1

Matrix Theory (EE5609) Assignment 14

Arkadipta De MTech Artificial Intelligence AI20MTECH14002

Abstract—This document proves the existence of inverse Now we find the inverse of the matrix A_3 as follows, of Hilbert Matrix.

All the codes for the figure in this document can be found at

https://github.com/Arko98/EE5609/blob/master/ Assignment 14

1 Problem

Prove that the following matrix is invertible and A^{-1} has integer entries.

$$\mathbf{A} = \begin{pmatrix} 1 & \frac{1}{2} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n+1} \\ \vdots & \vdots & \dots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \dots & \frac{1}{2n-1} \end{pmatrix}$$

2 Solution

Let A_3 be 3×3 matrix i.e

$$\mathbf{A_3} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}$$
 (2.0.1)

$$\begin{pmatrix}
1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 & 1 & 0 \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & 0 & 0 & 1
\end{pmatrix} (2.0.2)$$

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{R_2 = R_2 - \frac{1}{2}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{12} & \frac{1}{45} & -\frac{1}{3} & 0 & 1 \end{pmatrix}$$

$$(2.0.2)$$

$$\stackrel{R_3=R_3-R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{180} & \frac{1}{6} & -1 & 1 \end{pmatrix} (2.0.4)$$

$$\stackrel{R_2=12R_2}{\longleftrightarrow} \stackrel{R_3=180R_3}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & 1 & 1 & -6 & 12 & 0 \\ 0 & 0 & 1 & 30 & -180 & 180 \end{pmatrix} (2.0.5)$$

$$\stackrel{R_2=12R_2}{\longleftrightarrow} \begin{cases}
1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\
0 & 1 & 1 & -6 & 12 & 0 \\
0 & 0 & 1 & 30 & -180 & 180
\end{cases} (2.0.5)$$

$$\stackrel{R_2=R_2-R_3}{\longleftrightarrow} \begin{pmatrix}
1 & \frac{1}{2} & 0 & -9 & 60 & -60 \\
0 & 1 & 0 & -36 & 192 & -180 \\
0 & 0 & 1 & 30 & -180 & 180
\end{pmatrix} (2.0.6)$$

$$\stackrel{R_1=R_1-\frac{1}{2}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 0 & 9 & -36 & 30 \\ 0 & 1 & 0 & -36 & 192 & -180 \\ 0 & 0 & 1 & 30 & -180 & 180 \end{pmatrix} (2.0.7)$$

Hence we see that A_3 is invertible and the inverse contains integer entries and A_3^{-1} is given by,

$$\mathbf{A_3^{-1}} = \begin{pmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{pmatrix} \tag{2.0.8}$$

Let, A_4 be 4×4 matrix as follows,

$$\mathbf{A_4} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{pmatrix}$$
 (2.0.9)

Now, expressing A_4 using A_3 we get,

$$\mathbf{A_4} = \begin{pmatrix} \mathbf{A_3} & \mathbf{u} \\ \mathbf{u}^{\mathrm{T}} & \mathbf{d} \end{pmatrix} \tag{2.0.10}$$

where,

$$\mathbf{u} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{5} \\ \frac{1}{6} \end{pmatrix} \tag{2.0.11}$$

$$\mathbf{d} = \left(\frac{1}{7}\right) \tag{2.0.12}$$

Now assuming A_4 has an inverse, then from (2.0.10), the inverse of A_4 can be written using block matrix inversion as follows,

$$\mathbf{A}_{4}^{-1} = \begin{pmatrix} \mathbf{A}_{3}^{-1} + \mathbf{A}_{3}^{-1}\mathbf{u}\mathbf{X}^{-1}\mathbf{u}^{T}\mathbf{A}_{3}^{-1} & -\mathbf{A}_{3}^{-1}\mathbf{u}\mathbf{X}^{-1} \\ -\mathbf{X}^{-1}\mathbf{u}^{T}\mathbf{A}_{3}^{-1} & \mathbf{X}^{-1} \end{pmatrix} \tag{2.0.13}$$

where,

$$\mathbf{X} = \mathbf{d} - \mathbf{u}^{\mathrm{T}} \mathbf{A}_{3}^{-1} \mathbf{u} \tag{2.0.14}$$

Now, the assumption of A_4 being invertible will hold if and only if A_3 is invertible, which has been proved in (2.0.8) and X from (2.0.14) is invertible. We now prove that X is invertible as follows,

$$\mathbf{X} = \begin{pmatrix} \frac{1}{7} \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{5} \\ \frac{1}{6} \end{pmatrix}$$
(2.0.15)

$$\implies \mathbf{X} = \left(\frac{1}{2800}\right) \tag{2.0.16}$$

Hence, X is a square invertible matrix as it has linearly independent columns, hence X^{-1} is given by,

$$\mathbf{X}^{-1} = (2800) \tag{2.0.17}$$

Hence, A_4 is invertible. Now putting the values of A_3^{-1} , X^{-1} and u we get,

$$\mathbf{A_3^{-1}} + \mathbf{A_3^{-1}} \mathbf{u} \mathbf{X}^{-1} \mathbf{u}^{\mathrm{T}} \mathbf{A_3^{-1}} = \begin{pmatrix} 16 & -120 & 240 \\ -120 & 1200 & -2700 \\ 240 & -2700 & 6480 \end{pmatrix}$$
(2.0.18)

$$-\mathbf{A}_{3}^{-1}\mathbf{u}\mathbf{X}^{-1} = \begin{pmatrix} -140\\1680\\-4200 \end{pmatrix}$$
 (2.0.19)

$$-\mathbf{X}^{-1}\mathbf{u}^{\mathsf{T}}\mathbf{A}_{3}^{-1} = \begin{pmatrix} -140 & 1680 & -4200 \end{pmatrix}$$
(2.0.20)

$$\mathbf{X}^{-1} = (2800) \tag{2.0.21}$$

Putting values from (2.0.18), (2.0.19), (2.0.20) and (2.0.21) into (2.0.13) we get,

$$\mathbf{A_4^{-1}} = \begin{pmatrix} 16 & -120 & 240 & -140 \\ -120 & 1200 & -2700 & 1680 \\ 240 & -2700 & 6480 & -4200 \\ -140 & 1680 & -4200 & 2800 \end{pmatrix} (2.0.22)$$

Hence, from (2.0.22) we prove that, A_4 is invertible and has integer entries.

Let A_{n-1} be invertible with integer entries. Then we can represent A_n as follows,

$$\mathbf{A_n} = \begin{pmatrix} \mathbf{A_{n-1}} & \mathbf{u} \\ \mathbf{u}^{\mathrm{T}} & \mathbf{d} \end{pmatrix} \tag{2.0.23}$$

where,

$$\mathbf{u} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{5} \\ \vdots \\ \frac{1}{2n-2} \end{pmatrix}$$
 (2.0.24)
$$\mathbf{d} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2n-1} \end{pmatrix}$$
 (2.0.25)

Now assuming A_n has an inverse, then from (2.0.23), the inverse of A_n can be written using block matrix inversion as follows,

$$\mathbf{A_{n}}^{-1} = \begin{pmatrix} \mathbf{A_{n-1}}^{-1} + \mathbf{A_{n-1}}^{-1} \mathbf{u} \mathbf{X}^{-1} \mathbf{u}^{T} \mathbf{A_{n-1}}^{-1} & -\mathbf{A_{n-1}}^{-1} \mathbf{u} \mathbf{X}^{-1} \\ -\mathbf{X}^{-1} \mathbf{u}^{T} \mathbf{A_{n-1}}^{-1} & \mathbf{X}^{-1} \end{pmatrix}$$
(2.0.26)

where,

$$\mathbf{X} = \mathbf{d} - \mathbf{u}^{\mathrm{T}} \mathbf{A}_{\mathrm{n-1}}^{-1} \mathbf{u} \tag{2.0.27}$$

Now, the assumption of A_n being invertible will hold if and only if A_{n-1} is invertible, which has been assumed and X from (2.0.27) is invertible. We now prove that X is invertible as follows,

$$\mathbf{X} = \left(\frac{1}{2n-1}\right) - \left(\frac{1}{4} \quad \frac{1}{5} \quad \dots \quad \frac{1}{2n-2}\right) \mathbf{A}_{\mathbf{n}-1}^{-1} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{5} \\ \dots \\ \frac{1}{2n-2} \end{pmatrix}$$
(2.0.28)

In equation (2.0.28) \mathbf{u} contains no negative or zero entries, again \mathbf{A}_{n-1}^{-1} has non zero integer entries, hence $\mathbf{u}^T\mathbf{A}_{n-1}^{-1}\mathbf{u}$ is a non zero matrix with size 1×1 . Moreover \mathbf{d} is not equal to $\mathbf{u}^T\mathbf{A}_{n-1}^{-1}\mathbf{u}$ hence in (2.0.28) \mathbf{X} is non-zero matrix and hence it has an inverse. Hence \mathbf{A}_n is invertible, proved.