Causal Inference in Non-linear Time-series using Deep Networks and Knockoff Counterfactuals

Махин Артем, 417 группа

https://arxiv.org/pdf/2109.10817.pdf 18.10.20201

Causal Inference

Причинно-следственный вывод

При причинном выводе человек делает вывод о том, что что-то является или может быть причиной чего-то еще.

Amazon, 2019

Train Forecast

Amazon, 2019

Максимизируем логарифм правдоподобия: $\mathcal{L} = \sum_{i=1}^N \sum_{t=t}^T \log \ell(z_{i,t}|\theta(\mathbf{h}_{i,t}))$.

Amazon, 2019

Максимизируем логарифм правдоподобия: $\mathcal{L} = \sum_{i=1}^{t} \sum_{t=t_0}^{t} \log \ell(z_{i,t}|\theta(\mathbf{h}_{i,t}))$.

Пример:
$$\theta = (\mu, \sigma)$$

$$\ell_{\mathrm{G}}(z|\mu, \sigma) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp(-(z-\mu)^2/(2\sigma^2))$$

$$\mu(\mathbf{h}_{i,t}) = \mathbf{w}_{\mu}^T \mathbf{h}_{i,t} + b_{\mu} \quad \text{and} \quad \sigma(\mathbf{h}_{i,t}) = \log(1 + \exp(\mathbf{w}_{\sigma}^T \mathbf{h}_{i,t} + b_{\sigma}))$$

Особенности обучения

Масштабирование: $u_i = 1 + rac{1}{t0} \sum_{t=1}^{t0} z_{i,t}$

Обучение окнами:

Sequence to Sequence Encoder-Decoder

Свойства

1

DeepAR эффективен при прогнозировании сезонных зависимостей с минимальной настройкой

2

Deep AR делает вероятностный прогноз

3

DeepAR может использовать ряды с небольшой историей

4

DeepAR поддерживает широкий спектр функций правдоподобия

http://dx.doi.org/10.1214/15-AOS1337

Knockoffs

$$Z=(Z_1,\ldots,Z_n)$$
 $\widetilde{Z}=(\widetilde{Z}_1,\ldots,\widetilde{Z}_n)$

$$(Z,\widetilde{Z})_{swap(\mathbb{A})}\stackrel{d}{=}(\widetilde{Z},Z)$$
 для любого $\mathbb{A}\subseteq 1,\ldots,n$

$$Z=(Z_1,\ldots,Z_n)$$

$$Z=(Z_1,\ldots,Z_n)$$
 $\widetilde{Z}=(\widetilde{Z}_1,\ldots,\widetilde{Z}_n)$

$$(Z,\widetilde{Z})_{swap(\mathbb{A})}\stackrel{d}{=}(\widetilde{Z},Z)$$
 для любого $\mathbb{A}\subseteq 1,\ldots,n$

Пример: $P_Z = \mathcal{N}_n(\mathbf{0}_n, \Sigma)$

$$P_{\widetilde{Z}|Z}(.|\mathbf{Z}_{i,*}) = \mathcal{N}_n((\mathbf{I}_n - S\Sigma^{-1})\mathbf{Z}_{i,*}, 2S - S\Sigma^{-1}S)$$

для любой фиксированной матрицы S, удовлетворяющей $0 \leq S \leq 2 \Sigma$.

Causal effect estimation

$$z_{i,t}, t=1,\ldots,r, i=1,\ldots,N$$
 реализации длины r процессов $Z_i, i=1,\ldots,N$

MAPE
$$= rac{1}{r} \sum_{t=1}^{r} rac{\mid z_{i,t} - \hat{z}_{i,t} \mid}{\mid z_{i,t} \mid}$$

Causal significance score:
$$CSS_{i \rightarrow j} = \ln \frac{MAPE_{j}^{i}}{MAPE_{j}}$$

Чем заменять?

Knockoffs (DeepKnockoffs)

Mean
$$\overline{z}_i = rac{1}{r} \sum_{t=1}^r z_{i,t}$$

Out-of-distribution

VAR GC

vector autoregressive Granger Causality

$$z_{i,t}, t=1,\ldots,r, i=1,\ldots,N$$
 реализации длины r процессов $Z_i, i=1,\ldots,N$

$$egin{bmatrix} z_{1,t} \ dots \ z_{N,t} \end{bmatrix} = \sum_{m=1}^p A_m egin{bmatrix} z_{1,t-m} \ dots \ z_{N,t-m} \end{bmatrix} + egin{bmatrix} \epsilon_1(t) \ dots \ \epsilon_N(t) \end{bmatrix}$$

VAR GC

vector autoregressive Granger Causality

$$z_{i,t}, t=1,\ldots,r, i=1,\ldots,N$$
 реализации длины г процессов $Z_i, i=1,\ldots,N$

$$egin{bmatrix} z_{1,t} \ dots \ z_{N,t} \end{bmatrix} = \sum_{m=1}^p A_m egin{bmatrix} z_{1,t-m} \ dots \ z_{N,t-m} \end{bmatrix} + egin{bmatrix} \epsilon_1(t) \ dots \ \epsilon_N(t) \end{bmatrix}$$

$$\sum_j$$
 (ϵ_j , z_j)

$$\sum_{j} \left(\epsilon_{j}, z_{j}
ight) \ \sum_{j}^{i-} \left(\epsilon_{j}, z_{j}
ight)$$

VAR-GQ
$$(z_i$$
 , z_j) : $\gamma_{i o j} = \lnrac{|\sum_j^{i-}|}{|\sum_j|}$

$$FPR = \frac{FP}{FP + TN}$$

$$F\text{-score} = \frac{TP}{TP + 0.5(FP + FN)}$$

$$FPR = \frac{FP}{FP + TN}$$

$$F\text{-score} = \frac{TP}{TP + 0.5(FP + FN)}$$

$$X_{1}(t) = \mathcal{N}(0, 1) + |\cos(2\pi f t)|$$

$$X_{2}(t) = c_{1}X_{2}(t - \tau_{1}) + c_{2}X_{1}(t - \tau_{2}) + \eta_{1}(t)$$

$$X_{3}(t) = c_{3}X_{1}(t - \tau_{3}) * X_{2}(t - \tau_{4}) + \eta_{2}(t)$$

$$X_{4}(t) = c_{4}X_{3}(t - \tau_{5}) * \beta^{\frac{X_{2}(t - \tau_{6}) - Q}{10}} + \eta_{3}(t)$$

$$c = [0.95, 0.80, 0.50, 0.75]$$
 $Q = 10$
 $f = 150$
 $0 \le t \le 3000$

Реальные данные

Causal	Expected	VAR-GC	PCMCI	DeepAR-
links				Knockoffs
$K_t \to D_t$	Yes	Yes	Yes	Yes
$K_t o L_t$	No	Yes	Yes	No
$D_t o K_t$	No	Yes	Yes	No
$D_t \to L_t$	No	Yes	No	No
$L_t o K_t$	No	Yes	Yes	No
$L_t \to D_t$	No	No	No	Yes

Небольшая реклама

ETNA Time Series Library

Многофункциональный удобный инструмент для работы с временными рядами

Небольшая реклама

О Большой зоопарк моделей, ансамбли

О Поиск и обработка аномалий

О Куча препроцессингов и расчетов признаков

Работа с несколькими сегментами

O Mного EDA

О Визуализация всего что только можно

O Интеграция с Weights and Biases

🦲 Отбор признаков

Работа с доп данными

- Подбор гиперпараметров
- О Возможность внедрять свои модели и трансформы
- Causal inference

Кластеризация рядов

0

0

Весь пайплайн

```
original_df = pd.read_csv("data/example_dataset.csv")
df = TSDataset.to_dataset(original_df)
ts = TSDataset(df, freq='D')
log = LogTransform(in_column="target")
trend = LinearTrendTransform(in_column="target")
seg = SegmentEncoderTransform()
lags = LagTransform(in_column="target", lags=list(range(30, 96, 1)))
d_flags = DateFlagsTransform(day_number_in_week=True,
                             day_number_in_month=True,
                             week_number_in_month=True,
                             week_number_in_year=True,
                             month_number_in_year=True,
                             year_number=True,
                             special_days_in_week=[5, 6])
train_ts, test_ts = ts.train_test_split(train_start='2019-01-01',
                                        train_end='2019-11-30',
                                        test_start='2019-12-01',
                                        test_end='2019-12-31')
train_ts.fit_transform([log, trend, lags, d_flags, seg])
model = CatBoostModelMultiSegment()
model.fit(train_ts)
future_ts = train_ts.make_future(HORIZON)
forecast_ts = model.forecast(future_ts)
```

ETNA

https://t.me/etna_support

https://github.com/tinkoff-ai/etna-ts

https://etna.tinkoff.ru