An Epidemiological Mixed-Integer Nonlinear Programming Framework for Vaccine Modeling and Patient Allocation During Pandemics

Alexander DeLise¹, Seyedreza Abazari², and Dr. Arda Vanli²

 1 Florida State University, 2 FAMU-FSU College of Engineering 10th North American Conference on Industrial Engineering and Operations Management

June 17-19, 2025

Overview

- 1. Preliminaries
- 2. Case Study: Florida
- 3. Model Formulation
- 4. Results
- 5. Implications
- 6. Conclusion

Introduction

Impact of COVID-19

- At first difficult to detect and contain
- Hospitals are overburdened, leading to unnmet hospital demand
- Patients required to travel to receive healthcare
- Millions of infections and deaths

Problem Statement

- Pandemics strain hospital resources
- Optimized patient allocation can reduce unmet demand
- Transfers may increase disease spread, but are necessary to alleviate healthcare strain
- Vaccination effects must be implemented

Literature Review Map

Study Area & Data

- Study Period: 155 day time horizon
- Healthcare Facility Data: [NIEHS, 2023]
- Epidemiological Data: [Abazari et al., 2024, USF, 2023, Zheng et al., 2022]

Model Component Notation

Sets

i	Regions (counties)
j	Regions (counties)
t	Time periods
t'	Decision periods

Decision Variables

$S_i^t, I_i^t, R_i^t, V_i^t$	SIRV population at time t
$u_i^{t'}$	Unmet demand
$Z_{ii}^{t'}$	Transfers $i o j$
$\phi_i^{ ilde{ t t}'}$	Met demand
$A_{ii}^{t'}$	Transfer indicator

Parameters

$S_i^0, I_i^0, R_i^0, V_i^0$	Initial SIRV populations
N_i	County population
β_i	Infection rate
γ_i	Recovery rate
λ_i	Vaccination rate
q_i	Natural immunity loss rate
ω_i	Vaccinated immunity loss rate
ℓ_i	Leaky vaccine rate
$\alpha_i^{t'}$	Beds per infection
d_{ij}	Distance between region $i o j$
C_i	Healthcare capacity
n	Number of counties
D	Max travel distance
M	A large number

Mathematical Model

$$\begin{aligned} &\min \frac{1}{n} \sum_{i,t'} u_i^{t'} \\ &\text{subject to} \\ &S_i^{t+1} = S_i^t - \frac{\beta_i S_i^t I_i^t}{N_i} - \lambda_i S_i^t + \omega_i V_i^t + q_i R_i^t \\ &I_i^{t+1} = I_i^t + \frac{\beta_i S_i^t I_i^t}{N_i} + \frac{\beta_i \ell_i V_i^t I_i^t}{N_i} - \gamma_i I_i^t \\ &I_i^{t'+1} = I_i^{t'} + \frac{\beta_i S_i^{t'} I_i^{t'}}{N_i} + \frac{\beta_i \ell_i V_i^{t'} I_i^{t'}}{N_i} - \gamma_i I_i^{t'} + \sum_j (Z_{j,i}^{t'} - Z_{i,j}^{t'}) \quad \forall i,t' \\ &V_i^{t+1} = V_i^t + \lambda_i S_i^t - \omega_i V_i^t - \frac{\beta_i \ell_i V_i^t I_i^t}{N_i} \qquad \forall i,t \\ &R_i^{t+1} = R_i^t + \gamma_i I_i^t - q_i R_i^t \qquad \forall i,t \end{aligned}$$

Objective

SIRV dynamics

|Mathematical Model (cont.)

$$\begin{aligned} u_{i}^{t'} &= \sum_{t=t'-\psi+1}^{t'} \alpha_{i}^{t} I_{i}^{t} + \sum_{i \neq j} (Z_{j,i}^{t'} - Z_{i,j}^{t'}) - \phi_{i}^{t'} & \forall i, t' \\ \phi_{i}^{t'} &\leq \gamma_{i} C_{i} & \forall i, t' \\ Z_{i,j}^{t'} &\leq M A_{i,j}^{t'} & \forall i, j, t' \\ Z_{i,j}^{t'} &\geq A_{i,j}^{t'} & \forall i, j, t' \\ A_{i,j}^{t'} &d_{ij} &\leq D & \forall i, j, t' \\ S_{i}^{t}, I_{i}^{t}, R_{i}^{t}, V_{i}^{t} &\geq 0 & \forall i, t \\ u_{i}^{t'}, \phi_{i}^{t'} &\geq 0 & \forall i, t' \\ Z_{i,j}^{t'} &\geq 0 & \forall i, j, t' \end{aligned}$$

Unmet & satisfied demand

Travel constraints

Nonnegativity

Linearization via McCormick Envelopes

- Nonlinearity arises from $S_i^t I_i^t$ and $V_i^t I_i^t$
- We use McCormick envelopes for linearization
- Enables more efficient optimization

McCormick Envelopes

Let min z = xy, where x and y have bounds x_l, x_u and y_l, y_u . Then:

min z
s.t.
$$z \ge x_l y + x y_l - x_l y_l$$

 $z \ge x_u y + x y_u - x_u y_u$
 $z \le x_u y + x y_l - x_u y_l$
 $z \le x y_u + x_l y - x_l y_u$

[McCormick, 1976]

SIRV vs SIR Dynamics

(a) Cumulative SIRV Dynamics

(b) Cumulative SIR Dynamics

 $\label{thm:signal_signal} \textbf{Figure: Comparison of Cumulative SIRV and SIR Dynamics in Florida}$

Unmet Hospital Demand

(a) Vaccinated Scenario

(b) Unvaccinated Scenario

Figure: Comparison of Aggregate Unmet Demand in Vaccinated vs. Unvaccinated Scenarios

Patient Transfers

(a) Vaccinated Scenario (Day 30)

(b) Unvaccinated Scenario (Day 30)

Figure: Comparison of Patient Allocation in Vaccinated vs. Unvaccinated Scenarios

Policy Recommendations

- Prioritize vaccine distribution in urban hotspots and adjust strategy as transmission shifts
- Use boosters and ongoing monitoring to maintain protection as immunity wanes
- Coordinate hospital transfers and strengthen infrastructure in high-demand areas

Key Conclusions and Future Work

Conclusions

- Coordinated vaccine and patient transfer strategies reduce hospital strain
- Urban regions tend to receive transfers; rural areas more often send patients
- Vaccination mitigates surges but waning immunity can trigger secondary waves

Future Work

- Incorporate demographics and socioeconomic factors into disease modeling
- Explicitly model vaccine supply, logistics, and effects with real data
- Refine patient transfer rules to reduce chaining and improve realism
- Dyanamic disease parameters

References I

Abazari, S., Alisan, O., Vanli, O. A., and Ozguven, E. E. (2024).

Data-driven patient allocation for healthcare facility optimization under uncertainty with sir dynamics. In 2024 IISE Annual Conference and Expo. IISE.

Aydin, N. and Cetinkale, Z. (2022)

Analyses on icu and non-icu capacity of government hospitals during the covid-19 outbreak via multi-objective linear programming: An evidence from istanbul.

Computers in Biology and Medicine, 146:105562.

Badr, H. S., Du, H., Marshall, M., Dong, E., Squire, M. M., and Gardner, L. M. (2020).
Association between mobility patterns and covid-19 transmission in the usa: a mathematical modelling study.
The Lancet Infectious Diseases, 20(11):1247–1254.

Calvetti, D., Hoover, A., Rose, J., and Somersalo, E. (2021).

Modeling epidemic spread among a commuting population using transport schemes, mathematics 2021, 9, 1861.

Crokidakis, N. (2020)

Modeling the early evolution of the covid-19 in brazil: Results from a susceptible–infectious–quarantined–recovered (siqr) model. International Journal of Modern Physics C, 31(10):2050135.

Della Rossa, F., Salzano, D., Di Meglio, A., De Lellis, F., Coraggio, M., Calabrese, C., Guarino, A., Cardona-Rivera, R., De Lellis, P., Liuzza, D., et al. (2020).

A network model of italy shows that intermittent regional strategies can alleviate the covid-19 epidemic. Nature communications, 11(1):5106.

References II

Dijkstra, S., Baas, S., Braaksma, A., and Boucherie, R. J. (2023)

Dynamic fair balancing of covid-19 patients over hospitals based on forecasts of bed occupancy. Omega, 116:102801.

Florida Hospital Association (2021)

Florida covid-19 hospitalization update. Online Resource.

Accessed: 2021-08-10.

Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., and Lessler, J. (2020)

The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application. Annals of internal medicine, 172(9):577-582.

Li. Q., Tang, B., Bragazzi, N. L., Xiao, Y., and Wu, J. (2020).

Modeling the impact of mass influenza vaccination and public health interventions on covid-19 epidemics with limited detection capability, Mathematical biosciences, 325:108378.

Computability of global solutions to factorable nonconvex programs: Part i-convex underestimating problems. Mathematical programming, 10(1):147–175.

Covid-19 pvi data. https://github.com/COVID19PVI/data/. Accessed: March 2023

References III

Parker, F., Sawczuk, H., Ganjkhanloo, F., Ahmadi, F., and Ghobadi, K. (2020).

Optimal resource and demand redistribution for healthcare systems under stress from covid-19.
arXiv preprint arXiv:2011.03528.

USF (2023).

Florida covid-19 hub. https://covid19-usflibrary.hub.arcgis.com/. Accessed: March 2023.

Zheng, C., Shao, W., Chen, X., Zhang, B., Wang, G., and Zhang, W. (2022). Real-world effectiveness of covid-19 vaccines: a literature review and meta-analysis. *International journal of infectious diseases*, 114:252–260.

Questions?