Multimedia mining questions:

Image Matrix

1	0	0	1	1
1	0	1	1	1
0	1	1	0	1
0	1	0	1	0
1	1	1	0	1

Filter Matrix

1	0	0
1	0	0
0	1	1

Figure 3

- a- Write the output image after applying Right filter?
- b- What is the size of the output image after applying the same filter with stride 4? 1 ×
- c- Write the image after applying maxpooling with kernel size 2*2. 3*3
- d- If you use three CNN layers with following filters [35,30,100] what the size of feature map resulted from each layer where you use kernel size 5*5.

questions:

- why we need to do "data preprocessing" and how? 2 ways Ougmentation
- how can you solve overfitting problem? 3 ways = [earl 15to P, drop ob-7] Regulary
- what the difference between segmentation and detection?
- what is the difference between?
 - -object classification
 - -object localization
 - -object detection
- if you have 4 classes what is the shape of the output? and what is the loss function?

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

Why we need Early Stopping? – To prevent overfitting by tracking model performance on validation set, it stops when the validation error starts increasing

Why we need Drop Out? – To prevent overfitting of the tiny unnecessary tiny details by dropping some neurons of the learning trained data (up to 50% of it)

Activation Functions

Sigmoid:	Rectified Linear Unit (ReLU):	
Symmetric sigmoids are faster:	 Much faster computations 	
> Tanh	 No {Saturation, Vanishing, Exploding} 	
Sigmoid	 Consist of: {Comparison, addition, multiplication} 	
Straightforward sigmoids not good	[전화]	

