Mathématique

Série nº 4 — Séries de fonctions

Ex 3.1 – Étant donné un réel $\alpha \geqslant 1$, on considère la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ de $[0, +\infty[$ dans \mathbb{R} définie par $f_n(x) := x^{\alpha}e^{-nx}$.

Discuter de la convergence normale sur $[0, +\infty[$ de la série de fonctions $\sum_{n\geqslant 0} f_n$ suivant les valeurs du paramètre α .

Ex 3.2 – Pour $0 < a \le b$ réels fixés, calculer l'intégrale $I := \int_a^b \left(\sum_{n=1}^{+\infty} ne^{-nx}\right) dx$ après avoir justifié son existence.

Ex 3.3 – On considère la série de fonctions de terme général $u_n(x) = \frac{(-1)^n}{n^x}$, pour $n \ge 1$.

- 1. Déterminer le domaine de convergence simple de cette série de fonctions.
- 2. Déterminer sur quel domaine la convergence est normale.

Ex 3.4 – Étudier la convergence de la série de fonctions $\sum u_n$ où $u_n(x) = \frac{x^2 e^{-nx}}{n^{\alpha}}$, $n \in \mathbb{N}^*$, $\alpha \in \mathbb{R}$.

Ex 3.5 – Étudier la série de fonctions définie par $u_n(x) = n(\sin x)^n \cos x$ sur $[0, \pi/2]$.

Ex 3.6 -Étudier la convergence de la série de fonctions de terme général $u_n(x) = e^{nx \ln n}$ sur $]-\infty, a]$, a < 0 puis sur $]-\infty, 0]$.

Ex 3.7 – Montrer que la série définie, pour $n \ge 1$, par $u_n(x) = (-1)^n \frac{x^2 + n}{n^2}$ est simplement convergente sur **R** mais n'est absolument convergente pour aucune valeur de x.

Ex 3.8 – Soit la série de fonctions de terme général $u_n(x) = \frac{2x}{n^2 + x^2}$, $n \ge 1$.

- 1. Montrer que cette série converge normalement sur [-1,1]. On note f sa somme.
- 2. Exprimer sous forme d'une série de fonctions $\int_0^x f(t)dt$ pour $x \in [-1,1]$.
- 3. Etudier la convergence normale sur [-1,1] de la série de fonctions de terme général $v_n(x) = \ln\left(1 + \frac{x^2}{n^2}\right)$.
- 4. Etudier la convergence normale sur [-1,1] de la série de fonctions de terme général $w_n(x) = \frac{2(n^2 x^2)}{(n^2 + x^2)^2}$.
- 5. En déduire f' sous forme d'une série de fonctions et que f est croissante sur [-1,1].

Ex 3.9 – Soit $(a_n)_{n \in \mathbb{N}}$ une suite de nombres réels. Montrer que si la série de terme général na_n est absolument convergente alors la série définie par $a_n \cos nx$ (resp. $a_n \sin nx$) est normalement convergente et de classe C^1 sur \mathbb{R} .