DISCRETE MORSE THEORY AND APPLICATIONS IN TDA

Sushovan "Sush" MAJHI

Wenk's Team Meeting Tulane University, 2019

SUSH TDA TULANE UNIVERSITY '19 1/26

I am a fifth year Math PhD student at Tulane University.

Thesis Advisor:

Carola Wenk, Computer Science, Tulane University

My Collaborators:

Rafal Komendarczyk, Mathematics, Tulane University Brittany Terese Fasy, Computer Science, Montana State University Yusu Wang, Computer Science, Ohio State University

TOPOLOGICAL DATA ANALYSIS (TDA)

WHAT IS TDA?

TDA is a subfield of applied mathematics. Topological tools and techniques are used to Simplify, Analyze and Visualize data.

TOPOLOGICAL DATA ANALYSIS (TDA)

WHAT IS TDA?

TDA is a subfield of applied mathematics. Topological tools and techniques are used to Simplify, Analyze and Visualize data.

WHAT TOOLS ARE USED?

Simplicial Homology, Simple Homotopy Theory, Persistent Homology, Metric Geometry, Morse Theory etc.

data (dictionary.cambridge.org)

noun (U, sing/pl verb) • US /deI.tə/

information, especially facts or numbers, collected to be examined and considered and used to help decision-making, or information in an electronic form that can be stored and used by a computer.

data (dictionary.cambridge.org)

noun (U, sing/pl verb) • US /deI.tə/

information, especially facts or numbers, collected to be examined and considered and used to help decision-making, or information in an electronic form that can be stored and used by a computer.

Data is an incomplete and discrete projection (sample) of a rather continuous object of interest.

Universal Truth about Data

- full of noise/error/outliers
- incomplete
- high-dimensional

Universal Truth about Data

- full of noise/error/outliers
- incomplete
- high-dimensional

Still we trust our data!

FIGURE: Joke from bigdata-madesimple.com

DATA ANALYSIS

Extract info about the continuous object being sampled.

DATA ANALYSIS

Extract info about the continuous object being sampled.

- Statistical Data Analysis (using hyperplanes, hypersurfaces, PDEs etc.)
- Smooth Interpolation
- Fractal Interpolation

WHY TDA?

Some data are very geometric in nature e.g. medical images, 3D printing.

Figure: A sample from an embedded Torus (Matlab $^{\otimes}$)

WHY TDA?

FIGURE: GPS traces of Berlin, Germany (www.mapconstruction.org)

WHY TDA?

FIGURE: A possible reconstruction of road-network (www.mapconstruction.org)

PROBLEM OF MAP RECONSTRUCTION

APPLIED MATH IS ALSO CHALLENGING!

A real-world problem does not directly inform us about the math behind it.

PROBLEM OF MAP RECONSTRUCTION

APPLIED MATH IS ALSO CHALLENGING!

A real-world problem does not directly inform us about the math behind it.

OUR PROBLEM

GPS traces → road-network

PROBLEM OF MAP RECONSTRUCTION

APPLIED MATH IS ALSO CHALLENGING!

A real-world problem does not directly inform us about the math behind it.

OUR PROBLEM

GPS traces → road-network

EXPECTATIONS

- The output is homotopy equivalent to the actual road-network i.e. same homology, homotopy groups.
- output has a very small Hausdorff distance to the ground truth i.e. close geometric features as well.

OUR FIRST APPROACH

TOOLS USED

Metric Geometry (geodesic space, Gromov distortion, convexity radius)

Algebraic Topology (Cech and Vietoris-Rips complexes, Simplicial Homology, Simplicial Shadow).

OUR FIRST APPROACH

TOOLS USED

Metric Geometry (geodesic space, Gromov distortion, convexity radius)

Algebraic Topology (Cech and Vietoris-Rips complexes, Simplicial Homology, Simplicial Shadow).

THEOREM (SUBMITTED TO SOCG'19)

Let X be a compact subset of \mathbb{R}^N with a positive convexity radius ρ and finite distortion δ . And, let $S\subseteq \mathbb{R}^n$ such that $d_H(S,X)<\epsilon<\frac{\rho}{4\delta(2\delta+1)}$. Then, for any non-negative integer k, $H_k(X)$ is isomorphic to the image of the homomorphism induced by the following simplicial inclusion map

$$j: \mathcal{C}_{\varepsilon}(S) \to \mathcal{C}_{(4\delta+1)\varepsilon}(S)$$
.

THE SHORTCOMINGS

FIGURE: Reconstruction of a planar graph

THE SHORTCOMINGS

FIGURE: Reconstruction of a planar graph

- 1 the output (green) does not look like a graph
- the method does not like outliers

MOTIVATION

A reasonably "good" smooth function reveals the Combinatorial Description of a smooth manifold.

Let M^n be a smooth manifold and $f: M \to \mathbb{R}$ be a smooth function.

CRITICAL POINT

A point $p \in M$ is called a <u>critical point</u> of f if Df = 0.

Let M^n be a smooth manifold and $f: M \to \mathbb{R}$ be a smooth function.

CRITICAL POINT

A point $p \in M$ is called a <u>critical point</u> of f if Df = 0.

A critical point p is non-degenerate if Hess(f) is non-singular. The number of -ve eigen values if called the index of p.

Let M^n be a smooth manifold and $f: M \to \mathbb{R}$ be a smooth function.

CRITICAL POINT

A point $p \in M$ is called a critical point of f if Df = 0.

A critical point p is non-degenerate if Hess(f) is non-singular. The number of -ve eigen values if called the index of p.

FIGURE: critical points with index

MORSE FUNCTION

A smooth function $f: M^n \to \mathbb{R}$ is called a Morse function if all its critical points are non-degenerate.

MORSE FUNCTION

A smooth function $f: M^n \to \mathbb{R}$ is called a Morse function if all its critical points are non-degenerate.

p has index 0. w has index +2. Others have index +1.

FIGURE: Morse Complex

Morse Theorem

If f is Morse on M, then M is homotopy equivalent to a CW-complex having a d-cell for each critical point of f of index d.

MORSE THEOREM

If f is Morse on M, then M is homotopy equivalent to a CW-complex having a d-cell for each critical point of f of index d.

MORSE INEQUALITY

critical *d*-index critical points $\geq H_d(M)$.

GRADIENT OF MORSE FUNCTION

The gradient vector field of a smooth function f

$$\langle \nabla f, V \rangle := -Df(V),$$

for any other vector field V on M.

GRADIENT OF MORSE FUNCTION

The gradient vector field of a smooth function f

$$\langle \nabla f, V \rangle := -Df(V),$$

for any other vector field V on M.

STABLE MANIFOLD

The stable manifold

$$W_s(p) = \{x \in M \mid \lim_{t \to \infty} \Phi_t(x) = p\}$$

GRADIENT OF MORSE FUNCTION

The gradient vector field of a smooth function f

$$\langle \nabla f, V \rangle := -Df(V),$$

for any other vector field V on M.

STABLE MANIFOLD

The stable manifold

$$W_s(p) = \{x \in M \mid \lim_{t \to \infty} \Phi_t(x) = p\}$$

UNSTABLE MANIFOLD

The unstable manifold

$$W_s(p) = \{x \in M \mid \lim_{t \to -\infty} \Phi_t(x) = p\}$$

OBSERVATIONS

For a Morse function f on a compact manifold M,

• critical points are the equilibrium points of ∇f .

OBSERVATIONS

For a Morse function f on a compact manifold M,

- critical points are the equilibrium points of ∇f .
- 2) f (strictly) decreases along the flow-lines.

OBSERVATIONS

For a Morse function f on a compact manifold M,

- lacktriangledown critical points are the equilibrium points of ∇f .
- f (strictly) decreases along the flow-lines.
- ono limit cycles.

BACK TO OUR PROBLEM

FIGURE: KDE

If the samples are concentrated around a graph, then the mountain ridges on the graph of the density function are expected to capture it.

Conclusion

- our project is ongoing.
- there is a reading group in mathematics department meeting weekly to discuss Morse theory.

Thanks