تصميم منظومة عطالية غير مؤطرة:

الفرضيات:

مدة عمل قصيرة بالنسبة لدور شويلر (حوالي 200 Sec).

اعتماد جملة احداثيات شبه مطلقة في مركز الأرض ودورانها معدوم.

اعتماد جملة متحركة مثبتة على الصاروخ.

النظام الذي سوف يتم العمل وفقه موضح بالشكل(12).

الدخول:

قراءات مقاييس التسارع (القوى النوعية في جملة الجسم).

قراءات الجيرومترات (السرع الزاوية في جملة الجسم).

الخرج:

زوايا التموضع في جملة العطالة (Phi, Theta, Psi).

السرعة الخطية في جملة العطالة (Vx, Vy, Vz).

الموضع (X, Y, Z).

اولاً: حساب وضعية الصاروخ Tm/Ta [الكتلة Q]:

هنا يلزمنا اعتماد طريقة لحل المعادلات المتغيرة مع الزمن (معادلة $\dot{\mathbf{B}}$ او $\dot{\mathbf{Q}}$), منها طرق تحليلية مثل Willox و EDWARDS وطرق رقمية مثل Rung-Kutta.

المعادلات المراد مكاملتها هي:

$$\dot{\mathbf{B}} = B. \left[* \Omega_{m/a} \right]$$

$$\dot{\mathbf{Q}} = \frac{1}{2} Q. \left[\underline{\Omega_{m/a}} \right]$$

اي:

$$\dot{\mathbf{Q}} = \frac{dQ}{dt} = \frac{1}{2} Q. \left[\underline{\Omega_{m/a}} \right]$$

وبالشكل المصفوفي:

$$\begin{bmatrix} \dot{Q}_1 \\ \dot{Q}_2 \\ \dot{Q}_3 \\ \dot{Q}_4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -p & -q & -r \\ p & 0 & r & -q \\ q & -r & 0 & p \\ r & q & -p & 0 \end{bmatrix} . \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix}$$

ثم تتم عملية الـ Normalization للرباعية:

$$|Q| = (Q_1^2 + Q_2^2 + Q_3^2 + Q_4^2)^{0.5}$$

$$Q_i = \frac{Q_i}{|Q|} \quad ; i = 1,2,3,4$$

ثانياً: حساب مصفوفة التحويل B [الكتلة B]:

الدخل: Q1, Q2, Q3, Q4

الخرج: B.

والمصفوفة B هي بالشكل:

$$\mathbf{B}_{a}^{m} = \begin{bmatrix} (Q_{1}^{2} + Q_{2}^{2} - Q_{3}^{2} - Q_{4}^{2}) & 2(Q_{2}, Q_{3} - Q_{1}, Q_{4}) & 2(Q_{2}, Q_{4} + Q_{1}, Q_{3}) \\ 2(Q_{2}, Q_{3} + Q_{1}, Q_{4}) & (Q_{1}^{2} + Q_{3}^{2} - Q_{2}^{2} - Q_{4}^{2}) & 2(Q_{4}, Q_{3} - Q_{1}, Q_{2}) \\ 2(Q_{2}, Q_{4} - Q_{1}, Q_{3}) & 2(Q_{3}, Q_{4} + Q_{1}, Q_{2}) & (Q_{1}^{2} + Q_{4}^{2} - Q_{2}^{2} - Q_{1}^{2}) \end{bmatrix}$$

ثالثا: تحديد وضع وسرعة الصاروخ:

نحدد وضع وسرعة الصاروخ بمكاملة التسارع المطلق $\overline{\gamma_a}$ بالنسبة للزمن, وهو عبارة عن مجموع القوى النوعية (القراءة النسارعية \widetilde{q} وتسارع الجاذبية $\widetilde{\phi}$ وكلاهما في جملة الجسم للصاروخ (جملة متحركة), وفق المعادلة الشعاعية:

$$\overrightarrow{\gamma_a}=ec{A}+ec{arphi}$$
 وبمكاملة هذه المعادلة:
$$\overrightarrow{V}=\overrightarrow{V}(0)+\int_0^t \overrightarrow{\gamma_a} d au=\int_0^t \overrightarrow{A} \,d au+\int_0^t \overrightarrow{\phi} \,d au$$
 $\overrightarrow{V}=\overrightarrow{V}(0)+\overrightarrow{V_A}+\overrightarrow{V_F}$

V_A [الكتلة V_A]:

 $\overrightarrow{V_A} = \int_0^t \overrightarrow{\mathbf{A}} \, d\tau$

تحسب في الجملة المتحركة وفق المعادلة التالية, والمخطط (13).

$$\left[\frac{\overrightarrow{dV_A}}{dt}\right]_m + \overrightarrow{\Omega_{m/a}} \wedge \overrightarrow{V_A} = \overrightarrow{A}$$

 $\overrightarrow{V_F} = \int_0^t \overrightarrow{\varphi} \, d\tau$

ووفق الحسابات التالية:

$$\left[\frac{\overrightarrow{dV_A}}{dt}\right]_m = \overrightarrow{A} - \overrightarrow{\Omega_{m/a}} \wedge \overrightarrow{V_A}$$

وبإجراء التكامل نحصل على مركبات السرعة $\overline{V_A}$ في جملة الجسم المتحركة وثم نقوم بضربها بمصفوفة التحويل B لننتقل الى الجملة الساكنة وهي جملة العطالة.

وفق الحسابات في الشكل التالي (يمكن اجراء التكامل مباشرة دون هذه التبسيطات).

$\overline{V_F}$ [الكتلة PHI]:

يحسب حقل الجاذبية في جملة العطالة وفق المعادلتين:

$$\varphi(x \text{ ou } y) = A_0 \frac{x \text{ ou } y}{R^3} \left[1 + \frac{A_2}{R^2} \left(\frac{52^2}{R^2} - 3 \right) + \frac{A_4}{R^4} \left(\frac{63Z^4}{R^4} - \frac{42Z^2}{R^2} + 3 \right) + \dots \right]
\varphi(z) = A_0 \frac{Z}{R^3} \left[1 + \frac{A_2}{R^2} \left(\frac{5Z^2}{R^2} - 3 \right) + \frac{A_4}{R^4} \left(\frac{63Z^4}{R^4} - \frac{70Z^2}{R^2} + 15 \right) + \dots \right]$$

$$A_0 = -3.986329e14 \ m^3/s^2$$

 $A_2 = -6.66425e10 \ m^2$
 $A_4 = 2.5023e4 \ m^4$
 $R = 6400 \ km = 64e5 \ m$

وبالمكاملة نحصل على:

$$VFX(t + \Delta t) = \int_{t}^{t + \Delta t} \varphi(X) dt$$
$$VFY(t + \Delta t) = \int_{t}^{t + \Delta t} \varphi(Y) dt$$

$$VFZ(t + \Delta t) = \int_{t}^{t + \Delta t} \varphi(Z) dt$$

حساب السرعة المطلقة \vec{V} :

فقط بجمع المعادلات التي التي اوجدناها سابقاً,

و Δt نحسب:

$$VX(t + \Delta t) = VX + VXA + VFX$$

$$VY(t + \Delta t) = VY + VYA + VFY$$

$$VZ(t + \Delta t) = VZ + VZA + VFZ$$

حساب الوضع المطلق R:

بمكاملة السرعة المطلقة, وأخذ خطوة زمنية حسابية Δt :

$$RX(t + \Delta t) = RX + \int_{t}^{t + \Delta t} VX \, dt$$

$$RY(t + \Delta t) = RY + \int_{t}^{t + \Delta t} VY dt$$

$$RZ(t + \Delta t) = RZ + \int_{t}^{t + \Delta t} VZ \, dt$$

حساب زوايا أويلر:

نحسبها من المعادلات التالية بدلالة مركبات الرباعيات:

$$\Theta = -\arcsin\left[2(Q_4,Q_2+Q_1,Q_3)\right]$$

$$\varphi = \arcsin\left[\frac{2}{\cos(\Theta)}(Q_4, Q_3 - Q_1, Q_2)\right]$$

$$\Psi = \arcsin\left[\frac{2}{\cos(\Theta)}(Q_2, Q_3 - Q_1, Q_4)\right]$$

رابعاً: بناء حاسب المنصة العطالية:

يتم بناءه وفق المخطط التالي:

Ibrahim Bakry