

MBA⁺

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

PROGRAMANDO IA COM R

Prof. Elthon Manhas de Freitas elthon@usp.br

2018

Revisão da última aula

- O que vimos na aula passada?
 - Concluir exercício Rmarkdown

Análise básica de um dataset

(usando o R como uma planilha Excel)

- Carregar o dataset BrFlights2.RData <u>sites.google.com/usp.br/programando-ia-com-r</u>
 - Trata-se de todos os voos comerciais brasileiros de 2016 e 2017
- Quais colunas podem ser transformadas em Fatores? Transforme-as.
- Crie coluna com o atraso da partida e o atraso da chegada.
- Crie coluna com distância euclidiana entre origem e destino.
- Crie coluna com tempo de viagem real.
- Como ver o primeiro quartil, média, mediana, etc. da coluna com o atraso na partida?
- Como ver o resumo da tabela toda?
- Qual companhia aérea com maior atraso médio?
- Qual estado de origem com maior atraso médio?
- Qual a relação média entre distância percorrida e tempo de voô?
 - É possível identificar a companhia mais rápida?

Operações com Vetores e Matrizes

Aquecento os motores – vetores

- Criar 6 vetores {a, b, c, d, e, ai}:
 - Vetor a de inteiros com 5 números:
 - Número da matrícula na FIAP (sem letras)
 - Data de nascimento, formato yyyyMMdd
 - 3 últimos dígitos do seu CPF
 - 6 primeiros dígitos do RG
 - 4 dígitos da placa do carro (pode inventar)
 - Vetor b com o dobro do vetor a
 - Vetor c com um terço de b
 - Vetor $d \operatorname{com} c + a^2$
 - **-** Vetor $e \operatorname{com} \sqrt{d}$
 - Criar vetor ai com o inverso de a

```
Resposts dos exercisios de vetores

* a <= c(2424,18800028,808,341178,408)

* b <= a * 2

* c <= b /3

* d <= c * a ** 2

* a <= a ** 2

* a <= a ** 2

* a <= a ** 2
```

- ai[1] <- a[5]
- . . .
- ai[5] <- a[1]

Exercício – matrizes

- Criar matrizes:
 - $-M1_{6\times5}$ com cada linha contendo o valor de um dos vetores
 - M2_{5×6} com cada coluna contendo o valor de um dos vetores
 - $M3_{6\times5}$ com cada elemento contendo 10% de M1 , ou seja, $M1\times0,1$
- A tabela "attitude" é um data frame 30,7.
 - class(attitude)
 - dim(attitude)

- Criar matriz M4_{5×6} sendo uma tabela com 5 linhas e 6 colunas quaisquer de attitude
 - Obs.: Converter de data.frame para matrix com o comando as.matrix()

Operações com vetores e matrizes

 Todas as operações básicas, realizadas com número atômicos também podem ser feitas com vetores e matrizes (soma, subtração, etc.)

```
1 + 3
1:5 + 3
matrix(1:9, 3) + 3
1 * 2
1:5 * 2
matrix(1:9, 3) * 2
```

Exercícios

 Criar matriz (in memory) 19x19 com os valores 1 e 2 nos elementos, alternadamente.

$$\begin{bmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{bmatrix}$$

- Subtrair 1 de cada elemento desta matriz
- Somar 1 para cada elemento da linha 1, 2 na linha 2, ... e 19 na linha 19.
 - Dica: Use um vetor ;-)

Multiplicação de Matrizes

- Soma a multiplicação das linhas de A pelas colunas de B
- $cij = \sum_{k=1}^{ca} (a_{ik} \times b_{kj})$
- No R:
 - C <- A %*% B OU A %*% B -> C

Exercício multiplicação de matrizes

- Criar matrizes:
 - M5 com cada elemento sendo a a multiplicação do elemento equivalente das matrizez M1 e M3. Ou seja $m5_{i,j} = m1_{i,j} \times m3_{i,j}$
 - M6 com cada elemento sendo a a multiplicação do elemento equivalente das matrizez M3 e M1. Ou seja $m6_{i,j} = m3_{i,j} \times m1_{i,j}$ Operador
 - Criar matriz M7 com a multiplicação das matrizes M1 e M4
 - Criar matriz M8 com a multiplicação das matrizes M4 e M1
- Comparar
 - -M5 == M6?
 - -M7 == M8?

응 * 응

Matriz transposta

Matriz em que as linhas e colunas se invertem

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} \Leftrightarrow A^{T} = \begin{bmatrix} a_{1,1} & a_{2,1} & \dots & a_{m,1} \\ a_{1,2} & a_{2,2} & \dots & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \dots & a_{m,n} \end{bmatrix}$$

Código no R:

$$-MT = t(M)$$

Exercício

 Obter a transposta M1T a M8T de cada uma das matrizes M1 a M8

Comparar a multiplicação

$$-M8 \times M8^T$$

$$-M8^T \times M8$$

Outros comandos interessantes

- diag
 - Cria uma matriz diagonal a partir de um vetor.
 - Pode ser usado para criar a matriz identidade
- solve
 - Obtém a matriz inversa M^{-1} de uma matriz quadrada
 - Também pode ser usada para obter $M^{-1} \times \alpha$

Exercício malvadão (Matemática, não R) 🗀 🦳

Obter o valor da matriz X na equação:

$$-AX = B$$

- A = as.matrix(attitude[21:25, 1:5])
- B = as.matrix(attitude[11:15, 1:5])

- Primeiro resolver o sistema de equação matricial. Depois, como resolver no R.
- Voluntários?

Amostras e Simulações

Amostras e Simulações

 Usado para quando se quer criar um conjunto fictício de dados amostrais

Gerando números aleatórios

Família Normal

Gerando números aleatórios

- Família normal
 - rnorm: Para obter número aleatórios seguindo uma distribuição normal
 - dnorm Avalia a probabilidade da normal de um valor (dada a média μ e o desvio padrão σ)
 - -pnorm Avalia a probabilidade ACUMULADA da normal de um valor (dada μ e σ)
 - Esta função deve formar uma curva sigmóide!

Reproduzindo experimentos

 Trabalhar com números aleatórios naturalmente faz com que se obtenha resultados igualmente aleatórios

 Quando se deseja que os resultados sejam reproduzidos (apesar da aleatoriedade), é preciso "plantar a semente" da aleatoriedade.

- para isso, se usa a instrução
 - set.seed(seed)

- set.seed(1)
- rnorm(5)
- rnorm(5)
- set.seed(1)
- rnorm (5)

Um modelo linear perfeito

$$y = \beta_0 + \beta_1 x$$

- Em que
 - $\beta_0 = 0.5$
 - $\beta_1 = 2.0$
 - x = 1

Mas as amostrar não são perfeitas

Plot com erro e amostra com Rnorm

Simulando um modelo linear

Considere o seguinte modelo linear

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Em que

$$-\beta_0 = 0.5$$

$$-\beta_1 = 2.0$$

$$-x \sim \mathcal{N}(0; 1^2)$$

$$-\varepsilon \sim \mathcal{N}(0; 2^2)$$

Notação da função normal ${\mathcal N}$:

0 de média

1² de variância = 1 de desvio padrão

Exercício

Gerar os dados para o modelo linear descrito

- Considerar 100 observações
- Lembrar de "colocar a semente"

- Plotar o resultado
- library(plotly)
- plot_ly(x = x, y = y, type = "scatter")

Gerando números aleatórios

Familia Binomial

Gerando números aleatórios

- Família Binomial
 - rbinom: Para obter número aleatórios seguindo uma distribuição binomial a partir de um tamanho t e dada uma distribuição de probabilidades p com $0 \le p \le 1$
 - dnorm Avalia a probabilidade binomial de um valor (dado um tamanho t e dada uma distribuição de probabilidades p)
 - pnorm Avalia a probabilidade ACUMULADA da binomial de um valor (dado t e p)
 - Esta função deve formar uma curva sigmóide!

Experimento binomial + normal

 A função binomial pode ser usada para se obter aleatórios binários

```
set.seed(10)x <- rbinom(n = 100, size = 1, prob = 0.5)</li>
```

 Então seguimos com erros de amostragem como já fizemos antes

```
e <- rnorm(n = 100, mean = 0, sd = 2)</li>
y <- 0.5 + 2 * x + e</li>
```

 Poisson / Log-Linear deve ser visto nas aulas de estatística

Gerando números aleatórios

Familia Uniforme

Gerando números aleatórios

- Família Uniforme
 - runif: Para obter número aleatórios seguindo uma distribuição uniforme a partir de um mínimo min e um máximo max
 - dunif Avalia a probabilidade uniforme de um valor (dado um mínimo min e dado um máximo max)
 - punif Avalia a probabilidade ACUMULADA uniforme de um valor (dado min e max)
 - Esta função deve formar uma reta

Amostras a partir de um domínio

comando sample

```
set.seed(1)
amostra = c( "T", "R", "I", "A", "N", "G", "U", "L", "O", "S")
sample(x = amostra, replace = FALSE)
sample(x = amostra, replace = TRUE)
sample(x = amostra, size = 5)
sample(x = amostra, size = 10, replace = TRUE, prob = c(1, 1, 5, 1, 1, 1, 1, 1, 1, 5))
```

Exercício: Amostra de uma base de dados

- Avaliar o data.frame "airquality"
 - Obter as dimensões deste data.frame
 - Obter o resumo de todas as colunas
 - exibir uma amostra dos 10 primeiros registros
 - exibir uma amostra com 10 linhas aleatórias
 - lembre-se de definir a semente para obter sempre o mesmo resultado

Trabalho em grupo

Trabalho em grupo – Explorando em EDA 🗐 🔨 🏳

- Definição dos grupos
- Preencher formulário presente no site:
 https://sites.google.com/usp.br/programando-ia-com-r
- Escolha dos 10 cases
 - (Agora, se tivermos 10 grupos)

Exercícios individuais

- Aprenda R no R
- Portfólio individual

lembrete: 2 pontos cada

 Copyright © **2018**Prof. Elthon Manhas de Freitas

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).