Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет

Кафедра астрономии и космической геодезии

Лабораторная работа №1
Численное моделирование задачи улучшения орбиты ИСЗ
Автор работы
студент группы № 052472
Виджая С.
Проверил

ст. преподаватель

_А. Г. Александрова

Оглавление

1.	Процедура перезаписи входного файла	3
2.	Процедура для обращения к интегратору	4
3.	Вычисления начальных координат и скоростей	4
4.	Подбор вариации	5
5.	Улучшение орбиты	9
6.	Вывол	12

1. Процедура перезаписи входного файла

Для начала требуется создать процедуру перезаписи входного файла. В качестве параметра эта функция принимает вектор положения и скорости, дата, месяц, год, час, минут, секунд конечного момента интегрирования и шаг интегрирования.

```
def configure_file(self, coordinate, velocity, date, month, year, hour, minute, second, t):
    f = open(PATH_IN, "w", encoding="cp866")
    f.write(INPUT_TEMPLATE.format(
        self.format_scientific(coordinate[0]),
        self.format_scientific(coordinate[1]),
        self.format_scientific(velocity[0]),
        self.format_scientific(velocity[0]),
        self.format_scientific(velocity[1]),
        self.format_scientific(velocity[2]),
        date,
        month,
        year,
        hour,
        minute,
        second,
        t
))
```

INPUT_TEMPLATE – это шаблон входного файла.

```
INPUT_TEMPLATE = """1  PEXИМ (1 - прогноз; 2 - улучшение орбиты)
2018 9 8 0 0 0.000
                       Начальная эпоха (TT)
      Число спутников
  {} {} {}
  {} {} {}
  ПРОГНОЗ
2018 9 8 0 0 0.000 Начальный момент прогноза (ТТ)
{} Шаг выдачи (сек)
1Е-3 Ошибка большой полуоси (км)
УЛУЧШЕНИЕ
obsvyb.in Файл с наблюдениями
          Число наблюдений
2822.172315 2201.434565 5279.171158 координаты обсерватории (км)
0.10
           Точность улучшения (сходимости) (км)
           Вариации начальных координат и скоростей (км и км/с)
0.1
         Множитель, улучшающий сходимость
            Начальные условия (1 - из файла; 2 - вычисляются в программе)
8000
           Приблизительный радиус-вектор (км) на момент 1-го наблюдения
ИНТЕГРИРОВАНИЕ
   10. Постоянный шаг интегрирования (сек; для отриц. параметра)
       Порядок интегратора (от 7 до 39 через 4)
  10
       Параметр интегратора
 1000
       Интервал промежуточных выдач на экран (в шагах интегрирования)
```

```
возмущения
0 0
       Гармоники геопотенциала (NM)
       Луна
   0
       Солнце
      Световое давление и ПР эффект
0 0 0 Релятивистские эффекты (Ф_0, Ф_1, Ф_2)
   0 Приливы
   0 Атмосфера
 100. Высота сгорания (км)
СПУТНИК
 500.
        Масса (кг)
 0.5 Площадь миделева сечения (м^2)
  2. Коэф-т лобового сопротивления
       Коэф-т отражения
```

2. Процедура для обращения к интегратору

Библиотека subprocess была использована для запуска .exe файл.

```
def run_exe_file(self):
    sp.call(PATH_EXE)
```

3. Вычисления начальных координат и скоростей

Был выбран спутник «Геостационарный», который имеет следующие орбитальные параметры:

- 1. Большая полуось (а): 42.165 км
- 2. Эксцентриситет (е): 0.001
- 3. Наклонение (i): 1°
- 4. Долгота восходящего узла (Ω): 0°
- 5. Аргумент перицентра (ω): 0°
- 6. Средняя аномалия (M_0) : 0
- Период вращения (Т): 24 часа (86400 секунд)

С помощью алгоритм задачи двух тел, можем получить начальные координаты и скорости спутника. Также был использован метод Ньютона для решения уравнения Кеплера. В итоге были получены следующие начальные координаты и скорости.

X	42122.835 км
У	0 км
Z	0 км

\dot{x}	0 км/с
ÿ	1.66289164 км/с
ż	2.58980029 км/с

```
initial_coordinate, initial_velocity = calculate_initial_coordinate_velocity(
    semi_major_axis=SEMI_MAJOR_AXIS,
    eccentricity=ECCENTRICITY,
    longitude_of_ascending_node=LONGITUDE_OF_ASCENDING_NODE,
    argument_pericenter=ARGUMENT_OF_PERIAPSIS,
    inclination=INCLINATION,
    mean_anomaly=MEAN_ANOMALY
)
```

4. Подбор вариации

Требуется подбирать значения вариации для каждого компонента вектор положения и скорости. В итоге нужно построить график зависимости производной от вариации и выбрать значение вариации из середины плато на графике.

Алгоритм подбора вариации будет так:

- 1. Вычисляем начальные координаты и скорости.
- 2. Вычисляем наблюдаемые координаты и скорости, передаем начальные координаты и скорости к интегратору.
- 3. Добавляем вариацию в начальные координаты и скорости по порядке. Вариация от 10^{-12} до 10^{-1} . Мы сначала добавляем эту вариацию в 1й компонент коодинат, далее в 2й компонент координат, далее в 3й координат, далее в 1й компонент скоростей, потом в 2й компонент скоростей и в 3й компонент скоростей. Выполняем итерационные процессы во всех значениях вариации.
- 4. В конце вычисляем производные от вариации на конечном моменте интегрирования. Формула:

$$\frac{\partial x_{j,N}}{\partial x_{i,0}} = \frac{x_{j,N}^{\operatorname{var}(x_i)} - x_{j,N}}{\operatorname{var}},$$

$$\frac{\partial \dot{x}_{j,N}}{\partial \dot{x}_{i,0}} = \frac{\dot{x}_{j,N}^{\operatorname{var}(\dot{x}_i)} - \dot{x}_{j,N}}{\operatorname{var}},$$

$$i = 1, 2, 3; j = 1, 2, 3$$

5. Построим график зависимостей.

Отсюда мы можем сделать вывод что наилучшие значения вариации:

\mathcal{X}	У	Z	\dot{x}	ý	ż
10^{-4}	10^{-4}	10^{-4}	10^{-6}	10^{-6}	10^{-6}

5. Улучшение орбиты

Заданы x_{i0} и \dot{x}_{i0} — начальные вектор положения и вектор скорости спутника, i=1,2,3.

- 1. Моделируем наблюдения спутника x_{ik}^o с помощью «Численной модели движения ИСЗ» на заданные моменты t_k при заданных параметрах спутника, k=1...100.
- 2. Вносим ошибку в начальные параметры x_{i0} , \dot{x}_{i0} ,

$$\begin{aligned} \overline{x}_{i0} &= x_{i0} + \Delta x_i, \\ \overline{\dot{x}}_{i0} &= \dot{x}_{i0} + \Delta \dot{x}_i, \\ \Delta x_i &= \xi \cdot 0.01" \cdot \left\| \overrightarrow{x_0} \right\|, \\ \Delta \dot{x}_i &= \xi \cdot 0.01" \cdot \left\| \overrightarrow{\dot{x}_0} \right\|. \end{aligned}$$

где,

 ξ – случайная величина [-1,1] $\|\overrightarrow{x_0}\|$ – норм вектор начального положения $\|\overrightarrow{x_0}\|$ – норм вектор начальной скорости 0.01"– секунд дуги

Нужно перевести от секунды дуги в радиан.

$$\frac{0.01" \cdot \pi}{180 \cdot 60 \cdot 60} \approx 4.84813681109536 \cdot 10^{-9}$$

- 3. С помощью «Численной модели движения ИСЗ» на заданные моменты t_k находим "вычисленные" x_{ik}^c положения ИСЗ.
- 4. Далее находим "О-С" по следующей формуле

$$\Delta x_{ik}^{o-c} = x_{ik}^o - x_{ik}^c \; ,$$

и образуем вектор столбец $c = \left\{ \Delta x_{ik}^{o-c} \right\}$ по принципу

$$c = \left\{ \Delta x_{11}^{o-c}, \Delta x_{21}^{o-c}, \Delta x_{31}^{o-c}, \Delta x_{12}^{o-c}, \Delta x_{22}^{o-c}, \Delta x_{32}^{o-c}, \dots, \Delta x_{1N}^{o-c}, \Delta x_{2N}^{o-c}, \Delta x_{3N}^{o-c} \right\}.$$

5. Вычисляем матрицу изохронных производных (матрицу А) методом вариации параметра.

$$A = \begin{pmatrix} \frac{\partial x_{11}}{\partial x_{10}} & \frac{\partial x_{11}}{\partial x_{20}} & \frac{\partial x_{11}}{\partial x_{30}} & \frac{\partial x_{11}}{\partial \dot{x}_{10}} & \frac{\partial x_{11}}{\partial \dot{x}_{20}} & \frac{\partial x_{11}}{\partial \dot{x}_{30}} \\ \frac{\partial x_{21}}{\partial x_{10}} & \frac{\partial x_{21}}{\partial x_{20}} & \frac{\partial x_{21}}{\partial x_{30}} & \frac{\partial x_{21}}{\partial \dot{x}_{10}} & \frac{\partial x_{11}}{\partial \dot{x}_{2,0}} & \frac{\partial x_{21}}{\partial \dot{x}_{30}} \\ \vdots & \vdots & & \vdots & & \vdots \\ \frac{\partial x_{3N}}{\partial x_{10}} & \frac{\partial x_{3N}}{\partial x_{20}} & \frac{\partial x_{3N}}{\partial x_{30}} & \frac{\partial x_{3N}}{\partial \dot{x}_{10}} & \frac{\partial x_{11}}{\partial \dot{x}_{20}} & \frac{\partial x_{3N}}{\partial \dot{x}_{30}} \end{pmatrix}.$$

где,

$$\frac{\partial x_{j,N}}{\partial x_{i,0}} = \frac{x_{j,N}^{\operatorname{var}(x_i)} - x_{j,N}}{\operatorname{var}},$$

$$\frac{\partial \dot{x}_{j,N}}{\partial \dot{x}_{i,0}} = \frac{\dot{x}_{j,N}^{\operatorname{var}(\dot{x}_i)} - \dot{x}_{j,N}}{\operatorname{var}},$$

$$i = 1, 2, 3; j = 1, 2, 3$$

- 6. Полученную систему уравнений $A\cdot y=c$ решаем методом наименьших квадратов. Для этого умножаем систему уравнений слева на A^T . Обозначим $Q=A^TA$, $d=A^Tc$. Решение запишется в виде $y=Q^{-1}d$. y искомая поправка. Эта поправка прибавляем в координат и скорости предыдущей итерации.
- 7. Находим среднеквадратическую ошибку веса σ_0 и среднеквадратические ошибки параметров σ_i по следующим формулам

$$\sigma_{0} = \sqrt{\frac{\sum_{i=1}^{3N} (\Delta x_{ik}^{o-c})^{2}}{3N - 6}},$$

$$\sigma_{i} = \sigma_{0} q_{ii},$$

где q_{ii} — диагональные элементы матрицы ${\it Q}^{-1}$.

Выполняем итерационный процесс до тех пор, пока σ_0 ещё уменьшается.

Улучшаемые координаты:

№ итерации	$\mathcal{X}_{0}\left(\mathbf{KM}\right)$	\mathcal{Y}_0 (km)	z_0 (km)
1	42122.8345579391	0.000122019503834863	-0.000232407379506672
2	42122.8348434102	4.32333058035524e-05	-8.23383306411186e-05
3	42122.8349745231	7.03886740644574e-06	-1.34024899408809e-05
4	42122.834999219	2.16664431630754e-07	-4.12024710564794e-07
5	42122.8349999992	2.41726792730057e-10	-4.38131627576418e-10
6	42122.835	-9.34145379872516e-12	-9.19901284551027e-12

1 42122.8530000001 5.59/212115998596-12 7.500554485874946-12		7	42122.8350000001	5.39721211399859e-12	7.56035448587494e-12
--	--	---	------------------	----------------------	----------------------

Улучшаемые скорости:

№ итерации	х ₀ (км/с)	ў ₀ (км/с)	Ż₀ (км/с)
1	8.96433835599589e-08	1.66289155027589	2.5898003365058
2	3.1754081490175e-08	1.66289161119811	2.58980030814492
3	5.16633327868511e-09	1.66289163917854	2.58980029511909
4	1.58371349308145e-10	1.66289164444868	2.58980029266555
5	1.55702111317304e-13	1.66289164461513	2.58980029258804
6	9.32951709860443e-16	1.6628916446153	2.58980029258796
7	-4.87521718579272e-16	1.6628916446153	2.58980029258796

Среднеквадратические ошибки координат:

№ итерации	$\sigma_{_{x}}$	$\sigma_{_{y}}$	σ_z
1	2.378185015083319e-05	0.00017955958971301692	0.00012217235570523584
2	7.975381838744087e-06	5.415783762576585e-05	5.979020262174674e-05
3	2.526937453658725e-06	7.848645001165896e-06	1.1933539875824529e-05
4	9.031476055062984e-08	2.3423781462995386e-07	3.8214348008903113e-07
5	9.264826721974822e-11	2.388989444112455e-10	3.906430859095589e-10
6	1.193241997185746e-12	3.0768252965555174e-12	5.031179747259355e-12
7	1.008900949778526e-11	2.6014920633426158e-11	4.2539217881850384e-11

Среднеквадратические ошибки скоростей:

№ итерации	$\sigma_{_{\dot{x}}}$	$\sigma_{_{\dot{y}}}$	$\sigma_{\dot{z}}$
1	3.8110519655192704e-13	3.924861544841164e-12	4.4733732656040333e-13
2	5.894292578484968e-14	4.4165142788685004e-13	6.468455001575365e-14
3	5.3684647582191567e-14	2.374010703158165e-14	1.2636960028606354e-14
4	2.130102818663165e-15	5.968156004562706e-16	4.453165560110484e-16
5	2.191655869599038e-18	6.061381815551188e-19	4.567785939860519e-19
6	2.822700254871579e-20	7.806537993353851e-21	5.882974110030915e-21
7	2.386626586714744e-19	6.600519314858057e-20	4.974124314556738e-20

Среднеквадратические ошибки веса:

№ итерации	$\sigma_{_0}$
1	0.0036906247395490674
2	0.0013072938839609435
3	0.00021268360962512574
4	6.518033245702055e-06
5	6.6535302349899446e-09
6	8.56921830292502e-11
7	7.245374297292165e-10

Видно, что на 7-й итерации значения σ_0 уже увеличится по сравнению с предыдущей итерацией. То есть на 6-й итерации это наилучшие координаты и скорости.

6. Вывод

В данной работе были реализованы модули для работы с интегратором, написанным на фортране (включая процедура перезаписи входного файла), модули для подбора вариации и для решения задачи улучшения орбиты.

Данная работа была сделана на языке Python. Используемые библиотеки:

- 1. subprocess: Библиотека для запуска внешних процессов (.exe файл).
- 2. numpy: Библиотека для работы с многомерными массивами и математическими вычислениями.
- 3. matplotlib: Библиотека для построения графиков и визуализации данных.

Bce коды выложены на GitHub, ссылка: https://github.com/Steven2110/Orbit-Improvements. Все описания файлов и инструкция запуска программы написаны в файле README.md.