Compte rendu TP4

- Compte rendu TP4
 - Rapel des valeurs
 - Graphe de dépendances
 - Temps théorique
 - Version séquenciel
 - Version parallèle V1
 - Version parallèle V2
 - Version parallèle V3
 - Calcul Experimentaux
 - Comment compiler le programme
 - Valeurs experimentales

Rapel des valeurs

IT	hypothèse 1	hypothèse 2	hypothèse 3
ITA	8	8	2
ITB	8	4	5
ITC	7	3	4
ITD	2	7	7
ITE	1	1	1

Le PAS vaut 1 tour de boucle dans les calculs théoriques.

Graphe de dépendances

Temps théorique

Version séquenciel

Pour chaque hypothèse nous avons un temps de (PAS * ITA) 3 + (PAS * ITB) 3 + (PAS * ITC) 3 + (PAS * ITD) 3 + (PAS * ITE) 3 .

Pour l'hypothèse 1 nous aurons un temps de 1 376 tours de boucle.

Pour l'hypothèse 2 nous aurons un temps de 947 tours de boucle.

Pour l'hypothèse 3 nous aurons un temps de 323 tours de boucle.

Version parallèle V1

Parallélisation

Dans cette version, les calculs de A, B et C sont parallèlisés. Le calcul de temps sera de MAX((PAS * ITA)^3 ; (PAS * ITB)^3 ; (PAS * ITC)^3)+ (PAS * ITD)^3 + (PAS * ITE)^3.

Pour l'hypothèse 1 : un temps de 521 tours de boucle. L'accélération est de 2,641 et l'efficacité de 0,88 (accélération/3)

Pour l'hypothèse 2 : un temps de 856 tours de boucle. L'accélération est de 1,106 et l'efficacité de 0,37 (accélération/3).

Pour l'hypothèse 3 : un temps de 251 tours de boucle. L'accélération est de 1,286 et l'efficacité de 0,43 (accélération/3)

Version parallèle V2

Dans cette version, les calculs de A et B sont parallèlisés et C et D sont parallèlisés. Le calcul sera de : MAX ((PAS * ITA1)^3 ; (PAS * ITB1)^3) + MAX ((PAS * ITC1)^3 ; (PAS * ITD1)^3)+ (PAS * ITE1)^3

Pour l'hypothèse 1 : un temps de 856 tours de boucle. L'accélération est de 1.06 et l'efficacité de 0,53 (accélération/3)

Pour l'hypothèse 2 : un temps de 856 tours de boucle. L'accélération est de 1,106 et l'efficacité de 0,37 (accélération/3), soit les même resultat que la version parallèle V1.

Pour l'hypothèse 3 : un temps de 251 tours de boucle. L'accélération est de 1,286 et l'efficacité de 0,43 (accélération/3), soit les même resultat que la version parallèle V1.

Version parallèle V3

Dans cette version, les calculs de A B C sont parallèlisés et dedans on a C qui se fait en paralèle de A et B. Le calcul sera de : $MAX(MAX((PAS * ITA1)^3; (PAS * ITB1)^3)); (PAS * ITC3)^3) + (PAS * ITD1)^3 + (PAS * ITE1)^3$

Pour l'hypothèse 1 : un temps de 521 tours de boucle. L'accélération est de 2,641 et l'efficacité de 0,88 (accélération/3), soit les même resultat que la version parallèle V1.

Pour l'hypothèse 2 : un temps de 856 tours de boucle. L'accélération est de 1,106 et l'efficacité de 0,37 (accélération/3), soit les même resultat que la version parallèle V2 et V1.

Pour l'hypothèse 3 : un temps de 251 tours de boucle. L'accélération est de 1,286 et l'efficacité de 0,43 (accélération/3). Soit les même resultat que la version parallèle V2 et V1.

Calcul Experimentaux

Comment compiler le programme

```
gcc -Wall -fopenmp -lm -DHYPOTHESE=3 -DPAS=200 prog8.c -o prog8.out
```

Il est important de faire passer la valeur de l'hypothèse avec <u>DHYPOTHESE</u> pour selectionner l'hypothèse a utiliser. Ce paramètre est important sinon un warning est levé. Le paramètre optionnel <u>DPAS</u> permet de modifier le nombre de pas.

Valeurs experimentales

Dans les calculs qui suivent nous avons utiliser un pas à 200 sur une machine de l'université (Salle micro 1.1B).

Voici les resultats pour la version parralèle 1, avec 8 cœurs de disponibles :

```
acceleration Hypothèse 1 = 2.43252 | efficacité Hypothèse 1 = 0.304065 acceleration Hypothèse 2 = 1.06735 | efficacité Hypothèse 2 = 0.133419 acceleration Hypothèse 3 = 1.05934 | efficacité Hypothèse 3 = 0.132417
```

Voici les resultats pour la version parralèle 2 :

```
acceleration Hypothèse 1 = 1.09127 | efficacité Hypothèse 1 = 0.136408
acceleration Hypothèse 2 = 1.55375 | efficacité Hypothèse 2 = 0.194219
acceleration Hypothèse 3 = 1.06423 | efficacité Hypothèse 3 = 0.133029
```

Voici les resultats pour la version parralèle 3 :

```
accelerationHypothèse 1 = 2.4577 | efficacité Hypothèse 1 = 0.819256
accelerationHypothèse 3 = 1.0824 | efficacité Hypothèse 3 = 0.360818
accelerationHypothèse 3 = 1.0384 | efficacité Hypothèse 3 = 0.346132
```