Mössbauer Spectroscopy

Jay Lawhorn

Mössbauer Spectroscopy

Free atom:

photon emission and nuclear recoil

Photon not energetic enough to excite same transition

Atom in lattice:

- "Recoilless" Emission: transferred momentum dispersed across lattice
- Negligible photon energy loss
- Nuclear resonance absorption possible

Mössbauer Effect in ⁵⁷Fe

- Deposit ⁵⁷Co in platinum substrate
- ⁵⁷Co decays to excited state of ⁵⁷Fe
- 90% of emitted I4.4 keV photons recoilless
- 14.4 keV line very narrow: 4.7x10⁻⁹ eV
- Fractional resolution ~ I 0⁻¹²

Mössbauer Apparatus

- Source mounted on piston oscillating with sawtooth velocity
- Emitted photons doppler shifted:

$$E' = E(1 + \frac{V}{c})$$

 Analyze absorption lines from absorber

Velocity Calibration

- Interferometric measurement of piston velocity
- Count number of voltage maxima per time interval:

$$V_i = \frac{C\lambda}{2NT}$$

Absolute Velocity Measurement

Absolute Velocity Measurement

Nominal fit:

$$a + |b(x - c) + d(x - c)^{2}|$$

 Subtract constant background term

- Uncertainty from functional form: fit two regions to lines on either side of cusp
 - <8%; largest near cusp</p>
- Uncertainty from selection of fit region
 - ~|%

Metallic ⁵⁷Fe

- Internal magnetic field causes Zeeman splitting
- Six transitions allowed by magnetic-dipole selection rules
- Determine splitting energies from differences in absorption peak velocities

Metallic ⁵⁷Fe Data

- Fit six Lorentzians and quadratic background
- Restrict to range from velocity calibration

Metallic ⁵⁷Fe Analysis

- Peak location from center of Lorentzian
- Uncertainty in peak value $(\sqrt{\Gamma})$: 2-8%
- Uncertainty from velocity calibration: 0.2-7%

Metallic ⁵⁷Fe Results

 Energy level splittings in ground and excited state:

$$\Delta E_0 = (2.13 \pm 0.05) \times 10^{-7} \text{ eV}$$

 $\Delta E_1 = (1.21 \pm 0.04) \times 10^{-7} \text{ eV}$

 Ratio of magnetic moments in first excited and ground states:

$$\mu_1/\mu_0 = -3\Delta E_1/\Delta E_0 = -1.71 \pm 0.07$$

Fe₂O₃

 Zeeman splitting with additional shifts from electric quadrupole moments

Fe₂O₃ Data

Fe₂O₃ Analysis

Calibration

- Use six peaks in ⁵⁷Fe spectrum and known velocities to fit quadratic
- For each peak, calculate difference between known velocity and fit result
- Uncertainties on velocity determination from quadratic fit to differences

Fe₂O₃ Results

- Uncertainty on peak location: I-7%
- Uncertainty on velocity: 6-10%

$$\Delta E_0 = (3.34 \pm 0.06) \times 10^{-7} \text{ eV}$$

 $\Delta E_1 = (1.91 \pm 0.06) \times 10^{-7} \text{ eV}$
 $\epsilon = (6 \pm 9) \times 10^{-9} \text{ eV}$
 $\mu_1/\mu_0 = -1.72 \pm 0.07$

Summary

• Metallic ⁵⁷Fe:

$$\Delta E_0 = (2.13 \pm 0.05) \times 10^{-7} \text{ eV}$$

 $\Delta E_1 = (1.21 \pm 0.04) \times 10^{-7} \text{ eV}$
 $\mu_1/\mu_0 = -1.71 \pm 0.07$

• Fe₂O₃:

$$\Delta E_0 = (3.34 \pm 0.06) \times 10^{-7} \text{ eV}$$

 $\Delta E_1 = (1.91 \pm 0.06) \times 10^{-7} \text{ eV}$
 $\epsilon = (6 \pm 9) \times 10^{-9} \text{ eV}$
 $\mu_1/\mu_0 = -1.72 \pm 0.07$