Lemma 1 Consider an operator \hat{A} which is a function of some simultaneously diagonalizable operators $\hat{a}_1, \hat{a}_2 \dots \hat{a}_n$ with respective eigenstates $|a_1, b_1\rangle, |a_2, b_2\rangle \dots |a_n, b_n\rangle$, where the degeneracy of quantum number a_m of the operator \hat{a}_m is $d_m(a_m)$. Then the Hilbert space spanned by the eigenstates of \hat{A} is a subspace of the Hilbert space spanned by vectors $|a_1, a_2 \dots a_n, B\rangle$, where $B = 1, 2 \dots \prod_{i=1}^n d_i(a_i)$.

Proof. Suppose

$$\hat{A} = A(\hat{a}_1, \hat{a}_2 \dots \hat{a}_n)$$

Then the vector $|a_1, a_2 \dots a_n, B\rangle$ is an eigenstate of \hat{A} :

$$\hat{A} |a_1, a_2 \dots a_n, B\rangle = A(a_1, a_2 \dots a_n) |a_1, a_2 \dots a_n, B\rangle$$

And since \hat{A} is simultaneously diagonalisable with all of the operators $\hat{a}_1, \hat{a}_2 \dots \hat{a}_n$, any of its eigenstates must be an eigenstate of each of these operators, hence it must be expressable in this form. To each sequence $b_1, b_2 \dots b_n$ we assign one unique degeneracy quantum number B, hence the Hilbert space spanned by $|a_1, a_2 \dots a_n, B\rangle$ must contain all the eigenstates of \hat{A} . However, this doesn't have to be the smallest such Hilbert space, if there exist two different sequences a_m, a'_m for which $A(a_m) = A(a'_m)$. Then the corresponding basis vectors in the full Hilbert space may be equal, in which case by erasing the duplicates we obtain a subspace of the full Hilbert space. By removing basis vectors so that all basis vectors are unique, we obtain the smallest Hilbert space containing all eigenstates of \hat{A} .

Lemma 1 Consider an operator \hat{a} acting on particle 1 with eigenstates $|a,b\rangle$ spanning a Hilbert space \mathcal{H}_a , where $\hat{a} | a, b \rangle = f(a) | a, b \rangle$ and b separates the degenerate eigenstates with equal eigenvalues of \hat{a} . Consider a coupling operator $\hat{A} = \hat{a}_1 + \hat{a}_2 + \hat{C}$, where the eigenvalues of C are a function of the eigenvalues a_1, b_1, a_2, b_2 . When we couple two states associated with quantum numbers a_1, a_2 , the eigenstates of the coupling operator \hat{A} can be either labelled by $|a_3, b_3\rangle$, where these vectors span \mathcal{H}_a , or by $|a_3, b_1, b_2\rangle$, which is a Hilbert space constructed from \mathcal{H}_a by a specific procedure.

Proof. If the degeneracy of $|a\rangle$ is d_a , then there are d_a values of b allowed for that value of a. We shall relabel these eigenstates by a canonized degeneracy label c, where

$$c = -\frac{d_a - 1}{2}, -\frac{d_a - 1}{2} + 1 \dots \frac{d_a - 1}{2} - 1, \frac{d_a - 1}{2}$$

Then the operator \hat{c} shall retrieve c as its eigenvalue:

$$\hat{c} |a, c\rangle = c |a, c\rangle$$

Then we construct a vector operator $\hat{\vec{a}}$ so that $\hat{\vec{a}} | a, c \rangle = \vec{a} | a, c \rangle$, where \vec{a} satisfies the following conditions:

$$\vec{a} \in \mathbb{R}^2$$

$$\vec{a} \cdot \vec{a} = f(a)$$

$$\vec{a} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = c$$

From this we see that

$$\hat{\vec{a}} \cdot \hat{\vec{a}} = \hat{a}$$

and the quantum numbers a and c are determined by the magnitude and direction of the vector \vec{a} , respectively. Hence each eigenstate corresponds to a vector \vec{a} and thus the operator \hat{C} which describes the interaction between two particles must be a function of $\hat{\vec{a}}_1$ and $\hat{\vec{a}}_2$:

$$\hat{C} = C(\hat{\vec{a}}_1, \hat{\vec{a}}_2)$$

This is a scalar operator, and hence can be written out like so¹:

$$\hat{C} = C\left(\hat{\vec{a}}_1 \cdot \hat{\vec{a}}_1, \hat{\vec{a}}_2 \cdot \hat{\vec{a}}_2, \hat{\vec{a}}_1 \cdot \hat{\vec{a}}_2, \hat{\vec{a}}_1 \cdot \vec{u}, \hat{\vec{a}}_2 \cdot \vec{u}\right), \quad \vec{u} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

We can write out the most general form of \hat{C} :

$$\hat{C} = C\left(\hat{a}_1, \hat{a}_2, \hat{c}_1, \hat{c}_2, \hat{\vec{a}}_1 \cdot \hat{\vec{a}}_2\right)$$

We can express the vector mixing term as

$$\hat{\vec{a}}_1 \cdot \hat{\vec{a}}_2 = \frac{1}{2} \left[\left(\hat{\vec{a}}_1 + \hat{\vec{a}}_2 \right) \cdot \left(\hat{\vec{a}}_1 + \hat{\vec{a}}_2 \right) - \hat{a}_1 - \hat{a}_2 \right]$$

Consider a new eigenstate of \hat{a} which corresponds to the vector

$$\vec{a}_T = \hat{\vec{a}}_1 + \hat{\vec{a}}_2$$

Then we can write down the following expression:

$$\hat{\vec{a}}_1 \cdot \hat{\vec{a}}_2 = \frac{1}{2} \left[\hat{a}_T - \hat{a}_1 - \hat{a}_2 \right]$$

Therefore \hat{C} can be expressed with a different function like so:

$$\hat{C} = C'(\hat{a}_1, \hat{a}_2, \hat{c}_1, \hat{c}_2, \hat{a}_T)$$

From the definition of \vec{a}_T and its relation to a_T , we see that in this expression, the quentum number a_T can only obtain values lying on the closed interval $[|a_1-a_2|, a_1+a_2]$ and which are possible eigenvalues of \hat{a} . Since \hat{a}_1 and \hat{a}_2 operate on different particles, they are simultaneously diagonalizable. By definition, \hat{a}_T commutes with both of these operators, and all of these operators commute with \hat{c}_1 and \hat{c}_2 . This means all of these operators are simultaneously diagonalizable, and hence by 1 the eigenstates of \hat{A} span a Hilbert subspace of the Hilbert space spanned by $|a_1, a_2, a_T, c_1, c_2, c_T\rangle$. However, we can reduce this upper bound Hilbert space by quite a lot.

We couple states associated with a_1, a_2 , hence these are determined and are not quantum numbers in the Hilbert space of the coupled quantum states. However, we did not specify the quantum numbers b_1, b_2 (and hence equivalently c_1, c_2), since without coupling these are degenerate in the eigenstates of \hat{a}_1 and \hat{a}_2 respectively. Now there are two options:

This is because the dot product of \vec{a} with an arbitrary vector in \mathbb{R}^2 can be written as a function of the dot product of \vec{a} with some fixed vector \vec{u} and the square magnitude of the vector $\vec{a} \cdot \vec{a}$.

- 1. C' doesn't depend on \hat{c}_1 and \hat{c}_2 . Then c_1, c_2 are redundant quantum numbers and the eigenstates of \hat{A} become $|a_T, b_T\rangle$, where a_T takes values of allowed eigenstates of \hat{a} lying on the interval $[|a_1 a_2|, a_1 + a_2|]$.
- 2. C' depends on \hat{c}_1 or \hat{c}_2 . Since we assume the particles to be symmetric under interchange, dependence on one of these operators imply dependence on the other one. Hence C' is dependent on \hat{c}_1 and \hat{c}_2 , and c_1 , c_2 become good quantum numbers. However:

$$c_T = \vec{a}_T \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (\vec{a}_1 + \vec{a}_2) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = c_1 + c_2$$

, hence c_T is uniquely determined by c_1, c_2 and is no longer a quantum number. By a similar argument, specifying c_1, c_2 for specified values specifies \vec{a}_1, \vec{a}_2 and hence uniquely determines \vec{a}_T and therefore a_T also. a_T ceases to be a quantum number and the eigenvalues of \hat{A} become $|c_1, c_2\rangle$.

Note: these must have the same degeneracy—what does this impose on the conditions for when \vec{a} can be constructed? (e.g. well-ordered f(a), condition on d_a etc)

Note—another property: when coupling multiple particles, the order of coupling reduction should not matter