Estadística II Tema 1: Distribución normal multivariante

José R. Berrendero

Departamento de Matemáticas Universidad Autónoma de Madrid

Algunas propiedades de los vectores aleatorios

Sea $X = (X_1, \dots, X_p)'$ un vector aleatorio p-dimensional.

- Su vector de medias es $\mathbb{E}(X) = \mu = (\mu_1, \dots, \mu_p)'$ donde $\mu_i = \mathbb{E}(X_i)$.
- ▶ Su matriz de covarianzas es $Var(X) = \Sigma$, cuya posición (i,j) es $\sigma_{i,j} = Cov(X_i, X_j)$. Es fácil comprobar

$$Var(X) = \mathbb{E}[(X - \mu)(X - \mu)'] = \mathbb{E}(XX') - \mu\mu'.$$

Transformaciones afines: si A es matriz $q \times p$ y $b \in \mathbb{R}^q$,

- $\mathbb{E}(AX+b)=A\mu+b.$
- $\qquad \qquad \mathsf{Var}(AX+b) = \mathbb{E}[A(X-\mu)(X-\mu)'A'] = A\Sigma A'.$

La función característica de X es $\varphi(t) = \mathbb{E}(e^{it'x})$, donde $t \in \mathbb{R}^p$. Esta función caracteriza la distribución de X.

La distribución normal multivariante

El vector aleatorio X es **normal** p-dimensional con vector de medias μ y matriz de covarianzas Σ (notación: $X \equiv N_p(\mu, \Sigma)$) si tiene densidad dada por:

$$f(x) = |\Sigma|^{-1/2} (2\pi)^{-p/2} \exp\left\{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right\}, \quad x \in \mathbb{R}^p.$$

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{pmatrix}.$$

Ejemplos de densidades normales bidimensionales

$$\mu = (0,0)'$$
 y $\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Ejemplos de densidades normales bidimensionales

$$\mu = (0,0)' ext{ y } \Sigma = \left(egin{array}{cc} 1 & 0.8 \ 0.8 & 1 \end{array}
ight) \qquad \mu = (0,0)' ext{ y } \Sigma = \left(egin{array}{cc} 1 & -0.8 \ -0.8 & 1 \end{array}
ight)$$

Relaciona cada matriz con su conjunto de datos

Estandarización multivariante

Prop: Si $X \equiv N_p(\mu, \Sigma)$ y definimos $Y = \Sigma^{-1/2}(X - \mu)$, entonces Y_1, \ldots, Y_p son i.i.d. N(0, 1).

Dem: Cambio de variable $h(x) = \Sigma^{-1/2}(x - \mu) \text{ y } |Jh^{-1}| = |\Sigma|^{1/2}$.

$$\Sigma$$
 simétrica $\Rightarrow \Sigma = CDC' \Rightarrow \Sigma^{-1/2} = CD^{-1/2}C'.$ Por lo tanto,
$$Y = CD^{-1/2}C'(X-\mu).$$

Geométricamente, la estandarización equivale a las siguientes operaciones sobre los datos:

- ► Trasladarlos para que la media sea el origen.
- ▶ Rotarlos de forma que las correlaciones se anulen.
- ► Cambios de escala en cada variable, para que las varianzas sean 1.
- Deshacer la rotación anterior (no cambia la distribución).

Estandarización multivariante

Estandarización multivariante: consecuencias

- 1. Si $X \equiv \mathsf{N}_p(\mu, \Sigma)$, entonces $\mathbb{E}(X) = \mu$ y $\mathsf{Var}(X) = \Sigma$. (puesto que $X = \Sigma^{1/2}Y + \mu$).
- 2. Si $X \equiv N_p(\mu, \Sigma)$, entonces $\varphi_X(t) = \exp\{it'\mu \frac{1}{2}t'\Sigma t\}$ (ya que $X = \Sigma^{1/2}Y + \mu$ y la f.c. de una v.a. normal estándar es $e^{-t^2/2}$).
- 3. La distribución de $(X \mu)' \Sigma^{-1} (X \mu)$ es χ_p^2 . (puesto que $(X \mu)' \Sigma^{-1} (X \mu) = Y'Y$).

Distancia de Mahalanobis

Si $X=(X_1,\ldots,X_p)'$ es un vector con media μ y covarianzas Σ , la distancia de Mahalanobis de X a μ es

$$d_M(X,\mu) = \sqrt{(X-\mu)'\Sigma^{-1}(X-\mu)}.$$

Distancia de Mahalanobis frente a otras distancias

- 1. d_M coincide con la distancia euclídea entre los datos estandarizados de forma multivariante.
- 2. d_M es adimensional.
- 3. d_M tiene en cuenta las diferentes variabilidades (varianzas) de las variables.
- 4. d_M tiene en cuenta las correlaciones entre las variables.
- 5. Bajo normalidad, su cuadrado se distribuye como una χ^2_p .

Ejemplo

$$\Sigma = \left[\begin{array}{cc} 10 & 0 \\ 0 & 2, 5 \end{array} \right], \quad \Sigma^{-1} = \left[\begin{array}{cc} 0, 1 & 0 \\ 0 & 0, 4 \end{array} \right], \quad R = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

- $d_M^2(x,y) = (x-y)'\Sigma^{-1}(x-y) = 0, 1(x_1-y_1)^2 + 0.4(x_2-y_2)^2$.
- $d_E(A, O) = d_E(B, O), d_M(A, O) > d_M(B, O).$
- d_M tiene en cuenta la diferente variabilidad de las variables.

Ejemplo

$$\Sigma = \left[\begin{array}{cc} 6 & 4 \\ 4 & 6 \end{array} \right], \quad \Sigma^{-1} = \left[\begin{array}{cc} 0,3 & -0,2 \\ -0,2 & 0,3 \end{array} \right], \quad R = \left[\begin{array}{cc} 1 & 0,6 \\ 0,6 & 1 \end{array} \right].$$

- $d_M^2 = (x \mu)' \Sigma^{-1} (x \mu)$.
- $d_E(A, O) = d_E(B, O)$.
- $d_M(A, O) > d_M(B, O)$.
- d_M incluye la correlación.

Distancias de Mahalanobis para datos normales

Distancias de Mahalanobis para datos normales

Estadísticos descriptivos para D_i^2 en el segundo ejemplo:

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.007255 0.565100 1.314000 1.980000 2.710000 9.735000

Desviacion tipica: 1.920563

Comparación con la densidad χ^2 :

Datos de lirios de Fisher

Conjunto de datos (iris data) muy famoso utilizado por Fisher (1936) para ilustrar un ejemplo de clasificación.

Enlace a la entrada en wikipedia sobre estos datos

Medidas de la longitud y anchura del pétalo y el sépalo de 150 lirios

Hay 50 lirios de cada una de las especies *iris setosa*, *iris versicolor* e *iris virginica*.

Datos de lirios de Fisher

Distancias de Mahalanobis

Distancias de Mahalanobis

- La forma del histograma no coincide del todo con lo que se espera bajo normalidad (distribución χ^2)
- ► La distancia de Mahalanobis media es 3.97 y la varianza de las distancias es 7.69
- ▶ La mayor distancia es 13.1 y corresponde al número 132.
- ► La menor distancia es 0.32 y corresponde al número 79.

Datos de lirios de Fisher

Transformaciones afines de vectores normales

Prop: Si $X \equiv N_p(\mu, \Sigma)$, A es matriz $q \times p$ y $b \in \mathbb{R}^q$, entonces

$$AX + b \equiv N_q(A\mu + b, A\Sigma A')$$

Dem: Ejercicio (usar la f.c.)

Consecuencia: si $X=(X_1\mid X_2)$, con $X_1\in\mathbb{R}^q$ y $X_2\in\mathbb{R}^{p-q}$, y consideramos las particiones correspondientes de μ y Σ ,

$$\mu = (\mu_1 \mid \mu_2), \quad \Sigma = \left(\begin{array}{c|c} \Sigma_{11} \mid \Sigma_{12} \\ \hline \Sigma_{21} \mid \Sigma_{22} \end{array}\right)$$

entonces $X_1 \equiv N_q(\mu_1, \Sigma_{11})$.

Prop: X_1 y X_2 son independientes $\iff \Sigma_{12} = 0$.

Dem: Ejercicio (descomponer la densidad de X como producto de las densidades de X_1 y X_2).

Observaciones

- Si dos v.a. X e Y tienen distribución normal y además Cov(X, Y) = 0, esto no implica que X e Y sean independientes.
- Si dos v.a. X e Y tienen distribución normal y $a, b \in \mathbb{R}$, la combinación lineal aX + bY no tiene necesariamente distribución normal.
- Aunque todas las marginales de un vector aleatorio p-dimensional X tengan distribución normal, esto no implica que X tenga distribución normal p-dimensional.

Ejercicio: Añade las hipótesis necesarias para que las conclusiones sí sean válidas.

Ejemplo

$$X=(X_1,X_2,X_3)'\equiv \mathsf{N}_3(\mu,\Sigma)$$
 con

$$\mu = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight), \qquad \Sigma = \left(egin{array}{ccc} 7/2 & 1/2 & -1 \ 1/2 & 1/2 & 0 \ -1 & 0 & 1/2 \end{array}
ight).$$

- Calcula las distribuciones marginales.
- 2. Calcula la distribución del vector $(X_1, X_2)'$.
- 3. ¿Son X_2 y X_3 independientes?
- 4. ¿Es X_3 independiente del vector (X_1, X_2) ?
- 5. Calcula la distribución de la variable $2X_1 X_2 + 3X_3$.

Distribuciones condicionadas

Prop: Sea $X=(X_1\mid X_2)$, con $X_1\in\mathbb{R}^q$ y $X_2\in\mathbb{R}^{p-q}$. Consideramos las particiones correspondientes de μ y Σ y suponemos que existe Σ_{11}^{-1} . Entonces,

$$X_2|X_1 \equiv N_{p-q}(\mu_{2.1}, \Sigma_{2.1}),$$

donde

$$\mu_{2.1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (X_1 - \mu_1),$$

$$\Sigma_{2.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}.$$

- $\mu_{2,1} = \mathbb{E}(X_2|X_1)$ es una función lineal (afín) de X_1 .
- \triangleright $\Sigma_{2.1}$ no depende de X_1 (homocedasticidad).

Ejemplos

Sea
$$\begin{pmatrix} X \\ Y \end{pmatrix} \equiv N_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 10 & 3 \\ 3 & 1 \end{pmatrix} \end{pmatrix}$$

- 1. Calcula la distribución de Y dada X.
- 2. Repite el ejercicio para la distribución de X dada Y.

Sea
$$\begin{pmatrix} X \\ Y \end{pmatrix} \equiv N_2 \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \end{pmatrix}$$
.

1. Calcula la distribución de X + Y condicionada a que X - Y = 1.

Formas cuadráticas bajo normalidad

Prop: Sea $Y \equiv N_n(\mu, \sigma^2 I_n)$ y sea B una matriz $n \times n$ simétrica e idempotente. Supongamos que $\mu' B \mu = 0$. Entonces

$$\frac{1}{\sigma^2}Y'BY \equiv \chi_p^2,$$

donde p es la traza de B.

Prop: Sea $Y \equiv N_n(\mu, \sigma^2 I_n)$ y sean $A_{p \times n}$, $B_{q \times n}$, $C_{n \times n}$ y $D_{n \times n}$ con C y D simétricas e idempotentes.

- 1. AY y BY son independientes \iff AB' = 0.
- 2. $Y'CY \in Y'DY$ son independientes $\iff CD = 0$.
- 3. AY e Y'CY son independientes $\iff AC = 0$.

Algunas aplicaciones

- 1. Si proyectamos Y en dos direccciones ortogonales, tanto las proyecciones como sus normas son independientes.
- 2. **Lema de Fisher**: Se demuestra a partir de la obs. siguiente.

Sea $1_n=(1,\ldots,1)'\in\mathbb{R}^n$ y $M=\frac{1}{n}1_n1'_n$ (una matriz $n\times n$ con todas sus entradas iguales a 1/n), entonces

$$\bar{Y}1_n = MY$$

$$\sum_{i=1}^n (Y_i - \bar{Y})^2 = Y'(I_n - M)Y.$$

Interpretación geométrica: M es una matriz de proyección sobre el subespacio de \mathbb{R}^n cuya base es 1_n .

Teorema central del límite multivariante

TCL para variables aleatorias unidimensionales:

Sean
$$X_1, X_2, \ldots$$
 v.a.i.i.d. con esperanza μ y varianza σ^2 , entonces $\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \sigma^2)$, donde $\bar{X}_n = n^{-1}(X_1 + \cdots + X_n)$.

Para promedios de vectores aleatorios, el TCL es totalmente análogo:

Sean X_1, X_2, \ldots vectores aleatorios p dimensionales i.i.d. con vector de medias μ y matriz de covarianzas Σ , entonces $\sqrt{n}(\bar{X}_n - \mu) \to_d N_p(0, \Sigma)$, donde $\bar{X}_n = n^{-1}(X_1 + \cdots + X_n)$.