Zakrevsky Al
A 18092024-150526

Задан двухполюсник на рисунке 1, причём R1 = 40.55 Om.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.455	-145.3	20.384	94.7	0.026	56.0	0.358	-67.2
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0
5.6	0.498	153.6	5.025	44.1	0.081	50.8	0.188	-123.0
6.3	0.510	145.9	4.487	37.2	0.091	46.4	0.174	-134.3
7.4	0.537	134.7	3.753	26.6	0.105	41.6	0.131	-154.6

и частоты $f_{\scriptscriptstyle \rm H}=1.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=7.4$ $\Gamma\Gamma$ ц.

 ${\bf Ha\ddot{u}ru}$ обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

1) 3.4 дБ 2) 5.4 дБ 3) 10.8 дБ 4) 6.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
3.5	0.365	158.0	3.758	58.1	0.111	58.2	0.163	-103.4
4.0	0.371	152.2	3.283	53.0	0.125	55.3	0.157	-109.8
4.5	0.379	147.5	2.921	48.2	0.140	52.2	0.148	-115.5
5.0	0.383	143.2	2.635	43.5	0.154	49.0	0.137	-121.4
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
6.0	0.396	133.6	2.210	33.9	0.181	42.4	0.105	-136.2
6.5	0.409	128.1	2.044	29.2	0.194	39.0	0.089	-150.0
7.0	0.424	122.5	1.897	24.3	0.206	35.6	0.075	-168.1
7.5	0.446	118.4	1.769	19.8	0.219	32.2	0.072	166.7
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

и частоты $f_{\scriptscriptstyle \rm H}=5.0$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=6.5$ $\Gamma\Gamma$ ц.

Найти модуль $s_{21}\,$ в дБ на частоте $f_{\scriptscriptstyle \rm B}\,$.

Варианты ОТВЕТА:

- 1) -7.8 дБ
- 2) 6.2 дБ
- 3) -14.2 дБ
- 4) -21.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.7	0.567	142.5	3.523	56.9	0.079	54.1	0.250	-52.6
1.8	0.572	139.6	3.324	54.4	0.083	53.4	0.246	-54.4
1.9	0.575	136.6	3.146	52.1	0.087	52.6	0.244	-56.1
2.0	0.582	133.5	2.973	49.7	0.090	51.7	0.243	-58.1
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.239	-60.3
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.3	0.601	125.8	2.587	42.9	0.102	49.3	0.234	-64.8
2.4	0.608	123.1	2.474	40.6	0.105	48.4	0.232	-67.2
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.6	0.628	118.4	2.269	36.2	0.112	46.6	0.226	-72.1
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8

и частоты $f_{\mbox{\tiny H}}=2.0$ ГГц, $f_{\mbox{\tiny B}}=2.6$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 3.

Рисунок 3 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 2.3 дБ 2) 1.2 дБ 3) 4.2 дБ 4) 1.5 дБ

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=0.36+2.33\mathrm{i}$.

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 5), соответствующую s_{11} на частоте 4.0 ГГц.

Рисунок 5 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D