Data mining & Machine Learning

CS 373 Purdue University

Dan Goldwasser dgoldwas@purdue.edu

Today's Lecture

A deeper look into Hypothesis spaces and .. Your first learning algorithm!

- Hypothesis space over what do we search?
 - Underlying question Can learning really work?
 - If the answer is "no", it will be a shorter class...
- Your first learning algorithm: KNN.
 - Not really learning, but it is, but not really..
 - Key idea: Complexity and Expressivity in KNN

Reminder: Learning Algorithm

- Learning Algorithms generate a model, they work under the settings of a specific protocol
- Learning is essentially search
 - Given the space of possible models in our hypothesis space
 - Search for the best model
 - Define a procedure for efficiently search the model space.
 - Best is defined as maximizing some scoring function, defined w.r.t the training data and other properties

 We want to find the target function based on the training examples

x_1	x_2	x_3	x_4	y
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

- How many Boolean functions are there over 4 inputs?
- $2^{16} = 65536$ functions (**why?**)
 - 16 possible outputs.
 - Two possibilities for each output
- Without any data, 2¹⁶ options
- Does the data identify the right function?
- The training data contains 7 examples
 - We still have 2⁹ options

Is learning even possible?

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0 ←
0	0	1	1	$1 \leftarrow$
0	1	0	0	0 ←
0	1	0	1	0 ←
0	1	1	0	0 ←
0	1	1	1	?
1	0	0	0	?
1	0	0	1	$1 \leftarrow$
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0 ←
1	1	0	1	?
1	1	1	0	?
1	1	1	1	?

Hypothesis/Model Space

- A *hypothesis space* is the set of possible functions we consider
 - We were looking at the space of all Boolean functions
 - Instead choose a hypothesis space that is smaller than the space of all Boolean functions
 - Only simple conjunctions (with four variables, there are only 16 conjunctions without negations)
 - Simple disjunctions
 - m-of-n rules: Fix a set of n variables. At least m of them must be true
 - Linear functions

Take 2

- Simple Conjunctions: very small subset of Boolean functions
 - Only 16 possible conjunction of the form:

$$y=x_i \wedge ...x_j$$

Why?

– Can you find a consistent Hypothesis in this space?

x_1	x_2	x_3	x_4	у
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

Simple Conjunctions

Rule	Counterexample		
y =c			
X 1	1100 0		
X 2	0100 0		
X 3	0110 0		
X 4	0101 1		
X 1 Λ X 2	1100 0		
X 1 Λ X 3	0011 1		
X 1 Λ X 4	0011 1		

x_1	x_2	x_3	x_4	y
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

Rule	Counterexample
X 2 Λ X 3	0011 1
X 2 Λ X 4	0011 1
X 3 Λ X 4	1001 1
V4 A V2 A V2	0011.1

No simple conjunction can explain this data!

	X 1 Λ X 3 Λ X 4	0011 1
	X 2 Λ X 3 Λ X 4	0011 1
CS 3	X 1 Λ X 2 Λ X 3 Λ X 4	0011 1

New Model space: M-of-N rules

- The class of simple conjunctions is not expressive enough for our functions
- How can we pick a better space?
 - Prior knowledge about the problem
 - Sufficiently "flexible"
- Let's try another space m-of-n rules
 - Rules of the form "y = 1 if and only if at least m of the following n variables are 1"
 - How many are there for 4 Boolean variables?
 - Is there a consistent hypothesis?

- m-of-n rules
 - Examples:
 - 1 out of {x1}
 - 2 out of {x1, x3}
 - ...

x_1	x_2	x_3	x_4	y
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

- Is there a consistent hypothesis?
 - Check!
 - For example: Let's try checking for "2 out of {x1,x2,x3,x4}"
 - → Exactly one hypothesis is consistent with the data!

- Learning is removal of remaining uncertainty
 - If we know that the function is a "m-out-of-n",
 data can help find a function from that class
- Finding a good hypothesis class is essential!
 - You can start small, and enlarge it until you can find a hypothesis that fits the data

- Learning is removal of remaining uncertainty
 - If we know that the function is a "m-out-of-n",
 data can help find a function from that class
- Finding a good hypothesis class is essential!
 - You can start small, and enlarge it until you can find a hypothesis that fits the data

Question: Can there be more than one function that is consistent with the data?

How do you choose between them?

And now to something completely different

Your first classifier!

Your First Classifier!

- Let's consider one of the simplest classifiers out there.
- Assume we have a training set (x₁,y₁)...(x_n,y_n)
- Now we get a new instance x_{new},
- how can we classify it?
 - Example: Can you recommend a movie, based on user's movie reviews?

Your First Classifier!

Simple Solution:

- Find the most similar example (x,y) in the training data and predict the same
 - If you liked "Fast and Furious" you'll like "2 fast 2 furious"
- Only a single decision is needed: distance metric to compute similarity

$$d(x_1, x_2) = 1 - \frac{x_1 \cap x_2}{x_1 \cup x_2} \qquad d(x_1, x_2) = \sqrt[2]{(x_1 - x_2)^2}$$

K Nearest Neighbors

- Can you thing about a better way?
- We can make the decision by looking at several near examples, not just one. Why would it be better?

K Nearest Neighbors

- Learning: just storing the training examples
- Prediction:
 - Find the K training example closest to x
- Predict a label:
 - Classification: majority vote
 - Regression: mean value
- KNN is a type of instance based learning
- This is called *lazy* learning, since most of the computation is done at prediction time

- What are the advantages and disadvantages of KNN?
 - What should we care about when answering this question?
- Complexity
 - Space (how memory efficient is the algorithm?)
 - Why should we care?
 - Time (computational complexity)
 - Both at training time and at test (prediction) time
- Expressivity
 - What kind of functions can we learn?

What are the advantages and disadvantages of KNN?

-Datasets can be HUGE

- What should we care about when answering this question?KNN needs to maintain all training examples!
- Complexity
 - **Space** (how memory efficient is the algorithm?)
 - Why should we care?
 - Time (computational complexity)
 - Both at training time and at test (prediction) time
- Expressivity
 - What kind of functions can we learn?

Training is very fast! But prediction is slow

- O(dN) for N examples with d attributes
- increases with the number of examples!

- We discussed the importance of the model space
 - Expressive (we can represent the right model)
 - Constrained (we can search effectively, using available data)
- Let's try to characterize the model space, by looking at the decision boundary
- How would it look if K=1?

We define the model space to be our choice of K.

Does the complexity of the model space increase of decrease with K?

- Which model has a higher K value?
- Which model is more complex?
- Which model is more sensitive to noise?

Questions

- We know higher K values result in a smoother decision boundary.
 - Less "jagged" decision regions
 - Total number of regions will be smaller

What will happen if we keep increasing K, up to the point that K=n?

n = *is* the number of examples we have

Determining the value of K

- Higher K result in less complex functions (less expressive)
- Lower K values are more complex (more expressive)
 - How can we find the right balance between the two?
- Option 1: Find the K that minimizes the training error.
 - Training error: after learning the classifier, what is the number of errors we get on the training data. Is this a good idea?
 - What will be this value for k=1, k=n, k=n/2?
- Option 2: Find K that minimizes the validation error.
 - Validation error: set aside some of the data (validation) set). what is the number of errors we get on the validation data, after training the classifier.

Determining the value of K

In general – using the training error to tune parameters will always result in a more complex hypothesis! (why?)

Practical Considerations

- Finding the right representation is key
 - KNN is very sensitive to irrelevant attributes
- Choosing the right distance metric is important
 - Many options!
 - Popular choices:

- Euclidean distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_2 = \sqrt{\sum_{i=1}^n \left(\mathbf{x}_{1,i} - \mathbf{x}_{2,i}
ight)^2}$$

Manhattan distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_1 = \sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|$$

- L_p-norm
 - Euclidean = L₂
 - Manhattan = L₁

$$||\mathbf{x}_1 - \mathbf{x}_2||_p = \left(\sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^p\right)^{\frac{1}{p}}$$

Summary: Week 1

- Introduction to Machine Learning and Data mining
 - Why is data-centric computing interesting/relevant?
 - Where is it applicable?
 - What is the data-mining process? Where do you start? How do you know you are finished?
- Principles of Machine Learning
 - Model/Hypothesis space, Learning protocol, learning algorithm
 - Explain the tradeoff between complexity and expressiveness
 - KNN learning algorithm

Summary: Week 1

- Is KNN a supervised or unsupervised learning algorithm?
- If we increase K, would we get a more complex decision boundary?
- If we want to learn a Boolean function, what would be a simpler and complex model spaces?
- What can we do if the target function is not in our hypothesis space?
 - Does that even happen? How can we tell? Should we do something about it?
- I'm searching over an infinite size hypothesis space.
 - Would the search converge? Am I guaranteed that the target function is there?