Reading IDS data into R

Göran Broström

30 november, 2016

Introduction

- Read Individual.txt and lindivIndiv.txt into R.
- Perform some selections and transformations.
- Save into **R** format, .rda files.

Reading the INDIVIDUAL file

Looking at Type

```
print(sort(unique(individual$Type)))
  [1] "ARRIVAL_FROM"
                               "BAPTISM_DATE"
                                                       "BAPTISM_LOCATION"
## [4] "BIRTH DATE"
                               "BIRTH LOCATION"
                                                       "CHILDBIRTH ASSISTANT"
## [7] "CIVIL STATUS"
                               "DEATH DATE"
                                                       "DEATH LOCATION"
## [10] "DEPARTURE_TO"
                               "END_OBSERVATION"
                                                       "FIRST_NAME"
## [13] "FUNERAL DATE"
                               "FUNERAL LOCATION"
                                                       "LAST NAME"
## [16] "LEGITIMACY"
                               "MARRIAGE DATE"
                                                       "MARRIAGE LOCATION"
## [19] "MULTIPLE_BIRTH"
                               "OBSERVATION"
                                                       "OCCUPATION"
## [22] "OCCUPATION HISCO"
                               "OCCUPATION_STANDARD"
                                                       "SEX"
## [25] "START OBSERVATION"
                               "STILLBIRTH DATE"
                                                       "STILLBIRTH LOCATION"
## [28] "VACCINATION"
```

- Most of these variables can be thrown out.
- Keep: BIRTH_DATE, BIRTH_LOCATION, DEATH_DATE, END_OBSERVATION, LEGITIMACY, MULTIPLE_BIRTH, OCCUPATION, START_OBSERVATION, SEX

The R package 'dplyr'

Hadley Wickham (http://hadley.nz, https://www.rstudio.com)

- filter selects observations (rows) by a condition.
- filter(data, condition)
- x %in% y returns a logical vector of the same length as x:

```
c(1, 3, 2, 5) %in% c(1, 2)
## [1] TRUE FALSE TRUE FALSE
```

TimeInvariant

```
select(individual, Type, TimeInvariant) %>% table()
##
                   TimeInvariant
## Type
                          Time invariant
##
    BIRTH_DATE 74852
    BIRTH LOCATION O
                                 125839
##
##
    DEATH_DATE
               75831
##
    END_OBSERVATION 77461
##
    LEGITIMACY
                         0
                                   75831
##
    MARRIAGE_DATE 77462
    MULTIPLE BIRTH
                         0
                                   75831
##
##
    OCCUPATION_HISCO 198228
##
    SEX
                                   75831
    START OBSERVATION 76372
##
```

Pipes

The symbol "%>%" is a pipe: Think of it as saying and then. It is equivalent to a two-step nested procedure:

```
table(select(individual, Type, TimeInvariant))
```

or non-nested:

```
x <- select(individual, Type, TimeInvariant)
table(x)
rm(x) # Remove the temporary variable 'x'</pre>
```

The advantages with the pipe is:

- It is easy to read (once you are familiar with the pipe concept).
- It does not clutter with temporary variables.
- It is fast.

Recode TimeInvariant

```
individual$TimeInvariant <- with(individual, Type %in%
                         c("BIRTH_DATE", "BIRTH_LOCATION",
                           "DEATH_DATE", "LEGITIMACY",
                           "MULTIPLE_BIRTH", "SEX"))
select(individual, Type, TimeInvariant) %>% table()
##
                    TimeInvariant
## Type
                      FALSE TRUE
    BIRTH DATE
                         0 74852
##
##
    BIRTH_LOCATION
                         0 125839
    DEATH DATE
                         0 75831
##
##
    END OBSERVATION 77461 0
##
    LEGITIMACY
                         0 75831
    MARRIAGE DATE 77462
##
##
    MULTIPLE_BIRTH
                        0 75831
##
    OCCUPATION_HISCO 198228 0
##
    SEX
                         0 75831
##
    START_OBSERVATION 76372
```

Data frames person and observation

```
person <- filter(individual, TimeInvariant)
person$TimeInvariant <- NULL
observation <- filter(individual, !TimeInvariant)
observation$TimeInvariant <- NULL</pre>
```

- '!' means NOT (logical negation).
- NULL means nothing (removes): The variable TimeInvariant is not needed after the split.
- person contains time-fixed variables.
- observation contains time-varying variables.

DateOfOccurrence in person

```
with(person, table(Type, DateOfOccurrence))
##
                 DateOfOccurrence
## Type
                        Date of occurence
##
    BIRTH_DATE
                                   74852
    BIRTH LOCATION 125839
##
##
    DEATH_DATE
                                   75831
##
    LEGITIMACY 75831
    MULTIPLE_BIRTH 75831
##
##
    SEX
                  75831
```

The information that the birth and death dates are "Date of occurrence" is trivial. Remove it:

```
person$DateOfOccurrence <- NULL</pre>
```

DateOfOccurrence in observation

```
with(observation, table(Type, DateOfOccurrence))
##
                     DateOfOccurrence
## Type
                 Date of occurence
##
    END_OBSERVATION
                                   77461
    MARRIAGE DATE
                                  77462
##
##
    OCCUPATION_HISCO
                                 198228
##
    START_OBSERVATION
                                  76372
```

The information that the birth and death dates are "Date of occurrence" is trivial. Remove it:

```
observation$DateOfOccurrence <- NULL
```

The person data frame

```
names(person)

## [1] "Id"    "IdD"    "IdI"    "Source"    "Type"

## [6] "Value"    "ValueIdC"    "Day"    "Month"    "Year"

## [11] "StartDay"    "StartMonth"    "StartYear"    "EndDay"    "EndMonth"

## [16] "EndYear"
```

We only need Idl, Type, Value, Day, Month, and Year:

```
person <- select(person, IdI, Type, Value, Day, Month, Year)</pre>
select(person, Day, Month, Year) %>% summary()
##
       Day
                     Month
                                   Year
   Min. : 0.000 Min. : 0.0 Min. : 0.0
##
   1st Qu.: 0.000 1st Qu.: 0.0 1st Qu.: 0.0
##
   Median : 0.000
                 Median: 0.0 Median: 0.0
  Mean : 6.128
                 Mean : 2.6 Mean : 827.2
   3rd Qu.:11.000
                 3rd Qu.: 5.0 3rd Qu.:1840.0
##
## Max. :31.000
                 Max. :27.0 Max. :1903.0
```

Bad Month?

We guess that Day and Month has been swapped for this person.

```
## IdI Type Value Day Month Year
## 1 13285897 BIRTH_DATE 26 1 1733
## 2 13285897 BIRTH_LOCATION SKELLEFTEA 26 1 1733
## 3 13285897 LEGITIMACY Legitimate 0 0 0
## 4 13285897 MULTIPLE_BIRTH Unknown /No multiple birth 0 0 0
## 5 13285897 SEX Female 0 0 0
## 6 13285897 DEATH_DATE 12 27 1801
```

Swap back

```
(row <- which(person$Month == 27))</pre>
## [1] 300181
## Swap:
temp <- person$Month[row]</pre>
person$Month[row] <- person$Day[row]</pre>
person$Day[row] <- temp</pre>
##
rm(temp, row)
filter(person, IdI == 13285897 & Type == "DEATH_DATE")
          IdI Type Value Day Month Year
##
## 1 13285897 DEATH_DATE 27 12 1801
```

Make dates

Use Day, Month, and Year to create a Date:

```
person$date <- with(person, paste(Year, Month, Day, sep = "-")) %>%
              as.Date("%Y-%m-%d")
person$Day <- person$Month <- person$Year <- NULL</pre>
str(person)
## 'data frame': 504015 obs. of 4 variables:
   $ IdI : int 11005266 11005266 11005266 11005266 11005266 11005266 1105103
##
   $ Type : chr "BIRTH_DATE" "BIRTH_LOCATION" "LEGITIMACY" "MULTIPLE_BIRTH" .
## $ Value: chr "" "Missing information" "Unknown" "Unknown /No multiple birt
## $ date : Date, format: NA NA ...
filter(person, !is.na(date)) %>% head(3)
##
         IdI
                                         Value date
                       Type
## 1 11404184
                 BIRTH_DATE
                                                1801-11-27
## 2 11404184 BIRTH_LOCATION Missing information 1801-11-27
## 3 19206583 BIRTH_DATE
                                                1778-09-02
```

Date as a Value

- For BIRTH_DATE and DEATH_DATE,
 - the date is in fact the Value.

So:

```
change <- person$Type %in% c("BIRTH_DATE", "DEATH_DATE")</pre>
person$Value[change] <- person$date[change]</pre>
rm(change) # Just a temporary variable ...
person$date <- NULL # Not needed any more
head(person)
          TdT
                                                    Value
##
                         Type
## 1 11005266
                  BIRTH_DATE
                                                     <NA>
## 2 11005266 BIRTH LOCATION
                                     Missing information
## 3 11005266
                  LEGITIMACY
                                                  Unknown
## 4 11005266 MULTIPLE_BIRTH Unknown /No multiple birth
## 5 11005266
                          SEX
                                                  Unknown
## 6 11005266
                  DEATH_DATE
                                                     <NA>
```

person is not tidy!

- tidy:
 - Variables in columns,
 - observations in rows.
- The column Type is variable names!

Duplicates

- There are duplicate Type == BIRTH_LOCATION.
 - How many?

```
group_by(person, IdI) %>%
    summarize(count = sum(Type == "BIRTH_LOCATION")) %>%
    select(count) %>%
    table()

## .
## 0 1 2 3 4 5
## 979 69057 4854 752 142 47
```

Remove all duplicates

Remove all duplicates of IdI + Type:

```
NROW(person)
## [1] 460000
dups <- with(person, paste(IdI, Type, sep = "")) %>%
        duplicated()
person <- filter(person, !dups)</pre>
NROW (person)
## [1] 453028
```

Make person tidy!

We use Hadley Wickham's package tidyr:

```
library(tidyr)
person <- spread(person, Type, Value)</pre>
person$BIRTH_DATE <- as.Date(as.numeric(person$BIRTH_DATE),</pre>
origin = "1970-01-01")
person$DEATH_DATE <- as.Date(as.numeric(person$DEATH_DATE),</pre>
origin = "1970-01-01")
names(person) <- tolower(names(person))</pre>
str(person)
  'data.frame': 75831 obs. of 7 variables:
                    : int 10000192 10000250 10000325 10000447 10000649 1000066
##
    $ idi
##
    $ birth date : Date, format: "1875-04-15" "1785-12-06" ...
##
    $ birth_location: chr "KUSMARK" "SKELLEFTEÅ " "ATTMAR" "STORKÅGE" ...
##
    $ death date : Date, format: "1881-01-03" "1848-03-10" ...
##
    $ legitimacy : chr "Legitimate" "Legitimate" "Unknown" "Legitimate" ...
##
    $ multiple_birth: chr "Unknown /No multiple birth" "Unknown /No multiple b
    $ sex
                    : chr "Male" "Female" "Female" "Male" ...
##
```

Fix BIRTH_LOCATION

```
length(unique(person$birth location))
## [1] 968
x <- select(person, birth_location) %>%
    table() %>%
    sort(decreasing = TRUE)
x[1:12]
##
##
           SKELLEFTEA Missing information
                                                          FALMARK
##
                  16078
                                        9413
                                                             1909
               KUSMARK
                                   STORKÅGE
                                                            BUREÂ
##
##
                   1729
                                        1717
                                                             1436
##
                   BÖLE
                                     ERSMARK
                                                         RERGSBYN
##
                   1257
                                        1249
                                                             1214
                                                       HJOGGBÖLE
             BURTRÄSK
                            SKELLEFTEÅ STAD
##
##
                   1147
                                        1081
                                                             1042
```

Something went wrong?

```
## .
## .
## SKELLEFTEÅ SKELLEFTEÅ STAD
## 16078 1081

with(person, table(urban))
## urban
## FALSE TRUE
## 74750 1081
```

What?

Fix BIRTH_LOCATION, II

Use Hadley Wickham's package stringr:

str_trim removes whitespace from start and end of a string.

Fix legitimacy

I make the daring assumption that:

```
person$legitimacy[person$legitimacy == "Child of betrothal"] <-
    "Illegitimate"
person$legitimacy[person$legitimacy == "Unknown"] <-
    "Legitimate"
person$legitimacy <- factor(person$legitimacy) %>%
    relevel(ref = "Legitimate")
with(person, table(legitimacy))

## legitimacy
## Legitimate Illegitimate
## 72982 2849
```

Fix multiple_birth

```
with(person, table(multiple_birth))
## multiple_birth
## 2 3
## 1436 30
## Unknown /No multiple birth
## 74365
```

We need to make a factor of this with the labels 1, 2, 3:

```
person$multiple_birth[!(person$multiple_birth %in% c(2, 3))] <- 1
person$multiple_birth <- factor(person$multiple_birth) %>%
    relevel(ref = "1")
with(person, table(multiple_birth))

## multiple_birth
## 1 2 3
## 74365 1436 30
```

The final person data frame

```
summary(person)
##
        idi
                       birth_date
                                        birth_location
  Min.
          :10000192 Min.
                           :1699-01-08
                                        Length: 75831
   1st Qu.:12496908 1st Qu.:1816-04-25
                                        Class : character
   Median :14972256
                     Median :1851-05-22
                                        Mode
                                              :character
                     Mean :1842-01-19
##
   Mean :14993999
   3rd Qu.:17497322
                     3rd Qu.:1875-06-20
   Max. :19999984
                     Max. :1902-02-01
##
                     NA's :11851
##
     death_date
                             legitimacy multiple_birth
   Min. :1755-06-07 Legitimate :72982 1:74365
   1st Qu.:1840-04-17
                       Illegitimate: 2849
                                          2: 1436
##
   Median: 1867-01-29
                                          3:
                                               30
   Mean :1861-02-18
##
   3rd Qu.:1884-01-11
##
   Max. :1903-10-31
##
   NA's :53301
##
                     urban
       sex
   Length:75831 Mode :logical
##
##
   Class:character FALSE:58672
##
   Mode :character TRUE :17159
                     NA's :0
##
```

The observation file

Fix dates and select (extremely un-tidy):

```
observation$date <- with(observation,
                         paste(Year, Month, Day, sep = "-")) %>%
                         as.Date("%Y-%m-%d")
##
observation$startdate <- with(observation.
            paste(StartYear, StartMonth, StartDay, sep = "-")) %>%
            as.Date("%Y-%m-%d")
##
observation$enddate <- with(observation.
                paste(EndYear, EndMonth, EndDay, sep = "-")) %>%
                as.Date("%Y-%m-%d")
observation <- select(observation.
                      IdI, Type, Value, date, startdate, enddate)
```

Trim and sort

```
observation$Type <- str_trim(observation$Type)</pre>
observation$Value <- str_trim(observation$Value)</pre>
observation <- arrange(observation, IdI, date, startdate, enddate)
with(observation, table(Type))
## Type
    END OBSERVATION
                        MARRIAGE DATE OCCUPATION HISCO START OBSERVATION
##
##
              77461
                                77462
                                                 198228
                                                                    76372
filter(observation, Type == "START_OBSERVATION") %>%
    select(Value) %>% table()
## .
       Arrival Birth Start source
##
##
          9264
                    55845 11263
filter(observation, Type == "END_OBSERVATION") %>%
    select(Value) %>% table()
## .
       Death Departure End source
##
##
       25990
                  13957
                             37514
```

Type, Value, and new variables

- Variables:
 - married (TRUE or FALSE)
 - occupation (code, 0 = no occupation)
 - present (TRUE or FALSE)
- START_OBSERVATION → (present = TRUE)
- END_OBSERVATION → (present = FALSE)
- OCCUPATION_HISCO → occupation, start = 0
- MARRIAGE_DATE \rightarrow (married = TRUE), start = FALSE

Fix present

```
where <- observation$Type == "START_OBSERVATION"
observation$Type[where] <- "present"
observation$Value[where] <- "TRUE"
##
where <- observation$Type == "END_OBSERVATION"
observation$Type[where] <- "present"
observation$Value[where] <- "FALSE"</pre>
```

```
head(observation)
##
        IdI
                     Type Value date startdate enddate
## 1 10000192
                   present TRUE 1875-04-15
                                           <NA>
                                                  <NA>
## 2 10000192
                   present FALSE 1881-01-03 <NA> <NA>
## 3 10000192 OCCUPATION_HISCO 0
                                   <NA>
                                           <NA> <NA>
## 4 10000192
             MARRIAGE DATE
                                   <NA>
                                           <NA> <NA>
                   present TRUE 1785-12-06 <NA> <NA>
## 5 10000250
## 6 10000250
             MARRIAGE_DATE
                              1815-06-25
                                           <NA>
                                                  <NA>
```

Fix occupation and married

```
where <- observation$Type == "OCCUPATION_HISCO"
observation$Type[where] <- "occupation"</pre>
##
where <- observation$Type == "MARRIAGE_DATE"
observation$Type[where] <- "married"
observation$Value[where] <- "TRUE"
head(observation)
##
         TbT
                  Type Value
                                  date startdate enddate
## 1 10000192
               present TRUE 1875-04-15
                                           <NA>
                                                   <NA>
## 2 10000192
               present FALSE 1881-01-03 <NA>
                                                   <NA>
## 3 10000192 occupation
                                  <NA> <NA>
                                                   <NA>
               married TRUE
## 4 10000192
                                  <NA> <NA> <NA>
## 5 10000250
               present TRUE 1785-12-06
                                           <NA>
                                                   <NA>
## 6 10000250
               married TRUE 1815-06-25 <NA>
                                                   <NA>
```

The dates are irritating ...

The dates

```
filter(observation, !is.na(enddate)) %>% head(2)
        IdI
                Type Value date startdate enddate
##
## 1 10000250 occupation 54020 <NA> 1815-05-21 1815-06-25
## 2 10000250 occupation 62120 <NA> 1815-05-21 1815-06-25
filter(observation, IdI == 10000250) %>% print()
##
        IdI Type Value date startdate enddate
## 1 10000250 present TRUE 1785-12-06
                                        <NA>
                                                 <NA>
## 2 10000250 married TRUE 1815-06-25 <NA>
                                                 <NA>
## 3 10000250 present FALSE 1848-03-10 <NA>
                                                 <NA>
## 4 10000250 occupation 54020 <NA> 1815-05-21 1815-06-25
## 5 10000250 occupation 62120 <NA> 1815-05-21 1815-06-25
## 6 10000250 occupation 54020 <NA> <NA> <NA>
## 7 10000250 occupation 62120 <NA> <NA> <NA>
## 8 10000250 occupation 54020 <NA> <NA> <NA>
## 9 10000250 occupation 62120 <NA> <NA> <NA>
```

Decision about dates

- When date is missing, replace with startdate.
- Remove startdate and enddate.
- Sort by IdI and date.

```
where <- is.na(observation$date)
observation$date[where] <- observation$startdat[where]
observation <- select(observation, IdI, Type, Value, date) %>%
   arrange(IdI, date)
filter(observation, IdI == 10000250) %>% print()
##
         IdI Type Value
                                   date
## 1 10000250 present TRUE 1785-12-06
## 2 10000250 occupation 54020 1815-05-21
## 3 10000250 occupation 62120 1815-05-21
## 4 10000250 married TRUE 1815-06-25
## 5 10000250 present FALSE 1848-03-10
## 6 10000250 occupation 54020
                                  <NA>
## 7 10000250 occupation 62120 <NA>
## 8 10000250 occupation 54020 <NA>
## 9 10000250 occupation 62120
                               <NA>
```

Birth date

```
names(observation) <- tolower(names(observation))</pre>
indx <- match(observation$idi, person$idi)</pre>
observation$birth_date <- person$birth_date[indx]</pre>
select(observation, date, birth_date) %>% summary()
        date
                         birth date
##
## Min. :1714-02-03 Min. :1699-01-08
   1st Qu.:1835-10-04 1st Qu.:1812-03-04
##
##
   Median: 1864-03-27 Median: 1842-02-21
##
   Mean :1856-06-18 Mean :1837-09-11
## 3rd Qu.:1883-03-18 3rd Qu.:1866-11-11
## Max. :1903-12-22 Max. :1902-02-01
## NA's :276363 NA's :56191
observation <- observation[!is.na(observation$date), ]
```

New variables

```
vars <- unique(observation$type)
observation[, vars] <- NA
filter(observation, idi == 10000250) %>%
    select(type, value, present, occupation, married) %>%
    kable()
```

type	value	present	occupation	married
present	TRUE	NA	NA	NA
occupation	54020	NA	NA	NA
occupation	62120	NA	NA	NA
married	TRUE	NA	NA	NA
present	FALSE	NA	NA	NA

- 1. TRUE \rightarrow column present
- 2. $54020 \rightarrow column \ occupation$
- 3. $62120 \rightarrow column \ occupation$
- 4. TRUE \rightarrow column married
- 5. FALSE \rightarrow column present

Fill in new variables

type	value	present	occupation	married
present	TRUE	TRUE	NA	NA
occupation	54020	NA	54020	NA
occupation	62120	NA	62120	NA
married	TRUE	NA	NA	TRUE
present	FALSE	FALSE	NA	NA

Remove type and value

And fill down present, occupation, and married.

```
observation <- mutate(observation, type = NULL, value = NULL)
observation <- observation %>% group_by(idi) %>%
    fill(present, occupation, married)
filter(observation, idi == 10000250) %>% kable()
```

idi	date	birth_date	present	occupation	married
10000250	1785-12-06	1785-12-06	TRUE	NA	NA
10000250	1815-05-21	1785-12-06	TRUE	54020	NA
10000250	1815-05-21	1785-12-06	TRUE	62120	NA
10000250	1815-06-25	1785-12-06	TRUE	62120	TRUE
10000250	1848-03-10	1785-12-06	FALSE	62120	TRUE

Suggestions:

- Start married with FALSE?
- Start occupation with 0?

Start married and occupation

```
observation$firstRec <- with(observation, !duplicated(idi))
observation$lastRec <- c(observation$firstRec[-1], TRUE)
fillin <- with(observation, firstRec & is.na(occupation))
observation$occupation[fillin] <- 0
fillin <- with(observation, firstRec & is.na(married))
observation$married[fillin] <- "FALSE"
observation$married <- as.logical(observation$married)
observation$occupation <- as.integer(observation$occupation)
observation <- observation %>%
    group_by(idi) %>%
    fill(occupation, married)
```

What does it look like now?

```
head(observation)
## Source: local data frame [6 x 8]
## Groups: idi [2]
##
        idi
##
                 date birth_date present occupation married firstRec
##
    <int> <date>
                         <date>
                                 <chr>
                                          <int> <lgl>
                                                         <lgl>
## 1 10000192 1875-04-15 1875-04-15 TRUE
                                             O FALSE TRUE
## 2 10000192 1881-01-03 1875-04-15 FALSE
                                             O FALSE FALSE
                                              O FALSE
## 3 10000250 1785-12-06 1785-12-06 TRUE
                                                          TRUE
## 4 10000250 1815-05-21 1785-12-06 TRIJE
                                          54020 FALSE FALSE
## 5 10000250 1815-05-21 1785-12-06 TRUE
                                         62120 FALSE
                                                         FALSE
## 6 10000250 1815-06-25 1785-12-06
                                 TRUE
                                          62120 TRUE
                                                         FALSE
## # ... with 1 more variables: lastRec <lgl>
```

Must convert present to logical:

```
observation$present <- as.logical(observation$present)</pre>
```

Introducing age, enter

```
observation$enter <-
    with(observation, round(as.numeric(date - birth_date) / 365.2425, 3))
select(observation, birth_date, date, enter) %>% head()
## Source: local data frame [6 x 4]
## Groups: idi [2]
##
##
         idi birth_date date enter
                 <date> <date> <dbl>
##
       <int.>
## 1 10000192 1875-04-15 1875-04-15 0.000
## 2 10000192 1875-04-15 1881-01-03 5.722
## 3 10000250 1785-12-06 1785-12-06 0.000
## 4 10000250 1785-12-06 1815-05-21 29.452
## 5 10000250 1785-12-06 1815-05-21 29.452
## 6 10000250 1785-12-06 1815-06-25 29.547
```

Introducing exit

- On last row: exit is equal to enter.
- On non-last row: exit is equal to enter on the next row.

```
observation$date2 <- c(observation$date[-1], NA)
observation$exit <- c(observation$enter[-1]. 0)
observation <- filter(observation, (!lastRec) & (exit > enter) & present)
select(observation, birth_date, date, enter, exit) %>% head()
## Source: local data frame [6 x 5]
## Groups: idi [4]
##
        idi birth date date enter exit
##
##
       <int>
                 <date> <date> <dbl> <dbl>
## 1 10000192 1875-04-15 1875-04-15 0.000 5.722
## 2 10000250 1785-12-06 1785-12-06 0.000 29.452
## 3 10000250 1785-12-06 1815-05-21 29.452 29.547
## 4 10000250 1785-12-06 1815-06-25 29.547 62.257
## 5 10000325 1858-09-08 1894-07-06 35.826 37.643
## 6 10000447 1862-10-13 1862-10-13 0.000 22.747
```

Mortality

Needs death_date from person (and some more ...)

A first mortality analysis

- Kaplan-Meier estimates for women and men,
- based on 18059 deaths.

Adding info from mother

```
IndivIndiv <- read.table("rawdata/INDIV_INDIV.txt", header = FALSE)
IndivIndiv <- IndivIndiv[, c(3, 4, 6)]
IndivIndiv <- filter(IndivIndiv, V6 == "Mother")
IndivIndiv <- IndivIndiv[, 1:2]
names(IndivIndiv) <- c("mother", "child")
indx <- match(observation$idi, IndivIndiv$child) ## ERROR in handouts!!
observation$m_idi <- IndivIndiv$mother[indx]</pre>
```

Now we can put on observation from person via the key m_idi

Save ...

```
save(observation, file = "data/observation.rda")
save(person, file = "data/person.rda")
```

See https://github.com/goranbrostrom/ACA_16/