Analisi II - terza parte bis

Teorema - condizione sufficiente per la sviluppabile in serie di Taylor

Se $f:]x_0-h,x_0+h[o\mathbb{R}$, h>0, è di classe C^∞ ed esiste M>0 t.c. $orall n\in\mathbb{N}$ $|f^{(n)}(x)|\leq Mrac{n!}{h^n}$, in $]x_0-h,x_0+h[$

allora f è sviluppabile in serie di Taylor di punto iniziale x_0 in $]x_0 - h, x_0 + h[$. Inoltre, la serie converge uniformemente a f su $[x_0 - k, x_0 + k]$, $\forall k < h$

Dimostrazione

$$\forall n \in \mathbb{N}^+, \text{ si ha } |s_{n+1}(x) - f(x)| = |f(x) - P_{n,x_0}(x)| = |\frac{f^{(N+1)}(\xi_{N+1})}{(N+1)!}(x - x_0)^{N+1}| = |f^{(N+1)}(\xi_{N+1})| \frac{|x - x_0|^{N+1}}{(N+1!)}) \leq M \frac{(N+1)!}{h^{N+1}} \frac{|x - x_0|^{N+1}}{(N+1)!} = M(\frac{|x - x_0|}{h})^{N+1}, \text{ Essendo } |\xi_{N+1} - x_0| < |x - x_0| < h$$
 Poichè $0 \leq \frac{|x - x_0|}{h} < 1$, Si ha $|f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \to 0$, per $N \to +\infty$ E quando $\sum \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ converge a $f(x)$, $\forall x \in]x_0 - h, x_0 + h[$ Fissato $0 < h < k$ si ottiene, per $x \in [x_0 - k, x_0 + k], |f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \leq M(\frac{k}{h})^{N+1}$ e quindi $\sup_{]x_0 - h, x_0 + h[} |f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \to 0$, per $N \to +\infty$

Dunque la successione delle ridotte converge e dunque la serie donverge uniformemente a f in $]x_0-h,x_0+h[$

Oservazione

La condizione $\exists M>0$ è tale che $\forall n$, $|f^{(n)}(x)|\leq M\frac{n!}{h^n}$, in $]x_0-h,x_0+h[$ e, in particolare verificata se $\exists K>0$ t.c., $\forall n|f^{(n)}(x_0)|\leq K$ Infatti si ha $\frac{n!}{h^n}\to+\infty$, se $n\to+\infty$

Funzioni analitiche

Si dice che f è analitica in [a,b] se f è sviluppabile in serie di Taylor di punto iniziale x_0 , $\forall x \in]a,b[$

L'insieme delle funzioni analitiche in]a,b[si indica con H(]a,b[)

Osservazione

$$C^0([a,b[)\supset C^1([a,b[)\supset...\supset C^n([a,b[)\supset...\supset C^\infty([a,b[)\supset H([a,b[),$$
 in $\mathbb R$

Spazi metrici

Sia (\mathbb{S},d) uno spazio metrico

Sfera aperta e sfera chiusa

Siano $x_0\in\mathbb{S}$ e r>0. L'insieme $\mathbb{B}(x_0,r)=\{x\in\mathbb{S}:d(x,x_0)< r\}$. Si dice sfera aperta (chiusa) di centro x_0 e raggio r

Intorno di un punto

Sia $x_0\in\mathbb{S}$. Un'insieme $U\subseteq S$. Si dice intorno di x_0 se esiste k>0 t.c. $\mathbb{B}(x_0,r)\subseteq S$. L'insieme degli intorni di x_0 si indica con \mathfrak{J}_{x_0}

(Alcune) proprietà degli intorni

Sia $x_0 \in \mathbb{S}$. Si ha

- 1. $(orall u \in \mathfrak{J}_{x_0})(orall \mathbb{V} \subseteq \mathbb{S})(\mathbb{U}_S \subseteq \mathbb{V} \Rightarrow \mathbb{V} \in \mathfrak{J}_{x_0})$
- 2. $(\forall U, V \in \mathfrak{J}_{x_0})(U \cap \mathbb{V} \in \mathfrak{J}_{x_0})$
- 3. $(\forall x,y\in\mathbb{S})[x
 eq y\Rightarrow (\exists U\in\mathfrak{J}_x)(\exists\mathbb{V}\in\mathfrak{J}_y)U\cap\mathbb{V}=\emptyset]$

Punto di accumulazione

Siano $E\subseteq\mathbb{S}$ e $x_0\in\mathbb{S}$. Si dice che x_0 è di accumulazione per E se in ogni intorno di x_0 ci sono infiniti punti di E o, equivalentemente, in ogni intorno di x_0 c'è almeno un punto di E diverso da x_0

Chiusura di un insiemee insieme chiuso

Sia $E\subseteq \mathbb{S}$. L'insieme $E=ch(E)=E\cup \{x\in \mathbb{S}: x \text{ è di accumulazione per } E\}$, si dice chiusura di E

Un insieme E si dice chiuso se E=clE

Punto interno

 $E\subseteq \mathbb{S}$, $x_0\in E$. Si dice che x_0 è un punto interno a E se esiste almeno un intorno di x_0 , U, t.c. $U\subset E$.

Interno di un insieme aperto

Sia $E\subseteq \mathbb{S}$. L'insieme $E=intE=\{x\in E: x ext{ è interno a}E\}$, si dice interno di E

Punto di frontiera

Siano $E\subseteq \mathbb{S}$ e $x_0\in \mathbb{S}$. x_0 è di frontiera per E se in ogni intorno di x_0 ci sono punti di E e punti del complementare di E (CE)

Frontiera di un insieme

 $frE = \{x \in \mathbb{S} : x ext{ è di frontiera per } E\}$ si dice frontiera di E

Insieme limitato.

Sia $E\subseteq \mathbb{S}$. Si dice che E è limitato se esiste $x_0\in E$ e raggio r>0 t.c. $E\subseteq B(x_0,r)$ e, equivalentemente, $\sup_{x,y\in E}d(x,y)<+\infty$. $diam(E)=\sup_{x,y\in E}d(x,y)$

Funzioni da \mathbb{R}^n in \mathbb{R}^m

Una funzione $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}^m$ è del tipo $f(x)=f(x_1,...x_n)=egin{pmatrix} f_1(x_1,...x_n)\ ...\ f_m(x_1,...x_n) \end{pmatrix}$ con $x=(x_1,...x_n)^T$ e $f_i:E o\mathbb{R}$ per i=1,...,n

Campi scalari

$$N=2$$
, $M=1$, $f:E(\subseteq \mathbb{R}) o \mathbb{R}$

Insiemi di livello

Sia $f:E(\subseteq\mathbb{R}) o\mathbb{R}$ un campo scalare Per ogni $k\in\mathbb{R}$, l'insieme $L_k(f)=\{\underline{x}\in E:f(\underline{x})=k\}$ si dice insieme di livello

Curve parametriche

- $N=1, M\geq 2$, Sia $\gamma:I(\subseteq\mathbb{R})\to\mathbb{R}^m$ con I intervallo. La coppia $(\gamma,\gamma(I))$ si dice curva parametrica di cui γ è la parametrizzazione e $\Gamma=\gamma(I)$ è il sostegno
- ullet M=2, $Y:I o \mathbb{R}^2$, $\gamma(t)=(x(t),y(t))^T$ è il sostegno

Campi vettoriali

$$N=M\geq 2$$
 , $g:E(\subseteq \mathbb{R}^N)
ightarrow \mathbb{R}^N$

Limiti di funzioni da \mathbb{R}^n in \mathbb{R}^m (dati dalla distanza euclidea)

Sia $f: E(\subseteq \mathbb{R}^N) \to \mathbb{R}^N$ e sia $x_0 \in \mathbb{R}^N$ di accumulazione per E. Si dice $\lim_{\underline{x}-\underline{x_0}} \underline{l} \in \mathbb{R}^N$ se $(\forall \mathbb{V} \in \mathfrak{J}_l)(\exists U \in \mathfrak{J}_{x_0})(\forall \underline{x} \in E)(\underline{x} \in U \setminus \{x_0\}) \Rightarrow f(\underline{x}) \in \mathbb{V}) \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall \underline{x} \in E)(0 < d(\underline{x},\underline{x_0}) < \delta \Rightarrow d(f(\underline{x}),l) < \varepsilon)$ Quindi supporremo che E sia aperto e lo indicheremo con A.

Derivata parziale

Sia $\{\underline{e_1},...\underline{e_n}\}$ una base canonica di \mathbb{R}^n e sia $\underline{v}=\underline{e_i}$ per un certo i=1,...,n. Sia $x_0\in int E$. La derivata direzionale $\frac{\partial f}{\partial \underline{e_i}}(\underline{x_0})$ si dice derivata parziale i-esima di f in x_0 e si

indica con
$$\dfrac{\partial f}{\partial x_i}(\underline{x_0}) = f_{x_i}(\underline{x_0})$$

La ragione della notazione è la seguente:

$$egin{aligned} rac{\partial f}{\partial \underline{e_i}}(x_0) &= \lim_{t o 0} rac{f(x_0 + t \underline{v}) + f(\underline{x_0})}{t} = \ \lim_{t o 0} rac{f(x_1^0, ..., x_i^0 + t, ..., x_n^0) - f(x_1^0, ..., x_n^0)}{t} = \ \lim_{x_i o x_i^0} rac{f(x_{0_1}, ..., x_i, ..., x_{0_n}) - f(x_{0_1, ..., x_{0_n}})}{x_i - x_i^0} \end{aligned}$$

Unicità di a

Siano
$$\underline{a},\underline{b}\in\mathbb{R}^n$$
 t.c. $\forall\underline{x}\in\mathbb{R}^n$, $L(\underline{x})=<\underline{x},\underline{a}>$, $L(\underline{x})=<\underline{x},\underline{b}$, cioè $<\underline{x},\underline{a}-\underline{b}>=0$. Se $\underline{x}=\underline{a}-\underline{b}$, si ha $<\underline{a}-\underline{b},\underline{a}-\underline{b}>=0$, cioè $||\underline{a}-\underline{b}||^2=0$ Pertanto, si conclude che $||\underline{a}-\underline{b}||=0\Rightarrow\underline{a}=\underline{b}$

Calcolo differenziale per $f: \mathbb{R}^N o \mathbb{R}^M$

Problema

Siano $f:\mathbb{R}^N o \mathbb{R}^M$ e $x_0 \in E$. Come nel caso N=M=1 si vuol definire la "derivata" di f in x_0 . in modo da poter costruire una funzione lineare che approssima efficacemente f in prossimità di x_0

NB: il rapporto incrementale non esiste per $N \geq 2$

Campo scalare, derivata direzionale

Siano $f: E(\subseteq \mathbb{R}^N) \to \mathbb{R}$ e $x_0 \in int E$. Consideriamo la retta $\underline{x} = \underline{x_0} + t\underline{v}$, $t \in \mathbb{R}$, con $\underline{v} \in \mathbb{R}^N$, $||\underline{v}|| = 1$. Poichè $x_0 \in int E$, $\exists \delta > 0$ t.c. $\underline{x} = \underline{x_0} + t\underline{v} \in \overline{E}$, $\forall |t| < \delta$. Consideriamo la funzione $f(\underline{x_0} + t\underline{v}):] - \delta, \delta[\to \mathbb{R}$

Derivata direzionale: se esiste finito $\lim_{t\to 0} \frac{f(\underline{x_0}+t\underline{v})-f(\underline{x_0})}{t}$ esso si dice derivata direzionale di f in x_0 lungo la direzione orientata v

Osservazione

Si ha che $x_0 \in intE$, perchè altrimenti il rapporto incrementale potrebbe **non** essere definito

NB

$$f(\underline{x})=(f_1(\underline{x}),...,f_M(\underline{x}))^T$$
 e $\underline{l}=(l_1,...,l_n)^T$

Teorema

Si ha
$$\lim_{\underline{x} o x_0} f(\underline{x}) = \underline{l} \Leftrightarrow$$
 per ogni $i=1,..,M$, $\lim_{\underline{x} o x_0} f_i(\underline{x}) = l_i$

Limite sui campi scalari

Sia $f: E(\subseteq \mathbb{R}^N) \to \mathbb{R}$ e sia $\underline{x} \in \mathbb{R}^N$ di accumulazione per E. Si dice che $\lim_{\underline{x} \to \underline{x_0}} f(\underline{v}) = +\infty$ (o $-\infty$) se $(\forall k \in \mathbb{R})(\exists U \in \mathfrak{J}_{x_0})(\forall \underline{x} \in E)(\forall \underline{x} \in U \setminus \{\underline{x_0}\} \Rightarrow f(\underline{x}) > k) \Leftrightarrow (\forall k \in \mathbb{R})(\exists \delta > 0)(\forall \underline{x} \in E)(0 < d(\underline{x},\underline{x_0}) < \delta \Rightarrow f(\underline{x}) > k)$ (o $f(\underline{x}) < k$ per $f(\underline{x}) \to -/\infty$)

Teorema

Sia $f: \mathbb{R}^N \to \mathbb{R}^M$ e $\underline{x_0} \in E$ con $F(\underline{x}) = (F_1(\underline{x}),...,F_N(\underline{x}))^T$ Si dice che F è continua in $\underline{x_0} \Leftrightarrow \forall i=1,...,N$, $\overline{F_i}$ è continua in $\underline{x_0}$.

Definizione

Sia $C\subseteq\mathbb{R}^N$. Si dice che C è **connesso** se $\forall \underline{x},\underline{y}\in C$ esiste una curva continua $\gamma:[a,b]\to\mathbb{R}^N$ t.c. $\gamma(a)=\underline{x}$, $\gamma(b)=\underline{y}$, $\forall t\in[a,b]$, $\gamma(t)\in C$.

NB

In \mathbb{R}^N , N=1 , C è connesso \Leftrightarrow C è un punto singolo o un intervallo

Teorema della connessione

Se $f:C(\subseteq \mathbb{R}^N) o \mathbb{R}^M$ è continua e C è connesso, allora f(C) è connesso

Dimostrazione

Per provare che f(C) è connesso, scegliamo arbitrariamente $\underline{\xi},\underline{\eta}\in f(C)$. Esistono $\underline{x},\underline{y}\in C|f(\underline{x})=\underline{\xi}$ e $f(\underline{y}=\underline{\eta}.$

Poichè C è connesso esiste una curva continua $\gamma:[a,b]\to\mathbb{R}^N|\gamma(a)=\underline{x}$ e $\gamma(a)=\underline{y}$. Pongo $\delta=f\circ\gamma:[a,b]\to\mathbb{R}^N$, δ è una curva continua. Inoltre: $\delta(a)=f(\gamma(a))=\underline{\xi}$, $\delta(b)=f(\gamma(b))=\underline{\eta}$. Inoltre $\delta(t)=f(\gamma(t))\in f(C)$, per ogni $t\in[a,b]$, $\Rightarrow\delta$ è la curva continua che collega $\underline{\xi}$ e $\underline{\eta}$, $\Rightarrow C$ è connesso.

Teorema di Bolzano

Se $f:C(\subseteq\mathbb{R}^N)\to\mathbb{R}$ è continua, C è connesso ed esistono $\underline{x},\underline{y}\in C|f(\underline{x})f(\underline{y})<0$. Allora $\exists\underline{z}\in C$ t.c. $f(\underline{z})=0$

Dimostrazone

Sia $f\underline{x})<0< f(\underline{y})$. Poichè C è conneso e f è continua, f(C) è connesso in \mathbb{R} . Ma essendo f(C) conneso e $f(\underline{x})\neq f(\underline{y})$, allora f(C) è un intervallo: contiene numeri positivi e numeri negativi. Quindi $0\in f(C)$ e pertanto $\exists z\in C|f(\underline{z})=0$

Corollario

Se $f:C(\subseteq\mathbb{R}^N) o\mathbb{R}$ è continua e C è conneso e $f(\underline{x})\neq 0$, $orall \underline{x}\in C$, allora o $f(\underline{x})>0 \forall \underline{x}\in C$ oppure $f(\underline{x})<0 \forall \underline{x}\in C$

Definizione

Sia $K\subseteq\mathbb{R}^N$, si dice che K è compatto se K è chiuso e limitato.

Teorema della compattezza

Se $f:K(\subseteq \mathbb{R}^N) o \mathbb{R}^M$ è continua e K è compatto, allora f(K) è un compatto

Teorema di Weierstrass

Se $f:K(\subseteq\mathbb{R}^N) o\mathbb{R}^M$ è continua e K è compatto, allora esistono $\max_K f$ e $\min_K f$

Dimostrazione

Il teorema di compattezza implica che f(K) è compatto in $\mathbb R$, cioè f(K) è chiuso e limitato. Poichè $f(K)\subseteq\mathbb R$ ho $inff(K)>-\infty$ e $supf(K)<+\infty$. Ma minf(K)=minf e

 $maxf(K)=\max_k f$. Se proviamo che $supf(K)\in f(K)$, allora $supf(K)=maxf(K)=\max_k f$ (analogamente per il minimo).

Se per assurdo $supf(K) \notin f(K)$, allora supf(K) è un punto di accumulazione per f(K), contro l'ipotesi in quanto contraddice il fatto che f(K) è chiuso (e quindi contiente tutti i suoi punti di accumulazione). Ma allora $supf(K) \in f(K) \Rightarrow supf(K) = \max_k f$

Struttura lineare di \mathbb{R}^N

In \mathbb{R}^n si definiscono le operaazioni di

- 1. somma, $\underline{x}+y=(x_1+y_1,...,x_N+y_N)^T$, con $\underline{x}=(x_1,...,x_n)$ e $y=(y_1,...,y_n)^T$
- 2. prodotto per scalari, $\lambda \underline{x} = ((\lambda x_1,...,\lambda x_N)^T$, con $\underline{x} = (x_1,...,x_n)$ e $\lambda \in \mathbb{R}$ Rispetto a queste operazioni, \mathbb{R}^n è uno spazio vettoriale di dimensione n La base canonica di \mathbb{R}^N è: $\underline{e_1} = (1,0,...,0)^T$,..., $\underline{e_n} = (0,...,0,1)^T$

Definizione

Si introduce in $\mathbb R$ il prodotto scalare euclideo: $<\underline{x},\underline{y}>=x_1y_1+...+x_ny_n$. Questo $\forall \underline{x}=(x_1,...,x_n)\in\mathbb R^n$ e $\forall \underline{y}=(y_1,...,y_n)\in\mathbb R^n$. Si ha che: $<\cdot,\cdot>:\mathbb R^N\to\mathbb R$ verifica, $\forall \underline{x},y,\underline{z}\in\mathbb R^n$ e $\forall \lambda\in\mathbb R$,:

- (S1) $<\underline{x}+\underline{y},\underline{z}=<\underline{x},\underline{z}>+<\underline{y},\underline{z}>$;
- (S2) $<\lambda\underline{x},y=\lambda<\underline{x},y>$;
- $\bullet \ \ (\text{S3}) < \underline{x},\underline{y} > = <\underline{y},\underline{x}>$
- (S4) $<\underline{x},\underline{x}> \geq 0$ e $<\underline{x},\underline{x}> = \underline{0} \Leftrightarrow \underline{x} = \underline{0} \to$ è definito positivo

Cauchy-Schwartz

 $\forall \underline{x},\underline{y} \in \mathbb{R}^n, \, |\underline{x},\underline{y}| \leq \sqrt{<\underline{x},\underline{x}>} \cdot \sqrt{<\underline{y},\underline{y}} \text{ e inoltre vale } |<\underline{x},\underline{y}>| = \sqrt{<\underline{x},\underline{x}>} \cdot \sqrt{<\underline{y},\underline{y}} \Leftrightarrow \underline{x} \text{ e } \underline{y} \text{ sono linearmente indipendenti}$

Dimostrazione

Se $\underline{y}=\underline{0}$ vale l'uguaglianza

Se $\underline{y} \neq \underline{0}$, $\forall t \in \mathbb{R}$ calcolo: $<\underline{x} - t\underline{y}, \underline{x} - t\underline{y}> = <\underline{x}, \underline{x}> -2 <\underline{x}, \underline{y}> t + <\underline{y}, \underline{y}> t^2$. Polinomio di secondo grado in t, con coefficiente di t positivo.

Studio il delta di questa disuguaglianza: $\frac{\Delta}{4} = <\underline{x}, \underline{y}>^2 - <\underline{x}, \underline{x}> \cdot <\underline{y}, \underline{y}> \le 0 \Leftrightarrow \sqrt{<\underline{x},\underline{y}>^2} = |<\underline{x},\underline{y}>| \le \sqrt{<\underline{x},\underline{x}>} \cdot \sqrt{<\underline{y},\underline{y}>}.$

Vale la disuguaglianza in quanto $CS \Leftrightarrow \Delta = 0$ e quindi \Leftrightarrow esiste un solo $\overline{t} \mid < \underline{x} - 1$

 $\overline{t}\underline{y},\underline{x}-\overline{t}\underline{y}>=<\underline{x},\underline{x}>-2<\underline{x},\underline{y}>\overline{t}+<\underline{y},\underline{y}>\overline{t}^2=0$, ossia $\underline{x}-\overline{t}\underline{y}=0$, cioè \underline{x} e \underline{y} sono linearmente indipendenti.

Definizione

Sia V uno spazio vettoriale su $\mathbb R$. Si dice prodotto scalare un'applicazione $<\cdot,\cdot>:V\times V\to\mathbb R$ verificante (S1), (S2), (S3) e (S4)

Definizione

 $orall \underline{x} \in \mathbb{R}^n$ si definisce la **norma**, con $||x|| = \sqrt{<\underline{x},\underline{x}>} = \sqrt{x_1^2,...,x_n^2}$, norma euclidea

Proposizione

Si ha che $||\cdot||:\mathbb{R}^n o \mathbb{R}$ verifica, $orall \underline{y} \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}$:

- (n1) $||x|| = 0 \Leftrightarrow x = 0$, non degeneratezza
- (n2) $||\lambda \underline{x}|| = |\lambda| \cdot ||\underline{x}||$, omogeneità
- (n3) $||\underline{x}+y|| \leq ||\underline{x}|| + ||y||$, sub-additività

Dimostrazione

- (n1),(n2) banali
- $\bullet \ \ \text{(n3)} \ ||\underline{x}+\underline{y}||^2 = <\underline{x}+\underline{y}>, \underline{x}+\underline{y}> = <\underline{x},\underline{x}>+2<\underline{x},\underline{y}>+<\underline{y}> \leq \\ ||\underline{x}||^2+2||\underline{x}||\cdot||\underline{y}||+||\underline{y}||^2 = (||\underline{x}||+||\underline{y}||)^2 \text{, quindi } ||\underline{x}+\underline{y}||\leq ||\underline{x}||+||\underline{y}||$

Osservazione

 $orall \underline{x} \in \mathbb{R}^n$, $||\underline{x}|| = d(\underline{x},0)$, dato che $\underline{y} \in \mathbb{R}^n$: $d(\underline{x},\underline{y}) = ||\underline{x} - \underline{y}||$

Dimostrazione

 $orall \underline{x}, \underline{y}, \underline{z} \in \mathbb{R}^n$, si ha $d(\underline{x}, \underline{y}) = ||\underline{x} - \underline{y}|| = ||\underline{x} - \underline{z} + \underline{z} - \underline{y}|| \leq ||\underline{x} - \underline{z} + ||\underline{y} - \underline{z}|| = d(\underline{x}, \underline{z}) + d(y, \underline{z})$

Definizione

Sia V uno spazio vettoriale su $\mathbb R$. Un'applicazione lineare $||\cdot||:\mathbb R^n\to\mathbb R$ verificante (n1), (n2), (n3) si dice **norma** in V

Definizione

Si pone $d(\mathbb{R}^n,\mathbb{R}^m)=\{d:\mathbb{R}^n\to\mathbb{R}^m,d \text{ lineare }\}$ e si definisce $\mathbb{M}(m.n)=\{\mathbb{A},\text{ matrice di }n\text{ righe, }m\text{ colonne}\}.$ Ogni volta che si fissa una base $\{\underline{e_1},...,\underline{e_n}\}$ in \mathbb{R}^n e una base $\{\underline{e'_1},...,\underline{e'_m}\}$ in \mathbb{R}^m , esiste un $\mathbf{isomorfismo}\alpha$ tra $(\mathbb{R}^n,\mathbb{R}^m)$. A ogni $\alpha:\mathbb{R}^n\to\mathbb{R}^m$ associo una matrice $\mathbb{A}(m\times n)|\alpha(\underline{x})=\mathbb{A}\underline{x}$, $\forall\underline{x}$. Risulta $\alpha(\underline{e_1})=(a_{11}...a_{m1})^T,..,\alpha(\underline{e_n})=(a_{1n}...a_{mn})^T$, in coordinate rispetto a $\{\underline{e'_1},...,\underline{e'_m}\}$