1 Konzepte

Ereignisraum

Die Menge $\Omega \neq \emptyset$ aller möglichen Ergebnisse des betrachteten Zufallsexperiments. Die Elemente $\omega \in \Omega$ heissen Elementarereignisse.

Potenzmenge

Die Potenzmenge von Ω , bezeichnet mit $\mathcal{P}(\Omega)$ oder 2^{Ω} ist die Menge aller Teilmengen von Ω . Ein Prinzipielles Ereignis ist eine Teilmenge $A \subseteq \Omega$, also eine Kollektion von Elementarereignissen. Die Klasse aller beobachtbaren Ereignisse ist \mathcal{F} .

σ -Algebra

Ein Mengensystem ist eine σ -Algebra falls

- (1) $\Omega \in \mathcal{F}$
- (2) Für jedes $A \in \mathcal{F}$ ist auch $A^{\complement} \in \mathcal{F}$
- (3) Für jede Folge $A_{nn\in\mathbb{N}}$ mit $A_n\in\mathcal{F}$ für alle $n\in\mathbb{N}$ auch die Vereinigung $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$

Wahrscheinlichkeitsmass

Eine Abbildung $\mathcal{P}: \mathcal{F} \to [0,1]$ mit folgenden Eigenschaften:

- (1) $\mathcal{P}[A] > 0$ für alle Ereignisse $A \in \mathcal{F}$
- (2) $P[\Omega] = 1$
- (3) Für $A_i \in \mathcal{F}$ paarweise disjunkt gilt $P[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} \mathcal{P}[A_i]$

Es gelten weiter folgende Rechenregeln:

- $\mathcal{P}[A^{\complement}] = 1 \mathcal{P}[A]$
- $\mathcal{P}[\emptyset] = 0$
- Für $A \subseteq B$ gilt $\mathcal{P}[A] \leq \mathcal{P}[B]$
- $\mathcal{P}[A \cup B] = \mathcal{P}[A] + \mathcal{P}[B] \mathcal{P}[A \cap B]$

Diskrete Wahrscheinlichkeitsräume

Impliziert:

- \bullet Ω ist endlich oder abzählbar unendlich
- $\mathcal{F} = 2^{\Omega}$

Laplace Raum

Ist $\Omega = \{\omega_1, \dots, \omega_N\}$ endlich mit $|\Omega| = N$ und $\mathcal{F} = 2^{\Omega}$ sowie alle ω_i gleich wahrscheinlich mit $p_i = \frac{1}{n}$, so heisst Ω ein Laplace Raum und P die diskrete Gleichverteilung auf Ω . Dann ist für $A \subseteq \Omega$:

$$P[A] = \frac{|A|}{|\Omega|}$$

Bedingte Wahrscheinlichkeit

Seien A,B Ereignisse mit P[A]>0. Die bedingte Wahrscheinlichkeit von B unter der Bedingung, dass A eintritt wird definiert durch:

$$P[B \mid A] := \frac{P[B \cap A]}{P[A]}$$
$$= \frac{P[A \mid B] \cdot P[B]}{P[A]}$$

Multiplikationsregel

Es gilt:

$$P[A \cap B] = P[A \mid B] \cdot P[B] = P[B \mid A] \cdot P[A]$$

Satz der totalen Wahrscheinlichkeit

Sei A_1,\ldots,A_n eine Zerlegung von Ω in paarweise disjunkte Ereignisse, d.h. $\bigcup_{i=1}^n A_i = \Omega$ und $A_i \cap A_k = \emptyset \quad \forall i \neq k$. Dann gilt:

$$P[B] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Beweis. Da $B\subseteq\Omega\Longrightarrow B=B\cap\Omega=B\cap(\bigcup_{i=1}^nA_i)=\bigcup_{i=1}^n(B\cap A_i).$ Weiter sind alle Mengen der Art $(B\cap A_i)$ paarweise disjunkt, was bedeutet, dass $(B\cap A_i)$ eine disjunkte Zerlegung von B bilden. Damit folgt:

$$P[B] = P\left[\bigcup_{i=1}^{n} (B \cap A_i)\right]$$
$$= \sum_{i=1}^{n} P[B \cap A_i] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Satz von Bayes

Sei A_1, \ldots, A_n eine Zerlegung von Ω mit $P[A_i] > 0$ für $i \in \{1, \ldots, n\}$. Sei B ein Ereignis mit P[B > 0]. Dann gilt für jedes k:

$$P[A_k \mid B] = \frac{P[B \mid A_k] \cdot P[A_k]}{\sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]}$$

Beweis. Verwende Definition Bedingte Wahrscheinlichkeit, im Zähler Multiplikationsregel und im Nenner Satz der totalen Wahrscheinlichkeit.

Unabhängige Ereignisse (2)

Zwei ereignisse heissen (stochastisch) Unabhängig, falls

$$P[A \cap B] = P[A] \cdot P[B]$$

Ist P[A]=0oder P[B]=0, so sind A,Bimmer unabhängig. Für $P[A]\neq 0$ gilt:

$$A,B$$
unabhängig $\Longleftrightarrow P[A\mid B] = P[A]$

Unabhängige Ereignisse (∞)

Die Ereignisse A_1, \ldots, A_n heissen (stochastisch) unabhängig, wenn für jede endliche Teilfamilie der Produktformel gilt, d.h. für $m \in \mathbb{N}$ und $\{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$:

$$P\left[\bigcap_{i=1}^{n} *A_{k_i}\right] = \prod_{i=1}^{n} P[A_{k_i}]$$

Diskrete Zufallsvariable

Eine reelwertige diskrete Zufallsvariable auf Ω ist eine Funktion $X: \Omega \mapsto \mathbb{R}$. Mit Ω ist natürlich auch $\mathcal{W}(X) = \{x_1, x_2, \dots\}$ endlich oder abzählbar.

• Die Verteilungsfunktion von X ist die Abbildung $F_X : \mathbb{R} \mapsto [0,1]$, definiert durch:

$$t \mapsto F_X(t) := P[X \le t] := P[\{\omega : X(\omega) \le t\}]$$

Die Gewichtsfunktion oder diskrete Dichte von X ist die Funktion p_X : W(X) → [0, 1], definiert durch:

$$p_X(X_k) := P[X = x_k] = P[\{\omega : X(\omega) = x_k\}]$$

Wobei gilt:

- $F_X(t) = P[X \le t] = \sum_{k \text{ mit } x_k \le t} p_X(x_k)$
- Für jedes $x_k \in \mathcal{W}(X)$ gilt $0 \le p_X(x_k) \le 1$ und $\sum_{x_k \in \mathcal{W}(X)} p_X(x_k) = 1$
- $\mu_X(B) := P[X \in B] = \sum_{x_k \in B} p_X(x_k)$
- $\sum_{x_k \in \mathcal{W}(X)} p_X(x_k) = P[X \in \mathcal{W}(X)] = 1$

Indikatorfunktion

Für jede Teilmenge $A\subseteq \Omega$ ist die Indikatorfunktion I_A von A definiert durch:

$$I_A(\omega) := egin{cases} 1 & ext{falls } \omega \in A \\ 0 & ext{falls } \omega \in A^{\complement} \end{cases}$$

Erwartungswert

Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion $p_X(x)$, dann ist der Erwartungswert definiert durch:

$$E[X] := \sum_{x_k \in \mathcal{W}(X)} x_k \cdot p_X(x_k)$$

und hat folgende Eigenschaften:

- Linearität: $E[a \cdot X + b] = a \cdot E[X] + b$
- Monotonie: $X < Y \implies E[X] < E[Y]$
- Nimmt X nur Werte in \mathbb{N} an:

$$E[X] = \sum_{i=1}^{\infty} P[X \ge i]$$

Erwartungswert von Funktionen

Sei X eine Diskrete Zufallsvariable mit Gewichtsfunktion $p_X(x)$ und Y = g(X) für eine Funktion $Y : \mathbb{R} \to \mathbb{R}$. Dann gilt:

$$E[Y] = E[g(X)] = \sum_{x_k \in \mathcal{W}(X)} g(x_k) \cdot p_X(x_k)$$

Varianz

Sei X eine diskrete Zufallsvariable. Ist $E[X^2] < \infty$, so heisst:

$$Var[X] := E[X - E[X]^2]$$

$$= \sum_{x_k \in \mathcal{W}(X)} x_k - E[X]^2 \cdot p_X(x_k)$$

die Varianz von X. Es gilt weiter:

- $Var[X] = E[X^2] E[X]^2$
- $Var[a \cdot X + b] = a^2 \cdot Var[X]$
- $Var[X Y] = Var[X] + -1^2 \cdot Var[Y]$

Standardabweichung

$$\sigma(X) = \sqrt{Var[X]}$$

Gemeinsame Verteilung

Seien X_1, \ldots, X_n beliebige Zufallsvariablen. Die Gemeinsame Verteilungsfunktion von X_1, \ldots, X_n ist die Abbildung $F : \mathbb{R}^n \mapsto [0, 1]$, definiert durch:

$$(x_1, \dots, x_n) \mapsto F(x_1, \dots, x_n) := P[X_1 \le x_1, \dots, X_n \le x_n]$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$$

Die Gemeinsame Gewichtsfunktion ist:

$$p(x_1,\ldots,x_n) := P[X_1 = x_1,\ldots,X_n = x_n]$$

Randverteilung

Haben X,Y die Gemeinsame Verteilungsfunktion F, so ist die Funktion $F_X: \mathbb{R} \mapsto [0,1],$

$$x \mapsto F_X(x) := P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$$

Sind X, Y diskrete Zufallsvariablen mit $\mathcal{W}(Y) = \{y_1, y_2, \dots\}$ und gemeinsamer Gewichtsfunktion p(x, y), so ist die Gewichtsfunktion der Randverteilung von X gegeben durch:

$$x \mapsto p_X(x) := \sum_{y_i \in \mathcal{W}(X)} P[X = x, Y = y_i]$$

Unabhängige Zufallsvariablen

Zufallsvariablen X_1, \dots, X_n heissen Unabhängig, falls gilt (äquivalent):

$$F(x_1, \dots, x_n) = F_{X_1}(x_1) \cdot \dots \cdot F_{X_n}(x_n)$$

$$p(x_1, \dots, x_n) = p_{X_1}(x_1) \cdot \dots \cdot p_{X_n}(x_n)$$

Unabhängige Ereignisse

Ereignisse A_1, \ldots, A_n heissen Unabhängig, falls für beliebige Teilmengen $B_i \subseteq \mathcal{W}(X_i)$ $i = 1, \ldots, n$ gilt (äquivalent):

$$P[X_1 \in B_1, \dots, X_n \in B_n] = \prod_{i=1}^n P[X_i \in B_i]$$

Funktionen von Zufallsvariablen

Seien X_1, \ldots, X_n diskrete Unabhängige Zufallsvariablen und $f_i : \mathbb{R} \to \mathbb{R}$ irgendwelche Funktionen. Sei weiter $Y_i := f_i(X_i)$. Dann sind die Zufallsvariablen Y_1, \ldots, Y_n ebenfalls unabhängig.

Linearität des Erwartungswertes

Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. $E[X_1], \ldots, E[X_n]$. Sei $Y = a + \sum_{i=1}^n b_i \cdot X_i$ mit Konstanten a, b_1, \ldots, b_n . Dann gilt:

$$E[Y] = a + \sum_{i=1}^{n} b_i \cdot E[X_i]$$

Kovarianz

Seien X,Y Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω,\mathcal{F},P) mit endlichen Erwartungswerten. Dann ist die Kovarianz definiert als:

$$Cov(X,Y) := E[XY] - E[X]E[Y]$$
$$= E[(X - E[X])(Y - E[Y])]$$

Wobei Cov(X, X) = Var[X].

Korrelation

Die Korrelation von X, Y ist definiert durch

$$\rho(X,Y) := \begin{cases} \frac{Cov(X,Y)}{\sigma(X) \cdot \sigma(Y)} & \text{falls } \sigma(X) \cdot \sigma(Y) > 0 \\ 0 & \text{sonst.} \end{cases}$$

und es gilt $|Cov(X,Y)| \leq \sigma(X) \cdot \sigma(Y)$ beziehungsweise $-1 \leq \rho(X,Y) \leq 1.$

Summenformel für Varianzen

$$Var\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} Var[X_i] + 2 \cdot \sum_{i < j} Cov(X_i, X_j)$$

ist aber Cov(X,Y)=0 (X,Y) paarweise unkorreliert), so wird die Summe linear.

Produkte von Zufallsvariablen

Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Falls X_1, \ldots, X_n unabhängig sind, so ist:

$$E\left[\prod_{i=1}^{n} X_i\right] = \prod_{i=1}^{n} E[X_i]$$

Dann sind auch X_1, \ldots, X_n paarweise unkorreliert und:

$$Var\left[\sum_{i=1}^{n}X_{i}\right]=\sum_{i=1}^{n}Var[X_{i}]$$

da Unabhängig \implies paarweise Unabhängig \implies unkorreliert.

Bedingte Verteilung

Seien X,Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion p(x,y). Die bedingte Gewichtsfunktion von X, gegeben dass Y=y, ist definiert durch:

$$\begin{split} p_{X\mid Y}(x\mid y) &:= P[X=x\mid Y=y] \\ \frac{P[X=x,Y=y]}{P[Y=y]} &= \frac{p(x,y)}{p_Y(y)} \end{split}$$

für $p_Y(y) > 0$ und 0 sonst.

Kriterium für Unabhängigkeit

X,Y sind genau dann unabhängig, wenn für alle y mit $p_Y(y)>0$ gilt:

$$p_{X \mid Y}(x \mid y) = p_X(x)$$
 $\forall x \in \mathcal{W}(X)$

n tief k

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Ableitung, Integration

Es gilt:

- Summerregel (f(x) + q(x))' = f'(x) + q'(x)
- Produktregel $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- Quotientenregel $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)}$ wenn $g(x) \neq 0$
- Kettenregel $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
- Partielle Integration $\int_a^b f'(x) \cdot g(x) dx = [f(x) \cdot g(x)]_a^b \int_a^b f(x) \cdot g'(x) dx$
- Substitution $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \cdot \varphi'(t) dt$
- $a+c, b+c \in I$: $\int_a^b f(t+c) dt = \int_{a+c}^{b+c} f(x) dx$
- Logarithmus $\int \frac{f'(t)}{f(t)} dt = \log(|f(x)|)$

Substitution Beispiel

$$\int \cos(x^2) 2x \, dx \qquad \qquad u = x^2$$

$$\int \cos(u) du \qquad \qquad \frac{du}{dx} = \frac{dx^2}{dx} = 2x$$

2 Diskrete Verteilungen

Diskrete Gleichverteilung

Die diskrete Gleichverteilung auf einer endlichen Menge $\mathcal{W}=\{x_1,\ldots,x_n\}$ gehärt zu einer Zufallsvariablen X mit Wertebereich \mathcal{W} und Gewichtsfunktion:

$$p_X(x_k) = P[X = x_k] = \frac{1}{N}$$
 $k \in \{1, \dots, N\}$

Unabhängige 0-1-Experimente

Es sei $A_i := \{ \text{Erfolg beim } i\text{-ten Experiment} \}$ und:

- Die A_i sind unabhängig
- $P[A_i] = p$ für alle i

 $Y_i(\omega) = \begin{cases} 1 & \omega \in A_i \\ 0 & \omega \notin A_i \end{cases}$

Bernoulli-Verteilung

Ein einziges 0-1-Experiment mit $W(X) = \{0, 1\}$. Die Gewichtsfunktion ist gegeben durch $p_X(1) = p$, sowie $p_X(0) = 1 - p$. Man schreibt kurz $X \sim Be(p)$. Es gilt:

$$E[X] = 1 \cdot P[X = 1] + 0 \cdot P[X = 0] = p$$
$$Var[X] = E[X^{2}] - E[X]^{2} = p \cdot (1 - p)$$

Binomialverteilung

Beschreibt die Anzahl der Erfolge bei n unabhängigen 0-1-Experimenten mit Erfolgsparameter p. Also ist die Zufallsvariable respektive Gewichtsfunktion:

$$X = \sum_{i=1}^{n} I_{A_i} = \sum_{i=1}^{n} Y_i$$

$$p_X(k) = P[X = k] = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

und man schreibt kurz $X \sim Bin(n, p)$. Es gilt weiter:

$$E[X] = \sum_{i=1}^{n} E[Y_i] = n \cdot p$$

$$Var[X] = \sum_{i=1}^{n} Var[Y_i] = n \cdot p \cdot (1-p)$$

Geometrische Verteilung

Bei einer unendlichen Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p sein X die Wartezeit zum ersten Erfolg:

$$X = \inf\{i \in \mathbb{N} : A_i \text{ tritt ein}\}$$
$$p_X(k) = P[X = k] = p \cdot (1 - p)^{k - 1}$$

wir schreiben $X \sim Geom(p)$ und es gilt:

$$\begin{split} E[X] &= \sum_{i=0}^{\infty} (1-p)^l = \frac{1}{1-(1-p)} = \frac{1}{p} \\ E[X \cdot (X-1)] &= \frac{2(1-p)}{p^2} \\ Var[X] &= \frac{1-p}{p^2} \end{split}$$

Negativbinomiale Verteilung

Bei einer unendlichen Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p sein X die Wartezeit zum r-ten Erfolg $(r \in \mathbb{N})$:

$$X = \inf\{k \in \mathbb{N} : \sum_{i=1}^{k} I_{A_i} = r\}$$

$$p_X(k) = P[X = k] = {k-1 \choose r-1} \cdot p^r \cdot (1-p)^{k-r}$$

wir schreiben $X \sim NB(r, p)$ und es gilt:

$$E[X] = \sum_{i=1}^{r} E[X_i] = \frac{r}{p}$$

$$Var[X] = \sum_{i=1}^{r} Var[X_i] = \frac{r \cdot (1-p)}{p^2}$$

Hypergeometrische Verteilung

In einer Urne seien n Gegenstände, davon r vom Typ 1 und n-r vom Typ 2. Man zieht ohne zurücklegen m der Gegenstände. Die Zufallsvariable X beschreibt die Anzahl der Gegenstände vom Typ 1 in der Stichprobe. Der Wertebereich von X ist $\mathcal{W}(X) = \{0,1,\ldots,\min(m,r)\}$ und:

$$p_X(k) = \frac{\binom{r}{k} \cdot \binom{n-r}{m-k}}{\binom{n}{m}} \qquad \text{für } k \in \mathcal{W}(X)$$

$$E[X] = \sum_{i=1}^n i \cdot p_X(i) = m \cdot \frac{r}{n} \qquad \text{(Nicht im Skript)}$$

$$Var[X] = m \cdot \frac{r}{n} \left(1 - \frac{r}{n}\right) \cdot \frac{n-m}{n-1} \qquad \text{(Nicht im Skript)}$$

Poisson Verteilung

Die Poisson Verteilung mit Parameter $\lambda \in (0, \infty)$ ist eine Verteilung auf der Menge $\mathbb{N}_0 = \{0, 1, 2, \dots\}$ mit Gewichtsfunktion:

$$p_X(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$
 für $k = 0, 1, 2, ...$
$$E[X] = \sum_{i=1}^n i \cdot \frac{\lambda^i}{i!} e^{-\lambda} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

$$E[X^2] = \lambda^2 + \lambda$$

$$Var[X] = \lambda$$

Ist eine Zufallsvariable X Poisson verteilt mit Parameter λ schreiben wir X $\sim P(\lambda).$

3 Zufallsvariablen

Zufallsvariable

Sein (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum. Also Ω ein Grundraum, $\mathcal{F} \subseteq 2^{\Omega}$ die beobachtbaren Ereignisse und P ein Wahrscheinlichkeitsmass auf \mathcal{F} . Eine (reelwertige) Zufallsvariable auf Ω ist eine messbare Funktion $X:\Omega\mapsto\mathbb{R}$. Das bedeutet, dass die Menge $\{X\leq t\}=\{\omega:X(\omega)\leq t\}$ für jedes t ein beobachtbares Ereigniss sein muss.

Verteilungsfunktion

Die Verteilungsfunktion von X ist die Abbildung $F_X : \mathbb{R} \mapsto [0, 1]$:

$$t \mapsto F_X(t) := P[X < t] := P[\{\omega : X(\omega) < t\}]$$

und hat die Eigenschaften:

- F_X ist wachsend und rechtsstetig. Das bedeutet, dass $F_X(s) \leq F_X(t)$ für $s \leq t$ gilt und $F_X(u) \to F_X(t)$ für $u \to t$ mit u > t
- $\lim_{t\to-\infty} F_X(t) = 0$ und $\lim_{t\to+\infty} F_X(t) = 1$

Dichtefunktion

Das Analogon der Gewichtsfunktion im Diskreten Fall. Eine Zufallsvariable X mit Verteilungsfunktion $F_X(t) = P[X \leq t]$ heisst (absolut) stetig mit Dichte (funktion) $f_X : \mathbb{R} \mapsto [0, \infty)$, falls gilt:

$$F_X(t) = \int_{-\infty}^t f_X(s) \ dx$$
 für alle $t \in \mathbb{R}$

und hat die Eigenschaften:

- $f_X \geq 0$ und $f_X = 0$ ausserhalb von $\mathcal{W}(X)$.
- $\int_{-\infty}^{\infty} f_X(s) \ ds = 1$; das folgt aus $\lim_{t \to +\infty} F_X(t) = 1$

Gleichverteilung

Die Gleichverteilung auf dem Intervall [a,b] ist ein Modell für die Zufällige Wahl eines Punktes in [a,b]. Die zugehörige Zufallsvariable X hat den Wertebereich $\mathcal{W}(X) = [a,b]$, sowie

$$f_X(t) = \begin{cases} \frac{1}{b-a} & \text{für } a \le t \le b \\ 0 & \text{sonst.} \end{cases}$$

$$F_X(t) = \begin{cases} 0 & \text{für } t < a \\ \frac{t-a}{b-a} & \text{für } a \le t \le b \\ 1 & \text{für } t > b. \end{cases}$$

wir schreiben kurz $X \sim U(a, b)$.

$$E[X] = \frac{a+b}{2}$$
 $Var[X] = \frac{(b-a+1)^2 - 1}{12}$

Exponentialverteilung

Die Exponentialverteilung mit Parameter $\lambda>0$ ist das stetige Analogon der Geometrischen Verteilung. Die zugehörige Zufallsvariable X hat $\mathcal{W}(X)=[0,\infty)$, Dichte und Verteilungsfunktion:

$$\begin{split} f_X(t) &= \begin{cases} \lambda \cdot e^{-\lambda t} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{cases} \\ F_X(t) &= \int_{-\infty}^t f_X(s) \; ds = \begin{cases} 1 - e^{-\lambda t} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{cases} \end{split}$$

wir schreiben kurz $X \sim Exp(\lambda)$. Weiter ist die Funktion Gedächtsnislos, dh. $P[X>t+s \mid X>s]=P[X>t].$

$$E[X] = \frac{1}{\lambda}$$
 $Var[X] = \frac{1}{\lambda^2}$

Normalverteilung

Die Normalverteilung hat zwei Parameter: $\mu \in \mathbb{R}$ und $\sigma^2 > 0$. Die zugehörige Zufallsvariable X hat den Wertebereich $\mathcal{W}(X) = \mathbb{R}$ und die Dichtefunktion:

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$
 für $t \in \mathbb{F}$

welche symmetrisch um μ ist. Wir schreiben kurz: $X \sim \mathcal{N}(\mu, \sigma^2)$

Standard Normalverteilung

Wichtige Normalverteilung mit $\mathcal{N}(0,1)$. Weder für die zugehörige Dichte $\varphi(t)$ noch Verteilungsfunktion $\Phi(t)$ gibt es geschlossene Ausdrücke, aber das Integral

$$\Phi(t) = \int_{-\infty}^{t} \varphi(s) \ ds = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}s^2} \ ds$$

ist tabelliert. Ist $X \sim \mathcal{N}(\mu, \sigma^2)$, so ist $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$, also:

$$F_X(t) = P[X \le t] = P\left[\frac{X - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right] = \Phi\left(\frac{t - \mu}{\sigma}\right)$$

deshalb genügt es Φ zu tabellieren.

$$\Phi(-z) = 1 - \Phi(z)$$

Normalapproximation

Wenn $S_n \sim Bin(n, p)$ dann

$$S_n \sim_{approx} N(np, np(1-p))$$

Erwartungswert

Ist X stetig mit Dichte $f_X(x)$, so ist der Erwartungswert:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx$$

sofern das Integral absolut konvergiert. Ist das Integral nicht absolut konvergent, so existiert der Erwartungswert nicht.

Erwartungswert einer Funktion

Sei X eine Zufallsvariable und Y = g(X) eine weitere Zufallsvariable. Ist X stetig mit Dichte f_X , so ist

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \ dx$$

Momente & Absolute Momente

Sei X eine Zufallsvariable und $p \in \mathbb{R}^+$. Wir definieren:

- p-te absolute Moment von X: $M_p := E[|X|^p]$
- falls $M_n < \infty$ für ein n, dann ist das n-te (rohe) Moment von X durch $m_n := E[X^n]$ definiert.
- Das n-te zentralisierte Moment von X ist durch $\mu_n := E[(X E[X])^n]$ definiert.

Es gilt weiter, dass $M_n < \infty$ für $n \in \mathbb{N} \implies |m_m| \leq M_n$.

$$M_p = \int_{-\infty}^{\infty} |x|^p f_X(x) dx$$

$$m_n = \int_{-\infty}^{\infty} x^n f_X(x) dx$$

$$p < q \land M_q < \infty \implies M_p < \infty$$

Gemeinsame Verteilung/Dichte

Die Gemeinsame Verteilungsfunktion von Zufallsvariablen X_1,\ldots,X_n ist die Abbildung $F:\mathbb{R}^n\mapsto [0,1]$ mit:

$$F(x_1, \dots, x_n) := P[X_1 \le x_1, \dots, X_n \le x_n]$$
$$= \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(t_1, \dots, t_n) dt_n \dots t_1$$

dann heisst $f(x_1,\ldots,x_n)$ die gemeinsame Dichte, welche folgende Eigenschaften hat:

- $f(x_1, \ldots, x_n) \ge 0$ und = 0 ausserhalb von $\mathcal{W}(X_1, \ldots, X_n)$.
- $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(t_1, \ldots, t_n) dt_n \ldots t_1 = 1$
- $P[(X_1, \dots, X_n) \in A] = \int_{(x_1, \dots, x_n) \in A} f(t_1, \dots, t_n) dt_n \dots t_1$ für $A \subset \mathbb{R}^n$

Randverteilung

Haben X, Y die gemeinsame Verteilungsfunktion F, dann ist:

$$F_X(x) = P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \ dy$$

Unabhängigkeit

Die Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls gilt (äquivalent):

$$F(x_1, \dots, x_n) = F_{X_1}(x_1) \cdot \dots \cdot F_{X_n}(X_n)$$

$$f(x_1, \dots, x_n) = f_{X_1}(x_1) \cdot \dots \cdot f_{X_n}(X_n)$$

für alle x_1, \ldots, x_n .

Bedingte Verteilungen

Es gilt:

$$f_{X_1 \mid X_2}(x_1 \mid x_2) = \frac{f_{X_1, X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$

$$P[Y > t \mid Y < a] = \frac{P[t < Y < a]}{P[Y < a]}$$

$$E[X_1 \mid X_2] = \int x_1 \cdot f_{x_1 \mid x_2}(x_1 \mid x_2) dx_1$$

Summen von Zufallsvariablen

Sei Z = X + Y eine Zufallsvariable mit:

$$F_Z(z) = P[Z \le z] = P[X + Y \le z]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) \, dy \, dx$$

$$f_Z(z) = \int_{-\infty}^{\infty} f(z - y, y) \, dy$$

Transformationen

Sei X eine Zufallsvariable mit Verteilung und Dichte. Sei $g: \mathbb{R} \mapsto \mathbb{R}$ eine messbare Funktion. Betrachte nun Y = g(X), wir suchen Verteilung und Dichte von Y:

$$F_Y(t) = P[Y \le t] = P[g(Y) \le t] = \int_{A_g} f_X(s) ds$$
$$A_g := \{ s \in \mathbb{R} \mid g(s) \le t \}$$

Wobei man die Dichte durch ableiten der Verteilung erhält.

Anwendung von Transformationen

Sei F eine stetige und streng monoton wachsende Verteilungsfunktion mit Unkehrfunktion F^{-1} . Ist $X \sim \mathcal{U}(0,1)$ und $Y = F^{-1}(X)$, so hat Y gerade die Verteilungsfunktion F:

$$F_Y(t) = P[Y \le t] = P[F^{-1}(X) \le t]$$

= $P[X \le F(t)] = F(t)$

Markov Ungleichung

Sei X eine Zufallsvariable und ferner $g: \mathcal{W}(X) \mapsto [0, \infty)$ eine wachsende Funktion. Für jedes $c \in \mathbb{R}$ mit g(c) > 0 git dann:

$$P[X \ge c] \le \frac{E[g(X)]}{g(c)}$$

Chebyshev-Ungleichung

Sei Y eine Zufallsvariable mit endlicher Varianz. Für jedes b>0 git dann:

$$P[|Y - E[Y]| \ge b] \le \frac{Var[Y]}{b^2}$$

Schwaches Gesetz der grossen Zahlen

Sei X_1,X_2,\ldots eine Folge von unabhängigen Zufallsvariablen, die alle den gleichen Erwartungswert $E[X_i]=\mu$ und die gleiche Varianz $Var[X_i]=\sigma^2$ haben. Sei

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Dann konvergiert \overline{X}_n für $n \to \infty$ in Wahrscheinlichkeit/stochastisch gegen $\mu = E[X_i]$, d.h.:

$$P\left[\left|\overline{X}_n - \mu\right| > \varepsilon\right] \xrightarrow[n \to \infty]{} 0$$
 für jedes $\varepsilon > 0$

(Statt unabhängig genügt auch $Cov(X_i, X_k) = 0$ für $i \neq k$)

Starkes Gesetz der grossen Zahlen

Sei X_1,X_2,\ldots eine Folge von unabhängigen Zufallsvariablen, die alle dieselbe Verteilung haben, und ihr Erwartungswert $\mu=E[X_i]$ sei endlich. Für:

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

gilt dann

$$\overline{X}_n \xrightarrow[n \to \infty]{} \mu$$
 P-fastsicher

d.h.:

$$P\left[\left\{\omega\in\Omega:\overline{X}_n(\omega)\underset{n\to\infty}{\longrightarrow}\mu\right\}\right]=1$$

i.i.d. / u.i.v.

Independent identically distributed

Zentraler Grenzwertsatz

Sei X_1, X_2, \ldots eine Folge von i.i.d. Zufallsvariablen mit $E[X_i] = \mu$ und $Var[X_i] = \sigma^2$. Für die Summe $S_n = \sum_{i=1}^n X_i$ gilt dann:

$$\lim_{n\to\infty} P\left[\frac{S_n-n\cdot\mu}{\sigma\sqrt{n}}\leq x\right] = \Phi(x) \qquad \text{ für alle } x\in\mathbb{R}$$

wobei Φ die Verteilungsfunktion von $\mathcal{N}(0,1)$ ist.

4 Tabellen

4.1 Ableitungen

4.1 Ableitungen		
$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$(x-1)e^x$	xe^x	$(x+1)e^x$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq -1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
	$\frac{\sin(x)^2}{2}$	$\sin(x)\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x-\frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\tan(x) - x$	$\tan(x)^2$	$2\sec(x)^2\tan(x)$
$-\cot(x)-x$	$\cot(x)^2$	$-2\cot(x)\csc(x)^2$
$\frac{1}{2}(x+\frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{\frac{1}{\cos^2(x)}}{1 + \tan^2(x)}$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$rac{1}{\ln(a)x}$
	5	

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)/\arccos(x)$	$\frac{1/-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$x\arcsin(x) + \sqrt{1-x^2}$	$\arcsin(x)$
$x \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$
$x \arctan(x) - \frac{1}{2} \ln(1+x^2)$	$\arctan(x)$
$\ln(\cosh(x))$	$\tanh(x)$
$x^x \ (x>0)$	$x^x \cdot (1 + \ln x)$
$f(x)^{g(x)}$	$e^{g(x)ln(f(x))}$
$f(x) = \cos(\alpha)$	$f(x)^n = \sin(x + n\frac{\pi}{2})$
$f(x) = \frac{1}{ax+b}$	$f(x)^n = (-1)^n * a^n * n! * (ax + b)^{-n+1}$
$-\ln(\cos(x))$	$\tan(x)$
$\ln(\sin(x))$	$\cot(x)$
$\ln \left(an \left(rac{x}{2} ight) ight)$	$\frac{1}{\sin(x)}$
$\ln\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)$	$\frac{1}{\cos(x)}$

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$		
$\int f'(x)f(x)dx$	$\frac{1}{2}(f(x))^2$		
$\int \frac{f'(x)}{f(x)} dx$	$\ln f(x) $		
$\int_{-\infty}^{\infty} e^{-x^2} dx$	$\sqrt{\pi}$		
$\int (ax+b)^n dx$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$		
$\int x(ax+b)^n dx$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$		
$\int (ax^p + b)^n x^{p-1} dx$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$		
$\int (ax^p + b)^{-1} x^{p-1} dx$	$\frac{1}{ap}\ln ax^p+b $		
$\int \frac{ax+b}{cx+d} dx$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $		
$\int \frac{1}{x^2 + a^2} dx$	$\frac{1}{a} \arctan \frac{x}{a}$		
$\int \frac{1}{x^2 - a^2} dx$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $		
$\int \sqrt{a^2 + x^2} dx$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$		

Momenterzeugende Funktion

Die Momenterzeugende Funktion einer Zufallsvariable X ist:

$$M_X(t) := E[e^{t \cdot X}]$$
 für $t \in \mathbb{R}$

Grosse Summenabweichung

Seien X_1,\ldots,X_n i.i.d. Zufallsvariablen, für welche die Momenterzeugende Funktion $M_X(t)$ für alle $t\in\mathbb{R}$ endlich ist. Für jedes $b\in\mathbb{R}$ gilt dann:

$$P[S_n \ge b] \le \exp\left(\inf_{t \in \mathbb{R}} (n \cdot \log M_X(t) - t \cdot b)\right)$$

Chernoff Schranken

Seien X_1, \ldots, X_n unabhängig mit $X_i \sim Be(p)$ und $S_n = \sum_{i=1}^n X_i$. Sei $\mu_n := E[S_n] = \sum_{i=1}^n p_i$ und $\delta > 0$. Dann gilt:

$$P[S_n \ge (1+\delta) \cdot \mu_n] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$$

5 Schätzer

Schätzer

Wir suchen ein Modell für eine Stichprobe X_1, \ldots, X_n und haben einen Parameteraum $\vartheta \subseteq \Theta$ und für jedes ϑ einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$. Wir möchten nun die Parameter $\vartheta_1, \ldots, \vartheta_m$ bestimmen. Ein Schätzer T_j für einen Parameter ϑ_j ist eine Zufallsvariable der Form $T_j := t_j(X_1, \ldots, X_n)$ für eine Schätzfunktion t_j .

Schätzwert

Ein Schätzwert ist das Ergebnis einer konkreten Berechnung, eine Zahl. Sie entsteht durch das Einsetzen konkreter Daten in einen Schätzer: $T_j(\omega) = t_j(x_1,\ldots,x_n)$ und liefert damit einen Wert für genau einen Parameter.

Eigenschaften von Schätzern

Sei T ein Schätzer.

- T ist erwartungstreu, falls $E_{\vartheta}[T] = \vartheta$ gilt. T schätzt im Mittel also richtig.
- Bias := $E_{\vartheta}[T] \vartheta$. Ein erwartungstreuer Schätzer hat also keinen Bias.
- Mittlere Quadratische Schätzfehler $MSE_{\vartheta}[T] := E_{\vartheta}[(T-\vartheta)^2]$.
- Eine Folge $T^{(n)}$ von Schätzern heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ in P_{ϑ} -Wahrscheinlichkeit gegen ϑ konvergiert, d.h. für jedes $\vartheta \in \Theta$ gilt:

$$\lim_{n \to \infty} P_{\vartheta} \left[\left| T^{(n)} - \vartheta \right| > \varepsilon \right] = 0$$

Maximum-Likelihood Methode

(Analog im diskreten Fall.) In einem Modell P_{ϑ} sind die Zufallsvariablen X_1, \ldots, X_n stetig mit einer gemeinsamen Dichtefunktion $f(x_1, \ldots, x_n, \vartheta)$. Oft sind die X_i i.i.d. und man erhält:

$$f(x_1, \dots, x_n, \vartheta) = P[X_1 = x_1, \dots, X_n = x_n]$$
$$= \prod_{i=1}^n f_X(x_i, \vartheta)$$

Wir nehmen nun an, dass die Daten die wir erhalten haben sehr Wahrscheinlich sind und versuchen nun folgende Likelihood funktion zu Maximieren durch Anpassungen an ϑ :

$$L(x_1, \dots, x_n; \vartheta) := f(x_1, \dots, x_n; \vartheta)$$
$$\log L(x_1, \dots, x_n; \vartheta) := \log f(x_1, \dots, x_n; \vartheta)$$

letzteres kann bei Produkt zu Summe umwandlung hilfreich sein.

Sei $\Theta = [0,1]$. Wir betrachten die Modellfamilie $P_{\theta\theta\in\Theta}$, wobei X_1,\ldots,X_n unter \mathbb{P}_{θ} unabhängig und identisch verteilt sind mit $X_1 \sim \operatorname{Geom}(\theta)$. Was ist die Likelihood-Funktion $L(x_1,\ldots,x_n;\theta)$ für $x_1,\ldots,x_n\in\{1,2,\ldots\}$?

$$L(x_1, \dots, x_n; \theta) = (P_{\theta})[X_1 = x_1, \dots, X_n = x_n]$$
$$= \prod_{i=1}^n \mathbb{P}_{\theta}[X_i = x_i]$$
$$= \theta^n \cdot (1 - \theta)^{x_1 + \dots + x_n - n}$$

Was ist der Maximum-Likelihood-Schätzer T_{ML} für θ ?

$$n \cdot \log(\theta) + (x_1 + \ldots + x_n - n) \cdot \log(1 - \theta)$$

Wir setzen nun die Ableitung der log-Likelihood-Funktion nach θ gleich 0 und erhalten:

$$\frac{n}{\theta} - \frac{x_1 + \dots + x_n - n}{1 - \theta} = 0$$

$$\iff n - n\theta = (x_1 + \dots + x_n) \cdot \theta - n\theta$$

$$\iff \theta = \frac{n}{x_1 + \dots + x_n}$$

$$= \frac{n}{X_1 + \dots + X_n}$$

Empirisches Moment

Für $k \in \{1, ..., m\}$ sei das k-te Moment empirische Moment oder Stichprobenmoment \hat{m}_k der Realisierung $(x_1, ..., x_n)$:

$$\hat{m}_k(x_1, \dots, x_n) := \frac{1}{n} \sum_{i=1}^n x_i^k$$

Momentenmethode

Der Momentenmethode liegt zugrunde, dass die Momente einer Zufallsvariable bzw. einer Wahrscheinlichkeitsverteilung durch Stichprobenmomente geschätzt werden können.

Sei X_1, \ldots, X_n eine Stichprobe und Θ der Parameterraum. Für jeden Parameter $\vartheta = (\vartheta_1, \ldots, \vartheta_m) \in \Theta$ sei X_1, \ldots, X_n i.i.d. unter dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$. Methode:

- 1. Für gegebene Realisierungen x_1, \ldots, x_n bestimme für jedes $k \in \{1, \ldots, m\}$ das k-te empirische Moment
- 2. Stelle ein Gleichungssystem für die Unbekannten Parameter $\vartheta_1, \ldots, \vartheta_m$ auf, in dem das k-te empirische Moment dem k-ten Moment gleichgesetzt wird, also:

$$\hat{m}_k(x_1,\ldots,x_n) = g_k(\vartheta_1,\ldots,\vartheta_m) \qquad k \in \{1,\ldots,m\}$$

3. Existiert eine Eindeutige Lösung so wird das unsere Schätzung für ϑ .

Momentenschätzer

Der Vektor $\hat{\vartheta}(X_1,\ldots,X_m)$ heisst Momentenschätzer des Parameters ϑ .

Beispiel: Normalverteile Stichprobe

Sei X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ -verteilt mit unbekannten Parametern $\vartheta = (\mu, \sigma^2)$. Damit berechnen wir mit der log max likelihood funktion Ableitungen setzen diese zu 0 und bekommen:

$$T_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n$$
$$T_2 = \frac{1}{n} \sum_{i=1}^{n} X_1 - \overline{X}_n^2$$

möchten wir aber noch, dass der Schätzer erwartungstreu wird, so wählen wir für $T_2 = S^2$:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

Normalverteile Stichproben

Seien X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt:

•
$$\overline{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$
 und $\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$.

•
$$\frac{n-1}{\sigma^2}S^2 = \left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right) \sim \mathcal{X}_{n-1}^2$$

• \overline{X}_n und S^2 sind unabhängig

$$\bullet \ \frac{\overline{X}_n - \mu}{S/\sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sqrt{\frac{1}{n-1} \frac{n-1}{\sigma^2} S^2} \sim t_{n-1}$$

6 Statistik

\mathcal{X}^2 -Verteilung

Die \mathcal{X}^2 - Verteilung mit n Freiheitsgraden (bez. \mathcal{X}_n^2) gehört zu einer stetigen Zufallsvariable Y mit Dichtefunktion:

$$f_Y(y) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}y^{\frac{n}{2}-1}e^{-\frac{1}{2}y}$$

wobei dies ein Spezialfall der $Ga(\alpha, \lambda)$ Verteilung ist mit $\alpha = \frac{n}{2}$ und $\lambda = \frac{1}{2}$. Sind die Zufallsvariablen X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(0, 1)$, so ist die Summe $Y := \sum_{i=1}^n X_i^2 \sim \mathcal{X}_n^2$.

t-Verteilung

Die t-Verteilung mit n Freiheitsgraden gehört zu einer stetigen Zufallsvariable Z mit Dichtefunktion

$$f_Z(z) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})} \left(1 + \frac{z^2}{n}\right)^{-\frac{n+1}{2}} \quad \text{für } z \in \mathbb{R}$$

für n=1 ist das eine Cauchy Verteilung und für $n\to\infty$ erhält man $\mathcal{N}(0,1)$. Sind X,Y unabhängig und $X\sim\mathcal{N}(0,1)$ und $Y\sim\mathcal{X}_n^2$, so ist der Quotient:

$$Z := \frac{X}{\sqrt{\frac{1}{n}Y}} \sim t_n,$$
also t-Verteilt mit n Freiheitsgraden

Hypothesen

Es gibt:

- Hypothese $H_0: \vartheta \in \Theta_0$
- Alternative $H_A: \vartheta \in \Theta_A$

Man verwirft die Hypothese genau dann, wenn der realisierte Wert im Verwerfungebereich K liegt.

Fehler

Es gibt folgende Fehler:

- 1. Art: Hypothese wird zu unrecht abgelehnt. $P_{\vartheta}[T \in K]$ für $\vartheta \in \Theta_0$
- 2. Art: Hypothese wird zu unrecht nicht verworfen. $P_{\vartheta}[T \not\in K]$ für $\vartheta \in \Theta_A$

Meisst kann man nicht beides minimieren, also geht man wie folgt vor:

1. Man wählt ein **Signifikanzniveau** $\alpha \in (0,1)$ und kontrolliert die Wahrscheinlichkeit eines Fehlers 1. Art durch

$$\sup_{\vartheta \in \Theta_0} P_{\vartheta}[T \in K] \le \alpha$$

2. Man versucht die Wahrscheinlichkeit für einen Fehler zweiter Art $P_{\vartheta}[T \not\in K]$ für $\vartheta \in \Theta_A$ zu minimieren. Dazu maximiert man die **Macht des Tests**:

$$\beta: \Theta_A \mapsto [0,1]$$
 $\vartheta \mapsto \beta(\vartheta) := P_{\vartheta}[T \in K]$

Somit ist es schwieriger eine Hypothese zu verwerfen als zu behalten. In einem Test verwendet man deshalb immer als Hypothese die Negation der eigentlich gewünschten Aussage.

Likelihood Quotient

Sei $L(x_1,\ldots,x_n;\vartheta)$ die Likelihood Funktion und $\vartheta_0\in\Theta_0$ sowie $\vartheta_A\in\Theta_A$. Dann definieren wir:

$$R(x_1, \dots, x_n; \vartheta_0, \vartheta_A) = \frac{L(x_1, \dots, x_n; \vartheta_A)}{L(x_1, \dots, x_n; \vartheta_0)}$$

je grösser der Quotient, desto wahrscheinlicher die Alternative. Es gibt auch:

$$R(x_1, \dots, x_n) = \frac{\sup_{\vartheta \in \Theta_A} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}$$
$$\widetilde{R}(x_1, \dots, x_n) = \frac{\sup_{\vartheta \in \Theta_A \cup \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}$$

Wähle Konstante c_0 für $K_0 = (c_0, \infty)$ mithilfe von Signifikanzniveau.

Neyman-Pearson Lemma

Sei $\Theta_0 = \{\vartheta_0\}$ und $\Theta_A = \{\vartheta_A\}$. Wie oben sei $T = R(X_1,\ldots,X_n;\vartheta_0,\vartheta_A)$ und $K := (c,\infty)$, sowie $\alpha^* := P_{\vartheta_0}[T \in K] = P_{\vartheta_0}[T > c]$. Der Likelihood Quotienten Test mit Teststatistik T und kritischem Bereich K ist dann in folgendem Sinn optimal: Jeder andere Test mit Signifikanzniveau $\alpha \leq \alpha^*$ hat eine kleinere Macht (bez. Grössere WS Fehler 2. Art).

p-Wert

(Nach Wikipedia) Der p-Wert ist die Wahrscheinlichkeit ein mindestens so extremes Testergebnis zu erhalten, wenn die Nullhypothese gelten würde:

$$\begin{split} p(x) &= P[X \leq x \mid H_0] \text{ oder } P[X \geq x \mid H_0] \\ p(x) &= 2 \cdot \min\{P[X \leq x \mid H_0], P[X \geq x \mid H_0]\} \end{split}$$

z-Test

Normalverteilung, Test für Erwartungswert bei bekannter Varianz. Hier sind X_1, \ldots, X_n i.i.d. $\mathcal{N}(\vartheta, \sigma^2)$. Wir möchten die Hypothese $H_0: \vartheta = \vartheta_0$ testen. Mögliche Alternativen H_A sind $\vartheta > \vartheta_0$, $\vartheta < \vartheta_0$ (einseitig) oder $\vartheta \neq \vartheta_0$ (zweiseitig). Die Teststatistik ist:

$$T = \frac{\overline{X} - \vartheta_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1) \qquad \text{unter } P_{\vartheta_0}$$

Und die Verwerfungebereiche:

$$\begin{array}{ll} \vartheta < \vartheta_0 & (-\infty, z_\alpha) \\ \vartheta > \vartheta_0 & (z_{1-\alpha}, \infty) \\ \vartheta \neq \vartheta_0 & (-\infty, z_{\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2}}, \infty) \end{array}$$

Wobei die z Werte in der Tabelle nachgeschaut werden können und es gilt $z_{\alpha}=-z_{1-\alpha}.$

Beispiel Fehler 2. Art Berechnen

Nehme an: einseitiger z-Test, $T = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$, $\mu_0 = 70$.

$$H_0: \mu = \mu_0$$
 $H_A: \mu < \mu_0$

Kritischer Bereich mit 5% niveau: $K=(-\infty,-1.645)$. Wir nehmen an, dass $T=\frac{\overline{X}_n-\mu_A}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$:

$$\begin{split} P_{\mu_A}[T \not\in K] &= P_{\mu_A}[T > -1.645] \\ &= P_{\mu_A} \left[\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} > -1.645 \right] \\ &= P_{\mu_A} \left[\frac{\overline{X}_n - \mu_A}{\sigma/\sqrt{n}} > \frac{\mu_0 - \mu_A}{\sigma/\sqrt{n}} - 1.645 \right] \\ &= 1 - P_{\mu_A} \left[\frac{\overline{X}_n - \mu_A}{\sigma/\sqrt{n}} \le \frac{\mu_0 - \mu_A}{\sigma/\sqrt{n}} - 1.645 \right] \\ &= 1 - \Phi \left(\frac{\mu_0 - \mu_A}{\sigma - \sqrt{n}} - 1.645 \right) \quad \text{Weil} \quad \sim \mathcal{N}(0, 1) \end{split}$$

t-Test

Normalverteilung, Test für Erwartungswert bei unbekannter Varianz. Hier sind X_1,\ldots,X_n i.i.d. $\sim \mathcal{N}(\mu,\sigma^2)$ unter $P_{\vec{\vartheta}}$, wobei $\vec{\vartheta}=(\mu,\sigma^2)$. Wir wollen die Hypothese $\mu=\mu_0$ testen. Die Teststatistik ist:

$$T := \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$
 unter P_{ϑ_0}
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Und die Verwerfungsbereiche:

$$\begin{array}{lll} c_<=t_{n-1,\alpha} & (-\infty,c_<) & \mu<\mu_0 \\ c_>=t_{n-1,1-\alpha} & (c_>,\infty) & \mu>\mu_0 \\ c_\neq=t_{n-1,1-\frac{\alpha}{2}} & (-\infty,c_<)\cup(c_>,\infty) & \mu\neq\mu_0 \end{array}$$

Wobei gilt $t_{m,\alpha} = -t_{m,1-\alpha}$.

Gepaarter Zweiproben-Test

Hier sind X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu_X, \sigma^2)$ und Y_1, \ldots, Y_n i.i.d. $\sim \mathcal{N}(\mu_Y, \sigma^2)$ unter P_{ϑ} . Insbesondere ist m=n und die Varianz beider Stichproben dieselbe. Differenzen $Z_i := X_I - Y_i$ sind unter P_{ϑ} i.i.d. $\mathcal{N}(\mu_X - \mu_Y, 2\sigma^2)$. Dann analog z und t-Test. (Setzt natürliche Paarung von Daten voraus!)

Ungepaarter Zweiproben-Test

Hier sind unter P_{ϑ} die Zufallsvariablen X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu_X, \sigma^2)$ und Y_1, \ldots, Y_m i.i.d. $\sim \mathcal{N}(\mu_Y, \sigma^2)$, wobei die Varianz in beiden Fällen dieselbe ist.

• Bei bekannter Varianz:

$$H_0: \mu_X - \mu_Y = \mu_0 \quad (z.B. \ \mu_0 = 0)$$

$$T = \frac{\overline{X}_n - \overline{Y}_m - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)$$

Die kritischen Werte für den Verwerfungsbereich sind wie oben geeignete Quantile der $\mathcal{N}(0,1)$ -Verteilung, je nach Alternative. Das ist der ungepaarte Zweistichproben-z-Test.

• Bei unbekannter Varianz:

$$S_X^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$S_Y^2 := \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

$$S^2 := \frac{1}{m+n-2} \left((n-1) \cdot S_X^2 + (m-1) \cdot S_Y^2 \right)$$

$$T = \frac{\overline{X}_n - \overline{Y}_m - (\mu_X - \mu_Y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$$

unter jedem $P_{\vartheta}.$ Dieser Test heisst ungepaarter Zweistichproben-t-Test.

Konfidenzbereich

Ein Konfidenzbereich für ϑ zu Daten x_1,\ldots,x_n ist eine Menge $C(x_1,\ldots,x_n)\subseteq\Theta$. Damit ist $C(X_1,\ldots,X_n)$ eine zufällige Teilmenge von Θ . Dieses C heisst Konfidenzbereich zum Niveau $1-\alpha$, falls für alle $\vartheta\in\Theta$ gilt:

$$P_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] \ge 1 - \alpha$$

Beispiel Konfidenzbereich

Machen wir den Ansatz:

$$C(X_1,\ldots,X_n)=[\overline{X}_n-\ldots,\overline{X}_n+\ldots]$$

so wollen wir erreichen, dass gilt:

$$1 - \alpha \le P_{\vartheta}[\vartheta \in C(X_1, \dots, X_n)]$$

$$= P_{\vartheta} \left[\mu \in [\overline{X}_n - \dots, \overline{X}_n + \dots] \right] = P_{\vartheta} \left[\left| \overline{X}_n - \mu \right| \le \dots \right]$$

Nach Satz 7.1 ist für jedes $\vartheta \in \Theta$

$$\frac{\overline{X}_n - \mu}{S/\sqrt{n}} \sim t_{n-1} \qquad \text{unter } P_{\vartheta}$$

$$1 - \alpha \le P_{\vartheta} \left[\left| \frac{\overline{X}_n - \mu}{S/\sqrt{n}} \right| \le \frac{\dots}{S/\sqrt{n}} \right]$$

also erhalten wir das Konfidenzintervall für μ zum Niveau $1-\alpha$:

$$C(X_1, \dots, X_n) = \left[\overline{X}_n - t_{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X}_n + t_{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$$

7 Diskrete Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	Var(X)	$p_X(t)$	$F_X(t)$
Gleichverteilung	n: Anzahl Ereignisse x _i : Ereignisse	$\frac{1}{n}\sum_{i=1}^{n} x_i$	$\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i \right)^2$	$\frac{1}{n}$	$\frac{ \{k:x_k \le t\} }{n}$
Bernoulli	p: ErfolgsWK	p	$p \cdot (1 - p)$	$p^{t}(1-p)^{1-t}$	$1-p$ für $0 \le t < 1$
Binomial	p: ErfolgsWK n: Anzahl Versuche	np	np(1-p)	$\binom{n}{t} p^{t} (1-p)^{n-t}$	$\sum_{k=0}^{t} {n \choose k} p^k (1-p)^{n-k}$
Geometrisch	p: ErfolgsWK t: Anzahl Versuche	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{t-1}$	$1 - (1 - p)^t$
Negativ Binomial	r > 0: Erfolge bis Ab- bruch p: ErfolgsWK t: Misserfolge	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$	$\binom{t+r-1}{k} \cdot (1-p)^r p^t$	$F_{\text{Binomial}}(t; n = t + r, p)$
Hypergeometrisch	$\begin{array}{lll} N \colon & \text{Anzahl aller Ele-} \\ \text{mente} \\ M & \leq N \colon & \text{Anzahl} \\ \text{möglicher Erfolge} \\ n \leq N \colon & \text{Anzahl Elemente} \\ \text{in der Stichprobe} \end{array}$	$n\frac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-m}{N-1}$	$\frac{\binom{M}{t}\binom{N-M}{n-t}}{\binom{N}{n}}$	$\sum_{k=0}^{t} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$
Poisson	λ: Erwartungswert und Varianz	λ	λ	$\frac{\lambda^k}{k!}e^{-\lambda}$	p

8 Stetige Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	Var(X)	$f_X(t)$	$F_X(t)$
Gleichverteilung	[a, b]: Intervall	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$	$\frac{1}{b-a}$	<u>t−a</u> b−a
Exponentialverteilung	$\lambda : \frac{1}{\mathbb{E}[X]}$	± X	$\frac{1}{\lambda^2}$	$\begin{cases} \lambda e^{-\lambda t} & t \ge 0 \\ 0 & t < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda t} & t > 0 \\ 0 & t \le 0 \end{cases}$
Normalverteilung	σ^2 : Varianz $\mu : \mathbb{E}[X]$	μ	σ^2		$\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{t}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}}\mathrm{d}y$
χ^2 -Verteilung	n: Freiheits- grad	n	2n	$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}} t>0$	$\operatorname{Gamma}(\frac{n}{2}, \frac{t}{2})$
Gamma-Verteilung	α, λ	<u>~</u>	$\frac{\alpha}{\lambda^2}$	$\frac{\lambda^{\alpha}t^{\alpha-1}e^{-\lambda t}}{\Gamma(\alpha)} t>0 \alpha,\lambda>0$	$\frac{1}{\Gamma(\alpha)}\gamma(\alpha, \lambda t)$
t-Verteilung	n: Freiheits- grad	0 für $n > 1$ sonst undef.	$\begin{cases} \frac{n}{n-2} & n > 2 \\ \infty & 1 < n \le 2 \\ \text{undef. sonst} \end{cases}$	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$	oof