2022 7th International Conference on Automation, Control and Robotics Engineering

Adaptively Dynamic RRT*-Connect: Path Planning for UAVs Against Dynamic Obstacles

Yicheng Chen and Lingling Wang

Speaker | Yicheng Chen

Master student
School of Automation Science and Electrical Engineering
Beihang University, Beijing, China

Introduction

- Change of environment
- Map error or update
- Unreliable perception

Challenge:

What if new obstacles break the path?

What if new obstacles break the path?

- Existing solution 1: Traditional re-planning method Re-run a full planning
- Existing solution 2: RRT*D^[1]

[1] Adiyatov, Olzhas, and Huseyin Atakan Varol. "A novel RRT*-based algorithm for motion planning in Dynamic environments." IEEE ICMA 2017.

Proposed: Pruning-reconnecting

Adaptively Dynamic RRT*-Connect (ADRRT*-Connect) Proposed RRT*D **Algorithm 6** ADRRT*-Connect 1: $T_a, T_b, \sigma \leftarrow \text{ARRT} \star -\text{Connect}$ 2: $p_{current} \leftarrow p_{init}$ 3: InitMovement() 4: while $p_{current} \neq p_{goal}$ do $D \leftarrow \text{UpdateObstacles()}$ if DetectCollision $(\sigma, p_{current})$ 6: StopMovement() 7: $T_a \leftarrow \text{RemoveNodes}\left(T_a, p_{current}\right)$ $T_b \leftarrow \text{RemoveNodes}(T_b, p_{goal})$ 9: $T_a, T_b, \sigma \leftarrow \text{ARRT} \star -\text{Connect} (T_a, T_b)$ 10: ResumeMovement() 11: end if 12: $p_{current} \leftarrow \text{NextNode}(\sigma)$ 13: 14: end while

Proposed: Adaptive sampling

Adaptively adjust heuristic factor according to the sampling result

Sample type	Probability	
	Traditional heuristic	Adaptive heuristic
Greedy sampling: Directly sample p_{goal}	ϵ	y(x)
Randomly sample in the configuration space	$1-\epsilon$	1 - y(x)

Sigmoid function $y(x) = \frac{1}{1 + e^{-x}}$ How to adjust x automatically : Valid: $x \leftarrow x + \Delta x$ Greedy sampling Invalid: $x \leftarrow x - \Delta x$ Random sampling No action

Simulation setting

Two major contributions

- Pruning-reconnecting mechanism
- Adaptive sampling

Two groups of simulation

- Proposed vs. RRT*D
- Adaptive heuristic vs. Traditional heuristic

Dynamic map

Simulation setting

Simulation and discussion

Number of nodes required in five times of re-planning

*Average results from 1000 trials

Obstacle	RRT*D	ADRRT*-Connect
1	135	14
2	203	12
3	560	22
4	426	22
5	1086	13
Avg	482	17

ADRRT*-Connect only requires **3.5**% new nodes to repair the path in re-planning.

Simulation and discussion

Adaptive heuristic vs. Traditional heuristic

One 'attempt' = once sampling

Sampling success rate = $\frac{\text{Number of tree nodes}}{\text{Number of attempts}}$

Summary

Adaptively Dynamic RRT*-Connect

Adaptive heuristic

Re-planning

Asymptotically optimality

Bidirectional growth

Possible future work

 More adaptive mechanisms in different stages of the planning process

Thanks for your attention!

Yicheng Chen

https://amos-chen98.github.io/