Ejercicios 1-13'

Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

1.

2. Sean $(\mathscr{C}, T, \triangle)$ una categoría pre-triangulada y $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$ en \triangle . Pruebe que $u \in SKer(v), \quad v \in SCoKer(u) \cap SKer(w)$ y $w \in SCoKer(v)$.

Demostración. Primero se probará que $u \in SKer(v)$. Por el teorema (1.2.a) se tiene que vu = 0.

Sea $r:M\to Y$ tal que vr=0. Como $M\in\mathscr{C},$ entonces por el teorema (TR1a) $M\xrightarrow{1_M} M\longrightarrow 0 \longrightarrow TM$ está en \triangle , y por (TR2) se puede rotar el triangulo de las hipótesis tal se tiene el siguiente diagrama:

$$M \xrightarrow{1_M} 0 \xrightarrow{} T(M) \xrightarrow{T(1_M)} TM$$

$$\downarrow r \downarrow \qquad 0 \downarrow \qquad \downarrow T(r)$$

$$Y \xrightarrow{v} Z \xrightarrow{w} T(x) \xrightarrow{-T(u)} T(y).$$

Así, por (TR3) existe $s': T(M) \to T(X)$ tal que $(T(r))(-T(1_M)) = (-T(u))(s')$, y como T es autofuntor, entonces $-T(r\circ 1_M)) = -T(u\circ T^{-1}(s'))$. Si se toma $s=T^{-1}(s'): M\to X$ se tiene que r=us, por lo tanto $u\in SKer(v)$.

Veamos ahora que $v \in SCoker(u)$.

Anteriormente se observó que vu=0. Sea $t:Y\to M$ tal que tu=0. Como $M\in\mathscr{C},$ entonces por el teorema (TR1a) $M\xrightarrow{1_M}M\longrightarrow 0\longrightarrow TM$ está en \triangle , así por (TR2) $0=T^{-1}(0)\xrightarrow{0}M\xrightarrow{1_M}M\longrightarrow 0$ está en \triangle .

Además, como tu = 0 entonces entonces se tiene el siguiente diagrama:

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

$$\downarrow 0 \qquad \downarrow t \qquad \qquad \downarrow T(0)=0$$

$$0 \xrightarrow{0} M \xrightarrow{1_M} M \xrightarrow{} 0.$$

Así, por (TR3) existe $s:Z\to M$ tal que $1_M\circ t=sv$ y por lo tanto $v\in SCoKer(u).$

Por último, rotando el triángulo de las hipótesis por (TR1c) se tiene que $Y \xrightarrow{v} Z \xrightarrow{w} T(x) \xrightarrow{-T(u)} T(y)$ está en \triangle , así por lo demostrado $v \in Ker(w)$ y $w \in CoKer(v)$.

3.

4.

5. Sea (\mathscr{C}, T, Δ) una categoría pretriangulada (respectivamente triangulada), pruebe que el triple $(\mathscr{C}^{op}, \tilde{T}, \tilde{\Delta})$ es una categoría pretriangulada (respectivamente triangulada), donde $\tilde{T}(f^{op}) = (T^{-1}(f))^{op}$ y $\tilde{\Delta}$ se define como sigue:

$$X \xrightarrow{u^{op}} Y \xrightarrow{v^{op}} Z \xrightarrow{w^{op}} \tilde{T}X \in \tilde{\triangle}$$

 \iff

$$Z \xrightarrow{\quad u \quad} Y \xrightarrow{\quad v \quad} X \xrightarrow{\quad Tw \quad} TZ \qquad \quad \in \triangle \,.$$

En tal caso se define $(\mathscr{C},T,\triangle)^{op}:=(\mathscr{C}^{op},\tilde{T},\tilde{\triangle}).$

Esto es, $(\mathscr{C}^{op}, \tilde{T}, \tilde{\triangle})$ es una categoría pretriangulada (respectivamente triangulada) opuesta de $(\mathscr{C}, T, \triangle)^{op}$.

Demostraci'on. Se puede observar que al tomar $(\mathscr{C}^{op}, \tilde{T}, \tilde{\triangle})$ como se describe en las hipótesis, al ser \mathscr{C} una categoría abeliana, entonces \mathscr{C}^{op} también es una categoría abeliana, donde la operación está definida por $f^{op} + g^{op} := (f+g)^{op}$ para cada $f,g \in Mor(\mathscr{C})$ y $+: Mor(\mathscr{C}) \times Mor(\mathscr{C}) \to Mor(\mathscr{C})$ la operación definida en \mathscr{C} .

Por lo anterior se tiene entonces que el funtor opuesto de una categoría aditiva cualquiera $\mathscr A$ es aditivo, pues si $f,g\in \operatorname{Hom}_{\mathscr A}(A,B)$ entonces

$$D_{\mathscr{A}}(f+g) = (f+g)^{op} = f^{op} + g^{op} = D_{\mathscr{A}}(f) + D_{\mathscr{A}}(g).$$

Con esto en mente se demostrará que \tilde{T} es un autofuntor aditivo.

Lo primero que se tiene que notar es que $\tilde{T} = D_{\mathscr{C}} T^{-1} D_{\mathscr{C}^{op}}$, por lo que \tilde{T} es un funtor aditivo al ser composición de funtores aditivos. Por otra parte se tiene que $\tilde{G} = D_{\mathscr{C}} T D_{\mathscr{C}^{op}}$ es un funtor aditivo, y es tal que

$$\tilde{G}\tilde{T} = D_{\mathscr{C}}TD_{\mathscr{C}^{op}}D_{\mathscr{C}}T^{-1}D_{\mathscr{C}^{op}}$$

$$= D_{\mathscr{C}}TT^{-1}D_{\mathscr{C}^{op}}$$

$$= D_{\mathscr{C}}D_{\mathscr{C}^{op}}$$

$$= 1_{\mathscr{C}^{op}}.$$

$$\tilde{T}\tilde{G} = D_{\mathscr{C}}T^{-1}D_{\mathscr{C}^{op}}D_{\mathscr{C}}TD_{\mathscr{C}^{op}}$$

$$= D_{\mathscr{C}}T^{-1}TD_{\mathscr{C}^{op}}$$

$$= D_{\mathscr{C}}D_{\mathscr{C}^{op}}$$

$$= 1_{\mathscr{C}^{op}}.$$

Por lo tanto \tilde{T} es un autofuntor aditivo.

Vemos ahora que $(\mathscr{C}^{op}, \tilde{T}, \tilde{\triangle})$ es una categoría pretriangulada.

[TR1a] Sea $X \in \mathscr{C}^{op}$ entonces $X \in \mathscr{C}$, como $(\mathscr{C}, T, \triangle)$ es pretriangulada, entonces $X \xrightarrow{1_X} X \longrightarrow 0 \longrightarrow TX \in \triangle$.

Rotando a la izquierda dos veces por (1.3) sobre $\mathscr C$ se tiene que

$$T^{-1}X \xrightarrow{T^{-1}(0)} \to 0 \xrightarrow{\qquad \qquad } X \xrightarrow{\qquad 1_X \qquad} X \in \tilde{\triangle} :$$

Así, por definición de $\tilde{\triangle}$ y por el hecho de que $T^{-1}X = \tilde{T}X$ se tiene que $X \xrightarrow{(1_X)^{op}=1_X} X \longrightarrow 0 \longrightarrow \tilde{T}X \in \tilde{\wedge}$:

$$\begin{array}{|c|c|c|c|c|c|}\hline TR1b) & \text{Sean } \alpha: C \xrightarrow{w^{op}} B \xrightarrow{v^{op}} A \xrightarrow{u^{op}} \tilde{T}C & \text{y} \\ \beta: Z \xrightarrow{t^{op}} Y \xrightarrow{s^{op}} X \xrightarrow{r^{op}} \tilde{T}Z & \end{array}$$

en \mathscr{C}^{op} , tal que $\alpha \in \tilde{\Delta}$ y $\alpha \cong \beta$. Entonces se tienen isomorfismos $\varphi^{op}, \psi^{op}, \theta^{op} \in Mor(\mathscr{C}^{op})$ tales que el siguiente diagrama conmuta en \mathscr{C}^{op} :

$$\alpha: \qquad C \xrightarrow{w^{op}} B \xrightarrow{v^{op}} A \xrightarrow{u^{op}} \tilde{T}C$$

$$\downarrow \varphi^{op} \qquad \downarrow \psi^{op} \qquad \downarrow \theta^{op} \qquad \downarrow \tilde{T}(\varphi^{op})$$

$$\beta: \qquad Z \xrightarrow{t^{op}} Y \xrightarrow{s^{op}} X \xrightarrow{r^{op}} \tilde{T}Z.$$

Así el siguiente diagrama conmuta:

$$\alpha': \qquad T^{-1}C \xrightarrow{-u} A \xrightarrow{v} B \xrightarrow{w} C$$

$$T^{-1}(\varphi) \qquad \qquad \theta \qquad \qquad \psi \qquad \qquad \varphi \qquad \qquad \varphi$$

$$\beta': \qquad T^{-1}Z \xrightarrow{-r} X \xrightarrow{s} Y \xrightarrow{t} Z,$$

pues

- $\begin{array}{l} \bullet) \ \ -u\circ T^{-1}(\varphi) = -[(T^{-1}(\varphi))^{op}\circ u^{op}]^{op} = -[\tilde{T}(\varphi^{op})\circ u^{op}]^{op} \\ = -[r^{op}\theta^{op}]^{op} = -[(\theta r)^{op}]^{op} = -[\theta r] = \theta\circ (-r). \end{array}$
- •) $v\theta = [\theta^{op}v^{op}]^{op} = [s^{op}\psi^{op}]^{op} = [(\psi s)^{op}]^{op} = \psi s.$
- •) $w\psi = [\psi^{op}w^{op}]^{op} = [t^{op}\varphi^{op}]^{op} = [(\varphi t)^{op}]^{op} = \varphi t.$

Como $A \xrightarrow{v} B \xrightarrow{w} C \xrightarrow{T(u)} TA \in \triangle$ por estar $\alpha \in \tilde{\triangle}$, entonces $\alpha' \in \triangle$ por (TR2) sobre $\mathscr C$ al ser su rotación a izquierda. Así se tiene que $\alpha' \cong \beta'$ con $\alpha' \in \triangle$ y, por (TR1 b)), $\beta' \in \triangle$. Eso implica que (al rotar β' por (TR2)) el triangulo $X \xrightarrow{s} Y \xrightarrow{t} Z \xrightarrow{T(r)} TX \in \triangle$ y por definición entonces $\beta \in \tilde{\triangle}$.

 $\boxed{TR1c) \text{ Sea } f^{op}: B \to A \text{ en } \mathscr{C}^{op} \text{ entonces } f: A \to B \text{ está en } \mathscr{C}.}$

Por (TR1 c)) sobre \mathscr{C} , existe $B \xrightarrow{\alpha} Z \xrightarrow{\beta} TX$ en \mathscr{C} tal que $A \xrightarrow{f} B \xrightarrow{\alpha} Z \xrightarrow{\beta} TX \in \triangle \text{ , así por (TR2) sobre } \mathscr{C} \text{ se tiene que}$ $T^{-1}Z \xrightarrow{-T^{-1}(\beta)} A \xrightarrow{f} B \xrightarrow{\alpha = T(T^{-1}(\alpha))} Z \in \triangle \text{ .}$

Por lo tanto $B \xrightarrow{f^{op}} A \xrightarrow{-(T^{-1}(\beta))^{op}} T^{-1}Z \xrightarrow{(T^{-1}(\alpha))^{op}} \tilde{T}B \in \tilde{\triangle} \text{ y así}$ $B \xrightarrow{f^{op}} A \xrightarrow{-(\tilde{T}(\beta)^{op})} \tilde{T}Z \xrightarrow{\tilde{T}(\alpha)^{op}} \tilde{T}B \in \tilde{\triangle} :$

Por el ejercicio 4 se tiene que $Z \xrightarrow{v} Y \xrightarrow{-u} X \xrightarrow{-T(w)} TZ \in \Delta$, y por $(1.3) \quad T^{-1}X \xrightarrow{-(T^{-1}(-T(w)))} Z \xrightarrow{v} Y \xrightarrow{-u} X \in \Delta ,$ es decir, $T^{-1}X \xrightarrow{w} Z \xrightarrow{v} Y \xrightarrow{-u} X \in \Delta .$

Entonces por definición de $\tilde{\Delta}$ se tiene que

$$Y \xrightarrow{\quad v^{op} \quad} Z \xrightarrow{\quad w^{op} \quad} T^{-1}X \xrightarrow{\quad -\tilde{T}(u^{op}) \quad} \tilde{T}Y \in \tilde{\triangle}$$

es decir,
$$Y \xrightarrow{v^{op}} Z \xrightarrow{w^{op}} \tilde{T}X \xrightarrow{-\tilde{T}(u^{op})} \tilde{T}Y \in \tilde{\triangle} \cdot$$

TR3 Sean $\eta^{op} = (X, Y, Z, u^{op}, v^{op}, w^{op})$, $\mu^{op} = (X_0, Y_0, Z_0, u_0^{op}, v_0^{op}, w_0^{op})$ en $\tilde{\triangle}$, y $f^{op} : X \to X_0$, $g^{op} : Y \to Y_0$ tales que $g^{op}u^{op} = u_0^{op}f^{op}$. Entonces se tiene el siguiente diagrama commutativo en \mathscr{C}^{op} :

$$\begin{split} \eta: & \qquad X \xrightarrow{u^{op}} Y \xrightarrow{v^{op}} Z \xrightarrow{w^{op}} \tilde{T}X \\ & \downarrow^{f^{op}} & \downarrow^{g^{op}} & \downarrow^{\tilde{T}}(f^{op}) \\ \mu: & \qquad X_0 \xrightarrow[u_0^{op}]{} Y_0 \xrightarrow[v_0^{op}]{} Z_0 \xrightarrow[w_0^{op}]{} \tilde{T}X_0 \,. \end{split}$$

y en consecuencia se tiene el siguiente diagrama conmutativo en $\mathscr C$

$$Z_{0} \xrightarrow{v_{0}} Y_{0} \xrightarrow{u_{0}} X_{0} \xrightarrow{T(w_{0})} TZ_{0} \qquad \in \triangle$$

$$\downarrow^{g} \qquad \downarrow^{f}$$

$$Z \xrightarrow{v} Y \xrightarrow{u} X \xrightarrow{T(w)} TZ \qquad \in \triangle \dots (1)$$

donde, como $g^{op}u^{op} = u_0^{op}f^{op}$ entonces $(ug)^{op} = (fu_0)^{op}$, es decir, $ug = fu_0$.

Rotando a la izquierda por (1.3), se tiene el siguiente diagrama:

$$Y_0 \xrightarrow{u_0} X_0 \xrightarrow{T(w_0)} TZ_0 \xrightarrow{-T(v_0)} TY_0$$

$$\downarrow^g \qquad \qquad \downarrow^f \qquad \qquad \downarrow^{T(f)}$$

$$Y \xrightarrow{u} X \xrightarrow{T(w)} TZ \xrightarrow{-T(v)} TY.$$

Así por (TR3) sobre \triangle , se tiene que existe $h_1: TZ_0 \to TZ$ tal que hace conmutar el diagrama, es decir, $h_1T(w_0) = t(w)f$ y $-T(v)h_1 = T(f)(-T(v_0))$.

Tomando $h = T^{-1}(h_1)$ se tiene que, como T es fiel y pleno,

$$-T(v)h_1 = -T(gv_0)$$
$$T(vh) = T(gv_0)$$
$$vh = qv_0$$

у

$$h_1 T(w_0) = t(w) f$$

$$T(h) T(w_0) = T(w) f.$$

Es decir, (1) con el morfismo h es un diagrama conmutativo, y tomando h^{op} se tiene que $v^{op}g^{op}=(gv)^{op}=(vh)^{op}=h^{op}v^{op}$ y

 $w^{op}h^{op} = (hw_0)^{op} = (T - 1(T(h)T(w_0)))^{op} = (T - 1(T(h)f))^{op} = (wT^{-1}(f))^{op}$ $=(T^{-1}(f))^{op}w^{op}=\tilde{T}(f^{op})w^{op}$. Por lo que es diagrama de las hipótesis para TR3 es conmutativo con h^{op} .

TR4 Por último, en caso de ser $(\mathscr{C}, T, \triangle)$ categoría triangulada supongamos que tenemos el siguiente diagrama en \mathscr{C}^{op}

Se afirma que existen f^{op}, g^{op} tales que $\theta^{op}: Z' \xrightarrow{f^{op}} Y' \xrightarrow{g^{op}} X' \xrightarrow{h^{op}} \tilde{T}Z' \in \tilde{\triangle}$ y hacen conmutar el diagrama anterior.

Observemos el siguiente diagrama en $\mathscr C$

Observemos que $h^{op} = \tilde{T}(i^{op})j^{op} = (T^{-1}(i))^{op}j^{op}$ entonces $h = jT^{-1}(i)$ y así T(h) = T(j)i.

Ahora, consideremos a α, β y γ como los triangulos distinguidos en $\mathscr C$ dados por los triangulos en $\tilde{\triangle}$ dados en el primer diagrama:

$$\alpha: Z' \xrightarrow{i} Y \xrightarrow{u} X \xrightarrow{T(i')} TZ'$$

$$\beta: Y' \xrightarrow{k} Z \xrightarrow{uv} X \xrightarrow{T(k')} TY'$$

$$\gamma: X' \xrightarrow{r} Z \xrightarrow{v} Y \xrightarrow{T(j)} TX' ,$$

y rotando dos veces a la izquierda cada uno por (TR2) sobre \triangle se obtienen α_0,β_0 y γ_0 respectivamente, los cuales por definición serán elementos de $\tilde{\triangle}$.

Como $(\mathscr{C},T,\triangle)$ es categoría triangulada, por el axioma del octaedro existen $g:X'\to Y'$ y $f:Y'\to Z'$ tales que hacen conmutar el diagrama (2) y $\theta:X'\xrightarrow{g} Y'\xrightarrow{f} Z'\xrightarrow{T(h)} TX'\in \triangle$. Así $\theta^{op}:Z'\xrightarrow{f^{op}} Y'\xrightarrow{g^{op}} X'\xrightarrow{h^{op}} TZ'\in \tilde{\triangle}$, y f^{op},g^{op} hacen conmutar el diagrama (1), pues:

- $f^{op}i^{op} = (if)^{op} = (vk)^{op} = k^{op}v^{op}$.
- $-i' = f \circ (-k')$ entonces $(-i')^{op} = (f \circ (-k'))^{op} = -(k')^{op} f^{op}$ as $i^{op} = k'^{op} f^{op}$.
- $q^{op}k^{op} = (kq)^{op} = (r)^{op}$.
- $j^{op}g^{op} = (gj)^{op} = (kT^{-1}(u))^{op} = (T^{-1}(u))^{op}k^{op} = \tilde{T}(u^{op})k^{op}$.

6.

7.

8. Sean ${\mathscr C}$ una categoría y $h:A\to B$ en ${\mathscr C}.$ Pruebe que:

$$\operatorname{Hom}_{\mathscr{C}}(\bullet, h) : \operatorname{Hom}_{\mathscr{C}}(\bullet, A) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}}(\bullet, B) \iff h : A \xrightarrow{\sim} B.$$

Demostración. Supongamos $\operatorname{Hom}_{\mathscr{C}}(\bullet,h)$ es isomorfismo natural, llamemos $\{h_K\}$ a la familia que conforma la transformación h, donde $K \in Obj(\mathscr{C})$. Como h es isomorfismo natural, entonces $h_B: \operatorname{Hom}_{\mathscr{C}}(B,A) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(B,B)$ es un ismorfismo, en particular es suprayectivo, así, existe $g \in \operatorname{Hom}_{\mathscr{C}}(A,B)$ tal que $h_B(g) = h \circ g = 1_B \in \operatorname{Hom}_{\mathscr{C}}(B,B)$.

Se afirma que $g \circ h = 1_A$.

Tenemos que $h_A: \operatorname{Hom}_{\mathscr{C}}(A,A) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(A,B)$ es un ismorfismo, en

particular es inyectivo. Por un lado $h_A(1_A) = h \circ 1_A = h$, por el otro lado $h_A(g \circ h) = h \circ (g \circ h) = (h \circ g) \circ h = 1_B \circ h = h$. Entonces $1_A = g \circ h$ y en consecuencia h es iso.

Supongamos $h:A\to B$ es isomorfismo y sea $M\in\mathscr{C}$, entonces $\operatorname{Hom}_{\mathscr{C}}(M,h):\operatorname{Hom}_{\mathscr{C}}(M,A)\longrightarrow\operatorname{Hom}_{\mathscr{C}}(M,A)$ Sean $g:B\to A$ tal que $h\circ g=1_B, g\circ h=1_A$ y $r\in\operatorname{Hom}_{\mathscr{C}}(M,A)$ entonces $\operatorname{Hom}_{\mathscr{C}}(M,h)(r)=h\circ r$, así $\operatorname{Hom}_{\mathscr{C}}(\bullet,g):\operatorname{Hom}_{\mathscr{C}}(\bullet,B)\longrightarrow\operatorname{Hom}_{\mathscr{C}}(\bullet,A)$ es tal que

$$\operatorname{Hom}_{\mathscr{C}}(M,g) \circ \operatorname{Hom}_{\mathscr{C}}(M,h)(r) = g(hr) = (gh)r = r$$

así $\operatorname{Hom}_{\mathscr{C}}(M,g) \circ \operatorname{Hom}_{\mathscr{C}}(M,h) = 1_A$.

Análogamente si $s \in \operatorname{Hom}_{\mathscr{C}}(M,B)$ entonces $\operatorname{Hom}_{\mathscr{C}}(M,h) \circ \operatorname{Hom}_{\mathscr{C}}(M,g)(s) = h(gs) = (hg)s = s$, es decir $\operatorname{Hom}_{\mathscr{C}}(M,h) \circ \operatorname{Hom}_{\mathscr{C}}(M,g) = 1_B$ y así $\operatorname{Hom}_{\mathscr{C}}(M,h)$ es iso.

Por otra parte, si $\operatorname{Hom}_{\mathscr C}(\bullet,h)$ es isomorfismo, entonces el siguiente diagrama conmuta

$$\operatorname{Hom}_{\mathscr{C}}(A,A) \xrightarrow{\operatorname{Hom}_{\mathscr{C}}(A,h)} \operatorname{Hom}_{\mathscr{C}}(A,B)$$

$$\operatorname{Hom}_{\mathscr{C}}(1_{A},A) \downarrow \qquad \qquad \downarrow \operatorname{Hom}_{\mathscr{C}}(1_{A},B)$$

$$\operatorname{Hom}_{\mathscr{C}}(A,A) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}}(A,h)$$

mas aún, como $\operatorname{Hom}_{\mathscr{C}}(A,h)(1_A)=h\circ 1_A=h\in \operatorname{Hom}_{\mathscr{C}}(A,B)$ entonces $\operatorname{Hom}_{\mathscr{C}}^{-1}(A,h)h=1_A.$

9.

10.

- 11. Sean $(\mathscr{C},T,\triangle)$ una categoría triangulada y \mathscr{D} una subcategoría triangulada. Pruebe que:
 - a) ${\mathscr D}$ es cerrada por isomorfismos en ${\mathscr C}$ (en particular, ${\mathscr D}$ contiene a todos los ceros de ${\mathscr C}).$
 - b) \mathscr{D} es una subcategoría aditiva de \mathscr{C} .

 $\in \triangle, \, \mathrm{con} \,\, X, Y \,\, \mathrm{en} \,\, \mathscr{D}, \, \mathrm{se \,\, tiene \,\, que} \,\, Z \in \mathscr{D}.$

- d) Si $X \to Y \to Z \to TX \in \Delta$ y dos de los objetos X,Y,Z están en $\mathscr{D},$ entonces el tercero de ellos también lo está.
- e) Sea $\triangle|_{\mathscr{D}} := \{X \to Y \to Z \to TX \in \triangle : X,Y,Z \in \mathscr{D}\}$ y la restricción $T|_{\mathscr{D}}$ del funtor $T : \mathscr{C} \to \mathscr{C}$ en la subcategoría \mathscr{D} . Entonces el triple $(\mathscr{D},T|_{\mathscr{D}},\triangle|_{\mathscr{D}})$ es una categoría triangulada.
- g) \mathscr{D}^{op} es una subcategoría triangulada de $(\mathscr{C}, T, \triangle)^{op}$.

Demostración. a Sean $X, 0 \in Obj(\mathcal{D})$ tal que $X \cong Y$ en \mathscr{C} (por definición de subcategoría triangulada existe un 0 en \mathcal{D}).

Observemos primero que

$$X \xrightarrow{\begin{pmatrix} 1_X \\ 0 \end{pmatrix}} X \coprod 0$$

y que los siguientes son morfismos en \mathscr{C} : $(h\ 0): X \coprod 0 \to Y$ y $\begin{pmatrix} h^{-1} \\ 0 \end{pmatrix}$:

 $Y \to X \coprod 0$. En particular

$$(h\ 0) \left(\begin{array}{c} h^{-1} \\ 0 \end{array}\right) = hh^{-1} + 0 = 1_Y \qquad \mathbf{y}$$

$$\left(\begin{array}{c} h^{-1} \\ 0 \end{array}\right) (h\ 0) = \left(\begin{array}{c} h^{-1}h \\ 0 \end{array}\right) = \left(\begin{array}{c} 1_X \\ 0 \end{array}\right) = 1_x \coprod 0.$$

Mas aún, si consideramos a Y con la familia $\{\nu_1 = h, \nu_2 = 0_{0Y}\}$ se tiene que $(h\ 0)$ es un isomorfismo que conmuta con las inclusiones naturales del coproducto $X \coprod 0$:

$$(h\ 0)$$
 $\begin{pmatrix} 1_X \\ 0 \end{pmatrix} = h + 0 = h = \nu_1$ y
 $(h\ 0)$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 + 0 = 0 = \nu_2.$

Por lo tanto Y con la familia $\{\nu_1, \nu_2\}$ son un coproducto de $\{X, 0\}$ y como \mathscr{D} es una subcategoría triangulada, entonces por (ST2) se tiene que $Y \in Obj(\mathscr{D})$.

b) Por definición de subcategoría triangulada \mathscr{D} tiene objeto cero (SA1). Como \mathscr{C} es aditiva y \mathscr{D} es plena, $\operatorname{Hom}_{\mathscr{D}}$ tiene estructura de grupo

abeliano para todo $A, B \in Obj(\mathscr{C})$ (SA2).

Como \mathscr{C} es aditiva y \mathscr{D} es plena la composición de morfismos en \mathscr{D} es bilineal (SA3), además, por definición \mathscr{D} es cerrada bajo coproductos finitos (SA4), asi \mathscr{D} es subcategoría aditiva de \mathscr{C} .

$$Y \xrightarrow{1_Y} Y \longrightarrow 0 \longrightarrow TY \quad y$$
$$0 \longrightarrow TX \xrightarrow{T(1_X)} TX \longrightarrow 0$$

están en \triangle .

Pero \mathcal{D} es cerrado bajo coproductos finitos, así

$$Y \xrightarrow{\left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right)} Y \prod TX \xrightarrow{\left(\begin{smallmatrix} 0 & 1 \end{smallmatrix}\right)} TX \xrightarrow{-T(u)} TY \quad \in \triangle.$$

Así se tiene el siguiente diagrama conmutativo:

$$Y \xrightarrow{\left(\begin{array}{c} 1 \\ 0 \end{array} \right)} Y \coprod TX \xrightarrow{\left(\begin{array}{c} 0 \end{array} 1 \right)} TX \xrightarrow{-T(u)} TY$$

$$\downarrow^{1_{Y}} \qquad \qquad \downarrow^{T(1_{X})} \qquad \downarrow^{T(1_{Y})}$$

$$Y \xrightarrow{v} Z \xrightarrow{w} TX \xrightarrow{-T(u)} T(Y)$$

por el lema (1.1) existe un morfismo $g:Y\coprod TX\longrightarrow Z$ tal que $\varphi:=(1_Y,g,T(1_X))\in J(\mathscr{C},\triangle)$, además por (Ejercicio 3) se tiene que g es iso, por lo tanto φ es iso y por el inciso b) se tiene que $Z\in\mathscr{D}$.

Se probará que $(\mathcal{D}, T|_{\mathcal{D}}, \triangle|_{\mathcal{D}})$ es una categoría triangulada (probando cada uno de los axiomas).

TR1.a

Sea $X \in \mathcal{D}$, en particular $X \in \mathcal{C}$ por lo que, por (TR1.a) sobre \mathcal{C} $X \xrightarrow{1_X} X \longrightarrow 0 \longrightarrow TX \in \Delta$. Pero por el inciso a) sabemos que todos los ceros de \mathcal{C} están en \mathcal{D} , y como $TX \in \mathcal{D}$ entonces $X \xrightarrow{1_X} X \longrightarrow 0 \longrightarrow TX \in \Delta|_{\mathcal{D}}$

 $X \longrightarrow X \longrightarrow 0 \longrightarrow TX \in \triangle|g$

TR1.b

Por el inciso a) se tiene el resultado.

TR1.c

Sea $f: X \to Y$ en \mathscr{D} , entonces $f: X \to Y \in \mathscr{C}$ y por (TR1.c) en \mathscr{C} existe $Y \xrightarrow{\alpha} Z \xrightarrow{\beta} TX \in \mathscr{C}$ tal que

 $X \xrightarrow{f} Y \xrightarrow{\alpha} Z \xrightarrow{\beta} TX \in \triangle. \text{ Por el inciso c), como } X,Y \in \mathscr{D} \text{ entonces } Z \in \mathscr{D} \text{ y como } \mathscr{D} \text{ es plena se tiene que}$

 $X \xrightarrow{f} Y \xrightarrow{\alpha} Z \xrightarrow{\beta} TX \in \triangle|_{\mathscr{D}}.$

TR2

Supongamos $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX \in \Delta|_{\mathscr{D}} \subseteq \Delta$ entonces $Y \xrightarrow{v} Z \xrightarrow{w} TX \xrightarrow{-T(u)} TY \in \Delta \text{ pero } T(\mathscr{D}) \subset \mathscr{D} \text{ y } T \text{ es pleno por lo}$ que $Y \xrightarrow{v} Z \xrightarrow{w} TX \xrightarrow{-T(u)} TY \in \Delta|_{\mathscr{D}}$.

TR3

Sean $\eta = (X, Y, Z, u, v, w), \ \mu = (X', Y', Z', u', v', w') \text{ en } \Delta|_{\mathscr{D}} \text{ y}$ $f: X \to X', \ g: Y \to Y' \text{ en } \mathscr{D} \text{ tales que } gu = u'f.$

Por (TR3) sobre \mathscr{C} existe $h:Z\to Z'$ tal que $\varphi:=(f,g,h):\eta\to\mu$ es morfismo en $\mathscr{T}(\mathscr{C},T)$ en particular como $Z,Z'\in\mathscr{D}$ y \mathscr{D} es plena, entonces $h\in \hom_{\mathscr{D}}(Z,Z')$, por lo tanto $\varphi\in\mathscr{T}(\mathscr{D},T)$.

TR4 (Axioma del octaedro)

Supongamos que tenemos el siguiente diagrama en \mathcal{D} :

El axioma del octaedro en $\mathscr C$ nos indica que existe $f:Z'\to Y'$ y $g:Y'\to X'$ tales que hacen conmutar el diagrama anterior, y que

 $\theta: Z' \xrightarrow{f} Y' \xrightarrow{g} Z' \xrightarrow{h} TZ' \in \Delta$. Como \mathscr{D} es pleno y cada objeto (vertice) del diagrama está en \mathscr{D} entonces $f,g \in Mor(\mathscr{D})$ por lo que $\theta \in \Delta|_{\mathscr{D}}$ y se cumple el axioma del octaedro.

f) | Por alguna extraña razón no hay f
 en este ejercicio.

g Para comenzar se observa que, como \mathscr{D} es una categoría triangulada, entonces por el (Ej. 5) \mathscr{D}^{op} será una categoría triangulada. También se tiene que $Obj(\mathscr{D}) = Obj(\mathscr{D}^{op})$ y como \mathscr{D} es subcategoría plena de \mathscr{C} entonces \mathscr{D}^{op} es subcategoría plena de \mathscr{C}^{op} . Esto último es facil de ver, pues cada morfismo en \mathscr{C}^{op} entre objetos de \mathscr{D}^{op} es el morfismo opuesto f^{op} de un morfismo f en \mathscr{C} entre objetos de \mathscr{D} , y como \mathscr{D} es plena, entonces f está en \mathscr{D} y así f^{op} está en \mathscr{D}^{op} .

Se probarán los axiomas de subcategoría triangulada para $(\mathcal{D}, T|_{\mathcal{D}}, \Delta|_{\mathcal{D}})$.

[ST1] Como \mathscr{D} contiene un objeto cero, entonces \mathscr{D}^{op} contiene un objeto cero.

 $_ST2$ Sean $X,Y \in \mathscr{D}^{op}$, entonces $X,Y \in \mathscr{D}$ y por ser \mathscr{D} subcategoría triangulada, entonces $X \coprod Y$ está en \mathscr{D} . Pero \mathscr{C} es una categoría aditiva, entonces \mathscr{D} es aditiva también y todo coproducto finito es un producto finito, así $X \coprod Y \in \mathscr{D}$ y por lo tanto $(X \coprod^{op} Y) = (X \coprod Y)^{op} \in \mathscr{D}^{op}$ donde \coprod^{op} denota al coproducto en \mathscr{D} .

ST3 Observemos que $A \in Obj(\mathcal{D}^{op}) \iff A \in Obj(\mathcal{D})$, entonces para cada $A \in \mathcal{D}$, $T(A) \in \mathcal{D}$ y $\tilde{T}(A) \in \mathcal{D}^{op}$. Análogamente $T^{-1}(A) \in \mathcal{D}^{op}$.

Sea $f:A\to B$ en \mathscr{D}^{op} entonces $\tilde{T}(f)=(T^{-1}(f^{op}))^{op}$ pero $f^{op}:B\to A$ está en \mathscr{D} por lo que $T^{-1}(f^{op})\in\mathscr{D}$, es decir, $\tilde{T}(f)\in(\mathscr{D})^{op}$. Análogamente

 $\tilde{T}^{-1}(f) \in (\mathscr{D})^{op}$.

 $\boxed{ST4} \text{ Sea } f: X \to Y \text{ en } \mathscr{D}^{op}, \text{ ntonces } f^{op}: Y \to X \text{ en } \mathscr{D}, \text{ por (ST4) sobre}$ $\mathscr{D}, \text{ se tiene que existe } \eta: Y \xrightarrow{f^{op}} X \longrightarrow Z \longrightarrow TY \in \triangle|_{\mathscr{D}} \text{ con } Z \text{ en}$ $\mathscr{D}. \text{ Así por el teorema (1.3) } \eta_0: T^{-1}Z \longrightarrow Y \xrightarrow{f^{op}} X \longrightarrow Z \in \triangle|_{\mathscr{D}}, \text{ y por definición de categoría triangulada opuesta}$ $X \xrightarrow{f} Y \longrightarrow \tilde{T}^{-1}Z \longrightarrow \tilde{T}X \in \triangle|_{\mathscr{D}^{op}}.$

Por lo que $(\mathcal{D}, T|_{\mathcal{D}}, \Delta|_{\mathcal{D}})^{op}$ es subcategoría triangulada de $(\mathcal{C}, T, \Delta)^{op}$.

12.

13.

Sección extra

13' Sean $\mathscr C$ una categoría y $\Sigma \subset Mor(\mathscr C)$. Pruebe que la categoría $\mathscr C[\Sigma^{-1}]$ y el funtor de localización $Q:\mathscr C \to \mathscr C(\Sigma^{-1}]$ son únicos salvo isomorfismos. Mas precisamente, sea $q:\mathscr C \to \mathscr B$ un funtor tal que

- a) $\forall \sigma \in \Sigma$ $q(\sigma)$ es iso.
- b) $\forall f: \mathscr{C} \to \mathscr{A}$ tal que $F(\sigma)$ es iso $\forall \sigma \in \Sigma, \exists ! \bar{F} : \mathscr{B} \to \mathscr{A}$ tal que $\bar{F} \circ q = F$.

Pruebe que existe un isomorfismo de categorías $\epsilon: \mathscr{C}[\Sigma^{-1}] \to \mathscr{B}$ tal que $\epsilon \circ Q = q$ i.e.

Demostración. Supongamos $q:\mathscr{C}\to\mathscr{B}$ es un funtor tal que

- a) $\forall \sigma \in \Sigma$ $q(\sigma)$ es iso.
- b) $\forall f: \mathscr{C} \to \mathscr{A}$ tal que $F(\sigma)$ es iso $\forall \sigma \in \Sigma, \; \exists ! \bar{F}: \mathscr{B} \to \mathscr{A}$ tal que $\bar{F} \circ q = F$.

Como $Q: \mathscr{C} \to \mathscr{C}[\Sigma^{-1}]$ es tal que $Q(\sigma)$ es iso $\forall \sigma \in \Sigma$, entonces por hipótesis $\exists ! \, \epsilon_0 : \mathscr{B} \to \mathscr{C}[\Sigma^{-1}]$ tal que $\epsilon_0 \circ q = Q$, es decir, el siguiente diagrama conmuta:

Ahora, como Q es funtor de localización y $q(\sigma)$ es iso $\forall \sigma \in \Sigma$, entonces por definición $\exists! \, \epsilon : \mathscr{C}[\Sigma^{-1}] \to \mathscr{B}$ tal que $\epsilon \circ Q = q$. Así se tiene el siguiente diagrama:

En particular $\epsilon_0\epsilon$ es un funtor, t es tal que $\forall \sigma \in \Sigma \ \epsilon_0\epsilon(\sigma)$ es un isomorfismo. Así por (L2) sobre el funtor de localización Q, se tiene que $\epsilon_0\epsilon$ es único, pero $1_{\mathscr{C}[\Sigma^{-1}]}$ es un funtor con la misma propiedad (pues σ es iso para cada $\sigma \in \Sigma$) por lo tanto $\epsilon_0\epsilon = 1_{\mathscr{C}[\Sigma^{-1}]}$ y analogamente $\epsilon\epsilon_0 = 1_{\mathscr{B}}$.

Corolario 1.9 Para una categoría pretriangulada ($\mathscr{C}, T, \triangle$), las siguientes condiciones se satisfacen:

- a) Tomo mono (respectivamente epi) es $\mathscr C$ es split-mono (respectivamente split-epi).
- b) Si $\mathscr C$ es abeliano, entonces $\mathscr C$ es semisimple (i.e. $Ext^1_\mathscr C(X,Y)=0 \quad \forall X,Y\in\mathscr C$).

Demostración. Se mostrará que todo epi en \mathscr{C} es un split-epi.

Sea $f: X \to Y$ epi en \mathscr{C} , entonces $f^{op}: Y \to X$ es un mono en \mathscr{C}^{op} . Por el (ej. 5) sabemos que $(\mathscr{C}^{op}, \tilde{T}, \tilde{\triangle})$ es una categoría pretriangulada, y por el inciso a), como f^{op} es mono, entonces f^{op} es split-mono. Así f es split-epi en \mathscr{C}^{op} .