# Orden Superior Lineal

Prof. Jhon Fredy Tavera Bucurú

2025

Existencia y Unicidad

Estructura de las Soluciones

### Definición

Una ecuación diferencial ordinaria de segundo orden es una relación de la forma

$$y'' = F(t, y, y'),$$

#### donde

- t es la variable independiente (por ejemplo, tiempo).
- ightharpoonup y = y(t) es la función incógnita.
- ▶  $y' = \frac{dy}{dt}$  y  $y'' = \frac{d^2y}{dt^2}$  son la primera y la segunda derivada de y respecto a t.
- ►  $F: I \times \mathbb{R}^2 \to \mathbb{R}$  es una función dada, continua (y con las propiedades que se requieran) en un intervalo  $I \subseteq \mathbb{R}$ , abierto.

Una solución de la EDO en I es una función  $y:I\to\mathbb{R}$  dos veces diferenciable que satisface la ecuación para todo  $t\in I$ .

### **Teorema**

Sea y'' = f(t, y, y') donde f es lineal, con coeficientes constantes y homogenea; es decir f(t, y, y') = ay + by',  $a, b \in \mathbb{R}$ . Entonces dado un valor inicial  $(t_0, y_0)$  existe una unica función  $\gamma$  tal que

- 1.  $\gamma(t_0) = y_0$
- 2.  $\gamma'(t_0) = y_0'$
- 3.  $\gamma''(t) = a(\gamma(t)) + b(\gamma'(t)) \quad \forall t \in \mathbb{R}.$

### Demostración

Consideremos

$$y'' = ay + by',$$

con  $a,b\in\mathbb{R}$  constantes. Definimos el sistema de primer orden

$$y_1 = y, \quad y_2 = y', \qquad Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix},$$

de modo que

$$Y' = f(t, Y) = \begin{pmatrix} y_2 \\ a y_1 + b y_2 \end{pmatrix}$$

Demostraremos que f(t, Y) es lipschitziana en la segunda variable. Sean dos vectores  $Y = (y_1, y_2)$  y  $Z = (z_1, z_2)$  valen

$$f(Y) - f(Z) = \begin{pmatrix} y_2 - z_2 \\ a(y_1 - z_1) + b(y_2 - z_2) \end{pmatrix}.$$

Usando la norma euclídea,

$$||f(Y) - f(Z)||^2 = (y_2 - z_2)^2 + (a(y_1 - z_1) + b(y_2 - z_2))^2.$$

Como 
$$(u+v)^2 \le 2u^2 + 2v^2 \quad \forall u, v \in \mathbb{R}$$

se tiene que

$$||f(Y) - f(Z)||^2 \le (y_2 - z_2)^2 + 2(a^2(y_1 - z_1)^2 + b^2(y_2 - z_2)^2)$$

. Luego

$$||f(Y) - f(Z)||^2 \le \max\{2a^2, 1 + 2b^2\} [(y_1 - z_1)^2 + (y_2 - z_2)^2]$$

es decir,

$$||f(Y)-f(Z)|| \leq L ||Y-Z||,$$

con  $L = \sqrt{\max\{2a^2, 1 + 2b^2\}}$ . Por tanto f es globalmente Lipschitz en la segunda variable Y, para todo  $(t_0, Y_0) = (t_0, y_0, y_0')$  y, en particular es localmente Lipschitz.

 $\Rightarrow$  El teorema de existencia y unicidad de Picard-Lindelöf se cumple para todo valor inicial.  $\square$ 

#### Teorema

Sea y'' = f(t, y, y') donde f es lineal, con funciones en los coeficientes  $g_0, g_1$  continuas y acotadas en el intervalo  $[t_0 - \epsilon, t_0 + \epsilon]$ ; es decir

$$f(t, y, y') = g_0(t) y + g_1(t) y' + h(t),$$

con h continua. Entonces dado un valor inicial  $(t_0, y_0, y_0')$  existe una única función  $\gamma$  tal que

- 1.  $\gamma(t_0) = y_0$ ,
- 2.  $\gamma'(t_0) = y_0'$ ,
- 3.  $\gamma''(t) = g_0(t) \gamma(t) + g_1(t) \gamma'(t) + h(t) \quad \forall t \in (t_0 \epsilon, t_0 + \epsilon).$

### Demostración

Sea

$$y_1 = y, \quad y_2 = y', \qquad Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

### Entonces el sistema equivalente es

$$Y' = F(t, Y) = \begin{pmatrix} y_2 \\ g_0(t) y_1 + g_1(t) y_2 + h(t) \end{pmatrix}.$$

Para 
$$Y = (y_1, y_2)$$
 y  $Z = (z_1, z_2)$ ,

$$F(t,Y) - F(t,Z) = \begin{pmatrix} y_2 - z_2 \\ g_0(t)(y_1 - z_1) + g_1(t)(y_2 - z_2) \end{pmatrix}.$$

Como  $g_0, g_1$  están acotadas en  $I=(t_0-\epsilon,t_0+\epsilon)$ , existe M>0 tal que  $|g_0(t)|, |g_1(t)| \leq M$  para todo  $t \in I$ . Entonces

$$||F(t,Y)-F(t,Z)||^2 = (y_2-z_2)^2 + (g_0(t)(y_1-z_1)+g_1(t)(y_2-z_2))^2$$

$$1 \le (y_2 - z_2)^2 + (M|y_1 - z_1| + M|y_2 - z_2|)^2 \le (1 + 2M^2) \|Y - Z\|^2.$$

De aquí

$$||F(t, Y) - F(t, Z)|| \le L ||Y - Z||, \quad L = \sqrt{1 + 2M^2},$$

y F es localmente Lipschitz en Y (uniformemente en t).

 $\Rightarrow$  Por Picard–Lindelöf existe y es única la solución local para cualquier dato inicial  $(t_0, y_0, y'_0)$ .

# Teorema (Existencia y unicidad de soluciones para ecuaciones lineales de orden n)

Dada la ecuación diferencial lineal de orden n,

$$a_n(t)\frac{d^ny}{dt^n} + a_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \cdots + a_1(t)\frac{dy}{dt} + a_0(t)y = g(t),$$

supongamos que g(t),  $a_i(t)$  con  $i=0,1,2,\ldots,n$ , son funciones continuas en un intervalo (a,b) que contiene al punto  $t_0$  y que  $a_n(t) \neq 0$  en (a,b).

Entonces, para cualquier elección de los valores iniciales  $y_0, y_1, \ldots, y_{n-1}$ , existe una única solución y(t) en todo el intervalo (a,b) del problema con valor inicial

$$y(t_0) = y_0, \quad y'(t_0) = y_1, \quad \dots, \quad y^{(n-1)}(t_0) = y_{n-1}.$$

## Definición de operador diferencial

Un **operador diferencial** convierte una función derivable en otra función. Se representa comúnmente por la letra mayúscula D, donde

$$D(y) = \frac{dy}{dt}.$$

Derivadas de orden superior se escriben como:

$$D^2y = \frac{d^2y}{dt^2}, \quad D^ny = \frac{d^ny}{dt^n}.$$

Un operador diferencial de *n*-ésimo orden o operador polinomial se define como:

$$L = a_n(t)D^n + a_{n-1}(t)D^{n-1} + \cdots + a_1(t)D + a_0(t),$$

donde  $a_i(t)$  son funciones continuas y reales.

### Ecuaciones diferenciales lineales en forma operativa

Cualquier ecuación diferencial lineal puede expresarse en términos del operador diferencial *D*. **Ejemplo**:

$$y'' + 5y' + 6y = 5t - 3$$

puede escribirse usando D como

$$D^2y + 5Dy + 6y = 5t - 3,$$

si  $L = D^2 + 5D + 6$ , entonces

$$L(y) = 5t - 3.$$

### Forma compacta:

Usando un operador polinomial L, las ecuaciones diferenciales lineales homogéneas y no homogéneas de orden n se escriben como:

$$L(y) = 0$$
 y  $L(y) = g(t)$ ,

## Propiedad de linealidad del operador diferencial

La **linealidad** del operador diferencial del n-ésimo orden L se deduce directamente de dos propiedades básicas de la derivada D:

- ▶ D(cf(t)) = c Df(t) para toda constante c.
- D(f(t) + g(t)) = Df(t) + Dg(t).

Así, si f(t) y g(t) son funciones derivables y  $\alpha, \beta$  son constantes, entonces el operador L cumple ser lineal:

$$L(\alpha f(t) + \beta g(t)) = \alpha L(f(t)) + \beta L(g(t)).$$

## Teorema (Principio de superposición; ecuaciones homogéneas)

Sean  $y_1, y_2, \dots, y_k$  soluciones de la ecuación homogénea de n-ésimo orden

$$L(y)=0$$

en un intervalo I. Entonces, la combinación lineal

$$y = c_1 y_1(t) + c_2 y_2(t) + \cdots + c_k y_k(t),$$

donde  $c_i$  (para  $i=1,2,\ldots,k$ ) son constantes arbitrarias, también es una solución en el intervalo I.

### Demostración

Sea  $y(t) = c_1 y_1(t) + c_2 y_2(t) + \cdots + c_k y_k(t)$ , donde cada  $y_i(t)$  es solución de la ecuación homogénea  $L(y_i) = 0$ .

Por la propiedad de **linealidad** del operador L, tenemos:

$$L(y) = L\left(\sum_{i=1}^k c_i y_i\right) = \sum_{i=1}^k c_i L(y_i).$$

Pero cada  $L(y_i) = 0$  por hipótesis, por lo que:

$$L(y) = \sum_{i=1}^k c_i \cdot 0 = 0.$$

Por lo tanto, y(t) también es solución de la ecuación homogénea L(y) = 0.

# Teorema: Soluciones de la EDO Lineal homogenea = espacio vectorial

Sea la EDO lineal homogénea de orden n

$$L[y] = D^{n}y + a_{n-1}(t) D^{n-1}y + \cdots + a_{1}(t) Dy + a_{0}(t) y = 0,$$

con L(y) continua. Entonces el conjunto de soluciones de L[y] = 0, es un espacio vectorial.

### Demostración

Sea k = 0, ..., n - 1, considere las n funciones

$$\Phi_k(t)$$
 tal que  $\Phi_k^{(j)}(t_0) = egin{cases} 1, & j=k, \ 0, & j 
eq k. \end{cases}$ 

Que son solución a cada uno de los respectivos problemas de valor inicial. Por el teorema de Existencia y unicidad, cada  $\Phi_k$  existe y es única.

Demostraremos que el conjunto de soluciones  $\mathcal{S}$  es igual al espacio generado por el conjunto de funciones  $\Phi_k$ , es decir

$$S = \langle \Phi_0, \cdots \Phi_{n-1} \rangle$$

Sean  $\Phi$  una solución arbitraria de L[y]=0 y definamos las constantes

$$\alpha_k = \Phi^{(k)}(t_0), \qquad k = 0, 1, \dots, n-1.$$

Consideramos la función

$$\rho(t) = \Phi(t) - \sum_{k=0}^{n-1} \alpha_k \, \Phi_k(t).$$

Como  $\rho$  es una combinación lineal de soluciones, entonces es tambien una solución. Además, para cada  $j = 0, \dots, n-1$ ,

$$\rho^{(j)}(t_0) = \Phi^{(j)}(t_0) - \sum_{k=0}^{n-1} \alpha_k \, \Phi_k^{(j)}(t_0) = \alpha_j - \alpha_j = 0.$$

Por el Teorema de existencia y unicidad, la única solución con  $\rho^{(j)}(t_0)=0$  para  $j=0,\ldots,n-1$  es la solución trivial  $\rho(t)\equiv 0$ . Por tanto

$$\Phi(t) = \sum_{k=0}^{n-1} \alpha_k \, \Phi_k(t),$$

lo que muestra que  $\{\Phi_0,\ldots,\Phi_{n-1}\}$  genera  $\mathcal S$  .  $\square$ 

## Definición: dependencia e independencia lineal

Sea  $I \subseteq \mathbb{R}$  un intervalo abierto y consideremos un conjunto de funciones

$$f_1(t), f_2(t), \ldots, f_n(t)$$
 en  $I$ .

Decimos que  $\{f_1, \ldots, f_n\}$  es *linealmente dependiente* en I si existen constantes

$$c_1, c_2, \ldots, c_n,$$

no todas cero, tales que

$$c_1 f_1(t) + c_2 f_2(t) + \cdots + c_n f_n(t) = 0 \quad \forall t \in I.$$

Si no existe tal combinación no trivial, entonces  $\{f_1, \ldots, f_n\}$  es *linealmente independiente* en I.



## Ejemplo – Dependencia lineal de funciones

El conjunto de funciones

$$f_1(t)=\cos^2 t, \quad f_2(t)=\sin^2 t, \quad f_3(t)=\sec^2 t, \quad f_4(t)=\tan^2 t$$
 es linealmente dependiente en el intervalo  $(-\pi/2,\,\pi/2)$  porque

$$c_1 \cos^2 t + c_2 \sin^2 t + c_3 \sec^2 t + c_4 \tan^2 t = 0,$$

donde

$$c_1 = c_2 = 1, \quad c_3 = -1, \quad c_4 = 1.$$

Aquí se usa que  $\cos^2 t + \sin^2 t = 1$  y que  $1 + \tan^2 t = \sec^2 t$ .

## Ejercicio — Dependencia lineal de funciones

Sea el conjunto de funciones definido en el intervalo  $(0, \infty)$ :

$$f_1(t) = \sqrt{t} + 5$$
,  $f_2(t) = \sqrt{t} + 5t$ ,  $f_3(t) = t - 1$ ,  $f_4(t) = t^2$ .

Determine las constantes a, b, c tales que

$$f_2(t) = a f_1(t) + b f_3(t) + c f_4(t)$$

para todo  $t \in (0, \infty)$ .

Sugerencia: agrupe los términos semejantes y compare coeficientes para determinar los valores de a, b y c.

### Definición del Wronskiano

Supongamos que cada una de las funciones

$$f_0(t), f_1(t), \ldots, f_{n-1}(t)$$

tiene al menos n-1 derivadas en un intervalo I. El Wronskiano de estas funciones se define como el determinante

$$W(f_0,\ldots,f_{n-1})(t) = egin{array}{cccc} f_0(t) & f_1(t) & \cdots & f_{n-1}(t) \ f_0'(t) & f_1'(t) & \cdots & f_{n-1}'(t) \ dots & dots & \ddots & dots \ f_0^{(n-1)}(t) & f_1^{(n-1)}(t) & \cdots & f_{n-1}^{(n-1)}(t) \ \end{array},$$

donde las primas denotan derivadas sucesivas.

# Proposición (Wronskiano entonces LI)

Sean  $\varphi_0, \varphi_1, \dots, \varphi_{n-1} : (a, b) \to \mathbb{R}$  funciones con al menos n-1 derivadas continuas.

Supongamos que el Wronskiano

$$W(\varphi_0,\varphi_1,\ldots,\varphi_{n-1})(t_0)\neq 0$$

para algún  $t_0 \in (a, b)$ . Entonces, el conjunto  $\{\varphi_0, \varphi_1, \dots, \varphi_{n-1}\}$  es **linealmente independiente** en (a, b).

### Demostración

Supongamos, por contradicción, que las funciones son linealmente dependientes. Entonces existen constantes  $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ , no todas cero, tales que:

$$\sum_{i=0}^{n-1} lpha_i arphi_i(t) = 0 \quad ext{para todo } t \in (a,b).$$

Derivando n-1 veces:

$$\alpha_0 \varphi_0(t) + \alpha_1 \varphi_1(t) + \dots + \alpha_{n-1} \varphi_{n-1}(t) = 0$$
  

$$\alpha_0 \varphi_0'(t) + \alpha_1 \varphi_1'(t) + \dots + \alpha_{n-1} \varphi_{n-1}'(t) = 0$$

:

$$\alpha_0 \varphi_0^{(n-1)}(t) + \alpha_1 \varphi_1^{(n-1)}(t) + \dots + \alpha_{n-1} \varphi_{n-1}^{(n-1)}(t) = 0$$

Evaluando en  $t = t_0$ , se obtiene un sistema lineal homogéneo de n ecuaciones.

El sistema obtenido en  $t=t_0$  se puede escribir en forma matricial como:

$$\begin{bmatrix} \varphi_{0}(t_{0}) & \varphi_{1}(t_{0}) & \cdots & \varphi_{n-1}(t_{0}) \\ \varphi'_{0}(t_{0}) & \varphi'_{1}(t_{0}) & \cdots & \varphi'_{n-1}(t_{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{0}^{(n-1)}(t_{0}) & \varphi_{1}^{(n-1)}(t_{0}) & \cdots & \varphi_{n-1}^{(n-1)}(t_{0}) \end{bmatrix} \begin{bmatrix} \alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Por hipótesis, esta matriz tiene determinante distinto de cero, por lo tanto el sistema solo admite la solución trivial:

$$\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0,$$

lo cual contradice la suposición inicial. **Conclusión:** las funciones son linealmente independientes.

## Ejemplo — L.I. pero Wronskiano nulo

Sean las funciones definidas en  $\mathbb{R}$ :

$$\varphi_1(t)=t^3,\quad \varphi_2(t)=|t|^3.$$

Estas funciones son **linealmente independientes** en  $\mathbb{R}$ , ya que no existe una constante c tal que  $|t|^3 = c \, t^3$  para todo t (por la discontinuidad de la derivada en t = 0).

Sin embargo, sus derivadas coinciden para todo t, y su Wronskiano:

$$W(\varphi_1, \varphi_2)(t) = 0$$
 para todo  $t$ .

Pues si la matriz tiene dos columnas iguales su determinante es igual a cero. **Conclusión:** la independencia lineal no implica que el Wronskiano sea distinto de cero.

## Proposición

Sean  $\Phi_0, \Phi_1, \dots, \Phi_{n-1}$  las soluciones de

$$L[y] = a_n(t)D^ny + \cdots + a_1(t)Dy + a_0(t)y = 0$$

con condiciones iniciales en to

$$\Phi_k^{(j)}(t_0) = \begin{cases} 1, & j = k, \\ 0, & j \neq k, \end{cases} \quad j, k = 0, 1, \dots, n-1.$$

Entonces el conjunto de soluciones  $\{\Phi_0,\Phi_1,\ldots,\Phi_{n-1}\}$  es Linealmente Independiente.

### Demostración

Resta demostrar que el Wronskiano

$$W(\Phi_0, \dots, \Phi_{n-1})(t) = \det[\Phi_k^{(j)}(t)]_{0 \le j,k \le n-1}$$

es diferente de cero en algún punto. Note que al evaluar la matriz  $\left[\Phi_k^{(j)}(t)
ight]_{i,k}$  en  $t=t_0$  obtenemos la matriz identidad

$$\left[\Phi_k^{(j)}(t_0)
ight]_{0 \leq j, k \leq n-1} = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix},$$

cuyo determinante es 1. Por tanto  $W(\Phi_0,\dots,\Phi_{n-1})(t_0)=1 \neq 0.$ 

Teorema: Soluciones de la EDO Lineal homogenea = espacio vectorial de dimensión n Sea

$$L[y] = D^{n}y + a_{n-1}(t) D^{n-1}y + \cdots + a_{1}(t) Dy + a_{0}(t) y = 0$$

una EDO lineal homogénea de orden n definida en un intervalo I. Entonces el conjunto de soluciones

$$\mathcal{S} = \{ y : I \to \mathbb{R} : L[y] = 0 \}$$

es un espacio vectorial de dimensión n, cuya base canónica está dada por las soluciones fundamentales  $\{\Phi_0,\Phi_1,\ldots,\Phi_{n-1}\}$  con condiciones iniciales en  $t_0$ 

$$\Phi_k^{(j)}(t_0) = \begin{cases} 1, & j=k, \\ 0, & j \neq k, \end{cases}$$
  $j, k = 0, 1, \dots, n-1.$ 

# Teorema (Isomorfismo con $\mathbb{R}^n$ )

Sea

$$L[y] = D^{n}y + a_{n-1}(t) D^{n-1}y + \cdots + a_{1}(t) Dy + a_{0}(t) y = 0$$

una EDO lineal homogénea de orden n en un intervalo I, y sea

$$\mathcal{S} = \{ y : I \to \mathbb{R} \mid L[y] = 0 \}.$$

**Definimos** 

$$\Psi_{t_0}: \mathcal{S} \longrightarrow \mathbb{R}^n, \quad \Psi_{t_0}(y) = (y(t_0), y'(t_0), \ldots, y^{(n-1)}(t_0)).$$

Entonces  $\Psi_{t_0}$  es un isomorfismo de espacios vectoriales, y por tanto  $S \cong \mathbb{R}^n$ .

### Demostración

▶ **Linealidad:** Para  $y_1, y_2 \in \mathcal{S}$  y  $\alpha, \beta \in \mathbb{R}$ ,

$$\Psi_{t_0}(\alpha y_1 + \beta y_2) = ((\alpha y_1 + \beta y_2)(t_0), \ldots) = \alpha \Psi_{t_0}(y_1) + \beta \Psi_{t_0}(y_2).$$

▶ Inyectividad: Si  $\Psi_{t_0}(y) = 0 \in \mathbb{R}^n$ , entonces

$$y(t_0) = y'(t_0) = \cdots = y^{(n-1)}(t_0) = 0.$$

Como y satisface L[y]=0 y todas sus condiciones iniciales son cero, por unicidad deducimos  $y(t)\equiv 0$ . Luego  $\ker \Psi_{t_0}=\{0\}$ .

**Sobreyectividad:** Sea  $\mathbf{c} = (c_0, c_1, \dots, c_{n-1}) \in \mathbb{R}^n$ . Por el teorema de existencia, existe una única solución  $y \in \mathcal{S}$  con

$$y^{(j)}(t_0) = c_j, \quad j = 0, 1, \dots, n-1.$$

**Entonces** 

$$\Psi_{t_0}(y)=\mathbf{c}.$$

Esto muestra que  $\Psi_{t_0}$  es sobreyectiva.

Al ser  $\Psi_{t_0}$  lineal, inyectiva y sobreyectiva, concluimos que  $\Psi_{t_0}$  es un isomorfismo.  $\square$