

Social Network Analysis

Social Network Graph

Facebook Network

Facebook Network

Identifying Communities

NCAA Football Network

Other: Protein-Protein Interactions

Other: Protein-Protein Interactions

Overlapping Communities

Non-overlapping vs. overlapping communities

Non-overlapping Communities

Communities as Tiles!

What is the structure of community overlaps:
Edge density in the overlaps is higher!

Communities as "tiles"

Networks & Communities

 Often think networks organized into modules, cluster, communities:

Goal: Find Densely Linked Clusters

Micro-Markets in Sponsored Search

 Find micro-markets by partitioning the query-toadvertiser graph:

[Andersen, Lang: Communities from seed sets, 2006]

For Recommender Systems

Find what a person likes

Movies and Actors

Clusters in Movies-to-Actors graph:

Twitter & Facebook

Discovering social circles, circles of trust:

COMMUNITY DETECTION

How to find communities?

We will work with undirected (unweighted) networks

Method 1: Strength of Weak Ties

 Edge betweenness: Number of shortest paths passing over the edge

Intuition:

Edge strengths (call volume) in a real network

Edge betweenness in a real network

Method 1: Girvan-Newman

- Divisive hierarchical clustering based on the notion of edge betweenness:
 - Number of shortest paths passing through the edge
- Girvan-Newman Algorithm:

Undirected unweighted networks

- Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

- Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Step 1

Step 3

Step 2

- Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Step 1:

Step 2:

Step 3:

Hierarchical network decomposition:

Girvan-Newman: Results

Communities in physics collaborations

Network Communities

- Communities: sets of tightly connected nodes
- Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups s S:

 $Q \propto \sum_{s \in S} [(\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s)]$

Spectral Clustering

Graph Partitioning

• Undirected graph G(V, E):

- Bi-partitioning task:
 - Divide vertices into two disjoint groups A, B

- Questions:
 - How can we define a "good" partition of G?
 - How can we efficiently identify such a partition?

Graph Partitioning

- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Matrix Representations

- Adjacency matrix (A):
 - $n \times n$ matrix
 - $-A=[a_{ij}], a_{ij}=1$ if edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

- Important properties:
 - Symmetric matrix
 - Eigenvectors are real and orthogonal

Matrix Representations

- Degree matrix (D):
 - $n \times n$ diagonal matrix
 - $D=[d_{ii}], d_{ii}=$ degree of node i

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - n×n symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- What is trivial eigenpair?
 - x = (1, ..., 1) then $L \cdot x = 0$ and so $\lambda = \lambda_1 = 0$
- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal