Exploratory Analysis

1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

Q1 A.Data type of all columns in the "customers" table.

SELECT column_name , data_type FROM target-project- 431704.shop_co.INFORMATION_SCHEMA.COLUMNS where table name = 'customers'

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON	E
Row	column_name	-	data_type ▼		/
1	customer_id		STRING		
2	customer_unique	e_id	STRING		
3	customer_zip_co	de_prefix	INT64		
4	customer_city		STRING		
5	customer_state		STRING		

Q1 B. Get the time range between which the orders were placed.

select min(order_purchase_timestamp) as first_order_date ,
max(order_purchase_timestamp) as last_order_date
from `target-project-431704.shop_co.orders`

Insight – From the above table we can see that the first order was placed on 2016 and the last order was placed on 2018.

Q1 C. Count the Cities & States of customers who ordered during the given period.

Insight – from the above table we can see that customer are from 27 different state and 4119 different cities. Here we can see that this is a Global market opportunity and we can get Feedback and Communication to understand their requirements.

Q2 In-depth Exploration:

Q2 A. Is there a growing trend in the no. of orders placed over the past years?

select extract(year FROM order_purchase_timestamp) as year ,count(order_id)
as no_of_order

from `target-project-431704.shop_co.orders` group by year order by year asc

Query results

JOB IN	IFORMATION		RESULTS	CHA	ART
Row	year ▼	//	no_of_order	• /	
1		2016		329	
2		2017	4	15101	
3	1	2018	5	54011	

Insight – we can see that there is a increasing growth in the number of order on the basis of year.

So this is a 'strategic growth'.

Q2 B. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
select extract(year FROM order_purchase_timestamp ) as
year_of_orders ,format_timestamp('%B',order_purchase_timestamp) as month ,
count(order_id) as no_of_orders
from shop_co.orders
group by year_of_orders,month
order by year_of_orders desc
```

JOB IN	FORMATION	RESULTS	CHART PREVIEW	JSON	EXEC
Row	year_of_orders ▼	month ▼	li.	no_of_orders ▼	
1	2018	February		6728	
2	2018	May		6873	
3	2018	January		7269	
4	2018	July		6292	
5	2018	March		7211	
6	2018	April		6939	
7	2018	June		6167	
8	2018	August		6512	
9	2018	September		16	
10	2018	October		4	

Insight – from the data we see that there is an increment in number of order then there is a sudden drop in number of order afterward it again increase. This pattern is known as 'cyclic pattern'

Q2 C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

when extract(time from order_purchase_timestamp) between '19:00:00' and '23:00:00' then 'Night(19-23)' end as time_of_day from shop_co.orders) a

where time_of_day is not null group by time_of_day order by no_of_order desc

Quer	y results			
JOB IN	IFORMATION	RESULTS	CHART	J
Row	time_of_day ▼	//	no_of_order ▼	//
1	Afternon(13-18)		323	
2	Night(19-23)		242	209
3	Morning(7-12)		217	738
4	Dawn(0-6)	47	740	

Insight - From the above data we can see that the maximum number of order placed during afternoon. It may be due to common time when people are available or due to lunch break

Q3. Evolution of E-commerce orders in region

Q3 A. Get the month on month no. of orders placed in each state.

```
select customer_state ,
extract(year from order_purchase_timestamp) as year ,
extract(month from order_purchase_timestamp) as month ,
count(a.customer_id) as no_of_order
from shop_co.customers a
inner join shop_co.orders b
on a.customer_id = b.customer_id
group by customer_state, year ,month
order by year , month
```

JOB IN	IFORMATION	RESULTS	CHART	J	SON EXECUT	ION DETAILS
Row	customer_state	· //	year ▼	//	month ▼	no_of_order ▼
1	RR			2016	9	1
2	RS			2016	9	1
3	SP			2016	9	2
4	SP			2016	10	113
5	RS			2016	10	24
6	BA			2016	10	4
7	PR			2016	10	19
8	RJ			2016	10	56
9	RN			2016	10	4
10	MT			2016	10	3

Q3 B. How are the customers distributed across all the states?

select customer_state , count(distinct(customer_id)) as no_of_customers

from
`shop_co.customers`
group by customer_state

JOB IN	FORMATION	RESULTS	CHART	J٤
Row	customer_state	· //	no_of_customers	7
1	RN		485	
2	CE		1336	
3	RS		5466	
4	SC		3637	
5	SP		41746	
6	MG		11635	
7	BA		3380	
8	RJ		12852	
9	GO		2020	
10	MA		747	

Q4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

Q4 A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
select year,
round( 100* ( (lead(Total financial payment) over (order by year)-
   Total_financial_payment) / Total_financial_payment ),1 ) as
percent increase
from (
select
extract(year from o.order purchase timestamp) as year,
sum(p.payment value) as Total financial payment
from shop co.orders o
inner join shop co.payments p
on o.order id = p.order id
where o.order purchase timestamp between '2017-01-01' and '2017-08-31'
or o.order purchase timestamp between '2018-01-01' and '2018-08-31'
group by year
order by year asc)
  Query results
```

JOB IN	FORMATION		RESULTS	CHART
Row	year ▼	//	percent_incr	ease 🔻
1		2017		138.5
2		2018		null

Insight – there is an increment of 138.5%, the profit margin has increased means business growth and improved sales performance.

Q4 B. Calculate the Total & Average value of order price for each state.

select customer_state as state ,sum(price) as total_price , avg(price) as
avg_price

```
from `shop_co.customers` a
join shop_co.orders b
on a.customer_id = b.customer_id
join shop_co.order_items c
on b.order_id = c.order_id
group by state
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUT
Row	state ▼		total_price ▼	avg_pric	e ~
1	MT		156453.5299999		1848341
2	MA		119648.2199999	145.204	1504854
3	AL		80314.81	180.889	2117117
4	SP		5202955.050001	109.653	6291597
5	MG		1585308.029999	120.748	5741488
6	PE		262788.0299999	145.508	3222591
7	RJ		1824092.669999	125.117	8180945
8	DF		302603.9399999	125.770	5486284
9	RS		750304.0200000	120.337	4530874
10	SE		58920.85000000	153.041	1688311

Insight - the average is above 100 and we got 27 state with their average and sum

Q4 C. Calculate the Total & Average value of order freight for each state.

select customer_state as state ,sum(freight_value) as total_price ,

avg(freight_value) as avg_price
from `shop_co.customers` a
join shop_co.orders b
on a.customer_id = b.customer_id
join shop_co.order_items c
on b.order_id = c.order_id
group by state

JOB IN	NFORMATION	RESULTS	CHART	JSON	EXECUTI
Row	state ▼	//	total_price ▼	avg_pric	e ▼ //
1	MT		29715.43000000	28.1662	8436018
2	MA		31523.77000000	38.2570	0242718
3	AL		15914.58999999	35.8436	7117117
4	SP		718723.0699999	15.1472	7539041
5	MG		270853.4600000	20.6301	6680630
6	PE		59449.65999999	32.9178	6267995
7	RJ		305589.3100000	20.9609	2393168
8	DF		50625.49999999	21.0413	5494596
9	RS		135522.7400000	21.7358	0433039
10	SE		14111.46999999	36.6531	6883116

Q5. Analysis based on sales, freight and delivery time.

Q5 A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

union all

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION
Row	order_id ▼	//	No_of_days_delive	er estima	te_day ▼
1	00010242fe8c5a	a6d1ba2dd792	7	7	8
2	00018f77f2f032	0c557190d7a1	16	6	2
3	000229ec39822	4ef6ca0657da	-	7	13
4	00024acbcdf0a6	5daa1e931b03	(6	5
5	00042b26cf59d7	7ce69dfabb4e	25	5	15
6	00048cc3ae777	c65dbb7d2a06	(5	14
7	00054e8431b9d	7675808bcb8	8	В	16
8	000576fe393198	347cbb9d288c		5	15
9	0005a1a1728c9	d785b8e2b08	Ģ	9	0
10	0005f50442cb9	53dcd1d21e1f	2	2	18

Q5 B. Find out the top 5 states with the highest & lowest average freight value

```
( select customer_state, 'High' as value_high_or_low , avg(freight_value) as
average_value
from shop_co.customers a
join shop_co.orders b
on a.customer_id = b.customer_id
join shop_co.order_items c
on b.order_id = c.order_id
group by customer_state
order by average_value desc
limit 5 )
```

```
(select customer_state, 'Low' as value_high_or_low , avg(freight_value) as average_value from shop_co.customers a join shop_co.orders b on a.customer_id = b.customer_id
```

```
join shop_co.order_items c
on b.order_id = c.order_id
group by customer_state
order by average_value asc
limit 5 )
order by average_value desc
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS
Row	customer_state ▼	//	value_high_or_lo	w -	average_value ▼
1	RR		High		42.98442307692
2	PB		High		42.72380398671
3	RO		High		41.06971223021
4	AC		High		40.07336956521
5	PI		High		39.14797047970
6	DF		Low		21.04135494596
7	RJ		Low		20.96092393168
8	MG		Low		20.63016680630
9	PR		Low		20.53165156794
10	SP		Low		15.14727539041

Insight - here 5 state have high average value and 5 state with low average value

Q5 C. Find out the top 5 states with the highest & lowest average delivery time

```
(select customer_state ,'High' as status ,avg(timestamp_diff( order_delivered_customer_date , order_purchase_timestamp , day ) ) as avg_delivered from shop_co.orders a join shop_co.customers b on a.customer_id = b.customer_id group by customer_state order by avg_delivered desc
```

```
limit 5)
union all
(
select customer_state ,'Low' as status ,avg(timestamp_diff(
order_delivered_customer_date ,
  order_purchase_timestamp , day ) ) as avg_delivered
from shop_co.orders a
join shop_co.customers b
on a.customer_id = b.customer_id
group by customer_state
order by avg_delivered asc
limit 5 )
order by avg_delivered desc
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DETAILS
Row /	customer_state ▼ RR	ſı	status ▼ High	//	avg_delivered ▼ 28.97560975609
2	AP		High		26.73134328358
3	AM		High		25.98620689655
4	AL		High		24.04030226700
5	PA		High		23.31606765327
6	SC		Low		14.47956019171
7	DF		Low		12.50913461538
8	MG		Low		11.54381329810
9	PR		Low		11.52671135486
10	SP		Low		8.298061489072

Insight - Here we have top 5 highest and lowest average on the basis of states.so can see that there is Logistics Challenges and Operational Efficiency.

Q5 D.Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
select customer_state , avg(timestamp_diff(order_estimated_delivery_date ,
order_delivered_customer_date,day) ) as actual_order_day
from shop_co.orders a
join shop_co.customers b
on a.customer_id = b.customer_id
group by customer_state
order by actual_order_day asc
limit 5
```

JOB INFORMATION		RESULTS	CHART JS
Row	customer_state	-	actual_order_day 🔻
1	AL		7.947103274559
2	MA		8.768479776847
3	SE		9.173134328358
4	ES		9.618546365914
5	BA		9.934889434889

Insight – these are the top 5 states where the order delivery is really fast means that it have a good

Operational Efficiency and supply chain optimization

