Heterogeneity and Anisotropy

Natural geologic processes often cause hydraulic properties to vary with location in the subsurface.

Fluvial and Alluvial

Fractured Rock

Beach

Glacial

<u>Homogeneous</u>: a property (say K) is independent of location in the geologic formation

• i.e., K(x,y,z) = constant

<u>Heterogeneous</u>: K varies with location in the geologic formation

• i.e., K(x,y,z) ≠ constant

<u>Isotropic</u>: K is independent of the direction of measurement at a point in the geologic formation

• i.e.,
$$K_x = K_y = K_z$$

Anisotropic: K varies with the direction of measurement

- i.e., $K_x \neq K_y \neq K_z$
- K is generally larger in the horizontal direction than the vertical direction

Homogeneous, Isotropic

Homogeneous, Anisotropic

Heterogeneous, Isotropic

Heterogeneous, Anisotropic

At a larger scale, heterogeneity leads to anisotropy.

Types of Heterogeneity

1. Layering

(a) can result from large scale depositional processes

1 km major stratigraphic units 100 m (b) or as small-scale variations within a larger system 1 m small scale 10 cm bedding

2. Discontinuities

(a) Fold, Faults, etc.

(b) Overburden-Bedrock Contacts, Unconformities

3. Spatial Trends

- (a) depositional trends
 - e.g., deltas, glacial outwash, and some fluvial deposits

Causes of Anisotropy

- 1. Grain Orientation
 - particularly prevalent in clays

Kx = Ky = Kz Random Orientation *Isotropic*

 Anisotropy caused by grain orientation is generally no greater than 10

•i.e.,
$$1 < \frac{K_X}{K_Z} < 10$$

2. Layering

- anisotropy results from layering at both the local and regional scales
- anistropy ratios can exceed 100 (i.e., K_x/K_z > 100)

3. Fracture Orientation

 fractures often have a preferred orientation, resulting in preferential flow in one direction

Estimating K in Layered Media

We would like to define a bulk average K value for layered media. Consider two particular cases.

1. Flow Parallel to Layering

2. Flow Perpendicular to Layering

Flow Parallel to Layering

Find bulk K_x

The total volumetric flow is the sum in all layers.

$$Q = Q_1 + Q_2 + Q_3$$

$$= -A_1 K_1 \frac{\Delta h}{L} - A_2 K_2 \frac{\Delta h}{L} - A_3 K_3 \frac{\Delta h}{L}$$

For a unit thickness, $A_n = b_n \times 1$

$$Q = -\frac{\Delta h}{L} (b_1 K_1 + b_2 K_2 + b_3 K_3)$$

If $b = b_1 + b_2 + b_3$, the bulk horizontal K_x can be written as:

$$Q = -\frac{\Delta h}{L} b \cdot K_X$$

Therefore, K_{\star} becomes:

$$K_X = \frac{b_1 K_1 + b_2 K_2 + b_3 K_3}{b}$$

In more general form:

$$K_X = \frac{\sum_{i=1}^{n} b_i K_i}{b}$$
 Weighted Arithmetic Mean

Key points:

- Effective K is controlled by the most conductive layer
- Layer thickness serves as a weighting factor

Flow Perpendicular to Layering

Find bulk K_z

In this case we have the same Q or q in all layers.

$$q = q_1 = q_2 = q_3$$

$$q = -K_1 \frac{\Delta h_1}{b_1} = -K_2 \frac{\Delta h_2}{b_2} = -K_3 \frac{\Delta h_3}{b_3}$$

The sum of head losses in each layer must equal the total head loss, Δh .

$$\Delta h = \Delta h_1 + \Delta h_2 + \Delta h_3$$

$$\Delta h_1 = -\frac{q_1 b_1}{K_1}$$

$$= -\frac{q_2 b_2}{K_1} - \frac{q_2 b_2}{K_2} - \frac{q_3 b_3}{K_3} = -q \left(\frac{b_1}{K_1} + \frac{b_2}{K_2} + \frac{b_3}{K_3} \right)$$

We can transform Darcy's Law for bulk vertical K_r to get:

$$q = -K_Z \frac{\Delta h}{b}$$
 or $\Delta h = -\frac{qb}{K_Z}$

Equating the previous two expressions, K_{τ} becomes:

$$K_{Z} = \frac{b}{b_{1}/K_{1} + b_{2}/K_{2} + b_{3}/K_{3}}$$

More generally:

$$K_{Z} = \frac{b}{\sum_{i=1}^{n} \frac{b_{i}}{K_{i}}}$$
 Weighted Harmonic Mean

Key points:

- Effective K is controlled by the least conductive layer
- Layer thickness serves as a weighting factor

Example

Calculate K

Calculate q

$$h_1 = 15 \text{ m}$$
 $K_1 = 10^{-3} \text{ m/s}$
 $K_2 = 10^{-6} \text{ m/s}$
 $K_3 = 10^{-3} \text{ m/s}$
 $K_4 = 10^{-6} \text{ m/s}$
 $K_4 = 10^{-6} \text{ m/s}$
 $K_5 = 10^{-4} \text{ m/s}$

Example

Calculate K

Calculate q

$$K_1 = 10^{-3} \text{ m/s}$$
 $b_1 = 0.7$ $K_2 = 10^{-6} \text{ m/s}$ $b_2 = 0.3$ $K_3 = 10^{-3} \text{ m/s}$ $b_3 = 0.8$ $K_4 = 10^{-6} \text{ m/s}$ $b_4 = 0.2$ $K_5 = 10^{-4} \text{ m/s}$ $b_5 = 1.0$

$$h_2 = 8 \text{ m}$$

How do we define this layering or anisotropy?

We even have layering in "homogeneous" materials. Is the Borden sand really homogeneous? How would this influence flow and transport?

Contours are given as -log K (e.g., K=1×10⁻⁴ m/s is 4.0 contour)

Hydraulic conductivity distribution of the Borden aquifer in cross-section.

(Fetter, Contaminant Hydrogeology, 1999)