Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Компьютерных сетей и систем

Кафедра Информатики

ЛАБОРАТОРНАЯ РАБОТА №1 «Логистическая регрессия в качестве нейронной сети»

Магистрант:Проверил:гр. 956241Заливако С. С.Шуба И.А.

ХОД РАБОТЫ

Задание.

Данные: В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая – около 19 тыс.

Данные можно скачать по ссылке:

- https://commondatastorage.googleapis.com/books1000/ notMNIST_large.tar.gz (большой набор данных);
- https://commondatastorage.googleapis.com/books1000/notMNIST_small.tar.gz (маленький набор данных);

Описание данных на английском языке доступно по ссылке: http://yaroslavvb.blogspot.sg/2011/09/notmnist-dataset.html

Задание 1.

Загрузите данные и отобразите на экране несколько из изображений с помощью языка Python;

Задание 2.

Проверьте, что классы являются сбалансированными, т.е. количество изображений, принадлежащих каждому из классов, примерно одинаково (В данной задаче 10 классов).

Задание 3.

Разделите данные на три подвыборки: обучающую (200 тыс. изображений), валидационную (10 тыс. изображений) и контрольную (тестовую) (19 тыс. изображений);

Задание 4.

Проверьте, что данные из обучающей выборки не пересекаются с данными из валидационной и контрольной выборок. Другими словами, избавьтесь от дубликатов в обучающей выборке.

Задание 5.

Постройте простейший классификатор (например, с помощью логистической регрессии). Постройте график зависимости точности классификатора от размера обучающей выборки (50, 100, 1000, 50000). Для построения классификатора можете использовать библиотеку SkLearn (http://scikit-learn.org).

Результат выполнения:

Задание 1. Загрузите данные и отобразите на экране несколько из изображений с помощью языка Python.

Настроим пути к скачанным датасетам.

```
train_path = "notMNIST_large"
test_path = "notMNIST_small"
```

Рисунок 1 – Выбор пути к датасетам

Отобразим несколько изображений.

```
dirs = os.listdir(train_path)
fig, ax = plt.subplots(2, 5, figsize=(16, 6))

for i in range(2):
    for j in range(5):
        dr = random.choice(dirs)
        im = random.choice(os.listdir(os.path.join(im_root, dr)))
        ax[i, j].imshow(plt.imread(os.path.join(im_root, dr, im)), cmap='gray')
        ax[i, j].set_title(dr)
        ax[i, j].axis('off')
```


Рисунок 2 – Примеры изображений из датасета

Задание 2. Проверьте, что классы являются сбалансированными, т.е. количество изображений, принадлежащих каждому из классов, примерно одинаково (В данной задаче 10 классов).

Чтобы проверить сбалансированность классов, напишем функцию:

```
def get_labeling_data(path_folder):
   root_folders = []
   lens_folders = []
    sort_path = os.listdir(path_folder)
    sort_path.sort()
    for num, i in enumerate(sort_path):
        path = os.path.join(path_folder,i)
        root_folders.append(path)
        lens_folders.append([path, len(os.listdir(path))])
    print('Folder', 13*' ', 'Size' )
    for x in lens_folders: print(x)
    _img_Labels_file = []
    for i,v in enumerate(root_folders):
        if v:
            for file in os.listdir(v):
                try:
                    file_path = os.path.join(v,file)
                    img = cv2.imread(file_path,cv2.IMREAD_GRAYSCALE)
                    resize_img = cv2.resize(img,(28,28))
                    _img_Labels_file.append([i,resize_img])
                except Exception as e:
                    pass
    return _img_Labels_file, lens_folders
```

Рисунок 3 – Функция для разметки данных

Применим функцию к наборам данных:

```
img_lbls_train, len_train = get_labeling_data(train_path)
img_lbls_test, len_test = get_labeling_data(test_path)
Folder
['notMNIST_large/A', 52912]
['notMNIST_large/B', 52912]
['notMNIST_large/C', 52912]
['notMNIST_large/D', 52912]
['notMNIST_large/E', 52912]
['notMNIST_large/F', 52912]
['notMNIST_large/G', 52912]
['notMNIST_large/H', 52912]
['notMNIST_large/I', 52912]
['notMNIST_large/J', 52911]
Folder
['notMNIST_small/A', 1873]
['notMNIST_small/B', 1873]
['notMNIST_small/C', 1873]
['notMNIST_small/D', 1873]
['notMNIST_small/E', 1873]
['notMNIST_small/F', 1873]
['notMNIST_small/G', 1872]
['notMNIST_small/H', 1872]
['notMNIST_small/I', 1872]
['notMNIST_small/J', 1872]
```

Рисунок 4 – Проверка сбалансированности классов

Видим, что все классы хорошо сбалансированы. В единственном классе «J» в «notMNIST large» на одно изображение меньше, чем в остальных, но

это не существенное замечание. Наглядно это можно показать с помощью plt.bar. Покажем это для набора данных «notMNIST large».

```
plt.bar(np.arange(10), pd.DataFrame(len_train)[1])
plt.ylabel('Size of label')
plt.xlabel('Labels')
plt.xticks(np.arange(10), np.sort(labels))
plt.title('Checking balance for dataset')
plt.grid()
plt.show()
```


Рисунок 5 – Проверка сбалансированности с помощью функции bar

Задание 3. Разделите данные на три подвыборки: обучающую (200 тыс. изображений), валидационную (10 тыс. изображений) и контрольную (тестовую) (19 тыс. изображений).

Для того, чтобы задействовать максимальное число картинок для обучения, задействуем 2 набора данных. Полученный датасет рандомизируем. Далее рассортируем данные на данные для обучения (X) и их лейблы (Y).

```
img_common_data = img_lbls_train + img_lbls_test

random.shuffle(img_common_data)

X, Y = [], []
for labels, features in enumerate(img_common_data):
    X.append(features[1])
    Y.append(features[0])
```

Рисунок 6 – Работа с датасетами

Чтобы каждый раз не работать с подготовкой датасета для обучения, сохраним его в удобный вид. Теперь его можно легко загрузить для выполнения последующих лабораторных работ.

```
pickle_out = open("NotMnist_filterd_data/X_features.pickle","wb")
pickle.dump(X, pickle_out)
pickle_out.close()

pickle_out = open("NotMnist_filterd_data/Y_labels.pickle","wb")
pickle.dump(Y, pickle_out)
pickle_out.close()
```

Рисунок 7 – Сохранение подготовленного датасета

```
X_features = pickle.load(open("NotMnist_filterd_data/X_features.pickle","rb"))
Y_labels = pickle.load(open("NotMnist_filterd_data/Y_labels.pickle","rb"))
```

Рисунок 8 – Загрузка подготовленного датасета

Нормализуем датасет путем деления каждого пикселя на его максимальное значение 255. Делаем это для того, чтобы нейронные сети и другие алгоритмы машинного обучения не работали с большими числами. Также изменим размер одного изображения как 28х28.

```
X_features = np.array(X_features) / 255 # normalization of data for easy to calculation
s.
Y_labels = np.array(Y_labels)

X_features = X_features.reshape(-1, 28*28)
```

Рисунок 9 – Нормализация и изменение формы изображений в датасете

Зафиксируем константы для разделения датасета на тренировочный, валидационный и контрольный. Далее разделим датасет.

```
TRAIN = 200000
VAL = 10000
TEST = 19000

x_train, y_train = X_features[:TRAIN], Y_labels[:TRAIN]
x_val, y_val = X_features[TRAIN:TRAIN+VAL], Y_labels[TRAIN:TRAIN+VAL]
x_test, y_test = X_features[TRAIN+VAL:TRAIN+VAL+TEST], Y_labels[TRAIN+VAL:TRAIN+VAL+TEST]
```

Рисунок 10 - Разделение датасета на тренировочный, валидационный и контрольный

Результат разделения:

```
print('Train: ',x_train.shape, y_train.shape)
print('Validation: ', x_val.shape, y_val.shape)
print('Test: ', x_test.shape, y_test.shape)

Train: (200000, 784) (200000,)
Validation: (10000, 784) (10000,)
Test: (19000, 784) (19000,)
```

Рисунок 11 – Результат разделения

Задание 4. Проверьте, что данные из обучающей выборки не пересекаются с данными из валидационной и контрольной выборок. Другими словами, избавьтесь от дубликатов в обучающей выборке.

```
def get dataset hash(dataset):
     return [shal(dataset instance).digest() for dataset instance in dataset]
train_dataset_hash = get_dataset_hash(x_train)
valid_dataset_hash = get_dataset_hash(x_val)
test dataset hash = get dataset hash(x test)
duplicates_in_train_and_valid_dataset = np.intersect1d(train_dataset_hash, valid_dataset_hash)
duplicates_in_train_and_test_dataset = np.intersectld(train_dataset_hash, test_dataset_hash)
duplicates_in_valid_and_test_dataset = np.intersectld(test_dataset_hash, valid_dataset_hash)
duplicates = np.hstack(
                             (duplicates_in_train_and_valid_dataset,
  duplicates_in_train_and_test_dataset,
  duplicates_in_valid_and_test_dataset)
def clean dataset(dataset, dataset hash, exclude hash):
     return np.array([
                        dataset[index] for index in
np.arange(dataset.shape[0]) if
                        dataset hash[index] not in
                        exclude_hash
cleaned_valid_dataset = clean_dataset(x_val, valid_dataset_hash, duplicates)
cleaned_test_dataset = clean_dataset(x_test, test_dataset_hash, duplicates)
print ('Original valid dataset shape', x_val.shape)
print ('Cleaned valid dataset shape', cleaned valid dataset.shape)
print ('Original test dataset shape', x_test.shape)
print ('Cleaned test dataset shape', cleaned_test_dataset.shape)
Original valid dataset shape (10000, 784)
Cleaned valid dataset shape (8807, 784)
Original test dataset shape (19000, 784)
Cleaned test dataset shape (16880, 784)
```

Рисунок 12 – Очистка тренировочного и контрольного датасетов от дубликатов

Задание 5. Постройте простейший классификатор (например, с помощью логистической регрессии). Постройте график зависимости точности классификатора от размера обучающей выборки (50, 100, 1000, 50000). Для построения классификатора можете использовать библиотеку SkLearn (http://scikit-learn.org).

Построим классификатор с помощью LogisticRegression.

Рисунок 13 – Простейший классификатор на основе LogisticRegression

Построим confusion matrix:

```
print('Confusion matrix on val')
confusion_matrix(y_val, y_pred_val)
Confusion matrix on val
array([[780,
                   12, 44, 19, 13,
                                         21,
               6, 912,
                              24,
         19, 42, 10, 895,
                              11, 21,
                                         10,
                                              17,
                                                    23,
                                                         14],
          8, 19,
                    58, 16, 837,
                                    26,
                                         20,
                                              15,
                                                    35,
                   11, 8,
38, 22,
                             16, 847,
                                         20,
                                                         21],
         12,
               7,
                                              14,
                                                    19,
         12, /,
15, 19,
                              8, 26, 819,
                                              13,
                                                    22,
                                                         21],
                                         12, 805,
21, 32.
             20,
                     7,
                               9,
                                   19,
                                                    34,
                                                         11],
         41.
                        14, 9,
15, 21,
                     8,
         19.
              11,
                                    17,
                                              32, 807,
print('Confusion matrix on test')
confusion_matrix(y_test, y_pred_test)
Confusion matrix on test
array([[1501,
                              21,
                                    18,
                                                 29,
                                                       66,
                                                              39,
                                                                    42],
                                    40,
                                                 48,
                              90,
          21, 1544,
           9,
                19, 1736,
                             18,
                                   43,
                                          22,
                                                 49,
                                                       20,
                                                              32,
                                                                    14],
                     19, 1603,
          28,
                 56,
                                    14,
                                          27,
                                                 22,
                                                       27,
                                                              34,
                                                                    23],
                             18, 1528,
                                                 46,
                                                                    19],
          24,
                 54,
                       98,
                                                       26.
                                                              68.
                                    28, 1657,
                                                              58,
                 17,
          24,
                       29,
                             17,
                                                 36,
                                                       23,
                                                                    41],
                      71,
5,
                             27,
                                    22,
          29,
                 37.
                                                       30.
                                                              40.
                                          36. 1567.
                                                                    301.
                                    25,
          49,
                 33,
                             21,
                                          30,
                                                 27, 1545,
                                                              57,
                                                                    34],
                                                       57, 1507,
                                                                   109],
```

Рисунок 14 - Confusion matrix для валидационной и контрольной выборки

Построим график зависимости точности классификатора от размера обучающей выборки (50, 100, 1000, 10000, 50000).

```
plt.plot(logit_test[0])
plt.xticks(range(len(training_samples)),training_samples)
plt.title('Точность классификатора от размера обучающей выборки')
plt.xlabel('Размер обучающей выборки')
plt.ylabel('Точность')
plt.show()
```


Рисунок 15 – Зависимость точности классификатора от размера обучающей выборки для метрики Accuracy

```
plt.plot(logit_test[1])
plt.xticks(range(len(training_samples)),training_samples)
plt.title('Точность классификатора от размера обучающей выборки')
plt.xlabel('Размер обучающей выборки')
plt.ylabel('F1')
plt.show()
```


Рисунок 16 – Зависимость точности классификатора от размера обучающей выборки для метрики F1

Вывод:

В ходе выполнения лабораторной работы были изучены подходы к предварительной обработке данных: проверка сбалансированности, удаление дубликатов, нормализация, изменение формы данных. Был построен простейший классификатор на основе логистической регрессии, с помощью подбора параметров были подобраны наилучшие параметры для реализации модели, при этом скор на валидационной и контрольной выборке составил примерно 0,83, а метрика F1 — 0,83 в обеих выборках. Была получена зависимость точности модели от количества данных для обучения, ее вид напоминает логарифмический рост.