# MPG vs Transmission Type, mtcars dataset

Libardo Lopez

Tuesday, September 16, 2014

## **Executive Summary**

- 1. This analysis attempts to conclude about the impact of manual or automatic transmission on vehicle GPM performance, from mtcars dataset.
- 2. The model predicts an improvement of **1.8** miles per gallon from a manual transmission as compared with an automatic.
- 3. Suggestion: **Do not use the model's result**. It is an academic exercise and moreover, the dataset is from 1973-74 so because of time window and the technological differences from that year to today, the findings from my view, may be not valid although the analysis process it is.
- 4. If you need some kind of analysis like this for a real issue, you must update the dataset and drilldown according to your needs.
- 5. Note if you like to see de R code, please Go to Github (https://github.com/Libardo1/Regression\_Models)

## **Data Preprocessing**

#### Variables as Factor

• The variables cyl, vs, am, gear, carb are treated as factor.

#### Observations from Data Exploration (see Appendix)

- The cars with manual vs automatic transmission are not identically distributed (see also Additional Plots).
   Note the regression lines.
- From the figure MPG by weight, you can see a better performance for the manual transmission but with a greater dispersion (sd).
- For the heavier cars, the trend is to have automatic transmission.
- The MPG by HP is better for manual cars.
- For small cars i.e. 4 cyl and small displacement, the trend is to have manual transmission.

#### Model selection strategy

- The analysis attempts to include only highly relevant predictors for outcome MPG, minimizing the number of predictors.
- It considers two different models; but does not consider second order (interaction) terms or exclude outliers.
- Null hypothesis: None of the regressors predict MPG performance.

#### Model 1: Minimize Akaike Information Criterion (AIC)

The first is the built-in R function step() which through successive iterations drops fields from the initial model including all available variables to **minimize** the Akaike Information Criterion (AIC). Increasing the number of regressors raises the AIC; thus it attempts to balance fitting the data with minimizing regressors.

On each step, the method eliminates the highest p-valued regressor from the model and refits. This iterative process continues until all predictors are below the significance threshold.

## Inspecting the Model

## mpg = 33.71 + 1.81manual - 3.03cyl6 - 2.16cyl8 - 0.03hp - 2.5wt

- The Adjusted R squared value of 0.78 for the start model with all variables, compared with the final model R squared value of 0.84 shows the final model is a good fit.
- The model include 4 predictors (manual, cyl6, cyl8, hp, wt). The model predicts manual transmission increases MPG by 1.8 mpg.

#### Observations from Residual Plots (see Appendix)

 As with the exploratory plots, the residual plots are clustered and do not appear identically distributed between automatic and manual transmission cars.

## Results

- The Adjusted **R squared value of 0.78** for the start model with all variables, compared with the final model **R squared value of 0.84** shows the final model is a good fit.
- The model predicts a **improvement to MPG of 1.8** mpg with a manual transmission.
- It is an academic exercise and moreover, the dataset is from 1973-74 so because of time window and the technological differences from that year to today, the findings from my view, may be not valid although the analysis process it is.
- If you need some kind of analysis like this for a real issue, you must update the dataset and drilldown according to your needs.

## **Appendix A: Figures**

Figure A1: Data Exploration

Figure A2: Model Residuals



Figure A3: Data Exploration; additional MPG plots



## Figure A4: Table of Backward Stepwise P-Value Iterations for Model 2

```
model2 <- lm(mpg ~ factor(am) + factor(cyl) + factor(carb) + factor(vs) + factor(gear) + disp
+ hp + drat + wt + qsec, mtcars); #Start: AIC=76.4
model2 <- lm(mpg ~ factor(am) + factor(cyl) + factor(vs) + factor(gear) + disp + hp + drat +
wt + qsec, mtcars); #Step: AIC=69.83; discarded: carburators
model2 <- lm(mpg ~ factor(am) + factor(cyl) + factor(vs) + disp + hp + drat+ wt + qsec, mtcars)
; #Step: AIC=67; discarded: gear
model2 <- lm(mpg ~ factor(am) + factor(cyl) + factor(vs) + disp + hp + wt + qsec, mtcars);
#Step: AIC=65.23; discarded: drat
model2 <- lm(mpg ~ factor(am) + factor(cyl) + factor(vs) + hp + wt + qsec, mtcars); #Step: AIC=63.51; discarded: disp
model2 <- lm(mpg ~ factor(am) + factor(cyl) + factor(vs) + hp + wt, mtcars); #Step: AIC=62.06;
discarded: qsec
model2 <- lm(mpg ~ factor(am) + factor(cyl) + hp + wt, mtcars); #Step: AIC=61.65</pre>
```

```
##
## Call:
## lm(formula = mpg ~ factor(am) + factor(cyl) + hp + wt, data = mtcars)
##
## Residuals:
     Min
           1Q Median 3Q Max
##
## -3.939 -1.256 -0.401 1.125 5.051
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 33.7083
                         2.6049 12.94 7.7e-13 ***
## factor(am)1 1.8092
                       1.3963 1.30 0.2065
                         1.4073 -2.15 0.0407 *
## factor(cyl)6 -3.0313
## factor(cyl)8 -2.1637 2.2843 -0.95 0.3523
                         0.0137 -2.35 0.0269 *
## hp
               -0.0321
                       0.8856 -2.82 0.0091 **
## wt
               -2.4968
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.41 on 26 degrees of freedom
## Multiple R-squared: 0.866, Adjusted R-squared: 0.84
## F-statistic: 33.6 on 5 and 26 DF, p-value: 1.51e-10
```