LOM3223 - Materiais e Dispositivos Magnéticos e Supercondutores

Magnetic and Superconducting Materials and Devices

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Ativação: 01/01/2023

Departamento: Engenharia de Materiais

Curso (semestre ideal): EF (7)

Objetivos

Propiciar ao aluno os conhecimentos básicos de materiais magnéticos e supercondutores visando sua aplicação em dispositivos.

Provide the student with the basic knowledge of magnetic and superconducting materials aiming their application in devices.

Docente(s) Responsável(eis)

5840730 - Antonio Jefferson da Silva Machado 5840726 - Cristina Bormio Nunes

Programa resumido

Conceitos fundamentais de propriedades magnéticas da matéria. Magnetismo de elétrons. Ferromagnetismo. Materiais magnéticos e Aplicações: moles e duros. Interação de troca em óxidos e metais. Magnetismo - Fenomenologia Clássica: diamagnetismo e paramagnetismo. Magnetismo - Fenomenologia Quântica: ferromagnetismo. Anisotropia Magnética e Interação Spin-Órbita. Magnetostricção e materiais magnetostrictivos -Introdução e aplicações. Conceitos básicos de supercondutividade. Supercondutividade - Origem Quântica. Super-onda — Consequências. Interferencia quântica — SQUID. Materiais Supercondutores e Aplicações.

Fundamental concepts of magnetic properties of matter. Electron magnetism. Ferromagnetism. Magnetic Materials and Applications: soft and hard. Exchange interaction in oxides and metals. Magnetism - Classical Phenomenology: diamagnetism and paramagnetism. Magnetism - Quantum Phenomenology: ferromagnetism. Magnetic Anisotropy and Spin-Orbit Interaction. Magnetostriction and magnetostrictive materials -Introduction and applications. Basic concepts of superconductivity. Superconductivity - Quantum Origin. Superwave — Consequences. Quantum Interference — SQUID. Superconducting Materials and Applications

Programa

Conceitos fundamentais de propriedades magnéticas da matéria. Magnetismo de elétrons. Ferromagnetismo. Materiais magnéticos e Aplicações: moles e duros. Interação de troca em óxidos e metais. Magnetismo - Fenomenologia Clássica: diamagnetismo e paramagnetismo. Magnetismo - Fenomenologia Quântica: ferromagnetismo. Anisotropia Magnética e Interação Spin-Órbita. Magnetostricção e materiais magnetostrictivos -Introdução e aplicações. Conceitos

básicos de supercondutividade. Supercondutividade - Origem Quântica. Super-onda – Consequências. Interferencia quântica – SQUID. Materiais Supercondutores e Aplicações.

Fundamental concepts of magnetic properties of matter. Electron magnetism. Ferromagnetism. Magnetic Materials and Applications: soft and hard. Exchange interaction in oxides and metals. Magnetism - Classical Phenomenology: diamagnetism and paramagnetism. Magnetism - Quantum Phenomenology: ferromagnetism. Magnetic Anisotropy and Spin-Orbit Interaction. Magnetostriction and magnetostrictive materials -Introduction and applications. Basic concepts of superconductivity. Superconductivity - Quantum Origin. Superwave — Consequences. Quantum Interference — SQUID. Superconducting Materials and Applications

Avaliação

Método: Aulas expositivas, seminários e exercícios comentados.

Critério: A nota final , antes da recuperação é dada pela média aritmética das notas das avaliações escritas e da nota do seminário apresentado, se aplicável.

Norma de recuperação: Aplicação de uma prova escrita dentro do prazo regimental antes do início do próximo semestre letivo. A nota da segunda avaliação será a média aritmética entre a nota da prova de recuperação e a nota final da primeira avaliação

Bibliografia

JILES, D. C. Introduction to Magnetism and Magnetic Materials, CRC Press, 1998.

COEY, J. M. D. Magnetism and Magnetic Materials, Cambridge University Press, 2010.

BUSCHOW, K. H. J.; DE BOER, F. R. Physics of Magnetism and Magnetic Materials, Springer, 2003.

CULLITY, B. D.; GRAHAM, C. D. Introduction to Magnetic Materials, Wiley-IEEE Press, 2008. POOLE, C. P. et al., Superconductivity, Academic Press, 2007.

SHEAHEN, T. P. Introduction to High-Temperature Superconductivity, Kluwer Academic, 2002. LEE, P. J. Engineering Superconductivity, Wiley-IEEE Press, 2001.

Requisitos

LOM3215 - Física do Estado Sólido (Requisito)

LOM3263 - Eletrônica Fundamental e Aplicada (Requisito)