Diffusion Models (Implementation)

Dr. Alireza Aghamohammadi

Diffusion model training

Input: Training data $\mathcal{D} = \{x_n\}$, Noise schedule $\{\beta_1, \dots, \beta_T\}$ **Output:** Network parameters ϕ

Step 1: Calculate alphas from betas:

for $t \in \{1, \ldots, T\}$ do

 $\alpha_t \leftarrow \prod_{t=1}^t (1-\beta_t)$ end **Step 2:** Repeat until converged:

while Not converged do

Sample a data point x from \mathcal{D}

Sample a point t from $\{1, \ldots, T\}$

Sample a noise vector ϵ from $\mathcal{N}(\epsilon; 0, \mathbf{I})$ Evaluate noisy latent variable: $z_t \leftarrow \sqrt{\alpha_t}x + \sqrt{1 - \alpha_t}\epsilon$

Compute loss term: $\mathcal{L}(\phi) \leftarrow \|g(z_t, \phi, t) - \epsilon\|^2$

Take optimizer step

end

Step 3: Return ϕ

Diffusion model sampling

Sample a noise vector: $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}; 0, \mathbf{I})$ Add scaled noise: $\mathbf{z}_{t-1} \leftarrow f(\mathbf{z}_t, \phi, t) + \sqrt{\beta_t} \epsilon$

Input: Trained denoising network $g(\mathbf{z}, \phi, t)$, Noise schedule $\{\beta_1, \dots, \beta_T\}$

Step 2: Iterate over time steps:

for $t \in T, \ldots, 2$ do $\alpha_t \leftarrow \prod_{\tau=1}^t (1-\beta_\tau)$

end

Return: x

Output: Sample vector \mathbf{x} in data space

Step 3: Final denoising step: $\mathbf{x} = \frac{1}{\sqrt{1-\beta_1}} \left(\mathbf{z}_1 - \frac{\beta_1}{\sqrt{1-\alpha_1}} g(\mathbf{z}_1, \phi, 1) \right)$

Step 1: Sample from final latent space: $\mathbf{z}_T \sim \mathcal{N}(\mathbf{z}_T; 0, \mathbf{I})$

Evaluate network output: $f(\mathbf{z}_t, \phi, t) \leftarrow \frac{1}{\sqrt{1-\beta_t}} \left(\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}} g(\mathbf{z}_t, \phi, t) \right)$