INNOLUX DISPLAY CORPORATION

LCD MODULE

SPECIFICATION

Customer:

Model Name: AT102TN03 V.1

SPEC NO.: <u>A102-03-TT-11</u>

Date: 2008/04/15

Version: 01

- Preliminary Specification
- ☐ Final Specification

For Customer's Acceptance

Approved by	Comment

Approved by	Reviewed by	Prepared by
Joe Lin	Jack Huang	Kevin Chen
2008/04/15	2008/04/15	2008/04/15

InnoLux copyright 2004 All rights reserved, Copying forbidden.

Record of Revision

Contents:

1.	General Specifications	1
2.	Pin Assignment	2
	2.1. TFT LCD Panel Driving Section	2
	2.2. Backlight Unit Section	5
3.	Operation Specifications	
	3.1. Absolute Maximum Rating	
	3.1.1 Typical Operation Conditions	7
	3.1.2 Current Consumption	8
	3.1.3 Backlight Driving Conditions	8
	3.2 Power Sequence	
	3.3 Timing Characteristics	.10
	3.3.1 Timing Conditions	
	3.3.2 Timing Diagram	. 11
4.	Optical Specifications	
5.	Reliability Test Items	.22
	General Precautions	
	6.1 Safety	.23
	6.2 Handling	
	6.3 Static Electricity	.23
	6.4 Storage	.23
	6.5 Cleaning	.23
7	Mechanical Drawing	.24
8	Package Drawing	.25
	8.1 Packaging Material Table	.25
	8.2 Packaging Quantity	.25
	8.3 Packaging Drawing	.26

Page: 1/26

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	10.2 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800 × 3(RGB) × 480	
4	Display mode	Normally white, Transmissive	
5	Dot pitch	0.0925(W) × 0.276(H) mm	
6	Active area	222.0(W) × 132.48(H) mm	
7	Module size	235.0(W) × 145.8(H)X6.1(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital	
11	Backlight power consumption	TBD	
12	Panel power consumption	TBD	
13	Weight	TBD	

Note 1: Refer to Mechanical Drawing.

Page: 2/26

2. Pin Assignment

2.1. TFT LCD Panel Driving Section

FPC connector is used for the module electronics interface. The recommended model is

"AF 730L-A2G1T" manufactured by P-TWO.

Pin No.	Symbol	I/O	Function	Remark
1	POL	ı	Polarity selection	
2	STVD	I/O	Vertical start pulse input when U/D= H	Note 1
3	OEV	I	Outp <mark>ut e</mark> nable	
4	CKV	I	Vertical clock	
5	STVU	I/O	Vertical start pulse input when U/D= L	Note 1
6	GND	Р	Power ground	
7	EDGSL	1/	Select rising edge or rising/falling edge	
8	V _{CC}	Р	Power supply for digital circuit	
9	V9		Gamma voltage level 9	
10	V_{GL}	Р	Gate OFF voltage	
11	V2	J.	Gamma voltage level 2	
12	V_{GH}	Р	Gate ON voltage	
13	V6	VP.	Gamma voltage level 6	
14	U/D	I	Up/down selection	Note 1,2
15	V_{COM}	I	Common voltage	
16	GND	Р	Power ground	
17	AV_DD	Р	Power supply for analog circuit	
18	V14		Gamma voltage level 14	
19	V11		Gamma voltage level 11	
20	V8	I	Gamma voltage level 8	
21	V5	I	Gamma voltage level 5	
22	V3	I	Gamma voltage level 3	
23	GND	Р	Power ground	
24	R5	I	Red data(MSB)	
25	R4	I	Red data	
26	R3	I	Red data	
27	R2	I	Red data	
28	R1	無於	Red data	

Page: 3/26

29	R0	I	Red data(LSB)	
30	GND	Р	Power ground	
31	GND	Р	Power ground	
32	G5	I	Green data(MSB)	
33	G4	I	Green data	
34	G3	I	Green data	
35	G2	I	Green data	
36	G1	I	Green data	
37	G0	I	Green data(LSB)	
38	STHL	I/O	Horizontal start pulse input when R/L = L	Note 1
39	REV	Р	Control signal are inverted or not	Note 3
40	GND	I	Power ground	
41	DCLK	1.7	Sample clock	· ·
42	V _{CC}	Р	Power supply for digital circuit	
43	STHR	I/O	Horizontal start pulse input when R/L = H	Note 1
44	LD		Latches the polarity of outputs and switches the new data to outputs	
45	B5	_	Blue data (MSB)	
46	B4		Blue data	
47	B3	Ď	Blue data	
48	B2	_	Blue data	
49	B1		Blue data	
50	В0		Blue data (LSB)	
51	R/L		Right/ left selection	Note 1,2
52	V1		Gamma voltage level 1	
53	V4)_	Gamma voltage level 4	
54	V7	I	Gamma voltage level 7	
55	V10	I	Gamma voltage level 10	
56	V12	I	Gamma voltage level 12	
57	V13	I	Gamma voltage level 13	
58	AV_DD	Р	Voltage for analog circuit	
59	GND	Р	Power ground	
60	V _{COM}	I	Common voltage	

I: input, O: output, P: Power

Page: 4/26

Note 1: Selection of scanning mode

Setting of scan control input		IN/OUT	state for s	tart pulse	Scanning direction	
U/D	R/L	STVD	STVU	STHR	STHL	
GND	V _{CC}	0	I	I	0	Up to down, left to right
V_{CC}	GND	I	0	0	- Las	Down to up, right to left
GND	GND	0	I	0	. •	Up to down, right to left
V _{CC}	V _{CC}	I	0	, T (0	Down to up, left to right

Note 2: Definition of scanning direction.

Refer to the figure as below:

Note 3: When REV="L", normally REV="H", these data will be inverted.

Page: 5/26

2.2. Backlight Unit Section

LED Light Bar connector is used for the the integral backlight system. The recommended model is "BHSR-02VS-1" manufactured by JST.

Pin No.	Symbol	I/O	Function	Remark
1	V_{LED+}	Р	Power for LED backlight anode	Pink
2	V_{LED}	Р	Power for LED backlight cathode	White

Page: 6/26

3. Operation Specifications

3.1. Absolute Maximum Rating

(GND=AV_{SS}=0V, Note 2)

	, NOIE Z				
Item	Symbol	Val	Unit	Remark	
item	- Cyllibol	Min.	Max.	Onit	Kemark
	V _{CC}	-0.3	5	V	
	AV_DD	-0.5	12	V	
Power voltage	V_{GH}	-0.3	18	V	
	V_{GL}	-15	0.3	V	*
	V_{GH} - V_{GL}	-	33	V	
Input signal voltage	V1~V7	0.4 AV _{DD}	AV _{DD} -0.1	V	Note 1
iliput signal voltage	V8~V14	-0.3	0.6AV _{DD}	V	
Operation temperature	T _{OP}	-30	85	$^{\circ}\!\mathbb{C}$	
Storage temperature	T _{ST}	-30	85	$^{\circ}\!\mathbb{C}$	
LED Reverse Voltage	Vr	1-12	1.2	V	Each LED Note 3
LED Forward Current	l _f	<u> </u>	25	mA	Each LED

Note 1: AV_{DD} - 0.1 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5 \ge V6 \ge V7 \ge V8 \ge V9 \ge V10>V11 \ge V12 \ge V13 \ge V14 \ge AVSS + 0.1

Note 2: The absolute maximum rating values of the module should not be exceeded. Once exceeded absolute maximum rating values, the characteristics of the module may not be recovered. Even in an extreme condition, may result in module permanently destroyed.

Note 3: Vr conditions: Zener Diode 20mA.

Page: 7/26

3.1.1 Typical Operation Conditions

(GND=AV_{SS}=0V, Note 1)

Item	Symbol		Values	Unit	Remark	
item	Syllibol	Min.	Тур.	Max.	Ullit	Remark
	V _{CC}	3.0	3.3	3.6	V	
Power voltage	AV_DD	9.0	9.2	9.4	V	
Fower voitage	V_{GH}	14.3	15.0	15.7	V	
	V_{GL}	-10.5	-10.0	-9.5	V	
	V _{COM}	3.6	3.8	4.0	V	(V1+V14)/2 =4.9V
Input signal voltage	V1~V7	0.4 AV _{DD}		AV _{DD} -0.1	V	×
	V8~V14	0.1	-	0.6 A _{VDD}	V	
Input logic high voltage	V _{IH}	0.7V _{CC}		V _{CC}	V	
Input logic low voltage	V _{IL}	0	NE	0.3V _{CC}	V	

Note 1: Be sure to apply GND, V_{CC} , and V_{GL} , to the LCD first, and then apply V_{GH} .

Page: 8/26

3.1.2 Current Consumption

(GND=AV_{SS}=0V)

Item	Symbol		Values		Unit	Remark	
	Syllibol	Min.	Тур.	Max.	Onit	Remark	
	I _{GH}	-	0.2	0.5	mA	V _{GH} =15V	
Current for Driver	I _{GL}	-	0.2	1.0	mA	V _{GL} = -10V	
Current for Driver	Icc	<u> </u>	5.5	10	mA	V _{CC} =3.3V	
	IAV _{DD}	A	32	50	mA	AV _{DD} =9.2V	

3.1.3 Backlight Driving Conditions

Itam	Symbol	Values			Unit	Remark
Item	Symbol	Min.	Тур.	Max.	Offic	Remark
LED forward voltage	VL	9.3	9.9	10.5	V	Note 1
LED forward current	T.	234	260	286	mA	
LED life time	-	20,000	10	_	Hr	Note 2

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25° \mathbb{C} and I_L =260mA. The LED lifetime could be decreased if operating I_I is larger than 260 mA.

Page: 9/26

3.2 Power Sequence

3.2.1 **Power on:**

VCC→VGL→VGH→Data→B/L

3.2.2 Power off:

B/L→Data→VGH→VGL→VCC

Note: Data includes POL, STVD, OEV, CKV, STVU, EDGSL, STHL, REV, DCLK, V_{CC} , STHR, LD.

Page: 10/26

3.3Timing Characteristics

3.3.1 Timing Conditions

Itama	Symbol	Values			11:4	
Item		Min.	Тур.	Max.	Unit	Remark
DCLK frequency	F _{dclk}	-	40	45	MHz	
DCLK cycle	T_{cph}	22	25	-	ns	
DCLK pulse width	T _{cw}	8	1	· -	ns	
Data set-up time	T _{su}	4	7-/	1 - P	ns	
Data hold time	T_{hd}	2	-	/-	ns	•
Time that the last data to LD	T _{Id}	1	4	-	Tcph	
Pulse width of LD	T _{wld}	2	J		Tcph	
Time that LD to STHL/R	T _{lds}	5	-	- 15	Tcph	-
POL set-up time	T _{psu}	6	-	A	ns	
POL hold time	T_phd	6	-	1	ns	
CKV frequency	F _{vclk}	-	1.0	200	KHz	
CKV rise time	T _{rck}		7	100	ns	
CKV falling time	T _{fck}	C. 1	5	100	ns	
CKV pulse width	Pwclk	500	_	-	ns	
Horizontal display timing range	T_{dh}	11-	800	-	Tcph	
Horizontal timing range	T _h	-	1056	-	Tcph	
STVU/D setup time	T _{suv}	200	-	-	ns	
STVU/D hold time	T _{hdv}	300	-	-	ns	
STVU/D delay time	T _{dt}	-	-	500	ns	
Driver output delay time	T_{do}	-	-	900	ns	
Output rise time	T _{tlh}	-	500	1000	ns	
Output falling time	T _{thl}	-	400	800	ns	
OEV pulse width	T _{wcl}	1	-	-	us	
OEV to Driver output delay time	T _{oe}	-	-	900	ns	
Horizontal lines per field	T _v	512	525	610	Line	
Vertical display timing range	T_{vd}	ı	480	-	Line	

Timing Diagram 3.3.2

InnoLux

Fig.3-1 operation model 1

版權關於韓國所有: 禁止任何未經授權的使用

Page: 13/26

Fig.3-4 Horizontal timing 2

Page: 15/26

Fig. 3-5 Vertical shift clock timing

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

Page: 16/26

版權關於舞劇所有. 禁止任何未經授權的使用

版權關於群創所有. 禁止任何未經授權的使用

Page: 18/26

4. Optical Specifications

Item	Symbol	Condition	Values			Unit	Remark
item	Symbol	Condition	Min.	Тур.	Max.	Offic	Remark
Viewing angle (CR≥10)	θ_{L}	Φ=180°(9 o'clock)	55	65	-	degree Note	
	θ_{R}	Φ=0°(3 o'clock)	55	65	_		Note 1
	θ_{T}	Φ=90°(12 o'clock)	35	45	-		Note 1
	θ_{B}	Ф=270°(6 o'clock)	55	65			
Response time	T _{ON}	Normal θ=Φ=0°	-	15	30	msec	Note 3
	T _{OFF}		1	20	40	msec	Note 3
Contrast ratio	CR		250	300	_	-	Note 4
Color chromaticity	W _X		0.26	0.31	0.36	ı	Note 5
	W_{Y}		0.28	0.33	0.38	-	Note 6
Luminance	L		200	250	-	cd/m ²	Note 6
Luminance uniformity	Yu		70	75	-	ı	Note 7

Test Conditions:

- 1. V_{CC} =3.3V, I_L =260mA (Backlight current), the ambient temperature is 25 $^{\circ}$ C.
- 2. The test systems refer to Note 2.

Page: 19/26

Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

Page: 20/26

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground when measuring the center area of the panel. The LED driving condition is I_L=260mA.

Page: 21/26

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

iring point is placed at the center of each
$$Luminance\ Uniformity\ (Yu) = rac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

Page: 22/26

5. Reliability Test Items

(Note3)

Item	Test Con	Remark	
High Temperature Storage	Ta = 85℃	240 hrs	Note 1,Note 4
Low Temperature Storage	Ta = -30°C	240hrs	Note 1,Note 4
High Temperature Operation	Ts = 85°C	240hrs	Note 2,Note 4
Low Temperature Operation	Ta = -30°C	240hrs	Note 1,Note 4
Operate at High Temperature and Humidity	+60℃, 90%RH	240 hrs	Note 4
Thermal Shock	-30°C/30 min ~ +85°C/30 cycles, Start with cold to with high temperature	Note 4	
Vibration Test	Frequency range:10~55 Stroke:1.5mm Sweep:10Hz~55Hz~10H 2 hours for each direction (6 hours for total)		
Mechanical Shock	100G 6ms,±X, ±Y, ±Z 3 direction		
Package Vibration Test	Random Vibration: 0.015G*G/Hz from 5-20 from 200-500HZ 2 hours for each direction (6 hours for total)		
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6 sur		
Electro Static Discharge	± 2KV, Human Body N		

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn't guarantee all the cosmetic specification.
- Note 4: Before cosmetic and function tests, the product must have enough recovery time, at least 2 hours at room temperature.

Page: 23/26

6. General Precautions

6.1 Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2 Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3 Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4 Storage

- 1. Store the module in a dark room where must keep at +25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5 Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

Page: 24/26

7 Mechanical Drawing

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

Page: 25/26

8 Package Drawing

8.1 Packaging Material Table

No	Item	Model (Material)	Dimensions (mm)	Unit Weight (kg)	Quantity	Remark
1	LCM module	AT102TN03 V.1	235 × 145.8 × 6.1	TBD	25pcs	
2	Partition	BC Corrugated paper	<mark>512</mark> × 349 × 226	1.350	1 set	
3	Partition Paper	B Corrugated paper	5 <mark>10 × 35</mark> 0 × 7	0.148	2 set	
4	Corrugated Bar	B Corrugated paper	512 × 370 ×7	0.110	2 pcs	
5	Dust-Proof Bag	PE	900 × 700 × 0.05	0.010	1 pcs	
6	A/S Bag	PE	280 × 200 × 0.05	0.001	25 pcs	10^{9} \sim $10^{11}\Omega/\text{sq}$
7	Carton	Corrugated paper	530 × 355 × 255	2.300	1 pcs	
8	Total weight		TBD			

8.2 Packaging Quantity

Total LCM quantity in Carton: no. of Partition 1 Rows x quantity per Row 25 = 25

Page: 26/26

8.3 Packaging Drawing

