o....g

Add-One Smoothing

witten-Bei

Good-Turing

Backoff

# **Smoothing**

L645

Dept. of Linguistics, Indiana University Fall 2009



## Smoothing - Definitions

the N-gram matrix for any given training corpus is sparse

- i.e., not all n-grams will be present
- MLE produces bad estimates when the counts are small
- smoothing = re-evaluating zero and small probabilities, assigning very small probabilities for zero-N-grams
  - if non-occurring N-grams receive small probabilities, the probability mass needs to be redistributed!
  - smoothing also sometimes called discounting

Smoothing

ldd-One Smoothing

Nitten-Bell

ood-Turing





## Types Vs. Tokens

Smoothing

Add-One Smoothing

Witten-Bel

Good-Turing

Backoff

token: single item type: abstract class of items

example: words in text

token: each word

type: each different word, i.e., wordform

▶ sentence: the man with the hat

tokens: the, man, with, the, hat # of tokens = 5 types: the, man, with, hat # of types = 4



### **Basic Techniques**

An overview of what we'll look at:

- Add-One Smoothing (& variations)
  - Laplace's, Lidstone's, & Jeffreys-Perks laws
- Deleted estimation: validate estimates from one part of corpus with another part
- Witten-Bell smoothing: use probabilities of seeing events for the first time
- Good-Turing estimation: use ratios between n + 1 and n-grams

Following Manning and Schütze, we'll use *n*-gram language modeling as our example

Smoothing

Add-One Smoothing

Witten-Bel

ood-Turing





## Basics of *n*-grams

*n*-grams are used to model language, capturing some degree of grammatical properties

Thus, we can state the probability of a word based on its history:

(1) 
$$P(w_n|w_1...w_{n-1})$$

n-gram probabilities are estimated as follows

(2) 
$$P(w_n|w_1...w_{n-1}) = \frac{P(w_1...w_n)}{P(w_1...w_{n-1})}$$

- To avoid data sparsity issues, bigrams and trigrams are commonly used
- We can use maximum likelihood estimation (MLE) to obtain basic probabilities:

(3) 
$$P(w_n|w_1...w_{n-1}) = \frac{C(w_1...w_n)}{C(w_1...w_{n-1})}$$

But MLE probabilties do nothing to handle unseen data

Smoothing

.dd-One Imoothind

Witten-Rel

ood-Turing



Smoothing

Add-One Smoothing

villeri-bei

300d-Turing

ackoff

Idea: pretend that non-existent bigrams are there once

- to make the model more just: assume that for each bigram we add one to the count
- ...turns out not to be a very good estimator





### Smoothing

Add-One Smoothing

#### /itten-Bell

Good-Turino

ackoff

unigram probabilities:

N = number of tokens

C(x) = frequency of x

V = vocabulary size; number of types

- ► standard probability for word  $w_x$ :  $P(w_x) = \frac{C(w_x)}{N}$
- ► adjusted count:  $C^*(w_x) = (C(w_x) + 1) \frac{N}{N+V}$ 
  - $ightharpoonup rac{N}{N+V}$  is a normalizing factor, N+V is the new "size" of the text
- $p^*(w_x)$ : estimated probability
  - ▶ probability:  $p^*(w_x) = \frac{(C(w_x)+1)\frac{N}{N+V}}{N} = \frac{c(w_x)+1}{N+V}$



Good-Turin

- Haiku: Japanese poem, each poem has only 17 syllables; 5 syllables in the first line, 7 in the second, 5 in the third
- corpus: 16 haikus, 253 tokens, 165 words
- Windows NT crash'd.
   I am the Blue Screen of Death.
   No-one hears your screams.
- Yesterday it work'd.
   Today it is not working.
   Windows is like that.
- Three things are certain:
   Death, taxes and lost data.
   Guess which has occurred.





Smoothing

Add-One Smoothing

itten-Bell

| word     | freq. | unsmoothed: $\frac{C(w)}{N}$ | add-one: $\frac{C(w)+1}{N+V}$ |
|----------|-------|------------------------------|-------------------------------|
| -        | 35    | 0.1383                       | 0.0860                        |
| ,        | 8     | 0.0316                       | 0.0215                        |
| the      | 7     | 0.0277                       | 0.0191                        |
| The      | 4     | 0.0158                       | 0.0119                        |
| that     | 3     | 0.0119                       | 0.0095                        |
| on       | 2     | 0.0079                       | 0.0072                        |
| We       | 1     | 0.0040                       | 0.0048                        |
| operator | 0     | 0.0000                       | 0.0024                        |



#### Smoothing

Add-One Smoothing

#### Vitten-Bel

Good-Turing

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

$$p^*(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)+1}{C(w_{n-1})+V}$$



Add-One **Smoothing** 

| bigram      | freq.  | freq.     | unsmoothed:                        | add-one:                               |
|-------------|--------|-----------|------------------------------------|----------------------------------------|
|             | bigram | $W_{n-1}$ | $\frac{C(w_{n-1}w_n)}{C(w_{n-1})}$ | $\frac{C(w_{n-1}w_n)+1}{C(w_{n-1})+V}$ |
| . END       | 35     | 35        | 1.0000                             | 0.1800                                 |
| START The   | 3      | 35        | 0.0857                             | 0.0200                                 |
| START You   | 2      | 35        | 0.0571                             | 0.0150                                 |
| is not      | 2      | 7         | 0.2857                             | 0.0174                                 |
| Your ire    | 1      | 2         | 0.5000                             | 0.0120                                 |
| You bring   | 1      | 3         | 0.3333                             | 0.0119                                 |
| not found   | 1      | 4         | 0.2500                             | 0.0118                                 |
| is the      | 0      | 7         | 0                                  | 0.0058                                 |
| This system | 0      | 2         | 0                                  | 0.0060                                 |



Because Laplace's law overestimates non-zero events, variations were created:

 Lidstone's law: instead of adding one, add some smaller value λ

(4) 
$$P(w_1...w_n) = \frac{C(w_1...w_n) + \lambda}{N + V\lambda}$$

▶ Jeffreys-Perks law: set  $\lambda$  to be  $\frac{1}{2}$  (the expectation of maximized MLE):

(5) 
$$P(w_1...w_n) = \frac{C(w_1...w_n) + \frac{1}{2}}{N + \frac{1}{2}}$$

**Problems:** How do we guess  $\lambda$ ? And still not good for low frequency n-grams ...

Ciliodining

Add-One Smoothing

Nitten-Bell

Good-Turing





To get an idea as to whether a smoothing technique is effective, we can use held-out estimation.

- Split the data into training data and held-out data
- Use the held-out data to see how good the training estimates are

Using bigrams as an example:

- $\triangleright$  Say that there are  $N_r$  bigrams with frequency r in the training data
- Count up how often all these bigrams together occur in the held-out data; call this  $T_r$
- Average frequency in held-out data is thus  $\frac{I_r}{N_c}$





Good-Turing

Officouning

Since *N* is the number of training instances, the probability of one of these *n*-grams is  $\frac{T_r}{N_r N}$ 

This re-estimate can provide one of two different things:

- A reality check on the smoothing technique being used
- A better estimate to be used on the testing data
  - It is critical that the testing data be disjoint from both the held-out and the training data



Held-Out Estimation keeps the held-out data separate from the training data

- But what if we split the training data in half?
  - We could train on one half and validate on the other
  - And then we could switch the training and validation portions
- With both of these estimates, we can average them to obtain even more reliable estimates

(6) 
$$p_{del}(w_1 w_2) = \frac{T_r^1 + T_r^2}{N(N_r^1 + N_r^2)}$$



Deleted Estimation turns out to be quite good ... but not for low frequency *n*-grams

What's wrong with low-frequency *n*-grams?

- Overestimates unseen objects (& underestimates one-time objects)
  - ► The *n*-grams that appear 0 times in one half of the training data are counted in the other
  - But as the size of the data increases, there are generally less unseen n-grams
    - In other words, the number of unseen objects is not linear, but deleted estimation assumes it is
  - Smaller training sets lead to more unseen events in the held-out data



Smoothing

Add-One Smoothing

Witten-Bell

Good-Turin

ackoff

Problems with Add-One Smoothing:

- add-one smoothing leads to sharp changes in probabilities
- too much probability mass goes to unseen events

**Witten-Bell**: think of unseen events as ones not having happened yet

 the probability of this event – when it happens – can be modeled by the probability of seeing it for the first time





- How do we estimate probability of an N-gram occurring for the first time?
  - count number of times of seeing an N-gram for the first time in training corpus
  - think of corpus as series of events: one event for each token and one event for each new type
  - e.g. unigrams:

```
corpus: a man with a hat event: a new man new with new a hat...
```

number of events: N + T



total probability mass for unseen events:

$$\sum_{x:C(w_x)=0} p^*(w_x) = \frac{T}{N+T}$$

- ▶ probability for **one** unseen unigram:  $p^*(w_x) = \frac{T}{Z(N+T)}$ 
  - divide total prob. mass up for all unseen events
  - ▶ number of all unseen unigrams:  $Z = \sum_{x:C(w_x)=0} 1$
- discount total probability mass for unseen events from other events

$$p^*(w_x) = \frac{C(w_x)}{N+T}$$
 for  $C(w_x) > 0$ 

alternatively: smoothed counts:

$$C^*(W_X) = \begin{cases} \frac{T}{Z} \frac{N}{N+T} & \text{if } C(W_X) = 0\\ C(W_X) \frac{N}{N+T} & \text{if } C(W_X) > 0 \end{cases}$$

Smoothing

Add-One Smoothing

Witten-Bell

Good-Turing





# Witten-Bell Smoothed Bigrams

Type counts are conditioned on previous word: use probability of bigram **starting with previous word** 

►  $T(w_x)$  = number of bigrams starting with  $w_x$ 

### Zero-count events:

- ► total prob. mass:  $\sum_{i:C(w_{i-1}w_i)=0} p^*(w_i \mid w_{i-1}) = \frac{T(w_{i-1})}{N+T(w_{i-1})}$
- $p^*(w_i \mid w_{i-1}) = \frac{T(w_{i-1})}{Z(w_{i-1})(N+T(w_{i-1}))} \text{ if } C(w_{i-1}w_i) = 0$

$$Z(w_{i-1}) = \sum_{i:C(w_{i-1}w_i)=0} 1$$

### Non-zero-count events:

- $p^*(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{N+T(w_{i-1})} \text{ if } C(w_{i-1}w_i) > 0$ 
  - $N = C(w_{i-1})$



Add-One Smoothing

Witten-Bell

Good-Turin



# T(w) And Z(w) from Haikus

Z(w) = number of unseen bigrams starting with w complete number of bigram starting with w: V

$$Z(w) = V - T(w) = 165 - T(w)$$

| word  | T(w) | Z(w) |
|-------|------|------|
|       | 1    | 164  |
| START | 13   | 152  |
| is    | 6    | 159  |
| Your  | 2    | 163  |
| You   | 2    | 163  |
| not   | 4    | 161  |
| This  | 2    | 163  |

Smoothing

Add-One Smoothing

Witten-Bell

Good-Turing





### Haiku Probabilities

Smoothing

Smoothing

ldd-One Smoothing

Witten-Bell
Good-Turing

| bigram      | unsmoothed | add-one | Witten-Bell |
|-------------|------------|---------|-------------|
| . END       | 1.0000     | 0.1800  | 0.9722      |
| START The   | 0.0857     | 0.0200  | 0.0625      |
| START You   | 0.0571     | 0.0150  | 0.0417      |
| is not      | 0.2857     | 0.0174  | 0.1538      |
| Your ire    | 0.5000     | 0.0120  | 0.2500      |
| You bring   | 0.3333     | 0.0119  | 0.2000      |
| not found   | 0.2500     | 0.0118  | 0.1250      |
| is the      | 0          | 0.0058  | 0.0029      |
| This system | 0          | 0.0060  | 0.0031      |



**Idea:** re-estimate probability *mass* assigned to N-grams with zero counts

- by looking at probability mass of all N-grams with count 1
- based on assumption of binomial distribution Idea broken down:
  - ▶ create classes N<sub>c</sub> of N-grams which occur c times
  - ightharpoonup the size of class  $N_c$  is the frequency of frequency c

This works well for N-grams.



► smoothed count c:  $c^* = (c+1)\frac{N_{c+1}}{N_c}$ 

• 
$$N_c = \sum_{b:c(b)=c} 1$$

▶ smoothed count for unseen events:  $c^* = \frac{N_1}{N_0}$ 

### Haiku counts:

| С | N <sub>C</sub> | C <sup>*</sup> |
|---|----------------|----------------|
| 0 | 26980          | 0.0087         |
| 1 | 236            | 0.0593         |
| 2 | 7              | 0.4286         |
| 3 | 1              | 0              |
| 4 | 0              |                |

Smoothing

ldd-One Smoothing

**Good-Turing** 





### Smoothing

.dd-One imoothing

Wittern Bell

Good-Turing

Backoff

▶ Problem: for highest count c,  $N_{c+1} = 0!!!$ 

• i.e. 
$$c^* = (c+1)\frac{N_{c+1}}{N_c} = (c+1)\frac{0}{N_c} = 0$$

Solution: discount only for small counts c ≤ k (e.g. k = 5)

$$c^* = c \qquad \text{for } c > k$$

New discounting:

$$c^* = \frac{(c+1)\frac{N_{c+1}}{N_c} - c\frac{(k+1)N_{k+1}}{N_1}}{1 - \frac{(k+1)N_{k+1}}{N_1}} \quad \text{for } 1 \le c \le k$$



TTIMON BOIL

Good-Turing

► G-T = 
$$\frac{c^*(w_{n-1}w_n)}{C(w_{n-1})}$$
  
►  $k = 3$ 



| G-T | _ | $c^*(W_{n-1}W_n$ |    |  |
|-----|---|------------------|----|--|
| O-1 | _ | $C(w_{n-})$      | 1) |  |

k = 3

| bigram      | count | orig.  | add-1  | W-B    | G-T    |
|-------------|-------|--------|--------|--------|--------|
| . END       | 35    | 1.0000 | 0.1800 | 0.9722 | 1.0000 |
| START The   | 3     | 0.0857 | 0.0200 | 0.0625 | 0.0857 |
| START You   | 2     | 0.0571 | 0.0150 | 0.0417 | 0.0122 |
| is not      | 2     | 0.2857 | 0.0174 | 0.1538 | 0.1837 |
| Your ire    | 1     | 0.5000 | 0.0120 | 0.2500 | 0.0297 |
| You bring   | 1     | 0.3333 | 0.0119 | 0.2000 | 0.0198 |
| not found   | 1     | 0.2500 | 0.0118 | 0.1250 | 0.0148 |
| is the      | 0     | 0      | 0.0058 | 0.0029 | 0.0012 |
| This system | 0     | 0      | 0.0060 | 0.0031 | 0.0044 |



Idea: go back to "smaller" N-grams

- i.e. do not only use trigram prob. but also bigrams and unigrams
- no trigram found, use bigram; if no bigram found, use unigram

... can be used instead of smoothing

need to weight contribution of specific N-gram:

$$P^*(w_i \mid w_{i-2}w_{i-1}) = \begin{cases} P(w_i \mid w_{i-2}w_{i-1}) & \text{if } C(w_{i-2}w_{i-1}w_i) > 0 \\ \alpha_1 P(w_i \mid w_{i-1}) & \text{if } C(w_{i-2}w_{i-1}w_i) = 0 \text{ and } \\ C(w_{i-1}w_i) > 0 \\ \alpha_2 P(w_i) & \text{otherwise} \end{cases}$$

Smoothing

Add-One Smoothing

witten-Be



Simple linear interpolation involves mixing different pieces of information to derive a probability

 Called deleted interpolation with subset relations (e.g., bigrams and unigrams are subsets of trigrams)

(7) 
$$\hat{P}(w_i|w_{i-2}w_{i-1}) = \lambda_1 P(w_i|w_{i-2}w_{i-1}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_3 P(w_i)$$

- $\triangleright \sum \lambda_i = 1$
- ▶  $0 \le \lambda_i \le 1$

Every trigram probability is a linear combination of the focus word's trigram, bigram, and unigram.

► Use EM algorithm on held-out data to calculate λ values

4 D > 4 B > 4 E > 4 E >

Smoothing

dd-One Smoothing

witten-Be



Backoff

General linear interpolation

More generally, we can condition the word on its history and each  $\lambda$  can be based on the history, too

(8) 
$$P(w|h) = \sum_{i} \lambda_{i}(h)P_{i}(w|h)$$
$$= \lambda_{1}(h)P_{1}(w|h) + \lambda_{2}(h)P_{2}(w|h) + \lambda_{3}(h)P_{3}(w|h)$$

- P<sub>1</sub> may focus on the trigram history, while P<sub>2</sub> uses the bigram, and so forth.
- So, instead of having one λ₁ for all trigrams, we have individualized it for each unique trigram
  - Useful, in that every trigram potentially behaves differently
  - But there's a big sparse data problem





- One method (Chen and Goodman 1996) bases the bins on the number of different words which an n-1-gram has following it
  - (9)  $\frac{C(w_1...w_{i-1})}{|w_i\cdot C(w_1-w_i)>0|}$ 
    - $w_i$ :  $C(w_1...w_i) > 0$  means: the set of  $w_i$  such that the trigram exists
- So, great deal occurs 178 times, with 36 different words after it: average count = 4.94
- of that occurs 178 times, with 115 different words after it: 1.55
  - These histories will thus prompt different λ values



