Solutions of the exercises for "How to prove it" book by drets

(may contain various errors)

3. Proofs

3.1. Proof Strategies

To prove a goal of the form $P \to Q$

Assume P is true and then prove Q.

To prove a goal of the form $P \to Q$

Assume Q is false and prove that P is false

Exercises:

1. Consider the following theorem. (This theorem was proven in the introduction.)

Theorem. Suppose n is an integer larger than 1 and n is not prime. Then $2^n - 1$ is not prime.

- (a) Identify the hypotheses and conclusion of the theorem. Are the hypotheses true when n=6? What does the theorem tell you in this instance? Is it right?
- (b) What can you conclude from the theorem in the case n=15? Check directly that this conclusion is correct.
 - (c) What can you conclude from the theorem in the case n = 11?

(a) Hypotheses: $n \in \mathbb{Q}$ and n > 1, and n is not prime.

Conclusion: $2^n - 1$ is not prime

When n = 6 hypotheses are true.

 $2^6 - 1 = 63$ is not prime, theorem is right.

(b)
$$2^{15} - 1 = 32767 = 7 * 4681$$

 $5 * 3 = 15$

- (c) The theorem tells us nothing since 11 is prime, so hypotheses are not satisfied.
- 2. Consider the following theorem. (The theorem is correct, but we will not ask you to prove it here.)

Theorem. Suppose that $b^2 > 4ac$. Then the quadratic equation $ax^2 + bx + c = 0$ has exactly two real solutions.

- (a) Identify the hypotheses and conclusion of the theorem.
- (b) To give an instance of the theorem, you must specify values for a, b, and c, but not x. Why?
- (c) What can you conclude from the theorem in the case $a=2,\,b=-5,$ c=3? Check directly that this conclusion is correct.
- (d) What can you conclude from the theorem in the case $a=2,\,b=4,\,c=3?$
 - (a) Hypotheses: $b^2 > 4ac$

Conclusion: $ax^2 + bx + c = 0$ has exactly two real solutions.

(b) Because the values of x are the solutions, we need to calculate them.

(c)
$$2x^2 - 5x + 3 = 0$$

$$D = b^2 - 4ac = 25 - 24 = 1$$

$$x_1 = 1.5 \ x_2 = 1$$

(d)
$$2x^2 + 4x + 3 = 0$$

The theorem tells us nothing, since hypothese is not satisfied 16 > 24

3. Consider the following incorrect theorem:

Incorrect Theorem. Suppose n is a natural number larger than 2, and n is not a prime number. Then 2n + 13 is not a prime number.

What are the hypotheses and conclusion of this theorem? Show that the theorem is incorrect by finding a counterexample.

Hypotheses: n is a natural number larger than 2, and n is not a prime number.

Conclusion: 2n + 13 is not a prime number.

Counterexample: n=9 is a natural number larger than 2, and n is not a prime number since 3*3=9

2*9+13=18+13=31 is prime number.

4. Complete the following alternative proof of the theorem in Example 3.1.2. Proof. Suppose 0 < a < b. Then b - a > 0. Multiplying both sides by the positive number b + a, we get (b + a)(b - a) > (b + a) * 0, or in other words $b^2 - a^2 > 0$. Since $b^2 - a^2 > 0$, it follows that $a^2 < b^2$. Therefore if 0 < a < b then $a^2 < b^2$.

5. Suppose a and b are real numbers. Prove that if a < b < 0 then $a^2 > b^2$.

Proof. Suppose a < b < 0. Then b - a > 0. Multiplying both sides by the negative number b + a, we get (b + a)(b - a) < (b + a) * 0, or in other words $b^2 - a^2 < 0$. Since $b^2 - a^2 < 0$, it follows that $a^2 > b^2$. Therefore if a < b < 0 then $a^2 > b^2$

6. Suppose a and b are real numbers. Prove that if 0 < a < b then $\frac{1}{b} < \frac{1}{a}$.

Proof. Suppose 0 < a < b. Then b-a > 0. Dividing both sides by the positive number a, we get $\frac{b}{a} - 1 > 0$. Then dividing both sides by the positive number b, we get $\frac{b}{a*b} - \frac{1}{b} > 0$, or in other words $\frac{1}{b} < \frac{1}{a}$. Therefore if 0 < a < b then $\frac{1}{b} < \frac{1}{a}$

7. Suppose that a is a real number. Prove that if $a^3>a$ then $a^5>a$. (Hint: One approach is to start by completing the following equation: $a^5-a=(a^3-a)*?$.)

Proof. Suppose $a^3 > a$. Then $a^3 - a > 0$. Multiplying both sides by the positive number a^2 , we get $a^5 - a^3 > 0$, or in other words $a^5 > a^3$. Since $a^5 > a^3$ and $a^3 > a$, it follows that $a^5 > a$. Therefore if $a^3 > a$ then $a^5 > a$.

8. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.

$$\forall x (x \in (A \setminus B) \to x \in (C \cap D))$$

$$\forall x (\neg (x \in A \land x \notin B) \lor (x \in C \land x \in D))$$

$$\forall x ((x \notin A \lor x \in B) \lor (x \in C \land x \in D))$$

Proof. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$ and $x \notin D$. Then $\forall x ((x \notin A \lor x \in B) \lor (x \in C \land x \in D))$, or in other words $(false \lor x \in B) \lor (x \in C \land false)$ should be equal to true. Therefore if $A \setminus B \subseteq C \cap D$ and $x \in A$ and $x \notin D$ then $x \in B$.

9. Suppose a and b are real numbers. Prove that if a < b then $\frac{a+b}{2} < b$.

Proof. Suppose a < b. Adding the number b to both sides, we get a+b < b+b, or in other words a+b < 2b. Since a+b < 2b, it follows that $\frac{a+b}{2} < b$. Therefore if a < b then $\frac{a+b}{2} < b$

10. Suppose x is a real number and $x \neq 0$. Prove that if $\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.

Proof. Suppose $x \neq 0$ and $\frac{\sqrt[3]{x+5}}{x^2+6} = \frac{1}{x}$. Then $\frac{x^2+6}{\sqrt[3]{x+5}} = x$. Let x to be equal to 8. $\frac{64+6}{2+5} \neq 8$, or in other words $10 \neq 8$. Therefore if $x \neq 0$ and $\frac{\sqrt[3]{x+5}}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.

11. Suppose a, b, c, and d are real numbers, 0 < a < b, and d > 0. Prove that if $ac \ge bd$ then c > d.

Theorem. Suppose a, b, c, and d are real numbers, 0 < a < b, and d > 0. If $ac \ge bd$ then c > d

Proof. We will prove the contrapositive. Suppose $c \leq d$. Multiplying both sides of this inequality by the positive number a, we get $ac \leq ad$. Also, multiplying both sides of the given inequality a < b by the positive number d gives us ad < bd. Combining $ac \leq ad$ and ad < bd, we can conclude that ac < bd. Thus, if $ac \geq bd$ then c > d.

12. Suppose x and y are real numbers, and $3x + 2y \le 5$. Prove that if x > 1 then y < 1.

Theorem. Suppose x and y are real numbers, and $3x + 2y \le 5$. If x > 1 then y < 1.

Proof. We will prove the contrapositive. Suppose $y \ge 1$. Then $2y \ge 2$. By

substacting 5 from the both sides and multiplying by -1, we get $5-2y \le 3$. By moving 2y to another side of inequality and dividing by 3, we get $x \le \frac{5-2y}{3}$. Using $5-2y \le 3$ and $x \le \frac{5-2y}{3}$ we can conclude that $x \le 1$. Thus, if x > 1 then y < 1.

13. Suppose that x and y are real numbers. Prove that if $x^2 + y = -3$ and 2x - y = 2 then x = -1.

Theorem. Suppose x and y are real numbers. If $x^2 + y = -3$ and 2x - y = 2 then x = -1.

Proof. Suppose $x^2 + y = -3$ and 2x - y = 2. Then y = 2x - 2. Combining the given inequality $x^2 + y = -3$ and y = 2x - 2, we get $x^2 + 2x + 1 = 0$. Solving the inequality using Vieta's formula, we get x = -1. Therefore, if $x^2 + y = -3$ and 2x - y = 2 then x = -1.

14. Prove the first theorem in Example 3.1.1. (Hint: You might find it useful to apply the theorem from Example 3.1.2.)

Theorem. Suppose x > 3 and y < 2. Then $x^2 - 2y > 5$

Proof. We will prove the contrapositive. Suppose $x^2-2y \leq 5$. Then $y \geq \frac{x^2-5}{2}$. We can transform the given inequality x>3 to $\frac{x^2-5}{2}>\frac{3x-5}{2}$. Again, using the given inequality x>3 we can get $\frac{3x-5}{2}>\frac{9-5}{2}$. $2<\frac{3x-5}{2}<\frac{x^2-5}{2}\leq y$, it follows y>2. Thus, if x>3 and y<2 then $x^2-2y>5$.

15. Consider the following theorem.

Theorem. Suppose x is a real number and $x \neq 4$. If $\frac{2x-5}{x-4} = 3$ then x = 7.

(a) Whats wrong with the following proof of the theorem?

Proof. Suppose x = 7. Then $\frac{2x-5}{x-4} = \frac{2(7)-5}{7-4} = \frac{9}{3} = 3$.

Therefore if $\frac{2x-5}{x-4} = 3$ then x = 7

- (b) Give a correct proof of the theorem.
- (a) The proof strategy is wrong (it doesn't correspond to either $P \to Q$ or $\neg Q \to \neg P$). It may be the case that there is more than one value of x which satisfy the hypothese.
- (b) Suppose $\frac{2x-5}{x-4}=3$. Then 2x-5=3x-12, or in other word x=7. Therefore, if $\frac{2x-5}{x-4}=3$ then x=7
 - 16. Consider the following incorrect theorem:

Incorrect Theorem. Suppose that x and y are real numbers and $x \neq 3$. If $x^2y = 9y$ then y = 0.

(a) Whats wrong with the following proof of the theorem?

Proof. Suppose that $x^2y = 9y$. Then $(x^2 - 9)y = 0$. Since $x \neq 3$, $x^2 \neq 9$, so $x^2 - 9 \neq 0$. Therefore we can divide both sides of the equation $(x^2 - 9)y = 0$ by $x^2 - 9$, which leads to the conclusion that y = 0. Thus, if $x^2y = 9y$ then y = 0.

- (b) Show that the theorem is incorrect by finding a counterexample.
- (a) It's not allowed to divide by $x^2 9$ since x may be equal to -3.

(b)
$$x = -3$$

$$9y = 9y$$

$$0y = 0$$

∴ y has undefined value

3.2. Proofs Involving Negations and Conditionals