UNIDADE UNIVERSITÁRIA: Faculdade de Ciências e Tecnologia

CURSO: Pós-MAC

DEPARTAMENTO RESPONSÁVEL: Matemática e Computação

PROFESSORA RESPONSÁVEL: Prof. Dr. Irineu Lopes Palhares Junior (**irineu.palhares@unesp.br**)

IDENTIFICAÇÃO	
IDENTIFICACAU	,

	IDENTIFICAÇÃO	
CÓDIGO		SERIAÇÃO
	Análise Numérica	
OBRIG/OPT/EST	PRÉ E CO-REQUISITO	ANUAL/SEM
Obrigatória		Semestral

CRÉDITOS	CARGA HORÁRIA TOTAL	DISTRIBUIÇÃO DA CARGA HORÁRIA			
		TEÓRICA	PRÁTICA	TEO/PRAT	OUTRAS
04	60 h	60 h	0 h		

CONTEÚDO PROGRAMÁTICO (título e descriminação das Unidades)

- 1. Análise de convergência dos métodos numéricos para solução de equações: método do ponto fixo, método da relaxação e de Newton, método da secante e método da bissecção.
- 2. Métodos diretos para solução de sistemas lineares: Gauss e Decomposição LU.
- 3. Análise de convergência dos métodos numéricos para solução de sistemas de equações não-lineares: método do ponto fixo e de Newton.
- 4. Interpolação polinomial: interpolação de Lagrange, de Newton e interpolação de Hermite e análise de convergência.
- 5. Interpolação por Splines.
- 6. Ajuste de curvas pelo método dos mínimos quadrados: casos discreto e contínuo.
- 7. Integração numérica I: fórmulas de Newton-Cotes e estimativas de erro; fenômeno de Runge.
- 8. Integração numérica II: construção das regras de quadratura de Gauss, estimativas de erro.
- 9. Solução numérica de equações diferenciais ordinárias: problemas de valor inicial e de valores de contorno.

BIBLIOGRAFIA BÁSICA

- [1] SÜLI, E.; MAYERS, D., An Introduction to Numerical Analysis, Cambridge University Press, 2003.
- [2] ISAACSON, E.; KELLER, H.B., Analysis of Numerical Methods, John Wiley & Sons, 1996.
- [3] BURDEN, R.L.; FARES, D., Numerical Analysis, Thomson, 2001.
- [4] QUARTERONI, A.; SALERI, F., Cálculo Científico com MATLAB e Octave, Springer, 2007.

BIBLIOGRAFIA COMPLEMENTAR

CRITÉRIO DE AVALIAÇÃO DA APRENDIZAGEM

Provas: P1 (Prova 1), P2 (Prova 2) e T1 (Trabalho)

Média Final = 0.8*(0.5*(P1 + P2)) + 0.2*T1.

Datas das Provas:

P1: 07/10/2024 P2: 02/12/2024

Entrega do trabalho:

T1: 04/11/2024

AULAS PREVISTAS

Agosto: 19 – 26

Setembro: 02 - 9 - 16 - 23 - 30

Outubro: $\mathbf{07} - 14 - 21$ (Prof. Irineu fora)

Novembro: 04 - 11 - 18 - 25

Dezembro: **02**

Acesse o calendário pelo link:

https://docs.google.com/spreadsheets/d/1NTl8ZsmrNm0tB4MVtG2HEA2AKBPTyXBQxG4NWRvJY64/edit?

usp=sharing