```
import pandas as pd
# Reload necessary datasets for clustering

customers_path = (r"C:\Users\siddh\OneDrive\Desktop\internship\zeotap\
Customers.csv")
transactions_path = (r"C:\Users\siddh\OneDrive\Desktop\internship\
zeotap\Transactions.csv")

# Load the datasets
customers = pd.read_csv(r"C:\Users\siddh\OneDrive\Desktop\internship\
zeotap\Customers.csv")
transactions = pd.read_csv(r"C:\Users\siddh\OneDrive\Desktop\
internship\zeotap\Transactions.csv")

# Merge datasets
customer_transactions = transactions.merge(customers, on="CustomerID", how="left")
```

Feature Engineering for Clustering

```
# Calculate total purchase value and transaction frequency for each
customer
customer summary = customer transactions.groupby("CustomerID").agg({
    "TotalValue": "sum", # Total purchase value
"TransactionID": "count" # Transaction frequency
}).rename(columns={"TotalValue": "TotalPurchaseValue",
"TransactionID": "TransactionFrequency"})
# Add customer profile information (Region)
customer summary = customer summary.merge(customers[["CustomerID",
"Region"]], on="CustomerID", how="left")
# One-hot encode categorical variable (Region)
customer summary = pd.get dummies(customer summary,
columns=["Region"], drop first=True)
# Normalize numeric features for clustering
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled features =
scaler.fit transform(customer summary.drop("CustomerID", axis=1))
# Perform Clustering with K-Means
from sklearn.cluster import KMeans
from sklearn.metrics import davies bouldin score
# Try different cluster sizes (2 to 10) and calculate DB Index
cluster metrics = []
```

```
for n clusters in range(2, 11):
    kmeans = KMeans(n clusters=n clusters, random state=42)
    labels = kmeans.fit predict(scaled features)
    db index = davies bouldin score(scaled features, labels)
    cluster metrics.append({"Clusters": n clusters, "DB Index":
db index})
# Find the best number of clusters based on the lowest DB Index
best cluster = min(cluster metrics, key=lambda x: x["DB_Index"])
optimal k = best cluster["Clusters"]
# Run K-Means with optimal number of clusters
kmeans final = KMeans(n clusters=optimal k, random state=42)
final_labels = kmeans final.fit predict(scaled features)
customer summary["Cluster"] = final labels
# Visualization of clusters (2D using PCA)
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
pca = PCA(n components=2)
pca features = pca.fit transform(scaled features)
# Add PCA components to the dataframe for visualization
customer summary["PCA1"] = pca features[:, 0]
customer summary["PCA2"] = pca features[:, 1]
# Plot clusters
plt.figure(figsize=(10, 6))
for cluster in range(optimal k):
    cluster data = customer summary[customer summary["Cluster"] ==
clusterl
    plt.scatter(cluster data["PCA1"], cluster data["PCA2"],
label=f"Cluster {cluster}", alpha=0.6)
plt.title("Customer Segmentation - PCA Visualization")
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.legend()
plt.show()
```

Customer Segmentation - PCA Visualization

<pre># Final cluster metrics and results best_cluster, customer_summary.head()</pre>								
<pre>({'Clusters': 9, 'DB_Index': np.float64(0.7182543454535527)}, CustomerID TotalPurchaseValue TransactionFrequency Region_Europ</pre>								urope
`O	C0001		3354.52			5		False
1	C0002		1862.74			4		False
2	C0003		2725.38			4		False
3	C0004		5354.88			8		False
4	C0005		2034.24			3		False
PCA2	Region_NortH	n America	Region_S	outh Ameri	.ca Cl	uster	PCA1	
0		False		Tr	ue	1	0.348301	
1.640 1	9892	False		Fal	.se	4	-0.927502	
0.122	2031	False		Tr	ue	1	-0.195537	
1.755	5608							
3		False		l r	rue	5	2.021774	

1.290685 4 False False 4 -1.173910 0.193799)