Design and Modeling of Fluid Power Systems ME 597/ABE 591 - Lecture 15

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University

- Hydrostatic transmission basic principle
- Hydrostatic transmission circuit solutions with additional functions
 - Advanced transmission concepts
 - Power Split drive technology

Basic Circuit Design

Two variable units -controlled in sequence

Two variable units – simultaneously controlled

Pump control – manually, with mechanical feedback

Pressure limiter

"Automotive" control

With electrohydraulic controlled displacement units

Example Wheel loader

Wheel loader Transmission Design Example

Design the hydrostatic transmission for a given wheel loader and calculate the traction force- speed characteristic for the entire speed range. The following parameters and requirements are given:

Engine speed: 2200 rpm

Engine power: 90 kW

Vehicle mass: 10 t

Bucket volume: 1 m³

Density soil: 2kg/dm³

Dynamic roll radius: 0.617 m

Coefficient of rolling resistance (soil): 0.08

Coefficient of rolling resistance (asphalt): 0.015

Max vehicle speed (on road): 40 km/h

Max traction force: 25 kN

Axial piston machines

Selected pump and motor sizes

Max. Displacement Volume	Max. Speed	Max. Pressure (contin.)	Max. Pressure	Theoretical flow rate @1000 rpm	Power @ 100 bar, 1000 rpm	Displacement charge pump	Mass variable pump	Torque @ 350 bar Fixed displ. motor	Mass fixed	Displacement Volume ß=7°	Max. Speed @ ß=7°	Mass variable motor	
	min ⁻¹	bar	bar				·		ŭ			kg	
33,3	3800			33,3	5,6	12,3	45		30	12,5	5000	51	
51,6	3500			51,6	8,6	12,3	55 63		35 40	19,5 26,4	4400	61	
69,8	3200 2900			69,8	11,6 14,8	18,0 18,0	78		40	33,6	4000 3700	69 84	
89,0 118,7	2700	350		89,0 118,7	19,8	18,8	124		70	44,7	3350	139	
165,8	2400			165,8	27,6	32,8	164		124	62,6	3000	179	
227,3	1890			227,3	37,9	32,8	212		152	85,9	2200	227	
333,7				333,7	55,6	65,5	270		197	126,0	1900	285	

Trends & New Requirements

- High traction force & high max. speed
- Continuously variable transmission (CVT)
- Reduction of fuel consumption
- Cost effective

Transmissions - today

Power Shift Gearbox with hydro dynamic torque converter

- state of the art solution
- complex, multi-stage gear system
- high number of clutches
- low starting efficiency
- interrupted power flow

Multiple Motor Concept

Power Split Drive

Basic structure

Planetary Gear

Three wheel planetary gear train

Willis equation:

$$n_A - i_{0AC} \cdot n_C - \left(1 - i_{0AC}\right) \cdot n_B = 0$$

A - Sun Wheel

B – Satellite Carrier

C - Ring Wheel

P - Satellite

$$i_{OAC} = -\frac{Z_C}{Z_A}$$

When satellite carrier B is block $n_B = 0$

Negative planetary gear, the standing gear ratio i_{0AC} is negative

Planetary Gear

negative standing gear ratio i_{0AC}

Speed of individual wheels:

 $n_A = i_{0AC} \cdot n_C + (1 - i_{0AC}) \cdot n_R$

- A Sun Wheel
- **B Satellite Carrier**
- C Ring Wheel
- P Satellite

$$n_B = \frac{n_A - i_{0AC} \cdot n_C}{1 - i_{0AC}}$$

$$n_C = \frac{n_A - (1 - i_{0AC}) \cdot n_B}{i_{0AC}}$$

$$i_{OAC} = -\frac{Z_C}{Z_A}$$

Directions of rotation of sun wheel A and ring wheel C are different, when the satellite carrier B is blocked!

Power Split Drive

PURDUE

Output coupled System

Fendt, Germany, developed a transmission system for agricultural tractors, which is in series production since 1996

Power Split Drive

PUR

Input coupled System

Sundstrand Corporation - Responder transmission New development by John Deere

PSDD toolbox for Simulink

POLYMOD allows Precise Loss Models

Best Efficiency?

Power Split Drive

System Example

Design and Modeling of Fluid Power Systems, ME 597/ABE 591