PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/31, C07K 14/315, C12N 1/21, C07K 16/12, A61K 39/09, 39/395, G01N 33/569, C12Q 1/68

(11) International Publication Number:

WO 96/40928

(43) International Publication Date: 19 December 1996 (19.12.96)

(21) International Application Number:

PCT/CA96/00322

A1

(22) International Filing Date:

17 May 1996 (17.05.96)

(30) Priority Data:

.4

08/472,534 60/001,805 7 June 1995 (07.06.95)

4 August 1995 (04.08.95)

(71) Applicant (for all designated States except US): IAF BIOVAC INC. [CA/CA]; 525 Des Prairies Boulevard, Laval, Quebec H7N 4Z2 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): HAMEL, Josée [CA/CA]; (CA). BRODEUR, Bernard [CA/CA]; 2401 Maritain Street, Sillery, Quebec G1T 1N6 (CA). MARTIN, Denis [CA/CA]; 4728-G Gaboury Street, St-Augustin-de-DesMaures, Quebec G3A 2X1 (CA). RIOUX, Clément [CA/CA]; 1012 Jean Charles Cantin, Ville de Cap-Rouge, Quebec G1Y 2X1
- (74) Agents: DUBUC, Jean, Y. et al.; The Stock Exchange Tower, Suite 3400, 800 Square Victoria, P.O. Box 242, Montreal, Quebec H4Z 1E9 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: STREPTOCOCCAL HEAT SHOCK PROTEINS MEMBERS OF THE HSP70 FAMILY

(57) Abstract

Novel heat shock proteins (HSPs) of Streptococcus pneumoniae, Streptococcus pyogenes and Streptococcus agalactiae having apparent molecular masses of 70-72 kDa, immunologically related polypeptides, the nucleotide and derived amino acid sequences of HSP72 of S. pneumoniae (SEQ ID NO:4; SEQ ID NO:5), the nucleotide and derived amino acid sequences of HSP70 of S. pyogenes (SEQ ID NO:19; SEQ ID NO:20), the nucleotide and derived amino acid sequences of HSP 70 of S. agalactiae (SEQ ID NO:21; SEQ ID NO:22), antibodies that bind to the HSPs, and recombinant DNA methods for the production of the HSPs and immunologically related polypeptides are described. The polypeptides, DNA sequences and antibodies of this invention provide new means for the diagnosis, prevention and/or treatment of Streptococcal disease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Armenia	GB	United Kingdom	MW	Malawi
Austria	GE	Georgia	MX	Mexico
Australia	GN	Guinea	NE	Niger
Barbados	GR	Greece		Netherlands
Belgium	HU	Hungary		Norway
Burkina Faso	IE	Ireland		New Zealand
Bulgaria	IT	Italy		Poland
Benin	JР	•		Portugal
Brazil	KE	•		Romania
Belarus	KG			Russian Federation
Canada	КР			Sudan
Central African Republic		of Korea		Sweden
Congo	KR	Republic of Korea		Singapore
Switzerland	KZ	Kazakhstan		Slovenia
Côte d'Ivoire	LI	Liechtenstein		Slovakia
Cameroon	LK	Sri Lanka		Senegal
China	LR			Swaziland
Czechoslovakia				Chad
Czech Republic				Togo
•		-		Tajikistan
Denmark	MC			Trinidad and Tobago
Estonia	MD			Ukraine
Spain		•		Uganda
Finland				United States of America
				Uzbekistan
			-	Viet Nam
	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Estonia Spain	Austria GE Australia GN Barbados GR Belgium HU Burkina Faso IE Bulgaria IT Benin JP Brazil KE Belarus KG Canada KP Central African Republic Congo KR Switzerland KZ Côte d'Ivoire LI Cameroon LK China LR Czechoslovakia LT Czech Republic LU Germany LV Denmark MC Estonia MD Spain MG Finland ML France MN	Austria GE Georgia Australia GN Guinea Barbados GR Greece Belgium HU Hungary Burkina Faso IE Ireland Bulgaria IT haly Benin JP Japan Brazil KE Kenya Belarus KG Kyrgystan Canada KP Democratic People's Republic of Korea Congo KR Republic of Korea Switzerland KZ Kazakhstan Côte d'Ivoire LI Liechtenstein Cameroon LK Sri Lanka China LR Liberia Czechoslovakia LT Lithuania Czech Republic Germany LV Latvia Denmark MC Monaco Estonia MD Republic of Moldova Spain MG Madagascar Finland ML Mali France MN Mongolia	Austria GE Georgia MX Australia GN Guinea NE Barbados GR Greece NL Belgium HU Hungary NO Burkina Faso IE Ireland NZ Bulgaria IT Italy PL Benin JP Japan PT Brazil KE Kenya RO Belarus KG Kyrgystan RU Canada KP Democratic People's Republic SD Central African Republic of Korea SE Congo KR Republic of Korea SG Switzerland KZ Kazakhstan SI Côte d'Ivoire LI Liechtenstein SK Cameroon LK Sri Lanka SN China LR Liberia SZ Czechoslovakia LT Lithuania TD Germany LV Latvia TJ Denmark MC Monaco TT Estonia MD Republic of Moldova UA Spain MG Madagascar UG France MN Mongolia UZ

STREPTOCOCCAL HEAT SHOCK PROTEINS MEMBERS OF THE HSP70 FAMILY

TECHNICAL FIELD OF THE INVENTION

This invention relates to novel heat shock proteins of Streptococcus pneumoniae, Streptococcus pyogenes and Streptococcus agalactiae and immunologically 10 related polypeptides, which provide the basis for new immunotherapeutic, prophylactic and diagnostic agents useful in the treatment, prevention and diagnosis of disease. More particularly, this invention relates to heat shock proteins of S. pneumoniae, S. pyogenes and S. agalactiae, members of the HSP70 family which have an apparent molecular mass of 70-72 kilodaltons, corresponding nucleotide and derived amino acid sequences, to recombinant DNA methods for the production of HSP70/HSP72 and immunologically related polypeptides, to 20 antibodies that bind to these HSP's, and to methods and compositions for the diagnosis, prevention and treatment of diseases caused by S. pneumoniae and related bacteria, such as Streptococcus pyogenes and Streptococcus agalactiae

25

5

٠,

BACKGROUND OF THE INVENTION

S. pneumoniae is an important agent of disease in humans, especially among infants, the elderly and immunocompromised persons. It is a bacterium frequently isolated from patients with invasive diseases such as bacteraemia/septicaemia, pneumonia, and meningitis with high morbidity and mortality throughout the world. Although the advent of antimicrobial drugs has reduced the overall mortality from pneumococcal diseases, the presence of resistant pneumococcal organisms has become a major problem in the world today. Effective pneumococcal vaccines could have a major impact on the morbidity and mortality associated with S. pneumoniae disease. Such

vaccines would also potentially be useful to prevent otitis media in infants and young children.

It is clear that a number of pneumococcal factors are potentially important in the pathogenesis of 5 disease [G.J. Boulnois, J. Gen. Microbiol., 138, pp. 249-259 (1992); C.J. Lee et al., Crit. Rev. Microbiol., 18, pp. 89-114 (1991)]. The capsule of the pneumococcus, despite its lack of toxicity, is considered to be the sine qua non of pneumococcal virulence. More than 80 10 pneumococcal capsular serotypes are identified on the basis of antigenic differences. Antibodies are the mechanism of protection and the importance of anticapsular antibodies in host defenses against S. pneumoniae is well established [R. Austrian, Am. J. Med., 67, pp. 547-549] 15 (1979)]. Nevertheless, the currently available pneumococcal vaccine, comprising 23 capsular polysaccharides that most frequently caused disease, has significant shortcomings such as the poor immunogenicity of capsular polysaccharides, the diversity of the 20 serotypes and the differences in the distribution of serotypes over time, geographic areas and age groups. particular, the failure of existing vaccines to protect young children against most serotypes has spurred evaluation of other S. pneumoniae components. Increasing 25 evidence indicates that certain pneumococcal proteins may play an active role both in terms of protection and pathogenicity [J.C. Paton, Ann. Rev. Microbiol., 47, pp. 89-115 (1993)]. So far, however, only a few S. pneumoniae proteins have been studied. This might result 30 from the lack of protein-specific antibodies which renders. difficult the study of the role of protein antigens in protection and pathogenicity. It is believed that the pneumococcal protein antigens are not very immunogenic and that most antibody responses are to the phosphocholine and 35 the capsular polysaccharides [L.S. McDaniel et al., J. Exp. Med., 160, pp. 386-397 (1984); R.M. Krause, Adv. Immunol., 12, pp. 1-56 (1970); D.G. Braun et al., J. Exp.

Med., 129, pp. 809-830 (1969)]. In a study using X-linked immunodeficient mice, which respond poorly to carbohydrate antigens and to phosphocholine, but make relatively normal responses to protein antigens, the frequency for obtaining monoclonal antibodies reactive with pneumococcal protein antigens was less than 10%, thus suggesting that S. pneumoniae proteins are poor immunogens [McDaniel et al., supra].

Streptococcus agalactiae, also called Group B 10 Streptococcus (GBS), is the most common cause of sepsis (blood infection) and meningitis in newborns. GBS is also a frequent cause of newborn pneumonia. Approximately 8,000 babies in the United States get GBS disease each year; 5%-15% of these babies die. Babies that survive. 15 particularly those who have meningitis, may have long-term problems, such as hearing or vision loss or learning disabilities. In pregnant women, GBS can cause urinary tract infections, womb infections (amnionitis, endometritis), and stillbirth. Among women who are not 20 pregnant and men, the most common diseases caused by GBS are blood infections, skin or soft tissue infections, and pneumonia. Approximately 20% of men and nonpregnant women with GBS disease die of the disease. GBS infections in both newborns and adults are usually treated with 25 antibiotics (e.g., penicillin or ampicillin) given intravenously. Most GBS disease in newborns can be prevented by giving certain pregnant women antibiotics intravenously during labor. Vaccines to prevent GBS disease are being developed. In the future, it is 30 expected that women who will be vaccinated will make antibodies that cross the placenta and protect the baby during birth and early infancy.

Since the 1980s, Streptococcus pyogenes, also called Group A Streptococcus (GAS) is reemerging as a cause of severe diseases which would be due to an increase

in virulence of the organism. GAS causes pharyngitis, commonly called "strep throat", and skin infections (impetigo, erysipelas/cellulitis). "Strep throat" and impetigo can lead to glomerulonephritis (kidney damage). 5 Approximately 3% of "strep throat" infections result into rheumatic fever (migrating arthritis) whose complications include chorea (neurological symptoms) and, in 50% of the cases, rheumatic heart disease (heart valve damage) with endocarditis as a possible long term consequence. It is 10 important to treat impetigo and "strep throat" with antibiotics to prevent the development of complications. Infection with toxin-producing strains can result in scarlet fever (diffuse rash and fever) or in the extremely severe streptococcal toxic shock syndromes (TSS; GAS have 15 been termed 'flesh eating bacteria') which are characterized by the rapid development of shock and multiple organ system failure. TSS have a 30 to 70% fatality rate in spite of aggressive treatment involving the removing of the focus of bacterial infection and 20 antibiotic therapy. The incidence of TSS is 10 to 20 cases per 100,000. No vaccine against GAS is presently available.

Heat shock or stress proteins ("HSPs") are among the most highly conserved and abundant proteins found in nature [F.C. Neidhardt et al., Ann. Rev. Genet., 18, pp. 295-329 (1984); S. Lindquist, Ann. Rev. Biochem., 55, pp. 1151-1191 (1986)]. They are produced by all cells in response to various physiological and nonphysiological stimuli. The heat shock response, in which a sudden increase in temperature induces the synthesis of HSPs, is the best studied of the stress responses. Other environmental conditions such as low pH, iron deficiency and hydrogen peroxyde can also induce HSPs. The HSPs have been defined by their size, and members of hsp90, hsp70, and hsp60 families are among the major HSPs found in all prokaryotes and eukaryotes. These proteins fulfill a

variety of chaperon functions by aiding protein folding and assembly and assisting translocation across membranes [C. Georgopoulos and W.J. Welch, Ann. Rev. Cell. Biol., 9, pp. 601-634 (1993); D. Ang et al., J. Biol. Chem., 266, 5 pp. 24233-24236 (1991)]. As molecular chaperons and possibly via other mechanisms, HSPs are likely involved in protecting cells from the deleterious effects of stress. The fact that several virulence factors are regulated by environmental conditions suggests a role for HSPs in 10 microbial pathogenicity [J.J. Mekalanos, J. Bacteriol., 174, pp. 1-7 (1992); P.J. Murray and R.A. Young, J. Bacteriol., 174, pp. 4193-4196 (1992)]. In that respect, recent studies on Salmonella species suggest that the stress response might be critically linked to the ability 15 of intracellular pathogens to initiate and sustain an infection [N.A. Buchmeir and F. Heffron, Science, 248, pp. 730-732 (1990); K.Z. Abshire and F.C. Neidhardt, J. Bacteriol., 175, pp. 3734-3743 (1993); B.B. Finlay et al., Science, 243, pp. 940-943 (1989)]. Others have 20 demonstrated that lysteriolysin, an essential virulence factor in L. monocytogenes, is induced under heat shock conditions [Z. Sokolovic and W. Goebel, Infect. Immun., 57, pp. 295-298 (1989)].

Evidence is now accumulating that HSPs are major antigens of many pathogens. Members of the hsp60 family, also called GroEL-related proteins for their similarity to the E. coli GroEL protein, are major antigens of a variety of bacterial pathogens including Mycobacterium leprae and Mycobacterium tuberculosis [D. Young et al., Proc. Natl.

30 Acad. Sci. USA, 85, pp. 4267-4270 (1988)], Legionella pneumophila [B.B. Plikaytis et al., J. Clin. Microbiol., 25, pp. 2080-2084 (1987)], Borrelia burgdorferi [B.J. Luft et al., J. Immunol., 146, pp. 2776-2782 (1991)], and Chlamydia trachomatis [E.A. Wagar et al., J. Infect. Dis., 162, pp. 922-927 (1990)]. This antigen is a homologue of the ubiquitous "common antigen", and is believed to be present in every bacterium [J.E. Thole et al., Microb.

Pathogen., 4, pp. 71-83 (1988). Antibodies to the members of the hsp70 family, or DnaK-related proteins, have also been described for several bacterial and parasitic infections [Young et al., supra; Luft et al., supra; D.M. 5 Engman et al., <u>J. Immunol.</u>, 144, pp. 3987-3991 (1990); N.M. Rothstein et al., Molec. Biochem. Parasitol., 33, pp. 229-235 (1989); V. Nussenzweig and R.S. Nussenzweig, Adv. Immunol., 45, pp. 283-334 (1989)]. HSPs can elicit strong B- and T- cell responses and it was shown that 20% 10 of the CD4 T-lymphocytes from mice inoculated with M. tuberculosis were reactive to the hsp60 protein alone [S.H.E. Kaufman et al., Eur. J. Immunol., 17, pp. 351-357 (1987)]. Similarly, 7 out of a collection of 24 monoclonal antibodies to M. leprae proteins recognized 15 determinants on hsp60 [H.D. Engers et al., Infect. Immun., 48, pp. 603-605 (1985)]. It seems that the immune response to stress proteins might play an important role in protection against infection. Consistent with that is the demonstration that antibodies and T cells reactive 20 with microbial HSPs can exhibit neutralizing and protective activities [A. Noll et al., Infect. Immun., 62, pp. 2784-2791 (1994); and S.L. Danilition et al., Infect. Immun., 58, pp. 189-196 (1990)]. The immunological properties of stress proteins make them attractive as 25 vaccine components and several HSPs are presently being considered for preventing microbial infection and treating cancer. So far, however, studies have focused on intracellular pathogens such as Mycobacteria, Salmonella, Chlamydia and several parasites. Information concerning 30 the heat shock protein antigens in extracellular grampositive bacteria is far less documented. In S. pneumoniae, S. pyogenes and S. agalactiae, neither the heat shock proteins nor their gene structures have been identified.

DISCLOSURE OF THE INVENTION

The present invention addresses the problems referred to above by providing novel heat shock proteins

35

from S. pneumoniae, S. pyogenes and S. agalactiae, and immunologically related polypeptides. Also provided are DNA sequences that code for the foregoing polypeptides, vectors containing the polypeptides, unicellular hosts transformed with those vectors, and a process for making substantially pure, recombinant polypeptides. Also provided are antibodies specific to the foregoing polypeptides. The polypeptides, DNA sequences and antibodies of this invention provide the basis for novel methods and pharmaceutical compositions for the detection, prevention and treatment of disease. Particularly, this invention provides a novel vaccine based on fragments of these polypeptides that are specific to streptococcal strains.

15 The novel heat shock protein is the approximately 72 kDa heat shock protein of Streptococcus pneumoniae ("HSP72") (SEQ ID NO:5), the approximately 70 kDa heat shock protein of Streptococcus pyogenes ("HSP70") (SEQ ID NO:20) and the approximately 70 kDa heat shock 20 protein of Streptococcus agalactiae ("HSP70") (SEQ ID NO:22), including analogues, homologues, and derivatives thereof, and fragments of the foregoing polypeptides containing at least one immunogenic epitope. Preferred fragments of HSP70/72 include the C-terminal portion of 25 the HSP70/72 polypeptides. More particularly, it includes the C_terminal 169-residue fragment ("C-169") (residues 439-607, SEQ ID NO:5), the C-terminal 151-residue fragment ("C-151") (residues 457-607, SEQ ID No:5), and smaller fragments consisting of peptide epitopes within the C-169 region. Particularly preferred fragments within the C-169 region of HSP72 include the peptide sequences GFDAERDAAQAALDD (residues 527-541 of SEQ ID NO:5) and AEGAQATGNAGDDVV (residues 586-600 of SEQ ID NO:5), which are exclusive to HSP72 of Streptococcus pneumoniae. 35 more preferred are fragments that elicit an immune reaction against S. pneumoniae, S. pyogenes and S.

agalactiae but do not provoke auto-immune reaction in a human host. Such fragments may be selected from the following peptides: CS870, CS873, CS874, CS875, CS876, CS877, CS878, CS879, CS880, CS882, MAP1, MAP2, MAP3 and MAP4 (see TABLE 5, supra).

Preferred antibodies of this invention are the F1-Pn3.1, F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4 monoclonal antibodies ("MAbs"), which are specific to HSP72.

More preferred antibodies are the F2-Pn3.2 and 10 F2-Pn3.4 monoclonal anibodies that are specific to both HSP 70 and HSP72. Even more preferred are the F1-Pn3.1 antibodies that are specific for Streptococcus pneumoniae.

The preferred polypeptides and antibodies of this invention provide the basis for novel methods and pharmaceutical compositions for the detection, prevention and treatment of pneumococcal diseases.

BRIEF DESCRIPTION OF THE DRAWINGS

20 FIG. 1 depicts a fluorogram, which shows the effect of heat shock on *S. pneumoniae* protein synthesis. The cell extracts in panel A are *S. pneumoniae* type 6 strain 64. The cell extracts in panel B are *S. pneumoniae* type 4 strain 53. The cell extracts in the odd numbered lanes were incubated at 37°C. The cell extracts in the even numbered lanes were incubated at 45°C for 5 minutes. The cell extracts were then labeled with [35S]methionine for 10 minutes (lanes 1, 2 and 7, 8), 30 minutes (lanes 3, 4 and 9, 10), or 60 minutes (lanes 5, 6). Molecular mass markers in kilodaltons are shown to the left. The positions of HSP80, HSP72 and HSP62 are shown by arrows at the right-hand side of each panel.

FIG. 2 is a graphical depiction of a comparison of the electrophoretic profiles of [35S]methionine-labeled proteins in S. pneumoniae in the presence (----) or absence (____) of exposure to heat shock. Densitometric tracings were determined by measuring the relative optical

density (Y axis) vs. the mobility of labeled protein bands (X axis). The densitometric scans of the SDS PAGE of FIG. 1, lanes 1 and 2, is shown.

FIG. 3 depicts a fluorogram, which shows the

S. pneumoniae protein antigens immunoprecipitated by sera
from mice immunized with detergent-soluble S. pneumoniae
protein extract. [35S]methionine-labeled proteins from
S. pneumoniae grown at 37°C and incubated at 37°C (lanes 3,
5, 7 and 9) or heat-shocked at 45°C (lanes 4, 6, 8 and 10)
were immunoprecipitated with sera from mouse 1 (lanes 3 to
6) or mouse 2 (lanes 7 to 10) and then analyzed by SDSPAGE and fluorography. The sera were tested after the
first (lanes 3,4 and 7,8) and after the second (lanes 5,6
and 9,10) immunization. Cell lysates from [35S]methioninelabeled non heat-shocked and heat-shocked S. pneumoniae
are shown in lanes 1 and 2, respectively. The position of
HSPs is indicated by the arrows at the left of the
fluorogram.

FIG. 4 depicts a fluorogram, which shows the

20 S. pneumoniae protein antigens immunoprecipitated by sera
from mice immunized with heat-killed S. pneumoniae
bacteria. [35S]methionine-labeled proteins from
S. pneumoniae grown at 37°C and incubated at 37°C (lanes 3,
5 and 7) or heat-shocked at 45°C (lanes 4, 6 and 8) were

25 immunoprecipitated with sera from mouse 1 (lanes 3,4),
mouse 2 (lanes 5,6) or mouse 3 (lanes 7, 8) and then
analyzed by SDS-PAGE and fluorography. Sera were tested
after the second immunization only. Cell lysates from
[35S]methionine-labeled non heat- and heat-shocked

30 S. pneumoniae are shown in lanes 1 and 2, respectively.
The position of HSPs is indicated by the arrows at the
left of the fluorogram.

FIG. 5 depicts a photograph, which shows the S. pneumoniae antigens detected by Western blot analysis.

35 Whole cell extracts were probed with sera from 15 mice (lanes 1-15) immunized with heat-killed *S. pneumoniae* bacteria. Lane 16 shows the HSP72 protein detected by MAb

F1-Pn3.1. In panel A, the sera were tested after the second immunization. In panel B, the reactivity of 4 out of 15 sera tested after the first immunization is shown. The positions of 53.5 kDa- and 47 kDa-protein bands are indicated by the bars at the left. The position of HSP72 is shown by the arrows at the right of each panel.

FIG. 6 depicts a fluorogram showing the specificity of MAb F1-Pn3.1 for HSP72. [35]methionine-labeled proteins of *S. pneumoniae* in the absence (lanes 1, 3 and 5) or presence (lanes 2, 4 and 6) of exposure to heat shock were immunoprecipitated with IgG2a-control MAb (lane 3,4) or F1-Pn3.1 (lane 5,6) and then analyzed by SDS-PAGE and fluorography. Cell lysates from [35]methionine-labeled non heat-shocked and heat-shocked 15 *S. pneumoniae* are shown in lanes 1 and 2, respectively. The position of HSPs (all three) is shown by the arrows at the left of the fluorogram.

FIG. 7, panel A, depicts an immunoblot, which shows the reaction of heat-shocked and non heat-shocked [³⁵S]methionine-labelled *S. pneumoniae* cell extracts with MAb F1-Pn3.1. Lane 1 contains heat-shocked cell lysates (45°C). Lane 2 contains non heat-shocked cell lysates (37°C). Panel B depicts a fluorogram of the immunoblot shown in panel A.

FIG. 8 depicts a Western Blot, which shows subcellular localization of *S. pneumoniae* HSP72. Sample containing 15 μg protein of membrane fraction (lane 1) and cytoplasmic fraction (lane 2) of *S. pneumoniae* were electrophoresced on SDS-PAGE transferred to nitrocellulose and probed with MAb F1-Pn3.1.

FIG. 9 is a photograph of an immunoblot showing the reactivity of recombinant fusion proteins containing the C-169 region of *S. pneumoniae* HSP72 with MAb F1-Pn3.1.

Lane 1 contains whole cell extracts from *S. pneumoniae*35 strain 64 probed with HSP72-specific MAb F1-Pn3.1.

Lanes 2 and 3 contain phage lysates from *E. coli* infected with \(\lambda\)JBD17 cultured in the presence (+) or absence (-) of

IPTG and probed with HSP72-specific MAb F1-Pn3.1. Lanes 4 and 5 contain phage lysates from E. coli infected with λJBD7 cultured in the presence (+) or absence (-) of IPTG and probed with HSP72-specific MAb F1-Pn3.1. Molecular mass markers are shown to the left. The positions of the 74kDa- and 160 kDa-reactive proteins are shown on the left and on the right, respectively.

restriction map of the HSP72(DnaK) and Fuc loci and
inserts of recombinant clones. The relationships between
DNA fragments are shown with respect to each other.
FIGS. 10A and 10C illustrate the restriction map of the
HSP72(DnaK) and Fuc loci, respectively. FIG 10B
illustrates the inserts of the various phages and plasmids
described in Example 3. H(HindIII); E(EcoRI); V(EcoRV);
P(PstI); and X(XhoI) indicate positions of restriction
endonuclease sites. DNA fragments on the HSP72/DnaK locus
(**); the Fuc locus (///); and fragments used as probes in
the Southern blot analyses (**) are indicated.

FIG. 11 depicts the SDS-PAGE and Western blot analyses of the recombinant 74 kDa protein. Whole cell extracts from *E. coli* transformed with plasmids pJBD179 (lane 1), pJBDf51 (lanes 2 and 3) and pJBDf62 (lane 4 and 5) and cultured in presence (+) or absence (-) of IPTG were subjected to 10% polyacrylamide gel electrophoresis. The proteins were then visualized by Coomassie Blue staining (A) or Western blotting (B) using HSP-specific MAb F1-Pn3.1. Molecular mass markers in kilodaltons are shown to the left. The arrow at the left-hand side of each panel marks the 74 kDa protein marker.

FIG. 12 depicts the detection of native and recombinant HSP72 antigens by Western blot analysis.

Whole cell lysates from *E. coli* transformed with plasmids pJBDk51 (lanes 1 and 3) and pJBD291 (lane 2) and cell lysates from *S. pneumoniae* strain 64 (lane 4) were subjected to 10% polyacrylamide gel electrophoresis and

were electrotransferred to nitrocellulose. The immunoblotwas probed with HSP72-specific MAb F1-Pn3.1.

FIGS. 13A-13D depict a comparison of the predicted amino acid sequence of the *S. pneumoniae* HSP72 open reading frame (HSP72 SPNEU) with those previously reported for the following HSP70/DnaK proteins: ECOLI, Escherichia coli; BORBU, Borrelia burgdorferi; BRUOV, Brucella ovis; CHLPN, Chlamydia pneumonia; BACME, Bacillus megatorium; BACSU, Bacillus subtilis; STAAU,

10 Staphylococcus aureus; LACLA, Lactococcus lactis; and MYCTU, Mycobacterium tuberculosis. Only mismatched amino acids are indicated. Identical and conserved amino acids are boxed and shadowed, respectively.

FIG. 14 depicts a photograph of an SDS-PAGE,

which shows the recombinant *S. pneumoniae* HSP72 purified by affinity chromatography. Supernatant fractions from *E. coli* (pJBDk51) lysates (lane 2) and 20 µg of immunoaffinity-purified HSP72_{rec} (lane 3) were subjected to 10% polyacrylamide gel electrophoresis. The proteins were then visualized by Coomassie Blue staining. Lane 1 shows the migration of molecular mass markers (106 kDa, 80 kDa, 49.5 kDa, 32.5 kDa, 27.5 kDa and 18.5 kDa).

FIG. 15 depicts a photograph of SDS-PAGE, which shows the recombinant *S. pneumoniae* C-169 fragment

25 purified by solubilization of inclusion bodies. Various amounts of purified C-169 protein (lane 1, 5 μg; lane 2, 2.5 μg; and lane 3, 1 μg) and whole cell lysates from *E. coli* transformed with plasmids pDELTA1 (lane 4) and pJBDΔ1 (lane 5) were subjected to 10% polyacrylamide gel electrophoresis. The proteins were then visualized by Coomassie Blue staining.

FIG. 16 is a graphical depiction of the survival curve of Balb/c mice protected from *S. pneumoniae* infection by immunization with HSP72_{rec}. Data are presented as the per cent (%) survival over a period of 14 days for a total of 10 mice per experimental group.

FIG. 17 is a graphical depiction of the survival curve of Balb/c mice protected from *S. pneumoniae* infection by immunization with C-169_{rec}. Data are presented as the per cent (%) survival over a period of 14 days for a total of 10 mice per experimental group.

5 days for a total of 10 mice per experimental group. FIG. 18 is a map of plasmid pURV3 containing C-151_{rec}, the coding region for the 151 amino acids at the carboxyl end of the HSP72 of S. pneumoniae; AmpiR, ampicillin-resistance coding region; ColE1 ori, origin of 10 replication; cI857, bacteriophage λ cI857 temperaturesensitive repressor gene; λ PL, bacteriophage λ transcription promoter; T1, T1 transcription terminator. The direction of transcription is indicated by the arrows. BgIII and BamHI are the restriction sites used to insert the coding region for the C-151_{rec} of the HSP72 of S. pneumoniae. FIG. 19 illustrates the distribution of anti-S. pneumoniae titers in sera from Balb/c mice immunized with HSP72_{rec}. Sera were collected after the first, second and third injection with 1 ug (O) 20 or 5 μg (●) of HSP72_{rec} and evaluated individually for anti-S. pneumoniae antibody by ELISA. Titers were defined as the highest dilution at which the A410 values were 0.1 above the background values. Plain lines indicate the median reciprocal of antibody titers for each group of mice while the dashed line indicates the median value for

FIG. 20 illustrates the distribution of anti-S.

pneumoniae titers in sera from Balb/c mice immunized with C-169_{rec}. Sera were collected after the first, second and third injection with 1 μg (O) or 5 μg (•) of C-169_{rec} and evaluated individually for anti-S. pneumoniae antibody by ELISA. Titers were defined as the highest dilution at which the A410 values were 0.1 above the background values. Plain lines indicate the median reciprocal of antibody titers for each group of mice while the dashed line indicates the median value for preimmune sera.

preimmune sera.

FIG. 21 illustrates the distribution of anti-S.

pneumoniae titers in sera from Balb/c mice immunized with C-151_{rec}. Sera were collected after the first, second and third injection with 0.5 µg of C-151_{rec} and evaluated

individually for anti-S. pneumoniae antibody by ELISA.

Titers were defined as the highest dilution at which the A410 values were 0.1 above the background values. Plain lines indicate the median reciprocal of antibody titers for each group of mice while the dashed line indicates the median value for preimmune sera.

- FIG. 22 illustrates the antibody response of cynomolgus monkeys immunized with recombinant HSP72 antigens. Groups of two monkeys were immunized with either HSP72_{rec} or C-169_{rec} protein at day 1, day 22 and day 77. Sera were collected regularly during the course of the immunization and evaluated individually for pneumococcal HSP72 specific antibody by Western blot analysis. Titers were defined as the highest dilution at which the HSP72 band was visualized.
- FIG. 23 illustrates the binding of hyperimmune sera to peptides in a solid-phase ELISA. Rabbit, mouse and monkey sera from animals immunized with either HSP72_{rec} or C-169_{rec} protein were tested for their reactivity to peptides. Optical density values were obtained with sera tested at a dilution of 1:100 except for the values corresponding to the reactivity of rabbit sera to peptide MAP2 and murine sera to peptides MAP2 and MAP4 which were obtained with sera diluted 1:1000.
- FIG. 24 depicts the consensus sequence established from the DNA sequences of the hsp70/dnak open reading frames of Streptococcus pneumoniae (spn-orf), Streptococcus pyogenes (sga-orf) and Streptococcus agalactiae (sgb-orf) and indicates the substitutions and insertions of nucleotides specific to each species.
- FIG. 25 depicts the consensus sequence established from the protein sequences of the Hsp70 of Streptococcus pneumoniae (spn-prot), Streptococcus pyogenes (sga-prot)

and Streptococcus agalactiae (sgb-prot) and indicates the substitutions and insertions of amino acids specific to each species.

FIG. 26 depicts a fluorogram, which shows the effect of heat shock on *S. agalactiae* protein synthesis and the *S. agalactiae* protein antigen immunoprecipitated by MAb F2-Pn3.4. Cell lysates from [35S]methionine-labeled proteins from *S. agalactiae* grown at 37°C and incubated at 37°C (odd numbered lanes) or heat-shocked at 43°C (even numbered lanes) were analysed by SDS-PAGE and fluorography. Lanes 3 and 4 show the immunoprecipitates obtained using MAb F2-Pn3.4.

DETAILED DESCRIPTION OF THE INVENTION

15

According to one aspect of the invention, we provide novel heat shock proteins of *S. pneumoniae*, *S. pyogenes* and *S. agalactiae*, and analogues, homologues, derivatives and fragments thereof, containing at least one immunogenic epitope. As used herein, a "heat shock protein" is a naturally occurring protein that exhibits preferential transcription during heat stress conditions. The heat shock protein according to the invention may be of natural origin, or may be obtained through the application of recombinant DNA techniques, or conventional chemical synthesis techniques.

As used herein, "immunogenic" means having the ability to elicit an immune response. The novel heat shock proteins of this invention are characterized by their ability to elicit a protective immune response against Streptococcal infections, more particularly against lethal S. pneumoniae, S. pyogenes and S. agalactiae.

The invention particularly provides a

Streptoccus pneumoniae heat shock protein of approximately

kDa ("HSP72"), having the deduced amino acid sequence

of SEQ ID NO:5, and analogues, homologues, derivatives and

fragments thereof, containing at least one immunogenic epitope.

As used herein, "analogues" of HSP72 are those S. pneumoniae proteins wherein one or more amino acid residues in the HSP72 amino acid sequence (SEQ ID NO:5) is replaced by another amino acid residue, providing that the overall functionality and immunogenic properties of the analogue protein are preserved. Such analogues may be naturally occurring, or may be produced synthetically or by recombinant DNA technology, for example, by mutagenesis of the HSP72 sequence. Analogues of HSP72 will possess at least one antigen capable of eliciting antibodies that react with HSP72, e.g. Streptococcus pyogenes and Streptococcus agalactiae.

15 As used herein, "homologues" of HSP72 are proteins from Streptococcal species other than pneumoniae, pyogenes or agalactiae, or genera other than Streptococcus wherein one or more amino acid residues in the HSP72 amino acid sequence (SEQ ID NO:5) is replaced by another amino acid residue, providing that the overall functionality and immunogenic properties of the homologue protein are preserved. Such homologues may be naturally occurring, or may be produced synthetically or by recombinant DNA technology. Homologues of HSP72 will possess at least one antigen capable of eliciting antibodies that react with HSP72, e.g. Enterococcus faecalis.

As used herein, a "derivative" is a polypeptide in which one or more physical, chemical, or biological properties has been altered. Such alterations include,

30 but are not limited to: amino acid substitutions, modifications, additions or deletions; alterations in the pattern of lipidation, glycosylation or phosphorylation; reactions of free amino, carboxyl, or hydroxyl side groups of the amino acid residues present in the polypeptide with other organic and non-organic molecules; and other alterations, any of which may result in changes in primary, secondary or tertiary structure.

The "fragments" of this invention will have at least one immunogenic epitope. An "immunogenic epitope" is an epitope that is instrumental in eliciting an immune response. The preferred fragments of this invention will 5 elicit an immune response sufficient to prevent or lessen the severity of infection, e.g., S. pneumoniae infection. Preferred fragments of HSP72 include the C-terminal region of the polypeptides. More preferred fragment include the C-terminal 169-residue fragment ("C-169") (SEQ ID NO:5, 10 residues 439-607), the C-terminal 151-residue ("C-151") (SEQ ID No:5, residues 457-607) and smaller fragments consisting of peptide epitopes within the C-169 region. Particularly preferred fragments within the C-169 region of HSP72 include the peptide sequences GFDAERDAAQAALDD (residues 527-541 of SEQ ID NO:5) and AEGAQATGNAGDDVV (residues 586-600 of SEQ ID NO:5), which are exclusive to HSP72 of Streptococcus pneumoniae, or corresponding degenerate fragments from S. pyogenes or S. agalactiae (see FIG. 25). Even more preferred are fragments that 20 elicit a specific immune reaction against Streptococcal strains. Such fragments may be selected from the following peptides: CS870, CS873, CS874, CS875, CS876, CS877, CS878, CS879, CS880, CS882, MAP1, MAP2, MAP3 and MAP4 (see TABLE 5, supra), or homologues thereof.

In a further aspect of the invention, we provide polypeptides that are immunologically related to HSP70/72. As used herein, "immunologically related" polypeptides are characterized by one or more of the following properties:

- (a) they are immunologically reactive with 30 antibodies generated by infection of a mammalian host with Streptococcus pneumoniae cells, which antibodies are immunologically reactive with HSP72 (SEQ ID NO:5) and HSP70 (SEQ ID NO:20 and SEQ ID NO:22);
- (b) they are capable of eliciting antibodies that 35 are immunologically reactive with HSP72 (SEQ ID NO:5) and HSP70 (SEQ ID NO:20 and SEQ ID NO:22);

(c) they are immunologically reactive with antibodies elicited by immunization of a mammal with HSP72 (SEQ ID NO:5).

By definition, analogues, homologues and

derivatives of HSP70/72 are immunologically related
polypeptides. Moreover, all immunologically related
polypeptides contain at least one HSP70/72 antigen.
Accordingly, "HSP70/72 antigens" may be found in HSP70/72
itself, or in immunologically related polypeptides.

In a further aspect of the invention, we provide polypeptides that are immunologically related to HSP72.

As used herein, "immunologically related" polypeptides are characterized by one or more of the following properties:

- (a) they are immunologically reactive with 15 antibodies generated by infection of a mammalian host with Streptococcus pneumoniae cells, which antibodies are immunologically reactive with HSP72 (SEQ ID NO:5);
 - (b) they are capable of eliciting antibodies that are immunologically reactive with HSP72 (SEQ ID NO:5);
 - (c) they are immunologically reactive with antibodies elicited by immunization of a mammal with HSP72 (SEQ ID NO:5).

By definition, analogues, homologues and derivatives of HSP72 are immunologically related

25 polypeptides. Moreover, all immunologically related polypeptides contain at least one HSP72 antigen.

Accordingly, "HSP72 antigens" may be found in HSP72 itself, or in immunologically related polypeptides.

20

As used herein, "related bacteria" are bacteria
that possess antigens capable of eliciting antibodies that
react with HSP72. Examples of related bacteria include
Streptococcus pneumoniae, Streptococcus pyogenes,
Streptococcus mutans, Streptococcus sanguis, Streptococcus
agalactiae and Enterococcus faecalis.

It will be understood that by following the examples of this invention, one of skill in the art may determine without undue experimentation whether a

particular analogue, homologue, derivative, immunologically related polypeptide, or fragment would be useful in the diagnosis, prevention or treatment of disease. Useful polypeptides and fragments will elicit 5 antibodies that are immunoreactive with HSP72 (Example 4). Preferably, useful polypeptides and fragments will demonstrate the ability to elicit a protective immune response against lethal bacterial infection (Example 5).

Also included are polymeric forms of the 10 polypeptides of this invention. These polymeric forms include, for example, one or more polypeptides that have been crosslinked with crosslinkers such as avidin/biotin, glutaraldehyde or dimethylsuberimidate. Such polymeric forms also include polypeptides containing two or more 15 tandem or inverted contiguous protein sequences, produced from multicistronic mRNAs generated by recombinant DNA technology.

This invention provides substantially pure HSP72 and immunologically related polypeptides. "substantially pure" means that the polypeptides according to the invention, and the DNA sequences encoding them, are substantially free from other proteins of bacterial origin. Substantially pure protein preparations may be obtained by a variety of conventional processes, for example the procedures described in Examples 3 and 5.

In another aspect, this invention provides, for the first time, a DNA sequence coding for a heat shock protein of S. pneumoniae, specifically, HSP72 (SEQ ID NO:4, nucleotides 682-2502).

30

The DNA sequences of this invention also include DNA sequences coding for polypeptide analogues and homologues of HSP72, DNA sequences coding for immunologically related polypeptides, DNA sequences that are degenerate to any of the foregoing DNA sequences, and 35 fragments of any of the foregoing DNA sequences. be readily appreciated that a person of ordinary skill in the art will be able to determine the DNA sequence of any

of the polypeptides of this invention, once the polypeptide has been identified and isolated, using conventional DNA sequencing techniques.

Oligonucleotide primers and other nucleic acid

probes derived from the genes encoding the polypeptides of
this invention may also be used to isolate and clone other
related proteins from S. pneumoniae and related bacteria
which may contain regions of DNA bacteria that are
homologous to the DNA sequences of this invention. In
addition, the DNA sequences of this invention may be used
in PCR reactions to detect the presence of S. pneumoniae
or related bacteria in a biological sample.

The polypeptides of this invention may be prepared from a variety of processes, for example by protein fractionation from appropriate cell extracts, using conventional separation techniques such as ion exchange and gel chromatography and electrophoresis, or by the use of recombinant DNA techniques. The use of recombinant DNA techniques is particularly suitable for preparing substantially pure polypeptides according to the invention.

Thus according to a further aspect of the invention, we provide a process for the production of HSP72, immunologically related polypeptides, and fragments thereof, comprising the steps of (1) culturing a unicellular host organism transformed with a vector containing a DNA sequence coding for said polypeptide or fragment and one or more expression control sequences operatively linked to the DNA sequence, and (2) recovering a substantially pure polypeptide or fragment.

As is well known in the art, in order to obtain high expression levels of a transfected gene in a host, the gene must be operatively linked to transcriptional and ranslational expression control sequences that are

35 functional in the chosen expression host. Preferably, the expression control sequences, and the gene of interest, will be contained in an expression vector that further

comprises a bacterial selection marker and origin of replication. If the expression host is a eukaryotic cell, the expression vector should further comprise an expression marker useful in the eukaryotic expression bost.

The DNA sequences encoding the polypeptides of this invention may or may not encode a signal sequence. If the expression host is eukaryotic, it generally is preferred that a signal sequence be encoded so that the mature protein is secreted from the eukaryotic host.

An amino terminal methionine may or may not be present on the expressed polypeptides of this invention. If the terminal methionine is not cleaved by the expression host, it may, if desired, be chemically removed by standard techniques.

A wide variety of expression host/vector combinations may be employed in expressing the DNA sequences of this invention. Useful expression vectors for eukaryotic hosts include, for example, vectors 20 comprising expression control sequences from SV40, bovine papilloma virus, adenovirus, adeno-associated virus, cytomegalovirus, and retroviruses. Useful expression vectors for bacterial hosts include bacterial plasmids, such as those from E. coli, including pBluescript, pGEX2T, 25 pUC vectors, col E1, pCR1, pBR322, pMB9 and their derivatives, wider host range plasmids, such as RP4, phage DNAs, e.g., the numerous derivatives of phage lambda, e.g. λ gt10 and λ gt11, NM989, and other DNA phages, such as M13 and filamentous single stranded DNA phages. Useful 30 expression vectors for yeast cells include the 2µ plasmid and derivatives thereof. Useful vectors for insect cells include pVL 941.

In addition, any of a wide variety of expression control sequences may be used in these vectors to express the DNA sequences of this invention. Useful expression control sequences include the expression control sequences associated with structural genes of the foregoing

expression vectors. Examples of useful expression control sequences include, for example, the early and late promoters of SV40 or adenovirus, the lac system, the trp system, the TAC or TRC system, the T3 and T7 promoters the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast alpha-mating system and other constitutive and inducible promoter sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. The T7 RNA polymerase promoter Φ10 is particularly useful in the expression of HSP72 in E. coli (Example 3).

Host cells transformed with the foregoing vectors form a further aspect of this invention. A wide variety of unicellular host cells are useful in expressing the DNA sequences of this invention. These hosts may include well known eukaryotic and prokaryotic hosts, such as strains of E. coli, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera frugiperda (SF9), animal cells such as CHO and mouse cells, African green monkey cells such as COS 1, COS 7, BSC 1, BSC 40, and BMT 10, human cells, and plant cells in tissue culture. Preferred host organisms include bacteria such as E. coli and B. subtilis, and mammalian cells in tissue culture.

It should of course be understood that not all vectors and expression control sequences will function

30 equally well to express the DNA sequences of this invention. Neither will all hosts function equally well with the same expression system. However, one of skill in the art may make a selection among these vectors, expression control sequences and hosts without undue

35 experimentation and without departing from the scope of this invention. For example, in selecting a vector, the host must be considered because the vector must replicate

The vector's copy number, the ability to control that copy number, and the expression of any other proteins encoded by the vector, such as antibiotic markers, should also be considered. In selecting an expression control 5 sequence, a variety of factors should also be considered. These include, for example, the relative strength of the sequence, its controllability, and its compatibility with the DNA sequences of this invention, particularly as regards potential secondary structures. Unicellular hosts 10 should be selected by consideration of their compatibility with the chosen vector, the toxicity of the product coded for by the DNA sequences of this invention, their secretion characteristics, their ability to fold the protein correctly, their fermentation or culture 15 requirements, and the ease of purification from them of the products coded for by the DNA sequences of this invention. Within these parameters, one of skill in the art may select various vector/expression control sequence/host combinations that will express the DNA 20 sequences of this invention on fermentation or in large scale animal culture.

The polypeptides encoded by the DNA sequences of this invention may be isolated from the fermentation or cell culture and purified using any of a variety of conventional methods including: liquid chromatography such as normal or reversed phase, using HPLC, FPLC and the like; affinity chromatography (such as with inorganic ligands or monoclonal antibodies); size exclusion chromatography; immobilized metal chelate chromatography; gel electrophoresis; and the like. One of skill in the art may select the most appropriate isolation and purification techniques without departing from the scope of this invention.

In addition, the polypeptides of this invention
35 may be generated by any of several chemical techniques.
For example, they may be prepared using the solid-phase synthetic technique originally described by R. B.

Merrifield, "Solid Phase Peptide Synthesis. I. The Synthesis Of A Tetrapeptide", J. Am. Chem. Soc., 83, pp. 2149-54 (1963), or they may be prepared by synthesis in solution. A summary of peptide synthesis techniques may be found in E. Gross & H. J. Meinhofer, 4 The Peptides: Analysis, Synthesis, Biology; Modern Techniques Of Peptide And Amino Acid Analysis, John Wiley & Sons, (1981) and M. Bodanszky, Principles Of Peptide Synthesis, Springer-Verlag (1984).

The preferred compositions and methods of this 10 invention comprise polypeptides having enhanced immunogenicity. Such polypeptides may result when the native forms of the polypeptides or fragments thereof are modified or subjected to treatments to enhance their 15 immunogenic character in the intended recipient. Preferred polypeptides are fragments that are specific to Streptococcal species such as fragments selected from the C-terminal portion of thenative polypeptides. Numerous techniques are available and well known to those of skill 20 in the art which may be used, without undue experimentation, to substantially increase the immunogenicity of the polypeptides herein disclosed. For example, the polypeptides may be modified by coupling to dinitrophenol groups or arsanilic acid, or by denaturation 25 with heat and/or SDS. Particularly if the polypeptides are small polypeptides synthesized chemically, it may be desirable to couple them to an immunogenic carrier. coupling of course, must not interfere with the ability of either the polypeptide or the carrier to function 30 appropriately. For a review of some general considerations in coupling strategies, see Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, ed. E. Harlow and D. Lane (1988). Useful immunogenic carriers are well known in the art. Examples of such carriers are 35 keyhole limpet hemocyanin (KLH); albumins such as bovine serum albumin (BSA) and ovalbumin, PPD (purified protein derivative of tuberculin); red blood cells; tetanus

toxoid; cholera toxoid; agarose beads; activated carbon; or bentonite.

Modification of the amino acid sequence of the polypeptides disclosed herein in order to alter the 5 lipidation state is also a method which may be used to increase their immunogenicity and biochemical properties. For example, the polypeptides or fragments thereof may be expressed with or without the signal sequences that direct addition of lipid moieties.

In accordance with this invention, derivatives of the polypeptides may be prepared by a variety of methods, including by in vitro manipulation of the DNA encoding the native polypeptides and subsequent expression of the modified DNA, by chemical synthesis of derivatized 15 DNA sequences, or by chemical or biological manipulation of expressed amino acid sequences.

10

For example, derivatives may be produced by substitution of one or more amino acids with a different natural amino acid, an amino acid derivative or non-native 20 amino acid, conservative substitution being preferred, e.g., 3-methylhistidine may be substituted for histidine, 4-hydroxyproline may be substituted for proline, 5hydroxylysine may be substituted for lysine, and the like.

Causing amino acid substitutions which are less 25 conservative may also result in desired derivatives, e.g., by causing changes in charge, conformation and other biological properties. Such substitutions would include for example, substitution of a hydrophilic residue for a hydrophobic residue, substitution of a cysteine or proline 30 for another residue, substitution of a residue having a small side chain for a residue having a bulky side chain or substitution of a residue having a net positive charge for a residue having a net negative charge. When the result of a given substitution cannot be predicted with 35 certainty, the derivatives may be readily assayed according to the methods disclosed herein to determine the presence or absence of the desired characteristics.

The polypeptides may also be prepared with the objective of increasing stability or rendering the molecules more amenable to purification and preparation. One such technique is to express the polypeptides as fusion proteins comprising other S. pneumoniae or non-S. pneumoniae sequences. It is preferred that the fusion proteins comprising the polypeptides of this invention be produced at the DNA level, e.g., by constructing a nucleic acid molecule encoding the fusion, transforming host cells with the molecule, inducing the cells to express the fusion protein, and recovering the fusion protein from the cell culture. Alternatively, the fusion proteins may be produced after gene expression according to known methods. An example of a fusion protein according to this invention is the Fucl/HSP72 (C-169) protein of Example 3, infra.

The polypeptides of this invention may also be part of larger multimeric molecules which may be produced recombinantly or may be synthesized chemically. Such multimers may also include the polypeptides fused or coupled to moieties other than amino acids, including lipids and carbohydrates.

The polypeptides of this invention are particularly well-suited for the generation of antibodies and for the development of a protective response against 25 disease. Accordingly, in another aspect of this invention, we provide antibodies, or fragments thereof, that are immunologically reactive with HSP72. The antibodies of this invention are either elicited by immunization with HSP72 or an immunologically related 30 polypeptide, or are identified by their reactivity with HSP72 or an immunologically related polypeptide. should be understood that the antibodies of this invention are not intended to include those antibodies which are normally elicited in an animal upon infection with 35 naturally occurring S. pneumoniae and which have not been removed from or altered within the animal in which they were elicited.

The antibodies of this invention may be intact immunoglobulin molecules or fragments thereof that contain an intact antigen binding site, including those fragments known in the art as F(v), Fab, Fab' and F(ab')2. 5 antibodies may also be genetically engineered or synthetically produced. The antibody or fragment may be of animal origin, specifically of mammalian origin, and more specifically of murine, rat, monkey or human origin. It may be a natural antibody or fragment, or if desired, a 10 recombinant antibody or fragment. The antibody or antibody fragments may be of polyclonal, or preferably, of monoclonal origin. They may be specific for a number of epitopes but are preferably specific for one. Specifically preferred are the monoclonal antibodies F1-15 Pn3.1, F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4 of Example 2, infra. One of skill in the art may use the polypeptides of this invention to produce other monoclonal antibodies which could be screened for their ability to confer protection against S. pneumoniae , S. pyogenes, S. agalactiae or other Streptococcal related bacterial infection when used to immunize naive animals. given monoclonal antibody is found to confer protection, the particular epitope that is recognized by that antibody may then be identified. Methods to produce polyclonal and 25 monoclonal antibodies are well known to those of skill in the art. For a review of such methods, see Antibodies, A Laboratory Manual, supra, and D.E. Yelton, et al., Ann. Rev. of Biochem., 50, pp. 657-80 (1981). Determination of immunoreactivity with a polypeptide of this invention may 30 be made by any of several methods well known in the art, including by immunoblot assay and ELISA.

An antibody of this invention may also be a hybrid molecule formed from immunoglobulin sequences from different species (e.g., mouse and human) or from portions of immunoglobulin light and heavy chain sequences from the same species. It may be a molecule that has multiple binding specificities, such as a bifunctional antibody

prepared by any one of a number of techniques known to those of skill in the art including: the production of hybrid hybridomas; disulfide exchange; chemical cross-linking; addition of peptide linkers between two monoclonal antibodies; the introduction of two sets of immunoglobulin heavy and light chains into a particular cell line; and so forth. The antibodies of this invention may also be human monoclonal antibodies, for example those produced by immortalized human cells, by SCID-hu mice or other non-human animals capable of producing "human" antibodies, or by the expression of cloned human immunoglobulin genes.

In sum, one of skill in the art, provided with the teachings of this invention, has available a variety of methods which may be used to alter the biological properties of the antibodies of this invention including methods which would increase or decrease the stability or half-life, immunogenicity, toxicity, affinity or yield of a given antibody molecule, or to alter it in any other way that may render it more suitable for a particular application.

The polypeptides, DNA sequences and antibodies of this invention are useful in prophylactic, therapeutic and diagnostic compositions for preventing, treating and diagnosing disease.

Standard immunological techniques may be employed with the polypeptides and antibodies of this invention in order to use them as immunogens and as vaccines. In particular, any suitable host may be injected with a pharmaceutically effective amount of polypeptide to generate monoclonal or polyvalent antibodies or to induce the development of a protective immunological response against disease. Preferably, the polypeptide is selected from the group consisting of HSP72 (SEQ ID NO:5), HSP70 (SEQ ID NO:20 and SEQ ID NO:22) or fragments thereof.

As used herein, a "pharmaceutically effective amount" of a polypeptide or of an antibody is the amount that, when administered to a patient, elicits an immune response that is effective to prevent or lessen the severity of Streptococcal or related bacterial infections.

The administration of the polypeptides or antibodies of this invention may be accomplished by any of the methods described in Example 10, infra, or by a 10 variety of other standard procedures. For a detailed discussion of such techniques, see Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, ed. E. Harlow and D. Lane (1988). Preferably, if a polypeptide is used, it will be administered with a 15 pharmaceutically acceptable adjuvant, such as complete or incomplete Freund's adjuvant, RIBI (muramyl dipeptides) or ISCOM (immunostimulating complexes). Preferably, the composition will include a water-in-oil emulsion or aluminum hydroxide as adjuvant and will be administered 20 intramuscularly. The vaccine composition may be administered to the patient at one time or over a series of treatments. The most effective mode of administration and dosage regimen will depend upon the level of immunogenicity, the particular composition and/or adjuvant 25 used for treatment, the severity and course of the expected infection, previous therapy, the patient's health status and response to immunization, and the judgment of the treating physician. For example, in an immunocompetent patient, the more highly immunogenic the 30 polypeptide, the lower the dosage and necessary number of immunizations. Similarly, the dosage and necessary treatment time will be lowered if the polypeptide is administered with an adjuvant.

Generally, the dosage will consist of an initial injection, most probably with adjuvant, of about 0.01 to 10 mg, and preferable 0.1 to 1.0 mg, HSP72 antigen per patient, followed most probably by one or maybe more

booster injections. Preferably, boosters will be administered at about 1 and 6 months after the initial injection.

Any of the polypeptides of this invention may be used in the form of a pharmaceutically acceptable salt. Suitable acids and bases which are capable of forming salts with the polypeptides of the present invention are well known to those of skill in the art, and include inorganic and organic acids and bases.

10 To screen the polypeptides and antibodies of this invention for their ability to confer protection against diseases caused by S. pneumoniae or related bacteria, or their ability to lessen the severity of such infection, one of skill in the art will recognize that a 15 number of animal models may be used. Any animal that is susceptible to infection with S. pneumoniae or related bacteria may be useful. The Balb/c mice of Example 5, infra, are the preferred animal model for active immunoprotection screening, and the severe-combined immunodeficient mice of Example 5 are the preferred animal model for passive screening. Thus, by administering a particular polypeptide or antibody to these animal models, one of skill in the art may determine without undue experimentation whether that polypeptide or antibody would 25 be useful in the methods and compositions claimed herein.

According to another embodiment of this invention, we describe a method which comprises the steps of treating a patient with a vaccine comprising a pharmaceutically effective amount of any of the polypeptides of this invention in a manner sufficient to prevent or lessen the severity, for some period of time, of Streptococcal or related bacterial infection. Again, the preferred polypeptide for use in such methods is HSP70/HSP72, or fragments thereof.

The polypeptides, DNA sequences and antibodies of this invention may also form the basis for diagnostic methods and kits for the detection of pathogenic

organisms. Several diagnostic methods are possible. For example, this invention provides a method for the detection of Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae or related bacteria in a biological sample comprising the steps of:

- (a) isolating the biological sample from a patient;
- (b) incubating an antibody of this invention, or fragment thereof with the biological sample to form a 10 mixture; and
- (c) detecting specifically bound antibody or fragment in the mixture which indicates the presence of Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae or related bacteria. Preferable antibodies for use in this method include monoclonal antibodies F1-Pn3.1, F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4.

Alternatively, this invention provides a method for the detection of antibodies specific to *Streptococcus* pneumoniae or related bacteria in a biological sample comprising:

- (a) isolating the biological sample from a patient;
- (b) incubating a polypeptide of this invention or fragment thereof, with the biological sample to form a25 mixture; and
- (c) detecting specifically bound polypeptide in the mixture which indicates the presence of antibodies specific to Streptococcus pneumoniae or related bacteria. HSP72 (SEQ ID NO:5), the C-169 fragment thereof (residues 439-607 of SEQ ID NO:5), the C-151 fragment thereof (residues 457-607 of SEQ ID NO:5) and peptide fragments GFDAERDAAQAALDD (residues 527-541 of SEQ ID NO:5) and AEGAQATGNAGDDVV (residues 586-600 of SEQ ID NO:5) are the preferred polypeptide and fragments in the above method for the detection of antibodies.

One of skill in the art will recognize that these diagnostic tests may take several forms, including

an enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay or a latex agglutination assay.

The diagnostic agents may be included in a kit which may also comprise instructions for use and other 5 appropriate reagents, preferably a means for detecting when the polypeptide or antibody is bound. For example, the polypeptide or antibody may be labeled with a detection means that allows for the detection of the polypeptide when it is bound to an antibody, or for the 10 detection of the antibody when it is bound to S. pneumoniae or related bacteria. The detection means may be a fluorescent labeling agent such as fluorescein isocyanate (FIC), fluorescein isothiocyanate (FITC), and the like, an enzyme, such as horseradish peroxidase (HRP), 15 glucose oxidase or the like, a radioactive element such as ^{125}I or ^{51}Cr that produces gamma ray emissions, or a radioactive element that emits positrons which produce gamma rays upon encounters with electrons present in the test solution, such as ¹¹C, ¹⁵O, or ¹³N. Binding may also 20 be detected by other methods, for example via avidinbiotin complexes. The linking of the detection means is well known in the art. For instance, monoclonal antibody molecules produced by a hybridoma may be metabolically labeled by incorporation of radioisotope-containing amino 25 acids in the culture medium, or polypeptides may be conjugated or coupled to a detection means through activated functional groups.

The DNA sequences of this invention may be used to design DNA probes for use in detecting the presence of Streptococcus pneumoniae or related bacteria in a biological sample. The probe-based detection method of this invention comprises the steps of:

- (a) isolating the biological sample from a patient;
- 35 (b) incubating a DNA probe having a DNA sequence of this invention with the biological sample to form a mixture; and

(c) detecting specifically bound DNA probe in the mixture which indicates the presence of *Streptococcus pneumoniae* or related bacteria.

The DNA probes of this invention may also be

1 used for detecting circulating nucleic acids in a sample, for example using a polymerase chain reaction, as a method of diagnosing Streptococcus pneumoniae or related bacterial infections. The probes may be synthesized using conventional techniques and may be immobilized on a solid phase, or may be labeled with a detectable label. A preferred DNA probe for this application is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of HSP72 (SEQ ID NO:4, nucleotides 682-2502).

The polypeptides of this invention may also be used to purify antibodies directed against epitopes present on the protein, for example, using immunoaffinity purification of antibodies on an antigen column.

The antibodies or antibody fragments of this invention may be used to prepare substantially pure proteins according to the invention for example, using immunoaffinity purification of antibodies on an antigen column.

25 EXAMPLES

15

In order that this invention may be better understood, the following examples are set forth. These examples are for purposes of illustration only, and are not to be construed as limiting the scope of the invention in any manner.

Example 1 describes the identification of HSP72, an immunoreactive heat shock protein according to the invention. Example 2 describes the isolation of monoclonal antibodies against epitopes of HSP72. Example 3 describes the preparation of recombinant HSP72 and fragments of HSP72 according to the invention. Example 4 describes the antigenic specificity and immunoreactivity

of monoclonal antibodies directed against HSP72, and the identification of immunologically related proteins according to the invention. Example 5 describes processes for obtaining substantially pure HSP72, and the use of HSP72 or antibodies against it to protect against experimental *S. pneumoniae* infection. Example 6 describes the preparation of recombinant C-151 fragment of HSP72 according to the invention. Example 7 describes the humoral immune response following the immunization with recombinant HSP72 or fragments of HSP72 according to the invention. Example 8 describes the localization of linear B-cell epitopes on the HSP72. Example 9 describes the hsp70 genes and HSP70 proteins from *S. agalactiae* and *S. pyogenes*. Example 10 describes the use of HSP72 antigen in a human vaccine.

EXAMPLE 1 - Identification of Immunoreactive S. pneumoniae Heat Shock Proteins

20 A. <u>Procedures</u>

Unless otherwise noted, the following procedures were used throughout the Examples herein.

25 1. Bacteria

35

S. pneumoniae strains were provided by the Laboratoire de la Santé Publique du Québec, Sainte-Anne de Bellevue. S. pneumoniae strains included type 4 strain 53 and type 6 strain 64. If not specified, S. pneumoniae type 6 strain 64 was used. Bacterial strains were grown overnight at 37°C in 5% CO₂ on chocolate agar plates.

2. <u>Antigen Preparations</u>

Various *S. pneumoniae* antigens were prepared for immunization and immunoassays. Heat-killed whole cell antigens were obtained by incubating bacterial suspensions

in a water bath prewarmed at 56 C for 20 minutes.

Detergent-soluble proteins were extracted from

S. pneumoniae as follows. Heat-killed bacteria were
suspended in 10 mM Hepes buffer (4-(2-Hydroxyethyl)-1
piperazinethan-sulfonsäure) (Boehringer Mannheim GmbH,
Germany) at pH 7.4 and sonicated at 20,000 Kz/second, four
times for 30 seconds. Intact cells and large debris were
removed by centrifugation at 1,700 g for 20 minutes. The
supernatant was collected and centrifuged at 100,000 g for

60 minutes. The pellet was resuspended in 1 ml of Hepes
buffer, and 1 ml of 2% N-lauroyl sarcosine (Sigma Chemical
Co., St. Louis, Mo.) was added. The mixture was incubated
for 30 minutes at room temperature and the detergentsoluble fraction was harvested by centrifugation at

15 100,000 g for 60 minutes.

3. Heat Shock Treatment

S. pneumoniae bacteria (type 4, strain 53 and type 6, strain 64) were resuspended in Eagle's Minimal Essential Medium lacking methionine (ICN Biomedicals Inc., Costa Mesa, CA) and supplemented with 1% BIO-X® (Quelab Laboratories, Montreal, Canada) for 15 minutes at 37°C and then divided into fractions of equal volume. The samples were incubated at either 37°C or 45°C for 5 minutes and then labeled with 100 µCi/ml [35S]methionine (ICN) for 10, 30, or 60 minutes at 37°C. The bacteria were harvested and cell extracts were prepared using Tris-HCl lysis buffer as described above, or SDS-PAGE sample buffer.

4. <u>Immunization Of Mice</u>

Female Balb/c mice (Charles River Laboratories, St-Constant, Québec, Canada) were immunized with S. pneumoniae antigens. Immune sera to S. pneumoniae type 6 strain 64 were obtained from mice immunized, at two-week intervals, by subcutaneous injections of 10⁷ heat-killed bacteria or 20 µg of detergent-soluble pneumococcal

proteins absorbed to aluminum hydroxide adjuvant (Alhydrogel®; Cedarlane Laboratories Ltd., Horny, Ontario, Canada). Blood samples were collected prior to immunization and at seven days following the first and second immunization.

5. SDS-PAGE and Immunoassays

Cell extracts were prepared for SDS-PAGE,

Western blot analysis and radioimmunoprecipitation assay by incubating bacterial suspensions in Tris-HCl lysis buffer (50mM Tris, 150 mM NaCl, 0.1% Na dodecyl sulfate, 0.5% Na deoxycholate, 2% Triton® X-100, 100 µg/ml phenylmethylsulfonylfluoride, and 2µg/ml aprotinin) at pH 8.0 for 30 minutes on ice. Lysed cells were cleared by centrifugation and the supernatants were aliquoted and kept frozen at -70 C.

SDS-PAGE were performed on a 10% polyacrylamide gel according to the method of Laemmli [Nature, 227,

- pp. 680-685 (1970)], using the Mini Protean® system (Bio-Rad Laboratories Ltd., Mississauga, Canada). Samples were denatured by boiling for 5 minutes in sample buffer containing 2% 2-mercaptoethanol. Proteins were resolved by staining the polyacrylamide gel with PhastGel Blue®
- 25 (Pharmacia Biotech Inc., Baie d'Urfé, Canada). The radiolabeled products were visualized by fluorography. Fluorograms were scanned using a laser densitometer.

Immunoblot procedures were performed according to the method of Towbin et al. [Proc. Natl. Acad. Sci.

USA, 76, pp. 4350-4354 (1979)]. The detection of antigens reactive with antibodies was performed by an indirect antibody immunoassay using peroxidase-labeled anti-mouse immunoglobulins and the o-dianisidine color substrate.

Radioimmunoprecipitation assays were performed as described by J.A. Wiley et al. [J. Virol., 66, pp. 5744-5751 (1992)]. Briefly, sera or hybridoma culture supernatants were added to radiolabeled samples containing

equal amounts of [35]methionine. The mixtures were allowed to incubate for 90 minutes at 4 C with constant agitation. The immune complexes were then precipitated with bovine serum albumin-treated protein A Sepharose (Pharmacia) for 1 hour at 4 C. The beads were pelleted and washed three times in Tris buffered saline at pH 8.0, and the antigen complexes were then dissociated by boiling in sample buffer. The antigens were analyzed by electrophoresis on SDS-PAGE. The gels were fixed, enhanced for fluorography using Amplify® (Amersham Canada Limited, Oakville, Ontario, Canada), dried, and then exposed to X-ray film.

B. Characterization of the Heat Shock Response in S. pneumoniae

15

We studied the heat shock response of S. pneumoniae by examining the pattern of protein synthesis before and after a shift from 37°C to 45°C.

FIG. 1 shows the results when *S. pneumoniae* type 6 strain 64 (panel A) and type 4 strain 53 (panel B) were grown at 37°C, incubated at 37°C (lanes 1,3,5,7 and 9) or at 45°C (lanes 2, 4, 6, 8 and 10) for 5 minutes, and then labeled with [³⁵S]methionine for 10 minutes (lanes 1,2 and 7,8), 30 minutes (lanes 3,4 and 9,10), or 60 minutes (lanes 5,6).

The fluorogram derived from SDS-PAGE indicated that the synthesis of at least three proteins was increased by increasing the temperature (FIG. 1). The most prominent induced protein was about 72 kDa (HSP72), 30 whereas the other two were approximately 80 kDa (HSP80) and 62 kDa (HSP62). Increased protein synthesis was already apparent after 10 minutes of labeling (FIG. 1, lanes 1, 2 and 7, 8) and became more significant when the labeling period was prolonged to 30 minutes (FIG. 1, lanes 3, 4 and 9, 10) and 60 minutes (FIG. 1, lanes 5, 6). The effect of elevated temperature on the protein synthesis profile of two different S. pneumoniae strains

was similar, with HSPs of similar molecular mass being synthesized (compare Panel A (type 6 strain 64) to Panel B (type 4 strain 53) in FIG. 1).

Analysis of the densitometric tracings from

5 scanning the protein synthesis profiles allowed the
estimation of the relative amounts of proteins. For
example, with respect to heat-shocked *S. pneumoniae* type 6
strain 64, after 10 minutes of labeling, HSP80 and HSP62
made up 2.9% and 6.8% of the labeled proteins,

- respectively, compared to less than 0.1% at 37°C (FIG. 2). Labeled proteins having an apparent molecular mass of 72 kDa were detected at both 37°C and 45°C conditions (FIG. 2). Radioimmunoprecipitation analysis revealed, however, that HSP72 was undetectable at 37°C (supra; and
- 15 FIGS. 3, 4 and 6) thus indicating that peak 9 from FIG. 2 corresponds to protein component(s) comigrating with HSP72. Assuming no variation in the labeling of this material, these results would suggest that the amount of HSP72 represents 8.7% of the total labeled cell protein
- after heat shock treatment. A comparison of the densitometric tracings revealed that cellular proteins corresponding to peaks 4, 10, 13, 17, 19, and 21 were synthesized at almost the same rate irrespective of heat shock treatment (FIG. 2). However, the synthesis of
- 25 several proteins (peaks 1, 2, 3, 15, 20, 22, 24, and 26) declined considerably in response to heat shock (FIG. 2).

C. Immune Responses to S. pneumoniae HSPs

In order to assess the antibody response to pneumococcal HSPs, mouse sera were first assayed by radioimmunoprecipitation. The repertoire of labeled proteins recognized by sera from mice immunized with S. pneumoniae antigen preparations are shown in FIGS. 3 and 4. FIG. 3 relates to detergent soluble protein preparations. FIG. 4 relates to heat-killed bacterial preparation. Although many bands were detected by most antisera, HSP72 was a major precipitation product. The

specificity of antibodies for HSP72 was demonstrated by the detection of proteins among heat-shocked products only (FIG. 3, lanes 4, 6, 8 and 10; FIG. 4, lanes 4, 6 and 8). Interestingly, all immunized mice consistently recognized HSP72. The antibodies reactive with the HSP72 were not specific to the strain used during the immunization since strong reactivities were observed with heterologous S. pneumoniae HSP72. It should be noted that in addition to HSP72, one sera precipitated comigrating product labeled at both 37°C and 45°C (FIG. 4, lane 4). This 72 kDa-product probably corresponds to component from peak 9

kDa-product probably corresponds to component from peak 9 in FIG. 2 and was not detected in immunoblots. HSP62 is another immune target which was precipitated by some but not all immune sera (FIG. 3, lane 6 and, FIG. 4, lanes 4 and 6). None of the sera tested reacted with HSP80. No proteins were precipitated when preimmune sera taken from the mice used in this study were tested for the presence of antibodies reactive with the labeled products.

As depicted in FIGS. 3 and 5, antibodies to

20 HSP72 could be detected after one immunization with either detergent-soluble proteins or whole cells extracts of
S. pneumoniae. In addition, a marked increase in the antibody response to HSP72 was observed after a second immunization (FIG. 3, compare 4 and 6, and lanes 8 and
25 10).

The immunoblot patterns of 15 mice immunized with heat-killed *S. pneumoniae* bacteria were remarkably consistent with the results of the previously described radioimmunoprecipitation. Although antibody response variation occurred to a variety of proteins, HSP72 was a major immunoreactive antigen with 8 (53%) positive sera after the first immunization (FIG. 5). Antibodies to HSP72 were detected in 13 out of 15 (87%) immune sera tested after the second immunization. Two other prominent antigens having apparent molecular mass of 53.5 and 47 kDa were detected in 5 (33%) and 7 (47%) sera, respectively

(FIG. 5). The 72 kDa-reactive band was confirmed as the -pneumococcal HSP72 by using recombinant HSP72 antigens (Example 3, <u>infra</u>) in an immunoblot assay. Preimmune sera failed to detect any pneumococcal proteins.

EXAMPLE 2 - Isolation of Monoclonal Antibodies
Against Epitopes of HSP72

A. Procedures

10

1. Immunization of Mice And Fusion

Female Balb/c mice (Charles River Laboratories) were immunized with S. pneumoniae antigens. One set of 15 mice (fusion experiment 1) were immunized by peritoneal injection with 10^7 formalin-killed whole cell antigen from strain MTL suspended in Freund's complete adjuvant, and were boosted at two-week intervals with the same antigen and then with a sonicate from heat-killed bacteria in 20 Freund's incomplete adjuvant. A second group of mice (fusion experiment 2) were immunized three times at threeweek intervals with 75 µg of detergent-soluble pneumococcal antigens extracted from strain 64 (type 6) in 25 μg of Quil A adjuvant (Cedarlane Laboratories Ltd., 25 -Hornby, Ontario, Canada). Three days before fusion, all mice were injected intraperitoneally with the respective antigen suspended in PBS alone. Hybridomas were produced by fusion of spleen cells with nonsecreting SP2/0 myeloma cells as previously described by J. Hamel et al. [J. Med. 30 <u>Microbiol.</u>, 23, pp. 163-170 (1987)]. Specific hybridoma were cloned by sequential limiting dilutions, expanded and frozen in liquid nitrogen. The class, subclass, and light-chain type of MAbs were determined by ELISA as described by D. Martin et al., [Eur. J. Immunol., 18,

35 pp. 601-606 (1988)] using reagents obtained from Southern

Biotechnology Associates Inc. (Birmingham, AL).

2. Subcellular Fractionation

Pneumococci were separated into subcellular

fractions according to the technique described by Pearce
et al. [Mol. Microbiol., 9, pp. 1037-1050 (1993)].

Briefly, S. pneumoniae strain 64 (type 6) was grown in
Todd Hewitt broth supplemented with 0.5% (w/v) yeast
extract for 6 hours at 37°C and isolated by centrifugation.

Cell pellets were resuspended in 25 mM Tris-HCl pH 8.0, 1
mM EDTA, 1 mM phenylmethylsulphonylfluoride (PMSF) and
sonicated for 4 minutes with 15 second bursts. Cellular
debris were removed by centrifugation. The bacterial
membranes and cytoplasmic contents were separated by

centrifugation at 98,000 g for 4 hours. The cytoplasmic
(supernatant) and the membrane (pellet) fractions were
adjusted to 1 mg protein per ml and subjected to SDS-PAGE
and immunoblot analyses.

20 B. Identification and Characterization of MAbs to the HSP72 of S. pneumoniae

Culture supernatants of hybridomas were initially screened by dot enzyme immunoassay using whole cells from S. pneumoniae strain 65 (type 4) according to the procedures described in D. Martin et al. (supra). Positive hybridomas were then retested by immunoblotting in order to identify the hybridomas secreting MAbs reactive with the HSP72. Of 26 hybridomas with anti
S. pneumoniae reactivity in immunoblot, four were found to recognize epitopes present on a protein band with an apparent molecular mass of 72 kDa. The four hybridomas were designated F1-Pn3.1 (from fusion experiment 1) and F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4 (from fusion experiment

2). Isotype analysis revealed that hybridoma F1-Pn3.1 (from fusion experiment 1) secreted IgG-2ak immunoglobulins, whereas hybridomas F2-Pn3.2, F2-Pn3.3, and F2-Pn3.4 (from

fusion experiment 2) all secreted IgG_{1k}. The specificity_
of the MAbs for HSP72 was clearly demonstrated by the lack
of radioimmunoprecipitation activity against
[35S]methionine-labeled S. pneumoniae proteins obtained

5 from cultures incubated at 37°C and the immunoprecipitation
of a 72kDa-protein with heat shock-derived lysates
incubated at 45°C. FIG. 6, (lanes 5 and 6) demonstrates the
results obtained for MAb F1-Pn3.1. The same results were
obtained with MAbs F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4

[35S]methionine-labelled lysates from nonheat-10 shocked and heat-shocked S. pneumoniae cells probed with the MAbs were electrophoresed on SDS-PAGE gels and then subjected to Western blot analysis. The resulting immunoblots revealed the presence of HSP72 antigen in both 15 samples. FIG. 7, panel A, shows the results obtained for MAb F1-Pn3.1. The same results were obtained with MAbs F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4. Accordingly, the heat shock stress did not significantly increase the reactivity of anti-HSP72 monoclonal antibodies. The fluorograph of 20 the immunoblots, however, clearly showed that the heat shock response had occurred (FIG. 7, panel B). These experiments revealed that the rate of synthesis of S. pneumoniae HSP72 increases in response to heat shock, but that the absolute amounts of HSP72 do not increase 25 after heat shock.

C. Cellular localization of HSP72

In order to investigate the cellular location of
30 HSP72, S. pneumoniae cell lysates were fractionated by
differential centrifugation resulting in a soluble
fraction and a particulate fraction, enriched in membrane
proteins, supra. Sample containing 15 µg protein of
membrane fraction (lane 1) and cytoplasmic fraction (lane
2) of S. pneumoniae were electrophoresed on SDS-PAGE,
transferred to nitrocellulose and probed with MAb F1-

Pn3.1. In the resulting Western blots, HSP72 was found in both fractions, with the majority of the protein associated with the cytoplasmic fraction (FIG. 8).

5 EXAMPLE 3 - Molecular Cloning, Sequencing and Expression of Genes Coding for HSP72 Antigens

A. <u>Procedures</u>

10

Strains and Plasmids

Strains and plasmids used in this study are listed in Table 1.

TABLE 1: BACTERIAL STRAINS, PHAGES AND PLASMIDS

Strain,	Relevant Characteristics	Reference	
Phage Plasmid		or Source	
E. coli Strains			
JM109	$\Delta(lac-proAB)[F'traD proAB lacI^q Z\DeltaM15]$	BRL	
Y1090	r _k -m _k - lon supF [pMC9]	Amersham	
BL21(DE3)	lacuv5-T7 RNA polymerase	Studier et al. (infra)	
Phages	·	(
λgt11	cI857 S100 cloning vector	Amersham	
λJBD7	LacZ-HSP72 fusion; 2.3 kb EcoRI fragment in \(\lambda\gt11\)	This study	
AJBD17	FucI-HSP72 chimeric; 2.4 kb EcoRI and 2.3 kb EcoRI fragments in	This study	
Plasmids	λgt11		
pWSK29	Amp ^r ; low copy number cloning vector	Wang et al. (infra)	
pWKS30	same as pWSK29 but opposite multi cloning site	Wang et al. (infra)	
pJBD171	same as \lambdaJBD17 but in pWSK29	This study	
pJBD177	2.8 kb XhoI-EcoRI fragment in pWKS30 no recombinant HSP72 protein expressed	This study	
pJBD179	FucI-HSP72 fusion; 2.4 kb EcoRI and 0.8 kb EcoRI- EcoRV fragments in pWSK29	This study	
pT7- 5	Amp ^r ; T7 promoter Φ10	Tabor et al. (infra)	
pT7-6	same as pT7-5 but opposite multi cloning site	Tabor et al. (infra)	
pJBDf51	same as pJBD179 but in pT7-5	This study	
pJBDf62	same as pJBD179 but in pT7-6	This study	
pDELTA1	Amp ^r ; Tn 1000	BRL	
pJBD∆1	same as pJBD179 but in pDELTA1	This study	

WU 96/40928		PCT/CA96/00322
pJBD291	HSP72; 3.2 kb HindIII fragment in pWSK29	This study _
pJBDk51	same as pJBD291 but in pT7-5	This study
pJBD∆4	same as pJBD291 but in pDELTA1	This study

\$3//\\ 0.6 /40000

10

30

E. coli strains were grown in L broth or on L agar at 37°C. When necessary, ampicillin was added to the media at the concentration of 50 µg/ml. Plasmids were isolated by using the Magic/Wizard® Mini-Preps kit (Promega, Fisher Scientific, Ottawa, Canada).

2. General Recombinant DNA Techniques

Restriction endonucleases, T4 DNA ligase, and DNA molecular weight standards were purchased from Boehringer Mannheim Canada, Laval, Quebec or Pharmacia 15 Biotech, Uppsala, Sweden. DNA restriction endonuclease digestion and ligation were performed as described by J. Sambrook et al. [Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, N.Y. (1989)]. Agarose gel electrophoresis of DNA fragments was 20 performed following the procedure of J. Sambrook et al. $(\underline{\text{supra}})$ using the TAE buffer (0.04 M Tris-acetate; 0.002 M EDTA) from Boehringer Mannheim. DNA fragments were purified from agarose gel by using the Prep-A-Gene® DNA purification kit (Bio-Rad Laboratories Ltd., Mississauga, 25 Ontario). Transformation was carried out by electroporation with the Gene Pulser® (Bio-Rad) following the protocol provided by the manufacturer.

3. Construction and Screening of Genomic Library

A genomic S. pneumoniae DNA library was generated in the bacteriophage expression vector $\lambda gtll$ ($\lambda gtll$ cloning system, Amersham) according to the

procedure provided by the manufacturer. Chromosomal DNA of S. pneumoniae type 6 strain 64 was prepared by following the procedure of J.C. Paton et al. [Infect. Immun., 54, pp. 50-55 (1986)]. The S. pneumoniae 5 chromosomal DNA was partially digested with EcoRI, and the 4- to 7-kb fragments were fractionated and purified from agarose gel. The fragments were ligated into λ gt11 arms, packaged, and the resulting phage mixtures used to infect E. coli Y1090. Immunoscreening of plaques expressing 10 recombinant HSP72 antigens was performed using HSP72specific monoclonal antibody F1-Pn3.1, supra. clones expressing peptides recognized by MAb F1-Pn3.1 were isolated and purified. Liquid lysates were prepared and DNA was purified from a Promega LambdaSorb phage adsorbent 15 according to the manufacturer's directions followed by conventional DNA purification procedures.

4. Southern Blot Analysis

Detection kit, obtained from Boehringer Mannheim, was used to perform Southern blot analysis in this example. The DNA fragments selected for use as probes (infra) were purified by agarose gel electrophoresis and then labelled with digoxigenin (DIG)-11-dUTP. Pneumococcal chromosomal DNA was digested with HindIII and the digests were separated by electrophoresis on an 0.8% SDS-PAGE gel and transformed onto positive charged nylon membranes (Boehringer Mannheim) as described by J. Sambrook et al.

(supra). The membrane was then blotted with the DIG-labelled DNA probes according to the protocol of the manufacturer.

5. DNA Sequencing and Sequence Analysis

The DNA fragments sequenced in this example were first cloned into plasmid pDELTA 1 (GIBCO BRL Life

35

Technologies, Burlington, Ontario). A series of nested deletions were generated from both strands by in vivo deletion mediated by Tn 1000 transposon transposition (Deletion Factory System, GIBCO BRL) following the 5 procedures provided by the supplier. These deletions were sized by agarose gel electrophoresis and appropriate deletion derivatives were selected for sequencing by the dideoxynucleotide chain terminating method of F. Sanger et al. [Proc. Natl. Acad. Sci. USA, 74, pp. 5463-5467 10 (1977)]. To sequence the gaps between deletion templates, oligonucleotides were synthesized by oligonucleotide synthesizer 392 (ABI, Applied Biosystems Inc., Foster City, CA). The sequencing reaction was carried out by PCR (DNA Thermal Cycler 480®, Perkin Elmer) using the Taq 15 DyeDeoxy Terminator Cycle Sequencing kit (ABI), and DNA electrophoresis was performed on automated DNA sequencer 373A (ABI).

6. Expression of Cloned Gene in E. coli T7 RNA pol/promoter system

20

High level expression of the cloned gene in this example was achieved by employing the bacteriophage T7 RNA polymerase/promoter system in E. coli. The DNA fragment specifying the recombinant protein was ligated into plasmids pT7-5 or pT7-6 [S. Tabor and C.C. Richardson, Proc. Natl. Acad. Sci. USA, 82, PP. 1074-1078 (1985)], in a proper orientation in which the gene to be expressed was placed under the control of phage T7 RNA polymerase specific promoter Φ10. The resulting plasmid was transformed into E. coli strain BL21(DE3) [F.W. Studier, and B.A. Moffatt, J. Mol. Biol., 189, pp. 113-130 (1986)] which carries the T7 RNA polymerase structural gene on its chromosome under the control of the inducible lacUV5 promoter. Upon IPTG induction, the T7 RNA polymerase induced in the BL21(DE3) transformants specifically

transcribed the gene under the control of T7 promoter Φ 10. The overexpressed recombinant proteins were visualized by either Western blotting or Coomassie Blue staining.

7. N-terminal Amino Acid Sequence
Analysis of HSP72

Pneumococcal HSP72 was purified by immunoprecipitation using MAb F1-Pn3.1 (supra) and samples of cell wall extracts of S. pneumoniae strain 64 prepared as described by L.S. Daniels et al. [Microb. Pathogen., 1, pp. 519-531 (1986)] as antigen. The immune precipitates were resolved by SDS-PAGE and then transferred to polyvinylidene difluoride (PVDF) membrane by the method of P. Matsudaira [J. Biol. Chem., 262, pp. 10035-10038 (1987)]. PVDF membrane was stained with Coomassie Blue, the HSP72 band excised and then analyzed in an automated protein sequencer (ABI), according to standard procedures.

20 B. Construction of Plasmids Containing S. pneumoniae HSP72 Gene Fragments Corresponding to C-169

The λgt11 *S. pneumoniae* genomic DNA library was

25 screened with the HSP72-specific MAb F1-Pn3.1. Seventeen
 (17) immunoreactive clones were isolated and purified from
 a total of 1500 phages tested. To confirm the specificity
 of the proteins expressed by the recombinant phages,
 Western blot analysis of the recombinant phage lysates was

30 performed. Two groups of clones were identified among the
 17 positive clones recognized by MAb F1-Pn3.1 and their
 representatives were designated as λJBD7 and λJBD17 for
 further characterization. As shown in FIG. 9, whole cell
 extracts from *S. pneumoniae* strain 64 (lane 1) and phage

35 lysates from *E. coli* infected with λJBD17 (lanes 2 and 3)
 or λJBD7 (lanes 4 and 5) cultured in the presence (+) or
 absence (-) of IPTG were subjected to 10% polyacrylamide

gel electrophoresis and were electrotransferred to nitrocellulose. The immunoblot was probed with HSP72specific MAb F1-Pn3.1. Clone \(\lambda JBD17 \) had two EcoRI-EcoRI insert fragments of 2.4 kb and 2.3 kb (FIG. 10), and 5 expressed a chimeric recombinant protein having an apparent molecular mass of 74 kDa on SDS-PAGE gel (FIG. 9, lanes 2 and 3). Clone $\lambda JBD7$ was found to contain a 2.3 kb EcoRI insert fragment and produced an apparent fusion protein consisting of LacZ and the 74 kDa chimeric protein 10 expressed from clone λ JBD17. The fusion protein had an apparent molecular mass of 160 kDa as estimated by SDS-PAGE (FIG. 9, lane 5). The expression of the chimeric recombinant protein encoded by phage \$\lambda JBD17 was independent of IPTG induction (FIG. 9, lanes 2 and 3) 15 while the expression of the recombinant fusion protein encoded by phage AJBD7 was dependent on induction of the lac promoter (FIG. 9, lanes 4 and 5).

In an attempt to subclone the HSP72 gene, the pneumococcal DNA insert from clone \(\lambda JBD17 \) was extracted, 20 purified and ligated into a low copy plasmid pWSK29 [R.F. Wang and S.R. Kushner, Gene, 100, pp. 195-199 (1991)] to generate plasmid pJBD171. The insert from pJBD171 was characterized by restriction mapping (Fig. 10B), and a series of subcloning and immunoblotting was carried out to define the boundaries of the gene coding for the antigen reactive with MAb F1-Pn3.1. The region responsible for expression of the 74 kDa chimeric protein was found to localize on the 3.2 kb EcoRI-EcoRV fragment, which consists of the intact 2.4 kb EcoRI-EcoRI fragment and the 0.8 kb EcoRI-EcoRV portion of the 2.3 kb EcoRI-EcoRV insert was designated pJBD179.

C. Expression and DNA Sequence Analysis of a Chimeric Gene Coding for C-169

5 To further determine the transcriptional direction of the gene coding for the 74 kDa chimeric protein on the 3.2 kb EcoRI-EcoRV fragment, and to increase the yield of the 74 kDa chimeric protein for 10 immunological study, we decided to express the 74 kDa chimeric protein in the E. coli T7 RNA and T7 promoter The 3.2 kb EcoRI-EcoRV fragment, derived from pJBD179, was ligated into plasmids pT7-5 and pT7-6 in which the multi-cloning sites were placed in opposite 15 orientation with respect to the T7 RNA polymerase specific T7 promoter Φ 10. The ligation mixture was used to transform E. coli JM109 and positive transformants reactive with MAb F1-Pn3.1 were identified by the colony lifting method described by J. Sambrook et al. [supra]. 20 The resulting recombinant plasmids, derived from pT7-5 and pT7-6, were designated pJBDf51 and pJBDf62, respectively. The intact 3.2 kb EcoRI-EcoRV insert in these recombinant plasmids and their orientation was determined by restriction mapping. To achieve overexpression of the 25 74 kDa chimeric protein, pJBDf51 and pJBDf62 were transformed, separately, into E. coli BL21(DE3). The transformants were induced with IPTG (1 mM) for 3 hours at The cells were harvested, washed, resuspended in 1% SDS and boiled for 10 minutes. The lysates were then 30 used for SDS-PAGE and immunoblot analysis. As expected, both transformants produced the 74 kDa chimeric protein readily detected by Western blotting with MAb F1-Pn3.1 (FIG. 11). However, under the IPTG induction condition, only transformants BL21(DE3)(pJBDf51) overexpressed the 74 35 kDa chimeric protein (FIG. 11A and B, lane 2) indicating

that the transcriptional direction of the gene on the 3.2

kb EcoRI-EcoRV fragment is from the EcoRI end towards the EcoRV end (FIG. 10A).

The 3.2 kb EcoRI-EcoRV fragment was cloned into plasmid pDELTA 1 to yield plasmid pJBDA1. A series of 5 overlapping deletions were generated and used as DNA sequencing templates. The DNA sequence of the entire 3.2 kb EcoRI-EcoRV insert is SEQ ID NO:1. Two open reading frames ("ORFs") were found and their orientation is indicated in FIG. 10B ("ORF27" and "FucI-HSP72 (C-169)"). 10 In front of these two ORFs, putative ribosome-binding sites were identified (SEQ ID NO:1, nucleotides 18-21 and 760-763). No obvious -10 and -35 promoter sequences were detected. ORF27 spans nucleotides 30-755 (SEQ ID NO:1) and encodes a protein of 242 amino acids with a calculated 15 molecular weight of 27,066 daltons. The deduced amino acid sequence of this protein is SEQ ID NO:2. We designated this gene orf27, and compared it to other known sequences. No homologous gene or protein was found. large ORF (nucleotides 771-2912, SEQ ID NO:1) specifies a 20 protein of 714 amino acids with a predicted molecular mass of 79,238 daltons. The deduced amino acid sequence of this protein is SEQ ID NO:3. This ORF was compared with other known sequences to determine its relationship to other amino acid sequences. This analysis revealed a high 25 degree of similarity of the encoded protein to the sequence of E. coli fucose isomerase (FucI) and to several HSP70 gene family members, also known as DnaK genes. Alignment of SEQ ID NO:3 and those of the E. coli Fucl and HSP70 (Dnak) proteins indicated that the N-terminal 30 portion corresponding to amino acids 1 to 545 (SEQ ID NO:3) of the 74 kDa chimeric protein is highly homologous to E. coli FucI, while the C-terminal portion corresponding to amino acids 546-714 (SEQ ID NO:3) is similar to HSP70 (DnaK) proteins. It is noteworthy that 35 there is an EcoRI restriction site lying in the junction of these two portions of the gene coding for the 74 kDa

protein (SEQ ID NO:1, between nucleotides 2404 and 2405).

Other restriction sites exist between nucleotides 971 and 972 (Pst I), nucleotides 1916 and 1917 (Pst I), nucleotides 1978 and 1979 (Xho I), and nucleotides 3164 and 3165 (EcoRV). From these data we concluded that the 74 kDa protein was a chimeric protein encoded by two pieces of S. pneumoniae chromosomal DNA, a 2.4 kb EcoRI-EcoRI fragment derived from the FucI homologous gene and a 2.3 kb EcoRI-EcoRI fragment derived from the HSP72 gene.

10 D. Southern Blot Analysis

Southern blotting was performed in order to confirm that the 74 kDa protein is a chimeric protein and to attempt to clone the entire pneumococcal HSP72 gene.

15 Chromosomal S. pneumoniae DNA was digested with HindIII to completion, separated on a 0.8% agarose gel, and transferred onto two positively charged nylon membranes (Boehringer Mannheim). The membranes were then blotted

- with either the 0.8 kb EcoRI-EcoRV probe, derived from the 2.3 kb EcoRI-EcoRI fragment, or the 1 kb PstI-PstI probe, obtained from the 2.4 kb EcoRI-EcoRI fragment. Both probes had been previously labelled with digoxigenin-dUTP. These two probes hybridized two individual HindIII fragments of different sizes (FIGS. 10B and 10C). The 0.8
- 25 kb EcoRI-EcoRV probe recognized the 3.2 kb HindIII fragment and the 1 kb PstI-PstI probe reacted with the 4 kb HindIII fragment. This result further indicated that the gene responsible for the expression of the 74 kDa chimeric protein was generated by fusion, in frame, of two
- pieces of EcoRI fragments, one originated from the fragment containing the 5' portion of the *S. pneumoniae FucI* homologue, the other derived from the segment carrying the C-169 fragment of the pneumococcal HSP72 gene. The fact that the 0.8 kb EcoRI-EcoRV probe
- 35 hybridized a single 3.2 kb fragment suggested that there is only a single HSP72 gene copy in S. pneumoniae.

E. Production of Recombinant HSP72

A partial pneumococcal genomic library was 5 generated by ligation of the pool of HindIII digests of chromosomal DNA, with sizes ranging from 2.8 to 3.7 kb, into plasmid pWSK29/HindIII. The ligation mixture was used to transform E. coli strain JM 109 and the transformants were screened by hybridization with the 0.8 10 kb EcoRI-EcoRV probe. One representative plasmid from four positive hybridizing clones was named pJBD291. Restriction analysis of the insert and Western blot of the cell lysate of transformants were employed to verify that the plasmid pJBD291 indeed carries the 3.2 kb HindIII 15 fragment containing the HSP72 gene expressing the recombinant HSP72 protein (FIG. 10B). The HSP72 protein expressed by the transformants (pJBD291) migrated on the SDS-PAGE gel at the same position as the native HSP72 protein (FIG. 12). To sequence the entire HSP72 gene and 20 to overexpress the full-length HSP72 protein, the 3.2 kb HindIII fragment was isolated from plasmid pJBD291, and subcloned into plasmids pDELTA 1 and pT7-5 to generate pJBD∆4 and pJBDk51, respectively.

on the plasmid pJBDA4 and the 2.3 kb EcoRI-EcoRI DNA fragment contained on the plasmid pJBD177 were sequenced. Altogether, the nucleotide sequence comprised 4320 base pairs and revealed two ORFs (SEQ ID NO:4). The first ORF, starting at nucleotide 682 and ending at nucleotide 2502 (SEQ ID NO:4), was identified as the pneumococcal HSP72 gene, and the second ORF, spanning from nucleotide 3265 to nucleotide 4320 (SEQ ID NO:4), was located 764 base pairs downstream from the HSP72 structural gene and was identified as the 5' portion of the pneumococcal DnaJ gene. The putative ribosome binding site ("AGGA") was located 9 base pairs upstream from the start codon of the HSP72 structural gene, while the typical ribosome binding

site ("AGGA") was found 66 base pairs upstream from the start codon of the DnaJ structural gene. No typical 5' regulatory region was identified in front of these two genes. Restriction sites are located between nucleotides 1 and 2 (HindIII), nucleotides 1318 and 1319 (EcoRI), nucleotides 1994 and 1995 (EcoRI), nucleotides 3343 and 3344 (HindIII), and nucleotides 4315 and 4316 (EcoRI). The gene organization of HSP72 (DnaK) and DnaJ in S. pneumoniae is similar to that of E. coli [Saito, H. and Uchida, Mol. Gen. Genet. 164, 1-8 (1978)] as well as several other Gram positive bacteria [Wetzstein, M. et al., J. Bacteriol. 174, 3300-3310 (1992)]. However, the intragenic region of S. pneumoniae is significantly larger and no ORF for the grpE gene was found upstream of the HSP72 (DnaK) structural gene.

The predicted HSP72 protein has 607 amino acids and a calculated molecular mass of 64,755 daltons, as compared to the 72 kDa molecular mass estimated by SDS-PAGE. The predicted HSP72 protein is acidic with an 20 isoelectric point (pI) of 4.35. Automated Edman degradation of the purified native HSP72 protein extracted from S. pneumoniae strain 64 revealed SKIIGIDLGTTN-AVAVLE as the 19 amino acid N-terminal sequence of the protein. The amino-terminal methionine was not detected, presumably 25 due to in situ processing which is known to occur in many proteins. No amino acid residue was identified on position 13. The 19 amino acid N-terminal sequence obtained from the native HSP72 protein is in full agreement with the 19 amino acid N-terminal sequence 30 deduced from the nucleotide sequence of the recombinant S. pneumoniae HSP72 gene (SEQ ID NO:5) thus confirming the cloning. This N-terminal sequence showed complete identity with the DnaK protein from Lactococcus lactis and 68.4% identity with the DnaK protein from Escherichia 35 Coli. Similarly, the alignment of the predicted amino acid sequence of HSP72 (SEQ ID NO:5) with those from other bacterial HSP70 (DnaK) proteins also revealed high

homology (FIGS. 13A-13D). For example, HSP72 showed 54% - identity with the *E. coli* DnaK protein. The highest identity value was obtained from comparison with the Gram positive bacterium *Lactococcus lactis*, showing 85%

- of identity with HSP72. Like other HSP70 proteins of Gram positive bacteria, HSP72 misses a stretch of 24 amino acids near the amino terminus when compared with DnaK proteins from Gram negative bacteria (FIGS. 13A-13D).
- Although HSP72 shares homology with HSP70 (DnaK)

 10 proteins from other organisms, it does possess some unique features. Sequence divergence of the HSP70 (DnaK) proteins is largely localized to two regions (residues 244 to 330 and 510 to 607, SEQ ID NO:5). More specifically, the peptide sequences GFDAERDAAQAALDD (residues 527 to
- 15 541, SEQ ID NO:5) and AEGAQATGNAGDDVV (residues 586 to 600, SEQ ID NO:5) are exclusive to HSP72. The fact that the C-terminal portion of HSP72 is highly variable suggests that this portion carries antigenic determinants specific to *S. pneumoniae*. Consistent with this
- 20 hypothesis, monoclonal antibodies directed against the C-169 fragment of HSP72 (<u>infra</u>), were not reactive with E. coli and S. aureus, which are known to express DnaK proteins similar to HSP72.
- The truncated DnaJ protein of S. pneumoniae (SEQ ID NO:6) has 352 amino acids, which show a high degree of similarity with the corresponding portions of the L. lactis DnaJ protein (72% identity) and the E. coli DnaJ protein (51% identity). The predicted truncated DnaJ protein contains high glycine content (15%). Four Gly-,
- Oys-rich repeats, each with the Cys-X-X-Cys-X-Gly-X-Gly motif characteristic of DnaJ proteins [P.A. Silver and J.C. Way, Cell, 74, pp. 5-6 (1993)], were identified between amino acids 148 and 212 of the S. pneumoniae DnaJ protein (SEQ ID NO:6). Three repeated GGFGG sequences
- 35 (residues 75-79, 81-85, and 90-94) were found near the N-terminus.

F. Reactivity of MAbs Against Recombinant Antigens

The four HSP72 specific MAbs (F1-Pn3.1, F2-Pn3.2, F2-Pn3.3 and F2-Pn3.4, supra) were tested for their reactivity against proteins expressed by E. coli infected or transformed with recombinant phages and plasmids containing HSP72 sequences. The four individual MAbs reacted with the lacZ-HSP72 fusion protein expressed by the clone $\lambda JBD7$, thus localizing the epitopes recognized by these MAbs to the C-terminal 169 residues. Surprisingly, the proteins encoded by the pneumoccocal inserts in λ JBD17 and pJBD Δ 1 were recognized by only 3 of 15 4 Mabs. These results suggest that although the C-169 fragments synthesized in $E.\ coli$ infected with $\lambda JBD7$ and λJBD17 have the same primary structure, they have distinct conformation. The lack of reactivity of MAb F2-Pn3.2 with some recombinant proteins raised the possibility that this 20 particular MAb recognizes a more complex epitope. Although complex, F2-Pn3.2 epitopes are still recognizable on Western immunoblots. The complete HSP72 rec protein expressed by E. coli containing the recombinant plasmid $pJBD\Delta4$ was reactive with all four MAbs.

25
EXAMPLE 4 - Antigenic Specificity and Reactivity of HSP72-Specific Monoclonal Antibodies

The reactivity of MAbs F1-Pn3.1, F2-3.2., F2-Pn3.3 and F2-Pn3.4 to a collection of bacterial strains including 20 S. pneumoniae strains representing 16 capsular serotypes (types 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 19, 20, and 22) and the 17 non-pneumococcal bacterial strains listed in Table 2, was tested using a dot enzyme immunoassay as described by D. Martin et al. [supra] and immunoblotting. For dot enzyme immunoassay, the bacteria were grown overnight on chocolate agar plates

and then suspended in PBS, pH 7.4. A volume of 5 µl of a suspension containing approximately 10° CFU/ml was applied to a nitrocellulose paper, blocked with PBS containing 3% bovine serum albumin, and then incubated sequentially with MAbs and peroxydase-labeled secondary antibody. Whole cell extracts were prepared for Western blot analysis by boiling bacterial suspensions in sample buffer for 5 minutes.

TABLE 2:LIST OF NON-PNEUMOCOCCAL ISOLATES
TESTED BY DOT ENZYME IMMUNOASSAY

Strain		
Designation	Genus species	group or type
C-2	Streptococcus pyogenes	group A
C-3	Streptococcus agalactiae	group B
C-7	Enterococcus faecalis	group D
C-9	Streptococcus bovis	group D
C-14	Streptococcus mutans	
C-15	Streptococcus salivarius	
C-19	Streptococcus sanguis	I
C-20	Streptococcus sanguis	I
C-21	Streptococcus sanguis	I
C-22	Streptococcus sanguis	II
C-23	Streptococcus sanguis	II
C-24	Streptococcus sanguis	II
C-25	Streptococcus sanguis	II
C-27	Gemella morbillorum	
C-30	Staphylococcus aureus	
C-33	Bacillus	
C-36	Escherichia coli	

10

When tested by dot enzyme immunoassay, each MAb reacted with each of the *S. pneumoniae* strains and none of the non-pneumococcal isolates. These results were unexpected since comparison studies revealed that HSP72 is

very similar to other known bacterial HSP70 (DnaK) proteins, for example those from *E. coli* and *S. aureus*.

Immunoblots were then performed to further investigate the immunoreactivities of our MAbs. As shown in Table 3, each MAb exhibited some reactivity. Although the percent identity of the *E. coli* amino acid sequence and the HSP72 amino acid sequence (SEQ ID NO:5) is 54%, the four HSP72-specific MAbs did not recognize the *E. coli* HSP70 (DnaK) protein. Similarly, the HSP72-specific MAbs

- did not react with the *C. trachomatis* HSP70 (DnaK) protein, which has 56% amino acid identity with the amino acid sequence of HSP72. High amino acid sequence homology is observed between HSP72 and the HSP70 (DnaK) proteins from gram positive bacterial species. However, again,
- none of the HSP72-specific MAbs reacted with *S. aureaus* or *Bacillus* gram positive species, which exhibit 74% and 76% amino acid sequence homology, respectively, with HSP72. From these data it is clear that although HSP70 (DnaK) proteins may be structurally related to HSP72, they are
- immunologically distinct. Among the non-pneumococcal isolates that reacted with at least one MAb, there is S. pyogenes, Enterococcus faecalis, S. mutans and S. sanguis, which all belong to the Streptococcus or Streptococcus-related Enterococcus genus. So far, neither the HSP70
- protein, nor the gene structure has been identified in these Streptococcus or Enterococcus species. Altogether, these observations indicate that hypervariable amino acid sequences or residues within HSP70 (DnaK) proteins are involved in antigenicity. Interestingly, immunoblotting
 - analysis revealed that there was no significant variation in the molecular mass of the HSP70 (DnaK) proteins among both *S. pneumoniae* isolates and immunoreactive non-pneumococcal isolates.

TABLE 3: REACTIVITY OF MABS WITH NON-PNEUMOCOCCAL ISOLATES IN WESTERN IMMUNOBLOTTING

В	acterial Strain			M	Abs	
Designation	genus/species	type	F1- PN3.1	F2- Pn3.2	F2- PN3.3	F2- Pn3.4
C-2	Streptococcus pyogenes	group A		+		±°
C3	Streptococcus agalactiae	group B	-	-'	-	-
C-7	Enterococcus faecalis	group D	. -	+	-	-
C-9	Streptococcus bovis	group D	- '	-	-	-
C-14	Streptococcus mutans		-	+	-	±
C-15	Streptococcus salivarius		-	-	-	•
C-19	Streptococcus sanguis	I	+	+	-	-
C-20	Streptococcus sanguis	r .	+	+	-	+
C-21	Streptococcus sanguis	I	+	+	+	+
C-22	Streptococcus sanguis	II	+	+	+	+
C-23	Streptococcus sanguis	II.	+	+	-	-
C-24	Streptococcus sanguis	II .	+	+ .	+	+
C-25	Streptococcus sanguis	II	+	+	+	+
C-27	Gemella morbillorum		· -	-	-	-
C-30	Staphylococcus aureus		-	-	-	-
C-33	Bacillus		-	-	-	-
C-36	Escherichia coli		-	-	-	-
C-RP	Chlamydia trachomatis ^b	L2 ·	-	-	-	-

[±] indicates a weak signal compared to the reactivity observed with *S. pneumoniae* antigens

b *C. trachomatis* purified elementary bodies were tested.

EXAMPLE 5 - Purification of HSP72 And Its
Use As An Immunogen to Protect
Against Lethal S. Pneumoniae Infection

A. Procedures

5

10

1. Preparation of Purified Recombinant HSP72 Protein and Recombinant C-169

High level exclusive expression of the HSP72 gene was achieved by employing the bacteriophage T7 RNA polymerase/T7 promoter system in E. coli. The 3.2 kb 15 HindIII fragment was cloned in both orientations in front of the T7 promoter Φ 10 in the plasmid pT7-5. The resulting plasmid pJBDk51 was then transformed into E. coli strain BL21 (DE3). Overexpression of the recombinant HSP72 protein (HSP72_{rec}) was induced by 20 culturing in broth supplemented with antibiotics for a 3hour period after the addition of IPTG to a final concentration of 1 mM. E. coli expressing high levels of HSP72_{rec} were concentrated by centrifugation and lysed by mild sonication in 50 mM Tris-Cl (pH 8.0), 1 mM EDTA and 25 100 mM NaCl lysis buffer containing 0.2 mg/ml lysozyme. The cell lysates were centrifuged at 12,000 g for 15 minutes and the supernatants were collected. HSP72rec was purified by immunoaffinity using monoclonal antibody F1-Pn3.1 immobilized on sepharose 4B beads (Pharmacia). The 30 purity of eluates was assessed on SDS-PAGE.

The recombinant C-169 protein (C-169_{rec}) was expressed in the form of insoluble inclusion bodies in *E. coli* strain JM109 transformed with the plasmid pJBDΔ1. Protein inclusion bodies were recovered from pelleted bacterial cells disrupted by sonication as described before. The pellets were washed in lysis buffer containing 1 mg/ml of deoxycholate to remove contaminating materials, and the protein inclusion bodies were then solubilized in urea 6 M. The protein solution was

centrifuged at 100,000 g and the cleared supernatant collected and dialysed against phosphate-buffered saline. After purification, the protein content was determined by the Bio-Rad protein assay (Bio-Rad Laboratories, 5 Mississauga, Ontario, Canada).

. 2. Active Immunoprotection Studies

Two groups of 10 female Balb/c mice (Charles 10 River Laboratories) were immunized subcutaneously three times at two-week intervals with 0.1 ml of purified HSP72_{rec} or C-169_{rec} antigens absorbed to Alhydrogel adjuvant. Two antigen doses, approximately 1 and 5 µg, were tested. A third group of 10 control mice were 15 immunized identically via the same route with Alhydrogel adjuvant alone. Blood samples were collected from the orbital sinus prior to each immmunization and five to seven days following the third injection. The mice were then challenged with approximately 106 CFU of the type 3 20 S. pneumoniae strain WU2. Samples of the S. pneumoniae challenge inoculum were plated on chocolate agar plates to determine the CFU and to verify the challenge dose. Deaths were recorded at 6-hour intervals for the first 3-4 days post-infection and then at 24-hour intervals for a 25 period of 14 days. On days 14 or 15, the surviving mice were sacrificed and blood samples tested for the presence of S. pneumoniae organisms. Antibody responses to the recombinant HSP72 antigens are described in Example 7.

3. Passive Immunoprotection Studies

30

One NZW rabbit (Charles River Laboratories) was immunized subcutaneously at multiple sites with approximately 50 µg of the purified C-169_{rec} protein

35 adsorbed to Alhydrogel adjuvant. The rabbit was boosted three times at two-week intervals with the same antigen and blood samples collected 7 and 14 days following the

last immunization. The serum samples were pooled and antibodies were purified by precipitation using 40% saturated ammonium sulfate.

Severe-combined immunodeficient SCID mice were injected intraperitoneally with 0.25 ml of the purified rabbit antibodies 1 hour before intravenous challenge with 5000 or 880 CFU of the type 3 S. pneumoniae strain WU2. Control SCID mice received sterile buffer or antibodies purified from nonimmune rabbit sera. Samples of the S. pneumoniae challenge inoculum were plated on chocolate agar plates to determine the CFU and to verify the challenge dose. The SCID mice were chosen because of their high susceptibility to S. pneumoniae infection. Blood samples (20 µl each) obtained 24 hours post-challenge were plated on chocolate agar and tested for the presence of S. pneumoniae organisms. The level of detection was 50 CFU/ml. Deaths were recorded at 24-hour intervals for a period of 5 days.

B. Results

The availability of cloned *S. pneumoniae* DNA inserts encoding the complete or partial (C-169) HSP72 protein and the expression of recombinant proteins in

25 *E. coli* allowed the obtention of purified proteins useful for the investigation of the vaccinogenic potential of HSP72 protein. Both HSP72_{rec} and C-169_{rec} proteins were obtained in a relatively pure state with no contaminants detected on Coomassie Blue-stained SDS polyacrylamide gels

30 (FIGS. 14 and 15, respectively).

To evaluate the vaccinogenic potential of HSP72, we first examined the ability of HSP72_{rec} to elicit a protective immune response. Groups of 10 mice were immunized with full-length HSP72_{rec} (1 µg or 5 µg dose) and challenged with 4.2 million CFU of S. pneumoniae type 3 strain WU2. Eighty percent (80%) of the mice dosed with 1 µg HSP72_{rec} survived the challenge, as did 50% of the mice

dosed with 5 µg HSP72. None of the naive mice immunized with Alhydrogel adjuvant alone without antigen survived the challenge (FIG. 16). No S. pneumoniae organisms were detected in any of the blood samples collected on days 14 or 15 from mice surviving infection. The observation that HSP72_{rec} elicited protection against type 3 strain WU2 pneumococci indicated that HSP72 derived from DNA extracted from a type 6 strain contains epitopes capable of eliciting protection against a heterologous strain having a different capsular type.

We further examined the immune response to the HSP72 protein by using recombinant protein fragments expressed from E. coli transformed with a chimeric fucI-HSP72 gene. Mice immunized with purified C-169_{rec} were 15 protected from fatal pneumococcal challenge, thus demonstrating that some, if not all, epitopes eliciting protection are present in the C-terminal region of the HSP72 molecule comprising the last 169 residues. Groups of 10 mice were immunized with C-169 $_{\rm rec}$ (1 μg or 5 μg 20 doses) and challenged with 6 million CFU of S. pneumoniae type 3 strain WU2. Sixty percent (60%) of the mice dosed with 1 μg C-169 $_{\text{rec}}$ survived the challenge, as did 70% of the mice dosed with 5 μg C-169 $_{
m rec}$ (FIG. 17). In contrast, all of the naive mice were dead by 2 days post-challenge. 25 Therefore, the C-terminal portion of S. pneumoniae HSP72, which includes the region of maximum divergence among DnaK proteins, is a target for the protective immune response.

As illustrated in Table 4 below, two independent experiments demonstrated that SCID mice passively

transferred with rabbit anti-C-169_{rec} antibodies were protected from fatal infection with *S. pneumoniae* WU2. In contrast, none of the 15 control mice survived. The control mice received antibodies from nonimmune rabbit sera or received sterile buffer alone. In addition, all mice from the control groups had positive *S. pneumoniae* hemoculture 24 hours post-challenge, while *S. pneumoniae*

organisms were detected in only 2 out of a total of 10 immunized SCID mice.

TABLE 4: PASSIVE IMMUNIZATION STUDIES SHOWING PROTECTION OF SCID MICE FROM EXPERIMENTAL S. PNEUMONIAE INFECTION BY ANTI-C- $169_{\rm rec}$ RABBIT ANTIBODIES

Experiment	Injection	No. of Mice Surviving Challenge after 5 days	No. of Mice Testing Positive for the Presence of S. pneumoniae
1	sterile buffer	0/5	5/5
	anti-C-169 _{rec}	4/5	2/5
	control antibodies	0/5	5/5
2	sterile buffer	0/5	5/5
	anti-C-169 _{rec}	5/5	0/5

In experiments 1 and 2 (Table 4), mice were challenged with 5000 and 880 CFU of type 3 *S. pneumoniae* strain WU2, respectively. Results in Table 4 are expressed as the number of mice surviving challenge, or testing positive for the presence of *S. pneumoniae*,

compared to the total number of mice in each group.

Demonstration of the anti-HSP72 specificity of the antibody elicited by immunization with recombinant

15 HSP72 or C-169 proteins came from Western Blot analyses using S. pneumoniae cell lysates as antigens. A single band corresponding to HSP72 was detected by all rabbit and mouse antisera tested. These serologic results suggested that the protection following the immunization with recombinant proteins was due to the production of antibodies reactive with S. pneumoniae HSP72.

EXAMPLE 6 - Heat-Inducible Expression System for High Level Production of the C-151 Terminal Portion of the

25 HSP72 Protein______

A. Construction of Plasmid pURV3 Containing the C-151 terminal coding region of the HSP72 of S. pneumoniae

5 The DNA region coding for 151 amino acids at the carboxyl end of the HSP72 of S. pneumoniae was inserted downstream of the promoter λ PL into the translation vector p629 [H. J. George et al., Bio/Technology 5, pp. 600-603 (1987)]. This vector 10 contains a cassette of the bacteriophage λ cI857 temperature sensitive repressor gene from which the functional P_{R} promoter has been deleted. The inactivation of the cI857 repressor by a temperature increase from the ranges of 30-37°C to 37-42°C results in the induction of 15 the gene under the control of λ PL. The induction of gene expression in E. coli cells by a temperature shift is advantageous for large scale fermentation since it can easily be achieved with modern fermenters. However, it should be understood that while E. coli was the 20 microorganism of choice in the experiments herein described, other host organisms, such as yeast, are intended to be included within the scope of this invention.

A fragment of 477 nucleotides, including the
region of 457 bases between 2050 to 2506 in HSP72 gene of
S. pneumoniae (see SEQ ID NO 4), was amplified by the
polymerase chain reaction (PCR) from the S. pneumoniae
type 6 strain 64 genomic DNA using the oligonucleotide
primers OCRR26 (5'-GGCAGATCTATGAAGGCCAAAGACCTTGGAAC)
and OCRR27 (5'-CGCGGATCCTTACTTTTCCGTAAACTCTCCGT).
Chromosomal DNA was prepared from a 90 ml culture of
exponentionally growing cells of S. pneumoniae in heart
infusion broth using the method of Jayarao et al. [J.
Clin. Microbiol., 29, pp. 2774-2778 (1991)]. DNA
amplification reactions were made using a DNA Thermal
Cycler, Perkin Elmer, San Jose, CA. In OCRR26, an ATG
start codon is present in frame just upstream of the

coding region for the amino-terminus region of the C-151. The primers OCRR26 and OCRR27 contain, respectively, a BglII (AGATCT) and a BamHI (GGATCC) recognition site in order to facilitate the cloning of the PCR product into 5 the dephosphorylated restriction sites BglII and BamHI of p629. The PCR product was purified from agarose gels by the method of phenol freeze [S. A. Benson, Biotechniques 2, pp. 67-68 (1984)] and digested with the restriction enzymes BglII and BamHI. The BglII-BamHI fragment of 471 10 base pairs was then ligated into the BglII and BamHI recognition sites dephosphorylated of p629. A partial map of the resulting plasmid pURV3 is shown in FIG. 18. plasmid was transformed by the method of Simanis [Hanahan, D. In D. M. Glover (ed.), DNA Cloning, pp. 109-135, 15 (1985)] into the E. coli strain XLI Blue MRF' (Δ (mcrA) 183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F' proAB lacI $\mathbb{Q}Z\Delta M15 \text{ Tn}10 \text{ (Tet}^r)$] o which was obtained from Stratagene, La Jolla, CA. The transformants grown at 37°C were screened by colony immunoblot [J. 20 Sambrook et al. (supra)] using the MAb F1-Pn3.1 reactive with C-169_{rec}. Plasmid DNA was purified from a selected transformant and the DNA insert was sequenced by PCR using the Taq Dye Deoxy Terminator Cycle Sequencing kit of Applied Biosystems Inc. (ABI) and DNA electrophoresis was 25 performed on automated DNA sequencer 373A (ABI). nucleotide sequence of the insert perfectly matched the nucleotide sequence of the C-151 coding region of the HSP72 gene. (See SEQ ID No: 25 and corresponding amino acid sequence at SEQ ID No: 26.) The plasmid was 30 transformed into the prototrophic E. coli strain W3110 (ATCC 27325) for the production of C-151_{rec}.

B. Expression of C-151rec and Antigen Preparation

The recombinant C-151 $_{\rm rec}$ was synthesized with a methionine residue at its amino end in *E. coli* strain W3110 harboring the plasmid pURV3. *E. coli* cells were

grown at $30\,^{\circ}\text{C}$ in LB broth containing 100 μg of ampicillinper ml until the A_{600} reached a value of 0.6. The cells were then cultivated at $40\,^{\circ}\text{C}$ for 18 hours to induce the production of C-151_{rec} protein. A semi-purified C-151_{rec} protein was prepared using the following procedures. bacterial cells were harvested by centrifugation and the resulting pellet was washed and resuspended in phosphatebuffered saline. Lysozyme was added and the cells were incubated for 15 min on ice before disruption by pulse 10 sonication. The cell lysates were cleared by centrifugation and the supernatants were collected and subjected to separation using an Amicon's ultrafiltration equipment (stirred cells series 8000, Amicon Canada Ltd. Oakville, Ontario). The ultrafiltrate not retained by a 15 YM30 membrane was recovered, analysed by SDS-PAGE and stained with Coomassie blue R-250. Protein concentrations were estimated by comparing the staining intensity of the C-151_{rec} protein with those obtained with defined concentrations of soybean trypsin inhibitor.

20

C. Reactivity of MAbs Against C-151rec

A panel of 10 monoclonal antibodies selected for their reactivity with the S. pneumoniae HSP72 protein were tested for their reactivity to C-151_{rec} by Western blot analysis using YM30-ultrafiltrates prepared as described above. The MAbs included a series of six monoclonal antibodies raised to the HSP72_{rec} protein (F3-Pn3.5 to F3-Pn3.10) and monoclonal antibodies F1-Pn3.1, F2-Pn3.2, F2-Pn3.3, F2-Pn3.4. The three MAbs F1-Pn3.1, F2-Pn3.3 and F2-Pn3.4 that were reactive with C-169_{rec} also recognized the C-151_{rec} fragment. All other MAbs were only reactive with HSP72_{rec} thus indicating that they may be directed against epitopes present in the amino terminal region of the HSP72 protein.

35

EXAMPLE 7 - Antibody Response of Balb/c Mice and Macaca-Fascicularis (cynomolgus) Monkeys to Recombinant HSP72 Antigens_

Α. Procedures

5

30

Immunization of Animals

Groups of 10 female Balb/c mice were immunized subcutaneously with either HSP72 $_{\rm rec}$ or C-169 $_{\rm rec}$ as described in Example 5. In order to assess the antibody response to C-151_{rec}, a group of 6 mice were immunized 10 three times at two-week intervals with 0.5 µg of C-151_{rec} absorbed to Alhydrogel adjuvant by intraperitoneal injection. Sera from blood samples collected prior each immunization and four to seven days after the third immunization were tested for antibody reactive with S. 15 pneumoniae by ELISA using plates coated with S. pneumoniae cell wall extracts.

Female cynomolgus monkeys were immunized intramuscularly at Day 1, 22 and 77 with 0.5 ml containing 150 μg of purified $HSP72_{\textbf{rec}}$ or $C-169_{\textbf{rec}}$ antigens absorbed 20 to Alhydrogel adjuvant. Blood samples were collected . regularly before and after each immunization and the sera were tested for antibody reactive with S. pneumoniae HSP72 antigen by Western blot analysis.

The specificity of the raised antibodies for S. pneumoniae HSP72 was confirmed by Western blot analyses to S. pneumoniae cell extracts and purified recombinant antigens.

В. Results

The results previously described in Example 5 clearly demonstrate the protective nature of the antibody response elicited following immunization with recombinant HSP72 antigens. Here we monitored the appearance of serum antibody response in mice (FIG. 19, 20 and 21) and in 35 monkeys (FIG. 22) during the immunization schedule. species responded strongly to the full-length and truncated recombinant HSP72 proteins used as immunogens

with average titers of 1:64000 after the third injection.Detailed analysis of individual sera revealed that each
animal responded to the immunization in developping
antibodies reactive with *S. pneumoniae* HSP72.

In mice immunized with C-169_{rec}, the two doses tested, i.e. 1 and 5 μg, were similarly efficient with the induction of similar antibody titers (FIG. 20). A strong boost response was observed after the second injection with C-169_{rec} with no enhancement in the antibody titers after a third injection. In contrast to this, we observed that the immune response to the HSP72_{rec} was dosedependent. Increases in the specific antibody titers were observed after a second and a third injection with either HSP72_{rec} or C-151_{rec} (FIG. 19 and 21).

15 Study of the immune response of monkeys clearly indicated that the immunogenicity of recombinant HSP72 antigens is not restricted to rodents such as rabbit and mouse. The humoral response following the second injection with either antigen is characterized by a strong increase in HSP72-specific antibody titers that can persist for several weeks without any detectable decrease in their antibody titers (FIG. 22). In addition, specific serum antibodies were detectable in the sera of each monkey after a single injection of recombinant antigens.

EXAMPLE 8 - B-Cell Epitope Mapping of HSP72 Stress Protein

25

In Example 3, it was shown that significant
variability in the primary sequence of the HSP70 proteins
was mainly localized to two regions corresponding to amino
acid residues 244 to 330 and 510 to 607 of the S.
pneumoniae HSP72 protein. These variable regions may
contain B-cell epitopes responsable for the antigenic
heterogeneity reported in Example 4. To investigate this
possibility, the reactivity of polyclonal and monoclonal

antibodies to *S. pneumoniae* HSP72 were tested against fourteen peptides selected to cover most of these regions.

A. Procedures

Fourteen peptides of 14 to 30 amino acids 5 residues were synthesized. The peptide sequences and their locations in the protein are summarized in Table 5. Peptides CS870, CS873, CS874, CS875, CS876, CS877, CS878, CS879, CS880 and CS882 were synthesized by Biochem Immunosystem Inc. (Montreal, Canada) using an automated 10 peptide synthesizer. Peptides MAP1, MAP2, MAP3 and MAP4 were synthesized onto a branching lysine core as Multiple Antigenic Peptides (MAP) by the Service de Séquence de Peptides de l'Est du Québec, Centre de recherche du CHUL (Sainte-Foy, Canada). Peptides were purified by reverse-15 phase high-pressure liquid chromatography. Peptides were solubilized in distilled water except for peptides CS874 and CS876 which were solubilized in a small volume of either 6M guanidine-HCl or dimethyl sulfoxide and then adjusted to 1 mg/ml with distilled water.

Peptide ELISA were performed by coating synthetic peptides onto Immunolon 4 microtitration plates (Dynatech Laboratories, Inc., Chantilly, VA) at a concentration of 50 µg/ml according to the prodedures described in J. Hamel et al. [supra]. To confirm the reactivity of MAbs with peptides, the ability of fluid-phase peptides to inhibit MAb binding to solid HSP72 was determined. For the inhibition assay, microtitration plates were coated with S. pneumoniae cell wall extracts. Hybridoma culture supernatants containing the HSP72-specific MAbs were incubated overnight at 4°C with several concentrations of peptide. Peptide treated and control supernatants were then tested by ELISA as described above.

Immune sera were from animals immunized three times with recombinant HSP72 antigens. One rabbit was immunized with 37.5 µg of purified HSP72_{rec} according to the immunization protocol described in Example 5. Pool murine sera were from three Balb/c mice immunized with

 ${
m HSP72}_{
m rec}$ from Example 5 and monkey pool sera were from -groups of two animals immunized with either ${
m HSP72}_{
m rec}$ or C-169 $_{
m rec}$.

TABLE 5: SEQUENCES AND LOCATIONS OF SYNTHETIC PEPTIDES
CORRESPONDING TO S. PNEUMONIAE HSP72
AMINO ACID RESIDUES

Peptide	Location	Sequence	Sequence
CS876	247-261	TSTQISLPFITAGEA	7
CS877	257-271	TAGEAGPLHLEMTLT	8
CS878	268-281	MTLTRAKFDDLTRD	9
CS879	276-290	DDLTRDLVERTKVPV	10
CS880	286-299	TKVPVRQALSDAGL	11
CS882	315-333	RIPAVVEAVKAETGKEPNK	23
CS873	457-471	KAKDLGTQKEQTIVI	12
CS874	467-481	QTIVIQSNSGLTDEE	24
CS875	477-491	LTDEIDRMMKDAEA	13
MAP 1	487-510	KDAEANAESDKKRKEEVDLRNEVD	14
CS870	507-521	NEVDQAIFATEKTIK	15
MAP 2	517-544	EKTIKETEGKGFDAERDAAQAALD DLKK	16
MAP 3	544-573	KAQEDNNLDDMKAKLEALNEKAQG LAVKLY	<u>17</u>
<u>MAP 4</u>	583-607	QEGAEGAQATGNAGDDVVDGEFTE K	18

10 B. <u>Identification and Localization of Linear B-Cell Epitopes</u>

The results presented in FIG. 23 revealed that most of the immunological reactivity was observed with the

peptides localized within amino acid residues 457 and 607 corresponding to the C-151 fragment of HSP72. Rabbit, mice and monkey sera antibody from animals immunized with either recombinant HSP72_{rec} of C-169_{rec} were reactive with 5 both, peptide MAP2 and peptide MAP4. Interestingly, the sequence of peptides MAP2 and MAP4 spans the hypervariable carboxyl-terminal region containing the sequences GFDAERDAAQAALDD (residues 527 to 541) and AEGAQATGNAGDDVV (residues 586 to 600) defined as exclusive 10 to S. pneumoniae HSP72 based on the comparison of HSP70 protein sequences available in the data banks. Our data thus revealed that both peptide sequences contain linear B-cell epitopes. In addition, the peptide MAP4 alone was also recognized by the MAb F1-Pn3.1. This reactivity was 15 confirmed by fluid-phase inhibition assays in which 10 μg/ml of MAP4 caused complete inhibition of F1-Pn3.1 binding to HSP72. Polyclonal antisera from animals immunized with the complete HSP72 recombinant protein also recognized B-cell epitopes localized on peptides CS875, 20 MAP1 and MAP3. All together these data indicate that the hypervariable C-151 terminal fragment of the HSP72 stimulates B-cell responses and possibly constitutes the immunodominant portion of the HSP72 protein. The lack of reactivity of MAbs F2-Pn3.3 and F2-Pn3.4 with the 25 synthetic peptides suggest that they react with conformational determinants present on the C-terminal region of the HSP72. The existence of protective epitopes in the C-151 region was strongly suggested in Example 5 where mice immunized with purified $C-169_{\mbox{rec}}$ were protected 30 from fatal infection with a virulent strain of S. pneumoniae thus suggesting that the carboxyl-terminal fragments C-169 or C-151 of S. pneumoniae HSP72 or even smaller fragments thereof may prove very useful for the development of a future vaccine.

35 The variable region comprised within the amino acid residues 244 to 330 also constitutes an antigenic domain. Linear epitopes located on overlapping peptides

CS877 (amino acids 257 to 271) and CS878 (amino acids 268-to 281), peptides CS880 (amino acis 286-299) and peptides CS882 (amino acids 315-333) were identified by hyperimmune sera.

5

EXAMPLE 9 - HSP70 (DnaK) from Streptococcus pyogenes and Streptococcus agalactiae: Molecular Cloning and DNA Sequencing of the hsp70 Genes; Nucleotide and Protein Sequence Analyses; Antigenic Relatedness to S. pneumoniae; Increased Streptococcus agalactiae HSP70 synthesis in response to heat.

A. Procedures

1. Bacterial Strains and Plasmid Vector

The strains of S. pyogenes (Group A

Streptococcus) and S. agalactiae (Group B Streptococcus) used in this study were provided by the Laboratoire de la Santé Publique du Québec (LSPQ), Sainte-Anne de Bellevue, Québec, Canada. S. agalactiae type II strain V8

20 corresponds to the ATCC strain 12973. S. pyogenes strain Bruno corresponds to the ATCC strain 19615. The E. colistrain XLI Blue MRF' was obtained from Stratagene.

Streptococcal strains were grown at 37°C in a 5 % CO₂ incubator. The streptococci were streaked on tryptic soy agar plates containing 5 % sheep blood (Les Laboratoires Quélab, Montréal, Canada), liquid cultures were made in heart infusion broth (Difco Laboratories, Detroit, MI) without agitation. The *E. coli* strain was grown at 37°C in L-broth with agitation at 250 rpm or on L-agar.

The general cloning phagemid pBluescript KS(-) was purchased from Stratagene.

2. Recombinant DNA Techniques

Restriction enzymes, T4 DNA ligase, and calf intestinal phosphatase were used as recommended by the suppliers (Pharmacia [Canada] Inc., Baie d'Urfe, Canada; and New England Biolabs Ltd., Mississauga, Canada).

Preparation of plasmids by equilibrium centrifugation in -CsCl-ethidium bromide gradients, agarose gel electrophoresis of DNA fragments, Southern hybridization, and colony DNA hybridization were performed as described 5 by J. Sambrook et al. [supra]. Chromosomal DNA of the streptococcal bacteria was prepared using the procedure of B. M. Jayarao et al. [J. Clin. Microbiol., 29, pp. 2774-2778 (1991)] adapted for bacterial cultures of 90 ml. Rapid plasmid preparations were made accordingly to D. 10 Ish-Horowicz et al. [Nucl. Acids Res. 9, pp. 2989-2998 (1981)]. Plasmids used for DNA sequencing were purified using plasmid kits from Qiagen Inc. (Chatsworth, CA). fragments were purified from agarose gels by the method of phenol freeze [S. A. Benson, Biotechniques 2, pp. 67-68 15 (1984)]. DNA probes were labeled with a³²P-dCTP or digoxigenin (DIG)-11-dUTP using the random primer labeling kits of Boehringer Mannheim (Laval, Canada). Plasmid transformations were carried out by the method of Simanis [Hanahan, D. In D. M. Glover (ed.), DNA Cloning, pp. 109-135, (1985)]. The sequencing of genomic DNA inserts in plasmids was done using synthetic oligonucleotides. sequencing reactions were carried out by the polymerase chain reaction (PCR) using the Taq Dye Deoxy Terminator Cycle Sequencing kit (ABI) and DNA electrophoresis was 25 performed on automated DNA sequencer 373A (ABI). The assembly of the DNA sequence was performed using the program Sequencher 3.0 from the Gene Codes Corporation (Ann Arbor, MI). Analysis of the DNA sequences and their predicted polypeptides were performed with the program 30 Gene Works version 2.45 from Intelligenetics, Inc. (Mountain View, CA). DNA amplification reactions were made using a DNA Thermal Cycler 480, Perkin Elmer. Oligonucleotides were synthesized by oligonucleotide

synthesizer model 394 (ABI).

3. Molecular Cloning of the Genes hsp70/dnakof S. agalactiae and S. pyogenes

Chromosomal DNA from S. agalactiae and S. pyogenes was digested to completion with various 5 restriction enzymes with palindromic hexanucleotide recognition sequences. The digests were analysed by Southern hybridization using a labeled PCR-amplified DNA probe corresponding to a 782 base-pairs region starting at base 332 downstream from the ATG initiation codon of the 10 HSP72 gene of S. pneumoniae (see SEQ ID NO 4). This DNA region was selected because it is relatively well conserved among the hsp70 genes of Gram-positive bacteria that have been characterized. The PCR amplification was done on the genomic DNA of S. pneumoniae using the 15 oligonucleotides OCRR2 (5'-AAGCTGTTATCACAGTTCCGG) and OCRR3 (5'-GATACCAAGTGACAATGGCG). Hybridizing genomic restriction fragments of sufficient size to code for a 70kDa polypeptide (>1.8 kb) were partially purified by extraction of genomic fragments of corresponding size from 20 agarose gel. Verification of the presence of the hsp70 gene among the purified genomic restriction fragments was done by Southern hybridization using the labeled $782-bp\ S$. pneumoniae DNA probe.

The purified genomic DNA restriction fragments

25 were cloned into dephosphorylated compatible restriction

sites of pBluescript KS(-) and transformed into the E.

coli strain XLI Blue MRF'. The colonies were screened by

DNA hybridization using the labeled 782-bp S. pneumoniae

DNA probe. Extracted plasmids were digested with various

30 restriction enzymes to evaluate the size of the inserts

and to verify the presence of the hsp70 gene by Southern

hybridization using the labeled 782-bp S. pneumoniae DNA

probe. Plasmid pURV5 contains a 4.2-kb HindIII insert of
the genomic DNA of S. agalactiae. Plasmid pURV4 contains

35 a 3.5-kb HindIII fragment of the genomic DNA of S.

pyogenes.

4. Heat Shock and Protein Labeling

The stress response of S: agalactiae to an heat shock was assayed by pulse-labeling with [35S]methionine as described before in Example 1. S. agalactiae bacteria 5 grown overnight in SMAM (Methionine assay Medium supplemented with 1 mg/l methionine, 1% (v/v) Isovitalex and 1 mg/l choline chloride) were pelleted by centrifugation and then resuspended in the methionine-free SMAM medium. The bacteria were incubated at 37°C for and then divided into two fractions of equal volume. samples were either incubated at 37 or 43°C for 10 minutes and then labeled with 100 $\mu\text{Ci/ml}$ [35s]methionine for 30 minutes at 37°C. The bacteria were extensively washed with PBS and cell extracts were prepared by treatment with 15 mutanolysine and lysozyme as described for the DNA isolation (M.Jayarao et al., supra) followed by sonication.

Immunological Characterization

A series of six monoclonal antibodies raised to the HSP72_{rec} protein (F3-Pn3.5 to F3-Pn3.10) and the monoclonal antibodies F1-Pn3.1, F2-Pn3.2, F2-Pn3.3, F2-Pn3.4 were tested for their reactivity to HSP70 antigens from S. pyogenes and S. agalactiae by Western blot analysis. Cell lysates from S. pyogenes and S. agalactiae were obtained from treatment with mutanolysine and lysozyme (M.Jayarao et al., supra)., sonication and boiling in SDS-PAGE sample buffer. Cell lysates from E. coli transformed with either pURV4 or pURV6 producing truncated S. pyogenes HSP70 antigens were tested after boiling in SDS-PAGE sample buffer.

B. DNA Sequence Analysis of the hsp70 /dnak Genes of Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus pneumoniae

A region of 2438 bases in the 4.2-kb HindIII insert of plasmid pURV5 was sequenced. This sequence

WO 96/40928 PCT/CA96/00322.

contains an open reading frame (ORF) of 1830 nucleotides—
coding for a polypeptide of 609 amino acids with a
molecular weight of 64907 (see SEQ ID NO: 7). The ORF has
an ATG start codon beginning at position 248 and TAA stop

5 codon ending at position 2077. The ATG start codon is
preceeded by the sequence GAGG, starting at position 237,
which is complementary to 16S rRNA and serves as a
ribosome binding site in E. coli [G. D. Stormo et al.,
Nucleic Acids Res. 10, pp. 2971-2996 (1982)]. The ORF and
10 the polypeptide of the HSP70 of S. agalactiae are,
respectively, identical at 85 and 95 % to the ORF and
polypeptide of the HSP72 of S. pneumoniae.

Preliminary sequence comparisons with the HSP72 of S. pneumoniae showed that the 3.5-kb HindIII insert in 15 plasmid pURV4 lacks the 3'-end coding region of the hsp70 of S. pyogenes. An attempt to clone a 3-kb SalI genomic fragment containing the entire coding region of hsp70 of S. pyogenes yielded plasmid pURV6 containing a 3.1-kb insert lacking the 5'-end coding region of the gene. assembly of the hsp70 gene regions present in plasmids pURV4 and pURV6 gave a 2183 nucleotide region containing an ORF of 1824 bases coding for a polypeptide of 608 amino acids with a molecular weight of 64847 (see SEQ ID NO: 20). The ATG start codon begins at position 204 and the 25 TAA stop codon extends to position 2030. Similarly to the hsp70 of S. agalactiae, the ATG start codon is preceeded by a putative ribosome binding site sequence GAGG starting at position 193[G. D. Stormo, supra]. The ORF and the deduced polypeptide of the hsp70 of S. pyogenes are, 30 respectively, identical at 85 and 94 % to the ORF and polypeptide of the HSP72 of $S.\ pneumoniae$. The ORF of plasmid pURV4 lacks 125 base pairs coding for 41 amino acids at the carboxyl end of the HSP70 of S. pyogenes; the ORF thus codes for the 567 amino acids of the amino end of that ${\tt HSP70}$ (N-567 $_{\tt rec}$). The ORF of plasmid pURV6 lacks 114 base pairs coding for 38 amino acids at the amino end of the HSP70 of S. pyogenes; the ORF thus codes

for the 570 amino acids of the carboxyl end of that HSP70 (C-570_{rec}).

The global comparison of the DNA open reading frames (FIG. 24) and amino acid sequences (FIG. 25) of the

5 HSP70/DnaK of S.pyogenes, S. agalactiae, and S. pneumoniae gave percentages of identity of 82 and 93 %, respectively.

C. <u>Increased Synthesis of HSP70 by S. agalactiae</u> in Response to Heat

One dimensional SDS-polyacrylamide gel electrophoretic analysis of cell extracts of heat-shocked and control <u>S. agalactiae</u> pulse-labeled with [35S]methionine revealed that the synthesis of a 70 kDa-protein was significantly increased after a thermal stress (FIG. 26, lanes 1 and 2). Radioimmunoprecipitation analysis revealed that the heat inducible 70kDa-protein was easily detected at 43°C using monoclonal antibody F2-Pn3.4 thus indicating that the protein belongs to the heat shock protein 70 (hsp70/DnaK) family (FIG. 26, lanes 3 and 4).

D. Antigenic Relatedness of HSP70 Proteins in S. pneumoniae, S. pyogenes and S. agalactiae

In this study, a panel of MAbs were used to

25 investigate the antigenic relatedness of *S. pyogenes*, *S. agalactiae* and *S. pneumoniae* HSP70 proteins. Eight of ten

MAbs reacted with all three *Streptoccocus* species thus indicating that some B-cell epitopes are widely distributed among *S. pneumoniae*, *S. pyogenes* and *S.*30 *agalactiae*. The MAb F1-Pn3.1 which is directed against an

agalactiae. The MAb F1-Pn3.1 which is directed against an epitope located between amino acid residues 584 and 607 of HSP72 from_S. pneumoniae did not react with HSP70 antigens from either S.pyogenes or S. agalactiae.

Comparison of this region among the three Streptococcus

species revealed differences in 5 to 8 amino acids located between amino acids 589 and 596. The MAb F2-Pn3.3 which

was also directed against epitopes present in the C-151 _ region was reactive with S. agalactiae but not wih S. pyogenes. These data clearly indicate that HSP70 proteins from Streptococcus species are structurally and immunologically related. There is however immunological distinction.

Analysis of the reactivity of MAbs F3-Pn3.5, F3-Pn3.6, F3-Pn3.7 and F3-Pn3.10 with truncated recombinant S. pyogenes HSP70 antigens allowed the identification of an antigenic region near the amino-terminal end on the S. pneumoniae HSP72. These MAbs reacted with constructs expressing the N-terminal 567 amino acid residues but failed to react with constructs expressing the C-570 fragment. These data localized the epitopes recognized by the MAbs F3-Pn3.5, F3-Pn3.6, F3-Pn3.7 and F3-Pn3.10 to between residues 1 and 38 of the HSP72 protein.

EXAMPLE 10 - Use of HSP70/HSP72 As A Human Vaccine

To formulate a vaccine for human use, appropriate HSP72 antigens may be selected from the polypeptides described herein. For example, one of skill in the art could design a vaccine around the HSP70/HSP72 polypeptide or fragments thereof containing an immunogenic epitope. The use of molecular biology techniques is particularly well-suited for the preparation of substantially pure recombinant antigens.

The vaccine composition may take a variety of forms. These include, for example solid, semi-solid and liquid dosage forms, such as powders, liquid solutions or suspensions, and liposomes. Based on our belief that the HSP70/HSP72 antigens of this invention may elicit a protective immune response when administered to a human, the compositions of this invention will be similar to those used for immunizing humans with other proteins and polypeptides, e.g. tetanus and diphtheria. Therefore, the

compositions of this invention will preferably comprise a pharmaceutcially acceptable adjuvant such as incomplete Freund's adjuvant, aluminum hydroxide, a muramyl peptide, a water-in oil emulsion, a liposome, an ISCOM or CTB, or a non-toxic B subunit from cholera toxin. Most preferably, the compositions will include a water-in-oil emulsion or aluminum hydroxide as adjuvant.

The composition would be administered to the patient in any of a number of pharmaceutically acceptable forms including intramuscular, intradermal, subcutaneous or topic. Preferrably, the vaccine will be administered intramuscularly.

Generally, the dosage will consist of an initial injection, most probably with adjuvant, of about 0.01 to 10 mg, and preferably 0.1 to 1.0 mg HSP72 antigen per patient, followed most probably by one or more booster injections. Preferably, boosters will be administered at about 1 and 6 months after the initial injection.

An important consideration relating to

20 pneumococcal vaccine development is the question of
mucosal immunity. The ideal mucosal vaccine will be
safely taken orally or intranasally as one or a few doses
and would elicit protective antibodies on the appropriate
surfaces along with systemic immunity. The mucosal

25 vaccine composition may include adjuvants, inert

particulate carriers or recombinant live vectors.

The anti-HSP72 antibodies of this invention are useful for passive immunotherapy and immunoprophylaxis of humans infected with *S. pneumoniae*, *S. pyogenes*, *S.*

30 agalactiae or related bacteria. The dosage forms and regimens for such passive immunization would be similar to those of other passive immunotherapies.

An antibody according to this invention is exemplified by a hybridoma producing MAb F1-Pn3.1

35 deposited in the American Type Culture Collection in Rockville, Maryland, USA on July 21, 1995, and identified

as Murine Hybridoma Cell Line, F1-Pn3.1. This deposit was assigned accession number HB 11960.

While we have described herein a number of embodiments of this invention, it is apparent that our basic embodiments may be altered to provide other embodiments that utilize the compositions and processes of this invention. Therefore, it will be appreciated that the scope of this invention includes all alternative embodiments and variations that are defined in the foregoing specification and by the claims appended hereto; and the invention is not to be limited by the specific embodiments which have been presented herein by way of

example.

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
 5
          (i) APPLICANT: Hamel, Josee
                          Brodeur, Bernard R
                         Martin, Denis
                          Rioux, Clement
10
         (ii) TITLE OF INVENTION: STREPTOCOCCAL HEAT SHOCK PROTEINS
                 MEMBERS OF THE HSP70 FAMILY
        (iii) NUMBER OF SEQUENCES: 26
15
         (iv) CORRESPONDENCE ADDRESS:
               (A) ADDRESSEE: Goudreau Gage Dubuc & Martineau Walker
               (B) STREET: 800 Place Victoria, Suite 3400, Stock
                      Exchange Tower
20
               (C) CITY: Montreal
               (D) STATE: Quebec
               (E) COUNTRY: CANADA
(F) ZIP: H4Z1E9
25
          (V) COMPUTER READABLE FORM:
               (A) MEDIUM TYPE: Floppy disk
               (B) COMPUTER: IBM PC compatible
               (C) OPERATING SYSTEM: PC-DOS/MS-DOS
               (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
30
         (vi) CURRENT APPLICATION DATA:
               (A) APPLICATION NUMBER:
               (B) FILING DATE:
               (C) CLASSIFICATION:
35
        (vii) PRIOR APPLICATION DATA:
               (A) APPLICATION NUMBER: US 08/472,534
               (B) FILING DATE: 07-JUN-1995
40
        (vii) PRIOR APPLICATION DATA:
               (A) APPLICATION NUMBER: US (PROVIS)60/001,805
               (B) FILING DATE: 04-AUG-1995
       (viii) ATTORNEY/AGENT INFORMATION:
45
               (A) NAME: Leclerc/Dubuc/Prince, Alain/Jean/Gaetan
               (C) REFERENCE/DOCKET NUMBER: BIOVAC2-PCT
        (ix) TELECOMMUNICATION INFORMATION:
               (A) TELEPHONE: (514) 397-7400
50
               (B) TELEFAX: (514) 397-4382
     (2) INFORMATION FOR SEQ ID NO:1:
55
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 3167 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: double
               (D) TOPOLOGY: linear
60
        (ii) MOLECULE TYPE: DNA (genomic)
       (iii) HYPOTHETICAL: NO
65
        (iv) ANTI-SENSE: NO
        (vi) ORIGINAL SOURCE:
               (A) ORGANISM: Streptococcus pneumoniae
70
        (ix) FEATURE:
               (A) NAME/KEY: CDS
```

(B) LOCATION: 30..755

(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 771..2912 5 (D) OTHER INFORMATION: /product= "FucI/HSP72 (C-169)" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: 10 GAACTTCATT TTTAGAAAGG AGTGAGTTT ATG TCT CAA GAT GAA AAA TTA ATT 53 . Met Ser Gln Asp Glu Lys Leu Ile CGT GAA CAG ATT TGT GAT GTT TGT CAT AAG ATG TGG CAA CTT GGT TGG Arg Glu Gln Ile Cys Asp Val Cys His Lys Met Trp Gln Leu Gly Trp 101 15 GTT GCT GCT AAC GAT GGG AAT GTA TCT GTT CGA TTA GAT GAG GAT ACC Val Ala Ala Asn Asp Gly Asn Val Ser Val Arg Leu Asp Glu Asp Thr 149 ATT CTT GCA ACA CCT ACT GGT ATC AGC AAA AGT TTT ATT ACA CCA GAA Ile Leu Ala Thr Pro Thr Gly Ile Ser Lys Ser Phe Ile Thr Pro Glu AAG CTG GTG AAG TTA AAT CTT AAA GGA GAG ATT TTA GAA GCA GAA GGT Lys Leu Val Lys Leu Asn Leu Lys Gly Glu Ile Leu Glu Ala Glu Gly 245 65 -GAT TAC TGT CCT TCT AGT GAA ATT AAA ATG CAC ATT CGG TGC TAC GAA Asp Tyr Cys Pro Ser Ser Glu Ile Lys Met His Ile Arg Cys Tyr Glu 293 80 GAA CGT GAG GAT GTT CGT TCA GTT GTT CAC GCG CAT CCA CCG ATT GCA Glu Arg Glu Asp Val Arg Ser Val Val His Ala His Pro Pro Ile Ala 341 ACA GGA TTT GCT CTT GCA CAC ATT CCT TTA GAT ACT TAT TCA CTA ATT Thr Gly Phe Ala Leu Ala His Ile Pro Leu Asp Thr Tyr Ser Leu Ile 389 40 GAG AGC GCG ATT GTG GTT GGG GCA ATT CCT ATT ACC CCA TIT GGA GTA Glu Ser Ala Ile Val Val Gly Ala Ile Pro Ile Thr Pro Phe Gly Val 45 CCG TCT ACA ATG GAA GTG CCA GAA GCA ATT ACA CCT TAT CTG CCC GAT Pro Ser Thr Met Glu Val Pro Glu Ala Ile Thr Pro Tyr Leu Pro Asp 485 145 CAT GAT GTC ATG CTA TTA GAA AAT CAT GGA GCT CTG ACT GTC GGA AGC His Asp Val Met Leu Leu Glu Asn His Gly Ala Leu Thr Val Gly Ser 533 160 GAT GTC ATT ACA GCA TAC TAC CGT ATG GAA ACT TTA GAA TTA GTC GCA Asp Val Ile Thr Ala Tyr Tyr Arg Met Glu Thr Leu Glu Leu Val Ala 581 AAG ACA ACC TTC CAC GGA AGA ATG TTA CTT TCT ACA AAG GGC ATT GAG Lys Thr Thr Phe His Gly Arg Met Leu Leu Ser Thr Lys Gly Ile Glu 629 190 GAG CAA GAA ATT GCT CGT CCG ACT TTA GAA CGT CTA TTC TCA ATG CGA Glu Gln Glu Ile Ala Arg Pro Thr Leu Glu Arg Leu Phe Ser Met Arg 65 GAA AAT TAT AAG GTT ACA GGT CGT CAC CCA GGC TAC CGT AAA TAT AAT Glu Asn Tyr Lys Val Thr Gly Arg His Pro Gly Tyr Arg Lys Tyr Asn 725 225

5	GAT Asp					GAGG.	AAA (GTAT	Me	G ATC t Ile 1	776
,						GAT Asp					824
10						AAC Asn 30					872
15						CCA Pro					920
20						CGT Arg					968
25						GTT Val					1016
						ACT Thr					1064
30						GGG Gly 110					1112
35						CAT His					1160
40		Phe				CAG Gln					1208
45						TTA Leu					1256
		Ala				GCT Ala					1304
50						GTA Val 190					1352
55	Gln					GTA Val					1400
60						CCT Pro				-	1448
65						GAA Glu					1496
						AAA Lys					1544

•										
•		GTT Val								1592
5		AGA Arg								1640
10		TTA Leu								1688
15		AAT Asn								1736
20		GGT Gly 325							**	1784
25		GGT Gly								1832
25		TTT Phe							•	1880
30		ACA Thr								1928
35		ATC Ile								1976
40		GAT Asp 405								2024
45		GTA Val								2072
43	 	TAC Tyr	 		_		 	 		2120
50		ATG Met								2168
55		GTG Val								2216
60		CAC His 485								2264
65		TTT Phe								2312
65		GTC Val								2360

5																ATT Ile	2408
5			ATC Ile														2456
10			GCC Ala 565														2504
15	CAA Gln	TCG Ser 580	AAC Asn	TCA Ser	GGT Gly	TTG Leu	ACT Thr 585	GAC Asp	GAA Glu	GAA Glu	ATC Ile	GAC Asp 590	CGC Arg	ATG Met	ATG Met	AAA Lys	2552
20	GAT Asp 595	GCA Ala	GAA Glu	GCA Ala	AAC Asn	GCT Ala 600	GAA Glu	TCC Ser	GAT Asp	AAG Lys	AAA Lys 605	CGT Arg	AAA Lys	GAA Glu	GAA Glu	GTA Val 610	2600
25	GAC Asp	CTT Leu	CGT Arg	AAT Asn	GAA Glu 615	GTG Val	GAC Asp	CAA Gln	GCA Ala	ATC Ile 620	TTT Phe	GCG Ala	ACT Thr	GAA Glu	AAG Lys 625	ACA Thr	2648
	ATC Ile	AAG Lys	GAA Glu	ACT Thr 630	GAA Glu	GGT Gly	AAA Lys	GGC Gly	TTC Phe 635	GAC Asp	GCA Ala	GAA Glu	CGT Arg	GAC Asp 640	GCT Ala	GCC Ala	2696
30	CAA Gln	GCT Ala	GCC Ala 645	CTT Leu	GAT Asp	GAC Asp	CTT Leu	AAG Lys 650	AAA Lys	GCT Ala	CAA Gln	GAA Glu	GAC Asp 655	AAC Asn	AAC Asn	TTG Leu	2744
35	GAC Asp	GAC Asp 660	ATG Met	AAA Lys	GCA Ala	AAA Lys	CTT Leu 665	GAA Glu	GCA Ala	TTG Leu	AAC Asn	GAA Glu 670	AAA Lys	GCT Ala	CAA Gln	GGA Gly	2792
40	CTT Leu 675	GCT Ala	GTT Val	AAA Lys	CTC Leu	TAC Tyr 680	GAA Glu	CAA Gln	GCC Ala	Ala	GCA Ala 685	GCG Ala	CAA Gln	CAA Gln	GCT Ala	CAA Gln 690	2840
45			GCA Ala						Thr								2888
	GTA Val								TAAG	ATGA	GT G	TATT	'GGA'I	g aa	gagt.	ATCT	2942
50	AAAA	AATA	CA C	GAAA	AGTT	T AT	AATG	ATTT	TTG	TAAT	CAA	GCTG	ATAA	CT A	TAGA	ACATC	3002
	AÀAA	GATT.	TT A	TTGA	TAAT	TT A	CCAA	TAGA	ATA	TTTA	GCT	AGAT	'ATAG	AG A	AATT	ATATT	3062
55	AGCT	GAGC	AT G	ATAG	TIGT	G TC	AAAA	ATGA	TGA	AGCG	GTA	AGGA	ATTT	TG T	TACC	TCAGT	3122
33	ATTG	TTGT	CT G	CATI	'IGTA	T CG	GCGA	TGGT	ATC	AGCT	ATG	АТАТ	C				3167
60 .	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	0:2:									
		(i) S	(A) (B)	NCE LEN TYP TOP	GTH: E: a	242 mino	ami: aci	no a d	cids							
55		(i	i) M	OLEC	ULE	TYPE	: pr	otei:	n		•			•			
		(x	i) s	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID:	NO:2	:					
70.	Met 1	Ser	Gln	Asp	Glu 5	Lys	Leu	Ile .	Arg	Glu 10	Gln	Ile	Cys	Asp	Val 15	Cys	

	His	Lys	Met	Trp 20	Gln	Leu	Gly	Trp	Val 25	Ala	Ala	Asn	Asp	Gly 30	Asn	Val
5	Ser	Val	Arg 35	Leu	Asp	Glu	Asp	Thr 40	Ile	Leu	Ala	.Thr	Pro 45	Thr	Gly	Ile
10	Ser	Lys 50		Phe	Ile	Thr	Pro 55	Glu	Lys	Leu	Val	Lys 60	Leu	Asn	Leu	Ļys
.0	Gly 65		Ile	Leu	Glu	Ala 70	Glu	Gly	Asp	Tyr	Cys 75	Pro	Ser	Ser	Glu	Ile 80
15	Lys	Met	His	Ile	Arg 85	Cys	Tyr	Glu	Ğlu	Arg 90	Glu	Asp	Val	Arg	Ser 95	Val
	Val	His	Ala	His 100	Pro	Pro	Ile	Ala	Thr 105	Gly	Phe	Ala	Leu	Ala 110	His	Ile
20	Pro	Leu	Asp 115	Thr	Tyr	Ser	Leu	Ile 120	Glu	Ser	Ala	Ile	Val 125	Val.	Gly	Ala
. 25	Ile	Pro 130	Ile	Thr	Pro	Phe	Gly 135	Val	Pro	Ser	Thr	Met 140	Glu	Val	Pro	Glu
. 43	Ala 145	Ile	Thr	Pro	Tyr	Leu 150	Pro	Asp	His	Asp	Val 155	Met	Leu	Leu	Glu	Asn 160
30	His	Gly	Ala	Leu	Thr 165	Val	Gly	Ser	Asp	Val 170	Ile	Thr	Ala	Tyr	Tyr 175	Arg
	Met	Glu	Thr	Leu 180	Glu	Leu	Val	Ala	Lys 185	Thr	Thr	Phe	His	Gly 190	Arg	Met
35	Leu	Leu	Ser 195	Thr	Lys	Gly	Ile	Glu 200	Glu	Gln	Glu	Ile	Ala 205	Arg	Pro	Thr
40	Leu	Glu 210	Arg	Leu	Phe	Ser	Met 215	Arg	Glu	Asn	Tyr	Lys 220	Val	Thr	Gly	Arg
70	His 225	Pro	Gly	Tyr	Arg	Lys 230	Tyr	Asn	Gly	Asp	Gly 235	Ser	Ile	Lys	Glu	Thr 240
45	Lys	Lys														
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10 : 3 :								
50		. ((i) S	(B)	NCE LEN TYP TOP	IGTH: E: a	714 mino	ami aci	.no a .d		;					
55		(i	i) M	IOLEC	ULE	TYPE	: pr	otei	.n							
		к)	ci) S	EQUE	NCE	DESC	RIPT	ION:	SEÇ	ID.	NO:3	:				
	Wat	T1 -	61 -	114 -	n	.	#1 -	~1	71 -	.	D	PM	-1		_,	_

Met Ile Gln His Pro Arg Ile Gly Ile Arg Pro Thr Ile Asp Gly Arg
15

Arg Gln Gly Val Arg Glu Ser Leu Glu Val Gln Thr Met Asn Met Ala
20

Lys Ser Val Ala Asp Leu Ile Ser Ser Thr Leu Lys Tyr Pro Asp Gly
45

Glu Pro Val Glu Cys Val Ile Ser Pro Ser Thr Ile Gly Arg Val Pro

	Glu 65	Ala	Ala	Ala	Ser	His 70	Glu	Leu	Phe	Lys	Lys 75		Asn	Val	Cys	Ala 80
5	Thr	Ile	Thr	Val	Thr 85	Pro	Cys	Trp	Cys	Туr 90		Ser	Glu	Thr	Met 95	Asp
10	Met	Ser	Pro	Asp 100	Ile	Pro	His	Ala	Ile 105	Trp	Gly	Phe	Asn	Gly 110		Glu
10	Arg	Pro	Gly 115		Val	Tyr	Leu	Ala 120	Ala	Val	Leu	Ala	Ser 125		Thr	Glr
15	Lys	Gly 130	Ile	Pro	Ala	Phe	Gly 135		Tyr	Gly	Arg	Asp 140		Gln	Glu	Ala
	Asn 145	Asp	Thr	Ala	Ile	Pro 150	Glu	Asp	Val	Lys	Glu 155	Lys	Leu	Leu	Arg	Tyr 160
20	Ala	Arg	Ala	Val	Leu 165	Ala	Thr	Gly	Leu	Met 170	Arg	Asp	Thr	Ala	Tyr 175	Leu
25	Ser	Met	Gly	Ser 180	Val	Ser	Met	Gly	Ile 185	Gly	Gly	Ser	·Ile	Vàl 190	Asn	Pro
23	Asp	Phe	Phe 195	Gln	Glu	Tyr	Leu	Gly 200	Met	Arg	Asn	Glu	Ser 205	Val	Asp	Met
30	Thr	Glu 210	Phe	Thr	Arg	Arg	Met 215	Asp	Arg	Gly	Ile	Tyr 220	Asp	Pro	Glu	Glu
	Phe 225	Glu	Arg	Ala	Leu	Lys 230	Trp	Val	Lys	Glu	Asn 235	Val	Lys	Glu	Gly	Phe 240
35	Asp	His	Asn	Arg	Glu 245	Asp	Leu	Val	Leu	Ser 250	Arg	Glu	Glu	Lys	Asp 255	Arg
10	Gln	Trp	Glu	Phe 260	Val	Ile	Lys	Met	Phe 265	Met	Ile	Gly	Arg	Asp 270	Leu	Met
	Val	Gly	Asn 275	Pro	Arg	Leu	Ala	Glu 280	Leu	Gly	Phe	Glu	Glu 285	Glu	Ala	Val
15	Gly	His 290	His	Ala	Leu	Val	Ala 295	Gly	Phe	Gln	Gly	Gln 300	Arg	Gln	Trp	Thr
	Asp 305	His	Phe	Pro	Asn	Gly 310	Asp	Phe	Met	Glu	Thr 315	Phe	Leu	Asn	Thr	Gln 320
50	Phe	Asp	Trp	Asn	Gly 325	lle	Arg	Lys	Pro	Phe 330	Val	Phe	Ala	Thr	Glu 335	Asn
55	Asp	Ser	Leu	Asn 340	Gly	Val	Ser	Met	Leu 345	Phe	Asn	Tyr	Leu	Leu 350	Thr	Asn
	Thr	Pro	Gln 355	Ile	Phe	Ala	Asp	Val 360	Arg	Thr	Tyr	Trp	Ser 365	Pro	Glu	Ala
60	Val	Glu 370	Arg	Val	Thr	Gly	Tyr 375	Thr	Leu	Glu	Gly	Arg 380	Ala	Ala	Ala	Gly
	Phe 385	Leu	His	Leu	Ile	Asn 390	Ser	Gly	Ser	Cys	Thr 395	Leu	qzA	Gly	Thr	Gly 400
55					Asp 405					410					415	
	Asp	Glu	Ser	Glu 420	Val	Gln	Ala	Met	Leu 425	Glu-	Asn	Thr	Asp	Phe 430	Pro	Pro

•	Ala	Asn	Arg 435	Glu	Tyr	Phe	Arg	Gly 440	Gly	Gly	Phe	Ser	Thr 445	Arg	Phe	Lev
5		Lys 450	Gly	Asp	Met	Pro	Val 455	Thr	Met	Val	Arg	Leu 460	Asn	Leu	Leu	Lys
10	Gly 465	Val	Gly	Pro	Val	Leu 470	Gln	Ile	Ala	Glu	Gly 475	Tyr	Thr	Leu	Glu	Let 480
10	Pro	Glu	Asp	Va1	His 485	His	Thr	Leu	Asp	Asn 490	Arg	Thr	Asp	Pro	Gly 495	Trp
15	Pro	Thr	Thr	Trp 500	Phe	Ala	Pro	Arg	Leu 505	Thr	Gly	Lys	Gly	Ala 510	Phe	Lys
	Ser	Val	Tyr 515	Asp	Val	Met	Asn	Asn 520	Trp	Gly	Ala	Asn	His 525	Gly	Ala	Ile
20	Thr	Tyr 530	Gly	His	Ile	Gly	Ala 535	Asp	Leu	Ile	Thr	Leu 540		Ser	Met	Leu
25	Arg 545	Ile	Pro	Gln	Ile	Glu 550	Val	Thr	Phe	Asp	Ile 555	Asp	Lys	Asn	Gly	Ile 560
ເງ	Val	Ser	Val	Lys	Ala 565	Lys	Asp	Leu	Gly	Thr 570	Gln	Lys	Glu	Gln	Thr 575	Ile
30	Val	Ile	Gln	Ser 580	Asn	Ser	Gly	Leu	Thr 585	ąsĄ	Glu	Glu	Ile	Asp 590	Arg	Met
	Met	Lys	Asp 595	Ala	Glu	Ala	Asn	Ala 600	Glu	Ser	Asp		Lys 605	Arg	Lys	Glu
35	Glu	Val 610	Asp	Leu	Arg	Asn	Glu 615	Val	Asp	Gln	Ala	Ile 620	Phe	Ala	Thr	Glu
10	Lys 625	Thr	Ile	Lys	Glu	Thr 630	Glu	Gly	Lys	Gly	Phe 635	Asp	Ala	Glu	Arg	Asp 640
Ю	Ala	Ala	Gln	Ala	Ala 645	Leu	Asp	Asp	Leu	Lys 650	Lys	Ala	Gln	Glu	Asp 655	Asn
15	Asn	Leu	Asp	Asp 660	Met	Lys	Ala	Lys	Leu 665	Glu	Ala	Leu	Asn	Glu 670	Lys	Ala
	Gln	Gly	Leu 675	Ala	Val	Lys	Leu	Tyr 680	Glu	Gln	Ala	Ala	Ala 685	Ala	Gln	Gln
50	Ala	Gln 690	Glu	Gly	Ala	Glu	Gly 695	Ala [.]	Gln	Ala	Thr	Gly 700	Asn	Ala	Gly	Asp
55	Asp 705	Val	Val	Asp		Glu 710		Thr	Glu	Lys						
,,,	(2)						•	10 : 4 :								
50		(i)	(A (E) LE 3) TY	NGTH PE: RANI	i: 43 nucl EDNE	20 b eic SS:	STIC ase acid doub ar	pair l	s						
55		(ii)	MOI	ECUI	E TY	PE:	DNA	(ger	omic	:)						
	(POTHE			10									
70		•	ORI	ri-se cginz	L SC	OURCE		ptoc	:oca:	ופ אי	1 Alima	nd ac	.			
			1,5	., Of	· OTHY			باتاتي					-			

5	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 6822502 (D) OTHER INFORMATION: /product= ""Heat-shock protein 72""</pre>	
10	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 32654320 (D) OTHER INFORMATION: /product= ""NH2-terminal portion of DNA J""</pre>	
15	(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 6822502	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
20	AAGCTTGATT CACGCTTTGA AAGAAGAAGG AATTGAAGAA ATCGCAGCAG ATGGCGAATT	60
	TGACCATAAC TACCATATGG CCATCCAAAC TCTCCCAGCA GACGATGAAC ACCCAGTAGA	120
25	TACCATCGCC CAAGTCTTTC AAAAAGGCTA CAAACTCCAT GACCGCATCC TACGCCCAGC	180
	AATGGTAGTG GTGTATAACT AAGATACAAA GCCCGTAAAA AGCTCGCAGT AAAAATAGGA	240
	GATTGACGAA GTGTTCGATG AACACAAGAA AATCTATCTT TTTTACTCAG AGCTTAGGGC	300
30	GTGTTCGATT CGGCAATTCT GACGGTAGCT AAAGCAACTC GTCAGAAAAC GGCAGTCGCT	360
	ATGGCGTTTG TCTAGCTTCC TTACTAACTC GTCGTCGAAA TAAAATCGAT TTCGACTCTT	420
15	CGTGTCGCAA TTTACATAAT AGAAAACTTG TCCGAAACGA CAATAAACTA TGAAGAAAGA	480
	TAAAATATGT TTGGCTTTGT AATAGTGAGC GAAGCGAACC AAAGACGATA CTCTTCGCTG	540
	TGGCGCTATT TGCGCAAATT TTGAGACCTT AGGCTCAAAG TTTAGTCAAA GAGATTGACA	600
10	AAGTCAAGCT CTGACGGCGT CGCCACTTAA GAAGAGTATC AAAAAGAAAA ATAGAAAATT	660
	AACTAACAAG GAGAAAAACA C ATG TCT AAA ATT ATC GGT ATT GAC TTA GGT Met Ser Lys Ile Ile Gly Ile Asp Leu Gly 1 5 10	711
5	ACA ACA AAC TCA GCA GTT GCA GTT CTT GAA GGA ACT GAA AGC AAA ATC Thr Thr Asn Ser Ala Val Ala Val Leu Glu Gly Thr Glu Ser Lys Ile 15 20 25	759
0	ATC GCA AAC CCA GAA GGA AAC CGC ACA ACT CCA TCT GTA GTC TCA TTC Ile Ala Asn Pro Glu Gly Asn Arg Thr Thr Pro Ser Val Val Ser Phe 30 35 40	807
55	AAA AAC GGA GAA ATC ATC GTT GGT GAT GCT GCA AAA CGT CAA GCA GTT Lys Asn Gly Glu Ile Ile Val Gly Asp Ala Ala Lys Arg Gln Ala Val 45 50 55	855
io '	ACA AAC CCA GAT ACA GTT ATC TCT ATC AAA TCT AAG ATG GGA ACT TCT Thr Asn Pro Asp Thr Val Ile Ser Ile Lys Ser Lys Met Gly Thr Ser 60 65 70	903
i5	GAA AAA GTT TCT GCA AAT GGA AAA GAA TAC ACT CCA CAA GAA ATC TCA Glu Lys Val Ser Ala Asn Gly Lys Glu Tyr Thr Pro Gln Glu Ile Ser 75 80 85 90	951
-	GCT ATG ATC CTT CAA TAC TTG AAA GGC TAC GCT GAA GAC TAC CTT GGT Ala Met Ile Leu Gln Tyr Leu Lys Gly Tyr Ala Glu Asp Tyr Leu Gly	999

	GAG Glu	AAA Lys	GTA Val	ACC Thr 110	AAA Lys	GCT Ala	GTT Val	ATC Ile	ACA Thr 115	GTT Val	CCG Pro	GCT Ala	TAC Tyr	TTC Phe 120	AAC Asn	GAC Asp	1047
5	GCT Ala	CAA Gln	CGT Arg 125	CAA Gln	GCA Ala	ACA Thr	AAA Lys	GAC Asp 130	GCT Ala	GGT Gly	AAA Lys	ATT Ile	GCT Ala 135	GGT Gly	CTT Leu	GAA Glu	1095
10	GTA Val	GAA Glu 140	CGT Arg	ATT Ile	GTT Val	AAC Asn	GAA Glu 145	CCA Pro	ACT Thr	GCA Ala	GCA Ala	GCT Ala 150	CTT Leu	GCT Ala	TAT Tyr	GGT Gly	1143
15	Leu 155	Asp	Lys	ACT Thr	Asp	Lys 160	Glu	Glu	Lys	Ile	Leu 165	Val	Phe	Asp	Leu	Gly 170	1191
20	GGT Gly	GGT Gly	ACA Thr	TTC Phe	GAC Asp 175	GTC Val	TCT Ser	ATC Ile	CTT Leu	GAA Glu 180	TTG Leu	GGT Gly	GAC Asp	GGT Gly	GTC Val 185	TTC Phe	1239
25	GAC Asp	GTA Val	TTG Leu	TCA Ser 190	ACT Thr	GCA Ala	G1y GGG	GAC Asp	AAC Asn 195	AAA Lys	CTT Leu	GGT Gly	GGT Gly	GAC Asp 200	GAC Asp	TTT Phe	1287
	GAC Asp	CAA Gln	AAA Lys 205	ATC Ile	ATT Ile	GAC Asp	CAC His	TTG Leu 210	GTA Val	GCA Ala	GAA Glu	TTC Phe	AAG Lys 215	AAA Lys	GAA Glu	AAC Asn	1335
30	GGT Gly	ATC- Ile 220	GAC Asp	TTG Leu	TCT Ser	ACT Thr	GAC Asp 225	AAG Lys	ATG Met	GCA Ala	ATG Met	CAA Gln 230	CGT Arg	TTG Leu	AAA Lys	GAT Asp	1383
35				AAA Lys													1431
40	ATC Ile	AGC Ser	TTG Leu	CCA Pro	TTT Phe 255	ATC Ile	ACT Thr	GCA Ala	GGT Gly	GAG Glu 260	GCT Ala	GGA Gly	CCT Pro	CTT Leu	CAC His 265	TTG Leu	1479
45				TTA Leu 270													1527
	GTT Val	GAA Glu	CGT Arg 285	ACA Thr	AAA Lys	GTT Val	CCA Pro	GTT Val 290	CGT Arg	CAA Gln	GCC Ala	CTT Leu	TCA Ser 295	GAT Asp	GCA Ala	GGT Gly	1575
50	Leu	Ser 300	Leu	TCA Ser	Glu	Ile	Asp 305	Glu	Val	Ile	Leu	Val 310	Gly	Gly	Ser	Thr	1623
55	CGT Arg 315	ATC Ile	CCT Pro	GCC Ala	GTT Val	GTT Val 320	GAA Glu	GCT Ala	GTT Val	AAA Lys	GCT Ala 325	GAA Glu	ACT Thr	GGT Gly	AAA Lys	GAA Glu 330	1671
60	CCA Pro	AAC Asn	AAA Lys	TCA Ser	GTA Val 335	AAC Asn	CCT Pro	GAT Asp	GAA Glu	GTA Val 340	GTT Val	GCT Ala	ATG Met	GGT Gly	GCG Ala 345	GCT Ala	1719
65	ATC Ile	CAA Gln	GGT Gly	GGT Gly 350	GTG Val	ATT Ile	ACT Thr	GGT Gly	GAT Asp 355	GTC Val	AAG Lys	GAT Asp	GTT Val	GTC Val 360	CTT Leu	CTT Leu	1767
	GAT Asp	Val	ACG Thr 365	CCA Pro	TTG Leu	TCA Ser	CTT Leu	GGT Gly 370	ATC Ile	GAA Glu	ACA Thr	ATG Met	GGT Gly 375	GGA Gly	GTA Val	TTT Phe	1815

5			CTT Leu															1863
•		Phe	TCA Ser															1911
10			GGT Gly															1959
15			TTG Leu															2007
20			ACA Thr 445															2055
25			CTT Leu															2103
	TCA Ser 475	GGT Gly	TTG Leu	ACT Thr	GAC Asp	GAA Glu 480	GAA Glu	ATC Ile	GAC Asp	CGC Arg	ATG Met 485	ATG Met	AAA Lys	GAT Asp	GCA Ala	GAA Glu 490		2151
30			GCT Ala														`	2199
35			GTG Val															2247
40			GGT Gly 525															2295
45			GAC Asp															2343
			AAA Lys															2391
50			TAC Tyr	Glu													-	2439
55			GCA Ala														:	2487
60			ACG Thr 605			TAAG	ATGA	GT G	TATT	'GGA'I	'G AA	GAGT	АТСТ	'AAA	TAAA.	ACA	:	2542
	CGAA	AAGI	TT A	TAAT	GATT	T TT	GTAA	TCAA	. GCT	'GATA	ACT	ATAG	AACA	TC A	AAAG	ATTTT	:	2602
65	ATTG	ATAA	TA T	TCCA	ATAG	A AT	ATTT	AGCT	AGA	TATA	.GAG	TAAA	TATA	TT A	GCTG	AGCAT	:	2662
	GATA	GTTG	TG I	CAAA	AATG	A TG	AAGC	GGTA	AGG	AATT	TTG	TTAC	CTCA	GT A	TTGT	TGTCT	:	2722
	GCAT	TTGT	'AT C	GGCG	ATGG	T AT	CAGC	TATG	ATA	TCAT	TAG	AAAT	ACAA	AC A	TATA	AATTT	:	2782
70	GTAA	TACC	GT I	CATA	ATTG	G TA	TGAT	TTGG	ACA	GTAG	TTG	TATT	TCTT	AT G	ATCA	ATTGG	:	2842

	AA:	TAT	ATAG	GCAA	ATAC	CTA A	GAA	GAGAC	A AA	AATZ	TATA	. AA7	רתדאי	CTG	TACT	TATAGG	2902
																CCTCTG	2962
5																GAAAGG	3022
																AAGAAA	3082
																TAAGGG	3142
10																GACGTA	3202
																CTTGAA	3262
15	TT	ATG	AAC	AAT	ACT	GAA	TTT	TAT Tyr	GAT	CGT	CTG	GGG	GTA	TCC	AAA	AAC	3309
	GCT	_	GCA	GAC	GAA	_	ΑΑΑ	AAG	GCT	יי מייי		ם מני	. Com	ייייי	מממ	AAA	3357
20	Ala	Ser	Ala	Asp	Glu 20	Ile	Lys	Lys	Ala	Tyr 25	Arg	Lys	Leu	Ser	Lys 30	Lys	3337
25	TAT Tyr	CAC His	CCA Pro	GAT Asp 35	Ile	AAC Asn	AAG Lys	GAG Glu	CCT Pro 40	Gly	GCT Ala	GAG Glu	GAC Asp	AAG Lys 45	Tyr	AAG Lys	3405
	GAA Glu	GTT Val	CAA Gln 50	Glu	GCC Ala	TAT Tyr	GAG Glu	ACT Thr 55	TTG Leu	AGT Ser	GAC Asp	GAC Asp	CAA Gln 60	Lys	CGT Arg	GCT Ala	3453
30	GCC Ala	TAT Tyr 65	Asp	CAG Gln	TAT Tyr	GGT Gly	GCT Ala 70	Ala	GGC Gly	GCC Ala	AAT Asn	GGT Gly 75	Gly	TTT Phe	GGT Gly	GGA Gly	3501
35	GCT Ala 80	Gly	GGT Gly	TTC	GGC Gly	GGT Gly 85	TTC Phe	AAT Asn	GGG Gly	GCA Ala	GGT Gly 90	GGC Gly	TTC Phe	GGT Gly	GGT Gly	TTT Phe 95	3549
40	GAG Glu	GAT Asp	ATT Ile	TTC Phe	TCA Ser 100	Ser	TTC Phe	TTC Phe	GGC Gly	GGA Gly 105	GGC Gly	GGT Gly	TCT Ser	TCG Ser	CGC Arg 110	AAT Asn	3597
45	CCA Pro	AAC Asn	GCT Ala	CCT Pro 115	CGC Arg	CAA Gln	GGA Gly	GAT Asp	GAT Asp 120	CTC Leu	CAG Gln	TAT Tyr	CGT Arg	GTC Val 125	AAT Asn	TTG Leu	3645
50	ACC Thr	TTT Phe	GAA Glu 130	GAA Glu	GCT Ala	ATC Ile	TTC Phe	GGA Gly 135	ACT Thr	GAG Glu	AAG Lys	GAA Glu	GTT Val 140	AAG Lys	TAT Tyr	CAT His	3693
	CGT Arg	GAA Glu 145	GCT Ala	GGC Gly	TGT Cys	CGT Arg	ACA Thr 150	TGT Cys	AAT Asn	GGA Gly	TCT Ser	GGT Gly 155	GCT Ala	AAG Lys	CCA Pro	GGG Gly	3741
55	ACA Thr 160	AGT Ser	CCA Pro	GTC Val	ACT Thr	TGT Cys 165	GGA Gly	CGC Arg	TGT Cys	CAT His	GGC Gly 170	GCT Ala	GGT Gly	GTC Val	ATT Ile	AAC Asn 175,	. 3789
60	GTC Val	GAT Asp	ACG Thr	CAG Gln	ACT Thr 180	CCT Pro	CTT Leu	GGT Gly	ATG Met	ATG Met 185	CGT Arg	CGC Arg	CAA Gln	GTA Val	ACC Thr 190	TGT Cys	3837
65	GAT Asp	GTC Val	TGT Cys	CAC His 195	GGT Gly	CGA Arg	GGA Gly	AAA Lys	GAA Glu 200	ATC Ile	AAA Lys	TAT Tyr	CCA Pro	TGT Cys 205	ACA Thr	ACC Thr	3885
	TGT Cys	CAT His	GGA Gly 210	ACA Thr	GGT Gly	CAT His	GAG Glu	AAA Lys 215	CAA Gln	GCT Ala	CAT His	AGC Ser	GTA Val 220	CAT His	GTG Val	AAA Lys	3933

5				GGT Gly													3981
J		Glu		GGC Gly													4029
10	GTT Val	TCT Ser	GTG Val	GAA Glu	GCT Ala 260	AGT Ser	GAC Asp	AAG Lys	TTT Phe	GAA Glu 265	CGT Arg	GAA Glu	GGA Gly	ACG Thr	ACT Thr 270	ATC Ile	4077
15 .	TTC Phe	TAC Tyr	AAT Asn	CTC Leu 275	AAC Asn	CTC Leu	AAC Asn	TTT Phe	GTC Val 280	CAA Gln	GCG Ala	GCT Ala	CTT Leu	GGT Gly 285	GAT Asp	ACA Thr	4125
20	GTA Val	GAT Asp	ATT Ile 290	CCA Pro	ACT Thr	GTT Val	CAC His	GGT Gly 295	GAT Asp	GTT Val	GAA Glu	TTG Leu	GTT Val 300	ATT Ile	CCA Pro	GAG Glu	4173
25	GGA Gly	ACT. Thr 305	CAG Gln	ACT Thr	GGT Gly	AAG Lys	AAA Lys 310	TTC Phe	CGC Arg	CTA Leu	CGT Arg	AGT Ser 315	AAG Lys	GGG Gly	GCA Ala	CCG Pro	4221
	AGC Ser 320	CTT Leu	CGT Arg	GGC Gly	GGT Gly	GCA Ala 325	GTT Val	GGT Gly	GAC Asp	CAA Gln	TAC Tyr 330	GTT Val	ACT Thr	GTT Val	AAT Asn	GTC Val 335	4269
30				ACA Thr													4317
35	TTC Phe																4320
40	(2)			ION EQUE													4
			-, -	(A) (B)	LEN TYP	IGTH: E: a	607 mino Y: 1	ami aci	no a d	cids							
45				EQUE			_			ID	NO:5						
50	Met 1			Ile									Asn	Ser	Ala 15	Val	
55	Ala	Val	Leu	Glu 20	Gly	Thr	Glu	Ser	Lys 25	Ile	Ile .	Ala	Asn	Pro 30	Glu	Gly	
<i></i>	Asn	Arg	Thr 35	Thr	Pro	Ser	Val	Val 40	Ser	Phe	Lys .	Asn	Gly 45	Glu	Ile	Ile	
60	Val	Gly 50	Asp	Ala	Ala	Lys	Arg 55	Gln .	Ala	Val	Thr .	Asn 60	Pro .	Asp	Thr	Val	

Gly Lys Glu Tyr Thr Pro Gln Glu Ile Ser Ala Met Ile Leu Gln Tyr 85 90 95

Leu Lys Gly Tyr Ala Glu Asp Tyr Leu Gly Glu Lys Val Thr Lys Ala 100 $$ 105 $$ 110

	Val	Ile	Thr 115	Val	Pro	Ala	Tyr	Phe 120	Asn	Asp	Ala	Gln	Arg 125	Gln	Ala	Thi
5	Lys	Asp 130	Ala	Gly	Lys	Ile	Ala 135	Gly	Leu	Glu	Val	Glu 140	Arg	Ile	Val	Asr
10	Glu 145	Pro	Thr	Ala	Ala	Ala 150	Leu	Ala	Tyr	Gly	Leu 155	Asp	Lys	Thr	Asp	Lys 160
10	Glu	Glu	Lys	Ile	Leu 165	Val	Phe	Asp	Leu	Gly 170	Gly	Gly	Thr	Phe	Asp 175	Val
15	Ser	Ile	Leu	Glu 180	Leu	Gly	Asp	Gly	Val 185	Phe	Asp	Val	Leu	Ser 190	Thr	Ala
	Gly	Asp	Asn 195	Lys	Leu	Gly	Gly	Asp 200	Asp	Phe	Asp	Gln	Lys 205	Ile	Ile	Asp
20	His	Leu 210	Val	Ala	Glu	Phe	Lys 215	Lys	Glu	Asn	Gly	Ile 220	Asp	Leu	Ser	Thr
25	Asp 225	Lys	Met	Ala	Met	Gln 230	Arg	Leu	Lys	Asp	Ala 235	Ala	Glu	Lys	Ala	Lys 240
-5	Lys	Asp	Leu	Ser	Gly 245	Val	Thr	Ser	Thr	Gln 250	Ile	Ser	Leu	Pro	Phe 255	Ile
30	Thr	Ala	Gly	Glu 260	Ala	Gly	Pro	Leu	His 265	Leu	Glu	Met	Thr	Leu 270	Thr	Arg
	Ala	Lys	Phe 275	Asp	Asp	Leu	Thr	Arg 280	Asp	Leu	Val	Glu	Arg 285	Thr	Lys	Val
35	Pro	Val 290	Arg	Gln	Ala	Leu	Ser 295	Asp	Ala	Gly	Leu	Ser 300	Leu	Ser	Glu	Ile
10	Asp 305	Glu	Val	Ile	Leu	Val 310	GЉ	Gly	Ser	Thr	Arg 315	Ile	Pro	Ala	Val	Val 320
. •	Glu	Ala	Val	Lys	Ala 325	Glu	Thr	Gly	Lys	Glu 330	Pro	Asn	Lys	Ser	Val 335	Asn
15	Pro	Asp	Glu	Val 340	Val	Ala	Met	Gly	Ala 345	Ala	Ile	Gln	Gly	Gly 350	Val	Ile
	Thr	Gly	Asp 355	Val	Lys	Asp	Val	Val 360	Leu	Leu	Asp	Val	Thr 365	Pro	Leu	Ser
50		370			Thr		375					380				
55	385				Pro	390					395					400
					Ala 405					410					415	
60				420	Asn				425					430		
		s	435		Arg			440					445			
55		450			Ile		455					460				
	Lys 465	Glu	Gln	Thr	Ile	Val 470	Ile	Gln	Ser	Asn	Ser 475	Gly	Leu	Thr	Asp	Glu 480

Glu Ile Asp Arg Met Met Lys Asp Ala Glu Ala Asn Ala Glu Ser Asp Lys Lys Arg Lys Glu Glu Val Asp Leu Arg Asn Glu Val Asp Gln Ala 500 505 510Ile Phe Ala Thr Glu Lys Thr Ile Lys Glu Thr Glu Gly Lys Gly Phe . 10 Asp Ala Glu Arg Asp Ala Ala Gln Ala Ala Leu Asp Asp Leu Lys Lys Ala Gln Glu Asp Asn Asn Leu Asp Asp Met Lys Ala Lys Leu Glu Ala Leu Asn Glu Lys Ala Gln Gly Leu Ala Val Lys Leu Tyr Glu Gln Ala Ala Ala Ala Gln Gln Ala Gln Glu Gly Ala Glu Gly Ala Gln Ala Thr 580 585 590 Gly Asn Ala Gly Asp Asp Val Val Asp Gly Glu Phe Thr Glu Lys 25 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 352 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Met Asn Asn Thr Glu Phe Tyr Asp Arg Leu Gly Val Ser Lys Asn Ala 40 Ser Ala Asp Glu Ile Lys Lys Ala Tyr Arg Lys Leu Ser Lys Lys Tyr 20 25 30His Pro Asp Ile Asn Lys Glu Pro Gly Ala Glu Asp Lys Tyr Lys Glu 35 40 45 Val Gln Glu Ala Tyr Glu Thr Leu Ser Asp Asp Gln Lys Arg Ala Ala 50 60 Tyr Asp Gln Tyr Gly Ala Ala Gly Ala Asn Gly Gly Phe Gly Gly Ala 65 70 75 80 Gly Gly Phe Gly Gly Phe Asn Gly Ala Gly Gly Phe Gly Phe Glu 55 Asp Ile Phe Ser Ser Phe Phe Gly Gly Gly Ser Ser Arg Asn Pro 100 105 110Asn Ala Pro Arg Gln Gly Asp Asp Leu Gln Tyr Arg Val Asn Leu Thr 60 Phe Glu Glu Ala Ile Phe Gly Thr Glu Lys Glu Val Lys Tyr His Arg Glu Ala Gly Cys Arg Thr Cys Asn Gly Ser Gly Ala Lys Pro Gly Thr 145 150 155 160Ser Pro Val Thr Cys Gly Arg Cys His Gly Ala Gly Val Ile Asn Val

	Asp	Thr	Gln	Thr 180	Pro	Leu	Gly	Met	Met 185	Arg	Arg	Gln	Val	Thr 190	Cys	Asp
5	Val	Суs	His 195	Gly	Arg	Gly	Lys	Glu 200	Ile	Lys	Tyr	Pro	Cys 205	Thr	Thr	Cys
10	His	Gly 210	Thr	Gly	His	Glu	Lys 215	Gln	Ala	His	Ser	Val 220	His	Val	Lys	Ile
10	Pro 225	Ala	Gly	Val	Glu	Thr 230	Gly	Gl'n	Gln	Ile	Arg 235	Leu	Ala	Gly	Gln	Gly 240
15	Glu	Ala	Gly	Phe	Asn 245	Gly	Gly	Pro	Tyr	Gly 250	Asp	Leu	Tyr	Val	Val 255	Val
	Ser	Val	Glu	Ala 260	Ser	Asp	Lys	Phe	Glu 265	Arg	Glu	Gly	Thr	Thr 270	Ile	Phe
20	Tyr	Asn	Leu 275	Asn	Leu	Asn	Phe	Val 280	Gln	Ala	Ala	Leu	Gly 285	Asp	Thr	Val
25	Asp	Ile 290	Pro	Thr	Val	His	Gly 295	Asp	Val	Glu	Leu	Va1 300	Ile	Pro	Glu	Gly
	Thr 305	Gln	Thr	Gly	Lys	Lys 310	Phe	Arg	Leu	Arg	Ser 315	Lys	Gly	Ala	Pro	Ser 320
30	Leu	Arg	Gly	Gly	Ala 325	Val	Gly	Asp	Gln	Tyr 330	Val	Thr	Val	Asn	Val 335	Val
	Ţhr	Pro	Thr	Gly 340	Leu	Asn	Asp	Arg	Gln 345	Lys	Val	Ala	Leu	Lys 350	Glu	Phe
35	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	10 : 7 :								
10		(i)	(A			: 15 amin	ami o ac	no a		1						
		(ii)	MOL	ECUL	E TY	PE:	pept	ide			•					
15		121	250								_					•
50			_	UENC Thr					-			Thr	Ala	Gly	Glu	
	(2)	INFO	RMAT	'ION	FOR		ID N	10 : 8 :			10					15
55		(i)	(A (B	UENC) LE) TY) TO	NGTH PE:	: 15 amin	ami o ac	no a								
50		(ii)	MOL	ECUL	E TY	PE:	pept	ide								
		(xi)	SEQ	UENC	E DE	SCRI	PTIÇ	N: S	EQ I	D NO	:8:					
55		Thr 1	Ala	Gly	Glu	Ala 5	Gly	Pro	Leu	His	Leu 10	Glu	Met	Thr	Leu	Thr 15
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:9:								
70		(i)		UENC												

70

			(B) TYPE: amino acid (D) TOPOLOGY: linear
5		(ii)	MOLECULE TYPE: peptide
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:9:
10		Met 1	Thr Leu Thr Arg Ala Lys Phe Asp Asp Leu Thr Arg Asp 5 10
	(2)	INFO	RMATION FOR SEQ ID NO:10:
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
20		(ii)	MOLECULE TYPE: peptide
25		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:10:
		Asp 1	Asp Leu Thr Arg Asp Leu Val Glu Arg Thr Lys Val Pro Val 5 10 15
30	(2)	INFO	RMATION FOR SEQ ID NO:11:
_		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
35		(ii)	MOLECULE TYPE: peptide
10		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:11:
		Thr 1	Lys Val Pro Val Arg Gln Ala Leu Ser Asp Ala Gly Leu 5 10
5	(2)	INFO	RMATION FOR SEQ ID NO:12:
		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: peptide
55		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:12:
50		Lys 1	Ala Lys Asp Leu Gly Thr Gln Lys Glu Gln Thr Ile Val Ile 5 10 15
	(2)	INFOR	RMATION FOR SEQ ID NO:13:
55		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: peptide

98

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: Leu Thr Asp Glu Ile Asp Arg Met Met Lys Asp Ala Glu Ala 5 (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: Lys Asp Ala Glu Ala Asn Ala Glu Ser Asp Lys Lys Arg Lys Glu Glu 20 10 Val Asp Leu Arg Asn Glu Val Asp 25 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: Asn Glu Val Asp Gln Ala Ile Phe Ala Thr Glu Lys Thr Ile Lys 40 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: Glu Lys Thr Ile Lys Glu Thr Glu Gly Lys Gly Phe Asp Ala Glu Arg 55 Asp Ala Ala Gln Ala Ala Leu Asp Asp Leu Lys Lys 20 60 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 65 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 70 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

	Lys Ala Gln Glu Asp Asn Asn Leu Asp Asp Met Lys Ala Lys Leu Glu 1 5 10 15	
5	Ala Leu Asn Glu Lys Ala Gln Gly Leu Ala Val Lys Leu Tyr 20 25 30	
	(2) INFORMATION FOR SEQ ID NO:18:	
10.	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: peptide	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
20	Gln Glu Gly Ala Glu Gly Ala Gln Ala Thr Gly Asn Ala Gly Asp Asp 1 5 10 15	
25	Val Val Asp Gly Glu Phe Thr Glu Lys 20 25	
	(2) INFORMATION FOR SEQ ID NO:19:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2183 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Streptococcus pyogenes	
45	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2042030	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
50	CAGCGATGGT AGTTGTTTAT AACTAAGGTA AATGAGTTTT CGTTTTTGTC CGTAATGACA	60
	GTAAACTAGA TAGCAAGTTA GAAGCTATTT CGCTTGCTGA TTAAACTATA GTGATTGCTT	120
55	AGAATTGGAA GTAAAATAAT TCGAGTGCTT ACTAAGATAA ATTGAAATAA AAAGTAATAA	180
	AGTATAAAAT AAGAGGTATT AAC ATG TCT AAA ATT ATT GGT ATT GAC TTA Met Ser Lys Ile Ile Gly Ile Asp Leu 1	230
60		220
	Gly Thr Thr Asn Ser Ala Val Ala Val Leu Glu Gly Thr Glu Ser Lys 10 15 20 25	278
65	ATC ATT GCT AAC CCA GAA GGC AAT CGT ACA ACT CCT TCA GTA GTA TCA Ile Ile Ala Asn Pro Glu Gly Asn Arg Thr Thr Pro Ser Val Val Ser 30 35 40	326
70	TTC AAA AAT GGT GAA ATT ATC GTG GGT GAT GCT GCA AAA CGC CAA GCA Phe Lys Asn Gly Glu Ile Ile Val Gly Asp Ala Ala Lys Arg Gln Ala	374

5				CCA Pro														422
,				GTT Val														470
10				ATT Ile														518
15	GGA Gly	GAA Glu	AAA Lys	GTA Val	GAA Glu 110	AAA Lys	GCA Ala	GTT Val	ATT Ile	ACT Thr 115	GTT Val	CCA Pro	GCT Ala	TAT Tyr	TTC Phe 120	AAC Asn		566
20				CGT Arg 125														614
25				CGT Arg														662
				AAG Lys														710
30	GGT Gly 170	GGT Gly	GGT Gly	ACA Thr	TTT Phe	GAC Asp 175	GTA Val	TCA Ser	ATC Ile	CTT Leu	GAA Glu 180	TTA Leu	GGT Gly	GAT Asp	GLY	GTC Val 185		758
35				CTT Leu												GAC Asp		806
40				AAA Lys 205														854
45				GAC Asp														902
				GAA Glu														950
50				TTA Leu														998
55				AGC Ser													1	046
60				CGT Arg 285													1	094
65				TTG Leu													1	142
03				CCA Pro													1	190

5												Val				GCT Ala 345	1238
J	GCT Ala	ATC Ile	CAA Gln	GGT Gly	GGG Gly 350	Val	ATC Ile	ACT Thr	GGG Gly	GAT Asp 355	GTG Val	AAA Lys	GAC Asp	GTT Val	GTC Val 360	CTT Leu	1286
10	CTT Leu	GAC Asp	GTA Val	ACA Thr 365	CCA Pro	TTG Leu	TCA Ser	CTT Leu	GGT Gly 370	Ile	GAA Glu	ACA Thr	ATG Met	GGT Gly 375	GGT Gly	GTC Val	1334
15	Phe	Thr	Lys 380	Leu	Ile	Asp	Arg	Asn 385	Thr	Thr	Ile	Pro	Thr 390	Ser	Lys		1382
20	CAA Gln	GTC Val 395	TTC Phe	TCA Ser	ACA Thr	GCA Ala	GCA Ala 400	GAC Asp	AAC Asn	CAA Gln	CCA Pro	GCC Ala 405	GTT Val	GAT Asp	ATC Ile	CAT His	1430
25	GTT Val 410	CTT Leu	CAA Gln	GGT Gly	GAA Glu	CGC Arg 415	CCA Pro	ATG Met	GCA Ala	GCA Ala	GAT Asp 420	AAC Asn	AAG Lys	ACT Thr	CTT Leu	GGT Gly 425	1478
	CGC Arg	TTC Phe	CAA Gln	TTG Leu	ACT Thr 430	GAT Asp	ATC Ile	CCA Pro	GCT Ala	GCA Ala 435	CCT Pro	CGT Arg	GGA Gly	ATC Ile	CCA Pro 440	CAA Gln	1526
30	ATT Ile	GAA Glu	GTA Val	ACA Thr 445	TTT Phe	GAT Asp	ATC Ile	GAT Asp	AAA Lys 450	AAC Asn	GGT Gly	ATT Ile	GTT Val	TCT Ser 455	GTA Val	AAA Lys	1574
35	GCT Ala	AAA Lys	GAC Asp 460	CTT Leu	GGT Gly	ACG Thr	CAA Gln	AAG Lys 465	GAA Glu	CAA Gln	CAC His	ATC Ile	GTT Val 470	ATC Ile	AAA Lys	TCA Ser	1622
40	AAC Asn	GAC Asp 475	GGA Gly	CTT Leu	TCT Ser	GAA Glu	GAA Glu 480	GAA Glu	ATT Ile	GAT Asp	CGC Arg	ATG Met 485	ATG Met	AAA Lys	GAC Asp	GCT Ala	1670
45	GAA Glu 490	GCT Ala	AAT Asn	GCC Ala	GAA. Glu	GCC Ala 495	GAT Asp	GCG Ala	AAA Lys	CGT Arg	AAA Lys 500	GAA Glu	GAA Glu	GTT Val	GAC Asp	CTT Leu 505	1718
-	AAA Lys	AAC Asn	GAA Glu	GTT Val	GAC Asp 510	CAA Gln	GCT Ala	ATC Ile	TTT Phe	GCT Ala 515	ACT Thr	GAA Glu	AAA Lys	ACA Thr	ATC Ile 520	AAA Lys	1766
50	GAA Glu	ACT Thr	GAA Glu	GGT Gly 525	AAA Lys	GGC Gly	TTT Phe	GAC Asp	ACA Thr 530	GAA Glu	CGC Arg	GAT Asp	GCA Ala	GCG Ala 535	CAA Gln	TCA Ser	1814
55	GCT Ala	CTT Leu	GAC Asp 540	GAG Glu	TTA Leu	AAA Lys	GCT Ala	GCG Ala 545	CAA Gln	GAA Glu	TCT Ser	GGC Gly	AAC Asn 550	CTT Leu	GAC Asp	GAC Asp	1862
60	ATG Met	AAA Lys 555	GCT Ala	AAA Lys	CTT Leu	GAA Glu	GCA Ala 560	TTA Leu	AAT Asn	GAA Glu	AAA Lys	GCG Ala 565	CAA Gln	GCT Ala	TTG Leu	GCT . Ala	1910
65	GTT Val 570	AAA Lys	ATG Met	TAC Tyr	GAG Glu	CAA Gln 575	GCT Ala	GCA Ala	GCA Ala	GCT Ala	CAA Gln 580	CAA Gln	GCA Ala	GCA Ala	CAA Gln	GGT Gly 585	1958
33	GCA Ala	GAA Glu	GGT Gly	GCA Ala	CAA Gln 590	GCT Ala	AAT Asn	GAT Asp	TCA Ser	GCA Ala 595	AAT Asn	AAT Asn	GAT Asp	GAT Asp	GTT Val 600	GTA Val	2006

_				TTT Phe 605	Thr			TAA'	rgat.	TTA (G'ITA'	rcta(GT A	ACAT	TAAT	A	2057
5	TCC	GAAT'	TCA (GAGG'	TTGT	AC C	AAAC	CTCT	G TT	rrrg	GCTA	AAT	AAAA'	rgt :	AAAA	ATGCTG	2117
*	ACG	ГСАА	AAT	ATTT	FAAG	AA A	GGAA'	raca.	A GT	rcga:	LTAT	TCG	AACA	CAG (GCTA	AAGCGT	2177
10	GTA	AAG															2183
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	VO:20	0:								
15			(i) :	(B)	ENCE LEI TYI	NGTH PE:	: 608 amin	am:	ino a id		5						
20		(:	ii) 1	MOLE	CULE	TYP	E: pi	rote	in								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Met Ser Lys Ile Ile Gly Ile Asp Leu Gly Thr Thr Asn Ser Ala Val																
25	Met 1	Ser	Lys	Ile	Ile 5	Gly	Ile	Asp	Leu	Gly 10	Thr	Thr	Asn	Ser	Ala 15	Val	
	Ala	Val	Leu	Glu 20	Gly	Thr	Glu	Ser	Lys 25	Ile	Ile	Ala	Asn	Pro 30	Glu	Gly	
30	Asn	Arg	Thr 35	Thr	Pro	Ser	Val	Val 40	Ser	Phe	Lys	Asn	Gly 45	Glu	Ile	Ile	
35	Val	G1y 50	Asp	Ala	Ala	Lys	Arg 55	Gln	Ala	Val	Thr	Asn 60	Pro	Glu	Thr	Val	
,	Ile 65	Ser	Ile	Lys	Ser	Lys 70	Met	Gly	Thr	Ser	Glu 75	Lys	Val	Ser	Ala	Asn 80	
40	Gly	Lys	Glu	Tyr	Thr 85	Pro	Gln	Glu	Ile	Ser 90	Ala	Met	Ile	Leu	Gln 95	Tyr	
	Leu	Lys	Gly	Tyr 100	Ala	Glu	Asp	Tyr	Leu 105	Gly	Glu	Lys	Val	Glu 110	Lys	Ala	
45	Val	Ile	Thr 115	Val	Pro	Ala	Tyr	Phe 120	Asn	Asp	Ala	Gln	Arg 125	Gln	Ala	Thr	
50	Lys	Asp 130	Ala	Gly	Lys	Ile	Ala 135	GJA	Leu	Glu	Val	Glu 140	Arg	Ile	Val	Asn	
	Glu 145	Pro	Thr	Ala	Ala	Ala 150	Leu	Ala	Tyr	Gly	Met 155	Asp	Lys	Thr	Asp	Lys 160	
55	Asp	Glu	Lys	Ile	Leu 165	Val	Phe	Asp	Leu	Gly 170		Gly	Thr	Phe	Asp 175	Val	
	Ser	Ile	Leu	Glu 180	Leu	Gly	Asp	Gly	Val 185	Phe	Asp	Val	Leu	Ala 190	Thr	Ala	
60	Gly	Asp	Asn 195	Lys	Leu	Gly		Asp 200	Asp	Phe	Asp	Gln	Lys 205	Ile	Ile	Asp	
65	Phe	Leu 210	Val	Ala	Glu	Phe	Lys 215	Lys	Glu	Asn	Gly	11e 220	Asp	Leu	Ser	Gln	
-	Asp 225	Lys	Met	Ala	Leu	Gln 230	Arg	Leu	Lys	Asp	Ala 235	Ala	Glu	Lys	Ala	Lys 240	
70	Lys	Asp	Leu	Ser	Gly 245	Val	Thr	Gln	Thr	Gln 250	Ile	Ser	Leu	Pro	Phe 255	Ile	

	Thr	Ala	Gly	Ser 260		Gly	Pro	Leu	His 265		Glü	Met	Ser	270		Arg
5	Ala	Lys	Phe 275	Asp	Asp	Leu	Thr	Arg 280		Leu	Val	Glu	Arg 285		Lys	Thr
	Pro	Val 290	Arg	Gln	Ala	Leu	ser 295		Ala	Gly	Leu	Ser 300		Ser	Glu	Ile
10	Asp 305	Glu	Val	Ile	Leu	Val 310	Gly	Gly	Ser	Thr	Arg 315	Ile	Pro	Ala	Val	Val 320
15 -	Glu	Ala	Val	Lys	Ala 325	Glu	Thr	Gly	Lys	Glu 330		Asn	Lys	Ser	Val 335	
	Pro	Asp	Glu	Val 340	Val	Ala	Met	Gly	Ala 345	Ala	Ile	Gln	Gly	Gly 350	Val	Ile
20	Thr	Gly	Asp 355	Val	Lys	Asp	Val	Val 360	Leu	Leu	Asp	Val	Thr 365	Pro	Leu	Ser
	Leu	Gly 370	Ile	Glu	Thr	Met	Gly 375	Gly	Val	Phe	Thr	Lys 380	Leu	Ile	Asp	Arg
25	Asn 385	Thr	Thr	Ile	Pro	Thr 390	Ser	Lys	Ser	Gln	Val 395	Phe	Ser	Thr	Ala	Ala 400
30	Asp	Asn	Gln	Pro	Ala 405	Val	Asp	Ile	His	Val 410	Leu	Gln	Gly	Glu	Arg 415	Pro
	Met	Ala	Ala	Asp 420	Asn	Lys	Thr	Leu	Gly 425	Arg	Phe	Gln	Leu	Thr 430	Asp	Ile
35	Pro	Ala	Ala 435	Pro	Arg	Gly	Ile	Pro 440	Gln	Ile	Glu	Val	Thr 445	Phe	Asp	Ile
	Asp	Lys 450	Asn	Gly	Ile	Val	Ser 455	Val	Lys	Ala	Lys	Asp 460	Leu	Gly	Thr	Gln
10	Lys 465	Glu	Gln	His	Ile	Val 470	Ile	Lys,	Ser	Asn	Asp 475	Gly	Leu	Ser	Glu	Glu 480
15	Glu	Ile	Asp	Arg	Met 485	Met	Lys	Asp	Ala	Glu 490	Ala	Asn	Ala	Glu	Ala 495	Asp
	Ala	Lys	Arg	Lys 500	Glu	Glu	Val	Asp	Leu 505	Lys	Asn	Glu	Val	Asp 510	Gln	Ala
60	Ile	Phe	Ala 515	Thr	Glu	Lys	Thr	11e 520	Lys	Glu	Thr	Glu	Gly 525	Lys	Gly	Phe
	Asp	Thr 530	Glu	Arg	Asp	Ala	Ala 535	Gln	Ser	Ala	Leu	Asp 540	Glu	Leu	Lys	Ala
55	Ala 545	Gln	Glu	Ser	Gly	Asn 550	Leu	Asp	Asp	Met	Lys 555	Ala	Lys	Leu	Glu	Ala 560
60	Leu	Asn	Glu	Lys	Ala 565	Gln	Ala	Leu	Ala	Val 570	Lys	Met	Tyr	Glu	Gln 575	Ala
				Gln 580					585					590		
5	Asp	Ser	Ala 595	Asn	Asn	Asp	Asp	Val 600	Val	Asp	Gly	Glu	Phe 605	Thr	Glu	Lys

	(2)	TIAL	UKUIA	TTOM	FUR	SEQ	ID .	NU: Z	1:								
5		(i	(.	QUENCA) LI B) T C) S' D) T	ENGT YPE : TRAN	H: 2 nuc DEDN	438 l leic ESS:	base aci dou	pai: d	rs							
10		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	((iii) HY	POTH	ETIC	AL: I	NO										
15		(iv	MA (TI-S	ENSE	: NO											•
		(vi)		IGINA A) O				epto	cocci	ıs a	gala	ctia	е				
20		(ix)	(.	ATURI A) NA B) LO	AME/I			20 [.]	77								
25		(xi)) SE	QUEN	CE DI	ESCR:	IPTI	ON:	SEQ :	ED NO	0:21	:					
	CTTI	CAA	AAG (GGAT?	ATAA	Y TA	GCAC	SAGC	G TC	rgc T2	AAGA	CCA	GCGA!	IGG '	TAGT	IGTCTA	60
	TAAC	TAAC	GT 2	YEAAA	SAGT.	TT TO	GTT.	rttg:	r cc	AATE:	TGAC	AGT	AAAC!	rag .	ATAG	CAAGTT	120
30	AGAA	GCT	ATT (CAGC	rtgc'	rg A	TAA	ACTA	r AG	IGAT.	rgct	TAG	YTTA	GGA 1	AGTA	AATAA	180
	TTCG	AGTO	GCT '	PACT	AAGA!	ra az	ATTG	\AAT!	A AA	AAGTZ	ATA	AAG!	PATT2	ATA A	AAAT	AAGAGG	240
35	TATT	AAC		TCT Ser													289
40				GTT Val													337
45				CGT Arg													385
				GGT Gly 50													433
50				TCT Ser													481
55	GCA Ala			AAA Lys													529
60				AAA Lys													577
65				ATT Ile													625
				GAC Asp 130													673

5	GTT Val	AAC Asn	GAA Glu 145	CCA Pro	ACA Thr	GCA Ala	GCC Ala	GCA Ala 150	CTT Leu	GCT Ala	TAT Tyr	GG1 Gly	ATG Met	Asp	AAG Lys	ACT	721
J	GAC Asp	AAG Lys 160	Asp	GAA Glu	AAA Lys	ATC Ile	TTA Leu 165	Val	TTT Phe	GAC Asp	CTT Leu	GGT Gly 170	Gly	GGT Gly	ACA Thr	TTT Phe	769
10	GAC Asp 175	GTA Val	TCA Ser	ATC Ile	CTT Leu	GAA Glu 180	Leu	GGT Gly	GAT Asp	GGT Gly	GTC Val 185	TTC Phe	GAC Asp	GTT Val	CTT Leu	GCA Ala 190	817
15	ACA Thr	GCA Ala	GGT Gly	GAT Asp	AAC Asn 195	AAA Lys	CTT Leu	GGT Gly	GGT Gly	GAC Asp 200	GAC Asp	TTT Phe	GAC Asp	CAG Gln	AAA Lys 205	ATT Ile	865
20	ATT Ile	GAT Asp	TTC Phe	TTG Leu 210	GTA Val	GAA Glu	GAA Glu	TTC Phe	AAG Lys 215	AAA Lys	GAA Glu	AAT Asn	GGT Gly	ATT Ile 220	GAT Asp	CTT Leu	913
25	TCT Ser	CAA Gln	GAC Asp 225	AAA Lys	ATG Met	GCT Ala	CTT Leu	CAA Gln 230	CGC Arg	TTG Leu	AAA Lys	GAT Asp	GCT Ala 235	GCT Ala	GAA Glu	AAA Lys	961
	GCT Ala	AAA Lys 240	AAA Lys	GAC Asp	CTT Leu	TCA Ser	GGT Gly 245	GTA Val	ACT Thr	CAA Gln	ACT Thr	CAA Gln 250	ATT Ile	TCA Ser	TTA Leu	CCG Pro	1009
30	TTC Phe 255	ATC Ile	ACT Thr	GCT Ala	GGT Gly	TCT Ser 260	GCT Ala	GGT Gly	CCT Pro	CTT Leu	CAC His 265	TTG Leu	GAG Glu	ATG Met	AGC Ser	TTA Leu 270	1057
35	TCA Ser	CGT Arg	GCT Ala	AAA Lys	TTT Phe 275	GAC Asp	GAT Asp	CTC Leu	ACT Thr	CGT Arg 280	GAC Asp	CTT Leu	GTT Val	GAA Glu	CGT Arg 285	ACG Thr	1105
40	AAA Lys	ACT Thr	CCA Pro	GTT Val 290	CGT Arg	CAA Gln	GCT Ala	CTT Leu	TCA Ser 295	GAT Asp	GCA Ala	GGC Gly	TTG Leu	TCA Ser 300	TTG Leu	TCA Ser	1153
45	GAA Glu	ATT Ile	GAȚ Asp 305	GAA Glu	GTT Val	ATC Ile	CTC Leu	GTT Val 310	GGT Gly	GGA Gly	TCA Ser	ACA Thr	CGT Arg 315	ATC Ile	CCA Pro	GCA Ala	1201
	GTT Val	GTT Val 320	GAA Glu	GCT Ala	GTA Val	AAA Lys	GCT Ala 325	GAA Glu	ACT Thr	GGT Gly	AAA Lys	GAA Glu 330	CCA Pro	AAT Asn	AAA Lys	TCT Ser	1249
50	GTT Val 335	AAC Asn	CCT Pro	GAT Asp	GAA Glu	GTG Val 340	GTT Val	GCC Ala	ATG Met	Gly	GCT Ala 345	GCT Ala	ATC Ile	CAA Gln	GGT Gly	GGT Gly 350	1297
55	GTT Val	ATC Ile	ACT Thr	Gly	GAT Asp 355	GTG Val	AAA Lys	GAC Asp	GTT Val	GTA Val 360	CTT Leu	CTT Leu	GAC Asp	GTA Val	ACA Thr 365	CCA Pro	1345
60	TTG Leu	TCA Ser	CTT Leu	GGT Gly 370	ATT Ile	GAA Glu	ACA Thr	Met	GGT Gly 375	GGT Gly	GTC Val	TTC Phe	ACT Thr	AAA Lys 380	TTG Leu	ATC Ile	1393
65	GAC Asp	CGC Arg	AAC Asn 385	ACA Thr	ACT Thr	ATC Ile	CCA Pro	ACA Thr 390	TCT Ser	AAA Lys	TCA Ser	CAA Gln	GTC Val 395	TTC Phe	TCA Ser	ACA Thr	1441
	GCA Ala	GCA Ala 400	GAC Asp	AAC Asn	CAA Gln	Pro	GCC Ala 405	GTT Val	GAT Asp	ATC Ile	His	GTT Val 410	CTT Leu	CAA Gln	GGT Gly	GAA Glu	1489

5	CGC Arg 415	CCA Pro	ATG Met	GCA Ala	GCA Ala	GAT Asp 420	AAC Asn	AAA Lys	ACA Thr	CTC Leu	GGT Gly 425	CGC Arg	TTC Phe	CAA Gln	TTG Leu	ACT Thr 430	1537
	GAT Asp	ATC Ile	CCA Pro	GCT Ala	GCA Ala 435	CCT Pro	CGT Arg	GGA Gly	ATC Ile	CCA Pro 440	CAA Gln	ATT Ile	GAA Glu	GTA Val	ACA Thr 445	TTT Phe	1585
10	GAT Asp	ATC Ile	GAT Asp	AAA Lys 450	AAT Asn	GGT Gly	ATT Ile	GTA Val	TCT Ser 455	GTT Val	AAA Lys	GCT Ala	AAA Lys	GAT Asp 460	CTC Leu	GGT Gly	1633
15				GAA Glu													1681
20				ATT Ile													1729
25				AAA Lys													1777
23				TTT Phe													1825
30				ACA Thr 530											Glu		1873
35				CAA Gln													1921
40				AAC Asn													1969
45				GCA Ala								Ala					2017
				TCA Ser													2065
50		GAG Glu		TAA7	TATI	AA 1	OTTA:	TTCA	CA DA	TCAT	TTGA	ATA	TAAC	CAT			2114
55	GAAA	ACT	ATA (TAGO	CATAC	T A	AGT1	CTTC	GTC	PATAG	GGA	TIGO	TCAA	ATA A	TCTA	GATAA	2174
																AAATA	2234
4 0																TAGAG	2294
60 ,																TATAA	2354
-								4 T'T'T') ATC	ATCC	TCT	1660	.G1 ⁻ 1 [*] 1	ICA P	LAAGA	TGCTT	2414
65	CTC	AUU!	JGA A	\ATA/	www	am GC	. 1 1										2438

(2) INFORMATION FOR SEQ ID NO:22:

70

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 609 amino acids
(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

		٠,	11,	иопе	CODE	111	.ر. ي	roce.	111							
5		(:	ki)	SEQU	ENCE	DES	CRIP	TION	: SE	QID	NO:	22:				
	Met 1	Ser	Lys	Ile	Ile 5	Gly	Ile	Asp	Leu	Gly 10	Thr	Thr	Asn	Ser	Ala 15	Val
10	Ala	Val	Leu	Glu 20	Ğly	Thr	Glu	Ser	Lys 25	Ile	Ile	Ala	Asn	Pro 30	Glu	Gly
1.5	Asn	Arg	Thr 35	Thr	Pro	Ser	Val	Val 40	Ser	Phe	Lys	Asn	Gly 45	Glu	Ile	Ile
15	Val	Gly 50	Asp	Ala	Ala	Lys	Arg 55	Gln	Ala	Val	Thr	Asn 60	Pro	Asp	Thr	Val
20	Ile 65	Ser	Ile	Lys	Ser	Lys 70	Met	Gly	Thr	Ser	Glu 75	Lys	Val	Ser	Ala	Asn 80
	Gly	Lys	Glu	Tyr	Thr 85	Pro	Gln	Glu	Ile	Ser 90	Ala	Met	Ile	Leu	Gln 95	Tyr
25	Leu	Lys	Gly	Tyr 100	Ala	Glu	Asp	Tyr	Leu 105	Gly	Glu	Lys	Val	Glu 110	Lys	Ala
30	Val	Ile	Thr 115	Val	Pro	Ala	Tyr	Phe 120	Asn	Asp	Ala	Gln	Arg 125	Gln	Ala	Thr
50	Lys	Asp 130	Ala	Gly	Lys	Ile	Ala 135	Gly	Leu	Glu	Val	Glu 140	Arg	Ile	Val	Asn
35	Glu 145	Pro	Thr	Ala	Ala	Ala 150	Leu	Ala	Tyr	Gly	Met 155	Asp	Lys	Thr	Asp	Lys 160
	Asp	Glu	Lys	Ile	Leu 165	Val	Phe	Asp	Leu	Gly 170	Gly	Gly	Thr	Phe	Asp 175	Val
40	Ser	Ile	Leu	Glu 180	Leu	Gly	Asp	Gly	Val 185	Phe	Asp	Val	Leu	Ala 190	Thr	Ala
45	Gly	Asp	Asn 195	Lys	Leu	Gly	Gly	Asp 200	Asp	Phe	Asp	Gln	Lys 205	Ile	Ile	Asp
;-	Phe	Leu 210	Val	Glu	Glu	Phe	Lys 215	Lys	Glu	Asn	Gly	Ile 220	Asp	Leu	Ser	Gln
50	Asp 225	Lys	Met	Ala	Leu	Gln 230	Arg	Leu	Lys	Asp	Ala 235	Ala	Glu	Lys	Ala	Lys 240
	Lys	Asp	Leu	Ser	Gly 245	Val	Thr	Gln	Thr	Gln 250	Ile	Ser	Leu	Pro	Phe 255	Ile
55	Thr	Ala	Gly	Ser 260		Gly	Pro		His 265		Glu	Met	Ser	Leu 270	Ser	Arg
60	Ala	Lys	Phe 275	Asp	Asp	Leu	Thr	Arg 280	Asp	Leu	Val	Glu	Arg 285	Thr	Lys	Thr
	Pro	Val 290	Arg	Gln	Ala	Leu	Ser 295	Asp	Ala	Gly	Leu	Ser 300	Leu	Ser	Glu	Ile
65	Asp 305	Glu	Val	Ile	Leu	Val 310	Gly	Gly	Ser	Thr	Arg 315	Ile	Pro	Ala	Val	Val 320
	Glu	Ala	Val	Lys	Ala 325	Glu	Thr	Gly	Lys	Glu 330	Pro	Asn	Lys	Ser	Val 335	Asn
70	Pro	Asp	Glu	Val 340	Val	Ala	Met	Gly	Ala 345	Ala	Ile	Gln	Gly	Gly 350	Val	Ile

5	Leu	Gly 370	Ile	Glu	Thr	Met	Gly 375	Gly	Val	Phe	Thr	Lys 380	Leu	Ile	Asp	Arg	
10	Asn 385	Thr	Thr	Ile	Pro	Thr 390	Ser	Lys	Ser	Gln	Val 395	Phe	Ser	Thr	Ala	Ala 400	
10	Asp	Asn	Gln	Pro	Ala 405	Val	Asp	Ile	His	Val 410	Leu	Gln	Gly	Glu	Arg 415	Pro	
15	Met	Ala	Ala	Asp 420	Asn	Lys	Thr	Leu	Gly 425	Arg	Phe	Gln	Leu	Thr 430	Asp	Ile	
	Pro	Ala	Ala 435	Pro	Arg	Gly	Ile	Pro 440	Gln	Ile	Glu	Val	Thr 445	Phe	Asp	Ile	
20	Asp	Lys 450	Asn	Gly	Ile	Val	Ser 455	Val	Lys	Ala	Lys	Asp 460	Leu	Gly	Thr	Gln	
25	Lys 465	Glu	Gln	His	Ile	Val 470	Ile	Gln	Ser	Asn	Ser 475	Gly	Leu	Thr	Asp	Glu 480	
	Glu	Ile	Asp	Lys	Met 485	Met	Lys	Asp	Ala	Glu 490	Ala	Asn	Ala	Glu	Ala 495	Asp	
30	Ala	Lys	Arg	Lys 500	Glu	Glu	Val	Asp	Leu 505	Lys	Asn	Glu	Val	Asp 510	Gln	Ala	
	Ile	Phe	Ala 515	Thr	Glu	Lys	Thr	Ile 520	Lys	Glu	Thr	Glu	Gly 525	Lys	Gly	Phe	
35	Asp	Thr 530	Glu	Arg	Asp	Ala	Ala 535	Gln	Ser	Ala	Leu	Asp 540	Glu	Leu	Lys	Lys	
40	Ala 545	Gln	Glu	Ser	Gly	Asn 550	Leu	Asp	Asp	Met	Lys 555	Ala	Lys	Leu	Glu	Ala 560	
	Leu	Asn	Glu	Lys	Ala 565	Gln	Ala	Leu	Ala	Val 570	Lys	Leu	Tyr	Glu	Gln 575	Ala	
45	Ala	Ala	Ala	Gln 580	Gln	Ala	Ala	Gln	Gly 585	Ala	Glu	Gly	Ala	Gln 590	Ser	Ala	
	Asp	Ser	Ser 595	Ser	Lys	Gly	Asp	Asp 600	Val	Val	Asp	Gly	Glu 605	Phe	Thr	Glu	
50	Lys																
55	(2)			rion													
		(i)	(2	QUENC A) LI B) T	ENGTI PE:	H: 19	ami	ino a	CS: acids	5							
60		(ii)		D) TO LECUI	•												
65				QUEN													
		Arg 1	g Il	e Pro	o Ala	a Vai	ı va.	L GIV	ı Ali	a Va.	10 10	s Ala	a GII	ı Thi	r Gly	/ Lys Gl 15	.u
70		Pro	o Asi	n Ly	S												

	(2)	INF	OKMA	LION	FOF	(SEC	מד ו	NO:2	:4:								
5		(i	(A) I B) T	ICE C ENGT YPE: OPOL	H: 1 ami	.5 am	ino cid		ls							
10		(ii) MO	LECU	LE I	YPE:	pep	tide	•								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	io:24	ł:					
15		G1 1	n Th	r Il	e Va	1 II 5	e Gl	n Se	r As	n Se	r Gl 10		u Th	r As	p Gl	u Glu 15 .	
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:2	5:								
20		(i	(. (A) L B) T C) S	CE C ENGT YPE: TRAN OPOL	H: 4 nuc DEDN	60 b leic ESS:	ase aci dou	pair d	s							
25		144		•	LE T					\							
		•						(ge	HOME	C)							
30			-		ETIC												
30					ENSE												
		(vi			AL S RGAN			epto	COCC	us p	neum	onia	e				
35		(ix	(1	A) N B) L	AME/	ION:	1		: /p:	rodu	ct=	"C~t	ermi	nal	151-	residu	16
40			,	-, -	fr	agme	nt (C-15	1) 0	f HS	P72 *					200240	••
		(xi)) SE(QUEN	CE DI	ESCR:	IPTI(ON:	SEQ :	ID N	0:25	:					
	ATG	AAG	GCC	AAA	GAC	CTT	GGA	ACT	CAA	AAA	GAA	CAA	ACT	ATT	GTC	ATC	48
45	Met 1	Lys	Ala	Lys	Asp 5	Leu	Gly	Thr	Gln	Lys 10	Glu	Gln	Thr	Ile	Val 15	Ile	
50	CAA Gln	TCG Ser	AAC Asn	TCA Ser 20	GGT Gly	TTG Leu	ACT Thr	GAC	GAA Glu 25	GAA Glu	ATC Ile	GAC Asp	ÇGC Arg	ATG Met 30	ATG Met	AAA Lys	96
55	GAT Asp	GCA Ala	GAA Glu 35	GCA Ala	AAC Asn	GCT Ala	GAA Glu	TCC Ser 40	GAT Asp	AAG Lys	AAA Lys	CGT Arg	AAA Lys 45	GAA Glu	GAA Glu	GTA Val	144
	GAC Asp	CTT Leu 50	CGT Arg	AAT Asn	GAA Glu	GTG Val	GAC Asp 55	CAA Gln	GCA Ala	ATC Ile	TTT Phe	GCG Ala 60	ACT Thr	GAA Glu	AAG Lys	ACA Thr	192
50	ATC Ile 65	AAG Lys	GAA Glu	ACT Thr	GAA Glu	GGT Gly 70	AAA Lys	GGC Gly	TTC Phe	GAC Asp	GCA Ala 75	GAA Glu	CGT Arg	GAC Asp	GCT Ala	GCC Ala 80	240
55					GAT Asp 85												288
70					GCA Ala												336

CTT GCT GTT AAA CTC TAC GAA CAA GCC GCA GCG GCA CAA CAA GCT CAA 384 Leu Ala Val Lys Leu Tyr Glu Gln Ala Ala Ala Ala Gln Gln Ala Gln GAA GGA GCA GAA GGC GCA CAA GCA ACA GGA AAC GCA GGC GAT GAC GTC Glu Gly Ala Glu Ala Gln Ala Thr Gly Asn Ala Gly Asp Asp Val 432 130 135 GTA GAC GGA GAG TTT ACG GAA AAG TAAG 460 10 Val Asp Gly Glu Phe Thr Glu Lys 150 (2) INFORMATION FOR SEQ ID NO:26: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 152 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: Met Lys Ala Lys Asp Leu Gly Thr Gln Lys Glu Gln Thr Ile Val Ile Gln Ser Asn Ser Gly Leu Thr Asp Glu Glu Ile Asp Arg Met Met Lys 30 Asp Ala Glu Ala Asn Ala Glu Ser Asp Lys Lys Arg Lys Glu Glu Val Asp Leu Arg Asn Glu Val Asp Gln Ala Ile Phe Ala Thr Glu Lys Thr 35 Ile Lys Glu Thr Glu Gly Lys Gly Phe Asp Ala Glu Arg Asp Ala Ala
65 70 75 80 Gln Ala Ala Leu Asp Asp Leu Lys Lys Ala Gln Glu Asp Asn Asn Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$ Asp Asp Met Lys Ala Lys Leu Glu Ala Leu Asn Glu Lys Ala Gln Gly 105 45 Leu Ala Val Lys Leu Tyr Glu Gln Ala Ala Ala Ala Gln Gln Ala Gln Glu Gly Ala Glu Gly Ala Gln Ala Thr Gly Asn Ala Gly Asp Asp Val 50 Val Asp Gly Glu Phe Thr Glu Lys

PCT/CA96/00322

WO 96/40928

WO 96/40928

We claim:

- 1. A polypeptide selected from the group consisting of:
- 5 (a) the HSP72 polypeptide having the amino acid sequence of SEQ ID NO:5;
 - (b) the HSP70(DnaK) polypeptide having the amino acid sequence of SEQ ID NO:20;
- (c) the HSP70 (DnaK) polypeptide having the amino acid sequence of SEQ ID NO:22;
 - (d) polypeptides that are immunologically reactive with antibodies generated by infection of a mammalian host with *Streptococcus pneumoniae* cells, which antibodies are immunologically reactive with the
- 15 polypeptide of paragraph (a), (b), or (c);
 - (e) polypeptides that are capable of
 eliciting antibodies that are immunologically reactive
 with the polypeptide of paragraph (a), (b), or (c);
- (f) polypeptides that are immunologically reactive with antibodies elicited by immunization with the polypeptide of paragraph (a), (b), or (c); and
 - (g) fragments of any of the foregoing polypeptides, either alone or in combination with other polypeptides to form a fusion protein.

25

2. The polypeptide of claim 1, wherein the polypeptides of paragraph (d) are selected from the group consisting of polypeptides of the genera Streptococcus and Enterococcus.

30

3. The polypeptide of claim 1, wherein the polypeptides of paragraph (d) are selected from the group consisting of polypeptides of the species Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus

pyogenes, Streptococcus mutans, Streptococcus sanguis, and Enterococcus faecalis.

- 4. The polypeptide of claim 1, wherein the polypeptides of paragraph (d) are selected from the group consisting of polypeptides of the species Streptococcus pneumoniae, Streptococcus agalactiae, and Streptococcus pyogenes.
- 5. The polypeptide of claim 1, wherein the fragments of paragraph (g) are selected from the group consisting of amino acids 439-607 of SEQ ID NO:5 (C-169), amino acids 457-607 of SEQ ID NO:5 (C-151), amino acids 527-541 of SEQ ID NO:5, and amino acids 586-600 of SEQ ID NO:5.
 - **6.** A polypeptide having the amino acid sequence of SEQ ID NO:5 analogues, homologues and derivatives thereof.

- 7. A polypeptide having the amino acid sequence of SEQ ID NO:20, analogues, homologues and derivatives thereof.
- 25 8. A polypeptide having the amino acid sequence of SEQ ID NO:22, analogues, homologues and derivatives thereof.
- 9. A polypeptide having the amino acid 30 sequence of SEQ ID NO:26, analogues, homologues and derivatives thereof.

10. A polypeptide having the amino acid sequence of SEQ ID NO:7, analogues, homologues and derivatives thereof.

- 5 11. A polypeptide having the amino acid sequence of SEQ ID NO:8, analogues, homologues and derivatives thereof.
- 12. A polypeptide having the amino acid sequence of SEQ ID NO:9, analogues, homologues and derivatives thereof.
- 13. A polypeptide having the amino acid sequence of SEQ ID NO:10, analogues, homologues and derivatives thereof.
 - 14. A polypeptide having the amino acid sequence of SEQ ID NO:11, analogues, homologues and derivatives thereof.

- 15. A polypeptide having the amino acid sequence of SEQ ID NO:12, analogues, homologues and derivatives thereof.
- 25 **16.** A polypeptide having the amino acid sequence of SEQ ID NO:13, analogues, homologues and derivatives thereof.
- 17. A polypeptide having the amino acid sequence of SEQ ID NO:14, analogues, homologues and derivatives thereof.

18. A polypeptide having the amino acid sequence of SEQ ID NO:15, analogues, homologues and derivatives thereof.

- 5 19. A polypeptide having the amino acid sequence of SEQ ID NO:16 analogues, homologues and derivatives thereof.
- 20. A polypeptide having the amino acid_
 10 sequence of SEQ ID NO:17, analogues, homologues and
 derivatives thereof.
- 21. A polypeptide having the amino acid sequence of SEQ ID NO:18, analogues, homologues and derivatives thereof.
 - 22. The polypeptide of any one of claims 1 to 21 and 100-101, wherein said polypeptide elicits an immune reaction that is specific to Streptococcal strains.

- 23. A polypeptide selected from the group consisting of:
- (a) the HSP72 polypeptide having the amino acid sequence of SEQ ID NO:5;
- 25 (b) polypeptides that are immunologically reactive with antibodies generated by infection of a mammalian host with *Streptococcus pneumoniae* cells, which antibodies are immunologically reactive with the HSP72 polypeptide of paragraph (a);
- 30 (c) polypeptides that are capable of eliciting antibodies that are immunologically reactive with the HSP72 polypeptide of paragraph (a);

(d) polypeptides that are immunologically_reactive with antibodies elicited by immunization with the HSP72 polypeptide of paragraph (a); and

- (e) fragments of any of the foregoingpolypeptides, either alone or in combination with other polypeptides to form a fusion protein.
- 24. The polypeptide of claim 23, wherein the polypeptides of paragraph (b) are selected from the group consisting of polypeptides of the genera Streptococcus and Enterococcus.
- 25. The polypeptide of claim 23, wherein the polypeptides of paragraph (b) are selected from the group consisting of polypeptides of the species Streptococcus pyogenes, Streptococcus mutans, Streptococcus sanguis, and Enterococcus faecalis.
- 26. The polypeptide of claim 23, wherein the fragments of paragraph (e) are selected from the group consisting of amino acids 439-607 of SEQ ID NO:5 (C-169); amino acids 527-541 of SEQ ID NO:5, and amino acids 586-600 of SEQ ID NO:5.
- 27. The polypeptide of claim 23, wherein the fusion protein of paragraph (e) is the Fucose Isomerase-HSP72 (C-169) protein having the amino acid sequence of SEQ ID NO:3.
- 30 **28.** A DNA sequence selected from the group consisting of:
 - (a) the HSP72 DNA sequence of SEQ ID NO:4;
 - (b) the HSP70 (DnaK) DNA sequence of SEQ ID NO:19;

(c) the HSP70 (DnaK) DNA sequence of SEQ ID NO:21;

- (d) DNA sequences encoding polypeptides that are immunologically reactive with antibodies 5 generated by infection of a mammalian host with Streptococcus pneumoniae cells, which antibodies are immunologically reactive with the HSP72 polypeptide (SEQ ID NO:5);
- (e) DNA sequences encoding polypeptides 10 that are capable of eliciting antibodies that are immunologically reactive with the HSP72 polypeptide (SEQ ID NO:5);
- (f) DNA sequences encoding polypeptides
 that are immunologically reactive with antibodies elicited
 by immunization with the HSP72 polypeptide (SEQ ID NO:5);
 - (g) DNA sequences that are degenerate to any of the foregoing DNA sequences; and
- (h) fragments of any of the foregoing DNA sequences, either alone or in combination with other DNA 20 sequences to form a fusion DNA sequence.
- 29. The DNA sequence of claim 28, wherein the DNA sequences of paragraph (d) are selected from the group consisting of DNA sequences of the genera Streptococcus and Enterococcus.
- 30. The DNA sequence of claim 28, wherein the DNA sequences of paragraph (d) are selected from the group consisting of DNA sequences of the species Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus mutans, Streptococcus sanguis, and Enterococcus faecalis.
- 31. The DNA sequence of claim 28, wherein the 35 DNA sequences of paragraph (d) are selected from the group

consisting of DNA sequences of the species Streptococcus pneumoniae, Streptococcus agalactiae, and Streptococcus pyogenes.

- 5 **32.** A DNA sequence of the formula of SEQ ID NO:4 from nucleotide 682 to nucleotide 2502, or derivatives thereof, coding for HSP72.
- 33. A DNA sequence of the formula of SEQ ID NO:4 from nucleotide 1996 to nucleotide 2502, or derivatives thereof, coding for the C-169 fragment of HSP72.
- 34. A DNA sequence of the formula of SEQ ID NO:4 from nucleotide 2050 to nucleotide 2502, or derivatives thereof, coding for the C-151 fragment of HSP72.
- 35. A DNA sequence of the formula of SEQ ID 20 NO:4 from nucleotide 2260 to nucleotide 2304, or derivatives thereof.
- 36. A DNA sequence of the formula of SEQ ID NO:4 from nucleotide 2437 to nucleotide 2481, or derivatives thereof.
- 37. A DNA sequence of the formula of SEQ ID NO:19 from nucleotide 204 to nucleotide 2027, or derivatives thereof, coding for HSP70 of Streptococcus agalactiae.
 - 38. A DNA sequence of the formula of SEQ ID NO:21 from nucleotide 248 to nucleotide 2074, or

derivatives thereof, coding for HSP70 of Streptococcus pyogenes.

- 39. A DNA sequence of the formula of SEQ ID
 5 NO:25 from nucleotide 4 to nucleotide 456, or derivatives thereof, coding for the C-terminal 151-residue fragment (C-151) of HSP72.
- **40.** A DNA sequence coding for a polypeptide 10 according to any one of claims 1-21 and 100-101.
 - **41.** A DNA sequence selected from the group consisting of:
 - (a) the HSP72 DNA sequence of SEQ ID NO:4;
- (b) DNA sequences encoding polypeptides that are immunologically reactive with antibodies generated by infection of a mammalian host with Streptococcus pneumoniae cells, which antibodies are immunologically reactive with the HSP72 polypeptide (SEQ 20 ID NO:5);
 - (c) DNA sequences encoding polypeptides
 that are capable of eliciting antibodies that are
 immunologically reactive with the HSP72 polypeptide (SEQ
 ID NO:5);
- 25 (d) DNA sequences encoding polypeptides that are immunologically reactive with antibodies elicited by immunization with the HSP72 polypeptide (SEQ ID NO:5);
 - (e) DNA sequences that are degenerate to any of the foregoing DNA sequences; and
- 30 (f) fragments of any of the foregoing DNA sequences, either alone or in combination with other DNA sequences to form a fusion DNA sequence.
- 42. The DNA sequence of claim 41, wherein the 35 DNA sequences of paragraph (b) are selected from the group

consisting of DNA sequences of the genera Streptococcus and Enterococcus.

- 43. The DNA sequence of claim 41, wherein the
 5 DNA sequences of paragraph (b) are selected from the group consisting of DNA sequences of the species Streptococcus pyogenes, Streptococcus mutans, Streptococcus sanguis, and Enterococcus faecalis.
- 44. The DNA sequence of claim 41, wherein the fragments of paragraph (f) are selected from the group consisting of nucleotide 1996-2502 (amino acids 439-607) of SEQ ID NO:4 (C-169); nucleotide 2260-2304 (amino acids 527-541) of SEQ ID NO:4; and nucleotide 2437-2481 (amino acids 586-600) of SEQ ID NO:4.
 - 45. The DNA sequence of claim 41, wherein the fusion DNA sequence of paragraph (f) is the Fucose Isomerase-HSP72 (C-169) DNA sequence of SEQ ID NO:1 (nucleotides 771-2912).
 - 46. An expression vector including at least one DNA sequence according to claim 41 operably linked to a promoter.

25

47. A recombinant DNA molecule comprising a DNA sequence according to any one of claims 28 to 40, and one or more expression control sequence operably linked to the DNA sequence.

30

48. The recombinant DNA molecule of claim 47, wherein said expression control sequence is an inducible expression vector.

49. The recombinant molecule of claim 48, wherein said expression vector comprises the $\lambda\ PL$ promoter.

50. A recombinant molecule according to claim 47 consisting of a plasmid selected from the group consisting of: pURV3, pURV4, pURV5, pURV6, pJBD291, pJBDΔ4, pJBDk51, pJBD177, pJBD171, pJBD177, pJBD179, pJBDΔ1, pJBDf51, and pJBDf62.

- **51.** A unicellular host transformed with an expression vector of claim 46.
- 52. A unicellular host transformed with a 15 recombinant DNA molecule of claim 47.
- 53. A unicellular host according to claim 52, wherein said host is selected from the group consisting of: E.coli strains XLI Blue MRF', W3110, JM109, Y1090 and 20 BL21(DE3).
- 54. A method for producing a polypeptide or fragment thereof comprising the steps of culturing the unicellular host of claim 51 and isolating said25 polypeptide or fragment.
 - 55. An antibody or fragment thereof that specifically binds to a polypeptide of claim 23.
- 30 56. An antibody or fragment thereof that specifically binds to the epitope recognized by monoclonal antibody F1-Pn3.1.

57. The antibody or fragment of claim 55, which is a monoclonal antibody.

- 58. The monoclonal antibody or fragment of 5 claim 57, which is of murine origin.
 - 59. The monoclonal antibody or fragment of claim 58, which is of IgG type.
- 10 **60.** The monoclonal antibody of claim 59, which is selected from the group consisting of F1-Pn3.1, F2-Pn3.2, F2-Pn3.3, and F2-Pn3.4.
 - **51.** The monoclonal antibody F1-Pn3.1.

- **62.** A method for isolating the antibody of claim 55 comprising:
- (a) introducing a preparation of the polypeptide of claim 23 into a mammal; and
- 20 (b) isolating serum from the mammal containing said antibody.
 - **63.** A method for isolating the monoclonal antibody of claim 57 comprising:
- 25 (a) introducing a preparation of the polypeptide of claim 23 to antibody producing cells of a mammal;
 - (b) fusing the antibody producing cells with myeloma cells to form hybridoma cells, and
- 30 (c) isolating said monoclonal antibody from the hybridoma cells.
 - **64.** A pharmaceutical composition comprising a polypeptide of claim 23.

65. The pharmaceutical composition of claim 64, which is a vaccine.

- 5 **66.** The pharmaceutical composition of claim 64, further comprising one or more pharmaceutically acceptable excipients.
- 67. A method for preventing infection of a patient by Streptococcus pneumoniae or related bacteria comprising the administration of a pharmaceutically effective amount of the vaccine of claim 65.
- 68. A pharmaceutical composition comprising one or more antibodies or fragments thereof according to claim 55.
 - **69.** The pharmaceutical composition of claim 68, which is a vaccine.
 - 70. The pharmaceutical composition of claim 69, further comprising a pharmaceutically acceptable excipient.

- 71. The pharmaceutical composition of claim 69, wherein the antibody is selected from the group consisting of F1-Pn3.1, F2-Pn3.2, F2-Pn3.3, and F2-Pn3.4.
- 72. The pharmaceutical composition of claim 69, 30 wherein the antibody is F1-Pn3.1.
 - 73. A method for treating a patient infected with or suspected of being infected with Streptococcus pneumoniae or related bacteria comprising the

administration of a pharmaceutically effective amount of the vaccine of claim 69.

- 74. A method for the detection of Streptococcus
 5 pneumoniae or related bacteria in a biological sample comprising:
 - (a) isolating the biological sample from a patient;
- (b) incubating the antibody or fragment of claim 55 with the biological sample to form a mixture; and

 (c) detecting specifically bound antibody or fragment in the mixture which indicates the presence of Streptococcus pneumoniae or related bacteria.
- 75. The method of claim 74, wherein the antibody is selected from the group consisting of F1-Pn3.1, F2-Pn3.2, F2-Pn3.3, and F2-Pn3.4.
- 76. The method of claim 74, wherein the 20 antibody is F1-Pn3.1.
 - 77. A method for the detection of antibodies specific to Streptococcus pneumoniae or related bacteria in a biological sample comprising:
- 25 (a) isolating the biological sample from a patient;
 - (b) incubating a polypeptide of claim 23 with the biological sample to form a mixture; and

(c) detecting specifically bound

30 polypeptide in the mixture, which indicates the presence of antibodies specific to Streptococcus pneumoniae or related bacteria.

78. A method for the detection of Streptococcus pneumoniae or related bacteria in a biological sample comprising:

- (a) isolating the biological sample from a
- (b) incubating a DNA probe having the DNA sequence of claim 41 with the biological sample to form a mixture; and
- (c) detecting specifically bound DNA probe
 in the mixture which indicates the presence of
 Streptococcus pneumoniae and related bacteria.
- 79. The method of claim 78, wherein the DNA probe is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of a DNA sequence of claim 41.
 - **80.** The method of claim 79, which further comprises:
- 20 (a) providing a set of oligomers which are primers for a polymerase chain reaction method and which flank the target region; and
 - (b) amplifying the target region via the polymerase chain reaction method.

25

patient;

81. The use of a pharmaceutically effective amount of the polypeptide of claim 23 for the prevention of *Streptococcus pneumoniae* or related bacterial infections in humans.

30

82. The use of a pharmaceutically effective amount of an antibody specific to HSP72 for the prevention of Streptococcus pneumoniae or related bacterial infections in humans.

83. A method for producing a polypeptide or fragment thereof comprising the steps of culturing the unicellular host of claim 52 or 53 and isolating said polypeptide or fragment.

- **84.** A polypeptide in substantially pure form as obtained by the method of claim 83.
- 10 **85.** An antibody or fragment thereof that specifically binds to a polypeptide of claim 1 or 22.
 - **86.** A method for isolating the antibody of claim 86 comprising:
- (a) introducing a preparation of the polypeptide of claim 1 or 22 into a mammal; and
 (b) isolating serum from the mammal containing said antibody.
- 20 **87.** A pharmaceutical composition comprising a polypeptide of claim 1 or 22.

- 88. The pharmaceutical composition of claim 87, which is a vaccine.
- 89. The pharmaceutical composition of claim 87, further comprising one or more pharmaceutically acceptable excipients.
- 30 90. A method for preventing infection of a patient by Streptococcus pneumoniae, Streptococcus pyogenes or Streptococcus agalactiae comprising the administration of a pharmaceutically effective amount of the vaccine of claim 88.

91. An antibody or fragment thereof that specifically binds to a polypeptide of claim 1 or 22.

- 92. A method for the detection of Streptococcus pneumoniae, Streptococcus pyogenes or Streptococcus agalactiae in a biological sample comprising:
 - (a) isolating the biological sample from a patient;
- (b) incubating the antibody or fragment of claim 91 with the biological sample to form a mixture; and
 (c) detecting specifically bound antibody or fragment in the mixture which indicates the presence of Streptococcus pneumoniae, Streptococcus pyogenes or

 15 Streptococcus agalactiae.
 - 93. A method for the detection of antibodies specific to Streptococcus pneumoniae, Streptococcus pyogenes or Streptococcus agalactiae in a biological sample comprising:
- (a) isolating the biological sample from a patient;
 - (b) incubating a polypeptide of claim 1 or 22 with the biological sample to form a mixture; and
- (c) detecting specifically bound

 25 polypeptide in the mixture, which indicates the presence of antibodies specific to Streptococcus pneumoniae,
 Streptococcus pyogenes or Streptococcus agalactiae.
- 94. A method for the detection of Streptococcus
 30 pneumoniae, Streptococcus pyogenes or Streptococcus
 agalactiae in a biological sample comprising:
 - (a) isolating the biological sample from a patient;

(b) incubating a DNA probe having the DNA sequence of claim 28 with the biological sample to form a mixture; and

- (c) detecting specifically bound DNA probe
 in the mixture which indicates the presence of
 Streptococcus pneumoniae, Streptococcus pyogenes or
 Streptococcus agalactiae.
- 95. The method of claim 94, wherein the DNA 10 probe is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of a DNA sequence of claim 28.
- 96. The method of claim 95, which further 15 comprises:
 - (a) providing a set of oligomers which are primers for a polymerase chain reaction method and which flank the target region; and
- (b) amplifying the target region via the 20 polymerase chain reaction method.
 - 97. The use of a pharmaceutically effective amount of the polypeptide of claim 1 or 22 for the prevention of Streptococcus pneumoniae, Streptococcus pyogenes or Streptococcus agalactiae infection in humans.
- 98. The use of a pharmaceutically effective amount of an antibody specific to HSP72 for the prevention of Streptococcus pneumoniae, Streptococcus pyogenes or Streptococcus agalactiae infection in humans.
 - 99. The use of a pharmaceutically effective amount of a polypeptide according to any one of claims 2

to 21 for the prevention of Streptococcal infections in humans.

100. A polypeptide having the amino acid
5 sequence of SEQ ID NO:23, analogues, homologues, or
derivatives thereof.

101. A polypeptide having the amino acid
sequence of SEQ ID NO:24, analogues, homologues or
10 derivatives thereof.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 96/40928

PCT/CA96/00322

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

C	MSKI IGIDIGTINS CAVIEG. P KVI.N.EG.R TIPS.VAF-K	F0
Consensus	1 11 11	50
DNAK ECCILI DNAK BORBU		43 44
DNAK BRUDV	A.V	44
DNAK CHLIPN DNAK BAOME	SEHKKS	49 43
DNA2 BACSU	vv	43
DNAK SIAAU HSP72 SPNEU	GE. P.F. NV GE. A.A. NV GE. A.A. NV JT. DEQ.P. SV V. S V	43 43
DNAK LACIA		43
DNAK_MYCIU	ARA V[]V[SGD. V.VA.S[]S[]IAR	44
Consensus	NOTEVELA. RECONTRIC. TISIAR.ME]KV-	100
DNAK BOOLI DNAK BOORBU	D. II., OF ON LFA. LLI. RRFODEEVOR DVSIMPF. II K. RL. OV. N.M	93 92
DNAK BRUOV DNAK CHLEN	GOLGVALOREG.LFAVII. RRYDDAWVIK DKDLVPY.IV GN.KL., IREK.LG.T., FT. RKYSEVAS EIQIVPYT.T	94 97
DNAK BACME	RQ.EMII	77
DNAZ BACSU DNAK STAAU		77 77
HSP7Z SENEU		77
DNAK LACIA DNAK MYCIU	. II. DA	77 79
<u> </u>		
Consensus	EGK.YIP .EISA.IID. IR.TAB.VIG F.VI.AVITV	150
DNAK ECOLI	AAINCDAWV VK. QKMA. PQ. EV KK M.K. II P. E	141
DNAK BORBU DNAK BRUOV	KGINGDARWI ISNIK.OMS. P. AII.IIK M.E. A	142 142
DNAK CHILPN	SCENCEDAVF. VDQ. E. G.D. MK M.E. A. IT. E.	145
DNAK BACME DNAZ BACSU	IE D. Q.V. II H SY S II. SK	116 116
DNAK STAAU HSP72 SPNEU	D IES Q M. .N. .N. .S K.DK	116 116
DVAK LACIA		116
DVAK MYCIU	IDK.A P R. MK . RD. MDI.D r	118
Consensus	PAYENDAÇRO ATKDACKUAG DEM RILINED TAAALANGLO KIIIM	200
•		
DNAK ECOLI DNAK BORBU	R	191 191
DNAK BRUOV	SECK-T.A.	191
DNAK CHLIPN DNAK BAOME	S. A. S R D. K P	194 166
DNAZ BACSU DNAK SDAAD		166 166
HSP72 SPNEU	TE V	166
DNAK LACLA DNAK MYCIU	S. A. S. R. D. K. P. I. WEK-K.A.	166 168
	T== 7.3A	
	1	

SUBSTITUTE SHEET (RULE 26)

Consensus INAK ECCLI INAK ECCLI INAK BRUOV INAK BAME INAK BAME INAK SIAAU HSP7Z SENEU INAK LACIA INAK LACIA	DIGGGIFDV SHIFLGD-GVFEV.ST. GLN. GGDDF DD. HD. LLV. Y. II . I. IDEVL EKT. LA.N . TH. E SRL. NY. E	250 241 237 237 240 212 212 212 212 212 214
Consensus INAK ECOLI INAK BORBU INAK BRILOV INAK CHLPN INAK BACME INAS BACSU INAK SIAAU HSP/Z SPNBU INAK LACLA INAK MYCIU	HFRKE.GIDL S. DKWAL DRL KDAAEKAK. ISGV. T. I. IEFFIIA DO. RN. PL. W. E. IE SAQO.DWN .Y. D. AT SAN E IE AQEAS.N	300 290 286 286 289 261 261 261 261 261 264
Consensus INAK BOOLI INAK BRUV INAK BRUV INAK CHLEN INAK BACME INAZ BACSU INAK SIAAU HSP772 SPNEU INAK LACIA INAK MYCIU	CPI.H LIT RAKFE . L LV . RT . F AL. DAGLS . S. ID . WILVG	350 340 336 336 339 311 311 311 311 314
Consensus INAK ECOLI INAK BORBU INAK BRUOV INAK BAME INAK BAME INAK SIAAU HSP7Z SPNEU INAK IACIA INAK MYCIU	CSIRIFAVQ. VKG-KE PNCVNPDEV VA. ZAALCG VLIGD/KDW Q. M.MK K.AEFF .R. D. A. I. WL. I.K IDIFQDA. II. WL. MMEIK CAFFHM	400 389 385 385 388 360 360 360 360 360 360
	_ T== -13B	

SUBSTITUTE SHEET (RULE 26)

C		
Consensus	HIDMPISIC FILEWITTET REQUESTA DOLAMOUN	450
DNAK ECOLI DNAK BORBU		439
DNAK BRUOV	K K K IIS. K K E S. IT.R.	435 435
DNAK CHLEN DNAK BAOME	Q.K.I Q.K.I	438
DNA2 BACSU	- 1···· ····· - · · - ·- - ·- - - - - -	410 410
DNAK SIAAU		410
HSP72 SPNEU DNAK LACLA		410 410
DNAK_MYCIU		414
Consensus	I GERPMAAD NK. IERF IT DIERARG. P DIEVIFDID. NGIV.M. AKD	500
INAK ECOLI	KRSD.N.D.G.NMA. DH.S EQ. RIN.H.D.G. AVSAH.S	489
DNAK BORBU DNAK BRUOV	F.ASVKL L. Q.D.V GVRAA	485 485
DNAK CHLEN	K. EI II H. H. A. FH.B.	488
DNAK BACME DNA2 BACSU	S. .T. .Q. V.	460 460
DNAK STAAU	ili	460
HSP7Z SPNEU DNAK LACLA	T. G. A. I	460 460
DVAK_MYCIU	KR	464
Consensus	.GT.KEQ.II. II.SSSCIED. EITHWIKEAE ANAEADKKR. FEVRNEAD	550
DNAK ECOLI	KNSGK.T KA NED . DK.R	539
DNAK BORBU DNAK BRUOV	M. GK.R. EESH. EIK. NIEAK T.N. G.VEHQ.R. QA.GA D.EK	535 535
DNAK_CHLEN	VASG. J.KJ.R. J.F.A. J.DFD. J.D.J. R.J. JT.K. FL. R.J. ASDAKI I	538
DNAK BACME DNAS BACSU	L. N. A.T K. T. D. E. E. D. O.K LEJ. L. G. N.T K. LEV.	510 510
DNAK STAAU		510
HSP7Z SPNEU DNAK LACLA	L. dT.V O.NT.E M V. L. dT.V K.N E K.M D. AKDr	510 510
DAY WACIN	L. G. J.I.V K.N. J. E. J.K.M. J. D. A. K J. Dr. J. K. G. NIJR DEG. J. KE DJ. J. L. H. E.R. R JADV. D.E	514
_		
Consensus	.LVF.TER.L KKEKE.ALK.ALEDIKAK	600
DNAK ECOLI	H.LHS.R.OV EFAGD.LPAD DKIAI.S.LIT A.ETKGE. KAAEMQ	588
DNAK BORBU DNAK BRUOV	S.IYOSEYSE.ISSE DKEAI.SKIK EESKEISLSKIE SHSS. AEYGD.VSAD DK.AI.D.IA ATSGEAEDTQ	584 584
DNAK CHLEN DNAK BAOME	SMI.RA. .AI .DYKEQIP.T LV.EI.ERIE NVRNKDDA PIEKEVIE	588
DNA2_BACSO	QTIT. DLEG.VE.A EVIKANE.KD AA.I.KN. LEEKD QQIT. DLEG.VD.E QV.KAND.KD AA.I.KNE FEEKD	559 559
DNAK STAAU HSP7Z SPNEU	SQV. T. TDLCENIG.E DK.SA.EKKO ATQQ. IEDS.KE QAI.ATI .ETEG.CFDA ERDAAQA.LD DK.Q.DNN LDD.MLE	559
DNAK LACLA	AQ .[TDLEG.VE.A EV.KA.D.KE EKGE. IDDSE	559 559
DVAK_MYCTU	TYQLFV .EQREA.G GS.VP.DIIN KVDA.VAEAE -GGTWRIG	559
	 735	

_______13C

.LQ.LYEAAQ	650
E.AQVS.K.M EIAQ COHAQ.CITA GADASANNAK DDD. E.QKASYKIA EMM. KDS9Q QN.NSQ.ENG PQSNISPECK EADY. A.AEVSMK.G QAMAAQA AEGAG.ECGE QASSKIDVV DADY. D.SKIM.KIG ESMQSQSASA AASSA.NAKG GENINIEDIK KHSFSIKPPS E.QEIV.A.T VKL Q.QQQAGE QGA Q E.QTIV.E.S MKL E.AKQAQGGANA ECK A E.EKVI.E.S AKV Q.AQQQQ AQGANAGQIN DST. A.NEKA.G.A VKL Q.AA	624 627 627 638 588 592 595 595 596 597
D.E E	672
W.A.FE .VKD KKEVMDDKKE.ID DNKK SS NNGSSEDHIE .ADVETIEND DK NEDW.A.FE .VNED KK DENW.A.YE .VNEDEN KKVE.A.FN .VKDEK GEDW.G.FT .KNIF.GEFE .SKRRRACKCP PRIG	637 635 637 660 605 611 609 607
	E.AQVS.K.M EIAQ

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 96/40928			PCT/CA96/00322			
		,	7/22			
spn-orf sga-orf sgb-orf		c				50 50 50
Consensus	ATGTCTAAAA	TTATYGGTAT	TGACTTAGGT	ACAACAAACT	CAGCAGTWGC	50
spn-orf sga-orf sgb-orf Consensus	• • • • • • • • • • • • • • • • • • • •	GT	CA	CA TT TT	Ст.	100 100 100
spn-orf sga-orf sgb-orf Consensus	. T	TAA TAA		.CA .TT .TT	TG	150 150 150 150
spn-orf sga-orf sgb-orf Consensus		t	AGC GAT	T.AA.AT.T. CCAGAWACWG	.A	200 200 200 200
spn-orf sga-orf sgb-orf Consensus	TTA CAG			TTCTGCAAAT	T	250 250 250 250
spn-orf sga-orf sgb-orf Consensus	.TT	T	AT.	TCC. TTCAATACYT	$\begin{smallmatrix} T \dots & T \dots & T \\ T \dots & T \dots & T \end{smallmatrix}$	300 300 300 300
spn-orf sga-orf sgb-orf Consensus		.TA	AGAA	T A AAAGCWGTTA	.TT	350 350 350 350
spn-orf sga-orf sgb-orf Consensus	AT AC	TA.	A	A T AACWAAAGAC		400 400 400 400
spn-orf sga-orf sgb-orf Consensus	A		c	.C	ATA ACA	450 450 450 450
spn-orf sga-orf sgb-orf Consensus		A		A T GAWGAAAAA	ATAT TCTTRGTWTT	500 500 500 500

			18/22			
spn-orf			.cc	T		550
sga-orf				A		550
sgb-orf	• • • • • • • • • • •		.TA	A	AT.	550
Consensus	TGACCTTGGT	GGTGGTACAT	TYGACGTMTC	WATCCTTGAA	TTRGGTGAYG	550
spn-orf				.c		600
sga-orf				. <u>T</u>		600
sgb-orf		TC.TG	AT.	.т	• • • • • • • • • • • • • • • • • • • •	600
Consensus	GTGTCTTCGA	CGTWYTKKCA	ACWGCAGGKG	AYAACAAACT	TGGTGGTGAC	600
spn-orf		.AC	CCAG	A.CA	.c	650
sga-orf		.AT	TTTA	G.CT		650
sgb-orf		.GT	TTTG	A.AA	.c	650
Consensus	GACTTTGACC	ARAAAATYAT	TGAYYWCTTR	GTRGMWGAAT	TYAAGAAAGA	650
spn-orf	c c		CT C G	AA.G	T	700
sga-orf				AC.T		700
sgb-orf				TC.T		700
Consensus	AAAYGGTATY	GAYYTDTCWM	MWGAYAARAT	GGCWMTKCAA	CGYTTGAAAG	700
spn-orf				.TA		750
sga-orf sgb-orf				.AG		750 750
-						
Consensus	ATGCKGCTGA	AAAAGCKAAR	AAAGAYCTTT	CWGGTGTRAC	WYMAACWCAA	750
spn-orf				A		800
sga-orf				T		800
sgb-orf				T		800
Consensus	ATYWSMTTRC	CRTTYATCAC	TGCWGGTKMK	GCTGGWCCTC	TTCACTTRGA	800
spn-orf	ACT	A.TG.	т.	.T.G		850
sga-orf				.c.c		850
sgb-orf	GGC	T.AT.	c	.c.c	• • • • • • • • • •	850
Consensus	RATGASYTTA	WCWCGTGCKA	AATTTGAYGA	TYTSACTCGT	GACCTTGTTG	850
spn-orf	А	.GT	C		TAGC	900
sga-orf						900
sgb-orf		.AC	т.		CTCA	900
Consensus	AACGTACRAA	ARYTCCAGTT	CGTCAAGCYC	TTTCAGATGC	AGGHTTGWSM	900
				m	m	050
spn-orf				T		950 950
sga-orf sgb-orf		.тт		A	.A	950
-				GGTGGWTCAA		950
Consensus	TIGICAGAAA	I IGA IGAAGT	IMICCIIGIT	GGIGGWICAA	CHCGIMICCC	730
spn-orf		т.				1000
sga-orf				• • • • • • • • • • • • • • • • • • • •		1000
sgb-orf	AAT		• • • • • •	• • • • • • • • • •	Т	1000
Consensus	WGCMGTTGTY	GAAGCTGTWA	AAGCTGAAAC	TGGTAAAGAA	CCAAAYAAAT	1000
				<u> </u>	44	力

SUBSTITUTE SHEET (RULE 26)

WO 96/40928 PCT/CA96/00322

spn-orf sga-orf sgb-orf Consensus	.TA .TT		T	T	TT CCAAGGTGGK	1050 1050 1050 1050
spn-orf sga-orf sgb-orf	GT TC		AC	Т. С.	A	1100 1100 1100
Consensus	GTKATYACTG	GKGATGTSAA	RGAYGTTGTM	CTTCTTGAYG	TAACRCCATT	1100
spn-orf sga-orf sgb-orf		C T		CCT	T.GC.	1150 1150 1150
Consensus	GTCACTTGGT	ATYGAAACAA	TGGGTGGWGT	MTTYACWAAA	YTKATCGAYC	1150
spn-orf sga-orf sgb-orf Consensus	TA	A T WATCCCAACA				1200 1200 1200 1200
spn-orf sga-orf sgb-orf						1250 1250 1250
Consensus	GACAACCAAC	CAGCCGTTGA	TATCCAYGTT	CTTCAAGGTG	AACGCCCAAT	1250
spn-orf sga-orf sgb-orf Consensus		GTGTA.A.	.TT .CT			1300 1300 1300 1300
spn-orf sga-orf sgb-orf		TT CA	T		$\begin{matrix} T \dots & T \dots A \\ T \dots & T \dots A \end{matrix}$	1350 1350 1350
Consensus	CTGCACCTCG	TGGAATYCCW	CAAATYGAAG	TAACATTTGA	YATCGAYAAR	1350
spn-orf sga-orf sgb-orf	CT.	.GT .TA	ATC	TTG.	G	1400 1400 1400
Consensus	AAYGGTATYG	TDTCTGTWAA	RGCYAAAGAY	CTYGGWACKC	AAAARGAACA	1400
spn-orf sga-orf sgb-orf Consensus	.CACCT	CG. AA. CT. ATCMAATCDA	.CGACAC.	TTA AAT	TTC	1450 1450 1450
spn-orf sga-orf sgb-orf	GC AA	TA CT TT	TTC.	G.CGC G.AGC	G A	1500 1500 1500 1500
Consensus	MADIANIGAN		7	I		
					. = 71	

WO 96/40928 PCT/CA96/00322

20/22

sga-orf sgb-orf				T		1550 1550
Consensus				CAAGCHATCT		1550
spn-orf sga-orf sgb-orf	AAC	A	т	CCCG CTCA TTTA	CT.	1600 1600 1600
Consensus	AAARACWATY	AARGAAACTG	AAGGYAAAGG	YTTYGAYRCA	GAACGYGAYG	1600
spn-orf sga-orf sgb-orf Consensus	.AGT.	ATC AAT	GT.AAG	AAT CTG AAT MWGCKCAAGA	.TCTGGC .TCAGGT	1650 1650 1650 1650
spn-orf sga-orf sgb-orf	C.T C.T	T		T.GC T.AT C.TC	GC	1700 1700 1700
Consensus	YTKGACGACA	TGAAAGCWAA	ACTTGAAGCW	YTDAAYGAAA	AAGCDCAAGS	1700
spn-orf sga-orf sgb-orf	TT.GT	A.G	.GT	AG AT TA	AGCAC	1750 1750 1750
Consensus	WYTKGCWGTT	AAAMTBTACG	ARCAAGCBGC	WGCAGCDCAA	CAAGCWSMWS	1750
spn-orf sga-orf sgb-orf	TA	T	G.TAA	GGACGC GCATAA TCGCAA	TT	1794 1797 1800
Consensus	AAGGDGCWGA	AGGYGCACAA	KCWRMTGATT	CAKSAARYRM	RGGYGATGAY	1800
spn-orf sga-orf sgb-orf	тт.	.AGT .CAT	AAG			1824 1827 1830
Consensus	GTYGTAGAYG	GMGARTTYAC	DGARAARTAA			1830

96/40928						PCT/CA96/0
			21/22			
spn-prot						50
sga-prot		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			50
sgb-prot	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	50
Consensus	MSKI IGI DLG	TTNSAVAVLE	GTESKI IANP	EGNRTTPSVV	SFKNGEIIVG	50
spn-prot						100
sga-prot		.E				100
sgb-prot		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	100
Consensus	DAAKRQAVTN	PDTVISIKSK	MGTSEKVSAN	GKEYTPQEIS	AMILQYLKGY	100
spn-prot	т					150
sga-prot			• • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	150
sgb-prot		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	150
Consensus	AEDYLGEKVE	KAVITVPAYF	NDAQRQATKD	AGKIAGLEVE	RIVNEPTAAA	150
spn-prot	b	E		s		200
sga-prot	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	200
sgb-prot		• • • • • • • • • • • • • • • • • • • •				200
Consensus	LAYGMDKTDK	DEKILVFDLG	GGTFDVSILE	LGDGVFDVLA	TAGDNKLGGD	200
spn-prot	н.		тм.		s	250
sga-prot					• • • • • • • • • • • • • • • • • • • •	250
sgb-prot		. E				250
Consensus	DFDQKIIDFL	VAEFKKENGI	DLSQDKMALQ	RLKDAAEKAK	KDLSGVTQTQ	250
spn-prot	E	т.	T	v		300
sga-prot		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	300
sgb-prot				•••••	• • • • • • • • • • • • • • • • • • • •	300
Consensus	ISLPFITAGS	agp l hlemsl	SRAKFDDLTR	DLVERTKTPV	RQALSDAGLS	300
spn-prot						350
sga-prot				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	350
sgb-prot						350
Consensus	LSEIDEVILV	GGSTRI PAVV	EAVKAETGKE	PNKSVNPDEV	VAMGAAIQGG	350
spn-prot						400
sga-prot			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	400
sgb-prot						400
Consensus	VITGDVKDVV	LLDVTPLSLG	IETMGGVFTK	LIDRNTTIPT	SKSQVFSTAA	400
spn-prot						450
sga-prot					• • • • • • • • • •	450
sgb-prot			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	450
Consensus	DNQPAVDIHV	LQGERPMAAD	NKTLGRFQLT	DI PAAPRGI P	QIEVTFDIDK	450
spn-prot		τ				500
sga-prot						500 500
sgb-prot						500
Consensus	NGIVSVKAKD	LGTQKEQHIV	TOSNSGLTDE	EIDRMMKDAE	ANAEADAKKK	500
spn-prot						550
sga-prot						550 550
sgb-prot Consensus		QAIFATEKTI				550
		,				
spn-prot			. M	QE	.TGN.G	598 599
sga-prot sgb-prot					SASSKG	600
Consensus					A.DSADD	600
						607
spn-prot sga-prot						608
sgb-prot						609
Consensus	VVDGEFTEK					609
					725	

Ŀ.

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inter mal Application No
PCT/CA 96/00322

IPC 6	C12N15/31 C07K14/315 C12N1/2 A61K39/395 G01N33/569 C12Q1/6	1 C07K16/12 A6 8	51K39/09
According to	o International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
Minimum d IPC 6	ocumentation searched (classification system followed by classifica C12N C07K A61K	tion symbols)	
	ion searched other than minimum documentation to the extent that		
<u> </u>			
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the t	relevant passages	Relevant to claim No.
Х	GENE, vol. 142, no. 1, 3 May 1994, AMS NL,	TERDAM	1,2, 6-21,23, 28,41
	pages 91-96, XP002013303 M.J.S.BARRIL ET AL.: "Cloning a sequencing of the Lactococcus la subsp. lactis dnaK gene using a approach" see figure 3	ctis	
A	WO,A,93 17712 (BIOCINE SCLAVO SP September 1993 see page 50	A) 16	1-101
A	WO,A,92 14488 (UAB RESEARCH FOUN September 1992 see the whole document	DATION) 3	1-101
Fur	ther documents are listed in the continuation of box C.	X Patent family members are I	isted in annex.
'A' docum consider filing 'L' docum which citatio 'O' docum other 'P' docum later '	ategories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date nent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means nent published prior to the international filing date but than the priority date claimed e actual completion of the international search	"T' later document published after the or priority date and not in conflicted to understand the principle invention." "X' document of particular relevance cannot be considered novel or cinvolve an inventive step when to document of particular relevance cannot be considered to involve document is combined with one ments, such combination being in the art. "A" document member of the same particular relevance of the same parti	or theory underlying the er theory underlying the e; the claimed invention annot be considered to the document is taken alone e; the claimed invention an inventive step when the or more other such docu- obvious to a person skilled patent family nal search report
1	13 September 1996	2 7.4	09. 96
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer Cupido, M	

INTERNATIONAL SEARCH REPORT

rnational application No.

PCT/CA96/00322

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 67,73,81,82,90,97-99 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 67,73,81,82,90 and 97-99 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the composition.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

....formation on patent family members

Interr val Application No
PCT/CA 96/00322

WO-A-9317712				1	
	16-09-93	CA-A- EP-A- JP-T-	2131551 0632727 7504423	16-09-93 11-01-95 18-05-95	
WO-A-9214488	03-09-92	AU-B- AU-A- AU-A- EP-A- JP-T- US-A-	667668 1445392 4798096 0571538 6504446 5476929	04-04-96 15-09-92 27-06-96 01-12-93 26-05-94 19-12-95	