Домашняя работа по дисциплине Теоретические модели вычслений №1

Чуворкин Михаил А-13а-19

7 апреля 2022 г.

1 Задание №1. Построить конечный автомат, распознающий язык.

1.1 Язык 1.

$$L = \left\{ w \in \left\{ a, b, c \right\}^* \mid |w|_c = 1 \right\}$$

Данный язык включает все слова из букв $\{a,b,c\}$, но содержащие только одну букву c.

1.2 Язык 2.

$$L = \{ w \in \{a, b\}^* \mid |w|_a \le 2, |w|_b \ge 2 \}$$

Предствим, что есть решетка. При поглощении a происходит перемещение вниз по решетке, а при поглощении b переход вправо по решетке.

1.3 Язык 3.

$$L = \{ w \in \{a, b\}^* \mid |w|_a \neq |w|_b \}$$

Нельзя построить автомат, так как для распознавания этого языка требуется запоминать количество символов.

1.4 Язык 4.

$$L = \left\{ w \in \left\{ a, b \right\}^* \mid ww = www \right\}$$

В данном случае язык будет состоять только из пустого символа, так как условая спарведливы только для $w=\varepsilon$

2 Задание №2. Построить конечный автомат, используя прямое произведение.

2.1 Язык 1.

$$L_1 = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \land |w|_b \ge 2 \}$$

Рассмотрим языки, описывающие части условия языка L:

$$A_1 = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \}$$

$$\Sigma_A = \{a, b\} \ Q_A = \{1, 2, 3\} \ s_A = \{1\} \ T_A = \{3\}$$

$$B_1 = \{ w \in \{a, b\}^* \mid |w|_b \ge 2 \}$$

$$\Sigma_B = \{a, b\} \ Q_B = \{1, 2, 3\} \ s_B = \{1\} \ T_B = \{3\}$$

Тогда:
$$L_1=A_1\times B_1$$
 $\Sigma=\Sigma_A\cup\Sigma_B=\{a,b\}$ $Q=Q_A\times Q_B=\{11,12,13,21,22,23,31,32,33\}$ $s=< s_1,s_2>=\{11\}$ $T=T_A\times T_B=\{33\}$ Таблица состояний:

A	B	a	b
1	1	21	12
1	2	22	13
1	3	23	13
2	1	31	22
2	2	32	23
2	3	33	23
3	1	31	32
3	2	32	33
3	3	33	33

Таблица 1: Таблица состояний (Задание 2.1)

2.2 Язык 2.

$$L_2 = \{w \in \{a, b\}^* \mid |w| \ge 3 \land |w| \text{ нечетное}\}$$

Рассмотрим языки, описывающие части условия языка L:

$$A_2 = \{ w \in \{a, b\}^* \mid |w| \ge 3 \}$$

$$\Sigma_A = \{a, b\} \ Q_A = \{1, 2, 3, 4\} \ s_A = \{1\} \ T_A = \{4\}$$

start
$$a,b$$
 2 a,b 3 a,b 4

$$B_2 = \left\{w \in \left\{a,b\right\}^* \mid |w|$$
 нечетное $\right\}$ $\Sigma_B = \left\{a,b\right\} \; Q_B = \left\{1,2\right\} \; s_B = \left\{1\right\} \; T_B = \left\{2\right\}$

start
$$1$$
 a,b 2

Тогда: $L_2 = A_2 \times B_2$

$$\begin{split} \Sigma &= \{a,b\} \\ Q &= \{11,12,21,22,31,32,41,42\} \\ s &= \{11\} \\ T &= \{42\} \end{split}$$

A	B	a	b
1	1	22	22
1	2	21	21
2	1	32	32
2	2	31	31
3	1	42	42
3	2	41	41
4	1	42	42
4	2	41	41

Таблица 2: Таблица состояний (Задание 2.2)

2.3 Язык 3.

$$L_{3}=\left\{ w\in\left\{ a,b\right\} ^{\ast}\mid\left|w\right|_{a}$$
четное $\wedge\left|w\right|_{b}$ кратно трем $\right\}$

Рассмотрим языки, описывающие части условия языка L:

$$\begin{array}{l} A_3 = \left\{ w \in \left\{ a, b \right\}^* \mid |w|_a \text{ четное} \right\} \\ \Sigma_A = \left\{ a, b \right\} \, Q_A = \left\{ 1, 2 \right\} \, s_A = \left\{ 1 \right\} \, T_A = \left\{ 1 \right\} \end{array}$$

$$\begin{array}{l} B_3 = \left\{w \in \left\{a,b\right\}^* \mid \left|w\right|_b \text{ кратно трем}\right\} \\ \Sigma_B = \left\{a,b\right\} \; Q_B = \left\{1,2,3\right\} \; s_B = \left\{1\right\} \; T_B = \left\{1\right\} \end{array}$$

Тогда:
$$L_3=A_3\times B_3$$
 $\Sigma_3=\{a,b\}$ $Q_3=\{11,12,13,21,22,23\}$ $s_3=\{11\}$ $T_3=\{11\}$

A	B	a	b
1	1	21	12
1	2	22	13
1	3	23	11
2	1	11	22
2	2	12	23
2	3	13	21

Таблица 3: Таблица состояний (Задание 2.3)

2.4 Язык 4.

$$L_4 = \bar{L_3}$$

Данный язык будет распозная
аться автоматом $\bar{L_3}=\{\Sigma_3,Q_3,s_3,Q_3\backslash T_3,\delta_3\}$ $T_4=Q_3\backslash T_3=\{12,13,21,22,23\}$

2.5 Язык 5.

$$L_5 = L_2 \backslash L_3$$

 $L_5=L_2ackslash L_3=L_2\cap ar{L_3}=L_2 imes ar{L_3}$ Заметим, что автомат для L_2 можно упростить:

Для автомата $\bar{L_3}$ введем новую нумерацию состояний:

Получился такой автомат:

Упростим его:

L_2	$\bar{L_3}$	a	b
1	1	24	22
	2	25	23
1	3	26	21
1	4	21	25
1	5	22	26
1	6	23	24
2	1	34	32
2	2	35	33
2	3	36	31
2	4	31	35
2	5	32	36
2	6	33	34
3	1	44	42
3	2	45	43
3	3	46	41
3	4	41	45
3	5	42	46
3	6	43	44
4	1	34	32
4	2	35	33
4	3	36	31
4	4	31	35
4	5	32	36
4	6	33	34

Таблица 4: Таблица состояний (Задание 2.3)

- 3 Задание №3. Построить минимальный ДКА по регулярному выражению.
- 3.1 Регулярное выражение 1.

$$(ab + aba)^*a$$

Детерминируем этот автомат:

3.2 Регулярное выражение 2.

$$a(a(ab)^*b)^*(ab)^*$$

Детерминируем этот автомат:

3.3 Регулярное выражение 3.

$$(a + (a+b)(a+b)b)^*$$

Детерминируем этот автомат:

3.4 Регулярное выражение 4.

$$(b+c)((ab)^*c+(ba)^*)^*$$

Детерминируем этот автомат:

3.5 Регулярное выражение 5.

$$(a+b)^+(aa+bb+abab+baba)(a+b)^+$$

4 Задание №4. Определить является ли язык регулярным или нет.

4.1 Язык 1.

$$L = \{ (aab)^n b (aba)^m \mid n \ge 0, m \ge 0 \}$$

4.2 Язык 2.

$$L = \{uaav \mid u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$$

Пусть
$$\bar{L}=\left\{uaav\mid u\in\left\{a,b\right\}^*,v\in\left\{a,b\right\}^*,\left|u\right|_b<\left|v\right|_a\right\}$$
 Фиксируем n

Пусть $w = b^n aaa^{n+1}; \quad |w \ge n|$ (Взяли такое разбиение, так как количество букв a в u и количество букв b в v не важны)

$$x = b^l$$

$$y = b^p$$

$$z = b^{n-l-p} a a a^{n+1}$$

 $xy^kz=b^{n+p(k-1)}aaa^{n+1}$ (при $k\geq 2$ $w\notin \bar{L})\Rightarrow \bar{L}$ - нерегулярный язык, следовательно, L также не является регулярным.

4.3Язык 3.

$$L = \{a^m w \mid w \in \{a, b\}^*, 1 \le |w|_b \le m\}$$

Пусть
$$\bar{L}=\left\{a^mw\mid w\in\left\{a,b\right\}^*,\left|w\right|_b>m\right\}$$
 $w_1=a^mb^n,\left|w_1\geq n\right|$ - выполнено.

$$w_1 = a^m b^n$$
, $|w_1 \ge n|$ - выполнено.

$$x = a^p$$

$$y = a^l$$

$$z = a^{m-l-p}b^n$$

p+l < n - выполнено, так как, по условию языка $\bar{L} \quad m < n$

 $w_1'=xy^kz=a^{m+l(k-1)}b^n\Rightarrow$ при $k\geq 2$ $w_1'\notin \bar{L}\Rightarrow \bar{L}$ нерегулярный язык \Rightarrow L - нерегулярный язык.

4.4 Язык 4.

$$L = \left\{ a^k b^n a^n \mid k = n \lor m > 0 \right\}$$

1)
$$k = n \quad \Rightarrow L_1 = \{a^n b^m a^n\}$$

$$w_1 = a^n b^m a^n \quad |w_1| \ge n$$

$$x = a^l$$

$$y = a^p$$

$$z = a^{n-l-p}b^m a^n$$

$$l+p \leq n$$

$$p \ge 1$$

$$w_1'=xy^tz=a^{n+p(t-1)}b^ma^n\quad\Rightarrow\quad w_1'\notin L_1$$
при $t\geq 2$

$$2) k = m \quad \Rightarrow L_2 = \{a^m b^m a^n\}$$

$$w_2 = a^m b^m a^n \quad |w_2| \ge m$$

$$x = a$$

$$y = a^p$$

$$z = a^{m-l-p}b^ma^n$$

$$l+p \leq m$$

$$p \ge 1$$

$$w_2'=xy^tz=a^{m+p(t-1)}b^ma^n\quad\Rightarrow\quad w_2'\notin L_2$$
 при $t\geq 2$

Из 1), 2) \Rightarrow язык L - нерегулярный.

4.5 Язык 5.

$$L=\left\{ucv\mid u\in\left\{a,b\right\}^*,v\in\left\{a,b\right\}^*,u\neq v^R\right\}$$
 Пусть $\bar{L}=\left\{ucv\mid u\in\left\{a,b\right\}^*,v\in\left\{a,b\right\}^*,u=v^R\right\}$

Фиксируем n: |u| < n

При разделении u на x и y и накачке перестанет выполнятся равенство $u=v^R,$ поэтому язык \bar{L} нерегулярный \Rightarrow язык L также не является регулярным.

5 Задание №5. Реализовать алгоритмы.

В рамках своего выполенения программа должна генерировать текстовый документ с картинками, показывающий процесс построения автомата (к примеру, Markdown с графиками на Graphviz).

- 1. Построение ДКА по НКА с λ -переходами.
- 2. Прямое произведение языков, с возможностью построить пересечение, объединение и разность.