CNN MNIST Report

First model:

- 1. 2 convolution layers
- 2. 4 activation functions (relu, relu, relu, softmax)
- 3. 2 max pools
- 4. 1 fully connected layer
- 5. The output layer
- 6. Learning rate= default, Epochs = 15, patch size =32

Epochs:

suitable = 15 the higher the epochs the better the accuracy becomes but it takes along time

Epochs =15 Epochs =10

Second model:

- 1. 2 convolution layers
- 2. 4 activation functions (relu, relu, relu, softmax)
- 3. 2 max pools
- 4. 1 fully connected layer
- 5. The output layers
- 6. Learning rate= default, Epochs = 15, patch size =32

Learning rate:

suitable = default

trying different learning rate did not get a higher accuracy but the default learning rate gave the best at all others


```
[- Epoch 1/15
| Epoch 1/15
| Epoch 2/15
| Epoch 3/15
| Epoch 10/15
| Epoch 11/15
| Epoch 11
```

Learning rate =0.05

Learning rate =0.1

Third model:

- 1. 1 convolution layers
- 2. 3 activation functions (relu, relu, softmax)
- 3. 2 max pools
- 4. 1 fully connected layer
- 5. The output layer
- 6. Learning rate= default, Epochs = 15, patch size =32

CNN and parameters of the CNN:

removing one Convolution layer gave acceptable accuracy also it took a small time to train

Parameters before removing CNL=202698

Parameters after removing CNL=804170

Fourth model:

- 1. 1 convolution layers
- 2. 3 activation functions (relu, relu, softmax)
- 3. 2 max pools
- 4. 1 fully connected layer
- 5. The output layer
- 6. Learning rate= default, Epochs = 15, patch size =64

Patch size:

suitable = 64

the higher the patch size the petter the accuracy come also it took small time to train

this photo represents the out if the patch size =64

this photo represents the out if the patch size =20

Fifth model:

- 1. 1 convolution layers
- 2. 3 activation functions (relu, relu, softmax)
- 3. 2 max pools
- 4. 1 fully connected layer
- 5. The output layer
- 6. Learning rate= default, Epochs = 15, patch size =64

Activations:

suitable = tanh

the tanh function gave the best accuracy of the others

```
| Epoch 1/15 | 338/938 | | 338 48ms/step | 10ss: 1.0534 | accuracy: 0.7923 | Epoch 2/15 | 538/938 | | 338 48ms/step | 10ss: 0.4559 | accuracy: 0.9208 | Epoch 2/15 | 538/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 | | 338/938 |
```

this photo represents the out if the Activation = sigmoid

this photo represents the out if the Activation = tanh

```
Epoch 1/15
938/938 [==
Epoch 2/15
         938/938 [===
Epoch 3/15
     938/938 [===
     Epoch 7/15
938/938 [===
Epoch 8/15
938/938 [===
     938/938 [=========] - 44s 46ms/step - loss: 4513780.5000 - accuracy: 0.1044
Epoch 10/15
938/938 [===
       Epoch 12/15
938/938 [===
Epoch 13/15
938/938 [===
        Epoch 14/15
938/938 [===
Epoch 15/15
          =======] - 43s 46ms/step - loss: 4505421.0000 - accuracy: 0.1044
             ======] - 43s 46ms/step - loss: 4503748.5000 - accuracy: 0.1044
<keras.callbacks.History at 0x7f324842b150>
[14] \  \, model.evaluate(x\_test,y\_test)
  313/313 [==================] - 3s 9ms/step - loss: 4505143.5000 - accuracy: 0.1028
  [4505143.5, 0.10279999673366547]
```

this photo represents the out if the Activation = selu

sixth model:

- 1 convolution layers
- 2. 4 activation functions (tanh, tanh, softmax)
- 3. 2 max pools
- 4. 1 fully connected layer
- 5. The output layer
- 6. Learning rate= default, Epochs = 15, patch size =64

Optimizer:

suitable = SGD

the difference all most can be noticed but still the SGD gave the best of them

this photo represents the out if the Optimizer = nadam

this photo represents the out if the Optimizer = adam

sixth model:

- 1. 1 convolution layers
- 2. 3 activation functions (tanh, tanh, softmax)
- 3. 2 max pools
- 4. Droop out layer
- 5. 1 fully connected layer
- 6. The output layer
- 7. Learning rate= default, Epochs = 15, patch size =64

Droop out:

Suitable= case 3

The droop out layer had a small effect on the accuracy and time that is why maybe we do not need to add a droop out layer

this photo represents the out if the droop out layer before the first FCL percent 0.15 case 1

this photo represents the out if the droop out layer before the output layer

percent 0.15 case 3

this photo represents the out if the droop out layer before the first FCL percent 0.30 case 2

this photo represents the out if the droop out layer before the output layer

percent 0.30 case 4

Codes:

The initial model

Model after removing CNL layer

Model first droop out

Model second droop

the final preferred model

Why?

This model was chosen depending on the results of the hyper prameters