Функция задана сеточно:

X	f(x)
0	10.000000
1	9.187308
2	8.703200
3	8.488116
4	8.493290
5	8.678794
6	9.011942
7	9.465970
8	10.018965
9	10.652989
10	11.353353

Написать программу, которая будет строить интерполяционный многочлен третьего порядка в виде $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. На каждом отрезке $[x_i, x_{i+1}]$ интерполяцию строить по четырём точкам x_{i-1}, x_i, x_{i+1} и x_{i+2} . Оформить выходные данные в виде графика зависимости P(x) на заданном интервале (*.jpg, *.png и т.п.).

Входные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение функции (f(x)) в точках сетки. Данные в файле и количество точек сетки может меняться.

Выходные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение интерполяционного полинома (P(x)) в точках с шагом 0.01 на заданном интервале.

Функция задана сеточно:

X	f(x)
0	0.000000
1	0.841471
2	1.818595
3	0.423360
4	-3.027210
5	-4.794621
6	-1.676493
7	4.598906
8	7.914866
9	3.709066
10	-5.440211

Написать программу, которая будет строить интерполяционный многочлен третьего порядка в форме Лагранжа на заданном интервале. На каждом отрезке $[x_i, x_{i+1}]$ интерполяцию строить по четырём точкам x_{i-1}, x_i, x_{i+1} и x_{i+2} . Оформить выходные данные в виде графика зависимости P(x) на заданном интервале (*.jpg, *.png и т.п.).

Входные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение функции (f(x)) в точках сетки. Данные в файле и количество точек сетки может меняться.

Выходные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение интерполяционного полинома (P(x)) в точках с шагом 0.01 на заданном интервале.

Функция задана сеточно:

X	f(x)
0	0.485537
1	0.655406
2	0.816686
3	0.939413
4	0.997503
5	0.977751
6	0.884706
7	0.738968
8	0.569783
9	0.405555
10	0.266468

Написать программу, которая будет строить интерполяционный многочлен третьего порядка в форме Ньютона на заданном интервале. На каждом отрезке $[x_i, x_{i+1}]$ интерполяцию строить по четырём точкам x_{i-1}, x_i, x_{i+1} и x_{i+2} . Оформить выходные данные в виде графика зависимости P(x) на заданном интервале (*.jpg, *.png и т.п.).

Входные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение функции (f(x)) в точках сетки. Данные в файле и количество точек сетки может меняться.

Выходные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение интерполяционного полинома (P(x)) в точках с шагом 0.01 на заданном интервале.

Функция задана сеточно:

X	f(x)
0	1.000000
1	1.172525
2	1.374815
3	1.612005
4	1.890117
5	2.216209
6	2.598561
7	3.046878
8	3.572541
9	4.188894
10	4.911583

Написать программу, которая будет находить значение аргумента по заданному значению функции при помощи интерполяции третьего порядка. На каждом отрезке $[f_i, f_{i+1}]$ интерполяцию строить по четырём точкам f_{i-1}, f_i, f_{i+1} и f_{i+2} . Оформить выходные данные в виде графика интерполяции обратной функции x(f) на заданном интервале (*.jpg, *.png и т.п.).

Входные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение аргумента (x), вторая - значение функции (f(x)) в точках сетки. Данные в файле и количество точек сетки может меняться.

Выходные данные: Текстовый файл, содержащий две разделённые пробелами колонки. Первая колонка - значение функции (f(x)), вторая - полученные путём интерполяции значения аргумента (x) в точках с шагом 0.001 на заданном интервале.