Chapter 2: Sequence (Cont...)

Lemma 2.1. If $L, M \in \mathbb{R}$ such that $|L - M| < \epsilon$ for all $\epsilon > 0$, then L = M.

Proof. Assume $L \neq M$. Then either L < M or L > M. But

$$L < M \implies L - M < 0 \implies |L - M| = M - L > 0$$

$$L > M \implies L - M > 0 \implies |L - M| = L - M > 0$$

so that |L - M| > 0. Then

$$0 < \frac{|L - M|}{2} < |L - M|$$

which contradicts $|L-M| < \epsilon$ for $\epsilon = \frac{|L-M|}{2}$.

Hence the assumption $L \neq M$ must be false, and L = M follows. \square

Note. The proof above uses the fact that,

 $A \Longrightarrow B$ is equivalent to $\neg B \Longrightarrow \neg A$,

where '¬' is the symbole for the negation.

Theorem 2.2. If the sequence (a_n) converges, then its limit is unique.

Proof. Assume that (a_n) converges to L and M.

Then there are numbers k_L and k_M such that for all $n \in \mathbb{N}$

$$|a_n-L|<rac{\epsilon}{2} \ ext{if} \ n\geq k_L, \ \ ext{and} \ |a_n-M|<rac{\epsilon}{2} \ ext{if} \ n\geq k_M \, .$$

Take $K = \max\{k_L, k_M\}$.

For positive integers $n \ge K$, we have $n \ge k_L$ and $n \ge k_M$.

Therefore,

$$|L-M| = |(L-a_n) + (a_n - M)| \le |a_n - L| + |a_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus, $|L-M|<\epsilon$ for any $\epsilon>0$. By Lemma 2.1, L=M. \square

Theorem 2.3 (Limit Laws). Let $c \in \mathbb{R}$ and suppose that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$ both exist. Then

(a) $\lim_{n\to\infty} c = c$.

Proof. For all $\epsilon > 0$ and all $n \in \mathbb{N}$, with $a_n = c$,

$$|a_n - c| = |c - c| = 0 < \epsilon$$
.

(b)
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = L + M$$
.

Proof. Let $\epsilon > 0$. There are numbers k_L and k_M

such that for all
$$n \in \mathbb{N}$$
, $|a_n - L| < \frac{\epsilon}{2}$ if $n \ge k_L$,

and
$$|a_n - M| < \frac{\epsilon}{2}$$
 if $n \ge k_M$.

Take $K = \max\{k_L, k_M\}$. For positive integers $n \ge K$,

we have $n \ge k_L$ and $n \ge k_M$.

Therefore,
$$|(a_n + b_n) - (L + M)| = |(a_n - L) + (b_n - M)|$$

$$\leq |a_n - L| + |b_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
.

Theorem 2.3 (Limit Laws) Cont...

(c)
$$\lim_{n\to\infty}(ca_n)=c\lim_{n\to\infty}a_n=cL$$
.

Proof. Let $\epsilon > 0$. Then there is a number K such that

$$|a_n - L| < \frac{\epsilon}{1 + |c|}$$
 if $n \ge K$.

For positive integers $n \geq K$, we have

$$|ca_n - cL| = |c(a_n - L)| = |c||a_n - L| \le |c| \frac{\epsilon}{1 + |c|} < \epsilon$$

(d)
$$\lim_{n\to\infty} (a_n b_n) = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right) = LM.$$

Proof. We consider 2 cases:

Case 1:
$$L = M = 0$$
. Let $\epsilon > 0$.

Then there are numbers k_L and k_M such that

$$|a_n - 0| < \epsilon$$
 if $n \ge k_L$, and $|b_n - 0| < 1$ if $n \ge k_M$.

Put $K = \max\{k_L, k_M\}$. For positive integer $n \geq K$,

we have $n \ge k_L$ and $n \ge k_M$ and therefore

$$|a_nb_n| = |a_n||b_n| < \epsilon \cdot 1 = \epsilon$$
.

Case 2: L and M are arbitrary. Then

$$a_n b_n = (a_n - L)(b_n - M) + L(b_n - M) + a_n M$$
.

By (a) and (b),
$$(a_n - L) \rightarrow 0$$
 and $(b_n - M) \rightarrow 0$

as $n \to \infty$, and by (b), (c), and Case 1, it follows that

 (a_nb_n) converges with $a_nb_n=0+L\cdot 0+LM=LM$.

(e) If
$$M \neq 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{L}{M}$. (The proof is long.)

(f) If $L \neq 0$ and M = 0, then $\lim_{n \to \infty} \frac{a_n}{b_n}$ does not exist.

Proof. Assume that $P = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists. Then by (d)

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{a_n}{b_n} b_n \right) = \lim_{n \to \infty} \frac{a_n}{b_n} \cdot \lim_{n \to \infty} b_n$$

 $= P \cdot M = P \cdot 0 = 0$ which contradicts $L \neq 0$.

(g) If
$$k \in \mathbb{Z}^+$$
, $\lim_{n \to \infty} a_n^k = \left(\lim_{n \to \infty} a_n\right)^k = L^k$.

Proof: Follows from (d) by induction.

(h) If
$$k \in \mathbb{Z}^+$$
, $\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n \to \infty} a_n} = \sqrt[k]{L}$.

If k is even, we assume $a_n \ge 0$ and $L \ge 0$.

Proof: For k = 2 only.

If L=0, let $\epsilon>0$ and choose K such that $a_n<\epsilon^2$

for $n \ge K$. Then $\sqrt{a_n} < \epsilon$ for these n, and

$$\lim_{n\to\infty} \sqrt{a_n} = 0 = \sqrt{L}.$$

If L > 0, then

$$|\sqrt{a_n}-L|=\left|\frac{a_n+L}{\sqrt{a_n}-L}\right|=\frac{|a_n-L|}{\sqrt{a_n}-\sqrt{L}}\leq \frac{1}{\sqrt{L}}|a_n-L|,$$

and choosing K such that $|a_n - L| < \epsilon \sqrt{L}$ for $n \ge K$, it follows that $\left| \sqrt{a_n} - \sqrt{L} \right| < \epsilon$ for $n \ge K$.

(i) If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$. **Proof:** Assignment.

Tutorial 2.1.1(2)

(a) Prove that if $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} |a_n| = |L|$.

Hint: Use (and prove) the inequality

$$||x|-|y|| \le |x-y|.$$

Use Tutorial 1.1.2,2(d) to prove this inequality.

(b) Give an example to show that the converse to part (a) is not true. **Hint:** Use $a_n = (-1^n)$.