INTRODUCTION A L'ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION

I. ARCHITECTURE DE L'ELECRONIQUE NUMERIQUE

Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique et de la restitution d'un signal analogique électrique :

- Le premier bloc représente l'échantillonnage, c'est-à-dire le choix de dates auxquelles prélever des valeurs discrètes au signal analogique (qui est par définition continu).
 T_E est la période d'échantillonnage du signal.
- Le deuxième bloc représente un convertisseur analogique-numérique qui permet d'associer un nombre binaire à une valeur du signal analogique. Ce sont ces nombres qui seront traités par la machine.
- μP représente le traitement numérique qui peut, par exemple, être un filtrage ou une analyse spectrale (ce qui correspond à notre programme de l'année).
- Les valeurs binaires y_n obtenues sont à reconvertir en valeurs discrètes associées à des temps nT_E par l'intermédiaire d'un convertisseur numérique analogique.
- Il reste alors à réaliser l'opération inverse de l'échantillonnage, ce que réalise le filtre de restitution.

Les opérations précédentes sont cadencées par une horloge de fréquence F_E , où F_E correspond à la fréquence d'échantillonnage.

II. ECHANTILLONNAGE

1. Principe de l'échantillonnage

L'idée consiste à utiliser un interrupteur parfait que l'on ferme pendant un intervalle de temps très court puis que l'on ouvre pendant T_E . On prélève ainsi une valeur $x(nT_E)$ tous les T_E .

Si l'on considère pour simplifier que l'intervalle de temps T nécessaire au prélèvement est faible devant T_E , cela revient mathématiquement à multiplier x(t) par la fonction :

Faisons le produit « graphiquement » :

Le signal échantillonné peut donc être considéré comme une suite de valeurs discrètes de x(t). Avant d'indiquer quelles valeurs binaires on peut associer à x_{ECH} (voir Quantification), étudions le spectre de ce signal. Ce point est particulièrement important :

L'échantillonnage ne doit pas détériorer le signal. En particulier il doit CONSERVER LE SPECTRE de x(t) et il doit permettre de restituer ce spectre en fin d'opérations.

2. Spectre du signal échantillonné

a) Signal sinusoïdal

Supposons que x(t) soit sinusoïdale de fréquence f_0 .

La fonction h(t) étant périodique, elle est décomposable en série de Fourier sous la forme :

$$\sum_{k=0}^{+\infty} a_k \cos \left(2\pi \frac{k}{T_e} t \right)$$

Le produit de la fonction x(t) de fréquence f_0 par l'harmonique de rang k de h(t) fait apparaître les deux fréquences $kF_E + f_0$ et $kF_E - f_0$: en effet,

$$\cos(2\pi f_0 t) \times \cos(2\pi k F_e t) = \frac{1}{2} \left[\cos(2\pi (k F_e + f_0) t) + \cos(2\pi (k F_e - f_0) t) \right]$$

L'opération d'échantillonnage aura fait apparaître de nouvelles fréquences par rapport à x(t): l'opération est non linéaire.

b) Signal quelconque

Bien sûr un signal réel à traiter a un spectre fréquentiel continu entre deux valeurs extrêmes de fréquence ; sur le schéma ci-dessous les fréquences sont comprises entre 0 (continu) et f_M :

Le résultat en fréquence de l'échantillonnage est alors le suivant :

3. Critère de SHANNON-NYQUIST

a) Une expérience préliminaire

On considère un disque blanc comportant un secteur noir ; le disque tourne dans le sens horaire à la fréquence F. On stroboscope ce disque à la fréquence F.

(1)
$$F_E = 8f$$
:

On voit 8 images : le disque tourne dans le sens horaire et on a une bonne α représentation » de sa rotation. De plus, on voit qu'il fait un tour tous les 8 éclairs du stroboscope, soit en α soit en α sa vitesse de rotation réelle.

(2)
$$F_E = 2f$$
:

On voit deux images : on ne peut pas savoir dans quel sens tourne le disque ! Par contre il fait un tour en $2T_E$ et la conclusion est la même que précédemment.

(3)
$$F_E = \frac{4}{3} f$$

On voit 4 images du disque mais celui-ci semble tourner dans le sens inverse du sens réel...De plus, il semble faire un tour en $4T_E$ donc à une fréquence de $1/(4T_E)$ soit $F_E/4$ et donc f/3 et non f! Nous reviendrons sur ce f/3 au b.

On dit qu'il y a « sous-échantillonnage » du phénomène. C'est un phénomène que l'on observe fréquemment à la télévision ou au cinéma : http://www.youtube.com/watch?v=jHS9JGkEOmA

b) Repliement de spectre

Supposons que le microprocesseur μP (cf. I.) réalise simplement $y_n = x_n$. Il faut que le filtrage de restitution (représenté par le filtre idéal rouge de fréquence de coupure F_R) redonne le spectre de $x_{ECH}(t)$, ce qui est le cas dans la configuration ci-dessous :

Cependant, si la fréquence d'échantillonnage est mal choisie, i.e. si le signal est sous-échantillonné, on observera un enrichissement du spectre de $x_{ECH}(t)$:

Après filtrage de restitution vont apparaître les fréquences inférieures à F_R qui appartiennent à l'intervalle $[F_E - f_m; F_R]$. Le phénomène porte le nom de REPLIEMENT.

Le graphe ci-dessus montre que si la fréquence d'échantillonnage n'est pas au moins égale à deux fois la fréquence maximale de x(t), il y aura présence de ces fréquences.

En effet pour que seules apparaissent les fréquences comprises entre 0 et f_m , il faut que $F_E - f_m > f_m$.

La fréquence d'échantillonnage doit être au moins égale au double de la plus grande fréquence contenue dans le signal à traiter.

Si le critère de Shannon-Nyquist n'est pas respecté il y a repliement du spectre et sous-échantillonnage.

- Dans le cas de la stroboscopie du disque, la limite correspond à une fréquence du stroboscope double de la fréquence de rotation du disque : c'est la limite à partir de laquelle nous ne pouvons plus voir dans quel sens tourne le disque. Dans le cas où $F_E = \frac{4}{3} f < 2f$, le repliement fait apparaître la fréquence $F_E f = \frac{1}{3} f$, le disque semble tourner à l'envers à une vitesse trois fois plus faible.
- Prenons un autre exemple correspondant au TP acquisition filtres du deuxième ordre : Supposons que l'on veuille échantillonner un signal sinusoïdal de fréquence 1 kHz et d'amplitude 1 V.

Les deux graphes ci-dessous montrent :

- En bleu, un échantillonnage à 6 kHz du signal ; le CAN prélève 6 valeurs par période et les points bleus sont bien représentatifs du signal analogique initial.
- ♣ En rouge, un échantillonnage à 1,05 kHz du signal ; le CAN prélève 1,05 points par période ce qui est insuffisant pour rendre compte des variations du signal initial. En fait la courbe rouge est une sinusoïde de fréquence 1050 1000 = 50 Hz ; on lit bien 0.01 s pour une demi-période.

Quelques données et remarques :

- Pour la restitution musicale, l'échantillonnage se fait à 44 kHz, sachant que l'oreille humaine est limitée en moyenne à 17 kHz ; le rapport $\frac{F_E}{f_m}$ est alors environ égal à 2,6.
- En téléphonie, la bande passante est limitée à 3400 Hz ce qui est suffisant pour une conversation. La fréquence d'échantillonnage est de 8000 Hz, soit un rapport de 2,4 environ.
- Dans chaque cas on prend donc une marge de sécurité par rapport au filtre de restitution.
- Dans le cas où le spectre initial possède une fréquence maximale très élevée, on est obligé de filtrer le signal avant de l'échantillonner pour le limiter en fréquence : ceci est réalisé par un filtrage amont le filtre correspondant est dit « filtre anti-repliement » (cf. synoptique final).

III. QUANTIFICATION

L'opération de quantification consiste à attribuer un nombre binaire à toute valeur prélevée au signal lors de l'échantillonnage.

C'est le CAN (convertisseur analogique numérique) qui réalise cette opération.

Chaque niveau de tension est codé sur p bits, chaque bit pouvant prendre deux valeurs (0 ou 1). Donc un convertisseur à p bits possède 2^p niveaux de quantification.

Considérons un CAN 4 bits, il n'y a donc que 2^4 = 16 valeurs possibles attribuables à toutes les valeurs prélevées lors de l'échantillonnage.

L'opération se fait donc avec une perte d'information d'autant plus grande que p est petit.

Le schéma ci-dessous représente une partie de la caractéristique de transfert d'un convertisseur 4 bits ; à tous les niveaux de tension d'un même palier, le convertisseur fait donc correspondre un seul et même nombre binaire :

Nombre de sortie

Caractéristique de transfert d'un CAN – Quantification à 4 bits

q est le pas de quantification : il correspond à la plus petite variation de tension que le convertisseur peut coder. On voit bien que plus q est faible, meilleure sera la précision de codage.

Pour une quantification par défaut, où x_n = nq si x est compris entre nq et (n+1)q, l'erreur commise appelée bruit de quantification est donnée sur le graphe ci-dessous :

- Pour la restitution musicale, l'échantillonnage se fait à 44 kHz, la quantification sur 16 bits (soit 65536 niveaux) et le quantum vaut 1,5 10⁻³ %.
- En téléphonie, l'échantillonnage se fait à 8000 Hz, la quantification sur 8 bits (soit 256 niveaux) et le quantum vaut 0,4 %

IV. TRAITEMENT DU SIGNAL

A. Analyse spectrale

Lors du traitement numérique à l'oscilloscope ou à l'ordinateur (Latispro par exemple) la détermination d'un signal numérisé passe par un algorithme appelé FFT : Fast Fourier Transform ou transformée de Fourier rapide.

Pour réaliser dans de bonnes conditions cette opération, il convient de respecter quelques règles liées au mode de calcul :

- 1. La fréquence d'échantillonnage doit respecter le critère de Shannon.
- 2. La partie du signal exploitée pour le calcul est limitée temporellement : soit T_H le temps total d'acquisition, aussi appelé horizon temporel. Les variations du signal qui se font sur une durée supérieure à T_H ne seront pas prises en compte : la résolution spectrale de la FFT est donc liée à T_H :

La résolution en fréquence du spectre obtenu est $\frac{1}{T_H}$.

3. N le nombre d'acquisitions vérifie $NT_E = T_H$. Comme $F_E > 2f_m$, $\frac{N}{T_H} > 2f_m$ et donc :

La plage fréquentielle d'analyse est limitée à
$$\frac{N}{2T_H}$$
 donc à $\frac{F_E}{2}$.

- 4. L'algorithme de calcul est optimisé si N est une puissance de 2.
- 5. Si l'on utilise un ordinateur après une acquisition,

T_H doit être un nombre entier de périodes du signal.

B. Filtrage

Voir TP.

V. SYNOPTIQUE COMPLET

On peut pour terminer donner le synoptique complet du traitement d'un signal analogique (sonore en l'occurrence) lors de sa numérisation, de son traitement numérique et de sa restitution :

Bibliographie partielle:

- ELECTRONIQUE Thierry GERVAIS VUIBERT deuxième édition
- PSI-PSI* DUNOD Nouveaux programmes 2014
- ASDS « Conversion des signaux analogiques en numérique » : http://www.lycee-champollion.fr/IMG/pdf/ads can.pdf