Simulación del proceso de inyección de agua de baja salinidad mediante un modelo de red de poros: impacto de la salinidad en las curvas de presión capilar y de permeabilidad relativa

Edgar G. Martínez Mendoza¹, Martín A. Díaz Viera²

¹Posgrado en Ciencias de la Tierra edgar.g.martinez@hotmail.com

²Instituto Mexicano del Petróleo mdiazv@imp.mx

XXXIII Jornadas Técnicas de la AIPM

Ciudad de México, 26 de octubre de 2018

- 1 Introducción y Objetivos
- 2 Modelo de red de poros
- 3 Flujo y transporte en redes de poro
- 4 Flujo de trabajo para el estudio de LSWF
- 5 Caso de estudio

Inyección de agua de baja salinidad

- LSWF, Low Salinity WaterFlooding
- Factor de recuperación(Salinidad del agua de inyección)
- Resultados prometedores y relación costo-beneficio
 - Areniscas
 - Carbonatos
- Mecanismos dominantes... ¿②?, →cambio de mojabilidad
- Mojabilidad en escala laboratorio... ②, escala micro (o de poros)

Objetivos

Objetivos

- Red de poros como herramienta en ingeniería de yacimientos
- Metodología para el estudio de LSWF a escala de poro
- Efectos de salinidad en presión capilar y permeabilidad relativa

Introducción y Objetivos **Modelo de red de poros** Flujo y transporte en redes de poro Flujo de trabajo para el estudio de LSWF Caso de estudio

Modelo de red de poros

Modelo de red de poros

Técnica que discretiza un medio poroso con el fin de estudiar la influencia de la morfología del medio en fenómenos deseados.

Principales características:

- El espacio poroso se representa mediante una red
- Se asignan propiedades topológicas y geométricas
- Predicciones más rápidas que mediciones directas
- Emplea muestras de recortes y fragmentos de núcleos

Modelo de red de poros

(a) Arenisca Fontainebleau

(b) Carbonato genérico

Figura 1: Red de poros para una muestra de roca (Fredriksen et al., 2016; ICL, 2014b).

Modelo de red de poros

Flujo y transporte en redes de poro

Flujo en redes de poro: Hipótesis

Hipótesis generales

- Fluido newtoniano e incompresible
- Flujo monofásico, laminar y uniforme
- Tubería circular uniforme
- No hay reacción fase-fase, fase-medio
- No hay puntos fuente/sumidero

Flujo en redes de poro: Modelo matemático

Relación Hagen-Poiseuille

Balance de masa

$$Q = -\frac{\pi r^4 \Delta p}{8\mu L} \qquad (1) \qquad \qquad \sum q_{ij} = 0 \qquad (2)$$

Considerando conductancia para una garganta cilíndrica:

$$\kappa_{ij} = \frac{\pi r^4}{8\mu L} \tag{3}$$

El modelo de flujo para un MRP es

$$\sum q_{ij} = \sum \kappa_{ij} (p_i - p_j) = 0$$
 (4)

Transporte en redes de poro: Hipótesis

Hipótesis generales

- Cada poro y garganta se considera como un volumen de control.
- El transporte es monocomponente
- Existe una componente disuelta en el fluido
- Balance de masa del componente
- Advección y difusión
- No afecta a flujo

Transporte en redes de poro: Modelo matemático

Para poros (i)

$$V_{i}\frac{dc_{i}}{dt} + \sum_{j \in I_{i}}^{z_{i}} q_{ij}c_{i} - \sum_{j \in I_{i}}^{z_{i}} q_{ij}c_{ij} = \sum_{j \in I_{i}}^{z_{i}} D_{e}A_{ij}\frac{c_{ij} - c_{i}}{l_{ij}}, \quad \forall \ i \in [1, N]$$
 (5)

 \bullet Para gargantas (ij)

$$V_{ij}\frac{dc_{ij}}{dt} + q_{ij}c_i + q_{ij}c_j - 2q_{ij}c_{ij} = D_e A_{ij}\frac{c_i - c_{ij}}{l_{ij}} + D_e A_{ij}\frac{c_j - c_{ij}}{l_{ij}}, \quad \forall i \in [1, N]$$
(6)

Donde, V es volumen, c es concentración de sal, q es flujo volumétrico, D_e es difusión efectiva, A y l son área de la sección transversal y longitud, respectivamente. El total de poros es N e I_i son los índices de los poros conectados al poro i.

Implementación del modelo

OpenPNM, Open Pore Network Modeling Software para modelación de red de poros (Gostick et al., 2016)

Figura 2: OpenPNM 1.9, software empleado para implementar el modelo de flujo y transporte.

Implementación del modelo

Figura 3: Modelo de flujo y transporte implementado en OpenPNM 1.9

- Modelo de red de poros
- Flujo
- Transporte
- Evaluación del ángulo de contacto
- Presión capilar
- Permeabilidad relativa

- Modelo de red de poros
- Plujo

Objetivos

- -Flujo secuencial: Alta salinidad → baja salinidad
- -Presión en poros
- -Flujo volumétrico en gargantas
- Transporte
- Evaluación del ángulo de contacto
- Presión capilar y permeabilidad relativa

- Modelo de red de poros
- Flujo
- Transporte

Objetivos

- -Transporte secuencial: Alta salinidad --> baja salinidad
- -Concentración de sal (c) en poros y gargantas
- Evaluación del ángulo de contacto
- 5 Presión capilar y permeabilidad relativa

- Modelo de red de poros
- Flujo
- Transporte
- Evaluación del ángulo de contacto

Objetivos

$$\theta(c) = \theta_{HS} + \frac{c - c_{HS}}{c_{HS} - c_{LS}} (\theta_{HS} - \theta_{LS}) \tag{7}$$

Donde, θ_{HS} es el ángulo de contacto para alta salinidad, c_{HS} . θ_{LS} es el ángulo de contacto para baja salinidad, c_{LS} (Aladasani et al., 2014).

5 Presión capilar y permeabilidad relativa

- Modelo de red de poros
- Flujo
- Transporte
- Evaluación del ángulo de contacto
- Presión capilar y permeabilidad relativa

Objetivos

- -Desacoplado a flujo y transporte
- -Drene primario
- -Modelo de capilares: Rodríguez and Teyssier (1973)

Introducción y Objetivos Modelo de red de poros Flujo y transporte en redes de poro Flujo de trabajo para el estudio de LSWF Caso de estudio

Caso de estudio

Caso de estudio

- Imperial College London y literatura
- Red extraída de una arenisca Berea (ICL, 2014a)
- Reconstrucción de imágenes por micro-CT (Dong and Blunt, 2009)

Cuadro 1: Propiedades de la arenisca Berea

Propiedad	Valor
Longitud $[m]$ Porosidad (%)	2E-03
Permeabilidad absoluta [D]	1.2

Caso de estudio: Red y geometría

6004 poros (esferas); 12067 gargantas (cilindros)

Figura 4: Modelo de red de poros para la arenisca Berea.

Caso de estudio: Fluidos

- Salmuera sintética Fluido de alta salinidad: HS
- Salmuera sintética diluida 10x → Fluido de baja salinidad: LS
- ullet Etapa: 7000 [s], $\Delta t=1[s]$
- $D_e = 2.15 \times 10^{-9} [m^2/s]$ (Qiao et al., 2016)

Cuadro 2: Propiedades de los fluidos considerados

Propiedad	Salmuera sintética	Salmuera sintética /10x	Fuente
TIF [dina/cm]	30	30	(Ashraf et al., 2010)
Ańgulo de contacto (°)	70	25	(Aladasani et al., 2014)
Viscosidad [cP]	1.05	1	(Ashraf et al., 2010)
Concentración de sal [ppm]	24,950	2,495	(Ashraf et al., 2010)
Saturación de aceite residual	35 %	27 %	(Ashraf et al., 2010)

Caso de estudio: HS en la red

HS: 24,950 [ppm]

Figura 5: Concentración de sal [ppm] en la red para la etapa de alta salinidad.

Caso de estudio: LS en la red

LS: 2,495 [ppm]

Figura 6: Concentración de sal [ppm] en la red para la etapa de baja salinidad.

Caso de estudio: Ángulo de contacto

HS: 70°; LS: 25°

Figura 7: Ángulo de contacto al término de las etapas de alta y baja salinidad.

Caso de estudio: Presión capilar

Figura 8: Presión capilar [Pa] al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio: Presión capilar

Figura 9: Presión capilar [Pa] al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio: Permeabilidad relativa

Figura 10: Permeabilidad relativa al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio: Permeabilidad relativa

Figura 11: Permeabilidad relativa al inicio (rojo) y término (azul) de la etapa de baja salinidad.

Caso de estudio

Resultados del proceso LSWF en la arenisca Berea

Cuadro 3: Propiedades de presión capilar y permeabilidad relativa

Propiedad	HS	LS
Máxima p_c	95.4 [kPa]	94.7 [kPa]
Entrada p_c	563 [Pa]	1,517 [Pa]
Saturación de agua residual (s_{wr})	3.9 %	4.4 %
Saturación de aceite residual (s_{or})	35 %	27 %
Extremo del agua (k_{rw}^0)	0.2	0.3
Extremo del aceite (k_{ro}^0)	0.9	0.9
S_w^{cross}	51 %	53 %
$k_{ro}^{s_{cross}}$	0.08	0.1

Conclusiones y observaciones

En este trabajo:

- Metodología: base para LSWF a escala de poro
- ullet Herramienta: estimación p_c , k_r
- Salinidad en p_c y k_r : mojabilidad
- Información ②

Oportunidades:

- Rocas del país: areniscas y carbonatos
- Otros mecanismos
- Multiescala

¡Gracias por su atención!

Edgar G. Martínez-Mendoza

edgar.g.martinez@hotmail.com

Referencias I

- Aladasani, A., Bai, B., Wu, Y.-S., and Salehi, S. (2014). Studying low-salinity waterflooding recovery effects in sandstone reservoirs. *Journal of Petroleum Science and Engineering*, 120(1):39–51. DOI: https://doi.org/10.1016/j.petrol.2014.03.008.
- Ashraf, A., Hadia, N., Torsaeter, O., and Tweheyo, M. T. (2010). Laboratory investigation of low salinity waterflooding as secondary recovery process: Effect of wettability. *Society of Petroleum Engineers*, SPE(129012-MS):1–12. doi: https://doi.org/10.2118/129012-MS.
- Dong, H. and Blunt, M. (2009). Pore-network extraction from micro-computerized-tomography images. *Physical Review*, (80):1–10.
- Fredriksen, S. B., Rognmo, A. U., and Fernø, M. A. (2016). Pore-Scale Mechanisms During Low Salinity Waterflooding: Water Diffusion and Osmosis for Oil Mobilization. *Society of Petroleum Engineers*, (SPE-180060-MS).
- Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Day, H., Spellacy, B., Sharqawy, M. H., Bazylak, A., Burns, A., Lehnert, W., and Putz, A. (2016). Openpnm: A pore network modeling package. *Computing in Science and Engineering*, 18(4):60–74. DOI: https://doi.org/10.1109/MCSE.2016.49.

Referencias II

- ICL (2014a). Imperial college consortium on pore-scale modelling: Berea sandstone. DOI: https://doi.org/10.6084/m9.figshare.1153794.v2.
- ICL (2014b). Imperial college consortium on pore-scale modelling: C2 carbonate. DOI: https://figshare.com/articles/C2_carbonate/1189258.
- Martínez-Mendoza, E. G. (2018). Estimación de propiedades roca-fluido mediante modelos de red de poros para la simulación de procesos de inyección de agua de baja salinidad. *Universidad Nacional Autónoma de México*, Posgrado en Ciencias de la Tierra(Maestría).
- Qiao, C., Johns, R., and Li, L. (2016). Modeling low-salinity waterflooding in chalk and limestone reservoirs. *Energy Fuels*, 30(2). DOI: https://doi.org/10.1021/acs.energyfuels.5b02456.
- Rodríguez, F. and Teyssier, J. (1973). Permeabilidades relativas en función de la presión capilar y las saturaciones efectivas. Subdirección de Tecnología de Explotación del Instituto Mexicano del Petróleo, Publicación 73 BH/121 del proyecto 2185.