2850-106.ST25.txt SEQUENCE LISTING

	SEQUENCE EISTING					
<110>	Yokoyama, Shigeyuki Shirouzu, Mikako Sakamoto, Ayako Sakamoto, Kensaku					
<120>	NON-NATURALLY-OCCURRING AMINO ACID-CONTAINING PROTEIN EXPRESSION METHOD					
<130>	P/2850-106					
<140> <141>	10/532,948 2005-11-10					
<150> <151>	PCT/JP03/14028 2003-10-31					
<150> <151>						
<160>	32					
<170>	PatentIn version 3.3					
<210> <211> <212> <213>						
<220> <223>	an artificial base sequence consisting of a leader sequence of human tRNA gene, and the tRNAtyr gene of B. stearothermophilus with a CUA anticodon, but without the terminal CCA sequence and a transcription terminator					
<400>	1 ccgg tttttctgtg ctgaacctca ggggacgccg acacacgtac acgtcggagg 60					
• •	gaag tggctaaacg cggcggactc taaatccgct ccctttgggt tcggcggttc 120					
gaatccgtcc ccctccagac aagtgcggtt tttttctcca gctcccg 167						
gaateegtee ecceeagae aagtgeggte tittetetea geteetg 10/						
<210> <211> <212> <213>	2 44 DNA Artificial					
<220> <223>	a PCR primer used for amplifying a part of genomic DNA of E. coli					
<400> 2 ggaattccat atggcaagca gtaacttgat taaacaattg caag 44						
<210> <211> <212> <213>	3 50 DNA Artificial					
<220> <223>	a PCR primer used for amplifying a part of genomic DNA of E. Page 1					

coli.

```
<400> 3
                                                                       50
qccqaaqctt gtcgactttc cagcaaatca gacagtaatt ctttttaccg
<210>
      40
<211>
<212>
      DNA
<213>
      Artificial
<220>
      a PCR primer used in the overlapping extension in the present
<223>
       invention
<400> 4
                                                                       40
aggatcgaag ccgcaagcga gcgcgatcgg gccttgcgcc
<210>
<211> 40
<212> DNA
<213> Artificial
<220>
       a PCR primer used in the overlapping extension in the present
<223>
       invention
<220>
      misc_feature
<221>
<222>
      (16)..(16)
      m represents c or a
<223>
<220>
<221>
      misc_feature
<222>
      (17)..(18)
<223> n is a, c, g, or t
<400>
                                                                       40
aggatcgaag ccgcamnnga gcgcgatcgg gccttgcgcc
<210>
      6
      33
<211>
<212> DNA
<213> Artificial
<220>
      a PCR primer used in the overlapping extension in the present
<223>
       invention
                                                                       33
acggtgtggt gctgtctatt ggtggttctg acc
<210>
      33
<211>
<212> DNA
<213> Artificial
<220>
<223> a PCR primer used in the overlapping extension in the present
                                       Page 2
```

invention

<400> acggtg	400> 7 cggtgtggt gctggcaatt ggtggttctg acc						
<210> <211> <212> <213>	8 33 DNA Artificial						
<220> <223>	a PCR primer used in the overlapping extension in the present invention						
<400> acggtg	8 tggt gctgaacatt ggtggttctg acc	33					
<210> <211> <212> <213>	9 33 DNA Artificial						
<220> <223>	a PCR primer used in the overlapping extension in the present invention						
<400> acggtg	9 tggt gctgtgcatt ggtggttctg acc	33					
<210> <211> <212> <213>	10 32 DNA Artificial						
<220> <223>	a PCR primer used in the overlapping extension in the present invention						
<400> ttcttc	10 ggat ccaaccagac tgcgccgcct tc	32					
<210> <211> <212> <213>	11 30 DNA Artificial						
<220> <223>	a PCR primer used in the overlapping extension in the present invention						
<400> gatcate	11 ctgg ttaacggaga agtgtttgcc	30					
<210> <211> <212> <213>	12 26 DNA Artificial						

```
<220>
       a PCR primer used in the overlapping extension in the present
<223>
       invention
<400> 12
                                                                          26
gaccttcctg tgcgatattg gcaaac
<210>
       13
<211>
       12
<212>
      DNA
<213> Artificial
<220>
<223> the box A consensus sequence
<220>
<221> misc_feature
<222>
      (2)..(2)
<223> r represents g or a
<220>
<221> misc_feature
<222> (5)..(6)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (10)..(10)
<223> n is a, c, g, or t
<400> 13
                                                                          12
trgcnnagyn gg
<210> 14
<211> 11
<212> DNA
<213> Artificial
<220>
<223> the box B consensus sequence
<220>
      misc_feature
<221>
<222>
      (8)..(8)
<223> n is a, c, g, or t
<400> 14
ggttcgantc c
                                                                          11
<210>
       15
      20
<211>
<212>
      DNA
<213> Artificial
<223>
      a sequence of a primer binding site pbs1
<400> 15
```

Page 4

	2850-106.ST25.txt	20					
agcgag	gegagtgtt aaccetgeet						
<210> <211> <212> <213>	16 20 DNA Artificial						
<220> <223>	a sequence of a primer binding site pbs2						
<400> cgacta	16 cgat attcgcgcag	20					
<210> <211> <212> <213>	17 12 DNA Artificial						
<220> <223>	a sequence of a BstXI-1 site						
<400> ccagca	17 gact gg	12					
<210> <211> <212> <213>	18 12 DNA Artificial						
<220> <223>	a sequence of a BstXI-2 site						
<400> ccagct	18 tcct gg	12					
<210> <211> <212> <213>	19 63 DNA Artificial						
<220> <223>	a nucleotide sequence coding a short peptide used for substitution of green fluorescent protein (cyanfluorescent mutation)						
<400> atgggaa	19 acta gtccatagtg gtggaattct gcagatatcc agcacagtgg cggccgccgc	60					
gtc		63					
<210> <211> <212> <213>	20 11 DNA Artificial						
<220> <223>	another box B consensus sequence						

```
<220>
<221> misc_feature
<222>
      (8)..(8)
<223> n is a, c, g, or t
<400> 20
                                                                            11
agttcgantc t
<210>
       21
<211>
       31
<212>
      DNA
<213> Artificial
<220>
       a sequence of a primer used for amplifying the sequence of SEQ ID
<223>
       No. 1
<400> 21
                                                                            31
cacagaattc tcgggagctg gagaaaaaaa c
<210>
       22
<211>
       30
<212> DNA
<213> Artificial
<220>
       a sequence of another primer used for amplifying the sequence of
<223>
       SEQ ID No. 1
<400> 22
                                                                            30
cacaaagctt agcgctccgg tttttctgtg
<210>
       23
<211>
      40
<212> DNA
<213> Artificial
<220>
       a sequence of a primer set used for amplifying a fragment having a primer binding site pbs1 upstream of the sequence of SEQ ID No.
<223>
       1 and BstXI-1 site downstream thereof
                                                                            40
agcgagtgtt aaccctgcct agcgctccgg tttttctgtg
<210>
       24
<211>
       38
<212>
       DNA
      Artificial
<213>
<220>
       a sequence of a primer set used for amplifying a fragment having
<223>
       a primer binding site pbs1 upstream of the sequence of SEQ ID No.
       1 and BstXI-1 site downstream thereof
<400>
                                                                            38
acacacccag cagactggcg ggagctggag aaaaaaac
```

```
<210>
       25
       38
<211>
<212>
      DNA
<213> Artificial
<220>
       a sequence of a primer set used for amplifying a fragment having
<223>
       a BstXI-1 site upstream of the sequence of SEQ ID No. 1 and
       another BstXI-1 site downstream from the first BstXI-1 site
<400> 25
acacacccag cagactggag cgctccggtt tttctgtg
                                                                           38
<210>
       26
<211>
       38
<212> DNA
<213>
      Artificial
<220>
       a sequence of a primer set used for amplifying a fragment having a BstXI-1 site upstream of the sequence of SEQ ID No. 1 and
<223>
       another BstXI-1 site downstream from the first BstXI-1 site
<400> 26
                                                                           38
acacacccag cttcctggcg ggagctggag aaaaaaac
<210>
      27
<211>
       38
<212>
      DNA
      Artificial
<213>
<220>
       a sequence of a primer set used for amplifying a fragment having
<223>
       a BstXI-2 site upstream of the sequence of SEQ ID No. 1 and a
       primer binding site pbs-2
<400> 27
                                                                           38
acacacccag cttcctggag cgctccggtt tttctgtg
<210>
       28
<211>
       40
<212>
      DNA
      Artificial
<213>
<220>
<223>
       a sequence of a primer set used for amplifying a fragment hving a
       BStXI-2 site upstream of the sequence of SEQ ID No. I and a
       primer binding site pbs-2
<400> 28
ctgcgcgaat atcgtagtcg cgggagctgg agaaaaaaac
                                                                           40
<210>
      29
      424
<211>
<212>
      PRT
<213>
      Escherichia coli
<400> 29
```

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15 Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30 Pro Ile Ala Leu Tyr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45 Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 60 Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80 Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95 Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110 Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125 Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 130 140 His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160 Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175 Leu Leu Gln Gly Tyr Asp Phe Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190 Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205 Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 215 220 Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240 Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr	Gln	Phe	Trp 260	Ile	Asn	Thr	Ala	Asp 265	Ala	Asp	Val	Tyr	Arg 270	Phe	Leu		
Lys	Phe	Phe 275	Thr	Phe	Met	Ser	Ile 280	Glu	Glu	Ile	Asn	Ala 285	Leu	Glu	Glu		
Glu	Asp 290	Lys	Asn	Ser	Gly	Lys 295	Ala	Pro	Arg	Ala	G]n 300	Туг	val	Leu	Ala		
Glu (305	Gln	Val	Thr	Arg	Leu 310	۷al	His	Gly	Glu	Glu 315	Gly	Leu	Gln	Ala	Ala 320		
Lys /	Arg	Ile	Thr	Glu 325	Cys	Leu	Phe	Ser	Gly 330	Ser	Leu	Ser	Ala	Leu 335	Ser		
Glu /	Ala	Asp	Phe 340	Glu	Gln	Leu	Ala	G]n 345	Asp	Gly	Val	Pro	Met 350	val	Glu		
Met	Glu	Lys 355	Gly	Ala	Asp	Leu	Met 360	Gln	Ala	Leu	val	Asp 365	Ser	Glu	Leu		
Gln !	Pro 370	Ser	Arg	Gly	Gln	Ala 375	Arg	Lys	Thr	Ile	Ala 380	Ser	Asn	Ala	Ile		
Thr : 385	Ile	Asn	Gly	Glu	Lys 390	Gln	Ser	Asp	Pro	G]u 395	Tyr	Phe	Phe	Lys	Glu 400		
Glu /	Asp	Arg	Leu	Phe 405	Glу	Arg	Phe	Thr	Leu 410	Leu	Arg	Arg	Gly	Lys 415	Lys		
Asn ⁻	Tyr	Cys	Leu 420	Ile	Cys	Тгр	Lys										
<210> 30 <211> 135 <212> DNA <213> Artificial																	
<220> <223> a sequence of one of the induced expression systems prepared in Example 2 (TetBst0)																	
<400: tctc		0 itc a	ıgtga	ıtaga	ig at	cgga	agggo	j tao	jcgaa	ıgtg	gcta	iaaco	gcg d	jcgga	actcta		60
tctccctatc agtgatagag atcggagggg tagcgaagtg gctaaacgcg gcggactcta 60 aatccgctcc ctttgggttc ggcggttcga atccgtccc ctccagacaa gtgcggtttt 120																	
									L35								

<210> <211> <212> <213>	31 145 DNA Artificial						
<220> <223>	a sequence of one of the induced expression systems prepared in Example 1 (TetBst1)	in					
<400> tctccc1	31 tatc agtgatagag atccgtacac gtcggagggg tagcgaagtg gctaaacgcg	60					
gcggact	tcta aatccgctcc ctttgggttc ggcggttcga atccgtcccc ctccagacaa	120					
gtgcggtttt tttctccagc tcccg							
<220> <223>	32 155 DNA Artificial a sequence of one of the induced expression systems prepared fixample 2 (TetBst2)	in					
<400> tctccc1	32 tatc agtgatagag atccgccgac acacgtacac gtcggagggg tagcgaagtg	60					
gctaaa	cgcg gcggactcta aatccgctcc ctttgggttc ggcggttcga atccgtcccc	120					
ctccaga	acaa gtgcggtttt tttctccagc tcccg	155					