

Transformationen

COMPUTERGRAPHIK

Inhaltsverzeichnis

5. Transformationen

- 5.1 Koordinatentransformationen
- 5.2 Transformationen in der Ebene
- 5.3 Transformationen im Raum

Koordinatensysteme

- Koordinatensystem des Objekts
 - Oft über geometrische Eigenschaften des Objektes festgelegt
 - Ausgezeichnete Richtungen
 - Symmetrien

- Koordinatensystem des Geräts
 - Bildschirm
 - Bildfenster
 - Nullpunkt in der linken, oberen Ecke
 - x- und y-Achsen parallel zu den Bildrändern

Koordinatensysteme

Weltkoordinaten (3D,
$$\mathbb{R}^3$$
) \downarrow 1)

Beobachterkoordinaten (3D, \mathbb{R}^3)

Normalisierte Koordinaten (3D,

$$[-1;1]^3$$
) \downarrow 3)

Bildschirmkoordinaten (2D)

- Grundlage der Bildgestaltung auf dem Bildschirm oder dem Ausgabegerät sind Koordinatentransformationen im
 - $-\mathbb{R}^2$
 - $-\mathbb{R}^3$
- Transformieren das Objektsystem in das Gerätesystem
- Koordinatentransformationen:
 - Verschiebungen (translation)
 - Drehungen (rotation)
 - Skalierungen (scaling)

Voraussetzung:
 Orthonormierte (kartesische)
 Koordinatensysteme

Allgemeine Vorgehensweise bei der Koordinatentransformation

- Bildschirm oder Ausgabegerät mit einem Koordinatensystem versehen
- Objekt mit einem Koordinatensystem versehen
- 3) Objekt- und Objektkoordinatensystem mittels Parallel- oder Zentralprojektion in Bildebene abbilden ($\mathbb{R}^3 \to \mathbb{R}^2$ Transformation)

Anpassung des Koordinatensystems der Bildebene an das Koordinatensystem des Bildschirmes:
 Koordinatentransformation
 (ℝ² → ℝ²Transformation)

- Gegeben seien im Folgenden die beiden Koordinatensysteme
 - S durch $(0; x_1, x_2)$ (z. B. Gerätesystem)
 - S' durch $(0'; x'_1, x'_2)$ (z. B. Objektsystem)

Verschiebung (translation)

- Die einfachste Transformation zwischen dem System S' und S ist eine Verschiebung.
- Voraussetzung:
 die beiden (gerichteten)
 Koordinatenachsen sind jeweils parallel zueinander

Verschiebung (translation)

- Seien $(t_1, t_2) = 0'$ die Koordinaten des Ursprungs 0' von S' im System S
- Der Punkt P hat die Koordinaten

$$-(p'_1,p'_2)$$
 in S'

$$-(t_1+p_1',t_2+p_2')$$
 in S

– Also:

$$p_1 = t_1 + p'_1$$

 $p_2 = t_2 + p'_2$

Verschiebung (translation)

$$\binom{p_1}{p_2} = \binom{t_1}{t_2} + \binom{p_1'}{p_2'}$$

$$P = T + P'$$

Drehung (rotation)

- Wir betrachten die Drehung eines
 Systems S' gegen das System S um
 - den gemeinsamen Ursprung

$$0 = 0'$$

- den Winkel $oldsymbol{arphi}$

$$\frac{L}{p_1'} = \cos(\phi) \quad \frac{M}{p_1'} = \sin(\phi)$$

$$\frac{l}{p_2'} = \sin(\phi) \quad \frac{m}{p_2'} = \cos(\phi)$$

$$\frac{L}{p_1'} = \cos(\phi) \quad \frac{M}{p_1'} = \sin(\phi)$$

$$\frac{l}{p_2'} = \sin(\phi) \quad \frac{m}{p_2'} = \cos(\phi)$$

$$p_1 = L - l = p'_1 \cos(\phi) - p'_2 \sin(\phi)$$

$$p_2 = M + m = p'_1 \sin(\phi) + p'_2 \cos(\phi)$$

$$\frac{L}{p_1'} = \cos(\phi) \quad \frac{M}{p_1'} = \sin(\phi)$$

$$\frac{l}{p_2'} = \sin(\phi) \quad \frac{m}{p_2'} = \cos(\phi)$$

$$p_1 = L - l = p'_1 \cos(\phi) - p'_2 \sin(\phi)$$

$$p_2 = M + m = p'_1 \sin(\phi) + p'_2 \cos(\phi)$$

$$\binom{p_1}{p_2} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \binom{p_1'}{p_2'}$$

Drehung (rotation)

$$\binom{p_1}{p_2} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \binom{p_1'}{p_2'}$$

$$P = R \cdot P'$$

Bemerkung

R ist orthonormal: $R^{-1} = R^T$

Drehung (rotation): Interpretation

- 1) Punkt wird gedreht
- R transformiert
- die Koordinatendarstellung (p_1', p_2') bezüglich des Systems S
- in die Koordinatendarstellung (p_1, p_2) bezüglich des selben Systems S dies entspricht:
- einem globalen Koordinatensystem S
- auf die Koordinaten (p_1', p_2') von P wirkt die Matrix R

- 2) Koordinatensystem wird gedreht *R* transformiert
- das lokale Koordinatensystem S
- in das lokale Koordinatensystem S' dies entspricht:
- P wird bezüglich des Koordinatensystems S' mit den Koordinaten (p_1', p_2') definiert

- Bei der Rotation um einen beliebigen
 Punkt P_1 müssen noch zwei
 Translationen hinzugenommen werden
- 1) Verschiebung von P_1 in den Ursprung
- 2) Drehung um den Ursprung
- 3) Verschiebung von P_1 in die ursprüngliche Position

Skalierung (scaling)

 Soll das System S' "vergrößert" oder "verkleinert" werden, so muss eine Skalierung durchgeführt werden:

$$-p_1 = s_1 \cdot p_1'$$

$$-p_2 = s_2 \cdot p_2'$$

$$\begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} \cdot \begin{pmatrix} p_1' \\ p_2' \end{pmatrix}$$

$$P = S \cdot P'$$

Scherung

$$-p_1 = p_1' + \lambda_1 \cdot p_2'$$

$$-p_2=p_2'$$

$$\begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 1 & \lambda_1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} p_1' \\ p_2' \end{pmatrix}$$

$$P = \Lambda \cdot P'$$

- Beliebige lineare Transformationen können beschrieben werden als Kombination aus
 - einer Skalierung
 - einer Scherung und
 - einer Rotation

Affine Transformationen

 Lassen sich als Kombination einer linearen Abbildung und einer Translation schreiben:

$$P = A \cdot P' + T$$

- Die bisher genannten
 Transformationen sind Beispiele
 affiner Transformationen:
 - Translation
 - Rotation
 - Skalierung
 - Scherung

Affine Invarianz von Teilungsverhältnissen:

 Für eine affine Transformation F und die Punkte P und Q gilt immer:

$$F(\lambda \cdot P + (1 - \lambda) \cdot Q)$$

= $\lambda \cdot F(P) + (1 - \lambda) \cdot F(Q)$

$$0 \le \lambda \le 1$$

Affine Transformationen

- Diese Beziehung zeigt
 - dass das Bild einer Strecke
 (Strecke von Q nach P)
 unter einer affinen Abbildung F
 wieder eine Strecke ist
 - dass Teilungsverhältnisse $\lambda : (1 \lambda)$ unter F invariant bleiben
- Es genügt, die Endpunkte Q und P auf der Strecke abzubilden.
- Zwischenpunkte erhält man durch Interpolation von F(Q) und F(P).

 Man beachte, dass unter affinen Abbildungen parallele Linien parallel bleiben.

Affine Transformationen

- Reflektion an der Gerade y = x:

$$F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- Reflektion an der Gerade y = -x:

$$F = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

- Reflektion an der \mathcal{X} -Achse:

$$F = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Reflektion an der *y*-Achse:

$$F = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

– Reflektion am Ursprung:

$$F = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Zusammengesetzte Transformationen

- Bemerkung:
 - Die Matrizenmultiplikation ist nicht kommutativ.
 - Bei hintereinander geschalteten Matrizenmultiplikationen muss darauf geachtet werden, dass die Reihenfolge der Matrizen der Reihenfolge der Rotationen entspricht.

$$P' = M_n * (M_{-1} * ... * (M_3 * (M_2 * (M_1 * P)))...)$$

Homogene Koordinaten

- Homogene Koordinaten entstammen der projektiven Geometrie.
- An dieser Stelle soll jedoch eine andere Motivation verwendet werden.
- Die Hintereinanderschaltung von Rotation, Translation und Skalierung führt auf die Abbildungsgleichung:

$$P = S \cdot (T + R \cdot P')$$

- Müssen mehrere solcher Transformationen hintereinander ausgeführt werden, so stört die Addition in der Gleichung.
- Da heutige Computergraphikhardware insbesondere auch Matrixmultiplikationen unterstützt, ist es günstig, Transformationen ausschließlich mittels Matrixmultiplikationen auszuführen, also:

$$P = M_n \cdot \cdots \cdot M_1 \cdot P'$$

Homogene Koordinaten

- Dies erreicht man durch folgenden Übergang auf die nächst höhere Dimension:
 - Das Tripel (x, y, w), $w \neq 0$ stellt die homogenen Koordinaten des Punktes $\left(\frac{x}{w}, \frac{y}{w}\right) \in \mathbb{R}^2$ dar.
 - Da es unendlich viele solcher
 Darstellungen desselben Punktes gibt,
 verwendet man die so genannte
 Standarddarstellung mit w = 1.
 - Also besitzt ein Punkt $P=(x,y)\in\mathbb{R}^2$ als homogene Koordinaten (x,y,1)

Bemerkung:

– Für Punkte im \mathbb{R}^3 gilt eine analoge Konstruktion

Homogene Koordinaten

Verschiebung

$$\begin{pmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Drehung um den Ursprung

$$\begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Skalierung

$$\begin{pmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Homogene Koordinaten

- Drehung um Z

$$\begin{pmatrix} 1 & 0 & Z_x \\ 0 & 1 & Z_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -Z_x \\ 0 & 1 & -Z_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Verschiebung

$$\begin{pmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Skalierung

$$\begin{pmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Drehungen

- Im 3-dimensionalen Raum gibt es mehrere Achsen, um die gedreht werden kann
 - -x-Achse
 - y-Achse
 - Z-Achse
 - Beliebige Achse im Raum
- Für die ersten drei Fälle wird die Richtung der Achse als von einem negativen Wert zum Ursprung angenommen.

Rechtshändiges Koordinatensystem

Drehungen

 Es wird gegen den Uhrzeigersinn gedreht (mathematisch positiv). Rechtshändiges Koordinatensystem

Drehungen

-x-Achse

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi & 0 \\ 0 & \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

-y-Achse

Drehungen

- z-Achse

$$\begin{pmatrix}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \qquad \varphi \qquad \qquad \chi$$

Drehung um eine beliebige Achse

- Jede Rotation um eine beliebige Achse kann aus Rotationen um die einzelnen Koordinatenachsen zusammengesetzt werden (⇒ Euler)
- Wir entwickeln
 - die Rotation $R_G(\alpha)$
 - für die Drehung eines Punktes P
 - um eine beliebig orientierte Achse G im Raum
 - um einen Winkel lpha

Drehung um eine beliebige Achse

- Sonderfall:
 die Drehachse G
 - geht durch den Ursprung
 - wird von dem Vektor $b = \left(b_{x}, b_{y}, b_{z}\right), \|b\| = 1$ generiert
 - $-G: \lambda \cdot b, \lambda \in \mathbb{R}$

$$b_x = \sin \varphi \cdot \cos \theta$$

$$b_y = \sin \varphi \cdot \sin \theta$$

$$b_z = \cos \varphi$$

Drehung um eine beliebige Achse durch den Ursprung

- Gesucht sind nun die Koordinaten eines Punktes P nach einer Drehung um die Achse G um den Winkel α
- Vorgehensweise:
 - 1) Der Punkt *P* wird so transformiert, dass die Drehachse mit der z-Achse zusammenfällt
 - 2) Die Drehung um α verwendet die Rotationsmatrix $R_z(\alpha)$
 - 3) Die Transformation wird rückgängig gemacht

- Bemerkung:
 Ist G mit der Z-Achse identisch, so entfallen die Schritte 1) und 3)
 (Transformationen)
- Man geht in mehreren Teilschritten vor

Drehung um eine beliebige Achse durch den Ursprung

Schritt 1:

- Der Vektor b wird in die (z,x)-Ebene gedreht (b')
- Aus P entsteht dabei $P' = R_z(-\theta) \cdot P$

$$R_{z}(-\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \frac{1}{d} \cdot \begin{pmatrix} b_{x} & b_{y} & 0 & 0 \\ -b_{y} & b_{x} & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$$

Drehung um eine beliebige Achse durch den Ursprung

Schritt 2:

- Der Vektor b' wird so gedreht, dass er mit der Z-Achse zusammenfällt
- Aus P' entsteht dabei $P'' = R_y(-\varphi) \cdot P'$

$$R_{y}(-\varphi) = \begin{pmatrix} \cos \varphi & 0 & -\sin \varphi & 0 \\ 0 & 1 & 0 & 0 \\ \sin \varphi & 0 & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} b_{z} & 0 & -d & 0 \\ 0 & 1 & 0 & 0 \\ d & 0 & b_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Drehung um eine beliebige Achse durch den Ursprung

Schritt 3:

- $P^{\prime\prime}$ wird mit Winkel lpha um die Z-Achse gedreht
- Aus P'' entsteht dabei $P''' = R_z(\alpha) \cdot P''$

$$R_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Drehung um eine beliebige Achse durch den Ursprung

Schritt 4:

Inverse Rotation zu Schritt 2

$$R_{y}(\varphi) = \begin{pmatrix} \cos \varphi & 0 & \sin \varphi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \varphi & 0 & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad R_{z}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} b_{z} & 0 & d & 0 \\ 0 & 1 & 0 & 0 \\ -d & 0 & b_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad = \frac{1}{d} \cdot \begin{pmatrix} b_{x} & -b_{y} & 0 & 0 \\ b_{y} & b_{x} & 0 & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$$

Schritt 5:

Inverse Rotation zu Schritt 1

$$R_{z}(\theta) = egin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \ \sin \theta & \cos \theta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$
 $= rac{1}{d} \cdot egin{pmatrix} b_{x} & -b_{y} & 0 & 0 \ b_{y} & b_{x} & 0 & 0 \ 0 & 0 & d & 0 \ 0 & 0 & 0 & d \end{pmatrix}$

Drehung um eine beliebige Achse durch den Ursprung

Ergebnis:

– Gesamttransformation:

$$R_b(\alpha) = R_z(\theta) \circ R_v(\varphi) \circ R_z(\alpha) \circ R_v(-\varphi) \circ R_z(-\theta)$$

Allgemeiner Fall:

- Die Drehachse ist eine allgemeine Gerade
 - $-G: a + \lambda \cdot b, \lambda \in \mathbb{R}$
 - $-a = (a_x, a_y, a_z)$
 - $-b = (b_x, b_y, b_z), ||b|| = 1$

$$R_G(\alpha) = T(a) \circ R_Z(\theta) \circ R_Y(\varphi) \circ R_Z(\alpha) \circ R_Y(-\varphi) \circ R_Z(-\theta) \circ T(-a)$$

Zusammengefasste Transformationsmatrizen

 Durch die Verschiebung vieler Objekte mit einer Gesamtmatrix spart man Rechenkosten.

- Diese entspricht einer sequenziellen
 Multiplikation des Punktes P mit den einzelnen
 Transformationsmatrizen.
- Ausnutzung der Assoziativität der Matrizenmultiplikation
 - (M1 * M2) * M3 = M1 * (M2 * M3)

Statt

$$P' = M_n * (M_{-1} * ... * (M_3 * (M_2 * (M_1 * P)))...)$$

Schreibt man

$$P' = (M_n * M_{n-1} * ... * M_3 * M_2 * M_1) * P$$