ISO/OSI MODEL

- Základní pojmy a značky používané při návrhu datových sítí
 - o PAN, LAN, MAN, WAN
 - o ISP, IoT, QoS
 - o IP adresa, MAC adresa
- Způsoby komunikace v datových sítí
 - o Unicast, Multicast, Broadcast, Anycast
- Základní rozdělení a charakteristika každé z vrstev
- Popis protokolů
 - o CSMA/CD
 - o CSMA/CA
 - o Token Ring
- Kabeláž
 - o 10Base5
 - o 10Base2
 - o 10BaseT
 - o Přímý, křížený kabel
- Popis průchodu dat datovou sítí
 - o Od odesílatele k příjemci v rámci jednotlivých vrstev
 - o Encapsulation/Deencapsulation

Základní pojmy a značky používané při návrhu datových sítí

- PAN

- o Personal Area Network
- Osobní síť v rámci domácnosti
- o PC, mobil, notebook
- Bluetooth

- LAN

- Local Area Network
- Síť v rámci malého prostoru
- o Domácí, školní, firemní
- Ethernet

- MAN

- Metropolitian Area Network
- O Síť propojující PC v rámci města, spojení lokálních sítí
- o Ethernet, nahrazuje ho však rychlejší optika

- WAN

Wide Area Network
Síť propojující města, státy, kontinenty
Optika, rádiové vlny

Metropolitan
Area
Network(MAN)

Personal Area
Network(PAN)

- ISP

- o Internet Service Provider
- Poskytovatel internetového připojení koncovým uživatelům

- loT

- Internet of Things
- o Síť fyzických zařízení schopna se vzájemně propojit a vyměňovat si data
- Zařízení schopné připojit se k internetu
- Každé zařízení je schopno pracovat samostatně
- PC, auta, spotřebiče, chytré příslušenství

- QoS

- o Quality of Service
- o Zaručuje kvalitu komunikace v síti
- Nastavuje priority, hodnotí aplikace/služby
- Opakem je Best Effort

- NIC
- Network Interface Controler
- Sítová karta
- DHCP
- Dynamic Host Configuration Protokol
- http
 - Hyper Text Transfer Protokol
- FTP
 - o File Transfer Protokol
- DNS
 - o Domain Name Systém
 - o Hiearchický systém doménových jmen realizovaný DNS servery a protokolem
 - o Primárně slouží pro překlad doménových jmen na IP adresy a naopak

- IP adresa

- Internet protocol
- o Jednoznačný identifikátor síťového zařízení v dané síti
- o IPv4 32 Bit, IPv6 128 bit
- o Pracuje ve 3. vrstvě OSI
- Ipconfig /all

- MAC adresa

- Media Access Control
- o Jednoznačný identifikátor síťového zařízení využívající různé protokoly
- o Pracuje ve 2. vrstě OSI
- o MAC adresa je přiřazena síťové kartě při výrobě
- o Fyzická adresa
- o 48 bit
 - První 2 nebo 3 dvojce označují kód výrobvce
 - Šestice dvojciferných hexadecimálních čísel (01:23:45:67:89:ab)
- o Getmac /v /fo list

Default Gateway

- Výchozí brána
- Cesta (místo) pro datový paket do jiné PC sítě v případě, že cílová IP adresa neodpovídá žádnému zařízení v dané části PC sítě
- o IP adresa nejbližšího routeru
- To, s jakými adresami bude komunikace probíhat za pomoci síťových zařízení jako je buď switch či router, určuje dále maska sítě
- o Výchozí bránu určuje poskytovatel internetového připojení

Způsoby komunikace v datových sítích

UNICAST

o Komunikace pouze dvou zařízení (server-klient)

- BROADCAST

- o Jedno zařízení vysílá na všechny v dané skupině
- ARP nebo DHCP dotaz

- MULTICAST

- o Jedno zařízení vysílá na vybraná zařízení v dané skupině
- o Internetová TV nebo rádio

- ANYCAST

 Před komunikací proběhne výběr z potencionální skupiny zařízení a následně s nim zahájí komunikaci

ISO/OSI MODEL

- ISO = International Organization for Standartization
- OSI = Open Systém Interconnection
- Referenční model nejdůležitější moder architektury síti
- Vytvořený organizací ISO koncem 70. let
- Reakce na nemožnost komunikace zařízení různých výrobců mezi sebou
- Rozdělen na 7 logických vrstev, které vymezují a specifikují úkoly, které by měly řešit

- ISO/OSI vs. TPC/IP

- o TCP/IP předpokládá jednoduchou a rychlou komunikaci podsítí, k níž se připojují hosté
- o ISO/OSI se snaží zajistit spolehlivost v rámci jednotlivých vrstev
- o TCP/IP je starší než ISO/OSI a má pouze 4 vrstvy

- ISO/OSI Horní vrstvy

- Definují, jak mohou aplikace na koncových stanicích komunikovat s uživateli a vzájemně mezi sebou
- o Aplikační, prezentační, relační

- ISO/OSI Spodní vrstvy

- o Popisují způsob přenosu dat od jednoho koncového zařízení do druhého
- o Transportní, sítová, linková, fyzická

Aplikační vrstva

- L7
- Poskytuje uživatelské rozhraní
- Místo, kde komunikuje uživatel s PC
- Rozhraní mezi vlastními aplikačními programy a samotnou aplikační vrstvou
- Aplikační programy do této vrstvy nespadají využívají však jejich protokolu
- Vstupuje do hry v momentě, kdy je jasné, že bude potřeba přístup k síti
- Je odpovědna za:
 - o Identifikaci požadovaného komunikačního partnera
 - Ověření jeho dostupnosti
 - Ověření zda má ke komunikaci dostatečné prostředky
- Funkce vrstvy:
 - Souborové
 - Tiskové
 - Databázové
 - Aplikační služby
 - o Zasílání zpráv
- Protokoly:
 - o DNS, DHCP
 - o FTP, TFTP, SFTP, FTPS
 - o http, https
 - o SSH, Telnet

Prezentační vrstva

- L6, presentation layer
- Provádí formátování dat
- Muže data komprimovat, dekomprimovat, šifrovat, dešifrovat, případně pracovat s multimédii
- Je odpovědná za správnou transformaci dat a formátování kódu
 - o Prezentuje data aplikační vrstvě, neřeší jejich význam
- Nejdřív je nutno se domluvit na společných datových strukturách, které budou pro přenos použity
 - Jak budou data v rámci přenosu reprezentována, ne jak jsou reprezentována u konečných stanic
- Rozdíl mezi aplikační a prezentační vrstvou bývá často potlačen
 - o http

Relační vrstva

- L5, session layer
- Odpovědná za ustavení, správu a ukončení relací mezi entitami prezentační vrstvy
- Zajištuje řízení dialogu mezi dvěma zařízeními
 - Organizuje, synchronizuje a řídí výměnu dat
 - o Obnova spojení
 - o Koordinuje komunikaci mezi systémy
- Udržuje data různých aplikací od sebe
- Př. Telefonní hovor
 - o Nutno vytočit protistranu (transportní spojení)
 - o Vedení rozhovoru účastníku spojení (relace)
- Jedna relace odpovídá jednomu transportnímu spoji, který vzniká/končí při vzniku/ukončení relace
- NetBIOS, SSL, TLS

Transportní vrstva

- L4, transport layer, přenosová vrstva
- Segmentuje data z aplikací vyšších vrstev do datového proudu a poté je zpětně sestavuje
- Zajištuje přenos dat mezi koncovými systémy
 - O Navazuje spojení mezi odesilatelem a příjemcem v datové síti
- Vyšším vrstvám poskytuje transparentní služby přenosu dat
- TCP, UDP
- Řízení toku dat
 - Snaha o zajištění datové integrity
 - Nenastane situace přeplnění bufferu u příjemce -> vedlo by ke ztrátě dat
 - o Nutno dodržet:
 - Potvrzení doručených segmentů
 - Nepotvrzené segmenty se znovu posílají
 - Po přijetí se segmenty správně seřadí
 - Během přenosu je udržován vhodný datový tok zabránění zahlcení, přetížení a

tím ztrátě dat

- Spojovaná komunikace
 - 1. segment požadavek synchronizace
 - o 2. segment
 - Potvrzení požadavku
 - Dohodnutí parametru spojení
 - 3. segment potvrzení dohodnutých parametrů
 - Ten, kdo chce vysílat, musí nejprve vytvořit relaci
 - Navázaní komunikace se vzdáleným zařízením
 - Třícestné navazování spojení
 - Po ukončení přenosu se ukončí i spojení
 - Během přenosu informací se oba systémy vzájemně kontrolují
 - Během přenosu může dojít k zahlcení sítě = kongesce
 - PC generuje data rychleji, než dokáže síť přenášet
 - Několik PC současně posílá data přes jednu výchozí bránu nebo do jediného cíle
 - Zahlcení se snaží řešit buffer na straně příjemce
 - Buffer nestačí -> zasáhne funkce 4. vrstvy
 - Spojovaná komunikace:
 - Inicializuje se v ní virtuální okruh
 - Používá seřazení segmentů
 - Pracuje s potvrzováním
 - Využívá řízení toku dat

- Posun okna

- o Potvrzování každého přijatého segmentu zdržuje
 - Vysílání dalšího segmentu nezačne dřív, než po potvrzení předešlého odeslaného segmentu
- o Mezičas je možno využít pro poslání dalších segmentů
- o Okno
 - Počet segmentů (bajtů), které může odesilatel poslat bez potvrzení
 - Příjemce muže zmenšit v případě nepřijetí všech segmentů, jež má potvrdit

Potvrzení

- Označováno také jako "pozitivní potvrzení s opakováním"
- o Po odvysílání dohodnutého počtu segmentů odesilatel čeká na potvrzení
 - Spuštěn vnitřní časovač
 - V případě přetečení dojde k opakování vysílání

- Transportní vrstva komunikace
 - o Vytvoření spoje
 - Vysílač pošle paket k cíli, kde žádá o synchronizaci
 - Přijímač odpovídá paketem zpět, kde nastaví potvrzení a zároveň vyšle paket, kde žádá o synchronizaci
 - Vysílač potvrzuje spojení a vysílá další paket, ve kterém potvrzuje příjem
 - Potom muže kdokoliv vysílat
 - Řízení toku dat
 - Umí řídit množství přenášených dat tak, aby pomalý buffer v přijímači nebyl zahlcen
 - Přijímač si sám může zastavit přenos tak, že buffer vyšle stop, až jak se data zpracují, potom vyšle go
 - o Okno
 - Každý paket pro přijetí se musí potvrzovat -> pomalé řešení
 - Když jsou data krátká, většinu času se potvrzuje
 - Rychlejší řešení
 - Nastaví se při vysílání okno např. na 3 -> potvrdí se po 3 paketech
 - Okno = počet byte bez potvrzení
 - Když je vysílání bezchybné, šířka okna se zvyšuje

Síťová vrstva

- Network layer, L3
- Má na starosti
 - Adresování zařízení
 - Umístění zařízení v síti
 - Stanovuje nejvhodnější způsob dopravy dat
- Přenáší i mezi zařízeními, která k ní nejsou lokálně připojena
- Router
- Princip
 - Směrovač přijme paket na svém rozhraní
 - o Paket obsahuje zdrojovou a cílovou IP adresu
 - o Není-li cílem samotný router, nahlédne ro své routrovací tabulky
 - o Nalezne-li zde cílovou IP adresu, zjistí rozhraní, na které má nasměrovat paket
 - o V případě, že cílovou IP adresu nenajde, paket zahodí
- Typy paketů
 - Datový paket
 - Pro přenos uživatelských dat
 - IPv4, IPv6, IPX
 - Aktualizační paket
 - Zasílají si sousední routry mezi sebou
 - Pro aktualizaci sítí připojených k jednotlivým routrům -> aktualizace routrovací tabulky
 - RIP, RIPv2, EIGRP, OSPF
- Směrovací (routrovací) tabulka
 - o Sítová adresa
 - Závislá na konkrétním protokolu
 - Pro každá protokol vlastní tabulka
 - o Rozhraní
 - Výstupní rozhraní směrovače, přes které se bude paket posílat do dané sítě
 - Metrika
 - Vzdálenost cílové sítě
 - Liší se dle použitého protokolu
 - Počet přeskoku (RIP)
 - Šířka pásma (OSPF)
 - Zpoždění linky (EIGRP, včetně šířky pásma)

Linková vrstva

- Data Link layer, L2, vrstva datových spojů
- Zajištuje fyzický přenos dat
- Zpracovává oznamování chyb, síťovou topologii a řízení toku
- Pomocí HW adresy se stará o doručení paketu ke správnému zařízení v síti
- Poskytuje spojení mezi dvěma sousedními systémy
- Formátuje pakety do datových rámců (frames)
 - o Tzv. obálka
 - o Rámce jsou pak převedeny do jednotlivých bitů k vysílání ve fyzické vrstvě
- Uspořádává data z fyzické vrstvy do rámců
- Zodpovědná za jedinečnou identifikaci každého zařízení umístěného v lokální síti
- Switch, Bridge
- Každý paket poslaný z routru do routru je obalen řídícími informacemi v linkové vrstvě
 - Odstraněno v přijímacím směrovači
 - o Prováděno v každém přeskoku
 - o Potřebné ke správnému doručení z jedné sítě do druhé
 - Paket se nemění

Multi-layer Encapsulation

- LLC
- Logical Link Control
- o Podvrstva řízení logických spojů
- MAC
 - Media Access Control
 - o Podvrstva řízení přístupu k médiu
- SWITCH
 - Obsahuje CAM tabulku, ve které hledá cílové MAC adresy
 - Zná MAC adresu
 - Posílá rámec na daný port
 - o Nezná MAC adresu
 - Odesílá rámec na všechny porty, kromě příchozího
 - Po obdržení odpovědi si aktualizuje CAM tabulku
 - Cut-Through
 - Rámec přeposílán okamžitě po zjištění cílové MAC adresy
 - Bez kontroly chyb
 - Store and Forward
 - Po přijetí rámce a uložení do bufferu se ověří kontrolní součet
 - Pokud je OK přepošle se, jinak se zahodí

Fyzická vrstva

- L1, physical layer
- Nejnižší vrstva specifikující fyzickou komunikaci
- Aktivuje, udržuje, deaktivuje fyzické spoje
- Definuje všechny elektrické, fyzické a mechanické vlastnosti zařízení
 - o Rozložení pinu, napěťové úrovně, vlastnosti přenosových medií
- Přenos jednotlivých bitů sousedovi
- Snaha o korektní přenos
- Nerozlišuje jednotlivé bity
- Hub, repeater, NIC, modem

Popis protokolů

- CSMA/CD
 - o Carrier Sanse Multiple Access Collision Detect
 - Stanice/uzel poslouchá, zda je na síti nějaký provoz
 - o Po vysílání paketů pokračuje sledování sítě
 - Kolize nastává v případě vysálání dvou a více uzlů současně
 - Při detekci kolize je zastaveno vysílání
 - Čekání náhodně dlouhou domu a opakování pokusu o vysílání
 - Malá režie při malé zátěži
 - Využití v ethernetu
 - o Topologie u sběrnice HUB
 - Nenaléhající = Non persistent
 - V případě obsazenosti sítě uzel počká náhodně dlouhou dobu a opět kontroluje
 - Naléhající = Persistent
 - Uzel neustále testuje obsazenost sítě a v okamžiku uvolnění začíná vysílat
- CSMA/CA
 - o Collision avoidance
 - Obdoba CSMA/CD se snahou vyhnout se kolizím
 - Základem je dodržování časového rozestupu mezi paketu
 - o Před vysíláním naslouchá, zda je na sítí aktivita
 - Případě obsazenosti se počká náhodně dlouhou dobu
 - V případě klidu na sítí je poslán RTS (request to send) konkrétnímu uzlu a následuje čekání
 - o Reakcí je signál CTS (clear to send), která posílá cílový uzel
 - o Signál RTS a CTS jsou posílány v předem definovaných časových intervalech
 - Neobdržení je vyhodnoceno jako kolize a přenos je odložen
 - o Po přijetí signálu CTS je zahájen přenos
 - Výjimkou je zaslání RTS jako broadcast
 - Nečeká se na CTS, vysílání začíná okamžitě
 Využití u bezdrátových sítí

- Token Ring

- O Využívá speciální paket = token k informování uzlů o možnosti komunikace
- o Token je vytvořen při inicializaci sítě
 - Server nebo vyčleněná stanice (AM = aktivní monitor)
 - Stav je jim monitorován a v případě ztráty/poškození je vygenerován nový
- SM (pohotovostní monitor)
 - Hlídá AM a v případě nutnosti jej zastoupí -> nový AM
 - Velikost 3B
- o Princip
 - Vysílat muže pouze ten, který má právě prázdný idle token
 - Poznačený (busy) token spolu s daty předá stanice sousedovi
 - Předávání dokud nedojde do cíle
 - Příjemce potvrdí přijaté data zasláním označeného tokenu odesilateli
 - Po přijetí uvede odesílatel token do původního stavu -> muže vysílat další
 - Postupně nahrazen ethernetem

Kabeláž

- Přímá kabel
 - Straight-through cable
 - Slouží pro propojení:
 - PC-switch/HUB
 - Router-switch/HUB
- Křížený kabel
 - Crossover cable
 - Slouží pro propojení
 - Router router
 - PC router
 - PC PC
 - Switch/hub switch/hub

Ethernet 10Base5

- Thick cable, tlustý ethernet, žlutý ethernet
- o Prumer koaxiálního kabelu 10mm s impedanci 50ohm
- o 10 Mbit/s
- Base
 - Přenos v základním pásmu signál není modulován na jiný signál
- o Max 500m
- Možnost vytvářet odbočky
 - Max 100 stanic
 - Přípoj vyřezán do kabelu
 - Nutno použít transciever
- Velmi široký, neforemná, drahý

- Ethernet 10base2

- Thin ethernet, tenký, thinnet
- o Pruměr cca 0,5cm se stejnou impedancí
- Max délka do 200m
- Integrace transcevieru do sítové karty
 - Minimalizování odbočky z zařízení (konektor T)

- Ethernet 10baseT

- Pro přenos TP
- Možnost využít hvězdicové/stromové topologie
- Snaha docílit stejné přenosové rychlosti vedla k velkému zkrácení dosahu (100m)
- Bez změny přistupu ke sdílenému mediu
 - CSMA/CD
 - Jednoduchý přechod mezi kabeláži
- Half-duplex
 - Využíváno dvou páru TP (vysílání/příjem)
 - Full duplex až s příchodem switchovaného enthernetu

Popis průchodu dat datovou sítí – od odesílatele k příjemci v rámci jednotlivých vrstev

Encapsulation - Zapouzdření

- Každá vrstva ISO/OSI modelu data obalí informacemi
- Pro komunikaci mezi sousedními vrstvami jsou využity tzv.PDU
 - Obsahují řídící informace od dané vrstvy
 - o Zapsány v hlavičce
 - o Každá PDU má jiný název/označení
- Aplikační, Prezentační, Relační
 - Uživatelská data jsou předána transportní vrstvě
- Transportní
 - Zajistí vytvoření virtuálního okruhu
 - Vyšle synchronizační paket přijímacímu zařízení
 - o Rozdělí přijatá data na segmenty
 - Každá je přesně označen
 - Každá segment mí svou hlavičku (TCP/UDP, první PDU)
- Sítová
 - o Dochází k síťovému adresování a směrování v datové síti
 - Segment se dostane do správné sítě
 - Přidání vlastní hlavičky
 - Vznik paketu nebo také datagramu
- Linková
 - o Zodpovědná za předání dat fyzické vrstvě k odvysílání (umístění na sítové medium)
 - o Přidání vlastní hlavičky
 - Vznik rámce
- Fyzická
 - o Převedení/rozdělení na jednotlivé bity
 - Zajištění kódování na digitální signál a formát čitelný pro přijímací zařízení ve stejné lokální síti

Deencapsulation - Odpouzdření

- Po přetečení jsou PDU odstraněna
 - O Vždy pouze v příslušné vrstvě příslušným PDU
- Následné předání vyšší vrstvě
- Fyzická vrstva
 - o Přijímá vysílaný signál
 - Rozhoduje, zda jde o log 0 nebo log 1
 - o Po přijetí logické skupiny 0 1 jsou předány Linkové
- Linková
 - Nastává rekonstrukce rámce, zjištění MAC adresy, výpočet kontrolního součtu CRC a porovnání s hodnotou v části FCS
 - Souhlasí li kontrolní součty, vyjme se paket a předá sítové vrstvě
 - Ostatní data se zahodí
- Sítová
 - Z paketu se zjistí IP adresa
 - Je li shodná s adresou cíle, vyjme se segment
 - Hlavička opět zahozena
- Transportní
 - o Znovu sestavení datového proudu uživatelských dat
 - o Potvrzení přijatých dat
 - Předání do aplikační vyšší vrstvy
- Relační, Prezentační, Aplikační
 - o Předání a zobrazení dat uživateli