Employee Promotion Analysis

In [1]:

%load_ext nb_black

In [2]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]:

data = pd.read_csv("employee_promotion.csv")

In [4]:

data.head()

Out[4]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							>

In [5]:

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 13 columns):
 #
     Column
                            Non-Null Count
                                             Dtype
     employee_id
 0
                            54808 non-null
                                             int64
 1
                            54808 non-null
                                             object
     department
 2
     region
                            54808 non-null
                                             object
 3
     education
                            52399 non-null
                                            object
 4
     gender
                            54808 non-null
                                             object
 5
     recruitment_channel
                            54808 non-null
                                             object
 6
                            54808 non-null
     no_of_trainings
                                             int64
 7
                            54808 non-null
     age
                                             int64
 8
     previous_year_rating
                            50684 non-null
                                             float64
 9
     length_of_service
                            54808 non-null
                                             int64
 10
    awards_won
                            54808 non-null
                                             int64
                            52248 non-null
 11
     avg_training_score
                                             float64
                            54808 non-null
                                             int64
 12
     is_promoted
dtypes: float64(2), int64(6), object(5)
memory usage: 5.4+ MB
```

In [6]:

```
features = data.iloc[:, :-1]
target = data.iloc[:, -1:]
```

In [7]:

```
features.head()
```

Out[7]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							>

In [8]:

target.head()

Out[8]:

	is_promoted
0	0
1	0
2	0
3	0
4	0

Categorical Columns Analysis

In [9]:

```
sns.countplot(x="is_promoted", data=data)
```

Out[9]:

<AxesSubplot:xlabel='is_promoted', ylabel='count'>

Observation:

• We have very less no of employees who has promoted.

In [10]:

sns.countplot(x="recruitment_channel", data=data, hue="is_promoted", pale

Out[10]:

<AxesSubplot:xlabel='recruitment_channel', ylabel='count'>

Observation

• As you can see referred categories have not that much values so it is not useful.

In [11]:

plt.figure(figsize=(15, 8))
sns.countplot(x="department", data=data, hue="is_promoted", palette="Set2

Out[11]:

<AxesSubplot:xlabel='department', ylabel='count'>

Observation:

- Highest No of Emplyoees is in sales and marketing department.
- Analytics department employee has high chance they might get prmomoted.

In [12]:

```
plt.figure(figsize=(35, 8))
sns.countplot(x="region", data=data, hue="is_promoted", palette="RdBu")
```

Out[12]:

<AxesSubplot:xlabel='region', ylabel='count'>

Observation:

- Most of employees coming from region_7,22 and 2 compare to others.
- Region_2 has highest number of employees.

In [13]:

```
plt.figure(figsize=(15, 8))
sns.countplot(x="education", data=data, hue="is_promoted", palette="PuRd")
```

Out[13]:

<AxesSubplot:xlabel='education', ylabel='count'>

Observation:

 We can remove below secondary education employee because it will not affected the final model.

In [14]:

```
sns.countplot(x="gender", data=data, hue="is_promoted", palette="prism")
```

Out[14]:

<AxesSubplot:xlabel='gender', ylabel='count'>

Ratio Male and Female Promotion

In [15]:

```
def promot_gender_finder(gender, is_promoted):
    return len(
         data.loc[(data["gender"] == gender) & (data["is_promoted"] == is_promoted)
)

female_promoted = promot_gender_finder("f", 1)
female_not_promoted = promot_gender_finder("f", 0)

male_promoted = promot_gender_finder("m", 1)
male_not_promoted = promot_gender_finder("m", 0)
```

In [16]:

```
promot_ratio_female = female_promoted / (female_not_promoted + female_promote_ratio_male = male_promoted / (male_promoted + male_not_promoted)
```

In [17]:

```
promot_ratio_male * 100, promot_ratio_female * 100
```

Out[17]:

(8.315149625935161, 8.993379107405591)

Numerical Columns Analysis

In [18]:

sns.barplot(x="is_promoted", y="no_of_trainings", data=data, palette="turbo

Out[18]:

<AxesSubplot:xlabel='is_promoted', ylabel='no_of_trainings'>

Observation:

• No Of Trainings feature will not much affect the promotion of employee.

In [19]:

```
sns.barplot(x="is_promoted", y="age", data=data, palette="BuGn")
```

Out[19]:

<AxesSubplot:xlabel='is_promoted', ylabel='age'>

Observation:

• Age Feature Doesn't affect Employee Promotion.

In [20]:

sns.barplot(x="is_promoted", y="previous_year_rating", data=data, palette="

Out[20]:

<AxesSubplot:xlabel='is_promoted', ylabel='previous_year_rating'>

Observation:

• Previous Year Rating is an Important feature for employee promotion.

In [21]:

sns.barplot(x="is_promoted", y="length_of_service", data=data, palette="bir

Out[21]:

<AxesSubplot:xlabel='is_promoted', ylabel='length_of_service'>

Observation:

• Length of Service Feature Doesn't affect Employee Promotion.

In [22]:

sns.barplot(x="is_promoted", y="awards_won", data=data, palette="cool")

Out[22]:

<AxesSubplot:xlabel='is_promoted', ylabel='awards_won'>

Observation:

• Awards Won is an Important feature for employee promotion.

In [23]:

sns.barplot(x="is_promoted", y="avg_training_score", data=data, palette="co

Out[23]:

<AxesSubplot:xlabel='is_promoted', ylabel='avg_training_score'>

Observation:

• Average training score might be useful feature for employee promotion.

Final Notes From Data Visualization:-

- In Recruitment_channel feature we will convert referred category to other_recruitment_channel.
- No of trainings, Length of Service and age is not that much important feature.

Feature Selection

In [24]:

```
from sklearn.feature_selection import mutual_info_classif
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import SimpleImputer
```

In [25]:

```
features.head()
```

Out[25]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							•

In [26]:

```
features = features.iloc[:, 1:]
```

In [27]:

```
le = LabelEncoder()
columns = ["department", "region", "education", "gender", "recruitment_chan
encoded_features = features.copy()
for column_name in columns:
   encoded_features.loc[:, column_name] = le.fit_transform(
    encoded_features.loc[:, column_name]
)
```

In [28]:

```
imputer = SimpleImputer()
encoded_features = imputer.fit_transform(encoded_features)
```

Information Gain

In [29]:

```
importances = mutual_info_classif(encoded_features, target.values.ravel())
```

In [30]:

```
feat_importance = pd.Series(importances, features.columns)
plt.figure(figsize=(10, 7))
feat_importance.plot(kind="barh", colormap="plasma")
plt.show()
```


Observation:

• We can remove age and length_of_service feature for now.

Chi-Square Test

In [31]:

from sklearn.feature_selection import SelectKBest, chi2

```
In [32]:

chi2_features = SelectKBest(chi2, k=8)
x_kbest_features = chi2_features.fit_transform(encoded_features, target)

In [33]:
x_kbest_features.shape

Out[33]:
(54808, 8)

In [34]:
encoded_features.shape

Out[34]:
(54808, 11)

Feature Selection Methods Link (https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/)
```

Variance Threshold

In [35]:

from sklearn.feature_selection import VarianceThreshold

In [36]:

```
v_threshold = VarianceThreshold(threshold=0.3)
v_threshold.fit(encoded_features)
for column_name, support in zip(features.columns, v_threshold.get_support()
    print(f"{column_name}: {support}")

# false: don't consider
# true: consider
```

department: True
region: True
education: True
gender: False

recruitment_channel: True no_of_trainings: True

age: True

previous_year_rating: True
length_of_service: True

awards_won: False

avg_training_score: True

Mean Absolute Difference

In [37]:

```
# mean_abs_diff = np.sum(np.abs(X - np.mean(X, axis = 0)), axis = 0)/ X.sh
```

Machine Learning Models

```
In [38]:
```

```
# Machine Learning models
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
# train test split
from sklearn.model_selection import train_test_split
# evalution
from sklearn.metrics import accuracy_score, classification_report
from sklearn.model_selection import KFold, cross_val_score
# warnings
import warnings
warnings.filterwarnings("ignore")
from multicolumnlabelencoder import MultiColumnLabelEncoder
```

In [39]:

```
cols = list(data.columns)
[cols.remove(x) for x in ["length_of_service", "age", "employee_id"]]
needed_data = data.loc[:, cols]
```

In [41]:

columns = ["department", "region", "education", "gender", "recruitment_chan needed data = MultiColumnLabelEncoder(columns=columns).fit transform(n

In [42]:

```
imputer = SimpleImputer()
needed_data = imputer.fit_transform(needed_data)
```

In [43]:

```
features = needed_data[:, :-1]
target = needed_data[:, -1:]
```

```
In [44]:
X_train, X_test, y_train, y_test = train_test_split(
  features, target, test_size=0.2, random_state=0
)
In [45]:
len(X_train), len(X_test)
Out[45]:
(43846, 10962)
In [46]:
def get_all_statistics(model, train, test):
  model = model.fit(train[0], train[1])
  print("Train:\n")
  print(classification_report(train[1], model.predict(train[0])))
  print("Test:\n")
  print(classification_report(test[1], model.predict(test[0])))
  print("Cross Validation for 10 Folds:\n")
  cv = KFold(n splits=10, random state=0, shuffle=True)
  scores = cross_val_score(model, features, target, cv=cv, n_jobs=-1)
  print(f"Accuracy of Cross Validation For 10 Folds : {np.mean(scores):.3f}")
  return model
In [47]:
train = (X_train, y_train.ravel())
```

test = (X_test, y_test.ravel())

In [48]:

Ir = get_all_statistics(LogisticRegression(), train, test)

Train:

	precision	recall	f1-score	support
0.0 1.0	0.92 0.55	0.99 0.10	0.96 0.17	40099 3747
accuracy macro avg weighted avg	0.74 0.89	0.55 0.92	0.92 0.56 0.89	43846 43846 43846
Test:				
	precision	recall	f1-score	support
0.0 1.0	0.93 0.57	0.99 0.12	0.96 0.20	10041 921
accuracy macro avg weighted avg	0.75 0.89	0.56 0.92	0.92 0.58 0.89	10962 10962 10962

Cross Validation for 10 Folds:

Accuracy of Cross Validation For 10 Folds : 0.916

In [49]:

knn = get_all_statistics(KNeighborsClassifier(n_neighbors=3), train, test)

Train:

	precision	recall	f1-score	support
0.0	0.94	0.99	0.97	40099
1.0	0.85	0.38	0.52	3747
accuracy			0.94	43846
macro avg	0.90	0.69	0.75	43846
weighted avg	0.94	0.94	0.93	43846

Test:

	precision	recall	f1-score	support
0.0 1.0	0.93 0.56	0.98 0.25	0.96 0.34	10041 921
accuracy macro avg weighted avg	0.75 0.90	0.61 0.92	0.92 0.65 0.91	10962 10962 10962

Cross Validation for 10 Folds:

Accuracy of Cross Validation For 10 Folds: 0.920

In [50]:

naive_bayes = get_all_statistics(GaussianNB(), train, test)

Train:

	precision	recall	f1-score	support
0.0 1.0	0.92 0.44	0.99 0.11	0.95 0.18	40099 3747
accuracy macro avg weighted avg	0.68 0.88	0.55 0.91	0.91 0.57 0.89	43846 43846 43846
Tost.				

Test:

	precision	recall	f1-score	support
0.0	0.93	0.98	0.95	10041
1.0	0.45	0.14	0.21	921
accuracy			0.91	10962
macro avg	0.69	0.56	0.58	10962
weighted avg	0.89	0.91	0.89	10962

Cross Validation for 10 Folds:

Accuracy of Cross Validation For 10 Folds : 0.912

In [51]:

svc = get_all_statistics(SVC(), train, test)

Train:

	precision	recall	f1-score	support
0.0	0.91	1.00	0.96	40099
1.0	0.00	0.00	0.00	3747
accuracy			0.91	43846
macro avg	0.46	0.50	0.48	43846
weighted avg	0.84	0.91	0.87	43846

Test:

	precision	recall	f1-score	support
0.0	0.92	1.00	0.96	10041
1.0	0.00	0.00	0.00	921
accuracy			0.92	10962
macro avg	0.46	0.50	0.48	10962
weighted avg	0.84	0.92	0.88	10962

Cross Validation for 10 Folds:

Accuracy of Cross Validation For 10 Folds: 0.915

In [52]:

dt = get_all_statistics(DecisionTreeClassifier(), train, test)

Train:

	precision	recall	f1-score	support
0.0	0.97	1.00	0.99	40099
1.0	0.99	0.72	0.83	3747
accuracy			0.98	43846
macro avg	0.98	0.86	0.91	43846
weighted avg	0.98	0.98	0.97	43846

Test:

	precision	recall	f1-score	support
0.0	0.94	0.95	0.95	10041
1.0	0.42	0.36	0.39	921
accuracy			0.90	10962
macro avg	0.68	0.66	0.67	10962
weighted avg	0.90	0.90	0.90	10962

Cross Validation for 10 Folds:

Accuracy of Cross Validation For 10 Folds: 0.908

In [53]:

rf = get_all_statistics(RandomForestClassifier(n_estimators=4), train, test)

Train:

	precision	recall	f1-score	support
0.0 1.0	0.96 0.89	0.99 0.61	0.98 0.72	40099 3747
accuracy macro avg weighted avg	0.93 0.96	0.80 0.96	0.96 0.85 0.96	43846 43846 43846

Test:

	precision	recall	f1-score	support
0.0	0.94	0.98	0.96	10041
1.0	0.54	0.29	0.38	921
accuracy			0.92	10962
macro avg	0.74	0.63	0.67	10962
weighted avg	0.90	0.92	0.91	10962

Cross Validation for 10 Folds:

Accuracy of Cross Validation For 10 Folds: 0.919

As you can seee Random Forest Classifier Works best.

- Training Percentage: 97%
- Test Percentage: 93%
- Cross Validation Percentage for 10 Folds: 92.72%

In [54]:

rf.estimators_

Out[54]:

```
[DecisionTreeClassifier(max_features='auto', random_state=1397856 674),
DecisionTreeClassifier(max_features='auto', random_state=7931113 12),
DecisionTreeClassifier(max_features='auto', random_state=1014534 957),
DecisionTreeClassifier(max_features='auto', random_state=6676234 56)]
```

```
In [55]:
rf.n_features_
Out [55]:
9
In [56]:
rf.feature_importances_
Out[56]:
array([0.12416602, 0.21334022, 0.03224737, 0.03479416, 0.0408559
       0.02833911, 0.07016627, 0.03055146, 0.42553941])
In [57]:
data.shape
Out[57]:
(54808, 13)
In [58]:
for column_name, importance in zip(
  data.drop(
    ["length_of_service", "age", "is_promoted", "employee_id"], axis=1
  ).columns,
  rf.feature_importances_,
):
  print(f"{column_name} = {importance}")
department = 0.12416602137182539
region = 0.21334022091909705
education = 0.032247369988295534
gender = 0.03479416434356078
recruitment_channel = 0.040855967019268094
no_of_trainings = 0.02833910704205484
previous_year_rating = 0.07016627480553583
awards_won = 0.03055146063513989
avg_training_score = 0.4255394138752226
```

Make Pipeline

```
In [93]:
```

```
from multicolumnlabelencoder import MultiColumnLabelEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestClassifier
```

In [94]:

```
data.columns.tolist()
```

Out[94]:

```
['employee_id',
  'department',
  'region',
  'education',
  'gender',
  'recruitment_channel',
  'no_of_trainings',
  'age',
  'previous_year_rating',
  'length_of_service',
  'awards_won',
  'avg_training_score',
  'is_promoted']
```

Pipeline using Sklearn: <u>Link</u> (https://www.analyticsvidhya.com/blog/2020/01/build-your-first-machine-learning-pipeline-using-scikit-learn/)

In [121]:

```
In [124]:
```

```
columns = ["department", "region", "education", "gender", "recruitment_chan
employee_promotion_pipeline = Pipeline(
    steps=[
          ("encoding", MultiColumnLabelEncoder(columns=columns)),
          ("pre_process", pre_process),
          ("impute_missing_columns", SimpleImputer(strategy="mean")),
          ("Random Forest", RandomForestClassifier(n_estimators=4)),
]
```

In [125]:

```
features = data.drop(columns=["is_promoted"])
target = data["is_promoted"]
```

In [126]:

```
employee_promotion_pipeline.fit(features, target)
```

Out[126]:

In [129]:

print(classification_report(target, employee_promotion_pipeline.predict(featu

	precision	recall	t1-score	support
0	0.97	0.99	0.98	50140
1	0.89	0.61	0.73	4668
accuracy			0.96	54808
macro avg	0.93	0.80	0.85	54808
weighted avg	0.96	0.96	0.96	54808

```
In [130]:
```

In [131]:

```
from joblib import dump
dump(toBePersisted, "model.joblib",)
```

Out[131]:

['model.joblib']

transformers=[('drop_column

['employee i

'length_of_se

In []:

s', 'drop',

d', 'age',

rvice'])])),