(op.3.	
1-ampr (~q->p)->q	
b) (p-aq) -0~(pA~q) c) (p-aq) A (-qV(nAs))	-0 u A c
d1(x=y-0x=5)n(x=5-0x	(2) - XC7
	1 (2) V X 9 - V X 2
2-app, (qyap) 1-q	
b)(p-pg), (p/~g)-s	200 V W = 2
c)~(x<0 Ay #x) 1->	x 70 v g - x
3-a, Adição	i) Modus Ponens
b, Simplificação	j) Modus Tolens
or Silogismo hipotética	o les Conjunção
d, Modus Ponens	li Adicão
e) Modus Tolens	mi Silogismo Disjuntivo nu Silogismo hypotetico
f, conjunção	nu Sibojismo hypotetico
gi Silogismo Disjuntivo	0) Simplificação
n, Absorção	
4-01x=z	d) 321
b, >=0	21 4+1=2
57 × (3	fi key
	() ((p es 9)
	1, x < 3
	(n/t)
	.) ~p
	e) alt-p-s-t
	d) xy=6-xy=2
) xy=0 Vxy>3
5)	$x^{3}=4\sqrt{y^{2}=9}$
9-as~(pAgIV~g	2) x 2 3 V x 4
	b, x = 2 V x = B

Co	
1-	010 (p-rg) n(n -r vg) - (n -r) n (pr-g)
<u>a)</u>	VUV F V E FV V V FE V toutologic
-	V VV V F V F V F V F V F V F V F V F V
	VFF F V V VF V VFFV
	VFV F V VF V FVFV
	FVV F V F F V V V V V V F
	FUVUFUFUVFVVF
	ENENNALANAAL
	FUFUFUFVFVUF
a b	1 (p -> ~ q) A (n-op) A q w~ n toutologic
	VETVEVVVEV
	VFFVFFVVFVVF
	VVVFVVVVFFVFV
	VVVFVFVVFFVVF
	FNENEAREANNEN
	FVTVVFVVVVF
	FVVEENEFTEN
	FVUFVFFFFVVF
2)	(p = a) A (n V~a) A~n -o~p tautologia
	VVV V VVFV FFV VFV
	VVV FIFFV FVFV FV
	NEE L NNALL LA ALA
	NEET EANE EALAIN
	FUNUVEN EEN NOE
	t n n + E E E n E n E n E n E
	FVEVVVFFFVVVF

di(p-oq Vr) n ~q -> p-on toutologia
J V J V V F F V V V V V V
VVVVCCFVVVFF
VVFVVVVVV
NEFEE E NEIN OFF
F V V V F F V V F V V
FUVVEFFUVEVE
FUFUVVVFVV
FUPFFUUF V FUF
e)/0-2 ~a) 1 n n/~ a ~n) ~o n toutobaia
VEFVEVEFVVV V
V F FV T V F F V U F V 'F I
V V V F V V V V IV V V V V V V V V V V V
V V V F V V F V F V F V F V F V F V F V
FUENTE FEINNIN V
FU FU FF F UVF V F
V VF FIF F Y FUV V, VI
PLVFFFVF
f) (n A = a) A (~ n -> a) - o (p A n) tout block
VEEL E FUUV VUVV
NEEN ENERN NATE
UVVF VFU VF U U UV
V VUF IUTEF IV V FF
F F F V V F F V V F F V
FFFV FV FV V FFF
FFVF FFVVF V FFV
FFUFFUFFFUFFF

