

Aula 14

Ajuste de Curva pelo Método dos Mínimos Quadrados Caso discreto, contínuo e não linear

Agenda:

- 1. Considerações iniciais;
- 2. Caso discreto;
- 3. Exemplo;
- 4. Caso contínuo;
- 5. Exemplo;
- 6. Caso não linear;
- 7. Exemplo;
- 8. Exercícios.

1. Considerações iniciais

- Vimos que uma forma de se trabalhar com uma função definida por uma tabela de valores é a interpolação polinomial;
- Porém, quando se quer trabalhar fora do intervalo tabelado (extrapolação), tem-se um problema de aproximação;
- Além disso, a interpolação não é aconselhável porque os valores tabelados são resultados de algum experimento ou pesquisa, que normalmente contém erros inerentes e imprevisíveis.

- Assim, é necessário ajustar a essas funções tabeladas uma função que seja uma boa aproximação para os valores, e que permita a extrapolação com alguma margem de segurança;
- Vamos assim considerar uma aproximação pelos mínimos quadrados em sua forma discreta inicialmente;

2. Caso discreto

• Dados (n+1) pares de valores $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$ de uma função y=f(x);

Cálculo Numérico Computacional

Desejamos determinar os coeficientes $a_0, a_1, ..., a_n$ do polinômio

• Desejamos determinar os coeficientes $a_0, a_1, ..., a_n$ do polinômio de grau m (m < n), tal que:

$$p_m = a_m \times x^m + a_{m-1} \times x^{m-1} + \dots + a_1 \times x + a_0$$

• Esse polinômio deve minimizar a função $S(a_0, a_1, ..., a_n)$, onde:

$$S(a_0, a_1, ..., a_n) = \sum_{j=0}^{n} [f(x_j) - a_0 - a_1 \times x_j - \cdots - a_m \times x_j^m]^2$$

 Por esse motivo, essa minimização é conhecida pelo Método dos Mínimos Quadrados ou Quadrados Mínimos.

• Podemos mostrar que o mínimo de *S* é obtido através da solução do sistema linear:

$$\begin{cases} (n+1) \times a_0 + a_1 \times \sum_{j=0}^{n} x_j + a_2 \times \sum_{j=0}^{n} x_j^2 + \dots + a_m \times \sum_{j=0}^{n} x_j^m = \sum_{j=0}^{n} f(x_j) \\ a_0 \times \sum_{j=0}^{n} x_j + a_1 \times \sum_{j=0}^{n} x_j^2 + a_2 \times \sum_{j=0}^{n} x_j^3 + \dots + a_m \times \sum_{j=0}^{n} x_j^{m+1} = \sum_{j=0}^{n} x_j \times f(x_j) \\ \vdots \\ a_0 \times \sum_{j=0}^{n} x_j^m + a_1 \times \sum_{j=0}^{n} x_j^{m+1} + a_2 \times \sum_{j=0}^{n} x_j^{m+2} + \dots + a_m \times \sum_{j=0}^{n} x_j^{2m} = \sum_{j=0}^{n} x_j^m \times f(x_j) \end{cases}$$

- Ao conjunto de equações lineares anteriormente mostradas, damos o nome de equações normais.
- Graficamente, temos:
- Qual reta, passando pela origem, melhor se ajusta ao diagrama ao lado?
- Minimização.

3. Exemplo

Obter, pelo Método dos Mínimos Quadrados, a melhor aproximação para os elementos dados por meio de um polinômio do primeiro grau.

X	1	2	3	4	5	6	7
f(x)	4	3	6	7	11	11	13

Solução:

Neste caso, temos n+1=7. Desejamos determinar $p_1(x)=a_0+a_1\times x$. Assim, devemos resolver o sistema linear:

$$\begin{cases} (n+1) \times a_0 + a_1 \times \sum_{j=0}^{6} x_j = \sum_{j=0}^{6} f(x_j) \\ a_0 \times \sum_{j=0}^{6} x_j + a_1 \times \sum_{j=0}^{6} x_j^2 = \sum_{j=0}^{6} x_j \times f(x_j) \end{cases}$$

$$\begin{cases} 7 \times a_0 + 28 \times a_1 = 55 \\ 28 \times a_0 + 140 \times a_1 = 268 \end{cases}$$

Resolvendo:

$$a_0 = 1, \qquad a_1 = 12/7$$

Dessa forma:

$$p_1(x) = 1 + \frac{12}{7} \times x$$

Outro exemplo:

- 2. Ajuste os dados abaixo pelo método dos quadrados mínimos utilizando:
 - a) uma reta
 - b) uma parábola do tipo $ax^2 + bx + c$.

Trace as duas curvas no gráfico de dispersão dos dados. Como você compararia as duas curvas com relação aos dados?

x	1	2	3	4	5	6	7	8
y	0.5	0.6	0.9	0.8	1.2	1.5	1.7	2.0

Solução:

Neste caso, temos n + 1 = 8. Desejamos determinar $p_1(x) = a_0 + a_1 \times x$. Assim, devemos resolver o sistema linear:

$$\begin{cases} (n+1) \times a_0 + a_1 \times \sum_{j=0}^{7} x_j = \sum_{j=0}^{7} f(x_j) \\ a_0 \times \sum_{j=0}^{7} x_j + a_1 \times \sum_{j=0}^{7} x_j^2 = \sum_{j=0}^{7} x_j \times f(x_j) \end{cases}$$

$$\begin{cases} 8 \times a_0 + 36 \times a_1 = 9.2 \\ 36 \times a_0 + 204 \times a_1 = 50.5 \end{cases}$$

Resolvendo:

$$a_0 = 0.175, \qquad a_1 = 0.21667$$

Dessa forma:

$$p_1(x) = 0.175 + 0.21667 \times x$$

Agora, desejamos determinar $p_2(x) = a_0 + a_1 \times x + a_2 \times x^2$. Assim, devemos resolver o sistema linear:

$$\begin{cases} (n+1) \times a_0 + a_1 \times \sum_{j=0}^{7} x_j + a_2 \times \sum_{j=0}^{7} x_j^2 = \sum_{j=0}^{7} f(x_j) \\ a_0 \times \sum_{j=0}^{7} x_j + a_1 \times \sum_{j=0}^{7} x_j^2 + a_2 \times \sum_{j=0}^{7} x_j^3 = \sum_{j=0}^{7} x_j \times f(x_j) \\ a_0 \times \sum_{j=0}^{7} x_j^2 + a_1 \times \sum_{j=0}^{7} x_j^3 + a_2 \times \sum_{j=0}^{7} x_j^4 = \sum_{j=0}^{7} x_j^2 \times f(x_j) \end{cases}$$

$$\begin{cases} 8 \times a_0 + 36 \times a_1 + 204 \times a_2 = 9.2 \\ 36 \times a_0 + 204 \times a_1 + 1296 \times a_2 = 50.5 \\ 204 \times a_0 + 1296 \times a_1 + 8772 \times a_2 = 319.1 \end{cases}$$

Resolvendo:

$$a_0 = 0.40714$$
, $a_1 = 0.077381$, $a_2 = 0.015476$

Dessa forma:

$$p_2(x) = 0.40714 + 0.077381 \times x + 0.015476 \times x^2$$

A comparação pode ser feita através do cálculo de $\sum_{k=1}^{3} d_k^2$: para a reta,

$$\sum_{k=1}^{8} d_k^2 = 0.08833 \text{ e, para a parábola, } \sum_{k=1}^{8} d_k^2 = 0.04809.$$

Como o menor valor para a soma dos quadrados dos desvios foi para a parábola, o melhor ajuste para os dados, entre as duas possibilidades, é a parábola.

4. Caso contínuo

- Dada uma função f(x) contínua em [a,b] e escolhidas as funções $g_1(x), g_2(x), ..., g_n(x)$ todas contínuas em [a,b]. Desejamos determinar n constantes $\alpha_1, \alpha_2, ..., \alpha_n$ de modo que a função $\varphi(x) = \alpha_1 \times g_1(x) + \alpha_2 \times g_2(x) + \cdots + \alpha_n \times g_n(x)$ se aproxime ao máximo de f(x) no intervalo [a,b];
- O método dos Mínimos Quadrados determina o mínimo da função

$$F(\alpha_1, \alpha_2, \dots, \alpha_n) = \int_{a}^{b} [f(x) - \varphi(x)]^2 \times dx$$
Prof Lucas Tanovello

• Para o caso particular de duas funções $g_1(x)$ e $g_2(x)$, o ponto mínimo de $F(\alpha_1, \alpha_2)$ é obtido como a solução única do sistema linear:

$$\begin{cases}
\left[\int_{a}^{b} g_{1}^{2}(x) \times dx\right] \times \alpha_{1} + \left[\int_{a}^{b} g_{1}(x) \times g_{2}(x) \times dx\right] \times \alpha_{2} = \int_{a}^{b} f(x) \times g_{1}(x) \times dx \\
\left[\int_{a}^{b} g_{1}(x) \times g_{2}(x) \times dx\right] \times \alpha_{1} + \left[\int_{a}^{b} g_{2}^{2}(x) \times dx\right] \times \alpha_{2} = \int_{a}^{b} f(x) \times g_{2}(x) \times dx
\end{cases}$$

5. Exemplo

- Usando o método dos Mínimos Quadrados, aproximar $f(x) = 4 \times x^3$ por um polinômio de 1º grau, uma reta, no intervalo [a,b] = [0,1].
- SOLUÇÃO: Neste caso, $f(x) = 4 \times x^3$, a = 0, b = 1;
- Desejamos determinar $\varphi(x) = \alpha_1 \times g_1(x) + \alpha_2 \times g_2(x)$, onde $g_1(x) = 1$ e $g_2(x) = x$.

Cálculo das integrais:

$$\int_{0}^{1} 1^{2} \times dx = 1, \qquad \int_{0}^{1} 1 \times x \times dx = \frac{1}{2}, \qquad \int_{0}^{1} 4 \times x^{3} \times 1 \times dx = 1$$

$$\int_{0}^{1} x^{2} \times dx = \frac{1}{3}, \qquad \int_{0}^{1} 4 \times x^{3} \times x \times dx = \frac{4}{5}$$

Temos, assim, o seguinte sistema linear:

$$\begin{cases} 1 \times \alpha_1 + \frac{1}{2} \times \alpha_2 = 1 \\ \frac{1}{2} \times \alpha_1 + \frac{1}{3} \times \alpha_2 = \frac{4}{5} \end{cases}$$

Resolvendo:

$$\alpha_1=-\frac{4}{5}, \qquad \alpha_2=\frac{18}{5}$$

Portanto:

$$\varphi(x) = -\frac{4}{5} + \frac{18}{5} \times x$$

6. Caso não linear

- Em alguns casos, as funções escolhidas poderão ser não lineares nos parâmetros;
- Por exemplo, se ao diagrama de dispersão de uma determinada função se ajustar uma exponencial do tipo $f(x) \approx \varphi(x) = \alpha_1 \times e^{-\alpha_2 \times x}$, sendo α_1 e α_2 positivos;
- Para a aplicação do método dos Mínimos Quadrados, é necessário uma linearização através de uma conveniente mudança de variáveis.

Por exemplo:

$$y \approx \alpha_1 \times e^{-\alpha_2 \times x} \rightarrow z = ln(y) \approx ln(\alpha_1) - \alpha_2 \times x$$

- Se $a_1 = ln(\alpha_1)$ e $a_2 = -\alpha_2$, segue que $ln(y) \approx a_1 a_2 \times x = \varphi(x)$, que é um problema linear nos parâmetros a_1 e a_2 ;
- Os parâmetros obtidos não são ótimos dentro do critério dos quadrados mínimos, porque estamos ajustando o problema linearizado por quadrados mínimos e não o problema original.

7. Exemplo

• Suponha a situação onde desejamos determinar a função exponencial da forma $S = q \times t^p$, que melhor se ajusta aos dados tabelados por:

t	2.2	2.7	3.5	4.1
S	65	60	53	50

Diagrama de dispersão

• Como $S = q \times t^p$, então:

$$log(S) = log(q \times t^p)$$

$$log(s) = log(q) + p \times log(t)$$

Vamos considerar agora as mudanças de variável:

$$y = log(S)$$
, $a_0 = log(q)$, $a_1 = p$, $x = log(t)$

• Temos assim o polinômio de 1º grau $y = a_0 + a_1 \times x$, o qual pode ser determinado pelo método dos Mínimos Quadrados.

Devemos utilizar os dados:

x = log(t)	0.3424	0.4314	0.5441	0.6128
y = log(S)	1.8129	1.7782	1.7243	1.6990

• E resolver o seguinte sistema linear:

$$\begin{cases} (n+1) \times a_0 + a_1 \times \sum_{j=0}^{3} x_j = \sum_{j=0}^{3} f(x_j) \\ a_0 \times \sum_{j=0}^{3} x_j + a_1 \times \sum_{j=0}^{3} x_j^2 = \sum_{j=0}^{3} x_j \times f(x_j) \end{cases}$$

$$\begin{cases} 4 \times a_0 + 1.9307 \times a_1 = 7.0144 \\ 1.9307 \times a_0 + 0.9748 \times a_1 = 3.3671 \end{cases}$$

Resolvendo:

$$a_0 = 1.963, \qquad a_1 = -0.434$$

Dessa forma:

$$10^{a_0} = q \rightarrow q = 91,83$$

 $p = -0.434$

Assim: $S = 91.83 \times t^{-0.434}$

OUTRAS FUNÇÕES:

(a) $S = A \times e^{c \times t}$, sendo A e c constantes a serem determinadas.

t	t_0	t_1	•••	t_n
S	S_0	S_1	•••	S_n

Como $S = A \times e^{c \times t}$:

$$ln(S) = ln(A \times e^{c \times t})$$

$$ln(S) = ln(A \times e^{c \times t})$$

$$ln(S) = ln(A) + c \times t$$

Assim:

$$y = ln(S),$$

$$y = ln(S), \qquad a_0 = ln(A),$$

$$a_1=c, \qquad x=t$$

$$x = t$$

Construímos uma nova tabela:

x = t	t_0	t_1	•••	t_n
y = ln(S)	$ln(S_0)$	$ln(S_1)$	•••	$ln(S_n)$

(b) $S = \frac{1}{p+q \times t}$, sendo $p \in q$ constantes a serem determinadas.

t	t_0	t_1	•••	t_n
S	S_0	S_1	•••	S_n

Mudança de variável: $y = \frac{1}{s} = p + q \times t$

Assim: $a_0 = p$, $a_1 = q$, x = t. Nova tabela:

•	x = t	t_0	t_1	•••	t_n
•	y = 1/S	$1/S_0$	1/51	•••	$1/S_n$

EXERCÍCIOS

3. Dada a tabela abaixo, faça o gráfico de dispersão dos dados e ajuste uma curva da melhor maneira possível:

x	0.5	0.75	1	1.5	2.0	2.5	3.0	
у	-2.8	-0.6	1	3.2	4.8	6.0	7.0	

3. Curva de ajuste escolhida: $\varphi(x) = \alpha_1 \ln(x) + \alpha_2$. Obteve-se: $\varphi(x) = 5.47411 \ln(x) + 0.98935$.

A tabela abaixo mostra as alturas e pesos de uma amostra de nove homens entre as idades de 25 a 29 anos, extraída ao acaso entre funcionários de uma grande indústria:

Altura	183	173	168	188	158	163	193	163	178	cm
Peso	79	69	70	81	61	63	79	71	73	kg

- a) Faça o diagrama de dispersão dos dados e observe que parece existir uma relação linear entre a altura e o peso.
- b) Ajuste uma reta que descreva o comportamento do peso em função da altura, isto é, peso = f(altura).
- c) Estime o peso de um funcionário com 175 cm de altura; e estime a altura de um funcionário com 80 kg.
- d) Ajuste agora a reta que descreve o comportamento da altura em função do peso, isto é, altura = g(peso).
- e) Resolva o item (c) com essa nova função e compare os resultados obtidos. Tente encontrar uma explicação.
- f) Coloque num gráfico as equações (b) e (d) e compare-as.

- 4. b) 52.7570x 20.0780, trabalhando com as alturas em metros.
- c) peso de um funcionário com 1.75 m de altura ~ 72.2467 kg; altura de um funcionário com 80 kg ~ 1.897 m.
- d) 0.0159x + 0.6029.
- e) peso de um funcionário com 1.75 m de altura ~ 72.14 kg; altura de um funcionário com 80 kg ~ 1.871 m.

6. Ajuste os dados:

x	-8	-6	-4	-2	0	2	4	
у	30	10	9	6	5	4	4	

- a) usando a aproximação y ~ 1/(a₀ + a₁x). Faça o gráfico para 1/y e verifique que esta aproximação é viável;
- b) idem para $y = ab^x$;
- c) compare os resultados (a) e (b).

6. a)
$$y = \frac{1}{0.1958 + 0.0185x}$$

b)
$$y \sim 5.5199(0.8597)^x$$
.

Próxima aula:

Aula 15

- Diferenciação numérica;
- Integração numérica: regra dos trapézios.

Prof. Lucas Zanovello lucas.tahara@unesp.br