CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 10

BINOMIAL THEOREM REVISITED

BINOMIAL THEOREM

For integer *m*:

$$(1+x)^m = \sum_{i=0}^m \binom{m}{i} x^i.$$

- What if *m* is not an integer?
- $m = \frac{1}{2}$ or $m = -\pi$?
- We use α instead of m when m is not integer.

3/14

BINOMIAL THEOREM REVISITED

• We can use Taylor series expansion to compute expansion of $(1+x)^{\alpha}$ in general.

TAYLOR SERIES EXPANSION

For any function f(x) that converges in the neighborhood of 0:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

• Using it for $f(x) = (1+x)^{\alpha}$, we get

$$f^{(n)}(0) = (\prod_{j=0}^{n-1} (\alpha - j)).$$

BINOMIAL THEOREM REVISITED

GENERALIZED BINOMIAL COEFFICIENT

Define

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}$$

for any α and any integer $n \geq 0$.

GENERALIZED BINOMIAL THEOREM

For any α :

$$(1+x)^{\alpha} = \sum_{n>0} {\alpha \choose n} x^n.$$

EXAMPLES

ullet When lpha is a positive integer, then this coincides with the binomial theorem since

$$\prod_{j=0}^{n-1} (\alpha - j) = 0$$

for $n > \alpha$.

• When α is negative integer, then

$$\binom{\alpha}{n} = (-1)^n \frac{(n+|\alpha|-1)!}{(|\alpha|-1)! n!} = (-1)^n \binom{|\alpha|+n-1}{n}.$$

GENERATING FUNCTIONS

GENERATING FUNCTION

Given a possibly infinite sequence of numbers a_0 , a_1 , a_2 , ..., function

$$f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

is called generating function for the sequence.

- Captures a sequence of related numbers in a single formula.
- Handy in deriving properties of the sequences.

EXAMPLES

- Generating function for sequence $\binom{n+1}{n} \mid n \ge 0$
 - We saw that $(1+x)^{-2} = \sum_{n\geq 0} (-1)^n \binom{n+1}{n} x^n$.
 - ► This gives $(1-x)^{-2}$ as generating function.
- Generating function for sequence $\{\binom{2n}{n} \mid n \geq 0\}$
 - We have $\binom{-1/2}{n} = (-1)^n \frac{1}{4^n} \binom{2n}{n}$ (Verify!)
 - ► This gives $(1-4x)^{-\frac{1}{2}}$ as generating function.

IDENTITIES

IDENTITY-I

$$\sum_{r=0}^{n} (-1)^r \binom{r+\alpha-1}{r} \binom{\alpha}{n-r} = 0$$

for $\alpha \geq 0$ and integer $n \geq 1$.

PROOF.

We know that

$$(1+x)^{\alpha} = \sum_{s\geq 0} {\alpha \choose s} x^{s}$$
$$(1+x)^{-\alpha} = \sum_{r>0} (-1)^{r} {r+\alpha-1 \choose r} x^{r}$$

IDENTITIES

Multiplying the two, we get

$$1 = \sum_{n\geq 0} \left(\sum_{r+s=n} (-1)^r \binom{r+\alpha-1}{r} \binom{\alpha}{s} \right) x^n$$
$$= \sum_{n\geq 0} \left(\sum_{r=0}^n (-1)^r \binom{r+\alpha-1}{r} \binom{\alpha}{n-r} \right) x^n$$

• Therefore, for every $n \ge 1$:

$$\sum_{r=0}^{n} (-1)^r \binom{r+\alpha-1}{r} \binom{\alpha}{n-r} = 0.$$

IDENTITIES

IDENTITY-II

$$\sum_{r=0}^{k} {\alpha \choose r} {\beta \choose k-r} = {\alpha+\beta \choose k}$$

for k > 0.

- We give three proofs of this identify!
- Combinatorial proof, inductive proof, and proof by generating functions.

Manindra Agrawal CS201: Lecture 10 11/14

Combinatorial proof

- This works when α and β are non-negative integers.
- Suppose we have $\alpha + \beta$ distinct objects and wish to choose k of them.
- The number of ways of choosing is $\binom{\alpha+\beta}{k}$.
- Counting another way, divide the $\alpha + \beta$ objects into two groups of α and β each.
- We can pick r objects from first group and k-r objects from second group to choose k objects.
- This number is $\binom{\alpha}{r}\binom{\beta}{k-r}$.
- Hence,

$$\sum_{r=0}^{k} {\alpha \choose r} {\beta \choose k-r} = {\alpha+\beta \choose k}.$$

12 / 14

PROOF BY INDUCTION

- We do induction on β , this works only when β is non-negative integer.
- Base case is $\beta = 0$. Then we have:

$$\sum_{r=0}^{k} \binom{\alpha}{r} \binom{0}{k-r} = \binom{\alpha}{k}.$$

• Assume for β and consider $\beta + 1$:

$$\sum_{r=0}^{k} {\alpha \choose r} {\beta+1 \choose k-r} = \sum_{r=0}^{k} {\alpha \choose r} \left\{ {\beta \choose k-r} + {\beta \choose k-r-1} \right\}$$

$$= \sum_{r=0}^{k} {\alpha \choose r} {\beta \choose k-r} + \sum_{r=0}^{k-1} {\alpha \choose r} {\beta \choose k-r-1}$$

$$= {\alpha+\beta \choose k} + {\alpha+\beta \choose k-1}$$

$$= {\alpha+\beta+1 \choose k}.$$

Proof by generating functions

- Generating function for $\left\{\binom{\alpha+\beta}{k} \mid k \geq 0\right\}$ is $(1+x)^{\alpha+\beta}$.
- We have:

$$(1+x)^{\alpha+\beta} = (1+x)^{\alpha} \cdot (1+x)^{\beta}$$

$$= \sum_{r\geq 0} {\alpha \choose r} x^{r} \cdot \sum_{s\geq 0} {\beta \choose s} x^{s}$$

$$= \sum_{k\geq 0} \left\{ \sum_{r+s=k} {\alpha \choose r} {\beta \choose s} \right\} x^{k}$$

$$= \sum_{k\geq 0} \left\{ \sum_{r=0}^{k} {\alpha \choose r} {\beta \choose k-r} \right\} x^{k}$$

• Equating coefficients of x^k on both sides gives:

$$\binom{\alpha+\beta}{k} = \sum_{r=0}^{k} \binom{\alpha}{r} \binom{\beta}{k-r}.$$