltage $\Delta f = \pm 22,5 \text{ kHz}$ $\Delta f = \pm 75 \text{ kHz}$	V _o V _o	500	200 600	=	mV mV
Total harmonic distortion $\Delta f = \pm 22,5 \text{ kHz}$ $\Delta f = \pm 75 \text{ kHz}$	THD THD		0,3	=	%
AM suppression $f_{m}=1$ kHz; $m=0,3$ (for AM) $f_{m}=70$ kHz; $\Delta f=\pm22,5$ kHz (for FM) at $V_{i}=150$ μV at $V_{i}=1$ mV at $V_{i}=10$ mV	AMS AMS AMS		40 50 55	=	dB dB dB
Level detector circuit		-	4年8		
D.C. output voltage (pin 4) at $V_i = 200 \mu V$ at $V_i = 500 \mu V$ at $V_i = 1 mV$ at $V_i = 1 mV$ at $V_i = 1 mV$ at $V_i = 10 mV$	V4-9 V4-9 V4-9 V4-9 V4-9		1,9 2,8 3,5 5,0 5,7	-	V V V
Muting circuit (see also Fig. 5)					
Change in output voltage at $V_i = 3 \mu V$ (with and without muting) *	ανο	10	15	_	dB
Input voltage at a change in output voltage of ≤ 1 dB*	SAN CAR		0513 0513 0511 0511		
$(V_i \text{ at } \alpha_{VO} \leq 1 \text{ dB})$	Vi	-	200	250	μV

^{*} With muting V4.9 \leq 0,3 V; without muting V4.9 = 1,2 to 6 V.

TEA5560

FM/IF system TEA5560

Fig. 3 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 2.

Fig. 4 Printed-circuit board showing track side.

- (2) With muting.

Fig. 5 A.F. output voltage (V_o); reference level 0 dB = 1 V, and the total harmonic distortion (THD) as a function of the i.f. input voltage (V_i). Measured in the test circuit Fig. 2 at $\Delta f = \pm 22.5$ kHz; $f_m = 1 \text{ kHz}.$

Fig. 6 Level detector d.c. output voltage (pin 4) as a function of the i.f. input voltage. Measured in test circuit Fig. 2.

Fig. 7 FM channel for (car) radios using the TEA5560 and a ratio detector with AA119 germanium diodes.

701

APPLICATION INFORMATION (continued)

- (1) Without muting.
- (2) With muting.

Fig. 8 Signal and noise (S + N) and noise (N); reference level 0 dB = 200 mV, and the total harmonic distortion (THD) as a function of the aerial input voltage (V_i). Measured in application circuit Fig. 7 at $\Delta f = \pm$ 22,5 kHz; $f_m = 1$ kHz.

Fig. 9 Level detector d.c. output voltage (pin 4) as a function of the aerial input voltage. Measured in application circuit Fig. 7.

Fig. 11 Signal and noise (S + N) and noise (N); reference level 0 dB = 245 mV, AM suppression (AMS) and total harmonic distortion (THD) as a function of the aerial input voltage (V_i). Measured in application circuit Fig. 10 at Δ f = \pm 22,5 kHz; f_m = 1 kHz; for AM suppression m = 0,3; Δ f = \pm 22,5 kHz.

RF/IF CIRCUIT FOR AM/FM RADIO

GENERAL DESCRIPTION

The TEA5570 is a monolithic integrated radio circuit for use in portable receivers and clock radios. The IC is also applicable to mains-fed AM and AM/FM receivers and car radio-receivers. Apart from the AM/FM switch function the IC incorporates for AM a double balanced mixer, 'one-pin' oscillator, i.f. amplifier with a.g.c. and detector, and a level detector for tuning indication. The FM circuitry comprises i.f. stages with a symmetrical limiter for a ratio detector. A level detector for mono/stereo switch information and/or indication complete the FM part.

Features

- Simple d.c. switching for AM to FM by only one d.c. contact to ground (no switch contacts in the
 i.f. channel, a.f. or level detector outputs)
- AM and FM gain control
- Low current consumption (I_{tot} = 6 mA)
- Low voltage operation (Vp = 2,7 to 9 V)
- Ability to handle large AM signals; good i.f. suppression
- · Applicable for inductive, capacitive and diode tuning
- Double smoothing of a.g.c. line
- Short-wave range up to 30 MHz
- Lumped or distributed i.f. selectivity with coil and/or ceramic filters
- AM and a.g.c. output voltage control
- Distribution of PCB wiring provides good frequency stability
- · Economic design for 'AM only' receivers

QUICK REFERENCE DATA (at Tamb = 25 °C)

		I	
Supply voltage	V _P = V ₇₋₁₆	typ.	5,4 V
Supply current	17	typ.	6,2 mA
AM performance (pin 2) for m = 0,3			
AM performance (pin 2) for m = 0,3 Sensitivity			
at V _O = 10 mV	Vi	typ.	1,7 μV
at $S/N = 26 dB$	V	typ.	16 μV
A.F. output voltage at V _i = 1 mV	Vo	typ.	100 mV
Total harmonic distortion at V _i = 1 mV	THD	typ.	0,5 %
FM performance (pin 1) for $\Delta f = \pm 22,5 \text{ kHz}$			
limiting sensitivity, -3 dB	Vi	typ.	110 μV
Signal-to-noise ratio for V _i = 1 mV	S/N	typ.	65 dB
A.F. output voltage at V _i = 1 mV	V	typ.	100 mV
Total harmonic distortion at V _i = 1 mV	THD	typ.	0,3 %
AM suppression at $V_i = 10 \text{ mV}$	AMS	typ.	50 dB

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

RATINGS

Supply voltage (pin 7)	$V_P = V_{7-16}$	max. 12 V
Voltage at pins 4, 5, 9 and 10 to pin 16 (ground)	V _{n-16}	max. 12 V
Voltage range at pin 8	V ₈₋₁₆	Vp ± 0,5 V
Current into pin 5 A S ST S	15	max. 3 mA
Total power dissipation	P _{tot}	see Fig. 2
Storage temperature range	T _{stg}	-55 to +150 °C
Operating ambient temperature range	T _{amb} A A	-30 to +85 °C

D.C. CHARACTERISTICS

 $V_P = 6 \text{ V}$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; measured in Fig. 10; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 7)			8 mig	range at	
Supply voltage (note 1)	$V_P = V_{7-16}$	2,4	5,4	9,0	V
Voltages			nolled	ealb rawe	
at pin 1 (FM)	V ₁₋₁₆	-	1,42	tempera	V
at pin 1; $-I_1 = 50 \mu\text{A}$ (FM)		n_muter	1,28	aid <u>ms p</u> n	V
at pins 2 and 3 (AM)	V _{2,3-16}	-	1,42	-	V
at pin 6	V ₆₋₁₆	-	0,7	-	V
at pin 11	V ₁₁₋₁₆	1.2	1,4	-	V
at pin 13	V ₁₃₋₁₆	-	0,7		V
at pin 14	V14-16	- 7095 ⁴	4,3	-	V
Currents		100			
Supply current	17	4,2	6,2	8,2	mA
Current supplied from pin 1 (FM)	-11	- 1	-	50	μΑ
Current supplied from pin 12	-112	-	-	20	μΑ
Current supplied from pin 15	-l ₁₅	120	30	-	μΑ
Current into pin 4 (AM)	14	-	0,6	-,	mΑ
Current into pin 5 (FM) (note 4)	15	-	0,35	_	mA
Current into pin 8 (AM)	lg l	J u	0,3	-	mA
Current into pins 9, 10 (FM)	19,10	-	0,65	-	mA
Current into pin 14	114	-	0,4	-	mA
Power consumption	Fig. 2 Pcqve	_	40		mW

A.C. CHARACTERISTICS

AM performance

 $V_P=6~V;~T_{amb}=25~^{\rm O}C;~r.f.~condition:~f_i=1~MHz,~m=0,3,~f_m=1~kHz;~transfer~impedance~of~the~i.f.~filter~|Z_{tr}|=v_6/I_4=2,7~k\Omega;~measured~in~Fig.~10;~unless~otherwise~specified$

parameter(01 apr and	symbol	min.	typ.	max.	unit
R.F. sensitivity (pin 2)	n ye basinos so	mad e niq	0701 7091	Va.18	K.BIVI
at $V_0 = 30 \text{ mV}$	00 mV; V = 400	3,5	5,0	7,0	μV
at $S + N/N = 6 dB$	Vi =	town beaus	1,3	seargaus	μV
at $S + N/N = 26 dB$	Vi	-	16	20	μV
at $S + N/N = 50 dB$	Vi	-	1	-	mV
Signal handling (THD ≤ 10% at m = 0,8)	Vi	200	_ 110	adapta i	mV
A.F. output voltage at V _i = 1 mV	V _o	80	100	125	mV
Total harmonic distortion	theneg	mo3			scilite.
at $V_i = 100 \mu\text{V}$ to 100mV (m = 0,3)	THD	-	0,5	_	%
at V _i = 2 mV (m = 0,8)	THD	118	1,0	2,5	%
at V _i = 200 mV (m = 0,8)	THD	-	4,0	10	%
I.F. suppression at V _O = 30 mV (note 2)	α	26	35	- 1	dB
Oscillator voltage (pin 8; note 3)	and coil tapping	TER		SHINITY	NOR MA
at f _{osc} = 1455 kHz	V8-16	120	160	200	mV
Indicator current (pin 12) at V _i = 1 mV	1 ₁₂ 118	TA_	200	230	μΑ

FM performance

 $V_P=6~V; T_{amb}=25~^{o}C; i.f.~condition:~f_i=10,7~MHz,~\Delta f=\pm~22,5~kHz,~f_m=1~kHz;~transfer~impedance~of~the~i.f.~filter~|Z_{tr}|=v_6/i_5=275~\Omega;~measured~in~Fig.~10;~unless~otherwise~specified$

parameter	symbol	min.	typ.	max.	unit
I.F. part				Salukeur I	
I.F. sensitivity (adjustable; note 4)					
Input voltage					
at -3 dB before limiting at S + N/N = 26 dB at S + N/N = 65 dB	V _i V _i V _i	90	110 6 1	130	μV μV mV
A.F. output voltage at V _i = 1 mV	Vo	80	100	125	mV.
Total harmonic distortion at V _i = 1 mV	THD	-	0,3	-	%
AM suppression (note 5)	AMS	-	50	-	dB
Indicator/level detector (pin 12)					
Indicator current	112	_	250	325	μΑ
D.C. output voltage at $V_i = 300 \mu\text{V}$ at $V_i = 2 \text{mV}$	V ₁₂₋₁₆ V ₁₂₋₁₆	-	0,25	_	V
AM to FM switch					
Switching current at V ₃₋₁₆ < 1 V	-13	_	_	400	μΑ

Notes to characteristics

- 1. Oscillator operates at V₇₋₁₆ > 2,25 V.
- 2. I.F. suppression is defined as the ratio $\alpha = 20 \log \frac{V_{i1}}{V_{i2}}$ where: V_{i1} is the input voltage at f = 455 kHz and Vi2 is the input voltage at f = 1 MHz.
- 3. Oscillator voltage at pin 8 can be preset by Rosc (see Fig. 10).
- 4. Maximum current into pin 5 can be adjusted by R1 (see Fig. 10); $I_5 = \frac{V_{3-16}}{R1}$ -I₃ when $V_{3-16} = 800$ mV; $I_3 = 400 \,\mu\text{A}$.
- 5. AM suppression is measured with f_m = 1 kHz, m = 0,3 for AM; f_m = 400 Hz, Δf = \pm 22,5 kHz for FM.

Facility adaptation

Facility adaptation is achieved as follows (see Fig. 10):

Facility	Component	
FM sensitivity	R1 fixes the current at pin 5	$I_{5} = \frac{V_{3-16}}{R_{1}} - 400 \mu\text{A}$
	(gain adjustable ± 10 dB; see	
AM sensitivity	R11 and coil tapping	
AM oscillator biasing	Rosc	
AM output voltage	R7, R11	
AM a.g.c. setting	R7	

Typical graphs

(1) A.G.C. range (figure of merit, FOM).

Fig. 3 Signal, noise and distortion as a function of input voltage (V_i) . Measured at $f_i = 1$ MHz in test circuit Fig. 10.

sensitivity (V_i) at $V_0 = 30$ mV; m = 0,3. ---- output voltage (V_0) at $V_i = 2$ mV; m = 0,3.

Fig. 4 Sensitivity (V_i) , output voltage (V_O) as a function of temperature behaviour (T_{amb}) . Measured at $f_i = 1$ MHz in test circuit Fig. 10.

sensitivity (V_i) at $V_0 = 30 \text{ V}$; m = 0,3: 6,0 V application.

----- sensitivity (V_i) at $V_0 = 30$ mV; m = 0,3: 4,5 V application.

---- output voltage (V_0) at $V_i = 0.2 \text{ mV}$; m = 0,3.

Fig. 5 Sensitivity (V_i) and output voltage (V_o) as a function of supply voltage (V_p). Measured at f_i = 1 MHz in test circuit Fig. 10, for application V_p = 6 V. Also shown is the sensitivity for V_p = 4,5 V application (Fig. 16).

Fig. 6 Signal, noise and distortion as a function of input voltage (V_i). Measured at f_i = 10,7 MHz in test circuit Fig. 10.

----- sensitivity at -3 dB limiting. ---- output voltage (V_0) at V_i = 1 mV; $\Delta f = \pm 22$ kHz.

Fig. 7 Sensitivity (V_i) , output voltage (V_0) as a function of temperature behaviour (T_{amb}) . Measured at $f_i = 10,7$ MHz in test circuit Fig. 10.

— sensitivity at —3 dB limiting: V_P = 6,0 V application.

---- sensitivity at -3 dB limiting: Vp = 4,5 V application.

---- output voltage (V_0) at V_i = 1 mV; $\Delta f = \pm 22,5$ kHz.

Fig. 8 Sensitivity (V_i) and output voltage (V_o) as a function of supply voltage (V_p). Measured at f_i = 10,7 MHz in test circuit Fig. 10.

Fig. 9 Indicator output current (I₁₂) and d.c. output voltage (V₁₂₋₁₆): AM f_i = 1 MHz; FM f_i = 10,7 MHz as a function of input voltage (V_i). Measured in Fig. 10; Vp = 6 V; R₁₂₋₁₆ = 5 k Ω .

Fig. 10 Test circuit.

713

COIL DATA AM i.f. coils (Fig. 10)

Fig. 11 I.F. bandpass filter (L1). TOKO sample no. 7 MC-7 P.

Fig. 12 Oscillator coil (L2). TOKO sample no. 7 BR-7 P.

FM i.f. coils (Fig. 10)

Fig. 13 Primary ratio detector coil (L3). TOKO sample no. 119 AN-7 P.

Fig. 14 Secondary ratio detector coil (L4). TOKO sample no. 119 AN-7 P.

December 1982

715

Figs 15 and 17 show the circuit diagrams for the application of 6 V AM MW/LW and 4,5 V AM/FM channels respectively, using the TEA5570. Fig. 16 shows the circuitry of the TEA5570.

Fig. 15 Typical application circuit for 6 V AM MW/LW reception using the TEA5570.

DETAILED APPLICATION INFORMATION WILL BE SUPPLIED ON REQUEST.

717

PLL STEREO DECODER

The TEA5580 is a PLL stereo decoder. It is suitable for portable radios, radio recorders, medium-fi and car radio receivers. The circuit incorporates the following functions.

- A voltage-controlled oscillator (f = 228 kHz) from which the 19, 38, 57 and 114 kHz signals are obtained via 1² L logic.
- A phase-locked-loop system to lock the VCO to the 19 kHz pilot tone in the stereo signal. The phase detector in the loop system also suppresses phase distortion due to the 57 kHz pilot signal from VWF transmitters (traffic warning system in Germany).
- A pilot presence detector and an automatic mono/stereo switch.
- Two demodulators, one driven by the 38 kHz decoding signal for the stereo matrix, the second driven by a 114 kHz signal which suppresses the third harmonic of the multiplex signal (MUX).
 These prevent distortion caused by strong adjacent transmitters.
- A matrix and two output buffers, for the left and right output signals.
- An input amplifier, the gain of which can be adjusted by the external input resistor.
- A pilot cancelling circuit, for extra suppression of the pilot signal.
- An SDS circuit (signal dependent stereo) for a smooth changeover from stereo to mono on weak signals,
- A driver output stage for a stereo LED indicator.
- A stabilizer, for operation over a wide supply voltage range.

The stereo decoder is compensated for a typical i.f. filter with a roll-off frequency of 50 kHz (2 dB down at 38 kHz).

QUICK REFERENCE DATA

L Block diagram	013			
Applicable supply voltage range	VS		3,6 to 16	V
Supply voltage (pin 9)	V _P	nom.	6	V
Ambient temperature	T _{amb}	typ.	25	oC
Total quiescent current	I _{tot}	typ.	10	mA
Measured at $V_{i(p-p)} = 1 \text{ V (MUX with 27 mV pilot)}$				
Overall gain	Go	typ.	0 to 20	dB
Output channel unbalance	V ₁₋₅ /V ₂₋₅	<	± 1	dB
Output voltage (r.m.s. value)	V ₁₋₅ /V ₂₋₅	typ.	0,4	V
Total harmonic distortion (300 Hz to 20 kHz)	THD	typ.	0,2	%
Signal-to-noise ratio, DIN A-curve	S/N	typ.	80	dB
Channel separation	α	typ.	40	dB
Carrier suppression at: f = 19 kHz (adjusted)	α ₁₉	typ.	50	dB

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

A.C. CHARACTERISTICS	LICATION INFORMATION						
Measured in circuit of Fig. 2 at Vp = 6 V, Vi(p-p) = 1 V (MUX with	27 mV pilot)					
Input impedance (external)	Z _i	typ.	47	kΩ			
Output impedance (external)	IZ ₀	typ.	5,1	kΩ			
Output voltage (r.m.s. value)	Vo(rms)	typ.	400	mV			
Total harmonic distortion (300 Hz to 10 kHz) (mono, stereo and mono + pilot)	THD	typ.	0,2	%			
Total harmonic distortion at V _{O(rms)} = 0,6 V	THD	<	1	%			
Signal-to-noise ratio (DIN A-curve)	S/N	typ.	80	dB			
Channel separation (for L = 1 and R = 0)	α	typ.	40	dB			
SDS control 10 dB channel separation full stereo (channel separation ≥ 26 dB) full mono (channel separation ≤ 1 dB)	1 ₄	typ.	50 100	μΑ			
Stereo/mono switch (for R2 = \triangle k Ω) for switching to stereo	Vi	<	18	mV			
for switching to mono	woorV _i	> typ.	-	mV mV			
hysteresis	ΔV_i	typ.	2,5	dB			
VCO frequency (adjustable)	fvco	typ.	228	kHz			
Capture range (deviation from 228 kHz centre frequency) Vpilot = 32 mV		typ.	3,5	%			
Temperature coefficient (uncompensated)	TC	typ.		kHz/K			
VCO off switching voltage (pin 7)	Voff	>		V			
Carrier suppression (adjusted by R2) at: f = 19 kHz f = 38 kHz f = 228 kHz	0/10	typ. typ. typ.	50	dB dB			
ACI suppression at: * f = 114 kHz f = 190 kHz	^α 114 ^α 190	typ.		dB dB			
SCA suppression at f = 67 kHz	α67	typ.	66	dB			
VWF suppression**	avwe	typ.	70	dB			
Ripple rejection at $f = 100 \text{ Hz}$ $V_S = 3.6 \text{ V}$ $V_S = 8 \text{ V}$	RR RR	typ.		dB dB			

^{*} ACI suppression: $\alpha_{114} = 20 \log \frac{V_0 \text{ (at 1 kHz)}}{V_0 \text{ (at 4 kHz)}}$.

90% S-signal (L = -R, f_m = 1 kHz); 9% pilot signal; 1% spurious signal (f = 110 kHz).

** VWF suppression: $\alpha_{VWF} = 20 \log \frac{V_0 \text{ (at 1 kHz + 23 Hz)}}{V_0 \text{ (at 1 kHz)}}$.

90% S-signal (L = -R, f_m = 1 kHz); 9% pilot signal; 5% VWF signal (f = 57 kHz, f_m = 23 Hz AM, m = 60%).

[▲] Value to be established.

APPLICATION INFORMATION

Fig. 2 Test and application diagram.

Notes

R1: VCO frequency adjustment; f = 228 kHz.

R2: pilot cancelling and pilot level.

This data sheet contains advance information and specifications are subject to change without notice.

FM/IF SYSTEM AND MICROCOMPUTER-BASED TUNING INTERFACE

GENERAL DESCRIPTION

The TEA6000 is an FM/IF system circuit intended for microcomputer controlled radio receivers. The circuit includes an AM/FM-IF counter and an analogue-to-digital interface. The i.f. counter generates AM/FM precision tuning and accurate stop information.

Features

- 3-stage IF limiter for driving a ratio detector
- 2-stage level detector with current output
- operational amplifier for active filtering (e.g. multipath detector)
- high resolution frequency counter for FM and AM IF-signals
- time base reference from crystal oscillator or external source (SAA1057)
- serial two wire bidirectional computer interface (I²C-bus)
- multiplexed 3 bit A/D converter for two input signals
- software controlled sensitivity for both ADC inputs

QUICK REFERENCE DATA

			1	1	
Supply voltages (VP1 and VP2)		VP	typ.	8,4	
Supply current; (Ip1 + Ip2)		Ip I	typ.	36	mA
FM/IF sensitivity					
at -3 dB before limiting		V _i	typ.	150	μV
Signal to noise ratio for $V_i = 10$	mV	S/N	typ.	80	dB
Audio output voltage					
$\Delta f = 22,5 \text{ kHz; V}_{i} = 1 \text{ mV}$		Vo	typ.	170	mV
$\Delta f = 75 \text{ kHz}$; $V_i = 1 \text{ mV}$		VO	typ.	520	mV
AM suppression at V _i = 10 mV		AMS	typ.	58	dB
Frequency counter sensitivity					
AM (pin 18)		Vi(am)	typ.	60	μV
FM (pin 16)		V _i (fm)	typ.	80	μV
Resolution frequency counter					
AM		fs(am)	typ.	.250	Hz
FM		f _s (fm)	typ.	6,4	kHz
Power dissipation		P _{tot}	max.	1300	mW
Storage temperature		T _{stq}	-55 to	+ 150	oC
Operating ambient temperature		Tamb	-30 to		

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102HE).

FUNCTIONAL DESCRIPTION

The IF SECTION consists of three balanced differential stages with separated FM and AM inputs, directly coupled by emitter followers. The last stage also has separated outputs, which are intended for driving a ratio detector and the frequency measuring system respectively.

The last two stages are coupled via low-value capacitors to two LEVEL DETECTORS which generate a signal-dependent d.c. current for controlling channel separation and frequency response of a stereo decoder, multipath detector circuitry, AGC and the internal ADC.

The IF MUTING circuit has been incorporated to decrease the interstation noise by about 15 dB.

The 3-bit A/D CONVERTER has two inputs, which are selected via two multiplexed analogue switches. One of these switches is internally connected to the level detector output but can also serve as an external input, as the level detector output can be switched off. The outputs of the ADC are converted to a Gray code, latched and reconverted to a binary code to obtain glitch-free output data. The sensitivity of both inputs can be selected independently via software on two levels.

The reference for the ADC is derived from a BAND-GAP STABILIZER circuit. Multipath distortion on FM will generate an AM modulation on the d.c. voltage from the level detectors. This AM modulation can be filtered and rectified to obtain a multipath-dependent d.c. voltage. This voltage can be applied to the other input of the ADC.

To facilitate filtering an OPERATIONAL AMPLIFIER (OPA) is incorporated on the chip. The typical circuit diagram for a multipath filter is given in Fig. 4.

The FREQUENCY COUNTER is preceded by a 7-stage prescaler for FM, and FM/AM selector stage and a divider by 1 or 2. The actual counter is a presetable and resetable 8-stage counter with a 3-stage data disable overflow counter, which can be switched off. The eight significant output bits are situated symmetrically around 10,7 MHz and 460 kHz, when the external timebase source is used (e.g. SAA1057). See Table 1.

The reference for the TIMEBASE is primarily thought to be the SAA1057. This circuit generates from its 4 MHz crystal oscillator a 32 or 40 kHz signal. This signal is buffered and applied to the timebase circuitry (mode I). The circuit diagram for this mode I is given in Fig. 5a.

In the timebase, the selection is made for reference frequency (32 to 40 kHz), FM or AM mode and the width of the measuring window, all under software control. Accuracy $\pm \frac{1}{2}$ bit when the window is set to wide (see Fig. 2) and ± 1 bit when set to narrow. A special feature is the synchronization of the measuring cycle with the input DATA of the I²C-bus, meaning the measuring cycle starts immediately after a "WRITE" instruction via the I²C-bus.

For those who do not use the SAA1057 as reference, a 2¹⁵ Hz crystal (32 768 Hz) can be connected to the reference inputs directly, obtaining a quartz-oscillator reference. See Fig. 5b for the circuit diagram for this mode II.

When the circuit is used in mode II a correction has to be made to the values of window width and resolution as the cheap watch crystals differ by about 2,4% from the frequency generated by the SAA1057 (32 768 and 32 000 kHz respectively) See Table 2.

Communication between MUSTI and the microcomputer is accomplished via the two-wire bidirectional I²C-bus (slave transceiver version); the SDA (serial data) and SCL (serial clock).

To prevent crosstalk between the digital and analogue parts of the circuit the power supply lines are fully isolated.

Fig. 2 Input data format waveforms.

Input bits

bit	function call also and			
1	reference frequency	32 kHz	40 kHz	A of parter
2	sensitivity ADC2	LOW	HIGH	В
3	sensitivity ADC1	LOW	HIGH	ASC mont bev
4	level detector output	off	on on	lation on Dec
5	AM/FM	AM	FM	m (Existido of I
6	overflow counter	off	on	F .00/
7	measuring window	narrow	wide	G LAVIOL
8	test mode	off	on	Havin si sat

Fig. 3 Output data format waveforms.

Fig. 4 Multipath detector circuit.

13.2 V

13.2 V max. 1300 mW

-55 to + 150 °C

-30 to +85 °C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Su	p	p	V	VO	Itage

pin 2 pin 12

Power dissipation Storage temperature

Operating ambient temperature

THERMAL RESISTANCE

From crystal to ambient

$R_{th c-a} = 50$ 50 K/W

max.

max.

VP1

VP2

Ptot

Tsta

Tamb

D.C. CHARACTERISTICS

V_{P1} = V_{P2} = 8,4 V; T_{amb} = 25 °C, unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply voltage (pin 2) (pin 12)	V _{P1} (MA)	7,6 7,6	8,4 8,4	9,2 9,2	V
Supply current AM mode pin 2 pin 12	I _{P1}	V V	18,5 17,4	100 = 1,Vm 100 = 1,Vm 100 = 1,Vm	mA mA
Supply current FM mode pin 2 pin 12 Power dissipation	IP1 (MA) IP2 Ptot	V V R	19,2 16,4 350	tales 15 4000 in parties (pin timpedangs timpedangs	mA mA mW

A.C. CHARACTERISTICS (see Fig. 6)

 $V_{P1} = V_{P2} = 8.4 \text{ V}; V_{16-10} = 1 \text{ mV}; f = 10.7 \text{ MHz}; \Delta f = 22.5 \text{ kHz}; f_m = 1 \text{ kHz}; unless otherwise}$ specified.

parameter	symbol	min.	typ.	max.	unit
Sensitivity at -3 dB before limiting	V _I (FM)	_	150	oltage_SD/	μV
Signal-to-noise ratio, FM input	HGV			: 4 k(2 to 8	
$V_i = 20 \mu V$	S/N	40	46	Maria - 1	dB
$V_i = 150 \mu V$	S/N	_	64	-	dB
$V_i = 1 \text{ mV}$	S/N	-	76	-	dB
$V_i = 10 \text{ mV}$	S/N	-	80	-	dB
Noise output voltage					
V _i = 0 V; with muting, switch S1 on	Vno	- 1	55	_	μV
V _i = 0 V; without muting, S1 off	Vno	-	420	-	μV
Audio output voltage					
$\Delta f = 22,5 \text{ kHz}$	Vo	_	170	_	mV
$\Delta f = 75$ kHz	Vo	_	520	_	mV

A.C. CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
AM suppression					pin 2
ratio of the AM output signal referred					pin 12
to the FM signal (m = 0,3)				naitea	wer diss
V _i = 150 μV	AMS	_	46	nperature	dB
V; = 1 mV	AMS	_	62	et straidere	dB
V _i = 10 mV	AMS	-	58	-	dB
V _i = 100 mV	AMS	-	60	RESTST	dB
Level detector output voltage (Fig. 4)				done of let	1000
$R_{13-10} = 4.7 \text{ k}\Omega$; $V_i = 10 \text{ mV}$, FM mode	VI	_	6,2	- 01 16	V
Level detector output voltage slope	_		2017	BACTER	AHO .
R ₁₃₋₁₀ adjusted in FM mode for					
$V_1 = 5.5 \text{ V at } V_1 = 10 \text{ mV}; f = 10.7 \text{ MHz}$	servente a	°C, unla	dX = dms	(V 4.8 =	394 - L
V _i = 0 V (pin 16)	V _L (FM)	_	130	_	mV
$V_{i} = 140 \mu V$	V _L (FM)	DAR.	1,3	_	V
V _i = 1 mV	VL(FM)	-	2,7	Spetion	V
$V_i = 3 \text{ mV}$	VL(FM)	- NT	4,4	-	V
R ₁₃₋₁₀ adjusted in FM mode (see above)		a V		2)	(nig)
V _i = 0 V, f = 460 kHz (pin 18)	V _L (AM)		200	-	mV
$V_i = 1 \text{ mV}, f = 460 \text{ kHz (pin 18)}$	VL(AM)	ral	1,4	THE THE TAX	V
$V_i = 10 \text{ mV}, f = 460 \text{ kHz (pin 18)}$	VL(AM)	191	2,7	-	V
Frequency counter sensitivity		2.4			
AM input voltage (pin 18)	VI(AM)	-	60	N. J. 1003.370	μV
FM input voltage (pin 16)	VI(FM)	191	80	-	μV
AM input impedance	Ri	291	30	-	kΩ
BUS inputs		org		nottegies	Ower of
SDA and SCL (pins 9 and 8)					
input voltage HIGH	VIH	3,0	TICS Teer	V _{P1}	V
input voltage LOW	VIL	-0,3	-	1,5	V
input current HIGH	I _{IH} M	#14AW	- ot-at	10	μΑ
input current LOW	IL	-	-	10	μΑ
acknowledge sink current	ack	-	-	2	mA
maximum input frequency	fi max	100	-	- v	kHz
Output voltage SDA	V		phisimal	profed 8b	E- 76
HIGH; 4 kΩ to 8,4 V	Vон	8,0	uneTM3 is	its Tesion	V
LOW; I = 2 mA	VOL	_	-	0,4	V

DEVELOPMENT DATA

parameter	symbol	min.	typ.	max.	unit
A/D converter (pin 5 and 13)					
input resistance	Ri		t.b.f.		kΩ
input capacitance	Ci		t.b.f.		pF
Trip levels, sensitivity bit HIGH	######################################	145538	IN THE REST	Insat	Te.
level 1	VT	20 10 10 10	0,6	in in the	V
level 2	VT		1,06		V
level 3	VT	40.00	1,38	41.00	V
level 4	VT	-	1,84		V
level 5	VT	1208	2,14	8323	V
level 6	VT	A PART	2,55	0 0 9 5	V
level 7	VT	_	2,97	_	V
Trip levels, sensitivity bit LOW					
level 1	VT	12181	0,96	0.832	V
level 2	VT	12.6	1,78	2000	V
level 3	VT	- BBBB	2,44		V
level 4	VT	10000	3,26	00000	V
level 5	VT		3,92		V
level 6	VT	A P 71 11 11 11	4,63	IN D M N	V
level 7	VT	10000	5,38	2233	V
Crystal oscillator (see Fig. 5)	1		0,00		
	4 .	32	32,768	40	kHz
reference frequency temperature coefficient	f _{ref}	32	t.b.f.	1 40	10-6
input resistance	and the second of the second of	0000	t.b.f.		kΩ
	Ri				pF
input capacitance	Ci	a cont	t.b.f.	00000	br
Operational amplifier (pins 6 and 7)	dagnen.	- Long	97,000		To-
voltage gain	GV	150	10 ⁴	-	IEE
input bias current	bias	A PARTY	30	100	nA
output sink current at V _o = 1 V	lo	-	0,2	-	mA
output source current at V _O = 7,4 V	lo	5,5	10	-	mA
output voltage swing	V7(p-p)	100	5,5	6 5 388	V
Frequency measuring system (see pages 8 and 9)	i de de de la	2000		1211	8"
measuring windows; f _{ref} = 32 or 40 kHz	616666	200	181818	14419	138
window "0" (LOW)	tgate	V 8 0 8 3	4	2 H 3 N S	ms
window "1" (HIGH)	tgate	-	8		ms
FM		5555	110000		4
window "0" (LOW)	tgate	-	20	-	ms
window "1" (HIGH)	tgate	15502	40	. Sell	ms
resolution frequency counter	003333	50000	00000	00013	1 15
AM BERESERVERS STREET	fs(am)	A - 70 0	250		Hz
EFM - AND CARE CONTRACTOR CONTRACTOR	fs(fm)	1000	6,4	E PORT A	kHz

 $\rm t_{gate}$ has to be multiplied by 32 000/32 768 for a $\rm f_{ref}$ of 2 15 Hz. $\rm f_{S}$ has to be multiplied by 32 768/32 000 for a $\rm f_{ref}$ of 2 15 Hz.

	OUT	FM (MHz)	9		OUT	FM (MHz)		OUT	FM (MHz)	AM (kHz)		(MHz)			FM (MHz)	32
		9.888				10.214			10.541	466.50			479.25			
428.50		5.894				10.221	454.00			466.75			479.50			
428.75		9.901	4	41.50	1351	10.227	454.25	1681	10.554	467.00	1981	10.880	479.75	"CE"	11.206	
429.00		9.907				10.234	454.50	1691	10.560	467.25	1901	10.886	480.00	*CF *	11.213	
429.25	1041	9.914	4	42.00	1371	10.240	454.75	16A1	10.566	467.50	19D1	10.893	480.25	.DO.	11.219	
429.50	1051	9.920	4	42.25	1381	10.246	455.00	*6B*	10.573	467.75	19E1	10.899	480.50	.D1.	11.226	
429.75	1061	9.926	4	42.50	1391	10.253	455.25	16C1	10.579	468.00	19F1	10.906	480.75			
4.30.00	*07*	9.933	4	42.75	* 3A *	10.259	455.50	16D1	10.586	468.25			481.00			
430.25	.08.	9.939	4	43.00	13B1	10.266	455.75	16E 1	10.592	468.50	"Al"	10.918	481.25			
430.50	1091	9.946	4	43.25	13C1	10.272	456.00	16F 1	10.598	468.75			481.50	1D51	11.251	
430.75	* 0 A *	9.952	4	43.50	1301	10.278	456.25	1701	10.605	469.00	1A31	10.931	481.75			
		9.958				10.285			10.611	469.25			482.00			
431.25		9.965				10.291			10.618	469.50			482.25			
431.50		9.971				10.298			10.624	469.75			482.50			
431.75		9.978				10.304			10.630	470.00			482.75			
432.00		9.984				10.310			10.637	470.25			483.00			
		9.990				10.317			10.643	470.50			483.25			
		9.997				10.323			10.650	470.75			483.50			
		10.003				10.330			10.656	471.00			483.75			
		10.010				10.336			10.662	471.25			484.00			
		10.016				10.342			10.669	471.50			484.25			
		10.022				10.349			10.675	471.75			484.50			
33.75	1161	10.029	4	46.50	1491	10.355	459.25	17C1	10.682	472.00			484.75			
34.00	171	10.035	4	46.75	14A1	10.362			10.688	472.25			485.00			
34.25	1181	10.042	4	47.00	14B1	10.368	459.75	17E1	10.694	472.50			485.25			
34.50	1191	10.048	4	47.25	14C1	10.374	460.00	17F1	10.701	472.75			485.50			
		10.054	4	47.50	14D1	10.381	460.25	1801	10.707	473.00			485.75			
35.00	*18*	10.061				10.387			10.714	473.25			486.00			
		10.067				10.394			10.720	473.50			486.25			
35.50	* 1D *	10.074	4	48.25	1501	10.400			10.726	473.75			486.50			
35.75	"1E"	10.080				10.406	461.25	1841	10.733			11.059	486.75			
		10.086				10.413			10.739	474.25			487.00			
36.25	1201	10.093	4	49.00	1531	10.419	461.75	1861	111.746	474.50	1B91	11.072	487.25	.EC.	11.398	
36.50	1211	10.099	4	49.25	1541	10.426	462.00	1871	10.752	474.75	*BA *	11.078	487.50	"ED"	11.405	
36.75	1221	10.106	4	49.50	1551	10.432	462.25	1881	10.758			11.085	487.75			
37.00	1231	10.112	4	49.75	1561	10.438	462.50	1891	10.765			11.091	488.00			
37.25	1241	10.118	4	50.00	1571	10.445	462.75	18A1	10.771	475.50	.BD.	11.098	488.25	*F0*	11.424	
37.50	1251	10.125	4	50.25	1581	10.451	463.00	1881	10.778	475.75	"BE"	11.104	488.50			
37.75	1561	10.131	4	50.50	1591	10.458	463.25	18C1	10.784	476.00			488.75			
38.00	1271	10.138	4	50.75	15A1	10.464	463.50	'8D'	10.790			11.117	489.00			
38.25	1281	10.144	4	51.00	15B1	10.470	463.75	18E1	10.797	476.50	.C1.	11.123	489.25			
38.50	1291	10.150	4	51.25	15C1	10.477	464.00	*8F *	10.803	476.75			489.50			
38.75	.5V.	10.157	4	51.50	15D1	10.483	464.25	1901	10.810	477.00	1C31	11.136	489.75			
39.00	12B1	10.163	4	51.75	15E1	10.490	464.50	1911	10.816	477.25	1C41	11.142	490.00	*F7*	11.469	
39.25	15C1	10.170	4	52.00	15F1	10.496	464.75	1921	10.822	477.50	1C51	11.149	490.25	1F81	11.475	
39.50	, 5D.	10.176	4	52.25	1601	10.502	465.00	1971	10.829	477.75	1061	11.155	490.50	1F91	11.482	
39.75	12E1	10.182	4	52.50	1611	10.509	465.25	1941	10.835	478.00	1C71	11.162	490.75	"FA"	11.488	
40.00	12F1	10.189	4	52.75	1621	10.515	465.50	1951	10.842	478.25	*C8*	11.168	491.00	"FB"	11.494	
		10.195				10.522	465.75	1961	10.848	478.50	1091	11.174	491.25	"FC"	11.501	
40.50	1311	10.202	4	53.25	1641	10.528	466.00	1971	10.854	478.75	*CA*	11.181	491.50	*FD *	11.507	
		10.208				10.534	466.25					11.187	491.75	.FF.	11 514	

DEVELOPMENT DATA

DEVELOPMENT DATA

TABLE 2 REFERENCE FREQUENCY 32 768 Hz (215 Hz)

AM READ FM (kHz) OUT (MHz)	AM READ FM (kHz) OUT (MHz)	AM READ FM (kHz) OUT (MHz)	AM READ FM (kHz) OUT (HMz)	AM READ FM (kHz) OUT (MHz)
II	I I I	I I I	I I I	II I
438.53 '00' 10.125	451.51 *33* 10.460	464.64 *66 * 10.794	477.70 '99' 11.128	490.75 °CC 11.462
438.78 '01' 10.132	451.84 *34 * 10.466	464.90 1671 10.800	477.95 '9A' 11.135	491.01 °CD ° 11.469
439.04 '02' 10.138	452.10 *35* 10.4/3	465.15 '68' 10.807	478.21 '9B' 11.141	491.26 °CE 11.475
439.30 '03' 10.145	452.35 '36' 10.479	465.41 '69' 10.813	478.46 '9C' 11.148	491.52 'CF' 11.482
439.55 *04* 10.152	452.61 '37' 10.486	465.66 '6A' 10.820	478.72 '9D' 11.154	491.78 'DO' 11.488
439.81 *05 * 10.158	452.86 *38* 10.492	465.92 '68' 17.827	478.98 '9E' 11.161	492.03 'D1' 11.495
440.06 '06' 10.165	453.12 '39' 10.499	466.18 '6C' 10.833	479.23 '9F' 11.167	492.29 'D2' 11.502
440.32 '07' 10.171	453.38 '3A' 10.505	466.43 '6D' 10.840	479.49 'AO' 11.174	492.54 'D3' 11.508
440.58 '08' 10.178	453.63 '38' 10.512	466.69 '6E' 10.846	479.74 'Al' 11.180	492.80 'D4' 11.515
440.83 '09' 10.184	453.89 '3C' 10.519	466.94 '6F' 10.853	480.00 'A2' 11.187	493.06 'D5' 11.521
441.09 'OA' 10.191	454.14 '3D' 10.525	467.20 '70' 10.859	480.26 'A3' 11.194	493.31 'D6' 11.528
441.34 '08' 10.197	454.40 '3E' 10.532	467.46 .71 10.866	480.51 'A4' 11.200	493.57 'D7' 11.534
441.60 'OC' 10.204 441.86 'OD' 10.211	454.66 '3F' 10.538	467.71 172 10.872	480.77 'A5' 11.207	493.82 'D8' 11.541
442.11 'OE' 10.217	454.91 '40' 10.545	467.97 '73' 10.879	481.02 'A6' 11.213	494.08 'D9' 11.547
	455.17 '41' 10.551	468.22 .74 10.886	481.28 'A7' 11.220	494.34 'DA' 11.554
442.37 'OF' 10.224 442.62 '10' 10.230	455.42 '42' 10.558	468.48 1751 10.892	481.54 'A8' 11.226	494.59 'DB' 11.561
442.88 '11' 10.237	455.68 *43* 10.564 455.94 *44* 10.571	468.74 1761 10.899	481.79 'A9' 11.233	494.85 'DC' 11.567
443.14 '12' 10.243	455.94 *44* 10.571	469.25 '78' 10.905	482.05 'AA' 11.239	495.10 'DD' 11.574 495.36 'DE' 11.580
443.39 113 10.250	456.45 *46* 10.584	469.50 1791 10.912	482.30 'AB' 11.246 482.56 'AC' 11.253	495.62 'DF' 11.587
443.65 114 10.256	456.70 '47' 10.591	469.76 '7A' 10.925	482.82 'AD' 11.259	495.87 'EO' 11.593
443.90 151 10.263	456.96 *48* 10.597	470.02 '7B' 10.931	483.07 'AE' 11.266	496.13 'E1' 11.600
444.16 '16' 10.269	457.22 1491 10.604	470.02 '76' 10.931 470.27 '7C' 10.938	483.33 'AF' 11.272	496.13 'E2' 11.606
444.42 117 10.276	457.47 *4A* 10.610	470.53 '7D' 10.945	483.58 'B0' 11.279	496.64 'E3' 11.613
444.67 118 10.283	457.73 '48' 10.617	470.78 '7E' 10.951	483.84 '81' 11.285	496.90 'E4' 11.620
444.93 1191 10.289	457.98 '40' 10.623	471.04 '7F' 10.958	484.10 '82' 11.292	497.15 'E5' 11.626
445.18 '1A' 10.296	458.24 '4D' 10.630	4/1.30 '80' 10.964	484.35 '83' 11.298	497.41 'E6' 11.633
445.44 '18' 10.302	458.50 *4E* 10.636	471.55 '81' 10.971	484.61 'B4' 11.305	497.66 'E7' 11.639
445.70 '1C' 10.309	458.75 '4F' 10.643	471.81 '82' 10.977	484.86 '85' 11.312	497.92 'E8' 11.646
445.95 '10' 10.315	459.01 '50' 10.650	472.06 1831 10.984	485.12 '86' 11.318	498.18 'E9' 11.652
446.21 '1E' 10.322	459.26 '51' 10.656	672.32 1841 10.990	485.38 '87' 11.325	498.43 'EA' 11.659
446.46 '1F' 10.328	459.52 '52' 10.663	472.58 1851 10.997	485.63 '88' 11.331	498.69 'EB' 11.665
446.72 '20' 10.335	459.78 *53* 10.669	472.83 '86' 11.003	485.89 '89' 11.338	498.94 'EC' 11.672
446.98 '21' 10.342	460.03 '54' 10.676	473.09 '87' 11.010	486.14 'BA' 11.344	499.20 'ED' 11.679
447.23 '22' 10.348	460.29 '55' 10.682	473.34 '88' 11.017	486.40 'BB' 11.351	499.46 'EE' 11.685
447.49 '23' 10.355	460.54 *56* 10.689	473.60 '89' 11.023	486.66 'BC' 11.357	499.71 'EF' 11.692
447.74 *24 * 10.361	460.80 '57' 10.695	473.86 '8A' 11.030	486.91 'BD' 11.364	499.97 'FO' 11.698
448.00 '25' 10.368	461.06 '58' 10.702	474.11 '8B' 11.036	487.17 'BE' 11.370	500.22 'F1' 11.705
448.26 '26' 10.374	461.31 '59' 10.709	474.37 '8C' 11.043	487.42 'BF' 11.377	500.48 'F2' 11.711
448.51 '27' 10.381	461.57 '5A' 10.715	474.62 '8D' 11.049	487.68 °C0 ° 11.384	500.74 °F3° 11.718
448.77 '28' 10.387	461.82 '58' 10.722	474.88 '8E' 11.056	487.94 'C1' 11.390	500.99 'F4' 11.724
449.02 1291 10.394	462.08 '5C' 10.728	475.14 '8F' 11.062	488.19 'C2' 11.397	501.25 'F5' 11.731
449.28 '2A' 10.401	462.34 '5D' 10.735	475.39 '90' 11.069	488.45 'C3' 11.403	501.50 'F6' 11.737
449.54 '28' 10.407	462.59 '5E' 10.741	475.65 '91' 11.076	488.70 °C4° 11.410	501.76 *F7* 11.744
449.79 '2C' 10.414	462.85 *5F* 10.748	475.90 1921 11.082	488.96 'C5' 11.416	502.02 'F8' 11.751
450.05 '2D' 10.420	463.10 '60' 10.754	476.16 '93' 11.089	489.22 'C6' 11.423	502.27 'F9' 11.757
450.30 '2E' 10.427	463.36 '61' 10.761	476.42 '94' 11.095	489.47 'C7' 11.429	502.53 'FA' 11.764
450.56 '2F' 10.433	463.62 '62' 10.768	476.67 *95 * 11.102	489.73 'C8' 11.436	502.78 'FB' 11.770
450.82 *30 * 10.440	463.87 '63' 10.774	476.93 '96' 11.108	489.98 'C9' 11.443	503.04 °FC ° 11.777
451.07 '31' 10.446	464.13 *64* 10.781	477.18 '97' 11.115	490.24 'CA' 11.449	503.30 'FD' 11.783
451.33 '32' 10.453	464.38 '65' 10.787	477.44 1981 11.121	490.50 °CB 11.456	503.55 'FE' 11.790

L1 = 3122 138 2021/TOKO 85 ACS-4238 A L2 = 3122 138 2022/TOKO 85 ACS-4260 SEJ

Fig. 6 MUSTI test and application circuit.

Germanium diodes AA119 are required in the test circuit only.

In a complete FM channel (inclusive FM front end) the silicon diodes BA281 are recommended.

S open = without muting S closed = with muting

for measuring purpose only.

Fig. 7 Track side of printed-circuit board.

Fig. 8 Component side of printed-circuit board.

Fig. 9 Level detector output as a function of input voltage.

Fig. 10 Signal-to-noise ratio as a function of FM input voltage, $f_i = 10.7$ MHz; $\Delta f = 22.5$ kHz; $f_{mod} = 1$ kHz; 0 dB = 245 mV.

Purchase of Philips' 1²C components conveys a license under the Philips' 1²C patent to use the components in the 1²C-system provided the system conforms to the 1²C specifications defined by Philips.

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38) MILIAN JAUG GABLI-81

Positional accuracy.

M Maximum Material Condition.

0,32

max

(1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

8.25 max

7,62 9,5 8,3

 Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300\,^{\circ}\text{C}$ it must not be in contact for more than 10 seconds; if between $300\,^{\circ}\text{C}$ and $400\,^{\circ}\text{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38Z)/ LI-/ JAUG GAELF-81

top view

Positional accuracy.

0,32

max

4.7 max

- Maximum Material Condition.
- (1) Centre-lines of all leads are within ±0.127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

8,25 max

7,62

8,3

Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

8,25 max

7,62 9,5 8,3

Lead spacing tolerances apply from seating plane to the line

indicated.

7255041.8

0.32

max

16-LEAD DUAL IN-LINE; PLASTIC WITH INTERNAL HEAT SPREADER (SOT-38WE-2)

Dimensions in mm

SOLDERING

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds. The benefit was to select the seconds.

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

8-LEAD MINI-PACK; PLASTIC (SO-8; SOT-96A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

8-LEAD DUAL IN-LINE; PLASTIC (SOT-97A)

Dimensions in mm

- Positional accuracy.
- (M) Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.
- Only for devices with asymmetrical end-leads.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300\,^{\circ}\text{C}$ it must not be in contact for more than 10 seconds; if between $300\,^{\circ}\text{C}$ and $400\,^{\circ}\text{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

24-LEAD DUAL IN-LINE; PLASTIC (WITH INTERNAL HEAT A3J-8 SPREADER) (SOT-101A, B)

Dimensions in mm

- Positional accuracy.
- Maximum Material Condition.
- 1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.
- (3) Index may be horizontal as shown, or vertical.

18-LEAD DUAL IN-LINE; PLASTIC (SOT-102A) LAND DAUG DALLEAD

- Positional accuracy.
- M Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.
- (3) Index may be horizontal as shown, or vertical.

Dimensions in mm

18-LEAD DUAL IN-LINE; PLASTIC(SOT-102CS,HE,KE) CARLES

- Positional accuracy.
- M Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

14-LEAD MINI-PACK; PLASTIC (SO-14; SOT-108A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid.

After soldering, the substrate must be cleaned of any remaining flux.

16-LEAD MINI-PACK; PLASTIC (SO-16; SOT-109A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-110B) A LAUG GABLI-8S

- Positional accuracy.
- Maximum Material Condition.
- A Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- B Lead spacing tolerances apply from seating plane to the line indicated.

28-LEAD DUAL IN-LINE; PLASTIC (SOT-117) J-VI 3LIDVIS GASL-9

Dimensions in mm

SOLDERING see SOT-38

- (2) Lead spacing tolerances apply from seating plane to the line indicated.
- (3) Index may be horizontal as shown, or vertical.

28-LEAD DUAL IN-LINE; PLASTIC (SOT-117A,D)

- Positional accuracy.
- M Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- (2) Lead spacing tolerances apply from seating plane to the line indicated.

28-LEAD DUAL IN-LINE; PLASTIC (SOT-117BE) LAUG GABLI-89

- (1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

Maximum Material Condition.

Positional accuracy.

- (2) Lead spacing tolerances apply from seating plane to the line indicated.
- (3) Index may be horizontal as shown, or vertical.

January 1984

751

- Positional accuracy.
- Maximum Material Condition.
- (1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.
- Index may be horizontal as shown, or vertical.

9-LEAD SINGLE IN-LINE; PLASTIC POWER (SOT-131A, B)

- Positional accuracy.
- M Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

28-LEAD DUAL IN-LINE; CERAMIC (CERDIP) (SOT-135A)

- Positional accuracy.
- M Maximum Material Condition.
- (1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

28-LEAD MINI-PACK; PLASTIC (SO-28; SOT-136A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to $105~\mu m$ is used for which the emulsion thickness should be about $50~\mu m$. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

13-LEAD SIL-BENT-TO-DIL; PLASTIC POWER (SOT-141B)

- Positional accuracy.
- Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-142) TABLET GABLET

- Positional accuracy.
- Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- (2) Lead spacing tolerances apply from seating plane to the line indicated.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-142B) // JAUG GABLI-0S

- Positional accuracy.
- Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

20-LEAD DUAL IN-LINE; PLASTIC (SOT-146) A BLOW & GABLE

Positional accuracy.

(M) Maximum Material Condition.

(1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

 Lead spacing tolerances apply from seating plane to the line indicated.

8-LEAD DUAL IN-LINE; CERAMIC (CERDIP) (SOT-151A)

Dimensions in mm

(2) Lead spacing tolerances apply from seating plane to the line indicated.

9-LEAD SIL-BENT-TO-DIL; PLASTIC POWER (SOT-157A,B)

Dimensions in mm stor protocol best (S)

- Positional accuracy.
- Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- (2) Lead spacing tolerances apply from seating plane to the line indicated.

40-LEAD MINI-PACK; PLASTIC (VSO-40; SOT-158A) M GABLI-BI

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid.

After soldering, the substrate must be cleaned of any remaining flux.

16-LEAD MINI-PACK; PLASTIC (SO-16L; SOT-162A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid.

After soldering, the substrate must be cleaned of any remaining flux.

20-LEAD MINI-PACK; PLASTIC (SO-20; SOT-163A) MINI-PACK; PLASTIC (SO-20; SOT-163A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

8-LEAD MINI-PACK; PLASTIC (VSO-8; SOT-176) 9-1/4/M GABLI-0S

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to $105~\mu m$ is used for which the emulsion thickness should be about $50~\mu m$. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

January 1984

765

56-LEAD MINI-PACK; PLASTIC (VSO-56; SOT-190)

SOLDERING

1. Soldering iron or pulse heated solder tool

Apply the heating tool to the flat part of the pin only. Limit the contact time to maximum 10 seconds up to 300 °C, or 5 seconds up to maximum 400 °C. When using the proper tools, all pins can be soldered in one operation within 2 to 5 seconds and 270 to 320 °C.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C. The permissible total time of immersing the whole package in the bath is 10 seconds, if it is allowed to cool down to less than 150 °C within 6 seconds.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above. If the vertical part of the pin needs heating, reduce the soldering iron temperature to 260 °C.