Question 9. Consider the relation R with schema R(A,B,C,D), and functional dependencies $\{AB \to C, C \to D, D \to A\}$.

- (a) Is the relation in BCNF? Is it in 3NF? Explain why or why not.
- (b) Is the decomposition of R into AB, BC and CD lossless? Why or why not?
- (c) Is the decomposition of R into AB, BC and CD dependency preserving? Why or why not?
- The keys are AB, BC, BD (by augmentation of FDs). Hence, the latter two dependencies violate BCNF but not 3NF (since all attributes are prime). R is in 3NF not BCNF.
- b) No, since B is not a key for AB nor BC.
- c) No, AB→C is lost.

1

011

• For each schedule indicate which properties hold.

a) $R_1(A), W_2(A)$ $R_1(B)$ $Commit_1, W_3(B), R_3(B), W_3(A), Commit_3, R_2(C), Commit_2.$ Conflict serializable Yes

ACA Yes

Recoverable Yes

2PL No

Strict 2PL No

Q10

Prove the following inference rule for functional dependencies using only Armstrong's axioms: If $P \to QR$ and $R \to S$, then $P \to QS$.

Show the steps of your proof, and indicate which of Armstrong's axioms is applied in each step.

P→ QR Given

R→ S Given

P→ Q decomposition

P→ S transitivity W/ R→S

P→ QS Union

2

Q11

- For each schedule indicate which properties hold.
 - b) $R_1(A)$, $W_2(B)$, $R_1(B)$, $Commit_1$, $Commit_2$

Conflict serializable Yes
ACA No
Recoverable No
2PL Yes
Strict 2PL No

c) $R_1(A), W_2(B), R_1(B), Commit_2, Commit_1$

Same as above except this schedule is recoverable.

3

Q12 (see practice final for full details)

• Give the sequence of lock requests using Wound-Wait policy.

(a)
$$R_1(X), W_2(Y), W_2(X), W_3(Y), W_1(Y)$$

- T1 acquires shared lock on X; T2 acquires an exclusive lock on Y.
- T2 requests an exclusive lock on X. Since T2 is lower priority, it will wait.
- T3 requests an exclusive lock on Y; it also waits.
- T1 now requests an exclusive lock on Y; since it has the higher priority than T2, it will abort T2.

5

Q12

 Given the following actions, under strict 2PL with deadlock detection, is there a deadlock? If so, show the WFG.

 $R_1(X), W_2(Y), W_2(X), W_3(Y), W_1(Y), Commit_1, Commit_2, Commit_3$

· Yes, deadlock exists.

6

Final Exam

December 21, 2021 at 9:00am (2.5 hours)

Relational Model

- □ Logical model, physical model
- □ Data Independence
- □ Schemas
- □ Integrity Constraints (tuple, domain)
- □ Keys (superkey, PK, FK)
- □ Referential integrity (what is it, enforcement)

9

11

SQL

- DDL, DML
- □ Create table, update, delete statements
- □ Relational predicates, clauses, operators
- □ Joins (outer, full, equijoin, self), aggregation, grouping, sub-queries, etc.
- Keys: PKs, FKs, referential integrity (ways of enforcement)
- □ Bag semantics vs. set semantics
- □ Given a schema:
 - Evaluate the results (output) of an SQL query
 - $f \square$ Translate English statement to write an SQL query

E-R Model

10

- □ Read and interpret an ER diagram
- □ How to translate English requirements to an ER diagram
- Avoid redundancy
- Different types of relationships (one-many, many-many, one-one)
- □ Total vs. partial participation
- Weak entities
- ISA hierarchies
- Covering and overlap constraints

10

Views and Indexes

12

12

- View definition
- $\hfill\Box$ Distinction between virtual vs. materialized views
 - □ Benefits, disadvantages of each
- □ Insertions and updates on views
- □ Clustered vs. unclustered index
- □ B+ tree index, hash index, composite index
- □ When are indexes best used
- □ How to select the best index for a workload

Relational Algebra

13

- □ RA operators and operands (selection, projection, joins, renaming, set operations, and others...)
- □ Set vs. bag semantics
- Extended operators
- □ Given a schema, know how to:
 - □ Write an RA expression from English statement
 - Evaluate an RA expression for its output

13

Database Design (cont'd)

15

15

- □ Projection of FDs
- $\hfill\Box$ Given R, and set of FDs F, find the keys
- □ Schema decomposition (properties, goals)

Database Design

14

- □ Redundancy, and how this causes anomalies
- □ Functional Dependencies (FDs)
- □ Keys, superkeys
- □ Armstrong's Axioms
- □ Dependency inference
- □ Closure
- □ Minimum Cover

14

Normalization

16

16

- Lossless join decomposition
 - What does this mean
 - Test to determine if a decomposition is lossless
- □ Dependency preserving
 - What does this mean
 - How to check if a decomposition is dependency preserving
- □ BCNF, 3NF
 - □ Distinction between the two
 - □ Properties of each
 - □ Is a decomposition BCNF or 3NF?
 - □ Find a BCNF, 3NF decomposition: decomposition algorithms

Δ

Transactions

7

□ Transaction properties (ACID)

Schedules

- properties such as: serial, equivalent, serializable, conflict serializable, avoid cascading aborts, recoverable, 2PL, strict 2PL
- How to check for these properties
- □ Conflict operations
- □ Precedence graph
- □ Given a schedule, determine its properties

17

Locking

Deadlocks

- □ Detection: Waits-for-graph
- □ Prevention: Wait-die, Wound-wait
- □ Multiple Granularity Locking
 - $f \square$ Intention locks, lock conversions (upgrades/downgrades)

Locking

□ Types of locks

□ Strict 2PL, 2PL

□ Phantom problem

□ Performance/overhead of locks

□ Isolation levels

18

19

Course Evaluations

Final reminder if you can please complete by end of today – thank you!

evals.mcmaster.ca