

Metabolism of Other Hexoses

By

Dr. Marwa Ali

Lecturer of Medical Biochemistry
Ain Shams university

INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

- 1. Identify different metabolic pathways of fructose metabolism**
- 2. Relate abnormal fructose metabolism to clinical disorders**
- 3. Correlate abnormal galactose metabolism to clinical disorders**

Case presentation

A 10 month old boy
who initially
appears healthy
began to develop
vomiting,
abdominal pain and
hypoglycemia

Case presentation

History revealed that these symptoms began after **fruit juices** were introduced to his diet as he was being weaned off breast milk

Physical examination: was remarkable for **hepatomegaly & Jaundice**

Lab investigations including fructose

tolerance test revealed that:

- Blood glucose level: **60 mg/dl** especially after intake of fructose or sucrose.
- The test for **reducing sugar** in urine was **positive**.
- **AST** and **ALT** levels were **elevated**.
- **Pi concentrations decreased** by 50%.
- **Lactate & uric acid levels were elevated**.
- Enzyme assay : **Decreased Aldolase-B activity**

Diet Recommendations:

**Complete elimination of all sources
of sucrose, fructose, and sorbitol
from the diet.**

What is the most likely diagnosis of this case ?

**Hereditary Fructose intolerance
(Fructose induced hypoglycemia).**

**which is an inborn error of
fructose metabolism**

What Is Fructose?

A Monosaccharide (ketohexose) that occurs in significant amounts in diet (1ry in disaccharides)

Sources Of Fructose

1- Disaccharide sucrose: (major source) , cleaved in the intestine, releases fructose & glucose.

2- Found as a Free monosaccharide:

- Fruits
- Honey
- High-fructose corn Syrup (55% fructose/45% glucose typically), which is used to sweeten Soft drinks & many foods.

Sources Of Fructose

3- Fructose can arise from glucose inside the body via **sorbitol (polyol) pathway in some tissues.**

Organs can that utilize fructose:

Liver, Kidney, intestinal mucosa,

seminal vesicles, adipose tissue,

Skeletal muscle

but not brain.

Sorbitol (polyol) pathway

- The **energy** for mobility of **sperm** is mainly derived from **fructose**

Fructose to enter the pathways of intermediary metabolism, it must first be **phosphorylated**

Fructokinase

- Has **very high affinity** (low Km), for fructose.
- It provides **1ry** mechanism for fructose phosphorylation.
- Found in the **liver** (which processes most of dietary fructose), **kidney& SI mucosa**.

Hexokinase has a **very low affinity** (high Km), for fructose -

A) In the liver, kidney, and intestine:

B) In other tissues such as muscle and adipose

HEREDITARY FRUCTOSE INTOLERANCE

Hereditary Fructose Intolerance (Fructose induced hypoglycemia)

- **Inborn error** of fructose metabolism.
- It is an **autosomal recessive** disease caused by **mutation** in the **gene** encoding **Aldolase B** enzyme.
- Symptoms & signs appear when a baby is **weaned** & begins to be fed on food containing **fructose** or **sucrose**.

toxic!
Liver
Kidneys
Small intestine

Hypoglycaemia

Clinical picture of HFI

1- Hypoglycemia: due to inhibition of glycogenolysis & gluconeogenesis
WHY??

2- Liver: Hepatomegaly due to accumulation of F-1-P
 Liver cell failure
Jaundice d.t defective bilirubin conjugation

3- Lactic acidosis: due to defective gluconeogenesis

Symptoms of HFI?

4- Renal dysfunction: due to toxic accumulation of F-1-P

5- Hyperuricemia: due to lactic acidosis, decrease ATP & increase

Hereditary fructose intolerance causes hypoglycemia, why?

Defect in the aldolase B enzyme

Fructose 1-phosphate accumulates in the hepatocytes

Trap phosphate in the liver and inorganic phosphate (Pi) decreased

Decreased inorganic phosphate (Pi)

Inhibit glycogen phosphorylase which is required to break glycogen into glucose-6-phosphate

(Inhibit glycogenolysis)

Decrease ATP & increase AMP

(Inhibit gluconeogenesis)

Hypoglycemia

Hereditar y Fructose Intoleran ce

Fructose

Diagnosis of HFI is made on the basis of:

- Fructose in the urine
- Enzyme assay using liver cells
- DNA-based testing

Treatment of HFI:

- Sucrose as well as fructose, must be removed from the diet to prevent liver failure & possible death.

Essential Fructosuria

Autosomal recessive disorder (1:130,000)

- Caused by a deficiency of the hepatic **fructokinase enzyme**, fructose is not metabolized in the liver
- Fructose is either excreted **unchanged in the urine** or metabolized to F-6-P by **hexokinase in adipose tissue and muscles**
- Clinically **benign** condition with no clinical symptoms
- **No treatment is indicated**

What is Galactose?

Another
Monosaccharide
(hexose) that
occurs in
significant
amounts
in diet (1ry in
disaccharides)

Sources of Galactose

- Major dietary source of galactose is obtained from milk & milk products (digestion of lactose by **lactase** in SI yield glucose & galactose)

Galactosyl $\beta(1 \rightarrow 4)$ -glucose

Lactose
(or milk sugar")

- Some galactose can also be obtained by **lysosomal degradation** of complex carbohydrates (**glycoproteins** & **glycolipids**)

Galactose Metabolism

Galactose Metabolism

- Galactose must be **phosphorylated** before it can be further metabolized.
- This occurs in most tissues by **galactokinase** enzyme producing **galactose 1-phosphate**.
- **Galactose 1-phosphate** is first converted to **UDP-galactose**.
- This occurs in an **exchange reaction**, in which **UDP-glucose** reacts with galactose 1-phosphate, producing **UDP galactose** and **glucose 1-phosphate**.
- This is catalyzed by **galactose 1-phosphate uridyl transferase (GALT)** enzyme

Role of UDP-galactose

UDP-galactose serve as a **donor** of Galactose units in many **biosynthetic reactions**:

1. Glycolipids.
2. Glycoproteins.
3. Lactose (milk sugar) produced by mammary glands during lactation

GALACTOSEMIA

1- Classic galactosemia (Sever form)

- Inborn error of galactose metabolism
- Due to deficiency of **Galactose-1-p uridyl Transferase (GALT)** enzyme
- **Galactose 1-phosphate and, galactose** accumulate in cells

Clinical picture of classic galactosemia

Symptoms start at first days after breast feeding

1- Accumulation of Galactose-1-phosphate and depletion of liver inorganic phosphate → Hypoglycemia and vomiting

2- Galactose is a substrate for **aldose reductase**, forming **galactitol**, which accumulates in:

- Lens of the eye → Cataract
- Nerves → Mental Retardation
- Liver → Liver failure & jaundice
- Kidney → Renal failure

Treatment of classic galactosemia

- The only treatment is eliminating lactose and galactose from the diet
- Infants cannot be breast-fed and are usually fed a soy-based

2- Galactokinase deficiency (Mild form)

It is a mild disorder of galactosemia

excess galactose
↓
aldose reductase
formation of galactitol
↓
accumulates in the lens of the eye
↓
producing cataract.

GALACTOKINASE DEFICIENCY

- Rare autosomal recessive disorder
- Causes elevation of galactose in blood (galactosemia) and urine (galactosuria)
- Causes galactitol accumulation if galactose is present in the diet.
- Elevated galactitol can cause cataracts.
- Treatment is dietary restriction.

ALDOSE REDUCTASE

- The enzyme is present in liver, kidney, retina, lens, nerve tissue, seminal vesicles, and ovaries.
- It is physiologically unimportant in galactose metabolism unless galactose levels are high (as in galactosemia).
- Elevated galactitol can cause cataracts.

CLASSIC GALACTOSEMIA

- Galactose 1-phosphate uridylyltransferase (*GALT*) deficiency.
- Autosomal recessive disorder (1:30,000 births).
- Causes galactosemia and galactosuria, vomiting, diarrhea, and jaundice.
- Accumulation of galactose 1-phosphate and galactitol in nerve, lens, liver, and kidney tissue causes liver damage, severe mental retardation, and cataracts.
- Prenatal diagnosis is possible by chorionic villus sampling. Newborn screening is available.
- Therapy: Rapid diagnosis and removal of galactose (and therefore lactose) from the diet.
- Despite adequate treatment, at risk for developmental delays and, in females, premature ovarian failure.

The..... utilize fructose but not glucose.

- (a) Ovum
- (b) Spermatozoa**
- (c) Adipose tissue
- (d) Mammary gland

Which enzyme is deficient in the liver in cases of hereditary fructose intolerance?

- 1. Hexokinase**
- 2. Aldolase B**
- 3. Glucokinase**
- 4. Phosphofructokinase**
- 5. Triose kinase**

Hexokinase has a considerably lower km and very high affinity for?

- a) Glucose**
- b) Fructose
- c) Sucrose
- d) Mannose
- e) lactose

In classic galactosemia , there is deficiency of

- 1. Galactosidase**
- 2. Galactose 1-phosphate uridyl transferase**
- 3. Aldolase reductase**
- 4. UDP-Hexose 4 epimerase**

Which of the following statements about galactose is correct?

- 1. Galactose cannot be metabolised and remains in our blood after we consume milk.**
- 2. Galactose is a glucose epimer that can be used as a substrate by the enzymes that use glucose as a substrate.**
- 3. Galactose and fructose can easily be interconverted.**
- 4. Galactosaemia is a serious genetic disease that requires the removal of galactose from the diet of newborn infants**

Galactose-1-P uridyl Transferase deficiency will leads to accumulation of:

- 1 galactose 1 Phosphate.**
- 2. glucose 6 Phosphate. .
- 3. glycogen.
- 4. UTP.

Galactosemia may be treated most practically :by

- 1. Adopting a high-carbohydrate diet.**
- 2. Eliminating all sugar from the diet.**
- 3. Excluding milk & milk products from the diet.**
- 4. Adopting a high-protein diet.**
- 5. Avoiding the use of sucrose.**

Thank
you

Marwa Ali

Endocrine & Genitourinary module