Отчет по заданию 4

Выпуск None

Бородин Григорий, группа 420

нояб. 16, 2017

Содержание:

1	Содержательная постановка задачи
2	Математическая постановка задачи 2.1 Дано
3	Алгоритм решения задачи 3.1 Основная идея алгоритма
4	Экспериментальное исследование 4.1 Генерация входных данных 4.2 Гипотеза 4.3 Результаты тестирования
5	Выводы
6	Приложение 6.1 Схема представления данных

1 Содержательная постановка задачи

Дана система из N модулей. У каждого модуля есть M вариантов. У каждого варианта 2 характеристики:

- надёжность вещественное значение из интервала [0; 1]
- стоимость (натуральная величина)

Требуется выбрать для каждого модуля 1 вариант так, чтобы надёжность всей системы была максимальной при выполнении заданного ограничения на стоимость. Считать, что все модули соединены последовательно. Параллельно в модуле может быть использован 1 вариант.

2 Математическая постановка задачи

2.1 Дано

- Дискретное N-мерное пространство STATES Каждая компонента вектора в этом пространстве принимает значения из множества {0, 1, ..., M 1}
- Натуральное число MAX_COST
- Отображение COST из пространства STATES $x \{0, 1, ..., N-1\}$ в множество натуральных чисел
- Отображение REL из пространства STATES x {0, 1, ..., N 1} в интервал [0, 1]

2.2 Задача

Найти такой вектор BEST_STATE, что значение функции STATE_REL будет максимально при выполнении условия STATE_COST(BEST_STATE) <= MAX_COST, где

• отображение STATE_REL определяется так:

```
STATE_REL(STATE) = REL(STATE[0]) * REL(STATE[1]) * ... * REL(STATE[N - 1])
```

• отображение STATE_COST определяется так:

```
STATE_COST(STATE) = COST(STATE[0]) + COST(STATE[1]) + ... + COST(STATE[N - 1])
```

Если таковых несколько, то ответом является любой.

3 Алгоритм решения задачи

3.1 Основная идея алгоритма

Чтобы решить задачу, необходимо обойти все пространство STATES

Отбрасывание подпространств по COST

Если для вектора **STATE** выполняется условие:

```
COST(STATE[0]) + COST(STATE[1]) + ... + COST(STATE[K - 1]) > MAX_COST
```

то при решении задачи можно сэкономить несколько операций, и не рассматривать ни один вектор X, такой что STATE[i] == X[i] для всех $i = 0, 1, \ldots, K - 1$.

Отбрасывание подпространств по REL

Если для вектора STATE выполняется условие:

```
REL(STATE[0]) * REL(STATE[1]) * ... * REL(STATE[T - 1]) < BEST_REL
```

где BEST_REL - наибольшая уже известная надежность вектора, то при решении задачи можно сэкономить несколько операций, и не рассматривать ни один вектор X, такой что STATE[i] == X[i] для всех $i = 0, 1, \ldots, T - 1$.

3.2 Реализация алгоритма

Список state содержит вектор пространтва STATES.

Обходим пространство в лексикографическом порядке:

В случае, когда по первой части вектора можно сразу сказать, что он не является решением, пропускаем обход этого подпространства размерности N - K

4 Экспериментальное исследование

4.1 Генерация входных данных

С помощью отдельного скрипта на питоне была сгенерирована 1000 примеров входных данных для каждого значения параметра k.

Параметры запуска

- 6 модулей (N = 6)
- 5 вариантов в каждом модуле (М = 5)
- Цена вариантов случайное число из {1, 2, 3, 4, 5}
- Порог цены k * N, где k из {2, 2.2, 2.5, 3, 4}

4.2 Гипотеза

Надежность последовательно соединенных модулей определена как произведение надежностей этих модулей. Оценим среднее значение надежности.

Исходные данные распределены однородно в интервале [0, 1]. Ограничения по цене мы не достигнем, если $MAX_COST == 5 * MODULE_COUNT$, потому что значение COST для каждого модуля не превышает 5.

Тогда без ограничения по цене мы можем сказать, что основная часть (больше 80%) распределения будет находится в интервале [0, 0.5] с вероятностью больше 99%. То есть вероятность того, что надежность системы будет в интервале [0, 0.5] будет больше 80%.

Если же уменьшать MAX_COST, то максимальная надежность может только уменьшиться, так как вводится дополнительное ограничение на стоимость, которое может исключить оптимальный выбор вариантов для обеспечения максимальной надежности.

4.3 Результаты тестирования

${\sf MAX_COST} = 2.0 * {\sf MODULE_COUNT}$

MAX_COST = 2.2 * MODULE_COUNT

${\sf MAX_COST} = 2.5 * {\sf MODULE_COUNT}$

MAX_COST = 3.0 * MODULE_COUNT

MAX_COST = 4.0 * MODULE_COUNT

MAX_COST = 5.0 * MODULE_COUNT

5 Выводы

Гипотеза полностью подтвердилась данными.

По результатам исследования можно даже делать предположения о виде распределения надежности. На графиках видна схожесть с гамма-распределением.

6 Приложение

6.1 Схема представления данных

Данные представлены в формате XML. Главный блок - sample. Внутри блока sample перечисляются блоки module, соответствующие модулям. Внутри блока module перечисляются элементы variant, соответствующие вариантам модуля.

Aттрибут max_cost элемента sample определяет константу MAX_COST.

Aттрибуты cost и reliability элементов variant определяют значение функций COST и REL соответственно для соответствующего модуля и его варианта.

6.2 Пример входных данных