

### Natural Language Processing (NLP)

**Neural Network Embeddings** 

**Equipping You with Research Depth and Industry Skills** 

By:

**Dr. Zohair Ahmed** 













I saw a cat.



Sequence of tokens



Word representation - vector (input for your model/algorithm)

Sequence of tokens



Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Token index in the vocabulary





Token index in the vocabulary





Token index in the vocabulary











Token index in the vocabulary







### Note UNKs: Out-of-Vocabulary Tokens



Vocabulary is chosen in advance

Therefore, some tokens may be "unknown" – you can use a special token for them

### How can we gat word representations?



In the following:

How can we get these representations?

#### **One-hot Vectors**







Any problems?



#### Problems:

- Vector size is too large
- Vectors know nothing about meaning

e.g., cat is as close to dog as it is to table!



#### Problems:

- Vector size is too large
- Vectors know nothing about meaning

e.g., cat is as close to dog as it is to table!





What is meaning?



Do you know what the word tezgüino means?

(We hope you do not)



Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Can you understand what tezgüino means?



Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Tezgüino is a kind of alcoholic beverage made from corn.



With context, you can understand the meaning!



- (1) A bottle of \_\_\_\_\_ is on the table.
- (2) Everyone likes \_\_\_\_\_.
- (3) \_\_\_\_ makes you drunk.
- (4) We make \_\_\_\_ out of corn.

What other words fit into these contexts?



- (1) A bottle of \_\_\_\_\_ is on the table.
- (2) Everyone likes \_\_\_\_\_.
- (3) \_\_\_\_ makes you drunk.
- (4) We make \_\_\_\_\_ out of corn.

**By: Zohair Ahmed** 

What other words fit into these contexts?





(1) A bottle of \_\_\_\_\_ is on the table.

(1) (2) (3) (4) ...

- (2) Everyone likes \_\_\_\_\_.
- (3) \_\_\_\_ makes you drunk.
- (4) We make \_\_\_\_ out of corn.

| tezgüino  | 1 | 1 | 1 | 1 |
|-----------|---|---|---|---|
| loud      | 0 | 0 | 0 | 0 |
| motor oil | 1 | 0 | 0 | 1 |
| tortillas | 0 | 1 | 0 | 1 |
| wine      | 1 | 1 | 1 | 0 |

<u>rows</u> are similar

(1) A bottle of \_\_\_\_\_ is on the table.

(1) (2) (3) (4) ...

- (2) Everyone likes \_\_\_\_\_.
- (3) \_\_\_\_ makes you drunk.
- (4) We make \_\_\_\_ out of corn.

 tezgüino
 1
 1
 1
 1

 loud
 0
 0
 0
 0

 motor oil
 1
 0
 0
 1

 tortillas
 0
 1
 0
 1

 wine
 1
 1
 1
 0



<u>rows</u> are similar

meanings of the words are similar

Is this true?

- (1) A bottle of \_\_\_\_\_ is on the table.
- (2) Everyone likes \_\_\_\_\_.
- (3) \_\_\_\_ makes you drunk.
- (4) We make \_\_\_\_ out of corn.

 (1)
 (2)
 (3)
 (4)
 ...

 tezgüino
 1
 1
 1
 1
 1

 loud
 0
 0
 0
 0
 0

 motor oil
 1
 0
 0
 1
 1

 tortillas
 0
 1
 0
 1
 0
 1

 wine
 1
 1
 1
 0
 0
 0
 0

This is the distributional hypothesis

rows are similar

meanings of the words are similar

# Distributional Hypothesis

Words which frequently appear in similar contexts have similar meaning.

(Harris 1954, Firth 1957)

# Distributional Hypothesis

Words which frequently appear in similar contexts have similar meaning.

(Harris 1954, Firth 1957)

This can be used in practice to build word vectors!

# Distributional Hypothesis

Words which frequently appear in similar contexts have similar meaning.

(Harris 1954, Firth 1957)

#### Main idea:

We have to put information about contexts into word vectors.

What comes next: different ways to do this

#### **Count-Based Methods**



#### Count-Based Methods Idea

Let's remember our main idea:

We have to put information about contexts into word vectors.

#### Count-Based Methods: Idea

Let's remember our main idea:

We have to put information about contexts into word vectors.

Count-based methods take this idea quite literally:)

How: Put this information manually based on global corpus statistics.

#### Count-Based Methods: The General Pipeline



each element says about the association between a word and a context

### Count-Based Methods: The General Pipeline



### Count-Based Methods: The General Pipeline



#### Need to define:

- what is context
- how to compute matrix elements

#### Simple: Co-Occurrence Counts



 surrounding words in a L-sized window

#### Matrix element:

N(w, c) – number of times
 word w appears in context c



## Point Wise Mutual Information (PMI)

2-sized window for cat



#### **Context:**

 surrounding words in a L-sized window

$$PMI(w, c) = \log \frac{P(w, c)}{P(w) \cdot P(c)}$$

P(w,c) = probability that w and c occur together (co-occurrence).

 $P(w)\cdot P(c)$  = probability that they would occur together if they were independent.

Ratio > 1 (positive PMI) → words occur together more often than chance.

Ratio < 1 (negative PMI) → words occur together less often than chance.

## Point wise Mutual Information (PMI)

- "The king rules the kingdom. The queen rules the empire."
- Step 1: Word probabilities
  - P(king) = 1/10 = 0.1
  - P(queen) = 1/10 = 0.1
  - P(rules) = 2/10 = 0.2
  - P(the) = 3/10 = 0.3
- Step 2: Co-occurrence (window size = 1)
  - Pair (king, rules) appears 1 time  $\rightarrow$  P(king, rules) = 1/10 = 0.1
  - Pair (king, empire) appears 0 times  $\rightarrow$  P = 0
  - Pair (queen, rules) appears 1 time  $\rightarrow$  P(queen, rules) = 1/10 = 0.1

www.begindiscovery.com

## Point wise Mutual Information (PMI)

- Step 3: Compute PMI
- Formula: PMI(w, c) = log( P(w,c) / (P(w) \* P(c)) )
- PMI(king, rules) = log(0.1 / (0.1 \* 0.2))
  - $= \log(0.1 / 0.02)$
  - = log(5)  $\approx$  1.61  $\rightarrow$  positive (they co-occur more than chance)
- PMI(king, empire) = log(0 / (0.1 \* 0.1))
- = log(0) = negative infinity  $\rightarrow$  strong negative
- Step 4: Apply PPMI

**By: Zohair Ahmed** 

- PPMI(king, rules) = 1.61
- PPMI(king, empire) = 0 (we clip negative values to zero)



39

## Point wise Mutual Information (PMI)

#### Interpretation:

- "king" and "rules" have a high positive PPMI → they are related.
- "king" and "empire" have zero PPMI → no useful relationship.

## Word2Vec (Prediction-Based Method)



#### Word2Vec: Idea

Let's remember our main idea:

We have to put information about contexts into word vectors.



#### Word2Vec: Idea

Let's remember our main idea:

We have to put information about contexts into word vectors.

Word2Vec uses this idea differently from count-based methods:

How: Learn word vectors by teaching them to predict contexts.

#### Word2Vec: Idea

How: Learn word vectors by teaching them to predict contexts.

- <u>Learned parameters</u>: word vectors
- Goal: make each vector "know" about the contexts of its word
- How: train vectors to predict possible contexts from words (or, alternatively, words from contexts)



take a huge text corpus

... I saw a cute grey cat playing in the garden ...

- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.



- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.



- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.
- for the central word, compute probabilities of context words;
- adjust the vectors to increase these probabilities.



- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.
- for the central word, compute probabilities of context words;
- adjust the vectors to increase these probabilities.



- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.
- for the central word, compute probabilities of context words;
- adjust the vectors to increase these probabilities.





- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.
- for the central word, compute probabilities of context words;
- adjust the vectors to increase these probabilities.





- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.
- for the central word, compute probabilities of context words;
- adjust the vectors to increase these probabilities.



- take a huge text corpus
- go over the text with a sliding window, moving one word at a time.
- for the central word, compute probabilities of context words;
- adjust the vectors to increase these probabilities.



#### How Does Word2Vec Work?

- Train NN on a fake problem: predict missing word
- Example:
  - "The emperor ordered his \_\_\_\_."
- Correct word could be king or minister
- Goal: not prediction, but to learn embeddings (side effect)

## Context Is Key

- Meaning of a word depends on context
- Example:
  - "Eating \_\_\_\_ is healthy." → [apple, walnut]
  - Not [pizza, truck]
- Context words = training input

# Objective Function: Negative Log-Likelihood

- Word2Vec tries to find the parameters that maximize the data likelihood:
- wt → → the current (center) word at position t.
- wt+j → a context word around wt.
- m → the size of the context window.
- T → total number of words in the corpus.
- P(wt+j|wt,θ) → the probability of seeing context word wt+j given center word wt, with parameters θ (neural network weights).
- So:

The likelihood is the product of probabilities of predicting the context words for every center word in the training corpus.

Likelihood =  $L(\theta)$  =

 $t=1-m\leq j\leq m$ ,

*j*≠0

 $P(w_{t+j}|\mathbf{w_t}, \theta)$ 

# Objective Function: Intuition (Why It Works)

- Training Word2Vec = making the model assign high probability to actual context words.
- If the model predicts wrong context words, probability is low  $\rightarrow$  log-likelihood decreases  $\rightarrow$ NLL increases.
- So by minimizing NLL, the model learns embeddings that bring context words closer in vector space.

**By: Zohair Ahmed** 

# Objective Function: Intuition (Why It Works)

- Simple Analogy
- Imagine the sentence: "The king ruled the empire."
- Center word = king
- Context words (window=2): the, ruled
- If the model says: P(ruled|king)=0.7 and P(the|king)=0.6
- High probabilities → good embeddings.
  - If probabilities were low (e.g. 0.05), NLL would be large, pushing the model to adjust embeddings.

www.begindiscovery.com

# Objective Function: Intuition (Why It Works)

- Likelihood = probability of seeing all context words given their center words.
- Log-likelihood = makes computation manageable.
- Negative log-likelihood = the loss function we minimize, so embeddings improve.

#### Word2Vec Variants: Skip-Gram and CBOW

... I saw a cute grey cat playing in the garden ...

Skip-Gram: from central predict context (one at a time)



**CBOW**: from sum of context predict central



www.youtube.com/@ZohairAl



#### The Effect of Context Window Size

 Larger windows – more topical similarities

```
dog
bark leash
(grouped together)
```



 Smaller windows – more functional and syntactic similarities

```
Poodle
     Pitbull
      (grouped together)
  walking
(grouped together)
```