Nama: Rifqi Fadil Fahrial

NIM: 1222646

1 Soal

Perusahaan sepatu "Bata" membuat dua jenis sepatu. sepatu J dan sepatu K. Sepatu J menggunakan sol kulit. Sepatu K menggunakan sol karet. Untuk memproduksi sepatu-sepatu tersebut, perusahaan menggunakan tiga jenis mesin-mesin C, D, E. Mesin C khusus membuat sol kulit, mesin D khusus membuat sol karet, dan mesin E membuat bagian atas sepatu serta assembling. setiap lusin sepatu J mula-mula dikerjakan di mesin D selama 5 jam, lalu di mesin E selama 3 jam. sedangkan untuk sepatu K dikerjakan di mesin C selama 9 jam lalu mesin E selama 12 jam. Jam Kerja maksimum untuk mesin D = 20 jam. mesin E = 13 jam, dan mesin C = 24 jam. Laba yang dihasilkan dari satu lusin sepatu J sebesar Rp. 70.000,-. Laba dari sepatu K sebesar Rp. 120.000,-. Berapa lusi sebaiknya sepatu J dan K dibuat?

2 Jawaban

Ubah dalam bentuk pertidaksamaan

- Sepatu $J = X_1$
- Sepatu $K = X_2$
- Mesin C (Sepatu K)= $9X_2 \le 24$
- Mesin D (Sepatu J)= $5X_1 <= 20$
- Mesin E = $3X_1 + 12X_2 \le 13$
- Kendala non negatif = $X_1, X_2 >= 0$
- Fungsi Tujuan = $X_{\text{max}} = 70X_1 + 120X_2$

Model dualitas

Untuk sebuah masalah linear programming dengan bentuk: Maksimalkan:

$$c1x1 + c2x2$$

$$a11x1 + a12x2 <= b1$$

$$a21x1 + a22x2 <= b2$$

$$a31x1 + a32x2 <= b3$$

$$x1, x2 >= 0$$

Maka model Dualnya adalah : Minimalkan:

$$b1u1 + b2u2 + b3u3$$
 Dengan kendala : $a11u1 + a21u2 + a31u3 >= c1$
$$a12u1 + a22u2 + a32u3 >= c2$$

$$u1, u2, u3 >= 0$$

implementasi model diatas dengan persamaan

Variabel primal: X_1 dan X_2

Fungsi Objektif: c1 = 70.000 dan c2 = 120.000

Kendala:

Kendala mesin D: $5X_1+0X_2 <= 20 => a11 = 5, a12 = 0, b1 = 20$ Kendala mesin E: $3X_1+12X_2 <= 13 => a21 = 3, a22 = 12, b2 = 13$ Kendala mesin C: $0X_1+9X_2 <= 24 => a31 = 0, a32 = 9, b3 = 24$

Misalkan:

- u berasosiasi dengan kendala 1 (mesin D)
- v berasosiasi dengan kendala 2 (mesin E)
- w berasosiasidengan kendala 3 (mesin C)

Kendala Mesin D:

$$5X_1 \le 20$$

 $X_1 \le 4$,

Kendala Mesin E:

$$3X_1 + 12X_2 \le 13$$

 $3(4) + 12_2 \le 13$
 $12X_2 \le 1$
 $X_2 \le 1/12$

Kendala Mesin D:

$$9X_2 \le 24$$

 $X_2 \le 24/9(2.67)$

karena setiap lusin sepatu J memberikan laba Rp 70.000 dan setiap lusin sepatu K Rp.120.000 untuk memaksimalkan keuntungan sebagiknya memakai mesin yang memiliki keterbatasan paling ketat.

Mesin D: Terbatas Pada 20 jam -> x maksimum adalah 4 Lusin

Mesin E: Setelah x=4, maka $3(4)+12X_2 <= 13$ menjadi:

$$\begin{array}{c} 12X_2 <= 13-12 \\ X_2 <= 1/12 \\ \text{Karena (1/12) lusin berarti 1 pasang} \end{array}$$

Hasil Akhir

Maksimal Lusin yang di produksi:

 $\begin{array}{l} X_1=4 \\ X_2=1/12 \end{array}$

Keuntungan yang diperoleh:

Z = 70.000(4) + 120.000(1/12) = 280.000 + 10.000 = 290.0000 (Dua Ratus sembilan puluh ribu rupiah)

menyederhankan

• Mesin C =
$$X_2 \le 23/9 = 2.67$$

• Mesin D =
$$X_2 \le 20/5 = 4$$

• Mesin E =
$$3X_1 + 12X_2 \le 13$$

- X_2 tidak bisa melebihi 2.67
- ketika $X_2=0,$ dari mesin E: $3X_1 <= 13$ jadi $X_1 <= 4.33$
- ketika $X_1=0,$ dari mesin E: 12
 $X_2<=13,$ jadi $X_2<=1.08$

Evaluasi

mengevaluasi fungsi $Z=7X_1+12X_2\,$

•
$$(0,0)$$
: $Z = 0$

•
$$(0.108)$$
: Z= $12(1.08) = 12.96$

•
$$(4.33,0)$$
: $Z = 7(4.33) = 30.31$

•
$$(1.67, 2.67)$$
: = $7(1.6h) + 12(2.67) = 43.73$

Jadi nilai maksimumnya adalah

$$X_1 = 1.67$$
 Lusin sepatu J
$$X_2 = 2.67$$
 Lusin sepatu K

Basis	Z	X_1	X_2	S_1	S_2	S_3	RHS
Z	1	0	0	0.33	0.25	1.75	43.73
X_2	0	0	1	0.11	0	-0.08	2.67
S_2	0	0	0	-0.55	1	0.4	6.65
X_1	0	1	0	-0.037	0	0.29	1.67

Variabel

- $X_1 = \text{jumlah lusin sepatu J yang diproduksi}$
- $X_2 =$ jumlah lusin sepatu K yang diproduksi
- Laba dari sepatu J=Rp.70.000,- per lusin
- Laba dari sepatu K=Rp.120.000,-per lusin
- $_{\text{max}}Z = 70.000x + 120.000y$

Batasan

• $X_1, X_2 >= 0$

Bentuk Canonical

- $Z = 70X_1 + 120X_2$
- $9X_2 + S_1 = 24$
- $5X_2 + S_2 = 20$
- $3X_1 + 12X_2 + S_3 = 13$

Iterasi 1

BV	X_1	X_2	S_1	S_2	S_3	Rasio
S_1	0	9	1	0	0	24
S_2	0	5	0	1	0	20
S_3	3	12	0	0	1	13
Z	70	120	0	0	0	0

Tes rasio:

13/3 = 4.33

24/9 = 2.67

20/5 = 4

13/12 = 1.08

Pivot point yang akan digunakan adalah $\left(X_{2},S3\right) =12$