$\begin{array}{c} {\rm Step~1-Apply~Laplace~Transform} \\ {\rm Step~2-Solve~for~} X(s) \\ {\rm Step~3-Rearrange~to~Find~Invertable~Form} \\ {\rm Step~4-Invert~for~Final~Answer} \end{array}$

Lecture Module - The Laplace Transform

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 2 - Laplace Transforms Method

Topic 2 - Laplace Transforms Method

- Step 1 Apply Laplace Transform
- Step 2 Solve for X(s)
- Step 3 Rearrange to Find Invertable Form
- Step 4 Invert for Final Answer

Step 1 - Apply Laplace Transform

Example:

Solve the first order differential equation using the Laplace Transforms Method with the initial condition given.

$$4\dot{x} = \sin(t)$$
 with $x(t=0) = x_0$

Apply the Laplace Transform to both sides of the differential equation.

$$4(sX(s)-x_0)=\frac{1}{s^2+1}$$

Step 2 - Solve for X(s)

This step can seem open ended...

$$X(s) = \frac{1}{4s(s^2+1)} + \frac{x_0}{s}$$

Step 3 - Rearrange to Find Invertable Form

Write X(s) in a form that can be inverted using the table of Laplace transform pairs. This typically involves partial fraction decomposition.

$$\frac{1}{4s(s^2+1)} = \frac{1/4}{s(s^2+1)} = \frac{a}{s} + \frac{bs+c}{s^2+1}$$

Mulitply through by the denominator $4s(s^2 + 1)$:

$$1 = 4as(s^{2} + 1) + 4s(bs + c) = 4(a + b)s^{2} + 4cs + 4a$$

Solve for the coefficients by equating coefficients.

$$(a+b) = 0$$
 $c = 0$ $a = \frac{1}{4} \implies a = \frac{1}{4}$ $b = -\frac{1}{4}$ $c = 0$

Step 4 - Invert for Final Answer

Substitute the coefficients into X(s),

$$X(s) = \frac{x_0}{s} + \frac{1}{4s} - \frac{s}{4(s^2 + 1)}$$

and use the inverse transform to solve for x(t). Use the Table.

$$\mathcal{L}^{-1}(X(s)) = x(t) =$$

$$= x_0 + \frac{1}{4} - \frac{1}{4}\cos(t) = x_0 + \frac{1}{4}(1 - \cos(t))$$

This method works for complex problems but it can get messy...

Step 3 - Rearrange to Find Invertable Form Step 4 - Invert for Final Answer

Table of Laplace Transforms					
	$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2+a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$

Step 3 - Rearrange to Find Invertable Form Step 4 - Invert for Final Answer

17.
$$\sinh(at)$$
 $\frac{a}{s^2-a^2}$ | 18. $\cosh(at)$ $\frac{s}{s^2-a^2}$ | 19. $e^{st} \sin(bt)$ $\frac{b}{(s-a)^2+b^2}$ | 20. $e^{st} \cos(bt)$ $\frac{s-a}{(s-a)^2+b^2}$ | 21. $e^{st} \sinh(bt)$ $\frac{b}{(s-a)^2-b^2}$ | 22. $e^{st} \cosh(bt)$ $\frac{s-a}{(s-a)^2-b^2}$ | 22. $e^{st} \cosh(bt)$ $\frac{s-a}{(s-a)^2-b^2}$ | 23. $t^n e^{st}$, $n=1,2,3,...$ $\frac{n!}{(s-a)^{n+1}}$ | 24. $f(ct)$ $\frac{1}{c} F(\frac{s}{c})$ | 25. $u_{\epsilon}(t) = u(t-c)$ $\frac{e^{-cs}}{s}$ | 26. $\frac{\delta(t-c)}{Dirac} Delta Function}$ | 27. $u_{\epsilon}(t) f(t-c)$ $e^{-cs} F(s)$ | 28. $u_{\epsilon}(t) g(t)$ $e^{-cs} \pounds g(s(t+c))$ | 29. $e^{ct} f(t)$ $F(s-c)$ | 30. $t^n f(t)$, $n=1,2,3,...$ $(-1)^n F^{(n)}(s)$ | 31. $\frac{1}{t} f(t)$ $\int_{s}^{s} F(u) du$ | 32. $\int_{0}^{t} f(v) dv$ $\frac{F(s)}{s}$ | 34. $f(t+T) = f(t)$ $\frac{\int_{0}^{T} e^{-st} f(t) dt}{1-e^{-st}}$ | 35. $f'(t)$ $sF(s) - f(0)$ | 36. $f''(t)$ $s^2 F(s) - sf(0) - f'(0)$ | 37. $f^{(n)}(t)$ $s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$