Metoda redukce

Přednáška č. 5

Osnova

- m-redukce
- m-úplné množiny
- důkazy redukcí
- jiné typy redukce
- redukce v teorii jazyků

Vyčíslitelnost a složitost IB107

Metoda redukce

2

Princip redukce

Riceova věta poskytuje silný nástroj k důkazu nerekurzívnosti množiny. Důvodem je to, že ve větě je obsažena **obecná metoda.**

Jádro důkazu: spor s nerekurzívností problému zastavení.

Sporu je dosaženo tak, že v důkazu je definována totálně vyčíslitelná funkce f taková, že

 $i \in K$ právě když $f(i) \in I$

Funkce f tak **efektivně převádí** problém příslušnosti pro K na problém příslušnosti pro I. Pokud bychom uměli rozhodovat problém I, pak bychom uměli rozhodovat i problém K. Říkáme, že K se **redukuje** na I.

Princip redukce

Redukce

Definice 1 Nechť $A, B \subseteq \mathbb{N}$.

- 1. Říkáme, že A se **m-redukuje** na B (píšeme $A \leq_m B$) právě když existuje totálně vyčíslitelná funkce $f: \mathbb{N} \to \mathbb{N}$ taková, že $A = f^{-1}(B)$.
- 2. Říkáme, že A a B jsou m-ekvivalentní (píšeme $A \equiv_m B$) právě když $A \leq_m B$ a $B \leq_m A$.

Index m u označení relace znamená, že funkce f nemusí být prostá (může být many-to-one).

Metoda redukce

Redukce

Lema 2 Relace \leq_m je reflexívní a tranzitívní, t.j. je **kvaziuspořádání**.

Je-li $A \leq_m B$ říkáme také, že B je **těžší** než A.

Důkaz:

- 1. $A = \{x \mid x \in A\} = f^{-1}(A)$, kde f = Identita
- 2. Nechť $A = f^{-1}(B)$ a $B = g^{-1}(C)$. Pak $x \in A \Leftrightarrow f(x) \in B \Leftrightarrow g(f(x)) \in C$, t.i. $x \in A \Leftrightarrow (g \circ f)(x) \in C$, t.j. $A \leq_m C$.

Redukce

 \leq_m lze ekvivalentně charakterizovat takto:

- $\forall x : x \in A \Leftrightarrow f(x) \in B$ $[x \in A \Leftrightarrow x \in f^{-1}(B) = \{x \mid f(x) \in B\} \Leftrightarrow f(x) \in B]$
- $f(A) \subseteq B \land f(\overline{A}) \subseteq \overline{B}$

[Je-li $x \in A$, pak $f(x) \in f(A)$ a tedy $f(x) \in B$. Je-li $x \notin A$, pak $f(x) \in f(\overline{A})$ a tedy $f(x) \notin B$.

Jestliže $y \in f(A)$, pak y = f(x) pro $x \in A$ a tedy $y \in B$. Je-li $y \in f(\overline{A})$, pak y = f(x) pro $x \notin A$ a tedy $y = f(x) \notin B$

 $\bullet \ \chi_A = \chi_B \circ f$

 $[\chi_A = \chi_B \circ f \Leftrightarrow \forall x : \chi_A(x) = \chi_B(f(x)) \Leftrightarrow$ $(\forall x : x \in A \Leftrightarrow f(x) \in B)$

Metoda redukce

Důkazy redukcí

Věta 3 Nechť $A \leq_m B$.

- 1. Je-li B rekurzívní, pak i A je rekurzívní.
- 2. Je-li B rekurzívně spočetná, pak i A je rekurzívně spočetná.
- 3. $\overline{A} <_m \overline{B}$.

Důkaz:

1. Existuje totálně vyčíslitelná funkce f tak, že $x \in A \Leftrightarrow f(x) \in B$. Je-li B rekurzívní, pak χ_B je totálně vyčíslitelná funkce. Tedy $x \in A \Leftrightarrow f(x) \in B \Leftrightarrow \chi_B(f(x)) = 1 \Leftrightarrow (\chi_B \circ f)(x) = 1.$ Proto $A = (\chi_B \circ f)^{-1}\{1\}$, kde $\chi_B \circ f$ je totálně vyčíslitelná.

Důkazy redukcí

- 2. Je-li B rekurzívně spočetná, pak $B=\mathrm{dom}(g)$ pro nějakou vyčíslitelnou funkci g. Protože $g\circ f$ je vyčíslitelná funkce a $A=f^{-1}(B)=f^{-1}(\mathrm{dom}(g))=\mathrm{dom}(g\circ f)$, je množina A rekurzívně spočetná.
- 3. $x \in A \Leftrightarrow f(x) \in B$, tedy $x \notin A \Leftrightarrow f(x) \notin B$.

Metoda redukce 9

Úplné problémy

Věta 5 Je-li množina $A\subseteq \mathbb{N}$ rekurzívně spočetná, pak $A\leq_m K$.

 $\mathrm{D}\mathring{\mathrm{u}}\mathrm{kAz}$: Definujme funkci $\theta:\mathbb{N}^2 o\mathbb{N}$ následovně

$$heta(x,y) = \left\{egin{array}{ll} 1 & ext{je-li } x \in A \ ot & ext{je-li } x
otin A \end{array}
ight.$$

Funkce θ je vyčíslitelná. Podle translačního lemmatu existuje totálně vyčíslitelná funkce $f:\mathbb{N}\to\mathbb{N}$ taková, že $\theta(x,y)=\varphi_{f(x)}(y)$. Protože $\varphi_{f(x)}(f(x))$ je definováno právě když $x\in A$, platí $x\in A\Leftrightarrow f(x)\in K$.

Důkazy redukcí

Důsledek 4 Nechť $A \leq_m B$.

- 1. Jestliže A není rekurzívní, pak B není rekurzívní.
- 2. Jestliže A není rekurzívně spočetná, pak B není rekurzívně spočetná.

O důkazu založeném na větě 3 či na důsledku 4 říkáme, že je proveden **metodou redukce (redukcí)**.

Důkaz redukcí vyžaduje vhodnou množinu. Velice často je touto množinou problém zastavení K resp. problém nezastavení \overline{K} . To je dáno tím, že problém zastavení má mezi nerekurzívními rekurzívně spočetnými množinami výsadní postavení.

Metoda redukce

Těžké a úplné problémy

Předchozí výsledek znamená, že problém příslušnosti pro \boldsymbol{K} je alespoň tak $\mathbf{težk\acute{y}}$ jako jakýkoliv jiný rekurzívně spočetný problém.

Řečeno jinak: pokud by existoval algoritmus pro rozhodování problému zastavení K, pak by existoval i algoritmus pro rozhodování libovolného jiného r.e. problému.

Protože K je rekurzívně spočetná množina, říkáme, že K je **nejtěžší** mezi r.e. množinami.

Definice 6 Nechť $\mathbb C$ je třída podmnožin množiny $\mathbb N$ a $A\subseteq \mathbb N$. Řekneme, že množina A je $\mathbb C$ -těžká, právě když pro každou množinu $B\in \mathbb C$ platí $B\leq_m A$. Je-li navíc $A\in \mathbb C$, pak A se nazývá $\mathbb C$ -úplná (úplná v třídě $\mathbb C$).

Věta 7 Množina K je úplná v třídě všech rekurzívně spočetných množin.

Problém nezastavení

Problém nezastavení \overline{K} není rekurzívně spočetná množina. Jeho použití při důkazech dává věta:

Věta 8 Jestliže $\overline{K} \leq_m A$, pak A není rekurzívně spočetná.

Důkaz: Tvrzení je zřejmé, neboť $\overline{K}=f^{-1}(A)$ a tedy pokud by A byla r.e., musela by být i množina \overline{K} r.e.

Některé ukázky redukcí

Příklad 9 Problém verifikace je nerozhodnutelný.

Množina $A = \{i \mid \varphi_i = g\}$, kde g je pevná totálně vyčíslitelná funkce, není rekurzívní.

Nejprve ukážeme, že množina $B = \{i \mid \varphi_i = identita\}$ není rekurzívní.

Nechť f(i) je index programu

$$\underline{\mathsf{begin}}\ x_2 := \Phi(i, x_1)\ \underline{\mathsf{end}}$$

Zřejmě

$$arphi_{f(i)}(x) = \left\{egin{array}{ll} x & ext{je-li } arphi_i(x) ext{ je definováno} \ oxedsymbol{oxedsymbol{oxedsymbol{eta}}} & ext{jinak} \end{array}
ight.$$

Tedy $\varphi_{f(i)} = identita$ právě když $\varphi_i(x)$ je definováno pro všechna x a to je právě když φ_i je totální.

Metoda redukce 13

Metoda redukce 14

Některé ukázky redukcí

Funkce f je totálně vyčíslitelná, $A_1=\{i\mid \varphi_i \text{ je totáln}i\}$ není rekurzívní a $A_1\leq_m B$. Tedy B není rekurzívní.

Nyní ukážeme, že $B\leq_m A$. Nechť $g:\mathbb{N}\to\mathbb{N}$ je libovolná vyčíslitelná funkce, t.j. $g=\varphi_e$ pro nějaké e. Buď h(i) index programu

$$\begin{array}{l} \underline{\text{begin}} \ x_2 := \Phi(i, x_1); \\ \underline{\text{while}} \ x_2 \neq x_1 \ \underline{\text{do}} \ x_1 := x_1; \\ x_1 := \Phi(e, x_1) \\ \underline{\text{end}} \end{array}$$

Zřejmě

$$arphi_{h(i)} = g$$
 právě když $arphi_i = identita$

Poznamenejme, že jsme současně dokázali i to, že množina \boldsymbol{A} není rekurzívně spočetná, neboť \boldsymbol{A}_1 není rekurzívně spočetná.

Některé ukázky redukcí

Příklad 10 Problém ekvivalence je nerozhodnutelný. Množina $A_{12}=\{(i,j)\mid \varphi_i=\varphi_j\}$ není rekurzívní.

Ukážeme, že $B \leq_m A_{12}$. Nechť e je index identity. Položme f(i) = < i, e>. Funkce f je totálně vyčíslitelná a $\varphi_i = identita$ právě když $\varphi_i = \varphi_e$, což je právě když $f(i) \in A_{12}$.

Stupně nerozhodnutelnosti

- Relace m-ekvivalence \equiv_m je ekvivalencí.
- Třídy m-ekvivalence nazýváme m-stupně nerozhodnutelnosti.
- Kvaziuspořádání \leq_m indukuje částečné uspořádání na třídách m-ekvivalence vzhledem k \equiv_m .
- Doposud jsme získali tyto znalosti o struktuře uspořádání na třídách m-ekvivalence:
- 1. Množina \boldsymbol{K} má maximální stupeň nerozhodnutelnosti mezi rekurzívně spočetnými množinami.
- 2. Množiny ∅ a ℕ jsou **nesrovnatelné**, i když jsou obě rekurzívní.
- 3. Množiny K a \overline{K} jsou nesrovnatelné.

Stupně nerozhodnutelnosti

- Každý m-stupeň obsahující rekurzívní množinu, je tvořen jen rekurzívními množinami (rekurzívní stupeň). Každý m-stupeň obsahující r.e. množinu, je tvořen jen r.e. množinami (r.e. stupeň).
- Uspořádání na m-stupních tvoří horní polosvaz: každé dva stupně mají jednu nejmenší horní závoru.

Důkaz: Nechť d(X) je m-stupeň obsahující množinu X. Nechť jsou dány množiny A a B. Položme

$$A \text{ join } B = \{y \mid (y = 2x \land x \in A) \lor (y = 2x + 1 \land x \in B)\}$$

Pak d(A join B) je nejmenší horní závora pro d(A) a d(B).

• Každá nejmenší horní závora dvou r.e. stupňů je r.e.

Metoda redukce 17

Metoda redukce 18

Stupně nerozhodnutelnosti

- Neporovnatelné množiny generují neporovnatelné stupně.
- Existují neporovnatelné nerekurzívní r.e. m-stupně ?
 ANO
- Tvoří m-stupně svaz ? (Existují i největší dolní závory ?)
 NE

Jiné typy redukce

Základem pro klasifikaci nerekurzívních množin byla redukce.

Dodatečné požadavky na redukční funkci: prostá, bijekce, "jednoduše vyčíslitelná" ap.

Definice 11 Nechť $A, B \subseteq \mathbb{N}$.

- 1. Říkáme, že A se 1-redukuje na B (píšeme $A \leq_1 B$) právě když existuje totálně vyčíslitelná funkce $f: \mathbb{N} \to \mathbb{N}$ taková, že f je prostá a $A = f^{-1}(B)$.
- 2. Říkáme, že A a B jsou 1-ekvivalentní (píšeme $A\equiv_1 B$) právě když $A\leq_1 B$ a $B\leq_1 A$.
- 3. Říkáme, že A a B jsou **izomorfní** (píšeme $A \approx B$) právě když existuje totálně vyčíslitelná **bijekce** $f: \mathbb{N} \to \mathbb{N}$ taková, že $A = f^{-1}(B)$.

Metoda redukce 19 Metoda redukce 20

Vlastnosti 1-redukce

Věta 12 Nechť $A, B \subseteq \mathbb{N}$.

- 1. \leq_1 je reflexivní a tranzitivní relace, t.j. je kvaziuspořádání.
- 2. Jestliže $A \leq_1 B$, pak $\overline{A} \leq_1 \overline{B}$.
- 3. Jestliže $A \leq_1 B$ a B je rekurzívní, pak A je rekurzívní.
- 4. Jestliže $A \leq_1 B$ a B je r.e., pak A je r.e.

Vztah mezi redukcemi

Věta 13 Nechť $A, B \subseteq \mathbb{N}$.

- 1. Jestliže $A \leq_1 B$, pak $A \leq_m B$.
- 2. Jestliže $A \equiv_1 B$, pak $A \equiv_m B$.
- 3. Jestliže $A \approx B$, pak $A \equiv_1 B$.

Obrácená tvrzení obecně neplatí.

Metoda redukce 21 Metoda redukce 22

1-stupně nerozhodnutelnosti

Relace 1-ekvivalence \equiv_1 je ekvivalencí. Třídy 1-ekvivalence nazýváme 1-stupně nerozhodnutelnosti.

Kvaziuspořádání \leq_1 indukuje opět kvaziuspořádání na třídách 1-ekvivalence vzhledem k \equiv_1 .

1-ekvivalence představuje ostře jemnější nástroj pro rozlišení "obtížnosti" problémů.

m-úplnost a 1-úplnost

Ve třídě rekurzívně spočetných množin jsou pojmy m-úplnosti a 1-úplnosti ekvivalentní.

Věta 14 Nechť $A\subseteq \mathbb{N}$ je rekurzívně spočetná množina. Pak následující tvrzení jsou ekvivalentní:

- 1. A je m-úplná v třídě r.e. množin.
- 2. A je 1-úplná v třídě r.e. množin.
- 3. $K \leq_m A$
- 4. $K \leq_1 A$
- 5. $K \equiv_m A$

m-úplnost a 1-úplnost

Důkaz: Důkaz je veden posloupností těchto implikací:

$$A$$
 je m -úplná v r.e. $\Rightarrow K \leq_m A$ $(K$ je r.e.) $\Rightarrow K \equiv_m A$ $(K$ je úplná) $\Rightarrow K \approx A$ $\Rightarrow K \leq_1 A$ $\Rightarrow A$ je 1 -úplná $(K$ je 1 -úplná) $\Rightarrow A$ je m -úplná v r.e.

Semi-Thueovy systémy

Definice 15 Semi-Thueův systém $\mathcal T$ nad konečnou abecedou Σ je určen konečnou množinou $\mathcal P$ přepisovacích pravidel tvaru $\alpha \to \beta$, kde $\alpha \in \Sigma^+$ a $\beta \in \Sigma^*$.

Řekneme, že $y\in \Sigma^*$ je **přímo odvoditelné** z $x\in \Sigma^*$ (píšeme $x\Rightarrow_{\mathcal{T}} y$), právě když existují $u,v\in \Sigma^*$ tak, že $x=u\alpha v,y=u\beta v$ a $\alpha\to\beta\in\mathcal{P}$.

Nechť $\Rightarrow_{\mathcal{T}}^*$ je reflexivní a tranzitivní uzávěr relace $\Rightarrow_{\mathcal{T}}$.

Metoda redukce 25

Semi-Thueovy systémy

Příklad 16 $\mathcal{T} = (\{a,b\}, \{ab \rightarrow bbb, bb \rightarrow \epsilon\})$. Máme:

- 1. $abbab \Rightarrow_{\mathcal{T}}^* bbbbbbb$ $abbab \Rightarrow_{\mathcal{T}} bbbbab \Rightarrow_{\mathcal{T}} bbbbbbb$
- 2. $babb \Rightarrow_{\mathcal{T}}^* b$ $babb \Rightarrow_{\mathcal{T}} bbbbb \Rightarrow_{\mathcal{T}} bbb \Rightarrow_{\mathcal{T}} b$
- abbabbb ⇒_T* bbbb
 slovo obsahuje sudý počet b, právě když obsahuje sudý počet b po aplikaci libovolného pravidla
 abbabbb obsahuje lichý počet b; bbbb obsahuje sudý počet b

Slovní problém pro semi-Thueovy systémy

Věta 17 Množina $\{(\mathcal{T}, x, y) \mid x \Rightarrow_{\mathcal{T}}^* y\}$ není rekurzívní.

Důkaz: Důkaz je veden redukcí z množiny

 $\{(M,x,y)\mid$ Turingův stroj M pro vstup x skončí s výstupem $y\}$

kde $x, y \in \mathbb{N}$. Tato množina není rekurzívní.

K libovolnému TS M libovolné dvojici čísel $x,y\in\mathbb{N}$ sestrojíme semi-Thueův systém \mathcal{T} nad abecedou Σ a dvojici slov $u,v\in\Sigma^*$ tak, že M(x)=y právě když $u\Rightarrow_{\mathcal{T}}^*v$.

Slovo u bude: ${
ho}q_0B\overline{x}{\lhd}$ $(q_0$ je počáteční stav TS M) Slovo v bude: \overline{y}

Semi-Thueův systém ${\mathcal T}$ bude ${\sf simulovat}$ výpočet TS M.

Metoda redukce

Slovní problém pro semi-Thueovy systémy

Konstrukci ukážeme na příkladě. Čísla kódujeme unárně pomocí symbolů \boldsymbol{I} .

Uvažujme TS

$$(q_0 \ B \ q_1 \ B \ R)$$

$$(q_1 \quad I \quad q_1 \quad I \quad R)$$

$$(q_1 \;\; B \;\; q_2 \;\;\; I \;\;\; L)$$

$$(q_2 \quad I \quad q_2 \quad I \quad L)$$

$$(q_2 \ B \ q_H \ B \ N)$$

Slovní problém pro semi-Thueovy systémy

Simulace začíná se slovem

$$ightharpoonup q_0 \ B \ \overline{x} \ artherpoonup q$$

Poté ${\mathcal T}$ "provádí" přechody podle pravidel TS ${M}$. Pravidlu

$$(q_0 B q_1 B R)$$

odpovídá přepisovací pravidlo

$$q_0 B \rightarrow B q_1$$

Metoda redukce 29

Metoda redukce 30

Slovní problém pro semi-Thueovy systémy

Pravidlu

$$(q_2 \quad I \quad q_2 \quad I \quad L)$$

odpovídají dvě přepisovací pravidla

Rovněž potřebujeme přepisovací pravidla, která umožní přidávat prázdné symboly na oba konce slova (vytvářet potencionálně nekonečnou pásku).

Slovní problém pro semi-Thueovy systémy

Po skončení simulace je nutné převést slovo na tvar, který odpovídá požadovanému výstupu TS M, t.j.

t.j. slovu

$$\dots$$
 B q_H B I I \dots I B \dots

Slovní problém pro semi-Thueovy systémy

Požadovaný formát získáme pomocí těchto pravidel:

q_H	\boldsymbol{B}	\longrightarrow	\boldsymbol{A}			\boldsymbol{C}	\triangleleft	\longrightarrow	D	
\boldsymbol{A}	\boldsymbol{I}	\rightarrow	\boldsymbol{I}	\boldsymbol{A}		\boldsymbol{I}	\boldsymbol{D}	\longrightarrow	\boldsymbol{D}	I
\boldsymbol{A}	\boldsymbol{B}	\longrightarrow	\boldsymbol{C}				\boldsymbol{D}	\longrightarrow	$oldsymbol{E}$	
\boldsymbol{C}	\boldsymbol{B}	\longrightarrow	\boldsymbol{C}			\boldsymbol{B}	$oldsymbol{E}$	\longrightarrow	$oldsymbol{E}$	
\boldsymbol{C}	I	\longrightarrow	\boldsymbol{C}			\triangleright	$oldsymbol{E}$	\longrightarrow	ϵ	

Smyslem pravidel je:

- 1. zaměnit q_H za A a posunout A za první blok tvořený symboly I
- 2. změnit stav na nový stav (C), který vymaže všechny symboly napravo od prvního bloku
- 3. přesunout nový symbol \boldsymbol{D} doleva přes první blok
- 4. vymazat všechny symboly B a ho nalevo od prvního bloku

Postovy systémy

Definice 18 Postův systém P nad konečnou abecedou Σ je konečná množina uspořádaných dvojic $\{(\alpha_i,\beta_i)\}, 1\leq i\leq n$, kde $\alpha_i,\beta_i\in\Sigma^*$.

Řešením Postova systému je každá neprázdná posloupnost přirozených čísel i_1,i_2,\ldots,i_m $(1\leq i_j\leq n)$ taková, že

$$\alpha_{i_1}\alpha_{i_2}\dots\alpha_{i_m}=\beta_{i_1}\beta_{i_2}\dots\beta_{i_m}$$

Metoda redukce 33

Metoda redukce

Postovy systémy

Příklad 19 Buď $\Sigma = \{a,b\}$. Postův systém

$$S = \{(b,bbb), (babbb,ba), (ba,a)\}$$

má řešení $i_1=2, i_2=1, i_3=1, i_4=3$ (je tedy m=4), protože

$$lpha_2 \qquad lpha_1 \quad lpha_1 \qquad lpha_3 \qquad \qquad eta_2 \qquad eta_1 \qquad eta_1 \qquad eta_1 \qquad eta_1$$

Příklad 20 Buď $\Sigma = \{a,b\}$. Postův systém

$$S = \{(ab, abb), (a, ba), (b, bb)\}$$

nemá řešení, protože ve všech dvojicích je vždy α_i ostře kratší než β_i .

Postův problém přiřazení

Věta 21 Postův problém přiřazení (PCP) je nerozhodnutelný.

 $\mathrm{D}\mathring{\mathrm{u}}$ к Az : Redukcí z problému slov pro semi-Thueovy systémy. Buď $\mathcal{T}=(\Sigma,P)$ semi-Thue $\mathring{\mathrm{u}}$ v systém. Nechť Σ' je následující rozšíření abecedy Σ :

- Pro každé $a \in \Sigma$ přidáme do Σ' nový symbol \overline{a} .
- Do Σ' přidáme nové symboly: $*, \overline{*}, [,]$.

Pro $w\in \Sigma^*$ označme $\overline{w}\in \Sigma'^*$ slovo, které vznikne z w náhradou symbolů jejich "opruhovanými" protějšky.

34

Postův problém přiřazení

Nechť $x \Rightarrow_{\mathcal{T}}^* y$ je slovní problém. Převedeme ho na PCP, který bude vhodně kódovat odvození

$$x = w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n = y$$

Každé řešení PCP bude začínat takto:

$$[w_1*]$$
 levá strana rovnice $[$ pravá strana rovnice

Dále musí řešení pokračovat takto:

$$[w_1 * \overline{w_2} \overline{*}]$$

 $[w_1 *$

Postův problém přiřazení

Dále musí být

$$[w_1 * \overline{w}_2 \overline{*} w_3 * [w_1 * \overline{w}_2 \overline{*}]$$

a tak dále se střídají pruhované a nepruhované bloky až dostaneme

$$[w_1 * \overline{w}_2 \overline{*} \dots \overline{w}_{n-1} \overline{*} w_n]$$

$$[w_1 * \overline{w}_2 \overline{*} \dots \overline{w}_{n-1}]$$

V posledním kroku pravá strana "dožene" levou

$$[w_1 * \overline{w}_2 \overline{*} \dots \overline{w}_n]$$

Metoda redukce 37

Metoda redukce

38

Postův problém přiřazení

Pro daný semi-Thueův systém \mathcal{T} a slova x, y je odpovídající Postův systém určen těmito dvojicemi slov:

(1)
$$(a,\overline{a})$$
 a (\overline{a},a) pro každé $a\in\Sigma\cup\{*\}$

(2)
$$([w_1*,[), kde w_1 = x]$$

(3)
$$(], \overline{*}w_n]$$
), kde $w_n = y$

(4)
$$(\beta, \overline{\alpha})$$
 a $(\overline{\beta}, \alpha)$ pro každé $\alpha \to \beta \in T$

Je zřejmé, že (2) musí být použita jako první, pokud má být dosaženo shody. Podobně (3) musí být použita jako poslední.

Postův problém přiřazení

Předpokládejme nyní, že jsme získali

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} \\ [w_1 * \ldots \overline{*} w_k *$$

pro k+1 < n. Předpokládejme, že $w_{k+1} \Rightarrow w_{k+2}$ podle pravidla $\alpha \to \beta$ pro $w_{k+1} = u\alpha v, w_{k+2} = u\beta v$. Tuto derivaci v Postově systému napodobíme takto: opakovaným použitím (1) máme

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} u]$$

$$[w_1 * \ldots \overline{*} w_k * \overline{u}]$$

dále pomocí (4) máme

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} u\beta$$

$$[w_1 * \ldots \overline{*} w_k * \overline{u\alpha}$$

Postův problém přiřazení

a opět pomocí (1) dostaneme

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} u\beta v]$$
$$[w_1 * \ldots \overline{*} w_k * \overline{u\alpha v}]$$

To dáva

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} w_{k+2}]$$

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1}]$$

Metoda redukce

Postův problém přiřazení

Všimněme si, že w_n v pravidle (3) nemá pruhy. Je tedy použitelné jen pro n liché. Použitím pravidla (1) však můžeme dvojici

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} \\ [w_1 * \ldots \overline{*} w_k *$$

změnit na

$$[w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*} w_{k+1} * [w_1 * \ldots \overline{*} w_k * \overline{w}_{k+1} \overline{*}]$$

a obrátit tak pruhování u posledního bloku.

Indukcí dostáváme

 $x \Rightarrow_{\mathcal{T}}^* y$ právě když vytvořený Postův systém má řešení

Metoda redukce 42

Příklad

$$\begin{split} \mathcal{T} &= (\{a,b,\},\{ba \to ab,aab \to \epsilon\}). \\ aba &\Rightarrow^* \epsilon ? \\ aba &\Rightarrow aab \Rightarrow \epsilon \\ \text{PCP:} \\ \Sigma' &= \{a,b,\overline{a},\overline{b},*,\overline{*},[,]\} \\ \\ S &= \{ \quad (a,\overline{a}),(b,\overline{b}),(\overline{a},a),(\overline{b},b),(*,\overline{*}),(\overline{*},*) \end{split}$$

 $([aba*,[),(],\overline{*}\epsilon]),$

 $(ab, \overline{b}\overline{a}), (\overline{a}\overline{b}, ba), (\epsilon, aab), (\epsilon, \overline{a}\overline{a}\overline{b})$

Příklad

$$[aba * \overline{a} \\ [aba * \overline{a} \\ [a \\ [aba * \overline{a}\overline{a}\overline{b} \\ [aba \\ [aba * \overline{a}\overline{a}\overline{b} \overline{*} \\ [aba * \overline{a}\overline{a}\overline{b} \overline{*} \epsilon \\ [aba * \overline{a}\overline{a}\overline{b} \overline{*} \epsilon \\ [aba * \overline{a}\overline{a}\overline{b} \overline{*} \epsilon] \\ [aba * \overline{a}\overline{a}\overline{b} \overline{*} \epsilon]$$

Metoda redukce 43 Metoda redukce 44

Bezkontextové jazyky

Věta 22 Problém jednoznačnosti bezkontextové gramatiky je nerozhodnutelný.

Důkaz: Nechť $P=\{(\alpha_i,\beta_i)\}$ $1\leq i\leq n$ je Postův systém nad abecedou Σ . Nechť $\Sigma'=\Sigma\cup\{\overline{1},\overline{2},\ldots,\overline{n}\}$. Uvažujme bezkontextovou gramatiku nad Σ' danou těmito pravidly:

$$\begin{array}{lll} S & \rightarrow & S_1 \mid S_2 \\ S_1 & \rightarrow & \alpha_1 S_1 \overline{1} \mid \alpha_2 S_1 \overline{2} \mid \cdots \mid \alpha_n S_1 \overline{n} \mid \alpha_1 \overline{1} \mid \cdots \mid \alpha_n \overline{n} \\ S_2 & \rightarrow & \beta_1 S_2 \overline{1} \mid \beta_2 S_2 \overline{2} \mid \cdots \mid \beta_n S_2 \overline{n} \mid \beta_1 \overline{1} \mid \cdots \mid \beta_n \overline{n} \end{array}$$

Tato gramatika není jednoznačná právě když ${m P}$ má řešení.

Bezkontextové jazyky

Věta 23 Nechť G_1 a G_2 jsou bezkontextové gramatiky. Pak tyto problémy nejsou rozhodnutelné:

1.
$$L(G) = \emptyset$$

2.
$$L(G_1) \cap L(G_2) = \emptyset$$

3.
$$L(G_1) = L(G_2)$$

4.
$$L(G_1) \subset L(G_2)$$

Metoda redukce 45 Metoda redukce

46

Problém zániku matic

Definice 24 Řekneme, že neprázdná konečná množina $\{M_i\}$ matic typu (3,3) nad oborem celých čísel **zaniká** pro $< j_1, j_2 >$, $1 \leq j_1$, $j_2 \leq 3$, existuje-li konečný součin

$$M = M_{i_1} M_{i_2} \dots M_{i_k}$$

takový, že jeho prvek v j_1 -tém řádku a j_2 -tém sloupci je 0. **Věta 25** Problém zániku matic je nerozhodnutelný, t.j. množina

$$\{(\{M_i\},j_1,j_2) \mid \{M_i\} \text{ zaniká pro } < j_1,j_2>\}$$

není rekurzívní.

Problém zániku matic

Důkaz: Redukcí z PCP.

Idea konstrukce:

ke každé dvojici (u,v) slov nad Σ sestrojíme matici M(u,v) tak, že

- 1. Prvek ve 3. řádku a 2. sloupci matice M(u,v) je 0 právě když u=v.
- 2. Pro všechna slova u_1, u_2, v_1, v_2 je

$$M(u_1, v_1).M(u_2, v_2) = M(u_1u_2, v_1v_2)$$

K danému Postovu systému $S=\{(\alpha_i,\beta_i)\}$ nad Σ pak sestrojíme množinu matic $\{M_i\}$, kde $M_i=M(\alpha_i,\beta_i)$. Z vlastností 1. a 2. bude pak vyplývat požadované.

Problém zániku matic

Konstrukce matic M(u,v):

Definujme

k(x)=i právě když x je i-té slovo v lexikografickém uspořádání, $m(x)=n^{|x|}$ kde |x| je délka slova x a n je počet písmen v Σ

Je zřejmé, že

$$k(xy) = k(x)m(y) + k(y)$$

$$m(xy) = m(x)m(y)$$

Položme pro každou dvojici (u,v) slov nad Σ

$$M(u,v) \; = \; \left[egin{array}{ccc} m(u) & m(v) - m(u) & 0 \ 0 & m(v) & 0 \ k(u) & k(v) - k(u) & 1 \end{array}
ight]$$

Metoda redukce 49

Problém zániku matic

$$= \left[egin{array}{ccc} m(u_1)m(u_2) & m(v_1)m(v_2) - m(u_1)m(u_2) & 0 \ 0 & m(v_1)m(v_2) & 0 \ k(u_1)m(u_2) + k(u_2) & k(v_1)m(v_2) + k(v_2) - k(u_1)m(u_2) - k(u_2) & 1 \end{array}
ight]$$

 $= M(u_1u_2, v_1v_2)$

Metoda redukce

Problém zániku matic

Matice M(u, v) mají požadované vlastnosti:

- 1. Prvek ve 3. řádku a 2. sloupci matice M(u,v)=0 právě když u=v neboť k(v)-k(u)=0 právě když u=v
- 2. Pro všechna slova $u_1,u_2,v_1,v_2\in \Sigma^*$ je $M(u_1,v_1).M(u_2,v_2)=M(u_1u_2,v_1v_2)$ neboť

Metoda redukce 50