

Status of CSC Alignment

Jim Pivarski

Texas A&M University

15 March, 2010

How CSC alignment fits together Jim Pivarski

2/19

for (1) short-term and (2) long-term (\gtrsim 20 pb⁻¹)

hardware alignment system: (1) check system with 2D positions of monitored chambers (1 & 2) provide all Z positions and angles

Outline for this talk

- ► Status of hardware alignment
- ► Beam-halo and CSC overlaps

- Next steps, simulated in MC
- ► Infrastructure development

- ▶ Usable datasets in CRAFT-09 and 2010
 - ► CRAFT-09: can cross-check with cosmics
 - ▶ 2010: can cross-check with beam-halo
 - producing initial set of alignment constants for 2010

Straight line monitors

- Fits-by-hand show better agreement with photogrammetry
 - used to debug COCOA models
- lackbox DCOPS measure $r\phi$ and z equally; tracks only measure $r\phi$ well

Transfer lines and z-bars

- ▶ Internal closure checks are in good agreement
- Also checking with fits-by-hand

Straight line monitors

R-φ Hand Fit Residuals (offsets) for SLM Lines ME+/-2,3, B = 0

Agreement between hand fit and PG data is about of 0.5 mm PG data is good enough to validate COCOA fit.

Correlation and Resolution

Oleg Prokofiev

- lacktriangle Accounting for $\sigma_{PG}=300~\mu\mathrm{m}$, DCOPS accuracy is 500 $\mu\mathrm{m}$
- ▶ We know that the hardware is producing good data and that the photogrammetry (2007) is still relevant

 Workflow complete; needs to incorporate updates from transfer lines and corrections to COCOA model

Himali Kalakhety

- ▶ Two laser measurements in each station agree
- ► Checking closure test from endpoint photogrammetry
- ▶ Also testing COCOA fits against by-hand fits (by-hand fit below)

Jim Bellinger

- ► About 1 million events in 40 minutes
- ▶ Distribution of beam-halo used in CSC-Overlaps alignment

In more detail...

Jim Pivarski

Some overlaps are missing

- ▶ R vs. φ
- Innermost radius set by trackreconstruction requirements

Missing overlaps

Jim Pivarski 10/19

- ▶ 4 complete rings, 6 "almost complete" rings, out of 15
 - "almost": only one gap, which we can fill by assuming closure

- ▶ 4 complete rings, 6 "almost complete" rings, out of 15
 - "almost": only one gap, which we can fill by assuming closure
- ▶ Most of the problems are edge CFEBs (1 or 5)

Jim Pivarski 12/19

► Closure per chamber =
$$\frac{1}{N} \sum_{i=1}^{N} \Delta(r\phi)_i - \Delta(r\phi)_{i+1}$$
 $N = 18$ or 36

- ▶ independent of alignment
- can only be computed for complete rings
- non-zero value interferes with alignment of incomplete rings

	2008	2010
ME+3/1		$+$ 298 \pm 9 μ m
ME-2/1	$-$ 40 \pm 23 μ m	
ME - 3/1	$-$ 20 \pm 28 μ m	$+$ 486 \pm 9 μ m
ME - 3/2		$+$ 572 \pm 27 μ m
ME-4/1		$+$ 440 \pm 10 μ m

▶ In 2008, an 800 μ m effect was caused by a \sim 10 μ m error in strip width; this new effect is smaller

- ► Complete rings in red are more reliable
- ▶ Incomplete rings have 500 $\mu m \times 17 = 8$ mm errors at the location of the gap that is filled-in by assuming zero closure

- ► Complete rings in red are more reliable
- ▶ Incomplete rings have 500 $\mu{\rm m}\times 17=8$ mm errors at the location of the gap that is filled-in by assuming zero closure

First complete outer-ring

Jim Pivarski

Connecting rings to tracker

Jim Pivarski

▶ Established technique with cosmics; completes endcap alignment with 400 μ m accuracy at 5 pb⁻¹ if rings can be aligned internally

Reference-Target algorithm

Jim Pivarski

17/19

- ► Alignment of each chamber relative to the tracker individually: does not require complete rings
- ► Comparison of CSC-Overlaps against Reference-Target would be a powerful systematics check, even if only in a few rings
- ▶ Aysen Tatarinov (TAMU) is learning the system from the inside out, and solved the problem of Minuit failing in some low-statistics fits

Infrastructure developments

Jim Pivarski 18/19

- ► Alignment Quality Monitor, by Vadim Khotilovich
- ▶ Much easier than sifting through thousands of plots!

- Long-standing issues in hardware alignment reconstruction are being solved
- Beam-halo run was fruitful

- obtained up-to-date constants for 4 rings
- discovered a new closure issue
- 2007 photogrammetry is still relevant
- Next steps have all been tested in data and resolution vs. integrated luminosity estimated
- New alignment group members are becoming well-versed and expanding functionality of the system