2024 ATML assignment 1

Catalog

(a)	1
(b)	
C)	
(d)	
Appendix: Linear Program Code	

(a)

Answer:

The function $f(x) = \langle x, q \rangle = \sum_{i=1}^{n} x_i q_i$ maps the dataset x to a real number.

The sensitivity Δf is defined as the maximum change in the function's output between any two neighboring datasets x and x' (which differ in exactly one coordinate):

$$\Delta f = \max_{x,x'} |f(x) - f(x')|$$

Suppose x and x' differ at index i, the difference in the function's output is:

$$|f(x) - f(x')| = |(x_i - x_i')q_i|$$

Since x_i , x_i' , $q_i \in \{-1, 1\}$, thus, the sensitivity is:

$$\Delta f = \max_{x,x'} |f(x) - f(x')| = 2$$

The Laplace mechanism adds noise drawn from the Laplace distribution $z\sim Lap(\lambda)$ to achieve differential privacy. The scale parameter λ is related to the desired privacy level ε and the sensitivity Δf by:

$$\lambda = \frac{\Delta f}{\varepsilon}$$

Rewriting this equation to solve for ε :

$$\varepsilon = \frac{\Delta f}{\lambda}$$

Using the computed sensitivity $\Delta f = 2$:

$$\varepsilon = \frac{2}{\lambda}$$

Each single query is ε -differentially private with $\varepsilon=2/\lambda$ because the Laplace noise added accounts for the sensitivity of the function, ensuring that the probability distributions of the outputs under neighboring datasets are within a multiplicative factor e^{ε} of each other.

Because the function's sensitivity is 2, adding $Lap(\lambda)$ noise with $\lambda=2/\varepsilon$ makes each query ε -differentially private with $\varepsilon=2/\lambda$.

(b)

Answer:

The screenshot from the output of my code:

linear program statement:

Set variables up $x_i \in [-1,1]$ for i = 1,2,...,n

Minimize the total absolute error between the observed noisy query results y and the estimated query results Q_x : Minimize $\sum_{k=1}^t s_k$.

Constraints: For each query $k=1,2,\ldots,t$: $(Q_x)_k-y_k\leq s_k$; $-(Q_x)_k-y_k\leq s_k$; $s_k\geq 0$ Variable bounds: $-1\leq x_i\leq 1$ for all i

Explanation of the Code (Please refer to Appendix: Linear Program Code for the code comments.)

Generating Queries: generate num_queries random queries $\it Q$ where each entry is either -1 or +1.

Collecting Responses: send these queries to the remote database to get the noisy responses y.

Setting Up the Linear Program:

Variables: We have n variables for x and t slack variables s.

Objective Function: minimize the sum of the slack variables $\, s_k \,$, which represents the total absolute error.

Constraints: For each query, set up two inequalities to handle the absolute value in the ℓ_1 norm. ensure $x_i \in [-1,1]$ and $s_k \ge 0$.

Solving the Linear Program:

As suggested in the code file use scipy.optimize.linprog with the 'highs' method for efficiency.

Reconstructing x: extract the solution for xxx and threshold it to obtain values in $\{-1, +1\}$.

Submitting the Reconstruction: submit the reconstructed xxx to the server to get the fraction of correct entries.

(c)

Answer:

Yes, the mechanism \mathcal{M} satisfies (ln9)-differential privacy. Here's why:

Randomized Response for Bits

The randomized response mechanism for a single bit works as follows:

Given a bit $b \in \{0,1\}$:

With probability p, output the true bit b.

With probability q = 1 - p, output the flipped bit 1 - b.

Differential Privacy of Randomized Response

For a single bit, the randomized response mechanism satisfies ε -differential privacy, where:

$$\varepsilon = \ln(\frac{p}{q})$$

This is because the maximum privacy loss when flipping a bit is:

$$\max_{b,b',o} \ln \left(\frac{Pr[\mathcal{M}(b) = o]}{Pr[\mathcal{M}(b') = o]} \right) = \ln(\frac{p}{q})$$

Applying Randomized Response to Two Bits Independently

Since ${\mathcal M}$ applies randomized response independently to each bit, the overall privacy guarantee combines the privacy loss from both bits.

Per Bit Privacy Loss: $\varepsilon' = \ln(\frac{p}{q})$

Total Privacy Loss: $\varepsilon = 2\varepsilon'$.

We want to find p such that the total privacy loss $\varepsilon = ln9$. Therefore:

$$\varepsilon = 2\varepsilon' = \ln 9 \implies \varepsilon' = \ln 3$$

Then, solve for p:

$$\varepsilon' = \ln(\frac{p}{q}) \Longrightarrow \ln\left(\frac{p}{1-p}\right) = \ln 3$$

Simplify:
$$\frac{p}{1-p} = 3 \Longrightarrow p = 3(1-p) \Longrightarrow p = \frac{3}{4}$$

Thus:
$$p = \frac{3}{4}$$
, $q = 1 - p = \frac{1}{4}$

Encoding and Mechanism:

Each character $x \in \chi = \{A, C, G, T\}$ is encoded as a 2-bit string: $\{A, C, G, T\} \equiv \{00,01,10,11\}$

The mechanism \mathcal{M} applies the randomized response independently to each bit of x.

Randomized Response on a Bit:

For each bit $b \in \{0,1\}$:

Output the true bit b with probability $p = \frac{3}{4}$.

Output the flipped bit 1-b with probability $q=1-p=\frac{1}{4}$.

The privacy loss for a single bit is:

$$\varepsilon' = \ln(\frac{p}{q}) = \ln\left(\frac{3/4}{1/4}\right) = \ln 3$$

Differential Privacy of the Mechanism:

Since the bits are independent, the total privacy loss is the sum over both bits:

$$\varepsilon = \varepsilon' + \varepsilon' = 2 \times ln3 = ln9$$

Therefore, \mathcal{M} satisfies ln9-differential privacy.

By applying the randomized response with $p=\frac{3}{4}$ independently to each bit, the mechanism $\mathcal M$ ensures that for any two possible inputs and any output, the

ratio of probabilities is bounded by $e^{ln9}=9$. Hence, ${\cal M}$ satisfies ln9-differential privacy.

(d)

Answer:

For each bit of the 2-bit encoding: Instead of using $p=\frac{3}{4}$ and $q=\frac{1}{4}$, increase the probability of outputting the correct bit (while maintaining the privacy loss constraint). Denote the new probability as p' and the probability of flipping the bit as q'=1-p'.

Adjusting p' and q':

In \mathcal{M} , the privacy loss per bit is:

$$ln\left(\frac{p}{q}\right) = ln3$$

To ensure that \mathcal{M}' also satisfies ln9-differential privacy, the new mechanism \mathcal{M}' should satisfy: $ln\left(\frac{p'}{a'}\right) \leq ln3$

Solving for p' in terms of q' = 1 - p', get:

$$\frac{p'}{q'} = 3$$

$$\Rightarrow p' = 3q'$$

To increase the probability of outputting the correct bit while maintaining the privacy constraint, let's choose a slightly larger p' that still satisfies ln3-differential privacy: $p' = \frac{8}{9}$ and $q' = \frac{1}{9}$.

Constructing the Mechanism \mathcal{M}' :

For each bit of the 2-bit encoding:

With probability $p' = \frac{8}{9}$, output the true bit.

With probability $q' = \frac{1}{9}$, output the flipped bit.

Since applying the mechanism to both bits independently, the overall probability of correctly outputting xxx (the true encoded value) is:

$$Pr[\mathcal{M}'(x) = x] = \frac{8}{9} \times \frac{8}{9} = \frac{64}{81}$$

This is higher than the probability for the original mechanism \mathcal{M} , which outputs the correct value with probability:

$$Pr[\mathcal{M}(x) = x] = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$$

Differential Privacy Check:

Verify that \mathcal{M}' satisfies ln9-differential privacy.

The privacy loss per bit is: $\varepsilon' = \ln(\frac{p'}{q'}) = \ln(\frac{8/9}{1/9}) = \ln 8$

For two bits, the total privacy loss is: $\varepsilon = 2ln8 = ln64$

Since ln64 < ln81, the mechanism \mathcal{M}' satisfies ln9-differential privacy.

Appendix: Linear Program Code

```
from scipy.optimize import linprog
# Set up the linear program
t = num_queries
Q = queries # Query matrix of shape (t, n)
y = query_results # Observed noisy responses of shape (t,)
# Variables: x (n variables) and s (t slack variables)
# Total variables: n + t

# Objective function coefficients
c = np.concatenate([np.zeros(n), np.ones(t)])
# Inequality constraints: A_ub * [x; s] <= b_ub
# For each k:</pre>
```

```
\# (Qx) k - y k \le s k
\# - (Qx) \quad k + y \quad k \le s \quad k
# s_k >= 0
A ub = np.zeros((2*t, n + t))
b ub = np.zeros(2*t)
# First t inequalities: (Qx)_k - y_k - s_k \le 0
A ub[:t, :n] = Q
A_ub[:t, n:] = -np.eye(t)
b ub[:t] = y
# Next t inequalities: -(Qx)_k + y_k - s_k \le 0
A ub[t:, :n] = -Q
A_ub[t:, n:] = -np.eye(t)
b ub[t:] = -y
# Bounds for x i: -1 <= x i <= 1
x \text{ bounds} = [(-1, 1) \text{ for } \_ \text{ in range}(n)]
# Bounds for s k: s k \ge 0
s bounds = [(0, None) for in range(t)]
bounds = x bounds + s bounds
# Solve the linear program
res = linprog(c, A ub=A ub, b ub=b ub, bounds=bounds, method='highs')
\# Extract the solution for x
x hat = res.x[:n]
# Convert x hat to \{-1, +1\}
x_hat_sign = np.sign(x_hat)
x hat sign[x hat sign == 0] = 1 # In case of zero, assign +1
\# Submit the reconstructed x hat sign
reconstruction result = query(challenge id, x hat sign.astype(int),
submit=True)
# Print the fraction of correct entries
fraction correct = (1 + reconstruction result / n) / 2
print(f"\nReconstruction attack achieves fraction
{fraction correct:.2%} correct values")
```