Module Code: CSE401

Session 1a:Algorithm & flow chart

Session Speaker:

Prema Monish

premamonish.tlll@msruas.ac.in

Objectives

- At the end of this lecture, student will be able to
 - explain the process of arriving at a computer solution
 - describe the nature of a computer algorithm
 - discuss the role of memory in a computer program and hence the use of variable in algorithms

Contents

- A Problem
- Computable Algorithms
- Algorithms
- Problem Solving Approach
- Examples of Problem Solving

A Problem

Multiply

129837382

with

914147324

Given:

129837382

X 914147324

???????????

129837382

X 914147324

519349528

259674764

389512146

908861674

519349528

129837382

519349528

129837382

1168536438

<u>118690495310465768</u>

What Did You Do?

Why Do You Follow These Steps?

- General solution
 - Works for any 2 numbers
- Guarantee of solution
- Any one who has never done multiplication can also follow these steps and find the result
 - Clear, precise steps
- Computers do not know anything
 - You must tell the steps
 - It will do the job for you

Program Development

Example: Problem

Q. Design and Develop a program to find factorial of a number

$$n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$$

Example: Algorithm

```
function fact(var n:integer);
var i { loop variable },
        ret{holds the return value}: integer;
begin {check n and calculate factorial}
        \{assert : n \ge 0\}
       ret := 1;
        for i := 2 to n do
        begin
               ret: = ret * i;
        end
end
```


Example: C Program

```
* File: Factorial.c
* Author: vsarma
 * Created on 18 July, 2014, 12:11 PM
 */
#include <stdio.h>
#include <stdlib.h>
#define NUMBER 4/*The number for calculating factorial*/
/* Function fact:
 * Calculates factorial of a given number.
 * Input: A positive Integer number
 * Output: The factorial of the number or -1 in case of an error
int fact(int n){
    int i;
    int ret = 1:
    if(n<0)
        return -1;
    for(i=2;i<=n;i++)</pre>
        ret = ret * i;
    return ret;
```


Example: Executable

00000000	7f	45	4c	46	01	01	01	00	00	00	00	00	00	00	00	00	.ELF
00000010	02	00	03	00	01	00	00	00	30	83	04	98	34	00	00	00	04
00000020	b8	0b	00	00	00	00	00	00	34	00	20	00	98	00	28	00	
00000030	25	00	22	00	06	00	00	00	34	00	00	00	34	80	04	08	%."44
00000040	34	80	04	98	00	01	00	00	00	01	00	00	05	00	00	00	[4
00000050	04	00	00	00	03	00	00	00	34	01	00	00	34	81	04	08	4 4
00000060	34	81	04	98	13	00	00	00	13	00	00	00	04	00	00	00	[4
00000070	01	00	00	00	01	00	00	00	00	00	00	00	00	80	04	98	
00000080	00	80	04	98	dc	05	00	00	dc	05	00	00	05	00	00	00	[
00000090	00	10	00	00	01	00	00	00	dc	05	00	00	dc	95	04	98	[
000000a0	dc	95	04	98	20	01	00	00	24	01	00	00	06	00	00	00	\$
000000b0	00	10	00	00	02	00	00	00	е8	05	00	00	е8	95	04	98	
000000c0	e8	95	04	98	f0	00	00	00	f0	00	00	00	06	00	00	00	
000000d0	04	00	00	00	04	00	00	00	48	01	00	00	48	81	04	98	[HH
000000e0	48	81	04	98	44	00	00	00	44	00	00	00	04	00	00	00	[HDD
000000f0	04	00	00	00	50	е5	74	64	38	05	00	00	38	85	04	98	P.td88
00000100	38	85	04	98	24	00	00	00	24	00	00	00	04	00	00	00	8\$\$
00000110	04	00	00	00	51	е5	74	64	00	00	00	00	00	00	00	00	Q.td
00000120	00	00	00	00	00	00	00	00	00	00	00	00	06	00	00	00	
00000130	04	00	00	00	2f	6c	69	62	2f	6c	64	2d	6c	69	6e	75	/lib/ld-linu
00000140	78	2e	73	6f	2e	32	00	00	04	00	00	00	10	00	00	00	x.so.2
00000150	01	00	00	00	47	4e	55	00	00	00	00	00	02	00	00	00	GNU
00000160	06	00	00	00	1a	00	00	00	04	00	00	00	14	00	00	00	
00000170	03	00	00	00	47	4e	55	00	6f	05	СС	96	62	0с	6e	10	GNU.ob.n.
00000180	20	7f	eb	c3	d8	с0	За	7d	f4	7d	be	b3	03	00	00	00	
00000190	05	00	00	00	02	00	00	00	03	00	00	00	04	00	00	00	
000001a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001b0	01	00	00	00	02	00	00	00	04	00	00	00	01	00	00	00	
000001c0	05	00	00	00	00	20	00	20	00	00	00	00	04	00	00	00	
000001d0	ad	4b	е3	с0	00	00	00	00	00	00	00	00	00	00	00	00	.K
000001e0	00	00	00	00	29	00	00	00	00	00	00	00	00	00	00	00)
000001f0	12	00	00	00	01	00	00	00	00	00	00	00	00	00	00	00	
00000200	20	00	00	00	30	00	00	00	00	00	00	00	00	00	00	00	0
00000210	12	00	00	00	1a	00	00	00	1c	85	04	98	04	00	00	00	
00000220	11	00	10	00	00	5f	5f	67	6d	6f	6e	5f	73	74	61	72	gmon_star
00000230	74	5f	5f	00	6c	69	62	63	2e	73	6f	2e	36	00	5f	49	tlibc.so.6I
00000240	4f	5f	73	74	64	69	6e	5f	75	73	65	64	00	70	72	69	0_stdin_used.pri
~~~~~	-	- 4	~~	~ ~			-	~~									



#### **Algorithms and Programs**

#### An Algorithm

Set of finite steps that give the solution to a problem

- A procedure for solving a problem consists of
  - actions to be executed, and
  - order in which these actions are to be executed

#### A Computer Program

• It is the algorithm to solve a problem, expressed in a programming language

#### **Characteristics of an Algorithm**

- Input
  - may accept zero or more inputs
- Output
  - should produce at least one output
- Precise
  - each step should be clear and precise. No ambiguity
- Finiteness
  - should end after a fixed time. No infinite loop
- Effectiveness
  - steps must be simple and can be done exactly and in a finite length of time, by person using pencil and paper



#### **Algorithms**

Swapping 2 numbers Algorithm swap() var temp, a, b : Integer; begin readIn(a); readIn(b); writeln('The current values of a and b are', a, b); temp := a; a := b; b := temp; writeln('The current values of a and b are', a, b); end

#### **Algorithms**

- Recap
  - Solution to a given problem

<instruction block with; termination>

- Finite
- Step by step
- Un-ambiguous

```
Algorithm <name of algorithm> (<parameter list>):<return type>
var <variable list>:<type>;{similar to parameter list}
begin
{<assertions>}
```

end



### **Algorithms**

- I/O statement
  - readln(<variable name>)
  - writeln('<output string')</pre>
- Example
  - readIn(a);
  - writeln('This is a line to be printed');



#### **Flow Charts**

- A flowchart
  - A graphical representation of an algorithm or of a portion of an algorithm

 Flowcharts are drawn using certain special-purpose symbols such as rectangles, diamonds, ovals, and small circles

Symbols are connected by arrows called flowlines



### **Flow Charts - Symbols**

- Oval symbol
- Terminator symbol
  - All programs in C start executing from the first processing statement in main function
  - Flowcharts express the start of a program and termination of the program using a terminator symbol



Examples



Start

Stop

- Rectangle symbol or action symbol
- Processing Statement



Example

a = a + b

Predefined Process



Example

power(10,num)



I/O statement



Examples

Print "Sum is", 10

Read integer i



Connectors



Examples





- Diamond symbol or decision symbol indicates that a decision is to be made
- Contains an expression, such as a condition, that can be either true or false



Examples





#### **Flow Charts**

Swapping 2 numbers





#### **Flow Charts**

adding 2 numbers



#### Summary

- An algorithm is a set of explicit and unambiguous finite steps which when carried out for a given set of initial conditions, produce the corresponding output and terminate in a finite time
- Computer solutions are called programs
- A Program is a set of explicit and unambiguous instructions expressed in a programming language
- Programming is application of problem solving using a computer
- Flow Charts are graphical representation of Algorithms and clearly show the control flow

# ANY QUERIES



