

International Conference on Computational Science, ICCS 2011

Singapore, 1-3 June, 2011

Bio Search Computing: Bioinformatics web service integration for data-driven answering of complex Life Science questions

Marco Masseroli, Giorgio Ghisalberti, Stefano Ceri marco.masseroli@polimi.it

Data and search service scenario in the Life Sciences

In the <u>Life Sciences</u>:

- Numerous data, sparsely distributed in many heterogeneous sources
 - Many are <u>ranked data</u> of various types, representing different phenomena, e.g.:
 - physical ordering, e.g. within a genome
 - <u>algorithmically</u> assigned <u>scores</u>, e.g. representing levels of <u>sequence similarity</u>
 - <u>experimentally</u> measured values, such as <u>gene expression</u> levels

Data and search service scenario in the Life Sciences

- Many individual and vertical search services:
 - Give <u>rapid</u> and selective <u>access</u> to <u>data</u> from potentially huge <u>repositories</u>
 - Provide <u>results</u> (often <u>ranked</u>) of user defined <u>searches</u> within a data repository
 - Seek <u>individual items</u> that <u>meet</u> the <u>criteria</u> specified in a request,
 - whereas in practice <u>information relevant</u> to a requirement may be <u>spread</u> over <u>several resources</u>
 - Are <u>ineffective</u> to answer a <u>request</u> that involves <u>combining</u> results from more than one search engine

Life Sciences computational and data access web services

<u>BLAST</u> search result for the sequence "Human asparagine synthetase mRNA"

<u>UniProt</u> search result for protein "5-hydroxytryptamine (serotonin) receptor 2A"

Gene expression data result from <u>Array</u> Express

GPDW: Genomic and Proteomic Data Warehouse

Several integrated databanks, including:

- Entrez Gene, Ensembl
- Homologene
- IPI, UniProt/Swiss-Prot
- Gene Ontology, GOA
- BioCyc, KEGG, Reactome
- InterPro, Pfam
- OMIM, eVOC, ...

Numerous integrated data, including:

- 6,202,155 genes of 6,276 organisms
- 19,821,588 proteins of 197,257 specie
- 27,836 Gene Ontology terms and 45,644 relations (is a, part of)
- 8,525 biochemical pathways
- 8,980 protein domains; 2,392 OMIM genetic disorders; ...

Genomic and Proteomic Data Warehouse

Life Science questions and their answering

- Several Life Science questions:
 - are <u>complex</u>
 - to be answered <u>require integration</u> and <u>comprehensive</u> <u>evaluation</u> of different data
 - often distributed, many of which ranked

Answering <u>complex questions</u> requires <u>integration</u> of vertical search services to create <u>multi-domain searches</u>

• where the different domain searches either <u>refine</u> or <u>augment</u> previous search results

Bioinformatics data integration platforms exist

No support for ranked data

Motivating Life Science search examples

- 1. "Which genes encode proteins in different organisms with high sequence similarity to a given protein and are significantly co-expressed (e.g. up expressed) in the same given biological condition / tissue (e.g. in tumor / brain)?"
- 2. "Which proteins of a given biochemical pathway are encoded by co-expressed genes and are likely to interact?"
- 3. "Which proteins in different organisms are most structurally and functionally similar to a given protein?"
- 4. "Which drugs treat diseases that are likely to be associated with a given genetic mutation?"

<u>Information</u> to answer such queries is <u>available</u> on the Internet, but <u>no software system</u> is capable of <u>computing</u> the <u>answer</u>

Motivating Life Science search examples

Common Aspects:

- Multi-domain queries (e.g. sequence similarity, gene expression)
- Ranking composition (e.g. similarity score, diff. expression p-value)
- The answers are on the Web

A knowledgeable user would do the query step-by-step:

- Search proteins similar to a given protein and get their ID
- Search genes that codify such proteins and get their symbol
- Search a gene expression DB and find the differential expression of such genes in the given biological condition / tissue
- Order results by best similarity and differential expression values

After hours of painful search the user might actually succeed!

• Can this be done better?

Search Computing: an ERC funded project

Search Computing (SeCo) project (2.5 MEuro funding in 5 years) aims:

- 1. Develop the informatics framework required for computing multi-domain searches by combing single domain search results from search engines, which are often ranked, with other data and computational resources
 - directly supporting multi-domain ordered data
 - taking into account <u>order</u> when the <u>results</u> of several requests are <u>combined</u>
 - enabling exploration and expansion of search results
- 2. Apply SeCo technology in different fields, including Life Sciences

Search Computing framework

Registration and conceptualization of search services

Three levels of conceptualization of services and associations

Conceptual level: Service marts

SequenceAlignmentSearch(QuerySequence, FoundSequence, FoundSequenceLenght, Score, ...)

Logical level: Access patterns

BLAST_search(Query_Sequence[I], Found_Sequence[O], Found_Sequence_lenght[O], Score[O][R], ...)

Corresponding SM attributes

Auxiliary attributes (i.e. query attributes)

Physical Level: Service interfaces

Selector > WU-BLAST: Query_Sequence | Found_Sequence | Length | Score | % identity | ...

Selector attributes

Corresponding SM attributes

Auxiliary attributes (i.e. query attributes)

Resource network of Life Sciences web services

<u>Services</u> <u>registered</u> in the framework are <u>pair-wise related</u> each other through <u>connection</u> patterns that define the available <u>resource network</u>

Bio-SeCo: SeCo technologies for Life Sciences

Life Science example query:

1. "Which genes encode proteins in different organisms with high sequence similarity to a given protein and are significantly co-expressed (e.g. up expressed) in the same given biological condition / tissue (e.g. in tumor / brain)?"

This multi-domain case study question can be <u>decomposed</u> into the following <u>three</u> single domain sub-queries, each of these sub-queries can be <u>mapped</u> to an available <u>search service</u>:

- "Which proteins in different organisms have high sequence similarity to a given protein?"
 - → BLAST, a sequence similarity search program, in one of its many implementations, e.g. WU-BLAST (http://www.ebi.ac.uk/blast2/)

Bio-SeCo: SeCo technologies for Life Sciences

- "Which genes encode which proteins?"
 - → GPDW (Genomic and Proteomic Data Warehouse), a query service to a database of genomic and proteomic data (GPDW_protein2gene)
- "Which genes are significantly co-expressed (e.g. up expressed) in the same given biological condition / tissue (e.g. in tumor / brain)?"
 - → Array Express Gene Expression Atlas, a search engine of gene expression data (http://www.ebi.ac.uk/gxa/)

In Search Computing each search service need to be modelled with:

• a <u>Service mart</u>, one or more <u>Access patterns</u>, a <u>Service interface</u>

Bio-SeCo: Sequence alignment search

Service mart

sequenceAlignmentSearch(sequenceAlignmentProgram, searchedDB,
querySequence, querySequenceID, querySequenceIDName,
foundSequenceSymbol, foundSequenceID, foundSequenceIDName,
foundSequenceDescription, foundSequenceOrganism,
bestAlignmentScore, bestAlignmentExpectation,
bestAlignmentProbability, alignments(score, expectation, probability,
matchQuerySequence, matchFoundSequence, matchPattern))

Ex. Access pattern

sequenceAlignmentSearch_byID(sequenceAlignmentProgram^I,
 searchedDB^I, querySequenceID^I, querySequenceIDName^I,
 foundSequenceSymbol^O, foundSequenceID^O, foundSequenceIDName^O,
 foundSequenceDescription^O, foundSequenceOrganism^O,
 bestAlignmentScore^R, bestAlignmentExpectation^R,
 bestAlignmentProbability^R)

Bio-SeCo: WU-BLAST

Service interface

WU_BLAST_byID("Washington University BLAST", sequenceAlignmentSearch_byID, http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl)

Input example:

seaquenchAlignmentProgram: BLASTP

• searchedDB: uniprotKB

• querySequenceID: O14543 • querySequenceIDName: uniprot

Output example:

• foundSequenceSymbol: SOCS3_MOUSE

• foundSequenceID: O35718 • foundSequenceIDName: uniprot

• foundSequenceOrganism: Mus musculus

• foundSequenceDescription: Suppressor of citokine signaling 3

• bestAlignmentScore: 990

• bestAlignmentExpectation: 2.99 e⁻⁹⁸ • bestAlignmentProbability: 2.99 e⁻⁹⁸

Bio-SeCo: protein2gene and GPDW

Service mart

protein2gene(proteinID, proteinIDName, proteinSymbol, organism,
 geneID, geneIDName, geneSymbol)

Ex. Access pattern

protein2gene_byID(proteinID^I, proteinIDName^I, geneID^O, geneIDName^O, geneSymbol^O, organism^O)

Service interface

GPDW_byID("Genomic and Proteomic Data Warehouse", protein2gene_byID, http://www.bioinformatics.polimi.it/GPDW/)

Input example:

• proteinID: O35718

• proteinIDName: uniprot

Output example:

• geneID: 12702

• geneIDName: entrez_gene

• geneSymbol: Socs3

• organism: Mus musculus

Bio-SeCo: Gene expression search

Service mart

geneExpressionSearch(queryProperty, queryPropertyValue, queryEnsemblGeneID, queryOrganism, queryRegulation, queryFactorValue, foundGeneSymbol, expressionFactorValue, expressionRegulation, experimentNumber, bestExperimentPvalue)

Ex. Access pattern

geneExpressionSearch_byGeneProperty(queryProperty^I, queryPropertyValue^I, queryOrganism^I, queryRegulation^I, queryFactorValue^I, foundGeneSymbol^O, expressionFactorValue^O, expressionRegulation^O, experimentNumber^R, bestExperimentPvalue^R)

Bio-SeCo: Array Express

Service interface

Array_Express_byGeneProperty("Array Express Gene Expression Atlas", geneExpressionSearch_byGeneProperty, http://www.ebi.ac.uk/gxa/api?gene<queryProperty>Is=<queryPropertyV alue>&species=<queryOrganism>&format=xml&indent)

Input example:

• queryProperty: Gene

• queryOrganism: Mus musculus

• queryFactorValue: brain

• queryPropertyValue: Socs3

• queryRegulation: updown

Output example:

• foundGeneSymbol: SOCS3

expressionRegulation: UP

• bestExperimentPvalue: 1.12 e⁻²³

• expressionFactorValue: brain

• experimentNumber: 24

Bio-SeCo: Connection patterns

Their <u>pair-wise</u> coupling *connection patterns* useful for computing the answer to the considered case study question are as follows:

```
existsCodingGene_byProteinID(sequenceAlignmentSearch, protein2gene):
 [(sequenceAlignmentSearch.foundSequenceID = protein2gene.proteinID
 AND sequenceAlignmentSearch.foundSequenceIDName =
 protein2gene.proteinIDName)]
```

```
existsExpressedGene_byGeneSymbol(protein2gene, geneExpressionSearch):
 [("Gene" = geneExpressionSearch.queryProperty
 AND protein2gene.geneSymbol = geneExpressionSearch.queryPropertyValue
 AND protein2gene.organism = geneExpressionSearch.queryOrganism)]
```


Query interface for multi-domain search

"Which genes encode proteins in different organisms with high sequence similarity to a given protein (e.g. with <u>UniProt ID: O14543</u>) and are significantly co-expressed (e.g. <u>up or down</u> expressed) in the same given biological condition / tissue (e.g. in <u>brain</u>)?"

Query Parameters	
Protein ID name	uniprot
Protein ID	O14543
Gene expression	updown
regulation	
Biological tissue or	brain
condition	
Visualization Options	
Visualization Type	Table View 🕶
Search	reset

Results of sequence alignment search on WU-BLAST

"Which proteins in different organisms have high sequence similarity to the protein with <u>UniProt ID</u>: <u>014543</u>?"

Using **BLAST**, a sequence similarity search program, in one of its implementations, e.g. **WU-BLAST** (http://www.ebi.ac.uk/blast2/)

Sequence Alignment					
\$	\$	\$	A		
Protein ID	Protein Name	Protein Symbol	Expectation		
014543	Suppressor of cytokine signaling 3	SOCS3_HUMAN	2.5999999999996e-99		
Q6FI39	SOCS3 protein	Q6FI39_HUMAN	2.59999999999996e-99		
035718	Suppressor of cytokine signaling 3	SOCS3_MOUSE	2.99999999999993e-98		
B1AQL6	Suppressor of cytokine signaling 3	B1AQL6_MOUSE	2.99999999999993e-98		
088583	Suppressor of cytokine signaling 3	SOCS3_RAT	2.0999999999999e-97		
A9JRX2	Socs8 protein	A9JRX2_DANRE	3.6e-21		
088582	Suppressor of cytokine signaling 2	SOCS2_RAT	2.5e-20		
014508	Suppressor of cytokine signaling 2	SOCS2_HUMAN	3.1e-20		

Results of protein2gene search on GPDW

"Which genes encode which proteins?"

Using a <u>query service</u> (GPDW_protein2gene) to our GPDW (Genomic and Proteomic Data Warehouse)

Gene Protein Association				
\$	\$	\$		
Protein ID	Gene Symbol	Organism		
014543	SOCS3	Homo sapiens		
Q6FI39	SOCS3	Homo sapiens		
035718	Socs3	Mus musculus		
B1AQL6	Socs3	Mus musculus		
088583	Socs3	Rattus norvegicus		
A9JRX2	socs8	Danio rerio		
088582	Socs2	Rattus norvegicus		
014508	SOCS2	Homo sapiens		

Results of gene expression search on Array Express

"Which genes are significantly up or down expressed in brain?"

Using Array Express Gene Expression Atlas, a search engine of gene expression data (http://www.ebi.ac.uk/gxa/)

Gene Expression					
≎ Gene Symbol	≎ Organism	Factor	≎ Regulation	≎ Experiment Number	P-value
Socs3	Mus musculus	brain	UP	24	1.1218185040451748e-23
Socs3	Mus musculus	brain	UP	24	1.1218185040451748e-23
Socs3	Rattus norvegicus	brain	DOWN	6	5.427190918894098e-10
SOCS3	Homo sapiens	brain	UP	11	2.5128574776545065e-9
SOCS3	Homo sapiens	brain	UP	11	2.5128574776545065e-9
SOCS2	Homo sapiens	brain	DOWN	12	2.9868274520339355e-9
Socs2	Rattus norvegicus	brain	DOWN	5	0.005287489853799343
socs8	Danio rerio	brain	DOWN	1	0.0186142735183239

Combined search results

Combination	Sequence Alignment			
(-	\$	\$	\$	(÷
Rank	Protein ID	Protein Name	Protein Symbol	Expectation
3.365e-121	035718	Suppressor of cytokine signaling 3	SOCS3_MOUSE	2.99999999999993e-98
3.365e-121	B1AQL6	Suppressor of cytokine signaling 3	B1AQL6_MOUSE	2.99999999999993e-98
6.533e-108	014543	Suppressor of cytokine signaling 3	SOCS3_HUMAN	2.59999999999996e-99
6.533e-108	Q6FI39	SOCS3 protein	Q6FI39_HUMAN	2.59999999999996e-99
1,140e-106	088583	Suppressor of cytokine signaling 3	SOCS3_RAT	2.09999999999999e-97
9.259e-29	014508	Suppressor of cytokine signaling 2	SOCS2_HUMAN	3.1e-20
6.701e-23	A9JRX2	Socs8 protein	A9JRX2_DANRE	3.6e-21
1.322e-22	088582	Suppressor of cytokine signaling 2	SOCS2_RAT	2.5e-20

Gene Protein Association		Gene Expression			
≎ Gene Symbol	♦ Organism	≎ Factor	≎ Regulation	≎ Experiment Number	≎ P-value
Socs3	Mus musculus	brain	UP	24	1.1218185040451748e-23
Socs3	Mus musculus	brain	UP	24	1.1218185040451748e-23
socs3	Homo sapiens	brain	UP	11	2.5128574776545065e-9
SOCS3	Homo sapiens	brain	UP	11	2.5128574776545065e-9
Socs3	Rattus norvegicus	brain	DOWN	6	5.427190918894098e-10
SOCS2	Homo sapiens	brain	DOWN	12	2.9868274520339355e-9
socs8	Danio rerio	brain	DOWN	1	0.0186142735183239
Socs2	Rattus norvegicus	brain	DOWN	5	0.005287489853799343

 $\underline{Combination.Rank} = sequenceAlignment.Expectation * geneExpression.P-value$

Query expansion on the resource network

Bio Search Computing: web service integration for data-driven answering of Life Science questions

Thank you for your attention!

Any question?