Basic Algebra for Data Analysis

Exam

November 11, 2022

1 Multiple choice questions

- 1. If $X = X^T$ and $Y = Y^T$, which of these matrices are certainly symmetric?
 - (a) $X^2 Y^2$
 - (b) (X + Y)(X Y)
 - (c) *XYX*
 - (d) *XYXY*
- 2. Which of the following properties about any non-singular matrices A and B are true?
 - (a) $(AB)^{-1} = A^{-1}B^{-1}$
 - (b) $(AB)^{-1} = B^{-1}A^{-1}$
 - (c) $(AB)^T = A^T B^T$
 - (d) $(A^{-1})^T = (A^T)^{-1}$
- 3. An $m \times m$ non-singular matrix A is given and $A^T = A^{-1}$.

Suppose that we "augment" the matrix A by an $m \times m$ identity matrix I, forming the matrix $(A \ I)$. If we do Gaussian elimination on *this* matrix, we will get something like:

$$\begin{pmatrix} A & I \end{pmatrix} \to \begin{pmatrix} I & C \end{pmatrix}$$

where the first m columns are an $m \times m$ identity matrix I, and the last m columns (from the elimination steps acting on I) are some matrix C.

C is equal to

- (a) A
- (b) A^{-T}
- (c) A^{-1}
- (d) -A
- 4. Consider the system of equations given below:

$$ax_1 + 3x_2 = c$$

$$10x_1 + bx_2 = 7$$

1

What is true?

- (a) If $\frac{a}{c} = \frac{10}{7}$ then there are an infinite number of solutions
- (b) If $\frac{a}{c} = \frac{10}{7}$ and $\frac{a}{10} \neq \frac{3}{b}$ then there are no solutions
- (c) If $\frac{a}{10} = \frac{3}{b}$ then there exists exactly one solution

- (d) If $\frac{a}{10} \neq \frac{c}{7}$ then there exists exactly one solution
- 5. Consider distances d1, d2, d3:

What is true?

- (a) d1 is Euclidean distance
- (b) d2 is Manhattan distance
- (c) d3 is Manhattan distance
- (d) $d^2 = d^3$
- 6. Consider the following vectors:

$$x = \begin{pmatrix} 3\\2\\-1 \end{pmatrix}, y = \begin{pmatrix} 1\\-2\\-1 \end{pmatrix}$$

What is true about a scalar product (x, y) and euclidean norms $||x||_2$ and $||y||_2$?

- (a) $|(x,y)| < ||x||_2 ||y||_2$
- (b) $|(x,y)| > ||x||_2 ||y||_2$
- (c) $|(x,y)| = ||x||_2 ||y||_2$
- 7. Which of the following a singular matrix does not have?
 - (a) Determinant
 - (b) Inverse
 - (c) Transpose
 - (d) Eigenvalues
- 8. What is true for determinants of any non-singular matrices A and B?
 - (a) det(I + A) = 1 + det(A).
 - (b) The determinant of any matrix A is always the product of its pivots.
 - (c) AB and BA have the same determinant.
 - (d) det(4A) = 4det(A)
- 9. Calculate the trace of matrix A, given

$$A = \begin{pmatrix} 0 & 6 & 8 & 22 \\ -13 & 0 & 32 & 25 \\ 11 & 0 & -3 & 43 \\ 4 & 31 & 98 & 4 \end{pmatrix}$$

- (a) -1
- (b) 1
- (c) 73
- (d) 33

10. What is true for any two unitary (orthogonal) matrices U and V?

- (a) $(UV)^T UV = U^T U$
- (b) $(UV)^T UV = V^T V$
- (c) $(UV)^T UV = I$
- (d) det(UV) is equal to 1 or -1

11. A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. This information is enough to find:

- (a) the determinant of B
- (b) the determinant of B^TB
- (c) the eigenvalues of $B^T B$
- (d) the eigenvalues of $(B^2 + I)^{-1}$

12.

$$A = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} 7 & -3 \\ -2 & 6 \end{pmatrix}$$

 A^2 has the same ____ as A.

- (a) eigenvalues
- (b) eigenvectors
- (c) determinant
- (d) characteristic polynomial

13.

$$y = \sqrt[3]{1 - 8z}$$

$$\frac{dy}{dz} = ?$$

- (a) $-\frac{1}{3}(1-8z)^{-\frac{1}{3}}$
- (b) $-\frac{8}{3}(1-8z)^{-\frac{2}{3}}$
- (c) $-\frac{8}{3}(1-8z)^{-\frac{1}{3}}$
- (d) $-\frac{1}{3}(1-8z)^{-\frac{2}{3}}$

14. Identify the local maximum and local minimum points in the below graph

- (a) b and c are local maxima points
- (b) c is a local maxima point
- (c) a and d are local minima points
- (d) a, b, c, d are local minima points

15. What is true about local maxima and minima points of the function $x^3 - 6x$?

- (a) $\sqrt{2}$ and $-\sqrt{2}$ are local minima points
- (b) $\sqrt{2}$ and $-\sqrt{2}$ are local maxima points
- (c) $\sqrt{2}$ is local maxima and $-\sqrt{2}$ is local minima
- (d) $\sqrt{2}$ is local minima and $-\sqrt{2}$ is local maxima

2 Open-ended questions

1. Find the eigenvalues and eigenvectors of

$$A = \begin{pmatrix} -5 & 2 \\ -7 & 4 \end{pmatrix}, \qquad A - 2I = \begin{pmatrix} -7 & 2 \\ -7 & 2 \end{pmatrix}$$

2. Calculate the Hessian matrix of

$$f(x,y) = x^3 - 2xy - y^6$$

- 3. (a) Write down any 3 by 3 matrix A. Split A into B+C where $B=B^T$ and $C=-C^T$.
 - (b) Find formulas for B and C involving A and A^T . We want A = B + C with $B = B^T$ and $C = -C^T$.