proposal

Nicholas Davies University of Canterbury

December 2, 2014

1 Intro to wood structure and formation

As trees grow they produce wood in order to become taller and wider. Becoming taller and increasing canopy size is an effective way to out compete the other trees and plants for light. With increasing height and width comes increasing weight, wind drag and internal pressures (for water transport), which requires either enough redundant strength in the existing structure (such as young monocotyledons) or for the tree to strengthen its structure as it increases its size. In dicotyledons and gymnosperms this occurs in two ways, apical and cambial growth.

basic architecture softwood and hardwood structure in stems compression and tension wood in stems and branches detailed hardwood anatomy, euc focus detailed hardwood fibre anatomy segway into cell formation for below

basic cell division Dicotyledons and gymnosperms grow in two main ways, upward apical growth and outward cambial growth.

Note monocotyledons (for example palms) do not produce secondary growth and instead diameter forms as part of primary growth.

As the cambium is forming fusiform and ray initials are created. (how are the initials created) Fusiform initials are short radially and tangetialy with tapered ends. From the cambial initials cells to the inside create the vertical elements of xylem (tracheids, vessels, fibers, parenchyma, etc.), while cells outside become phloem. Ray initials produce horizontal elements (rays).

Cambial cells divide in two ways, periclainal and anticlinal. Periclainal cell division occurs to the inner and outer of the cambial layers. As the cell division to the inside occurs the volume of secondary xylem that is being formed increases the tangential stress on vascular cambium resulting in an extention of the cambial circumference. Although over time many plants show an increase in the longitudinal and tangential dimensions of the cambial initials it is likely that this expansion is mainly facilitated by anticlinal division followed by the expansion of the daughter cells next to the pedant.

cell formation
cell elongation/shape change
note GS
cell death ; final cell shape change and chemical constituants
Note GS
cells/wood in context of wood and whole tree
Note GS
relate back to first couple paragraphs

2 intro to what growth stresses are

ref to above for cell elongation and death
early work in 20s and related models/theories
lignin swelling
cellulose contraction
hemicelluose theories
yamamotos recent model
issues with current understanding

3 why growth stresses exist

hardwoods v softwoods speculation from various authors mechanical hypotheses

4 intro to the issues growth stresses cause

for harvesting within mills

5 background of breading

field techniques
laboratory techniques
stat techniques
mention tradeoff with durability etc

5.0.1 beading work in this thesis

What we actually have:

Harewood trial: dec 2014 has bosistoana copiced from old planting that mon has GS data from. New Harewood trial, 2016 harvest, will have a number of species potential to copice bos again if needed.

Woodvile, 2016/2017 harvest will have Bosistoana, argophloia and possibly globoidea. May or may not be the same families as the various drylands trials.

NOTE family means same mother, not same father. If collected at different times even from the same tree variability exists due to possibly of different set of fathers. Also some self propagate, but we don't know which ones or what proportion, so ignore this.

Progeny trials are alpha latauses, harewood is a standard randomised individual trial.

Contact Ruth McConnachie: rgcmcconnochie@xtra.co.nz for DFI details. slit tests Pairing Test and Longitudinal Growth Strain: Establishing the Association 2008 is the earlyest paper I can find on the split/paring test. surface tests

Potentually use NIR http://www.afs-journal.org/articles/forest/pdf/2002/05/05.pdf Has some useful info on wave lengths associated with bonds ic cellulose

Non-destructive evaluation of surface longitudinal growth strain on Sugi (Cryptomeria japonica) green logs using near-infraredspectroscopy statistics

Progeny trials are alpha latauses, harewood is a standard randomised indervidual trial.

PLSR etc for NIR work normal breading stats?

6 background of chem work

lignin swelling
cellulose contraction
what has been done in the past?

6.0.2 chem in this thesis

Do all of the DFI species have a G-layer? Maybe include some Nitens tests if they don't. check MFA and SD for S_2 in tension, normal and compression/opposite wood Get cellulose lignin and hemicellulose(s) contests for tension normal and compression/opposite wood Split hemicelluloses where possible, eg xyloglucan etc. Torsion tests on individual cells, again for tension, normal and compression. Maybe remove G-Layer in tension wood and compare to normal and compression wood of similar MFA and compounds etc.

Could we somehow measure growth stress release on a single cell? Ideally, grow disordered cells invitro, and separate them from the parent cell as soon as possible, then record when in their formation they undergo what dimension changes. Is there some non-destructive test to check what is going on in the cell? or if we have multiple cells in the same conditions maybe we can destructively test some during the growth phase, under the assumption they are all growing at the same time. OR remove the cambial layer leaving top and bottom of cell

attached to the stem on a large sample, then somehow remove the connection to the cells behind it, then release the top and measure the contraction.

7 background of modeling

yammamotos most resent attempt

possible different methods ¿ FEM, DEM, molecular dynamics, gemomentry of stem and cells

7.0.3 modeling in this thesis

cells as partials in relaxed state

apply body force, ie the growth stress field

get original/non cut stick back

take take groups of repressive cells and use composite theory and position dependent body force (growth strain field) from the sub domain above

introduce time dependence to see how the stress field develops during maturation, composite scale still

take individual cells at macromolecular level and try to produce stress field above during a time dependent maturation function

Molecular dynamics simulations to work out the molecular mechanisms developing the growth stresses

Using the MD sims parameterize a cell model

Using the cell model develop a time dependent field function

from the field function create representative cell blocks

put the cell blocks together into a stick

cut the stick ¿ do we get out what we put it?

8 intentions

to improve breeding stock for NZ dryland forestry with respect to eucs being used for structural timber

to increase understanding of growth stress formation particularly in eucalyptus by chemical analysis and computer modeling

9 objectives

to create a mathematical model and computer simulation of a piece of cambium forming growth

stresses at the macromolecular level

to investigate the chemical causes of GSs by chemical analysis ;; how?

to improve breeding stock for eucs wrt growth stresses from field and lab testing to select appropriate families.

- 10 Costs
- 11 Timeline