The Effect of Varibale Selection Approaches on MSE of IPW ATE Estimator

Notes for working with QMD file

This is an example of citing a table: Table 1, using its label tbl-main-effects. Make sure to start *label* for a table with tbl-. Review chunks for formatting of labels and captions. They will automatically update labels and captions

This is an example of citing a figure: Figure 1, using its label fig-bias-summary. Make sure to start *label* for a figure with fig-

example of citing papers via bibtex files. Citing Shortreed and Ertefaie (2017) using its tag shortreed2017outcome in bib file

Introduction

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227634/#:~:text=In%20the%20Obstetrics%20and%20Perio

 $https://accpjournals.onlinelibrary.wiley.com/doi/abs/10.1592/phco.23.8.1037.32876?casa_token=v6XJv5w0DkAAAA:DJdg3MRA_a9xY093j773zpMOCKSlLYQ2jeJSjeCjR8hc7_J-WIoEeOiwNEuCvIoUhyVgf-9bc6aNA$

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065283/

Use of random forest with a lot of variables https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920646/

• Super high dim variable selection and ANDI data

https://onlinelibrary.wiley.com/doi/full/10.1111/biom.13625?casa_token=TPy_un3cN-EAAAAA%3Asm_EoAthJYwoV489HGuY_CnDi0BV7JIWSOvWyTcynDH6dYDq0TOQJGe6pHMzhcFI4z42v

• Some study with bias and mse

 $https://onlinelibrary.wiley.com/doi/full/10.1002/sim.4469?casa_token=N3XCrX6yrUsAAAAA%3AQ2uBYcmlikpXzZnL8_FPmqQhPGPP1No3OxG74JK0fw$

Methods

Results

Simulation Results

Relative ATE Bias (Bias/True ATE) using Different Estimator (IPW v.s. PSS)

Figure 1: CAPTION FOR THIS PLOT REQURIED

Figure 2: CAPTION FOR THIS PLOT REQURIED

Summary of Variable Selection Process, Comparison with True Covariate Space

Figure 3: CAPTION FOR THIS PLOT REQURIED

Table 1: Gaussian GLM with log-transformed response effect estiamtes. Coefficients are exponentiated and present the effect as % change

Predictor	Estimate	95% CI	P-value	Significance
m	-1%	(-1.07 $\%$, -0.89 $\%$)	0.0000	*
n	0%	$(\ 0\ \%\ ,\ 0\ \%\)$	0.0485	*
S	4.6%	(-0.32 $\%$, 9.73 $\%$)	0.0672	
${\bf method Experience\ Based}$	8.6%	(-39.87 $\%$, 96.04 $\%$)	0.7850	
${\it method} \\ {\it Adaptive Lasso}$	-1.3%	(-29.44 $\%$, 38.09 $\%$)	0.9395	
methodLasso	72.3%	($19.7~\%$, $148.02~\%$)	0.0034	*
methodForward Selection	52.6%	($7.36~\%$, $116.96~\%$)	0.0185	*
$p_true_selected$	-34.9%	(-71.91 $\%$, 51.03 $\%$)	0.3177	
$p_total_selected$	-5.1%	(-13.59 $\%$, 4.28 $\%$)	0.2772	
${\bf s:} {\bf methodExperience~Based}$	3.4%	(-0.43 $\%$, 7.42 $\%$)	0.0822	
$s: method Adaptive\ Lasso$	0%	(-1.53 $\%$, 1.5 $\%$)	0.9697	
s:methodLasso	-1.8%	(-3.27 $\%$, -0.35 $\%$)	0.0152	*
s:methodForward Selection	-1.2%	(-2.85 $\%$, 0.5 $\%$)	0.1655	
s:p_true_selected	3.3%	(-1.44 $\%$, 8.31 $\%$)	0.1751	

^a Regression model explains 10.26% of variation in Squared Errors of IPW estimator

Effect of Covariate Selection Process on MSE

Figure 4: Estimated Marginal Effects IPW Estimator FILL IN THE REST

Figure 5: Effect of Variable Selection Method on IPW MSE

Main Effects

^^^ Mains

- 1. As the number of true predictors increases, models get more complicated, and we have on average higeher ${\it MSE}$
- 2. However, in a situatin where true predictor space is samll, adaptive lasso performs almost as good as the best case scenario of knowing the true predictors
- 3. As we go from simpler to more complicated space, all methods are good. Conclusion: use adaptive lasso

Discussion

Conclusion

References

Shortreed, Susan M, and Ashkan Ertefaie. 2017. "Outcome-Adaptive Lasso: Variable Selection for Causal Inference." *Biometrics* 73 (4): 1111–22. https://doi.org/10.1111/biom.126 79.

Appendix