	His	tory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113,1315 (2012)	1-Aug-2011

 $Q(\beta^-) = -8392 \ 15$; $S(n) = 11282 \ 16$; $S(p) = 6643 \ 15$; $Q(\alpha) = -1135 \ 14$ 2012Wa38

Note: Current evaluation has used the following Q record -8394 1511282 166644 14-1138 14 2011AuZZ.

¹¹⁰Sn Levels

Cross Reference (XREF) Flags

			B 94Mo(C 98Mo(ε decay E Coulomb excitation (19 F,p2nγ) F 112 Sn(p,t) (16 O,4nγ) G 113 In(p,4nγ), 112 Sn(p,p2nγ) (α,2nγ) H 110 Cd(3 He,3nγ), 104 Pd(12 C,α2nγ)
E(level) [†]	\mathbf{J}^{π}	T _{1/2} #	XREF	Comments
0.0@	0+	4.154 h <i>4</i>	ABCDEFGH	$%ε=100$ $T_{1/2}$: Weighted average of 4.15 h 12 (1973Ka45), 4.0 h 2 (1956Me94), 4.173 h 23 (280 $γ$ (t) in 2005Gy02, uncertainty is statistical only), and 4.153 h 4 (280 $γ$ (t) in 2009Ra17, uncertainty is statistical only), weighted average of 4.145 h 6 (Au catcher), 4.165 h 9 (Pb catcher) and 4.156 h 7 (Al catcher). Other: 4.1 h (1967Bo43).
1212.02 [@] 9	2+	0.48 ps <i>4</i>	ABCDEFGH	B(E2)↑=0.226 18 J ^π : 1212.01γ E2 to 0 ⁺ . B(E2)↑: Weighted average of 0.240 32 from 2007Va22, measured relative to B(E2)↑(3/2 ⁺ (g.s.) to 7/2 ⁺ (547 keV level))=0.449 41 for ¹⁹⁷ Au, and 0.220 22 from 2007Ce02, measured relative to B(E2)↑(0 ⁺ to 2 ⁺)=0.0695 20 for ⁵⁸ Ni.
2058.0 <i>4</i> 2121.04 <i>23</i>	(0 ⁺ ,2) 2 ⁺		C A FG	T _{1/2} : From adopted B(E2)↑. J ^π : 846.0 γ to 2 ⁺ . XREF: F(2123). J ^π : 908.9 γ to 2 ⁺ ; 2120.8 γ to 0 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^π =(3 ⁺)).
2197.05 [@] 10	4+		ABCD FGH	J^{π} : L(p,t)=4; 984.6 γ E2 to 2 ⁺ ; band structure.
2309 [‡] 3	0+		F	J^{π} : L(p,t)=0.
2455.6 <i>3</i> 2458.42 ^{<i>c</i>} <i>15</i>	4 ⁺ 3 ⁻		A CD G C F	J ^π : 1242.3 γ E2 to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)). XREF: F(2462). J ^π : 261.5 γ to 4 ⁺ ; 1246.4 γ E1 to 2 ⁺ ; L(p,t)=3+4. configuration: possible ν (h _{11/2} ,d _{5/2}) or octupole structure.
2477.68 [@] 15	6+	5.6 ns <i>3</i>	BCD FGH	μ =0.072 18 Q=0.34 4 XREF: D(2480). J ^π : L(p,t)=6; 280.2γ E2 to 4 ⁺ . T _{1/2} : Weighted average of 5.6 ns 4 (280γ(t), slope analysis in 104 Pd(12 C,α2nγ), by taking into account the decay of the 8 ⁻ isomer at 3765 keV), 5.2 ns 8 (280γ(t), centroid-shift analysis in 110 Cd(3 He,3n)) and 5.8 ns 4 (280γ(t), slope analysis in 110 Cd(3 He,3n)) in 1989An14. Others: 8.0 ns 2 (1212γ(t)), 8.4 ns 2 (985γ(t)) and 8.5 ns 4 (282.9γ(t)) in 1980Va13; <7 ns 282.9γ(t) in 1969Ya05. μ : From g=0.012 3 using γ(θ,H,t) in 108 Cd(α,2n) (1989Vo17). Q: Using γ(θ,H,t) in 108 Cd(α,2n) (1989Vo17).
2545.7 5	2+		A F	J^{π} : L(p,t)=2; 1333.6 γ to 2 ⁺ ; 2545.4 γ to 0 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).

E(level) [†]	J^{π}	XREF	Comments						
2573 [‡] 3	0^{+}	F	J^{π} : L(p,t)=0.						
2694.5 <i>4</i>	4+	A F	J^{π} : L(p,t)=4; 1482.5 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).						
2742.1 8	0+	C F	J^{π} : L(p,t)=0; 1530.1 γ to 2 ⁺ .						
2753.67 16	6 ⁺	BCD FG	XREF: D(2756). J^{π} : L(p,t)=6; 276.08 γ M1(+E2) to 6 ⁺ .						
2800.27 ^{&} 13	(6 ⁺)	CD	XREF: D(2804.6). J^{π} : 323.1 γ to 6 ⁺ , 603.4 γ to 4 ⁺ .						
2821.5 <i>4</i> 2833.6 <i>3</i>	$(2^+,3,4^+)$	A C G	J^{π} : 624.4 γ to 4 ⁺ ; 1609.5 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)). XREF: F(2834).						
2033.0 3	2	n i	J ^π : L(p,t)=2; 636.5γ to 4 ⁺ ; 2834.3γ to 0 ⁺ ; direct population in ¹¹⁰ Sb ε decay $(J^{\pi}=(3^{+}))$.						
2857 [‡] 3	2+	F	J^{π} : L(p,t)=2.						
2914.8 10	2+	A F	XREF: F(2919).						
			J ^π : L(p,t)=2; 1702.5γ to 2 ⁺ ; 2915.1γ to 0 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^π =(3 ⁺)).						
2948.2 3	$(3,4^+)$	A G	J ^{π} : 751.5 γ to 4 ^{$+$} ; 1735.9 γ 2 ^{$+$} ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ^{$+$})); the absence of γ to 0 ^{$+$} .						
2963.82 14	5-	CD G	XREF: D(2967.1). J^{π} : 486.0 γ E1 to 6 ⁺ ; 505.8 γ to 3 ⁻ .						
2965 [‡] 3	2+	F	J^{π} : L(p,t)=2.						
2977.2 5	$(2,3,4^+)$	A	J^{π} : 1765.3 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).						
2983 [‡]	4+	F	J^{π} : L(p,t)=4.						
2997 [‡]	(2^{+})	F	J^{π} : L(p,t)=(2).						
3059 [‡] 3	(2) 4 ⁺								
		F	J^{π} : L(p,t)=4.						
3083‡ 3	2+	F	J^{π} : L(p,t)=2.						
3153 [‡]	2+	F	J^{π} : L(p,t)=2.						
3182.9 <i>6</i>	$(2,3,4^+)$	Α	J^{π} : 1970.9 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).						
3183 [‡] <i>3</i>	0^{+}	F	J^{π} : $L(p,t)=0$.						
3210.9 <i>4</i>	(3,4,5)	C f	XREF: f(3216).						
2222 (2	(2.4+)		J^{π} : 1013.8 γ to 4 ⁺ .						
3222.6 3	$(3,4^+)$	A fG	XREF: f(3216). J^{π} : 1025.8 γ to 4 ⁺ ; 2010.1 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)); the absence of γ to 0 ⁺ .						
3249.2 8	(6)-	С	J^{π} : 285.4 γ M1+E2 to 5 ⁻ .						
3252 [‡]	(0) 4 ⁺		·						
3232 [‡]	2+	F	J^{π} : L(p,t)=4.						
3320* 3321.16 ^a 18	(6 ⁺)	F	J^{π} : L(p,t)=2. J^{π} : 843.5 γ (M1) to 6 ⁺ ; 865.0 γ to 4 ⁺ ; band member.						
3335.2 5	(6 ⁺)	C C	J^{π} : 843.3 γ (M1) to 6°; 863.0 γ to 4°; band member. J^{π} : 857.5 γ to 6°.						
3355.20 ^c 25	5-	C F	XREF: F(3357).						
3416.92 <i>15</i>	5-	C	J^{π} : L(p,t)=5; 602.1 γ to 6 ⁺ ; 896.2 γ to 3 ⁻ ; band member. J^{π} : 453.4 γ M1+E2 to 5 ⁻ ; 938.3 γ to 6 ⁺ ; 1219.3 γ to 4 ⁺ .						
3410.92 <i>13</i> 3421 [‡] <i>3</i>	2 ⁺								
	_	F	J^{π} : L(p,t)=2.						
3446.8 <i>5</i>	$(2,3,4^+)$	Α _	J^{π} : 2234.9 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).						
3472 [‡]	4+	F	TT 1 () 4 2220 4 (2+ 1) () 110cm 1 ((2+1))						
3540.5 7	4+	A F	J^{π} : L(p,t)=4; 2328.4 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).						
3577‡		F							
3594 [‡]		F							
3609 [‡] 3	4+	F	J^{π} : L(p,t)=4.						
3629.8 4	$(3,4^+)$	A	J^{π} : 796.2 γ to 2 ⁺ ; 1432.6 γ to 4 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)); the absence of γ to 0 ⁺ .						

E(level) [†]	${\sf J}^\pi$	${\rm T_{1/2}}^{\#}$	XREF	Comments
3643 [‡]			F	
3687.52 ^c 17	7-		BCD G	XREF: D(3689.3).
+	- 1			J^{π} : 1208.8 γ E1 to 6 ⁺ , 332.0 γ to 5 ⁻ ; band member.
3751 [‡] <i>3</i> 3765.77 ^c <i>17</i>	2 ⁺	1.16 mg 10	F CD C	J^{π} : L(p,t)=2.
3763.77° 17 3807 [‡]	8-	1.16 ns <i>10</i>	BCD G	J^{π} : 78.3 γ M1+E2 7 ⁻ ; 1012.3 γ M2 to 6 ⁺ .
3812 [‡] 3	2+		F	I_{n} , I_{n} , I_{n} , I_{n}
3812° 3 3813.09 [@] 22	8 ⁺		F	J^{π} : L(p,t)=2.
3813.09 - 22	0		BCD	XREF: B(3810.4)D(3814.8). J^{π} : 1334.8 γ E2 to 6 ⁺ .
				configuration: possible $v(g_{7/2}^2, d_{5/2}^2)$.
3844 [‡] <i>3</i>	5-		F	J^{π} : L(p,t)=5.
3885.0 7	3-		A F	J ^{π} : L(p,t)=3; 2673.2 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).
3933.57 ^c 18	9-	121 ps <i>19</i>	BCD	XREF: D(3935.3).
		•		J^{π} : 167.5 γ M1+E2 to 8 ⁻ ; band member.
.1.				configuration: possible $\nu(h_{11/2}, g_{7/2})$.
3971‡			F	
3991.7 ^{&} 3	(8^{+})		С	J^{π} : 1191.1 γ to (6 ⁺); band member.
4002 77 24	(7)+		C	Member of $\nu[g_{7/2}^2h_{11/2}^2]$ or $\nu[d_{5/2}^2h_{11/2}^2]$ multiplets. J^{π} : 1249.9 γ M1+E2 to 6 ⁺ .
4003.77 <i>24</i> 4132 [‡] <i>3</i>	$(7)^+$ $3^- \& 5^-$		C	
4132.7 3 4137.86 ^a 20	(8^+)		F C	J^{π} : L(p,t)=3+5. J^{π} : 816.7 γ to (6 ⁺); band member.
4158 [‡]	(0)		F	3. 010.77 to (0), build member.
4280.6 7	(8^{+})		С	J^{π} : 945.4 γ to (6 ⁺).
				configuration: possible member of $\nu(g_{7/2}^2,h_{11/2}^2)$ or $\nu(d_{5/2}^2,h_{11/2}^2)$ multiplets.
4315.7 <i>3</i>	$(8)^{+}$		С	J^{π} : 311.7 γ M1+E2 to (7) ⁺ , 382.7 γ to 9 ⁻ .
				configuration: possible member of $v(h_{11/2}^2)$ multiplet.
4317 [‡] <i>3</i>	4+		F	J^{π} : L(p,t)=4.
4317.3 4	(10)		D	J^{π} : 383.7 γ D(+Q) to (9) ⁻ .
4465‡			F	
4501‡			F	
4600‡			F	04
4625.6?			В	E(level): From 94 Mo(19 F,p2n γ). No γ ray were observed to depopulate this level.
4644 [‡]			F	
4780.44 ^c 20	9-		BC	J^{π} : 1092.9 γ E2 to 7 ⁻ ; band member.
4881.07 ^a 23 4895.20 ^c 20	(10 ⁺) 10 ⁻	<21 ps	C BCD G	J^{π} : 743.2 γ to (8 ⁺). XREF: D(4897.2).
4693.20 20	10	<21 ps	DCD G	J^{π} : 1129.5 γ E2 to 8 ⁻ ; band member.
5006.1 6	$(2,3,4^+)$		A	J^{π} : 2172.3 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).
5017.40 [@] 23	(10^{+})		С	J^{π} : 1203.7 γ to (8 ⁺); band member.
	,			configuration: possible $v(g_{7/2}^2 d_{5/2}^2)$.
5108.15 ^c 23	11-	52 ps <i>16</i>	BCD	XREF: D(5111.0). J^{π} : 1175.3 γ E2 to 9 ⁻ ; band member.
5219.7 <mark>&</mark> 4	(10^{+})		С	J^{π} : 1227.4 γ to (8 ⁺); band member.
	` /			configuration: possibly a competition between the $v(g_{7/2}^2, d_{5/2}^2)$ and
5228.98 ^b 19	10+		ВС	$\nu(h_{11/2}^2)$ multiplets. J^{π} : 211.0 γ M1+E2 to (10 ⁺); 447.7 γ E1 to 9 ⁻ ; band member.

¹¹⁰Sn Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
5331.27 ^c 20	11-	CD	configuration: Possible $\nu(h_{11/2}^2)$. XREF: D(5332.4). J^{π} : 1397.0 γ E2 to 9 $^-$.
5730.8 ^a 3	(12^{+})	C	J^{π} : 849.7 γ to (10 ⁺); band member.
5939.4 ^d 3	(9^{-})	C	J^{π} : 604.5 γ to 11 ⁻ ;
6037.14 ^b 21	(12^+)	BC	J^{π} : 808.2 γ (E2) to 10 ⁺ ; band member.
6066.5 ^d 3	(10^{-})	С	J^{π} : 127.0 γ to (9 ⁻); band member.
6207.13 ^d 21	(11^{-})	С	J^{π} : 978.2 γ to 10 ⁺ ; 1099.0 γ D to 11 ⁻ .
6354.9 ^d 4	(12^{-})	С	J^{π} : 147.7 γ to (11 ⁻); 318.0 γ to (12 ⁺); band member.
6370.9 ^c 11	(12)	C	J^{π} : 1041.0 γ to 11 ⁻ ; band member.
6545.2 ^c 5	(13)	C	J^{π} : 1215.3 γ to 11 ⁻ ; band member.
6598.3 ^a 4	(14^{+})	C	J^{π} : 867.5 γ to (12 ⁺); band member.
6613.2? ^d 8	(13)	С	J^{π} : 259.6 γ to (12); band member.
6778.04 ^b 23	(14^{+})	BC G	J^{π} : 740.9 γ E2 to (12 ⁺); band member.
6974.4? ^d 13	(14)	С	J^{π} : 361.2 γ to (13); band member.
7541.1 ^a 5	(16^{+})	С	J^{π} : 942.8 γ to (14 ⁺); band member.
7587.9 ^b 3	(16^{+})	BC	J^{π} : 809.9 γ (E2) to (14 ⁺); band member.
8491.8 ^b 3	(18^{+})	BC	J^{π} : 903.9 γ E2 to (16 ⁺); band member.
9495.2 ^b 3	(20^+)	BC	J^{π} : 1003.3 γ to (18 ⁺); band member.
10501.5? ^b 6	(22^{+})	С	J^{π} : 1007.6 γ to (20 ⁺); band member.
11516.0? ^b 6	(24^{+})	С	

 $^{^{\}dagger}$ From a least-squares fit to Ey's, unless otherwise stated. ‡ From $^{112}Sn(p,t).$ # From recoil-distance method in 1986Ka25, unless otherwise stated. @ Band(A): g.s. band.

[&]amp; Band(B): band based on the 2800.27 keV level.

^a Band(C): band based on the 3321.16 keV level.

^b Band(D): band based on the 5228.98 keV level.

^c Band(E): band based on the 2458.42 keV level.

^d Band(F): band based on the 5939.4 keV level.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	δ&	$lpha^\dagger$	Comments
1212.02	2+	1212.01 9	100	0.0 0+	E2		0.000859 12	$\alpha(K)$ =0.000740 II ; $\alpha(L)$ =8.95×10 ⁻⁵ $I3$; $\alpha(M)$ =1.746×10 ⁻⁵ 25 ; $\alpha(N+)$ =1.203×10 ⁻⁵ $\alpha(N)$ =3.28×10 ⁻⁶ 5 ; $\alpha(O)$ =2.83×10 ⁻⁷ 4 ; $\alpha(IPF)$ =8.47×10 ⁻⁶ $I2$ B(E2)(W.u.)=14.4 $I2$ E _{γ} : From ¹⁰⁸ Cd(α ,2n γ). Mult.: DCO=1.00 9 ; A ₂ =+0.20 7 , A ₄ =-0.07 4 (2005Wo03).
2058.0	$(0^+,2)$	846.0 <i>4</i>	100	1212.02 2+				With $DCO=1.0009$, $A_2=\pm0.2007$, $A_4=-0.0074$ (2003 W003).
2121.04	2+	908.9 [#] <i>3</i>	100 <mark>#</mark> 8	1212.02 2+				
		2120.8 [#] 6	94 [#] 5	$0.0 0^{+}$				
2197.05	4+	985.03 <i>3</i>	100	1212.02 2+	E2		0.001330 19	$\alpha(\mathrm{K}) = 0.001155 \ 17; \ \alpha(\mathrm{L}) = 0.0001421 \ 20; \ \alpha(\mathrm{M}) = 2.78 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N}+) = 5.65 \times 10^{-6} \\ \alpha(\mathrm{N}) = 5.21 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 4.43 \times 10^{-7} \ 7 \\ \mathrm{E_{\gamma}: From} \ ^{108}\mathrm{Cd}(\alpha, 2\mathrm{n}\gamma). \\ \mathrm{Mult.: DCO} = 0.96 \ 8; \ A_2 = +0.29 \ 7, \ A_4 = -0.01 \ 1 \ (2005\mathrm{Wo03}); \\ \alpha(\mathrm{K}) = 2.16 \times 10^{-3}; \ A_2 = 0.314 \ 13, \ A_4 = -0.06 \ 2 \ (1980\mathrm{Val3}). $
2455.6	4+	1243.3# 3	100 [#]	1212.02 2+	E2		0.000820 12	$\begin{split} \alpha(\mathrm{K}) = &0.000702 \ 10; \ \alpha(\mathrm{L}) = 8.48 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.653 \times 10^{-5} \ 24; \\ \alpha(\mathrm{N}+) = &1.644 \times 10^{-5} \\ \alpha(\mathrm{N}) = &3.11 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 2.68 \times 10^{-7} \ 4; \ \alpha(\mathrm{IPF}) = 1.306 \times 10^{-5} \ 19 \\ \mathrm{Mult.} : \ \alpha(\mathrm{K}) = &2.67 \times 10^{-3} \ 12; \ \mathrm{A}_2 = 0.31 \ 2, \ \mathrm{A}_4 = -0.06 \ 4 \ (1980 \mathrm{Val}3). \end{split}$
2458.42	3-	261.5 2	40 4	2197.05 4+				
		1246.4 2	100 13	1212.02 2+	E1		0.000424 6	$\alpha(K)=0.000319$ 5; $\alpha(L)=3.72\times10^{-5}$ 6; $\alpha(M)=7.23\times10^{-6}$ 11; $\alpha(N+)=6.04\times10^{-5}$ 9 Mult.: $A_2=-0.16$ 5, $A_4=+0.01$ 2 (2005Wo03).
2477.68	6+	280.2 3	100	2197.05 4+	E2		0.0444	Mult.: $A_2 = -0.16$ 3, $A_4 = +0.01$ 2 (2003 wo03). $\alpha(K) = 0.0372$ 6; $\alpha(L) = 0.00584$ 9; $\alpha(M) = 0.001160$ 17; $\alpha(N+) = 0.000227$ 4 $\alpha(N) = 0.000213$ 3; $\alpha(O) = 1.473 \times 10^{-5}$ 22 $B(E_2)(W.u.) = 1.79$ 10 Mult.: $DCO = 1.20$ 13; $A_2 = +0.11$ 1, $A_4 = -0.14$ 9; $\alpha(K) \exp(-0.030)$ 12; $A_2 = 0.32$ 3, $A_4 = -0.07$ 10 (1980 Va13).
2545.7	2+	1333.6 [#] 5	100 [#] <i>12</i>	1212.02 2+				
		2545.4 [#] <i>15</i>	35 [#] 12	$0.0 0^{+}$				
2694.5	4+	1482.5 [#] 4	100 [#]	1212.02 2+				
2742.1	0+	1530.1 8	100	1212.02 2+	1.61 (F2)	0.0.2	0.0254.5	(T) 0.0007 ((T) 0.00001 11 (T) 0.000747 22
2753.67	6+	276.08 6	100	2477.68 6+	M1(+E2)	0.0 2	0.0354 7	$\alpha(K)$ =0.0307 6; $\alpha(L)$ =0.00381 11; $\alpha(M)$ =0.000747 22; $\alpha(N+)$ =0.000153 4 E _y : From ¹⁰⁸ Cd(α ,2ny). Mult.: DCO=1.18 25; A ₂ =+0.35 9, A ₄ =-0.01 2; $\alpha(K)$ exp=0.038 8; A ₂ =0.382 11, A ₄ =0.01 2 (1980Va13).

γ (110Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \sharp}$	${\rm I}_{\gamma}^{\sharp}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$lpha^\dagger$	Comments
2800.27	(6 ⁺)	323.1 2	48 4	2477.68 6+			E_{γ} : 324.6 keV 2 in 108 Cd(α ,2n γ).
	(-)	603.4 1	100 8	2197.05 4+			<i>y</i>
2821.5	$(2^+,3,4^+)$	624.4 [#] 5	44 [#] 4	2197.05 4+			
		1609.5 [#] 5	100 # 8	1212.02 2+			
2833.6	2+	636.5 [#] 4	100 [#] 9	2197.05 4+			
		1621.4 [#] 5	38 [#] 6	1212.02 2+			
		2834.3 [#] <i>15</i>	8 [#] 4	$0.0 0^{+}$			
2914.8	2+	1702.5 [#] 12	100 [#] 36	1212.02 2+			
2711.0	2	2915.1 [#] <i>15</i>	86 [#] 36	$0.0 0^{+}$			
2948.2	$(3,4^+)$	751.5 [#] 4	44 [#] 4	2197.05 4+			
∠7 4 0.∠	(3,4)	827.1 [#] 3	100 [#] 7	2197.03 4* 2121.04 2*			
		1735.9 [#] 5	75 [#] 4				
2963.82	5-	1/35.9" 5 163.9 <i>1</i>	75" <i>4</i> 69 8	1212.02 2 ⁺ 2800.27 (6 ⁺)			
2903.62	3	486.0 <i>1</i>	100 8	2477.68 6 ⁺	E1	0.00255 4	$\alpha(K)=0.00222 \ 4; \ \alpha(L)=0.000266 \ 4; \ \alpha(M)=5.18\times10^{-5} \ 8;$
		400.0 1	100 0	2477.06 0	LI	0.00255 4	$\alpha(N+)=1.053\times10^{-5}$ 15
							$\alpha(N)=9.71\times10^{-6}$ 14; $\alpha(O)=8.22\times10^{-7}$ 12
							Mult.: DCO=0.56 22; A_2 =-0.44 14, A_4 =+0.01 2.
		505.8 2	85 8	2458.42 3-			, , , , , , , , , , , , , , , , , , ,
2977.2	$(2,3,4^+)$	1765.3 [#] 5	100 #	1212.02 2+			
3182.9	$(2,3,4^+)$	1970.9 <i>6</i>	100	1212.02 2+			
3210.9	(3,4,5)	1013.8 <i>3</i>	100	2197.05 4+			
3222.6	$(3,4^+)$	766.8 [#] 6	36 [#] 12	2455.6 4+			
		1025.8 [#] 4	100 [#] <i>12</i>	2197.05 4+			
		1101.2 # 6	33 # 8	2121.04 2+			
		2010.1 [#] <i>12</i>	18 [#] 6	1212.02 2+			
3249.2	$(6)^{-}$	285.4 7	100	2963.82 5-	M1+E2	0.037 5	$\alpha(\mathrm{K}) = 0.032~4;~\alpha(\mathrm{L}) = 0.0045~10;~\alpha(\mathrm{M}) = 0.00089~21;~\alpha(\mathrm{N}+) = 0.00018~4$
							$\alpha(N)=0.00016 \ 4; \ \alpha(O)=1.26\times10^{-5} \ 14$
							Mult.: DCO=1.03 17; A ₂ =-0.13 19, A ₄ =+0.04 7.
3321.16	(6^+)	843.5 1	100 9	2477.68 6 ⁺	(M1)	0.00230 4	$\alpha(K)=0.00200 \ 3; \ \alpha(L)=0.000240 \ 4; \ \alpha(M)=4.68\times10^{-5} \ 7;$
							$\alpha(N+)=9.61\times10^{-6}$ 14
							$\alpha(N)=8.83\times10^{-6}$ 13; $\alpha(O)=7.79\times10^{-7}$ 11
		865.0 <i>5</i>	26 4	2455.6 4+			Mult.: DCO=0.53 13.
3335.2	(6 ⁺)	857.5 <i>4</i>	100	2477.68 6 ⁺			
3355.20	5-	602.1 3	65 4	2753.67 6 ⁺			
3333.20				2458.42 3			
3333.20		896.2 <i>3</i> 453.4 <i>1</i>	100 <i>13</i> 23 <i>5</i>	2963.82 5			$\alpha(K)=0.00856\ 23;\ \alpha(L)=0.00111\ 5;\ \alpha(M)=0.000218\ 10;$

 E_{γ}^{\ddagger}

938.3 3

1219.3 2

1325.6[#] 6

2234.9# 8

1419.6[#] 9

2328.4# 8

796.2[#] 7

1432.6[#] 5

2417.8[#] *12*

270.8 2

332.0^a 1

437.2^a 3

933.9 2

1208.8 5

78.3 1

1012.3 *1*

1287.5^a 5

30 5

100 8

22[#] 4

100[#] 12

28[#] 8

100[#] 17

32[#] 7

100[#] 14

56[#] 14

5.8 *3*

0.7 3

2.3 3

5.5 3

100 3

100 4

6.5 7

 E_i (level)

3416.92

3446.8

3540.5

3629.8

3687.52

3765.77

5-

4+

7-

8-

 $(3,4^+)$

 $(2,3,4^+)$

γ (110Sn) (continued)

							/(-	(**************************************	
	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ&	α^{\dagger}	Comments
	3813.09	8+	1334.8 2	100	2477.68 6 ⁺	E2		0.000729 11	$\alpha(K)=0.001752\ 25;\ \alpha(L)=0.000214\ 3;\ \alpha(M)=4.19\times10^{-5}\ 6;$ $\alpha(N+)=1.344\times10^{-5}\ 19$ $\alpha(N)=7.91\times10^{-6}\ 11;\ \alpha(O)=6.97\times10^{-7}\ 10;\ \alpha(IPF)=4.83\times10^{-6}\ 8$ $B(M2)(W.u.)=0.0083\ 12$ $\alpha(K)=0.000608\ 9;\ \alpha(L)=7.30\times10^{-5}\ 11;\ \alpha(M)=1.423\times10^{-5}\ 20;$ $\alpha(N+)=3.37\times10^{-5}\ 5$ $\alpha(N)=2.68\times10^{-6}\ 4;\ \alpha(O)=2.32\times10^{-7}\ 4;\ \alpha(IPF)=3.08\times10^{-5}\ 5$ $Mult.:\ A_2=+0.36\ 15;\ A_4=-0.03\ 4;\ \alpha(K)\exp=0.59\times10^{-3}\ 10;$
			щ	ш					Mult.: $A_2 = +0.36 \ 13$; $A_4 = -0.05 \ 4$; $a(x) \exp = 0.39 \times 10^{-1} 10$; $A_2 = 0.35 \ 2$; $A_4 = -0.01 \ 5$ in 1980Va13.
	3885.0	3-	1339.2 [#] 7 2673.2 [#] 10	23 [#] 4 100 [#] 17	2545.7 2 ⁺ 1212.02 2 ⁺				
	3933.57	9-	167.84 6	100	3765.77 8-	M1+E2	0.08 3	0.1341 20	B(M1)(W.u.)=0.034 6; B(E2)(W.u.)=6 5 α (K)=0.1159 17; α (L)=0.0147 3; α (M)=0.00289 5; α (N+)=0.000589 10 E _{γ} : From ¹⁰⁸ Cd(α ,2n γ).
									Mult.: DCO=1.13 23; α (K)exp=0.15 3; A ₂ =-0.090 10, A ₄ =-0.01 2 (1980Va13).
	3991.7	(8 ⁺)	1191.1 <i>3</i>	100	2800.27 (6+)				δ: Other: 0.06 3 (1986Ka25).
	4003.77	(7) ⁺	1249.9 2	100	2753.67 6 ⁺	M1+E2		0.00089 8	$\alpha(\mathrm{K}) = 0.00076 \ 7; \ \alpha(\mathrm{L}) = 9.1 \times 10^{-5} \ 8; \ \alpha(\mathrm{M}) = 1.78 \times 10^{-5} \ 15; \\ \alpha(\mathrm{N}+) = 1.69 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 3.4 \times 10^{-6} \ 3; \ \alpha(\mathrm{O}) = 2.9 \times 10^{-7} \ 3; \ \alpha(\mathrm{IPF}) = 1.33 \times 10^{-5} \ 9$
	4137.86	(8 ⁺)	816.7 <i>1</i>	100	3321.16 (6 ⁺)				Mult.: DCO=0.8 3; A ₂ =+0.5 4, A ₄ =+0.13 10.
	4280.6	(8+)	945.4 5	100	3335.2 (6 ⁺)				
	4315.7	(8) ⁺	311.7 2	100 9	$4003.77 (7)^{+}$	M1+E2		0.029 3	$\alpha(K)$ =0.0244 20; $\alpha(L)$ =0.0034 7; $\alpha(M)$ =0.00067 13; $\alpha(N+)$ =0.000134 23
									α (N)=0.000124 22; α (O)=9.7×10 ⁻⁶ 8 Mult.: A ₂ =+0.25 21, A ₄ =+0.02 2.
			382.7 4	45 9	3933.57 9-				-
	4317.3	(10)	383.7 3	100	3933.57 9-	M1(+E2)	0.0 2	0.01527	$\alpha(K)=0.01326$ 19; $\alpha(L)=0.00163$ 3; $\alpha(M)=0.000319$ 6; $\alpha(N+)=6.53\times10^{-5}$ 11
									$\alpha(N)=6.00\times10^{-5}\ 10;\ \alpha(O)=5.25\times10^{-6}\ 8$ $E_{\gamma}I_{\gamma}$: From $^{108}\mathrm{Cd}(\alpha,2n\gamma)$. Mult.: $A_2=-0.16\ 2,\ A_4=-0.01\ 3$.
	4780.44	9-	848.5 ^a 9	6 3	3933.57 9-				Willi $A_2 = -0.10 \ 2$, $A_4 = -0.01 \ 3$.
			967.4 <i>4</i>	8 3	3813.09 8+				
			1092.9 <i>1</i>	100 8	3687.52 7	E2		0.001060 <i>15</i>	$\alpha(K)$ =0.000921 <i>13</i> ; $\alpha(L)$ =0.0001122 <i>16</i> ; $\alpha(M)$ =2.19×10 ⁻⁵ <i>3</i> ; $\alpha(N+)$ =4.47×10 ⁻⁶
- 1									

 ∞

$\gamma(^{110}\text{Sn})$ (continued)

E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
4881.07	(10 ⁺)	743.2 1	100	4137.86	(8+)			$\alpha(\mathrm{K}) = 0.000921 \ 13; \ \alpha(\mathrm{L}) = 0.0001122 \ 16; \ \alpha(\mathrm{M}) = 2.19 \times 10^{-5} \ 3; \\ \alpha(\mathrm{N}+) = 4.47 \times 10^{-6} \\ \alpha(\mathrm{N}) = 4.12 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 3.53 \times 10^{-7} \ 5 \\ \mathrm{Mult.: \ A}_2 = +0.24 \ 11, \ \mathrm{A}_4 = -0.09 \ 5.$
4895.20	10-	1129.5 1	100	3765.77		E2	0.000989 14	$\alpha(K)=0.000858 \ 12; \ \alpha(L)=0.0001043 \ 15; \ \alpha(M)=2.04\times10^{-5} \ 3;$
								$\alpha(N+)=5.44\times10^{-6}$ $\alpha(N)=3.83\times10^{-6}$ 6; $\alpha(O)=3.28\times10^{-7}$ 5; $\alpha(IPF)=1.280\times10^{-6}$ 19 B(E2)(W.u.)>0.47 Mult.: DCO=0.64 14; A ₂ =+0.26 11, A ₄ =-0.08 7; $\alpha(K)\exp=0.57\times10^{-3}$ 12; A ₂ =0.42 7, A ₄ =-0.18 8 (1980Val3).
5006.1	(2,3,4+)	1375.8 [#] 9 2029.1 [#] 6 2172.3 [#] 15	6.0 [#] 25 100 [#] 8 3.0 [#] 12	2833.6	(2,3,4 ⁺) 2 ⁺			
5017.40	(10^+)	1203.7 2	100	3813.09		F2	0.000012 12	(IZ) 0.000700 11 (I) 0.57: 10-5 14 (M) 1.07: 10-5 2
5108.15	11-	1175.3 5	100	3933.57	9	E2	0.000912 13	$\alpha(\mathrm{K}) = 0.000790 \ 11; \ \alpha(\mathrm{L}) = 9.57 \times 10^{-5} \ 14; \ \alpha(\mathrm{M}) = 1.87 \times 10^{-5} \ 3; \\ \alpha(\mathrm{N}+) = 8.05 \times 10^{-6} \ 12 \\ \alpha(\mathrm{N}) = 3.51 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 3.02 \times 10^{-7} \ 5; \ \alpha(\mathrm{IPF}) = 4.24 \times 10^{-6} \ 8 \\ \mathrm{B(E2)(W.u.)} = 0.16 \ 5 \\ \mathrm{Mult.: \ DCO} = 0.94 \ 18; \ \mathrm{A_2} = +0.33 \ 8, \ \mathrm{A_4} = -0.05 \ 2; \ \alpha(\mathrm{K}) \exp = 0.75 \times 10^{-3} \\ 15; \ \mathrm{A_2} = 0.36 \ 2, \ \mathrm{A_4} = -0.11 \ 5 \ (1980 \mathrm{Val}3). \\ \end{array}$
5219.7	(10^{+})	1227.4 4	100	3991.7		M1 . E2	0.004.22	(II) 0.070.17 (I.) 0.010.5 (A.) 0.0024.0 (A.) 0.00040.17
5228.98	10 ⁺	211.0 2	23.5	5017.40	(10)	M1+E2	0.094 22	$\alpha(K)$ =0.079 17; $\alpha(L)$ =0.012 5; $\alpha(M)$ =0.0024 9; $\alpha(N+)$ =0.00048 17 $\alpha(N)$ =0.00045 16; $\alpha(O)$ =3.2×10 ⁻⁵ 7 Mult.: DCO=1.07 15; A ₂ =-0.15 1, A ₄ =-0.20 22.
		334.5 <i>3</i>	15 <i>3</i>	4895.20				
		447.7 8	100 3	4780.44	9-	E1	0.00310 5	$\alpha(K)$ =0.00270 4; $\alpha(L)$ =0.000324 5; $\alpha(M)$ =6.32×10 ⁻⁵ 10; $\alpha(N+)$ =1.284×10 ⁻⁵ 19 $\alpha(N)$ =1.184×10 ⁻⁵ 18; $\alpha(O)$ =9.99×10 ⁻⁷ 15 Mult.: DCO=0.55 10; A ₂ =-0.35 16, A ₄ =+0.001 3.
		600.8 5	75 13	4625.6?				E_{γ},I_{γ} : From 94 Mo(19 F,p2n γ).
		912.8 7	8.8	4315.7				
5001.05		1295.6 <i>I</i>	56 <i>3</i>	3933.57		D	0.000731.75	Mult.: DCO=0.60 18; A_2 =+0.4 4, A_4 =+0.16 18.
5331.27	11-	1397.6 <i>1</i>	100	3933.57	9-	E2	0.000684 10	$\alpha(K)=0.000554$ 8; $\alpha(L)=6.64\times10^{-5}$ 10; $\alpha(M)=1.293\times10^{-5}$ 19; $\alpha(N+)=5.03\times10^{-5}$ 7 $\alpha(N)=2.43\times10^{-6}$ 4; $\alpha(O)=2.11\times10^{-7}$ 3; $\alpha(IPF)=4.77\times10^{-5}$ 7
								Mult.: DCO=0.9 3; A_2 =+0.19 8, A_4 =-0.11 6; α (K)exp=0.56×10 ⁻³ 14; A_2 =0.38 3, A_4 =-0.08 4 (1980Va13).
5730.8	(12^{+})	849.7 2	100	4881.07	(10^{+})			

$\gamma(^{110}\text{Sn})$ (continued)

I	$\Xi_i(\text{level})$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
	5939.4 6037.14	(9 ⁻) (12 ⁺)	604.5 <i>6</i> 808.2 <i>1</i>	100 100 <i>6</i>	5331.27 5228.98		(E2)	0.00210 3	$\alpha(K)$ =0.00182 3; $\alpha(L)$ =0.000229 4; $\alpha(M)$ =4.47×10 ⁻⁵ 7; $\alpha(N+)$ =9.08×10 ⁻⁶ 13 $\alpha(N)$ =8.38×10 ⁻⁶ 12; $\alpha(O)$ =7.02×10 ⁻⁷ 10 Mult.: DCO=1.11 13; A ₂ =+0.43 11, A ₄ =-0.01 1 for 808+810.
	6066.5 6207.13	(10 ⁻) (11 ⁻)	816.9 4 1019.1 9 127.0 <i>I</i> 140.2 2 876.0 4 978.2 <i>I</i>	8.2 10 4.1 10 100 8 4 32 4 52 16	5219.7 5017.40 5939.4 6066.5 5331.27 5228.98	(10 ⁺) (9 ⁻) (10 ⁻) 11 ⁻			Mult.: DCO=1.11 13; A_2 =+0.43 11; A_4 =-0.01 1 for 808+810.
	6354.9 6370.9 6545.2 6598.3	(12 ⁻) (12) (13) (14 ⁺)	1099.0 <i>I</i> 147.7 <i>3</i> 318.0 8 1041.0 ^a 10 1215.3 ^a <i>I</i> 867.5 2	100 4 100 33 33 33 100 100	5108.15 6207.13 6037.14 5331.27 5331.27 5730.8	11 ⁻ (11 ⁻) (12 ⁺) 11 ⁻ 11 ⁻ (12 ⁺)	D		Mult.: DCO=0.90 15.
	6613.2? 6778.04	(13) (14 ⁺)	259.6 ^a 5 740.9 <i>1</i>	100 100	6354.9 6037.14	(12 ⁻) (12 ⁺)	E2	0.00260 4	$\alpha(K)=0.00224\ 4;\ \alpha(L)=0.000285\ 4;\ \alpha(M)=5.58\times10^{-5}\ 8;$ $\alpha(N+)=1.131\times10^{-5}\ 16$ $\alpha(N)=1.044\times10^{-5}\ 15;\ \alpha(O)=8.67\times10^{-7}\ 13$ Mult.: DCO=1.02 10; A ₂ =+0.29 9; A ₄ =-0.06 7.
	6974.4? 7541.1	(14) (16^+)	361.2 ^a 10 942.8 2	100 100	6613.2? 6598.3				
	7587.9	(16 ⁺)	809.9 1	100	6778.04		(E2)	0.00209 3	$\alpha(K)$ =0.00181 3; $\alpha(L)$ =0.000227 4; $\alpha(M)$ =4.45×10 ⁻⁵ 7; $\alpha(N+)$ =9.03×10 ⁻⁶ 13 $\alpha(N)$ =8.33×10 ⁻⁶ 12; $\alpha(O)$ =6.98×10 ⁻⁷ 10 Mult.: DCO=1.11 13; A_2 =+0.43 11, A_4 =-0.01 1 for 808 γ +810 γ .
	8491.8	(18+)	903.9 1	100	7587.9	(16 ⁺)	E2	0.001616 23	$\alpha(K)$ =0.001401 20; $\alpha(L)$ =0.0001739 25; $\alpha(M)$ =3.40×10 ⁻⁵ 5; $\alpha(N+)$ =6.91×10 ⁻⁶ $\alpha(N)$ =6.37×10 ⁻⁶ 9; $\alpha(O)$ =5.39×10 ⁻⁷ 8 Mult.: A ₂ =+0.17 17; A ₄ =-0.10 16 and γ-ray decay pattern.
1	9495.2 0501.5? 1516.0?	(20 ⁺) (22 ⁺) (24 ⁺)	1003.3 <i>I</i> 1007.6 ^a 2 1014.5 ^a 2	100 100 100	8491.8 9495.2 10501.5?	(18 ⁺) (20 ⁺) (22 ⁺)	Q		Mult.: $A_2 = +0.17 \ I7$; $A_4 = -0.10 \ I0$ and γ -ray decay pattern. Mult.: $A_2 = 0.19 \ I0$, $A_4 = -0.08 \ I0$ in $^{94} \text{Mo}(^{19}\text{F}, \text{p2n}\gamma)$.

[†] Additional information 1. ‡ From ⁹⁸Mo(¹⁶O,4n γ), unless otherwise stated.

γ (110Sn) (continued)

- # From $^{110}{\rm Sb}~\varepsilon$ decay.
 @ From DCO ratios, $\gamma(\theta)$ and γ -decay pattern in $^{98}{\rm Mo}(^{16}{\rm O},4{\rm n}\gamma)$, unless otherwise stated.
 & From $\gamma(\theta)$ in $^{108}{\rm Cd}(\alpha,2{\rm n}\gamma)$.
- ^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

¹¹⁰₅₀Sn₆₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{110}_{50}\mathrm{Sn}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

		T	A41	History Cotteff Date						
		Type Full Evaluation	Author S. Lalkovski, F. 0							
		run Evaluation	S. Laikovski, F. C	J. Kolluev NDS 124, 137 (2013) 1-Aug-2014						
$Q(\beta^{-})=-7057 \ 18$; $S(n)=10788 \ 5$; $S(p)=7554 \ 4$; $Q(\alpha)=-1828.3 \ 12$ 2012Wa38										
				¹¹² Sn Levels						
			Cro	oss Reference (XREF) Flags						
		B 112 Sb C Could D 112 Sn E 112 Sn	β^- decay G or β decay H omb excitation I $\alpha(\gamma, \gamma')$ J $\alpha(n, n'\gamma)$ K $\alpha(n, n'\gamma)$ L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
E(level) [†]	${ m J}^{\pi}$	T _{1/2} ‡	XREF	Comments						
0.0#	0+		ABCDEFGHIJKLMNOP(
1256.69# 4	2+	0.376 ps <i>5</i>	BCDEFGHIJKLMN PC	XREF: K(1258)P(1250)Q(1260). J ^π : L(p,t)=2; 1256.68γ E2 to 0 ⁺ . T _{1/2} : from B(E2)↑ in Coulomb excitation. Others: 0.451 ps 28 from DSAM in 2011Ju01 and 0.37 ps +7-6 in from DSAM in 2007Or04 (note that the value was initially reported as 0.52 ps +9-6, but it was retracted by the authors. B(E2)↑: 0.240 3, weighted average of 0.242 8 (2011Ku05,2010Ku07), 0.240 20 (2007Va22), 0.229 5 (1975Gr30), and 0.256 6 (1970St20). Other: 0.240 14 (1987Ra01), weighted average of the data in 1975Gr30 and 1970St20. β ₂ =0.143 5 (for r ₀ =1.26 fm) (1980Bl07). Other: 0.152 10 (1968Ma34). μ: +0.21 7 from g-factor=+0.104 35 in 2011Wa15. Other: +0.7 3 in 1980Ha19. Q: -0.09 10 in 1975Gr30.						
2150.87 5	2+	1.4 ps 4	BC E LMN	J^{π} : L(p,p')=2; 2150.9γ E2 to 0 ⁺ and 894.17γ M1+E2 to 2 ⁺ . $T_{1/2}$: from B(E2)↑=0.00065 20 in Coulomb excitation (1981Jo03).						
2190.81 6	0+	≥2.7 ps	C E H LMNO (
2247.39# 6	4+	3.3 ps 5	BC EF HIJKLMN P	$T_{1/2}$: From B(E2)↑≤0.029. XREF: K(2251.0)N(2248)P(2260). J^{π} : L(p,t)=4; L(p,p')=4; 990.69γ E2 to 2 ⁺ . $T_{1/2}$: from B(E2)(2 ⁺ to 4 ⁺)=0.032 5 in Coulomb excitation (1981Jo03).						
2354.21 6	3-	0.215 ps <i>14</i>	BC EF H LMN PC	μ : +1.5 7 from g-factor=+0.38 18 in 2011Wa15. XREF: B(2355.0)N(2355)P(2360)Q(2350). J ^{π} : L(p,p')=3; L(p,t)=3; L(α , α ')=3; 1097.38 γ E1 to 2 ⁺ . T _{1/2} : From DSAM in 2011Ju01; Other: 0.35 +14-8 ps from DSAM in ¹¹² Sn(n,n' γ) (2005Ku28). β ₃ =0.146 5 (for r ₀ =1.26 fm) (1980Bl01). Other: 0.203 15 (1968Ma34). B(E3)=0.087 12 (1981Jo03) in Coulomb excitation (1981Jo03) and 0.050 10 in ¹¹² Sn(α , α ') (1970Br07). μ : -1.4 28 from g-factor=-0.48 92 in 2011Wa15.						
2476.16 <i>11</i>	2+	>2.4 ps	BC E H MN C	XREF: H(2474.8)M(2475)Q(2500).						
2520.70 7	4+	0.42 ps <i>14</i>	BC EFGHI MN P	J ^{π} : L(p,t)=2; 2475.8 γ E2 to 0 ⁺ . XREF: I(2520.12)P(2530). J ^{π} : L(p,t)=4; 1264.07 γ E2 to 2 ⁺ .						

E(level) [†]	J^{π}	T _{1/2} ‡		XREF		Comments			
2549.22 <i>14</i>	6+	13.73 ns 8		EF HIJK	K MN	T _{1/2} : from DSAM in ¹⁰³ Rh(¹² C,p2nγ) (1990ViZW). Other: >0.8 ps in ¹¹² Sn(n,n'γ) (2005Ku28). XREF: K(2553.0)M(2550). J ^π : L(p,t)=6; 301.84γ E2 to 4 ⁺ . T _{1/2} : weighted average of of 13.9 ns 2 (1980Va13), 14.0 ns 4 (1969Ya05), 13.2 ns 4 (1981Go17) and 13.7 ns <i>I</i> (1981Va15) in ¹¹⁰ Cd(α,2nγ) and 12.1 ns <i>I5</i> (1989An14, 1988Pe17) and 13.6 ns 4 (1989An14) in ¹¹⁰ Cd(³ He,nγ), ¹¹² Cd(³ He,3nγ). Other >0.5 ps from DSAM in ¹¹² Sn(n,n'γ) (2005Ku28). μ : +0.53 3 (1983Le18), +0.61 5 (1981Go17), and +0.2 2 (1981Va15). Q: 0.29 6 (1975Vi03). configuration: most likely a mixture between (ν g-1/2, ν d-2/2) and (ν g7/2)-2.			
2556.6 <i>3</i>	(2+)		В			J^{π} : $25\overline{5}6.6\gamma$ to 0 ⁺ ; direct population in ¹¹² Sb ε decay $(J^{\pi}=(3^{+}))$.			
2617.62 <i>18</i>	0+	>0.4 ps		E	MN	J ^{π} : L(p,t)=0; 1360.92 γ E2 to 2 ⁺ . T _{1/2} : Other: >0.8 ps from B(E2)(0 ⁺ ->2 ⁺)<0.016 (1981Ba05).			
2721.06 <i>14</i>	2+	0.8 ps + 10 - 3	В	E	MN	XREF: M(2723). J^{π} : L(p,t)=2; L(p,p')=2; 2721.6 γ E2 to 0+.			
2756.02 9	3+	>0.8 ps	В	E	M	XREF: M(2760).			
2765.2 3	0+ to 4+	>1.0 ps		E		J^{π} : 1499.5 γ M1(+E2) to 2 ⁺ , 508.8 γ M1+E2 to 4 ⁺ .			
2783.66 14	4 ⁺	0.32 ps 7	В	EFGHI	MN P	XREF: B(2784.6)M(2786)P(2800). J^{π} : L(p,t)=4; L(p,p')=4; 1527.2 γ E2 to 2 ⁺ . $T_{1/2}$: wt. average of 0.35 ps $I4$ in 103 Rh(12 C,p2n γ) (1990ViZW) and 0.31 ps $+I0$ -6 in 112 Sn(n,n' γ) (2005Ku28).			
2860 2 2913.07 <i>21</i>	4+	>0.6 ps	В	E	M M	XREF: M(2915).			
2917.39 10	2+,3,4+	>1.1 ps	В	E		J^{π} : L(p,p')=4; 1656.3 γ E2 to 2 ⁺ . XREF: B(2918.0).			
2926.82 18	6 ⁺	>0.22 ps		EF HI	MN	J^{π} : 669.9 γ to 4 ⁺ , 767.0 γ to 2 ⁺ . XREF: M(2928). J^{π} : L(p,t)=6; 378.6 γ M1 to 6 ⁺ .			
2945.70 <i>13</i>	4+	>1.1 ps	В	EF HI	M	XREF: M(2947).			
2966.63 8	2+	0.5 ps +8-2	В	E	MN	J^{π} : L(p,p')=4; 1688.7 γ E2 to 2 ⁺ . XREF: M(2969)N(2966). J^{π} : L(p,t)=2; 612.4 γ E1 to 3 ⁻ ; 1709.9 γ M1(+E2) to 2 ⁺ and			
2969.31 6		0.29 ps +21-9		E	P	2966.6 γ E2 to 0 ⁺ . XREF: P(2970).			
2986.4 <i>3</i>	0+	>1.7 ps		E	MN	XREF: M(2989)N(2988). J^{π} : L(p,t)=0; 1729.7 γ E2 to 2 ⁺ .			
3078.53 <i>13</i>	$(2,3)^+$	>1.2 ps	В	E		J^{π} : 927.7 γ M1+E2 to 2 ⁺ ; 1821.8 γ M1+E2 to 2 ⁺ , and 831.1 γ to 4 ⁺ .			
3092.21 10	2+	0.25 ps +8-5	В	E	M	XREF: B(3093.3)M(3095). J ^π : L(p,p')=2; 3092.1γ E2 to 0 ⁺ .			
3113.54 <i>15</i>	0^{+} to 4^{+}			E	M	XREF: M(3118). J^{π} : 962.67 γ to 2 ⁺ .			
3133.42 11	5-	>1.0 ps		Е Н	MN	XREF: H(3136.5)M(3137)N(3132). J ^π : L(p,p')=5; L(p,t)=5; 779.3γ E2 to 3 ⁻ ; 886.0γ E1 to 4 ⁺ .			
3141.1 <i>4</i> 3149.28 <i>21</i>	4+	0.6 ps +10-2	D	E E	M P	XREF: M(3152)P(3150).			
J147.20 21	'1	0.0 ps +10-2	D	E	пг	J^{π} : L(p,p')=4; 1892.2 γ E2 to 2 ⁺ .			

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$		XREF	7	Comments
3248.69 10	2+	>1.1 ps	В	E	MN	XREF: M(3253).
3272.31 16	4+	0.30 ps +21-10		E	MN	J^{π} : L(p,t)=2; 3248.1 γ E2 to 0 ⁺ . XREF: M(3278)N(3275).
3283.60 <i>21</i>	2+			E	n	J^{π} : L(p,p')=4; L(p,t)=4; 2016.1 γ E2 to 2 ⁺ . XREF: n(3286).
3286.18 <i>15</i>	(2)+	0.22 ps +15-7	В	E	n	J^{π} : L(p,t)=2; 1036.2 γ to 4 ⁺ . XREF: n(3286). J^{π} : 2029.4 γ M1(+E2) to 2 ⁺ and 3286.2 γ to 0 ⁺ ; direct
3288.0 <i>3</i>	$(1,2^+)$			E	M	population in ¹¹² Sb ε decay (J^{π} =(3 ⁺)). XREF: M(3292).
3338.3 <i>3</i>	2+	>0.3 ps		E	N	J ^π : 1097.2γ to 0 ⁺ . XREF: N(3345).
3353.1 <i>4</i> 3354.38 <i>15</i>	2 ⁺ (7) ⁻	>1.4 ps		E F HI F	C M	J ^π : 2081.6 <i>y</i> M1+E2 to 2 ⁺ ; L(p,t)=2. J ^π : 2096.4 <i>y</i> M1+E2 to 2 ⁺ and 3353.0 <i>y</i> E2 <i>γ</i> to 0 ⁺ . XREF: H(3355.0)K(3360)M(3360). J ^π : 805.11 <i>γ</i> E1 to 6 ⁺ ; yrast state, but 5 ⁻ and 6 ⁻ cannot unambiguously be excluded.
3378.9 <i>3</i> 3384.30 22	0 ⁺ to 4 ⁺ (3) ⁻	0.18 ps +8-5	В	E E	M	configuration: possible $vd_{3/2}h_{11/2}$ configuration. J^{π} : 1228.0 γ to 2 $^+$. XREF: M(3387). J^{π} : 2127.50 γ E1 to 2 $^+$, but 1 $^-$ and 2 $^-$ cannot
3397.20 <i>12</i> 3400 <i>3</i>	2 ⁻ ,3 ⁻ 4 ⁺	0.23 ps +10-6		E	MN	unambiguously be excluded. J^{π} : 1042.95 γ M1+E2 to 3 ⁻ and 1246.6 γ to 2 ⁺ . XREF: M(3402). J^{π} : L(p,t)=4.
3413.93 [@] 12	6 ⁺ @	0.6 ps <i>3</i>		EFGHI	N	J ^{π} : L(p,t)=4,6; 1166.9γ E2 to 4 ⁺ ; member of ΔJ=2 sequence.
3417.41 <i>11</i>	4+	>0.4 ps	В	E	M P	$T_{1/2}$: From DSAM in 103 Rh(12 C,p2n γ) (1990ViZW). XREF: M(3424)P(3430).
3430.65 22	(8)-	0.61 ns <i>3</i>		FGHI		J ^π : L(p,p')=4; 2160.7 γ E2 to 2 ⁺ . J ^π : 76.3 γ M1+E2 to (7) ⁻ ; no transitions to the 6 ⁺ states. T _{1/2} : weighed average of 0.58 ns 6 from $\gamma\gamma$ (t) in ¹¹⁰ Cd(α ,2n γ) (1980Va13) and 0.62 ns 4 from recoil
3433.9 5	(1-)	1.9 fs +11-10		DE	M	distance method in 100 Mo(16 O,4n γ) (1986Ka25). XREF: D(3434)M(3440). J ^{π} : 3433.3 γ (E1) to 0 ⁺ ; B(E1)=11.5×10 ⁻⁵ 11 (2014Oz03), 10.7×10 ⁻⁵ 12 (2006Py01).
3445 <i>3</i>	4+				N	(2014O203), 10.7×10 · 12 (2000Fy01).
3456.31 20	2+,3+	>0.7 ps	В	E		J ^π : 2199.6γ M1+E2 to 2 ⁺ ; direct population in ¹¹² Sb ε decay (J ^π =(3 ⁺)).
3471.7 3	4+	>0.23 ps		E	MN	XREF: M(3477)N(3481).
3494.00 <i>21</i> 3499.21 <i>16</i>	2 ⁺ to 6 ⁺ 5 ⁻	0.04 ps +4-2		E E	MN	J^{π} : L(p,t)=4; 951.0 γ to 4 ⁺ . J^{π} : 1246.6 γ to 4 ⁺ . XREF: M(3502)N(3510). J^{π} : L(p,t)=5; 979.3 γ to 4 ⁺ , 1144.2 γ to 3 ⁻ .
3520.45 20 3524.54 18	1 to 4 ⁺ 2 ⁺ 2+ 2 4+	>0.12 ps	В	E E	M	XREF: M(3522). J^{π} : 1277.7 γ E2 to 4 ⁺ ; 3524.2 γ E2 to 0 ⁺ .
3530.15 <i>14</i> 3553.7 <i>3</i>	$2^{+},3,4^{+}$ $(3)^{-}$	0.17 ps +11-6	В	E E	M N	XREF: M(3532). J^{π} : 380.8 γ to 4 ⁺ , 1379.6 γ to 2 ⁺ . J^{π} : L(p,t)=3; 2297.0 γ to 2 ⁺ .
3557.29 12		>0.3 ps		E	M	XREF: M(3558).
3570 3580 <i>5</i>	$(0)^+$ $(4)^+$				O M	J^{π} : L(³ He,n)=0. J^{π} : L(p,p')=4.
3586 <i>3</i> 3604.90 <i>12</i>	(2)+			E	N	$J^{\pi}: L(p,t)=2.$

E(level) [†]	J^{π}	T _{1/2} ‡	XREF		Comments			
3610.97 11		0.8 ps +4-2	E	M	XREF: M(3611).			
3624 3	$(2^+,4^+)$	0.0 ps 17 2	-	MN	J^{π} : L(p,p')=(2) in 1980Bl01 supports (2 ⁺), while L(p,t)=4 in			
					$(2012Gu10)$ supports $4^{(+)}$.			
3631.03 24			E					
3654.34 <i>15</i>	2+		E	MN	XREF: N(3663).			
2602 60 22	(0)=	47 7	T.011T		J^{π} : L(p,p')=2; 2397.6 γ M1+E2 to 2 ⁺ .			
3693.68 22	(9)	47 ps 7	FGHI	M	XREF: M(3695).			
					J^{π} : 263.03 γ M1+E2 to (8) ⁻ .			
					$T_{1/2}$: From recoil-distance measurements in 100 Mo(16 O,4n γ) (1986Ka25); Other: 0.69 ps $I4$ in 103 Rh(12 C,p2n γ) (1990ViZW).			
3726.22 21			E	MN	XREF: M(3737)N(3715).			
3754.4 <i>3</i>			E	M	XREF: M(3756).			
3782.9 3			Ē	MN	XREF: M(3773)N(3776).			
3813.78 <i>10</i>	$(2^+,3^+,4^+)$		В	MN	XREF: M(3815)N(3818).			
	. , , ,				J^{π} : 1566.4 γ to 4 ⁺ ; direct population in ¹¹² Sb ε decay			
					$(J^{\pi}=(3^{+})).$			
3832 7				M				
3857 7				M				
3877 <i>7</i>				MN	XREF: N(3874).			
3914 7				MN	XREF: N(3930).			
3988 7				M	WDEE AV (40.40)			
4031 7				MN	XREF: N(4048).			
4054 7	8 ⁺ @	1.0		M	VDEE 14/4050\N/4001\			
4077.59 [@] 14	81.6	1.0 ps 4	FGHI	MN	XREF: M(4078)N(4091).			
					J^{π} : 663.66 γ E2 to 6 ⁺ ; band member.			
4105 7				M	$T_{1/2}$: from DSAM in 103 Rh(12 C,p2n γ) (1990ViZW).			
4141.3 5	(1^{-})		D	M	XREF: M(4138).			
4141.5 5	(1)		D	11	J^{π} : 4141.2 γ (E1) to 0 ⁺ .			
					$B(E1)=0.7\times10^{-5}$ 2 (2014Oz03).			
4151 7				M	B(E1)=0.7×10 2 (20110203).			
4162.3 5	(1-)		D	N	XREF: N(4164).			
	. ,				J^{π} : 4162.2 γ (E1) to 0 ⁺ .			
					$B(E1)=1.8\times10^{-5} \ 2 \ (2014Oz03).$			
4171 <i>7</i>	4 ⁽⁺⁾			M	J^{π} : L(p,p')=4.			
4193 7				M				
4222 7				M				
4239 7				MN	XREF: N(4241).			
4279 7	(4-)		_	MN	XREF: N(4287).			
4330.4 5	(1-)		D	MN	XREF: M(4325)N(4316).			
					J^{π} : 4330.3 γ (E1) to 0 ⁺ .			
1261 7				MAT	B(E1)=0.5×10 ⁻⁵ 1 (2014Oz03). XREF: N(4363).			
4364 <i>7</i> 4402 <i>7</i>				MN M	AREF. IN(4303).			
4402 7				M				
4461 7				MN	XREF: N(4455).			
4502 7				MN	XREF: N(4486).			
4544 7				M				
4582.61 25	(10)	0.24 ps 7	FGHI	MN	XREF: M(4571)N(4576). J^{π} : 1151.94 γ E2 to (8) $^{-}$.			
					$T_{1/2}$: from DSAM in 103 Rh(12 C,p2n γ) (1990ViZW). Other:			
					$<21 \text{ ps from RDDS in } ^{100}\text{Mo}(^{16}\text{O},4\text{n}\gamma) (1986\text{Ka}25);$			
4610 7				MN	XREF: N(4629).			
4681.0 <i>3</i>	(10^+)		HI	M	XREF: H(4680.2)M(4685).			

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF		Comments
4726.5 5	(1-)		D	MN	J^{π} : 603.1 γ to 8 ⁺ , 987.4 γ to (9) ⁻ . XREF: M(4738)N(4724). J^{π} : 4726.4 γ (E1) to 0 ⁺ .
4757 <i>7</i> 4794 <i>7</i>				MN M	B(E1)= $0.3 \times 10^{-5} I$ (2014Oz03). XREF: N(4740).
4819.37 [@] 22	10 ⁺ @	0.14 ps 7	FGHI	M	XREF: M(4825). J^{π} : 741.8 γ E2 to 8 ⁺ ; band member. $T_{1/2}$: from DSAM in 103 Rh(12 C,p2n γ) (1990ViZW).
4837.4 5	(1-)		D		J^{π} : 4837.3 γ (E1) to 0 ⁺ . B(E1)=0.7×10 ⁻⁵ I (2014Oz03).
4850 <i>7</i> 4887 <i>7</i>				M M	
4928.9 <i>4</i>	(11)-	<21 ps	F HI	M	J^{π} : 1235.3 γ E2 to (9) ⁻ , 345.9 γ M1+E2 to (10) ⁻ . $T_{1/2}$: from recoil distance method in 100 Mo(16 O,4n γ) (1986Ka25).
4957 <i>7</i> 5057.1 <i>5</i>	(1-)		D	M M	XREF: M(5059). J^{π} : 5057.0 γ (E1) to 0 ⁺ . $B(E1)=3.0\times10^{-5}$ 3 (2014Oz03).
5089 <i>7</i> 5128.2 <i>5</i>	(1-)		D	M M	XREF: M(5116). J^{π} : 5128.1 γ (E1) to 0 ⁺ .
5144 <i>7</i> 5181 <i>7</i>				M M	$B(E1)=4.2\times10^{-5} 4.$
5246.2 5	(1-)		D		J^{π} : 5246.1 γ (E1) to 0 ⁺ . B(E1)=3.3×10 ⁻⁵ 3 (2014Oz03).
5270 <i>7</i> 5355 <i>7</i>				M M	
5480.5 5	(1^{-})		D		J^{π} : 5480.4 γ (E1) to 0 ⁺ .
5502.6 5	(1-)		D		B(E1)= 1.2×10^{-5} 2 (2014Oz03). J ^{π} : 5502.5 γ (E1) to 0 ⁺ . B(E1)= 1.5×10^{-5} 2 (2014Oz03).
5564.3 ^{&} 3	12+	0.66 ps <i>14</i>	FGHI		J ^{π} : 745.0 γ E2 to 10 ⁺ ; band member. T _{1/2} : from DSAM in ¹⁰⁰ Mo(²⁰ Ne, α 4n γ) (2007Ga45). Other:
5593.7 5	(1-)		D		<0.14 ps in 103 Rh(12 C,p2n γ) (1990ViZW). J $^{\pi}$: 5593.6 γ (E1) to 0 $^{+}$. B(E1)=0.7×10 $^{-5}$ I (2014Oz03).
5617.6 5	(1-)		D		J^{π} : 5617.4 γ (E1) to 0 ⁺ . B(E1)=0.6×10 ⁻⁵ I (2014Oz03).
5649.1 5	(1-)		D		J^{π} : 5648.9 γ (E1) to 0 ⁺ .
5666.4 5	(1-)		D		B(E1)= 0.7×10^{-5} I (2014Oz03). J ^{π} : 5666.2 γ (E1) to 0 ⁺ . B(E1)= 0.4×10^{-5} I (2014Oz03).
5684.59 <i>24</i> 5699.9 <i>5</i>	12 ⁺ (1 ⁻)		F HI D		J^{π} : 865.2 γ E2 to 10 ⁺ . J^{π} : 5699.7 γ (E1) to 0 ⁺ . $J^{(E1)} = 0.5 \times 10^{-5} I$ (2014Oz03).
5748.6 <i>5</i>	(1-)		D		J^{π} : 5748.4 γ (E1) to 0 ⁺ .
5812.7 5	(1-)		D		B(E1)= 1.0×10^{-5} I (2014Oz03). J ^{π} : 5812.5 γ (E1) to 0 ⁺ . B(E1)= 0.5×10^{-5} I (2014Oz03).
5860.7 5	(1-)		D		J^{π} : 5860.5 γ (E1) to 0 ⁺ . B(E1)=2.3×10 ⁻⁵ 4 (2014Oz03).
5884.0 5	(1-)		D		J^{π} : 5883.8 γ (E1) to 0^{+} .

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$		XREF	Comments
50044.5	(1-)				$B(E1)=1.4\times10^{-5}\ 2\ (2014Oz03).$
5924.1 5	(1-)		D		J ^{π} : 5923.9 γ (E1) to 0 ⁺ . B(E1)=1.5×10 ⁻⁵ 2 (2014Oz03).
5976.6 <i>5</i>	(1^{-})		D		J^{π} : 5976.4 γ (E1) to 0 ⁺ .
	,				$B(E1)=1.7\times10^{-5} \ 2 \ (2014Oz03).$
6005.0 <i>10</i>	(1^{-})		D		J^{π} : 6004.8 γ (E1) to 0 ⁺ .
6059.8 10	(1-)		D		B(E1)=3.2×10 ⁻⁵ 3 (2014Oz03). J^{π} : 6059.6 γ (E1) to 0 ⁺ .
0039.8 10	(1)		ע		$B(E1)=6.1\times10^{-5}$ 6 (2014Oz03).
6080.9 10	(1^{-})		D		J^{π} : 6080.7 γ (E1) to 0 ⁺ .
	44-5				$B(E1)=0.9\times10^{-5} \ 2 \ (2014Oz03).$
6096.9 10	(1-)		D		J^{π} : 6096.7 γ (E1) to 0 ⁺ . B(E1)=3.6×10 ⁻⁵ 2 (2014Oz03).
6129.0 <i>10</i>	(1-)		D		J^{π} : 6128.8 γ (E1) to 0 ⁺ .
0-2,10	(-)		_		$B(E1)=1.4\times10^{-5}$ 2 (2014Oz03).
6150.4 <i>10</i>	(1^{-})		D		J^{π} : 6150.2 γ (E1) to 0 ⁺ .
(169.2.10	(1=)		ъ		$B(E1)=3.4\times10^{-5} \ 3 \ (2014Oz03).$
6168.3 <i>10</i>	(1-)		D		J^{π} : 6168.1 γ (E1) to 0 ⁺ . B(E1)=1.2×10 ⁻⁵ 2 (2014Oz03).
6198.7 <i>10</i>	(1^{-})		D		J^{π} : 6198.5 γ (E1) to 0 ⁺ .
					$B(E1)=2.2\times10^{-5} \ 2 \ (2014Oz03).$
6224.3 10	(1^{-})		D		J^{π} : 6224.1 γ (E1) to 0 ⁺ .
6246.4 10	(1-)		D		B(E1)= $3.7 \times 10^{-5} \ 3 \ (2014 \text{Oz} 03)$. J ^{π} : 6246.2 γ (E1) to 0 ⁺ .
0210.110	(1)				$B(E1)=1.8\times10^{-5}$ 2 (2014Oz03).
6259.1 <i>10</i>	(1^{-})		D		J^{π} : 6259.1 γ (E1) to 0 ⁺ .
6272 6 10	(1=)		ъ		$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
6272.6 10	(1-)		D		J^{π} : 6272.4 γ (E1) to 0 ⁺ . B(E1)=2.5×10 ⁻⁵ 3 (2014Oz03).
6313.3 10	(1^{-})		D		J^{π} : 6313.1 γ (E1) to 0 ⁺ .
					$B(E1)=2.9\times10^{-5} \ 3 \ (2014Oz03).$
6348.7 10	(1^{-})		D		J^{π} : 6348.5 γ (E1) to 0 ⁺ .
6362.9 <mark>&</mark> 3	1.4+	1.0 2			$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
6362.9 3	14+	1.2 ps <i>3</i>		HI	J ^{π} : 798.6 γ E2 to 12 ⁺ ; band member. T _{1/2} : from DSAM in ¹⁰⁰ Mo(²⁰ Ne,α4n γ) (2007Ga45).
6388.1 <i>10</i>	(1^{-})		D		J^{π} : 6387.9 γ (E1) to 0 ⁺ .
					$B(E1)=7.3\times10^{-5} \ 5 \ (2014Oz03), \ 5.17\times10^{-5} \ 2 \ (2008BoZK).$
6398.3 ^a 5	(13^{-})			HI	XREF: H(6399.5).
6404.1 10	(1-)		D		J^{π} : 1469.4 γ to (11) ⁻ ; band member. J^{π} : 6403.9 γ (E1) to 0 ⁺ .
	,				$B(E1)=18.4\times10^{-5}$ 13 (2014Oz03), $B(E1)=8.47\times10^{-5}$ 3 (2008BoZK).
6428.6 <i>10</i>	(1^{-})		D		J^{π} : 6428.4 γ (E1) to 0 ⁺ .
6450.0 <i>10</i>	(1-)		D		B(E1)= 1.2×10^{-5} 2 (2014Oz03), B(E1)= 4.89×10^{-5} 2 (2008BoZK). J ^{π} : 6449.8 γ (E1) to 0 ⁺ .
0430.0 10	(1)		ע		$B(E1)=1.2\times10^{-5}$ 2 (2014Oz03).
6476.3 <i>15</i>	(1^{-})		D		J^{π} : 6476.1 γ (E1) to 0 ⁺ .
(500 5 10	(1-)		_		$B(E1)=7.46\times10^{-5} 4 (2008BoZK).$
6520.7 10	(1-)		D		J^{π} : 6520.5γ (E1) to 0 ⁺ . B(E1)=3.2×10 ⁻⁵ 3 (2014Oz03).
6550.1 <i>10</i>	(1-)		D		J^{π} : 6549.9 γ (E1) to 0 ⁺ .
					$B(E1)=0.6\times10^{-5} I (2014Oz03).$
6601.0 <i>10</i>	(1-)		D		J^{π} : 6600.8 γ (E1) to 0 ⁺ .
					$B(E1)=1.7\times10^{-5} \ 2 \ (2014Oz03).$

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
6679.9 10	(1-)		D	J^{π} : 6679.7 γ (E1) to 0 ⁺ .
6706.7 10	(1-)		D	B(E1)= $0.7 \times 10^{-5} I$ (2014Oz03). J ^{π} : 6706.5 γ (E1) to 0 ⁺ .
0700.7 10	(1)		D	B(E1)= 1.8×10^{-5} 2 (2014Oz03).
6715.0 <i>10</i>	(1^{-})		D	J^{π} : 6714.8 γ (E1) to 0 ⁺ .
<=== 1 0 10	44-5			B(E1)= 1.5×10^{-5} 6 (2014Oz03), 3.03×10^{-5} 1 (2008BoZK).
6731.9 <i>10</i>	(1-)		D	J^{π} : 6731.7 γ (E1) to 0 ⁺ . B(E1)=2.7×10 ⁻⁵ 5 (2014Oz03), 2.66×10 ⁻⁵ 1 (2008BoZK).
6795.5 10	(1^{-})		D	J^{π} : 6795.3 γ (E1) to 0 ⁺ .
				$B(E1)=1.7\times10^{-5} \ 2 \ (2014Oz03), \ 2.01\times10^{-5} \ I \ (2008BoZK).$
6818.7 <i>10</i>	(1^{-})		D	J^{π} : 6818.5 γ (E1) to 0^{+} .
6824.2 10	(1-)		D	B(E1)= 1.3×10^{-5} 2 (2014Oz03), 3.16×10^{-5} <i>I</i> (2008BoZK). J^{π} : 6824.0 γ (E1) to 0^{+} .
0024.2 10	(1)		D	$B(E1)=1.7\times10^{-5}$ 3 (2014Oz03).
6855.9 <i>10</i>	(1^{-})		D	J^{π} : 6855.7 γ (E1) to 0 ⁺ .
(071.2.10	(1-)			$B(E1)=1.5\times10^{-5} \ 2 \ (2014Oz03).$
6871.2 <i>10</i>	(1-)		D	J^{π} : 6871.0 γ (E1) to 0 ⁺ . B(E1)=1.7×10 ⁻⁵ 2 (2014Oz03).
6941.2 <i>10</i>	(1^{-})		D	J^{π} : 6941.0 γ (E1) to 0 ⁺ .
	, ,			$B(E1)=3.1\times10^{-5} \ 3 \ (2014Oz03).$
6961.5 <i>10</i>	(1^{-})		D	J^{π} : 6961.3 γ (E1) to 0 ⁺ .
6982.7 10	(1-)		D	B(E1)=3.1×10 ⁻⁵ 5 (2014Oz03). J^{π} : 6982.5 γ (E1) to 0 ⁺ .
0702.7 10	(1)		D	$B(E1)=2.1\times10^{-5}$ 3 (2014Oz03).
7009.8 10	(1^{-})		D	J^{π} : 7009.6 γ (E1) to 0 ⁺ .
7010 7 10	(1=)			$B(E1)=0.5\times10^{-5} I (2014Oz03).$
7018.7 <i>10</i>	(1-)		D	J^{π} : 7018.5 γ (E1) to 0 ⁺ . B(E1)=0.7×10 ⁻⁵ I (2014Oz03).
7025.8 10	(1^{-})		D	J^{π} : 7025.6 γ (E1) to 0 ⁺ .
				$B(E1)=0.7\times10^{-5} I (2014Oz03).$
7043.1 <i>10</i>	(1^{-})		D	J^{π} : 7042.9 γ (E1) to 0 ⁺ .
7092.8 10	(1-)		D	B(E1)= $2.0 \times 10^{-5} \ 3 \ (2014 \text{Oz} 03)$. J ^{π} : 7092.6 γ (E1) to 0 ⁺ .
7072.0 10	(1)		D	$B(E1)=4.2\times10^{-5}$ 4 (2014Oz03).
7167.2 10	(1^{-})		D	J^{π} : 7167.0 γ (E1) to 0 ⁺ .
7100 2 10	(1=)		D	B(E1)= $2.8 \times 10^{-5} \ 3 \ (2014Oz03)$. J ^{π} : 7198.0 γ (E1) to 0 ⁺ .
7198.2 <i>10</i>	(1-)		D	$B(E1)=4.4\times10^{-5}$ 6 (2014Oz03), 2.66×10 ⁻⁵ I (2008BoZK).
7207.1 ^a 5	(15^{-})		HI	XREF: H(7208.5).
7200 1 10	1-		_	J^{π} : 808.8y to (13 ⁻); band member.
7208.1 <i>10</i>	1-		D	J^{π} : 7207.9 γ (E1) to 0 ⁺ . B(E1)=1.18×10 ⁻⁵ I (2008BoZK).
7214.2 <mark>&</mark> <i>3</i>	16 ⁺	0.55 ps 10	HI	XREF: H(7213.0).
7211.2 3	10	0.55 ps 10	111	J^{π} : 851.3 γ E2 to 14 ⁺ ; band member.
				$T_{1/2}$: from DSAM in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
7217.8 <i>11</i>	(1^{-})		D	J^{π} : 7217.6 γ (E1) to 0 ⁺ . B(E1)=1.89×10 ⁻⁵ I (2008BoZK).
7228.1 10	(1-)		D	J^{π} : 7227.8 γ (E1) to 0 ⁺ .
	,			$B(E1)=1.2\times10^{-5} \ 2 \ (2014Oz03), \ 2.01\times10^{-5} \ I \ (2008BoZK).$
7248.4 <i>14</i>	(1-)		D	J^{π} : 7248.1 γ (E1) to 0 ⁺ .
7311.1 <i>10</i>	(1-)		D	B(E1)= 2.01×10^{-5} <i>I</i> (2008BoZK). J ^π : 7310.8γ (E1) to 0 ⁺ .
1311.1 10	(1)		U	B(E1)= 1.0×10^{-5} 2 (2014Oz03).
				()

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
7389.9 10	(1-)		D	J^{π} : 7389.6 γ (E1) to 0 ⁺ .
7438.6 10	(1-)		D	B(E1)=1.3×10 ⁻⁵ 2 (2014Oz03). J^{π} : 7438.3 γ (E1) to 0 ⁺ .
	(1)		D	$B(E1)=1.9\times10^{-5} \ 3 \ (2014Oz03).$
7444.1 <i>10</i>	(1-)		D	J^{π} : 7443.8 γ (E1) to 0 ⁺ .
7468.3 10	(1-)		D	B(E1)=1.6×10 ⁻⁵ 3 (2014Oz03). J^{π} : 7468.0 γ (E1) to 0 ⁺ .
				$B(E1)=1.3\times10^{-5} \ 3 \ (2014Oz03).$
7531.3 <i>10</i>	(1^{-})		D	J^{π} : 7531.0 γ (E1) to 0 ⁺ . B(E1)=2.9×10 ⁻⁵ 4 (2014Oz03).
7537.2 10	(1-)		D	J^{π} : 7536.9 γ (E1) to 0 ⁺ .
				$B(E1)=5.2\times10^{-5} 6 (2014Oz03).$
7559.1 <i>10</i>	(1^{-})		D	J^{π} : 7558.8 γ (E1) to 0 ⁺ . B(E1)=2.1×10 ⁻⁵ 3 (2014Oz03).
7594.5 10	(1-)		D	J^{π} : 7594.2 γ (E1) to 0 ⁺ .
				$B(E1)=1.3\times10^{-5} \ 2 \ (2014Oz03).$
7615.3 <i>10</i>	(1^{-})		D	J^{π} : 7615.0 γ (E1) to 0 ⁺ .
7859.5 10	(1-)		D	B(E1)= 1.7×10^{-5} 3 (2014Oz03). J ^{π} : 7859.2 γ (E1) to 0 ⁺ .
7037.3 10	(1)			B(E1)= 1.2×10^{-5} 2 (2014Oz03).
7904.7 10	(1^{-})		D	J^{π} : 7904.4 γ (E1) to 0 ⁺ .
7936.7 10	(1-)		D	B(E1)=1.1×10 ⁻⁵ 2 (2014Oz03). J^{π} : 7936.4 γ (E1) to 0 ⁺ .
1930.1 10	(1)		D	B(E1)=1.6×10 ⁻⁵ 2 (2014Oz03).
7988.2 10	(1^{-})		D	J^{π} : 7987.9 γ (E1) to 0 ⁺ .
8020.7 10	(1-)		D	B(E1)= 3.4×10^{-5} 3 (2014Oz03). J ^{π} : 8020.4 γ (E1) to 0 ⁺ .
0020.7 10	(1)		ע	B(E1)= 2.3×10^{-5} 4 (2014Oz03).
8051.6 10	(1^{-})		D	J^{π} : 8051.3 γ (E1) to 0 ⁺ .
8069.6 10	(1-)		D	B(E1)=2.2×10 ⁻⁵ 3 (2014Oz03). J^{π} : 8069.3 γ (E1) to 0 ⁺ .
8009.0 10	(1)		ע	B(E1)= $2.6 \times 10^{-5} \ 4 \ (2014Oz03)$.
8083.0 ^a 5	(17^{-})		HI	XREF: H(8089.0).
01.45 18 1	10+	0.24		J^{π} : 875.9 γ to (15 ⁻); band member.
8147.1 ^{&} 4	18+	0.34 ps +8-10	HI	XREF: H(8145.0). J^{π} : 932.9 γ E2 to 16 ⁺ ; band member.
				$T_{1/2}$: from DSAM in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
8194.5 <i>10</i>	(1^{-})		D	J^{π} : 8194.2 γ (E1) to 0 ⁺ .
8218.2 <i>10</i>	(1-)		D	B(E1)=2.7×10 ⁻⁵ 4 (2014Oz03). J^{π} : 8217.9 γ (E1) to 0 ⁺ .
	,			$B(E1)=1.4\times10^{-5} \ 2 \ (2014Oz03).$
8253.6 10	(1^{-})		D	J^{π} : 8253.3 γ (E1) to 0 ⁺ . B(E1)=0.9×10 ⁻⁵ 2 (2014Oz03).
8448.6 10	(1-)		D	J^{π} : 8448.3 γ (E1) to 0 ⁺ .
				$B(E1)=0.7\times10^{-5} \ 2 \ (2014Oz03).$
8568.9 <i>10</i>	(1-)		D	J^{π} : 8568.5 γ (E1) to 0 ⁺ . B(E1)=0.8×10 ⁻⁵ 2 (2014Oz03).
8600.4 10	(1-)		D	J^{π} : 8600.0 γ (E1) to 0 ⁺ .
				$B(E1)=0.5\times10^{-5} \ 2 \ (2014Oz03).$
8750.2 <i>10</i>	(1^{-})		D	J^{π} : 8749.8 γ (E1) to 0 ⁺ . B(E1)=1.1×10 ⁻⁵ 2 (2014Oz03).
8823.4 10	(1-)		D	J^{π} : 8823.0 γ (E1) to 0 ⁺ .
	` /			$B(E1)=1.2\times10^{-5} \ 3 \ (2014Oz03).$

¹¹²Sn Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
9045.2 ^a 6	(19 ⁻)		HI	XREF: H(9051). J^{π} : 962.2 γ to (17 ⁻); band member.
9050.5 10	(1-)		D	J^{π} : 9050.1 γ (E1) to 0 ⁺ . B(E1)=1.6×10 ⁻⁵ 4 (2014Oz03).
9095.3 10	(1-)		D	J^{π} : 9094.9 γ (E1) to 0 ⁺ . B(E1)=1.0×10 ⁻⁵ 2 (2014Oz03).
9150.1 <i>10</i>	(1-)		D	J^{π} : 9149.7 γ (E1) to 0 ⁺ . B(E1)=0.9×10 ⁻⁵ 3 (2014Oz03).
9186.6 ^{&} 4	20+	0.22 ps 6	HI	XREF: H(9184). J^{π} : 1039.5γ E2 to 18 ⁺ ; band member. $T_{1/2}$: from DSAM in 100 Mo(20 Ne, α 4nγ) (2007Ga45).
9329.8 10	(1-)		D	J^{π} : 9329.4 γ (E1) to 0 ⁺ . B(E1)=2.1×10 ⁻⁵ 5 (2014Oz03).
10076.2 ^a 12	(21-)		HI	XREF: H(10082). J^{π} : 1031.0y to (19 ⁻); band member.
10335.7 ^{&} 5	22+	0.14 ps <i>4</i>	HI	XREF: H(10332). J^{π} : 1149.1 γ E2 to 20 ⁺ ; band member. $T_{1/2}$: from DSAM in ¹⁰⁰ Mo(²⁰ Ne, α 4n γ) (2007Ga45).
11570.6 ^{&} 7	(24+)	<0.35 ps	I	J^{π} : 1234.9 γ to 22 ⁺ ; band member. $T_{1/2}$: from DSAM in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
12965.1? & <i>13</i>	(26^{+})		I	J^{π} : 1395.0 γ to (24 ⁺); band member.

[†] From a least-squares fit to E γ . † From DSAM in 112 Sn(n,n' γ) (2005Ku28), unless otherwise noted. # Ground state band. @ Probable member of the $\Delta J=2$ sequence; configuration= $\pi g_{9/2}^{-2}\otimes\pi g_{7/2}^2$. & Band(A): Probable member of a $\Delta J=2$ band on the 5564.3 ($J^{\pi}=12^+$) state; configuration= $\pi [g_{9/2}^{-2}g_{7/2}^2]\otimes vh_{11/2}^2$.

^a Band(B): Probable member of a $\Delta J=2$ band on the 6398.3 ($J^{\pi}=13^{-}$) state; configuration= $\pi [g_{9/2} \ _1h_{11/2}] \otimes \nu h_{11/2}^2$.

							γ (112Sn)		
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	$\mathrm{I}_{(\gamma+ce)}$	Comments
1256.69	2+	1256.68 4	100	0.0 0+	E2		8.05×10 ⁻⁴		$\alpha(K)$ =0.000687 10; $\alpha(L)$ =8.28×10 ⁻⁵ 12; $\alpha(M)$ =1.616×10 ⁻⁵ 23 $\alpha(N)$ =3.04×10 ⁻⁶ 5; $\alpha(O)$ =2.62×10 ⁻⁷ 4; $\alpha(IPF)$ =1.523×10 ⁻⁵ 22 B(E2)(W.u.)=14.96 20 Mult.: $\alpha(K)$ exp=0.00060 8 in ¹¹⁰ Cd(α ,2nγ) (1979Br07); A ₂ =0.64 8 and A ₄ =-0.82 8 in Coulomb excitation (2011Wa15); Alternatively, A ₂ =0.90 6 and A ₄ =-0.71 6 in Coulomb excitation (2011Wa15). A ₂ =0.243 5 and A ₄ =-0.048 9 in ¹¹⁰ Cd(α ,2nγ) (1979Br07); DCO=1.01 6 in ¹⁰⁰ Mo(²⁰ Ne, α 4nγ) (2007Ga45); Pγ=0.39 in ¹¹⁰ Cd(α ,2nγ) (1979Br07) and +0.05 2 in ¹⁰⁰ Mo(²⁰ Ne, α 4nγ) (2007Ga45).
2150.87	2+	894.17 <i>4</i>	100 I	1256.69 2+	M1+E2	-0.28 6	0.00199		$\alpha(K)$ =0.00173 3; $\alpha(L)$ =0.000207 3; $\alpha(M)$ =4.05×10 ⁻⁵ 6 $\alpha(N)$ =7.63×10 ⁻⁶ 12; $\alpha(O)$ =6.71×10 ⁻⁷ 11 B(M1)(W.u.)=0.017 5; B(E2)(W.u.)=1.4 7 Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28).
		2150.9 4	16.7 [@] 11	0.0 0+	E2		6.53×10 ⁻⁴		$\alpha(K)=0.000245 \ 4; \ \alpha(L)=2.88\times10^{-5} \ 4;$ $\alpha(M)=5.60\times10^{-6} \ 8$ $\alpha(N)=1.055\times10^{-6} \ 15; \ \alpha(O)=9.27\times10^{-8} \ 13;$ $\alpha(IPF)=0.000372 \ 6$ B(E2)(W.u.)=0.039 \ 12 Mult.: from $\gamma(\theta)$ in 2005Ku28.
2190.81	0+	934.12 4	100	1256.69 2+	E2		1.50×10 ⁻³		$\alpha(K)=0.001301 \ 19; \ \alpha(L)=0.0001608 \ 23;$ $\alpha(M)=3.14\times10^{-5} \ 5$ $\alpha(N)=5.90\times10^{-6} \ 9; \ \alpha(O)=5.00\times10^{-7} \ 7$ B(E2)(W.u.)<9.2 E_{γ} : 928 in $^{100}Mo(^{16}O,4n\gamma),^{98}Mo(^{16}O,2n\gamma)$ (1988Ha20). Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$ (2005Ku28).
		2190.9 5		0.0 0+	E0			0.1455 <i>21</i>	E _γ ,Mult.: from ce measurements in 112 Sn(p,p'γ) (1981Ba05). I _(γ+ce) : from Ice(K)(2190.9γ)/Ice(K)(934.12γ)=0.55 10 in 112 Sn(p,p'γ) (1981Ba05), α(K)(934.12γ)=0.001301 19, Iγ(934.12γ)=100 and $\Omega_{\rm K}/\Omega_{\rm T}$ =0.8942 (2008Ki07).
2247.39	4+	990.69 4	100	1256.69 2+	E2		1.31×10 ⁻³		$\alpha(K)$ =0.001140 16; $\alpha(L)$ =0.0001402 20; $\alpha(M)$ =2.74×10 ⁻⁵ 4 $\alpha(N)$ =5.14×10 ⁻⁶ 8; $\alpha(O)$ =4.38×10 ⁻⁷ 7 B(E2)(W.u.)=5.6 9 E _{γ} : 993 in ¹¹³ In(p,2n γ) (1969Ya05).

γ (112Sn) (continued)

						/ (211) (11111111111111)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	Comments
								Mult.: $\alpha(K)\exp=0.0014$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); A ₂ =0.236 5 and A ₄ =-0.050 9 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); DCO=1.03 5 in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45); P ₇ =+0.07 3 in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45) and P ₇ =0.37 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07);
2354.21	3-	203.2 2		2150.87 2+	[E1]		0.0246	$\alpha(K)=0.0214$ 3; $\alpha(L)=0.00262$ 4; $\alpha(M)=0.000510$ 8 $\alpha(N)=9.51\times10^{-5}$ 14; $\alpha(O)=7.67\times10^{-6}$ 11
		1097.38 7	100	1256.69 2+	E1		4.59×10 ⁻⁴	B(E1)(W.u.)=0.00102 7 $\alpha(K)$ =0.000401 6; $\alpha(L)$ =4.70×10 ⁻⁵ 7; $\alpha(M)$ =9.13×10 ⁻⁶ 13 $\alpha(N)$ =1.718×10 ⁻⁶ 24; $\alpha(O)$ =1.492×10 ⁻⁷ 21 Mult.: A ₂ =-0.21 3 and A ₄ =0.03 4 in ¹¹⁰ Cd(α ,2n γ) (1980Va13); P γ =0.34 9 in ¹¹⁰ Cd(α ,2n γ) (1980Va13); $\alpha(K)$ exp<0.0005 in
2476.16	2+	286		2190.81 0+				$P_{\gamma}=0.34 \text{ y in}$ Cd(α ,2n γ) (1980Va13), α (K)exp<0.0003 in $^{110}\text{Cd}(\alpha,2n\gamma)$ (1980Va13). E_{γ} : from $^{98}\text{Mo}(^{16}\text{O},2n\gamma)$ (2003Wo15).
2470.10	L	1219.34 <i>13</i>	20.5 24	1256.69 2+		-0.54 7	9.77×10 ⁻⁴ 16	B(M1)(W.u.)<0.00071; B(E2)(W.u.)<0.13 α (K)=0.000845 14; α (L)=0.0001006 16; α (M)=1.96×10 ⁻⁵ 3 α (N)=3.70×10 ⁻⁶ 6; α (O)=3.25×10 ⁻⁷ 6; α (IPF)=8.59×10 ⁻⁶ 14
		2475.8 3	100.0 24	0.0 0+	E2		7.48×10 ⁻⁴	Mult., δ : from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28). B(E2)(W.u.)<0.066 α (K)=0.000191 3; α (L)=2.23×10 ⁻⁵ 4; α (M)=4.34×10 ⁻⁶ 6 α (N)=8.18×10 ⁻⁷ 12; α (O)=7.20×10 ⁻⁸ 10; α (IPF)=0.000529 8 Mult.: from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).
2520.70	4+	1264.07 7	100	1256.69 2+	E2		7.96×10 ⁻⁴	$\alpha(K)$ =0.000679 <i>I0</i> ; $\alpha(L)$ =8.18×10 ⁻⁵ <i>I2</i> ; $\alpha(M)$ =1.596×10 ⁻⁵ <i>23</i> $\alpha(N)$ =3.00×10 ⁻⁶ <i>5</i> ; $\alpha(O)$ =2.59×10 ⁻⁷ <i>4</i> ; $\alpha(IPF)$ =1.648×10 ⁻⁵ <i>24</i> B(E2)(W.u.)=13 <i>5</i>
2549.22	6 ⁺	301.84 <i>13</i>	100	2247.39 4+	E2		0.0348	Mult.: $\alpha(K)\exp=0.0007\ 2$ in $^{110}Cd(\alpha,2n\gamma)\ (1979Br07)$; $A_2=0.218$ II and $A_4=-0.07\ 2$ in $^{110}Cd(\alpha,2n\gamma)\ (1979Br07)$; $P_{\gamma}=0.53\ 8$ in $^{110}Cd(\alpha,2n\gamma)\ (1979Br07)$; $B(E2)(W.u.)=0.496\ 3$ $\alpha(K)=0.0292\ 5$; $\alpha(L)=0.00448\ 7$; $\alpha(M)=0.000889\ I3$
2556.6	(2 ⁺)	2556.6 [@] 3	100 [@]	0.0 0+				$\alpha(N)$ =0.0001632 23; $\alpha(O)$ =1.155×10 ⁻⁵ 17 Mult.: $\alpha(K)$ exp=0.033 5 in 110 Cd(α ,2n γ) (1980Va13); Also, A ₂ =0.220 4 and A ₄ =-0.04 1 in 110 Cd(α ,2n γ)(1980Va13); DCO=1.11 6 in 100 Mo(20 Ne, α 4n γ) (2007Ga45) and P γ =0.31 6 in 110 Cd(α ,2n γ) (1980Va13) and +0.06 3 in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
2617.62	0+	1360.92 17	100	1256.69 2+	E2		7.08×10 ⁻⁴	$\begin{array}{l} \alpha(\mathrm{K}){=}0.000584 \ 9; \ \alpha(\mathrm{L}){=}7.01{\times}10^{-5} \ 10; \ \alpha(\mathrm{M}){=}1.367{\times}10^{-5} \ 20 \\ \alpha(\mathrm{N}){=}2.57{\times}10^{-6} \ 4; \ \alpha(\mathrm{O}){=}2.23{\times}10^{-7} \ 4; \ \alpha(\mathrm{IPF}){=}3.74{\times}10^{-5} \ 6 \\ \mathrm{B(E2)(W.u.)}{<}9.4 \\ \mathrm{Mult.: \ from} \ \gamma(\theta) \ \mathrm{in} \ ^{112}\mathrm{Sn}(\mathrm{n,n'}\gamma) \ (2005\mathrm{Ku28}). \end{array}$

$\gamma(^{112}\text{Sn})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\ddagger \# c}$	α^{b}	Comments
2721.06	2+	1464.22 15	100@ 4	1256.69 2+	M1+E2	0.17 10	7.38×10 ⁻⁴	$\alpha(K)=0.000589 \ 9; \ \alpha(L)=6.96\times10^{-5} \ 11;$ $\alpha(M)=1.357\times10^{-5} \ 21$ $\alpha(N)=2.56\times10^{-6} \ 4; \ \alpha(O)=2.26\times10^{-7} \ 4;$ $\alpha(IPF)=6.28\times10^{-5} \ 10$ $\beta(M1)(W.u.)=0.007 \ +3-7; \ \beta(E2)(W.u.)=0.08 \ +10-8$ $\beta(M1)(W.u.)=0.007 \ +3-9$ $\beta(M1)(W.u.)=0.007 \ +3-9$
		2721.6 3	15.9 [@] 13	0.0 0+	E2		8.28×10 ⁻⁴	$\alpha(K)=0.0001620\ 23;\ \alpha(L)=1.89\times10^{-5}\ 3;$ $\alpha(M)=3.67\times10^{-6}\ 6$ $\alpha(N)=6.92\times10^{-7}\ 10;\ \alpha(O)=6.10\times10^{-8}\ 9;$ $\alpha(IPF)=0.000643\ 9$ B(E2)(W.u.)=0.020 +8-20 Mult.: from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).
2756.02	3 ⁺	234.8 [@] 3	5.9 [@] 6	2520.70 4+	[M1+E2]		0.0542	$\alpha(K)=0.0469\ 7;\ \alpha(L)=0.00586\ 9;\ \alpha(M)=0.001148\ 17$ $\alpha(N)=0.000216\ 4;\ \alpha(O)=1.88\times10^{-5}\ 3$
		279.5 [@] 2	4.0 [@] 4	2476.16 2+	[M1+E2]		0.0343	$\alpha(K)=0.0297 \ 5; \ \alpha(L)=0.00369 \ 6; \ \alpha(M)=0.000723 \ 11$ $\alpha(N)=0.0001361 \ 20; \ \alpha(O)=1.188 \times 10^{-5} \ 17$
		401.3 [@] 5	2.6 [@] 6	2354.21 3	[E1]		0.00406	B(E1)(W.u.)<0.00011 α (K)=0.00354 5; α (L)=0.000425 7; α (M)=8.28×10 ⁻⁵ 12 α (N)=1.552×10 ⁻⁵ 23; α (O)=1.303×10 ⁻⁶ 19
		508.8 ^d 3		2247.39 4+	M1+E2	0.2 I	0.00757	$\alpha(K) = 0.00658 \ 10; \ \alpha(L) = 0.000804 \ 12; \ \alpha(M) = 0.0001572 \ 23$ $\alpha(N) = 2.96 \times 10^{-5} \ 5; \ \alpha(O) = 2.59 \times 10^{-6} \ 4$ $E_{\gamma}: 508.8\gamma \text{ seen in } ^{112} \text{Sn}(\text{n,n'}\gamma) \ (2005 \text{Ku}28) \text{ and } \\ I_{\gamma}(509)/I_{\gamma}(1499) = 100/18.$
		605.1 [@] 2	21.2 [@] 13	2150.87 2+	[M1+E2]		0.00500	$\alpha(K)$ =0.00435 6; $\alpha(L)$ =0.000527 8; $\alpha(M)$ =0.0001029 15 $\alpha(N)$ =1.94×10 ⁻⁵ 3; $\alpha(O)$ =1.705×10 ⁻⁶ 24
		1499.5 [@] 1	100 [@] 3	1256.69 2+	M1(+E2)	≤0.08	7.18×10 ⁻⁴	$\alpha(K)$ =0.000562 8; $\alpha(L)$ =6.64×10 ⁻⁵ 10; $\alpha(M)$ =1.294×10 ⁻⁵ 19 $\alpha(N)$ =2.44×10 ⁻⁶ 4; $\alpha(O)$ =2.16×10 ⁻⁷ 3; $\alpha(IPF)$ =7.42×10 ⁻⁵ 11 B(E2)(W.u.)<0.014? Mult., δ : from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28).
2765.2 2783.66	0 ⁺ to 4 ⁺ 4 ⁺	1508.5 <i>3</i> 536	100	1256.69 2 ⁺ 2247.39 4 ⁺				E_{γ} : from 98 Mo(16 O,2n γ) (2003Wo15).
		1527.2 2	100	1256.69 2+	E2		6.25×10 ⁻⁴	$\alpha(K)=0.000466\ 7;\ \alpha(L)=5.54\times10^{-5}\ 8;$ $\alpha(M)=1.080\times10^{-5}\ 16$ $\alpha(N)=2.03\times10^{-6}\ 3;\ \alpha(O)=1.770\times10^{-7}\ 25;$ $\alpha(IPF)=9.08\times10^{-5}\ 13$ $B(E2)(W.u.)=6.6\ 15$

$\gamma(\frac{112}{\text{Sn}})$ (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{^{\dagger}}$	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	Comments
2913.07	4+	392.8 5	12 3	2520.70 4+	[M1]		0.01440	Mult.: A_2 =-0.09 3 and A_4 =0.7 2 in 110 Cd(α ,2n γ) (1979Br07); α (K)=0.01250 18; α (L)=0.001535 22; α (M)=0.000300 5 α (N)=5.65×10 ⁻⁵ 9; α (O)=4.95×10 ⁻⁶ 8 B(M1)(W.u.)<0.049
		665.6 3	100 3	2247.39 4+	[M1]		0.00399	I _γ : I _γ (392.3)/I _γ (1656.7)=12.32% in ¹¹² Sb ε decay (1976Wi10,1975WiZX). $\alpha(K)$ =0.00347 5; $\alpha(L)$ =0.000419 6; $\alpha(M)$ =8.18×10 ⁻⁵ 12 $\alpha(N)$ =1.542×10 ⁻⁵ 22; $\alpha(O)$ =1.357×10 ⁻⁶ 19 B(M1)(W.u.)<0.084
		1656.3 <i>4</i>	35 <i>3</i>	1256.69 2+	E2		5.99×10^{-4}	E _y : not observed in ¹¹² Sb ε decay (1976Wi10,1975WiZX). B(E2)(W.u.)<0.56
								$\alpha(K)$ =0.000398 6; $\alpha(L)$ =4.72×10 ⁻⁵ 7; $\alpha(M)$ =9.20×10 ⁻⁶ 13 $\alpha(N)$ =1.732×10 ⁻⁶ 25; $\alpha(O)$ =1.511×10 ⁻⁷ 22; $\alpha(IPF)$ =0.0001422 20
	-11		@					Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28).
2917.39	$2^+,3,4^+$	669.9 <i>1</i>	100 @ 15	2247.39 4+				
2026.02	c.±	767.0 2	11.8 [@] 8	2150.87 2+	3.61		0.01570	DAMAN A 10
2926.82	6+	378.6 3	100	2549.22 6 ⁺	M1		0.01579	B(M1)(W.u.)<1.8 $\alpha(K)$ =0.01371 20; $\alpha(L)$ =0.001685 24; $\alpha(M)$ =0.000330 5 $\alpha(N)$ =6.21×10 ⁻⁵ 9; $\alpha(O)$ =5.44×10 ⁻⁶ 8 Mult.: $\alpha(K)$ exp=0.017 3 in 110 Cd(α ,2n γ) (1980Va13); A_2 =0.365 8 and A_4 =0.00 2 in 110 Cd(α ,2n γ) (1980Va13);
2045.70	4.4	470		247616 2				$P\gamma = 0.67 \ 5 \ \text{in}^{-110} \text{Cd}(\alpha, 2n\gamma) \ (1980 \text{Va}13);$
2945.70	4+	470		2476.16 2 ⁺	П2		0.00210	E _y : from ⁹⁸ Mo(¹⁶ O,2nγ) (2003Wo15).
		794.5 2		2150.87 2+	E2		0.00219	$\alpha(K)=0.00189 \ 3; \ \alpha(L)=0.000239 \ 4; \ \alpha(M)=4.67\times10^{-5} \ 7$ $\alpha(N)=8.74\times10^{-6} \ I3; \ \alpha(O)=7.31\times10^{-7} \ II$ Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$ (2005Ku28).
		1688.7 <i>3</i>	100	1256.69 2 ⁺	E2		5.96×10^{-4}	B(E2)(W.u.)<1.2
		1000.7 5	100	1230.07 2	L2		3.70×10	$\alpha(K)=0.000384$ 6; $\alpha(L)=4.55\times10^{-5}$ 7; $\alpha(M)=8.86\times10^{-6}$ 13 $\alpha(N)=1.667\times10^{-6}$ 24; $\alpha(O)=1.456\times10^{-7}$ 21; $\alpha(IPF)=0.0001561$ 22
								Mult.: $A_2=0.22 \ 3$ and $A_4=0.5 \ 2$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07);
2966.63	2+	612.4 <i>I</i>	28 [@] 2	2354.21 3-	E1		1.50×10^{-3}	$\alpha(K)=0.001307$ 19; $\alpha(L)=0.0001555$ 22; $\alpha(M)=3.03\times10^{-5}$ 5
2,00,00	_	0121		200 1121 0	2.		11007.110	α (N)=5.68×10 ⁻⁶ 8; α (O)=4.85×10 ⁻⁷ 7 B(E1)(W.u.)=0.00039 +16-39
								I_{γ} : 12 3 in ¹¹² Sn(n,n' γ) (2005Ku28).
		1700.0 4	100 (0)	1056 60 24	141/ F2	-0.5	6.26, 10-4, 12	Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28).
		1709.9 <i>4</i>	100 4	1256.69 2+	M1(+E2)	≤0.7	$6.36 \times 10^{-4} 12$	$\alpha(K)=0.000418 \ II; \ \alpha(L)=4.93\times10^{-5} \ I2; \ \alpha(M)=9.60\times10^{-6} \ 24$ $\alpha(N)=1.81\times10^{-6} \ 5; \ \alpha(O)=1.60\times10^{-7} \ 5; \ \alpha(IPF)=0.000157 \ 3$

γ (112Sn) (continued)

						/(Bii) (CC	ontinued)	
E_i (level)	\mathtt{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	Comments
2966.63	2+	2966.6 1	53 [@] 4	0.0 0+	E2			B(M1)(W.u.)>0.0033?; B(E2)(W.u.)<0.44? I_{γ} : 37 9 in 112 Sn(n,n' γ) (2005Ku28). Mult.: from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28). $\alpha(K)$ =0.0001398 20; $\alpha(L)$ =1.624×10 ⁻⁵ 23; $\alpha(M)$ =3.16×10 ⁻⁶ 5 $\alpha(N)$ =5.95×10 ⁻⁷ 9; $\alpha(O)$ =5.26×10 ⁻⁸ 8; $\alpha(IPF)$ =0.000752 11 B(E2)(W.u.)=0.045 +19-45
								I_{γ} : 100 12 in 112 Sn(n,n' γ) (2005Ku28). Mult.: from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).
2969.31		818.43 6		2150.87 2+				2-(, // (2-0
		1712.61 6	100	1256.69 2+				
2986.4	0+	1729.7 3	100	1256.69 2+	E2		5.94×10 ⁻⁴	B(E2)(W.u.)<0.67 α (K)=0.000367 6; α (L)=4.34×10 ⁻⁵ 6; α (M)=8.45×10 ⁻⁶ 12 α (N)=1.591×10 ⁻⁶ 23; α (O)=1.391×10 ⁻⁷ 20; α (IPF)=0.0001741 25
3078.53	$(2,3)^+$	557.8 <i>3</i>	12.0 [@] 8	2520.70 4+				
	()- /	831.1 4	8.8 [@] 19	2247.39 4+				
		927.7 2	97 [@] 3	2150.87 2+	M1+E2	0.60 +1-2	0.00176 3	$\alpha(K)$ =0.001535 22; $\alpha(L)$ =0.000185 3; $\alpha(M)$ =3.61×10 ⁻⁵ 6 $\alpha(N)$ =6.80×10 ⁻⁶ 10; $\alpha(O)$ =5.94×10 ⁻⁷ 9 B(M1)(W.u.)<0.0076; B(E2)(W.u.)<2.6 I _{γ} : 100.0 19 in 112 Sn(n,n' γ) (2005Ku28). Mult., δ : from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).
		1821.8 2	100 [@] 4	1256.69 2+	M1+E2	-1.3 +3-5	6.11×10 ⁻⁴ 10	$\alpha(K)$ =0.000348 8; $\alpha(L)$ =4.10×10 ⁻⁵ 9; $\alpha(M)$ =7.99×10 ⁻⁶ 17 $\alpha(N)$ =1.51×10 ⁻⁶ 4; $\alpha(O)$ =1.32×10 ⁻⁷ 3; $\alpha(IPF)$ =0.000212 4 B(M1)(W.u.)<0.00067; B(E2)(W.u.)<0.25 I_{γ} : 88.7 19 in 112 Sn(n,n' γ) (2005Ku28). Mult., δ : from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).
3092.21	2+	1836.0 <i>3</i>	100@ 3	1256.69 2+	M1+E2	-1.5 10	6.09×10 ⁻⁴ 20	$\alpha(K)$ =0.000340 21; $\alpha(L)$ =4.01×10 ⁻⁵ 24; $\alpha(M)$ =7.8×10 ⁻⁶ 5 $\alpha(N)$ =1.47×10 ⁻⁶ 9; $\alpha(O)$ =1.29×10 ⁻⁷ 9; $\alpha(IPF)$ =0.000219 7 B(M1)(W.u.)=0.003 4; B(E2)(W.u.)=1.9 +9-10 Mult., δ : from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).
		3092.1 <i>I</i>	26.2 [@] 19	0.0 0+	E2		9.54×10 ⁻⁴	$\alpha(\text{K})=0.0001303 \ 19; \ \alpha(\text{L})=1.513\times 10^{-5} \ 22; \ \alpha(\text{M})=2.94\times 10^{-6} \ 5 \ \alpha(\text{N})=5.55\times 10^{-7} \ 8; \ \alpha(\text{O})=4.90\times 10^{-8} \ 7; \ \alpha(\text{IPF})=0.000805 \ 12 \ \text{B(E2)(W.u.)}=0.052 \ +12-17 \ \text{Mult.: from } \gamma(\theta) \ \text{in} \ ^{112}\text{Sn(n,n'}\gamma) \ (2005\text{Ku}28).$

γ (112Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad \underline{J_f^{\pi}}$	Mult.#	α^{b}	Comments
3113.54 3133.42	0 ⁺ to 4 ⁺ 5 ⁻	962.67 <i>14</i> 779.3 <i>2</i>	100 16.3 <i>12</i>	2150.87 2 ⁺ 2354.21 3 ⁻	E2	0.00229	B(E2)(W.u.)<8.6 α (K)=0.00198 3; α (L)=0.000250 4; α (M)=4.90×10 ⁻⁵ 7 α (N)=9.18×10 ⁻⁶ 13; α (O)=7.66×10 ⁻⁷ 11
		886.0 1	100.0 12	2247.39 4+	E1	6.91×10 ⁻⁴	E _γ : 782 in ⁹⁸ Mo(¹⁶ O,2nγ) (2003Wo15). Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n'γ) (2005Ku28). B(E1)(W.u.)<0.00036 α (K)=0.000603 9; α (L)=7.10×10 ⁻⁵ 10; α (M)=1.381×10 ⁻⁵ 20 α (N)=2.60×10 ⁻⁶ 4; α (O)=2.24×10 ⁻⁷ 4 Mult.,δ: from $\gamma(\theta)$ in ¹¹² Sn(n,n'γ) (2005Ku28).
3141.1		990.2 <i>4</i>	100	2150.87 2+			Mult., o. Holli $\gamma(0)$ III Sil(II,II γ) (2003Ku28).
3149.28	4+	901.8 6	24 [@] 7	2247.39 4+	[M1+E2]	0.00197	$\alpha(K)=0.001718\ 25;\ \alpha(L)=0.000206\ 3;\ \alpha(M)=4.01\times10^{-5}\ 6$ $\alpha(N)=7.57\times10^{-6}\ 11;\ \alpha(O)=6.68\times10^{-7}\ 10$
		1892.2 5	100 [@] 3	1256.69 2+	E2	6.03×10 ⁻⁴	B(E2)(W.u.)=1.0 +4-10 α(K)=0.000310 5; α(L)=3.65×10 ⁻⁵ 6; α(M)=7.11×10 ⁻⁶ 10 α(N)=1.340×10 ⁻⁶ 19; α(O)=1.174×10 ⁻⁷ 17; α(IPF)=0.000248 4 Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28).
3248.69	2+	772.44 24	25.9 [@] 19	2476.16 2 ⁺	[M1+E2]	0.00282	$\alpha(K)=0.00245$ 4; $\alpha(L)=0.000295$ 5; $\alpha(M)=5.75\times10^{-5}$ 8 $\alpha(N)=1.084\times10^{-5}$ 16; $\alpha(O)=9.55\times10^{-7}$ 14
		894.2 2	27 [@] 19	2354.21 3	[E1]	6.79×10^{-4}	$\alpha(K)$ =0.000593 9; $\alpha(L)$ =6.97×10 ⁻⁵ 10; $\alpha(M)$ =1.356×10 ⁻⁵ 19 $\alpha(N)$ =2.55×10 ⁻⁶ 4; $\alpha(O)$ =2.20×10 ⁻⁷ 3 B(E1)(W.u.)<5.7×10 ⁻⁵
		1097.4 2		2150.87 2+	[M1+E2]	1.27×10^{-3}	$\alpha(K)=0.001106 \ 16; \ \alpha(L)=0.0001317 \ 19; \ \alpha(M)=2.57\times10^{-5} \ 4$ $\alpha(N)=4.84\times10^{-6} \ 7; \ \alpha(O)=4.28\times10^{-7} \ 6$
		1992.25 12	22.9 [@] 13	1256.69 2+	M1+E2	6.41×10^{-4}	$\alpha(K)=0.000312\ 5;\ \alpha(L)=3.66\times10^{-5}\ 6;\ \alpha(M)=7.13\times10^{-6}\ 10$ $\alpha(N)=1.345\times10^{-6}\ 19;\ \alpha(O)=1.192\times10^{-7}\ 17;\ \alpha(IPF)=0.000284\ 4$ Mult.: from $\gamma(\theta)$ in $^{112}Sn(n,n'\gamma)$ (2005Ku28).
		3248.8 8	100.0 21	0.0 0+	E2	1.01×10^{-3}	$\alpha(K)$ =0.0001199 17; $\alpha(L)$ =1.391×10 ⁻⁵ 20; $\alpha(M)$ =2.70×10 ⁻⁶ 4 $\alpha(N)$ =5.10×10 ⁻⁷ 8; $\alpha(O)$ =4.50×10 ⁻⁸ 7; $\alpha(IPF)$ =0.000871 13 B(E2)(W.u.)<0.025
3272.31	4+	1121.39 <i>15</i>	27 9	2150.87 2+	E2	1.00×10^{-3}	Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28). B(E2)(W.u.)=7 +4-6 α (K)=0.000872 13; α (L)=0.0001060 15; α (M)=2.07×10 ⁻⁵ 3 α (N)=3.89×10 ⁻⁶ 6; α (O)=3.34×10 ⁻⁷ 5; α (IPF)=9.93×10 ⁻⁷ 15
		2016.1 5	100 9	1256.69 2+	E2	6.24×10 ⁻⁴	Mult.: from $\gamma(\theta)$ in ${}^{112}\text{Sn}(\text{n},\text{n}'\gamma)$ (2005Ku28). B(E2)(W.u.)=1.4 +5-10 $\alpha(\text{K})$ =0.000276 4; $\alpha(\text{L})$ =3.24×10 ⁻⁵ 5; $\alpha(\text{M})$ =6.31×10 ⁻⁶ 9 $\alpha(\text{N})$ =1.189×10 ⁻⁶ 17; $\alpha(\text{O})$ =1.043×10 ⁻⁷ 15; $\alpha(\text{IPF})$ =0.000308 5
3283.60	2+	1036.2 2	100	2247.39 4+			Mult.: from $\gamma(\theta)$ in 112 Sn(n,n' γ) (2005Ku28).

γ (112Sn) (continued)

					<u>y</u> ((311) (continued)		
E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	$I_{(\gamma+ce)}$	Comments
3286.18	(2)+	2029.4 2	84 5	1256.69 2+	M1(+E2)	≤0.4	6.45×10 ⁻⁴ 10	<u></u>	$\alpha(K)$ =0.000298 5; $\alpha(L)$ =3.50×10 ⁻⁵ 6; $\alpha(M)$ =6.82×10 ⁻⁶ 11 $\alpha(N)$ =1.287×10 ⁻⁶ 20; $\alpha(O)$ =1.139×10 ⁻⁷ 18; $\alpha(IPF)$ =0.000303 5 B(M1)(W.u.)>0.0047?; B(E2)(W.u.)<0.15? Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28). I _{γ} : 8 3 in ¹¹² Sn(n,n' γ) (2005Ku28).
		3286.2 2	100 3	$0.0 0^{+}$					ιγ. 0 3 III - SII(II,II γ) (20031 xu 20).
3288.0	$(1,2^+)$	1097.2 <i>3</i>	100	2190.81 0+					
3338.3	2+	2081.6 3	100	1256.69 2+	M1+E2		6.54×10^{-4}		$\alpha(K)=0.000285 \ 4; \ \alpha(L)=3.35\times10^{-5} \ 5;$ $\alpha(M)=6.52\times10^{-6} \ 10$ $\alpha(N)=1.229\times10^{-6} \ 18; \ \alpha(O)=1.090\times10^{-7} \ 16;$ $\alpha(IPF)=0.000328 \ 5$
3353.1	2+	2096.4 4	9 3	1256.69 2+	M1+E2		6.57×10 ⁻⁴		Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28). $\alpha(K)$ =0.000281 4; $\alpha(L)$ =3.30×10 ⁻⁵ 5; $\alpha(M)$ =6.42×10 ⁻⁶ 9 $\alpha(N)$ =1.212×10 ⁻⁶ 17; $\alpha(O)$ =1.074×10 ⁻⁷ 15;
		3353.0 5	100 3	0.0 0+	E2		1.04×10 ⁻³		α (IPF)=0.000335 5 Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28). B(E2)(W.u.)<0.027 α (K)=0.0001138 16; α (L)=1.319×10 ⁻⁵ 19; α (M)=2.56×10 ⁻⁶ 4 α (N)=4.83×10 ⁻⁷ 7; α (O)=4.27×10 ⁻⁸ 6; α (IPF)=0.000914 13 Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28).
3354.38	(7)-	427.67 ^{&} 10	5.8 ^{&} 3	2926.82 6+	E1		0.00347		$\alpha(K)$ =0.00302 5; $\alpha(L)$ =0.000363 5; $\alpha(M)$ =7.07×10 ⁻⁵ 10 $\alpha(N)$ =1.325×10 ⁻⁵ 19; $\alpha(O)$ =1.115×10 ⁻⁶ 16
									Mult.: $A_2 = -0.20$ 2 and $A_4 = 0.07$ 4 in
		805.11 ^{&} 7	100& 6	2549.22 6+	E1		8.38×10 ⁻⁴		(1980Va13); $P\gamma=0.38\ 5$ (1980Va13). $\alpha(K)=0.000731\ II$; $\alpha(L)=8.63\times10^{-5}\ I2$; $\alpha(M)=1.678\times10^{-5}\ 24$ $\alpha(N)=3.16\times10^{-6}\ 5$; $\alpha(O)=2.72\times10^{-7}\ 4$ E_{γ} : $807\ I$ in 113 In(p,2n γ) (1969Ya05). Mult.: $\alpha(K)$ exp=0.00070 $I5$ in 110 Cd(α ,2n γ) (1980Va13); $A_2=-0.233\ 5$ and $A_4=-0.01\ I$ in 110 Cd(α ,2n γ) (1980Va13); $P\gamma=0.37\ 5$ in 110 Cd(α ,2n γ) (1980Va13) and $+0.06\ 3$ in 100 Mo(20 Ne, α 4n γ) (2007Ga45); DCO=0.71 $I3$ in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
3378.9	0^{+} to 4^{+}	1228.0 <i>3</i>	100	2150.87 2+					

$\gamma(^{112}\text{Sn})$ (continued)

					7.) (++		
$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f J'	Mult.#	δ ^{‡#c}	α^{b}	Comments
3384.30	(3)-	467.2 [@] 3 2127.3 3	16.1 [@] 15 100 [@] 6	2917.39 2 ⁺ ,3 1256.69 2 ⁺	8,4 ⁺ E1		8.44×10 ⁻⁴	$\alpha(K)=0.0001324 \ 19; \ \alpha(L)=1.528\times10^{-5} \ 22;$ $\alpha(M)=2.97\times10^{-6} \ 5$ $\alpha(N)=5.59\times10^{-7} \ 8; \ \alpha(O)=4.91\times10^{-8} \ 7;$ $\alpha(IPF)=0.000693 \ 10$ B(E1)(W.u.)=0.00014 +5-7
3397.20	2-,3-	1042.95 11	72.4 17	2354.21 3	M1+E2	1.8 12	0.00123 13	Mult.: from $\gamma(\theta)$ in ¹¹² Sn(n,n' γ) (2005Ku28). $\alpha(K)$ =0.00107 II ; $\alpha(L)$ =0.000130 $I2$; $\alpha(M)$ =2.54×10 ⁻⁵ 23 $\alpha(N)$ =4.8×10 ⁻⁶ 5; $\alpha(O)$ =4.1×10 ⁻⁷ 5
		1246.6 <i>3</i>	100 17	2150.87 2+				B(M1)(W.u.)=0.008 +9-8; B(E2)(W.u.)=20 +9-11
3413.93	6+	468.03 ^{&} 13	32 & 2	2945.70 4+	E2		0.00893	$\alpha(K)$ =0.00764 11; $\alpha(L)$ =0.001047 15; $\alpha(M)$ =0.000206 3 $\alpha(N)$ =3.83×10 ⁻⁵ 6; $\alpha(O)$ =2.98×10 ⁻⁶ 5 B(E2)(W.u.)=1.8×10 ² 10 Mult.: $\alpha(K)$ exp=0.007 2 in 110 Cd(α ,2n γ) (1979Br07);
		630.36 ^{&} 12	56 ^{&} 2	2783.66 4+	E2		0.00392	A ₂ =0.32 6 and A ₄ =-0.18 10 in 110 Cd(α ,2n γ) (1979Br07); P γ =0.49 8 in 110 Cd(α ,2n γ) (1979Br07); B(E2)(W.u.)=7.E+1 4 α (K)=0.00337 5 ; α (L)=0.000439 7 ; α (M)=8.61×10 ⁻⁵ 12 α (N)=1.606×10 ⁻⁵ 23 ; α (O)=1.310×10 ⁻⁶ 19 Mult.: α (K)exp=0.0038 8 in 110 Cd(α ,2n γ) (1979Br07); A ₂ =0.34 2 and A ₄ =0.71 8 in 110 Cd(α ,2n γ) (1979Br07); P γ =0.71 8 in
		893.2 ^{&} 2	38 & 12	2520.70 4+	E2		1.66×10^{-3}	¹¹⁰ Cd(α,2nγ) (1979Br07); B(E2)(W.u.)=9 6 α(K)=0.001440 21; α(L)=0.000179 3; α(M)=3.50×10 ⁻⁵ 5 α(N)=6.56×10 ⁻⁶ 10; α(O)=5.54×10 ⁻⁷ 8
		1166.9 ^{&} 3	100 ^{&} 10	2247.39 4+	E2		9.25×10 ⁻⁴	B(E2)(W.u.)=6 3 $\alpha(K)$ =0.000801 12; $\alpha(L)$ =9.72×10 ⁻⁵ 14; $\alpha(M)$ =1.90×10 ⁻⁵ 3 $\alpha(N)$ =3.56×10 ⁻⁶ 5; $\alpha(O)$ =3.06×10 ⁻⁷ 5; $\alpha(IPF)$ =3.50×10 ⁻⁶ 6 Mult.: $\alpha(K)$ exp=0.0009 4 in ¹¹⁰ Cd(α ,2n γ) (1979Br07); A ₂ =0.38 7 and A ₄ =-0.12 13 in ¹¹⁰ Cd(α ,2n γ) (1979Br07); P γ =0.8 2 in ¹¹⁰ Cd(α ,2n γ) (1979Br07);

$\gamma(\frac{112}{\text{Sn}})$ (continued)

					<u>-</u>			
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	Comments
3417.41	4+	2160.7 1	100	1256.69 2+	E2		6.56×10 ⁻⁴	B(E2)(W.u.)<0.94 α (K)=0.000243 4; α (L)=2.85×10 ⁻⁵ 4; α (M)=5.55×10 ⁻⁶ 8 α (N)=1.046×10 ⁻⁶ 15; α (O)=9.19×10 ⁻⁸ 13; α (IPF)=0.000377 6 Mult.: from γ (θ) in ¹¹² Sn(n,n' γ) (2005Ku28).
3430.65	(8)-	76.3 ^{&} 2	100 ^{&}	3354.38 (7)	M1+E2	0.04 3	1.221 22	B(M1)(W.u.)=0.0365 19; B(E2)(W.u.)=8 +12-8 α (K)=1.053 18; α (L)=0.136 4; α (M)=0.0267 9 α (N)=0.00502 15; α (O)=0.000430 8 Mult.: A ₂ =-0.15 2 (1980Va13); A ₄ =-0.01 2 in α 110 Cd(α ,2ny) (1980Va13).
3433.9	(1-)	3433.8 ^a 5	100	0.0 0+	(E1) ^a		1.50×10^{-3}	$\alpha(K)=6.62\times10^{-5}\ 10;\ \alpha(L)=7.59\times10^{-6}\ 11;$ $\alpha(M)=1.473\times10^{-6}\ 21$ $\alpha(N)=2.78\times10^{-7}\ 4;\ \alpha(O)=2.45\times10^{-8}\ 4;\ \alpha(IPF)=0.001424$ 20 B(E1)(W.u.)=0.0038 +20-22
3456.31	2+,3+	700.3 [@] 6 2199.6 [@] 2	22 [@] 5 100 [@] 6	2756.02 3 ⁺ 1256.69 2 ⁺	M1+E2	2.8 10	6.67×10 ⁻⁴	$\alpha(K)$ =0.000238 5; $\alpha(L)$ =2.79×10 ⁻⁵ 5; $\alpha(M)$ =5.42×10 ⁻⁶ 10 $\alpha(N)$ =1.022×10 ⁻⁶ 18; $\alpha(O)$ =8.99×10 ⁻⁸ 17; $\alpha(IPF)$ =0.000395 6 B(M1)(W.u.)<0.00045; B(E2)(W.u.)<0.38 Mult., δ : from ¹¹² Sn(n,n' γ) (2005Ku28).
3471.7	4+	951.0 3	100	2520.70 4+	[M1]		1.75×10^{-3}	$\alpha(K)=0.001524$ 22; $\alpha(L)=0.000182$ 3; $\alpha(M)=3.55\times10^{-5}$ 5 $\alpha(N)=6.70\times10^{-6}$ 10; $\alpha(O)=5.91\times10^{-7}$ 9 B(M1)(W.u.)<0.11
3494.00 3499.21	2 ⁺ to 6 ⁺ 5 ⁻	1246.6 2 979.3 2	100 54 5	2247.39 4 ⁺ 2520.70 4 ⁺	[E1]		5.69×10 ⁻⁴	B(E1)(W.u.)=0.0027 +14-27 α (K)=0.000497 7; α (L)=5.83×10 ⁻⁵ 9; α (M)=1.134×10 ⁻⁵ 16
		1144.2 2	100 5	2354.21 3	[E2]		9.63×10 ⁻⁴	$\alpha(N)=2.13\times10^{-6} \ 3; \ \alpha(O)=1.85\times10^{-7} \ 3$ B(E2)(W.u.)=1.5×10 ² +8-15 $\alpha(K)=0.000835 \ 12; \ \alpha(L)=0.0001014 \ 15; \ \alpha(M)=1.98\times10^{-5} \ 3$ $\alpha(N)=3.72\times10^{-6} \ 6; \ \alpha(O)=3.20\times10^{-7} \ 5; \ \alpha(IPF)=1.96\times10^{-6}$
3520.45	1 to 4 ⁺	1166.3 2 1369.0 6		2354.21 3 ⁻ 2150.87 2 ⁺				J
3524.54	2+	431.9 [@] 6	9.2 [@] 14	3092.21 2+	[M1]		0.01136	$\alpha(K)$ =0.00987 15; $\alpha(L)$ =0.001208 18; $\alpha(M)$ =0.000236 4 $\alpha(N)$ =4.45×10 ⁻⁵ 7; $\alpha(O)$ =3.90×10 ⁻⁶ 6 B(M1)(W.u.)<0.16
		1277.7 [@] 5	22 [@] 8	2247.39 4+	E2		7.82×10^{-4}	$\alpha(K)=0.000664 \ 10; \ \alpha(L)=8.00\times10^{-5} \ 12;$ $\alpha(M)=1.560\times10^{-5} \ 22$

γ (112Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.#	$\delta^{\ddagger \# c}$	$\alpha^{m{b}}$	Comments
									$\alpha(N)=2.93\times10^{-6} 5$; $\alpha(O)=2.53\times10^{-7} 4$; $\alpha(IPF)=1.89\times10^{-5} 3$ B(E2)(W.u.)<7.2 Mult.: From $^{112}\text{Sn}(n,n'\gamma)$ in 2005Ku28.
3524.54	2+	2267.80 [@] 20	100 [@] 8	1256.69	2+	M1(+E2)	≥-0.5	6.88×10 ⁻⁴ 11	$\alpha(K)$ =0.000230 8; $\alpha(L)$ =2.69×10 ⁻⁵ 9; $\alpha(M)$ =5.24×10 ⁻⁶ 18 $\alpha(N)$ =9.9×10 ⁻⁷ 4; $\alpha(O)$ =8.7×10 ⁻⁸ 4; $\alpha(IPF)$ =0.000425 7 B(M1)(W.u.)<0.0096?
		3524.2 10		0.0	0+	E2		1.10×10^{-3}	Mult., δ : From ¹¹² Sn(n,n' γ) in 2005Ku28. α (K)=0.0001048 <i>15</i> ; α (L)=1.213×10 ⁻⁵ <i>17</i> ; α (M)=2.36×10 ⁻⁶ 4
2520.15	2+ 2 4+	200.0.2		21.40.20	4+				$\alpha(\text{M}) = 2.30 \times 10^{-7}$ $\alpha(\text{N}) = 4.45 \times 10^{-7}$ 7; $\alpha(\text{O}) = 3.93 \times 10^{-8}$ 6; $\alpha(\text{IPF}) = 0.000981$ 14
3530.15	2+,3,4+	380.8 2 1009.4 [@] 4 1282.4 [@] 4	84 [@] 19 65 [@] 13	3149.28 2520.70 2247.39	4+				
		1379.6 [@] 2	100 [@] 5	2150.87					
3553.7	(3)-	2297.0 3	100	1256.69		[E1]		9.40×10 ⁻⁴	B(E1)(W.u.)=0.00014 +5-10 α (K)=0.0001179 17; α (L)=1.359×10 ⁻⁵ 19; α (M)=2.64×10 ⁻⁶ 4 α (N)=4.97×10 ⁻⁷ 7; α (O)=4.37×10 ⁻⁸ 7; α (IPF)=0.000806 12
3557.29		1036.1 4	16.3 23	2520.70					
3604.90		1203.1 <i>I</i> 1357.5 <i>I</i>	100.0 <i>23</i> 100	2354.21 2247.39					
3610.97		1460.1 <i>I</i>	100	2150.87					
		2354.1 5	100	1256.69	2+				
3631.03		552.5 2	100	3078.53					
3654.34	2+	2397.6 2		1256.69	2+	M1+E2	0.52 6	7.28×10^{-4}	$\alpha(K)$ =0.000213 3; $\alpha(L)$ =2.49×10 ⁻⁵ 4; $\alpha(M)$ =4.84×10 ⁻⁶
									$\alpha(N)=9.13\times10^{-7}$ 13; $\alpha(O)=8.08\times10^{-8}$ 12; $\alpha(IPF)=0.000485$ 7
		3654.3 2		0.0	0+	E2		1.14×10^{-3}	$\alpha(\text{IFF})=0.000483 \text{ /}$ $\alpha(\text{K})=9.87\times10^{-5} \text{ 14; } \alpha(\text{L})=1.142\times10^{-5} \text{ 16;}$ $\alpha(\text{M})=2.22\times10^{-6} \text{ 4}$
									$\alpha(N)=2.22\times10^{-7}$ 6; $\alpha(O)=3.70\times10^{-8}$ 6; $\alpha(IPF)=0.001032$ 15
									Mult.: assigned by the evaluators; M1+E2 with δ =0.48 6 in 112 Sn(n,n' γ) (2005Ku28) is not consistent with the J^{π} differences.
3693.68	(9)-	263.03 ^{&} 7	100 <mark>&</mark>	3430.65	(8)-	M1+E2	0.13 <i>1</i>	0.0404	B(M1)(W.u.)=0.024 4; B(E2)(W.u.)=4.8 11

E_i (level)	$\mathbf{J}_i^{\boldsymbol{\pi}}$	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{b}	Comments
								$\alpha(K)=0.0350 \ 5; \ \alpha(L)=0.00438 \ 7; \ \alpha(M)=0.000859 \ 13$ $\alpha(N)=0.0001615 \ 23; \ \alpha(O)=1.401\times10^{-5} \ 20$ δ : Also 0.12 $I6$ in $^{100}\text{Mod}^{20}\text{Ne}, \alpha 4\text{ny}) (2007\text{Ga}45).$
3726.22		2469.5 2	100	1256.69				
3754.4		1507.0 <i>3</i>	100	2247.39				
3782.9		1632.0 <i>3</i>	100	2150.87				
3813.78	$(2^+, 3^+, 4^+)$	283.8 [@] 2	2.59 [@] 24		$2^+,3,4^+$			
		900.8 6 5	17 [@] 3	2913.07	4+			
		1029.6 [@] 7	43 [@] 3	2783.66	4+			
		1293.6 [@] 7	6 [@] 3	2520.70	4+			
		1459.5 [@] 1	27.1 [@] 12	2354.21	3-			
		1566.4 [@] 2	100.0 [@] 24	2247.39				
4077.59	8+	384	100.0 27	3693.68				E_{γ} : from 98 Mo(16 O,2n γ) (2003Wo15).
		663.66 <mark>&</mark> 8	100 <mark>&</mark>	3413.93		E2	0.00343	$\alpha(K)=0.00296$ 5; $\alpha(L)=0.000381$ 6; $\alpha(M)=7.47\times10^{-5}$ 11
								$\alpha(N)=1.396\times10^{-5}$ 20; $\alpha(O)=1.146\times10^{-6}$ 16
								$B(E2)(W.u.)=1.4\times10^2 6$
								Mult.: $\alpha(K)\exp=0.0027 \ 4 \text{ in } ^{110}Cd(\alpha,2n\gamma) \ (1979Br07);$
								$A_2=0.375$ 9 and $A_4=-0.11$ 2 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07);
								DCO=0.93 9 in 100 Mo(20 Ne, α 4n γ) (2007Ga45); P γ =0.65
								6 in 110 Cd(α ,2n γ) (1979Br07) and +0.11 4 in
								100 Mo(20 Ne, α 4n γ) (2007Ga45);
4141.3	(1-)	4141.2 ^a 5	100	0.0	0^{+}	(E1) ^a	1.78×10^{-3}	$\alpha(K)=5.14\times10^{-5}$ 8; $\alpha(L)=5.88\times10^{-6}$ 9; $\alpha(M)=1.141\times10^{-6}$ 16
							2	$\alpha(N)=2.15\times10^{-7}$ 3; $\alpha(O)=1.90\times10^{-8}$ 3; $\alpha(IPF)=0.001717$ 24
4162.3	(1^{-})	4162.2 ^a 5	100	0.0	0+	(E1) ^a	1.78×10^{-3}	$\alpha(K)=5.11\times10^{-5}$ 8; $\alpha(L)=5.84\times10^{-6}$ 9; $\alpha(M)=1.134\times10^{-6}$ 16
		a						$\alpha(N)=2.14\times10^{-7}$ 3; $\alpha(O)=1.89\times10^{-8}$ 3; $\alpha(IPF)=0.001725$ 25
4330.4	(1^{-})	4330.3 ^a 5	100	0.0	0^{+}	(E1) ^a	0.00184	$\alpha(K)=4.85\times10^{-5}$ 7; $\alpha(L)=5.54\times10^{-6}$ 8; $\alpha(M)=1.075\times10^{-6}$ 15
		Q.	Q-				4	$\alpha(N)=2.03\times10^{-7}$ 3; $\alpha(O)=1.79\times10^{-8}$ 3; $\alpha(IPF)=0.00179$ 3
4582.61	$(10)^{-}$	1151.94 ^{&} 11	100 ^{&}	3430.65	$(8)^{-}$	E2	9.49×10^{-4}	$\alpha(K)=0.000824$ 12; $\alpha(L)=9.99\times10^{-5}$ 14; $\alpha(M)=1.95\times10^{-5}$ 3
								$\alpha(N)=3.66\times10^{-6}$ 6; $\alpha(O)=3.15\times10^{-7}$ 5; $\alpha(IPF)=2.42\times10^{-6}$ 4
								B(E2)(W.u.)=36 11
								Mult.: $\alpha(K)\exp=0.0007 \ 3 \text{ in } ^{110}Cd(\alpha,2n\gamma) \ (1980Va13);$
								$A_2 = 0.344 \ I5$ and $A_4 = -0.14 \ 3$ in $^{110}Cd(\alpha, 2n\gamma)$
4681.0	(10^+)	603.1 5	25 11	4077.59	0+			(1980Va13); $P\gamma$ =0.72 8 in ¹¹⁰ Cd(α ,2n γ) (1980Va13); E_{γ} , I_{γ} : from ¹⁰⁰ Mo(²⁰ Ne, α 4n γ) (2007Ga45).
4001.0	(10)	987.4 <i>3</i>	100 22	3693.68				$E_{\gamma}I_{\gamma}$: from $Mo(Ne,\alpha 4n\gamma)$ (2007Ga45). $E_{\gamma}I_{\gamma}$: from $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
4726.5	(1-)	4726.4 ^a 5	100 22	0.0	` '	(E1) ^a	0.00197	$\alpha(K)=4.32\times10^{-5}$ 6; $\alpha(L)=4.94\times10^{-6}$ 7; $\alpha(M)=9.59\times10^{-7}$ 14
7/20.5	(1)	7/20.7	100	0.0	U	(E1)	0.00197	$\alpha(N)=1.81\times10^{-7}$ 3; $\alpha(O)=1.596\times10^{-8}$ 23; $\alpha(IPF)=0.00193$ 3
4819.37	10 ⁺	741.8 <mark>&</mark> 2	100 <mark>&</mark>	4077.59	Q+	E2	0.00259	B(E2)(W.u.)=6.E+2 3
7017.37	10	/71.0 2	100	7011.39	O	L2	0.00237	$\alpha(K)=0.00224$ 4; $\alpha(L)=0.000284$ 4; $\alpha(M)=5.56\times10^{-5}$ 8
								$\alpha(N)=1.041\times10^{-5}$ 15; $\alpha(O)=8.65\times10^{-7}$ 13
								a(1), 1.0 1.1.10 10, a(0) 0.05/10 15

 $\gamma(\frac{112}{\text{Sn}})$ (continued)

							/(" /("	
E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	${\rm J}_f^\pi$	Mult.#	$\alpha^{m{b}}$	Comments
								Mult.: $\alpha(K)\exp=0.0025\ 4$ in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); A ₂ =0.366 12 and A ₄ =-0.11 2 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07); DCO=1.04 10 for 741.7 γ +744.6 γ in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45); P γ =0.53 5 in $^{110}Cd(\alpha,2n\gamma)$ (1979Br07) and +0.25 11 in $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
4837.4	(1-)	4837.3 ^a 5	100	0.0	0+	(E1) ^a	0.00201	$\alpha(K)=4.20\times10^{-5}$ 6; $\alpha(L)=4.79\times10^{-6}$ 7; $\alpha(M)=9.30\times10^{-7}$ 13 $\alpha(N)=1.754\times10^{-7}$ 25; $\alpha(O)=1.549\times10^{-8}$ 22; $\alpha(IPF)=0.00196$ 3
4928.9	(11)	345.9 8	<8.3	4582.61	(10)	M1+E2	0.0198	$\alpha(K)=0.0172 \ 3; \ \alpha(L)=0.00212 \ 4; \ \alpha(M)=0.000415 \ 7$ $\alpha(N)=7.82\times10^{-5} \ I2; \ \alpha(O)=6.84\times10^{-6} \ I1$ $E_{\gamma}I_{\gamma}$, Mult.: from 100 Mo(20 Ne, α 4n γ) (2007Ga45).
		1235.3 ^{&} 3	100 ^{&} 25	3693.68	(9)-	E2	8.30×10 ⁻⁴	B(E2)(W.u.)>0.28 α (K)=0.000712 10 ; α (L)=8.59×10 ⁻⁵ 12 ; α (M)=1.676×10 ⁻⁵ 24 α (N)=3.15×10 ⁻⁶ 5 ; α (O)=2.72×10 ⁻⁷ 4 ; α (IPF)=1.182×10 ⁻⁵ 18 Mult.: α (K)exp=0.0007 2 in 110 Cd(α ,2n γ) (1980Va13); A ₂ =0.34 3 and A ₄ =-0.13 3 in 110 Cd(α ,2n γ) (1980Va13); P γ =0.72 8 in 110 Cd(α ,2n γ) (1980Va13);
5057.1	(1-)	5057.0 ^a 5	100	0.0	0+	(E1) ^a	0.00207	$\alpha(K)=3.96\times10^{-5} 6$; $\alpha(L)=4.53\times10^{-6} 7$; $\alpha(M)=8.78\times10^{-7} 13$ $\alpha(N)=1.656\times10^{-7} 24$; $\alpha(O)=1.462\times10^{-8} 21$; $\alpha(IPF)=0.00203 3$
5128.2	(1-)	5128.1 ^a 5	100	0.0	0+	(E1) ^a	0.00209	$\alpha(K)=3.89\times10^{-5} 6$; $\alpha(L)=4.45\times10^{-6} 7$; $\alpha(M)=8.62\times10^{-7} 12$ $\alpha(N)=1.627\times10^{-7} 23$; $\alpha(O)=1.436\times10^{-8} 21$; $\alpha(IPF)=0.00205 3$
5246.2	(1-)	5246.1 ^a 5	100	0.0	0+	(E1) ^a	0.00213	$\alpha(K)=1.527\times10^{-5}$ 6; $\alpha(C)=1.4.32\times10^{-6}$ 6; $\alpha(M)=8.38\times10^{-7}$ 12 $\alpha(N)=1.580\times10^{-7}$ 23; $\alpha(C)=1.395\times10^{-8}$ 20; $\alpha(IPF)=0.00208$ 3
5480.5	(1-)	5480.4 ^a 5	100	0.0	0+	(E1) ^a	0.00220	$\alpha(N)=1.380\times 10^{-2}$ 25; $\alpha(O)=1.393\times 10^{-2}$ 20; $\alpha(IPF)=0.00208$ 3 $\alpha(K)=3.58\times 10^{-5}$ 5; $\alpha(L)=4.08\times 10^{-6}$ 6; $\alpha(M)=7.92\times 10^{-7}$ 11 $\alpha(N)=1.494\times 10^{-7}$ 21; $\alpha(O)=1.320\times 10^{-8}$ 19; $\alpha(IPF)=0.00216$ 3
5502.6	(1-)	5502.5 ^a 5	100	0.0	0+	(E1) ^a	0.00220	$\alpha(N)=1.494\times10^{-5}$ 21; $\alpha(O)=1.320\times10^{-6}$ 19; $\alpha(IPF)=0.00216$ 3 $\alpha(K)=3.56\times10^{-5}$ 5; $\alpha(L)=4.06\times10^{-6}$ 6; $\alpha(M)=7.88\times10^{-7}$ 11 $\alpha(N)=1.487\times10^{-7}$ 21; $\alpha(O)=1.313\times10^{-8}$ 19; $\alpha(IPF)=0.00216$ 3
5564.3	12+	745.0 ^{&} 2	100 ^{&} 19	4819.37	10+	E2	0.00256	$\alpha(N)$ =1.487×10 ⁷ 21; $\alpha(O)$ =1.313×10 ⁸ 19; $\alpha(PF)$ =0.00216 3 B(E2)(W.u.)=8.E+1 3 $\alpha(K)$ =0.00221 4; $\alpha(L)$ =0.000281 4; $\alpha(M)$ =5.50×10 ⁻⁵ 8 $\alpha(N)$ =1.029×10 ⁻⁵ 15; $\alpha(O)$ =8.56×10 ⁻⁷ 12 Mult.: $\alpha(K)$ exp=0.0024 6 in ¹¹⁰ Cd(α ,2n γ) (1979Br07); A ₂ =0.27 4 and A ₄ =-0.05 6 in ¹¹⁰ Cd(α ,2n γ) (1979Br07); DCO=1.04 10 for 741.7+744.6 in ¹⁰⁰ Mo(²⁰ Ne, α 4n γ) (2007Ga45); P γ =0.61 12 in ¹¹⁰ Cd(α ,2n γ) (1979Br07) and +0.27 11 in ¹⁰⁰ Mo(²⁰ Ne, α 4n γ) (2007Ga45).
		883.2 3	40 11	4681.0	(10+)	[E2]	1.70×10 ⁻³	$\alpha(K)=0.001478 \ 21; \ \alpha(L)=0.000184 \ 3; \ \alpha(M)=3.60\times10^{-5} \ 5$ $\alpha(N)=6.74\times10^{-6} \ 10; \ \alpha(O)=5.69\times10^{-7} \ 8$ $B(E2)(W.u.)=14 \ 6$ E_{γ},I_{γ} : from $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
5593.7	(1-)	5593.6 ^a 5	100	0.0	0+	(E1) ^a	0.00223	$\alpha(K) = 3.49 \times 10^{-5} 5$; $\alpha(L) = 3.98 \times 10^{-6} 6$; $\alpha(M) = 7.72 \times 10^{-7} 11$ $\alpha(N) = 1.456 \times 10^{-7} 21$; $\alpha(O) = 1.286 \times 10^{-8} 18$; $\alpha(IPF) = 0.00219 3$

$\gamma(\frac{112}{\text{Sn}})$ (continued)

							,	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{b}	Comments
5617.6	(1-)	5617.4 ^a 5	100	0.0	0+	(E1) ^a	0.00223	$\alpha(K)=3.47\times10^{-5}$ 5; $\alpha(L)=3.96\times10^{-6}$ 6; $\alpha(M)=7.68\times10^{-7}$ 11
								$\alpha(N)=1.448\times10^{-7}\ 21;\ \alpha(O)=1.279\times10^{-8}\ 18;\ \alpha(IPF)=0.00219\ 3$
5649.1	(1^{-})	5648.9 ^a 5	100	0.0	0_{+}	(E1) ^a	0.00224	$\alpha(K)=3.45\times10^{-5}$ 5; $\alpha(L)=3.93\times10^{-6}$ 6; $\alpha(M)=7.62\times10^{-7}$ 11
								$\alpha(N)=1.438\times10^{-7}\ 21;\ \alpha(O)=1.270\times10^{-8}\ 18;\ \alpha(IPF)=0.00220\ 3$
5666.4	(1^{-})	5666.2 ^a 5	100	0.0	0_{+}	(E1) ^a	0.00225	$\alpha(K)=3.43\times10^{-5}$ 5; $\alpha(L)=3.91\times10^{-6}$ 6; $\alpha(M)=7.59\times10^{-7}$ 11
		0	0					$\alpha(N)=1.432\times10^{-7}\ 20;\ \alpha(O)=1.265\times10^{-8}\ 18;\ \alpha(IPF)=0.00221\ 3$
5684.59	12+	865.21 <mark>&</mark> 9	100 <mark>&</mark>	4819.37	10 ⁺	E2	0.00179	$\alpha(K)=0.001550$ 22; $\alpha(L)=0.000193$ 3; $\alpha(M)=3.78\times10^{-5}$ 6
								$\alpha(N)=7.08\times10^{-6}\ I0;\ \alpha(O)=5.97\times10^{-7}\ 9$
								Mult.: $\alpha(K)\exp=0.0024$ 7 in ${}^{110}Cd(\alpha,2n\gamma)$ (1979Br07); $A_2=0.40$ 6 and $A_4=-0.12$ 10
								in 110 Cd(α ,2n γ) (1979Br07); P γ =0.7 2 in 110 Cd(α ,2n γ) (1979Br07);
5 600.0	(1-)	1004	100	4681.0		(T1) (I	0.00005	E_{y} : from $^{100}\text{Mo}(^{16}\text{O},4ny)$ (1988Ha20).
5699.9	(1^{-})	5699.7 ^a 5	100	0.0	0.	(E1) ^a	0.00225	$\alpha(K)=3.41\times10^{-5}$ 5; $\alpha(L)=3.89\times10^{-6}$ 6; $\alpha(M)=7.54\times10^{-7}$ 11 $\alpha(N)=1.422\times10^{-7}$ 20; $\alpha(O)=1.256\times10^{-8}$ 18; $\alpha(IPF)=0.00221$ 4
5748.6	(1-)	5748.4 ^a 5	100	0.0	0+	(E1) ^a	0.00226	$\alpha(N)=1.422\times10^{-2}$ 20; $\alpha(O)=1.256\times10^{-3}$ 18; $\alpha(IPF)=0.00221$ 4 $\alpha(K)=3.37\times10^{-5}$ 5; $\alpha(L)=3.84\times10^{-6}$ 6; $\alpha(M)=7.46\times10^{-7}$ 11
3748.0	(1)	3/46.4" 3	100	0.0	U.	(E1)"	0.00226	$\alpha(N)=3.57\times10^{-7}$ 3; $\alpha(L)=3.84\times10^{-8}$ 6; $\alpha(M)=7.40\times10^{-7}$ 11 $\alpha(N)=1.407\times10^{-7}$ 20; $\alpha(O)=1.243\times10^{-8}$ 18; $\alpha(IPF)=0.00223$ 4
5812.7	(1^{-})	5812.5 ^a 5	100	0.0	0+	(E1) ^a	0.00228	$\alpha(K)=1.407\times10^{-5}$ 20, $\alpha(G)=1.243\times10^{-1}$ 18, $\alpha(FF)=0.00223$ 4 $\alpha(K)=3.32\times10^{-5}$ 5; $\alpha(L)=3.79\times10^{-6}$ 6; $\alpha(M)=7.35\times10^{-7}$ 11
3012.7	(1)	3612.3	100	0.0	U	(E1)	0.00228	$\alpha(N)=3.52\times10^{-3}$, $\alpha(L)=3.79\times10^{-3}$, $\alpha(M)=7.59\times10^{-11}$ $\alpha(N)=1.387\times10^{-7}$ 20; $\alpha(O)=1.225\times10^{-8}$ 18; $\alpha(IPF)=0.00224$ 4
5860.7	(1^{-})	5860.5 <mark>a</mark> 5	100	0.0	0^{+}	(E1) ^a	0.00230	$\alpha(K)=3.29\times10^{-5}$ 5; $\alpha(L)=3.75\times10^{-6}$ 6; $\alpha(M)=7.28\times10^{-7}$ 11
2000.7	(1)	2000.2	100	0.0	O	(21)	0.00250	$\alpha(N) = 1.373 \times 10^{-7} \ 20; \ \alpha(O) = 1.213 \times 10^{-8} \ 17; \ \alpha(IPF) = 0.00226 \ 4$
5884.0	(1^{-})	5883.8 ^a 5	100	0.0	0^{+}	(E1) ^a	0.00230	$\alpha(K)=3.27\times10^{-5}$ 5; $\alpha(L)=3.73\times10^{-6}$ 6; $\alpha(M)=7.24\times10^{-7}$ 11
	,					,		$\alpha(N)=1.366\times10^{-7}$ 20; $\alpha(O)=1.207\times10^{-8}$ 17; $\alpha(IPF)=0.00226$ 4
5924.1	(1^{-})	5923.9 ^a 5	100	0.0	0^{+}	(E1) ^a	0.00231	$\alpha(K)=3.25\times10^{-5}$ 5; $\alpha(L)=3.70\times10^{-6}$ 6; $\alpha(M)=7.18\times10^{-7}$ 10
								$\alpha(N)=1.354\times10^{-7}$ 19; $\alpha(O)=1.197\times10^{-8}$ 17; $\alpha(IPF)=0.00228$ 4
5976.6	(1^{-})	5976.4 ^a 5	100	0.0	0_{+}	(E1) ^a	0.00233	$\alpha(K)=3.21\times10^{-5} 5$; $\alpha(L)=3.66\times10^{-6} 6$; $\alpha(M)=7.10\times10^{-7} 10$
		_						$\alpha(N)=1.340\times10^{-7}$ 19; $\alpha(O)=1.184\times10^{-8}$ 17; $\alpha(IPF)=0.00229$ 4
6005.0	(1^{-})	6004.8 <i>a</i> 10	100	0.0	0+	(E1) ^a		
6059.8	(1^{-})	6059.6 ^a 10	100	0.0	0+	(E1) ^a		
6080.9	(1^{-})	6080.7 ^a 10 6096.7 ^a 10	100	0.0	0 ⁺	(E1) ^a (E1) ^a		
6096.9 6129.0	(1^{-}) (1^{-})	6096.7^{a} 10 6128.8^{a} 10	100 100	0.0	0_{+}	(E1) ^a (E1) ^a		
6150.4	(1^{-})	6150.2 ^a 10	100	0.0	0+	(E1) ^a		
6168.3	(1^{-})	6168.1 ^a 10	100	0.0	0+	$(E1)^a$		
6198.7	(1^{-})	6198.5 ^a 10	100	0.0	0+	$(E1)^{a}$		
6224.3	(1^{-})	6224.1 <mark>a</mark> 10	100	0.0	0_{+}	(E1) ^a		
6246.4	(1^{-})	6246.2 ^a 10	100	0.0	0+	(E1) ^a		
6259.1	(1^{-})	6258.9 ^a 10	100	0.0	0+	(E1) ^a		
6272.6	(1^{-})	6272.4^{a} 10	100	0.0	0+	$(E1)^a$		
6313.3 6348.7	(1^{-}) (1^{-})	6313.1 ^a 10 6348.5 ^a 10	100 100	0.0	0^{+}	(E1) ^a (E1) ^a		
6362.9	(1) 14 ⁺	678.1 8	<4	5684.59		(E1) ¹¹ [E2]	0.00324	$\alpha(K)=0.00280 \ 4; \ \alpha(L)=0.000360 \ 6; \ \alpha(M)=7.05\times10^{-5} \ 11$
0302.9	14	0/0.1 0	<4	3004.39	12	$[\mathbf{E} \mathbf{Z}]$	0.00324	$u(\mathbf{K}) = 0.002007$, $u(\mathbf{L}) = 0.0003000$, $u(\mathbf{W}) = 7.03 \times 10^{-1}$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α^{b}	Comments
							α (N)=1.318×10 ⁻⁵ <i>19</i> ; α (O)=1.084×10 ⁻⁶ <i>16</i> B(E2)(W.u.)=2.0 +2 <i>I</i> -20
							$E_{\gamma}I_{\gamma}$: from $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
6362.9	14 ⁺	798.6 <i>1</i>	100 16	5564.3 12 ⁺	E2	0.00216	B(E2)(W.u.)=44 15
							$\alpha(K)=0.00187 \ 3; \ \alpha(L)=0.000235 \ 4; \ \alpha(M)=4.61\times10^{-5} \ 7$
							$\alpha(N)=8.63\times10^{-6} 12$; $\alpha(O)=7.22\times10^{-7} 11$
							E_{γ},I_{γ} : from $^{100}\text{Mo}(^{20}\text{Ne},\alpha 4\text{n}\gamma)$ (2007Ga45).
							Mult.: DCO=0.99 12 in 100 Mo(20 Ne, α 4n γ) (2007Ga45); Pol _{DCO} =+0.08 3 in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
6388.1	(1^{-})	6387.9 ^a 10	100	$0.0 \ 0^{+}$	(E1) ^a		E_{γ} : Other: 6384.9 keV 4 in 2008BoZK.
6398.3	(13^{-})	1469.4 <i>4</i>	100	4928.9 (11)	· ·		$E_{\gamma}I_{\gamma}$: from $^{100}\text{Mo}(^{20}\text{Ne},\alpha4\text{n}\gamma)$ (2007Ga45). 1471 in $^{100}\text{Mo}(^{16}\text{O},4\text{n}\gamma)$ (1988Ha20).
6404.1	(1^{-})	6403.9 ^a 10	100	0.0 0+	(E1) ^a		E_{γ} : Other:6402.0 keV 2 in 2008BoZK.
6428.6	(1^{-})	6428.4 ^a 10	100	$0.0 0^{+}$	(E1) ^a		E _γ : Other: 6431.6 keV 8 in 2008BoZK.
6450.0	(1^{-})	6449.8 <mark>a</mark> 10	100	$0.0 \ 0^{+}$	(E1) ^a		
6476.3	(1^{-})	6476.1 ^a 15	100	$0.0 \ 0^{+}$	(E1) ^a		
6520.7	(1^{-})	6520.5 ^a 10	100	$0.0 \ 0^{+}$	(E1) ^a		
6550.1	(1^{-})	6549.9 ^a 10	100	$0.0 \ 0^{+}$	(E1) ^a		
6601.0	(1^{-})	6600.8 ^a 10	100	$0.0 0^{+}$	(E1) ^a		
6679.9	(1^{-})	6679.7 ^a 10	100	$0.0 \ 0^{+}$	$(E1)^{a}$		
6706.7	(1^{-})	6706.5 ^a 10	100	$0.0 \ 0^{+}$	$(E1)^{a}$		
6715.0	(1-)	6714.8 ^a 10	100	$0.0 0^{+}$	(E1) ^a		E_{γ} : Other: 6718.7 keV <i>13</i> in 2008BoZK.
6731.9	(1^{-})	6731.7 <i>a</i> 10	100	$0.0 \ 0^{+}$	$(E1)^a$		E_{γ} : Other: 6735.2 keV 14 in 2008BoZK.
6795.5	(1-)	6795.3 ^a 10	100	$0.0 \ 0^{+}$	$(E1)^{a}$		E_{γ} : Other: 6791.6 keV 23 in 2008BoZK.
6818.7	(1^{-})	6818.5 ^a 10	100	$0.0 0^{+}$	$(E1)^{a}$		E _γ : 6819.4 keV 11 in 2008BoZK.
6824.2 6855.9	(1^{-})	6824.0 ^a 10 6855.7 ^a 10	100	$0.0 0^{+} \ 0.0 0^{+}$	(E1) ^a (E1) ^a		
6871.2	(1^{-})	6871.0 ^a 10	100 100	0.0 0+	$(E1)^a$ $(E1)^a$		
6941.2	(1^{-}) (1^{-})	6941.0 ^a 10	100	0.0 0+	$(E1)^a$ $(E1)^a$		
6961.5	(1^{-})	6941.0 10	100	$0.0 \ 0^{+}$	(E1) ^a		
6982.7	(1^{-})	6982.5 ^a 10	100	$0.0 \ 0^{+}$	(E1) (E1) ^a		
7009.8	(1^{-})	7009.6 ^a 10	100	$0.0 \ 0^{+}$	(E1) ^a		
7018.7	(1^{-})	7018.5 ^a 10	100	$0.0 \ 0^{+}$	$(E1)^a$		
7025.8	(1^{-})	7025.6^a 10	100	$0.0 \ 0^{+}$	$(E1)^a$		
7043.1	(1^{-})	7042.9^a 10	100	$0.0 \ 0^{+}$	$(E1)^a$		
7092.8	(1^{-})	7092.6 ^a 10	100	0.0 0+	$(E1)^a$		
7167.2	(1^{-})	7167.0 ^a 10	100	0.0 0+	$(E1)^a$		
7198.2	(1^{-})	7198.0 <mark>a</mark> 10	100	$0.0 \ 0^{+}$	(E1) ^a		E_{γ} : Other: 7199.6 keV 9 in 2008BoZK.
7207.1	(15^{-})	808.8 <i>3</i>	100	6398.3 (13 ⁻)			$E_{\gamma}I_{\gamma}$: from $^{100}\text{Mo}(^{20}\text{Ne},\alpha 4n\gamma)$ (2007Ga45).
7208.1	ì- ´	7207.9 ^a 10	100	$0.0 0^{+}$	(E1) ^a		
7214.2	16 ⁺	851.3 <i>1</i>	100	6362.9 14 ⁺	E2	0.00186	B(E2)(W.u.)=72 13
							$\alpha(K)=0.001609 \ 23; \ \alpha(L)=0.000201 \ 3; \ \alpha(M)=3.93\times10^{-5} \ 6$ $\alpha(N)=7.37\times10^{-6} \ II; \ \alpha(O)=6.20\times10^{-7} \ 9$

 $E_i(level)$

7217.8

7228.1

7248.4

7311.1

7389.9

7438.6

7444.1

7468.3

7531.3

7537.2

7559.1

7594.5

7615.3

7859.5

7904.7

7936.7

7988.2

8020.7 8051.6

8069.6

8083.0

8147.1

8194.5

8218.2

8253.6

8448.6

8568.9

8600.4

8750.2

8823.4

9045.2

9050.5

9095.3

9150.1

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (17^{-})

 18^{+}

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 (19^{-})

 (1^{-})

 (1^{-})

 (1^{-})

 E_{γ}^{\dagger}

7217.6^a 11

7227.8^a 10

7248.1^a 14

7310.8^a 10

7389.6^a 10

7438.3^a 10

7443.8^a 10

7468.0^a 10

7531.0^a 10

7536.9^a 10

7558.8^a 10

7594.2^a 10

7615.0^a 10

7859.2^a 10

7904.4^a 10

7936.4^a 10

7987.9^a 10

8020.4^a 10

8051.3^a 10

8069.3^a 10

868.8 4

875.9 *3*

932.9 2

8194.2^a 10

8217.9^a 10

8253.3^a 10

8448.3^a 10

8568.5^a 10

8600.0^a 10

8749.8*a* 10

8823.0^a 10

9050.1^a 10

9094.9^a 10

9149.7*a* 10

962.2 4

 I_{γ}^{\dagger}

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

38 15

100 30

 E_f

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

7214.2 16⁺

7214.2 16+

7207.1 (15⁻)

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

8083.0 (17-)

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $0.0 \ 0^{+}$

 $(E1)^a$

 $(E1)^a$

 $(E1)^a$

 $(E1)^a$

 $(E1)^a$

 $(E1)^a$

 $(E1)^a$

 $(E1)^a$

$\gamma(^{112}\text{Sn})$ (continued) α^{b} Mult.# Comments $E_{\alpha}J_{\alpha}$: from ¹⁰⁰Mo(²⁰Ne, α 4n γ) (2007Ga45). Mult.: DCO=1.05 13 in 100 Mo(20 Ne, α 4ny) (2007Ga45); Pol_{DCO}=+0.24 14 in 100 Mo(20 Ne, α 4n γ) (2007Ga45). $(E1)^a$ $(E1)^a$ E_γ: 7229.3 keV 14 in 2008BoZK. $(E1)^a$ E_{γ},I_{γ} : from 100 Mo(20 Ne, α 4n γ) (2007Ga45). E_{γ},I_{γ} : from ¹⁰⁰Mo(²⁰Ne, α 4n γ) (2007Ga45). B(E2)(W.u.)=73 +22-18E2 1.50×10^{-3} $\alpha(K)=0.001304\ 19$; $\alpha(L)=0.0001613\ 23$; $\alpha(M)=3.15\times10^{-5}\ 5$ $\alpha(N)=5.91\times10^{-6} 9$; $\alpha(O)=5.01\times10^{-7} 7$ E_{γ}, I_{γ} : from ¹⁰⁰Mo(²⁰Ne, α 4n γ) (2007Ga45). Mult.: DCO=1.06 19 in 100 Mo(20 Ne, α 4ny) (2007Ga45); Pol_{DCO}=+0.22 14 in 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45). $(E1)^a$ $(E1)^a$ $(E1)^a$

 E_{γ} , I_{γ} , Mult.: from 100 Mo(20 Ne, $\alpha 4$ n γ) (2007Ga45).

Adopted Levels, Gammas (continued)

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{m{b}}$	Comments
9186.6	20+	1039.5 2	100	8147.1	18+	E2	1.18×10^{-3}	B(E2)(W.u.)=66 18 α (K)=0.001026 15; α (L)=0.0001256 18; α (M)=2.45×10 ⁻⁵ 4 α (N)=4.61×10 ⁻⁶ 7; α (O)=3.93×10 ⁻⁷ 6
								E_{γ} , I_{γ} : from 100 Mo(20 Ne, α 4n γ) (2007Ga45). Mult.: DCO=1.00 21 in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
9329.8	(1^{-})	9329.4 <mark>a</mark> 10	100	0.0	0_{+}	(E1) ^a		
10076.2	(21^{-})	1031.0 <i>10</i>	100	9045.2	(19^{-})			E_{γ},I_{γ} : from 100 Mo(20 Ne, α 4n γ) (2007Ga45).
10335.7	22+	1149.1 <i>3</i>	100	9186.6	20+	E2	9.54×10^{-4}	B(E2)(W.u.)=63 18
								$\alpha(K)=0.000828 \ 12; \ \alpha(L)=0.0001005 \ 14; \ \alpha(M)=1.96\times10^{-5} \ 3$
								$\alpha(N)=3.68\times10^{-6} \ 6; \ \alpha(O)=3.17\times10^{-7} \ 5; \ \alpha(IPF)=2.24\times10^{-6} \ 4$
								E_{γ},I_{γ} : from $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
								Mult.: DCO=1.13 23 in 100 Mo(20 Ne, α 4n γ) (2007Ga45).
11570.6	(24^{+})	1234.9 5	100	10335.7	22+	[E2]	8.30×10^{-4}	B(E2)(W.u.)>18
								$\alpha(K)=0.000712 \ 10; \ \alpha(L)=8.60\times10^{-5} \ 12; \ \alpha(M)=1.678\times10^{-5} \ 24$
								$\alpha(N)=3.15\times10^{-6}$ 5; $\alpha(O)=2.72\times10^{-7}$ 4; $\alpha(IPF)=1.176\times10^{-5}$ 19
								E_{γ},I_{γ} : from $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).
12965.1?	(26^+)	1395.0 ^d 10	100	11570.6	(24^{+})			E_{γ},I_{γ} : from $^{100}Mo(^{20}Ne,\alpha 4n\gamma)$ (2007Ga45).

[†] From ¹¹²Sn(n,n' γ) (2005Ku28), unless otherwise noted. [‡] From $\gamma(\theta)$ in ¹¹²Sn(n,n' γ) (2005Ku28), unless otherwise noted.

[#] Based on $\alpha(K)$ exp, A_2 , A_4 in $\gamma(\theta)$ and γ -linear polarization, unless otherwise noted.
[@] From 112 Sb ε decay (1976Wi10,1975WiZX).

[&]amp; From 110 Cd(α ,2n γ) (1980Va13,1979Br07).

^a From ¹¹²Sn(γ , γ').

^b Additional information 1.

^c If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. ^d Placement of transition in the level scheme is uncertain.

Adopted Levels, GammasLegendLevel Scheme $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ Intensities: Type not specified $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Level Scheme (continued)

Intensities: Type not specified

Legend

Level Scheme (continued)

Intensities: Type not specified

Legend

Adopted Levels, GammasLegendLevel Scheme (continued) $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

 $\begin{aligned} & \textbf{Band(A): Probable member} \\ & \textbf{of a } \Delta \textbf{J=2 band on the} \\ & \textbf{5564.3 } (\textbf{J}^{\pi} = \textbf{12}^{+}) \textbf{ state;} \\ & \textbf{configuration} = \pi [\\ & \textbf{g}_{9/2}^{-2} \textbf{g}_{7/2}^{2} \| \boldsymbol{v} \boldsymbol{v} \boldsymbol{h}_{11/2}^{2} \end{aligned}$

10335.7

<u>22</u>+

12⁺

Band(B): Probable member of a ΔJ =2 band on the 6398.3 (J^{π} =13 $^{-}$) state; configuration= $\pi [$ $g_{9/2}$ $_1h_{11/2}] \otimes vh_{11/2}^2$

$$^{112}_{50}\mathrm{Sn}_{62}$$

5564.3

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 113,515 (2012)	1-Jan-2012

 $Q(\beta^-) = -6062\ 22;\ S(n) = 10300.4\ 18;\ S(p) = 8480.5\ 7;\ Q(\alpha) = -2633.5\ 11$

Note: Current evaluation has used the following Q record -6063 2210300.5 188480.1 7 -2634.1 12 2011AuZZ.

¹¹⁴Sn Levels

Cross Reference (XREF) Flags

Α	¹¹⁴ In β ⁻ decay	F	114 Sn(p,p' γ)	K	116 Sn(p,t)
В	114 Sb β^+ decay	G	114 Sn(d,d')	L	$(HI,xn\gamma)$
C	$^{112}\text{Cd}(^{3}\text{He,n})$	H	$^{114}\mathrm{Sn}(\alpha,\alpha')$	M	114 Sn(n,n' γ)
D	$^{112}\text{Cd}(\alpha,2\text{n}\gamma)$	I	Coulomb excitation	N	100 Mo(18 O,4n γ)
E	112 Sn(t,p)	J	115 Sn(d,t)	0	$^{114}\text{Cd }2\beta^-\text{ decay}$

			()1 /		
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRE	F	Comments
0@	0^{+}	stable	ABCDEFGHI	JKLMNO	
1299.907 [@] 7	2+	0.42 ps <i>3</i>	AB DEFG I	JKLMN	μ≥0 (1980Ha19,2005St24) g=+0.110 25(2011Wa15) J ^π : E2 γ to 0 ⁺ . T _{1/2} : From 2011Ju01 in Coulomb excitation; Others:T _{1/2} 1/2=0.31 ps 10 (1991ViZW), T _{1/2} 1/2=0.39 ps 8 (2001Ga52), 0.30 ps 6 (1961An07).
1953.266 ^{&} 21	0+	6.5 ps 23	B DEF I	KM	J^{π} : L(p,t)=0. T _{1/2} : from B(E2) (1981Ba05) in Coulomb excitation.
2156.28 3	0+	>7.6 ps	DE I	KM	J^{π} : $L(t,p)=0$. $T_{1/2}$: from B(E2) (1981Ba05) in Coulomb excitation.
2187.602 [@] 11	4+	5.3 ps 4	B DE G	KLMN	g=+0.09 7 (2011Wa15) J^{π} : L(p,t)=4, E2 γ to 2 ⁺ . log ft =5.9 from 3 ⁺ ¹¹⁴ Sb g.s. $T_{1/2}$: from (2001Ga52). Other: 1.4 ps>(1991ViZW).
2238.953 ^{&} 13	2+		B D	KLMN	J^{π} : γ to 0^+ and $L(p,t)=2$.
2274.990 ^c 11	3-	0.360 ps <i>21</i>	B DE	KLMN	g=+0.09 7 (2011Wa15) $T_{1/2}$: From 2011Ju01. Previous: 1.7 ps +10-7 (1991ViZW) not adopted. J^{π} : L(p,t)=3.
2421.67 22	0^{+}			JK M	J^{π} : L(p,t)=0.
2454.072 16	2 ⁺		В D	KM	J^{π} : L(p,t)=2.
2514	3-		ББ	K	J^{π} : L(p,t)=3.
2514.760 22	3 ⁺		В D	MN	J^{π} : M1+E2 to 4 ⁺ and from 4 ⁺ .
2576? 4	2+		2 2	K	J^{π} : L(p,t)=2. E(level): not seen in (n,n' γ).
2614.461 ^{&} 16	4+	0.55 ps <i>10</i>	B D	KLMN	J^{π} : L(p,t)=4. T _{1/2} : from (2001Ga52). Other: 1.4 ps +14-7 (1991ViZW).
2738.4 5			D		
2759.7 5			D		
2765.36 4	4+	0.56 ps <i>30</i>	B D	KLMN	J^{π} : E2 γ from 6 ⁺ , E2 γ to 2 ⁺ . T _{1/2} : from (2001Ga52). Other: 1.2 ps 5 (1991ViZW).
2815.146 ^c 22	5-	>1.4 ps	DE	KLMN	J_{-}^{π} : L(p,t)=5, E1 γ to 4 ⁺ .
2859.81 <i>3</i>	4+		B DE G	K M	J^{π} : L(p,t)=4.
2905 5	3-			K	J^{π} : L(p,t)=3.
2905.12 5	3-		B DE	M	J^{π} : M1+E2 to 4 ⁺ and from 4 ⁺ .
2915.73 15	2 ⁺ 2 ⁺		D DE	KM	J^{π} : L(p,t)=2.
2943.43 6	7.		B DE	K M	J^{π} : L(p,t)=2.

114Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XR	EF	Comments
3025	2,3+		е	M	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3025.29 6	0+			K	J^{π} : $L(p,t)=0$.
3028.09 10	2,3+		e	M	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3071.4 5	_,,,		D		· / (0) · · · (13,11 /)·
3087.37 ^c 7	7-	733 ns <i>14</i>	DE	K MN	Q=0.32 3 (1975Di02,2005St24)
3007.37 7	,	755 115 17	22		μ =-0.567 4 (2005St24)
					$T_{1/2}$: from 1980Va13 in $(\alpha, 2n\gamma)$.
					J^{π} : L(p,t)=(7), $\gamma(\theta)$, γ -pol (1979Br07).
3100.1 5			D		J. L(p,t)-(1), y(0), y-por (1)1/1/Life(1).
3107.1 5			D		
	~ ±				
3149.79 [@] 12	6 ⁺	1.1 ps <i>3</i>	D	K M	J^{π} : $L(p,t)=6$.
3186.13 8	2+			K M	J^{π} : $L(p,t)=2$.
3188.92 ^{&} 5	6+	2.14 ps 10	D	KLMN	J^{π} : L(p,t)=6.
					$T_{1/2}$: from (2001Ga52). Other: 2.2 ps +6-3 (1991ViZW).
3190.39 8	8-	0.35 ns 20	D	LMN	$T_{1/2}$: from a, γ (t) in 112 Cd(α ,2n γ) (1978BrZU).
					J^{π} : probable M1 γ to 7 ⁻ , no γ' s to 6 ⁺ or 5 ⁻ . M1+E2 from 8 ⁻ .
3207.61 17	4+		B D	ΚM	J^{π} : $L(p,t)=4$.
3211.76 <i>19</i>	(1,2)			M	J^{π} : γ' s to 0^+ and 2^+ .
3226.00 9	3-		B D	ΚM	J^{π} : $L(p,t)=3$.
3242.05 10	$5^{-},6^{+}$		D	K M	J^{π} : doublet with mixture of 95% L=6, 5% L=5.
3244.39 7	6-	>1.4 ps	DE	M	J^{π} : M1+E2 γ to 5 ⁻ in $(\alpha,2n\gamma)$.
3297.3 5		•	D		
3308.4 6	0^{+}			K M	J^{π} : L(p,t)=0.
3326	2+			K	J^{π} : L(p,t)=2.
3326.50 16	(1)			M	J^{π} : d to g.s.
3357.42 18	4+		B DE	K M	J^{π} : L(p,t)=4, 1995Wi15 gives (2)+?
3363.00 10	6-	1.1 ps $+7-3$	DE	L	J^{π} : L(p,t)=5.
3364.8 5	5-	111 ps 17 c	D	K	J^{π} : L(p,t)=5.
3380.1 5			D	•	5 · E(p,t) 5.
3392.1 5			D		
3393.0 7			D		
3396.1 6	6+		D	K	J^{π} : L(p,t)=6.
3396.9 <i>5</i>	(4^{-})		D		J^{π} : M1+E2 γ to 3 ⁻ and $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
3422.7 9	0+		D	K M	J^{π} : L(p,t)=0.
3448.37 10	4 ⁺			K M	J^{π} : L(p,t)=0. J^{π} : L(p,t)=4.
3451.8 <i>3</i>	0+			K M	J^{π} : L(p,t)=0.
3471.4 <i>3</i>	6 ⁺	0.5 ps +3-18	D	K M	J^{π} : L(p,t)=6.
3478.85 <i>13</i>	2+	0.5 ps +5-16	B D	KM	J^{π} : L(p,t)=2.
3486 <i>3</i>	5-		ע מ	K	J^{π} : $L(p,t)=2$. J^{π} : $L(p,t)=5$.
3510.70 ^c 10	9-	7.2 ps <i>39</i>	CD	KL N	J^{π} : M1,E2 γ to 7 ⁻ , L(p,t)=9.
3310.70 10	7	7.2 ps 39	CD	KL N	$T_{1/2}$: from (2001Ga52). Other: 2 ps>(1991ViZW).
3514.19 <i>10</i>	3-,9-			K M	J^{π} : doublet with mixture of 95% L=9, 5% L=3.
			D D		
3525.36 <i>16</i>	3-		B D	K	J^{π} : L(p,t)=3 ¹⁴⁶ Gd.
3549 <i>3</i>	0+			K	J^{π} : L(p,t)=0.
3561.1 3	2 ⁺		DE	K M	J^{π} : doublet with mixture of 93% L=7, 7% L=2,see 3566.47 level.
3566.47 8	7-		DE	K	J^{π} : E2 γ to 5 ⁻ , M1+E2 γ to (8 ⁻), $\gamma(\theta)$ in (α ,2n γ), and part of
2507.3	4.4				the doublet in (p,t) .
3587 <i>3</i>	4+			K	J^{π} : L(p,t)=4.
3610.71 20	5(-)		D		
3654 <i>3</i>	4+			K	J^{π} : L(p,t)=4.
3658.7 10		0.8 ps +5-3	D		
3680 <i>3</i>	4+			K	J^{π} : L(p,t)=4.
3685.15 <i>21</i>	6-		D		
3696 <i>3</i>	2+			K	J^{π} : $L(p,t)=2$.
3717.83 12	7-	1.0 ps +7-4	D		

114Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XF	REF	Comments
3720.4 5			D		
3727 3	2+			K	J^{π} : L(p,t)=2.
3740.03 20	0 ⁺			K M	J^{π} : L(p,t)=0.
3765 <i>3</i>	0+			K	J^{π} : $L(p,t)=0$.
			_		
3781.98 8	2+		В	K	J^{π} : log $ft=5.75$ via 3 ⁺ ¹¹⁴ Sb g.s., γ to 0 ⁺ . L(p,t)=2.
3786 <i>3</i>	4+			K	J_{-}^{π} : L(p,t)=4.
3800 <i>3</i>	2+			K	J^{π} : L(p,t)=2.
3854.3 7			D		
3855.6 <i>6</i>			D		
3871 <i>3</i>	5-			K	J^{π} : L(p,t)=5.
3871.28 <mark>&</mark> 9	8+	1.01 ps 8	D	L N	J^{π} : E2 γ to 6^+ , $\gamma(\theta)$, $\alpha(K)$, γ -pol (1979Br07).
30/1.20	o	1.01 ps o	Д	LIN	$T_{1/2}$: from (2001Ga52). Other: 1.0 ps (1991ViZW).
3876 <i>3</i>	2+			17	J^{π} : L(p,t)=2.
	2		ъ.	K	J : L(p,t)=2.
3889.3 6	_		D		
3939 6	3-			K	J^{π} : L(p,t)=3.
3971 <i>3</i>	2+			K	J^{π} : L(p,t)=2.
3971.21 <i>12</i>	8-		D	LN	J^{π} : M1+E2 γ to 7 ⁻ and 9 ⁻ .
3987.6 <i>5</i>			D		
3988 <i>3</i>	3-			K	J^{π} : L(p,t)=3.
3991.39 <i>12</i>	$2^+,3^+,4^+$		В		J^{π} : log $ft=5.4$ from 3^+ parent.
4000 3	4+			K	J^{π} : $L(p,t)=4$.
4029.83 9	2+,3+,4+		В	K	J^{π} : log $ft=5.4$ from 3 ⁺ parent.
4043.15 21	5-,5,1		D	K	J^{π} : L(p,t)=5.
4046.82 ^a 15	5-		D	LN	J^{π} : this level is the bandhead of the rotational bands with $J^{\pi}=5^{-}$.
	6 ⁺				
4057 3				K	$J^{\pi}: L(p,t)=6.$
4088.74 [@] <i>16</i>	8+		D	K	J^{π} : E1 γ to 9 ⁻ and (7) ⁻ , and $\gamma(\theta)$ in (α ,2n γ).
4095 <i>3</i>	2+			K	J^{π} : L(p,t)=2.
4118 3	4+			K	J^{π} : L(p,t)=4.
4136 <i>3</i>	4+			K	J^{π} : L(p,t)=4.
4139.69 <i>13</i>	10 ⁺	218 ps 24	D	LN	J^{π} : E1 γ to 9 ⁻ and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		F			$T_{1/2}$: from (2001Ga52). Other: 0.7 ps>(1991ViZW).
4141.50 16	8-		D	L N	11/2. Hom (20010402). Other on por (1991 1424).
4152.5 10	o		D	2 1	
4160 30			D	K	
4177 6					
				K	
4220.89 ^b 17	6-		D	L N	
4262.0 5			D	K	
4293.8 5			D		
4313.00 23	7+		D	K	
4322.0 5			D		
4338.3 5			D		
4353 6				K	
4394.1 5			D		
4403.0 5			D		
4406.4 5			D		
	0^{+}		D	TZ.	J^{π} : L(p,t)=0.
4413 6	0.		ъ.	K	J^{**} $L(p,t)=0$.
4428.6 9			D		
4430.36 ^a 12	7-		D	L N	
4434.5 5			D		
4449.5 <i>6</i>			D	K	
4472 6				K	
4481.5 9			D		
4488.5 6			D		
4492.0 5			D		
4515.0 5			D	K	
.= -= . ~ ~			_		

¹¹⁴Sn Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XF	REF	Comments
4526.9 <i>5</i>			D		
4553.3 <i>4</i>	8+		D		J^{π} : E2 γ to 6^{+} and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4568.3 <i>6</i>			D		
4576 <i>6</i>				K	
4583.7 <i>5</i>			D		
4593.5 5			D	K	
4613.0 5	_		D		
4624.1 <i>4</i>	7-		D		
4650.5 11	0-		_	K	
4664.88 22	9-		D		
4669.44 ^b 13	8-		D	L N	
4671.2 3	10-		D		J^{π} : E2 γ to 8 ⁻ and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4672.77 ^{&} 11	10+	0.69 ps 9	D	L N	J ^{π} : E2 γ to 8 ⁺ , $\gamma(\theta)$, $\alpha(K)$, γ -pol (1979Br07). T _{1/2} : from (2001Ga52). Other: 0.60 ps 18 (1991ViZW).
4678.7 <i>7</i>			D		1,2
4682.1 <i>11</i>	(6^{+})		D		
4683.1 5			D		
4717.7 5			D		
4732.2 5			D		
4736.38 <i>16</i>	10-		D	K	
4766.2 5			D		
4766.4 5			D		
4787.6 5			D		
4788.3 12			D		
4797 6				K	
4805.8 <i>6</i>			D		
4831 10				K	
4858.7 8			D		
4909 <i>10</i>				K	
4916.41 23	10-		D		
4919.30 <i>12</i>	9-		D	L N	J^{π} : γ to 7^{-} and from (11 ⁻).
4923.70 ^a 13	9-		D	L N	
4924.3 9			D		
4926.9 5			D		
4932.3 6			D		
4963.58 ^c 20	11-	0.30 ps <i>11</i>	D	KL N	
4964.1 5			D		
5014.2 6			D	K	
5039.2 5	0-		D		
5054.9 8	9-		D		
5065.4 6	(10=)		D	K	
5094.82 22	(10^{-})		D		
5102.9 <i>11</i>			D		
5119.6 5			D		
5124.2 5	12+	0.49 ps +21-14	D	T M	III. tentative mean $\epsilon(0)$ and ϵ mal (1070De711)
5181.72 <i>19</i>	12+	0.49 ps $+21-14$	D	L N	J^{π} : tentative, poor $\gamma(\theta)$ and γ -pol (1978BrZU).
5182.15 23			D		
5191.4 <i>6</i> 5213.5 <i>4</i>	10 ⁺		D		I^{π} , $E1$ at to 0^{-} and $e(0)$ in (or $2\pi e^{-1}$)
			D		J^{π} : E1 γ to 9 ⁻ and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
5214.3 [@] 4	$(10)^{+}$		D		
5221.6 <i>3</i>	$(11)^{-}$		D		
5221.72 23			_	L	
5226.6 5			D		
5233.60 ^b 15	10-	2.2 ps 6	D	L N	$T_{1/2}$: from (2001Ga52).
5254.9 <i>4</i>	$(8,10)^+$		D	K	

114Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF	Comments
5280.4 <i>9</i> 5299.32 <i>21</i>	11 ⁺	0.25 ps <i>11</i>	D D		J^{π} : M1+E2 γ to 10 ⁺ and $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
5310.72 <i>23</i> 5348.9 <i>6</i>	$(8,10^+)$		D		, , , , , , , , , , , , , , , , , , , ,
5357.22 <i>23</i>	$(8,10)^+$		D D		
5372.3 <i>6</i> 5419.5 8			D D		
5445.3 8			D		
5468.23 <i>21</i> 5488.12 <i>23</i>	(12^{-}) $(9,11^{-})$		D D		
5500.1 5	, ,		D		
5535.3 <i>5</i> 5538.7 <i>5</i>	$(9,11)^+$		D D		J^{π} : E1 γ to 10 ⁻ .
5548.24 ^{&} 14	12+	0.42 ps 9	D	L N	J ^π : E2 γ to 10 ⁺ , $\gamma(\theta)$, $\alpha(K)$, γ -pol (1979Br07). T _{1/2} : from (2001Ga52). Other: 0.67 ps 18 (1991ViZW).
5554.09 ^a 13	11-	1.2 ps 4	D	L N	$T_{1/2}$: from (2001Ga52).
5586.6 <i>7</i> 5596.9 <i>11</i>			D D		
5599.4 <i>6</i>	(0.10±)		D		
5627.92 <i>23</i> 5699.87 <i>23</i>	$(8,10^+)$ $(9,11^-)$		D D		
5707.2 <i>5</i> 5735.17 <i>23</i>	(9,11-)		D D		
5776.26 17	12+		D	L	J^{π} : E2 γ to 10^+ .
5776.7 <i>6</i> 5801.1 <i>8</i>			D D		
5834.93 <i>23</i>	$(8,10)^{-}$		D		
5857.2 8 5886.5 <i>6</i>			D D	L	
5892.0 12	12+	1.4 mg + 14. 7	D		π , M_1 , E_2 , G_2 (12†)
5920.96 <i>18</i> 5921.97 ^b <i>17</i>	13 ⁺ 12 ⁻	1.4 ps +14-7 1.05 ps 20	D D	L N L N	J^{π} : M1+E2 γ to (12 ⁺). T _{1/2} : from (2001Ga52).
5956.2 6		F	D		- 1/2 ():
5974.21 <i>24</i> 5977.1 <i>11</i>	$(12)^{+}$		D D		
6001.1 <i>5</i> 6045.53 <i>20</i>	14 ⁺	13.78 ps 8	D	LN	$T_{1/2}$: from (2001Ga52). Other: 0.5 ps +4-2 (1991ViZW).
6067.8 6	14	13.76 ps 6	D D	LN	11/2. Holli (2001Ga52). Other. 0.3 ps +4-2 (1991ViZw).
6131.7 <i>6</i> 6132.3 <i>6</i>			D D		
6135.1 <i>3</i>				L	
6164.5 <i>6</i> 6173.9 8			D D		
6174.9 8			D		
6225.6 <i>6</i> 6266.23 <i>23</i>	14 ⁺		D D	N	
6279.01 ^a 18	13-	1.00 ps 24	D	N	$T_{1/2}$: from (2001Ga52).
6341.62 ^{&} 20	14 ⁺	0.34 ps 8	D	L N	J ^{π} : stretched E2 γ to 12 ⁺ . T _{1/2} : from (2001Ga52).
6460.44 ^C 24	(13)-		D	L	-17
6496.4 <i>6</i> 6497.3 <i>3</i>	$(14)^{+}$		D D	L	
6520.5 <i>6</i> 6551.0 <i>3</i>			D	L	
6551.1 3	15 ⁺	3.62 ps <i>35</i>	D	L N	J^{π} : M1+E2 γ to 14 ⁺ in $(\alpha,2n\gamma)$ and sys with mirror nuclide

¹¹⁴Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
					¹⁴⁶ Gd.
					T _{1/2} : from (2001Ga52).
6552.3 6			D		
6610.6 <i>7</i> 6690.64 <i>25</i>	(13)		D D	L N	
6698.3 6	(13)		D	L N	
6715.9 ^b 8	14-	0.57 ps <i>33</i>	D	N	T _{1/2} : from (2001Ga52).
6725.6 12		оте г росс	D	-	1/2/ 110111 (20010402)
6925.7 <i>4</i>	16 ⁺		D	L N	
7115.1 ^a 6	(15^{-})	0.40 ps 10	D	L N	$T_{1/2}$: from (2001Ga52).
7204.68 ^{&} 22	16 ⁺	0.35 ps 4		L N	J^{π} : stretched E2 γ to 14 ⁺ . T _{1/2} : from (2001Ga52).
7205.18 23				L	IT I () 0
≈7300 7369.7 <i>6</i>			D	K	J^{π} : L(p,t)=8.
7377.1 8			D	L	
7607.9 <mark>b</mark> 9	(16^{-})	0.24 ps 4	D	L N	$T_{1/2}$: from (2001Ga52).
7709.6 5	(-)	r .		L	1/2
7869.7 <i>5</i>				L	
8049.3 ^a 6	(17^{-})	0.21 ps 6		L N	$T_{1/2}$: from (2001Ga52).
8131.4 <i>5</i> 8142.7 & <i>3</i>	10+	0.215 20		L	III 1 1 F2 16+
	18 ⁺	0.215 ps 28		L N	J^{π} : stretched E2 γ to 16 ⁺ . $T_{1/2}$: from (2001Ga52).
8194.4 <i>4</i> ≈8300				L K	J^{π} : L(p,t)=(6).
8357.7 8				L	J : L(p,t) = (0).
8587.5 ^b 9	(18^{-})	0.097 ps <i>35</i>		L N	T _{1/2} : from (2001Ga52).
8644.6 5	()	0.007 F		L	1/2 (
9060.7 ^a 6	(19^{-})	0.118 ps 28		L N	$T_{1/2}$: from (2001Ga52).
9194.9 <mark>&</mark> 4	20^{+}	0.152 ps <i>21</i>		L N	$T_{1/2}$: from (2001Ga52).
9647.5 ^b 10	(20^{-})	0.12 ps 6		L N	$T_{1/2}$: from (2001Ga52).
10113.9 ^a 7	(21^{-})	0.12 ps 6		L N	$T_{1/2}$: from (2001Ga52).
10359.0 5	(22^{+})	0.076 ps 21		L N	$T_{1/2}$: from (2001Ga52).
10778.3 ^b 10	(22^{-})	<0.43 ps		LN	$T_{1/2}$: from (2001Ga52).
11174.7 ^a 7	(23 ⁻)	0.10 ps 6		LN	$T_{1/2}$: from (2001Ga52).
11609.0 ^{&} 11 12311.7 ^a 12	(24^{+})	0.042 ps 35		LN	$T_{1/2}$: from (2001Ga52).
12311.7 12 12943.0 15	(25^{-})	<0.35 ps		LN	$T_{1/2}$: from (2001Ga52).
$12943.0 \stackrel{\sim}{\sim} 13$ $13516.7^a 16$	(26^+) (27^-)	<0.18 ps		L N L N	$T_{1/2}$: from (2001Ga52).
14406.0 ^{&} 18	(27) (28^+)			L N L N	
14801.7 ^a 19	(29^{-})			L N L N	
15997.0 21	(30^+)			LN	
16236.7 ^a 21	(30°) (31^{-})			L N	
17870.7 ^a 24	(33^{-})			L N	

[†] From least-squares fit to E γ values. ‡ Where no J^{π} argument is given, the assignment is based on placement in a band. J^{π} for levels seen in $(\alpha,2n\gamma)$ are based on $\gamma(\theta)$, lin pol and side feeding syst. # From 1991ViZW, Doppler shift in $(\alpha,2n\gamma)$, except were noted otherwise. @ Band(A): g.s. band.

¹¹⁴Sn Levels (continued)

[&] Band(B): $K^{\pi}=0^{+}$ intruder band. Configuration= $((\pi g_{7/2})^{2}(\pi g_{9/2})^{-2}(\nu h_{11/2})^{2})$. "Amsterdam" band. ^a Band(C): $K^{\pi}=5^{-}$ Band, $\alpha=1$. Suggested Configuration= $((\pi g_{7/2})^{2}(\pi g_{9/2})^{-2}\otimes(\nu h_{11/2})^{2}(\nu g_{9/2})^{-1})$.

^b Band(c): $K^{\pi}=5^-$ Band, $\alpha=0$.

^c Band(D): Negative Parity Band based on 3⁻.

\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$E_f \qquad \underline{\mathbf{J}_f^{\pi}}$	Mult. [†]	δ^{\dagger}	$I_{(\gamma+ce)}$	Comments
2+	1299.900 7	100	0 0+	E2			B(E2)(W.u.)=15 3
0_{+}		100					B(E2)(W.u.)=22 8
	1953.2		$0 0^{+}$	E0		0.34 7	$E_{\gamma},I_{(\gamma+ce)}$: from $(p,p'\gamma)$ (1976Ba32). Authors report $Ice(K)/Ice(K)(653\gamma)=1.00$ 20. $Ice/Ice(K)=1.12$.
0+	856 37 3	100	1299 907 2+	E2			B(E2)(W.u.)<4.9
							B(E2)(W.u.) = 5.9 5
2+	285.6 4	0.8 3	1953.266 0 ⁺				_()() 1,7 1
	939.036 <i>14</i>	82.4 19	1299.907 2+	M1+E2	-7.1 + 12 - 19		
	2238.94 2	100 <i>3</i>	$0 0^{+}$	E2			
3-				E1			B(E1)(W.u.)=0.00018 11
2'				M1 - E2	20.10.05		
				WH+EZ	-2.6 +16-93		
3+				M1+E2	+0.02 + 2 - 1		
4+					. 0.02 . 2 1		$B(E1)(W.u.)=3.8\times10^{-5} 14$
•				()			E _y : from 1995Wi15.
	375.3 <i>3</i>	3.2 5	2238.953 2+	E2			$B(E2)(W.u.)=1.3\times10^2 \ 3$
							I_{γ} : excludes 6.1 10 from (HI,xn γ). Inclusion would give 3.7 7.
	426.8 <i>4</i>	2.5 8	2187.602 4+	M1+E2	-0.24 + 6 - 5		B(E2)(W.u.)=2.8 17; B(M1)(W.u.)=0.011 5
				E2			B(E2)(W.u.)=7.5 14
<i>1</i> +				M1 - E2	0.1 + 1 42		B(E2)(W.u.)=8 +17-8; B(M1)(W.u.)=0.06 5
4					-0.1 +1-42		B(E1)(W.u.)=7.E-5 +9-7
	150.7 0	3.0	2271.770 3	(L1)			E_{γ} : from 1995Wi15.
	526@ 1	<5.5	2238 953 2+	(F2)			B(E2)(W.u.)= $20 + 23 - 20$
	320 1	3.5	2230.733 2	(LL)			E_{γ} : from 2001Ga52.
	1465.44 <i>4</i>	100 4	1299.907 2+	E2			B(E2)(W.u.)=4.2 23
5-	200.84 12	1.3 <i>3</i>	2614.461 4+				I_{γ} : from $I_{\gamma}/I_{\gamma}(540\gamma+628\gamma)=0.012$ 3 (1980Va13).
	540.15 <i>13</i>	10.5 <i>3</i>	2274.990 3-	E2			B(E2)(W.u.)<25
							I _γ : from $(\alpha, 2n\gamma)$, in agreement with 9.7 8 in $(n, n'\gamma)$. I _γ =18.9 16 is reported in (HI, xnγ).
	627.54 2	100 <i>3</i>	2187.602 4+	E1			B(E1)(W.u.)<0.00074
				E2			
3-				M1 . E2			C C . 20 H . 0 40 . 0 4
				M1+E2			δ : δ =+2.9 11, +0.49 +8-4.
				M1_F2	_0.7 +2_1		
				1V117152	-0.7 TZ-4		
2+	1615.9 2	23.1 17	1299.907 2+	M1+E2			δ : +0.08< δ <1.7.
	2 ⁺ 0 ⁺ 0 ⁺ 4 ⁺ 2 ⁺ 3 ⁻ 0 ⁺ 2 ⁺ 3 ⁺ 4 ⁺ 4 ⁺	2+ 1299.900 7 0+ 653.36 2 1953.2 0+ 856.37 3 4+ 887.690 8 2+ 285.6 4 939.036 14 2238.94 2 3- 975.076 8 0+ 1121.4 3 2+ 215.8 6 1154.160 14 2454.02 7 3+ 327.15 2 4+ 339.5 375.3 3 426.8 4 1314.550 14 550.8 5 1459.8 5 4+ 250.5 5 490.7 8 526@ 1 1465.44 4 5- 200.84 12 540.15 13 627.54 2 4+ 1559.89 3 3- 290.8 4 390.34 7 451.3 8 717.45 7 1605.4 2	2+ 1299.900 7 100 0+ 653.36 2 100 1953.2 0+ 856.37 3 100 4+ 887.690 8 100 2+ 285.6 4 0.8 3 939.036 14 82.4 19 2238.94 2 100 3 3- 975.076 8 100 0+ 1121.4 3 100 2+ 215.8 6 2.3 6 1154.160 14 100 3 2454.02 7 27 4 3+ 327.15 2 100 4+ 339.5 0.30 9 375.3 3 3.2 5 426.8 4 2.5 8 1314.550 14 100 3 550.8 5 100 1459.8 5 100 4+ 250.5 5 2.7 11 490.7 8 <3.6 526 1 <5.5 1465.44 4 100 4 5- 200.84 12 1.3 3 540.15 13 10.5 3 4+ 1559.89 3 100 3- 290.8 4 1.06 13 390.34 7 25.1 17 451.3 8 0.32 13 717.45 7 100 6 1605.4 2 3.34 13	2+ 1299.900 7 100 0 0+ 0+ 653.36 2 100 1299.907 2+ 1953.2 0 0+ 0+ 856.37 3 100 1299.907 2+ 2+ 285.6 4 0.8 3 1953.266 0+ 939.036 14 82.4 19 1299.907 2+ 2238.94 2 100 3 0 0+ 3- 975.076 8 100 1299.907 2+ 2+ 215.8 6 2.3 6 2238.953 2+ 1154.160 14 100 3 1299.907 2+ 2454.02 7 27 4 0 0+ 3+ 327.15 2 100 2187.602 4+ 4+ 339.5 0.30 9 2274.990 3- 375.3 3 3.2 5 2238.953 2+ 426.8 4 2.5 8 2187.602 4+ 1314.550 14 100 3 1299.907 2+ 4* 250.5 5 2.7 11 2514.760 3+ 4* 250.5 5 2.7 11 2514.760 3+ 4* 250.5 5 2238.953 2+	2+ 1299,900 7 100	2+ 1299,900 7 100 0 0+ E2 1299,907 2+ E2 1953.2 0 0+ E0 1299,907 2+ E2 1953.2 0 0+ E0 1299,907 2+ E2 1953.2 100 1299,907 2+ E2 1938,94 2 100 3 0 0+ E0 1299,907 2+ E1 1293,942 100 3 0 0+ E2 1299,907 2+ E1 121.4 3 100 1299,907 2+ E1 121.4 3 100 1299,907 2+ E1 121.4 3 100 1299,907 2+ E1 1154.160 14 100 3 1299,907 2+ E1 1154.160 14 100 3 1299,907 2+ E1 1154.160 14 100 3 1299,907 2+ E1 1154.150 14 100 3 1299,907 2+ E1 1154.150 14 100 3 1299,907 2+ E1 1154.150 14 100 3 1299,907 2+ E1 154.50 14 100 3 1299,907 2+ E1 154.550 14 100 3 1299,907 2+ E1 1550.8 5 100 1299,907 2+ E2 150.8 5 100 1299,907 2+ E2 15	2+ 1299,900 7 100 0 0 0+ E2

γ (114Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
2915.73	2+	2915.6 2	100 5	$0 0^{+}$	E2		
2943.43	2+	489.5 9	11 5	2454.072 2+			
		521.4 <i>3</i>	7 3	2421.67 0+			
		668.42 6	86 8	2274.990 3-			
		704.2 9	3.7 15	2238.953 2+			
		990.5 <i>4</i>	5.1 22	1953.266 0+			
		1643.60 <i>14</i>	100 4	1299.907 2+	M1+E2		$\delta: \delta = -0.61 \ 15, \ -7 \ +10 -3.$
		2943.8 <i>4</i>	3.2 <i>3</i>	$0 0^{+}$			
3025.29	0_{+}	1725.37 6	100	1299.907 2+			
3028.09	$2,3^{+}$	1728.17 10	100	1299.907 2+			
3071.4		1771.5 5	100	1299.907 2+			
3087.37	7-	272.3 1	100	2815.146 5	E2		B(E2)(W.u.)=0.0157 3
3100.1		285.0 5	100	2815.146 5-			
3107.1		292.0 5	100	2815.146 5			
3149.79	6+	334.65 <i>13</i>	100 <i>3</i>	2815.146 5-	E1+M2	$-0.02\ I$	B(E1)(W.u.)=0.0037 11; B(M2)(W.u.)=6.E+1 +7-6
		962.3 <i>3</i>	90 <i>3</i>	2187.602 4+	E2		B(E2)(W.u.)=9.0 25
3186.13	2+	1886.25 8	100 8	1299.907 2+			Mult.: $\delta = -0.27$ 7 or +7 +5-2.
		3185.8 2	51 6	$0 0_{+}$			
3188.92	6+	423.5 2	4.1 8	$2765.36 4^+$	E2		B(E2)(W.u.)=19 4
							I_{γ} : from $(\alpha, 2n\gamma)$. $I_{\gamma}=9.1$ in $(HI, xn\gamma)$. Not seen in $(n, n'\gamma)$.
		574.44 <i>6</i>	100.0 <i>20</i>	$2614.461 4^{+}$	E2		B(E2)(W.u.)=101 6
		1001.32 <i>10</i>	24.0 14	2187.602 4+	E2		B(E2)(W.u.)=1.50 <i>12</i>
3190.39	8-	102.98 7	100	3087.37 7	M1+E2		B(M1)(W.u.)=0.06 4
3207.61	4+	441.7 6	4.0 6	2765.36 4+			
		592.9 7	11.0 <i>17</i>	2614.461 4 ⁺			
		932.5 6	20 4	2274.990 3			
		1019.9 5	42 3	2187.602 4+			
		1907.8 2	100 5	1299.907 2+			
3211.76	(1,2)	1912.0 6	28 10	1299.907 2+			
	_	3211.7 2	100 10	0 0+			
3226.00	3-	320.4 2	13.4 12	2905.12 3			E_{γ} : see 1926.2 γ .
		771.8 5	2.5 8	2454.072 2+			E_{γ} : the 772 γ is not seen in $(n,n'\gamma)$.
		1926.2 <i>I</i>	100 5	1299.907 2+			Mult.: δ =+0.05 5 for J=3 or -7.0 +27-15 for J=2.
							$E_{\gamma}I_{\gamma}$: from ε decay. $E_{\gamma}=1925.80$ 8 and $I_{\gamma}(1926\gamma)/I_{\gamma}(320\gamma)=20$ 7 in
2242.05	F	1054 44 70	100	2107 (02 (1	(E1)		$(n,n'\gamma)$ suggest that the 1926 γ may be a multiplet in that reaction.
3242.05	5-,6+	1054.44 10	100	2187.602 4+	(E1)		
3244.39	6-	157.1 <i>I</i>	5.09 15	3087.37 7	M1 . E2	.0.161 4. 3	D/E0/W/) 21 D/M/W/) 0.10
2207.2		429.19 8	100.0 7	2815.146 5	M1+E2	+0.161 +4-3	B(E2)(W.u.)<21; B(M1)(W.u.)<0.18
3297.3	0+	1109.7 5	100	2187.602 4+			
3308.4	0+	2008.5 6	100	1299.907 2+			
3326.50	(1)	1373.2 3	76 10	1953.266 0+			
		2026.6 2	100 10	1299.907 2+			

9

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f J_f^{π}	Mult. [†]	δ^{\dagger}	Comments
3326.50	(1)	3326.3 6	71 14	$0 0^{+}$	D		
3357.42	4+	2057.5 2	100	1299.907 2+			
3363.00	6-	547.9 2	100	2815.146 5	M1+E2	$-0.08\ 2$	B(E2)(W.u.)=2.0 17; B(M1)(W.u.)=0.12 8
3364.8	5-	549.7 5	100	2815.146 5-			
3380.1		292.7 5	100	3087.37 7			
3392.1		203.2 5	100	3188.92 6+			
3393.0		654.6 5	100	2738.4			
3396.1	6+	246.3 5	100	3149.79 6+			
3396.9	(4^{-})	1121.9 5	100	2274.990 3-	(M1+E2)	-0.4 + 2 - 7	
3422.7	0+	2122.8 9	100	1299.907 2+			
3448.37	4+	1209.41 10	100 32	2238.953 2 ⁺			
		2148.5 6	26 13	1299.907 2 ⁺			
3451.8	0^{+}	3451.7 <i>3</i>	100	$0 0^{+}$			
3471.4	6+	1283.8 <i>3</i>	100	2187.602 4+	E2		B(E2)(W.u.)=10.6
3478.85	2+	573.9 5	41 5	2905.12 3-			
		619.3 <i>3</i>	30 <i>3</i>	2859.81 4+			
		963.4 <i>3</i>	62 7	2514.760 3 ⁺			
		1203.3 7	57 19	2274.990 3-			
		1239.9 5	67 <i>14</i>	2238.953 2+			
		1526.1 6	9 3	1953.266 0 ⁺			
		2179.2 2	100 14	1299.907 2+			
		3477.7 6	9.5 14	$0 0^{+}$			
3510.70	9-	320.25 9	100	3190.39 8-	M1+E2	+0.134 1	B(E2)(W.u.)=13 7; B(M1)(W.u.)=0.09 5
3514.19	3-,9-	2214.26 10	100	1299.907 2+	M1+E2		Mult.: $\delta = -0.025$ for J=3 or -4.310 for J=2.
3525.36	3-	1010.5 7	12 <i>4</i>	2514.760 3 ⁺			
		1072.5 3	100 5	2454.072 2+			
		1250.5 5	30 5	2274.990 3			E _γ : E _γ =1249.7 3 with Mult.=M1+E2, δ =-1.9 +8-31 is reported in (α ,2n _γ); however, the much stronger 1072 γ is not reported. The 1249.7 γ in (α ,2n _γ) may thus correspond to a different transition from that seen in ε decay.
		1250.5 <i>5</i> 1337.2 2		2274.990 3 ⁻ 2187.602 4 ⁺			however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
3561.1	2+	1250.5 <i>5</i> 1337.2 <i>2</i> 1404.8 <i>3</i>	30 5	2274.990 3 ⁻ 2187.602 4 ⁺ 2156.28 0 ⁺	E2		however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
3561.1	2+	1250.5 <i>5</i> 1337.2 2	30 <i>5</i> 14.4 <i>7</i>	2274.990 3 ⁻ 2187.602 4 ⁺	E2		however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
3561.1 3566.47	2 ⁺	1250.5 <i>5</i> 1337.2 <i>2</i> 1404.8 <i>3</i> 3561.4 <i>7</i> 203.5 <i>1</i>	30 <i>5</i> 14.4 <i>7</i> 46 <i>14</i>	2274.990 3 ⁻ 2187.602 4 ⁺ 2156.28 0 ⁺	E2		however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
		1250.5 <i>5</i> 1337.2 2 1404.8 <i>3</i> 3561.4 <i>7</i> 203.5 <i>I</i> 322.1 <i>I</i>	30 <i>5</i> 14.4 <i>7</i> 46 <i>14</i> 100 <i>14</i>	2274.990 3 ⁻ 2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺	E2		however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
		1250.5 <i>5</i> 1337.2 <i>2</i> 1404.8 <i>3</i> 3561.4 <i>7</i> 203.5 <i>1</i>	30 <i>5</i> 14.4 <i>7</i> 46 <i>14</i> 100 <i>14</i>	2274.990 3 ⁻ 2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻	E2 M1+E2	+0.05 2	however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
		1250.5 <i>5</i> 1337.2 2 1404.8 <i>3</i> 3561.4 <i>7</i> 203.5 <i>I</i> 322.1 <i>I</i>	30 <i>5</i> 14.4 <i>7</i> 46 <i>14</i> 100 <i>14</i> 7.5 <i>6</i>	2274.990 3 ⁻ 2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻ 3244.39 6 ⁻		+0.05 2	however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
		1250.5 <i>5</i> 1337.2 <i>2</i> 1404.8 <i>3</i> 3561.4 <i>7</i> 203.5 <i>I</i> 322.1 <i>I</i> 376.2 <i>2</i>	30 5 14.4 7 46 14 100 14 7.5 6 100 3	2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻ 3244.39 6 ⁻ 3190.39 8 ⁻ 2815.146 5 ⁻	M1+E2	+0.05 2	however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
3566.47 3610.71	7-	1250.5 <i>5</i> 1337.2 2 1404.8 <i>3</i> 3561.4 <i>7</i> 203.5 <i>I</i> 322.1 <i>I</i> 376.2 2 751.4 2	30 5 14.4 7 46 14 100 14 7.5 6 100 3 46.8 14	2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻ 3244.39 6 ⁻ 3190.39 8 ⁻ 2815.146 5 ⁻ 2187.602 4 ⁺	M1+E2	+0.05 2	however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
3566.47 3610.71 3658.7	7-	1250.5 5 1337.2 2 1404.8 3 3561.4 7 203.5 1 322.1 1 376.2 2 751.4 2 1423.1 2 1471.1	30 5 14.4 7 46 14 100 14 7.5 6 100 3 46.8 14 100	2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻ 3244.39 6 ⁻ 3190.39 8 ⁻ 2815.146 5 ⁻ 2187.602 4 ⁺ 2187.602 4 ⁺	M1+E2 E2	+0.05 2	however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$
3566.47 3610.71 3658.7 3685.15	7 ⁻ 5 ⁽⁻⁾	1250.5 5 1337.2 2 1404.8 3 3561.4 7 203.5 1 322.1 1 376.2 2 751.4 2 1423.1 2 1471.1 870.0 2	30 5 14.4 7 46 14 100 14 7.5 6 100 3 46.8 14 100 100	2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻ 3244.39 6 ⁻ 3190.39 8 ⁻ 2815.146 5 ⁻ 2187.602 4 ⁺ 2187.602 4 ⁺ 2815.146 5 ⁻	M1+E2 E2 M1+E2	-0.13 +4-5	however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$ may thus correspond to a different transition from that seen in ε decay.
3566.47 3610.71 3658.7	7 ⁻ 5 ⁽⁻⁾ 6 ⁻	1250.5 5 1337.2 2 1404.8 3 3561.4 7 203.5 1 322.1 1 376.2 2 751.4 2 1423.1 2 1471.1	30 5 14.4 7 46 14 100 14 7.5 6 100 3 46.8 14 100 100 100	2187.602 4 ⁺ 2156.28 0 ⁺ 0 0 ⁺ 3363.00 6 ⁻ 3244.39 6 ⁻ 3190.39 8 ⁻ 2815.146 5 ⁻ 2187.602 4 ⁺ 2187.602 4 ⁺	M1+E2 E2		however, the much stronger 1072γ is not reported. The 1249.7γ in $(\alpha,2n\gamma)$

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\ddagger}	${ m I}_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
3717.83	7-	630.5		3087.37 7-			
		902.7 2	72.7 23	2815.146 5	E2		B(E2)(W.u.)=11 8
3720.4		1445.4 5	100	2274.990 3-			
3740.03	0_{+}	2440.1 2	100	1299.907 2+			
3781.98	2+	921.9 <i>4</i>	19 5	2859.81 4+			
		1327.6 2	11.8 10	2454.072 2+			
		1507.1 2	34 <i>3</i>	2274.990 3-			
		1594.3 <i>1</i>	100 5	2187.602 4+			
		1829.7 <i>5</i>	5.5 10	1953.266 0 ⁺			
		2482.4 2	31 <i>3</i>	1299.907 2+			
		3781.0	0.3	$0 0^{+}$			
3854.3		557.0 <i>5</i>	100	3297.3			
3855.6		244.9 5	100	3610.71 5 ⁽⁻⁾			
3871.28	8+	682.33 8	100	3188.92 6+	E2		B(E2)(W.u.)=115 10
3889.3		739.5 5	100	3149.79 6 ⁺			
3971.21	8-	404.9 2	14.6 7	3566.47 7-	M1+E2	-0.13 + 6 - 8	
		460.3 2	14.6 7	3510.70 9-	M1+E2	-0.11 3	
		780.8 2	29.7 13	3190.39 8-	M1		
		883.9 2	100 <i>3</i>	3087.37 7	M1+E2	0.45 + 6 - 5	
3987.6		743.2 5	100	3244.39 6			
3991.39	$2^+, 3^+, 4^+$	634.0 4	7.8 16	3357.42 4+			
		1131.7 2	100 6	2859.81 4+			
		1377.0 7	56 <i>3</i>	2614.461 4+			
		1476.8 <i>3</i>	11.2 <i>13</i>	2514.760 3 ⁺			
		1715.9 2	34.4 22	2274.990 3-			
		1804.4 3	88 10	2187.602 4+			
4029.83	$2^+,3^+,4^+$	1169.7 2	76 6	2859.81 4+			
		1264.7 5	43 8	2765.36 4+			
		1415.2 <i>4</i>	7.8 8	2614.461 4+			
		1515.0 2	57 6	2514.760 3+			
		1576.1 6	7.8 22	2454.072 2+			
		1754.6 2	29.7 19	2274.990 3			
		1842.5 2	100 6	2187.602 4+			
4042.15	-	2730.5 3	43 6	1299.907 2+	M1 . E2	0.6.2	
4043.15	5 ⁻	1228.0 2	100	2815.146 5	M1+E2	+0.6 2	
4046.82	5-	1859.3 2	100	2187.602 4+	Г1		
4088.74	8+	522.3 3	10.3 12	3566.47 7	E1		
		577.9 <i>3</i>	100.0 23	3510.70 9 ⁻ 3149.79 6 ⁺	E1		
		939.0 2					
4120.60	10+	1001	100	3087.37 7-	Г1		D/E1/W/) 5.210-6 (
4139.69	10+	629.0 <i>I</i>	100	3510.70 9-	E1		$B(E1)(W.u.)=5.3\times10^{-6} 6$

$\gamma(^{114}\text{Sn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [†]	δ^{\dagger}
4141.50	8-	778.5 2	42 5	3363.00	6-	E2	
		951.1 2	100 5	3190.39	8-	M1+E2	+0.6 +7-9
		1054.2		3087.37	7-		
4152.5		1538.0		2614.461	4+		
4220.89	6-	174.1 2	100	4046.82	5-		
		610.3		3610.71	5 ⁽⁻⁾		
		976.5		3244.39	6-		
		1405.8		2815.146	5-		
4262.0		899.0 <i>5</i>	100	3363.00	6-		
4293.8		1049.4 5	100	3244.39	6-		
4313.00	7+	1163.2 2	100	3149.79	6+	M1+E2	+0.5 +5-2
4322.0		959.0 <i>5</i>		3363.00	6-		
		1077.6		3244.39	6-		
4338.3		1093.9 5	100	3244.39	6-		
4394.1		1031.1 5	100	3363.00	6-		
4403.0		1214.1 5	100	3188.92	6+		
4406.4		895.7 <i>5</i>	100	3510.70	9-		
4428.6		557.3 5	100	3871.28	8+		
4430.36	7-	209.5 2	35 4	4220.89	6-		
		383.6 2	30 4	4046.82	5-	E2	
		1067.3 2	57 9	3363.00	6-		
		1241.4 2	100 9	3188.92	6 ⁺		
		1615.4	400	2815.146	5-		
4434.5		923.8 5	100	3510.70	9-		
4449.5		1207.4 5	100	3242.05	5-,6+		
4481.5		610.2 5	100	3871.28	8 ⁺		
4488.5		175.5 5	100	4313.00	7 ⁺		
4492.0		1676.8 5	100	2815.146	5 ⁻ 6 ⁻		
4515.0		1270.6 5	100	3244.39	6 6 ⁺		
4526.9 4553.3	8+	1338.0 <i>5</i> 1403.5 <i>3</i>	100 100	3188.92	6 ⁺	E2	
4568.3	0	597.1 5	100	3149.79 3971.21	8-	EZ	
4583.7		1339.3 5	100	3244.39	6 ⁻		
4593.5		1404.6 5	100	3188.92	6 ⁺		
4613.0		1404.0 5	100	3188.92	6 ⁺		
4624.1	7-	1152.7 2	100	3471.4	6 ⁺	E1	
4664.88	9-	1098.4 2	100	3566.47	7-	E2	
4669.44	8-	239.1 2	40 8	4430.36	7-	M1+E2	-0.6 + 4 - 27
1007,77	0	448.6	1 0 0	4220.89	6-	1711 122	0.0 17 -27
		1158.6		3510.70	9-		
		1425.1		3244.39	6-		
		1479.0		3190.39	8-		
				5175.57	~		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
4669.44	8-	1582.1 2	100 8	3087.37 7-	M1+E2	+0.7 +96-3	
4671.2	10-	1160.4		3510.70 9-			
		1480.8 <i>3</i>	100	3190.39 8-	E2		
4672.77	10^{+}	801.48 9	100	3871.28 8+	E2		B(E2)(W.u.)=76 10
4678.7		1940.3 5	100	2738.4			
4682.1	(6^{+})	1023.4 2	100	3658.7	M1+E2	+0.6 3	
4683.1		1494.2 5	100	3188.92 6+			
4717.7		1207.0 5	100	3510.70 9-			
4732.2		1487.8 <i>5</i>	100	3244.39 6-			
4736.38	10-	1225.6 2	25.6 12	3510.70 9-	M1+E2	+3.9 +21-34	
		1546.0 2	100.0 <i>12</i>	3190.39 8-	E2		
4766.2		1199.7 5	100	3566.47 7-			
4766.4		1255.7 5	100	3510.70 9-			
4787.6		1424.6 5	100	3363.00 6			
4788.3		1129.6 5	100	3658.7			
4805.8		492.8 5	100	4313.00 7+			
4858.7		1347.8		3510.70 9-			
		1387.4		$3471.4 6^+$			
4916.41	10-	1405.7 2	100.0	3510.70 9-	M1+E2	+0.8 +46-2	
4919.30	9-	1047.9 2		3871.28 8+			
		1353.0 2	35 <i>4</i>	3566.47 7			
		1408.4		3510.70 9-			
		1729.0		3190.39 8-			
		1832.0 2	100 9	3087.37 7	E2		
4923.70	9-	254.3 2	25.0 25	4669.44 8	M1+E2	-0.03 +8-19	
		493.5		4430.36 7			
		952.5		3971.21 8			
		1052.4	07.5	3871.28 8+	F-0		
		1205.8 2	87 5	3717.83 7-	E2	0.77	
		1413.0 2	100 5	3510.70 9	M1+E2	-0.77 + 11 - 7	
		1733.3		3190.39 8-			
4004.2		1836.4	100	3087.37 7-			
4924.3		1053.0 5	100	3871.28 8+			
4926.9		1738.0 5	100	3188.92 6 ⁺			
4932.3	11-	792.6 5	100	4139.69 10+	EO		D/E3\/W\ 0.4
4963.58 4964.1	11-	1452.7 <i>3</i> 1601.1 <i>5</i>	100.0 100	3510.70 9 ⁻ 3363.00 6 ⁻	E2		B(E2)(W.u.)=9 4
5014.2		1001.1 3	100	3717.83 7 ⁻			
5014.2		1296.4 <i>5</i> 1676.2 <i>5</i>	100	3363.00 6 ⁻			
5054.9	9-	1183.6 2	100	3871.28 8 ⁺	E1		
5065.4	9	512.1 5	100	4553.3 8 ⁺	EI		
5094.82	(10^{-})	1584.1 2	100 4	3510.70 9 ⁻	M1+E2	+1.8 +31-11	
3094.02	(10)	1307.1 2	100 7	5510.70	WIITEL	11.0 +31-11	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
5094.82	(10^{-})	1730.2		3364.8 5-			
5102.9	. ,	674.3 5	100	4428.6			
5119.6		1608.9 5	100	3510.70 9-			
5124.2		1613.5 5	100	3510.70 9-			
5181.72	12 ⁺	1042.1 2	100	4139.69 10 ⁺	E2		B(E2)(W.u.)=29 13
5182.15		1671.7 5	100	3510.70 9-			
5191.4		1051.7 5	100	4139.69 10 ⁺			
5213.5	10+	1702.8 <i>3</i>	100	3510.70 9-	(E1)		
5214.3	$(10)^{+}$	1125.6 <i>3</i>	100 4	4088.74 8+			
		1343.1		3871.28 8+			
5221.6	$(11)^{-}$	1710.9 <i>3</i>	100.0	3510.70 9-	E2		
5221.72		1711.0 2	100	3510.70 9-			
5226.6		263.0 5	100	4963.58 11-			
5233.60	10-	309.9 <i>3</i>	24 3	4923.70 9-			
		314.4 <i>3</i>	24 3	4919.30 9-	M1+E2	-0.12 + 8 - 16	B(E2)(W.u.)=3 +4-3; $B(M1)(W.u.)=0.023 8$
		564.2 <i>3</i>	100 5	4669.44 8-			
		1092.0 2	45 <i>3</i>	4141.50 8-	(E2)		B(E2)(W.u.)=0.70 20
		1262.4 2	89 12	3971.21 8	(E2)		B(E2)(W.u.)=0.67 21
		1722.8 2	44 11	3510.70 9	M1		B(M1)(W.u.)=0.00026 10
5254.9	$(8,10)^+$	1744.2 <i>3</i>	100	3510.70 9	(E1)		
5280.4		629.9 5	100	4650.5			
		1409.1 5	100	3871.28 8+	3.64 774		D. (72) (77)
5299.32	11+	1159.6 2	100	4139.69 10 ⁺	M1+E2	+3.8 +12-17	B(E2)(W.u.)=31 14; B(M1)(W.u.)=0.004 3
5310.72	$(8,10^+)$	1800.0 2	100	3510.70 9	E1		
5348.9	(0.10)+	1207.4 5	100	4141.50 8	(E1)		
5357.22	$(8,10)^+$	1846.5 2 1401.1 5	100 100	3510.70 9	(E1)		
5372.3 5419.5		2023.4 5	100	3971.21 8 ⁻ 3396.1 6 ⁺			
5445.3		892.0	100	4553.3 8 ⁺			
3443.3		1132.3		4313.00 7+			
5468.23	(12^{-})	246.5		5221.6 (11)			
3400.23	(12)	504.7 2	100 7	4963.58 11			
		731.8 2	83.3 24	4736.38 10	(E2)		
5488.12	$(9,11^{-})$	1977.4 2	100	3510.70 9	(LL)		
5500.1	(>,)	1989.4 5	100	3510.70 9			
5535.3		2024.6 5	100	3510.70 9			
5538.7	$(9,11)^{+}$	867.5 <i>3</i>	100	4671.2 10	E1		
5548.24	12+	875.45 10	100	4672.77 10 ⁺	E2		B(E2)(W.u.)=80 18
5554.09	11-	320.5 2	18 12	5233.60 10	M1+E2		C Manager -
		630.4 2	100	4923.70 9-	E2		B(E2)(W.u.)=57 20
		634.9 2	60 20	4919.30 9-	E2		B(E2)(W.u.)=33 16
		881.3 2	74 5	4672.77 10 ⁺	E1		B(E1)(W.u.)=0.00010 4

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
5586.6		659.7 <i>5</i>	100	4926.9			
5596.9		1168.3 5	100	4428.6			
5599.4		928.2 5	100	$4671.2 10^{-}$			
5627.92	$(8,10^+)$	2117.2 2	100	3510.70 9-	E1		
5699.87	$(9,11^{-})$	1027.1 2	100	4672.77 10 ⁺	E1		
5707.2		2196.5 5	100	3510.70 9-			
5735.17	$(9,11^{-})$	1062.4 2	100	4672.77 10 ⁺	E1		
5776.26	12+	1103.5 2	100 6	4672.77 10 ⁺	E2		
		1636.5 <i>3</i>	71 6	4139.69 10 ⁺	E2		
5776.7		228.5 5	100	5548.24 12 ⁺			
5801.1		574.6		5226.6			
		1129.9		$4671.2 10^{-}$			
5834.93	$(8,10)^{-}$	2324.2 2	100	3510.70 9-			
5857.2		309.0		5548.24 12 ⁺			
		1184.3		4672.77 10 ⁺			
5886.5		1746.8 <i>5</i>	100	4139.69 10 ⁺			
5892.0		789.1 <i>5</i>	100	5102.9			
5920.96	13 ⁺	144.7 2	9 1	5776.26 12 ⁺			
		621.6 <i>3</i>	18 2	5299.32 11 ⁺	E2		B(E2)(W.u.)=19 19
		739.3 2	100 <i>3</i>	5181.72 12 ⁺	M1+E2	+1.4 1	B(E2)(W.u.)=3.E+1 3; B(M1)(W.u.)=0.010 10
5921.97	12-	367.9 2	26 <i>4</i>	5554.09 11	M1+E2	-0.4 + 2 - 6	B(E2)(W.u.)=7.E+1 7; B(M1)(W.u.)=0.075 22
		688.4 2	100 7	5233.60 10-	E2		B(E2)(W.u.)=84 18
5956.2		1283.4 5	100	4672.77 10 ⁺			
5974.21	$(12)^{+}$	1834.5 2	100	4139.69 10+	(E2)		
5977.1		696.7 5	100	5280.4			
6001.1		2490.4 5	100	3510.70 9-	0.61 F0		
6045.53	14 ⁺	124.7 2	11 2	5920.96 13 ⁺	(M1+E2)		D/EQ/AN A A A A A
6067.0		863.8 2	100 3	5181.72 12+	E2		B(E2)(W.u.)=2.34 11
6067.8		1104.2 5	100	4963.58 11			
6131.7		949.5 5	100	5182.15			
6132.3		1168.7 5	100	4963.58 11			
6135.1		952.9 2	100	5181.72 12 ⁺			
6164.5		982.3 5	100	5182.15			
6173.9		705.6 1210.3		5468.23 (12 ⁻) 4963.58 11 ⁻			
6174.9		875.4		5299.32 11 ⁺			
01/4.9		873.4 992.9		5182.15			
6225.6		1489.2 5	100	4736.38 10 ⁻			
6266.23	14 ⁺	345.2 2	100 3	5920.96 13 ⁺	M1+E2	+0.21 +3-2	
0200.23	14	1084.3 3	100 5	5182.15	E2	TU.21 TJ-2	δ : δ (M3/E2)=-0.16 +17-7.
6279.01	13-	357.1 2	24 3	5921.97 12 ⁻	M1+E2	-2.5 +24-14	B(E2)(W.u.)= 5.0×10^2 19; B(M1)(W.u.)= $0.013 + 22 - 13$
02/9.01	13	725.0 2	100 6	5554.09 11 ⁻	E2	-2.3 +24-14	B(E2)(W.u.)=5.0×10° 19; B(M1)(W.u.)=0.013 +22-13 B(E2)(W.u.)=69 18

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
6279.01	13-	730.8		5548.24	12+			
		1315.6		4963.58				
6341.62	14^{+}	793.3 2	84 <i>3</i>	5548.24		E2		B(E2)(W.u.)=74 18
		1159.4 2	100 7	5182.15				
6460.44	$(13)^{-}$	1496.7 2	100	4963.58	11-	E2		
6496.4		948.1 5	100	5548.24	12 ⁺			
6497.3	$(14)^{+}$	451.8 2	100	6045.53	14 ⁺	M1+E2	-0.3 + 4 - 2	
6520.5		1556.9 5	100	4963.58	11-			
6551.0		1369.4 2	100	5181.72				
6551.1	15 ⁺	284.9 2	10.9 <i>16</i>	6266.23		(M1+E2)		
		505.5 <i>3</i>	100 4	6045.53		M1+E2	+0.07 2	B(E2)(W.u.)=0.6 4; B(M1)(W.u.)=0.042 5
6552.3		1004.1 5	100	5548.24				
6610.6		1071.9 5	100	5538.7				
6690.64	$(13)^{-}$	1142.4 2	100	5548.24		E1		
6698.3		1150.1 5	100	5548.24				
6715.9	14-	436.9 2	8.5 2	6279.01		M1+E2		
		794.0 2	100	5921.97	12-	E2		B(E2)(W.u.)=9.E+1 6
6725.6		748.5 <i>5</i>	100	5977.1				
6925.7	16 ⁺	374.6 5	100 9	6551.1				
		880.2 5	<45	6045.53		E2		
7115.1	(15^{-})	399.1 2	6.3 2	6715.9		(M1)		B(M1)(W.u.)=0.051 13
		836.1 5	100	6279.01		E2		B(E2)(W.u.)=99 25
7204.68	16 ⁺	862.9 2	63 6	6341.62		E2		B(E2)(W.u.)=40.7
7205 10		1159.3 2	100 6	6045.53				
7205.18		744.6 2		6460.44				
7260.7		926.3 2	100	6279.01				
7369.7		818.6 5	100	6551.1	15.			
7377.1	(16=)	880.7 <i>5</i> 492.5 <i>2</i>	100 9.7 <i>4</i>	6496.4	(15-)	(M1)		D/M1\/W \ 0.060.12
7607.9	(16^{-})	892.0 <i>5</i>			(15 ⁻) 14 ⁻	(M1) E2		B(M1)(W.u.)=0.068 12
7709.6		783.9 2	100 100		14 16 ⁺	EZ		
7869.7		944.0 2	100		16 ⁺			
8049.3	(17^{-})	934.2 2	100		(15^{-})	E2		$B(E2)(W.u.)=1.2\times10^2 4$
8131.4	(17)	1205.7 2	100		16 ⁺	EZ		$D(E2)(W.u.)=1.2\times10^{-4}$
8142.7	18 ⁺	938.0 2	100	7204.68		E2		B(E2)(W.u.)=110 15
0142.7	10	930.0 2	100	7204.06	10	EZ		Mult.: from 100 Mo(18 O,4n γ).
8194.4		1643.3 2	100	6551.1	15+			Wiuit Hoiii Wio('Ο,4liγ).
8357.7		980.6 2	100	7377.1	13			
	(10=)	500.0 Z			(177-)	0.51)		DAMAWA \ 0.07.3
8587.5	(18^{-})	538 [@]	5.1 7		(17^{-})	(M1)		B(M1)(W.u.)=0.07 3
06446		979.6 2	100		(16 ⁻)	E2		$B(E2)(W.u.)=1.9\times10^2 7$
8644.6		1718.9 2	100	6925.7	16 ⁺			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
9060.7	(19^{-})	1011.4 2	100	8049.3	(17^{-})	E2	$B(E2)(W.u.)=1.4\times10^2 \ 4$
9194.9	20 ⁺	1052.2 2	100	8142.7	18 ⁺	E2	B(E2)(W.u.)=88 13
9647.5	(20^{-})	1059.9 2	100	8587.5	(18^{-})	(E2)	$B(E2)(W.u.)=1.1\times10^2 6$
10113.9	(21^{-})	1053.2 2	100	9060.7	(19^{-})	E2	$B(E2)(W.u.)=1.1\times10^2 6$
10359.0	(22^{+})	1164.1 2	100	9194.9	20+	E2	$B(E2)(W.u.)=1.1\times10^2 \ 3$
10778.3	(22^{-})	1130.8 2	100	9647.5	(20^{-})		
11174.7	(23^{-})	1060.8 2	100	10113.9	(21^{-})	(E2)	$B(E2)(W.u.)=1.3\times10^2 8$
11609.0	(24^{+})	1250	100	10359.0	(22^{+})		
12311.7	(25^{-})	1137	100	11174.7	(23^{-})		
12943.0	(26^{+})	1334	100	11609.0	(24^{+})	(E2)	B(E2)(W.u.)>23
13516.7	(27^{-})	1205	100	12311.7	(25^{-})		
14406.0	(28^{+})	1463	100	12943.0	(26^+)		
14801.7	(29^{-})	1285	100	13516.7			
15997.0	(30^{+})	1591	100	14406.0	(28^+)		
16236.7	(31^{-})	1435	100	14801.7	(29^{-})		
17870.7	(33 ⁻)	1634	100	16236.7	(31-)		

[†] From $\alpha(K)$ exp, $\gamma(\theta)$, and $\gamma(pol)$ in $^{112}Cd(\alpha,2n\gamma)$, except as noted. [‡] From $^{112}Cd(\alpha,2n\gamma)$ if available; otherwise, from $^{100}Mo(^{18}O,4n\gamma)$. [#] Weighted average of values from ε decay, $(\alpha,2n\gamma)$, $(n,n'\gamma)$, and $(HI,xn\gamma)$.

[@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{114}_{50}\mathrm{Sn}_{64}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

----- γ Decay (Uncertain)

¹¹⁴₅₀Sn₆₄

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 111,717 (2010)	1-Dec-2009

 $Q(\beta^-) = -4704 \ 6; \ S(n) = 9563.48 \ 9; \ S(p) = 9278.62 \ 10; \ Q(\alpha) = -3375.1 \ 6 \qquad \ \ 2012Wa38$

Note: Current evaluation has used the following Q record -4707 5 9563.45 109281 4 -3374.9 20 2003Au03,2009AuZZ.

¹¹⁶Sn Levels

Cross Reference (XREF) Flags

A	Coulomb excitation	J	¹¹⁶ In β^{-} decay (54.29 min)	S	$^{114}\text{Cd}(^{3}\text{He,n})$
В	$^{114}\text{Cd}(\alpha,2\text{n}\gamma)$	K	¹¹⁶ Sb ε decay (15.8 min)	T	115 In(p,n),(p,p) IAR
C	116 Sn(n,n' γ)	L	¹¹⁶ Sb ε decay (60.3 min)	U	$^{116}\mathrm{Sn}(\alpha,\alpha')$
D	115 In(α ,t γ)	M	116 Sn(p,p')	٧	116 Sn(p,p' γ)
E	115 In(3 He,d),(α ,t)	N	104 Ru(18 O, α 2n γ)	W	¹¹⁶ Sn(pol p,p')
F	115 Sn(d,p)	0	¹¹⁶ Sn(e,e')	X	116 Sn(d,d')
G	115 Sn(n, γ) E=th	P	$^{116}\text{Cd}(^3\text{He}, 3\text{n}\gamma)$	Y	$^{116}\mathrm{Sn}(\gamma,\gamma')$
H	117 Sn(d,t),(3 He, α)	Q	117 Sn(p,d)	Z	¹¹⁶ Sn(⁶ Li, ⁶ Li')
I	116 In β^{-} decay (14.10 s)	R	118 Sn(p,t)		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
0 1293.560 8	0 ⁺ 2 ⁺	stable 0.374 ps 10	ABCDEFGHI JKLMNOPQR	х	Q=-0.17 4 (1989Ra17,2005St24,1976Li19) μ =-0.32 18 (2008Ea02) Q: others: +0.07 10 (1975Gr30), +0.09 13 (1970Kl06). J ^{π} : E2 γ to 0 ⁺ . T _{1/2} : from 1987Ra01 based on an average of available B(E2) and T _{1/2 1/2} data; values included in 1987Ra01: 0.49 ps 9 (1962Li10), 0.44 ps 19 (1962Ka28), 0.195 (1975Gr30), 0.33 ps 7 (1963Be14), 0.37 ps 4 (1977Ca14,1981Ca10) via res fluorescence The recent value: 0.51 ps +20-14 (2007Or04) in (n,n' γ) is in agreement.
1756.864 [#] 24	0+	44 ps 6	ABCD FGHIJK MNO	V X	J^{π} : E0 to g.s. $T_{1/2}$: average of 1978Ju02 and B(E2) in Coul. ex.
2027.48 3	0^{+}	160 ps 20	A C FGH K M O S	X	J^{π} : E0 to g.s.
2112.323# 15	2+	1.89 ps <i>10</i>	ABCD GHIJK MNOP	X	$T_{1/2}$: from 1978Ju02. J^{π} : E2 γ to g.s. $T_{1/2}$: from B(E2) in (e,e'). Other: 1.8 ps +11-5 from B(E2) in Coul. ex.
2225.379 17	2+	2.4 ps <i>12</i>	A C EFGHIJK M QR	V	J^{π} : L(d,p)=2, log ft =4.7 from 3 ⁺ parent, excited in Coul. ex.
2266.159 <i>19</i>	3-	0.34 ps 4	ABCDE GH JKLMNO	WX	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : E1 γ to 2^+ , L=(p,p')=3, (972 γ)(1293 γ)(θ). $T_{1/2}$: from B(E3) in Coul. ex.
2365.975 21	5-	348 ns <i>19</i>	BCD fGH J LMNO QR	WX	Q=0.26 I (1989Ra17,2005St24) μ =-0.376 J (1989Ra17,2005St24) J^{π} : E2 γ to 3 ⁻ , E3 γ to 2 ⁺ , L(p,p')=5. $T_{1/2}$: weighted av of 335 ns 50 from $(\alpha,2n\gamma)$ (1980Va13) and 350 ns 20 from ε decay (1966Rg02). Others: 370 ns from $(\alpha,2n\gamma)$ (1973IsZQ), 230 ns 20 from ε decay (1964Bo21).
2390.879 18	4+	0.28 ps <i>14</i>	ABCDE£GH JK MNO	W	J ^π : E2 γ to 2 ⁺ (1097 γ)(1293 γ)(θ), L=4 (d,t). T _{1/2} : from 1972Ka66, res fluorescence, T _{1/2 1/2} =0.47 ps 9 from Coul. ex.

259.202** 8	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
2585.761 3	2529.202 [#] 18	4+	<100 ps	ABCDE GH JK MNO qR	WX	(d,t).
2885.564 24	2545.71 3	(0^+)		AC GHIKM a	V	
2650.438.23						J^{π} : based on γ to 0^+ and 2^+ , from $(n,\gamma),(n,n'\gamma)$.
2790.55 4 (0)* C FG O X X XKEF: FC780) 2801.28 4 4* 2843.82 5 2* C E GH X M 2843.82 5 2* C E GH X M 2908.85 3 7* O.5 ns 3 CDE H Lthno 2960.03 3 2* C E GH X H 2960.03 6* C E GH X H 2960.03 6* C E GH X H 2960.03 6* C E GH X H 2960.03 7 3* C E GH X H 2960.03 8 2* C E GH X H 2960.03 8 2* C E GH X H 2960.03 9 13 S E E E E E E E E E E E E E E E E E E						
2801 28 4				•		
2801.28 4	2790.55 4	$(0)^{+}$		C FG 0	X	J^{π} : L(d,p)=2 gives 2 ⁺ , but 1991Ra01 based his
2843.82 5 2 [±]	2801.28 4	4+		BCDEfGH JK M O R	U W	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2843.82 5	2+		C E GH K M		
2960.03	2908.85 <i>3</i>	7-	0.5 ns <i>3</i>	CDE H LMNO		
2996.27 3						
(1990Sc12). 3016.44 7 6(-) 3032.70ff 17 6						
3032.70	2996.27 3			CEGHKM		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C G		
308.63 3 2†						
309.693 / 3					WX	
3105.18 17 5 BCD fG M W F*: 1978VaZK suggest (7-), excit in (n,n'y), also 7- in (α ,ty). 3157.73 7 3-,4 C G M QR WX 3179.68 6 3+ C EFGH K X F*: L=2+4 (³He,d), from (n,y),(n,n'y). 3184.5 3- M X F*: L(p,p')=3. 3194.32 6 0+ C G M F*: L(p,p')=0, from (n,y),(n,n'y). 3210.00 5 7- <0.5 ns BCD L NO W F*: E2 γ to 5-, log ft =5.6 from 8- parent. 3227.45 5 (2+) C Gh M X F*: L=2 (d,t), from (n,y),(n,n'y). 3227.95 11 8- B D L N F*: L=2 (d,t), from (n,y),(n,n'y). 3228.06 14 2+ C G M X F*: L=2 (d,t) but not resolved with 3227 level from (n,y),(n,n'y). 3236.02 6 0+ C G X 3374.5- C G M S339.04 6- C G S3257.67 12 3-,4-,5- C G M F*: L(3)He,d)=2. 3288.99 17 \leq 4 C G G M F*: L(3)He,d)=2. 3314.99 13 3+ C G G M F*: L(3)He,d)=2. 3314.99 13 3+ C G G M F*: L(3)He,d)=2. 3314.94 3 3+ C G G M F*: L=2 (d,t), J\(\pi==\frac{\pi}{\pi}=\frac{\pi}{\pi}\) from (n,y),(n,n'y). 331.42 8 3+ C G G K S339.8 5 3+ DE H M S F*: L=2 (d,t), J\(\pi==\frac{\pi}{\pi}=\frac{\pi}{\pi}\) determined in (pol γ , γ) experiment 1994Go25. 3317.42 8 3+ DE H M S F*: L=2 (d,t), J\(\pi==\frac{\pi}{\pi}=\frac{\pi}{\pi}\) determined in (\pi)\(\pi,\giy\)). 3416.2 3 2+ C G G K S339.8 5 3+ DE H M S F*: L=2 (d,t), J\(\pi==\frac{\pi}{\pi}=\frac{\pi}{\pi}\) determined in (\pi)\(\pi,\giy\)). 3427.91 14 4- C G G M S S345.2 3 4,5 C M S S363.3 7 2+ C G G H M S S360.33 7 2+ C G G S360.33 7 2+ C G G G G G G G G G G G G G G G G G G						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					W	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						- 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3210.00 5 7					X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<0.5 ns		Ta7	
3227.45 5 (2 ⁺)	3210.00 3	,	<0.5 Hs	DCD L NO	VV	
3227.95 11 8 3228.06 14 2 C Gh K m X J^{π} : $\chi(\theta)$ for M1 γ to 7^{-} . 3236.02 6 0 3257.67 12 3 3-,4 5 6 8DDE M J $^{\pi}$: $L=2$ (d,t) but not resolved with 3227 level from (n, γ),(n,n' γ). 3236.02 6 0 3257.67 12 3 3-,4 5 6 8CDE M J $^{\pi}$: $L(^{3}\text{He,d})=2$. 3288.99 17 ≤ 4	3227.45 5	(2^{+})		C Gh m	x	J^{π} : L=2 (d,t), from (n, γ),(n,n' γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3227.95 11			B D L N		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3228.06 <i>14</i>	2+		C Gh K m	x	J^{π} : L=2 (d,t) but not resolved with 3227 level from
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$(n,\gamma),(n,n'\gamma).$
3277.6 5 6+ BCDE M J ^π : L(³ He,d)=2. 3288.99 17 ≤4						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						17 1 311 1\ 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						J^{n} : $L(^{3}He,d)=2$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3333.78 6 1 C G M J ^{π} : J ^{π} determined in (pol γ , γ') experiment 1994Go25. 3344.34 5 2 C FG X J ^{π} : L=2 (d,t), J ^{π} =2 from (n, γ),(n,n' γ). 3350.5 4 (5 ⁺) C 3371.42 8 3 C G K 3379.8 5 3 DE H M J ^{π} : γ decay in (α ,t γ). 3416.2 3 2 C GH K M QR J ^{π} : L=2 (d,t), J=2 in (n, γ),(n,n' γ). 3427.91 I4 4 C G G X 3453.2 3 4,5 C M X 3469.61 9 2 C GH M J ^{π} : L=2 (d,t). 3492.98 I2 8 B D N J ^{π} : trom $\gamma(\theta)$ for 584 E1 γ to 7 decay.						I^{π} : L=4 (d.t). $I^{\pi}=2^{+}.3^{+}$ from $(n.\gamma).(n.n'\gamma)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						J^{π} : J^{π} determined in (pol γ, γ') experiment
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3344.34 5	2+		C FG	X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3350.5 4					· · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						J^n : L=2 (d,t), J=2 in $(n,\gamma),(n,n'\gamma)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					v	
3492.98 12 8 ⁺ B D N J^{π} : from $\gamma(\theta)$ for 584 E1 γ to 7 ⁻ . 3507.25 20 5 ⁻ C G C G					X.	I^{π} · I = 2 (d t)
3507.25 20 5 ⁻ C G 3508.33 7 2 ⁺ C G						
3508.33 7 2 ⁺ C G						
3510 5 4^+ M J^{π} : $L(p,p')=4$.						
	3510 5	4 ⁺		M		$J^{\pi}: L(p,p')=4.$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREI	7		Comments
3513.6 <i>3</i> 3522.66 25	(2) ⁺ 9 ⁻		C E GH B D	K LMN		W	J ^{π} : L=2 (d,t), J ^{π} =(2) from (n, γ),(n,n' γ). E(level): 1987Va30 have studied the role of core polarization and of the quenching of the leading shell model configuration in stretched spin states for this state.
3547.16 <i>17</i>	10 ⁺	833 ns <i>30</i>	В	N			J ^π : from $\gamma(\theta)$ for M1+E2 γ to 8 ⁻ . Q=0.50 (1989Ra17,2005St24,1975Di02) μ =-2.326 <i>15</i> (1989Ra17,2005St24) J ^π : M2 γ to 8 ⁻ , E2 γ to 8 ⁺ . T _{1/2} : from 1978VaZK (time distribution/beam burst of cyclotron).
3551.7 <i>5</i> 3572.77 <i>17</i> 3576.2 <i>6</i> 3586.63 <i>10</i> 3593.76 <i>9</i>	3 ⁺ 2 ⁺ ,3 4 ⁺ ,5 2 ⁺ 3 ⁺		C G C G C Gh C Gh	m m K m K		x x x	cyclotron).
3616.3 <i>4</i> 3624.6 <i>7</i> 3640.7 <i>7</i> 3648.1 <i>5</i> 3658.05 <i>6</i>	4 ⁻ 4 ⁺ 4,5 ⁺ 3 ⁻ ,5 ⁻ 2 ⁺		C H C C C C EFG	M m	R		J ^{π} : L(d,t)=2, J ^{π} =4 in (n, γ),(n,n' γ). J ^{π} : L(p,p')=4, from (n, γ),(n,n' γ).
3706.9 <i>7</i> 3711.89 <i>8</i>	3 ⁺ (1) ⁺		C H C G	m m	K		J^{π} : L=2+4 (d,t).
3712.4 [#] <i>3</i> 3730.6 <i>4</i>	8 ⁺ ≤3		B D C G	N			J^{π} : E2 γ to 6 ⁺ , ΔJ =2 collective band.
3739 3742.90 <i>18</i> 3747.9 <i>4</i>	3+ 3- ≤3		DE H C G C G	m K m	Q		J^{π} : L(d,t)=2, γ from 5 ⁺ .
3776.78 <i>15</i> 3787.2 <i>5</i>	1 ⁺ (6 ⁻)		C GH C f	M			J^{π} : L=2 (d,t), J=1 from (n,γ) , $(n,n'\gamma)$.
3797 3805.5 <i>5</i>	4 ⁺		Ef C F	m			J^{π} : L=0+2 in (3He,D).
3806.02 <i>18</i> 3809.3 <i>8</i> 3836.67 <i>23</i> 3843.66 <i>19</i> 3850.9 <i>5</i>	2 ⁺ 2 ⁺ ,3 0 ⁺ 2 ⁺ ,3 1,2 ⁺		C FG C G C G	m m			J^{π} : L=2 in (p,p'), from (n, γ),(n,n' γ).
3851? 5	1,2			M			J ^{π} : probably different from the 3850.9 level (1,2 ⁺) since $\sigma(\theta)$ in (p,p') requires a high -L component (see comment in (p,p')).
3886.9 <i>4</i> 3903.58 <i>24</i> 3904.91 <i>6</i>	5 ⁺ 2 ⁺ 1		DE C G C G	K			J^{π} : L(³ He,d)=0+2+4. γ to 6 ⁻ .
3916.91 <i>7</i> 3945.8 <i>5</i>	2 ⁺ 1 ⁺ ,2 ⁺ ,3		C G C e Gh	M m	q		J^{π} : $L(p,p')=2$.
3950.52 <i>21</i> 3952.9 <i>3</i> 3973.7 <i>8</i> 3985.5 <i>2</i>	1 ⁻ ,2,3 2 ⁺ 4 ⁺		C e Gh C e Gh C	m m L	q q		J^{π} : L(³ He,d)=2, L=2 (d,t).
4001.10 7 4013.27 <i>15</i> 4015.1 <i>6</i>	1 ⁽⁻⁾ 2 ⁺ 2,3,4 ⁺		C G C e G C e	-	r r	W W	J^{π} : L(³ He,d)=2, primary γ from 0 ⁺ ,1 ⁺ .
4023 <i>I</i> 4026.4 <i>3</i> 4028.5 <i>5</i>	2,3,4 5 ⁺ 1 ≤3		DE C G C G	M m	1	w	J^{π} : L(³ He,d)=0+2+4. γ from 7 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$		XREF			Comments
4037.2 4	2+,3+	C GH				
4075.87 20	$1^+, 2^+, 3^+$	C GH			W	
4077 10	$4^{+},5^{+}$	DE	m		W	J^{π} : L(³ He,d)=0+2+4.
4113.89 6	1,2+	C G				
4128.28 20	1,2+	C G				
4143.9 5	$1^+, 2^+, 3$	CeG	m			
4162.108 24	2	CeG	m			J^{π} : (³ He,d)=2, primary γ from 0 ⁺ ,1 ⁺ .
4170.9 4	2+	C e G	m			
4190.5 4	2+,3+,4+	C G			77	
4200.09 <i>14</i>	1	C G	m		Y	
4201.52 <i>8</i> 4211.59 <i>12</i>	1,2 0 ⁺ ,1,2	C G C G	m	S		
4238.15 22	2+,1,2	CG	m	3		
4240	4 ⁺ ,5 ⁺	E				J^{π} : L(³ He,d)=0+2+4.
4251.68 11	1	C G	m		W	J. E(110,0)=01214.
4278.51 20	1,2+	C G	m		W	J^{π} : L(³ He,d)=2.
4280.7 7	2,3-,4	Ċ	m		W	5 . D(110,u)-2.
4285.0 <i>4</i>	$(7)^{+}$	DE			-	J^{π} : L(³ He,d)=2+4, γ' s to 8-and 5 ⁻ . γ to 8 ⁻ is stronger Than γ to 5 ⁻ .
4297.1 5	≤3	C G				v z (110,0) z · i, y o to o und o · y to o · is stronger rimin y to o ·
4308.5 <i>3</i>		G				
4340	+	E				J^{π} : (³ He,d)=2.
4365		E				
4392.62 8		E G				
4410.98 <i>15</i>		G				
4430.45 23		G				
4480.19 <i>11</i>		E G				J^{π} : L(³ He,d)=2.
4496.0 <i>6</i>	(10^{-})	В	N			J^{π} : probable stretched E2 to 8 ⁻ . No γ to J<8.
4506.2 [#] 4	10+	В	N			J^{π} : E2 γ to 8 ⁺ , ΔJ =2 collective band.
4511.36 <i>17</i>		G				
4548.38 <i>14</i>	1-	E G			Y	
4584.13 24		G				
4649.21 <i>10</i> 4701.83 <i>23</i>	11 ⁺	G	N			
4765 <i>1</i>	7 ⁺	DE	N			J^{π} : L(³ He,d)=2. γ 's to 8 ⁻ ,6 ⁻ ,6 ⁺ .
4840 10	$(8,10^{-})$	DE			W	J^{π} : strong feeding to 8 ⁻ . L(³ He,d)=4,5. 1992Sc20 suggest that this
4040 10	(8,10)	DE			W	state contains part of the fragmented 10 ⁻ ,8 ⁻ or 8 ⁺ configurations.
4852.7 3		G			W	state contains part of the fragmented to ,6 of 6 configurations.
4877.07 <i>14</i>		Ğ			•	
4879.5 6	(11^{-})	В	N			J^{π} : stretched E2 to 9 ⁻ . No γ to J<9.
4881.95 <i>23</i>	12+		N			,
4892.55 <i>21</i>	1-	E G			Y	J^{π} : L(³ He,d)=2 (1969Sh14), 1986Va02 report L=4.
4925.92 14		G				
4940	0_{+}			S		J^{π} : L(³ He,n)=0.
4952.02 20		G				
4980.3 5	1				Y	
5055.53 8		G				
5066.3 4	1	G			77	
5085.7 <i>6</i> 5161.27 <i>23</i>	1 12 ⁺		M		Y	
5174.4 5	12	G	N			
5242.3 3		G				
5329.90 24	12 ⁺	ď	N			
5357.9 3		G				
5390.4 [#] 5	12+	В	N			J^{π} : E2 γ to 10 ⁺ , ΔJ =2 collective band.
		_	-			, ,

E(level) [†]	$J^{\pi \ddagger}$		XREF		Comments
5391.2 6	1			Y	
5395.5 3	1	G		-	
5453.5 <i>4</i>	1(-)			Y	
5474.9 3	1	G			
5484.24 22		G			
5493.2 6		Ğ			
5495.91 23	13+	J	N		
5500	13	DE	.,		
5522.19 23	13+	DL	N		
5550.7 5	1			Y	
5555.4 5	1			Y	
5562.72 21	-	G		_	
5573.6 5	(12^{+})		N		
5630.2 5	1-			Y	
5668.1 <i>4</i>	_	G		_	
5707.2 3		_	N		
5716.7 <i>4</i>		G			
5723.24 25	(12^{-})	Ğ			
5730 10	, ,	E			
5740 10		E			
5767.19 <i>11</i>		G			
5780	(-)	DE			J^{π} : L(³ He,d)=5.
5823.68 <i>23</i>	14+		N		
5834.7 <i>5</i>	1			Y	
5860	(-)	E			J^{π} : L(³ He,d)=5.
5923.6 <i>3</i>	()	G			
5929.3 <i>3</i>	(13^{+})		N		
5968.4 <i>4</i>	(-)	G			
5977.57 23	13-		N		
5989.53 10		G			
5995.58 11		G			
6006.2 5	1(-)			Y	
6041.59 22		G			
6083.0 <i>5</i>	1			Y	
6088.7 <i>4</i>	1			Y	
6098.30 24	14+		N		
6116.8 <i>3</i>		G			
6130.97 <i>17</i>		G			
6151.9 4		G			
6159.57 <i>10</i>		G			
6180.5 <i>4</i>	1-			Y	
6198.74 <i>11</i>		G			
	14-		N		
6216.7 5	1-			Y	
6289.0 4	1-			Y	_ 2
6292.7 11	(10^{-})	DE			J^{π} : L(³ He,d)=5. γ to 9 ⁻ .
6313.4 [#] 6	14+		N		
6323.0 <i>6</i>	1-			Y	
6339.3 5	1-			Y	
6344.08 <i>23</i>	15-		N		
6357.7 <i>3</i>		G			
6358.0 <i>6</i>	(14^{+})		N		
6363.6 5	1			Y	
6371.9 5	1-	_		Y	
6373.0 <i>3</i>		G			

¹¹⁶Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	X	REF	E(level) [†]	$J^{\pi \ddagger}$		XREF		
6398.5 5	1		Y	7235.5 11	1				Y
6405.59 15		G		7241.4 6	1				Y
6423.1 5	1-		Y	7246.3 5		G			
6428.05 23		G		7319.9 7	1				Y
6436.31 <i>21</i>		G		7325.27 22		G			
6446.5 5	1-		Y	7353.4 <i>3</i>	1-				Y
6457.2 5	1-		Y	7457.3 6	(16^{+})		N		
6466.1 <i>10</i>	1		Y	7479.8 <i>14</i>	1-				Y
6468.7 <i>3</i>		G		7597.8 10	1				Y
6472.3 <i>3</i>	1-		Y	7654.3 7	1-				Y
6482.59 17		G		7659.94 19		G			
6484.1 <i>4</i>	1-		Y	7692.77 18		G			
6507.6 6	1-		Y	7758.8 9	1				Y
6510.55 9		G		7826.3 10	1(-)				Y
6518.7 <i>4</i>	1-	_	Y	7896.6 8	1				Y
6532.01 <i>21</i>	•	G	_	7917.1 7	1-				Y
6581.9 6	1-		Y	7925.2 8	1(+)				Y
6593.2 5	1-		Y	7933.7 6	1				Y
6654.9 7	(1)		Y	7947.0 8	1				Y
6659.52 25	16-		N	7961.1 6	1-				Y
6663.1 6	(15^+)		N	7991.6 8	1-				Y
6717.24 <i>11</i>	(13)	G	IV	8187.4 7	1				Y
6741.4 6	(1)	9	Y	8214.3 6	1-				Y
				8227.9 [#] 6					•
6749.5 5	1		Y		18+		N		37
6754.07 18	1	G		8234.5 8	1				Y
6834.1 <i>3</i>	1		Y	8247.8 7	1				Y
6877.0 7	1		Y	8282.9 9	1				Y
6889.4 5	1-		Y	8361.3 8	1-				Y
6967.3 5	1		Y	8427.9 11	1				Y
7011.5 6	1	_	Y	8457.9 8	1				Y
7035.01 8		G		8585.6 <i>3</i>			N		
7082.15 25	17-		N	8661.2 4			N		
7125.6 5	1-		Y	8739.7 7	(1)				Y
7145.8 6	1		Y	9141.4 <i>4</i>			N		
7154.7 5	1-		Y	9321.9 [#] <i>12</i>	(20^+)		N		
7165.0 6	1		Y	16198				T	
7173.9 <i>4</i>		G		16308				T	
7203.7 8	1		Y	16388				T	
7215.3 6	1		Y	16478				T	
7224.7 <i>4</i>		G		16568				T	
7229.2 [#] 6	16 ⁺		N	17708				T	

 $^{^{\}dagger}$ From a least-squares fit to the adopted Ey. Other levels are from the reactions indicated.

[‡] From $(n,\gamma),(n,n'\gamma)$ (1991Ra01), except where noted otherwise. Values from 1991Ra01 are based on $\gamma(\theta)$, decay modes and σ and $\sigma(E)$ in $(n,n'\gamma)$. All the J^{π} for levels only seen in (γ,γ') are derived from nuclear resonance fluorescence with polarized γ . J^{π} for levels seen only in (18 O, $\alpha ^{2}$ n γ) are based on $\gamma \gamma$ (q) data. # Band(A): 0^{+} intruder band, configuration= $\pi g_{9/2}^{-2}g_{7/2}^{2}$.

$\gamma(^{116}Sn)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{\#}$	$\mathrm{I}_{(\gamma+ce)}$	Comments
1293.560	2+	1293.558 <i>15</i>	100	0	0+	E2 [‡]		0.00075		B(E2)(W.u.)=12.4 4 E _{γ} : from 1994Ga14.
1756.864	0+	463.25 <i>3</i> 1757.06 <i>21</i>	100 6	1293.560 0	2 ⁺ 0 ⁺	[E2] E0			0.35 2	B(E2)(W.u.)=18 3
2027.48	0+	733.89 <i>3</i> 2027.3 <i>10</i>	100	1293.560 0		[E2] E0			-	B(E2)(W.u.)=0.49 7
2112.323	2+	84.9 <i>5</i> 355.40 <i>4</i>	0.006 <i>3</i> 5.0 <i>5</i>	2027.48 1756.864	0^{+}	[E2] E2		2.86 8 0.01861		B(E2)(W.u.)=7.E+1 4 B(E2)(W.u.)=44 5
2225.379	2+	818.718 <i>21</i> 2112.312 <i>22</i> 113.1 <i>10</i> 198.0 <i>7</i>	75 <i>4</i> 100 <0.0017 <0.014	1293.560 0 2112.323 2027.48	0_{+}	M1+E2 [‡] E2	-1.8 2	0.00216		B(M1)(W.u.)=0.0021 4; B(E2)(W.u.)=7.7 8 B(E2)(W.u.)=0.118 7
		468.5 <i>5</i> 931.814 <i>20</i> 2225.33 <i>3</i>	0.52 <i>11</i> 100 <i>15</i> 67 <i>6</i>	1756.864 1293.560 0	0 ⁺ 2 ⁺ 0 ⁺	[E2] M1+E2 [E2]	-1.9 +5-7			B(E2)(W.u.)=1.0 6 B(M1)(W.u.)=0.0015 10; B(E2)(W.u.)=5 3 B(E2)(W.u.)=0.05 3
2266.159	3-	972.564 <i>19</i> 2266 <i>1</i>	100 <i>4</i> 0.154 <i>24</i>	1293.560 0	2 ⁺ 0 ⁺	E1 [‡] [E3]				B(E1)(W.u.)=0.00091 <i>12</i> B(E3)(W.u.)=22 <i>5</i>
2365.975	5-	99.802 11	100	2266.159	3-	E2 [‡]		1.624		B(E2)(W.u.)= $2.46\ 16$ E _{\gamma} : from 1994Ga14.
2390.879	4+	1072.37 <i>3</i> 124.75 <i>7</i> 165.5 <i>10</i> 278.49 <i>6</i>	99 6 0.02 <i>I</i> <0.00089 0.26 <i>3</i>	1293.560 2266.159 2225.379 2112.323	3 ⁻ 2 ⁺	E3 [‡] [E1] [E2]		0.00229		B(E3)(W.u.)=1.33 <i>12</i> B(E1)(W.u.)=0.00010 <i>8</i> B(E2)(W.u.)=9.E+1 <i>5</i>
2520 202	4.4	1097.326 22	100 15	1293.560	2+	E2 [‡]		0.2204		B(E2)(W.u.)=38 21
2529.202	4+	138.327 8 262.95 8 303.80 5	11.3 <i>4</i> 0.4 <i>I</i> 0.4 <i>I</i>	2390.879 2266.159 2225.379	3-	M1 [‡] [E1] [E2]		0.2284		B(M1)(W.u.)>0.0084 B(E1)(W.u.)>5.6×10 ⁻⁷ B(E2)(W.u.)>0.23
	(0.1)	416.86 <i>3</i> 1235.6 <i>3</i>	100 <i>5</i> 0.32 <i>6</i>	2112.323 1293.560	2+	E2 [‡] [E2]		0.0126		B(E2)(W.u.)>12 B(E2)(W.u.)>0.00017
2545.71	(0+)	433.9 <i>3</i> 1252.118 <i>24</i>	3 <i>I</i> 100 <i>I</i> 2	2112.323 1293.560	2+					
2585.564	1+	360.17 <i>3</i> 828.79 <i>7</i> 1292.00 <i>14</i> 2585.70 <i>7</i>	13 2 6 18 100 18 66 9	2225.379 1756.864 1293.560 0	0_{+}					
2650.438	2+	384.22 6 538.21 6 1356.850 22 2650.5 4	2.0 4 2.8 5 100 19 8 I	2266.159 2112.323 1293.560 0	3 ⁻ 2 ⁺					

γ (116Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	<u>α</u> #	Comments
2773.33 2790.55	6 ⁻ (0) ⁺	407.351 <i>15</i> 204.96 <i>6</i> 565.16 <i>12</i>	100 11 <i>I</i> 14 2	2365.975 5 ⁻ 2585.564 1 ⁺ 2225.379 2 ⁺	M1(+E2) [‡]	+0.02 2		E _γ : from 1994Ga14.
2801.28	4+	678.28 <i>5</i> 1496.91 <i>6</i> 434.9 <i>7</i> 536.0 <i>6</i> 689.0 <i>3</i>	68 8 100 0.36 8 0.35 8 1.6 3	2112.323 2 ⁺ 1293.560 2 ⁺ 2365.975 5 ⁻ 2266.159 3 ⁻ 2112.323 2 ⁺				
2843.82	2+	1507.67 <i>4</i> 577.36 <i>25</i> 1550.03 <i>20</i> 2843.85 <i>7</i>	100 <i>4</i> 1.5 <i>7</i> 69 <i>18</i> 100 <i>24</i>	1293.560 2 ⁺ 2266.159 3 ⁻ 1293.560 2 ⁺ 0 0 ⁺	E2 [‡]			
2908.85	7-	135.511 10	56 <i>6</i>	2773.33 6	M1+E2 [‡]	-0.04 3	0.2419	B(M1)(W.u.)=0.006 4; B(E2)(W.u.)=0.4 +7-4 E_{γ} : from 1994Ga14.
		542.867 <i>15</i>	100 6	2365.975 5	E2 [‡]		0.00593	B(E2)(W.u.)=0.5 3 E_{γ} : from 1994Ga14.
2960.03	2+	309.75 22 374.52 4 693.82 6 1666.38 5	2.2 7 15 2 17 2 52 7	2650.438 2 ⁺ 2585.564 1 ⁺ 2266.159 3 ⁻ 1293.560 2 ⁺				
2996.27	3+	2960.03 8 194.83 9 466.7 4 605.34 6 770.95 5 1702.68 4	100 16 3.8 6 16 6 22 3 20 2	0 0 ⁺ 2801.28 4 ⁺ 2529.202 4 ⁺ 2390.879 4 ⁺ 2225.379 2 ⁺ 1293.560 2 ⁺				
3016.44	6(-)	650.46 6	100 <i>16</i> 100	2365.975 5				
3032.70	6+	503.3 <i>6</i> 641.1 <i>5</i>	55.7 <i>25</i> 100 <i>7</i>	2529.202 4 ⁺ 2390.879 4 ⁺	E2 E2			
3046.40	4+	245.0 <i>3</i> 655.65 <i>14</i> 781.1 <i>8</i>	1.5 <i>3</i> 4.5 <i>10</i> 4.5 <i>8</i>	2801.28 4 ⁺ 2390.879 4 ⁺ 2266.159 3 ⁻				E_{γ} : Not confirmed by 2006Kr04, could be a single-escape (Se) peak
3088.63	2+	1752.72 <i>12</i> 1331.68 7	100 <i>5</i> 19 <i>3</i>	1293.560 2 ⁺ 1756.864 0 ⁺	E2			of the 1293.56-keV transition.
		1795.02 <i>5</i> 3088.58 <i>4</i>	34 <i>5</i> 100 <i>20</i>	1293.560 2 ⁺ 0 0 ⁺				
3096.93	4+	567.7 <i>3</i> 706.00 22 730.8 <i>3</i> 831.0 <i>3</i>	24 7 100 15 40 15 31 6	2529.202 4 ⁺ 2390.879 4 ⁺ 2365.975 5 ⁻ 2266.159 3 ⁻				

 ∞

γ (116Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.	δ	α#	Comments
3105.18	5-	331.8 2	100 18	2773.33 6				
		714.4 5	45 18	2390.879 4+				
		738.8 <i>5</i>	73 25	2365.975 5				
		839.6 <i>5</i>	45 18	2266.159 3-				
3157.73	$3^{-},4$	791.75 6	100	2365.975 5				
3179.68	3 ⁺	378.24 <i>14</i>	9 <i>1</i>	2801.28 4+				
		788.81 8	27 3	2390.879 4+				
		1886.12 <i>10</i>	100 <i>21</i>	1293.560 2+				
3194.32	0_{+}	1900.72 5	100	1293.560 2+				
3210.00	7-	436.68 <i>6</i>	30 7	$2773.33 6^{-}$	M1,E2			
		844.001 19	100 10	2365.975 5	E2 [‡]		0.00191	B(E2)(W.u.)>0.060 E _y : from 1994Ga14.
3227.45	(2^{+})	641.63 <i>14</i>	7.5 11	2585.564 1+				Ey. Hom 177 tour 1.
	(-)	698.0 <i>3</i>	6 1	2529.202 4+				
		961.3 <i>4</i>	25 8	2266.159 3-				
		1115.16 5	100 14	$2112.323 \ 2^{+}$				
3227.95	8-	319.1 <i>I</i>	100	2908.85 7-	M1+E2	+0.11 1		
3228.06	2+	961.9 <i>4</i>	14 6	2266.159 3-				
		1002.6 4	6 2	2225.379 2+				
		1200.5 <i>3</i>	100 8	$2027.48 0^+$				
		1934.52 <i>21</i>	21 6	1293.560 2+				
3236.02	0_{+}	1123.68 6	100 20	2112.323 2+				
		1942.51 <i>13</i>	27 6	1293.560 2+				
3257.67	3-,4-,5-	891.69 <i>11</i>	100	2365.975 5				
3277.6	6+	748.0 6	100	2529.202 4 ⁺				
3288.99	<u>≤4</u>	1022.83 17	100	2266.159 3				
3309.0	6-	535.5 6		2773.33 6				
3314.99	3 ⁺	943.1 <i>4</i> 1089.56 <i>14</i>	24 10	2365.975 5 ⁻ 2225.379 2 ⁺				
3314.33	3	1202.9 3	100 14	2112.323 2 ⁺				
		2021.3 5	17 7	1293.560 2 ⁺				
3333.78	1-	3333.73 6	100	0 0+				
3344.34	2+	500.84 20	8 1	2843.82 2+				
		1078.14 7	94 30	2266.159 3				
		1119.00 7	100 19	2225.379 2+				
		1231.94 11	42 6	2112.323 2+				
		2050.4 7	94 25	1293.560 2+				
3350.5	(5^+)	355.0 9		2996.27 3+				
		549.1 <i>4</i>		2801.28 4+				
3371.42	3 ⁺	980.42 22	18 14	2390.879 4+				
		1146.03 22	31 6	2225.379 2+				

9

 γ (116Sn) (continued)

E_i (level)	J_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	$\alpha^{\#}$	Comments
3371.42	3 ⁺	2077.82 10	100 14	1293.560 2+				
3379.8	3+	578	100 17	2801.28 4+				
	-	853		2529.202 4+				
		989		2390.879 4+				
3416.2	2+	831.03 <i>10</i>	67 7	2585.564 1 ⁺				
		1150.31 6	100 16	2266.159 3-				
		2122.3 7	83 15	1293.560 2+				
3427.91	4-	1060.9 <i>6</i>	50 17	2365.975 5				
		1161.80 <i>14</i>	100 17	2266.159 3-				
3453.2	4,5	407.5 <i>3</i>	100	3046.40 4+				
	,-	1187.0 <i>3</i>	32 8	2266.159 3-				
		3454.9 <i>15</i>	100 20	$0 0^{+}$				
3469.61	2+	125.7 <i>3</i>	2.3 7	3344.34 2+				
		668.5 <i>4</i>	8 2	2801.28 4+				
		1244.25 12	94 11	2225.379 2+				
		2175.89 <i>13</i>	100 <i>15</i>	1293.560 2+				
3492.98	8+	214.0 10		3277.6 6 ⁺				
		264.0 10		3227.95 8-				
		584.16 <i>12</i>		2908.85 7	E1			
3507.25	5-	1241.08 20	100	2266.159 3-				
3508.33	2+	419.60 <i>12</i>	50 8	3088.63 2 ⁺				
		548.34 9	41 6	2960.03 2+				
		664.54 20	18 <i>3</i>	$2843.82 2^{+}$				
		1396.03 <i>15</i>	100 7	2112.323 2+				
3513.6	$(2)^{+}$	2220.1	100 24	1293.560 2+				
		3514.0 5	27 7	$0 0_{+}$	•			
3522.66	9-	294.6 2	100	3227.95 8	M1+E2 [‡]	+0.13 2		
3547.16	10 ⁺	54.0 5	8 6	3492.98 8+	E2		14.4 6	B(E2)(W.u.)=3 3
		319.1 <i>I</i>	100 <i>21</i>	3227.95 8	M2		0.104	B(M2)(W.u.)=0.44 13
3551.7	3+	2258.1 5	100	1293.560 2+				
3572.77	$2^{+},3$	2279.16 <i>17</i>	100	1293.560 2+				
3576.2	$4^{+},5$	1185.3 6	100	2390.879 4+				
3586.63	2+	1000.92 <i>12</i>	73 11	2585.564 1+				
		1474.45 <i>19</i>	81 <i>13</i>	$2112.323 \ 2^{+}$				
		3586.83 22	100 9	0 0+				
3593.76	3 ⁺	1368.38 9	100	2225.379 2+				
		1481.4 <i>4</i>	<26	$2112.323 \ 2^{+}$				I_{γ} : from β^- decay. Transition is multiply placed in (n,γ) .
3616.3	4-	1350.1 4	100	2266.159 3-				
3624.6	4+	2331.0 7	100	1293.560 2+				
3640.7	$4,5^{+}$	1249.8 7	100	2390.879 4+				
3648.1	3-,5-	1257.0 <i>5</i>		2390.879 4+				

10

γ (116Sn) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${\rm J}_{_f}^\pi$
	_											
3648.1	3-,5-	1282.5 8		2365.975	5-		3945.8	$1^+, 2^+, 3$	2652.2 5	100	1293.560	2+
3658.05	2+	857.19 <i>15</i>	31 5	2801.28	4+		3950.52	$1^{-},2,3$	1684.6 8	27 13	2266.159	
		1433.40 <i>14</i>	18 4		2+				1724.6 3	100 17	2225.379	2+
		1545.42 7	50 14	2112.323	2+				2657.4 <i>3</i>	22 11	1293.560	2+
		3658.5 <i>15</i>	100 20	0	0_{+}		3952.9	2+	439.32 17	21 6	3513.6	$(2)^{+}$
3706.9	3+	1440.7 7	100	2266.159	3-				3952.5 <i>4</i>	100 17	0	0+
3711.89	$(1)^{+}$	868.04 <i>6</i>	45 5	2843.82	2+		3973.7	4+	1861.4 8	100	2112.323	2+
		3712.06 <i>16</i>	100 <i>21</i>	0	0_{+}		3985.5		1076.72 <i>13</i>	100	2908.85	7-
3712.4	8+	679.7 2	100	3032.70	6+	E2	4001.10	1 ⁽⁻⁾	1210.6 7	7 4	2790.55	$(0)^{+}$
3730.6	≤3	2437.0 <i>4</i>	100	1293.560	2+				2244.21 7	100 <i>13</i>	1756.864	
3739	3 ⁺	1348	100	-0,0.0,	4+				2707.48 22	78 <i>17</i>	1293.560	2+
3742.90	3-	1476.75 <i>19</i>	100 16	2266.159			4013.27	2+	1787.54 <i>25</i>	11 2	2225.379	2+
		1631.0 <i>10</i>	53 9	2112.323	2+				2719.7 <i>4</i>	29 11	1293.560	2+
		2449.0	44 7	1293.560					4013.4 2	100 11	0	0_{+}
3747.9	≤3	2454.3 <i>4</i>	100	1293.560			4015.1	$2,3,4^{+}$	1902.7 8		2112.323	2+
3776.78	1+	1191.08 <i>17</i>	34 8	2585.564					2721.5 9		1293.560	2+
		3777.1 <i>3</i>	100 25	0	0_{+}		4023	5+	136		3886.9	5+
3787.2	(6^{-})	1421.2 5	100	2365.975					284		3739	3 ⁺
3805.5	4+	1693.1 8		2112.323	2+				746		3277.6	6+
		2511.9 6		1293.560			4026.4	1	4026.5 <i>3</i>	100	0	0_{+}
3806.02	2+	3805.95 <i>18</i>	100	0	0_{+}		4028.5	≤3	2734.9 5	100	1293.560	2+
3809.3	$2^{+},3$	1697.0 8	100	2112.323	2+		4037.2	$2^{+},3^{+}$	1771.2 5	32 6	2266.159	3-
3836.67	0_{+}	2543.06 <i>23</i>	100	1293.560					2743.5 <i>4</i>	100 <i>36</i>	1293.560	2+
3843.66	$2^{+},3$	1618.7 <i>6</i>	18 7	2225.379	2+		4075.87	$1^+, 2^+, 3^+$	417.4 <i>4</i>	100 35	3658.05	2+
		1731.8 <i>4</i>	22 6	2112.323					1963.67 <i>23</i>	73 13	2112.323	2+
		2549.85 22	100 18	1293.560			4077	$4^{+},5^{+}$	189		3886.9	5+
3850.9	$1,2^{+}$	1584.1 <i>6</i>	40 15	2266.159					799		3277.6	6+
		3852.0 8	100 <i>50</i>	0	0_{+}				1028		3046.40	4+
3886.9	5 ⁺	509	100	3379.8	3 ⁺				1549		2529.202	4+
		791	20	3096.93	4+				1685		2390.879	4+
		841	15	3046.40	4+				1712		2365.975	
		1086	22	2801.28	4 ⁺		4113.89	1,2+	1568.02 20	11 <i>3</i>	2545.71	(0^{+})
		1114	22	2773.33	6-				2357.01 6	100 <i>13</i>	1756.864	0+
		1358	11	2529.202	4+				4113.9 2	71 <i>13</i>	0	0_{+}
		1494	75	2390.879	4+		4128.28	1,2+	4128.2 2	100	0	0+
		1521	91		5-		4143.9	$1^+, 2^+, 3$	2850.3 5	100	1293.560	2+
		1618	68		3-		4162.108	2	1576.74 <i>21</i>	21 5	2585.564	1+
3903.58	2+	1678.2 <i>3</i>	27 6	2225.379	2+				1896.49 <i>19</i>	46 6	2266.159	
		3903.5 <i>4</i>	100 17	0	0_{+}				2868.48 2	100 22	1293.560	
3904.91	1	1877.36 8	92 12	2027.48	0+		4170.9	2+	2877.5 <i>4</i>	100 <i>21</i>	1293.560	2+
		2148.06 <i>6</i>	100 <i>16</i>	1756.864					4170.4 <i>6</i>	82 <i>23</i>	0	0_{+}
3916.91	2+	1650.74 <i>6</i>	100	2266.159	3-		4190.5	$2^+,3^+,4^+$	1924.3 <i>6</i>	37 15	2266.159	3-

γ (116Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^π	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.
	$\frac{i}{2^+,3^+,4^+}$	2896.9 <i>4</i>	100 22	1293.560	$\frac{f}{2^{+}}$		$\frac{i}{(10^{-})}$	1267.9 5	100		8 ⁻	
4190.5 4200.09	1	2896.9 <i>4</i> 1409.66 <i>17</i>	53 11	2790.55	$(0)^{+}$	4496.0 4506.2	(10) 10 ⁺	793.8 2	100		8 ⁺	E2
4200.09	1	4199.79 22	100 17	0	0+	4511.36	10	1860.4 3	34 5		2 ⁺	L2
4201.52	1,2	1551.3 6	68 40	2650.438		4311.30		1926.3 <i>4</i>	28 8		1+	
1201.32	1,2	1616.06 <i>14</i>	55 <i>7</i>	2585.564				2754.7 3	100 22		0+	
		1935.46 22	60 12	2266.159				4511.2 <i>4</i>	61 17		0+	
		1976.06 9	100 21	2225.379		4548.38	1-	4548.28 <i>14</i>	100		0+	
		2907.2 5	31 9	1293.560		4584.13		4584.03 24	100		0+	
4211.59	$0^+,1,2$	840.14 11	24 3	3371.42	3+	4649.21		2535.9 5	17 8		2+	
	, ,	2918.07 22	100 22	1293.560	2+			2620.7 6	50 20		0^{+}	
4238.15	2+	2944.8 <i>3</i>	100 <i>33</i>	1293.560	2+			3356.5 6	24 6	1293.560	2+	
		4237.8 <i>3</i>	100 33	0	0_{+}			4649.15 <i>10</i>	100 10	0	0_{+}	
4251.68	1	835.07 19	13 <i>3</i>	3416.2	2+	4701.83	11+	1154.9 <i>1</i>	100		10^{+}	
		4251.64 12	100 <i>19</i>	0	0_{+}	4765	7+	1487	100		6+	
4278.51	1,2+	2984.70 <i>23</i>	100 17	1293.560	2+			1537	24		8-	
		4279.0 <i>4</i>	20 6	0	0_{+}			1555	80		7-	
4280.7	$2,3^{-},4$	2014.5 7	100	2266.159	3-	4840	$(8,10^{-})$	1325			9-	
4285.0	$(7)^{+}$	260	7	4023	5+			1354			8+	
		1008	27	3277.6	6+			1936			7-	
		1057	100	3227.95	8-	4852.7		3558.9 5	100 25		2+	
		1252	23	3032.70	6+			4852.6 <i>3</i>	100 25		0+	
		1375	29	2908.85	7-	4877.07		2291.68 25	50 7		1+	
		1512	25	2773.33	6-	4070.5	(11=)	4876.88 <i>17</i>	100 15		0+	
4207.1	-2	1918	48	2365.975		4879.5	(11^{-})	1356.8 5	100		9 ⁻ 10 ⁺	
4297.1	≤3	3003.5 5	100 55 <i>10</i>	1293.560 2790.55		4881.95	12 ⁺ 1 ⁻	1335.2 1	100 100 <i>17</i>		2 ⁺	
4308.5		1517.9 <i>3</i> 3015.1 <i>5</i>	100 23	1293.560	$(0)^+$ 2^+	4892.55	1	3598.4 <i>5</i> 4892.54 <i>22</i>	99 <i>14</i>		0+	
4392.62		1165.15 25	18 3	3227.45	(2^{+})	4925.92		2275.6 6	28 <i>6</i>		2 ⁺	
4392.02		1303.86 <i>15</i>	13 3	3088.63	2+	4923.92		3632.26 20	94 12		2+	
		1863.5 4	15 3	2529.202				4925.8 2	100 15		0+	
		2001.8 3	14 3	2390.879		4952.02		2301.62 26	37 6		2+	
		3099.3 3	47 9	1293.560		1932.02		3658.3 <i>3</i>	100 22		2+	
		4392.54 <i>12</i>	100 17	0	0^{+}	5055.53		1711.16 9	100 14		2 ⁺	
4410.98		1882.9 7	35 11	2529.202				2211.72 <i>11</i>	37 6		2+	
		3117.6 5	66 12	1293.560	2+	5066.3		3309.4 <i>4</i>	100 33		0^{+}	
		4410.81 <i>16</i>	100 30	0	0^{+}			5066.2 6	33 11	0	0^{+}	
4430.45		1586.4 <i>3</i>	42 8	2843.82	2+	5161.27	12 ⁺	459.3 <i>1</i>	54 5	4701.83	11 ⁺	
		2402.2 7	100 28	2027.48	0_{+}			1614.7 <i>1</i>	100 5		10^{+}	
		4431.0 <i>4</i>	95 24	0	0_{+}	5174.4		3417.6 5	37 <i>13</i>		0_{+}	
4480.19		1136.2 4	11 4	3344.34	2+			5172.9 20	100 55		0_{+}	
		2254.72 24	52 8	2225.379	2+	5242.3		2282.4 <i>3</i>	100 <i>16</i>	_,	2+	
		3186.55 <i>12</i>	100 18	1293.560	2+			3947.9 6	60 15	1293.560	2+	

γ (116Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
5329.90	12 ⁺	1783.5 2	100	3547.16	10^{+}		5977.57	13-	270.3 2	3 5	5707.2	
5357.9		3132.7 6	17 62	2225.379	2+				1095.9 2	18.8 <i>18</i>	4881.95	12+
		3331.0 7	100 25	2027.48	0^{+}				1098.9 <i>1</i>	100 4	4879.5	(11^{-})
		4064.0 <i>3</i>	37 6	1293.560	2+		5989.53		3764.8 <i>6</i>	6 2	2225.379	2+
5390.4	12 ⁺	884.2 <i>3</i>	100	4506.2	10 ⁺	E2			3876.8 <i>4</i>	9 2	2112.323	2+
5395.5		2051.5 7	100 32	3344.34	2+				4695.85 10	100 11	1293.560	2+
		4101.8 <i>3</i>	59 9	1293.560	2+		5995.58		3968.18 20	72 12	2027.48	0^{+}
5474.9		4181.5 <i>3</i>	100 20	1293.560					4701.85 <i>12</i>	100 12	1293.560	2+
		5474.0 <i>5</i>	27 7	0	0_{+}		6041.59		2944.5 <i>3</i>	100 30	3096.93	4+
5484.24		3456.68 22	100 10	2027.48	0^{+}				3650.4 8	34 <i>13</i>	2390.879	4+
		5484.5 9	30 10	0	0_{+}				3816.3 <i>3</i>	100 30	2225.379	2+
5493.2		5493.1 6	100	0	0^{+}		6098.30	14 ⁺	1217.1 2	100	4881.95	12 ⁺
5495.91	13 ⁺	166.1 <i>1</i>	27.1 <i>14</i>	5329.90	12 ⁺		6116.8		3026.8 <i>6</i>	91 23	3088.63	2+
		334.7 1	31 <i>3</i>	5161.27	12 ⁺				4360.1 5	100 23	1756.864	0^{+}
		613.8 <i>1</i>	73 4	4881.95	12 ⁺				4823.0 <i>3</i>	94 19	1293.560	
		794.0 <i>1</i>	100 9	4701.83	11+		6130.97		4374.15 20	100 <i>19</i>	1756.864	0^{+}
5500		≈2285	100	3210.00	7-				4837.0 <i>3</i>	33 7	1293.560	
5522.19	13 ⁺	360.9 <i>1</i>	100 5	5161.27	12+		6151.9		3926.4 <i>6</i>	29 15	2225.379	
		820.4 1	22.7 23	4701.83	11+				4858.2 <i>4</i>	100 <i>16</i>	1293.560	2+
5562.72		2977.2 <i>4</i>	60 20	2585.564	1+		6159.57		4865.97 11	100 10	1293.560	2+
		3296.7 <i>4</i>	47 20	2266.159	3-				6158.96 24	28 5	0	0^{+}
		4268.9 <i>3</i>	100 20	1293.560	2+		6198.74		3549.0 <i>4</i>	26 6	2650.438	2+
5573.6	(12^{+})	1068.4 <i>3</i>	100	4506.2	10^{+}				3932.5 <i>4</i>	29 7	2266.159	3-
5668.1		3554.5 7	100 33	2112.323	2+				4441.68 11	100 14	1756.864	0^{+}
		3911.6 <i>4</i>	95 20	1756.864	0_{+}				4905.9 5	13 <i>4</i>	1293.560	2+
5707.2		1005.3 2	100	4701.83	11+		6213.01	14-	114.9 <i>1</i>	10.5	6098.30	14 ⁺
5716.7		3491.2 6	43 21	2225.379	2+				235.4 1	89 <i>3</i>	5977.57	13-
		4423.0 <i>4</i>	100 14	1293.560	2+				505.6 <i>3</i>	2.9	5707.2	
5723.24	(12^{-})	844.6 <i>1</i>	100	4877.07					717.0 <i>1</i>	100 4	5495.91	13 ⁺
5767.19		3500.4 <i>3</i>	79 <i>11</i>	2266.159	3-		6292.7	(10^{-})	2770	100	3522.66	9-
		3740.6 <i>6</i>	18 8	2027.48	0_{+}		6313.4	14 ⁺	925.4 <i>1</i>	100	5390.4	12 ⁺
		4473.57 12	100 <i>16</i>	1293.560	2+		6344.08	15-	131.1 <i>1</i>	100 <i>3</i>	6213.01	14-
5780	(-)	≈2260	100	3522.66	9-				366.6 <i>1</i>	25.0 <i>13</i>	5977.57	13-
5823.68	14 ⁺	301.5 <i>1</i>	100 4	5522.19	13 ⁺				520.3 <i>1</i>	66 <i>3</i>	5823.68	14 ⁺
		662.4 2	19 <i>3</i>	5161.27	12 ⁺		6357.7		4246.1 5	61 <i>14</i>	2112.323	2+
		941.6 <i>1</i>	57 <i>3</i>	4881.95	12 ⁺				4600.4 <i>3</i>	100 25	1756.864	0_{+}
5923.6		3811.2 6	60 20	2112.323			6358.0	(14^{+})	970.0 <i>1</i>	100	5390.4	12 ⁺
		4629.9 <i>3</i>	100 20	1293.560	2+		6373.0		3528.8 <i>4</i>	86 25	2843.82	2+
5929.3	(13^{+})	1050.7 2	100	4879.5	(11^{-})				5079.6 <i>4</i>	100 25	1293.560	2+
5968.4		3008.2 5	100 40	2960.03	2+		6405.59		4293.18 <i>15</i>	100	2112.323	2+
		3578.1 7	52 22				6428.05		3626.7 5	40 10	2801.28	4+
		3855.6 8	80 40	2112.323	2+				3637.0 <i>4</i>	65 12	2790.55	$(0)^{+}$

γ (116Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
6428.05		3842.6 <i>4</i>	70 20	2585.564	1+	6754.07		5461.1 <i>4</i>	89 22	1293.560	2+
		4162.4 6	100 25	2266.159	3-	7035.01		4449.50 12	63 9	2585.564	
6436.31		3592.8 <i>3</i>	100 10	2843.82	2+			4769.4 10	26 14	2266.159	3-
		3646.6 <i>6</i>	20 10	2790.55	$(0)^{+}$			4809.42 10	100 11	2225.379	2+
		4209.8 5	46 13	2225.379	2+	7082.15	17^{-}	422.6 <i>1</i>	100 <i>3</i>	6659.52	16-
		5142.2 <i>4</i>	44 12	1293.560	2+			738.1 <i>I</i>	16.7 20	6344.08	15^{-}
6468.7		3677.7 4	100 <i>21</i>	2790.55	$(0)^{+}$	7173.9		3938.0 5	100 25	3236.02	0_{+}
		4076.9 <i>6</i>	70 19	2390.879	4+			5062.1 8	60 15	2112.323	2+
		4712.7 5	93 16	1756.864	0_{+}			5416.3 <i>6</i>	75 25	1756.864	0_{+}
		5176.4 <i>15</i>	58 <i>25</i>	1293.560	2+	7224.7		4135.8 4	100 <i>30</i>	3088.63	2+
6482.59		3393.8 <i>4</i>	43 14	3088.63	2+			5931.4 6	23 8	1293.560	2+
		3521.4 7	36 14	2960.03	2+	7229.2	16 ⁺	915.8 <i>1</i>	100	6313.4	14 ⁺
		3832.3 6	29 7	2650.438	2+	7246.3		5134.2 6	100 33	2112.323	2+
		4092.4 <i>4</i>	100 <i>21</i>	2390.879	4+			5952.3 6	100 33	1293.560	2+
		4257.5 7	29 7	2225.379	2+	7325.27		4674.6 <i>3</i>	100 17	2650.438	2+
		4725.6 <i>3</i>	57 14		0_{+}			4780.2 <i>15</i>	44 20	2545.71	(0^{+})
		5188.4 <i>4</i>	34 7	1293.560	2+			4934.0 <i>4</i>	50 11	2390.879	4+
6510.55		3720.5 6	44 13	2790.55	$(0)^{+}$			5298.4 <i>5</i>	71 18	2027.48	0_{+}
		3859.9 8	19 <i>13</i>	2650.438	2+	7457.3	(16^{+})	1143.9 2	100	6313.4	14 ⁺
		4483.12 23	100 <i>19</i>	2027.48	0_{+}	7659.94		4816.1 <i>3</i>	100 14	2843.82	2+
		5216.8 <i>1</i>	94 13	1293.560	2+			5114.1 <i>3</i>	92 17	2545.71	(0^{+})
6532.01		3351.4 5	69 <i>15</i>	3179.68	3 ⁺			5268.8 <i>4</i>	48 16	2390.879	4+
		4306.74 25	100 15	2225.379	2+	7692.77		5427.8 7	60 10	2266.159	3-
		5238.4 <i>6</i>	28 6	1293.560	2+			5467.1 2	100 10	2225.379	2+
6659.52	16-	315.4 <i>I</i>	100 <i>3</i>	6344.08	15^{-}			5580.6 <i>5</i>	50 10	2112.323	2+
		447 <i>1</i>	1.9 <i>4</i>	6213.01	14-	8227.9	18 ⁺	998.7 <i>1</i>	100	7229.2	16 ⁺
6663.1	(15^{+})	305.1 <i>I</i>	100	6358.0	(14^{+})	8585.6		1503.4 <i>I</i>	100	7082.15	17^{-}
6717.24		4959.7 <i>3</i>	32 49	1756.864	0_{+}	8661.2		1579.0 2	100	7082.15	17^{-}
		5423.60 11	100 12	1293.560	2+	9141.4		480.2 <i>1</i>	100	8661.2	
6754.07		3793.6 <i>6</i>	33 11	2960.03	2+	9321.9	(20^{+})	1094.0 <i>10</i>	100	8227.9	18 ⁺
		4641.5 2	100 22	2112.323	2+						

14

[†] Average of all available data; otherwise noted. [‡] From ce data in ¹¹⁶Sb decay and $(\alpha,2n\gamma)$. [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

$$^{116}_{50}{
m Sn}_{66}$$

2529.202

2112.323

1756.864

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao	NDS 75,99 (1995)	1-Feb-1993

 $Q(\beta^{-})=-3657 \ 3; \ S(n)=9326.42 \ 13; \ S(p)=9999 \ 5; \ Q(\alpha)=-4063.0 \ 7$ 2012Wa38

Note: Current evaluation has used the following Q record -3656.6 309326.3 149999 5 -4056 3 1993Au05.

¹¹⁸Sn <u>Levels</u>

Cross Reference (XREF) Flags

Α	¹¹⁸ In β^{-} decay (4.45 min)	H	116 Sn(t,p)	0	¹²² Te(d, ⁶ Li)
В	¹¹⁸ In β^{-} decay (5.0 s)	I	117 Sn(n, γ) E=res	P	$^{116}\text{Cd}(^{3}\text{He,n})$
C	¹¹⁸ In β^{-} decay (8.5 s)	J	117 Sn(d,p),(t,d)	Q	118 Sn(e,e')
D	¹¹⁸ Sb ε decay (3.6 min)	K	118 Sn(n,n' γ)	R	118 Sn (γ, γ')
E	¹¹⁸ Sb ε decay (5.00 h)	L	118 Sn(p,p'),(p,p' γ)	S	118 Sn(n,n')
F	Coulomb excitation	M	118 Sn(α,α'),(d,d'),(3 He, 3 He')	T	120 Sn(p,t)
G	116 Cd(α ,2n γ),(7 Li,p4n γ)	N	119 Sn(p,d),(d,t)		

E(level)‡	J^{π}	$T_{1/2}^{a}$	XREF	Comments
0.0 1229.666 <i>16</i>	0 ⁺ 2 ⁺	stable 0.485 ps <i>19</i>	ABCDEFGHIJKLMNOPQRST ABCDEFGHIJKLMNO QRST	μ =+0.04 20; Q=-0.05 14 μ : transient field integral PAC (1989Ra17). Q: Coul. ex. reorientation (1989Ra17). Deformation parameter=0.108 7. $T_{1/2}$: from Coul. ex. other: 0.46 ps 3 in (γ, γ') . J^{π} : L=2 in (t,p) and (α, α') , (d,d') , $({}^{3}He, {}^{3}He')$.
1758.31 [†] 3	0+	21 ps <i>3</i>	B D F HIJKLMNOP T	XREF: O(1780). J^{π} : E0 to 0 ⁺ . $T_{1/2}$: from Coul. ex. other: >0.5 ps in (n,n' γ).
2042.882† 19	2+	2.9 ps 4	AB D FG I KLM O T	XREF: M(1990). J^{π} : L=2 in (p,t) and (d, ⁶ Li). $T_{1/2}$: from Coul. ex. other: >1.1 ps in (n,n' γ).
2056.91 4	0+	<200 ps	B D F HIJKL NO R	J^{π} : E0 to 0 ⁺ . T _{1/2} : from centroid shift measurement in ¹¹⁷ Sn(d,p)
2120 15	(2 ⁺)		NO	(1981Ba05). Other: >0.7 ps in $(n,n'\gamma)$. E(level): from $(p,d),(d,t)$. J^{π} : L=(2) in $(d,{}^{6}\text{Li})$.
2280.342 21	4+	0.76 ps <i>13</i>	A C EFGH JKL NO Q T	J^{π} : L=4 in (p,p'),(p,p'γ). $T_{1/2}$: from Coul. ex. others: <0.7 ns in ¹¹⁸ Sb ε decay
2321.23 4	5-	21.7 ns 2	C E Gh Kl O	(5.00 h), >1.5 ps in (n,n'γ). μ =-0.300 25; Q=0.16 2 XREF: h(2324)l(2318). J ^π : J=5 from $\gamma\gamma(\theta)$ in ¹¹⁸ Sb ε decay (3.6 min), E1 γ to 4 ⁺ . T _{1/2} : from ¹¹⁸ Sb ε decay (5.00 h). Other: 22 ns 5 in ¹¹⁸ In β ⁻ decay (8.5 s). μ : differential PAC (1989Ra17). Other: -0.342 35 from integral PAC (1989Ra17).
2324.846 22	3-	0.19 ps +4-3	A Fh Klm O Q T	Q: differential PAC, value relative to Q=0.50 for ¹¹⁶ In (10 ⁺ 3548 level) and recalculated (1989Ra17). B(E3)↑=0.118 <i>10</i> XREF: h(2324)l(2318). B(E3) from Coul. ex.

E(level)‡	J^π	T _{1/2} <i>a</i>	XREF	Comments
	0			J^{π} : L=3 in (d, ⁶ Li) and (α , α'),(d,d'),(³ He, ³ He'). $T_{1/2}$: other: 2.1 ps 2 from B(E3) in Coul. ex.
2328.02 <i>3</i>	2+ &	>0.2 ps	AB D IJKL NO RS	
2403.22 3	2+	0.18 ps +8-4	AB D F I KL O	J^{π} : L=2 in (d, ⁶ Li) and (p,p'),(p,p' γ).
2408 3	4+		Н Ј О	J^{π} : L=4 in (t,p).
2488.871 [†] <i>19</i>	4+	>0.55 ps	A FGh KLmNO Q t	XREF: h(2489)m(2490)N(2470)t(2490).
2496.88 5	0+		D F hIJKLmNO t	J^{π} : L=4 in (d, ⁶ Li) and (p,p'),(p,p' γ). XREF: h(2489)m(2490)t(2490). J^{π} : E0 to 0 ⁺ .
				E(level): possible unresolved doublet in (d,p),(t,d).
2530			N	•
2574.91 <i>4</i>	7-	230 ns 10	C E GH KL O	μ =-0.689 4; Q=0.32
				μ: differential perturbed angular distribution, value does not include the Knight-shift correction
				(1989Ra17). Q: differential perturbed angular distribution, value
				relative to Q=0.41 for 3108 level (1989Ra17).
				J^{π} : L=7 in (t,p) and (p,p'),(p,p' γ).
				$T_{1/2}$: from in ¹¹⁸ Sb ε decay (5.00 h). Other: 245
				ns 40 in $(\alpha,2n\gamma)$, (⁷ Li,p4n γ).
2577 3	2+		J O	J^{π} : L=2 in (d, 6 Li).
2677.35 <i>3</i>	2+	>0.28 ps	A D IJKL O T	J^{π} : L=2 in $(p,p'),(p,p'\gamma)$.
2725 3	$1^+, 2^+, 3^+$	•	h J nOqt	XREF: h(2733)n(2740)q(2736)t(2730).
				J^{π} : L=2 in (d,p),(t,d).
2733.789 20	4+	0.5 ps +6-2	A GhI KLM O q t	XREF: h(2733)q(2736)t(2730).
2720.01.4	1+&	0.10	1 70	J^{π} : L=4 in (p,p'),(p,p' γ).
2738.01 4	4-&	0.19 ps +16-6	h JK nqt	XREF: h(2733)n(2740)q(2736)t(2730).
2773.94 4	•		JKL	IT. I (5): (4) (4.4)
2817 3	$(4^-,5^-,6^-)$		J 	J^{π} : L=(5) in (d,p),(t,d).
2817.17 <i>4</i> 2878.70 <i>5</i>	(3 ⁻)& 4,5,6 ⁺		K A Gh K t	XREF: h(2877)t(2900).
2070.70 3	4,5,0		A GII K	J^{π} : D+Q γ to 5 ⁻ , strong γ to 4 ⁺ .
2889 [#] 10	(8 ⁺)		h L t	XREF: h(2877)t(2900).
2007 10	(0)		n E	J^{π} : L=(8) in (p,p'),(p,p' γ).
2903.87 4	2+	0.077 ps +20-13	HiJKL o t	XREF: i(2911)o(2918)t(2900).
				J^{π} : L=2 in $(p,p'),(p,p'\gamma)$.
2929.72 7	$0^+, 1^+$		D h JK oqt	XREF: h(2927)o(2918)q(2920)t(2900). J ^π : L=0 in (d,p),(t,d).
2934 [#] 10	(2 ⁺)		h L Nog t	XREF: h(2927)o(2918)q(2920)t(2900).
2754 10	(2)		n Ewoq c	J^{π} : L=(2) in (p,p'),(p,p' γ).
2963.437 20	4+&		A HJK qt	XREF: q(2970)t(2960).
2972 3	4 ⁺		J LM q t	XREF: M(2960)q(2970)t(2960).
			· ·	J^{π} : L=4 in $(p,p'),(p,p'\gamma)$.
2991? 3			J	
2999.45 [†] 7	6+		A G K	J^{π} : stretched γ to 4^{+} .
3015.21? 6	1,2,3		K	J^{π} : d γ to 2^+ .
3020 <i>3</i>	0+		J P	J^{π} : L=0 in (³ He,n).
3048.35? 5	4&		h K mn q	XREF: h(3055)m(3060)n(3040)q(3050).
3052.16 7	7+,8+		Gh mn q	XREF: h(3055)m(3060)n(3040)q(3050).
2057.22.7	2+	0.11 : 5 2	L TWI	J^{π} : E1 γ to 7^{-} ; no γ to 4^{+} .
3057.22 6	2+	0.11 ps +5-3	h JKLm q	XREF: $h(3055)m(3060)q(3050)$.
				J^{π} : L=2 in $(p,p'),(p,p'\gamma)$.

E(level)‡	\mathbf{J}^{π}	$T_{1/2}^{a}$		XREF	Comments
3089.21 4	+&			K	
3108.06 22	9+,10+	2.52 μs 6		G L	 g=-0.2432 7; Q=0.41 g-factor: differential perturbed angular distribution, value does not include the Knight-shift correction (1973IsZQ). Q: differential perturbed angular distribution, value derived from experimental B(E2) (1989Ra17). J^π: E2 γ to 7⁺,8⁺; no γ to 6⁺. T_{1/2}: from (α,2nγ),(⁷Li,p4nγ).
3137.48 <i>15</i> 3159.35 <i>15</i>	0 ⁺ 4 ⁺		B D A	H JKL	J^{π} : L=0 in (t,p), log $ft=5.45$ from 1 ⁺ , no γ to 0 ⁺ . J^{π} : γ to 2 ⁺ , log $f^{1u}t$ from 5 ⁺ not allows 3 ⁻ .
3190 [@] 20	4		А	M	J. y to 2, log j t from 3 flot allows 3.
3227.67 7	2 ⁺ ,3 ⁺ &			K	
3228.37 8	2+& 2+&	0.15 ps +14-10		K	
3231 [#] 10	(8^+)	0.15 ps 117 10		L	J^{π} : L=(8) in (p,p'),(p,p' γ).
3237 3	(0)			J Lm	XREF: m(3250).
3252.03 7	(3^{+})	0.08 ps +6-3		K n	XREF: n(3250).
	. 0-				J^{π} : L=(4) in (p,d),(d,t); D+Q γ to 2 ⁺ .
3262.53 <i>6</i>	3+&			JK n	XREF: n(3250).
3270.67 11	1&	0.005 ps 3		K	VDEE 1/2255 (2200)
3274 <i>3</i> 3286 <i>3</i>				J lm J lm	XREF: 1(3277)m(3290). XREF: 1(3277)m(3290).
3308.54 <i>15</i>	2+&			Klm	XREF: I(3217)III(3290). XREF: I(3310)m(3290).
3317 3	0-,1-,2-			J 1	XREF: 1(3310).
					J^{π} : L=1 in (d,p),(t,d).
3344 <i>3</i>	(3-)			J L	J^{π} : L=(3) in $(p,p'),(p,p'\gamma)$.
3355.86 <i>13</i>	2+&			h K	XREF: h(3369).
3363 <i>3</i>	$0^+, 1^+$			h J	XREF: $h(3369)$. J^{π} : L=0 in (d,p),(t,d).
3374.60 <i>4</i>	4+		A	h	XREF: h(3369). J ^{π} : log ft =5.78 $gtar$ from 5 ^{t} , strong $gtar$ to 2 ^{t} .
3386.30 8	3+ &			JK1	XREF: I(3383).
2200					Supports 3 ⁺ .
3389 <i>3</i> 3409 <i>3</i>				J 1 J	XREF: 1(3383).
3427.11 <i>10</i> 3441?	3+			JKL N J	J^{π} : L=4 in (p,d),(d,t); D+Q γ to 2 ⁺ .
3460.49 5	4+		Α	KL	J^{π} : log ft=5.87 5 from 5 ⁺ , strong γ to 2 ⁺ .
3462.63 11	$(2^-,3^-)$			JK	J^{π} : L=(3) in (d,p),(t,d); γ to 2 ⁺ .
3475 <i>3</i> 3540.57 <i>9</i>	1+,2+,3+	0.11 ps +23-5		J JK mNo	XREF: $m(3530)N(3520)o(3549)$. J^{π} : L=2 in (p,d),(d,t).
3541 [#] 10	$(6^+,7^-)$			Lm o	XREF: m(3530)o(3549). J^{π} : L=(6,7) in (p,p'),(p,p' γ).
3558.9 10	7-,8-,9-		E	L o	XREF: o(3549). J^{π} : log ft =5.55 from 8 $^{-}$.
3576 <i>3</i>	2-,3-,4-			h J	XREF: h(3581). J^{π} : L=3 in (d,p).
3592.54 5	4+		A	h	XREF: h(3581). J^{π} : log ft =5.79 4from 5 ⁺ , strong γ to 2 ⁺ .
3597 <i>3</i>	2+			J L	J^{π} : L=2 in (p,p') , $(p,p'\gamma)$ and (d,p) , (t,d) .
3635 <i>3</i>				J m	XREF: m(3650).
3643 <i>3</i> 3673.67 <i>15</i>	4+			J m JKL N	XREF: $m(3650)$. J^{π} : L=4 in (p,p') .
20,2,01 13	•			J-144 41	· · · · · · · · · · · · · · · · · · ·

E(level)‡	${ m J}^{\pi}$	$T_{1/2}^{a}$		XREF	Comments
3692.0 [†] 4 3696.78 17 3704.84 8	8 ⁺ 1 ⁺ ,2 ⁺ 4 ⁺	0.11 ps +38-6	G A	K N	J ^π : stretched E2 γ to 6 ⁺ . J ^π : L=2 in (p,d),(d,t); γ to 0 ⁺ . XREF: m(3720). J ^π : log ft =5.89 g from 5 ⁺ , strong g to 2 ⁺ .
3705 [#] 10	(6 ⁺)			Lm	XREF: m(3720).
3709.87 <i>15</i>	1+,2+			K1mN	J^{π} : L=(6) in (p,p'),(p,p' γ). XREF: $I(3720)m(3720)$. J^{π} : E2 γ to 0 ⁺ .
3721 <i>3</i>	0-,1-,2-			J lm O	$XREF: 1(3720)m(3720).$ $J^{\pi}: L=1 \text{ in } (d,p).$
3750 <i>3</i> 3753.85 <i>6</i>	$(0^{-} \text{ to } 3^{+})$ 4,5,6		A	J L N	J^{π} : L=(2) in (p,d),(d,t); L=(1,2) in (d,p),(t,d). J^{π} : log ft =5.77 from 5^+ .
3762.13 <i>14</i> 3773 [#] <i>10</i>	1,2,3 4 ⁺		Λ	K	J^{π} : D+Q γ to 2 ⁺ .
3784 <i>3</i>	$(0^+,1^+)$		٨	L J L N	J^{π} : L=4 in (p,p'),(p,p' γ). J^{π} : L=(0) in (d,p),(t,d).
3816.64 <i>9</i> 3838.88 <i>14</i>	1 ⁺ ,2 ⁺ ,3 ⁺ 4		A A	JK lm	J^{π} : L=2 in (d,p),(t,p). XREF: l(3847)m(3840). J^{π} : log ft =6.14 from 5 ⁺ , γ to 2 ⁺ .
3857.0 4	1,2+			JKlm	$XREF: 1(3847)m(3840).$ $J^{\pi}: strong \ \gamma \text{ to } 0^{+}.$
3889 <i>3</i>	(0-,1-,2-)			JLn	$XREF: n(3890).$ $J^{\pi}: L=(1) \text{ in } (d,p),(t,d).$
3898.90 <i>20</i> 3916 <i>3</i>	1+,2+,3+			KL n J	XREF: n(3890). $J^{\pi}: L=2 \text{ in } (d,p),(t,d).$
3944.4 <i>4</i> 3977 [#] <i>10</i>	1+,2+			JKL N	J^{π} : L=2 in (d,p),(t,d); E2 γ to 0 ⁺ .
3995 <i>3</i> 4044.6 <i>3</i>	$0^-, 1^-, 2^-$ $(1^+, 2^+, 3^+)$			L J L N JKLMN	J^{π} : L=1 in (d,p),(t,d). J^{π} : L=(2) in (p,d),(d,t), but L=(1,2) in (d,p),(t,d).
4109.0 <i>3</i> 4126.7 <i>4</i> 4203 <i>3</i>	0 ⁻ ,1 ⁻ ,2 ⁻ 1 ⁺ ,2 ⁺ 1 ⁺ ,2 ⁺ ,3 ⁺			JKL JK N J M	J^{π} : L=1 in (d,p),(t,d). J^{π} : L=2 in (d,p),(t,d); γ to 0 ⁺ . J^{π} : L=2 in (d,p),(t,d).
4233 <i>3</i> 4252 <i>3</i>	$(2^-,3^-,4^-)$			J J	J^{π} : L=(3) in (d,p),(t,d).
4288 <i>3</i> 4313 <i>3</i>				J J	
4326 <i>3</i> 4352 <i>3</i>				J J	
4365 <i>3</i> 4391 <i>3</i>				J J	
4408 <i>3</i> 4422 <i>3</i>	$(0^+,1^+)$			J J P	XREF: P(4450).
4448 <i>3</i> 4472 <i>3</i> 4484 <i>3</i>	$(1^+, 2^+, 3^+)$ $(0^-, 1^-, 2^-)$			J J J	J^{π} : L=(0) in (d,p),(t,d). J^{π} : L=(2) in (d,p),(t,d). J^{π} : L=(1) in (d,p),(t,d).
4495.4 [†] 5 4507 3 4523 3	(10 ⁺)		G		J^{π} : stretched (E2) to 8^{+} .
4540 <i>3</i> 4573 <i>3</i> 4604 <i>7</i>	(0 ⁻ to 3 ⁺) (0 ⁻ ,1 ⁻ ,2 ⁻)			J M J R	J^{π} : L=(1,2) in (d,p),(t,d). J^{π} : L=(1) in (d,p),(t,d).
4617 <i>3</i> 4637 <i>3</i> 4696 <i>3</i> 4706 <i>3</i>	1+,2+,3+]]]	J^{π} : L=2 in (d,p),(t,d).

¹¹⁸Sn Levels (continued)

E(level) [‡]	\mathbf{J}^{π}	$T_{1/2}^{a}$	XI	REF		Comments
4798 <i>3</i>	3-			J M		J^{π} : L=3 in (α,α') , (d,d') , $(^{3}He,^{3}He')$; but L=(0,3) in (d,p) , (t,d) .
4832 <i>3</i>	$0^+, 1^+$			J		$J^{\pi}: L=0 \text{ in } (d,p),(t,d).$
4862 <i>3</i>	$0^+, 1^+$]		J^{π} : L=0 in (d,p),(t,d).
4879 <i>3</i>	$0^{+},1^{+}$]		J^{π} : L=0 in (d,p),(t,d).
4940 <i>3</i>	$(2^{-},3^{-},4^{-})$			J		J^{π} : L=(3) in (d,p),(t,d).
5006 <i>3</i>	(= ,0 ,.)]		V · Z (e) iii (a,p),(0,a).
5014 <i>3</i>	2-,3-,4-			J		J^{π} : L=3 in (d,p),(t,d).
5025 <i>3</i>	_ ,- ,-]		(-) _F //(-,-/-)
5043 <i>3</i>				J		
5068 <i>3</i>	$(2^-,3^-,4^-)$			J		J^{π} : L=(3) in (d,p),(t,d).
5098 <i>3</i>	, , , ,			J M		() (1) ()
5116 <i>3</i>	$(0^- \text{ to } 3^+)$			J		J^{π} : L=(1,2) in (d,p),(t,d).
5142 <i>3</i>	(,			J		
5150 <i>3</i>				J		
5163 <i>3</i>				J		
5181 <i>3</i>				J		
5193 <i>3</i>				J		
5208 <i>3</i>				J		
5379.4? [†] <i>12</i>	(12^+)		G			J^{π} : stretched γ to (10^+) .
5400 [@] 80	3-			M		J^{π} : L=3 in (α, α') , (d, d') , $({}^{3}He, {}^{3}He')$.
6325 7	1	5.7 fs 24			R	E(level): from (γ, γ') .
						J^{π} : from $\gamma(\theta)$ in (γ, γ') .
						$T_{1/2}$: from (γ, γ') .
6.9×10^{3} @ 4	3-			M		J^{π} : L=3 in (α, α') , (d, d') , $({}^{3}He, {}^{3}He')$.
6988 <i>5</i>	1-	2.9 fs 6			R	E(level): from (γ, γ') .
						J^{π} : from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (γ, γ') .
						$T_{1/2}$: from (γ, γ') .
7010 <i>5</i>	1				R	E(level): from (γ, γ') .
						J^{π} : from $\gamma(\theta)$ in (γ, γ') .
$12.35 \times 10^3 \ 20$					Q	E(level): from (e,e') .
$15.55 \times 10^3 \ 20$					Ô	E(level): from (e,e') .
24.3×10^3 @ 15	(3^{-})			M		J^{π} : L=3 in (α, α') , (d, d') , $({}^{3}He, {}^{3}He')$.
27.3×10 I3	(3)			11		$J \cdot L = J \cdot \Pi (\alpha, \alpha), (\alpha, \alpha), (\Pi C, \Pi C).$

 $^{^{\}dagger}$ Band(A): quasi-rotational band.

[†] From a least-squares fit to adopted $E(\gamma's)$ for levels connecting with γ -transitions. Others from $^{117}Sn(d,p)$,(t,d), except as noted.

[#] From (p,p'), $(p,p'\gamma)$.

@ From (α,α') ,(d,d'), $(^3He,^3He')$.

[&]amp; From $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\text{n},\text{n}'\gamma)$.

^a From $(\text{n},\text{n}'\gamma)$ unless otherwise noted.

$\gamma(^{118}Sn)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}^r	Mult. ^C	δ^{c}	α^{d}	Comments
1229.666	2+	1229.68 [‡] 2	100	0.0	E2			B(E2)(W.u.)=12.1 5 Mult.: from γ (pol) in ¹¹⁸ In β ⁻ decay (8.5 s).
1758.31	0+	528.73 [@] 3	100	1229.666 2	E2		0.00638	B(E2)(W.u.)=19 3
								E _{γ} : other: 528.83 2 in $(n,n'\gamma)$. Mult.: from $\alpha(K)$ exp in ¹¹⁸ Sb ε decay (3.6 min).
		1758.05 [@] 5		0.0				Mult.: from $\gamma\gamma(\theta)$ in ¹¹⁸ Sb ε decay (3.6 min).
2042.882	2+	284.66 12	2.5 2	1758.31 0			0.0422	$\alpha(\rm K) = 0.0354; \; \alpha(\rm L) = 0.00554; \; \alpha(\rm M) = 0.00109; \; \alpha(\rm N+) = 0.00024 \; B(E2)(\rm W.u.) = 39 \; 7$
		813.22 [‡] 2	100.0 24	1229.666 2	E2+M1	-2.34 16		B(M1)(W.u.)=0.00112 21; B(E2)(W.u.)=6.9 10
		2042.90 [‡] 5	92.2 25	0.0	E2			B(E2)(W.u.)=0.075 11
								I _γ : others: 50 33 in ¹¹⁸ Sb ε decay (3.6 min), 54 15 in ¹¹⁸ In β ⁻ decay (5.0 s), 85 12 in $(\alpha, 2n\gamma)$, (⁷ Li, p4n γ).
2056.91	0^{+}	298.58 [@] 4		1758.31 0	E0			Mult.: from $\gamma\gamma(\theta)$ in ¹¹⁸ Sb ε decay (3.6 min).
		827.30 [@] 6	100	1229.666 2	E2			B(E2)(W.u.)>0.21 E _{γ} : other: 820 in (γ, γ') .
		2056.5 [@] 5		0.0 0	E0			Mult.: from $\gamma\gamma(\theta)$ in ¹¹⁸ Sb ε decay (3.6 min).
2280.342	4 ⁺	237.6 [#] 5	0.05# 2	2042.882 2			0.0774	$\alpha(K)$ =0.0641; $\alpha(L)$ =0.0107; $\alpha(M)$ =0.00212; $\alpha(N+)$ =0.00046 B(E2)(W.u.)=14 7
		1050.65 [#] 3	100 [#] 3	1229.666 2	E2			B(E2)(W.u.)=17 3
2321.23	5-	40.8 <mark>&</mark> 1	100 7	2280.342 4	E1		2.21	$\alpha(K)=1.88; \alpha(L)=0.266; \alpha(M)=0.0514$
								$B(E1)(W.u.)=5.7\times10^{-5}$ 7
		0						Mult.: from α in $(\alpha,2n\gamma)$, $(^{7}\text{Li},p4n\gamma)$.
		1091.51 <mark>&</mark> 8	12 <i>I</i>	1229.666 2	E3			B(E3)(W.u.)=1.32 15
								E _y : other: 1091.84 7 in $(n,n'\gamma)$.
2324.846	3-	1095.19 2	100 4	1229.666 2	E1(+M2)	+0.026 6		Mult.: from $\alpha(K)$ exp in ¹¹⁸ Sb ε decay (5.00 h). B(E1)(W.u.)=(0.00111 25); B(M2)(W.u.)=(2.9 11)
2321.010	3	2324.7 2	1.1 <i>I</i>	0.0 0		10.020 0		$B(E3)(W.u.)=2.3\times10^2$ 6
								Mult.: from $\alpha(K)$ exp in ¹¹⁸ Sb ε decay (5.00 h).
2328.02	2+	285.22 [#] 11	5.1 [#] 6	2042.882 2	+			
		1098.2 [#] 5	100 [#] 19	1229.666 2	E2(+M1)			B(M1)(W.u.)<0.033; B(E2)(W.u.)<20 Mult.: $1/\delta = +0.018$ 10 in $(n,n'\gamma)$.
		2327.82 [#] 8	23.4 [#] 8	0.0	E2			I_{γ} : others: 13 3 in ¹¹⁸ Sb ε decay (3.6 min), 18.4 7 in (n,n' γ).
2403.22	2+	360.4 2	1.8 2	2042.882 2	+			
		1173.59 [‡] <i>5</i>	100 <i>3</i>	1229.666 2	M1+E2	+1.07 9		B(M1)(W.u.)=(0.035 16); B(E2)(W.u.)=(22 10)
2488.871	4+	208.52‡ 2	52 7	2280.342 4	M1+E2	-0.17 4	0.0762 7	$\alpha(K)$ =0.0659 5; $\alpha(L)$ =0.0084 1; $\alpha(M)$ =0.00163 3; $\alpha(N+)$ =0.00037 1
								$B(M1)(W.u.)<1.0$; $B(E2)(W.u.)<7.2\times10^2$

γ (118Sn) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	$\underline{\hspace{1cm}}_{\gamma}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^c	δ^c	α^d	Comments
2488.871	4+	445.99 [‡] 1	100 3	2042.882 2+	E2		0.0103	$\alpha(K)$ =0.0088; $\alpha(L)$ =0.00121; $\alpha(M)$ =0.00024 B(E2)(W.u.)<7.6×10 ²
		1259.19‡ 2	67 3	1229.666 2 ⁺	E2			B(E2)(W.u.)<7.0×10 B(E2)(W.u.)<2.8
2496.88	0+	1267.23 [@] 5	100	1229.666 2 ⁺	E2			E _{γ} : other: 1267.57 3 in (n,n' γ).
2490.00	U	1207.25	100	1229.000 2	EZ			Mult.: from $\alpha(K)$ exp 1 n 118 Sb ε decay (3.6 min).
		2496.56 [@] 20		0.0 0+	E0			Mult.: from $\gamma\gamma(\theta)$ in ¹¹⁸ Sb ε decay (3.6 min).
2574.01	7-	253.678 ^{&} 10	100				0.0620	
2574.91	7-	253.6/8 10	100	2321.23 5	E2		0.0620	$\alpha(K)$ =0.0516; $\alpha(L)$ =0.0084; $\alpha(M)$ =0.00166; $\alpha(N+)$ =0.00036 B(E2)(W.u.)=0.064 3
2677.35	2+	1447.66 <i>3</i>	86 <i>4</i>	1229.666 2+	M1+E2	+2.46 +17-13		B(M1)(W.u.)<0.0019; B(E2)(W.u.)<3.7
	_							I _γ : others: 120 $I6$ (¹¹⁸ In $β$ ⁻ decay (4.45 min)), 180 90 (¹¹⁸ Sb $ε$ decay (3.6 min)).
		2677.35 4	100 4	$0.0 0^{+}$	E2			B(E2)(W.u.)<0.23
2733.789	4+	1504.13 [‡] 2	100	1229.666 2+	E2			B(E2)(W.u.)=46
2738.01	1+	1508.33 <i>3</i>	100 5	1229.666 2+	M1+E2	-0.8 + 9 - 5		B(M1)(W.u.)=0.015 17; B(E2)(W.u.)=3 5
		2738.10 <i>10</i>	34.3 <i>15</i>	$0.0 0^{+}$	M1			B(M1)(W.u.)=0.0014 13
2773.94	4-	449.07 3	42.4 12	2324.846 3	M1+E2	+0.010 16	0.0104	$\alpha(K)=0.0090; \ \alpha(L)=0.00110; \ \alpha(M)=0.00021$
2017 17	(2-)	452.72 2	100 3	2321.23 5	M1+E2	+0.092 9	0.0101	$\alpha(K)=0.0088; \ \alpha(L)=0.00108; \ \alpha(M)=0.00021$
2817.17	(3-)	492.32 <i>3</i> 1587.1 <i>4</i>	100 <i>3</i> 2.7 <i>5</i>	2324.846 3 ⁻ 1229.666 2 ⁺	D+Q D			
2878.70	4,5,6+	557.23 7	43 2	2321.23 5	D+Q			
2070.70	1,5,0	598.47 5	100 3	2280.342 4+	DiQ			
2903.87	2+	1674.10 6	37 2	1229.666 2 ⁺	E2(+M1)			B(M1)(W.u.)=(0.0082 22); B(E2)(W.u.)=(2.2 6) δ: 17 +33-9 or -0.40 10.
		2903.90 5	100 4	$0.0 0^{+}$	E2			B(E2)(W.u.)=0.76 20
2929.72	$0^+, 1^+$	1700.04 <i>6</i>	100	1229.666 2+				
2963.437	4+	229.65 [#] 1	1.38 [#] 4	2733.789 4+				
		474.57 [#] 2	5.30 [#] 18	2488.871 4+				
		560.21 [#] 2	1.75 [#] 7	2403.22 2+				
		635.40 [#] 2	3.13 [#] <i>11</i>	2328.02 2+				
		638.61# 2	2.42 [#] 7	2324.846 3				
		683.06 [#] 2	100# 3	2280.342 4+	M1+E2	+0.09 5		
		920.57 [#] 4	$0.89^{\#} 4$	2042.882 2 ⁺	IVI I †E∠	TU.U7 J		
2999.45	6 ⁺	920.57" 4 510.5 ^a 1	0.89" 4 100 <i>17</i>	2042.882 2* 2488.871 4 ⁺				I_{γ} : from $(\alpha,2n\gamma)$, $(^{7}Li,p4n\gamma)$.
2999.4J	U	719.15 8	60 3	2488.871 4* 2280.342 4*	E2			Γ_{γ} : from $(\alpha, 2\pi\gamma)$, $(\Gamma_{1}, p4\pi\gamma)$. Γ_{γ} : weighted av from $(\pi, \pi'\gamma)$ and Γ_{18} In β decay (4.45)
		/19.13 0	00 3	220U.342 4	ĽZ			E_{γ} : weighted av from (ii,ii γ) and E_{γ} in β decay (4.45 min). E_{γ} : from $(\alpha, 2n\gamma)$, (7 Li,p4n γ).
3015.21?	1,2,3	972.32 5	100	2042.882 2+	D			y (a,511/),(E,p 111/).
	, ,-			-				

γ (118Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult. ^C	δ^{c}	α^{d}	Comments
3048.35?	4	768.00 4	100	2280.342 4+	D+Q			7
3052.16	7 ⁺ ,8 ⁺	477.25 ^a 6	100	2574.91 7	E1			Mult.: from $\alpha(K)$ exp in $(\alpha,2n\gamma),(^7Li,p4n\gamma)$.
3057.22	2+	1827.36 <i>12</i>	22.7 12	1229.666 2+	M1+E2			B(M1)(W.u.)=0.0030 14; B(E2)(W.u.)=0.7 4
		3057.22 6	100 4	0.0 0+	E2			δ: -0.7 +3-2 or -5 +6-2. B(E2)(W.u.)=0.46 21
3089.21	+	808.87 <i>3</i>	100 4	2280.342 4+	M1+E2	+1.37 14		D(EZ)(W.u.) = 0.40 ZI
3108.06	$9^+,10^+$	55.9 ^a 2	100	3052.16 7+,8+	E2	11.57 14	12.9	$\alpha(K)=6.81$; $\alpha(L)=4.89$; $\alpha(M)=1.00$; $\alpha(N+)=0.203$
3100.00	,,10	55.7 2	100	3032.10 7 ,0	22		12.7	B(E2)(W.u.)=0.86 4
								Mult.: from α in $(\alpha,2n\gamma)$, (⁷ Li,p4n γ).
3137.48	0^{+}	1907.80 <i>15</i>	100	1229.666 2+				E _V : other: 1907.2 2 in ¹¹⁸ Sb ε decay (3.6 min).
3159.35	4+	756.4 [#] 4	52 [#] 21	2403.22 2+				By coner 150712 2 m so a decay (ero min).
3137.33	7	1116.42 [#] 16	100 [#] 13	2042.882 2+				
3227.67	2+,3+	1116.42" 16 1997.99 6	100 13	1229.666 2 ⁺	E2			
3228.37	2 ,3 2+	3228.32 8	100	$0.0 0^{+}$	E2 E2			B(E2)(W.u.)=0.3 3
3252.03	(3^{+})	2022.35 6	100	1229.666 2 ⁺	D+Q			δ : $1/\delta = +0.14$ 4.
3262.53	3+	1219.64 5	100	2042.882 2+	M1+E2	+0.14 4		0. 1/0-10.14 4.
3270.67	1	3270.62 11	100	0.0 0+	D			
3308.54	2+	2078.82 16	100 5	1229.666 2+	M1+E2			δ : -0.21 9 or +4 2.
		3308.6 <i>3</i>	27 3	$0.0 0^{+}$	E2			
3355.86	2+	2126.19 <i>13</i>	100 6	1229.666 2 ⁺	M1+E2			δ : -0.34 9 or $1/\delta$ =0.008 9.
		3355.6 4	25 3	$0.0 0^{+}$	E2			
3374.60	4+	411.44 [#] <i>18</i>	4.6 [#] 9	2963.437 4 ⁺				
		885.66 [#] 8	32.8 [#] 25	2488.871 4+				
		971.44 [#] <i>4</i>	44 [#] 8	2403.22 2+				
		1094.3 [#] 5	100 [#] 3	2280.342 4+				
		2144.64 [#] 9	15.0 [#] 6	1229.666 2 ⁺				
3386.30	3 ⁺	1058.27 7	100	2328.02 2+	M1+E2			δ : $1/\delta = -0.09 \ 2$.
3427.11	3+	1384.24 <i>15</i>	100 5	2042.882 2 ⁺	M1+E2 M1+E2			0. 1/0=-0.09 2.
3427.11	3	2197.41 12	98 5	1229.666 2 ⁺	M1+E2			
3460.49	4+	971.44 [#] 4	96 [#] 21	2488.871 4+	1111122			
3400.49	4	1132.49 [#] 11	30 [#] 3					
				2328.02 2+				
		1180.18# 7	49# <i>3</i>	2280.342 4+	E2			I_{γ} : 85 6 in $(n,n'\gamma)$.
		1418.03 [#] 29	8 [#] 2	2042.882 2+				
		2230.76 [#] 7	100 [#] 3	1229.666 2+	E2			
3462.63	$(2^-,3^-)$	1419.74 <i>10</i>	100	2042.882 2+				
3540.57	$1^+, 2^+, 3^+$	2310.88 8	100	1229.666 2+	M1+E2			
3558.9	7-,8-,9-	984.0 <mark>&</mark> <i>10</i>	100	2574.91 7-	(M1,E2)			Mult.: from $\alpha(K)$ exp in ¹¹⁸ In β^- decay (4.45 min).

 ∞

γ (118Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^c	Comments
3592.54	4+	858.84 [#] 19	42 [#] 7	2733.789	4+		
	•	1312.22 [#] 6	67 [#] 3	2280.342			
		1549.63 [#] 6	100 [#] 4	2042.882			
		2362.78 [#] 12	24# 1	1229.666			
3673.67	4+	1393.40 20	50 7	2280.342	2 4 ⁺		
5075.07	•	2443.90 20	100 8	1229.666			
3692.0	8+	692.5 ^a 4	100	2999.45	6 ⁺	E2	Mult.: from $\alpha(K)$ exp in $(\alpha,2n\gamma),(^7Li,p4n\gamma)$.
3696.78	1+,2+	2466.9 <i>3</i>	32 5	1229.666	2+	M1+E2	
		3696.8 2	100 7	0.0	0_{+}		
3704.84	4+	1301.62 [#] <i>16</i>	37 # 4	2403.22	2+		
		1377.09 [#] 20	25 [#] 3	2328.02	2+		
		1424.7 [#] 4	14 [#] 3	2280.342	4+		
		1661.93 [#] 21	27 # 4	2042.882			
		2475.06 [#] 10	100 [#] 5	1229.666			
3709.87	1+,2+	1381.79 16	100 7	2328.02	2 ⁺	M1+E2	
	- ,-	3710.1 4	63 6	0.0	0+	E2	
3753.85	4,5,6	1264.96 [#] 8	78 [#] 5	2488.871	4+		
	, ,	1473.50 [#] 7	100 [#] 5	2280.342			
3762.13	1,2,3	2532.43 14	100	1229.666		D+Q	
3816.64	$1^+, 2^+, 3^+$	2586.94 [‡] 8	100	1229.666		M1+E2	
3838.88	4	2609.18 [#] <i>14</i>	100 [#]	1229.666			
3857.0	1,2+	2627.3 5	84 10	1229.666			
	•	3857.0 7	100 10	0.0	0_{+}		
3898.90		2669.20 20	100	1229.666			
3944.4	1+,2+	2714.7 5	100 11	1229.666	2+		
4044.6	$(1^+, 2^+, 3^+)$	3944.4 7	67 11	0.0 1229.666	0^{+}	E2	
4044.6	$(1^{+},2^{+},3^{+})$ $0^{-},1^{-},2^{-}$	2814.9 <i>3</i> 2879.3 <i>3</i>	100 100	1229.666			
4126.7	$1^{+},2^{+}$	2897.1 <i>4</i>	100 7	1229.666	2 ⁺		
.120.7	- ,-	4126.3 9	36 7	0.0	0^{+}		
4495.4	(10^{+})	803.4 ^a 3	100	3692.0	8+	(E2)	Mult.: from $\alpha(K)$ exp and $\gamma(\theta)$ in $(\alpha,2n\gamma),(^7Li,p4n\gamma)$.
4604	•	4604 ^b 7	100 <mark>b</mark>	0.0	0^{+}	•	
5379.4?	(12^{+})	884 ^a 1	100	4495.4	(10^{+})		
6325	1	6325 ^b 7	100 <mark>b</mark>	0.0	0+	D	Mult.: from (γ, γ') .
6988	1-	4672 ^b 5	3.4 ^b 7	2328.02	2+		9.7.7

9

γ (118Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult. ^C	Comments
6988	1-	5762 ^b 3	20.1 ^b 19	1229.666 2+		
		6988 ^b 5	100 ^b	$0.0 0^+$	E1	B(E1)(W.u.)= $2.3 \times 10^{-6} 5$ Mult.: from (γ, γ') .
7010	1	5780 ^b 10 7010 ^b 10	25 ^b 4 100 ^b 5	1229.666 2 ⁺ 0.0 0 ⁺	D,Q D	Mult.: from (γ, γ') . Mult.: from (γ, γ') .

[†] From $(n,n'\gamma)$, except where otherwise noted.

 $^{^{\}ddagger}$ Weighted av of E(γ 's) from β ⁻ decay (4.45 min) and (n,n' γ). Relative photon branching is also the weighted av.

[#] From β^- decay (4.45 min).

[@] From ε decay (3.6 min).

[&]amp; From ε decay (5.00 h). Relative photon branching is also from the decay.

^a From $(\alpha,2n\gamma)$, (⁷Li,p4n γ).

^b From (γ, γ') .

^c From $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$, except where otherwise noted.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

$$^{118}_{50}{\rm Sn}_{68}$$

	,	Гуре	A	uthor	Histo	•	Citation	Literature Cutoff Date
			Kitao, Y. Tendo		A. Hashizu		6,241 (2002)	1-Dec-2001
		104.8 <i>11</i> ; S(p)= has used the fo				2Wa38 07.4 2210689	7 -4808 4	1995Au04.
					¹²⁰ Sn Lo	evels		
				Cross	Reference	(XREF) Flags		
	A B C D E F G	¹²⁰ In $β$ ⁻ deca ¹²⁰ In $β$ ⁻ deca ¹²⁰ In $β$ ⁻ deca ¹²⁰ Sb $β$ ⁺ deca ¹²⁰ Sb $ε$ decay Coulomb exci ¹¹⁸ Sn(t,p) ¹¹⁹ Sn(d,p),(t,c)	y (46.2 s) y (47.3 s) ay (15.89 min) v (5.76 d) itation	I J K L M N O	120 Sn(p,p' 120 Sn(n,n' 121 Sb(d, ³ H 122 Sn(p,t) 124 Te(d, ⁶ L (HI,xnγ) 120 Sn(γ,γ' 120 Sn(p,p'	He),(t,α)	$(\alpha, \alpha'), Q$ R S T U V	$^{120} Sn(e,e')$ $^{120} Sn(e,e'p) IAR$ $^{120} Sn(\pi^{+},\pi^{0}),(\pi^{-},\pi^{0})$ $^{121} Sb(\mu^{-},n\gamma)$ $^{122} Sn(^{16}O,^{18}O)$ $^{123} Sb(p,\alpha)$ $^{120} Sn(d,d')$
E(level) [†]	J^π	$T_{1/2}^{\ddagger}$	Х	KREF				Comments
0.0 1171.265 <i>15</i>	0 ⁺ 2 ⁺	stable 0.640 ps 12	ABCDEFGHIJ ABCDEFGHIJ			XREF: K(11) J^{π} : L(p,p')= μ : transient Q: Coulomb $T_{1/2}$: weight	field integral lot excitation orited av of 0.65 ps 14 (from	PAC (1989Ra17). entation (1989Ra17). 2 ps <i>10</i> (from B(E2) in Coul. DSA in Coul. ex.), and 0.63 ps
1875.108 <i>25</i>	0+	7.4 ps <i>10</i>	AB D FGHIJ	LM I	P		B(E2) (Coul. 6	ex.) in 1981Ba05.
2097.205 20	2+	1.3 ps 4	AB F HIJ	KLM OF	P			0+; Coul. ex. ex.) in 1981Ba05. Other: 0.7 ps
2159.931 25	0_{+}	>4 ps	AB D FGH J	LM O	P	J^{π} : L(t,p)=0	• /	OV.
2173				0		J^{π} : this level authors cl	l is not confiri aim that all le	med in $(n,n'\gamma)$, where the vels with J=1 to 5 below E=3100 00 are expected to be populated.
2194.299 <i>21</i>	4+	1.4 ps 2	BC EFG IJ	KLMN I	P	J ^{π} : L(p,t)=4 T _{1/2} : from I		ex.; other: >0.76 ps from
2284.27 6	5-	5.55 ns <i>3</i>	BC E G IJ	LMN		μ: differentia integral P. Q: differenti μ=0.094 4 J ^π : L(p,t)=5 T _{1/2} : from γ 20 (1960I (1962Bo1	AC (1989Ra17 al PAC; value 4 for ¹¹⁹ Sn (24; $\gamma\gamma(\theta)$ and $\gamma\gamma\gamma(t)$ in ε decay (61), 5.2 ns 46), 5.55 ns 25	Ra17). Other: $-0.37\ 5$ from 7). recalculated and relative to 4 level, $3/2^+$) (1989Ra17). ν (pol) in ε decay (5.76 d). by; weighted average of 6.05 ns (1961Bo13), 5.53 ns 6 (1967Ra26), and 5.55 ns 3 4 ns 23 (1963Cu04).
2297 [@] 15	0+,1+		Н	0		XREF: O(23 J^{π} : L(d,p)(t,	310). d)(pol d,p)=0.	

E(level) [†]	J^{π}	T _{1/2} ‡		XREF	Comments
2355.383 24	2+	0.33 ps +10-7	AB	GHIJ LM OP	XREF: O(2361).
2400.20.5	2-	0.116	_	FG 73 1W PO	J^{π} : L(p,t)=2.
2400.30 5	3-	0.116 ps 8	В	FG IJ LM PQ	J^{π} : L(p,t)=3.
2420.90 <i>3</i>	2+	0.46 ps +21-10	AB	H JKLM OP	J^{π} : E2 γ to 0^+ .
2465.632 <i>23</i>	4 ⁺	0.32 ps + 7 - 4	В	g IJ LM P	XREF: g(2478).
	_				J^{π} : L(p,t)=4.
2481.63 <i>6</i>	7-	11.8 μ s 5	BC	E g IJ LMN	XREF: g(2478).
					J^{π} : $L(p,t)=7$.
					$T_{1/2}$: from $X\gamma(t)$ (1960Ik01); others: 11 μ s <i>l</i> (1960Ik01), 11.2 μ s <i>l</i> 0 (1961Bo13).
2540 ^b 10	(5^{-})			I	J^{π} : L(p,p')=(5).
2587.25 <i>15</i>	0+	>0.34 ps		GH J LM O	J^{π} : L(p,t)=0.
2643.353 20	4+	>1.0 ps	В	IJ LM	J^{π} : L(p,t)=4.
2685.16 6	6+	•	В	g iJ	XREF: g(2693)i(2687).
				5	J^{π} : E1+M2 γ to 5 ⁻ ; $\gamma(\theta)$ and $\gamma(\text{lin. Pol})$ in
					$(n,n'\gamma)$.
2691 <i>3</i>	$(2^{+}\&6^{+})$			g i L	XREF: g(2693)i(2687).
	, , ,				J^{π} : $l(p,t)=2+6$.
					E(level): doublet in (p,t).
2695.94 6	4-		В	iJ M	XREF: i(2687).
					J^{π} : M1+E2 γ to 5 ⁻ , D+Q γ to 3 ⁻ .
2728.12 3	2+	0.24 ps +5-8	В	HIJ LM O	J^{π} : E2 γ to 0^{+} .
		ı			$T_{1/2}$: other: 0.15 ps 7 in (γ, γ') .
2749.71 6	6-		C	iJ	XREF: i(2753).
					J^{π} : M1+E2 γ' s to 5 ⁻ and 7 ⁻ .
2751 <i>3</i>	4+			i L	XREF: i(2753).
					J^{π} : L(p,t)=4.
2800.05 7	5-			НJL	J^{π} : L(p,t)=5.
2802 10	$(7^-,8^+)$			I	J^{π} : $L(p,p')=(7,8)$.
2835.39 <i>3</i>	1+	0.13 ps +6-3		HiJ l	XREF: i(2843)l(2840).
		•			J^{π} : L(d,p)(t,d)(pol d,p)=2; D γ to 0 ⁺ .
2836.52 7	(8^{+})	0.09 ps +4-2	C	iJ l N	XREF: i(2843)l(2840).
					J^{π} : D+Q γ to (7) ⁻ , (E2) γ from (10 ⁺).
2844.34 7	$(6)^{-}$			iJ	XREF: i(2843).
					J^{π} : M1+E2 γ to 5 ⁻ , D+Q γ to (7) ⁻ .
2857.61 8	(0^{+})			G J	J^{π} : from $\gamma(\theta)$ and population of this level in
					$(n,n'\gamma)$.
2902.22 22	(10^+)	6.26 μs 11		N	J^{π} : from syst on $J^{\pi}=10^+$ isomers in $^{116}\mathrm{Sn}^{-120}\mathrm{Sn}$
		•			isotopes.
					$T_{1/2}$: from (HI,xn γ).
2930.53 5	2+	0.11 ps 2		HIJ L O	J^{π} : E2 γ to 0^+ .
					$T_{1/2}$: from (γ, γ') .
2975.69 7	4-			J L	J^{π} : M1+E2 γ' s to 3 ⁻ and 5 ⁻ .
2997				H	
3009 9	2+			L	J^{π} : L(p,t)=2.
3034.75 9	(0^{+})			J O	J^{π} : from $\gamma(\theta)$ and population of this level in $(n,n'\gamma)$.
3057.946 24	4+		В	IJ L O	XREF: $I(3062)$. J^{π} : $L(p,p')=4$, $L(p,t)=4$.
3069.73 8	(6 ⁺)			1	J^{π} : $L(p,p)=4$, $L(p,t)=4$. J^{π} : stretched Q γ to 4^+ .
3077.38 8	(6) 3 ⁺			J J	J^{π} : M1+E2 γ to 2 ⁺ , D+Q γ to 4 ⁺ .
3100 3	(1-)			KL KL	X = X = X = X = X = X = X = X = X = X =
5100 5	(1)			NL	J^{π} : L(p,t)=(1).
3157.97 9	2+	0.050 ps +13-10		HIJ L O	XREF: I(3161).
3131.71 7	_	0.050 ps 115 10		1113 11 0	J^{π} : E2 γ to 0 ⁺ .
					· . 22 / 60 · .

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡		XRE	EF		Comments
							$T_{1/2}$: other: 0.071 fs 8 in (γ, γ') .
3179.06 <i>3</i>	4 ⁺		В	G IJ L			J^{π} : $L(p,p')=4$, $L(p,t)=4$.
3208.54 <i>15</i>	0+			JL			J^{π} : $L(p,t)=0$.
3210 10	$1^+, 2^+, 3^+$			Н			J^{π} : L(d,p)(t,d)(pol d,p)=2.
3231.95 <i>7</i> 3237.33 <i>8</i>	$1^+, 2^+, 3^+$			J J			J^{π} : M1+E2 γ to 2 ⁺ . J^{π} : γ to 0 ⁺ .
3252 3	(1,2) 5 ⁻			L			J^{π} : L(p,t)=5.
3262.89 11	3			j -			σ · Ε(p,t)=5.
3279.29 9	(1^{-})	0.012 ps +4-3		iJ L	0		XREF: i(3281).
		•					J^{π} : L(p,t)=(1).
							$T_{1/2}$: other: 0.0049 ps 3 in (γ, γ') .
3284.62 9	2+	0.9 ps <i>3</i>		HiJ	0		XREF: i(3281).
							J^{π} : E2 γ to 0 ⁺ , RUL rules out M2.
3330 10	$(6^+,7^-)$			I			$T_{1/2}$: from (γ, γ') . Other: 0.17 ps +44-8 in $(n, n'\gamma)$. J^{π} : $L(p,p')=(6,7)$.
3341 <i>3</i>	(0 ,7)			L			E(level): unresolved peak. $J^{\pi}=3-\&4^{+}$ is suggested.
3349.92 5	$(4)^{+}$		В	j			J^{π} : log $ft = 5.62$ from $(5)^+$, γ' s to 2^+ and 4^+ .
3386.32 <i>15</i>	2+		_	HIJ L			J^{π} : L(p,t)=2,3; Q γ to 0 ⁺ excludes 3 ⁻ .
3438.23 8	4+		В	iJ L			XREF: i(3438)L(3442).
							J^{π} : L(p,t)=4,5; γ to 2 ⁺ excludes 5 ⁻ .
3446.48 7	$(7^-, 8^-)$		C	i			XREF: i(3438).
2455.2							J^{π} : log ft =4.25 from (8 ⁻), γ to (6) ⁻ .
3455 3	2-			i L			XREF: i(3460).
3471.54 <i>10</i>	3-			GHiJ L			XREF: $i(3460)$. J^{π} : $L(t,p)=3$.
3547.58 19	1,2			нј	0		J^{π} : D,Q γ to 0^+ .
3559 10	-,-			I			, _ ,
3581.90 22	(1,2)	0.06 ps +6-3		gHiJ	0		XREF: g(3593)i(3585).
							J^{π} : γ to 0^+ .
2600							$T_{1/2}$: other: 0.35 ps 10 in (γ, γ') .
3600	2+			gHi	0		XREF: g(3593)i(3585).
3631.14 <i>18</i> 3644.48 <i>16</i>	2^+ $(6^+,7^-)$		С	JK HI	0		J^{π} : γ' s to 2 ⁺ and 4 ⁺ ; γ from 1 ⁻ . XREF: H(3660)I(3657).
3044.40 10	(0 ,7)			111			J^{π} : $L(p,p')=(6,7)$.
3711.01 <i>17</i>	(1,2)	0.09 ps +17-4		HIJ		V	J^{π} : γ to 0^+ .
3765.31 24	1+,2+	0.089 ps <i>17</i>		HIJ	0		J^{π} : γ to 0^+ , $L(d,p)(t,d)(pol d,p)=2$.
							$T_{1/2}$: from (γ, γ') .
3772.09 20	+			g JK			XREF: g(3780)K(3750).
			_				J^{π} : L(d, ³ He)(t, α) = 4.
3777.21 6	4 ⁺		В	gHI			XREF: g(3780)H(3800)I(3789).
3835.36 24	2+	0.13 ps 6		G IJ	0		J^{π} : L(p,p')=4. XREF: G(3818).
3633.30 24	2	0.13 ps 0		G 13	U		J^{π} : L(p,p')=2.
							$T_{1/2}$: from (γ, γ') . Other: 0.12 ps +72-7 in $(n, n'\gamma)$.
3857.56 <i>13</i>	(4)		В	J			J^{π} : γ' s to 2 ⁺ and 4 ⁺ , log ft =6.06 from (5) ⁺ .
3874.96 <i>24</i>	2+			HIJ			J^{π} : L(p,p')=2.
3906.6 <i>3</i>	_			JK			J^{π} : L(d, 3 He)(t, α)=1.
3928 <mark>&</mark> <i>10</i>				HI			XREF: H(3940).
3955 10				I			
3990.1 <i>4</i>	$(2)^{+}$			HIJK			XREF: K(4000).
1006.7.6	(1.0)	0.17 5		-	0		J^{π} : L(p,p')=(2), L(d, 3 He)(t, α)=4.
4006.5 6	(1,2)	0.17 ps 5		J	0		J^{π} : γ to 0^+ .
4011.4 6	(1,2)			J			$T_{1/2}$: from (γ, γ') . J^{π} : γ to 0^+ .
4079.0 <i>4</i>	1+,2+,3+			HIJ			XREF: H(4060).
	, , ,-						(· · · · · · · ·

¹²⁰Sn Levels (continued)

E(level) [†]	J^π	XRE	EF	Comments
				$J^{\pi}: L(d,p)(t,d)(\text{pol } d,p)=2.$
4096.5 <i>4</i>		J		2. E(a,p)(t,a)(por a,p) 2.
4110.4 7	1-	JK		J^{π} : L(d, 3 He)(t, α)=1, γ to 0 ⁺ .
4146.9 11			0	(-,)(-,), /
4180 <mark>a</mark> 10	_	i K		XREF: i(4190).
				J^{π} : L(d, 3 He)(t, α)=1.
4190	$1^+, 2^+, 3^+$	Hi		XREF: i(4190).
				$J^{\pi} \colon L(d,p)(t,d)(pol \ d,p) = 2.$
4230 20	+	K		J^{π} : L(d, 3 He)(t, α)=4.
4318.2 <i>3</i>	$0^{-},1^{-}$	JK		XREF: K(4330).
				J^{π} : L(d, 3 He)(t, α)=1, γ to 0^{+} .
4360 20	-	H K		J^{π} : L(d, 3 He)(t, α)=1.
4410 ^a 10	_	K		J^{π} : L(d, ³ He)(t, α)=1.
4460 ^a 20	_	K		J^{π} : L(d, ³ He)(t, α)=1.
4580 ^a 20		K		
4650 10	_	K		J^{π} : L(d, ³ He)(t, α)=1.
4690 20	_	K		J^{π} : L(d, 3 He)(t, α)=1.
4720 10		K		
4770 20	_	K		J^{π} : L(d, 3 He)(t, α)=1.
4870 ^a 10		i K		XREF: i(4900).
				E(level): possible doublet.
4920 <mark>a</mark> 20	_	i K		XREF: i(4900).
				J^{π} : L(d, 3 He)(t, α)=1.
4970 <i>10</i>		K		
5030 10		K		
5090 20	_	K		J^{π} : L(d, 3 He)(t, α)=1.
5170 ^a 10	_	i K		XREF: i(5200).
500 0 00	_			J^{π} : L(d, 3 He)(t, α)=1.
5230 20	+	i K		XREF: i(5200).
				J^{π} : L(d, 3 He)(t, α)=4.
$6.3 \times 10^3 \ 3$		I		77 0 (0.1 (b)
6728.6 7	1		0	J^{π} : from $\gamma(\theta)$ in (γ, γ') .
$6.9 \times 10^3 4$	_	I		J^{π} : L(d, 3 He)(t, α)=3.
7310.1 [#] 7	1	i	0	XREF: i(7600).
				J^{π} : from $\gamma(\theta)$ in (γ, γ') .
7686.6 [#] 7	1-	i	0	XREF: i(7600).
				J^{π} : from $\gamma(\theta)$ in (γ, γ') , E1 γ to g.s.
8.40×10^3 15		I		
8993.0 4	1		0	J^{π} : from $\gamma(\theta)$ in (γ, γ') .
$9.9 \times 10^3 5$		I		
$13.3 \times 10^3 \ 3$	2+	I		$J^{\pi}: L(p,p')=2.$
$16.9 \times 10^3 \ 4$	0_{+}	I		$J^{\pi}: L(p,p')=0.$
$19.2 \times 10^3 \ 2$	(1^{-})		R	J^{π} : from E1 excitation in (e,e'p).
$19.4 \times 10^3 \ 2$	(1^{-})		R	J^{π} : from E1 excitation in (e,e'p).
$20.6 \times 10^3 \ 2$	(1^{-})		R	J^{π} : from E1 excitation in (e,e'p).
$20.9 \times 10^3 \ 15$	3-,5-	I		J^{π} : L(p,p')=3,5.
$25.0 \times 10^3 \ 10$	(3^{-})	I		J^{π} : $L(p,p')=(3)$.
$27.9 \times 10^3 \ 15$	1-,3-	I		J^{π} : L(p,p')=1,3.

 $^{^\}dagger$ From a least-squares fit to the adopted $E(\gamma's)$ by the evaluators for levels connected with γ -transitions, except for levels

¹²⁰Sn Levels (continued)

populating in (γ, γ') and for resonant levels. Others from (p,p'), $(^3He, ^3He')$, unless otherwise noted. Also E(levels) were given in (d,d'), but those are not adopted due to poor resolution and questionable scale for energy of scattered particles. For the GDR's with >34 MeV, see 1998Ba37.

- [‡] From DSA of γ 's in (n,n' γ), unless otherwise noted.
- # From (γ, γ') .
- [@] From (d, ⁶Li).
- & From (p,p'),(d,d'),(³He,³He').
- ^a From $(d, ^3He), (t, \alpha)$.
- ^b This level is not confirmed in $(n,n'\gamma)$, where the authors claim that all levels with J=1 to 5 below E=3100 and with J=0 below 2900 are expected to be populated.

$\gamma(^{120}\text{Sn})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.b	δ^{b}	α^d	Comments
1171.265	2+	1171.25 & 2	100			E2			B(E2)(W.u.)=11.41 22
1875.108	0_{+}	703.84 2	100	1171.265		[E2]			B(E2)(W.u.)=12.6 17
2097.205	2+	222.2 3	0.38 6	1875.108					E_{γ} : observed only in $(n,n'\gamma)$.
		925.924 <mark>&</mark> 19	100 4	1171.265	2+	M1+E2	$-12\ 2$		B(M1)(W.u.)=9.E-5 5; B(E2)(W.u.)=12 4
									Mult.: $\gamma(\theta)$, RUL.
		2097.14 <mark>&</mark> 6	56.3	0.0	0+	FaC			δ: other: -1.43 25 (1974Ki04).
		2097.14 6	56 <i>3</i>	0.0	0_{+}	E2 ^c			B(E2)(W.u.)=0.11 4 E _{γ} : other: 2098.3 12 in β ⁻ decay (3.08 s).
2159.931	0^{+}	988.66 2	100	1171.265	2+				E_{γ} : other: 990 2 in β^- decay (3.08 s).
2194.299	4 ⁺	1023.048 ^{&} 18	100	1171.265		E2			B(E2)(W.u.)=10.3 15
2171.277	•	1023.010 10	100	1171.203	_	112			Mult.: from ε decay (5.76 d).
2284.27	5-	89.87 16	100 5	2194.299	4+	E1		0.246	$B(E1)(W.u.)=5.5\times10^{-5} 4$
									Mult.: from ε decay (5.76 d).
		1112.98 <mark>&</mark> <i>18</i>	1.15 7	1171.265	2+				B(E3)(W.u.)=0.99 3
									I_{γ} : other: <3.7 in β^- decay (46.2 s).
2355.383	2+	1184.11 & <i>3</i>	100 4	1171.265	2+	M1+E2	+1.0 2		B(M1)(W.u.)=0.014 6; B(E2)(W.u.)=7 3
		0							E_{γ} : other: 1185.8 δ in β ⁻ decay (3.08 s).
		2355.39 ^{&} 4	41.6 <i>21</i>	0.0	0_{+}	E2			B(E2)(W.u.)=0.20 7
									I_{γ} : weighted av from β^- decay (46.2 s) and (n,n' γ).
2400.30	3-	1229.08 ^{&} 6	100	1171.265	2+	E1+M2	+0.02 2		B(E1)(W.u.)=0.00129 9; B(M2)(W.u.)=2 +4-2
2420.90	2+	261.0 4	1.10 22	2159.931	0+				E_{γ} : other: 1228.2 in Coul. ex. E_{γ} : not observed in β^- decay (3.08 s, 46.2 s).
2420.90	2	323.82 ^{&} 10	6.4 4	2097.205					E_{γ} : not observed in β decay (3.08 s).
		1249.60 & 4	100 4	1171.265		M1+E2	-16 4		B(M1)(W.u.)=5.E-5 4; $B(E2)(W.u.)=6$ 3
		1249.00 4	100 4	11/1.203	2	WII+EZ	-10 4		E_{γ} : not observed in β^- decay (3.08 s).
									Mult.: from large mixing ratio.
		2420.89 <mark>&</mark> 4	76 <i>7</i>	0.0	0+	E2			B(E2)(W.u.)=0.17 9
		2.20.00	, , ,	0.0	Ü				E_{γ} : other: 2422.0 8 in β^- decay (3.08 s).
									I_{γ} : weighted av from $(n,n'\gamma)$ and β^- decay (46.2 s).
2465.632	4+	368.0 <i>3</i>	0.49 11	2097.205	2+				\dot{E}_{γ} : not observed in β^- decay (46.2 s).
		Q _T							I_{γ} : if $I(1294\gamma)=100$.
2404 62	-	1294.33 & 2	<100	1171.265		F-0		0.1.15	D (F2) (H)
2481.63	7-	197.37 ^a 2	100	2284.27	5	E2		0.147	B(E2)(W.u.)=0.00397 17 Mult.: from ε decay (5.76 d).
2587.25	0+	1415.88 & <i>15</i>	100	1171.265	2+				Mult Hom & decay (3.70 d).
	0 · 4 +	1415.88 15 177.70 8							I is unuscipled as from θ^- decay (46.2 a) and (n, n', n')
2643.353	4	177.70 8 449.06 8 4	7.7 20	2465.632		M1 . F2	0.20.12		I_{γ} : unweighted av from β^- decay (46.2 s) and (n,n' γ).
		449.06 ^{••} 4	15.4 7	2194.299	4'	M1+E2	-0.38 12		B(M1)(W.u.)<0.022; B(E2)(W.u.)<17
		546.13 <mark>&</mark> 2	37.5 <i>13</i>	2097.205	2+	E2			I_{γ} : weighted av from β^- decay (46.2 s) and (n,n' γ). B(E2)(W.u.)<77
		340.13 2	31.3 13	ZU9 / . ZU3	1.	E.Z.			$DUE_{i}/UVV.II.1 \le I/I$

6

γ (120Sn) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.b	δ^{b}	Comments
ı	2643.353	4+	1472.07 ^{&} 2	100 4	1171.265 2+	E2		B(E2)(W.u.)<1.4
١	2685.16	6+	203.5 2	12.2 10	2481.63 7-	$(E1+M2)^{c}$	+0.1 2	
١			400.88 <i>3</i>	100 5	$2284.27 5^{-}$	E1+M2	+0.01 2	
١			490.95 11	19.3 <i>12</i>	2194.299 4+			
١	2695.94	4-	295.66 <i>3</i>	16.2 8	2400.30 3-	$(M1+E2)^{c}$	+0.01 4	
١			411.66 2	100 4	$2284.27 5^{-}$	M1+E2	+0.08 2	
١	2728.12	2+	1556.83 <i>3</i>	100 5	1171.265 2+	M1+E2	-4.4 8	B(M1)(W.u.)=0.0007 3; B(E2)(W.u.)=3.9 9
١			2728.09 4	79 <i>4</i>	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.20 5
ı	2749.71	6-	268.099 <u>&</u> 24	100 4	2481.63 7-	M1+E2	+0.05 3	
١			465.41 ^{&} 3	60 <i>3</i>	$2284.27 5^-$	M1+E2	+0.03 2	
١	2800.05	5-	515.78 <i>4</i>	100	$2284.27 5^-$	M1+E2	-0.026	
١	2835.39	1+	1664.11 <i>3</i>	100 5	1171.265 2+			
١			2835.36 4	32.6 17	$0.0 0^{+}$	M1		B(M1)(W.u.)=0.0018 9
١	2836.52	(8+)	354.90 ^a 5	100	2481.63 7	D(+Q)	-0.2 2	
١	2844.34	$(6)^{-}$	362.8 2	10.8 10	2481.63 7	$(M1+E2)^{C}$	-0.3 2	
١	2057 (1	(O+)	560.07 3	100 4	2284.27 5	M1+E2	-0.03 2	
	2857.61 2902.22	(0^+)	1686.33 <i>7</i> 65.7 2	100	1171.265 2 ⁺	(E2)		D/E2)/W ₁₁)=2 10 5
1	2902.22	(10^{+})	03.7 2	100	2836.52 (8 ⁺)	(E2)		B(E2)(W.u.)=2.10 <i>5</i> Mult.: from (HI,xnγ).
١	2930.53	2+	1759.25 7	54 <i>3</i>	1171.265 2+	M1+E2	+0.09 6	B(M1)(W.u.)=0.0128 25; B(E2)(W.u.)=0.02 +4-25
١	2730.33	_	2930.49 7	100 6	$0.0 0^{+}$	E2	10.07 0	B(E2)(W.u.)=0.44 9
١	2975.69	4-	279.71 6	39.7 20	2695.94 4	D+Q	-0.09 7	5(22)() 0.119
١			575.34 7	35.0 19	2400.30 3-	M1+E2	-0.01 10	
١			691.56 8	100 9	$2284.27 5^-$	M1+E2	≈-0.4	
١	3034.75	(0^+)	1863.50 8	100	1171.265 2+			
ı	3057.946	4+	414.56 <mark>&</mark> 3	7.3 4	2643.353 4+	$(M1+E2)^{C}$	$-0.2\ 2$	I_{γ} : from β^- decay (46.2 s). Other: 21.6 12 in (n,n' γ).
١			592.35 <mark>&</mark> 7	4.3 3	2465.632 4+			I_{γ} : from β^- decay (46.2 s). Other: 10.7 16 in $(n,n'\gamma)$.
١			637.03 ^{&} 8	5.4 <i>4</i>	2420.90 2+			I_{γ} : from β^- decay (46.2 s). Other: <23 in $(n,n'\gamma)$.
١			702.62 [#] 4	7.4 [#] 3	2355.383 2 ⁺			17. Holli p deedy (10.2 8). Other. (23 lif (11,11 7).
١			863.64 & 3			M1(, E2)	0.04.4	I ((4(2)
١				100 3	2194.299 4+	M1(+E2)	-0.04 4	I_{γ} : from β^- decay (46.2 s).
١	2060 72	(C+)	1886.65 ^{&} 6	13.6 5	1171.265 2+			I_{γ} : from β^- decay (46.2 s).
١	3069.73	(6^{+})	426.4 4	11.4 15	2643.353 4+			
1			604.0 2	33.3 22	2465.632 4+	0		Multi-stratahad O from a(0) in (n n/a)
1	3077.38	3+	875.45 8 721.93 <i>15</i>	100 <i>5</i> 42 <i>3</i>	2194.299 4 ⁺ 2355.383 2 ⁺	Q M1+E2	+5 +5-3	Mult.: stretched Q from $\gamma(\theta)$ in $(n,n'\gamma)$.
1	3011.30	J	883.22 <i>14</i>	42 3 61 <i>4</i>	2333.383 2 2194.299 4 ⁺	$(M1+E2)^{C}$	TJ TJ-J	δ : +3 3 or -0.2 2.
			980.1 2	47 3	2097.205 2 ⁺	M1+E2	+1.4 +10-4	Mult.: from large mixing ratio.
			1906.06 <i>13</i>	100 6	1171.265 2 ⁺	M1+E2	+4.2 16	Mult.: from large mixing ratio.
	3157.97	2+	1986.7 <i>3</i>	18.8 12	1171.265 2 ⁺	1111 1 1111	1 1.2 10	1.101 110111 IMIGO IIII/MIIG IMIO.

γ (120Sn) (continued)

	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	\mathbf{J}_f^{π}	Mult. ^b	δ^{b}	Comments
	2+	3157.92 9	100 6	0.0	+	E2		B(E2)(W.u.)=0.86 24
3179.06	4 ⁺	713.36 ^{&} 3	100 4	2465.632 4	+	D+Q		I _γ : from $β^-$ decay (46.2 s). δ: -0.22 10 or +1.6 5.
		823.60 [#] <i>17</i>	5.9 [#] <i>13</i>	2355.383 2	+			
		984.92 <mark>&</mark> 6	36.5 19	2194.299 4	+	M1+E2	≈-2.5	I _{γ} : from β^- decay (46.2 s). Other: 46 5 in (n,n' γ). Mult.: from large mixing ratio.
		1081.2 [#] 6	1.1 [#] 6	2097.205 2	+			
		2007.82 ^{&} 4	76 4	1171.265 2	+			I _{γ} : from β^- decay (46.2 s). I _{γ} : other: 90 4 in (n,n' γ).
	0_{+}	2037.26 15	100	1171.265 2				
3231.95	$1^+, 2^+, 3^+$	1134.74 6	100 5	2097.205 2		M1+E2	+8 4	
		2060.7 3	14.0 13	1171.265 2		$(M1+E2)^{C}$		δ : +2 2 or +0.8 8.
3237.33	(1,2)	2066.03 7	100 5	1171.265 2				
2262.90		3238.3 7	9.7 11	0.0 0				
3262.89		842.0 2	87 <i>6</i> 58 <i>6</i>	2420.90 2 ⁻² 2355.383 2 ⁻²				
		907.2 <i>3</i> 1068.5 2	24 <i>4</i>	2333.383 2 2194.299 4				
		2091.8 2	100 5	1171.265 2				
3279.29	(1^{-})	3279.24 9	100 3	$0.0 0^{-1}$		D		
	2+	2113.26 12	59 <i>3</i>	1171.265 2		$(M1+E2)^{c}$	-0.4 4	B(M1)(W.u.)=0.0008 4; B(E2)(W.u.)=0.02 +4-22
02002	-	3284.64 12	100 5	0.0		E2	0	B(E2)(W.u.)=0.029 10
3349.92	$(4)^{+}$	706.43 [#] 8	35 [#] 3	2643.353 4	+			
	(-)	929.08 [#] 11	35 [#] 6	2420.90 2				
		1156.1 [#] 3	20 [#] 4	2194.299 4 ⁻				
		1253.03# 25	9.1 [#] 20	2097.205 2				
2297.22	2+	2178.65 ^{&} 5	100 6	1171.265 2		D . O		I_{γ} : from β^- decay (46.2 s).
3386.32	2+	2215.13 15	100 8	1171.265 2° 0.0 0°		D+Q		δ : -0.31 10 or +10 +10-6.
2.420.22		3385.6 4	56 <i>3</i>			Q		
3438.23	4+	1341.1# 7	5.1 [#] <i>19</i>	2097.205 2				
		2266.94 & 7	100 6	1171.265 2				
3446.48	$(7^-,8^-)$	609.96 [@] 5	21.5 [@] 13	2836.52 (8	8 ⁺)			
		696.75 [@] 4	32.1 [@] 16	2749.71 6	_			
		964.86 [@] 4	100 [@] 4	2481.63 7	-			
3471.54	3-	1071.46 <i>13</i>	100 8	2400.30 3				
		1115.9 2	48 4	2355.383 2				
		1374.1 2	43 5	2097.205 2	+			
		2300.1 4	28 3	1171.265 2				
3547.58	1,2	2376.2 2	100 5	1171.265 2	+			

 ∞

γ (120Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.b	Comments
3547.58	1,2	3547.5 6	73 5	0.0	0+	D,Q	Mult.: δ =-0.4 2 or +4 2 given in (1992De32) but the transition must be pure D or pure Q.
3581.90	(1,2)	853.5 <i>4</i>	40 5		2+		
		2410.6 5	24 <i>4</i>	1171.265			
		3582.0 <i>3</i>	100 7		0_{+}		
3631.14	2+	1276.6 <i>6</i>	28 4	2355.383			
		1436.8 <i>6</i>	37 <i>6</i>	2194.299			
		2459.9 2	100 6	1171.265	2+		
3644.48	$(6^+,7^-)$	808.4 [@] 4	18 [@] 8	2836.52	(8^{+})		I_{γ} : from $I_{\gamma}/I_{\gamma}(1163\gamma)$ in 1978Ch25. 1988Ra09 report <14.
		1162.78 [@] <i>16</i>	100 [@] 22	2481.63	7-		I_{γ} : uncertainty from 1978Ch25.
3711.01	(1,2)	2539.7 2	88 <i>5</i>	1171.265			
		3711.0 <i>3</i>	100 7	0.0	0_{+}		
3765.31	$1^+, 2^+$	1410.0 <i>3</i>	89 8	2355.383			
		3765.1 <i>4</i>	100 8		0+		
3772.09	+	2600.8 2	100	1171.265			
3777.21	4 ⁺	1133.88 [#] <i>10</i>	38 [#] 5	2643.353	4+		
		1311.57 [#] <i>14</i>	21 [#] 3	2465.632	4+		
		1421.6 [#] 4	8 # 3	2355.383	2+		
		1494.2 [#] 7	7 [#] 4	2284.27			
		1582.76 [#] <i>17</i>	43 [#] 6	2194.299			
		1679.89 [#] 20	18 [#] 4	2097.205			
		2605.94 [#] 8	100# 6	1171.265			
3835.36	2+	2664.0 <i>3</i>	100 8	1171.265			
3033.30	2	3835.4 <i>4</i>	96 8		0+		
3857.56	(4)	1663.3 [#] 6	36 [#] 18	2194.299			
3037.30	(4)	1760.54 [#] 20	100# 29	2097.205			
		2686.11 [#] <i>17</i>	79 [#] 11				
2074.06	2+		79" 11 75 5	1171.265 2194.299			
3874.96	2	1680.9 <i>3</i> 2703.2 <i>4</i>	100 7	1171.265			
3906.6	_	2705.2 <i>4</i> 2735.3 <i>3</i>	100 /	1171.265			
3900.0	$(2)^{+}$	2819.1 5	74 9	1171.265			
3330.1	(2)	3989.5 6	100 11	0.0	0+		
4006.5	(1,2)	4006.4 6	100 11	0.0	0+		
4011.4	(1,2) $(1,2)$	4011.3 6	100	0.0	0+		
4079.0	1+,2+,3+	2907.7 4	100	1171.265			
4096.5	- ,- ,-	2925.2 4	100	1171.265			
4110.4	1-	4110.3 7	100	0.0	0+		
4318.2	$0^{-},1^{-}$	3146.9 <i>3</i>	100 9	1171.265			

9

γ (120Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}
4318.2	$0^{-},1^{-}$	4318.1 9	29 5	0.0	0^{+}	7686.6	1-	7695 [‡] 5	100‡ 1	0.0	0^{+}
6728.6	1	4306 [‡]	5 [‡] 3	2420.90	2+	8993.0	1	5443 [‡]	44 [‡] 27	3547.58	1,2
		5559 [‡] e	1 [‡] 3	1171.265	2+			5963 [‡]	60 [‡] 21	3034.75	(0^+)
		6730 [‡]	100 [‡] 6	0.0	0_{+}			6264 [‡]	28 [‡] 21	2728.12	2+
7310.1	1	5150 [‡]	14 [‡]	2159.931	0_{+}			6634 [‡]	100 [‡] 25	2355.383	2+
		7310 [‡]	100 [‡]	0.0	0_{+}			6675 [‡]	60 [‡] 20	2297	$0^+, 1^+$
7686.6	1-	4059 [‡]	18 [‡] 6	3631.14	2+			6833 [‡]	33 [‡] 25	2159.931	0^{+}
		5095 [‡]	8 [‡] 3	2587.25	0_{+}			6890 [‡]	70 [‡] 21	2097.205	2+
		5335 [‡] 4	12.3 [‡] 8	2355.383	2+			7823 [‡]	33 [‡] 12	1171.265	2+
		5520 [‡] 7	1.4 [‡] 3	2159.931	0_{+}			8998‡	72 [‡] <i>14</i>	0.0	0^{+}
		6522 [‡] 7	7.3 [‡] 5	1171.265	2+						

[†] From $(n,n'\gamma)$, unless otherwise noted.

[‡] From (γ, γ') .

[#] From β^- decay (46.2 s). Not observed in $(n,n'\gamma)$.

[@] From β^- decay (47.3 s). Not observed in $(n,n'\gamma)$.

[&]amp; From weighted av from $(n,n'\gamma)$ and β^- decay (46.2 s).

^a From weighted av from $(n,n'\gamma)$ and β^- decay (47.3 s).

^b From $(n,n'\gamma)$ and placement in level scheme, unless otherwise noted.

^c Mult=D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$. $\Delta \pi$ is from placement in level scheme.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	T. Tamura	NDS 108,455 (2007)	30-Sep-2006

 $Q(\beta^-)=-1608~4; S(n)=8815.4~24; S(p)=1.139\times10^4~3; Q(\alpha)=-5665~21$ 2012Wa38 Note: Current evaluation has used the following Q record -1615.8~288813.2~2511394~27-5662~202003Au03.

¹²²Sn Levels

Cross Reference (XREF) Flags

Α	122 In β^{-} decay (1.5 s)	G	Coulomb excitation	M	¹²⁶ Te(d, ⁶ Li)
В	122 In β^{-} decay (10.3 s)	H	122 Sn(p,p')	N	$^{122}\mathrm{Sn}(\gamma,\gamma')$
C	¹²² In β^{-} decay (10.8 s)	I	122 Sn(d,d'),(α , α ')	0	123 Sb(μ^- , ν n γ)
D	¹²² Sb ε decay	J	122 Sn(n,n')	P	¹²² Sn IT decay
E	122 Sn(n,n' γ)	K	123 Sb(t, α)		
F	122 Sn(p,p' γ)	L	124 Sn(p,t)		

E(level) [†]	$J^{\pi \ddagger}$	${{{\rm T}_{1/2}}^{\#}}$	XREF	Comments
0.0	0+	stable	ABCDEFGHIJKLMNOP	Nuclear rms charge radius=4.6657 fm 10 (2004An14).
1140.51 3	2+	0.776 ps <i>16</i>	ABCDEFGHIJKLMNOP	$T_{1/2}$: >5.8×10 ¹³ y for neutrino-less decay mode (1952Fr23). μ =-0.1 2
				B(E2)↑=0.189 4
				μ: from transient field integral perturbed angular correlation (1980Ha19,2005St24), Q from Coulomb excitation
				reorientation (1975Gr30,2005St24), reported as $Q < +0.14 > -0.28$.
				J^{π} : L=2 in (p,p').
				$T_{1/2}$: from B(E2) in Coulomb excitation; other: 0.62 ps 12
2087.71 5	0+	>0.277 ps	A EFGH LM	from Γ in (γ, γ') . J^{π} : L=0 in (p,t).
		-		$T_{1/2}$: other: >3.3 ps from B(E2) in Coulomb excitation.
2142.06 <i>3</i>	4+	1.56 ps 21	BC E GHi KLM	XŘEF: i(2150)L(2146).
				J^{π} : L=4 in (p,p'). T _{1/2} : from B(E2) in Coulomb excitation; other: >0.346 ps
				from $(n,n'\gamma)$.
2153.81 <i>3</i>	2+	0.69 ps +55-21	AB E i	XREF: i(2150).
		_		J^{π} : log ft =5.7 from 1 ⁺ ; E2 γ to 0 ⁺ .
2245.81 <i>3</i>	5-	7.9 ns 9	BC E HI LM P	XREF: I(2250)L(2252). J ^π : L=5 in (p,p').
				$T_{1/2}$: from $\beta \gamma(t)$ in ¹²² In β^- decay (10.8 s).
2331.09 3	4+	0.83 ps +69-28	B E GHI LM	J^{π} : L=4 in (p,p').
		1		$T_{1/2}$: other: >3.5 ps from B(E2) in Coulomb excitation.
2409.03 <i>4</i>	7-	7.5 μ s 9	BC E H LM P	XREF: H(2390)L(2417).
				J^{π} : L=7 in (p,t) E2 γ to 5 ⁻ .
2415.543 25	2+	0.33 ps + 10-7	AB EFGHI MN	$T_{1/2}$: from $\gamma \gamma(t)$ in ¹²² In β^- decay (10.8 s). XREF: H(2412).
2113.313 23	2	0.23 ps 110 /	110 21 0112 111	J^{π} : L=2 in (p,p').
				$T_{1/2}$: others: 0.19 ps 5 from Γ in (γ, γ') ; >0.78 ps from
2402 (7.4	2-	0.070 . 5 3	AD DECUT AND	B(E2) in Coulomb excitation.
2492.67 <i>4</i>	3-	0.079 ps +5-3	AB EFGHI LMN	B(E3)↑=0.092 10 (2002Ki06) J ^π : L=3 in (p,p').
2530.33 4	$(0)^{+}$		A E	J^{π} : 1390 $\gamma(\theta)$ is isotropic, 1390 $\gamma(\text{lin pol})$ in $(n,n'\gamma)$; log
	()			$ft=5.7$ from 1 ⁺ , γ 's to 2 ⁺ .
2555.42 6	6+		B E H LM	J^{π} : L=6 in (p,t),(p,p').
2651.37 <i>4</i>	4-,5-,6-		E m	XREF: m(2653).

E(level) [†]	$\mathbf{J}^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
2653.00 5	6-		C E H m	n	J^{π} : M1+E2 γ to 5 ⁻ . XREF: m(2653). J^{π} : M1(+E2) γ' s to 7 ⁻ and 5 ⁻ .
2657 <i>10</i> 2675.57 <i>6</i>	0+	>0.2 ps	EFG L		J ^{π} : L=0 in (p,t); 1535 γ (θ) is isotropic in (n,n' γ). T _{1/2} : from B(E2) in Coulomb excitation.
2690.04 <i>7</i> 2734.50 <i>4</i> 2751.01 <i>5</i>	(8 ⁺) 2 ⁺ 5 ⁻	0.49 ps +69-21	CEHLM ABE EHLM	Л Р л	J^{π} : L=8 in (p,t). J^{π} : log ft =6.5 from 1 ⁺ ; E2 γ to 0 ⁺ . J^{π} : L=5 in (p,p').
2765.6 10	(10^+)	62 μs 3	H L		J^{π} : L=10 in (p,p'). $T_{1/2}$: from ¹²² Sn IT decay (1992Br06).
2775.55 6 2837.88 7 2855.47 4 2867.73 7	2 ⁺ 6 ⁻ 4 ⁻	0.62 ps +83-28 0.13 ps +20-6	AB E H C E E E h		J^{π} : log ft =6.0 from 1 ⁺ ; E2 γ' s to 0 ⁺ , γ from 4 ⁺ . J^{π} : M1 γ to 7 ⁻ , M1(+E2) γ to 5 ⁻ . J^{π} : M1(+E2) γ to 3 ⁻ , M1+E2 γ to 5 ⁻ . XREF: h(2870).
2879.79 <i>5</i> 2944.96 <i>6</i>	1 ⁺ ,2 ⁺ 3 ⁺	0.111 ps +55–28	E h		XREF: h(2870). J^{π} : M1+E2 γ to 2 ⁺ , γ to 0 ⁺ . J^{π} : M1+E2 γ 's to 2 ⁺ and 4 ⁺ .
2959.12 <i>6</i> 2971.1? <i>4</i>	4+		E A		J^{π} : stretched E2 γ' s to 2^+ , E1(+M2) γ to 3^- .
2973.39 4	4 ⁺		ВЕН		XREF: H(2976). J ^{π} : log ft =5.5 from 5 ⁺ ; stretched E2 γ to 2 ⁺ , M1+E2 γ to 4 ⁺ .
3035.91 <i>5</i> 3082.15 <i>5</i> 3128.6 <i>7</i>	3 ⁻ 4 ⁺ 2 ⁺	0.19 ps +15-6 0.043 ps +10-7	E H B E H E HI	N	J^{π} : E1(+M2) γ' s to 2 ⁺ , M1+E2 γ to 4 ⁻ . J^{π} : stretched E2 γ to 2 ⁺ , M1+E2 γ to 4 ⁺ . XREF: I(3150). J^{π} : L=2 in (p,p').
3130.58 <i>15</i> 3206.25 <i>18</i>	(0)+		E H AB E		T _{1/2} : other: 0.080 ps 7 from Γ in (γ, γ') . J ^π : 2065 $\gamma(\theta)$ is isotropic in $(n, n'\gamma)$; log ft =5.3 from 1 ⁺ ; γ to 2 ⁺ in $(n, n'\gamma)$.
3233.74 4	4+		В Е Н		$XREF: H(3237).$ $J^{\pi}: L=4 \text{ in } (p,p').$
3281.43 <i>9</i> 3305.69 <i>4</i>	4+	0.10 ps +10-4	E HI B E H m		XREF: I(3260). XREF: m(3319). J^{π} : L=4 in (p,p').
3330 <i>30</i> 3358.59 <i>9</i>	1-	0.006 ps +4-3	I m E	n N	XREF: m(3319). J ^π : E1 γ to 0 ⁺ in (γ, γ') ; 3359 $\gamma(\theta)$ in $(n, n'\gamma)$. T _{1/2} : other: 0.0048 ps 4 from Γ in (γ, γ') .
3362.87 9 3371.24 14 3416.5 4 3454.82 13 3478.60 21 3530.71 5	3 ⁻ (2 ⁺) (7 ⁻ ,8 ⁻ ,9 ⁻) (3 ⁻) (7 ⁻) (7 ⁻ ,8 ⁻)		E H B E C E H E HI C H		J^{π} : L=3 for E=3367 10 in (p,p'). J^{π} : D(+Q) γ to 2 ⁺ , Q γ to 0 ⁺ . J^{π} : log ft =6.0 from (8 ⁻); γ to 7 ⁻ . J^{π} : L=(3) in (p,p'). J^{π} : L=(7) in (p,p'). log ft =4.6 from (8 ⁻); γ 's to 6 ⁻ and 7 ⁻ .
3548.66 <i>10</i> 3568.14 <i>21</i> 3582.35 <i>18</i>	2 ⁺ 2+	0.06 ps +9-3 0.028 ps +16-10	A E E HI k A E H k	N	J^{π} : log ft =5.8 from 1 ⁺ ; γ' s to 2 ⁺ and 4 ⁺ . XREF: I(3560)k(3580). XREF: H(3584)k(3580). J^{π} : log ft =6.3 from 1 ⁺ ; stretched E2 γ to 0 ⁺ .
3627.01 <i>14</i> 3670.28 <i>7</i> 3703.38 <i>11</i>	4 ⁺ 4 ⁺ (7 ⁻ ,8 ⁻ ,9 ⁻)		B H B H K C hi lm	n	$T_{1/2}$: other: 0.014 ps 5 from Γ in (γ, γ') . J^{π} : log ft =6.1 from 5 ⁺ ; γ' s to 2 ⁺ and 6 ⁺ . J^{π} : log ft =5.8 from 5 ⁺ ; γ to 2 ⁺ . XREF: h(3708)i(3710)l(3710)m(3714). J^{π} : log ft =5.4 from (8 ⁻); γ to 7 ⁻ .
3704.9 5	(2+)		E		J^{π} : Q γ to 0 ⁺ .

¹²²Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	${T_{1/2}}^{\#}$		Σ	KREI	F		Comments
3710.15 <i>14</i>	$(7^-,8^-)$		С		hi	1:	m	XREF: h(3708)i(3710)l(3710)m(3714).
0,10,10 1,	(, , , , ,							J^{π} : log $ft=5.6$ from (8 ⁻); γ' s to 6 ⁻ , 7 ⁻ .
3730.00 20				E	Н		m	XREF: H(3731)m(3714).
3751.3 6	2+	0.055 ps +69-41		E			N	J^{π} : stretched E2 γ to 0^{+} .
		1						$T_{1/2}$: other: 0.39 ps 4 from Γ in (γ, γ') .
3758.51 20	1,2+	0.028 ps +41-20		E			N	J^{π} : γ to 0^+ and 1^+ .
3777.0 <i>3</i>				E	H			
3782.84 18	(4^{+})		В	E				J^{π} : log ft =6.5 from 5 ⁺ ; Q γ to 2 ⁺ .
3810 <i>10</i>	+					K		J^{π} : L=4 in (t,α) .
3818 <i>10</i>	(6^{+})				H			J^{π} : L=(6) in (p,p').
3819.79 22	2+	0.049 ps +68-21	A	E			N	J^{π} : log ft =5.8 from 1 ⁺ ; stretched E2 γ to 0 ⁺ .
								$T_{1/2}$: other: 0.14 ps 5 from Γ in (γ, γ') .
3840.65 9	(4^{+})		В	E	ΗI			XREF: I(3850).
								J^{π} : log $ft=5.8$ from from 5^{+} ; γ' s to 2^{+} and 4^{+} .
3871.1 9	1,2+				_		N	J^{π} : excited in (γ, γ') , γ to 0^+ .
3876.48 <i>16</i>	$5^{-},6^{+}$		В		h	k		XREF: h(3879)k(3880).
2002.10.5	4 ⁺		_					J^{π} : γ' s to 4 ⁺ , 5 ⁻ and 7 ⁻ ; log ft =6.0 from 5 ⁺ .
3882.10 <i>5</i>	4'		В		h	k		XREF: h(3879)k(3880).
2000 60 16	0+ 1+ 2+		A.D.		1.			J^{π} : log ft =5.5 from 5 ⁺ ; γ' s to 2 ⁺ .
3899.68 <i>16</i>	$0^+, 1^+, 2^+$		AB		h			XREF: h(3900).
3900 10					h			J^{π} : log $ft=4.7$ from 1 ⁺ . XREF: h(3900).
3929.9 <i>5</i>	1,2+			E	I	v	N	J^{π} : γ' s to 0^+ , 2^+ and (3^-) .
3948.5 <i>5</i>	5-,6+		В	E	1	K	IN	J^{π} : γ' s to 4^{+} , 6^{+} and 7^{-} ; log ft =6.5 from 5^{+} .
3974 <i>7</i>	5 ,0		ь		Н	K		E(level): weighted average of 3978 10 in (p,p') and 3970 10
3914 /					11	K		in (t,α) .
4004.0 10	(2^{+})		A	E				J^{π} : log ft =6.0 from 1 ⁺ ; Q γ to 0 ⁺ .
4040 10				_		K		J^{π} : L=1 in (t, α).
4104 10	(5^{-})				Н	-		J^{π} : L=(5) in (p,p').
4106.6 <i>4</i>	1,2+		Α	E				J^{π} : log $ft=5.6$ from 1 ⁺ ; γ to 0 ⁺ .
4116.3 <i>4</i>	$0^{+},1^{+},2^{+}$		A					J^{π} : log $ft=5.1$ from 1 ⁺ .
4120 10	- ′ ′					K		J^{π} : L=1 in (t, α).
4179.6 <i>4</i>	0,1,2		Α		H			J^{π} : log $ft=5.9$ from 1 ⁺ .
4220 10	-					K		J^{π} : L=1 in (t,α) .
4283.8 9	(2^{+})			E				J^{π} : Q γ to 0^+ .
4360 10	_					K		J^{π} : L=1 in (t,α) .
4470 10	+					K		J^{π} : L=4 in (t,α) .
4510 <i>10</i>	+					K		J^{π} : L=4 in (t,α) .
4560 10	+					K		J^{π} : L=4 in (t, α).
4680 10	+					K		J^{π} : L=4 in (t, α).
4750 10	+					K		J^{π} : L=4 in (t,α) .
4800	(-)				Ι			J^{π} : L=(3) in (d,d'),(α , α ').
4930 10	т					K		J^{π} : L=4 in (t,α) .
5000	(=)				I			I# I (2): (1 1/) (/)
5300	(-)				Ι			J^{π} : L=(3) in (d,d'),(α , α ').

[†] From combined fit of levels, and gammas, except where noted or where cross references clearly indicate other source. The completeness of the existences of $E(J^{\pi}=0^{+})<2.9$ MeV, $E(J^{\pi}=1-5)<3.2$ MeV is discussed in ¹²²Sn(n,n' γ) (1991De38).

[‡] Evaluator assigned the J^{π} 's from the followings: 1) L-values in the various reactions; 2) log ft values; 3) multipolarities and δ of the relevant transitions. 1991De38 discuss $\gamma(\theta)$ and linear polarization data for the determination of J^{π} , and J-dependence of direct feeding in ¹²²Sn(n,n' γ).

[#] From Doppler-shift attenuation method in $(n,n'\gamma)$ (1991Go24), except noted otherwise.

$\gamma(^{122}Sn)$

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	δ#	α@	Comments
1140.51	2+	1140.52 4	100	$0.0 0^{+}$	E2			B(E2)(W.u.)=10.69 23
2087.71	0^+	947.19 <i>4</i>	100	1140.51 2+	E2			B(E2)(W.u.)<75
2142.06	4+	1001.54 2	100	1140.51 2+	E2			B(E2)(W.u.)=10.0 14
2153.81	2+	1013.27 3	100 5	1140.51 2+	M1+E2	+3.8 4		B(M1)(W.u.)=0.0019 4; B(E2)(W.u.)=19 3
		2153.71 8	3.1 3	$0.0 0^{+}$	E2			B(E2)(W.u.)=0.015 +5-12
2245.81	5-	103.74 <i>1</i>	100 4	2142.06 4+	E1(+M2)	+0.03 2	0.1639	$B(E1)(W.u.)=(2.6\times10^{-5} 4); B(M2)(W.u.)=(10 +14-10)$
		1105.38 11	1.6 4	1140.51 2+	[E3]			B(E3)(W.u.)=1.2 4
2331.09	4+	1190.56 2	100	1140.51 2+	E2			B(E2)(W.u.)=8 +3-7
2409.03	7-	163.22 <i>3</i>	100	2245.81 5	E2		0.283	B(E2)(W.u.)=0.0141 17
2415.543	2+	261.79 9	76 9	2153.81 2+	[M1+E2]			
		1275.03 <i>3</i>	42.6 <i>21</i>	1140.51 2+	M1+E2	-0.34 4		B(M1)(W.u.)=0.0056 14; B(E2)(W.u.)=0.29 6
		2415.51 3	100 5	$0.0 0^{+}$	E2			B(E2)(W.u.)=0.27 +6-9
2492.67	3-	246.4 <mark>&</mark> 8	24 10	2245.81 5-	[E2]			
		1352.17 <i>3</i>	100 6	1140.51 2+	E1(+M2)	-0.032		$B(E1)(W.u.)=(0.00113\ 14);\ B(M2)(W.u.)=(3+4-3)$
		2492.6 <i>4</i>	0.052 5	$0.0 0^{+}$	E3			branching from BE3 \uparrow =0.092 10 and T _{1/2} .
2530.33	$(0)^{+}$	376.6 2	7.9 <i>7</i>	$2153.81 \ 2^{+}$				
		1389.81 <i>3</i>	100 4	1140.51 2+	E2			
2555.42	6+	146.0 2	10 <i>I</i>	2409.03 7				
		309.63 5	100 5	2245.81 5	E1(+M2)	+0.01 2		
2651.37	4-,5-,6-	405.56 <i>3</i>	100	2245.81 5	M1+E2	+0.10 2		
2653.00	6-	243.97 <i>3</i>	69 <i>3</i>	2409.03 7	M1(+E2)	-0.074		
		407.18 7	100 5	$2245.81 \ 5^{-}$	M1(+E2)	+0.03 2		
2675.57	0_{+}	1535.05 [‡] 5	100	1140.51 2+				
2690.04	(8^{+})	281.00 6	100	2409.03 7				
2734.50	2+	204.16 7	20.5 13	$2530.33 (0)^{+}$				B(E2)(W.u.)=0.11 +5-11
		1593.97 <i>3</i>	75 <i>4</i>	$1140.51 \ 2^{+}$	M1+E2	-3.56		B(M1)(W.u.)=0.00032 11; B(E2)(W.u.)=1.11 3
		2734.53 <i>15</i>	100 11	$0.0 0^{+}$	E2			B(E2)(W.u.)=0.11 +5-11
2751.01	5-	505.20 4	100	2245.81 5	M1+E2			δ : +0.07 5 or +0.77 7.
2765.6	(10^{+})	75.2 <i>5</i>	100	$2690.04 (8^+)$	(E2)		4.44	B(E2)(W.u.)=0.0194 13
								E_{γ} , Mult.: from 122 Sn IT decay.
2775.55	2+	1634.73 <i>11</i>	100 5	1140.51 2+	M1+E2	+0.14 2		B(M1)(W.u.)=0.0055 3; B(E2)(W.u.)=0.029 8
		2775.58 7	46 <i>3</i>	$0.0 0^{+}$	E2			B(E2)(W.u.)=0.049 +23-5
2837.88	6-	428.94 <i>13</i>	30 2	2409.03 7	M1			
		592.05 6	100 4	2245.81 5	M1(+E2)	+0.01 3		
2855.47	4-	362.84 <i>4</i>	14.7 8	2492.67 3	M1(+E2)	-0.01 6		
*0<		609.64 3	100 4	2245.81 5	M1+E2	-0.35 4		
2867.73	1+ 2+	1727.20 6	100	1140.51 2 ⁺) (1 F2			DAMANU A AAAA DATAANI A A
2879.79	1+,2+	1739.27 4	100 5	1140.51 2+	M1+E2			B(M1)(W.u.)<0.046; B(E2)(W.u.)<8 δ: -0.3 2 or -1.4 6.
		2879.6 <i>3</i>	16.4 <i>11</i>	$0.0 0^{+}$				
2944.96	3+	613.76 <i>13</i>	17.5 11	2331.09 4+	M1+E2			δ : +0.3 2 or +6 +9-3.

γ (122Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\!\#}$	Comments
	3+						
2944.96	3'	791.14 5	100 5	2153.81 2 ⁺	M1+E2	+1.4 +10-4	
2050 12	4+	1804.53 11	32.2 17	1140.51 2 ⁺	M1+E2	+5.1 17	
2959.12	4 '	224.5 2	6.4 7	2734.50 2 ⁺	E1(+M2)	. 0. 00. 0	
		466.42 11	14.6 11	2492.67 3 ⁻	E1(+M2)	+0.08 8	
		1818.60 5	100 6	1140.51 2+	E2		
2971.1?		1830.6 ^{&} 4	100	1140.51 2+			
2973.39	4+	642.59 21	6.3 20	2331.09 4+	F-2		
		819.54 <i>3</i>	100 5	2153.81 2+	E2	0 64 70	
	-	831.35 3	74 3	2142.06 4+	M1+E2	-0.61 <i>10</i>	
3035.91	3-	180.42 10	26.7 19	2855.47 4) (1 F2	0.06.0	
		384.54 5	70 5	2651.37 4-,5-,6-	M1+E2	+0.26 8	
		543.4 2	23.3 16	2492.67 3	E1()(0)	0.01.4	
		882.00 <i>13</i>	100 5	2153.81 2+	E1(+M2)	-0.01 4	
2002.15	4.4	1895.41 9	53 3	1140.51 2 ⁺	E1(+M2)	-0.03 3	D(M1)(M1) 0.00 D(F0)(M1) 40
3082.15	4+	750.80 <i>10</i>	18 <i>3</i>	2331.09 4+	M1+E2		B(M1)(W.u.)<0.08; B(E2)(W.u.)<40
		1041 67 4	100 4	1140.51 0+	F-2		δ: +1.6 8 or -0.2 2.
2120 6	2+	1941.67 <i>4</i>	100 4	1140.51 2 ⁺ 0.0 0 ⁺	E2		B(E2)(W.u.)=2.5 +9-21
3128.6	2+	3128.6 7	100		E2		B(E2)(W.u.)=1.22 +20-29
3130.58 3206.25	$(0)^{+}$	440.54 <i>13</i> 2065.72 <i>17</i>	100 100	2690.04 (8 ⁺) 1140.51 2 ⁺			
3233.74	(0) · 4 ⁺	457.81 19	4.7 13	2775.55 2 ⁺			
3233.74	4	678.10 25	4.7 13	2555.42 6 ⁺			
		902.62 4	4.9 10	2331.09 4+	M1(+E2)	+0.5 6	
		987.60 16	10.5 22	2245.81 5 ⁻	WII(+E2)	+0.5 0	
		1080.00 9	10.3 22	2153.81 2 ⁺			
		1080.00 3	10.8 11	2142.06 4 ⁺	M1(+E2)		
		2093.23 3	41 2	1140.51 2 ⁺	E2		
3281.43		2140.90 8	100	1140.51 2+	LZ		
3305.69	4+	332.27 5	11.3 8	2973.39 4+			
3303.07	7	530.10 <i>17</i>	3.3 6	2775.55 ⁴			
		812.99 <i>10</i>	8.8 10	2492.67 3			
		974.61 <i>3</i>	78 8	2331.09 4+	M1+E2		
		1059.92 4	17.6 9	2245.81 5	1111122		
		1163.61 3	100 4	2142.06 4+	M1+E2		
		2165.05 <i>15</i>	2.8 4	1140.51 2+			
3358.59	1-	3358.54 9	100	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.0012 +6-8
3362.87	3-	1209.06 8	100	2153.81 2+	D(+Q)	+0.03 3	_(/(/
3371.24	(2^{+})	596.5 10	41 14	2775.55 2 ⁺	-(· v)	. 0.02 2	
22.1.2	(-)	1217.5 2	41 3	2153.81 2+			
		2230.6 4	67 4	1140.51 2+	D(+Q)		δ : $-0.09 \ 8 \ \text{or} +3.1 \ 8$.
		3371.1 2	100 6	0.0 0+	Q		
					*		

γ (122Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	δ#	Comments
3416.5	$(7^-,8^-,9^-)$	1007.5 4	100	2409.03	7-			
3454.82	(3^{-})	1300.8 2	100 5	2153.81	2+			
	,	2314.40 15	43 <i>3</i>	1140.51	2+	D(+Q)	-0.035	
3478.60	(7^{-})	825.6 2	100	2653.00	6-			
3530.71	$(7^{-}, 8^{-})$	692.4 <i>4</i>	4.7 13	2837.88	6-			
	, , ,	840.4 <i>3</i>	2.0 11	2690.04	(8^{+})			
		877.70 8	18.3 <i>18</i>	2653.00	6-			
		1121.68 <i>3</i>	100 4	2409.03	7-			
3548.66	2+	1406.4 2	44 <i>4</i>	2142.06	4+			
		2408.17 10	100 6	1140.51	2+			
3568.14		2427.6 2	100	1140.51	2+			
3582.35	2+	2441.8 <i>4</i>	100 10	1140.51	2+			
		3582.3 2	43 <i>3</i>	0.0	0^{+}	E2		B(E2)(W.u.)=0.29 + 11-17
3627.01	4+	544.8 <i>4</i>	63 29	3082.15	4+			
		1071.4 <i>3</i>	68 20	2555.42	6+			
		1296.4 <i>3</i>	100 24	2331.09	4+			
		1485.0 <i>3</i>	56 22	2142.06	4+			
		2486.20 27	61 20	1140.51	2+			
3670.28	4+	1254.80 11	54 6	2415.543				
		1340.0 5	25 9	2331.09	4+			
		1516.49 8	100 7	2153.81	2+			
		1527.84 22	28 7	2142.06	4+			
		2529.63 15	42 7	1140.51	2+			
3703.38	$(7^-, 8^-, 9^-)$	1013.4 <i>3</i>	18 <i>4</i>	2690.04	(8^{+})			
		1294.34 10	100 14	2409.03	7-			
3704.9	(2^{+})	2563.9 6	73 7	1140.51	2+			
		3705.7 8	100 7	0.0	0_{+}	Q		
3710.15	$(7^-,8^-)$	1057.2 <i>4</i>	53 17	2653.00	6-			
		1301.11 <i>14</i>	100 14	2409.03	7-			
3730.00		1398.5 <i>6</i>	57 6	2331.09	4+			
		2589.5 2	100 7	1140.51	2+			
3751.3	2+	3751.2 6	100	0.0	0_{+}	E2		B(E2)(W.u.)=0.054 + 12-20
3758.51	$1,2^{+}$	878.7 2	100 8	2879.79	$1^+, 2^+$			
		3758.6 7	52 <i>4</i>	0.0	0_{+}			
3777.0		2636.5 <i>3</i>	100	1140.51	2+			
3782.84	(4^{+})	1367.9 <i>10</i>	16 5	2415.543				
		2642.28 18	100 <i>19</i>	1140.51	2+	Q		
3819.79	2+	1404.3 <i>3</i>	100 9	2415.543	2+			
		3819.66 <i>30</i>	91 <i>6</i>	0.0	0_{+}	E2		B(E2)(W.u.)=0.19 +9-19
3840.65	(4^{+})	1698.51 9	100 8	2142.06	4+			
		2700.43 20	33 4	1140.51	2+			
3871.1	$1,2^{+}$	3871.0 9	100	0.0	0_{+}			

6

$\gamma(^{122}\text{Sn})$ (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \underline{J_f^{\pi}}$	$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#
3876.48	5-,6+	794.46 22	100 26	3082.15 4+	3929.9	1,2+	3929.5 7	100 8	$0.0 0^{+}$	
		1467.7 <i>7</i>	19 9	2409.03 7	3948.5	$5^{-},6^{+}$	1393.1 6	100 5	2555.42 6 ⁺	
		1546.2 8	14 7	2331.09 4+			1539.4 <i>10</i>	100 5	2409.03 7	
		1630.44 22	55 14	$2245.81 \ 5^{-}$			1806.3 7	82 5	2142.06 4+	
3882.10	4 ⁺	1389.22 <i>18</i>	30 7	2492.67 3-	4004.0	(2^{+})	4003.9 10	100	$0.0 0^{+}$	Q
		1550.82 <i>17</i>	31 5	2331.09 4+	4106.6	1,2+	2966.0 <i>4</i>	90 22	1140.51 2+	
		1740.17 <i>7</i>	93 5	2142.06 4+			4106.7 5	100 20	$0.0 0^{+}$	
		2741.50 6	100 5	1140.51 2+	4116.3	$0^+, 1^+, 2^+$	2975.7 <i>4</i>	100	1140.51 2+	
3899.68	$0^+, 1^+, 2^+$	2759.13 <i>15</i>	100	$1140.51 \ 2^{+}$	4179.6	0,1,2	3039.0 <i>4</i>	100	1140.51 2+	
3929.9	$1,2^{+}$	2789.7 <i>7</i>	23 6	1140.51 2+	4283.8	(2^{+})	4283.7 9	100	$0.0 0^{+}$	Q

[†] Weighted average of data from 122 In β^- decay (1.5 s, 10.3 s, 10.8 s), 122 Sb ε decay and 122 Sn(n,n' γ) wherever data are available. ‡ Weighted average of 122 Sn(n,n' γ) and 122 Sn(p,p' γ). # From Coulomb excitation, α (exp) in 122 In β^- decay (10.3 s, 10.8 s), $\gamma(\theta)$ and linear polarization in 122 Sn(n,n' γ).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level


```
History
                                      Type
                                                                                               Citation
                                                                Author
                                                                                                                     Literature Cutoff Date
                               Full Evaluation
                                                      J. Katakura, Z. D. Wu
                                                                                     NDS 109, 1655 (2008)
                                                                                                                            1-Apr-2008
Q(\beta^{-})=-613.2 \ 22; S(n)=8489.2 \ 24; S(p)=12093 \ 20; Q(\alpha)=-6702 \ 4
                                                                                        2012Wa38
Note: Current evaluation has used the following Q record.
Q(\beta^{-})=-616.5 \ 21; S(n)=8487.6 \ 26; S(p)=12100 \ 24; Q(\alpha)=-6688 \ 19
                                                                                         2003Au03
                                                                                <sup>124</sup>Sn Levels
                                                                     Cross Reference (XREF) Flags
                                                                                      ^{124}\mathrm{Sn}(\mathrm{e,e'})
                                               ^{124}In \beta^{-} decay (3.7 s)
                                                                                                                 ^{124}Sn(^{3}He,^{3}He')
                                               ^{124}In \beta^{-} decay (3.12 s)
                                                                                                                 ^{124}Sn(\alpha,\alpha')
                                       В
                                                                               G
                                                                                       ^{124}Sn(n,n'\gamma)
                                                                                                         L
                                               <sup>124</sup>Sn IT decay
                                                                                      ^{124}Sn(p,p')
                                       C
                                                                               Н
                                                                                                         M
                                                                                                                 Coulomb excitation
                                               <sup>122</sup>Sn(t,p)
                                                                                       ^{124}Sn(p,p'\gamma)
                                                                                                                 <sup>128</sup>Te(d, <sup>6</sup>Li)
                                       D
                                                                               Ι
                                                                                                         N
                                               ^{124}Sn(\gamma,\gamma'),(pol \gamma,\gamma')
                                                                                      <sup>124</sup>Sn(d,d')
                                                                               J
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 2_1+):
     > 9.1 \times 10^{20}
                             y (2008BaZZ)
     > 3.1 \times 10^{18}
                             y (2008Da02)
      > 2.3 \times 10^{18}
                             y (2007Ki13)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 0_1+):
     > 1.1 \times 10^{21}
                             y (2008BaZZ)
     > 7.7 \times 10^{18}
                             y (2008Da02)
      > 6.7 \times 10^{18}
                             y (2007Ki13)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 2_2+):
     > 9.4 \times 10^{20}
                             y (2008BaZZ)
     > 4.4 \times 10^{18}
                             y (2008Da02)
      > 7.9 \times 10^{18}
                             y (2007Ki13)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 0_2+):
     > 1.2 \times 10^{21}
                             y (2008BaZZ)
      > 7.9 \times 10^{18}
                             y (2008Da02)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 0_3+):
     > 1.2 \times 10^{21}
                             y (2008BaZZ)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 0_4+):
     > 8.2 \times 10^{20}
                             y (2008BaZZ)
     > 4.4 \times 10^{18}
                             y (2008Da02)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 2_3+):
     > 8.6 \times 10^{20}
                             y (2008BaZZ)
      > 4.4 \times 10^{18}
                             y (2008Da02)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 2_4+):
     > 9.6 \times 10^{20}
                             y (2008BaZZ)
      > 3.1 \times 10^{18}
                             y (2008Da02)
 T_{1/2}(2\beta^{-}(0\nu+2\nu)(0^{+}))
                                           to 0_5+):
      > 9.5 \times 10^{20}
                             y (2008BaZZ)
                                                                                                                  Comments
   E(level)
                                                    XREF
                                                                       \langle r^2 \rangle^{1/2} = 4.6759 fm 12 (2004An14, evaluation).
                                             ABCDEFGHIJKLMN
                                                                       Mass excess=-88228 20 with Penning trap mass spectrometer ISOLTRAP
                                                                          (2005Si34).
                                                                       \mu=-0.30 20; Q=-0.01 17
  1131.739 17 2+
                             0.92 ps 3
                                             ABCDEFGHIJKLMN
                                                                       J^{\pi}: E2 transition to 0^+.
                                                                       \mu: From transient field integral PAC (1980Ha19,1989Ra17). See also
                                                                          2005St24 compilation.
                                                                       Q: From Coul. ex. reorientation (1975Gr30,1989Ra17). See also 2005St24
```

E(level) [†]	J^{π}	T _{1/2} &	X	REF		Comments
2101.711 23	4+	3.7 ps 4	AB D F	GH	MN	compilation. $T_{1/2}$: from B(E2) in Coul. ex. Others: 0.93 ps 13 from (γ, γ') ; > 1.2 ps from $(n,n'\gamma)$. 2001Ra27 evaluation gives 0.917 ps 22. XREF: F(2180). J^{π} : L=4 in (p,p') ; L=5 in (t,p) but its assignment is questionable. $T_{1/2}$: from B(E2) in Coul. ex. Other: >0.8 ps from DSA in $(n,n'\gamma)$.
2129.596 25	2+	0.8 ps +5-2	В	GHIJ	MN	B(E4)(e,e')=0.014 3. J^{π} : $\gamma(\theta)$ in (n,n' γ), log ft =5.63 from (1) ⁺ . $T_{1/2}$: other: \geq 1.8 fs in Coul. ex.
2192.17 <i>3</i> 2204.620 <i>23</i>	0 ⁺ (5 ⁻)	>0.55 ps 0.27 μs 6		GH GH J	N	J^{π} : J^{π} =0 ⁺ from $\gamma(\theta)$, γ -pol and excitation function in $(n,n'\gamma)$. XREF: D(2213). J^{π} : E2 γ from (7 ⁻), L=5(+4) in (p,p'). $T_{1/2}$: from $\beta\gamma(t)$ ¹²⁴ In β ⁻ decay (3.7 s) (1979Fo10).
2221.75 <i>5</i> 2325.01 <i>4</i>	4 ^{+#} (7 ⁻)	0.9 ps +9-3 3.1 μs 5	A CD	G GH	N	J^{π} : L=7 in (p,p') and (t,p). $T_{1/2}$: from $\beta \gamma$ (t) 124 In β^- decay (3.7 s) (1979Fo10).
2366.5 <i>5</i> 2426.316 <i>21</i>	2+	0.35 ps +20-10	B B DE	GH J	MN	J ^π : E2 γ to 0 ⁺ . T _{1/2} : other: >0.08 ps in Coul. ex., 0.72 ps 18 in (γ , γ ').
2448 [‡] <i>10</i>	(8 ⁺)			H	n	J^{π} : L=(8) in (p,p').
2454.34 <i>3</i>	6 ^{+#}			G	n	
2568.15 <i>4</i>	6-#			G		
2578.44 5	8(+)		A C	G		J^{π} : $\gamma(\theta)$ and γ -pol in $(n,n'\gamma)$, low level population in $(n,n'\gamma)$, E2 γ from (10^+) .
2602.495 25	3-	0.068 ps 6	B D F	GH J	LMn	XREF: D(2612)L(2610). J^{π} : L=3 in (α, α') . B(E3)(e,e')=0.076 11; 2002Ki06 evaluation gives 0.073 10.
2614.45 3	4-#			G	n	
2656.6 5	(10 ⁺)	45 μs 5	С			%IT=100 J^{π} : systematics of 10 ⁺ state in ¹¹⁶ Sn- ¹³⁰ Sn isotopes. $T_{1/2}$: from measurements with pulsed beam in ¹²⁴ Sn IT decay (1992Br06).
2688.50 <i>5</i>	0+	>0.28 ps		GHI	MN	J^{π} : p(θ) from (p,p') IAR and excitation function in (n,n' γ). $T_{1/2}$: other: >0.2 ps in Coul. ex.
2701.78 <i>3</i>	5-#			G	n	
2703.187 25	2+#	0.4 ps +4-1	В	G	n	
2706 [‡] <i>10</i>	(4 ⁺)			Н	n	J^{π} : L=(4) in (p,p').
2753.05 <i>3</i>	4-#	0.4		G		
2819.3 5	(6 ⁺)	>0.4 ps		G		J^{π} : from $\gamma(\theta)$ and excitation function in $(n,n'\gamma)$.
2836.58 4	3 ^{+#} 6 ^{-#}	>0.28 ps		G J		
2855.13 5	2 ^{+#}	0.12 . 7 2		G		VDEE 1 (2000)
2875.37 5	2+#	0.13 ps +7-3		Gh	n	XREF: h(2880).
2878.65 <i>5</i> 2958.11 <i>6</i>	4 ⁺	0.067 ps +18-14 >0.9 ps		Gh GH	n	J^{π} : $\gamma(\theta)$ and (M1+E2) γ to 4^{+} in $(n,n'\gamma)$.
2988.03 3	3-#	>0.5 ps		GH J		XREF: H(3002).
3011.1 <i>3</i>	(7,8,9)		A	-		J^{π} : log $ft=6.57$ from (8 ⁻).
3109.5 5	$1,2^{+}$		В			J^{π} : γ to 0^+ .
3130 [‡] 20	$(3^-,5^-)$	0.11		H J		J^{π} : $p(\theta)$ in (p,p') through $f_{7/2}$ analog resonance.
3143.86 <i>6</i> 3214.36 <i>10</i>	4 ⁺ 2 ⁺	0.11 ps +9-4 0.025 ps 6		GH GH J		J^{π} : L=4 in (p,p'). XREF: J(3190).
3414.30 10	4	0.025 ps 0	D E	GII J		AINLE: J(J170).

E(level) [†]	J^{π}	T _{1/2} &	XREF	Comments
				J^{π} : L=2 in (p,p').
				$T_{1/2}$: other: 0.044 ps 6 in (γ, γ') .
3227.95 11		0.07 ps +23-3	G	
3240.36 <i>21</i>	(7,8,9)		Α	J^{π} : log $ft=6.40$ from (8 ⁻).
3264.49 <i>11</i>	2+	0.19 ps +22-8	B Gh	XREF: h(3275).
2267 12 0	1 2 2	> 0.14 mg	Ch	J^{π} : $\gamma(\theta)$ and γ -pol in $(n,n'\gamma)$.
3267.13 <i>9</i> 3293.42 <i>9</i>	1,2,3 2,3	>0.14 ps	Gh B G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$. J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3312.99? 7	2,3,4		G G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3330.41 10	2,3	0.07 ps +9-3	GH	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3333.54 9	2(+)	**** F* ** *	B G	J^{π} : $\gamma(\theta)$ and (M1+E2) γ to 2 ⁺ in (n,n' γ).
3346.46 7	(3,4)		Gj	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3360 5	4+		D H	J^{π} : L=4 in (p,p').
3362.3 <i>3</i>	(7,8,9)		A j	J^{π} : log $ft = 6.25$ from (8 ⁻).
3363.59 8	3(+)		G	J^{π} : $\gamma(\theta)$ and (M1+E2) γ to 4 ⁺ in (n,n' γ).
3396.5 8	1,2+		В	J^{π} : γ to 0^+ .
3410.14 <i>13</i>	1		G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3414 5	4+		D H L	J^{π} : L=4 in (α, α') .
3490.18 <i>14</i>	1-@	0.0051 ps 5	E G	$T_{1/2}$: from (γ, γ') , other: 0.006 ps +4-3 in $(n, n'\gamma)$.
				B(E1)(γ, γ')=6.1×10 ⁻⁰⁵ 7.
3498.58 <i>15</i>	1,2,3		G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3509.15 9	3 ⁽⁺⁾		D GH	J^{π} : $\gamma(\theta)$ and (M1+E2) γ to 2 ⁺ in (n,n' γ).
3524.02 8	$(7^-,8^-)$		Α	J^{π} : γ to 6 ⁻ , log ft =5.06 from (8 ⁻).
3551.53 <i>12</i>	(3-)		B GH	XREF: H(3560).
				J^{π} : $p(\theta)$ in (p,p') through $f_{7/2}$ analog resonance allows $(3^-,5^-)$.
3583.66 <i>13</i>	2+		GH	$\log ft = 6.26 \text{ from } (1)^+ \text{ rules out } 5^$
3363.00 13	2		Gn	XREF: H(3570). J^{π} : L=2 in (p,p').
3603.86 <i>17</i>	2,3		GH	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3643.4 <i>3</i>	(7,8,9)		A H	J^{π} : log $ft = 6.18$ from (8^{-}) .
3655.20 <i>15</i>	2,3		B G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3684.91 8	(7^{-})		A H	J^{π} : log ft =4.55 from (8 ⁻), L=(6,7) in (p,p').
3697.3 <i>4</i>	1@	0.029 ps +13-10	E G	$T_{1/2}$: other: 0.034 ps 6 in (γ, γ') .
3710.39 <i>19</i>	2+	0.030 ps +28-15	B E G	J^{π} : E2 γ to 0^+ .
		•		$T_{1/2}$: other: 0.054 ps 9 in (γ, γ') .
3724.7 <i>3</i>	1,2+		B G	J^{π} : γ to 0^+ .
3741.62 <i>10</i>	$(2)^{+}$		B Gh	XREF: h(3752).
			_	J^{π} : log $ft=5.77$ from (1) ⁺ , γ' s to 2 ⁺ , 3 ⁻ and 4 ⁺ .
3760.27 20	$(0^+,1,2)$	0.05 7.3	B h	J^{π} : log $ft=6.46$ from $(1)^{+}$, γ to 2^{+} .
3761.83 21	2+	0.05 ps +7-3	B Gh	J^{π} : E2 γ to 0^{+} .
3765.14 11	$(7^-, 8^-, 9^-)$		A	J^{π} : log ft =5.26 from (8 ⁻).
3787 <i>10</i>	2,3		H G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3802.54 <i>17</i> 3809.71 <i>21</i>	(7,8,9)		A	J^{π} : log ft =5.86 from (8 $^{-}$).
3820 10	$(3^-,5^-)$		Н	J^{π} : $p(\theta)$ in (p,p') through $f_{7/2}$ analog resonance.
3831.4 <i>3</i>	2,3,4		G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3834.3 7	1,2+		В	J^{π} : γ to 0^+ .
3864.26 <i>13</i>	1,2+		B G	J^{π} : γ to 0^+ .
3872 10	(6^{+})		Н	J^{π} : L=(6) in (p,p').
3888.0 8	1,2+		В 1	XREF: 1(3900).
				J^{π} : γ to 0^+ .
3910.7 9	2+		B H 1	$J^{\pi}: L=2 \text{ in } (p,p').$
3917.27 5	2+		B h	XREF: h(3930).
2022 5	4+		D 1-	J^{π} : γ' s to 0^+ and 4^+ .
3923 5	4 '		D h	XREF: h(3930).

E(level) [†]	J^{π}	$T_{1/2}$ &	XREF	7	Comments
3931.5 <i>3</i>	(7,8,9)		A h		J^{π} : L=4 in (t,p). XREF: h(3930). J^{π} : log ft =5.92 from (8 ⁻).
3963.6 <i>3</i>	1,2		GH		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
4043.8 5	1,2 ⁺		в н		J^{π} : γ to 0^+ .
4074.4 <i>4</i>	2		G		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
4094.2 3	2,3		G		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
4120 20			Н		
4156.1 <i>3</i>	2+		B GH		J^{π} : L=2 in (p,p').
4208.1 3	2,3		G		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
4219.2 6	1@	13.1 <mark>a</mark> fs <i>14</i>	E		
4227.57 16	1,2+		B G		J^{π} : γ to 0^+ .
4263.5 6	1	23 ^a fs 4	E		,
4264.1 <i>3</i>	1,2+		В Н		J^{π} : γ to 0^+ .
4269.82 22	(4)		G		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
4331.4 <i>4</i>	1,2+		B H		XREF: H(4343).
					J^{π} : γ to 0^+ .
4359.58 20	0^{+} to 4^{+}		G		J^{π} : γ to 2^+ .
4400 20	1.0+		Н		17 . o.
4470.3 4	1,2+		В Н		J^{π} : γ to 0^+ .
4528.8 <i>4</i>	1,2+		B D H		J^{π} : γ to 0^+ .
4560 <i>20</i> 4570 <i>20</i>			H H		
4604.6 7	1,2+		В		J^{π} : γ to 0^+ .
4605.8 6	1,2	10.1 ^a fs 25	E		<i>3</i> . <i>y</i> to 0 .
4620 5	(4^{+})	10.1 15 25	D		J^{π} : L=4 in (t,p).
4620 20	$(3^-,4^-,5^-)$		Н		J^{π} : $p(\theta)$ in (p,p') through $f_{7/2}$ analog resonance.
4672 5	3-		D H		J^{π} : L=3 in (t,p).
4707 5	3-		D H	1	XREF: 1(4800).
					J^{π} : L=3 in (t,p).
4770 [‡] 20	$(3^-,4^-)$		Н	1	J^{π} : $p(\theta)$ in (p,p') through $f_{7/2}$ analog resonance.
4818 5	(5-)		D		J^{π} : L=5 in (t,p).
4880 10	3-		D H	1	J^{π} : L=3 in (t,p).
4916 <i>10</i>	3-		D		J^{π} : L=3 in (t,p).
4948 5	(5^{-})		D h		XREF: h(4960).
					J^{π} : L=5 in (t,p).
4953.8 7	1@	14 ^a fs 3	E		
4970 <i>5</i>	$(2^+,3^-)$		D h		J^{π} : L=(2,3) in (t,p).
5014 5	3-		D H		J^{π} : L=3 in (t,p).
5050 20		- 00 0 15	_ H		
5064.8 7		7.0 ^a fs 15	E		
5100 20	(4+)		Н		IT I (4): (()
5131 5	(4 ⁺) 3 ⁻		D	-	J^{π} : L=(4) in (t,p).
5166 5	3		D	1	XREF: $1(5200)$. J^{π} : L=3 in (t,p).
5196 5	3-		D H	1	J^{π} : L=3 in (t,p). J^{π} : L=3 in (t,p).
5267 <i>5</i>	(7-)		D H	-	J^{π} : L=7 in (t,p).
5290 20	(,)		Н		• · · · · · · · · · · · · · · · · · · ·
5313 5	(5 ⁻)		D H		J^{π} : L=5 in (t,p).
5345 5	(5-)		D		J^{π} : L=5 in (t,p).
5379 5	(5 ⁻)		D H		J^{π} : L=5 in (t,p).
5430 5	(5 ⁻)		D H		J^{π} : L=5 in (t,p).
5459 10	(5^{-})		D H		J^{π} : L=5 in (t,p).
5520 20			Н		
5552 10			D		

E(level) [†]	J^π	$T_{1/2}$ &	XREF	Comments
5614 10			D H	
5640 20			Н	
5710 20			H	
5760 20			Н	
5800 20	1-@	1.020 0.0	Н	D(D1)(/) (410=5.5
5842.6 <i>7</i> 5866 <i>10</i>	1	1.02 ^a fs 8	E D h	B(E1)(γ, γ')=6.4×10 ⁻⁵ 5.
5869.8 8	(1) [@]	5.1 ^a fs 10	E h	
5902.7 7	1@	5.4^{a} fs 20	E	
5951.9 7	1@	1.38^{a} fs 19	E	
5968.6 7	1@	$2.2^a \text{ fs } 4$	E	
6002.2 7	1@	1.7^{a} fs 3	E	
6129.2 7	1@	0.82^{a} fs 9	E	
6171.0 12	1@	1.04^{a} fs 10	E	
6184.2 6	1-@	0.94^{a} fs 11		B(E1)(γ, γ')=5.9×10 ⁻⁵ 7.
6236.7 7	1@	0.64^{a} fs 6	E	$B(E1)(\gamma,\gamma)=3.9\times10^{-7}.$
6287.3 7	1@	1.52^a fs 24	E	
6321.8 7	1-@	0.70^{a} fs 6	E	$B(E1)(\gamma, \gamma') = 7.4 \times 10^{-5} 7.$
6369.3 7	1-@	$0.70^{-4} \text{ Is } 0$ $0.277^{a} \text{ fs } 16$	E E	B(E1)(γ, γ)=1.4×10 * γ . B(E1)(γ, γ')=18.2×10 ⁻⁵ 11.
6453.3 7	1@	1.30^a fs 16		$B(E1)(\gamma, \gamma) = 18.2 \times 10^{-5} II.$
6467.7 <i>6</i>	1@	0.95^{a} fs 9	E	
6503.4 6	1@	0.95° is 9 1.26° fs 20	E	
6524.2 5	1-@	0.56^a fs 6	E	B(E1)(γ, γ')=8.3×10 ⁻⁵ 9.
	1@	0.56^{a} Is 0 0.65^{a} fs 7	E	$B(E1)(\gamma,\gamma) = 8.3 \times 10^{-5} \text{ 9.}$
6548.7 <i>5</i> 6561.0 <i>7</i>	1-@	0.05^{a} Is 7 0.35^{a} fs 3	E	D(E1)(/) 12 1v10=5 12
	1@	0.85^a fs 11	E	B(E1)(γ, γ')=13.1×10 ⁻⁵ 12.
6566.0 8	1-@	0.85^{a} Is 11 0.75^{a} fs 8	E	D(E1)(/) 60v10=5 6
6584.3 6	1@	0.75^{a} is 8 1.4^{a} fs 3	E	$B(E1)(\gamma, \gamma') = 6.0 \times 10^{-5} 6.$
6600.0 7	1-@	$0.39^a \text{ fs } 3$	E	D(E1)(/) 11 4v10=5 0
6635.8 6	1-@	0.39^{a} Is 3 0.42^{a} fs 3	E	B(E1)(γ, γ')=11.4×10 ⁻⁵ 9.
6678.1 7	1-@	0.42^{a} is 3 0.71^{a} fs 9	E	B(E1)(γ, γ')=10.4×10 ⁻⁵ 9.
6683.5 8	1-@	0.71^{a} is 9 0.97^{a} fs 14	E	B(E1)(γ , γ')=6.1×10 ⁻⁵ 8. B(E1)(γ , γ')=4.5×10 ⁻⁵ 6.
6705.6 <i>8</i> 6713.8 <i>7</i>	1-@	0.97^{a} is 14 0.52^{a} fs 5	E	B(E1)(γ, γ)=4.5×10 ° 6. B(E1)(γ, γ')=8.3×10 ⁻⁵ 8.
6722.5 6	1@	0.52^{a} Is 5 0.66^{a} fs 7	E	$D(E1)(\gamma,\gamma) = 6.3 \times 10^{-5} \text{ o.}$
6764.4 8	1-@	0.58^{a} fs 7	E	D/E1)(/) 7.2v10=5.0
	1@	$0.38^{a} \text{ Is } 7$ $0.84^{a} \text{ fs } 15$	E	B(E1)(γ, γ')=7.2×10 ⁻⁵ 9.
6775.8 8	1-@		E	D(D1)(/) 5 010=5 7
6790.8 8	1(+)@	0.71^{a} fs 8	E	$B(E1)(\gamma,\gamma')=5.8\times10^{-5}$ 7.
6808.2 6	1-@	1.08 ^a fs 14 0.90 ^a fs 10	E	$B(M1)(\gamma,\gamma')=0.35 5.$
6847.3 8	1-@		E	B(E1) (γ, γ') =4.5×10 ⁻⁵ 5.
6902.3 8	(1) [@]	1.13 ^a fs 14 1.4 ^a fs 4	E	B(E1)(γ, γ')=3.5×10 ⁻⁵ 4.
6928.4 8	1@		E	
6939.1 8	1@	1.6^{a} fs 3	E	
6947.7 8	1@	1.6 ^a fs 3	E	
7018.2 8	1-@	1.07 ^a fs 13	E	P/E11/ /> 2.010=5.4
7032.7 7	1@	0.97^{a} fs 11	E	B(E1)(γ, γ')=3.9×10 ⁻⁵ 4.
7062.4 9	1 ~	2.6 ^a fs 6	E	

E(level) [†]	J^{π}	T _{1/2} &	XREF	Comments
7071.3 8	1@	1.31 ^a fs 18	E	
7086.7 <i>7</i>	1 [@]	1.46 ^a fs 25	E	
7125.9 7	1 [@]	1.22 ^a fs 17	E	
7234.0 8	1 [@]	1.8 ^a fs 5	E	
7258.8 10	1 [@]	1.7 ^a fs 5	E	
7295.7 <i>7</i>	1-@	0.63 ^a fs 5	E	$B(E1)(\gamma,\gamma')=5.3\times10^{-5} 4.$
7308.7 9	1 [@]	1.7 ^a fs 4	E	
7326.4 7	1@	1.7 ^a fs 4	E	
7337.7 7	1-@	0.76 ^a fs 11	E	$B(E1)(\gamma,\gamma')=4.3\times10^{-5} 6.$
7344.6 7	1@	1.06 ^a fs 21	E	
7394.7 <i>4</i>	1-@	0.93 ^a fs 15	E	$B(E1)(\gamma,\gamma')=3.5\times10^{-5} 6.$
7487.8 <i>7</i>	1-@	0.72 ^a fs 9	E	$B(E1)(\gamma,\gamma')=4.3\times10^{-5} 6.$
7536.7 7	1-@	0.70 ^a fs 11	E	$B(E1)(\gamma, \gamma') = 4.4 \times 10^{-5} 7.$
7551.1 6	1-@	0.83 ^a fs 12	E	$B(E1)(\gamma, \gamma') = 3.6 \times 10^{-5} 5.$
7567.1 <i>10</i>	1 [@]	1.33 ^a fs 18	E	
7576.1 <i>7</i>	1-@	0.96 ^a fs 12	E	$B(E1)(\gamma,\gamma')=3.1\times10^{-5} 4.$
7596.6 10	1-@	0.64 ^a fs 6	E	$B(E1)(\gamma, \gamma') = 4.7 \times 10^{-5} 4.$
7604.0 8	1-@	0.59 ^a fs 8	E	$B(E1)(\gamma,\gamma')=5.0\times10^{-5}$ 7.
7642.9 8	1-@	1.22 ^a fs 24	E	$B(E1)(\gamma,\gamma')=2.4\times10^{-5} 5.$
7666.3 7	1 [@]	1.9 ^a fs 3	E	
7679.1 <i>14</i>	1 [@]	1.7 ^a fs 4	E	
7684.2 11	1-@	0.92 ^a fs 17	E	$B(E1)(\gamma,\gamma')=3.1\times10^{-5} 6.$
7691.5 <i>7</i>	1 [@]	1.08 ^a fs 18	E	
7702.9 9	1 [@]	2.2 ^a fs 5	E	
7747.7 <i>7</i>	1-@	0.76 ^a fs 8	E	$B(E1)(\gamma,\gamma')=3.7\times10^{-5} 4.$
7759.4 <i>4</i>	1-@	0.62 ^a fs 6	E	$B(E1)(\gamma,\gamma')=4.5\times10^{-5} 4.$
7770.9 <i>6</i>	1 [@]	1.09 ^a fs 20	E	
7778.4 9	1 [@]	1.6 ^a fs 3	E	
7788.6 <i>5</i>	1 [@]	0.78 ^a fs 9	E	
7815.6 <i>5</i>	1-@	0.345 ^a fs 25	E	$B(E1)(\gamma,\gamma')=7.9\times10^{-5} 6.$
7863.7 8	1-@	0.90 ^a fs 11	E	$B(E1)(\gamma,\gamma')=3.0\times10^{-5} 4.$
7872.4 6	1 [@]	0.78 ^a fs 12	E	
7880.5 <i>5</i>	1-@	0.39 ^a fs 3	E	$B(E1)(\gamma,\gamma')=6.9\times10^{-5} 5.$
7905.4 12	1@	1.6 ^a fs 3	E	
7913.4 8	1 @	1.03 ^a fs 21	E	
7939.3 12	1@	1.6 ^a fs 3	E	
7957.4 9	1@_	0.53 ^a fs 3	E	
7999.2 9	1-@	0.90 ^a fs 12	E	$B(E1)(\gamma,\gamma')=2.8\times10^{-5} 4.$
8112.1 <i>16</i>	1@	1.22 ^a fs 18	E	
8119.1 8	1@	0.55 ^a fs 4	E	
8132.0 <i>15</i>	1@	0.64 ^a fs 6	E	
8162.5 8	1@	1.17 ^a fs 16	E	
8214.6 <i>12</i>	1@	1.6 ^a fs 3	E	
8229.2 6	1@	0.72 ^a fs 8	E	
8257.2 9	1 [@]	1.43 ^a fs 18	E	

¹²⁴Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} &	XREF	Comments
8270.1 7	1(+)@	0.81 ^a fs 6	E	$B(M1)(\gamma, \gamma') = 0.26 2.$
8350.4 13		1.44 ^a fs 19	E	
	1-@	0.78 ^a fs 7	E	$B(E1)(\gamma,\gamma')=2.9\times10^{-5} 2.$
8423.1 7	1@	0.92 ^a fs 9	E	
8433.5 10	1@	1.08 ^a fs 13	E	

[†] For γ -connecting levels from a least-squares fit to the adopted E γ 's. Others from (t,p), unless otherwise noted.

[‡] From (p,p').

[#] From $\gamma(\theta)$ and γ -pol in $(n,n'\gamma)$.

[@] From $\gamma'(90^\circ)/\gamma'(127^\circ)$ and asymmetry in (pol γ, γ').

[&]amp; From DSA of γ' s in $(n,n'\gamma)$, unless otherwise noted. ^a From $\Gamma^2_{\gamma 0}/\Gamma_{\gamma}$ and branching ratios in (γ,γ') .

$\gamma(^{124}\mathrm{Sn})$

$E_i(level)$	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\color{red} oldsymbol{b}}$	E_f	\mathbf{J}_f^{π}	Mult.b	$\delta^{m{b}}$	α^{d}	Comments
1131.739	2+	1131.69 2	100	0.0	0+	E2		9.85×10 ⁻⁴	B(E2)(W.u.)=9.0 3 α (K)=0.000855 12; α (L)=0.0001039 15; α (M)=2.03×10 ⁻⁵ 3; α (N+)=5.51×10 ⁻⁶ 8 α (N)=3.81×10 ⁻⁶ 6; α (O)=3.27×10 ⁻⁷ 5; α (IPF)=1.368×10 ⁻⁶ 20
2101.711	4+	969.97 2	100	1131.739 2	2+	E2		1.38×10 ⁻³	Mult.: from $\alpha(K)$ exp=0.0009 2 in ¹²⁴ In β^- decay (3.7 s). B(E2)(W.u.)=4.8 6 $\alpha(K)$ =0.001195 17; $\alpha(L)$ =0.0001473 21; $\alpha(M)$ =2.88×10 ⁻⁵ 4; $\alpha(N+)$ =5.86×10 ⁻⁶ 9 $\alpha(N)$ =5.40×10 ⁻⁶ 8; $\alpha(O)$ =4.59×10 ⁻⁷ 7
2129.596	2+	997.85 2	100.00 10	1131.739 2	2+	M1+E2	+3.2 +7-5	1.31×10 ⁻³ 2	B(M1)(W.u.)=0.0021 5; B(E2)(W.u.)=17.4 4 α (K)=0.001142 17; α (L)=0.0001399 21; α (M)=2.73×10 ⁻⁵ 4; α (N+)=5.57×10 ⁻⁶ 8 α (N)=5.13×10 ⁻⁶ 8; α (O)=4.39×10 ⁻⁷ 7
		2129.6 3	1.73 10	0.0	0+	E2		6.48×10 ⁻⁴	B(E2)(W.u.)=0.012 +4-8 α (K)=0.000250 4; α (L)=2.93×10 ⁻⁵ 5; α (M)=5.70×10 ⁻⁶ 8; α (N+)=0.000363 5 α (N)=1.075×10 ⁻⁶ 15; α (O)=9.44×10 ⁻⁸ 14; α (IPF)=0.000362 5 Mult.: from (n,n' γ) and RUL of relevant levels.
2192.17	0+	1060.42 2	100	1131.739 2	2+	E2		1.13×10 ⁻³	$\alpha(K)$ =0.000983 14; $\alpha(L)$ =0.0001201 17; $\alpha(M)$ =2.35×10 ⁻⁵ 4; $\alpha(N+)$ =4.78×10 ⁻⁶ 7 $\alpha(N)$ =4.40×10 ⁻⁶ 7; $\alpha(O)$ =3.77×10 ⁻⁷ 6 Mult.: $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
2204.620	(5-)	102.91 [‡] 2	100 5	2101.711 4	4+	E1		0.1672	B(E1)(W.u.)= 4.4×10^{-7} 11 α (K)= 0.1447 21; α (L)= 0.0183 3; α (M)= 0.00356 5; α (N+)= 0.000706 10 α (N)= 0.000656 10; α (O)= 4.96×10^{-5} 7 Mult.: from α (K)exp= 0.15 3 in 0.124 In β decay (3.7 s).
		1072.88‡ 2	92 10	1131.739 2	2+	[E3]		0.00226	B(E3)(W.u.)=1.3 4 α (K)=0.00194 3; α (L)=0.000255 4; α (M)=5.02×10 ⁻⁵ 7; α (N+)=1.017×10 ⁻⁵ 15 α (N)=9.39×10 ⁻⁶ 14; α (O)=7.83×10 ⁻⁷ 11 I _{γ} : weighted av of 84 7 from (n,n') and 104 9 from ¹²⁴ In
2221.75	4+	1089.97 5	100	1131.739 2	2+	E2		1.07×10 ⁻³	β ⁻ decay (3.7 s). B(E2)(W.u.)=11 +4-11 α(K)=0.000926 13; α(L)=0.0001129 16; α(M)=2.20×10 ⁻⁵ 3; α(N+)=4.50×10 ⁻⁶ 7 α(N)=4.14×10 ⁻⁶ 6; α(O)=3.55×10 ⁻⁷ 5
2325.01	(7-)	120.38‡ 3	100	2204.620 ((5 ⁻)	E2		0.826	B(E2)(W.u.)=0.107 18

 ∞

γ (124Sn) (continued)

						-	y(SII) (C	ontinued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{ b}$	E_f	\mathbf{J}_f^{π}	Mult.b	$\delta^{m{b}}$	α^{d}	Comments
2266.5		1234.8# 5	100	1121 720	2+				$\alpha(K)$ =0.628 9; $\alpha(L)$ =0.1600 23; $\alpha(M)$ =0.0324 5; $\alpha(N+)$ =0.00606 9 $\alpha(N)$ =0.00578 9; $\alpha(O)$ =0.000280 4 Mult.: from $\alpha(K)$ exp=0.64 13 in 124 In β^- decay (3.7 s).
2366.5	2+		100	1131.739		M1.F2	0.21.2	0.0710-4	D(M1)/W \ 0.000/0.0 D/E0//W \ 0.10 A
2426.316	2+	1294.54 2	53 6	1131.739	21	M1+E2	-0.21 2	8.97×10 ⁻⁴	B(M1)(W.u.)=0.00962 8; B(E2)(W.u.)=0.18 4 α (K)=0.000766 11; α (L)=9.08×10 ⁻⁵ 13; α (M)=1.770×10 ⁻⁵ 25; α (N+)=2.34×10 ⁻⁵ 4 α (N)=3.34×10 ⁻⁶ 5; α (O)=2.95×10 ⁻⁷ 5; α (IPF)=1.97×10 ⁻⁵ 3
		2426.36 3	100 8	0.0	0+	E2		7.32×10 ⁻⁴	B(E2)(W.u.)=0.34 +11-20 α (K)=0.000198 3; α (L)=2.31×10 ⁻⁵ 4; α (M)=4.50×10 ⁻⁶ 7; α (N+)=0.000507 7 α (N)=8.48×10 ⁻⁷ 12; α (O)=7.46×10 ⁻⁸ 11; α (IPF)=0.000506 7
2454.34	6+	129.3 <mark>&</mark> <i>3</i>	8.2 12	2325.01	(7^{-})				
		249.72 ^{&} 2	100 5	2204.620	(5 ⁻)	E1(+M2)	+0.05 3	0.0145 9	$\alpha(K)$ =0.0126 8; $\alpha(L)$ =0.00155 11; $\alpha(M)$ =0.000302 22; $\alpha(N+)$ =6.1×10 ⁻⁵ 5 $\alpha(N)$ =5.6×10 ⁻⁵ 4; $\alpha(O)$ =4.6×10 ⁻⁶ 4
2568.15	6-	243.13 [‡] <i>3</i>	50 6	2325.01	(7-)	M1(+E2)	+0.01 3	0.0494	$\alpha(K)$ =0.0428 6 ; $\alpha(L)$ =0.00534 8 ; $\alpha(M)$ =0.001046 15 ; $\alpha(N+)$ =0.000214 3 $\alpha(N)$ =0.000197 3 ; $\alpha(O)$ =1.716×10 ⁻⁵ 24 I _{γ} : weighted av of 47 3 from (n,n' γ) and 62 6 from ¹²⁴ In β ⁻ decay (3.11 s). Mult.: from $\alpha(K)$ exp=0.042 13 in ¹²⁴ In β ⁻ decay (3.7 s).
		363.53 [‡] 3	100 7	2204.620	(5 ⁻)	M1(+E2)	+0.01 2	0.01750	$\alpha(K)$ =0.01519 22; $\alpha(L)$ =0.00187 3; $\alpha(M)$ =0.000366 6; $\alpha(N+)$ =7.49×10 ⁻⁵ 11 $\alpha(N)$ =6.89×10 ⁻⁵ 10; $\alpha(O)$ =6.03×10 ⁻⁶ 9 Mult.: from $\alpha(K)$ exp=0.030 9 in ¹²⁴ In β ⁻ decay (3.7 s).
2578.44	8(+)	253.43 [‡] <i>3</i>	100	2325.01	(7^{-})	D+Q	+0.09 5		
2602.495	3-	1470.71 2	100	1131.739	2+	E1+M2	+0.05 2	4.84×10 ⁻⁴ 8	B(E1)(W.u.)=0.00125 11; B(M2)(W.u.)=7 6 α (K)=0.000242 5; α (L)=2.81×10 ⁻⁵ 5; α (M)=5.47×10 ⁻⁶ 10; α (N+)=0.000209 3 α (N)=1.030×10 ⁻⁶ 19; α (O)=9.00×10 ⁻⁸ 16; α (IPF)=0.000208 3
2614.45	4-	409.83 & 2	100	2204.620	(5-)	M1(+E2)	+0.02 2	0.01295	$\alpha(K)$ =0.01125 <i>16</i> ; $\alpha(L)$ =0.001379 <i>20</i> ; $\alpha(M)$ =0.000270 <i>4</i> ; $\alpha(N+)$ =5.52×10 ⁻⁵ 8 $\alpha(N)$ =5.08×10 ⁻⁵ 8; $\alpha(O)$ =4.45×10 ⁻⁶ 7
2656.6	(10^+)	78.2 5	100	2578.44	8(+)	E2		3.83 11	B(E2)(W.u.)=0.024 3 α (K)=2.53 7; α (L)=1.04 4; α (M)=0.214 7;

9

$\gamma(\frac{124}{\text{Sn}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{b}	E_f	${\rm J}_f^\pi$	Mult. b	$\delta^{m{b}}$	α^{d}	Comments
2688.50	0+	558.81 12	28.2 13	2129.596		E2			α (N+)=0.0390 <i>13</i> α (N)=0.0376 <i>13</i> ; α (O)=0.00140 <i>4</i> E_{γ} ,Mult.: from ¹²⁴ Sn IT decay. Mult.: $\gamma(\theta)$ in (n,n' γ) and RUL.
		1556.77 ^{&} 5 133.52 ^{&} 13	100.0 13	1131.739	2+	E2			Mult.: $\gamma(\theta)$ III (II,II γ) and ROL.
2701.78	5-	497.16 ^{&} 2	9.5 8 100 8	2568.15 2204.620		M1(+E2)	-0.01 4	0.00804	$\alpha(K)$ =0.00699 10; $\alpha(L)$ =0.000851 12; $\alpha(M)$ =0.0001664 24; $\alpha(N+)$ =3.41×10 ⁻⁵ 5 $\alpha(N)$ =3.13×10 ⁻⁵ 5; $\alpha(O)$ =2.75×10 ⁻⁶ 4
2703.187	2+	573.89 12	12.0 13	2129.596	2+	D+Q	-0.4 +4-8		$u(N)=5.13\times10^{-5}$ 5; $u(O)=2.75\times10^{-5}$ 4
		601.4 ^{&} 2	4.4 5	2101.711	4+	[E2]		0.00444	B(E2)(W.u.)=17 +5-17 α (K)=0.00382 6; α (L)=0.000500 7; α (M)=9.82×10 ⁻⁵ 14; α (N+)=1.98×10 ⁻⁵ 3 α (N)=1.83×10 ⁻⁵ 3; α (O)=1.484×10 ⁻⁶ 21
		1571.43 2	100.0 13	1131.739	2+	M1+E2	-0.27 4	6.79×10 ⁻⁴	B(M1)(W.u.)=0.01046 21; B(E2)(W.u.)=0.22 6 α (K)=0.000505 8; α (L)=5.96×10 ⁻⁵ 9; α (M)=1.161×10 ⁻⁵ 17; α (N+)=0.0001029 15 α (N)=2.19×10 ⁻⁶ 4; α (O)=1.94×10 ⁻⁷ 3; α (IPF)=0.0001006 15
		2703.31 ^{&} 8	21.3 14	0.0	0+	E2		8.22×10 ⁻⁴	B(E2)(W.u.)=0.046 + 14-5 α(K)=0.0001639 23; α(L)=1.91×10 ⁻⁵ 3; α(M)=3.71×10 ⁻⁶ 6; α(N+)=0.000635 9 α(N)=7.00×10 ⁻⁷ 10; α(O)=6.17×10 ⁻⁸ 9; α(IPF)=0.000634 9 Mult.: from (n,n'γ) and RUL of relevant levels. E _γ : there is an unplaced 2699.6 4 γ in β ⁻ decay with $I\gamma$ =22 2. It may correspond to 2703γ from (n,n'γ).
2753.05	4-	150.3 ^{&} 2	2.6 3	2602.495	3-	(M1+E2)		0.28 10	$\alpha(K)$ =0.23 8; $\alpha(L)$ =0.042 22; $\alpha(M)$ =0.008 5; $\alpha(N+)$ =0.0016 9 $\alpha(N)$ =0.0015 8; $\alpha(O)$ =9.E-5 4 Mult.: from $(n,n'\gamma)$ and π' s of relevant levels. δ : -0.02 20 or -4 +18-3.
		548.43 ^{&} 2	100 8	2204.620	(5 ⁻)	M1+E2	-0.46 3	0.00622	$\alpha(K)$ =0.00540 8; $\alpha(L)$ =0.000666 10; $\alpha(M)$ =0.0001302 19; $\alpha(N+)$ =2.66×10 ⁻⁵ 4 $\alpha(N)$ =2.45×10 ⁻⁵ 4; $\alpha(O)$ =2.12×10 ⁻⁶ 3
2819.3 2836.58	(6 ⁺) 3 ⁺	717.6 <i>5</i> 614.76 <i>6</i>	100 34.5 <i>18</i>	2101.711 2221.75		E2 (M1+E2)		0.0045 4	Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL. $\alpha(K)=0.0039$ 3; $\alpha(L)=0.000489$ 20; $\alpha(M)=9.6\times10^{-5}$ 4; $\alpha(N+)=1.95\times10^{-5}$ 9 $\alpha(N)=1.79\times10^{-5}$ 8; $\alpha(O)=1.52\times10^{-6}$ 13 I_{γ} : other: 32.0 25 in 124 In β^- decay (3.11 s).

10

γ (124Sn) (continued)

							γ (338) (con	imueu)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.b	δ^{b}	α^{d}	Comments
2836.58	3+	706.98 4	100.0 17	2129.596	2+	M1+E2	+2.1 3	0.00302	Mult.: from $(n,n'\gamma)$ and $\pi's$ of relevant levels. δ : +0.4 2 or +1.9 10. B(M1)(W.u.)<0.028; B(E2)(W.u.)<1.5×10 ² $\alpha(K)=0.00261$ 5; $\alpha(L)=0.000330$ 5; $\alpha(M)=6.45\times10^{-5}$ 10; $\alpha(N+)=1.310\times10^{-5}$ 21 $\alpha(N)=1.209\times10^{-5}$ 19; $\alpha(O)=1.013\times10^{-6}$ 18
		735.34 ^{&} 18	18.6 <i>17</i>	2101.711	4+	(M1+E2)	-0.94 10	0.00292 5	$\alpha(N)=1.209\times 10^{-5}$ $f(O)=1.013\times 10^{-18}$ $\alpha(K)=0.00253$ $f(C)=0.000312$
		1704.87 11	27.8 10	1131.739	2+	(M1+E2)	+1.5 3	6.11×10 ⁻⁴ 10	$\alpha(K)$ =0.000393 8; $\alpha(L)$ =4.65×10 ⁻⁵ 9; $\alpha(M)$ =9.05×10 ⁻⁶ 18; $\alpha(N+)$ =0.0001619 25 $\alpha(N)$ =1.71×10 ⁻⁶ 4; $\alpha(O)$ =1.50×10 ⁻⁷ 3; $\alpha(IPF)$ =0.0001600 25 B(M1)(W.u.)<0.0012?; B(E2)(W.u.)<0.58? I _{γ} : other: 45 4 in ¹²⁴ In β ⁻ decay (3.11 s). Mult.: from (n,n' γ) and π 's of relevant levels.
2855.13	6-	650.51 ^{&} 4	100	2204.620	(5-)	M1(+E2)	+0.02 3	0.00421	$\alpha(K)$ =0.00366 6; $\alpha(L)$ =0.000443 7; $\alpha(M)$ =8.65×10 ⁻⁵ 13; $\alpha(N+)$ =1.773×10 ⁻⁵ 25 $\alpha(N)$ =1.630×10 ⁻⁵ 23; $\alpha(O)$ =1.434×10 ⁻⁶ 20
2875.37	2+	1743.62 4	100 8	1131.739	2+	M1+E2	+5.6 +11-8	5.96×10 ⁻⁴	B(M1)(W.u.)=0.0009 4; B(E2)(W.u.)=6.29 8 α (K)=0.000363 6; α (L)=4.29×10 ⁻⁵ 6; α (M)=8.35×10 ⁻⁶ 12; α (N+)=0.000182 3 α (N)=1.573×10 ⁻⁶ 23; α (O)=1.376×10 ⁻⁷ 20; α (IPF)=0.000180 3 δ : preferred value. Other: -0.20 6.
		2875.8 ^{&} 4	13.3 13	0.0	0+	E2		8.80×10 ⁻⁴	B(E2)(W.u.)=0.071 +19-39 α (K)=0.0001474 21; α (L)=1.714×10 ⁻⁵ 24; α (M)=3.33×10 ⁻⁶ 5; α (N+)=0.000712 10 α (N)=6.28×10 ⁻⁷ 9; α (O)=5.54×10 ⁻⁸ 8; α (IPF)=0.000712 10 Mult.: from (n,n' γ) and π 's of relevant levels.
2878.65	2+	656.8 5 686.2 2 749.05 ** 10	8.2 <i>5</i> 13.4 <i>6</i> 23.1 22	2192.17		E2			Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
		749.05 ^{&} 10	23.1 <i>22</i> 13.1 <i>6</i>	2129.596 2101.711		D,D+Q Q			
		1746.94 <i>6</i>	100.0 10	1131.739		M1+E2	+0.67 8	6.17×10 ⁻⁴ 24	$\alpha(\mathrm{K}) = 0.000384\ 25;\ \alpha(\mathrm{L}) = 4.5 \times 10^{-5}\ 3;\ \alpha(\mathrm{M}) = 8.8 \times 10^{-6}$ 6; $\alpha(\mathrm{N}+) = 0.000178\ 6$ $\alpha(\mathrm{N}) = 1.66 \times 10^{-6}\ II;\ \alpha(\mathrm{O}) = 1.46 \times 10^{-7}\ II;$ $\alpha(\mathrm{IPF}) = 0.000177\ 6$ 6: $+0.67\ 8$ if $J^{\pi} = 2^{+}$ or $+2.6\ 4$ if $J^{\pi} = 3^{+}$.

$\gamma(^{124}\text{Sn})$ (continued)

					<u> </u>	$r(^{124}\mathrm{Sn})$ (cont	inued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$I_{\gamma}^{ b}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.b	$\delta^{m{b}}$	α^{d}	Comments
2878.65	2+	2878.6 5	4.7 4	0.0 0+	E2			Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
2958.11	4+	531.1 & 2	26 3	2426.316 2+	(Q)	0.4.0		
		737.4 <i>5</i> 856.55 <i>&</i> 13	43 <i>6</i> 35.7 <i>26</i>	2221.75 4 ⁺ 2101.711 4 ⁺	D+Q (M1+E2)	+0.6 9	0.00203 20	o(V)=0.00176_19; o(I)=0.000215_19;
			33.7 20	2101.711 4	(M1+E2)		0.00203 20	$\alpha(K)$ =0.00176 18; $\alpha(L)$ =0.000215 18; $\alpha(M)$ =4.2×10 ⁻⁵ 4; $\alpha(N+)$ =8.6×10 ⁻⁶ 8 $\alpha(N)$ =7.9×10 ⁻⁶ 7; $\alpha(O)$ =6.8×10 ⁻⁷ 7 δ : -1.0 4 or -6 +18-14.
		1826.38 & 7	100 5	1131.739 2+				
2988.03	3-	234.95 <mark>&</mark> 7	16.5 11	2753.05 4	(M1+E2)	-0.07 11	0.0542 11	$\alpha(K)$ =0.0470 9; $\alpha(L)$ =0.00588 17; $\alpha(M)$ =0.00115 4; $\alpha(N+)$ =0.000235 7 $\alpha(N)$ =0.000217 6; $\alpha(O)$ =1.88×10 ⁻⁵ 4
								B(M1)(W.u.)<0.28?; B(E2)(W.u.)<72? Mult.: from $(n,n'\gamma)$ and RUL of relevant levels. δ : preferred value. Other: $-4 + 2 - 8$.
		373.75 ^{&} 13	10.5 10	2614.45 4	(M1+E2)		0.0170 7	$\alpha(K)=0.0145$ 5; $\alpha(L)=0.00195$ 21; $\alpha(M)=0.00038$ 5; $\alpha(N+)=7.7\times10^{-5}$ 8
								$\alpha(N)=7.1\times10^{-5}$ 8; $\alpha(O)=5.74\times10^{-6}$ 15 Mult.: from $(n,n'\gamma)$ and RUL of relevant levels. δ : -0.01 12 or $-8 + 4 - 92$.
		385.38 ^{&} 5	53 4	2602.495 3	M1+E2	+1.7 3	0.01577 24	$\alpha(K)$ =0.01347 20; $\alpha(L)$ =0.00186 4; $\alpha(M)$ =0.000367 8; $\alpha(N+)$ =7.33×10 ⁻⁵ 14 $\alpha(N)$ =6.80×10 ⁻⁵ 14; $\alpha(O)$ =5.30×10 ⁻⁶ 8 B(M1)(W.u.)<0.066; B(E2)(W.u.)<7.8×10 ²
		1856.33 ^{&} 3	100 8	1131.739 2+	E1(+M2)	-0.02 2	6.87×10 ⁻⁴	$\alpha(K)=0.0001639 \ 24; \ \alpha(L)=1.90\times10^{-5} \ 3;$ $\alpha(M)=3.68\times10^{-6} \ 6; \ \alpha(N+)=0.000501 \ 7$ $\alpha(N)=6.94\times10^{-7} \ 11; \ \alpha(O)=6.08\times10^{-8} \ 9;$ $\alpha(IPF)=0.000500 \ 7$
		@		(1)				B(E1)(W.u.) $<4.3\times10^{-5}$?; B(M2)(W.u.) <0.068 ?
3011.1	(7,8,9)	432.7 [@] 3 3109.5 [#] 5	100	2578.44 8 ⁽⁺⁾ 0.0 0 ⁺				
3109.5 3143.86	1,2 ⁺ 4 ⁺	3109.5" 3 717.68 <mark>&</mark> 8	100 100 8	$0.0 0^{+}$ $2426.316 2^{+}$	[E0]		0.00281	$B(E2)(W.u.)=3.7\times10^2+14-31$
3143.80	4.	/1/.08** 8	100 8	2420.310 2	[E2]		0.00281	$\alpha(K)=0.00243 \ 4; \ \alpha(L)=0.000310 \ 5;$ $\alpha(M)=6.07\times10^{-5} \ 9; \ \alpha(N+)=1.228\times10^{-5} \ 18$ $\alpha(N)=1.134\times10^{-5} \ 16; \ \alpha(O)=9.39\times10^{-7} \ 14$
		2011.96& 8	100 8	1131.739 2+	[E2]		6.23×10 ⁻⁴	B(E2)(W.u.)=2.1 +8-18 α (K)=0.000277 4; α (L)=3.26×10 ⁻⁵ 5; α (M)=6.34×10 ⁻⁶ 9; α (N+)=0.000307 5 α (N)=1.194×10 ⁻⁶ 17; α (O)=1.047×10 ⁻⁷ 15; α (IPF)=0.000306 5
3214.36	2+	2082.66 18	17.4 <i>17</i>	1131.739 2+	M1+E2	+1.2 5	6.44×10^{-4} 10	B(M1)(W.u.)=0.006 4; B(E2)(W.u.)=1.4 6

γ (124Sn) (continued)

					<u>-</u>	(511) (- ontinaca)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{b}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. b	$\delta^{m{b}}$	α^d	Comments
3214.36	2+	3214.29 12	100 8	0.0 0+	E2		9.97×10 ⁻⁴	$\alpha(\mathrm{K}) = 0.000270 \ 8; \ \alpha(\mathrm{L}) = 3.17 \times 10^{-5} \ 9; \ \alpha(\mathrm{M}) = 6.18 \times 10^{-6} \\ 18; \ \alpha(\mathrm{N}+) = 0.000336 \ 6 \\ \alpha(\mathrm{N}) = 1.16 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.03 \times 10^{-7} \ 4; \ \alpha(\mathrm{IPF}) = 0.000335 \\ 6 \\ \mathrm{Mult.: \ from \ } (\mathrm{n},\mathrm{n}'\gamma) \ \text{ and \ RUL \ of \ relevant \ levels.} \\ \mathrm{B(E2)(W.u.)} = 1.5 \ 4 \\ \alpha(\mathrm{K}) = 0.0001221 \ 17; \ \alpha(\mathrm{L}) = 1.416 \times 10^{-5} \ 20; \\ \alpha(\mathrm{M}) = 2.75 \times 10^{-6} \ 4; \ \alpha(\mathrm{N}+) = 0.000858 \ 12 \\ \alpha(\mathrm{N}) = 5.19 \times 10^{-7} \ 8; \ \alpha(\mathrm{O}) = 4.59 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 0.000857 \\ 12 \\ \end{cases}$
3227.95		1098.4 ^{&} 2 2096.22 ^{&} 16	67 <i>17</i> 100 <i>8</i>	2129.596 2 ⁺ 1131.739 2 ⁺				
3240.36	(7,8,9)	915.35 [@] 20	100	2325.01 (7-)			
3264.49	2+	3264.44 11	100	0.0 0+	E2		1.01×10 ⁻³	B(E2)(W.u.)=0.22 +16-12 α (K)=0.0001190 17; α (L)=1.380×10 ⁻⁵ 20; α (M)=2.68×10 ⁻⁶ 4; α (N+)=0.000879 13 α (N)=5.06×10 ⁻⁷ 7; α (O)=4.47×10 ⁻⁸ 7; α (IPF)=0.000878
2267.12	1.0.2	2135.37 <mark>&</mark> 8	100	1131.739 2+	D,D+O			13
3267.13 3293.42	1,2,3 2,3	1163.82 9	100 13	2129.596 2 ⁺	D,D+Q D,D+Q			
	_,-	2161.7 ^{&} 3	38 4	1131.739 2 ⁺	_ ,			
3312.99?	2,3,4	1183.39 <mark>&</mark> 6	100	2129.596 2+				
3330.41	2,3	2198.65 <mark>&</mark> 9	100	1131.739 2+				
3333.54	$2^{(+)}$	630.35 <mark>&</mark> <i>14</i>	207 21	2703.187 2 ⁺	D+Q			δ : +2.3 12 or 0.0 3.
		1204.1 [#] 3	33 7	2129.596 2+				
		2201.79 <i>13</i>	100 12	1131.739 2+	(M1+E2)	+1.1 6	6.72×10 ⁻⁴ 11	$\alpha(K)=0.000244 \ 8; \ \alpha(L)=2.86\times10^{-5} \ 9; \ \alpha(M)=5.57\times10^{-6} \ 18; \ \alpha(N+)=0.000393 \ 7$ $\alpha(N)=1.05\times10^{-6} \ 4; \ \alpha(O)=9.3\times10^{-8} \ 4; \ \alpha(IPF)=0.000392 \ 7$ I_{γ} : other: 38 7 in 124 In β^- decay (3.12 s).
		3333.3 <i>3</i>	106 <i>11</i>	$0.0 0^{+}$	(Q)			ry. other. 30 / III III p deedy (3.12 8).
3346.46	(3,4)	1244.71 <mark>&</mark> 6	100 8	2101.711 4+				
		2215.0 ^{&} 2	29 3	1131.739 2+				
3362.3	(7,8,9)	784.0 [@] 6	70 10	2578.44 8(+)	1			I_{γ} : from ¹²⁴ In β^- decay (3.7 s).
		1037.3 [@] 3	100 10	2325.01 (7)			I_{γ} : from ¹²⁴ In β^- decay (3.7 s).
3363.59	3(+)	1261.30 ^{&} 16	37 4	2101.711 4+	(M1+E2)	-1.1 6	0.00087 6	$\alpha(\mathrm{K}) = 0.00074 \ 5; \ \alpha(\mathrm{L}) = 8.9 \times 10^{-5} \ 6; \ \alpha(\mathrm{M}) = 1.73 \times 10^{-5} \ 10; \\ \alpha(\mathrm{N}+) = 1.87 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 3.26 \times 10^{-6} \ 20; \ \alpha(\mathrm{O}) = 2.85 \times 10^{-7} \ 20; \\ \alpha(\mathrm{IPF}) = 1.52 \times 10^{-5} \ 7$

13

Adopted Levels, (J ammas (continued)
-------------------	----------------------	-----------	---

γ (124Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.b	δ^{b}	α^d	Comments
3363.59	3(+)	2231.97 <mark>&</mark> 8	100 8	1131.739 2+	D(+Q)	-0.01 3		
3396.5	1,2+	3396.5 [#] 8	100	$0.0 0^{+}$				
3410.14	1	1280.37 ^{&} <i>15</i>	61 <i>6</i>	2129.596 2+				
		3410.4 <mark>&</mark> 2	100 9	$0.0 0^{+}$	D,D+Q			
3490.18	1-	3490.13 ^{&} 14	100	0.0 0+	E1		1.52×10 ⁻³	$\alpha(K)=6.47\times10^{-5} 9; \ \alpha(L)=7.42\times10^{-6} \ 11; \ \alpha(M)=1.440\times10^{-6} \ 21; \ \alpha(N+)=0.001447 \ 21 \ \alpha(N)=2.72\times10^{-7} \ 4; \ \alpha(O)=2.39\times10^{-8} \ 4; \ \alpha(IPF)=0.001447 \ 21 \ Mult.: \ from \ (\gamma,\gamma').$
3498.58	1,2,3	1369.2 <mark>&</mark> 2	62 <i>6</i>	2129.596 2+				
		2366.6 <mark>&</mark> 2	100 9	1131.739 2+	D,D+Q			
3509.15	3 ⁽⁺⁾	1379.58 ^{&} 9	100 8	2129.596 2+	(M1+E2)	+2.4 4	7.12×10 ⁻⁴ <i>I</i> 2	$\alpha(K)=0.000584 \ 10; \ \alpha(L)=6.98\times 10^{-5} \ 12; \ \alpha(M)=1.361\times 10^{-5} \ 23; \ \alpha(N+)=4.46\times 10^{-5} \ 7 \ \alpha(N)=2.56\times 10^{-6} \ 5; \ \alpha(O)=2.23\times 10^{-7} \ 4; \ \alpha(IPF)=4.19\times 10^{-5} \ 7 \ \delta$: preferred value. Other: +0.68 8.
		2377.2 ^{&} 2	55 5	1131.739 2+	(M1+E2)	+10 +90-5	7.17×10 ⁻⁴	$\alpha(K)=0.000205\ 3;\ \alpha(L)=2.40\times10^{-5}\ 4;$ $\alpha(M)=4.67\times10^{-6}\ 7;\ \alpha(N+)=0.000483\ 7$ $\alpha(N)=8.80\times10^{-7}\ 13;\ \alpha(O)=7.75\times10^{-8}\ 11;$ $\alpha(IPF)=0.000482\ 7$ δ : preferred value. Other: +0.32 11.
3524.02	$(7^-, 8^-)$	955.90 [@] 10	100 8	2568.15 6-				I_{γ} : from ¹²⁴ In β^- decay (3.7 s).
3551.53	(3-)	1198.97 [@] 10 1330.0 3	71 <i>6</i> 100 <i>9</i>	2325.01 (7 ⁻) 2221.75 4 ⁺				I_{γ} : from ¹²⁴ In β^- decay (3.7 s).
		1421.7 ^{&} 2	56 6	2129.596 2+	~ ~ ~ ~ ·			
		1450.1 3	86 10	2101.711 4+	(D,D+Q)			I_{γ} : weighted av of 79 8 from (n,n' γ) and 100 11 from ¹²⁴ In β ⁻ decay (3.12 s).
		2419.77 [#] 20	220 20	1131.739 2+				I_{γ} : from ¹²⁴ Sn β^- decay (3.12 s).
3583.66	2+	355.75 ^{&} 12	71 <i>7</i>	3227.95	(Q)			
		1453.5 ^{&} 3	100 8	2129.596 2+	(M1+E2)		0.00070 5	$\alpha(K)$ =0.00056 5; $\alpha(L)$ =6.6×10 ⁻⁵ 5; $\alpha(M)$ =1.29×10 ⁻⁵ 10; $\alpha(N+)$ =6.5×10 ⁻⁵ 3 $\alpha(N)$ =2.43×10 ⁻⁶ 19; $\alpha(O)$ =2.13×10 ⁻⁷ 19; $\alpha(IPF)$ =6.2×10 ⁻⁵ 3 Mult.: from (n,n' γ) and RUL of relevant levels. δ : -20 31 or -0.4 3.
		2452.3 ^{&} 3	51 5	1131.739 2+	(M1+E2)		7.43×10 ⁻⁴	$\alpha(K)=0.000200\ 7;\ \alpha(L)=2.34\times10^{-5}\ 8;$ $\alpha(M)=4.55\times10^{-6}\ 16;\ \alpha(N+)=0.000515\ 9$ $\alpha(N)=8.6\times10^{-7}\ 3;\ \alpha(O)=7.6\times10^{-8}\ 3;$

14

γ (124Sn) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.b	α^{d}	Comments
								α (IPF)=0.000514 9 Mult.: from (n,n' γ) and RUL of relevant levels. δ : -6 -15 or -0.5 3.
3583.66	2+	3583.6 ^{&} 4	69 7	0.0	0+	(E2)	1.12×10 ⁻³	$\alpha(K)$ =0.0001020 <i>15</i> ; $\alpha(L)$ =1.180×10 ⁻⁵ <i>17</i> ; $\alpha(M)$ =2.29×10 ⁻⁶ <i>4</i> ; $\alpha(N+)$ =0.001004 <i>14</i> $\alpha(N)$ =4.33×10 ⁻⁷ <i>6</i> ; $\alpha(O)$ =3.83×10 ⁻⁸ <i>6</i> ; $\alpha(IPF)$ =0.001004 <i>14</i> Mult.: from (n,n' γ) and RUL of relevant levels.
3603.86	2,3	1177.3 ^{&} 3	27 4	2426.316	2+			
		2472.2 <mark>&</mark> 2	100 8	1131.739	2+			
3643.4	(7,8,9)	403.01 [@] 20	100	3240.36	(7,8,9)			
3655.20	2,3	952.4 <mark>&e</mark> 2		2703.187	2+			
		1433.3 ^{&} 3	80 11	2221.75	4+			
		1525.6 2	100 13	2129.596		D,D+Q		
		1553.6 ^{&} 3	48 9	2101.711				
3684.91	(7^{-})	1106.9 [@] 6	2.6 5	2578.44	8(+)			
		1116.77 [@] 10	40 4	2568.15	6-			
		1359.86 [@] 10	100 8	2325.01	(7-)			
3697.3	1	2565.4 ^{&} 6	17 4	1131.739	2+			
		3697.3 ^{&} 4	100 9	0.0	0_{+}	D		Mult.: from (γ, γ') .
3710.39	2+	2578.6 ^{&} 3	29 4	1131.739				
		3710.34 24	100 9	0.0	0+	E2	1.16×10^{-3}	B(E2)(W.u.)=0.6 +3-2 α (K)=9.63×10 ⁻⁵ 14; α (L)=1.114×10 ⁻⁵ 16; α (M)=2.16×10 ⁻⁶ 3; α (N+)=0.001055 15 α (N)=4.08×10 ⁻⁷ 6; α (O)=3.61×10 ⁻⁸ 5; α (IPF)=0.001055 15
3724.7	1,2+	2593.1 4	100 <i>21</i>	1131.739	2+			
		3724.5 [#] 4	95 21	0.0	0_{+}			
3741.62	(2)+	1138.4 [#] <i>3</i> 1519.53 <i>25</i>	47 <i>15</i> 100 <i>13</i>	2602.495 2221.75				
		1611.3 [#] 4	36 <i>3</i>	2129.596				
		1640.46 19	161 <i>15</i>	2101.711				
		2609.89 [#] 15	60 6	1131.739				
3760.27	$(0^+,1,2)$	2628.50 [#] 20	100	1131.739				
3761.83	2+	2630.3 ^{&} 4	41 5	1131.739		D,D+Q		
		3761.68 24	100 9	0.0	0+	E2	1.18×10^{-3}	B(E2)(W.u.)=0.29 +18-3 α (K)=9.42×10 ⁻⁵ 14; α (L)=1.089×10 ⁻⁵ 16; α (M)=2.12×10 ⁻⁶ 3; α (N+)=0.001076 15 α (N)=3.99×10 ⁻⁷ 6; α (O)=3.53×10 ⁻⁸ 5; α (IPF)=0.001075 15
		1186.6 [@] 4						u(11) = 3.77710 0, u(0) = 3.33710 3, u(111) = 0.001073 13

γ (124Sn) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{b}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.b
3765.14	$(7^-, 8^-, 9^-)$	1440.13 [@] 10	100 9	2325.01	(7-)	
3802.54	2,3	1673.3 <mark>&</mark> <i>3</i>	18 <i>3</i>	2129.596	2+	
		2670.6 <mark>&</mark> 2	100 9	1131.739	2+	
3809.71	(7,8,9)	1484.69 [@] 20	100	2325.01	(7^{-})	
3831.4	2,3,4	1702.6 <mark>&</mark> 4	49 5	2129.596	2+	
		2698.9 <mark>&</mark> 4	100 9	1131.739	2+	Q
3834.3	1,2+	3834.2 [#] 7	100	0.0	0^{+}	
3864.26	1,2+	1734.69 [#] 20	68 7	2129.596	2+	
		2732.36 [#] 20	77 <i>7</i>	1131.739	2+	
		3864.4 <i>3</i>	100 9	0.0	0_{+}	
3888.0	$1,2^{+}$	3887.9 [#] 8	100	0.0	0_{+}	
3910.7	2+	3910.6 [#] 9	100	0.0	0_{+}	
3917.27	2+	1042.12 [#] <i>15</i>	27 2	2875.37	2+	
		1214.26 [#] 20	14 <i>I</i>	2703.187	2+	
		1314.73 [#] 5	100 9	2602.495	3-	
		1490.9 [#] 4	4.2 4	2426.316	2+	
		1695.63 [#] 20	8.4 9	2221.75	4 ⁺	
		1787.71 [#] 20	9.8 9	2129.596	2+	
		1815.3 [#] <i>3</i>	4.2 9	2101.711	4 ⁺	
		3917.0 [#] <i>3</i>	42 <i>4</i>	0.0	0_{+}	
3931.5	(7,8,9)	569.11 [@] 15	100	3362.3	(7,8,9)	
3963.6	1,2	2831.9 ^{&} 3	100 12	1131.739	2+	(D,D+Q)
		3963.0 <mark>&</mark> 6	94 10	0.0	0^{+}	
4043.8	1,2+	4043.7 [#] 5	100	0.0	0^{+}	
4074.4	2	2942.4 & <i>4</i>	100 10	1131.739	2+	(D,D+Q)
		4075.3 <mark>&</mark> 8	85 9	0.0	0^{+}	(Q)
4094.2	2,3	2962.4 ^{&} 3	100	1131.739	2+	
4156.1	2+	3024.4 3	34 7	1131.739	2+	
		4155.8# 6	100 11	0.0	0_{+}	
4208.1	2,3	3076.3 ^{&} 3	100	1131.739	2+	
4219.2 4227.57	1 1,2 ⁺	4219.1 ^a 6 1352.11 16	100 12	0.0 2875.37	0 ⁺ 2 ⁺	D
4221.31	1,2	4228.0 [#] 4	72 16	0.0	2 0 ⁺	D,D+Q
4263.5	1	4228.0" 4 4263.4 <mark>a</mark> 6	12 10	0.0	0+	D
4264.1	1,2+	4264.0 [#] 3	100	0.0	0+	D
4269.82	(4)	686.2 ^{&} 2	100 11	3583.66	2 ⁺	
1207.02	(1)	500.2 2	100 11	2202.00	_	

$\gamma(\frac{124}{\text{Sn}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.b	α^d	Comments
4269.82	(4)	3137.8 ^{&} 5	52 6	1131.739	2+			
4331.4	1,2+	4331.3 [#] 4	100	0.0	0^{+}			
4359.58	0^{+} to 4^{+}	3227.8 ^{&} 2	100	1131.739				
4470.3	1,2+	4470.2 [#] 4	100	0.0	0+			
	1,2 ⁺	4528.7 [#] 4	100	0.0	0+			
4528.8		4528.7" 4 4604.5 [#] 7						
4604.6	1,2+	4604.5" / 4605.7 ^a 6	100	0.0	0^{+}			
4605.8	1	4605.7° 6 4953.7° 7		0.0	0_{+}	D		
4953.8 5064.8	1	4953.74 7 5064.7 <mark>4</mark> 7		0.0	0+	D		
	1-	5842.5 ^a 7			0+	E1C	0.00220	$\alpha(K)=3.30\times10^{-5}$ 5; $\alpha(L)=3.77\times10^{-6}$ 6; $\alpha(M)=7.31\times10^{-7}$ 11; $\alpha(N+)=0.00225$ 4
5842.6	1-			0.0		E1 ^c	0.00229	$\alpha(K)=3.30\times10^{-5}$ 3; $\alpha(L)=3.77\times10^{-6}$ 6; $\alpha(M)=7.31\times10^{-7}$ 17; $\alpha(N+)=0.00225$ 4 $\alpha(N)=1.378\times10^{-7}$ 20; $\alpha(O)=1.218\times10^{-8}$ 17; $\alpha(IPF)=0.00225$ 4
5869.8	(1)	5869.7 ^a 8		0.0	0_{+}	(D)		
5902.7	1	5902.5 ^a 7		0.0	0_{+}	D		
5951.9	1	5951.7 ^a 7		0.0	0+	D		
5968.6	1	5968.4 ^a 7		0.0	0^{+}	D		
6002.2	1	6002.0^{a} 7		0.0	0+	D		
6129.2	1	6129.0 ^a 7		0.0	0+	D		
6171.0	1	6170.8 ^a 12		0.0	0+	D		
6184.2	1-	6184.0 ^a 6		0.0	0+	E1 ^c		
6236.7	1	6236.5 ^a 7		0.0	0+	D		
6287.3	1	6287.1^{a} 7		0.0	0^{+}	D E1C		
6321.8	1-	6321.6 ^a 7 6369.1 ^a 7		0.0	0+	E1 ^c		
6369.3 6453.3	1 ⁻ 1	6453.1 ^a 7		0.0	0+	E1 ^c D		
6467.7	1	6467.5 ^a 6		0.0	0^{+}	D D		
6503.4	1	6503.2^a 6		0.0	0+	D		
6524.2	1-	6524.0^a 5		0.0	0+	E1 ^c		
6548.7	1	6548.5 ^a 5		0.0	0+	D		
6561.0	1-	6560.8 ^a 7		0.0	0^{+}	E1 ^c		
6566.0	1	6565.8 ^a 8		0.0	0+	D		
6584.3	1-	6584.1 <mark>a</mark> 6		0.0	0_{+}	E1 ^c		
6600.0	1	6599.8 ^a 7		0.0	0_{+}	D		
6635.8	1-	6635.6 ^a 6		0.0	0_{+}	E1 ^c		
6678.1	1-	6677.9 ^a 7		0.0	0_{+}	E1 ^c		
6683.5	1-	6683.3 ^a 8		0.0	0_{+}	E1 ^c		
6705.6	1-	6705.4 ^a 8		0.0	0_{+}	E1 ^c		
6713.8	1-	6713.6 <i>a</i> 7		0.0	0+	E1 ^c		
6722.5	1	6722.3 ^a 6		0.0	0+	D		
6764.4	1-	6764.2 ^a 8		0.0	0+	E1 ^c		
6775.8	1	6775.6 ^a 8		0.0	0_{+}	D		

γ (124Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\underline{\mathbf{E}_f} \ \underline{\mathbf{J}_f^{\pi}}$	Mult.b	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\underline{\mathbf{E}_f} \ \underline{\mathbf{J}_f^{\pi}}$	Mult.b
6790.8	1-	6790.6 <mark>a</mark> 8	$0.0 \ 0^{+}$	E1 ^c	7679.1	1	7678.8 <mark>a</mark> 14	$0.0 \ 0^{+}$	D
6808.2	1(+)	6808.0 <mark>a</mark> 6	$0.0 \ 0^{+}$	$(M1)^{c}$	7684.2	1-	7683.9 ^a 11	$0.0 \ 0^{+}$	E1 ^c
6847.3	1-	6847.1 <mark>a</mark> 8	$0.0 \ 0^{+}$	È1 ^c	7691.5	1	7691.2 ^a 7	$0.0 \ 0^{+}$	D
6902.3	1-	6902.1 <mark>a</mark> 8	$0.0 \ 0^{+}$	E1 ^c	7702.9	1	7702.6 <mark>a</mark> 9	$0.0 \ 0^{+}$	D
6928.4	(1)	6928.2 ^a 8	$0.0 \ 0^{+}$	(D)	7747.7	1-	7747.4 <mark>a</mark> 7	$0.0 \ 0^{+}$	E1 ^c
6939.1	1	6938.9 ^a 8	$0.0 \ 0^{+}$	D	7759.4	1-	7759.1 <mark>a</mark> 4	$0.0 \ 0^{+}$	E1 ^c
6947.7	1	6947.5 <mark>a</mark> 8	$0.0 \ 0^{+}$	D	7770.9	1	7770.6 <mark>a</mark> 6	$0.0 \ 0^{+}$	D
7018.2	1	7018.0 <mark>a</mark> 8	$0.0 \ 0^{+}$	D	7778.4	1	7778.1 <mark>a</mark> 9	$0.0 \ 0^{+}$	D
7032.7	1-	7032.5 ^a 7	$0.0 \ 0^{+}$	E1 ^c	7788.6	1	7788.3 ^a 5	$0.0 \ 0^{+}$	D
7062.4	1	7062.2 ^a 9	$0.0 \ 0^{+}$	D	7815.6	1-	7815.3 ^a 5	$0.0 \ 0^{+}$	E1 ^c
7071.3	1	7071.1 <mark>a</mark> 8	$0.0 \ 0^{+}$	D	7863.7	1-	7863.4 ^a 8	$0.0 \ 0^{+}$	E1 ^c
7086.7	1	7086.5 <mark>a</mark> 7	$0.0 \ 0^{+}$	D	7872.4	1	7872.1 <i>a</i> 6	$0.0 \ 0^{+}$	D
7125.9	1	7125.7 ^a 7	$0.0 \ 0^{+}$	D	7880.5	1-	7880.2 ^a 5	$0.0 \ 0^{+}$	E1 ^c
7234.0	1	7233.8 ^a 8	$0.0 \ 0^{+}$	D	7905.4	1	7905.1 ^a 12	$0.0 \ 0^{+}$	D
7258.8	1	7258.6 ^a 10	$0.0 \ 0^{+}$	D	7913.4	1	7913.1 <mark>a</mark> 8	$0.0 \ 0^{+}$	D
7295.7	1-	7295.5 <mark>a</mark> 7	$0.0 \ 0^{+}$	E1 ^c	7939.3	1	7939.0 ^a 12	$0.0 \ 0^{+}$	D
7308.7	1	7308.5 ^a 9	$0.0 \ 0^{+}$	D	7957.4	1	7957.1 ^a 9	$0.0 \ 0^{+}$	D
7326.4	1	7326.2 ^a 7	$0.0 \ 0^{+}$	D	7999.2	1-	7998.9 ^a 9	$0.0 \ 0^{+}$	E1 ^c
7337.7	1-	7337.5 <mark>a</mark> 7	$0.0 \ 0^{+}$	E1 ^c	8112.1	1	8111.8 ^a 16	$0.0 \ 0^{+}$	D
7344.6	1	7344.4 ^a 7	$0.0 \ 0^{+}$	D	8119.1	1	8118.8 <mark>a</mark> 8	$0.0 \ 0^{+}$	D
7394.7	1-	7394.5 <mark>a</mark> 4	$0.0 \ 0^{+}$	E1 ^c	8132.0	1	8131.7 ^a 15	$0.0 \ 0^{+}$	D
7487.8	1-	7487.6 <mark>a</mark> 7	$0.0 \ 0^{+}$	E1 ^c	8162.5	1	8162.2 ^a 8	$0.0 \ 0^{+}$	D
7536.7	1-	7536.5 ^a 7	$0.0 \ 0^{+}$	E1 ^c	8214.6	1	8214.3 ^a 12	$0.0 \ 0^{+}$	D
7551.1	1-	7550.9 ^a 6	$0.0 \ 0^{+}$	E1 ^c	8229.2	1	8228.9 ^a 6	$0.0 \ 0^{+}$	D
7567.1	1	7566.9 ^a 10	$0.0 \ 0^{+}$	D	8257.2	1	8256.9 ^a 9	$0.0 \ 0^{+}$	D
7576.1	1-	7575.9 ^a 7	$0.0 \ 0^{+}$	E1 ^c	8270.1	$1^{(+)}$	8269.8 ^a 7	$0.0 \ 0^{+}$	$(M1)^{C}$
7596.6	1-	7596.4 ^a 10	$0.0 \ 0^{+}$	E1 ^c	8350.4	1	8350.1 ^a 13	$0.0 \ 0^{+}$	D
7604.0	1-	7603.7 ^a 8	$0.0 \ 0^{+}$	E1 ^c	8376.5	1-	8376.2 ^a 11	$0.0 \ 0^{+}$	E1 ^c
7642.9	1-	7642.6 <mark>a</mark> 8	$0.0 \ 0^{+}$	E1 ^c	8423.1	1	8422.8 ^a 7	$0.0 \ 0^{+}$	D
7666.3	1	7666.0 ^a 7	$0.0 \ 0^{+}$	D	8433.5	1	8433.2 ^a 10	$0.0 \ 0^{+}$	D

[†] From weighted av from $(n,n'\gamma)$ and 124 In β^- decay (3.12 s), unless otherwise noted. ‡ From weighted av from $(n,n'\gamma)$ and 124 In β^- decay (3.7 s). # From 124 In β^- decay (3.12 s); not observed in 3.7-s decay and in $(n,n'\gamma)$. @ From 124 In β^- decay (3.7 s); not observed in 3.12-s decay and in $(n,n'\gamma)$.

[&]amp; From $(n,n'\gamma)$.

^a From (γ, γ') . ^b From $(n, n'\gamma)$, unless otherwise noted.

 $\gamma(^{124}\text{Sn})$ (continued)

^c From (γ, γ') .

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence

Level Scheme (continued)

Intensities: Relative photon branching from each level

- - - - - ► γ Decay (Uncertain)

Coincidence

Legend

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence + 3 490,3 &100 1,2,3 3498.58 3490.18 0.0051 ps 5 3410.14 1,2+ 3396.5 3(+) 3363.59 (7,8,9)3362.3 (3,4) 3346.46 2⁽⁺⁾ 2,3 3333.54 3330.41 0.07 ps +9-32,3,4 3312.99 2,3 3293.42 1,2,3 3267.13 >0.14 ps 2⁺ (7,8,9) 0.19 ps +22-8 3264.49 3240.36 3227.95 0.07 ps +23-3 2+ 3214.36 0.025 ps 6 $\frac{4^{+}}{1,2^{+}}$ 3143.86 0.11 ps +9-43109.5 (7,8,9) 3011.1 >0.55 ps 3-2988.03 4+ 2958.11 > 0.9 ps2+ 2878.65 0.067 ps +18-14 2753.05 4- 2^{+} 2703.187 0.4 ps + 4 - 14-2614.45 3-2602.495 0.068 ps 6 8(+)2578.44 0.35 ps +20-10 2+ 2426.316 (7^{-}) 2325.01 $3.1~\mu s 5$ 4+ 2221.75 0.9 ps +9-3>0.55 ps 0^+ 2192.17 2129.596 0.8 ps + 5 - 24+ 2101.711 3.7 ps 4 1131.739 0.92 ps 3 0.0 stable $^{124}_{50}\mathrm{Sn}_{74}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level


```
History
                                                                    Author
                                                                                                                             Literature Cutoff Date
                                   Type
                                                                                                        Citation
                                                    H. Iimura, J. Katakura, S. Ohya
                                                                                                                                    1-Oct-2021
                             Full Evaluation
                                                                                                NDS 180, 1 (2022)
Q(\beta^{-})=378 \ 30; S(n)=8193 \ 11; S(p)=12892 \ 11; Q(\alpha)=-7828 \ 11
                                                                                     2021Wa16
                                                                                  <sup>126</sup>Sn Levels
                                                                       Cross Reference (XREF) Flags
                                       ^{126}In \beta^{-} decay (1.64 s)
                                                                        F
                                                                                ^{124}Sn(^{136}Xe,X\gamma),(^{238}U,X\gamma)
                                                                                                                             Coulomb excitation
                               Α
                                       ^{126}In \beta^{-} decay (1.53 s)
                                                                                ^{127}In \beta^{-}n decay (1.09 s)
                               В
                                                                        G
                                                                                                                      L
                                                                                                                             ^{238}U(^{12}C.F_{\gamma})
                                       124Sn(t,p)
                                                                               ^{127}In \beta^-n decay (3.67 s) ^{124}Sn(^{18}O,^{16}O)
                                                                                                                             ^{238}U(^{64}Ni,Xy)
                               C
                                                                        Н
                                       130Te(d, 6Li)
                               D
                                                                        Ι
                                                                               ^{9}Be(^{238}U,X\gamma)
                                       <sup>124</sup>Sn(<sup>14</sup>C, <sup>12</sup>C)
                                                                        J
                                                             XREF
                                                                                                                        Comments
                                                       ABCDEFGHIJKL
                                                                                \%\beta^{-}=100
                                                                                T_{1/2}: weighted av. of 1.98×10<sup>5</sup> y 6 from plasma-mass spectrometry
                                                                                   (2009Bi07), 2.35×10<sup>5</sup> y 7 from thermo-ionnisatio mass spectrometry
                                                                                   (1999Ob04), 2.33×10<sup>5</sup> y 10 from plasma-mass spectrometry
                                                                                   (2005Ca14), 2.07 \times 10^5 y 21 from specific activity measurement
                                                                                   (1996Ha45) and 2.5 \times 10^5 y 2 from radiochemical method
                                                                                   (1996Zh16).
                    2+
  1141.15 4
                                1.13 ps 7
                                                       ABCDEF IJKL
                                                                                \mu = -0.24 6
                                                                                J^{\pi}: L(t,p)=2.
                                                                                T_{1/2}: weighted av. of 1.15 7 ps deduced from B(E2)=0.127 8
                                                                                   (2011Al25) and 1.04 14 ps from DSAM (2012Ku24) in Coulomb
                                                                                \mu: from Coulomb ex.
  2049.74 6
                                                                                J^{\pi}: E1 \gamma from 5<sup>-</sup>; L(d, <sup>6</sup>Li)=(4); see comment in footnote; L(t,p)=5 is
                                                       ABCDEF
                                                                     1 I.
                                                                                   inconsistent with 4<sup>+</sup>.
                    2^{(+)}
 2110.79 6
                                                                                J^{\pi}: \gamma's to 0<sup>+</sup> and 2<sup>+</sup>; log ft=5.65 3 from 3<sup>(+)</sup>.
                                                        В
                                                             Ε
  2130.08 21
                                                        В
                                                             Ē
                    5-‡
  2161.54 7
                               10.8 ns 7
                                                       A CDEF
                                                                     JL
                                                                                J^{\pi}: L(d, <sup>6</sup>Li)=5, see comment in footnote; L(t,p)=6 is inconsistent
                                                                                T_{1/2}: from \beta \gamma(t) in <sup>126</sup>In \beta^- decay (2012As05).
                                                        В
 2194.21 7
                                                                               \mu = -0.697
  2218.99 8
                    7-
                                6.1 \, \mu s \, 7
                                                       A CDEF
                                                                     J LM
                                                                                J^{\pi}: L(d, ^{6}Li)=7.
                                                                                T_{1/2}: weighted av. of 6.6 \mus 14 from \gamma\gamma(t) in <sup>126</sup>In \beta^- decay
                                                                                   (1979Fo10) and 5.9 \mus 8 in {}^{9}Be({}^{238}U,X\gamma) (2010II01).
                                                                                \mu: in {}^{9}\text{Be}({}^{238}\text{U},\text{X}\gamma) (2010II01).
                                                        В
 2256.51 21
  2276.85 8
                                                        В
  2298 25
                                                           D
  2370.46 6
                                                        BCD
                                                                                J^{\pi}: L(t,p)=(2); log ft=6.46 7 from 3<sup>(+)</sup>, \gamma to 0<sup>+</sup>.
  2373.2 4
                                                                        L
  2471.93 16
                                                        В
                                                                                J^{\pi}: M1(+E2) \gamma's to 7<sup>-</sup> and 5<sup>-</sup>.
  2477.51 8
                                                       A
  2488.23 9
                                                                               J^{\pi}: \gamma to 7<sup>-</sup>, \gamma from (10<sup>+</sup>) and systematics.
                    (8^{+})
                                                       A
                                                               F
                                                                     J LM
  2550 25
                                                            D
  2564.5 3
                    (10^{+})
                                7.6 \, \mu s \, 2
                                                               F
                                                                     J LM
                                                                                J^{\pi}: systematics.
                                                                                T_{1/2}: weighted av. of 7.7 \mus 5 in ^{124}Sn(^{136}Xe,X\gamma), (^{238}U,X\gamma)
```

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
					(2000Zh47), 7.5 μ s 3 in 9 Be(238 U,X γ) (2010II01) and 7.6 μ s 4 (1998GeZX).
2631.03 11			В		(1770 00211)1
2636.64 10	2(+)		В		J^{π} : log $ft=6.48$ 7 from $3^{(+)}$; γ' s to 0^{+} and 2^{+} .
2662.98 8	_		A D		v riogyr one / nome , , , o to o and z r
2712.06 8	2,3,4+		В		J^{π} : log ft=6.90 17 from 3 ⁽⁺⁾ ; γ to 2 ⁺ .
2720 <i>5</i>	3-		CD		J^{π} : L(d, 6 Li)=3, L(t,p)=3.
2742.57 7	3		В		$J : E(\mathbf{u}, E_1) = J, E(\mathbf{t}, \mathbf{p}) = J.$
2795 25			D		
2840.24 10			A		
2886.41 <i>13</i>			В		
2892 5	(5^{-})		CD		J^{π} : L(t,p)=(5).
2971 25	` /		D		
3067.29 8			A		
3246.55 10	2(+)		В		J^{π} : log ft=5.74 4 from $3^{(+)}$; γ to 0^{+} .
3283.83 9	(9^{-})		A CD	M	J^{π} : γ to 7^{-} , γ from (11 ⁻).
3300.3 <i>3</i>			В		
3344.83 9	$2^{(+)}$		В		J^{π} : log ft =5.049 8 from $3^{(+)}$; γ to 0^{+} .
3385 25			D		
3424 5	4+		CD		J^{π} : L(t,p)=4.
3435.0 <i>6</i>	$2^{(+)}$		В		J^{π} : log ft =6.94 6 from $3^{(+)}$; γ to 0^{+} .
3454.87 <i>11</i>			A		
3504.5 <i>3</i>	$2^{(+)}$		В		J^{π} : log ft =6.68 4 from $3^{(+)}$; γ to 0^{+} .
3595.5 <i>3</i>	(12^{+})			LM	J^{π} : γ to 10^+ , γ from 13^- and systematics.
3625.79 11			A		
3783.41 <i>13</i>			A CD		
3809.21 17	2(+)		A		IT 1 (((() 4 () () () () () () ()
3818.0 4	$2^{(+)}$		В		J^{π} : log ft =6.69 4 from $3^{(+)}$; γ to 0^{+} .
3830.75 13	(7- 9-)		A		J^{π} : log ft =4.52 3 from (8 ⁻); γ to 6 ⁻ .
3855.54 <i>8</i> 3860.3 <i>3</i>	$(7^-,8^-)$ $2,3,4^+$		A		J^{π} : log ft =6.42 5 from 3 ⁽⁺⁾ ; γ to 2 ⁺ .
3886.54 9	$2^{(+)}$		B B		J^{π} : log ft =5.43 5 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
3917.3 5	2,3,4+		В		J^{π} : log ft =6.62 5 from 3 ⁽⁺⁾ . γ to 2 ⁺ .
3926.03 <i>21</i>	(11^{-})		Ь	M	J^{π} : γ from 13 ⁻ , γ to 12 ⁺ , to 7 ⁻ with 2 γ 's cascade.
3950.3 <i>5</i>	(11)		A	- 11	J. Y HOIII 13, Y to 12, to 7 with 2 y s cascade.
3964.19 7	2(+)		В		J^{π} : log ft=5.206 20 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
3977.39 <i>15</i>	2		A		3 . log ji=5.200 20 Holli 5 , / to 0 .
3985 25			D		
4013.97 <i>21</i>	$2,3,4^{(+)}$		В		J^{π} : log ft =6.58 5 from $3^{(+)}$. γ to 2^{+} .
4166.5 <i>3</i>	(13^{-})	≤3 ns		LM	J^{π} : E2 γ from (15 ⁻), to 7 ⁻ with 3 γ 's cascade.
	. /				$T_{1/2}$: from 2014Is04.
4184 10			C		,
4241.00 <i>15</i>	2(+)		В		J^{π} : log ft =5.87 6 from $3^{(+)}$; γ to 0^{+} .
4257.1 <i>3</i>	$2^{(+)}$		В		J^{π} : log ft =6.52 8 from $3^{(+)}$; γ to 0^{+} .
4303.27 15	2(+)		В		J^{π} : log ft =5.62 6 from $3^{(+)}$; γ to 0^{+} .
4330.9 6	$2^{(+)}$		В		J^{π} : log ft =6.89 10 from $3^{(+)}$; γ to 0^{+} .
4347.3 <i>3</i>	(15^{-})	126 ns 20		LM	J^{π} : systematics of isomer.
					$T_{1/2}$: weighted av. of 114 ns 12 (2014Is04) and 160 ns 20 (2012As05).
4447 10	/ 4 = - >		C		TT () (45)
4556 5	$(4^+,5^-)$		С		J L(t,p) = (4,5).
4561.0 <i>4</i>	(14^{-})			M	J^{π} : from analogy with the other Sn isotope.
4583.1 5	(14^+) $2^{(+)}$		D	LM	J^{π} : a member of higher-seniority positive high-spin levels.
4656.5 5	2(+)		В		J^{π} : log ft =6.52 7 from $3^{(+)}$; γ to 0^{+} .
4699.5 <i>6</i> 4734 <i>5</i>	2(')		B C		J^{π} : log ft =6.82 13 from $3^{(+)}$; γ to 0^{+} .
41343			C		

¹²⁶Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF		Comments
4767 5	3-		С		J^{π} : L(t,p)=3.
4779.16 <i>21</i>	$(7^-, 8^-, 9^-)$		A		J^{π} : log ft =5.18 6 from (8 ⁻).
4797.1 6	2(+)		В		J^{π} : log ft =6.65 14 from $3^{(+)}$; γ to 0^{+} .
4807 5	3-		C		J^{π} : L(t,p)=3.
4838 5	3-		C		J^{π} : L(t,p)=3.
4869 5	3-		C		J^{π} : L(t,p)=3.
4935 5	5-		C		J^{π} : L(t,p)=5.
4974 5	5-		С		J^{π} : L(t,p)=5.
4990.2 <i>3</i>	(7^{-})		A		J^{π} : log ft =5.13 4 from (8 ⁻); γ to 5 ⁻ .
5009 <i>5</i>	5-		С		J^{π} : L(t,p)=5.
5041 5	5-		С		J^{π} : L(t,p)=5.
5061.0 7	(16^{+})	<30 ns		LM	J^{π} : a member of higher-seniority positive high-spin levels.
					$T_{1/2}$: estimated in 2012As05 from non-observation of any delayed
					component below the 16 ⁺ state.
5092 5	5-		C		J^{π} : L(t,p)=5.
5160 <i>5</i>	7-		C		J^{π} : L(t,p)=7.
5188 5			C		
5214 5	3-		C		J^{π} : L(t,p)=3.
5257 5	5-		C		J^{π} : L(t,p)=5.
5297 5	5-		C		J^{π} : L(t,p)=5.
5339 10	(4^{+})		С		J^{π} : L(t,p)=(4).
5367 10	(4^{+})		С		J^{π} : L(t,p)=(4).
5397 10			С		
5436 10			С		
5497.3 <i>3</i>	(17^{-})			LM	J^{π} : a member of higher-seniority negative high-spin levels.
5528 10			С		
5587 10			С		
5838.2 8	(18^{+})			LM	J^{π} : a member of higher-seniority positive high-spin levels.
6258.8 <i>4</i>	(19^{-})			LM	J^{π} : a member of higher-seniority negative high-spin levels.
7324.0 6				M	
8375.4 <i>7</i>				M	

[†] From least-squares fit to $E\gamma$'s for levels populated in γ ray studies, and from (t,p) and $(d,^6Li)$ for levels populated only in particle-transfer studies.

$\gamma(^{126}Sn)$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	α#	Comments
1141.15	2+	1141.11 5	100	$0.0 0^{+}$			
2049.74	4+	908.58 <i>5</i>	100	1141.15 2+			
2110.79	$2^{(+)}$	969.61 5	100 7	1141.15 2 ⁺			
		2110.83 <i>10</i>	20.8 14	$0.0 0^{+}$			
2130.08		988.93 20	100	$1141.15 \ 2^{+}$			
2161.54	5-	111.79 5	100 9	2049.74 4+	E1	0.1323 19	$B(E1)(W.u.)=1.57\times10^{-5} 10$
		1020.41 10	0.66 17	1141.15 2 ⁺	[E3]	0.00256 4	B(E3)(W.u.)=0.60 17
2194.21		1053.06 5	100	1141.15 2+			
2218.99	7-	57.47 <i>5</i>	100	2161.54 5	E2	11.53 17	B(E2)(W.u.)=0.31 +4-3
2256.51		1115.36 20	100	1141.15 2+			
2276.85		1135.70 <i>10</i>	100	$1141.15 \ 2^{+}$			
2370.46	$2^{(+)}$	1229.31 5	89 <i>5</i>	1141.15 2 ⁺			
		2370.41 15	100 11	$0.0 0^{+}$			

[‡] Cascade of E2, E1 and Mult(908.58)=[E2] γ' s connecting $J^{\pi}=7^{-}$ and 2^{+} levels yields $J^{\pi}(2049.71)=4^{+}$ and $J^{\pi}(2161.50)=5^{-}$.

γ (126Sn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments
2373.2		211.7 4	100 4	2161.54	5-			E_{γ} , I_{γ} : from ²³⁸ U(¹² C, F_{γ}).
2471.93		1330.77 <i>15</i>	100	1141.15				$\Sigma_{\gamma,i\gamma}$. Irom $S(S_i,i\gamma)$.
2477.51	6-	258.53 5	79 6	2218.99		M1(+E2)	0.050 8	
2177101	Ü	315.93 5	100 9	2161.54		M1(+E2)	0.027 3	
2488.23	(8^+)	269.26 5	100	2218.99		1111(122)	0.027 5	
2564.5	(10^{+})	76.3 5	100	2488.23				E_{γ} : from ¹²⁴ Sn(¹³⁶ Xe,X γ).
2631.03	(10)	1489.87 <i>10</i>	100	1141.15				$L\gamma$. Irom Sii($\lambda c, \lambda \gamma$).
2636.64	2(+)	1495.4 3	100 18	1141.15				
2030.04	2	2636.30 20	100 10	0.0	0+			
2662.98		443.94 5	32 3	2218.99				
2002.70		501.43 5	100 8	2161.54				
2712.06	$2,3,4^{+}$	1570.96 <i>10</i>	100	1141.15				
2742.57	_,,,,	631.77 5	100 6	2110.79				
27 12.37		1601.43 10	88 6	1141.15				
2840.24		362.73 5	100	2477.51				
2886.41		1745.15 20	100	1141.15				
3067.29		848.42 25	7.3 9	2218.99				
		905.78 5	100 9	2161.54				
3246.55	2(+)	503.92 20	6.6 13	2742.57				
02.000	-	2105.31 15	62 6	1141.15	2+			
		3246.61 <i>15</i>	100 10	0.0	0+			
3283.83	(9-)	1064.85 5	100	2218.99				
3300.3	(-)	1250.52 25	100	2049.74				
3344.83	2(+)	1068.10 <i>10</i>	2.04 19	2276.85				
		2203.54 15	10.2 9	1141.15	2+			
		3344.61 <i>15</i>	100 9	0.0	0^{+}			
3435.0	$2^{(+)}$	3434.9 6	100	0.0	0_{+}			
3454.87		170.80 20	7.4 15	3283.83				
		387.52 <i>15</i>	44 <i>4</i>	3067.29	,			
		977.42 15	100 11	2477.51	6-			
		1235.95 10	93 8	2218.99				
3504.5	$2^{(+)}$	3504.4 <i>3</i>	100	0.0	0^{+}			
3595.5	(12^{+})	1030.9 <i>1</i>	100	2564.5	(10^+)			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, $X\gamma$).
3625.79	,	962.66 10	57 9	2662.98	,			7.7
		1406.95 <i>10</i>	100 9	2218.99	7-			
3783.41		1564.41 <i>10</i>	100	2218.99				
3809.21		1590.21 <i>15</i>	100	2218.99	7-			
3818.0	$2^{(+)}$	3817.9 <i>4</i>	100	0.0	0_{+}			
3830.75		1611.75 <i>10</i>	100	2218.99	7-			
3855.54	$(7^-,8^-)$	571.74 <i>5</i>	10.1 7	3283.83	(9^{-})			
		788.30 <i>5</i>	27.7 20	3067.29				
		1192.53 <i>5</i>	14.9 <i>10</i>	2662.98				
		1367.35 <i>10</i>	9.5 7	2488.23	. ,			
		1377.99 <i>5</i>	78 <i>7</i>	2477.51				
		1636.50 <i>10</i>	100 7	2218.99				
3860.3	2,3,4+	2719.1 <i>3</i>	100	1141.15				
3886.54	$2^{(+)}$	1174.32 <i>10</i>	6.6 9	2712.06				
		2745.36 20	20.2 21	1141.15				
2017.2	0 0 · +	3886.82 15	100 11	0.0				
3917.3	2,3,4+	2776.1 5	100	1141.15				23864
3926.03	(11^{-})	642.2 2	80 20	3283.83				E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
		1361.6 <i>3</i>	100 20	2564.5				E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X_{γ}).
3950.3	(.)	1731.3 5	100	2218.99	7-			
3964.19	$2^{(+)}$	1077.73 <i>15</i>	13.3 17	2886.41				
		1252.34 <i>10</i>	71 <i>4</i>	2712.06	$2,3,4^{+}$			

γ (126Sn) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult. [†]	α#	Comments
3964.19	2(+)	1327.46 10	24.2 21	2636.64	2(+)			
		1593.73 <i>10</i>	46 4	2370.46				
		1687.20 <i>10</i>	92 9	2276.85				
		2822.9 <i>3</i>	42 <i>4</i>	1141.15				
		3964.20 <i>15</i>	100 9	0.0	0_{+}			
3977.39		1314.46 15	35 4	2662.98	7-			
4012.07	2.2.4(+)	1758.30 20	100 8	2218.99 2370.46				
4013.97	$2,3,4^{(+)}$	1643.50 20	100					E. I., f 23811/64N; W.A
4166.5	(13^{-})	240.5 2 571.0 <i>I</i>	22.0 <i>25</i> 100 <i>6</i>	3926.03 3595.5	(11^{-}) (12^{+})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X_{γ}). E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X_{γ}).
4241.00	2 ⁽⁺⁾	4240.92 <i>15</i>	100 0	0.0	0^{+}			E_{γ},I_{γ} . Irolli $U(V,X_{\gamma})$.
4241.00	2 ⁽⁺⁾	4240.92 <i>13</i> 4257.0 <i>3</i>	100	0.0	0^{+}			
4303.27	2(+)	4303.19 15	100	0.0	0+			
4330.9	2(+)	4303.19 13	100	0.0	0+			
4347.3	(15^{-})	180.8 1	100	4166.5	(13^{-})	E2	0.198 3	B(E2)(W.u.)=0.52 9
15 17.5	(15)	100.0 1	100	1100.5	(13)	22	0.170 5	E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
								Mult.: from $\alpha(\exp)=0.25$ 5 by intesity
								imbalances (2012As05).
4561.0	(14^{-})	213.7 3	100 2	4347.3	(15^{-})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X_{γ}).
4583.1	(14^{+})	987.6 <i>4</i>	100	3595.5	(12^{+})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X_{γ}).
4656.5	2(+)	4656.4 5	100	0.0	0_{+}			
4699.5	$2^{(+)}$	4699.4 <i>6</i>	100	0.0	0_{+}			
4779.16	$(7^-, 8^-, 9^-)$	1495.4 <i>3</i>	50 16	3283.83	(9-)			
	-(1)	2560.10 25	100 8	2218.99	7-			
4797.1	2 ⁽⁺⁾	4797.0 6	100 9	0.0	0+			
4990.2	(7^{-})	2828.6 3	100	2161.54				E I C 23811/64N: W
5061.0	(16^+)	477.9 <i>4</i>	100 9	4583.1	(14^+)			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
		713.7 [@]	<7	4347.3	(15^{-})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
5497.3	(17-)	1150.0 <i>I</i>	100	4347.3	(15^{-})			E_{γ} , I_{γ} : from 238 U(64 Ni, X_{γ}).
5838.2	(18 ⁺)	777.2 5	100	5061.0	(16^+)			E_{γ} , I_{γ} : from 238 U(64 Ni, X_{γ}).
6258.8	(19 ⁻)	761.5 2	100	5497.3	(17^{-})			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
7324.0		1826.7 5	100	5497.3	(17^{-})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
8375.4		2116.6 6	100	6258.8	(19^{-})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).

 $^{^{\}dagger}$ From $\alpha({\rm exp})$ in $^{126}{\rm In}~\beta^-$ decay, unless otherwise noted. ‡ From $^{126}{\rm In}~\beta^-$ decay (1979Fo10) unless otherwise noted.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[®] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

	Hi	story	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	28-Feb-2018

 $Q(\beta^-)=3089\ 3$; $S(n)=7353\ 4$; $S(p)=15810\ 3$; $Q(\alpha)=-11730\ 8$ 2017Wa10 $S(2n)=12557.0\ 27$, $S(2p)=30007\ 22\ (2017Wa10)$.

Mass measurement (Penning-trap spectrometer): 2013Va12, 2012Ha25, 2008Dw01, 2005Si34.

2007Kl05, 2005Ad29 (also 2007Kl06): ⁹Be(²³⁸U,X), E=500 MeV/nucleon. Measured pygmy dipole resonance (PDR) strength, neutron skin thickness, symmetry parameters. Energies of PDR and GDR extracted as 9.8 MeV 7 (FWHM<2.5 MeV), and 16.1 MeV 7 (FWHM=4.7 MeV 21).

2015Ko05: deduced energy of the $i_{13/2}$ neutron single-particle energy as 2669 keV 70 in the 132 Sn core potential.

Charge radius, hyperfine structure, isotope shifts measured by LASER spectroscopy: 2002Le30, 2005Le34.

Additional information 1.

4830.97^a 17

4848.52[&] 20

 (4^{-})

26.0 ps 5

 $2.080 \ \mu s \ 17$

A D

AB D

Theoretical nuclear structure calculations for ¹³²Sn: consult Nuclear Science References (NSR) database at www.nndc.bnl.gov/nsr/ for about 430 articles.

 132 In β^- decay (0.200 s)

¹³²Sn Levels

Cross Reference (XREF) Flags

²⁴⁸Cm SF decay

 $T_{1/2}$: from γ (t) in IT decay; weighted average of 2.15 μ s 16 (2017Ch51, (132 γ +299 γ +374 γ)(t) in ²³⁵U(n,F),E=thermal); 2.088 μ s 17 (2012Ka36) and

			127	in p decay (0.2008) D Cin Si decay						
				² Sn IT decay (2.080 μ s) E Coulomb excitation						
			C 133	3 In β^{-} n decay (165 ms)						
E(level) [‡]	$J^{\pi \#}$	$\mathrm{T}_{1/2}^{\dagger}$	XREF	Comments						
0.0	0^{+}	39.7 s 8	ABCDE	$\%\beta^{-}=100$						
				The rms charge radius $(\langle r^2 \rangle)^{1/2}$: 4.7093 fm 76 (2013An02 evaluation). See also 2009An12 for trends in nuclear radii.						
				Measured isotope shift=1.140 GHz 6 (relative to ¹²⁰ Sn, 2005Le34).						
				Measured $\delta < r^2 > (^{120}\text{Sn}, ^{132}\text{Sn}) = 0.534 \text{ fm}^2$ 69 (2005Le34).						
				Deduced charge radius=4.709 fm 7 (2005Le34).						
				J^{π} : hyperfine structure measurement (2005Le34) shows only one peak consistent with J=0.						
				$T_{1/2}$: weighted average of 38.0 s 8 (1975Ba36), 41.0 s 15 (1974Gr29), 41.1 s 13 (1972Iz01,1978Iz03), 40 s 1 (1972Ke20), 39.0 s 10 (1972Na10), 40.6 s 8 (1972Nu04). Others: ≈47 s (1974Fo06), 1970Li14, 60 s 10 (1966St25), 50 s 10 (1963Gr13), 2.2 min (1956Pa20).						
				2011Jo08, 2010Jo03: deduced doubly closed shell nature of ¹³² Sn in ² H(¹³² Sn,p) ¹³³ Sn,E=630 MeV experiment.						
4041.20 ^{&} 15	2+	2.4 fs +9-5	AB DE	B(E2)↑=0.11 3						
				J^{π} : γ to 0^+ ; level is Coulomb excited from 0^+ g.s.						
				$T_{1/2}$: from B(E2) value. Other: <0.4 ns (from 132 Sn IT decay).						
				B(E2)↑: preliminary result from Coulomb excitation (2005Va31,2005Ra09,2004Be56,2004Ra27).						
4351.94 <i>14</i>	(3^{-})	<5.0 ps	A D	J^{π} : (E1) γ to 2^+ , γ to 0^+ ; systematics.						
4416.29 <mark>&</mark> <i>14</i>		3.95 ns <i>13</i>	AB D	J^{π} : (E2) γ to 2^{+} ; γ to (3^{-}) .						
4715.91 <mark>&</mark> <i>17</i>	(6 ⁺)	20.1 ns 5	AB D	J^{π} : (E2) γ to (4 ⁺); log ft =6.1 from (7 ⁻).						
.,10.51	(0)	20.1 110 0		· (22) / 55 (.), 10g j. 511 115111 (.).						

 J^{π} : (M1) γ to (3⁻); γ to (4⁺).

 J^{π} : (E2) γ to (6⁺); log ft=5.7 from (7⁻).

%IT=100

¹³²Sn Levels (continued)

E(level) [‡]	Jπ#	T _{1/2} †	XI	REF	Comments				
					 2.03 μs 4 (1994Fo14). Other: 1.7 μs 2 (1982Ka25). 2017Ch51 measured isomeric ratios as a function of kinetic energy of ¹³²Sn fragments in ²³⁵U(n,F),E=thermal using Lohengrin spectrometer at Grenoble. 				
4885.21 & <i>19</i>	(5^{+})	<40.0 ps	A	D	J^{π} : γ' s to (4 ⁺) and (6 ⁺); $\log f^{1u}t = 9.4$ from (7 ⁻).				
4919.00 <mark>&</mark> <i>20</i>	(7^{+})	62.0 ps 7	A	D	J^{π} : (M1) γ to (6 ⁺); γ to (8 ⁺); log ft =6.5 from (7 ⁻).				
4942.53 ^a 16	(5^{-})	17.0 ps 5	A	D	J^{π} : (E1) γ to (4 ⁺); γ' s to (3 ⁻) and (6 ⁺).				
5279.5 <mark>&</mark> 11	(9^+)			D	J^{π} : γ to (8^+) .				
5387.89 20	(4^{-})		Α		J^{π} : configuration= $\nu(g_{7/2}s_{1/2}^{-1}); \gamma \text{ from } (6^-), \gamma \text{ to } (3^-).$				
5399.22 [@] 21	(6^{+})		A		J^{π} : γ to (6 ⁺); log ft =6.3 from (7 ⁻).				
5478.98 [@] 23	(8^{+})		A		J^{π} : γ to (8 ⁺); log ft =6.2 from (7 ⁻).				
5629.26 [@] 19	(7^{+})	13.0 ps 5	Α		J^{π} : γ' s to (6 ⁺) and (8 ⁺); log ft =5.6 from (7 ⁻).				
6173.20 20	(5,6,7)		Α		J^{π} : γ to (6^+) ; γ from (6^-) .				
6235.9 <i>3</i>	$(6,7,8^+)$		A		J^{π} : γ to (6 ⁺); log ft =7.0 from (7 ⁻).				
6598.5 <i>3</i>	$(6,7^{-})$		Α		J^{π} : log ft =6.0 from (7 ⁻); γ to (5 ⁻).				
6630.3 <i>3</i>	$(6,7,8^+)$		Α		J^{π} : γ to (6 ⁺), log ft =6.3 from (7 ⁻).				
6709.04 <i>21</i>	$(6,7^{-})$		Α		J^{π} : γ to (5 ⁻), log ft =6.1 from (7 ⁻).				
6896.0 <i>3</i>	(6,7,8)		Α		J^{π} : γ to (7^+) ; log $ft=7.0$ from (7^-) .				
7211.14 <i>17</i>	(6^{-})		Α		J^{π} : log ft =4.6 from (7 ⁻); γ' s to (5 ⁺) and (7 ⁺); configuration= $\nu(f_{7/2}g_{7/2}^{-1})$.				
7244.06 20	(7^{-})		Α		J^{π} : γ' s to (6 ⁺) and (8 ⁺); log ft =5.6 from (7 ⁻).				
≈7550?			A		Possibly decays by neutrons.				

 $^{^{\}dagger}$ From $\beta\gamma\gamma(t)$ (1994Fo14) in $^{132}\mathrm{In}~\beta^{-},$ unless otherwise stated.

$\gamma(^{132}Sn)$

For transition strengths, uncertainty for gamma-ray branching ratio has been assumed to be 10%, when not stated for levels which deexcite by multiple transitions.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α#	Comments
4041.20	2+	4041.1	100	0.0 0+			B(E2)(W.u.)=5.5 15
4351.94	(3^{-})	310.7	11.0	4041.20 2+	(E1)		B(E1)(W.u.)>0.00017
		4351.9	100	$0.0 0^{+}$	[E3]		B(E3)(W.u.)>7.1
4416.29	(4^{+})	64.4	1.3	4351.94 (3-) [E1]	0.625	$B(E1)(W.u.)=2.66\times10^{-6} 32$
		375.1	100 <i>3</i>	4041.20 2+	(E2)	0.01739	B(E2)(W.u.)=0.400 24
		4416.2	17 <i>3</i>	$0.0 0^{+}$	[E4]		B(E4)(W.u.)=8.0 15
4715.91	(6^{+})	299.6	100	4416.29 (4+	(E2)	0.0356	B(E2)(W.u.)=0.292 9
4830.97	(4^{-})	414.6	2.1	4416.29 (4+) [E1]		$B(E1)(W.u.)=2.90\times10^{-6} 29$
		479.1	100	4351.94 (3-	(M1)		B(M1)(W.u.)=0.0075 8
4848.52	(8^{+})	132.5	100	4715.91 (6 ⁺	(E2)	0.589	B(E2)(W.u.)=0.104 2
							$\alpha(K)=0.456$ 7; $\alpha(L)=0.1071$ 15; $\alpha(M)=0.0217$ 3
							$\alpha(N)=0.00387 \ 6; \ \alpha(O)=0.000198 \ 3$

[‡] From least-squares fit to E γ data, assuming 0.2 keV uncertainty for E γ quoted to nearest tenth of a keV and 1 keV for others. See 132 In β^- data set for explanation.

[#] In addition to arguments given under comments, probable shell-model configurations proposed by 1994Fo14 are used to restrict J^{π} choices. [®] Member of configuration= $\nu(g_{7/2}g_{9/2}^{-1})$.

[&]amp; Member of configuration= $v(f_{7/2}h_{11/2}^{-1})$.

^a Possible member of configuration= $\nu(f_{7/2}d_{3/2}^{-1})$.

$\gamma(^{132}\text{Sn})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.	$\alpha^{\#}$	Comments
4885.21	(5 ⁺)	169.0	20	4715.91	(6 ⁺)			
	(-)	469.1	100	4416.29				
4919.00	(7^+)	70.4	2.7	4848.52		[M1]	1.534	B(M1)(W.u.)=0.0239 26
								$\alpha(K)=1.324$ 19; $\alpha(L)=0.1698$ 24; $\alpha(M)=0.0333$ 5
		_						$\alpha(N)=0.00626$ 9; $\alpha(O)=0.000540$ 8
		88.9 [@]		4830.97		[E3]		
		203.1	100	4715.91	(6^{+})	(M1)	0.0797	B(M1)(W.u.)=0.0369 37
								$\alpha(K)$ =0.0690 10; $\alpha(L)$ =0.00865 13; $\alpha(M)$ =0.001695
								$\alpha(N)=0.000319\ 5;\ \alpha(O)=2.78\times10^{-5}\ 4$
4942.53	(5^{-})	111.5	9.1	4830.97	(4^{-})	[M1]	0.414	B(M1)(W.u.)=0.069 8
	, ,				, ,			$\alpha(K)=0.357\ 5;\ \alpha(L)=0.0455\ 7;\ \alpha(M)=0.00893\ 13$
								α (N)=0.001679 24; α (O)=0.0001453 21
		226.7	2.8	4715.91	(6^{+})	[E1]	0.0182	$B(E1)(W.u.)=2.93\times10^{-5} 32$
		526.2	100	4416.29	(4^{+})	(E1)		$B(E1)(W.u.)=8.4\times10^{-5} 9$
		590.6	6.6	4351.94	(3^{-})	[E2]		B(E2)(W.u.)=0.61 7
5279.5	(9^+)	431	100	4848.52	. ,			E_{γ} : from ²⁴⁸ Cm SF decay.
5387.89	(4^{-})	1035.8	100	4351.94				
5399.22	(6^{+})	683.3	100	4715.91				
5478.98	(8+)	630.5	100	4848.52				
5629.26	(7^{+})	230.0	7.1	5399.22	. ,			
		710.3	23	4919.00				
		780.8	29	4848.52				
6173.20	(5,6,7)	913.3 774.0	100 20	4715.91 5399.22				
0173.20	(3,0,7)	1457.5	100	4715.91				
6235.9	$(6,7,8^+)$	1520.0	100	4715.91	. ,			
6598.5	$(6,7^{-})$	1656.0	100	4942.53				
6630.3	$(6,7,8^+)$	1914.4	100	4715.91				
6709.04	$(6,7^{-})$	1766.5	100	4942.53				
6896.0	(6,7,8)	1977.0	100	4919.00				
7211.14	(6^{-})	502.1	2.9	6709.04	$(6,7^{-})$			
		1038.2	3.6	6173.20	(5,6,7)			
		1581.9	3.1	5629.26				
		1823.1	3.1	5387.89				
		2268.6	67	4942.53	. ,			
		2292.0	3.1	4919.00	. ,			
		2325.8	1.9	4885.21				
7244.06	(7-)	2380.2	100	4830.97				
7244.06	(7-)	1765.1 2301.5	88 79	5478.98 4942.53				
		2395.4	100	4848.52	. ,			
		2528.2	75	4715.91	. ,			
		2020.2	, 5	.,15.71	(0)			

[†] From 132 In β^- decay, unless otherwise stated.

 $^{^{\}ddagger}$ Relative photon branching from each level deduced from 132 In β^- decay. The uncertainties are expected to be from 5-15%.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

