ETW3420

Principles of Forecasting and Applications

Topic 4 Exercises

Question 1

Show that a 3×5 MA is equivalent to a 7-term weighted moving average with weights of 0.067, 0.133, 0.200, 0.200, 0.200, 0.133, and 0.067.

Assignment Project Exam Help

Hint:

5-term moving average: //powcoder.com $z_j = \frac{1}{5}(y_{j-2} + y_{j-1} + y_j + y_{j+1} + y_{j+2}).$

$$z_j = \frac{1}{5}(y_{j-2} + y_{j-1} + y_j + y_{j+1} + y_{j+2}).$$

3-term moving average. Add WeChat powcoder

$$u_t = \frac{1}{3}(z_{t-1} + z_t + z_{t+1}).$$

Question 2

The plastics data set consists of the monthly sales (in thousands) of product A for a plastics manufacturer for five years.

- (a) Plot the time series of sales of product A. Can you identify seasonal fluctuations and/or a trend-cycle?
- (b) Use a classical multiplicative decomposition to calculate the trend-cycle and seasonal indices.

- (c) Do the results support the graphical interpretation from part a? What can we learn from this?
- (d) Calculate the trend-cycle component by using an appropriate centred moving average and confirm if the values obtained are identical with those obtained in Part(b)

```
ma(plastics, order = ___ , centre = ___)
```

- (e) Compute and plot the seasonally adjusted data.
- (f) Superimpose the time series plot with the seasonally adjusted data.

Assignment Project Exam Help

We will use the a10 data (Total monthly scripts for pharmaceutical products falling under ATC code A10, as represent the protection for the protection of th

- (a) Plot the data and determine if a Box-Cox transformation is necessary.
- (b) Use an STL decomposition to calculate the trend-cycle and seasonal indices. (Experiment with having fixed or changing seasonality.)

```
#STL with fixed seasonality
fit <- stl(y, s.window='periodic')
autoplot(fit)</pre>
```

```
#STL with changing seasonality
fit2 <- stl(y, s.window = 9)
autoplot(fit2)</pre>
```

The seasonality looks fairly stable, so we'll use a periodic s.window.

- (c) Compute and plot the seasonally adjusted data.
- (d) Use a drift method to produce forecasts of the seasonally adjusted data.
- (e) Use stlf to reseasonalize the results, giving forecasts for the original data.
 - Note that the first argument of the stlf() function is the variable in its level form. The subsequent lambda argument will take care of the Box-Cox transformation, and the reverse transformation.
 - This is what the stlf() function does:
 - It seasonally adjusts the data from an STL decomposition.
 - An Siegonantenthal Reife Git the Xtanargin al De seasonally adjusted data is forecasted.

- https://powcoder.comThe seasonal component from the last year of data is then added back into the forecasts of the seasonally adjusted data.

 Add WeChat powcoder
- The result returned is hence the reseasonalized forecasts.
- (e) Do the residuals look uncorrelated?
- ## Warning in checkresiduals(fc): The fitted degrees of freedom is based on ## the model used for the seasonally adjusted data.
 - (f) Compare forecasts from stlf with those from snaive, using a test set commencing from July 2006. Which is better?

```
#Create train and test sets
train \leftarrow window(a10, end = c(2006, 6))
test \leftarrow window(a10, start = c(2006, 7))
```

#(continue with the code)

Question 4 (Self-Practice)

Use stlf to produce forecasts of the writing and fancy series with either method="naive" or method="rwdrift", whichever is most appropriate. Use the lambda argument if you think a Box-Cox transformation is required.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder