Simulation physique de corps rigides avec interaction

Merwan Achibet Université du Havre, 2011

Moteur physique?

Moteur physique : système de simulation mécanique Industrie, science, cinéma précis, lents Jeu vidéo, réalité virtuelle approximatifs, temps réel

Ce projet :

- Moteur physique de base
- Corps rigides
- Corps convexes
- Temps réel

Étude de cas

1. La chute

$$\vec{a} = \frac{1}{m} \sum_{i} \vec{F}_{i}$$

2. Le rebond

$$\vec{v}_1 = \gamma \vec{v}_2$$

3. Le repos

$$\vec{F}_{A/B} = -\vec{F}_{B/A}$$

$$\vec{F}_{A/B} + \vec{F}_{B/A} = 0$$

Modules

Différentes tâches :

- ► Dynamique
 - ► Composante linéaire
 - Composante angulaire
- Gestion des collisions
 - Détection
 - Correction
 - Réponse

La composante linéaire

Entrée Forces environnementales Sortie Changement de position

$$\vec{v} = \frac{\partial \vec{p}}{\partial t}$$
 \iff $\vec{p} = \int \vec{v} \, \partial t$ $\vec{a} = \frac{\partial \vec{v}}{\partial t}$ $\vec{v} = \int \vec{a} \, \partial t$

Intégration approximée

Intégration d'Euler :

$$x_{n+1} = x_n + x' \partial t$$

Appliquée à nos besoins :

$$\vec{a}_{t+\partial t} = \frac{1}{m} \sum_{i} \vec{F}_{i}$$

$$\vec{v}_{t+\partial t} = \vec{v}_t + \vec{a}_{t+\partial t} \partial t$$

$$\vec{p}_{t+\partial t} = \vec{p}_t + \vec{v}_{t+\partial t} \partial t$$

Simplification grâce à l'élan linéaire

L'élan linéaire :

$$\vec{L} = m\vec{v} \qquad \qquad \sum_{i} \vec{F}_{i} = \frac{\partial \vec{L}}{\partial t} = \frac{\partial (m\vec{v})}{\partial t}$$

La nouvelle intégration :

$$\vec{L}_{t+\partial t} = \vec{L}_t + \sum_i \vec{F}_i$$

$$\vec{p}_{t+\partial t} = \vec{p}_t + \frac{1}{m} \vec{L}_{t+\partial t} \partial t$$

Modélisation d'un corps

OK pour une particule, mais un objet plus complexe?

Une particule = un sommet Non

Une unique particule judicieusement placée Oui, le centre de masse

$$\vec{C} = \frac{1}{M} \sum_{i} m_i \vec{p}_i$$

Le centre de masse

Centre de masse = origine du repère local

$$\vec{p}_I = \vec{p}_a - \vec{C}$$

La composante angulaire

Il manque quelque chose... Les rotations!

Orientation Une matrice : un vecteur colonne = un axe du repère local

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Élan angulaire Analogue à l'élan linéaire

$$\vec{A}_{t+\partial t} = \vec{A}_n + \sum_i \vec{\tau}_i$$
 $\vec{\tau}_i = (\vec{x} - \vec{C}) \times \vec{F}_i$

Quantités auxiliaires

Passage de l'élan à la nouvelle orientation moins direct.

Tenseur d'inertie local

Tenseur d'inertie absolu

$$I_a = RI_I{}^tR$$

Intégration

$$\vec{A}_{t+\partial t} = \vec{A}_t + \sum_i \vec{\tau}_i$$

$$I_a = R_t I_I^t R_t$$

$$\vec{\omega} = I_a^{-1} \vec{A}_{t+\partial t}$$

$$R_{t+\partial t} = R_t + \vec{\omega}^* R_t \partial t$$

Deux niveaux de précision

On teste les collisions entre paires de corps : $\frac{n(n-1)}{2}$ tests

Beaucoup de tests, on veut accélérer le processus.

- 1. Détection grossière Économique, faux positif possible
- 2. Détection fine Précise, plus coûteuse

Détection grossière

Boîte englobante Contient tous les sommets, donc tous les points SAT Test rapide de collision entre boîtes

Détection grossière

Faux positif La détection fine invalidera le résultat

Détection grossière

Collision détectée La détection fine validera le résultat

Détection fine l

Somme de Minkowski $A \oplus B = \{a+b \mid a \in A, b \in B\}$ Différence de Minkowski $A \ominus B = A \oplus (-B)$

Particularité la plus petite distance de la différence de Minkowski à l'origine est la plus petite distance entre les corps A et B

Détection fine II

Comment calculer la plus petite distance entre M et l'origine?

Algorithme GJK Expansion d'un simplex aléatoire jusqu'à ce qu'il contienne le point le plus proche de l'origine.

Simplex

- 0 Sommet
- 1 Arête
- 2 Triangle
- 3 Tétraèdre

Détection fine III

Comment guider la recherche?

Fonction de support $S(\vec{d})$ Renvoit le sommet de M le plus extrême dans la direction \vec{d} . Avantage $S_{A\ominus B}(\vec{d}) = S_A(\vec{d}) - S_B(-\vec{d})$ Inutile de calculer explicitement la différence de Minkowski!

détection fine IV

Correction |

Intégration d'Euler Simulation discrète, pas de temps fixe Problème Les collisions sont toujours pénétrantes

Solution Intégrer en arrière, par dichotomie

Correction II

Réponse l

Corps rigide Défini par sommets, arêtes et faces

On s'intéresse uniquement aux contacts sommet-face et arête-arête.

Réponse II

Un contact:

- Position
- ► Normale
- Temps

À chaque contact, une impulsion :

$$J = \vec{n} \frac{-(1+\varepsilon)v_r}{\frac{1}{m_A} + \frac{1}{m_B} + \vec{n}(I_A^{-1}(\vec{r}_A \times \vec{n})) \times \vec{r}_A + (I_B^{-1}(\vec{r}_b \times \vec{n})) \times \vec{r}_B}$$

Algorithme principal

Algorithme principal amélioré

Démonstrations

Tunneling

Un effet négatif de l'intégration discrète Les corps se traversent mais aucune collision n'est détectée !

Tunneling

Solution : le lancer de rayons

Les corps se traversent mais aucune collision n'est détectée !

Tunneling

Solution : Boîtes englobantes sur les trajectoires Les corps se traversent mais aucune collision n'est détectée !

Conclusion