

LECTURE 1 of 42

Intelligent Agents Overview Discussion: Machine Prob. 1, Term Projects 1 of 5

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Sections 1.3 – 1.5, p. 16 – 29, Russell & Norvig 2^{nd} edition Sections 2.1 – 2.2, p. 32 – 38, Russell & Norvig 2^{nd} edition Syllabus and Introductory Handouts

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 1 OF 42

LECTURE OUTLINE

- Reading for Next Class: Sections 1.3 1.5 & 2.1 2.2, R&N 2e
- Today and Friday: Intelligent Agent (IA) Design, Chapter 2 R&N
 - * Shared requirements, characteristics of IAs
 - * Methodologies
 - **⇒** Software agents
 - ⇒ Reactivity vs. state
 - ⇒ Knowledge, inference, and uncertainty
- Intelligent Agent Frameworks
 - * Reactive
 - * With state
 - * Goal-based
 - * Utility-based
- Next Week: Problem Solving and Search, Chapter 3
 - * State space search handout (Nilsson, Principles of AI)
 - * Search handout (Ginsberg)

PROBLEMS AND METHODOLOGIES (REVIEW)

- Problem Solving
 - * Classical search and planning
 - * Game-theoretic models
- Making Decisions under Uncertainty
 - * Uncertain reasoning, decision support, decision-theoretic planning
 - * Probabilistic and logical knowledge representations
- Pattern Classification and Analysis
 - * Pattern recognition and machine vision
 - * Connectionist models: artificial neural networks (ANNs), other graphical models
- Data Mining and Knowledge Discovery in Databases (KDD)
 - * Framework for optimization and machine learning
 - * Soft computing: evolutionary algorithms, ANNs, probabilistic reasoning
- Combining Symbolic and Numerical Al
 - * Role of knowledge and automated deduction
 - * Ramifications for cognitive science and computational sciences

CIS 330 / 730 Artificial Intelligence LECTURE 1 OF 42

OMPUTING & INFORMATION SCIENCES

INTELLIGENT AGENTS (REVIEW)

- Agent: Definition
 - * Any entity that <u>perceives</u> its environment through <u>sensors</u> and <u>acts</u> upon that environment through <u>effectors</u>
 - * Examples (class discussion): human, robotic, software agents
- Perception
 - * Signal from environment
 - * May exceed sensory capacity
- Sensors
 - * Acquires percepts
 - * Possible limitations
- Action
 - * Attempts to affect environment
 - * Usually exceeds effector capacity
- Effectors
 - * Transmits actions
 - * Possible limitations

TERM PROJECT TOPICS

- 1. Game-playing Expert System
 - * "Borg" for Angband computer role-playing game (CRPG)
 - * http://www.thangorodrim.net/borg.html
- 2. Classic Trading Agent Competition (TAC)
 - * Supply Chain Management (TAC-SCM) scenario
 - * http://www.sics.se/tac/
- 3. Link Prediction (Social Networks, Bioinformatics)
 - * Social network friendship predictor
 - ⇒ Hsu et al., ICWSM 2007: http://bit.ly/2LUSL
 - * Protein-protein Interaction
 - ⇒ Paradesi, 2008: http://hdl.handle.net/2097/931
 - **⇒ Data set to be published**

HOMEWORK 1: MACHINE PROBLEM

- Assigned: 23:00 Central Time, Lecture 1 (third day of classes)
- Due: before midnight Central Time, Lecture 7 (end of third week)
- Topics
 - * Intelligent agents concepts
 - * State space representations
 - * Informed search
- To Be Posted
 - * KSOL web site
 - * KDDresearch.org (URL mailed to class mailing list)
- Questions and Discussion
 - * General discussion on class mailing list: CIS730-L@listserv.ksu.edu
 - * Questions for instructor: CIS730TA-L@listserv.ksu.edu
- Outside References: On Reserve (Cite Sources!)

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 1 OF 42

COMPUTING & INFORMATION SCIENCE

HOW AGENTS SHOULD ACT

- Rational Agent: Definition
 - * Informal: "does the right thing, given what it believes from what it perceives"
 - * What is "the right thing"?
 - ⇒ First approximation: action that maximizes success of agent
 - ⇒ Limitations to this definition?
 - * First: how, when to evaluate success?
 - * Later: representing / reasoning with uncertainty, beliefs, knowledge
- Why Study Rationality?
 - * Recall: aspects of intelligent behavior (last lecture)
 - ⇒ Engineering objectives: optimization, problem solving, decision support
 - ⇒ Scientific objectives: modeling correct inference, learning, planning
 - * Rational cognition: formulating plausible beliefs, conclusions
 - * Rational action: "doing the right thing" given beliefs

RATIONAL AGENTS

- "Doing the Right Thing"
 - * Committing actions: limited effectors, in context of agent knowledge
 - * Specification (cf. software specification): pre/post-conditions
- Agent Capabilities: Requirements
 - * Choice: select actions (and carry them out)
 - * Knowledge: represent knowledge about environment
 - * Perception: capability to sense environment
 - * Criterion: performance measure to define degree of success
- Possible Additional Capabilities
 - * Memory (internal model of state of the world)
 - * Knowledge about effectors, reasoning process (reflexive reasoning)

MEASURING PERFORMANCE

- Performance Measure: How to Determine Degree of Sucesss
 - * Definition: criteria that determine how successful agent is
 - * Depends on
 - **⇒** Agents
 - **⇒** Environments
 - * Possible measures?
 - ⇒ Subjective (agent may not have capability to give accurate answer!)
 - ⇒ Objective: outside observation
 - * Example: web crawling agent
 - ⇒ Precision: did you get only pages you wanted?
 - ⇒ Recall: did you get all pages you wanted?
 - ⇒ Ratio of relevant hits to pages explored, resources expended
 - ⇒ Caveat: "you get what you ask for" (issues: redundancy, etc.)
- When to Evaluate Success
 - * Depends on objectives (short-term efficiency, consistency, etc.)
 - * Episodic? Milestones? Reinforcements? (e.g., games)

WHAT IS RATIONAL?

- Criteria
 - * Determines what is rational at any given time
 - * Varies with agent, environment, situation
- Performance Measure
 - * Specified by outside observer or evaluator
 - * Applied (consistently) to (one or more) IAs in given environment
- Percept Sequence
 - * Definition: entire history of percepts gathered by agent
 - * NB: agent may or may not have state, i.e., memory
- Agent Knowledge
 - * Of environment "required"
 - * Of self (reflexive reasoning)
- Feasible Action
 - * What can be performed
 - * What agent believes it can attempt?

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 1 OF 42

IDEAL RATIONALITY

- Ideal Rational Agent
 - * Given: any possible percept sequence
 - * Do: ideal rational behavior
 - ⇒ Whatever action is <u>expected</u> to maximize performance measure
 - ⇒ NB: expectation informal sense for now; mathematical def'n later
 - * Basis for action
 - \Rightarrow Evidence provided by percept sequence
 - ⇒ Built-in knowledge possessed by the agent
- Ideal Mapping from Percepts to Actions (Figure 2.1 p. 33 R&N 2e)
 - ***** Mapping *p*: *percept sequence* → *action*
 - * Representing *p* as list of pairs: infinite (unless explicitly bounded)
 - * Using p: ideal mapping from percepts to actions (i.e., ideal agent)
 - * Finding explicit p: in principle, could use trial and error
 - * Other (implicit) representations may be easier to acquire!

KNOWLEDGE AND BOUNDED RATIONALITY

- Rationality versus Omniscience
 - * Nota Bene (NB): not the same
 - * Omniscience: knowing actual outcome of all actions
 - * Rationality: knowing plausible outcome of all actions
 - * Example: is it too risky to go to the supermarket?
- Key Question
 - * What is a plausible outcome of an action?
 - * Related questions
 - ⇒ How can agents make rational decisions given beliefs about outcomes?
 - ⇒ What does it mean (algorithmically) to "choose the best"?
- Bounded Rationality
 - * What agent can perceive and do
 - * What is "likely" to be right not what "turns out" to be right

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 1 OF 42

Сомя

STRUCTURE OF INTELLIGENT AGENTS

- Agent Behavior
 - * Given: sequence of percepts
 - * Return: IA's actions
 - * Simulator: description of results of actions
 - * Real-world system: committed action
- Agent Programs
 - * Functions that implement p
 - * Assumed to run in computing environment (architecture)
 - * Agent = architecture + program
 - * This course (CIS730): primarily concerned with p
- Applications
 - * Chapter 22 (NLP/Speech), 24 (Vision), 25 (Robotics), R&N 2e
 - * Swarm intelligence, multi-agent sytems, IAs in cybersecurity

AGENT PROGRAMS

Software Agents

- * Also known as (aka) software robots, softbots
- * Typically exist in very detailed, unlimited domains
- * Examples
 - ⇒ Real-time systems: critiquing, avionics, shipboard damage control
 - ⇒ Indexing (spider), information retrieval (IR; e.g., web crawlers) agents
 - ⇒ Plan recognition systems (computer security, fraud detection monitors)
- * See: Bradshaw (Software Agents)
- Focus of This Course: Building IAs
 - * Generic skeleton agent: Figure 2.4, R&N
 - * function SkeletonAgent (percept) returns action
 - ⇒ <u>static</u>: *memory*, agent's memory of the world
 - ⇒ memory ← Update-Memory (memory, percept)
 - ⇒ action ← Choose-Best-Action (memory)
 - ⇒ memory ← Update-Memory (memory, action)
 - ⇒ <u>return</u> action

CIS 330 / 730 Artificial Intelligence ECTURE 1 OF 42

EXAMPLE: GAME-PLAYING AGENT [2] PROBLEM SPECIFICATION

- Angband
 - * Roguelike game descended from Rogue, Moria See: http://en.wikipedia.org/wiki/Roguelike
 - * v3.0.6 (2006)

Source code: http://www.thangorodrim.net

- Automated Roguelike Game-Playing Agents
 - * Rog-O-Matic (1984)
 http://en.wikipedia.org/wiki/Rog-O-Matic
 - * Angband Borgs (1998-2001) http://www.thangorodrim.net/borg.html
- Problem Specification
 - * Study Borgs by Harrison, White (2006 present: http://bit.ly/1y9vn)
 - * Develop scheduling, planning, or classification learning system
 - * Use White's APWBorg interface to develop new Borg
 - * Compare to classic Borgs

. IEODI

CIS 330 / 730 Artificial Intelligence LECTURE 1 OF 42

COMPUTING & INFORMATION SCIENCES

COURSE TOPICS

- Overview: Intelligent Systems and Applications
- Artificial Intelligence (AI) Software Development Topics
 - * Knowledge representation
 - * Search
 - * Expert systems and knowledge bases
 - * Planning: classical, universal
 - * Probabilistic reasoning
 - * Machine learning, artificial neural networks, evolutionary computing
 - * Applied Al: agents focus
 - * Some special topics (NLP focus)
- Implementation Practicum (≈ 40 hours)

PEAS FRAMEWORK

• Performance Measure

- * Specified by outside observer or evaluator
- * Applied (consistently) to (one or more) IAs in given environment

Environment

- * Reachable states
- * "Things that can happen"
- * "Where the agent can go" TAC-SCM
- * To be distinguished (TBD) from: observable states

Actuators

- * What can be performed
- * Limited by physical factors and self-knowledge

Sensors

- * What can be observed
- * Subject to error: measurement, sampling, postprocessing

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 1 OF 42

COMPUTING & INFOR

PROBLEM-SOLVING AGENTS [1]: GOALS

Justification

- * Rational IA: act to reach environment that maximizes performance measure
- * Need to formalize, operationalize this definition

Practical Issues

- * Hard to find appropriate sequence of states
- * Difficult to translate into IA design

Goals

- * Translating agent specification to formal design
- * Chapter 2, R&N: decision loop simplifies task
- * First step in problem solving: formulation of goal(s)
- * Chapters 3-4, R&N: state space search
 - ⇒ Goal ≡ {world states | goal test is satisfied}
 - **⇒** Graph planning
- * Chapter 5: constraints domain, rules, moves
- * Chapter 6: games evaluation function

PROBLEM-SOLVING AGENTS [2]: DEFINITIONS

- Problem Formulation
 - * Given
 - **⇒ Initial state**
 - **⇒ Desired goal**
 - **⇒** Specification of actions
 - * Find
 - ⇒ Achievable sequence of states (actions)
 - ⇒ Represents mapping from initial to goal state
- Search
 - * Actions
 - **⇒ Cause transitions between world states**
 - **⇒ e.g., applying effectors**
 - * Typically specified in terms of finding sequence of states (operators)

ARTIFICIAL INTELLIGENCE

ECTURE 1 OF 42

LOOKING AHEAD: SEARCH

- Next Monday Wednesday: Sections 3.1-3.4, Russell and Norvig
- Thinking Exercises (Discussion in Next Class): 3.3 (a, b, e), 3.9
- Solving Problems by Searching
 - * Problem solving agents: design, specification, implementation
 - * Specification: problem, solution, constraints
 - * Measuring performance
- Formulating Problems as (State Space) Search
- Example Search Problems
 - * Toy problems: 8-puzzle, N-queens, cryptarithmetic, toy robot worlds
 - * Real-world problems: layout, scheduling
- Data Structures Used in Search
- Next Monday: Uninformed Search Strategies
 - * State space search handout (Winston)
 - * Search handouts (Ginsberg, Rich and Knight)

TERMINOLOGY

- Rationality
 - * Informal definition
 - * Examples: how to make decisions
 - * Ideal vs. bounded
- Automated Reasoning and Behavior
 - * Regression-based problem solving (see p. 7)
 - * Goals
 - * Deliberation
- Intelligent Agent Frameworks
 - * Reactivity vs. state
 - * From goals to preferences (utilities)

CIS 530 / 730 Artificial Intelligence LECTURE 1 OF 42

SUMMARY POINTS

- Intelligent Agent Framework
- Rationality and Decision Making
- Design Choices for Agents (Introduced)
- Choice of Project Topics
 - * 1. Game-playing expert system: Angband
 - * 2. Trading agent competition, supply chain management (TAC-SCM)
 - * 3. Knowledge base for bioinformatics: proteomics ontology
- Things to Check Out Online
 - * Resources page

http://www.kddresearch.org/Courses/CIS730/Resources

* Course mailing list archives (class discussions) http://listserv.ksu.edu/archives/cis730-l.html

