Московский физико-технический институт Факультет молекулярной и химической физики

Лабораторная работа № 3.2.4 «Свободные колебания в электрическом контуре»

Выполнили:
студенты 2 курса
641 группы ФМХФ
Кутушева Алиса
Ильдаровна
&
Горшков Тимофей
Владимирович

Аннотация:

В этом отчёте изложены результаты выполнения лабораторной работы «Свободные колебания в электрическом контуре». В данной работе исследуются зависимость периода свободных колебаний контура от ёмкости, зависимость логарифмического декремента затухания от сопротивления. По резултатам измерений определяетя критическое сопротивление и добротность контура.

Цель работы:

исследование свободных колебаний в колебательном контуре.

В работе используются:

генератор импульсов Г5-54, электронное реле, магазин сопротивлений Р33, магазин ёмкостей Р5025, индуктивность, электронный осциллограф, универсальный мост GWINSTEK LCR-7819.

1. Теоретические сведения

Исследуемый колебательный контур состоит из индуктивности L, ёмкости и резистора R (рис. 1). Конденсатор контура заряжается короткими одиночными импульсами, после каждого из которых в контуре возникают свободные затухающие колебания. Уравнение колебаний:

$$\ddot{I} + 2\gamma \dot{I} + w_0^2 I = 0 \tag{1}$$

Подав напряжение с конденсатора на осциллограф, можно по картине, возникающей на экране осциллографа, определить период колебаний в контуре, исследовать затухание колебаний и определить основные параметры колебательного контура.

Картину колебаний можно представить не только в координатах (U, \dot{U}) , но и в координатах (U, \dot{U}) , или, как говорят, на фазовой плоскости. В этих координатах кривая незатухающих колебаний $(\gamma = 0)$ имеет вид эллипса (или окружности — при одинаковых амплитудах U и \dot{U} , а картина реальных колебаний изображается сворачивающейся спиралью.

Схема подключения осциллографа для изучения колебаний на фазовой плоскости представлена на рис. 2. На вертикальный вход осциллографа подаётся напряжение U_c с конденсатора, а на горизонтальный — напряжение с резистора. $U_R(U_R \sim I \sim dq/dt \sim dU_c/dt)$

Рис. 1. Колебательный контур.

2. Экспериментальная установка

На рис. 3 приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Puc. 2. Схема установки для наблюдения затухающих колебаний на фазовой плоскости.

Импульсы заряжают конденсатор. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико (~1 МОм), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

3. Ход работы

- 1)Измерение периодов
- 1. Установим на магазине сопротивлений величину R=0; на магазине ёмкостей величину $C=0.02~{\rm mk}\Phi.$
- 2. Прокалибруем горизонтальную ось осциллографа по известному периоду повторения импульсов: для этого
- а) подберём частоту развёртки осциллографа, при которой расстояние x_0 между импульсами, поступающими с генератора ($T_0 = 0.01$ с), занимает почти весь экран: $x_0 = 10$;
- б) измерив на экране расстояние x, которое занимают несколько полных периодов n, рассчитаем период колебаний контура: $T = T_0 x/(nx_0)$. Изменяя ёмкость от 0.02 мк Φ до 0.9 мк Φ и периодически проверяя величину x_0 , проведем измерения периодов (9 значений). Данные занесем в таблицу 1.

$\mathcal{N}_{\overline{0}}$	$C, 10^{-2} \text{ мк}\Phi$	x	$\mid n \mid$	$T_e, 10^{-4} \text{ c}$	$\Delta T_e, 10^{-4}$	$T_t, 10^{-4}$	$\Delta T_t, 10^{-4}$
1	2	0,8	2	4,0	1,1	4,0	0,5
2	13	4,2	4	10,5	0,7	10,1	0,2
3	24	4,2	3	14,0	0,9	13,80	$0,\!15$
4	35	8,4	5	16,8	0,7	16,67	$0,\!12$
5	46	5,8	3	19	1	19,11	0,11
6	57	6,4	3	21,3	1,1	21,2	0,1
7	68	7	3	23,3	1,1	23,23	0,09
8	79	7,6	3	25,3	1,2	25,03	0,09
9	90	5,4	2	27,0	1,5	26,72	0,08

Таблица 1. Измерение периодов

- 2) Критическое сопротивление и декремент затухания
- 1. Приняв L=200 мГн, рассчитаем ёмкость , при которой собственная частота колебаний контура $\nu_0=1/(2\pi\sqrt{LC})$ составляет 5 кГц : $C=\frac{1}{4\pi^2\nu_0^2L}=5,1\cdot 10^{-9}$ Ф. Для выбранных значений L и рассчитаем критическое сопротивление контура R_{kp} по формуле $R_{kp}=2\sqrt{L/C}=(1,250\pm0,003)\cdot 10^4$ Ом. Погрешность считаем по формуле: $\Delta R=\sqrt{\frac{(\Delta L)^2}{LC}+\frac{L(\Delta C)^2}{C^3}}$
- 2. Установим на магазине ёмкость, близкую к рассчитанной. Увеличивая сопротивление R от 0 до R_{kp} , проблюдаем картину затухающих колебаний на экране осциллографа. Зафиксируем сопротивление магазина, при котором колебательный режим переходит в апериодический: $R_{kp} = (0.997 \pm 0.002) \cdot 10^4$ Ом.
- 3. Установим сопротивление $R \simeq 0.1 R_{kp}$ (эксп.). Получим на экране картину затухающих колебаний. Для расчёта логарифмического декремента затухания Θ по формуле $\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$ измерим амплитуды, разделённые целым числом периодов n. Повторим измерения для 7 значений R, лежащих в интервале $(0.1 \div 0.3) \cdot R_{kp}$. Данные занесем в таблицу 2.
 - 3) Колебания на фазовой плоскости
- 1. Пронаблюдаем затухающие колебания на фазовой плоскости. При том же значении $C=5,1\cdot 10^{-9}$ Ф, наблюдаем за изменением спирали при увеличении сопротивления в интервале $(0,1\div 0,3)\cdot R_{kp}$. Для определения Θ измерим радиусы витков спирали, разделённые целым числом периодов n, для двух значений R на каждом краю рабочего диапазона. Данные занесем в таблицу 3.

Таблица 2. Данные для декремента затухания

R,кОм	U_k	n	U_{k+n}	Θ	$\Delta\Theta$
1	5,4	2	1,8	0,55	0,07
1,3	5,4	2	1,3	0,7	0,1
1,5	5,4	1	2,4	0,81	0,12
2	5,4	1	1,8	1,10	$0,\!15$
2,3	5,4	1	1,6	1,22	0,16
2,5	5,4	1	1,4	1,35	0,18
3	5,4	1	1	1,7	0,2

Таблица 3. Колебания на фазовой плоскости

R,к O м	U_k	n	U_{k+n}	Θ	$\Delta\Theta$
1	0,6	2	1,8	0,6	0,2
1,3	0,8	1	1,6	0,7	0,4
2,7	0,8	1	3,7	1,5	0,3
3	0,6	1	2,8	1,5	0,4

2. Измерим индуктивность L и омическое сопротивление катушки R_L с помощью моста переменного тока при разных частотах. Данные занесем в таблицу 4.

Таблица 4. Частотная зависимость параметров установки

ν, Гц	50	100	1000	5000
R,OM	11	11,3	18,8	46,8
L ,м Γ н	203	201	199	200

4. Обработка результатов

- 1. Рассчитаем теоретические значения периодов по формуле $T=2\pi\sqrt{LC}$. Рассчитаем погрешности $\Delta T_t=\frac{\pi}{\sqrt{LC}}(C\cdot\Delta L+L\cdot\Delta C);\ \Delta T_e=T_e(\frac{\Delta x}{x}+\frac{\Delta x_0}{x_0}).$ Данные занесем в таблицу 1. Построим график $T_e(T_t)$.
- 2. Рассчитаем значения Θ и R_k (сопротивление контура, состоит из сопротивления магазина R и омического сопротивления катушки R_L). Рассчитаем погрешности $1/\Theta^2$ и $1/R_k^2$:

 $\Delta\Theta=\frac{1}{n}\cdot\left(\frac{\Delta U_n}{U_n}+\frac{\Delta U_{n+k}}{U_{n+k}}\right),\Delta(1/\Theta^2)=\frac{2\Delta\Theta}{\Theta^3};\ \Delta R_L=5\cdot 10^{-4}\cdot 11,3\ \mathrm{Om}$ - мало по сравнению с $\Delta R_p=0,002\cdot R_d$, где R_p - сопротивление моста, а R_d - сопротивление текущей декады. Тогда погрешность $1/R^2=2\cdot\Delta R_p/R^3$. Данные занесем в таблицу 5.

Таблица 5. Данные для определения критического сопротивления

$1/R^2$,1/Om ²	$\Delta(1/R^2),1/\mathrm{Om}^2$	$1/\Theta^2$	$\Delta(1/\Theta^2)$
0,978	0,004	3,3	0,5
0,582	0,002	1,98	0,09
0,4378	0,0017	1,52	0,11
0,247	0,001	0,83	0,14
0,1872	0,0007	0,67	0,18
0,1586	0,0006	0,6	0,6
0,1103	0,0005	0,35	0,12

Рис. 3. График зависимости экспериментального периода от теоритического

Рис. 4. График для определения критического сопротивления, $\frac{\Delta Y}{\Delta X} = (3.44 \pm 0.05) \cdot 10^6 \; \mathrm{Om}^2.$

Построим график в координатах $1/\Theta^2 = f(1/R_k^2)$. Определим критическое сопротивление R_{kp} по наклону прямой. Приняв обозначения: $1/\Theta^2 = Y, 1/R_k^2 = X$, получим: $R_{kp} = 2\pi\sqrt{\frac{\Delta Y}{\Delta X}} =$ $2\pi\sqrt{3,44\cdot 10^6}=11653$ Ом. Оценим погрешность: $\pi\Delta k/\sqrt{k}=90$ Ом. Итого: $R_{kp}=(11650\pm 90)$ OM.

3. Рассчитаем добротность контура для максимального и минимального значений Θ , используя равенство $Q = \frac{\pi}{\Theta}$. Рассчитаем погрешность Q: $\Delta Q = \frac{\pi \Delta \Theta}{\Theta^2}$, $\Delta \Theta = \frac{1}{n} (\frac{\Delta U_1}{U_1} + \frac{\Delta U_2}{U_2})$ $\Theta_{min} = 0.55 \pm 0.07 \Rightarrow Q_{max} = 5.7 \pm 0.8; \Theta_{max} = 1.7 \pm 0.2 \Rightarrow Q_{min} = 1.86 \pm 0.3.$

$$\Theta_{min} = 0.55 \pm 0.07 \Rightarrow Q_{max} = 5.7 \pm 0.8; \Theta_{max} = 1.7 \pm 0.2 \Rightarrow Q_{min} = 1.86 \pm 0.3.$$

Сравним Q с расчетом через параметры R,L и C: $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$. Рассчитаем погрешность Q:

$$\Delta Q = \sqrt{\frac{L\Delta R^2}{CR^4} + \frac{\Delta L^2}{4R^2LC} + \frac{L\Delta C^2}{4R^2C^3}}$$

$$Q_{max} = 6,278 \pm 0,014; Q_{min} = 2,093 \pm 0,005.$$

4. Рассчитаем величину Θ на фазовой плоскости по тем же соотношениям. $\Theta_{min} = 0.6 \pm 0.2;$ $\Theta_{max} = 1.5 \pm 0.4.$

Обсуждение результатов и выводы **5**.

В ходе данной работы:

- 1)Была получена зависимость $T_e(T_t)$ которая подтвердила справедливость соотношения T= $2\pi\sqrt{LC}$
- 2) Тремя разными способами было получено значение R_{kr} : Теоретически $R=(12500\pm30)$, графически $R = (11650 \pm 90)$, экспериментально $R = (9970 \pm 20)$. Все 3 значения разошлись.

3) Были получены декременты затухания при измерении R_{kp} и при наблюдении колебаний н фазовой плоскости: $\Theta_{min}=0.55\pm0.07$ и $\Theta_{min}=0.6\pm0.2; \Theta_{max}=1.7\pm0.2$ и $\Theta_{max}=1.5\pm0.4$.	ıa