Arduino & MicroPython for Internet of Things

Ardy Seto Priambodo, S.T., M.Eng. ardyseto@uny.ac.id

Introduction

Name: Ardy Seto Priambodo, S.T., M.Eng.

Occupation: Lecturer in Electronics and Informatics

Engineering Education, Engineering Faculty (UNY), Embedded

System (Drone, IoT, Automatics System) Freelancer

Education: S.T. from Electrical Engineering ITS, M.Eng. from

Electrical Engineering UGM

Hobby: Teaching, Aeromodelling, DIY Electronics (Robot &

Microcontroller), Ngoprek

Outline

- > What is IoT?
- > History and Development of IoT
- > What is Embedded System?
- > Arduino and MicroPython
- > Relation between IoT and Embedded System
- > Demo: ESP8266 with MicroPython / Arduino

https://s.id/oMGfO

3

Internet of Things

From **Wikipedia**: The Internet of things (IoT) is a system of interrelated computing devices, mechanical and digital machines provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction

From **ZDnet**: The Internet of Things, or IoT, refers to the billions of physical devices around the world that are now connected to the internet, all collecting and sharing data.

From **RedHat**: Internet of Things (IoT) refers to an ongoing trend of connecting all kinds of physical objects to the internet, especially ones that you might not expect.

History of IoT

1969: Internet is developed

1982: Vending Machine connected with Internet

1995: GPS

1999: IoT terms by Kevin Ashton

2000: LG announces Smart Fridge

2007: First iPhone

2008: First International IoT Conference

2009: Google test self-driving cars

2013: Google Glass

2016: Self-driving cars

2017-2019: Al, blockchain, edge computing

Source: https://www.iottechtrends.com/history-of-iot/ https://s.id/oMGfO

Statistics of IoT

Why IoT is Important?

Data Produced by IoT Devices

25 GB/hour A modern, fully instrumented car.

150,000 data points/ second A typical wind farm.

51,200 GB/hour

A fully instrumented jet engine.

500 million data readings/day A smart meter project.

500 GB/day

A single turbine compressor blade.

40% of all data by 2020 Produced by sensors.

Source: Simafore, RTInsights, Cisco

Additional Revenue from IoT Data

\$162 billion Employee Productivity.

\$55 billion
Product Innovation.

\$117 billion
Operational Improvement.

\$38 billion Customer Facing Activities.

Source: Microsoft

Implementation of IoT

Embedded System / Microcontroller

From **Wikipedia**: a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electrical system

Components of uC

Basically, a Microcontroller consists of the following components.

- Central Processing Unit (CPU)
- Program Memory (ROM Read Only Memory)
- Data Memory (RAM Random Access Memory)
- Timers and Counters
- I/O Ports (I/O Input/Output)
- Serial Communication Interface
- Clock Circuit (Oscillator Circuit)
- Interrupt Mechanism

ATMEL ATMega328p

Parameter	Value
CPU type	8-bit AVR
Performance	20 MIPS at 20 MHz[2]
Flash memory	32 KB
SRAM	2 KB
EEPROM	1 KB
Pin count	28 or 32 pin:
Maximum operating frequency	20 MHz
Number of touch channels	16
Hardware QTouch Acquisition	No
Maximum I/O pins	23
External interrupts	2
USB Interface	No
USB Speed	_

STM32F103

Features	STM32F103	ATMEGA328
Clock Frequency	72 Mhz	16 Mhz
I2C Buses	2	1
SPI Buses	2	1
CAN Bus	Yes	No
Analog Channel	10	8
PWM Channel	15	6
USART Buses	3	1
GPIO's	32	24
On Board RTC	Yes	No
Architecture	ARM Cortex M3 32 bit	AVR RISC 8 bit
ADC Resolution	12 bit	10 bit
Quantization Level	4096	1024
Flash Memory	64KB	32KB
SRAM	20KB	2KB
Debugging	Serial, JTAG	Serial
PWM Resolution	16 bit	10bit
Price	110	115

ESP8266

	ESP8266	Arduino UNO
Number of Cores	1	1
Architecture	32 Bit	8 Bit
CPU Frequency	80 MHz	16 MHz
WiFi	YES	NO
BLUETOOTH	NO	NO
RAM	160 KB	2 KB
FLASH	16 MB	32 KB
GPIO PINS	17	14
Busses	SPI, I2C, UART, I2S	SPI, I2C, UART
ADC Pins	1	6
DAC Pins	0	0

	ESP8266	ESP32
MCU	Xtensa Single-core 32-bit L106	Xtensa Dual-Core 32-bit LX6 with 600 DMIPS
802.11 b/g/n Wi-Fi	HT20	HT40
Bluetooth	No	Bluetooth 4.2 and BLE
Typical Frequency	80 MHz	160 MHz
SRAM	No	Yes
Flash	No	Yes
GPIO	17	36
Hardware /Software PWM	None / 8 channels	None / 16 channels
SPI/I2C/I2S/UART	2/1/2/2	4/2/2/2
ADC	10-bit	12-bit
CAN	No	Yes
Ethernet MAC Interface	No	Yes
Touch Sensor	No	Yes
Temperature Sensor	No	Yes
Hall effect sensor	No	Yes
Working Temperature	-40°C to 125°C	-40°C to 125°C

Connectivity

Bluetooth

ESP32

https://s.id/oMGfO

16

ZigBee

ZigBee is based on IEEE (Institute of Electrical & Electronics Engineers) 802.15.4 Standard which lays down specifications for the low rate wireless personal area network.

ZigBee is primarily used for two-way communication between a sensor and a control system. Like Bluetooth and Wi-Fi, it is a short-range communication and offers connectivity up to 100 meters.

GSM / GPRS Module

LoRa

LoRa uses license-free sub-gigahertz radio frequency bands like 433 MHz, 868 MHz (Europe), 915 MHz (Australia and North America) and 923 MHz (Asia). LoRa enables long-range transmissions (more than 10 km in rural areas) with low power consumption.

Arduino + RFM95

Relation IoT and Embedded System

Embedded Systems are part of the overall IoT by taking two key components in terms of IoT devices and IoT gateway.

21

Sensor

Actuator

Arduino

From Wikipedia: Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices.

24

Hardware

Arduino Uno

Arduino Leonardo

Arduino Mega 2560

Arduino LilyPad

Arduino Mega ADK

Arduino Fio

Arduino Ethernet

Arduino Pro

Arduino Nano

Arduino Mini

Arduino Pro Mini

Hardware++

https://s.id/oMGfO

26

Software: Arduino IDE

Advantages of Arduino

- > Tons of Library / Module can be used
- > Open Source
- > There are many example in internet
- > Almost every device (sensor) supported with Arduino
- > Large Community

MicroPython

From Wikipedia: MicroPython is a software implementation of a programming language largely compatible with Python 3, written in C, that is optimized to run on a microcontroller. MicroPython is a full Python compiler and runtime that runs on the micro-controller hardware.

Hardware

Pyboard v1 and D-series

pyboard D-series

STM32 boards

Espressif ESP-based boards

Generic ESP32 module

TinyPICO

https://s.id/57/134 Nuff and Discovery boards

Software: Thonny

Advantages of MicroPython

- > It's like English Language
- > Nice for newbie
- > Open Source
- > Good developer for maintain this project
- > REPL : Read Eval Print Loop
- > Built-in Exception and Error-Handling

DEMO:)

Thanks

ardyseto@uny.ac.id
http://robot-terbang.web.id