Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

GLOBAL STATES AND CHECKPOINTS

Motivation

Detecting global properties

- Want to discover if a property holds in a distributed systemThree examples:
 - H Distributed garbage collection: if there are no longer any reference spipe to the popular three popular three should be reclaimed.
 - # Distributed deadlock detection: when each of a collection of processes waits wearing the processes to send it a message, and where there is a cycle in the graph of this "wait-for" relationship.
 - **X** Distributed termination detection: detect if a distributed algorithm has terminated. Need to test if each process has halted and no more messages in the network.

Distributed Checkpoints and Rollback Recovery

- Fault tolerance is achieved by periodically using stable storage to save the processes' states during the failure freezement Project Exam Help
- Upon a failure hat fail of process tolls back from one of its saved states, thereby reducing the amount of lost computation. Add WeChat powcoder
- Each of the saved states is called a <u>checkpoint</u>

Checkpoint based Recovery

- Uncoordinated checkpointing: Each process takes its checkpoints Assignment Project Exam Help independently
- Coordinated the Coordinate Alle Welleckpointing: Processes coordinate Alle Welleckpoints in order to save a system-wide consistent state.

Domino effect: uncoordinated example

<u>Domino Effect:</u> Cascaded rollback which causes the system to roll back too far in the computation (even to the beginning), in spite of all the checkpoints

Coordinated Non-blocking

- Processes could coordinate, but ...
- Do we really need to block...?
 Assignment Project Exam Help

https://powcoder.com

K. Mani Chandy Add WeChat powcoder Leslie Lamport

Global State

Chandy and Lamport—TOCS 1985

- Global state of a distributed system
 - Local state of each process
 - Messages sent but not received
- Many applicationsmerojebelstate Efethe system
 - Failure recovery, distributed deadlock detection https://powcoder.com
 Detect stable properties.
- Problem: howadanWe@Ifigwrevoutlehe state of a distributed system?
 - Each process is independent
 - Network does not have any processing power.
- Distributed snapshot: a consistent global state

Distributed System Model

 Assume each process communicates with another process using unidirectional FIFO point-to-point channels (e.g, TCP connections) Assignment Project Exam Help

https://powcoder.com
c1
Add WeChat powcoder
c2

c4

c3

A Simple Example

A Variant of producer-consumer example

Producer code:

Example: Initial State

Assignment Project Exam Help

```
https://powcoder.com
mAdd.WeChat powcoder
```

Producer

Consumer

Assignment Project Exam Help

Producer

Consumer

Assignment Project Exam Help

https://powcoder.com
Add.WeChat powcoder

Producer

Consumer

Assignment Project Exam Help

https://powcoder.com
Add.WeChat powcodera

Producer

Consumer

Assignment Project Exam Help

Producer

Consumer

Assignment Project Exam Help

https://powcoder.com a Add. WeChat powcoder

Producer

Consumer

A naïve snapshot algorithm

 Processes record their state at any arbitrary point

- Assignment Project Exam Help
 A designated process collects these states https://powcoder.com
- Add WeChat powcoder + So simple!!
- Correct??

Example Producer Consumer problem

Producer records its state

Assignment Project Exam Help

Assignment Project Exam Help

Producer

Consumer

Consumer records its state

Assignment Project Exam Help

Example The recorded state

Assignment Project Exam Help

Producer

Consumer

Where did we err?

What did we do wrong?

Error!!

- The sender has no record of the sending
- The receiver has the record of the receipt Assignment Project Exam Help
- Result

https://powcoder.com

— Global state has record of the receive event but no send event Aid Mig that Inappended before concept!!

The Notion of Consistency

 A global state is consistent if it could have been observed by an external observer Assignment Project Exam Help

https://powcoder.com
 If a → b then it is never the case that b is observed by an external observer and not a

All feasible states are consistent

An Example

https://powcoder.com

A Consistent State?

Yes

A Consistent State?

Yes

29

What about.....

https://powcoder.com

Consistent State

- a) A consistent cut
- b) An inconsistent cut

Distributed Snapshot Algorithm

- Any process can initiate the algorithm
 - Save local state
- Send MARKERs on every outgoing channel Assignment Project Exam Help
 On receiving a first marker on a channel c:
- - Process saves Pocarstate and state of c is empty
 - Send MARKARI ON all put going channels, and save messages on all other incoming channels (not c).
- On receiving subsequent marker on a channel:
 - stop saving messages for that channel
 - Saved messages are the state of the channel

Distributed Snapshot

- A process finishes when
 - It receives a marker on each incoming channel and processest named Project Exam Help
 - State: local state plus state of all channels https://powcoder.com
 - Send state to initiator
- Add WeChat powcoder
 Any process can initiate snapshot
 - Multiple snapshots may be in progress
 - Each is distinguished by tagging the marker with the initiator ID (and sequence number)

Execution Example

initiator

Execution Example

q records state as S_q^1 , sends marker to p

p records state as S_p^2 , channel state as empty

q records channel state as m₃

Two processes trading in "widgets"

- Process p_1 sends orders for widgets over c_2 to p_2 , enclosing payment at the rate of \$10 per widget.
- In exchange, process p₂ sends widgets along channel c₁ to p₁.

The Retrieved State

What is this State? Does it correspond to any of the actual global states the system went through?

Assignment Project Exam Help

The Execution of the Algorithm

 e_0 : p_1 sends (10, \$100).

e₁: p₂ sends 5 widges to p₁

e₂: p₁ receives five widgets ment Project Exam Help

The Execution of the Algorithm

 e_0 : p_1 sends (10, \$100). e_1 : p_2 sends 5 widges to p_1 e_1 : p_2 sends 5 widges to p_1 e_0 : p_1 sends (10, \$100)

e₂: p₁ receives five widgets Project Exam Heips five widgets

The Execution of the Algorithm

e₀: p₁ sends (10, \$100). e₁: p₂ sends 5 widges to p₁

TAKE SNAPSHOT

e₁: p₂ sends 5 widges to p₁

e₂: p₃ sends (10, \$100)

e₂: p₁ receives five widgets Project Exam Heips five widgets

Model

- Finite set of processes. Finite set of directed channels. Modeled as a Directed Graph.
- Channels are Fifther Prografies am Help
- A process is a finite set of states: an initial state and a set of events.
- Add WeChat powcoder

 State of channel is msgs sent but not received.

Correctness Proof

- Global State: set of process and channel states.
- Let seq = e, e, be a dist comp.

 Assignment Project Exam Help
- Let S_i be the state before event e_i. https://powcoder.com
- Let S_{init} be the state in which the algorithm started and S_{final}^{Add} WeChat powcoder the state when it terminated.
- S_{snap} be the recorded state.
- Show that S_{snap} is reachable from S_{init} and S_{final} is reachable from S_{snap}

Correctness Proof

- There is a sequence seq' such that:
- 1. seq' is a permutation of seq Assignment Project Exam Help
- 2. $S_{init} = S_{snap}$ or S_{init} occurs earlier than S_{snap}
- 3. S_{final} = S_{snap} or S_{snap} occurs earlier than S_{final} Add WeChat powcoder
 e is a pre-recording event iff e is in p and p
- e is a pre-recording event iff e is in p and p records state after e in seq.
- E is post-recording event iff e is in p and p records state before e in seq.

Correctness Proof

- 1. All events e_i where i < init are pre-recording.
- 2. All events e; where i > final are post-recording.
- 3. There can be some post-decording portore some pre-recording events. https://powcoder.com
- Possible on same process? NO Add WeChat powcoder
 What about on different processes?
- A pair of events a, b can be scheduled in any order if there is no causal order between them, so (a; b) is equivalent to (b; a)

CS 271

Checkpoint Proof: Different Processes Case

Violates FIFO property

Reachability between states in the snapshot algorithm

Why does it work?

Let an observer observe the following actions:

Returns a correct global state

• Obtain seq' by reordering events of seq between first snap and last snap, putting all pre-recording events before all post-recording events, presigning to the last snap.

https://powcoder.com

 Returned state is exactly the global state of seq' between the pre-recording and post-recording events.

Correctness

Termination:

- -Communication graph is strongly connected
- All snapæventuallyplogeause of reither snap input or marker message.

 https://powcoder.com
 If there is a communication path from p_i to
- -If there is a communication path from p_i to p_k, then p_k will recording to of time after p_i
- Markers eventually sent and received on all channels.

- Recorded state of channel C from p to q:
 - Sequence of msgs received by q before Marker received Assignment Project Exam Help
 Minus
 - Sequence of msgs received by q before state recording
 Add WeChat powcoder

- What we want:
 - Sequence of msgs sent by p before state recording Assignment Project Exam Help
 Minus
 - Sequence of msgs received by q before state recording
 Add WeChat powcoder

- Recorded state of channel C from p to q:
 - Sequence of msgs received by q before Marker received Assignment Project Exam Help
 Minus
 - Sequence of msgs received by q before state recording
- What we want Add We Charles We We want Add We Charles We We want Add We Charles We want Add We want Ad
 - Sequence of msgs sent by p before state recording
 Minus
 - Sequence of msgs received by q before state recording

- Recorded state of channel C from p to q:
 - Sequence of msgs received by q before Marker received Assignment Project Exam Help
 Minus
 - Sequence of msgs received by q before state recording
- What we want Add We That Down ALENT
 - Sequence of msgs sent by p before state recording
 Minus
 - Sequence of msgs received by q before state recording

- Recorded state of channel C from p to q:
 - Sequence of msgs received by q before Marker received Assignment Project Exam Help
 Minus
 - Sequence of msgs received by q before state recording
- What we want Add We Chat powcoder
 - Sequence of msgs sent by p before state recording
 Minus
 - Sequence of msgs received by q before state recording
- They are equal!

Detecting Stable Properties

- A predicate y (S) is a stable property if once y is true for state S it remains true (unless you interfere with system) for all subsequent states.
- Run protocol and record state S*. https://powcoder.com
 - If $y(S_{init})$ is true then $y(S^*)$ is true
 - If y(S*) is true then y (S_{final}) is true
- y(S*) true implies property holds
- y(S*) false does NOT implies property does not hold.