МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшегообразования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТАЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

	КАФЕДРА №51	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕ	НКОЙ	
ПРЕПОДАВАТЕЛЬ		
<u>Канд. техн. наук</u> должность, уч. степень, звание	подпись, дата	<u>Е.Д.Пойманова</u> инициалы, фамилия
ОТЧЕТ О Ј	ТАБОРАТОРНОЙ РАБ	SOTE №1
МОДЕЛИРОВАНИЕ	Е БАЗОВОЙ СЛУЧАЙІ	НОЙ ВЕЛИЧИНЫ
по курсу: моделир	оование информационн	ных систем

 СТУДЕНТ ГР. №
 5912
 Б.А.Карханин

 номер группы
 подпись, дата
 инициалы, фамилия

Оглавление

Цель работы:	3
Ход работы:	
1. Построение датчика БСВ	
2. Сравнение теоретических и экспериментальных значений M и D	
3. Гистограмма распределения относительных частот попаданий псевдослучайных величин в отрезки интервала [0,1]	3
4. Расчет автокорреляции и построение графиков автокорреляции	
Выволы	

Цель работы:

Построить датчик базовой случайной величины по заданному алгоритму и выполнить тестирование датчика на соответствие основным свойствам базовой случайной величины.

Ход работы:

1. Построение датчика БСВ

- 1) Построить датчик БСВ с периодом T > 500.
- 2) Оценить математическое ожидание и дисперсию псевдослучайных значений zi и сравнить их с теоретическими значениями M и D.
- 3) Проверить датчик БСВ на равномерность и построить гистограмму распределения относительных частот p1, p2, ..., pK на K отрезках интервала [0,1].
- 4) Проверить датчик БСВ на независимость, определяя коэффициент корреляции для разных значений s и T. Построить в одном графическом окне графики зависимости R = f(T) для s = 2, s = 5, s = 10.

2. Сравнение теоретических и экспериментальных значений М и D

Математическое ожидание M и дисперсия D базовой случайной величины имеют следующие значения: M(z) = 0.5 и D = 0.083

В ходе выполнения программы, были получены значения:

Мат ожидание = 0.4787910137776244 Дисперсия = 0.08427525981138584

Рисунок 1.Результат работы программы по расчету мат ожидания и дисперсии

Сравнивая полученные значения с теоретическими, видно, что программа получает корректные значения.

3. Гистограмма распределения относительных частот попаданий псевдослучайных величин в отрезки интервала [0,1]

Рисунок 2. Распределение относительных частот $p_1, ..., p_k$ на K отрезках интервала [0,1]

4. Расчет автокорреляции и построение графиков автокорреляции

Обозначим равномерное распределение вероятностей на интервале [0, 1] как R[0,1] и утверждение, что БСВ z имеет распределение R[0,1], запишем в виде $z \sim R[0,1]$.

Проверку $z \sim R[0,1]$ можно выполнить с помощью частотного теста Последовательность проверки, следующая:

- 1. Интервал [0,1] разбить на K равных отрезков, например, K=10.
- 2. Подсчитать, сколько чисел zi попало в каждый из K отрезков, то есть число попадания $n1, \dots nk$. 3. Найти относительные частоты попаданий в отрезки: $pi, \dots pK$.
- 4. Построить гистограмму pi, ... pK частот на K отрезках интервала [0,1]. Простейшую проверку статистической независимости БСВ можно осуществить, оценивая линейную корреляцию между числами z_i и z_{i+s} , отстоящими друг от друга в псевдослучайной последовательности на фиксированный шаг $s \ge 1$. Тогда во всей выборке $z_1, \ldots z_n$ имеем следующие (n-s) реализаций пар: $(z_1, z_{1+s}), \ldots (z_{n-s}, z_n)$.
- 5. По этим реализациям можно рассчитать оценку R коэффициента корреляции для значений БСВ по формуле

$$\hat{R} = 12 \frac{1}{T - s} \left(\sum_{i=1}^{T - s} z_i z_{i+s} \right) - 3.$$

График автокорреляции приведен ниже

Рисунок 3. График автокорреляции для S=2; S=5; S=10

Выводы

Математическое ожидание и дисперсия, рассчитанные в программе, совпадают с теоретическими, что свидетельствует о корректной работе программы.

По гистограмме частот вероятностей можно сделать вывод о том, что распределение близко к равномерному.

График автокорреляции локализуется около 0, что свидетельствует о слабой зависимости между генерируемыми значениями.