Initial FrED Statistical Exploration 1

Exploration of basic statistics on initial FrED data.

Uses data - "Run_Comparison_1.csv"

J. Cuiffi - Penn State New Kensington, Data from MIT - B. Anthony, D. Kim

```
In [57]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [58]: # import data - no path - data should be in same folder as notebook
data1 = pd.read_csv('Run_Comparison_1.csv')
data1
```

Out[58]:

Time (s)		Run A Diameter (mm)	Run B Diameter (mm)	
0	0.0	0.395941	0.382270	
1	0.1	0.395941	0.382270	
2	0.2	0.395941	0.382270	
3	0.3	0.395941	0.382270	
4	0.4	0.395941	0.382270	
995	99.5	0.368600	0.341259	
996	99.6	0.368600	0.327588	
997	99.7	0.368600	0.327588	
998	99.8	0.368600	0.341259	
999	99.9	0.382270	0.327588	

1000 rows × 3 columns

```
In [59]: # plot data
    # display options
    %matplotlib inline
    #/matplotlib notebook
    plt.plot(datal['Time (s)'], datal['Run A Diameter (mm)'])
    plt.plot(datal['Time (s)'], datal['Run B Diameter (mm)'])
    plt.xlabel('Time (s)')
    plt.ylabel('Fiber Diameter (mm)')
    plt.legend()
    plt.ylim(0,.6)
```

Out[59]: (0, 0.6)


```
In [60]: # add rolling averages
    data1['Run A Rolling Ave'] = data1['Run A Diameter (mm)'].rolling(window=10).mean()
    data1['Run B Rolling Ave'] = data1['Run B Diameter (mm)'].rolling(window=10).mean()
    data1
```

Out[60]:

	Time (s)	Run A Diameter (mm)	Run B Diameter (mm)	Run A Rolling Ave	Run B Rolling Ave
0	0.0	0.395941	0.382270	NaN	NaN
1	0.1	0.395941	0.382270	NaN	NaN
2	0.2	0.395941	0.382270	NaN	NaN
3	0.3	0.395941	0.382270	NaN	NaN
4	0.4	0.395941	0.382270	NaN	NaN
995	99.5	0.368600	0.341259	0.374068	0.341259
996	99.6	0.368600	0.327588	0.372701	0.339892
997	99.7	0.368600	0.327588	0.371334	0.338525
998	99.8	0.368600	0.341259	0.369967	0.338525
999	99.9	0.382270	0.327588	0.369967	0.337158

1000 rows × 5 columns

```
In [61]: # plot rolling averages
plt.plot(data1['Time (s)'], data1['Run A Rolling Ave'])
plt.plot(data1['Time (s)'], data1['Run B Rolling Ave'])
plt.xlabel('Time (s)')
plt.ylabel('Fiber Diameter (mm)')
plt.legend()
plt.ylim(0,.6)
```

Out[61]: (0, 0.6)


```
In [62]: # basic statistics
print('Run A Mean:', data1['Run A Diameter (mm)'].mean())
print('Run A Std Dev:', data1['Run A Diameter (mm)'].std())
print('Run B Mean:', data1['Run B Diameter (mm)'].mean())
print('Run B Std Dev:', data1['Run B Diameter (mm)'].std())
```

Run A Mean: 0.36265313700000157 Run A Std Dev: 0.03198784886968082 Run B Mean: 0.3609715840000002 Run B Std Dev: 0.023382381495933205

```
In [63]: # histogram - A
    n, bins, patches = plt.hist(data1['Run A Diameter (mm)'],14)
    plt.xlabel('Diameter Bins (mm)')
    plt.ylabel('Number of Measurements')
    print('Run A Histogram')
    print(bins)
```

Run A Histogram
[0.272907 0.28267157 0.29243614 0.30220071 0.31196529 0.32172986
0.33149443 0.341259 0.35102357 0.36078814 0.37055271 0.38031729
0.39008186 0.39984643 0.409611]


```
In [64]: # histogram - B
plt.hist(data1['Run B Diameter (mm)'],bins)
plt.xlabel('Diameter Bins (mm)')
plt.ylabel('Number of Measurements')
print('Run B Histogram')
```

Run B Histogram


```
In [66]: # Frequency analysis
# sampling rate #/s
f_sample = 10
magnitudesA = fftpack.fft(data1['Run A Diameter (mm)'])
magnitudesB = fftpack.fft(data1['Run B Diameter (mm)'])
freqs = fftpack.fftfreq(len(data1['Run A Diameter (mm)'])) * f_sample
plt.plot(freqs, np.abs(magnitudesA))
plt.plot(freqs, np.abs(magnitudesB))
plt.xlim(0,1)
plt.ylim(0,25)
plt.ylabel('Magnitude')
plt.xlabel('Frequency')
print('Fiber Diameter Signal Analysis')
```

Fiber Diameter Signal Analysis

In []: