KNN (K-NearestNeighbor)

直观的理解

识别可疑人物

识别可疑人物

使用 KNN 算法

使用 KNN

smoothness

model = KNeighborsClassifier()
model.fit(X_train, y_train)

training score: 0.9061 test score: 0.8531

决策边界 (decision boundary)

radius

为什么第二个特征没有起到作用?

	0	1
0	17.99	0.1184
1	20.57	0.08474
2	19.69	0.1096
3	11.42	0.1425
4	20.29	0.1003
5	12.45	0.1278
6	18.25	0.09463
7	13.71	0.1189
8	13	0.1273
9	12.46	0.1186
10	16.02	0.08206
11	15.78	0.0971

数据归一化

最值归一化

适用于分布有明显边界的情况 缺点:容易受到 outlier 影响

均值方差归一化

归一化后的结果

归一化前

training score: 0.9061 test score: 0.8531

归一化后

training score: 0.9225 test score: 0.8881

KNN 算法的参数

model = KNeighborsClassifier(n_neighbors=1)

model = KNeighborsClassifier(n_neighbors=5)

default

如果 K 值太大?

经验数值≈√样本量

$$K = 20$$

$$K = 30$$

K	效果
太小	过拟合
太大	欠拟合
经验值	sqrt(N)

欧式距离 (Euclidean Distance)

曼哈顿距离 (Manhattan Distance)

Euclidean Distance

$$\sqrt{\sum \left(x_1^{(i)} - x_2^{(i)}\right)^2} = \left[\sum \left|x_1^{(i)} - x_2^{(i)}\right|^2\right]^{1/2}$$

Manhattan Distance

$$\sum \left| x_1^{(i)} - x_2^{(i)} \right| = \left[\sum \left| x_1^{(i)} - x_2^{(i)} \right|^1 \right]^{1/1}$$

闵可夫斯基距离 (Minkowski Distance)
$$\left|\sum \left|x_1^{(i)} - x_2^{(i)}\right|^p\right|^{1/p}$$

参数 p 的影响

more focus on large values
more sensitive to outliers

参数 p 的影响

KNeighborsClassifier(n_neighbors=20, **p = 2**)

KNeighborsClassifier(n_neighbors=20, p = 1)

距离作为权重

KNN 算法shi's总结

优点	缺点
容易理解 无需调整即可用于多分类问题 可用于分类和回归	计算复杂度高 对于大数据计算速度慢 事实上并没有进行任何训练 没有形成模型