KSooklall_Homework14

Kenan Sooklall

5/3/2021

Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(c)}{n!} (x - c)^n$$

This week, we'll work out some Taylor Series expansions of popular functions.

Table 1: Table of Derivatives

x	f(x)	f^1(x)	f^2(x)	f^3(x)	f^4(x)
p1	1/(1-x)	$1/(1-x)^2$	$2/(1-x)^3$	$6/(1-x)^4$	$24/(1-x)^5$
p2	e^x	e^x	e^x	e^x	e^x
p3	ln(1+x)	1/(1+x)	$-1/(1+x)^2$	$2/(1+x)^3$	$-6/(1+x)^4$

Table 2: Values at c=0

c	f(0)	f^1(0)	f^2(0)	f^3(0)	f^4(0)
p1.n.c.	1	1	2	6	24
p2.n.c.	1	1	1	1	1
p3.n.c.	0	1	-1	2	-6

Exercise 1

$$\frac{1}{1-x} = 1 + x + 2*x^2/2! + 6*x^3/3! + 24*x^4/4! + \dots = 1 + x + x^2! + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^n$$

Exercise 2

$$e^x = 1 + x + x^2/2! + x^2/2! + x^2/2! + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Exercise 3

$$ln(1+x) = x - x^2/2! + 2 * x^3/3! - 6 * x^4/4! \dots = x - x^2/2 + x^3/3 - x^4/4 \dots = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$