1.1.1. <u>I2C Registers</u>

(Base Address Refers to the Register of index D7h-D4h, IDSEL = AD18/SB of PCI Configuration Register)

IO Address	Register Name	Section
BA + 00h	I2C0 Control Register	11.2.24
BA + 01h	I2C0 Status Register	11.2.24
BA + 02h	I2C0 MY_Address Register	11.2.24
BA + 03h	I2C0 TX_Address Register	11.2.24
BA + 04h	I2C0 Transmit/Receive Data	11.2.24
BA + 05h	I2C0 Clock Frequency Control1	11.2.24
BA + 06h	I2C0 Clock Frequency Control2	11.2.24
BA + 07h	I2C0 Extra Control Register	11.2.24
BA + 08h	I2C1 Control Register	11.2.24
BA + 09h	I2C1 Status Register	11.2.24
BA + 0Ah	I2C1 MY_Address Register	11.2.24
BA + 0Bh	I2C1 TX_Address Register	11.2.24
BA + 0Ch	I2C1 Transmit/Receive Data	11.2.24
BA + 0Dh	I2C1 Clock Frequency Control1	11.2.24
BA + 0Eh	I2C1 Clock Frequency Control2	11.2.24
BA + 0Fh	I2C1 Extra Control Register	11.2.24

1.1.2. I2C Registers

Register Offset: BA + 0h

Register Name: I2C0 Control Register

Reset Value: 00h

7	6	5	4	3	2	1	0
Sw_Inten	RX_Inten	TX_Inten	Nak_Inten	ARL_Inten	STP_Inten	STOP	NAKEn

Bit	Name	Attribute	Description
7	Sw_Inten	R/W	Slave write interrupt enable. When enabled, it will generate interrupt signal at slave mode to request software writing TX Data. This bit is only needed at slave mode
6	RX_Inten	R/W	RX interrupt enable. When enabled, it will generate interrupt signal while RX Data buffer has data to be read
7	TX_Inten	R/W	TX interrupt enable. When enabled, it will generate interrupt signal while TX_Data or Tx_Addr was sent out successfully.
4	Nak_Inten	R/W	Nak Interrupt enable. When enabled, it will generate interrupt signal while master mode receive unpredictable "Nak" from outside slave
3	ARL_Inten	R/W	Arbitration loss interrupt enable. When enabled, it will generate interrupt signal while arbitration loss occurs
2	STP_Inten	R/W	Slave mode stop interrupt enable. When enabled, it will generate interrupt signal

Bit	Name	Attribute	Description		
			while slave mode is ended by outside master issuing STOP.		
			Writing a 1 to this bit will cause the hardware to send NAK+Stop signal after current		
1	STP	R/W	byte transfer. It will be auto cleared while STOP is sent out on the i2c bus. This		
			should be used only when the device is a master.		
			1: This causes the I ² C-bus controller to send an Nak after each byte.		
0	NAKEn	R/W	0: This causes the I ² C-bus controller to send an Ack after each byte.		
			This bit is only needed at slave mode		

Register Offset: BA + 1h

Register Name: I2C0 Status Register

Reset Value: 01h

7	6	5	4	3	2	1	0
Sw_Req	RX_Rdy	TX_Done	Nak_err	ARL	SlaveSTP	BBusy	MS_

Bit	Na me	Attribute	Description
7	Sw_Req	R/WC	1: Slave request software to write TX data Write 1 to this bit will clear to "0"
6	RX_Rdy	R/WC	1: Master/Slave has data to be read Write 1 to this bit will clear to "0"
5	TX_Done	R/WC	1: Master/Slave send TX_Address or TX data successfully Write 1 to this bit will clear to "0"
4	Nak_err	R/WC	1: Unpredictable Nak is received Write 1 to this bit will clear to "0"
3	ARL	R/WC	1: Arbitration loss . Write 1 to this bit will clear to "0"
2	SlaveSTP	R/WC	1: Slave receive STOP condition Write 1 to this bit will clear to "0"
1	BBUSY	RO	The bus is considered to be busy after the Start condition and free again at a certain time interval after the Stop condition.
0	MS_	RO	1 : Master mode (Default) 0 : Slave mode

Register Offset: BA + 2h

Register Name: I2C0 My_Address Register

Reset Value: 00h

7	6	5	4	3	2	1	0
		Му	Slave Add	dress			Rsvd

Bit	Name	Attribute	Description
7-1	7-1 My_Addr R/W		7-bits slave address which is checked by internal slave module. If address is match it will switch to slave mode. Processor can write proper value into this
			register to identify itself
0	Rsvd	RO	Reserved

Register Offset: BA + 3h

Register Name: I2C0 Transmit Address Register

Reset Value: 00h

7 6 5 4 3 2 1 0

TX Slave Address R/W

Bit	Name	Attribute	Description
7-0	TX_Addr	R/W	8-bit address register for Master to start a transaction. Processor can write this register to generate START + Slave Address + R/W on i2c bus. If Processor write a macrocode into this register, it will send out macrocode and switch to high-speed mode at proper timing.

Register Offset: BA + 4h

Register Name: I2C0 Transmit/Receive Data Register

Reset Value: 00h

7 6 5 4 3 2 1 0 Data

Bit	Na me	Attribute	Description
7-0	Data	R/W	8-bit data register for I ² C-bus Tx/Rx operation. Processor can write this register to
7-0	Data		transmit DATA or read this register to receive data

Register Offset: BA + 5h

Register Name: I2C0 Clock Frequency Control1

Reset Value: 0ah

Bit	Na me	Attribute	Description
			Processor can write this register value from 0 to 255 to control the frequency of SCLH
7-0	PreScale1	R/W	At high speed Mode, SCLH frequency = 33M÷(PreScale1),
			PS: If PreScale1 < 10, SCLH frequency = 33M÷10 = 3.3Mhz

Register Offset: BA + 6h

Register Name: I2C0 Clock Frequency Control2

Reset Value: 88h

7 6 5 4 3 2 1 0

Fast PreScale2

Bit	Na me	Attribute	Description
7	Fast	R/W	1: Fast mode , 0: Standard Mode
6-0	PreScale2	R/W	Processor can write this register value from 0 to 255 to control the frequency of SCL At F/S Mode, SCL frequency = 33M÷(PreScale1) ÷(PreScale2+1)

Register Offset: BA + 7h

Register Name: I2C0 Extra Control Register

Reset Value: 00h

7 6 5 4 3 2 1 0

I2c_RST TX_hit_RX Rsv

Bit	Na me	Attribute	Description
7	I2c_RST	R/W	Write "1" will reset i2c controller except pre-scale registers (for keep the speed setting). After reset, Controller will send out 10 dummy clocks to ensure no any slave driving data because of incomplete operation of the Master (maybe other master), auto clear after reset complete.
6	TX_hit_RX	R/O	Indicate the TX address is written but may not send out because the slave is driving first bit of data on bus, After data in rx_buffer is read back by software, hardware will continue to read slave and nak it at the end, then send re-start + address.
5-0	Rsv	RO	Reserved

Register Offset: BA + 8h

Register Name: I2C1 Control Register

Reset Value: 00h

7 6 5 4 3 2 1 0 Sw_Inten RX_Inten TX_Inten Nak_Inten ARL_Inten STP_Inten STOP NAKEn

Bit	Name	Attribute	Description
7	Sw_Inten	R/W	Slave write interrupt enable. When enabled, it will generate interrupt signal at slave mode to request software writing TX Data. This bit is only needed at slave mode
6	RX_Inten	R/W	RX interrupt enable. When enabled, it will generate interrupt signal while RX Data buffer has data to be read
7	TX_Inten	R/W	TX interrupt enable. When enabled, it will generate interrupt signal while TX_Data or Tx_Addr was sent out successfully.
4	Nak_Inten	R/W	Nak Interrupt enable. When enabled, it will generate interrupt signal while master mode receive unpredictable "Nak" from outside slave
2	ARL_Inten	R/W	Arbitration loss interrupt enable. When enabled, it will generate interrupt signal while
3			arbitration loss occurs
2	STP_Inten	DAM	Slave mode stop interrupt enable. When enabled, it will generate interrupt signal
		R/W	while slave mode is ended by outside master issuing STOP.
			Writing a 1 to this bit will cause the hardware to send NAK+Stop signal after current
1	STP	R/W	byte transfer. It will be auto cleared while STOP is sent out on the i2c bus. This
			should be used only when the device is a master.
			1: This causes the I ² C-bus controller to send an Nak after each byte.
0	NAKEn	R/W	0: This causes the I ² C-bus controller to send an Ack after each byte.
			This bit is only needed at slave mode

Register Offset: BA + 9h

Register Name: I2C1 Status Register

Reset Value: 01h

7 6 5 4 3 2 1 0 TX_Done RX_Rdy ARL SlaveSTP Sw_Req Nak_err Bbusy MS_

Bit	Na me	Attribute	Description
7	Sw_Req	R/WC	1: Slave request software to write TX data Write 1 to this bit will clear to "0"
6	RX_Rdy	R/WC	1: Master/Slave has data to be read Write 1 to this bit will clear to "0"
5	TX_Done	R/WC	1: Master/Slave send TX_Address or TX data successfully Write 1 to this bit will clear to "0"
4	Nak_err	R/WC	1: Unpredictable Nak is received Write 1 to this bit will clear to "0"

Bit	Na me	Attribute	Description
3	ARL	R/WC	1: Arbitration loss . Write 1 to this bit will clear to "0"
2	SlaveSTP	R/WC	1: Slave receive STOP condition Write 1 to this bit will clear to "0"
1	BBUSY	RO	The bus is considered to be busy after the Start condition and free again at a certain time interval after the Stop condition.
0	MS_	RO	1 : Master mode (Default) 0 : Slave mode

Register Offset: BA + Ah

Register Name: I2C1 My_Address Register

Reset Value: 00h

7 6 5 4 3 2 1 0

My Slave Address Rsvd

Bit	Na me	Attribute	Description
7-1	My_Addr		7-bits slave address which is checked by internal slave module. If address is match it will switch to slave mode. Processor can write proper value into this register to identify itself
0	Rsvd	RO	Reserved

Register Offset: BA + Bh

Register Name: I2C1 Transmit Address Register

Reset Value: 00h

7 6 5 4 3 2 1 0

TX Slave Address R/W

Bit	Na me	Attribute	Description
7-0	TX_Addr	R/W	8-bit address register for Master to start a transaction. Processor can write this register to generate START + Slave Address + R/W on i2c bus. If Processor write a macrocode into this register, it will send out macrocode and switch to high-speed mode at proper timing.

Register Offset: BA + Ch

Register Name: I2C1 Transmit/Receive Data Register

Reset Value: 00h

7 6 5 4 3 2 1 0

Data

Bit	Na me	Attribute	Description
7-0	Data	R/W	8-bit data register for I ² C-bus Tx/Rx operation. Processor can write this register to
7-0	Dala	FX/VV	transmit DATA or read this register to receive data

Register Offset: BA + Dh

Register Name: I2C1 Clock Frequency Control1

Reset Value: 0ah

7 6 5 4 3 2 1 0

PreScale1

Bit	Na me	Attribute	Description
			Processor can write this register value from 0 to 255 to control the frequency of SCLH
7-0	PreScale1	R/W	At high speed Mode, SCLH frequency = 33M÷(PreScale1),
			PS: If PreScale1 < 10, SCLH frequency = 33M÷10 = 3.3Mhz

Register Offset: BA + Eh

Register Name: I2C1 Clock Frequency Control2

Reset Value: 88h

7 6 5 4 3 2 1 0

Fast PreScale2

Bit	Na me	Attribute	Description
7	Fast	R/W	1: Fast mode , 0: Standard Mode
6-0	PreScale2	R/W	Processor can write this register value from 0 to 255 to control the frequency of SCL At F/S Mode, SCL frequency = 33M÷(PreScale1) ÷(PreScale2+1)

Register Offset: BA + Fh

Register Name: I2C1 Extra Control Register

Reset Value: 00h

7 6 5 4 3 2 1 0

| I2c_RST | TX_hit_RX | Rsv

Bit	Na me	Attribute	Description
7	I2c_RST	R/W	Write "1" will reset i2c controller except pre-scale registers (for keep the speed setting). After reset, Controller will send out 10 dummy clocks to ensure no any slave driving data because of incomplete operation of the Master (maybe other master), auto clear after reset complete.
6	TX_hit_RX	R/O	Indicate the TX address is written but may not send out because the slave is driving first bit of data on bus, After data in rx_buffer is read back by software, hardware will continue to read slave and nak it at the end, then send re-start + address.
5-0	Rsv	RO	Reserved