ОСНОВЫ ТРИБОФАТИКИ

ЖУРНАЛ лабораторных работ

Учреждение образования «Гомельский государственный технический университет им. П. О. Сухого» Кафедра «Сельскохозяйственные машины»

	У	тверждено	
	на за	седании кафедрь	οI
~	Сель	скохозяйственны	ые
		машины»	
		(подпись)	
«	>>	20	Γ.

VIDEDMITELLO

ЖУРНАЛ лабораторных работ

по к	урсу							
		(название	дисцип	лины)				
вып	ыполнил: студент							
	(Ф.И.О)							
		группа или уче	бный	і шифр				
рукс	оводите	ль:						
1 7		(должность)		(Ф.И.О)				
	Ι	Отметки о	защи	ите работ				
1			5					
2			6					
3			7					
4			8					

 Γ омель 20_____ / 20_____ учебный год

ОСНОВНЫЕ СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ

МУ - механическая усталость

КУ – контактная усталость (трение качения)

ФУ – фрикционная усталость (трение скольжения)

КМУ - контактно-механическая усталость

ФМУ - фрикционно-механическая усталость

ПС – предельное состояние

ПЭ – прямой эффект

ОЭ – обратный эффект

Q — изгибающая нагрузка, Н

σ – номинальные напряжения, МПа

 σ_a – амплитуда напряжений цикла, МПа

 F_{N} — контактная нагрузка, Н

 p, p_a — контактное давление (напряжение), МПа

*p*₀ – максимальное напряжение в центре контактной площадки, МПа

 τ_W – фрикционное напряжение, МПа

N — долговечность, цикл

 $N_{\rm B}$ — база испытаний, цикл

n -число циклов нагружения, цикл

T — период цикла

 угловая скорость вращения образца (контробразца), об/мин

d – диаметр рабочей части образца, мм

– расстояние от оси приложения изгибающей нагрузки до опасного сечения образца, мм

 $\alpha - \text{угол наклона левой ветви кривой усталости к оси абсцисс, }^{\text{o}}$

 σ_{-1} — предел выносливости при симметричном цикле, МПа

 p_f — предел контактной выносливости, МПа

m — показатель наклона левой ветви кривой усталости

 $N_{\rm G}~-$ абсцисса точки перелома кривой усталости

Разработал: к.т.н. С. А. Тюрин

1 МАШИНЫ СЕРИИ СИ ДЛЯ ИЗНОСОУСТАЛОСТНЫХ ИСПЫТАНИЙ: УСТРОЙСТВО И РАБОТА

1.1 Цель: изучить технические характеристики, конструктивные особенности и принцип работы машин серии СИ для износоусталостных испытаний.

1.2 Применяемые приборы и оборудование: испытательные

машины серии Си; различные типы ооразцов и контрооразцов.
1.3 Назначение и область применения

1.4 Схемы испытаний

Основные схемы испытаний на машинах серии СИ приведены на рисунках 1.1 и 1.2.

Рисунок 1.1 –

Рисунок 1.2 –

1.5 Принципиальная схема

Взаимосвязь составных частей испытательной установки машины СИ-03 показана на схеме (рисунок 1.3).

Рисунок 1.3 –	 	 	
•			

1.6 Технические характеристики базовых машин

Основные технические характеристики машин СИ-01, СИ-02, СИ-03 приведены в таблице.

	Пара трени	
Пилипль —		
колодка	Цилиндр — ролик	Цилиндр – колодка, цилиндр – ролик
	колодка	колодка ролик

1.7 Общий вид одной из машин
Общий вид испытательной машины СИ-03 показан на рисунке 1.4.
1.8 Конструктивные особенности

1.9 Техника безо	препости	
1.7 I CAIIMRA OUS	onachocin	
1.10 Выводы		
Дата	(полнись преподавателя)	

2 ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ МАШИН СЕРИИ СИ: ПРИНЦИПЫ ПОСТРОЕНИЯ И РАБОТА

2.1 Цель: изучить принципы построения информационноуправляющих систем (ИУС) машин серии СИ, а также методы измерения и регистрации параметров износоусталостного повреждения.

2.2 Применяемые	приборы	И	оборудование:	испытательные
машины серии СИ.				

2.3 Назначение			

2.4 Структура

Структура ИУС представлена на рисунке 2.1.

Рисунок	2.1 –			

0	

2.5 Организация

Принципы управления параметрами испытаний показаны на электромеханической схеме расположения датчиков и приводов машины СИ-03 (рисунок 2.2).

2.6 Программно-математическое обеспечение В процессе испытаний на экране ПЭВМ отображаются основные параметры испытания и измеряемые величины (рисунок 2.3).

2.7 Выводы		
Дата	Отметка о защите работы (полнись преподавателя)	

3 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ МЕХАНИЧЕСКОЙ УСТАЛОСТИ

- **3.1 Цель:** экспериментально определить основные характеристики сопротивления МУ.
- **3.2 Применяемые приборы и оборудование:** испытательные машины серии СИ, объекты испытаний: элементы конструкции (образцы).

3.3 Основные механические характеристики мат	ериала образца
Марка материала:	
Предела прочности:	
Предел текучести:	
Относительное удлинение после разрыва:	
Относительное сужение после разрыва:	

3.4 Схема испытаний на МУ. Расчет напряжений в образце

При испытаниях на МУ максимальные изгибные напряжения (амплитуду напряжений цикла) в опасном сечении образца определяют по формуле

$$\sigma_a = \sigma_{\text{max}} = ---, \tag{3.1}$$

Зависимость амплитуды напряжений от величины изгибающей нагрузки (для заданных размеров образца):

$$\sigma_a = ---- = . \tag{3.2}$$

Рисунок 3.2 –		σ		
				t
	<i>a</i>)	ı	<i>б</i>)	
σ_{\max} , σ_{\min} –				
$\sigma_a =$				
$\sigma_m = $				
$R_{\sigma} = $				
	σ_a			
	" 			
	Рисун	нок 3.3 –		N_{σ}
Уравнение кривой МУ:				(3.3)

3.6 Обработка результатов испытаний методом наименьших квадратов

Результаты испытаний на МУ и их обработка методом наименьших квадра-

тов приведены в таблице.

№ образца	σ _a , МПа	N, цикл	$y_i = \mathbf{lg}\sigma_a$	$x_i = \lg N_{\sigma}$	x_i^2	x_iy_i
1						
2						
3						
4						
5						
6						
Σ						
7						
8						

Левая ветвь кривой МУ в двойных логарифмических шкалах аппроксимируется прямой линией, которая описывается уравнением

$$\lg \sigma_a = \underline{\qquad}. \tag{3.5}$$

Коэффициенты а и b данного уравнения определяют по формулам:

С учетом полученных значений коэффициентов a и b уравнение кривой MУ:

$$\lg \sigma_a = \underline{\hspace{1cm}} \tag{3.8}$$

Показатель наклона левой ветви кривой МУ:

$m_{\sigma} = \frac{1}{ a } ==$	(3.9)
a	

й МУ находим из выражения (3.8), под- МПа:
циклов.
ступенчатого нагружения
Рисунок 3.4 —
еделение характеристик сопротив-

σ_a , M Π a	Рисуно:	к 3.5 –
Характеристика свойств	Обозначение	Численное значение

3.9 Выводы			
Дата	Отметка о за (подпись пре	щите работы подавателя)	

4 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ КОНТАКТНОЙ УСТАЛОСТИ

- **4.1 Цель:** экспериментально определить характеристики трения и изнашивания при КУ.
- **4.2 Применяемые приборы и оборудование:** испытательные машины серии СИ, объекты испытаний: пары трения (образцы и контробразцы).
- 4.3 Схема испытаний на КУ. Расчет контактных напряжений

Максимальные контактные напряжения p_0 в центре контактной площадки (согласно Р 50-54-30-87) определяют по формуле

			(4.1)
			(4.2)
		Рисунок 4.3	
			(4.3)
			(4.4)
КУ и ее парамет	ры		(4.5)
			Рисунок 4.3 —

	P_0
	_
	Рисунок 4.4 –
Уравнение кривой КУ:	(4.6)
4.5 Ускоренный метод многост	упенчатого нагружения
	P ₀
	$\widetilde{N_p}$
	Рисунок 4.5 —

4.6 Экспері изнашиван			целение ха	арактерист	ик трения
Рисунок 4.	6	<i>t</i> , мин			
№ ступени	F_N , H	<i>р</i> ₀ , МПа	$N_{\Sigma_{D}}$, цикл	$t_{\Sigma_{\mathcal{D}}},$ мин	δ_c , mkm
№ ступени	F_N, \mathbf{H}	<i>р</i> ₀ , МПа	N_{Σ_p} , цикл	$t_{\Sigma_{\!D}}$, мин	δ_c , mkm

4.8 Выводы	
Дата	Отметка о защите работы (полпись преполавателя)

5 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИ-СТИК СОПРОТИВЛЕНИЯ КОНТАКТНО-МЕХАНИЧЕСКОЙ УСТАЛОСТИ

- **5.1 Цель:** экспериментально определить характеристики трения и изнашивания при КМУ (обратный эффект).
- **5.2 Применяемые приборы и оборудование:** испытательные машины серии СИ, объекты испытаний: трибофатические системы (образцы и контробразцы).

5.3 Схема испытаний на КМУ

	a)		б)	
σ_a	u)	\mathcal{P}_{o}	0)	
сунок 5.3	·—	N_{op}		N_{pq}
Ускорен	ный метод м	многоступенчатого	нагружен	ия

№ ступени	σ _a , MΠa	F_N , H	<i>p</i> ₀ , МПа	N _{Σр<u>σ</u>, цикл}	$t_{\Sigma p_{\overline{\mathcal{O}}}}$, мин	δ_c , мкм
Рисунок 5	5.6 –					

(подпись преподавателя) _____

6 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ ФРИКЦИОННОЙ УСТАЛОСТИ

- **6.1 Цель:** экспериментально определить характеристики трения и изнашивания при ФУ.
- **6.2 Применяемые приборы и оборудование:** испытательные машины серии СИ, объекты испытаний: пары трения (образцы и контробразцы).

a)	δ)	
T _W	t	Рисунок 6.2 —
		нтактной нагрузки F_N в зоне кон- зникает контактное давление (6.1)

			(6.2)
			(6.3)
	и ФУ и ее параметр)ы	
		$ au_{\scriptscriptstyle W}$	
			
			N_{τ}
		Рисунок 6.3 –	
Уравнение к	 пивой ФV·		
у равнение к	ривон Ф.У.		(6.4)
 6.5 Ускореі	нный метод многос	ступенчатого нагружени	———— Я

6.6 Экспериментальное определение характеристик трения и изнашивания при ФУ

№ ступени	F_N , H	$N_{\Sigma au}$, цикл	$t_{\Sigma au}$, мин	і, мкм

Характер повр		ждении ги образца после проведени	ія испытани
показан на рис	сунке 6.6.		
		-	
		-	
		-	
		_	
		_ Рисунок 6.6 –	
6.8 Выводы			
Дата	Отметка о	защите работы	
~·····		реподавателя)	

7 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИ-СТИК СОПРОТИВЛЕНИЯ ФРИКЦИОННО-МЕХАНИЧЕСКОЙ УСТАЛОСТИ

- **7.1 Цель:** экспериментально определить характеристики трения и изнашивания при ФМУ (обратный эффект).
- **7.2 Применяемые приборы и оборудование:** испытательные машины серии СИ, объекты испытаний: трибофатические системы (образцы и контробразцы).

7.3 Схема испытаний на ФМУ

5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	A	Рисунок 7.1 –	
	1		
$\stackrel{\circ}{=}$ $\stackrel{\circ}{=}$ $ \downarrow$	б)		
a)	σ_a σ_a	<i>в</i>)	
			t
Рисунок 7.2 –			
7.4 Кривые ФМУ и их па	араметры		

			5)	
σ_a	<i>a</i>)	$ au_{\scriptscriptstyle W}$	6)	
				
сунок 7.3		$N_{\sigma au}$		N_{τ}
Ускорен	ный метод	многоступенчато	ого нагружен	ИЯ
Ускорен	ный метод	многоступенчат(ого нагружен	ия
Ускорен	ный метод	многоступенчато	ого нагружен	ия

		N _{Στσ} , цикл гдений и образца и ко		і, мкм
арактера дения по	а повреж верхности	д ений и образца и ко		
дения по	верхности	и образца и ко	онтробразца	после про
дения по	верхности	и образца и ко	нтробразца	после про

8 ИССЛЕДОВАНИЕ УСТАЛОСТНЫХ ИЗЛОМОВ ОБРАЗЦОВ

8.1 Цель: провести исследование усталостных изломов лабораторных образцов.

8.2 Применяемые приборы и оборудование: испытательные машины серии СИ, разрушенные в процессе испытаний лабораторные образцы.

3.3 Важность изучения усталостных изломов					

8.4 Изучение видов усталостных изломов

Классификация усталостных изломов в зависимости от схемы нагружения и уровня действующих напряжений в области многоцикловой усталости дана в таблице.

Вид		оминальные ижения	Низкие номинальные напряжения			
нагружения	Гладкий	Надрезанный	Гладкий	Надрезанный		
	образец	образец	образец	образец		
Растяжение ^м						
Односторонний изгиб						
Двухсторонний изгиб						
Изгиб с враще- нием						

8.4 Изучение характера усталостного излома

Для проведения лабораторной работы используются изломы образцов, испытанных в лабораторной работе №3. Характер излома металлического образца при его усталостном разрушении представлен на рисунке 8.1.

Рисунок 8.1 –						

8.5 Выводы						
	Отметка о защите работы (полпись преполавателя)					

приложение

Система обозначений основных характеристик

Характери-	Кривая МУ	Кривая Кривая Кривые Кри КУ ФУ КМУ ФМ				вые ИУ	
свойств	$N(\sigma_a)$	$N(p_0)$	$N(\tau_W)$	$N(\sigma_a, p_0 = \text{const})$	$N(p_0, \sigma_a = \text{const})$	$N\left(\sigma_{a},\right.$ $\tau_{W} = \text{const}$	$N(\tau_W, \\ \sigma_a = \text{const})$
Предел вы- носливости, МПа	σ_{-1}	p_f	t_f	σ_{-1p}	$p_{f\sigma}$	$\sigma_{-1\tau}$	$ au_{f\sigma}$
Абсцисса точки пере- лома кривой усталости, цикл	$N_{G\sigma}$	N_{Gp}	$N_{G au}$	$N_{G\sigma p}$	$N_{Gp\sigma}$	$N_{G\sigma au}$	N_{G t $\sigma}$
Показатель наклона кривой усталости	m_{σ}	m_p	$m_{ au}$	$m_{\sigma p}$	т _р	$m_{\sigma \tau}$	$m_{ au\sigma}$

СОДЕРЖАНИЕ

Сокращения и обозначения	2
Лабораторная работа № 1 «Машины серии СИ для износоуста-	
лостных испытаний: устройство и работа»	3
Лабораторная работа № 2 «Информационно-управляющие си-	
стемы машин серии СИ: принципы построения и работа»	8
Лабораторная работа № 3 «Экспериментальное определение	
характеристик сопротивления механической усталости»	13
Лабораторная работа № 4 «Экспериментальное определение	
характеристик сопротивления контактной усталости»	18
Лабораторная работа № 5 «Экспериментальное определение	
характеристик сопротивления контактно-механической усталости»	23
Лабораторная работа № 6 «Экспериментальное определение	
характеристик сопротивления фрикционной усталости»	27
Лабораторная работа № 7 «Экспериментальное определение	
характеристик сопротивления фрикционно-механической усталости»	31
Лабораторная работа № 8 «Исследование усталостных изломов	
образцов	35
Приложение	38