Uma nota sobre continuidade de relações de preferência definidas em conjuntos discretos

Fábio Barbieri 0

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo

Jefferson Bertolai 💿

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo e Laboratório de Economia, Matemática e Computação, Universidade de São Paulo

Mirelle Jayme 0

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo e Laboratório de Economia, Matemática e Computação, Universidade de São Paulo

Nathan Machado

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo e Laboratório de Economia, Matemática e Computação, Universidade de São Paulo

Esta nota discute a continuidade de relações de preferência definidas em conjuntos discretos, relacionando-a com o conceito de continuidade de funções (e, mais geralmente, de correspondências). A propriedade de *relatividade* do conceito de conjunto *aberto* se revela peça fundamental nesta discussão e, com isso, sua importância para a Teoria Econômica é reforçada de forma transparente.

Palavras-chave. Continuidade, Relação de preferência, Conjunto aberto relativo, Correspondência.

Classificação JEL. D01, D11, C65.

1. Introdução

Dentre os instrumentos matemáticos empregados pela Teoria Econômica para modelar escolha dos agentes (pessoas, governos, firmas etc...), o conceito de *relação de preferência* é um dos mais fundamentais¹. Em grandes linhas, uma relação de preferência

Fábio Barbieri: fbarbieri@usp.br

Jefferson Bertolai: jbertolai@gmail.com Mirelle Jayme: mirellefernandes@usp.br Nathan Machado: nathan_machado@usp.br

Trabalho desenvolvido no contexto das atividades acadêmicas do Laboratório de Economia, Matemática e Computação (LEMC/USP). Os autores Jefferson Bertolai, Mirelle Jayme e Nathan Machado agradecem ao Programa Unificado de Bolsas (PUB/USP) ao apoio financeiro no desenvolvimento de atividades acadêmicas dentro do LEMC/USP.

¹Tal relevância se torna evidente ao se considerar que a principal característica que diferencia a Ciência Econômica de outros campos do conhecimento (por exemplo, as Ciências Naturais) é o fato de que os fenômenos investigados pela Economia são em grande medida resultantes de escolhas de agentes.

 \succsim é empregada pela Teoria Econômica para modelar a forma que um agente classifica cada par de alternativas a e b presentes em um dado conjunto de alternativas A. Concretamente, quando o agente classifica a alternativa $a \in A$ como tão boa quanto a alternativa $b \in A$, a relação de preferência \succsim é definida de forma que $a \succsim b$. A escolha deste agente, restrita às alternativas presentes em A, é suposta pela Teoria Econômica como determinada pela forma que este agente classifica pares de alternativas em A. Ou seja, determinada pela relação de preferência \succsim sobre A.

Matematicamente, a relação de preferência \succsim é uma relação binária de A em si mesmo, ou seja, \succsim é um subconjunto de $A\times A$. Dentre as propriedades matemáticas frequentemente demandadas de \succsim pela Teoria Econômica ao modelar as escolhas dos agentes, a continuidade de \succsim é um dos principais ingredientes que caracterizam $preferências\ bem\ comportadas^2$

Este trabalho discute a continuidade de relações de preferência $\succsim \subseteq A \times A$ no contexto em que o conjunto de alternativas A é um subconjunto discreto do \mathbb{R}^n . Conforme elaborado na Seção 2.1, a continuidade de \succsim é consequência direta de A ser um conjunto discreto (cada ponto de A é ponto isolado de A). Na Seção 3, a semelhança entre continuidade de preferências em conjuntos discretos e continuidade de funções em pontos isolados de seu domínio é explorada no contexto de continuidade de correspondências. Após registrar que também são contínuas as correspondências definidas em domínio discreto, destaca-se que o gráfico de toda correspondência define uma relação binária. Ainda, quando domínio e contradomínio desta correspondência são iguais, tal relação binária é uma relação de preferência. Este ponto é explorado em seguida demonstrando-se um sentido sob o qual a continuidade da referida correspondência implica continuidade da relação de preferência definida pelo seu gráfico.

A discussão apresentada nesta nota chama a atenção para o fato de que *continuidade em conjuntos discretos é trivialmente verdadeira*, tanto continuidade de relações de preferência quanto continuidade de funções (e, mais geralmente, continuidade de correspondências)³. Ainda, fica claro que a propriedade de *relatividade* do conceito de conjunto aberto é peça fundamental nesta discussão, uma vez que sua combinação com pontos isolados é o argumento central para estabelecer os resultados de continuidade reunidos nesta nota⁴.

2. Continuidade de relações de preferência

Sejam L, M e N números naturais, $A \subseteq \mathbb{R}^L$, $D \subseteq \mathbb{R}^M$, $C \subseteq \mathbb{R}^N$ e $R \subseteq D \times C$ uma relação binária de D em C. O conjunto D é o domínio de R e C é o contradomínio de R. Se

 $^{^2}$ Em grandes linhas, continuidade de \succsim é atrativa para modelar comportamentos suaves: escolhas em subconjuntos de A que não mudam de forma abrupta após pequenas perturbações neste subconjunto. Um exemplo clássico de relação de preferência que não é contínua é a classificação lexicográfica de pontos em \mathbb{R}^2 .

 $^{^3}$ De fato, em um espaço métrico (Y,d), na topologia relativa a $A\subseteq Y$, todo subconjunto de A é aberto e, por isso, continuidade é trivialmente obtida. Agradecemos a avaliação anônima que pontuou a generalidade ainda maior deste resultado.

⁴Tal relevância da natureza relativa do conceito de aberto é explorada em detalhes no Apêndice A no contexto do exemplo da Seção 2.1.1. Conclui-se que, ao negligenciar a relatividade do conceito de conjunto aberto presente na definição de continuidade de relação de preferência, incorre-se no equívoco de concluir que a preferência ≥ definida em (2) não é contínua.

D=C, diz-se que R é relação binária em D. Diz-se que d é relacionado com c segundo R quando $(d,c)\in R$, o que é mais comumente denotado em Economia Matemática por dRc. Conforme antecipado na introdução, \gtrsim é relação de preferência sobre A se \gtrsim é uma relação binária em A. Nesta seção, suponha D=C=A, de forma que $R\subseteq A\times A$ é uma relação de preferência em A.

Definição 1. R é contínua se, para cada $b \in A$, os conjuntos $S_b \equiv \{a \in A | aRb\}$ e $I_b \equiv \{a \in A$ A|bRa são ambos fechados em A.

2.1 Continuidade de $R \subseteq A \times A$ quando A é discreto

Suponha nesta subseção que A é um conjunto discreto, ou seja, que todo $a \in A$ é ponto isolado de A. Assim, por definição de ponto isolado, $a \in A$ garante que existe $\varepsilon > 0$ tal que $B_{\varepsilon}(a) \cap A = \{a\}$, em que $B_{\varepsilon}(a) \equiv \{x \in \mathbb{R}^L : ||x-a|| < \varepsilon\}$. A continuidade de R quando Aé discreto é consequência direta do fato de que subconjuntos de um conjunto discreto sempre são fechados neste conjunto, conforme estabelecido no Lema 1.

Lema 1. Se $E \subseteq A$, então E é aberto em A e também fechado em A.

Demonstração. Note inicialmente que, para cada $a \in A$, $E = \{a\}$ é aberto em A, ou equivalentemente, $\forall e \in E \exists \varepsilon > 0 (B_{\varepsilon}(e) \cap A \subseteq E)$. De fato, para $e \in E = \{a\}$ arbitrário, basta verificar que $\exists \varepsilon > 0(B_{\varepsilon}(a) \cap A \subseteq \{a\})$, já que neste caso e = a. Usando que A é discreto, tem-se que $e=a\in A$ é ponto isolado de A. Usando este fato, seja $\mathcal{E}_1>0$ tal que $B_{\varepsilon_1}(a) \cap A = \{a\} \subseteq \{a\}.$

Agora note que todo $E \subseteq A$ pode ser escrito como $E = \bigcup_{e \in E} \{e\}$, ou seja, como uma união de abertos em A. Com isso, obtém-se que E é aberto em A. Para obter que todo $E \subseteq A$ é fechado em A, basta notar que seu complemento em A, dado por $A \setminus E$, é subconjunto de A. Assim, $A \setminus E$ é aberto.

Proposição 1. A relação de preferência $R \subseteq A \times A$ é contínua.

Demonstração. Para $y \in A$ arbitrário, tem-se $S_y = \{x \in A | xRy\}$ e $I_y = \{x \in A | yRx\}$. Para obter que $S_y \in I_y$ são ambos fechados em A, basta notar que $S_y \subseteq A$, $I_y \subseteq A$ e A é discreto. O resultado segue então do Lema 1.

Cabe destacar a semelhança do resultado estabelecido na Proposição 1 com a continuidade de funções em pontos isolados do seu domínio apresentada no Lema 2.

Lema 2. Uma dada função $f: D \rightarrow C$ é contínua em todo ponto isolado de D.

Demonstração. Cabe lembrar que f é contínua em $d \in D$ se

$$\forall \varepsilon > 0 \exists \delta > 0 \forall y \in D \Big(\ y \in B_{\delta}(d) \quad \Rightarrow \quad f(y) \in B_{\varepsilon}[f(d)] \ \Big). \tag{1}$$

Seja $d \in D$ um ponto isolado de D e tome $\varepsilon > 0$ arbitrário. Usando que d é ponto isolado de D seja $\delta > 0$ tal que $B_{\delta}(d) \cap D = \{d\}$. Resta provar que $\forall y \in D (y \in B_{\delta}(d) \Rightarrow f(y) \in A$ 4 First et al.

 $B_{\mathcal{E}}[f(d)])$. Para tal, tome $y \in D$ e suponha que $y \in B_{\delta}(d)$. Então, y = d decorre de $y \in B_{\delta}(d) \cap D = \{d\}$. Agora, usando que y = d e $f(d) \in B_{\mathcal{E}}[f(d)]$, conclui-se que $f(y) \in B_{\mathcal{E}}[f(d)]$.

A semelhança entre o resultado da Proposição 1 e o Lema 2 torna-se ainda mais concreta ao comparar o conceito de continuidade de preferência, apresentada na Definição 1, e a caracterização de *continuidade global* de funções estabelecida no Lema 3. Conclui-se que uma função f com domínio D discreto é contínua (pelo Lema 2) e, por isso, possui pré-imagens de fechados fechadas em D (pelo Lema 3). Por outro lado, a relação de preferência R é contínua em A discreto, pois possui conjuntos de contorno S_a e I_a fechados em A.

Lema 3. Para $f: D \to C$ e cada $V \subseteq C$, denote por $f^{-1}(V) = \{d \in D | f(d) \in V\}$ a pré-imagem (ou imagem inversa) de V. São equivalentes:

- 1. f é contínua em D.
- 2. Para todo $V \subseteq C$ aberto em C, tem-se $f^{-1}(V)$ é aberto em D.
- 3. Para todo $V \subseteq C$ fechado em C, tem-se $f^{-1}(V)$ é fechado em D.

Demonstração. Ver, por exemplo, o Teorema apresentado por Berge (1963), na página 57.

2.1.1 *Uma ilustração* A fim de explorar em mais detalhes a propriedade discreta do conjunto A, especial interesse é dedicado a uma relação de preferência cuja continuidade foi explorada em um recente exame de Teoria Microeconômica realizado por candidatos a ingresso em programas de pós-graduação no Brasil. Neste contexto, definiuse no conjunto $X \equiv \bigcup_{n=1}^{\infty} \{1-1/n\} = \{0,1/2,2/3,3/4,\cdots\}$ a relação de preferência \succeq de forma que, para cada par de pontos x e y em X, tem-se $x \succeq y$ se, e somente se, $|x-1/2| \ge |y-1/2|$. Ou seja, 5

$$\forall x \in X \forall y \in X \left(x \succeq y \iff \left| x - \frac{1}{2} \right| \ge \left| y - \frac{1}{2} \right| \right)$$
 (2)

Proposição 2. A relação de preferência ≥ é contínua.

A Proposição 1 garante que \succeq é contínua se A=X e X é discreto. O Lema 4 a seguir, por sua vez, implica que todo ponto de X é ponto isolado de X e, por isso, X é um conjunto discreto.

Lema 4. Para cada $x \in X$ e $\varepsilon \in \mathbb{R}$, se $n \in \mathbb{N}$ é tal que x = 1 - 1/n e $\varepsilon = \frac{1}{2} \left(\frac{n}{n+1} - x \right) > 0$, então $B_{\varepsilon}(x) \cap X = \{x\}$.

 $^{^5}$ O simbolo \forall utilizado na sentença (2) é o quantificador universal e pode ser lido como "para todo". Já o símbolo \Leftrightarrow é o conectivo bicondicional e pode ser lido como "se, e somente se", ou ainda como "é equivalente a".

Demonstração. Tome $x \in X$ e $\varepsilon \in \mathbb{R}$ arbitrários. Tome $n \in \mathbb{N}$ e suponha que x = 1 - 1/ne $\varepsilon=rac{1}{2}\left(rac{n}{n+1}-x
ight)$. Então, $\varepsilon=rac{1}{2n(n+1)}>0$. Como $x\in X$ e $x\in B_{arepsilon}(x)$, então $\{x\}\subseteq B_{arepsilon}(x)\cap X$. Para obter $B_{\varepsilon}(x) \cap X \subseteq \{x\}$, tome $z \in B_{\varepsilon}(x) \cap X$ arbitrário. Resta provar que z = x. Usando que $z \in X \equiv \bigcup_{m=1}^{\infty} \{1-1/m\}$, seja $m \in \mathbb{N}$ tal que z=1-1/m. Como $z \in B_{\varepsilon}(x)=(x-\varepsilon,x+\varepsilon)$, então $x - \varepsilon < z < x + \varepsilon$. Afirma-se que n - 1 < m < n + 1, o que implica m = n a partir de $m \in \mathbb{N}$. De fato, m < n+1 pode ser obtido a partir de $1 - \frac{1}{m} = z < x + \varepsilon = \frac{1}{2} \left(\frac{n}{n+1} + x \right) = 1 - \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right) < 1 - \frac{1}{n+1}$ e m > n-1 é justificado por $1 - \frac{1}{m} = z > x - \varepsilon = x - \frac{1}{2n(n+1)} > 1 - \frac{1}{n+1}$ $\left(1-\frac{1}{n}\right)-\frac{1}{2n(n-1)}=1-\frac{1}{n}\left(1+\frac{1}{2(n-1)}\right)=1-\frac{1}{n-1}\frac{2n-1}{2n}>1-\frac{1}{n-1}\text{ quando }n>1\text{ e por }m\in\mathbb{N}$ quando n=1.

3. Continuidade de Correspondências

A semelhança entre o conceito de continuidade de relações de preferência e o conceito de continuidade global de funções, discutida na Seção 2, é explorada nesta seção no contexto mais geral de continuidade de correspondências. As definições a seguir foram extraídas de Ok (2007).

Definição 2. Seja 2^C o conjunto de todos os subconjuntos de C (ou seja, $2^C \equiv \{x | x \subseteq C\}$) e defina $\mathcal{P}(C) = 2^{\mathcal{C}} \setminus \{\emptyset\}$. A função $\Gamma: D \to \mathcal{P}(C)$ é dita ser uma correspondência de Dem C, o que tipicamente é denotado por $\Gamma: D \rightrightarrows C$.

Comentário 1. A relevância deste conceito para os propósitos deste trabalho se torna evidente ao notar que funções de D em C e relações de preferência definidas em A=D=C são, em certo sentido, casos particulares de correspondências $\Gamma:D\rightrightarrows C$. De fato, toda função $R:D \to C$ é uma relação binária $R \subseteq D \times C$ que relaciona um, e somente um, $c \in C$ a cada $d \in D$. Também já foi definido que relações de preferência \succsim sobre um conjunto A é uma relação binária em A, ou seja, $\succeq \subseteq A \times A$. Ainda, toda correspondência $\Gamma: D \rightrightarrows C$ pode ser vista como (ou associada a) uma relação binária $R \subseteq D \times C$ tal que Ré dada pelo gráfico de Γ, definido como $Gr(\Gamma) \equiv \{(d,c) \in D \times C | c \in \Gamma(d) \}.$

Assim, sob a hipótese de que $\Gamma(d)$ é um conjunto unitário para cada $d \in D$, a correspondência Γ é uma função. Por outro lado, supondo que D=C=A, tem-se que $Gr(\Gamma)$ é uma relação de preferência em A.

Para discutir continuidade da função $\Gamma: D \to \mathcal{P}(C)$ utilizando uma generalização da definição de função contínua, seria necessário generalizar o conceito de bola aberta para o espaço de conjuntos onde reside $\mathcal{P}(C)$. Tal generalização poderia levar a uma versão generalizada do Lema 3 que empregaria um conceito generalizado de préimagem (imagem inversa) de funções⁶. Seguindo a tradição em Economia Matemática, Ok (2007) discute continuidade da função $\Gamma: D \to \mathcal{P}(C)$ em termos de continuidade da correspondência $\Gamma: D \rightrightarrows \mathcal{P}(C)$, conforme Definição 3 a seguir.

⁶Para uma abordagem nestes termos, ver Klein e Thompson (1984).

Definição 3. Seja $d \in D$ e a correspondência $\Gamma: D \rightrightarrows C$. Γ é dita contínua em d se Γ é hemi-contínua superior em d e também é hemi-contínua inferior em d. Por sua vez, Γ é dita hemi-contínua superior (uhc) em d se

$$\forall V \subseteq C \Big(\Big((V \text{ \'e aberto em } C) \wedge \Gamma(d) \subseteq V \Big) \Rightarrow \exists \delta > 0 \\ \forall z \in B_{\delta}(d) \cap D \Big(\Gamma(z) \subseteq V \Big) \Big) \qquad \textbf{(3)}$$

e Γ é dita hemi-contínua inferior (lhc) em d se

$$\forall V\subseteq C\Big(\Big((V\text{ \'e aberto em }C)\wedge\Gamma(d)\cap V\neq\varnothing\Big)\Rightarrow\exists\delta>0\forall b\in B_{\delta}(d)\cap D\left(\Gamma(b)\cap V\neq\varnothing\right)\Big). \text{ (4)}$$

Por fim, Γ é dita contínua/uhc/lhc em $E \subseteq D$ se Γ é contínua/uhc/lhc em todo ponto $e \in E$.

Cabe observar desde já a semelhança entre (1) e (3), em que o aberto relativo V em (3) desempenha papel semelhante àquele de bola aberta $B_{\varepsilon}[f(d)]$ em (1). Analogamente, note a semelhança de (1) com (4), em que as interseções do aberto V com $\Gamma(d)$ e $\Gamma(b)$ em (4) desempenham papel semelhante àqueles dos pertencimentos de f(d) e f(y) a bola aberta $B_{\varepsilon}[f(d)]$ em (1), respectivamente. Tais semelhanças tornam natural esperar que a ideia de continuidade global, estabelecida para funções no Lema 3, possui versão para hemicontinuidade superior e para hemicontinuidade inferior. O Lema 5 a seguir, que apresenta tal resultado, é bastante conhecido em Economia Matemática e sua demonstração tipicamente é deixada como exercício para o leitor 7 .

Lema 5. Seja $\Gamma: D \rightrightarrows C$ e para cada $V \subseteq C$ defina $\Gamma^{-1}(V) = \{d \in D | \Gamma(d) \subseteq V\}$, conhecida como a imagem inversa superior de V, e $\Gamma_{-1}(V) = \{d \in D | \Gamma(d) \cap V \neq \varnothing\}$, conhecida como a imagem inversa (ou pré-imagem) inferior de V. Então,

$$\Gamma$$
 é uhc em $D \Leftrightarrow \forall V \subseteq C ((V \text{ \'e aberto em } C) \Rightarrow \Gamma^{-1}(V) \text{ \'e aberto em } D),$ (5)

$$\Gamma$$
 é lhc em $D \Leftrightarrow \forall V \subseteq C \Big((V \text{ \'e aberto em } C) \Rightarrow \Gamma_{-1}(V) \text{ \'e aberto em } D \Big),$ (6)

$$\Gamma$$
 é uhc em $D \Leftrightarrow \forall F \subseteq C((F \text{ \'e fechado em } C) \Rightarrow \Gamma_{-1}(F) \text{ \'e fechado em } D)$ e (7)

$$\Gamma$$
 é lhc em $D \Leftrightarrow \forall F \subseteq C \Big((F \text{ é fechado em } C) \Rightarrow \Gamma^{-1}(F) \text{ é fechado em } D \Big).$ (8)

Para verificar tal interpretação do Lema 5, note a semelhança de (5) e (6) com o item (2) do Lema 3, em que $\Gamma^{-1}(V)$ em (5) e $\Gamma_{-1}(V)$ em (6) desempenham papel semelhante àquele de $f^{-1}(V)$ no item (2) do Lema 3. Ainda, note a semelhança de (7) e (8) com o item (3) do Lema 3, em que $\Gamma_{-1}(F)$ em (7) e $\Gamma^{-1}(F)$ em (8) desempenham papel semelhante àquele de $f^{-1}(V)$ no item (3) do Lema 3.

Proposição 3. A correspondência $\Gamma: D \rightrightarrows C$ é contínua em D se D é discreto.

⁷Aliprantis e Border (2013) e Ok (2007), por exemplo, convidam o leitor para demonstrar tal lema. Já Klein e Thompson (1984) e Berge (1963) demonstram versões mais gerais deste resultado, utilizando conceitos de continuidade de correspondência levemente diferentes daqueles adotados nesta nota. Por conveniência, Barbieri et al. (2023), a versão em *working paper* desta nota, apresenta uma demonstração deste resultado.

Demonstração. Pela Definição 3, basta mostrar que Γ é uhc em D e também é lhc em D. Para estabelecer que Γ é uhc em D, basta obter (5) quando D=A e A é discreto. Para tal, tome $V \subseteq C$ tal que V é aberto em C. Para ver que $\Gamma^{-1}(V)$ é aberto em D = A, note que $\Gamma^{-1}(V) = \{d \in D | \Gamma(d) \subseteq V\}$ é subconjunto de A e A é discreto. Pelo Lema 1, $\Gamma^{-1}(V)$ é aberto em D. Analogamente, para estabelecer que Γ é lhc em D, basta obter (6) quando D=A e A é discreto. Tome $V\subseteq C$ tal que V é aberto em C. Para ver que $\Gamma_{-1}(V)$ é aberto em D=A, note que $\Gamma_{-1}(V)=\{d\in D|\Gamma(d)\cap V\neq\varnothing\}$ é subconjunto de A e A é discreto. Novamente pelo Lema 1, $\Gamma_{-1}(V)$ é aberto em D.

3.1 Continuidade de Γ vs continuidade de R

A correspondência inversa (natural) de Γ é definida em $\Gamma(D)\equiv \cup_{d\in D}\Gamma(d)\subseteq C$ como a correspondência $\gamma:\Gamma(D)\rightrightarrows D$ tal que $\gamma(c)=\{d\in D|c\in\Gamma(d)\}$ para cada $c\in\Gamma(D)$. Adaptando a Definição 3 para a correspondência $\gamma\colon \Gamma(D)
ightrightarrows D$ e para um determinado ponto $c \in \Gamma(D)$, tem-se que γ é dita contínua em c se γ é uhc em c e γ é lhc em c. Ainda, γ é dita hemi-contínua superior em c se

$$\forall U \subseteq D\Big(\Big((U \text{ \'e aberto em } D) \land \gamma(c) \subseteq U\Big) \Rightarrow \exists \delta > 0 \forall z \in B_{\delta}(c) \cap \Gamma(D)\Big(\gamma(z) \subseteq U\Big)\Big) \tag{9}$$

e γ é dita hemi-contínua inferior em c se

$$\forall U \subseteq D\Big(\Big((U \text{ \'e aberto em } D) \land \gamma(c) \cap U \neq \varnothing\Big) \Rightarrow \exists \delta > 0 \forall b \in B_{\delta}(c) \cap \Gamma(D) \left(\gamma(b) \cap U \neq \varnothing\right)\Big). \tag{10}$$

Com o objetivo de relacionar Γ e R, suponha nesta subseção que D=C=A para obter $\Gamma: A \rightrightarrows A$ e $\gamma: \Gamma(A) \rightrightarrows A$ dada por $\gamma(a) = \{b \in A | a \in \Gamma(b)\}$ para cada $a \in \Gamma(A)$. O gráfico de Γ , por sua vez, é dado por $Gr(\Gamma) = \{(d,c) \in A \times A | c \in \Gamma(d)\} \subseteq A \times A$. Neste caso, $G\equiv Gr(\Gamma)$ é uma relação binária em A e, portanto, é uma relação de preferência em A. A Proposição 4 a seguir estabelece que continuidade de G é consequência da continuidade superior de Γ e de γ .

Proposição 4. Suponha $\Gamma: A \rightrightarrows A$ sobrejetiva e $\gamma: \Gamma(A) \rightrightarrows A$ sua inversa natural e G = $\{(d,c)\in A imes A|c\in\Gamma(d)\}$ seu gráfico. A relação de preferência G é contínua se Γ e γ são ambas superiormente hemi-contínuas em A.

Demonstração. Note inicialmente que o conjunto de contorno inferior da relação G em um dado ponto $a\in A$ é dado por $I_a=\Gamma(a)$ e o conjunto de contorno superior da relação G em um dado ponto $a \in A$ é dado por $S_a = \{b \in A | a \in \Gamma(b)\}$. De fato, $I_a = \{b \in A | aGb\} = A$ $\{b\in A|(a,b)\in G\}=\{b\in A|(a,b)\in Gr(\Gamma)\}$. Usando a definição de $Gr(\Gamma)$, tem-se $I_a=\{b\in A|(a,b)\in G\}$ $A|(a,b) \in A \times A \land b \in \Gamma(a)\} = \{b \in A|b \in \Gamma(a)\} = \Gamma(a)$, em que a terceira igualdade usa que $\Gamma(a)\subseteq A$ e a segunda igualdade usa a equivalência entre as sentenças $(a,b)\in A imes A\wedge b\in A$ $\Gamma(a)$ e $b\in\Gamma(a)$ quando $a\in A$ e $b\in A$. Por fim, note que $S_a=\{b\in A|bGa\}=\{b\in A|(b,a)\in A\}$ $G\} = \{b \in A | (b,a) \in Gr(\Gamma)\} = \{b \in A | (b,a) \in A \times A \land a \in \Gamma(b)\} = \{b \in A | a \in \Gamma(b)\}.$

Do exposto, $S_a = \{b \in A | a \in \Gamma(b)\} = \gamma(a)$ se $a \in \Gamma(D)$ e $S_a = \{b \in A | a \in \Gamma(b)\} = \emptyset$ se $a \notin \Gamma(D)$. A sobrejetividade de Γ , ou seja, $\Gamma(D) = A$ garante que $S_a = \gamma(a)$ para todo $a \in A = \Gamma(D)$. Suponha que Γ é uhc em A e que γ é uhc em $\Gamma(A) = A$.

Quer-se provar que G é contínua, ou seja, que I_a e S_a são fechados em A para cada $a \in A$. Para tal, tome $a \in A$ e defina $F = \{a\}$. Então, $\Gamma_{-1}(F) = \{d \in D | \Gamma(d) \cap F \neq \varnothing\} = \{d \in D | \Gamma(d) \cap \{a\} \neq \varnothing\} = \{d \in D | a \in \Gamma(d)\} = \gamma(a)$ e $\gamma_{-1}(F) = \{c \in \Gamma(D) | \gamma(c) \cap F \neq \varnothing\} = \{c \in \Gamma(D) | a \in \gamma(c)\} = \{c \in \Gamma(D) | a \in D \land c \in \Gamma(a)\} = \{c | c \in \Gamma(a)\} = \Gamma(a)$. Assim, resta provar que $\Gamma_{-1}(F)$ e $\gamma_{-1}(F)$ são fechados em A quando $F = \{a\}$.

Afirma-se que $F=\{a\}\subseteq A$ é fechado em A. De fato, tal propriedade pode ser provada estabelecendo que $U\equiv A\backslash F$ é aberto em A. Para tal, tome $x\in U=A\backslash F$ e note que $x\neq a$ é garantido por $a\in F$ e $x\notin F$. Defina $\delta=\|x-a\|/2>0$ e tome $z\in B_\delta(x)\cap A$ arbitrário. Como $\|a-x\|>\|a-x\|/2=\delta$, então $a\notin B_\delta(x)$. Segue deste resultado que $z\neq a$ e, por isso, $z\in A\setminus \{a\}=A\setminus F$. Provou-se então que $B_\delta(x)\cap A\subseteq U$. Assim, tem-se $A\setminus F$ aberto em A e, por isso, F fechado em A.

Aplicando (7) para Γ uhc em A, tem-se em particular para $F=\{a\}\subseteq A=C$, um fechado em C=A, que $\Gamma_{-1}(F)$ é fechado em D=A. De forma similar, para a correspondência $\gamma:\Gamma(D)\rightrightarrows D$, tem-se a seguinte adaptação de (7):

$$\gamma$$
 é uhc em $\Gamma(D) \Leftrightarrow \forall F \subseteq D((F \text{ é fechado em } D) \Rightarrow \gamma_{-1}(F) \text{ é fechado em } \Gamma(D))$. (11)

Usando que γ é uhc em $\Gamma(D)=A$, tem-se em particular para $F=\{a\}\subseteq A=D$, um fechado em A=D, que $\gamma_{-1}(F)$ é fechado em $\Gamma(D)=A$.

A Proposição 4 garante que se Γ e γ são contínuas, e Γ é sobrejetiva, então G é contínua. Em particular, as continuidades de Γ e γ implicadas por $D=C=\Gamma(D)=A$ quando A é discreto geram continuidade na relação de preferência G^8 .

4. Considerações finais

Inspirada na discussão sobre a continuidade da relação de preferência definida por (2) em $X=\cup_{n=1}^{\infty}\{1-1/n\}$, esta nota apresentou uma discussão bastante abrangente sobre continuidade de relações de preferências definidas em conjuntos discretos. Em particular, a similaridade entre os conceitos de continuidade global de funções e de correspondências com a continuidade de relações de preferências foi utilizada como fio condutor da discussão.

Em linhas gerais, para além de estabelecer a continuidade da relação de preferência definida por (2) no conjunto X, esta nota foi capaz de esclarecer que tal resultado é um caso particular de um resultado muito mais geral: "Toda correspondência

 $^{^8}$ A importância de se supor continuidade superior de γ para este resultado decorre do fato de que continuidade de Γ não é suficiente para gerar continuidade de γ , nem mesmo para gerar hemicontinuidade superior de γ . Este ponto pode ser verificado por meio de contra-exemplos.

Considere $\Gamma:D\rightrightarrows C$ com D=C=[0,2] tal que $\Gamma(d)=2d$ se $d\in[0,1)$ e $\Gamma(d)=2$ para $d\in[1,2]$. Neste caso, é fácil ver que Γ é contínua, uma vez que Γ é uma função contínua. A inversa natural de Γ neste caso é $\gamma:\Gamma(D)\rightrightarrows D$ com $\Gamma(D)=C$ e tal que $\gamma(c)=\{c/2\}$ quando $c\in[0,2)$ e $\gamma(2)=[1,2]$. Embora Γ seja contínua, a correspondência γ não é contínua por não ser lhc em c=2.

Para outro contraexemplo, considere $\Gamma:D\rightrightarrows C$ com D=C=[0,2] tal que $\Gamma(d)=[0,2)$ se $0\le d<1$ e $\Gamma(d)=[0,2]$ para $1\le d\le 2$, uma correspondência contínua. Neste caso, a inversa natural de Γ é $\gamma:\Gamma(D)\rightrightarrows D$ com $\Gamma(D)=C$ e tal que $\gamma(c)=[0,2]$ quando $c\in[0,2)$ e $\gamma(2)=[1,2]$. A correspondência γ não é contínua por não ser uhc em c=2.

com domínio discreto é contínua". Neste contexto, de conjuntos discretos, a relevância da propriedade de relatividade do conceito de conjunto aberto presente na definição de preferência contínua é transparente. De fato, sua combinação com pontos isolados gera continuidade de maneira direta, quase trivial (ver nota de rodapé 3). Além disso, negligenciar tal propriedade na definição de continuidade pode gerar o resultado completamente oposto: de não continuidade da preferência.

A proximidade entre o conceito de relações de preferência e o gráfico de correspondências aqui discutida naturalmente gerou o questionamento sobre a proximidade entre o conceito de continuidade de preferências e o conceito de continuidade de correspondências. O resultado documentado na Proposição 4 e os contra-exemplos apresentados na nota de rodapé 8 são informativos sobre tal questionamento, mas certamente não esgotam a discussão. Por exemplo, aparentemente, a sobrejetividade de Γ não parece ser necessária para continuidade de G. Mais interessantemente, não é discutido nesta nota como se relacionam os conceitos de continuidade de G e a propriedade de gráfico fechado de Γ .

Cabe, por fim, reconhecer que a ambição desta nota não foi contribuir com um novo resultado em Economia Matemática. Todos, ou quase todos, os resultados aqui apresentados já são conhecidos neste campo. A contribuição proposta é apresentar um documento breve que reúne e relaciona de forma interessante diversos conceitos e resultados fundamentais em Economia Matemática. O objetivo com isso é comunicar para a academia brasileira em Economia, de forma breve e transparente, a relevância de tais conceitos.

Apêndice A: Crucialidade do conceito de conjunto aberto relativo

A demonstração de que a relação de preferência ≥ é contínua empregou a definição de continuidade de preferência apresentada por Jehle e Reny (2011), em sua página 8. Nesta definição, os autores foram precisos ao explicitar que os conjuntos de contorno superior e inferior da preferência lá discutida precisavam ser fechado em \mathbb{R}^n_+ , o conjunto no qual a referida preferência foi definida.

Nem sempre a definição de continuidade de preferência é apresentada de forma tão explícita. Um importante exemplo é dado pelas definições apresentadas por Mas-Colell et al. (1995) nas páginas 46 e 47 para continuidade de uma preferência ≿ definida em um conjunto $\mathcal{X} \subseteq \mathbb{R}^L_+$, ambos arbitrários 9 . Primeiramente, o conceito de continuidade é apresentado por Mas-Colell et al. (1995) utilizando sequências, conforme transcrito na Definição 4 a seguir, por conveniência.

Definição 4 (Mas-Colell et al., 1995). The preference relation \succsim on $\mathcal X$ is continuous if it is preserved under limits. That is, for any sequence of pairs $\{(x^n,y^n)\}_{n=1}^{\infty}$ with $x^n \succeq y^n$ for all n, $x = \lim_{n \to \infty} x^n$, and $y = \lim_{n \to \infty} y^n$, we have $x \succeq y$.

Em seguida, o conceito de continuidade é apresentado por Mas-Colell et al. (1995) utilizando conjuntos de contorno superior e inferior, conforme transcrito a seguir, por conveniência

 $[\]overline{{}^9 ext{Cabe}}$ enfatizar que o conjunto $\mathcal X$ nesta discussão é arbitrário, não necessariamente igual a $X=\cup_{n=1}^\infty\{1-1\}$ 1/n.

"An equivalent way to state this notion of continuity is to say that for all x, the upper contour set $\{y \in \mathcal{X} | y \succsim x\}$ and the lower contour set $\{y \in \mathcal{X} | x \succsim y\}$ are both closed; that is, they include their boundaries".

Em ambas as definições apresentadas por Mas-Colell et al. (1995), é compartilhada com o leitor a responsabilidade de inferir sutilezas das definições. Na primeira definição, é necessário inferir que o limite x de $\{x^n\}_{n=1}^\infty$ precisa ser elemento de \mathcal{X} , assim como o limite y de $\{y^n\}_{n=1}^\infty$ precisa ser elemento de \mathcal{X} . Tal inferência seria baseada no fato de que a sentença $x\succsim y$ não faria sentido caso $x\notin \mathcal{X}$ ou $y\notin \mathcal{X}$, uma vez que a preferência \succsim é definida (a princípio) somente em \mathcal{X} . Na segunda definição, é necessário inferir que o conceito de conjunto fechado empregado é o de *fechado relativo*, ou seja, inferir que os conjuntos $\{y\in \mathcal{X}|y\succsim x\}$ e $\{y\in \mathcal{X}|x\succsim y\}$ precisam ser fechados no conjunto \mathcal{X} , ao invés de fechados (em \mathbb{R}^L_+).

Uma leitura desatenta das definições apresentadas por Mas-Colell et al. (1995) gera o risco de concluir de forma incorreta que a relação de preferência ≿ estudada neste trabalho não é contínua. Para ilustrar tal risco, suponha que esta leitura tenha gerado o entendimento que a definição de continuidade de relação seja dada pela Definição 5 a seguir, por conveniência denominada por *contínua**. Neste caso, o leitor seria capaz de provar a Proposição 5 a seguir¹o.

Definição 5. Seja $A \subseteq \mathbb{R}_+^L$ e $\succsim \subseteq A \times A$. A relação de preferência \succsim é contínua* se para cada $b \in A$ os conjuntos $S_b \equiv \{a \in A | a \succsim b\}$ e $I_b \equiv \{a \in A | b \succsim a\}$ são conjuntos fechados em \mathbb{R}_+^L .

Proposição 5. A relação de preferência ≥ definida em (2) não é contínua*.

Referências Bibliográficas

Aliprantis, Charalambos e Kim Border (2013): *Infinite Dimensional Analysis: A Hitchhi-ker's Guide*, Springer-Verlag Berlin and Heidelberg GmbH & Company KG. [6]

Barbieri, Fábio, Jefferson Bertolai, Mirelle Jayme, e Nathan Machado (2023): "Uma nota sobre continuidade de relações de preferência definidas em conjuntos discretos," Rel. Técn., LEMC–FEARP/USP, Ribeirão Preto. [6, 10]

Berge, Claude (1963): Topological spaces: including a treatment of multivalued functions, vector spaces and convexity, Oliver and Boyd. [4, 6]

Jehle, GA e PJ Reny (2011): "Advanced Microeconomic Theory," . [9]

Klein, Erwin e Anthony C Thompson (1984): *Theory of correspondences: Including applications to mathematical economics*, Wiley. [5, 6]

Mas-Colell, Andreu, Michael Dennis Whinston, Jerry R Green, et al. (1995): *Microeconomic theory*, vol. 1, Oxford university press New York. [9, 10]

¹⁰Uma demonstração para esta proposição pode ser encontrada em Barbieri et al. (2023), *working paper* desta nota.

Uma nota sobre continuidade de relações de preferência definidas em conjuntos discretos 11

Ok, Efe A (2007): *Real analysis with economic applications*, vol. 10, Princeton University Press. [5, 6]