Algebra para la Computación: MAT1185 Guía de Trabaio N°12

ACTIVIDADES

1)	Determinar,	en cada caso,	el cuadrante en	que se halla	$P(\theta)$, si:
----	-------------	---------------	-----------------	--------------	-------------------

a)
$$sen(\theta) < 0 \land tg(\theta) > 0$$

b)
$$tg(\theta) > 0$$
 $\land sec(\theta) > 0$

c)
$$cos(\theta) > 0$$
 \wedge $csc(\theta) > 0$ d) $sec(\theta) < 0$ \wedge $tg(\theta) > 0$

d)
$$sec(\theta) < 0 \land tg(\theta) > 0$$

e)
$$ctg(\theta) < 0$$
 \wedge $cos(\theta) > 0$

f)
$$sen(\theta) > 0 \land ctg(\theta) < 0$$

2) Para un ángulo de medida
$$\theta$$
, el punto $P(\theta)$ se encuentra situado en el lado terminal de un ángulo en posición estándar. Determinar el valor de las seis funciones trigonométricas correspondientes al valor de θ , si:

a)
$$P(\theta) = (-\sqrt{3}, -1)$$

b)
$$P(\theta) = (1, -1)$$

b)
$$P(\theta) = (1, -1)$$
 c) $P(\theta) = (-5, -12)$

d)
$$P(\theta) = (-1, \sqrt{3})$$

e)
$$P(\theta) = (3,4)$$
 f) $P(\theta) = (6, -8)$

f)
$$P(\theta) = (6, -8)$$

3) Dado el punto
$$P(\alpha)=$$
 ($5,-12$) , ubicado en el lado terminal de un ángulo en posición normal, encontrar el valor de $13 \ sen(\alpha) \ cos^2(\alpha) - 5 \ tg(\alpha)$.

4) Determinar los valores de las otras 5 funciones trigonométricas para la medida del ángulo dado, si se sabe que:

a)
$$sen(\theta) = \frac{3}{5}$$
 , $\dot{P}(\theta) \in II$ cuadrante

b)
$$tg(heta) = -rac{1}{3} \;,\; P(heta) \in II$$
 cuadrante

c)
$$cos(\theta) = \frac{15}{17}$$
, $P(\theta) \in IV$ cuadrante

c)
$$cos(\theta) = \frac{15}{17}$$
, $P(\theta) \in IV$ cuadrante d) $sec(\theta) = -\frac{2}{\sqrt{3}}$, $P(\theta) \in III$ cuadrante

e)
$$ctg(\theta) = -1$$
, $P(\theta) \in IV$ cuadrante

e)
$$ctg(\theta) = -1$$
, $P(\theta) \in IV$ cuadrante f) $sen(\theta) = -\frac{\sqrt{3}}{2}$, $P(\theta) \in III$ cuadrante

g)
$$csc(\theta) = \sqrt{2}$$
, $P(\theta) \in II$ cuadrante

g)
$$csc(\theta)=\sqrt{2}$$
 , $P(\theta)\in II$ cuadrante h) $cos(\theta)=\frac{12}{13}$, $P(\theta)\in IV$ cuadrante

5) Determinar el valor de las siguientes expresiones:

a)
$$sen(495^{\circ}) + 5 sen(180^{\circ}) + cos(30^{\circ})$$

b)
$$3 sen(570^{\circ}) - cos(420^{\circ})$$

c)
$$2\cos(120^\circ) + 3\cot(120^\circ) + 5tg(150^\circ) \cdot \cos(450^\circ)$$
 d) $\frac{2\sin(405^\circ) - \cos(180^\circ)}{\sin(390^\circ)}$

d)
$$\frac{2 \operatorname{sen}(405^{\circ}) - \operatorname{cos}(180^{\circ})}{\operatorname{sen}(390^{\circ})}$$

e)
$$sen(45^{\circ}) + sen(135^{\circ}) + sen(225^{\circ}) + sen(315^{\circ})$$
 f) $\frac{2 sen(495^{\circ}) cos(780^{\circ})}{cos(540^{\circ}) + sen(765^{\circ})}$

f)
$$\frac{2 sen(495^{\circ}) cos(780^{\circ})}{cos(540^{\circ}) + sen(765^{\circ})}$$

6) Determinar el valor de
$$\frac{5 \, sen(\, \theta) + 7 \, cos(\, \theta)}{6 \, cos(\, \theta) - 3 \, sen(\, \theta)}$$
 , si $tg(\theta) = -\frac{5}{12}$ y $\frac{\pi}{2} < \theta < \pi$

7) Simplificar las siguientes expresiones:

a)
$$\frac{ctg^2(\theta) - 4}{ctg^2(\theta) - ctg(\theta) - 6}$$

b)
$$\frac{sen^3(\theta) + cos^3(\theta)}{sen(\theta) + cos(\theta)}$$

- 8) La temperatura T del aire en una cierta ciudad (en grados centígrados), en un día de primavera, está dada por la función: $T=15+6\,sen(\frac{t-8}{12}\pi)$, donde t es el tiempo medido en horas a partir de la medianoche.
 - a) ¿Cuál es la temperatura a las 8 horas; a las 12 horas; a las 6 de la tarde?
 - b) Representar gráficamente la función.
- 9) Para las siguientes funciones sinusoidales, encontrar: amplitud, período, ángulo de desface, desplazamiento horizontal y vertical (si lo hay), intervalo que contiene un ciclo y gráfica.

a)
$$y = sen(4x)$$

b)
$$f(x) = 1 - 3sen(2x - \pi)$$

c)
$$y = \frac{1}{4} cos(x)$$

d)
$$f(x) = 3 sen(3x - \frac{\pi}{4})$$

e)
$$y = -sen(x - \frac{\pi}{2})$$

f)
$$f(x) = 2 sen(2x - 1) + 4$$

g)
$$y = -4\cos(x - \frac{\pi}{2})$$

h)
$$y = 4\cos(\frac{\pi}{2} - 2x)$$

i)
$$y = sen(x - \frac{\pi}{2}) - 2$$

j)
$$y = -\frac{1}{2} sen(3x - \frac{\pi}{4})$$

k)
$$y = \frac{1}{2} \cos(2x + \frac{\pi}{2})$$

I)
$$y = -3 sen(\frac{1}{2}x + 3) - 2$$

- 10) Una partícula de luz viaja por el espacio realizando una trayectoria de tipo sinusoidal. Los astrónomos han determinado que la trayectoria está dada por: $f(t)=5\,sen(2t-\frac{\pi}{3})$
 - a) Determinar la amplitud, la frecuencia angular, el periodo T y el ángulo de desfase.
 - b) Trazar la gráfica en el intervalo $[0, 2\pi]$.
- 11) Un peso de 6 libras que cuelga del extremo de un resorte, se estira $\frac{1}{3}$ de pie por debajo de la posición del punto de equilibrio y después se suelta. Si no se deprecian el roce y la resistencia del aire, la distancia x en que el peso se desplaza de su punto de equilibrio con respecto al tiempo t (en segundos), está dada por: $x = \frac{1}{3}cos(8t)$.

Encontrar la amplitud y el periodo de esta función. Graficar para $0 \le t \le \pi$.