MS517 Model

Choose the correct answer

Q1: Use the **bisection method** to determine a solution of

$$f(x) = x^3 - 2x - 5 = 0,$$

if the root of equation lies between (2,3). Use only five iterations

1- the second iteration root is: $x_2 =$

- a) 3
- b) 2
- c) 2.5
- d) 2.25

2- the value of $f(x_2)$

- a) 1.8096
- b) 1.72643
- c) 1.54784
- d) 0.8467

3- the fourth iteration root is: $x_4 =$

- a) 2.125
- b) 2.75
- c) 2.0625
- d) 2.1093

4- the last iteration root $x_{5=}$

- a) 2.0875
- b) 2.075
- c) 2.0525
- d) 2.09375

5- the absolute error for iteration five is ε

- a) 0.125
- b) 0.0625
- c) 0.03125
- d) 0.02175

Q2: Use the Newton's method to determine a solution of

$$f(x) = x^4 - x - 10 = 0,$$

Correct up to 5-decimal places ($\varepsilon = 0.00001$) with initial values $x_0 = 2$

6- the first iteration root is: $x_I =$

- a) 2
- b) 1
- c) 1.87097
- d) 1.9

7- the second iteration root is: $x_2 =$

- a) 1.9324
- b) 1.85578
- c) 1.97097
- d) 1.94527

8- the third iteration root is: $x_3 =$

- a) 1.87324
- b) 1.85578
- c) 1.85559
- d) 1.84527

9- the fourth iteration is $x_4 =$

- a) 1.85558
- b) 1.85578
- c) 1.85559
- d) 1.85552

10- the value of $f(x_4)$

a) 0.08572		b) 0.05587		c) 0.00482			d) 0.00001
11- the abs	solute error	for itera	tion four	is ε			
a) 0.01519		b) 0.00019		c) 0.00001		d) 0.0004	
12- the fin	al root is						
a) 1.87097		b) 1.85578		c) 1.85559			d) 1.85578
Q3: Based derivative	on the foll	owing ta	ble Use tl	he nume r	rical diff	ferentiation	to find the first
	х	0.5	0.75	1	1.25]	
-	f(x)	1.05	1.75	2.05	2.50	_	
Ĺ							
13- using 2-points forward finite difference formula $f^{(0.75)}$ is							
a) 1.2		b) 0.25		c) 0.30			d) 0.60
14- using 2	2-points ba	ckward f	inite diffe	erence fo	rmula j	$f^{(0.75)}$ is	
a) 0.70		b) 2.8		c) 1.0			d) 0.25
15- using 2-points central finite difference formula $f^{(0.75)}$ is							
a) 2.4		b) 2.5		c) 1.5			d) 4.0
16- using 3-points forward finite difference formula $f(0.75)$ is							
a) 0.4		b) 0.5		c) 0.9			d) 1.2
17- using 2	2-points ba	ckward f	inite diffe	erence fo	rmula <i>j</i>	$f^{(1)}$ is	
a) 0.4		b) 0.5		c) 0.60			d) 8.0
	numerical $= \int_0^1 \frac{1}{x^3 + 1}$	integrati	on to Ap	proximat	e the fo	ollowing into	egral

18- using **midpoint method** the value of the I is

a) 0.5

b) 0.89

c) 0.66

d) 0.82

19- using **trapezoidal method** the value of the I is
a) 0.75 b) 0.5 c) 1.5 d) 1
20- using **Simpson 1/3 method** the value of the I is
a) 5.02 b) 0.48 c) 0.84 d) 0.175

es

Approximate the integral I = S + dx

by using the three methods of approximation

sal_

1. mid point method

2. Trapezoidal method

$$I_{T} = \left(\frac{b-q}{2}\right) \left[\frac{1}{2}(a) + \frac{1}{1+(b)^{2}}\right] = \frac{3}{4} = 0.75$$

$$T_{s} = \frac{h}{3} \left[f(a) + 4 f(\frac{a+b}{2}) + f(b) \right]$$

 $h = \frac{b-q}{2} = \frac{1-0}{3} = 0.5$