Electrical Characterization of Interconnects on FlexTrate

Joanna Fang, Randall Irwin, and Subramanian Iyer | UCLA CHIPS

Introduction

Goal: to characterize the electrical parameters of FlexTrateTM over a range of frequencies for different line widths/heights

- Achieved through simulation
- Over 0.1-5 GHz for interconnect behavior at high frequencies
- 5 μm, 10 μm, and 20 μm to cover range of valid fabrication widths

Simulation Set Up

Full 3D Coplanar Waveguide Model in ANSYS HFSS

Wire Width	Wire Height
2.5 μm	1 μm
5 μm	1 μm
10 μm	2.5 μm
20 μm	5 μm

Dielectric Constants Used (determined through research papers/production):

Material	Parylene-C [1]	Su-8 [2]	PDMS [3]
Dielectric Constant (K)	3.1	2.85	2.75

- [1] https://vsiparylene.com/parylene-properties/
- [2] Ayad Ghannam, e.g., EuMC, 2009
- [3] N. J. Farcich, e.g., IEEE Transactions on Microwave Theory and Techniques, 2008

Simulation Settings

• Driven terminal solution type with 50 Ω port impedance for each width/height

Conversion to RLGC

Conversion:

 Matlab script converts Z-parameter simulation results to RLGC using following equations:

Script Verification:

- comparison of hand-calculated RLGC results with converted z parameters of simple microstrip line to verify accuracy of code
- lengths: 1 mm, 10 mm, and 100 mm

$\overline{T} = \begin{bmatrix} \overline{A} & \overline{B} \\ \overline{C} & \overline{D} \end{bmatrix} = \begin{bmatrix} \overline{Z}_{11} \overline{Z}_{21}^{-1} & \overline{Z}_{11} \overline{Z}_{21}^{-1} \overline{Z}_{22} - \overline{Z}_{12} \\ \overline{Z}_{21}^{-1} & \overline{Z}_{21}^{-1} \overline{Z}_{22} \end{bmatrix}$ $M_1 = (\mathbf{Y} \mathbf{X}^{-1} + \mathbf{X} \mathbf{Y}^{-1}) (\mathbf{X} \mathbf{Y}^{-1} - \mathbf{Y} \mathbf{X}^{-1})$ $M_2 = (\mathbf{X} \mathbf{Y}^{-1} - \mathbf{Y} \mathbf{X}^{-1})$
$\boldsymbol{X} = \boldsymbol{T}_1 + \boldsymbol{T}_2 \qquad \qquad \boldsymbol{Y} = \boldsymbol{T}_1 - \boldsymbol{T}_2 \qquad \qquad \boldsymbol{\bar{l}} = \boldsymbol{l}_1 - \boldsymbol{l}_2$
$M_{1} = \begin{bmatrix} \mathbf{A}_{\mathbf{M}1} & \mathbf{B}_{\mathbf{M}1} \\ \mathbf{C}_{\mathbf{M}1} & \mathbf{D}_{\mathbf{M}1} \end{bmatrix} = \begin{bmatrix} \cosh(\gamma \bar{l}) & 0 \\ 0 & \cosh(\gamma \bar{l}) \end{bmatrix}$
$\boldsymbol{M}_{2} = \begin{bmatrix} \mathbf{A}_{\mathbf{M2}} & \mathbf{B}_{\mathbf{M2}} \\ \mathbf{C}_{\mathbf{M2}} & \mathbf{D}_{\mathbf{M2}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} & \frac{1}{2} \boldsymbol{Z}_{\boldsymbol{\theta}} \sinh(\gamma \bar{l}) \\ \frac{1}{2} \sinh(\gamma \bar{l}) \boldsymbol{Z}_{\boldsymbol{\theta}}^{-1} & \boldsymbol{0} \end{bmatrix}$
$\gamma = \frac{1}{\bar{l}} \cosh^{-1}(\mathbf{D}_{MI}) \qquad \mathbf{Z_0} = \frac{1}{2} C_{M2}^{-1} \sinh(\gamma \bar{l})$
$\mathbf{R}_{m}(\omega) = Re(\mathbf{Z}_{0}\gamma) \qquad \mathbf{L}_{m}(\omega) = \frac{1}{\omega}Im(\mathbf{Z}_{0}\gamma)$
$\mathbf{G}_{m}(\omega) = Re\left(\gamma \mathbf{Z}_{0}^{-1}\right) \qquad \mathbf{C}_{m}(\omega) = \frac{1}{\omega} Im\left(\gamma \mathbf{Z}_{0}^{-1}\right) [4]$
[4] M. K. Sampath IEEE-EPEP 2008

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Frequency (GHz)

RLGC Graphs for Each Line Width

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Frequency (GHz)

Conductance (S/mm) at Different Line Widths - 2.5 μm - 5 μm - 10 μm - 20 μm (S/mm/S) 0.00008 0.00004 0.00002 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Frequency (GHz)

RLGC Verification

Confirming RLGC Simulation Results:

• Model of transmission line (~8 μm) with SPICE RLGC circuit in HFSS

• Circuit solved for S-parameters at 1, 2, 3, 4, and 5 GHz for each wire width/height pair

- Insertion loss from the simulation is similar to the SPICE model for all line widths
- Reflection from simulation starts around the same value as SPICE model before large deviation

Conclusions and Future Work

- The electrical parameters of the interconnects of FlexTrate are reasonably found through simulation and verified through circuits
- Will fabricate samples and measure RLGC experimentally for further verification
- Data is to be applied in Design Manual for FlexTrate

Acknowledgements

This work is supported by the UCLA CHIPS consortium.

