Szeregowanie zadań

dr Hanna Furmańczyk

17-05-2018

Szeregowanie bez przestojów (maszyny dedykowane)

Zastosowania

- układanie planów zajęć
- przemysł hutniczy, metalurgiczny
- przemysł spożywczy
- . . .

Rodzaje

- praca ciągła maszyn (no-idle)
- brak przestojów pomiedzy operacjami zadania (no-wait)

Warunek no-wait

Twierdzenie

Problem $F3|no-wait|C_{max}$ jest NP-trudny.

Twierdzenie

Istnieje algorytm o złożoności $O(n \log n)$ rozwiązujący problem $F2|no-wait|C_t$ (harmonogram cykliczny) oraz $F_2|no-wait|C_{\max}$.

$F2|no - wait|C_t$

Algorithm (Gilmore and Gomory 1964)

STEP 1. Number the jobs such that $p_{2,j} \le p_{2,j+1}$, $j = 1, \ldots, n-1$. Initialize $G_1 = G_2 = \emptyset$.

STEP 2. Find a function $\phi(j)$, $j = 1, \ldots, n$, such that $p_{1,\phi(j)} \leq p_{1,\phi(j+1)}$, $j = 1, \ldots, n-1$.

STEP 3. Define a graph with n nodes (each representing a job) and no edges. The lengths $C_{j,j+1}$ of edges (j, j+1), $j=1,\ldots,n-1$ that may be added later are given by $C_{j,j+1}=\max\{0, (\min\{p_{2,j+1}, p_{1,\phi(j+1)}\} - \max\{p_{2,j}, p_{1,\phi(j)}\})\}$ for $j=1,\ldots,n-1$.

G&G cd.

STEP 4. Set j = 1.

STEP 4.1. If the undirected edge $(j, \phi(j))$ is not in the graph and $j \neq \phi(j)$, add it. Set j = j + 1.

STEP 4.2. If $j \le n$, go to Step 4.1.

STEP 5. If the graph has only one connected component, go to Step 7. Otherwise, let $k = \operatorname{argmin}\{C_{j,j+1}|j \text{ and } j+1 \text{ are in different components}\}$, breaking ties arbitrarily.

G&G cd.

STEP 6. Add the undirected edge (k, k + 1) to the graph. If $p_{1,\phi(k)} \ge p_{2,k}$, set $G_1 = G_1 \cup \{(k, k + 1)\}$. Otherwise set $G_2 = G_2 \cup \{(k, k + 1)\}$. Go to Step 5.

STEP 7. If $G_1 = \emptyset$, let s = 0. Otherwise, let the elements of G_1 be $\{(r_1, r_1 + 1), \ldots, (r_s, r_s + 1)\}$, where $r_1 \ge \cdots \ge r_s$.

STEP 7.1. If $G_2 = \emptyset$, let t = 0. Otherwise, let the elements of G_2 be $\{(k_1, k_1 + 1), \ldots, (k_t, k_t + 1)\}$, where $k_1 \le \cdots \le k_t$.

STEP 8. Define for $1 \le e, g, h \le n$ a function $\alpha_{e,g}(h)$ as follows: $\alpha_{e,g}(e) = g$, $\alpha_{e,g}(g) = e$, and $\alpha_{e,g}(h) = h$ if $h \ne e$, g. Set j = 1.

G&G cd.

STEP 8.1. If t = s = 0, set $\Psi(k) = \phi(k)$, k = 1, ..., n, and stop.

STEP 8.2. Set y = j. If t = 0, set i = s and go to Step 8.5. Otherwise, set i = t.

STEP 8.3. Set $y = \alpha_{k_i, k_i + 1}(y)$ and i = i - 1.

STEP 8.4. If $i \ge 1$, go to Step 8.3. Otherwise, if s = 0, go to Step 8.6. Otherwise, set i = s.

STEP 8.5. Set $y = \alpha_{r_i, r_i + 1}(y)$ and i = i - 1.

STEP 8.6. If $i \ge 1$, go to Step 8.5. Otherwise, set $\Psi(j) = \phi(y)$ and j = j + 1.

STEP 8.7. If $j \le n$, go to Step 8.2. Otherwise, stop.

G&G przykład

Job j	11	2	3	4	5	6	7	8
$p_{1,j}$	10	12	3	5	6	11	9	4
$p_{2,j}$	7	8	2	3	9	12	13	6

Step 1 gives:

Job j	1	2	3	4	5	6	7	8
$p_{2,j}$	2	3	6	7	8	9	12	13
$p_{1,j}$	3	5	4	10	12	6	11	9

G&G przykład cd.

Steps 2 and 3 give:

Job j	$p_{2,j}$	$p_{1,\phi(t)}$	$\phi(j)$	$\max\{p_{2,j},p_{1,\phi(j)}\}$	$\min\{p_{2,j},\!p_{1,\phi(j)}\}$	$C_{j,j+1}$
1	2	3	1	3	2	0
2	3	4	3	4	3	1
3	6	5	2	6	5	0
4	7	6	6	7	6	1
5	8	9	8	9	8	0
6	9	10	4	10	9	1
7	12	11	7	12	11	0
8	13	12	5	13	12	

G&G przykład cd.

At Step 4, the edges in the graph are (2,3), (4,6), and (5,8).

At Step 5, the graph has components $\{1\}$, $\{2,3\}$, $\{4,6\}$, $\{5,8\}$, and $\{7\}$.

At Step 6, edges (1,2), (3,4), (5,6), and (7,8) are added, $G_1 = \{(1,2), (5,6)\}, G_2 = \{(3,4), (7,8)\}.$

At Step 7, $r_1 = 5$, $r_2 = 1$, $k_1 = 3$, $k_2 = 7$.

At Step 8, for j = 1 we have: $y = \alpha_{7,8}(1) = 1$, $\alpha_{3,4}(1) = 1$, $\alpha_{1,2}(1) = 2$, $\alpha_{5,6}(2) = 2$, $\Psi(1) = \phi(2) = 3$. The steps are similar for j = 2, ..., 8.

G&G przykład cd.

Thus the optimal sequence, with a cycle time of 64, is given by:

Job j	1	2	3	4	5	6	7	8
$\Psi^*(j)$	3	1	6	2	4	8	5	7

Podwójne kryteria minimalizacyjne

Twierdzenie

 $P2||C_{\max}(\sum C_j)$ jest NP-trudny.

Dowód

Redukcja problemu *Even-Odd Partition*: Dany jest zbiór liczb całkowitych nieujemnych $A=\{a_1,\ldots,a_{2r}\}$, w którym $a_i\geq a_{i+1}$ $(i=1,\ldots,2r-1)$. Czy istnieje $S\subset A$ taki, że $\sum_{j\in S}a_j=\sum_{j\not\in S}a_j$ oraz S zawiera dokładnie jeden element spośród $\{a_i,a_{i+1}\}$ $(i=1,\ldots,2r-1)$.

Znane są algorytmy przybliżone...

Twierdzenie

 $P|pmtn|C_{\max}(\sum C_j)$ jest rozwiązywalny w czasie wielomianowym.

Algorytm Leung'a-Young'a

Mamy n zadań i m maszyn. Zakładamy, że n jest wielokrotnością m (jeśli nie, dodajemy zadania pozorne). Porządkujemy zadanie wg niemalejących czasów ich wykonywania:

$$p_1 \leq p_2 \leq \cdots \leq p_n$$
.

- ② Uszereguj zadania $\{Z_1, Z_2, \dots, Z_{n-m}\}$ stosując regułę SPT (m najdłuższych zadań na razie nie szeregujemy). Otrzymujemy uszeregowanie S.
 - f_i czas zakończenia pracy maszyny M_i w uszeregowaniu S;

Algorytm Leung'a-Young'a cd.

3 Wylicz optymalną długość uszeregowania D. Dla każdego i = 1, 2, ..., m:

$$t_i = (1/i)(\sum_{j=1}^i f_j + \sum_{j=1}^i p_{n-j+1})$$

$$D = \max\{t_i\}$$

- 4 Uszereguj kolejno zadania Z_{n-m+1}, \ldots, Z_n na m maszynach (jedno zadania do jednej maszyny). Załóżmy, że szeregujemy zadanie Z_i :
 - J. $p_j \leq D f_m$, uszereguj zadanie Z_j w całości na maszynie m. Usuń maszynę M_m i zmniejsz m o 1. Zaindeksuj maszyny ponownie tak aby były one ustawione w rosnącym porządku czasów zakończenia pracy maszyn.

Algorytm Leung'a-Young'a cd.

- J. istnieje maszyna M_i tż. $p_j = D f_i$, uszereguj zadanie Z_j w całości na maszynie M_i . Usuń maszynę M_i i zmniejsz m o 1. Zaindeksuj maszyny ponownie tak aby były one ustawione w rosnącym porządku czasów zakończenia pracy maszyn.
- W przeciwnym przypadku, istnieje maszyna M_i tż. $p_j < D f_i$ i $p_j > D f_{i+1}$. Uszereguj $D f_{i+1}$ jednostek zadania Z_j na maszynie M_{i+1} i resztę jednostek zadania przydziel do maszyny M_i . Usuń maszynę M_{i+1} , uaktualnij czas zakończenia pracy maszyny M_i , zmniejsz m o 1, przeindeksuj maszyny.

Przykład

Zasoby internetowe

- http://www2.informatik.uni-osnabrueck.de/knust/class/
- http://www-desir.lip6.fr/ durrc/query/
- bazy danych benchmarków
 http://web.emn.fr/x-auto/clahlou/mdl/Benchmarks.html