Section Questions CS301, September 12th

1 Regular Language Proof

Prove that if L is a regular language, then \overline{L} is regular.

Hint: Construct a DFA which decides \overline{L} and make sure that you show why your constructed DFA decides it

Proof. Suppose L is an arbitrary regular language.

By definition of regular, there exists a DFA M_L which decides it.

Construct a new DFA M_{L2} which is the same as M_L except it's final states are $Q_L - F_L$ where Q_L is the states and F_L are the final states in M_L .

Consider an arbitrary string w in Σ^* . If $w \in L$ then M_L is in a final state and accepts. By our construction M_{L2} is not in a final state and rejects. If $w \notin L$ the opposite is true. This means M_{L2} decides \overline{L} so \overline{L} is regular by definition

2 DFA Combination

Let the following DFAs be M_A and M_B which decide languages A and B respectively. Construct the DFA which decides $A \cap B$.

3 NFAs

Consider the following NFA N:

3.1 What is the 5-tuple which represents this NFA?

 $\delta =$

$$Q = \{1,2,3\}$$

$$\Sigma = \{ \texttt{a,b} \}$$

$$q_0 = 1$$

$$F = \{2\}$$

3.2 Does N accept abbaa? If so, provide a sequence of states which causes it to accept

3.3 Does N accept abab? If so, provide a sequence of states which causes it to accept

Does not accept