0.1. Ejercicio 1

En este ejercicio se implementa un sistema de control para un tanque de agua, el cual cuenta con dos sensores, siendo estos I y S, los cuales indican si el tanque está lleno, por la mitad o vacío. Las condiciones de diseño son las siguientes:

- Cuando está vacío (I = 0, S = 0) se prenden las dos bombas B_0 y B_1 .
- Cuando se encuentra lleno (I = 1, S = 1) se apagan las bombas.
- Cuando está por la mitad (I = 1, S = 0) se activa una sola bomba, pero estas se alternan entre sí al establecer cual trabaja.

Estas limitaciones se corresponden con la siguiente tabla de verdad:

Ι	\mathbf{S}	B_1	B_2
0	0	1	1
0	1	\mathbf{x}	X
1	0	Alte	rnado
1	1	0	0

Tabla 1: Tabla de verdad del sistema.

A partir de lo expuesto previamente, se diseña la siguiente FSM.

Figura 1: Finite state machine.

Con lo presentado en la Figura (6), se confecciona una tabla de transiciones.

Estado Acutal	Estado Futuro				Salida	
	I-S	I-S	I-S	I-S	Both	Toggle
	0-0	0-1	1-0	1-1		
A	X	X	В	X	1	0
В	A	X	X	\mathbf{C}	0	1
С	x	X	В	X	0	0

Tabla 2: Tabla de transiciones del sistema.

A partir de la Tabla (2) y la Figura (6) se puede llegar a la siguiente tabla, donde y_1 e y_2 representan la salida de los flip-flops, mientras que Y_1 e Y_2 la entrada de los mismos.

Estado Acutal	Codificación	Estado Futuro				Salida	
	21- 21-	$Y_2 - Y_1$	$Y_2 - Y_1$	$Y_2 - Y_1$	$Y_2 - Y_1$	Ambos	Toggle
	$y_2 - y_1$	I-S	I-S	I-S	I-S	Allibos	Toggle
		0-0	0-1	1-0	1-1		
A	00	X	X	01	X	1	0
В	01	00	X	X	11	0	1
С	10	x	X	01	X	0	0
D	11	x	X	X	X	X	x

Se destaca que la variable "Ambos" hace referencia a estado en el cual se deben prender ambas bombas, mientras que la variable "Toggle" a cuando debe prenderse una sola e intercambiar.

Luego, se prosigue a resolver los mapas de Karnaugh para cada variable:

y2y1 IS	00	01	11	10
00	X	X	X	1
01	0	X	1	X
11	X	X	X	X
10	X	X	X	1

y2y1 IS	00	01	11	10
00	X	X	X	0
01	0	X	1	X
11	X	X	X	X
10	X	X	X	0

(a) Tabla de Karnaugh para Y_1 .

 $y1 \\ 0 \\ 1 \\ 0 \\ X$

(b) Tabla de Karnaugh para Y_2 .

(c) Tabla de Karnaugh para "Ambos".

(d) Tabla de Karnaugh para "Toggle".

Figura 2: Tablas de Karnaugh para cada variable analizada.

A partir de la Figura (2) se derivan las siguientes expresiones:

$$Y_1 = I$$

$$Y_2 = S$$

$$\tag{1}$$

$$Ambos = \overline{y_2 + y_1}$$

$$Toggle = y_1$$
(2)

Luego, se procede a obtener los circuitos para la FSM.

Figura 3: Circuito FSM.

Agregando el siguiente circuito lógico, se implementa la función de Toggle junto a la lógica de salida.

Figura 4: Circuito FSM con Toggle.

Una vez establecidos los circuitos y a partir de ellos, se procedió a implementarlos en PCB:

Figura 5: PCB en Altium de los circuitos.

Figura 6: Placa implementada.

Finalmente, se procedió a medir los niveles de tensión para las transiciones posibles. A continuación se presentan los resultados.

Figura 7: Transición 00-01.

Figura 8: Transición 00-10.

Figura 9: Transición 01-00.

Figura 10: Transición 01-11.

Figura 11: Transición 10-00.

Figura 12: Transición 10-11.

Figura 13: Transición 11-01.

Figura 14: Transición 11-10.