17. (12分)

等比数列 $\{a_n\}$ 中, $a_1 = 1$, $a_5 = 4a_3$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 记 S_n 为 $\{a_n\}$ 的前 n 项和,若 $S_m = 63$,求 m.

18. (12分)

某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式. 根据工人完成生产任务的工作时间(单位: min)绘制了如下茎叶图:

第一种生产方式							第二种生产方式													
						9	7	6	8	6 7	5	5 1	6	8	9	4	5	6	6	
9	8	7		7	6	4	3	3	2	8 9	1					1				

- (1) 根据茎叶图判断那种生产方式的效率更高? 并说明理由;
- (2) 求 40 名工人完成生产任务所需时间的中位数 m,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表:

	超过 加	不超过 m
第一种生产方式		
第二种生产方式		

(3) 根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异.

附:
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $P(K^2 \ge k)$ 0.050 0.010 0.001 k 3.841 6.635 10.828

19. (12分)

如图,边长为 2 的正方形 ABCD 所在平面与半圆弧 \widehat{CD} 所在平面垂直,M 是 \widehat{CD} 上异于 C,D 的点.

- (1) 证明: 平面 *AMD* ⊥ 平面 *BMC*:
- (2) 在线段 AM 上是否存在点 P, 使得 MC // 平面 PBD? 说明理由.

20. (12分)

已知斜率为 k 的直线 l 与椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 交于 A, B 两点,线段 AB 的中点为 M(1,m) (m>0) .

- (1) 证明: $k < -\frac{1}{2}$;
- (2) 设 F 为 C 的右焦点,P 为 C 上一点,且 $\overrightarrow{FP} + \overrightarrow{FA} + \overrightarrow{FB} = \mathbf{0}$,证明:

$$2|\overrightarrow{FP}| = |\overrightarrow{FA}| + |\overrightarrow{FB}|.$$

21. (12分)

已知函数 $f(x) = \frac{ax^2 + x - 1}{e^x}$.

- (1) 求曲线 y = f(x) 在点 (0,-1) 处的切线方程;
- (2) 证明: 当 $a \ge 1$ 时, $f(x) + e \ge 0$.
- (二)选考题: 共 10 分。请考生在第 22×23 题中任选一题作答,如果多做,则按所做的第一题 计分。
- 22. [选修 4-4: 坐标系与参数方程] (10 分)

在平面直角坐标系 xOy 中, $\odot O$ 的参数方程为 $\begin{cases} x = \cos \theta, \\ y = \sin \theta, \end{cases}$ $(\theta \ \text{为参数})$. 过点 $(0, -\sqrt{2})$

且倾斜角为 α 的直线 $l \to \odot O$ 交于 A, B 两点.

- (1) 求 α 的取值范围;
- (2) 求 AB 中点 P 的轨迹的参数方程.
- 23. [选修 4-5: 不等式选讲] (10 分)

已知函数 f(x) = |2x+1| + |x-1|.

- (1) 画出 y = f(x) 的图像;
- (2) 当 $x \in (0, +\infty)$ 时, $f(x) \leq ax + b$, 求 a + b 的最小值.

