Université de Jijel Faculté des Sciences et de la Technologie Département d'Electrotechnique Systèmes Asservis, L3, EMD 16/01/2022

EXO:1

1) Soit le système donné par son équation caractéristique

$$A P^4 + 2P^3 + A (1+P^2) + AP - 3 = 0$$

Etudiez la stabilité du système en fonction du paramètre « A »

2) a) Déterminez en utilisant la méthode des résidus la transformée de Laplace inverse de :

$$F(P) = \frac{(P+2)}{P^2(P+1)^2(P+3)}$$

b) Déterminez en utilisant la méthode de décomposition en éléments simples la transformée de Laplace inverse de :

$$G(P) = \frac{2P}{(P+2)(P+4)(P+5)}$$

EXO: 2

Soit le système donné par sa fonction de transfert en boucle ouverte suivante :

$$F_0(P) = \frac{1}{P(P+1)(P+3)}$$

- 1) Le système est il stable en boucle ouverte ? pourquoi ?
- 2) Tracez le lieu de Nyquist de ce système.
- 3) Qu'en est il de la stabilité (graphiquement) du système en boucle fermée, justifiez votre réponse.

EXO: 3

Soit le système asservi linéaire donné par sa FTBO suivante :
$$H_0(P) = \frac{(1+0.1P)(1+0.05P)}{P^2(1+0.01P)(1+0.005P)}$$

- 1) Tracez (asymptotiquement) le diagramme de Bode, gain et phase, (indiquer la pente pour chaque troncon);
- 2) Déterminer la fréquence de coupure ω_c (en se basant sur le tracé asymptotique), puis la marge de phase $\varphi_{\rm m}$
- 3) Le système est il stable (graphiquement) en boucle fermée, justifiez votre réponse.
- 4) Déterminer la fréquence d'inversion de la phase ω_{π} , que vaut alors la marge de gain A_{m}

Correction de L'EMD

Exo: 1 (05 points)

1)
$$A P^4 + 2P^3 + A(1+P^2) + AP - 3 = 0$$

L'équation caractéristique ordonnée sera : $A P^4 + 2P^3 + A P^2 + AP + (A-3) = 0$ (0.25)

Application du critère de stabilité de Routh :

La 1^{ere} condition de stabilité de Routh : tous les An de même signe

Donc [A; 2; A; A, (A-3)] de même signe, ce qui donne

A>0 et (A-3) >0
$$\Rightarrow$$
 A>3 (0.25)

La 2^{eme} condition, on construit la table de Routh

$$\begin{array}{l} b_1 = \frac{(2*A) - (A*A)}{2} = \frac{2A - A^2}{2}; \qquad b_1 > 0 \Rightarrow \textit{A}(\mathbf{2} - \textit{A}) > \mathbf{0} \\ \text{Comme A>0 de la 1}^{\text{ere}} \text{ Condition donc} \end{array}$$

(2-A) doit être nécessairement positif, (2-A) >0 \Rightarrow A<2

Ce qui n'est pas valide avec la 1^{ere} condition qui est A>3 (0.5)

donc le système est instable $\forall A$ (0.5)

2) a) Méthode des résidus :
$$F_0(P) = \frac{(P+2)}{P^2(P+1)^2(P+3)}$$

Nous avons un pole simple $(P_1=-3)$ et deux pôles doubles $(P_2=P_3=0)$ et $(P_4=P_5=-1)$.

Au pôle simple
$$r \in sidu_{pi} = \lim_{p \to pi} (p - pi)F(p)e^{pit}$$
 (0.25)

$$P_1$$
=-3 est un pole simple $r\acute{e}sidu_{p\to -3} = \lim_{p\to -3} (p+3) \frac{(p+2)}{p^2(p+1)^2(p+2)} e^{-3t} = \frac{-1}{26} e^{-3t}$ (0.25)

P₁=-3 est un pole simple
$$r\acute{e}sidu_{p\to-3} = \lim_{p\to-3} (p+3) \frac{(p+2)}{p^2(p+1)^2(p+3)} e^{-3t} = \frac{-1}{36} e^{-3t}$$
 (0.25)
Au pôle multiple d'ordre « **m** » $residu_{pi} = \frac{1}{(m-1)!} \lim_{p\to pi} \frac{d^{m-1}}{dp^{m-1}} [(p-pi)^m F(p) e^{pt}]$ (0.25)

 $(P_2=P_3=0)$ est un pole double on a (m=2)

$$residu_{p\to 0} = \frac{1}{(2-1)!} \lim_{p\to 0} \frac{\mathrm{d}^{2-1}}{\mathrm{d}p^{2-1}} \left[(P+0)^2 \frac{(P+2)}{p^2(P+1)^2(P+3)} \mathrm{e}^{\mathrm{pt}} \right] = \lim_{p\to 0} \frac{\mathrm{d}}{\mathrm{d}p} \frac{(P+2)}{(P+1)^2(P+3)} \mathrm{e}^{\mathrm{pt}} = \frac{\mathrm{6}\mathrm{t}-11}{9} \ \ \textbf{(0.25)}$$

 $(P_4=P_5=-1)$ est un pole double on a (m=2)

$$residu_{p\to -1} = \frac{1}{(2-1)!} \lim_{p\to -1} \frac{d^{2-1}}{dp^{2-1}} \left[(P+1)^2 \frac{(P+2)}{P^2(P+1)^2(P+3)} e^{pt} \right] = \lim_{p\to -1} \frac{d}{dp} \frac{(P+2)}{P^2(P+3)} e^{pt} = -3e^{-t} + 2 \text{ (0.25)}$$

$$f(t) = \sum résidus = -\frac{1}{36}e^{-3t} + \frac{6t-11}{9} - 3e^{-t} + 2$$
 (0.25)

b) Méthode de décomposition en Eléments simples $G(P) = \frac{2P}{(P+2)(P+4)(P+5)}$

Nous avons trois pôles simples (P_1 =-2, P_2 =-4 et P_3 =-5)

$$G(P) = \frac{A}{(P+2)} + \frac{B}{(P+4)} + \frac{C}{(P+5)}$$
 (0.5) avec:

$$A = \lim_{p \to pi} (p - pi) F(p) = \lim_{p \to -2} (p + 2) \frac{2P}{(P+2)(P+4)(P+5)} = \frac{2(-2)}{(-2+4)(-2+5)} = \frac{-4}{6}$$
 (0.25)

$$B = \lim_{p \to pi} (p - pi) F(p) = \lim_{p \to -4} (p + 4) \frac{2P}{(P+2)(P+4)(P+5)} = \frac{2(-4)}{(-4+2)(-4+5)} = \frac{-8}{-2} = 4$$
 (0.25)

$$C = \lim_{p \to pi} (p - pi) F(p) = \lim_{p \to -5} (p + 5) \frac{2P}{(P+2)(P+4)(P+5)} = \frac{2(-5)}{(-5+2)(-5+4)} = \frac{-10}{3}$$
 (0.25)

$$g(t) = -\frac{4}{6}e^{-2t} + 4e^{-4t} - \frac{10}{3}e^{-5t}$$
 (0.25)

Exo: 2 (07 points) 1) $F_0(P) = \frac{1}{P(P+1)(P+3)}$ Le système est marginalement stable en boucle ouverte, car il a un pole nul et deux pôles à parties réelles négatives ($P_1=0$, $P_2=-1$ et $P_3=-3$) (1.5)

2) Trace du lieu de Nyquist
$$F_0(j\omega) = \frac{1}{j\omega(j\omega+1)(j\omega+3)} = \frac{-4\omega^2 - j\omega(4-\omega^2)}{16\omega^4 + \omega^2(3-\omega^2)^2}$$

$$Reel(\omega) = \frac{-4}{16\omega^2 + (3-\omega^2)^2}$$
 0.5

$$Imag(\omega) = \frac{j(3-\omega^2)}{16\omega^3 + \omega(3-\omega^2)^2}$$
 0.5

ω	0	$\sqrt{3}$	∞
$Reel(\omega)$	-4/9	-1/12	0
$Imag(\omega)$	-∞	0	0

3) Le système est stable en boucle fermée car son lieu de Nyquist $F_0(j\omega)$ (quand ω varie de zéro à l'infini) n'entoure pas le point (-1, 0j) (Critère du Revers). (1.5)

EXO 3: (08 points)

1) Tracé du Diagramme de Bode (gain et phase) : $H_0(P) = \frac{(1+0.1P)(1+0.05P)}{P^2(1+0.01P)(1+0.005P)}$

0.5

-Le gain
$$(A_{dB}(\omega) = 20 \log |G_0(j\omega)| = 20 \log \sqrt{1 + (0.1)^2 \omega^2} + 20 \log \sqrt{1 + (0.05)^2 \omega^2}$$

$$-40 \log \omega - 20 \log \sqrt{1 + (0.01)^2 \omega^2} - 20 \log \sqrt{1 + (0.005)^2 \omega^2} = A_1 + A_2 + A_3 + A_4 + A_5$$

-La phase
$$\varphi_1(\omega) = arctg\left[\frac{0.1\omega}{1}\right] \Rightarrow \varphi_1(0) = 0, \quad \varphi_1(10) = +\frac{\pi}{4}, \quad \varphi_1(\infty) = +\pi/2$$

$$\varphi_2(\omega) = arctg\left[\frac{0.05\omega}{1}\right] \Rightarrow \varphi_2(0) = 0, \quad \varphi_2(50) = +\frac{\pi}{4}, \quad \varphi_2(\infty) = +\pi/2$$

$$\varphi_3(\omega) = -2 * arctg\left[\frac{\omega}{0}\right] = -\pi$$

$$\begin{split} \varphi_4(\omega) &= -arctg\left[\frac{0.01\omega}{1}\right] \Rightarrow \varphi_4(0) = 0, \quad \varphi_4(100) = -\frac{\pi}{4}, \quad \varphi_4(\infty) = -\pi/2 \\ \varphi_5(\omega) &= -arctg\left[\frac{0.005\omega}{1}\right] \Rightarrow \varphi_5(0) = 0, \quad \varphi_5(200) = -\frac{\pi}{4}, \quad \varphi_5(\infty) = -\pi/2 \end{split}$$

2) Détermination de ω_c et de la marge de phase :

d'après le tracé, le gain $A_{dB}(\omega)$ coupe l'axe (0) db en ω_c = 1 rd/s (1.0)

pour trouver la marge de phase, on calcule : ϕ_m = $\phi(\omega_c)$ + π avec ω_c = 1 rd/s

$$\varphi_{m} = arctg\left[\frac{0.1\omega_{c}}{1}\right] + arctg\left[\frac{0.05\omega_{c}}{1}\right] - \pi - arctg\left[\frac{0.01\omega_{c}}{1}\right] - arctg\left[\frac{0.005\omega_{c}}{1}\right] + \pi = 7.74 \tag{1.0}$$

- 3) Le système est stable en boucle fermée car $\varphi(\omega_c)$ >- π Critère du revers (1.0)
- 4) La phase $\varphi(\omega)$ ne coupe pas l'axe $(-\pi)$ donc $\omega_{\pi}=\infty$ et donc la marge de gain est ∞ (1.0)

