Exe. 4

```
library(ggraph)
library(arrow)
library(tidyverse)
library(gender)
library(wru)
library(lubridate)

library(ggplot2)
library(gridExtra)
library(grid)

library("gender")
library("mice")

app <- read_parquet('/Users/danystefan/Documents/01 McGill University/01 MMA/01 Summer 2022/ORGB 672/Ass</pre>
```

edges <- read_csv('/Users/danystefan/Documents/01 McGill University/01 MMA/01 Summer 2022/ORGB 672/Assi

Gender will be determined based on the examiner's first name, which is stored in the field examiner name first. We'll do that using library gender, based on a modified version of their own example.

The applications table has almost 2 million records, which is due to the fact that each examiner has as many records as the amount of applications the examiner worked on during this time period. As a result, our initial step is to collect all unique names into a distinct list called examiner names. We'll next make a guess about each person's gender and link this table back to the original dataset. So, without further ado, here are some names:

Add gender part

```
# first name
names <- app %>% distinct(examiner_name_first)
# names and gender
names_gender <- names %>%
    do(results = gender(.$examiner_name_first, method = "ssa")) %>%
    unnest(cols = c(results), keep_empty = TRUE) %>%
    select(
    examiner_name_first = name,
    gender,
    proportion_female
)
names_gender <- names_gender %>% select(examiner_name_first, gender)
# join
app <- app %>% left_join(names_gender, by='examiner_name_first')
```

Add race part

```
# last names
sur <- app %>% select(surname = examiner_name_last) %>% distinct()
race <- predict_race(voter.file = sur, surname.only = T) %>% as_tibble()
## [1] "Proceeding with surname-only predictions..."
race <- race %>%
 mutate(max_race_p = pmax(pred.asi, pred.bla, pred.his, pred.oth, pred.whi)) %>%
 mutate(race = case_when(
   max_race_p == pred.asi ~ "Asian",
max_race_p == pred.bla ~ "black",
   max_race_p == pred.his ~ "Hispanic",
   max_race_p == pred.oth ~ "other",
   max_race_p == pred.whi ~ "white",
   TRUE ~ NA_character_
 ))
# cleanup
race <- race %>% select(surname, race)
app <- app %>% left_join(race, by=c("examiner_name_last" = "surname"))
```

To figure out the timespan for which we observe each examiner in the applications data, let's find the first and the last observed date for each examiner. We'll first get examiner IDs and application dates in a separate table, for ease of manipulation. We'll keep examiner ID (the field examiner_id), and earliest and latest dates for each application (filing_date and appl_status_date respectively). We'll use functions in package lubridate to work with date and time values.

Add tenure part

```
# get dates
dates <- app %>% select(examiner_id, filing_date, appl_status_date)
# calculate start and end date
dates <- dates %>% mutate(start_date = ymd(filing_date), end_date = as_date(dmy_hms(appl_status_date)))

dates <- dates %>%
    group_by(examiner_id) %>%
    summarise(
    earliest_date = min(start_date, na.rm = TRUE),
    latest_date = max(end_date, na.rm = TRUE),
    tenure_days = interval(earliest_date, latest_date) %/% days(1)
) %>%
    filter(year(latest_date) <2018)

# join
app <- app %>% left_join(dates, by="examiner_id")
```

 \mathbf{APT}

```
app$appl_end_date <- paste(app$patent_issue_date, app$abandon_date, sep=',')
# cleanup
app$appl_end_date <- gsub('NA', "", as.character(app$appl_end_date))</pre>
app$appl_end_date <- gsub(',', "", as.character(app$appl_end_date))</pre>
app\$appl\_end\_date <- as.Date(app\$appl\_end\_date, \  \, \underbrace{format="\%Y-\%m-\%d"})
app$filing_date <- as.Date(app$filing_date, format="%Y-%m-%d")
app$appl_proc_days <- as.numeric(difftime(app$appl_end_date, app$filing_date, units=c("days")))
app <- app %>% filter(appl_proc_days >=0 | appl_proc_days != NA)
# Find the count of missing values in each column
sapply(app, function(x) sum(is.na(x)))
##
     application_number
                                  filing_date
                                                examiner_name_last
##
##
    examiner_name_first examiner_name_middle
                                                       examiner_id
##
                     0
                                      390396
                                                              3746
##
      examiner_art_unit
                                  uspc_class
                                                     uspc_subclass
##
                                                             1555
                     0
##
          patent_number
                           patent_issue_date
                                                      abandon_date
##
                 601857
                                      601383
                                                           1087295
##
          disposal_type
                            appl_status_code
                                                  appl_status_date
##
                      0
                                         355
                                                               356
##
                                       gender
##
                     0
                                      253871
                                                                0
##
          earliest_date
                                 latest_date
                                                       tenure_days
##
                  18240
                                      18240
                                                             18240
##
          appl_end_date
                               appl_proc_days
##
                     0
# Remove unnecessary columns for modelling
applications_mod <- subset(app, select = -c(filing_date, abandon_date, earliest_date, appl_end_date, appl
sapply(applications_mod, function(x) sum(is.na(x)))
    application_number examiner_name_last examiner_name_first
                                                                         examiner_id
                                                                                3746
##
                    0
                                         0
##
                                                  uspc_subclass
     examiner_art_unit
                                 uspc_class
                                                                       disposal_type
##
                                         4
                                                           1555
                                                                                   0
                    0
##
      appl_status_code
                                         tc
                                                         gender
                                                                                race
##
                                                         253871
                                         0
                   355
                                                                                   0
##
           tenure_days
                            appl_proc_days
##
                 18240
applications_mod <- applications_mod %>% drop_na(examiner_id)
applications_mod$gender <- as.factor(applications_mod$gender)</pre>
applications_mod_imp <- complete(mice(applications_mod, m=3, maxit=3))
```

```
## iter imp variable
##
   1 1 appl_status_code gender tenure_days
##
       2 appl_status_code gender tenure_days
##
   1 3 appl_status_code gender tenure_days
##
    2 1 appl_status_code gender tenure_days
##
    2
       2 appl_status_code gender tenure_days
##
       3 appl_status_code gender tenure_days
    3 1 appl_status_code gender tenure_days
##
    3 2 appl_status_code gender tenure_days
    3 3 appl_status_code gender tenure_days
```

Network

```
# workgroup
examiner_aus = distinct(subset(applications_mod_imp, select=c(examiner_art_unit, examiner_id)))
examiner_aus$wg = substr(examiner_aus$examiner_art_unit, 1,3)
# art unit
examiner_aus = examiner_aus[examiner_aus$wg==162 | examiner_aus$wg==219,]
adv_network = merge(x=edges, y=examiner_aus, by.x="ego_examiner_id", by.y="examiner_id", all.x=TRUE)
adv_network = adv_network %>% rename(ego_art_unit=examiner_art_unit, ego_wg=wg)
adv_network = drop_na(adv_network)
adv_network = merge(x=adv_network, y=examiner_aus, by.x="alter_examiner_id", by.y="examiner_id", all.x="
adv_network = adv_network %>% rename(alter_art_unit=examiner_art_unit, alter_wg=wg)
adv_network = drop_na(adv_network)
egoNodes = subset(adv_network, select=c(ego_examiner_id,ego_art_unit, ego_wg)) %>% rename(examiner_id=e)
alterNodes = subset(adv_network, select=c(alter_examiner_id,alter_art_unit, alter_wg))%>% rename(examiner_id,alter_art_unit, alter_art_unit, alter_wg))%>% rename(examiner_id,alter_art_unit, alter_art_unit, 
nodes = rbind(egoNodes, alterNodes)
nodes = distinct(nodes)
nodes = nodes %>% group_by(examiner_id) %>% summarise(examiner_id=first(examiner_id), art_unit=first(ar
network <- graph_from_data_frame(d=adv_network, vertices=nodes, directed=TRUE)</pre>
network
## IGRAPH 48d1ba2 DN-- 98 916 --
\#\# + attr: name (v/c), art_unit (v/n), wg (v/c), application_number (e/c),
## | advice_date (e/n), ego_art_unit (e/n), ego_wg (e/c), alter_art_unit
## | (e/n), alter_wg (e/c)
## + edges from 48d1ba2 (vertex names):
## [1] 59491->76935 59491->76935 59491->76935 59491->76935
## [6] 59491->76935 59491->76935 59491->76935 59491->76935 61889->88905
## [11] 61889->88905 62114->72495 62114->66534 62114->72495 62114->66534
## [16] 62253->67690 62253->67690 62253->67690 62253->67690 63657->73150
## [21] 63657->73150 63657->73150 63657->73150 63657->73150
## [26] 63822->61417 64904->96780 65111->65111 65111->65111 65111->65111
```

+ ... omitted several edges

```
Degree <- degree(network)
Closeness <- closeness(network)
Betweenness <- betweenness(network)
Eig <- evcent(network)$vector

comp <- data.frame(nodes, Degree, Eig, Closeness, Betweenness)
comp
```

##		examiner_id	art_unit	wg	Degree	Eig	Closeness	Betweenness
##	59491	59491	2196	219	48	2.644753e-02	1.00000000	0.90
##	59664	59664	2193	219	3	1.875528e-03	NaN	0.00
##	60302	60302	1626	162	6	0.000000e+00	NaN	0.00
##	60465	60465	2193	219	5	1.897166e-03	NaN	0.00
##	60768	60768	2191	219	2	8.131513e-05	NaN	0.00
##	61064	61064	2192	219	5	1.221863e-04	NaN	0.00
##	61417	61417	1626	162	2	0.000000e+00	NaN	0.00
##	61529	61529	1628	162	3	0.000000e+00	NaN	0.00
##	61889	61889	2193	219	24	9.429415e-03	1.00000000	4.00
##	61980	61980	2195	219	1	1.856425e-05	NaN	0.00
##	62114	62114	2195	219	4	3.187399e-05	0.50000000	0.00
	62253	62253	1623	162	5	0.000000e+00	1.00000000	0.00
##	62661	62661	1627		13	8.215403e-20	NaN	0.00
##	63657	63657	2196			2.804044e-03		0.00
	63822	63822	1624			0.000000e+00		0.00
##	63971	63971	2192			5.780753e-05	NaN	0.00
	64904	64904	2192			1.592129e-05		0.00
	65111	65111	1623			0.00000e+00		0.00
##	65353	65353	2193		-	2.027090e-04	NaN	0.00
	65536	65536	1625			0.00000e+00		0.00
##	65537	65537	1624		3			0.00
	65554	65554	2194		_	3.320903e-02	NaN	0.00
	65713	65713	1623			0.00000e+00		0.00
	65737	65737	1621			0.00000e+00		0.00
##	66030	66030	2193			3.703110e-04		0.00
##	66359	66359	2194		-	1.844651e-05	NaN	0.00
	66534	66534	2194			1.919068e-03	NaN	0.00
	67078	67078	2196			5.682276e-03	NaN	0.00
	67208	67208	1624			9.962709e-01		0.00
##	67226	67226	2197			1.000000e+00		3.10
##	67256	67256	1627 1621			0.000000e+00		0.00
	67581	67581				0.000000e+00		0.00
	67690 67731	67690 67731	1623 1621			0.000000e+00	NaN	0.00
	67753	67753	1623			0.000000e+00 0.000000e+00	NaN	0.00
	68166	68166	1625			1.406909e-18		0.00
##	68339	68339	1626			0.000000e+00		0.00
	68695	68695	1627		_	0.000000e+00		1.00
	68752	68752	2192			3.924478e-03	NaN	0.00
	69896	69896	1628			0.000000e+00	NaN NaN	0.00
	70026	70026	2192			3.481434e-03		0.00
	70206	70206	1627			0.000000e+00	0.04000000 NaN	0.00
	70767	70767	1624			0.000000e+00	NaN NaN	0.00
	71175	71175	2193			1.896603e-03		2.25
##	11113	11113	2193	213	0	1.0300036-03	0.00000000	2.25

##	71558	71558	2191	210	2	8.131513e-05	NaN	0.00
		71996	2191					
	71996 72089	72089	2192			1.618863e-03 2.236048e-03	NaN	0.00
	72009		2193			5.292522e-07		0.00
		72495	1626			0.000000e+00	NaN N-N	
	72941	72941					NaN N-N	0.00
	73150	73150	2192			1.151042e-03	NaN N-N	0.00
	73364	73364	1629			0.000000e+00	NaN	0.00
	73777	73777	1623			0.000000e+00		0.00
	75034	75034	1626			0.000000e+00		1.00
	75431	75431	2195			3.751055e-03	NaN	0.00
	75940	75940	2191		-	8.568931e-03	NaN	0.00
	76141	76141	2191			7.733290e-03		4.00
	76935	76935	2199			5.200072e-02	NaN	0.00
	77348	77348	1626		_	0.00000e+00		0.00
	81211	81211	1628			0.00000e+00	NaN	0.00
	81865	81865	1621			0.000000e+00		0.00
	81959	81959	1629			0.00000e+00	NaN	0.00
	82386	82386	2191			0.000000e+00	NaN	0.00
	83552	83552	2194			1.338727e-03		0.00
	84460	84460	2193			8.461901e-04		12.00
	85216	85216	1627			0.000000e+00	NaN	0.00
	87028	87028	2191			4.897170e-03		16.00
	87486	87486	1621			0.000000e+00		0.00
##	87994	87994	2191	219	5	1.020354e-05	1.00000000	0.00
	88077	88077	2191			2.649855e-03	NaN	0.00
##	88508	88508	1621	162	3	0.000000e+00	NaN	0.00
##	88905	88905	2199	219	2	1.565709e-04	NaN	0.00
##	89882	89882	1623	162	4	0.000000e+00	0.50000000	0.00
##	91747	91747	1627	162	1	0.000000e+00	1.00000000	0.00
	91956	91956	1627	162	3	0.000000e+00	NaN	0.00
##	92902	92902	1621	162	1	0.000000e+00	NaN	0.00
##	93403	93403	1626	162	9	0.000000e+00	0.25000000	0.00
##	93677	93677	1623	162	1	0.000000e+00	NaN	0.00
##	94070	94070	1623	162	10	0.000000e+00	0.50000000	0.00
##	94513	94513	2193	219	5	1.927300e-03	NaN	0.00
##	94925	94925	1626		4	0.000000e+00	NaN	0.00
##	95339	95339	2193	219	47	2.814301e-02	NaN	0.00
##	95446	95446	1625	162	17	0.000000e+00	NaN	0.00
##	95769	95769	2193	219	4	1.882553e-03	0.08333333	0.75
##	95997	95997	2192	219	4	0.000000e+00	NaN	0.00
##	96206	96206	2194	219	8	4.067542e-05	NaN	0.00
##	96780	96780	2192	219	7	1.917706e-03	NaN	0.00
##	96898	96898	1628	162	2	0.000000e+00	NaN	0.00
##	97328	97328	2199	219	195	7.530191e-02	0.02857143	0.00
##	97520	97520	1624	162	1	0.000000e+00	1.00000000	0.00
##	97590	97590	2193	219	2	6.956133e-05	NaN	0.00
##	97673	97673	2193	219	6	3.751055e-03	NaN	0.00
##	98228	98228	2195	219	25	1.502279e-02	NaN	0.00
##	98700	98700	1625	162	13	0.000000e+00	0.25000000	0.00
##	98717	98717	2192	219	31	7.914968e-04	0.04347826	0.00
##	99047	99047	1627	162	4	4.215424e-18	NaN	0.00
##	99346	99346	2192	219	14	3.453124e-04	1.00000000	0.00
##	99424	99424	1625	162	1	8.250416e-20	NaN	0.00
##	99514	99514	2192	219	8	9.570456e-05	NaN	0.00

Final Merge

```
applications_final <- merge(x=applications_mod_imp, y=comp, by='examiner_id', all.x=TRUE)
applications_final = applications_final %>% filter(wg==162 | wg==219)
applications_final <- drop_na(applications_final)</pre>
```

Model

Simple linear model

```
lm1 <- lm(appl_proc_days-Eig + Degree + Closeness + Betweenness + gender + tenure_days, data=application
summary(lm1)</pre>
```

```
##
## Call:
## lm(formula = appl_proc_days ~ Eig + Degree + Closeness + Betweenness +
##
      gender + tenure_days, data = applications_final)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -1964.9 -410.0
                            303.9
                                   4233.0
                    -82.4
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.603e+03 6.311e+01 25.404 < 2e-16 ***
## Eig
              -2.308e+02 3.027e+01
                                     -7.623 2.56e-14 ***
               2.942e+00 1.335e-01 22.043 < 2e-16 ***
## Degree
             -1.361e+02 1.143e+01 -11.907 < 2e-16 ***
## Closeness
## Betweenness 2.652e+01 1.767e+00 15.014 < 2e-16 ***
## gendermale
               3.533e+00 7.474e+00
                                     0.473
                                              0.636
## tenure_days -6.773e-02 9.975e-03 -6.789 1.15e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 572.5 on 28881 degrees of freedom
## Multiple R-squared: 0.05473,
                                  Adjusted R-squared: 0.05453
## F-statistic: 278.7 on 6 and 28881 DF, p-value: < 2.2e-16
```

- The statistical model is significant, and most factors are significant, with the exception of any gender impact. The baseline processing time is 1604 days (Female, 0 days of tenure, never sought advice) Increasing the relevance of an examiner's eigenvector from 0 to 1 should reduce processing time by 236 days (i.e, the more important). This makes sense since if a given examiner has a lot of clout in an advice network, with a lot of other examiners seeking their assistance, they are likely to be a subject matter expert and would need to spend less time looking for answers online or from other people to process the application.
- An examiner requesting guidance from another examiner one more time (an increase of one degree) results in a processing time increase of around three days. This might make sense because getting extra guidance or having others come to you for advise is time intensive and could divert time away from processing applications. A 138-day reduction in processing time would be projected if closeness centrality increased from 0 to 1. This makes sense because a high closeness centrality corresponds to a well-connected examiner inside the network. Even if they don't know someone who is an expert in a certain field, they are very certain to know someone who knows someone. This might make locating the information they need quicker and reduce the amount of time it takes to complete the application A

27-day increase in processing time equates to a one-unit rise in betweenness centrality. If an examiner is a primary gate for information to travel in the network, similar to degree centrality, this might be time intensive and take time away from them processing applications. - Finally, a one-day increase in tenure results in a small reduction in processing time. It would seem logical that having more experience will result in faster processing times.

Some more varibales:

```
lm2 <- lm(appl_proc_days~Eig + Degree + Closeness + Betweenness + gender + tenure_days + Degree*gender -
summary(lm2)</pre>
```

```
##
## Call:
## lm(formula = appl_proc_days ~ Eig + Degree + Closeness + Betweenness +
##
      gender + tenure_days + Degree * gender + Eig * gender + Closeness *
##
       gender + Betweenness * gender, data = applications_final)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -1632.7 -404.7
                   -83.4
                           298.8 4233.2
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                         1391.11240 66.40451 20.949 < 2e-16 ***
## (Intercept)
## Eig
                         -535.38072 68.58969 -7.806 6.12e-15 ***
## Degree
                           5.22062
                                     0.56231 9.284 < 2e-16 ***
## Closeness
                          23.05344 29.22464
                                                0.789
## Betweenness
                         101.77642
                                     6.92029 14.707 < 2e-16 ***
## gendermale
                         191.73229 31.01534 6.182 6.42e-10 ***
                                     0.01003 -6.178 6.57e-10 ***
## tenure_days
                          -0.06194
## Degree:gendermale
                          -4.34747
                                      0.60226 -7.219 5.38e-13 ***
                        7069.60726 636.06235 11.115 < 2e-16 ***
## Eig:gendermale
## Closeness:gendermale
                       -159.21115 31.85330 -4.998 5.82e-07 ***
## Betweenness:gendermale -74.83568
                                    7.17803 -10.426 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 569.2 on 28877 degrees of freedom
## Multiple R-squared: 0.06574,
                                 Adjusted R-squared: 0.06542
## F-statistic: 203.2 on 10 and 28877 DF, p-value: < 2.2e-16
```

All factors are significant with at least 90% confidence in the stat significant model. - Relationships
for variables from the previous model are comparable, with the exception that proximity now has a
higher positive link with processing time (a unit increase in closeness centrality correlates with a 48 day
increase in processing time) - Tenure still reduces processing time for male examiners - A unit increase
in degree for male examiners reduces processing time by 4.5 days - A unit increase in eig importance for
male examiners increases processing time by 7270 days - A unit increase in closeness for males decreases
processing time by 191 days - A unit increase in betweenness for males decreases processing time by 78
days -