

Universidade de Brasília

Departamento de Ciência da Computação

Aula 18 Exceções e Interrupções

- Exceções são mudanças no fluxo de execução devido a eventos inesperados gerados internamente ao processador.
 - □ ecall : chamadas às rotinas do sistema
 - □ ebreak: chamada à rotina de Debug
 - □ instrução inválida
 - □ overflow em operações aritméticas (não são detectadas no RISC-V)
 - □ singularidades matemáticas da FPU (apenas sinalizadas pelo RISC-V)
 - □ ...
- Interrupções são mudanças no fluxo devido a eventos externos, tipicamente dispositivos de entrada e saída.
 - □ DMA (Direct Memory Access)
 - □ acesso ao barramento
 - □ solicitação de dispositivos
 - ...

Definições dependentes do fabricante: Intel usa o termo interrupção,

Ex.: int 0x21 : Dá acesso a 108 chamadas do sistema (similar ao a7 ecall)

Tratamento de Interrupções e Exceções

Para tratar a Interrupção/Exceção, Sistema Operacional necessita:

- 1) Conhecer o fato que gerou a Exceção/Interrupção
- Uso de Registrador de Causa (CAUSE)
 Um registrador especial é utilizado para codificar o motivo da Exceção/Interrupção.
- Uso de Interrupção Vetorizada
- Um vetor (endereço na memória) é utilizado para indicar os endereços para as rotinas de cada interrupção.
- 2) Conhecer o Endereço da instrução onde ocorreu a exceção/interrupção
- Registrador específico (EPC)
- 3) Executar uma rotina capaz de acessar recursos que podem não estar disponíveis ao usuário:
- ExceptionHandler

Tratamento da Exceção ou Interrupção

Tratamento de Interrupções e Exceções

Uso do Registrador de Causa

```
# Programa
LABEL1: add
                           overflow: Cause=12 / EPC=PC
         sub
LABEL2: add
                           interrupção 3: Cause=0 / EPC=PC
# Rotina de tratamento de exceção
ExceptionHandler: ....
                  se cause=0 então vá para xxxx
                  se cause=12 então vá para yyyy
             XXXX:...
                 retorna
             уууу:...
                  retorna
```


Tratamento de Interrupções e Exceções

Uso de Interrupção Vetorizada

```
#Programa
                                                                  Vetor de interrupções:
         . . .
                                                                       0x0080 0000
LABEL1: add
                           overflow: EPC=PC
                                                                       0x0080 0120
        sub
                                                                       0x0080 0300
LABEL2: add
                           interrupção 3: EPC=PC
                                                                       0x0080 1000
# Rotinas de tratamento 1
0x0080 0000: ....
             retorna
#Rotina de tratamento 2
0x0080 1000: ....
             retorna
...
```


Modos de Operação no RISC-V

Modo Usuário (user mode) :

Modo não privilegiado. Não pode acessar certos endereços da memória, algumas instruções não são permitidas. (Usuário com Sistema Operacional)

Instruções: uret, ubreak

Registradores: UCAUSE, USTATUS, UTVEC, UEPC, UIP, UIE, UTVAL, USCRATCH.

Modo Supervisor (supervisor mode):

Modo privilegiado. Pode acessar a toda memória e instruções específicas. (Sistema Operacional)

Instruções: sret, sbreak

Registradores: SCAUSE, SSTATUS, STVEC, SEPC, SIP, SIE, STVAL, SSCRATCH.

Modo Máquina (machine mode):

Sem nenhuma limitação de acesso (Usuário sem Sistema Operacional).

Instruções: mret, mbreak, wfi

Registradores: MCAUSE, MSTATUS, MTVEC, MEPC, MIP, MIE, MTVAL, MSCRATCH.

Control and Status Registers (CSR)

□ Espaço de 2¹² = 4096 registradores dedicados às funções gerenciamento de exceções/interrupções, gerenciamento da memória, virtualização e outras atividades nos 3 modos de operação.

- No Rars há um sistema operacional mínimo logo usaremos o modo User.
- No Lab não há um sistema operacional, mas continuaremos usando o modo User para fins de compatibilidade com o Rars

CSR Address		Hex	Use and Accessibility						
[11:10]	[9:8] [7:6]								
User CSRs									
00	00	XX	0x000-0x0FF	Standard read/write					
01	00	XX	0x400-0x4FF	Standard read/write					
10	00	XX	0x800-0x8FF	Non-standard read/write					
11	00	00-10	0xC00-0xCBF	Standard read-only					
11	00	11	0xCCO-0xCFF	Non-standard read-only					
Supervisor CSRs									
00	01	XX	0x100-0x1FF	Standard read/write					
01	01	00-10	0x500-0x5BF	Standard read/write					
01	01	11	0x5C0-0x5FF	Non-standard read/write					
10	01	00-10	0x900-0x9BF	Standard read/write					
10	01	11	0x9C0-0x9FF	Non-standard read/write					
11	01	00-10	0xD00-0xDBF	Standard read-only					
11	01	11	0xDC0-0xDFF	Non-standard read-only					
			Reserved	CSRs					
XX 10 XX		Reserved							
			Machine	CSRs					
00	11	XX	0x300-0x3FF	Standard read/write					
01	11	00-10	0x700-0x79F	Standard read/write					
01	11	10	0x7A0-0x7AF	Standard read/write debug CSRs					
01	11	10	0x7B0-0x7BF	Debug-mode-only CSRs					
01	11	11	0x7C0-0x7FF	Non-standard read/write					
10	11	00-10	0xB00-0xBBF	Standard read/write					
10	11	11	0xBC0-0xBFF	Non-standard read/write					
11	11	00-10	0xF00-0xFBF	Standard read-only					
11	11	11	0xFC0-0xFFF	Non-standard read-only					

Exceções e Interrupções no RISC-V

Control and Status Registers Modo User

No Rars:

Control and Status								
Registers	Flo	Floating Point						
Name	Numb		Value					
ustatus	0	(0x0000000					
fflags	1	(0x00000000					
frm	2	(0x00000000					
fcsr	3	(0x0000000					
uie	4	(0x00000000					
utvec	5	(0x0000000					
uscratch	64	(0x0000000					
uepc	65	(0x0000000					
ucause	66	(0x0000000					
utval	67	(0x00000000					
uip	68	(0x00000000					
misa	769		x40001128					
cycle	3072	(0x00000000					
time	3073	(0x0000000					
instret	3074	(0x00000000					
cycleh	3200	(0x0000000					
timeh	3201	(0x00000000					
instreth	3202	(0x00000000					

Number	Privilege	Name	Description					
	User Trap Setup							
0x000	URW	ustatus	User status register.					
0x004	URW	uie	User interrupt-enable register.					
0x005	URW	utvec	User trap handler base address.					
	User Trap Handling							
0x040 URW uscratch Scratch register for user trap handlers.								
0x041	URW	uepc	User exception program counter.					
0x042	URW	ucause	User trap cause.					
0x043	URW	utval	User bad address or instruction.					
0x044	URW	uip	User interrupt pending.					
		U	ser Floating-Point CSRs					
0x001	URW	fflags	Floating-Point Accrued Exceptions.					
0x002	URW	frm	Floating-Point Dynamic Rounding Mode.					
0x003	URW	fcsr	Floating-Point Control and Status Register (frm + fflags).					
			User Counter/Timers					
0xC00	URO	cycle	Cycle counter for RDCYCLE instruction.					
0xC01	URO	time	Timer for RDTIME instruction.					
0xC02	URO	instret	Instructions-retired counter for RDINSTRET instruction.					
0xC03	URO	hpmcounter3	Performance-monitoring counter.					
0xC04	URO	hpmcounter4	Performance-monitoring counter.					
		:						
0xC1F	URO	hpmcounter31	Performance-monitoring counter.					
0xC80	URO	cycleh	Upper 32 bits of cycle, RV32I only.					
0xC81	URO	timeh	Upper 32 bits of time, RV32I only.					
0xC82	URO	instreth	Upper 32 bits of instret, RV32I only.					
0xC83	URO	hpmcounter3h	Upper 32 bits of hpmcounter3, RV32I only.					
0xC84	URO	hpmcounter4h	Upper 32 bits of hpmcounter4, RV32I only.					
		:	<u>-</u>					
0xC9F	URO	hpmcounter31h	Upper 32 bits of hpmcounter31, RV32I only.					

Instruções de controle e de acesso aos CSRs

Instrução	Descrição
csrrc t0,csr,t1	CSR Read/Clear. Lê o registrador CSR para t0 e "clear" (reseta) os bits do CSR de acordo com t1
csrrci t0,csr,10	CSR Read/Clear Immediate: Lê o registrador CSR para t0 e "clear" (reseta) os bits do CSR de acordo com o imediato
csrrs t0,csr,t1	CSR Read/Set: Lê o registrador CSR para t0 e seta os bits do CSR de acordo com t1
csrrsi t0,csr,10	CSR Read/Set Immediate: Lê o registrador CSR para t0 e seta os bits do CSR de acordo com o imediato
csrrw t0,csr,t1	CSR Read/Write: Lê o registrador CSR para t0 e copia o registrador t1 para o CSR
csrrwi t0,csr,10	CSR Read/Write Immediate: Lê o registrador CSR para t0 e copia o imediato para o CSR

Codificação do Registrador de Causa

Se bit ucause[31]=1 é uma interrupção Se bit ucause[31]=0 é uma exceção

Interrupt	Exception Code	Description
1111011111111	0	User software interrupt
_		-
1	1	Supervisor software interrupt
1	$\frac{2}{2}$	Reserved
1	3	Machine software interrupt
1	4	User timer interrupt
1	5	Supervisor timer interrupt
1	6	Reserved
1	7	Machine timer interrupt
1	8	User external interrupt
1	9	Supervisor external interrupt
1	10	Reserved
1	11	Machine external interrupt
1	≥12	Reserved
0	0	Instruction address misaligned
0	\longrightarrow 1	Instruction access fault
0	$\longrightarrow 2$	Illegal instruction
0	\longrightarrow 3	Breakpoint
0	$\longrightarrow 4$	Load address misaligned
0	\longrightarrow 5	Load access fault
0	6	Store/AMO address misaligned
0	\longrightarrow 7	Store/AMO access fault
0	\longrightarrow 8	Environment call from U-mode
0	9	Environment call from S-mode
0	10	Reserved
0	11	Environment call from M-mode
0	12	Instruction page fault
0	13	Load page fault
0	14	Reserved
0	15	Store/AMO page fault
0	>16	Reserved
		2.000,000

Aceita tanto tratamento via registrador de causa quanto vetorizada

Se endereço em UTVEC/STVEC/MTVEC terminar em 00 trata-se de uma rotina única de tratamento de exceção localizada no endereço

BASE =
$$\{ xTVEC[31:2], 00 \}$$

Se endereço em UTVEC/STVEC/MTVEC terminar em 01 trata-se de tratamento vetorizado sendo o endereço calculado por:

Endereço = BASE + $4 \times CAUSE$

- Por Polling: (software)
 - processador testa periodicamente se dispositivo está pronto para realizar a transferência de dados
 - □ Problema: toma muito tempo do processador
- Por Interrupção: (hardware)
 - o dispositivo avisa ao processador a sua disponibilidade
 - □ Problema: hardware mais complexo, processador deve suportar interrupções
 - antes de iniciar a execução da próxima instrução, processador verifica se existe uma solicitação de interrupção
 - caso haja, interrompe o processamento normal e executa uma rotina de tratamento de interrupções

- Por DMA (Direct Memory Access)
 - dispositivo que gerencia a transferência de blocos de dados de forma independente da CPU
 - □ atua como mestre do barramento
 - é programado pela CPU para realizar as transferências

CPU sends a starting address, direction, and length count to DMAC. Then issues "start".

DMAC provides handshake signals for Peripheral Controller, and Memory Addresses and handshake signals for Memory.

Exemplo de Polling no x86

```
WAIT: in AL, 1 # lê estado do dispositivo (porta 1)
cmp AL, READY # compara AL com valor READY
# seta Z=(AL == READY)
jnz WAIT # se Z≠1 repete
in AX, 2 # senão lê dado (porta 2) para AX
```

Exemplo de Polling no RISC-V

```
.eqv MASK 0x001
.eqv STATUS 0x000
.eqv DATA 0x004
.text
WAIT: lw t0, STATUS(s0) # lê estado do dispositivo s0 andi t1, t0, MASK # Isola o bit status por MASK beq t1, zero, WAIT # se não está pronto repete lw s1, DATA(s0) # senão lê o dado para s1
```


Vamos simplificar para exemplificar a implementação:

Objetivo: Identificar e tratar de

- □ Exceção de instrução inválida (CAUSE=2)
- □ Exceção de endereço desalinhado (CAUSE=4 (lw) ou 6 (sw))
- Acrescentar quatro registradores especiais:
 - UCAUSE: indica a causa da exceção/interrupção
 - UVAL: contém a instrução inválida ou o endereço desalinhado
 - UEPC: indica o endereço da instrução que causou a exceção
 - UTVEC: contém o endereço da rotina de tratamento de exceção Ex.:
 0x80000000

RISC-V Uniciclo

Instrução	ALUSrc	Mem2Reg	RegWrite	MemRead	MemWrite	Branch	ALUOp
Tipo-R	0	0	1	0	0	0	10
lw	1	1	1	1	0	0	00
SW	1	Χ	0	0	1	0	00
beq	0	Χ	0	0	0	1	01

RISC-V Uniciclo

Instrução	ALUSrc	Mem2Reg	RegWrite	MemRead	MemWrite	Branch	ALUOp			
Tipo-R	0	0	1	0	0	0	10			
lw	1	1	1	1	0	0	00			
SW	1	Χ	0	0	1	0	00			
beq	0	Χ	0	0	0	1	01			

RISC-V Multiciclo

RISC-V Multiciclo

Controle do RISC-V Multiciclo

Controle do RISC-V Multiciclo

RISC-V Pipeline

RISC-V Pipeline

Qualquer mudança no fluxo do programa, seja por desvios condicionais e incondicionais, chamadas para o sistema, exceções e interrupções, hazards de controle, são complicadas e devem ser trabalhadas com cuidado no Pipeline.

Pipeline não é uma técnica fácil de se aplicar mas ainda é o estado-da-tecnologia em organização de processadores (99,9% dos processadores comerciais a utilizam).