Homework 4 EE 020 Spring 2016

Instructor: Roman Chomko

Homework* 4 Vector Spaces

Due Date: Thursday, May 5, 2016

Note: this hw doesn't contain Matlab exercises and its usage is not required.

Problem 1 (Chap 4.1, Problems 45, 47)

Write v as a linear combination of u_1 , u_2 and u_3 and if possible:

45.
$$\mathbf{v} = (10, 1, 4), \quad \mathbf{u}_1 = (2, 3, 5), \quad \mathbf{u}_2 = (1, 2, 4), \quad \mathbf{u}_3 = (-2, 2, 3)$$

47.
$$\mathbf{v} = (0, 5, 3, 0), \quad \mathbf{u}_1 = (1, 1, 2, 2), \quad \mathbf{u}_2 = (2, 3, 5, 6), \quad \mathbf{u}_3 = (-3, 1, -4, 2)$$

Problem 2 (Chap 4.1, Problem 56)

Illustrate properties 1-10 of Theorem 4.2 of Lecture 11, Slide 8 for

$$\mathbf{u} = (2, -1, 3), \mathbf{v} = (3, 4, 0), \mathbf{w} = (7, 8, -4), c = 2 \text{ and } d = -1$$

Problem 3 (Chap 4.2, Problems 19, 22, 26, 33)

Determine whether the set, together with the indicated operations, is a vector space. If it is not, then identify at least one of the vector space axioms that fails.

- 19. The set of all polynomials of degree four or less with the standard operations
- **22.** The set $\{(x, y): x \ge 0, y \ge 0\}$ with the standard operations in \mathbb{R}^2
- **26.** The set of all 2 x 2 matrices of the form

$$\begin{bmatrix} a & b \\ c & 1 \end{bmatrix}$$

1

33. C[0,1], the set of all continuous functions defined on the interval [0, 1], with the standard operations.

ee020 hw 4

^{*} Collaboration is allowed

Problem 4 (Chap 4.3, Problems 2, 3)

Verify the W is a subspace of V. In each case, assume that V has the standard operations.

2. $W = \{(x, y, 2x - 3y): x \text{ and } y \text{ are real numbers}\}, V = R^3$

3. W is a set of all 2 x 2 matrices of the form $\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}$, $V = M_{2,2}$.

Problem 5 (Chap 4.3, Problem 8)

Show that W is not a subspace of a vector space where W is a set of all vectors in \mathbb{R}^2 whose second component is 1. Verify this by giving a specific example that violates the test for a vector subspace.

Problem 6 (Chap 4.3, Problem 29)

Determining Subspaces

determine whether the subset of $M_{n,n}$ is a subspace of $M_{n,n}$ with the standard operations of matrix addition and scalar multiplication.

29. The set of all $n \times n$ upper triangular matrices

Problem 7 (Chap 4.3, Problems 37, 38, 40)

Determining Subspaces

determine whether the set W is a subspace of \mathbb{R}^3 with the standard operations. Justify your answer.

37. $W = \{(x_1, x_2, 0): x_1 \text{ and } x_2 \text{ are real numbers}\}$

38. $W = \{(x_1, x_2, 4): x_1 \text{ and } x_2 \text{ are real numbers}\}$

40. $W = \{(s, s - t, t): s \text{ and } t \text{ are real numbers}\}\$

Problem 8 (Chap 4.3, Problem 48)

Determine whether the set

$$S = \left\{ f \in C[0, 1] : \int_{0}^{1} f(x) \ dx = 0 \right\}$$

is a subspace of C[0, 1]. Prove your answer.

Problem 9 (Chap 4.4, Problems 9, 15)

Spanning Sets In Exercises 9–20, determine whether the set S spans R^2 . If the set does not span R^2 , then give a geometric description of the subspace that it does span.

9.
$$S = \{(2, 1), (-1, 2)\}$$

15.
$$S = \{(1, 3), (-2, -6), (4, 12)\}$$

2 ee020 hw 4

Problem 10 (Chap 4.4, Problem 46)

Testing for Linear Independence

determine whether the set of vectors in $M_{2,2}$ is linearly independent or linearly dependent.

46.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Problem 11 (Chap 4.5, Problems 22, 26)

Explain why S is not a basis for P_2 .

22.
$$S = \{2, x, x + 3, 3x^2\}$$

Explain why S is not a basis for $M_{2,2}$.

26.
$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

Problem 12 (Chap 4.6, Problems 8, 9)

Finding a Basis for a Row Space and Rank In Exercises 5-10, find (a) a basis for the row space and (b) the rank of the matrix.

8.
$$\begin{bmatrix} 2 & -3 & 1 \\ 5 & 10 & 6 \\ 8 & -7 & 5 \end{bmatrix}$$
9.
$$\begin{bmatrix} -2 & -4 & 4 & 5 \\ 3 & 6 & -6 & -4 \\ -2 & -4 & 4 & 9 \end{bmatrix}$$

Problem 13 (Chap 4.6, Problems 25, 28, 30)

Finding the Nullspace of a Matrix In Exercises 25–36, find the nullspace of the matrix.

25.
$$A = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$$

28.
$$A = [1 4 2]$$

30.
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

3 ee020 hw 4

Problem 14 (Chap 4.6, Problems 38, 39)

Finding a Basis and Dimension In Exercises 37–46, find (a) a basis for and (b) the dimension of the solution space of the homogeneous system of linear equations.

38.
$$x - y = 0$$

 $-x + y = 0$

39.
$$-x + y + z = 0$$

 $3x - y = 0$
 $2x - 4y - 5z = 0$

Problem 15 (Chap 4.6, Problem 50)

Nonhomogeneous System In Exercises 49-54, (a) determine whether the nonhomogeneous system Ax = b is consistent, and (b) if the system is consistent, then write the solution in the form $x = x_p + x_h$, where x_p is a particular solution of Ax = b and x_h is a solution of Ax = 0.

50.
$$2x - 4y + 5z = 8$$

 $-7x + 14y + 4z = -28$
 $3x - 6y + z = 12$