Tarea #5

Problema #1: Evalué $\sum_{0 < k < n} \frac{1}{k(n-k)}$ de dos formas diferentes:

- a) Expandiendo en fracciones parciales.
- b) Tratando la suma como una convolución y utilizando funciones generatrices.

Solución

a) Primero se deben determinar las fracciones parciales.

$$\frac{1}{k(n-k)} = \frac{a}{k} + \frac{b}{n-k}$$

$$= \frac{a(n-k) + bk}{k(n-k)}$$

$$= \frac{(b-a)k + an}{k(n-k)}$$

Para que se cumpla la igualdad (b-a)k+a n=1. Esto se cumple si $a=b=\frac{1}{n}$. De esta manera se obtiene:

$$\sum_{k=1}^{n-1} \frac{1}{k(n-k)} = \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{k} + \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{n-k}$$

$$= \frac{1}{n} \mathcal{H}_{n-1} + \frac{1}{n} \left(\frac{1}{n-1} + \frac{1}{n-2} + \frac{1}{n-3} + \dots + \frac{1}{2} + 1 \right)$$

$$= \frac{1}{n} \mathcal{H}_{n-1} + \frac{1}{n} \sum_{h=1}^{n-1} \frac{1}{h}$$

$$= \frac{1}{n} \mathcal{H}_{n-1} + \frac{1}{n} \mathcal{H}_{n-1}$$

$$= \frac{2}{n} \mathcal{H}_{n-1}$$

$$\sum_{k=1}^{n-1} \frac{1}{k(n-k)} = \frac{2}{n} \mathcal{H}_{n-1}$$
 (1)

b) La expresión $\sum_{0 < k < n} \frac{1}{k(n-k)}$ se puede ver como la convolución de $\langle \mathcal{G}_k \rangle = \langle 1, \frac{1}{2}, \frac{1}{3}, \ldots \rangle$ consigo mismo

$$\sum_{k=1}^{n-1} \mathcal{G}_k \, \mathcal{G}_{n-k} = [z^n] \, \mathcal{G}(z)^2$$

donde $\mathcal{G}(z)$ es la función generatriz de $\langle \mathcal{G}_k \rangle$. La forma cerrada de esta función generatriz se encuentra en la tabla 335 de [1, pp. 335]:

$$\mathcal{G}(z) = \ln\left(\frac{1}{1-z}\right)$$

Ahora, utilizando la ecuación 7.50 de [1, pp. 351] se obtiene

$$\sum_{k=1}^{n-1} \frac{1}{k(n-k)} = [z^n] \mathcal{G}(z)^2$$

$$= [z^n] \left\{ \ln \left(\frac{1}{1-z} \right) \right\}^2$$

$$= \frac{2}{n!} \begin{bmatrix} n \\ 2 \end{bmatrix}$$

Finalmente, para obtener la solución en la misma forma que en la parte (a), solo se debe remplazar la identidad

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)! \mathcal{H}_{n-1}$$
 [1, eq. 6.58]

en la expresión anterior.

$$\sum_{k=1}^{n-1} \frac{1}{k(n-k)} = \frac{2}{n} \mathcal{H}_{n-1}$$
 (2)

Problema #3: Proporcione una formula asintotica para el coeficiente trinomial "medio" $\binom{3n}{n,n,n}$ con un error relativo $O(n^{-3})$.

Solución

Al remplazar la aproximación de Stirling [1, eq. 9.91]

$$\ln(z!) = \frac{1}{2}\ln(2\pi) + \left(z + \frac{1}{2}\right)\ln(z) - z + \frac{1}{12}z^{-1} + O(z^{-3})$$

en el logaritmo neperaino de la formula del coeficiente trinomial

$$\ln \binom{3n}{n,n,n} = \ln \left[\frac{(3n)!}{(n!)^3} \right]$$
$$= \ln \left[(3n)! \right] - 3\ln \left[n! \right]$$

se obtiene

$$\ln \left(\frac{3n}{n,n,n}\right) = \frac{1}{2}\ln(2\pi) + \left(3n + \frac{1}{2}\right)\ln(3n) - 3n + \frac{1}{12}(3n)^{-1}$$

$$-\frac{3}{2}\ln(2\pi) - 3\left(n + \frac{1}{2}\right)\ln(n) + 3n - \frac{3}{12}n^{-1} + O(n^{-3})$$

$$= -\ln(2\pi) + \left(3n + \frac{1}{2}\right)\ln(3) + \left(3n + \frac{1}{2}\right)\ln(n) - \left(3n + \frac{3}{2}\right)\ln(n)$$

$$+ \left(\frac{1}{36} - \frac{1}{4}\right)n^{-1} + O(n^{-3})$$

$$= -\ln(2\pi) + \left(3n + \frac{1}{2}\right)\ln(3) - \ln(n) + \left(\frac{1}{36} - \frac{1}{4}\right)n^{-1} + O(n^{-3})$$

$$= \ln\left(\frac{3^{3n + \frac{1}{2}}}{2\pi n}\right) - \frac{2}{9}n^{-1} + O(n^{-3})$$

Luego, al hacer uso de la función exponencial en ambos lados de la ecuación

$$\begin{pmatrix} 3n \\ n, n, n \end{pmatrix} = \frac{3^{3n+\frac{1}{2}}}{2\pi n} \exp\left(-\frac{2}{9}n^{-1} + O(n^{-3})\right)$$

y utilizar la aproximación asintotica de la función exponencial [1, eq. 9.32]

$$\exp(z) = 1 + z + \frac{1}{2}z^2 + O(z^3)$$

se obtiene finalmente

$$\left[\binom{3n}{n,n,n} = \frac{3^{3n+\frac{1}{2}}}{2\pi n} \left[1 - \frac{2}{9}n^{-1} + \frac{2}{81}n^{-2} + O(n^{-3}) \right] \right]$$
 (3)

Problema #2: Sea U(n,m) el número de maneras distintas de sentar n alumnos en una fila de m pupitres dejando al menos un pupitre vacío entre alumnos.

- a) Determine la función generatriz de la secuencia $U(n,0), U(n,1), U(n,2), \ldots$
- b) Halle una forma cerrada para U(n, m).

Solución

a) Primero se debe construir la relación de recurrencia para la función U(n,m). Es sencillo notar que U(n,m) es el numero de maneras de sentar n alumnos en una fila m-1 [U(n,m-1)], más el numero de de maneras de sentarlos dejando un alumno sentado en el ultimo pupitre [K(n,m)].

$$U(n,m) = U(n,m-1) + K(n,m)$$

Al final un alumno en el ultimo pupitre, se deben acomodar n-1 estudiantes en m-1 pupitres. Sin embargo, debido a la restricción, el penúltimo pupitre debe estar vacío, y por lo tanto realmente se deben acomodar los n-1 estudiantes restantes en m-2 pupitres.

$$K(n,m) = nU(n-1, m-2)$$

Considerando los casos base se tiene que la relación de recurrencia esta dada por,

$$U(n,m) = \begin{cases} 0 & \text{si } n = 0 \lor m < 2n, \\ m & \text{si } n = 1, \\ U(n,m-1) + n\,U(n-1,m-2) & \text{en el resto de los casos} \end{cases}$$

Luego, al remplazar la relación de recurrencia en la función generatriz se obtiene

$$\begin{split} G(z;n) &= \sum_{m=0}^{\infty} U(n,m)z^m \\ &= 0 + nz + \sum_{m=2}^{\infty} U(n,m)z^m \\ &= nz + \sum_{m=2}^{\infty} U(n,m-1)z^m + n \sum_{m=2}^{\infty} U(n-1,m-2)z^m \\ &= nz + \left(\sum_{m=1}^{\infty} U(n,m-1)z^m - U(n,0)z\right) + n \sum_{m=2}^{\infty} U(n-1,m-2)z^m \\ &= nz + \sum_{m=1}^{\infty} U(n,m-1)z^m + n \sum_{m=2}^{\infty} U(n-1,m-2)z^m \\ &= nz + \sum_{k=0}^{\infty} U(n,k)z^{k+1} + n \sum_{k=0}^{\infty} U(n-1,k)z^{k+2} \\ &= nz + zG(z;n) + nz^2G(z;n-1) \\ &= \frac{nz^2}{1-z}G(z;n-1) + \frac{nz}{1-z} \\ &= \frac{nz}{1-z}\left[zG(z;n-1) + 1\right] \end{split}$$

Referencias

[1] R.L. Graham, D.E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley, Reading, MA, 1989.