Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6000 CALIBRATION DATE: 16-Mar-17

SBE 19plus V2 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

i = -2.133476e-003j = 1.694100e-004

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.00000	2567.60	0.0000	0.00000
22.0000	0.0000	0.00000	2507.00	0.0000	0.00000
1.0000	34.7997	2.97468	5024.13	2.9746	-0.00006
4.5000	34.7800	3.28164	5212.60	3.2817	0.00006
15.0000	34.7379	4.26301	5773.32	4.2631	0.00004
18.5000	34.7290	4.60804	5957.64	4.6080	-0.00002
24.0000	34.7193	5.16579	6243.79	5.1657	-0.00006
29.0000	34.7141	5.68746	6499.68	5.6875	0.00004
32.5000	34.7110	6.05970	6676.09	6.0600	0.00030

f = Instrument Output (Hz) / 1000.0

t = temperature (°C); p = pressure (decibars); $\delta = CTcor;$ $\epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

