Differential Geometry 2023 - Assignment

Answer any five out of eight. Each carries 6 marks

- 1. Find the length of the oriented plane curve $f^{-1}(2)$ oriented by $\nabla f/\|\nabla f\|$, where $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}(x_2 1)^2$.
- 2. Let f and g be smooth functions on the open set $U \subset \mathbb{R}^{n+1}$. Show that
 - (a) d(f+g) = df + dg
 - (b) d(fg) = gdf + fdg
 - (c) If $h: \mathbb{R} \to \mathbb{R}$ is smooth then d(hof) = (h'of)df
- 3. Let $\alpha:[a,b]\to\mathbb{R}^2\setminus\{0\}$ be closed piecewise smooth parametrized curve. Show that the winding number of α is the same as the winding number of $f\alpha$ where $f:[a,b]\to\mathbb{R}$ is any piecewise smooth function along α with f(a)=f(b) and f(t)>0 for all $t\in[a,b]$. Conclude that α and $\alpha/\|\alpha\|$ have the same winding number.
- 4. Compute the integral $\int_C (-x_2 dx_1 + x_1 dx_2)$ where C is the ellipse $(x_1^2/a^2) + (x_2^2/b^2) = 1$ oriented by its inward normal.
- 5. Let S be an oriented 2-surface in \mathbb{R}^3 and let $p \in S$. Show that, for each $v, w \in S_p$, $L_p(v) \times L_p(w) = K(p)v \times w$.
- 6. Find the Gaussian curvature of $(x_1^2/a^2) + (x_2^2/b^2) x_3 = 0$.
- 7. Let S be an oriented 2-surface in \mathbb{R}^3 and let $\{v_1, v_2\}$ be an orthonormal basis for S_p consisting of eigenvectors of L_p . Let $k_i = k(v_i)$. Show that the mean curvature at p is given by the formula

$$H(p) = \frac{1}{2\pi} \int_0^{2\pi} k(v(\theta)) d\theta.$$

8. Let $S=f^{-1}(c)$ be an oriented n-surface, oriented by $N=\nabla f/\|\nabla\|.$ Show that $H(p)=-(1/n)div\ N.$

1