Griffin Chure, PhD (He/Him) | Curriculum Vitae

Email: griffinchure@gmail.com | Website: gchure.github.io | GitHub: gchure | ORCiD: 0000-0002-2216-205

I am a biological physicist with broad experience leveraging mathematical modeling, Bayesian statistical inference, and scientific software engineering to understand and interpret the emergent behavior of complex systems, ranging from cells to climates. I am passionate about building performant, robust software that employs quantitative methods to simulate physical systems and statistically analyze multimodal data. I believe fruitful science is borne from deep, altruistic collaboration between scientists and engineers across disciplines.

Education

PhD Biochemistry & Molecular Biophysics

Division of Biology and Biological Engineering | Rob Phillips Lab

2013 – 2020 University of Utah 2009 – 2013

Caltech

BSc Biology (Honors) - Cell & Molecular Emphasis BSc Chemistry (Minor Physics) - Biological Emphasis Department of Biology | David F. Blair Lab

Professional Experience

Postdoctoral Fellow Jan. 2021 – Present

Stanford University | Stanford CA, USA | Department of Biology | Jonas Cremer Lab

Summary: I use a combination of theory, computation, and experiment to reverse engineer the regulatory circuits within cells that govern their physiology, ecology, and evolution. To do so, I build Python-based computational frameworks to run ecosystem-scale simulations of microbial communities and statistically analyze multimodal biological data.

Highlighted Project: I built and maintain hplc-py, an open-source Python tool for automated peak detection, deconvolution, and quantification of chemical signals chromatographic data.

Postdoctoral Scholar

Jun. 2020 - Dec. 2020

Caltech | Pasadena CA, USA | Department of Applied Physics | Rob Phillips Lab

Summary: I quantitatively explored the breadth and depth of human impacts on Earth's biogeochemistry and built resources for the rapid discovery of high-quality and accessible data sources.

Highlighted Project: I built anthroponumbers.org where I designed and developed both the backend database (stack: Django, PostgreSQL, Elasticsearch) and the frontend user interface (stack: Bootstrap, Vega-LiteJS). I collected, curated, standardized, and visualized the data which populates the database.

PhD Candidate

Jun. 2014 – Jun. 2020

Caltech | Pasadena CA, USA | Division of Biology and Biological Engineering | Rob Phillips Lab

Summary: I used statistical physics to derive and experimentally dissect predictive models of gene regulatory networks in bacteria. I routinely built state-of-the-art Bayesian inference pipelines (using Python + Stan) applying multilevel modeling, Markov Chain Monte Carlo (MCMC), and generative modeling of data-generating processes in biological measurements.

Highlighted Project: In Chure et al. 2019, I derived a statistical mechanical model of allosteric transcriptional regulation in bacteria that directly links the location of a mutation within a repressor to the biophysical parameters that describe its behavior. This allowed us to build a quantitative map between genotype and phenotype, a major goal of modern evolutionary biology.

Technical Skills

Development Skills

Python, Stan, Julia, JavaScript, Git+GitHub, GitHub Actions, bash, Linux, Matplotlib, Bokeh, NumPy, SciPy, Pandas, SymPy, scikit-learn, PyTorch

Analytical Skills

Bayesian Statistics, Probability Theory, Statistical Mechanics and Thermodynamics, Computational Statistics & Numerical Simulation, Quantitative Image Analysis, Linear Algebra

Publications * Equal contribution. † Corresponding Author.

Equal contribution. Corresponding Author.	
Paradox of the Sub- Plankton: Plausible Mechanisms and Open Problems Underlying Strain-Level Diversity in Microbial Communities Akshit Goyal [†] and Griffin Chure [†] Environmental Microbiology 27 DOI: 10.1111/1462-2920.70094	2025
Coordination Between Cytoplasmic and Envelope Densities Shapes Cellular Geometry in Escherichia coli Griffin Chure [†] , Roshali T. de Silva, Richa Sharma, Michael C. Lanz and Jonas Cremer [†] bioRxiv DOI: 10.1101/2023.10.28.564462 GitHub Repository	2025
Quantifying the Daily Harvest of Fermentation Products From the Human Gut Microbiota Markus Arnoldini ^{†.} Richa Sharma*, Claudia Moresi*, Griffin Chure , Julien Chabbey, Emma Slack and Jonas Cremer† bioRxiv DOI: 10.1101/2024.01.05.573977	2024
Hplc-py: A Python Utility for Rapid Quantification of Complex Chemical Chromatograms <u>Griffin Chure</u> [†] and Jonas Cremer <i>Journal of Open Source Software</i> 9(94) DOI: 10.21105/joss.06270 Software Documentation Source Code	2024
An Optimal Regulation of Fluxes Dictates Microbial Growth In and Out of Steady-State <u>Griffin Chure</u> [†] and Jonas Cremer [†] eLife DOI: 10.7554/eLife.84878 GitHub Repository Paper Website Feature: Avi I. Flamholz and Akshit Goyal (2023). "Matching metabolic supply to demand optimizes microbial growth." Trends in Microbiology. DOI: 10.1016/j.tim.2023.06.003	2023
Be Prospective, Not Retrospective: A Philosophy for Reproducibility in Modern Biological Research Griffin Chure [†] arXiv DOI: 10.48550/arXiv.2210.02593 Template Repository	2022
Anthroponumbers.org: A Quantitative Database of Human Impacts on Planet Earth <u>Griffin Chure</u> *†, Rachel A. Banks*, Avi I. Flamholz, Nicholas S. Sarai, Mason Kamb, Ignacio Lopez-Gomez, Yinon M. Bar-On, Ron Milo and Rob Phillips† <i>Patterns</i> 3 DOI: 10.1016/j.patter.2022.100552 GitHub Repository Website Feature: Selected as cover article for September 2022 issue.	2022
News Coverage: Featured in articles by EurekAlert.org, Caltech, and Wired Magazine.	
Fundamental Limits on the Rate of Bacterial Growth and Their Influence on Proteomic Composition Nathan M. Belliveau*, <u>Griffin Chure*</u> , Christina L. Hueschen, Hernan G. Garcia, Jane Kondev, Daniel S. Fisher, Julie A. Theriot† and Rob Phillips† <i>Cell Systems</i> 12 DOI: 10.1016/j.cels.2021.06.002 GitHub Repository Paper Website	2021
Feature: Selected as cover article for September 2021 issue.	
First-Principles Prediction of the Information Processing Capacity of a Simple Genetic Circuit Manuel Razo-Mejia, Sarah S. Marzen, <u>Griffin Chure</u> , Muir J. Morrison, Rachel Taubman and Rob Phillips† Physical Review E 102, 022404 DOI: 10.1103/PhysRevE.102.022404	2020
Feature: Selected as an "Editor's Suggested Article" for August 2020 issue	
Sequence-Dependent Dynamics of Synthetic and Endogenous RSSs in V(D)J Recombination Soichi Hirokawa, <u>Griffin Chure</u> , Nathan M. Belliveau, Geoffery A. Lovely, Michael Anaya, David G. Schatz, David Baltimore and Rob Phillips [†] <i>Nucleic Acids Research</i> 48(12) DOI: 10.1093/nar/gkaa418 GitHub Repository Paper Website	2020
Theoretical Investigation of a Genetic Switch for Metabolic Adaptation Kathrin S. Laxhuber, Muir J. Morrison, <u>Griffin Chure</u> , Nathan M. Belliveau, Charlotte Strandkvist, Kyle L. Naughton and Rob Phillips [†] <i>PLoS ONE</i> 15(5) DOI: 10.1371/journal.pone.0226453	2020
Physiological Adaptability and Parametric Versatility in a Simple Genetic Circuit <u>Griffin Chure</u> , Zofii A. Kaczmarek and Rob Phillips† bioRxiv DOI: 10.1101/2019.12.19.878462 GitHub Repository Paper Website	2019
Predictive Shifts in Free Energy Couple Mutations to Their Phenotypic Consequences <u>Griffin Chure</u> , Manuel Razo-Mejia, Nathan M. Belliveau, Tal Einav, Stephanie L. Barnes, Zofii A. Kaczmarek, Mitchell Lewis and Rob Phillips [†] PNAS 116(35) DOI: 10.1073/pnas.1907869116 GitHub Repository Paper Website	2019

Rob Phillips[†], Nathan M. Belliveau, Griffin Chure, Manuel Razo-Mejia, Clarissa Scholes and Hernan G. Garcia Annual Reviews of Biophysics 48 | DOI: 10.1146/annurev-biophys-052118-115525 Connecting the Dots Between Osmotic Shock, Mechanosensitive Channel Abundance, and Survival at 2018 **Single-Cell Resolution | Griffin Chure***, Heun J. Lee*, Akiko Rasmussen and Rob Phillips[†] Journal of Bacteriology 200(23) | DOI: 10.1128/JB.00460-18 | GitHub Repository | Paper Website Feature: Selected as an "article of significant interest" for December 2018 issue. Tuning Transcriptional Regulation Through Signaling: A Predictive Theory of Allosteric Induction 2018 Manuel Razo-Mejia*, Stephanie L. Barnes*, Nathan M. Belliveau*, Griffin Chure*, Tal Einav*, Mitchell Lewis and Rob Phillips† | Cell Systems 6 | DOI: 10.1016/j.cels.2018.02.004 | GitHub Repository | Paper Website Featured Spotlight: Quincey Justman (2018). "Splitting the World with Absolute Measurements: A Call for Collaborations in Physical Biology." Cell Systems (6). DOI: 10.1016/j.cels.2018.04.006 Selected Invited Talks The Form of Growth and Growth of Form: Understanding Cell Growth and Size Homeostasis From First Principles Colorado School of Mines | Golden CO, USA | Quantitative Biosciences and Engineering Seminar Series Feb. 2024 The Ohio State University | Columbus OH, USA | Department of Microbiology Seminar Series Nov. 2024 How To Live Forever: Recipes for Reproducible Biological Research in the Digital Age UC Berkeley | Berkeley CA, USA | Reproducibility in the Life Sciences Workshop Jul. 2023 Nov. 2022 & 2023 Caltech | Pasadena CA, USA | Guest Lecture for BE/Bi 103: Data Analysis in the Life Sciences New Science Foundation | Boston MA, USA | Guest Lecture for 2022 Fellows Jul. 2022 On Fundamental Limits, Degenerate Dimensions, and Serendipitous Consequence in Rapid Cellular Growth Chan-Zuckerberg Biohub | San Francisco CA, USA | Invited Seminar by Dr. Ranen Avenir Mar. 2023 The Anthroponumbers: Building Quantitative Literacy for a Human Dominated Planet Carnegie Institution for Science | Palo Alto CA, USA | Department of Global Ecology Lunch Seminar Series Sep. 2021 Selected Conference Presentations An Optimal Regulation of Fluxes Dictates Microbial Growth In and Out of Steady-State Apr. 2023 Oral Presentation | Northern California Geobiology Symposium | Stanford CA, USA Tight Control Over Cytoplasmic and Membrane Densities Defines Regulation of Cell Geometry in E. coli Mar. 2023 Oral Presentation | American Physical Society March Meeting | Minneapolis MN, USA Hail to the Flux: or the Optimal Regulation of Cellular Resources Beyond Steady State Jan. 2023 Oral Presentation | Chan-Zuckerberg Biohub Physics of Life Conference | San Francisco CA, USA Analytical Descriptions of Fundamental Constraints in Protein Synthesis and Microbial Growth Mar. 2022 Oral Presentation | American Physical Society March Meeting | Chicago IL, USA The Energetics of Molecular Adaptation Jul. 2019 Oral Presentation | NORDITA Summer Course on Predictability and Control in Evolution | Stockholm, Sweden Mentorship **Direct Mentorship of Graduate Students** Stanford University | Stanford CA, USA | Three Biology and Biophysics Graduate Students 2021-Present Caltech | Pasadena CA, USA | Seven Biology, Physics, & Bioengineering Graduate Students 2015 - 2020 Summary: I directly mentored students on projects covering cell physiology, experimental biochemistry, and statistical physics. **Direct Mentorship of University Undergraduate Students**

2019

2015 - 2020

Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression

Caltech | Pasadena CA, USA | Three Biology and Applied Physics Undergraduates

University of Utah | Salt Lake City UT, USA | Two Chemistry Undergraduates

2011 - 2013

Summary: I directly mentored undergraduate students on a mix of honor's thesis projects, varying from experimental biochemistry to computational biology.

Direct Mentorship of Community College Undergraduate Students

Stanford University | Stanford CA, USA | Research Mentor | Three Physics & Mech. Eng. Undergraduates

2023

Summary: I directly mentored SF Bay Area community college students through the Stanford Small Science Group (SSG) program on 10-week research projects covering climate science and theoretical physics.

Direct Mentorship of Junior High School Students

Caltech | Pasadena CA, USA | Caltech RISE Physics, Biology, and Math Tutor | Three Jr. High Students

2015 - 2016

Summary: I tutored Pasadena, CA local junior high school students from underrepresented and disadvantaged backgrounds through the Caltech RISE Program. Topics included basic physics, cell biology, algebra, and geometry.

Service & Leadership

Scientific Committee Member for the Biohub "Physics of Life" Conference

Chan-Zuckerberg Biohub | San Francisco CA, USA

Jan. & Oct. 2023, Sep. 2024

Summary: A biophysics conference for researchers in the SF bay area. Responsibilities included organizing the conference schedule, reading and scoring abstracts, introducing speakers, and mediating Q&A.

Session Chair and Organizer for "Quantitative Cell Physiology" Focus Session at APS

Upcoming: American Physical Society Global Physics Summit | Anaheim CA, USA

Mar. 2025

American Physical Society March Meeting | Minneapolis, MN, USA

Mar. 2024

American Physical Society March Meeting | Las Vegas NV, USA

Mar. 2023

Summary: An internationally attended annual physics conference with a large biological physics community. Responsibilities included organizing a field-specific focus session, reading and scoring abstracts, introducing speakers, and mediating Q&A.

ENVISION International Research Proposal Competition Judge

ENVISION by WiSTEM | International

2021 - 2023

Summary: I served as a research proposal judge for an international research competition for high-school aged women and genderqueer students. Responsibilities included reading and scoring 5–6 page research proposals on feasibility, creativity, rigor, and scholarship. Topics included biomedical engineering and microbiology.

Graduate Student Council Program Co-Chair

Caltech Biochemistry & Molecular Biophysics Graduate Program | Pasadena CA, USA

2015 - 2018

Summary: I served as the co-chair of the graduate student council for my PhD program. Responsibilities included planning and organizing recruitment events, planning and organizing annual program retreats, design and administration of a program-wide student wellness survey, and conflict mediation between graduate students and their adviser.

Academic Honors & Awards

NSF Postdoctoral Research Fellowship in Biology | \$230,000 USD

Jan. 2021 - Dec. 2023

NSF Graduate Research Fellowship | Honorable Mention

2015

Amgen Research Fellowship | Full Stipend

2015

University of Utah "Honors at Entrance" Scholarship | Full Tuition

Aug. 2009 - May 2013

Teaching Experience

Examples of my teaching materials, with a focus on computational exploration of biophysical principles, are available on the "Teaching" section of my personal website.

California Institute of Technology, Pasadena CA, USA	
The Great Human Experiment by the Numbers	2020
Caltech APh 150 Teaching Assistant with Prof. Rob Phillips Undergraduate & Graduate Student Enrollment	
Evolution	2020
Caltech Bi/Ge/ESE 105 Teaching Assistant with Profs. Rob Phillips & Victoria Orphan Undergraduate Enrollme	nt
Physical Biology of the Cell	2018
Caltech BE/APh 161 Teaching Assistant with Prof. Justin Bois Undergraduate & Graduate Student Enrollment	
Physical Biology Bootcamp 20	17 - 2019
Caltech BE 262 Optics Teaching Assistant with Prof. Rob Phillips Incoming Graduate Student Enrollment	
The Great Ideas of Biology	2017
Caltech Bi 1 Head Teaching Assistant with Prof. Rob Phillips Freshman Undergraduate Students	
Data Analysis in the Biological Sciences	015-2016
Caltech BE/Bi 103 Teaching Assistant with Prof. Justin Bois Undergrad, Graduate Student, & Postdoc Enrollmer	
Introduction to Programming for the Biological Sciences Bootcamp	2016
Caltech BE/Bi/NB 203 Teaching Assistant with Prof. Justin Bois Graduate Student & Postdoc Enrollment	2010
	014-2015
Caltech Bi 1X Head Teaching Assistant with Prof. Justin Bois Undergraduate Student Enrollment	711 2013
University of Utah, Salt Lake City UT, USA	
Advanced Biochemistry Laboratory	2013
Lab Section Teaching Assistant with Prof. David Goldenberg Undergraduate Student Enrollment	
	k Fa. 2012
Teaching Assistant with Prof. John S. Parkinson Undergraduate & Graduate Student Enrollment	
Molecular Biology Research Bootcamp	2010
Teaching Assistant with Prof. Rosemary Gray Undergraduate Student Enrollment	
Introduction to Biology	2010
Teaching Assistant with Prof. Tanya Vickers Undergraduate Student Enrollment	
International & Extramural	
CSHL Physical Biology of the Cell	15 & 2023
Computational Instructor Cold Spring Harbor Laboratory, NY USA Graduate Student Enrollment	
IBDM Cell Biology by the Numbers	2018
Computational Instructor Turing Centre for Development, Marseille FR Graduate Student & Postdoc Enrollme	ent
MBL Physical Biology of the Cell	2018
Optics Faculty Member Marine Biological Laboratory, MA USA Graduate Student, Postdoc, & Faculty Enrollme	nt
MBL Physiology: Modern Cell Biology Using Microscopic, Biochemical, and Computational Approaches 20)15-2018
Research Faculty Member Marine Biological Laboratory, MA USA Graduate Student, Postdoc, & Faculty Enrolln	nent
	nent 016-2017
	016-2017
GIST Physical Biology of the Cell	016-2017
GIST Physical Biology of the Cell Computational Instructor Gwangju Institute of Science and Technology, Gwangju PRK Graduate Student Enr	016-2017 collment 2015