Министерство образования и науки Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

И.И. Кручинин (к.т.н. доцент)

РАЗРАБОТКА НЕЙРОННЫХ СЕТЕЙ С ПОМОЩЬЮ ЯЗЫКА R Методические указания по выполнению домашней работы по курсу «Введение в машинное обучение» Приложение.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ. РАЗРАБОТКА НЕЙРОННЫХ СЕТЕЙ С ПОМОЩЬЮ ЯЗЫКА R

Биологический нейрон:

В качестве альтернативной возможности классификации исходных множеств в рамках данного домашнего задания предлагается использовать функцию языка статистического моделирования R: MLP (многослойный персептрон). Данный алгоритм также основан на постулатах теории нейронных сетей. Используется обучение с учителем прямого и обратного распространения.

Параметр функции MLP – learnFunc (алгоритм обучения):

- 1) Std Backpropagation,
- 2) BackpropBatch,
- 3) BackpropChunk,
- 4) BackpropMomentum,
- 5) BackpropWeightDecay,
- 6) Rprop,
- 7) Quickprop,
- 8) SCG (scaled conjugate gradient)

Параметры нейронных сетей можно оптимизировать средствами пакета **caret**

Функция train() из пакета caret перекрестной проверкой оценивает оптимальные значения числа скрытых нейронов size и параметр

"ослабления весов" decay, который осуществляет регуляризацию точности подстройки коэффициентов (при decay = 0 стремление к точности может перерасти в эффект переусложнения модели).

train.aba

Функция avNNet() осуществляет обучение заданного множества моделей нейронной сети на одном и том же наборе данных. Для моделей классификации функция avNNet() оценивает среднее значение вероятностей классов на основе частных прогнозов каждой из моделей созданного ансамбля и далее производит заключительное предсказание класса.

Пример программного кода.

Нейронная сеть NNET

```
#data(iris)
library(kohonen)
library(RSNNS)
library(class)
library(gmodels)
library(modeest)
library(nnet)
library(e1071)
```

```
ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep =
"""))
```

```
#print("Исходные данные")
#print(ramFo)
alg <- matrix(0:0, nrow=150, ncol=4)
for (i in 1:50) {
 for (j in 1:4)
  alg[i,j] = sample(5:50,1)
}
}
for (i in 51:100) {
 for (j in 1:4)
  alg[i,j] = sample(51:95,1)
}
}
for (i in 101:150) {
 for (j in 1:4) {
  alg[i,j] = sample(1:4,1)
}
}
#alg
write.table(alg, file="GMB1.txt")
ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep =
#C1 <- c("Выгодная")
ramFoT = data.frame(read.table("org.txt", header = TRUE, sep = ""))
ramFo2 <- cbind(ramFo2, ramFoT$V1)
#ramFo2
ir \leftarrow rbind(ramFo2[,,1], ramFo2[,,2], ramFo2[,,3])
targets <- class.ind( c(rep("V1", 50), rep("V2", 50), rep("V3", 50)) )
```

```
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
      ir1 \leftarrow nnet(ir[samp_n], targets[samp_n], size = 2, rang = 0.1,
      decay = 5e-4, maxit = 200)
      test.cl <- function(true, pred) {
      true <- max.col(true)</pre>
      cres <- max.col(pred)</pre>
      table(true, cres)
      test.cl(targets[-samp,], predict(ir1, ir[-samp,]))
      # or
      ird <- data.frame(rbind(ramFo2[,,1], ramFo2[,,2], ramFo2[,,3]),
      topics = factor(c(rep("V1",50), rep("V2", 50), rep("V3", 50)))
      ir.nn2 < -nnet(topics \sim ... data = ird. subset = samp. size = 2. rang = 0.1.
      decay = 5e-4, maxit = 200)
      table(ird$topics[-samp], predict(ir.nn2, ird[-samp,], type = "class"))
      plot(ird)
      print(ir.nn2)
Примеры нейронных сетей –многослойный персептрон
       #data(ramFo2)
       library(kohonen)
       library(RSNNS)
       ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep =
       #print("Исходные данные")
       #print(ramFo)
       alg <- matrix(0:0, nrow=150, ncol=4)
       for (i in 1:50) {
        for (j in 1:4)
          alg[i,j] = sample(5:50,1)
       }
       }
       for (i in 51:100) {
```

""))

```
for (j in 1:4) {
         alg[i,j] = sample(51:95,1)
       }
      for (i in 101:150) {
        for (j in 1:4)
         alg[i,j] = sample(1:4,1)
       }
      #alg
      write.table(alg, file="GMB1.txt")
      ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep =
""))
      #C1 <- c("Выгодная")
      ramFoT = data.frame(read.table("org.txt", header = TRUE, sep =
""))
      ramFo2 <- cbind(ramFo2, ramFoT$V1)
      #ramFo2
      #shuffle the vector
      ramFo2
                                                                      <-
ramFo2[sample(1:nrow(ramFo2),length(1:nrow(ramFo2))),1:ncol(ramFo2)]
      ramFo2Values <- ramFo2[,1:4]
      ramFo2Targets <- decodeClassLabels(ramFo2[,5])
      #ramFo2Targets <- decodeClassLabels(ramFo2[,5], valTrue=0.9,
valFalse=0.1)
      ramFo2 <- splitForTrainingAndTest(ramFo2Values, ramFo2Targets,
ratio=0.15)
      ramFo2 <- normTrainingAndTestSet(ramFo2)
```

```
model <- mlp(ramFo2$inputsTrain, ramFo2$targetsTrain, size=5,
learnFuncParams=c(0.1), learnFunc = "Std Backpropagation",
       maxit=50,
                                           inputsTest=ramFo2\sinputsTest,
targetsTest=ramFo2$targetsTest)
       summary(model)
       model
       weightMatrix(model)
       extractNetInfo(model)
       par(mfrow=c(2,2))
       plotIterativeError(model)
       predictions <- predict(model,ramFo2$inputsTest)</pre>
       plotRegressionError(predictions[,2], ramFo2$targetsTest[,2])
       confusionMatrix(ramFo2$targetsTrain,fitted.values(model))
       confusionMatrix(ramFo2$targetsTest,predictions)
       plotROC(fitted.values(model)[,2], ramFo2$targetsTrain[,2])
       plotROC(predictions[,2], ramFo2$targetsTest[,2])
       j=3
       for (i in 1:20000000) {
        j=j+1
       }
       #confusion matrix with 402040-method
       confusionMatrix(ramFo2$targetsTrain,
encodeClassLabels(fitted.values(model),
```

method="402040", l=0.4, h=0.6))

```
Структура NeuralNet
     #data(ramFo2)
     library(kohonen)
     library(RSNNS)
     library(neuralnet)
     ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep =
""))
     #print("Исходные данные")
     #print(ramFo)
     alg <- matrix(0:0, nrow=150, ncol=4)
     for (i in 1:50) {
      for (j in 1:4) {
        alg[i,j] = sample(5:50,1)
     }
     }
     for (i in 51:100) {
      for (i in 1:4) {
        alg[i,j] = sample(51:95,1)
     }
     }
     for (i in 101:150) {
      for (i in 1:4) {
        alg[i,j] = sample(1:4,1)
     }
     }
     #alg
     write.table(alg, file="GMB1.txt")
     ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep =
```

""))

```
#C1 <- с("Выгодная")
     ramFoT = data.frame(read.table("org.txt", header = TRUE, sep =
""))
     ramFo2 <- cbind(ramFo2, ramFoT$V1)
     #ramFo2
     ramFo3 <- cbind(ramFo2, ramFoT$V1)
     #write.table(ramFo2, file="geni.txt")
     #k = data.frame(read.table("geni.txt", header = TRUE, sep = ""))
     gens <- matrix(0:0, nrow=150, ncol=3)
     for (i in 1:50) {
        gens[i,1] = 1
        gens[i,2] = 0
        gens[i,3] = 0
     for (i in 51:100) {
        gens[i,1] = 0
        gens[i,2] = 1
        gens[i,3] = 0
     }
     for (i in 101:150) {
        gens[i,1] = 0
        gens[i,2] = 0
        gens[i,3] = 1
     }
     write.table(gens, file="geni.txt")
     ramFoR = data.frame(read.table("geni.txt", header = TRUE, sep =
""))
     ramFo2 <- cbind(ramFo2, ramFoR$V1,ramFoR$V2,ramFoR$V3)
     ramFo2
```

```
nn=neuralnet(ramFoR$V1+ramFoR$V2+ramFoR$V3~V1+V2+V3+
V4, data=ramFo2, hidden=2, err.fct="ce", algorithm = "backprop",
linear.output = FALSE
     ?neuralnet
     plot(nn)
     j=3
     for (i in 1:5000000) {
      j=j+1
     }
     print(nn)
     nn$net.result
     nn$weights
     nn$result.matrix
     par(mfrow=c(2,2))
     gwplot(nn,selected.covariate ="V1", min=-2.5,max=6)
     gwplot(nn,selected.covariate ="V2", min=-2.5,max=6)
     gwplot(nn,selected.covariate ="V3", min=-2.5,max=6)
     gwplot(nn,selected.covariate ="V4", min=-2.5,max=6)
     #compute(nn, (1:10)^2)$net.result
```

ЗАДАЧИ И ПОРЯДОК ВЫПОЛНЕНИЯ ДОМАШНЕЙ РАБОТЫ

Разработать нейронную модель предметной области, указанной в варианте задания – проанализировать полученные знания.

Реализовать разработанную нейронную модель на высокоуровневом языке программирования - R. Созданная нейронная сеть должна предоставить ответы согласно выбранному варианту задания.

ВАРИАНТЫ ЗАДАНИЙ ДЛЯ ДОМАШНЕГО ПРОЕКТИРОВАНИЯ:

Задания могут выполняться группой студентов (численностью до 2-ух человек)

1. Необходимо на языке R реализовать нейронную сеть для предсказания размера пенсии военнослужащего в зависимости средней зарплаты в звании капитана, майора и подполковника и мест прохождения службы (Дальний Восток, Таджикистан, Красноярский край). Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать Std_Backpropagation). Оптимизировать параметры нейронных сетей с помощью пакета сагет и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.

- 2. Необходимо на языке R реализовать нейронную сеть для предсказания размера квартплаты в регионах: Хабаровский край, Калининградская область, Московская область в зависимости от изменений цен на нефть в течение 2015- 2017 годов. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать BackpropBatch). Оптимизировать параметры нейронных сетей с помощью пакета сагеt и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 3. Разработать нейросетевой классификатор для распознавания видов водостойких растений (гидатофиты, гидрофиты, гигрофиты). Разработать набор признаков характеризующих каждый из трех заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать BackpropChunk). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 4. Разработать нейросетевой классификатор для распознавания видов засухоустойчивых растений (мезофиты, ксерофиты, склерофиты). Разработать набор признаков характеризующих каждый из трех заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать BackpropMomentum). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 5. Разработать нейросетевой классификатор для распознавания видов растений Ксерофитов (суккуленты и склерофиты). Разработать набор признаков характеризующих каждый из двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать BackpropWeightDecay). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 6. Разработать нейросетевой классификатор для распознавания видов растений Склерофитов (эуксерофиты и стипаксерофиты). Разработать набор признаков характеризующих каждый из двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать Rprop). Оптимизировать параметры нейронных сетей с

помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.

- 7. Разработать нейросетевой классификатор для распознавания видов способу растений регулирования воды ПО внутри организма (пойкилогидридные и гомогидридные). Разработать набор признаков характеризующих каждый ИЗ двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать Quickprop). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 8. Разработать нейросетевой классификатор для распознавания видов растений по потребности во влажной среде (эвригигробионты и стеногигробионты). Разработать набор признаков характеризующих каждый из двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать SCG). Оптимизировать параметры нейронных сетей с помощью пакета сагеt и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 9. Разработать нейросетевой классификатор для распознавания видов растений по потребности поглощать свет (гелиофиты и сциофиты). Разработать набор признаков характеризующих каждый из двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать Std_Backpropagation). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 10. Разработать нейросетевой классификатор для распознавания видов теневыносливых растений (лиственница, ясень и липа). Разработать набор признаков характеризующих каждый из трех заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать ВаскргорВаtch). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 11. Разработать нейросетевой классификатор для распознавания видов жаростойких растений (мегатермофиты, мезотермофиты). Разработать набор признаков характеризующих каждый из двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc

(алгоритм обучения) выбрать BackpropChunk). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.

- 12. Разработать нейросетевой классификатор для распознавания видов растений (микротермофиты, гекистотермофиты). холодостойких Разработать набор признаков характеризующих каждый из двух заданных Использовать функции NeuralNet и MLP (параметр классов растений. learnFunc (алгоритм обучения) выбрать BackpropMomentum). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 13. Разработать нейросетевой классификатор для распознавания видов растений по отношению к механическому составу почвы(литофиты, хасмофиты). Разработать набор признаков характеризующих каждый из двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать BackpropWeightDecay). Оптимизировать параметры нейронных сетей с помощью пакета сагеt и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 14. Разработать нейросетевой классификатор для распознавания видов растений по отношению к механическому составу песчаных почв (пелитофиты, псаммофиты). Разработать набор признаков характеризующих каждый ИЗ двух заданных классов Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать Rprop). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.
- 15. Разработать нейросетевой классификатор для распознавания видов растений по отношению к содержанию питательных веществ в почве (эутрофные, олиготрофные). Разработать набор признаков характеризующих каждый ИЗ двух заданных классов растений. Использовать функции NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать Quickprop). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.

16. Необходимо на языке R реализовать нейронную сеть для предсказания инфляции (виды инфляции ползучая, уровня галопирующая, выбранных гиперинфляция) на основании признаков: индекс потребительских цен, индекс цен производителей, дефлятор ВВП, паритет покупательной способности, индекс Пааше. Использовать NeuralNet и MLP (параметр learnFunc (алгоритм обучения) выбрать SCG). Оптимизировать параметры нейронных сетей с помощью пакета caret и сравнит полученные результаты. Полный список с исходными данными взять из приложения к домашнему заданию.

ФОРМА ОТЧЕТА ПО ДОМАШНЕЙ РАБОТЕ

На выполнение домашней работы отводится 8 академических часов: 7 часов на выполнение и сдачу домашней работы и 1 час на подготовку отчета.

Номер варианта студенту выдается преподавателем.

Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ах)): титульный лист, формулировка задания (вариант), описание формы представления знаний, этапы обработки данных системой, результаты выполнения работы выводы.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Jesse, Russell Искусственная нейронная сеть / Jesse Russell. М.: VSD, 2012. 0 с.
- 2. Jesse, Russell Нейрон / Jesse Russell. M.: VSD, 2012. 0 с.
- 3. Барский, А. Б. Логические нейронные сети / А.Б. Барский. М.: Интернетуниверситет информационных технологий, Бином. Лаборатория знаний, 2007. 352 с.
- 4. Барский, А.Б. Логические нейронные сети / А.Б. Барский. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2013. 0 с.
- 5. Бунаков, В. Е. Нейронная физика. Учебное пособие: моногр. / В.Е. Бунаков, Л.В. Краснов. М.: Издательство Санкт-Петербургского университета, 2015. 200 с.
- 6. Головинский, П. А. Математические модели. Теоретическая физика и анализ сложных систем. Книга 2. От нелинейных колебаний до искусственных нейронов и сложных систем / П.А. Головинский. М.: Либроком, 2012. 234 с.
- 7. Денис, Хусаинов Механизмы ритмической активности нейронов виноградной улитки / Хусаинов Денис , Иван Коренюк und Татьяна Гамма. М.: LAP Lambert Academic Publishing, 2012. 108 с.
- 8. Как устроено тело человека. Выпуск 25. Нейроны. М.: DeAgostini, 2007.- 30 с.
- 9. Катехоламинергические нейроны. М.: Наука, 1979. 296 с.
- 10. Круглов, В.В. Искусственные нейронные сети. Теория и практика: моногр. / В.В. Круглов, В.В. Борисов. М.: Горячая линия Телеком; Издание 2-е, стер., 2002. 382 с.
- 11. Мандельштам, Ю. Е. Нейрон и мышца насекомого: моногр. / Ю.Е. Мандельштам. М.: Наука, 1983. 168 с.
- 12. Нейронные сети. Statistica Neural Networks. Методология и технологии современного анализа данных. М.: Горячая линия Телеком, 2008. 392 с.
- 13. Парвин, Манучер Из серого. Концерт для нейронов и синапсов / Манучер Парвин. М.: Страта, 2015. 408 с.
- 14. Позин, Н. В. Моделирование нейронных структур / Н.В. Позин. М.: Наука, 1970. 264 с.
- 15. Рассел, Джесси Вербализация нейронных сетей / Джесси Рассел. М.: VSD, 2013. 0 с.
- 16. Рассел, Джесси Искусственный нейрон / Джесси Рассел. М.: VSD, 2013.

- 0 c.
- 17. Татузов, А. Л. Нейронные сети в задачах радиолокации / А.Л. Татузов. М.: Радиотехника, 2009. 432 с.
- 18. Толкачев, С. Нейронное программирование диалоговых систем / С. Толкачев. Москва: РГГУ, 2016. 192 с.
- 19. Шибзухов, 3. М. Конструктивные методы обучения сигма-пи нейронных сетей / 3.М. Шибзухов. М.: Наука, 2006. 160 с.
- 20. Юревич, Артур Нейронные сети в экономике / Артур Юревич. М.: LAP Lambert Academic Publishing, 2014. 80 с.

Электронные ресурсы:

- 1) http://alexanderdyakonov.narod.ru/upR.pdf
- 2) http://cran.gis-lab.info/web/packages/nnet/nnet.pdf
- 3) http://www.faqs.org/faqs/ai-faq/neural-nets/
- 4) http://r-analytics.blogspot.com/