Determinants of HIV

M. Moellenkamp and N. Rosemberg

December 4th, 2014

Presentation Outline

- Research Question & Motivation
- Theoretical Framework
- Methodology
- Descriptive Statistics
- Findings
- Conclusion & Limitations

Research Question & Motivation

Research Question: Are community level factors significant determinants of HIV/AIDS incidence rates?

- Understand why some countries failed to achieve MDG 6A
 - MDG 6: "Combat HIV/AIDS, Malaria and other diseases"
 - Target 6A: "Have halted by 2015 and begun to reverse the spread of HIV/AIDS"
- 2 Explore disease-specific determinants of health

Theoretical Framework - Determinants of Health

Source: Dahlgren and Whitehead, 1991

Methodology

Model

$$I_{it} = \beta_0 + \beta_1 S E_{it} + \beta_2 W L C_{it} + \beta_3 S C N_{it} + \beta_4 I L F_{it} + \epsilon_{it}$$

Datasets

 We will use the World Development Indicators (WDI) for the independent variables and a dataset from UNAIDS for the HIV/AIDS prevalence rate.

Methodology

- Model 1: Logistic Regression & Predicted Probabilities
- Model 2: Pooled OLS Regression & Fixed Effects

Distribution of HIV Incidence Rates

HIV Incidence Rates over Time

Case Studies

Female Schooling in Selected Countries

Female Unemployment in Selected Countries

Imputed Missing Values

Logistic Regression Results - Model 1

	Value	Std. Error	t-stat	p-value
(Intercept)	-37.9205013	7.5798136	-5.0028277	0.0000038
IGDPpc	0.3521672	0.3536462	0.9958178	0.3213671
I Rural	-2.5039535	0.5651424	-4.4306590	0.0000128
ICO2	-0.5635354	0.2247579	-2.5072998	0.0164247
IHCexpend	0.9186442	0.4097656	2.2418772	0.0265154
lWater	-2.3113609	0.8369214	-2.7617419	0.0057591
ISanitation	0.8810417	0.2769151	3.1816312	0.0014660
ILifeExpect	19.0581500	1.9583368	9.7318040	0.0000000
IDPT	-0.6783054	1.0772661	-0.6296545	0.5297824
IMeasles	1.5831273	1.1791278	1.3426258	0.1800804
Inverse	1.8252004	0.2549095	7.1601886	0.0000000
${\sf IFemSchool}$	-5.6516056	0.8792243	-6.4279448	0.0000033

Predicted Probabilities - Female School Enrollment

Predicted Probabilities - Female Unemployment

Simple Linear Regression Results - Model 2

	Value	Std. Error	t-stat	p-value
(Intercept)	6.9890939	1.5879762	4.4012585	0.0000113
IGDPpc	0.0029174	0.0785843	0.0371243	0.9704418
I Rural	0.2290178	0.1421739	1.6108287	0.1079588
ICO2	0.1009680	0.0313909	3.2164780	0.0013345
IHCexpend	0.3881284	0.1258072	3.0851043	0.0041089
lWater	-0.3137429	0.1988502	-1.5777853	0.1181742
ISanitation	0.0825177	0.0728017	1.1334589	0.2576909
ILifeExpect	-3.3566186	0.3320269	-10.1094770	0.0000000
IDPT	0.5987168	0.2466114	2.4277737	0.0151992
IMeasles	-0.0697709	0.2461077	-0.2834977	0.7768095
Inverse	-0.4282598	0.0485740	-8.8166556	0.0000000
${\sf IFemSchool}$	0.5302460	0.1454724	3.6449940	0.0003575

Conclusions & Limitations - Model 1

- Logistic Regression Results of Model 1 (all countries)
 - Generally in line with hypothesis
 - Most of the variables are statistically significant
 - Only Immunisation Variables and GDP per capital are not significant
- Predicted Probabilities of Model 1 (selected countries)
 - Direction of effect of Female School Enrollment matches initial assumptions for all case studies
 - Direction of effect of Female Unemployment does not match initial assumptions for any case study

Conclusions & Limitations - Model 2

- Linear Regression of Model 2 (countries with incidence above mean)
 - Significance of some variables changes
 - Female School Enrollment and Female Unemployment remain highly significant
 - Effect of Female Schooling becomes positive (!)
- Fixed Effects Regression of Model 2 (countries with incidence above mean)
 - Significance of some variables changes compared to simple linear model
 - Female School Enrollment and Female Unemployment become insignificant
- Immunisation rates for DPT & Measles become highly significant (!)