Lista 2 - Funções de Variáveis Complexas

Exercício 1

Sejam $z_1, z_2, z_3 \in \mathbb{C}$.

- a) Mostrar que $||z_1| |z_2|| \le |z_1 + z_2|$.
- b) Considerando $|z_2| > |z_3|$, mostrar que

$$\left| \frac{z_1}{z_2 + z_3} \right| \le \frac{|z_1|}{|z_2| - |z_3|}.$$

Exercício 2

Representar graficamente os conjuntos dados abaixo e classificá-los em aberto, fechado e limitado.

- a) $\Re(z) < -3$
- b) $\Im(z) \ge 1$
- c) |z 2i| > 2
- d) $|z+1| \le 2$
- e) |z 1 + i| < 3
- f) $z \neq 0, \ 0 \le \arg(z) < \frac{\pi}{3}$
- g) |z| > 2, $|\arg(z)| < \pi$
- h) $1 < |z + 1 2i| \le 2$
- i) $\Re\left(\frac{1}{z}\right) < \frac{1}{4}$

Determinar o domínio máximo de definição das seguintes funções:

a)
$$f(z) = \frac{z}{(z-i)\sin(y)}$$

$$f(z) = \frac{z}{x - y^z}$$

c)
$$f(z) = \frac{z^2 + (z-1)^3}{(e^z - 1)\cos(y)}$$

Exercício 4

Determinar os seguintes limites:

a)
$$\lim_{z\to -3i}(z^2 - 5z)$$

b)
$$\lim_{z\to 2i} (2x + y^2)$$

c)
$$\lim_{z \to i} \frac{4z + i}{z + 1}$$

d)
$$\lim_{z \to i} \frac{z^4 - 1}{z - i}$$

Exercício 5

Empregar a definição de limite para demonstrar que:

a)
$$\lim_{z\to z_0} (az+b) = az_0 + b$$
, $a, b \in \mathbb{C}$.

b)
$$\lim_{z\to\alpha}\frac{1}{z-\alpha}=\infty$$
, $\alpha\in\mathbb{C}$.

c)
$$\lim_{z\to\infty} \frac{3}{z-i} = 0$$
.

Obter as derivadas das seguintes funções:

a)
$$f(z) = 1 - z^2 + 4iz^5$$

b)
$$f(z) = (z^2 - i)^3 (iz + 1)^2$$

$$c) f(z) = \frac{z - 3i}{z + 3i}$$

Exercício 7

Demonstrar que o produto de duas funções analíticas f e g é uma função analítica, com derivada

$$(fg)' = f'g + fg'.$$

Exercício 8

Seja

$$f(z) = \begin{cases} \frac{x^3 y(y - ix)}{x^6 + y^2}, & z \neq 0, \\ 0, & z = 0. \end{cases}$$

Mostrar que

 $\frac{f(z)-f(0)}{z-0} \to 0$ para $z \to 0$ ao longo de qualquer reta passando pela origem,

mas que $\lim_{z\to 0} \frac{f(z)-f(0)}{z-0}$ não existe.

Exercício 9

Empregar as equações de Cauchy-Riemann para verificar, no caso de cada uma das funções abaixo, qual é analítica e em que domínio. Em caso positivo, obter f'(z). Há alguma função inteira?

a)
$$f(z) = z^3$$

- b) $f(z) = e^x(\cos y + i\sin y)$
- c) $f(z) = \bar{z}$
- d) $f(z) = \frac{1}{z}$
- e) $f(z) = e^{-y}(\cos x + i\sin x)$
- f) $f(z) = (e^y + e^{-y})\sin(x) + i(e^y e^{-y})\cos(x)$
- g) $f(z) = e^y(\cos x + i\sin x)$

Considerar f(z) uma função inteira. Mostrar que $g(z) = \overline{f(z)}$ também é inteira. Demonstrar que $h(z) = \overline{f(z)}$ é derivável em 0 se, e somente se, f'(0) = 0.

Exercício 11

Mostrar que a função $f(z) = x^2 + iy^3$ não é analítica em nenhum ponto.

Exercício 12

- a) Mostrar que $u(x,y) = e^{-x}(x\sin(y) y\cos(y))$ é harmônica.
- b) Determinar v de tal modo que f(z) = u(x,y) + iv(x,y) seja analítica.

Exercício 13

Considerar as funções $f,g:(0,1)\subset\mathbb{R}\to\mathbb{C}$ definidas por

$$f(x) = x$$
, $g(x) = x + x^2 e^{i/x^2}$.

Mostrar que a regra de L'Hospital não vale para funções a valores complexos ressaltando que

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 1, \quad \text{mas} \quad \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 0.$$

Considerar agora as funções $f,g:\mathbb{C}\to\mathbb{C}$ dadas por

$$f(z) = z$$
, $g(z) = \begin{cases} z + z^2 e^{i/z^2}, & z \neq 0, \\ 0, & z = 0. \end{cases}$

O que pode ser dito sobre a regra de L'Hospital neste caso? Mais especificamente, o que acontece com

$$\lim_{z \to 0} \frac{f(z)}{g(z)} \quad e \quad \lim_{z \to 0} \frac{f'(z)}{g'(z)}?$$

Exercício 15

Demonstrar um caso particular da regra de L'Hospital para funções analíticas: se $f(z_0) = g(z_0) = 0$ e $g'(z_0) \neq 0$, então

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

Na verdade, vale: se $f(z_0) = f'(z_0) = \cdots = f^{(k-1)}(z_0) = 0$, $g(z_0) = g'(z_0) = \cdots = g^{(k-1)}(z_0) = 0$ e $g^{(k)}(z_0) \neq 0$, então

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f^{(k)}(z_0)}{g^{(k)}(z_0)}.$$

Gabarito

Exercício 2:

- a) aberto e ilimitado.
- b) fechado e ilimitado.
- c) aberto e ilimitado.
- d) fechado e limitado.
- e) aberto e limitado.
- f) não é aberto, não é fechado e é ilimitado.
- g) aberto e ilimitado.
- h) não é aberto, não é fechado e é limitado.
- i) aberto e ilimitado.

Exercício 3:

- a) $D_f = \{ z \in \mathbb{C} : z \neq i, \ \Im(z) \neq k\pi, \ k \in \mathbb{Z} \}.$
- b) $D_f = \{ z \in \mathbb{C} : z \neq 0, \Re(z) \neq 0 \}.$
- c) $D_f = \{ z \in \mathbb{C} : z \neq 2k\pi i, \ k \in \mathbb{Z}, \ \Im(z) \neq \frac{\pi}{2} + m\pi, \ m \in \mathbb{Z} \}.$

Exercício 4:

- a) -9 + 15i
- b) 4
- c) $\frac{5}{2} + \frac{5}{2}i$
- d) -4i

Exercício 6:

- a) $f'(z) = -2z + 20iz^4$
- b) $f'(z) = 2(z^2 i)^2(iz + 1) [3z(iz + 1) + i(z^2 i)]$

c)
$$f'(z) = \frac{6i}{(z+3i)^2}$$

Exercício 9:

- a) O domínio de f é \mathbb{C} , f é inteira e $f'(z)=3z^2.$
- b) f não é analítica.
- c) f não é analítica.
- d) f é analítica em \mathbb{C}^* e $f'(z) = -\frac{1}{z^2}$.
- e) O domínio de f é \mathbb{C} , f é inteira e f'(z)=if(z).
- f) O domínio de $f \in \mathbb{C}$, $f \in \text{inteira e } f'(z) = -i[(e^y e^{-y})\sin(x) + i(e^y + e^{-y})\cos(x)].$
- g) f não é analítica.

Exercício 12:

$$v(x,y) = e^{-x}(y\sin(y) + x\sin(y)) + k, \quad k \in \mathbb{R}.$$