MATH 2418: Linear Algebra

Assignment# 4

Duc. 10c3day, 00/20/2022, 11.00pm	20/2022, 11:59 pm Term: Fall 20	9/20/2022, 11.93pm 1em. rall	ue: Tuesday, 09/20/2022, 1	ฮ: 1เ	Jue. I
-----------------------------------	---------------------------------	------------------------------	----------------------------	-------	--------

[First Name] [Last Name] [Net ID]

Recommended Problems (do not turn in): Sec 2.3: 1, 3, 4, 7, 8, 9, 18, 21, 25, 27, 28. Sec 2.4: 3, 6, 7, 10, 11, 12, 14, 17, 21, 26, 32.

1. Consider the linear system of equations:

$$\begin{cases} x + 6y + 2z = -13 \\ 12x + 6y + 18z = -6 \\ 6x + 37y + 12z = -80 \end{cases}$$

- (a) Write down its augmented matrix.
- (b) Solve the linear system by reducing the coefficient matrix to an upper triangular matrix followed by back substitution.
- (c) Write down each of the elementary matrices E_{ij} used in step(b).

2. Consider the system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & -3 & -5 \\ 10 & -2 & -48 \\ -3 & 10 & 15 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -3 \\ 50 \\ 12 \end{bmatrix}.$$

- (a) Write down each of the elementary matrices that reduce A to an upper triangular matrix U.
- (b) Write down the system $U\mathbf{x} = \mathbf{c}$ which is equivalent to $A\mathbf{x} = \mathbf{b}$.
- (c) Solve the system $U\mathbf{x} = \mathbf{c}$ for \mathbf{x} .

- 3. Compute the following products:
 - (a) $\begin{bmatrix} a & 1 & 2 \\ 0 & b & 3 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} d & 2 & 3 \\ 0 & e & 1 \\ 0 & 0 & f \end{bmatrix}$
 - (b) $\begin{bmatrix} a & 0 & 0 \\ 1 & b & 0 \\ 3 & 2 & c \end{bmatrix} \begin{bmatrix} d & 0 & 0 \\ 2 & e & 0 \\ 3 & 1 & f \end{bmatrix}$
 - (c) $\begin{bmatrix} 4 & 3 & -1 \\ 1 & 3 & 2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$
 - (d) $\begin{bmatrix} d & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & f \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$

- 4. Let $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 5 \\ 6 & 9 \\ 4 & 3 \end{bmatrix}$. Without calculating the complete matrices AB and BA, compute (if possible) the following:
 - (a) The entry $(AB)_{22}$ of AB.
 - (b) The entry $(BA)_{22}$ of BA.
 - (c) Column 2 of AB.
 - (d) Row 3 of BA.

- 5. Answer the following (you need to show your work).
 - (a) Give a 2×2 matrix A such that $A^2 = 0$ but $A \neq 0$.
 - (b) Give a 2×2 matrix B such that $B^2 = I$ but $B \neq \pm I$ (I is the identity matrix).
 - (c) Write down a pair of 2×2 non-zero matrices A and B such that AB = 0 (0 is the 2×2 zero matrix)
 - (d) Given $A = \begin{bmatrix} 6 & 2 \\ 3 & 4 \end{bmatrix}$ write down the elementary matrices E_1 , E_2 and E_3 such that

$$E_1 A = \begin{bmatrix} 3 & 4 \\ 6 & 2 \end{bmatrix}$$
, $E_2 A = \begin{bmatrix} 6 & 2 \\ -3 & 2 \end{bmatrix}$ and $E_3 A = \begin{bmatrix} 3 & 1 \\ 3 & 4 \end{bmatrix}$.

6. Let
$$B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 3 & 3 & 0 \end{bmatrix}$$
.

- (a) For any 4×3 matrix A, what is the column 3 of AB? Write down all components in the column 3 of AB, and explain your answer.
- (b) For any 3×2 matrix C, what is the row 2 of BC? Write down all components in the row 2 of BC. Explain your answer.
- (c) Is it possible to find a 3×3 matrix D such that $DB = I_3$, the 3×3 identity matrix? Explain your answer.
- (d) Is it possible to find a 3×3 matrix F such that $BF = I_3$, the 3×3 identity matrix? Explain your answer.