

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER I EXAMINATIONS - 2013/2014

School of Electrical, Electronic and Communications Engineering

EEEN 30020 Circuit Theory

Professor Green

Professor Brazil

Professor Feely*

Time Allowed: 2 hours

Instructions for Candidates

Answer **any three** questions. All questions carry equal marks. The percentages in the right margin give an approximate indication of the relative importance of each part of the question

Instructions for Invigilators

Non-programmable calculators are permitted.

No rough-work paper is to be provided for candidates.

Graph paper is to be provided

1. (i) A two-port is terminated with a voltage source V_s at port 1 and a 1 Ω resistance at port 2, as shown in Figure 1(a). V_o is the voltage across the 1 Ω resistance. Find the voltage gain V_o/V_s in terms of the ABCD parameters of the two-port.

30%

(ii) Find the transmission (ABCD) matrix of the two-port of Figure 1(b), for sinusoidal excitation at frequency ω.

40%

(iii) Using your answers to (i) and (ii), or otherwise, find

for the circuit of Figure 1(c), for sinusoidal excitation at frequency ω .

30%

Figure 1(a)

Figure 1(b)

Figure 1(c)

2. (i) If the Laplace transform of f(t) is F(s), write down an expression for the Laplace transform of the time derivative df(t)/dt. Use this result to show how capacitors are transformed when the Laplace transform is applied to a circuit.

20%

30%

- (ii) What is the (s-domain) impedance seen by the voltage source in the circuit of Figure 2? 20%
- (iii) Find i(t) for $t \ge 0$ in the circuit of Figure 2, if $v_i(t) = 1$ V for $t \ge 0$ and there is no energy stored in the circuit at $t = 0^-$.
- (iv) By decomposing Z(s) using the partial fraction expansion, draw a circuit whose input impedance Z(s) is

$$\frac{2s+5}{(s+2)(s+3)}$$
 30%

Figure 2

- 3. (i) Explain why negative feedback is used in the design and implementation of amplifiers. 20%
 - (ii) Sketch the Bode plots (magnitude and phase) for the transfer function

$$\frac{10^{5}}{\left(1 + \frac{s}{10^{5}}\right)\left(1 + \frac{s}{10^{6}}\right)\left(1 + \frac{s}{10^{7}}\right)}$$
40%

- (iii) An amplifier whose gain is given by the transfer function from (ii) has input signal $\sin(\omega t)$. Using your answer from (ii), or otherwise, estimate the steady-state output signal when $\omega = (a) \ 10^3 \ rad/s$; (b) $10^5 \ rad/s$; and (c) $10^7 \ rad/s$.
- 4. (i) The design of a band-pass filter based on a low-pass prototype involves the frequency transformation

$$j\omega \to \beta \left(\frac{j\omega}{\omega_0} + \frac{\omega_0}{j\omega}\right)$$

Show how the elements of an RLC filter are affected by this transformation.

20%

(ii) Design an RLC filter with 50 Ω terminating resistances to meet the specification shown in Figure 3.

80%

Figure 3

Continued over/..

contd/..

Filter design formulae

Butterworth low-pass filter realisation

A circuit realisation of the n^{th} order normalised Butterworth low-pass filter is shown below, with element values given by

Frequency transformations:

Low-pass to high-pass:
$$j\omega \rightarrow \frac{\omega_0}{j\omega}$$

Low-pass to band-pass:
$$j\omega \rightarrow \beta \left(\frac{j\omega}{\omega_0} + \frac{\omega_0}{j\omega}\right)$$

Butterworth polynomials:

The Butterworth polynomials for order 1 to 6 are given in the following table:

order	Butterworth polynomial
1	s+1
2	$s^2 + 1.414s + 1$
3	$(s+1)(s^2+s+1)$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$
5	$(s+1)(s^2+0.618s+1)(s^2+1.618s+1)$
6	$(s^2 + 0.518s + 1) (s^2 + 1.414s + 1) (s^2 + 1.932s + 1)$