${\it University~of~Lethbridge}$ Department of Mathematics and Computer Science

MATH 2565 - Tutorial #5

Thursday, February 8

F	'irst Name:	
L	ast Name:	
A	Additional practice (don't include your solutions here):	
1.	Find the volume of a right circular cone whose height is 12 and base radius is 4.	
2.	Find the volume of the solid generated by revolving the region bounded by $y=x^2$, $x=$ and $y=0$ about the x-axis.	= 1,
3.	Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$, $y = $ and $x = 0$ about	= 1,
	(a) the x -axis (b) the y -axis	
4.	Find the volume of the solid generated by the region bounded by $y = 4 - x^2$ and $y = 0$, where $y = 0$ rotated about	nen
	(a) the x-axis. (b) the line $y = -1$. (c) the line $x = 2$.	
5.	Find the volume of the solid generated by revolving the region bounded by $x = y - y^2$	and

6. Use the shell method to find the volume of the solid generated by revolving the region bounded

x = 0 about the y-axis.

by $y = 6x - 2x^2$ and y = 0, about the y-axis.

1. Find the volume of the solid S whose base is the region of the xy-plane bounded by $y=x^2$ and $y=2-x^2$, and whose cross-sections parallel to the y-axis are squares.

2. Find the volume of the solid S generated when the region bounded by the curves $y^2 = x$ and x = 2y is revolved around the y-axis.

3. Use the shell method to find the volume of the solid generated by revolving the region bounded by y=x and $y=\sqrt{x}$ about the x-axis.

4. Find the length of the curve $y = \frac{1}{12}x^3 + \frac{1}{x}$, for $x \in [1, 4]$.

Some integration formulas you may need:

• Volume of a solid of revolution, washer method, rotation about a horizontal axis:

$$V = \pi \int_{a}^{b} (r_{out}(x)^{2} - r_{in}(x)^{2}) dx,$$

where r_{out} gives the outer radius (distance from the far side of the region being rotated to the axis) and r_{in} gives the inner radius. If the axis of rotation is vertical, reverse the roles of x and y.

• Volume of a solid of revolution, shell method, rotation about a vertical axis:

$$V = 2\pi \int_{a}^{b} r(x)h(x) dx,$$

where r(x) is the radius of the shell (distance to axis of rotation) and h(x) is the height of the shell. If the region lies between y = g(x) (above) and y = f(x) (below), and the axis of rotation is the y-axis we get the formula

$$V = 2\pi \int_{a}^{b} x(g(x) - f(x)) dx$$

as a special case. If the axis of rotation is horizontal, reverse the roles of x and y.

• Arc length of a curve y = f(x), for $a \le x \le b$:

$$L = \int_a^b \sqrt{1 + f'(x)^2} \, dx.$$

• Surface area generated by revolving $y = f(x), a \le x \le b$ about the x-axis:

$$S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + f'(x)^2} dx.$$

• Surface area generated by revolving y = f(x), $a \le x \le b$ about the y-axis:

$$S = 2\pi \int_{a}^{b} x \sqrt{1 + f'(x)^{2}} \, dx.$$