

CURSOS DE GRADUAÇÃO EM ENGENHARIA LABORATÓRIO

COMPONENTE: Eletrônica Analógica 2 PROFESSOR: Júlio Almeida Borges

Aluno (a):			RA:	
			RA:	
			RA:	
Valor: 1,0 pts	Data:/_/	Nota:		
		INSTRUCÕES		

INSTRUÇÕES

BUFFER DE TENSÃO

Introdução teórica.

Os amplificadores operacionais desempenham um papel crucial na eletrônica, atuando como blocos de construção fundamentais para uma ampla gama de aplicações. Entre essas aplicações, destaca-se a função de buffer de tensão, onde o amplificador operacional é configurado para fornecer uma saída idêntica à entrada, porém com alta impedância de entrada e baixa impedância de saída. Um exemplo clássico desse circuito é a utilização do amplificador operacional 741 como um buffer de tensão.

O amplificador operacional 741, um dispositivo icônico na história da eletrônica, foi introduzido pela primeira vez na década de 1960. Ele é conhecido por sua versatilidade e facilidade de uso, apesar de suas limitações em relação a amplificadores operacionais mais modernos. O circuito de buffer de tensão, que será explorado nesta introdução, exemplifica um uso fundamental do 741.

O objetivo deste projeto é montar um laboratório prático para a criação de um buffer de tensão utilizando o amplificador operacional 741. Nesta introdução, abordaremos brevemente os conceitos essenciais relacionados aos amplificadores operacionais e à configuração de buffer de tensão, antes de prosseguirmos para os passos práticos envolvidos na montagem do circuito.

Figura 1 – Amplificador 741

PRÁTICA

Materiais necessários:

- Amplificador Operacional 741 (ou equivalente)
- Fonte de Alimentação Dual (+V, -V)
- Kit de Prototipagem (placa de circuito, fios, conectores, etc.)
- Componentes Eletrônicos (resistores, capacitores, etc.)
- Osciloscópio (opcional, mas útil para análise)
- Multímetro

Passos:

- Coloque o amplificador operacional 741 na placa de prototipagem, observando a pinagem: alimentação positiva (+Vcc), alimentação negativa (-Vcc), entrada inversora (IN-), entrada não inversora (IN+), e saída (OUT), entre outros.
- 2. Conecte os fios da fonte de alimentação (+V e -V) às respectivas pinagens do amplificador operacional, mantendo a polaridade correta.
- 3. Conecte um fio da entrada de sinal (por exemplo, IN+) a uma fonte de sinal. Conecte o fio da entrada de referência (IN-) ao mesmo ponto da fonte de sinal. Isso configura o amplificador operacional para um ganho unitário (buffer).
- 4. Conecte um fio da saída (OUT) a um ponto de leitura ou a um osciloscópio.

V+	V+ (medido)	Vout(medido
150mv		
500mv		
2v (senoidal)		
3,5v (Quadrado)		

Lembre-se sempre de tomar precauções de segurança ao lidar com eletricidade.

Questões:

- 1. Qual é a função principal de um buffer de tensão em eletrônica e por que o uso de um amplificador operacional 741 é adequado para essa aplicação?
- 2. Por que é importante manter uma alta impedância de entrada e baixa impedância de saída em um buffer de tensão? Como essas características influenciam o desempenho do buffer em um sistema eletrônico?