

Third Year Summer Internship Evaluation Presentation On

EARTHQUAKE PREDICTION

School of Computer Science Engineering & Applications 2023

PRESENTED BY

Vaishnavi Kale 20200802168

Siddharth Chaturvedi 20200802170

Bhavesh Morankar 20200802209

Akshansh Bhargava 20200802210

SUPERVISED BY

Mr. Sulaxan Jadhav

Dr. Rahul Sharma

TABLE OF CONTENT

Problem Statement

Dataset

3 Algorithms

Result / Graphs

REFRENCES

PROBLEM STATEMENT

Earthquakes are natural disasters that can cause significant damage and loss of life. Accurate prediction of earthquakes is essential for developing early warning systems, disaster planning, risk assessment, and scientific research. This project aims to predict the magnitude and probability of Earthquake occurring in a particular region (California, United States) from the historic data of that region using various Machine learning models.

DATASET

The Dataset used in this project is called the <u>"SOCR Earthquake"</u>

<u>Dataset"</u>, and it contains information about earthquakes that have occurred with a magnitude of 3.0 or greater in California, United States.

CONTENT

- Date and time of the earthquake
- Latitude and longitude(in degree)
- Depth of the earthquake
- Magnitude of the earthquake
- SRC = source
- nst number of stations used for solution
- close distance of closest station to epicenter
- rms root-mean-squared residual of solution
- gap azimuthal gap

ALGORITHMS USED:

- Linear Regression
- Support Vector Machine
- Naive Bayes
- Random Forest

GRAPH

Multiple linear regression plot using seaborn library (python)

SVM plot using matplotlib.pyplot library(python)

NAIVE BAYES GRAPH

Accuracy: 0.9853947125161767

Confusion Matrix: [[5327 35 1] [38 3 1] [4 0 0]]

Heatmap of Confusion Matrix:

REFRENCES

1.

http://socr.ucla.edu/docs/resources/SOCR_Da ta/SOCR_Data_Earthq uakes_Over3.html

2. https://www.javatpoint.com/linear-regression-in-machine-learning3.

https://www.simplilearn.com/tutorials/machine-learning tutorial/random-forest-algorithm

https://www.researchgate.net/publication/215 837001_Earthquake_Pr ediction_A_global_review_and_local_research

Thank You