PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

BC

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/86, 5/10, A61K 48/00, A01K 67/027

(11) International Publication Number: WO 97/09441

(43) International Publication Date: 13 March 1997 (13.03.97)

(21) International Application Number:

PCT/US96/14423

(22) International Filing Date:

6 September 1996 (06.09.96)

(30) Priority Data:

60/003,470

8 September 1995 (08.09.95) US

(74) Agent: DUGAN, Deborah, A.; Genzyme Corporation, One Mountain Road, Framingham, MA 01701 (US).

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 60/003,470 (CIP) 8 September 1995 (08.09.95)

.

(71) Applicant (for all designated States except US): GENZYME CORPORATION [US/US]; One Mountain Road, Framingham, MA 01701 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WADSWORTH, Samuel, C. [US/US]; 10 Straw Hollow Lane, Shrewsbury, MA 01545 (US). VINCENT, Karen [US/US]; 337 Park Avenue, Arlington, MA 02174 (US). PIRAINO, Susan [US/US]; Apartment 411B, 1622 Worcester Road, Framingham, MA 01701 (US). KYOSTIO, Sirkka [FI/US]; 61 Winter Street, Framingham, MA 01701 (US).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: IMPROVED AAV VECTORS FOR GENE THERAPY

(57) Abstract

The present invention is directed to methods for generating high titer, contaminant free, recombinant AAV vectors, methods and genetic constructs for producing AAV recombinant vectors conveniently and in large quantities, methods for the delivery of all essential viral proteins required in trans for high yields of recombinant AAV, recombinant AAV vectors for use in gene therapy, novel packaging cell lines which obviate the need for cotransfection of vector and helper plasmids, helper plasmids and vector plasmid backbone constructs, a reporter assay for determining AAV vector yield. Further provided are recombinant AAV vectors in a pharmaceutically acceptable carrier, methods of delivering a transgene of interest to a cell, compositions and methods for delivering a DNA sequence encoding a desired polypeptide to a cell, and transgenic non-human mammals that express a human chromosome 19 AAV integration locus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR.	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BP	Burkina Paso	TE .	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SJ	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China ·	LR	Liberia	52	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
KE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
				•	

IMPROVED ANY VECTORS FOR GENE THERAPY BACKGROUND OF THE INVENTION

Adeno-associated virus (AAV) is a parvovirus having a single-stranded DNA genome of about 4.6 kb. Unlike other viruses, AAV is naturally defective, requiring coinfection with a helper virus (e.g. adenovirus or herpes virus) to establish a productive infection. No human disease has been found to be associated with AAV infection (Blacklow et al., 1968). The host range of AAV is broad; unlike retroviruses, AAV can infect both quiescent and dividing cells in vitro and in vivo (Flotte et al., 1993; Kaplitt et al., 1994; Podsakoff et al., 1994; Russell et 10 al., 1994) as well as cells originating from different species and tissue types in vitro (Lebkowski et al., 1988; McLaughlin et al., 1988). When infection occurs in the absence of a helper virus, wild-type AAV can integrate into the cellular genome as a provirus, until it is rescued by superinfection with adenovirus. (Handa et al., 1977; Cheung et al., 1980; Laughlin et al., 1986).

two open reading frames (ORFs) flanked by short inverted terminal repeats (ITRs). The ITRs contain, inter alia, cis-acting sequences required for virus replication, rescue, packaging and integration. The integration function of the ITR permits the AAV genome to integrate into a cellular chromosome after infection.

The nonstructural or replication (Rep) and the capsid (Cap) proteins are encoded by the 5' and 3' ORFs, respectively. Four related proteins are expressed from the rep gene; Rep78 and Rep68 are transcribed from the p5 promoter while a downstream promoter, p19, directs the expression of Rep52 and Rep40. The larger Rep proteins (Rep78/68) are directly involved in AAV replication as well as regulation of viral gene expression (for review, see

30

Muzyczka, 1992). The cap gene is transcribed from a third viral promoter, p40. The capsid is composed of three proteins of overlapping sequence; the smallest (VP-3) is the most abundant. Because the inverted terminal repeats are the only AAV sequences required in cis for replication, packaging, and integration (Samulski et al., 1989), most AAV vectors dispense with the viral genes encoding the Rep and Cap proteins and contain only the foreign gene inserted between the terminal repeats.

10

15

20

25

5

Interest in AAV as a vector in gene therapy results from several unique features of its biology. Stable genetic transformation, ideal for many of the goals of gene therapy, may be achieved by use of such AAV vectors. Furthermore, the site of integration for AAV is well-established as being on chromosome 19 of humans. This predictability removes the danger of random insertional events into the cellular genome that may activate or inactivate host genes or interrupt coding sequences, consequences that limit the use of vectors whose integration is random, e.g., retroviruses. Because the rep protein mediates the integration of AAV, it is believed that removal of this protein in the construction of AAV vectors result in altered integration patterns. addition, AAV has not been associated with human disease, obviating many of the concerns that have been raised with virus-derived gene therapy vectors.

Notwithstanding the attractive aspects of

AAV-based vectors, rapid progress in their evaluation for
gene therapy has been hampered by the inability to produce
recombinant viral stocks at large-scale and to high titer.
The conventional method for production of recombinant AAV
(rAAV) vectors is cotransfection of one plasmid containing
the vector and a second helper plasmid encoding the AAV Rep
and Cap proteins into 293 cells infected with adenovirus
(e.g. Lebkowski et al., 1988; Samulski et al., 1989,

Muzyczka, N., 1992, Kaplitt et al., 1994; Einerhand et al., 1995). This method is cumbersome and results in a low yield of rAAV, typically 104-105 infectious or transducing units/ml. Strategies to improve this scheme have included increasing transfection efficiency by complexing plasmid DNA to adenoviral particles via polylysine (Mamounas et al., 1995), delivering the vector sequences as part of a recombinant adenovirus (Thrasher et al., 1995) and amplification of helper plasmid copy number by linkage to a SV40 replicon (Chiorini et al. 1995).

5

10

15

20

25

3.0

35

Progress in the development of AAV as a gene therapy vector has been limited by an inability to produce high titer recombinant AAV stock using the approaches described above. The limitations to date have been thought to derive from inadequate production of the AAV proteins required in trans for replication and packaging of the recombinant AAV genome. Trans-based strategies to vector production are those that modulate the level of proteins required in trans to effectuate AAV vector production. Attempts to increase the levels of these proteins have included placing the AAV rep gene under the control of the HIV LTR promoter (Flotte, F.R. et al., Gene Therapy 2:29-37, 1995) to increase protein levels and the development of cell lines that express the rep proteins (Yang, Q. et al., J. Virol. 68: 4847-4856, 1994).

The limitations in producing high titer AAV vector stock may also result from a failure to include AAV cis-required elements in the recombinant AAV vector design. Cis-based strategies to increase vector production are those that provide DNA sequences required in cis (in tandem) with the recombinant DNA to be packaged into the AAV vector particle. The trans and cis functions are related. Trans-required proteins are necessary to effectuate vector production, but they require cis-acting sequences in the recombinant AAV genome in order to be

functionally active. Therefore, high yield AAV vector production requires a coordinated strategy of trans-based and cis-based improvements so that progress in the development of AAV as a standard gene therapy vehicle may be realized.

Thus, there is a need in the art for methods and compositions which enable production of high titer recombinant AAV (rAAV) preparations that are free from wild-type AAV and Adenovirus helper contamination.

SUMMARY OF THE INVENTION

The present invention is directed to methods for generating high titer, contaminant free, recombinant AAV vectors.

The present invention provides methods and genetic constructs for producing AAV recombinant vectors conveniently and in large quantities.

The present invention further provides methods for the delivery of all essential viral proteins required in trans for high yields of recombinant AAV.

The present invention provides recombinant AAV vectors for use in gene therapy, using trans- and cis-based strategies.

30

10

The present invention also provides novel packaging cell lines which obviate the need for cotransfection of vector and helper plasmids.

The invention is also directed to helper plasmids and vector plasmid backbone constructs that are used in these methods.

The present invention provides a reporter assay for determining AAV vector yield.

Further provided are recombinant AAV vectors in a pharmaceutically acceptable carrier.

10

35

The present invention also provides methods of delivering a transgene of interest to a cell.

Compositions and methods for delivering a DNA sequence encoding a desired protein to a cell are provided by the present invention.

Still further provided are transgenic non-human mammals that express a human chromosome 19 AAV integration locus.

DESCRIPTION OF THE FIGURES

- FIGURE 1 shows a diagram of a replicating helper plasmid containing adenovirus genes required for AAV vector production.
- FIGURE 2 shows a diagram of a replicating helper plasmid containing the AAV rep and cap genes required for AAV vector production.
 - FIGURE 3 shows a diagram of a nonreplicating helper plasmid containing the AAV rep and cap genes required for AAV vector production.

FIGURE 4 shows a diagram of a replicating helper plasmid containing the adenovirus genes and AAV rep and cap genes required for AAV vector production.

- 5 FIGURE 5 shows a diagram of AAV subgenomic fragments to be used in vector plasmid constructs for AAV vector production. Reference is to restriction sites in pIM45 that define the borders of the fragments.
- 10 FIGURE 6 shows a diagram of pTRCAT reporter plasmid.

FIGURE 7 shows a diagram of helper plasmids containing the AAV rep and cap genes used in AAV vector production.

15 FIGURE 8 shows a diagram of pTRlacZ reporter plasmid.

FIGURE 9 shows a Western blot analysis of rep protein expression from AAV nonreplicating helper plasmids. The rep proteins (in kd) are indicated at right.

FIGURE 10 shows a Western blot analysis of cap protein expression from AAV nonreplicating helper plasmids. The

cap proteins (VP, in kd) are indicated at right.

20

- Figure 11 shows AAV helper plasmids represented in linear form with the thin line (only a portion of which is shown) depicting the backbone plasmid DNA, the thick bars represent the Rep and Cap coding regions and their associated control regions, the arrows above the bars depict the positions of the endogenous AAV promoters, p5, p19 and p40, and the "X" indicates that the p40 promoter has been inactivated by mutation.
- Figure 12 shows Rep and Cap gene expression from AAV helper plasmids analyzed by Western blot using anti-Rep (panel A) and anti-Cap (panel B) primary antibodies. Lanes in each panel correspond to samples derived from cells transfected

with the following helper DNAs: lane 1 (mock), lane 2 (pIM45), lane 3 (pIMRSV), lane 4 (p5repΔ-CMVcap), lane 5 (pRSV repΔ-CMVcap), lane 6 (p5repΔ-p40cap), lane 7 (pRSVrepΔ-p40cap), lane 8 (pIMRSV-am), lane 9 (wtAAV) MOI=10. Molecular weight size standards (in kD) are depicted to the left of each panel; each of the AAV Rep and Cap proteins is identified to the right.

5

Figure 13 is an analysis of the mechanism of downregulation of the cap genes. Shown is a Western blot 10 analysis of samples derived from 293 cells transfected with the appropriate DNAs (10 µg total) in the absence (-) or presence (+) of adenovirus (AD5ts149, MOI=20). Panel A and panel B show blots developed using an anti-Rep and anti-Cap primary antibodies, respectively. Lanes in each panel 15 correspond to the following: lane 1 (mock transfected cells), lane 2, (pIM45), lane 3 (pIMRSV), lane 4 (pIMRSVam), lane 5 (pIMRSV-am and suppressor tRNA plasmid), lane 6 (pIMRSV-am and pRSVRep), lane 7 (pRSVRep alone; "Wt" = cells infected with wtAAV (MOI=15) in the presence of adenovirus 20 (Adts149, MOI=20). Molecular weight size markers (in kD) are shown at the left and the AAV Rep and Cap proteins are identified at the right.

Figure 14 is an analysis of total RNA derived from transfections described in Figure 13. Panel A shows the Northern, panel B is the ethidium stained gel to demonstrate that equal amounts of RNA were loaded in each lane. Lanes in each panel correspond to the following:

30 lane 1 (mock transfected cells), lane 2, (pIM45), lane 3 (pIMRSV), lane 4 (pIMRSV-am), lane 5 (pIMRSV-am and suppressor tRNA plasmid), lane 6 (pIMRSV-am and pRSVRep), lane 7 (pRSVRep alone; "Wt"= cells infected with wtAAV (MOI=15) in the presence of adenovirus (Adts149, MOI=20).

35 Transfections were carried out in the absence (-) or presence (+) of adenovirus (AD5ts149, MOI=20). RNA size

standards (in kilobases) are shown at the left in panel A,

at the right in panel B; AAV mRNAs are identified at the right of panel A.

Figure 15 is an analysis of vector replication and levels of wt AAV contamination. Adenovirus (Ad5ts149) - infected 293 cells were transfected with 1.5 µg of vector (pTRlacZ) and 15 µg of the indicated helper DNA. The replicated viral DNA was then analyzed by Southern blot; duplicate filters were probed with the lacz probe. Panels C and D show 10 primary and secondary Hirt DNAs, respectively, probed with the AAV fragment. For the primary DNAs (panels A and C), lanes correspond to the following samples: lane 1 (mock transfection), lane 2 (pIM45), lane 3 (pIMRSV), lane 4 $(p5rep\Delta-CMVcap)$, lane 5 $(RSVrep\Delta-CMVcap)$, lane 6 $(p5rep\Delta-CMVcap)$ 15 p40cap), lane 7 (RSVrep Δ -p40cap), lane 8 (pIMRSV-am). For the secondary DNAs (panels B and D), the lanes are the same except the sample in lane 8 is derived from cells infected with wtAAV (MOI=0.001) and adenovirus (Ad5ts149, MOI=20). The positions of DNA size standards in (kilobase pairs) are depicted at the left of each panel; hybridizing bands 20 corresponding to the dimer replicative form (dRF) and monomer replicative form (mRF) are identified at the right.

DETAILED DESCRIPTION OF THE INVENTION

25

30

All patent applications, patents, and literature references cited in this specification are hereby incorporated by reference in their entirety. In case of conflict or inconsistency, the present description, including definitions, will control.

Definitions:

293 cells - human embryonic kidney cell line 35 harboring and expressing parts of the adenovirus genome including the adenoviral E1 region.

293-MT-DBP cells - human embryonic kidney cell line modified to express parts of the adenovirus genome which complement recombinant adenovirus vectors that are deleted for El and E2A. Deposited August 28, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, and assigned ATCC CRL -12181.

5

10

25

30

2C4 cells - human embryonic kidney cell line modified to express parts of the adenovirus genome which complement recombinant adenovirus vectors that are deleted for El and E4. Deposited August 28, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, and assigned ATCC CRL -12182.

3B1 cells - human embryonic kidney cell line modified to express parts of the adenovirus genome which complement recombinant adenovirus vectors that are deleted for E1 and E2A. Deposited August 28, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, 20 Rockville, Maryland, and assigned ATCC CRL -12183.

Cfu - colony forming units. For retroviral and adeno-associated virus vectors carrying antibiotic resistance genes, the number of antibiotic-resistant cell colonies after infection. It is assumed that one colony arises from a single infected cell.

Expression plasmid - extrachromosomal genetic elements that can propagate autonomously in cells, constructed in such a way that the genes carried in the plasmid can be expressed in the cells.

In cis - from the same DNA molecule.

35 In trans - from a different DNA molecule.

Insertional mutagenesis - the introduction of a mutation into a target gene by the insertion of foreign DNA, such as viral DNA, into the host-cell genome. The development of a mutation in a cellular gene as the result of the introduction of foreign DNA into a cell.

ITR - inverted terminal repeat, a DNA sequence that is repeated at either end of the virus in an inverted form.

10

5

Promoter-transgene cassette - a combination of DNA sequences containing elements necessary for directing production of a gene product and the DNA sequence of the gene itself.

15

Transduction - the introduction of foreign DNA into cells of an organism (in vivo).

Transfection - the introduction of foreign DNA

into cells in culture (in vitro). Genetic modification of
eukaryotic cells by introduction of foreign DNA using
chemical means. In transient transfection, expression
occurs from unintegrated foreign DNA and can be detected
for a few days after transfection.

25

Transgene - a gene that has been stably incorporated into another organism.

Quiescent cells - cells that are not actively dividing.

Recombination - physical interaction between two or more DNA molecules, in this case viral sequences, leading to exchange of DNA sequence between the molecules.

35

Titer - the number of virus particles produced per ml. The assay system to determine the number of virus

particles produced varies considerably depending on the virus in question. High titers are generally essential for successful gene therapy since they allow introduction of the therapeutic gene carried by the virus into the maximum number of cells.

Vector - a vehicle, usually a biological entity, such as a virus, used for the delivery of genes into an organism. A reagent that facilitates the introduction of foreign genes into cells.

LacZ gene - bacterial gene used as a cellular gene marker. Its expression is detected by a blue coloration in the presence of the substrate X-gal.

15

35

10

5

Packaging cells - cells that have been transfected with plasmids containing the cap and rep genes from AAV.

A purpose of the investigation described herein was to determine the limiting component(s) required for rAAV packaging. An understanding of the process at a basic level should benefit all methods of rAAV production. By selectively increasing expression of either the rep or cap genes (or both), it is shown that Cap protein production is one limiting factor in the production of rAAV.

A. PROVISION OF TRANS PRODUCT

Adenovirus Proteins

As discussed, adenovirus proteins are required to generate a productive AAV infection. In the absence of helper adenovirus, AAV integrates into the cellular genome, remaining latent until the cell is infected with adenovirus.

Adenovirus genes required for helper function include, inter alia, E1A, E1B, E2A, E4 ORF6, and VA RNA (Muzycka, N., Curr. Top. Micro. Immunol. 158: 97-129, 1992). Standard methods of generating recombinant AAV vectors have relied on adenovirus infection of the target cell in order to provide adequate levels of necessary helper proteins. To avoid the unwanted generation of wild-type adenovirus that may occur during AAV vector production, an adenovirus containing a deletion is used in a cell line that provides an essential adenovirus protein in trans. Alternatively, a temperature-sensitive adenovirus replication mutant may be used at a nonpermissive temperature.

10

30

35

In one embodiment of the present invention, a helper plasmid is provided which contains the essential adenovirus helper genes bounded by AAV ITR sequences that allow the plasmid to replicate. The helper plasmid may contain ElA, ElB, E2A, E4 ORF6, and VA RNA genes. Each of these genes may also have its own promoter, through which transcription can occur. Alternative promoters that may be used in the helper plasmid include, but are not limited to, CMV, RSV, MMTV, ElA, EF1a, actin, cytokeratin 14, cytokeratin 18, PGK as well as others known to those skilled in the art.

Providing the essential adenovirus genes on a replicating plasmid is an alternative to infecting a host cell with adenovirus. The AAV ITR sequences in the plasmid function as an origin of replication under the control of the AAV rep proteins to increase the plasmid copy number. Increased copy number leads to increased levels of the proteins encoded by the genes on the plasmid. Thus, the helper plasmid of the present invention provides the adenovirus proteins required for AAV vector production, while eliminating the possibility of adenovirus production. A further advantage is that the levels of the adenovirus

proteins are not limited by the amount of input plasmid DNA, since replication of the plasmid will increase gene copy number above input levels.

In additional embodiments, the origin of replication may include, but is not limited to, the SV40 origin of replication, the Epstein-Barr (EBV) origin of replication, as well as others known to those skilled in the art. Where, for example, an origin of replication requires an activating protein - e.g., SV40 origin requiring T antigen, EBV origin requiring EBNA protein - the activating protein may be provided by stable transfection so as to create a cell line source, or by transient transfection with a plasmid containing the appropriate gene.

Standard recombinant DNA techniques may be employed to construct the helper plasmids of the present invention (see, e.g., Current Protocols in Molecular Biology, Ausubel., F. et al., eds, Wiley and Sons, New York 20 1995). Such methods include the utilization of compatible restriction sites at the borders of the adenovirus genes and the ITR sequences or DNA linker sequences which contain restriction sites, as well as other methods known to those 25 skilled in the art. Reference for adenovirus DNA sequence information is given in Roberts, R.J., in Adenovirus DNA: The Viral Genome and Its Expression, Oberfler, W., ed., Matinus Nihoff Publishing, Boston, 1986). Plasmids routinely employed in molecular biology - e.g., pBR322 (New England Biolabs, Beverly, MA), pRep9 (Invitrogen, San 30 Diego, CA) or pBS (Stratagene, La Jolla, CA) - may be used as the basis for the helper plasmid into which adenovirus genes and the AAV ITR may be inserted. The adenovirus genes may be placed into the helper plasmid in any positional order. A particular embodiment of such a 35 replicating helper plasmid according to the invention is shown in FIGURE 1.

The helper plasmid may be used in the generation of recombinant AAV when combined with a source of the AAV rep and cap proteins, as well as the recombinant AAV genome. Transfection of cells by the plasmid using techniques well known in the art will provide the adenovirus gene products necessary for initiation of AAV rep gene expression.

10 2. AAV Proteins

5

15

20

25

30

35

In order to generate recombinant AAV vector stocks, standard approaches provide the AAV rep and cap gene products on a plasmid that is used to cotransfect a target cell along with the AAV vector plasmid. The levels of rep and cap proteins produced as a result of transfection are relevant to maximizing AAV vector production. This is because the rep proteins activate transcription of the cap gene, leading to production of the AAV structural proteins that are involved in packaging the recombinant genome.

Attempts to increase the levels of these AAV proteins in order to enhance vector production have been problematic (Kotin, R.M., Human Gene Therapy 5:793-81, 1994). One of the problems appears to be the toxicity of the rep protein to the cell at high levels.

In this aspect of the present invention, AAV rep and cap genes are provided on a replicating helper plasmid that contains the AAV ITR sequences. The rep proteins activate ITR as an origin of replication, leading to replication of the plasmid, that result in increased copy number. The advantage of this method is that rep protein level is not simply dependent on the efficiency of transfection with the plasmid, but is also a function of the replication of the plasmid following transfection. An

example of a replicating helper plasmid containing the AAV rep and cap genes is provided in FIGURE 2. In other embodiments of this aspect of the invention, the origin of replication may include, but is not limited to, the SV40 origin of replication, the Epstein-Barr (EBV) origin of replication, as well as others known to those skilled in the art. Where, for example, an origin of replication requires an activating protein - e.g., SV40 origin requiring T antigen, EBV origin requiring EBNA protein - the activating protein may be provided by stable transfection so as to create a cell line source, or by transient transfection with a plasmid containing the appropriate gene.

10

· 35

15 .. In still another embodiment of the invention, AAV rep and cap genes may be provided on a non-replicating plasmid, which does not contain an origin of replication. Such non-replicating plasmid further insures that the replication apparatus of the cell is directed to 20 replicating recombinant AAV genomes, in order to optimize production of virus. Furthermore, since some studies have suggested that high levels of rep protein may be toxic to the cell (Muzyczka, N., Curr. Top. Micro. Immunol. 158: 97-129, 1992), providing the rep gene on a non-replicating plasmid may decrease this possibility. The levels of the AAV proteins encoding by such non-replicating plasmids may be modulated by use of particular promoters to drive the expression of these genes. Such promoters include, inter alia, AAV promoters, as well as promoters from exogenous 30 sources, e.g., CMV, RSV, MMTV, ElA, EFla, actin, cytokeratin 14, cytokeratin 18, PGK, as well as others known to those skilled in the art. An example of a nonreplicating AAV helper plasmid is provided in FIGURE 3.

Levels of rep and cap proteins produced by these helper plasmids may be individually regulated by the choice of a promoter for each gene that is optimally suited to the

level of protein desired. Specific modulation of a particular gene - e.g., the rep gene - may also be achieved with the use of an inducible promoter. Such inducible promoters include, but are not limited to, MMTV, metallothionein, as well as others known to those skilled in the art.

5

In order to prevent any packaging of AAV genomic sequences containing the rep and cap genes, a plasmid 10 containing the rep and cap DNA fragment may be modified by the inclusion of a "stuffer" fragment into the AAV genome which causes the DNA to exceed the length for optimal packaging. Thus, the helper fragment is not packaged into AAV virions. This is a safety feature, ensuring that only 15 a recombinant AAV vector genome that does not exceed optimal packaging size is packaged into virions. An AAV helper fragment that incorporates a stuffer sequence exceeds the wild-type genome length of 4.6 kb, and lengths above 105% of the wild-type will not be packaged. The stuffer fragment may be derived from, for example, such 20 non-viral sources as the ß-galactosidase gene.

Standard recombinant DNA techniques may be employed to construct the helper plasmids of the present 25 invention (see e.g., Current Protocols in Molecular Biology, Ausubel., F. et al., eds, Wiley and Sons, New York 1995), including the utilization of compatible restriction sites at the borders of the genes and AAV ITR sequences (where used) or DNA linker sequences which contain restriction sites, as well as other methods known to those 30 skilled in the art. Reference for AAV DNA sequence information is given in Srivastava, A. et al., J. Virol. 45:555-564, 1983. Plasmids routinely employed in molecular biology may be used as a backbone - e.g., pBR322 (New 35 England Biolabs, Beverly, MA), pRep9 (Invitrogen, San Diego, CA), pBS (Stratagene, La Jolla, CA) - for the

insertion of the AAV genes and, in the case of a replicating plasmid, the AAV ITR.

3. Hybrid Helper Plasmid

5

10

15

20

25

30

35

Generation of a recombinant AAV vector stock requires both AAV and adenovirus proteins, provided in trans, in order to facilitate transcriptional activation, replication and packaging of the recombinant AAV genome. Standard approaches have utilized plasmid-based delivery of AAV genes into the target cell. Infection of the target cell with adenovirus is used to provide adenovirus genes. This multi-step protocol requires coordination of transfection and infection. Furthermore, infection of the cell with adenovirus allows for adenovirus production, which is not desirable when attempting to produce a pure AAV vector stock. In addition, the introduction of many viral genes which are not needed in vector generation causes diversion of transcriptional and replication machinery that could be directed to more efficient production of the essential proteins for AAV production. While AAV vectors have been produced using adenovirus genes introduced by infection, high yield vector production remains problematic. Therefore, a more efficient delivery of the genes coding for the proteins required in trans should improve AAV vector production.

The present invention provides a simple method for the delivery of all essential viral proteins required in trans for high yields of AAV. A hybrid plasmid is constructed to carry AAV and adenovirus genes encoding the essential proteins. The advantages of such a plasmid include, inter alia, a single entry event into the cell delivering all genes coding for trans-acting proteins, coordinate provision of all such genes and avoidance of adenovirus production resulting from the elimination of unnecessary adenovirus genes. Such a plasmid is shown in

FIGURE 4. The plasmid contains essential adenovirus genes
- E1A, E1B, E2A, E4 ORF6, and VA RNA. The plasmid also
contains the AAV rep and cap genes, as well as the AAV ITR
sequences which are required to replicate the plasmid. The
genes may be transcribed using their own promoters.
Alternatively, promoters may include, but are not limited
to, CMV, RSV, MMTV, E1A, EF1a, actin, cytokeratin 14,
cytokeratin 18, PGK, as well as others known to those
skilled in the art. The adenovirus genes may be inserted
into the plasmid in the order shown in FIGURE 4, or they
may be inserted in any number of different positional
arrangements that are within the ability of the skilled
artisan to devise.

he provided on two plasmids for ease of cloning. Thus, the AAV and adenovirus genes on the hybrid helper plasmid may be carried by two plasmids, in any optimal arrangement for cloning. In other words, the AAV and adenovirus genes do not have to be on separate plasmids.

Standard recombinant DNA techniques may be employed to construct the helper plasmids of the present invention (see, e.g., Current Protocols in Molecular Biology, Ausubel., F. et al., eds, Wiley and Sons, New York 25 1995), including the utilization of compatible restriction sites at the borders of the genes and the ITR sequences or DNA linker sequences which contain restriction sites, as well as other methods known to those skilled in the art. Reference for adenovirus and AAV DNA sequence information 30 is cited above. Routinely used plasmids - e.g., pBR322 (New England Biolabs, Beverly, MA), pRep9 (Invitrogen, San Diego, CA), pBS (Stratagene, La Jolla, CA) - may be used for the insertion of the adenovirus and AAV genes and the 35 AAV ITR. The adenovirus genes may be placed into the helper plasmid in any positional order.

4. Production of Recombinant AAV Vectors

Helper plasmids that provide essential proteins required in trans are used to generate recombinant AAV vector stock. These plasmids are introduced into the target cell using any number of transfection methods, including, inter alia, calcium-phosphate transfection, lipofection or other techniques known to those skilled in the art. The ratio of helper plasmids to the quantity of vector plasmid containing the gene of interest range from 1:1-1:10. This procedure produces recombinant AAV vectors; the vector plasmid contains the recombinant AAV genome flanked by the AAV ITRs.

15

10

5

Recombinant AAV vectors are produced using 293 cells in 8 roller bottles (1x109 cells/ml). Cells are transfected with both the helper plasmid and the AAV vector plasmid at a vector:helper ratio of 1:10. The plasmids may be introduced into the target cell using any number of 20 transfection methods, including, but not limited to, calcium-phosphate, lipofection, or other techniques known to those skilled in the art (see e.g., Current Protocols in Molecular Biology, Ausubel, F. et al., eds., Wiley and Sons, New York, 1995). In a preferred embodiment, 25 lipofection is used for transfection. Adenovirus infection is initiated at a multiplicity of infection (MOI) of 20. The adenovirus strain may be a deletion virus, in which case, complementing genes are integrated into the cell line, or a temperature-sensitive mutant (e.g., ts149) 30 which cannot replicate at a nonpermissive temperature (39°C). The transfected/infected cells are then incubated for 2 days at the appropriate temperature. After incubation, the cells are harvested and then lysed by three (3) freezing and thawing cycles in the presence of 35 benzonase (American International Chemical, Natick, MA). 1% deoxycholate and 0.25% trypsin is then added to the

lysate, followed by incubation for 30 minutes at 37°C. The cell lysate (2 roller bottles/gradient) may then be applied to a CsCl step gradient (1.5g/ml-1.36g/ml) in a SW28 rotor and centrifuged at 26K for 6 hours at 4°C. Fractions are obtained and then further purified on two equilibrium gradients, using a NVT65 rotor, and centrifuged at 60K for 20 hours at 4°C. Fractions from the equilibrium gradients are screened on a refractometer and pooled. Pooled fractions are dialyzed in PBS with 1% sucrose 3 times for 2 hours at 4°C.

5. Assav for Recombinant AAV Vector Production

10

25

30

35

The efficiency of a helper plasmid as a source of proteins required in trans is determined from the yield of AAV vector stock. To determine virus yield, an AAV infectious center assay is used to assay for production of infectious progeny. The recombinant AAV vectors are recovered after production using the purification protocol described above. The assay shows whether infectious AAV progeny are produced in the production protocol.

The assay is performed with 293 cells that are plated on day one at a density of 1x10⁵ cells per well in 0.1 ml/well in DME medium supplemented with 10% FBS, penicillin/streptomycin, and glutamine. After about 24 hours, the cells are infected with adenovirus at an MOI of 20 and with wild-type AAV at an MOI of 2. The viruses are suspended in the same medium, and 0.1 ml is added to each well to initiate infection. The AAV vector samples are added to the well (25-100 microliters of lysate or dilutions) and the plates are incubated for 24-30 hours at the appropriate temperature (37°C for wild-type adenovirus; 39°C for an adenovirus temperature-sensitive mutant). On the day after infection, the medium is carefully removed from the cells. Cold 0.2 ml PBS containing 5mM EDTA is added to each well, and the plate is put on ice.

A filtration apparatus is then prepared for use by placing a nitrocellulose filter prewetted with PBS in position, and adding 5 ml of PBS to the top of the filtration unit. The cells in the plate are resuspended by 5 pipetting. 0.05 ml of the cell suspension is added into the PBS buffer in the filtration unit and mixed by rotation. Suction is applied to the apparatus to deposit the cells onto the filters. The filters are air dried for 10 minutes. The cells are lysed on directly on the filters 10 using denaturing solution followed by neutralizing solution. The filters are dried on paper for 5 minutes following each solution and then air dried for 10 minutes. The filters are washed in 2X SSC, air dried for 10 minutes, and baked in a vacuum oven for 2 hours. Hybridization to a 15 probe that detects the gene of interest is performed using the filters prepared as above, wetted in 2X SSC. Filters can be prehybridized using 30-40 ml of Quick-Hyb® (Stratagene, La Jolla, CA) by incubating at 68°C for 2-4 20 hours in a rotating water bath. The labelled probe is then added to the Quick-Hyb® solution, and incubated overnight at 68°C. Filters are washed the next day (5 minutes in 2X SSC, 0.5% SDS at room temperature, 15 minutes in 2X SSC 0.1% SDS at room temperature, followed by 2 hours in 0.1% SSC, 0.5% SDS at 65°C). The filter is exposed to film 25 overnight at -80°C to produce an autoradiograph.

The number of infectious centers on the filter are counted on the autoradiograph. The titer of the starting material is determined by multiplying the number of infectious centers by any dilution used in the preparation of test samples.

Where the AAV vector in production contains a reporter gene, alternative methods for determining the AAV vector titer can be used. For example, if the *lac*Z gene is used, the infected cells can be stained for the expression

of the gene product, ß-galactosidase, using X-gal. Titer is determined, for example, by counting the blue-stained cells in a plate well.

5 B. AAV VECTOR PLASMID CONSTRUCTS CONTAINING CIS-ACTING SEQUENCES

10

35

The present invention also provides a means to increase the production of recombinant AAV vectors via AAV vector plasmid designs that utilize cis-acting sequences in the AAV genome required for efficient replication and packaging. The invention also provides vector plasmids designed to provide such cis-acting sequences.

Current vector plasmid designs place the gene of 15 interest between the AAV ITR sequences to create a recombinant genome and provide no other AAV sequences. AAV ITR sequences have cis-acting functions that facilitate replication and packaging of the recombinant genome during vector production, as well as integration of the vector DNA 20 into a cell following its introduction by the AAV vector. Thus, ITR sequences are retained in recombinant AAV vector designs. However, the difficulty in achieving high titer production of AAV vectors indicates that the ITRs per se 25 are not sufficient to provide all cis-acting functions necessary to the production of high titer vector stock. Therefore, other cis-acting AAV sequences in addition to the ITRs are required within the vector construct in order to increase the efficiency of replication and/or packaging 30 of the recombinant AAV genome.

Cis-acting elements in the AAV genome are believed to facilitate rescue and replication of the genome through interactions with the AAV rep proteins. It is known that rep proteins bind to sites in the AAV ITR as well as to sites in the AAV p5 and p19 promoters (McCarty, D.M. et al., J. Virol. 65: 2936-2945, 1991; McCarty, D.M.

et al., J. Virol. 68:4988-4997, 1995). Cis-acting packaging elements also appear to be required in the recombinant AAV vector genome for maximal particle production.

The present invention provides a method to improve AAV vector production using vector backbone constructs that contain AAV sequences in addition to the ITR sequences. The AAV vector backbone may include AAV genomic fragments that contain rep-binding sites or critical packaging sequences. Because the precise number and location of all cis-acting AAV sequences has not yet been defined, construction of vector plasmids containing significant portions of the AAV genome is important to include all cis-acting sequences, including those that are still undefined. While these vector plasmid constructs improve the production of recombinant AAV vector stock, a further utility of the invention is that essential cis-acting sequences can be functionally identified through improved vector production.

The vector constructs containing such cis-acting sequences may be prepared using known techniques. (see e.g. Current Protocols in Molecular Biology, Ausubel., F. et al., eds, Wiley and Sons, New York 1995). The presence of known restriction sites in the AAV genome may be used to derive subgenomic fragments for insertion into a recombinant AAV vector. Fragment length is chosen so that the recombinant genome does not exceed the packaging capacity of the AAV particle. If necessary, a "stuffer" DNA sequence is added to the construct to maintain standard AAV genome size for comparative purposes. Such a fragment may be derived from such non-viral sources, e.g., lacz, or other genes which are known and available to those skilled in the art.

The present invention provides a series of vector plasmid constructs which add AAV subgenomic fragments into a vector plasmid containing a gene of interest flanked by the AAV ITRs. See FIGURE 5. These fragments range in size from 1.7 - 2.1 kb. Because these fragments contain coding as well as noncoding regions of the AAV genome, effects on packaging may be due to elements acting in trans as well as in cis. Further modifications of the constructs shown e.g., insertion of smaller AAV fragments - are within the scope of the invention, and may be readily made by those skilled in the art. When subgenomic fragments are used that are smaller than the coding regions in the genome, the effects observed on vector production are characterized as cis-acting effects. For example, standard deletion analysis approaches are suitable to refine subgenomic fragments to a minimal length needed for optimal vector production. Defined AAV cis-acting fragments - e.g., represponsive elements - are specifically cloned into the vector plasmids.

20

5

10

15

The present invention provides an efficient reporter assay for determining AAV vector yield for use in gene therapy. In this manner, the most efficient construct designs are identified by production of high titer stock.

25

30

35

A plasmid containing a reporter gene and the AAV ITR sequences is used to determine improvement in production efficiency when AAV sequences are added. This plasmid may be modified with the insertion of AAV subgenomic fragments to create additional constructs, such as plasmid pTR-CAT, shown in FIGURE 6. This plasmid contains an expression cassette comprising the chloramphenical acetyltransferase (CAT) gene under the control of CMV promoter, a hybrid intron and the BGH polyA site. The expression cassette was cloned into pUC-TR, a high copy number plasmid derived by cloning the AAV ITR region into pUC19. (New England Biolabs, Beverly, MA) The

insertion of the expression cassette into pUC-TR created pTR-CAT. Restriction sites may be added at the 5' and 3' ends of the CAT cassette by inserting linkers or by using other techniques known to those skilled in the art. AAV subgenomic fragments may be inserted at these restriction sites. This reporter plasmid will accommodate the subgenomic fragments shown in FIGURE 5 that may be placed at either the 5' or 3' end of the expression cassette. Optimally, it may be necessary to test the insertion of fragments at both ends in order to determine any positional effect that the placement of the insert might have. The fragment can also be inserted at both ends of the vector plasmid. One or more copies of a defined cis-acting element can increase the amount of vector produced.

15

20

35

10

5

The packaging of the novel constructs requires that of AAV rep and cap genes (e.g., using pIM45, described in EXAMPLE 1) be provided and as well as essential adenovirus genes. A plasmid containing the AAV genes is cotransfected with the novel construct. An adenovirus infection or an adenovirus helper plasmid of the present invention (See Section 1, supra) provides the other necessary genes.

25 An infectious center assay utilizing an appropriate probe is used for determining the amount of infectious progeny (see Section 5, supra). Alternatively, a reporter gene product in the AAV vector can be assayed directly - e.g., a CAT enzyme assay is used where this reporter gene is present, for example, pTR-CAT (Current Protocols in Molecular Biology, Ausubel, F. et al., eds., Wiley and Sons, New York, 1995).

Alternative reporter genes may be used in assaying the vector plasmid constructs provided that the final plasmid construct containing the reporter gene and the AAV cis-acting fragments do not exceed the packaging

length for an AAV particle. Other reporter gene products may be detected in the infectious AAV particles using appropriate biochemical assay.

The invention provides transgenic non-human mammals capable of expressing the AAV integration locus on human chromosome 19. Examples of non-human transgenic mammals are transgenic cows, sheep, goats, pigs, rabbits, rats and mice.

10

Animal model systems which elucidate the physiological and behavioral roles of invention polypeptides are produced by creating transgenic animals in which the expression of a polypeptide of interest is 15 altered or modified using a variety of techniques. Examples of such techniques include the insertion of normal or mutant versions of nucleic acids encoding a polypeptide of interest, by microinjection, retroviral infection or other means well known to those skilled in the art, into 20 appropriate fertilized embryos to produce a transgenic animal. See, for example, Carver, et al., Bio/Technology 11:1263-1270, 1993; Carver et al., Cytotechnology 9:77-84, 1992; Clark et al, Bio/Technology 7:487-492, 1989; Simons et al., Bio/Technology 6:179-183, 1988; Swanson et al., Bio/Technology 10:557-559, 1992; Velander et al., Proc. 25 Natl. Acad. Sci. USA 89:12003-12007, 1992; Hammer et al., Nature 315:680-683, 1985; Krimpenfort et al., Bio/Technology 9:844-847, 1991; Ebert et al., Bio/Technology 9:835-838, 1991; Simons et al., Nature 328:530-532, 1987; Pittius et al., Proc. Natl. Acad. Sci. 30 USA 85:5874-5878, 1988; Greenberg et al., Proc. Natl. Acad. Sci. USA 88:8327-8331, 1991; Whitelaw et al., Transg. Res. 1:3-13, 1991; Gordon et al., Bio/Technology 5:1183-1187, 1987; Grosveld et al., Cell 51:975-985, 1987; Brinster et al., Proc. Natl. Acad. Sci. USA 88:478-482, 1991; Brinster 35 et al., Proc. Natl. Acad. Sci. USA 85:836-840, 1988; Brinster et al., Proc. Natl. Acad. Sci. USA 82:4438-4442,

1985; Al-Shawi et al., Mol. Cell. Biol. 10(3):1192-1198, 1990; Van Der Putten et al., Proc. Natl. Acad. Sci. USA 82:6148-6152, 1985; Thompson et al., Cell 56:313-321, 1989; Gordon et al., Science 214:1244-1246, 1981; and Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory, 1986).

Another technique, homologous recombination of mutant or normal versions of these genes with the native 10 gene locus in transgenic animals, may be used to alter the regulation of expression or the structure of the polypeptide of interest (see, Capecchi et al., Science 244:1288 ,1989; Zimmer et al., Nature 338:150, 1989). Homologous recombination techniques are well known in the art. Homologous recombination replaces the native 15 (endogenous) gene with a recombinant or mutated gene to produce an animal that cannot express native (endogenous) protein but can express, for example, a recombinant protein which results in expression, for example, of the human AAV integration locus. **20**°

In contrast to homologous recombination, microinjection adds genes to the host genome, without removing host genes. Microinjection can produce a transgenic animal that is capable of expressing both endogenous and exogenous polypeptides. Inducible promoters can be linked to the coding region of the nucleic acids to provide a means to regulate expression of the transgene. Tissue-specific regulatory elements can be linked to the coding region to permit tissue-specific expression of the transgene. Transgenic animal model systems are useful for in vivo screening of vector compositions for identification and confirmation of integration and long-term transgene expression.

35

25

30

C. CONSTRUCTION OF AAV HELPER PLASMIDS.

A series of helper plasmids was constructed to determine if rAAV packaging is limited by expression levels of the rep and/or cap genes (Figure 11). Expression of Rep and Cap proteins was increased by replacing the endogenous AAV promoters, p5 and p40, with the RSV LTR and the CMV IE promoter, respectively. The starting helper plasmid, pIM45 (McCarty et al., 1991), contains a sequence encompassing the wild-type AAV genome but excluding the terminal repeats (nucleotides 145-4493). pIMRSV is a modification of pIM45 10 in which the RSV LTR replaces p5. Because p40 is located within the Rep coding region, the rep and cap genes were separated to allow replacement of p40 with the CMV IE promoter (as in $p5rep\Delta$ -CMVcap). This strategy generated a vector with a direct repeat of 431 bp of sequence 15 downstream from the p40 and CMV promoter. To prevent generation of wild type AAV through recombination, the p40 promoter lying within the rep ORF of this construct was inactivated by site-directed mutagenesis. p5rep∆-p40cap was constructed to express the rep and cap genes from 20 endogenous AAV promoters as in pIM45, but so as to be more directly comparable to $p5rep\Delta$ -CMVcap, the Rep and Cap coding regions were separated. RSVrep\(-\text{CMV} cap \) and RSVrep Δ -p40cap are derivatives of p5rep Δ -CMVcap and 25 p5rep∆-p40cap, respectively in which p5 is replaced by the RSV LTR.

D. REP AND CAP GENE EXPRESSION FROM AAV HELPER PLASMIDS.

30 The amounts of Rep and Cap proteins expressed from each of the AAV helper plasmids were estimated by Western blot analysis (Figure 12). The four Rep proteins produced following transfection into 293 cells in the presence of an Adts149 infection (MOI = 20) comigrate with the corresponding proteins detected after coinfection of 293 cells with wild-type AAV (wtAAV) and Adts149. For each of the helper plasmids, Rep78 and Rep52 are the major

proteins produced. Rep68 and Rep40, which are translated from spliced messages, were observed at a lower level. These were also detected as minor proteins in the wtAAV infection.

5

10

When the p5 promoter was replaced with the RSV LTR, an increase in the level of Rep78 was observed. This was the case for all three helpers, pIMRSV, RSVrep Δ -CMVcap and RSVrep Δ -p40cap. There was no change in the amount of Rep52, because in all constructs it was derived from a p19 transcript.

The three capsid proteins VP1, VP2, and VP3 were produced from all helper plasmids in the 1:1:10 ratio 15 observed in a wt AAV infection (Figure 12). Synthesis of all three capsid proteins was enhanced when p40 was replaced by the CMV IE promoter (Figure 12 lane 2 vs. lane 4). However, expression of the rep gene from the RSV LTR appeared to have a down-regulatory effect on cap expression 20 from p40. Thus, the level of capsid protein was reduced for pIMRSV relative to the parental plasmid containing p5 as the promoter regulating expression of rep (pIM45; compare lanes 3 and 2). A similar, but less dramatic effect was observed with capsid protein expression from the 25 CMV IE promoter (lane 5 vs lane 4). In the latter case, a corresponding reduction was also seen in cap mRNA by Northern analysis, suggesting that overexpression of Rep78 results in transcriptional down-regulation of the CMV promoter. Cap protein synthesis was also reduced relative 30 to pIM45 when the rep and cap genes were expressed from separate transcription units as in p5rep Δ -p40cap where the AAVpA signal separates the rep and cap ORFs.

It should be noted that the total level of AAV proteins produced in the transient transfections was comparable to that observed in a wt AAV infection at an MOI of 10. While Rep78, Rep52 and the capsid proteins appeared

at levels similar to that observed in the wt AAV infection when expressed from the AAV promoters (p5, p19 and p40, respectively), expression from the heterologous promoters, RSV LTR and the CMV IE, increased the amount above that observed in the viral infection. This is especially significant when it is considered that transfection efficiency ranges from 20-50% while infection at an MOI of 10 should occur with greater efficiency. This suggests that the concentration of each viral gene product per transfected cell is higher in the transient transfections than in the wt AAV infection.

E. CONSTRUCTION OF PIM-RSVAM AND ANALYSIS OF CAP GENE DOWN-REGULATION.

To analyze further the mechanism of down-regulation of capsid protein expression in the helper plasmids containing an RSV LTR-rep gene cassette, a derivative of pIMRSV was made that contained an amber mutation within the rep ORF (pIMRSV-am). If down-regulation were due to an alteration in cis (i.e. replacement of p5 with the RSV LTR), then it should persist in the amber mutant. In contrast, the down-regulatory effect should be relieved in the mutant if it is dependent upon synthesis of full-length Rep protein.

performed using pIMRSV-am as a helper in the presence and absence of adenovirus (Ad) infection. Nuclear proteins were isolated and analyzed by Western blot (Figure 13). With pIM45 as helper Rep78 appears at a high level in the absence of Ad due to expression of the E1A and E1B genes in 293 cells, hence the apparent lack of induction with the addition of Ad (induction of Rep78 with this construct is observed in HeLa cells). Infection with Ad does result in the appearance of the spliced Rep proteins, Rep68 and Rep40, and a slight increase in the level of Rep52. As

PCT/US96/14423 WO 97/09441

expected, expression of Rep78 from the RSV promoter is unresponsive to Ad infection; the same high level appears in the presence and absence of helper virus coinfection. In cells transfected with pIMRSV-am, a small amount of full-length Rep78 is observed, indicating that the mutation is somewhat leaky. When cells are cotransfected with pIMRSV-am and an amber suppressor tRNA, production of Rep78 is restored to the level observed with pIMRSV. Cotransfection of pIMRSV-am with a Rep-expressing plasmid, pRSVrep, provides a high level of Rep78 in trans.

10

Capsid protein expression was analyzed in parallel (Figure 13). Synthesis of the capsid proteins is significantly enhanced following Ad infection of cells transfected with pIM45. This increase is not observed with pIMRSV (lanes 5 and 6) but does occur with the pIMRSV-am mutant. The pIMRSV phenotype is restored when pIMRSV-am is cotransfected with the suppressor tRNA or when Rep protein is supplied in trans by cotransfection with pRSVrep.

20

25

30

35

15

5

Northern analysis was performed on samples from the same experiment to examine this phenomenon at the RNA level (Figure 14). With pIM45, a relatively low level of p5 transcript (4.2 kb) was observed, but the p19 transcript (3.6 kb) was more prevalent and showed an increase with Ad infection. The spliced transcripts from p5 and p19 (3.9) and 3.3 kb, respectively) were not detected. Replacement of p5 by the RSV LTR resulted in an increase in the 4.2 kb transcript which contributes to the higher levels of Rep78 produced by this construct. Interestingly, the amount of this transcript was augmented further upon introduction of the amber mutation. When synthesis of Rep is restored by cotransfection of a suppressor tRNA (lane 5) or supplied in trans by cotransfection with pRSVrep (lane 6) synthesis of the 4.2 kb transcript is again reduced. These results suggest that transcription from the RSV LTR is down-regulated by Rep.

With pIM45, Ad infection results in a significant increase in both the full-length (2.6 kb) and spliced (2.3 kb) p40 mRNA, mirroring the increase in capsid protein synthesis. The prevalence of p40 transcripts over those derived from p5 and p19 is similar to that observed by Labow et al. (1986) from wt AAV in adenovirus-infected KB In general, the ratios of the two p40 mRNAs are cells. shifted in favor of the spliced 2.3 kb transcript with Ad 10 infection. In contrast to pIM45, no increase in the levels of either the p19 or p40 transcripts is observed with the pIMRSV construct upon Ad infection. Notably, with pIMRSV-am, the increase in capsid protein synthesis observed with Ad infection in the Western analysis (Figure .13, lane 4) is not reflected by an increase in the level of 15 cap mRNA. The level of capsid mRNA observed with pIMRSV-am is similar to that of the parental plasmid, pIMRSV. The same lower level is observed in the cotransfection of pIMRSV-am and the suppressor tRNA and of pIMRSV-am with the 20 Rep-expressing plasmid, pRSVrep. The Northern analysis suggests that the reduced level of capsid protein synthesis observed with pIMRSV might be explained at the RNA level by a failure to activate transcription from p40 in response to Ad infection. Furthermore, these results suggest that the 25 increase in capsid protein production following Ad infection with the pIMRSV-am mutant is a post-transcriptional effect and that the mutation has relieved a Rep-mediated translational inhibitory effect on capsid synthesis.

30

F. <u>raav packaging</u>: <u>comparison of rsvrep and cmvcap</u> HELPER PLASMIDS.

The series of helper plasmids were compared with respect to their ability to produce rAAV. Each was transfected into Ad-infected 293 cells in conjunction with the pTRlacZ vector plasmid and the yield of rAAV in the

5

10

15

20

crude lysate (Table 1) was determined by the titer assay. Increasing capsid protein expression by placing the cap gene under the control of the CMV promoter (p5rep Δ -CMVcap) increased rAAV yield by approximately 9-fold. In contrast, replacing p5 with the RSV LTR in order to enhance rep gene expression resulted in a lower rAAV yield. When the RSV LTR was added to a construct containing p40 (pIMRSV or RSV $rep\Delta-p40cap$), rAAV titers were decreased by 10-20 fold, while the RSVrep∆-CMVcap helper packaged rAAV 5-fold less efficiently than the comparable construct containing p5. These results correlate with differences in capsid protein expression observed in the Western analysis. As described above, a dramatic decrease in Cap protein production was observed as a result of overproduction of Rep 78 with the p40-cap constructs, while a more subtle effect was observed on Cap protein expression from the CMV promoter. The results of these experiments comparing the different helper constructs suggest that Cap, but probably not Rep protein synthesis is a limiting factor in the production of rAAV. The Tables provide the results of experiments showing the feasibility of producing recombinant AAV (rAAV) in the absence of adenovirus by providing the required adenovirus early genes (E1A and E1B, E4, E2A, VA) on plasmids.

Table 1: Shows a comparison of rAAV yield from 25 the conventional production scheme (293 standard conditions) in the presence of adenovirus with that obtained in the absence of adenovirus. In the 'absence of adenovirus' cases, several different cell lines were used. Each cell line is a derivative of the 293 cell line (which 30 contains the adenovirus E1 gene) that has been engineered to also contain the adenovirus E4 gene. The VK2-20 cell line was obtained from Frank Graham, while the other ORF 6 lines (2C4 and 3B1) were generated in-house. Since the VK2-20 and ORF6 lines already contain the E1A, E1B and E4 35 genes, in order to produce rAAV, the E2A and VA genes must be supplied by transfection with the E2A plasmid. E2VA

5'→ 3' and E2VA 3' → 5' are two clones of this plasmid

(with the insert in opposite orientations). (The cells are also transfected with the rAAV vector plasmid and helper plasmid to allow production of rAAV). The conclusion from this experiment is that it is feasible to produce rAAV in the absence of adenovirus and that this strategy yields as much, if not more, than the conventional method.

Table 2 is a summary of the results of large-scale rAAV production using pIM45 and p5rep∆-CMVcap 10 as helper DNAs. Notably, the yield of rAAV IU/cell increases almost 10-fold when the modified helper is used. This result is also reflected in higher titers (both in IU/ml and particles/ml) of the purified material. Shown in 15 the table are IU/ml determined both in the presence and absence of adenovirus (Adts149). As has been reported by others (Ferrari et al., 1996, Fisher et al., 1996), rAAV titers are approximately 1000-fold higher in the presence of an Ad infection. The particle: IU ratio of these preparations is 20-120 (IU +Ad) or $4 - 7 \times 10^4$ (IU -Ad). **20** ' The former value is within the range previously reported (Samulski et al., 1989). While the purification procedure results in a persistent yet variable level of Adts149 contamination (from <103 IU/ml to 107 IU/ml;), the stocks 25 are free of contaminating wt AAV (see below).

TABLE 1. Comparison of Helper Plasmids Containing RSV-Rep and CMV-Cap

SAMPLE		TITER (IU/ml)*	
plM45		6.0 x 10 ⁶	
pIMRSV		3.2 x 10 ⁵	
p5 <i>rep∆-</i> CMV <i>cap</i>	•	5.5 x 10 ⁷	
RSV rep∆–CMV cap	• .	1.0 x 10 ⁷	
p5 <i>rep</i> ∆-p40 <i>cap</i>		1.3 x 10 ⁶	
RSV <i>rep</i> ∆–p40 <i>cap</i>		1.3 x 10 ⁵	
*Shown is the average (-lowest, highest value	•	rate experiments	
293 (standard condition	s) - Ad	0	
293 (standard conditions) +Ad		4.3 x 10 ⁶	
VK2-20 + E2VA 5'>3'	- induction	5.4 x 10 ⁵	
	+induction		
VK2-20 +E2VA 3'>5'	-induction	1.4 x 10 ⁵	
	+induction	7.6 x 10 ⁵	
ORF6 lines +E2VA 5'>	>3' +induction	n+	
1	3B ⁻	3.4×10^7	
•	4B	4.1×10^7	
	3C		
	4A(<u> </u>	
	2C-	4 1.4×10^8	

^{*} lines were induced with dexamethasone (for E4) but not with Zn+2 (for E2).

⁺ ORF6 and E2 expression were induced with Zn+2 and Cd+2

Purification of Recombinant AAV(TRIacZ) Large Scale TABLE 2.

	LYSATE			FINAL	
PLASMID	TITER (IU/mi+Ad)	IU/cell	TITER (IU/ml+Ad)	TITER(IU/ml-Ad)	PARTICLES/ML
pIM45	2.0 × 10 ⁸	8.9	4.3 × 107	8.0 × 104	7.4 x 10 ⁹
p5rep∆ CMVcap	8.9 × 10 ⁸	27	5.2 x 108	4.4 × 105	1.9 x 1010

fection of approximately 1 x 10^9 cells and purified via CsCl gradient centrifugation (see Methods). *shown are the averages of 9 preps for each helper plasmid; these were derived from the trans-

H. ANALYSIS OF REPLICATION AND LEVELS OF WTAAV CONTAMINATION.

5 Hirt analysis was performed on samples from small-scale transient transfections such as those described above to assay replication of the vectors and to assess levels of wtAAV contamination. All of the helper DNAs supported replication of the TRlacZ vector (Figure 15, 10 panel A); however, in each transfection using a helper plasmid containing an RSV LTR-rep cassette, the vector appeared to replicate at a diminished level (the ethidium-bromide stained gel indicated equal amounts of DNA were loaded in each lane). This result might also help to 15 explain the reduced viral yields obtained with the helpers containing RSV-rep. A low level of replication was observed when the amber mutant, pIMRSV-am was used as a helper, confirming, as shown in Figure 13, panel A, that a small amount of full-length Rep protein is synthesized by 20 this mutant. When the same blot was probed with a fragment from the wtAAV genome, no evidence of replicating wtAAV viral DNA was observed (Figure 15, panel C). There was, however, hybridization to high molecular weight DNA in some This could represent cross-hybridization with 25 cellular sequences bearing some homology to the wtAAV probe. However, since no signal appeared in the negative control (mock) lane, an alternative explanation might be that the signal is evidence of integration of the helper DNA into the 293 cell genome. Interestingly, this high 30 molecular weight band appeared only in cells transfected with helpers carrying the p5-rep cassette rather than RSV LTR-rep, suggesting that overexpression of rep might inhibit integration or alternatively, that sequences within p5 (ie. the Rep-binding site or RRS) might be required in cis for integration. Lending support to the integration 35 hypothesis is the observation that no signal appears in cells transfected with the mutant pIMRSV-am, suggesting

that this phenomenon is dependent upon Rep synthesis. Lysates harvested in parallel from these transfections were used to infect a second plate of 293 cells in the presence of Adts149 and Hirt samples were prepared. If in fact a small amount of contaminating wt AAV were present, then the virus should have been amplified upon reinfection. Southern analysis and hybridization with a wtAAV probe (Figure 15, panel D) again showed no evidence of replicating wtAAV viral DNA. When a duplicate blot was probed with a lacZ fragment (Figure 15, panel B), no replicating vector DNA was observed. This latter result is further evidence of the lack of wt AAV since the presence of wt AAV (i.e., rep gene expression) would have allowed vector replication under these conditions.

15

35

10

5

AAV promoters in a standard helper plasmid were substituted with stronger heterologous promoters in order to enhance separately the expression of the Rep and Cap proteins required for rAAV packaging. These experiments 20 showed that rAAV yield was improved by approximately 10-fold when cap gene expression was increased, implying that the level of capsid protein is one limiting factor for production of rAAV. In contrast, rep gene expression is probably not a limiting factor since overexpression of rep 25 did not increase rAAV yield. However, it is not possible to make a definitive conclusion on this issue as increases in Rep protein synthesis were always coupled with reductions in capsid protein production. In the case of the plasmid pRSVrep Δ -CMVcap, however, Cap protein 30 production was diminished only slightly relative to that observed with p5rep Δ -CMVcap (at most 2-fold, but the level was still higher than attained with pIM45) while Rep78 expression was enhanced significantly (approximately 5-fold). Under these conditions, there was no increase in rAAV yield over p5rep Δ -CMVcap; packaging efficiency was in fact slightly reduced. These conclusions conflict with those made based on a previous study (Flotte et al. 1995)

in which use of a construct expressing rep from the HIV LTR (pHIVrep/p40cap) led to a 10-fold increase in rAAV yield compared to a construct in which p5 controlled rep expression (pAAV/Ad).

5

10

15

.20

25

30

35

Another, related factor restricting AAV vector production by the standard protocol is transfection efficiency as the overall level of Rep and Cap protein synthesis is limited both by the number of cells taking up DNA as well as the number of DNA molecules present within each cell. In an attempt to increase transfection efficiency, plasmid DNA has been complexed to replication-competent adenovirus modified with polylysine, resulting in an increase in rAAV packaging of 40-240 fold over the standard calcium phosphate method (Mamounas et al., 1995). A number of modifications to the standard rAAV production procedure were made by Chiorini et al. (1995); instead of transfecting 293 cells with calcium phosphate, COS cells were electroporated with reported transfection efficiencies of up to 90%. The helper plasmid used for those studies also contained an SV40 replicon, presumably increasing the copy number of the rep and cap genes within each transfected cell. By this method, a packaging efficiency of over 103 rAAV particles/cell was achieved. Alternatively, packaging cell lines have been constructed in order to avoid the inefficient transfection step. vector DNA was introduced into a stable cell line, a five-fold improvement in rAAV yield over cotransfection was reported, resulting in 104 particles/cell (Flotte et al., 1995). Clark et al. (1995) have constructed a cell line containing both the vector and AAV rep/cap genes which allows production of rAAV by adenovirus infection alone. This system yields 30 IU/cell (approximately 400 particles/cell), a value which is comparable to that achieved with the improved helper plasmid described here. Given the experience of others, it is likely that the packaging protocol employed in these studies can be further

improved, either by replicating the helper plasmid within the transfected cell or by using the new helper construct to generate a packaging cell line.

5 The effect observed on Cap protein expression resulting from replacement of p5 with the RSV LTR confirmed the work of others with respect to AAV gene regulation. addition to their function in replication, the AAV Rep proteins (primarily Rep78/68; Kyostio et al., 1994; Horer et al., 1995) are known to act as transcriptional 10 regulators. In the absence of an adenovirus infection, Rep proteins repress transcription from AAV promoters (Tratschin et al., 1986, Trempe and Carter, 1988, Beaton et al., 1989, Kyostio et al., 1994) while conversely, they activate transcription from these promoters in response to 15 adenovirus infection (Labow et al., 1986, Tratschin et al., 1986). McCarty et al. (1991) have shown that Rep-mediated activation of the p19 and p40 promoters in the presence of adenovirus is dependent in cis upon sequences located 20 upstream of both p5 and p19. Consistent with this finding was the lack of induction of p40 transcription upon adenovirus infection when p5 was deleted and replaced with the RSV LTR (as in the pIMRSV plasmid). Similarly, there was also no increase in the level of p19 RNA with this construct. The failure to observe induction was due to 25 removal of sequences required in cis since it occurred independently of rep gene expression; transcriptional activation of p40 was not restored (Fig. 4) when Rep protein synthesis was prevented by an amber mutation or when Rep protein was supplied in trans. Relative to pIM45, 30 pIMRSV lacks only 84 bp upstream of p5 (bp 191-275 of the AAV sequence); this deletion is more limited than the one reported by McCarty et al. (1991) (bp 191-320) and thus further defines the location of the putative regulatory region required for Rep activation. The region between bp 35 191 and 275 is known to contain binding sites for the major late transcription factor (USF; Chang et al., 1989), YY1

(Shi et al., 1991) and Rep (McCarty et al., 1994; Kyostio et al., 1995) as well as the p5 TATA box.

Though transcription from the p40 promoter in the 5 pIMRSV-am mutant was not activated by Rep in response to adenovirus infection, Cap protein synthesis was observed to increase. This effect may be attributed to the translational inhibitory activity of Rep. In 293 cells in the absence of an adenovirus infection, Trempe and Carter 10 (1988) observed that the level of p40 mRNA was reduced while CAT protein expression increased in the absence of Rep compared to a rep gene-containing vector. In cells transfected with pIMRSVam, synthesis of the capsid proteins is significantly enhanced with adenovirus infection. This 15 increase, however, occurs without any alteration in the steady-state level of p40 mRNA, indicating that it is a translational effect. In comparison, capsid protein production also increases in cells transfected with pIM45, but in this case, there is a concomitant increase in the 20 level of both the 2.6 kb and 2.3 kb p40 mRNAs. The apparent induction in the synthesis of the capsid proteins with pIMRSVam is a trans effect of the mutation of the rep gene, as it does not occur in any case where the Rep proteins are expressed. Because Rep78 is the major Rep 25 protein produced by pIMRSV, it is presumably the primary mediator of the inhibitory effect, however, a role for Rep68 cannot be ruled out. These results suggest that although adenovirus infection is capable of significantly increasing the efficiency of translation of p40 mRNA (West 30 et al., 1987; Janik et al., 1989), this effect can be counteracted by the Rep proteins. It is not clear whether translational inhibition in the presence of adenovirus occurs as a normal function of Rep or if it is an artifact of overexpression of the rep gene in the pIMRSV construct. 35 Alternatively, inhibition may occur only when the level of p40 mRNA is low and can be overcome when transcription from p40 normally increases with adenovirus infection.

Induction of transcription from p40 was prevented in this case by removal of sequences upstream of p5.

These experiments have provided further evidence 5 of the ability of the Rep proteins to act as repressors of expression from heterologous promoters. The Rep proteins are known to down-regulate expression of several heterologous genes (Labow et al., 1987; Antoni et al., 1991; Rittner et al., 1992; Oelze et al., 1994; Horer et al., 1995). In the experiments described here, expression 10 of the cap gene from the CMV IE promoter as well as the rep gene from the RSV LTR were both down-regulated by Rep. Rep has previously been shown reduce the level of expression of the cat gene from the CMV IE promoter (Heilbronn et al., 15 1990); similar to the results obtained here, this effect was minor (approximately 2-fold). For both the CMV IE and RSV LTR promoters, inhibition occurred at the RNA level, though since steady-state levels of RNA were assayed by the Northern analysis, the effect could be either at the level of transcription or mRNA stability. Down-regulation at the 20 RNA level has also been demonstrated in the case of the HIV LTR and HPV18 URR promoters and has been attributed primarily to Rep 78/68 (Antoni et al., 1991; Horer et al., 1995).

25

35

The following examples are intended to illustrate the invention without limiting the scope thereof.

EXAMPLE 1: RECOMBINANT AAV PRODUCTION USING A NON30 REPLICATING HELPER PLASMID CONTAINING AAV HELPER GENES

An experiment was performed to determine if a helper plasmid providing the AAV rep and cap genes on a nonreplicating plasmid and using heterologous promoters for gene expression would increase AAV vector titer above that derived from controls in which the rep and cap genes are

expressed from their own promoters. The helper plasmids tested are shown in FIGURE 7.

pIM45 contains the AAV rep and cap genes under
the control of the native AAV promoters, and the AAV polyA
site at the 3' end (McCarty, D.M. et al., J. Virol. 65:29362945, 1991).

pRSVrep-p40cap and pRSVrep-CMVcap were

constructed by deleting the cap region from pIM45 using PCR to delete nucleotides 2287-4049 in the AAV genome, resulting in the generation of pRep*30. A PCR fragment isolated from pRep*30, nucleotides 275-4464, containing NheI and NotI ends, was cloned in between the NheI and NotI sites in pRep9 (Invitrogen, San Diego, CA) to make pRSVrep. An XbaI (filled in)-SfiI fragment from pRSVrep was cloned into SmaI and SfiI digested pIM45 to make pRSVrep-p40cap. This same XbaI (filled in)-SfiI fragment from pRSVrep was cloned into SmaI and SfiI digested pIM-CMVcap (see below) to make pRSVrep-CMVcap.

pIM-CMVcap was constructed by introducing 3 point mutations at positions 1823 (T:C), 1826 (A:C) and 1832 (G:A) within the AAV genome to inactivate the p40 promoter.

25 pCMVcapB was generated by inserting a PCR fragment containing nucleotides 1850-4460 from the AAV genome and BamHI ends into the BamHI site of pCMVB (Clontech, Palo Alto, CA). An SphI fragment containing the CMV promoter was isolated from pCMVcapB and was inserted into the SphI site at position 930 within pIM45 to make pIM-CMVcap.

The helper plasmids were transfected into 293 cells at a ratio of 10:1 helper/vector (16.5 μ g/total DNA). The AAV vector plasmid used was pTR-lacZ, which was developed by Dr. Nicholas Muzyczka, University of Florida. The plasmid is shown in FIGURE 8. Isolation and

35

PCT/US96/14423 **WO 97/09441**

purification of the AAV vector was performed as described in Section 4, supra.

The AAV yield was titered by coinfecting 293 cells with helper adenovirus and the AAV. This reduced the infection time, therefore increasing the sensitivity of the assay. For the titer, 293 cells were plated in 96-well plates, at 5x105 cells/ml. (100µl/well) in DMEM/10% FBS (with penicillin/streptomycin and glutamine) and allowed to grow for one day at 37°C. The cells were then coinfected with Adts149 virus using an MOI of 20, and with the AAV at dilutions of 1:100, 1:200 and 1:400 etc. of the viral preparatory stock. The different dilutions were used in order to ascertain the titer.

15

20

30

10

'After the infection was allowed to progress for two days at 39°C, the medium was aspirated, the cells were incubated with 3.7% formaldehyde for 5 minutes and washed. with Phosphate Buffer Saline (PBS). The cells were then stained with X-Gal (5-Bromo-4-Chloro-3-Indoly1-6-Dgalactopyranoside) at 37°C for 1-24 hours and screened for the presence of blue coloration in cells in order to detect the expression of the lacz gene contained in the AAV vector. A conversion using the Titer Analysis program, which is based on determining the endpoint dilution, was used for determination of the titer in IU/ml.

A Western blot analysis was performed to determine the levels of rep and cap protein expression using the various helper plasmids (and specific clones) shown in FIGURE 7. FIGURE 9 shows a Western blot analysis of rep protein expression, while FIGURE 10 shows a Western blot analysis of cap protein expression. Standard techniques were used in the Western blot analysis (Current 35 Protocols in Molecular Biology, Ausubel, F. et al., eds., Wiley and Sons, New York, 1995).

The titer data is shown in TABLE 3. The titer of vector stock is given in IU/ml. The experiment demonstrates that increased levels of cap expression in particular, as evidenced by the Western blot, leads to increased production of the AAV vector, pTRlacZ, as evidenced by the titers shown.

TABLE 3

10

COMPARISON OF HELPER PLASMIDS CONTAINING RSV-REP AND CMV-CAP:LYSATE TITERS				
SAMPLE	TITER (IU/ML)			
mock	0			
pIM45	1.7×10^6			
pIM-CMVcap	3.2×10^7			
pRSVrep-p40cap clones				
1-8	2.4 x 10 ⁶			
2-1	2.2 x 10 ⁵			
3-14	3.6 x 10 ⁵			
8-1	1.5 x 10 ⁵			
pRSVrep-CMVcap clones				
1-10	1.4×10^7			
2-4	4.9 x 10 ⁶			
3-12	1.9×10^{7}			
8-14	1.2×10^7			

EXAMPLE 2: CELL LINES, VIRUSES AND PLASMID DNA.

The 293 cell line, an adenovirus 5-transformed 5 human embryonic kidney cell line (Graham et al., 1977) was propagated in Dulbecco's modified Eagle's medium-high glucose (DME; Irvine Scientific) supplemented with 10% fetal bovine serum (FBS; Irvine Scientific, Santa Ana, CA), 20 mM glutamine, 100 units/ml penicillin and 100 µg/ml streptomycin (Gibco-BRL, Gaithersburg, MD) at 37°C and 5% 10 CO₂. The adenovirus type 5 mutant, ts149 (Ad5ts149; Ensinger and Ginsberg, 1972) used as a helper virus in these studies has reduced ability to replicate viral DNA at the nonpermissive temperature (39°C) due to a 15 temperature-sensitive mutation in the DNA polymerase encoded by adenovirus early region 2 (Stillman et al., 1982). Ad5ts149 was grown in 293 cells at the permissive temperature (33°C) and purified by CsCl gradient centrifugation.

20

25 ·

30

Plasmid DNA encoding the recombinant AAV vector, pTRlacZ, as well as the helper plasmid, pIM45 (McCarty et al., 1991), were generously provided by N. Muzyczka (Univ. of Florida). pTRlacZ consists of the E.coli LacZ gene (cytoplasmic) under the transcriptional control of the CMV IE promoter, inserted between the terminal repeats of AAV. The plasmid encoding the amber suppressor tRNA, pSVtsSu* (amber) (Capone et al., 1985) was obtained from U. L. RajBhandary (MIT). pNTC3, an AAV genomic clone containing an amber mutation within the rep coding region (Chejanovsky and Carter, 1989) was kindly provided by R. Owens (NIH).

A. PLASMID CONSTRUCTION.

Using pIM45 as the starting plasmid, the endogenous AAV promoters, p5 and p40 were replaced with the

Rous Sarcoma Virus long terminal repeat (RSV LTR) and CMV IE promoter, respectively. All manipulations were carried out following standard cloning procedures (Sambrook et al., 1989). All restriction and DNA-modifying enzymes were obtained from New England Biolabs (Beverly, MA) and used according to the manufacturer's specifications. Plasmid DNAs were purified using kits obtained from Qiagen (Chatsworth, CA).

5

35

The CMV IE-cap cassette was constructed by first amplifying a DNA fragment consisting of AAV genomic sequences between bp 1852 and 4440 (encoding the capsid proteins and including the AAV mRNA polyadenylation site) via PCR (Saiki et al, 1988) using Vent polymerase (New England Biolabs, Beverly, MA). This fragment was inserted between the BamHI sites of pCMVG (Clontech, Palo Alto, CA) to generate the plasmid pCMVcap.

To derive a minimal Rep-encoding sequence, rep 20 gene sequences between the BamHI site (bp 1045) and ApaI site (bp. 2283) were PCR-amplified and inserted within the pIM45 plasmid digested with BamHI and ApaI. The result was a deletion between bp 2283 (just downstream of the Rep termination codon) and the ApaI site at bp 4049. This 25 plasmid, pIMrepA, was used to generate a construct in which Rep78/68 are expressed from the RSV LTR. A 2.4 kb rep gene fragment extending from bp 276 (just upstream of the Rep78/68 mRNA initiation codon) to bp 4459 was PCR-amplified from pIMrepA and inserted between the NheI 30 and NotI sites of the pRep9 expression vector (Invitrogen, San Diego, CA) to create pRSVrep.

Because the Rep and Cap protein coding sequences overlap in the region of the AAV intron, there is 431 bp in common between the rep and cap gene cassettes (between bp 1852 and 2283) of pIMrepA and pCMVcap. Prior to insertion of the CMV IE-cap fragment into pIMrepA to create

p5rep∆-CMVcap, p40 sequences within pIMrep∆ were mutated to inactivate the promoter. This was done to prevent the generation of wild-type AAV as a consequence of recombination between the shared sequences. Mutagenesis was carried out by overlap extension PCR (Higuchi et al., 1988). pIMrep∆ was used as a template for the first PCR using flanking primer-1 (5'-GGATTACCTCGGAGAAGCAGTGGATCC-3'; bp 1024-1050 of the AAV genome) and mutagenic primer-1 (5'-GTTTGGGTTCACTGATGTCTGCGTCACTG-3'; AAV bp 1821-1841; mutated nucleotides are underlined). The result is the 10 introduction of three base pair mutations in the region of the p40 TATA box: from TATAAGTGAG to CATCAGTGAA. The G to A change ablates a BanII site to enable screening by restriction analysis. pIMrepA was also used as a template for the second PCR using flanking primer-2 (5'-15 GTGTGGAATCTTTGCCCAGATGGGCCCGGTTT-GAGCTTC-3'; AAV bp 2260-2283, 4049-4066) and mutagenic primer-2 (5'-CAGTGACGCAGACATCAGTGAACCCAAACG-3'; AAV bp 1821-1841). After gel purification of the above PCR products, a third PCR was performed by annealing the two earlier products and 20 carrying out a final amplification step using only the flanking primers, thereby generating a 1285 bp DNA fragment. This fragment was digested with BamHI and ApaI and cloned into the corresponding sites of the pIMrepA 25 backbone. The resulting plasmid was pIMrep $\Delta/p40\Delta$. helper plasmid p5repA-CMVcap was constructed by inserting a SphI fragment from pCMVcap containing the CMV IE promoter and cap gene cassette into the unique SphI site of pIMrep Δ /p40 Δ . Similarly, in order to construct 30 p5rep Δ -p40cap, a PCR fragment with SphI ends extending from AAV bp 1715 to 4461 was generated from pIM45 and cloned into the SphI site of pIMrep Δ /p40 Δ .

The p5 promoter regions in the plasmids pIM45,
p5repΔ-CMVcap and p5repΔ-p40cap were replaced with the RSV
LTR promoter by first cleaving pRSVrep with XbaI. The XbaI site was made blunt with DNA PolymeraseI-Klenow fragment

and the DNA was restricted with SfiI to release a fragment containing the RSV promoter and the 5' end of the rep gene. This fragment was then cloned between the SmaI and SfiI sites of the parental plasmid.

5

10

To introduce an amber mutation into pIMRSV, a SfiI-BamHI fragment containing the mutation (at bp 1033 of the AAV genome) was isolated from the plasmid pNTC3 (Chejanovsky and Carter, 1989) and cloned into the corresponding sites of pIMRSV.

EXAMPLE 3: TRANSIENT TRANSFECTIONS AND ANALYSIS OF rAAV REPLICATION AND PACKAGING.

15 For small-scale experiments, 293 cells were seeded at a density of 1 x 10⁶ cells per 6 cm dish 48 hours before transfection. The cells were infected with Ad5ts149 in DME-10% FBS at a multiplicity of infection (MOI) of 20 for 1 hour at 37°C prior to transfection. Transfection procedures were carried out using the calcium phosphate 20 ProFection kit (Promega, Madison, WI) according to manufacturer's instructions. In general, for rAAV packaging, each dish received a mix of 1.5 µg vector DNA (i.e. pTRlacZ) and 15 µg of helper DNA. Following 25 incubation at 37°C for 5 hours, the infection/transfection was terminated by replacing the media with fresh DME-10% FBS; the dishes were then transferred to 39°C (the non-permissive temperature for Ad5ts149).

For analysis of rAAV packaging, cells were harvested at 48 hours post-transfection by low-speed centrifugation in a clinical centrifuge. The pellet from each dish was resuspended in 100 μl phosphate-buffered saline (PBS) and freeze-thawed four times to liberate the rAAV. Adenovirus was heat-inactivated by incubating the lysate at 56°C for 30 minutes. The lysate was subjected to

a second low-speed spin to pellet cellular debris and the supernatant was collected. The rAAV titer was determined on 293 cells (+/- coinfection with Ad5ts149; MOI=20) by endpoint dilution. Following staining of the cells with X-gal (5-bromo-4-chloro-3-indoyl-ß-D-galacto-pyranoside) for 20-24 hours, titers were calculated using a computer program based on Karber's method (Lynn, 1992).

5

30

35

Replication of vector DNA in transfected cells 10 was assayed by isolating extrachromosomal DNA 48 hours post-transfection according to the Hirt fractionation method (Hirt, 1967). DNAs were restricted with DpnI (to digest input DNA) prior to agarose gel electrophoresis and Southern analysis. The lacZ and wild-type AAV probes used 15 were both 50-mer oligonucleotides, 5'-ACTGCTGCCAGGCGCTG ATGTGCCCGGCTTCTGACCATGCGGTCGCGTTC-3' and 5'-TCGGAGGAAGC AAGGTGCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAG-3' (AAV nucleotides 1501-1550), respectively. These were labelled with $[\gamma-^{32}P]$ ATP using T4 polynucleotide kinase according to standard 20 procedures (Sambrook et al., 1989). The filter was hybridized and washed as described below for the Northern blot analysis, except that the prehybridization, hybridization and final wash step were at 60°C.

25 A. PROTEIN EXTRACTION AND IMMUNOBLOTTING.

For analysis of Rep and Cap protein expression from the various helper plasmids, 293 cells were first transfected as described above. Nuclear fractions were prepared 48 hours post-transfection according to the procedure described by Mendelson et al. (1986). Sample volumes were normalized according to DNA content (by optical density at 260 nm), mixed with 15-20 µl of sample buffer (500 mM Tris-HCl, pH 6.8, 10% sodium dodecyl sulfate (SDS), 20 mM EDTA, 10% ß-mercaptoethanol, 10% glycerol, and

0.2% bromophenol blue), and boiled for 5 minutes prior to loading.

Following electrophoresis in 10% polyacrylamide/0.1% SDS gels, proteins were transferred 5 from the gel to Hybond polyvinylidene difluoride (Amersham, Arlington Heights, IL) membranes. Prior to staining, the filters were blocked for 1 hour at room temperature in 5% milk powder dissolved in TBST (10 mM Tris HCl, pH 8.0, 150 mM NaCl and 0.05% Tween 20). The primary antibodies used 10 for Rep and Cap Westerns were both mouse monoclonals (American Research Products, Belmont, MA): anti-AAV Rep protein, 303.9 (used at a dilution of 1:10 in TBST) and anti-VP1, VP-2 and VP-3 of AAV, B1 (used at a dilution of 1:5 in TBST), respectively. These were incubated on the 15 filter for 2 hours at room temperature with vigorous shaking. Following a wash step in TBST (3 x 15 minutes), the filter was incubated in the secondary antibody, goat anti-mouse IgG (Fab-specific) peroxidase conjugate (Sigma, St. Louis, MO), for 1 hour at room temperature. 20 The filter was then washed as before and developed using the ECL kit (Amersham).

B. ISOLATION OF RNA AND NORTHERN ANALYSIS.

25

30

35

Total RNA was isolated from transfected 293 cells using RNAzol B (Tel-Test, Inc., Friendswood, TX) according to the manufacturer's instructions. Prior to electrophoresis, 10 µg of each RNA was combined with denaturation cocktail (50% DMSO, 10% formaldehyde, 20 mM MOPS (morpholinepropanesulfonic acid), pH 7.0, 10 mM sodium acetate, 1 mM EDTA) and loading dyes (5% glycerol, 0.1 mM EDTA, 0.04% bromophenol blue, 0.04% xylene cyanol) and heated at 65°C for 15 minutes. Electrophoresis was through a 1% agarose/ 0.65% formaldehyde gel assembled and run in MOPS running buffer (20 mM MOPS, pH 7.0, 10 mM sodium acetate, 1 mM EDTA). Transfer to GeneScreen nylon membrane

(NEN-DuPont, Boston, MA) was carried out by capillary action overnight in 10 x SSC (1.5 M NaCl, 0.15 M sodium citrate; Sambrook et al., 1989).

The filters were prehybridized for 4-5 hours at 65°C and then hybridized with probe overnight at 65°C in hybridization buffer (5 x SSC, 0.5% SDS, 5 x Denhardt's solution (Sambrook et al., 1989), 100 μg/ml denatured salmon sperm DNA). The probe was a 1.6 kb HincII fragment of pIM45 (AAV bp 2397 to 3987) labelled with [α-32P]dATP (specific activity, 3,000 Ci/mmol; NEN-DuPont, Boston, MA) using a random primer labelling kit (Stratagene, La Jolla, CA). The filter was washed for 5 minutes at room temperature in 2 x SSC, 0.5% SDS, 15 minutes at room temperature in 2 x SSC, 0.1% SDS, and then for 2 hours in 0.1 x SSC, 0.5% SDS at 65°C and exposed to film.

C. LARGE-SCALE TRANSFECTION AND TAAV PURIFICATION.

Prior to transfection of 293 cells for large-scale growth of rAAV the cells were seeded in roller bottles such that they would reach 60-80% confluence on the day of transfection (final density was approximately 1 x 10% cells/bottle). Transfection was carried out in OptiMem media (Gibco-BRL Life Technologies, Gaithersburg, MD) using lipid #53:DOPE (Lee et al., 1996), 22 μg of vector DNA and 218 μg of helper DNA per bottle. Cells were infected with Ad5ts149 at a MOI of 20 at the time of transfection and incubated at 39°C for 48 hours prior to harvest.

30

35

At the time of harvest, cells were dislodged from the bottles by gentle shaking. The cells were pelleted by centrifugation in a Sorvall RC-3B swinging bucket rotor (2500 rpm, 4°C, 15 minutes) and frozen. For purification of rAAV, the cells were resuspended in PBS containing 2 mM MgCl₂, 0.7 mM CaCl₂, 10% glycerol, and 0.1% Tween.

Benzonase® (Nycomed Pharma A/S, Copenhagen, Denmark) was added (10 μ l/1 x 108 cells) and the suspension was incubated with shaking for 1 hour at room temperature. Trypsin (Gibco-BRL Life Technologies) was added to a final concentration of 0.25% and the suspension was incubated again with shaking for 1 hour at room temperature. The cell debris was collected by centrifugation (3000 rpm, 15 minutes, 4°C in Sorvall RC-3B) and the lysate was filtered through a 0.45 μ M filter.

10

15

20

5

The lysate was then subjected to centrifugation through a CsCl step gradient (4 hours, 26K rpm, 4°C, SW28 rotor) in which the top and bottom layers were 1.37 g/ml and 1.5 g/ml CsCl, respectively. The top layer was collected (between the CsCl interface and the Ad5ts149 band), adjusted to 1.41 g/ml CsCl, and centrifuged through a 1.41g/ml CsCl equilibrium gradient (16-20 hours, 4°C, 35,000 rpm, NVT.65 rotor). Fractions were collected and assayed on a refractometer; fractions with a density of 1.36-1.41 were pooled and dialyzed against PBS/1% sucrose for 6 hours at 4°C. Sucrose was added to a final concentration of 5% and the purified virus was stored in aliquots at -80°C.

D. CHARACTERIZATION OF PURIFIED rAAV STOCKS.

The purified rAAV stock was titered for rAAV in the presence and absence of Ad5ts149 (MOI=20) by endpoint dilution as described above. The titer of contaminating Ad5ts149 was determined in a similar manner except staining was for hexon using anti-adenovirus (hexon) /FITC conjugate (Chemicon, Temecula, CA). The level of contaminating wild-type AAV was assayed using the infectious center assay as described (Einerhand et al., 1995).

35

30

AAV particle titer was quantitated using a procedure modified from Samulski et al. (1989). The purified rAAV sample was first treated with proteinase K in 0.1% SDS at 37°C for 3 hours. Appropriate dilutions as well as standard curve DNAs (for TRlacZ virus, pTRlacZ DNA 5 was used as a standard) were treated with denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 10 minutes at room temperature and a 1 ml volume was applied to a GeneScreen Plus (Amersham) membrane using a slot blot apparatus (Schleicher and Schuell, Keene, NH). After loading, the 10 slot was washed with 300 µl of 0.5 M ammonium acetate, pH 5.2. The filter was dried and hybridized as described above. The probe (a PvuII fragment of pTRlacZ) was labelled using the Prime-It Fluor labelling kit 15 (Stratagene, La Jolla, CA). Following a series of washes as described above (except the final wash at 65°C was for 10 minutes), the filter was developed with the Illuminator detection kit (Stratagene). Particle concentrations were estimated by comparing the sample signal with that of the 20 standard curve.

EXAMPLE 4: GENERATION OF CELL LINES

plasmid pREP-7 (Invitrogen, San Diego, CA), contains the EBV origin of replication and the EBNA-gene for plasmid extrachromosomal maintenance and the hygromycin resistance gene for DNA selection. To construct pREP/MT/DBP, the RSV promoter of pREP-7 was replaced with the metallothionein (MT) promoter, which is induced by heavy metals. The E2A gene encoding DNA binding protein (DBP) was cloned downstream of the MT promoter.

Generation of 293/MT/DBP Cell Line. 293 cells

were transfected with pREP/MT/DBP clone 0.5 via calcium

phosphate transfection. Transfected cells were selected

for 6 weeks with hygromycin; selected cells were clonally

expanded and judged on the basis of DBP expression (via immunofluorescence) after induction and ability to complement E1-/E2A vectors.

3B1 and 2C4 Cell Lines: The parental plasmid contains an expression cassette for adenovirus E4 6 and 6/7 open reading frames (ORFs). The promoter used to drive expression is a mutant human metallothionein promoter which has a low level basal activity. (Makarov et al., Nuc. Acids Res. 22(8):1504-1505 (1994)).

Both 3B1 and 2C4 cell lines were derived from 293 cells which are human embryonic kidney cells that have been transformed with the E1 region of Adenovirus Type 2. Both 15 3B1 and 2C4 have the ability to complement recombinant adenovirus vectors that are deleted for E1 and E4. The cell lines contain a mutant human metallothionein promoter and SV40 splice and polyadenylation signals to drive expression of adenovirus type 2 E4 open reading frames 6 20 and 6/7 (adenovirus nucleotides 34082-32913). For complementation of E4 functions, the expression of ORFs 6 and 6/7 can be induced by the addition of 100µM Zn2+, 2µM Cd²⁺. Briefly, 293 cells were transfected with the parental plasmid. The cells were cotransfected with 25 pSV2Neo so that individual clones could be selected with G418.

EXAMPLE 5: TRANSGENIC MICE WITH AAVS1 INTEGRATION LOCUS.

- Characterization of a preferred site on human chromosome 19 for integration of adeno-associated virus DNA by non-homologous recombination. 700-800 CD-1 mice were injected with a purified DNA fragment (0.7 kb EcoRI-SacI fragment of AAVS1; Kotin et al., EMBO J.
- 11:5071-5078). 550-600 eggs survived and were cleaved.

 19 mice were implanted with injected eggs and 148 pups were born.

Chromosomal DNA was isolated from mouse tails and was screened by Southern analysis. Six positive mice were found (#66, 73, 85, 93, 123, 147) (Table 4).

5

Table 4. Screening of Fo mice

Mouse #	Copy #	Sex	Restriction Enzyme(s)			
66	<5	male	AvaI			
73	<5	female	AvaI, BamHI			
85	<5	male	AvaI; BamHI			
93	<5	female	AvaI			
123	10-20	female	AvaI			
147	<5	female	AvaI			
Note: Cor	Note: Copy # estimated due to probable mosaic nature					

of mice

Positive Fo were mated with wt CD-1 mice and produced seventy-two F1 pups. Chromosomal DNA from F1 progeny was isolated and was screened using PCR (250 bp fragment produced by positive samples in the presence of DMSO) (Table 5). Based on the results of the screening, a total of 43 mice were kept (Table 6).

Table 5. Screening of F1 progeny

F ₀	Se	# of	Positive by PCR			Negati	Negatives Kept	
	×	pups	Total	Sex:#	(%)	Total	Sex:#	
#66	М	27	9	F:6	(33)	2	F:1	
				M:3			M:1	
#73	F	14	11	F:6	(79)	2	F:1	
				M:5			M:1	
#85	M	5	4	F:0	(80)	1	M:1	
				M:4				
#123	F	12	5	F:1	(29)	3	F:1	
				M:4	•		M:2	
#147	F	14	4	F:3	(29)	2	F:1	
				M:1			M:1	
TOTAL	6	72	33			10		
			TOTAL #	MICE KEP	T = 43	pos.+ a	nd neg)	

TABLE 6

AAV-1-66 M	AAV-1-73 F	AAV-1-85 M	AAV-1-123 F	AAV-1-147 F
Offspring #	Offspring*	Offspring #	Offspring #	Offspring #
(Sex) +/-	(Sex) +/-	(Sex) +/-	(Sex) +/-	(Sex) +/-
•	•	·		
149(F) -	176(F) +	190(M) +	195(M) -	205 (M) -
154(F) +	177 (F) +	191(M) +	196(M) +	208 (M) +
155(F) +	178(F) +	192(M) -	197 (M) -	211(F) +
157(F) +	179(F) +	193 (M) +	200 (M) +	212(F) +
159 (M) -	180(F) -	194(M) +	201 (M) +	213 (F) +
164 (M) +	181(F) +		202(F) +	214(F) -
165 (M) +	182 (F) +		203(F) -	
170 (M) +	183 (M) -			
171(F) +	184 (M) +			
172(F) +	186 (M) +			
174(F) +	187 (M) +			
		004		
	189 (M) +			

A. ESTABLISHMENT OF PRIMARY CULTURES FROM F1 TRANSGENICS.

5

10

Briefly, tail samples were chopped and trypsinized as with previous samples. Free cells and cell chunks were placed 6-well dishes (one well/tail) in 10% calf serum in DMEM. Analysis of cell 4 days after indicated several attached cells had a fibroblast-like morphology. At that point the cell chunks were removed and replaced with fresh media. Cells from the primary F1 cultures are infected with AAV (10 MOI) (AAV titer 9 x

10E9/ml= 9 x 10E6/ul) (1 x 10⁶ cell/plate). 48 hours post-infection cells are harvested and subjected to Hirt analysis.

5 Table 7. Evaluation of Chromosomal Integration

PARENT	INTEGRATION	LOCUS
	Positive +	Negative -
AAV-1-66	+	
	+	
		-
AAV-1-73	+	
	+	,
AAV-1-85	+	
	+	
AAV-1-123	+	
	+	
·	-	
AAV-1-147	+	
	+	
	AAV-1-73 AAV-1-85	Positive + AAV-1-66 + AAV-1-73 + + AAV-1-85 + + AAV-1-123 + - AAV-1-1247 +

Although the invention has been described with reference to the disclosed embodiments, it should be understood that various modifications can be made without

10

departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

REFERENCES

Antoni, B. A., A. B. Rabson, I. L. Miller, J. P. Trempe, N. Chejanovsky and B. J. Carter. 1991. Adeno-associated virus Rep protein inhibits human immunodeficiency virus type 1 production in human cells. J. Virol. 65:396-404.

Beaton, A., P. Palumbo and K. I. Berns. 1989. Expression from the adeno-associated virus p5 and p19 promoters is negatively regulated in *trans* by the rep protein. J. Virol. 63:4450-4454.

Berns, K. I. and R. M. Linden. 1995. The cryptic life style of adenoassociated virus. BioEssays 3:237-245.

Blacklow, N. R., M. D. Hoggan, A. Z. Kapikian, J. B. Austin, and W. P. Rowe. 1968. Epidemiology of adeno-associated virus infection in a nursery population. Am. J. Epidemiol. 8:368-378.

Capone, J. P., P. A. Sharp, and U. L. RajBhandary. 1985. Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J. 4: 213-221.

Carter, B. J. 1992. Adeno-associated virus vectors. Curr. Opin. Biotech. 3:533-539.

Chang, L.-S., Y. Shi and T. Shenk. 1989. Adeno-associated virus p5 promoter contains an adenovirus E1A inducible element and a binding site for the major late transcription factor. J. Virol. 63:3479-3488.

Chejanovsky, N. and B. J. Carter. 1989. Replication of a human parvovirus nonsense mutant in mammalian cells containing an inducible amber suppressor. Virology 171: 239-247.

Cheung, A. K. M., M. D. Hoggan, W. W. Hauswirth and K. I. Berns. 1980. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J. Virol. 33:739-748.

Chiorini, J. A., C. M. Wendtner, E. Urcelay, B. Safer, M. Halles, and R. M. Kotin. 1995. High-efficiency transfer of the T cell co-stimulatory molecule B7-2 to lymphoid cells using high-titer recombinant adeno-associated virus vectors. Human Gene Therapy 6:1531-1541.

Clark, K. R., F. Voulgaropoulou, D. M. Fraley and P. R. Johnson. 1995. Cell lines for the production of recombinant adeno-associated virus. Human Gene Therapy 6:1329-1341.

Einerhand, M. P. W., M. Antoniou, S. Zolotukhin, N. Muzyczka, K. I. Berns, F. Grosveld, and D. Valerio. 1995. Regulated high-level human β-globin gene expression in erythroid cells following recombinant adenoassociated virus-mediated gene transfer. Gene Therapy 2:336-343.

Ensinger, M. J. and H. S. Ginsberg. 1972. Selection and preliminary characterization of temperature-sensitive mutants of type 5 adenovirus. J. Virol. 10:328-339.

Ferrari, F. K., T. Samulski, T. Shenk and R. J. Samulski. 1996. Second-Strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated vrus vectors. J. Virol. 70:3227-3234.

Fisher, K. J., G.-P. Gao, M. D. Weitzman, R. DeMatteo, J. F. Burda, and J. M. Wilson. 1996. Transduction with recombinant adeno-associated vrus for gene therapy is limited by leading -strand synthesis. J. Virol. 70: 520-532.

Flotte, T. R., S. A. Afione, C. Conrad, S. A. McGrath, R. Solow, H. Oka, P. L. Zeitlin, W. B. Guggino and B. J. Carter. 1993. Stable in vivo expression of the cystic fibrosis transmembrane regulator with an adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 90:10613-10617.

Flotte, T. R. and B. J. Carter. 1995. Adeno-associated virus vectors for gene therapy. Gene Therapy 2:357-362.

Flotte, T. R., X. Barraza-Ortiz, R. Solow, S. A. Afione, B. J. Carter ad W. B. Guggino. 1995. An improved system for packaging recombinant adenoassociated virus vectors capable of in vivo transduction. Gene Therapy 2:29-37.

Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59-74.

Halbert, C. L., I. E. Alexander, G. M. Wolgamot, and A. D. Miller. 1995. Adeno-associated vectors transduce primary cells much less efficiently than immortalized cells. J. Virol. 69:1473-1479.

Handa, H., K. Shiroki, and H. Shimojo. 1977. Establishment and characterization of KB cell lines latently infected with adeno-associated virus type 1. Virology 82:84-92.

Heilbronn, R., A. Burkle, S. Stephan and H. zur Hausen. 1990. The adeno-associated virus *rep* gene suppresses herpes simplex virus-induced DNA amplification. J. Virol. 64:3012-3018.

Higuchi, R., B. Krummel, and R. K. Saiki. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nuc. Acids. Res. 16:7351-7367.

Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26:365-369.

Holscher, C., M. Horer, J. A. Kleinschmidt, H. Zentgraf, A. Burkle and R. Heilbronn. 1994. Cell lines inducibly expressing the adenoassociated virus (AAV) *rep* gene: requirements for productive replication of *rep*-negative mutants. J. Virol. 68:7169-7177.

Holscher, C., J. A. Kleinschmidt and A. Burkle. 1995. High-level expression of adeno-associated virus (AAV) Rep78 or Rep68 protein is sufficient for infectious particle formation by a rep-negative AAV mutant. J. Virol. 69:6880-6885.

Horer, M., S. Weger, K. Butz, F. Hoppe-Seyler, C. Geisen and J. A. Kleinschmidt. 1995. Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters. J. Virol. 69:5485-5496.

Janik, J. E., M. M. Huston, K. Cho and J. A. Rose. 1989. Efficient synthesis of adeno-associated virus structrual proteins requires both adenovirus DNA binding portein and VA1 RNA. Virology 168:320-329.

Kaplitt, M. G., P. Leone, R. J. Samulski, X. Xiao, D. W. Pfaff, K. L. O'Malley and M. J. During. 1994. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genetics 8:148-153.

Kotin, R. M., M. Siniscalco, R. J. Samulski, X. Zhu, L. Hunter, C. A. Laughlin, S. McLaughlin, N. Muzyczka, M. Rocchi, and K. I. Berns. 1990. Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 87:2211-2215.

Kotin, R. M. 1994. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum. Gene Therapy 5:793-801.

Kyostio, S. R. M., R. A. Owens, M. D. Weitzman, B. A. Antoni, N. Chejanovsky and B. J. Carter. 1994. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels. J. Virol. 68:2947-2957.

Kyostio, S. R. M., R. S. Wonderling and R. A. Owens. 1995. Negative regulation of the adeno-associated virus (AAV) p5 promoter involves both the p5 Rep binding site and the consensus ATP-binding motif of the AAV Rep68 protein. J. Virol. 69:6787-6796.

Labow, M. A., P. L. Hermonat and K. I. Berns. 1986. Positive and negative autoregulation of adeno-associated virus type 2 genome. J. Virol. 60:251-258.

Labow, M. A., L. H. Graf and K. I. Berns. 1987. Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes. Mol. Cell. Biol. 7:1320-1325.

Laughlin, C. A., C. B. Cardellichio and J. C. Coon. 1986. Latent infection of KB cells with adeno-associated virus type 2. J. Virol. 60: 515-524.

Lebkowski, J. S., M. M. McNally, T. B. Okarma and L. B. Lerch. 1988. Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol. Cell. Biol. 8: 3988-3996.

Lee, E. R., J. Marshall, C. S. Siegel, C. Jiang, N. S. Yew, M. R. Nichols, J. B. Nietupski, R. J. Ziegler, M. Lane, K. X. Wang, N. C. Wan, R. K. Scheule, D. J. Harris, A. E. Smith and S. H. Cheng. 1996. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum. Gene Ther. in press.

Lynn, D. E. 1992. A BASIC computer program for analyzing endpoint assays. BioTechniques 12:880-881.

Mamounas, M., M. Leavitt, M. Yu, and F. Wong-Staal. 1995. Increased titer of recombinant AAV vectors by gene transfer with adenovirus coupled to DNA-polylysine complexes. Gene Therapy 2:429-432.

McCarty, D. M., M. Christensen and N. Muzyczka. 1991. Sequences required for coordinate induction of adeno-associated virus p19 and p40 by Rep protein. J. Virol. 65:2936-2945.

McCarty, D. M., D. J. Periera, I. Zolotukhin, X. Zhou, J. H. Ryan, and N. Muzyczka. 1994. Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein. J. Virol. 68:4988-4997.

McLaughlin, S. K., P. Collis, P. L. Hermonat and N. Muzyczka. 1988. Adeno-associated virus general transduction vectors: Analysis of proviral structures. J. Virol. 62:1963-1973.

Mendelson, E., J. P. Trempe and B. J. Carter. 1986. Identification of the trans-acting Rep Proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. J.Virol. 60: 823-832.

Muzyczka, N. 1992. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top. Microbiol. Immunol. 158:97-129.

Oelze, I., K. Rittner and G. Sczakiel. 1994. Adeno-associated virus type 2 rep gene-mediated inhibition of basal gene expression of human immunodeficiency virus type 1 involves its negative regulatory functions. J. Virol. 68:1229-1233.

Podsakoff, G., Wong, K. K. and S. Chatterjee. 1994. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J. Virol. 68:5656-5666.

Rittner, K., R. Heilbronn, J. A. Kleinschmidt and G. Sczakiel. 1992. Adeno-associated virus type2-mediated inhibition of human immunodeficiency virus type 1 (HIV-1) replication: involvement of p78^{rep}/p68^{rep} and the HIV-1 long terminal repeat. J. Gen. Virol. 73:2977-2981.

Russell, D. W., A. D. Miller and I. E. Alexander. 1994. Adenoassociated virus vectors preferentially transduce cells in S phase. Proc. Natl. Acad. Sci. USA 91: 8915-8919.

Saiki, R. K., D. H. Gelfand, S. Stoffer, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Samulski, R. J., L.-S. Chang, and T. Shenk. 1989. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63:3822-3828.

Samulski, R. J., X. Zhu, X. Xiao, J. D. Brook, D. E. Housman, N. Epstein, and L. A. Hunter. 1991. Targeted interation of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10:3941-3950.

Shi, Y., E. Seto, L.-S. Chang and T. Shenk. 1991. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 76:377-388.

Stillman, B. W., F. Tamanoi, and M. B. Mathews. 1982. Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613-623.

Thrasher, A. J., M. de Alwis, C. M. Casimir, C. Kinnow, K. Page, J. Lebkowski, A. W. Segal, and R. J. Levinsky. 1995. Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional reconstitution of the NADPH-oxidase. Gene Therapy 2:481-485.

Tratschin, J. D., J. Tal and B. J. Carter. 1986. Negative and positive regulation in *trans* of gene expression from adeno-associated virus vectors in mammalian cells by a viral rep gene product. Mol. Cell. Biol. 6:2884-2894.

Trempe, J. P. and B. J. Carter. 1988. Regulation of adeno-associated virus gene expression in 293 cells: Control of mRNA abundance and translation. J. Virol. 62:68-74.

Vincent, K. A., G. K. Moore, and N. L. Haigwood. 1990. Replication and packaging of HIV envelope genes in a novel adeno-associated virus vector system, p.353-359. In F. Brown, R. M. Chanock, H. S. Ginsberg, and R. A.

Lerner, (eds.), Vaccines 90: Modern approaches to new vaccines including prevention of AIDS. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

West, M. H. P., J. P. Trempe, J.-D. Tratschin and B. J. Carter. 1987. Gene expression in adeno-associated virus vectors: The effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology 160:38-47.

Yang, Q., F. Chen and J. P. Trempe. 1994. Characterization of cell lines that inducibly express the adeno-associated virus Rep proteins. J. Virol. 68:4847-4856.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: GENZYME CORPORATION
- (ii) TITLE OF INVENTION: IMPROVED AAV VECTORS FOR GENE THERAPY
- (iii) NUMBER OF SEQUENCES: 8
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: GENZYME CORPORATION
 - (B) STREET: One Mountain Road
 - (C) CITY: Framingham
 - (D) STATE: Massachusetts
 - (E) COUNTRY: USA
 - (F) ZIP: 01701
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US96/14423
 - (B) FILING DATE: 06-SEP-1996
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: DUGAN, DEBORAH A
 - (B) REGISTRATION NUMBER: 37,315
 - (C) REFERENCE/DOCKET NUMBER: GEN5-7.1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (508) 872-8400
 - (B) TELEFAX: (508) 872-5415
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGATTACCTC GGAGAAGCA GTGGATCC

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid

Page 1 of 3

29

(A)	DESCRIPTION:	/desc	=	*Oligonucleotide	primer*
-----	--------------	-------	---	------------------	---------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GTTTGGGTTC ACTGATGTCT GCGTCACTG

29

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TATAAGTGAG

10

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CATCAGTGAA

10

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTGTGGAATC TTTGCCCAGA TGGGCCCGGT TTGAGCTTC

39

(2) INFORMATION FOR SEQ ID NO:6:

Page 2 of 3

68/2 SUBSTITUTE SHEET (RULE 26)

	(1)	(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Oligonucleotide primer"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CAGI	GACG	CA GACATCAGTG AACCCAAACG	30
(2)	INFO	RMATION FOR SEQ ID NO:7:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Oligonucleotide probe"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:	
ACTO	CTGC	CA GGCGCTGATG TGCCCGGCTT CTGACCATGC GGTCGCGTTC	50
(2)	INFO	RMATION FOR SEQ ID NO:8:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Oligonucleotide probe"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:8:	
TCGG	SAGGA	AG CAAGGTGCGC GTGGACCAGA AATGCAAGTC CTCGGCCCAG	50

Page 3 of 3

WO 97/09441 PCT/US96/14423

What is Claimed Is:

5

10

1. A composition for delivering a DNA sequence encoding a desired polypeptide or protein into a cell comprising:

an AAV rep protein or a nucleic acid sequence encoding an AAV rep protein; and a genetic construct including a DNA sequence encoding a protein or polypeptide or genetic transcript of interest; and a first AAV ITR or portion thereof, and a second AAV ITR or portion thereof, wherein said first and second AAV ITRs flank said DNA sequence encoding a polypeptide of interest and said promoter controlling said DNA sequence encoding a polypeptide.

- 2. An expression vector for site-specific integration and cell-specific expression comprising a first and a second ITR of AAV and at least one cassette comprising a promoter capable of effecting cell-specific expression wherein said promoter is operably linked to a heterologous gene, and wherein said cassette resides between said interved terminal repeats.
- 3. An AAV vector comprising the ITR sequences of AAV and a nucleic acid, wherein the ITR sequences promote expression of the nucleic acid in the absence of another promoter.
- 4. A vector according to claim 2 in a pharmaceutically acceptable carrier.
- 5. A method of delivering a polypeptide of interest to a cell comprising infecting said cell with a vector according to claim 2.

WO 97/09441 PCT/US96/14423

6. A packaging cell line 293-MT-DBP (ATCC CRL 12181).

- 7. A packaging cell line 2C4 (ATCC CRL 12182).
- 8. A packaging cell line 3B1 (ATCC CRL 12183).
- 9. A non-human transgenic mammal expressing DNA encoding human chromosome 19 AAV integration locus.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 6

FIG. 8

FIG. 9

SUBSTITUTE SHEET (RULE 26)

FIG. 13A

FIG. 13B

FIG. 14A

FIG. 14B

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 15/86, 5/10, A61K 48/00, A01K
67/027

(43) International Publication Number: 13 March 1997 (13.03.97)

(21) International Application Number: PCT/US96/14423
(32) International Filing Date: 6 September 1996 (06.09.96)

(30) Priority Data: 60/003,470

0 8 September 1995 (08.09.95) US

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(60) Parent Application or Grant

(63) Related by Continuation

US 60/003,470 (CIP) Filed on 8 September 1995 (08.09.95)

Published
With international search report.

(71) Applicant (for all designated States except US): GENZYME CORPORATION [US/US]; One Mountain Road, Framingham, MA 01701 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WADSWORTH, Samuel, C. [US/US]; 10 Straw Hollow Lane, Shrewsbury, MA 01545 (US). VINCENT, Karen [US/US]; 337 Park Avenue, Arlington, MA 02174 (US). PIRAINO, Susan [US/US]; Apartment 411B, 1622 Worcester Road, Framingham, MA 01701 (US). KYOSTIO, Sirkka [FI/US]; 61 Winter Street, Framingham, MA 01701 (US).

(88) Date of publication of the international search report:
12 September 1997 (12.09.97)

(54) Title: IMPROVED AAV VECTORS FOR GENE THERAPY

(57) Abstract

The present invention is directed to methods for generating high titer, contaminant free, recombinant AAV vectors, methods and genetic constructs for producing AAV recombinant vectors conveniently and in large quantities, methods for the delivery of all essential viral proteins required in trans for high yields of recombinant AAV, recombinant AAV vectors for use in gene therapy, novel packaging cell lines which obviate the need for cotransfection of vector and helper plasmids, helper plasmids and vector plasmid backbone constructs, a reporter assay for determining AAV vector yield. Further provided are recombinant AAV vectors in a pharmaceutically acceptable carrier, methods of delivering a transgene of interest to a cell, compositions and methods for delivering a DNA sequence encoding a desired polypeptide to a cell, and transgenic non-human mammals that express a human chromosome 19 AAV integration locus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB .	United Kingdom	MW	Malawi
AT	Austria	GB	Georgia	MX	Mexico
AU	Australia	GN	Guinea -	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	ET	Italy	FL	Poland
bj	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sadan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	8G	Singapore
CH	Switzerland	KZ	Kazakhstan	81	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	886	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	Ckina	LR	Liberia	SZ	Swaziland
C8	Czechoslovskia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DR	Germany	LY	Latvin	TJ	Tajikistan
DK	Denmark .	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
PI	Finland	ML	Mali	US	United States of America
PR	Prence	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

enti consi Application No PCT/US 96/14423

A. CLASS 1PC 6	C12N15/86 C12N5/19 A61K48	/00 A01K67/827	
According	to International Patent Classification (IPC) or to both national cla	stification and IPC	
B. FIELD	S SEARCHED		
MINIMUM (documentation searched (classification system followed by classification s	eation symbols)	
	data base consulted during the international search (name of data)		cerched
C DOCU	MENTS CONSIDERED TO BE RELEVANT		
			Deleverate et es N
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	MOLECULAR BIOTECHNOLOGY, vol. 3, 1995, pages 9-15, XP002014055 ROLLING, F. AND SAMULSKI, R.J.: viral vector for human gene ther see page 10, right-hand column,	rapy"	1
X	WO 95 14771 A (GOVERNMENT OF THE STATES; GENETIC THERAPY, INC.) I see page 1, line 18 to page 2,	UNITED June 1995	2,4,5
P,X	WO 96 15777 A (THE GOVERNMENT OF UNITED STATES OF AMERICA) 30 May see page 2, lines 8-18; page 3, 17-31; pages 14-18	1996	1
		-/	
	her documents are listed in the continuation of box C.	Patent family members are listed in	n ennex.
"A" docume consider a filing of the consider a filing of the constant of the c	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"I" later document published after the inter- or priority date and not in conflict with cited to understand the principle or the invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an inventive and involve an inventive and involve an involve and in the art. "A" document member of the same patent if	the application but cory underlying the claimed invention be considered to current is taken alone claimed invention centive step when the re other such docust to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
19	9 March 1997	02.07.1997	,
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo rd, Fax: (+31-70) 340-3016	Authorized officer Alt, G	

Form PCT.TSA/210 (second sheet) (July 1992)

Inta conal Application No PCT/US 96/14423

		PC1/US 96/14423	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	. Relevant to dam No.	
P,X	WO 96 18727 A (AVIGEN, INC.) 20 June 1996 see page 5, lines 8-19; Examples	1	
P,X	HUMAN GENE THERAPY, vol. 6, October 1995, pages 1329-1341, XP000569718 CLARK, R.K ET AL.: "Cell Lines for the production of recombinant adeno-associated virus" cited in the application see Figure 1, vector pAAV/CMV/SIV rev-gp160/rep-cap/neo		
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 91, no. 13, 21 June 1994, pages 5808-5812, XP000608737 WEITZMAN, M.D. ET AL.: "Adeno-associated virus (AAV) rep proteins mediate complex-formation between AAV DNA and its integration site in human DNA" see page 5808, left-hand column, lines 19-25;pge 5811, left-hand column, second paragraph		
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 89, no. 15, 1 August 1992, pages 7257-7261, XP000608945 WALSH, C.E. ET AL.: "Regulated high-level expression of a human gamma-globin gene introudced into erythroid cells by an adeno-associated vector" page 7259, left-hand column, lines 12-14; page 7260, left-hand column, first full paragraph		
· ·	GENE THERAPY, vol. 2, January 1995, pages 29-37, XP000609327 FLOTTE, T.R. ET AL.: "An improved system for packaging recombinant adeno-associated virus vectors capable of in vivo transduction" cited in the application see pages 32-33:"In vivo AAV-p5lacZ expression" -/	2,4,5	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Inte. sonal Application No. PCT/US 96/14423

·· ············ =		PC1/03 90	
	bon) DOCUMENTS CONSIDERED TO BE RELEVANT		Delegate desp No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
P,Y	GENE THERAPY, vol. 3, March 1996, pages 223-229, XP000651586 ZHOU, S.Z. ET AL.: "Adeno-associated virus 2-mediated transduction and erythroid cell-specfic expressionof a human beta-globin gene" see page 225: "Erythroid cell-specific expression of the transduced beta-globin gene"		2,4,5
A	THE EMBO JOURNAL, vol. 11, no. 13, 1992, pages 5071-5078, XP002027818 KOTIN, R.M. ET AL.: "Characterization of a preferred site on human chromsome 19q for integration of adeno-associated virus DNA by non-homologous recombination" see Figure 1		9
A	EP 0 592 836 A (AMERICAN CYANAMID COMPANY) 20 April 1994 see page 3, lines 31-37; page 2, lines 47-52	•	9
			• •
•			
	• • •		•
	•		

Form PCT-15A/210 (conunuation of second sheet) (July 1992)

ternational application No.

PCT/US 96/14423

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see continuation-sheet
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1,2,4,5,9
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

Claims 1,2,4,5,9: AAV-based composition and vectors for site-specific integration, method of using them and transgenic animal for testing whether site-specific integration has occurred.

Claim 3: AAV-vector comprising ITR sequences of AAV which drive the expression of nucleic acid in the absence of a promoter.

Claims 6: Packaging cell line containing the E2A gene.

Claims 7,8: Packaging cell line containing the E4 6 and 6/7 genes.

information on patent family members

PCT/US 96/14423

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9514771 A	01-06-95	CA 2176600 A EP 0736092 A	01-06-95 09-10-96
WO 9615777 A	30-05-96	NONE	
WO 9618727 A	20-06-96	NONE	
EP 592836 A	20-04-94	CA 2106260 A US 5580703 A	18-03-94 03-12-96

Form PCT/ISA/210 (petent femily annex) (July 1992)

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

A1

(51) Classification internationale des brevets ⁶:

C12N 15/69, 15/70, 1/21, C07K 14/82,
A61K 31/70, 48/00

(11) Numéro de publication internationale:

WO 97/10343

(43) Date de publication internationale:

20 mars 1997 (20.03.97)

(21) Numéro de la demande internationale: PCT/FR96/01414

(22) Date de dépôt international: 13 septembre 1996 (13.09.96)

(30) Données relatives à la priorité:
95/10825
15 septembre 1995 (15.09.95)

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-Aron, F-92160 Antony (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): CROUZET, Joël [FR/FR]; 12, rue Michel-Voisin, F-92330 Sceaux (FR). SOUBRIER, Fabienne [FR/FR]; 1, mail de Savoie, F-94320 Thiais (FR).

(74) Mandataire: BECKER, Philippe; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

(81) Etats désignés: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, brevet ARIPO (KE, LS, MW, SD, SZ, UG), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

(54) Title: CIRCULAR DNA MOLECULE WITH CONDITIONAL ORIGIN OF REPLICATION, METHOD FOR PREPARING SAME AND USE THEREOF IN GENE THERAPY

(54) Titre: MOLECULE D'ADN CIRCULAIRE A ORIGINE DE REPLICATION CONDITIONNELLE, LEUR PROCEDE DE PREPARATION ET LEUR UTILISATION EN THERAPIE GENIQUE

(57) Abstract

A circular DNA molecule, useful for gene therapy, comprising at least one nucleic acid sequence of interest, characterised in that the region allowing the replication thereof has an origin of replication with a functionality in a host cell that requires the presence of at least one specific protein foreign to said host cell. A method for preparing same, cells incorporating said DNA molecules and uses thereof in gene therapy are also described.

(57) Abrégé

La présente invention se rapporte à une molécule d'ADN de forme circulaire, utile en thérapie génique, comprenant au moins une séquence nucléique d'intérêt, caractérisée en ce que la région permettant sa réplication comprend une origine de réplication dont la fonctionnalité dans une cellule hôte requiert la présence d'au moins une protéine spécifique et étrangère à ladite cellule hôte. Elle a également pour objet un procédé de préparation correspondant, des cellules incorporant lesdites molécules d'ADN et leurs utilisations en thérapie génique.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

				,	
AT	Апобоїє	GB	Royaume-Um	MW	Malawi
AT	Autriche	GE .	Géorgie	MX	Mexique
AU	Australie	GN	Guinée	NE	· Niger
BB	Barbade	GR	Grèce .	NL	Pays-Bas
BE	Belgique	HU	Hongrie	NO	Norvège
BF	Burkina Faso	IE	Trlande	· NZ	Nouvelle-Zélande
BG	Bulgarie	IT	Italie	PL	Pologne
BJ	Bénin	JP	Japon	PT	Portugal
BR	Brésil	KE	Kenya	RO	Roumanie
BY	Bélarus	KG	Kirghizistan	RU	Fédération de Russie
CA	Canada	КР	République populaire démocratique	SD	Soudan
CF	République centrafricaine		de Corée	SE	Spède
CG	Congo	KR	République de Corée	SG	Singapour
СН	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovaquie
CM	Cameroun	LK	Sr: Lanka	SN	Sénégal
CN	Chine	LR	Libéria	\$Z	Swaziland
CS	Tchécoslovaquie	LT	Limanie	TD	Tchad
CZ	République tchèque	LU	Luxembourg	TG	Togo
DE	Allemagne	LV	Lettonic	TJ	Tadjikistan
DK	Danemark	MC	Monaco	TT	Trmité-et-Tobago
EE	Estonie	MD	République de Moldova	UA:	Ukrame
ES	Espagne	MG	Madagascar	UG	Ouganda
FI	Finlande	ML	Mali	US	Eusts-Unis d'Amérique
FR	France	MN	Mongolie	UZ	Ouzbékistan
GA	Gabon	MR	Mauritanie	VN	Viet Nam

15

20

25

30

MOLECULE D'ADN CIRCULAIRE A ORIGINE DE REPLICATION CONDITIONNELLE, LEUR PROCEDE DE PREPARATION ET LEUR UTILISATION EN THERAPIE GENIOUE

La présente invention concerne une nouvelle molécule d'ADN à réplication conditionnelle, utilisable en thérapie génique ou pour la production de protéines recombinantes.

La thérapie génique consiste à corriger une déficience ou une anomalie en introduisant une information génétique dans la cellule ou l'organe affecté. Cette information peut être introduite soit <u>in vitro</u> dans une cellule extraite de l'organe et ensuite réinjectée dans l'organisme, soit <u>in vivo</u>, directement dans le tissu visé. S'agissant d'une molécule de haut poids moléculaire et de charge négative, l'ADN a des difficultés pour traverser spontanément les membranes cellulaires phospholipidiques. Différents vecteurs sont donc utilisés afin de permettre le transfert de gène : les vecteurs viraux d'une part, les vecteurs chimiques et/ou biochimiques, naturels ou synthétiques, d'autre part.

Les vecteurs viraux (rétrovirus, adénovirus, virus adéno-associés, ...) sont très efficaces, notamment pour le passage des membranes, mais présentent un certain nombre de risques tels que la pathogénicité, la recombinaison, la réplication, l'immunogénicité, ...

Les vecteurs chimiques et/ou biochimiques permettent d'éviter ces risques (pour revues, voir Behr, 1993, Cotten et Wagner, 1993). Ce sont par exemple des cations (phosphate de calcium, DEAE-dextran ...) qui agissent en formant des précipités avec l'ADN, lesquels peuvent être "phagocytés" par les cellules. Il peut également s'agir de liposomes dans lesquels l'ADN est incorporé et qui fusionnent avec la membrane plasmique. Les vecteurs synthétiques de transfert de gènes sont généralement des lipides ou des polymères cationiques qui complexent l'ADN et forment avec lui une particule portant des charges positives en surface. A titre illustratif de cetype de vecteurs, peut notamment On dioctadécylamidoglycylspermine (DOGS, TransfectamTM) ou le chlorure de N-[1-(2,3-dioleyloxy)propyl]-N,N,N-triméthylammonium (DOTMA, LipofectinTM)

15

20

25

30

Toutefois, l'utilisation de vecteurs chimiques et/ou biochimiques ou d'ADN nu implique la possibilité de produire des quantités importantes d'ADN de pureté pharmacologique. En effet, dans les techniques de thérapie génique, le médicament est constitué par l'ADN même et il est essentiel de pouvoir fabriquer, dans des quantités adaptées, des ADN ayant des propriétés appropriées à un usage thérapeutique chez l'homme.

Dans le cas de la vectorologie non virale, ce sont des plasmides d'origine bactérienne qui sont mis en oeuvre. Les plasmides généralement utilisés en thérapie génique portent (i) une origine de réplication, (ii) un gène marqueur tel qu'un gène de résistance à un antibiotique (kanamycine, ampicilline...) et (iii) un ou plusieurs transgènes avec des séquences nécessaires à leur expression (enhanceur(s), promoteur(s), séquences de polyadénylation...).

Toutefois, la technologie actuellement disponible ne donne pas entière satisfaction.

D'une part, il demeure un risque de dissémination dans l'organisme. C'est ainsi qu'une bactérie présente dans l'organisme peut, à une fréquence faible, recevoir ce plasmide. Ceci a d'autant plus de chances de se passer qu'il s'agit d'un traitement de thérapie génique in vivo dans lequel l'ADN peut être disséminé dans l'organisme du patient et peut se trouver au contact de bactéries qui infectent ce patient ou bien de bactéries de la flore commensale. Si la bactérie receveuse du plasmide est une entérobactérie, telle qu'E. coli, ce plasmide peut se répliquer. Un tel événement conduit alors à la dissémination du gène thérapeutique. Dans la mesure où les gènes thérapeutiques utilisés dans des traitements de thérapie génique peuvent coder par exemple pour une lymphokine, un facteur de croissance, un antioncogène, ou une protéine dont la fonction fait défaut chez l'hôte et permet donc de corriger un défaut génétique, la dissémination de certains de ces gènes pourrait avoir des effets imprévisibles et préoccupants (par exemple si une bactérie pathogène acquérait le gène d'un facteur de croissance humain).

D'autre part, les plasmides utilisés généralement en thérapie génique non virale possèdent aussi un marqueur de résistance à un antibiotique (ampicilline, kanamycine...). La bactérie acquérant un tel plasmide a donc un avantage sélectif

15

20

25

30

indéniable puisque tout traitement antibiothérapique, utilisant un antibiotique de la même famille que celui sélectionnant le gène de résistance du plasmide, va conduire à la sélection du plasmide en question. A cet égard, l'ampicilline fait partie des β-lactames qui est la famille d'antibiotiques les plus utilisés au monde. L'utilisation de marqueurs de sélection chez la bactéries qui ne soient pas des gènes de résistance à des antibiotique serait donc particulièrement avantageuse. Elle éviterait la sélection de bactéries ayant pu recevoir un plasmide portant un tel marqueur.

Il est donc particulièrement important de chercher à limiter au maximum la dissémination des gènes thérapeutiques et des gènes de résistance.

La présente invention a précisément pour objet de proposer de de nouvelles molécules d'ADN, utilisables en thérapie génique ou pour la production de protéines recombinantes in vitro, ne se répliquant que dans des cellules pouvant complémenter certaines fonctions de ces vecteurs non viraux.

L'invention concerne également une méthode particulièrement efficace pour la préparation de ces molécules d'ADN.

Les molécules d'ADN revendiquées ont pour avantage d'éliminer les risques liés à une dissémination du plasmide, tels que (1) la réplication et la dissémination, pouvant entraîner une surexpression non contrôlée du gène thérapeutique, (2) la dissémination et l'expression de gènes de résistance. L'information génétique contenue dans les molécules d'ADN selon l'invention comprend en effet le(s) gène(s) thérapeutique(s) et les signaux de régulation de son (leur) expression, une origine de réplication conditionnelle fonctionnelle limitant très fortement le spectre d'hôte cellulaire de ce plasmide, un marqueur de sélection de taille réduite de préférence différent d'un gène conférant la résistance à un antibiotique et le cas échéant, un fragment d'ADN permettant la résolution de multimères de plasmide. La probabilité que ces molécules (et donc l'information génétique qu'elles contiennent) soient transférées à un microorganisme, et maintenues de manière stable, est très limitée.

Enfin les vecteurs selon l'invention, également désignées miniplasmides en raison de leur structure circulaire, de leur taille réduite et de leur forme superenroulée, présentent les avantages supplémentaires suivants: En raison de leur taille réduite par rapport aux plasmides dérivés de ColE1 classiquement utilisés, les molécules d'ADN

15

25

30

selon l'invention ont potentiellement une meilleure biodisponibilité in vivo. En particulier, elles présentent des capacités de pénétration et de distribution cellulaires améliorées. Ainsi, il est reconnu que le coefficient de diffusion dans les tissus est inversement proportionnel au poids moléculaire (Jain, 1987). De même, au niveau cellulaire, les molécules de haut poids moléculaire ont une moins bonne perméabilité à travers la membrane plasmique. En outre, pour le passage du plasmide au noyau, indispensable à son expression, le poids moléculaire élevé est également un inconvénient, les pores nucléaires imposant une limite de taille pour la diffusion vers le noyau (Landford et al., 1986). La réduction de la taille des parties non-thérapeutiques de la molécule d'ADN (origine de réplication et gène de sélection notamment) selon l'invention permet également de diminuer la taille des molécules d'ADN. La partie permettant la réplication et la sélection de ce plasmide chez la bactérie (1,1 kb) est diminuée par un facteur 3, en comptant par exemple 3 kb pour l'origine de réplication et le marqueur de résistance partie vecteur. Cette diminution (i) de poids moléculaire et (ii) de charge négative, confère aux molécules de l'invention des capacités améliorées de diffusion et de biodisponibilité tissulaires, cellulaires et nucléaires.

Plus précisément, la présente invention concerne une molécule d'ADN sous forme circulaire, utile en thérapie génique, comprenant au moins une séquence nucléique d'intérêt, caractérisée en ce que la région permettant sa réplication comprend une origine de réplication dont la fonctionnalité dans une cellule hôte requiert la présence d'au moins une protéine spécifique et étrangère à ladite cellule hôte.

Cette molécule d'ADN peut se présenter sous forme mono ou double brin et avantageusement possède une forme superenroulée.

Au sens de la présente invention, les cellules hôtes mise en oeuvre peuvent être de diverses origines. Il peut s'agir de cellules eucaryotes ou procaryotes. Selon un mode de réalisation privilégié de l'invention, il s'agit de cellules procaryotes.

Classiquement, la réplication des plasmides bactériens nécessite la présence d'au moins une protéine codée par l'hôte cellulaire de type ARN polymérase, Rnase, ADN polymérase.... Pour les raisons déjà exposées précédemment, on ne peut

totalement s'affranchir, avec ce type de réplication, d'éventuels risques de dissémination dans l'organisme traité. Avantageusement, la fonctionnalité de l'origine de réplication de la molécule d'ADN selon l'invention exige la présence d'une protéine spécifique et étrangère à la cellule hôte. Cette caractéristique a pour intérêt de réduire le spectre d'hôte du plasmide revendiqué à des souches spécifiques exprimant cette protéine initiatrice. La molécule d'ADN, mise au point dans le cadre de la présente invention, possède donc avantageusement une origine de réplication dite conditionnelle.

L'origine de réplication conditionnelle mise en oeuvre selon la présente invention peut provenir de plasmides ou bactériophages, partageant les caractéristiques suivantes: ils contiennent dans leur origine de réplication des séquences répétées, ou itérons et ils codent pour au moins une protéine initiatrice de la réplication (Rep) qui leur est spécifique. A titre d'exemple, on peut citer les systèmes de réplication conditionnelle des plasmides et bactériophages suivants :

15

10

plasmide ou bactériophage	protéine initiatrice spécifique	
RK2 (Stalker et al., 1981)	TrfA	
R1 (Ryder et al., 1981)	RepA	
pSC101 (Vocke and Bastia,1983)	RepA	
F (Murotsu et al., 1981)	protéine E	
Rts1 (ltoh et al., 1982,1987)	. RepA	
RSF1010 (Miao et al., 1995)	RepC	
P1 (Abeles et al., 1984)	RepA	
P4 (Flensburg and Calendar, 1987)	protéine alpha	
lambda (Moore et al., 1981)	protéine O	
phi 82 (Moore et al., 1981)	protéine O de phi 82	
phi 80	protéine O de phi 80	

10

15

20

25

30

Selon un mode de réalisation préféré de l'invention, l'origine de réplication mise en œuvre dans les molécules d'ADN revendiquées est issue d'un plasmide naturel d'<u>E. coli</u> appelé R6K.

Les fonctions de réplication de R6K sont regroupées dans un fragment d'ADN de 5,5 kpb (figure 1) comprenant 3 origines de réplication α , β et γ (γ et β assurant 90 % de la réplication) et un opéron codant pour les protéines initiatrices de réplication π et la protéine Bis. L'information génétique minimale nécessaire au maintien de ce plasmide à son nombre de copies caractéristique (15 copies par génome) est contenue dans deux éléments : les 400 pdb de l' ori γ et le gène pir, dont le produit est la protéine initiatrice π .

L'ori γ peut être divisée en deux parties fonctionnelles : la partie-coeur et l'élément activateur (figure 1). La partie-coeur, essentielle pour la réplication contient les itérons (7 répétitions directes de 22 pdb) où se lie la protéine π représenté en SEQ ID N°1, et des segments flanquants, cibles de protéines de l'hôte (IHF, DnaA).

Selon un mode préféré de l'invention, l'origine de réplication du vecteur revendiqué est constituée en tout ou partie par cette origine de réplication y du plasmide R6k et plus préférentiellement en tout ou partie par la SEQ ID N°1 ou l'un de ses dérivés.

Au sens de la présente invention, le terme dérivé désigne toute séquence différant de la séquence considérée en raison d'une dégénérescence du code génétique, obtenue par une ou plusieurs modifications de nature génétique et/ou chimique, ainsi que toute séquence hybridant avec ces séquences ou des fragments de celles-ci et dont le produit possède l'activité indiquée à l'égard de la protéine initiatrice de la réplication, π. Par modification de nature génétique et/ou chimique, on peut entendre toute mutation, substitution, délétion, addition et/ou modification d'un ou plusieurs résidus. Le terme dérivé comprend également les séquences homologues à la séquence considérée, issues d'autres sources cellulaires et notamment de cellules d'origine humaine, ou d'autres organismes, et possédant une activité de même type. De telles séquences homologues peuvent être obtenues par des expériences d'hybridation. Les hybridations peuvent être réalisées à partir de banques d'acides nucléiques, en utilisant

10

15

25

30

comme sonde la séquence native ou un fragment de celle-ci, dans des conditions de stringence conventionnelles (Maniatis et al., Cf techniques générales de biologie moléculaire), ou, de préférence, dans des conditions de stringence élevées.

L'origine de réplication décrite ci-dessus qui présente l'avantage d'être de taille très limitée, est fonctionnelle uniquement en présence d'une protéine initiatrice spécifique, la protéine Pi, produit du gène <u>pir</u> (SEQ ID N°2). Cette protéine pouvant agir en trans, il est possible de dissocier physiquement l'ori gamma du gène <u>pir</u>, qui pourra être introduit dans le génome de la cellule choisie comme hôte spécifique de ces plasmides. Des mutations dans π peuvent altérer ses fonctions inhibitrices (Inuzuka et Wada, 1985) et entraîner une augmentation du nombre de copies des dérivés de R6K, jusqu'à plus de 10 fois le nombre de copies initial. Ces substitutions sont toutes comprises dans un domaine de 40 acides aminés, qui semble donc responsable du contrôle par π du nombre de copies plasmidiques (figure 2).

Selon un mode de réalisation avantageux de la présente invention, la protéine π, exprimée dans la cellule hôte, résulte de l'expression du gène représenté en SEQ ID N°2 ou l'un de ses dérivés tels que définis précédemment et plus particulièrement du gène pir 116 qui comprend une mutation par rapport au gène pir. Cette mutation correspond à la substitution d'une proline par une leucine. Dans ce contexte, le nombre de copies des dérivés de R6K est de l'ordre de 250 copies par génome.

Outre une origine de réplication conditionnelle telle que définie précédemment, les molécules d'ADN revendiquées contiennent une région comprenant un (ou plusieurs) gène(s) permettant-d'assurer la sélection de la molécule d'ADN chez l'hôte choisi.

Il peut s'agir d'un marqueur classique de type gène conférant une résistance à un antibiotique, tels la kanamycine, l'ampicilline, le chloramphénicol, la streptomycine, la spectinomycine, la lividomycine ou autres.

Toutefois, selon un mode de réalisation privilégié de l'invention, cette région est différente d'un gène conférant une résistance à un antibiotique. Il peut ainsi s'agir d'un gène dont le produit est indispensable à la viabilité de l'hôte envisagé, dans des conditions de cultures définies. Il peut-être par exemple :

15

20

25

30

-un gène codant pour un ARNt suppresseur, d'origine naturelle ou synthétique. Il s'agit plus préférentiellement d'un ARNt de codon ambre (TAG)

-un gène dont le produit est nécessaire au métabolisme de la cellule, dans certaines conditions de culture: gène intervenant dans la biosynthèse d'un métabolite (acide aminé, vitamine ...), gène de catabolisme permettant d'assimiler une substance présente dans le milieu de culture (source d'azote ou de carbone particulières)...

Selon un mode privilégié de l'invention, cette région contient une cassette d'expression d'un gène codant pour un ARNt suppresseur de codons spécifiques. Celui-ci peut être notamment choisi parmi ceux codant pour les bases Phénylalanine, Cystéine, Proline, Alanine et Histidine. Il s'agit plus préférentiellement d'un ARNt suppresseur des codons ambre (TAG).

Dans ce cas particulier, le système utilisé pour sélectionner, chez les hôtes cellulaires, les molécules d'ADN sujets de la présente invention comporte deux éléments: 1) sur la molécule d'ADN, un gène codant pour un ARN de transfert suppresseur de codon ambre (TAG) qui constitue le marqueur de sélection, dit gène (sup) et 2) un hôte spécifique dont un des gènes, essentiel dans certaines conditions de culture, contient un codon ambre TAG. Cette cellule pourra croître, dans les conditions de culture pour lesquelles le produit du gène contenant le codon TAG est essentiel, uniquement si le plasmide permettant l'expression de sup est présent dans la cellule. Les conditions de culture constituent donc la pression de sélection de la molécule d'ADN. Les gènes sup utilisés peuvent être d'origine naturelle (Glass et al., 1982) ou provenir de construction synthétique (Normanly et al., 1986; Kleina et al., 1990).

Un tel système offre une grande flexibilité dans la mesure où, suivant le gène comportant une mutation ambre, il est possible de déterminer différents milieux sélectifs. Chez la bactérie *Lactococcus lactis*, par exemple, le codon ambre est localisé dans un gène de biosynthèse des purines. Ceci permet la sélection du plasmide porteur du gène codant pour l'ARNt suppresseur lorsque les bactéries se multiplient dans le lait. Un tel marqueur a l'avantage d'être de taille très réduite et de ne pas contenir de séquences "étrangères", provenant de phages ou de transposons.

10

15

20

25

30

Selon un mode de réalisation particulier de l'invention, la molécule d'ADN comprend en outre un fragment d'ADN, cible de recombinases site-spécifiques, qui permet la résolution des multimères de plasmides.

Ainsi, un tel fragment, introduit sur une molécule d'ADN circulaire et dont l'origine de réplication est par exemple ori gamma permet de résoudre les multimères d'un tel plasmide. De tels multimères sont notamment observés lorsque la molécule d'ADN est préparée dans une souche portant un allèle muté de <u>pir</u> qui permet d'augmenter le nombre de copies des dérivés de R6K, comme <u>pir-116</u>.

Cette recombinaison peut être réalisée grâce à divers systèmes qui entraînent la recombinaison site-spécifique entre des séquences. Plus préférentiellement, la recombinaison site-spécifique de l'invention est obtenue au moyen de séquences de recombinaison intramoléculaire spécifique qui sont capables de recombiner entre elles en présence de protéines spécifiques, généralement désignée recombinase. Dans ce cas précis, il s'agit des recombinases XerC et XerD. Pour cette raison, les molécules d'ADN selon l'invention comprennent généralement en outre une séquence permettant cette recombinaison site spécifique. Le système de recombinaison spécifique présent dans les constructions génétiques selon l'invention (recombinases et site de reconnaissance spécifique) peut être de différentes origines. En particulier, les séquences spécifiques et les recombinases utilisées peuvent appartenir à différentes classes structurales, et notamment à la famille de résolvase du transposon Tn3 ou à la famille de l'intégrase du bactériophage lambda. Parmi les recombinases appartenant à la famille du transposon Tn3, on peut citer notamment la résolvase du transposon Tn3 ou des transposons, Tn21 et Tn522 (Stark et al., 1992); l'invertase Gin du bactériophage mu ou encore les résolvases de plasmides, telle que celle du fragment par de RP4 (Abert et al., Mol. Microbiol. 12 (1994) 131). Parmi les recombinases appartenant à la famille de l'intégrase du bactériophage λ, on peut citer notamment l'intégrase des phages lambda (Landy et al., Science 197 (1977) 1147), P22 et φ80 (Leong et al., J. Biol. Chem. 260 (1985) 4468), HP1 de Haemophilus influenzae (Hauser et al., J. Biol. Chem. 267 (1992) 6859), l'intégrase Cre du phage P1, l'intégrase du plasmide pSAM2 (EP 350 341) ou encore la FLP recombinase du plasmide 2µ et les recombinases XerC et XerD d'E coli.

15

20

25

Préférentiellement, les molécules d'ADN objets de la présente invention contiennent le fragment cer du plasmide naturel d'E. coli ColE1. Le fragment cer utilisé est un fragment HpaII de 382 pdb de ColE1 dont il a été montré qu'il permettait, en cis, la résolution de multimères de plasmides (Summers et al., 1984; Leung et al., 1985). Il est aussi possible d'utiliser un fragment HpaII-TaqI de taille plus réduite (280 pdb) ou un fragment plus petit (environ 220 pdb), compris dans le fragment HpaII, et qui possèdent les mêmes propriétés (Summers and Sherratt, 1988). Cette résolution passe par une recombinaison intramoléculaire spécifique, qui fait intervenir quatre protéines codées par le génome d'E. coli: ArgR, PepA, XerC et XerD (Stirling et al., 1988,1989; Colloms et al., 1990; Blakely et al., 1993)

A ce titre, il particulièrement avantageux d'utiliser tout ou partie du fragment cer de ColE1 ou de l'un de ses dérivés tels que définis précédemment.

Selon une variante de mise en oeuvre, les molécules d'ADN de l'invention peuvent comprendre en outre une séquence capable d'interagir spécifiquement avec un ligand. De manière préférentielle, il s'agit d'une séquence capable de former, par hybridation, une triple-hélice avec un oligonucléotide spécifique. Cette séquence permet ainsi de purifier les molécules de l'invention par hybridation sélective avec un oligonucléotide complémentaire immobilisé sur un support (voir la demande WO96/18744). La séquence peut être positionnée en tout site de la molécule d'ADN de l'invention, dès lors qu'elle n'affecte pas la fonctionnalité du gène d'intérêt et de l'origine de réplication.

A titre de molécule d'ADN représentative de la présente invention, on peut tout particulièrement revendiquer le plasmide pXL2774 et ses dérivés. Au sens de l'invention on entend par dérivé toute construction dérivant du pXL2774 et comportant un ou plusieurs gènes d'intérêt autres que le gène luciférase. On peut également citer les plasmides pXL3029 et 3030 comportant une cassette d'expression d'un gène thérapeutique et une séquence capable d'interagir spécifiquement avec un ligand.

WO 97/10343 PCT/FR96/01414

La présente invention se rapporte également à la mise au point d'un procédé, de constructions d'hôtes cellulaires spécifiques, particulièrement efficaces pour la production de ces molécules d'ADN thérapeutiques.

Un autre objet de la présente invention se rapporte à un procédé de production de molécule d'ADN circulaire caractérisé en ce que l'on cultive une cellule hôte contenant au moins un molécule d'ADN telle que définie précédemment et une protéine, exprimée in situ ou non, conditionnant la fonctionnalité de l'origine de réplication deladite molécule d'ADN, spécifique et étrangère à ladite cellule hôte, dans des conditions permettant la sélection des cellules hôtes transformées par lesdites molécules d'ADN.

5

10

15

20

25

Plus préférentiellement, la protéine conditionnant la fonctionnalité de l'origine de réplication de la molécule d'ADN est exprimée in situ à partir d'un gène correspondant. Le gène codant pour la protéine initiatrice de la réplication peut être porté par un réplicon annexe, compatible avec les dérivés de l'origine de réplication conditionnelle utilisée ou bien introduit dans le génome de la cellule-hôte par recombinaison, grâce à un transposon, un bactériophage ou tout autre vecteur. Dans le cas particulier où le gène exprimant la protéine est placé sur un réplicon annexe, ce dernier contient également une région promotrice de la transcription fonctionnelle dans la cellule, ainsi qu'une région située en 3', et qui spécifie un signal de fin transcriptionnelle. Concernant la région promotrice, il peut s'agir d'une région promotrice naturellement responsable de l'expression du gène considéré lorsque celle-ci est susceptible de fonctionner dans la cellule. Il peut également s'agir de régions d'origine différente (responsables de l'expression d'autres protéines, ou même synthétiques). Notamment, il peut s'agir de séquences promotrices de gènes procaryotes ou bactériophages. Par exemple, il peut s'agir de séquences promotrices issues du génome de la cellule.

A titre de gènes codant pour la protéine initiatrice de la réplication, pourrontêtre utilisés soit les gènes sauvages, soit des allèles mutés permettant d'obtenir un nombre de copies augmenté des plasmides (ou dérivés) spécifiques de la protéine

15

20

25

30

initiatrice conditionnant la fonctionnalité de l'origine de réplication mise en oeuvre dans la molécule d'ADN.

De tels mutants ont été notamment décrits pour les plasmides R6K (Inuzuka and Wada, 1985; Greener et al., 1990), Rts1 (Terawaki and Itoh, 1985; Terawaki et al., 1990; Zeng et al., 1990), F (Seelke et al., 1982; Helsberg et al., 1985; Kawasaki et al., 1991), RK2 (Durland et al., 1990; Haugan et al., 1992, 1995), pSC101 (Xia et al., 1991; Goebel et al., 1991; Fang et al., 1993).

Dans le cas particulier où la molécule d'ADN mise en oeuvre possède une origine de réplication dérivant du plasmide R6k, la protéine initiatrice est ou dérive de la protéine π de ce même plasmide. Il est particulièrement avantageux d'exprimer une forme mutée de cette protéine capable d'augmenter notablement le nombre de copies initiales. Pour ce faire, le gène intégré au niveau de la cellule hôte est de préference représenté par tout ou partie de la séquence représentée en SEQ ID N°2 ou l'un de ses dérivés et plus préférentiellement par le gène pir116. La mutation associée, correspond à la substitution d'une proline par une leucine. Selon un mode de réalisation particulier de l'invention, ce gène pir116 est directement incorporé dans le génome de la cellule hôte.

Avantageusement, un des gènes de l'hôte cellulaire spécifique, indispensable dans les conditions de culture choisies contient un codon spécifique, reconnaissable par l'ARNt suppresseur sélectionné au niveau de la molécule d'ADN. Selon un mode privilégié de l'invention, il s'agit d'un codon ambre TAG. Dans ce cas particulier, la cellule pourra croître, dans les conditions de culture pour lesquelles le produit du gène contenant le codon TAG est essentiel, uniquement si le plasmide permettant l'expression de sup est présent dans la cellule hôte. Les conditions de culture constituent donc la pression de sélection de la molécule d'ADN.

De préférence, le gène comportant le codon ambre est un gène intervenant dans la biosynthèse d'un acide aminé, l'arginine. Ce gène, <u>argE</u>, code pour une N-acétylornithinase (Meinnel <u>et al.</u>, 1992) et comporte dans ce cas un codon TAG correspondant à une mutation ponctuelle Gln-53 (CAG)-> TAG; la pression de sélection du plasmide portant le gène <u>sup</u> est alors assurée par culture en milieu

10

15

20

minimum M9 (Maniatis et al.,1989). Toutefois ce pourrait être aussi, par exemple, un gène de biosynthèse d'une vitamine, d'une base nucléique ou bien un gène permettant d'utiliser une source de carbone ou d'azote particulière ou tout autre gène dont la fonctionnalité est indispensable à la viabilité cellulaire dans les conditions de culture choisies.

La cellule hôte est de préférence choisie parmi les souches E.coli et représentée plus préférentiellement par la souche <u>E. coli XAC-1</u>.

Selon un mode de réalisation particulier de l'invention, la cellule hôte mise en oeuvre dans le procédé revendiqué est une cellule de la souche E. coli XAC-1, comprenant dans son génome le gène pir 116 et transformée par le plasmide pXL2774 ou l'un de ses dérivés.

Selon une variante avantageuse de l'invention, la cellule hôte mise en oeuvre dans le procédé revendiqué est une cellule procaryote dans laquelle le gène endA1 ou un gène homologue est inactivé. Le gène endA code pour l'endonucléase I d'E. coli. Cette enzyme périplasmique possède une activité de coupure non spécifique de l'ADN double brin (Lehman, I. R., G. G. Roussos and E. A. Pratt (1962) J. Biol. Chem. 237:819-828; Wright M. (1971) J. Bacteriol. 107:87-94). Une étude menée sur différentes souches de Escherichia coli (sauvage ou endA) a montré que que la dégradation de l'ADN plasmidique incubé dans les extraits de ces souches bactériennes existait dans les souches endA+ mais pas dans les mutants endA (Wnendt S. (1994) BioTechniques 17:270-272). La qualité de l'ADN plasmidique isolé de souches endA+ ou de mutants endA a été étudiée par la société Promega en utilisant leur système de purification (Shoenfeld, T., J. Mendez, D. Storts, E. Portman, B.†Patterson, J. Frederiksen and C. Smith. 1995. Effects of bacterial strains carrying the endAl genotype on DNA quality isolated with Wizard plasmid purification systems. Promega notes 53). Leur conclusion est la suivante : la qualité de l'ADN préparé à partir de mutants endA est globalement meilleure que celle de l'ADN préparé dans les souches endA+ testées.

10

15

20

25

La qualité des préparations d'ADN plasmidique est donc affectée par toute contamination par cette endonucléase (dégradation de l'ADN à plus ou moins long terme).

La délétion ou la mutation du gène endA peut être envisagée sans problème dans la mesure ou les mutants ne présentant plus cette activité endonucléase se comportent globalement comme les bactéries sauvages (Dürwald, H. and H. Hoffmann-Berling (1968) J. Mol. Biol. 34:331-346).

Le gène endA1 peut être inactivé par mutation, délétion totale ou partielle, disruption, etc. L'inactivation du gène endA de la souche d'E. coli choisie pour produire les plasmides pCOR peut plus particulièrement être réalisée en transférant, grâce au bactériophage P1, la délétion ΔendA::Tc^R décrite par Cherepanov et Wackernagel (Cherepanov, P. P. and W. Wackernagel. 1995. Gene disruption in Escherichia coli: Tc^R and Km^R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9-14) ou en échangeant l'allèle sauvage présent dans le génome de la bactérie d'intérêt avec un allèle muté ou délété de endA et ceci par recombinaison homologue. L'utilisation de ce type de souche dans le cadre de la présente invention permet avantageusement d'améliorer la qualité de l'ADN produit.

L'invention concerne également toute cellule recombinante contenant une molécule d'ADN telle que définie ci-avant. Il peut s'agir de cellule d'origines diverses, de type eucaryotique, procaryotique....

Ces cellules sont obtenues par toute technique connue de l'homme du métier permettant l'introduction dudit plasmide dans une cellule donnée. Il peut s'agir notamment de transformation, électroporation, conjugaison, fusion de protoplastes ou toute autre technique connue de l'homme de l'art.

Les molécules d'ADN selon l'invention peuvent être utilisées dans toute application de vaccination ou de thérapie génique et cellulaire, pour le transfert d'un gène à un organisme, un tissu ou une cellule donnée, ou pour la production de protéines recombinantes in vitro.

10

15

20

25

En particulier, elles peuvent être utilisées pour une administration directe <u>in vivo</u>, ou pour la modification de cellules <u>in vitro</u> ou <u>ex vivo</u>, en vue de leur implantation à un patient.

A cet égard, un autre objet de la présente invention concerne toute composition pharmaceutique comprenant au moins une molécule d'ADN telle que définie ci-avant. Cette molécule peut y être ou non associée à un vecteur chimique et/ou biochimique de transfection. Il peut s'agir notamment de cations (phosphate de calcium, DEAE-dextran,...), de liposomes. Les vecteurs synthétiques associés peuvent être des lipides ou polymères cationiques. On peut citer comme exemples de tels vecteurs le DOGS (Transfectam TM) ou le DOTMA (lipofectin TM).

Les compositions pharmaceutiques selon l'invention peuvent être formulées en vue d'administrations par voie topique, orale, parentérale, intranasale, intraveineuse, intramusculaire, sous-cutanée, intraoculaire, transdermique, etc. De préférence, le plasmide revendiqué est utilisé sous une forme injectable ou en application. il peut être mélangé à tout véhicule pharmaceutiquement acceptable pour une formulation injectable, notamment pour une injection directe au niveau du site à traiter. Il peut s'agir en particulier de solutions stériles, isotoniques, ou de compositions sèches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutés injectables. Il peut s'agir notamment de tampons Tris ou PBS dilués dans du glucose ou du chlorure de sodium. Une injection directe dans la région atteinte du patient est intéressante car elle permet de concentrer l'effet thérapeutique au niveau des tissus affectés. Les doses utilisées peuvent être adaptées en fonction de différents paramètres, et notamment en fonction du gène, du vecteur, du mode d'administration utilisé, de la pathologie concernée ou encore de la durée du traitement recherchée.

Les molécules d'ADN de l'invention peuvent comporter un ou plusieurs gènes d'intérêt, c'est-à-dire un ou plusieurs acides nucléiques (ADNc, ADNg, ADN synthétique ou semi-synthétique, etc) dont la transcription et éventuellement la

10

15

20

25

30

traduction dans la cellule cible génèrent des produits ayant un intérêt thérapeutique, vaccinal, agronomique ou vétérinaire.

Parmi les gènes d'intérêt thérapeutique, on peut citer plus particulièrement les gènes codant pour des enzymes, les dérivés sanguins, les hormones, les lymphokines : interleukines, interférons, TNF, etc (FR 9203120), les facteurs de croissance, les neurotransmetteurs ou leurs précurseurs ou enzymes de synthèse, les facteurs trophiques: BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, etc; les apolipoprotéines: ApoAI, ApoAIV, ApoE, etc (FR 93 05125), la dystrophine ou une minidystrophine (FR 9111947), les gènes suppresseurs de tumeurs : p53, Rb, Rap1A, DCC, k-rev, etc (FR 93 04745), les gènes codant pour des facteurs impliqués dans la coagulation: Facteurs VII, VIII, IX, etc, les gènes suicides: Thymidine kinase, cytosine désaminase, etc; ou encore tout ou partie d'une immunoglobuline naturelle ou artificielle (Fab, ScFv, etc), un ARN ligand (WO91/19813) etc. Le gène thérapeutique peut également être un gène ou une séquence antisens, dont l'expression dans la cellule cible permet de contrôler l'expression de gènes ou la transcription d'ARNm cellulaires. De telles séquences peuvent par exemple être transcrites, dans la cellule cible, en ARN complémentaires d'ARNm cellulaires et bloquer ainsi leur traduction en protéine, selon la technique décrite dans le brevet EP 140 308.

Le gène d'intérêt peut aussi être un gène vaccinant, c'est-à-dire un gène codant pour un peptide antigénique, capable de générer chez l'homme ou l'animal une réponse immunitaire, en vue de la réalisation de vaccins. Il peut s'agir notamment de peptides antigéniques spécifiques du virus d'epstein barr, du virus HIV, du virus de l'hépatite B (EP 185 573), du virus de la pseudo-rage, ou encore spécifiques de turneurs (EP 259 212).

Généralement, dans les molécules d'ADN de l'invention, le gène d'intérêt thérapeutique, vaccinal, agronomique ou vétérinaire contient également une région promotrice de la transcription fonctionnelle dans la cellule ou l'organisme cible, ainsi qu'une région située en 3', et qui spécifie un signal de fin transcriptionnelle et un site de polyadénylation. Concernant la région promotrice, il peut s'agir d'une région promotrice naturellement responsable de l'expression du gène considéré lorsque

10

15

20

25

30

celle-ci est susceptible de fonctionner dans la cellule ou l'organisme concernés. Il peut également s'agir de régions d'origine différente (responsables de l'expression d'autres protéines, ou même synthétiques). Notamment, il peut s'agir de séquences promotrices de gènes eucaryotes ou viraux. Par exemple, il peut s'agir de séquences promotrices issues du génome de la cellule cible. Parmi les promoteurs eucaryotes, on peut utiliser tout promoteur ou séquence dérivée stimulant ou réprimant la transcription d'un gène de façon spécifique ou non, inductible ou non, forte ou faible. Il peut s'agir en particulier de promoteurs ubiquitaires (promoteur des gènes HPRT, PGK, \alpha-actine, tubuline, etc), de promoteurs des filaments intermédiaires (promoteur des gènes GFAP, desmine, vimentine, neurofilaments, kératine, etc), de promoteurs de gènes thérapeutiques (par exemple le promoteur des gènes MDR, CFTR, Facteur VIII, ApoAI, etc), de promoteurs spécifiques de tissus (promoteur du gène pyruvate kinase, villine, protéine intestinale de liaison des acides gras, α-actine du muscle lisse, etc) ou encore de promoteurs répondant à un stimulus (récepteur des hormones stéroïdes, récepteur de l'acide rétinoïque, etc). De même, il peut s'agir de séquences promotrices issues du génome d'un virus, tel que par exemple les promoteurs des gènes E1A et MLP d'adénovirus, le promoteur précoce du CMV, ou encore le promoteur du LTR du RSV, etc. En outre, ces régions promotrices peuvent être modifiées par addition de séquences d'activation, de régulation, ou permettant une expression tissu-spécifique ou majoritaire.

Par ailleurs, le gène d'intérêt peut également comporter une séquence signal dirigeant le produit synthétisé dans les voies de sécrétion de la cellule cible. Cette séquence signal peut être la séquence signal naturelle du produit synthétisé, mais îl peut également s'agir de toute autre séquence signal fonctionnelle, ou d'une séquence signal artificielle.

Selon le gène d'intérêt, les molécules d'ADN de l'invention peuvent être utilisées pour le traitement ou la prévention de nombreuses pathologies, incluant les maladies génétiques (dystrophie, fibrose cystique, etc), les maladies neurodégénératives (alzheimer, parkinson, ALS, etc), les cancers, les pathologies liées aux désordres de la coagulation ou aux dyslipoprotéinémies, les pathologies liées aux

10

15

20

25

infections virales (hépatites, SIDA, etc), ou dans les domaines agronomique et vétérinaire, etc.

Par ailleurs, la présente invention concerne également l'utilisation des molécules d'ADN à réplication conditionnelle pour la production de protéines recombinantes. Les bactéries peuvent être utilisées pour produire des protéines d'origines diverses, eucaryotes ou procaryotes. Parmi les bactéries, E. coli constitue l'organisme de choix pour l'expression de gènes hétérologues en raison de sa manipulation aisée, du nombre important de systèmes d'expression disponibles et des quantités importantes de protéines que l'on peut obtenir. Il est entendu que le système de l'invention est utilisable dans d'autres organismes, le tropisme étant déterminé par la nature de l'origine de réplication, comme indiqué ci-avant. Pour cette utilisation, la séquence nucléique d'intérêt comprend une région codante sous le contrôle de signaux d'expression appropriés à l'hôte choisi, en particulier un hôte procaryote. Il peut s'agir par exemple des promoteurs Plac, Ptrp, PT7, Ptrc, Ptac, PL, PR, séquence Shine-Dalgarno, etc (cet ensemble constitue la cassette d'expression). La séquence d'acide nucléique d'intérêt peut être toute séquence codant pour une protéine présentant un intérêt dans les domaines de la pharmacie, de l'agro-alimentaire, de la chimie ou de l'agrochimie. Il peut s'agir d'un gène de structure, d'une séquence d'ADN complémentaire, d'une séquence synthétique ou semi-synthétique, etc.

La cassette d'expression peut être introduite sur le vecteur à réplication conditionnelle sujet de l'invention, constituant ainsi un vecteur à réplication conditionnelle permettant l'expression de protéines d'intérêt chez E. Coli. Ce vecteur présente plusieurs avantages: pas d'utilisation d'antibiotique pour le sélectionner chez la bactérie (moindre coût, pas de nécessité d'étude quant à la présence dans le produit fini d'antibiotique ou de produits dérivés potentiellement toxiques), probabilité pratiquement nulle de dissémination du plasmide dans la nature (origine de réplication conditionnelle), fermentation possible en milieu totalement défini. Les exemples présentés montrent les propriétés avantageuses de ces vecteurs conditionnels pour la production de protéines recombinantes.

La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

Légende des Figures:

- Figure 1: Organisation fonctionnelle de la région de R6K impliquée dans la réplication.
- 5 Figure 2: Organisation des domaines fonctionnelles de la protéine π du plasmide R6k.
 - Figure 3: Représentation du protocole d'introduction du gène pir dans le génome d'E.coli XAC1.
 - Figure 4: Schéma de contruction des vecteurs pXL2666, 2730 et 2754.
 - Figure 5: Construction du pXL2774.
- Figure 6: Cinétique de croissance et de production en fermenteur de 2L.
 - Figure 7: Cinétique de croissance et de production en fermenteur de 800L.
 - Figure 8: Construction du pXL3056.
 - Figure 9: Visualisation de la protéine aFGF produite par E. coli XAC-1pir-116 (pXL3056+PT7pol23) après induction. Les extraits cellulaires totaux dénaturés sont

(pXL3056+PT7pol23) clone 1, non induite; 4: XAC-1pir-116 (pXL3056+PT7pol23)

- déposés sur gel de polyacrylamide 12,5%-SDS. M: marqueur de masse moléculaire (Biorad, Low range). Chaque bande est identifiée par une flèche et un chiffre qui indique sa masse en kDaltons. 1: XAC-1pir-116 (pXL3056+pUC4K) non induite; 2: XAC-1pir-116 (pXL3056+pUC4K) induite à 42°C; 3: XAC-1pir-116
- clone 1, induite à 42°C; 5: XAC-1pir-116 (pXL3056+PT7pol23) clone 2, non induite; 6: XAC-1pir-116 (pXL3056+PT7pol23) clone 2, induite à 42°C; t1: 1µg de aFGF purifié; t4: 4µg de aFGF purifié.

Figure 10: Schéma de contruction des vecteurs pXL3029 et pXL3030.

I - MATERIELS ET METHODES

25 A) Matériels

1) Milieux de culture

Les milieux complets LB, 2XTY et SOC, le milieu minimum M9 (Maniatis et al., 1989) ont été utilisés. Les milieux gélosés ont été obtenus par addition de 15 g d'agar Difco. De plus, si nécessaire, ces milieux ont été supplémentés avec des

antibiotiques, ampicilline ou kanamycine, aux concentrations respectives de 100 mg/l et de 50 mg/l. Les substrats chromogènes X-Gal et X-Gluc ont été utilisés à la concentration de 40 mg/l.

2) Souches d'E. coli, plasmides et bactériophages

Les souches d'E. coli, les plasmides et les bactériophages utilisés sont identifiés respectivement dans les exemples ci-après.

5 B) Méthodes

10

15

20

25

1) Manipulation de l'ADN

L'isolement d'ADN bactérien (plasmidique, génomique) et phagique (forme réplicative de M13), les digestions par les endonucléases de restriction, les ligatures de fragments d'ADN, l'électrophorèse en gel d'agarose (en tampon TBE) et autres techniques standard ont été réalisées suivant les recommandations des fournisseurs, pour l'utilisation d'enzymes, ou en se conformant aux protocoles décrits dans "Molecular Cloning: a Laboratory Manual" (Maniatis et al., 1989).

Les marqueurs de taille d'ADN utilisés lors des électrophorèses sont les suivants : échelle 1 kpb (BRL) pour les fragments linéaires et le marqueur d'ADN surenroulé (Stratagène) pour les plasmides non digérés.

Le séquençage a été réalisé selon la technique de Sanger (Sanger et al., 1977) adaptée à la méthode automatisée utilisant des didéoxynucléotides fluorescents et la Taq ADN polymérase (PRISM Ready Reaction DyeDideoxy Terminator Cycle Sequencing Kit, Applied Biosystems).

Les oligodésoxynucléotides utilisés (désignés par "seq+n°", voir ci-dessous) ont été synthétisés sur le synthétiseur "Applied Biosystems 394 DNA/RNA Synthesizer" par la méthode des phosphoramidites, utilisant des groupements protecteurs \(\mathbb{B}\)-cyanoéthyles (Sinha et al., 1984). Après synthèse, les groupements protecteurs sont éliminés par traitement à l'ammoniaque. Deux précipitations au butanol permettent de purifier et de concentrer l'oligonucléotide (Sawadogo et al., 1991).

15

20

Séquence des oligonucléotides utilisés pour l'amplification par PCR:

	SEQ ID N°3	5'-GACCAGTATTATTATCTTAATGAG-3'
•	SEQ ID N°4	5'-GTATTTAATGAAACCGTACCTCCC-3'
	SEQ ID N°5	5'-CTCTTTTAATTGTCGATAAGCAAG-3'
5	SEQ ID N°6	5'-GCGACGTCACCGAGGCTGTAGCCG-3'

Les réactions de PCR (Saïki et al., 1985) ont été réalisées dans les conditions suivantes, dans un volume total de 100 µl. Le mélange réactionnel comprend 150 ng d'ADN génomique de la souche à étudier, 1 µg de chacun des 2 oligonucléotides-amorces (24-mer), 10 µl de tampon 10XPCR, dont la composition est la suivante "500 mM KCl, 0,1 % gélatine, 20 mM MgCl₂, 100 mM Tris-HCl pH 7,5", et 2,5 unités de Taq ADN polymérase (Amplitaq Perkin-Elmer). Les conditions de PCR, sur l'appareil Perkin-Elmer Cetus DNA Thermal Cycler, sont les suivantes: 2 min à 91°C, 30 cycles successifs de dénaturation (1 min à 91°C), d'hybridation (2 min à 42°C) et d'élongation (3 min à 72°C), et enfin 5 min à 72°C. Les produits ainsi obtenus, digérés ou non par une enzyme de restriction, sont analysés par électrophorèse sur gel d'agarose.

L'analyse de différentes espèces plasmidiques par les ADN topo-isomérases a été réalisée selon le protocole suivant: Les enzymes, purifiées dans son laboratoire, sont incubées pendant 1 heure à 37°C. Les mélanges réactionnels (volume total: 40 µl) ont la composition suivante : 150 ng de plasmide, 300 ng d' ADN topo-isomérase I, ou 150 ng d'ADN gyrase d' E. coli, ou 160 ng d' ADN topo-isomérase IV de S. aureus et 20 µl de tampon spécifique de chaque enzyme. La composition de ces tampons est indiquée ci-dessous :

pour l'ADN topo-isomérase I: 50 mM Tris-HCl pH 7.7, 40 mM KCl,

1 mM DTT, 100 µg/ml SAB, 3 mM MgCl₂, 1 mM EDTA;

25 pour l'ADN topo-isomérase IV : 60 mM Tris-HCl pH 7.7, 6 mM MgCl2,

10 mM DTT, 100 μg/ml SAB, 1.5 mM ATP,

350 mM glutamate de potassium;

pour l'ADN gyrase:

50 mM Tris-HCl pH 7.7, 5 mM MgCl₂,

1.5 mM ATP, 5 mM DTT, 100 µg/ml SAB, 20 mM KCl.

15

20

25

2) Transformation d'E. coli

Elle a été réalisée en routine selon la méthode TSB (Transformation and Storage Buffer) décrite par Chung et Miller (1988). Pour une souche comme TG1 (Gibson et al. 1984), l'efficacité de transformation obtenue est de l'ordre de 10⁵-10⁶ transformants par µg de pUC4K (Vieira et Messing, 1982). Lorsqu'une efficacité de transformation plus élevée était nécessaire, les bactéries ont été transformées par électroporation selon le protocole préconisé par le fabricant de l'électroporateur (Biorad). Cette méthode permet d'atteindre des efficacités de 10⁸ à 10¹⁰ transformants par µg de pUC4K.

10 '3) Transfection cellulaire médiée par un lipofectant cationique

Les cellules utilisées sont des fibroblastes murins NIH 3T3, ensemencées le jour précédent en plaques 24 puits, à une densité de 50 000 cellules par puits. Le milieu de culture utilisé est le milieu DMEM, contenant 4,5 g/l de glucose, complété avec 10 % de sérum de veau foetal et 1 % des solutions de glutamine 200 mM et d'antibiotiques (streptomycine 5.10³ u/ml, pénicilline 5.10³ µg/ml) (Gibco). L'ADN plasmidique (1 µg dans 25µl de NaCl 9 ‰) est mélangé, volume à volume, à une suspension de lipofectant. Quatre rapports "charges du lipofectant / charges de l'ADN" sont testés: 0, 3, 6 et 9. Ces rapports sont calculés en considérant que 1 µg d'ADN plasmidique porte 3,1 nmoles de charges négatives et que le lipofectant comporte 3 charges positives par molécule. Après un contact de 10 minutes permettant la formation du complexe ADN/lipide, 50 µl de mélange ADN-lipofectant est introduit sur les cellules en milieu de culture sans sérum (500 µl). Les cellules ont été préalablement rincées 2 fois avec ce même milieu. L'inhibition de la transfection par le sérum est ainsi évitée. Après incubation (2 heures à 37°C dans l'incubateur à CO_{2),} le milieu est additionné de 10 % de sérum de veau foetal. Les cellules sont ensuite remises à incuber pendant 24 heures.

4) Mesure de l'activité luciférase de cellules eucaryotes

Elle est effectuée 24 heures après la transfection. La luciférase catalyse l'oxydation de la luciférine, en présence d'ATP, de Mg²⁺ et d'O₂, avec production

concomitante d'un photon. L'émission totale de lumière, mesurée par un luminomètre, est proportionnelle à l'activité luciférase de l'échantillon. Les réactifs utilisés sont fournis par Promega (Luciferase assay system) et utilisés selon le protocole conseillé. Après lyse des cellules, la fraction insoluble de chaque extrait est éliminée par centrifugation. Le dosage est effectué sur 5 µl de surnageant, dilué ou non dans le tampon de lyse des cellules.

3) Mesure de la concentration protéique des extraits cellulaires

Elle est effectuée selon la méthode BCA (Pierce) utilisant l'acide bicinchoninique (Wiechelman et al., 1988). La gamme- étalon de SAB est réalisée dans le tampon de lyse (cf III-B-4). Les échantillons à doser et ceux de la gamme sont prétraités, volume à volume, avec de l'iodoacétamide 0,1 M/tampon Tris 0,1 M pH 8,2, pendant 1 heure à 37°C. Ce traitement permet d'éviter. l'interférence, lors du dosage, de l'agent réducteur (DTT) présent dans le tampon de lyse. La lecture du dosage s'effectue à 562 nm.

15 **EXEMPLE 1**:

10

20

25

Construction des souches-hôtes XAC-lpir et pir-116 par recombinaison homologue.

La souche mise en œuvre est la souche E. coli XAC-1 (Normanly et al; 1980. Avantageusement, le gène argE de cette souche comporte une mutation Glutamine-53 (CAG) en codon ambre (TAG) (Meinnel et al., 1992). Le gène argE appartient à l'opéron divergent argECBH et code pour une enzyme de biosynthèse de l'arginine, la N-acétylornithinase. XAC-1 ne peut donc synthétiser l'arginine et, en conséquence, croître en milieu minimum. Cette auxotrophie sera levée si la souche abrite un plasmide permettant l'expression d'un ARNt suppresseur. Il sera donc possible, par culture en milieu minimum, de sélectionner les bactéries qui portent un tel plasmide. Pour y permettre la réplication des plasmides dérivés de R6K, il a été nécessaire d'introduire, par recombinaison homologue, le gène pir dans le génome de XAC-1. Le gène pir (sauvage ou muté) est introduit au locus uidA par échange entre le gène uidA sauvage et une copie interrompue par le gène pir (ou pir-116). Le gène uidA code

10

15

pour une B-glucuronidase, enzyme d'hydrolyse des B-glucuronides. Ce gène peut être inactivé sans problème puisqu'il n'est pas essentiel à la croissance dans les milieux synthétiques classiques, dans lesquels les B-glucuronides ne sont pas utilisés. De plus, l'activité B-glucuronidase peut être suivie grâce à un substrat chromogène, le X-Gluc, dont l'hydrolyse libère un pigment bleu.

1) Construction d'un vecteur-suicide portant la cassette "Km^R-uidA::pir (ou pir-116)

Nous avons utilisé une stratégie impliquant un seul hôte bactérien et minimisant les modifications du génome de la souche d'intérêt. Le phage M13mp10 (Messing et Vieira; 1982) a été utilisé comme vecteur-suicide (Blum et al., 1989). Une mutation ambre dans le gène II, essentiel pour la réplication, réduit le spectre d'hôte de ce M13 aux souches, telle TG1 (supE), qui produisent un ARNt suppresseur d'ambre; il ne pourra donc se répliquer dans les souches d' E. coli sup+, comme XAC-1.

Les cassettes BamHI de 3,8 kpb, contenant le gène de résistance à la kanamycine de Tn5 et _uidA::pir ou pir-116, ont été purifiées, respectivement, à partir de M13wm34 et 33 (Metcalf et al; 1994). Elles ont été clonées dans M13mp10 linéarisé par BamHI. Les clones recombinants ont été sélectionnés par étalement sur milieu gélosé LB + Km, après électroporation dans TG1 des mélanges de ligature. La conformité des clones obtenus a été montrée par analyse du profil de restriction et par séquençage de la région correspondant à la mutation pir-116.

2) Introduction par recombinaison homologue des gènes pir ou pir-116 dans le génome d'E. coli XAC-1

La stratégie adoptée et les différents événements impliqués sont présentés dans la figure 3.

a) Premier événement de recombinaison

La souche XAC-1 a été transformée par électroporation avec 10, 100 ou 2000 ng de chaque RF (mp10-_uidA::pir ou pir-116). Un tiers de chaque mélange d'expression a été étalé sur boites LB contenant de la kanamycine et incubé la nuit à 37°C. Les phages mp10-_uidA::pir ou pir-116 ne peuvent se répliquer dans la souche XAC-1 (sup+). Le marqueur Km^R ne peut donc se maintenir que par intégration dans

le génome de la bactérie, via une recombinaison homologue avec la copie sauvage du gène uidA. Les résultats des électroporations de XAC-1 sont présentés dans le tableau 1. L'efficacité de transformation obtenue était de 4.10⁹ transformants par µg de pUC4K.

5

10

15

20

CONSTRUCTION	Nombres de colonies obtenues avec les quantité d'ADN transformé		
	10 ng	100 ng	2000 ng
M13mp10uidA::pir	1	41	146
M13mp10uidA::pir-116	0	16	124

TABLEAU 1

Dans les conditions testées, le nombre d'intégrants croît de façon non linéaire avec la quantité d'ADN. Connaissant l'efficacité de transformation et la taille des RF (11,7 kpb), on peut avoir une idée approximative du taux de recombinaison. En considérant le point à 100 ng, on obtient une fréquence de recombinaison de l'ordre de 10^{-6} .

b) Deuxième événement de recombinaison

Le deuxième événement de recombinaison sera ensuite sélectionné par la résistance des souches au désoxycholate (Doc^R).

Pour ce faire, 5 intégrants de chaque construction ont été mis en culture en milieu 2XTY additionné de 0,2 % de désoxycholate de sodium. Deux populations distinctes sont apparues. Certains clones donnent un trouble bien visible après environ 8 heures à 37°C (deux clones pour la construction *pir* et trois pour la construction *pir-116*). Les autres clones ont donné une culture dense seulement après la nuit à 37°C. Ils étaient quasiment tous Km^S, comme attendu. Pour chacun des électroporants étudiés, 50 descendants Km^S ont été striés sur LB additionné de X-Gluc. Après 48 heures à 37°C, les clones UidA⁺ étaient bleu pâle alors que ceux qui avaient subi un remplacement d'allèle (cas n°1, figure 3), sont restés blancs sur ce milieu (UidA⁻). Le tableau 2 résume l'analyse des phénotypique des recombinants doubles obtenus.

10

15

20

De 18 à 30 % des doubles recombinants ont subi un remplacement d'allèle.

nombre de Km ^s		pourcentage de UidA	
souche	parmi les Doc ^R	parmi les Km ^s	
XAC-1 pir-2	50/50	. 18	
XAC-1 pir-3	50/50	24	
XAC-1 pir-4	50/50	34	
XAC-1 pir-116-1	50/50	. 32	
XAC pir-116-4	35/50	30	

TABLEAU 2

3) Contrôle du caractère Pir+ des souches obtenues par recombinaison

Afin de s'assurer du caractère Pir+ des souches obtenues par double recombinaison, nous avons transformé trois clones de chaque construction par pBW30 (Metcalf et al., 1994). L'obtention de transformants pour toutes les souches testées a permis de montrer la fonctionnalité des gènes pir et pir-116 intégrés dans le génome de XAC-1. Dans les mêmes conditions, aucun transformant n'est obtenu avec la souche parentale XAC-1. Nous avons poursuivi l'étude de 2 clones XAC-1pir (B et C) et 2 clones XAC-1pir-116 (E et D).

4) Contrôle par amplification par PCR des souches obtenues par recombinaison

Pour confirmer le remplacement d'allèle, nous avons contrôlé par amplification par PCR les régions génomiques de part et d'autre du locus uidA. Chaque couple d'oligonucléotides est constitué d'un oligonucléotide correspondant à une région interne de pir et d'un deuxième oligonucléotide correspondant à une région, proche de uidA chromosomique, mais non comprise dans le fragment qui a servi à la recombinaison. La séquence de ce dernier oligonucléotide a été déterminée grâce à la séquence ECOUIDAA de Genbank (numéro d'accès : M14641). Nous avons ainsi pu vérifier le positionnement exact du gène pir dans le génome de la bactérie. La nature

des fragments amplifiés, dont la taille est conforme à celle que l'on pouvait prévoir, a été confirmée par digestion par MluI.

EXEMPLE 2

Construction de vecteurs plasmidiques dérivés de R6K portant le marqueur de sélection sup Phe

Nous avons construit des vecteurs comportant l' ori γ de R6K et le gène de résistance à la kanamycine (pXL2666). L'observation de multimères de pXL2666 dans la souche BW19610 (pir-116) 5 (Metcalf et al; 1993 nous a amené à étudier l'effet du fragment cer de ColE1 sur ce phénomène. Nous avons ensuite introduit sur le vecteur ori γ -Km^R-cer (pXL2730) la cassette d'expression de l'ARNt suppresseur Phénylalanine (sup Phe). Ce vecteur, pXL2760, sert de base à la construction de vecteurs utilisables en thérapie génique.

1) Construction et analyse des vecteurs comportant l' ori γ de R6K et le gène de résistance à la kanamycine

15 a) Constructions

10

20

25

Dans le premier plasmide construit, pXL2666, le gène de résistance à la kanamycine provient de pUC4K (Vieira et messing; 1982) et l'origine de réplication, contenue dans un fragment EcoRI-BamHI de 417 pdb, provient du vecteur-suicide pUT-T7pol (Herrero et al; 1990) (figure 4). Le transfert de pXL2666 dans les souches BW19094 et 19610 (Metcalf et al; 1994) a permis de montrer que la quantité de plasmide est bien augmentée dans une souche pir-116, par rapport au même plasmide dans une souche pir. Toutefois, l'analyse par électrophorèse des plasmides non digérés montre que cette augmentation va de pair avec l'apparition de quelques formes multimériques. Vraisemblablement, ce phénomène est lié à une recombinaison intermoléculaire entre les multiples copies du plasmide. Aussi avons nous construit pXL2730 en clonant sur pXL2666 le fragment cer du plasmide naturel d'E. coli ColE1, dont il avait été montré qu'il permettait, en cis, la résolution des dimères de plasmides (Summers and Sherrat, 1984). Le fragment utilisé correspond à un fragment

15

20

25

HpaII de 382 pdb de ColE1 (Leung et al., 1985). Il contient un site de recombinaison intermoléculaire spécifique; il implique uniquement, pour être fonctionnel, des protéines de l'hôte dont les recombinases XerC et XerD, et les facteurs accessoires ArgR et PepA (Stirling et al., 1988, 1989; Colloms et al., 1990). Pour s'assurer que les effets observés sont bien dus au fragment cer, nous avons aussi construit le plasmide contrôle pXL2754 dans lequel le fragment cer est délété de 165 pdb. Cette délétion a été montrée comme abolissant l'action de cer sur la résolution des multimères (Leung et al., 1985). Les différentes étapes de clonage conduisant à la construction de ces plasmides sont présentées sur la figure 4.

b) Analyse quantitative et qualitative des espèces plasmidiques
 •алаlyse par électrophorèse en gel d'agarose

L'analyse par électrophorèse des différents plasmides construits a permis la mise en évidence de diverses espèces plasmidiques, variables suivant les souches utilisées. La taille des plasmides non digérés a été évaluée par rapport au marqueur d'ADN surenroulé. Dans la souche pir (BW19094), les plasmides pXL2666, 2754 et 2730 sont pratiquement entièrement sous forme monomérique. Les bandes au dessus de chaque bande principale correspondent à différents topo-isomères, légèrement moins surenroulés, comme le confirme le profil observé après action de l'ADN gyrase avec pXL2730.

Dans le cas de la souche pir-116 (BW19610), les profils sont différents : on observe avec les plasmides pXL2666 et 2754 différentes espèces allant du monomère aux multimères (2, 3 ou 4 unités), la forme majoritaire étant le dimère. Après digestion par EcoRI, on ne retrouve que l'ADN plasmidique linéaire; ces espèces plasmidiques correspondent soit à des multimères de plasmides, soit à des topo-isomères divers. Toutefois, la taille des formes déterminée d'après le marqueur d'ADN surenroulé étant un produit entier de celle du plasmide monomère, il est fort probable qu'il s'agisse de multimères. La formation des multimères est très probablement imputable à la mutation pir-116, bien que les deux souches BW19094 et BW19610 ne soient pas strictement isogéniques (BW19610 est recA). Le profil obtenu avec pXL2730 es.

15

20

25

différent : bien que des formes multimériques soient encore visibles, la forme majoritaire est la forme monomérique. Le fragment cer peut donc faciliter la résolution des multimères de plasmide que nous avons construit et ceci de façon indépendante de recA, dans BW19610.

5 • analyse après traitement par les ADN topo-isomérases

Afin d'écarter l'hypothèse selon laquelle les formes observées dans les souches portant l'allèle pir-116 seraient des topo-isomères particuliers, chaque préparation de plasmide a été soumise à l'action d'ADN topo-isomérases. Les activités des différentes enzymes, dans les conditions expérimentales sont les suivantes : relâchement de l'ADN pour l'ADN topo-isomérase I d'E. coli, surenroulement négatif de l'ADN relâché pour l'ADN gyrase d'E. coli, et désenchevêtrement des ADN entrelacés et relâchement de l'ADN surenroulé par l'ADN topo-isomérase IV de S. aureus. L'action de l'ADN topo-isomérase IV a permis de montrer que les formes plasmidiques de haut poids moléculaire ne résultaient pas de l'enchevêtrement de plusieurs molécules de plasmides; dans ce cas, elles auraient alors été converties en l'espèce monomérique. La fonctionnalité de l'enzyme a bien sûr été contrôlée sur une préparation d'ADN de kinétoplastes, composée de molécules d'ADN enchevêtrées (non montré). L'activité de relâchement est aussi visible puisqu' on obtient des espèces migrant moins que dans les témoins non traités. L'action de l'ADN gyrase a permis de convertir les topo-isomères légèrement relâchés en l'espèce la plus surenroulée extraite de la bactérie (monomère ou dimère principalement). De plus, elle a permis de vérifié que les ADN préparés sont majoritairement sous forme surenroulée. Les échantillons ainsi traités permettent de confirmer les résultats précédents quant aux espèces majoritaires pour chaque construction. L'ADN topo-isomérase I a bien relâché l'ADN mais de façon partielle. Ceci pourrait être dû au fait que les plasmides étudiés ne comportent que peu de zones simples brins, sur lesquelles cette enzyme se lie préférentiellement (Roca, 1995).

2) Introduction du marqueur de sélection sup Phe sur pXL2730

Nous avons utilisés la cassette d'expression du gène d'ARNt suppresseur synthétiques (Phe) (Kleina et al., 1990). Celui-ci introduit dans la chaîne

10

15

25

polypeptidique en formation une Phénylalanine en réponse à un codon TAG. De plus, il permet la production dans XAC-1 d'une protéine ArgE suffisamment active pour permettre une bonne croissance en milieu carencé en arginine. Sur le plasmide pCT-2-F (Normanly et al; 1986), sup Phe est exprimé de manière constitutive à partir d'un promoteur synthétique dérivé de la séquence du promoteur du gène lpp d' E. coli, Plpp. En aval de ce gène, l'arrêt de transcription est assuré par le terminateur synthétique de l'opéron rmC d' E. coli, TrmC (Normanly et al., 1986). Les différentes étapes de clonage sont indiquées sur la figure 5.

Les différents sous-clonages ont été réalisés dans XAC-1. La fonctionnalité de la cassette d'expression de l'ARNt suppresseur est ainsi contrôlée grâce à l'activité B-galactosidase de cette souche qui n'existe que s'il y a suppression du codon ambre du gène lacZull8am. La dernière étape consiste en l'introduction de la cassette d'expression de sup Phe sur pXL2730. Les résultats obtenus avec le fragment cer (B-1-b) nous ont fait choisir ce plasmide plutôt que pXL2666. Nous avons conservé le gène de résistance à la kanamycine pour des facilités de clonage ultérieur, notamment pour disposer d'un criblage supplémentaire lors du clonage final (perte de Km^R).

EXEMPLE 3:

Validation du vecteur plasmidique pour des applications en thérapie génique par transfection de fibroblastes murins.

20 1) Construction du vecteur rapporteur pXL2774

Afin de tester la validité en thérapie génique du système de production d'ADN plasmidique, nous avons introduit sur pXL2760 un gène rapporteur, utilisable dans les cellules eucaryotes. Nous avons utilisé le gène *luc* codant pour la luciférase de *Photinus pyralis* car le test de mesure de bioluminescence est très sensible, linéaire sur une large gamme et le bruit de fond dû à l'activité endogène des cellules eucaryotes est très faible. Le gène *luc* est sous contrôle des séquences promotrices-amplificatrices d'un gène précoce du cytomégalovirus humain (promoteur CMV) qui permet une expression à taux élevé. En 3' de *luc* se trouve une région non traduite, provenant du virus SV40, qui contient le signal de polyadénylation (poly(A)+). Après un clonage

15

20

25

intermédiaire permettant d'augmenter le nombre de sites de restriction disponibles, la cassette "promoteur CMV-luc-poly(A)+" est introduite sur le vecteur minimal ori γ - cer-sup Phe (pXL2760) à la place du marqueur Km^R. Le plasmide résultant a été appelé pXL2774. La figure 6 rassemble les diverses étapes de clonage. Les mélanges de ligature ont été transformés par électroporation dans XAC-1pir-116. L'incubation permettant aux bactéries l'expression des marqueurs de sélection s'effectue en milieu riche (milieu SOC); il a donc été nécessaire de laver les cellules deux fois avec du milieu M9 avant l'étalement. Ceci a permis d'éliminer le milieu résiduel qui aurait entraîné un bruit de fond de culture sur milieu minimum.

Le milieu choisi pour étaler les cellules électroporées est le milieu minimum M9, qui permet de sélectionner les bactéries exprimant un ARNt suppresseur et donc la présence de nos plasmides. L'addition de X-Gal permet, par la coloration bleue, de visualiser l'expression de l'ARNt suppresseur. Les boites sont analysées après environ 20 heures à 37°C. L'absence de colonies sur le témoin sans ADN nous assure que la sélection est correcte, même avec des ensemencements denses. Tous les clones examinés par restriction (8) portent bien un plasmide, correspondant au profil attendu. Le plasmide ainsi construit, pXL2774, a été préparé à partir d'un clone cultivé dans un litre de milieu liquide M9 (environ 18 heures à 37°C), par une technique faisant appel entre autre à un échange d'ions (kit Promega, MegaPreps). La quantité d'ADN recueillie est de 2 mg.

2) Analyse du vecteur rapporteur pXL2774 transfecté dans les cellules de mammifères

La capacité de pXL2774 à transfecter les cellules eucaryotes et à permettre l'expression de la luciférase est évaluée par transfection dans les fibroblastes murins NIH 3T3. Le vecteur choisi comme référence est le plasmide pXL2622 (il s'agit du plasmide pGL2 de Promega dont le promoteur SV40 a été remplacé par le promoteur CMV) qui porte la même cassette d'expression de la luciférase que pXL2774, mais sur un réplicon différent. C'est un dérivé de ColE1, de 6,2 kpb, qui porte le gène de résistance à l'ampicilline. Ce plasmide nous sert de témoin. Les activités luciférase

(exprimée en RLU, ou unités relatives de luminescence) sont indiquées dans le tableau 3.

Les résultats les meilleurs ont été obtenus avec un rapport charges lipofectant/charges ADN" de 6 ; dans ces conditions, pXL2622 et 2774 semblent équivalents.

	pXL2622		pXL2774			
rapports de charges	RLU/µg de protéines et par puits	Moyenne	Coefficient de variation (%)	RLU/µg de protéines et par puits	Moyenne	Coefficient de variation (%)
0	0.0 0,0 0,0	non détectable		0.0 0.0 0.0	non détectable	•
3	9,9 10 ⁶ 6,2 10 ⁶ 6,6 10 ⁶	7,6 10 ⁶	· 22	3,3 10 ⁶ 2,9 10 ⁶ 2,4 10 ⁶	2.9 10 ⁶	13
6	1,2 10 ⁷ 1,5 10 ⁷ 1,9 10 ⁷	1,5 10 ⁷	19	9,4 10 ⁶ 9,9 10 ⁶ 1.1 10 ⁷	1,0 10 ⁷	7
9	9,5 10 ⁶ 7,5 10 ⁶ 1,4 10 ⁷	1,0 10 ⁷	26	1.1 10 ⁷ 8.3 10 ⁶ 8.5 10 ⁶	6,4 10 ⁶	13

TABLEAU 3

EXEMPLE 4

10

Vérification du caractère de vecteur suicide chez E. coli des plasmides pCOR

Le caractère non réplicatif des plasmides dérivés de R6K type pCOR a été vérifié par une expérience d'électroporation dans E. coli JM109 (Yanisch-Perron et al., 1985) des plasmides pUC4K (ori ColEI-KmR, (Vieira et Messing, 1982)) et pXL2730 (ori gamma de R6K-KmR, voir exemple 2). L'électroporateur utilisé est le Gene Pulser

20

Biorad et les cellules JM109 électrocompétentes sont préparées et utilisées selon le protocole du fabricant (Bacterial electro-transformation and pulse controller instruction manual, catalog number 165-2098).

Les cellules électrotransformées ont été étalées sur milieu LB additionné de kanamycine (50mg/l) et incubées la nuit à 37°C. Les résultats obtenus sont présentés ci-dessous.

Résultats:

	quantité transformée	nombre de	Efficacité
Plasmide	(ng)	transformants	(nombre de transformants/ng
	•		de plasmide)
pUC4K	0,01	>>2000	>2 105
pXL2730	5	0	0

Ces résultats montrent qu'il y a au minimum 5 log de différence entre l'efficacité de transformation d'un dérivé de ColEI (pUC4K) par rapport à un dérivé de R6K (pXL2730) dans une souche n'exprimant pas le gène pir. Dans une souche pir+ comme XAC-1pir-116, l' efficacité d'électrotransformation de plasmides dérivés de R6K atteint ou dépasse classiquement les 108 transformants / par µg de plasmide.

EXEMPLE 5:

Production d'ADN plasmidique par culture à haute densité de la souche Ecoli XAC-1pir-116 (pXL2774) : Procédé de fermentation.

5.1. Souches: Production dans E.coli XAC-1pir-116 (exemple 1), d'un plasmide minimal, pXL2774; Ce plasmide comprend les éléments suivants: ori R6K-cer-tRNAamsupPhe et une cassette d'expression du gène rapporteur luc sous contrôle du promoteur CMV (exemple 3). Il a été développé un procédé à haute productivité pour la production de ce type de plasmides.

5.2. Milieux et conditions de culture:

a) Milieu de croissance:

. Composition du milieu défini utilisé pour les cultures inoculum (g/l):Na2HPO4 6, KH2PO4 3, NaCl 0.5, NH4Cl 1, NH4H2PO4 3, glucose 5, MgSO4,7H20 0.24, CaCl2,2H2O 0.015, thiamine HCl 0.010

. Composition du milieu complexe utilisé pour les cultures en fed-batch (g/l): KH2PO4 8, K2HPO4 6.3, Na2HPO4 1.7, (NH4)2SO4 0.74, NH4Cl 0.12, extrait de levure 3, glucose 2, MgSO4,7H20 2.4g/l, CaCl2,2H2O 0.015, thiamine 0.010, solution de sels (Fe, Mn, Co, Zn, Mo, Cu, B, Al).

. Composition du milieu défini pour les cultures en fed-batch milieu identique au milieu complexe mais l'extrait de levure est remplacé par 2.5 g/l de NH4Cl.

b) Conditions de culture en fed-batch:

Des études en fermenteurs de 2 litres (Setric France) contenant 11 de milieu ont été réalisées afin de définir les conditions optimales de croissance et de production d'ADN plasmidique. Le fermenteur a été ensemencé avec 80 ml d'une culture inoculum arrivée en début de phase stationnaire de croissance.

Pendant la fermentation, le pH a été contrôlé et ajusté automatiquement entre 6,9 et 7,0 avec de l'ammoniaque 10 % (p/v); la température est maintenue à 37°C; l'aération a été fixée à 75 l/h ((1.1 vvm) sous une pression de 0.2 bar et l'oxygène dissous a été contrôlé à (40 % de la saturation d'air par rétroaction sur la vitesse d'agitation et, si nécessaire, par enrichissement par de l'oxygène pur.

Tous les paramètres (pH, température, agitation, OD, O2 et CO2 dans les gaz effluents) ont été collectés et calculés en ligne par l'intermédiaire d'une interface HP3852 connectée à un Hewlett-Packard 9000.

La composition de base du milieu d'alimentation est la suivante : source de carbone 50 %, sulfate de magnésium 0.7 %, thiamine 0.02 %; pour le milieu complexe,

15

20

il a été ajouté de l'extrait de levure à une concentration comprise de préférence entre 5 et 10 %.

Afin d'adapter les conditions de culture aux fermenteurs de 800 litres, des séquences de production comportant deux cultures inoculum successives ont été réalisées, à l'échelle du laboratoire: inoculum I en erlenmeyer agité et inoculum II en fermenteur de 2 litres (cultures en batch), suivie par une culture de production en fedbatch, en fermenteur de 7 litres.

5.3. Résultats

Différentes conditions de culture ont été étudiées en milieu complexe, en milieu défini, et à différents taux de croissance. Dans tous les cas, après une culture initiale en batch de la souche bactérienne et consommation de la source de carbone, le milieu d'alimentation a été ajouté au fermenteur grâce à une pompe péristaltique couplée à un profil d'addition pré-programmé. Ce profil a été déduit d'expériences antérieures dans lesquelles le taux d'alimentation avait été asservi soit au taux d'oxygène dissous, soit à un taux de croissance constant.

De plus, de façon à extrapoler sans difficulté les conditions de fermentation de 2 litres à un fermenteur de 8001 sans suroxygénation du milieu, la demande maximale en oxygène en fin de culture a été fixée à 2,5-3 mM/min. Pour cela, le taux de croissance du micro-organisme a été réduit, si nécessaire, par action sur le débit d'alimentation de la charge complémentaire.

Comme le montre le Tableau 4, de très bon résultats ont été obtenus à la fois en milieu complexe et en milieu défini, que ce soit à l'échelle du laboratoire ou à l'échelle d'un fermenteur de 800 litres; les cinétiques de croissance et de production d'ADN plasmidique sont de plus tout à fait comparables (cf. figures 6 et 7).

	Milieu	Milieu défini	
	Fermenteur de 2 ou 71	Fermenteur de 8001	Fermenteur de 21
durée de fermentation (heure)	40	39	48
μ h-1	0.130	0.132	0.124
DO (600nm)	114	100	94
X g/l	44	37	30
ADN plasmidique (mg/l milieu)	115	100	100
ADN plasmidique (mg/gX)	2.6	2.7	3. 3

X=biomasse (poids de cellules sèches)

TABLEAU 4

Les résultats globaux font ressortir que :

- le changement d'échelle du fermenteur de 2 litres à celui de 800 litres peut être effectué sans problème aucun,
 - l'oxygène consommé est fortement corrélé à la biomasse produite (1.08 g 02/g biomasse produite),
- le plasmide est stable pendant au moins 50 générations sans pression de 10 sélection,
 - on peut obtenir une biomasse élevée, supérieure à 40g de cellules sèches/litre, en milieu complexe,
 - la production d'ADN plasmidique atteint les 100 mg d'ADN surenroulé / 1 de milieu,
- il existe une très bonne corrélation entre la production d'ADN et la biomasse: on peut estimer la production à (1 mg d'ADN plasmidique / unité de DO, ou bien (2.7 mg d'ADN plasmidique / g de biomasse, et ceci quelle que soit la durée de fermentation,

10

- l'utilisation d'un milieu défini permet aussi d'atteindre une biomasse (30 g de cellules sèches/l) et une production d'ADN plasmidique (100 mg/l) élevées, et ceci sans aucune perte de productivité.

EXEMPLE 6:

Transfert de pXL2774 dans les cellules animales, in vitro et in vivo.

6.1. Transfert in vitro de pXL2774 dans les cellules animales

La capacité du plasmide minimal pXL2774 à transfecter différentes lignées cellulaires a été testée in vitro, tant sur des cellules d'origine humaine que d'origine murine. Le plasmide pXL2784 a été utilisé comme témoin. Il contient la même cassette d'expression eucaryote (promoteur CMV-luciférase-polyA) que pXL2774 mais c'est un dérivé de ColE1 de 6,4kb qui comprend le gène conférant la résistance à la kanamycine chez E. coli.

Les cellules testées sont les suivantes:

Cellules	Туре	Réf Atcc/réf. Biblio
.3LL	Carcinome pulmonaire de souris	
NIH 3T3	Fibroblastes d'embryon de souris	CCL92
293	Cellules renales d'embryon humain transformees par l'adenovirus type 5	CRL1573
HeLa	Carcinome humain du col de l'uterus	CCL2
Caco-2	Adenocarcinome humain du colon	HTB37
H460	Carcinome humain du poumon non a petites cellules	HTB177
ECV 304	Cellules endotheliales humaines de cordon ombilical	Takahashi et al1990

Les conditions de transfection ont été les suivantes :

- J-1: Ensemencement des cellules à la densité de 100 000 cellules par puits de 2 cm2 (plaque 24 puits) en milieu DMEM (Dulbecco's modified Eagle Medium) supplémenté par 10 % de sérum de veau foetal (SVF).
- J-3: Transfection des cellules, par 10 μl d'une solution de transfection contenant: 0,5 μg d'ADN, 150mM NaCl, 5 % glucose et 3 nmoles de lipofectant RPR120 535 par μg d'ADN, dans 250 μl de milieu de culture, additionné ou non de 10 % de SVF. Après une incubation de 2 heures, le milieu est remplacé par 500 μl de milieu DMEM additionné de 10 % de SVF.
 - J-4: Renouvellement du milieu de culture

J-5: Lavage des cellules au PBS puis lyse par 100 μl de tampon de lyse Promega (Promega Cell Lysis Buffer E153 A). Le dosage de l'activité luciférase s'effectue dans un luminomètre Lumat LB 9501 (Berthold) sur 10 μl de lysat, avec une durée d'intégration de 10 secondes. Le réactif utilisé est celui de Promega (Promega Luciferase Assay Substrate). Les résultats, rassemblés dans les tableaux suivants, sont exprimés en RLU (Relative Lights Unit) pour 10 μl de lysat (moyenne de mesure sur 4 puits). Les coefficients de variation (CV) sont aussi indiqués.

Les résultats de transfections en absence de sérum sont présentés ci-dessous.

	TYPES CELLULAIRES				
	NIH 3T3	3LL	293		
pXL 2774	37 763 380	559 270	1 884 200	RLU	
	16	25	73	CV	
pXL2784		113 764	1 723 546	RLU	
		24	101	CV	

TYPES CELLULAIRES

	HeLa	CaCo2	H460	ECV304
pXL 2774	11 000 000	1 108 422	1 459 501	36 450
	15	14	5	23
pXL2784	557 930	93 610	7 563	168 795
	87	40	11	40

Les résultats de transfections en présence de sérum (10 %) sont présentés ci-dessous :

TYPES CELLULAIRES

	NIH 3T3	3LL	293
pXL 2774	50 612 590	566 377	992 500
	12	18	59
PXL2784	12 693 780	436 704	2 300 000
	38	12	47

TYPES CELLULAIRES

	HeLa	H460	ECV304
pXL 2774	9 490 000	857 385	18 021
	25	16	30 ;
PXL2784	1 508 480	433 023	32 074
·	23	27	47

Ces résultats font ressortir la capacité de pXL2774 à transfecter, in vitro, de façon efficace différents types cellulaires d'origine aussi bien murine qu'humaine. L'expression du gène rapporteur luc permet de montrer que son efficacité de transfection est au moins aussi bonne que celle d'un plasmide "classique", dérivé de ColE1, qui porte la même cassette d'expression de la luciférase.

6.2. Transfert in vivo. chez l'animal (souris), de pXL2774

a) Modèle 1: ADN nu dans le muscle tibial crânial de souris

L'ADN plasmidique nu, en solution dans "glucose 5 %, NaCl 150mM", est injecté dans le muscle tibial crânial de souris OF1. Les muscles sont prélevés 7 jours après injection, hachés, homogénéisés dans 750 µl de tampon de lyse (Cell Lysis Buffer Promega E153A) puis centrifugés à 20 000 ¥ g pendant 10 minutes.

Le dosage d'activité luciférase est réalisé sur 10 µl surnageant après addition de 50 µl de réactif (Promega Luciferase Assay Substrate). La lecture s'effectue sur le luminomètre Lumat LB9501 (Berthold) avec une durée d'intégration de 10 secondes.

Les résultats sont	présentés dans le	Tableau ci-dessous.
--------------------	-------------------	---------------------

Plasmide	pXL2784	pXL 2774	pXL2784	pXL 2774				
nombre de muscles:	8	8	10	10				
volume injecté (µl):	30	30	33	33				
μg d'ADN/muscle	19	13,5	10	6,25				
RLU (pour 10 µl·)								
Moyenne	80 922	471 733	35329	30569				
Ecart-type	104 573	402 602	37041	35774				

Ces résultats indiquent qu'un plasmide à réplication conditionnelle comme pXL2774 est bien capable de transfecter des cellules musculaires de souris in vivo et ceci avec une efficacité comparable, voire supérieure à celle d'un plasmide "classique", dérivé de ColE1, qui porte la même cassette d'expression du gène de la luciférase.

b) Modèle 2: modèle tumoral 3T3 HER2

Le modèle est le suivant:

- Souris de type Swiss/nude femelles adulte
- Tumeurs expérimentales induites après injection de 107 cellules 3T3 HER2 par voie sous-cutanée au niveau du flanc.
 - L'injection du mélange de transfection est réalisée 7 jours après l'injection des cellules

Solutions injectées: L'ADN est d'abord solubilisé dans le tampon. Après addition de tous les produits, le mélange contient, outre l'ADN, du NaCl (150mM) et du D-Glucose 5 % dans l'eau ou le tampon HEPES 5mM.

- Deux jours après l'injection, le tissu tumoral est prélevé, pesé puis haché et homogénéisé dans 750 μl tampon de lyse (Promega Cell Lysis Buffer E153 A). Après centrifugation (20 000 g pendant 10 minutes), on prélève 10 μl de surnageant qui permettent l'évaluation de l'activité luciférase. Cette activité est déterminée par mesure de l'émission lumineuse totale obtenue après mélange avec 50 μl de réactif (Promega Luciferase Assay Substrate) dans un luminomètre Lumat LB 9501 (Berthold) avec une durée d'intégration de 10 secondes.

L'activité résultante est exprimée en RLU (Relative Lights Units) estimée dans la totalité du surnageant de lyse tumorale.

10 Résultats:

Tampon	Plasmide			Résultat RLU /tumeur		+/n
H2O ou	reférence	μg/ tumeur	[ADN]	moyenne	écart-type	
HEPES			finale ds		·	
			sol.inj.			
HEPES	pXL2784	10	0,5 μg/μl	744 150	682 434	6/6
	pXL2774	10	0,5 µg/µl	1 016 380	1 322 500	5/6
·						
H2O	pXL2784	24	0,6 µg/µl	2 906 073	1 745 857	8/8
	pXL 2774	16,8	0,4 µg/µl	4 292 043	4 995 187	6/6
H2O	pXL2784	7,5	0,3 µg/µl	702 554	552 207	6/7
	pXL2774	5	0,2 µg/µl	3 413 430	4 000 875	6/6
	,					

Ces résultats indiquent qu'un plasmide à réplication conditionnelle, comme pXL2774, est bien capable de transfecter des cellules tumorales de souris in vivo et ceci avec une efficacité au moins comparable à celle d'un plasmide "classique", dérivé de ColE1, qui porte la même cassette d'expression du gène de la luciférase.

15

25

Ces différentes expériences ont permis de démontrer que les plasmides à réplication conditionnelle, et plus particulièrement pXL2774, présentaient bien les caractéristiques de transfection de cellules animales indispensables à une utilisation en thérapie génique. Plus précisément, il a été montré :

- 1) la capacité de pXL2774 à transfecter efficacement, in vitro, différents types cellulaires, d'origine humaine ou murine;
 - 2) la capacité de pXL2774 à transfecter, in vivo, le muscle de la souris;
- 3) la capacité de pXL2774 à transfecter, in vivo, des cellules tumorales implantées chez la souris
- Les expériences d'électrotransformation, de fermentation et de transfection ont donc permis de valider les plasmides à réplication conditionnelle comme vecteur utilisables en thérapie génique en montrant
 - i) qu'il ne se répliquaient pas de façon détectable dans une souche d'E.coli n'exprimant pas le gène pir (origine de réplication conditionnelle)
 - ii) qu'ils pouvaient être produits à une échelle compatible avec une production industrielle, dans un milieu qui peut être totalement défini et qui ne contient pas d'antibiotiques;
 - iii) que ces plasmides pouvaient transfecter, in vitro et surtout in vivo des cellules de mammifères.

20 EXEMPLE 7:

Production de Protéines recombinantes in vitro

7.1. Construction du vecteur d'expression

Afin de montrer la faisabilité d'une telle approche, nous avons construit un vecteur d'expression selon les critères décrits précédemment (exemples 2 et 3). Ce vecteur, pXL3056, contient:

1) la partie bactérienne qui comprend l'origine de réplication conditionnelle (ori gamma), le fragment cer de ColE1 et le gène assurant la sélection chez la bactérie (sup)

15

20

25

2) la cassette d'expression, basée sur le système décrit par Studier (Studier et al., 1990), comprend le promoteur du gène 10 du bactériophage T7, l'opérateur lacO, le gène codant pour le aFGF 154 (acidic Fibroblast Growth factor ou facteur de croissance acide des fibroblastes, forme comportant 154 acides aminés) (Jaye et al., 1986), le terminateur TF du bactériophage T7. Cette cassette d'expression est identique à celle présente sur le plasmide pXL2434 décrit dans la demande WO96/08572.

La construction de pXL3056 est présentée sur la figure 8. Le fragment EcoRI-BgIII de pXL2434 (1,1kb) contenant la cassette d'expression du aFGF est cloné dans le vecteur à réplication conditionnelle pXL2979 (fragment purifié de 1,1 kb) aux sites BgIII et EcoRI pour générer pXL3056.

pXL2979 résulte de la ligature de 3 fragments: i)fragment AccI-XbaI de pXL2730 (0,8kb, qui apporte ori gamma et cer) ii) fragment NarI-SalI de pXL2755 (0,18 kb, qui apporte le gène sup Phe) iii) fragment SalI-SpeI de pXL2660 (1,5 kb qui apporte le gène conférant la résistance à la kanamycine).

pXL2660 résulte du clonage du fragment PstI de 1,2kb de pUC4K (Vieira et Messing, 1982) dans pMTL22 (Chambers et al., 1988) linéarisé par PstI.

7.2. Obtention de la souche d'expression

Le plasmide pXL3056 est introduit par transformation dans la souche XAC-1pir-116. La souche résultante est ensuite transformée par le plasmide PT7pol23 (Mertens et al., 1995), à 30°C. Afin d'exprimer le gène d'intérêt sous contrôle du promoteur T7, la bactérie doit contenir, dans son génome, sur un plasmide ou un bactériophage, une cassette permettant l'expression de l'ARN polymérase du bactériophage T7. Dans l'exemple décrit, nous avons utilisé le plasmide PT7pol23, compatible avec les dérivés de R6K tel pXL3056, et qui permet l'expression inductible par la température de l'ARN polymérase bactériophage T7. On peut toutefois envisager aussi de lysogéniser la souche XAC-1pir-116 par lambda DE3 (Studier et al., 1990) afin de ne conserver qu'un plasmide et induire la production de l'ARN polymérase de T7 plutôt par l'IPTG que par la température.

10

20

25

7.3. Expression du aFGF

La souche XAC-1pir-116 (pXL3056+PT7pol23) est cultivée à 30°C, en milieu minimum M9 additionné de 0,2 % de casaminoacides (DIFCO) et de kanamycine (25µg/ml), jusqu'à une densité optique à 600 nm de 0,6-1. La moitié de la culture est ensuite placée à 42°C (induction de l'ARN polymérase de T7) alors que l'autre moitié reste à 30°C (témoin négatif). La même expérience est menée avec la souche XAC-1pir-116(pXL3056+pUC4K) qui constitue un témoin d'expression du aFGF en absence d'ARN polymérase de T7.

Les résultats obtenus sont présentés sur la figure 9. Ils montrent que la production de aFGF est comparable ou supérieure à celle observée avec BL21(DE3)(pXL2434) (WO96/08572) ce qui montre bien les potentialités des plasmides à réplication conditionnelle pour l'expression de protéines recombinantes in vitro, notamment chez E. Coli.

EXEMPLE 8:

15 Construction d'un vecteur pCOR exprimant une protéine p53 sauvage ou hybride.

Cet exemple décrit la construction de vecteurs à réplication conditionnelle selon l'invention contenant un acide nucléique codant pour une protéine p53. Ces vecteurs sont utilisables pour restaurer une activité de type p53 dans des cellules déficientes (mutées, délétées), telles que notamment les cellules tumorales.

La cassette d'expression eucaryote contient les éléments suivants :

- 1) promoteur précoce CMV "immediate early" (positions -522 à +72) suivi de la séquence leader du gène de la thymidine kinase du virus herpes simplex type I (position -60 à +1 du gène, en faisant réference à la séquence de l'article McKnight, S.†L. (1980) Nucleic Acids Res. 8:5949-5964);
- 2) un acide nucléique codant pour la protéine p53 sauvage ou pour un variant de p53 tel que décrit dans la demande PCT/FR96/01111 (variant V325K= V325 avec une séquence Kozak à l'ATG);

3) la séquence de polyadénylation polyA de SV40.

Ces éléments ont été placés sous forme d'un fragment AscI- XbaI sur le vecteur pCOR pXL2988 entre les sites BssHII et SpeI. pXL2988 est identique à pXL2979 (exemple 7.1.) mis à part la présence d'un élément supplémentaire, une séquence capable de former une triple hélice d'ADN composée de 17 fois le trinucléotide GAA, placée à coté de l'origine de réplication gamma.

Les plasmides résultant sont nommés pXL3029 et 3030 (Figure 10).

La fonctionnalité de ces constructions a été vérifiée <u>in vitro</u> sur cellules p53-SAOS2 en culture par mesure de l'activité d'activateur transcriptionnel de p53 ou p53superWT.

BIBLIOGRAPHIE

- Alting-Mees, M. A., J. A. Sorge, and J. M. Short. 1992. Methods Enzymol. 216:483-495.
- Blum, P., D. Holzschu, H. S. Kwan, D. Riggs, and S. Artz. 1989. J. Bacteriol. 171:538-546.
 - Brosius, J. 1989. Methods Enzymol. 216:469-483.
 - Chambers, S. P., S. E. Prior, D. A. Barstow, and N. P. Minton. 1988. Gene 68:139-149.
 - Chung, C. T., and R. H. Miller. 1988. Nucleic Acids Res. 16:3580.
- 10 Colloms, S. D., P. Sykora, G. Szatmari, and D. J. Sherrat. 1990 J. Bacteriol. 172:6973-6980.
 - Datta, N., and P. Kontomichalou. 1965. Nature 208:239-241.
 - Dickely, F., D. Nilsson, E. B. Hansen, and E. Johansen. 1995. Mol. Microbiol. 15:839-847.
- Filutowicz, M., S. Dellis, I. Levchenko, M. Urh, F. Wu, and D. York. 1994. Prog. in Nucleic Acid Res. and Mol. Biol. 48:239-273.
 - Gibson, T. J. 1984. Ph.D Thesis. University of Cambridge.
 - Greener, A., M. Filutowicz, M. McEachern, and D. Helinski. 1990. Mol. Gen. Genet. 224:24-32.
- 20 Herrero, M., V. de Lorenzo, and K. N. Timmis. 1990. J. Bacteriol. 172: 6557-6567.
 - Hodgson, C. P. 1995. Bio/Technology 13:222-225.
 - Inuzuka, M., and Y. Wada. 1985. EMBO J. 4:2301-2307.
 - Jaye, M. et al., (1986) Science 233: 541-5.
 - Kleina, L. G., J. M. Masson, J. Normanly, J. Abelson, and and J. H. Miller. 1990. J.
- 25 Mol. Biol. 213:705-717.
 - Kowalczykowski, S. C., and A. K. Eggleston. 1994. Annu. Rev. Biochem. 63:9991-10043.
 - Leung, D. W., E. Chen, G. Cachianes, and D. V. Goeddel. 1985. DNA 4:351-355.
 - Maniatis, T., E. F. Fritsch, and J. Sambrook. 1989. Cold Spring Harbor Laboratory,
- 30 Cold Spring Harbor, N.Y.

Meinnel, T., E. Schmitt, Y. Mechulam, and S. Blanquet. 1992. J. Bacteriol. 174:2323-2331.

Mertens, N., E. Remaut and W. Fiers. (1995) Bio/Technology 13:175-179.

Messing, J., and J. Vieira. 1982. Gene 19: 269-276.

5 Metcalf, W. W., W. Jiang, and B. L. Wanner. 1994. Gene 138:1-7.

Miller, V. L., and J. J. Mekalanos. 1988. J. Bacteriol. 170:2575-2583.

Normanly, J., J. M. Masson, L. G. Kleina, J. Abelson, and J. H. Miller. 1986. Proc. Natl. Acad. Sci. USA 83:6548-6552.

Normanly, J., L. G. Kleina, J. M. Masson, J. Abelson, and J. H. Miller. 1990. J. Mol.

10 Biol. 213: 719-726.

Roca, J. 1995. TTBS 20:156-160.

Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Amheim. 1985. Science 230:1350-1354.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. Proc. Natl. Acad. Sci. USA 74:5463-

15 5467.

Sawadogo, M., and M. W. Van Dyke. 1991. Nucleic Acids Res. 19: 674.

Scott, J. R. 1984. Microbiol. Rev. 48:1-23.

Simoes, D. A., M. Dal Jensen, E. Dreveton, M. O. Loret, S. Blanchin-Roland, J. L. Uribelarrea, and J. M. Masson. 1991. Ann. N. Y. Acad. Sci. 646:254-258.

20 Simon, R., U. Priefer, and A. Pühler. 1983. Bio/Technology 1:784-791.

Sinha, N. D., J. Biernat, J. McManus, and H. Köster. 1984. Nucleic Acids Res. 12:4539-4557.

Stirling, C. J., G. Stewart, and D. J. Sherrat. 1988. Mol. Gen. Genet. 214:80-84.

Stirling, C. J., S. D. Colloms, J. F. Collins, G. Szatmari, and D. J. Sherrat. 1989.

25 EMBO J. 8:1623-1627.

Studier, F. W., A. H Rosenberg., J. J Dunn, and J. W. Dubendorff (1990). Methods Enzymol 185: 60-89.

Summers, D. K., and D. J. Sherrat. 1984. Cell 36:1097-1103.

Takahashi, K., Y. Sawasaki, J. Hata, K. Mukai and T. Goto. (1990) In Vitro Cell Dev.

30 Biol. 26: 265-74

Vieira, J., and J. Messing. 1982. Gene 19:259-268.

Wiechelman, K., R. Braun, and J. Fitzpatrick. 1988. Anal. Biochem. 175:231-237. Yanisch-Perron, C. Vieira. and J. Messing (1985) Gene 33: 103-119 13

LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES: 5 (i) DEPOSANT: (A) NOM: RHONE POULENC RORER S.A. (B) RUE: 20, Avenue Raymond Aron (C) VILLE: ANTONY 10 (E) PAYS: FRANCE (F) CODE POSTAL: 92165 (G) TELEPHONE: 40.91.69.22 (H) TELECOPIE: (1) 40.91.72.96 15 (ii) TITRE DE L' INVENTION: Molécule d'ADN circulaire à origine de réplication conditionnelle, leur procédé de préparation et leur utilisation en théraple génique (iii) NOMBRE DE SEQUENCES: 6 20 (iv) FORME DECHIFFRABLE PAR ORDINATEUR: (A) TYPE DE SUPPORT: Tape (B) ORDINATEUR: IBM PC compatible (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS 25 (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB) (2) INFORMATIONS POUR LA SEQ ID NO: 1: 30 (1) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 389 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple

(11) TYPE DE MOLECULE: ADNC

35

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

(D) CONFIGURATION: linéaire

5	TGTCAGCCGT TAAGTGTTCC TGTGTCACTG AAAATTGCTT TGAGAGGCTC TAAGGGCTTC	60
J	TCAGTGCGTT ACATCCCTGG CTTGTTGTCC ACAACCGTTA AACCTTAAAA GCTTTAAAAG	120
	CCTTATATAT TCTTTTTTT CTTATAAAAC TTAAAACCTT AGAGGCTATT TAAGTTGCTG	180
10	ATTTATATTA ATTTTATTGT TCAAACATGA GAGCTTAGTA CGTGAAACAT GAGAGCTTAG	240
	TACGTTAGCC ATGAGAGCTT AGTACGTTAG CCATGAGGGT TTAGTTCGTT AAACATGAGA	300
15	GCTTAGTACG TTAAACATGA GAGCTTAGTA CGTGAAACAT GAGAGCTTAG TACGTACTAT	360
	CAACAGGTTG AACTGCTGAT CTTCAGATC	3,89
20	(2) INFORMATIONS POUR LA SEQ ID NO: 2:	
	(1) CARACTERISTIQUES DE LA SEQUENCE:	
25	(A) LONGUEUR: 960 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: ADNC	
30	(x1) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:	
	TATACAGAAT GATGAGGTTT TTTTATGAGA CTCAAGGTCA TGATGGACGT GAACAAAAA	60
35	ACGAAAATTC GCCACCGAAA CGAGCTAAAT CACACCCTGG CTCAACTTCC TTTGCCCGCA	120
	AAGCGAGTGA TGTATATGGC GCTTGCTCCC ATTGATAGCA AAGAACCTCT TGAACGAGGG	180
40	CGAGTTTTCA AAATTAGGGC TGAAGACCTT GCAGCGCTCG CCAAAATCAC CCCATCGCTT	240
- •	GCTTATCGAC AATTAAAAGA GGGTGGTAAA TTACTTGGTG CCAGCAAAAT TTCGCTAAGA	300

	GGGGATGATA	TCATTGCTTT	AGCTAAAGAG	CTTAACCTGC	CCTTTACTGC	TAAAAACTCC	360
	CCTGAAGAGT	TAGATCTTAA	CATTATTGAG	TGGATAGCTT	ATTCAAATGA	TGAAGGATAC	420
5	TTGTCTTTAA	AATTCACCAG	AACCATAGAA	CCATATATCT	CTAGCCTTAT	TGGGAAAAA	480
	AATAAATTCA	CAACGCAATT	GTTAACGGCA	AGCTTACGCT	TAAGTAGCCA	GTATTCATCT	540
10	TCTCTTTATC	AACTTATCAG	GAAGCATTAC	TCTAATTTTA	AGAAGAAAA	TTATTTTATT	600
10	ATTTCCGTTG	ATGAGTTAAA	GGAAGAGTTA	ACAGCTTATA	CTTTTGATAA	AGATGGAAAT	660
	ATTGAGTACA	AATACCCTGA	CTTTCCTATT	TTTAAAAGGG	ATGTGTTAAA	TAAAGCCATT	720
15	GCTGAAATTA	AAAAGAAAAC	AGAAATATCG	TTTGTTGGCT	TCACTGTTCA	TGAAAAAGAA	780
	GGAAGAAAAA	TTAGTAAGCT	GAAGTTCGAA	TTTGTCGTTG	ATGAAGATGA	ATTTTCTGGC	840
20	GATAAAGATG	ATGAAGCTTT	TTTTATGAAT	TTATCTGAAG	CTGATGCAGC	TTTTCTCAAG	900
	GTATTTAATG	AAACCGTACC	TCCCAAAAAA	GCTAAGGGGT	GATATATGGC	TAAAATTTAC	960
		•	•			•	

25 (2) INFORMATIONS POUR LA SEQ ID NO: 3:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 24 paires de bases
 - (B) TYPE: nucléotide
- 30 (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADNo

35

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

GACCAGTATT ATTATCTTAA TGAG

24

40

(2) INFORMATIONS POUR LA SEQ ID NO: 4:

	(i) CARACTERISTIQUES DE LA SEQUENCE:		
	(A) LONGUEUR: 24 paires de bases		
	(B) TYPE: nucléotide	•	
	(C) NOMBRE DE BRINS: simple		
5	(D) CONFIGURATION: linéaire		
	•		
	(ii) TYPE DE MOLECULE: ADNC		
10	(add) procentration on the energy one to the		
10	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:	ı	
	GTATTTAATG AAACCGTACC TCCC	24	
	•		
15	•		•
	(2) INFORMATIONS POUR LA SEQ ID NO: 5:		
	(i) CARACTERISTIQUES DE LA SEQUENCE:		
	(A) LONGUEUR: 24 paires de bases		
20	(B) TYPE: nucléotide		
	(C) NOMBRE DE BRINS: simple		
	(D) CONFIGURATION: linéaire		
	(ii) TYPE DE MOLECULE: ADNo		
25			
•	•		
•	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:	·	
	CTCTTTTAAT TGTCGATAAG CAAG	24	
. 30	CICITIANI IGICONIANO CANO	2.3	
		•	
	(2) INFORMATIONS POUR LA SEQ ID NO: 6:		
,	(i) CARACTERISTIQUES DE LA SEQUENCE:		
35	(A) LONGUEUR: 24 paires de bases		
	(B) TYPE: nucléotide		
	(C) NOMBRE DE BRINS: simple		
	(D) CONFIGURATION: linéaire	-	
		•	
			•
	·	•	

PCT/FR96/01414

53

(ii) TYPE DE MOLECULE: ADNC

	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:	
5	GCGACGTCAC CGAGGCTGTA GCCG	24

10

25

REVENDICATIONS

- 1. Molécule d'ADN de forme circulaire, utile en thérapie génique, comprenant au moins une séquence nucléique d'intérêt caractérisée en ce que la région permettant sa réplication comprend une origine de réplication issue d'un plasmide ou d'un bactériophage dont la fonctionnalité la dans la cellule hôte requiert la présence d'au moins une protéine spécifique et étrangère à ladite cellule hôte.
- 2. Molécule d'ADN selon la revendication 1 caractérisée en ce que l'origine de réplication conditionnelle est issue d'un plasmide ou bactériophage qui possède une origine de réplication, représentée par plusieurs itérons, et qui code pour au moins une protéine spécifique, conditionnant la fonctionnalité de son origine de réplication.
- 3. Molécule d'ADN selon la revendication 1 ou 2 caractérisée en ce que l'origine de réplication conditionnelle peut être issue des plasmides ou bactériophages suivants RK2, R6K, R1, pSC101, Rts1, F, RSF1010, P1, P4, lambda, Phi82 et Phi80.
- 4. Molécule d'ADN selon l'une des revendications 1 à 3 caractérisée en ce que ladite origine de réplication est issue du plasmide bactérien R6K.
 - 5. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce que ladite origine de réplication est constituée en tout ou partie par l'origine de réplication y du plasmide R6K.
- 6. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce que ladite origine de réplication est représentée en tout ou partie par la séquence SEQ ID N°1 ou l'un de ses dérivés.
 - 7. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce que la région permettant la sélection des cellules hôtes incorporant ladite molécule d'ADN est différente d'un gène de résistance à un antibiotique.
 - 8. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce que la région permettant la sélection des cellules hôtes incorporant ladite

25

molécule d'ADN est représentée en tout ou partie par une cassette d'expression d'un ARN de transfert suppresseur de codons spécifiques.

- 9. Molécule d'ADN selon la revendication 8 caractérisée en ce qu'il s'agit d'une cassette d'expression d'un ARNt suppresseur de codons ambre (TAG).
- 10. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce qu'elle comprend en outre une région cible de recombinase site-spécifique.
 - 11. Molécule d'ADN selon la revendication 10 caractérisée en ce que cette région cible de recombinase site-spécifique peut être choisie parmi les résolvases des transposons Tn3, Tn21 ou Tn522; invertase du bactériophage mu, les resolvases de plasmides, comme celle codée par le fragment par de RP4, les recombinases de la famille de l'intégrase du bactériophage lambda, comme les intégrase de lambda, phi80, P22, HP1, intégrase Cre de P1, intégrase du plasmide pSAM2, FLP recombinase du plasmide 24, et les recombinases XerC et XerD d'E. coli.
- 12. Molécule d'ADN selon la revendication 10 ou 11 caractérisée en ce que cette région cible de recombinase site-spécifique comprend tout ou partie du fragment cer de ColE1 ou d'un de ses dérivés.
 - 13. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce qu'il s'agit du plasmide pXL2774 ou l'un de ses dérivés.
- 14. Molécule d'ADN selon l'une des revendications précédentes caractérisée en ce que la séquence d'acide nucléique d'intérêt code pour une protéine d'intérêt pharmaceutique, agroalimentaire ou utilisable en biocatalyse.
 - 15. Molécule d'ADN selon la revendication 14 caractérisée en ce que la séquence d'acide nucléique d'intérêt code pour une protéine choisie parmi les enzymes, les dérivés sanguins, les hormones, les lymphokines : interleukines, interférons, TNF, etc, les facteurs de croissance, les neurotransmetteurs ou leurs précurseurs ou enzymes de synthèse, les facteurs trophiques comme BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, les apolipoprotéines comme ApoAI, ApoAIV, ApoE, la

15

20

dystrophine ou une minidystrophine, les gènes suppresseurs de turneurs comme p53, Rb, Rap1A, DCC, k-rev, les gènes codant pour des facteurs impliqués dans la coagulation comme Facteurs VII, VIII, IX, les gènes suicides comme Thymidine kinase, cytosine désaminase, tout ou partie d'une immunoglobuline naturelle ou artificielle commeFab, ScFv, un ARN ligand, une séquence anti-sens ou des peptides antigéniques spécifiques du virus d'epstein barr, du virus HIV, du virus de l'hépatite B, du virus de la pseudo-rage, ou encore spécifiques de turneurs.

- 16. Procédé de production de molécule d'ADN de forme circulaire caractérisé en ce que l'on cultive une cellule hôte contenant au moins:
- une molécule d'ADN de forme circulaire comprenant au moins une séquence nucléique d'intérêt et une région permettant sa réplication comprenant une origine de réplication dont la fonctionnalité dans la cellule hôte requiert la présence d'au moins une protéine spécifique et étrangère à ladite cellule hôte, et
- une protéine, exprimée in situ ou non, conditionnant la fonctionnalité de ladite origine de réplication, spécifique et étrangère à ladite cellule hôte,

dans des conditions permettant la sélection des cellules hôtes transformées par lesdites molécules d'ADN.

- 17. Procédé selon la revendication 16 caractérisé en ce que le gène codant pour la protéine initiatrice de la réplication est présent sur un réplicon annexe ou incorporé dans le génome de ladite cellule.
 - 18. Procédé selon la revendication 16 ou 17 caractérisé en ce qu'il s'agit d'une molécule d'ADN incorporant une origine de réplication telle que définie en revendications 4 à 6 et en ce que ladite protéine est ou dérive de la protéine π du plasmide R6K.
- 19. Procédé selon la revendication 18 caractérisé en ce que la protéine π ou l'un de ses dérivés est exprimée in situ à partir du gène *pir* représenté en SEQ ID N°2 ou l'un de ses dérivés présent dans la cellule hôte.

- 20. Procédé selon la revendication 19 caractérisé en ce que la protéine est exprimée à partir du gène pir 116 incorporé dans le génome de ladite cellule.
- 21. Procédé selon l'une des revendications 16 à 20 caractérisé en ce que l'un des gènes indispensables dans les conditions de culture choisies, de la cellule hôte, contient un codon spécifique, reconnaissable par l'ARNt suppresseur sélectionné au niveau de la molécule d'ADN.
- 22. Procédé selon la revendication 21 caractérisé en ce que ce gène contient un codon ambre TAG.
- 23. Procédé selon l'une des revendications 16 à 22 caractérisé que la cellule est choisie parmi les souches d'<u>E. coli</u>.
 - 24. Procédé selon l'une des revendications 16 à 23 caractérisé en ce caractérisé en ce que la cellule est issue de la souche <u>E. coli XAC-1</u>.
 - 25. Procédé selon l'une des revendications 16 à 24 caractérisé en ce qu'il met en oeuvre la souche E. coli XAC-1, intégrant dans son génome le gène pir116 et transformée par le plasmide pXL2774 ou l'un de ses dérivés.
 - 26. Cellule recombinante transformée par au moins une molécule d'ADN selon l'une des revendications 1 à 15 ou telle que définie selon l'une des revendications 16 à 25.
- 27. Composition pharmaceutique comprenant une ou plusieurs molécule(s) d'ADN selon l'une des revendications 1 à 15.
 - 28. Utilisation d'une molécule d'ADN selon l'une des revendications 1 à 15 pour la transfection in vitro, ex vivo et/ou in vivo d'un gène d'intérêt, dans une cellule hôte.
- 29. Utilisation d'une molécule d'ADN selon l'une des revendications 1 à 15 pour la production de protéines recombinantes in vitro.

10

25

- 30. Procédé de production d'une protéine recombinante caractérisé en ce que l'on cultive une cellule hôte contenant au moins :
- une molécule d'ADN de forme circulaire comprenant au moins une séquence nucléique codant pour ladite protéine recombinante et une région permettant sa réplication comprenant une origine de réplication dont la fonctionnalité dans la cellule hôte requiert la présence d'au moins une protéine spécifique et étrangère à ladite cellule hôte, et
- une protéine initiatrice, exprimée in situ ou non, conditionnant la fonctionnalité de ladite origine de réplication, spécifique et étrangère à ladite cellule hôte.

puis on récolte la protéine recombinante produite.

- 31. Procédé selon la revendication 30 caractérisé en ce que le gène codant pour la protéine initiatrice de la réplication est présent sur un réplicon annexe ou incorporé dans le génome de ladite cellule.
- 32. Procédé selon l'une des revendications 30 ou 31 caractérisé que la cellule est choisie parmi les souches d'<u>E. coli</u>.
 - 33. Molécule selon la revendication 1 caractérisée en ce que la séquence nucléique d'intérêt code pour une protéine p53 sauvage ou modifiée.
- 34. Molécule selon la revendication 1 caractérisée en ce que la séquence nucléique d'intérêt code pour une thymidine kinase.
 - 35. Procédé selon la revendication 23 caractérisé en ce que la cellule est une souche de E.coli endA1-.
 - 36. Molécule d'ADN selon l'une des revendications 1 à 15 caractérisée en ce qu'elle comprend en outre une séquence capable d'interagir spécifiquement avec un ligand.
 - 37. Molécule d'ADN selon la revendication 15 caractérisée en ce que l'acide nucléique d'intérêt code pour une protéine p53.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

FED-BATCH EN FERMENTEUR DE 2L

Figure 6

FED-BATCH EN FERMENTEUR DE 800L

Figure 7

8/10

CONSTRUCTION DU VECTEUR D'EXPRESSION PXL3056

Figure 8

M 1 2 3 4 5 6 t1 t4

Figure 9

Figure 10

PCT/FR 96/01414

A. CLASSIFICATION OF SUBJECT MATTER C12N15/70 IPC 6 C12N1/21 C07K14/82 A61K31/70 C12N15/69 A61K48/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category * Citation of document, with indication, where appropriate, of the relevant passages 16,17 X GENE TRANSFER AND GENE THERAPY, 1989, ALAN R. LISS, INC., NEW YORK, US, pages 47-56, XP002004631 N. DALYOT AND A. OPPENHEIM: "Efficient transfer of the complete human beta-globin gene into human and mouse hemopoeitic cells via SV40 pseudovirions" see the whole document X US,A,4 761 367 (EDGELL MARSHALL H ET AL) 16,17 2 August 1988 see the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but 'A' document defining the general state of the art which is not cated to understand the principle or theory underlying the considered to be of particular relevance TUASUP OU "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. 'P' document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 13. 12. 96 4 December 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Hornig, H Fax: (+31.70) 340-3016

PCT/FR 96/01414

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
alegory "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
	GENE, vol. 89, 1990, ELSEVIER SCIENCE PUBLISHERS,B.V., AMSTERDAM, NL;, pages 211-221, XP002004632 S. RUSCONI ET AL.: "A novel expression assay to study transcriptional activators" see the whole document	16,17		
	PROC. NATL.ACAD SCI., vol. 88, December 1991, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 10686-10690, XP002004633 H.A. VASAVADA ET AL.: "A contingent replication assay for the detection of protein-protein interactions in animal cells" see the whole document	16,17		
X	CELL, vol. 23, January 1981, CELL PRESS, CAMBRIDGE, MA, US;, pages 175-182, XP000572239 Y GLUZMAN: "SV40-transformed simian cells support the replication of early SV40 mutants" see the whole document	16,17		
	US,A,5 434 065 (MAHAN MICHAEL J ET AL) 18 July 1995 see the whole document	1-37		
A	J. BACTERIOL., vol. 172, no. 11, November 1990, AM. SOC. MICROBIOL., BALTIMORE, US;, pages 6557-6567, XP000572232 M. HERRERO ET AL.: "Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria" cited in the application see the whole document	1-37		
	GENE, vol. 138, 1994, ELSEVIER SCIENCE PUBLISHERS, B.V., AMSTERDAM, NL;, pages 1-7, XP002004634 W.W. METCALF ET AL.: "Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintance of R6Kgamma origin plasmids at different copy numbers" cited in the application see the whole document	1-37		

1

Form PCT-ISA/210 (continuation of second sheet) (July 1992)

Int .:onal Application No PCT/FR 96/01414

Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	,	
Α .	CELL, vol. 36, April 1984, CELL PRESS, CAMBRIDGE, MA, US;, pages 1097-1103, XP000572222 D.K. SUMMERS AND D.J. SHERRATT: "Multimerization of high copy number plasmids causes instability: ColEl encodes a determinant essential for plasmid monomerization and stability"	1-37
	cited in the application	
	see the whole document	
A	FEBS LETTERS, vol. 228, no. 1, February 1988, ELSEVIER, AMSTERDAM, NL, pages 7-11, XP002004635 M. INUZUKA AND Y. WADA: "An initator protein for plasmid R6K DNA replication" see the whole document	1-37
A	GENE, vol. 28, 1994, ELSEVIER SCIENCE PUBLISHERS,B.V., AMSTERDAM, NL;, pages 45-54, XP002004636 J.E.L. LARSEN ET AL.: "Low-copy-number plasmid-cloning vectors amplifiable by derepression of an inserted foreign promoter" see the whole document	1-37
P,X	WO,A,95 30762 (HAMILTON BROOK SMITH & REYNOLD; RUND DEBORAH (IL); OPPENHEIM ARIEL) 16 November 1995 see the whole document	16,17
P,X	WO,A,96 01899 (SCHERING CORP) 25 January 1996 see the whole document	16,17
	•	
	•	
	•	
		Į.

Form PCT-ISA/210 (continuation of second sheet) (July 1992)

information on patent family members

Int onal Application No PCT/FR 96/01414

Patent document cited in search report	Pubhcation date	Patent family member(s)		Publication date
US-A-4761367	02-08-88	NONE		
US-A-5434065	18-07-95	US-A- US-A-	5512452 5571688	30-04-96 05-11-96
WO-A-9530762	16-11-95	AU-A-	2435095	29-11-95
WO-A-9601899	25-01-96	AU-A-	2946695	09-02-96

Form PCT/ISA/210 (patent family annex) (July 1992)