Peer Landing Project

Stage 2 - Data Understanding/Data Preparation Group C

In this stage of the project, we performed EDA, cleaned the data, filtered rows (loans) and columns (attributes), got a better understanding of the attributes that might have prediction power to our model, and calculated the realized return we believe is true. After this stage, we will start examining the different models.

The steps we took:

1. **Binding** the quarters into 2 tables, one for 2018 and one for 2019.

2. Cleaning the data by rows (e.g attributes):

a.

<u>Loan Status</u> - There are 8 categories (7+NA) and most of the loans are Charged off, Fully Paid, or Current. We decided to keep only loans that have ended - Charged off and Fully Paid since for ongoing loans we can't know what will happen in the future so we can't rely on these loans for our model.

h.

<u>Loan Term</u> - There are 2 options for this attribute, 36 months and 60 months, where around 80% of the loans are for 36 months. we decided to keep only loans for 36 months for two reasons :

- the loans originated in 2016 therefore loans for 60 months are still current in our data
- The population behavior can vary between the two loan terms so even loans that have ended (e.g. prepaid) cannot be trusted.

c.

<u>Application Term</u>- that column indicates whether the loan is an individual application or a joint application with two co-borrowers. We decided to keep only the loans of individual applications since the number of co-borrowers is negligent and the population behavior might vary.

3. **Dealing with N/A**

We checked the fraction of N/A for every column and have decided on a threshold of 40%, which means any attribute with more than 40% of N/A will be dropped. The threshold was decided according to the first "big gap" we noticed in the NA percentage. The remaining columns containing missing values will be dealt with in the modeling stage. Using this criterion, we removed <u>44 columns</u> (the columns are specified in appendix 1). When we will move forward to the modeling stage, we will use a more elaborate way to replace the missing values such as KNN for categorical attributes and Linear regression for numeric attributes.

4. <u>Creating realized return column</u>

To do so we parsed the relevant date columns and checked which columns are contained in the total payment column. it seems that the "Collection recovery fee" is not in the total payment so we added it to our calculation.

We will make a few assumptions to calculate the expected return:

- All payments are equal, each of $\frac{p}{m}$, are made in each of the m periods
- Each payment is immediately reinvested at a rate of i (e.g. 2%)

Define:

- f the full amount invested in a loan
- p full amount recovered from the loan (payments + recoveries)
- t nominal duration of the loan in months
- m actual duration of the loan from first to last payments
- i interest reinvested rate

We will sum up the geometric series of loan repayments, subtract the original loan and divide by the original loan amount. To get the expected annual return we will multiply by 12/t.

5. Cleaning the data by columns

a. Unique value

We looked for columns that have the same value in more than 90% of the loans, which means that this column won't have any power for prediction, in this stage, we dropped <u>17 columns</u> (See Appendix 1.1).

b. Leakage

We compared the snapshots of 2018 and 2019 to discover changes between the columns' values. This is an important step since changed values might indicate attribute leakage, hence, the values in the columns are not necessarily the values submitted during the time the loan was taken and we can't "trust" them. These attributes might be problematic for our prediction which occurs at the time of a loan. We carefully examined their description and removed changed and irrelevant attributes. We kept "total_pymnt" and "collection_recovery_fee", since we used them to calculate realized return and we want to check their correlation with all features. In This stage, we dropped <u>9 columns</u> (See Appendix 1).

c. Irrelevant

After filtering columns by the code, we went through the attributes manually and checked for their relevance to our model - we've decided to drop 24 columns (See Appendix 1.1).

From this point there is no need for the 2018 snapshot of the loans, we will keep cleaning and exploring the 2019 version.

6. **Correlation:**

We started by checking the correlation (spearman and Pearson) of attributes with our main attribute realized return and the attributes used to calculate it - total_pymnt, collection_recovery_fee, and funded_amnt. For better visualization, we split our data into 3 sub-matrices and produced a heatmap for each one with our relevant attributes (See Appendix 2 - Correlation Graphs - 2.4+2.5).

It is hard to make decisions regarding what variables to drop based on the plots, however, it seems that no attribute has a strong linear correlation with realized return, That might suggest we should use a non-linear

model and therefore we will not drop attributes based on that (yet). There are few attributes with better spearman correlation with the realized return but also quite small

From the heatmaps, we saw that some attributes have strong linear correlation between each other (not the "main" attributes), this might suggest that one of every pair is redundant. However, we will not drop them now, instead we will create a table with every feachers combination and use it during feature selection in the modeling stage. Some of the attributes will be dropped based on that or based on a feature selection metric (e.g. forward selection), alternately we will consider creating new variables based on attributes with strong correlation to maximize our benefit from them.

After checking both linear and non-linear correlation of all attributes with our main features, we decided to remove all attributes that have less than 0.07 absolute correlation, both Pearson and spearman.

We set 0.07 as the threshold because we saw that attributes that have a higher correlation might be useful for our model based on their description

In this stage, we dropped 7 columns (See Appendix 1.1).

7. <u>EDA</u>

<u>Appendix 2.7 -</u> We can see that most of the loans have realized returns between 0.01 to 0.1. The loans with negative returns distribute almost equally approximately between -0.2 to -0.23.

<u>Appendix 2.8 - It seems that all Fully Paid loans have positive returns which increase with the grade. We can see that are charged off loans with a positive return in every grade.</u>

<u>Appendix 2.9 -</u> All possible purposes have approximately the same mean return besides wedding with a much higher return. It's unclear what is the reason for that, we will look into it further on.

In total - at this stage we removed 101 attributs.

We added 2 attributes - duration and realized return and therefore we have 51 columns for now (Appendix 1.2)

Appendix

Appendix 1:

• 1.1 Columns dropped

Column name	Reason
annual_inc_joint	NA -44
desc	
dti_joint	
member_id	
mths_since_last_delinq	
mths_since_last_major_derog	
mths_since_last_record	
mths_since_recent_bc_dlq	
mths_since_recent_revol_delinq	
next_pymnt_d	
verified_status_joint	
revol_bal_joint	
sec_app_fico_range_low	
sec_app_fico_range_high	
sec_app_earliest_cr_line	
sec_app_inq_last_6mths	
sec_app_mort_acc	
sec_app_open_acc	
sec_app_revol_util	
sec_app_open_act_il	
sec_app_num_rev_accts	
sec_app_chargeoff_within_12_mths	
sec_app_collections_12_mths_ex_med	
sec_app_mths_since_last_major_derog	
hardship_type	
hardship_reason	
hardship_status	
deferral_term	
hardship_amount	
hardship_start_date	
hardship_end_date	
payment_plan_start_date	
hardship_length	
hardship_dpd	
hardship_loan_status	
orig_projected_additional_accrued_interest	
hardship_payoff_balance_amount	
hardship_last_payment_amount	
debt_settlement_flag_date	
settlement_status	
settlement_date	
settlement_amount	
settlement_percentage	
settlement_term	

	T
pymnt_plan	Unique - 17
term	
out_prncp	
out_prncp_inv	
total_rec_late_fee	
collections_12_mths_ex_med	
policy_code	
application_type	
acc_now_delinq	
chargeoff_within_12_mths	
delinq_amnt	
num_tl_120dpd_2m	
num_tl_30dpd	
num_tl_90g_dpd_24m	
tax_liens	
hardship_flag	
debt_settlement_flag	
<u></u>	
recoveries	Leakage - 9
last_pymnt_amnt	
last_pymnt_d	
total_rec_prncp	
total_rec_int	
last_fico_range_high	
last_fico_range_low	
total_pymnt_inv	
last_credit_pull_d	
acc_open_past_24mt,	Irrelevant -24
earliest_cr_line	
funded_amnt_inv	
inq_last_12m	
issue_d	
mo_sin_old_il_acct	
mo_sin_old_rev_tl_op	
mo_sin_rcnt_tl_op	
mo_sin_rcnt_tl	
mths_since_rcnt_il	
mths_since_recent_bc	
mths_since_recent_inq	
num_actv_rev_tl	
num_tl_op_past_12m	
open_acc_6m	
open_il_12m	
open_il_24m	
open_rv_12m	
open_rv_24m	
title	
total_acc	
url	
zip_code	
inq_last_6mths	
mq_rast_officia	<u>l</u>

delinq_2yrs	Correlation -7
pub_rec	
open_act_il	
inq_fi	
total_cu_t	
num_accts_ever_120_pdl	
num_il_tl	

• 1.2 – Columns kept:

```
id
loan_amnt
funded_amnt
int_rate
installment
grade
sub_grade
emp_title
emp_length
home_ownership
annual_inc
verification_status
loan_status
purpose
addr_state
dti
fico_range_low
fico_range_high
open_acc
revol_bal
revol_util
initial_list_status
total_pymnt
collection_recovery_fee
tot_coll_amt
tot_cur_bal
total_bal_il
il_util
max_bal_bc
all_util
total_rev_hi_lim
avg_cur_bal
bc_open_to_buy
bc_util
mort_acc
num_actv_bc_tl
num_bc_sats
num_bc_tl
num_op_rev_tl
num_rev_accts
num_rev_tl_bal_gt_0
```

num_sats
pct_tl_nvr_dlq
percent_bc_gt_75
pub_rec_bankruptcies
tot_hi_cred_lim
total_bal_ex_mort
total_bc_limit
total_il_high_credit_limit
duration
realized_return

Appendix 2 - Graphs & visual examples

2.1 The "big step" of NA fraction

Name <chr></chr>	Missing_frac <dbl></dbl>
settlement_percentage	96.827693
settlement_term	96.827693
mths_since_last_record	80.328136
mths_since_recent_bc_dlq	74.329613
mths_since_last_major_derog	70.646517
mths_since_recent_revol_delinq	63.608239
mths_since_last_delinq	47.174711
il_util	13.932258
mths_since_recent_inq	10.304062
emp_title	7.242667

• 2.2 Distribution of loan status

• 2.3 Distribution of loan term

Correlation Graphs (2 of 6- only for example)

• 2.4 Spearman

• 2.5 Pearson

2.6 Example for the correlation between main variables to all variablels

Var1 <fctr></fctr>	Var2 <fctr></fctr>	pearson <dbl></dbl>	spearman «dbl»	/ a
tot_cur_bal	realized_return	0.037	-0.041	
open_act_il	realized_return	-0.005	0.004	
total_bal_il	realized_return	0.000	-0.001	
il_util	realized_return	-0.035	0.026	
max_bal_bc	realized_return	0.029	-0.014	
inq_fi	realized_return	-0.041	0.003	
total_cu_tl	realized_return	-0.008	-0.029	
avg_cur_bal	realized_return	0.040	-0.031	
mort_acc	realized_return	0.042	-0.048	
num_accts_ever_120_pd	realized_return	0.003	0.034	
71-80 of 92 rows		Previ	ious 1 5 6	5 7 8 9 10 Next

2.7

2.8

Distrabution of Realized return by loan status and grade

• 2.9 Mean Return by Purpose-

