CS543 Assignment 2

Your Name: Kaylin Chen

Your NetId: tc49

Part 1 Fourier-based Alignment:

You will provide the following for each of the six low-resolution and three high-resolution images:

- Final aligned output image
- Displacements for color channels
- Inverse Fourier transform output visualization for both channel alignments without preprocessing
- Inverse Fourier transform output visualization for both channel alignments with any sharpening or filter-based preprocessing you applied to color channels

You will provide the following as further discussion overall:

- Discussion of any preprocessing you used on the color channels to improve alignment and how it changed the outputs
- Measurement of Fourier-based alignment runtime for high-resolution images (you can use the
 python time module again). How does the runtime of the Fourier-based alignment compare to
 the basic and multiscale alignment you used in Assignment 1?

A: Channel Offsets

Replace <C1>, <C2>, <C3> appropriately with B, G, R depending on which you use as the base channel. Provide offsets in the **original image coordinates** (after the image has been divided into three equal parts corresponding to each channel) and be sure to account for any cropping or resizing you performed.

Low-resolution images (using channel B as base channel):

Image	G (h,w) offset	R (h,w) offset
00125v.jpg	(5,2)	(10,1)

00149v.jpg	(4,2)	(9,2)
00153v.jpg	(7,3)	(14,5)
00351v.jpg	(4,1)	(13,1)
00398v.jpg	(5,3)	(11,4)
01112v.jpg	(0,0)	(5,1)

High-resolution images (using channel R as base channel):

Image	G (h,w) offset	B (h,w) offset
01047u.tif	(25, 20)	(71,33)
01657u.tif	(51, 9)	(112,12)
01861a.tif	(70, 37)	(146,62)

B: Output Visualizations

For each image, insert 5 outputs total (aligned image + 4 inverse Fourier transform visualizations) as described above. When you insert these outputs be sure to clearly label the inverse Fourier transform visualizations (e.g. "G to B alignment without preprocessing").

00125v.jpg

Aligned image

5,2 50 -100 -150 -

100

150

200

250

300

250 -

G to B alignment without preprocessing

R to B alignment without preprocessing

G to B alignment with preprocessing

R to B alignment with preprocessing

G to B alignment without preprocessing

R to B alignment without preprocessing

G to B alignment with preprocessing

R to B alignment with preprocessing

G to B alignment without preprocessing

R to B alignment without preprocessing

G to B alignment with preprocessing

R to B alignment with preprocessing

Aligned image

G to B alignment without preprocessing

R to B alignment without preprocessing

G to B alignment with preprocessing

R to B alignment with preprocessing

01047u.tif

Aligned image

G to R alignment without preprocessing

B to R alignment without preprocessing

01657u.tif

01861a.tif

G to R alignment without preprocessing

B to R alignment without preprocessing

C: Discussion and Runtime Comparison

For the preprocessing, I try on both sharpen and Laplacian Gaussian and find out the Laplacian provide a good results for 00153v. Before applying the preprocessing, it can only align two channel, but with the filter it align perfectly.

By Fourier-based, the runtime for high-resolution images is around 3 seconds, slightly slower than the multi-scale approach in the previous assignment, which takes about 1 second; and it is much faster than single layer approach in MP1, which I believe will take 5 hours approximately.

Part 2 Scale-Space Blob Detection:

You will provide the results for 4 different examples chosen by your own:

- Original image
- Each of the five modified images (shift, rotate, scale)

You will provide the following as further discussion overall:

• Explanation of any "interesting" implementation choices that you made.

Example 1:

Example 2:

Example 3:

Example 4:

Discussion:

I tried to find the orientation by both histogram method and max magnitude; and I found that the output obtained by using max magnitude is more consistence, I guess that it is because the Harris corner might find different corner after rotation or scaling and change the histogram value.

Bonus:

Blob-Detection Extra Credit

• Discussion and results of any extensions or bonus features you have implemented for Blob-Detection