1

PI: PRODUCTION AND INDUSTRIAL ENGINEERING

EE25BTECH11023-Venkata Sai

Duration: 3 Hours Maximum Marks: 100

Read the following instructions carefully.

- 1. This question paper contains 16 printed pages including pages for rough work. Please check all pages and report discrepancy, if any.
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the Optical Response Sheet (ORS).
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All questions in this paper are of objective type.
- 5. Questions must be answered on Optical Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as an incorrect response.
- 6. There are a total of 60 questions carrying 100 marks. Questions 1 through 20 are 1-mark questions, questions 21 through 60 are 2-mark questions.
- 7. Questions 51 through 56 (3 pairs) are common data questions and question pairs (57, 58) and (59, 60) are linked answer questions. The answer to the second question of the above 2 pairs depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 8. Un-attempted questions will carry zero marks.
- 9. Wrong answers will carry NEGATIVE marks. For Q.1 to Q.20, ½ mark will be deducted for each wrong answer. For Q. 21 to Q. 56, ½ mark will be deducted for each wrong answer. The question pairs (Q.57, Q.58), and (Q.59, Q.60) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the linked answer question pair i.e. for Q.57 and Q.59, ½ mark will be deducted for each wrong answer. There is no negative marking for Q.58 and Q.60.
- 10. Calculator (without data connectivity) is allowed in the examination hall.
- 11. Charts, graph sheets or tables are NOT allowed in the examination hall.
- 12. Rough work can be done on the question paper itself. Additionally, blank pages are given at the end of the question paper for rough work.

Q. 1 - Q. 20 carry one mark each.Q.1 The homogeneous part of the differentia if (p, q and r are constants)	1 equation $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r$	r has real distinct roots
a) $p^2 - 4q > 0$ b) $p^2 - 4q < 0$	c) $p^2 - 4q = 0$ d) $p^2 - 4q = r$	
Q.2 The total derivative of the function xy is	S	(GATE PI 2009)
a) $xdy + ydx$ b) $xdx + ydy$	c) $dx + dy$ d) $dxdy$	
Q.3 A helical compression spring has: $d = winder with white with a window of the win$		_
a) $\frac{dE}{8D^3N_a}$ b) $\frac{dG}{8D^3N_a}$	c) $\frac{d^3 E}{8DN_a}$ d) $\frac{d^3}{8DN_a}$	
 Q.4 Which of the following processes is N superheat? a) Isentropic expansion b) Isentropic compression c) Constant temperature heat addition d) Constant temperature heat rejection 	OT executed by an ideal I	(GATE PI 2009) Rankine cycle with no
Q.5 During the numerical solution of a first known as Euler Cauchy) method with st	_	
of (a) h^2 (b) h^3	(c) h^4	(d) h ⁵ (GATE PI 2009)
Q.6 For a granted patent to last for 20 years	, the patent must be	
a) owned by the inventorb) renewed and maintained	c) noveld) non-obvious	
Q.7 As per Kendall's notation in M/G/c quer follows	uing system, the number of	(GATE PI 2009) arrivals in a fixed time

c) Poisson distribution

d) Uniform distribution

a) Beta distribution

b) Normal distribution

(GA	TF.	ΡI	20	09

0.8	Which of the following fo	recasting models	explicitly accounts		E PI 2009) demand?
	a) Simple moving averageb) Simple exponential smo	model	c) Holt's model	·	
Q.9	A typical Fe-C alloy conta	aining greater tha	n 0.8% C is known	,	E PI 2009)
	a) Eutectoid steelb) Hypoeutectoid steel		c) Mild steeld) Hypereutectoid	steel	
Q.10	The capacity of a materia back when unloaded is ter	_	gy when deformed of	,	PI 2009) release it
	a) toughnessb) resilience		c) ductilityd) malleability		
					E PI 2009)
Q.11	The product of the complete (a) $(1 + i^6)$	ex numbers $(3 - i)$ (b) $(9 - i)$			$(17+i^6)$
Q.12	The value of the determination	ant $\begin{pmatrix} 4 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 2 \end{pmatrix}$ is		(GATE	E PI 2009)
	(a) -28	(b) -24	(c) 32		(d) 36
Q.13	If module and number of respectively, then the pitch (a) 7.67	-	•	profile are 3 mis	E PI 2009) m and 23 (d) 69.00
O 14	Hot chamber die casting p	process is NOT si	uited for	(GATE	E PI 2009)
Q.11	a) Lead and its alloysb) Zinc and its alloys	100035 15 1001 50	c) Tin and its allo d) Aluminum and	-	
Q.15	The total angular moveme the work-table by a distant			,	E PI 2009) n to drive
	(a) 14400	(b) 28800	(c) 57600)	(d) 72000
Q.16	Anisotropy in rolled comp	onents is caused	by	(GATE	E PI 2009)

- a) change in dimensions
- b) scale formation

- c) closure of defects
- d) grain orientation

(GATE PI 2009)

Q.17 Which of the following processes is used to manufacture products with controlled porosity?

a) Casting

c) Forming

b) Welding

d) Powder metallurgy

(GATE PI 2009)

- Q.18 Which of the following powders should be fed for effective oxy-fuel cutting of stainless steel?
 - (a) Steel
- (b) Aluminum
- (c) Copper
- (d) Ceramic

(GATE PI 2009)

- Q.19 An autocollimator is used to
 - a) measure small angular displacements on flat surfaces
 - b) compare known and unknown dimensions
 - c) measure the flatness error
 - d) measure roundness error between centers

(GATE PI 2009)

- Q.20 Diamond cutting tools are not recommended for machining of ferrous metals due to
 - a) high tool hardness
 - b) high thermal conductivity of work material
 - c) poor tool toughness
 - d) chemical affinity of tool material with iron

(GATE PI 2009)

Q.21 The value of x_3 obtained by solving the following system of linear equations is

$$x + 2x_2 - 2x_3 = 4$$
$$2x + x_2 + x_3 = -2$$

$$-x + x_2 - x_3 = 2$$

a) -12

c) 0

b) -2

d) 12

(GATE PI 2009)

Q.22 The displacement and acceleration of a cam follower mechanism are plotted in the following figures:

The nature of the displacement curve is:

0.23	The solution of the differ	rential equation $\frac{d^2r}{dt^2}$ =	0 with boundary con	(GATE PI 2009) ditions: (i) $\frac{dy}{dt} = 1$ at
Q.2 5	$x = 0$, (ii) $\frac{dy}{dx} = 1$ at $x=1$ i a) $y = 1$		o will countary con	$\frac{d}{dx}$
	b) $y = x$			
	c) $y = x + C$, where C is a d) $y = C_1x + C_2$, where C_1	•	stants	
			25	(GATE PI 2009)
Q.24	The line integral of the ve	ector function $\mathbf{F} = 2x$	$+ x^2$ j along the x-axis	s from $x = 1$ to $x = 2$
	(a)0	(b)2.33	(c)3	(d)5.33
Q.25	Using direct extrusion pro extruded. Considering an extrusion ratio 4, and ave the ram will be	ideal deformation pro	ocess (no friction and	no redundant work),
	(a)416	(b)624	(c)700	(d)832
Q.26	A friction clutch is design experienced by the clutch		sepower at 1500 rpm. T	(GATE PI 2009) The torque (in N·m)
	a) 1.19	c)	71.24	
	b) 7.46	d)	447.61	
Q.27	A manufacturer has set up for 0.3 minutes; then Task III is performed in Works	II is performed in Wo	orkstation 2 for 0.4 min	nutes; and finally Task
	line setup is		• `	,
	a) 33.33 b) 64.33		75.33 83.33	
				(GATE PI 2009)
Q.28	A biaxial stress element if $\sigma_1 = 40$ MPa, $\sigma_y = 20$ MPa) are:			shown in the figure.

a) Cubicb) Quadratic

c) Simple harmonicd) Linear

- a) 5 and 55
- b) 10 and 30
- c) 12 and 48
- d) 20 and 40

(GATE PI 2009)

Q.29 The area under the curve shown, between x = 1 and x = 3, to be evaluated using the trapezoidal rule. The following points on the curve are given:

Point	X coordinate (m)	Y coordinate (m)
1	1	1
2	2	4
3	3	9

The evaluated area (in m2) will be

a) 7

c) 9

b) 8.67

d) 18

(GATE PI 2009)

Q.30 The pressure drop for laminar flow of a liquid in a smooth pipe at normal temperature and pressure is

a) directly proportional to densityb) inversely proportional to density	 c) independent of density d) proportional to density^{0.75}
1 A titanium sheet of 5.0 mm thickness i mm diameter. A uniform spark gap of 0. cutting operation. If the feed rate of the	.5 mm on both sides of the wire is r

(GATE PI 2009)

Q.3 ocess using a wire of 1.0 wire is maintained during 20 mm/min, the material removal rate (in mm³/min) will be

a) 150

c) 300

b) 200

d) 400

(GATE PI 2009)

Q.32 Autogenous gas tungsten arc welding of a steel plate is carried out with welding current of 500 A, voltage of 20 V, and weld speed of 20 mm/min. Consider the heat transfer efficiency from the arc to the weld pool as 90%. The heat input per unit length (in kJ/mm) is

(a) 0.25

(b) 0.35

(c) 0.45

(d) 0.55

(GATE PI 2009)

Q.33 Consider steady flow of water in a situation where two pipe lines (Pipe 1 and Pipe 2) combine into a single pipeline (Pipe 3) as shown in the figure. The cross-sectional areas of all three pipelines are constant. The following data is given:

Pipe number	Area(m ²)	Velocity(m/s)
1	1	1
2	2	2
3	2.5	?

Assuming water properties and velocities to be uniform across the cross sections of the inlets and the outlet, the exit velocity (in m/s) in pipe 3 is

a) 1

b) 1.5

c) 2

d) 2.5

(GATE PI 2009)

Q.34 Match the following:

Group I (Layout types)

P. Process layout

Q. Product flow layout

R. Fixed position layout

S. Cellular layout

a) P-4, Q-1, R-3, S-2

b) P-4, Q-3, R-2, S-1

Group II (Layout characteristics)

- 1. Inflexible to significant changes in product design
- 2. Distinct part families and expanded worker training
- 3. Low equipment utilization and high skill requirement
- 4. Large work-in-process and increased material handling

c) P-2, Q-1, R-4, S-3

d) P-1, Q-4, R-3, S-2

(GATE PI 2009)

Q.35 Consider the joint probability mass function of random variables X and Y as shown in the table below:

For instance, $P{X = 1, Y = 2} = 0.3$

	X=1	X=2
Y=1	0.2	0.3
Y=2	0.3	0.1
Y=3	0.1	

The value of $P{X = 2|Y = 2}$ is (a) 0.10 (b) 0.25

C) 0.40

(d) 0.75

(GATE PI 2009)

- Q.36 A grocery store faces a demand of 50 units of soap per day. The store orders soap periodically. It costs Rs. 100 to initiate a purchase order. It costs Rs. 0.04 per soap per day to store the soap. The lead time between placing and receiving the order is 4 days. The optimal inventory policy for ordering soap is to
 - a) order 500 units when inventory drops to 200 units
 - b) order 500 units when inventory drops to 100 units
 - c) order 1000 units when inventory drops to 200 units
 - d) order 1000 units when inventory drops to 100 units

(GATE PI 2009)

Q.37 A disk of 200 mm diameter is blanked from a strip of an aluminum alloy of thickness 3.2 mm. The material shear strength to fracture is 150 MPa. The blanking force (in kN) is

(a) 291

(b) 301

(c) 311

(d) 321

(GATE PI 2009)

Q.38 Match the following:

Group I (Product)

- P. Refrigerator liners
- Q. Composite pressure vessels
- R. Hollow parts of thermoset plastics
- S. Rubber sheets
- a) P-2, Q-1, R-4, S-3
- b) P-1, Q-2, R-3, S-4

Group II (Manufacturing process)

- 1. Filament winding
- 2. Thermoforming
- 3. Calendering
- 4. Rotational moulding
- c) P-1, Q-4, R-2, S-3
- d) P-2, Q-4, R-1, S-3

(GATE PI 2009)

Q.39 Match the following:

Group I (Device)

- P. Jig
- Q. Fixture
- R. Clamp
- S. Locator

Group II (Function)

- 1. helps to place the workpiece in the same position cycle after cycle
- 2. holds the workpiece only
- 3. holds and positions the workpiece
- 4. holds and positions the workpiece and guides the cutting tool during a machining operation

a) P-4, Q-3, R-1, S-2 c) P-1, Q-4, R-3, S-2 b) P-1, Q-2, R-3, S-4 d) P-4, Q-3, R-2, S-1 (GATE PI 2009) Q.40 A spur gear having a pressure angle of 20°, module of 4 mm and 40 teeth is to be inspected for its pitch circle diameter using two rollers (test plug method). If the centres of the rollers lie on the pitch circle, the suitable roller diameter (in mm) and the resulting distance (in mm) between the rollers placed in opposite spaces will respectively be a) 2.9 and 82.9 c) 5.9 and 82.9 b) 2.9 and 165.9 d) 5.9 and 165.9 (GATE PI 2009) Q.41 A company makes a product using three independent components I, II and III, with reliabilities of 0.80, 0.85 and 0.90 respectively. If the company decides to add one redundant unit of component I to improve reliability, then the reliability of the product is (a) 0.612 (b) 0.734 (c) 0.837 (GATE PI 2009)

Q.42 Given:

Assertion [a]: Managers spend time on job analysis and job rating.

Reason [r]: Scientific management of wage structures through job evaluation helps increase productivity.

- a) Both [a] and [r] are true and [r] is the correct reason for [a].
- b) Both [a] and [r] are true, but [r] is not the correct reason for [a].
- c) Both [a] and [r] are false.
- d) [a] is true but [r] is false.

(GATE PI 2009)

(d) 0.969

Q.43 A spare parts retail shop has sales of Rs. 4,00,000 and a profit of Rs. 50,000 for a product, in its first quarter. The profit volume (PV) ratio is 25%. The margin of safety = profit / PV ratio. The break even point of sales (in Rs.) is

a) 20,000

c) 2,00,000

b) 40,000

d) 4.00,000

(GATE PI 2009)

Q.44 The following information relates to worker's payment in a company:

Standard production of a worker = 12 jobs per hour

Standard job rate = Rs. 3.00 per job

Pay for production less than standard = 85% of standard job rate

Pay for production more than standard = 120% of standard job rate

Three workers produce at the rate of 11, 13 and 15 jobs per hour. The total pay for three workers per hour based on differential wage incentive scheme is

a) Rs. 117.00

c) Rs. 1404.00

b) Rs. 128.85

d) Rs. 1546.20

Q.45 Match the following:

Group I (Protection type)

- P. Patent.
- Q. Trademark
- R. Copyright
- S. Industrial design
- a) P-2, Q-4, R-3, S-1

Group II (Example in the Indian context)

- 1. Manual of a product
- 2. Appearance of an MP3 player
- 3. Logo of a company
- 4. Microprocessor
 - c) P-2, Q-3, R-4, S-1
 - d) P-4, O-3, R-1, S-2

(GATE PI 2009)

b) P-4, Q-1, R-3, S-2

Q.46 Match the following:

Group I (Design aspect)

- P. Form design
- Q. Concurrent engineering
- R. Value analysis
- S. Product life cycle
- a) P-4, Q-1, R-2, S-3
- b) P-3, Q-2, R-4, S-1

Group II (Description)

- 1. Introduction, growth, maturity and decline
- 2. Determines cost of each function of the design
- 3. Integration of product design and manufacturing
- 4. Appearance, shape, colour and size of product
- c) P-4, Q-3, R-2, S-1
- d) P-4, Q-2, R-3, S-1

(GATE PI 2009)

- Q.47 In an orthogonal machining operation, the tool life obtained is 10 min at a cutting speed of 100 m/min, while at 75 m/min cutting speed, the tool life is 30 min. The value of index n in the Taylor's tool life equation is
 - a) 0.262

c) 0.423

b) 0.323

d) 0.521

(GATE PI 2009)

- Q.48 A solid cylinder of diameter D and height equal to D, and a solid cube of side L are being sand cast by using the same material. Assuming there is no superheat in both cases, the ratio of solidification time of the cylinder to that of the cube is
 - a) $(L/D)^2$

- c) $(2D/L)^2$
- b) $(2L/D)^2$
- d) $(D/L)^2$

(GATE PI 2009)

- Q.49 Following are some possible characteristics of a pile of powder mixture:
 - P. Low inter-particle friction
 - Q. High inter-particle friction
 - R. Low porosity
 - S. High porosity
 - If the angle of repose for a pile of powder mixture is low, it will exhibit

a)	P	and	R
b)	P	and	S

c) Q and S

d) Q and R

(GATE PI 2009)

Q.50 Match the following:

Group I

P. Relational DBMS

Q. Primary key

R. Retrieving data

S. Boolean search

a) P-3, Q-4, R-2, S-1

b) P-3, Q-1, R-4, S-2

Group II

1. SQL

2. AND, OR

3. Tables, columns and rows

4. Columns that uniquely identify a row

c) P-3, Q-4, R-1, S-2

d) P-4, Q-1, R-2, S-3

(GATE PI 2009)

Common Data Questions

Common Data for Questions 51 and 52:

Consider the Linear Programming Problem (LPP)

Maximize $z = 4x_1 + 3x_2 + 2x_3$

Subject to:

$$2x_1 + x_2 + 2x_3 \le 50$$
 (constraint 1)

$$x_1 + x_2 + x_3 \le 30$$
 (constraint 2)

$$x_1, x_2, x_3 \ge 0$$

The associated simplex tableau at optimality is shown below, where s_1 and s_2 represent the slacks for constraints 1 and 2 respectively.

	$ x_1 $	x_2	x_3	s_1	s_2	RHS
z-row	0	0	2	1	2	110
$\overline{x_1}$	1	0	1	1	-1	20
x_2	0	1	0	-1	2	10

Q.51 Basic variables in the optimal solution are

a) s_1 and s_2

c) $x_1, x_2 \text{ and } x_3$

b) x_1 and x_2

d) x_3 , s_1 and s_2

(GATE PI 2009)

Q.52 Suppose that in the LPP given, the right hand side of constraint 1 changes from 50 to 40. The new objective value is

a) 90

c) 110

b) 100

d) 120

(GATE PI 2009)

Common Data for Questions 53 and 54:

In acceptance sampling, the probability distribution of the number of defectives X in a sample can be approximated as a Poisson distribution,

Prob
$$\{X = k\} = \frac{(np)^k e^{-np}}{k!} \ k = 0, 1, 2, ...$$

where n is the sample size and p is the actual proportion or percent of defective items in a batch.

A company receives a shipment batch of N = 2000 items. The sampling plan followed by the company is to sample n = 50 items from the batch and accept the batch if the number of defective items is 2 or less. Let the Acceptable Quality Level (AQL) be 0.02 and the Lot Tolerance Percent Defective (LTPD) be 0.05.

Q.53 The probability of incorrectly rejecting a good batch or the Producer's risk is

a) 0.0805

c) 0.5437

b) 0.3678

d) 0.9195

(GATE PI 2009)

Q.54 The probability of incorrectly accepting a bad batch or the Consumer's risk is

a) 0.0805

c) 0.5437

b) 0.3678

d) 0.9195

(GATE PI 2009)

Common Data for Questions 55 and 56:

An orthogonal turning operation is carried out at 20 m/min cutting speed, using a cutting tool of rake angle $15\hat{A}^{\circ}$. The chip thickness is 0.4 mm and the uncut chip thickness is 0.2 mm.

Q.55 The shear plane angle (in degrees) is

a) 26.8

c) 28.8

b) 27.8

d) 29.8

(GATE PI 2009)

Q.56 The chip velocity (in m/min) is

a) 8

c) 12

b) 10

d) 14

(GATE PI 2009)

Linked Answer Equations

Statement for linked Answer Questions 57 and 58

Four jobs need to be processed sequentially on two machines, first on Machine M and then on Machine N. Each machine can process only one job at a time. The processing times (in minutes) are given in the table below:

Q.57 The optimal sequence of jobs that will minimize makespan (total time required to complete all jobs) is

a) I - II - III - IV b) III - II - I - IV	c) IV - III - I - II d) III - I - IV - II	
Q.58 When the jobs are processed based total idle time (in minutes) on Mach	1 1	(GATE PI 2009) mizes makespan, the
a) 1 b) 3	c) 4 d) 6	
		(GATE PI 2009)
Statement for Linked Answer Question		
Resistance spot welding of two steel she welding current of 3 kA and a weld time is obtained. The effective contact resists of steel are given as: (i)latent heat of me temperature: 1520°C,(iv) specific heat: The ambient temperature is 20°C.	the of 0.2 s. A molten weld nugget ance is 200 $\mu\Omega$ (micro-ohms). The lting: 1400 kJ/kg,(ii) density: 8000 0.5 kJ/kg°C.	t of volume 20 mm ³ e material properties 0 kg/m ³),(iii) melting
Q.59) Heat (in Joules) used for producing efficiency)	ig weld nugget will be (assuming	g 100%neat transfer
a) 324	c) 344	
b) 334	d) 354	
		(GATE PI 2009)
Q.60) Heat (in Joules) dissipated to the ba	ise metal will be (neglecting all ot	ther heat losses)
a) 10b) 16	c) 22 d) 32	
0) 10	d) 32	
		(GATE PI 2009)