Probabilidad Marginal, Conjunta y Condicional

Durante 18 días se registró por la mañana si estaba o no nublado y por la tarde si llovía o no.

	Nublado (A)	No nublado (A')	
Llueve (B)	7	3	10
No Ilueve (B')	2	6	8
	9	9	18

Probabilidad (*marginal*¹) de que ...

$$P(A) = 9/18 = \frac{1}{2}$$
 $P(A') = \frac{9}{18} = \frac{1}{2}$

- Ilueva: - no Ilueva:
$$P(B) = 10/18 = {}^{5}/_{9}$$
 $P(B') = 8/18 = {}^{4}/_{9}$

Probabilidad (conjunta) de que

- esté nublado **y** llueva:
$$P(A \cap B) = \frac{7}{18}$$

¹ Se calcula dividiendo la frecuencia total de nublado (no nublado, llueve o no llueve) entre la frecuencia total de los días (18).

² Se calcula dividiendo la frecuencia del cruce de características, de ahí conjunta, entre la frecuencia total de los días (18).

No habiendo independencia

	Nublado (A)	No nublado (A')	
Llueve (B)	7	3	10
No Ilueve (B')	2	6	8
	9	9	18

Probabilidad (*condicional*³) de que ...

- Ilueva dado que esté nublado: $P(B|A) = \frac{7}{9}$

- Ilueva dado que no esté nublado: $P(B|A') = {}^{3}I_{9}$

- no llueva dado que esté nublado: $P(B'|A) = \frac{2}{9}$

- no llueva dado que no esté nublado: P(B'|A') = ⁶/₉

- esté nublado dado que llueva: $P(A|B) = \frac{7}{10}$

- esté nublado dado que no llueva: $P(A|B') = {}^{2}I_{8} = {}^{1}I_{4}$

Compara las condicionales de lluvia y no lluvia con las marginales Probabilidad de que ...

- Ilueva: - no Ilueva: - no Ilueva:
$$P(B) = {}^{10}/_{18} = {}^{5}/_{9}$$
 $P(B') = {}^{8}/_{18} = {}^{4}/_{9}$

³ Se calcula dividiendo la frecuencia del cruce de lo que queremos y la condición entre la frecuencia del total de la condición.

Bajo independencia

	Nublado (A)	No nublado (A')	
Llueve (B)	5	5	10
No Ilueve (B')	4	4	8
•	9	9	18

Probabilidad (condicional) de que ...

- Ilueva dado que esté nublado: P(B|A) = 5/9

- Ilueva dado que no esté nublado: P(B|A') = 1

La probabilidad de lluvia no cambia con la condición

- no llueva dado que esté nublado: P(B'|A) = 4/9

- no llueva dado que no esté nublado: P(B'|A') = 4/9
La probabilidad de que no llueva no cambia con la condición

Probabilidad (marginal) de que ...

- Ilueva: - no Ilueva:
$$P(B) = \sqrt[10]{_{18}} = \sqrt[6]{_{9}}$$
 $P(B') = \sqrt[8]{_{18}} = \sqrt[4]{_{9}}$

Las condicionales y las marginales son iguales bajo independencia.

No habiendo independencia

Si nos interesa saber cuál es la probabilidad de que llueva, sabemos que

$$P(Ilueva) = P(B) = 10/18 = {}^{5}I_{9}$$

y nuestra primer mejor predicción de lluvia sería ⁵/₉.

Si sabemos que estuvo nublado, podemos incluir esa información y calcular de nuevo la probabilidad de que llueva, pero ahora considerando que estuvo nublado.

Para ello empleamos el teorema de Bayes

$$P(B|A) = \frac{P(A|B) P(B)}{P(A|B) P(B) + P(A|B') P(B')} = \frac{P(B \cap A)}{P(A)}$$

$$P(lueva|nublado) = \frac{7/10 \times 10/18}{(7/10 \times 10/18) + (1/4 \times 8/18)} = \frac{7/18}{9/18}$$

Ahora nuestra mejor predicción de que llueva es $^{7}I_{9}$.

Esta segunda predicción es mejor, ya que involucra información adicional útil: estuvo nublado.

Así, nuestra predicción de lluvia pasó de ⁵/₉ a ⁷/₉, a causa de esa nueva información

Lo anterior suena lógico, pues es más probable que llueva si estuvo nublado $(^{7}I_{9})$ que si no lo estuvo $(^{3}I_{9})$; mientras que la probabilidad sin considerar si estuvo o no nublado estaría entre esos valores $(^{5}I_{9})$.