Jan Janssen

Theoretical Division, Los Alamos National Laboratory Bikini Atoll Rd., SM 30, Los Alamos, NM 87545, USA

PROFESSIONAL APPOINTMENTS

2022 – present Director's Postdoctoral Fellowship - Theoretical Division (T-1)

Research topic: long-timescale simulations of materials with ab initio accuracy

Los Alamos National Laboratory, Los Alamos, NM, USA

2023 Invited Postdoctoral Fellow - Institute for Pure and Applied Mathematics (IPAM)

Research topic: new mathematics for the exascale: applications to materials science

Email: janssen@lanl.gov

Website: jan-janssen.com

University of California, Los Angeles, CA, USA

2021 – 2022 **Postdoctoral Research Associate** - Theoretical Division (T-1)

Research topic: exascale atomistic capability for accuracy, length, and time

Los Alamos National Laboratory, Los Alamos, NM, USA

2017 Invited Fellow - Institute for Pure and Applied Mathematics (IPAM)

Research topic: complex high-dimensional energy landscapes

University of California, Los Angeles, CA, USA

2015 – 2021 PhD Candidate - Computational Materials Design Department

Research topic: computational phase studies and ab initio thermodynamics

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

EDUCATION

2015 – 2021 PhD in Theoretical Physics - Paderborn University, Germany

• Thesis: pyiron - an integrated development environment for ab initio thermodynamics

• Advisor: Prof. Jörg Neugebauer

• Grade: summa cum laude

2009 – 2015 Advanced Degree in Physics - Technical University of Kaiserslautern, Germany

• Thesis: carbon in α -iron-grainboundaries - an atomistic study of elastic properties

• Advisor: Prof. Herbert Urbassek

• Grade: thesis 1.0 (excellent) - total 1.6 (good)

FUNDED PROPOSALS

2023 **Principal Investigator** of "workflows for machine learned interatomic potentials" as part of an internal call for funding for Postdoctoral Fellows at Los Alamos National Laboratory

• Computing Hardware Funding: \$13k

Co-Principal Investigator of "uncertainty propagation for multi-fidelity machine learned interatomic potentials" as part of the summer school for applied machine learning at Los Alamos National Laboratory

• Funding: \$25k

2022 **Co-Principal Investigator** of "development and deployment of a fully autonomous in *silico* processing and materials discovery platform" in collaboration with the department of Mechanical Engineering at Texas A&M University

• Funding: \$176k

Co-Principal Investigator of "transferability of interatomic machine learning potentials" as part of the summer school for applied machine learning at Los Alamos National Laboratory

• Funding: \$25k

Principal Investigator of "helping users build workflows with ontological typing" project funded by a NumFOCUS small development grant to hire an independent contractor

• Funding: \$6k

AWARDS & HONORS

2023	Invited postdoctoral fellow at the Institute for Pure and Applied Mathematics (IPAM)
2022	Los Alamos National Laboratory (LANL) director's postdoctoral fellowship
2021	PhD with highest distinction - summa cum laude
2019	Runner-up for the Heinz Billing Award - a national biennial award for outstanding contributions to computational science by younger scientist without tenure
2017	Invited fellow at the Institute for Pure and Applied Mathematics (IPAM)
2015	Scholarship of the Technical University of Kaiserslautern

PUBLICATIONS

Google Scholar, 03/23: Citations: 102

M.G. Taylor, D.J. Burrill, **J. Janssen**, E. Batista, D. Perez, and P. Yang. Architector: high-throughput cross-periodic table 3D complex builder. *Nature Communications* (accepted).

L.F. Zhu, **J. Janssen**, S. Ishibashi, F. Körmann, B. Grabowski and J. Neugebauer. A fully automated approach to calculate the melting temperature of elemental crystals. *Computational Materials Science*. doi:10.1016/j.commatsci.2020.110065. Citations: 17

• Code: • pyiron/pyiron_meltingpoint

T.D. Swinburne, **J. Janssen**, M. Todorova, G. Simpson, P. Plechac, M. Luskin and J. Neugebauer. Anharmonic free energy of lattice vibrations in fcc crystals from a mean field bond. *Physical Review B*. doi:10.1103/PhysRevB.102.100101. Citations: 3

• Code: tomswinburne/BLaSA

J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova, T. Hickel, R. Drautz and J. Neugebauer. pyiron: an integrated development environment for computational materials science. *Computational Materials Science*. doi:10.1016/j.commatsci.2018.07.043. Citations: 54

• Code: Opyiron

Y. Lysogorskiy, T. Hammerschmidt, **J. Janssen**, J. Neugebauer and R. Drautz. Transferability of interatomic potentials for molybdenum and silicon. *Modelling and Simulation in Materials Science and Engineering*. doi:10.1088/1361-651X/aafd13. Citations: 17

2016 **J. Janssen**, N. Gunkelmann and H. M. Urbassek. Influence of C concentration on elastic moduli of $\alpha' - Fe_{1-x}C_x$ alloys. *Philosophical Magazine*. doi:10.1080/14786435.2016.1170224. Citations: 11

PUBLICATIONS IN REVIEW

A. Rohskopf, C. Sievers, N. Lubbers, M. A. Cusentino, J. Goff, **J. Janssen**, M. McCarthy, D. Montes de Oca Zapiain, S. Nikolov, K. Sargsyan, E. Sikorski, L. Williams, D. Sema, A. P. Thompson, and M. A. Wood FitSNAP: Atomistic machine learning in LAMMPS. *Journal of Open Source Software*.

J. Janssen, E. Makarov, T. Hickel, A.V. Shapeev and J. Neugebauer. Automated optimization of convergence parameters in plane wave density functional theory calculations via a tensor decomposition-based uncertainty quantification. npj Computational Materials. doi:10.48550/arXiv.2112.04081.

• Code: Opyiron/pyiron-dft-uncertainty

OPEN-SOURCE SOFTWARE

2015 - present pyiron - an integrated development environment for computational materials science

• Role: Lead developer for a team of eight core developers

• Code: Opviron

2018 – present Conda-forge - community-led software distribution for the conda package manager

• Role: Maintainer for materials science software

• Contribution: 500+ packages with a total of 90+ million downloads

2022 Architector - high-throughput cross-periodic table 3D complex builder

• Contribution: Parallelization of the chemical complex building using mpi4py

2021 FitSNAP - Software for generating SNAP machine-learning interatomic potentials

• Contribution: Implemented a python library interface for the Exascale computing project

• Code: fitsnap/fitsnap

WORKSHOPS

2021 **Co-organizer** for the workshop on "workflows for atomistic simulation" Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany (online)

• Code: Opyiron/potentials-workshop-2021

2020 **Co-organizer** for the workshop on "software tools from atomistics to phase diagrams" Pennsylvania State University, Pennsylvania, USA (online)

• Code: pyiron/phasediagram-workshop-2020

SUPERVISION

- 2023 present Ilgar Baghishov (intern): Multi-fidelity machine learned interatomic potentials
 - Role: Primary Supervisor acquiring the funding and leading the supervision of the intern
- 2023 present Ahnaf Akif Alvi (PhD student): Autonomous in silico processing and materials discovery
 - Role: Co-Supervisor in collaboration with Prof. Arroyave at Texas A&M University
- 2022 present Jason Blake Gibson (intern): Transferability of interatomic machine learning potentials
 - Role: Primary Supervisor acquiring the funding and leading the supervision of the intern
- 2018 Ankita Biswas (student assistant): Calculation of vacancy formation energies with pyiron
 - Role: Primary Supervisor for a student research project
- 2017 Martin Böckmann (student assistant): Monte Carlo sampling with pyiron
 - Role: Primary Supervisor guiding the student as the first user of the pyiron software

PRESENTATIONS

INVITED TALKS

- **J. Janssen**, D. Perez. Up-scaling atomistic simulation workflows with pyiron, *Workshop at the institute for pure and applied math (IPAM)*, Los Angeles, CA, USA.
 - **J. Janssen**, M. G. Taylor, P. Yang, D. Perez. Tutorial on high-throughput screening for chemical science with pyiron, 2nd International Workshop on Theory Frontiers in Actinide Science: Chemistry & Materials, Santa Fe, NM, USA.
- J. Janssen, T. Hickel, J. Neugebauer. Automated atomistic calculation of thermodynamic and thermophysical data, *DPG Fall Meeting*, Regensburg, Germany.
 - **J. Janssen**. pyiron an integrated development environment (IDE) for scientific workflows at scale, *Department of Energy Python Exchange*, New York, NY, USA (online).
 - **J. Janssen**. Up-scaling simulation protocols with pyiron, *Platform Material Digital Workflow Meeting 2022*, Berlin, Germany (online).
 - **J. Janssen**. pyiron an integrated development environment (IDE) for materials science, Special Interest Group Data Infrastructure (SIGDIUS) Seminar, Stuttgart, Germany (online).
- J. Janssen, J. Neugebauer. pyiron an integrated development environment for materials science, CECAM Workshop: Simulation Workflows in Materials Modelling (SWiMM), Lausanne, Switzerland (online).
- J. Janssen, T. Hickel, J. Neugebauer. Uncertainty quantification for *ab initio* thermodynamics, *Group Seminar Professor R. Drautz*, Bochum, Germany (online).
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated *ab initio* determination of materials properties at finite temperatures with pyiron, *NIST Workshop: Atomistic simulations for industrial needs*, Gaitgersburg, MD, USA (online).
- J. Janssen, T. Hickel, J. Neugebauer. Automated *ab initio* determination of materials properties at finite temperatures with pyiron, *CLNS Seminar Los Alamos National Laboratory*, Los Alamos, NM, USA.

J. Janssen, T. Hickel, J. Neugebauer. pyiron - an integrated development environment for computational materials science, *Group Seminar Professor G. Kresse*, Vienna, Austria.

TALKS AT INTERNATIONAL CONFERENCES

2019

2017

2016

- J. Janssen, D. Perez. Enabling long timescale molecular dynamics simulation with ab initio precision, MRS Spring Meeting, San Francisco, CA, USA.
 - **J. Janssen**, D. Perez. pyiron an integrated development environment for the development and assessment of interatomic models, 11th Annual Mach Conference, Baltimore, MD, USA.
 - **J. Janssen**, D. Perez. Enabling long timescale molecular dynamics simulation with ab initio precision, *TMS Spring Meeting*, San Diego, CA, USA.
- J. Janssen, T. Hickel, J. Neugebauer. Predicting melting temperatures from bulk properties with pyiron, *Multiscale Materials Modelling (MMM) conference*, Baltimore, MD, USA.
 - **J. Janssen**, M. G. Taylor, P. Yang, D. Perez. Screening of ligand-metal-complexes for separation science with pyiron, *ACS Fall Meeting*, Chicago, IL, USA.
 - **J. Janssen**. pyiron an integrated development environment (IDE) for scientific workflows, *Scientific Computing with Python (SciPy)*, Austin, TX, USA.
 - **J. Janssen**. Predicting melting temperatures from bulk properties with pyiron, *Artificial Intelligence for Materials Science (AIMS)*, Gaithersburg, MD, USA (online).
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated uncertainty quantification for *ab initio* thermodynamics, *MRS Fall Meeting*, Boston, MA, USA.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated sensitivity analysis for high-throughput ab initio calculations, *IPAM Workshop*, Los Angeles, CA, USA.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated error analysis and control for *ab initio* calculations, *DPG Spring Meeting*, Regensburg, Germany.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated sensitivity analysis for high-throughput ab initio calculations, *TMS Spring Meeting*, San Antonio, TX, USA.
- J. Janssen, T. Hickel, J. Neugebauer. Generation of *ab initio* datasets with predefined precision using uncertainty quantification, *DPG Spring Meeting*, Berlin, Germany.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Towards an uncertainty quantification for *ab initio* thermodynamics, *MRS Fall Meeting*, Boston, MA, USA.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Sensitivity analysis for large sets of density functional theory calculations, *DPG Spring Meeting*, Dresden, Germany.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated convergence and error analyses for high-precision DFT calculations, *TMS Spring Meeting*, San Diego, CA, USA.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated convergence checks with the python based library pyiron, *DPG Spring Meeting*, Regensburg, Germany.
 - **J. Janssen**, T. Hickel, J. Neugebauer. Automated convergence checks with the python based workbench pyiron, *TMS Spring Meeting*, Nashville, TN, USA.