.. PATENT Attorney Docket No. 19036/36614

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: WAKAMIYA,)	CERTIFICATE OF MAILING BY
Nobutaka)	EXPRESS MAIL "EXPRESS MAIL"
)	mailing label No.EM099903882US
Serial No.: To Be Determined)	3
)	Date of Deposit: July 24, 2000
Filed: Herewith)	
(US National Phase of International)	I hereby certify that this paper and the
Application No. PCT/JP98/03311, Filed)	documents referred to herein as enclosed
23 July 1998))	herewith are being deposited with the
)	United States Postal Service "EXPRESS
Title: "Recombinant Human Mannan-)	MAIL POST OFFICE TO
Binding Proteins and Process for)	ADDRESSEE" service under 37 C.F.R.
Producing the Same")	§1.10 on the date indicated above and
)	are addressed to Box PCT, Assistant
Group Art Unit: To Be Determined)	Commissioner for Patents, Washington,
)	D.C. 20231.
Examiner: To Be Determined)	as Not
	,	Mark H. Hopkins

STATEMENT REGARDING SEQUENCE LISTING PURSUANT TO 37 C.F.R. §1.821(f)

BOX PCT Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

I hereby state that the disclosures of the paper and computer readable forms of the substitute Sequence Listing submitted herewith in accordance with 37 C.F.R. §1.821(c) and (e) are the same and do not introduce new matter into the disclosure of the application. The sequences in the substitute Sequence Listing are identical to the sequences in the original Sequence Listing, and thus are fully supported by the Application as filed.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN, MURRAY & BORUN

July 24, 2000 By

David A. Gass

Registration No. 38,153

6300 Sears Tower

233 South Wacker Drive

Chicago, IL 60606-6402

Telephone: (312) 474-6300

SEQUENCE LISTING

- <110> Fuso Pharmaceutical Industries, Ltd.
- <120> Recombinant Human Mannan Binding Protein and Producing Method Thereof
- <130> 98P068W0
- <150> JP 10-11864
- <151> 1998-01-23
- <160> 28
- <210> 1
- <211> 3605
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> sig peptide
- <222> (66)...(125)
- <220>
- <221> CDS
- <222> (66)...(812)
- **<400>** 1

						ciga											60
g	gacc	a tg	t cc	c lg	ttt	cat	cac	: 100	cto	tcc	tto	tco	tga	gta	tgg	tgg	111
		Me	t Se	r Lei	u Phe	Pro	Ser	Leu	Pro	Leu	Leu	Leu	Leu	Ser	Met	Val	
		-2	0				-15	i				-10					
Ca	ig c	gt c	tt a	et ca	ag aa	a ct	g tg	a cc	t gi	g ag	gat	g cc	c aa	a ag	а сс	t gcc	162
																r Cys	
-	-5					1				5				1	0		
ç t	g ca	g t	ga tt	g cc	t gt	a gc	t ct	c ca	g gc	a tc	a ac	g gc	t tc	c ca	g gc	a aag	213
Pr	o Al	a Va	ıl Il	e Al	а Су	s Se	Se	r Pr	Gly	y Ile	e As:	n Gl	y Ph	e Pro	o G1	y Lys	
				5				. 20					2			, _,	
at	g gg	c gt	g at	g gc	a cca	a agg	gag	g aaa	age	ggg	aac	: cag	g gc	aag	g gg(tca	264
As	p Gl	y Ar	g As	p G1;	y Thi	Lys	Gly	/ Glu	Lys	Gly	Gli	ı Pro	Gly	Glr	Glv	Leu	•••
	g ggc gtg atg gca cca agg gag aaa agg ggg aac cag gcc aag ggc tca p Gly Arg Asp Gly Thr Lys Gly Glu Lys Gly Glu Pro Gly Gln Gly Leu 30 35 40 45 g gct tac agg gcc ccc ctg gaa agt tgg ggc ctc cag gaa atc cag ggc																
ga	g gc	t ta	c agg	gco	ccc	ctg	gaa	agt	l gg	ggc	ctc	cag	gaa	ato			315
Arg	Gl	/ Le	u Glr	Gly	/ Pro	Pro	Gly	Lys	Leu	Gly	Pro	Pro	Glv	Asn	Pro	Gly	0.0
			50					55					60		. 110	or,	
ctt	cte	gg	cac	cag	gac	caa	agg	gcc	aaa	aag	gag	מרר			222	at a	266
Pro	Ser	Gly	Ser	Pro	Gly	Pro	Lvs	Glv	Gln	Lvs	Glv	Asn	Pro	Cly	T vo	git So-	366
	65				_	70	-,-	••,	•••	2,5	75	1135	110	Gly	L A 2		
cgg	atg	gtg	ata	gta	gcc		ctg	cct	cag	222		220	cto	1.55	•••	80 cag	412
						Leu											417
			•	85				••••	90	0.0	vi è	Lys	Ala		GIU	IRT	
aaa	tgg	cac	gta		aaa	agt	øør	toa		1 C t	cto	t cac	œ.	95		4.4	4.0.0
						Lys											468
		100		``	.,,,		105	Leu	1111	rne	ser		GIY	Lys	GIn	Val	
gga	aca		tet	tec	tora			~1~		•	.	110					
						cca :											519
115	119 II	<i>L</i>	7 11¢			Thr	15 N	a1A			Met	Thr	Phe	Glu	Lys	Val	
110					120					125					130		

					•													
agg	cct	tgt	gtg	tca	agt	tcc	agg	cci	ctg	lgg	cca	ccc	cca	gga	atg	ctg	570	
Lys	Ala	Leu	Cys	Val	Lys	Phe	Gln	Ala	Ser	Val	Ala	Thr	Pro	Arg	Asn	Ala		
	•		135					140					145					
cag	aga	atg	gag	cca	ttc	aga	atc	tca	tca	agg	agg	aag	cct	tcc	tgg	gca	621	
Ala	Glu	Asn	Gly	Ala	Ile	Gln	Asn	Leu	Ile	Lys	Glu	Glu	Ala	Phe	Leu	Gly		
	150					155					160					165		
tca	ctg	atg	aga	aga	cag	aag	ggc	agt	ttg	tgg	atc	tga	cag	gaa	ata	gac	672	
Ile	Thr	Asp	Glu	Lys	Thr	Glu	Gly	Gln	Phe	Val	Asp	Leu	Thr	Gly	Asn	Arg		,
				170					175					180				
tga	cct	aca	caa	act	gga	acg	agg	gtg	aac	cca	aca	atg	ctg	gtt	ctg	alg	723	
Leu	Thr	Tyr	Thr	Asn	Trp	Asn	Glu	Gly	Glu	Pro	Asn	Asn	Ala	Gly	Ser	Asp		
		185					190					195						
aag	att	gtg	tat	tgc	tac	iga	aaa	atg	gcc	agt	gga	atg	acg	tcc	cct	gct	774	
Glu	Asp	Cys	Val	Leu	Leu	Leu	Lys	Asn	Gly	Gln	Trp	Asn	Asp	Val	Pro	Cys		
200					205					210					215			
cca	cct	ccc	aic	tgg	ccg	tct	gtg	agt	tcc	cta	tct	gaag	ggtc	at			820	
Ser	Thr	Ser	His	Leu	Ala	Val	Cys	Glu	Phe	Pro	Ile							
			220					225					•					
atca	ctca	gg c	cctc	cttg	t ct	ıttı	aclg	caa	ccca	cag	gccc	acag	ta t	gctt	gaaa	a	880	
gata																	940	
atga																	1000	
agtag																	1060	
cctad																	1120	
agta																	1180	
cctto																	1240	
gctt																	1300	
gitit																	1360	
acago																	1420	
tggga																	1480	
aaaat																	1540	
	•										_				_			

-

agtiggaate atatigigig taatgiigia igictigeli acteagaati aagteigiga 1600 gaitcatica igicaigigi acaaaagiti catccittic atigccaigi agggitccci 1660 tatattaata ticcicagit catccatici attgitaata ggcacitaag iggcitccaa 1720 tilliggcca igaggaagag aacccacgaa cattccigga cligicitii ggiggacaig 1780 gigcactaat itcaciacci aiccaggagi ggaaciggia gaggaigagg aaagcaigia 1840 ticagettta giagalatta ecagittice taagigatig latgaattta igeteetace 1900 ggcaatgtgt ggcagtccta gatgctctat gtgcttgtaa aaagtcaatg tittcagttc 1960 tettgatiti cattatteet giggatgiaa agigalalii ecceatggit itaatetgia 2020 tttccccaac aigtaataag gligaacaci itiltataig citaligggc actigggtat 2080 clicitcigi gaagtacccg ticacaltii igiailligi ttaaaltagi tagccaatal 2140 titicitaci gattittaag ilattittac attelgaata igicettiti aaigiglatt 2200 acaaalalit igciagitil igaciigcic claatgiiga atlitigatga acaaaattic 2260 claatitiga gaaagictia titaticala tittctitca aaattagige tilitigigie 2320 algittaaga aattittgcc catcccaaaa tcataagata titttcatga tittgaaacc 2380 atgaagagat liticatgat titgaaatca tgaagatalt titccattit titctaatag 2440 titiallaat aaacaiicia iciatteetg gtagaataga talecaettg agacageact 2500 atglaggaaa gaccattttt cciccactga actagggtgg tgcatttttg taagtlaggt 2560 aactgtatgt gigigigict gittcigggc igictatict agictatiig tigatgctig 2620 tgicaaacag tacactatct taattattgt acatttatag ttgiaactgt agtccagctt 2680 igitetteti caagicaaga tiiccatata aatattagaa acagittete aatttetaca 2740 aaatccigat gaggiticia cigggaccac aitgagicia tcaatcaact tatgcagaac 2800 tggcaacita ctactgaalc tctaatcaat glicatcatg tatcgcttca tttaactagg 2860 atticiciaa citaatigci aigititgag attiltagti taaaaaccit glatatcilg 2920 tiliggiggt illagigatt tiaataalat attitaaata illilitetit ietatigtig 2980 tacacagaaa tacagttaag titigtgtgt agtcttacga tgtttagtaa cctcaataag 3040 titaliticit aaatciagia attigiagat toologgat titgiataig catagicatg 3100 taagetgaaa atatggcaat acttgcttct lcccaattgc titacctttt ttcttacctt 3160 allgcactgg tiagcaaccc caatacagag accaccagag caggiataga ciccigaaag 3220 acaatataat gaagtgetee agteaggeet atetaaactg gatteacage tetgteactt 3280 aattgctaca igaictagag ccagitacti igigiticag ccaigiatti gcagcigaga

gaaaataatc	attettattt	catgaaaatt	gtggggatga	tgaaataagt	taacaccttt	3400
aaagtgtgta	giaaagiaic	aggalactat	attttaggtc	ttaatacaca	cagitaigcc	3460
gclagalaca	tgctttttaa	tgagataatg	igatattata	cataacacat	atcgattttt	3520
aaaattaaa	tcaaccttgc	ltigaiggaa	taaactccat	ttagtcacaa	aaaaaaaaa	3580
aaaaaaaaa	aaaaaaaaa	aaaaa				3605

<210> 2

<211> 747

<212> DNA

<213> Homo sapiens

<400> 2

algiccctgi	ttccatcact	ccctctcctt	ctcctgagta	tggtggcagc	gictiacica	60
gaaactgtga	ccigigagga	tgcccaaaag	acctgccctg	cagigatige	ctgtagctct	120
ccaggcalca	acggcttccc	aggcaaagal	gggcgtgatg	gcaccaaggg	agaaaagggg	180
gaaccaggcc	aagggctcag	aggcilacag	ggccccccig	gaaagttggg	gcctccagga	240
aatccagggc	clicigggic	accaggacca	aagggccaaa	aaggagaccc	tggaaaaagt	300
ccggztggtg	atagtagcct	ggctgcctca	gaaagaaaag	ctctgcaaac	agaaalggca	360
cgtatcaaaa	agiggcigac	ctictctctg	ggcaaacaag	ttgggaacaa	gttcttcctg	420
accaatggtg	aaataatgac	ctitgaaaaa	gtgaaggcct	tgtgtgtcaa	gliccaggcc	480
tctgtggcca	ccccaggaa	tgctgcagag	aatggagcca	ttcagaatct	catcaaggag	540
gaagccticc	tgggcatcac	tgatgagaag	acagaagggc	agtttgtgga	tctgacagga	600
aatagactga	cclacacaaa	ctggaacgag	ggtgaaccca	acaatgctgg	ttctgatgaa	660
galigigiat	tgctactgaa	aaatggccag	tggaatgacg	tccctgctc	caccicceat	720
ciggccgtct	gtgagttccc	laiciga				747

<210> 3

<211> 41

<212> DNA

<213> Artificial Sequence

\400 /3	
tatgeegegg aategatgat taeegtaegg aattegggee e	41
<210> 4	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<400> 4	
acggcgcctt agctactaat ggcatgcctt aagcccggg	39
<210> 5	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<400> 5	
agcticcgcg gctgcaggga tccatcgat	29
<210> 6	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<400> 6	
aggegeegae gteectaggt agetattaa	29
<210> 7	
<211> 37	

_ _

CZIZZ UNA	•
<213> Artificial Sequence	
<400> 7	
ccccgcggga alicigigga algigigica gliaggg	37
<210> 8	
<211> 32	
<212> DNA	,
<213> Artificial Sequence	
<400> 8	
ccclgcagct ttttgcaaaa gcctaggcct cc	32
<210> 9	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<400> 9	
ccccgcggtg iggaatgtgt gtcagttagg g	31
<210> 10	·
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<400> 10	
aattgggccc atcgat	16

41

32

```
<210> 11
 <211> 16
 <212> DNA
 <213> Artificial Sequence
 <400> 11
 cccgggtagc tattaa
 <210> 12
 <211> 41
 <212> DNA
 <213> Artificial Sequence
 <400> 12
ggctgcagtc cctcatgctt cgaccattga actgcatcgt c
<210> 13
<211> 32
<212> DNA
<213> Artificial Sequence
<400> 13
atagatetaa agceageaaa agteecatgg te
<210> 14
<211> 28
<212> DNA
```

<213> Artificial Sequence

(40U) 14	
ggctgcagct tcacgctgcc gcaagcac	28
<210> 15	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
(DIO) MITTITETAL SEQUENCE	
<400> 15	
ggggatccgg ggtgggcgaa gaactccag	29
<210> 16	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<400> 16	
atcitgitca agcatgcgaa acgaicci	28
/910\ 17	•
<210> 17	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<400> 17	
agctigatat categatgeg geegeggtae cagatetegt aegtetagag	50
	30
<210> 18	>
<211> 50	
<212> DNA	

· • -

(213) Artificial Sequence	
<400> 18	
actatagtag cracgccggc gccatggtct agagcatgca gatctcttaa	50
<210> 19	
<211> 47	
<212> DNA	
<213> Artificial Sequence	
<400> 19	
ccgattactt accgccaigt igacatigat taltgactag tiattaa	47
<210> 20	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<400> 20	
ccalcgateg giteactaaa egagetetge tiatalagae etece	45

<210> 21	
<211> 32	,
<212> DNA	·
<213> Artificial Sequence	
<400> 21	

ccictagact gigcciicia giigccagcc ai

(210) 22	•
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<400> 22	
ccagateigt acceatagag cccacegeat ce	3
<210> 23	•
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<400> 23	
itggatecet gigeeticta gitgecagee at	32
<210> 24	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<400> 24	
ticgtacgga icccatagag cccaccgcat cc	32
<210> 25	
<211> 7635	
<212> DNA	
<213> Artificial Sequence	

<400> 25

gcgcgltlcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga gacggtcaca 60 gcitgicigi aagcggaigc cgggagcaga caagcccgic agggcgcgic agcgggigit 120 ggcgggtgic ggggctggct taactatgcg gcatcagagc agattgtact gagagtgcac 180 cataigccgc ggigiggaat gigigicagt tagggigigg aaagtcccca ggctccccag 240 caggcagaag tatgcaaagc atgcatcica attagtcagc aaccatagic ccgccctaa 300 ciccgcccat cccgccccta aciccgccca giiccgccca tictccgccc catggctgac 360 taatttitt tatitatgca gaggccgagg cgcctctgag ctattccaga agtagtgagg 420 aggettitt ggaggeetag gettitgeaa aaaagetgea gtgggettae atggegatag 480 ctagactggg cggliliaig gacagcaagc gaaccggaat tgccagctgg ggcgccctct 540 ggtaaggtig ggaagcccig caaagtaaac iggaiggcii tciigccgcc aaggaiciga 600 tggcgcaggg gatcaagatc tgatcaagag acaggatgag gatcgtttcg catgattgaa 660 caagatggat tgcacgcagg ticiccggcc gctigggtgg agaggctatt cggctatgac 720 igggcacaac agacaategg elgetetgat geegeegtgt teeggetgte agegeaggg 780 cgcccggttc tttttgtcaa gaccgacctg tccggtgccc tgaatgaact gcaggacgag 840 gcagcgcgc tategtggct ggccacgacg ggcgttccit gcgcagctgt gctcgacgtt 900 gtcactgaag cgggaaggga ctggctgcta ttgggcgaag tgccggggca ggatctcctg 960 tcatctcacc tigctcctgc cgagaaagta tccatcatgg ctgatgcaat gcggcggctg 1020 catacgcitg atccggctac ctgcccalic gaccaccaag cgaaacatcg catcgagcga 1080 gcacgiacic ggaiggaagc cggictigic gatcaggaig atciggacga agagcatcag 1140 gggctcgcgc cagccgaact gttcgccagg ctcaaggcgc gcatgcccga cggcgaggat 1200 ctcgtcg1ga cccatggcga tgcctgcttg ccgaatatca tggtggaaaa tggccgcttt 1260 tetggattea tegacigigg eeggetgggt giggeggace getaleagga catagegitg 1320 gctacccgtg ataligctga agagcttggc ggcgaatggg ctgaccgctt cctcgtgctt 1380 tacggtateg cegéteéega tiegeagege ategeettet ategeettet tgacgagtte 1440 ticigagegg gactetgggg ticgaaatga eegaccaage gaegeecaac etgecateae 1500 gagatttcga ttccaccgcc gccttclatg aaaggttggg cttcggaatc gttttccggg 1560 acgccggclg gatgatecte cagcgcggga teacatgclg gattettege ceaccecte 1620 gatececteg egagtiggti cageigetge etgaggeigg acgaectege ggagtictae 1680 cggcagtgca aatccgtcgg catccaggaa accagcagcg gctatccgcg catccatgcc 1740

1800 cccgaactgc aggagtgggg aggcacgatg gccgctttgg tcgacccgga cgggacgctc 1860 cigcgcciga tacagaacga attgctigca ggcalcicat gagigigici icccgillic 1920 cgcctgaggt cactgcgtgg atgggatccg tgacataatt ggacaaacta cctacagaga 1980 titaaagcic taaggtaaat ataaaatitt laagigiala aigigttaaa ctactgalic 2040 taatigitig igiattitag aliccaacci aiggaaciga igaalgggag cagiggigga atgectitaa tgaggaaaac etgittiget eagaagaaat gecatetagt galgatgagg 2100 2160 ctactgctga ctctcaacat tctactcctc caaaaaagaa gagaaaggta gaagacccca 2220 aggactitice it cagaatig claagititt igagicalge igigitiagi aalagaacte 2280 tigctigcti tgctattiac accacaaagg aaaaagcigc actgctatac cagaaattat 2340 gaaatattet gtaacettia taagtaggea taacagitat aateataaca tactgittit 2400 tettaeteea cacaggeata gagtgieige taltaalaac taigeteaaa aatigigiae 2460 citiagciti itaatitgia aaggggitaa taaggaatat tigalgiala gigccitgac 2520 lagagaicat aatcagccat accacaittg tagaggttit acitgcitta aaaaaacctcc 2580 cacacctccc cctgaacctg aaacalaaaa tgaatgcaat tgilgitgit aacttgitta tigcagcita taatggitac aaataaagca atagcatcac aaatticaca aataaagcal 2640 ittiticaci gcaticiagi igiggitigi ccaaacical caaigiatet iatcaigici 2700 2760 gggcccgala iccgatgiac gggccagata lacgcgtiga cattgattat igactagtta 2820 itaatagtaa tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg glaaatggcc cgcclggctg accgcccaac gacccccgcc cattgacgtc 2880 2940 aalaalgacg talgitccca taglaacgcc aalagggact ticcatigac gicaalgggt 3000 ggaciatita cggtaaactg cccactiggc agtacatcaa gigtaicala igccaagtac 3060 geocectatt gaegicaaig aeggtaaaig geoegeeigg cattaigece agiacaigae 3120 ctialgggaa citicctact iggcagtaca ictacgtatt agicatcgcl aliaccatgg 3180 igaigeggti tiggeagtae aleaaiggge giggatageg giligaciea eggggattie 3240 caagicicca ccccatigac gicaatggga gitigiltig gcaccaaaat caacgggact 3300 ticcaaaatg icgiaacaac iccgccccat igacgcaaat gggcggtagg cgigtacggt gggaggicia talaagcaga gcatcgatgc ggccgcggta ccictagact gigcclicia 3360 gligocagec atcigitgit iggeceece tecceegige citectigae eciggaaggi 3420 3480 gccaciccca cigiccitic ciaataaaat gaggaaatig catcgcatig tcigagtagg igicalicia itcigggggg iggggigggg caggacagca agggggagga iigggaagac

The property of the property o

aatagcagge atgctgggga tgcggtgggc tctatggtcl aggctgtgcc ttctagttgc 3600 cagccatcig itgitiggcc cccctcccc cgigccitcc itgacccigg aaggigccac 3660 teccactgie citicetaat aaaatgagga aattgeateg cattgietga graggigiea 3720 liciaticis gggggtgggg tggggcagga cagcaagggg gaggattggg aagacaatag 3780 caggcatgct ggggatgcgg tgggctctat ggcgtacggg atgctagaga attctgtgga 3840 atgigigica gitagggigi ggaaagicce caggeteece ageaggeaga agiatgeaaa 3900 gcatgcatct caattagica gcaaccatag tcccgccct aactccgccc atcccgccc 3960 taactccgcc cagticcgcc cattctccgc cccatggctg actaattttt tttattlatg 4020 cagaggccga ggcgcctctg agctaticca gaagtagtga ggaggctttt tiggaggcct 4080 aggetttige aaaaaagetg cagteectea tggttegace attgaactge ategtegeeg 4140 tgtcccaaaa tatggggatt ggcaagaacg gagacctacc ctggcctccg ctcaggaacg 4200 agitcaagia ciiccaaaga aigaccacaa cciciicagi ggaaggtaaa cagaatcigg 4260 tgattatggg taggaaaacc tggttctcca ttcctgagaa gaatcgacct ttaaaggaca 4320 gaattaatat agitcicagt agagaactca aagaaccacc acgaggaget cattitetig 4380 ccaaaagili ggatgatgcc ttaagacila ttgaacaacc ggaaligica agtaaagtag 4440 acatggtttg gatagtcgga ggcagttctg tttaccagga agccatgaat caaccaggcc 4500 accicagact citigigaca aggatcatge aggaatitga aagtgacacg tititeccag 4560 aaattgatti ggggaaatat aaacttetee cagaatacee aggegteete tetgaggtee 4620 aggaggaaaa aggcatcaag tataagtitg aagtctacga gaagaaagac taacaggaag 4680 atgettteaa glictetget ecceteciaa agetatgeat tittataaga ecatgggaet 4740 ttigciggci itaagatccg tgacataatt ggacaaacta cctacagaga tttaaagctc 4800 taaggtaaat ataaaattit taagtgtata atgtgttaaa ctactgattc taattgttig 4860 igiatitiag attocaacci atggaactga igaatgggag cagtggtgga atgcctttaa 4920 tgaggaaaac cigittigct cagaagaaat gccatctagt gatgatgagg clactgctga 4980 cicicaacat iciaciccic caaaaaagaa gagaaaggia gaagacccca aggactiicc 5040 ticagaattg ctaagttiti igagicatge igigittagt aalagaacte itgetigett 5100 igcialitac accacaaagg aaaaagcigc acigciatac cagaaattat gaaatatict 5160 gtaaccitta taagtaggca taacagttat aatcataaca tactgttttt tcttactcca 5220 cacaggcala gagigicige tattaataac laigeteaaa aatigigiae ettiagetit 5280 ttaatttgta aaggggitaa taaggaatat itgatgiata gigccitgac tagagatcat 5340

-: 755

aatcagccat accacattig tagaggitit actigcitta aaaaaccicc cacacciccc 5400 cctgaacctg aaacataaaa tgaatgcaat tgttgttgtt aacttgttta ttgcagctta 5460 taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat tittttcact 5520 gcattctagt igiggiligi ccaaactcat caatglaict tatcatgtct gggcccctgc 5580 attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttccgctt 5640 cclegeteae lgactegetg egeteggteg tleggetgeg gegageggta teageteaet 5700 caaaggcggt aatacggita iccacagaat caggggataa cgcaggaaag aacatgtgag 5760 caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gtigctggcg ttittccata 5820 ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc 5880 cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg 5940 itccgaccct gccgcttacc ggatacctgt ccgcclttct cccttcggga agcgtggcgc 6000 titcicaatg cicacgcigt aggiatetea giteggigta ggiegitege lecaageigg 6060 getgigtgea egaacecece giteageceg acegetgege ettateeggi aactategte 6120 tigagiccaa cccggiaaga cacgacitai cgccactggc agcagccact ggtaacagga 6180 ttagcagage gaggtatgta ggeggtgeta cagagttett gaagtggtgg cetaactaeg 6240 getacactag aaggacagta tilggtatet gegetetget gaagceagtt acetteggaa 6300 aaagagitgg tagcicitga iccggcaaac aaaccaccgc iggiagcggi ggiittitig 6360 ttigcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcci ttgatctttt 6420 ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat 6480 lateaaaaag gatetteace lagateetti taaattaaaa atgaagtitt aaateaatet 6540 aaagtalata tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta 6600 tcicagcgat cigiciatit cgitcatcca tagitgccig actccccgic gigiagataa 6660 ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg cgagacccac 6720 gcicacegge iccagatita icagcaataa accagceage eggaagggee gagegeagaa 6780 giggiccige aactitatee geetecatee agiciatiaa tigtigeegg gaagetagag 6840 laagtagiic gecagitaat agiiigegea aegiigtige caligetaca ggeategigg 6900 tgicacgcic gicgiliggi atggcticat icagciccgg ticccaacga icaaggcgag 6960 ttacatgate ecceatgitg tgcaaaaaag eggttagete etteggteel eegategitg 7020 icagaagtaa giiggccgca gigitaicac icatggitai ggcagcacig cataattcic 7080 ttactgical gecateegta agatgettii etgigaetgg tgagtactea accaagteat

totgagaata gigiaigogg cgacogagit golottgoco ggogicaata ogggataata	7200
ccgcgccaca tagcagaact ttaaaagtgc icalcattgg aaaacgttct tcggggcgaa	7260
aactotcaag gatottaccg cigitgagat coagttogat gtaacccact cgtgcaccca	7320
actgatette ageatettit actiteacea gegittetgg gigageaaaa acaggaagge	7380
aaaatgccgc aaaaaaggga ataagggcga cacggaaatg tigaatactc atactcticc	7440
itilicaala italigaago attiatoagg gilatigiot catgagogga tacatattig	7500
aalglattta gaaaaataaa caaatagggg ticcgcgcac atticcccga aaagtgccac	7560
ctgacgicta agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga	7620
ggccctttcg tcctc	7635
	•
<210> 26	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<400> 26	
aaggaaaaaa gcggccgcat gtccctgttt ccatcactc	39
<210> 27	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<400> 27	
gctctagatc agatagggaa ctcacagac	29

<210> 28

<211> 248

<212> PRT

<213> Homo sapiens

< 4	00>	28														
Мe	t S	er L	eu I	Phe	Pro	Ser	Let	ı Pr	o Le	u L	eu L	eu L	eu S	er M	et Va	al Ala
	1				5						10					15
Ala	a Se	er T	yr S	Ser	Glu	Thr	Val	Th	г Су	s G	lu A	sp A	la G	ln Ly	rs Th	r Cys
				20					2					. 3		
Pro	A l	a V	al I	le A	Ala	Cys	Ser	Ser	Pr	o G	y I	le As	n G	ly Pi	e Pr	o Gly
			35					40						15		
Lys	As	p G	ly A	rg A	lsp	Gly	Thr	Lys	G1:	y Gl	u Ly	ys Gl	y Gi	u Pr	o GI	y Gln
	5						55					_	0			
Gly	Le	u Ai	gG	ly L	eu (Gln	Gly	Pro	Pro	i Q	y Ly	s Le	u Gl	у Рг	o Pr	o Gly
65						70						' 5				80
Asn	Pro	o GI	у Р	ro S	er (3ly	Ser	Рго	Gly	Pr	o Ly	s · G1	y Gl	n Ly	s Gl	y Asp
					85					9					9	-
Pro	Gly	/ Ly	s Se	r P	ro A	sp (Gly	Asp	Ser	Se	r Le	u Al	a Al	a Sei	Glu	ı Arg
			10						105					110		
Lys	Ala	Le	u Gl	n Th	ir G	lu N	le t	Ala	Arg	He	Ly:	s Lys	Tr	Leu	Thi	Phe
		115						120					125			
			/ Ly	s GI	n V	al G	ly A	Asn	Lys	Phe	Phe	e Let	Thr	Asn	Gly	Glu
	130						35					140				
Ile	Me t	Thr	Pho	e Gl	u Ly	s V	al I	Lys .	Ala	Leu	Cys	Val	Lys	Phe	Gln	Ala
145						50					155					160
Ser '	Val	Ala	Thi	Pr	o Ar	g A	sn A	la	Ala	Glu	Asn	Gly	Ala	Ile	Gln	Asn
				16						170					175	
Leu l	He	Lys	Glu	Gli	ı Al	a Pi	ne L	eu (Sly	Ile	Thr	Asp	Glu	Lys	Thr	Glu
			180						85					190		
Gly G	In	Phe	Val	Asp	Le	u Th	ır G	ly A	sn.	Arg	Leu	Thr	Tyr	Thr	Asn	Trp
		195					20	00					205			
Asn G	lu	Gly	Glu	Рго	Asi	n As	n A	la G	ly S	Ser	Asp	Glu	Asp	Cys	Val	Leu
2	10					21	5					220				

Leu Leu Lys Asn Gly Gln Trp Asn Asp Val Pro Cys Ser Thr Ser His 225 230 235 240

Leu Ala Val Cys Glu Phe Pro Ile

245