tabular reinforcement learning

a map of learning tasks

In the

Today we'll learn how to solve classical reinforcement learning problems. Compared to by-now supervised learning

motivating real-world examples include robotics, poker, and ad placement.

kinds of learning

How do we communicate patterns of desired behavior? We can teach: by instruction: "to tell whether a mushroom is poisonous, first look at its gills..." by example: "here are six poisonous fungi; here, six safe ones. see a pattern?" by reinforcement: "eat foraged mushrooms for a month; learn from getting sick." Machine learning is the art of programming computers to learn from such sources. We've so far focused on the most important case: learning from examples.

Initial

Learning by example is key to the other modes of learning. Today we'll discuss learning by reinforcement.

Online

Stateful (not independent) Stateless Extreme Stateless: only one input

The basic framework is that we have several situations and each permits several actions. Taking an action in a given situation leads to some (potentially noisy) reward. We would like to learn a how to act in any given situation so as to enjoy a high average reward.

	EXAMPLES	REWARDS
ONE	unsupervised	bandit
MANY	supervised	cond. bandit
SEQUENCE	imitation	classical RL

Figure 1: kinds of learning

bias-variance; exploitation-exploration

reinforcement -> explore vs exploit online stateful (fully observable / approximation of infinite state) P vs NP

tabular vs leveraged; local gradient updates

bandits

unconditional

SETUP — Okay, let's say that each action $\alpha \in \mathcal{A}$ in a known set of available actions leads to a reward sampled randomly independently from some unknown distribution $p_{r,\mathcal{A}}$. To keep things simple at the start, let's say \mathcal{A} is finite and r takes values in $\{0,1\}$. Thus, the world is determined by a probability p_{α} of nonzero reward for each action α . In fact, let's say there are only two actions: $\alpha^* = \operatorname{argmax}_{\alpha} p_{\alpha}$ with reward p^* and α° with reward $p^\circ = p^* - \Delta$. And let's say we go for some large number T of steps.

How high can we get our randomness-averaged time-totaled reward? It seems reasonable to compare this amount to the randomness-averaged time-totaled reward we always did the most rewarding action \mathfrak{a}^* . We want to minimize the difference, i.e., our expected "regret".

Intuitively, if $\Delta \lesssim 1/\sqrt{T}$ we won't ever really know which action is best. In this case we don't expect to do better than \sqrt{T} expected regret. So below we'll assume $1/\sqrt{T} \leq \Delta$.

Here's one strategy: we could sample each α say, K=10 times, thereby estimating each \hat{p}_{α} . From then on, we'd stick to $\hat{\alpha}^{\star}= argmax_{\alpha}\hat{p}_{\alpha}$. (Say $|\mathcal{A}|K \ll T$ so that this latter step dominates). Our expected regret then grows linearly with T:

$$\begin{split} \mathbb{E} \operatorname{regret}_{\mathsf{T}} &\approx \ \mathcal{R} \ \triangleq + \Delta \mathsf{K} & \leftarrow \operatorname{exploration term} \\ & + \Delta \mathsf{T} \cdot \mathbb{P} \left| \hat{\boldsymbol{a}}^{\star} \neq \boldsymbol{a}^{\star} \right| & \leftarrow \operatorname{exploitation term} \end{split}$$

Intuitively, K trades off between the opportunity costs near the beginning and in the remainder of our timesteps. Larger K means we pay a slower start in return for more accurate estimates that'll inform us for the rest of time.

Our cost is at most

$$\Delta(K + T \exp(-K\Delta^2))$$

oracle case — Supposing we did know Δ and T, a best K would balance the marginal cost $\partial K/\partial K=1$ of longer exploration against the marginal benefit $-\partial T \exp(-K\Delta^2)/\partial K=-T\Delta^2 \exp(-K\Delta^2)$ of more accurate exploitation:

$$K = log(T\Delta^2)/\Delta^2$$

Then we incur cost^o

$$\mathcal{R} = \frac{log(T\Delta^2) + 1}{\Delta}$$

With $\Delta = \rho/\sqrt{T}$ for $1 \le \rho$, this grows with T like $\mathcal{R} \sim \sqrt{T}$.

REALISTIC CASE — We don't know T, Δ . But, astonishingly, there is an algorithm that has expected regret nearly as low as when we do know T, Δ .

Intuitively, we want it to "explore" as many times K as if we knew T, Δ . But now, whether or not we do explore at timestep t may depend only on the length-t list of previous actions and rewards rather than on Δ and T.

Exercise: By the way, is $\hat{p}_{\hat{\alpha}^*}$ the same as $p_{\hat{\alpha}^*}$ on average?

Here's the clever insight: let's estimate Δ and T as follows: T \approx t and $\Delta \approx |\hat{p}_{\star} - \hat{p}_{\circ}|$. After all, on average t is no more than a factor 1/2 off from the true T — and since T appears in a log, it is plausible that we may neglect this difference. TODO: "after all" heuristic for Δ

So, as long as the number \hat{K} of 'explorations' so far is $\hat{K} < \log(T)/\Delta^2$, we'll want to do more exploration. Let's write $\hat{K} = \min(N_\circ, N_\star)$, the least number of experiencies we've had among actions. Then we want to try the empirically worse action \hat{a}_\circ whenever: $\hat{p}_\star < \hat{p}_\circ + \sqrt{\log(T)/\min(N_\circ, N_\star)}$. With the understanding that N_\star will typically be much bigger than N_\circ , the above condition is almost the same as this more symmetrical condition:

$$\hat{p}_{\star} + \sqrt{log(t)/N_{\star}} < \hat{p}_{\circ} + \sqrt{log(t)/N_{\circ}}$$

We now have a nice interpretation: at each point in time we choose an action with 'highest potential', where we judge an action α 's potential not only by its empirical reward \hat{p}_{α} but also by an uncertainty score or **explorer's bonus** $\sqrt{log(t)/N_{\alpha}}.$ have high

TODO: Observe that most exploration usually happens near the very beginning of time. As in the previous passage,° this incurs

$$\mathcal{R} \sim \frac{\log(T\Delta^2) + 1}{\Delta}$$

much cost, which is a log(T) factor within the oracle case!

CODE — Translating the realistic case algorithm to code is straightforward. We just have to worry about early-time edge cases where we would take logs or reciprocals of zero. A nice way to sweep these issues under the rug is to initialize our counts to small nonzero values.

conditional

In the conditional case the reward may depend on some observed input s sampled i.i.d. from some unknown distribution on a known set \mathcal{S} . So the reward structure is determined by the symbol $\mathfrak{p}_{\mathfrak{r}|s;\mathcal{A}}$.

← We may argue similarly as in the previous passage EXCEPT that we must be more careful because different actions are no longer independent!

imitation

on-policy learning: TD

euler error

classical RL

on-policy learning: TD

off-policy learning: Q

exploration strategies

bonus slide: data dependency diagrams

Let's visualize how weights and data affect each other in four kinds of (online)[◦] ← In online learning, we continuously learn as learning problem. Solid and dashed arrows depict contrasts and commonalities. Here, θ stands for weights; s, for prompts or states; a, for true answers or ideal actions; $\hat{\alpha}$, for guessed answers or actual actions; ℓ , loss.

we receive a stream of data. Our goal is to experience small time-averaged loss.

SUPERVISED — We learn from *examples* a. States are sampled independently.

CONDITIONAL BANDIT — We learn from rewards $-\ell$. States are sampled independently.

(SPECIAL CASE OF) IMITATION — We learn from *examples* a. The state evolves over time.

CLASSICAL REINFORCEMENT — We learn from *rewards* $-\ell$. The state evolves over time.

