Exercise 1.1: Let P be a probability measure on (Ω, \mathcal{F})

i) Monotonicity: If $A \subset B$ then $P(B) - P(A) = P(B - A) \ge 0$.

Let $C = B \cap A^c$. Then $A \cup C = B$. Because A and C are disjoint, we have that $P(B) = P(A \cup C) = P(A) + P(C)$. Then $P(B) - P(A) = P(C) = P(B \setminus A)$ which is greater or equal to zero since $P(C) \ge 0$.

ii) Subadditivity: For $\langle A_m \rangle \in \mathcal{F}$ and $A \subset \cup^{\infty} A_m$ it follows that $P(A) \leq \sum^{\infty} P(A_m)$

Since $\langle A_m \rangle \in \mathcal{F}$ and \mathcal{F} is a sigma field, there exists $\langle B_m \rangle$ such that $B_i \cap B_j = \emptyset$ for $i \neq j$ and $\cup^{\infty} A_m = \cup^{\infty} B_m$ [1, pp. 17–18]. From (i) we know that $A \subset \cup B_m \implies P(A) \leq P(\cup B_m)$. Then

$$P(A) \le P(\cup^{\infty} B_m) = \sum_{m=0}^{\infty} P(B_m) \le \sum_{m=0}^{\infty} P(A_m)$$

The (*) inequality follows from how we define each element of $\langle B_m \rangle$:

$$B_i = A_i \setminus [A_1 \cup \cdots A_{i-1}] \implies P(B_i) = P(A_i) - \sum_{i=1}^{i-1} P(A_j)$$

 $\implies P(B_i) \le P(A_i), \ \forall i$

iii) Continuity from below: If $A_i \uparrow A$ then $P(A_i) \uparrow P(A)$

By supposition, we know that for every i we have $A_i = \bigcup_{j=1}^i A_j$

$$\lim_{i \to \infty} P(A_i) = \lim_{i \to \infty} P(\cup^i A_j) = P(A)$$

(I'm not sure if this is rigorous enough but ...)

iv) Continuity from above: If $A_i \downarrow A$ then $P(A_i) \downarrow P(A)$

For every i we have that $A_i = \bigcap_{j=1}^i A_j$

$$\lim_{i \to \infty} P(A_j) = \lim_{i \to \infty} P(\cap^i A_j) = P(A)$$

Exercise 1.2:

i) If \mathcal{F}_i , $i \in I$ are σ -fields then $\cap_{i \in I} \mathcal{F}_i$ is.

Suppose \mathcal{F}_i are σ -fields.

- Consider $A \in \cap_{i \in I} \mathcal{F}_i$. Then $\exists i$ such that $A \in \mathcal{F}_i$. So $A^c \in \mathcal{F}_i$ because \mathcal{F}_i is a σ -field σ -field. Then $A^c \in \cap_{i \in I} \mathcal{F}_i$.
- Consider $A_j \in \cap_{i \in I} \mathcal{F}_i$ a countable sequence of sets. Then $\forall j, \forall i, A_j \in \mathcal{F}_i$. Then $\cup A_j \in F_i$, $\forall i$ because \mathcal{F}_i is a σ -field. Then $\cup A_j \in \cap_{i \in I} \mathcal{F}_i$
- ii) Use the result in (i) to show if we are given a set Ω and a collection \mathcal{A} of subsets of Ω then there is a smallest σ -field containing \mathcal{A} .

Let \mathcal{A} be a collection of subsets of Ω . let $\mathcal{F}_{\mathcal{A}}$ be the set of sigma fields that contain \mathcal{A} . Define $\mathcal{F} = \cap_{\mathcal{A}} \mathcal{F}_{\mathcal{A}}$. From (i) we know that \mathcal{F} is a sigma field. By definition \mathcal{F} is the smallest sigma field containing \mathcal{A} since for sigma field \mathcal{C} such that $\mathcal{A} \subset \mathcal{C}$, we have $\mathcal{F} = \cap_{\mathcal{A}} \mathcal{F}_{\mathcal{A}} \subset \mathcal{C}$

With $(\mathbb{R}, \mathcal{F}, P)$ and \mathcal{B} the borel sets, define a random variable as a real valued function such that X is \mathcal{F} measurable for every borel set

$$X^{-1}(B) \in \mathcal{F}, \quad B \in \mathcal{B}$$

Then X induces a probability measure on \mathbb{R} called its distribution

$$\mu(A) = P(X \in A) = P(X^{-1}(A)), \quad A \in \mathcal{B}$$

The distribution function is defined as

$$F(x) = P(X \le x)$$

References

[1] H. L. Royden. Real analysis / H.L. Royden. eng. Third edition. New York: Macmillan, 1988 - 1988. ISBN: 0024041513.