Vehicle Scheduling: Models and Algorithms

Stefano Gualandi

Università di Pavia, Dipartimento di Matematica

email: stefano.gualandi@unipv.it

twitter: @famo2spaghi

blog: http://stegua.github.com

1 Introduction

2 Vehicle Scheduling (VS)

Overview of Planning Activities

(Desaulniers&Hickman2007)

Strategic Planning: Network Design (Urban)

Strategic Planning: Network Design (Regional)

Tactical Planning: Frequency Setting and Timetabling

Overview of Planning Activities

(Desaulniers&Hickman2007)

Leuthardt Survey (Leuthardt 1998, Kostenstrukturen von Stadt-, Überland- und Reisebussen, DER NAHVERKEHR 6/98, pp. 19-23.)

bus costs (DM)	urban	%	regional	%
crew	349,600	73.5	195,000	67.5
depreciation	35,400	7.4	30,000	10.4
calc. interest	15,300	3.2	12,900	4.5
materials	14,000	2.9	10,000	3.5
fuel	22,200	4.7	18,000	6.2
repairs	5,000	1.0	5,000	1.7
other	34,000	7.1	18,000	7.2
total	475,500	100.0	288,900	100.0

Ralf Borndörfer

03.10.2009

1 Introduction

2 Vehicle Scheduling (VS)

www.thequestforoptimality.com/smart-models-start-small/

Home

About Me & This Blog

the quest for optimality

Using solvers & heuristics to solve complex problems

SMART MODELS START SMALL

Smart models start small

Posted on SEPTEMBER 9, 2013 Written by MARC-ANDRE DEAVE A COMMENT

There is only one good way to build large-size or complex optimization models: to start by a small model and adding elements gradually until you get the model you wanted in the first place. I have seen so many people (including myself) try to build large-size, complex models from scratch, only to spend countless frustrating hours trying to debug all kinds of problems. It just doesn't work.

A better approach is to start with the simplest version of the model. On or two

Vehicle Scheduling

Given a timetable as a set $V = \{v_1, \dots, v_n\}$ of **trips**, where for each trip v_i we have:

t_i: departure time

 a_i : arrival time

o_i: origin (departure terminal)

d_i: destination (arrival terminal)

Vi	t _i	ai	O _i	di
VI	7:10	7:30	Ta	T _b
V 2	7:20	7:40	Τ _ε	T _d
V 3	7:40	8:05	Tb	Ta
V4	8:00	8:30	Td	Τ _ε
V 5	8:35	9:05	Τ _ε	Td

Given the **deadheading trips** (i.e. trips without passengers) of duration h_{ij} between every pair of terminals

hij	Ta	Tb	Τ _ε	Td
Ta	0	15	20	20
Tb	15	0	25	10
Tc	20	25	0	15
T_d	20	10	15	0

Definition (Compatible Trips)

A pair of trips (v_i, v_j) is compatible if and only if $a_i + h_{ij} \leq t_j$

Vehicle Scheduling

Definition (Vehicle Duty)

A subset $C = \{v_{i_1}, \dots, v_{i_k}\}$ of V is a **vehicle duty (or block)** if $(v_{i_j}, v_{i_{(j+1)}})$ is a compatible pair of trips, for $j = 1, \dots, k-1$

Definition (Vehicle Schedule)

A collection C_1, \ldots, C_r of *vehicle duties* such that each trip v in V belongs to exactly one C_j with $j \in \{1, \ldots, r\}$ is said to be a **Vehicle Schedule**

Vehicle Scheduling: Example

Vi	ti	ai	O i	di
VI	7:10	7:30	T_a	T _b
V 2	7:20	7:40	T_{ϵ}	T_d
V 3	7:40	8:05	Tb	Ta
V4	8:00	8:30	T_d	Tc
V 5	8:35	9:05	T_{ϵ}	Td

hij	Ta	Tb	T_{ϵ}	Td
Ta	0	15	20	20
T _b	15	0	25	10
Τ _ε	20	25	0	15
Td	20	10	15	0

Example: These 5 trips can be scheduled with 2 vehicle duties:

•
$$C_1 = \{v_1, v_3\}$$

•
$$C_2 = \{v_2, v_4, v_5\}$$

Further Features of the Problem

- Limited number of vehicles
- Minimize fleet size (number of vehicles)
- Minimize operational costs (given by pull-out and pull-in from depots and deadheading trips)
- Multiple depots
- Different types of vehicles with different operational costs located at a single depot