Since by hypothesis $b \geq 0$ and the objective function is bounded above by 0, this linear program has an optimal solution (x_J^*, ξ^*) .

If $\xi^* = 0$, then the vector $u^* \in \mathbb{R}^n$ given by $u_J^* = x_J^*$ and $u_N^* = 0_{n-p}$ is an optimal solution of (P).

Otherwise, $\xi^* > 0$ and we have failed to solve $(*_1)$. However we may try to use ξ^* to improve y. For this consider the Dual (DRP) of (RP):

minimize
$$zb$$

subject to $zA_J \ge 0$
 $z \ge -\mathbf{1}_m^{\top}$.

Observe that the Program (DRP) has the same objective function as the original Dual Program (D). We know by Theorem 47.12 that the optimal solution (x_J^*, ξ^*) of (RP) yields an optimal solution z^* of (DRP) such that

$$z^*b = -(\xi_1^* + \dots + \xi_m^*) < 0.$$

In fact, if K^* is the basis associated with (x_J^*, ξ^*) and if we write

$$\widehat{A} = \begin{pmatrix} A_J & I_m \end{pmatrix}$$

and $\hat{c} = \begin{bmatrix} 0_p^\top & -\mathbf{1}^\top \end{bmatrix}$, then by Theorem 47.12 we have

$$z^* = \widehat{c}_{K^*} \widehat{A}_{K^*}^{-1} = -\mathbf{1}_m^\top - (\overline{c}_{K^*})_{(p+1,\dots,p+m)},$$

where $(\overline{c}_{K^*})_{(p+1,\dots,p+m)}$ denotes the row vector of reduced costs in the final tableau corresponding to the last m columns.

If we write

$$y(\theta) = y + \theta z^*,$$

then the new value of the objective function of (D) is

$$y(\theta)b = yb + \theta z^*b, \tag{*2}$$

and since $z^*b < 0$, we have a chance of improving the objective function of (D), that is, decreasing its value for $\theta > 0$ small enough if $y(\theta)$ is feasible for (D). This will be the case iff $y(\theta)A \ge c$ iff

$$yA + \theta z^*A \ge c. \tag{*_3}$$

Now since y is a feasible solution of (D) we have $yA \ge c$, so if $z^*A \ge 0$, then $(*_3)$ is satisfied and $y(\theta)$ is a solution of (D) for all $\theta > 0$, which means that (D) is unbounded. But this implies that (P) is not feasible.