wherein R² and R³ are independently selected from the group consisting of straight-chain or branched alkyl groups containing 1-21 carbon atoms, and R⁴ is an alkylene group containing 1-21 carbon atoms;

m is an integer of at least 1, having an average of 4-20;

A¹ is an alkylene group containing 3 or 4-carbon atoms; and

n is 0 or an integer of at least 1, having an average of 0-15; wherein (C_2H_4O) and (A^1O), in case of the average of n being 1-15, are linked random-wise and/or blockwise; with

- (II) at least one selected from the group consisting of a quinone type digestion assistant and a polysulfide.
- 2. (Twice Amended) An assistant for digesting a lignocellulose material, which comprises a combination of:
- (I) a nonionic surfactant (B) obtained by addition of an alkylene oxide to an aliphatic alcohol, said nonionic surfactant (B) comprising one or more compounds represented by the general formula (3):

$$R^5$$
-O-((C₂H₄O)_p / (A²O)_q)-H (3)

wherein R⁵ is a straight-chain, branched or cyclic aliphatic hydrocarbyl group containing 4-24 carbon atoms;

p is an addition molar number of 4-20;

A² is an alkylene group containing 3 or 4 carbon atoms; and

q is an addition molar number of 0 or 1-15; wherein (C₂H₄O) and (A²O), in case of the average of q being 1-15, are linked random-wise and/or block-wise; said nonionic

surfactant (B) having a weight-average molecular weight (Mw) and a number-average molecular weight (Mn) providing a ratio of Mw/Mn satisfying the relationship

$$Mw/Mn \le -0.183xK^{-0.930} \times LnX + 1.327xK^{-0.065}$$
 (4)

wherein LnX is a natural logarithm of X;

X is an average addition molar number of the alkylene oxide per 1 mole of the aliphatic alcohol; and

K is the number of carbon atoms in R⁵ of the general formula (3); with

(II) at least one selected from the group consisting of a quinone type digestion assistant and a polysulfide.

5. (Twice Amended) An assistant for digesting a lignocellulose material, which comprises:

- (a) at least one nonionic surfactant selected from the group consisting of a nonionic surfactant (A) and a nonionic surfactant (B); together with
- (b) at least one anionic surfactant selected .from the group consisting of an anionic surfactant (C), an anionic surfactant (D) and anionic surfactant (E); in a weight ratio of 100/0.1 100/30;

said nonionic surfactant (A) comprising one or more compounds represented by the general formula (1); said nonionic surfactant (B) being obtained by addition of an alkylene oxide to an aliphatic alcohol and comprising one or more compounds represented by the general formula (3) and having a weight-average molecular weight (Mw) and a number-average molecular weight (Mn) providing a ratio of Mw/Mn satisfying the relationship (4); said anionic surfactant (C) comprising one or more

compounds represented by the general formula (5); said anionic surfactant (D) comprising one or more compounds represented by the general formula (6); and said anionic surfactant (E) comprising one or more compounds represented by the general formula (7):

$$R^{1}$$
 -O-((C₂H₄O) / (A¹O)_n)-H (1)

$$R^5 - 0 - ((C_2H_4O)p/A^2O)_q) - H$$
 (3)

$$R^6 - SO_3 M^1 \tag{5}$$

O II
$$\{R^6-O-(A^3O)_{r}-\}_kP(-OM^2)_{3-k}$$
 (6)

$$R^7$$
-O- $(A^4O)_s$ - R^8COOM^3 (7)

wherein R¹ is a branched alkyl group containing 4-24 carbon atoms represented by the general formula (2):

$$R^2$$
 -CH- R^{4-} (2)

wherein R² and R³ are independently selected from the group consisting of straight-chain or branched alkyl groups containing 1-21 carbon atoms, and R⁴ is an alkylene group containing 1-21 carbon atoms, R⁵ and R⁶ are straight-chain, branched or cyclic aliphatic hydrocarbyl groups containing 4-24 carbon atoms; R⁷ is a straight-chain or branched alkyl group, alkenyl group, or mono- or di-hydroxyalkyl group, containing 4-24 carbon atoms; R⁸ is an alkylene group containing 1-6 carbon atoms; m is an integer of at least 1, having an average of 4-20; p is a number of 4-20; A¹, A², A³ and A⁴ are alkylene groups containing 3 or 4 carbon atoms; n, r and s are 0 or an integer, of at least 1, having an average of 0-15; q is an addition molar number of 0 or 1-15; k is an

)

integer of 1 or 2; M^1 , M^2 and M^3 monovalent cations; wherein (C_2H_4O) and (A^1O), or (C_2H_4O) and (A^2O), in case of the average of n or q being 1-15, are linked random-wise and/or block-wise;

$$Mw/Mn \le -0.183xK^{-0.930} \times LnX + 1.327xK^{-0.065}$$
 (4)

wherein LnX is a natural logarithm of X; X is an average addition molar number of the alkylene oxide per 1 mole of the aliphatic alcohol; and K is the number of carbon atoms in R⁵ of the general formula (3).

- 7. (Twice Amended) A method for producing a pulp, which comprises digesting a lignocellulose material with an alkali or a sulfite in the presence of a digestion assistant; said assistant comprising at least one assistant (I) selected from the group consisting of:
- (A) a nonionic surfactant comprising one or more compounds represented by the general formula (1):

$$R^{1}$$
 -O-((C₂H₄O) / (A¹O)_n)-H (1);

(B) a nonionic surfactant, obtained by addition of an alkylene oxide to an aliphatic alcohol, comprising one or more compounds represented by the general formula (3):

$$R^5$$
 -O-((C₂H₄O)_p / (A²O)_q)-H (3);

and having a weight-average molecular weight (Mw) and a number-average molecular weight (Mn) providing a ratio of Mw/Mn satisfying the relationship (4);

$$Mw/Mn \le -0.183xK^{-0.930} \times LnX + 1.327xK^{-0.065}$$
 (4);

(C) an anionic surfactant comprising one or more compounds represented by the general formula (5):

$$R^6 - SO_3 M^1 \tag{5}$$

(D) an anionic surfactant comprising one or more compounds represented by the general formula (6):

O
II

$$\{R^6-O-(A^3O)_{r--}\}_kP(-OM^2)_{3-k}$$
 (6)

wherein R¹ is a branched alkyl group containing 4-24 carbon atoms represented by the general formula (2):

$$R^2$$
-CH- R^4 -

 I
 R^3
(2)

wherein R^2 and R^3 are independently selected from the group consisting of straight-chain or branched alkyl groups containing 1-21 carbon atoms, and R^4 is an alkylene group containing 1-21 carbon atoms; R^5 and R^6 are straight-chain, branched or cyclic aliphatic hydrocarbyl groups containing 4-24 carbon atoms; m is an integer of at least 1, having an average of 4-20; p is a number of 4-20; A^1 , A^2 and A^3 are alkylene groups containing 3 or 4 carbon atoms; n and r are 0 or an integer of at least 1, having an average of 0-15; q is an addition molar number of 0 or 1-15; k is an integer of 1 or 2; M^1 and M^2 are monovalent cations wherein (C_2H_40) and (A^10), or (C_2H_40) and (A^20), in case of the average of n or q being 1-15, are linked random-wise and/or block-wise; LnX is a natural logarithm of X; X is an average addition molar number or the alkylene oxide per 1 mode of the aliphatic alcohol; and K is the number of carbon atoms in R^5 of the general formula (3).

