2005학년도 2학기 (기말고사)		학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 험 일 시	2005.12.13.화 (오전10:00~11:30)	성 명	점 수

1번~10번의 문제는 단답형으로 각 문제당 배점은 5점이 4. 점 P(4,-3)에서 원점 O의 방향으로 함수 f(x,y)다. 주어진 상자 안에 적힌 답에 의해서만 채점이 되니 주의할 것. 1번~6번은 부분점수가 없으며, 7번~10번은 항목별로 부분점수가 주어진다.

1. 다음 직교좌표로 주어진 점의 주면좌표와 구면좌표 를 써라.

직교좌표	$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \sqrt{3}\right)$
주면좌표	답:
구면좌표	답:

2. 다음 극한들 중 수렴하는 것을 모두 골라 그 기호를 답란에 써라.

①
$$\lim_{(x,y)\to(0,0)} x \ln(x^2 + y^2)$$

답:

3. 함수 $f(x,y)=\arctan\left(\frac{y}{x}\right)$ 에 대하여 $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$ 를 계산하여라.

답:

 $= xy + y^2$ 의 방향도함수를 구하여라.

답:

5. 점 (1,0,1)에서 곡면 $x^2-y^2=z$ 에 접하는 평면의 방정식을 구하여라.

답:

6. 다음 반복적분을 계산하여라.

$$\int_0^1 \int_y^1 e^{-x^2} dx \, dy =$$

답:

7. 다음 직교좌표의 적분을 극좌표의 적분으로 고쳐 계

$$\int_{0}^{1} \int_{\sqrt{3}y}^{\sqrt{4-y^{2}}} 1 \, dx \, dy = \int_{0}^{A} \int_{0}^{B} C \, dr \, d\theta = D$$

답:	
н.	

2005학년도 2학기 (기말고사)		학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 험 일 시	2005.12.13.화 (오전10:00~11:30)	성 명	점 수

8. 네 개의 평면 $\frac{x}{6} + \frac{y}{3} + \frac{z}{2} = 1$, x = 0, y = 0, z = 0로 둘러싸인 사면체 T에서의 함수 f(x,y,z) 의 삼중적분을 아래 식에서와 같이 반복적분으로 나타내어라.

$$\iiint_{T} f(x, y, z) dV = \int_{0}^{A} \int_{0}^{B} \int_{0}^{C} f(x, y, z) dx dy dz$$

9. 삼차원영역 S는 원점이 중심이고 반지름이 1인 구의 내부이다. 영역 S에서 함수 $f(\rho,\phi,\theta)=e^{-\rho^3}$ 의 적분을 구면좌표계의 적분으로 나타내어라. (단, 반복 적분의 모양으로 쓰고, 적분 계산은 하지 말 것.)

답:

10. 곡면 $x^2 - y^2 + z^2 = 1$ 을 세 개의 평면 z = 0, z = 1, z = 2로 자를 때 나타나는 자국을 주어진 좌 표평면에 그려라. (각 곡선이 어떤 z 값에 대응되는지 분명히 쓸 것.)

답:

11번~15번의 문제는 서술형으로 각 문제당 배점은 10점이다. 풀이의 완성도에 따라 부분점수가 주어지므로 풀이과정을 쓸 것.

11. w = f(r), $r = \sqrt{x^2 + y^2}$ 일 때, 다음 등식이 성립 함을 보여라.

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{d^2 w}{dr^2} + \frac{1}{r} \frac{dw}{dr}$$

2005학년도 2학	학기 (기말고사)	학 과	감독교수확인
과 목 명	일반수학2	학년,학번	
출제교수명	공 동	분반,교수명	
시 험 일 시	2005.12.13.화 (오전10:00~11:30)	성 명	점 수

12.	제약	부조건	$x^2 + 2xy$	+2y	$y^2 - 2x +$	y = 10	에 따른
7	함수	f(x, y)	y) = x + y	/의	최대값과	최소값을	구하여
i	라.						

13. 함수 $f(x,y) = x^3 + y^3 - 3xy$ 의 임계점들을 구하고, 각각을 판정하여라.

2005학년도 2학	학기 (기말고사)	학 과	감!	독교수확인
과 목 명	일반수학2	학년,학번		
출제교수명	공 동	분반,교수명		
시 혐 일 시	2005.12.13.화 (오전10:00~11:30)	성 명	점 수	

14. 함수 $z = xy$ 의 그래프 중 원기둥면 $x^2 + y^2 = 1$ 의 내부에 놓인 부분의 곡면넓이를 구하여라.	15. 두 평면 $z = 1, z = -1$ 과 곡면 $x^2 + y^2 - z^2 = 1$ 로 둘러싸인 입체의 부피를 구하여라.