## $Grupa^1$ : Numer indeksu: Wersja: s. 4 s. 5 s. 103 s. 104 s. 105 s. 139 s. 140 s. 141 Logika dla informatyków Kolokwium nr 2, 14 grudnia 2018 Czas pisania: 30+60 minut **Zadanie 1 (2 punkty).** Różnicę symetryczną $\dot{}$ zbiorów A i B definiujemy następująco: $A - B = \{x \mid x \in A \Leftrightarrow x \notin B\}.$ Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne operatory $\cup$ , $\cap$ , $\setminus$ , $\dot{-}$ i nawiasy, oraz W zawiera mniej operatorów niż W'. Np. $A \cup B$ jest uproszczeniem $(A \setminus B) \cup B$ . Jeśli istnieje uproszczenie wyrażenia $A \setminus (A - B)$ to w prostokat poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE". **Zadanie 2 (2 punkty).** Jeśli istnieje taka rodzina $\{X_{i,j} \mid i,j \in \mathbb{N}\}$ zbiorów niepustych, że $\bigcap_{i=0}^{\infty} \bigcup_{j=0}^{\infty} X_{i,j} = \emptyset$ to w prostokąt poniżej wpisz dowolną taką rodzinę. W przeciwnym przypadku wpisz słowo "NIE". Zadanie 3 (2 punkty). Rozważmy funkcje $f: \mathbb{N} \to \mathbb{N}, \qquad g: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}, \qquad h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^{\mathbb{N}}.$ Rozważmy wyrażenia zbudowane z symboli ( , f g h ; $\circ$ ), gdzie $\circ$ oznacza operator składania funkcji. Wyrażenie uznajemy za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(g) nie jest poprawne, bo $g \notin \mathbb{N}$ . Jeśli istnieje wyrażenie, którego wartością jest liczba naturalna i w którym każdy z symboli f, g i h występuje

co najmniej raz, to w prostokat poniżej wpisz dowolny przykład takiego wyrażenia; w przeciwnym

przypadku wpisz słowo "NIE".

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.

| -             | KCJI. VV                                            | przeciwn                            | ym przypa                                                   | adku wpi                                                     | sz odpov                                                           | wiedni ko                       | ontrprzyk                          | ład.                              |                                       |                                                                   |
|---------------|-----------------------------------------------------|-------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------------------------------|
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
| _             |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
| ve<br>ra<br>P | $a \subseteq O$ z<br>nją w ja<br>coniżej<br>czający | × B, Luba<br>kich bara<br>wpisz tak | $i \subseteq O \times S$ ch, jakie os a formułę barów i oso | i $Podajq$ soby lubis $\varphi$ , że $\{\langle b \rangle\}$ | $g \subseteq B 	imes 0$ $g \text{ jakie so} 0$ $g \mid \varphi \}$ | S informoki oraz j<br>jest zapy | nujące od<br>akie bary<br>taniem r | powiedni<br>podają j<br>elacyjneg | o o tym ja<br>akie soki.<br>o rachunk | je binarne<br>akie osoby<br>W prosto-<br>u dziedzin<br>oi żadnego |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |
|               |                                                     |                                     |                                                             |                                                              |                                                                    |                                 |                                    |                                   |                                       |                                                                   |

Wersja:



| Numer indeksu: |  |
|----------------|--|
|                |  |
|                |  |

| Grupa <sup>1</sup> |   |
|--------------------|---|
| Grupa              | ٠ |

| s. 4   | s. 5   | s. 103 | s. 104 |
|--------|--------|--------|--------|
| s. 105 | s. 139 | s. 140 | s. 141 |

**Zadanie 6 (5 punktów).** Rozważmy taką relację binarną  $R \subseteq A \times A$ , że  $R; R = I_A$ , gdzie  $I_A = \{\langle a, a \rangle \mid a \in A\}$  jest relacją identycznościową na zbiorze A. Udowodnij, że R jest funkcją.

**Zadanie 7 (5 punktów).** Rozważmy indeksowaną rodzinę zbiorów  $\{A_i \mid i \in \mathbb{N}\}$ , gdzie  $A_i \subseteq \mathbb{N}$  dla wszystkich  $i \in \mathbb{N}$ . Uogólnionym produktem kartezjańskim tej rodziny nazywamy zbiór

$$\prod_{i\in\mathbb{N}}A_i=\{f:\mathbb{N}\to\mathbb{N}\mid\forall i\in\mathbb{N}.f(i)\in A_i\}.$$

W szczególności dla ustalonego zbioru  $B\subseteq\mathbb{N}$ mamy

$$\prod_{i\in\mathbb{N}}B=\{f:\mathbb{N}\rightarrow\mathbb{N}\mid\forall i\in\mathbb{N}.f(i)\in B\}.$$

Czy dla dowolnego zbioru  $B\subseteq \mathbb{N}$  zachodzi równość

$$\prod_{i\in\mathbb{N}}(A_i\cap B)=(\prod_{i\in\mathbb{N}}A_i)\cap(\prod_{i\in\mathbb{N}}B)?$$

Uzasadnij odpowiedź.

**Zadanie 8 (5 punktów).** Czy dla dowolnych funkcji  $f: A \to B$  i  $g: B \to C$ , jeśli złożenie gf jest funkcją różnowartościową i f jest "na", to g jest różnowartościowa? Uzasadnij odpowiedź.

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.

## $Grupa^1$ : Numer indeksu: Wersja: s. 4 s. 5 s. 103 s. 104 s. 105 s. 139 s. 140 s. 141 Logika dla informatyków Kolokwium nr 2, 14 grudnia 2018 Czas pisania: 30+60 minut **Zadanie 1 (2 punkty).** Jeśli istnieje taka rodzina $\{A_{i,j} \mid i,j \in \mathbb{N}\}$ zbiorów niepustych, że $\bigcup_{i=0}^{\infty} \bigcap_{j=0}^{\infty} A_{i,j} = \emptyset$ to w prostokat poniżej wpisz dowolna taka rodzinę. W przeciwnym przypadku wpisz słowo "NIE". Zadanie 2 (2 punkty). Rozważmy funkcje $q: (\mathbb{N} \times \mathbb{N})^{\mathbb{N}} \to \mathbb{N},$ $h : \mathbb{N} \to \mathbb{N} \times \mathbb{N}.$ $f: \mathbb{N} \to \mathbb{N},$ Rozważny wyrażenia zbudowane z symboli ( , f g h; $\circ$ ), gdzie $\circ$ oznacza operator składania funkcji. Wyrażenie uznajemy za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(g) nie jest poprawne, bo $g \notin \mathbb{N}$ . Jeśli istnieje wyrażenie, którego wartością jest liczba naturalna i w którym każdy z symboli f, g i h występuje co najmniej raz, to w prostokat poniżej wpisz dowolny przykład takiego wyrażenia; w przeciwnym przypadku wpisz słowo "NIE". Zadanie 3 (2 punkty). Różnicę symetryczną – zbiorów A i B definiujemy następująco: $A \doteq B = \{x \mid x \in A \Leftrightarrow x \notin B\}.$ Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne operatory $\cup$ , $\cap$ , $\cdot$ i nawiasy, oraz W zawiera mniej operatorów niż W'. Np. $A \cup B$ jest uproszczeniem $(A \setminus B) \cup B$ . Jeśli istnieje uproszczenie wyrażenia $(A \cap B) \cup (A - B)$ to w prostokat poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.

| <b>Zadanie 4 (2 punkty).</b> Rozważmy zbiory osób $O$ , barów $B$ i soków $S$ oraz relacje binarne $Bywa \subseteq O \times B$ , $Lubi \subseteq O \times S$ i $Podajq \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę $\varphi$ , że $\{\langle b,s \rangle \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów i soków o tej własności, że sok $s$ jest podawany w barze $b$ ale nie lubi go żadna osoba bywająca w tym barze. |                                                                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| Zadanie 5 (2 punkty). Jeśli formuła $\Big( \forall x  (\neg p(x)) \Big)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Rightarrow q(x))$ $\Rightarrow$ $(\forall x (\neg q(x) \Rightarrow p(x)))$ jest |  |  |  |  |
| tautologią rachunku predykatów, to w prostokąt ponidedukcji. W przeciwnym przypadku wpisz odpowiedn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | żej wpisz jej dowód w systemie naturalnej                                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |  |  |  |  |

| Wersja |
|--------|
|        |

| Numer indeksu: |  |
|----------------|--|
|                |  |
|                |  |
|                |  |

| Grupa <sup>1</sup> |  |
|--------------------|--|
| Grupa              |  |

| s. 4   | s. 5   | s. 103 | s. 104 |
|--------|--------|--------|--------|
| s. 105 | s. 139 | s. 140 | s. 141 |

**Zadanie 6 (5 punktów).** Rozważmy indeksowaną rodzinę zbiorów  $\{A_i \mid i \in \mathbb{N}\}$ , gdzie  $A_i \subseteq \mathbb{N}$  dla wszystkich  $i \in \mathbb{N}$ . Uogólnionym produktem kartezjańskim tej rodziny nazywamy zbiór

$$\prod_{i \in \mathbb{N}} A_i = \{ f : \mathbb{N} \to \mathbb{N} \mid \forall i \in \mathbb{N}. f(i) \in A_i \}.$$

Czy prawdziwe jest stwierdzenie

$$(\prod_{i\in\mathbb{N}}A_i)\neq\emptyset \ \text{ wtedy i tylko wtedy, gdy } \forall i\in\mathbb{N}.A_i\neq\emptyset?$$

Uzasadnij odowiedź.

**Zadanie 7 (5 punktów).** Rozważmy taką relację binarną  $R \subseteq A \times A$ , że R; $R = I_A$ , gdzie  $I_A = \{\langle a, a \rangle \mid a \in A\}$  jest relacją identycznościową na zbiorze A. Udowodnij, że  $R = R^{-1}$ .

**Zadanie 8 (5 punktów).** Czy dla dowolnych funkcji  $f: A \to B$  i  $g: B \to C$ , jeśli złożenie gf jest funkcją "na" i g jest różnowartościowa, to f jest "na"? Uzasadnij odpowiedź.

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.