Perform Clustering (K Means & DBSCAN) for the crime data and identify the number of clusters formed and draw inferences.

```
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from yellowbrick.cluster import KElbowVisualizer
from \ sklearn.cluster \ import \ KMeans, \ Agglomerative Clustering, \ DBSCAN
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from \ sklearn.metrics \ import \ silhouette\_score, \ calinski\_harabasz\_score, \ silhouette\_samples
import warnings
warnings.filterwarnings('ignore')
crime_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/crime_data.csv')
crime_data
```

	Unnamed: 0	Murder	Assault	UrbanPop	Rape
0	Alabama	13.2	236	58	21.2
1	Alaska	10.0	263	48	44.5
2	Arizona	8.1	294	80	31.0
3	Arkansas	8.8	190	50	19.5
4	California	9.0	276	91	40.6
5	Colorado	7.9	204	78	38.7
6	Connecticut	3.3	110	77	11.1
7	Delaware	5.9	238	72	15.8
8	Florida	15.4	335	80	31.9
9	Georgia	17.4	211	60	25.8
10	Hawaii	5.3	46	83	20.2
11	Idaho	2.6	120	54	14.2
12	Illinois	10.4	249	83	24.0
13	Indiana	7.2	113	65	21.0
14	Iowa	2.2	56	57	11.3
15	Kansas	6.0	115	66	18.0
16	Kentucky	9.7	109	52	16.3
17	Louisiana	15.4	249	66	22.2
18	Maine	2.1	83	51	7.8
19	Maryland	11.3	300	67	27.8
20	Massachusetts	4.4	149	85	16.3
24	Michican	10 1	255	71	25 4

crime_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49

crime_data.describe()

		Murder	Assault	UrbanPop	Rape	
c	count	50.00000	50.000000	50.000000	50.000000	
r	mean	7.78800	170.760000	65.540000	21.232000	
	std	4.35551	83.337661	14.474763	9.366385	
	min	0.80000	45.000000	32.000000	7.300000	
	25%	4.07500	109.000000	54.500000	15.075000	
	50%	7.25000	159.000000	66.000000	20.100000	
	75%	11.25000	249.000000	77.750000	26.175000	
	max 17.40000		337.000000	91.000000	46.000000	
,	14	Tannacca	12.7	1ΩΩ	50 26 0	۵
crime_c	data.h	ead()				

	Unnamed: 0	Murder	Assault	UrbanPop	Rape
0	Alabama	13.2	236	58	21.2
1	Alaska	10.0	263	48	44.5
2	Arizona	8.1	294	80	31.0 15.6

crime_data.isnull().sum()

Unnamed: 0 0
Murder 0
Assault 0
UrbanPop 0
Rape 0
dtype: int64

crime_data.dtypes

Unnamed: 0 object
Murder float64
Assault int64
UrbanPop int64
Rape float64
dtype: object

sns.heatmap(crime_data.isnull(),yticklabels=False,cmap='viridis')

crime_data.columns

```
Index(['Unnamed: 0', 'Murder', 'Assault', 'UrbanPop', 'Rape'], \ dtype='object')\\
```

```
### correlation
plt.figure(figsize=(12, 10))
correlation = crime_data.corr()
sns.heatmap(correlation, annot=True)
plt.show()
```


plt.figure(figsize=(20, 20))

columns = ['Murder', 'Assault', 'UrbanPop', 'Rape']
crime_data.boxplot()
plt.show()

df = crime_data.drop('Unnamed: 0', axis=1)
df.head()

	Murder	Assault	UrbanPop	Rape
0	13.2	236	58	21.2
1	10.0	263	48	44.5
2	8.1	294	80	31.0
3	8.8	190	50	19.5
4	9.0	276	91	40.6

```
X_numerics = df[['Murder', 'Assault', 'UrbanPop', 'Rape']]
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_numerics)
X_scaled = sc.transform(X_numerics)
                                                    X_scaled
      array([[ 1.25517927, 0.79078716, -0.52619514, -0.00345116], [ 0.51301858, 1.11805959, -1.22406668, 2.50942392],
                [ 0.07236067, 1.49381682, 1.00912225, 1.05346626],
[ 0.23470832, 0.23321191, -1.08449238, -0.18679398],
[ 0.28109336, 1.2756352, 1.77678094, 2.08881393],
                [ 0.02597562, 0.40290872, 0.86954794, 1.88390137],
                [-1.04088037, -0.73648418, 0.79976079, -1.09272319],
[-0.43787481, 0.81502956, 0.45082502, -0.58583422],
                [ 1.76541475, 1.99078607, 1.00912225, 1.1505301 ],
[ 2.22926518, 0.48775713, -0.38662083, 0.49265293],
[-0.57702994, -1.51224105, 1.21848371, -0.11129987],
                [-1.20322802, -0.61527217, -0.80534376, -0.75839217],
                [ 0.60578867, 0.94836277, 1.21848371, 0.29852525],
                [-0.13637203, -0.70012057, -0.03768506, -0.0250209],
                [-1.29599811, -1.39102904, -0.5959823, -1.07115345],
[-0.41468229, -0.67587817, 0.03210209, -0.34856705],
                [ 0.44344101, -0.74860538, -0.94491807, -0.53190987],
                [ 1.76541475, 0.94836277, 0.03210209, 0.10439756], [-1.31919063, -1.06375661, -1.01470522, -1.44862395],
                [ 0.81452136, 1.56654403, 0.10188925, 0.70835037],
                [-0.78576263, -0.26375734, 1.35805802, -0.53190987],
[1.00006153, 1.02108998, 0.59039932, 1.49564599],
                [-1.1800355 , -1.19708982, 0.03210209, -0.68289807],
                [ 1.9277624 , 1.06957478, -1.5032153 , -0.44563089],
[ 0.28109336, 0.0877575 , 0.31125071, 0.75148985],
                [-0.41468229, -0.74860538, -0.87513091, -0.521125 ],
                [-0.80895515, -0.83345379, -0.24704653, -0.51034012],
                [ 1.02325405, 0.98472638, 1.0789094 , 2.671197 ],
                [-1.31919063, -1.37890783, -0.66576945, -1.26528114],
                [-0.08998698, -0.14254532, 1.63720664, -0.26228808],
[ 0.83771388, 1.38472601, 0.31125071, 1.17209984],
                [ 0.76813632, 1.00896878, 1.42784517, 0.52500755],
                [ 1.20879423, 2.01502847, -1.43342815, -0.55347961],
                [-1.62069341, -1.52436225, -1.5032153, -1.50254831],
                [-0.11317951, -0.61527217, 0.66018648, 0.01811858],
[-0.27552716, -0.23951493, 0.1716764, -0.13286962],
                [-0.66980002, -0.14254532, 0.10188925, 0.87012344],
                [-0.34510472, -0.78496898, 0.45082502, -0.68289807],
[-1.01768785, 0.03927269, 1.49763233, -1.39469959],
                [ 1.53348953, 1.3119988 , -1.22406668, 0.13675217],
                [-0.92491776, -1.027393 , -1.43342815, -0.90938037], [ 1.25517927, 0.20896951, -0.45640799, 0.61128652],
                [ 1.13921666, 0.36654512, 1.00912225, 0.46029832], [-1.06407289, -0.61527217, 1.00912225, 0.17989166],
                [-1.29599811, -1.48799864, -2.34066115, -1.08193832],
                [ 0.16513075, -0.17890893, -0.17725937, -0.05737552],
                [-0.87853272, -0.31224214, 0.52061217, 0.53579242],
                [-0.48425985, -1.08799901, -1.85215107, -1.28685088],
                \hbox{\tt [-1.20322802, -1.42739264, 0.03210209, -1.1250778],}\\
                [-0.22914211, -0.11830292, -0.38662083, -0.60740397]])
std_df = pd.DataFrame(X_scaled)
std_df
```

```
0
                           1
                                     2
                                               3
          1.255179
                   0.790787 -0.526195 -0.003451
      1
          0.513019
                    1.118060 -1.224067
                                        2.509424
      2
          0.072361
                    1.493817
                             1.009122
                                        1.053466
      3
          0.234708
                    0.233212 -1.084492 -0.186794
                    1.275635
      4
          0.281093
                             1.776781
                                        2.088814
                    0.402909
      5
          0.025976
                              0.869548
                                        1.883901
         -1.040880 -0.736484
                              0.799761 -1.092723
      6
      7
         -0.437875
                    0.815030
                              0.450825 -0.585834
                    1.990786
                              1.009122
                                        1.150530
      8
          1.765415
      9
          2.229265
                    0.487757 -0.386621
                                        0.492653
      10
        -0.577030 -1.512241
                              1.218484 -0.111300
      11 -1.203228 -0.615272 -0.805344 -0.758392
      12
         0.605789
                    0.948363
                              1.218484
                                        0.298525
      13 -0.136372 -0.700121 -0.037685 -0.025021
        -1.295998 -1.391029
                             -0.595982 -1.071153
      14
      15 -0.414682 -0.675878
                              0.032102 -0.348567
      16
          0.443441 -0.748605
                             -0.944918 -0.531910
      17
         1.765415 0.948363
                              0.032102 0.104398
         -1.319191 -1.063757
                             -1.014705 -1.448624
      19
          0.814521
                   1.566544
                              0.101889
                                        0.708350
         -0.785763 -0.263757
                              1.358058 -0.531910
     21 1.000062 1.021090
                              0.590399
                                       1.495646
X = crime_data.drop('Unnamed: 0', axis=1)
```

kmeans = KMeans(n_clusters=3, random_state=42) kmeans.fit(X)

KMeans(n_clusters=3, random_state=42)

KMeans KMeans(n_clusters=3, random_state=42)

from yellowbrick.cluster import KElbowVisualizer model = KMeans(random_state=1) visualizer = KElbowVisualizer(model, k=(2,10)) visualizer.fit(X_numerics) visualizer.show() plt.show()

```
Distortion Score Elbow for KMeans Clustering

model = KMeans(random_state=1)
visualizer = KElbowVisualizer(model, k=(2,10), metric='silhouette')
visualizer.fit(X_numerics)
visualizer.show()
plt.show()
```

