Université des Sciences et de la Technologie d'Oran. 2023-2024 Faculté des Mathématiques – Informatique – LMD – Informatique - 1ère Année. Analyse1

Fiche de TD1 Corps des nombres réels

Exercice 1:

- I. 1. $|x| = \max(x, -x)$, 2. $|x y| \le |x| + |y|$, 3. $||x| |y|| \le |x + y|$,
- 4. $\max(x,y) = \frac{1}{2}(x+y+|x-y|)$, 5. $\min(x,y) = \frac{1}{2}(x+y-|x-y|)$,
- 6. $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}, \forall x, y \in \mathbb{R}_+$.
- II. Soit [x] la partie entière de x, montrer que :
- 1. $\forall x \in \mathbb{R}, x 1 < [x] \le x$.
- 2. $\forall x, y \in \mathbb{R}, x \leq y \Rightarrow [x] \leq [y]$.
- 3. $\forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, [x+a] = [x] + a$
- III. Montrer que $\sqrt{2} \notin \mathbb{Q}$ et $0, 336433643364... \in \mathbb{Q}$.

Exercice 2:

On considère l'ensemble $E \subseteq \mathbb{R}$ muni de l'ordre usuel et A une partie de E, déterminer pour chacun des ensembles suivants: l'ensemble des majorants Maj(A), l'ensemble des minorants Min(A), la borne supérieure sup A, la borne inférieure inf A, le plus petit élément min A et le plus grand élément max A.

$$A = [-2, 2], [-2, 2[,]-2, 2],]-2, 2[.E = \mathbb{R}.$$

$$A = \{\frac{1}{x-1}, x \in]0, \frac{1}{2}[\}, E = \mathbb{R}.$$

$$A = \{x \in \mathbb{Q}, x^2 \le 2\}, E = \mathbb{Q}.$$

Exercice 3:

En utilisant la caractérisation de la borne supérieure et la borne inférieure montrer que :

1. $\sup A = 0$, $\inf A = -1$ pour $A = \left\{ \frac{1}{n^2} - 1, n \in \mathbb{N}^* \right\}$. 2. $\sup B = 2$, $\inf B = 0$ pour $B = \left\{ \frac{1}{n} + \frac{1}{n^2}, n \in \mathbb{N}^* \right\}$. Déterminer le maximum et le minimum de chacun de ces ensembles s'ils existent. **Exercice 4:** Soit A une partie de \mathbb{R} telle que: $A = \left\{ \frac{2n}{3n+1}, n \in \mathbb{N} \right\}$

- 1. Trouver a et b tels que ; $\frac{2n}{3n+1} = a + \frac{b}{3n+1}$.
- 2. Montrer que A est bornée.
- 3. Montrer que sup $A = \frac{2}{3}$ et inf A = 0 et déterminer max A et min A s'ils existent.

Exercice 5:

On note par $P_B(\mathbb{R})$ l'ensemble des parties bornées de \mathbb{R} , montrer que $\forall A, B \in P_B(\mathbb{R})$:

- 1. $\sup (A \cup B) = \max(\sup A, \sup B)$, $\inf (A \cup B) = \min(\inf A, \inf B)$.
- 2. $\sup (A + B) = \sup A + \sup B$; $\inf (A + B) = \inf A + \inf B$, où $A + B = \{x + y \mid x \in A \text{ et } y \in B\}$.

Application:

- 1. Soient $A = \{1\}$, $B = \left\{\frac{-2}{n+1}, n \in \mathbb{N}\right\}$. a) Déterminer $\sup A$, $\inf A$, $\sup B$ et $\inf B$.
- b) En déduire $\sup C$, inf C telle que $C = \left\{ \frac{n-1}{n+1}, n \in \mathbb{N} \right\}$.
- 2. Soit A une partie non vide et majorée de \mathbb{R} et $\alpha \in A$. Montrer que si sup $A > \alpha$ alors

$$\sup A = \sup (A - \{\alpha\}).$$