TIMING DIAGRAM OF 8085

TIMING DIAGRAM

- Timing Diagram is a graphical representation.
- It represents the execution time taken by each instruction in a graphical format.
- The execution time is represented in T-states.

CONTROL SIGNALS

IO/M (Active Low)	S1	S2	Data Bus Status(Output)	
0	0	0	Halt	
0	0	1	Memory WRITE	
0	1	0	Memory READ	
1	0	1	IO WRITE	
1	1	0	IO READ	
0	1	1	Opcode fetch	
1	1	1	Interrupt acknowledge	

INSTRUCTION CYCLE

 The time required to execute an instruction is called instruction cycle.

MACHINE CYCLE

 The time required to access the memory or input/output devices is called machine cycle.

T-STATE

- The machine cycle and instruction cycle takes multiple clock periods.
- A portion of an operation carried out in one system clock period is called as T-

Note: Time period, T = 1/f; where $f = Internal \ clock \ frequency$

MACHINE CYCLES OF 8085

The 8085 microprocessor has 5 basic machine cycles.

They are

- Opcode fetch cycle (4T)
- 2. Memory read cycle (3 T)
- 3. Memory write cycle (3 T)
- 4. I/O read cycle (3 T)
- 5. I/O write cycle (3 T)

MACHINE CYCLES OF 8085

- The processor takes a definite time to execute the machine cycles. The time taken by the processor to execute a machine cycle is expressed in T-states.
- One T-state is equal to the time period of the internal clock signal of the processor.
- The T-state starts at the falling edge of a clock.

OPCODE FETCH MACHINE CYCLE OF 8085

OPCODE FETCH MACHINE CYCLE OF 8085

- Each instruction of the processor has one byte opcode.
- The opcodes are stored in memory. So, the processor executes the opcode fetch machine cycle to fetch the opcode from memory.
- Hence, every instruction starts with opcode fetch machine cycle.
- The time taken by the processor to execute the opcode fetch cycle is 4T.
- In this time, the first, 3 T-states are used for fetching the opcode from memory and the remaining T-states are used for internal operations by the processor.

MEMORY READ MACHINE CYCLE OF 8085

SIGNAL	T ₁	T ₂	T ₃
CLOCK			
A ₁₅ -A ₈	HIGHER	ORDER MEMORY	ADDRESS
AD ₇ -AD ₀	LOWER-ORDER MEMORY ADDR	DATA	(D ₇ -D ₀)
ALE	· · · · · · · · · · · · · · · · · · ·		
$IO/\overline{M},S_{1,}S_{0}$	X	$10/\overline{M} = 0$, $S_1 = 1$	S ₀ = 0
RD			

MEMORY READ MACHINE CYCLE OF 8085

- The memory read machine cycle is executed by the processor to read a data byte from memory.
- The processor takes 3T states to execute this cycle
- The instructions which have more than one byte word size will use the machine cycle after the opcode fetch machine cycle.

MEMORY WRITE MACHINE CYCLE OF 8085

SIGNAL	T ₁	T ₂	T ₃
CLOCK			
A ₁₅ -A ₈	HIGHER	ORDER ADDRESS	
AD ₇ -AD ₀	LOWER-ORDER ADDRESS	DATA	(D ₇ -D ₀)
ALE			
IO/M̄,S _{1,} S ₀	X	$IO/\overline{M} = 0$, $S_1 = 0$	S ₀ = 1
WR			

MEMORY WRITE MACHINE CYCLE OF 8085

- The memory write machine cycle is executed by the processor to write a data byte in a memory location.
- The processor takes, 3T states to execute this machine cycle

I/O READ CYCLE OF 8085

- The I/O Read cycle is executed by the processor to read a data byte from I/O port or from the peripheral.
- The processor takes 3T states to execute this machine cycle.
- The IN instruction uses this machine cycle during the execution.

I/O READ CYCLE OF 8085

I/O WRITE CYCLE OF 8085

- The I/O write machine cycle is executed by the processor to write a data byte in the I/O port or to a peripheral, which is I/O, mapped in the system.
- The processor takes, 3T states to execute this machine cycle.

I/O WRITE CYCLE OF 8085

SIGNAL	T _i	T ₂	T ₃
CLOCK			
A ₁₅ -A ₈		PORT ADDRESS	
AD ₇ -AD ₀	PORT ADDRESS	DATA	(D ₇ -D ₀)
ALE ·			
WR			
IO/M̄,S₁S₀	X	$IO/\overline{M}=1$, $S_1=0$,	S ₀ = 1

EXAMPLE INSTRUCTION: MVI B, 43

Decoding of multilexed address lines

