

MLB ANALYSIS

Andrew Lujan
Regis University
M.S. Data Science
Practicum 1

Why?

REASON

Gain Experience applying models to a sports-related domain, an area that I wish to work in with data science.

PROBLEM

- Which statistics contribute the most to identifying whether or not a player is a power-hitter?
- How can we classify power-hitters?
- Which statistics are highly correlated with winning teams?

Kaggle William

Data Source:

The data comes from a Kaggle dataset. It can be found at: https://www.kaggle.com/open-source-sports/baseball-databank

Additional information about the data:

- When working with the dataset I learned that there'saaan extension of the Open-Source sports dataset that is curated by Sean Lahman at the following link: http://www.seanlahman.com/baseball-archive/statistics/
- I intend to use this source of baseball data for future projects.

PROJECT LAYOUT

- Data acquisition
- Data cleaning
- Exploratory Data Analysis
- Data Visualization
- Model Building
- Model Testing
- 2 prediction problems
 - Power Classification
 - Predicting Wins
- Findings/Results

DATA ACQUISITION

• CSV files were downloaded from Kaggle pulled in using the pandas read csv function.

Import Data

8]: batting = pd.read_csv("/Users/drewsdesktop/Desktop/Data Science/Regis Classes/MSDS 692- Practicum/Datasets/Baseball Databank/Batting.csv")
team = pd.read_csv("/Users/drewsdesktop/Desktop/Data Science/Regis Classes/MSDS 692- Practicum/Datasets/Baseball Databank/Teams.csv")

Data Cleaning

- Two datasets: batting, team.
 - both in CSV format.
- Utilized heatmaps to check for correlation in both datasets.
- Batting dataset
 - Filtered dataset to a time period starting from my lifetime, the year 1990-2015.
 - Missing hitting data for pitchers.
 - Feature engineering
 - Created classification for power hitters using binning.

Data Cleaning

- Team dataset
 - Filtered dataset for time period
 1990-2015.
 - Dropped unnecessary columns.
 Lots of identification columns.
 - Dropped some statistical columns where the null-values exceeded 30%.
 - Imputed some null values for more important statistical features.

EXPLORATORY DATA ANALYSIS

Important statistical features:

- Batting Dataset
 - Players with high totals for Runs, Hits, and Doubles tended to have higher home runs totals.
- Team Dataset
 - Runs, Home Runs, SOA
 (Strikeouts by pitchers)
 were the features that
 had the strongest
 correlation to win
 totals.

Batting Visualization

Data Visualizations

Team Visualization

*Visualizations were created to explore the relationships between the highly correlated variables and the predictor variables.

MODEL BUILDING/ TESTING

Batting Dataset- (Accuracy Scores)

- Power classification
- Logistic Regression- (94.98)
- K-nearest neighbors- (95.27)
- Gaussian Bayes- (86,47)

Team Dataset

- Predicting wins
- K-means clustering(.79)
- K Nearest Neighbors Regressor
 - Optimizing through normalization
- Random Forest Classifier- (.88)

Optimum clusters using silhouette score

Optimum neighbors by r2 score.

- **Original set = .797**
- Normalized data model = .909

Findings/Results

Finding

- Which statistics were most correlated with Home Runs?
 - Three features that had high correlation with home runs were runs, doubles, and hits.
- Can we classify power-hitters?
 - We can classify power hitters by binning players based on their home run outputs
- Which statistics are highly correlated with winning teams?
 - Runs, Home Runs, Strikeouts by Pitcher.

W Model Performance

- Power Classification
 - KNN classifier
- Win Prediction
 - KNN classifier with normalized data

