

Operating Systems W11L2 - Memory Management III

Class	Operating Systems
© Created	@Nov 11, 2020 1:05 PM
Materials	08 - Memory Management III.pdf
Reviewed	
Type	Lecture

Recap

- ▼ Paging Summary Slide and Diagrams
 - Virtual address space bigger than physical memory
 - Mapping virtual address to physical address
 - Virtual address space divided into fixedsize units called pages
 - Physical address space divided into fixedsize units called pages frames
 - Virtual address space of a process can be non-contiguous in physical address space

d is just some constant, i.e. page size

- Simply speaking, one page table per process and one TLB per core (and one MMU per core)
- Harware must update the TLB on a TLB miss
- Without MMU, we can still have virtual memory but performance would be incredibly bad
- We can have a system with a TLB but without an MMU, but again it would be very slow

OLS Involvement

- ▼ If things can be done w/ hardware, where does OS come into play?
 - 1. When a new process is created
 - Determine how large the program and data will be (initially)
 - Creating a page table
 - Allocate space in memory for page table
 - Record info about the page table and swap area in the process table
 - 2. When a process is scheduled for execution (context switch)
 - MMU resets for the process
 - TLB flushed
 - Process table made current
 - 3. When process exits
 - OS releases the process page table
 - Frees its pages and disk space
 - 4. When a page fault occurs
 - The handling is covered in depth on the slides

• Interesting case of virtual memory and I/O interaction

This is the end of the **Memory Management** unit.