HELMER HERMAN KOPPELMAN

CONTACT

≠1 609 356 4715≠31 6 3444 3587

koppelman@hotmail.com
hhkoppelman.github.io

LANGUAGES

Spoken

Dutch (native):
English:

Programming
Python/UNIX:
Fortran:
C/C++/SQL/HTML/Matlab:

LIBRARIES & TOOLS

Data preprocessing and analysis ••••• (pandas, vaex, jupyter) Scientific computing (numpy, scipy, matplotlib) Dimensionality reduction •••• (t-SNE, UMAP, PCA) Classification algorithms (xgboost, dbscan, sklearn) Basic experience with NN •0000 (keras, pytorch, normalizing flows) MCMC simulations •••• Bayesian analysis •••00 Modifying & optimizing code

PUBLICA	April 2021		
	Total	First Author	
Submitted	16	9	
Refereed	14	8	
Citations	802	191	
See also Google Scholar			

EDUCATION

University of Groningen

PhD Astronomy	2016 - 2020
University of Groningen	cum laude
MSc Astronomy	2014 - 2016
University of Groningen	cum laude
BSc Astronomy	2011 - 2014

ABOUT ME

I am extremely curious about a broad range of topics from science, finance, and economics to arts, politics, and literature. I am a world-leading astrophysicist, deriving my success in the field of Milky Way science from combining **theory** with **simulations** and **big data** (data sets with over a billion stars). Lastly, I have an affinity for **statistics**, **data science**, and **machine learning**.

SKILLS & COMPETENCES

1. Advanced statistics and quantitative data analysis

Some highlights (based on papers in the appendix)	[papers]
 Cross-matching stars in multiple data sets 	[3,4,5,6]
Bayesian maximum a posteriori regression analysis	[7]
 Optimization of integral routines (>1000 times faster) 	[7]
 Modifying algorithms in C/C++ and Fortran 	[1,3,9,12]
Developing an advanced mathematical framework	[9,12]
• Time-series analysis of orbital frequencies	[8]

2. Expert scientific programmer

- 5+ years experience in programming in Python with scientific applications (both scripting and notebooks).
- Creator of comprehensible publication-quality visualizations (featured in scientific papers, newspapers and magazines, documentaries, planetarium shows, and a textbook on galaxy formation).
- Responsible for pre-processing multi-purpose data sets for colleagues and collaborators.

3. Excellence in research

- First author of 9 papers that inspired several (ongoing) follow-up projects.
- Co-author of a seminal paper on the Milky Way's history.
- Offered a membership at the IAS in Princeton.

4. Leader & team player

Secretary and chair (1yr each) of executive board sports club
 Founding executive board member (1.5 yr) study association
 2011 - 2013
 2016 - 2017

PROFESSIONAL EXPERIENCE

Postdoctoral Researcher 2020 -

Institute for Advanced Study

Through statistical analysis of large astronomical data sets and interpretation of observations with theory, I study the dynamics and formation history of the Milky Way.

EXTRACURRICULAR ACTIVITIES

Coaching & Teaching

Creating practice exams (2013-2016) Supervision of students (2019-)

Teaching assistant:

'Intro to Programming' (2017, 2019) 'Dynamics of Galaxies' (2018, 2020)

Communication

20+ scientific talks 10+ public talks 3+ live interviews on local radio

5+ magazine interviews Creating illustrations and animations

for (inter)national media

Leadership & teamwork

Organizational work for the faculty, study association, and sports club: Sports tournaments
Galas and other social events
Symposium
Faculty introduction camp
Program committee of astronomy
Chair of first-year PhD committee

Machine Learning

Top 5% in a <u>kaggle.com</u> competition for machine learning where I trained our best performing neural network

Resume Addendum

Selected Talks:

Talks at IAS, Princeton University, Flatiron Institute/CCA	2020-2021
Various talks at institutes in The Netherlands	2016-2020
KITP Santa Barbara: 3-week stay, 'Dynamical Models for Stars and Gas in Galaxies in the Gaia Era'	April-2019
Harvard: lunch talk, 2-day visit	April-2019
Yale: lunch talk, 1-day visit	April-2019
CCA: lunch talk, 2-day visit	April-2019
Shanghai: contributed talk at the 'The life and times of the Milky Way' conference	Nov-2018
Heidelberg: contributed talk at the 'Survival of Dense Star Clusters in the MW' conference	Nov-2018

First authored and relevant co-authored publications

[1]	Koppelman et al. 2018a	arXiv	DOI: arXiv:1804.07530		
[2]	Koppelman et al. 2018b	APJ-L	DOI: 10.3847/2041-8213/aac882		
[3]	Koppelman et al. 2019a	A&A	DOI: <u>10.1051/0004-6361/201834769</u>		
[4]	Koppelman et al. 2019b	A&A	DOI: 10.1051/0004-6361/201936738		
[5]	Koppelman et al. 2020a	A&A	DOI: <u>10.1051/0004-6361/202038652</u>		
[6]	Koppelman & Helmi 2020b	A&A	DOI: <u>10.1051/0004-6361/202038178</u>		
[7]	Koppelman & Helmi 2021a	A&A	DOI: <u>10.1051/0004-6361/202038777</u>		
[8]	Koppelman, Hagen, Helmi 2021b	A&A	DOI: <u>10.1051/0004-6361/202039390</u>		
[9]	Koppelman & Helmi 2021c	A&A	DOI: <u>10.1051/0004-6361/202039968</u>		
[10]	Helmi, Babusiaux, Koppelman , et al. 2018	Nature	DOI: <u>10.1038/s41586-018-0625-x</u>		
	Contribution: I analyzed the simulation and took care of the dynamical analysis (Fig. 1 & 3)				
[11]	Massari, Koppelman , and Helmi 2019	A&A	DOI: <u>10.1051/0004-6361/201936135</u>		
	Contribution: I did the dynamical analysis in this work and assisted in grouping the globular clusters.				
[12]	Helmi & Koppelman 2016	APJ-L	DOI: <u>10.3847/2041-8205/828/1/L10</u>		
	Contribution: During my MSc thesis, I modeled dark matter - stream interactions, the results of my thesis led to a paper.				

contribution 2 and 3 mg model and an analysis of contribution and make and an analysis of contribution and an analysis of cont

Relevant courses

Programming & statistical methods	Physics:	Stellar structure and evolution
Introduction to programming	Mechanics and relativity	Electrodynamics of radiation
Computational physics	Advanced mechanics	processes
Statistical Signal Processing	General relativity	Particle physics phenomenology
Statistical and numerical methods	Astrophysical hydrodynamics	Astroparticle physics
Math:	Dynamics of galaxies	High-energy astrophysics
Calculus	Waves and optics	Cosmic structure formation
Linear algebra	Quantum physics	Star and planet formation
Complex analysis	Electricity & magnetism	Formation and evolution of galaxies
Vector analysis	Structure of matter	Statistical Physics