

Université Paul Sabatier

Systèmes Temps Réel

Compte Rendu de TP SUJET -

Auteurs : David TOCAVEN Lucien RAKOTOMALALA

 $\begin{array}{c} \textit{Encadrant}: \\ \textbf{Hamid} \ \ \textbf{DEMMOU} \end{array}$

Table des matières

In	troduction	1
1	TP 1: Iniiation a un OS temps Réel basé sur Linux 1.1 Mesures sous linux	2 2 2 2
2		3
3		4
4	Conclusion	5
A	nnexes	7
\mathbf{T}	TITRE TITRE	
Δ	nneve 2 - TITRE	8

Introduction

TP 1 : Iniiation a un OS temps Réel basé sur Linux

1.1 Mesures sous linux

1.1.1 Programme carrelinux - comedi.c

Ce premier programme est un générateur de signal carré. Il va nous permettre d'analyser les réponses temps réel de en étant basé sur Linux. Ntre première analyse du programme donne :

— Fonction *Void out* envoie un signal carré. La fréquence semble être défini ailleurs dans le programme. L'amplitude du signal est un niveau logique de *LOW* à *HIGH*.

dans la main est init une structure de temps, est ensuite ouvert la carte entrée sortie la carte est paramétrée en sortie sur les ports 0 et 1. ensuite, l'algorithme attend initialisation d'une horloge qui va atenddre un temps correspondant a la demi-période du signal carré généré

Pou mesurer les modifications de période, nous avons crée deux variables timespec: une qui mesure le temps précédent le sleep, une qui mesure a la fin de l'instance while(1). La mesure de la δ est : $\delta = t_{debut} - t_{fin}$.

Mise en place d'un *gnuplot* pour afficher les 5000 dernières périodes.

Observation:

- pour aucune charges de linux, les périodes restent à $50\mu s$.
- pour un simple

1.2 Mesures sous RTAI

Utilisation de la ligne :

Conclusion

Annexes

Annexe 1 - TITRE

Annexe 2 - TITRE