

Review

- Access a node
- Examples
- Git Repositories

Access a Node

```
[etrain101@comet-ln2 ~]$ srun --pty --nodes=1 \
--ntasks-per-node=24 -p compute -t 01:00:00 \
--reservation=SI2017DAY2 --wait 0 /bin/bash
```


Examples

```
[etrain101@comet-ln2 ~]$ tree \
/share/apps/examples/SI2017/Singularity
```

/share/apps/examples/SI2017/Singularity

I-- bootstrap.def

`-- singularity-hello-world

I-- hello.sh

I-- LICENSE

I-- README.md

`-- Singularity

1 directory, 5 files

Git Repository

[etrain101@comet-ln2 ~]\$ git clone \ https://github.com/hpcdevops/singularity-hello-world.git

Overview

- Download & Install Singularity in VM
- Working with Singularity Containers
- Comet Virtual Clusters

Why Singularity?

```
COMMAND=apt-get -y install libx11-dev
COMMAND=apt-get install build-essential python-libdev
COMMAND=apt-get install build-essentyial openmpi-dev
COMMAND=apt-get install cmake
COMMAND=apt-get install g++
COMMAND=apt-get install git-lfs
COMMAND=apt-get install libXss.so.1
COMMAND=apt-get install libgdal1-dev libproj-dev
COMMAND=apt-get install libjsoncpp-dev libjsoncpp0
COMMAND=apt-get install libmpich-dev --user
COMMAND=apt-get install libpthread-stubs0 libpthread-stubs0-dev libx11-dev libx11-de
COMMAND=apt-get install libudev0:i386
COMMAND=apt-get install numpy
COMMAND=apt-get install python-matplotlib
COMMAND=apt-get install python3
```


Why Singularity?

Singularity Containers for Science GM Kurtzer 2017

Download & Install Singularity

- Use a Virtual Machine...
- Download & Unpack Singularity
- Configure & Build Singularity
- Install & Test Singularity

Go to the Singularity website and download... http://singularity.lbl.gov/install-linux

Download & Unpack Singularity

https://asciinema.org/a/129866

Configure & Build Singularity

https://asciinema.org/a/129867

Install & Test Singularity

https://asciinema.org/a/129868

Building Singlarity Containers

- Create Empty Container
- Import into Container
- Shell into Container
- Write into Container
- Bootstrap Container

Create Empty Container

https://asciinema.org/a/130106

Import Into Container

https://asciinema.org/a/130107

Shell into Container

https://asciinema.org/a/130109

Write into Singularity Container

https://asciinema.org/a/130110

Bootstrap Container

https://asciinema.org/a/130111

Running Singularity Containers on Comet

- Transfer Container to Comet
- Run Container on Comet
- Allocate Resources to Run Container
- Integrate Container with Slurm

Transfer Container to Comet

https://asciinema.org/a/130195

Run Container on Comet

https://asciinema.org/a/130196

Allocate Resources to Run Container

https://asciinema.org/a/130197

Integrate Container with Slurm

https://asciinema.org/a/130218

Is there an easier way?

- Pull Container Directly to Comet
- Remaining steps as before...

Pull Container Directly to Comet

https://asciinema.org/a/129906

Singularity Hub

- Build containers without a VM
- Share your science
- Prepare for Singularity Registry

https://singularity-hub.org

Build containers without a VM

Definition in a Github repo...

Build containers without a VM

- Definition in a Github repo...
- Automatically built on push...

Build containers without a VM

- Definition in a Github repo...
- Automatically built on push...
- Search, compare, etc...

Prepare for Singularity Registry

PEARC17 - Containers for Science (Slide 161) - Vanessa Sochat

Comet Virtual Clusters

- Why use a Virtual Cluster?
- Installing Cloudmesh Client
- Running Cloudmesh Client

Why to use a Virtual Cluster?

- Require custom software we can't provide
- Require root access inside Comet
- Desire to expand local cluster to XSEDE resource

Why to NOT use a Virtual Cluster?

- Significant Setup / Configuration Required
- OS Administration Expertise Required
- Custom software use cases handled by Singularity

Installing Cloudmesh Client

- Create VirtualEnv for Cloudmesh Client
- Install System Dependencies
- Install Cloudmesh Client with pip

Create VirtualEnv for Cloudmesh Client

https://asciinema.org/a/129877

Install System Dependencies

https://asciinema.org/a/129879

Install Cloudmesh Client with pip

https://asciinema.org/a/129882

Running Cloudmesh Client

- Initialize Cloudmesh Client
- Virtual Cluster Operations

Initialize Cloudmesh Client

https://asciinema.org/a/129883

Virtual Cluster Operations

https://asciinema.org/a/129885

