Alexey Izmailov

Brown University Department of Applied Mathematics

Alexey Izmailov

Solving Differential Equations with Wavele

Blocks and Columns

Blocks

Columns

Tables & Figures

D (

$\underline{\text{Outline}}$

Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Tables of Figures

Tables Figures

References

Here is some text

- This is some normal text.
- This is some alerted text
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$

This is a quotation.

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks an Columns

Blocks

Columns

Tables of Figures

Tables Figures

Deference

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a quotation

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks an

Columns

Columns

Figures

Tables

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a guotation

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks ar

Columns

Blocks

Tables & Figures

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a quotation

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks ar

Columns Blocks

Columns

Tables & Figures

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a quotation.

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Columns

Figures

Figures

Tables

Collocation Points

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and

Blocks

Tables

Figures Tables

References

Wavelets on Collocation Points

Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Tables & Figures _{Tables}

References

A Collocation Method for Second-Order ODEs

Solving Differential Equations with Wavelets

Error Estimate

Alexey Izmailov

Solving Differential Equations with Wavelet

Blocks and

Blocks Columns

Tables & Figures Tables Figures

References

Blocks

This is a Block

This is important information

This is an Alert block

This is an important alert

This is an Example block

This is an example

Alexey Izmailo

Solving Differential Equations with Wavele

Blocks and

Columnis

Columns

Tables & Figures

References

Contents of the first column

Contents split into two lines

Alexey Izmailov

Differential Equations

Blocks and

Columns

Columns

Tables & Figures

Tables

References

Izmailo

Solving Differential Equations with Wavele

Blocks and

Blocks

Tables & Figures

Tables

References

Tables

1	2	3
4	5	6
7	8	9

Table: This is a Table!

Izmailov

Figures

Blocks and

Blocks

Columns

Figures

Figures

References

Alexey Izmailov

Solving Differential Equations with Wavele

Blocks and

Blocks

Tables & Figures

Figures

References

References

- Chick png from wikimedia: Chick
- ▶ Dice PNG from wikimedia: Dice
- ► Wikibooks on Beamer: LATEX presentations
- ► Beamer user guide