Data Fusion and Source Reliability SLiMFast: Guaranteed Results for

Theodoros Rekatsinas @thodrek

joint work with Aditya Parameswaran, and Christopher Ré Manas Joglekar, Hector Garcia-Molina,

Reliable data = value

Today's take-away:

How to detect inaccurate data and hoax sources

Examples of inaccurate data: information extraction

Examples of inaccurate data: information extraction

Examples of inaccurate data: human annotations

"Is it a Dog or a Wolf?"

Examples of inaccurate data: alternative facts

Today's Agenda

Data Fusion: A quick recap

SLiMFast: Use features to describe sources

algorithms SLiMFast's Optimizer: Don't worry about ML

Data fusion

We want to find the true value of noisy facts

"Ok Google, is Obama a king or a president?"

United States of America / King

Barack Obama

Barack Obama

44th U.S. President

Data fusion

We want to find the true value of noisy facts

"Ok Google, is Obama a king or a president?"

United States of America / King

Barack Obama

Barack Obama

44th U.S. President

Where does data fusion come up?

Knowledge base construction

Crowdsourcing

Social sensing

Example: personalized medicine

Disease

Gene variant?

Knowledge Base Construction (KBC)

d

DeepDive

Goal: A disease-gene knowledge base to advance personalized medicine

Extractions

Source
Disease
Gene
CausedBy

Genetic Heterogeneity of Li-Fraumeni Syndrome

(604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23. A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene

Source: OMIM

Extractions

CHEX2
<u>'</u>
ene

Genetic Heterogeneity of Li-Fraumeni Syndrome

(604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23. A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene

Source: OMIM

Extractions

No	CHEK2	Li-Fraumeni Syndrome	Paper
Yes	CHEK2	Li-Fraumeni Syndrome	OMIM
CausedBy	Gene	Disease	Source

Genetic Heterogeneity of Li-Fraumeni Syndrome

(604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23. A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene

Source: OMIM

not cause Li-Fraumeni syndrome[†] Increasing evidence that germline mutations in CHEK2 do

Nayanta Sodha 🔼, Richard S. Houlston, Sarah Bullock, Martin A. Yuille, Carol Chu,

Gwen Turner, Rosalind A. Eeles

First published: 19 November 2002 Full publication history

Extractions

Pa	0	So
Paper	OMIM	Source
Li-Fraumeni Syndrome	Li-Fraumeni Syndrome	Disease
CHEK2	CHEK2	Gene
No	Yes	CausedBy

Genetic Heterogeneity of Li-Fraumeni Syndrome

(604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23. A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene

Source: OMIM

not cause Li-Fraumeni syndrome[†] Increasing evidence that germline mutations in CHEK2 do

Nayanta Sodha 🔼, Richard S. Houlston, Sarah Bullock, Martin A. Yuille, Carol Chu,

Gwen Turner, Rosalind A. Eeles

First published: 19 November 2002 Full publication history

Source observations

Paper	OMIM	Source
Li-Fraumeni Syndrome	Li-Fraumeni Syndrome	Disease
CHEK2	CHEK2	Gene
No	Yes	CausedBy

Knowledge base

	Disease	
	Gene	•

Source observations

	Paper	OMIM	Source
/ Object	Li-Fraumeni Syndrome	Li-Fraumeni Syndrome	Disease
Ct	CHEK2	CHEK2	Gene
	No	Yes	CausedBy

Knowledge base

	Disease	
	Gene	

Source observations

Knowledge base

How can we find the true value for each object?

Existing solutions to data fusion

Majority voting

Posterior= Likelihood* Prior Evidence

Probabilistic models

Existing solutions to data fusion

Estimating the unknown true value for objects

Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal)

♣ LogReg

ACCU

Voting

Estimating the unknown true value for objects

Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal)

Estimating the unknown true value for objects

Percentage of data used for training

- **SLiMFast**
- ◆ LogReg
- ACCU
- Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal) Voting

SLiMFast

source reliability Step 1: Use probabilistic models to model

describe source accuracy Step 2: Use domain-specific features to

instance to learn the model parameters Step 3: Analyze the given data fusion

Source observations

No	CHEK2	Li-Fraumeni Syndrome	Paper
Yes	CHEK2	Li-Fraumeni Syndrome	OMIM
CausedBy	Gene	Disease	Source

Knowledge base

CausedBy

Syndrome	Li-Fraumeni	Disease
CHEKK	CHEK2	

Source observations

Paper	OMIMO	Source
Li-Fraumeni Syndrome	Li-Fraumeni Syndrome	Disease
CHEK2	CHEK2	Gene
No	Yes	CausedBy

Knowledge base

CausedBy

Syndrome	Li-Fraumeni	Disease
C	CHEKO	Gene

Source observations

Knowledge base

Source

OMIM

Paper

Disease	Gene	CausedBy	-	Cause	edBy
Li-Fraumeni	CHEKO	Yes	/ ₄	Disease	Gene
Syndrome	í			l i-Fraumeni	
Li-Fraumeni	טחנוגס			Syndrome	CHEK2
Syndrome		2	•		

R. <.

Source observations

Knowledge base

Ń
\ \f
Gene

	í	Syndrome
		Li-Fraumeni
<u>ا</u>	Gene	Disease
	edBy	CausedBy

R.<.

 $\sigma_S \cdot I[S \text{ votes Object} = +1]$ (model parameters) Reliability scores

$$\Pr(\text{Object} = +1|\text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sou}} S \in \text{Sou}$$

 $S \in Sources$

Normalizing constant (valid distribution)

Indicator function

$$\sigma_S = \log \left(\frac{\text{Accuracy of Source S}}{1-\text{Accuracy of Source S}} \right)$$

that a source is correct Accuracy = Probability

Supervised data fusion

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[\text{S votes Object} = +1]$$

In many cases corresponds to logistic regression

Boolean features

I[S votes Object
$$= +1$$
]

Supervised data fusion

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[\text{S votes Object} = +1]$$

In many cases corresponds to logistic regression

Boolean features

I[S votes Object = +1]

No strong assumptions on:

- independence of sources
- accuracy being more than 0.5
- number of observations per object

Supervised data fusion

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[\text{S votes Object} = +1]$$

In many cases corresponds to logistic regression

Boolean features

I[S votes Object = +1]

No strong assumptions on:

- independence of sources
- accuracy being more than 0.5
- 3. number of observations per object

Simple trained model over known objects. (e.g., stochastic gradient descent). Highly scalable training algorithms

The challenge of training data

How much data do we need to train the model?

proportional to the number of Sources. Theorem: We need a number of labeled examples

[On Discriminative versus Generative Classifiers, *Ng & Jordan, 2001]*

But the number of sources can be in the thousands or millions and training data is limited!!!

The challenge of training data

How can we make logistic regression practical?

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[\text{S votes Object} = +1]$$

Challenge: Limited labeled examples

The challenge of training data

How can we make logistic regression practical?

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[\text{S votes Object} = +1]$$

Challenge: Limited labeled examples

Limit the informative parameters of the model by using domain knowledge

The challenge of training data

How can we make logistic regression practical?

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[\text{S votes Object} = +1]$$

Challenge: Limited labeled examples

Limit the informative parameters of the model by using domain knowledge

features that are indicative of their accuracy Key Idea: Sources have (domain specific)

Source-accuracy teatures

On the Feed register and produced and the personal control forms in the personal control forms in the desired and the control texture.

The sould be upon the first control field in our of the control in Africa after from a finite and forms in the control field in our off the control field in our field in our field in the control of finite and in the control of finite a finite field in the field f

(i) citations over time, (ii) journal, (iii) experimental methodology (e.g., population size), (iv) year

words, grammatical errors), (iv) sentiment analysis (i) newly registered similar to existing domain, (ii) traffic statistics, (iii) text quality (e.g., misspelled

(i) avg. time per task, (ii) number of tasks, (iii) market used

SLiMFast's data fusion model

$$\sigma_S = \log \left(\frac{\text{Accuracy of Source S}}{1-\text{Accuracy of Source S}} \right)$$

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

SLiMFast's data fusion model

$$\sigma_S = \log \left(\frac{\text{Accuracy of Source S}}{1-\text{Accuracy of Source S}} \right)$$

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

Accuracy of Source = Logistic Function $f \in \text{Features}$ $\sum W_f \cdot \text{Source Value for Feature f}$

SLiMFast's data fusion mode

$$\sigma_S = \log \left(\frac{\text{Accuracy of Source S}}{1-\text{Accuracy of Source S}} \right)$$

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

Accuracy of Source = Logistic Function $f \in \text{Features}$ igwedge) W_f · Source Value for Feature f

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sum_{f \in \text{Features}} \frac{W_f \cdot \text{Value}[f, S] \cdot I[\text{S votes Object} = +1]}{\text{Normalizing constant}}$$

$$\text{Weighted features to} \qquad \text{Indicator function}$$

$$\text{(valid distribution)} \qquad \text{capture accuracy}$$

SLiMFast's data fusion model

$$\sigma_S = \log \left(\frac{\text{Accuracy of Source S}}{1-\text{Accuracy of Source S}} \right)$$

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

Accuracy of Source = Logistic Function
$$\left(\sum_{f \in \text{Features}} W_f \cdot \text{Source Value for Feature f}\right)$$

$$\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sum_{f \in \text{Features}} W_f \cdot \text{Value}[f, S] \cdot I[\text{S votes Object} = +1]$$

significantly fewer parameters! Still logistic regression but with

SLIMFast's guarantees for data fusion

source accuracies is proportional to $\sqrt{rac{|K|}{|G|}}$ where |G| is the number of labeled examples for objects and |K| the number of features in SLiMFast. **Theorem.** The error for both the estimated object values and the estimated

We only need a number of labeled examples proportional to the number of Features!

Few labeled examples are enough in practice.

SLIMFast in practice

Percentage of data used for training

SLiMFast

♣ LogReg

ACCU

Voting

Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal)

SLiMFast in practice

Genomics data: 2.7k sources (articles), 571 objects (gene-SLiMFast ▲ LogReg ACCU

disease), 4 domain features (year, citation, author, journal)

SLiMFast achieves state-of-the-art performance

Financial data

Demonstration monitoring in the news

Crowdsourcing

identifying the true value of objects and up to 10x lower SLiMFast yields accuracy improvements of up to 50% for error in source accuracy estimates

SLiMFast

source reliability Step 1: Use probabilistic models to model

describe source accuracy Step 2: Use domain-specific features to

instance to learn the model parameters Step 3: Analyze the given data fusion

Today's Agenda

Data Fusion: A quick recap

SLiMFast: Use features to describe sources

Step 1: Use probabilistic models to model source reliability

Step 2: Use domain-specific features to describe source accuracy

Step 3: Analyze the given data fusion instance to learn the model parameters

algorithms SLiMFast's Optimizer: Don't worry about ML

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In SLiMFast we can also use unsupervised learning (e.g., EM).

Expectation Maximization

Initialize Source accuracies

- infer Object's true value
- 2. adjust Src Accuracies repeat

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In SLiMFast we can also use unsupervised learning (e.g., EM).

Expectation Maximization

Initialize Source accuracies

- infer Object's true value
- 2. adjust Src Accuracies repeat

when sources have an avg. accuracy p > 0.5 there are many observations per object and Thm: We show that EM works only when

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In SLiMFast we can also use unsupervised learning (e.g., EM).

Expectation Maximization

Initialize Source accuracies

- infer Object's true value
- 2. adjust Src Accuracies repeat

Choice: Supervised or unsupervised learning?

Our theoretical analysis says.

by (i) amount of labeled data Supervised learning affected

Our theoretical analysis says.

Avg. Acc = 0.6, Tr. Data = 400 src. obs.

Supervised learning affected by (i) amount of labeled data

Unsupervised learning affected by (ii) observation density and (iii) avg. src. accuracy

Density = 0.005, Tr. Data = 250 obs (5%)

estimated true values of Objects Goal: Maximize accuracy of

Choice: Supervised or unsupervised learning?

Labeled examples

Observations

Avg. src. accuracy

estimated true values of Objects Goal: Maximize accuracy of

Choice: Supervised or unsupervised learning?

Labeled examples

Observations

Avg. src. accuracy

Our theoretical analysis dictates that

G = number of labeled examples

IF G >> Features use supervised learning.

estimated true values of Objects Goal: Maximize accuracy of

Choice: Supervised or unsupervised learning?

Labeled examples

Observations

Avg. src. accuracy

Our theoretical analysis dictates that

G = number of labeled examples

IF G >> Features use supervised learning.

What if G >> Features does not hold?

estimated true values of Objects Goal: Maximize accuracy of

Choice: Supervised or unsupervised learning?

Labeled examples

Observations

Avg. src. accuracy

IF G < Features:

Each algorithm affected by different instance properties. How can we compare the two?

estimated true values of Objects Goal: Maximize accuracy of

Choice: Supervised or unsupervised learning?

Labeled examples

Observations

Avg. src. accuracy

IF G < Features:

Each algorithm affected by different instance properties. How can we compare the two?

- Idea: Compare bits of information available to:
- supervised learning via labeled examples
- 2. unsupervised learning via observations and src. accuracy

If we are given the label for an Object the entropy of the corresponding random variable drops to zero.

From each labeled example we gain one bit of information

Bits = number of labeled examples

How many bits of information are available in source observations?

How many bits of information are available in source observations?

Expectation Maximization

Initialize Source accuracies

- 1. infer Object's true value
- 2. adjust Src Accuracies

repeat

How many bits of information are available in source observations?

Expectation Maximization

Initialize Source accuracies

- infer Object's true value
- repeat adjust Src Accuracies

correct object values expected number of Idea: Estimate the after step 1

How many bits of information are available in source observations?

Expectation Maximization Initialize Source accuracies

- 1. infer Object's true value
- 2. adjust Src Accuracies

repeat

Idea: Estimate the expected number of correct object values after step 1

information available to unsupervised learning Use majority voting to approximate the bits of

For each object:

1. Compute $p = \Pr(\text{MV gives the correct value})$

m is the number of sources

with observations for Object m/2 Ex.: Binomial for +1,-1 values $p=1-\sum_{i=0}^{m/2} \binom{m}{i} A^i (1-A)^{m-i}$ Avg. accuracy of sources

Estimate bits of information

Bits = 1 - Entropy(p)

Take into account density and average source accuracy.

Average source accuracy

Source agreement rate

Agreements - Disagreements between Sources i and j Overlap between Sources i and j

The agreement rate depends on the source accuracies. Assumptions: (i) independence, (ii) same accuracy

$$X_{i,j} = A^2 + (1 - A)^2 - 2A(1 - A)$$

Estimate average accuracy A using the intormation in the entries of matrix X

G = number of labeled examples

IF G >> Features use supervised learning.

Otherwise:

U = bits of information for unsupervised learning

IF G > U use supervised learning ELSE unsupervised learning

G = number of labeled examples

IF G >> Features use supervised learning.

Otherwise:

U = bits of information for unsupervised learning

IF G > U use supervised learning ELSE unsupervised learning

learning algorithm 19/20 cases Our optimizer selects the right (4 datasets, 5 setups)

SLiMFast: Data fusion with guarantees

1. Simple features can help identify inaccurate data and unreliable sources.

Think of source features not algorithms!

- Use simple discriminative models; in most cases logistic regression is enough.
- First optimizer to choose between ML algorithms.

SLiMFast: Data fusion with guarantees

1. Simple features can help identify inaccurate data and unreliable sources.

Think of source features not algorithms!

- Use simple discriminative models; in most cases logistic regression is enough.
- First optimizer to choose between ML algorithms.

Thank you! thodrek@stanford.edu