EJEMPLO 7.3.3 Representación matricial de una transformación de \mathbb{R}^3 en \mathbb{R}^3

Defina
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 por $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y + 3z \\ 4x - 2y + 6z \\ -6x + 3y - 9z \end{pmatrix}$. Encuentre A_T , nu T , im T , $\nu(T)$ y $\rho(T)$.

SOLUCIÓN
$$ightharpoonup$$
 Como $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix}, T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$ y $T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ -9 \end{pmatrix}$ se tiene

$$A_T = \begin{pmatrix} 2 & -1 & 3 \\ 4 & 2 & 6 \\ -6 & 3 & -9 \end{pmatrix}$$

teorema 7.3.2 ii)

Del ejemplo 5.7.4, se ve que $\rho(A) = \rho(T) = 1$ e im $T = \text{gen} \left\{ \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix} \right\}$.

Entonces $\nu(T) = 2$.

teorema 7.3.2 iii)

Para encontrar $N_A = \text{nu } T$, se reduce por renglones para resolver el sistema $A\mathbf{x} = \mathbf{0}$:

$$\begin{pmatrix} 2 & -1 & 3 & | & 0 \\ 4 & -2 & 6 & | & 0 \\ -6 & 3 & -9 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Esto significa que $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in N_A$ si 2x - y + 3z = 0, o sea, y = 2x + 3z. Estableciendo primero

x = 1, z = 0 y después x = 0, z = 1, se obtiene una base para N_A :

nu
$$T = N_A = \operatorname{gen}\left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \right\}.$$

EJEMPLO 7.3.4 Representación matricial de una transformación cero

Es fácil verificar que si T es la transformación cero de $\mathbb{R}^n \to \mathbb{R}^m$, entonces A_T es la matriz cero de $m \times n$. De igual manera, si T es la transformación identidad de $\mathbb{R}^n \to \mathbb{R}^n$, entonces $A_T = I_n$.

EJEMPLO 7.3.5 Representación matricial de una transformación de rotación en \mathbb{R}^2

Se vio en el ejemplo 7.1.8, que si T es la función que rota a todo vector en \mathbb{R}^2 un ángulo θ , entonces $A_T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$

Ahora se generalizará el concepto de representación matricial a espacios arbitrarios de dimensión finita.