سوال ١

۱. به سوالات زیر پاسخ دهید:

- الف) مدلهای صف با جمعیت نامحدود (infinite population) و جمعیت محدود (finite population) را توصیف کنید و تفاوتهای آنها را بیان نمایید.
- ب) انواع نظمدهی در صفها یا نظام صفبندی (Queue discipline) چیست؟ سه مورد از این انواع را نام برده و هر کدام را به طور خلاصه شرح دهید.
 - ج) جریانهای شماره گذاری تصادفی (random-number streams) را توضیح دهید.

جواب سوال ١

جواب سوال ۲

برای متغیر تصادفی X (تاس چهار وجهی):

 $E[X] = \frac{1+Y+Y+Y}{Y} = Y/\Delta : X$ امید ریاضی

 $Var[X] = E[X^{
m f}] - (E[X])^{
m f} =
m V/2 - (
m T/2)^{
m f} =
m 1/72: X$ واریانس •

برای متغیر تصادفی Y (تاس شش وجهی):

 $E[Y] = \frac{1+Y+Y+Y+\delta+9}{9} = Y/0: Y$ امید ریاضی

 $Var[Y] = E[Y^{\mathsf{Y}}] - (E[Y])^{\mathsf{Y}} = \frac{\mathsf{q}}{\mathsf{q}} - (\mathsf{Y/\Delta})^{\mathsf{Y}} = \mathsf{Y/Q} \, \mathsf{ISV} : Y$ واریانس ullet

برای متغیر تصادفی Z (میانگین X و Y):

 $E[Z] = \frac{E[X] + E[Y]}{7} = \Upsilon : Z$ امید ریاضی

 $Var[Z] = rac{Var[X] + Var[Y]}{rak f} = 1/rac{ootnotesize f}{2}$ واريانس

ب) امید ریاضی سود شما پس از ۶۰ دست پرتاب دو تاس:

فرض کنید در هر پرتاب دو تاس، اگر عدد نمایش داده شده روی تاس چهار وجهی (X) بیشتر از عدد نمایش داده شده روی تاس شش وجهی (Y) باشد، شما $X \times Y$ دلار برنده می شوید. در غیر این صورت، شما ۱ دلار می بازید. محاسبه امید ریاضی سود شما برای یک پرتاب و سپس برای ۶۰ پرتاب به شرح زیر است:

- X > Y محاسبه امید ریاضی سود برای
- احتمال X>Y برابر است با تعداد حالاتی که X بزرگتر از Y است تقسیم بر تعداد کل حالات.
 - در هر حالت که X > Y، سود $X \times X$ دلار است.
 - $X \leq Y$ محاسبه امید ریاضی زیان برای
- احتمال $Y \leq Y$ برابر است با تعداد حالاتی که X کمتر یا مساوی Y است تقسیم بر تعداد کل حالات.
 - حر هر حالت که $X \leq Y$ ، زیان ۱ دلار است.
 - امید ریاضی سود برای یک پرتاب دو تاس: تقریباً ۱/۹۱۷ دلار.
 - امید ریاضی کلی سود برای ۶۰ پرتاب: تقریباً ۵۵ دلار.

جواب سوال ٣

الف) نشان دهيد:

$$\sum_{j=1}^{\infty} (a_1 + a_2 + \ldots + a_j) P(N=j) = \sum_{i=1}^{\infty} a_i P(N \ge i)$$

برای این بخش، ابتدا مجموعه داخل پرانتز را به صورت تجمعی نویسیم و سپس با تغییر ترتیب جمعزنی، این را به صورت زیر بیان میکنیم:

$$= \sum_{i=1}^{\infty} a_i \sum_{j=i}^{\infty} P(N=j)$$

که در آن P(N=j) معادل احتمال این است که N حداقل برابر با i باشد. در نتیجه، به معادله نهایی میرسیم:

$$=\sum_{i=1}^{\infty}a_{i}P(N\geq i)$$

س) ثابت كنيد:

$$E[N] = \sum_{j=1}^{\infty} P(N \ge j)$$

برای این بخش، از تعریف امید ریاضی برای متغیر تصادفی گسسته استفاده میکنیم. امید ریاضی E[N] برابر است j با مجموع وزندار تمام مقادیر ممکن N، که به صورت مجموعه احتمالات N بزرگتر یا مساوی با هر عدد طبیعی j است.

ج) ثابت كنيد:

$$E[N(N+1)] = \mathbf{Y} \sum_{j=1}^{\infty} j \cdot P(N \geq j)$$

برای این بخش، ما توجه میکنیم که N(N+1) میتواند به صورت N^*+N بیان شود. این بیان به ما امکان میدهد تا امید ریاضی E[N(N+1)] را به صورت مجموعهای از احتمالات بیان کنیم که در آن N حداقل برابر با هر عدد طبیعی j است.

بنابراین، ما می توانیم امید ریاضی E[N(N+1)] را به صورت زیر بنویسیم:

$$E[N(N+1)] = E[N^{\mathsf{Y}}] + E[N]$$

و از آنجا که $E[N^{\mathsf{Y}}]$ را میتوان به صورت مجموعهای از احتمالات که N حداقل برابر با هر عدد طبیعی j است بیان کرد، میتوانیم آن را به صورت زیر بیان کنیم:

$$E[N^{\mathsf{T}}] = \sum_{j=1}^{\infty} j^{\mathsf{T}} \cdot P(N \ge j)$$

و از آنجا که E[N] نیز به صورت مجموعهای از احتمالات بیان میشود:

$$E[N] = \sum_{j=1}^{\infty} j \cdot P(N \ge j)$$

بنابراین، امید ریاضی E[N(N+1)] را میتوان به صورت زیر محاسبه کرد:

$$E[N(N+1)] = \sum_{j=1}^{\infty} j^{\mathsf{Y}} \cdot P(N \ge j) + \sum_{j=1}^{\infty} j \cdot P(N \ge j)$$

که در نهایت به صورت $\sum_{j=1}^{\infty} j \cdot P(N \geq j)$ بیان می شود.

جواب سوال ۴

محاسبه امید ریاضی تعداد دفعاتی که باید تاس انداخته شود تا توالی عدد مضرب ۳ نباشد - عدد مضرب ۳ باشد - عدد مضرب ۳ باشد - عدد مضرب ۳ نباشد مشاهده شود:

برای حل این مسئله، ما از نظریه زنجیرههای مارکوف استفاده میکنیم. سه حالت ممکن برای هر پرتاب تاس وجود دارد:

الف) حالت A: هیچ عددی تاکنون پرتاب نشده یا آخرین عدد پرتاب شده مضرب \mathbf{r} نبوده است.

ب) حالت B: آخرین عدد پرتاب شده مضرب T بوده است.

ج) حالت): توالى كامل شده است (يعنى عدد مضرب ٣ نباشد - عدد مضرب ٣ باشد - عدد مضرب ٣ نباشد).

ماتریس انتقال P به صورت زیر است:

$$P = \begin{bmatrix} \frac{\mathbf{r}}{\mathbf{r}} & \frac{\mathbf{r}}{\mathbf{r}} & \mathbf{r} \\ \frac{\mathbf{r}}{\mathbf{r}} & \mathbf{r} & \frac{\mathbf{r}}{\mathbf{r}} \\ \frac{\mathbf{r}}{\mathbf{r}} & \mathbf{r} & \frac{\mathbf{r}}{\mathbf{r}} \end{bmatrix}$$

این ماتریس نشاندهنده احتمال جابهجایی بین حالتها است.

برای محاسبه امید ریاضی تعداد دفعات پرتاب تاس تا رسیدن به حالت C بعد از حالت A ، ما از خواص زنجیرههای مارکوف استفاده میکنیم. این محاسبه شامل محاسبه زمان اولین ورود به حالت C از حالت A است.

در نمودار زنجیره مارکوف که برای مسئله داده شده رسم شده است، گرهها حالتهای مختلف زنجیره را نشان میدهند و یالها احتمال انتقال بین حالتها را نمایش میدهند.

- ullet حالت A: این حالت نشان دهنده شروع توالی یا پرتاب عددی غیر مضرب ullet است.
 - حالت B: این حالت نشان دهنده پرتاب عدد مضرب T است.
- حالت C: این حالت نشاندهنده اتمام توالی مورد نظر ما (عدد مضرب T نباشد عدد مضرب T باشد عدد مضرب T نباشد) است.

جواب سوال ۵

برای یک زنجیره مارکوف با استیتهای $\{1, 1, 7, 7\}$ و ماتریس انتقال زیر:

$$P = \begin{pmatrix} \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \cdot & \frac{7}{7} \\ \cdot & \frac{1}{7} & \frac{1}{7} \end{pmatrix}$$

نمودار زنجیره مارکوف مربوط به این ماتریس به صورت زیر است:

محاسبه احتمال انجام می انجام می بر اساس قانون زنجیره ای احتمال انجام می شود: $P(X_1 = \mathtt{w}, X_{\mathtt{v}} = \mathtt{v}, X_{\mathtt{v}} = \mathtt{v})$

$$P(X_1 = \Upsilon, X_{\Upsilon} = \Upsilon, X_{\Upsilon} = \Upsilon) = P(X_1 = \Upsilon) \times P_{\Upsilon \Upsilon} \times P_{\Upsilon \Upsilon}$$

از آنجا که $rac{1}{7}$ محاسبه صحیح به صورت زیر خواهد بود: $P(X_1= extsf{Y})=rac{1}{7}$ و $P(X_1= extsf{Y})=P(X_1= extsf{Y})=rac{1}{7}$

$$P(X_1 = \Upsilon, X_{\Upsilon} = \Upsilon, X_{\Upsilon} = \Upsilon) = \frac{1}{\Upsilon} \times \frac{1}{\Upsilon} \times \frac{1}{\Upsilon} = \frac{1}{1\Upsilon}$$

جواب سوال ۶

توضیح کد پایتون برای زنجیره مارکوف

این کد پایتون برای مدلسازی و تحلیل یک زنجیره مارکوف گسسته استفاده می شود که در آن تعدادی حالت و احتمالات انتقال بین آنها وجود دارد.

calculate state probability تابع

این تابع برای محاسبه احتمال یک حالت خاص (s) در روز معین (N) در زنجیره مارکوف استفاده می شود. این تابع بردار احتمال اولیه (p,) و ماتریس انتقال را به عنوان ورودی می گیرد و با استفاده از حلقه ای برای ضرب ماتریس انتقال در بردار احتمال فعلی در هر مرحله، احتمال حالت s در روز N را محاسبه می کند.

تعریف بردار احتمال اولیه و ماتریس انتقال

این بخش از کد بردار احتمال اولیه و ماتریس انتقال را تعریف میکند که برای مدلسازی زنجیره مارکوف استفاده می شوند.

محاسبه احتمال انتخاب جوجه كباب در روز ۷۷۷ام

با استفاده از تابع calculate state probability ، احتمال انتخاب جوجه کباب در روز ۱۷۷۷م محاسبه می شود.

محاسبه احتمالات انتخاب جوجه كباب در روزهاى مختلف و نمايش نمودار

این بخش از کد احتمال انتخاب جوجه کباب در روزهای مختلف را محاسبه کرده و سپس این احتمالات را در یک نمودار نشان می دهد.

simulate markov chain تابع

این تابع برای شبیهسازی روند زنجیره مارکوف استفاده می شود. با تعداد دفعات مشخص شده، این تابع یک زنجیره مارکوف را شبیهسازی کرده و احتمالات حالتهای مختلف در پایان دوره را محاسبه میکند.

مقایسه نتایج محاسباتی و شبیهسازی

در این بخش، نتایج به دست آمده از محاسبات تئوری و شبیهسازی مقایسه می شوند. این مقایسه شامل بررسی خطای بین نتایج تئوری و شبیهسازی است.