VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS INSTITUTAS PROGRAMŲ SISTEMŲ BAKALAURO STUDIJŲ PROGRAMA

Krepšinio taisyklių pažeidimo automatinis nustatymas

Recognizing violations of basketball rules using computer vision

Bakalauro baigiamasis darbas

Atliko: Lukas Cedronas (parašas)

Darbo vadovas: partn. prof., dr. Vytautas Ašeris (parašas)

Darbo recenzentas: lekt. Donatas Kimutis (parašas)

Santrauka

Glaustai aprašomas darbo turinys: pristatoma nagrinėta problema ir padarytos išvados. Santraukos apimtis ne didesnė nei 0,5 puslapio. Santraukų gale nurodomi darbo raktiniai žodžiai.

Raktiniai žodžiai: raktinis žodis 1, raktinis žodis 2, raktinis žodis 3, raktinis žodis 4, raktinis žodis 5

Summary

Santrauka anglų kalba. Santraukos apimtis ne didesnė nei 0,5 puslapio.

Keywords: keyword 1, keyword 2, keyword 3, keyword 4, keyword 5

TURINYS

ĮV	ADAS	4
1.	NAUDOTI ĮRANKIAI	5
2.	VAIZDO MEDŽIAGOS PARUOŠIMAS	6
3.	VAIZDO ATPAŽINIMO METODAI 3.1. Spalvinis atpažinimas 3.1.1. Segmentavimas 3.1.2. Morfologinės transformacijos 3.1.3. Kontūrų radimas 3.2. Atpažinimas remiantis skirtumais 3.2.1. Fono pašalinimas 3.2.2. Judesio atpažinimas 3.3.2. Žmogaus kūno dalių atpažinimas	7
RE	EZULTATAI IR IŠVADOS	11
Lľ	TERATŪRA	12
SA	NTRUMPOS	13
PR	AIEDAI	14

Įvadas

Įvade nurodomas darbo tikslas ir uždaviniai, kuriais bus įgyvendinamas tikslas, aprašomas temos aktualumas, apibrėžiamas tiriamasis objektas akcentuojant neapibrėžtumą, kuris bus išspręstas darbe, aptariamos teorinės darbo prielaidos bei metodika, apibūdinami su tema susiję literatūros ar kitokie šaltiniai, temos analizės tvarka, darbo atlikimo aplinkybės, pateikiama žinių apie naudojamus instrumentus (programas ir kt., jei darbe yra eksperimentinė dalis). Darbo įvadas neturi būti dėstymo santrauka. Įvado apimtis 2 – 4 puslapiai.

1. Naudoti įrankiai

Kompiuterinės regos ir taisyklių pažeidimo atpažinimo algoritmams įgyvendinti buvo pasirinkta Python programavimo kalba. Python - interpretuojama, lengvai skaitoma kalba, puikiai tinkama įvairioms problemoms spręsti [Kuh12]. Dėl kalbos paprastumo ji dažnai naudojama kompiuterinės regos ir giliojo mokymo srityse, kadangi kalba leidžia susifokusuoti į abstrakcijas. Kadangi kalba yra plačiai naudojama, nesunku rasti daug pavyzdžių bei šaltinių.

Objektų atpažinimui buvo pasirinkta OpenCV biblioteka. Tai - nemokama biblioteka, plačiai naudojama spręsti kompiuterinės regos uždavinius, kurios fokusas - įgalinti kurti aplikacijas leidžiančias efektyviai spręsti kompiuterinės regos problemas realiu laiku [BK08].

Vaizdo medžiaga rinkta filmuojant Xiaomi Redmi 8 Pro kamera.

2. Vaizdo medžiagos paruošimas

Šio darbo metu sukurtai programinei įrangai paruošta vaizdo medžiaga, kurioje žaidėjas atlieka įvairius judesius su krepšinio kamuoliu. Siekiant supaprastinti vaizdo atpažinimo algoritmą, medžiagai keliami reikalavimai yra: aiškiai matomas žaidėjas, telpantis į kadrą ir užimantis nemažą dalį vaizdo. Vaizdo atpažinimui pagal spalvą algoritmui žaidėjas taip pat privalo dėvėti skirtingų spalvų pirštines, batus bei mušinėti atskiros spalvos kamuolį. Žaidėjas turi būti kiek galima labiau skirtis nuo fono, kad algoritmas veiktų kuo efektyviau, kadangi įvairių formų ir spalvų objektai fone pasunkina tikslų atpažinimą. Vaizdo medžiagoje žaidėjas mušinėja kamuolį ir atlieka įvairius judesius, dalis kurių pažeidžia taisykles, pavyzdžiui - pamušinėjęs kamuolį jį pasiima į rankas ir padaro keletą žingsnių. Programinė įranga turi atpažinti, jog tai - taisyklės pažeidimas. Vaizdo kokybė yra itin svarbi siekiant tikslių rezultatų, todėl buvo filmuojama kuo didesne raiška - Xiaomi Redmi Note 8 Pro kameros maksimali raiška yra 4K, 30 kadrų per sekundę.

3. Vaizdo atpažinimo metodai

3.1. Spalvinis atpažinimas

- 3.1.1. Segmentavimas
- 3.1.2. Morfologinės transformacijos
- 3.1.3. Kontūrų radimas

3.2. Atpažinimas remiantis skirtumais

3.2.1. Fono pašalinimas

Fono pašalinimas yra vienas iš esminių metodų kompiuterinėje regoje, naudojamas išskirti dominančius vaizdus ir pašalinti nereikalingus statiškus objektus iš fono. Pavyzdžiui, jei yra filmuojama lauke, fone besimatantys medžiai gali trukdyti tolimesniam atpažinimui, tad žinant, jog mus domina tik žaidėjas, pašalinius objektus galima pabandyti pašalinti. Vienas iš būdų yra iš anksto turėti fono paveiksliuką ir apdorojant kitus kadrus jį išimti, bet tai dažnai nepasiteisina dėl to, kad fonas gali kisti - gali atsirasti šešėlių, pasikeisti apšvietimas, gali būti įvairaus pašalinio judėjimo, pavyzdžiui - linguojantys medžiai, vaikštantys sirgaliai ir pan. 2002 m. P. KaewTraKulPong pasiūlė algoritmą, išsprendžiantį šią problemą [KB02]. Algoritmas kiekvieną pikselį sumodeliuoja į Gauso skirstinį pagal tai, kiek pikselio spalva keičiasi bėgant laikui. Kuo mažiau pikseliai keičiasi, tuo didesnė tikimybė, kad jie priklauso fonui. Naudojantis šiuo atradimu galima sėkmingai atsikratyti fono, taip išskiriant mus dominantį vaizdą. Šis metodas ypač tinkamas atpažinti judėjimui - vietoje stovintis žaidėjas bus priskirtas fonui, tačiau jam judant, lengvai galima išskirti jo siluetą.

(b) Vaizdas po fono pašalinimo.

1 pav. Fono pašalinimas naudojantis Gauso skirstiniu paremtu fono segmentavimo algoritmu.

skirta fonui dėl to, jog spalva sutampa su sienos spalva, tačiau kitos kūno dalys išskiriamos iš fono.

3.2.2. Judesio atpažinimas

Žaidėjui vaikštant, kai kurios kūno dalys juda greičiau, nei kitos. Kūnas išlieka santykinai statiškas palyginus su kojomis. Žingsniavimo mechanika yra tokia, kad atliekant žingsnį, viena koja lieka vienoje vietoje, kol kita yra perstatoma iš vienos pozicijos į kitą. Tam, kad pagauti tą kojos judesį, galima paprasčiausiai iš antro kadro atimti pirmą. Padalijus kadrą į dvi dalis - viršutinę ir apatinę - ir darant prielaidą, jog apatinėje dalyje matysis tik kojų judesiai, galima teigti, kad jei atėmus antrą kadrą iš pirmo yra skirtumas, buvo atliktas žingsnis. Koją pastačius ant žemės, tam tikrą laiką skirtumai sumažėja iki nustatytos ribos - pasinaudojus visa šia informacija galima apskaičiuoti, kiek žingsnių buvo atlikta.

2 pav. Aktyvių pikselių kiekis kiekviename kadre, indikuojantis žmogaus judėjimą.

2 pav. pateiktoje lentelėje matyti, kiek buvo aktyvių pikselių kiekvieną kadrą panaudojus fono pašalinimą bei kadrų skirtumo algoritmus. Ši informacija rodo judėjimo kiekį tam tikrame kadro regione. Žalia linija žymi minimalų judėjimo kiekį, kuris gali atsirasti dėl triukšmo ir pašalinio judėjimo. Viršijus šią liniją galima teigti, jog žaidėjas juda. Oranžinė linija žymi ribą, kada galima sakyti, jog jokio judesio nėra, t.y. žaidėjas pastatė koją ir ruošiasi atlikti kitą žingsnį.

3.3. Žmogaus kūno dalių atpažinimas

Šiuolaikinėje kompiuterinės regos srityje daug naudos galima gauti pasinaudojus neuroninių tinklų pagalba. Neuroniniai tinklai naudojami sprendžiant įvairias problemas, šiam darbui aktualiausia yra objektų atpažinimo problema. Turint tam tikrą kadrą, taisyklių pažeidimo algoritmui

būtina, kad būtų atskirtos rankos, kojos ir kamuolys. Žmogaus kūno dalių klasifikavimas yra sudėtinga problema, kadangi dauguma algoritmų yra priklausomi nuo surinktų duomenų. Kompleksija tampa akivaizdi sprendžiant sporto problemas, kadangi labai dažnai žaidėjai daro įvairiausius judesius, apsirengę įvairiausiais rūbais ir pan., kas apsunkina žaidėjo kūno dalių atpažinimą [APG+14]. Tam reikalinga turtinga ir didelė duomenų aibė, dėl ko neuroninio tinklo apmokymo laikas išauga.

Bene visi šiuolaikiniai metodai remiasi tuo pačiu principu: apmokinamas neuroninių tinklų modelis, jiems paruošiant teigiamus ir neigiamus pavyzdžius (pvz., siekiant sukurti kojų atpažinimo algoritmą, paveiksliukai, kuriuose yra koja pažymimi kaip teigiami, tie, kuriuose kojos nėra tampa neigiamais). Mokinimo procesas gali trukti daug laiko - kartais net savaites, todėl daug paprasčiau yra surasti jau sukurtą modelį ir jį pasinaudoti. Vienas iš modelių buvo pasiūlytas 2018 m., pavadinimu OpenPose [CHS+19]. Modelio architektūra paremta konvoliuciniais neuroniniais tinklais. Modelis suskirstytas į dvi šakas. Viena jų priskiria tikimybes, kad tam tikras regionas yra tam tikra kūno dalis, kita - asociacijas tarp skirtingų kūno dalių. Atpažinimas vyksta keliais etapais, siekiant gauti kuo tikslesnius rezultatus.

Šiame darbe kuriamas vaizdo atpažinimo algoritmas kiekvieną kadrą pateikia OpenPose modeliui, o rezultate gaunamos skirtingomis spalvomis sužymėtos kūno dalys. Taisyklių pažeidimo atpažinimo algoritmui aktualios yra rankų ir pėdų sritis.

3 pav. OpenPose algoritmo pagalba atpažintos kūno dalys.

Vienas iš algoritmo trūkūmų yra tai, kad be optimizavimo su kiekvienu kadru gauti rezultatą užtrunka iki 0.5 sekundės. Galimas optimizavimo būdas yra sumažinti kadro dydį prieš pateikiant

jį į neuroninį tinklą, tačiau tokiu atveju rezultatų tikslumas yra atvirkščiai proporcingas kadro dimensijom.						

Rezultatai ir išvados

Rezultatų ir išvadų dalyje išdėstomi pagrindiniai darbo rezultatai (kažkas išanalizuota, kažkas sukurta, kažkas įdiegta), toliau pateikiamos išvados (daromi nagrinėtų problemų sprendimo metodų palyginimai, siūlomos rekomendacijos, akcentuojamos naujovės). Rezultatai ir išvados pateikiami sunumeruotų (gali būti hierarchiniai) sąrašų pavidalu. Darbo rezultatai turi atitikti darbo tikslą.

Literatūra

- [APG⁺14] M. Andriluka, L. Pishchulin, P. Gehler ir B. Schiele. 2d human pose estimation: new benchmark and state of the art analysis. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014-06.
- [BK08] G. Bradski ir A. Kaehler. *Learning OpenCV: Computer Vision with the OpenCV Library*. O'Reilly Media, Inc., USA, 2008.
- [CHS⁺19] Z. Cao, G. Hidalgo, T. Simon, S. Wei ir Y. Sheikh. Openpose: realtime multi-person 2d pose estimation using part affinity fields, 2019. arXiv: 1812.08008.
- [KB02] P. KaewTraKulPong ir R. Bowden. *An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection*. Springer US, Boston, MA, 2002, p. 135–144.
- [Kuh12] D. Kuhlman. A Python Book: Beginning Python, Advanced Python, and Python Exercises. 2012.

Santrumpos

Sąvokų apibrėžimai ir santrumpų sąrašas sudaromas tada, kai darbo tekste vartojami specialūs paaiškinimo reikalaujantys terminai ir rečiau sutinkamos santrumpos.

Priedas nr. 1

Neuroninio tinklo struktūra

4 pav. Paveikslėlio pavyzdys

Priedas nr. 2 Eksperimentinio palyginimo rezultatai

1 lentelė. Lentelės pavyzdys

Algoritmas	\bar{x}	σ^2
Algoritmas A	1.6335	0.5584
Algoritmas B	1.7395	0.5647