QC 151 B36 1896

Cornell Aniversity Pibrary

BOUGHT WITH THE INCOME FROM THE

SAGE ENDOWMENT FUND

THE GIFT OF

Henry W. Sage 1891

ENGINEERING LIBRARY

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text. Engineering QC 151 836 1896

BASEMENT STORAGE

QC 151.B36 1896

Experiments upon the contraction of the

3 1924 004 590 737

EXPERIMENTS

UPON THE

CONTRACTION OF THE LIQUID VEIN

ISSUING FROM AN ORIFICE,

AND UPON THE

DISTRIBUTION OF THE VELOCITIES

WITHIN IT.

H. BAZIN,

Inspecteur Général des Ponts et Chaussées.

TRANSLATED

From Mémoires présentés par divers savants à l'Académie des Sciences DE L'INSTITUT DE FRANCE, TOME XXXII.

RV

JOHN C. TRAUTWINE, JR., Civil Engineer.

FIRST EDITION. FIRST THOUSAND.

NEW YORK: IOHN WILEY & SONS. LONDON: CHAPMAN & HALL, LIMITED.

1896.

Copyright, 1896, BY JOHN C. TRAUTWINE, Jr.

EXTRACTS

FROM A REPORT OF MESSRS. RESAL, MAURICE LÉVY, SAR-RAU, AND BOUSSINESQ (Rapporteur), COMMITTEE OF THE ACADÉMIE DES SCIENCES, INSTITUT DE FRANCE. Comptes rendus, vol. CXVIII.

NOTWITHSTANDING the numerous experiments made since the seventeenth century upon the flow of liquid veins through orifices, there are important matters connected with this phenomenon which still remain undetermined, or so imperfectly known as to give rise to most inexact hypotheses.

Until now we have had no experimental results respecting the pressures exerted in the interior of the vein, or upon the velocities of the separate filaments.

It was therefore highly desirable that delicate observations upon a large scale should be undertaken for the measurement of the pressures and velocities within the issuing vein under considerable heads and with both vertical and horizontal orifices of diverse forms. M. Bazin's memoir contains an account of a large number of just such observations, made at Dijon since 1890, and concluded within the last few months.

The memoir contains an elaborate study of the flow through a vertical rectangular orifice, of the same width as the reservoir itself, and furnished externally with two flat cheek-pieces for preventing the lateral dilation of the vein. These are, so far as we know, the first precise observations made in such a case, the most important of all from a theoretical point of view, since it is the most elementary, and that to which mathematical analysis can be the most completely applied.

We see, then, that the memoir of M. Bazin realizes in many respects a very marked advance in our knowledge of the important and difficult question of the liquid vein. Your committee has therefore unanimously approved the memoir, and asks of you its insertion in the Recueil des Savants étrangers. In this publication have already appeared, during the present century, the memorable experiments of Poncelet and Lesbros upon the flow through vertical orifices; of Poiseuille upon the flow through capillary tubes; of Darcy, upon the uniform flow in larger pipes; of Darcy and of M. Bazin himself, upon the flow in open channels: a most valuable collection of original documents of the first order in the study of hydrodynamics, and one which will in no wise disparage the new work of M. Bazin.

The conclusions of the report were put to vote and adopted.

TRANSLATOR'S PREFACE.

M. BAZIN is perhaps best known to the English-reading public through his investigations of the flow of water in open channels; in which he was associated with M. Darcy, and which formed so important a part of the material employed by Ganguillet and Kutter in the construction of their now world-famous formula.

A few years ago, however, M. Bazin made another important contribution to the literature of hydraulics in the shape of his experiments upon the flow over weirs, the results of which, rendered into English by Mr. Marichal and the present translator, were published in part in the Proceedings of the Engineers' Club of Philadelphia, Volumes VII., IX., and X. In these investigations M. Bazin not only carefully determined the coefficients of discharge under widely varying conditions, but also carried out very delicate measurements for the purpose of determining the shape of the sheet of water, or "nappe," falling over the weir and (by means of the Pitot tube) the velocities and pressures within the sheet itself.

The investigations here presented proceeded upon nearly the same lines as those concerned with flow over weirs, and it is believed that they will be found to constitute an equally important addition to our knowledge of hydraulics.

J. C. T., JR.

AUTHOR'S INTRODUCTION.

PARIS, 15 avril, 1896.

MONSIEUR:—J'ai lu attentivement la traduction, que vous avez bien voulu me communiquer, de mon mémoire sur la contraction des veines liquides et la distribution des vitesses dans leur intérieur.

Cette traduction me parait bien rendre le sens de l'original, et je vous autorise très volontiers a présenter sous cette forme mon travail aux ingénieurs américains.

Votre bien devoué,

H. BAZIN.

Monsieur TRAUTWINE, Engineer, Philadelphia.

DEAR SIR:—I have read attentively the translation, which you have sent me, of my paper on the contraction of the liquid vein and the distribution of the velocities in its interior.

This translation appears to me to render correctly the sense of the original, and I very willingly authorize you to present my work in this form to American engineers.

EXPERIMENTS UPON THE CONTRACTION OF THE LIQUID VEIN.

In their admirable experiments upon the flow through orifices, Messrs. Poncelet and Lesbros have established a fact which appears at first view to contradict the fundamental principles of hydraulics. In studying the liquid vein issuing from an orifice 0.20 m. square, in thin partition, they found, in 1828, that the mean velocity in the contracted section of the vein was a little greater than the velocity $\sqrt{2gh}$ corresponding to the head h upon the center of that section. Surprised by this anomaly, M. Lesbros considered it necessary to repeat the experiment with the greatest care. This was done in 1834, with but little difference in the results.*

He says: "We must admit that the minimum area of the sections of the vein in planes parallel to that of the orifice is 230.62 square centimeters, so that the coefficient of contraction is 230.62 \div 400, or, say, 0.577. Now the coefficient deduced from the comparison of the effective and theoretical discharge is 0.602, whence it results that the mean velocity in the contracted section is $\frac{6.02}{577}$ of that due to the head of the liquid upon the center of the orifice."

From this it appears that the actual velocity is $\frac{1}{23}$ greater

^{*} Expériences hydrauliques sur les lois de l'écoulement de l'eau. Recueil des savants étrangers, vol. III., 1832, and vol. XIII., 1851.

than the theoretical, or $\frac{1}{26}$ greater, if account be taken of the fact that the center of the contracted section is slightly lower than the center of the orifice.

We have repeated the experiments of M. Lesbros with rectangular and circular orifices in vertical and horizontal walls, and, like him, we have found an excess of velocity in the contracted vein when the orifice is in a vertical plane. This, however, we do not find the case with orifices in a horizontal plane.

The orifices with which we have experimented are the following:

- I. Orifices in a vertical plane: Square orifice, 0.20 m. square (contraction complete); circular orifice, 0.20 m. in diameter (contraction complete); rectangular orifice, 0.80 m. wide by 0.20 m. high (lateral contraction suppressed).
- 2. Orifices in a horizontal plane: Circular orifice, 0.20 m. in diameter (contraction complete); circular orifice, 0.10 m. in diameter (contraction complete.)

Having determined the coefficients of discharge by filling a vessel of known capacity, we proceeded to determine the geometrical figure of the vein in order to be able to deduce from the discharge the mean velocity in transverse sections at different distances from the orifice. We have endeavored also to ascertain directly by the use of an instrument analogous to the Darcy tube, the distribution of the velocities through each of the several sections of the issuing vein.

DETERMINATION OF THE COEFFICIENT OF DISCHARGE.

The three vertical orifices were installed successively at the origin of the channel employed in our experiments upon weirs.* Their center was placed 0.60 m. above the bottom of the chan-

^{*} Annales des Ponts et Chaussées, October, 1888.

nel. For the square and circular orifices, the channel retained its width of 2 meters. The sides of the orifices were therefore 0.90 m., from each of the two side walls of the channel.

For the rectangular orifice, in order to suppress the lateral contraction, the width of the channel was reduced to 0.80 m. up-stream from the orifice, which thus occupied its entire width. Two cheek-pieces, A, B, prolonged the walls, for a distance of 0.50 m. down-stream, from the orifice, in order to guide the vein, while preventing its lateral expansion.

As to the horizontal circular orifices, their center was placed at 1 m. from the lateral and terminal walls of the channel, and at 0.70 m. above the ground upon which the vein fell.

The calibration of these orifices was accomplished by following the process employed in calibrating our weirs, that is to say, by filling a part of the channel and noting exactly the time occupied in the filling.* The table on pp. 4, 5 presents a resumé of the results obtained:

The orifices were formed in iron plates 7 mm. in thickness. The edges, carefully finished in a machine, presented a very true, sharp edge.

Let us now compare the values of m given by the foregoing table with those obtained by other experimenters.

Square orifices 0.20 m. on the side. The mean of five experiments made under heads between 0.90 m. and 1 m., is m = 0.6066, a result corresponding very closely with the value 0.605, adopted by M. Lesbros,† for the same heads.

Rectangular orifice 0.20 m. high, 0.80 m. wide. Dividing

^{*} This very simple operation nevertheless requires great care and precautions if we wish to eliminate all causes of error.

For a detailed description of the processes employed, we refer the reader to our first Memoir upon Weirs.

[†] See the table of coefficients for square orifices given by M. Lesbros, Recueil des savants étrangers, vol. XIII, 1851.

Ex- periment	Head on Centre of	Contents	of Channel.	Time.	Discharge per Second.	Coefficient of Discharge.
No.	Orifice.	Depth.	Volume.		q	$m = \frac{q}{S\sqrt{2gh}}$
	Meters.	Meters.	Cu. Meters.		Cu. Meters.	

VERTICAL ORIFICE 0.20 M.* SQUARE.

Area S = 0.04012 sq. meter.

October, 1800. Mean temperature of water, o° C.

		,,			.,,	
1	0.9016	0.4416	177.977	29' 00"	0.10229	0.6062
2	0.9220	0.4332	174.591	28 04	0.10368	0.6076
3	0.9518	0.4676	188.455	29 52	0.10516	0.6066
4	0.9745	0.4505	181.564	28 25	0.10649	0.6071
5	0.9945	0.4592	185.070	28 45	0.10729	0.6054

VERTICAL RECTANGULAR ORIFICE 0.20 M. HIGH, 0.80 M. WIDE, WITHOUT LATERAL CONTRACTION.

Area S = 0.1592 square meter.

	Oct	ober, 1890. I	Mean tempera	ture of water	, 13.5° C.	
1	0.8000	0.5400	217.472	9′ 09″	0.39612	0.6280
2	0.8074	0.4760	191.695	8 04	0.39606	0.6251
3	0.8170	0.5257	211.717	8 53	0.39722	0.6233
4	0.8205	0.4600	185.289	7 46	0.39762	0.6225
5	0.8260	0.4994	201.130	8 23	0.39986	0.6240
6	0.8347	0.5535	223.503	9 11	0.40563	0.6296
7	0.8468	0.5078	204.507	8 26	0.40416	0.6228
8	0.8567	0.5201	209.461	8 35	0.40672	0.6231
9	0.8658	0.5215	210.005	8 30	0.41177	0.6276
10	0.8799	0.4970	200.192	8 03	0.41448	0.6266
11	0.8880	0.4670	188.066	7 30	0.41792	0.6289
12	0.8971	0.5010	201.803	8 02	0.41868	0.6270
13	0.9113	0.4827	194.390	7 38	0.42443	0.6306
14	0.9188	0.4556	183.516	7 14	0.42285	0.6255
15	0.9233	0.4550	183.244	7 12	0.42418	0.6260
16	0.9281	0.5550	224 109	8 49	0.42365	0 6237
17	0.9305	0.5190	209.011	8 12	0.42482	0.6246
18	0.9427	0.5238	210.987	8 14	0.42710	0.6239
19	0.9508	0.5022	202.237	7 49	0.43121	0.6271
20	0.9594	0.4807	193.541	7 24	0.43590	0.6312

VERTICAL CIRCULAR ORIFICE 0.20 M. DIAMETER. T

Area S = 0.03132 square meter.

April and May 1800 Mean temperature of water -- C

	April	inu may, 1090.	mean tem	perature or w	ater, 11° C.	
I	0.9536	0.4680	188.617	38′ 47″	0.8106	0.5984
2	0.9619	0.4222	170.158	34 51	0.8138	0.5981
3	0.9722	0.4478	180.475	36 47	0.8177	0.5978
4	0.9799	0.3905	157.382	31 59	0.8201	0.5972
5	0.9883	0.4401	177.372	35 53	0.8238	0.5973
6	0.9966	0.4298	173.221	34 54	0.8272	0.5972
		l.				

^{*} Exactly 0.2003 m.

Exactly 0.797 m. × 0.1997 m. Exact mean diameter 0.1997 m.

Ex- periment No.	Head on Centre of	Contents of	of Channel.	Time.	Discharge per	Coefficient of Discharge.
	Orifice.	Depth,	Volume.	Time.	Second.	$m = \frac{q}{S \sqrt{2gh}}$
	Meters.	Meters.	Cu. Meters.		Cu. Meters.	

HORIZONTAL CIRCULAR ORIFICE 0.20 M. DIAMETER.*

Area S = 0.03132 square meter.

May, 1892. Mean temperature of water 13° C.

1 2 3 4 5 6 7 8 9 10 11	0.9384 0.9481 0.9594 0.9680 0.9736 0.9923 1.0005 1.0094 0.9552 0.9636	0.4487 0.4272 0.4390 0.4054 0.4611 0.4383 0.4192 0.4400 0.4722 0.4588 0.4303	88.309 84.093 86.388 79.799 90.727 86.280 82.497 86.620 92.963 90.324 86.482	18' 04" 17 07 17 35 16 11 18 17 17 16 16 27 17 11 18 53 18 16 17 26	0.08147 0.08188 0.08188 0.08218 0.08270 0.08328 0.08358 0.08402 0.08205 0.08241	0.6062 0.6062 0.6025 0.6021 0.6041 0.6026 0.6023 0.6028 0.6051 0.6052
			, , , -			
II	0.9797	0.4393	86.482	17 26	0.08268	0.6021
12	0.9888	0.4665	91.841	18 23	0.08326	0.6036
13	1.0053	0.4609	90.737	18 05	0.08363	0.6012

Quite frequently, with the horizontal circular orifice, 0.20 m. diameter, an eddy was formed, extending from the orifice to the free surface of the liquid in the channel of approach. It was found possible to prevent the formation of this eddy by allowing a plank to float above the orifice.

As a matter of fact, the eddy did not appear to modify sensibly the discharge, for experiments Nos. 1 to 8 of May, 1892, in which no precaution was taken for its prevention, give the same mean value of m as the five experiments, Nos. 9 to 13, in which, on the contrary, the formation of the eddy was prevented by means of the floating plank.

These eddies caused the formation of a long, narrow tube, drawing in air at the surface of the water and carrying it into the vein, which thus discharged, at the same time, water and air, and lost something of the regularity of its characteristic form.

HORIZONTAL CIRCULAR ORIFICE O.10 M. DIAMETER.

Area S = 0.007886 square meter.

June and July, 1892. Mean temperature of water 22.5° C.

1 2 3 4 5 6 7 8 9	0.9069	0.4850	30.285	25' 06"	0,02011	o.6046
	0.9112	0.4849	30.279	25 02	0.02016	o.6047
	0.9236	0.4932	30.797	25 12	0.02037	o.6068
	0.9421	0.4922	30.734	25 06	0.02041	o.6021
	0.9493	0.4750	29.660	23 59	0.02061	o.6056
	0.9564	0.4784	29.873	24 04	0.02069	o.6057
	0.9733	0.4939	30.841	24 27	0.02102	o.6100
	0.9930	0.4928	30.772	24 12	0.02119	o.6087
	1.0023	0.4911	30.666	24 01	0.02128	o.6085
9	1.0023	0.4911	30.000	24 01	0.02128	0.0085

^{*} Exact mean diameter 0.1997 m.

⁺ Exact mean diameter 0.1002 m.

the series into three groups, following the increase of the heads, we obtain:

Heads between 0.80 m. and 0.85 m. (7 experiments),
$$m = 0.6250$$
 ... 0.90 m. (5 ...), $m = 0.6266$... 0.90 m. (6 ...), $m = 0.6266$... 0.90 m. (8 ...), $m = 0.6266$

In order to study the influence of variation of the head upon the value of m, we carried out another series of experiments in which the water discharged by the orifice was made to pass over a weir 0.35 m. in height, the coefficient M of which was exactly known.*

This weir having a length of 1.999 m., its discharge under a head H was

$$Q = 1.999 \text{ m.} \times MH \sqrt{2gH}$$
;

that of the rectangular orifices being, on the other hand,

$$Q = 0.1592 \times m \sqrt{2gh}$$
.

The comparison of these two experiments gives immediately

$$m = \frac{1.999}{0.1592} MH \sqrt{\frac{H}{h}}.$$

Examining the last column of the table, where the values of the coefficients are arranged by groups of heads, we see that m first diminishes slightly as the head h increases, but becomes sensibly constant when h exceeds 0.50 m. Its value, for heads between 0.85 m. and 0.96 m., is 0.6307. Direct gauging had given, for the same heads, 0.6266, or $\frac{1}{150}$ less.

But the two processes are not exactly comparable, and the method by the actual measurement of the volume discharged affords a greater guaranty of exactitude for the determination of an absolute value of m.

Our sole object in comparing the discharge of the orifice with that of the weir, the head upon which is always more

^{*} For the table of values of this coefficient, see the Memoir already quoted, Annales des Ponts et Chaussées, October, 1888.

CALIBRATION OF THE RECTANGULAR ORIFICE 0.20 M. HIGH X 0.80 M. WIDE,
BY MEANS OF A WEIR WITH FREE NAPPE.*
Height of weir, 0.359 m.; Length of weir, 1.999 m.
October, 1890. Mean temperature of the water, 13° C.

	He	ad.	Coefficients	of Discharge.	Means by	Groups.
Experiment No.	On the Centre of the Orifice, h	On the Weir. H	Weir.	Orifice.	<i>h</i> =	m =
	Meters.	Meters.			Meters.	
1	0.1504	0.1268	0.4401	0.6434)		
2	0.1761	0.1332	0.4406		0. 15 to 0.20	0.6405
3	0.1955	0.1373	0.4410	0.6371		, ,
4	0.2306	0.1443	0.4418	0.6333 }	0.20 to 0.25	0.6350
5	0.2424	0.1472	0.4421	0.6368 ∫	0.20 to 0.25	0.0330
6	0.2738	0.1531	0.4428	0.6366 }	0.25 to 0.30	0.6000
7	0.2986	0.1563	0.4432	0.6293 ∫	0.25 100.30	0.6330
8	0.3232	0.1610	0.4438	0.6332		
9	0.3492	0.1652	0.4444		0.30 to 0.40	0.6324
10	0.3778	0.1692	0.4449	0.6326		
II	0.3984	0.1716	0.4452	0.6296		
12	0.4331	0.1769	0.4459	0.6330)		
13	0.4423	0.1776	0.4460	0.6302	0.40 to 0.50	0.6327
14	0.4748	0.1815	0.4465	0.0292	0.40 10 0.50	0.0327
15	0.4919	0.1853	0.4470	0.6384		
16	0.5249	0.1887	0.4475	0.6358]		
17	0.5507	0.1896	0.4476	0.6253 (0.50 to 0.60	0.6302
18	0.5779	0.1940	0.4483	0.0327	0.50 10 0.00	0.0302
19	0.5990	0.1951	0.4485	0.6270		
20	0.6311	0.1985	0.4490	0.6276)		
21	0.6436	0.1999	0.4492	0.6283	0.60 to 0.70	0.6294
22	0.6766	0.2032	0.4496	0.0280	0.00 10 0.70	0.0394
23	0.6924	0.2056	0.4500	o.6330 J		
24	0.7254	0.2083	0.4504	0.6313		
25	0.7513	0.2097	0.4506	0.6268	0.70 to 0.80	0.6294
26	0.7796	0.2129	0.4510	0.0301	0.70.000.00	0.0294
27	0.7959	0.2141	0.4512	0.6292		
28	0.8245	0.2167	0.4515	0.6298 }	i	
29	0.8563	0.2196	0.4519		0.80 to 0.90	0.6308
30	0.8784	0.2215	0.4522	0.6316)		
31	0.9028	0.2231	0.4525	0.6301)		
32	0.9300	0.2253	0.4528	0.6306		
33	0.9575	0.2273	0.4531		0.90 to 1.00	0. 63 04
34	0.9783	0.2297	0.4535	0.6339		
35	1.0059	0.2303	0.4535	0.6274		
ı	•			•	,	

^{*} The "nappe" is the sheet of water falling over the weir. It is called "free" when it falls freely through the air without touching the face of the weir.

difficult to determine with precision, was to place in evidence the variation of m relatively to those of the head.

In order to study these more thoroughly, it was, however, necessary to take account of the velocity of approach, which, owing to the large dimensions of the orifice,* was by no means negligible. We adopt, therefore, in the following calculations, the value m=0.6266.

One of the numerous arrangements employed by M. Lesbros is nearly comparable with our rectangular orifice. In that arrangement the square orifice 0.20 m. was placed at the termination of a channel of the same width and the lateral contraction was thus suppressed. The escaping vein was not, as in our experiments, guided by cheek-pieces preventing its lateral expansion, and that expansion, mentioned by M. Lesbros, resulted in a slight increase of the discharge of the orifice. It is this which explains why the coefficient m = 0.638, obtained by this skillful experimenter, exceeded by 0.011 that which we have determined.

Circular Orifices.—The coefficient of discharge of circular orifices is nearly constant. We find:

For the vertical orifice 0.20 m. in diameter (mean of 6 experiments), m = 0.5977.

For the horizontal orifice 0.20 m. in diameter (mean of 13 experiments), m = 0.6035.

For the horizontal orifice 0.10 m. in diameter (mean of 9 experiments), m = 0.6063.

We know that this coefficient, varying but slightly from 0.6, does not sensibly increase except in the case of very small orifices or of low heads.

Mr. Hamilton Smith, Jr., discussing numerous experiments

^{*} The influence of this element upon the value of m is never of great importance, since the height $\frac{u^2}{2g}$, which corresponds to the velocity u of approach, does not exceed a few mm.

made by several observers, including himself, has recently published * a table of coefficients applicable to vertical circular orifices. This table gives, for a head of one meter, the following values of m:

Diameter of		Diameter of Orifice.	
Orific e.	m.	Orifice.	m.
	0.627		
	o.617		
	o.611		
-0.015 m	o.606	0.30 m	0.597
0.03 m	o.6o3		

The value 0.598 is precisely that which we ourselves have obtained for the vertical orifice 0.20 m. in diameter.

As to horizontal orifices, the experimental results are much less numerous. In 1874, Mr. Ellis experimented with orifices 0.30 m. in diameter, but unfortunately the discharges were determined not by direct measurement of the volume discharged, but by comparison with a weir. The mean of a large number of experiments with heads varying between 0.80 m. and 5.70 m. gives m = 0.600. The orifice was submerged. Placing the same orifice vertically and allowing it to discharge into the air, Mr. Ellis obtained, with the same range of heads, m = 0.592. Our experiments also give, for a vertical orifice, a value of m slightly less than that corresponding to a horizontal orifice.

GEOMETRICAL FIGURE OF THE VEIN.

Profile of the Jet.—We first observed the profile described by the vein issuing from vertical orifices, referring the center of its cross-section at each point to horizontal and vertical axes, the origin of co-ordinates being taken at the center of the orifice. This profile is comparable to the parabola described by a projectile subjected to the action of gravity and

^{*} The Flow of Water through Orifices and over Weirs, and through Open Conduits and Pipes, by Hamilton Smith, Jr.; London and New York, 1886.

⁺ Transactions American Society of Civil Engineers, February, 1876.

passing the center of the orifice with a horizontal velocity, $v = \sqrt{2g}h$.

Designating by x the horizontal distance of the projectile from the orifice, and by y its corresponding vertical distance below the center, it is easy to see that the equation of the parabola is $y = \frac{x^2}{4h}$. The curve passing through the centers of the successive sections of the vein differs but little from this parabola, and lies below it, departing from it progressively as the distance from the orifice increases. Its co-ordinates for square and circular orifices are indicated in the following table:

Squar	e Orifice (h =	o.953 m.).	Circula	ar Orifice (½ =	: 0.990 m.).
x	y	Ordinate of the Parabola. $y' = \frac{x^2}{4h}$	x	9	Ordinate of the Parabola. $y' = \frac{x^2}{4h}$
0.063 0.082 0.104 0.128 0.151 0.175 0.210 0.248 0.302	0.001 0.002 0.004 0.006 0.009 0.012 0.017 0.024 0.035	0.0010 0.0018 0.0028 0.0043 0.0060 0.0080 0.0116 0.0161 0.0239	0.08 0.13 0.17 0.235 0.335 0.515	0.002 0.006 0.010 0.018 0.035 0.080	0.0016 0.0013 0.0073 0.0139 0.0283 0.0670

The ordinates of the two curves are not proportional, and their ratio approaches unity simultaneously with the increase of their absolute difference.

The following figures show the progressive modifications of liquid veins issuing from a vertical orifice. That issuing from a circular orifice remains regular. Its transverse section, at first exactly circular, is gradually flattened vertically, as is indicated in the successive cross-sections, ab, cd, and ef.

As to the vein issuing from the square orifice, it undergoes a very remarkable change of form, frequently quoted as an ex-

ample of the inversion of the vein. The sections gh, ij, and kl show this gradual transformation, which finally gives to the vein a star-shaped figure, the points of which correspond to the sides of the orifice. This peculiarity explains the singular figure of the longitudinal section of the vein in a vertical plane, following the axis of the channel.

Let us now consider the rectangular orifice. Instead of being circumscribed on all sides, as in the case of the orifices already considered, the vein is of indefinite horizontal extent, and is limited by two surfaces nearly cylindrical, between which we may conceive a mean surface dividing the nappe into two sensibly equal parts. The intersection of this surface with the vertical plane passing through the axis of the channel corresponds to the central curve of the jet determined for square and circular orifices. The upper and lower surfaces of the nappe were observed for the 5 heads h, 0.790 m., 0.836 m., 0.887 m., 0.950 m., and 1.005 m.* Deducing graphically the ordinate p of the mean surface, we recognize that the product h is sensibly constant for a given horizontal distance x from the orifice, and greater than the quantity $\frac{x^2}{4}$ corresponding to

the same product in the parabola $y' = \frac{x^2}{4h}$. We have, in fact,

Distance from Plane	Ordinates y of the Central Curve for Heads. $\lambda =$			Products hy for Heads. $h =$				Mean Prod- ucts hy	Value of			
Orifice.	0.790	0.836	0.887	0.950	1.005	0.790	0.836	0.887	0.950	1.005	for the Five Heads.	$\frac{x^2}{4}$.
0.10	0.0078	0.0073	0.0078	0.0072	0.0062	0.0062	0.0061	0.0069	0.0068	0.0062	0.0064	0.0025
0.20	0.0193	0.0184	0.0193	0.0187	0.0164	0.0152	0.0154	0.0171	0.0169	0.0165	0.0162	0.0100
0.30			0.0354									0.0225
0.40	0.0628											0.0400
0.50	0.0929	0.0868	0.0848	0.0774	0.0733	0.0734	0.0726	0.0752	0.0735	0.0737	0.0737	0.0625
0.60	0.1262	0.1204	0.1169	0.1061	0.1014	0.0997	0.1007	0.1037	0.1008	0.1019	0.1014	0.0900

^{*}The elements of these profiles are given in a special table at the end of the present memoir.

Transverse Section of the Vein.—In order to obtain and reproduce the transverse sections of the veins issuing from square and circular orifices, we surrounded them with an octagonal iron frame placed normally to their axes, and having its perimeter pierced by 24 screws projecting toward its center. These screws were moved little by little until their points touched the surface of the vein. The frame was then placed upon a sheet of paper and the transverse sections were traced and their area measured with great precision.

This process is not applicable to the rectangular orifice, since the section of the vein was represented only by its thickness embraced between the upper and lower surfaces of the nappe. The profiles of these two surfaces were similarly determined by contact with a movable point. This operation, owing to the continual fluctuation of the nappe, was a very delicate one, the nappe being less stable than the contracted veins throughout the entire extent of their perimeter.

We shall first discuss the results of the experiments relative to the orifices with complete contraction, neglecting for the present the rectangular orifice.

The quotient $\frac{m}{\mu}$, which appears in the last column of the table on p. 13, is simply the ratio of the velocity U in the section under consideration, to the velocity $\sqrt{2gh}$, due to the head h upon the center. We have, in fact,

$$U = \frac{q}{\omega} = \frac{mS \sqrt{2gh}}{\omega},$$

and, dividing by $\sqrt{2gh}$ and remarking that $\frac{S}{\omega} = \frac{I}{\mu}$,

$$\frac{U}{\sqrt{2gh}} = \frac{m}{\mu}$$

This ratio, at first less than unity, exceeds this and increases

Distance of Section from Plane of Orifice.	Ratio of Distance x to Width L of Orifice.	Area of Section.	Coefficient of Contraction.	Ratio of Coeffi- cient of Discharge to Coefficient of Contraction.
x	$\frac{x}{L}$	ω	$\mu = \frac{\omega}{S}$	<u>μ</u>
		SQUARE ORIFIC	E.	
m = 0.6066		S = 0.04012 sq.	m. /	i = 0.953 m.
0.063	0.31	0.02586	0.6446	0.941
0.082	0.41	0.02511	0.6259	0.969
0.104	0.52	0.02497	0.6224	0.975
0.128	0.64	0.02467	0.6149	0.986
0.151	0.75	0.02428	0.6052	1.002
0.175	0.87	0.02419	0.6029	1.006
0.210	1.05	0.02395	0.5970	1.016
0.248	1.24	0.02379	0.5930	1.023
0.302	1.51	0.02326	0.5798	1.046
0.350	1.75	0.02320*	0.5783	1.049
	VERTI	CAL CIRCULAR	Orifice.	
m = 0.5977	•	S = 0.03132 sq.	m. A	i = 0.990 m.
0.08	0.40	0.01904	0.6079	0.983
0.13	0.65	0.01870	0.5971	1.001
0.17	0.85	0.01864	0.5951	1.004
0.235	1.17	0.01849	0.5904	1.012
0.335	1.67	0.01826	0.5830	1.025
0.515	2.57	0.01782	0.5690	1.050
Н	ORIZONTAL CIRC	CULAR ORIFICE	0.20 м. DIAMET	ER.
m = 0.6035	•	h = 0.975 m.	S = 0	03132 sq. m.
0.075	0.37	0.01880	0.6003	1.005
0.093	0.46	0.01860	0.5939	1.016
0.110	0.55	0.01824	0.5824	1.036
0.128	0.64	0.01796	0.5734	1.053
0.145	0.72	0.01772	0.5658	1.067
0.163	0.81	0.01753	0.5597	1.078
Ho	RIZONTAL CIRC	ULAR ORIFICE	оло м. Віамет	ER.
m = 0.6063		$1^{\circ} h = 1 m.$	S = 0.0	07886 sq. m.
0.058	0.58	0.004717	0.5981	1.014
0.088	0.88	0.004632	0.5874	1.032
0.138	1.38	0.004536	0.5752	1.054
0.188	1.88	0.004418	0.5602	1.082
0.288	2.88	0.004231	0.5365	1.130
0.388	3.88	0.004094	0.5191	1.168
0.488 4.88		0.003970 0.5034		1.204
0.588	5.88	0.003870	0.4907	1.236
		\mathbf{z}° $\hbar = 0.780 \text{ r}$	n.	
0.058	0.58	0.004705	0.5966	1.016
0.088	0.88	0.004584	0.5813	1.043
0.138	1.38	0.004453	0.5647	1.074
0.188	r.88	0.004359	0.5528	1.097
		<u> </u>	<u> </u>	<u>, </u>

^{*} Mean of 0.0226 and 0.0238.

gradually with the distance from the orifice. With this in view, it becomes necessary to make here a distinction between the axes of vertical and of horizontal orifices. In the first case the two coefficients m and μ become equal when the horizontal distance x from the orifice is about $\frac{7}{10}$ of its width. In the second one that distance is one half less.

In order to compare the velocity U in the section ω with its theoretical value, we must take account of the vertical distance y of the centre of gravity of that section below the centre of the orifice. The ratio which we must consider is therefore not

$$\frac{U}{\sqrt{2gh}}$$
, but rather $\frac{U}{\sqrt{2g(h+y)}}$. Hence the foregoing equation

may be written
$$\frac{U}{\sqrt{2g\ (h+y)}} = \frac{m\ \sqrt{2gh}}{\mu\ \sqrt{2g(h+y)}} = \frac{m}{\mu} \sqrt{\frac{h}{h+y}}.$$

We have already given the values of y. We may therefore calculate the coefficient of correction $\sqrt{\frac{h}{h+y}}$, and then

$$\frac{U}{\sqrt{2g(\overline{h+y})}}$$

We shall confine ourselves to those sections in which $\frac{m}{\mu}$ exceeds unity. Vertical and horizontal orifices will be considered separately.

VERTICAL ORIFICES.

	Distance of Section from Plane of Orifice.		<u>π</u> μ	$\sqrt{\frac{h}{h+y}}$	$\frac{U}{\sqrt{2g(\hbar+y)}}$	
_						
		9	SQUARE ORIFIC	E.		
			h = 0.953 m			
	0.151	0.009	1.002	0.9953	0.997	
	0.175	0.012	1.006	0.9937	1.000	
	0.210	0.017	1.016	0.9912	1.007	
	0.248	0.024	1.023	0.9876	1.010	
	0.302	0.035	1.046	0.9821	1.027	
	0.350	0.047	1.049	0.9762	1.024	

CIRCULAR ORIFICE.

		h = 0.990 m.		
0.13	0.006	1.001	0.9970	0.998
0.17	0.010	1.004	0.9950	0.999
0.235	0.018	1.012	0.9910	1.003
0.335	0.035	1.025	U.9828	1.007
0.515	0.080	1.050	0.9619	1,010

From the foregoing table it follows that with vertical orifices the velocity within the vein, when once contracted, slightly exceeds that due to the head h+y. Messrs. Poncelet and Lesbros have already remarked this fact in connection with the square orifice 0.20 m. But the horizontal circular orifices lead to a totally different result.

HORIZONTAL ORIFICES.

Distance of Section from Plane of Orifice.	Distance of Center of Section Below Center of Orifice.	<u>π</u> μ	$\sqrt{\frac{h}{h+y}}$	$\frac{U}{\sqrt{2g(k+y)}}$			
	<u> </u>		_				
He	DRIZONTAL CIRC		0.20 m. Diamet	ER.			
		h = 0.975.					
0.075	0.075	1.005	0.9636	0.968			
0.093	0.093	1.016	0.9555	0.971			
0.110	0.110	1.036	0.9480	0.982			
0.128	0.128	1.053	U.940 2	0.990			
0.145	0.145	1.067	0.9330	0.996			
0.163	0.163	1.078	0.9256	0.998			
Н	ORIZONTAL CIRC	TULAR ORIFICE $h = 0.990$.	o.10 m. DIAMET	er.			
0.058	0.058	1.014	0.9720	0.986			
0.088	0.038	1.032	0.9583	0.989			
0.138	0.138	1.054	0.9369	0.987			
0.138	0.188	1.082	0.9168	0.992			
0.288	0.288	1.130	0.8802	0.995			
0.388	0.388	1.168	0.8476	0.990			
0.488	0.488	I.204	0.8185	0.985			
0.588	0.588	1.236	0.7921	0.979			
0.500	0.500		,,	,,,			
h = 0.790.							
0.058	0.058	1.016	0.9652	0.981			
0.088	0.088	1.043	0.9486	0.989			
0.138	U.138	1.074	0.9227	0.991			
0.188	0.188	1.097	0.8988	0.986			

We thus see that the velocity U does not exceed $\sqrt{2g(h+y)}$, when the orifice is horizontal, that is to say, when the head remains uniform over the entire surface of the orifice, and it is in the inequality of the heads upon the different portions of the orifice that we must seek for an explanation of the anomaly mentioned.

Returning finally to the rectangular orifice without lateral contraction, and performing the same calculations, we have

The values of $\frac{m}{\mu}$ and of $\frac{U}{\sqrt{2g(h+y)}}$ are greater than those

obtained with square and circular orifices. It is necessary, however, to bear constantly in mind that they must undergo a slight reduction. We have admitted that the nappe was perfectly cylindrical, and that in order to estimate ω we must content ourselves with measuring the thickness of the central part of the nappe; but a closer observation has shown that this thickness is not rigorously uniform, and that the vein presents, at a distance of about 0.20 m. on each side of its axis, a slight swelling. We must therefore increase slightly the value of ω , reducing correspondingly the two ratios under consideration. The determination of the correction is rendered very difficult by the motion of the vein. In order to obtain an

approximation of it, we measured, at distances of 0.15 m., 0.16 m., 0.17 m., ... 0.33 m., 0.34 m., and 0.35 m. from the orifice, the thicknesses of the nappe, first in the axis itself, and second at 0.10 m., 0.20 m., and 0.30 m. on each side of that axis. This operation was twice repeated on each side and four times in the axis itself, under a head of 1 meter. Taking the mean of 21 thicknesses thus measured from centimeter to centimeter between the limits x = 0.15 m. and x = 0.35 m., we obtain the following results:

Mean Thicknesses of Vein Measured on the Vertical between the Limits $x=0.15\,\mathrm{M}$. And $x=0.35\,\mathrm{M}$.

The increase of the thickness at 0.20 m. from the axis is therefore 0.0026 m., or $\frac{1}{46}$. The vein rises a little near the wall of the channel. (See sketch on plate.) The swelling at 0.20 m. appeared in connection with the eddies which sometimes form in the up-stream angles, and was affected also by changes in the head. However this may be, it did not appear that the correction in question exceeded $\frac{1}{100}$, and, even after this reduction, the two ratios, $\frac{m}{\mu}$ and $\frac{U}{\sqrt{2g(h+y)}}$, are still greater than

with orifices where the contraction takes place throughout their entire perimeter.

MEASUREMENT OF THE VELOCITIES IN THE INTERIOR OF THE VEINS.

We have endeavored to measure directly the velocities in the interior of the vein by making use of the instrument employed for a similar study in the interior of the nappes in the case of weirs. This instrument, which is simply a particular form of the Pitot tube, consists of a copper plate 48 mm. wide by 3 mm. thick (Fig. a), sharpened at its upper edge and having two brass tubes 2 mm. in interior diameter soldered in a channel formed in its lower edge. These two small tubes have no communication with each other. One of them has its opening at a in the up-stream extremity of the plate, and the other at b in the lateral face of the plate (Figs. e and f). The small orifices in which they terminate are 1.5 mm. in diameter and 1 cm. apart.

The plate, introduced into the interior of the vein, does not sensibly modify the flow. It is so placed that its vertical plane is parallel to the axis of the vein, and is held between two iron guides, which enable it to resist the pressure of the fluid. Figs. a and b show the general arrangement of the apparatus. In Fig. a, which refers to the flow from vertical orifices, the plate is horizontal, while in Fig. b, which refers to horizontal orifices, it is necessary to turn the plate upward at a right angle so as to present its upper extremity normally to the orifice. The small tube A, which we shall call the velocitytube, opens directly up-stream, and thus receives directly the shock of the liquid vein, while the pressure-tube B opens flush with the lateral face of the plate, which is parallel with the direction of flow. It is therefore subject only to the interior pressure of the filament of water passing before its terminal opening. The pressures exerted upon the two orifices A and B were transmitted by means of the tubes under the plate, and by flexible tubes of lead and caoutchouc, to two vertical glass tubes 8.5 mm. in diameter, open at their upper extremities and placed side by side upon a graduated scale (Fig. c). The variations of the level of the water in these tubes thus permits us to observe every modification of the velocities and of the pressures in the different parts of the vein.

We have made 37 experiments with the plate placed in the axis of the vein. They are as follows:

Square orifice.—8 experiments: in the plane of the orifice and at 0.04 m., 0.08 m., 0.12 m., 0.16 m., 0.20 m., 0.25 m., and 0.30 m. down-stream.

Circular vertical orifice.—7 experiments: in the plane of the orifice (under two different heads) and at 0.05 m., 0.09 m., 0.12 m., 0.13 m., and 0.15 m. down-stream.

Rectangular orifice.—6 experiments: in the plane of the orifice and at 0.05 m., 0.10 m., 0.15 m., 0.20 m., and 0.25 m. down-stream.

Circular horizontal orifice, 0.20 m. in diameter.—9 experiments in the plane of the orifice and at 0.015 m., 0.035 m., 0.059 m., 0.085 m., 0.112 m., 0.135 m., 0.165 m., and 0.195 m. below the orifice.

Circular horizontal orifice, 0.10 m. in diameter.—7 experiments: in the plane of the orifice and at 0.26 m., 0.055 m. (2 experiments), 0.083 m., 0.113 m., and 0.143 m. below it.

The heads varied between 0.95 and 0.99 m., except in the case of one of the two experiments at 0.055 m. from the circular horizontal orifice of 0.10 m. diameter, in which the head was reduced to 0.807 m.

When the instrument just described is placed in the vein, we at once perceive, if the orifice on the velocity-tube is placed normally to the direction of flow, that the water rises in the tube to a level remaining perfectly constant. This level is that of the water up-stream, plus a small head, $\frac{v^2}{2g}$, due to the velocity v of approach, if such velocity exists.*

^{*}This velocity of approach was perceptible only in the case of the rectangular orifice, where $\frac{v^2}{2g}$ attained a value of 0.006 m. or 0.007 m. In the other cases it was negligible.

Designating by A the constant reading in the velocitytube, we have therefore, for any point whatever in the vein,

$$z+P+\frac{u^2}{2g}=A,$$

where z is the ordinate of that point, u the velocity, and P the pressure.

But when the orifice of the velocity-tube is not normal to the direction of flow, as is the case on the circumference of the vein in the plane of the orifice and in the neighboring sections down-stream, the level A' indicated by the tube becomes less than A.*

At the end of the present memoir will be found detailed tables giving the elements of these experiments. The first column shows the position of the point considered; the second

$$A'=z+P+\frac{u^2\cos^2\alpha}{2g},$$

or

$$\frac{u^2}{2g}\cos^2\alpha=A'-(z+P).$$

If we could turn the instrument so as to present the orifice of the velocitytube normally to the direction of flow, we should have, neglecting the velocity of approach,

$$h = z + P + \frac{u^2}{2g}$$

or

$$\frac{u^2}{2g}=h-(z+P);$$

from which, dividing the first expression by the second,

$$\cos \alpha = \sqrt{\frac{A' - (z + P)}{h - (z + P)}}.$$

We thus find that the filament situated 20 mm. to one side of the circular orifice would make an angle of about 30° with the axis.

^{*} From this result we might deduce, if not the exact measure, at least an approximate indication of the inclination α of the axis to the direction of the flow by admitting that the level A' shown by the velocity-tube corresponds to the action of the component $u\cos\alpha$ parallel to the axis, which gives

the head h upon the center; the third and the fourth the heads A and B indicated by the two tubes of the instrument. The difference A-B and the value of the pressure P are given in the fifth and sixth columns. The ordinates, z, have been referred to the horizontal plane passing through the center of the orifice, so that the constant elevation A indicated by the velocity-tube is simply the head h upon the center.

Examining the tables we find negative pressures in the sections furthest removed from the orifice, that is to say, pressures inferior to those of the atmosphere. This appears inadmissible, at least in so far as concerns the veins issuing from horizontal orifices where all the filaments converge, describing curves, the convexity of which is turned toward the vertical axis of the vein. These negative pressures cannot in general exist under normal conditions, but must result from the presence of the instrument itself in the vein. It will be readily understood that notwithstanding the thinness of the plate carrying the two tubes the liquid filaments must undergo a certain deviation and describe about the lateral orifice of the pressuretube a curve whose concavity is turned toward that orifice. From this results a negative pressure, or suction, which reduces the level in the corresponding tube. This effect, which was not observable with the velocities measured by aid of the same instrument in our study of weirs, is rapidly accentuated with the increase of the velocity, which, in the veins issuing from our orifices, exceeded 4 m. per second. The negative pressures appeared first upon the sides of the vein. A little further from the orifice they were found in all parts of the section, but did not exceed a mean of 0.03 m. for vertical orifices and 0.06 m. for horizontal orifices, where the velocity is greater.

When we calculate, by means of the velocities measured at

each point of the vein, the mean velocity for the entire section, and compare it with the value deduced from the discharge obtained in the experiments for calibration, we readily recognize that these negative pressures are really due to the presence of the instrument.

If, in fact, we multiply each element of the surface $d\omega$ by the corresponding velocity u, and then divide the sum $2ud\omega$ by the total surface, Ω , the mean velocity $U' = \frac{\sum ud\omega^*}{\Omega}$ thus obtained should coincide with the value $U = \frac{Q}{\Omega}$ deduced in calibration; but if, owing to the presence of the instrument, the pressure P becomes negative instead of remaining o or positive and very small, the velocities u deduced from the equation $\frac{u^2}{2g} = A - (z + P)$, and, consequently, their mean value U' will be somewhat too great.

We obtain, therefore, by this process, mean velocities greater than those deduced from the discharge, and recognize accordingly the impossibility of attributing negative values to *P*. We shall first perform this calculation for the circular orifices only.

The calculated velocity U' is therefore too great by about 3.5%, owing to the suction exerted upon the lateral orifice of the instrument, the presence of which causes a slight perturbation of the flow. The error is otherwise not explicable, for

^{*} This calculation is practicable only in the case of circular horizontal orifice3, or of vertical rectangular orifices, these being the only ones where the distribution of the velocities is regular. For the rectangular orifice, the elements $d\omega$ are horizontal rectangles of thickness de. For the circular orifice they are circles of radius r and thickness dr. The mean velocities resulting from this method of calculation are $\frac{\sum ude}{E}$ and $\frac{\sum 2urdr}{R^2}$, where E is the thickness of the rectangular vein and R the radius of the circular vein.

HORIZONTAL CIRCULAR ORIFICE 0.20 M. DIAMETER.

Head.	Discharge per Second.	Distance of Section from Plane of Orifice.	Area of Section.	Mean Velocity De- duced from the Discharge.	Mean Velocity De- duced from Direct Meas- urcments.	Ratio.	Re- marks
h	Q		ω	$U = \frac{Q}{\omega}$	U'	$\frac{U'}{U}$	
Meters.	Cubic Meters.	Meters.	Square Meters.	Meters per second.	Meters per second.		
0.975	0.08266		0.01936	4.270	4.414	1 034	A B
0.976	0.08270		0.01869	4.425	4.621	1.044	B
0.975	0.08266		0.01819	4.544	4.750	1.045	С
0.975	0.08266	0.135	0.01786	4.628	4.820	1.041	D
0.980	0.08288	0.165	0.01750	4.736	4.852	1.024	E
0.969	0.08241	0.195	0.01723	4.783	4.897	1.024	F

HORIZONTAL CIRCULAR ORIFICE O. 10 M. DIAMETER.

0.807 0.973 0.974 0.976 0.981	0.01902 0.02094 0.02090 0.02092 0.02097	0.055 0.083 0.113	0.004718 0.004729 0.004646 0.004584 0.004528	4.031 4.428 4.499 4.564 4.631	4.174 4.578 4.659 4.741 4.805	1.035 1.034 1.036 1.039 1.038	G H I J K
	i .		1			Į	

- A. Slight negative pressures at the edges. Mean =- 0.017 m. Maximum pressure, P=+ 0.158 m.
- B. Slight positive pressures in the central region; maximum, P = 0.035 m; mean of negative pressures = -0.035 m.

```
C. Negative pressures throughout the section.
                                           Mean = -0.055 m.
                                                 = -0.067 "
D.
                                     "
                         "
                               "
                                              "
                                                 = -0.052 "
E.
              ..
                               "
                                     ..
                         "
                                                 = -0.055 "
F.
```

- G. Slight positive pressures at the center. Mean of negative pressures = -0.022 m.
- H. Negative pressures throughout the section. Mean = -0.033 m. I. " " " " " = -0.043 " = -0.052" K. " " = -0.053"

at a certain distance from the orifice the velocities are perfectly equalized throughout the section of the vein, and there is therefore no reason why pressures less than that of the atmosphere should exist within it.

The rectangular orifice without lateral contraction leads to less definite conclusions, owing to the indeterminateness existing with regard to the true value of Ω , and even in regard to the distribution of the velocities, which last is not exactly the

same throughout the whole extent of the nappe, the nappe itself not being exactly cylindrical.

Distance of	Area of Section	Head = 0.949	Deduction of $\frac{U'}{U}$. m. Discharge Q per Linear Meter.	= 0.5398 m.3	
Section from Plane of Orifice.		Velocity Deduced from Discharge. $U = \frac{Q}{\omega}$	Velocity Deduced from Direct Measurements. U'	Ratio. $\frac{U'}{U}$	Notes
Meters.	Square Meters.	Meters per Second.	Meters per Second.		
0.15	0.1229	4.392	4.374	0.996	A
0.20	0.1204	4.483	4.402	0.982	В
0.25	0.1194	4.521	4.422	0.978	C

A. Pressure at center = 0. Mean of negative pressures = -0.014 m.

B. Negative pressures throughout the section. Mean = -0.020 m.

C. """ "" " = -0.010 m.

The values of $\frac{U'}{U}$ instead of being greater than unity, are, on the contrary, a little less, notwithstanding the indication of negative pressures, which, it is true, are less marked than in the preceding cases. It is, however, difficult to draw definite conclusions from them.

DISTRIBUTION OF THE VELOCITIES AND OF THE PRESSURES IN THE PLANE OF THE ORIFICE.

Let us in the first place consider the simple case of a circular horizontal orifice. We have already seen that the water rises in the velocity-tube to a constant elevation, which is that of the water up-stream when the orifice of the tube is presented normally to the direction of flow; in other words, we have generally

$$z+P+\frac{u^2}{2g}=h.$$

In sections of the vein near the orifice, the preceding relation is fully satisfied only near the central portion, the first member of the equation becoming less than h in the neighborhood of the perimeter, owing to the obliquity of the filaments; but we may admit that if we can in this last portion of the vein direct the orifice of the tube normally to the velocities, the instrument will show here, as elsewhere, the constant head h. On the other hand, the plate of the instrument being placed in the vertical plane which divides the orifice symmetrically into two parts, the velocities, necessarily parallel to that plane, have no oblique component which could influence the reading in the pressure-tube by altering the value of P.

The foregoing equation, therefore, remains applicable, and enables us to deduce the value of the velocity u from the observed value of the pressure P. Dividing by h, we may write

$$\frac{z}{h} + \frac{P}{h} + \frac{u^2}{2gh} = 1.$$

In the plane of the horizontal orifice, taken as the plane of reference for the heights, z is 0, and we have, simply,

$$\frac{P}{h} + \frac{u^2}{2gh} = 1.$$

The calculation for the two orifices is as follows: The radius R not being the same, it is best to determine P and u for a series of homologous points at distances of $\frac{1}{10}R$, $\frac{2}{10}R$, $\frac{3}{10}R$ each side of the center. We thus obtain the results given in the table at the beginning of the next page.

It will be seen that there is, at the center, a minimum velocity about which the other velocities are symmetrically distributed.

CIRCULAR HORIZONTAL ORIFICES.

	from Value of		= 0.20 m. h = 0.974 m.		Diameter = 0.10 m. Mean Head, $h = 0.963$ m.			
Distance from Center.			Value o	of $\frac{u}{\sqrt{2gh}}$.	Value	of $\frac{P}{h}$.	Value of	$\frac{u}{\sqrt{2gh}}$.
	Above Center.	Below Center.	Above Center.	Below Center.	Above Center.	Below Center.	Above Center.	Below Center.
o (center)	0.1	 595	0.0	 536	0.4	 	0.6	 544
o.i.R	0.593	0.600	0.638	0.634	0.587	0.575	0.643	0.652
o.2R	0.580	0.587	0.648	0.642	0.577	0.576	0.650	0.651
0.3 <i>R</i>	0.578	0.572	0.650	0.654	0.576	0.564	0.651	0.660
0.4 <i>R</i>	0.554	0.574	0.667	0.652	0.566	0.567	0.659	0.658
o. 5 R	0.549	0.554	0.671	0.668	0.560	0.544	0.663	0.675
o.6 <i>R</i>	0.535	0.542	0.682	0.677	0.526	0.527	0.689	0.688
o.7 <i>R</i>	0.507	0.505	0.702	0.704				
o.8 <i>R</i>	0.522	0.492	0.691	0.713				

Three experiments were made at very small distances below the two circular orifices, viz., at 0.015 m., and 0.035 m. for the orifice 0.20 m. in diameter and 0.026 m. for that of 0.10 m. diameter. We will repeat the same calculation for these experiments, remarking that, owing to the verticality of the vein, it is proper to augment by the foregoing quantities the heads he referred to the plane of the orifice itself.

	D	iam. = 0	.20 m.	Values o	$\frac{u}{\sqrt{2gh}}$	-	Diam.=	o-10 m. V	/alues o	$f = \frac{u}{1 - gh}$
Distance from Center.	tbe O	Plane of rifice. 974 m.		below. 990 m.		below.	the O	Plane of rifice. 963 m.		6 m. ow. .996 m.
	Above Center.	Below Center.	Above Center.	Below Center.	Above Center.		Above Center.	Below Cen er.	Above Center	Below Center
										
o (center)	0.0	536	0.	725	0.8	338	0.6	544	0.	881
o.1 <i>R</i>	0.638	0.634	0.726	0.731	0.853	0.843	0.643	0.652	0.887	0.887
o.2R	0.648	0.642	0.724	0.737	0.864	0.848	0.650	0.651	0.888	
0.38	0.650	0.654	0.734	0.745	0.863	0.859	0 651	0.660	0.901	
o.4 <i>R</i>	0.667	0.652	0.743	0.759	0.904	0.876	0.659	0.658	0.921	0.927
o. 5 R	0.671	0.668	0 760	0.783	0.900	0.908	0.663	0.675	0.935	
o.6 <i>R</i>	0.682	0.677	0.798	0.820	0.948	0 9 2 9	0.689	0.688	0.964	
o.7 <i>K</i>	0.702	0.704	0.828	0.855	0.981	0.958			0.984	
o.8 <i>R</i>	0.691	0.713	0.898	0.914	1.000	1.000		1	1.000	

Examination of the foregoing table shows with what rapidity the velocities vary with the distance from the orifice. For the orifice 0.20 m. diameter the ratio $\frac{u}{\sqrt{2gh}}$ at the center of the vein is 0.84 at a distance of 0.35 m. from the orifice, while in the plane of the orifice itself it is but 0.64. For the orifice 0.10 m. in diameter, a distance 0.026 m. from the orifice, which, relatively to the diameter of the orifice, is greater than in the foregoing case, raised the same ratio from 0.64 to 0.88. At a distance R from the orifice we no longer find a trace of a minimum in the central region, and the velocities are completely equalized throughout the entire cross-section.

The velocities and the pressures vary no less rapidly upstream from the orifice. We may take account of this by plunginto the basin up-stream, as Lagerjelm did, a vertical tube open at both ends, in such a manner that its lower end is near the plane of the orifice. Lagerjelm's experiment, often quoted, is described in the following terms by Messrs Poncelet and Lesbros;

"M. Rudberg, the learned professor at the University of Stockholm, informed us at the time of his visit to Metz, in 1826, of the result of certain special experiments by M. Lagerjelm which seem to establish this fact,* and which he had occasion to repeat at Paris, in the presence of several members of the Royal Academy of Sciences, notably of M. Ampère. A tube, open at both ends, was plunged vertically above a circular orifice formed in the plane horizontal face of a relatively very large reservoir, in such a manner that its lower extremity

^{*}The fact that the excess of the interior pressure over that of the atmosphere appeared to differ but little from the pressure corresponding to the entire head of the liquid for all the points in the reservoir in the immediate vicinity of the orifice.

was at a little distance on one side or the other of the center of the orifice. Thereupon the liquid was seen to rise vertically in the tube nearly to the upper level of the reservoir, and to maintain practically that level so long as the lower extremity in question was not placed perceptibly below the inner edge of the orifice."

If this fact were exact, that is to say, if the pressure P on the center of the orifice were precisely equal to the head h, the velocity at that point would be zero, and this would be a contradiction of the results which we have just obtained. Desiring to ascertain the reason for this discrepancy, we repeated and completed the experiment of Lagerjelm upon our two orifices 0.20 m. and 0.10 m. in diameter, respectively. For this purpose we placed in the vertical line passing through the center of the orifice a glass tube opened at both ends and moved it up and down in that vertical so as to obtain the pressure not only on the plane of the orifice, but above it, up to the point where there is no longer an appreciable velocity. It was possible even to allow the tube to penetrate a little below the orifice and into the interior of the vein. The fact announced by Lagerjelm was not verified, and a material reduction of the level took place within the tube. A graduated scale attached to the tube and having its divisions visible through the liquid permitted an exact measurement of this reduction. we employed a tube 13 mm. in exterior diameter. When its lower extremity A touched the plane of the orifice, the reduction BC of the level, slightly surpassed one half of the head h, hence the pressure AC was less than h; in other words, sensibly less than the pressure obtained in our previous experi-This difference is easily explained, inasmuch as the mean pressure in the dead space AD, about which the liquid filaments, separated by the tube, are in motion, previous to their being reunited at D, is less than the pressure upon A. In order to eliminate this source of error, we substituted for the large tube AB a tube EF, tapered at the lower end, and terminating there in a very small orifice, I mm. in diameter. The deviation to which the filaments were subjected was thus rendered much less sensible, and in this way we again obtained the value of P already obtained by another process.*

We moved the two tubes vertically away from the plane of the orifice until the reduction of the level became inappreciable. This took place when the elevation of their lower extremity above the orifice was about equal to their diameter. The results are grouped in the two tables on pp. 30, 31. The first of these contains the immediate results of the experiment, that is to say, the pressure P measured in each point defined by its ordinate z above the orifice, and the ratios $\frac{P}{k-z}$ of each pressure to the corresponding head. The second table contains a resumé of the figures given in the first, grouping together those values of $\frac{P}{k-z}$ which correspond, for the two orifices, to homologous points, that is to say, to points whose ordinate z has the same ratio to the diameter z of the orifice.

An examination of the second table shows in the first place that the results are perfectly in accord for the two orifices, the values of $\frac{P}{h-z}$ being equal for a given value of $\frac{z}{2R}$, and this is the case also with the large tube as well as with the tapering one. The discrepancy between their indications increases as the tube is plunged deeper into the liquid; in other words, as the velocities increase.

^{*}The reduction of the level in the vertical tube increased notably when one of the eddies which we have mentioned was produced.

		Fapered Tube	••	, c	ylindrical Tul	oe.
Lower End of Tube above Plane of Orifice.	Head.	Pressure in the Tube.	Ratio. $\frac{P}{h-z}.$	Head.	Pressure in the Tube.	Ratio. $\frac{P}{h-z}$.
Millimeters.		Millimeters.			Millimeters	
		(i) Orifici	, , , , , , , , , , , , , , , , , , ,	IAMETER.	1	
+ 200 1	1000	(1) ORIFICE	I.000		! 756 j	0.999
+ 160	1006	840	0.993	957 10 2 0	850	0.988
+ 140	995	845	0.988	997	843	0.984
+ 120	1005	866	0.979	1005	861	0.973
+ 100	1001	871	0.967	998	861	0.959
+ 80	1005	868	0.938	1003	854	0.925
+ 70	1000	863	0.928	1001	843	0.906
+ 60	995	838	0.896	997	821	0.876
+ 50	999	828	0.872	998	792	0.836
+ 45	1001	814	0.851	1000	781	0.818
+ 40	990	800	0.842	997	757	0.791
+ 35 + 30	1008 1007	787 769	0.809 0.787	1000	743	0.769
+ 25	996	740	0.762		719 684	0.74I 0.702
+ 20	996	718	0.736	999	655	0.667
+ 15	1000	686	0.696	1000	610	0.619
+ 35 + 30 + 25 + 20 + 15 + 10 + 5	990	653	0.666	1003	573	0.577
+ 5	980	619	0.635	996	528	0.533
Ö	999	587	0.588	1006	479	0.476
- 5	998	551	0.549	1002	450	0.447
- 10	1000	503	0.498	998	393	0.390
- 15	1002	481	0.473	1001	355	0.349
— 20	1002	430	0.421	1000	305	0.299
- 25	1008	403	0.390			
- 30	995	340	0.332			
— 35	985	316	0.310	• • • •		
- 40	1002	280	0.269	• • • • •	• • • •	• • • •
- 45	955	250	0.250			• • • •
- 50	1005	210	0.199			• • • •
- 55 - 60	998 1003	197 155	0.187		• • • • •	• • • •
- 6 ₅	1003	115	0.146 0.108		•••	• • • •
-5 1	-	2) ORIFICE		IAMETER.	••• 1	
+ 100						
+ 90	10 22 1040	922	1.000	1034	933	0.999
T %	1046	948	0.998	1037	943	0.996
+ 70	1040	938 957	0.99 2 0.987	1034 1036	947	0.993
+ 60	1030	937	0.976	1033	955	0.989
	1038	954	0.966	1035	950	0.976
+ 50 + 40	1032	935	0.943	1033	947 926	0.960 0.93 3
+ 30	1035	907	0.902	1033	880	0.877
+ 20	1031	849	0.840	1035	801	0.789
+ 15	1032	802	0.789	1034	743	0.729
+ 10	1031	750	0.735	1034	680	0.664
+ 5	1031	690	0.673	1035	602	0.584
+ 2	1032	631	0.613	1036	523	0.506
0	1032	608	0.589	1037	496	0.478
- 2	1032	568	0.549		I	

RÉSUMÉ FOR THE TWO ORIFICES.

Ratio of Height z to		Value of $\frac{P}{h-z}$.						
Diameter 2R of Orifice.	' Tapere	d Tube.	Cylindric	al Tube.				
$\frac{1}{2R}$.	Diam. = 0.20 m.	Diam. = 0.10 m.	Djam, = 0.20 m.	Diam. = 0,10 m				
+ 1.000	1,000	1.000	0.999	0.999				
- 0.900		0.998		0.996				
- 0.800	0.993	0.992	0.988	0.993				
- 0.700	0.988	0.987	0.984	0.989				
+ 0.600	0.979	0.976	0.973	0.976				
÷ 0.500	0.967	0.966	0.959	0.960				
+ 0.400	0.938	0.943	0.925	0.933				
+ 0.350	0.928		0.906					
+ 0.300	0.896	0.903	0.876	0.877				
+ 0.250	0.872		0.836					
+ 0.225	0.851		0.818	****				
+ 0,200	0.842	0.840	0.791	0.789				
÷ 0.175	0.809		0.769					
+ 0.150	0.787	0.789	0.741	0.729				
0.125	0.762		0.702					
0.100	0.736	0.735	0.667	0.664				
0.075	0.696		0.619					
0.050	0.666	0.673	0.577	0.584				
0.025	0.635		0.533					
0.020		0.613		0.506				
' o	0.588	0.589	0.476	0.478				
- 0,020		0.549	• • • • •					
- 0.025	0.549		0.447	••••				
- 0.050	0.498		0.390	••••				
- 0.075	0.473		0.349					
- 0.100	0.421	••••	0.299	• • • •				
- O.125	0.390			••••				
- 0.150	0.332			••••				
- 0.175	0.310	• • • •						
— 0. 200	0.269			•••				
- O.225	0.250							
- 0.250	0.199			• • • •				
- 0.275	0.187							
- 0.300	0.146		,					
- 0.325	0.108			· · · · ·				

Considering in particular the very center of the orifice, where z equals o, we have

Values of $\frac{P}{h}$.

Tapered Tube. Large Tube.

Orifice 0.20 m. in diameter...0.588 0.476

" 0.10 m." "0.589 0.478

When measuring the pressures we found:

Orifice 0.20 m. in diameter
$$\frac{P}{h} = 0.595$$

" 0.10 m. " $\frac{P}{h} = 0.585$

The pressures indicated by the large tube are too small, as we have already indicated. The four other values of $\frac{P}{\hbar}$ are perfectly in accord, and give to that ratio the mean value 0.59. We thus have, for the corresponding velocity, $u=0.64 \sqrt{2g\hbar}$.

The experiment was repeated with a tapering tube upon two smaller orifices 0.07 m. and 0.05 m. diameter. The reduction of level, as in the case of the two orifices 0.20 m. and 0.10 m. diameter, first became perceptible after rising to a height nearly equal to the diameter. When the head was made to vary between 0.50 m. and 0.90 m., we found that the ratio $\frac{P}{k}$ was constant. Its value was 0.575 for the orifice of 0.07 m. and 0.558 for that of 0.05 m. It thus appeared to diminish slightly with the diameter.

It is not impossible that this diminution may be explained, in part at least, by the presence of the tube, the effect of which becomes more sensible with a small orifice.

The experiment was, however, extremely delicate. The least displacement of the extremity of the tube caused a notable variation of the ratio $\frac{P}{\hbar}$.

The tapering tube having penetrated a little below the plane of the orifice of 0.20 m. diameter, we have, for that region, certain values comparable to those obtained by a direct measurement of pressures.

The accord between the two methods of experimentation is as satisfactory as could be wished.

	Values of $\frac{P}{h-z}$ obtained.			
<u>-</u> 2\overline{R}*	With the Tapering Tube.	At the Time of Measuring the Velocities.		
0	0.588	0.505		
- 0.025				
– 0.050				
- 0.075		0.475		
- O.100				
— 0.175	•	0.207		
- 0,275				
- 0.205		0.153		
- 0.300				
— 0.325				
- 0.425		0.029		

Passing to the vertical orifices, the head being no longer constant throughout the surface of the orifice, the discussion of the results obtained with the Pitot tube leads to sensibly different results.

Let us, in the first place, perform the calculation of $\frac{u}{\sqrt{2g/k}}$ for the two orifices with complete contraction, giving to z the values \pm 0.1A, \pm 0.2A... in which A denotes half the height of the opening, say 0.10 m. The sign + corresponds to points situated above the center, and the sign - to those situated below it. (See table on next page.)

There is still, in the plane of the orifice, a minimum velocity

 $\frac{u}{\sqrt{2gh}}$, the value of which is approximately $u=0.64 \sqrt{2gh}$ for a square orifice, and $u=0.62 \sqrt{2gh}$ for a circular orifice. This minimum is no longer at the center, but a little above it. It disappears rapidly as the distance from the plane of the orifice increases. At 0.08 m. or 0.09 m. from that plane it is hardly perceptible. At 0.10 m. and 0.12 m. it disappears, and the

		VERTICAL	SQUARE Mean H	ORIFICE ead, $h =$	Square Orifice 0.20 m. Square. Mean Head, $k=0.953$ m.	UARE.		۸	ERTICAL N	CIRCULAR ORIFICE 0.20 M Mean Head, $k=0.990$ m.	Orifice $d, k = 0$	VERTICAL CIRCULAR ORIFICE 0.20 M. DIAMETER. Mean Head, $k=0.990\mathrm{m}$.	AMETER.	
Ordinate.	Ratio.	In the the (In the Plane of the Orifice,	0.04 III.	m. from the Orifice.	o.o8 m. Ori	o.08 m. from the Orifice.	Ratio.	In the I the O	In the Plane of the Orifice.	o.os m. Ori	o.05 m. from the Orifice.	o.09 m. from the Orifice.	rom the ice.
М	« <i>4</i>	212	u V2gh	م ام	u V2gh	0,14	n V2gh	n ~	م احو	u Vagh	مانع	u V 2g h	ماء	u Vagh
- 0.84	- 0.084	0.407	0.822	0.016	1.033	0.016	1.033	- 0.081	0.343	0.859	:	:	0.008	1.036
- o.7 <i>A</i>	- 0.073	0.514	0.750	0.047	1.013	0.031	1.021	1/0.0	0.515	0.745	0 077	266 o	0 023	1.025
- 0.6A	- 0.063	0.561	0.709	0.105	0.978	0.048	1.007	190.0 —	0.549	0.716	0.142	0.958	0.011	1.020
- 0.5A	-0.052	0.598	0.676	0.157	0.946	0.082	0.985	- 0.05I	0.590	6.679	0.172	0.937	0.042	1.004
- 0.44	- 0.042	0.602	0.662	0.194	0.920	0.092	0.975	0.040	0.588	0.673	0,205	0.913	0.046	0.997
- o.3A	- 0.031	0.603	0.654	0.257	0.880	0.105	0.963	- 0.030	909.0	0.650	0.242	0.888	0.051	0.990
- 0.2A	- 0.021	0.604	0.645	0.295	0.852	611.0	0.949	0.020	0.611	0.639	0.248	0.879	0.081	696.0
- 0.1A	- 0.010	0.609	0.634	0.305	0.842	0.112	0.948	0.010	0.616	0.628	0.254	0.869	0.079	996.0
o (center).	0	0.588	149.0	0,308	0.831	911.0	0.941	0	0,602	0.631	0.252	0.864	0.079	0,960
+ 0.1A	+ 0.010	0.577	0.641	0.310	0.825	0.111	0.938	+ 0.010	0.602	0.623	0.241	0.865	0.065	296.0
+0.24	+ 0.021	0.565	0.642	0.299	0.826	0.097	0.938	+ 0.020	0.590	0.624	0.230	0.866	0.054	0.962
+ 0.34	+ 0.031	0.561	0.638	0.278	0.831	0.088	0.938	+ 0.030	0.582	0.622	0.204	0.874	0.047	0.960
+ 0.44	+ 0.042	0.550	0.638	0.243	0.845	0.070	0.943	+ 0.040	0.570	0.625	0.174	0.887	0.033	0.962
+ 0 54	+0.052	0.533	0.644	0.217	0.854	0.058	0.943	+ 0.051	0.548	0.633	0.143	0.899	0.007	0.971
+ 0.64	+0.063	0.493	999.0	0.161	0.882	0.038	0.948	+ 0.061	0.529	0.640	0.062	0.936	0	696.0
+ 0.74	+0.073	0.462	0.680	0.093	0.913	0.014	0.955	+ 0.071	0.489	0.664	0.027	0.949	0	0.964
+ 0.84	+ 0.084	0.404	0.715	0.021	0.946	0.007	0.951	+ 0.081	0.456	0.681	:	:	:	:

velocities increase continuously in crossing the vein from above to below.

It now remains only to study the distribution of the velocities of the rectangular orifice without lateral contraction.

		VERTI	1	LATERAL C	SIFICE 0.20 CONTRACTION $h = 0.949$		VITHOUT
Ordinate.	Ratio.		Plane of Orifice.	0.05 m. f Orif	rom the fice.	o.10 m. f Orif	
2	$\frac{z}{h}$	$\frac{P}{h}$	$\frac{u}{\sqrt{2gh}}$	$\frac{P}{h}$	$\frac{u}{\sqrt{2gh}}$	$\frac{P}{h}$	$\frac{u}{\sqrt{2gh}}$
- 0.8A	- 0.084 - 0.074 - 0.063 - 0.053 - 0.042 - 0.032 - 0.021 - 0.011	0.290 0.368 0.466 0.491 0.514 0.528 0.528 0.528 0.528	0.895 0.844 0.778 0.754 0.731 0.714 0.707 0.699 0.692 0.690	0.036 0.090 0.148 0.185 0.219 0.243 0.244 0.246	1.022 0.990 0.954 0.929 0.905 0.885 0.879 0.872	0 0 0 0.013 0.048 0.042 0.050 0.041	1.038 1.033 1.028 1.018 0.995 0.993 0.984 0.982
+ 0.2 <i>A</i>	+ 0.021 + 0.032 + 0.042 + 0.053 + 0.063 + 0.074 + 0.084	0.514 0.499 0.470 0.431 0.381 0.309	0.687 0.689 0.703 0.723 0.750 0.791	0.224 0.191 0.144 0.092 0.040	0.873 0.885 0.906 0.928 0.951 0.965	0.021 0 0 0 0	0.982 0.986 0.985 0.980 0.978

The minimum of the velocities, which, in the orifices with complete contraction, was only from 0.62 to 0.64 $\sqrt{2gh}$, here increases to 0.69 $\sqrt{2gh}$, owing to the suppression of the lateral contraction. It is still perceptible at 0.05 m. from the plane of the orifice, but it disappears at 0.10 m.

RÉSUMÉ OF THE DISCUSSION OF THE EXPERIMENTS.

We shall now endeavor to review in a few words the various results thus far obtained.

In the first place, we remark that in our experiments we

have not observed the generally admitted existence of a contracted vein, if that expression is to be understood in the sense of a *minimum section*. In reality, the vein, after being rapidly contracted upon passing the orifice always continues to contract, much more slowly but constantly, as its distance from the orifice increases.

There is no doubt as to the absence of the minimum of section for the veins issuing from our circular and rectangular orifices. As to the square orifice of 0.20 m. there may be some doubt. Messrs. Poncelet and Lesbros obtained in 1828, for the successive sections of the vein, the following figures:

Distance of Section from the Orifice.	Area of the Section.	Coefficient of Contraction.
\boldsymbol{x}	ω̈	$\mu = \frac{\omega}{s}$
0.064 m.	0,025205 m. ²	0.630
0.110 ''	0.024512 "	0.613
0.150 ''	0.023746 "	0.594
0.200 "	0.023301 "	0 583
0.250 "	0.023204 "	0.580
0.300 ''	0.022506 "	0.563
0.350 "	0.023948 "	0.599
0.400 ''	0.024362 "	0.609
0.500 "	0.024427 "	0.611

The value 0.022506 m.² at a distance of 0.30 m., is evidently not exact. M. Lesbros has substituted for it, in consequence of his verifications of 1834, the figure 0.023062 m.² A minimum exists, indeed, in the series, and corresponds to the distance x = 0.30 m. Between the orifice and this minimum section, all the values of ω are a little less than that which we ourselves have obtained. The two series are not entirely comparable and the sections do not exactly correspond. The head being about 1.70 m. in the experiments of Messrs. Poncelet and Lesbros, the vein was more elongated than in ours, where the head was only 0.95.

At distances greater than 0.30 m. the section becomes very difficult to measure. The vein, it is true, appears to expand, but, at the same time, it becomes hollow, forming four very sharp edges, and it is indeed uncertain whether the area of the section is really increased.

Operating very carefully with our extreme section at 0.35 m. we arrived at two somewhat different values, 0.0226 m.², and 0.0238 m.², both less than those of the foregoing table.

However this may be, the complex form of the vein and its instability render it ill adapted to a theoretical research such as that with which we are occupied.

Examining the distribution of the velocities in the plane of the orifice itself, we find that there exists a minimum. For circular orifices in a horizontal plane this minimum is, of course, at the center. In the case of vertical orifices it is found a little above the center of gravity of the section. We have obtained as the value of this minimum 0.62 to 0.64 $\sqrt{2g/h}$ for orifices with complete contraction and 0.69 $\sqrt{2g/h}$ for the rectangular orifice with the lateral contraction suppressed.

As we increase the distance from the plane of the orifice, the velocities are rapidly equalized in the vein issuing from a circular orifice, and soon become uniform throughout the entire extent of the transverse section.

This is not the case, however, with orifices in a vertical plane. The minimum existing in the central region soon disappears, but the velocities in the lower part of the vein remain greater than those in the upper part.

The vein diminishes in cross-section as the distance from the orifice increases; the section diminishing and the velocity U increasing by reason of the acceleration due to the fall. If we put $U = K\sqrt{2g(k+y)}$, y representing the fall of the center of the section below that of the orifice, the coefficient K

is slightly less than unity in the case of the horizontal orifice. On the contrary, it exceeds unity for the vertical orifice. In both cases it appears to increase up to a certain distance from the orifice, where it attains a maximum and then diminishes progressively. This maximum would be only a few thousandths less than unity for horizontal circular orifices, but it might attain to 1.03 or 1.04 for vertical orifices, varying with their form and with the head.

The determination of K is very delicate, since it depends upon the measurement of the transverse section, an operation which is rendered difficult by the continual movement in the liquid vein.

With a circular orifice 0.20 m. in diameter, we must, in order to obtain the area of the section within 0.01 of its value, be able to measure its mean diameter with an error not exceeding $\frac{3}{4}$ of a millimeter. The great regularity of the vein permits this degree of approximation, and by measuring it by means of 24 convergent points, we obtain the maximum value of K = 1.011.

This measurement is much more difficult when the orifice is square, owing to the singularly complex form of that section. In 1828 M. Lesbros had obtained K=1.064, an exaggerated value, which he expected, after discussing all of the results, to be able to reduce to 1.024. Verification afterward made in 1834 gave 1.038 under a head of 1.71 m., and we ourselves obtained the value K=1.027 with a head of 0.95 m. These differences result from the causes of error inherent in the operation.

The rectangular orifice without lateral contraction appeared at first very favorable to the determination of K, the measurement of the section being reduced to that of the thickness of the nappe. Unfortunately, however, that "nappe oscillates in-

cessantly in a manner even more pronounced than that of veins in complete contraction. We have already obtained K=1.039 at 0.30 m. from the orifice, a value probably a little too great.

But, however great the difficulty of an exact determination of K, it is incontestable that that coefficient is greater than unity, with vertical orifices. This conclusion appears at first in contradiction with the fundamental principles of hydraulics.

Concerning a single filament, or a pencil of filaments having equal velocities, we find indeed for K values a little less than unity owing to the internal friction of the liquid. This case is nearly realized in the circular horizontal orifice. The difference, $\mathbf{I} - K$, is always very small, the effect of friction being scarcely appreciable. It would probably be the same for a vertical orifice if the head were very great relatively to its dimensions, so as to equalize the initial velocities, but the question is much more complex when the head is not very great. The velocities in the different filaments are then unequal. Their directions depend upon the configuration of the contour of the orifice, and the formula $U = \sqrt{2g(h+y)}$ is no longer rigorously exact from a theoretical point of view.

In certain portions of the liquid vein the instrument employed gives pressures less than that of the atmosphere. The comparison of these results with the discharges resulting from the direct calibration have shown that the negative pressures were due, at least so far as concerns the circular horizontal orifices, to the suction exerted by the water in motion over the small lateral orifice of the instrument. It is almost impossible, when the velocities are considerable, to eliminate this cause of error. We saw, in repeating the experiment of Lagerjelm, at what point it affected the indications of the vertical tube 13 mm. in external diameter lowered to the center of the

orifice. Although much reduced, it is certainly not completely eliminated by the tapering of the tube. It is not impossible that, for certain special veins, subjected, like that of the square orifice, to considerable deformation, the divergence of certain filaments gives rise to pressures slightly less than that of the atmosphere; but, as we have just said, the experimental demonstration of this fact is very difficult, since we cannot completely protect the instrument used against the perturbing action exerted by neighboring filaments, when these are moving with great velocity.

The experiments which we have described were made, under our direction, by M. Hégly, conducteur des Ponts et Chaussées, whose services were placed at our disposal for the study of the flow over weirs, which we have followed for several years with the assistance of the Minister of Public Works. The knowledge and intelligence of this devoted collaborator have been of the greatest service to us in these delicate researches, which required a high degree of care and precision.

Value of

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.

The millimeter is taken as unity. The figure inscribed in the column a (position of the points taken) indicates: 1. For vertical orifices, the ordinate z of the point under consideration referred to a horizontal plane passing through the center of the orifice; 2, for horizontal orifices, the distance measured horizontally from the point under consideration to the up-stream edge of the orifice.

The indication placed at the head of each experiment, and showing the distance of the section from the plane of the orifice, refers to the position of the orifice of the pressure-tube, that of the velocity-tube being o.o. m. further upstream.

Level in the Tube.

Pressure.

Position of

i 8 i

Head on Center

of Orifice,

Tome.	or Ormee,	Of Velocities.	Of Pressures.		A - B.
а	h	A	В	P=B-z.	
	VERTI	CAI. SQUARE	ORIFICE 0.20	м.	
Octob		r, 1890. Mean T			° C.
(I) In	the Plane o	f the Orifice.	. Mean Hea	d, $h = 0.95$	3 m.
- 81	952	800	302	383	498
 78	952	820	320	398	500
- 7 5	952	855	390	465	465
 7 0	956	865	420	490	445
- 65	953	895	460	525	435
— 60	954	905	475	535	430
 55	950	922	510	565	412
 50	956	929	520	570	409
 45	952	937	5 2 5	570	412
- 40	952	940	534	574	406
— 35	955	942	538	573	404
- 30	953	945	545	575	400
— 2 5	952	947	554	579	393
20	952	948	556	576	392
- 15	95 I	950	558	573	392
- IO	953	953	570	58 o	383
— 5	951	951	561	566	390
0	952	952	560	56o	392
+ 5	952	952	563	558	389
+ 10	952	952	560	550	392
+ 15	953	951	562	547	389
+ 20	953	951	558	538	393
+ 25	954	949	562	537	387
+ 30	954	950	565	535	385
+35	953	947	562	527	385
+ 40	953	946	564	524	382
+ 45	952	940	558	513	382
+ 50	953	938	558	508	380
+ 55	952	930	547	492	383
+ 60	953	922	530	470	392
+ 65	953	903	515	450	388

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Point.	Head on Center of Orifice.	Level in	the Tube.	Pressure.	Value of
a a	h	Of Velocities	Of Pressures.	P = B - z.	A-B.
			J		
(2)	0.04 m. belov	the Orifice.	Mean Head	h = 0.953 1	n.
— 80	953	951	- 65	15	1016
— 75	951	947	– 50	25	997
- 7º	953	950	- 25	45	975
- 65	950	945	+ 10	75	935
– 60	952	948	 40	100	908
- 55	953	949	+ 85	140	864
— 50	952	948	+ 100	150	848
		951	+ 140	185	811
- 45	954		+ 145	185	804
- 40	952	949	+ 185	220	763
— 35	950	948			738
- 30	953	953	+ 215	245 267	
— 25	953	952	+ 242		710
— 20	953	953	+ 261	281	692
— 15	952	952	+ 270	285	682
— 10	953	953	+ 278	288	675
– 5	953	953	+ 290	295	663
0	952	952	+ 294	294	658
+ 5	953	953	+ 298	293	655
+ 10	954	954	+ 305	295	649
+ 15	953	953 \	+ 300	285	653
+ 20	955	955	+ 305	285	650
+ 25	953	952	+ 295	270	657
÷ 30	953	952	+ 295	265	657
+35	955	952	+ 295	260	657
+ 40	953	950	+ 272	232	678
+ 45	955	951	+ 259	214	692
+ 50	952	946	+ 257	207	689
+ 55	952	943	+ 217	162	726
+ 60	1 .	943	+ 213	153	730
	954	943 94I	+ 170	105	77I
+ 65	953		+ 159	89	776
+ 70	953	935	+ 121		819
+ 75	952	940	1 1	46	
+ 80	953	950	- 100	20 8	850
+ 82	953	870	+ 90		780
	s) 0.08 m. belo	w the Orifice		d, $h = 0.954$	•
— 82	953	• • •	— 71	II	
— 81	953	940	– 65	16	1005
— 78	955	945	65	13	1010
- 74	954	950	- 40	34	990
- 70	955	945	– 40	30	985
- 66	952	950	– 18	48	968
- 59	955	942	— 13	46	955
- 5í	952	950	+ 28	79	922
- 44	955	943	+ 30	74	913
- 36	953	950	+ 65	101	885
– 29	955	955	+ 70	99	885

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

	1112 11112			1	
Position of Point,	Head on Center of Orifice.	Level in	the Tube.	Pressure.	Value of
а	h	Of Velocities.	Of Pressures.	P=B-z.	A - B.
- 21 - 14 - 6 + 1 + 9 + 16 + 24 + 31 + 38 + 45 + 53 + 60 + 64 + 72 + 76 + 78	953 955 956 956 950 950 956 955 953 954 955 952 954 955	950 955 951 956 951 950 951 958 951 957 950 950 944 936	+ 94 + 95 + 99 + 113 + 116 + 114 + 107 + 108 + 104 + 96 + 94 + 78 + 88 + 90 + 88	115 109 105 112 107 98 88 83 69 63 51 36 30 10	856 860 852 843 835 836 836 844 850 856 872 856
(4) 0.12 m. belo	w the Orifice	. Mean Hea	d, $h = 0.951$	
- 88 - 85 - 78 - 76 - 76 - 59 - 36 - 29 - 16 - 19 - 19	950 952 950 952 951 950 952 950 954 950 950 950 950 950 950 950 950	850 930 940 946 946 949 949 952 950 951 952 950 950 952 950 953 949 952 950 953 949 952 950 953 949 954 950 953 949 952	- 84 - 82 - 97 - 78 - 76 - 56 - 25 - 10 - 16 + 16 + 28 + 45 + 66 + 67 + 65 + 68 + 68	+ 4 + 3 - 10 - 1 - 4 - 6 + 3 + 11 + 19 + 26 + 27 + 32 + 30 + 34 + 31 + 29 + 28 + 29 + 21 + 9 + 10 - 8 - 9	934 1012 1031 1025 1024 1025 1012 1008 990 979 960 953 941 934 922 915 901 889 892 884 887 878 878 878 868

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

OKES IN	THE INTE		TIE EIGUIL	VEINS.	Communica.
Position of Point.	Head on Center of Orifice.	Level in	the Tube,	Pressure.	Value of
a	h	Of Velocities.	Of Pressures.	P = B - z	A-B,
					
(5)) 0.16 m. belo	w the Orifice.	Mean Hea	d, $h = 0.952$	•
- 97	952	•••	— 97	0	• • •
– 96	952	800	- 92	+ 4	892
- 93	952	929	— 85	+ 8	1014
89	952	932	9o	— I	1022
- 85 - 81	950	941	8 ₇	- 2	1028
	951	945	- 84 - 70	- 3 + 4	1029
- 74 - 66	951	950	— 70 — 70		1020
- 59	954 952	952 952	- 55	- 1 + 4	1022 1007
51	952	952	- 5ī	0	1003
44	953	952	- 35	+ 9	987
— 36	950	951	- 30	<u> </u>	981
- 29	952	952	- 11	<u>+</u> 18	963
- 2ī	952	952	 9	+ 12	96 1
— 14	953	953	– 2	+ 12	955
- 6	953	953	+ 2	+ 8	951
+ 1	950	950	+ 13	+ 12	937
+ 9	950	950	+ 18	+ 9	932
+ 16	951	951	+ 25	+ 9	926
+ 24	950	950	+ 35	+ 11	915
+ 31 + 38	952 952	952 952	+ 43 + 46	$+ \frac{12}{8}$	909 906
+ 45	952	952 950	+ 55	+ 10	895
+ 53	952	950	+ 55	+ 10 + 2	895
+ 60	950	947	+ 64	+ 4	883
+ 64	952	948	+ 70	+ 6	878
+ 68	952	942	+ 65	- 3	877
+ 72	952	937	+ 71	- ī	866
+ 75	950	900	+ 62	- 13	838
+ 76	954	840	+ 71	— 5	769
+ 77	l 953 l		+ 68	- 9 1	• • •
_ • •	0.20 m. belo			d, $h = 0.953$	•
— 108 — 107	953 953	760	- 100 - 110	- 2	
- 107 - 105	955	820	- 100 - 94	+ 7 + 11	860
- 103	953	900	- 90	+ 13	914
- 100	952	908	- 85	+ 15	990 993
- 95	950	925	- 92	+ 3	1017
- 88	951	941	- 8s	+ 3	1026
— 8r	953	948	- 91	- 10	1039
- 73	953	950	- 86	- 13	1036
66	952	951	– 85	- 19	1036
— 58	953	952	- 65	- 7	1017
- 5I	954	954	— ₅₅	- 4	1009
- 43 - 26	952	952	- 40	+ 3	992
 36	953	953	- 38	- 2	991

DETERMINATION OF THE VELOCITIES AND OF THE PRESSURES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

			· · · · · · · · · · · · · · · · · · ·		, ,
Position of	Position of Head on Center Point.		Level in the Tube.		Value of
u	h	Of Velocities.	Of Pressures.	P=B-z.	A - B.
- 28 - 21 - 13 - 6 + 2 + 9 + 17 + 24 + 31 + 39 + 46 + 54 + 61 + 69 + 75 + 76 + 77	953 953 953 953 951 953 953 954 953 953 953 952 953 953 953 953 953	953 953 953 951 953 953 954 952 951 949 947 943 943 925 910 780	- 28 - 22 - 12 - 9 + 2 - 5 + 16 + 18 + 22 + 26 + 38 + 40 + 52 + 55 + 62 + 63 + 65 + 65	0 — I — I — 3 — 0 — 4 — 1 — 6 — 9 — 13 — 8 — 14 — 9 — 14 — 10 — 12 — 11 — 12	981 975 965 962 949 948 937 936 930 925 913 909 895 888 863 847 715
(7)	0.25 m. below	the Orifice.	Mean Head	h = 0.953	m.
- 126 - 125 - 118 - 111 - 103 - 95 - 88 - 81 - 73 - 66 - 58 - 51 - 43 - 36 - 28 - 21 - 13 - 6 + 2 + 9 + 17 + 24 + 31 + 39 + 46 + 61	953 952 953 953 952 953 953 955 953 955 953 953 953 953 953	947 947 947 947 947 947 950 646 951 951 952 952 953 953 953 954 954 954 955 952 953 955	- 132 - 134 - 136 - 136 - 132 - 124 - 124 - 125 - 110 - 103 - 85 - 80 - 70 - 68 - 56 - 50 - 42 - 38 - 26 - 18 - 12 - 9 + 3 + 12 + 20 + 33 + 41	- 6 - 9 - 18 - 25 - 29 - 36 - 44 - 37 - 37 - 27 - 29 - 32 - 28 - 29 - 32 - 28 - 29 - 32 - 28 - 29 - 32 - 28 - 29 - 32 - 28 - 29 - 32 - 28 - 27 - 29 - 32 - 28 - 27 - 29 - 32 - 28 - 27 - 29 - 32 - 28 - 27 - 29 - 32 - 28 - 27 - 29 - 32 - 28 - 27 - 29 - 32 - 29 - 32 - 29 - 32	874 991 1036 1067 1066 1071 1072 1060 1049 1031 1021 1020 1008 1003 995 991 980 972 964 964 949 941 930 930 930

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of	Head on Center	Level in	the Tube.		
Point.	of Orifice.			Pressure.	Value of
a	h	Of Velocities.	Of Pressures.	P = B - z	A - B.
+ 69 + 75	953 954	946 920	+ 56 + 62	- 13 - 13	890 858
+ 77 + 78	953	88o	+ 65	- 12	815
十 78	953	• • • •	十 70	- 8	• • • •
	0.30 m. belo	w the Orifice.		d, $h = 0.953$	•
 160	953	• • •	- 140	+ 20	• • •
— 156	953	650	– 160	— 1	810
 148	951	732	160	- 12	892
141	953	815	- 153	- 12	968
133	954	859	- 158	— 25	1017
126	953	900	- 156	<u> </u>	1056
- 118	952	918	— 158	- 40	1076
- 111	953	935	- 152	— 4I	1087
- 103	953	937	- 150	- 47	1087
- 95	953	944	- 135	- 40	1079
- 88	953	947	— 133	45	1080
– 81	955	949	- 120	— 39	1069
- 73	953	950	112	– 39	1062
- 66	954	948	 98	- 32	1046
- 58	950	948	91	- 33	1039
 51	954	952	- 90	- 39	1042
44	954	954	— 77	- 33	1031
 36	952	95 2	– 68	— 32	1020
- 29	953	953	– 60	- 31	1013
- 21	952	952	- 48	- 27	1000
- I4	953	953	- 40	- 26	993
- 6	952	952	- 38	— 32 I	990
+ 2	950	950	- 27	- 29	977
+ 9	954	954	26	— 35	980
十 17	953	953	20	37	973
+ 24	952	952	- 13	- 37	965
+ 31	953	952	– 8	— 39	960
+ 39	952	95 2	_ I	– 40	953
+ 46	952	952	+ 4	- 42	948
+ 54	954	950	+ 17	- 37	933
+ 61	954	950	+ 22	— 39	928
+ 69	952	942	+ 42	- 27	900
十 75	953	930	+ 50	— 25	880
+ 2 + 9 + 17 + 24 + 31 + 39 + 46 + 61 + 69 + 75 + 80	953	780	+ 66	- 12	714
+ 80	953	•••	+ 66	- 14	• • •
	VERTICAL CI	RCULAR ORIF	ICE 0.20 M. I	DIAMETER.	

VERTICAL CIRCULAR ORIFICE 0.20 M. DIAMETER. June, 1890. Mean Temperature of the Water, 17° C.

	(I) I	n the Plane o	f the Orifice.	Mean Head	h, h = 0.952 m.	
-	76	952	831	340	416	491
-	71	952	856	387	458	460
-	66	953	885	435	501	45Ó
-	61	954	895	458	519	437

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued,

Position of	Head on Center	Level in	the Tube.	Pressure,	77.1
Point.	of Orifice.	0477.1	047		Value of $A - B$.
a	h	Of Velocities. A	Of Pressures.	P = B - z	
- 56	952	913	484	540	429
- 51	950	921	494	545	427
– 46	950	932	507	553	425
- 41	952	939	517	558	422
— 36	952	946	531	567	415
— 31	952	946	534	565	412
- 2 6	951	950	538	564	412
— 21	953	952	55 I	572	401
– 16	950	9 51	557	573	394
– 11	952	952	5 ⁶ 7	57 ⁸ .	385
– 6	952	952	56 1	567	391
<u> </u>	954	954	573	574	381
+ 4	952	952	573	569	379
+ 9	952	953	578	569	375
+ 14	951	951	576	562	375
+ 19	954	953	578	559	375
+ 24	951	950	573	549	377
+ 29	953	951	571	542	380
+ 34	951	949	570	536	379
+ 39	952	948	566	527	382
+ 44	952	941	563	519	378
+ 49	951	936	557	508	379
+ 54	952	928	550	496	378
+ 59	954	926	543	484	383
+ 64	952	910	526	462	384
+ 69	950	898	502	433	396
+ 74	951	878	491	417	387
+ 79	952	848	481	402	367
(2)	n the Plane o	f the Orifice.	Mean Head	l, h = 0.990	m.
— 81	990	828	238	319	590
— 76	990	876	348	424	528
- 7 <u>r</u>	990	903	443	514	460
- 66	990	919	428	494	491
- 61	992	937	482	543	455
– 56	992	953	494	550	459
- 51	989	958	532	583	426
- 46	992	966	542	588	424
- 4 <u>1</u>	991	974	541	582	433
— 36	990	978	547	583	431
— 31	990	983	574	605	409
- 26	987	983	562	588	421
- 21	989	987	583	604	404
- 16	988	987	592	608	395
	990	989	601	612	388
- II			595	601	397
- 6	992	992		1	
- 6 - 1	989	988	594	595	394
- 6				1	

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Poiot.	Head on Center of Orifice.	Level ia	the Tube.	Pressure.	Value of
<i>a</i>	h	Of Velocities.	Of Pressures. \mathcal{B}	P = B - z	A - B.
					-0-
+ 14	992	993	604	590	389
+ 19	990	989	604	585	385
+ 24	990	990	604	580	386
+ 29	989	987	605	576	382
+ 34	j 990	988	610	576	378
+ 39	991	984	607	568	377
+ ++	990	974	592	548	382
+ 49	989	969	592	543	377
† 54	990	973	595	541	378
+ 59	990	962	592	533	370
+ 64	990	940	553	489	387
+ 69	991	938	558	489	380
+ 74	992	905	539	465	366
+ 79	990	903	532	453	371
(3)	0.05 m. below	the Orifice.	Mean Head	h = 0.990 n	n.
- 79	990	989	– 60	19	1049
– 76	987	987	- 12	64	999
- 68	992	99 2	+ 12	8o	980
– 61	990	990	+ 79	140	911
— 53	989	989	+ 98	151	891
46	989	989	+ 149	195	840
— 38	990	990	+ 168	206	822
— 31	990	990	十 209	240	781
— 23	992	992	+ 214	237	778
 16	989	989	+ 240	256	749
- 8	989	989	+ 242	250	747
- 1	988	988	+ 249	250	739
+ 7	990	990	+ 249	242	741
+ 14	990	990	+ 249	235	741
+ 22	991	991	+ 248	226	743
+ 29	990	990	+ 234	205	756
+ 37	992	992	+ 226	189	766
+44	988	988	+ 194	150	794
+ 52	992	992	+ 191	139	801
+ 59	990	990	+ 124	65	866
+ 67	987	987	+ 104	37	883
+ 74	990	990	+ 87	13	903
(4)	o.og m. below	the Orifice.	Mean Head	h = 0.990 m	
- 81	990	990	— 71	+ 10	1061
– 76	990	990	- 7 ₄	+ 2	1064
- 68	994	994	- 38	+ 30	1032
— 6r	989	989	- 56	+ 5	1045
- 53	989	989	+ 1	+ 54	988
- 46	390	999	+ I - 2I	+ 25	1011
$-\frac{38}{38}$	988	988	+ 15	$+\frac{1}{53}$	
- 31	990	990	+ 11	+ 45	973
- 23	990	990	+ 60	+ 83	976
<u> </u>	990	990	+ 59		930
10	990	330	1 39	+ 75	931

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued,

Position of Point,	Head on Center	Level in	the Tube.	Pressure.	Value of
a	h	Of Velocities.	Of Pressures.	P = B - z	A - B
					·
- 8	989	989	+ 7I	+ 79	918
- 1	990	990	+ 79	+ 80	911
+ 7	991	991	+ 74	+ 67	917
+ 14	991	991	+ 74	+ 60	917
+ 22	990	990	+ 73	+ 51	917
+ 29	990	990	+ 78	+ 49	912.
+ 37	990	990	+ 74	+ 37	916
$^{+}_{+52}$	989 989	989 989	+ 71 + 52	+ 27 0	918
+ 52 + 59	999	999	$\begin{array}{c c} + & 52 \\ + & 46 \end{array}$	- 13	937 944
± 67	992	992	+ 51	- 16	941
+ 74	989	989	1 + 57	- 17	932
	0.12 m. below		Mean Head	•	
(-,			— <u>9</u> 6	_	
78 71	950 950	949 950	- 105	- 18 - 34	1045
- 63	951	951	- ioi	- 34 - 38	1053
- 56	952	952	- 87	- 31	1039
- 48	950	950	- 89	- 41	1039
- 41	950	950	- 6 5	- 24	1015
- 33	951	951	- 66	— 33	1017
- 2 6	950	950	- 46	- 20	996
- 18	951	951	- 41	- 23	992
– 11	951	950	- 30 - 29	- 19	986
- 3	950	950	- 29	— 2 6	979
+ 4	952	950	- 10	- 14	960
+ 12	952	953	— 17	- 29	970
+ 19	952	953	+ 2	— 17	951
+ 27	953	953	0	- 27	953
+ 34	952	953	+ 8 + 17	 2 6	945
+ 42	955	955	+ 17	— 25	938
+ 49	952	952	+ 17 + 17	— 32	935
+ 57	952	953		- 40	936
+ 64	950	948	+ 26	— <u>3</u> 8	922
+ 72	953	930	+ 49 Mean Head	- 23	881
- 84	o.13 m. below	989		-15	1088
- 84 - 83	989 990	990	— 99 — 91	— 15 — 8	1081
	989	989	- 103	– 2 8	1092
- 75 - 68	999	990	- 9I	- 23	1081
- 60	990	990	- 91	- 31	1081
- 53	990	990	- 76	- 23	1066
 45	990	990	- 71	$-\frac{1}{26}$	1061
38	990	990	– 55	- 17	1045
- 30	990	990	- 43	— 13	1033
- 23	990	990	- 43	- 20	1033
– 15	989	989	- 23	- 8	1012
– ⁻³ 8	990	990	- 33	— 2 5	1023
	''				

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of	Head on Center	Level in	the Tube.	Pressure.	Value of
Point.	of Orifice.	Of Velocities.	Of Pressures.	P = B - z.	A - B.
0 + 7 + 15 + 22 + 30 + 37 + 45 + 52 + 60 + 67	989 990 989 990 990 989 991 990 991	989 990 989 990 990 989 991 991 991	- 12 - 16 - 8 + 4 + 18 + 18 + 11 + 27 + 49	- 12 - 23 - 23 - 18 - 12 - 33 - 27 - 41 - 33 - 18	1001 1006 997 986 972 986 971 980 963
(7 - 86 - 78 - 78 - 763 - 56 - 48 - 41 - 326 - 18 - 11 - 3 + 12 + 19 + 27 + 449 + 57 + 672) o.15 m. belo 952 953 949 953 950 951 950 951 951 949 951 949 951 951 951	w the Orifice 952 954 949 950 953 949 950 951 950 951 951 948 951 948 951 949 952 951	- Mean Hea - 91 - 106 - 107 - 98 - 86 - 82 - 74 - 63 - 50 - 43 - 32 - 33 - 19 - 17 - 6 - 12 + 9 + 6 + 13 + 40 - 68	d, \$\hat{k} = 0.951	1043 1060 1056 1052 1036 1035 1013 1001 993 983 984 970 965 957 961 943 945 938 922 911

VERTICAL RECTANGULAR ORIFICE 0.20 M. HIGH BY 0.80 M. WIDE. October, 1890. Mean Temperature of the Water, 13.5° C.

(1) I	n the Plane o	f the Orifice.	Mean Head	l, <i>h</i> = 0.949 1	n.
- 84	949	724	163	247	561
— 81	949	729	177	258	55 2
 76	948	792	269	345	523
- 7 1	950	795	260	331	535
- 66	950	86o	355	421	505
- 6r	948	880	375	436	505
- 56	949	898	410	466	488
– 51	950	905	410	461	495
- 46	949	925	439	485	486
- 41	948	930	445	486	485
 3 6	950	941	459	495	482

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS,-Continued.

	11115 114 115		- LIGOID	V LINO,	
Position of Point.	Head on Center of Orifice.	Level in	the Tube.	Pressure.	Value of
a	h	Of Velocities,	Of Pressures.	P=B-z.	A - B.
– 31	949	945	469	500	476
- 26	949	950	480	506	470
- 21	949	952	477	498	475
– 1 6	949	955	495	511	460
- 11	949	955	488	499	467
- 6	948	954	503	500	451
– i	949	954	500	501	454
+ 4	948	953	503	499	450
+ 5	948	952	501	492	451
+ 14	949	950	507	493	443
+ 19	949	949	509	490	440
+ 24			502	478	439
	950	941	508		439
+ 29	948	938	_	479 456	
+ 34	949	920	490 488		430
+ 39	949	921		449	433
+ 44	950	900	480	436 416	420
+ 49	949	895	465		430
+ 54	949	870	435	381	435
+ 59	950	858	430	371	428
+ 64	948	825	392	328	433
+ 69	950	795	370	301	425
十 74	950	749	335	261	414
+ 78	948	720	310	232	410
	0.05 m. below	1	Mean Head		m.
— 78	949	• • • •	— <u>75</u>	+ 3	
— 75	950	943	72	+ 3	1015
— 7 <u>1</u>	950	919	- 42	+ 29	961
 68	948	915	— 25	+ 43	940
- 64	949	920	+ 5	+ 69	915
– 60	949	925	+ 25	+ 85	900
— 56	950	930	+ 45	+ 101	885
49	949	936	+ 98	十 147	838
– 41	950	943	+ 130	+ 171	813
- 34	947	944	+ 169	+ 203	775
– 26	949	- 950	+ 188	+ 214	762
– 1 9	948	955	+ 215	+ 234	740
- 11	949	955	+ 220	+ 231	735
- 4	949	956	+ 232	+ 236	724
+ 4	949	955	+ 235	+ 231	720
+ 11 ·	950	957	+ 238	+ 227	719
+ 19	950	957	+ 235	+ 216	722
<u> +</u> 26	947	953	+ 220	+ 194	733
+ 33	949	955	+ 205	+ 172	750
+ 40	949	955	十 177	+ 137	778
+ 47	949	953	+ 150	+ 103	803
+ 55	950	954	+ 117	+ 62	837
+ 59	949	951	- 102	+ 43	849
+62	950	952	 91	+ 29	86í
+ 66	950	953	- 68	+ 2	885
+ 70	949	,	+ 72	<u> </u>	
1 /	777		: ' ' <u> </u>		

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of	Head on Center	Level in the Tube.		Pressure.	77-1
Point.	of Orifice.	~	Ī		Value of $A \sim B$.
a	h	Of Velocities.	Of Pressures.	P = B - z.	~ -
,			 		
(3	3) o.10 below t	the Orifice.	Mean Head,	h = 0.949 m.	
— 71	949	• • •	– 74	- 3	
 67	950	956	76	- 9	1032
— 6o	949	956	- 69	- 9	1025
- 52	949	956 -	- 48	+ 4	1004
- 45 - 27	949	956	- 5 2	7	1008
- 37	950	957	- 14	+ 23	971
- 30 - 22	949	956	+ 16	+ 46	940
— 15	950	957	+ 16	+ 38	941
- 7	949 950	957 958	+ 31	+ 46	926
ó	949	958	+ 41 + 20	+ 48	917
+ 8	950	959	+ 39 + 41	$^{+39}_{+33}$	919
+ 15	949	957	+41	$+\frac{33}{26}$	916
+ 23	949	958	$+\frac{1}{39}$	+ 16	910
+ 30	950	958	+33	+ 3	925
+ 37	949	958	+ 35	- 2	923
+ 44	948	957	+37	- 7	929
+ 52	949	957	+ 45	- ź	912
+ 58 l	950 l	٠ ا	+ 48	_ io	• • •
(4)) 0.15 below tl	he Orifice. I	Mean Head, A	i = 0.949 m.	
- 75	949 l		8o	- 5	
- 7I	949	950	82	- 11	1032
 68	949		- 8I	- 13	5-
- 64	949	956	- 86	- 22	1042
- 60	949		- 85	- 25	
– 56	948	954	77	- 21	1031
- 49	950	957	— 77	- 28	1034
- 4I	948	956	- 47	- 6	1003
- 34 - 26	947	954	- 42	- 8	996
- 19	949	956	- 30	- 4	986
— II	949 949	956 956	- 21	_ 2	977
- 4	949	955	— 7 — 2	+ 4 + I	963
$+$ $\overset{\rightarrow}{4}$	952	959	- 3 + 1	+ I	958
+ 11	948	955	+ 8	- 3 - 3	958
+ 19	948	954	+ 10	- 9	947 944
+ 25	949	954	+ 13	- 12	944 941
+ 33	953	960	+ 18	- 15	942
+ 36	949		+ 16	- 20	
+ 40	947	953	+ 21	- 19	932
+ 44	950	• • • •	+ 23	— 2Í	
+ 48	951	957	+ 29	- 19	928
+ 51	948		+ 25	26	
+ 55	950		+ 33	- 22	• • • •

DETERMINATION OF THE VELOCITIES AND OF THE PRESSURES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

UKES IN	Ine inter	CIOR OF 11	TE LIQUID	VEINS.—C	ominaea.
Position of Point.	Head on Center of Orifice.	Level in	the Tube.	Pressure.	Value of
u	h	Of Velocities. A	Of Pressures.	P=B-z.	A-B.
(5)	0.20 m. below	the Orifice.	Mean Head	h = 0.949	m.
- 77	950	• • •	– 95	- 18	
- 74	950	950	– 98	- 24	1048
- 71	949	951	- 110	— 39	1061 1066
- 68 - 65	949	955 956	- 111 - 102	- 43 - 37	1058
- 61	952 949	956	- 100	- 39	1056
- 57	950	958	_ 98	- 4I	1056
- 53	948	956	- 8o	- 27	1036
– 46	946	954	– 65	- 19	1019
– 38	949	956	- 40	- 2	996
— 31	949	957	- 40	- 9	997
— 23	949	958	— 2 5	– 2	983
- 1 6	948	956	- 20	- 4	976
– 8	949	956	— 16	- 8	972
- I	948	955	— 15 O	- 14 - 7	970 955
十 7 1	948	955 955	0	- 1 ₄	955 955
$^{+}_{+22}$	947 948	955	+ 10	- 12	945
+ 25	949	958	+ 2	- 23	956
+ 28	950	958	+ 10	— 18	948
+ 32	948	956	+ 5	- 27	951
+ 36	950	957	+ 18	- 18	939
+ 3 9	947	952	+ 20	- 19	932
+ 43	948	945	+ 20	- 23	925
+ 45	1 949	• • • • • • • • • • • • • • • • • • • •	1 + 22	— 23	
	o.25 m. belov		Mean Heat	h = 0.949	•
- 83 - 80	949	0	— 88 — 88	- 5 - 8	1038
- 50 - 76	949 948	950 951	– 97	- 21	1048
- 72	949	955	- 100	– 28	1055
-68	947	955	- 102	l - 34	1057
- 65	949	956	- 100	- 35	1056
– 61	947	955	— 9o	- 29	1045
<u> – </u>	949	957	- 82	— 2 6	1039
— 5 <u>3</u>	947	954	- 72	- 19	1026
- 46	950	958	— 62 — 54	- 16 - 15	1020
- 39	946	953	- 54 - 50	- IS - I9	1007
- 31 - 24	950 951	958 960	- 30 - 30	- 6	990
- 24 - 16	948	958	- 35	- 19	993
– 9	951	959	– 16	— ž	975
– í	949	958	– 16	- 15	974
+ 6	948	958	_ 8	- 14	966
† 9	949	957	— 2	- II	959
+ 14	948	956	- 2	- 16 - 17	958
+ 17	948	956	0	- 17	950
		1	<u> </u>		

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS .- Continued.

Position of Point.	Head on Center of Orifice.	Level in the Tube.		Pressure.	Value of
	h	Of Velocities.	Of Pressures.	P = B - z.	A - B.
+ 21	949	957	– 1	- 22	958
+ 24	948	956	+ 5	19	951
- 28	950	958	+ 8	- 20	950
+ 3I + 25	947	953	+ 10 + 8	- 21	943
+ 35	l 949	950		— 27	94 2
	HORIZONTAL C June, 1892.		athre of the Wat		
(1)	In the Plane	•		ad, $h = 0.974$	1.
19	970	835	450	450	385
20	975	850	509	509	341
23	982	860	468	468	392
28	982	875 895	486	486	389
33 38	973 960	895 890	510 509	510	38 5 381
48	975	942	539	509 539	403
53	973	935	530	539	405
58	975	955	535	535	420
69	985	970	570	570	400
74	975	965	562	562	403
79	965	965	558	558	407
89	975	975	578	578	397
94	975	975	578	578	397
99	968	968	575	575	393
104	975	975	584	584	391
109	975	975	585	585	390
114 119	972	972	578	578	394
129	975 968	975 968	575 550	575	400 418
135	975	975	572	550 572	403
140	975	975	560	560	415
150	975	975	540	540	435
155	980	967	553	553	414
160	975	958	528	528	430
171	975	943	488	488	455
176	972	900	502	502	398
179	975	880	490	490	390
181	978	900	470	470	430
` ' .	0.15 m. below		Mean Head,		
15	976	775	120	135	655
18	975	820	143	158	677
23 28	975	855 885	225	240	630
33	974 975	900	270 330	285	615
38	973	908	340	345	570 568
44	975	925	355	355 370	508 570
	970	940	395	410	545
49	9/0				

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Point,	Head on Center of Orifice.	Level in the Tube.		Pressure.	Value of
		Of Velocities.	Of Pressures.	P = B - z.	A - B.
а	h	A	B	P = B - z.	
64	975	965	426	441	539
74	978	974	452	467	522
84	971	968	455	470	513
94	980	980	453	468	527
105	975	975	458	473	517
115	980	980	435	450	545
125	974	974	440	455	534
135	980	980	409	424	571
145	975	968	404	419	564
150	975	968	368	383	600
155	976	965	380	395	585
160	975	950	310	325	640
165	975	942	310	325	632
170	967	910	250	265	660
176	979	880	182	197	698
179	975	885	170	185	715
181	970	865	126	141	739
183	970	l 850	103	110	747
(3)	0.035 m. belov		Mean Head	h = 0.975	
14	975	969	- 44	- 9	1013
17	976	959	- 44	_ 9	1003
20	974	949	- 3 4	+ 1	983 951
25	974	947	- 4	+ 31 + 39	931
30	977	950	+ 4 + 68	103	904
40	972	Ç72	+ 158	+ 193	811
50	977	969	+ 149	+ 184	826
60	975	975	+ 220	+ 255	754
70 80	977	974 974	+ 221	+ 256	753
	974 978	974	- 241	+ 276	737
100 90	971	971	+ 264	+ 299	707
110	975	977	+ 259	+ 294	718
110	975	977	+ 248	283	724.
130	974	974	+ 229	+ 264	745
140	974	974	+ 199	+ 234	773.
150	982	982	+ 144	+ 179	838
160	974	967	+ 103	+ 138	864
170	974	968	+ 49	+ 84	919
175	979	965	- 19	+ 16	984.
	977	969	- 43	- 8	1012
т80		97í	- 40	j — 5	1011
180 183	l 974			1 4 - 0 0	m.
183	0.059 m. belov	w the Orifice.	Mean Head		
183		w the Orifice.	- 65	_ 6	
183 (4)	0.059 m. belov		- 65 - 71	- 6 - 12	1048
183 (4) 18	0.059 m. below	977 977	- 65 - 71 - 75	- 6 - 12 - 16	1048 1052
183 (4) 18 20	0.059 m. below	977	- 65 - 71	- 6 - 12	1048

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Point.	Head on Center of Orifice.	Level in the Tube.		Pressure.	Value of
а	h	Of Velocities, A	Of Pressures.	P = B - z.	A - B.
33	971	971	- 44	+ 15	1015
43	977	974	- 2ī	+ 38	995
48	974	974	+ 24	+ 83	950
53	974	974	+ 7	+ 66	967
63	972	973	+ 44	+ 103	929
68	974	974	十 57	+ 116	917
73	969	969	+ 31	+ 90	938
83	979	979	+ 77	+ 136	902
88	976	976	+ 84 + 106	+ 143	892
93	974	974		+ 165	868
99	971	971	+ 99	+ 158	872
103	974	978	+ 93	+ 152	885
108	974	974	+ 61	+ 120	913
113	969	972	+ 57 + 59	+ 116	915
123	979	979	+ 59	+ 118	920
128	974	974	+ 24	+ 83 + 88	950
133	974	974	+ 29	1 : 1	945
143	977	977	— 16 — 1	+ 43	993
148	974	974	- II	+ 58 + 48	975 985
153 163	974	974	— 11 — 93	- 34	1067
168	974	974 974	- 93 - 39	+ 20	1013
173	974	97 4 974	- 93	- 34	1067
176	978	978	_ 8 ₂	- 34 - 23	1060
178	974	974	- 76	_ I7	1050
179	974	974	- 63	- 4	1037
181	974	971	63	- 4	1034
(5) 0	.085 m. below	the Orifice.	Mean Head,	h = 0.976 m	1.
22	974	974	- 94	- 9	1068
27	974	974	- 133	- 48	1107
.32	978	979	- 141	<u> </u>	1120
42	984	984	- 151	66	1135
52	984	984	- 119	- 34	1103
62	979	979	- 106 - 80	_ 2I	1085
72	974	974	- 64	+ 5 + 21	1054
:82	977	977		+ 36	1041 1024
92 100	974	975 974	- 49 - 54	31	1024
102	974 975	974 975	- 44	+ 4I	1010
112	975	975	- 6r	+ 24	1038
122	975	975	– 62	+ 23	1037
132	979	982	- 63	+ 23 + 22	1045
142	972	972	- 99	- 14	1071
	983	983	- 93	- 8	1076
152	1		- 146	_ 6r	1120
162	974	974	- 140	0.1	
		974	- 136	— 5ī	1100
162	974 959 975				l

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Point.	Head on Center of Orifice.	Level in	Level in the Tube.		Value of
a a	h	Of Velocities,	Of Pressures.	P = B - z	A - B.
(6)	0.112 m. belov	the Orifice.	Mean Head	$\left \frac{1}{h} = 0.975 \right $	m.
` '		ı	,		
24 26	982 979	077	— I37 — I44	- 25 - 32	112 I
31	979	977 974	- 144 - 171	- 59	1145
4I	979	974	- 178	- 66	1157
46	979	979	- 177	- 65	1149
51	973	973	- 184	- 72	1157
61	979	973	- 178	- 66	1157
71	969	979	- 167	- 55	1136
81	977	977	- 164	- 52	1141
91	970	977	- 143	- 31	1113
96	974	974	- 166	- 54	1140
101	974	974	- 169	- 57	1143
106	975	975	- 151	$-\frac{37}{39}$	1126
111	973	973	- 163	- 5I	1136
121	974	974	- I62	- 50	1136
131	971	971	- 172	- 6o	1143
141	971	971	- 174	- 62	1145
151	974	974	- 203	- gr	1177
156	974	974	- 200	- 88	1174
161	971	971	- 184	- 72	1155
171	975	975	- 183	- 7I	1158
174	977	977	- 157	- 45	1134
176	976	976	- 161	- 49	1137
178	977	977	– 131	l – i9	1108
(7)	o.135 m. belov	w the Orifice.	Mean Head	h = 0.975	m.
24	974		- 151 '	– 1 6	
25	974	959	- 164	- 29	1123
27 27	979	979	- 160	- 34	1148
32	978	978	- 206	- 71	1184
42	981	981	- 207	- 72	1188
47	969	969	- 217	- 8 ₂	1186
52	979	979	- 221	- 86	1200
62	979	979	- 201	- 66	1180
72	972	972	- 228	- 93	1200
82	971	971	— 1 96	- 6î	1167
92	969	969	- 191	— ₅₆	1160
9 2 9 7	974	974	- 191	— 56	1165
100	974	974	- 197	- 62	1171
102	977	977	- 221	- 86	1198
112	975	975	- 224	- 89	1199
122	979	979	- 236	- 101	1215
132	975	975	- 228	- 93	1203
142	969	969	- 233	- 98	1202
142					

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

ORES IN	THE INTE	KIOK OF I	HE LIGUT	D VEINS.	Continuea.
Position of Point.	Head on Center of Orifice.	Level in			Value of
a	h	Of Velocities.	Of Pressures.	P = B - z	A-B.
7.50	976	0.86			
152 162	971	976	- 239	- 104	1215
172	976	971 976	— 198	- 63	1169
175	977		- 191	- 56 - 16	1167
177	977	977	- 151 - 151	<u> </u>	1120
~11	974		1 - 151	- 10	
(8)	0.165 m. belov	w the Orifice.	Mean Head	h = 0.980	m.
25	970		- 175	- 10	1
27	980	980	— 178	- 13	1158
30	968	968	- 203	- 38	1171
35	980	980	- 185	— 20	1165
40	970	970	- 225	— 60	1195
50	979	979	- 225	— 60	1204
55	978	978	- 228	- 63	1206
60	986	986	- 230	- 65	1216
70	980	980	- 230	- 65	1210
75	978	978	- 253	- 88	1231
80	976	976	- 222	- 57	1198
90	982	982	- 208	$-\frac{37}{43}$	1190
95	985	985	- 235	- 70	1220
100	980	980	- 190	- 25	
IOI	975	975	- 193	– 28.	1170
105	985	985	- 240		
110	975	975	- 250	- 75 - 85	1225
115	987	973	$-\frac{250}{222}$		1225
125	988	988	l .	— 57 — 67	1209
130	975	-	- 232 - 240	— 6 ₇	1220
135	975	975 988	— 240 — 270	- 75	1215
145	988	988	- 210	- 45	1198
150	978	978	- 220	- 55	1208
155	985		- 230	— 6 ₅	1208
165	985	985	- 235	- 70	1220
175	980	985	- 220	— 55	1205
177	985	970	- 2 00	— 35	1170
			— 178	<u> </u>	• • • •
	0.195 m. belov			d, h = 0.969	m.
24	965	965	- 205	- 10	1170
29	965	965	— 24 8	- 13	1213
34	950	950	— 273	- 7მ	1223
39	960	960	— 2 86	– 91	1246
44	960	960	— 302	- 107	1262
44	962	962	- 247	— 52	1209
49	960	960	- 285	 90	1245
54	972	972	— 283	- 88	1255
59	982	982	273	- 78	1255
64	945	945	261	- 66	1206
64	961	961	— 2 65	– 70	1226
69	963	963	- 271	- 76	1234
74	968	968	- 255	— 6o	1223

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Point.	Head on Center of Orifice.	Level in the Tube.		Pressure.	
a	h	Of Velocities.	Of Pressures.	P = B - z	Value of $A - B$.
79 84 89 94 99 104 109 114 119 124 129 134 139 144 149 154 159 164	960 987 978 960 973 990 975 955 975 975 966 970 950 963 988 965 968	960 987 978 960 975 990 975 950 965 975 975 966 970 950 963 988 965 968	254 252 269 222 271 200 256 220 261 222 248 240 230 228 248 220 220 220 210 257	- 59 - 57 - 74 - 76 - 76 - 61 - 25 - 71 - 26 - 27 - 53 - 45 - 33 - 53 - 53 - 53 - 53 - 53 - 62	1214 1239 1247 1182 1246 1190 1231 1170 1231 1195 1236 1217 1214 1210 1180 1191 1236 1185 1178
169 174	965 995	965 •••	- 255 - 215	- 60 - 20	1220

HORIZONTAL CIRCULAR ORIFICE, O. 10 M. DIAMETER.

July, 1892. Mean temperature of Water, 24° C., except for the Experiments made in the Plane of the Orifice which were made in April, 1894; Temperature of Water, 14° C.

(1) I	In the Plane	of the Orifice.	Mean Hea	d, $h = 0.963$ r	n.
20	965	923	508	508	415
25	955	930	535	535	395
30	963	950	545	545	405
35	990	982	570	570	412
40	953	950	550	550	400
4 5	968 .	967	568	568	399
50	ļ 968	967	565	565	402
50	943	943	553	55 3	390
50	940	938	5 5 0	550	388
50	970	970	566	566	404
55	982	984	565	565	419
60	966	961	556	556	405
65	972	973	548	548	425
70	967	958	548	548	410
75	941	935	512	512	423
80	972	933	512	512	421
(2) 0	.026 m. below	the Orifice.	Mean Head	, h = 0.970 m	1.
6	975		– 28	- 2	
7	965	955	– 3 0	- 4	985
11	970	955	— 2 8	- 2	983
16	987	963	+ 14	+ 40	949
		'		. ,	

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

OKES IN	THE INTE	CIOR OF 1	HE LIGOTE	VEINS	Communica.
Position of Point.	Head on Center of Orifice,	Level in	the Tube.	Pressure.	Value of
a	h	Of Velocities.	Of Pressures.	P = B - z	A - B.
21 26 31 36 41 46 50 51 56 61 66 77 76 81 86	960 990 970 981 988 978 945 976 974 975 960 974 972 972 975 958	940 980 965 979 988 978 945 976 976 975 957 967 968 948 943	+ 52 + 113 + 129 + 165 + 195 + 187 + 185 + 205 + 200 + 184 + 155 + 180 + 100 + 90 + 51 + 20 - 23	+ 78 + 139 + 155 + 191 + 221 + 213 + 211 + 231 + 226 + 210 + 181 + 206 + 126 + 116 + 77 + 46 + 3	888 867 836 814 793 791 760 771 774 791 802 790 867 878 897 923 958
89 91 94	960 960 975	950 950 •••	- 27 - 30 - 30	- 1 - 4 - 4	977 980
(3)	0.055 m. below	the Orifice.	Mean Head	h = 0.807	m.
	808 806 812 803 812 800 810 806 812 800 808 812 800 818 797 815 798 809 810 800	775 812 803 812 800 810 806 812 800 808 812 800 818 797 797 815 798 809 807 700		- 15 - 13 - 29 - 40 - 27 - 13 - 3 - 5 + 25 + 13 - 3 + 10 - 27 - 3 - 35 - 35 - 37 - 43 - 37 - 40 - 30 - 37 - 40 - 30 - 30 - 37 - 40 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	843 896 898 894 868 868 866 842 842 866 857 865 882 876 887 900 890 907 899 775
10 11 16 21	965 970 975 982	940 975 982	- 58 - 70 - 93 - 108	- 3 - 15 - 38 - 53	1010 1068 1090

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URES IN THE INTERIOR OF THE LIQUID VEINS.—Continued.

Position of Point,	Head on Center	Level in	the Tube.	Pressure.	Value of
roint,	h	Of Velocities.	Of Pressures.	P = B - z	A-B.
26 31 36 41 46 46 50 50 51 56 61 66 71 76 81 88	970 978 965 990 952 992 975 982 1000 965 1000 970 995 972 980 980 980	970 978 965 990 952 975 982 1000 965 1000 970 995 972 980 980 980	- 102 - 102 - 114 - 102 - 100 - 105 - 68 - 58 - 100 - 108 - 108 - 85 - 80 - 92 - 75 - 85 - 85 - 85 - 79 - 65	- 47 - 47 - 59 - 47 - 45 - 50 - 13 - 3 - 45 - 53 - 30 - 25 - 37 - 20 - 30 - 30 - 24 - 10	1072 1080 1079 1092 1052 1097 1043 1040 1100 1073 1085 1050 1087 1047 1065 1065
-	0.083 m. belov	-		h = 0.974	
11 12 14 16 18 21 26 31 36 41 46 50 51 56 61 66 71 76 81 86	990 980 965 965 965 960 955 950 960 975 980 982 962 965 972 975 990 973 990 975 990	950 962 965 995 960 955 950 960 975 980 982 962 965 972 975 990 973 967 990 975	- 95 - 95 - 105 - 125 - 132 - 142 - 140 - 130 - 122 - 115 - 112 - 135 - 120 - 130 - 89 - 130 - 130 - 118 - 155 - 148 - 150 - 170 - 125 - 90	- 12 - 12 - 22 - 42 - 49 - 59 - 57 - 47 - 39 - 32 - 29 - 52 - 37 - 47 - 65 - 65 - 65 - 67 - 87 - 42	1045 1067 1090 1127 1102 1095 1080 1082 1090 1092 1117 1082 1095 1061 1105 1108 1128 1115 1140 1125 1160
	0.113 m. belo	w the Orifice		d, $h = 0.976$	m.
12 13 16	976 975 976	900 976	— 130 — 138 — 155	— 17 — 25 — 42	1038

DETERMINATION OF THE VELOCITIES AND OF THE PRESS-URE IN THE INTERIOR OF THE LIQUID VEINS.—Concluded.

Position of	Head on Center	Level in	the Tube.	Pressure,	
Point.	of Orifice.	Of Velocities.	Of Pressures.	P = B - z	Value of $A-B$.
21	978	978	- 175	- 62	1153
26	971	971	- 185	- 72	1156
31	977	977	- 180	- 67	1157
36	972	977	- 178	-65	1150
41	976	972	- 156	- 43	1132
46	1	972	1	-62	
	972		— 175 — 165	1	1147
50	970	970	- 165 - 750	- 52	1135
51 76	978	978	- 170 - 760	— 57 — 50	
56	975	975	— 163 — 707	— 50	1138
61	976	976	- 185	— <u>72</u>	1161
66	978	978	- 165	- 52	1143
71	976	975	— 200	– 87	1175
76	980	980	- 190	– 77	1170
81	977	975	— 18o	- 67	1155
86	976	976	- 150	– 37	1126
88	978	800	— I 28	- 15	928
89	977	• • • •	— I25	— I2	
(7)	0.143 m. belov	w the Orifice.	Mean Head	d, $h = 0.981$	m.
11	996	800	– 160	- 17	960
11 12	996	800 973	- 160 - 173	- 17 - 30	960 1146
11 12 12	996	800 973 980	- 160 - 173 - 170	- 17	960 1146 1150
11 12 12 16	996	800 973	- 160 - 173	- 17 - 30	960 1146
11 12 12 16 21	996 973 1000 990 973	800 973 980	- 160 - 173 - 170	- 17 - 30 - 27	960 1146 1150
11 12 12 16 21 26	996 973 1000 990 973 986	800 973 980 990 973 986	- 160 - 173 - 170 - 190 - 192 - 212	- 17 - 30 - 27 - 47	960 1146 1150 1180
11 12 12 16 21 26 31	996 973 1000 990 973 986 968	800 973 980 990 973 986 968	- 160 - 173 - 170 - 190 - 192 - 212 - 185	- 17 - 30 - 27 - 47 - 49 - 69 - 42	960 1146 1150 1180 1165
11 12 12 16 21 26 31 36	996 973 1000 990 973 986	800 973 980 990 973 986	- 160 - 173 - 170 - 190 - 192 - 212	- 17 - 30 - 27 - 47 - 49 - 69	960 1146 1150 1180 1165 1198
11 12 12 16 21 26 31	996 973 1000 990 973 986 968	800 973 980 990 973 986 968	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212	- 17 - 30 - 27 - 47 - 49 - 69 - 42	960 1146 1150 1180 1165 1198
11 12 12 16 21 26 31 36 36 41	996 973 1000 990 973 986 968 1000 974 980	800 973 980 990 973 986 968 1000 974 980	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 62	960 1146 1150 1180 1165 1198 1153
11 12 12 16 21 26 31 36 36	996 973 1000 990 973 986 968 1000	800 973 980 990 973 986 968 1000	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 62 - 69	960 1146 1150 1180 1165 1198 1153 1205
11 12 12 16 21 26 31 36 36 41	996 973 1000 990 973 986 968 1000 974 980 986	800 973 980 990 973 986 968 1000 974 980 986	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 62 - 69 - 52	960 1146 1150 1180 1165 1198 1153 1205 1186
11 12 12 16 21 26 31 36 36 41 46	996 973 1000 990 973 986 968 1000 974 980 986	800 973 980 990 973 986 968 1000 974 980 986	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 62 - 69 - 52 - 72	960 1146 1150 1180 1165 1198 1153 1205 1275 1201
11 12 12 16 21 26 31 36 36 41 46 50	996 973 1000 990 973 986 968 1000 974 980 986	800 973 980 990 973 986 968 1000 974 980 986	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 62 - 69 - 72 - 67	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183
11 12 12 16 21 26 31 36 36 36 41 46 50 50	996 973 1000 990 973 986 968 1000 974 980 986 973	800 973 980 990 973 986 968 1000 974 980 986	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220	- 17 - 30 - 27 - 47 - 49 - 69 - 62 - 62 - 69 - 52 - 72 - 67 - 77	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183
11 12 12 16 21 26 31 36 36 36 41 46 50 50 50	996 973 1000 990 973 986 968 1000 974 980 980 973 980 990	800 973 980 990 973 986 968 1000 974 980 986 973 980 990	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220 - 211	- 17 - 30 - 27 - 47 - 49 - 69 - 62 - 69 - 52 - 72 - 67 - 77 - 68	960 1146 1150 1180 1165 1198 1205 1186 1175 1201 1183 1200 1201
11 12 12 16 21 26 31 36 36 36 41 46 50 50 50	996 973 1000 990 973 986 968 1000 974 980 986 973 980 990	800 973 980 990 973 986 968 1000 974 980 986 973 980 990 972	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220 - 211 - 190	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 69 - 52 - 72 - 67 - 77 - 68 - 47	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183 1200 1201 1162
11 12 12 16 21 26 31 36 36 41 46 50 50	996 973 1000 990 973 986 968 1000 974 980 986 973 980 990 972	800 973 980 990 973 986 968 1000 974 980 980 973 980 990 972 1000	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220 - 211 - 190 - 209	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 69 - 52 - 72 - 67 - 77 - 68 - 47 - 66	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183 1200 1201 1162 1209 1183
11 12 12 16 21 26 31 36 36 41 46 50 50 50 50	996 973 1000 990 973 986 968 1000 974 980 980 973 980 972 1000 973	800 973 980 990 973 986 968 1000 974 980 980 973 990 972 1000 973	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 215 - 210 - 220 - 211 - 190 - 209 - 210	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 62 - 69 - 52 - 72 - 67 - 68 - 47 - 66 - 67	960 1146 1150 1180 1185 1198 1153 1205 1201 1183 1200 1201 1162 1209 1183 1185
11 12 12 16 21 26 31 36 34 46 50 50 50 11 56 56	996 973 1000 990 973 986 968 1000 974 980 986 973 980 972 1000 973 973	800 973 980 990 973 986 968 1000 974 980 980 973 980 972 1000 973 975 985	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 210 - 210 - 209 - 210 - 210 - 210	- 17 - 30 - 27 - 47 - 49 - 69 - 62 - 69 - 52 - 72 - 67 - 68 - 67 - 67 - 63	960 1146 1150 1180 1165 1198 1153 1205 1175 1201 1183 1200 1201 1162 1209 1183 1183 1185
11 12 12 16 21 26 31 36 36 41 46 50 50 50 11 56 61 66	996 973 1000 990 973 986 968 1000 974 980 986 973 980 972 1000 973 975 985	800 973 980 990 973 986 968 1000 974 980 986 973 980 990 972 1000 973 975	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220 - 211 - 190 - 209 - 210 - 210 - 206	- 17 - 30 - 27 - 47 - 49 - 69 - 42 - 69 - 52 - 72 - 67 - 68 - 47 - 66 - 67 - 63 - 75	960 1146 1150 1180 1165 1198 1153 1205 1186 1201 1183 1200 1201 1162 1209 1183 1185
11 12 12 16 21 26 31 36 36 41 46 50 50 50 51 11 56 66 61 66	996 973 1000 990 973 986 968 1000 974 980 986 973 980 972 1000 973 975 985	800 973 980 990 973 986 968 1000 974 980 986 973 980 990 972 1000 973 975 985	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220 - 211 - 190 - 209 - 210 - 210 - 206 - 218	- 17 - 30 - 27 - 47 - 49 - 69 - 69 - 52 - 69 - 77 - 68 - 67 - 66 - 67 - 63 - 75 - 67	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183 1200 1201 1162 1209 1183 1185 1191
11 12 12 16 21 26 31 36 36 41 46 50 50 50 51 11 56 61 66 71 76	996 973 1000 990 973 986 968 1000 974 980 986 973 980 972 1000 973 975 985 976 980	800 973 980 990 973 986 968 1000 974 980 980 973 980 972 1000 973 975 985 975 985 975	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 210 - 220 - 211 - 190 - 209 - 210 - 206 - 218 - 210 - 208	- 17 - 30 - 27 - 47 - 49 - 69 - 69 - 69 - 72 - 69 - 77 - 68 - 47 - 66 - 67 - 67 - 67 - 67 - 65	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183 1200 1201 1162 1209 1183 1185 1191 1193 1190 1180
11 12 12 16 21 26 31 36 41 46 50 50 50 11 56 61 66 71 76 81	996 973 1000 990 973 986 968 1000 974 980 986 973 980 990 972 1000 973 975 985	800 973 980 990 973 986 968 1000 974 980 980 972 1000 973 975 985 975 980 972 975 980	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 215 - 210 - 220 - 211 - 190 - 209 - 210 - 206 - 218 - 210 - 208 - 185	- 17 - 30 - 27 - 47 - 49 - 69 - 52 - 69 - 72 - 67 - 77 - 68 - 67 - 67 - 67 - 67 - 67 - 65 - 65 - 42	960 1146 1150 1180 1165 1198 1153 1205 1175 1201 1183 1200 1201 1162 1209 1183 1185 1191 1193 1190 1180
11 12 12 16 21 26 31 36 36 41 46 50 50 50 11 56 61 66 71 76 81 84	996 973 1000 990 973 986 968 1000 974 980 986 973 980 972 1000 973 975 985 976 980	800 973 980 990 973 986 968 1000 974 980 980 973 980 972 1000 973 975 985 975 985 975	- 160 - 173 - 170 - 190 - 192 - 212 - 185 - 205 - 212 - 195 - 210 - 220 - 211 - 190 - 209 - 210 - 206 - 218 - 210 - 208	- 17 - 30 - 27 - 47 - 49 - 69 - 69 - 69 - 72 - 69 - 77 - 68 - 47 - 66 - 67 - 67 - 67 - 67 - 65	960 1146 1150 1180 1165 1198 1153 1205 1186 1175 1201 1183 1200 1201 1162 1209 1183 1185 1191 1193 1190 1180

PROFILES OF THE VEIN FOR THE RECTANGULAR ORIFICE.

0.20 m. high by 0.80 m. wide.

Measurements in Millimeters.

(1) LOWER SURFACE.

The point o is 19 millimeters from the orifice for the heads 787 and 888, and 23 millimeters for the heads 836, 950, and 1006.

Abscissas or Distances			Ordinates.		
from the Point o.	h = 787.	h = 836.	h = 888.	h = 950.	h = 1006.
0	20.3	19.9	20.0	20.4	20.1
10	22.7	21.8	21.8	23.5	23.5
20	24.5	25.3	24.4	25.2	25.3
30	25.7	26.8	25.5	26.6	27.8
40	27.3	28.3	28.0	28.2	28.8
50	27.9	29.3	27.5	29.5	28.8
60	28.6	28.3	29.0	29.3	29.5
70	27 .5	29.1	29.3	29.3	29.9
8o	27.8	29.3	28.9	29.3	30.8
90	26.9	27.0	28.5	29.0	30.1
100	27.6	27.5	27.8	27.9	30.0
110	26.5	26.8	27.5	27.2	29.1
120	25 2	27.3	27.4	26.8	29.9
130	26.0	26.0	26.3	26.2	27.3
140	23.2	26.0	24.4	25.1	25.9
150	23.5	23.8	24.4	25.1	25.5
160	20.5	23.0	24.3	23.5	23.4
170	19.5	23.0	23.0	21.8	22.3
180	19.0	19.5	21.5	21.3	21.5
190	19.0	18.3	21.5	20.1	21.5
200		18.3		18.3	
210	14.5	17.5	17.5	19.1	19.8
230	12.0	13.3	14.9	16.3	16.8
250	9.3	9.8	11.0	10.8	13.3
270	3.5	2.8	8.0	7.4	10.8
290	0.5	0.8	4.0	6.0	7.1
310		- I.o		1.8	5.3
320	— 8.3	• • • •	- 2.0		• • • • •
330	• • • •	− 4.7		– 3.0	0.8
350	— 16.5		- 8.9	• • • •	_ 3.7
360	• • • •	- 11.7		- 11.7	
370	• • • •	• • • •		• • • •	- 8.4
390	— 25.5	- 22.7	- 18.5	– `17.9	- 13.8
420	• • • •	• • • •		- 23.9	- 20.5
430	• • • •	— 34·7	- 25.2		
450	• • • •			- 31.7	- 24.7
490	••••	• • • •	• • • •	48.0	- 33·7
530				— 54. 6	- 48.7

64 EXPERIMENTS UPON CONTRACTION OF LIQUID VEIN.

PROFILES OF VEIN FOR RECTANGULAR ORIFICE.—Concluded. (2) Upper Surface.

The point o is 19 millimeters from the Orifice for the heads 792 and 836, and 23 millimeters for the heads 885, 949, and 1004.

O 179.6 178.3 178.0 178.6 1 10 175.1 171.9 172.4 174.0 1 20 170.3 167.9 168.1 168.2 1 30 165.8 106.4 166.4 166.4 165.8 1 40 162.9 162.8 162.5 163.7 1 1 50 162.2 161.8 161.3 160.2 1 <td< th=""><th></th></td<>	
10 175.1 171.9 172.4 174.0 1 20 170.3 167.9 168.1 168.2 1 30 165.8 106.4 166.4 165.8 1 40 162.9 162.8 162.5 163.7 1 50 162.2 161.8 161.3 160.2 16 60 160.6 159.7 157.9 159.4 1 70 158.1 158.7 157.7 157.7 1 80 157.1 155.5 156.0 1 90 155.0 153.1 153.1 156.6 1 110 152.5 151.4 150.6 150.6 1 120 149.3 150.4 149.6 150.1 1 130 148.8 148.6 149.9 151.0 1 140 149.3 150.4 149.9 151.0 1 140 146.5 146.5 145.1 1	1004.
10 175.1 171.9 172.4 174.0 1 20 170.3 167.9 168.1 168.2 1 30 165.8 106.4 166.4 165.8 1 40 162.9 162.8 162.5 163.7 1 50 162.2 161.8 161.3 160.2 16 60 160.6 159.7 157.9 159.4 1 70 158.1 158.7 157.7 157.7 1 80 157.1 155.5 156.0 1 90 155.0 153.1 153.1 156.6 1 110 152.5 151.4 150.6 150.6 1 120 149.3 150.4 149.6 150.1 1 130 148.8 148.6 149.9 151.0 1 140 149.3 150.4 149.9 151.0 1 140 146.5 146.5 145.1 1	79-7
20 170.3 167.9 168.1 168.2 168.2 30 165.8 106.4 166.4 165.8 17 40 162.9 162.8 162.5 163.7 16 50 162.2 161.8 161.3 160.2 17 60 160.6 159.7 157.9 159.4 16 70 158.1 158.7 157.7 157.7 17 80 157.1 155.5 156.2 156.0 17 100 154.6 153.1 151.6 152.5 17 110 152.5 151.4 150.6 150.6 17 120 149.3 150.4 149.6 150.1 11 130 148.8 148.6 149.9 151.0 11 140 148.0 147.3 147.6 148.6 14 150 146.5 146.5 145.6 148.4 12 150 146.5 143.6 </td <td>72.5</td>	72.5
30 165.8 106.4 166.4 165.8 1 40 162.9 162.8 162.5 163.7 1 50 162.2 161.8 161.3 160.2 1 60 160.6 159.7 157.9 159.4 1 70 158.1 158.7 157.7 157.7 1 80 157.1 155.5 156.2 156.0 1 90 155.0 153.1 153.1 156.6 1 100 154.6 153.1 150.6 150.6 1 110 152.5 151.4 150.6 150.6 1 120 149.3 150.4 149.6 150.1 1 130 148.8 148.6 149.9 151.0 1 140 148.0 147.3 147.6 148.6 1 150 146.5 146.5 145.6 148.4 1 160 144.2 145.1	68.9
40 162.9 162.8 162.5 163.7 16 50 162.2 161.8 161.3 160.2 16 60 160.6 159.7 157.9 159.4 16 70 158.1 158.7 157.7 157.7 17 80 157.1 155.5 156.2 156.0 17 100 154.6 153.1 153.1 156.6 17 110 152.5 151.4 150.6 150.6 17 120 149.3 150.4 149.6 150.1 17 130 148.8 148.6 149.9 151.0 17 140 148.8 148.6 149.9 151.0 17 140 148.0 147.3 147.6 148.6 18 150 146.5 146.5 145.6 148.4 12 160 144.2 145.1 144.1 146.0 12 170 142.6 143.6 <td>66.9</td>	66.9
50 162.2 161.8 167.3 160.2 16.8 60 160.6 159.7 157.9 159.4 16 70 158.1 158.7 157.7 157.7 15 80 157.1 155.5 156.2 156.0 15 90 155.0 153.1 153.1 156.6 1 100 154.6 153.1 150.6 150.6 1 110 152.5 151.4 150.6 150.6 1 120 149.3 150.4 149.6 150.1 1 130 148.8 148.6 149.9 151.0 1 140 148.8 148.6 149.9 151.0 1 140 148.0 147.3 147.6 148.6 1 150 146.5 145.6 148.4 1 160 144.2 143.6 144.1 146.0 1 170 142.6 143.6 143.6	64. I
60 160.6 159.7 157.9 159.4 16 70 158.1 158.7 157.7 157.7 17 80 157.1 155.5 156.2 156.0 17 90 155.0 153.1 153.1 156.6 17 100 154.6 153.1 151.6 152.5 17 110 152.5 151.4 150.6 150.6 17 120 149.3 150.4 149.6 150.1 17 130 148.8 148.6 149.9 151.0 17 140 148.0 147.3 147.6 148.6 16 150 146.5 146.5 145.6 148.4 12 150 146.5 145.6 148.4 12 150 142.6 143.6 144.1 144.1 144.1 144.1 150 140.5 138.8 138.1 139.6 14 14 14 14 14	52.0
70 158.1 158.7 157.7 157.7 157.7 157.7 157.7 157.7 157.7 157.7 156.0 1 1 156.0 1 1 156.0 1	51.7
80 157.1 155.5 156.2 156.0 1 90 155.0 153.1 153.1 156.6 1 100 154.6 153.1 151.6 152.5 1 110 152.5 151.4 150.6 150.6 1 120 149.3 150.4 149.6 150.1 1 130 148.8 148.6 149.9 151.0 1 140 148.0 147.3 147.6 148.6 1 150 146.5 146.5 145.6 148.4 1 150 146.5 145.1 144.1 146.0 1 170 142.6 143.6 141.4 146.0 1 180 140.7 142.5 138.8 138.1 139.6 1 190 140.5 138.8 138.1 139.6 1 200 137.3 139.1 139.6 1 230 132.3 <	58.2
90 155.0 153.1 153.1 156.6 152.5 151.4 152.5 151.6 152.5 151.6 152.5 151.4 150.6 150.6 150.1 15	56.8
100 154.6 153.1 151.6 152.5 1 110 152.5 151.4 150.6 150.6 1 120 149.3 150.4 149.6 150.1 1 130 148.8 148.6 149.9 151.0 1 140 148.0 147.3 147.6 148.6 1 150 146.5 146.5 145.6 148.4 1 150 146.5 145.6 148.4 1 1 160 144.2 143.6 143.6 141.6 1 1 170 142.6 143.6 143.6 141.4 1 </td <td>6.4</td>	6.4
110 152.5 151.4 150.6 150.6 150.6 150.6 150.6 120.6 1	34.6
120 149.3 150.4 149.6 150.1 130.1 130 148.8 148.6 149.9 151.0 11.1 140 148.0 147.3 147.6 148.6 14.8.6 14.8.6 14.8.6 14.8.6 14.8.6 14.8.6 14.8.4 17.1 146.0 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.6 148.4 17.2 148.4 17.2 148.6 148.4 17.2 148.6 148.4 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	52.4
130 148.8 148.6 149.9 151.0 191.0 148.6 149.9 151.0 191.0 148.6 149.9 151.0 191.0 148.6 148.4 148.4 1	2.4
140 148.0 147.3 147.6 148.6 128.7 129.6 129.8 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 1	1.1
150 146.5 146.5 145.6 148.4 12 160 144.2 145.1 144.1 146.0 12 170 142.6 143.6 143.6 141.6 12 180 140.7 142.5 138.6 141.4 12 190 140.5 138.8 138.1 139.6 12 200 137.3 139.1 139.6 12 230 136.5 137.6 136.0 139.6 13 230 132.3 133.6 132.0 139.6 13 250 130.5 127.6 131.1 133.3 13 270 127.4 126.5 126.4 127.8 13 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 350 103.7	19.8
160 144.2 145.1 144.1 146.0 14 170 142.6 143.6 143.6 141.6 12 180 140.7 142.5 138.6 141.4 12 190 140.5 138.8 138.1 139.6 12 200 137.3 139.1 139.6 12 210 136.5 137.6 136.0 139.6 12 230 132.3 133.6 132.0 139.6 12 250 130.5 127.6 131.1 133.3 13 270 127.4 126.5 126.4 127.8 13 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7	18.4
170 142.6 143.6 143.6 141.6 14.6 180 140.7 142.5 138.6 141.4 12.1 12.1 12.1 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.6 12.9 12.3 12.3 12.6 12.3 12.3 12.6 12.3 12.6 12.8 12.3 12.6 12.8 12.3 12.6 12.6 12.3 12.6 12.3 12.6 12.3 12.6 12.3 12.6 12.3 12.3 12.6 12.3 12.3 12.6 12.3	5.3
180 140.7 142.5 138.6 141.4 14.4 190 140.5 138.8 138.1 139.6 12.3 200 137.3 139.1 139.1 210 136.5 137.6 136.0 139.6 14.2 230 132.3 133.6 132.0 139.6 13 250 130.5 127.6 131.1 133.3 12 270 127.4 126.5 126.4 127.8 13 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 370 106.2 113.6 370 <td>2.8</td>	2.8
200 137.3 139.1 139.1 139.1 139.6 14 139.6 14 14 139.6 14 14 139.6 14 14 120.6 12 139.6 12 12 139.6 12 12 139.6 12 12 139.6 12 12 139.6 12 12 12 12	2.6
210 136.5 137.6 136.0 139.6 14 230 132.3 133.6 132.0 139.6 13 250 130.5 127.6 131.1 133.3 12 270 127.4 126.5 126.4 127.8 13 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 11 360 106.2 113.6 370 106.2 11 390 93.7 95.7 98.6 106.8 10 420 87.8 89.2 430 87.8	2.8
230 132.3 133.6 132.0 139.6 13 250 130.5 127.6 131.1 133.3 12 270 127.4 126.5 126.4 127.8 12 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 360 106.2 113.6 370 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8	
230 132.3 133.6 132.0 139.6 13 250 130.5 127.6 131.1 133.3 13 270 127.4 126.5 126.4 127.8 13 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 360 106.2 113.6 370 106.2 113.6 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 <	I.I.
270 127.4 126.5 126.4 127.8 13 290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 11 360 106.2 113.6 370 11 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 450 450	5.6
290 122.6 123.8 123.1 126.6 12 310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 11 360 106.2 113.6 370 11 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 450 450	5.2
310 113.6 120.3 12 320 115.1 115.3 330 112.7 116.7 12 350 103.7 109.6 11 360 106.2 113.6 370 11 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 450 92.8 92.8	1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.7
330 112.7 116.7 12 350 103.7 109.6 11 360 106.2 113.6 370 11 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 450 92.8 92.8	4.2
350 103.7 109.6 11 360 106.2 113.6 370 11 390 93.7 95.7 98.6 106.8 10 420 87.8 89.2 102.3 10 430 82.8 440 82.8 450	
360 106.2 113.6 370 11 390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 450 92.8	3.4
370	8.2
390 93.7 95.7 98.6 106.8 10 420 102.3 10 430 87.8 89.2 440 82.8 450 92.8	
420 102.3 10 430 87.8 89.2 440 82.8 450 92.8	1.9
430 87.8 89.2 440 82.8 450 92.8	6.3
440 82.8 92.8 g	2.8
450 92.8 9	• • •
	• • •
	4.9
	• • •
	1.9
	• • •
	3. 2
	• • •
550 52.9	
	6.0
6.0	
	6.9
	9.5
	6.2
	1.9
33 3 3 4	0.7
1090 -219.7 -190.7 -16	6.6

Barrier containing Square or Circular Orifice. Scale 0.02 = 1.

Elevation of Down-stream Face.

BARRIER CONTAINING RECTANGULAR ORIFICE. SCALE 0.02 = 1.

Section on Axis of Chonnel.

Transverse Section through Center of Orifice. Arrangement of Horizontal Circular Orifice. Scale 0.02 = 1.

0.80 m. from Orifice

VEIN ISSUING FROM VERTICAL CIRCULAR ORIFICE. Scale 0.05 = 1.

Section gh. 0.10 m. from Orifice.

0.85 m. from Orlflee. VEIN ISSUING FROM VERTICAL SQUARE ORIFICE. Scale 0.05 = 1.

VEIN ISSUING FROM VERTICAL RECTANGULAR ORIFICE. Scale 0.05 = 1.

APPARATUS FOR OBTAINING TRANSVERSE SECTIONS OF VEINS.

Cross-section of Vein from Rectangular Orifice. (Variations exaggerated.) .

APPARATUS FOR MEASURING VELOCITIES AND PRESSURES IN VEINS ISSUING FROM VERTICAL AND HORIZONTAL ORIFICES.

APPARATUS FOR ASCERTAINING PRESSURES WITHIN AND ABOVE A VEIN ISSUING FROM A HORIZONTAL ORIFICE.

SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

OF

JOHN WILEY & SONS,

NEW YORK.

LONDON: CHAPMAN & HALL, LIMITED.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.

Books marked with an asterisk are sold at *net* prices only.

All books are bound in cloth unless otherwise stated.

AGRICULTURE.

CATTLE FEEDING-DISEASES OF ANIMALS-GARDENING, E	TC.	
Armsby's Manual of Cattle Feeding12mo,	\$ 1	75
Downing's Fruit and Fruit Trees8vo,	5	00
Kemp's Landscape Gardening12mo,	2	50
Stockbridge's Rocks and Soils 8vo,	2	50
Lloyd's Science of Agriculture8vo,	4	00
Loudon's Gardening for Ladies. (Downing.)12mo,	1	50
Steel's Treatise on the Diseases of the Ox8vo,	6	00
" Treatise on the Diseases of the Dog8vo,	3	50
Grotenfelt's The Principles of Modern Dairy Practice., (Woll.)		
12mo,	2	00.
ARCHITECTURE.		
BUILDING—CARPENTRY—STAIRS, ETC.		
Berg's Buildings and Structures of American Railroads4to,	7	50
Birkmire's Architectural Iron and Steel8vo,	3	50
" Skeleton Construction in Buildings8vo,	3	00

Birkmire's Compound Riveted Girders8vo,	\$2	VU
" American Theatres—Planning and Construction.8vo,	3	00
Carpenter's Heating and Ventilating of Buildings8vo,	3	00
Freitag's Architectural Engineering8vo,	2	50
Kidder's Architect and Builder's Pocket-bookMorocco flap,	4	00
Hatfield's American House Carpenter 8vo,	5	00
" Transverse Strains8vo,	5	00
Monckton's Stair Bullding-Wood, Iron, and Stone4to,	4	00
Gerhard's Sanitary House Inspection16mo,	1	00
Downing and Wightwick's Hints to Architects8vo,	2	00
" Cottages8vo,	2	50
Holly's Carpenter and Joiner		75
Worcester's Small Hospitals - Establishment and Maintenance,		
including Atkinson's Suggestions for Hospital Archi-		
tecture12mo,	1	25
The World's Columbian Exposition of 1893 4to,	2	50
ARMY, NAVY, Etc.		
MILITARY ENGINEERING-ORDNANCE-PORT CHARGES, E	TC.	
		50
MILITARY ENGINEERING-ORDNANCE-PORT CHARGES, E	\$ 12	50 00
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E Cooke's Naval Ordnance	\$ 12	
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E Cooke's Naval Ordnance	\$12 5 4	00
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1	00 00
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1	00 00 50
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 4 7	00 00 50 00
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E Cooke's Naval Ordnance	\$12 5 4 1 4 7	00 00 50 00 50
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 4 7 1	00 00 50 00 50
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 4 7 1 7	00 00 50 00 50 50
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 4 7 1 7	00 00 50 00 50 50 50
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 4 7 1 7 2	00 00 50 00 50 50 50 00
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$122 5 4 1 4 7 1 7 2 2 2 1 2	00 00 50 00 50 50 50 00 50
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 4 7 1 7 2 2 1 2	00 00 50 00 50 50 50 00 50 25
MILITARY ENGINEERING—ORDNANCE—PORT CHARGES, E. Cooke's Naval Ordnance	\$12 5 4 1 1 4 7 7 2 2 1 1 2 2 2 2	00 00 50 00 50 50 00 50 25 50 50

Hunter's Port Charges8vo, half morocco,	\$ 13	00	
* Dredge's Modern French Artillery4to, half morocco,	20	00	
" Record of the Transportation Exhibits Building,			
World's Columbian Exposition of 18934to, half morocco,	15	00	
Mercur's Elements of the Art of War8vo,	4	00	
" Attack of Fortified Places	2	00	
Chase's Screw Propellers8vo,	3	00	
Winthrop's Abridgment of Military Law	2	50	
De Brack's Cavalry Outpost Duties. (Carr.)18mo, morocco,	2	00	
Cronkhite's Gunnery for Non-com. Officers18mo, morocco,	2	00	
Dyer's Light Artillery12mo,	3	00	
Sharpe's Subsisting Armies	1	25	
" "18mo, morocco,	1	50	
Powell's Army Officer's Examiner12mo,	4	00	
Hoff's Naval Tactics8vo,	1	50	
Bruff's Ordnance and Gunnery8vo,	6	00	
ACCAMING			
ASSAYING.			
SMELTING—ORE DRESSING—ALLOYS, ETC.			
Furman's Practical Assaying8vo,	3	00	
Wilson's Cyanide Processes12mo,	1	50	
Fletcher's Quant. Assaying with the Blowpipe12mo, morocco,	1	50	
Ricketts's Assaying and Assay Schemes8vo,	3	00	
* Mitchell's Practical Assaying. (Crookes.)8vo,	10	00	
Thurston's Alloys, Brasses, and Bronzes8vo,	2	50	
Kunhardt's Ore Dressing8vo,	1	50	
O'Driscoll's Treatment of Gold Ores8vo,	2	00	
,			
ASTRONOMY.			
PRACTICAL, THEORETICAL, AND DESCRIPTIVE.			
Michie and Harlow's Practical Astronomy8vo,	3	00	
White's Theoretical and Descriptive Astronomy12mo,	2	00	
Doolittle's Practical Astronomy8vo,	4	00	
Craig's Azimuth4to,	3	50	
Gore's Elements of Geodesy8vo.	2	50	
3			

BOTANY,

GARDENING FOR LADIES, ETC.

Westermaier's General Botany. (Schneider.)8vo,	\$ 2	00
Thomé's Structural Botany18mo,	2	25
Baldwin's Orchids of New England8vo,	1	50
Loudon's Gardening for Ladies. (Downing.)12mo,	1	50
BRIDGES, ROOFS, Etc.		
CANTILEVER—HIGHWAY—Suspension.		
Boller's Highway Bridges8vo,	2	00.
* " The Thames River Bridge4to, paper,	5	00
Burr's Stresses in Bridges8vo,	3	5 0
Merriman & Jacoby's Text-book of Roofs and Bridges. Part		
I., Stresses 8vo,	2	50
Merriman & Jacoby's Text-book of Roofs and Bridges. Part		
II., Graphic Statics8vo.	2	50
Merriman & Jacoby's Text-book of Roofs and Bridges. Part		
III., Bridge Design8vo,	5	0 0 •
Merriman & Jacoby's Text-book of Roofs and Bridges. Part		
IV., Continuous, Draw, Cantilever, Suspension, and		
Arched Bridges(In preparation).		
Crehore's Mechanics of the Girder8vo,	5	00
Du Bois's Strains in Framed Structures4to,	10	00
Greene's Roof Trusses8vo,	1	25
" Bridge Trusses8vo,	2	50
" Arches in Wood, etc8vo,	2	50
Waddell's Iron Highway Bridges8vo,	4	00
Wood's Construction of Bridges and Roofs8vo,	2	00
Foster's Wooden Trestle Bridges4to,	5	00
* Morison's The Memphis BridgeOblong 4to,	10	00
Johnson's Modern Framed Structures4to,	10	00
CHEMISTRY.		
QUALITATIVE—QUANTITATIVE—ORGANIC—INORGANIC, ET	c.	
Fresenius's Qualitative Chemical Analysis. (Johnson.)8vo,	4	00
" Quantitative Chemical Analysis. (Allen.)8vo,	6	00
" " (Bolton.)8vo,	1	50
4		

Perkins's Qualitative Analysis	Crafts's Qualitative Analysis. (Schaeffer.)12mo,	\$ 1 5 0
Classen's Analysis by Electrolysis. (Herrick.)	Perkins's Qualitative Analysis	1 00
Stockbridge's Rocks and Soils.	Thorpe's Quantitative Chemical Analysis18mo,	1 50
O'Brine's Laboratory Guide to Chemical Analysis. 8vo, 2 00 Mixter's Elementary Text-book of Chemistry. 12mo, 1 50 Wulling's Inorganic Phar. and Med. Chemistry. 12mo, 2 00 Mandel's Bio-chemical Laboratory. 12mo, 1 50 Austen's Notes for Chemical Students. 12mo, 2 50 Hammarsten's Physiological Chemistry (Maudel.) 8vo, 4 00 Miller's Chemical Physics. 8vo, 2 00 Pinner's Organic Chemistry. (Austen.) 12mo, 1 50 Kolbe's Inorganic Chemistry. (Austen.) 12mo, 1 50 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) 0 00 75 Drechsel's Chemical Reactions. (Merrill.) 12mo, 1 25 Adriance's Laboratory Calculations. 12mo, 1 25 Adriance's Laboratory Calculations. 12mo, 2 50 Malen's Tables for Iron Analysis. 8vo, 2 00 Nichols's Water Supply (Chemical and Sanitary). 8vo, 2 50 Mason's """"""""""""""""""""""""""""""""""""	Classen's Analysis by Electrolysis. (Herrick.)8vo,	3 00
Mixter's Elementary Text-book of Chemistry. 1 2mo, 1 50 Wulling's Inorganic Phar, and Med. Chemistry. 12mo, 2 00 Mandel's Bio-chemical Laboratory. 12mo, 1 50 Austen's Notes for Chemical Students. 12mo, 2 50 Schimpf's Volumetric Analysis. 12mo, 2 50 Hammarsten's Physiological Chemistry (Maudel.) 8vo, 4 00 Miller's Chemical Physics 8vo, 2 00 Pinner's Organic Chemistry. (Austen.) 12mo, 1 50 Kolbe's Inorganic Chemistry. (Austen.) 1 2mo, 1 50 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) 0 0hong 8vo, morocco, 75 Drechsel's Chemical Reactions. (Merrill.) 1 2mo, 1 25 Adriance's Laboratory Calculations 1 2mo, 1 25 Troilius's Chemistry of Iron 8vo, 2 00 Allen's Tables for Iron Analysis 8vo, 2 50 Mason's " " " " 8vo, 5 00 Spencer's Sugar Manufacturer's Handbook 12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis 8vo, 2 50 " Chemical Lecture Notes 12mo,	Stockbridge's Rocks and Soils8vo,	2 50
Wulling's Inorganic Phar. and Med. Chemistry. 12mo, 2 00 Mandel's Bio-chemical Laboratory. 12mo, 1 50 Austen's Notes for Chemical Students. 12mo, Schimpf's Volumetric Analysis. 12mo, 2 50 Hammarsten's Physiological Chemistry (Mandel.) 8vo, 4 00 Miller's Chemical Physics. 8vo, 2 00 Pinner's Organic Chemistry. 12mo, 1 50 Kolbe's Inorganic Chemistry. 12mo, 1 50 Kolbe's Inorganic Chemistry. 12mo, 1 50 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic). 0 0 0 0 0 1 2mo, 1 25 Orechsel's Chemical Reactions. (Merrill.) 1 2mo, 1 25 Adriance's Laboratory Calculations. 12mo, 1 25 Troilius's Chemistry of Iron. 8vo, 2 00 Allen's Tables for Iron Analysis. 8vo, 2 50 Mason's """" """ 8vo, 2 50 Mason's """" 8vo, 2 50 Wiechmann's Sugar Manufacturer's Handbook 12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis. 8vo, 2 50 Chemical Lecture Notes. 12mo, 3	O'Brine's Laboratory Guide to Chemical Analysis8vo,	2 00
Mandel's Bio-chemical Laboratory 12mo, 150 Austen's Notes for Chemical Students 12mo, 250 Schimpf's Volumetric Analysis 12mo, 250 Hammarsten's Physiological Chemistry (Maudel.) 8vo, 400 Miller's Chemical Physics 8vo, 200 Pinner's Organic Chemistry (Austen.) 12mo, 150 Kolbe's Inorganic Chemistry (Austen.) 12mo, 150 Kolbe's Inorganic Chemistry (Nonmetallic) Oblong Svo, morocco, 75 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) 12mo, 125 Orechsel's Chemical Reactions. (Merrill.) 12mo, 125 Adriance's Laboratory Calculations. 12mo, 125 Troilius's Chemistry of Iron 8vo, 200 Allen's Tables for Iron Analysis 8vo, 200 Mason's """"""""""""""""""""""""""""""""""""	Mixter's Elementary Text-book of Chemistry12mo,	1 50
Austen's Notes for Chemical Students	Wulling's Inorganic Phar. and Med. Chemistry12mo,	2 00
Schimpf's Volumetric Analysis 12mo, 2 50 Hammarsten's Physiological Chemistry (Maudel.) .8vo, 4 00 Miller's Chemical Physics .8vo, 2 00 Pinner's Organic Chemistry. (Austen.) .12mo, 1 50 Kolbe's Inorganic Chemistry. .12mo, 1 50 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) .0blong 8vo, morocco, 75 Drechsel's Chemical Reactions. (Merrill.) .12mo, 1 25 Adriance's Laboratory Calculations .12mo, 1 25 Troilius's Chemistry of Iron .8vo, 2 00 Allen's Tables for Iron Analysis .8vo, 2 50 Mason's " " " 8vo, 2 50 Spencer's Sugar Manufacturer's Handbook .12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis .8vo, 2 50 Wiechmann's Sugar Analysis .8vo, 2 50 Thill's Shades and Shadows and Perspective (In preparation) Mahan's Industrial Drawing .2 vols., 8vo, 3 50 MacCord's Kinematics .8vo, 5 00 " Mechanical Drawing .8vo, 3 00 " Descriptive Geometry	Mandel's Bio-chemical Laboratory12mo,	1 50
Hammarsten's Physiological Chemistry (Maudel.)	Austen's Notes for Chemical Students12mo,	
Miller's Chemical Physics. 8vo, 2 00 Pinner's Organic Chemistry. (Austen.) 12mo, 1 50 Kolbe's Inorganic Chemistry. 12mo, 1 50 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) 0 0 0 75 Drechsel's Chemical Reactions. (Merrill.) 12mo, 1 25 Adriance's Laboratory Calculations. 12mo, 1 25 Troilius's Chemistry of Iron 8vo, 2 00 Allen's Tables for Iron Analysis. 8vo, 2 50 Nichols's Water Supply (Chemical and Sanitary). 8vo, 2 50 Mason's " " " " 8vo, 5 00 Spencer's Sugar Manufacturer's Handbook 12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis. 8vo, 2 50 " Chemical Lecture Notes. 12mo, 3 00 DRAWING. ELEMENTARY—GEOMETRICAL—Topographical. Hill's Shades and Shadows and Perspective. (In preparation) MacCord's Kinematics. 8vo, 5 00 " Mechanical Drawing. 8vo, 5 00 " Descriptive Geometry. 8vo, 3 00 Reed's Topographical Drawing. (II. A)	Schimpf's Volumetric Analysis12mo,	2 50
Pinner's Organic Chemistry. (Austen.) 12mo, 150 Kolbe's Inorganic Chemistry. 12mo, 150 Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) 0blong 8vo, morocco, 75 Drechsel's Chemical Reactions. (Merrill.) 12mo, 125 Adriance's Laboratory Calculations 12mo, 125 Troilius's Chemistry of Iron 8vo, 200 Allen's Tables for Iron Analysis 8vo, 250 Nichols's Water Supply (Chemical and Sanitary) 8vo, 250 Mason's """"""" 8vo, 500 Spencer's Sugar Manufacturer's Handbook 12mo, morocco flaps, 200 Wiechmann's Sugar Analysis 8vo, 250 "Chemical Lecture Notes 12mo, 300 DRAWING. ELEMENTARY—GEOMETRICAL—Topographical Hill's Shades and Shadows and Perspective (In preparation) Mahan's Industrial Drawing. 8vo, 3 50 MacCord's Kinematics 8vo, 3 00 " Mechanical Drawing. 8vo, 3 00 " Descriptive Geometry 8vo, 3 00 Reed's Topographical Drawi	Hammarsten's Physiological Chemistry (Maudel.)8vo,	4 00
Rolbe's Inorganic Chemistry	Miller's Chemical Physics8vo,	2 00
Ricketts and Russell's Notes on Inorganic Chemistry (Nonmetallic) Metallic) Oblong 8vo, morocco, 75 Drechsel's Chemical Reactions. (Merrill.) 12mo, 125 Adriance's Laboratory Calculations 12mo, 125 Troilius's Chemistry of Iron 8vo, 200 Allen's Tables for Iron Analysis 8vo, 250 Nichols's Water Supply (Chemical and Sanitary) 8vo, 250 Mason's " " " 8vo, 500 Spencer's Sugar Manufacturer's Handbook. 12mo, morocco flaps, 200 Wiechmann's Sugar Analysis 8vo, 250 " Chemical Lecture Notes 12mo, 300 DRAWING. ELEMENTARY—GEOMETRICAL—Topographical. Hill's Shades and Shadows and Perspective (In preparation) MacCord's Kinematics 8vo, 500 " Mechanical Drawing 8vo, 400 " Descriptive Geometry 8vo, 300 Reed's Topographical Drawing (II. A.) 4to, 500 Smith's Topographical Drawing (Macmillan) 8vo, 250 Warren's Free-hand Drawing 12mo, 1	Pinner's Organic Chemistry. (Austen.)12mo,	1 50
metallic) Oblong 8vo, morocco, 75 Drechsel's Chemical Reactions. (Merrill.) 1 25 Adriance's Laboratory Calculations 1 2mo, 1 25 Troilius's Chemistry of Iron 8vo, 2 00 Allen's Tables for Iron Analysis 8vo, 2 50 Nichols's Water Supply (Chemical and Sanitary) 8vo, 2 50 Mason's " " " 8vo, 5 00 Spencer's Sugar Manufacturer's Handbook 12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis 8vo, 2 50 " Chemical Lecture Notes 12mo, 3 00 DRAWING. ELEMENTARY—GEOMETRICAL—Topographical Hill's Shades and Shadows and Perspective (In preparation) Mahan's Industrial Drawing. (Thompson) 2 vols., 8vo, 3 50 MacCord's Kinematics 8vo, 4 00 " Descriptive Geometry 8vo, 3 00 Reed's Topographical Drawing. (II. A.) 4to, 5 00 Smith's Topographical Drawing. (Macmillan) 8vo, 2 50 Warren's Free-hand Drawing 12mo, 1 00	Kolbe's Inorganic Chemistry12mo,	1 50
Drechsel's Chemical Reactions. (Merrill.)	Ricketts and Russell's Notes on Inorganic Chemistry (Non-	
Adriance's Laboratory Calculations	metallic) Oblong 8vo, morocco,	75
Troilius's Chemistry of Iron 8vo, 2 00 Allen's Tables for Iron Analysis 8vo, 2 50 Nichols's Water Supply (Chemical and Sanitary) 8vo, 2 50 Mason's " " " " 8vo, 5 00 Spencer's Sugar Manufacturer's Handbook 12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis 8vo, 2 50 " Chemical Lecture Notes 12mo, 3 00 DRAWING. ELEMENTARY—GEOMETRICAL—TOPOGRAPHICAL Hill's Shades and Shadows and Perspective (In preparation) Mahan's Industrial Drawing. (Thompson) 2 vols., 8vo, 3 50 MacCord's Kinematics 8vo, 5 00 " Mechanical Drawing 8vo, 3 00 Reed's Topographical Drawing. (II. A.) 4to, 5 00 Smith's Topographical Drawing. (Macmillan) 8vo, 2 50 Warren's Free-hand Drawing 12mo, 1 00	Drechsel's Chemical Reactions. (Merrill.)12mo,	1 25
Allen's Tables for Iron Analysis	Adriance's Laboratory Calculations	1 25
Nichols's Water Supply (Chemical and Sanitary). .8vo, 2 50 Mason's " " " .8vo, 5 00 Spencer's Sugar Manufacturer's Handbook. 12mo, morocco flaps, 2 00 Wiechmann's Sugar Analysis. .8vo, 2 50 " Chemical Lecture Notes. .12mo, 3 00 DRAWING. ELEMENTARY—GEOMETRICAL—Topographical. Hill's Shades and Shadows and Perspective. .(In preparation) Mahan's Industrial Drawing. (Thompson.) 2 vols., 8vo, 3 50 MacCord's Kinematics. .8vo, 5 00 " Mechanical Drawing. .8vo, 3 00 Reed's Topographical Drawing. (II. A.) .4to, 5 00 Smith's Topographical Drawing. (Macmillan.) .8vo, 2 50 Warren's Free-hand Drawing .12mo, 1 00	Troilius's Chemistry of Iron8vo,	2 00
Mason's " " " 8vo, 500 500 Spencer's Sugar Manufacturer's Handbook .12mo, morocco flaps, 200 200 Wiechmann's Sugar Analysis	Allen's Tables for Iron Analysis8vo,	
Spencer's Sugar Manufacturer's Handbook 12mo, morocco flaps, 2 00	Nichols's Water Supply (Chemical and Sanitary)8vo,	2 50
Wiechmann's Sugar Analysis. .8vo, 2 50 " Chemical Lecture Notes. .12mo, 3 00 DRAWING. ELEMENTARY—GEOMETRICAL—Topographical. Hill's Shades and Shadows and Perspective (In preparation) Mahan's Industrial Drawing. (Thompson). 2 vols., 8vo, 3 50 MacCord's Kinematics. .8vo, 5 00 " Mechanical Drawing. .8vo, 4 00 " Descriptive Geometry. .8vo, 3 00 Reed's Topographical Drawing. (II. A.) .4to, 5 00 Smith's Topographical Drawing. (Macmillan.) .8vo, 2 50 Warren's Free-hand Drawing .12mo, 1 00	Mason's " " " "8vo,	5 00
Chemical Lecture Notes	Spencer's Sugar Manufacturer's Handbook . 12mo, morocco flaps,	2 00
DRAWING. ELEMENTARY—GEOMETRICAL—TOPOGRAPHICAL. Hill's Shades and Shadows and Perspective (In preparation) Mahan's Industrial Drawing. (Thompson.)	Wiechmann's Sugar Analysis8vo,	2 50
ELEMENTARY—GEOMETRICAL—Topographical. Hill's Shades and Shadows and Perspective(In preparation) Mahan's Industrial Drawing. (Thompson.)	" Chemical Lecture Notes12mo,	3 00
Hill's Shades and Shadows and Perspective(In preparation) Mahan's Industrial Drawing. (Thompson.)	DRAWING.	
Mahan's Industrial Drawing. (Thompson.)	ELEMENTARY—GEOMETRICAL—TOPOGRAPHICAL.	
MacCord's Kinematics .8vo, 5 00 " Mechanical Drawing .8vo, 4 00 " Descriptive Geometry .8vo, 3 00 Reed's Topographical Drawing (II. A.) .4to, 5 00 Smith's Topographical Drawing (Macmillan.) .8vo, 2 50 Warren's Free-hand Drawing .12mo, 1 00	Hill's Shades and Shadows and Perspective(In preparation)	
" Mechanical Drawing. 8vo, 4 00 " Descriptive Geometry. 8vo, 3 00 Reed's Topographical Drawing. (II. A.). 4to, 5 00 Smith's Topographical Drawing. (Macmillan.) 8vo, 2 50 Warren's Free-hand Drawing 12mo, 1 00	Mahan's Industrial Drawing. (Thompson.)2 vols., 8vo,	3 50
" Descriptive Geometry .8vo, 3 00 Reed's Topographical Drawing. (II. A.) .4to, 5 00 Smith's Topographical Drawing. (Macmillan.) .8vo, 2 50 Warren's Free-hand Drawing .12mo, 1 00		5 00
Reed's Topographical Drawing. (II. A.)	" Mechanical Drawing8vo,	4 00
Smith's Topographical Drawing. (Macmillan.)	" Descriptive Geometry8vo,	3 00
Warren's Free-hand Drawing	Reed's Topographical Drawing. (II. A.)4to,	5 00
Warren's Free-hand Drawing	Smith's Topographical Drawing. (Macmillan.)8vo,	2 50
	Warren's Free-hand Drawing12mo,	1 00

Warren's Drafting Instruments	\$ 1 25
" Projection Drawing12mo,	1 50
" Linear Perspective	1 00
" Plane Problems	1 25
" Primary Geometry	75
" Descriptive Geometry2 vols., 8vo,	3 50
" Problems and Theorems	2 50
"Machine Construction 2 vols., 8vo,	7 50
" Stereotomy-Stone Cutting8vo,	2 50
" Higher Linear Perspective8vo,	3 50
" Shades and Shadows8vo,	3 00
Whelpley's Letter Engraving	2 00
ELECTRICITY AND MAGNETISM.	
ILLUMINATION-BATTERIES-PHYSICS.	
* Dredge's Electric Illuminations2 vols., 4to, half morocco,	25 00
" " Vol. II4to,	7 50
Niaudet's Electric Batteries. (Fishback.)	2 50
Anthony and Brackett's Text-book of Physics 8vo,	4 00
Cosmic Law of Thermal Repulsion18mo,	75
Thurston's Stationary Steam Engines for Electric Lighting Pur-	
poses	1 50
Michie's Wave Motion Relating to Sound and Light,8vo,	4 00
Barker's Deep-sea Soundings8vo,	2 00
Holman's Precision of Measurements8vo,	2 00
Tillman's Heat8vo,	1 50
Gilbert's De-magnete. (Mottelay.)8vo,	2 50
Benjamin's Voltaic Cell8vo,	3 00
Reagan's Steam and Electrical Locomotives12mo	3 00
ENGINEERING.	
Civil-Mechanical-Sanitary, Etc.	
* Trautwine's Cross-sectionSheet,	25
* "Civil Engineer's Pocket-book12mo, mor. flaps,	5 00
* "Excavations and Embankments8vo,	2 00
* " Laying Out Curves12mo, morocco,	2 50
Hudson's Excavation Tables. Vol. II 8vo,	1 00
U	

Searles's Field Engineering	\$3 00
" Railroad Spiral12mo, morocco flaps,	1 50
Godwin's Railroad Engineer's Field-book. 12mo, pocket-bk. form,	2 50
Butts's Engineer's Field-book12mo, morocco,	2 50
Gore's Elements of Goodesy8vo,	2 50
Wellington's Location of Railways8vo,	5 00°
* Dredge's Penn. Railroad Construction, etc Folio, half mor.,	20 00
Smith's Cable Tramways4to,	2 50
" Wire Manufacture and Uses4to,	3 00
Mahan's Civil Engineering. (Wood.)8vo,	5 00
Wheeler's Civil Engineering8vo,	4 00
Mosely's Mechanical Engineering. (Mahan.) 8vo,	5 00
Johnson's Theory and Practice of Surveying 8vo,	4 00
"Stadia Reduction Diagram. Sheet, $22\frac{1}{2} \times 28\frac{1}{2}$ inches,	50
* Drinker's Tunnelling4to, half morocco,	25 00
Eissler's Explosives—Nitroglycerine and Dynamite 8vo,	4 00
Foster's Wooden Trestle Bridges4to,	5 00
Ruffner's Non-tidal Rivers8vo,	1 25
Greene's Roof Trusses8vo,	1 25
" Bridge Trusses8vo,	2 50
" Arches in Wood, etc8vo,	2 50
Church's Mechanics of Engineering-Solids and Fluids8vo,	6 00
" Notes and Examples in Mechanics8vo,	2 00
Howe's Retaining Walls (New Edition.)	1 25
Wegmann's Construction of Masonry Dams4to,	5 00
Thurston's Materials of Construction8vo,	5 00
Baker's Masonry Construction 8vo,	5 00
" Surveying Instruments12mo,	3 00
Warren's Stereotomy—Stone Cutting8vo,	2 50
Nichols's Water Supply (Chemical and Sanitary) 8vo,	2 50
Mason's " " " " "8vo,	5 00
Gerhard's Sanitary House Inspection16mo,	1 00
Kirkwood's Lead Pipe for Service Pipe8vo,	1 50
Wolff's Windmill as a Prime Mover8vo,	3 00,
Howard's Transition Curve Field-book12mo, morocco flap,	1 50
Crandall's The Transition Curve12mo, morocco,	1 50

Crandall's Earthwork Tables8vo,	\$ 1	5 0
Patton's Civil Engineering 8vo,		50
" Foundations8vo,	5	00
Carpenter's Experimental Engineering8vo,	6	00
Webb's Engineering Instruments	1	00
Black's U. S. Public Works4to,	5	00
Merriman and Brook's Handbook for Surveyors12mo, mor.,	2	00
Merriman's Retaining Walls and Masonry Dams8vo,	2	00
" Geodetic Surveying8vo,	2	00
Kiersted's Sewage Disposal 12mo,	1	25
Siebert and Biggin's Modern Stone Cutting and Masonry8vo,	1	5 0
Kent's Mechanical Engineer's Pocket-book12mo, morocco,	5	00
HYDRAULICS.		
Water-wheels-Windmills-Service Pipe-Drainage, 1	ETC.	
Weisbach's Hydraulics. (Du Bois.)8vo,	5	00
Merriman's Treatise on Hydraulics8vo,	4	00
Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.).8vo,	4	00
Nichols's Water Supply (Chemical and Sanitary)8vo,	2	50
Wolff's Windmill as a Prime Mover8vo,	3	00
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes8vo,	4	00
Kirkwood's Lead Pipe for Service Pipe8vo,	1	50
Ruffner's Improvement for Non-tidal Rivers8vo,	1	25
Wilson's Irrigation Engineering8vo,	4	00
Bovey's Treatise on Hydraulics8vo,	4	00
Wegmann's Water Supply of the City of New York4to,	10	00
Hazen's Filtration of Public Water Supply8vo,	2	00
Mason's Water Supply-Chemical and Sanitary8vo,	5	00
Wood's Theory of Turbines	2	50
MANUFACTURES.		
Aniline-Boilers-Explosives-Iron-Sugar-Watches	·	
Woollens, Etc.	,	
Metcalfe's Cost of Manufactures8vo,	5.	00
Metcalf's Steel (Manual for Steel Users)	2	00
Allen's Tables for Iron Analysis8vo,		
8		

West's American Foundry Practice 12mo,	\$2 50
" Moulder's Text-book12mo,	2 50
Spencer's Sugar Manufacturer's Handbook12mo, mor. flap,	2 00
Wiechmann's Sugar Analysis8vo,	2 50
Beaumont's Woollen and Worsted Manufacture12mo,	1 50
* Reisig's Guide to Piece Dyeing8vo,	25 00
Eissler's Explosives, Nitroglycerine and Dynamite8vo,	4 00
Reimann's Aniline Colors. (Crookes.)8vo,	2 50
Ford's Boiler Making for Boiler Makers18mo,	1 00
Thurston's Manual of Steam Boilers 8vo,	5 00
Booth's Clock and Watch Maker's Manual	2 00
Holly's Saw Filing18mo,	75
Svedelius's Handbook for Charcoal Burners	1 50
The Lathe and Its Uses 8vo,	6 00
Woodbury's Fire Protection of Mills8vo,	2 50
Bolland's The Iron Founder12mo,	2 50
" " Supplement12mo,	2 50
" Encyclopædia of Founding Terms12mo,	3 00
Bonvier's Handbook on Oil Painting	2 00
Steven's House Painting18mo,	75
MATERIALS OF ENGINEERING.	
STRENGTH—ELASTICITY—RESISTANCE, ETC.	
Thurston's Materials of Engineering 3 vols., 8vo.	8 00
Vol. I., Non-metallic8vo,	2 00
Vol. II., Iron and Steel 8vo,	3 50
Vol. III., Alloys, Brasses, and Bronzes8vo,	2 50
Thurston's Materials of Construction8vo,	5 00
Baker's Masonry Construction8vo,	5 00
Lanza's Applied Mechanics8vo,	7 50
" Strength of Wooden Columns	50
Wood's Resistance of Materials8vo,	2 00
Weyrauch's Strength of Iron and Steel. (Du Bois.)8vo,	1 50
Burr's Elasticity and Resistance of Materials8vo,	5 00
Merriman's Mechanics of Materials8vo,	4 00
Church's Mechanic's of Engineering—Solids and Fluids8vo,	6 00
v	

ì

,

Beardslee and Kent's Strength of Wrought Iron8vo,	-	50
Halfield's Trausverse Strains8vo,	_	00
Du Bois's Strains in Framed Structures4to,	10	
Merrill's Stones for Building and Decoration8vo,	_	00
Bovey's Strength of Materials8vo,	7	50
Spalding's Roads and Pavements12mo,	2	00
Rockwell's Roads and Pavements in France12mo,	1	25
Byrue's Highway Construction8vo,	-	00
Pattou's Treatise on Foundations8vo,	5	00-
MATHEMATICS.		
CALCULUS—GEOMETRY—TRIGONOMETRY, ETc.		
Rice and Johnson's Differential Calculus8vo,	3	50 ·
" Abridgment of Differential Calculus8vo,	1	50
" Differential and Integral Calculus,		
2 vols. in 1, 12mo,	2	50
Johnson's Integral Calculus	1	50
" Curve Tracing	1	$00 \cdot$
" Differential Equations—Ordinary and Partial8vo,	3	50
" Least Squares12mo,	1	50 ·
Craig's Linear Differential Equations8vo,	5	00-
Merriman and Woodward's Higher Mathematics 8vo,		
Bass's Differential Calculus		
Halsted's Synthetic Geometry8vo,	1	50 -
" Elements of Geometry8vo,	1	75
Chapman's Theory of Equations	1	50
Merriman's Method of Least Squares8vo,	2	00-
Compton's Logarithmic Computations12mo,	1	50
Davis's Introduction to the Logic of Algebra8vo,	1	50
Warren's Primary Geometry12mo,		75
" Plane Problems	1	25.
" Descriptive Geometry 2 vols., 8vo,	3	50 ·
" Problems and Theorems8vo,	2	50
" Higher Linear Perspective8vo,	3	50
" Free-hand Drawing	1	00
" Drafting Instruments 12mo,	1	25
10		

Warren's Projection Drawing12mo,	\$1	50)
" Linear Perspective12mo,	1	00
" Plane Problems12mo,	1	25
Searles's Elements of Geometry8vo,	1	50 ·
Brigg's Plane Analytical Geometry12mo,	1	00,
Wood's Co-ordinate Geometry8vo,	2	00·
Trigonometry12mo,	1	00
Mahan's Descriptive Geometry (Stone Cutting) 8vo,	1	50 ·
Woolf's Descriptive GeometryRoyal 8vo,	3	00·
Ludlow's Trigonometry with Tables. (Bass.)8vo,	3	00
" Logarithmic and Other Tables. (Bass.)8vo,	2	0 0 -
Baker's Elliptic Functions8vo,	1	5 0·
Parker's Quadrature of the Circle8vo,	2	50
Totteu's Metrology8vo,	2	5 0·
Ballard's Pyramid Problem8vo,	1	50
Barnard's Pyramid Problem8vo,	1	50 [,]
MECHANICS—MACHINERY.		
TEXT-BOOKS AND PRACTICAL WORKS.		
Text-books and Practical Works. Dana's Elementary Mechanics	1	50 ⁄
	_	50 [,] 25
Dana's Elementary Mechanics	1	
Dana's Elementary Mechanics	1 1	25
Dana's Elementary Mechanics	1 1 3	25 25
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " " Supplement and Key. " Analytical Mechanics 8vo,	1 1 3 4	25 25 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " " Supplement and Key " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo,	1 1 3 4 4	25 25 00 00
Dana's Elementary Mechanics 12mo, Wood's "	1 1 3 4 4 6	25 25 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " " Supplement and Key. " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo,	1 1 3 4 4 6	25 25 00 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " Supplement and Key " " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo, " Notes and Examples in Mechanics 8vo,	1 1 3 4 4 6	25 25 00 00 00 00
Dana's Elementary Mechanics	1 1 3 4 4 6 2 5	25 25 00 00 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " " Supplement and Key " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo, " Notes and Examples in Mechanics 8vo, Mosely's Mechanical Engineering (Mahan.) 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I.,	1 1 3 4 4 6 2 5	25 25 00 00 00 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " Supplement and Key 8vo, " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo, " Notes and Examples in Mechanics 8vo, Mosely's Mechanical Engineering (Mahan.) 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I., 8vo, Sec. I. (Klein.) 8vo,	1 1 3 4 4 6 2 5	25 25 00 00 00 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " Supplement and Key " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo, " Notes and Examples in Mechanics 8vo, Mosely's Mechanical Engineering (Mahan.) 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 1.	1 1 3 4 4 6 2 5	25 25 00 00 00 00 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " Supplement and Key " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo, " Notes and Examples in Mechanics 8vo, Mosely's Mechanical Engineering (Mahan.) 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo,	1 1 3 4 4 6 2 5 5	25 25 25 00 00 00 00 00 00 00
Dana's Elementary Mechanics 12mo, Wood's " 12mo, " Supplement and Key 12mo, " Analytical Mechanics 8vo, Michie's Analytical Mechanics 8vo, Merriman's Mechanics of Materials 8vo, Church's Mechanics of Engineering 8vo, " Notes and Examples in Mechanics 8vo, Mosely's Mechanical Engineering (Mahan.) 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo, Weisbach's Mechanics of Engineering Vol. III., Part I. 8vo, Weisbach's Hydranlics and Hydranlic Motors (Du Bois) 8vo,	1 1 3 4 4 6 2 5 5 5 5	25 25 25 00 00 00 00 00 00 00 00 00

Crehore's Mechanics of the Girder8vo,	\$ 5	00
MacCord's Kinematics8vo,	5	00
Thurston's Friction and Lost Work8vo,	3	00
" The Animal as a Machine	1	00
Hall's Car Lubrication12mo,	1	00
Warren's Machine Construction	7	50
Chordal's Letters to Mechanics12mo,	2	00
The Lathe and Its Uses 8vo,	6	00
Cromwell's Toothed Gearing12mo,	1	50
" Belts and Pulleys12mo,	1	50
Du Bois's Mechanics. Vol. I., Kinematics8vo,	3	50
" Vol. II., Statics	4	00
" Vol. III., Kinetics8vo,	3	50
Dredge's Trans. Exhibits Building, World Exposition,		
4to, half morocco,	15	00
Flather's Dynamometers12mo,	2	00
" Rope Driving12mo,	2	00
Richards's Compressed Air12mo,	1	50 ·
Smith's Press-working of Metals8vo,	3	00
Holly's Saw Filing		75
Fitzgerald's Boston Machinist18mo,	1	00
Baldwin's Steam Heating for Buildings	2	50
Metcalfe's Cost of Manufactures8vo.	5	00
Benjamin's Wrinkles and Recipes12mo,	2	00
Dingey's Machinery Pattern Making12mo,	2	00
,		•
METALLURGY.		
Iron-Gold-Silver-Alloys, Etc.		
Egleston's Metallurgy of Silver 8vo,	7	50
" Gold and Mercury8vo,	7	50
" Weights and Measures, Tables18mo,		75
" Catalogue of Minerals8vo,	2	50
O'Driscoll's Treatment of Gold Ores		00
* Kerl's Metallurgy—Copper and Iron8vo,	15	
# " Steel, Fuel, etc8vo,	15	
12		-

" Alloys8vo,	2	50
Troilius's Chemistry of Irou8vo,	2 (90
Kunhardt's Ore Dressing in Europe8vo,	1	50·
Weyrauch's Strength of Iron and Steel. (Du Bois.)8vo,	1	50
Beardslee and Kent's Strength of Wrought Iron8vo,	1	50
Compton's First Lessons in Metal Working12mo,	1	50
West's American Foundry Practice12mo,	2	50
" Moulder's Text-book	2	50
MINERALOGY AND MINING.		
MINE ACCIDENTS—VENTILATION—ORE DRESSING, ETC.		
Dana's Descriptive Mineralogy. (E. S.)8vo, half morocco,	12	50
" Mineralogy and Petrography. (J. D.)12mo,	2	00
" Text-book of Mineralogy. (E. S.)8vo,	3	50
" Minerals and How to Study Them. (E. S.)12mo,	1	5 0
" American Localities of Minerals8vo,	1	00
Brush and Dana's Determinative Mineralogy8vo,	3	50
Rosenbusch's Microscopical Physiography of Minerals and		
Rocks. (Iddings.)8vo,	5	00
Hussak's Rock-forming Minerals. (Smith.)8vo,	2	00·
Williams's Lithology8vo,	3	00
Chester's Catalogue of Minerals8vo,	1	25
" Dictionary of the Names of Minerals8vo,	3	00
Egleston's Catalogue of Minerals and Synonyms8vo,	2	50
Goodyear's Coal Mines of the Western Coast12mo,	2	50
Knnhardt's Ore Dressing in Europe8vo,	1	50
Sawyer's Accidents in Mines8vo,	7	00
Wilson's Mine Ventilation16mo,	1	25
Boyd's Resources of South Western Virginia8vo,	3	00
" Map of South Western VirginiaPocket-book form,	2	00
Stockbridge's Rocks and Soils8vo,	2	50
Eissler's Explosives—Nitroglycerine and Dynamite8vo,	4	00

Thurston's Iron and Steel......8vo, \$3 50

*Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.		
4to, half morocco,	\$25 (00
Beard's Ventilation of Mines	2	
Ihlseng's Manual of Mining8vo,	4	-
STEAM AND ELECTRICAL ENGINES, BOILERS, E	tc.	
STATIONARY-MARINE-LOCOMOTIVE-GAS ENGINES, ETC		
Weisbach's Steam Engine. (Du Bois.)8vo,	5	00
Thurston's Engine and Boiler Trials8vo,	5	00
" Philosophy of the Steam Engine12mo,		75
" Stationary Steam Engines12mo,	1	50
"Boiler Explosion	1	50
" Steam-boiler Construction and Operation8vo,		
" Reflection on the Motive Power of Heat. (Carnot.)		
12mo,	2	00
Thurston's Manual of the Steam Engine. Part I., Structure		
and Theory8vo,	7	50
Thurston's Manual of the Steam Engine. Part II., Design,		
Construction, and Operation8vo,	7	50
2 parts,	12	00
Röntgen's Thermodynamics. (Du Bois.)8vo,	5	00
Peabody's Thermodynamics of the Steam Engine 8vo,	5	00
" Valve Gears for the Steam-Engine8vo,	2	50
" Tables of Saturated Steam8vo,	1	00
Wood's Thermodynamics, Heat Motors, etc8vo,	4	00
Pupin and Osterberg's Thermodynamics12mo,	1	25
Kneass's Practice and Theory of the Injector8vo,	1	50
Reagan's Steam and Electrical Locomotives 12mo,	2	00
Meyer's Modern Locomotive Construction4to,	10	00
Whitham's Steam-engine Design8vo,	6	00
" Constructive Steam Engineering8vo,	10	00
Hemenway's Indicator Practice12mo,	2	00
Pray's Twenty Years with the IndicatorRoyal 8vo,	2	5 0
Spangler's Valve Gears8vo,	2	50
* Maw's Marine EnginesFolio, half morocco,	18	00
Trowbridge's Stationary Steam Engines4to, boards, 14	2	50

Ford's Boiler Making for Boiler Makers	2 1	00 50 50 50 00
TABLES, WEIGHTS, AND MEASURES.		
FOR ENGINEERS, MECHANICS, ACTUARIES—METRIC TABLES,	Етс	١.
Crandall's Railway and Earthwork Tables	_	50 25 25
Compton's Logarithms12mo,	_	50
Ludlow's Logarithmic and Other Tables. (Bass.) 12mo,		00,
Thurston's Conversion Tables	_	00 75
Totten's Metrology8vo,		50
Fisher's Table of Cubic YardsCardboard,	~	25
Hudson's Excavation Tables. Vol. II 8vo,	1	00
VENTILATION.		
STEAM HEATING-HOUSE INSPECTION-MINE VENTILATION	ON.	
Beard's Ventilation of Mines12mo,	2	50
Baldwin's Steam Heating	2	50
Reid's Ventilation of American Dwellings		50
Mott's The Air We Breathe, and Ventilation16mo,		00
Gerhard's Sanitary House Inspection Square 16mo,		00
Wilson's Mine Ventilation		25
Carpenter's Heating and Ventilating of Buildings8vo,	3	00
MISCELLANEOUS PUBLICATIONS.		
Alcott's Gems, Sentiment, LanguageGilt edges,	5	00
Bailey's The New Tale of a Tub8vo,		75
Ballard's Solution of the Pyramid Problem8vo,		50
Barnard's The Metrological System of the Great Pyramid8vo, 15	1	50

* Wiley's Yosemite, Alaska, and Yellowstone4to,	\$3 00		
Emmon's Geological Guide-book of the Rocky Mountains 8vo,			
Ferrel's Treatise on the Winds8vo,			
Perkins's Cornell UniversityOblong 4to,			
Ricketts's History of Rensselaer Polytechnic Institute8vo,	3 00		
Mott's The Fallacy of the Present Theory of Sound. Sq. 16mo,	1 00		
Rotherham's The New Testament Critically Emphathized.			
12mo,	1 50		
Totten's An Important Question in Metrology8vo,	2 50		
Whitehouse's Lake MœrisPaper,	25		
HEBREW AND CHALDEE TEXT-BOOKS.			
For Schools and Theological Seminaries.			
Gesenius's Hebrew and Chaldee Lexicon to Old Testament.			
(Tregelles.) Small 4to, half morocco,	5 00		
Green's Grammar of the Hebrew Language (New Edition).8vo,	3 00		
" Elementary Hebrew Grammar	1 25		
" Hebrew Chrestomathy8vo,	2 00		
Letteris's Hebrew Bible (Massoretic Notes in English).			
8vo, arabesque,	2 25		
Luzzato's Grammar of the Biblical Chaldaic Language and the			
Talmud Babli Idioms12mo,	1 50		
MEDICAL.			
Dull's Maternal Management in Health and Disease 10mg	1 00		
Bull's Maternal Management in Health and Disease12mo,	1 00		
Mott's Composition, Digestibility, and Nutritive Value of Food.	1.05		
Large mounted chart,	1 25		
Steel's Treatise on the Diseases of the Ox8vo,	6 00		
Tradisc on the Discuses of the Dog	3 50·		
Worcester's Small Hospitals—Establishment and Maintenance,			
including Atkinson's Suggestions for Hospital Archi-	4 08		
tecture	1 25		
Hammarsten's Physiological Chemistry. (Mandel.)8vo,	4 00		

