Suppose that $X_1, X_2, ..., X_n$ is a random sample from the exponential distribution with rate $\lambda > 0$.

Derive a uniformly most powerful hypothesis test of size α for

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda > \lambda_0$

(Was
$$H_1: \lambda = \lambda_1 \text{ for } \lambda_1 > \lambda_0$$
)

The uniformly most powerful test of size α for testing

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta \setminus \Theta_0$

is a test defined by a rejection region R*such that

1. It has size α .

i.e.
$$\max_{\theta \in \Theta_0} P(\overline{X} \in \mathbb{R}^*; \theta) = \alpha$$

The uniformly most powerful test of size α for testing

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta \setminus \Theta_0$

is a test defined by a rejection region R*such that

2. It has higher power for all $\theta \in \Theta \setminus \Theta_0$

i.e.
$$\gamma_{R^*}(\theta) \ge \gamma_{R}(\theta)$$
 for all $\theta \in \Theta \setminus \Theta_0$

i.e.
$$P(\overrightarrow{X} \in R^*; \theta) \ge P(\overrightarrow{X} \in R; \theta)$$
 for all $\theta \in \Theta \setminus \Theta_0$

Suppose that $X_1, X_2, ..., X_n$ is a random sample from the exponential distribution with rate $\lambda > 0$.

Derive a uniformly most powerful hypothesis test of size α for

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda > \lambda_0$

Step One:

Consider the simple versus simple hypotheses

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda = \lambda_1$

for some fixed $\lambda_1 > \lambda_0$.

Steps Two, Three, and Four:

Find the best test of size α for

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda = \lambda_1$

for some fixed $\lambda_1 > \lambda_0$.

This test is to reject H_0 , in favor of H_1 if

$$\frac{1}{X} < \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}$$

This test is to reject H_0 , in favor of H_1 if

$$\frac{1}{X} < \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}$$

Note that this test does not depend on the particular value of λ_1 .

*** It does, however, depend on the fact that $\lambda_1 > \lambda_0$.

"Reject H₀, in favor of H₁, if

$$\left(\frac{\lambda_0}{\lambda_1}\right)^n e^{-(\lambda_0 - \lambda_1) \sum_{i=1}^n X_i} \le c$$

$$-(\lambda_0 - \lambda_1) \sum_{i=1}^n X_i \le c_1$$

$$\sum_{i=1}^n X_i \le c_2$$

"Reject H₀, in favor of H₁, if

$$\left(\frac{\lambda_0}{\lambda_1}\right)^n e^{-(\lambda_0 - \lambda_1) \sum_{i=1}^n X_i} \le c$$

$$-(\lambda_0 - \lambda_1) \sum_{i=1}^n X_i \le c_1$$

$$\sum_{i=1}^{n} X_i \ge c_2$$

$$i=1$$

if
$$\lambda_1 < \lambda_0$$

The best (most powerful) test of

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda = \lambda_1$

for $\lambda_1 > \lambda_0$ is to reject H_0 , in favor of H_1 if

$$\frac{1}{X} < \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}$$

Note that this test does not depend on the particular value of λ_1 as long as $\lambda_1 > \lambda_0$.

It is the uniformly most powerful (best) test for

$$H_0: \lambda = \lambda_0 \text{ vs. } H_1: \lambda > \lambda_0$$

The "UMP" test for

 $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda > \lambda_0$

is to reject H₀, in favor of H₁ if

$$\frac{1}{X} < \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}$$

The "UMP" test for

 $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda < \lambda_0$

is to reject H_0 , in favor of H_1 if

$$\frac{\chi^2}{X} > \frac{\chi^2_{\alpha,2n}}{2n\lambda_0}$$

Does there exist a "UMP" test for

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda \neq \lambda_0$?

Answer: No!

For any $\lambda_1 \neq \lambda_0$,

• The best test if $\lambda_1 > \lambda_0$ is to reject H_0 if

$$\frac{\chi^2}{X} < \frac{\chi^2_{1-\alpha,2n}}{2n\lambda_0}$$

• The best test if $\lambda_1 < \lambda_0$ is to reject H_0 if

$$\frac{1}{X} > \frac{\chi^2_{\alpha,2n}}{2n\lambda_0}$$

There is no one best test that we can use for all $\lambda_1 \neq \lambda_0$!