Homework 8

Problem 1. Which of the following statements about graph G and H are true?

- 1. G and H are isomorphic if and only if for every map $f: V(G) \to V(H)$ and for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 2. G and H are isomorphic if and only if there exists a bijection $f: E(G) \rightarrow E(H)$.
- 3. If there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u), then G and H are isomorphic.
- 4. If G and H are isomorphic, then there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u).
- 5. If G and H are isomorphic, then there exists a bijection $f: E(G) \to E(H)$.
- 6. G and H are isomorphic if and only if there exists a map $f: V(G) \rightarrow V(H)$ such that for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 7. Every graph on n vertices is isomorphic to some graph on the vertex set $\{1, 2, ..., n\}$.
- 8. Every graph on $n \ge 1$ vertices is isomorphic to infinitely many graphs.

Solution. 4,5,7,8. □

Problem 2. Two simple graphs G = (V, E) and G' = (V', E'). A map $f : V \to V'$. Now if f satisfies:

- i) It is a bijective function;
- ii) $\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E'$;

Then we say that graph G and G' are isomorphic to each other. We use $G \cong G'$ to stand for the isomorphism relation.

Consider the following questions:

- 1. $G = K_n$ (Recall: K_n is a clique with n vertices), $g: V \to V'$ is a function which only satisfies requirement ii). Prove that G' must contain a subgraph which is a clique with n-vertices.
- 2. $G = K_{n,m}$ (Recall: $K_{n,m}$ is the so-called complete bipartite graphs), g is the same as in question 1. What will be the simplest G' that is related to G under the new relation.

Solution.

1. Two different vertices in G must be mapped to different vertices in G'. For if $u, v \in V$ are mapped to the same vertex $\omega \in V'$, the edge $\{u, v\} \in E$ cannot be reflected in E', for G' is a simple graph.

2. G' can be just one edge with two incident vertices.

Problem 3. How many graphs on the vertex set $\{1, 2, ..., 2n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges (i.e. with edge set $\{\{1,2\},\{3,4\},...,\{2n-1,2n\}\}$?

Solution.
$$\frac{(2n\cdot(2n-1))((2n-2)\cdot(2n-3))\cdots(2\cdot 1)}{2^n\cdot n!} = (2n-1)(2n-3)\cdots 5\cdot 3.$$

Problem 4. Construct an example of a sequence of length n in which each term is some of the numbers 1, 2, ..., n-1 and which has an even number of odd terms, and yet the sequence is not a graph score. Show why it is not a graph score.

Solution. E.g. (1, 1, 3, 3, 4). Use the Score theorem to prove that it cannot be a graph score.

Problem 5. Let G be a graph with 9 vertices, each of degree 5 or 6. Prove that it has at least 5 vertices of degree 6 or at least 6 vertices of degree 5.

Solution. x be the number of vertex in G with $deg_G(x) = 6$. Obviously $x \ge 5$ or $x \le 4$.

1. If $x \ge 5$ then the first part of the argument is true.

2. Otherwise $(x \le 4)$. As the other vertices in graph G are of degree 5, there are at least $9 - x \ge 5$ such vertices. According to the hand-shake lemma, there must be even number of odd-degree vertices. Thus there should be at least 6 vertices with degree 5.

Problem 6. Given a sequence (d_1, d_2, \dots, d_n) of positive integers (where $n \ge 1$):

- (i) There exists a tree with score (d_1, d_2, \ldots, d_n) .
- (ii) $\sum_{i=1}^{n} d_i = 2n 2$.

Prove that (i) and (ii) are equivalent.

Solution.

- 1. $(i) \Rightarrow (ii)$ is obvious.
- 2. To prove $(ii) \Rightarrow (i)$:

By induction on the number n.

For n = 1, 2 the implication holds trivially, so let n > 2. Suppose the implication holds for any n-1 long positive sequence $(d_1, d_2, \ldots, d_{n-1})$ with $\sum_{i=1}^{n-1} d_i = 2(n-1) - 2$.

For the induction step, consider an length n positive sequence $\ell = (d_1, d_2, \dots, d_n)$ with $\sum_{i=1}^{n} d_i = 2n - 2$:

Since the sum of the d_i is smaller than 2n, there exists an i with $d_i = 1$. w.l.o.g. we assume $d_1 = 1$. With a similar argument we can also conclude that there must exist some index j such that $d_j \ge 2$. We take $k = \min\{j \mid d_j \ge 2\}$.

Now the sequence $\ell = (d_1, d_2, \dots, d_k, \dots, d_n) = (1, d_2, \dots, d_k - 1 + 1, \dots, d_n)$, we can derive a new sequence $\ell' = (d_2, \dots, d_k - 1, \dots, d_n)$. Obviously ℓ' is a n-1 length sequence (all positive) with the summation to be 2n-2-1-1=2(n-1)-2. Then according to the induction hypothesis, there exists a tree \mathcal{T}' which corresponds to ℓ' .

Then $\mathcal{T} = (V(\mathcal{T}') \cup \{v_1\}, E(\mathcal{T}') \cup \{v_1, v_k\})$ is the tree which witnesses the validity of the sequence ℓ .

BE CAREFUL: Why is the following 'proof' of the implication (ii) \Rightarrow (i) insufficient (or, rather, makes no sense)? We proceed by induction on n. The base case n=1 is easy to check, so let us assume that the implication holds for some $n \geq 1$. We want to prove it for n+1. If $D=(d_1,d_2,...,d_n)$ is a sequence of positive integers with $\sum_{i=1}^n d_i = 2n-2$, then we already know that there exists a tree T on n vertices with D as a score. Add another vertex v to T and connect it to any vertex of T by an edge, obtaining a tree T' on n+1 vertices. Let D' be the score of T'. We know that the number of vertices increased by 1, and the sum of degrees of vertices increased by 2 (the new vertex has degree 1 and the degree of one old vertex increased by 1). Hence the sequence D' satisfies condition (ii) and it is a score of a tree, namely of T'. This finishes the inductive step.

Problem 7. Let N_k denote the number of spanning trees of K_n in which the vertex n has degree k, k = 1, 2, ..., n - 1 (recall that we assume $V(K_n) = \{1, 2, ..., n\}$).

- *i)* Prove that $(n-1-k)N_k = k(n-1)N_{k+1}$.
- *ii)* Using i), derive $N_k = \binom{n-2}{k-1}(n-1)^{n-1-k}$.
- iii) Prove Cayley's formula from ii).

Solution.

- i) Both sides of the equality count the number of pairs spanning trees (T, T^*) , where $deg_T(n) = k$, $deg_{T^*}(n) = k + 1$, and T^* arises from T by the following operation: pick an edge $\{i, j\} \in E(T)$ with $i \neq n \neq j$, delete it, and add either the edge $\{i, n\}$ or the edge $\{j, n\}$, depending on which of these edges connects the two components of $T \{i, j\}$.
 - From one T we can get n-1-k different T^* : the number of different edges in T which are not connected to n at the beginning;
 - And one T^* can be obtained from k(n-1) different T: pick any vertex $v \in \{1, 2, ..., n-1\}$. If one deletes all edges incident to n in a spanning tree from N_{k+1} , neighbours of n (denoted by $\ell_1, \ell_2, ..., \ell_{k+1}$) will lie in exactly k+1 different components. Suppose v lies in the last component, namely C_{k+1} . Add an edge between v and some ith leaf ℓ_i ($i \in \{1, 2, ..., k\}$) of n and remove the original edge (n, ℓ_i) simultaneously, one will get a different T. In all, there are n-1 ways to pick v and v ways to pick v and v

ii)

iii) $\sum_k N_k$ happens to be the expansion of $((n-1)+1)^{n-2}$ according to the binomial theorem.