

分析学技巧积累

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第一部	的分 一元实变函数的 Lebesgue 积分	1
第一章	集合、映射与关系的预备知识	2
1.1	集合的基本概念	2
1.2	集合之间的映射	3
1.3	等价关系、选择公理以及 Zorn 引理	4
第 一音	实数集: 集合、序列与函数	6
	域、正性以及完备性公理	-
	自然数与有理数	
	可数集与不可数集	
	实数的开集、闭集和 Borel 集	
	实数序列	
	实变量的连续函数实值函数	
	Lebesgue 测度	14
	Lebesgue 外测度	
	Lebesgue 可测集的 σ 代数	
	Lebesgue 可测集的外逼近和内逼近	
	可数可加性、连续性以及 Borel-Cantelli 引理	
	不可测集	
3.6	Cantor 集和 Cantor-Lebesgue 函数	14
第四章	Lebesgue 可测函数	15
	和、积与复合	15
4.2	序列的逐点连续与简单逼近	15
4.3	Littlewood 的三个原理、Egoroff 定理以及 Lusin 定理	15
公工主	Laboreus 和A	1.0
	Lebesgue 积分 Riemann 积分	16
	有限测度集上的有界可测函数的 Lebesgue 积分	
	# 毎可测函数的 Lebesgue 积分	
	一般的 Lebesgue 积分	
	积分的可数可加性与连续性	
	一致可积性:Vitali 收敛定理	
		16
		16
		16
5.7		- 0
	微分与积分	17
	单调函数的连续性	
6.2	单调函数的可微性:Lebesgue 定理	17

	目录
6.3 有界变差函数:Jordan 定理	17
6.4 绝对连续函数	17
6.5 导数的积分: 微分不定积分	17
6.6 凸函数	17
第七章 L^p 空间: 完备性与逼近	18
7.1 赋范线性空间	18
7.2 Young、Hölder 与 Minkowski 不等式	18
7.3 L ^p 是完备的:Riesz-Fischer 定理	18
7.4 逼近与可分性	18
第八章 L^p 空间: 对偶与弱收敛	19
8.1 关于 $L^p(1 \leq p < \infty)$ 的对偶的 Riesz 表示定理	19
8.2 L^p 中的弱序列收敛	19
8.3 弱序列紧性	19
8.4 凸污函的最小化	10

第一部分

一元实变函数的 Lebesgue 积分

第一章 集合、映射与关系的预备知识

1.1 集合的基本概念

定义 1.1 (集合的基本概念)

- 1. 对于集合 A, 元素 x 是 A 的成员关系记为 $x \in A$, 而 x 不是 A 的成员关系记为 $x \notin A$ 。我们常说 A 的一个成员属于 A 且称 A 的成员是 A 中的一个点。通常集合用花括号表示,因此 $\{x|x\}$ 是使得关于 x 的陈述成立的所有元素 x 的集合。若两个集合有相同的成员,我们说它们相同.
- 2. 令 $A \cap B$ 为集合。若 A 的每个成员也是 B 的成员, 我们称 A 为 B 的**子集**, 记之为 $A \subseteq B$, 也说 A 包含于 B 或 B 包含 A 。 B 的子集 A 称为 B 的**真子集**.
- 3. 若 $A \neq B$ 。 $A \cap B$ 的 \mathcal{H} , 记为 $A \cup B$, 是所有或者属于 A 或者属于 B 的点的集合,即 $A \cup B = \{x | x \in Ax \in B\}$ 。
- 4. $A \cap B$ 的交, 记为 $A \cap B$, 是所有同时属于 $A \cap B$ 的点的集合, 即 $A \cap B = \{x | x \in Ax \in B\}$ 。
- 5. $A \in B$ 中的补,记为 B-A,是 B 中那些不在 A 中的点的集合,即 $B-A = \{x \in Bx \notin A\}$ 。若在特别的讨论中所有的集合是参考集 X 的子集,我们常简单地称 X-A 为 A 的补。
- 6. 没有任何成员的集合称为**空集**,记为 Ø。不等于空集的集合称为非空的。
- 7. 我们称只有一个成员的集合为单点集。
- 8. 给定集合 X, X 的所有子集的集合记为 $\mathcal{P}(X)$ 或 2^{X} , 称之为 X 的**幂集**。

注 为了避免考虑集合的集合时可能产生混淆,我们常用词"族"或"簇"作为"集"的同义词。我通常称集合的集合为**集族**或集簇。

定义 1.2 (集族的并和交)

令 厂 为集族.

- 1. \mathcal{F} 的并,记为 $\bigcup_{F \in \mathcal{F}} F$,定义为属于 \mathcal{F} 中的至少一个集合的点的集合。
- 2. \mathcal{F} 的交,记为 $\bigcap_{F \in \mathcal{F}} F$,定义为属于 \mathcal{F} 中的每个集合的点的集合。
- 3. 若集族 \mathcal{F} 中的任何两个集合的交是空的,集族 \mathcal{F} 称为是**不交的**.
- 4. 若集族 \mathcal{F} 是不交的,则 \mathcal{F} 的并称为是**无交并**或**没交并**,记为 $\bigcup_{F \in \mathcal{F}} F$.

定理 1.1 (De Morgan 等式)

令X为集合, \mathcal{F} 为集族,则一定有

$$X - \left[\bigcup_{F \in \mathcal{F}} F \right] = \bigcap_{F \in \mathcal{F}} [X - F], \quad X - \left[\bigcap_{F \in \mathcal{F}} F \right] = \bigcup_{F \in \mathcal{F}} [X - F]$$

即并的补是补的交, 且交的补是补的并.

定义 1.3 (指标集)

对于集合 Λ ,假定对每个 $\lambda \in \Lambda$,存在已定义的 E_{λ} 。令 \mathcal{F} 为集族 $\{E_{\lambda}|\lambda \in \Lambda\}$ 。我们写作 $\mathcal{F} = \{E_{\lambda}\}_{\lambda \in \Lambda}$ 且 称 Λ 中的元素为 \mathcal{F} 的用**指标集** (或**参数集**) Λ 标记的**指标** (或**参数化**).

1.2 集合之间的映射

定义 1.4 (映射的基本概念)

给定两个集合 A 和 B ,从 A 到 B 的映射或函数意味着对 A 的每个成员指派 B 的一个成员给它。在 B 是实数集的情形下,我们总是用"函数"这个词。一般我们记这样的映射为 $f:A\to B$,而对 A 的每个成员 x ,我们记 f(x) 为 B 中指派给 x 的成员。

- 1. 对于 A 的子集 A', 我们定义 $f(A') = \{b|b = f(a), a \to A'$ 的某个成员 $\}$: f(A') 称为 A' 在 f 下的**象**.
- 2. 我们称集合 A 为函数 f 的定义域.
- 3. 我们称 f(A) 为 f 的**象或值域**。

定义 1.5 (满射、单射和双射)

- 1. 若 f(A) = B, 函数 f 称为是**映上的**或**满射**.
- 2. 若对 f(A) 的每个成员 b 恰有 A 的一个成员 a 使得 b = f(a), 函数 f 称为是**一对一的**或**单射**.
- 3. 既是一对一又是映上的映射 $f: A \to B$ 称为是**可逆的**或**双射**, 我们说该映射建立了集合 $A \vdash B$ 之间的一一对应.

定义 1.6 (可逆映射的逆)

给定一个可逆映射 $f: A \to B$,对 B 中的每个点 b,恰好存在 A 中的一个成员 a 使得 f(a) = b,它被记为 $f^{-1}(b)$ 。这个指派定义了映射 $f^{-1}: B \to A$,称之为 f 的**逆**.

定义 1.7 (对等的集合)

两个集合 $A \cap B$ 称为是**对等的**, 记为 $A \sim B$, 若存在从 A 映到 B 的可逆映射.

注 从集合论的观点看,对等的两个集合是不可区分的.

命题 1.1 (可逆映射的复合是可逆的)

给定两个映射 $f:A\to B$ 和 $g:C\to D$ 使得 $f(A)\subseteq C$,则复合 $g\circ f:A\to D$ 定义为对每个 $x\in A$, $[g\circ f](x)=g(f(x))$ 。不难看出**可逆映射的复合是可逆的**。

定义 1.8 (恒等映射)

对于集合 D, 定义**恒等映射** $\mathrm{id}_D: D \to D$ 为对所有 $x \in D$, $\mathrm{id}_D(x) = x$ 。

命题 1.2 (可逆映射的充要条件)

映射 $f: A \to B$ 是可逆的, 当且仅当存在映射 $g: B \to A$ 使得

$$g \circ f = \mathrm{id}_A f \circ g = \mathrm{id}_B$$
.

定义 1.9 (原象)

即便映射 $f: A \to B$ 不是可逆的,对于集合 E,我们定义 $f^{-1}(E)$ 为集合 $\{a \in A | f(a) \in E\}$,称之为 E 在 f 下的**原象**.

命题 1.3 (原像的性质)

我们有下面有用的性质:对于任何两个集合 E_1 和 E_2 ,

$$f^{-1}(E_1 \cup E_2) = f^{-1}(E_1) \cup f^{-1}(E_2), \quad f^{-1}(E_1 \cap E_2) = f^{-1}(E_1) \cap f^{-1}(E_2)$$

与

$$f^{-1}(E_1 - E_2) = f^{-1}(E_1) - f^{-1}(E_2).$$

定义 1.10 (映射的限制)

对于映射 $f:A\to B$ 和它的定义域 A 的一个子集 A',f 在 A' 上的**限制**, 记为 $f|_{A'}$,是从 A' 到 B 的映射,它将 f(x) 指派给每个 $x\in A'$.

1.3 等价关系、选择公理以及 Zorn 引理

定义 1.11 (笛卡尔积)

给定两个非空集 A 和 B 的**笛卡尔积**, 记为 $A \times B$,定义为所有有序对 (a,b) 的族,其中 $a \in A$ 而 $b \in B$,且我们考虑 (a,b) = (a',b') 当且仅当 a = a' 且 b = b'.

定义 1.12 (关系及其自反性、对称性、传递性)

对于非空集合 X, 我们称 $X \times X$ 的子集 R 为 X 上的一个**关系**, 且写作 xRx'.

- 1. 若 (x,x') 属于 R. 关系 R 称为**自反的**, 若对所有 $x \in X$ 有 xRx;
- 2. 若 (x,x') 属于 R. 关系 R 称为对称的, 若 x'Rx 则 xRx';
- 3. 若 (x,x') 属于 R. 关系 R 称为传递的, 若 xRx' 且 x'Rx'' 则 xRx''.

定义 1.13 (等价关系)

集合X上的关系R称为等价关系,若它是自反的、对称的和传递的。

定义 1.14 (等价类)

给定集合 X 上的等价关系 R, 对每个 $x \in X$, 集合 $R_x = \{x' | x' \in X, xRx'\}$ 称为 x(关于 R) 的**等价类**. 集合 X 中所有元素 (关于 R) 的等价类构成的集合称为 X(关于 R) 的**等价类族**, 记为 X/R.

命题 1.4 (等价类的性质)

给定集合X上的等价关系R,

- (1) $R_x = R_{x'}$ 当且仅当 xRx'.
- (2) 等价类族 X/R 是不交的.
- (3) X/R 是 X 的非空子集的不交族, 其并是 X. 即 $X = \bigsqcup_{x \in Y} R_x = \bigsqcup_{x \in Y} F$.
- (4) (反过来) 给定 X 的非空子集的不交族 \mathcal{F} ,其并是 X,属于 \mathcal{F} 中的同一个集的关系是 X 上使得 $\mathcal{F}=X/R$ 的等价关系 R.

证明

- (1) 由 R 是对称的和传递的等价类的性质 (1)容易验证.
- (2) 由关系 R 是自反的容易验证.
- (3)

定义 1.15 (集合的势)

给定集合 X, 对等关系是 X 的所有子集组成的族 2^X 上的等价关系. 一个集合关于对等关系的等价类称为该集合的**势**或**基数**.

换句话说, 设集合 $A \cap B$, 若 $A \sim B$, 就可以称 $A \subseteq B$ 具有相同势或基数.

定义 1.16 (选择函数)

令 \mathcal{F} 为非空集的非空簇。 \mathcal{F} 上的一个**选择函数** f 是从 \mathcal{F} 到 $\bigcup_{F \in \mathcal{F}} F$ 的函数,它具有以下性质:对 \mathcal{F} 中的每个集合 F, f(F) 是 F 的一个成员.

公理 1.1 (Zermelo 选择公理)

令 \mathcal{F} 为非空集的非空族,则 \mathcal{F} 上存在选择函数.

\sim

定义 1.17 (序关系)

非空集合 X 上的关系 R 称为**偏序**,若它是自反的、传递的,且对 X 中的 x,x' 若 xRx' 且 x'Rx,则 x=x'. X 的子集 E 称为是**全序的**,若对 E 中的 x,x',或者 xRx' 或者 x'Rx.

- 1. X 的成员 x 称为是 X 的子集 E 的一个**上界**, 若对所有 $x' \in E$, 都有 x'Rx;
- 2. X 的成员 x 称为**最大的**, 若 X 中使得 xRx' 的唯一成员是 x' = x.

笔记 对于集簇 \mathcal{F} 和 A, $B \in \mathcal{F}$, 定义 ARB, 若 $A \subseteq B$ 。 **集合的被包含关系**是 \mathcal{F} 的偏序。观察到 \mathcal{F} 中的集合 F 是 \mathcal{F} 的子簇 \mathcal{F}' 的一个上界,若 \mathcal{F}' 中的每个集合是 F 的子集;而 \mathcal{F} 中的集合 F 是最大的,若它不是 \mathcal{F} 中任何集合的真子集。

类似地,给定集簇 \mathcal{F} 和 A, $B \in \mathcal{F}$,定义 ARB,若 $B \subseteq A$ 。**集合的包含关系**是 \mathcal{F} 的偏序。观察到 \mathcal{F} 中的集合 F 是 \mathcal{F} 的一个上界,若 \mathcal{F}' 的每个集合包含 F; 而 \mathcal{F} 中的集合 F 是最大的,若它不真包含 \mathcal{F} 中的任何集合。

引理 1.1 (Zorn 引理)

令 X 为偏序集. 它的每个全序子集有一个上界. 则 X 有一个最大元.

我们已定义了两个集合的笛卡尔积。对一般的参数化集族定义笛卡尔积是有用的。对于由集合 Λ 参数化的集族 $\{E_{\lambda}\}_{\lambda\in\Lambda}$ 的笛卡尔积,记为 $\prod_{\lambda\in\Lambda} E_{\lambda}$,定义为从 Λ 到 $\bigcup_{\lambda\in\Lambda} E_{\lambda}$ 使得对每个 $\lambda\in\Lambda$, $f(\lambda)$ 属于 E_{λ} 的函数 f 的集合。显然选择公理等价于非空集的非空簇的笛卡尔积是非空的这一断言。注意到笛卡尔积是对参数化的集簇定义的,而相同的簇的两个不同的参数化将有不同的笛卡尔积。笛卡尔积的这个一般定义与对两个集合给出的定义一致。事实上,考虑两个非空集 A 和 B。定义 $\Lambda=\{\lambda_1,\lambda_2\}$,其中 $\lambda_1\neq\lambda_2$,接着定义 $E_{\lambda_1}=A$ 与 $E_{\lambda_2}=B$ 。该映射将有序对 $(f(\lambda_1),f(\lambda_2))$ 指派给函数 $f\in\prod_{\lambda\in\Lambda} E_{\lambda}$ 是一个将笛卡尔积 $\prod_{\lambda\in\Lambda} E_{\lambda}$ 映到有序对族 $A\times B$ 的可逆映射,因此这两个集合是对等的。对于两个集合 E 和 Λ ,对所有 $\lambda\in\Lambda$ 定义 $E_{\lambda}=E$,则笛卡尔积 $\prod_{\lambda\in\Lambda} E_{\lambda}$ 等于由所有从 Λ 到 E 的映射组成的集合且记为 E^{Λ} 。

第二章 实数集:集合、序列与函数

2.1 域、正性以及完备性公理

假设给定实数集 \mathbb{R} ,使得对于每对实数 a 和 b,存在有定义的实数 a+b 和 ab,分别称为 a 和 b 的和与积。它们满足以下的域公理、正性公理与完备性公理。

公理 2.1 (域公理)

加法的交换性: 对所有实数 $a \rightarrow b$,

a + b = b + a

加法的结合性: 对所有实数 a, b 和 c,

(a+b) + c = a + (b+c)

加法的单位元: 存在实数, 记为 0, 使得对所有实数 a,

0 + a = a + 0 = a

加法的逆元: 对每个实数 a, 存在实数 b 使得

a + b = 0

乘法的交换性: 对所有实数 $a \rightarrow b$,

ab = ba

乘法的结合性: 对所有实数 a, b 和 c,

(ab)c = a(bc)

乘法的单位元:存在实数,记为1,使得对所有实数 a, 1a = a1 = a 乘法的逆元:对每个实数 $a \neq 0$,存

在实数 b 使得

ab = 1

分配性: 对所有实数 a, b 和 c,

a(b+c) = ab + ac

非平凡性假设:

 $1\neq 0$

满足上述公理的任何集合称为**城**. 从加法的交换性可以得出加法的单位元 0 是唯一的,从乘法的交换性得出乘法的单位元 1 也是唯一的。加法的逆元和乘法的逆元也是唯一的。我们记 a 的加法的逆为 -a,且若 $a \neq 0$,记它的乘法逆为 a^{-1} 或 1/a.

注 若有一个域,我们能实施所有初等代数的运算,包括解线性方程组。我们不加声明地使用这些公理的多种推论.

公理 2.2 (正性公理)

存在称为正数的实数集,记为 φ 。它有以下两个性质:

- (1) 若 a 和 b 是正的,则 ab 和 a+b 也是正的。
- (2) 对于实数 a, 以下三种情况恰有一种成立:

a是正的, -a是正的, a=0.

定义 2.1 (实数的序)

对于实数 a 和 b,

- 1. 定义a > b意味着a b是正的.
- 2. 定义 $a \ge b$ 意味着a > b或a = b.
- 3. 定义 a < b 意味着 b > a.
- 4. 定义 $a \leq b$ 意味着 $b \geq a$.
- 注 实数的序的定义是根据实数的正性公理给出的.

定义 2.2 (实数的区间)

给定实数 a 和 b 满足 a < b, 我们定义 (a,b) = $\{x|a$ < x < b},且说 (a,b) 的点落在 a 与 b 之间. 我们称非空实数集 I 为 **区间**,若对 I 中任意两点,所有落在这两点之间的点也属于 I。当然,集合 (a,b) 是 区间。以下集合也是区间:

$$(a,b) = \{x | a < x < b\}; [a,b] = \{x | a \leqslant x \leqslant b\}; [a,b) = \{x | a \leqslant x < b\}; (a,b] = \{x | a < x \leqslant b\}.$$
 (2.1)

筆记 所有有界区间都是(2.1)式列出的形式.

定义 2.3 (上界和下界)

- 1. 非空实数集 E 称为**有上界**,若存在实数 b,使得对所有 $x \in E$, $x \leq b$: 数 b 称为 E 的**上界**.
- 2. 非空实数集 E 称为**有下界**,若存在实数 b,使得对所有 $x \in E$, $x \ge b$: 数 b 称为 E 的**下界**.

公理 2.3 (完备性公理)

令 E 为有上界的非空实数集。则在 E 的上界的集合中有一个最小的上界。

奎记 有上界的集合未必有最大的成员。但完备性公理断言它一定有一个最小的上界.

定义 2.4 (上下确界)

- 1. 有上界的非空实数集 E 有**最小上界**, 记为 1.u.b. E。E 的最小上界通常称为 E 的**上确界**且记为 $\sup E$ 。
- 2. 有下界的非空实数集 E 有**最大下界**, 记为 g.l.b. E o E 的最大下界通常称为 E 的**下确界**且记为 inf E o
- 3. 一个非空实数集称为有界的, 若它既有下界又有上界。

 $\frac{1}{E}$ 有上界的非空实数集 E 的最小上界和有下界的非空实数集 E 的最大下界的存在性由完备性公理保证, 因此这个定义是良定义.

定义 2.5 (实数的绝对值)

定义实数 x 的绝对值 |x| 为: 若 $x \ge 0$ 则等于 x, 若 x < 0 则等于 -x。

定理 2.1 (三角不等式)

对任何实数对a和b.都有

 $|a+b| \leqslant |a| + |b|.$

定义 2.6 (扩充的实数)

引入符号 ∞ 和 $-\infty$ 并对所有实数 x 写 $-\infty$ < x < ∞ 是方便的。我们称集合 $\mathbb{R} \cup \{\pm \infty\}$ 为**扩充的实数**.

聲 笔记 我们将定义实数序列的极限,而允许极限是扩充的实数是方便的.

定义 2.7 (扩充的实数的上下确界)

- 1. 若非空实数集 E 没有上界, 我们定义它的上确界为 ∞ 或 $+\infty$ 。定义空集的上确界为 $-\infty$.
- 2. 若非空实数集 E 没有下界, 我们定义它的下确界为 -∞. 定义空集的下确界为 +∞.
- 🕏 笔记 因此每个实数集有一个属于扩充的实数的上确界和下确界.

命题 2.1 (扩充的实数关于和与积的性质)

- 1. $\infty + \infty = \infty$, $-\infty \infty = -\infty$.
- 2. 对每个实数 x, $x + \infty = \infty$ 而 $x \infty = -\infty$.
- 3. 若 x > 0, $x \cdot \infty = \infty$ 而 $x \cdot (-\infty) = -\infty$.
- 4. 若 x < 0, $x \cdot \infty = -\infty$ 而 $x \cdot (-\infty) = \infty$ 。

注 注意到收敛到实数的实数序列的许多性质在极限是 ±∞ 时继续成立, 例如, 和的极限是极限的和且积的极限是极限的积. 因此我们容易验证这些扩充的实数关于和与积的性质.

定义 2.8 (无界区间)

定义 $(-\infty, \infty) = \mathbb{R}$ 。对于 $a, b \in \mathbb{R}$,定义

$$(a, \infty) = \{x \in \mathbb{R} | a < x\}, \quad (-\infty, b) = \{x \in \mathbb{R} | x < b\}$$

与

$$[a,\infty) = \{x \in \mathbb{R} | a \leqslant x\}, \quad (-\infty,b] = \{x \in \mathbb{R} | x \leqslant b\}.$$

瑩 笔记 上面形式的集合是无界区间。从ℝ的完备性可以推出所有无界区间是上述形式的一种,而所有有界区间都是(2.1)式列出的形式。

例题 2.1 令 a 和 b 为实数.

- (i) 证明: 若 ab = 0, 则 a = 0 或 b = 0.
- (ii) 验证 $a^2 b^2 = (a b)(a + b)$, 并从 (i) 部分推出: 若 $a^2 = b^2$, 则 a = b 或 a = -b.
- (iii) 令 c 为正实数. 定义 $E = \{x \in \mathbb{R} | x^2 < c\}$. 验证 E 是非空的且有上界. 定义 $x_0 = \sup E$. 证明 $x_0^2 = c$. 用 (ii) 部分证明存在唯一的 x > 0 使得 $x^2 = c$. 记之为 \sqrt{c} .

证明

2.2 自然数与有理数

定义 2.9 (归纳集)

实数集 E 称为是**归纳的**,若它包含 1,且若实数 x 属于 E,则数 x+1 也属于 E。

 $ilde{\mathbb{S}}$ 笔记 显然全体实数集 \mathbb{R} 是归纳的。从不等式 1>0 我们容易推出集合 $\{x\in\mathbb{R}|x\geqslant0\}$ 和 $\{x\in\mathbb{R}|x\geqslant1\}$ 是归纳的。

定义 2.10 (自然数集)

自然数集,记为 ≥、定义为 ≥的所有归纳子集的交,即包含数 1 的最小归纳集.

注集合论中的自然数集一般是从0开始,但这里自然数集是从0开始的,也就是说0∉№.

命题 2.2 (自然数集是归纳的)

№是归纳的.

证明 观察到数 1 属于 \mathbb{N} ,这是由于 1 属于每个归纳集。此外,若数 k 属于 \mathbb{N} ,则 k 属于每个归纳集。因此,由归纳集的定义可知,k+1 属于每个归纳集,所以 k+1 属于 \mathbb{N} .

定理 2.2 (数学归纳法原理)

对每个自然数n,令S(n)为某个数学断言。假定S(1)成立。也假定每当k是使得S(k)成立的自然数,则S(k+1)也成立。那么,对每个自然数n,S(n)成立。

证明 定义 $A = \{k \in \mathbb{N} | S(k) \text{ 成立} \}$ 。假设恰好意味着 A 是一个归纳集。于是 $\mathbb{N} \subseteq A$ 。因此对每个自然数 n, S(n) 成立。

定理 2.3

每个非空自然数集有一个最小成员.

证明 令 E 为自然数的非空集。由于集合 $\{x \in \mathbb{R} | x \geq 1\}$ 是归纳的,自然数有下界 1。因此 E 有下界 1。作为完备性公理的一个推论,E 有下确界,定义 c = inf E。由于 c+1 不是 E 的下界,存在 $m \in E$ 使得 m < c+1。我们宣称 $m \in E$ 的最小成员。否则,存在 $n \in E$ 使得 n < m。由于 $n \in E$, $c \leq n$ 。于是 $c \leq n < m < c+1$,且因此 m-n < 1。因此自然数 m 属于区间 (n,n+1)。例题 2.3表明对每个自然数 n, $(n,n+1) \cap \mathbb{N} = \emptyset$. 这个矛盾证明了 $m \in E$ 的最小成员.

定理 2.4 (实数的 Archimedeas 性质)

对于每对正实数 $a \rightarrow b$, 存在自然数 n 使得 na > b。

Ŷ 笔记 我们经常重述 $\mathbb R$ 的 Archimedeas 性质: 对每个正实数 arepsilon,存在自然数 n 使得 1/n < arepsilon。 $^{oldsymbol{arepsilon}}$

证明 定义 c = b/a > 0。我们用反证法证明。若定理是错的,则 c 是自然数的一个上界。根据完备性公理,自然数有一个上确界,定义 $c_0 = \sup \mathbb{N}$ 。则 $c_0 - 1$ 不是自然数的上界。选取自然数 n 使得 $n > c_0 - 1$ 。因此 $n+1 > c_0$ 。但自然数集是归纳的,因此 n+1 是自然数。由于 $n+1 > c_0$,而 c_0 不是自然数集的上界。这个矛盾完成了证明。

定义 2.11 (整数集、有理数集和无理数)

- 1. 定义整数集(记为 ℤ) 为由自然数、它们的相反数和数 0 组成的数集。
- 2. 有理数集, 记为 ℚ, 定义为整数的商的集合, 即形如 x = m/n 的数 x, 其中 m 和 n 是整数且 $n \neq 0$.
- 3. 若一个实数不是有理的就称它为无理数.

例题 2.2 正如我们在**例题** 2.1(iii)证明的, 存在唯一的正数 x 使得 $x^2 = 2$,记之为 $\sqrt{2}$ 。证明: $\sqrt{2}$ 这个数不是有理的. 证明 事实上,假定 p 和 q 是自然数使得 $(p/q)^2 = 2$,则 $p^2 = 2q^2$ 。素数分解定理 ^⑤ 告诉我们 2 除 p^2 的次数正好是它除 p 的次数的两倍。因此 2 除 p^2 偶数次。类似地,2 除 $2q^2$ 奇数次。于是 $p^2 \neq 2q^2$,且因此 $\sqrt{2}$ 是无理的。

定义 2.12 (稠密)

实数的集合 E 称为在 \mathbb{R} 中**稠密**, 若任何两个实数之间有 E 的成员.

定理 2.5 (有理数的稠密性)

有理数在 ℝ 中稠密.

证明 令 a 和 b 为实数,满足 a < b。首先假定 a > 0。根据 $\mathbb R$ 的 Archimedeas 性质可知,存在自然数 q 使得 (1/q) < b - a。再一次利用 $\mathbb R$ 的 Archimedeas 性质可知,自然数集 $S = \{n \in \mathbb N | n/q \ge b\}$ 非空。根据定理 2.3可知,S 具有最小成员 p。观察到 1/q < b - a < b ,于是 p > 1。因此 p - 1 是自然数(见例题 2.4),因而根据 p 的选取的最小性,(p-1)/q < b 。我们也有

$$a = b - (b - a) < (p/q) - (1/q) = (p - 1)/q$$

因此有理数 r = (p-1)/q 落在 a = b 之间。若 a < 0,根据 \mathbb{R} 的 Archimedeas 性质可知,存在自然数 n 使得 n > -a。

9

我们从考虑过的第一种情形推出:存在有理数 r 落在 n+a 与 n+b 之间。因此有理数 r-n 落在 a 与 b 之间。**例题 2.3** 用归纳法证明:对每个自然数 n,区间 (n,n+1) 不含任何自然数.

证明

例题 2.4 用归纳法证明: 若 n > 1 是自然数,则 n - 1 也是一个自然数。接着用归纳法证明: 若 m 和 n 是满足 n > m 的自然数,则 n - m 是自然数。

证明

2.3 可数集与不可数集

公理 2.4 (良序原理)

自然数集的每个非空子集都有一个最小元素,即自然数在其标准的大小关系 < 下构成一良序集.

🕏 笔记 良序原理等价于选择公理.

命题 2.3

对等在集合间定义了一个等价关系,即它是自反的、对称的与传递的.

证明

定义 2.13 (自然数)

定义自然数 $\{k \in \mathbb{N} | 1 \le k \le n\}$ 为 $\{1, \dots, n\}$.

定理 2.6 (鸽笼原理)

对任何自然数 n 和 m, 集合 $\{1, \dots, n+m\}$ 与集合 $\{1, \dots, n\}$ 不对等.

证明 归纳可证.

定义 2.14 (可数集与不可数集)

- 1. 集合 E 称为是**有限的**或**有限集**. 若它或者是空集, 或者存在自然数 n 使得 E 与 $\{1, \dots, n\}$ 对等.
- 2. 我们说 E 是**可数无穷的**, 若 E 与自然数集 ℕ 对等.
- 3. 有限或可数无穷的集合称为可数集. 不是可数的集合称为不可数集.

命题 2.4

若一个集与可数集对等,则它是可数的.

证明

定理 2.7

可数集的子集是可数的。特别是,每个自然数集是可数的.

证明 令 B 为可数集而 A 是 B 的一个非空子集。首先考虑 B 是有限的情形。令 f 为 $\{1, \dots, n\}$ 与 B 之间的一一对应。定义 g(1) 为第一个使得 f(j) 属于 A 的自然数 j, $1 \le j \le n$ 。由于 $f \circ g$ 是 $\{1\}$ 与 A 之间的一一对应,若 $A = \{f(g(1))\}$,证明完成。否则,定义 g(2) 为使得 f(j) 属于 $A \setminus \{f(g(1))\}$ 的第一个自然数 j, $1 \le j \le n$ 。 鸽 笼原理告诉我们至多 N 步后该归纳选择过程终止,其中 $N \le n$ 。因此 $f \circ g$ 是 $\{1, \dots, N\}$ 与 A 之间的一一对应。于是 A 有限。

现在考虑 B 是可数无穷的情形。令 f 为 \mathbb{N} 与 B 之间的一一对应。定义 g(1) 为第一个使得 f(j) 属于 A 的自然数 j。如同第一种情形的证明,我们看到若该选择过程终止,则 A 是有限的。否则,该选择过程不终止而 g 在所

10

有的 \mathbb{N} 上恰当定义。显然 $f \circ g$ 是一一映射,其中定义域是 \mathbb{N} 而象包含于 A 中。归纳论证表明对所有 $j,g(j) \geq j$ 。对每个 $x \in A$,存在某个 k 使得 x = f(k)。因此 x 属于集合 $\{f(g(1)), \cdots, f(g(k))\}$ 。因此 $f \circ g$ 的象是 A。因此 A 是可数无穷。

推论 2.1

(i) 对每个自然数 n, 笛卡尔积 $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{n \times n}$ 是可数无穷的. 即自然数集与其自身的有限次笛卡尔积是可

数无穷的.

(ii) 有理数集 Q 是可数无穷的.

 \Diamond

证明

(i) 我们对 n=2 证明 (i),而一般情形留作归纳法的练习。定义从 $\mathbb{N} \times \mathbb{N}$ 到 \mathbb{N} 的映射 g 为 $g(m,n)=(m+n)^2+n$ 。 映射 g 是一对一的。事实上,若 g(m,n)=g(m',n'),则 $(m+n)^2-(m'+n')^2=n'-n$,因此

$$|m + n + m' + n'| \cdot |m + n - m' - n'| = |n' - n|$$

(ii) 为证明 Q 的可数性,我们首先从素数分解定理推出每个正有理数 x 可唯一写成 x = p/q,其中 p 和 q 是互素的自然数。对 x = p/q > 0 定义从 Q 到 N 的映射 g 为 $g(x) = 2((p+q)^2 + q)$,其中 p 和 q 是互素的自然数,g(0) = 1,而对 x < 0,g(x) = g(-x) + 1。我们将证明 g 是一对一的留作练习。于是 Q 与 N 的一个子集对等,因此根据定理 2.7,是可数的。我们将用鸽笼原理证明 N × N 和 Q 都不是有限的留作练习。

定义 2.15 (可数无穷集的列举)

对于可数无穷集 X, 我们说 $\{x_n|n\in\mathbb{N}\}$ 是 X 的一个**列举**, 若

 $X = \{x_n | n \in \mathbb{N}\}, x_n \neq x_m (\stackrel{\text{``}}{\pi} n \neq m).$

.

定理 2.8

非空集是可数的当且仅当它是某个定义域为非空可数集的函数的象。

~

证明 令 A 为非空可数集,而 f 为将 A 映上 B 的映射。假定 A 是可数无穷的,而将有限的情形留作练习。通过 A 与 \mathbb{N} 之间的一一对应的复合,我们可以假定 A = \mathbb{N} 。定义 A 中的两点 x, x' 为等价的,若 f(x) = f(x')。这是一个等价关系,即它是自反的、对称的与传递的。令 E 为 A 的子集,它由每个等价类的一个成员组成。则 f 在 E 的限制是 E 与 B 之间的一一对应。但 E 是 \mathbb{N} 的子集,因此,根据定理 2.7,是可数的。集合 B 与 E 对等,因此 B 是可数的。逆断言是显然的,若 B 是非空可数集,则它或者与自然数的一个初始部分对等,或者与自然数全体对等。

推论 2.2

可数集的可数族的并是可数的。

~

证明 令 Λ 为可数集且对每个 $\lambda \in \Lambda$,令 E_{λ} 为可数集。我们将证明并 $E = \bigcup_{\lambda \in \Lambda} E_{\lambda}$ 是可数的。若 E 是空集,则它是可数的。因此我们假设 $E \neq \emptyset$ 。我们考虑 Λ 是可数无穷的情形,而将有限的情形留作练习。令 $\{\lambda_n | n \in \mathbb{N}\}$ 为 Λ 的一个列举。固定 $n \in \mathbb{N}$ 。若 E_{λ_n} 是有限且非空的,选取自然数 N(n) 与将 $\{1, \cdots, N(n)\}$ 映上 E_{λ_n} 的一一映射 f_n ;若 E_{λ_n} 是可数无穷的,选取 \mathbb{N} 映上 E_{λ_n} 的一一映射 f_n 。定义

$$E' = \{(n,k) \in \mathbb{N} \times \mathbb{N} | E_{\lambda_n}$$
 是非空的,且若 E_{λ_n} 也是有限的, $1 \leq k \leq N(n)\}$

定义 E' 到 E 的映射 f 为 $f(n,k) = f_n(k)$ 。则 f 是 E' 映上 E 的映射。然而,E' 是可数集 $\mathbb{N} \times \mathbb{N}$ 的子集,因此,根据定理 2.7,是可数的。定理 5 告诉我们 E 也是可数的。

定义 2.16 (退化的区间)

我们称实数的区间为退化的, 若它是空的或包含一个单独的成员.

定理 2.9

一个非退化实数区间是不可数的。

证明 令 I 为实数的非退化区间。显然 I 不是有限的。我们用反证法证明 I 是不可数的。假定 I 是可数无穷的。令 $\{x_n|n \in \mathbb{N}\}$ 为 I 的一个列举。令 $[a_1,b_1]$ 为 I 的不包含 x_1 的非退化的闭有界子区间。接着令 $[a_2,b_2]$ 为 $[a_1,b_1]$ 的非退化的闭有界子区间,它不包含 x_2 。我们归纳地选取非退化闭有界区间的可数族 $\{[a_n,b_n]\}_{n=1}^{\infty}$,对每个 n, $[a_{n+1},b_{n+1}]\subseteq [a_n,b_n]$,并使得对每个 n, $x_n\notin [a_n,b_n]$ 。非空集 $E=\{a_n|n\in\mathbb{N}\}$ 有上界 b_1 。完备性公理告诉我 们 E 有上确界。定义 $x^* = \sup E$ 。由于 x^* 是 E 的一个上界,对所有 n, $a_n \leq x^*$ 。另一方面,由于 $\{[a_n, b_n]\}_{n=1}^\infty$ 是下降的,对每个n, b_n 是E的上界。于是,对每个n, $x^* \leqslant b_n$ 。因此对每个n, x^* 属于 $[a_n,b_n]$ 。但 x^* 属于 $[a_1,b_1]\subseteq I$, 因此存在自然数 n_0 使得 $x^*=x_{n_0}$ 。由于 $x^*=x_{n_0}$ 不属于 $[a_{n_0},b_{n_0}]$, 我们得到矛盾。因此, I 是不可 数的。

2.4 实数的开集、闭集和 Borel 集

定义 2.17 (实数的开集)

一个实数的集合 O 称为**开的**,若对每个 $x \in O$,存在 r > 0 使得区间 (x - r, x + r) 包含于 O.

定理 2.10

实数的开集就是开区间.

命题 2.5 (实数的开区间)

- (1) 对于a < b, 区间(a,b)是一个开集,且每个开有界区间(有界开集)都是这种形式。
- (2) 对于 $a,b \in \mathbb{R}$, 区间 $(a,\infty),(-\infty,b),(-\infty,\infty)$ 都是开集, 且每个开无界区间 (无界开集) 都是这三中形 式之一.

证明

- (1) 事实上,令x属于(a,b)。定义 $r = \min\{b-x, x-a\}$ 。观察到(x-r, x+r)包含于(a,b)。因此(a,b)是开 有界区间. 又因为实数的有界开集等价于有界开区间, 而实数的有界开区间都是这种形式, 所以每个开有界 区间(有界开集)都是这种形式。
- (2) 观察到每个这样的集合是一个开区间。此外,不难看出,由于每个实数集在扩充实数集中有下确界与上确 界,因此每个开无界区间(无界开集)都是这三中形式之一.

命题 2.6 (实数集的开集的性质)

实数集 \mathbb{R} 和空集 \emptyset 是开的,任何开集的有限族的交是开的,任何开集族的并是开的。

 $\dot{\mathbf{L}}$ 然而,任何开集族的交是开的不成立。例如,对每个自然数 n,令 O_n 为开区间 (-1/n,1/n)。则根据实数的 Archimedeas 性质可知, $\bigcap O_n = \{0\}$,而 $\{0\}$ 不是一个开集.

证明 显然 \mathbb{R} 和 Ø 是开的,而任何开集族的并是开的。令 $\{O_k\}_{k=1}^n$ 为 \mathbb{R} 的开子集的有限族。若该族的交是空的, 则交是空集,因此是开的。否则,令x属于 $\bigcap O_k$ 。对于 $1 \le k \le n$,选取 $r_k > 0$ 使得 $(x - r_k, x + r_k) \subseteq O_k$ 。定

义
$$r = \min\{r_1, \dots, r_n\}$$
。则 $r > 0$ 且 $(x - r, x + r) \subseteq \bigcap_{k=1}^n O_k$ 。 因此 $\bigcap_{k=1}^n O_k$ 是开的

命题 2.7

每个非空开集是可数个不交开区间族的并。

证明 令 O 为 \mathbb{R} 的非空开子集。令 x 属于 O。存在 y > x 使得 $(x,y) \subseteq O$,且存在 z < x 使得 $(z,x) \subseteq O$ 。定义扩充的实数 a_x 和 b_x 为

$$a_x = \inf\{z | (z, x) \subseteq O\} = \sup\{y | (x, y) \subseteq O\}$$

则 $I_x = (a_x, b_x)$ 是包含 x 的开区间。我们宣称

$$I_{X} \subseteq O \boxtimes a_{X} \notin O, \ b_{X} \notin O. \tag{2.2}$$

事实上,令 w 属于 I_x ,比如 $x < w < b_x$ 。根据 b_x 的定义,存在数 y > w 使得 $(x,y) \subseteq O$,因而 $w \in O$ 。此外, $b_x \notin O$,因为若 $b_x \in O$,则对某个 r > 0 我们有 $(b_x - r, b_x + r) \subseteq O$ 。因此 $(x, b_x + r) \subseteq O$,与 b_x 的定义矛盾。类似地, $a_x \notin O$,考虑开区间族 $\{I_x\}_{x \in O}$ 。由于 O 中的每个 x 是 I_x 的成员,而每个 I_x 包含于 O,我们有 $O = \bigcup_{x \in O} I_x$ 。我们从(2.2)推出 $\{I_x\}_{x \in O}$ 是不交的。因此 O 是不交的开区间族的并。剩下来要证明该族是可数的。根据有理数的稠密性,这些开区间的每一个包含一个有理数。这建立了开区间族与有理数子集之间的一一对应。

定义 2.18 (闭包)

对于实数集 E, x 称为 E 的**闭包点**,若每个包含 x 的开区间也包含 E 的点。E 的全体闭包点称为 E 的**闭** 包且记为 \overline{E} 。

我们从定理 2.7和推论 2.1(ii)推出任何有理数集是可数的。因此 O 是可数个不交开区间族的并。

命题 2.8

对于实数集 E, 我们总是有 $E \subseteq \overline{E}$.

若 E 包含它的所有闭包点, 即 $E = \overline{E}$, 则集合 E 称为闭的.

命题 10 对于实数集 E,它的闭包 \overline{E} 是闭的。此外, \overline{E} 在以下意义下是包含 E 的最小闭集:若 F 是闭的且 $E\subseteq F$,则 $\overline{E}\subseteq F$ 。

** 证明 **: 集合 \overline{E} 是闭的,若它包含所有闭包点。令 x 为 \overline{E} 的闭包点。考虑包含 x 的开区间 I_x 。存在一个点 $x' \in \overline{E} \cap I_x$ 。由于 x' 是 E 的闭包点,且开区间 I_x 包含 x',存在点 $x'' \in E \cap I_x$ 。因此每个包含 x 的开区间也包含 E 的点,且因此 $x \in \overline{E}$ 。所以集合 \overline{E} 是闭的。显然,若 $A \subseteq B$,则 $\overline{A} \subseteq \overline{B}$,因此,若 F 是闭的且包含 E,则 $\overline{E} \subseteq \overline{F} = F$ 。

命题 11 实数集是开的当且仅当它在 ℝ 中的补是闭的。

** 证明 **: 首先假定 E 是 \mathbb{R} 的一个开子集。令 x 为 $\mathbb{R}\setminus E$ 的闭包点。则 x 不属于 E,因为否则就会有一个包含 x 且包含于 E 的开区间,因而与 $\mathbb{R}\setminus E$ 不交。于是 x 属于 $\mathbb{R}\setminus E$ 且因此 $\mathbb{R}\setminus E$ 是闭的。现在假定 $\mathbb{R}\setminus E$ 是闭的。令 x 属于 E。则必有包含 x 且包含于 E 的开区间,否则每个包含 x 的开区间包含 $\mathbb{R}\setminus E$ 的点,且因此 x 是 $\mathbb{R}\setminus E$ 的闭包点。由于 $\mathbb{R}\setminus E$ 是闭的,x 也属于 $\mathbb{R}\setminus E$ 。这是一个矛盾。

2.5 实数序列

2.6 实变量的连续函数实值函数

第三章 Lebesgue 测度

- 3.1 Lebesgue 外测度
- 3.2 Lebesgue 可测集的 σ 代数
- 3.3 Lebesgue 可测集的外逼近和内逼近
- 3.4 可数可加性、连续性以及 Borel-Cantelli 引理
- 3.5 不可测集
- 3.6 Cantor 集和 Cantor-Lebesgue 函数

第四章 Lebesgue 可测函数

- 4.1 和、积与复合
- 4.2 序列的逐点连续与简单逼近
- 4.3 Littlewood 的三个原理、Egoroff 定理以及 Lusin 定理

第五章 Lebesgue 积分

- 5.1 Riemann 积分
- 5.2 有限测度集上的有界可测函数的 Lebesgue 积分
- 5.3 非负可测函数的 Lebesgue 积分
- 5.4 一般的 Lebesgue 积分
- 5.5 积分的可数可加性与连续性
- 5.6 一致可积性:Vitali 收敛定理
- 5.7 一致可积性和紧性: 一般的 Vitali 收敛定理
- 5.8 依测度收敛
- 5.9 Riemann 可积与 Lebesgue 可积的刻画

第六章 微分与积分

- 6.1 单调函数的连续性
- 6.2 单调函数的可微性:Lebesgue 定理
- 6.3 有界变差函数:Jordan 定理
- 6.4 绝对连续函数
- 6.5 导数的积分: 微分不定积分
- 6.6 凸函数

第七章 L^p 空间: 完备性与逼近

- 7.1 赋范线性空间
- 7.2 Young、Hölder 与 Minkowski 不等式
- 7.3 L^p 是完备的:Riesz-Fischer 定理
- 7.4 逼近与可分性

第八章 L^p 空间: 对偶与弱收敛

- 8.1 关于 $L^p(1 \le p < \infty)$ 的对偶的 Riesz 表示定理
- 8.2 L^p 中的弱序列收敛
- 8.3 弱序列紧性
- 8.4 凸泛函的最小化