

EVALUARE NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2023 - 2024 Matematică Model Decembrie 2023

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I și SUBIECTUL al II-lea

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	(c)	5 p
2.	d)	5p
3.	b)	5p
4.	a)	5p
5.	c)	5p
6.	a)	5p

SUBIECTUL al II-lea

(30 de puncte)

1.	(c)	5p
2.	(d)	5p
3.	b)	5 p
4.	a)	5 p
5.	c)	5p
6.	d)	5 p

SUBIECTUL al III-lea

(30 de puncte)

1.	a) $\frac{a-8}{b+12} = 1$	1p
	$a-8=b+12 \Leftrightarrow a=b+20$, deci numerele nu pot fi egale	1p
	b) $a = b + 20$; $a + b = 150 \Leftrightarrow b + 20 + b = 150$	1p
	$2b + 20 = 150 \Leftrightarrow b = 65$	1p
	$a = b + 20 \Rightarrow a = 85$	1p
2.	$ 2x-1 \le 7 \Leftrightarrow -7 \le 2x-1 \le 7$	1p
	$-6 \le 2x \le 8 \Leftrightarrow -3 \le x \le 4 \Leftrightarrow A = \begin{bmatrix} -3, 4 \end{bmatrix}$	1p

	b) $1 \le \frac{3x+2}{5} < 4 \Leftrightarrow 5 \le 3x+2 < 20$	1p
	$3 \le 3x < 18 \Leftrightarrow 1 \le x < 6 \Rightarrow B = [1; 6)$	1p
	$A \cap B = [1; 4]$	1p
3.	a) $a = \left(\frac{18}{\sqrt{50}} - \frac{10}{\sqrt{18}}\right) \cdot 30 \Leftrightarrow a = \left(\frac{18}{5\sqrt{2}} - \frac{10}{3\sqrt{2}}\right) \cdot 30$	1p
	$a = \frac{54 - 50}{15\sqrt{2}} \cdot 30 \Leftrightarrow a = \frac{4\sqrt{2}}{30} \cdot 30 \Leftrightarrow a = 4\sqrt{2}.$	1p
	b) $b = \sqrt{20^2 - 16^2} \cdot \frac{1}{4\sqrt{3}} \Leftrightarrow b = 12 \cdot \frac{\sqrt{3}}{12} \Leftrightarrow b = \sqrt{3}$	1p
	$\begin{vmatrix} 4\sqrt{3} & 12 \\ a\sqrt{2} - b\sqrt{3} = 4\sqrt{2} \cdot \sqrt{2} - \sqrt{3} \cdot \sqrt{3} = 8 - 3 = 5 \end{vmatrix}$	1p
	$a\sqrt{2} - b\sqrt{3} = 5$, deci este număr prim	1p
4.	a) Aplicând teorema lui Pitagora în triunghiul ABC obținem $DC = 20$ cm.	1p
	$P_{ABCD} = 2 \cdot (L+l) = 2 \cdot (20+15) = 2 \cdot 35 = 70 \text{ cm}$ $AD \cdot DC = 15 \cdot 20$	1p
	b) <i>DM</i> este înălțime în triunghiul dreptunghic $ADC \Rightarrow DM = \frac{AD \cdot DC}{AC} = \frac{15 \cdot 20}{25} = 12 \text{ cm}$	1p
	Aplicând teorema lui Pitagora în triunghiul <i>BEC</i> obținem $MC = 16$ cm.	1p
	$tg\left(\sphericalangle MDC \right) = \frac{MC}{MD} = \frac{16}{12} = \frac{4}{3}$	1p
5.	$\mathbf{a)} \ A_{ABCD} = \frac{\left(AB + DC\right) \cdot CE}{2}$	1p
	$A_{ABCD} = \frac{(24+8) \cdot 8\sqrt{2}}{2} = 32 \cdot 4\sqrt{2} = 128\sqrt{2} \text{ cm}^2$	1p
	b) $ABCD$ este trapez isoscel $\Rightarrow CE = \frac{AB - DC}{2} = \frac{24 - 8}{2} = 8$ cm. Aplicând teorema lui Pitagora	1p
	în triunghiul DMC obținem $BC = 8\sqrt{3}$ cm. $AB \parallel DC \xrightarrow{T.F.A.} \Delta MDC \sim \Delta MAB \Rightarrow \frac{MD}{MA} = \frac{DC}{AB} = \frac{MC}{MB}$, de unde $MA = MB = 12\sqrt{3}$ cm	1p
	$P_{\Delta MAB} = MA + MB + AB = 24\sqrt{3} + 24 \text{ cm}$, de tilde $MA = MB = 12\sqrt{3} \text{ cm}$	1p
6.	$P_{\Delta MAB} = MA + MB + AB = 24\sqrt{3} + 24 \text{ cm}$ $\mathbf{a)} \ S_{muchii} = 6 \cdot l$	1p
	$S_{muchii} = 6 \cdot 6\sqrt{3} = 36\sqrt{3} \text{ cm.}$	1p 1p
	b) $\triangle ABC$ echilateral, AM mediană $\Rightarrow AM = \frac{l\sqrt{3}}{2} = \frac{6\sqrt{3} \cdot \sqrt{3}}{2} = 9$, $\triangle BCD$ echilateral, DM	1p
	mediană $\Rightarrow DM = \frac{l\sqrt{3}}{2} = \frac{6\sqrt{3} \cdot \sqrt{3}}{2} = 9 \Rightarrow \Delta AMD$ este isoscel	
	$\triangle AMD$ isoscel $(AM = MD)$, construim ME înălțime $\Rightarrow ME$ mediană. Aplicând teorema lui	1p
	Pitagora în triunghiul <i>DME</i> obținem $ME = 3\sqrt{6}$ cm.	
	$A_{\triangle AMD} = \frac{AD \cdot ME}{2} = \frac{6\sqrt{3} \cdot 3\sqrt{6}}{2} = 27\sqrt{2} \text{ cm}^2.$	1p