华东师范大学期末试卷 (A) 2018 —2019 学年第 — 学期

课程名	称:	算法设	计与分析						
学生姓	名:				学 号:				
专	业:计	算机科学	学与软件	-工程		年级	及/班级:	2018	硕博
课程性	质: 公共	必修、	公共选修	、专业必	修、专	业选修			
_		=	四	五.	六	七	八	总分	阅卷人签名
注意:	1、考试	时间为1	50 分钟	,考试形式	式为: 闭	巻			
	2、答案:	全部做在	答题纸	L					
	3、考试	完毕后,	试卷和	答题纸全部	邻上交				
一、单	项选择题	(本大)	题共5小	题,每小	题 4 分,	共 20 分	分)。		
1. 以下	排序算	去中, 平	均复杂	度与合并持	非序同阶	的是()		
Α.	快速排	序	В.	选择排序					
С.	插入排	字	D.	冒泡排序					
2. 无向	图G连遍	通度为 2,	每条边	有不同权值	直,则权	值最大的	边一定不	会包含在	G的()
Α.	某个顶点	5开始的:	最短路径		B. 深度	优先生成	树中		
C.	广度优势	上生成树口	中). 最小生	上成树中			
3. 用茅	、种排序	方法对关	键字序	列(25,8	4, 21,	47, 15,	27, 68)	进行排	字时,序列的变
化	情况如下	:							
	21, 47	7, 68, 2	25, 15,	27, 84					
	21, 47	7, 27, 2	25, 15,	68, 84					
	15, 25	5, 27, 2	21, 47,	68, 84					
则	所采用的	排序方法	去是()					
Α	. 冒泡排	非序 F	3. 选择:	排序	C. 快速	排序	D. 堆排户	字	
			是对角线	元素均为零	零的上三	角矩阵,	则此图是	()	
Α.	有向完全	全图	В.	连通图					
C.	有向无理	不图	D.	强连通图					
5. 以下	说法最符	宁 合稳定	匹配问题	的 Gale-Si	hapley 貧	算法性质的	的是()		
Α.	天涯何如	上无芳草		B. 先发	党制人,	后发受制	于人		
С.	酒香不怕	白巷子深		D. 路漫	漫其修	远兮, 吾	将上下而习	求索	
二、简	答题 (本	大题共	20分)						
				求以下递归	日式的渐	进估计,	要有判制	依据。(10分)
									/4 /
I(n) =	$16T\left(\frac{n}{3}\right)$	+ n ³							
T(n) =	$4T\left(\frac{n}{2}\right) +$	$-n(\lg n)$	2						

- 2、请将下面几个渐进函数按趋向于无穷大的速度升序排列(这里 $\lg n$ 以 2 为底)。(5 分) \sqrt{n} , $n\lg n$, $2^{\sqrt{\lg n}}$, $\lg n^{\lg n}$, n^2 ,
- 3、请简单描述 PSPACE, P, NP, EXPTIME 这四个复杂性类之间的关系。? (5分)
- 三、在计算机网络等应用领域中经常需要在某个图G=(V,E)中寻找从源点s到终点t之间的某种最短路径,请问目前我们学过的算法中有哪些可以用于这类问题?请简单描述它们各自的特色和时间复杂度。(10 分)
- 四、区间调度问题:给定一个包含n个任务的集合 $S = \{a_1, a_2, ..., a_n\}$,其共享同一台机器,该机器同一时刻只能运行一个任务,每个任务 a_i 有一个开始时间 s_i 和结束时间 f_i ,若 a_i 被选中则在 $[a_i, f_i)$ 时段内独享该机器。如果两个任务的运行时段不重合则称二者相容,现在的问题是要选择一个数量最多且彼此相容的任务子集。课堂上学习的算法是按照结束时间采取的贪心算法,请问是否也可以按照开始时间的某种贪心思路来解决。(请说明主要思想,写出伪代码,并分析算法的时间复杂度)(10 分)
- 五、【分治法】给定n颗大溪地黑珍珠,需要遴选相等体积的珍珠做项链,假设只有一个简单的无砝码天平用于比较两颗珍珠是否等重(因此体积也相等),现在的问题是要判断n颗珍珠中是否有一半以上珍珠为相同重量,能否设计一个时间复杂度为 $O(n \lg n)$ 以内的算法解决这一问题?(请说明主要思想,描述主要步骤,并分析算法的时间复杂度)(10 分)
- 六、【动态规划】 假设在连续n个交易日中,某支股票第i天每股的交易价格固定为 p_i 。如果第i天买入第j天卖出,则其收益为 p_j - p_i 。现在要求最多只能有一次买入和一次卖出操作,并且要使其收益最大化。请设计算法在O(n)时间内找到最优的买入卖出日期(i,j)。(请写出递推式,说明算法主要思想及时间复杂度)(10 分)

七、请判断下述论断的真假,如果正确请给出一个简短的解释;如果错误请给出一个反例。给定流网络图G=(V,E),每条边e上有正整数带宽限制 c_e ,源点s,终点t,按照 Ford-Fulkerson 算法可以在多项式时间内地计算出最大的s-t流,令(A,B)为对应的最小割,A为最终剩余图中从s可以到达的点集,B为与其他点集。

- 1) 任给图 G 中一条s-t路径, 那么路径中的带宽最小边会被最大的s-t流用光带宽。(5 分)
- 2) 如果给每条边的带宽值增加 1, 那么(A,B)仍旧是图中的最小s-t割。(5分)

八、大教室调度问题(BCSP): 假设中北校区只有一间可以容纳 100 人同时考试的教室,期末考试期间收到n个考试申请,每个申请i有一个开始时间 s_i ,一个截止时间 f_i 和一个考试时长 t_i ,即考试i必须安排在区间[s_i , f_i]中连续的 t_i 个时间单位内进行,同一时刻教室内只能有一场考试。参数在系统中都是正整数(按照起始时间偏移量),时间以分钟为单位。问题是:是否存在调度方案可以让所有来申请的考试在截止时间之前完成?

子集和问题(SSP):任给自然数 w_1,w_2,\dots,w_n 和目标值W,问 $\{w_1,w_2,\dots,w_n\}$ 有一个子集加起来恰好等于W吗?

已知**子集和问题**是NP完全的,请证明**大教室调度问题**也是NP完全的。(10分)

课程名称:算法设计与分析			
学生姓名:	学 号:		
专 业:计算机科学与软件工程	年级/班级:_	2018 硕博	_
一、单项选择题(本大题共5小题,每小题4分,	共 20 分)。		
ADDCB			

二、简答题(本大题共20分)

1、运用主方法(Master Method)求以下递归式的渐进估计,要有判断依据。(10分)

$$T(n) = 4T\left(\frac{n}{2}\right) + n(\lg n)^2 \quad \text{ as } \quad T(n) = n^2$$

2、请将下面几个渐进函数按趋向于无穷大的速度升序排列(这里 $\lg n$ 以 2 为底)。(5 分) \sqrt{n} , $n\lg n$, $2^{\sqrt{\lg n}}$, $\lg n^{\lg n}$, n^2 , 答:

 $2^{\sqrt{\lg n}}$, \sqrt{n} , $n \lg n$, n^2 , $\lg n^{\lg n}$ 或者 $2^{\sqrt{\lg n}}$, \sqrt{n} , $\lg n^{\lg n}$, $n \lg n$, n^2

- 3、请简单描述 PSPACE, P, NP, EXPTIME 这四个复杂性类之间的关系。? (5 分)答案: P⊆NP⊆PSPACE⊆ EXPTIME, P⊂EXPTIME。
- 三、在计算机网络等应用领域中经常需要在某个图G = (V, E)中寻找从源点s到终点t之间的某种最短路径,请问目前我们学过的算法中有哪些可以用于这类问题?请简单描述它们各自的特色和时间复杂度。(10 分)

答案:如果边上不带权的话,BFS 算法就可以计算源点s到其他所有可达点之间的最短路径,O(V+E)或者O(n+m)都行。如果边权非负的话,Dijkstra 算法可以,采用优先队列可以达到 $O(m \lg n)$ 或者 $O(E \lg V)$ 。如果边权可以为负担没有负圈的话,Bellman-Ford 算法可以,O(mn)或者O(EV)。

四、区间调度问题:给定一个包含n个任务的集合 $S = \{a_1, a_2, ..., a_n\}$,其共享同一台机器,该机器同一时刻只能运行一个任务,每个任务 a_i 有一个开始时间 s_i 和结束时间 f_i ,若 a_i 被选中则在 $[s_i, f_i)$ 时段内独享该机器。如果两个任务的运行时段不重合则称二者相容,现在的问题是要选择一个数量最多且彼此相容的任务子集。课堂上学习的算法是按照结束时间采取的贪心算法,请问是否也可以按照开始时间的某种贪心思路来解决。(请说明主要思想,写出伪代码,并分析算法的时间复杂度)(10 分)

答:按照开始时间从大到小排序即可,等于按结束时间从小到大的镜像。

五、【分治法】给定n颗大溪地黑珍珠,需要遴选相等体积的珍珠做项链,假设只有一个简单的无砝码天平用于比较两颗珍珠是否等重(因此体积也相等),现在的问题是要判断n颗珍珠中是否有一半以上珍珠为相同重量,能否设计一个时间复杂度为 $O(n \lg n)$ 以内的算法解决这一问题?(请说明主要思想,描述主要步骤,并分析算法的时间复杂度)(10 分)

答:课后习题,两种方法,一种是每次分成两半,递归运行,如果有返回多数的,就用其和其余比较,看是否是整个区间的多数代表,时间复杂度为0(nlgn)。二是两两比较,等重就留一颗,否则都拿开,最后剩下的进行全员比对,时间复杂度为0(n)。

六、【动态规划】 假设在连续n个交易日中,某支股票第i天每股的交易价格固定为 p_i 。如果第i天买入第j天卖出,则其收益为 p_j - p_i 。现在要求最多只能有一次买入和一次卖出操作,并且要使其收益最大化。请设计算法在O(n)时间内找到最优的买入卖出日期(i,j)。

(请写出递推式,说明算法主要思想及时间复杂度)(10分)

答:用A[i]记录假设在第i天卖出对应最佳方案所能够得到的最大收益,A[0] = 0;则有 $A[i] = max\{0, A[i-1] + p_i - p_{i-1}\}$,最后在A中寻找最大值。

七、请判断下述论断的真假,如果正确请给出一个简短的解释;如果错误请给出一个反例。给定流网络图G = (V, E),每条边e上有正整数带宽限制 c_e ,源点s,终点t,按照 Ford-Fulkerson 算法可以在多项式时间内地计算出最大的s-t流,令(A, B)为对应的最小割,A为最终剩余图中从s可以到达的点集,B为与其他点集。

- 1) 任给图 G 中一条s-t路径, 那么路径中的带宽最小边会被最大的s-t流用光带宽。(5分)
- 2) 如果给每条边的带宽值增加 1, 那么(A,B)仍旧是图中的最小s-t割。(5 分) 答: 都是错的。

八、大教室调度问题(BCSP):假设中北校区只有一间可以容纳 100 人同时考试的教室,期末考试期间收到n个考试申请,每个申请i有一个开始时间 s_i ,一个截止时间 f_i 和一个考试时长 t_i ,即考试i必须安排在区间[s_i , f_i]中连续的 t_i 个时间单位内进行,同一时刻教室内只能有一场考试。参数在系统中都是正整数(按照起始时间偏移量),时间以分钟为单位。问题是:是否存在调度方案可以让所有来申请的考试在截止时间之前完成?

子集和问题 (SSP): 任给自然数 $w_1, w_2, ..., w_n$ 和目标值W,问 $\{w_1, w_2, ..., w_n\}$ 有一个子集加起来恰好等于W吗?

已知子集和问题是NP完全的,请证明大教室调度问题也是NP完全的。(10分)

答: 先说明 BCSP 属于 NP。从 SSP 归约到 BCSP,令 $F = w_1 + w_2 + \cdots + w_n$,可以把每个 w_i 转换成一个申请($s_i = 0$, $t_i = w_i$, $f_i = F$),再增加一个申请($s_{n+1} = W$, $t_{n+1} = 1$, $f_{n+1} = W + 1$)。