Erste Schritte in die Objekterkennung

Einführung

Die Objekterkennung ist eine Kernkomponente vieler moderner Computer-Vision-Anwendungen. Sie ermöglicht es, Objekte in Bildern oder Videos zu identifizieren und ihre Positionen (Bounding Boxes) zu bestimmen. Dieses Verfahren basiert auf der Kombination von **maschinellem Lernen**, insbesondere **Deep Learning**, und Bildverarbeitungstechniken

1. Grundprinzipien der Objekterkennung

Die Objekterkennung umfasst zwei Hauptaufgaben:

- Klassifikation: Bestimmung, um welches Objekt es sich handelt.
- Lokalisierung: Identifikation der Position des Objekts im Bild.

In modernen Systemen wie **YOLOv5** wird dies gleichzeitig durchgeführt. Die Architektur zerlegt die Aufgabe in die folgenden Schritte:

- 1. Feature Extraction: Extraktion relevanter Merkmale aus dem Bild durch Convolutional Neural Networks (CNNs).
- 2. **Region Proposals**: (Nur bei manchen Modellen) Erstellung von Vorschlägen für mögliche Positionen von Objekten.
- 3. Bounding Box Regression: Präzise Bestimmung der Umrandungen der erkannten Objekte.
- 4. Klassifikation: Zuordnung einer Objektklasse zu jeder Bounding Box.

YOLO (You Only Look Once) verwendet ein End-to-End-System, bei dem alle diese Schritte in einem einzigen Durchgang durchgeführt werden. Das Modell unterteilt das Bild in ein Gitter und bestimmt in jedem Gitterfeld mögliche Objekte.

2. Verwendete Softwaresysteme

a. YOLOv5

YOLOv5 ist eines der führenden Frameworks für Objekterkennung. Es ist bekannt für seine Geschwindigkeit und Genauigkeit. Die Pipeline basiert auf:

- PyTorch: Eine Deep-Learning-Bibliothek für Training und Deployment des Modells.
- Pretrained Models: Vortrainierte Modelle wie COCO (Common Objects in Context) bieten eine breite Palette an erkennbaren Objekten.
- NMS (Non-Maximum Suppression): Ein Algorithmus zur Auswahl der relevantesten Bounding Boxes bei überlappenden Vorhersagen.

b. NVIDIA Jetson Inference Toolkit

Das Toolkit optimiert Modelle für den Einsatz auf NVIDIA Jetson Geräten. Es enthält:

- Unterstützung für TensorRT: Eine NVIDIA-Technologie zur Beschleunigung von KI-Modellen.
- Werkzeuge zur Bildverarbeitung und Modellkonvertierung.

c. TensorRT

TensorRT ist ein Framework für die Optimierung und Beschleunigung von Deep-Learning-Modellen auf NVIDIA-Hardware. Vorteile:

- Reduzierte Latenz und beschleunigte Inferenz.
- Unterstützung für INT8-Quantisierung (Reduktion der Präzision zur Steigerung der Effizienz).

d. OpenCV

OpenCV ist eine Open-Source-Bibliothek für Bildverarbeitung und Computer Vision:

- Ermöglicht die Verarbeitung von Eingabebildern und Videos.
- Unterstützt die Visualisierung der Erkennungsergebnisse.

3. Schlüsseltechnologien im Hintergrund

a. Deep Learning

Die Objekterkennung basiert auf neuronalen Netzen, speziell Convolutional Neural Networks (CNNs). Diese Netze lernen Merkmale wie Kanten, Formen und Texturen und können daraus komplexe Muster erkennen.

b. GPU-Computing

Da die Berechnungen für Deep-Learning-Modelle sehr aufwendig sind, werden GPUs (Graphics Processing Units) verwendet. NVIDIA Jetson Geräte und CUDA-Unterstützung sind wesentliche Bestandteile für die schnelle Verarbeitung.

c. Dataset und Training

- COCO-Dataset: Ein Standard-Datensatz, der häufig für das Training von Modellen wie YOLO verwendet wird.
- Modelle wie YOLOv5 nutzen Techniken wie Transfer Learning, um vortrainierte Netzwerke an spezifische Anwendungsfälle anzupassen.

4. Beispielhafter Workflow

- 1. Installation: YOLOv5 wird installiert und die erforderlichen Abhängigkeiten werden eingerichtet.
- 2. Modellinitialisierung: Ein vortrainiertes YOLOv5-Modell wird geladen.
- 3. Datenverarbeitung: Eingabebilder oder Video-Frames werden vorverarbeitet.
- 4. Inference: Das Modell verarbeitet die Eingabe und liefert Bounding Boxes, Klassen und Konfidenzwerte zurück.
- 5. Visualisierung: Die Ergebnisse werden mit OpenCV oder anderen Werkzeugen angezeigt.

Zusammenfassung

Die Kombination aus leistungsstarken Frameworks (**PyTorch**, **TensorRT**), Hardware (**Jetson**), und modernen Algorithmen (**YOLO**) macht die Objekterkennung effizient und vielseitig einsetzbar – von Überwachungskameras bis hin zu autonomen Fahrzeugen.

Software-Abhängigkeiten installieren

1. Jetson-Inferenz-Toolkit

NVIDIA bietet das **Jetson Inference**-Projekt an, das vortrainierte Modelle und Beispielanwendungen für Objekterkennung, Klassifikation und Segmentierung enthält.

```
git clone --recursive https://github.com/dusty-nv/jetson-inference
# Falls der obige Befehl nicht funktioniert:
git clone --recursive --depth 1 https://github.com/dusty-nv/jetson-inference
```

Wechslen Sie ins Verzeichnis:

```
cd jetson-inference
```

Überprüfen Sie den Status des Repositories:

```
git status
```

2. Build-Prozess

Erstellen Sie das Projektverzeichnis und bauen Sie das Projekt:

```
cd jetson-inference
mkdir build
cd build
cmake ../
make -j$(nproc)
sudo make install
```

3. Python-Bibliotheken installieren

Je nach Projekt können folgende Python-Bibliotheken installiert werden:

```
sudo apt-get update
sudo apt-get install python3-pip
pip3 install numpy opencv-python matplotlib
pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu118
```

4. YOLOv5/YOLONano verwenden

Laden Sie YOLOv5 herunter und installieren Sie die Abhängigkeiten:

```
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip3 install -r requirements.txt
python3 detect.py --source 0
% ersetzen Sie den die obige Teile durch den folgenden Befehl, Falls
% Sie die Segmentierung von Yolov5 nutzen wollen
python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source 0
```

Falls ein Fehler wie folgend auftritt:

ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject

Nutzen Sie diesen Befehl zur Behebung:

```
pip3 install --upgrade --force-reinstall -r requirements.txt
```

Wiederholen Sie die vorherigen Schritte.

1 YOLOv5 startet

Die Kamera wird geöffnet und der Modell fängt an Objekte zu erkennen. Dabei sieht der Terminal wie folgendes aus:

```
0: 480x640 1 cell phone, 325.5ms
0: 480x640 1 cell phone, 330.2ms
0: 480x640 1 cell phone, 323.9ms
0: 480x640 1 cell phone, 319.8ms
0: 480x640 1 mouse, 1 cell phone, 311.1ms
0: 480x640 1 cell phone, 312.9ms
0: 480x640 1 cell phone, 315.9ms
0: 480x640 1 cell phone, 339.3ms
0: 480x640 1 cell phone, 319.6ms
0: 480x640 1 cell phone, 313.4ms
0: 480x640 1 cell phone, 312.6ms
```

2 Erkennungsbeispiele:

Im folgenden sind ein paar Gegenstände, die mit YOLOv5 erkennt wurden.

2.1 Handy

Erkennung von Handy:

2.2 Maus

Erkennung von Maus:

2.3 Tastatur

Erkennung von Tastatur:

2.4 Tastatur

Erkennung mi Segmentierung:

