Aula – Programação II (INF 09330)

Expressões e Entrada e Saída de Dados

Prof. Thiago Oliveira dos Santos

Departamento de Informática

Universidade Federal do Espírito Santo

2015

Visão Geral da Aula

- Expressões
- Operadores
- Instruções primitivas

Expressões

- Intimamente ligado ao de expressões matemáticas
- Na matemática, é o relacionamento
 - Entre variáveis e constantes numéricas, e subexpressões
 - Através de operadores aritméticos
 - Compõe uma formula e produz um valor
- Exemplo
 - Formula de cálculo da área de um triângulo
 - 0.5 * B * H (1 constante, 2 variáveis e 2 operadores de mult.)
- Na computação, é mais amplo
 - O valor produzido não está restrito a números
 - Mas ainda formada por variáveis, constantes e operadores

Constantes

- Valor de um determinado tipo
- Não muda durante a execução do programa
- Exemplo
 - Inteira: 10, 0, 20, -1, -100,...
 - Real: 0.0, 10.0, .35, -1.0,...
 - Lógica: 0 (falso), -2 (verdadeiro), 1 (verdadeiro), ...
 - Caractere: 'a', 'g', '1', ...

Constantes

Identificador de constante

- As vezes é necessário reutilizar um mesmo valor várias vezes
- Repetir sua escrita dificulta leitura e alteração do programa
- Nesses casos, usa-se a diretiva #define
 - Deve ser definida no inicio do programa
 - Sintaxe: #define <identificador> <valor>
 - Exemplo

```
#define PI 3.141593

int main() {
    double raio, area, comprimento;
    raio = 10;
    area = PI * raio * raio;
    comprimento = 2 * PI * raio;
    return 0;
}
```

Sugestão de padrão para identificador de constantes: Escrever tudo em maiúsculo separado por "_". Ex: ALTURA_MAXIMA

Informática

- Elementos funcionais que atuam sobre operandos
- Produzem um valor
- Exemplo
 - -2 + 3
 - Relaciona dois operandos (2 e 3)
 - Realiza a operação de adição

Classificação

- De acordo com o número de operandos
 - Binário
 - Unário

Binário

- Atuam sobre dois elementos
- Exemplo: adição, subtração, multiplicação, divisão, etc.

Unário

- Atuam sobre um único elemento
- Sinal de (-) na frente de um número (faz inversão de sinal)

Classificação

- De acordo com o tipo de dados e o valor resultante
 - Aritmético, lógico e literal
- Portanto, diretamente ligado ao tipo de expressão

Exceção

- Operadores relacionais
 - Permite comparar 2 operandos de mesmo tipo
 - Retorna sempre um valor lógico

Tipo de Expressões

Informática

Classificação

- Tipos
 - Aritméticas
 - Relacionais
 - Lógicas

Expressões Aritméticas

- Utilizada para fazer cálculos
- Resultado do tipo numérico (inteiro ou real)
- Componentes
 - Variáveis numéricas (tipo inteiro ou real)
 - Constantes numéricas
 - Operadores aritméticos
- Alguns operadores aritméticos em ordem de prioridade
 - 1) (inversão de sinal), + (manutenção de sinal)
 - 2) * (multiplicação), / (divisão), % (resto da divisão inteira)
 - 3) + (adição), (subtração)

Expressões Aritméticas

Informática

Prioridade de operadores

- Define a ordem em que os mesmos devem ser avaliados
- Pode ser mudada com o uso de parênteses
- Exemplo
 - -2+2*-3???

Tipo de retorno

- Inteiro, se todos os tipos são inteiros
- Real, se ao menos uma variável ou constante é real
- Exemplos (A, B, C são int e X, Y, Z são float)
 - A + B * C, resultado do tipo??
 - A + B + Y, resultado do tipo??
 - A / B, resultado do tipo?? Importante! 3/2 vai ser 1 e 1.0 + 3/2 vai ser 2.0
 - X / Y, resultado do tipo?? Importante! 3.0/2 vai ser 1.5

Expressões Aritméticas

Outras Operações

- Outras funções matemáticas podem ser encontradas
 - Seno (sin), Coseno (cos), raiz quadrada (sqrt), etc.
 - Porém, é necessário a inclusão da biblioteca math.h
- Sintaxe geral: <nome_da_função>(<valor>)
- Exemplo

```
#include <math.h>
int main() {
  double a = 40, b = 60, raizDaSoma;
  raizDaSoma = sqrt(a + b);
  return 0;
}
```

Expressões Relacionais

- Realiza comparações entre objetos de mesmo tipo
- Resulta em um valor lógico (0 para falso e 1 para verdadeiro)
- Operadores relacionais:
 - ">" Maior que
 - ">=" Maior que ou igual
 - "<" Menor que</p>
 - "<=" Menor que ou igual</p>
 - "==" Igual CUIDADO! Não confundir com atribuição.
 - "!=" Diferente
- Exemplo
 - 2 < 2 retorna 0, 10 <= 10 retorna 1, 3 > 5 retorna 0, etc.

Expressões Lógicas

- Utilizadas para relacionar valores lógicos
- Muito usada para tradução literal das palavras "e" e "ou"
- Resulta em um valor lógico (0 para falso e 1 para verdadeiro)
- Operadores lógicos
 - "&&" E
 "||" Ou
 Cuidado! Esquecer um & ou um | resulta em outro operador. Erro difícil de mapear.
 - "!" Não
- Exemplo
 - 2 && 2 retorna 1, 0 | | 1 retorna 1, !0 retorna 1

Expressões Lógicas

Informática

Exemplo

- a, b com valores lógicos
- A e B podem assumir dois valores
 - Falso, 0
 - Verdadeiro, qualquer valor diferente de 0
- Possíveis combinações dos valores de a e b

а	b	a && b	a b	!a
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Avaliação de Expressões

Ordem de Avaliação

- Operadores de maior prioridade são avaliados primeiro
- Operadores com mesma prioridade
 - Não estabelecida
 - Depende do compilador
 - Não confie! Se precisar garantir, use parênteses para garantir.
 - Exemplo:
 - X = expressão_1 + expressão_2
 - Quem vem primeiro expressão 1 ou 2?

Informática

Resumo da Precedências

Alguns operadores ainda não foram vistos

.	() []		
Primeiro	() [] -> .		
	- ++	operadores unários	
	! & * ~ (type) sizeof		
	* / %		
	+ -		
	<< >>		
	< <= >= >		
	== !=		
	&		
	۸		
	I		
	&&		
	П		
	?:		
	= op=		
Último	,		

Avaliação de Expressões

Exemplos

- Considere que
 - X, Y, Z são reais e A e B são lógicas
 - X=2.0, Y=3.0, Z=0.5, A=1, B=0
- Avalie
 - -X*Y-Z
 - X * (Y Z)
 - X + Y * Z
 - X + (Y * Z)
 - -(X + Y) * Z
 - B && A | | X != Y/2
 - B &&(A | | X != Y/2)

Avaliação de Expressões

Informática

Exemplos

- Considere que
 - X, Y, Z são reais e A e B são lógicas
 - X=2.0, Y=3.0, Z=0.5, A=1, B=0
- Avalie
 - X * Y Z = 5.5
 - X * (Y Z) = 5.0
 - X + Y * Z = 3.5
 - X + (Y * Z) = 3.5
 - -(X + Y) * Z = 2.5
 - B && A | | X != Y/2 = 1
 - B &&(A | | X != Y/2) = 0

- Comandos básicos
- Efetuam tarefas essenciais
 - Entrada e saída de dados
 - Comunicação com dispositivos de entrada e saída
- Presentes em "todas" linguagens de programação
- Definidas por palavras ou símbolos reservados
- Respeitam uma regra de sintaxe
- Possuem uma semântica
- Necessárias para a comunicação com o mundo exterior

Dispositivos de Entrada

- Meio pelo qual dados são transferidos para memória principal
- Origem dos dados
 - Usuário (teclado, mouse, etc.)
 - Dispositivos secundários de memória (Disco rígido, USB, etc.)

Dispositivos de Saída

- Meio pelo qual dados são transferidos da memória principal
- Destino dos dados
 - Usuário (monitor, impressora, etc.)
 - Dispositivos secundários de memória (Disco rígido, USB, etc.)

Entrada de Dados

- Sintaxe
 - scanf ("<Formato_1><Formato_2>...", &var1, &var2,...);
- Semântica
 - Espera enquanto o buffer estiver vazio, e lê entrada do teclado
- Requer inclusão da linha
 - #include <stdio.h>

Formato	Tipo
%d	Int
%f	Float
%с	Char

Informática

Entrada de Dados

Saída de Dados

- Sintaxe
 - printf ("<Formato_1><Formato_2>...", exp1, exp2,...);
- Semântica
 - Imprime na tela do computador
- Requer inclusão da linha
 - #include <stdio.h>

Formato	Tipo
%d	Int
%f	Float
%с	Char

- Caracteres especiais são precedidos por \ e o símbolo %, por %
 - Exemplo
 - \n = quebra de linha, \t = tabulação, %% imprime %
 - Pesquise outros no manual

Saída de Dados

Exemplos

Comando	Impresso na tela
printf("Oi\nComo vai? ");	Oi Como vai?
<pre>int x; float a; x = 10; a = 100.0; printf("x eh: %d\n", x); printf("a eh: %f\n", a); printf("2*a eh: %f\n2*x eh:%d\n", 2*a, 2*x);</pre>	x eh: 10 a eh: 100.000000 2*a eh: 200.000000 2*x eh:20

Conversão de Tipos

Informática

Implícita

Cuidado!

- Feita pelo compilador sem ordem direta do programador
- Transforma um tipo de dados em outro
- Regras da atribuição
 - Retorno da expressão é convertido para o tipo da variável
 - Exemplo

```
int x = 1000;
char ch = 0;
float f = 10.1;

ch = x; // Só aceita de 0 a 255. Bits mais significativos são ignorados
x = f; // Recebe a parte intera de f (10)
f = ch; // Converte valor de ch para real
f = x; // Converte inteiro para real. Pode perde precisão.
```

Conversão de Tipos

Explícita (Cast)

- Feita diretamente pelo programador
- Transforma um tipo de dados em outro
- Faça conversão explícita (cast)
- Sintaxe
 - (<tipo>) <expressão>
- Exemplo

```
int x = 1, z = 2;
float y;

y = x / z; // y = 0
y = (float)x / z; // y = 0.5
y = x / (float)z; // y = 0.5
y = (float) (x / z); // y = 0
```

Perguntas???

Informática

Informática

Exercícios

Informática

Escreva um programa para calcular o consumo médio de um automóvel (Km/l), dado que são conhecidos a distância total percorrida e o volume de combustível consumido para percorrê-la (medido em litros).

Exercícios


```
#include <stdio.h>
int main() {
  float totalDist, combCons, media;
  printf("Digite a distancia total:");
  scanf("%f", &totalDist);
  printf("Digite o combustivel consumido");
  scanf("%f", &combCons);
  media = totalDist / combCons;
  printf("Consumo medio: %f", media);
  return 0;
```