```
Assignment - 11 (Discussion/solution)
```

1. fn: R > IR as fn(x) := x . Then fn > 0 btuie.

on $[a_1b]$, $|f_n(x)| = \frac{|x|}{n} \leq \frac{|b-a|}{n}$... $f_n \to 0$ uniformly on $[a_1b]$.

 $\neg \varphi$ (fn) not unif. Cauchy. Show that $\exists \ \ \geq \ > 0 \ \text{s.t.} \ |\frac{\times}{m} - \frac{\times}{n}| > \ \geq \ \text{for some}$ $\times \in \mathbb{R}$.

2. (a) n: even n:odd ... $f_n \rightarrow 0$ Hinse on (-1,1]. where $f(x) = \begin{cases} 0, x \in (-1,1) \\ 1, x = 1 \end{cases}$.

(b) $f_n(x) = n^2 x \left(1-x^2\right)^n$ $f_n \rightarrow 0$ plus on [0,1] $f_n \not\rightarrow 0$ unif.

(c) $\frac{n \times}{1+n \times}$ on $[0,\infty)$ $f_n(x) \rightarrow 1$ phise for $x \neq 0$ $f_n(0) \rightarrow 0$.

Suppose (fn) cy. nuiformly. Then - the limit function must be ck. ----

(d) HW

(e) xe on $[0,\infty)$ $xe \rightarrow 0$ | twise. (b/c. $e^{nx} < 1$ for x > 0)

Note that 1+nx < e for x \(\int_0, \infty \).

 $\frac{X}{e^{nx}} \leq \frac{X}{1+nx} < \frac{X}{nx} \qquad Now, \text{ for } x>0, \quad \frac{X}{e^{hx}} < \frac{1}{n} \quad \text{and also for } x=0$

Herr, X < 1 + x ∈ [0,0). HW.

3. In: IR > IR cts. and fn -> f unif. on [9,6].

f is cts. on every closed & bdd. interval,

Xoe IR Consider [xo-8, xo+8] - - - -

4.
$$f_n$$
) st. $f_n \rightarrow f$ uniq. when $f_n \in C[0,1]$.

Claim: $\int f_n \rightarrow \int f$.

If: $\int_0^{1/4} \int_0^{1/4} \int_0^{$

For
$$x>0$$
:
$$\sum_{n\geq 1}^{\infty} \frac{n}{e^{xx}} < \infty \qquad \left(\begin{array}{c} \text{Rtho trif} \ldots \end{array} \right)$$

$$\sum_{n\geq 1}^{\infty} \frac{n}{e^{xx}} = \sum_{n\geq 1}^{\infty} \frac{n}{e^{x}} = \sum_{n\geq 1}^{\infty} \frac{n$$