Seite 1

Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2015

Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München

15. September 2015

Zeitabhängige Schrödingergleichung und der harmonische Oszillator

1 Zeitentwicklung im Schrödinger- und Heisenberg-Bild

Aufgabe 1 (*)

Betrachten Sie die kräftefreie, eindimensionale Bewegung eines Teilchens der Masse m:

$$H = \frac{1}{2m}p^2$$

- 1. Lösen Sie die Bewegungsgleichung für den Operator $x_H(t)$ und den Impulsoperator $p_H(t)$ im Heisenberg-Bild.
- 2. Berechnen Sie die Kommutatoren:

$$[x_H(t_1), x_H(t_2)];$$
 $[p_H(t_1), p_H(t_2)];$ $[x_H(t_1), p_H(t_2)];$

Tag 2

Aufgabe 2 (**)

 $Bei\ t = 0\ sei\ ein\ Wellenpacket$

$$\Psi(x,0) = Ce^{ik_0x}e^{-\frac{x^2}{2a^2}}$$

gegeben.

1. Berechnen Sie unter Verwendung des Zeitentwicklungsoperators

$$U(x, x', t) = \sqrt{\frac{m}{2\pi\hbar i t}} e^{\frac{im(x - x')^2}{2\hbar t}}$$

die zeitliche Entwicklung des Wellenpacketes $\Psi(x,t)$ für $t \geq 0$.

2. Bestimmen Sie die Wahrscheinlichtskeitsdichte

$$\rho(x,t) = \Psi^*(x,t)\Psi(x,t)$$

Wie verändert sich $\langle x \rangle$, Δx , Δp und $\Delta x \cdot \Delta p$ mit der Zeit?

Hinweis:
$$\int_{\infty}^{\infty} dx \exp[-(\alpha x^2 + \beta x + \gamma)] = \sqrt{\frac{\pi}{\alpha}} \exp\left[\frac{\beta^2 - 4\alpha\gamma}{4\alpha}\right]$$

Aufgabe 3 (*)

Der linearen harmonische Oszillator wird beschrieben durch den Hamilton-Operator:

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$$

Zeigen Sie, dass Impulsoperatoren p und Ortsoperator q im Heisenberg-Bild die folgenden Bewegungsgleichung

$$\frac{d}{dt^2}q_H(t) + \omega^2 q_H(t) = 0$$

$$\frac{d}{dt^2}p_H(t) + \omega^2 p_H(t) = 0$$

2 Ehrenfest Theorem

Aufgabe 4 (**) Wir betrachten ein Teilchen in einem zeitlich konstanten Potential $V(\vec{r})$. Der Hamiltonoperator für dieses Teilchen ist dementsprechend $\hat{H} = \hat{p}^2/2m + V(\vec{r})$. Wenden Sie das Ehrenfesttheorem auf den Ortsoperator $\hat{\vec{r}}$ und Impulsoperator $\hat{\vec{p}}$ an. Kommt Ihnen etwas aus der klassischen Mechanik bekannt vor? Definieren Sie hierzu im zweiten Fall geschickt eine Kraft. Kombinieren Sie schlieÄŸlich beide Resultate.

3 Kontinuitätsgleichung

Aufgabe 5 (*)

Ein Teilchen der Masse m werde durch die folgende Wellenfunktion beschrieben

$$\Psi(r,t) = A \cdot r \exp\left(-\frac{r}{2a} + i\frac{\hbar}{8ma^2} \cdot t + i\phi\right) \sin\theta$$

- 1. Berechnen Sie die reelle Normierungskonstante A.
- 2. Bestimmen Sie die Wahrscheinlichkeitsstromdichte j(r,t).
- 3. Geben Sie die Energieeigenwerte E an.

Hinweis:
$$\nabla = \left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\right)$$

Die Gammafunktion $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} = x!$.

4 Matrixdarstellung

Aufgabe 6 (*)

In einem dreidimensionalen Hilbertraum sind folgende Vektorzustände gegeben:

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle$$

 $|\beta\rangle = i|1\rangle + 2|3\rangle$

Hierbei sind $|1\rangle$, $|2\rangle$ und $|3\rangle$ die orthonormierten Basiszustände.

- 1. Berechnen Sie die Skalarprodukte $\langle \alpha | \beta \rangle$ und $\langle \beta | \alpha \rangle$ explizit und zeigen Sie, dass $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- 2. Finden Sie alle Matrixelemente von $\widehat{A} = |\alpha\rangle\langle\beta|$ und geben Sie die Matrixdarstellung von \widehat{A} an.
- 3. Ist der Operator \widehat{A} hermitesch? Begründung?

Aufgabe 7 (*)

 $Der\ Hamilton-Operator\ eines\ Zwei-Niveau-Systems\ lautet:$

$$\hat{\mathcal{H}} = \epsilon (|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|)$$

Hierbei sind $|1\rangle$ und $|2\rangle$ die orthonormierten Basiszustände. Der Parameter ϵ hat Energieeinheiten.

- 1. Wie lautet die Matrixdarstellung des Operators $\hat{\mathcal{H}}$ in dieser Basis?
- 2. Finden Sie die Energieeigenwerte und die zugehörigen Eigenzustände des Operators $\hat{\mathcal{H}}$.

5 Eindimensionaler harmonischer Oszillator

Aufgabe 8 (*)

Zeigen Sie: Wenn Ψ_{ν} Eigenfunktion von $n=a^{\dagger}a$ zum Eigenwert ν ist, so ist $a^{\dagger}\Psi_{\nu}$ Eigenfunktion von n mit Eigenwert $\nu+1$.

Aufgabe 9 (**)

Wir berachten einen eindimensionalen harmonischen Oszillator mit den Hamiltonoperator

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$$

mit den Eigenzuständen $|n\rangle$. Zur Zeit t=0 sei der Zustand durch

$$|\Psi(t=0)\rangle = \frac{1}{\sqrt{2}}|0\rangle + i\frac{1}{\sqrt{2}}|1\rangle$$

gegeben.

- (1) Man gebe die Zeitentwicklung $|\Psi(t)\rangle$ an.
- (2) Mit welcher Wahrscheinlichleit wird jeweils die Energie E_0, E_1 oder E_2 gemessen?
- (3) Berechnen Sie den Erwartungswert von x und p Hinweis: überlegen Sie, welche Darstellung des Oszillators am besten geeignet ist und welche Sätze für Erwartungswerte existieren.

Aufgabe 10 (**)

Ein Teilchen befindet sich im Grundzustand eines harmonischen Oszillators mit der Frequenz ω , wobei sich plötzlich die Federkonstante vervierfacht, so dass $\omega'=2\omega$. Während dieses unendlich schnellen Vorganges ändert sich die Wellenfunktion des Teilchen nicht. Wie hoch ist die Wahrscheinlichkeit bei einer Energiemessung den Wert $\hbar\omega/2$ ($\hbar\omega$) zu erhalten?

Seite 5

6 Mehrdimensionaler harmonischer Oszillator

Aufgabe 11 (**)

Betrachten Sie die dreidimensionale zeitunabhängige Schrödingergleichung mit einem Potential

$$V(x,y,z) = \begin{cases} \frac{m\omega^2}{2}(x^2 + y^2) & \text{für } 0 \le z \le D\\ \infty & \text{sonst} \end{cases}$$

(a) Lösen Sie die Schrödingergleichung indem Sie mit dem Ansatz

$$\Psi(\vec{r}) = \Psi(x, y, z) = X(x)Y(y)Z(y)$$

eine Separation der partiellen Differentialgleichung vornehmen. Beachten Sie, dass V(x, y, z) in $V_x(x) + V_y(y) + V_z(z)$ separiert. Wie lautet V(z)?

(b) Wie lauten die Energie-Eigenwerte des betrachteten Systems?

Aufgabe 12 (**)

Die zeitunabhängige Schrödingergleichung für den dreidimensionalen harmonischen Oszillator lautet

$$\label{eq:energy_equation} \Big[-\frac{\hbar^2}{2m} \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \Big) + \frac{1}{2} m \omega^2 (x^2 + y^2 + z^2) - E \Big] \Psi(x,y,z) = 0$$

(a) Lösen Sie die Schrödingergleichung indem Sie mit dem Ansatz

$$\Psi(\vec{r}) = \Psi(x, y, z) = X(x)Y(y)Z(y)$$

eine Separation der partiellen Differentialgleichung in drei gewöhnliche Differentialgleichung für X(x), Y(y), Z(z) vornehmen.

(b) Wie lauten die Energie-Eigenfunktionen und die Energie-Eigenwerte des betrachteten Systems?