

Big Data Ecology

Fundamentals of reproducible and impactful ecological research

Christian König

Ecology and Macroecology Lab Institute for Biochemistry and Biology University of Potsdam

Aims

- Getting an overview of the principles of modern ecological research and the available infrastructure to support it
- Learn about tools and techniques that enable the collation, integration and analysis of large ecological datasets
- Gain hands-on experience with different aspects of the ecological data life cycle through a practical project
- Be able to transfer this knowledge to your own PhD research project

Schedule

- Day 1 Welcome & Introduction
 - Standards, Protocols & Concepts
 - Version control
 - Data bases
- Day 2 Spatial data
 - Data processing & computational performance
- Day 3 Data analysis & visualization
 - Wrap up, concluding discussion & feedback

What is "Big Data"

"Even the smallest datasets can contribute key knowledge for large-scale problem solving"

High speed at which data is generated

Hampton et al. (2013) 10.1890/120103

The promise of "Big Data"

Unlocking the potential of Big Data - The FAIR data principle

Findable, Accessible, Interoperable and Reusable

Why?

- Science is a collaborative, incremental process
- Increased research impact
- Acknowledgement of other people's work

SUBJECT CATEGORIES » Research data » Publication

OPEN Comment: The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson et al.#

Wilkinson et al. (2016) 10.1038/sdata.2016.18

Findable

F1: (meta)data are assigned a globally unique and eternally persistent identifier.

F2: data are described with rich metadata.

F3: (meta)data are registered or indexed in a searchable resource.

F4: metadata specify the data identifier.

Accessible

A1: (meta)data are retrievable by their identifier using a standardized communications protocol.

A1.1: the protocol is open, free, and universally implementable.

A1.2: the protocol allows for an authentication and authorization procedure, where necessary.

A2: metadata are accessible, even when the data are no longer available.

Interoperable

I1: (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

I2: (meta)data use vocabularies that follow FAIR principles.

I3: (meta)data include qualified references to other (meta)data.

Reusible

R1: meta(data) have a plurality of accurate and relevant attributes.

R1.1: (meta)data are released with a clear and accessible data usage license.

R1.2: (meta)data are associated with their provenance.

R1.3: (meta)data meet domain-relevant community standards.

What are key terms mentioned in the FAIR principles

A FAIR biodiversity data landscape

Three key components:

- Common standards and protocols
- Federated architecture
- Integrated data lifecycle

A FAIR biodiversity data landscape - Standards & Protocols

Vocabularies:

- Controlled terminology to describe a given concept
- Examples: <u>Essential Biodiversity Variables</u> (conceptual), GBIF backbone (taxonomy),
 TOP thesaurus (traits), <u>LTER controlled vocabulary</u> (general)

Identifiers:

- Unique and persistent name for an object
- o Examples: DOI, ORCID, LSID

Data formats:

- Standardized (but often flexible!) ways to ecological represent data
- Examples: <u>Darwin Core Archive</u>, <u>Ecological Metadata language</u>, <u>Access to Biological</u>
 Collection Data

A FAIR biodiversity data landscape - Standards & Protocols

Ontologies

- Formal representation of the relationships between and properties of different entities
- Often domain-specific
- Examples: OBO, ENVO

A FAIR biodiversity data landscape - Standards & Protocols

A FAIR biodiversity data landscape - Federation

- Distributed management of data by member nodes with proven domain-expertise
- Integration of domain-specific repositories in a network of databases
- Search, discovery, access and use of data from different repositories via a common interface
- Advantages:
 - Distributed workload, computation and decision power
 - Data is managed by domain-experts
 - Easy attribution and provenance tracking
 - Higher engagement of the research community
- Examples: <u>DataONE</u>, <u>GBIF</u>

There are many tools, resources and projects that can help you to structure your research according to FAIR principles!

Source: Michener (2015) 10.1016/j.ecoinf.2015.06.010

Further readings

Farley, S. S. et al. 2018. Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions. - BioScience 68: 563–576.

Hampton, S. E. et al. 2013. Big data and the future of ecology. - Front. Ecol. Evol. 11: 156–162.

Hampton, S. E. et al. 2015. The Tao of open science for ecology. - Ecosphere 6: 120.

Hardisty, A. R. et al. 2019. The Bari Manifesto: An interoperability framework for essential biodiversity variables. - Ecological Informatics 49: 22–31.

Michener, W. K. 2015. Ten Simple Rules for Creating a Good Data Management Plan. - PLOS Computational Biology 11: 1004525.

Michener, W. K. and Jones, M. B. 2012. Ecoinformatics: Supporting ecology as a data-intensive science. - TREE 27: 85–93.

Michener, W. et al. 2011. DataONE: Data Observation Network for Earth - Preserving Data and Enabling Innovation in the Biological and Environmental Sciences. - D-Lib Magazine in press.

Reichman, O. J. et al. 2011. Challenges and opportunities of open data in ecology. - Science 331: 703–5.

Research project - Overview

Aim: (1) Explore the imprint of seasonal bird migration in digitally available occurrence records

(2) Contrast patterns among congeneric species with different migration behaviour

Study taxon: Harriers (Circus Lacepede 1799)

Study region: Sweden

Circus cyaneus in flight. Source: wikimedia commons

Major migratory routes of birds. Source: birdlife.org

The Data life cycle - Plan

- Identify a study question and formulate a set of hypotheses
- Check existing guidelines, standards and formats (project-specific, institution-wide, domain-wide, etc.)
- Formulate a <u>data management plan (DMP)</u>
- Apply for funding to cover data curation and preservation costs, e.g. at <u>DFG</u>

Data management plans

The data management plan

Research project - Example DMP (ultra short version)

Data description: This study will use ~600.000 GBIF-mediated occurrence records, monthly climate data from Worldclim 2.0, and functional trait data from Storchová & Hořák (2018). Quality assurance will be carried out in the R statistical programming language (R Core Team 2021).

Documentation and metadata: An ODMAP protocol of the study will be prepared.

Ethical and legal compliance: not applicable

Storage and backup plan: Large data files will be stored locally during the research project. Code versioning will be realized via GitHub.

Preservation: The analysed dataset will be uploaded to a public repository.

Data sharing and publication: All data are publicly available.

Responsibilities: The principle investigator (you!) is responsible for all data-related tasks

Resources: No additional hardware resources are needed for this project

Thematic excursion

Version Control

(switch lectures)

The Data life cycle - Collect

- Collect data in a consistent, systematic manner according to your plan
- Capture and create structured Metadata
- Store your data redundantly (multiple drives in different physical locations)

