Лабораторная работа № 1

ШИФРЫ И КРИПТОАНАЛИЗ

ЦЕЛЬ РАБОТЫ : Изучение подстановочного шифра и метода частотного криптоанализа.

Введение

Наиболее простой тип криптограмм – это так называемые подстановочные криптограммы. Составляя их, каждой букве алфавита сопоставляют определенный символ (чаще тоже букву) и при кодировании всякую букву текста заменяют на соответствующий ей символ.

Расшифровка (криптоанализ) подобных криптограмм не составляет большой проблемы. Все основывается на том, что различные буквы естественного языка – русского, английского или какого-либо другого встречаются в осмысленных текстах неодинаково часто. Следовательно, тоже самое верно и для сопоставляемых им знаков. В еще большей мере это относится к буквосочетаниям из двух или нескольких букв. Лишь некоторые из них часто употребляются, многие же вообще не употребляются.

Анализируя частоту появления тех или иных знаков и их сочетаний можно с большой уверенностью восстановить буквы зашифрованного текста. Этот метод называется частотным анализом. Он основывается на подсчете частоты появления зашифрованных знаков. В таблице 1 указаны относительные частоты букв русского языка. Буквы E и \ddot{E} , а также b и b кодируются обычно одинаково, поэтому в таблице они не различаются. Как следует из таблицы наиболее часто встречающаяся буква русского алфавита — это О. Ее относительная частота, равная 0,090, означает, что на 1000 букв русского текста приходится в среднем 90 букв О. В таком же смысле понимаются относительные частоты и остальных букв. В таблицу 1 не включен символ пробел. Его относительная частота наибольшая и равна 0,175.

Таблица 1

Nº	буква	Отн.	Nº	буква	Отн.	Nº	буква	Отн.	
		частота			частота			частота	
0	A	0,062	10	K	0,028	20	Φ	0,002	
1	Б	0,014	11	Л	0,035	21	X	0,009	
2	В	0,038	12	M	0,026	22	Ц	0,004	
3	Γ	0,013	13	Н	0,053	23	Ч	0,012	
4	Д	0,025	14	О	0,090	24	Ш	0,006	
5	Е	0,072	15	П	0,023	25	Щ	0,003	
6	Ж	0,007	16	P	0,040	26	Ы	0,016	
7	3	0,016	17	С	0,045	27	Ъ,Ъ	0,014	
8	И	0,062	18	T	0,053	28	Э	0,003	
9	Й	0,010	19	У	0,021	29	Ю	0,006	
						30	Я	0,018	

Рассмотрим криптограмму:

ЦЯРСНСМЩИ ЯМЯКЗЖ ОНКДЖДМ МД СНКЫЙН ГКЮ ОНГРСЯМНБНЦМЩФ ЙПЗОСНВПЯЛЛ МН Б ГПТВЗФ РКТЦЯЮФ НМ РКНЕМДД

Для расшифровки подсчитаем сколько раз в криптограмме встречается каждая буква. Результаты подсчета приведены в таблице 2.

Таблица 2

Н	M	Я	K	Д	C	Р	Γ	Ο	П	3	Φ	Ц	Б	В	Ж	Й	Λ	Τ	Щ	Ю	Е	И	Ы
11	9	6	6	5	5	4	3	3	3	3	3	3	2	2	2	2	2	2	2	2	1	1	1

Наиболее часто встречающийся символ H скорее всего означает букву О. Сделав такое предположение , рассмотрим следующий по частоте символ М. В криптограмме имеется двубуквенное сочетание МН. Так как H – это О, то символ М соответствует согласной. Среди согласных в русском языке выделяются по частоте буквы T и H. Разберем случай, когда М означает H.

Если М – это H, то в сочетании МД, встречающемся в криптограмме , \mathcal{L} скорее всего означает гласную. Из наиболее вероятных \mathcal{L} ля \mathcal{L} вариантов A, E, И выбираем E, потому что лишь в этом случае имеющееся в криптограмме слово РКНЕМДД допускает осмысленную расшифровку. Теперь обратимся к сочетанию ЯМЯКЗЖ. В нем Я может означать лишь гласную A или И. Любые другие возможности

заведомо не допускают разумного прочтения слова ЯМЯКЗЖ. Испытаем букву А. Подставляя вместо Я букву А, вместо М – Н, вместо других знаков точки, получим недописанное слово АНА... . В словаре имеется всего лишь несколько слов из 6 букв с таким началом: АНАЛИЗ, АНАЛОГ, АНАНАС, АНАТОМ. Из них годится лишь первое. Если вместо Я подставить букву И, то получится шестибуквенное сочетание с началом ИНИ, но в словаре нет ни одного такого слова. Расшифрованы еще четыре буквы: Я, К, 3, Ж. Они означают соответственно А, Λ , И, 3.

В слове ОНКЖДМ известны все символы кроме первого. Заменяя их буквами, получаем: . ОЛЕЗЕН. Ясно, что неизвестная буква — это П. Значит О расшифровывается как П.

Рассмотрим сочетание РКНЕМ $\mathcal{L}\mathcal{L}$, означающее . Λ O.НЕЕ. Имеется несколько вариантов его прочтения, один из них – С Λ ОЖНЕЕ. Следовательно, скорее всего Р – это С, Е - это Ж.

Из нерасшифрованных знаков чаще всего встречается С. В соответствии с таблицей 1 среди оставшихся согласных наибольшую частоту имеет Т. Естественно предположить, что С означает Т.

Попытаемся восстановить зашифрованный текст, подставляя вместо разгаданных знаков соответствующие им буквы:

.АСТОТН.. АНАЛИЗ ПОЛЕЗЕН НЕ ТОЛ..О .Л. ПО.СТАНО.О.Н.. ..ИПТО..А.. НОИ. СЛ..А.. ОН СЛОЖНЕЕ

Ясны по контексту, по крайней мере три слова: .АСТОТН.. означает ЧАСТОТНЫЙ, ТОЛ..О – ТОЛЬКО, .Л. – ДЛЯ. С учетом новой информации текст примет следующую форму:

ЧАСТОТНЫЙ АНАЛИЗ ПОЛЕЗЕН НЕ ТОЛЬКО ДЛЯ ПОДСТАНО.ОЧНЫ. К.ИПТО..А.. НО . Д...И. СЛ.ЧАЯ. ОН СЛОЖНЕЕ

Окончательная расшифровка не представляет труда. Текст таков:

ЧАСТОТНЫЙ АНАЛИЗ ПОЛЕЗЕН НЕ ТОЛЬКО ДЛЯ ПОДСТАНОВОЧНЫХ КРИПТОГРАММ, НО В ДРУГИХ СЛУЧАЯХ ОН СЛОЖНЕЕ.

ЗАДАНИЯ

- 1. Зашифровать любой текст с помощью подстановочного шифра Цезаря (Он состоит в том, что весь алфавит циклически сдвигается на определенное число букв.) Предложить метод расшифровки более простой, чем частотный анализ.
- 2. Расшифровать заданный преподавателем текст зашифрованный шифром Цезаря.
- 3. Зашифровать любой текст с помощью подстановочного шифра. Расшифровать текст методом частотного анализа. Для сбора статистики использовать файл test.txt
- 4. Расшифровать заданный преподавателем шифртекст методом частотного анализа.

ИСХОДНЫЕ ДАННЫЕ: Файлы с шифртекстом (шифр Цезаря и подстановочный шифр).

СОДЕРЖАНИЕ ОТЧЕТА: Отчет по лабораторной работе должен содержать

- 1. Описание алгоритма шифрования
- 2. Описание алгоритма криптоанализа
- 3. Программы шифрования и дешифрования
- 4. Расшифрованные тексты
- 5. Выводы по работе