

Model Development Phase Template

Date	09 JULY 2024
Team ID	739734
Project Title	Evolving efficient classification patterns in Lymphography
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
y_pred = svr.predict(x_test)
print("Prediction Evaluation using SVR Regression")
print('Mean Absolute Error:', mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, y_pred)))
print('R-squared:', r2_score(y_test, y_pred))

y_pred = lassoReg.predict(x_test)
print("Prediction Evaluation using lasso Regression")
print("Mean Absolute Error:', mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', mean_squared_error(y_test, y_pred)))
print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, y_pred)))
print('R-squared:', r2_score(y_test, y_pred))
```

```
# Assuming 'x_test' is available in the environment and is a pandas DataFrame or a NumPy array.
y_pred = linReg.predict(x_test) # Predict on the entire x_test dataset

print("Prediction Evaluation using Linear Regression")
print('Mean Absolute Error:', mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, y_pred)))

y_pred = dt.predict(x_test)
print("Prediction Evaluation using Random Regression")
print('Mean Absolute Error:', mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, y_pred)))
print('R-squared:', r2_score(y_test, y_pred))
```

Model Validation and Evaluation Report:

