

SECOND YEAR: 2604 REMOTE SENSING

PASSIVE SOUNDING OF AEROSOLS AND CLOUDS

Prof. HARTMUT BOESCH

Earth Observation Science Group, Dept. of Physics and Astronomy, University of Leicester

SeaWiFS image of eastern China

Beijing has completely disappeared under the (pollution) haze.

Aerosol

Clouds

WHAT ARE AEROSOLS?

- □ Aerosols are small particles in atmosphere carried by the air
- ☐ Aerosols can be
 - Solid
 - Liquid
 - Mixed phase state
 - Arbitrary form (spherical ... non-spherical)
 - Internally and/or externally mixed
- Main Sources:
 - combustion
 - gas to particle conversion (H₂SO₄)
 - wind blown dust / sand
 - pollens
 - sea salt
- **☐** Atmospheric Concentrations:
 - 10 .. 10⁷ cm⁻³, decreasing with altitude
- ☐ Size:
 - 10-4 μm .. 10² μm

AEROSOL SIZE DISTRIBUTION

- □ Aerosols can vary dramatically depending on formation process, source and location/time
 - Size range varies by 5 orders of magnitude
 - Concentration of particles can vary 7 orders of magnitude
- ☐ Size distributions is used to describe aerosol

$$\frac{dN}{dr} = 1/r \frac{dN}{d(\log r)}$$

Number Size Distribution (# particles per unit volume N per unit size, units: µm⁻¹ cm⁻³)

□ Volume size distribution

$$\frac{dV}{dr} = \frac{dV}{dN}\frac{dN}{dr} = \frac{4}{3}\pi r^3 \frac{dN}{dr}$$

AEROSOL SIZE DISTRIBUTION

$$n_N(\log r) = \frac{dN}{d(\log r)} = C r^{-\beta}$$

- with C the concentration and size parameter β ($\beta \sim 2-4$)
- describe particles in size range 0.1 -2 μm
- ☐ More general description given by Log-normal size distribution

$$n_N \left(\log D_p\right) = \sum_{i=1}^n \frac{N_i}{\left(2\pi\right)^{1/2} \log \sigma_i} \exp \left(-\frac{\left(\log D_p - \log \overline{D}_{pi}\right)^2}{2 \log^2 \sigma_i}\right)$$

N_i: number concentration in mode i

σ_i: (geometric) standard deviation (unitless)

D_{pi}: mode (median) diameter

Log-Normal size Distribution

$$\overline{D_{pi}} = 0.05 \mu m$$

$$\sigma = 1.6$$

Example: Aerosol Distributions

TABLE 7.3 Parameters for Model Aerosol Distributions Expressed as the Sum of Three Log-Normal Modes

Туре	Mode I			Mode II			Mode III		
	$N \pmod{-3}$	D_p (μ m)	$\log \sigma$	$\frac{N}{(\text{cm}^{-3})}$	D_p (μ m)	$\log \sigma$	N (cm ⁻³)	\vec{D}_p $(\mu \mathrm{m})$	$\log \sigma$
Urban	9.93×10^{4}	0.013	0.245	1.11×10^{3}	0.014	0.666	3.64×10^4	0.05	0.337
Marine	133	0.008	0.657	66.6	0.266	0.210	3.1	0.58	0.396
Rural	6650	0.015	0.225	147	0.054	0.557	1990	0.084	0.266
Remote continental	3200	0.02	0.161	2900	0.116	0.217	0.3	1.8	0.380
Free troposphere	129	0.007	0.645	59.7	0.250	0.253	63.5	0.52	0.425
Polar	21.7	0.138	0.245	0.186	0.75	0.300	3×10^{-4}	8.6	0.291
Desert	726	0.002	0.247	114	0.038	0.770	0.178	21.6	0.438

Source: Jaenicke (1993).

Urban Aerosols

Mode I

 $D_N = 0.013$ micron

 $D_V = D_N \exp(3log^2\sigma) = 0.013 \text{ micron*} 1.13 = 0.016 \text{ micron}$

Mode II

 $D_N=0.014$ micron

 D_V =0.05 micron

Mode III

 $D_N = 0.05$ micron

 $D_V == 0.07$ micron

Recap: Interaction of Aerosols with EM Radiation

The 'observable' interaction of light with aerosols is described by 3 parameters (macrophysical optical properties):

extinction coefficient k_{ext}: intensity loss by absorption and scattering through aerosols

$$dI(\lambda) = -I_0(\lambda) k_{ext}(\lambda) ds \qquad [k_{ext} = 1/m]$$

single scattering albedo ω: ratio of scattering coefficient and extinction coefficient (ω < 1 for absorbing aerosols):

$$\omega = \frac{k_{sca}}{k_{ext}}$$

phase function p: directional dependence of scattered intensity φ
Particle

Scattered intensity Is

incident Intensity /

Summary: Optical Properties of Aerosols

□ For atmospheric aerosol mixture, the optical properties are integrated over all particles:

extinction coefficient

$$k_{ext}(\lambda) = \int_{0}^{\infty} \pi r^{2} Q_{ext}(\lambda, r, m) n(r) dr$$

$$k_{sca}(\lambda) = \int_{0}^{\infty} \pi r^{2} Q_{sca}(\lambda, r, m) n(r) dr$$

single scattering albedo

$$\omega(\lambda) = \frac{k_{sca}(\lambda)}{k_{ext}(\lambda)}$$

phase function:

$$P(\theta,\lambda) = \int_{0}^{\infty} \pi r^{2} F(\theta,\lambda,r,m) n(r) dr$$

- □ All quantities depend on wavelength and physical-chemical properties:
 - refractive index m (real and imaginary part)
 - Particle size distribution dN/dlog(r)
 - Particle shape
- □ For spherical particles: efficiency factors per particle Q_{ext}, Q_{sca} and F can be calculated from electrodynamic theory using Maxwell equations (Mie theory)

AOD AND ANGSTROM

☐ The integral along vertical height is called aerosol optical depthAOD

$$AOD = \int_{0}^{TOA} k_{ext}(z)dz$$

□ Wavelength dependence of AOD is defined by aerosol size distribution - Angstrom relation:

$$AOD(\lambda) = const \times \lambda^{-\alpha}$$

Angstrom coefficient α

RE 22.9 Ångstrom exponent for a log-normally distributed water aerosol ($\sigma_g = 2.0$) with twe index m = 1.33 - 0i in the wavelength range $\lambda = 550$ to 700 nm (courtesy of J. A.).

Aerosol Extinction

$$k_{ext}(\lambda) = \int_{0}^{\infty} \pi r^{2} Q_{ext}(\lambda, r, m) n(r) dr \qquad \text{with} \qquad n(r) = const (r^{-(\gamma+1)})$$

$$n(r) = const \times r^{-(\gamma + 1)}$$

Thus $k_{ext}(\lambda) = const \int_{0}^{\infty} Q_{ext}(\lambda, r, m) r^{1-\gamma} dr$

Change of integration variable to $x = \frac{2\pi r}{\lambda}$

$$k_{ext}(\lambda) = const \left(\frac{\lambda}{2\pi}\right)^{2-\gamma} \int_{0}^{\infty} Q_{ext}(\lambda, r, m) x^{1-\gamma} dx$$
 or $k_{ext}(\lambda) \propto \left(\frac{\lambda}{2\pi}\right)^{2-\gamma}$

Assume k_{ext} depends only on distribution of aerosol number density

$$AOD(\lambda) = \int k_{ext}(z)dz \propto H\left(\frac{\lambda}{2\pi}\right)^{2-\gamma}$$
 with $H = \int h(z)dz = \int \frac{n(z)}{\int n(z)dz}dz$

Wavelength dependence of AOD is determined by size distribution!

 $\alpha \rightarrow 4$ small particle (($k_{ext} \rightarrow \lambda^{-4}$, Rayleigh)

 $\alpha \rightarrow \sim 1.5$ typical value for aerosols

 $\alpha \rightarrow 0$ large particles (k_{ext} -> const, extinction paradox)

REMOTE SENSING OF AEROSOLS

Observable quantities

- Spectral extinction along the light path
- Radiation as function of viewing angle
- (Degree of polarisation)

What do we want?

- AOD
- Angstrom coefficient
- Size (distribution)
- Single scattering albedo
- Aerosol type (or composition)
- Vertical distribution (very limited information in passive observations)

Determination of the aerosol optical depth from the ground

Lambert Beer Law

$$I(\lambda) = I_0(\lambda) \exp(-AOD(\lambda) m_r)$$

$$m_r \approx 1./\cos\theta_{\oplus}$$

$$\log(I(\lambda)) = \log(I_0(\lambda)) - AOD(\lambda) m_r$$

measurement intercept slope variable

Measurement at multiple λ allows derivation of Angstrom coefficient

In reality optical depth from Rayleigh and potential gas absorption need to be taken into account:

$$AOD = \tau(meas.) - \tau(Ray) - \tau(gas)$$

Sun-photometer Cimel 318A (#243) PHOTONS-AERONET

Saharan Dust Event

Backtrajectories analyses

AEROSOL MEASUREMENT FROM SPACE

As usual we measure a signal composed of contributions from:

- **☐** Atmospheric constituents
 - Clouds
 - Aerosols
 - Gases
- **☐** Surface reflections
- Interaction between surface and atmosphere

Depending on what we want to know, e.g.:

- ☐ Surface properties require atmospheric correction
- Atmospheric properties require elimination of surface effects

Note: Absorption effects can be minimized by choosing wavelength without gaseous absorption

A View from Space

Sunlight reflected from surface (Surface Contribution)

$$I = \frac{AF_0 \cos \theta}{\pi} e^{-\tau/\cos \theta} e^{-\tau/\cos \varphi}$$

$$dI = \frac{\varpi F_0 P(\theta, \phi_0; \varphi, \phi)}{4\pi} d\tau$$

Only layer of aerosols with dτ (single scattering approximation)

A View from Space

Sunlight reflected from surface (surface Contribution)

$$I = \frac{AF_0 \cos \theta}{\pi} e^{-\tau \cos \theta} e^{-\tau \cos \theta}$$

Aerosols will reduce observed intensity

$$dI = \frac{\varpi F_0 P(\theta, \phi_0; \varphi, \phi)}{4\pi} d\tau$$

Aerosols will increase observed intensity

BASIS FOR AEROSOL REMOTE SENSING

Relative effects of AOD and single scattering albedo ω on satellite reflection as function of surface reflectance

Fig. 1. Difference between the reflection function and surface reflectance at 0.61 μ m as a function of surface reflectance for various values of the aerosol optical thickness τ_a and single scattering albedo ω_0 . The solid and dashed lines correspond to an aerosol-ladened atmosphere having a Junge size distribution of the form $n(r) \propto r^{-4}$. Results apply to nadir observations ($\mu = 1$) when $\mu_0 = 0.766$ ($\theta_0 = 40^\circ$). For surface reflectance below a given critical value (A_g^c), the aerosol effect is positive ($A_g^c = 0.25$ for $\omega_0 = 0.96$) and above this value the effect is negative (adapted from Fraser and Kaufman 1985).

Rel. Change ~10-20% (>0.1 out of 0.4)

- Maximum sensitivity to AOD occurs over dark surfaces
- \Box For surfaces brighter than $A_g = 0.1$, sensitivity is much reduced and depends on aerosol absorption.
- ☐ Aerosol effect can be positive or negative (brighten or darken the scene)

STRATEGIES FOR SURFACE

Reflection measured by satellite:

$$R(AOD, \omega) = R_{atm}(AOD, \omega) + \frac{A_g \mathcal{T}_{down}(AOD, \omega) \mathcal{T}_{up}(AOD, \omega)}{1 - A_g r_{atm}(AOD, \omega)}$$
Pure atmosphere term

Multiple scattering + surface

T, R: atmospheric Transmission and Reflectance

A: surface reflectance

r: spherical albedo of atmosphere

Single (complex) equation with many unknowns

- Measure over surfaces A_g→0 (ocean, dark vegetation):
 - Second term is zero
 - Large sensitivity to AOD
- 2. Estimate A_g from some other measurements:
 - combination of dark and bright surfaces can be used to measure single scattering albedo
- 3. We can increase the number of equations:
 - Multiple wavelengths
 - Multiple angles
 - (Polarization)

MODIS INSTRUMENT (Again)

- NASA, Terra & Aqua
 - launched 1999, 2002
 - 705 km polar orbits, descending (10:30 a.m.) & ascending (1:30 p.m.)
- Sensor Characteristics
 - 36 spectral bands (490 detectors) ranging from 0.41 to 14.39 µm
 - Two-sided paddle wheel scan mirror with 2330 km swath width
 - Spatial resolutions:
 - 250 m (bands 1 2)
 - 500 m (bands 3 7)
 - 1000 m (bands 8 36)
 - 2% reflectance calibration accuracy
 - onboard solar diffuser & solar diffuser stability monitor
 - 12 bit dynamic range (0-4095)

Spectral optical properties of aerosol

MODIS AEROSOL OPTICAL DEPTH

No AOD over desert and snow/ice surfaces!

Multiangle Imaging SpectroRadiometer (MISR)

- On board satellite TERRA
- 9 view angles at earth surface:
 - ±70.5°. ±60.0°, ±45.6°, ±26.1°, nadir
- Four spectral bands at each angle:
 - 446 nm (Blue)
 - 558 nm (Green)
 - 672 nm (Red)
 - 866 nm (NIR)
- Global Mode:
 - 275 m sampling resolution for nadir camera and red band of other cameras
 - 1.1 km for the other channels
 - 400-km swath
 - Global coverage: 9 days at equator, 2 days at poles
- Continuous data retrieval since Feb 2000.

AEROSOL RETRIEVALS WITH MULITPLE VIEW

MISR image over red sea

- Nadir view: short path through atmosphere and large sensitivity to surface
- Forward-viewing (70.5-degree camera): increased line-of-sight through atmosphere and aerosol (thin haze) is more apparent
- □ Surface effects can be separated from aerosol effects and aerosol retrieval over bright surface possible
- ☐ Need to assume Lambertian surface or BRDF independent of wavelength

MISR AEROSOL OPTICAL DEPTH

MISR can measure AOD over bright scenes!

CLOUD EFFECTS

AATSR on ENVISAT

Channels>

- Clouds will scatter and absorb light in visible
 - Potentially large source of errors for aerosol and trace gas retrievals
 - Clouds are often optically thick (ie .surface effects can be ignored)

- Much less sensitive to aerosol
- Allow detection of clouds
- Help with very large aerosols (desert dust)

CHARACTERICS OF CLOUDS

- Clouds consist of liquid or frozen water particles
- Water cloud droplets are spherical (Mie theory applies) with effective radius of a few µm
- Ice particles can have many different shapes with effective diameter of several tenth of μm
- Cloud particles are just like aerosols but
 - Particles are large
 - High number density thus optically thick so that surface effects are small or zero
 - Clouds have distinct absorption features (water absorption)
- Main parameters of interest: Cloud optical depth, effective radius, phase, liquid (ice) absorption and cloud height

Ice Particles

Absorption by water in different phases

CLOUD EFFECT IN INFRARED

Clouds absorb in IR (continuum absorption) and they reduce surface contribution in window range

Schwarzschild Eqn (Single layer model):

(for λ without strong gaseous absorbers)

$$I(\lambda) = \varepsilon_s(\lambda) \times B(\lambda, T_s) \times T_{cloud}(\lambda) + (1 - T_{cloud}(\lambda)) \times B(\lambda, T_{cloud})$$

Surface contribution

For thick cloud: transmission $\mathcal{T}_{cloud}(\lambda) \rightarrow 0$:

$$I(\lambda) = B(\lambda, T_{cloud}) \rightarrow T_{cloud} \sim 240K$$

-> Measurement gives estimate of cloud top temperature (or height)

MODIS Cloud Channels

- ☐ 11 MODIS bands are utilized to derive cloud properties
- ☐ Visible and near-infrared bands:
 - daytime retrievals of cloud optical thickness and effective radius
- ☐ Thermal infrared bands:
 - determination of cloud top properties, including cloud top altitude, cloud top temperature, and thermodynamic phase

Channel	λ	Δλ	Resolution	Atmospheric Purpose
	(<i>µ</i> m)	(<i>µ</i> m)	(m)	
1	0.645	0.050	250	cloud optical thickness over land
2	0.858	0.035	250	cloud optical thickness over ocean
5	1.240	0.020	500	cloud optical thickness over snow & ice
6	1.640	0.025	500	snow/cloud discrimination,
				thermodynamic phase
7	* 2.130	0.050	500	cloud effective radius
20	*3.750	0.180	1000	cloud effective radius; surface temperature
26	*1.375	0.030	1000	thin cirrus detection
29	*8.550	0.300	1000	thermodynamic phase
31	11.030	0.500	1000	thermal emission correction; cloud height
32	12.020	0.500	1000	thermodynamic phase
33	13.335	0.300	1000	cloud height

Monthly Mean Cloud Fraction by Phase

July 2006 – Terra

- > Liquid water clouds
 - Marine stratocumulus regions
 - ✓ Angola/Namibia
 - ✓ Peru/Ecuador
 - √ California/Mexico
- > Ice clouds
 - -Tropics
 - ✓ Indonesia & western tropical Pacific
 - ✓ ITCZ
 - -Roaring 40S

Monthly Mean Cloud Effective Radius

July 2006 - Terra

- Liquid water clouds
 - Larger drops in SH thanNH
 - Larger drops over ocean than land
 - ✓ Due to cloud condensation nuclei (aerosols)
- > Ice clouds
 - Larger in tropics than high latitudes
 - ✓ Anvils
 - Small ice crystals at top of deep convection

What do you need to know?

- Characteristics of atmospheric aerosols and cloud particles
- Aerosol size distribution
- Aerosol optical properties and their dependence on microphysical parameters (size distr., refractive index)
- Angstrom relation
- Determination of AOD
- Basics of aerosol remote sensing
- Surface effects and how to deal with them
- Multi wavelength and multi-view instruments for aerosols and clouds
- Clouds in visible/near-IR and thermal infrared

INCOMPLETE LIST OF AEROSOL SATELLITE SENSORS

Table 3. Techniques for remote sensing of global aerosol properties from space. Here, τ_a denotes aerosol optical thickness, ω_a the single scattering albedo, r_a the aerosol particle effective radius, and $n_a(r)$ the columnar aerosol size distribution.

Technique	Aerosol property	Relevant satellite sensors	Principal assumptions	References
Ocean				
reflectance— one channel	$\tau_{_{\rm g}}$	AVHRR	Size distribution, ocean reflectance, whitecaps, calibration, $\omega_{\scriptscriptstyle 0}$	Griggs (1975); Mekler et al. (1977); Quenzel and Koepke (1984); Fraser et al. (1984); Stowe et al. (1997)
reflectance- multiple channels	$\tau_{s}, n_{c}(r)$	GLI, MERIS, MISR, MODIS, OCTS, POLDER, SeaWiFS, AVHRR, TOMS, OMI	Type of size distribution, ocean reflectance, whitecaps, calibration, ω_0	Durkee et al. (1986, 1991); Tanré et al. (1997); J. R. Herman et al. (1997); Fukushima and Toratani (1997); Higurashi and Nakajima (1999)
Land				
reflectance	τ,	AVHRR, TOMS, OMI	Size distribution, no change in surface reflectance, $\omega_{_0}$ (to derive $\tau_{_{\rm g}}$)	Fraser et al. (1984); Kaufman et al. (1990a,b); Fraser (1993)
		AVHRR, GLI, MODIS, POLDER	No change in surface reflectance, bidirectional reflectance, ω_o , asymmetry factor	Tanré et al. (1988b); Tanré and Legrand (1991); Holben et al. (1992)
dark targets over dense dark vegetation	τ,	AVHRR, GLI, MERIS, MISR, MODIS, POLDER, SeaWiFS	Reflectance of dark targets, size distribution, ω_0	Kaufman and Sendra (1988); King et al. (1992); Kaufman et al. (1997a,b)
thermal contras	t T _k	AVHRR, GLI, MODIS		Legrand et al. (1989); Tanré and Legrand (1991); Ackerman (1997);
Land-ocean contrast	$\tau_{s}, \omega_{o}, r_{s}$	AVHRR, GLI, MODIS, POLDER	Size distribution and surface bidirectional reflectance	Kaufman and Joseph (1982); Fraser and Kaufman (1985); Kaufman et al. (1990a); Nakajima and Higurashi (1997)
Angular distribution of reflectance	$\tau_{s}, n_{c}(r)$	ATSR-2, AATSR, MISR, POLDER	Surface bidirectional reflectance	Martonchik and Diner (1992); Wang and Gordon (1994); Veefkind and de Leeuw (1997)
Polarization	$\tau_{\rm s}, n_{\rm c}(r)$	POLDER	Reflectance and polarization of underlying surface, spherical particles	Leroy et al. (1997); Mishchenko and Travis (1997); M. Herman et al. (1997)