1 Mouvement en coordonnées polaires — 7 pts (+0.5 bonus)

1	Au point $P: \vec{e_r}$ suivant $-\vec{e_y}$, $\vec{e_\theta}$ suivant $\vec{e_x}$, \vec{N} normal à la trajectoire vers l'intérieur, \vec{T} tangent à la trajectoire vers la droite.	$\boxed{4\times0,25}$
2.a	$\overrightarrow{OM} = \overrightarrow{r}\overrightarrow{e_r} = Ae^{k\omega t}\overrightarrow{e_r}$ $v = \frac{d\overrightarrow{OM}}{dt} = \dot{r}\overrightarrow{e_r} + r\dot{\theta}\overrightarrow{e_\theta} = k\omega Ae^{k\omega t}\overrightarrow{e_r} + A\omega e^{k\omega t}\overrightarrow{e_\theta} = A\omega e^{k\omega t}(k\overrightarrow{e_r} + \overrightarrow{e_\theta})$ $\ \overrightarrow{v}\ = A\omega e^{k\omega t}\sqrt{1+k^2}$ $dim(A) = L, \ dim(\omega) = T^{-1}, \ dim(k) = 1, \ dim(e^{k\omega t}) = 1, \ donc \ dim(\ \overrightarrow{v}\) = LT^{-1}$ cohérent	0,75 0,25 0,5
2.b	$\vec{a} = \frac{d\vec{v}}{dt} = kA\omega^{2}e^{k\omega t}(k\vec{e_{r}} + \vec{e_{\theta}}) + A\omega e^{k\omega t}(k\omega\vec{e_{\theta}} - \omega\vec{e_{r}}) = A\omega^{2}e^{k\omega t}[(k^{2} - 1)\vec{e_{r}} + 2k\vec{e_{\theta}}]$ $\ \vec{a}\ = A\omega^{2}e^{k\omega t}\sqrt{(k^{2} - 1)^{2} + (2k)^{2}}$ $dim(k) = 1, dim(A) = L, dim(\omega^{2}) = T^{-2}, donc dim(\ \vec{a}\) = LT^{-2} \text{ cohérent}$	1 0,25 0,25
2.c	$\vec{v} = \ \vec{v}\ \vec{T} = A\omega e^{k\omega t}\sqrt{1+k^2}\vec{T}$, d'où $\vec{T} = \frac{\vec{v}}{\ \vec{v}\ } = \frac{k\vec{e_r} + \vec{e_\theta}}{\sqrt{k^2+1}}$	0,5
2.d	$\vec{a} = \frac{\text{d}\ \vec{v}\ }{\text{d}t}\vec{T} + \frac{\ \vec{v}\ ^2}{R_c}\vec{N} = kA\omega^2 e^{k\omega t}\sqrt{k^2 + 1}\vec{T} + \frac{(A\omega)^2 e^{2k\omega t}(k^2 + 1)}{R_c}\vec{N}$	1
2.e	À $t=0, \ \theta=0$, on peut ainsi déterminer A à partir de l'intersection de la courbe avec l'axe des x : on obtient $r=A=1$ cm. On peut trouver k en regardant l'intersection de la courbe avec l'axe des y : par exemple au point P on a $\theta=\frac{3\pi}{2}$, donc $r=Ae^{k\frac{3\pi}{2}}$. On lit sur le graphique $r\simeq 2,5$ cm, du coup $k=\frac{2}{3\pi}\ln(r/A)=\frac{2}{3\pi}\ln 2,5\simeq 0,2$. On peut estimer le rayon de courbure en P en traçant l'arc de cercle tangent à la trajectoire en P (un tracé précis avec un compas n'est pas nécessaire). On trouve R_c de l'ordre de $2,5\pm 0,5$ cm. L'incertitude n'est pas que l'incertitude sur la graduation de la règle (mettre -0.5 dans ce cas).	0,25 0,25 (Bonus +0,5) 0,5

${\bf 2}\quad {\bf Centrifugeuse-7~pts}$

	$ec{a} = ec{a}_{\mathrm{T}} + ec{a}_{\mathrm{N}} \ ec{a}_{\mathrm{T}} = rac{\mathrm{d}v}{\mathrm{d}t} ec{e}_{ heta} = R \dot{\omega} ec{e}_{ heta}$	0,5
1	$\dot{\omega} = \frac{\Delta \omega}{\Delta t} = \frac{\omega_f}{t_f}, \mathrm{d'où} \left[\vec{a}_\mathrm{T} = R \frac{\omega_f}{t_f} \vec{e}_{\theta} \right]$	0,5
	$\vec{a}_{\mathrm{N}} = -\frac{v^2}{R}\vec{e}_r = -R\omega^2\vec{e}_r$	0,5
	$\dot{\mathbf{A}} t = 2 \text{ s}, \ \omega = \frac{\omega_f}{2}, \ \text{donc} \left[\vec{a}_{\mathrm{N}} = -R \frac{\omega_f^2}{4} \vec{e}_r \right]$	0,5
	$ \vec{a} = \sqrt{ \vec{a}_{\rm T} ^2 + \vec{a}_{\rm N} ^2} = R\sqrt{\frac{\omega_f^2}{t_f^2} + \frac{\omega_f^4}{16}} = 5,5 \times 10^2 \text{ m} \cdot \text{s}^{-2}$	0,5+0,5
2	En régime permanent, $\omega=$ cste, $\vec{a}=\vec{a}_{\rm N}, \left \vec{a} =R\omega^2\right $	1
	Donc $R\omega^2 = 10 g \approx 100 \text{ m} \cdot \text{s}^{-2}$	0,5
	$ \vec{a} $ étant proportionnelle à R , l'accélération du pilote est plus petite au niveau des genoux qu'au niveau du thorax ($\Delta R \approx 0.6$ m). Il faut que R soit assez grand pour qu'il subisse une accélération uniforme à 5% près,	0,5
	mais pas trop grand pour des raisons de coût. $R \approx 12$ m donne satisfaction $(\frac{\Delta R}{R} = 0.05)$. On obtient alors $\omega = 2.9$ rad/s	1
3	$ \vec{a} = \frac{\Delta v}{\Delta t} = \frac{v_f}{t_f}$; A.N. : $ \vec{a} = 9, 3 \text{ m·s}^{-2} < g$	0, 5 + 0, 5

3 Nageur — 6 pts (+ 0,5 bonus)

1	$dim(N) = dim(force) = MLT^{-2}$ $dim(\eta) = dim(F)/dim(v) = MLT^{-2}/(LT^{-1}) = MT^{-1}$	0, 5+0, 5
2	Référentiel terrestre; système : le nageur – Force de l'eau sur le nageur = $-\vec{N} = N\vec{e_x}$ (action-réaction) – Force de frottement \vec{F} suivant $-\vec{e_x}$ – Poids \vec{P} suivant $-\vec{e_y}$ et poussée d'Archimède $\vec{\Pi}$ suivant $\vec{e_y}$ Schéma complet	0,25 $0,5$ $0,25$ $0,5$ $0,5$
3	$ ext{PFD}: m\vec{a} = m rac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \sum \vec{F} = -\vec{N} - \eta \vec{v} + \vec{P} + \vec{\Pi}$	0,5
4	La poussée d'Archimède et le poids ont une direction verticale, leur projection sur (Ox) est nulle. Projection suivant $x: m\frac{\mathrm{d}v}{\mathrm{d}t} = N - \eta v$	$0,5 \\ 0,5$
5	$v(t)=Ce^{-\frac{\eta}{m}t}+\frac{N}{\eta}$ $v(t=0)=0 \text{ ce qui donne } C=-N/\eta \text{ et donc } v(t)=\frac{N}{\eta}(1-e^{-\frac{\eta}{m}t})$ BONUS : vérifier l'homogénéité	0,5 0,5 Bonus 0,5
6	$v_{\infty} = v(t \to \infty) = \frac{N}{\eta}$	0,5