Notes of "Linear Map between Vector Spaces"

Jinxin Wang

1 Overview

- Definition and related concepts
 - Def: A linear map from a space on K to the other on K
 - Examples of linear maps
 - * Eg: A linear form of a vector space
 - * Eg: Rotation on \mathbb{R}^2
 - * Eg: The projection from \mathbb{R}^3 to its subspace $\{(a,b,0) \mid a,b \in \mathbb{R}\}$
 - * Eg: $C^k(\mathbb{R}) \to \mathbb{R}_{k+1}[x]$
 - * Eg: $\mathcal{D}:K[x]\to K[x], f(x)\mapsto f'(x)$
 - Def: The kernel and image of a linear map
 - * Rmk: The kernel and image of a linear map are subspaces of the domain and codomain of the map respectively
 - Thm: The relationship of the dimensions of the kernel, the image and the domain of a linear map
 - Cor: The dimension of the image of a linear map is no greater than the dimension of the domain of the map
- The matrix and the rank of a linear map
 - Rmk: Generalize some properties of cases of linear maps
 - Prop: 一个线性映射与它在一组基上的像一一对应
 - Prop: 一个线性映射关于 domain 和 codomain 的各一组基由一个矩阵唯一表示
 - Thm: 线性映射与矩阵的对应关系
- The algebraic structure of the set of linear maps from a space to the other
- The correspondence between linear maps and matrices in terms of coordinate transformation

- 2 Definition and related concepts
- 3 The matrix and the rank of a linear map
- 4 The algebraic structure of the set of linear maps from a space to the other
- 5 The correspondence between linear maps and matrices in terms of coordinate transformation