

Stærðfræðimynstur í tölvunarfræði

Vika 7, seinni fyrirlestur Haust 2020

Hafsteinn Einarsson

Í síðasta tíma

- Umraðanir og samantektir (6.3)
- Tvíliðustuðlar (6.4)

Yfirlit

1 Vensl og eiginleikar þeirra (9.1)

2 Framsetning vensla með fylkjum (9.3) Netaframsetning á venslum (9.3.3)

3 N-undarvensl og gagnagrunnar (9.2) Venslaaðgerðir (9.2.4)

Upprifjun - Mengjamargfeldi

Skilgreining

Látum A og B vera mengi. **Mengjamargfeldi** (e. cross-product) A og B er mengi allra raðaðra para (a,b) þar sem $a \in A$ og $b \in B$, þ.e.a.s. mengið $\{(a,b) \mid a \in A \land b \in B\}$. Mengjamargfeldi A og B er táknað með $A \times B$.

Upprifjun - Mengjamargfeldi

Skilgreining

Látum A og B vera mengi. **Mengjamargfeldi** (e. cross-product) A og B er mengi allra raðaðra para (a,b) þar sem $a \in A$ og $b \in B$, þ.e.a.s. mengið $\{(a,b) \mid a \in A \land b \in B\}$. Mengjamargfeldi A og B er táknað með $A \times B$.

Dæmi

Látum
$$A = \{1, 2\}$$
 og $B = \{a, b\}$, þá fæst að

$$A \times B = \{1,2\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b)\}.$$

Upprifjun - Mengjamargfeldi

Skilgreining

Látum A og B vera mengi. **Mengjamargfeldi** (e. cross-product) A og B er mengi allra raðaðra para (a,b) þar sem $a \in A$ og $b \in B$, þ.e.a.s. mengið $\{(a,b) \mid a \in A \land b \in B\}$. Mengjamargfeldi A og B er táknað með $A \times B$.

Dæmi

Látum $A = \{1,2\}$ og $B = \{a,b\}$, þá fæst að

$$A \times B = \{1,2\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b)\}.$$

Athugasemd

Athugum að almennt gildir ekki að $A \times B$ sé jafnt $B \times A$ nema þegar A = B.

Tvíundarvensl

Getum skilgreint **vensl** (e. *relation*) frá einu mengi til annars.

Skilgreining

Látum A og B vera mengi. **Tvíundarvensl** (e. *binary relation*) frá A til B er hlutmengi í $A \times B$.

Ritháttur: Sé $a \in A$, $b \in B$ og R vensl frá A til B þá stendur rithátturinn a R b fyrir það að $(a,b) \in R$.

Hugmynd: Venslin mynda einhvers konar "tengingu" á milli mengjanna. Lesa mætti a R b sem a er venslað við b með R (R er valið hér því það stendur fyrir *relation*).

Dæmi

Látum A vera mengi nemenda við HÍ og B vera mengi námskeiða við HÍ. Þá getum við látið R vera venslin sem innihalda þau pör (a,b) þar sem nemandi $a \in A$ er skráður í námskeið $b \in B$.

Dæmi

Látum A vera mengi borga og B vera mengi landa. Þá getum við látið R vera venslin sem tengja borg við land. Þá væri til dæmis (Reykjavík, Ísland) og (Ouagadougou, Búrkína Fasó) í venslunum.

Framsetning á venslum

Látum $A = \{0,1,2\}$ og $B = \{a,b\}$. Þá er $R = \{(0,a),(0,b),(1,a),(2,b)\}$ vensl frá A til B. Til dæmis gildir hér að 0 R a. Hægt er að setja þessi vensl fram með t.d. örvamynd eða töflu.

R	а	b
0	×	×
1	×	
2		×

Vensl og föll

Athugasemd

Munum að fall f með A sem formengi og B sem bakmengi skilgreinir nákvæmlega eitt $b \in B$ fyrir hvert $a \in A$.

- **Graf fallsins** (e. *the graph of the function*) f er þá mengi raðaðra para (a,b) svo að f(a) = b.
- Graf fallsins er þá hlutmengi í $A \times B$, svo það er vensl frá A til B.

Vensl geta lýst sambandi þar sem hvert stak í *A* tengist meira en einu staki í *B*.

- Vensl geta lýst almennara sambandi en fall (eða öllu heldur graf falls).
- Þ.e.a.s. föll eru vensl en ekki þarf að vera að vensl séu fall.

Vensl á mengi

Vensl frá mengi A yfir í sjálft sig koma oft fyrir.

Skilgreining

Vensl á mengi (e. *relation on a set*) *A* eru vensl frá menginu *A* til *A*.

Sem sagt, vensl á mengi A er hlutmengi í $A \times A$.

Dæmi

Hversu mörg vensl eru til á mengi A með n stökum?

Dæmi

Hversu mörg vensl eru til á mengi A með n stökum?

■ $A \times A$ hefur þá n^2 stök (margfeldisregla).

Dæmi

Hversu mörg vensl eru til á mengi A með n stökum?

- $A \times A$ hefur þá n^2 stök (margfeldisregla).
- \blacksquare Mengi með m stökum hefur 2^m hlutmengi.

Dæmi

Hversu mörg vensl eru til á mengi A með n stökum?

- $A \times A$ hefur þá n^2 stök (margfeldisregla).
- \blacksquare Mengi með m stökum hefur 2^m hlutmengi.
- Til eru 2^{n^2} vensl á n staka mengi.

Dæmi

Dæmi um nokkur vensl á mengi heiltalna ($a, b \in \mathbb{Z}$):

$$R_1 = \{(a,b) \mid a \le b\}$$

$$R_2 = \{(a,b) \mid a > b\}$$

$$R_3 = \{(a,b) \mid a = b \text{ eŏa } a = -b\}$$

$$R_4 = \{(a,b) \mid a = b\}$$

$$R_5 = \{(a,b) \mid a = b + 1\}$$

$$R_6 = \{(a,b) \mid a + b \le 3\}.$$

Hér er um að ræða vensl á óendanlegt mengi. Venslin sjálf eru óendanleg mengi.

Sjálfhverf vensl

Skilgreining

Vensl R á mengi A eru **sjálfhverf** (e. *reflexive*) þá og því aðeins að $(a, a) \in R$ fyrir hvert $a \in A$.

Dæmi

Athugum hvort venslin á fyrri glæru séu sjálfhverf eða ekki.

Samhverf vensl

Skilgreining

Vensl R á mengi A eru **samhverf** (e. *symmetric*) ef $(b,a) \in R$ hvenær sem $(a,b) \in R$ fyrir öll $a,b \in A$.

Athugasemd

M.ö.o. R eru samhverf vensl á A ef

$$\forall a, \forall b, ((a, b) \in R \rightarrow (b, a) \in R).$$

Samhverf vensl

Dæmi

Athugum hvort venslin á fyrri glæru séu samhverf eða ekki.

$$\begin{aligned} \textbf{Samhverf vensl} \left\{ \begin{array}{l} R_3 &= \{(a,b) \mid a=b \text{ eŏa } a=-b\} \\ R_4 &= \{(a,b) \mid a=b\} \\ R_6 &= \{(a,b) \mid a+b \leq 3\} \end{array} \right. \\ \textbf{Ekki samhverf vensl} \left\{ \begin{array}{l} R_1 &= \{(a,b) \mid a \leq b\} \\ R_2 &= \{(a,b) \mid a > b\} \\ R_5 &= \{(a,b) \mid a=b+1\}. \end{array} \right. \end{aligned}$$

Samhverf vensl má finna víða

- "Er jafngilt"
 - Jafngildisvensl: Vensl sem eru samhverf, sjálfhverf og gegnvirk.
- Koma fyrir víða, m.a. í uppsetningu á skema fyrir gagnagrunna, dæmi:
 - "Er í hjónabandi með" (skv. íslenskum lögum).
 - "Er systkini".
 - "Er vinur" (t.d. á Facebook¹).

og eiginleikar þeirra (9.1)

¹Athugið að það að elta aðra eins og t.d. á Twitter er dæmi um vensl sem eru ekki samhverf.

Andsamhverf vensl

Skilgreining

Vensl R á mengi A eru **andsamhverf** (e. *antisymmetric*) ef fyrir öll $a, b \in A$ gildir að ef $(a, b) \in R$ og $(b, a) \in R$, þá er a = b.

Athugasemd

Þ.e.a.s. vensl R á mengi A eru andsamhverf ef

$$\forall a, \forall b, (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b)).$$

Athugið líka að hugtökin "samhverf" og "andsamhverf" eru ekki andstæður.

Dæmi

Athugum hvort venslin á fyrri glæru séu andsamhverf eða ekki.

Skilgreining

Vensl R á mengi A eru **gegnvirk** (e. *transitive*) ef hvenær sem $(a,b) \in R$ og $(b,c) \in R$, þá er einnig $(a,c) \in R$, fyrir öll $a,b,c \in A$.

Athugasemd

M.ö.o. vensl R á mengi A eru gegnvirk þegar

$$\forall a, \forall b, \forall c, (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R).$$

Dæmi

Athugum hvort venslin á fyrri glæru séu gegnvirk eða ekki.

$$\begin{aligned} \textbf{Gegnvirk vensl} \left\{ \begin{array}{l} R_1 &= \{(a,b) \mid a \leq b\} \\ R_2 &= \{(a,b) \mid a > b\} \\ R_3 &= \{(a,b) \mid a = b \text{ eŏa } a = -b\} \\ R_4 &= \{(a,b) \mid a = b\} \end{array} \right. \\ \textbf{Ekki gegnvirk vensl} \left\{ \begin{array}{l} R_5 &= \{(a,b) \mid a = b + 1\} \\ R_6 &= \{(a,b) \mid a + b \leq 3\}. \end{array} \right. \end{aligned}$$

Dæmi

Er það að heiltala tala "deili" annarri heiltölu gegnvirk vensl?

Dæmi

Er það að heiltala tala "deili" annarri heiltölu gegnvirk vensl? Ef $a \mid b$ og $b \mid c$ eru til heiltölur k og ℓ þannig að b = ka og $c = \ell b$. Sér í lagi fæst því að $c = \ell b = \ell ka$, við ályktum því að $a \mid c$ og því eru venslin gegnvirk.

Gegnvirkni kemur fyrir víða

T.a.m. hluti af skilgreiningu á "Comparable Interface" í Java

compareTo int compareTo(T o) Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object. The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an exception iff y.compareTo(x) throws an exception.) The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0. Finally, the implementor must ensure that x.compareTo(y)==0 implies that sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

Kemur við sögu í Tölvunarfræði 2.

Samsetning vensla

Athugasemd

Vensl eru mengi og því má nota sömu aðgerðir á þau og fyrir mengi, eins og t.d.

$$\cup$$
, \cap , $-$ og \oplus .

Dæmi

Látum A vera mengi nemenda og B vera mengi námskeiða. Látum R_1 vera vensl þ.a. $(a,b) \in R_1$ ef nemandi a hefur tekið námskeið b. Látum R_2 vera vensl þ.a. $(a,b) \in R_2$ ef nemandi a þarf að taka námskeið b til að útskrifast. Hver eru nú venslin $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 - R_2$ og $R_2 - R_1$?

Samskeyting vensla

Skilgreining

Látum R vera vensl frá mengi A til mengis B og S vera vensl frá B til mengis C. Þá skilgreinum við samsettu venslin $S \circ R$ með eftirfarandi:

 $(x,z) \in S \circ R$ þá og því aðeins að til sé $y \in B$ þannig að $(x,y) \in R$ og $(y,z) \in S$.

Samskeyting - myndrænt

Dæmi

Dæmi

Hver eru samsettu venslin $S \circ R$ þegar R er frá $\{1,2,3\}$ til $\{1,2,3,4\}$ með

$$R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}$$

og S er frá $\{1,2,3,4\}$ til $\{0,1,2\}$ með

$$S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}$$
?

Dæmi

Dæmi

Hver eru samsettu venslin $S \circ R$ þegar R er frá $\{1,2,3\}$ til $\{1,2,3,4\}$ með

$$R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}$$

og S er frá $\{1,2,3,4\}$ til $\{0,1,2\}$ með

$$S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}$$
?

Finnum öll röðuð pör þar sem seinna stakið í pari úr R passar við fyrra stakið úr S. Fáum:

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

Yfirlit

1 Vensl og eiginleikar þeirra (9.1)

2 Framsetning vensla með fylkjum (9.3) Netaframsetning á venslum (9.3.3)

3 N-undarvensl og gagnagrunnar (9.2) Venslaaðgerðir (9.2.4)

Vensl og fylki

- Líkt og við settum áður fram tvíundarvensl með töflu, þá getum við sett tvíundarvensl með því að nota fylki.
- Látum venslin R vera tvíundarvensl á mengin $A = \{a_1, a_2, \dots, a_m\}$ og $B = \{b_1, b_2, \dots, b_n\}$.
- Þá getum við skilgreint tvíundarfylki þar sem stökin eru:.

$$m_{ij} = \begin{cases} 1 \text{ ef } (a_i, b_j) \in R \\ 0 \text{ ef } (a_i, b_j) \notin R \end{cases}$$

Vensl og fylki

Dæmi

Skoðum fylki sem táknar vensl frá $A = \{a_1, a_2, a_3\}$ til $B = \{b_1, b_2, b_3, b_4, b_4\}$.

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

Hvaða vensl er um að ræða?

Vensl og fylki

Dæmi

Skoðum fylki sem táknar vensl frá $A = \{a_1, a_2, a_3\}$ til $B = \{b_1, b_2, b_3, b_4, b_4\}$.

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

Hvaða vensl er um að ræða? Það eru

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}.$$

Vensl og fylki

Dæmi

Látum $A = \{1, 2, 3\}$ og $B = \{1, 2\}$ og R vera vensl frá A til B þar sem a > b, $a \in A$ og $b \in B$. Hvert er tvíundarfylkið fyrir R?

Vensl og fylki

Dæmi

Látum $A=\{1,2,3\}$ og $B=\{1,2\}$ og R vera vensl frá A til B þar sem a>b, $a\in A$ og $b\in B$. Hvert er tvíundarfylkið fyrir R? Fáum að $R=\{(2,1),(3,1),(3,2)\}$. Setjum 1-bita á viðeigandi staði í M, fáum

$$M_R = egin{bmatrix} 0 & 0 \ 1 & 0 \ 1 & 1 \end{bmatrix}.$$

Sjálfhverf vensl og fylkjaframsetning

Athugasemd

- Vensl á mengi (stöku mengi) eru með fylkjaframsetningu sem er ferningsfylki (sami fjöldi raða og dálka).
- Vensl R á mengi A eru **sjálfhverf** (e. *reflexive*) ef $(a, a) \in R$ þegar $a \in A$.
- Vensl eru sjálfhverf þá og því aðeins að öll stök á aðalhornalínu fylkjaframsetningar þess séu 1.

Samhverf vensl, andsamhverf vensl og fylkjaframsetning

Athugasemd

- R eru samhverf vensl á A ef $(a,b) \in R \to (b,a) \in R$ fyrir öll $a,b \in A$.
 - Þá er $m_{ij} = m_{ji}$ í fylkjaframsetningunni.
- R eru andsamhverf vensl á mengi A ef $(a,b) \in R \land (b,a) \in R \rightarrow (a=b)$ fyrir öll $a,b \in A$.
 - Þá er a.m.k. annað af m_{ij} og m_{ji} núll þegar $i \neq j$.

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Eru venslin sem fylkið hér táknar sjálfhverf, samhverf og/eða andsamhverf?

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Eru venslin sem fylkið hér táknar sjálfhverf, samhverf og/eða andsamhverf?

- Öll hornalínustök fylkisins eru 1, svo venslin eru sjálfhverf.
- Fylkið er samhverft um hornalínuna, svo venslin eru samhverf.
- \blacksquare Ekki andsamhverf því t.d. bæði stak (1,2) og (2,1) eru 1.

Stefnt net

Skilgreining

Stefnt net (e. *directed graph*) samanstendur af mengi V af **hnútum** (e. *vertices* eða *nodes*) og mengi E af röðuðum pörum af hnútum í V sem nefnast **stefndir leggir** (e. *directed edges*). Í leggnum (a,b) er fyrri hnúturinn **upphafshnútur** (e. *initial vertex*) og seinni hnúturinn **lokahnútur** (e. *terminal vertex*).

Stefnt net

Stefnd net eru oftast sett fram á þann hátt að punktar eða hringir tákni hnúta og örvar tákni stefndu leggina.

Netaframsetning á venslum

- Við getum sett vensl R á mengið A fram með því að tákna stök A sem hnúta og hvert raðað par (a,b) í R sem stefndan legg.
- Stefndi leggurinn (a, a) er táknaður með **lykkju** (e. loop) á hnútnum a.

Dæmi

Hvernig getum við sett fram venslin

$$R = \{(1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,3), (4,1), (4,3)\}$$
?

Netaframsetning og eiginleikar vensla

Athugasemdir

- Vensl eru sjálfhverf þá og því aðeins að netaframsetning þeirra hafi lykkju á hverjum hnút.
- Vensl eru samhverf þá og því aðeins að fyrir hvern stefndan legg (a, b) sé líka til leggur (b, a).
 - Milli sömu hnúta, en í gagnstæðar áttir.
- Vensl eru andsamhverf þá og því aðeins að á milli hverra tveggja hnúta sé aldrei leggur í báðar áttir.
- Vensl eru gegnvirk þá og því aðeins að hvenær sem stefndir leggir (a, b) og (b, c) séu til sé líka til stefndur leggur (a, c).
 - Leggirnir mynda þá "þríhyrning".

- Sjálfhverf, höfum lykkju á öllum hnútum.
- Ekki samhverf, t.d. því (c, a) er í venslunum en ekki (a, c).
- Ekki andsamhverf, því bæði (b,c) og (c,b) eru í venslunum.
- Ekki gegnvirk, því (a,b) og (b,c) eru í venslunum en (a,c) ekki.

- Ekki sjálfhverf, höfum ekki lykkju á öllum hnútum.
- Samhverf, fyrir alla leggi höfum við tilsvarandi legg í "hina áttina". Þar af leiðandi ekki andsamhverf.
- Ekki gegnvirk, því (c, a) og (a, b) eru í venslunum en (c, b) ekki.

Yfirlit

1 Vensl og eiginleikar þeirra (9.1)

2 Framsetning vensla með fylkjum (9.3) Netaframsetning á venslum (9.3.3)

3 N-undarvensl og gagnagrunnar (9.2) Venslaaðgerðir (9.2.4)

n-undarvensl

- Við höfum skoðað tvíundarvensl (vensl á tvö mengi) og vensl á mengi (eitt mengi).
- Oft koma upp vensl á milli tveggja eða fleiri mengja.
- Köllum vensl á milli *n* mengja *n***-undarvensl** (e. *n-ary relations*).

Skilgreining

Skilgreining

Látum A_1, A_2, \dots, A_n vera mengi. n-undarvensl á mengjunum er hlutmengi í

$$A_1 \times A_2 \times \ldots \times A_n$$
.

Mengin A_1, A_2, \dots, A_n eru kölluð **óðöl** (e. *domains*) venslanna og talan n er **stig** (e. *degree*) þeirra. Stak í n-undarvenslum er n-**und** (e. n-tuple).

Látum R vera vensl sem mynda hlutmengi í $\mathbf{N} \times \mathbf{N} \times \mathbf{N}$ á þann hátt að hver röðuð 3-und $(a,b,c) \in R$ hefur eiginleikann a < b < c. Þá er $(1,2,3) \in R$ en $(2,4,3) \notin R$. Stig þrenndarinnar er 3. Óðöl þrenndarinnar eru öll mengi náttúrulegu talnanna.

Við getum myndað vensl á mengin "nafn", "auðkenni", "námsbraut" og "ferileinkunn". 4-undir sem gætu tilheyrt þessum venslum eru:

```
      (Ackermann,
      231455,
      Computer Science,
      3.88)

      (Adams,
      888323,
      Physics,
      3.45)

      (Chou,
      102147,
      Computer Science,
      3.49)

      (Goodfriend,
      453876,
      Mathematics,
      3.45)

      (Rao,
      678543,
      Mathematics,
      3.90)

      (Stevens,
      786576,
      Psychology,
      2.99)
```

Við getum séð fyrir okkur að þessi vensl séu hluti af **gagnagrunni** (e. *database*) þar sem hvert óðal skilgreinir **eigindi** (e. *attribute*).

- Við getum sett fram venslin á fyrri glæru með því að nota töflu.
- Getum þá notað annað orðalag:
 - Eigindi: Svið (e. field) eða "dálkur".
 - *n*-und: Færsla (e. *record*) eða "lína".

Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Venslaaðgerðir

- Til að vinna með gögn sem geymd eru í vensluðum gagnagrunnum þurfum við aðgerðir á *n*-undarvensl.
- Skoðum þrjú dæmi:
 - Val
 - Dálkval
 - Tenging

Við getum skilgreint aðgerðir fyrir n-undarvensl. Slíkar aðgerðir gætu unnið með gögn í gagnagrunnum. Við skilgreinum hér valvirkjann, sem velur n-undir úr venslum:

Skilgreining

Látum R vera n-undarvensl og C vera skilyrði sem stök í R geta uppfyllt. Þá varpar **valvirkinn** s_C (e. *selection operator*) venslunum R yfir í vensl allra n-unda úr R sem uppfylla skilyrðin C.

Notum valvirkjann $s_{C_{CS}}$, þar sem skilyrðið C_{CS} er skilyrðið "námsbrautin er tölvunarfræði".

Notum þennan virkja á venslin í töflunni. Fáum önnur vensl sem innihalda n-undir eitt og þrjú (talið að ofan).

Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Dálkval

Skilgreinum dálkvalsvirkja, sem velur eigindi úr venslum:

Skilgreining

Dálkvalsvirkinn P_{i_1,i_2,\dots,i_m} þar sem $i_1 < i_2 < \dots < i_m$ varpar n-undinni (a_1,a_2,\dots,a_n) yfir m-undina $(a_{i_1},a_{i_2},\dots,a_{i_m})$ þar sem $m \leq n$.

Sem sagt, $P_{i_1,i_2,...,i_m}$ eyðir n-m eigindum úr hverjum n-undum sem tilheyra venslunum sem hann er notaður á.

Notum dálkvalvirkjann $P_{1,4}$ á venslin í töflunni. Við fáum vensl sem innihalda tvenndir sem innihalda nafn sem fyrra stak og ferileinkunn sem seinna stak.

Athugið: vensl eru mengi, svo fjöldi aðskilinna staka getur fækkað við dálkval.

Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Tenging

Hægt er að tengja tvö vensl saman með því að nota sameiginleg eigindi þeirra.

Skilgreining

Látum R vera m-ta stigs vensl og S vera n-ta stigs vensl. Tengingin $J_p(R,S)$, þar sem $p \leq m$ og $p \leq n$, er vensl af stigi m+n-p sem inniheldur allar (m+n-p)-undir $(a_1,a_2,\ldots,a_{m-p},c_1,c_2,\ldots,c_p,b_1,b_2,\ldots b_{n-p})$ þar sem m-undin $(a_1,a_2,\ldots,a_{m-p},c_1,c_2,\ldots,c_p)$ er í R og n-undin $(c_1,c_2,\ldots,c_p,b_1,b_2,\ldots,b_{n-p})$ tilheyrir S.

Notum J_2 á eftirfarandi vensl:

Professor	Department	Course_number	Department	Course_number	Room		Time
Cruz	Zoology	335	Computer Science	518	N521	2:00	P.M.
Cruz	Zoology	412	Mathematics	575	N502	3:00	P.M.
Farber	Psychology	501	Mathematics	611	N521	4:00	P.M.
Farber	Psychology	617	Physics	544	B505	4:00	P.M.
Grammer	Physics	544	Psychology	501	A100	3:00	P.M.
Grammer	Physics	551	Psychology	617	A110	11:00	A.M.
Rosen	Computer Science	518	Zoology	335	A100	9:00	A.M.
Rosen	Computer Science	575	Zoology	412	A100	8:00	A.M.

Niðurstaðan verður:

Professor	Department	Course_number	Room	Time
Cruz	Zoology	335	A100	9:00 A.M.
Cruz	Zoology	412	A100	8:00 A.M.
Farber	Psychology	501	A100	3:00 P.M.
Farber	Psychology	617	A110	11:00 A.M.
Grammer	Physics	544	B505	4:00 P.M.
Rosen	Computer Science	518	N521	2:00 P.M.
Rosen	Mathematics	575	N502	3:00 P.M.

SQL

- Fjölmörg forritunarmál eru til, með mjög mismunandi eiginleika
- Fyrirspurnarmál sem byggjast á SQL-staðlinum eru hins vegar allsráðandi í vinnu með venslaða gagnagrunna
- Virkjarnir birtast á eftirfarandi hátt í SQL:
 - Valvirkinn svarar til WHERE klausu.
 - Dálkval svarar til SELECT klausu.
 - Tenging svarar til JOIN klausu.

Athugasemd

Þó að SQL byggist á venslaalgebru er samsvörunin ekki fullkomin, t.d. eru endurtekningar leyfilegar í niðurstöðum SQL-fyrirspurna.

SQL-skipun sem velur brottfarartíma allra fluga á leið til Detroit.

```
SELECT Departure_time
FROM Flights
WHERE Destination='Detroit';
```

Airline	Eliabt number	Coto	Doctination	Departure time
ATLITIE	Flight_number	Gate	Destination	Departure_time
Nadir	122	32	Detroit	08:10
Acme	221	22	Denver	08:17
Acme	122	33	Anchorage	08:22
Acme	323	34	Honolulu	08:30
Nadir	199	13	Detroit	08:47
Acme	222	22	Denver	09:10
Nadir	322	34	Detroit	09:44

Prófið í vafra

Dæmi

- Val og dálkval á flugtöfluna
- Val, dálkval og tenging á kennslutöflurnar
- Flugtaflan án vals og dálkvals

Næst

Endurkvæmar skilgreiningar (5.3)

Endurkvæm reiknirit (5.4)

E.t.v. byrjað á kafla 8