

## **SPORTON International Inc.**

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

## **FCC RADIO TEST REPORT**

| Applicant's company    | Mojo Networks, Inc.                                                      |
|------------------------|--------------------------------------------------------------------------|
| Applicant Address      | 339 N. Bernardo Avenue, Suite #200 Mountain View, CA 94043 United        |
|                        | States                                                                   |
| FCC ID                 | TOR-C120                                                                 |
| Manufacturer's company | Mojo Networks, Inc.                                                      |
| Manufacturer Address   | 339 N. Bernardo Avenue, Suite #200 Mountain View, CA 94043 United States |

| Product Name     | 802.11a/b/g/n/ac AP                   |
|------------------|---------------------------------------|
| Brand Name       | MOJO                                  |
| Model No.        | C-120                                 |
| Test Rule        | 47 CFR FCC Part 15 Subpart C § 15.247 |
| Test Freq. Range | 2400 ~ 2483.5MHz                      |
| Received Date    | Apr. 13, 2016                         |
| Final Test Date  | May 19, 2016                          |
| Submission Type  | Original Equipment                    |

### Statement

Test result included in this report is for the IEEE 802.11n, IEEE 802.11b/g and IEEE 802.11ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r05, KDB 662911 D01 v02r01 and KDB644545 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.







## **Table of Contents**

| 1. VE  | RIFICATION OF COMPLIANCE                         |         |
|--------|--------------------------------------------------|---------|
| 2. SUI | MMARY OF THE TEST RESULT                         | 2       |
| 3. GE  | NERAL INFORMATION                                |         |
| 3.1    |                                                  |         |
| 3.2    | 2. Accessories                                   | 4       |
| 3.3    | 3. Table for Filed Antenna                       | 5       |
| 3.4    | I. Table for Carrier Frequencies                 | 6       |
| 3.5    | 5. Table for Test Modes                          | 7       |
| 3.6    | b. Table for Testing Locations                   | 9       |
| 3.7    | 7. Table for Supporting Units                    | 10      |
| 3.8    | 3. Table for Parameters of Test Software Setting | 11      |
| 3.9    | P. EUT Operation during Test                     | 11      |
| 3.1    | 0. Duty Cycle                                    | 12      |
| 3.1    | 1. Test Configurations                           | 13      |
| 4. TES | st result                                        | 17      |
| 4.1    | . AC Power Line Conducted Emissions Measurement  | 17      |
| 4.2    | 2. Maximum Conducted Output Power Measurement    | 21      |
| 4.3    | B. Power Spectral Density Measurement            | 23      |
| 4.4    | L. 6dB Spectrum Bandwidth Measurement            | 38      |
| 4.5    | 5. Radiated Emissions Measurement                | 47      |
| 4.6    | 5. Emissions Measurement                         | 72      |
| 4.7    | 7. Antenna Requirements                          | 98      |
| 5. LIS | T OF MEASURING EQUIPMENTS                        | 99      |
| 6. ME  | EASUREMENT UNCERTAINTY                           | 101     |
| APPEI  | NDIX A. TEST PHOTOS                              | A1 ~ A4 |
| APPFI  | NDIX B. RADIATED EMISSION CO-I OCATION REPORT    | R1 ∼ R3 |



# History of This Test Report

| REPORT NO. | VERSION | DESCRIPTION             | ISSUED DATE  |
|------------|---------|-------------------------|--------------|
| FR641226AA | Rev. 01 | Initial issue of report | May 27, 2016 |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |

FCC ID: TOR-C120

Issued Date : May 27, 2016



Project No: CB10505317

### 1. VERIFICATION OF COMPLIANCE

Product Name: 802.11a/b/g/n/ac AP

Brand Name : MOJO Model No. : C-120

Applicant: Mojo Networks, Inc.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Apr. 13, 2016 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Cliff Chang

SPORTON INTERNATIONAL INC.

FCC ID: TOR-C120

Page No. : 1 of 101 Issued Date : May 27, 2016



## 2. SUMMARY OF THE TEST RESULT

|      | Applied Standard: 47 CFR FCC Part 15 Subpart C |                                   |          |  |  |
|------|------------------------------------------------|-----------------------------------|----------|--|--|
| Part | Rule Section Description of Test               |                                   |          |  |  |
| 4.1  | 15.207                                         | AC Power Line Conducted Emissions | Complies |  |  |
| 4.2  | 15.247(b)(3)                                   | Maximum Conducted Output Power    | Complies |  |  |
| 4.3  | 15.247(e)                                      | Power Spectral Density            | Complies |  |  |
| 4.4  | 15.247(a)(2)                                   | 6dB Spectrum Bandwidth            | Complies |  |  |
| 4.5  | 15.247(d)                                      | Radiated Emissions                | Complies |  |  |
| 4.6  | 15.247(d)                                      | Band Edge Emissions               | Complies |  |  |
| 4.7  | 15.203                                         | Antenna Requirements              | Complies |  |  |

Page No. : 2 of 101

Issued Date : May 27, 2016



## 3. GENERAL INFORMATION

## 3.1. Product Details

| Items                    | Description                                                                              |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Product Type             | WLAN (4TX, 4RX)                                                                          |  |  |  |
| Radio Type               | Intentional Transceiver                                                                  |  |  |  |
| Power Type               | From power adapter or PoE                                                                |  |  |  |
| Modulation               | IEEE 802.11b: DSSS                                                                       |  |  |  |
|                          | IEEE 802.11g: OFDM                                                                       |  |  |  |
|                          | IEEE 802.11n/ac: see the below table                                                     |  |  |  |
| Data Modulation          | IEEE 802.11b: DSSS (BPSK / QPSK / CCK)                                                   |  |  |  |
|                          | IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)                                       |  |  |  |
|                          | IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)                               |  |  |  |
| Data Rate (Mbps)         | IEEE 802.11b: DSSS (1/ 2/ 5.5/11)                                                        |  |  |  |
|                          | IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54)                                               |  |  |  |
|                          | IEEE 802.11n/ac: see the below table                                                     |  |  |  |
| Frequency Range          | 2400 ~ 2483.5MHz                                                                         |  |  |  |
| Channel Number           | 11 for 20MHz bandwidth ; 7 for 40MHz bandwidth                                           |  |  |  |
| Channel Band Width (99%) | <for mode="" non-beamforming=""></for>                                                   |  |  |  |
|                          | IEEE 802.11b: 14.15 MHz                                                                  |  |  |  |
|                          | IEEE 802.11g: 17.97 MHz                                                                  |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT20): 17.89 MHz                                               |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT40): 34.01 MHz                                               |  |  |  |
|                          | <for beamforming="" mode=""></for>                                                       |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT20): 17.89 MHz                                               |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT40): 37.05 MHz                                               |  |  |  |
| Maximum Conducted Output | <for mode="" non-beamforming=""></for>                                                   |  |  |  |
| Power                    | IEEE 802.11b: 27.49 dBm                                                                  |  |  |  |
|                          | IEEE 802.11g: 27.23 dBm                                                                  |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT20): 27.25 dBm                                               |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT40): 21.46 dBm                                               |  |  |  |
|                          | <for beamforming="" mode=""></for>                                                       |  |  |  |
|                          |                                                                                          |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT20): 21.89 dBm                                               |  |  |  |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT20): 21.89 dBm<br>IEEE 802.11ac MCS0/Nss1 (VHT40): 19.90 dBm |  |  |  |
| Carrier Frequencies      |                                                                                          |  |  |  |

 Report Format Version: Rev. 01
 Page No. : 3 of 101

 FCC ID: TOR-C120
 Issued Date : May 27, 2016



| Items                | Description      |                       |  |
|----------------------|------------------|-----------------------|--|
| Beamforming Function | With beamforming | ☐ Without beamforming |  |

Note: The product has beamforming function for 802.11n/ac in 2.4GHz and 5GHz.

#### Antenna and Band width

| Antenna         | Four (TX)     |   |  |  |
|-----------------|---------------|---|--|--|
| Band width Mode | 20 MHz 40 MHz |   |  |  |
| IEEE 802.11b    | V             | X |  |  |
| IEEE 802.11g    | V             | X |  |  |
| IEEE 802.11n    | V             | V |  |  |
| IEEE 802.11ac   | V             | V |  |  |

### IEEE 11n Spec.

| Protocol         | Number of<br>Transmit Chains (NTX) | Data Rate / MCS |
|------------------|------------------------------------|-----------------|
| 802.11n (HT20)   | 4                                  | MCS 0-31        |
| 802.11n (HT40)   | 4                                  | MCS 0-31        |
| 802.11ac (VHT20) | 4                                  | MCS 0-9/Nss1-4  |
| 802.11ac (VHT40) | 4                                  | MCS 0-9/Nss1-4  |

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 in 2.4GHz.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40: IEEE 802.11ac

#### 3.2. Accessories

| Power                         | Brand         | Model     | Rating                             |  |
|-------------------------------|---------------|-----------|------------------------------------|--|
| Adapter                       | ADD           | WA 24012B | Input: 100-240V~,50-60Hz, 0.7A Max |  |
| (Switchable Adapter)          | APD WA-24Q12R |           | Output: 12V, 2A                    |  |
| Others                        |               |           |                                    |  |
| US Plug*1                     |               |           |                                    |  |
| RJ-45 cable, Non-shielded, 1m |               |           |                                    |  |

 Report Format Version: Rev. 01
 Page No. : 4 of 101

 FCC ID: TOR-C120
 Issued Date : May 27, 2016



#### 3.3. Table for Filed Antenna

| Ant Drawd | Drand D/M | Antono a Toro | 0            | Gain (dBi) |        |      |
|-----------|-----------|---------------|--------------|------------|--------|------|
| Ant.      | Brand     | P/N           | Antenna Type | Connector  | 2.4GHz | 5GHz |
| 1         | WNC       | 95XKAA15.GAB  | PIFA Antenna | I-PEX      | 4.66   | -    |
| 2         | WNC       | 95XKAA15.GAC  | PIFA Antenna | I-PEX      | 4.62   | -    |
| 3         | WNC       | 95XKAA15.GAD  | PIFA Antenna | I-PEX      | 4.68   | -    |
| 4         | WNC       | 95XKAA15.GA1  | PIFA Antenna | I-PEX      | 4.85   | -    |
| 5         | WNC       | 95XKAA15.GAE  | PIFA Antenna | I-PEX      | -      | 5.68 |
| 6         | WNC       | 95XKAA15.GAF  | PIFA Antenna | I-PEX      | -      | 5.77 |
| 7         | WNC       | 95XKAA15.GAG  | PIFA Antenna | I-PEX      | -      | 5.63 |
| 8         | WNC       | 95XKAA15.GA2  | PIFA Antenna | I-PEX      | -      | 5.51 |

Note: The EUT has eight antennas.

#### For 2.4GHz WLAN function:

#### For IEEE 802.11b/g/n/ac mode (4TX/4RX)

Chain 1, Chain 2, Chain 3 and Chain 4 can be used as transmitting/receiving antenna.

Chain 1, Chain 2, Chain 3 and Chain 4 could transmit/receive simultaneously.

#### For 5GHz WLAN function:

#### For IEEE 802.11a/n/ac mode (4TX/4RX)

Chain 5, Chain 6, Chain 7 and Chain 8 can be used as transmitting/receiving antenna.

Chain 5, Chain 6, Chain 7 and Chain 8 could transmit/receive simultaneously.



 Report Format Version: Rev. 01
 Page No.
 : 5 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016

## 3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel  $3\sim$  Channel 9.

| Frequency Band | Channel No. | Frequency | Channel No. | Frequency |
|----------------|-------------|-----------|-------------|-----------|
| 2400~2483.5MHz | 1           | 2412 MHz  | 7           | 2442 MHz  |
|                | 2           | 2417 MHz  | 8           | 2447 MHz  |
|                | 3           | 2422 MHz  | 9           | 2452 MHz  |
|                | 4           | 2427 MHz  | 10          | 2457 MHz  |
|                | 5           | 2432 MHz  | 11          | 2462 MHz  |
|                | 6           | 2437 MHz  | -           | -         |



### 3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                        | Mode                                                                      | Data Rate  | Channel | Chain   |  |  |
|-----------------------------------|---------------------------------------------------------------------------|------------|---------|---------|--|--|
| AC Power Line Conducted Emissions | Normal Link                                                               | -          | -       | -       |  |  |
| Maximum Conducted Output Power    | <for non-beamfor<="" td=""><td>ming Mode&gt;</td><td></td><td></td></for> | ming Mode> |         |         |  |  |
|                                   | 11b/CCK                                                                   | 1 Mbps     | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11g/BPSK                                                                  | 6 Mbps     | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT20                                                                | MCS0/Nss1  | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT40                                                                | MCS0/Nss1  | 3/6/9   | 1+2+3+4 |  |  |
|                                   | <for beamforming<="" td=""><td>  Mode&gt;</td><td></td><td></td></for>    | Mode>      |         |         |  |  |
|                                   | 11ac VHT20                                                                | MCS0/Nss1  | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT40                                                                | MCS0/Nss1  | 3/6/9   | 1+2+3+4 |  |  |
| Power Spectral Density            | <for mode="" non-beamforming=""></for>                                    |            |         |         |  |  |
|                                   | 11b/CCK                                                                   | 1 Mbps     | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11g/BPSK                                                                  | 6 Mbps     | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT20                                                                | MCS0/Nss1  | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT40                                                                | MCS0/Nss1  | 3/6/9   | 1+2+3+4 |  |  |
|                                   | <for beamforming="" mode=""></for>                                        |            |         |         |  |  |
|                                   | 11ac VHT20                                                                | MCS0/Nss1  | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT40                                                                | MCS0/Nss1  | 3/6/9   | 1+2+3+4 |  |  |
| 6dB Spectrum Bandwidth            | <for non-beamfor<="" td=""><td>ming Mode&gt;</td><td></td><td></td></for> | ming Mode> |         |         |  |  |
|                                   | 11b/CCK                                                                   | 1 Mbps     | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11g/BPSK                                                                  | 6 Mbps     | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT20                                                                | MCS0/Nss1  | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT40                                                                | MCS0/Nss1  | 3/6/9   | 1+2+3+4 |  |  |
|                                   | <for beamforming<="" td=""><td>Mode&gt;</td><td></td><td></td></for>      | Mode>      |         |         |  |  |
|                                   | 11ac VHT20                                                                | MCS0/Nss1  | 1/6/11  | 1+2+3+4 |  |  |
|                                   | 11ac VHT40                                                                | MCS0/Nss1  | 3/6/9   | 1+2+3+4 |  |  |

| Radiated Emissions 9kHz~1GHz              | Normal Link                                                               | -             | -      | -       |  |  |
|-------------------------------------------|---------------------------------------------------------------------------|---------------|--------|---------|--|--|
| Radiated Emissions 1GHz $\sim$ 10 $^{th}$ | <for non-beam<="" td=""><td>forming Mode&gt;</td><td></td><td></td></for> | forming Mode> |        |         |  |  |
| Harmonic                                  | 11b/CCK                                                                   | 1 Mbps        | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11g/BPSK                                                                  | 6 Mbps        | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11ac VHT20                                                                | MCS0/Nss1     | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11ac VHT40                                                                | MCS0/Nss1     | 3/6/9  | 1+2+3+4 |  |  |
|                                           | <for beamformi<="" td=""><td colspan="5">orming Mode&gt;</td></for>       | orming Mode>  |        |         |  |  |
|                                           | 11ac VHT20                                                                | MCS0/Nss1     | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11ac VHT40                                                                | MCS0/Nss1     | 3/6/9  | 1+2+3+4 |  |  |
| Band Edge Emissions                       | <for non-beam<="" td=""><td>forming Mode&gt;</td><td></td><td></td></for> | forming Mode> |        |         |  |  |
|                                           | 11b/CCK                                                                   | 1 Mbps        | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11g/BPSK                                                                  | 6 Mbps        | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11ac VHT20                                                                | MCS0/Nss1     | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11ac VHT40                                                                | MCS0/Nss1     | 3/6/9  | 1+2+3+4 |  |  |
|                                           | <for beamforming="" mode=""></for>                                        |               |        |         |  |  |
|                                           | 11ac VHT20                                                                | MCS0/Nss1     | 1/6/11 | 1+2+3+4 |  |  |
|                                           | 11ac VHT40                                                                | MCS0/Nss1     | 3/6/9  | 1+2+3+4 |  |  |

- Note 1: VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40.
- Note 2: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11n/ac. All test results were recorded in the report.

Note 3: The PoE information as below, The PoE is for measurement only and it would not be marketed.

| Support Unit | Brand   | Model          | FCC ID |
|--------------|---------|----------------|--------|
| PoE          | PHIHONG | POE31U-1AT(SC) | DoC    |

The following test modes were performed for all tests:

#### For Conducted Emission test:

Mode 1. Normal Link with Adapter

#### For Radiated Emission test (Below 1GHz):

- Mode 1. Normal Link with Adapter in Y-axis
- Mode 2. Normal Link with Adapter in Z-axis

Mode 2 has been evaluated to be the worst case among Mode  $1\sim2$ , thus measurement for Mode 3 will follow this same test mode.

Mode 3. Normal Link with PoE in Z-axis

Mode 2 is the worst case, so it was selected to record in this test report.

 Report Format Version: Rev. 01
 Page No.
 : 8 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016

#### For Radiated Emission test (Above 1GHz):

The EUT was performed at Y axis and Z axis position for Radiated emission above 1GHz test, and the worst case was found at Z axis. So the measurement will follow this same test configuration.

Mode 1. CTX - Z axis

#### For Co-location MPE and Radiated Emission Co-location Test:

Mode 1. 2.4G+5G in Y-axis

Mode 2. 2.4G+5G in Z-axis

Mode 2 is the worst case, so it was selected to record in this test report.

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to FA641226) and Radiated Emission Co-location (please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

### 3.6. Table for Testing Locations

| Test Site Location |                   |                         |                      |                        |             |
|--------------------|-------------------|-------------------------|----------------------|------------------------|-------------|
| Address:           | No.8, L           | .ane 724, Bo-ai St., Jh | ubei City, Hsinchu C | County 302, Taiwan, R. | O.C.        |
| TEL:               | 886-3-            | 656-9065                |                      |                        |             |
| FAX:               | X: 886-3-656-9085 |                         |                      |                        |             |
| Test Site          | No.               | Site Category           | Location             | FCC Designation No.    | IC File No. |
| 03CH01             | -CB               | SAC                     | Hsin Chu             | TW0006                 | IC 4086D    |
| CO01-              | СВ                | Conduction              | Hsin Chu             | TW0006                 | IC 4086D    |
| TH01-0             | СВ                | OVEN Room               | Hsin Chu             | -                      | -           |

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

 Report Format Version: Rev. 01
 Page No.
 : 9 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016



## 3.7. Table for Supporting Units

For Test Site No: CO01-CB

| Support Unit  | Brand     | Model        | FCC ID |
|---------------|-----------|--------------|--------|
| NB*4          | DELL      | E6430        | DoC    |
| Flash disk3.0 | Transcend | JetFlash-700 | DoC    |

For Test Site No: 03CH01-CB (Below 1GHz)

| Support Unit | Brand         | Model    | FCC ID |
|--------------|---------------|----------|--------|
| NB*4         | DELL          | E4300    | DoC    |
| Flash disk   | Silicon Power | I-Series | DoC    |

For Test Site No: 03CH01-CB (Above 1GHz)

### <For Non-Beamforming Mode>

| Support Unit | Brand | Model | FCC ID |  |
|--------------|-------|-------|--------|--|
| NB           | DELL  | E4300 | DoC    |  |

### <For Beamforming Mode>

| Support Unit | Brand | Model | FCC ID   |
|--------------|-------|-------|----------|
| NB*2         | DELL  | E4300 | DoC      |
| RX Device    | MOJO  | C-120 | TOR-C120 |

For Test Site No: TH01-CB

| Support Unit | Brand | Model | FCC ID |  |
|--------------|-------|-------|--------|--|
| NB           | DELL  | E4300 | DoC    |  |

Report Format Version: Rev. 01 Page No. : 10 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016

### 3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

#### <For Non-Beamforming Mode>

| Test Software Version     | QCARCT Ver3.0.144.0 |            |          |            |            |          |  |
|---------------------------|---------------------|------------|----------|------------|------------|----------|--|
| Test Frequency (MHz       |                     |            |          | ency (MHz) |            |          |  |
| Mode                      |                     | NCB: 20MHz |          |            | NCB: 40MHz |          |  |
|                           | 2412 MHz            | 2437 MHz   | 2462 MHz | 2422 MHz   | 2437 MHz   | 2452 MHz |  |
| 802.11b                   | 19.5                | 21         | 19       | -          | -          | -        |  |
| 802.11g                   | 12.5                | 20.5       | 15       | -          | -          | -        |  |
| 802.11ac MC\$0/Nss1 VHT20 | 12.5                | 20         | 15       | -          | -          | -        |  |
| 802.11ac MC\$0/Nss1 VHT40 | -                   | -          | -        | 9          | 13         | 14.5     |  |

#### <For Beamforming Mode>

| Test Software Version     | QCARCT Ver3.0.144.0  |            |          |          |            |          |  |
|---------------------------|----------------------|------------|----------|----------|------------|----------|--|
|                           | Test Frequency (MHz) |            |          |          |            |          |  |
| Mode                      |                      | NCB: 20MHz |          |          | NCB: 40MHz |          |  |
|                           | 2412 MHz             | 2437 MHz   | 2462 MHz | 2422 MHz | 2437 MHz   | 2452 MHz |  |
| 802.11ac MC\$0/Nss1 VHT20 | 18                   | 21         | 20.5     | -        | -          | -        |  |
| 802.11ac MC\$0/Nss1 VHT40 | -                    | -          | -        | 14       | 16         | 19.5     |  |

### 3.9. EUT Operation during Test

#### <For Non-Beamforming Mode>

The EUT was programmed to be in continuously transmitting mode.

#### <For Beamforming Mode>

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN 7 were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under Telnet.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by RX Device and transmit duty cycle no less 98%

 Report Format Version: Rev. 01
 Page No.
 : 11 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016



## 3.10. Duty Cycle

## <For Non-beamforming Mode>

| Mode                         | On Time<br>(ms) | On+Off Time<br>(ms) | Duty Cycle<br>(%) | Duty Factor<br>(dB) | 1/T Minimum VBW<br>(kHz) |
|------------------------------|-----------------|---------------------|-------------------|---------------------|--------------------------|
| 802.11b                      | 12.340          | 12.380              | 99.68%            | 0.01                | 0.01                     |
| 802.11g                      | 2.020           | 2.080               | 97.12%            | 0.13                | 0.50                     |
| 802.11ac MC\$0/Nss1<br>VHT20 | 5.020           | 5.080               | 98.82%            | 0.05                | 0.01                     |
| 802.11ac MCS0/Nss1<br>VHT40  | 2.450           | 2.500               | 98.00%            | 0.09                | 0.41                     |

### <For Beamforming Mode>

| Mode                        | On Time<br>(ms) | On+Off Time<br>(ms) | Duty Cycle<br>(%) | Duty Factor<br>(dB) | 1/T Minimum VBW<br>(kHz) |
|-----------------------------|-----------------|---------------------|-------------------|---------------------|--------------------------|
| 802.11ac MCS0/Nss1<br>VHT20 | 1.764           | 1.926               | 91.59%            | 0.38                | 0.57                     |
| 802.11ac MCS0/Nss1<br>VHT40 | 1.698           | 1.860               | 91.29%            | 0.40                | 0.59                     |

 Report Format Version: Rev. 01
 Page No. : 12 of 101

 FCC ID: TOR-C120
 Issued Date : May 27, 2016





## 3.11. Test Configurations

## 3.11.1. AC Power Line Conduction Emissions Test Configuration



| Item | Connection    | Shielded       | Length |
|------|---------------|----------------|--------|
| 1    | Power cable   | No             | 1.5m   |
| 2    | Console cable | Yes            | 1.5m   |
| 3    | RJ-45 cable   | RJ-45 cable No |        |
| 4    | RJ-45 cable   | No             | lm     |
| 5    | RJ-45 cable   | No             | 10m    |
| 6    | RJ-45 cable   | No             | 10m    |

: 13 of 101 Page No. FCC ID: TOR-C120 Issued Date : May 27, 2016





## 3.11.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz



| Item | Connection    | Shielded       | Length |
|------|---------------|----------------|--------|
| 1    | Power cable   | No             | 1.5m   |
| 2    | Console cable | Yes            | 1.5m   |
| 3    | RJ-45 cable   | RJ-45 cable No |        |
| 4    | RJ-45 cable   | No             | 1m     |
| 5    | RJ-45 cable   | No             | 10m    |
| 6    | RJ-45 cable   | No             | 10m    |

: 14 of 101 Page No. FCC ID: TOR-C120 Issued Date : May 27, 2016





Test Configuration: above 1GHz <For Non-Beamforming Mode>



| Item | Connection  | Connection Shielded |     |  |  |
|------|-------------|---------------------|-----|--|--|
| 1    | Power cable | Power cable No      |     |  |  |
| 2    | RJ-45 cable | No                  | 10m |  |  |





## <For Beamforming Mode>



| Item | Connection  | Shielded | Length |  |  |
|------|-------------|----------|--------|--|--|
| 1    | Power cable | No       | 1.5m   |  |  |
| 2    | RJ-45 cable | No       | 10m    |  |  |
| 3    | RJ-45 cable | No       | 1.5m   |  |  |

### 4. TEST RESULT

### 4.1. AC Power Line Conducted Emissions Measurement

#### 4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

| Frequency (MHz) | QP Limit (dBuV) | AV Limit (dBuV) |
|-----------------|-----------------|-----------------|
| 0.15~0.5        | 66~56           | 56~46           |
| 0.5~5           | 56              | 46              |
| 5~30            | 60              | 50              |

### 4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
  from the conducting wall of the shielding room and at least 80 centimeters from any other
  grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 17 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016

#### 4.1.4. Test Setup Layout



#### LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50  $\Omega$ . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

#### 4.1.5. Test Deviation

There is no deviation with the original standard.

#### 4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 01
 Page No.
 : 18 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016





### 4.1.7. Results of AC Power Line Conducted Emissions Measurement

| Temperature   | 23°C        | Humidity | 63%  |
|---------------|-------------|----------|------|
| Test Engineer | Hank Yang   | Phase    | Line |
| Configuration | Normal Link |          |      |



|    |         |       | 0ver   | Limit | Read  | LISN   | Cable |           |         |
|----|---------|-------|--------|-------|-------|--------|-------|-----------|---------|
|    | Freq    | Level | Limit  | Line  | Level | Factor | Loss  | Pol/Phase | Remark  |
|    | MHz     | dBuV  | dB     | dBuV  | dBuV  | dB     | dB    |           |         |
|    |         |       |        |       |       |        |       |           |         |
| 1  | 0.1524  | 38.63 | -17.24 | 55.87 | 28.68 | 9.93   | 0.02  | LINE      | Average |
| 2  | 0.1524  | 50.44 | -15.43 | 65.87 | 40.49 | 9.93   | 0.02  | LINE      | QP      |
| 3  | 0.1955  | 34.21 | -19.59 | 53.80 | 24.26 | 9.93   | 0.02  | LINE      | Average |
| 4  | 0.1955  | 42.91 | -20.89 | 63.80 | 32.96 | 9.93   | 0.02  | LINE      | QP      |
| 5  | 0.2644  | 34.39 | -16.90 | 51.29 | 24.43 | 9.93   | 0.03  | LINE      | Average |
| 6  | 0.2644  | 41.50 | -19.79 | 61.29 | 31.54 | 9.93   | 0.03  | LINE      | QP      |
| 7  | 0.3673  | 30.62 | -17.94 | 48.56 | 20.65 | 9.93   | 0.04  | LINE      | Average |
| 8  | 0.3673  | 37.52 | -21.04 | 58.56 | 27.55 | 9.93   | 0.04  | LINE      | QP      |
| 9  | 4.8997  | 21.81 | -24.19 | 46.00 | 11.66 | 10.06  | 0.09  | LINE      | Average |
| 10 | 4.8997  | 29.14 | -26.86 | 56.00 | 18.99 | 10.06  | 0.09  | LINE      | QP      |
| 11 | 20.4855 | 22.79 | -27.21 | 50.00 | 12.08 | 10.45  | 0.26  | LINE      | Average |
| 12 | 20.4855 | 29.48 | -30.52 | 60.00 | 18.77 | 10.45  | 0.26  | LINE      | QP      |

Report Format Version: Rev. 01 Page No. : 19 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016





| Temperature   | 23°C        | Humidity | 63%     |
|---------------|-------------|----------|---------|
| Test Engineer | Hank Yang   | Phase    | Neutral |
| Configuration | Normal Link |          |         |



|         |                                                                                    | 0ver                                                                                                                                                      | Limit                                                                                                                                                                                                                                                         | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq    | Level                                                                              | Limit                                                                                                                                                     | Line                                                                                                                                                                                                                                                          | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MHz     | dBuV                                                                               | dB                                                                                                                                                        | dBuV                                                                                                                                                                                                                                                          | dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1557  | 38.05                                                                              | -17.64                                                                                                                                                    | 55.69                                                                                                                                                                                                                                                         | 28.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1557  | 51.05                                                                              | -14.64                                                                                                                                                    | 65.69                                                                                                                                                                                                                                                         | 41.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1955  | 34.38                                                                              | -19.42                                                                                                                                                    | 53.80                                                                                                                                                                                                                                                         | 24.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1955  | 42.61                                                                              | -21.19                                                                                                                                                    | 63.80                                                                                                                                                                                                                                                         | 32.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.2508  | 34.21                                                                              | -17.52                                                                                                                                                    | 51.73                                                                                                                                                                                                                                                         | 24.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.2508  | 41.39                                                                              | -20.34                                                                                                                                                    | 61.73                                                                                                                                                                                                                                                         | 31.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.3751  | 38.39                                                                              | -10.00                                                                                                                                                    | 48.39                                                                                                                                                                                                                                                         | 28.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.3751  | 43.09                                                                              | -15.30                                                                                                                                                    | 58.39                                                                                                                                                                                                                                                         | 33.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.0046  | 22.03                                                                              | -27.97                                                                                                                                                    | 50.00                                                                                                                                                                                                                                                         | 12.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.0046  | 29.81                                                                              | -30.19                                                                                                                                                    | 60.00                                                                                                                                                                                                                                                         | 19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20.9243 | 23.17                                                                              | -26.83                                                                                                                                                    | 50.00                                                                                                                                                                                                                                                         | 12.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20.9243 | 29.79                                                                              | -30.21                                                                                                                                                    | 60.00                                                                                                                                                                                                                                                         | 19.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEUTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | MHz  0.1557 0.1557 0.1955 0.1955 0.2508 0.2508 0.3751 0.3751 5.0046 5.0046 20.9243 | MHz dBuV  0.1557 38.05 0.1557 51.05 0.1955 34.38 0.1955 42.61 0.2508 34.21 0.2508 41.39 0.3751 38.39 0.3751 43.09 5.0046 22.03 5.0046 29.81 20.9243 23.17 | Freq Level Limit  MHz dBuV dB  0.1557 38.05 -17.64 0.1557 51.05 -14.64 0.1955 34.38 -19.42 0.1955 42.61 -21.19 0.2508 34.21 -17.52 0.2508 41.39 -20.34  0.3751 38.39 -10.00  0.3751 43.09 -15.30 5.0046 22.03 -27.97 5.0046 29.81 -30.19 20.9243 23.17 -26.83 | Freq         Level         Limit         Line           MHz         dBuV         dB         dBuV           0.1557         38.05         -17.64         55.69           0.1557         51.05         -14.64         65.69           0.1955         34.38         -19.42         53.80           0.1955         42.61         -21.19         63.80           0.2508         34.21         -17.52         51.73           0.2508         41.39         -20.34         61.73           0.3751         38.39         -10.00         48.39           0.3751         43.09         -15.30         58.39           5.0046         22.03         -27.97         50.00           5.0046         29.81         -30.19         60.00           20.9243         23.17         -26.83         50.00 | Freq         Level         Limit         Line         Level           MHz         dBuV         dB         dBuV         dBuV           0.1557         38.05         -17.64         55.69         28.25           0.1557         51.05         -14.64         65.69         41.25           0.1955         34.38         -19.42         53.80         24.57           0.1955         42.61         -21.19         63.80         32.80           0.2508         34.21         -17.52         51.73         24.39           0.2508         41.39         -20.34         61.73         31.57           0.3751         38.39         -10.00         48.39         28.56           0.3751         43.09         -15.30         58.39         33.26           5.0046         22.03         -27.97         50.00         12.04           5.0046         29.81         -30.19         60.00         19.82           20.9243         23.17         -26.83         50.00         12.71 | Freq         Level         Limit         Line         Level         Factor           MHz         dBuV         dB         dBuV         dBuV         dB           0.1557         38.05         -17.64         55.69         28.25         9.78           0.1557         51.05         -14.64         65.69         41.25         9.78           0.1955         34.38         -19.42         53.80         24.57         9.79           0.1955         42.61         -21.19         63.80         32.80         9.79           0.2508         34.21         -17.52         51.73         24.39         9.79           0.2508         41.39         -20.34         61.73         31.57         9.79           0.3751         38.39         -10.00         48.39         28.56         9.79           0.3751         43.09         -15.30         58.39         33.26         9.79           5.0046         22.03         -27.97         50.00         12.04         9.90           5.0046         29.81         -30.19         60.00         19.82         9.90           20.9243         23.17         -26.83         50.00         12.71         10.20 </td <td>Freq         Level         Limit         Line         Level         Factor         Loss           MHz         dBuV         dB         dBuV         dBuV         dB         dB           0.1557         38.05         -17.64         55.69         28.25         9.78         0.02           0.1557         51.05         -14.64         65.69         41.25         9.78         0.02           0.1955         34.38         -19.42         53.80         24.57         9.79         0.02           0.1955         42.61         -21.19         63.80         32.80         9.79         0.02           0.2508         34.21         -17.52         51.73         24.39         9.79         0.03           0.2508         41.39         -20.34         61.73         31.57         9.79         0.03           0.3751         38.39         -10.00         48.39         28.56         9.79         0.04           0.3751         43.09         -15.30         58.39         33.26         9.79         0.04           5.0046         22.03         -27.97         50.00         12.04         9.90         0.09           5.0046         29.81         -30.19</td> <td>Freq         Level         Limit         Line         Level         Factor         Loss Pol/Phase           MHz         dBuV         dB         dBuV         dB         dB           0.1557         38.05         -17.64         55.69         28.25         9.78         0.02 NEUTRAL           0.1557         51.05         -14.64         65.69         41.25         9.78         0.02 NEUTRAL           0.1955         34.38         -19.42         53.80         24.57         9.79         0.02 NEUTRAL           0.1955         42.61         -21.19         63.80         32.80         9.79         0.02 NEUTRAL           0.2508         34.21         -17.52         51.73         24.39         9.79         0.03 NEUTRAL           0.2508         41.39         -20.34         61.73         31.57         9.79         0.03 NEUTRAL           0.3751         38.39         -10.00         48.39         28.56         9.79         0.04 NEUTRAL           0.3751         43.09         -15.30         58.39         33.26         9.79         0.04 NEUTRAL           5.0046         22.03         -27.97         50.00         12.04         9.90         0.09 NEUTRAL           <td< td=""></td<></td> | Freq         Level         Limit         Line         Level         Factor         Loss           MHz         dBuV         dB         dBuV         dBuV         dB         dB           0.1557         38.05         -17.64         55.69         28.25         9.78         0.02           0.1557         51.05         -14.64         65.69         41.25         9.78         0.02           0.1955         34.38         -19.42         53.80         24.57         9.79         0.02           0.1955         42.61         -21.19         63.80         32.80         9.79         0.02           0.2508         34.21         -17.52         51.73         24.39         9.79         0.03           0.2508         41.39         -20.34         61.73         31.57         9.79         0.03           0.3751         38.39         -10.00         48.39         28.56         9.79         0.04           0.3751         43.09         -15.30         58.39         33.26         9.79         0.04           5.0046         22.03         -27.97         50.00         12.04         9.90         0.09           5.0046         29.81         -30.19 | Freq         Level         Limit         Line         Level         Factor         Loss Pol/Phase           MHz         dBuV         dB         dBuV         dB         dB           0.1557         38.05         -17.64         55.69         28.25         9.78         0.02 NEUTRAL           0.1557         51.05         -14.64         65.69         41.25         9.78         0.02 NEUTRAL           0.1955         34.38         -19.42         53.80         24.57         9.79         0.02 NEUTRAL           0.1955         42.61         -21.19         63.80         32.80         9.79         0.02 NEUTRAL           0.2508         34.21         -17.52         51.73         24.39         9.79         0.03 NEUTRAL           0.2508         41.39         -20.34         61.73         31.57         9.79         0.03 NEUTRAL           0.3751         38.39         -10.00         48.39         28.56         9.79         0.04 NEUTRAL           0.3751         43.09         -15.30         58.39         33.26         9.79         0.04 NEUTRAL           5.0046         22.03         -27.97         50.00         12.04         9.90         0.09 NEUTRAL <td< td=""></td<> |

Note:

Level = Read Level + LISN Factor + Cable Loss.

### 4.2. Maximum Conducted Output Power Measurement

#### 4.2.1. Limit

The limit for output power is 30dBm.

#### 4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

| Power Meter Parameter | Setting                                                    |
|-----------------------|------------------------------------------------------------|
| Bandwidth             | 50MHz bandwidth is greater than the EUT emission bandwidth |
| Detector              | Average                                                    |

#### 4.2.3. Test Procedures

- 1. Test procedures refer KDB558074 D01 v03r05 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

#### 4.2.4. Test Setup Layout



#### 4.2.5. Test Deviation

There is no deviation with the original standard.

### 4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 21 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016



### 4.2.7. Test Result of Maximum Conducted Output Power

| Temperature   | 24°C         | Humidity  | 60%          |
|---------------|--------------|-----------|--------------|
| Test Engineer | Clemens Fang | Test Date | May 18, 2016 |

### <For Non-Beamforming Mode>

| Marila    | <b>-</b>  |         | Conduc  | cted Powe | Max. Limit | D     |       |          |
|-----------|-----------|---------|---------|-----------|------------|-------|-------|----------|
| Mode      | Frequency | Chain 1 | Chain 2 | Chain 3   | Chain 4    | Total | (dBm) | ' Result |
|           | 2412 MHz  | 20.52   | 20.72   | 20.29     | 20.45      | 26.52 | 30.00 | Complies |
| 802.11b   | 2437 MHz  | 20.27   | 21.94   | 21.36     | 22.10      | 27.49 | 30.00 | Complies |
|           | 2462 MHz  | 18.92   | 20.07   | 19.67     | 20.35      | 25.81 | 30.00 | Complies |
|           | 2412 MHz  | 13.25   | 14.05   | 13.32     | 13.24      | 19.50 | 30.00 | Complies |
| 802.11g   | 2437 MHz  | 20.89   | 21.58   | 21.02     | 21.32      | 27.23 | 30.00 | Complies |
|           | 2462 MHz  | 14.36   | 15.63   | 15.24     | 15.32      | 21.18 | 30.00 | Complies |
| 802.11ac  | 2412 MHz  | 12.52   | 13.35   | 13.25     | 13.26      | 19.13 | 30.00 | Complies |
| MCS0/Nss1 | 2437 MHz  | 20.35   | 21.05   | 21.67     | 21.72      | 27.25 | 30.00 | Complies |
| VHT20     | 2462 MHz  | 15.12   | 16.35   | 16.22     | 16.05      | 21.98 | 30.00 | Complies |
| 802.11ac  | 2422 MHz  | 9.37    | 10.34   | 10.02     | 10.06      | 15.98 | 30.00 | Complies |
| MCS0/Nss1 | 2437 MHz  | 13.12   | 14.27   | 13.61     | 14.12      | 19.82 | 30.00 | Complies |
| VHT40     | 2452 MHz  | 14.79   | 15.90   | 15.39     | 15.59      | 21.46 | 30.00 | Complies |

### <For Beamforming Mode>

| Mode      | Frequency |         | Condu   | cted Powe | Max. Limit | Doorth |       |          |
|-----------|-----------|---------|---------|-----------|------------|--------|-------|----------|
|           |           | Chain 1 | Chain 2 | Chain 3   | Chain 4    | Total  | (dBm) | Result   |
| 802.11ac  | 2412 MHz  | 12.37   | 13.73   | 12.63     | 11.94      | 18.74  | 25.28 | Complies |
| MCS0/Nss1 | 2437 MHz  | 15.41   | 15.91   | 16.20     | 15.94      | 21.89  | 25.28 | Complies |
| VHT20     | 2462 MHz  | 14.52   | 15.36   | 15.39     | 15.07      | 21.12  | 25.28 | Complies |
| 802.11ac  | 2422 MHz  | 8.41    | 9.10    | 9.69      | 8.77       | 15.04  | 25.28 | Complies |
| MCS0/Nss1 | 2437 MHz  | 10.53   | 11.09   | 11.24     | 10.93      | 16.98  | 25.28 | Complies |
| VHT40     | 2452 MHz  | 13.02   | 14.18   | 13.68     | 14.50      | 19.90  | 25.28 | Complies |

Note: 
$$Directional \ Gain = 10 \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 10.72 dBi > 6 dBi, so \ Limit = 30-(10.72-6) = 25.28 dBm.$$

Report Format Version: Rev. 01 Page No. : 22 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016

#### 4.3. Power Spectral Density Measurement

#### 4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### 4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter | Setting                                              |
|--------------------|------------------------------------------------------|
| Attenuation        | Auto                                                 |
| Span Frequency     | Set the span to 1.5 times the DTS channel bandwidth. |
| RBW                | 3 kHz ≤ RBW ≤ 100kHz                                 |
| VBW                | ≥ 3 x RBW                                            |
| Detector           | Peak                                                 |
| Trace              | Max Hold                                             |
| Sweep Time         | Auto couple                                          |

#### 4.3.3. Test Procedures

- Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance
   Measurements on Digital Transmission Systems (DTS) section 10.2 Method PKPSD (peak PSD) and
   KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b)
   Measure and sum spectral maximal across the outputs.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep  $\geq 2$  x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be  $\leq$  8 dBm.

#### 4.3.4. Test Setup Layout



Report Format Version: Rev. 01 Page No. : 23 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016



### 4.3.5. Test Deviation

There is no deviation with the original standard.

## 4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 24 of 101

 FCC ID: TOR-C120
 Issued Date : May 27, 2016



### 4.3.7. Test Result of Power Spectral Density

| Temperature   | 24°C         | Humidity | 60% |
|---------------|--------------|----------|-----|
| Test Engineer | Clemens Fang |          |     |

#### <For Non-Beamforming Mode>

|           | _         |         | Power D | ensity (di | 3m/3kHz) |        | Power Density Limit |          |
|-----------|-----------|---------|---------|------------|----------|--------|---------------------|----------|
| Mode      | Frequency | Chain 1 | Chain 2 | Chain 3    | Chain 4  | Total  | (dBm/3kHz)          | Result   |
|           | 2412 MHz  | -13.19  | -13.35  | -13.04     | -13.00   | -7.12  | 3.28                | Complies |
| 802.11b   | 2437 MHz  | -13.30  | -12.55  | -12.11     | -12.25   | -6.51  | 3.28                | Complies |
|           | 2462 MHz  | -13.95  | -13.44  | -13.82     | -13.26   | -7.59  | 3.28                | Complies |
|           | 2412 MHz  | -13.09  | -13.17  | -12.18     | -12.67   | -6.74  | 3.28                | Complies |
| 802.11g   | 2437 MHz  | -5.00   | -4.86   | -5.11      | -4.87    | 1.06   | 3.28                | Complies |
|           | 2462 MHz  | -11.61  | -11.12  | -10.82     | -11.18   | -5.15  | 3.28                | Complies |
| 802.11ac  | 2412 MHz  | -12.41  | -13.26  | -12.92     | -13.36   | -6.95  | 3.28                | Complies |
| MCS0/Nss1 | 2437 MHz  | -6.08   | -6.12   | -5.40      | -6.15    | 0.09   | 3.28                | Complies |
| VHT20     | 2462 MHz  | -10.92  | -11.20  | -11.18     | -11.84   | -5.25  | 3.28                | Complies |
| 802.11ac  | 2422 MHz  | -18.41  | -21.05  | -18.19     | -18.94   | -12.99 | 3.28                | Complies |
| MCS0/Nss1 | 2437 MHz  | -15.36  | -17.34  | -15.60     | -15.85   | -9.95  | 3.28                | Complies |
| VHT40     | 2452 MHz  | -13.08  | -14.69  | -12.78     | -12.26   | -7.09  | 3.28                | Complies |

Note: 
$$Directional \ Gain = 10 \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 10.72 \ dBi > 6 \ dBi, so \ Limit = 8 - (10.72 - 6) = 3.28 \ dBm/3 \ kHz.$$

#### <For Beamforming Mode>

| Mode F    | Eroguepov |         | Power D | ensity (dl | 3m/3kHz) |        | Power Density Limit | Result   |
|-----------|-----------|---------|---------|------------|----------|--------|---------------------|----------|
|           | Frequency | Chain 1 | Chain 2 | Chain 3    | Chain 4  | Total  | (dBm/3kHz)          |          |
| 802.11ac  | 2412 MHz  | -14.39  | -14.02  | -13.20     | -13.77   | -7.80  | 3.28                | Complies |
| MCS0/Nss1 | 2437 MHz  | -11.17  | -11.47  | -11.33     | -12.81   | -5.63  | 3.28                | Complies |
| VHT20     | 2462 MHz  | -12.52  | -12.49  | -11.52     | -12.37   | -6.18  | 3.28                | Complies |
| 802.11ac  | 2422 MHz  | -19.93  | -20.22  | -19.64     | -20.06   | -13.94 | 3.28                | Complies |
| MCS0/Nss1 | 2437 MHz  | -18.65  | -18.97  | -17.58     | -17.96   | -12.23 | 3.28                | Complies |
| VHT40     | 2452 MHz  | -15.72  | -17.21  | -14.97     | -14.83   | -9.57  | 3.28                | Complies |

Note: 
$$Directional \ Gain = 10 \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 10.72 dBi > 6 dBi, so \ Limit = 8 - (10.72 - 6) = 3.28 dBm/3 kHz.$$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

 Report Format Version: Rev. 01
 Page No.
 : 25 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016





### <For Non-Beamforming Mode>

#### Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1





Date: 18.MAY.2016 21:14:39





### Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 3



### Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 4



Date: 18.MAY.2016 21:14:28





### Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1



Date: 18.MAY.2016 21:22:00

### Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 2



Date: 18.MAY.2016 21:21:50





#### Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 3



### Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 4



Date: 18.MAY.2016 21:21:10





#### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 1



Date: 18.MAY.2016 21:33:36

### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 2



Date: 18.MAY.2016 21:33:53





#### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 3



### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 4



Date: 18.MAY.2016 21:34:22





#### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 1



Date: 18.MAY.2016 21:50:38

### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 2



Date: 18.MAY.2016 21:50:19





#### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 3



Date: 18.MAY.2016 21:49:47

### Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 4



Date: 18.MAY.2016 21:49:30





## <For Beamforming Mode>

## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 1



## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 2



Date: 18.MAY.2016 21:29:10





## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 3



## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 4



Report Format Version: Rev. 01

: 35 of 101 Page No. FCC ID: TOR-C120 Issued Date : May 27, 2016





## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 1



Date: 18.MAY.2016 21:51:22

## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 2



Date: 18.MAY.2016 21:51:44





## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 3



Date: 18.MAY.2016 21:51:59

## Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 4



Date: 18.MAY.2016 21:52:19

## 4.4. 6dB Spectrum Bandwidth Measurement

#### 4.4.1. Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

## 4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

| 6dB Spectrum Bandwidth |                                |  |  |  |  |  |
|------------------------|--------------------------------|--|--|--|--|--|
| Spectrum Parameters    | Setting                        |  |  |  |  |  |
| Attenuation            | Auto                           |  |  |  |  |  |
| Span Frequency         | > 6dB Bandwidth                |  |  |  |  |  |
| RBW                    | 100kHz                         |  |  |  |  |  |
| VBW                    | ≥ 3 x RBW                      |  |  |  |  |  |
| Detector               | Peak                           |  |  |  |  |  |
| Trace                  | Max Hold                       |  |  |  |  |  |
| Sweep Time             | Auto                           |  |  |  |  |  |
|                        | 99% Occupied Bandwidth         |  |  |  |  |  |
| Spectrum Parameters    | Setting                        |  |  |  |  |  |
| Span                   | 1.5 times to 5.0 times the OBW |  |  |  |  |  |
| RBW                    | 1 % to 5 % of the OBW          |  |  |  |  |  |
| VBW                    | ≥ 3 x RBW                      |  |  |  |  |  |
| Detector               | Peak                           |  |  |  |  |  |
| Trace                  | Max Hold                       |  |  |  |  |  |

## 4.4.3. Test Procedures

## For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) section 8.0 DTS bandwidth=> 8.1 Option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

## 4.4.4. Test Setup Layout

#### For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

 Report Format Version: Rev. 01
 Page No.
 : 38 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016



## 4.4.5. Test Deviation

There is no deviation with the original standard.

## 4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 39 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016



## 4.4.7. Test Result of 6dB Spectrum Bandwidth

| Temperature   | 24°C         | Humidity | 60% |
|---------------|--------------|----------|-----|
| Test Engineer | Clemens Fang |          |     |

## <For Non-Beamforming Mode>

| The first pour months in our services |           |                        |                                    |                     |             |  |  |  |  |
|---------------------------------------|-----------|------------------------|------------------------------------|---------------------|-------------|--|--|--|--|
| Mode                                  | Frequency | 6dB Bandwidth<br>(MHz) | 99% Occupied<br>Bandwidth<br>(MHz) | Min. Limit<br>(kHz) | Test Result |  |  |  |  |
|                                       | 2412 MHz  | 10.14                  | 13.89                              | 500                 | Complies    |  |  |  |  |
| 802.11b                               | 2437 MHz  | 9.57                   | 14.15                              | 500                 | Complies    |  |  |  |  |
|                                       | 2462 MHz  | 11.07                  | 13.72                              | 500                 | Complies    |  |  |  |  |
|                                       | 2412 MHz  | 7.59                   | 16.67                              | 500                 | Complies    |  |  |  |  |
| 802.11g                               | 2437 MHz  | 3.59                   | 17.97                              | 500                 | Complies    |  |  |  |  |
|                                       | 2462 MHz  | 9.45                   | 16.58                              | 500                 | Complies    |  |  |  |  |
| 802.11ac                              | 2412 MHz  | 8.70                   | 17.89                              | 500                 | Complies    |  |  |  |  |
| MCS0/Nss1                             | 2437 MHz  | 5.10                   | 17.71                              | 500                 | Complies    |  |  |  |  |
| VHT20                                 | 2462 MHz  | 13.91                  | 17.63                              | 500                 | Complies    |  |  |  |  |
| 802.11ac                              | 2422 MHz  | 25.04                  | 33.72                              | 500                 | Complies    |  |  |  |  |
| MCS0/Nss1                             | 2437 MHz  | 26.32                  | 34.01                              | 500                 | Complies    |  |  |  |  |
| VHT40                                 | 2452 MHz  | 25.39                  | 33.57                              | 500                 | Complies    |  |  |  |  |

## <For Beamforming Mode>

| Mode      | Frequency | 6dB Bandwidth<br>(MHz) | 99% Occupied<br>Bandwidth<br>(MHz) | Min. Limit<br>(kHz) | Test Result |
|-----------|-----------|------------------------|------------------------------------|---------------------|-------------|
| 802.11ac  | 2412 MHz  | 17.74                  | 17.89                              | 500                 | Complies    |
| MCS0/Nss1 | 2437 MHz  | 17.68                  | 17.89                              | 500                 | Complies    |
| VHT20     | 2462 MHz  | 17.62                  | 17.89                              | 500                 | Complies    |
| 802.11ac  | 2422 MHz  | 32.12                  | 36.76                              | 500                 | Complies    |
| MCS0/Nss1 | 2437 MHz  | 32.23                  | 36.76                              | 500                 | Complies    |
| VHT40     | 2452 MHz  | 36.41                  | 37.05                              | 500                 | Complies    |

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 40 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016





## <For Non-Beamforming Mode>

## 6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 23:00:50

# 99% Occupied Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 22:16:48





## 6 dB Bandwidth Plot on Configuration IEEE 802.11g/2437 MHz/Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 23:03:13

# 99% Occupied Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 22:18:16





# 6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 23:05:13

# 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2412 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 22:11:59

Report Format Version: Rev. 01 Page No. : 43 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016





# 6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2422 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 23:08:21

# 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2437 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 22:08:03

 Report Format Version: Rev. 01
 Page No.
 : 44 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016





## <For Beamforming Mode>

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2462 MHz / Chain 1 + Chain 2

### + Chain 3 + Chain 4



Date: 18.MAY.2016 23:06:42

# 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 2437 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 22:13:17

Report Format Version: Rev. 01 Page No. : 45 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016





# 6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2422 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 23:08:45

## 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 2452 MHz / Chain 1 + Chain 2 + Chain 3 + Chain 4



Date: 18.MAY.2016 22:06:42

 Report Format Version: Rev. 01
 Page No.
 : 46 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016

## 4.5. Radiated Emissions Measurement

## 4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(kHz)        | 300                  |
| 0.490~1.705 | 24000/F(kHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

## 4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                          | Setting                  |
|---------------------------------------------|--------------------------|
| Attenuation                                 | Auto                     |
| Start Frequency                             | 1000 MHz                 |
| Stop Frequency                              | 10th carrier harmonic    |
| RBW / VBW (Emission in restricted band)     | 1MHz / 3MHz for Peak,    |
|                                             | 1MHz / 1/T for Average   |
| RBW / VBW (Emission in non-restricted band) | 100kHz / 300kHz for peak |

| Receiver Parameter     | Setting                           |
|------------------------|-----------------------------------|
| Attenuation            | Auto                              |
| Start ~ Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RBW 120kHz for QP |

Report Format Version: Rev. 01 Page No. : 47 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016

#### 4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 48 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016



: 49 of 101

Issued Date : May 27, 2016

Page No.



## 4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz



For Radiated Emissions: 30MHz~1GHz



For Radiated Emissions: Above 1GHz





## 4.5.5. Test Deviation

There is no deviation with the original standard.

## 4.5.6. EUT Operation during Test

## <For Non-Beamforming Mode>

The EUT was programmed to be in continuously transmitting mode.

## <For Beamforming Mode>

The EUT was programmed to be in beamforming transmitting mode.



## 4.5.7. Results of Radiated Emissions (9kHz~30MHz)

| Temperature   | 23°C          | Humidity       | 55%         |
|---------------|---------------|----------------|-------------|
| Test Engineer | DK Chang      | Configurations | Normal Link |
| Test Date     | Apr. 18, 2016 | Test Mode      | Mode 2      |

| Freq. | Level  | Over Limit | Limit Line | Remark   |
|-------|--------|------------|------------|----------|
| (MHz) | (dBuV) | (dB)       | (dBuV)     |          |
| -     | -      | -          | -          | See Note |

## Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$ 

Report Format Version: Rev. 01 Page No. : 51 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016





## 4.5.8. Results of Radiated Emissions (30MHz~1GHz)

| Temperature   | 23°C     | Humidity       | 55%         |  |
|---------------|----------|----------------|-------------|--|
| Test Engineer | DK Chang | Configurations | Normal Link |  |
| Test Mode     | Mode 2   |                |             |  |

## Horizontal



|   | Freq   | Level  |        | Over<br>Limit |       |      |       |       |     | T/Pos | Remark | Pol/Phase  |
|---|--------|--------|--------|---------------|-------|------|-------|-------|-----|-------|--------|------------|
| - | MHz    | dBuV/m | dBuV/m | dB            | dBuV  | dB   | dB/m  | dB    | cm  | deg   |        |            |
| 1 | 125.06 | 25.17  | 43.50  | -18.33        | 38.48 | 1.10 | 18.15 | 32.56 | 150 | 227   | Peak   | HORIZONTAL |
| 2 | 250.19 | 25.32  | 46.00  | -20.68        | 37.69 | 1.56 | 18.60 | 32.53 | 125 | 219   | Peak   | HORIZONTAL |
| 3 | 780.78 | 34.55  | 46.00  | -11.45        | 37.84 | 2.73 | 26.41 | 32.43 | 125 | 118   | Peak   | HORIZONTAL |
| 4 | 839.95 | 37.53  | 46.00  | -8.47         | 39.90 | 2.82 | 26.99 | 32.18 | 150 | 59    | Peak   | HORIZONTAL |
| 5 | 900.09 | 38.00  | 46.00  | -8.00         | 39.42 | 2.94 | 27.50 | 31.86 | 200 | 125   | Peak   | HORIZONTAL |
| 6 | 960.00 | 36.96  | 46.00  | -9.04         | 37.36 | 3.06 | 27.86 | 31.32 | 200 | 136   | Peak   | HORIZONTAL |

Report Format Version: Rev. 01 Page No. : 52 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016



## Vertical



|   | Freq   | Level  |        |        |       |      |       | Preamp<br>Factor | -   | T/Pos | Remark | Pol/Phase |
|---|--------|--------|--------|--------|-------|------|-------|------------------|-----|-------|--------|-----------|
|   | MHz    | dBuV/m | dBuV/m | dB     | dBuV  | dB   | dB/m  | dB               | cm  | deg   |        |           |
| 1 | 43.58  | 35.55  | 40.00  | -4.45  | 50.06 | 0.67 | 17.45 | 32.63            | 100 | 359   | Peak   | VERTICAL  |
| 2 | 73.65  | 34.37  | 40.00  | -5.63  | 53.52 | 0.86 | 12.59 | 32.60            | 125 | 184   | Peak   | VERTICAL  |
| 3 | 82.38  | 32.39  | 40.00  | -7.61  | 50.56 | 0.91 | 13.51 | 32.59            | 125 | 124   | Peak   | VERTICAL  |
| 4 | 250.19 | 37.31  | 46.00  | -8.69  | 49.68 | 1.56 | 18.60 | 32.53            | 125 | 273   | Peak   | VERTICAL  |
| 5 | 375.32 | 35.77  | 46.00  | -10.23 | 44.78 | 1.90 | 21.63 | 32.54            | 150 | 309   | Peak   | VERTICAL  |
| 6 | 625.58 | 35.86  | 46.00  | -10.14 | 41.03 | 2.44 | 25.06 | 32.67            | 125 | 323   | Peak   | VERTICAL  |

#### Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) =  $20 \log Emission$  level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 Page No. : 53 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016



## 4.5.9. Results for Radiated Emissions (1GHz $\sim$ 10<sup>th</sup> Harmonic)

## <For Non-Beamforming Mode>

|               | •                                                     |                |                                                           |
|---------------|-------------------------------------------------------|----------------|-----------------------------------------------------------|
| Temperature   | 23°C                                                  | Humidity       | 55%                                                       |
| Test Engineer | Brian Sun/Andy<br>Tsai/DK Chang/Gary<br>Chu/Ron Huang | Configurations | IEEE 802.11b CH 1 / Chain 1 + Chain 2 + Chain 3 + Chain 4 |
| Test Date     | Apr. 19, 2016                                         |                |                                                           |

## Horizontal

|     | Freq               | Level          | Limit<br>Line  | Over<br>Limit    |       |              |                | Preamp<br>Factor | T/Pos    | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|----------------|------------------|-------|--------------|----------------|------------------|----------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | dBuV/m         | ₫B               | dBuV  | ₫B           | dB/m           | - dB             | deg      | Cm    |                 |                          |
| 1 2 | 4823.78<br>4823.87 | 47.23<br>36.23 | 74.00<br>54.00 | -26.77<br>-17.77 | 41.35 | 7.58<br>7.58 | 32.82<br>32.82 | 34.52<br>34.52   | 74<br>74 |       | Peak<br>Average | HORIZONTAL<br>HORIZONTAL |

## Vertical

|     | Freq               | Level          | Limi t<br>Line |                  |                |              |                | Preamp<br>Factor | T/Pos    | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|----------------|----------------|------------------|----------------|--------------|----------------|------------------|----------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m         | dBuV/m         | ₫B               | dBuV           | ₫B           | dB/m           | ₫B               | deg      | Cm    |                 |                      |
| 1 2 | 4823.89<br>4823.98 | 48.21<br>38.90 | 74.00<br>54.00 | -25.79<br>-15.10 | 42.33<br>33.02 | 7.58<br>7.58 | 32.82<br>32.82 | 34.52<br>34.52   | 58<br>58 |       | Peak<br>Average | VERTICAL<br>VERTICAL |

Report Format Version: Rev. 01 Page No. : 54 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016





| Temperature   | 23°C                                                  | Humidity       | 55%                                                       |
|---------------|-------------------------------------------------------|----------------|-----------------------------------------------------------|
| Test Engineer | Brian Sun/Andy<br>Tsai/DK Chang/Gary<br>Chu/Ron Huang | Configurations | IEEE 802.11b CH 6 / Chain 1 + Chain 2 + Chain 3 + Chain 4 |
| Test Date     | Apr. 19, 2016                                         |                |                                                           |

|     | Freq               | Level          | Limi t<br>Line |                  |                |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|----------------|------------------|----------------|------|----------------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | dBuV/m         | ₫B               | dBuV           | ₫B   | dB/m           | ₫B               | deg        | Cm    |                 |                          |
| 1 2 | 4873.91<br>4873.95 | 49.58<br>37.03 | 74.00<br>54.00 | -24.42<br>-16.97 | 43.58<br>31.03 | 7.60 | 32.91<br>32.91 | 34.51<br>34.51   | 199<br>199 |       | Peak<br>Average | HORIZONTAL<br>HORIZONTAL |

|     | Freq               | Level          | Limit<br>Line  |                  |                |      |                | rieamp<br>Factor | ı, Pos   | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|----------------|----------------|------------------|----------------|------|----------------|------------------|----------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m         | dBuV/m         | ₫B               | dBuV           | ₫B   | dB/m           | - dB             | deg      | Cm    |                 |                      |
| 1 2 | 4873.83<br>4874.04 | 49.68<br>41.12 | 74.00<br>54.00 | -24.32<br>-12.88 | 43.68<br>35.12 | 7.60 | 32.91<br>32.91 | 34.51<br>34.51   | 57<br>57 |       | Peak<br>Average | VERTICAL<br>VERTICAL |





| Temperature   | 23°C                                                  | Humidity       | 55%                                                        |
|---------------|-------------------------------------------------------|----------------|------------------------------------------------------------|
| Test Engineer | Brian Sun/Andy<br>Tsai/DK Chang/Gary<br>Chu/Ron Huang | Configurations | IEEE 802.11b CH 11 / Chain 1 + Chain 2 + Chain 3 + Chain 4 |
| Test Date     | Apr. 19, 2016                                         |                |                                                            |

|     | Freq               | Level          | Limit<br>Line  | Over<br>Limit    |                |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|----------------|------------------|----------------|------|----------------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | dBuV/m         | dB               | dBuV           | ₫B   | dB/m           | dB               | deg        | Cm    | -               |                          |
| 1 2 | 4923.92<br>4923.96 | 39.68<br>48.43 | 54.00<br>74.00 | -14.32<br>-25.57 | 33.56<br>42.31 | 7.62 | 32.99<br>32.99 | 34.49<br>34.49   | 197<br>197 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

|     | Freq               | Level  | Limit<br>Line |    |      |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|---------------|----|------|------|----------------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m        | ₫B | dBuV | ₫B   | dB/m           | - GB             | deg        | Cm    |                 |                      |
| 1 2 | 4923.92<br>4923.99 |        |               |    |      | 7.62 | 32.99<br>32.99 | 34.49<br>34.49   | 218<br>218 |       | Peak<br>Average | VERTICAL<br>VERTICAL |





| Temperature   | 23°C               | Humidity       | 55%                           |
|---------------|--------------------|----------------|-------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11g CH 1 /           |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + |
|               | Chu/Ron Huang      |                | Chain 4                       |
| Test Date     | Apr. 19, 2016      |                |                               |

|     | Freq               | Level          | Limi t<br>Line | Over<br>Limit    |                |      |      | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|----------------|------------------|----------------|------|------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | dBuV/m         | - dB             | dBuV           | dB   | dB/m | dB               | deg        | Cm    |                 |                          |
| 1 2 | 4823.86<br>4823.87 | 31.72<br>44.98 | 54.00<br>74.00 | -22.28<br>-29.02 | 27.40<br>40.66 | 6.02 |      | 34.52<br>34.52   | 298<br>298 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

|     | Freq               | Level  | Limit<br>Line | Over<br>Limit    |      |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|---------------|------------------|------|------|----------------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m        | dB               | dBuV | dB   | dB/m           | ₫B               | deg        | Cm    |                 |                      |
| 1 2 | 4823.56<br>4824.02 |        |               | -21.44<br>-29.79 |      | 6.02 | 32.82<br>32.82 | 34.52<br>34.52   | 137<br>137 |       | Average<br>Peak | VERTICAL<br>VERTICAL |





| Temperature   | 23°C               | Humidity       | 55%                           |
|---------------|--------------------|----------------|-------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11g CH 6 /           |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + |
|               | Chu/Ron Huang      |                | Chain 4                       |
| Test Date     | Apr. 23, 2016      |                |                               |

|     | Freq               | Level          | Limi t<br>Line |                  |                |      |      | Preamp<br>Factor | T/Pos    | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|----------------|------------------|----------------|------|------|------------------|----------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | dBuV/m         | dB               | dBuV           | dB   | dB/m | dB               | deg      | Cm    |                 |                          |
| 1 2 | 4873.22<br>4877.94 | 33.67<br>46.51 | 54.00<br>74.00 | -20.33<br>-27.49 | 29.25<br>42.08 | 6.02 |      | 34.51<br>34.50   | 42<br>42 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

## Vertical

|   | Freq               | Level  | Limi t<br>Line | Over<br>Limit |      |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase            |
|---|--------------------|--------|----------------|---------------|------|------|----------------|------------------|------------|-------|-----------------|----------------------|
|   | MHz                | dBuV/m | dBuV/m         | dB            | dBuV | dB   | dB/m           | dB               | deg        | Cm    |                 |                      |
| 1 | 4874.20<br>4877.60 |        |                | -20.11        |      | 6.02 | 32.91<br>32.91 | 34.51            | 350<br>350 |       | Average<br>Peak | VERTICAL<br>VERTICAL |

Page No. : 58 of 101 Issued Date : May 27, 2016





| Temperature   | 23°C               | Humidity       | 55%                           |
|---------------|--------------------|----------------|-------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11g CH 11 /          |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + |
|               | Chu/Ron Huang      |                | Chain 4                       |
| Test Date     | Apr. 23, 2016      |                |                               |

|     | Freq               | Level  | Limi t<br>Line |    |      |    |      | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|--------|----------------|----|------|----|------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m | dBuV/m         | dB | dBuV | dB | dB/m | dB               | deg        | Cm    |                 |                          |
| 1 2 | 4923.40<br>4928.42 |        |                |    |      |    |      | 34.49<br>34.49   | 110<br>110 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

|     | Freq               | Level  | Limi t<br>Line |    |      |    |      | Preamp<br>Factor |          | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|----------------|----|------|----|------|------------------|----------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m         | ₫B | dBuV | ₫B | dB/m | - GB             | deg      | Cm    |                 |                      |
| 1 2 | 4920.82<br>4923.42 |        |                |    |      |    |      |                  | 80<br>80 |       | Peak<br>Average | VERTICAL<br>VERTICAL |





| Temperature   | 23°C               | Humidity       | 55%                                  |
|---------------|--------------------|----------------|--------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT20 CH 1 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain  |
|               | Chu/Ron Huang      |                | 4                                    |
| Test Date     | Apr. 23, 2016      |                |                                      |

|     | Freq               | Level  | Limit<br>Line |    |      |      |      | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|--------|---------------|----|------|------|------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m | dBuV/m        | dB | dBuV | - dB | dB/m | dB               | deg        | Cm    |                 |                          |
| 1 2 | 4820.68<br>4826.54 |        |               |    |      |      |      |                  | 188<br>188 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

|     | Freq               | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | intenna<br>Factor | Preamp<br>Factor | T/Pos | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m        | ₫B            | dBuV          | ₫B             | dB/m              | - dB             | deg   | Cm    |                 |                      |
| 1 2 | 4821.38<br>4821.78 |        |               |               |               |                |                   |                  |       |       | Peak<br>Average | VERTICAL<br>VERTICAL |





| Temperature   | 23°C               | Humidity       | 55%                                   |
|---------------|--------------------|----------------|---------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MC\$0/Nss1 VHT20 CH 6 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain   |
|               | Chu/Ron Huang      |                | 4                                     |
| Test Date     | Apr. 23, 2016      |                |                                       |

|     | Freq               | Level  | Limit<br>Line |    |      |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|--------|---------------|----|------|------|----------------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m | dBuV/m        | dB | dBuV | - dB | dB/m           | dB               | deg        | Cm    |                 |                          |
| 1 2 | 4871.24<br>4872.10 |        |               |    |      |      | 32.91<br>32.91 | 34.51<br>34.51   | 233<br>233 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

## Vertical

|     | Freq               | Level          | Limi t<br>Line |                  |                |      |      | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|----------------|----------------|------------------|----------------|------|------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m         | dBuV/m         | dB               | dBuV           | dB   | dB/m | dB               | deg        | Cm    |                 |                      |
| 1 2 | 4876.98<br>4877.18 | 33.52<br>46.73 | 54.00<br>74.00 | -20.48<br>-27.27 | 29.09<br>42.30 | 6.02 |      | 34.50<br>34.50   | 202<br>202 |       | Average<br>Peak | VERTICAL<br>VERTICAL |

Page No. : 61 of 101 Issued Date : May 27, 2016





| Temperature   | 23°C                                            | Humidity       | 55%                                                                               |
|---------------|-------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| Test Engineer | Brian Sun/Andy Tsai/DK Chang/Gary Chu/Ron Huang | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 11 /<br>Chain 1 + Chain 2 + Chain 3 + Chain<br>4 |
| Test Date     | Apr. 23, 2016                                   |                |                                                                                   |

|     | Freq               | Level  | Limi t<br>Line |      |      |    |      | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|--------|----------------|------|------|----|------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m | dBuV/m         | - dB | dBuV | dB | dB/m | - dB             | deg        | Cat   |                 |                          |
| 1 2 | 4920.00<br>4928.50 |        |                |      |      |    |      | 34.49<br>34.49   | 273<br>273 |       | Average<br>Peak | HORIZONTAL<br>HORIZONTAL |

## Vertical

|     | Freq               | Level  | Limit<br>Line |    |      |    |      | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|---------------|----|------|----|------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m        | dB | dBuV | dB | dB/m | ₫B               | deg        | Cm    | -               |                      |
| 1 2 | 4921.34<br>4923.58 |        |               |    |      |    |      |                  | 258<br>258 |       | Peak<br>Average | VERTICAL<br>VERTICAL |

Page No. : 62 of 101 Issued Date : May 27, 2016





| Temperature   | 23℃                | Humidity       | 55%                                  |
|---------------|--------------------|----------------|--------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT40 CH 3 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain  |
|               | Chu/Ron Huang      |                | 4                                    |
| Test Date     | Apr. 23, 2016      |                |                                      |

|     | Freq               | Level          | Limi t<br>Line      |                  |                |      |                | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|---------------------|------------------|----------------|------|----------------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | $\overline{dBuV/m}$ | <u>dB</u>        | dBuV           | ₫B   | dB/m           | - dB             | deg        | Cm    |                 |                          |
| 1 2 | 4839.84<br>4848.18 | 46.33<br>33.31 | 74.00<br>54.00      | -27.67<br>-20.69 | 41.97<br>28.94 | 6.02 | 32.86<br>32.86 | 34.52<br>34.51   | 321<br>321 |       | Peak<br>Average | HORIZONTAL<br>HORIZONTAL |

## Vertical

|     | Freq               | Level  | Limit<br>Line  |    |      |    |      | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|----------------|----|------|----|------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m         | dB | dBuV | dB | dB/m | dB               | deg        | Cm    |                 |                      |
| 1 2 | 4840.38<br>4845.70 |        | 54.00<br>74.00 |    |      |    |      |                  | 288<br>288 |       | Average<br>Peak | VERTICAL<br>VERTICAL |

Page No. : 63 of 101 Issued Date : May 27, 2016





| Temperature   | 23°C               | Humidity       | 55%                                   |
|---------------|--------------------|----------------|---------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MC\$0/Nss1 VHT40 CH 6 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain   |
|               | Chu/Ron Huang      |                | 4                                     |
| Test Date     | Apr. 23, 2016      |                |                                       |

|     | Freq               | Level          | Limit<br>Line       |                  |                |      |                | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|---------------------|------------------|----------------|------|----------------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | $\overline{dBuV/m}$ | ₫B               | dBuV           | ₫B   | dB/m           | - dB             | deg        | Cm    |                 |                          |
| 1 2 | 4871.12<br>4878.30 | 46.15<br>33.44 | 74.00<br>54.00      | -27.85<br>-20.56 | 41.73<br>29.01 | 6.02 | 32.91<br>32.91 | 34.51<br>34.50   | 240<br>240 |       | Peak<br>Average | HORIZONTAL<br>HORIZONTAL |

## Vertical

|     | Freq               | Level  | Limi t<br>Line |    |      |      |                | Preamp<br>Factor | T/Pos      | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|----------------|----|------|------|----------------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m         | dB | dBuV | ₫B   | dB/m           | dB               | deg        | Cm    |                 |                      |
| 1 2 | 4873.70<br>4874.06 |        |                |    |      | 6.02 | 32.91<br>32.91 | 34.51<br>34.51   | 279<br>279 |       | Average<br>Peak | VERTICAL<br>VERTICAL |

Page No. : 64 of 101 Issued Date : May 27, 2016





| Temperature   | 23°C               | Humidity       | 55%                                  |
|---------------|--------------------|----------------|--------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT40 CH 9 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain  |
|               | Chu/Ron Huang      |                | 4                                    |
| Test Date     | Apr. 23, 2016      |                |                                      |

|     | Freq               | Level          | Limi t<br>Line      |                  |                |      |                | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase                |
|-----|--------------------|----------------|---------------------|------------------|----------------|------|----------------|------------------|------------|-------|-----------------|--------------------------|
|     | MHz                | dBuV/m         | $\overline{dBuV/m}$ | ₫B               | dBuV           | ₫B   | dB/m           | <u>∃dB</u>       | deg        | Cm    |                 |                          |
| 1 2 | 4905.40<br>4908.22 | 46.21<br>33.09 | 74.00<br>54.00      | -27.79<br>-20.91 | 41.75<br>28.63 | 6.01 | 32.95<br>32.95 | 34.50<br>34.50   | 167<br>167 |       | Peak<br>Average | HORIZONTAL<br>HORIZONTAL |

|     | Freq               | Level  | Limi t<br>Line |    |      |    |      | Preamp<br>Factor |            | A/Pos | Remark          | Pol/Phase            |
|-----|--------------------|--------|----------------|----|------|----|------|------------------|------------|-------|-----------------|----------------------|
|     | MHz                | dBuV/m | dBuV/m         | ₫B | dBuV | ₫B | dB/m | - GB             | deg        | Cm    |                 |                      |
| 1 2 | 4901.06<br>4908.62 |        |                |    |      |    |      |                  | 213<br>213 |       | Peak<br>Average | VERTICAL<br>VERTICAL |



## <For Beamforming Mode>

| Temperature   | 23°C               | Humidity       | 55%                                  |
|---------------|--------------------|----------------|--------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT20 CH 1 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain  |
|               | Chu/Ron Huang      |                | 4                                    |
| Test Date     | May 07, 2016       |                |                                      |

## Horizontal

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      | 14.44.70.11 | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------------|------------------|-------|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m        | dB               | cm    | deg   |         | -          |
| 1 | 4823.82 | 34.96  | 54.00         | -19.04        | 28.65 | 7.04 | 34.17       | 34.90            | 142   | 64    | Average | HORIZONTAL |
| 2 | 4824.38 | 47.93  | 74.00         | -26.07        | 41.62 | 7.04 | 34.17       | 34.90            | 142   | 64    | Peak    | HORIZONTAL |

## Vertical

|   | Freq    | Level  | Limit<br>Line |        |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|--------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB     | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4823.85 | 48.22  | 74.00         | -25.78 | 41.91 | 7.04 | 34.17 | 34.90            | 161   | 215   | Peak    | VERTICAL  |
| 2 | 4824.41 | 34.99  | 54.00         | -19.01 | 28.68 | 7.04 | 34.17 | 34.90            | 161   | 215   | Average | VERTICAL  |

Page No. : 66 of 101 Issued Date : May 27, 2016



| Temperature   | 23°C               | Humidity       | 55%                                 |
|---------------|--------------------|----------------|-------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT20 CH 6/ |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain |
|               | Chu/Ron Huang      |                | 4                                   |
| Test Date     | May 07, 2016       |                |                                     |

## Horizontal

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      | 14.44.70.11 | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------------|------------------|-------|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m        | dB               | cm    | deg   |         |            |
| 1 | 4873.84 | 35.94  | 54.00         | -18.06        | 29.32 | 7.18 | 34.34       | 34.90            | 136   | 330   | Average | HORIZONTAL |
| 2 | 4873.93 | 48.84  | 74.00         | -25.16        | 42.22 | 7.18 | 34.34       | 34.90            | 136   | 330   | Peak    | HORIZONTAL |

## Vertical

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4873.77 | 48.20  | 74.00         | -25.80        | 41.58 | 7.18 | 34.34 | 34.90            | 193   | 195   | Peak    | VERTICAL  |
| 2 | 4874.10 | 36.20  | 54.00         | -17.80        | 29.58 | 7.18 | 34.34 | 34.90            | 193   | 195   | Average | VERTICAL  |

Page No. : 67 of 101 Issued Date : May 27, 2016





| Temperature   | 23°C                                                     | Humidity       | 55%                                                                               |
|---------------|----------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| Test Engineer | Brian Sun/Andy<br>Tsai/DK<br>Chang/Gary<br>Chu/Ron Huang | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 11 /<br>Chain 1 + Chain 2 + Chain 3 + Chain<br>4 |
| Test Date     | May 07, 2016                                             |                |                                                                                   |

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |            |
| 1 | 4923.56 | 48.82  | 74.00         | -25.18        | 41.98 | 7.28 | 34.46 | 34.90            | 161   | 112   | Peak    | HORIZONTAL |
| 2 | 4924.05 | 36.18  | 54.00         | -17.82        | 29.27 | 7.31 | 34.50 | 34.90            | 161   | 112   | Average | HORIZONTAL |

## Vertical

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4923.69 | 49.63  | 74.00         | -24.37        | 42.72 | 7.31 | 34.50 | 34.90            | 143   | 261   | Peak    | VERTICAL  |
| 2 | 4924.01 | 36.96  | 54.00         | -17.04        | 30.05 | 7.31 | 34.50 | 34.90            | 143   | 261   | Average | VERTICAL  |

Page No. : 68 of 101 Issued Date : May 27, 2016



| Temperature   | 23°C               | Humidity       | 55%                                  |
|---------------|--------------------|----------------|--------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT40 CH 3 / |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain  |
|               | Chu/Ron Huang      |                | 4                                    |
| Test Date     | May 07, 2016       |                |                                      |

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   | :       |            |
| 1 | 4843.45 | 47.92  | 74.00         | -26.08        | 41.46 | 7.11 | 34.25 | 34.90            | 117   | 321   | Peak    | HORIZONTAL |
| 2 | 4844.39 | 35.25  | 54.00         | -18.75        | 28.79 | 7.11 | 34.25 | 34.90            | 117   | 321   | Average | HORIZONTAL |

## Vertical

|   | Freq    | Level  | Limit<br>Line |        |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|--------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB     | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4844.40 | 48.83  | 74.00         | -25.17 | 42.37 | 7.11 | 34.25 | 34.90            | 162   | 175   | Peak    | VERTICAL  |
| 2 | 4844.92 | 35.07  | 54.00         | -18.93 | 28.61 | 7.11 | 34.25 | 34.90            | 162   | 175   | Average | VERTICAL  |

Page No. : 69 of 101 Issued Date : May 27, 2016





| Temperature   | 23°C               | Humidity       | 55%                                 |  |  |  |  |
|---------------|--------------------|----------------|-------------------------------------|--|--|--|--|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT40 CH 6  |  |  |  |  |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chair |  |  |  |  |
|               | Chu/Ron Huang      |                | 4                                   |  |  |  |  |
| Test Date     | May 07, 2016       |                |                                     |  |  |  |  |

# Horizontal

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   | -       |            |
| 1 | 4874.27 | 49.17  | 74.00         | -24.83        | 42.55 | 7.18 | 34.34 | 34.90            | 147   | 167   | Peak    | HORIZONTAL |
| 2 | 4874.81 | 35.74  | 54.00         | -18.26        | 29.12 | 7.18 | 34.34 | 34.90            | 147   | 167   | Average | HORIZONTAL |

# Vertical

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4874.24 | 48.23  | 74.00         | -25.77        | 41.61 | 7.18 | 34.34 | 34.90            | 160   | 335   | Peak    | VERTICAL  |
| 2 | 4874.70 | 35.66  | 54.00         | -18.34        | 29.04 | 7.18 | 34.34 | 34.90            | 160   | 335   | Average | VERTICAL  |

Page No. : 70 of 101

Issued Date : May 27, 2016

| Temperature   | 23°C               | Humidity       | 55%                                  |  |  |  |  |
|---------------|--------------------|----------------|--------------------------------------|--|--|--|--|
|               | Brian Sun/Andy     |                | IEEE 802.11ac MCS0/Nss1 VHT40 CH 9 / |  |  |  |  |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + Chain  |  |  |  |  |
|               | Chu/Ron Huang      |                | 4                                    |  |  |  |  |
| Test Date     | May 07, 2016       |                |                                      |  |  |  |  |

#### Horizontal

|   | Freq    | Freq   | Level  | Limit<br>Line | Over<br>Limit |      |       |       | Preamp<br>Factor | A/Pos | T/Pos   | Remark     | Pol/Phase |
|---|---------|--------|--------|---------------|---------------|------|-------|-------|------------------|-------|---------|------------|-----------|
|   | MHz     | dBuV/m | dBuV/m | dB            | dBuV          | dB   | dB/m  | dB    | cm               | deg   | 1       |            |           |
| 1 | 4905.40 | 48.43  | 74.00  | -25.57        | 41.67         | 7.24 | 34.42 | 34.90 | 126              | 231   | Peak    | HORIZONTAL |           |
| 2 | 4906.92 | 35.83  | 54.00  | -18.17        | 29.07         | 7.24 | 34,42 | 34.90 | 126              | 231   | Average | HORIZONTAL |           |

# Vertical

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4903.18 | 49.08  | 74.00         | -24.92        | 42.32 | 7.24 | 34.42 | 34.90            | 141   | 146   | Peak    | VERTICAL  |
| 2 | 4904.77 | 35.84  | 54.00         | -18.16        | 29.08 | 7.24 | 34,42 | 34.90            | 141   | 146   | Average | VERTICAL  |

#### Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) =  $20 \log Emission$  level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01

FCC ID: TOR-C120

#### 4.6. Emissions Measurement

#### 4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(kHz)        | 300                  |
| 0.490~1.705 | 24000/F(kHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

# 4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter                                  | Setting                    |
|-----------------------------------------------------|----------------------------|
| Attenuation                                         | Auto                       |
| Span Frequency                                      | 100 MHz                    |
| RBW / VBW (Emission in restricted band)             | 1MHz / 3MHz for Peak,      |
|                                                     | 1MHz / 1/T for Average     |
| RBW / VBW (30dBc in any 100 kHz bandwidth emission) | 100 kHz / 300 kHz for Peak |

#### 4.6.3. Test Procedures

For Radiated band edges Measurement:

The test procedure is the same as section 4.5.3.

For Radiated Out of Band Emission Measurement:

Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11.0 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.

 Report Format Version: Rev. 01
 Page No.
 : 72 of 101

 FCC ID: TOR-C120
 Issued Date
 : May 27, 2016



# 4.6.4. Test Setup Layout

#### For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

#### For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.5.4.

#### 4.6.5. Test Deviation

There is no deviation with the original standard.

# 4.6.6. EUT Operation during Test

# <For Non-Beamforming Mode>

The EUT was programmed to be in continuously transmitting mode.

# <For Beamforming Mode>

The EUT was programmed to be in beamforming transmitting mode.

Report Format Version: Rev. 01 Page No. : 73 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016



# 4.6.7. Test Result of Band Edge and Fundamental Emissions

#### <For Non-Beamforming Mode>

|               | •                  |                |                                      |
|---------------|--------------------|----------------|--------------------------------------|
| Temperature   | 23°C               | Humidity       | 55%                                  |
|               | Brian Sun/Andy     |                | IEEE 802.11b CH 1, 6, 11 / Chain 1 + |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 2 + Chain 3 + Chain 4          |
|               | Chu/Ron Huang      |                | Chairi 2 + Chairi 3 + Chairi 4       |
| Test Date     | Apr. 19, 2016      |                |                                      |

#### Channel 1

|                  | Freq                                     | Level           | Limit<br>Line | Over<br>Limit   | Read<br>Level                    |                              |                                  | Preamp<br>Factor             | T/Pos                    | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|---------------|-----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------|------------|------------------------------------|----------------------------------------------|
| 8                | MHz                                      | dBuV/m          | dBuV/m        | dB              | dBuV                             | dB                           | dB/m                             | dB                           | deg                      | Cm         |                                    |                                              |
| 1<br>2<br>3<br>4 | 2390.00<br>2390.00<br>2411.00<br>2411.20 | 53.80<br>120.11 | 54.00         | -12.84<br>-0.20 | 29.24<br>21.88<br>88.18<br>85.12 | 3.90<br>3.90<br>3.93<br>3.94 | 28.02<br>28.02<br>28.00<br>27.99 | 0.00<br>0.00<br>0.00<br>0.00 | 121<br>121<br>121<br>121 | 292<br>292 | Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2412 MHz.

#### Channel 6

|                  | Freq                                     | Level           | Limit<br>Line  | Over<br>Limit   | Read<br>Level                    |                              |                                  | Preamp<br>Factor | T/Pos                    | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|----------------|-----------------|----------------------------------|------------------------------|----------------------------------|------------------|--------------------------|------------|------------------------------------|----------------------------------------------|
|                  | MHz                                      | dBuV/m          | dBuV/m         | ₫B              | dBuV                             | dB                           | dB/m                             | ₫B               | deg                      | Cm         |                                    | -                                            |
| 1<br>2<br>3<br>4 | 2388.80<br>2389.60<br>2438.20<br>2439.00 | 52.14<br>120.26 | 54.00          | -12.47<br>-1.86 | 29.61<br>20.22<br>88.32<br>83.93 | 3.90<br>3.90<br>3.97<br>3.97 | 28.02<br>28.02<br>27.97<br>27.97 |                  | 129<br>129<br>129<br>129 | 308<br>308 | Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |
| 5                | 2485.90<br>2487.90                       | 51.14<br>59.09  | 54.00<br>74.00 | -2.86<br>-14.91 | 19.18<br>27.13                   | 4.04                         | 27.92<br>27.92                   | 0.00             | 129<br>129               | 308        | Average<br>Peak                    | VERTICAL<br>VERTICAL                         |

Item 3, 4 are the fundamental frequency at 2437 MHz.

|                  | Freq                                     | Level           | Limi t<br>Line | Over<br>Limit   | Read<br>Level                    |                              |                                  | Preamp<br>Factor             | T/Pos                | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|----------------|-----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|----------------------|------------|------------------------------------|----------------------------------------------|
|                  | MHz                                      | dBuV/m          | dBuV/m         | dB              | dBuV                             | dB                           | dB/m                             | dB                           | deg                  | Cm         |                                    |                                              |
| 1<br>2<br>3<br>4 | 2460.00<br>2460.20<br>2500.00<br>2500.00 | 114.51<br>60.99 |                | -13.01<br>-0.41 | 85.80<br>82.56<br>29.03<br>21.63 | 4.00<br>4.00<br>4.06<br>4.06 | 27.95<br>27.95<br>27.90<br>27.90 | 0.00<br>0.00<br>0.00<br>0.00 | 11<br>11<br>11<br>11 | 274<br>274 | Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 1, 2 are the fundamental frequency at 2462 MHz.



| Temperature   | 23°C               | Humidity       | 55%                           |
|---------------|--------------------|----------------|-------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11g CH 1, 6, 11 /    |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | Chain 1 + Chain 2 + Chain 3 + |
|               | Chu/Ron Huang      |                | Chain 4                       |
| Test Date     | Apr. 19, 2016      |                |                               |

# Channel 1

|                  | Freq                                     | Level           | Limit<br>Line       | Over<br>Limit  | Read<br>Level                    |                              |                                  | Preamp<br>Factor             | T/Pos                    | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|---------------------|----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------|------------|------------------------------------|----------------------------------------------|
| 8.               | MHz                                      | dBuV/m          | $\overline{dBuV/m}$ | dB             | dBuV                             | dB                           | dB/m                             | dB                           | deg                      | Cm         |                                    | -                                            |
| 1<br>2<br>3<br>4 | 2390.00<br>2390.00<br>2410.60<br>2410.80 | 53.25<br>104.56 |                     | -6.51<br>-0.75 | 35.57<br>21.33<br>72.63<br>83.90 | 3.90<br>3.90<br>3.93<br>3.93 | 28.02<br>28.02<br>28.00<br>28.00 | 0.00<br>0.00<br>0.00<br>0.00 | 350<br>350<br>350<br>350 | 295<br>295 | Peak<br>Average<br>Average<br>Peak | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2412 MHz.

#### Channel 6

|                            | Freq | Level                     | Limit<br>Line | Over<br>Limit | Read<br>Level                                      |                                              |                                                    | Preamp<br>Factor             | T/Pos                                         | A/Pos                    | Remark                                                | Pol/Phase                                                            |
|----------------------------|------|---------------------------|---------------|---------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------------------------|--------------------------|-------------------------------------------------------|----------------------------------------------------------------------|
| 0.7                        | MHz  | dBuV/m                    | dBuV/m        | ₫B            | dBuV                                               | dB                                           | dB/m                                               | - dB                         | deg                                           | Cin                      |                                                       | -                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6 |      | 53.37<br>120.93<br>109.07 | 54.00         |               | 35.37<br>21.45<br>88.99<br>77.13<br>17.99<br>29.69 | 3.90<br>3.90<br>3.97<br>3.97<br>4.04<br>4.04 | 28.02<br>28.02<br>27.97<br>27.97<br>27.92<br>27.92 | 0.00<br>0.00<br>0.00<br>0.00 | 258<br>258<br>258<br>258<br>258<br>258<br>258 | 285<br>285<br>285<br>285 | Peak<br>Average<br>Peak<br>Average<br>Average<br>Peak | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2437 MHz.

|                  | Freq                                     | Level           | Limi t<br>Line      | Over<br>Limit |                                  |                              |                                  | Preamp<br>Factor | T/Pos                           | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|---------------------|---------------|----------------------------------|------------------------------|----------------------------------|------------------|---------------------------------|------------|------------------------------------|----------------------------------------------|
|                  | MHz                                      | dBuV/m          | $\overline{dBuV/m}$ | dB            | dBuV                             | ₫B                           | dB/m                             | dB               | deg                             | Cm         | -                                  | 3307                                         |
| 1<br>2<br>3<br>4 | 2462.80<br>2463.20<br>2483.50<br>2484.50 | 103.97<br>53.14 | 54.00               |               | 83.13<br>72.02<br>21.18<br>34.03 | 4.01<br>4.01<br>4.04<br>4.04 | 27.94<br>27.94<br>27.92<br>27.92 | 0.00             | 282<br>282<br>282<br>282<br>282 | 314<br>314 | Peak<br>Average<br>Average<br>Peak | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 1, 2 are the fundamental frequency at 2462 MHz.



| Temperature   | 23°C               | Humidity      | 55%                                    |  |  |  |  |
|---------------|--------------------|---------------|----------------------------------------|--|--|--|--|
|               | Brian Sun/Andy     | Configuration | IEEE 802.11ac MCS0/Nss1 VHT20 CH 1, 6, |  |  |  |  |
| Test Engineer | Tsai/DK Chang/Gary | Configuration | 11 / Chain 1 + Chain 2 + Chain 3 +     |  |  |  |  |
|               | Chu/Ron Huang      | 8             | Chain 4                                |  |  |  |  |
| Test Date     | Apr. 19, 2016      |               |                                        |  |  |  |  |

# Channel 1

|                  | Freq                                     | Level           | Limi t<br>Line | Over<br>Limit  |                                  |                              |                                  | Preamp<br>Factor             | T/Pos                | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|----------------|----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|----------------------|------------|------------------------------------|----------------------------------------------|
| 8                | MHz                                      | dBuV/m          | dBuV/m         | dB             | dBuV                             | dB                           | dB/m                             | dB                           | deg                  | Cm         |                                    |                                              |
| 1<br>2<br>3<br>4 | 2390.00<br>2390.00<br>2410.60<br>2410.60 | 53.16<br>113.29 | 54.00          | -8.04<br>-0.84 | 34.04<br>21.24<br>81.36<br>69.55 | 3.90<br>3.90<br>3.93<br>3.93 | 28.02<br>28.02<br>28.00<br>28.00 | 0.00<br>0.00<br>0.00<br>0.00 | 93<br>93<br>93<br>93 | 274<br>274 | Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2412 MHz.

#### Channel 6

|                            | Freq                                                | Level  | Limi t<br>Line | Over<br>Limit                     | Read<br>Level                                      |                                              |                                                    | Preamp<br>Factor                             | T/Pos                                         | A/Pos                           | Remark                                                | Pol/Phase                                                            |
|----------------------------|-----------------------------------------------------|--------|----------------|-----------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|
| 8                          | MHz                                                 | dBuV/m | dBuV/m         | - dB                              | dBuV                                               | dB                                           | dB/m                                               | dB                                           | deg                                           | Can                             | S)                                                    | ¥ 8                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6 | 2388.80<br>2390.00<br>2433.40<br>2433.50<br>2483.50 |        | 54.00          | -6.12<br>-0.87<br>-13.44<br>-4.56 | 35.96<br>21.21<br>87.96<br>77.86<br>28.60<br>17.48 | 3.90<br>3.90<br>3.97<br>3.97<br>4.04<br>4.04 | 28.02<br>28.02<br>27.97<br>27.97<br>27.92<br>27.92 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 257<br>257<br>257<br>257<br>257<br>257<br>257 | 270<br>270<br>270<br>270<br>270 | Peak<br>Average<br>Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2437 MHz.

|                  | Freq                                     | Level  | Limi t<br>Line | Over<br>Limit  | Read<br>Level                    |                              |                                  | Preamp<br>Factor             | T/Pos                    | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|--------|----------------|----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------|------------|------------------------------------|----------------------------------------------|
| 85               | MHz                                      | dBuV/m | dBuV/m         | dB             | dBuV                             | dB                           | dB/m                             | dB                           | deg                      | Cm         |                                    |                                              |
| 1<br>2<br>3<br>4 | 2462.80<br>2463.00<br>2483.50<br>2483.80 | 103.86 | 74.00<br>54.00 | -7.13<br>-0.66 | 83.88<br>71.91<br>34.91<br>21.38 | 4.01<br>4.01<br>4.04<br>4.04 | 27.94<br>27.94<br>27.92<br>27.92 | 0.00<br>0.00<br>0.00<br>0.00 | 281<br>281<br>281<br>281 | 280<br>280 | Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 1, 2 are the fundamental frequency at 2462 MHz.



| Temperature   | 23°C               | Humidity       | 55%                                  |
|---------------|--------------------|----------------|--------------------------------------|
|               | Brian Sun/Andy     |                | IEEE 802.11 ac MCS0/Nss1 VHT40 CH 3, |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | 6, 9 / Chain 1 + Chain 2 + Chain 3 + |
|               | Chu/Ron Huang      |                | Chain 4                              |
| Test Date     | Apr. 19, 2016      |                |                                      |

# Channel 3

|                  | Freq                                     | Level           | Limi t<br>Line | Over<br>Limit  |                                  |                              |                                  | Preamp<br>Factor             | T/Pos                    | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|----------------|----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------|------------|------------------------------------|----------------------------------------------|
| 8                | MHz                                      | dBuV/m          | dBuV/m         | dB             | dBuV                             | dB                           | dB/m                             | dB                           | deg                      | Cm         |                                    |                                              |
| 1<br>2<br>3<br>4 | 2390.00<br>2390.00<br>2412.00<br>2412.40 | 53.59<br>107.73 | 74.00<br>54.00 | -8.01<br>-0.41 | 34.07<br>21.67<br>75.80<br>63.82 | 3.90<br>3.90<br>3.94<br>3.94 | 28.02<br>28.02<br>27.99<br>27.99 | 0.00<br>0.00<br>0.00<br>0.00 | 320<br>320<br>320<br>320 | 288<br>288 | Peak<br>Average<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2422 MHz.

#### Channel 6

|                            | Freq                                                           | Level  | Limit<br>Line | Over<br>Limit                     | Read<br>Level                                      |                                              |                                                    | Preamp<br>Factor | T/Pos                                  | A/Pos                    | Remark                                                | Pol/Phase                                                            |
|----------------------------|----------------------------------------------------------------|--------|---------------|-----------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|------------------|----------------------------------------|--------------------------|-------------------------------------------------------|----------------------------------------------------------------------|
| 3                          | MHz                                                            | dBuV/m | dBuV/m        | - dB                              | dBuV                                               | dB                                           | dB/m                                               | dB               | deg                                    | Con                      | S.                                                    | W E                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6 | 2387.60<br>2387.60<br>2427.40<br>2427.80<br>2487.90<br>2487.90 | 99.48  | 54.00         | -5.75<br>-0.18<br>-15.24<br>-7.16 | 36.33<br>21.90<br>67.54<br>79.25<br>26.80<br>14.88 | 3.90<br>3.96<br>3.96<br>3.96<br>4.04<br>4.04 | 28.02<br>28.02<br>27.98<br>27.98<br>27.92<br>27.92 |                  | 326<br>326<br>326<br>326<br>326<br>326 | 304<br>304<br>304<br>304 | Peak<br>Average<br>Average<br>Peak<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 3, 4 are the fundamental frequency at 2437 MHz.

|                  | Freq                                     | Level           | Limi t<br>Line | Over<br>Limit  | Read<br>Level                    |                              |                                  | Preamp<br>Factor | T/Pos                    | A/Pos      | Remark                             | Pol/Phase                                    |
|------------------|------------------------------------------|-----------------|----------------|----------------|----------------------------------|------------------------------|----------------------------------|------------------|--------------------------|------------|------------------------------------|----------------------------------------------|
| 85               | MHz                                      | dBuV/m          | dBuV/m         | dB             | dBuV                             | dB                           | dB/m                             | dB               | deg                      | Cm         |                                    |                                              |
| 1<br>2<br>3<br>4 | 2442.40<br>2442.80<br>2483.50<br>2483.50 | 112.31<br>65.23 | 74.00<br>54.00 | -8.77<br>-0.23 | 70.87<br>80.37<br>33.27<br>21.81 | 3.98<br>3.98<br>4.04<br>4.04 | 27.96<br>27.96<br>27.92<br>27.92 |                  | 320<br>320<br>320<br>320 | 269<br>269 | Average<br>Peak<br>Peak<br>Average | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |

Item 1, 2 are the fundamental frequency at 2452 MHz.



# <For Beamforming Mode>

| Temperature   | 23°C               | Humidity      | 55%                                    |
|---------------|--------------------|---------------|----------------------------------------|
|               | Brian Sun/Andy     | Configuration | IEEE 802.11ac MCS0/Nss1 VHT20 CH 1, 6, |
| Test Engineer | Tsai/DK Chang/Gary | Configuration | 11 / Chain 1 + Chain 2 + Chain 3 +     |
|               | Chu/Ron Huang      | 8             | Chain 4                                |
| Test Date     | May 07, 2016       |               |                                        |

#### Channel 1

|   |     | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      | 100000000000000000000000000000000000000 | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|-----|---------|--------|---------------|---------------|-------|------|-----------------------------------------|------------------|-------|-------|---------|-----------|
|   | 1   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m                                    | dB               | cm    | deg   |         |           |
| 1 | r i | 2389.60 | 67.62  | 74.00         | -6.38         | 34.20 | 4.85 | 28.57                                   | 0.00             | 307   | 356   | Peak    | VERTICAL  |
| 2 | 2   | 2390.00 | 53.85  | 54.00         | -0.15         | 20.43 | 4.85 | 28.57                                   | 0.00             | 307   | 356   | Average | VERTICAL  |
| 3 | 3   | 2413.60 | 118.60 |               |               | 85.09 | 4.88 | 28,63                                   | 0.00             | 307   | 356   | Peak    | VERTICAL  |
| 1 | 1   | 2415.20 | 104.16 |               |               | 70.65 | 4.88 | 28.63                                   | 0.00             | 307   | 356   | Average | VERTICAL  |

Item 3, 4 are the fundamental frequency at 2412 MHz.

# Channel 6

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV          | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 2389.00 | 62.04  | 74.00         | -11.96        | 28.62         | 4.85 | 28.57 | 0.00             | 287   | 142   | Peak    | VERTICAL  |
| 2 | 2390.00 | 50.97  | 54.00         | -3.03         | 17.55         | 4.85 | 28.57 | 0.00             | 287   | 142   | Average | VERTICAL  |
| 3 | 2435.00 | 109.18 |               |               | 75.61         | 4.90 | 28.67 | 0.00             | 287   | 142   | Average | VERTICAL  |
| 4 | 2439.00 | 122.54 |               |               | 88.97         | 4.90 | 28.67 | 0.00             | 287   | 142   | Peak    | VERTICAL  |
| 5 | 2483.50 | 63.65  | 74.00         | -10.35        | 29.93         | 4.95 | 28.77 | 0.00             | 287   | 142   | Peak    | VERTICAL  |
| 6 | 2483.80 | 51.68  | 54.00         | -2.32         | 17.96         | 4.95 | 28.77 | 0.00             | 287   | 142   | Average | VERTICAL  |

Item 3, 4 are the fundamental frequency at 2437 MHz.

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      | 12073347 | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|-------|------|----------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m     | dB               | cm    | deg   |         | -,        |
| 1 | 2457.60 | 119.77 |               |               | 86.14 | 4.92 | 28.71    | 0.00             | 255   | 137   | Peak    | VERTICAL  |
| 2 | 2460.00 | 107.89 |               |               | 74.26 | 4.92 | 28.71    | 0.00             | 255   | 137   | Average | VERTICAL  |
| 3 | 2483.50 | 82.46  | 74.00         | 8.46          | 48.74 | 4.95 | 28.77    | 0.00             | 255   | 137   | Peak    | VERTICAL  |
| 4 | 2484.40 | 53.76  | 54.00         | -0.24         | 20.04 | 4.95 | 28.77    | 0.00             | 255   | 137   | Average | VERTICAL  |

Item 1, 2 are the fundamental frequency at 2462 MHz.

| Temperature   | 23°C               | Humidity       | 55%                                  |  |  |  |
|---------------|--------------------|----------------|--------------------------------------|--|--|--|
|               | Brian Sun/Andy     |                | IEEE 802.11 ac MCS0/Nss1 VHT40 CH 3, |  |  |  |
| Test Engineer | Tsai/DK Chang/Gary | Configurations | 6, 9 / Chain 1 + Chain 2 + Chain 3 + |  |  |  |
|               | Chu/Ron Huang      |                | Chain 4                              |  |  |  |
| Test Date     | May 07, 2016       |                |                                      |  |  |  |

#### Channel 3

|   | Freq    | Leve1  | Limit<br>Line | Over<br>Limit | Read<br>Level |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV          | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 2386.40 | 66.98  | 74.00         | -7.02         | 33.56         | 4.85 | 28.57 | 0.00             | 299   | 348   | Peak    | VERTICAL  |
| 2 | 2388.80 | 53.51  | 54.00         | -0.49         | 20.09         | 4.85 | 28.57 | 0.00             | 299   | 348   | Average | VERTICAL  |
| 3 | 2413.60 | 99.99  |               |               | 66.48         | 4.88 | 28.63 | 0.00             | 299   | 348   | Average | VERTICAL  |
| 4 | 2419.60 | 111.19 |               |               | 77.67         | 4.88 | 28.64 | 0.00             | 299   | 348   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 2422 MHz.

# Channel 6

|   | 1       | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level |      | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|------|-------------------|------------------|-------|-------|---------|-----------|
|   |         | dBuV/m | dBuV/m        | dB            | dBuV          | dB   | dB/m              | dB               | cm    | deg   |         |           |
| 1 | 2389.80 | 53.90  | 54.00         | -0.10         | 20.48         | 4.85 | 28.57             | 0.00             | 285   | 205   | Average | VERTICAL  |
| 2 | 2389.80 | 66.84  | 74.00         | -7.16         | 33.42         | 4.85 | 28.57             | 0.00             | 285   | 205   | Peak    | VERTICAL  |
| 3 | 2424.20 | 99.96  |               |               | 66.44         | 4.88 | 28.64             | 0.00             | 285   | 205   | Average | VERTICAL  |
| 4 | 2427.00 | 111.25 |               |               | 77.70         | 4.89 | 28.66             | 0.00             | 285   | 205   | Peak    | VERTICAL  |
| 5 | 2485.00 | 60.53  | 74.00         | -13.47        | 26.81         | 4.95 | 28.77             | 0.00             | 285   | 205   | Peak    | VERTICAL  |
| 6 | 2485.80 | 46.97  | 54.00         | -7.03         | 13.25         | 4.95 | 28.77             | 0.00             | 285   | 205   | Average | VERTICAL  |

Item 3, 4 are the fundamental frequency at 2437 MHz.

#### Channel 9

|   | Freq    | Freq   | Freq   |       | Level | Limit<br>Line | Over<br>Limit |      |     |     | Preamp<br>Factor | A/Pos    | T/Pos | Remark | Pol/Phase |
|---|---------|--------|--------|-------|-------|---------------|---------------|------|-----|-----|------------------|----------|-------|--------|-----------|
|   | MHz     | dBuV/m | dBuV/m | dB    | dBuV  | dB            | dB/m          | dB   | cm  | deg |                  |          |       |        |           |
| 1 | 2443.60 | 104.22 |        |       | 70.62 | 4.91          | 28.69         | 0.00 | 301 | 354 | Average          | VERTICAL |       |        |           |
| 2 | 2455.60 | 114.57 |        |       | 80.94 | 4.92          | 28.71         | 0.00 | 301 | 354 | Peak             | VERTICAL |       |        |           |
| 3 | 2484.00 | 70.11  | 74.00  | -3.89 | 36.39 | 4.95          | 28.77         | 0.00 | 301 | 354 | Peak             | VERTICAL |       |        |           |
| 4 | 2485.20 | 53.59  | 54.00  | -0.41 | 19.87 | 4.95          | 28.77         | 0.00 | 301 | 354 | Average          | VERTICAL |       |        |           |

Item 1, 2 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) =  $20 \log Emission$  level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: Rev. 01
 Page No. : 79 of 101

 FCC ID: TOR-C120
 Issued Date : May 27, 2016





#### For Emission not in Restricted Band

# <For Non-Beamforming Mode>

# Plot on Configuration IEEE 802.11b / Reference Level



Date: 23.APR.2016 19:10:06

# Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:13:34

Report Format Version: Rev. 01 Page No. : 80 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016





# Plot on Configuration IEEE 802.11b / CH 1 / 2483.5MHz~26500MHz (down 30dBc)



Date: 23.APR.2016 19:14:23

# Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:15:17





# Plot on Configuration IEEE 802.11b / CH 11 / 2483.5MHz $\sim$ 26500MHz (down 30dBc)



Date: 23.APR.2016 19:41:58





# Plot on Configuration IEEE 802.11g / Reference Level



Date: 23.APR.2016 19:18:13

# Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:43:25





# Plot on Configuration IEEE 802.11g / CH 1 / 2483.5MHz~26500MHz (down 30dBc)



Date: 23.APR.2016 19:21:12

# Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:22:02





# Plot on Configuration IEEE 802.11g / CH 11 / 2483.5MHz $\sim$ 26500MHz (down 30dBc)



Date: 23.APR.2016 19:23:06





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level



Date: 23.APR.2016 19:26:09

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 1 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:27:24





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 1 / 2483.5MHz~26500MHz (down 30dBc)



Date: 23.APR.2016 19:28:10

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 11 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:28:46



# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 11 / 2483.5MHz~26500MHz (down 30dBc)



Date: 23.APR.2016 19:29:23





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level



Date: 23.APR.2016 19:35:13

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 3 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:36:49





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 3 / 2483.5MHz~26500MHz (down 30dBc)



Date: 23.APR.2016 19:37:13

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 9 / 30MHz~2400MHz (down 30dBc)



Date: 23.APR.2016 19:37:52



# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 9 / 2483.5MHz~26500MHz (down 30dBc)



Date: 23.APR.2016 19:38:25





# <For Beamforming Mode>

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level



Date: 7.MAY.2016 16:16:41

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 1 / 30MHz~2400MHz (down 30dBc)



Date: 7.MAY.2016 16:17:59

Report Format Version: Rev. 01 Page No. : 92 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 1 / 2483.5MHz~26500MHz (down 30dBc)



Date: 7.MAY.2016 16:18:50

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 11 / 30MHz~2400MHz (down 30dBc)



Date: 7.MAY.2016 16:19:39

Report Format Version: Rev. 01 Page No. : 93 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016



# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 11 / 2483.5MHz~26500MHz (down 30dBc)



Date: 7.MAY.2016 16:20:26





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level



Date: 7.MAY.2016 16:26:40

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 3 / 30MHz~2400MHz (down 30dBc)



Date: 7.MAY.2016 16:27:58





# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 3 / 2483.5MHz~26500MHz (down 30dBc)



Date: 7.MAY.2016 16:33:41

# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 9 / 30MHz~2400MHz (down 30dBc)



Date: 7.MAY.2016 16:29:47

Report Format Version: Rev. 01 Page No. : 96 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016



# Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 9 / 2483.5MHz~26500MHz (down 30dBc)



Date: 7.MAY.2016 16:32:15



# 4.7. Antenna Requirements

#### 4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

#### 4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 98 of 101
FCC ID: TOR-C120 Issued Date : May 27, 2016



# 5. LIST OF MEASURING EQUIPMENTS

| Instrument        | Manufacturer | Model No.        | Serial No.   | Characteristics  | Calibration<br>Date | Remark                   |
|-------------------|--------------|------------------|--------------|------------------|---------------------|--------------------------|
| EMI Receiver      | Agilent      | N9038A           | My52260123   | 9kHz ~ 8.45GHz   | Jan. 27, 2016       | Conduction<br>(CO01-CB)  |
| LISN              | F.C.C.       | FCC-LISN-50-16-2 | 04083        | 150kHz ~ 100MHz  | Dec. 08, 2015       | Conduction<br>(CO01-CB)  |
| LISN              | Schwarzbeck  | NSLK 8127        | 8127647      | 9kHz ~ 30MHz     | Dec. 23, 2015       | Conduction<br>(CO01-CB)  |
| COND Cable        | Woken        | Cable            | 01           | 150kHz ~ 30MHz   | May 25, 2015        | Conduction<br>(CO01-CB)  |
| Software          | Audix        | E3               | 6.120210n    | -                | N.C.R.              | Conduction<br>(CO01-CB)  |
| Loop Antenna      | Teseq        | HLA 6120         | 24155        | 9kHz - 30 MHz    | Mar. 16, 2016*      | Radiation<br>(03CH01-CB) |
| BILOG ANTENNA     | Schaffner    | CBL6112D         | 37880        | 20MHz ~ 2GHz     | Sep. 03, 2015       | Radiation<br>(03CH01-CB) |
| Horn Antenna      | EMCO         | 3115             | 00075790     | 750MHz ~ 18GHz   | Oct. 22, 2015       | Radiation<br>(03CH01-CB) |
| Horn Antenna      | Schwarzbeck  | BBHA 9170        | BBHA9170252  | 15GHz ~ 40GHz    | Jul. 21, 2015       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | Agilent      | 8447D            | 2944A10991   | 0.1MHz ~ 1.3GHz  | Mar. 15, 2016       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | Agilent      | 8449B            | 3008A02310   | 1GHz ~ 26.5GHz   | Jan. 18, 2016       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | WM           | TF-130N-R1       | 923365       | 26GHz ~ 40GHz    | Nov. 13, 2015       | Radiation<br>(03CH01-CB) |
| Spectrum Analyzer | R&S          | FSP40            | 100056       | 9kHz ~ 40GHz     | Oct. 27, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-low      | Woken        | Low Cable-1      | N/A          | 30 MHz ~ 1 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-16    | N/A          | 1 GHz ~ 18 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-17    | N/A          | 1 GHz ~ 18 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-40G-1 | N/A          | 18GHz ~ 40 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-40G-2 | N/A          | 18GHz ~ 40 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| Test Software     | Audix        | E3               | 6.2009-10-7  | N/A              | N/A                 | Radiation<br>(03CH01-CB) |
| Spectrum analyzer | R&S          | FSV40            | 100979       | 9kHz~40GHz       | Dec. 09, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-6 | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-7 | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |

Report Format Version: Rev. 01

Page No. : 99 of 101 FCC ID: TOR-C120 Issued Date : May 27, 2016



| Instrument    | Manufacturer | Model No. | Serial No.    | Characteristics  | Calibration<br>Date | Remark                 |
|---------------|--------------|-----------|---------------|------------------|---------------------|------------------------|
| RF Cable-high | Woken        | RG402     | High Cable-8  | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB) |
| RF Cable-high | Woken        | RG402     | High Cable-9  | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB) |
| RF Cable-high | Woken        | RG402     | High Cable-10 | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB) |
| Power Sensor  | Agilent      | U2021XA   | MY53410001    | 50MHz~18GHz      | Nov. 02, 2015       | Conducted<br>(TH01-CB) |

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

<sup>&</sup>quot;\*" Calibration Interval of instruments listed above is two years.



# 6. MEASUREMENT UNCERTAINTY

| Test Items                               | Uncertainty | Remark                   |
|------------------------------------------|-------------|--------------------------|
| Conducted Emission (150kHz $\sim$ 30MHz) | 3.2 dB      | Confidence levels of 95% |
| Radiated Emission (30MHz ~ 1,000MHz)     | 3.6 dB      | Confidence levels of 95% |
| Radiated Emission (1GHz $\sim$ 18GHz)    | 3.7 dB      | Confidence levels of 95% |
| Radiated Emission (18GHz ~ 40GHz)        | 3.5 dB      | Confidence levels of 95% |
| Conducted Emission                       | 1.7 dB      | Confidence levels of 95% |

 Report Format Version: Rev. 01
 Page No. : 101 of 101

 FCC ID: TOR-C120
 Issued Date : May 27, 2016