

Background

- Big data needs scalable solutions
- Clustered survival times may need marginal models

Executive Summary aka tl;dr

- I made Bridged parametric survival models fast
- 4 perspective-parameterization estimands:
 - conditional hazard ratio
 - marginal hazard ratio
 - conditional acceleration factor
 - marginal acceleration factor

Q: Why Marginalize? A: Interpretation

$$\underline{x=1}$$

$$\operatorname{Exp}(x\beta^{c}+b_{i})$$

$$Exp(x\beta^m)$$

Diabetes

Tobacco

Male

Q: Why Marginalize? A: b/c Reviewer

Q: Why Pos. Stable? A: Straight lines

Figure 1: Plots of hazards ratios from fitting a proportional hazards model to the dataset in Table 1, with gamma (panel A and B) and positive stable (panel C and D) frailties. The conditional and marginal hazard ratios are presented in red and black, respectively.

$$f_{u_i}(u_i|\alpha) = -\frac{1}{\pi u_i} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha+1)}{k!} (-u_i^{-\alpha})^k \sin(\alpha k\pi)$$

Standard PS(x, α , α , 0) density with varying shape parameter $\alpha \in (0, 1)$

$$f_{u_{i}}(u_{i}|\alpha) = -\frac{1}{\pi u_{i}} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha+1)}{k!} (-u_{i}^{-\alpha})^{k} \sin(\alpha k\pi)$$

$$T|u_{i} \sim Weibull(shape = p, scale = u_{i}\lambda)$$

$$f_{T|u_{i}}(t|p,\lambda,u_{i}) = u_{i}\lambda pt^{p-1} \exp\{(-u_{i}\lambda t^{p})\}$$

$$S_{T|u_{i}}(t|p,\lambda,u_{i}) = \exp\{(-u_{i}\lambda t^{p})\}$$

$$h_{T|u_{i}}(t|p,\lambda,u_{i}) = u_{i}\lambda pt^{p-1}$$

$$T \sim Weibull(shape = \alpha p, scale = \lambda^{\alpha})$$

$$f_{T}(t|p,\lambda,\alpha) = \lambda^{\alpha} \alpha pt^{\alpha p-1} \exp\{(-\lambda^{\alpha} t^{\alpha p})\}$$

$$S_{T}(t|p,\lambda,\alpha) = \exp\{(-\lambda^{\alpha} t^{\alpha p})\}$$

$$h_{T}(t|p,\lambda,\alpha) = \lambda^{\alpha} \alpha pt^{\alpha p-1}$$

$$f_{u_i}(u_i|\alpha) = -\frac{1}{\pi u_i} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha+1)}{k!} (-u_i^{-\alpha})^k \sin(\alpha k\pi)$$

$$T|u_i \sim Weibull(shape = p, scale = u_i\lambda)$$

$$f_{T|u_i}(t|p,\lambda,u_i) = u_i\lambda pt^{p-1} \exp\{(-u_i\lambda t^p)\}$$

$$S_{T|u_i}(t|p,\lambda,u_i) = \exp\{(-u_i\lambda t^p)\}$$

$$h_{T|u_i}(t|p,\lambda,u_i) = u_i\lambda pt^{p-1}$$

Parameterization	Perspective	Shape	Scale
PH	Cond.	p_c	$u_i \exp(\gamma_h^c + x\beta_h^c)$
PH	Marg.	$\frac{p_m}{\alpha}$	$u_i \exp\left(\frac{1}{\alpha}\left(\gamma_h^m + x\beta_h^m\right)\right)$
AFT	Cond.	p_c	$u_i \exp(-p(\gamma_f^c + x\beta_f^c))$
AFT	Marg.	$\frac{p_m}{\alpha}$	$u_i \exp\left(\frac{-p}{\alpha}\left(\gamma_f^m + x\beta_f^m\right)\right)$

$$f_{u_i}(u_i|\alpha) = -\frac{1}{\pi u_i} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha+1)}{k!} (-u_i^{-\alpha})^k \sin(\alpha k\pi)$$

Hazard Ratio =
$$\frac{\lambda_h(x=1)}{\lambda_h(x=0)} = \frac{\exp(\gamma_h + \beta_h)}{\exp(\gamma_h)} = \exp(\beta_h)$$

Acceleration Factor =
$$\frac{\frac{\text{time-quantile}}{\text{for x=1}}}{\frac{\text{for x=1}}{\text{for x=0}}} = \frac{\left(-\log q\right)^{\frac{1}{p}} \exp\left(\gamma_f + \beta_f\right)}{\left(-\log q\right)^{\frac{1}{p}} \exp\left(\gamma_f\right)} = \exp\left(\beta_f\right)$$

Parameterization	Perspective	Shape	Scale
PH	Cond.	p_c	$u_i \exp(\gamma_h^c + x\beta_h^c)$
PH	Marg.	$\frac{p_m}{\alpha}$	$u_i \exp\left(\frac{1}{\alpha}\left(\gamma_h^m + x\beta_h^m\right)\right)$
AFT	Cond.	p_c	$u_i \exp(-p(\gamma_f^c + x\beta_f^c))$
AFT	Marg.	$\frac{p_m}{\alpha}$	$u_i \exp\left(\frac{-p}{\alpha}\left(\gamma_f^m + x\beta_f^m\right)\right)$

$$f_{u_i}(u_i|\alpha) = -\frac{1}{\pi u_i} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha+1)}{k!} (-u_i^{-\alpha})^k \sin(\alpha k\pi)$$

$$L_i^I = L_i(p,\lambda,\alpha|t_{ij},\delta_{ij})$$

$$= \int \prod_{j=1}^{J_i} \left[h_{T|u_i}(t|p,\lambda,u_i) \right]^{\delta_{ij}} S_{T|u_i}(t|p,\lambda,u_i) f_{u_i}(u_i|\alpha) du_i$$

$$L_i^I = (\lambda_{i1}^{\delta_{i1}} \dots \lambda_{iJ_i}^{\delta_{iJ_i}}) (t_{i1}^{\delta_{i1}} \dots t_{iJ_i}^{\delta_{iJ_i}})^{p-1} \int u_i^{n_i} \exp\left(-u_i \sum_{j=1}^{J_i} \lambda_{ij} t_{ij}^p\right) f_{u_i}(u_i | \alpha) du_i$$

Parameterization	Perspective	Shape	Scale
PH	Cond.	p_c	$u_i \exp(\gamma_h^c + x\beta_h^c)$
PH	Marg.	$\frac{p_m}{\alpha}$	$u_i \exp\left(\frac{1}{\alpha}\left(\gamma_h^m + x\beta_h^m\right)\right)$
AFT	Cond.	p_c	$u_i \exp(-p(\gamma_f^c + x\beta_f^c))$
\mathbf{AFT}	Marg.	$\frac{p_m}{\alpha}$	$u_i \exp\left(\frac{-p}{\alpha}\left(\gamma_f^m + x\beta_f^m\right)\right)$

Closed form integrals save time

Q: Which one?

A: All of them!

		R		SAS	
Covariate		Recursive- Ω	Static-Stirling	Gaussian Quadrature	
	α	0.561 (0.010)	0.561 (0.010)	0.561 (0.010)	
	p	$1.111 \ (0.015)$	$1.111 \ (0.015)$	$1.111 \ (0.015)$	
Diabetes					
	eta^c_h	$0.384 \ (0.133)$	$0.384 \ (0.134)$	$0.384 \ (0.134)$	
	eta_h^m		$0.215 \ (0.075)$	$0.215 \ (0.075)$	
	eta_f^c		$-0.346 \ (0.121)$	-0.346 (0.121)	
	eta_f^m		$-0.193 \ (0.068)$	$-0.194 \ (0.068)$	
Tobacco Use					
	eta^c_h	$1.412 \ (0.097)$	$1.411 \ (0.102)$	$1.411 \ (0.102)$	
	eta_h^m		$0.792\ (0.056)$	$0.792 \ (0.056)$	
	eta_f^c		$-1.271 \ (0.092)$	-1.271 (0.092)	
	eta_f^m		$-0.713 \ (0.051)$	$-0.713 \ (0.051)$	
Sex (Male)					
	eta^c_h	$0.220\ (0.081)$	$0.220 \ (0.088)$	$0.220 \ (0.088)$	
	eta_h^m		$0.123\ (0.049)$	$0.124\ (0.049)$	
	eta_f^c		$-0.198 \ (0.079)$	-0.198 (0.079)	
	eta_f^m		-0.111 (0.044)	-0.111 (0.044)	
	Loglikelihood	-13982.045	-13982.045	-13982.035	
	Run time $_h^c$	36.1 minutes	2.7 minutes	$4.6 \mathrm{\ days}$	
	Run time $_h^m$		2.4 minutes	1.3 days	
	Run time $_f^c$		2.1 minutes	$1.4 \mathrm{days}$	
	Run time_f^m		2.8 minutes	1.4 days	

Parameterization	Perspective	Cond.	Marg.	Cond.	Marg.
РН	Cond.	$\exp(\beta_h^c)$	$\exp(\alpha \beta_h^c)$	$\exp\left(\frac{1}{-p}\beta_h^c\right)$	$\exp\left(\frac{\alpha}{-p}\beta_h^c\right)$
PH	Marg.	$\exp\left(\frac{1}{\alpha}\beta_h^m\right)$	$\exp(\beta_h^m)$	$\exp\left(\frac{1}{-p\alpha}\beta_h^m\right)$	$\exp\left(\frac{1}{-p}\beta_h^m\right)$
AFT	Cond.	$\exp(-p\beta_f^c)$	$\exp(-p\alpha\beta_f^c)$	$\exp(\beta_f^c)$	$\exp(\alpha \beta_f^c)$
AFT	Marg.	$\exp\left(\frac{-p}{\alpha}\beta_f^m\right)$	$\exp(-p\beta_f^m)$	$\exp\left(\frac{1}{\alpha}\beta_f^m\right)$	$\exp(\beta_f^m)$

Hazard Ratio

Acceleration Factor

4.1 Diabetes and tooth failure

The coefficients from a conditional perspective would have a subject-specific interpretation, that is, a subject who is not diabetic would be $\exp(\beta_h^c) = 1.47$ times as likely to experience tooth failure, if they became diabetic, however, diabetics as a group (marginal interpretation) would have a $\exp(\beta_h^m) = 1.24$ times higher risk of tooth failure than non-diabetics. For acceleration factors, $\exp(\beta_f^c) = 0.71$ indicates that if a non-diabetic subject were to acquire diabetes, the corresponding time to tooth failure would be reduced by 29%, however, diabetics as a population tend to have a tooth failure 18% sooner, with a population-average acceleration factor of $\exp(\beta_f^m) = 0.82$.

4.2 Tobacco use and tooth failure

The coefficients from a conditional perspective would have a subject-specific interpretation, that is, a non-tobacco user subject would be $\exp(\beta_h^c)=4.10$ times as likely to experience tooth failure if they started using, however, tobacco-users (as a group) marginally would have a $\exp(\beta_h^m)=2.21$ times higher risk of tooth failure than non-users. Similarly, for acceleration factors, $\exp(\beta_f^c)=0.28$ indicates that if a never-user of tobacco were to become a user, the corresponding time to tooth failure would be reduced by 72%, however, tobacco users as a population tend to have a tooth failure 51% sooner, with a population-average acceleration factor of $\exp(\beta_f^m)=0.49$.

Weibull Hazard Capabilities

Unimodal Bathtub

Monotonic

Software Options

proc nlmixed parfm Static-Stirling