Fun with Curry Howard

Tikhon Jelvis (tikhon@jelv.is)

December 17, 2013

Curry-Howard

- correspondence between programming languages and formal logic systems
 - ▶ programming language ≡ logic
 - ▶ program ≡ proof
- shows deep relationship between mathematics and programming

Why

- useful for thinking by analogy—a new perspective on programming
- underlies proof assistants like Coq and Agda
- useful for practical programming in Haskell and OCaml
 - ► GADTs, DataKinds, Type Families. . .
 - Putting Curry-Howard to Work
 - http://web.cecs.pdx.edu/~sheard/papers/ PutCurryHoward2WorkFinalVersion.ps

Basic Idea

- ▶ type ≡ proposition
- ▶ program ≡ proof
- \blacktriangleright a type is inhabited if it has at least one element \equiv proposition with proof
- ▶ unit is trivially inhabited: () —like ⊤
- void is uninhabited: like ⊥
 - ▶ Haskell: data Void

Comparing Inference Rules: True

- STLC vs intuitionistic propositional logic
- true introduction:

Т

unit type:

(): unit

False

- ▶ no way to introduce false (⊥)
- similarly, no rule for void!
- we can "eliminate" false:

$$\frac{\perp}{C}$$

this cannot actually happen!

Implication Introduction

▶ if we can prove *B* given *A*:

$$\frac{A \vdash B}{A \Rightarrow B}$$

just like rule for abstractions:

$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash (\lambda x : \tau . e) : \tau \rightarrow \tau'}$$

Implication Elimination

$$\frac{A \Rightarrow B \quad A}{B}$$

Just like function application:

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 e_2 : \tau'}$$

And Introduction

$$\frac{A \quad B}{A \wedge B}$$

just like product type:

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}$$

And Elimination

$$\frac{A \wedge B}{A}$$
 $\frac{A \wedge B}{B}$

just like first and second:

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{first } e : \tau_1} \quad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{second } e : \tau_2}$$

Or Introduction

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B}$$

just like sum type:

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{left}\ e : \tau_1 + \tau_2} \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{right}\ e : \tau_1 + \tau_2}$$

Or Elimination

$$\frac{A \vdash C \quad B \vdash C \quad A \lor B}{C}$$

just like pattern matching (case):

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, \ x : \tau_1 \vdash e_1 : \tau' \quad \Gamma, \ y : \tau_2 \vdash e_2 : \tau'}{\Gamma \vdash (\mathsf{case} \ e \ \mathsf{of} \ x \to e_1 \parallel y \to e_2) : \tau'}$$

Constructive Logic

- ▶ we did not talk about ¬ and Curry-Howard
- ightharpoonup functional programming does not generally deal with \neg
- functional programming corresponds to intuitionistic or constructive logic
 - logic system without the law of the excluded middle

$$\forall x.x \lor \neg x$$

Negation

• what does it mean for $\neg x$ to be true?

$$\neg x \equiv x \Rightarrow \bot$$

beacuse only

$$\perp \Rightarrow \perp$$

we can't directly write programs/proofs with this idea

Exceptions

- control flow for handling errors
- does not play well with proving things!

$$\frac{\Gamma \vdash e : \mathbf{exn}}{\mathsf{raise} \ e : \tau}$$

we could even have:

raise e : void

raise does not return to context

Catching Exceptions

very similar to pattern matching

$$\frac{\Gamma \vdash e_1 : \tau \quad \Gamma, x : \mathbf{exn} \vdash e_2 : \tau}{\Gamma \vdash (\mathsf{try} \ e_1 \ \mathsf{with} \ x \Rightarrow e_2) : \tau}$$

- error handler and body have the same type
- exceptions not encoded in type system
- good example of isolating the design of a language feature

Generalizing Exceptions

- we can generalize exceptions with continuations
- a continuation is a "snapshot" of the current execution
 - can be resumed multiple times
- callCC is a very powerful construct for control flow

Continuations

- very versatile
 - exceptions
 - ► threads
 - coroutines
 - generators
 - backtracking

Basic Idea

- control what happens "next" as a program evaluates
- the next step (continuation) is reified as a function
- the continuation is a first class value
 - pass it around
 - call it multiple times—or none
 - be happy

Example

$$e_1 + e_2$$

▶ split into current value (e₁) and "continuation":

$$\bullet + e_2$$

we could get the continuation as a function:

$$\lambda x.x + e_2$$

callCC

- ▶ introduce a new primitive for getting current continuation
- callCC —"call with current continuation"
- continuation as function
 - calling continuation causes callCC to return
- calls a function with a function...
 - "body" function gets "continuation" function as argument

callCC Example

$$e_1 + e_2$$

get continuation out:

callCC
$$k$$
 in $body + e_2$

- ▶ body gets $+ e_2$ as k
- original expression doesn't return
- calling k is like original expression returning

Early Exit

- we can use continuations to return from an expression early
- ▶ like a hypothetical (return 1) + 10 in a C-like language callCC exit in (exit 1) + 10
- entire expression evaluates to 1
- similar to exception handling

Types

we can think of callCC with this type:

callCC :
$$((\tau \to \sigma) \to \tau) \to \tau$$

- lacktriangle note how σ is never used—it can be anything including ot
- $((\tau \to \sigma) \to \tau) \to \tau$ implies the law of the excluded middle
- callCC turns our logic into a classical one!

Negation Again

- ▶ remember that $\neg x \equiv x \Rightarrow \bot$
- ▶ in $((\tau \to \sigma) \to \tau) \to \tau$, σ is not used
- \blacktriangleright this means σ can be \bot !

$$((\tau \to \bot) \to \tau) \to \tau$$
$$(\neg \tau \to \tau) \to \tau$$

Peirce's Law

- $((\tau \to \sigma) \to \tau) \to \tau$ as an axiom is equivalent to the law of the excluded middle as an axiom
- callCC moves our language from a constructive logic to a classical logic
- ▶ a nice proof of this equivalence
- side-note: apparently "Peirce" is pronounced more like "purse"

Continuation-Passing Style

- we can emulate callCC by cleverly structuring our program
- every continuation is explicitly represented as a callback
- this is continuation-passing style (CPS)
- used in node.js for concurrency (non-blocking operations)
- normal code can be systematically compiled to CPS

CPS Example

add
$$x y = x + y$$

CPS version:

add
$$x$$
 y $k = k(x + y)$

- ▶ k is the continuation—a function to call after finishing
 - ▶ *k* is the conventional name for "callback" or "continuation"

CPS Example Usage

CPS-transformed:

add 2 3
$$(\lambda x.add\ 1\ x\ (\lambda y.y))$$

- functions never return—call continuation instead
- ▶ access result with a $\lambda x.x$ continuation
- callCC just gives access to k

Double Negation Translation

- CPS means we can emulate callCC
- similarly, we can embed classical logic into constructive logic
 - called double negation translation
- for ever provable proposition ϕ in classical logic, we can prove $\neg\neg\phi$ in constructive logic
 - \blacktriangleright in constructive logic, $\phi \equiv \neg \neg \phi$ does not necessarily hold

Double Negation Translation Intuition

- $ightharpoonup \neg \neg \phi$ is like proving " ϕ does not lead to a contradiction"
- not a constructive proof for ϕ because we have not constructed an example of ϕ
- lacktriangle a classical proof can be an example that " ϕ does not lead to a contradiction"

Double Negation and CPS

- ► CPS transform ≡ double negation
- ▶ remember: $\neg x \equiv (x \rightarrow \bot)$
- ▶ for a constant (say 3), the CPS version is:

$$\lambda k.k(3)$$

we go from 3 : int to:

$$((\mathsf{int} \to \sigma) \to \sigma)$$

 $ightharpoonup \sigma$ can be anything

Double Negation and CPS

▶ same trick as before: take σ to be \bot :

$$((\mathsf{int} \to \bot) \to \bot)$$

▶ now translate to ¬:

$$(\neg\mathsf{int}\to\bot)\\ \neg(\neg\mathsf{int})$$

▶ since CPS doesn't usually use ⊥, it's a bit more general

Curry-Howard Conclusion

- ▶ programming languages ≡ logic systems
- ightharpoonup programs \equiv proofs
- ▶ functional ≡ intuitionistic
- imperative ≡ classical
 - "imperative" means exceptions, callCC or similar