Numerical Linear Algebra Assignment 5

Exercise 1. (10 points)

Let

$$\widehat{\mathbf{L}}_{k} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & l_{kk} & & & \\ & & l_{k+1,k} & 1 & & \\ & & \vdots & & \ddots & \\ & & l_{mk} & & & 1 \end{bmatrix}, \qquad \widehat{\mathbf{L}} = \begin{bmatrix} l_{11} & & & & \\ l_{21} & l_{22} & & & \\ \vdots & \vdots & \ddots & & \\ l_{m1} & l_{m2} & \cdots & l_{mm} \end{bmatrix}$$

Prove that

$$\widehat{\mathbf{L}}_1\widehat{\mathbf{L}}_2\cdots\widehat{\mathbf{L}}_m=\widehat{\mathbf{L}}$$

by the same approach as we discussed in LU factorization for the lower triangular matrix \mathbf{L} .

Exercise 2. (TreBau Exercise 20.1, 10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be nonsingular. Show that \mathbf{A} has an LU factorization if and only if for each k with $1 \leq k \leq m$, the upper-left $k \times k$ block $\mathbf{A}_{1:k,1:k}$ is nonsingular. (Hints: The row operations of Gaussian elimination leave the determinants $\det(\mathbf{A}_{1:k,1:k})$ unchanged.) Prove that this LU factorization is unique.

Exercise 3. (TreBau Exercise 20.3, 10 points)

Suppose an $m \times m$ matrix **A** is written in the block form $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$, where \mathbf{A}_{11} is $n \times n$ and \mathbf{A}_{22} is $(m-n) \times (m-n)$. Assume that **A** satisfies the condition of Exercise 2 (TreBau Exercise 20.1).

(a) Verify the formula

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12} \end{bmatrix}$$

for "elimination" of the block \mathbf{A}_{21} . The matrix $\mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$ is known as the *Schur complement* of \mathbf{A}_{11} in \mathbf{A} .

(b) Suppose \mathbf{A}_{21} is eliminated row by row by means of n steps of Gaussian elimination. Show that the bottom-right $(m-n) \times (m-n)$ block of the result is again $\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$.

Exercise 4. (TreBau Exercise 21.3, 10 points)

Consider Gaussian elimination carried out with pivoting by columns instead of rows, leading to a factorization $\mathbf{AQ} = \mathbf{LU}$, where \mathbf{Q} is a permutation matrix.

- (a) Show that if **A** is nonsingular, such a factorization always exists.
- (b) Show that if **A** is singular, such a factorization does not always exist.

Exercise 5. (TreBau Exercise 21.6, 10 points)

Suppose $\mathbf{A} \in \mathbb{C}^{m \times m}$ is strictly column diagonally dominant, which means that for each k,

$$|a_{kk}| > \sum_{j \neq k} |a_{jk}|.$$

Show that if Gaussian elimination with partial pivoting is applied to A, no row interchanges take place.

Exercise 6. (TreBau Exercise 22.1, 10 points)

Show that for Gaussian elimination with partial pivoting applied to any matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$, the growth factor satisfies $\rho \leq 2^{m-1}$.

Exercise 7. (TreBau Exercise 23.1, 10 points)

Let **A** be a nonsingular square matrix and let $\mathbf{A} = \mathbf{Q}\mathbf{R}$ and $\mathbf{A}^*\mathbf{A} = \mathbf{U}^*\mathbf{U}$ be QR and Cholesky factorizations, respectively, with the usual normalizations $r_{jj}, u_{jj} > 0$. Is it true or false that $\mathbf{R} = \mathbf{U}$? Explain your answer.

Exercise 8. (10 points)

Compute the Cholesky factorization of the matrix $\mathbf{A} = \begin{bmatrix} 2 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & 3 & 1 + \sqrt{2} \\ \sqrt{2} & 1 + \sqrt{2} & 4 \end{bmatrix}$.

Exercise 9. (10 points)

Let

$$\mathcal{A} = egin{bmatrix} \mathbf{A} & \mathbf{B}^* \\ \mathbf{C} & \mathbf{0} \end{bmatrix}, \quad \mathcal{P} = egin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}\mathbf{A}^{-1}\mathbf{B}^* \end{bmatrix}$$

where $\mathbf{A} \in \mathbb{C}^{m \times m}$ is invertible, and $\mathbf{B}, \mathbf{C} \in \mathbb{C}^{n \times m}$ with $m \geq n$. Assume that the *Schur complement* $-\mathbf{C}\mathbf{A}^{-1}\mathbf{B}^*$ is invertible. Prove that the matrix $\mathcal{T} = \mathcal{P}^{-1}\mathcal{A}$ is diagonalizable and has at most three distinct eigenvalues

$$1, \quad \frac{1}{2} \pm \frac{\sqrt{5}}{2}.$$

(Hint: consider the minimal polynomial of the matrix $\mathcal{T} = \mathcal{P}^{-1}\mathcal{A}$.)

Compulsory requirement for programming: Use Matlab's publish to save all your code, comments, and results to a PDF file. You must use the programming format files: example_format.zip.

Programming 1. (TreBau Exercises 20.2, 10 points)

Answer the question in Exercises 20.2 and write matlab codes to provide an example with p = 3 for a 20×20 matrix **A**. Plot the sparisity patterns of **A**, **L** and **U** by using matlab's spy.

Programming 2. (TreBau Exercises 20.4, 10 points)

Write two matlab functions, [L,U]=gelu(A) and [L,U]=geoplu(A), to implement Algorithm 20.1 and the "outer product" form of Guassian elimination you have designed in Exercises 20.4, respectively. Compare the CPU times of gelu and geoplu for a 500 × 500 matrix A.

Programming 3. (10 points)

Write a matlab function, [L,U,P]=gepp(A), to implement Algorithm 21.1 of TreBau's book. Test the 4×4 complex matrix (i = $\sqrt{-1}$)

$$\mathbf{A} = \begin{bmatrix} 1+1\mathrm{i} & -1\mathrm{i} & 0 & 1\mathrm{i} \\ 1 & 1+1\mathrm{i} & 1-1\mathrm{i} & 1+3\mathrm{i} \\ 0 & 1\mathrm{i} & -1\mathrm{i} & -1\mathrm{i} \\ 2\mathrm{i} & 1 & 0 & 0 \end{bmatrix}.$$

2

Programming 4. (10 points)

Write a matlab function, R=mychol(A), to implement Algorithm 23.1 of TreBau's book. Test the 4×4 Hermitian positive definite matrix $(i = \sqrt{-1})$

$$\mathbf{A} = \begin{bmatrix} 7 & -2\mathrm{i} & 1 - 1\mathrm{i} & 2 + 4\mathrm{i} \\ 2\mathrm{i} & 5 & -1 - 2\mathrm{i} & 2 + 2\mathrm{i} \\ 1 + 1\mathrm{i} & -1 + 2\mathrm{i} & 3 & -1 + 4\mathrm{i} \\ 2 - 4\mathrm{i} & 2 - 2\mathrm{i} & -1 - 4\mathrm{i} & 12 \end{bmatrix}.$$

Programming 5. (10 points)

Write a matlab function, [Q,R,P]=hqrp(A), via Householder reflectors, to compute the so-called QR factorization with column pivoting: AP=QR, where Q is unitary, R is upper triangular, P is a permutation matrix, and abs(diag(R)) is decreasing. Test the 4×4 matrix in Programming 4.