# Simple Solar Power Model Lecture 13

BSEN 5250/6250
Deterministic Modeling for Biosystems

## **U.S. Electricity Production Costs**

1995-2011, In 2011 cents per kilowatt-hour



Production Cocts + Operations and Maintenance Costs + Fuel Easts, Production costs do not include indirect costs and are based on FERE Form 1 Filings submitted by regulated utilities. Production costs are madeled for an inter-that are not regulated.





#### **Levelized Cost of Solar Power**

#### **SunShot Progress and Goals**



\*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.

By 2023, China will have the capacity to deploy solar power nationwide at the same price as coal, and currently has that ability in three-quarters of the country, according to a joint study from Harvard, Tsinghua, Nankai and Renmin universities.

# **Energy From the Sun**



173,000 trillion watts of solar radiation hits earth continuously

Sun provides more energy to earth in 1 hour than we consume in 1 year globally.

A 50 m<sup>2</sup> area of earth receives approximately 288 KW of energy each day, or 10 times daily household use.

## **Changes in Solar Radiation**



**Annual Trend** 

**Daily Trend** 

#### **Solar Panels Convert Solar Radiation into Current**



Panel made of millions of transistors.

Photons knock electrons free from transistor material, which causes a current to flow.

## **Typical Home Solar System**



## **Components of a Home Solar System**

- **Solar Panel** converts solar radiation into current (@15-20 V)
- Charge Controller converts power from solar panel to 12, 24, 36, 48... etc. volts for input to storage battery
- Battery stores energy (Amp-Hours)
- Inverter Converts 12 V DC into 120/240 V AC for home load
- Smart Utility Meter Sends excess energy not stored into battery onto electric grid

What is the State Variable in this system?



### **Batteries**

Batteries store energy as Amp-hours Amp Hour (AH) = Current (A) x Time (H)







### **Bank of Batteries for Small Solar System**





### **Series and Parallel Battery Connections**



Parallel: AH add but voltage does not change

Output: 12 V and 200 AH



Series: Voltages add but AH does not change

Output: 12 V and 200 AH



Series: Voltages add but AH does not change

Output: 24 V and 100 AH

### **Batteries**

A fully charged 100 AH battery runs a 10 amp motor for 2 hours. How many stored amp-hours (AH) are removed from the battery?

10 amps \* 2 hours = 20 AH

The fully charged battery holds 100 AH. A total of 20 AH was discharged. Remaining energy in the battery is 100-20 = 80 AH

Never discharge a batter below 50% of it's AH storage capacity or the battery will be permanently damaged!



100 AH fully charged80 AH stored after dischargeNever drop below 50% of AH rating

### **Forrester Diagram**



- Input is daily solar radiation, MJ/m<sup>2</sup>
- Rate variable equation converts MJ/m<sup>2</sup> to current flow at designated voltage
- Single state variable is battery storage,
   AH
- Demand is user input, AH
- If battery is full, power goes to grid

## **Useful Electricity Relationships**

```
Voltage = Current x Resistance (E = I R)
Power = Voltage x Current (P = E I)
```

Voltage – volts Resistance – ohms Current – amps Power - watts

### **Convert Solar Radiation to Watt-Hours**

- MJ/m<sup>2</sup> measure of daily solar radiation
- 1 MJ = 277.77 WH
- Obtain weather data from internet source for your location

**Example:** 25 MJ/m<sup>2</sup> of solar radiation occurs today. Compute the WH of energy.

$$\frac{25 MJ}{m^2} * \frac{277.77 WH}{MJ} = 6944 WH$$

#### **Solar Panels**

- Typical panel produces 100 W under perfect sunlight
- Solar panel efficiency is 16-23% at converting sunlight into electricity
- Higher efficiency means higher cost!





## **Case Study**

A 100 W solar panel received 25 MJ/m<sup>2</sup> of solar radiation on July 1. The panel has a conversion efficiency of 0.16 (ie. 16%).

The solar panel connects to a charge controller that outputs 18v to the battery.

The panel is attached to 2 batteries connected in parallel that are rated at 12 Volts and each battery stores 100 AH. This gives a combined storage of 200 AH with an output of 12 volts.

Batteries are connected to a 12v to 120v inverter to supply 120 v power to the building.

The daily load is 3 AH

100w Solar Panel Wiring Input Isolator **Battery** DC/AC Inverter **Battery Bank** 12 v Input

120 V output

## Step 1: Convert Daily Energy From Sun (MJ/m²/day) to WH

1 MJ = 277.77 WH

Note: WH is Watt-hours

**Example:** 25 MJ/m<sup>2</sup> of solar radiation occurs today. Compute the WH of energy.

$$\frac{25\,MJ}{m^2} * \frac{277.77\,WH}{MJ} = 6944\,WH/m^2$$

Note: The unit m<sup>2</sup> refers to surface area of the solar panel

#### Step 2: Convert WH Received by Solar Panel to Amp-hours Into Battery Bank

Solar panel outputs amps at a design voltage (typically 15-18 V)

Ohm's Law: Power = Voltage x Current Watts = Volts x Amps

Convert Power produced by panel to Amps at designated voltage

**Example:** A solar panel produces 6944 WH of energy from 25 MJ/m<sup>2</sup> of solar radiation today. The solar panel outputs the power at 18 volts. Convert WH to AH.

$$AH = \frac{WH}{V} = \frac{6944 \, WH/m^2}{18 \, V} = 386 \, AH/m^2$$

If the panel is 100% efficient at converting solar to electrical energy, it would produce 386 AH/m<sup>2</sup> of electricity for this example.



### **Step 3: Reduce AH into Battery Due to Solar Panel Efficiency**

**Example:** Assume the solar panel in this example has an efficiency of 16%. Convert the potential AH/m<sup>2</sup> into actual AH/m<sup>2</sup> going into the battery using the panel efficiency.

$$386 \frac{AH}{m^2} \times 0.16 = 62 \, AH/m^2$$

### **Step 4: Compute AH into Battery**

In this example, we have 1 solar panel that is 42" x 20" in size

$$Area = (42" \times 20") \times \frac{1 m^2}{1550 in^2} = 0.54 m^2$$

Panel 
$$AH = 0.54 \ m^2 \ x \ 62 \frac{AH}{m^2} = 33.5 \ AH$$

If you have more than 1 panel, multiple by number of panels

Thus, a day with 25 MJ/ $m^2$  of solar radiation will add 31.3 AH of storage to the battery

## Step 5: Compute Battery AH Output from Daily Load



Power = Volts \* Amps Power leaving battery at 12 V = Power consumed by load at 120 V

Battery AH \* 12 V = 3 AH \* 120 V

Battery  $AH = \frac{3 AH * 120 V}{12 V} = 30 AH$ 

Note: Daily load is 3 AH

Thus, a load of 3 AH at 120 V draws 30 AH at 12 V from the battery

## **Step 6: Compute Battery AH Balance**

Combining Step 4 and Step 5 gives the following state variable equation for battery storage:

$$B^{t+dt} = B^t + (AH_{in}^t - AH_{out}^t) dt$$

$$B^{t+dt} = 160 + (33.5-30) dt = 163.5 AH$$

If 
$$B^{t+dt} > 200 AH$$
 then  $B^{t+dt} = 200 AH$ 

Note, The charge controller will not allow the battery bank to exceed it's rated 200 AH storage

## **Developing a Model in Excel Spreadsheet**

| Area of Single Solar Panel    |                  | 0.54 | m2 |
|-------------------------------|------------------|------|----|
| Number of Solar Panels        |                  | 15   |    |
|                               | Panel Efficiency | 0.16 |    |
|                               | Panel Voltage    | 18   | V  |
| Number of Batteries           |                  | 5    |    |
| Init Amp Hour Battery Storage |                  | 100  | AH |
| Battery System Voltage        |                  | 12   | V  |







#### Number of Panels and Batteries vs Daily Demand



### **Other Considerations**

- Intercepted solar radiation by panel is complex geometric algorithm
- Panel output and battery storage is sensitive to cold temperatures
- Battery bank cannot be discharged over 50% of rated capacity
- Selling electricity to grid is complex