СЛУЧАЙНЫЕ СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ

- 1. Классическое определение вероятности
- 2. Элементы комбинаторики
- 3. Аксиоматическое построение теории вероятностей
- 4. Геометрическая вероятность
- 5. Теоремы сложения и умножения вероятностей
- 6. Формула полной вероятности и формула Байеса
- 7. Повторение испытаний. Схема Бернулли
- 8. Предельные теоремы в схеме Бернулли

1. Классическое определение вероятности

В теории вероятностей (ТВ) изучаются математические модели *случайных испытаний* (опытов, экспериментов, далее кратко - СЭ), т. е. экспериментов, результаты которых нельзя предсказать заранее, а сами испытания можно повторять, хотя бы теоретически, произвольное число раз при неизменном комплексе условий. Случайными испытаниями, например, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенным на каждую грань числом очков – от одного до шести) и т. д.

Результат (исход) испытания называется *случайным событием* (или просто: *событием*). Событиями являются: выпадение герба или выпадение цифры при подбрасывании монеты, попадание в цель или промах, появление того или иного числа очков на брошенной игральной кости и т. п.

Для обозначения событий используются большие буквы латинского алфавита: A, B, C и т. д.

События A и B называются **несовместными**, если появление одного из них исключает появление другого в одном и том же случайном испытании, т. е. они не могут произойти вместе в одном испытании. События A и B называются **совместными**, если они могут появиться вместе в одном испытании.

Например, если случайное испытание — один выстрел по мишени, событие A — попадание в мишень, событие B — промах. События A и B несовместны, поскольку если произошло событие A (стрелок попал в мишень), то событие B (промах во время того же выстрела) уже произойти не может, появление одного события исключает появление другого.

События $A_1, A_2, ..., A_n$ называются **попарно несовместными**, если любые два из них несовместны.

Например, при однократном бросании игральной кости события $A_1, A_2, ..., A_6$ — соответственно выпадение одного очка, двух, трех и т. д. — являются попарно несовместными событиями.

События $A_1, A_2, ..., A_n$ образуют **полную группу событий** для данного испытания, если они попарно несовместны и в результате испытания обязательно появится одно из них.

Так, в примере с однократным бросанием игральной кости события $A_1, A_2, ..., A_6$ образуют полную группу событий, а события $A_1, A_2, ..., A_5$ – нет.

Для одного и того же испытания можно рассматривать различные полные группы событий. Например, при однократном бросании игральной кости полную группу также образуют события $B = \{$ выпадение четного числа очков $\}$ и $C = \{$ выпадение нечетного числа очков $\}$. Другой пример полной группы событий в этом же испытании — события B, A_1 , A_3 , A_5 .

Два события A и \overline{A} называются **противоположными**, если в данном испытании они несовместны и одно из них обязательно происходит. Противоположные события A и \overline{A} представляют собой простейший случай полной группы событий.

Событие называется *достоверным*, если в данном испытании оно обязательно происходит. Событие называется *невозможным*, если в данном испытании оно заведомо не может произойти. Будем обозначать достоверное событие Ω , а невозможное \varnothing .

Суммой A + B событий A и B называется событие C = A + B, состоящее в наступлении хотя бы одного из событий A или B (в результате СЭ произошло или событие A, или событие B, или события A и B одновременно).

Произведением $A \cdot B = AB$ событий A и B называется событие C = AB, состоящее в том, что в результате СЭ произошли **и** событие A, **и** событие B.

Несколько событий в данном испытании называются *равновоз- можными*, если ни одно из них не является объективно более возможным, чем другие, т.е. если условия испытания не создают пре-имущества в появлении какого-либо события перед остальными.

Например, при бросании игральной кости события $A_1, A_2, ..., A_6$ являются равновозможными, если кость правильная (однородная и симметричная).

Всякое испытание связано с некоторой совокупностью исходов – результатов испытания, т.е. событий. Во многих случаях возможно перечислить все события, которые могут быть исходами данного испытания.

Пусть проводится испытание с конечным числом попарно несовместных равновозможных исходов $\omega_1, \omega_2, ..., \omega_n$, образующих полную группу событий. Такие исходы называются элементарными исходами, множество всех элементарных исходов будем обозначать $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$. Элементарный исход ω_i называется благоприятствующим появлению события A, если наступления исхода ω_i влечет за собой наступление события A.

Классическое определение вероятности: вероятность P(A) случайного события A равна

$$P(A) = \frac{m}{n},$$

где $m=m_A$ - число элементарных исходов испытания, благоприятствующих появлению события $A,\ n$ - общее число равновозможных элементарных исходов испытания.

Вероятность любого события удовлетворяет условию $\boxed{0 \leq P(A) \leq 1.}$

Вероятность достоверного события равна 1: $P(\Omega) = 1$; вероятность невозможного события равна 0: $P(\emptyset) = 0$.

2. Элементы комбинаторики

Комбинаторика изучает, сколькими различными способами можно составить множества (комбинации), удовлетворяющие определенным условиям, из элементов заданного множества.

Правило произведения: если объект типа X можно выбрать n способами и при каждом таком выборе объект типа Y можно выбрать m способами, то выбор пары (X,Y) в указанном порядке можно осуществить $n \cdot m$ способами.

Правило суммы: если объект типа X можно выбрать n способами, а объект типа Y-m способами, то выбор объекта типа X или Y можно осуществить m+n способами.

Пример. Из пункта M. в пункт N. и обратно можно добраться тремя способами: поездом, автобусом или самолетом; из N. в L. можно доехать автобусом или дойти пешком. Сколько различных по способу передвижения маршрутов можно организовать а) из M. в L. через N., б) из N. в M. или из N. в L.?

Решение. а) Нужные маршруты легко перечислить: 1) из M. в N. самолетом, далее автобусом; 2) из M. в N. самолетом, далее пешком; 3) поездом — автобусом; 4) поездом — пешком; 5) автобусом — автобусом; 6) автобусом — пешком.

Число маршрутов можно определить, не перечисляя их. Имеется 3 способа добраться из M. в N. и 2 способа из N. в L. На каждый способ добраться из M. в N. приходится два способа добраться в L. По правилу произведения получаем $3 \cdot 2 = 6$ способов.

б) Нужно выбрать либо один из 3 вариантов добраться из N. в M., либо один из 2 вариантов путешествия из N. в L. Применяя правило суммы, получаем всего 3+2=5 вариантов.

Число P_n всех возможных способов переставить n различных элементов — число *перестановок* (из n различных элементов) равно

$$P_n = n \cdot (n-1) \cdot (n-2) \dots 2 \cdot 1 = n!$$

Число A_n^m размещений (упорядоченных комбинаций) из n различных элементов по m элементам (местам), различающихся либо самими элементами, либо их порядком, равно

$$A_n^m = n(n-1)(n-2)...(n-m+1), \ \tilde{a}\ddot{a}\dot{a}\ m \le n.$$

Число C_n^m сочетаний (неупорядоченных комбинаций) из n различных элементов по m элементам (порядок выбранных элементов не учитывается) равно

$$C_n^m = \frac{n(n-1)(n-2)...(n-m+1)}{m!} = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!}$$

причем 0! = 1. Отметим, что $C_n^m = C_n^{n-m}$; $C_n^0 = C_n^n = 1$; $C_n^1 = C_n^{n-1} = n$.

3. Аксиоматическое построение теории вероятностей

В общем случае вероятностное пространство определяется в аксиоматике Колмогорова как тройка $\{\Omega, \Sigma, P\}$, где Ω – множество эле-

ментарных исходов, Σ — алгебра (или σ -алгебра) событий, P — **веро-ятность** (вероятностная мера), определенная на классе событий Σ . Поясним сказанное.

Пусть рассматривается СЭ и Ω – множество элементарных исходов, связанное с данным СЭ. Говорят, что класс Σ событий образует алгебру событий, если выполнены следующие условия (аксиомы):

- 1) $\Omega \in \Sigma$, $\emptyset \in \Sigma$ (достоверное и невозможное события принадлежат классу Σ);
- 2) $A \in \Sigma$, $B \in \Sigma \Rightarrow A + B \in \Sigma$, $AB \in \Sigma$ (если A и B являются событиями, то их сумма A + B и произведение AB также являются событиями);
- 3) $A \in \Sigma \Rightarrow \overline{A} \in \Sigma$.

Отсюда вытекает, что сумма и произведение конечного числа событий в алгебре событий также является событием, чего нельзя сказать о их бесконечном числе. Если и бесконечная сумма событий является событием, то такая алгебра событий называется о -алгеброй.

Пример. Класс событий Σ , состоящий только из достоверного и невозможного событий, образует алгебру событий, так как $\Omega + \varnothing = \Omega \in \Sigma$, $\Omega \varnothing = \varnothing \in \Sigma$, и все аксиомы алгебры событий выполнены.

На классе событий \sum задается неотрицательная (аддитивная) функция — *вероятность* P, удовлетворяющая следующим *аксиомам вероятности*:

- 1. $P(A) \ge 0$ для любого события $A \in \Sigma$.
- 2. $P(\Omega) = 1$.
- 3. P(A + B) = P(A) + P(B), если события A и B несовместны.

В дальнейшем будем считать класс событий $\sum \sigma$ -алгеброй, и аксиомы вероятности дополняются расширенной аксиомой сложения:

4. $A_1,...,A_k,...\in\Sigma\Rightarrow P(A_1+...+A_k+...)=P(A_1)+...+P(A_k)+...,$ если события $A_1,...,A_k,...$ попарно несовместны, т. е. $A_iA_k=\varnothing$ для $i\neq k$.

В качестве следствий этих аксиом можно получить следующие свойства вероятности:

- 1. $P(\emptyset) = 0$.
- 2. $0 \le P(A) \le 1$ для любого события A.
- 3. $P(\bar{A}) = 1 P(A)$ для любого события A.

4. Геометрическая вероятность

В приложениях ТВ широко используется понятие *геометрической свероятности*. СЭ заключается в том, что исследуемая точка случайным образом (наудачу) появляется в любой точке заданного измеримого геометрического множества Ω . Событие A состоит в том, что исследуемая точка появляется в подмножестве A множества Ω : $A \subset \Omega$. Если S — геометрическая мера (длина, площадь, объем и т.д.) всей области, а S_A — геометрическая мера части этой области, попадание в которую благоприятствует появлению данного события A, то вероятность этого события определяется формулой

$$P(A) = \frac{S_A}{S}.$$

Нетрудно видеть, что так устроенная вероятность удовлетворяет всем аксиомам вероятности, а тройка $\{\Omega, \Sigma, P\}$, где класс событий Σ порождается множеством всех подмножеств множества Ω , является примером вероятностного пространства.

5. Теоремы сложения и умножения вероятностей

Пример (геометрическая интерпретация операций над событиями). СЭ: точка случайным образом появляется во множестве Ω — достоверное событие, событие A (аналогично B) состоит в том, что точка появляется во множестве A (соответственно B). Ниже приводится геометрическая интерпретация событий A, A+B, AB (см. рис. 1).

Рис. 1. Геометрическая интерпретация операций над событиями

Теорема сложения вероятностей. Вероятность суммы двух событий равна сумме вероятностей этих событий за вычетом вероятности их произведения: для любых событий A и B

$$P(A+B) = P(A) + P(B) - P(A \cdot B).$$

Действительно, это вытекает из представлений событий A+B и B посредством суммы несовместных событий: $A+B=A+\overline{A}B$, $B=AB+\overline{A}B$ и применением аксиомы 3 сложения вероятностей.

Теорема сложения вероятностей несовместных событий:

$$P(A+B)=P(A)+P(B)\,, \, \text{если}\, A\,\,\text{и}\, B-\text{несовместны},$$
 в частности, $P(A)+P(\overline{A})=1\,.$

Вероятность P(A|B) появления в СЭ события A, если известно, что в этом СЭ произошло событие B, — условная вероятность — определяется соотношением: $P(A|B) = \frac{P(A \cdot B)}{P(B)}$. Отсюда следует **теорема** умножения вероятностей:

$$P(A \cdot B) = P(A)P(B|A) = P(B)P(A|B).$$

События A и B называются **независимыми**, если появление одного из них не зависит от появления другого, точнее, P(A|B) = P(A), P(B|A) = P(B). В противном случае события A и B называются **зависимыми**.

Теорема умножения вероятностей независимых событий:

$$P(A \cdot B) = P(A) \cdot P(B)$$
, если A и B независимы.

При решении задач с применением теорем сложения и умножения вероятностей полезно выразить событие A, вероятность которого ищется, и противоположное ему событие \overline{A} через события, вероятности которых известны, а затем вычислить P(A) непосредственно или по формуле $P(A) = 1 - P(\overline{A})$ в зависимости от того, что удобнее.

6. Формула полной вероятности и формула Байеса

События $A_1, A_2,..., A_n$ образуют **полную группу** для данного СЭ, если 1) $A_iA_j=\emptyset$ для $i\neq j$ и 2) $A_1+A_2+...+A_n=\Omega$, т. е. 1) они попарно несовместны и 2) в результате СЭ обязательно появится одно из них.

Отметим, что для одного и того же СЭ можно рассматривать различные полные группы событий, например, события A и \overline{A} , где A –

любое событие, связанное с СЭ, всегда образуют полную группу событий.

Если событие A может наступить при появлении одного из n попарно несовместных событий (гипотез) $H_1, H_2, ..., H_n$, образующих полную группу событий, то вероятность события A можно вычислить по формуле полной вероятности:

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + \dots + P(H_n)P(A|H_n),$$
 причем $P(H_1) + P(H_2) + \dots + P(H_n) = 1$.

Вероятности гипотез до проведения опыта называются *априор* **ными вероятностями**. Если известно, что в результате опыта с одной из гипотез (но мы не знаем с какой) наступило событие A, то вероятности каждой гипотезы (*апостериорные вероятности*) можно

пересчитать по формуле Байеса:
$$P(H_k / A) = \frac{P(H_k)P(A/H_k)}{\sum\limits_{i=1}^n P(H_i)P(A/H_i)}$$
.

7. Повторение испытаний. Схема Бернулли

Пусть проводится n независимых ε совокупности испытаний (СЭ), в каждом из которых возможно только два исхода: A – успех и \overline{A} – неуспех, причем вероятность наступления успеха в каждом испытании постоянна и равна p. Такая последовательность испытаний называется схемой Бернулли.

В схеме Бернулли вероятность $P_n(m)$ наступления m успехов в n независимых испытаниях — вероятность того, что в этих испытаниях событие A наступит ровно m раз, вычисляется по формуле Бернулли:

$$P_n(m) = C_n^m p^m q^{n-m},$$

где
$$C_n^m = \frac{n!}{m!(n-m)!}$$
, $n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$, $0! = 1$, $q = 1 - p = P(\overline{A})$ – вероятность неуспеха в одном испытании.

Вероятность того, что событие A в схеме Бернулли появится не менее m_1 раз и не более m_2 раз, равна $P_n(m_1 \le m \le m_2) = \sum_{k=m_1}^{m_2} C_n^k p^k q^{n-k}$.

Вероятность того, что в серии из n независимых испытаний событие A появится хотя бы один раз, равна $P_n(m \ge 1) = 1 - P_n(0) = 1 - q^n$.

8. Предельные теоремы в схеме Бернулли

При **больших** значениях n для вычисления вероятностей $P_n(m)$ используются приближенные формулы Пуассона и Муавра-Лапласа.

Если в схеме Бернулли вероятность p появления события A в каждом из n независимых испытаний **крайне мала**, а число испытаний n достаточно велико, то вероятность $P_n(m)$ вычисляется приближенно по формуле Пуассона (теорема Пуассона):

$$P_n(m) \approx \frac{a^m e^{-a}}{m!}, \quad a = np.$$

Формулу Пуассона применяют, когда событие A является pedким, но количество испытаний n велико и cpedhee число успехов a=np незначительно ($a \le 10$).

Если в схеме Бернулли вероятность p появления события A близка к 1, а число испытаний n велико, для вычисления вероятности $P_n(m)$ также можно использовать формулу Пуассона (считая успехом событие \overline{A}).

Если в схеме Бернулли вероятность p появления события A в каждом из n независимых испытаний **существенно отличается от 0 и 1** (близко к $\frac{1}{2}$), а число испытаний n достаточно велико, то для вычисления вероятности $P_n(m)$ применяют приближенную локальную формулу Муавра-Лапласа (локальная теорема Муавра-Лапласа):

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \varphi \left(\frac{m - np}{\sqrt{npq}} \right),$$

где $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ — функция Гаусса, причем $\varphi(-x) = \varphi(x)$, на практике обычно полагают $\varphi(x) \approx 0$ при $x \ge 4$.

Если в схеме Бернулли вероятность p существенно отличается от 0 и 1, а n достаточно велико, то вероятность $P_n(m_1 \le m < m_2)$, того, что в n независимых испытаниях событие A наступит не менее m_1 раз, но менее m_2 раз, вычисляется по интегральной формуле Муавра-

Лапласа (интегральная теорема Муавра-Лапласа):

$$P_n(m_1 \le m < m_2) \approx \Phi\left(\frac{m_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{m_1 - np}{\sqrt{npq}}\right),$$

где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t^2/2} dt$ — функция Лапласа, причем $\Phi(-x) = -\Phi(x)$, на практике обычно полагают $\Phi(x) \approx 0.5$ при $x \ge 5$.

Для функций $\phi(x)$ и $\Phi(x)$ составлены таблицы значений. Формулы Муавра-Лапласа, как правило, используются, если $0.1 , и дают хорошие результаты, если <math>npq \ge 20$.