Comment on: "Using Ni Substitution and $^{17}\text{O NMR}$ to Probe the Susceptibility $\chi'(\mathbf{q})$ in Cuprates"

In a recent letter, Bobroff et al. [1] presented novel ¹⁷O NMR measurements for YBa₂(Cu_{1-x}Ni_x)₃O_{6+y}. They observed a strong T-dependent broadening of the ¹⁷O NMR-lines which they attributed to the oscillatory electron spin polarization induced by Ni impurities. Their experiment offers a new probe of the momentum dependence of the static spin susceptibility $\chi'(\mathbf{q})$, complementary to the NMR observation of the Gaussian component of the transverse relaxation time, T_{2G} , of planar Cu [2].

To understand the strong T dependence of the NMR line width $\Delta\nu(T)$, Bobroff et al. performed calculations to simulate the NMR line shape by assuming a Gaussian form for the electron spin susceptibility $\chi'_{G}(\mathbf{q}) =$ $4\pi\chi^*\xi^2 \exp[-(\mathbf{q} - \mathbf{Q})^2\xi^2]$ with $\mathbf{Q} = (\pi, \pi)$. They found that the ¹⁷O line width $\Delta\nu$ is independent of the antiferromagnetic correlation length ξ . For the overdoped sample (y = 1), where $\Delta \nu = \chi^* f(\xi)$ is only very weakly T-dependent, they conclude that χ^* is basically T-independent. However, for the underdoped samples (y=0.6) they find that the strong T-dependence of $\Delta \nu$ can *only* be explained with a T-dependent χ_{*}^{*} . Combining these results with the *T*-dependence of $T_{2G}^{-1} \sim \chi^* \xi$, they pointed out that this implies a T-independent ξ for the underdoped samples. They also remark that a Lorentzian model $\chi'_{\rm L}(\mathbf{q}) = 4\pi \chi^* \xi^2 / (1 + (\mathbf{q} - \mathbf{Q})^2 \xi^2)$ gives similar results. This is in contradiction to the spin fluctuation scenario of cuprate superconductors [3], which is based on the Lorentzian form $\chi'_{L}(\mathbf{q})$.

Stimulated by their experiment we also performed calculations to simulate the ¹⁷O NMR lineshape. For the Gaussian susceptibility $\chi'_{\rm G}({\bf q})$, we obtain the same results as Bobroff *et al.* However, we obtain a strong ξ dependence of the ¹⁷O line width with the Lorentzian form of $\chi'_{L}(\mathbf{q})$. Our results using $\chi'_{L}(\mathbf{q})$ are shown in Fig. 1, where we plot the ξ -dependence of $\Delta \nu$. Due to the 1/T dependence of the Ni magnetic moment, $\Delta\nu$ corresponds to $T\Delta\nu_{\rm imp}$ in Ref. [1]. The inset shows our results for $\chi'_{G}(\mathbf{q})$. Our results obtained with $\chi'_{L}(\mathbf{q})$ (curve (a)) demonstrate that the experimental results of Bobroff et al. are clearly compatible with a T-dependent ξ [3]. Furthermore, including in addition to the nearest neighbor Cu-O hyperfine coupling C a next-nearest neighbor coupling C' [4] (curves (b), (c) and (d)) we obtain a flattening of $\Delta\nu(\xi)$ for $\xi=1..2$. This provides a possible explanation for the different behavior of overdoped ($\xi = 1..2$) and underdoped ($\xi = 2..4$) systems.

Due of the location of the ¹⁷O between two ⁶³Cu sites, the local field at the ¹⁷O site behaves as $\sim \partial \tilde{\chi}(r)/\partial r$, where $\tilde{\chi}(r)$ is the envelope of the real space susceptibility (see Fig. 4 in Ref. [1]). Our analytical computations show that for the Gaussian form $\chi'_{\rm G}(\mathbf{q})$, $\Delta\nu(\xi)$ is approximately constant for a realistic range of ξ . For the Lorentzian form $\chi'_{\rm L}(\mathbf{q})$, $\Delta\nu(\xi) \sim \xi^{3/2}$, in agreement with our numerical results (see solid line in Fig. 1).

FIG. 1. The $^{17}{\rm O}$ linewidth $\Delta\nu$ as a function of ξ . Curve (a) shows the result for x=2% Ni doping and C'=0. The solid line is a fit with $\Delta\nu=1.0+0.32\xi^{3/2}$. Curves (b), (c) and (d) correspond to x=0.5,2 and 4% Ni doping, respectively and C'/C=0.25. The inset represents the results for $\chi'_{\rm G}({\bf q})$ with (e) x=2% and (f) x=4% Ni doping.

Taking the T_{2G} data from [5] (corrected for T_1 contributions [6]) and $T\Delta\nu$ for the underdoped sample from [1], we computed the product $T_{2G}T\Delta\nu$, which is independent of χ^* , and which for any form of $\chi'(q)$ depends solely on ξ . In contrast to [1] we find that this product is strongly T-dependent, dropping by more than a factor of 2 between 100 K and 200 K. For a Gaussian this implies that ξ increases as T increases, an unreasonable result. For a Lorentzian, ξ decreases with increasing T. We therefore believe that a Gaussian form of $\chi'(q)$ is unlikely.

This work has been supported by STCS under NSF Grant No. DMR91-20000, the U.S. DOE Division of Materials Research under Grant No. DEFG02-91ER45439 (C.P.S., R.S.) and the Deutsche Forschungsgemeinschaft (J.S.)

D. K. Morr, J. Schmalian, R. Stern, and C.P. Slichter University of Illinois at Urbana-Champaign Loomis Laboratory of Physics 1110 W. Green, Urbana, Il, 61801

^[1] J. Bobroff et al. Phys. Rev. Lett. 79, 2117 (1997).

^[2] C.H. Pennington and C.P. Slichter, Phys. Rev. Lett. 66, 381 (1991).

^[3] D. Pines, Z. Phys. B 103, 129 (1997), and references therein.

^[4] Y. Zha, V. Barzykin and D. Pines, Phys. Rev. B 54, 7561 (1996).

^[5] M. Takigawa, Phys. Rev. B 49, 4158 (1994).

^[6] N. Curro et al., Phys. Rev. B 56, 877 (1997).