A Tree Sampler for Bounded Context-Free Languages

Breandan Considine

Main Idea

- If you can count it, you can sample it! Analytic combinatorics
- We implement a bijection between binary trees in bounded CFLs
- Allows for parallelizable replacement-free sampling from BCFLs

Algebraic Parsing

Given a CFG $\mathcal{G} \coloneqq \langle V, \Sigma, P, S \rangle$ in Chomsky Normal Form (CNF), we may construct a recognizer $R_{\mathcal{G}} : \Sigma^n \to \mathbb{B}$ for strings $\sigma : \Sigma^n$ as follows. Let \in^V be our domain, where 0 is \varnothing , \oplus is \cup , and \otimes be defined as:

$$s_1 \otimes s_2 \coloneqq \{C \mid \langle A, B \rangle \in s_1 \times s_2, (C \to AB) \in P\}$$

Initializing $\mathbf{M}_0[i,j](\mathcal{G},\sigma)\coloneqq\{A\mid i+1=j,(A\to\sigma_i)\in P\}$ and searching for the least solution to $\mathbf{M}=\mathbf{M}+\mathbf{M}^2$, will produce a fixedpoint \mathbf{M}^* :

$$M^0 := egin{pmatrix} arphi \ \hat{\sigma}_1 arphi \ arphi \ \hat{\sigma}_n \ arphi \$$

Valiant (1975) shows that $\sigma \in \mathcal{L}(\mathcal{G})$ iff $S \in \mathcal{T}$, i.e., $1_{\mathcal{T}}(S) \iff 1_{\mathcal{L}(\mathcal{G})}(\sigma)$.

Parsing Dynamics

- ullet The matrix ${f M}_0$ is strictly upper triangular, i.e., nilpotent of degree n
- The recognizer can be translated into a parser by storing backpointers

$\mathbf{M}_1 = \mathbf{M}_0 + \mathbf{M}_0^2$	$\mathbf{M}_2 = \mathbf{M}_1 + \mathbf{M}_1^2$					$\mathbf{M}_3 = \mathbf{M}_2 + \mathbf{M}_2^2 = \mathbf{M}_4$					
(\$)		(\$)		S F+			(s)		S F.+		S (S) (F.+) (S) (S) (S)
F.+ C.S. S.			F.+	(F.+) S				F.+	(F,+)		F.+ S F.= S S
S				S		S F.=			S		S
F.=	(F.=) (S)				F.=	F.E. S				(F.=	=.S F.=
	S					S					8

• If we had a way to solve for $\mathbf{M} = \mathbf{M} + \mathbf{M}^2$ directly, power iteration would be unnecessary and we could solve for $\mathbf{M} = \mathbf{M}^2$ above the superdiagonal...

Binarized CFL Sketching

- ullet CYK parser can be lowered onto a Boolean tensor $\mathbb{B}^{n imes n imes |V|}$ (Valiant, 1975)
- ullet Binarized CYK parser can be compiled to SAT to solve for ${f M}^*$ directly
- ullet Enables sketch-based synthesis in either σ or \mathcal{G} : just use variables for holes!
- ullet We simply encode the characteristic function, i.e. $1_{\subseteq V}:V \to \mathbb{B}^{|V|}$
- ullet \oplus , \otimes are defined as \boxplus , \boxtimes , so that the following diagram commutes:

$$2^{V} \times 2^{V} \xrightarrow{\oplus/\otimes} 2^{V}$$

$$1^{-2} \downarrow 1^{2} \qquad 1^{-1} \downarrow 1$$

$$\mathbb{B}^{|V|} \times \mathbb{B}^{|V|} \xrightarrow{\boxplus/\boxtimes} \mathbb{B}^{|V|}$$

• These operators can be lifted into matrices and tensors in the usual way

Method

We define an algebraic data type $\mathbb{T}_3 = (V \cup \Sigma) \rightharpoonup \mathbb{T}_2$ where $\mathbb{T}_2 = (V \cup \Sigma) \times (\mathbb{N} \rightharpoonup \mathbb{T}_2 \times \mathbb{T}_2)^a$. Morally, we can think of \mathbb{T}_2 as an implicit set of possible trees sharing the same root, and \mathbb{T}_3 as a dictionary of possible \mathbb{T}_2 values indexed by possible roots, given by a specific CFG under a finite-length porous string. We construct $\hat{\sigma}_r = \Lambda(\sigma_r)$ as follows:

$$\Lambda(s:\underline{\Sigma}) \mapsto \begin{cases} \bigoplus_{s \in \Sigma} \Lambda(s) & \text{if s is a hole,} \\ \left\{ \mathbb{T}_2 \big(w, \left[\langle \mathbb{T}_2(s), \mathbb{T}_2(\varepsilon) \rangle \right] \big) \mid (w \to s) \in P \right\} & \text{otherwise.} \end{cases}$$

We then compute the fixpoint M_{∞} by redefining the operations \oplus, \otimes : $\mathbb{T}_3 \times \mathbb{T}_3 \to \mathbb{T}_3$ as follows:

$$X \oplus Z \mapsto \bigcup_{k \in \pi_1(X \cup Z)} \left\{ k \Rightarrow \mathbb{T}_2(k, x \cup z) \mid x \in \pi_2(X \circ k), z \in \pi_2(Z \circ k) \right\}$$
$$X \otimes Z \mapsto \bigoplus \left\{ \mathbb{T}_2\left(w, \left[\langle X \circ x, Z \circ z \rangle \right] \right) \mid x \in \pi_1(X), z \in \pi_1(Z) \right\}$$

These operators group subtrees by their root nonterminal, then aggregate their children. Each Λ now becomes a dictionary indexed by the root nonterminal, which can be sampled by obtaining $(\Lambda_{\sigma}^* \circ S) : \mathbb{T}_2$, then recursively choosing twins.

These operators group subtrees by their root nonterminal, then aggregate their children. The subtree of the sample of the sample

A Pairing Function for BTrees

Let $\mathbf{M}: \mathsf{GF}(2^{n\times n})$ be a square matrix $\mathbf{M}_{r,c}^0 = P_c$ if r=0 else 1[c=r-1], where P is a feedback polynomial with coefficients $P_{1...n}$ and $\oplus := \veebar, \otimes := \land$:

$$\varphi(T:\mathbb{T}_2,i:\mathbb{Z}_{|T|}) \mapsto \begin{cases} \Big\langle \mathtt{BTree} \big(\mathtt{root}(T) \big), i \Big\rangle & \text{if T is a leaf,} \\ \mathtt{Let} \ b = |\mathtt{children}(T)|, \\ q_1, r = \Big\langle \lfloor \frac{i}{b} \rfloor, i \pmod{b} \Big\rangle, \\ lb, rb = \mathtt{children}[r], \\ T_1, q_2 = \varphi(lb, q_1), \\ T_2, q_3 = \varphi(rb, q_2) \text{ in} \\ \Big\langle \mathtt{BTree} \big(\mathtt{root}(T), T_1, T_2 \big), q_3 \Big\rangle & \text{otherwise.} \end{cases}$$

Selecting any $V \neq \mathbf{0}$ and coefficients P_j from a known primitive polynomial, then powering the matrix \mathbf{M} generates an ergodic sequence over $\mathsf{GF}(2^n)$:

Tidyparse IDE Plugin

