Mining Frequent Subgraphs

CS 145

Fall 2015

FFSM: Fast Frequent Subgraph Mining -- An Overview:

- How to solve graph isomorphism problem?
 - A Novel Graph Canonical Form: CAM
- How to tackle subgraph isomorphism problem (NP-complete)?
 - Incrementally maintained embeddings
- How to enumerate subgraphs:
 - An Efficient Data Structure: CAM Tree
 - Two Operations: CAM-join, CAM-extension.

Adjacency Matrix

- Every diagonal entry of adjacency matrix *M* corresponds to a distinct vertex in *G* and is filled with the label of this vertex.
- Every off-diagonal entry in the lower triangle part of M^1 corresponds to a pair of vertices in G and is filled with the label of the edge between the two vertices and zero if there is no edge.

a				
у	b			
у	X	b		
0	у	0	c	
0	0	у	0	d
M_1				

	a				
	y	b			
	у	X	b		
	0	0	у	d	
	0	у	0	0	С
•	M_2				

b				
X	b			
у	0	d		
0	у	0	c	
у	у	0	0	a
M_3				

¹for an undirected graph, the upper triangle is always a mirror of the lower triangle

Code

A <u>Code</u> of $n \times n$ adjacency matrix M is defined as sequence of lower triangular entries (including the diagonal entries) in the order:

$$M_{1,1} M_{2,1} M_{2,2} \dots M_{n,1} M_{n,2} \dots M_{n,n-1} M_{n,n}$$

Code(M₁): aybyxb0y0c00y0d > Code(M₂): aybyxb00yd0y00c >

Code(M₃): bxby0d0y0cyy00a

assuming a>b>c> ... >0

The <u>Canonical Adjacency Matrix</u> is the one produces the maximal code, using lexicographic order.

MP Submatrix

For an $m \times m$ matrix A, an $n \times n$ matrix B is A's maximal proper submatrix (MP Submatrix), iff B is obtained by removing the last none-zero entry from A.

- We define a CAM is <u>connected</u> iff the corresponding graph is connected.
- Theorem I: A CAM's MP submatrix is CAM
- Theorem II: A connected CAM's MP submatrix is connected

a

CAM Tree: Subgraphs

CAM Tree: Frequent Subgraphs

How to Enumerate Nodes in a CAM Tree?

- Two operations to explore CAM tree:
 - CAM-Join
 - CAM-Extension
- Augmenting CAM tree with Suboptimal CAMs
- Objectives:
 - no false dismissal
 - no redundancy
- Plus: We want to this efficiently!

CAM-Join

Superimpose two adjacency matrices if they share the same MP submatrix.

Case 1: both A and B have at least two edge entries in the last row

- 1: if $f \neq k$ then
- 2: $join(A, B) = \{C\}$ where C is a $m \times m$ matrix such that

$$c_{i,j} = \begin{cases} b_{i,j} & i = n, j = k \\ a_{i,j} & \text{otherwise} \end{cases}$$

- 3: **else**
- 4: $join(A, B) = \emptyset$
- 5: end if

A has at least two edge entries in last row but B has only one

a		
y	b	
y	X	b

a			
y	b		
y	0	b	
0	y	0	c

a			
y	b		
y	X	b	
0	y	0	c

1: $join(A, B) = \{C\}$ where C is a $n \times n$ matrix and

2:

$$c_{i,j} = \begin{cases} a_{i,j} & 0 < i, j \le m \\ b_{i,j} & \text{otherwise} \end{cases}$$

Join Case 3a

Join Case 3b

1: let matrix D be a $(m+1) \times (m+1)$ matrix where (case 3b)

$$d_{i,j} = \begin{cases} a_{i,j} & 0 < i, j \le m \\ b_{m,j} & i = m+1, 0 < j < m \\ 0 & i = m+1, j = m \\ b_{m,m} & i = m+1, j = m+1 \end{cases}$$

- 2: **if** $(f \neq k, a_{m,m} = b_{m,m})$ **then**
- 3: $C ext{ is } m \times m ext{ matrix where (case 3a)}$

$$c_{i,j} = \begin{cases} b_{i,j} & i = n, j = k \\ a_{i,j} & \text{otherwise} \end{cases}$$

- 4: $join(A, B) = \{C, D\}$
- 5: else
- 6: $join(A, B) = \{D\}$
- 7: end if

CAM-Extension

- only one edge entry in the last row
- Extend the current pattern by adding one more edge entry.

Efficiency

Comparing to FSG, the join efficiency is improved after "sorting" the CAMs.

Suboptimal Tree

11/24/15

17

Summary

Theorem:

For a graph G, let C_{K-1} (C_k) be set of the suboptimal CAMs of all size-(K-1) (K) subgraphs of G ($K \ge 2$). Every member of set C_K can be enumerated unambiguously either by **joining** two members of set C_{K-1} or by **extending** a member in C_{K-1} .

FFSM Search

- Task: identify all frequently occurring subgraphs from a family of graphs
- Depth-first search
 - Better memory utilization
- Apriori property
 - Eliminate unnecessary isomorphism checks
- Graph normalization: CAM
 - Avoid redundant examination
- Subgraph isomorphism test is NP-complete
 - Incremental isomorphism check

Experimental Study

- Predictive Toxicology Evaluation Competition (PTE)
 - Contains: 337 compounds
 - Each graph contains 27 nodes and 27 edges on average
- NIH DTP Anti-Viral Screen Test (DTP CA/CM)
 - Chemicals are classified to be Confirmed Active (CA), Confirmed Moderate Active (CM) and Confirmed Inactive (CI).
 - We formed a dataset contains CA (423) and CM (1083).
 - Each graph contains 25 nodes and 27 edges on average

Performance (PTE)

21 11/24/15

Performance (DTP CACM)

