ENDOMORPHISMES DE $\mathbb{M}_n(\mathbb{C})$ CONSERVANT LE RANG, LE DÉTERMINANT, LE SPECTRE

Notations

E désigne ici l'espace vectoriel \mathbb{C}^n , où n est un entier ≥ 2 , et $\mathbb{M}_n(\mathbb{C})$ l'espace vectoriel des matrices carrés d'ordre n à coefficients complexes.

Dans tout le problème, on identifie les matrices colonnes à n coefficients complexes aux éléments de E, et on considère les matrices lignes à n coefficients complexes comme les transposées des élément de E. Ainsi, pour $A \in M_n(\mathbb{C})$, $B \in M_n(\mathbb{C})$, $X \in E$ et $Y \in E$ de transposée Y, la multiplication usuelle des matrices permet de considérer les produits

$$AB \in M_n(\mathbb{C}), \quad AX \in E, \quad X^tY \in M_n(\mathbb{C})$$

ainsi que la matrice ligne ${}^{t}YB$ et le nombre complexe ${}^{t}YX$.

La matrice unité pour la multiplication dans $\mathbb{M}_n(\mathbb{C})$ est notée I.

Pour toute matrice $A \in \mathbb{M}_n(\mathbb{C})$, le rang, la trace et le déterminant de A sont respectivement notés rgA, trA et det A; le spectre de A, c'est-à-dire la famille de ses valeurs propres *comptées chacune avec son ordre de multiplicité*, est noté SpA. Si $A \in \mathbb{M}_n(\mathbb{C})$, on appelle adjointe de A la matrice $A^* = {}^t\overline{A}$; A est dite unitaire si $AA^* = I$.

Première partie

On considère ici l'endomorphisme Γ de l'espace vectoriel $\mathbb{M}_n(\mathbb{C})$ défini par

$$\Gamma(M) = -M + tr(M)I$$

pour toute $M \in M_n(\mathbb{C})$.

- I.1 Quelles sont les valeurs propres de Γ , les sous-espaces propres associés et leurs dimensions?
- **I.2** L'endomorphisme Γ est-il diagonalisable? Trouver un poly du second degré annulé par Γ. Donner la valeur explicite de Γ^{-1} (on pourra noter \mathscr{I} l'identité de $\mathscr{L}(\mathbb{M}_n(\mathbb{C}))$).
- **I.3** Si $n \ge 3$ et rgM = n, distinguer, à l'aide d'une condition liant trM et SpM le cas où rgM = rg $\Gamma(M)$ du cas où rgM \ne rg $\Gamma(M)$.
- **I.4** On suppose dans cette question que n = 2.
 - a) Si n=2, que penser de Γ^{-1} ? Montrer que M et $\Gamma(M)$ ont même polynôme caractéristique, puis que

$$rgM = rg\Gamma(M)$$
, $det M = det\Gamma(M)$, $SpM = Sp\Gamma(M)$.

b) Déterminer les matrices unitaires A telles que, pour toute $M \in M_n(\mathbb{C})$

$$\Gamma(\mathbf{M}) = \mathbf{A}^t \mathbf{M} \mathbf{A}^*$$

Deuxième partie

Dans toute cette partie, Φ désigne un endomorphisme de $\mathbb{M}_n(\mathbb{C})$ qui conserve le rang, c'est-à-dire tel que

$$\forall M \in \mathbb{M}_n(\mathbb{C}), \quad \operatorname{rg}\Phi(M) = \operatorname{rg}M$$

II.1 a) Montrer que $A \in M_n(\mathbb{C})$ est une matrice de rang 1 si et seulement si il existe X et Y éléments non nuls de E tels que

$$A = X^t Y$$

Préciser alors l'image de A et son noyau.

Que peut-on en déduire si $A = X^tY = X'^tY'$?

b) Montrer que $A \in M_n(\mathbb{C})$ est une matrice de rang 2 si et seulement si il existe X,Y,Z,W quatre éléments de E tels que

$$(X,Z)$$
 libre, (Y,W) libre et $A = X^{t}Y + Z^{t}W$

II.2 a) Soient X et Y deux éléments non nuls de E. Vérifier qu'il existe deux éléments U,V de E tels que

$$\Phi(X^tY) = U^tV$$

Pour X, Y donnés, U et V sont-ils uniques?

b) On fixe Y₀ non nul dans E, et on fait l'hypothèse suivante :

$$(H_1) \quad \exists (X_1,X_2) \in (E \setminus \{0\})^2, \quad \exists (U_1,U_2) \in E^2 \text{ libre}, \quad \exists (V_1,V_2) \in E^2 \quad \text{ tels que } \begin{cases} \Phi(X_1{}^tY_0) &= U_1{}^tV_1 \\ \Phi(X_2{}^tY_0) &= U_2{}^tV_1 \end{cases}$$

En considérant $\Phi((X_1 + X_2)^t Y_0)$, montrer que V_1 et V_2 sont liés.

Prouver alors que l'on peut choisir un élément fixe $V_0 \neq 0$ dans E tel que, pour tout $X \in E$, il existe $U \in E$ vérifiant

$$\Phi(\mathbf{X}^t\mathbf{Y}_0) = \mathbf{U}^t\mathbf{V}_0.$$

c) Toujours avec l'hypothèse (H_1) , établir l'existence d'une matrice inversible $A \in M_n(\mathbb{C})$ telle que, pour tout $X \in E$,

$$\Phi(X^tY_0) = AX^tV_0$$
.

II.3 L'élément $Y_0 \neq 0$ étant toujours fixé dans E, on fait l'hypothèse suivante :

$$(H_2) \quad \forall (X_1, X_2) \in (E \setminus \{0\})^2, \quad \exists (U_1, U_2) \in E^2 \text{ li\'ee}, \quad \exists (V_1, V_2) \in E^2 \quad \text{ tels que } \begin{cases} \Phi(X_1{}^tY_0) &= U_1{}^tV_1 \\ \Phi(X_2{}^tY_0) &= U_2{}^tV_1 \end{cases}$$

Montrer que l'on peut choisir un élément fixe $U_0 \in E$ tel que, pour tout $X \in E$, il existe $V \in E$ vérifiant

$$\Phi(X^tY_0) = U_0^tV.$$

et en déduire qu'il existe une matrice inversible $B \in M_n(\mathbb{C})$ telle que, pour tout $X \in E$,

$$\Phi(X^tY_0) = U_0^tXB$$

II.4 Afin de confronter entre elles les hypothèses (H₁) et H₂, on fait l'hypothèse suivante

$$(H) \left| \begin{array}{ccc} \exists (Y_0,Y_0')\!\in\! (E\setminus\{0\})^2, & \exists (A,B)\!\in\! GL_n(\mathbb{C})^2, & \exists (U_0,V_0)\!\in\! E^2 \text{ tels que} \\ \forall X\!\in\! E, & \Phi(X^tY_0)\!=\! AX^tV_0 & \text{et} & \Phi(X^tY_0')\!=\! U_0{}^tXB \end{array} \right|$$

- a) Montrer que Y'_0 et Y_0 sont linéairement indépendants (on pourra raisonner par l'absurde).
- **b)** En choisissant $X = A^{-1}U_0$ et X' linéairement indépendant de X, étudier le rang de $\Phi(X^tY_0 + X'^tY_0')$, et en conclure que l'hypothèse (H) est inacceptable.
- c) Que peut-on en déduire concernant les hypothèses (H_1) et (H_2) ?
- **II.5** On suppose dans cette question que l'hypothèse (H_1) est vérifiée. D'après la question II.2.c, il existe un élément non nul $Y_0 \in E$, une matrice inversible $A \in \mathbb{M}_n(\mathbb{C})$ et un élément $V_0 \in E$ tels que

$$\forall X \in E$$
, $\Phi(X^t Y_0) = AX^t V_0$.

a) Soit Y un élément de E linéairement indépendant de Y_0 . Établir l'existence d'une matrice inversible A_1 et d'un élément $V \in E$ non colinéaire à V_0 tels que l'on ait

$$\Phi(X^tY) = A_1X^tV$$

pour tout $X \in E$. Pour Y donné, le choix de A_1 est-il unique?

b) Montrer que l'on peut choisir $A_1 = A$. En déduire qu'il existe une matrice inversible $B \in \mathbb{M}_n(\mathbb{C})$ telle que, pour tout couple $(X,Y) \in E^2$,

$$\Phi(X^tY) = AX^tYB$$

- **c)** Donner, pour toute matrice $M \in M_n(\mathbb{C})$, la valeur explicite de $\Phi(M)$.
- **II.6** On suppose dans cette question que l'hypothèse (H_2) est vérifiée. D'après la question II.3, il existe un élément Y_0 non nul dans E, une matrice inversible $B \in \mathbb{M}_n(\mathbb{C})$ et un élément $U_0 \in E$ tels que l'on ait

$$\Phi(X^tY_0) = U_0^tXB$$

pour tout $X \in E$.

- a) Vérifier que l'application Φ' définie sur $\mathbb{M}_n(\mathbb{C})$ par $\Phi'(M) = {}^t[\Phi(M)]$ est un endomorphisme qui conserve le rang.
- **b)** En déduire la valeur explicite de $\Phi(M)$ pour toute $M \in \mathbb{M}_n(\mathbb{C})$.

II.7 Conclure : quels sont les endomorphismes de $\mathbb{M}_n(\mathbb{C})$ qui conservent le rang?

Troisième partie

Dans toute cette partie, Φ désigne un endomorphisme de $\mathbb{M}_n(\mathbb{C})$ qui conserve le déterminant, c'est-à-dire tel que

$$\forall M \in M \setminus n(\mathbb{C}), \quad \det \Phi(M) = \det M$$

Soit $M \in \mathbb{M}_n(\mathbb{C})$, r le rang de M, $J_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ (où I_r désigne la matrice identité d'ordre r), et $K_r = I - J_r$. On écrit $M = PJ_rQ$ avec P,Q inversibles, et on note $N = PK_rQ$.

- III.1 Montrer que $det(\lambda M + N)$ est un monôme en λ dont on précisera le degré.
- III.2 Soit s le rang de $\Phi(M)$. Montrer que det $(\lambda \Phi(M) + \Phi(N))$ est un polynôme en λ dont on comparera le degré à s. En déduire $r \leq s$, puis en déduire que Φ est bijective.
- III.3 Montrer que Φ conserve le rang.
- **III.4** Conclure : quels sont les endomorphismes de $\mathbb{M}_n(\mathbb{C})$ qui conservent le déterminant ?

Quatrième partie

Dans toute cette partie, Φ désigne un endomorphisme de $\mathbb{M}_n(\mathbb{C})$ qui conserve le spectre, c'est-à-dire tel que

$$\forall M \in \mathbb{M}_n(\mathbb{C}), \quad \operatorname{Sp}\Phi(M) = \operatorname{Sp}M$$

- **IV.1** Dire pourquoi Φ conserve le rang et le déterminant.
- **IV.2** En posant $G = [\Phi(I)]^{-1}$, comparer $\det(\lambda I G\Phi(M))$ à $\det(\lambda I M)$ pour tout $\lambda \in \mathbb{C}$ et toute matrice $M \in \mathbb{M}_n(\mathbb{C})$. En déduire l'égalité : Sp(GM) = SpM.
- **IV.3** Montrer que G = I.
- **IV.4** Conclure: quels sont les endomorphismes de $\mathbb{M}_n(\mathbb{C})$ qui conservent le spectre?

