Renal Care Spring 2020 Project Update

James Bonaffini and Lisa Chen

Background

- 750,000 People have been diagnosed with End Stage Renal Disease in the US
 - Population grows by 20,000 every year
- Renal Replacement Therapy is paid for by Medicare
 - 7% of the Medicare budget, less than
 1% of the Medicare Population
 - Home dialysis accounts for ~10% of the Dialysis patient population
- Average wait time for a kidney transplant is 4-5 years

Data from USRDS 2018 Annual Report

Background

- Executive Order: Advancing
 American Kidney Health
 - In-Clinic Dialysis → HomeDialysis
 - Public-Private Partnerships

"The kidney has a very special place in the heart" -- Pres. Donald Trump (7/10/19)

Background: Peritoneal Dialysis

- A dialysis modality that does not involve pumping blood through an external filter
- Uses the peritoneum as the "filter"
- Dialysis solution fills the peritoneal cavity, solutes exchange through osmosis, and effluent is drained hours later
- Major Complication: Peritonitis
 - 0.67 Events Per Patient Year in the US
- Peritonitis can affect the viability of the peritoneum for continuing dialysis

Picture Source: https://www.niddk.nih.gov/

Problem Statement

The purpose of this project is to decrease the incidence of peritonitis for current and future peritoneal dialysis (PD) patients by identifying infection in its early stages and refining/replacing the mechanics of existing PD devices.

Current Technology

- To dialyze, patients must make two sterile connections at home
 - a. Expose catheter → Dialyzer
 - b. Dialyzer → New Cap
- Simultaneous twist motion

Clinical Requirements

During observations we saw many different clinical requirements surrounding PD care.

We want to focus on the requirements that protects people from infection in a non-sterile environment to facilitate the inventive parts of our device

- Procedure is frequent
- Prone to error
- 1. Device **must** enable enhanced prevention from infection.
- 2. Device **must** maintain catheter tip sterility even in a non-sterile environment.
- 3. Device **should** decrease the time it takes to complete the PD procedure.

Clinical Requirement: Must Enable Enhanced Prevention From Infection

Corresponding Device Requirements

Shall prevent the PD patient from touching the PD catheter tip during normal use

Should decrease amount of time catheter tip is exposed to non-sterile environment.

May be able to connect faster than with current screwing mechanism.

Device Specifications

Device Requirements

Device **shall** prevent the PD patient from touching the PD catheter tip during normal use

Device **should** decrease amount of time catheter tip is exposed to non-sterile environment

Device **may** be able to connect faster than with current screwing mechanism

Device Specifications

Device shall keep patient fingers or foreign bodies at least ___ inches away from the sterile tip.

Cap should only open in provided sterile environment. ____ force must be applied to expose sterile catheter tip.

Device connection may have magnetic/automatic properties.

Verification Strategy

Device Specifications

Device shall keep patient fingers or foreign bodies at least ___ inches away from the sterile tip.

Cap should only open in provided sterile environment. ____ force must be applied to expose sterile catheter tip.

Device connection may have faster ______magnetic/automatic properties.

Verification Strategy

Proximity to body surfaces when performing connections ("Manipulation distance from fingers").

Sterile catheter tip to cap connection strength

- Pull Force Test Plan
- Load Force Test Plan

Measure time catheter is exposed to air during connection performance

Design Iterations: Sketches

Design Iterations

Front (patient-facing)

Back (Fluid port facing)

Version 1

Front

Back

Risk of Infection Mitigated Through Design

How does it fail? Catheter becomes disengaged from the channel while the sterile tip is exposed

Mitigation Measure: Closed channel design that requires twisting of the catheter body before entering or exiting the channel

Risk of Infection Mitigated Through Design

How does it fail? Catheter tip becomes exposed from the back of the case (side of the case facing the fluid port)

Mitigation Measure: Back of the case has been closed except for the hole to interface with the fluid port

Regulatory Strategy

- Popular predicate device: Fresenius Stay
 Safe, especially relevant to UVA
- Routinely reviewed on 510k basis
 - §876.5630: Peritoneal dialysis system and accessories.
 - We can meet predicate device characteristics to get device to pass in 510k basis
 - Class II (Special Controls)
 - PMA Exempt
 - We would include similarities in intended use, principle of operation, sterilization method, biocompatibility and design characteristics.

Problem 2: Diagnostics

There will still be cases of peritonitis

Addressing peritonitis at an early stage is paramount

- Reduce Hospital Admissions
- Ensure viability of the peritoneum

Gold Standard: Reading through the effluent bag

High potential for innovation with an automatic test

PD and Data Science

Executive Order on Advancing American Kidney
Health will have large effects on the industry and
the 15% of US citizens that have Chronic Kidney
Disease

Phase 1: Projection of PD patients and peritonitis

Phase 2: Validation of Phase 1 projections based on the UVA Population

Phase 3: Evaluation of how our device would mitigate Peritonitis

A Special Thanks To:

Dr. Brendan Bowman

Dr. Sana Khan

Dr. Rosen

David Chen

Ty Hagler and Andrew Dimeo

Kim Fitzhugh-Higgins

BME-ME Class of 2020

Backup

Product Description:

The Peritoneal Dialysis (PD) transfer case and catheter cap system is a single use, sterile accessory that provides enhanced procedural measures for the ensurement of the sterile field. The device uses a rail and automatic catheter uncapping, sterile lumen engagement, and catheter recapping system. It consists of a clear plastic rail case and a loaded sterile catheter tip. It is to be operated by a patient that is undergoing Continuous Ambulatory Peritoneal Dialysis at home when prescribed by a physician.

Intended Use:

For use with End Stage Renal Disease Patients that are undergoing Continuous Ambulatory Peritoneal Dialysis.

For use with CAPD tubing sets including PD catheter, dialysate bag tubing, and drainage bag tubing. For use in a home environment.

Indications for Use:

This device is indicated for use in increasing sterility when performing the transfer between sterile PD connections, including between a sterile cap and sterile dialysate bag tubing and the reverse. This device is indicated for use in keeping the hands and fingers from contact with the sterile PD lumen while the PD catheter does not have a protected sterile terminal.

Clinical Requirements: Prevention

Efficacy	Device must enable enhanced prevention from infection						
Use	Device should decrease the time it takes to connect to the dialyzer.						
	Device should decrease amount of time catheter tip is exposed to non-sterile environment						
Sterilizable	Device must be able to be sterilized						
User	Device must be usable by a PD patient that is right or left handed.						
User	Device should be usable by a PD patient including those with comorbidities						
Environment	Device must be usable at home						
Environment/Sterile	Device shall keep the catheter tip sterile even in a non-sterile environment.						
Use	Device shall permit ease of grip of the catheter tip while keeping hands away						
Use	Device should permit tactile manipulation of the catheter tip while keeping hands away						
Safety	Tip must remain securely on the catheter when a transfer is not occuring						
Use/Safety	Device should be durable enough to survive a 3 foot fall.						
Use	Device can be watertight and create a channel for fluid to flow						
Biocompatibility	Device must be biocompatible with fluid flowing across it and into the PD patient, not leeching any toxic						
	chemicals						
Sterility	Device must maintain sterility of the catheter tip.						
Efficiency	Device should permit fluid to flow quickly into and out of patient						
Price	Device must be economically viable within existing reimbursement codes						
Use	Device should be single use						
Volume (manufacturing)	Device should have a tip component that is disposable and manufactured at high volume						
	Current Market: 50k Pts * 4 times/day * 365 days/year = 73 million						
	Future Market (2030): 500K Pts * 4 times/day * 365 days/year = 730 million						
Packaging	Device must maintain sterility and remain undamaged during shipping						

Clinical Requirements: Diagnostics

Efficacy	Device must enable early diagnostic detection of peritonitis					
Efficacy	Device must return result faster that current detection methods					
User	Device should be usable by PD patient with comorbidities					
Efficacy	Device must provide clear and accurate results					
Efficacy	Device must be able to detect infection no matter what strain					
Environment	Device should be usable at home					
Safety	Device must be biocompatible and safe					
Use	Diagnostic should be run very frequently					
Use	Device must not indicate/change when not in use					
Shelf Life	Shall be storable for up to 1 year					
Price	Device can be cheap enough for single use					
Packaging	Packaging must permit shipping without damage					

O = Occurrence	1 (occurs very infrequently) 10 (occurs very frequently)											
S = Severity	1 (least severe, no effect)											
	10 (most severe, causes death, ~5 = directly cause infection)											
D = Detection	·											
10 (most difficult to detect)												
Function	Failure Mode	Cause	0	Effect	S	Detection Method	D	RPN				
Slide Catheter along	Catheter becomes	Bad fit between catheter		Possible exposure of		Trial run of channel-cap						
case channel	disengaged	tip and case channel	4	the sterile lumen to	5	connection after	2	40				
		(knobs too small for	4	non-sterile surfaces	3	manufacturing - fit test		40				
		channel)				design verification						
		Channel not properly		Difficult for patient to		Scan of channel profile						
		manufactured	4	direct catheter correctly,	5	after manufacturing -	4	80				
			١.	possible exposure of		design verification	'					
				sterile lumen								
		Patient uses too much		Possible exposure of		Force testing of						
		force	4	the sterile lumen to	5	channel-cap connection	4	80				
		<u></u>		non-sterile surfaces								
Cap remains securely	Catheter cap comes	Thread mechanism fails	_	Possible exposure of	l _	Fit test - design						
on the Catheter when	off when transfer is		3	the sterile lumen to	5	verification	2	30				
transfer is not occurring	not occurring			non-sterile surfaces	<u> </u>							
		Cap was never screwed	5	Threat of exposure of	4	Inspection	1	20				
		on fully, leaving only the		the sterile lumen to								
		clicking mechanism to		non-sterile surfaces								
		hold the cap		Th								
		Cap is too big for the	_	Threat of exposure of		Fit test - design		_,				
		catheter body	3	the sterile lumen to	4	verification	2	24				
				non-sterile surfaces								

Other Design Sketches – Catheter Tip

Magnetic ball bearing connection

Other Design Sketches - Detection

Other Design Sketches - Detection

