Huancheng Chen

PhD Candidate

☐ +1 (512) 920 8417

☑ huanchengch@gmail.com
⑤ citychan.github.io
in huanchengchen
⑥ CityChan

Education

2020–2025 Ph.D. in Electrical and Computer Engineering, University of Texas at Austin

GPA: 3.97/4.0 Advisor: Haris Vikalo

2015–2019 **B.Eng. in Electrical Engineering**, South China University of Technology

GPA: 3.90/4.0

Research Overview

My research concentrates on developing **Scalable, Trustworthy, Efficient** learning system and their applications on **Foundation Models,** including:

- Employing model compression (pruning, quantization) in distributed learning.
- O Promoting differential privacy and adversarial robustness in distributed learning.
- Improving fine-tuning strategies to continuously adapt large foundation models to downstream tasks using forgetting-resilient low-rank adaptation (LoRA).
- Enhancing spatial accuracy and fidelity of content control for generative models.

Industry Experience

May – Aug. Research Intern, SonyAl, Tokyo, Japan

2024 Project: Enhancing Layout Guidance in Text-To-Image Generation

- Proposed a novel sampling scheme that optimizes backward noises aided by cross-attention maps of input text and enables controlling spatial semantics of images.
- Generation with layout guidance enables to synthesize an arbitrary number of images with bounding boxes for improving object detection capability of the foundation model.

Feb – May. **Research Intern**, SonyAI, Austin, Texas

2024 Project: Forgetting-Resilient Low-Rank Adaptation on Large Pretrained Models

- Proposed a novel continual learning scheme based on low-rank adaptation (LoRA) that enables the foundation model fine-tuning on a sequence of downstream tasks.
- The proposed fine-tuning strategy prevents cataphoric forgetting problem and preserves performance of old tasks when adapting the foundation model to the new task.

May - Aug. Research Intern, Toyota InfoTech Lab, Mountain View, California

2022 Project: Data-Free Knowledge Distillation in Non-IID Federated Learning (FL)

- Applying knowledge distillation technique to securely extract class-wise representations from clients' private datasets which are not allowed to be shared to the server.
- The server utilizes the extracted representations for regularization to mitigate performance degradation caused by data-heterogeneity cross clients in the server-clients FL system.

- Jan. May. Research Intern, Nokia Bell Lab, Murray Hill, New Jersey
 - 2022 Project: Robust Flaw Detection on Low-Quality Images
 - Developed an end-to-end framework for background removal of equipment's images based on U-2-Net that enables removing irrelevant contents might mislead flaw detection.
 - O Constructed a highly accurate (90%+) and robust deep network based on **Inception-ResNet** for detecting flaws on images of devices in low quality (such as blur, shadow).

Publications

- [1] **Huancheng Chen**, Jingtao Li, Nidham Gazagnadou, Weiming Zhuang, Chen Chen, Lingjuan Lyu. Dual Low-Rank Adaptation for Continual Learning with Pre-Trained Models. Under Review
- [2] Huancheng Chen, Haris Vikalo. Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning. Conference on Neural Information Processing Systems (NeurIPS), 2024
- [3] **Huancheng Chen**, Haris Vikalo. Recovering Labels from Local Updates in Federated Learning. The International Conference on Machine Learning (ICML), 2024
- [4] Huancheng Chen, Haris Vikalo. Mixed-Precision Quantization for Federated Learning on Resource-Constrained Heterogeneous Devices. The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 2024
- [5] Huancheng Chen, Haris Vikalo. Federated Learning in Non-IID Settings Aided by Differentially Private Synthetic Data. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops Oral, 2023
- [6] Huancheng Chen, Johnny Wang, Haris Vikalo. The Best of Both Worlds Accurate Global and Personalized Models through Federated Learning with Data-Free Hyper-Knowledge Distillation. The International Conference on Learning Representations (ICLR), 2023
- [7] Abduallah Mohamed*, **Huancheng Chen***, Zhangyang Wang, Christian Claudel. Skeleton-Graph: Long-Term 3D Motion Prediction From 2D Observations Using Deep Spatio-Temporal Graph CNNs. The International Conference on Computer Vision (ICCV), 2021

Honors

Sept. 2015 National Encouragement scholarship, South China University of Technology

Sept. 2016 The First Prize scholarship, South China University of Technology

Skills

Languages English (fluent), Mandarin (native), Cantonese (native)

Programming Python, Java, C/C++, Bash, SQL, Matlab, LATEX

Tools Tensorflow, Pytorch, Hugging Face, Git, Pandas