Topic I. Similarity Measure (相似度量測)

2.0 Computer Vision (CV) and AI: Similarity Measure= Loss Function 2.1~2.3

National Cheng Kung University
Dept. of Computer Science and Information Engineering
Robotics Lab.

國立成功大學資訊工程系機器人實驗室

(Jenn-Jier James Lien / 連震杰)
http://robotics.csie.ncku.edu.tw
jjlien@csie.ncku.edu.tw

指導老師:連震杰教授

學 生: 簡佑軒

2022/10/17

Content: Topic1. Similarity Measure (相似度量測)

- 1.0 Computer Vision Camera Model: Between 3D and 2D
 - 1.1 2D Image
 - 1.2 Camera Model Btw 3D Object and 2D Image
 - 1.3 From Linear Combination to Homography Ax=b (Vector, Matrix)
- 2.0 Computer Vision (CV) and AI: Similarity Measure = Loss Function
 - 2.1 Sum-of-Squared Differences (SSD) and Mean Squared Error (MSE)
 - 2.2 Normalized Correlation Coefficient (NCC) and Cross Entropy (CE)
 - 2.3 Al Bayesian Decision Rule Maximum a Posteriori (MAP) Probability with Gaussian Model
- 3.0 Image Processing for Deep Learning: Filter, Correlation and Convolution
 - 3.1 Low-Pass Filter Denoise and High-Pass Filter Edge Detection
 - 3.2 Correlation Vs. Convolution
 - 3.3 Multi-Resolution Downsampling (Encoder) and Upsampling (Decoder)

2.1 Sum-of-Squared Differences (SSD) and Mean Squared Error (MSE)

2.1-1 Template Matching: Goal and Theory

Goal

In this tutorial you will learn how to:

- Use the OpenCV function matchTemplate to search for matches between an image patch and an input image
- Use the OpenCV function minMaxLoc to find the maximum and minimum values (as well as their positions) in a given array.
 Location/position

Theory

What is template matching?

Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch).

Template Matching = Similarity Measure

2.1-1 Template Matching: Definition (1/3)

♦ How does it work? Match procedure:

- 1. Template Image and Source Image Collection: We need two primary components-
 - 1) Source image (I): The image in which we expect to find a match to the template image
 - 2) Template image (T): The patch image which will be compared to the template image

source image

template image

the matching region

2.1-1 Template Matching: Definition (2/3)

Template matching as convolution

♦ How does it work?

- 2. Template Search Sliding along Scanline:
 - To identify the matching area, we have to compare the template image against the source image by sliding it:

Source Image

Template (patch)

Compare the template image against the source image by sliding it.

Compare the template image against the source image by sliding it.

- By sliding (scanline): we mean moving the patch one pixel (called stride 1 pixel) at a time (left to right, up to down). At each location, a metrics is calculated so it represents how "good" or "bad" the match at that location is (or how similar the patch is to that particular area of the source image).

2.1-1 Template Matching: Definition (3/3)

3. Matching Metrics Matrix Image R Creation:

- For each location of T over I, you store the metrics in the result matrix (R). Each location (x,y) in R contains the match metric:

R(x,y): The brightest location = the best matching location:

- Top-left corner of T, or
- Center of T 越白越matching
- The image is the result **R** of sliding the patch with a metric.
- The brightest locations indicate the best matching location.

4. Matching Location Decision:

- As you can see, the location marked by the red circle is probably the one with the best matching value, so that location (the rectangle formed by that point as a corner and width and height equal to the patch image) is considered the match.

2.1-1 Template Matching: Definition ??

Image尺寸為W x H

Template尺寸為w x h

Output Image尺寸將為W-w+1,H-h+1

If 想獲得計算後輸出的相似度矩陣與 掃描之原圖具有相同尺寸,須在欲掃 描的原圖**四周圍以0 Padding**

四周填滿0的 image

6 x 6 image

2.1-2 Match Metric: SSD and MSE – SSD

1. SSD: Sum-of-Squared Differences

數值越大相似度越小 度越高

- OpenCV implements template matching in the function matchTemplate:
- 1.1 CV TM SQDIFF: Sum-of-Squared-Differences (SSD)

$$\min R(x,y) = \sum_{\substack{x',y' \in w \\ x',y' \in w \\ \text{window w}}} (T(x',y') - I(x+x',y+y'))^2 \quad \text{Window } w(x',y') \\ \text{Slide/shift/stide (x,y) over entire source image} \\ w(x',y'): x' \in 0^{\sim}(w'-1), \\ window w \qquad y' \in 0^{\sim}(h'-1)$$

$$\min R(x,y) = \sum_{x'=0}^{h'-1} \sum_{y'=0}^{w'-1} [(T(x',y')) - I(x+x',y+y')]^2 \quad \text{Window } w(x',y') \\ \text{Slide/shift/stide (x,y) over entire source image}$$

1.2 CV TM SQDIFF NORMED: Normalized Sum-of-Squared Differences

$$\min R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$
最佳匹配在結果為0處

目的是為了減少 光照的影響 m: Mean or average value

1.3 SQDIFF_NORMED – Normalized by Gaussian Model (Variance) 光線 $\sum_{y'=0}^{h'-1}\sum_{x'=0}^{w'-1}[(T(x',y')-m^T)-I(x+x',y+y')-m^I)]$ 把絕對的關係變成相對的關係

min R(x, y) = - $\sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y')-m^T)]^2} \sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(I(x+x',y+y')-m^I)]^2}$ σ^2 : Standard deviation

2.1-2 Match Metric: SSD and MSE – MSE

2. MSE: Mean Squared Error

Loss Function:

$$L_b = 1/N * \sum_{n=1}^{N} \left\{ \sum_{x'=0}^{h'-1} \sum_{y'=0}^{w'-1} [T(x',y') - I(x',y')]^{-2} \right\}$$

$$= 1/N * \sum_{n=1}^{N} \left\{ \sum_{u=0}^{h} \sum_{v=0}^{-1} [y(u,v) - y'(u,v)]^{-2} \right\}$$

$$b: b-th \ batch \qquad y: \text{Ground} \qquad y': \text{Prediction or}$$

$$N: \text{Total number of} \qquad \text{truth values} \qquad \text{estimation values}$$
images or Batch size

In DL data分成多batch,除以batch size

2.1-2 Match Metric: MSE Vs. CE – Loss Function

3. Loss Function at Deep Learning – 1) MSE and 2) Cross Entropy

1) Mean Square Error: for continuous data, like detection Bounding Box (Bbox)

$$L_b = 1/N * \sum_{n=1}^{N} \{ \sum_{i=0}^{9} (y_i - y_i)^2 \}$$

2) Cross Entropy: for discrete data, like classification

$$L_b = \sum_{i=0}^{9} \{y_i \ln y_i'\}, \text{ or } L_b = L_{b1} + L_{b2} = \sum_{i=0}^{9} \{y_i \ln y_i'\}, \text{ if } y_i = 1$$

$$L_{b2} = -\sum_{i=0}^{9} \{(1 - y_i) \ln y_i'\}, \text{ Otherwise } (y_i = 0)$$

- Before, have Softmax for normalizing all output values, so don't need 1/N
- Because v is prob. $0.0^{\sim}1.0$, so log v will be -, therefore - = +

Why not L1 | | why L2 Or Smooth L1

Continuous, can

optimize by derivative

Not continuous,

cannot derivative

Content: Topic1. Similarity Measure (相似度量測)

- 1.0 Computer Vision Camera Model: Between 3D and 2D
 - 1.1 2D Image
 - 1.2 Camera Model Btw 3D Object and 2D Image
 - 1.3 From Linear Combination to Homography Ax=b (Vector, Matrix)
- 2.0 Computer Vision (CV) and AI: Similarity Measure = Loss Function
 - 2.1 Sum-of-Squared Differences (SSD) and Mean Squared Error (MSE)
 - 2.2 Normalized Correlation Coefficient (NCC) and Cross Entropy (CE)
 - 2.3 Al Bayesian Decision Rule Maximum a Posteriori (MAP) Probability with Gaussian Model
- 3.0 Image Processing for Deep Learning: Filter, Correlation and Convolution
 - 3.1 Low-Pass Filter Denoise and High-Pass Filter Edge Detection
 - 3.2 Correlation Vs. Convolution
 - 3.3 Multi-Resolution Downsampling (Encoder) and Upsampling (Decoder)

2.2 Normalized Correlation Coefficient (NCC) and Cross Entropy (CE)

2.2-1 From SSD to CC

◆ From sum-of-squared difference (SSD) to cross correlation (CC)

$$\min SSD = \min(T - I)^{2} = \min(T^{2} - 2TI + I^{2})$$

$$\min SSD \rightarrow (T^{2} + I^{2}) - 2(TI)$$

$$\therefore \max CC \rightarrow TI$$

$$T * I$$

→ Cross Correlation

2.2-1 Template Matching + Scanline: NCC (Class Similarity measure: MSD (-), opy (x) for loss function

1. Cross Correlation, R(x, y): The correlation (Linear combination) between two signals (cross correlation) is standard approach to feature detection as well as a component of more sophisticated techniques. Similarity measure: MSD (minus: -), Cross Entropy (product: x)

$$R(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} (T(u,v) \cdot I(x+u,y+v))$$

- Problem: R(x,y) range is not btw 0.0~1.0

←其中內積是取其投影量來求相似度 Inside the product is to take its projection amount to find similarity

←計算的起始位置在左上角

The starting position of the calculation is at the top left corner

OpenCV

-Source image (I, MxM): The image in which we expect to find a match to the template image Template image (T, NxN): The patch image which will be compared to the template image Slide/shift (x, y); Window posited (u, v) EX: 1x9, 2x8, ... 5x5(Max)

> But where is the threshold? So we got the Normalization of cross correlation

2. Normalized Cross Correlation: But the normalized form of correlation (normalized correlation coefficient or unit vector) preferred in template matching does not have a correspondingly simple and efficient frequency domain expression. For this reason normalized cross-correlation has been computed in the spatial domain.空間域

$$R(x,y) = \frac{\sum_{u=0}^{N-1} \sum_{v=0}^{N-1} (T(u,v) \cdot I(x+u,y+v))}{\sqrt{\left[\sum_{u=0}^{N-1} \sum_{v=0}^{N-1} (T(x,y))^2\right] \left[\sum_{u=0}^{N-1} \sum_{v=0}^{N-1} (I(x+u,y+v))^2\right]}}$$

← 沒有減掉mean不是NCC, 只 是整理成同樣的scale Not the NCC, but it's just the same scale.

←結果也是會被環境光影響

← Normalized Unity

-Source image (I, MxM): The image in which we expect to find a match to the template image Template image (T, NxN): The patch image which will be compared to the template image Slide/shift (x, y); Window posited (u, v)

- R(x,y) range is normalized btw -1.0~1.0

$$\cos \theta = \frac{A^T B}{\|\mathbf{A}\| \|\mathbf{B}\|}, 0.0 \le \cos \theta \le 1.0$$

$$\begin{split} \cos\theta &= \frac{A^TB}{\|A\|\|B\|}, 0.0 \leq \cos\theta \leq 1.0\\ \text{similarity} &= \cos(\theta) = \frac{A \cdot B}{|A||B|} = \frac{\sum\limits_{i=1}^n A_i \times B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} \times \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$
產生類似餘

$$\vec{A} \cdot \vec{B} = |A| \cdot |B| \cdot \cos \theta$$
$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|A||B|}$$

Sam

2.2-1 Template Matching + Scanline: NCC (2/2)

- 3. Matric: similarity measure NCC (Normalized Correlation Coefficient)
 - At each location, a metric is calculated so it represents how "good" or "bad" the match at that location is (or how similar)
 - For each location of t over f, we store the metric in the result matrix R. Each location (x, y) in P contains the match matrix:

$$\max R(x,y) = \frac{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y') - m^T) * I(x + x',y + y') - m^I)]^2}{\sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y') - m^T)]^2} \sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(I(x + x',y + y') - m^I)]^2}}$$

←起始點在左上角,由左至右,由上至下 The starting point is in the upper left corner, from left to right, from top to bottom

The image is the result γ of sliding the patch with a metric TM_CCORR_NORMED. The brightest locations indicate the highest matches

4. Matching Result:

- One target per source image: At the image above, the location marked by the red
 circle is probably the one with the highest value, so that the rectangle formed by that
 point as a corner is considered the match.

surrounding goals

2.2-2 Match Metrics: NCC and CE - NCC 9,8,..,6,5,4,...2,1

1. NCC - Normalized Correlation Coefficient:

$$\max_{x',y'} R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))$$
x',y' belong to window w

Deep Learning: 1) MSE

min SSD

max correlation 9*1 = 9

9-1=82) Cross Entropy 5-5=05*5 = 25

1.2 CV TM CCORR NORMED: Normalized Cross Correlation

$$\max R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

OpenCV

-Is NCC a Gaussian Model? Yes, -Is Gaussian model a good model?

Slow → Modify to SSD or MSD Faster, without normalization

→ Batch Normalization

1.3 CV_TM_CCOEFF_NORMED: Normalized Correlation Coefficient (NCC) by

較大的數表示

減少
$$(\sigma_1,\sigma_1^2)$$
 $N2(m_2,\sigma_2)$

$$\max R(x,y) = \frac{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y') - m^T) * I(x + x',y + y') - m^I)]^2}{\sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y') - m^T)]^2} \sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(I(x + x',y + y') - m^I)]^2}}$$

Similar measure btw two Gaussian distributions

m: Mean or average value

 σ^2 : Standard deviation

2.2-2 Match Metrics: NCC and CE - NCC

Opencv 官網所提供NCC作法

TM_CCORR_NORMED

Python: cv.TM_CCORR_NORMED

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

2.2-2 Match Metric: MSE Vs. CE – Loss Function

- 2. CE Cross Entropy
- 3. Loss Function at Deep Learning 1) MSE and 2) Cross Entropy

1) Mean Square Error: for continuous data, like detection Bounding Box (Bbox)

$$L_b = 1/N * \sum_{n=1}^{N} \{ \sum_{i=0}^{9} (y_i - y_i)^2 \}$$

2) Cross Entropy: for discrete data, like classification

$$L_b = \sum_{i=0}^{9} \{y_i \ln y_i'\}, \text{ or } L_b = L_{b1} + L_{b2} = \sum_{i=0}^{9} \{y_i \ln y_i'\}, \text{ if } y_i = 1$$

$$L_{b2} = -\sum_{i=0}^{9} \{(1 - y_i) \ln y_i'\}, \text{ Otherwise } (y_i = 0)$$

- Before, have Softmax for normalizing all output values, so don't need 1/N
- Because y is prob. $0.0^{\sim}1.0$, so log y will be -, therefore - = +

Why not L1 | | why L2 Or Smooth L1

Continuous, can

optimize by derivative

Not continuous,

cannot derivative

2.2-3 Correlation Vs. Covariance (1/5)

We have to consider mean value, because transfer from absolute difference to relative difference.

1) Correlation:

主要衡量兩變數間「線性」關聯 性的高低程度。

$$cor(X,Y) = \sum_{i=0}^{N} X_i \cdot Y_i$$
N terms

inner product = projection = $\cos\theta$

Dot product Measure similarity

2) Covariance: correlation of two variances

$$cov(X,Y) = \frac{1}{N} \sum_{i=0}^{N} (X_i - \mu_X) \cdot (Y_i - \mu_Y)$$

- When mean value = 0, Covariance matrix = Correlation matrix

> Covariance(共變異數) 其實就等於在算x和y 的相關程度

N terms

 μ_{x} : mean of x

 μ_{ν} : mean of y

$$cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$
 E: Expected value = average

Tomm

while $\mu_Y = E(X)$ and $\mu_Y = E(Y)$

(= Correlation Variance)

- Covariance: is a measure of relation between two variables.

$$(variance)cov(X,X) = \frac{1}{n} \sum_{i=0}^{n} (X_i - \bar{X})$$

$$cov(X,Y) = \frac{1}{n} \sum_{i=0}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$cov(X,Y) = \frac{1}{n} \sum_{i=0}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

- > Covariance is influenced by the overall magnitudes of X and Y.
- > Linear combination

 Matrix

2.2-3 Correlation Vs. Covariance (1/5)

Tommy

We have to consider mean value, because transfer from absolute difference to relative difference.

3) The normalized correlation coefficient (NCC) *r* between X and Y: the covariance of the variables (X, Y) divided by each of their standard deviations.

$$\begin{aligned} &\operatorname{NCC} \operatorname{r}(X,Y) = \frac{\frac{1}{n} \sum_{i=0}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sigma_X \sigma_Y} & \longrightarrow \operatorname{Translation, shift or bias term} \\ &= \frac{\frac{1}{n} \sum_{i=0}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\frac{\sum (X_i - \bar{X})^2}{n}} \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{n}}} = \frac{\sum_{i=0}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}} \end{aligned}$$

Standard deviation of X, Y

$$\sigma_X = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n}}$$

$$\sigma_Y = \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{n}}$$

-Why this is Gaussian model? Because $N(u, \sigma^2)$

-Why this can present Affine? Affine: Translation + Rotation + Scaling (+ Shearing)

Covariance共變異數除上兩個變數間的標準差,值會落在正負1之間

$$r = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

- Translation, shift or bias term

- Normalization term as scaling term

2.2-3 Correlation Vs. Covariance – Speed Up (3/5) Tommy

Use Integral Image to solve it

$$\frac{1}{N_x N_y} \sum_{x,y} [f(x,y) - \bar{f}_{u,v}]^2 = \frac{1}{N_x N_y} \left(\sum_{x,y} f^2(x,y) - \frac{\sum_{x,y} f(x,y)^2}{N_x N_y} \right) cov[x] = E[x^2] - (E[x])^2 = var[x]$$

$$cov[x] = E[x^2] - (E[x])^2 = var[x]$$

対
$$\frac{\lambda}{N} : \sum_{x,y} \left[f(x,y) - \overline{f}_{u,v} \right]^{2} = \sum_{x,y} f^{2}(x,y) - \frac{\sum_{x,y} f(x,y)^{2}}{N_{x} N_{y}} \qquad \frac{\text{單個變異數的cov-var}}{\text{Cov}(X,Y) + \frac{1}{2}} \frac{\nabla_{x,y} f(x,y)}{\nabla_{x} f(x) + \frac{1}{2}} \frac{\nabla_{x,y} f(x,y)}{\nabla_{x} f(x)} \frac{\nabla_{x,y} f(x,y)}{\nabla_{x} f(x,y)} \frac{\nabla_{x,y} f(x,y)}{\nabla_{x,y} f(x,y)} + \frac{1}{2} \overline{f}_{u,v}^{2} \frac{\nabla_{x,y} f(x,y)}{\nabla_{x,y} f(x,y)} \frac{\nabla_{x,y} f(x,y)}{\nabla_{x,y} f(x,y)} \frac{\partial_{x,y} f(x,y)}{\partial_{x,y} f$$

22

Integral Image

使用Integral Image求「區域變異量」

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \qquad \mu = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2x_i \mu + \mu^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2x_i \mu + \mu^2$$

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i}^{2} - 2x_{i}\mu + \mu^{2} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} 2x_{i}\mu + \frac{1}{n} \sum_{i=1}^{n} \mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} 2x_{i}\mu + \frac{1}{n} n \mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} 2x_{i}\mu + \mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} 2x_{i}\mu + \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \times \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{2\mu}{n} \sum_{i=1}^{n} x_{i} + \frac{1}{n^{2}} \left(\sum_{i=1}^{n} x_{i}\right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$$

2.2-3 Correlation Vs. Covariance (4/5)

4) Pearson's Correlation Coefficient (探討線性關係): NCC r

其中
$$-1 \le r \le 1$$

 μ_x, μ_y : mean of x, y

共變異數(covariance):
$$cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

變異數(variance): $var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^2$

變異數(variance):
$$\operatorname{var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^2$$

標準差(standard deviation): $std(x) = \sqrt{var(x)}$

n-1: 防止 self correlation

n-1:只用少部分樣本在推論母體時因為偏量(bias)的關係,在 推論時樣本推估會少一個自由度。

n-1: With only a small number of samples inferred the parent because of the relation of partiality (bias), the sample inferred less than one degree of freedom at the time of inference

2.2-3 Correlation Vs. Covariance

4) Pearson's Correlation Coefficient (探討線性關係): NCC r

r,有的時候會用p來表示

Positive relation correlation

Non-relation correlation

Negative relation correlation

Non-linear relation

2.2-3 Correlation Vs. Covariance (5/5)

Tommy

5) Correlation Matrix Vs. Covariance Matrix

- Covariance matrix = Correlation matrix
- The covariance matrix of 2 random variables is given by

$$\Sigma = C_{XY} = \begin{bmatrix} Cov(X, X) & Cov(X, Y) \\ Cov(Y, X) & Cov(Y, Y) \end{bmatrix}$$

where
$$Cov(X, X) = Var(X)$$
, $Cov(Y, Y) = Var(Y)$
 $Cov(X, Y) = Cov(Y, X)$,

- > it is a symmetric matrix
- The sample covariance matrix can be computed using:

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_i - \bar{x})(y_i - \bar{y})$$

-The covariance matrix of n random variables is given by

$$C_X = \begin{bmatrix} Cov(X_1, X_1) & Cov(X_1, X_2) & \dots & Cov(X_1, X_n) \\ Cov(X_2, X_1) & Cov(X_2, X_2) & \dots & Cov(X_2, X_n) \\ \dots & \dots & \dots & \dots \\ Cov(X_n, X_1) & Cov(X_n, X_2) & \dots & Cov(X_n, X_n) \end{bmatrix}$$

where Cov(Xi, Xj) = Cov(Xj, Xi)

Σ是多維隨機變量的covariance matrix μ爲樣本均值

Covariance can represent??

- When X and Y are dissimilar
 - → Diagonal has higher values, cross has lower value
- When X and Y are similar
 - → each element has high value

單個數據點

- When mean value = 0,

Gaussian model

Mahalanobis Distance $((x - \mu)^T \sum_{n=1}^{-1} (x - \mu))^{0.5}$

- Inverse of covariance matrix is like putting covariance matrix to denominator (Scaling)
- If the correlation between variables are strong, the larger value in each element of covariance matrix. variables高度相關
 Hence, smaller value of Mahalanobis
 Distance
- (x –u) is essentially the distance of the vector from the mean
- divide this by the covariance matrix(or multiply by the inverse of the covariance matrix)

Problems of **scale** as well as the correlation of the variables變量的相關性問題

2.2-3 Correlation Vs. Covariance (5/5)

2.2-3 Correlation Vs. Covariance (5/5)

Euclidean distance

Mahalanobis Distance

Mahalanobis Distance 是基於樣本分布的一種距離。

Mahalanobis Distance 是一種距離的度量,可以看作是歐氏距離的一種修正,修正了歐式距離中各個維度尺度不一致且相關的問題。

物理意義就是在規範化的主成分空間中的歐氏距離。

所謂規範化的主成分空間就是利用PCA對一些數據進行主成分分解。

再對所有主成分分解軸做normalize,形成新的坐標軸。

由這些坐標軸張成的空間就是規範化的主成分空間。

PCA就是把橢球分布的樣本改變到另一個空間裡,使其成為球狀分布。

而Mahalanobis Distance就是在樣本呈球狀分布的空間裡面所求得的歐式距離。

4.3-3.2 Batch Normalization: Feature Scaling

Feature Scaling

Make different features have the same scaling

Batch Normalization

Feature Scaling

Idea: Make sure features are on a similar scale.

左圖未經過normalization X_2 特徵範圍 variance 遠大於 X_1 ,收斂時無法直接朝圓心前進

右圖經過normalization reference X_1 特徵範圍等於 X_2 ,收斂 時直接朝圓心前維

equal slope at w1 & w2 direction

- 通過左圖發現loss在W₁方向上的梯度變化緩慢,而 在W₂方向上的梯度變化劇烈
- 如果在training過程中,為了避免這種情況發生,可以在W₁方向上使用較大learning rate,而在W₂方向上使用較小的learning rate but this is not an easy way to process
- Therefore, some methods: BN,
- If not normalize to same unit for x1 and x2, that is, without BN, then need to have different learning rates

右圖為做完feature scaling後,不管在哪個方向上的梯度都是一樣的,在training過程中,model很快就能收斂了。

eated with EverCam

Department of Computer Science and Information Engingering Robotics Lab

2.2-4 Principal Component Analysis (PCA) - Definition

多了 mean

主成分分析

1. Covariance Matrix A Vs. Correlation Matrix A'

Like Gaussian Model

Factorization: 萃取重要特徵 SVD (Singular Value Decomposition)

 $2. A = (A'-m) = UWV^{T}$ eigen domain

(y original domain eigen domain \triangleright Gaussian distribution $N(m,\lambda^2)$,

- > as affine transform
 - eigenvalue就是變異量(variance)
 - eigenvector就是讓資料投影下去會有最大變異量的投影軸。
- 3. Affine Transform –

m: Mean as the translation terms

U: Eigenvector matrix as the rotation matrix Like unit vector

W: Eigenvalues (λ^2) as the variance/scaling terms at denomination for normalization.

V: Rotation matrix V可以換到前面

Variance越大,差異越大, 例如人臉掃描中的眼睛

Estimate the shortest distance (errors) (point to plane) over all samples

2.2-4 Principal Component Analysis (PCA) - Definition

- PCA 特徵量分析 多元統計分布的方法。
- 結果可以理解為對原數據中的變異數做出解釋:哪一個方向上的數據值對變異數的影響最大?換而言之,PCA提供了一種降低數據維度的有效辦法;如果分析者在原數據中除掉最小的特徵值所對應的成分,那麼所得的低維度數據必定是最優化的
- 有效的減少維度數,但整體變異量並沒有減少太多 (這樣降低維度必定是失去訊息最少的方法)
- 主成分分析在分析複雜數據時尤為有用。

- 把維度數降到最低的同時, 維持最多的資訊量(變異數)
- PCA是一個將原本維度投影 到幾個存在最大的變異數的 維度,來達到既降維,又維 持足夠的資訊量(變異數)

Principle component analysis (PCA) finds the directions of the axes of the ellipsoid.

There are two ways to think about what PCA does next:

- Projects every point perpendicularly(垂直) onto the axes of the ellipsoid.
- Rotates the ellipsoid so its axes are parallel to the coordinate axes, and translates the ellipsoid so its center is at the origin.

PC2
PC1

Two views of what PCA does

• Transforms $\begin{bmatrix} x & \mathbf{c} \\ y \end{bmatrix} \rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

- Projects every point perpendicularly onto the axes of the ellipsoid.
- Rotates space so that the ellipsoid lines up with the coordinate axes, and translates space so the ellipsoid's center is at the origin.

(旋轉橢球,使其軸平行於坐標軸,並平移橢球,使其中心在原點)

2.2-4 PCA – Domain Knowledge

- - 料投影下去後分散量最大化, 但PCA不需要知道資料的類別 (unsupervised learning)

LDA是希望資料投影下去後分散量最大,這個分散量是希望「不同類別之間的分散量」越大越好。 (supervised learning)

- 2. PCA for dimensionality reduction + (unsupervised learning) (supervised LDA (Linear Discrimination Analysis) for classification
- 3. Deep Learning: Autoencoder and GAN for encoding and decoding (reconstruction, synthesis合成)
- 4. PCA: Orthonormal 原始數據降維並提取出不相關的屬性

(目的是找到這樣一組分量表示,使得重構誤差最小,即最能代表原事物的特徵。 PCA要求找到方差最大化的方向,各個成分是Orthonormal正交的)

ICA: Independent原始數據降維並提取出相互獨立的屬性

(目的是找到這樣一組分量表示,使得每個分量最大化獨立,能夠發現一些隱藏因素。 ICA要求找到最大獨立的方向,各個成分是Independent獨立的)

2.2-4 PCA – Domain Knowledge

Pladependent Vs. Orthogonal

2.2-4 PCA - Solution/Optimization of Homogenous Matrix

Local optimization (0 moment): 1 and 2 Global optimization: 3

1. Closed Form Solution:

X=input data,不等於0 A≅ 0

2. Pseudo Inverse:

1 and 2 first order for local minima

$$Ax = b \rightarrow x = (A^{T}A)^{-1} (A^{T}b)$$

3. Sum of Squared Difference: (max likelihood – exponential term)

min
$$E = \sum [Ax - b]^2$$
 Second order

- 3.1 Ax = b': estimation value. b: ground truth, $E = \sum [b b']^2$
 - a. Initial value estimation => Pseudo Inverse
 - b. L-M (non-linear approach) Global minima
 - b.1 First order Taylor series expansion
 - b.2 2nd order Taylor series expansion (sensitive to noise)
- 3.2 Ax = b': estimation value, $E = \sum [b'' b']^2$ 沒有Ground truth
 - a. EM (Expected-Maximization), initial b = average value

Ex. Unsupervised learning(要做預測)

4. Lagrange Approach (outlier)

CSIE NCKU

min
$$E = \sum [Ax - b]^2 + \lambda (x^2 + y^2)^2$$

Weighting
Delete noise(outlier)

Jenn-Jier James Lien

34

Content: Topic1. Similarity Measure (相似度量測)

- 1.0 Computer Vision Camera Model: Between 3D and 2D
 - 1.1 2D Image
 - 1.2 Camera Model Btw 3D Object and 2D Image
 - 1.3 From Linear Combination to Homography Ax=b (Vector, Matrix)
- 2.0 Computer Vision (CV) and AI: Similarity Measure = Loss Function
 - 2.1 Sum-of-Squared Differences (SSD) and Mean-Squared Error (MSE)
 - 2.2 Normalized Correlation Coefficient (NCC) and Cross Entropy (CE)
 - 2.3 Al Bayesian Decision Rule Maximum a Posteriori (MAP) Probability with Gaussian Model
- 3.0 Image Processing for Deep Learning: Filter, Correlation and Convolution
 - 3.1 Low-Pass Filter Denoise and High-Pass Filter Edge Detection
 - 3.2 Correlation Vs. Convolution
 - 3.3 Multi-Resolution Downsampling (Encoder) and Upsampling (Decoder)

2.3 Al Bayesian Decision Rule Maximum a Posteriori (MAP) Probability with Gaussian Model

I/O Data and Loss Function: Data Collection and Labeling (1/2)

- 1. Supervised Learning: Label
 - Is a problem with labeled data, expecting to develop predictive capability
 - → Self-supervised learning: Makes use of the structure within the data to generate its own labels.
- 2. Unsupervised Learning: Unlabeled
 - All the observations in the dataset are unlabeled and the algorithms learn to inherent structure from the input data
 - Is discovering process, diving into unlabeled data to capture hidden information.
 - → Supervised machine learning is generally used to classify data or make predictions,
 - → Whereas unsupervised learning is generally used to understand relationships within datasets.
 - → Supervised machine learning is much more resource-intensive because of the need for labelled data.
- 3. Semi-Supervised Learning:
 - Some of the observations of the dataset are labeled but most of them are usually unlabeled.
 - So, a mixture of supervised and unsupervised methods are usually used.
- 4. Reinforcement Learning:
 - Differs from supervised learning in a way that in supervised learning the training data has the answer key with it so the model is trained with the correct answer itself
 - -whereas in reinforcement learning, there is no answer but the reinforcement agent decides what to do to perform the given task.

Туре	Supervised	Unsupervised	Semi-supervised
Input Data	Labelled	Unlabelled	Partially Labelled
Computational Complexity	Simpler	Computationally Complex	Depends on use of Supervised or unsupervised
Accuracy	Higher	Lesser	Lesser

I/O Data and Loss Function: Data Collection and Labeling (2/2)

0.1 (1/4): Reinforcement Learning – Scenario detail

- P: (from reinforcement learning book:
 -State is different from observation
 -Example: Go
- > State: Probably consist of 棋譜 和 position of black-and-white 棋子... all information has only one status even under diff. view images
- > Observation: Different images from different view angles, but having the same (only one) status

Find or define policy for reinforcement learning! Reinforcement: Markov decision, consider only current t and previous statement t-1

- 1) Discrete actions (video game, GO)
- 2) Continuous actions (robot arm)

2.3-1 Similarity Measure: Likelihood Probability [0.0, 1.0]

From sum-of-squared differences (SSD) to cross correlation (CC) $\min SSD = \min(T - I)^2 = \min(T^2 - 2TI + I^2)$ $\min SSD \to (T^2 + I^2) - 2(TI)$

$$\therefore \max CC \to TI$$

Un-correlated:

$$\sum = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{pmatrix}$$

1. Likelihood Probability [0.0,1.0]:

From sum-of-squared differences (SSD) to Gaussian model (normal distribution) $N(\mu,\sigma^2)$

$$P(x) = \frac{1}{\sqrt{(2\pi)^{\mathrm{D}}|\Sigma|}} \exp(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu))$$

$$P(I|x) = \frac{1}{\sqrt{(2\pi)^{\mathrm{D}}|\Sigma|}} \exp(-\frac{1}{2}(x-I)^{T}\Sigma^{-1}(x-I))$$
除以covariance $(x_{DD}-\mu)^{2}$
完問單位一樣(Scaling)

距離越小exp越接近0,機率接近1 Covariance Matrix

$$\Sigma = \begin{bmatrix} (x_{11} - \mu)^2 & \cdots & (x_{1D} - \mu)^2 \\ \vdots & \ddots & \vdots \\ (x_{D1} - \mu)^2 & \cdots & (x_{DD} - \mu)^2 \end{bmatrix}$$

- The similarity btw input unknown patch / and ground truth face x 1: 24x24-pixels patch; x: Face, ~x: Non-Face
- 2. Likelihood Probability [0.0,1.0]:

From cross correlation (CC) to normalized correlation coefficient (NCC) R

$$|R(x,y)| = |\frac{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y')-m^T)*I(x+x',y+y')-m^I)]^{-2}}{\sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(T(x',y')-m^T)^{-2} \sqrt{\sum_{y'=0}^{h'-1} \sum_{x'=0}^{w'-1} [(I(x+x',y+y')-m^I)^{-2}}]}|$$

2.3-1 Likelihood Probability by Gaussian Model 1. Gaussian Distribution (Normal Distribution):

- - 1) 當樣本為1-D (univariate), 高斯分佈遵守機率密度函數 (Probability Density Function - PDF):

避免卡在中間

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$x \in \{x_1, x_2, \cdots, x_n\}$$
 $\mu = \frac{1}{n} \sum_{i=1}^n x_i : \text{mean } ($ 平均值 or 期望值 $) : \text{Average template}$
 $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2} : \text{standard deviation } (標準差)$

• 右圖為不同平均數與標準差,所對應的 機率密度函數曲線。 往兩端推開

Gaussian model 機率0~1之間

• Gaussian Distribution 物理意義:

Shift/Translation SSD 移到中間 • distance of x from μ degree of spread $(x-\mu)^2$ of deep learning "- "Shift/translation, Normalization/Scaling高矮調成一致 variance Normalization term: to between 0.0 ~ 1.0

- 位移: 回歸基準
- Exponential: 使大小值拉開
- 除標準差: 使 term 統一單位

- μ : Depend on Center-Position by μ (average),
- $\bullet \sigma$ Depend on height and degree of spread by σ (standard deviation)
- Like Activation Function a) Gaussian distribution (Probability) 1被、2被、3被 機進差面積 m+- σ (66%), m+-2 σ (95%?), m+-3 σ (99%)
 - b) Gaussian Mixture Model (GMM)
 - → Weighted GMM estimated by EM

(x-u)^2=x1*x2=(x1-u1)*(x2-u2) 兩個不同物體,內積越大越相似

Exp(曲線切一半,把值逼近兩端)相似度量測,越接近1越相似 目的Detection、recognition

2.3-2 AI Bayesian Decision Rule –

Maximum a Posteriori (MAP) Probability with Gaussian Model

1. Maximum a Posteriori (MAP) Probability with Gaussian Model

1) Posteriori Prob.
$$\propto$$
 Likelihood Prob. * Priori Prob.

$$\int_{Prob.\ Of}^{Max:} p(\Omega_f \mid x) = \frac{p(x \mid \Omega_f) p(\Omega_f)}{p(x \mid \Omega_f) p(\Omega_f) + p(x \mid \Omega_n) p(\Omega_n)}$$
MAP:
$$\int_{Prob.\ Of}^{Max:} p(x \mid \Omega_f) p(\Omega_f) + p(x \mid \Omega_n) p(\Omega_n)$$

$$\int_{Prob.\ Of}^{Prob.\ Of} q(x \mid \Omega_f) p(\Omega_f) + p(x \mid \Omega_n) p(\Omega_n)$$

$$\int_{Prob.\ Of}^{Max:} p(x \mid \Omega_f) p(\Omega_f) + p(x \mid \Omega_n) p(\Omega_n)$$

x: 24*24-pixels patch *f*: 24*24-pixels face template $n = {}^{\sim}f$: 24*24-pixels non-face template 2) Likelihood Prob. by Gaussian Model > The similarity btw x and f $\frac{\exp[-\frac{1}{2}(x-f)^{T}\sum^{-1}(x-f)]}{(2\pi)^{1/2}|\Sigma|^{1/2}}$

3) Priori Prob. $p(f_{+}) != 1/2$ > Example: Location of face appearance probability at time *t*

2. Bayesian Decision Rule

$$x \in \begin{cases} \Omega_f & \text{if } p(\Omega_f \mid x) \geq p(\Omega_n \mid x) \\ \Omega_n & \text{otherwise} \end{cases} > \text{threshold} \qquad \qquad \Rightarrow \frac{p(x \mid \Omega_f)}{p(x \mid \Omega_n)} \stackrel{\text{Jace}}{\underset{nonface}{}{}} \frac{p(\Omega_n)}{p(\Omega_f)} = \gamma \quad \stackrel{\text{Constant by experiment}}{\underset{nonface}{}{}}$$

$$\frac{p(x \mid \Omega_f)}{p(x \mid \Omega_n)} \overset{face}{\geq} \frac{p(\Omega_n)}{p(\Omega_f)} = \gamma \overset{Constant by}{experiment}$$