

Linux administration

Nguyễn Hàn Duy

duy@techmaster.vn

Nội dung

Switching Users and Running Commands as Others

What You Will Learn

- How to switch to another account.
- How to run commands as others.

The su Command

su [username] **Change user ID or become superuser**

su Options

__

A hyphen is used to provide an environment similar to what the user would expect had the user logged in directly.

-c command

Specify a command to be executed.

whoami Example

```
$ whoami
jason
$ su oracle
Password:
$ whoami
oracle
```

Sudo - Super User Do

sudo Execute a command as another user, typically the superuser.

Using sudo

Using sudo

sudo su **Switch to the superuser account.**

sudo su - Switch to the superuser account with root's environment.

sudo su - username Switch to the username account.

Shell History and Autocompletion

What You Will Learn

Shell History
Exclamation Mark Syntax
Autocompletion

Shell History

Executed commands are added to the history. Shell history can be displayed and recalled. Shell history is stored in memory and on disk.

```
~/.bash_history
~/.history
~/.histfile
```

history Command

history Displays the shell history.

HISTSIZE Controls the number of commands to retain in history.

export HISTSIZE=1000

! Syntax

! N Repeat command line number N.

!! Repeat the previous command line.

!string Repeat the most recent command
starting with "string."

! Syntax Examples

```
$ head files.txt sorted files.txt notes.txt
<Output from head command here>
$!!
head files.txt sorted files.txt notes.txt
<Output from head command here>
$ vi !:2
vi sorted files.txt
<vi editor starts>
```

Searching Shell History

Ctrl-r Reverse shell history search

Enter Execute the command

Arrows Change the command

Ctrl-g Cancel the search

Tab Completion

Tab autocompletion
Commands
Files, directories, paths
Environment Variables
Usernames (~)

System Logging

What You Will Learn

- The syslog standard
- Facilities and severities
- Syslog servers
- Logging rules
- Where logs are stored
- How to generate your own log messages
- Rotating log files

The Syslog Standard

- Aids in the processing of messages.
- Allows logging to be centrally controlled.
- Uses facilities and severities to categorize messages.

Number Keyword Description

- 0 kern kernel messages
- 1 user user-level messages
- 2 mail mail system
- 3 daemon system daemons
- 4 auth security/authorization messages
- 5 syslog messages generated by syslogd
- 6 lpr line printer subsystem
- 7 news network news subsystem
- 8 uucp UUCP subsystem
- 9 clock daemon
- 10 authoriv security/authorization messages

Number Keyword Description

```
11 ftp
           FTP daemon
12 -
           NTP subsystem
13 -
           log audit
14 -
           log alert
15 cron clock daemon
16 local0
           local use 0 (local0)
16 local1
           local use 0 (local1)
16 local2
           local use 0 (local2)
16 local3
           local use 0 (local3)
23 local7 local use 7 (local7)
```

Cod	de Severity	Keyword	Description
0	Emergency	emerg (panic)	System is unusable
1	Alert	alert	Action must be taken
			immediately
2	Critical	crit	Critical conditions
3	Error	err (error)	Error conditions
4	Warning	warning (warn)	Warning conditions
5	Notice	notice	Normal but
			significant condition
6	Info	info	Informational
			messages
7	Debua	debua	Debug-level-messages

Syslog Servers

- Process syslog messages based on rules.
- syslogd
- rsyslog
- syslog-ng

Logging Rules

- Selector field
 - FACILITY.SEVERITY
 - o mail.*
 - mail
 - FACILITY.none
 - FACILITY_1.SEVERITY; FACILITY_2.SEVERITY
- Action field
 - Determines how a message is processed

Example Logging Rules

Disk Management

Partitions

What You Will Learn

- Partitions
- MBR
- GPT
- Mount points
- fdisk

What You Will Learn

- Creating file systems
- Mounting file systems
- Unmount file systems
- How to prepare swap space for use
- File System Table
- Disk UUIDs and Labels

Partitions

- Disks can be divided into parts, called partitions.
- Partitions allow you to separate data.
- Partitioning schemes
 - o 1) OS, 2) Application, 3) User, 4) Swap
 - 1) OS, 2) User home directories
 - As a system administrator, you decide.

Partitioning

- Can protect the overall system.
- Keep users from creating outages by using a home directory partition.

```
$ df -h
                 Used Avail Use% Mounted on
Filesystem
           Size
/dev/sda2
                  75G
                              75%
            100G
                        25G
/dev/sda1
                       342M
                              25%
            488M
                 111M
                                    /boot
            10G
                  10G
                           0
                             100%
/dev/sda3
                                    /home
```

MBR

- Master Boot Record
- Can only address 2 TB of disk space
- Being phased out by GPT
 - GPT= GUID Partition Table
- 4 Primary Partitions
- Extended partitions allow you to create logical partitions

GPT

- GPT = GUID Partition Table
- GUID = Global Unique Identifier
- Replacing the MBR partitioning scheme
- Part of UEFI
- UEFI = Unified Extensible Firmware Interface
- UEFI is replacing BIOS

fdisk

- Alternatives: gdisk, parted
- Earlier versions of fdisk did not support GPT

```
fdisk /path/to/device
```

mkfs

```
mkfs -t TYPE DEVICE
mkfs -t ext3 /dev/sdb2
mkfs -t ext4 /dev/sdb3
mkfs.ext4 /dev/sdb3
```

mkfs

```
# ls -1 /sbin/mkfs*
/sbin/mkfs
/sbin/mkfs.btrfs
/sbin/mkfs.cramfs
/sbin/mkfs.ext2
/sbin/mkfs.ext3
/sbin/mkfs.ext4
/sbin/mkfs.minix
/sbin/mkfs.xfs
```

The df command

```
# df -h
                       Used Avail Use% Mounted on
Filesystem
                 Size
/dev/sda2
                 198G
                      1.7G
                                     1% /
                             196G
                             489M
                                     0% /dev
devtmpfs
                 489M
                                     0% /dev/shm
                 497M
                          0
                             497M
tmpfs
                 497M
                       6.5M
                             491M
                                     2% /run
tmpfs
                 497M
                                     0% /sys/fs/cgroup
tmpfs
                             497M
/dev/sdb3
                                     1% /opt
                 484G
                        73M
                             459G
```

Managing Users and Groups

What You Will Learn

- How to manage users and groups.
- Where user and group information lives.
- How to add, delete, and change users and groups.

Accounts have a:

- Username (or login ID).
- UID (user ID). This is a unique number.
- Default group.
- Comments.
- Shell.
- Home directory location.

useradd

```
useradd -c "Grant Stewart" -m -s /bin/bash grant
```

Create a password using passwd

```
# passwd grant
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated
successfully
```

More useradd options

-g GROUP

Specify the default group.

-G GROUP1, GROUPN Additional groups.

userdel [-r] username

```
# Is /home
eharris grant
# userdel eharris
# Is /home
eharris grant
# userdel -r grant
# Is /home
```

usermod

usermod [options] username

-c "COMMENT" Comments account.

-g GROUP Specify the default group.

-G GROUP1, GROUPN Additional groups.

-s /shell/path Path to the user's shell.

Networking

TCP/IP

What You Will Learn

- TCP/IP
- Classful networks
- Subnet masks
- Broadcast addresses
- CIDR
- Private address space

TCP/IP

• TCP/IP

- Used for network communications
- TCP = Transmission Control Protocol
- IP = Internet Protocol
- TCP controls data exchange
- IP sends data from one device to another
- Hosts
 - devices on a network that have an IP address

IP Networking

- IP address
 - Example: 199.83.131.186
- subnet mask
 - Example: 255.255.255.0
- broadcast address
 - Example: 199.83.131.255
- octet.octet.octet
 - octet values can be from 0 to 255

Determining Your IP Address

- ip address
 - ip addr
 - ∘ ip a
 - ip address show or ip a s

```
# ip address
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid lft forever preferred lft forever
    inet6 ::1/128 scope host
       valid lft forever preferred lft forever
2: eth0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc pfifo fast
state UP glen 1000
    link/ether 08:00:27:43:f5:18 brd ff:ff:ff:ff:ff:ff
    inet 192.168.1.122/24 brd 192.168.1.255 scope global dynamic eth0
       valid lft 84249sec preferred lft 84249sec
    inet6 fe80::a00:27ff:fe43:f518/64 scope link
      valid lft forever preferred lft forever
```

```
# ifconfig
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
        inet 192.168.1.122 netmask 255.255.255.0 broadcast
192.168.1.255
        inet6 fe80::a00:27ff:fe43:f518 prefixlen 64 scopeid
0x20 < link >
        ether 08:00:27:43:f5:18 txqueuelen 1000 (Ethernet)
       RX packets 82371 bytes 95773879 (91.3 MiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 32907 bytes 3386585 (3.2 MiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536
```

inet 127.0.0.1 netmask 255.0.0.0

hostnames

- human-readable name for an IP address
 - webprod01 = 10.109.155.174

DNS hostnames

- FQDN = fully qualified domain name
 - webprod01.mycompany.com
- TLD
 - .com, .net, .org, etc.
- Domains
 - below (to the left of) TLD
- sub-domain
 - below (to the left of) the domain

Displaying the hostname

```
$ hostname
webprod01
$ uname -n
webprod01
$ hostname -f
webprod01.mycompany.com
```

Setting the hostname

```
# hostname webprod01
# echo 'webprod01' > /etc/hostname
# vi /etc/sysconfig/network
 HOSTNAME=webprod01
```

Resolving DNS Names

- host
- dig

 \rightarrow

```
$ host www.mycompany.com
webprod01.mycompany.com has address 1.2.1.6
$ host 1.2.1.6
6.1.2.1.in-addr.arpa domain name pointer
www.mycompany.com.
```

Sample /etc/hosts file

```
1.2.1.6 webprod01.mycompany.com webprod01
10.11.12.14 webprod02.mycompany.com webprod02
10.11.12.15 webprod03.mycompany.com webprod03
10.11.13.7 dbcluster
```

DHCP

- Dynamic Host Configuration Protocol
- DHCP servers assign IP address to DHCP clients
 - IP Address
 - netmask
 - gateway
 - DNS servers

DHCP

- Each IP is "leased" from the pool of IP addresses the DHCP server manages.
 - The lease expiration time is configurable on the DHCP server. (1hr, 1day, 1 week, etc.)
 - The client must renew the lease if it wants to keep using the IP address. If no renewal is received, the IP is available to other DHCP clients.

Configuring a DHCP Client - RHEL

```
ifconfig -a or ip link
```

/etc/sysconfig/network-scripts/ifcfg-DEVICE
/etc/sysconfig/network-scripts/ifcfg-eth0
/etc/sysconfig/network-scripts/ifcfg-enp5s2
BOOTPROTO=dhcp

Assigning a Static IP Address - RHEL

/etc/sysconfig/network-scripts/ifcfg-eth0

```
DEVICE=eth0
BOOTPROTO=static
IPADDR=10.109.155.174
NETMASK=255.255.255.0
NETWORK=10.109.155.0
BROADCAST=10.109.155.255
GATEWAY=10.109.155.1
ONBOOT=yes
```

Manually Assigning an IP Address

Format:

```
ip address add IP[/NETMASK] dev NETWORK_DEVICE
ip address add 10.11.12.13 dev eth0
ip address add 10.11.12.13/255.255.225.0 dev eth0
ip link set eth0 up
```

Network Troubleshooting

What You Will Learn

- ping
- traceroute / tracepath
- netstat
- tcpdump
- telnet

Testing Connectivity with Ping

Format:

```
ping HOST
ping -c COUNT HOST
```

Example:

```
ping -c 3 google.com
```

- \$ ping -c 3 google.com
- PING google.com (216.58.2.7) 56 bytes of data.
- 64 bytes from 216.58.2.7: icmp seq=1 ttl=53 time=20.1 ms
- 64 bytes from 216.58.2.7: icmp seq=2 ttl=53 time=20.2 ms
- 64 bytes from 216.58.2.7: icmp_seq=3 ttl=53 time=23.9 ms
- --- google.com ping statistics ---
- 3 packets transmitted, 3 received, 0% packet loss, time 2004ms
- rtt min/avg/max/mdev = 21.489/22.924/24.154/1.111 ms

traceroute -n google.com
traceroute to google.com (216.58.2.7), 30 hops
max, 60 byte packets

- Diagnosing Network Connections 413
 - 1 10.0.2.2 0.296 ms 0.178 ms 0.220 ms
 - 2 192.168.1.1 2.529 ms 2.713 ms 2.630 ms
 - 3 72.14.237.231 23.750 ms 22.087 ms
- 12.122.132.137 22.701 ms
- 4 216.58.216.78 20.549 ms 12.250.16.30 22.904 ms 216.58.216.78 20.724 ms

The netstat Command

- -n Display numerical addresses and ports.
- -i Displays a list of network interfaces.
- -r Displays the route table. (netstat -rn)
- -p Display the PID and program used.
- -l Display listening sockets. (netstat -nlp)
- -t Limit the output to TCP (netstat -ntlp)
- -u Limit the output to UDP (netstat -nulp)

[jason@linuxsvr ~]\$ netstat -i

Kernel Interface table

Iface	MTU	RX-OK	RX-ERR	RX-DRP	RX-OVR	TX-OK	TX-ERR	TX-DRP	TX-OVR	Flg
eth0	1500	3975	0	0	0	2627	0	0	0	BMRU
10	65536	8	0	0	0	8	0	0	0	LRU

[jason@linuxsvr ~]\$ netstat -rn

Kernel IP routing table

Destination	Gateway	Genmask	Flags	MSS Window	irtt Iface
0.0.0.0	10.0.2.2	0.0.0.0	UG	0 0	0 eth0
10.0.2.0	0.0.0.0	255.255.255.0	U	0 0	0 eth0

Packet sniffing with tcpdump

tcpdump

- Display numerical addresses and ports.
- -A Display ASCII (text) output.
- -v Verbose mode. Produce more output.
- -vvv Even more verbose output.

\$ sudo tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

19:25:49.639495 IP linuxsvr.ssh > 10.0.2.2.64440: Flags [P.], seq 3312803324:3312803408, ack 2443835, win 40880, length 84

19:25:49.639586 IP linuxsvr.ssh > 10.0.2.2.64440: Flags [P.], seq 84:120, ack 1, win 40880, length 36

19:25:49.639750 IP 10.0.2.2.64440 > linuxsvr.ssh: Flags [.], ack 84, win 65535, length 0

19:25:49.639763 IP 10.0.2.2.64440 > linuxsvr.ssh: Flags [.], ack 120, win 65535, length 0

\$ sudo tcpdump -Anvvv

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

19:44:27.067530 IP (tos 0x10, ttl 64, id 5120, offset 0, flags [DF], proto TCP (6), length 64)

10.0.2.44.37534 > 10.0.2.15.80: Flags [P.], cksum 0xfe34 (incorrect -> 0xce40), seq 1:13, ack 1, win 683, options [nop,nop,TS val 1585227 ecr 1584441], length 12

E..@..@.@.(.....P..>::.....4.....

..0K..-9GET/about

```
telnet HOST OR IP PORT NUMBER
$ telnet google.com 80
Trying 216.58.2.7...
Connected to google.com.
Escape character is '^]'.
GET /
HTTP/1.0 200 OK
telnet> quit
closed.
```