blockchain linear logic cheat sheet much logic, such formal, wow

Denis Erfurt& Jack Ek

DappHub

denis@dapphub.com

Abstract

LL Sequent Calculus

ILL Sequent Calculus

$$-\otimes \mathbf{L}$$

$$\frac{\Delta, A \vdash C \quad \Delta, B \vdash C}{\Delta, A \oplus B \vdash C} \oplus \mathbf{L}$$

$$\frac{\Delta \vdash A_i}{\Delta \vdash A_0 \oplus A_1} \oplus R_i$$

Negation and De-Morgan's laws

$(A^{\perp})^{\perp} \equiv A$	$(A \otimes B)^{\perp} \equiv A^{\perp} \mathfrak{P} B^{\perp}$	$(A\&B)^{\perp} \equiv A^{\perp} \oplus B^{\perp}$
$(A \mathcal{P} B)^{\perp} \equiv A^{\perp} \otimes B^{\perp}$	$(A \oplus B)^{\perp} \equiv A^{\perp} \& B^{\perp}$	

something

	conjunction	disjunction		
multiplicative	\otimes	38		
additive	&	\oplus		
positive : \otimes , \oplus , \exists negative : $\&$, \Im , \forall				

Structural Rules

 \boldsymbol{A}

$A \otimes (B \oplus C) \leadsto (A \otimes B) \oplus (A \otimes C)$	$A \mathfrak{P}(B \& C) \leadsto (A \mathfrak{P}B) \& (A \mathfrak{P}C)$

RuleZer

$$\frac{1}{|A|+|A|}Id \qquad \qquad \frac{1}{|\Gamma|+|\Delta|}Prem \qquad \qquad \frac{1}{|\Gamma|+|\Delta|}Partial$$

RuleCut

$$\frac{\Theta, A \vdash \Delta \quad \Gamma \vdash A}{\Gamma, \Theta \vdash \Delta} Cut$$

RuleStruct

RuleStruct		
$\frac{(\Gamma_1, \Delta_1), (\Gamma_2, \Delta_2) \vdash \Theta}{(\Gamma_1, \Gamma_2), (\Delta_1, \Delta_2) \vdash \Theta} PL$	$\frac{\Theta \vdash (\Delta_1, \Gamma_1), (\Delta_2, \Gamma_2)}{\Theta \vdash (\Delta_1, \Delta_2), (\Gamma_1, \Gamma_2)} PR$	$\frac{\Gamma \vdash (\Delta_1, \Delta_2), \Delta_3}{\Gamma \vdash \Delta_1, (\Delta_2, \Delta_3)} AR$
$\frac{\Gamma \vdash \Delta_1, (\Delta_2, \Delta_3)}{\Gamma \vdash (\Delta_1, \Delta_2), \Delta_3} AR$	$\frac{(\Delta_1, \Delta_2), \Delta_3 \vdash \Gamma}{\Delta_1, (\Delta_2, \Delta_3) \vdash \Gamma} AL$	$\frac{\Delta_1, (\Delta_2, \Delta_3) \vdash \Gamma}{(\Delta_1, \Delta_2), \Delta_3 \vdash \Gamma} AL$
$\frac{\cdot, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} IL_L$	$\frac{\Gamma \vdash \Delta}{\cdot, \Gamma \vdash \Delta} IL_L$	$\frac{\Gamma, \cdot \vdash \Delta}{\Gamma \vdash \Delta} IL_R$
$\frac{\Gamma \vdash \Delta}{\Gamma, \cdot \vdash \Delta} IL_R$	$\frac{\Gamma \vdash \cdot, \Delta}{\Gamma \vdash \Delta} IR_L$	$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \cdot, \Delta} IR_L$
$\frac{\Gamma \vdash \Delta, \cdot}{\Gamma \vdash \Delta} IR_R$	$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, \cdot} IR_R$	

RuleU

$$\frac{\Gamma, (A, B) \vdash C}{\Gamma, A \otimes B \vdash C} \otimes_{L} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \multimap_{R}$$

RuleBin

$$\frac{\Delta \vdash B \ \Gamma \vdash A}{\Gamma, \Delta \vdash A \otimes B} \otimes_{R} \frac{\Delta, B \vdash C \ \Gamma \vdash A}{(\Gamma, \Delta), A \multimap B \vdash C} \multimap_{R}$$