## Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba November 25, 2022





## SOLUTION OF EXERCISESHEET 6

### Exercise 6-1

### Exercise 6-2

**Task:** Show that  $\Pi_{CBC}$  is not CCA-secure by demonstrating a successful adversary.

Assume n = 3

The adversary  $\mathcal{A}$  can choose the two messages  $m_0=m_0^1||m_0^2=000\ 000$  and  $m_1=m_1^1||m_1^2=111\ 111$  which he sends to the challenger. Then he gets the ciphertext  $c_b=(c_b^0||c_b^1||c_b^2)=(IV||f_k(IV\oplus m_b^1)||f_k(f_k(IV\oplus m_b^1)\oplus m_b^2))$  back.

 $(IV||f_k(IV\oplus m_b^1)||f_k(f_k(IV\oplus m_b^1)\oplus m_b^2)) \text{ back}.$  Then  $\mathcal{A}$  flipps the last bit from  $c_b^2$ , so  $(c_b^2)'=c_b^2\oplus 001$  and asks the decryption oracle for the decryption of  $c_b'=c_b^0||c_b^1||(c_b^2)'$ . Because  $c_b'\neq c_b$  the decryption oracle answers with  $m'=f_k^{-1}(c_b^1)\oplus c_b^0||f_k^{-1}(c_b^2)\oplus c_b^1=f_k^{-1}(f_k(IV\oplus m_b^1))\oplus IV||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)=m_b^1||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)=m_b^1||f_k^{-1}((c_b$ 

 $\Rightarrow \Pi_{CBC}$  mode is not CCA-secure

# Exercise 6-3