

Course Addendum

Semester: Fall 2022	Subject Code: BDD300	Section: NAA
Subject Title: Advanced Da	tabase Design	
Professor: Ayesha Manzer		
E-mail: Ayesha.manzer@s	enecacollege.ca	
Office Hours: Wed: 12:40 pm	to 1:40 pm, please send me email first	or Available by email
Approved by:		

Kathy Dumanski, Chair, School of Software Design and Data Science

Please read this addendum to the general course outline carefully. It is your guide to the course requirements and activities.

Please refer to the course outline for learning outcomes, course description and text and materials.

Please also visit <u>ict.senecacollege.ca</u> for key information on courses, graduation requirements, transfer credit, and more from the School of Software Design and Data Science.

Assessment Summary

30%	
35%	
20%	
15%	
	35% 20%

Course Policies

Promotion Policy:

To obtain a credit in this subject, a student must:

Achieve a weighted combined average of 50% or better for the midterm test (test 1 and test 2) and the final assessment.

Achieve a grade of 50% or better on the overall course.

Academic Policies:

http://www.senecacollege.ca/about/policies/academics-and-student-services.html

PLEASE RETAIN THIS DOCUMENT FOR FUTURE EDUCATIONAL AND/OR EMPLOYMENT USE.

TENTATIVE WEEKLY SCHEDULE Fall Semester 2022

Week	Topic or Skill	Reading	Assessment	Weigh
Week 1	Introduction:	Required: Sadalage,	Lab 1: NoSQL case	3%
	Different Requirements Beget Different	Fowler Ch.1	study	
	Databases,	Recommended:		
	Big Data: Volume, Velocity, Variety,	Harrison Ch.1		
	Hadoop: framework and ecosystem,			
	NoSQL: The rise of NoSQL systems,			
	Overview of NoSQL concepts			
Week 2	Data Models	Required: Sadalage,	Lab 2: Document Data	3%
	Aggregates, Models for NoSQL systems,	Fowler Ch.2	Model case study	
	Key-Value, Document, Column, & Graph			
	Data Models,			
	Schemaless Databases			
Week 3	Data Models	Required: Sadalage,		
	Key-Value, Document, Column, & Graph	Fowler Ch.3		
	Data Models,			
	Schemaless Databases			
Week 4	Distribution Models and Consistency	Required: Sadalage,	Lab 3: Sharding and	3%
	Sharding, Master-Slave and Peer-to-Peer	Fowler Ch.4	CAP Theorem case	370
	Replication,	Recommended: Guy	study	
	Combining Sharding and Replication,	Harrison Ch.3		
	Update, Read, and Relaxing Consistency,			
	The CAP Theorem			
Week 5	Document Databases: an Introduction	Required: Sadalage,	Lab 4: Prepare data	3%
Weeks	Definition of a Document Database,	Fowler Ch.9	with document	370
	Features: Consistency, Transactions,	Recommended: Guy	databases	
	Availability, Query Features, and Scaling	Harrison Ch.4		
	Availability, Query reactires, and Scaling			
Week 6	Document Databases Using MongoDB	Required: Gaurav	Lab 5: Explore data	3%
week o	Features and constraints,	Vaish Ch.6,	with document	3/0
	Database design, Database queries,	Recommended:	databases	
		Tiwari, Ch. 5	aacasascs	
	Database modeling, Schema definition	Perkins, Ch. 5		
Week 7	Performing CRUD Operations Possument Patabases Heing Mongo PR	,	Lab 6: Extract data	20/
week /	Document Databases Using MongoDB	Required: Gaurav Vaish Ch. 6	Lab 6: Extract data with document	3%
	Querying NoSQL Stores	Recommended:	databases	
	Queries for a single entity, simple result	Tiwari, Ch. 6	Project 1: NoSQL	15%
	Queries for a single entity, Aggregate	riwari, Cii. U	Assign. (Individual)	13%
	Queries for one-to-one, one-to-many, and		Assign. (inuividual)	
	many-to-many relationships		Midterm Test 1	10%
			Milateliii 163t I	10/0

Study Week

Week	Topic or Skill	Reading	Assessment	Weight
Week 8	Column-Family Stores Concepts of columnar databases, Features: Consistency, Transactions, Availability, Query Features, Scaling	Required: Sadalage, Fowler Ch.10	Lab 7 : Prepare data for Cassandra	3%
Week 9	Column-Family Stores (continued) Suitable Use Cases, Event Logging Content Management Systems, Blogging Platforms Counters, Expiring Usage	Required: Sadalage, Fowler Ch.10	Lab 8: Load data into Cassandra	3%
Week 10	Graph Databases Definition of a Graph Database, Features: Consistency, Transactions, Availability, Query Features, Scaling	Required: Sadalage, Fowler Ch.11	Lab 9: Prepare data with graph databases Project 1 due	3%
Week 11	Graph Databases Using Neo4j Suitable Use Cases, Connected Data, Routing, Dispatch, and Location-Based Services	Required: Sadalage, Fowler Ch.11 Recommended: Perkins, Ch. 6	Lab 10: Explore data with graph databases Final Project Assigned: MongoDB Design & Implement. (team)	3% 20%
Week 12	Key-Value Databases Definition of Key-Value Stores Features: Consistency, Transactions, Query Features, Structure of Data, Scaling	Required: Sadalage, Fowler Ch.8	Midterm Test 2 Work on Final Project	10%
Week 13	Guidelines for Selecting a Database Choosing a NoSQL Database Criteria for Selecting Key-Value Databases, Document Databases, Column Family Databases, and Graph Databases Using NoSQL and Relational Databases Together	Recommended:: Dan Sullivan Ch.15	Final Project due	
Week 14			Final Exam	15%

Textbooks:

Required: Sadalage, P. & Fowler, M (2012). *NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence*. Addison-Wesley.

Recommended: Readings will also be selected from the following:

a) Harrison, G. (2015). Next Generation Databases: NoSQL, NewSQL, and Big Data_ What every professional needs to know about the future of databases in a world of NoSQL and Big Data. Apress.

- b) Vaish, G. (2013). Getting Started with NoSQL. Packt Publishing.
- c) Sullivan, D. (2015). NoSQL for Mere Mortals. Pearson Education.
- d) Tiwari, S. (2011). Professional NoSQL. John Wiley & Sons.
- e) Perkins, L., Redmond, E., & Wilson, J. R. (2017). Seven databases in seven weeks: A guide to modern databases and the NoSQL movement.

All the above textbooks are available at our Seneca Library online access.

PLEASE RETAIN THIS DOCUMENT FOR FUTURE EDUCATIONAL AND/OR EMPLOYMENT USE.