Russian Federation Country Insights

21 Feb 2025

Congratulations! This country has available data.

This page includes country-specific insights and more detailed analysis, including carbon stocks, emissions factors, and ecosystem wetland area for mangrove, marsh, and seagrass ecosystems. This report details information for the selected country, **Russian Federation**.

Please explore the rest of the dashboard for more exciting visualizations, map features, and data.

Resources referenced to calculate estimates for **Russian Federation** are listed below under 'References' at the bottom of this document.

Total Carbon Stock Estimates

Total Carbon stock estimates were calculated for each country and habitat At this time total Carbon stock estimates do not include seagrass

We estimate that **Russian Federation** contains between 207793920.08 to 113217833.67 metric tonnes of soil C to a depth of 1 m, with a mean estimate of 160505876.88 metric tonnes C.

country	territory	habitat	total_stocks tota	l_stocks_lowenota	l_stocks_upp t ot	al_stocks_se
Russian Federation	Russian Federation	total	160505877	207793920	113217834	24126553

This total estimate includes total mangrove carbon stocks, from NA to NA metric tonnes of soil C to a depth of 1 m, with a mean estimate of 0

country	territory	habitat	total_stocks total	_stocks_lowental_	_stocks_upp to tal_	_stocks_se
Russian Federation	Russian Federation	mangrove	e 0	NA	NA	NA

This total estimate also includes total tidal marsh carbon stocks, ranging from NA to NAmetric tonnes of soil C to a depth of 1 m, with a mean estimate of 160505876.88

country	territory	habitat	total_stocks total	_stocks_lowental_	_stocks_uppter	otal_stocks_se
Russian Federation	Russian Federation	marsh	160505877	NA	NA	24629189

Seagrass carbon stocks were not included in the total value due to lack of a global, transparent, and independently assessed seagrass habitat map, however, best available areas and stocks for **Russian Federation** are explored in the following 'Wetland Areas and Activities' section.

Wetland Areas and Activities

We estimate mangrove area in **Russian Federation** to be 0 to 623537.265184298 hectares, with a mean estimate of 0 hectares according to Global Mangrove Watch Bunting et al. (2018).

We estimate tidal marsh area in **Russian Federation** to be 334089.97329965 to 623537.265184298 hectares, with a mean estimate of hectares according to Worthington et al. (2024).

We estimate seagrass area to be **Russian Federation** to be a mean of 49220 hectares, according to McKenzie et al. (2020), aggregating data from multiple sources.

McKenzie et al. (2020) classifies seagrass area estimates as either high or medium to low confidence. sea-grass_area_high_confidence % of the estimated seagrass area of **Russian Federation** is considered high to medium confidence, while seagrass_area_low_confidence % of the estimated seagrass area is categorized as low confidence.

Calculated Stocks and Emissions Factors

This section of the report details whether data is available to estimate Tier I, Tier II, or Tier III value estimates for tidal marsh, mangrove, and seagrass ecosystems in **Russian Federation**.

If data for the selected country is available in the Coastal Carbon Atlas, we have applied a Tier II emission factor based on a simple average of country specific data queried from the Atlas.

Data from **Russian Federation** includes 53 soil profiles from 51watersheds. This data comes from 1 different habitat types.

If there is not yet any country specific information in the Coastal Carbon Atlas, we instead applied IPCC Tier I estimate. IPCC Tier I estimates for mangrove, marsh, and seagrass ecosystems are listed below. **SOURCE**

The table in this section also details whether the calculated Tier II value is significantly different from the estimated Tier I values. This is observed in the "Overlap" column.

Table 4: IPCC Tier I Value Estimates

Habitat	Mean	Lower_CI	Upper_CI
mangrove	386	351	424
marsh	255	254	297
seagrass	108	84	139

Table 5: Availiability of Tier I and Tier II Data

Country	Territory	Habitat	Tier	Overlap
Russian Federation	Russian Federation	mangrove	Tier I	NA
	Russian Federation	marsh	Tier II	Country-specific average overlaps Tier I
	Russian Federation	seagrass	Tier I	NA

Tier I Carbon Stocks

This table includes Tier I Carbon Stocks included for Russian Federation.

country	territory	habitat stoc	k_MgHa_	sheekn_MgHa_lowterCkI_	_MgHa_	uptpierrCI	carbon_pool
Russian Federation	Russian Federation	mangrove	386	351	424	TierI	soil
Russian Federation	Russian Federation	seagrass	108	84	139	TierI	soil

Tier II Carbon Stocks

This table includes Tier II Carbon Stock estimates for **Russian Federation**. Estimates in this table were derived from data queried from the Coastal Carbon Atlas. SOURCE

country	territory	habitat tier	carbon_postbck_	_MgHa	a <u>st</u> meka <u>n</u> MgHat <u>c</u>	osk_MgHa_	_uppdr_CMgHa_	_lowerCI
Russian Federation	Russian Federation	marsh TierII	soil	291	21.82483	333.7759	248.2241	

Tier III Carbon Stocks

Tier III carbon stocks were estimated, when available, from remote sensing data from Maxwell et al 2021 and Sanderman et al 2018. The table below details whether estimated values are available for **Russian Federation**, and any overlap with associated Tier I or Tier II values.

If there are no Tier III estimates associated with the selected country, please refer to Tier I and Tier II tables.

country	territoryhabit s ttock lsligklalsligkla k lsligit(\$]] 1	ı gpien(d<u>ienov</u>er laps_tier tie rIII_	_gtiler_Itilerovlerlapstierflier
Russian Fed-	Russian mars $B14.227502.2822326.1728$ greater Fed- than	esimate overlaps than	Remote-sensing Tier esimate is III
era- tion	era- tion	country-specific average	significantly greater than Tier I

References

Bunting, Pete, Ake Rosenqvist, Richard M. Lucas, Lisa-Maria Rebelo, Lammert Hilarides, Nathan Thomas, Andy Hardy, Takuya Itoh, Masanobu Shimada, and C. Max Finlayson. 2018. "The Global Mangrove Watch—a New 2010 Global Baseline of Mangrove Extent." Remote Sensing 10 (10): 1669. https://doi.org/10.3390/rs10101669.

McKenzie, Len J, Lina M Nordlund, Benjamin L Jones, Leanne C Cullen-Unsworth, Chris Roelfsema, and Richard K F Unsworth. 2020. "The Global Distribution of Seagrass Meadows." *Environmental Research Letters* 15 (7): 074041. https://doi.org/10.1088/1748-9326/ab7d06.

Worthington, Thomas A., Mark Spalding, Emily Landis, Tania L. Maxwell, Alejandro Navarro, Lindsey S. Smart, and Nicholas J. Murray. 2024. "The Distribution of Global Tidal Marshes from Earth Observation Data." Global Ecology and Biogeography 33 (8). https://doi.org/10.1111/geb.13852.