

Arquitectura de Computadoras 2022

Dr. Agustin M. Laprovitta (alaprovitta@unc.edu.ar)

Introduction

Computer systems functionality aspects

- Processing
 - Transformation of data
 - Implemented using processors
- Storage
 - Retention of data
 - Implemented using memory
- Communication
 - Transfer of data between processors and memories
 - Implemented using buses
 - Called interfacing

A simple bus

□ Wires:

- Uni-directional or bi-directional
- One line may represent multiple wires

□ Bus

- Set of wires with a single function
 - Address bus, data bus
- Or, entire collection of wires
 - Address, data and control
 - Associated protocol: rules for communication

Semiconductor Memory Classification

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory	
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)	
SRAM DRAM	FIFO LIFO Shift Register CACHE	FLASH		

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Memory Timing: Definitions

Memory Organization

Example organization for 1Kword x 8 bits = 8K bits memory

Memory Architecture: Decoders

Intuitive architecture for K x M memory
Too many select signals:
K words == K select signals

Decoder reduces the number of select signals $N = log_2 K$

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Hierarchical Memory Architecture

Advantages:

- 1. Shorter wires within blocks
- 2. Block address activates only 1 block => power savings

^{*} Digital Integrated Circuits 2dn – Memories (SCU 2011, PhD Shoba Krishnan)

Addressable Space

- □ It's defined as the <u>total number</u> of addresses the CPU can access.
- □ It depends on the width (number of bits) of the address bits: n bits -> 2ⁿ addresses

Memory Addressing (data bus)

Memory Addressing (address bus)

Memory Addressing (parallel)

Example organization for bank of 1Kword x 16 bits from 2 x 1Kx8bits

Memory Addressing (serial)

Example organization for bank of 4Kword x 8 bits from 4 x 1Kx8bits

Example: Conventional PC Memory map

'Espejos' en el mapa de memoria

DECODER 2 a 4 A14 d0b 11 A13 d1 (10 d2 A15 d EN d3 0 CS A12 - A0 RAM#1 8K x 8 A15 CS

Caso: Hallar el mapa de memoria del circuito indicando las posiciones de memoria ocupadas por cada CI RAM.

A15	A14	A13	Decoder	Mem	Posición en el mapa	Bytes
	0	0	d0	-	H0000 – H1FFF	8K
0	0	1	d1	RAM1	H2000 – H3FFF	8K
0	1	0	d2	RAM1	H4000 – H5FFF	8K
	1	1	d3	-	H6000 – H7FFF	8K
1	Х	Х		RAM2	H8000 - HFFFF	32K

41

D7 - D0

D7 - D0

RAM #2 8K x 8

Por ejemplo, a la primer posición de memoria de RAM #2 se accede indistintamente con las direcciones:

	A ₁₅ A ₁₂	A ₁₁ A ₀
8000	1000	0000 0000 0000
A000	1010	0000 0000 0000
C000	1100	0000 0000 0000
E000	1110	0000 0000 0000

42