Distributed Adaptive Resource Allocation over Digraphs: an Uncertain Saddle-point Dynamics Viewpoint

Dongdong Yue¹ Simone Baldi^{1,2} Jinde Cao¹ Qi Li¹ Bart De Schutter²

¹Southeast University
²Delft University of Technology

CSSC 2021 Nanjing, May 23, 2021

OUTLINE

BACKGROUND

Problem Statement

METHODOLOGY & RESULTS

NUMERICAL EXAMPLES

CONCLUSION

BACKGROUND: DISTRIBUTED RESOURCE ALLOCATION

(The picture was taken from un-copyrighted websites with thanks)

PROBLEM STATEMENT

$$\min_{\substack{x \triangleq \text{col}(x_1, \dots, x_N)}} f(x) \triangleq \sum_{i=1}^N f_i(x_i),$$
subject to
$$\sum_{i=1}^N x_i = d, \text{ where } d = \sum_{i=1}^N d_i.$$

PROBLEM STATEMENT

Assumption 1

The communication graph G is strongly connected and weight-balanced.

Assumption 2

Each local cost function $f_i(\cdot)$ is continuously differentiable and strictly convex.

PROBLEM STATEMENT

Assumption 1

The communication graph G is strongly connected and weight-balanced.

Assumption 2

Each local cost function $f_i(\cdot)$ is continuously differentiable and strictly convex.

Goal:

Solve the distributed resource allocation problem **WITHOUT** the knowledge of the underlying Laplacian eigenvalues (which has been widely used in related literature).

UNCERTAIN SADDLE-POINT DYNAMICS

Centralized Saddle-point dynamics:

$$\dot{x} = -\nabla f(x) - \mathbf{1}_N \otimes y;$$

$$\dot{y} = (\mathbf{1}_N^T \otimes \mathbf{I}_n)(x - D).$$
(2)

Note: *y* cannot be undated in a distributed way!

UNCERTAIN SADDLE-POINT DYNAMICS

Centralized Saddle-point dynamics:

$$\dot{x} = -\nabla f(x) - \mathbf{1}_N \otimes y;$$

$$\dot{y} = (\mathbf{1}_N^T \otimes \mathbf{I}_n)(x - D).$$
(2)

Note: *y* cannot be undated in a distributed way!

(Distributed) Uncertain Saddle-point dynamics:

$$\mathcal{O}: \quad \dot{x} = -\kappa_1(\nabla f(x) + y) \tag{3a}$$

$$\dot{y} = x - D - (\Upsilon \otimes \mathbf{I}_n)y - (\mathcal{L} \otimes \mathbf{I}_n)z \tag{3b}$$

$$\dot{z} = (\Upsilon \otimes \mathbf{I}_n) y \tag{3c}$$

 \mathcal{L} : the Laplacian of \mathcal{G} ;

 $\Upsilon \in \mathcal{M}^{N}_{r}$ (square with zero row sums): unknown a priori.

UNCERTAIN SADDLE-POINT DYNAMICS

Definition 1 (GEP)

The triple $(\tilde{x}, \tilde{y}, \tilde{z}) \in \mathbb{R}^{Nn} \times \mathbb{R}^{Nn} \times \mathbb{R}^{Nn}$ is called a generalized equilibrium point of (3), if for any $\Upsilon \in \mathcal{M}_{\mathbf{r}}^{N}$, there holds $\mathcal{O}|_{(\tilde{x}, \tilde{y}, \tilde{z})} = 0$.

Lemma 1 (GEPs of (3))

Under Assumptions 1 and 2:

- ► The uncertain system (3) has infinitely many GEPs.
- ▶ If $(\tilde{x}, \tilde{y}, \tilde{z})$ is a GEP of (3), then $(\tilde{x}, \tilde{y}) = (x^*, \mathbf{1}_N \otimes y^*)$, i.e., \tilde{x} is the optimizer of problem (1).
- (\tilde{x}, \tilde{y}) is unique.

ALGORITHMS

DST-based:

$$\dot{x} = -\kappa_1(\nabla f(x) + y)
\dot{y} = x - D - (\mathcal{L}^a \otimes \mathbf{I}_n)y
- (\mathcal{L} \otimes \mathbf{I}_n)z
\dot{z} = (\mathcal{L}^a \otimes \mathbf{I}_n)y
\dot{a}_{ij} = \begin{cases} g(y_{i_k}, y_{k+1}, \sum_{j \in \bar{\mathcal{N}}_{out}(k+1)} y_j), \\ \text{if } e_{ji} \in \bar{\mathcal{E}} \\ 0, & \text{if } e_{ji} \in \mathcal{E} \setminus \bar{\mathcal{E}} \end{cases}$$

DST: directed spanning tree. Note: the specific form of *g* is omitted here.

ALGORITHMS

DST-based:

 $\dot{x} = -\kappa_1(\nabla f(x) + y)$

$$\dot{y} = x - D - (\mathcal{L}^{a} \otimes \mathbf{I}_{n})y \\
- (\mathcal{L} \otimes \mathbf{I}_{n})z \\
\dot{z} = (\mathcal{L}^{a} \otimes \mathbf{I}_{n})y \\
\dot{a}_{ij} = \begin{cases}
g(y_{i_{k}}, y_{k+1}, \sum_{j \in \bar{\mathcal{N}}_{out}(k+1)} y_{j}), \\
\text{if } e_{ji} \in \bar{\mathcal{E}} \\
0, & \text{if } e_{ji} \in \mathcal{E} \setminus \bar{\mathcal{E}}
\end{cases}$$

DST: directed spanning tree. Note: the specific form of *g* is omitted here.

Node-based:

$$\dot{x} = -\kappa_1(\nabla f(x) + y)$$

$$\dot{y} = x - D - (\mathcal{AL} \otimes \mathbf{I}_n)y$$

$$- (\mathcal{L} \otimes \mathbf{I}_n)z$$

$$\dot{z} = (\mathcal{AL} \otimes \mathbf{I}_n)y$$

$$\dot{\alpha}_i = \kappa_2 \xi_i^T \xi_i$$

$$\xi_i = \sum_{j \in \mathcal{N}_{\text{in}}(i)} w_{ij}(y_i - y_j)$$

MAIN RESULTS

Theorem 1

Under Assumptions 1-2, the DST-based algorithm drives (x, y) to $(x^*, \mathbf{1}_N \otimes y^*)$ asymptotically for any initial condition $(x(0), y(0), z(0) \in \mathbb{R}^{Nn} \times \mathbb{R}^{Nn} \times \mathbb{R}^{Nn}$ and any $a_{ij}(0) \in \mathbb{R}$ provided there exists a scalar $m \in \mathbb{R}^+$, such that the following condition (referred to as spanning-tree-based m-strongly convex) holds $\forall x, y \in \mathbb{R}^{Nn}$:

$$(x-y)^{T}(\bar{\mathcal{L}}^{U} \otimes \mathbf{I}_{n})(\nabla f(x) - \nabla f(y)) \geq m(x-y)^{T}(\bar{\mathcal{L}}^{U} \otimes \mathbf{I}_{n})(x-y)$$
(4)

where $\bar{\mathcal{L}}^U = \Xi^T \Xi$ is the un-weighted Laplacian matrix of the undirected spanning tree $\bar{\mathcal{G}}^U$ based on $\bar{\mathcal{G}}$. Moreover, the adaptive gains \bar{a}_{k+1,i_k} , $k \in \mathcal{I}_{N-1}$, converge to some finite constant values.

MAIN RESULTS

Consider the special case of quadratic local costs

$$f_i(x) \triangleq x^T \Theta x + x^T \varphi_i, \qquad \Theta \succ 0, \ \varphi_i \in \mathbb{R}^n.$$
 (5)

In this case, the spanning-tree-based m-strongly convex condition (4) holds with any $m \leq \underline{\lambda}(\Theta)$ and for any DST. Immediately, we have the following corollary:

Corollary 1

Under Assumptions 1-2, the resource allocation problem (1) with local costs (5) can be solved with the DST-based algorithm for any initial conditions $(x(0),y(0),z(0) \in \mathbb{R}^{Nn} \times \mathbb{R}^{Nn} \times \mathbb{R}^{Nn}$ and any $a_{ij}(0) \in \mathbb{R}$, i.e., $(x,y) \to (x^*,\mathbf{1}_N \otimes y^*)$. Moreover, the adaptive gains \bar{a}_{k+1,i_k} , $k \in \mathcal{I}_{N-1}$, converge to some finite constant values.

MAIN RESULTS

Theorem 2

Under Assumptions 1-2, the node-based algorithm drives (x, y) to $(x^*, \mathbf{1}_N \otimes y^*)$ asymptotically for any initial conditions $(x(0), y(0), z(0) \in \mathbb{R}^{Nn} \times \mathbb{R}^{Nn} \times \mathbb{R}^{Nn}$ and any $\alpha_i(0) \in \mathbb{R}^+$ provided there exists a scalar $m \in \mathbb{R}^+$, such that the following condition (referred to as jointly m-strongly convex) holds $\forall x, y \in \mathbb{R}^{Nn}$:

$$(x-y)^{T}(\mathcal{L}^{T}\mathcal{L}\otimes \mathbf{I}_{n})(\nabla f(x)-\nabla f(y))\geq m(x-y)^{T}(\mathcal{L}^{T}\mathcal{L}\otimes \mathbf{I}_{n})(x-y).$$
(6)

Moreover, the adaptive gains α_i , $i \in \mathcal{I}_N$, converge to some finite constant values.

Corollary 2

Under Assumptions 1-2, the resource allocation problem (1) with local costs (5) can be solved with the node-based algorithm · · ·

TEST ON IEEE 30/118-BUS POWER GRIDS

Figure: Two communication topology between power generators.

IEEE 30-BUS: DST/NODE-BASED EVOLUTION

IEEE 118-BUS: DST/NODE-BASED EVOLUTION

CONCLUSION

List of Contributions:

- ► A distributed uncertain saddle-point dynamics is proposed for resource allocation problem.
- ► Two adaptive saddle-point algorithms named DST-based and node-based have been proposed.
- ► The proposed algorithms successfully remove the knowledge of the underlying Laplacian eigenvalues.

Future works?

Thank you for listening!

Question?

