SEQUENCE LISAPAD Rec'd PCT/PTO 10 APR 2006

30

```
<110> KYOWA HAKKO KOGYO CO., LTD.
 <120> Fusion protein composition
 <130> 11613WO1
 <150> P2003-350158
 <151> 2003-10-08
 <160> 113
 <170> PatentIn Ver. 2.1
<210> 1
<211> 1504
<212> DNA
<213> Cricetulus griseus
<220>
<221> CDS
<222> (1)..(1119)
<400> 1
atg gct cac gct ccc gct agc tgc ccg agc tcc agg aac tct ggg gac
Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp
  1
                  5
                                      10
                                                          15.
ggc gat aag ggc aag ccc agg aag gtg gcg ctc atc acg ggc atc acc
                                                                   96
Gly Asp Lys Gly Lys Pro Arg Lys Val Ala Leu Ile Thr Gly Ile Thr
```

ggc cag gat ggc tca tac ttg gca gaa ttc ctg ctg gag aaa gga tac 144 Gly Gln Asp Gly Ser Tyr Leu Ala Glu Phe Leu Leu Glu Lys Gly Tyr 35 40 45

25

20

gag gtt cat gga att gta cgg cga tcc agt tca ttt aat aca ggt cga 192

Glu Val His Gly Ile Val Arg Arg Ser Ser Ser Phe Asn Thr Gly Arg 50 55 60	
att gaa cat tta tat aag aat cca cag gct cat att gaa gga aac atg Ile Glu His Leu Tyr Lys Asn Pro Gln Ala His Ile Glu Gly Asn Met 65 70 75 80	240
aag ttg cac tat ggt gac ctc acc gac agc acc tgc cta gta aaa atc Lys Leu His Tyr Gly Asp Leu Thr Asp Ser Thr Cys Leu Val Lys Ile 85 90 95 100	288
atc aat gaa gtc aaa cct aca gag atc tac aat ctt ggt gcc cag agc Ile Asn Glu Val Lys Pro Thr Glu Ile Tyr Asn Leu Gly Ala Gln Ser 105 110 115	336
cat gtc aag att tcc ttt gac tta gca gag tac act gca gat gtt gat His Val Lys Ile Ser Phe Asp Leu Ala Glu Tyr Thr Ala Asp Val Asp 120 125 130	384
gga gtt ggc acc ttg cgg ctt ctg gat gca att aag act tgt ggc ctt Gly Val Gly Thr Leu Arg Leu Leu Asp Ala Ile Lys Thr Cys Gly Leu 135 140 145	432
ata aat tot gtg aag tto tac cag gcc toa act agt gaa otg tat gga Ile Asn Ser Val Lys Phe Tyr Gln Ala Ser Thr Ser Glu Leu Tyr Gly 150 155 160	480
165 170 Lys Glu Thr Thr Pro Phe Tyr Pro Arg	528
tcg ccc tat gga gca gcc aaa ctt tat gcc tat tgg att gta gtg aac Ser Pro Tyr Gly Ala Ala Lys Leu Tyr Ala Tyr Trp Ile Val Val Asn 185 190 195	576
ttt cga gag gct tat aat ctc ttt gcg gtg aac ggc att ctc ttc aat Phe Arg Glu Ala Tyr Asn Leu Phe Ala Val Asn Gly Ile Leu Phe Asn 200 205 210	324

			er Pi					a As					g Ly		t ago e Ser	
.cg Ar	g tc g Se 23	r Va	a go l Al	ct aa la Ly	g at	t ta e Ty 23	r Le	t gga u Gl	a ca y Gl	a ct n Le	g ga u Gl 24	u Cys	t tt s Ph	c ag e Se	t ttg r Leu	720
gga Gly 248	Asi	t ct n Le	g ga u As	c gc sp Al	c aa a Ly 25	s Ar	a gao g Asp	c tgg o Trp	gg Gl:	с са у Ні 25	s Al	c aag a Lys	g ga	c ta p Ty	t gtc r Val 260	768
gag	g gci	t at, a Me	g tg t Tr	g ct p Le 26	u Me	g tta t Lei	a caa 1 Glr	aat n Asn	gat Asp 270	Glu	a cca ı Pro	a gag o Glu	gao Asp	Phe 278	t gtc e Val	816
ata Ile	gct Ala	act	t gg, r G1; 280	y Glı	a gti 1 Val	t cat l Ḥis	agt Ser	gtc Val 285	cgt Arg	gaa Glu	ı ttt ı Phe	gtt Val	gag Glu 290	Lys	i tca Ser	864
ttc Phe	atg Met	cac His	Ile	t gga e Gly	aag Lys	acc Thr	att Ile 300	gtg Val	tgg Trp	gaa Glu	gga Gly	aag Lys 305	aat	gaa Glu	aat Asn	912
gaa Glu	gtg Val 310	ggc Glý	aga Arg	ı tgt Çys	aaa Lys	gag Glu 315	acc Thr	ggc Gly	aaa Lys	att Ile	cat His 320	gtg Val	act Thr	gtg Val	gat Asp	960
												cag Gln				1008
								Trp				gtt Val	Ala			1056

gag ctg gtg agg gag atg gtg caa gcc gat gtg gag ctc atg aga acc 1104 Glu Leu Val Arg Glu Met Val Gln Ala Asp Val Glu Leu Met Arg Thr 360 365 370

aac ccc aac gcc tga gcacctctac aaaaaaattc gcgagacatg gactatggtg 1159 Asn Pro Asn Ala

375

⟨210⟩ 2

<211> 376

<212> PRT

<213> Cricetulus griseus

<400> 2

Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp 1 5 10 15

Gly Asp Lys Gly Lys Pro Arg Lys Val Ala Leu Ile Thr Gly Ile Thr 20 25 30

Gly Gln Asp Gly Ser Tyr Leu Ala Glu Phe Leu Leu Glu Lys Gly Tyr 35 40 45

Glu Val His Gly Ile Val Arg Arg Ser Ser Ser Phe Asn Thr Gly Arg
50 55 60

Ile Glu His Leu Tyr Lys Asn Pro Gln Ala His Ile Glu Gly Asn Met
65 70 75 80

Lys Leu His Tyr Gly Asp Leu Thr Asp Ser Thr Cys Leu Val Lys Ile

85

95

His Val Lys Ile Ser Phe Asp Leu Ala Glu Tyr Thr Ala Asp Val Asp 120 125 130

Gly Val Gly Thr Leu Arg Leu Leu Asp Ala Ile Lys Thr Cys Gly Leu 135 140 145

Ile Asn Ser Val Lys Phe Tyr Gln Ala Ser Thr Ser Glu Leu Tyr Gly
150 155 160

Lys Val Gln Glu Ile Pro Gln Lys Glu Thr Thr Pro Phe Tyr Pro Arg 165 170 175 180

Ser Pro Tyr Gly Ala Ala Lys Leu Tyr Ala Tyr Trp Ile Val Val Asn 185 190 195

Phe Arg Glu Ala Tyr Asn Leu Phe Ala Val Asn Gly Ile Leu Phe Asn 200 205 210

His Glu Ser Pro Arg Arg Gly Ala Asn Phe Val Thr Arg Lys Ile Ser 215 220 225

Arg Ser Val Ala Lys Ile Tyr Leu Gly Gln Leu Glu Cys Phe Ser Leu 230 235 240

Gly Asn Leu Asp Ala Lys Arg Asp Trp Gly His Ala Lys Asp Tyr Val 245 250 255 260

Glu Ala Met Trp Leu Met Leu Gln Asn Asp Glu Pro Glu Asp Phe Val 265 270 275

Ile Ala Thr Gly Glu Val His Ser Val Arg Glu Phe Val Glu Lys Ser 280 285 290 Phe Met His Ile Gly Lys Thr Ile Val Trp Glu Gly Lys Asn Glu Asn 295 300 305

Glu Val Gly Arg Cys Lys Glu Thr Gly Lys Ile His Val Thr Val Asp 310 315 320

Leu Lys Tyr Tyr Arg Pro Thr Glu Val Asp Phe Leu Gln Gly Asp Cys 325 330 335 340

Ser Lys Ala Gln Gln Lys Leu Asn Trp Lys Pro Arg Val Ala Phe Asp 345 350 355

Glu Leu Val Arg Glu Met Val Gln Ala Asp Val Glu Leu Met Arg Thr 360 365 370

Asn Pro Asn Ala 375

<210> 3

<211> 1316

<212> DNA

<213> Cricetulus griseus

<400> 3

george ctecactes acceased getegasat teteacces aagtagete 60
tegactes gaaccetes cageteage aacaateget gageeccage gatecageag 120
gatectagte acagegeet etgactegt gegeagaget atceasaage tegtegeaga 180
tegegetege ttaccegas aggaateget gtttetee tecaaagate cagatetege 240
geatecagea caaacceaae ecetetteea gaagetacae eceacceate teatecatet 300
tegetegaate gtaggagee tttteegaa tateaaatae aacttegatt tetggageaa 360
gaatetegaa atcaategaa acgteetea etcagettte gaggtegea etcegaaget 420

ggtctcctgc ctgtccacct gtatcttccc tgacaagacc acctatccta ttgatgaaac 480 aatgatccac aatggtccac cccacagcag caattttggg tactcgtatg ccaagaggat 540 gattgacgtg cagaacaggg cctacttcca gcagcatggc tgcaccttca ctgctgtcat 600 ccctaccaat gtctttggac ctcatgacaa cttcaacatt gaagatggcc atgtgctgcc 660 tggcctcatc cataaggtgc atctggccaa gagtaatggt tcagccttga ctgtttgggg 720 tacagggaaa ccacggaggc agttcatcta ctcactggac ctagcccggc tcttcatctg 780 ggtcctgcgg gagtacaatg aagttgagcc catcatcctc tcagtgggcg aggaagatga 840 agtctccatt aaggaggcag ctgaggctgt agtggaggcc atggacttct gtggggaagt 900 cacttttgat tcaacaaagt cagatgggca gtataagaag acagccagca atggcaagct 960 tegggeetae ttgeetgatt teegttteae accetteaag eaggetgtga aggagacetg 1020 tgcctggttc accgacaact atgagcaggc ccggaagtga agcatgggac aagcgggtgc 1080 teagetggea atgeceagte agtaggetge agteteatea tttgettgte aagaactgag 1140 gacagtatec ageaacetga gecacatget ggtetetetg ceaggggget teatgeagee 1200 atccagtagg gcccatgttt gtccatcctc gggggaaggc cagaccaaca ccttgtttgt 1260 ctgcttctgc cccaacctca gtgcatccat gctggtcctg ctgtcccttg tctaga 1316

<210> 4

<211> 321

<212> PRT

<213> Cricetulus griseus

<400> 4

Met 1	Gly	Glu	ı Pro	Gln 5	ı Gly	Ser	' Arg	Arg	Ile 10		Val	Thi	r Gly	Gl;	y Ser 5.
Gly	Leu	Val	Gly 20		Ala	Ile	Gln	Lys 25		Val	Ala	. Ası	Gly 30		. Gly
Leu	Pro	Gly . 35		Glu	Trp	Val	Phe 40	Val	Ser	Ser	Lys	Asp 45		. Asp	Leu
Thr	Asp 50		Ala	Gln	Thr	Gln 55	Ala	Leu	Phe	Gln	Lys 60		Gln	Pro	Thr
His 65	Val	Ile	His	Leu	Ala 70	Ala	Met	Val	Gly	Gly 75	Leu	Phe	Arg	Asn	Ile 80
Lys	Tyr	Asn	Leu	Asp 85	Phe	Trp	Arg	Lys	Asn 90	Val	His	Ile	Asn	Asp 95	Asn
Val	Leu	His	Ser 100	Ala	Phe ⁻	Glu	Val	Gly 105	Thr	Arg	Lys	Val	Val 110	Ser	Cys
Leu	Ser	Thr 115	Cys	Ile	Phe	Pro	Asp 120	Lys	Thr	Thr	Tyr	Pro 125	Ile	Asp	Glu
Thr	Met 130	Ile	His	Asn	Gly	Pro 135	Pro	His	Ser	Ser	Asn 140	Phe	Gly	Tyr	Ser
Tyr 145	Ala	Lys	Arg	Met	Ile 150	Asp	Val	Gln	Asn	Arg 155	Ala	Tyr	Phe	Gln	Gln 160
His	Gly	Cys	Thr	Phe 165	Thr	Ala	Val	Ile	Pro 170	Thr	Àsn	Val	Phe	Gly 175	Pro
His	Asp	Asn	Phe 180	Asn	Ile	Glu		Gly 185	His	Val	Le <u>u</u>	Pro	Gly 190	Leu	Ile
His		Val 195	His	Leu	Ala		Ser 200	Asn	Gly	Ser.		Leu 205	Thr	Val	Trp

Gly Thr Gly Lys Pro Arg Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220

Arg Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile 225 230 235 240

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe Cys Gly Glu Val Thr Phe Asp 260 265 270

Ser Thr Lys Ser Asp Gly Gln Tyr Lys Lys Thr Ala Ser Asn Gly Lys 275 280 285

Leu Arg Ala Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320

Lys

<210> 5

<211> 2008

<212> DNA

<213> Cricetulus griseus

<400> 5

aacagaaact tattttcctg tgtggctaac tagaaccaga gtacaatgtt tccaattctt 60 tgagctccga gaagacagaa gggagttgaa actctgaaaa tgcgggcatg gactggttcc 120 tggcgttgga ttatgctcat tctttttgcc tgggggacct tattgtttta tataggtggt 180 catttggttc gagataatga ccaccctgac cattctagca gagaactctc caagattctt 240

..)

gcaaagctgg agcgcttaaa acaacaaaat gaagacttga ggagaatggc tgagtctctc 300 cgaataccag aaggccctat tgatcagggg acagctacag gaagagtccg tgttttagaa 360 gaacagcttg ttaaggccaa agaacagatt gaaaattaca agaaacaagc taggaatgat 420 ctgggaaagg atcatgaaat cttaaggagg aggattgaaa atggagctaa agagctctgg 480 ttttttctac aaagtgaatt gaagaaatta aagaaattag aaggaaacga actccaaaga 540 catgcagatg aaattctttt ggatttagga catcatgaaa ggtctatcat gacagatcta 600 tactacctca gtcaaacaga tggagcaggt gagtggcggg aaaaagaagc caaagatctg 660 acagagctgg tccagcggag aataacatat ctgcagaatc ccaaggactg cagcaaagcc 720 agaaagctgg tatgtaatat caacaaaggc tgtggctatg gatgtcaact ccatcatgtg 780 gtttactgct tcatgattgc ttatggcacc cagcgaacac tcatcttgga atctcagaat 840 tggcgctatg ctactggagg atgggagact gtgtttagac ctgtaagtga gacatgcaca 900 gacaggtctg gcctctccac tggacactgg tcaggtgaag tgaaggacaa aaatgttcaa 960 gtggtcgagc tccccattgt agacagcctc catcctcgtc ctccttactt acccttggct 1020 gtaccagaag accttgcaga tcgactcctg agagtccatg gtgatcctgc agtgtggtgg 1080 gtatcccagt ttgtcaaata cttgatccgt ccacaacctt ggctggaaag ggaaatagaa 1140 gaaaccacca agaagcttgg cttcaaacat ccagttattg gagtccatgt cagacgcact 1200 gacaaagtgg gaacagaagc agccttccat cccattgagg aatacatggt acacgttgaa 1260 gaacattttc agcttctcga acgcagaatg aaagtggata aaaaaagagt gtatctggcc 1320 actgatgacc cttctttgtt aaaggaggca aagacaaagt actccaatta tgaatttatt 1380 agtgataact ctattcttg gtcagctgga ctacacaacc gatacacaga aaattcactt 1440
cggggcgtga tcctggatat acactttctc tcccaggctg acttccttgt gtgtactttt 1500
tcatcccagg tctgtagggt tgcttatgaa atcatgcaaa cactgcatcc tgatgcctct 1560
gcaaacttcc attctttaga tgacatctac tattttggag gccaaaatgc ccacaaccag 1620
attgcagttt atcctcacca acctcgaact aaagaggaaa tccccatgga acctggagat 1680
atcattggtg tggctggaaa ccattggaat ggttactcta aaggtgtcaa cagaaaacta 1740
ggaaaaacag gcctgtaccc ttcctacaaa gtccgagaga agatagaaac agtcaaatac 1800
cctacatatc ctgaagctga aaaatagaga tggagtgtaa gagattaaca acagaattta 1860
gttcagacca tctcagccaa gcagaagacc cagactaaca tatggttcat tgacagacat 1920
gctccgcacc aagagcaagt gggaaccctc agatgctga ctggtggaac gcctctttgt 1980
gaagggctgc tgtgccctca agcccatg

<400> 6

atgcggcat ggactggttc ctggcgttgg attatgctca ttcttttgc ctgggggacc 60 ttgttatttt atataggtgg tcatttggtt cgagataatg accaccetga tcactccagc 120 agagaactct ccaagattct tgcaaagctt gaacgcttaa aacagcaaaa tgaagacttg 180 aggcgaatgg ctgagtctct ccgaatacca gaaggcccca ttgaccaggg gacagctaca 240

<210> 6

<211> 1728

<212> DNA

<213> Mus musculus

ggaagagtcc gtgttttaga agaacagctt gttaaggcca aagaacagat tgaaaattac 300 aagaaacaag ctagaaatgg tctggggaag gatcatgaaa tcttaagaag gaggattgaa 360 aatggagcta aagagctetg gtttttteta caaagegaae tgaagaaatt aaageattta 420 gaaggaaatg aactccaaag acatgcagat gaaattcttt tggatttagg acaccatgaa 480 aggictatea tgacagatet atactacete agteaaacag atggagcagg ggattggegt 540 gaaaaaagagg ccaaagatct gacagagctg gtccagcgga gaataacata tctccagaat 600 cctaaggact gcagcaaagc caggaagctg gtgtgtaaca tcaataaagg ctgtggctat 660 ggttgtcaac tccatcacgt ggtctactgt ttcatgattg cttatggcac ccagcgaaca 720 ctcatcttgg aatctcagaa ttggcgctat gctactggtg gatgggagac tgtgtttaga 780 cetgtaagtg agacatgtae agacagatet ggeeteteea etggacaetg gteaggtgaa 840 gtaaatgaca aaaacattca agtggtcgag ctccccattg tagacagcct ccatcctcgg 900 cctccttact taccactggc tgttccagaa gaccttgcag accgactcct aagagtccat 960 ggtgaccetg cagtgtggtg ggtgtcccag tttgtcaaat acttgattcg tccacaacct 1020 tggctggaaa aggaaataga agaagccacc aagaagcttg gcttcaaaca tccagttatt 1080 ggagtccatg tcagacgcac agacaaagtg ggaacagaag cagccttcca ccccatcgag 1140 gagtacatgg tacacgttga agaacatttt cagcttctcg cacgcagaat gcaagtggat 1200 aaaaaaaagag tatatctggc tactgatgat cctactttgt taaaggaggc aaagacaaag 1260 tactccaatt atgaatttat tagtgataac tctatttctt ggtcagctgg actacacaat 1320 cggtacacag aaaattcact tcggggtgtg atcctggata tacactttct ctcacaggct 1380

gactttctag tgtgtacttt ttcatcccag gtctgtcggg ttgcttatga aatcatgcaa 1440
accctgcatc ctgatgcctc tgcgaacttc cattctttgg atgacatcta ctattttgga 1500
ggccaaaatg cccacaatca gattgctgtt tatcctcaca aacctcgaac tgaagaggaa 1560
attccaatgg aacctggaga tatcattggt gtggctggaa accattggga tggttattct 1620
aaaggtatca acagaaaact tggaaaaaca ggcttatatc cctcctacaa agtccgagag 1680
aagatagaaa cagtcaagta tcccacatat cctgaagctg aaaaatag 1728

<210> 7

<211> 575

<212> PRT

<213> Cricetulus griseus

<400> 7

Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe
1 5 10 15

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 65 70 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 85 90 95

Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His

Glu	ı Ile	Leu 115		Arg	Arg	Ile	Glu 120		Gly	Ala	a Lys	6 Glu 12		ı Tr	Phe
Phe	Leu 130		Ser	Glu	Leu	Lys 135	Lys	Leu	Lys	Lys	Leu 140		ı Gly	Asr	ı Glu
Leu 145		Arg	His	Ala	Asp 150	Glu	Ile	Ļeu	Leu	Asp 155		Gly	His	His	Glu 160
Arg	Ser	Ile	Met	Thr 165	Asp	Leu	Tyr	Tyr	Leu 170		Gln	Thr	Asp	Gly 175	Ala
Gly	Glu	Trp	Arg 180	Glu	Lys	Glu	Ala	Lys 185	Asp	Leu	Thr	Glu	Leu 190	Val	Gln
Arg	Arg	Ile 195	Thr	Tyr	Leu	Gln	Asn 200	Pro	Lys	Asp	Cys	Ser 205	Lys	Ala	Arg
Lys	Leu 210	Val	Cys	Asn	Ile	Asn 215	Lys	Gly	Cys	Gly	Tyr 220	Gly	Cys	Gln	Leu
His 225	His	Val	Val	Tyr	Cys 230	Phe	Met	Ile	Ala	Tyr 235	Ġly	Thr	Gln	Arg	Thr 240
Leu	Ile	Leu	Glu-	Ser 245	Gln	Asn	Trp	Arg	Tyr 250	Ala	Thr	Gly	Gly	Trp 255	Glu
Thr	Val	Phe	Arg 260	Pro	Val	Ser		Thr 265	Cys	Thr	Asp _.	Arg	Ser 270	Gly	Leu
Ser		Gly 275	His	Trp	Ser (Glu 280	Val	Lys	Asp	Lys	Asn 285	Val	Gln	Val
Val	Glu 290	Leu	Pro	Ile '		Asp 295	Ser	Leu	His		Arg 300	Pro	Pro.	Tyr	Leu

Pr 30		u Al	a Va	.l Pr	o Gli 31(p Le	u Al	a As	p Arg 315		ı Lei	ı Ar	g Va	1 His 320
G1;	y As	p Pr	o Al	a Va 32		Tr	p Va	l Se	r Gl:		e Val	Lys	з Ту	r Le 33	u Ile 5
Ar	g Pr	o G1:	n Pr 34		p Leu	ı Glı	ı Ar	g Glu 349		e Glu	ı Glü	Thr	Th:		s Lys
Let	ı Gly	y Pho		s His	s Pro	Va]	1 11e 360		v. Val	l His	Val	Arg 365	Arg	Th	r Asp
Lys	370		y Thi	r Glu	ı Ala	Ala 375		His	Pro	lle	Glu 380	Glu	Tyr	Met	t Val
His 385		Glu	ı Glu	ı His	Phe 390	Gln	Leu	Leu	Glu	Arg 395	Arg	Met	Lys	Val	Asp 400
Lys	Lys	Arg	; Val	Tyr 405		Ala	Thr	Asp	Asp 410		Ser	Leu	Leu	Lys .415	Glu
Ala	Lys	Thr	Lys 420		Ser	Asn	Tyr	Glu 425	Phe	Ile	Ser	Asp	Asn 430	Ser	Ile
Ser	Trp	Ser 435		Gly	Leu.	His	Asn 440	Arg	Tyr	Thr	Glu	Asn 44 ⁻ 5	Ser	Leu	Arg
	450			÷		455					460	-			
Cys 465	Thr	Phe	Ser	Ser	Gln 470	Val	Cys	Arg	Val	Ala 475	Tyr	Glu	Ile	Met	Gln 480
				485					490	His				495	
Tyr	Tyr	Phe	Gly 500	Gly	Gln .	Asn	Ala	His 505	Asn	Gln :	Ile A		Val 510	Туŗ	Pro

His Gln Pro Arg Thr Lys Glu Glu Ile Pro Met Glu Pro Gly Asp Ile Ile Gly Val Ala Gly Asn His Trp Asn Gly Tyr Ser Lys Gly Val Asn Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys <210> 8 <211> 575 <212> PRT <213> Mus musculus <400> 8 Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln

Ile	e Glu	ı Asr	100		s Lys	Glr	n Ala	10		n Gl	y Lei	ı G1;	y Ly.		p His	
Glu	ı Ile	Leu 115		g Arg	Arg	: Ile	e Glu 120		n Gly	7 Ala	a Lys	Gl: 12		u Trj	o Phe	
Phe	Leu 130		ser	Glu	Leu	Lys 135		s Leu	ı Lys	s His	Leu 140		ı Gly	/ Asr	n Glu	
Leu 145		Arg	His	Ala	Asp 150	Glu	Ile	e Leu	Leu	Asp 155		Gly	His	s His	Glu 160	
Arg	Ser	Ile	Met	Thr 165	Asp	Leu	Tyr	Tyr	Leu 170		Gln	Thr	Asp	Gly 175	Ala	
Gly	Asp	Trp	Arg 180	Glu	Lys	Glu	Ala	Lys 185		Leu	Thr	Glu	Leu 190		Gln	
Arg	Arg	Ile 195	Thr	Tyr	Leu	Gln	Asn 200		Lys	Asp	Cys	Ser 205		Ala	Arg	
	210		· .			215					Tyr 220			-		
225					230					235	Gly				240	
				245					250		Thr			255		
	•		260					265			Asp		270			
		275					280					285				
	Glu 290	Leu	Pro	Ile		Asp 295	Ser	Leu	His	Pro	Arg 300	Pro	Pro-	Tyr	Leu	

	Pro 305	Leu	Ala	Val	Pro	Glu 310	Asp	Leu	Ala	Asp	Arg 315	Leu	Leu	Arg	Val	His 320
	Gly	Asp	Pro	Ala	Val 325	Trp	Trp	Val	Ser	Gln 330	Phe	Val	Lys	Tyr	Leu 335	Ile
	Arg	Pro	Gln	Pro 340	Trp	Leu	Glu	Lys	Glu 345	Ile	Glu	Glu	Ala	Thr 350	Lys	Lys
	Leu	Gly	Phe 355	Lys	His	Pro	Val	Ile 360	Gly	Val	His	Val	Arg 365	Arg	Thr	Asp
	Lys	Val 370	Gly	Thr	Glu	Ala	Ala 375	Phe	His	Pro	Ile	Glu 380	Glu	Tyr	Met	Val
	His 385	Val	Glu	Glu	His	Phe 390	Gln	Leu	Leu	Ala	Arg 395	Arg	Met	Gln	Val	Asp 400
	Lys	Lys	Arg	Val	Tyr 405	Leu	Ala	Thr	Asp	Asp 410	Pro	Thr	Leu	Leu	Lys 415	Glu
	Ala	Lýs	Thr	Lys 420	Tyr	Ser	Asn	Tyr	Glu 425	Phe	Ile	Ser	Asp	Asn 430	Ser	Ile
	Ser	Trp	Ser 435	Ala	Gly	Leu	His	Asn 440	Arg	Tyr	Thr	Glu	Asn 445	Ser	Leu	Arg.
ı	Gly	Val 450	Ile	Leu	Asp	Ile	His 455	Phe	Leu	Ser	Gln	Ala 460	Asp	Phe	Leu	Val
	Cys 465	Thr	Phe	Ser	Ser	Gln 470	Val	Cys	Arg	Val	Ala 475	Tyr	Glu	Ile	Met	Gln 480
1	Thr	Leu	His	Pro	Asp 485	Ala	Ser	Ala	Asn	Phe 490		Ser	Leu	Asp	Asp 495	Ile
•	Tyr	Tyr	Phe	Gly	Gly	Gln	Asn	Ala	His	Asn	Gln	Ile	Ala	Val	Tyr	Pro

His Lys Pro Arg Thr Glu Glu Glu Ile Pro Met Glu Pro Gly Asp Ile 515 520 525

Ile Gly Val Ala Gly Asn His Trp Asp Gly Tyr Ser Lys Gly Ile Asn 530 535 540

Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu 545 550 555 560

Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys 565 570

<210> 9

<211> 5

<212> PRT

<213> Mus musculus

<400> 9

Asp His Ala Ile His

1 .

<210> 10

⟨211⟩ 17

<212> PRT

<213> Mus musculus

<400> 10

Tyr Phe Ser Pro Gly Asn Asp Asp Phe Lys Tyr Asn Glu Arg Phe Lys

1 10 15

Gly

<210> 11

<211> 6

<212> PRT

```
<213> Mus musculus
<400> 11
Ser Leu Asn Met Ala Tyr
                  5
  1
<210> 12
<211> 17
<212> PRT
<213> Mus musculus
<400> 12
Lys Ser Ser Gln Ser Leu Leu Tyr Ser Gly Asn Gln Lys Asn Tyr Leu
                                      10
                                                          15
                  5
  1
Ala
<210> 13
⟨211⟩ 7
<212> PRT
<213> Mus musculus
<400> 13 ·
Trp Ala Ser Ala Arg Glu Ser
<210> 14
<211> 9
<212> PRT
<213> Mus musculus
<400> 14
Gln Gln Tyr Tyr Ser Tyr Pro Leu Thr
```

1

<210> 15

<211> 115

<212> PRT

<213> Mus musculus

<400> 15

Gln Val Gln Leu Gln Gln Ser Asp Ala Glu Leu Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp His 20 25 30

Ala Ile His Trp Val Lys Gln Asn Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Phe Ser Pro Gly Asn Asp Asp Phe Lys Tyr Asn Glu Arg Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Val Gln Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95

Thr Arg Ser Leu Asn Met Ala Tyr Trp Gly Gln Gly Thr Ser Val Thr 100 105 110

Val Ser Ser

115

<210× 16

<211> 113

<212> PRT

<213> Mus musculus

<400> 16

Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Pro Val Ser Val Gly 1 5 10 15 Glu Lys Val Thr Leu Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20 25 30 Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45 Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Ala Arg Glu Ser Gly Val 50 55 60 Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser 65 70 75 80 Ile Ser Ser Val Lys Thr Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln 85 Tyr Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Val Leu 100 105 110 Lys <210> 17 <211> 265 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequense: Amino Acid Sequence of Single Chain Antibody ⟨400⟩ 17 Met Glu Trp Ser Trp Val Phe Leu Phe Phe Leu Ser Val Thr Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Ser Asp Ala Glu Leu Val Lys

Pro	Gly	Ala 35	Ser	Val	Lys	Ile	Ser 40		Lys	Ala	Ser	Gly 45		Thr	Phe
Thr	Asp 50	His	Ala	Ile	His	Trp 55	Val	Lys	Gln	Asn	Pro 60	Glu	Gln	Gly	Leu
Glu 65	Trp	Ile	Gly	Tyr	Phe 70	Ser	Pro	Gly	Asn	Asp 75	_	Phe	Lys	Tyr	Asn 80
Ġlú	Arg	Phe	Lys	-Gly 85	Lys	Ala	Thr	Leu	Thr 90	Ala	Asp	Lys	Ser	Ser 95	Ser
Thr	Ala	Tyr	Val 100	Gln	Leu	Asn	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val
Tyr	Phe	Cys 115	Thr	Arg	Ser	Leu	Asn 120	Met	Ala	Tyr	Trp	Gly 125	Gln	Gly	Thr
Ser	Val 130	Thŕ	Val	Ser	Ser	Gly 135	Gly	Gly	Gly	Ser	Gly 140	Gly	Gly	Gly	Ser
Gly 145	Gly	Gly	Gly	Ser	Asp 150	Ile	Val	Met	Ser	Gln 155	Ser	Pro	Ser	Ser	Leu 160
Pro	Val	Ser	Val	Gly 165	Glu	Lys	Val	Thr	Leu 170	Ser	Cys	Lys	Ser	Ser 175	Gln
Ser	Leu	Ļeu	Tyr 180	Ser	Gly	Asn	Gln	Lys 185	Asn	Tyr	Leu	Ala	Trp 190	Tyr	Gln
Gln	Lys	Pro 195	Gly	Gln	Ser	Pro	Lys 200	Leu	Leu	Ile	Tyr	Trp 205	Ala	Ser	Ala
Arg	Glu 210	Ser	Gly	Val	Pro	Asp 215	Arg	Phe	Thr	Gly	Ser 220	Gly	Ser	Gly	Thr

Asp Phe Thr Leu Ser Ile Ser Ser Val Lys Thr Glu Asp Leu Ala Val 225 230 235 240

Tyr Tyr Cys Gln Gln Tyr Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly
245 250 255

Thr Lys Leu Val Leu Lys Arg Ala Ala 260 265

<210> 18

<211> 463

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 18

ccegnatic acceptance atgrained geteggetet tetetete etgetaga 60 ctacaggigt ccactering gitteagtige ageagtetga egetegagitig gitaaaacetg 120 gggetteagt gaagatitee tgeaagget etggetacae etteaetgae catgeaatie 180 actgggigaa acagaaceet gaacaggee tggaatggat tggatatiti teteceggaa 240 atgatgatit taaatacaat gagaggitea agggeaagge eacactgaet geagacaaat 300 eeteeageae tgeetaegig eageteaaea geetgaeate tgaggatiet geagtgatit 360 tetgtaceag ateeetgaat atggeetaet ggggiteaagg aaceteagte aeegteteet 420 eaggitggeg aggeagega ggeegigget eeggaactag tee 463

<210> 19

<211> 129

```
<212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 19
ccggaattcg acccctcacc atggaatgga gctgggtctt tctcttcttc ctgtcagtaa 60
ctacaggtgt ccactcccag gttcagttgc agcagtctga cgctgagttg gtgaaacctg 120
gggcttcag
                                                                    129
<210> 20
<211> 134
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 20
cattlecggg agaaaaatat ccaatccatt ccaggecetg tteagggtte tgttteacce 60
agtgaattgc atggtcagtg aaggtgtagc cagaagcctt gcaggaaatc ttcactgaag 120
ccccaggttt cacc
                                                                   134
<210> 21
⟨211⟩ 131
<212> DNA
<213> Artificial Sequence
```

<223> Description of Artificial Sequense: Synthetic DNA

<220>

<400> 21	
ggatattttt ctcccggaaa tgatgatttt aaatacaatg agaggttcaa gggcaaggcc	6(
acactgactg cagacaaatc ctccagcact gcctacgtgc agctcaacag cctgacatct 12	2(
gaggattetg e	31
<210> 22	
<211> 132	
<212> DNA	
<pre><213> Artificial Sequence</pre>	
<220>	
<223> Description of Artificial Sequense: Synthetic DNA	
<400> 22	
ggactagttc cggagccacc gcctccgctg cctccgccac ctgaggagac ggtgactgag 6	60
gtteettgae eccagtagge catatteagg gatetggtae agaaatacae tgeagaatee 12	<u>'</u> 0
tcagatgtca gg 13	2
<210> 23	
<211> 536	
(212) DNA	
(213) Artificial Sequence	
⟨220⟩	
<223> Description of Artificial Sequense: Synthetic DNA	
<400> 23	
ccggaattct ccggaggcgg aggctcggac attgtgatgt cacagtctcc atcctcccta 6	0

cctgtgtcag ttggcgagaa ggttactttg agctgcaagt ccagtcagag ccttttatat 120

agtggtaatc aaaagaacta cttggcctgg taccagcaga aaccagggca gtctcctaaa 180 ctgctgattt actgggcatc cgctagggaa tctggggtcc ctgatcgctt cacaggcagt 240 ggatctggga cagatttcac tctctccatc agcagtgtga agactgaaga cctggcagtt 300 tattactgtc agcagtatta tagctatccc ctcacgttcg gtgctgggac caagctggtg 360 ctgaaacggg ccgccgagcc caaatctcct gacaaaactc acacgtgccc accgtgccca 420 gcacctgaac tcctggggg accgtcagtc ttcctcttcc ccccaaaacc caaggacacc 480 ctcatgatct cccggacccc tgaggtcaca tgcgtggtgg tggacgtgac tagtcc 536

<220>

<400> 24

tctgaattct ccggaggcg aggctcggac attgtgatgt cacagtctcc atcctccta 60 cctgtgtcag ttggcgagaa ggttactttg agctgcaagt ccagtcagag ccttttatat 120 agtggtaatc aaaagaacta cttggcctgg 150

<220>

^{(210) 24}

<211> 150

^{(212&}gt; DNA

<213> Artificial Sequence

<223> Description of Artificial Sequense: Synthetic DNA

<210> 25

<211> 150

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequense: Synthetic DNA

<400> 25
cacactgctg atggagagag tgaaatctgt cccagatcca ctgcctgtga agcgatcagg 60
gaccccagat tccctagcgg atgcccagta aatcagcagt ttaggagact gccctggttt 120
ctgctggtac caggccaagt agttcttttg 150

<210> 26
<211> 149

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 26

ctctctccat cagcagtgtg aagactgaag acctggcagt ttattactgt cagcagtatt 60 atagctatcc cctcacgttc ggtgctggga ccaagctggt gctgaaacgg gccgccgagc 120 ccaaatctcc tgacaaaact cacacgtgc 149

<210> 27

<211> 149

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 27

ggactagtca cgtccaccac cacgcatgtg acctcagggg tccgggagat catgagggtg 60 tccttgggtt ttggggggaa gaggaagact gacggtcccc ccaggagttc aggtgctggg 120

<210> 28

<211> 526

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 28

caggaaacag ctatgacggt accgaattcg cgaggcaggc agcctggaga gaaggcgctg 60

ggctgcgagg gcgcgagggc gcgagggcag ggggcaaccg gaccccgccc gcatccatgg 120

cgcccgtcgc cgtctgggcc gcgctggccg tcggactgga gctctgggct gcggcgcacg 180

ccttgcccgc ccaggtggca tttacaccct acgccccgga gcccgggagc acatgccggc 240

tcagagaata ctatgaccag acagctcaga tgtgctgcag caaatgctcg ccgggccaac 300

atgcaaaagt cttctgtacc aagacctcgg acaccgtgtg tgactcctgt gaggacagca 360

catacaccca gctctggaac tgggttcccg agtgcttgag ctgtggctcc cgctgtagct 420

ctgaccaggt ggaaactcaa gcctgcactc gggaacagaa ccgcatctgc acctgcaggc 480

ccggctggta ctgcgcgtg agcaagctta ctggccgtcg ttttac 526

<210> 29

<211> 537

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

caggaaacag ctatgacggt accgctgagc aagcaggagg ggtgccggct gtgcgccg 60
ctgcgcaagt gccgcccggg cttcggcgt gccagaccag gaactgaaac atcagacgtg 120
gtgtgcaagc cctgtgcccc ggggacgttc tccaacacga cttcatccac ggatatttgc 180
aggccccacc agatctgtaa cgtggtggcc atccctggga atgcaagcat ggatgcagtc 240
tgcacgtcca cgtccccac ccggagtatg gccccagggg cagtacactt accccagcca 300
gtgtccacac gatcccaaca cacgcagcca actccagaac ccagcactgc tccaagcacc 360
tccttcctgc tcccaatggg ccccagccc ccagctgaag ggagcactgg cgacgagccc 420
aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctggggga 480

ccgtcagtct tcctcttccc cccaaaaccc aaggaagctt actggccgtc gttttac

537

<210> 30

<211> 150

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 30

atggcgcccg tcgccgtctg ggccgcgctg gccgtcggac tggagctctg ggctgcggcg 60 cacgccttgc ccgcccaggt ggcatttaca ccctacgccc cggagcccgg gagcacatgc 120 cggctcagag aatactatga ccagacagct 150

```
<210> 31
<211> 135
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 31

agacggcgac gggcgccatg gatgcgggcg gggtccggtt gcccctgcc ctcgcgccct 60

egegeeeteg eageceageg cettetetee aggetgeetg eetegegaat teggtacegt 120

catagctgtt tcctg

135

<210> 32

<211> 150

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 32°

gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt agctctgacc aggtggaaac 60

tcaagcctgc actcgggaac agaaccgcat ctgcacctgc aggcccggct ggtactgcgc 120

gctgagcaag cttactggcc gtcgttttac

150

<210> 33

<211> 150

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 33

gcacteggga acceagttee agagetgggt gtatgtgetg teeteacagg agteacacae 60

ggtgtccgag gtcttggtac agaagacttt tgcatgttgg cccggcgagc atttgctgca 120

gcacatctga gctgtctggt catagtattc

150

<210> 34

<211> 149

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 34

ctgtgccccg gggacgttct ccaacacgac ttcatccacg gatatttgca ggccccacca 60

gatctgtaac gtggtggcca tccctgggaa tgcaagcatg gatgcagtct gcacgtccac 120

gtccccacc cggagtatgg ccccagggg

149

<210> 35

<211> 150

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 35

	gaacgtcccc	ggggcacagg	gcttgcacac	cacgtctgat	t gtttcagtto	ctggtctgg	c 6
	cacgccgaag	cccgggcggc	acttgcgcag	cggcgcgcac	ageeggeace	cctcctgct	t 120
	gctcagcggt	accgtcatag	ctgtttcctg				150
	<210> 36					•	
	<211> 145						
	<212> DNA						
	(213) Artif	icial Seque	nce				
	<220>						
	•	iption of A	rtificial S	eauense: S	vnthetic DN	Δ	
				04401100. 0	JIIOIICOIC DI		
	<400> 36			• .			
	agctgaaggg	agcactggcg	acgagcccaa	atcttgtgac	aaaactcaca	catgcccac	60
						,	
	gtgcccagca	cctgaactcc	tggggggacc	gtcagtcttc	ctcttccccc	caaaacccaa	120
	ggaagcttac	tggccgtcgt	tttac		•		145
							110
		•					
	<210> 37						
	<211> 150						
	<212> DNA.	inial Carre					
	<213> Artifi	iciai Sequer	ice			•	
	<220>						
	<223> Descri	ption of Ar	tificial Se	quense: Sy	nthetic DNA		
				•			
	<400> 37						
Į	gccagtgctc c	cttcagctg g	ggggctggg g	cccattggg	agcaggaagg	aggtgcttgg	60
	agoagtigota a	gttotgas +	المتالة المستعدد الم	4-44			
Ć	agcagtgctg g	girciggag [regulgegt g	igligggat (cgtgtggaca	ctggctgggg	120
t	taagtgtact g	cccctgggg c	catactccg				150
			=				

<210> 38

<211> 452

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 38

caggaaacag ctatgacggt accgaattce gacgagccat ggttgctggg agcgacgcgg 60 ggcgggccct gggggtcctc agcgtggtct gcctgctgca ctgctttggt ttcatcagct 120 gtttttccca acaaatatat ggtgttgtgt atgggaatgt aactttccat gtaccaagca 180 atgtgccttt aaaagaggtc ctatggaaaa aacaaaagga taaagttgca gaactggaaa 240 attctgaatt cagagcttc tcatctttta aaaatagggt ttatttagac actgtgtcag 300 gtagcctcac tatctacaac ttaacatcat cagatgaaga tgagtatgaa atggaatcgc 360 caaatattac tgataccatg aagttcttc tttatgtcga caaaactcac acatgcccac 420 cgtgcccagc acctgactgg ccgtcgtttt ac 452

<210> 39

<211> 138

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 39

gtttcatcag ctgtttttcc caacaaatat atggtgttgt gtatgggaat gtaactttcc 60

atgtaccaag caatgtgcct ttaaaagagg tcctatggaa aaaacaaaag gataaagttg 120 cagaactgga aaattctg 138

<210> 40

<211> 129

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 40

gggaaaaaca gctgatgaaa ccaaagcagt gcagcaggca gaccacgctg aggaccccca 60

gggcccgccc cgcgtcgctc ccagcaacca tggctcgtcg gaattcggta ccgtcatagc 120

tgtttcctg 129

<210> 41

<211> 133

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 41

cttaacatca tcagatgaag atgagtatga aatggaatcg ccaaatatta ctgataccat 60

gaagttettt etttatgteg acaaaactea cacatgeeca eegtgeecag eacetgaetg 120

geegtegitt tae 133

<210> 42

```
<211> 118
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 42
catcttcatc tgatgatgtt aagttgtaga tagtgaggct acctgacaca gtgtctaaat 60
aaaccctatt tttaaaagat gagaaagctc tgaattcaga attttccagt tctgcaac
                                                                    118
<210> 43
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 43
gtaaaacgac ggccagt
                                                                    17
<210> 44
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 44
                                                                    32
taaatagaat teggeateat gtggeagetg et
```

```
<212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 45
aataaaggat cctggggtca tttgtcttga gggt
                                                                     34
<210> 46
<211> 788
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (13)..(774)
<400> 46
gaatteggea te atg tgg cag etg etc etc eca act get etg eta ett eta 51
           Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu
                1
                                             5
                                                                 10
gtt tca gct ggc atg cgg act gaa gat ctc cca aag gct gtg gtg ttc
                                                                    99
Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe
     15
                         20
                                              25
ctg gag cct caa tgg tac agg gtg ctc gag aag gac agt gtg act ctg
                                                                    147
Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu
 30
                     35
                                                              45
aag tgc cag gga gcc tac tcc cct gag gac aat tcc aca cag tgg ttt
                                                                    195
Lys Cys Gln Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe
                 50
                                      55
                                                          60
cac aat gag agc ctc atc tca agc cag gcc tcg agc tac ttc att gac
                                                                    243
```

<211> 34

His	Asn	Glu	Ser 65	Leu	Ile	Ser	Ser	Gln 70	Ala	Ser	Ser	Tyr	Phe 75	Ile	Asp	
_	_												aca Thr			291
													ggc Gly		ctg Leu	339
_						•							cct Pro			38.7
													gtc Val			435
													tct Ser 155			483
													tţc Phe			531
													aac Asn			579
													ttt Phe			627
						-							ttt Phe			675

					Tyr					Thr					Ser	aca Thr	723
									Lys							gac Asp	771
	aaa Lys	tga	2000	agg	atċc											•	78 <u>.</u> 8
	<211 <212)> 47 L> 25 2> PH 3> Ho	54 .	sapi	ens												
)> 47 Trp		Leu	Leu 5	Leu	Pro	Thr	Ala	Leu 10	Leu	Leu	Leu	Val	Ser 15	Ala	
•(Gly	Met	Arg	Thr 20	Glu	Asp	Leu	Pro	Lys 25	Ala	Val	Val		Leu 30	Glu	Pro	
(3ln	Trp	Tyr 35	Arg	Val	Leu	Glu	Lys 40	Asp	Ser	Val	Thr	Leu 45	Lys	Cys	Gln	
(3ly	Ala 50	Tyr	Ser	Pro	Glu	Asp 55	Asn	Ser	Thr	Gln	Trp		His	Asn	Glu	
(Ser 65	Leu	Ile	Ser	Ser	Gln 70	Ala	Ser	Ser	Tyr	Phe 75	Ile	Asp	Ala	Ala	Thr 80	
7	/al	Asp	Asp	Ser	Gly 85	Glu	Tyr	Arg	Cys	Gln 90	Thr	Asn	Leu	Ser	Thr 95	Leu	
c	ler	l en	Dro	Va i	Gln	Ι.Δ11	Glu	Val	Hic	Τlο	Gl v	Ψrn	Lou	Lou	Lon	Gln	

Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Phe . 170 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser Thr Arg Asp Trp Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln Asp Lys

<210> 48

<211> 788

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (13)..(774)

<40	0> 4	8													
gaa	ttcg	gca			-		-				_		_	tt cta eu Lei 10	1
_						act Thr 20						Ala			99
_						agg Arg								ctg Leu 45	147
	_	_		_		tcc Ser			_				_		195
		_	_			tca Ser	_	_	_	_	_			_	243
						agt Ser									291
_						gtg Val 100				_				 _	339
	•					tgg Trp									387
	_	_		_		aag Lys			_			_			435

					ggc Gly						_		483
					aca Thr								531
					aaa Lys						•		579
	Thr				gca Ala 195								627
					ttc Phe								675
					ttc Phe				_	_			723
-	Asp		Lys		cat His	Phe	Lys	Arg				_	771
aaa Lys	tgac	ccca	igg a	itcc							·		788
<210 <211 <212 <213	> 25 > PR	4	apie	ns									

<400> 49

Met 1	Trp	Gln	Leu	. Leu 5		Pro	Thr	Ala	Leu 10		Leu	Leu	Val	Ser 15	Ala
Gly	Met	Arg	Thr 20		Asp	Leu	Pro	Lys 25		Val	Val	Phe	Leu 30		Pro
Gln	Trp	Tyr 35	Arg	Val	Leu	Glu	Lys 40		Ser	Val	Thr	Leu 45		Cys	Gln
Gly	Ala 50	Tyr	Ser	Pro	Gļu	Asp 55	Asn	Ser	Thr	Gln	Trp	Phe	His	Asn	Glu
Ser 65	Leu	Ile	Ser	Ser	Gln 70	Ala	Ser	Ser	Tyr	Phe 75	Ile	Asp	Ala	Ala	Thr 80
Val	Asp	Asp	Ser	Gly 85	Glu	Tyr	Arg	Cys	Gln 90	Thr	Asn	Leu	Ser	Thr 95	Leu
Ser	Asp	Pro	Val 100	Gln	Leu	Glu	Val	His 105	Ile	Gly	Trp	Leu	Leu 110	Leu	Gln
Ala	Pro	Arg 115	Trp	Val	Phe	Lys	Glu 120	Glu	Asp	Pro	Ile	His 125	Leu	Arg	Cys
His	Ser 130	Trp	Lys	Asn	Thr	Ala 135	Leu	His	Lys	Val	Thr 140	Tyr	Leu	Gln	Asn
Gly 145	Lys	Gly	Arg	Lys	Tyr 150	Phe	His	His	Asn	Ser 155	Asp	Phe	Tyr	Ile	Pro 160
Lys	Ala	Thr	Leu	Lys 165	Asp	Ser	Gly	Ser	Tyr 170	Phe	Cys	Arg	•	Leu 175	Val
Gly	Ser	Lys	Asn 180	Val	Ser	Ser	Glu	Thr 185	Val	Ásn	Ile	Thr	Ile 190	Thr	Gln
Gly	Leu	Ala 195	Val	Ser	Thr	Ile	Ser 200	Ser	Phe	Phe	Pro	Pro 205	Gly	Tyr	Gln

Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly 210 215 220 Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser Thr Arg Asp Trp 225 230 235 240 Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln Asp Lys 245 250 <210> 50 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic DNA <400> 50 tgttggatcc tgtcaatgat gatgatgatg atgaccttga gtgatggtga t 51 <210> 51 <211> 620 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (13)..(609) <400> 51 gaatteggea te atg tgg cag etg etc etc eca act get etg eta ett eta 51

gtt tca gct ggc atg cgg act gaa gat ctc cca aag gct gtg gtg ttc 99

1

Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu

10 .

Val	Se:	a Gl	y Me1	l Arg	g Thi 2(ı Ası) Le	u Pro	o Lys 25	a Va	l Va	l Phe	
	ı Glı				Arg					s Asp			t ctg r Leu 45	147
				. Tyr					Asr.		_		ttt Phe	195'
			Leu					Ala				Ιlε	gac Asp	243
		Val									Thr		ctc	291
													ctg Leu	339
		gcc Ala												387
		cac												435
tta Leu		ggc Gly 145				Lys								483
tac Tyr	Ile	aaa Lys			Leu					Ser				531

ggg ctt ttt ggg agt aaa aat gtg tct tca gag act gtg aac atc acc 579 Gly Leu Phe Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr 175 180 185

atc act caa ggt cat cat cat cat cat tgacaggatc c

Ile Thr Gln Gly His His His His His His

190

195

<210> 52

<211> 199

<212> PRT

<213> Homo sapiens

<400> 52

Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15

Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30

Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln 35 40 45

Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu 50 55 60

Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80

Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95

Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Gln
100 105 110

Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys

His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140

Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160

Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Phe 165 170 175

Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln 180 185 190

Gly His His His His His His 195

<210> 53

<211> 620

<212> DNA

<213> Homo sapiens

<220>·

<221> CDS

<222> (13)..(609)

<400> 53

gaatteggea to atg tgg cag ctg ctc ctc cca act gct ctg cta ctt cta 51

Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Leu

1 5 10

gtt tca gct ggc atg cgg act gaa gat ctc cca aag gct gtg gtg ttc 99
Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe
15 20 25

ctg gag cct caa tgg tac agg gtg ctc gag aag gac agt gtg act ctg 147 Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu

ggg ctt gtt ggg agt aaa aat gtg tct tca gag act gtg aac atc acc

Gly Leu Val Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr

175 ·

atc act caa ggt cat cat cat cat cat cat tgacaggate c Ile Thr Gln Gly His His His His His 190 195

<210> 54

<211> 199

<212> PRT

<213> Homo sapiens

<400> 54

Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala 1 5 10 15

Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro
20 25 30

Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln
35 40 45

Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu
50 55 60

Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr 65 70 75 80

Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95

Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Gln 100 105 110

Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile His Leu Arg Cys
115 120 125

His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr Tyr Leu Gln Asn 130 135 140 Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160

Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val 165 170 175

Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln
180 185 190

Gly His His His His His His 195

<210> 55

⟨211⟩ 9196

<212> DNA

<213> Cricetulus griseus

<400> 55

tetagaccas getggtetes aacteacaga gaaccacets cetetgecae etgagtgets 60 ggattaaags tgtgeaccae cacegeeegs egtaaaatea tattittgaa tattgtgata 120 atttacatta taattgtaag taaaaattit eageetatti tgttatacat tittgegtaa 180 attattetti tittgaaagti tigtigteea taatagteta gggaaacata aagitataat 240 tittgeetat gtattgeat atatatetat tiaateeet aatgeeagg aaataaatag 300 ggtatgtaat ageetteaaca tgtggtatga tagaattiti eagigetata taagitgita 360 eageaaagtg tiattaatte atatgeeat atteaatti tittatgaatt attaaattga 420 ateettaage tgeeagaact agaattitat titaateagg aageeecaaa tetgiteatt 480 ettietatat atgtggaaag gtaggeetea etaaetgati etteaeetet tittagaacat 540 ggteeaagaa tggagttatg taaggggaat taeaagtgtg agaaaactee tagaaaacaa 600

gatgagtett gtgacettag tttetttaaa aacacaaaat tettggaatg tgtttteatg 660 ttcctcccag gtggatagga gtgagtttat ttcagattat ttattacaac tggctgttgt 720 tacttgtttc tatgtcttta tagaaaaaca tatttttttt gccacatgca gcttgtcctt 780 atgattttat acttgtgtga ctcttaactc tcagagtata aattgtctga tgctatgaat 840 aaagttggct attgtatgag acttcagccc acttcaatta ttggcttcat tctctcagat 900 cccaccacct ccagagtggt aaacaacttg aaccattaaa cagactttag tctttatttg 960 aatgatagat ggggatatca gatttatagg cacagggttt tgagaaaggg agaaggtaaa 1020 cagtagagtt taacaacaac aaaaagtata ctttgtaaac gtaaaactat ttattaaagt 1080 agtagacaag acattaaata ttccttggga ttagtgcttt ttgaattttg ctttcaaata 1140 atagtcagtg agtatacccc tcccccattc tatattttag cagaaatcag aataaatggt 1200 gtttctggta cattcttttg tagagaattt attttctttg ggtttttgtg catttaaagt 1260 caataaaaat taaggtteag taatagaaaa aaaactetga tttttggaat eccetttett 1320 cagcttttct atttaatctc ttaatgataa tttaatttgt ggccatgtgg tcaaagtata 1380 tagccttgta tatgtaaatg ttttaaccaa cctgccttta cagtaactat ataattttat 1440 tctataatat atgacttttc ttccatagct ttagagttgc ccagtcactt taagttacat 1500 tttcatatat gttctttgtg ggaggagata attttatttc taagagaatc ctaagcatac 1560 tgattgagaa atggcaaaca aaacacataa ttaaagctga taaagaacga acatttggag 1620 tttaaaatac atagccaccc taagggttta actgttgtta gccttctttt ggaattttta 1680 ttagttcata tagaaaaatg gattttatcg tgacatttcc atatatgtat ataatatatt 1740

tacatcatat ccacctgtaa ttattagtgt ttttaaatat atttgaaaaa ataatggtct 1800 ggtttgatcc atttgaacct tttgatgttt ggtgtggttg ccaattggtt gatggttatg 1860 ataacctttg cttctctaag gttcaagtca gtttgagaat atgtcctcta aaaatgacag 1920 gttgcaagtt aagtagtgag atgacagcga gatggagtga tgagaatttg tagaaatgaa 1980 ttcacttata ctgagaactt gttttgcttt tagataatga acatattagc ctgaagtaca 2040 tagccgaatt gattaattat tcaaagatat aatcttttaa tccctataaa agaggtatta 2100 cacaacaatt caagaaagat agaattagac ttccagtatt ggagtgaacc atttgttatc 2160 aggtagaacc ctaacgtgtg tggttgactt aaagtgttta ctttttacct gatactgggt 2220 agctaattgt ctttcagcct cctggccaaa gataccatga aagtcaactt acgttgtatt 2280 ctatatetea aacaacteag ggtgtttett actettteea eageatgtag ageeeaggaa 2340 gcacaggaca agaaagctgc ctccttgtat caccaggaag atctttttgt aagagtcatc 2400 acagtatacc agagagacta attttgtctg aagcatcatg tgttgaaaca acagaaactt 2460 attttcctgt gtggctaact agaaccagag tacaatgttt ccaattcttt gagctccgag 2520 aagacagaag ggagttgaaa ctctgaaaat gcgggcatgg actggttcct ggcgttggat 2580 tatgeteatt etttttgeet gggggaeett attgttttat ataggtggte atttggtteg 2640 agataatgac caccetgace attetageag agaactetee aagattettg caaagetgga 2700 gcgcttaaaa caacaaaatg aagacttgag gagaatggct gagtctctcc ggtaggtttg 2760 aaatactcaa ggatttgatg aaatactgtg cttgaccttt aggtataggg tctcagtctg 2820 ctgttgaaaa atataatttc tacaaaccgt ctttgtaaaa ttttaagtat tgtagcagac 2880

tttttaaaag tcagtgatac atctatatag tcaatatagg tttacatagt tgcaatctta 2940 ttttgcatat gaatcagtat atagaagcag tggcatttat atgcttatgt tgcatttaca 3000 attatgttta gacgaacaca aactttatgt gatttggatt agtgctcatt aaattttttt 3060 attctatgga ctacaacaga gacataaatt ttgaaaggct tagttactct taaattctta 3120 tgatgaaaag caaaaattca ttgttaaata gaacagtgca tccggaatgt gggtaattat 3180 tgccatattt ctagtctact aaaaattgtg gcataactgt tcaaagtcat cagttgtttg 3240 gaaagccaaa gtctgattta aatggaaaac ataaacaatg atatctattt ctagatacct 3300 ttaacttgca gttactgagt ttacaagttg tctgacaact ttggattctc ttacttcata 3360 tctaagaatg atcatgtgta cagtgcttac tgtcacttta aaaaactgca gggctagaca 3420 tgcagatatg aagactttga cattagatgt ggtaattggc actaccagca agtggtatta 3480 agatacagct gaatatatta ctttttgagg aacataattc atgaatggaa agtggagcat 3540 tagagaggat gccttctggc tctcccacac cactgtttgc atccattgca tttcacactg 3600 cttttagaac tcagatgttt catatggtat attgtgtaac tcaccatcag ttttatcttt 3660 aaatgtctat ggatgataat gttgtatgtt aacactttta caaaaacaaa tgaagccata 3720 tcctcggtgt gagttgtgat ggtggtaatt gtcacaatag gattattcag caaggaacta 3780 agtcagggac aagaagtggg cgatactttg ttggattaaa tcattttact ggaagttcat 3840 cagggagggt tatgaaagtt gtggtctttg aactgaaatt atatgtgatt cattattctt 3900 gatttaggcc ttgctaatag taactatcat ttattgggaa tttgtcatat gtgccaattt 3960 gtcatgggcc agacagcgtg ttttactgaa tttctagata tctttatgag attctagtac 4020

tgttttcagc cattttacag atgaagaatc ttaaaaaaatg ttaaataatt tagtttgccc 4080 aagattatac gttaacaaat ggtagaacct tctttgaatt ctggcagtat ggctacacag 4140 tecgaaetet tatetteeta agetgaaaae agaaaaagea atgaeecaga aaattttatt 4200 taaaagtete aggagagaet teccateetg agaagatete tttteeettt tataatttag 4260 gctcctgaat aatcactgaa ttttctccat gttccatcta tagtactgtt atttctgttt 4320 tccttttttc ttaccacaaa gtatcttgtt tttgctgtat gaaagaaaat gtgttattgt 4380 aatgtgaaat tetetgteee tgeagggtee cacateegee teaateecaa ataaacacae 4440 agaggetgta ttaattatga aactgttggt eagttggeta gggettetta ttggetaget 4500 ctgtcttaat tattaaacca taactactat tgtaagtatt tccatgtggt cttatcttac 4560 caaggaaagg gtccagggac ctcttactcc tctggcgtgt tggcagtgaa gaggagaga 4620 cgatttccta tttgtctctg cttattttct gattctgctc agctatgtca cttcctgcct 4680 ggccaatcag ccaatcagtg ttttattcat tagccaataa aagaaacatt tacacagaag 4740 gacttccccc atcatgttat ttgtatgagt tcttcagaaa atcatagtat cttttaatac 4800 taatttttat aaaaaattaa ttgtattgaa aattatgtgt atatgtgtct gtgtgtcgat 4860 ttgtgctcat aagtagcatg gagtgcagaa gagggaatca gatcttttt taagggacaa 4920 agagtttatt cagattacat tttaaggtga taatgtatga ttgcaaggtt atcaacatgg 4980 cagaaatgtg aagaagctgg tcacattaca tccagagtca agagtagaga gcaatgaatt 5040 gatgcatgca ttcctgtgct cagctcactt ttcctggagc tgagctgatt gtaagccatc 5100 tgatgtcttt gctgggaact aactcaaagg caagttcaaa acctgttctt aagtataagc 5160

catctctcca gtccctcata tggtctctta agacactttc tttatattct tgtacataga 5220 aattgaattc ctaacaactg cattcaaatt acaaaatagt ttttaaaagc tgatataata 5280 aatgtaaata caatctagaa catttttata aataagcata ttaactcagt aaaaataaat 5340 gcatggttat tttccttcat tagggaagta tgtctcccca ggctgttctc tagattctac 5400 tagtaatgct gtttgtacac catccacagg ggttttattt taaagctaag acatgaatga 5460 tggacatgct tgttagcatt tagacttttt tccttactat aattgagcta gtatttttgt 5520 gctcagtttg atatctgtta attcagataa atgtaatagt aggtaatttc tttgtgataa 5580 aggcatataa attgaagttg gaaaacaaaa gcctgaaatg acagttttta agattcagaa 5640 caataatttt caaaagcagt tacccaactt tccaaataca atctgcagtt ttcttgatat 5700 gtgataaatt tagacaaaga aatagcacat tttaaaaatag ctatttactc ttgatttttt 5760 tttcaaattt aggctagttc actagttgtg tgtaaggtta tggctgcaaa catctttgac 5820 tcttggttag ggaatccagg atgatttacg tgtttggcca aaatcttgtt ccattctggg 5880 tttcttctct atctaggtag ctagcacaag ttaaaggtgt ggtagtattg gaaggctctc 5940 aggtatatat ttctatattc tgtatttttt tcctctgtca tatatttgct ttctgtttta 6000 ttgatttcta ctgttagttt gatacttact ttcttacact ttctttggga tttattttgc 6060 tgttctaaga tttcttagca agttcatatc actgatttta acagttgctt cttttgtaat 6120 atagactgaa tgccccttat ttgaaatgct tgggatcaga aactcagatt tgaacttttc 6180 ttttttaata tttccatcaa gtttaccagc tgaatgtcct gatccaagaa tatgaaatct 6240 gaaatgettt gaaatetgaa aettttagag tgataaaget teeetttaaa ttaatttgtg 6300

ttctatattt tttgacaatg tcaacctttc attgttatcc aatgagtgaa catattttca 6360 atttttttgt ttgatctgtt atattttgat ctgaccatat ttataaaatt ttatttaatt 6420 tgaatgttgt gctgttactt atctttatta ttatttttgc ttattttcta gccaaatgaa 6480 attatattct gtattatttt agtttgaatt ttactttgtg gcttagtaac tgccttttgt 6540 tggtgaatgc ttaagaaaaa cgtgtggtct actgatattg gttctaatct tatatagcat 6600 gttgtttgtt aggtagttga ttatgctggt cagattgtct tgagtttatg caaatgtaaa 6660 atatttagat gcttgttttg ttgtctaaga acaaagtatg cttgctgtct cctatcggtt 6720 ctggtttttc cattcatctc ttcaagctgt tttgtgtgtt gaatactaac tccgtactat 6780 cttgttttct gtgaattaac cccttttcaa aggtttcttt tcttttttt tttaagggac 6840 aacaagttta ttcagattac attttaagct gataatgtat gattgcaagg ttatcaacat 6900 ggcagaaatg tgaagaagct aggcacatta catccacatg gagtcaagag cagagagcag 6960 tgaattaatg catgcattcc tgtggtcagc tcaettttcc tattcttaga tagtctagga 7020 tcataaacct ggggaatagt gctaccacaa tgggcatatc cacttacttc agttcatgca 7080 atcaaccaag gcacatccac aggaaaaact gatttagaca acctctcatt gagactcttc 7140 ccagatgatt agactgtgtc aagttgacaa ttaaaactat cacacctgaa gccatcacta 7200 gtaaatataa tgaaaatgtt gattatcacc ataattcatc tgtatccctt tgttattgta 7260 gattttgtga agttcctatt caagtcectg ttccttcctt aaaaacctgt tttttagtta 7320 aataggtttt ttagtgttcc tgtctgtaaa tactttttta aagttagata ttattttcaa 7380 gtatgttctc ccagtctttg gcttgtattt tcatcccttc aatacatata tttttgtaat 7440

ttattttttt tatttaaatt agaaacaaag ctgcttttac atgtcagtct cagttccctc 7500 teceteceet ecteceetge tececaceta ageceeaatt ceaacteett tetteteece 7560 aggaagggtg aggccctcca tgggggaaat cttcaatgtc tgtcatatca tttggagcag 7620 ggcctagacc ctccccagtg tgtctaggct gagagagtat ccctctatgt ggagagggct 7680 cccaaagttc atttgtgtac taggggtaaa tactgatcca ctatcagtgg ccccatagat 7740 tgtccggacc tccaaactga cttcctcctt cagggagtct ggaacagttc tatgctggtt 7800 tcccagatat cagtctgggg tccatgagca accccttgtt caggtcagtt gtttctgtag 7860 gtttccccag cccggtcttg acccctttgc tcatcacttc tccctctctg caactggatt 7920 ccagagttca gctcagtgtt tagctgtggg tgtctgcatc tgcttccatc agctactgga 7980 tgagggctct aggatggcat ataaggtagt catcagtctc attatcagag aagggctttt 8040 aaggtageet ettgattatt gettagattg ttagttgggg teaacettgt aggtetetgg 8100 acagtgacag aattetettt aaacetataa tggeteecte tgtggtggta teeetttet 8160 tgctctcatc cgttcctccc ctgactagat cttcctgctc cctcatgtcc tcctctcccc 8220 tececttete ceettetett tettetaact eeeteteece tecacecaeg atececatta 8280 gcttatgaga tcttgtcctt attttagcaa aacctttttg gctataaaat taattaattt 8340 aatatgetta tateaggttt attttggeta gtatttgtat gtgtttggtt agtgttttta 8400 accttaattg acatgtatcc ttatatttag acacagattt aaatatttga agtttttttt 8460 tttttttt ttaaagattt atttattttt tatgtcttct gcctgcatgc cagaagaggg 8520 caccagatet catteaaggt ggttgtgage caccatgtgg ttgctgggaa ttgaactcag 8580

gacctctgga agaacagtca gtgctcttaa ccgctgagcc atctctccag cccctgaagt 8640
gtttcttta aagaggatag cagtgcatca tttttccctt tgaccaatga ctcctacctt 8700
actgaattgt tttagccatt tatatgtaat gctgttacca ggtttacatt ttcttttatc 8760
ttgctaaatt tcttccctgt ttgtctcatc tcttatttt gtctgttgga ttatataggc 8820
ttttattttt ctgttttac agtaagttat atcaaattaa aattattta tggaatggt 8880
gtgttgacta catgtatgtc tgtgcaccat gtgctgacct ggtcttggcc agaaggaggt 8940
gtcatattct ctgaaactgg tattgtggat gttacgaact gccatagggt gctaggaatc 9000
aaaccccagc tcctctggaa aagcagccac tgctctgagc cactgagtcc tctcttcaag 9060
caggtgatgc caacttttaa tggttaccag tggataagag tgcttgtatc tctagcaccc 9120
atgaaaattt atgcattgct atatgggctt gtcacttcag cattgtgga cagagacagg 9180
aggatcccaa gagctc

<210> 56

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 56

gagacttcag cccacttcaa ttattggc

28

<210> 57

<211> 25

(212) DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
· ·	
<400> 57	
cttgtgtgac tcttaactct cagag	25
<210> 58	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
•	
<400> 58	
gaggccactt gtgtagcgcc aagtg	25
<210> 59	
(211) 23	
<212> DNA	•
(213) Artificial Sequence	
2000	
(220)	
(223) Description of Artificial Sequence: Synthetic DNA	
400. 50	
(400) 59	
ecctegagat aacttegtat age	23
·	
210> 60	
211> 18	
212> DNA	
MAM' VIII	

<213> Artificial Sequence

⟨220⟩	
<223> Description of Artificial Sequence : Synthetic DNA	
<400> 60	
ggtaggcctc actaactg	18
<210> 61 <211> 25	
<212> DNA	
<213> Artificial Sequence	
(213) Altilicial bequence	
<220>	
<223> Description of Artificial Sequence : Synthetic DNA	
<400> 61	
catagaaaca agtaacaaca gccag	25
<210> 62	
<211> 21	
<212> DNA <213> Artificial Sequence	
VZ137 AI-tillelai bequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 62	
gtgagtccat ggctgtcact g	21
<210> 63	
(211) 20	
(212) DNA	
<213> Artificial Sequence	
4000	-
⟨220⟩	

<400> 63

cctgacttgg ctattctcag

20

⟨210⟩ 64 ·

<211> 235

<212> PRT

<213> Homo sapiens

<400> 64

Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser 1 5 10 15

Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys
20 25 30

Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr 35 40 . 45

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu 50 55 60

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 65 70 75 80

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
85 90 95

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys
100 105 110

Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala 115 120 125

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His 145 150 155 160

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala 165 170 175

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val 180 185 190

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr 195 200 205

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly . 210 215 220

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp 225 230

<210> 65

<211> 92

<212> PRT

<213> Homo sapiens

<400> 65

Phe Ser Gln Gln Ile Tyr Gly Val Val Tyr Gly Asn Val Thr Phe His

1 5 10 15

Val Pro Ser Asn Val Pro Leu Lys Glu Val Leu Trp Lys Lys Gln Lys 20 25 30

Asp Lys Val Ala Glu Leu Glu Asn Ser Glu Phe Arg Ala Phe Ser Ser 35 40 45

Phe Lys Asn Arg Val Tyr Leu Asp Thr Val Ser Gly Ser Leu Thr Ile 50 55. 60

Tyr Asn Leu Thr Ser Ser Asp Glu Asp Glu Tyr Glu Met Glu Ser Pro 70 75 80 65 Asn Ile Thr Asp Thr Met Lys Phe Phe Leu Tyr Val 85 90 <210> 66 <211> 5 <212> PRT <213> Mus musculus <400> 66 Ser Tyr Gly Met Ser <210> 67 <211> 17 <212> PRT <213> Mus musculus <400> 67 Thr Ile Asn Ser Asn Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val Lys 5 10 15 Gly <210> 68 <211> 11 <212> PRT <213> Mus musculus <400> 68 Asp Arg Asp Gly Tyr Asp Glu Gly Phe Asp Tyr 5 10 1 -

<210> 69

⟨211⟩ 10

<212> PRT

<213> Mus musculus

<400> 69

Ser Ala Ser Ser Ser Val Ser Tyr Met His 1 5 10

<210> 70

(211) 7

<212> PRT

<213> Mus musculus

<400> 70

Asp Thr Ser Lys Leu Ala Ser

1

5

<210> 71

⟨211⟩ 9

<212> PRT

<213> Mus musculus

<400> 71

Gln Gln Trp Ser Ser Asn Pro Pro Thr

1

5

<210> 72

⟨211⟩ 120

<212> PRT

<213> Mus musculus

<400> 72

Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro 1 5 . 10	Gly Gly 15
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser 20 25 30	
Gly Met Ser Trp Val Arg Gln Thr Pro Asp Lys Arg Leu Glu 35 40 45	Leu Val
Ala Thr Ile Asn Ser Asn Gly Gly Ser Thr Tyr Tyr Pro Asp 50 55 60	Ser Val
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr 65 70 75	Leu Tyr 80
Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr 85 90	Tyr Cys 95
Ala Arg Asp Arg Asp Gly Tyr Asp Glu Gly Phe Asp Tyr Trp 100 105 110	Gly Pro
Gly Thr Thr Val Thr Val Ser Ser 115 120	
<210> 73 <211> 109 <212> PRT <213> Mus musculus	
<pre><400> 73 Asp Ile Glu Leu Thr Gln Ser Pro Ser Ile Met Ser Ala Ser 1 5 10</pre>	Pro Gly 15
Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser 20 25 30	Tyr Met
His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp	Ile Tyr

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu 65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Pro Thr 85 90 95

Phe Gly Gly Arg Thr Lys Leu Glu Leu Lys Arg Ala Ala 100 105

<210> 74

<211> 244

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Amino Acid Sequence of Single Chain Antibody Fv

<400> 74

Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr.
20 25 30

Gly Met Ser Trp Val Arg Gln Thr Pro Asp Lys Arg Leu Glu Leu Val
35 40 45

Ala Thr Ile Asn Ser Asn Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Asp Arg Asp Gly Tyr Asp Glu Gly Phe Asp Tyr Trp Gly Pro. Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser Pro Ser Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Pro Thr Phe Gly Gly Arg Thr Lys Leu Glu Leu

Lys Arg Ala Ala

<210> 75

<211> 515

<212> PRT

<213> <i>I</i>	Artif	icial	Sequence
----------------	-------	-------	----------

<220>

<223> Description of Artificial Sequense: Amino Acid Sequence of Bispecific Single Chain Antibody

<400> 75

Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30

Gly Met Ser Trp Val Arg Gln Thr Pro Asp Lys Arg Leu Glu Leu Val
35 40 45

Ala Thr Ile Asn Ser Asn Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95

Ala Arg Asp Arg Asp Gly Tyr Asp Glu Gly Phe Asp Tyr Trp Gly Pro
100 105 110

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125

Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser Pro Ser 130 135 140

Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala 145 150 155 160

Ser Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Ser Gly Thr

Ser	Pro	Lys	Arg 180	Trp	Ile	Tyr	Asp	Thr 185	Ser	Lys	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Ser	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Trp 225	Ser	Ser	Asn	Pro	Pro 230		Phe	Gly	Gly	Arg 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Gly 245	Gly	Gly	Gly	Ser	Gly 250	Gl.y	Gly	Gly	Ser	Gly 255	Gly
Gly	Thr	Ser	Gly 260	Gly	Gly	Gly	Ser	Gly 265	Gly	Gly	Gly	Ser	Gln 270	Val	Gln
Leu	Gln	Gln 275	Ser	Asp	Ala	Glu	Leu 280	Val	Lys	Pro	Gly	Ala 285	Ser	Val	Lys
Ile	Ser 290	Cys	Lys	Ala	Ser	Gly 295	Tyŕ	Thr	Phe	Thr	Asp 300	His	Ala	Ile	His
Trp 305	Val	Lys	Gln	Asn	Pro 310	Glu	Gln	Gly	Leu	Glu 315	Trp	Ile	Gly	Tyr	Phe 320
Ser	Pro	Gly	Asn	Asp 325	Asp	Phe	Lys	Tyr	Asn 330	Glu	Arg	Phe	Lys	Gly 335	Lys
Ala	Thr	Leu	Thr 340	Ala	Asp	Lys	Ser	Ser 345	Ser	Thr	Ala	Tyr	Val 350	Gln	Leu

Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Thr Arg Ser

. 355

Leu Asn Met Ala Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp 400 . Ile Val Met Ser Gln Ser Pro Ser Ser Leu Pro Val Ser Val Gly Glu Lys Val Thr Leu Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Ala Arg Glu Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Ser Ser Val Lys Thr Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln Tyr Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Val Leu Lys Arg Ala Ala <210> 76 <211> 515 <212> PRT

<220>

<213> Artificial Sequence

<223> Description of Artificial Sequense: Amino Acid Sequence of Bispecific Single Chain Antibody

<400)>	7
Gln	Va	ıl
1		

Gln Leu Gln Gln Ser Asp Ala Glu Leu Val Lys Pro Gly Ala

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp His

Ala Ile His Trp Val Lys Gln Asn Pro Glu Gln Gly Leu Glu Trp Ile

Gly Tyr Phe Ser Pro Gly Asn Asp Asp Phe Lys Tyr Asn Glu Arg Phe

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr

Val Gln Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 9.0

Thr Arg Ser Leu Asn Met Ala Tyr Trp Gly Gln Gly Thr Ser Val Thr

Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly

Gly Ser Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Pro Val Ser

Val Gly Glu Lys Val Thr Leu Ser Cys Lys Ser Ser Gln Ser Leu Leu 145 ·

Tyr Ser Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro 17.0

Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Ala Arg Glu Ser 190 .

Gly	Val	Pro 195	Asp	Arg	Phe	Thr	Gly 200	Ser	Gly	Ser	Gly	Thr 205	Asp	Phe	Thr
Leu	Ser 210	Ile	Ser	Ser	Val	Lys 215	Thr	Glu	Asp	Leu	Ala 220	Val	Tyr	Tyr	Cys
Gln 225	Gln	Tyr	Tyr	Ser	Tyr 230	Pro	Leu	Thr	Phe	Gly 235	Ala	Gly	Thr	Lys	Leu 240
Val	Leu	Lys	Arg	Ala 245	Ala	Gly	Gly	Gly	Gly 250	Ser	Gly	Gly	Gly	Gly 255	Ser
Gly	Gly	Gly	Thr 260	Ser	Gly	Gly	Gly	Gly 265	Ser	Gly	Gly	Gly	Gly 270	Ser	Gln
Val	Gln	Leu 275	Gln	Glu	Ser	Gly	Gly 280	Gly	Leu	Val	Gln	Pro 285	Gly	Gly	Ser
Leu	Lys 290	Leu	Ser	Cys	Ala	Ala 295	Ser	Gly	Phe	Thr	Phe 300	Ser	Ser	Tyr	Gly
Met 305		Trp	Val	Arg	Gln 310	Thr	Pro	Asp	Lys	Arg 315	Leu	Glu	Leu	Val	Ala 320
Thr	Ile	Asn	Ser	Asn 325	Gly	Gly	Ser	Thr	Tyr 330	Tyr	Pro	Asp	Ser	Val 335	Lys
Gly	Arg	Phe	Thr 340	Ile	Ser	Arg	Asp	Asn 345	Ala	Lys	Asn	Thr	Leu 350	Tyr	Leu
Gln	Met	Ser 355	Ser	Leu	Lys	Ser	Glu 360	_	Thr	Ala	Met	Tyr 365	Tyr	Cys	Ala
Arg	Asp 370	Arg	Asp	Gly	Tyr	Asp 375	Glu	Gly	Phe	Asp	Tyr 380	Trp	Gly	Pro	Gly
Thr 385	Thr	Val	Thr	Val	Ser 390	Ser	Gly	Gly	Gly	Gly 395	Ser	Gly	Gly		Gly 400

Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser Pro Ser Ile
405 410 415

Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser 420 425 430

Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Ser Gly Thr Ser 435 440 445

Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro 450 455 460

Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
465 470 475 480

Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 485 490 495

Ser Ser Asn Pro Pro Thr Phe Gly Gly Arg Thr Lys Leu Glu Leu Lys 500 505 510

Arg Ala Ala 515

<210> 77

<211> 89

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> .77

gaattcgacc cctcaccatg gaatggagct gggtctttct cttcttcctg tcagtaacta 60

ccggtgggga tccccactag tcctccgga

89

```
<210> 78
 <211> 83
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 78
aattcgaccc ctcaccatgg aatggagctg ggtctttctc ttcttcctgt cagtaactac 60
                                                                    83
cggtggggat cccactagt cct
<210> 79
<211> 83
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 79
ccggaggact agtggggatc cccaccggta gttactgaca ggaagaagag aaagacccag 60
ctccattcca tggtgagggg tcg
                                                                    83
<210> 80
<211> 411
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Description of Artificial Sequense: Synthetic DNA

<400> 80

gcgaccggtg tccactcca ggtccaactg caggagtcag gaggaggctt agtgcagcct 60 ggagggtccc tgaaactctc ctgtgcagcc tctggattca ctttcagtag ctatggcatg 120 tcttgggttc gccagactcc agacaagagg ctggagttgg tcgcaaccat taatagtaat 180 ggtggtagca cctattatcc agacagtgtg aagggccgat tcaccatctc cagagacaat 240 gccaagaaca ccctgtacct gcaaatgagc agtctgaagt ctgaggacac agccatgtat 300 tactgtgcaa gagatcggga tggttacgac gagggatttg actactgggg cccagggacc 360 acggtcaccg tctcctcagg tggcggaggc agcggaggcg gtggatcccg c

<210> 81

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 81

gcgaccggtg tccactccca ggtccaactg caggagtcag gaggaggctt agtgcagcct 60 ggagggtccc tgaaactctc ctgtgcagcc tctggattca ctttcagtag ctatggcatg 120

⟨210⟩ 82

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 82
cggcccttca cactgtctgg ataataggtg ctaccaccat tactattaat ggttgcgacc 60
aactccagcc tcttgtctgg agtctggcga acccaagaca tgccatagct actgaaagtg 120

<210> 83

<211> 118

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 83

ccagacagtg tgaagggccg attcaccatc tccagagaca atgccaagaa caccctgtac 60

ctgcaaatga gcagtctgaa gtctgaggac acagccatgt attactgtgc aagagatc 118

<210> 84

<211> 118

<212> DNA

<213> Artificial Sequence

. <220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 84

cgcggatcca ccgcctccgc tgcctccgcc acctgaggag acggtgaccg tggtccctgg 60

gccccagtag tcaaatccct cgtcgtaacc atcccgatct cttgcacagt aatacatg 118

<210> 85

<211> 386

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 85

gegggateeg gtggegagg eteggacatt gagetgacee aateteeate aateatgtet 60 geateteeag gggagaaggt eaceatgace tgeagtgeea geteaagtgt aagttacatg 120 caetggtace ageagaagte aggeacetee eecaaaagat ggatttatga eacateeaaa 180 etggettetg gagteeete tegetteagt ggeagtggt etgggacete ttaetetete 240 acaateagea geatggage tgaagatget geeacttatt aetgeeagea gtggagtagt 300 aaceeaceea egtteggagg geggaceaag etggaactga aaegggeege egageeeaaa 360 teteetgaca aaaeteaeae gtggeg

⟨220⟩

<223> Description of Artificial Sequense: Synthetic DNA

(400) 86

gcgggatccg gtggcggagg ctcggacatt gagctgaccc aatctccatc aatcatgtct 60 gcatctccag gggagaaggt caccatgacc tgcagtgcca gctcaagtg 109

<210> 87

⟨211⟩ 111

<212> DNA

<213> Artificial Sequence

<210> 86

<211> 109

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 87
gcagggactc cagaagccag tttggatgtg tcataaatcc atcttttggg ggaggtgcct 60
gacttctgct ggtaccagtg catgtaactt acacttgagc tggcactgca g
                                                                   111
<210> 88
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 88
ctggcttctg gagtccctgc tcgcttcagt ggcagtgggt ctgggacctc ttactctctc 60
acaatcagca gcatggaggc tgaagatgct gccacttatt actgccagca gtgg
                                                                   114
<210> 89
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 89
cgccacgtgt gagttttgtc aggagatttg ggctcggcgg cccgtttcag ttccagcttg 60
```

114

gtccgccctc cgaacgtggg tgggttacta ctccactgct ggcagtaata agtg

<211> 399

<212> DNA

<213> Artificial Sequence

(220)

<223> Description of Artificial Sequense: Synthetic DNA

<400> 90

gcgggatccg gtggcggagg ctcggacatt gagctgaccc aatctccatc aatcatgtct 60 gcatctccag gggagaaggt caccatgacc tgcagtgcca gctcaagtgt aagttacatg 120 cactggtacc agcagaagtc aggcacctcc cccaaaagat ggatttatga cacatccaaa 180 ctggcttctg gagtccctgc tcgcttcagt ggcagtgggt ctgggacctc ttactctctc 240 acaatcagca gcatggaggc tgaagatgct gccacttatt actgccagca gtggagtagt 300 aacccaccca cgttcggagg gcggaccaag ctggaactga aacgggccgc cggtggcgga 360 ggcagcggag gcggtggtag cggtggcgga actagtgcg 399

<210> 91

<211> 127

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 91

cgcactagtt ccgccaccgc taccaccgcc tccgctgcct ccgccaccgg cggcccgttt 60 cagttccage ttggtccgcc ctccgaacgt gggtgggtta ctactccact gctggcagta 120 ataagtg

79/92

<211> 812

<212> DNA

<213> Artificial Sequence

(220)

<223> Description of Artificial Sequense: Synthetic DNA

<400> 92

tttactagtg gtggcggagg cagcggaggc ggtggtagcc aggttcagtt gcagcagtct 60 gacgctgagt tggtgaaacc tggggcttca gtgaagattt cctgcaaggc ttctggctac 120 accttcactg accatgcaat tcactgggtg aaacagaacc ctgaacaggg cctggaatgg 180 attggatatt tttctcccgg aaatgatgat tttaaataca atgagaggtt caagggcaag 240 gccacactga ctgcagacaa atcctccagc actgcctacg tgcagctcaa cagcctgaca 300 tctgaggatt ctgcagtgta tttctgtacc agatccctga atatggccta ctggggtcaa 360 ggaacctcag tcaccgtctc ctcaggtggc ggaggcagcg gaggcggtgg ctccggaggc 420 ggaggetegg acattgtgat gteacagtet ceatecteec tacetgtgte agttggegag 480 aaggttactt tgagctgcaa gtccagtcag agccttttat atagtggtaa tcaaaagaac 540 tacttggcct ggtaccagca gaaaccaggg cagtctccta aactgctgat ttactgggca 600 tccgctaggg aatctggggt ccctgatcgc ttcacaggca gtggatctgg gacagatttc 660 acteteteca teageagtgt gaagaetgaa gaeetggeag tttattaetg teageagtat 720 tatagctatc ccctcacgtt cggtgctggg accaagctgg tgctgaaacg ggccgccgag 780 812 cccaaatete etgacaaaac teacaegtge ec

```
<210> 93
 <211> 64
<212> DNA
<213> Artificial Sequence
(220)
<223> Description of Artificial Sequense: Synthetic DNA
<400> 93
tttactagtg gtggcggagg cagcggaggc ggtggtagcc aggttcagtt gcagcagtct 60
gacg
                                                                     64
<210> 94
⟨211⟩ 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
⟨400⟩ 94
gggcacgtgt gagttttgtc agg
                                                                    23
<210> 95
<211> 817
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequense: Synthetic DNA
<400> 95
cttcctgtca gtaactaccg gtgtccactc ccaggttcag ttgcagcagt ctgacgctga 60
```

gttggtgaaa cctggggctt cagtgaagat ttcctgcaag gcttctggct acaccttcac_120 tgaccatgca attcactggg tgaaacagaa ccctgaacag ggcctggaat ggattggata 180 tttttctccc ggaaatgatg attttaaata caatgagagg ttcaagggca aggccacact 240 gactgcagac aaatcctcca gcactgccta cgtgcagctc aacagcctga catctgagga 300 ttctgcagtg tatttctgta ccagatccct gaatatggcc tactggggtc aaggaacctc 360 agtcaccgtc tectcaggtg geggaggcag eggaggeggt ggetceggag geggaggete 420 ggacattgtg atgtcacagt ctccatcctc cctacctgtg tcagttggcg agaaggttac 480 tttgagctgc aagtccagtc agagcctttt atatagtggt aatcaaaaga actacttggc 540 ctggtaccag cagaaaccag ggcagtctcc taaactgctg atttactggg catccgctag 600 ggaatctggg gtccctgatc gcttcacagg cagtggatct gggacagatt tcactctctc 660 catcagcagt gtgaagactg aagacctggc agtttattac tgtcagcagt attatagcta 720 teceetcaeg tteggtgetg ggaccaaget ggtgetgaaa egggeegeeg gtggeggagg 780 817 cagcggaggc ggtggtagcg gtggcggaac tagtaaa

<210> 96

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 96 cttcctgtca gtaactaccg gtgtccactc ccaggttcag

<211> 85

<212> DNA

<213> Artificial Sequence

⟨220⟩

<223> Description of Artificial Sequense: Synthetic DNA

<400> 97

tttactagtt ccgccaccgc taccaccgcc tccgctgcct ccgccaccgg cggcccgttt 60

cagcaccagc ttggtcccag caccg

85

<210> 98

<211> 806

<212> DNA

<213> Artificial Sequence

₹220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 98

tttactagtg gtggcgagg cagcggaggc ggtggtagcc aggtccaact gcaggagtca 60 ggaggaggct tagtgcagcc tggagggtcc ctgaaactct cctgtgcagc ctctggattc 120 actttcagta gctatggcat gtcttgggtt cgccagactc cagacaagag gctggagttg 180 gtcgcaacca ttaatagtaa tggtggtagc acctattatc cagacagtgt gaagggccga 240 ttcaccatct ccagagacaa tgccaagaac accctgtacc tgcaaatgag cagtctgaag 300 tctgaggaca cagccatgta ttactgtgca agagatcggg atggttacga cgagggattt 360 gactactggg gcccagggac caccggtcacc gtctcctcag gtggcggagg cagcggaggc 420

<210> 99

<211> 65

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequense: Synthetic DNA

<400> 99

tttactagtg gtggcggagg cagcggaggc ggtggtagcc aggtccaact gcaggagtca 60

ggagg 65

<210> 100

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence : Synthetic DNA

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence : Synthetic DNA

<400> 101

ggcgggatcc tcacagggca atgatcccaa agtagacct

39

<210> 102

<211> 99

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence : Synthetic DNA

<400> 102

aacaacggaa ttcgacccac ggctccaccc tctctcccct ggaaaggaca ccatgagcac 60

tgaaagcatg atccgggacg tggagctggc cgaggaggc

99

<210> 103

<211> 99

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence : Synthetic DNA

(400) 103											
tgccacgatc aggaaggaga agaggctgag gaacaagcac cgcctggagc cctggggccc	60										
ccctgtcttc ttggggagcg cctcctcggc cagctccac	99										
<210> 104											
<211> 99 <212> DNA											
<213> Artificial Sequence											
<220>											
<223> Description of Artificial Sequence : Synthetic DNA											
<400> 104											
teteetteet gategtggea ggegeeacea egetettetg eetgetgeae tttggagtga	60										
teggececa gagggaagag tteecaggg acetetete	99										
toggeocood gagggaagag voocoaggg account	00										
<210> 105											
<211> 63											
(212) DNA											
<213> Artificial Sequence											
(220)											
<223> Description of Artificial Sequence : Synthetic DNA											
<400> 105	0.0										
ttggctacaa catgtgctac tgcctgggcc agagggctga ttagagagag gtccctgggg	60										
aac	63										
· .											
<210> 106											
<211> 20 <212> DNA											
(212) Artificial Seguence											

```
<220>
<223> Description of Artificial Sequence : Synthetic DNA
<400> 106
                                                                    20
aacaacggaa ttcgacccac
<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence : Synthetic DNA
<400> 107
                                                                    20
ttggctacaa catgtgctac
<210> 108
<211> 717
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (46)..(708)
<400> 108
gaattegace caeggeteea ceetetetee eetggaaagg acaee atg age act gaa 57
                                                   Met Ser Thr Glu
                                                     1
age atg atc cgg gac gtg gag ctg gcc gag gag gcg ctc ccc aag aag
                                                                    105
Ser Met Ile Arg Asp Val Glu Leu Ala Glu Glu Ala Leu Pro Lys Lys
  5
                     10
                                          15
                                                              20
```

								cgg								153
Thr	Gly	Gly	Pro	G1n 25	Gly	Ser	Arg	Arg	Cys 30	Leu	Phe	Leu	Ser	Leu 35	Phe	
tcc	ttc	ctg	atc	gtg	gca	ggc	gcc	acc	acg	ctc	ttc	tgc	ctg	ctg	cac	201
Ser	Phe	Leu	Ile 40	Val	Ala	Gly	Ala	Thr 45	Thr	Leu	Phe	Cys	Leu 50	Leu	His	
ttt	gga	gtg	atc	ggc	ccc	cag	agg	gaa	gag	ttc	ссс	agg	gac	ctc	tct	249
Phe	Gly	Val 55	Ile	Gly.	Pro	Gln	Arg 60	Glu	Glu	Phe	Pro	Arg 65	Asp	Leu	Ser	
cta	atc	agc	cct	ctg	gcc	cag	gca	gta	gca	cat	gtt	gta	gca	aac	cct	297
Leu	Ile 70	Ser	Pro	Leu	Ala	Gln 75	Ala	Val	Ala	His	Val 80	Val	Ala	Asn	Pro	
caa	gct	gag	ggg	cag	ctc	cag	tgg	ctg	aac	cgc	cgg	gcc	aat	gcc	ctc	345
	Ala	Glu	Gly	Gln		Gln	Trp	Leu	Asn		Arg	Ala	Asn	Ala		
85					90					95					100	
								gat								393
Leu	Ala	Asn	Gly	Va.1 105	Ģlu	Leu	Arg	Asp	Asn 110	Gln	Leu	'Val	Val	Pro 115	Ser	
gag	ggc	ctg	tac	ctc	atc	tac	tcc	cag	gtc	ctc	ttc	aag	ggc	caa	ggc	441
Glu	Gly	Leu			Ile	Tyr	Ser	Gln				Lys		Gln	Gly	
	•		120					125					130		•	
								acc								489
Cys	Pro		Thr	His	Val	Leu		Thr	His	Thr	Ile	_	Arg	Ile	Ala	
		135					140					145				
gtc	tcc	tac	cag	acc.	aag	gtc	aac	ctc	ctc	tct	gcc	atc	aag	agc	ccc	537
Val		Tyr	Gln	Thr	Lys		Asn	Leu	Leu	Ser		Ile	Lys	Ser	Pro	
	150					155					160					
				•											gag	585
Cys	Gln	Arg	Glu	Thr	Pro	Glu	Gly	Ala	Glu	Ala	Lys.	Pro	Trp	Tyr	Glu	

ccc atc tat ctg gga ggg gtc ttc cag ctg gag aag ggt gac cga ctc 633
Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu
185 190 195

agc gct gag atc aat cgg ccc gac tat ctc gac ttt gcc gag tct ggg 681 Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly 200 205 210

cag gtc tac ttt ggg atc att gcc ctg tgaggatcc 717
Gln Val Tyr Phe Gly Ile Ile Ala Leu
215 220

<210> 109

<211> 221

<212> PRT

<213> Homo sapiens

<400> 109

Met Ser Thr Glu Ser Met Ile Arg Asp Val Glu Leu Ala Glu Glu Ala 1 5 10 15

Leu Pro Lys Lys Thr Gly Gly Pro Gln Gly Ser Arg Arg Cys Leu Phe
20 25 30

Leu Ser Leu Phe Ser Phe Leu Ile Val Ala Gly Ala Thr Thr Leu Phe 35 40 45

Cys Leu Leu His Phe Gly Val Ile Gly Pro Gln Arg Glu Glu Phe Pro 50 55 60

Arg Asp Leu Ser Leu Ile Ser Pro Leu Ala Gln Ala Val Ala His Val 65 70 75 80

Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg 85 90 95 Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu 100 105 110

Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe 115 120 125

Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile 130 135 140

Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala 145 150 155 160

Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys 165 170 175

Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys 180 185 190

Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
195 200 205

Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu 210 215 220

<210> 110

<211> 383

<212> DNA

<213> Cricetulus griseus

<400> 110

gttaactggg gctcttttaa accctgaatt tttctaaatc cccacctcca agagtttggt 60 ttaaactgat ttttttaatg aatacctttt gaagaataga gcattgtctc atcatgcaaa 120 gcttctcagg gattcagcta gcatgttgaa gaaacataag ggtgttaaat tgtttgtcac 180 aagtgetgaa taaatattga egtagtette agetatteta taetggaagt agatgatatt 240 eteattggaa attetgttag gaagtaacee ttettgtett ettacetgea tagaateeea 300 ggatataaaa ettgtgettg tegeeettge eattgtetet eaetggtgge etttattgea 360 teteatatet geettetett tee 383

<210> 111

<211> 564

<212> DNA

<213> Cricetulus griseus

<400> 111

taagaattcc tgtgcccagc tgtatgtgag gctctctgca ggtgtaggga tgtttctgct 60

ttctttctgc acatgcttca cagctgaagt cctttgggtg tgagattgac attcagatag 120

actaaagtga ctggacttgt tgggaaacat actgtatgca ttattgccgt tgcctccagg 180

tgaaattaac acctcattca ccaatccctg ttcatccaaa ctttctaccc acatcacttt 240

aaatagaaat tagacccaat atgactcctt ttttcctaag ctgtttatag agattgtgct 300

ggagcagtga gcttttgtgt ttgtttgttt gttttgtaat tttccccatg aaaattctc 360

taaactcaaa cctaagaggg aaaaaaaaaa aacagactta tatgtgccac acttgtaaaa 420

aaaaatcatg aaagatgtat atgatattt taaacagttt gaatattaag atcacaattt 480

ctattttaaa aacaatcttg ttttacatat caatcaccca attcccttgc cttcccatcc 540

tcccattccc cccactgatc cccc

<210> 112

<211> 120

- <212> DNA
- <213> Cricetulus griseus
- <400> 112

atgaatgttc attcttggg tatatgccca agagtagaat tgctaaatat tgaggtagac 60 tgattcccat tttcttgagg agtcgccata ttgatttcca aagtgactgt acaagttaac 120

- <210> 113
- (211) 274
- <212> DNA
- <213> Cricetulus griseus
- <400> 113

aggcactagg taaatattt tgaagaaaga atgagtatct cctatttcag aaaaactttt 60
attgacttaa atttaggata tcagaattag aaaacagtaa aaatttatag gagagtttt 120
aatgaatgtt attttaaggt tccatacaaa tagtaattaa aacttacaca aactatttgt 180
agtaatgatt cagtctggta taccctgatg agcattatac acttttaaat tctttttgta 240
aatttttta ttagttcaaa ttaggaacaa gctt