Ph.D. Comprehensive Examination Design and Analysis of Algorithms

Aug. 18, 06

Short Questions

(Do any 3 of the following 4 questions. Each question is worth 10 points)

[St] (a) Write the recurrence equations for the worst and best case performance of: (1) quick sort; (2) merge sort; (3) bin-search. Briefly justify the role of each term in the recurrence equations.

(b) What is the essential difference between merge sort and quick sort? How does it influence the worst-case running time functions?

[SZ] Given the recurrence relation

$$T(n) = 2T(\sqrt{n}) + \log_2 n,$$

$$T(2) = 1$$
,

obtain a closed-form formula for T(n) and determine its growth rate (Θ) . (Hint: let $n = 2^{2^i}$).

[S3] Construct a finite automaton or regular expression for each of the following languages:

- (a) $\{x \in \Sigma^*: \text{ every } bb \text{ in } x \text{ is followed by } a. \}$
- (b) $\{x \in \Sigma^*: \text{ the string } ab \text{ occurs an odd number of times in } x.\}$

[\$4]

- (a) Define nondeterminism for a finite automaton and a Turing machine.
- (b) What, in general, is the cost of converting a nondeterministic device to an equivalent deterministic device.
- (c) Give an example of a type of device for which determinism and nondeterminism are equivalent, and one for which they are not.

Long Questions

(Do any 3 of the following 4 questions. Each question is worth 23 points)

- [L1] (a) Define P, NP, and NP Complete. Give one example for each case.
 - (b) Assuming $NP \neq P$, what is the relationship between P, NP, and NP Complete?
 - (c) Prove that HC α TSP-decision, where HC is the Hamilton circuit problem and TSP-decision is the traveling salesman decision problem.
 - (d) Which of the two problems can be shown to be NP-complete, using the result of Part (c)?
- [L2] Given a set $P = \{ p_1, p_2, ..., p_n \}$, of n-files of length $\{ l_1, l_2, ..., l_n \}$ respectively, to be sorted on a tape whose length $L \ge \sum_{k=1}^n l_k$. These files are frequently accessed with an uniform probability.
 - (a) Provide a greedy algorithm to identify a permutation $I = \{i_1, i_2, ..., i_n\}, i_k \in \{1, 2, ..., n\}$ for $1 \le k \le n$, and $i_k = i_h$ iff k = h, such that average seek-time is minimized, where average seek-time is given by $\frac{1}{n} \sum_{h=1}^{n} \sum_{k=1}^{h} l_{i_k}.$
 - (b) Prove that your greedy-policy results in an optimal (minimizes average seek-time) permutation I.
- [L3] Classify each of the following languages as regular, context free but not regular, or Turing decidable but not context free. Prove your answers.
 - (a) $\{a^n b^m a^k : n, m, k > 0\}.$
 - (b) $\{a^n b^m a^n : n > m > 0\}.$
 - (c) { $a^n b^m a^n : n, m > 0$ }.
- [L4] Briefly prove or disprove that each of the following classes of languages is closed under concatention:
 - (a) regular languages,
 - (b) context free languages,
 - (c) P.