ANLP Lecture 9: Algorithms for HMMs

Sharon Goldwater 4 Oct 2019

More general notation

- · Previous lecture:
 - Sequence of tags $T = t_1...t_n$
 - Sequence of words $S = w_1...w_n$
- This lecture:
 - Sequence of states $Q = q_1 \dots q_T$
 - Sequence of outputs $0 = o_1 \dots o_T$
 - So t is now a time step, not a tag! And T is the sequence length.

Recap: HMM

- Elements of HMM:
 - Set of states (tags)
 - Output alphabet (word types)
 - Start state (beginning of sentence)
 - State transition probabilities
 - Output probabilities from each state

Algorithms for HMMs (Goldwater, ANLP)

Recap: HMM

 Given a sentence O = O₁ ... O_T with tags Q = q₁ ... q_T, compute P(O,Q) as:

$$P(0,Q) = \prod_{t=1}^{T} P(o_t|q_t) P(q_t|q_{t-1})$$

- But we want to find $\operatorname{argmax}_Q P(Q|O)$ without enumerating all possible Q
 - Use Viterbi algorithm to store partial computations.

Algorithms for HMMs (Goldwater, ANLP) 3 Algorithms for HMMs (Goldwater, ANLP)

Today's lecture

- · What algorithms can we use to
 - Efficiently compute the most probable tag sequence for a given word sequence?
 - Efficiently compute the likelihood for an HMM (probability it outputs a given sequence s)?
 - Learn the parameters of an HMM given unlabelled training data?
- What are the properties of these algorithms (complexity, convergence, etc)?

Tagging example

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
<s></s>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

Algorithms for HMMs (Goldwater, ANLP)

Algorithms for HMMs (Goldwater, ANLP)

Tagging example

words:
Possible tags:
(ordered by
frequency for

each word)

VA / - ...- | - .

<s></s>	one	dog	bit	
<s></s>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- Choosing the best tag for each word independently gives the wrong answer (<s> CD NN NN </s>).
- P(VBD|bit) < P(NN|bit), but may yield a better sequence (<s> CD NN VB </s>)
 - because P(VBD|NN) and P(</s>|VBD) are high.

Viterbi: intuition

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
<s></s>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- · Suppose we have already computed
 - a) The best tag sequence for <s> ... bit that ends in NN.
 - b) The best tag sequence for <s> ... bit that ends in VBD.
- Then, the best full sequence would be either
 - sequence (a) extended to include </s>, or
 - sequence (b) extended to include </s>.

Algorithms for HMMs (Goldwater, ANLP) 7 Algorithms for HMMs (Goldwater, ANLP)

Viterbi: intuition

Words:
Possible tags:
(ordered by
frequency for
each word)

<s></s>	one	dog	bit	
<s></s>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- But similarly, to get
 - a) The best tag sequence for <s> ... bit that ends in NN.
- · We could extend one of:
 - The best tag sequence for <s> ... dog that ends in NN.
 - The best tag sequence for ≤s> ... dog that ends in VB.
- · And so on...

Algorithms for HMMs (Goldwater, ANLP)

Viterbi: high-level picture

- Intuition: the best path of length t ending in state q must include the best path of length t-1 to the previous state. (t now a *time step*, not a *tag*). So,
 - Find the best path of length t-1 to each state.
 - Consider extending each of those by 1 step, to state q.
 - Take the best of those options as the best path to state q.

Viterbi: high-level picture

• Intuition: the best path of length t ending in state q must include the best path of length t-1 to the previous state. (t now a *time step*, not a *taq*).

Algorithms for HMMs (Goldwater, ANLP)

10

12

Notation

- Sequence of observations over time $o_1, o_2, ..., o_T$
 - here, words in sentence
- Vocabulary size V of possible observations
- Set of possible states $q^1,\,q^2,\,...,\,q^N$ (see note next slide) here, tags
- A, an NxN matrix of transition probabilities
 a_{ii}: the prob of transitioning from state i to j. (JM3 Fig 8.7)
- B, an NxV matrix of output probabilities
 - $b_{i}(o_{t})\text{:}$ the prob of emitting o_{t} from state i. (JM3 Fig 8.8)

Algorithms for HMMs (Goldwater, ANLP) 11 Algorithms for HMMs (Goldwater, ANLP)

Note on notation

- J&M use q₁, q₂, ..., q_N for set of states, but *also* use q₁, q₂, ..., q_T for state sequence over time.
 - So, just seeing q₁ is ambiguous (though usually disambiguated from context).
 - I'll instead use qi for state names, and q, for state at time t.
 - So we could have $q_t = q^i$, meaning: the state we're in at time t is q^i .

Algorithms for HMMs (Goldwater, ANLP)

13

Transition and Output Probabilities

Transition matrix A:

$$a_{ii} = P(q^j \mid q^i)$$

	q^1	q^2
<s></s>	1	0
q^1	.7	.3
q^2	.5	.5

Output matrix B:

$$b_i(o) = P(o \mid q^i)$$
 for output o

	X	y	Z
q^1	.6	.1	.3
q ²	.1	.7	.2

HMM example w/ new notation

- States {q¹, q²} (or {<s>, q¹, q²})
- Output alphabet {x, y, z}

Algorithms for HMMs (GoldAdapted) from Manning & Schuetze, Fig 9.2

Joint probability of (states, outputs)

- Let $\lambda = (A, B)$ be the parameters of our HMM.
- Using our new notation, given state sequence Q = (q₁ ... q_T) and output sequence O = (o₁ ... o_T), we have:

$$P(0,Q|\lambda) = \prod_{t=1}^{T} P(o_t|q_t)P(q_t|q_{t-1})$$

Joint probability of (states, outputs)

- Let $\lambda = (A, B)$ be the parameters of our HMM.
- Using our new notation, given state sequence $Q = (q_1 \dots q_T)$ and output sequence $O = (o_1 \dots o_T)$, we have:

$$P(0,Q|\lambda) = \prod_{t=1}^{T} P(o_t|q_t) P(q_t|q_{t-1})$$

• Or: $P(0,Q|\lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) \ a_{q_{t-1}q_t}$

Algorithms for HMMs (Goldwater, ANLP)

Viterbi: high-level picture

- Want to find $argmax_0 P(Q|0)$
- Intuition: the best path of length t ending in state q must include the best path of length t-1 to the previous state. So,
 - Find the best path of length t-1 to each state.
 - Consider extending each of those by 1 step, to state q.
 - Take the best of those options as the best path to state q.

Joint probability of (states, outputs)

- Let $\lambda = (A, B)$ be the parameters of our HMM.
- Using our new notation, given state sequence Q = (q₁ ... q_T) and output sequence O = (o₁ ... o_T), we have:

$$P(0,Q|\lambda) = \prod_{t=1}^{T} P(o_{t}|q_{t})P(q_{t}|q_{t-1})$$

or: $P(0,Q|\lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) a_{q_{t-1}q_t}$

· Example:

$$P(0 = (y, z), Q = (q^{1}, q^{1})|\lambda) = b_{1}(y) \cdot b_{1}(z) \cdot a_{~~,1} \cdot a_{11}~~$$

$$= (.1)(.3)(1)(.7)$$

Viterbi algorithm

- Use a **chart** to store partial results as we go
 - NxT table, where v(j,t) is the probability* of the best state sequence for $o_1...o_t$ that ends in state j.

Viterbi algorithm

- · Use a chart to store partial results as we go
 - NxT table, where v(j,t) is the probability* of the best state sequence for $o_1...o_t$ that ends in state j.
- Fill in columns from left to right, with

$$v(j,t) = \max_{i=1}^{N} v(i,t-1) \cdot a_{i,i} \cdot b_{i}(o_{t})$$

Example

• Suppose 0=xzy. Our initially empty table:

	o ₁ =x	$o_2=z$	o ₃ =y
$\overline{q^1}$			
q^2			

Viterbi algorithm

- Use a **chart** to store partial results as we go
 - NxT table, where v(j,t) is the probability* of the best state sequence for $o_1...o_t$ that ends in state j.
- · Fill in columns from left to right, with

$$v(j,t) = \max_{i=1}^{N} v(i,t-1) \cdot a_{ii} \cdot b_i(o_t)$$

• Store a **backtrace** to show, for each cell, which state at t-1 we came from.

Filling the first column

	$o_1=x$	$o_2=z$	o ₃ =y
q^1	.6		
$\overline{q^2}$	0		

Algorithms for HMMs (Goldwater, ANLP)

$$v(1,1) = a_{< s>1} \cdot b_1(x) = (1)(.6)$$

 $v(2,1) = a_{< s>2} \cdot b_2(x) = (0)(.1)$

^{*}Specifically, v(j,t) stores the max of the joint probability $P(o_1...o_t,q_1...q_{t-1},q_t=j|\lambda)$

^{*}Specifically, v(j,t) stores the max of the joint probability $P(o_1...o_t,q_1...q_t,q_t=j|\lambda)^{22}$

Starting the second column

	$o_1=x$	$o_2=z$	o ₃ =y
q^1	.6	→	
q^2	0 1		

$$v(1,2) = \max_{i=1}^{N} v(i,1) \cdot a_{i1} \cdot b_{1}(z)$$

$$= \max \begin{cases} v(1,1) \cdot a_{11} \cdot b_{1}(z) = (.6)(.7)(.3) \\ v(2,1) \cdot a_{21} \cdot b_{1}(z) = (0)(.5)(.3) \end{cases}$$

Algorithms for HMMs (Goldwater, ANLP)

Finishing the second column

$$v(2,2) = \max_{i=1}^{N} v(i,1) \cdot a_{i2} \cdot b_{2}(z)$$

$$= \max \begin{cases} v(1,1) \cdot a_{12} \cdot b_{2}(z) = (.6)(.3)(.2) \\ v(2,1) \cdot a_{22} \cdot b_{2}(z) = (0)(.5)(.2) \end{cases}$$

Starting the second column

	$o_1=x$	$o_2=z$	$o_3=y$
q^1	.6 ←	.126	
$\overline{q^2}$	0		

$$v(1,2) = \max_{i=1}^{N} v(i,1) \cdot a_{i1} \cdot b_{1}(z)$$

$$= \max \begin{cases} v(1,1) \cdot a_{11} \cdot b_{1}(z) = (.6)(.7)(.3) & & \\ v(2,1) \cdot a_{21} \cdot b_{1}(z) = (0)(.5)(.3) & & \end{cases}$$

Algorithms for HMMs (Goldwater, ANLP)

26

28

Finishing the second column

	$o_1=x$	$o_2=z$	o ₃ =y
q^1	.6	— .126	
$\overline{q^2}$	0	.036	

$$v(2,2) = \max_{i=1}^{N} v(i,1) \cdot a_{i2} \cdot b_{2}(z)$$

$$= \max \begin{cases} v(1,1) \cdot a_{12} \cdot b_{2}(z) = (.6)(.3)(.2) & \\ v(2,1) \cdot a_{22} \cdot b_{2}(z) = (0)(.5)(.2) \end{cases}$$

Third column

· Exercise: make sure you get the same results!

Algorithms for HMMs (Goldwater, ANLP)

HMMs: what else?

- Using Viterbi, we can find the best tags for a sentence (decoding), and get P(O, Q|λ).
- We might also want to
 - Compute the **likelihood** $P(O|\lambda)$, i.e., the probability of a sentence regardless of tags (a language model!)
 - learn the best set of parameters $\lambda = (A, B)$ given only an unannotated corpus of sentences.

Best Path

	$o_1=x$	$o_2=z$	o ₃ =y	
q^1	.6	- .126 <	— .00882	
$\overline{q^2}$	0	.036	.02646 🗲	

- Choose best final state: $\max_{i=1}^{N} v(i, T)$
- Follow backtraces to find best full sequence: q¹q¹q²

Algorithms for HMMs (Goldwater, ANLP)

30

32

Computing the likelihood

• From probability theory, we know that

$$P(O|\lambda) = \sum_{Q} P(O, Q|\lambda)$$

- There are an exponential number of Qs.
- Again, by computing and storing partial results, we can solve efficiently.
- (Next slides show the algorithm but I'll likely skip them)

29

Forward algorithm

• Use a table with cells $\alpha(j,t)$: the probability of being in state j after seeing $0_1...0_t$ (forward probability).

$$\alpha(j,t) = P(o_1, o_2, \dots ot, qt = j|\lambda)$$

· Fill in columns from left to right, with

$$\alpha(j,t) = \sum_{i=1}^{N} \alpha(i,t-1) \cdot a_{ij} \cdot b_{j}(o_{t})$$

- Same as Viterbi, but sum instead of max (and no backtrace).

Algorithms for HMMs (Goldwater, ANLP)

Filling the first column

	$o_1=x$	$o_2=z$	o ₃ =y
q^1	.6		
$\overline{q^2}$	0		

$$\alpha(1,1) = a_{< s>1} \cdot b_1(x) = (1)(.6)$$

$$\alpha(2,1) = a_{< s>2} \cdot b_2(x) = (0)(.1)$$

Example

• Suppose 0=xzy. Our initially empty table:

	$o_1=x$	$o_2=z$	o ₃ =y
q^1			
q^2			

Algorithms for HMMs (Goldwater, ANLP)

34

Starting the second column

	$o_1=x$	$o_2=z$	$o_3=y$
q^1	.6	.126	
q ²	0		

$$\alpha(1,2) = \sum_{i=1}^{N} \alpha(i,1) \cdot a_{i1} \cdot b_{1(Z)}$$

$$= \alpha(1,1) \cdot a_{11} \cdot b_{1}(z) + \alpha(2,1) \cdot a_{21} \cdot b_{1}(z)$$

$$= (.6)(.7)(.3) + (0)(.5)(.3)$$

$$= .126$$

Finishing the second column

	$o_1 = x$	$o_2 = z$	o ₃ =y
q^1	.6	.126	
q^2	0	.036	

$$\alpha(2,2) = \sum_{i=1}^{N} \alpha(i,1) \cdot a_{i2} \cdot b_{2(Z)}$$

$$= \alpha(1,1) \cdot a_{12} \cdot b_{2}(z) + \alpha(2,1) \cdot a_{22} \cdot b_{2}(z)$$

$$= (.6)(.3)(.2) + (0)(.5)(.2)$$

$$= .036$$
Algorithms for HMMs (Goldwater, ANLP)

Learning

- Given *only* the output sequence, learn the best set of parameters λ = (A, B).
- Assume 'best' = maximum-likelihood.
- · Other definitions are possible, won't discuss here.

Third column and finish

	$o_1=x$	$o_2=z$	o ₃ =y
q^1	.6	.126	.01062
$\overline{q^2}$	0	.036	.03906

 Add up all probabilities in last column to get the probability of the entire sequence:

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha(i,T)$$

Algorithms for HMMs (Goldwater, ANLP)

- 1

40

Unsupervised learning

- Training an HMM from an annotated corpus is simple.
 - Supervised learning: we have examples labelled with the right 'answers' (here, tags): no hidden variables in training.
- Training from unannotated corpus is trickier.
 - Unsupervised learning: we have no examples labelled with the right 'answers': all we see are outputs, state sequence is hidden.

Algorithms for HMMs (Goldwater, ANLP) 39 Algorithms for HMMs (Goldwater, ANLP)

Circularity

- If we know the state sequence, we can find the best λ .
 - E.g., use MLE: $P(q^j|qi) = \frac{C(qi \rightarrow qj)}{C(qi)}$
- If we know λ , we can find the best state sequence.
 - use Viterbi
- · But we don't know either!

Algorithms for HMMs (Goldwater, ANLP)

41

Expected counts??

Counting transitions from $q^i \rightarrow q^j$:

- · Real counts:
 - count 1 each time we see $q^i \rightarrow q^j$ in true tag sequence.
- Expected counts:
 - With current λ , compute probs of all possible tag sequences.
 - If sequence Q has probability p, count p for each q^i → q^j in Q.
 - Add up these fractional counts across all possible sequences.

Expectation-maximization (EM)

Essentially, a bootstrapping algorithm.

- Initialize parameters $\lambda^{(0)}$
- At each iteration k,
 - E-step: Compute expected counts using $\lambda^{(k-1)}$
 - M-step: Set $\lambda^{(k)}$ using MLE on the expected counts
- Repeat until λ doesn't change (or other stopping criterion).

Algorithms for HMMs (Goldwater, ANLP)

44

Example

• Notionally, we compute expected counts as follows:

Possible sequence				Probability of sequence
$Q_1 =$	q^1	q^1	q^1	p_1
$Q_2 =$	q^1	q^2	q^1	p_2
$Q_3 =$	q^1	q^1	q^2	p_3
$Q_4 =$	q^1	q^2	q^2	p ₄
Observs:	X	Z	у	

Example

· Notionally, we compute expected counts as follows:

Possible sequence				Probability of sequence
$Q_1 =$	q^1	$\overline{\mathbb{q}^1}$	q^1	p_1
$Q_2 =$	q^1	q^2	q^1	p_2
$Q_3 =$	q^1	q¹	q^2	p_3
$Q_4 =$	q^1	q^2	q^2	p_4
Observs:	X	Z	у	

$$\hat{\mathcal{C}}(q^1 \to q^1) = 2p_1 + p_3$$

Algorithms for HMMs (Goldwater, ANLP)

45

Guarantees

• EM is guaranteed to find a local maximum of the likelihood.

Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.
- Forward-Backward (Baum-Welch) algorithm computes expected counts using forward probabilities and backward probabilities:

$$\beta(j,t) = P(qt = j, o_{t+1}, o_{t+2}, \dots oT | \lambda)$$

- Details, see J&M 6.5
- EM idea is much more general: can use for many latent variable models.

Algorithms for HMMs (Goldwater, ANLP)

46

48

Guarantees

• EM is guaranteed to find a local maximum of the likelihood.

- · Not guaranteed to find global maximum.
- Practical issues: initialization, random restarts, early stopping.

Forward-backward/EM in practice

- Fully unsupervised learning of HMM for POS tagging does not work well.
 - Model inaccuracies that work ok for supervised learning often cause problems for unsupervised.
- Can be better if more constrained.
 - Other tasks, using Bayesian priors, etc.
- · And, general idea of EM can also be useful.
 - E.g., for clustering problems or word alignment in machine translation.

Summary

- HMM: a generative model of sentences using hidden state sequence
- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm)
 - Best parameters from unannotated corpus (forward-backward algorithm, an instance of EM)

Algorithms for HMMs (Goldwater, ANLP)

Algorithms for HMMs (Goldwater, ANLP)