EBU5602 Database

Dr Na Yao

Welcome to Database

- Ask when you don't understand anything during lecture
 - No questions too "silly"!
- Use <u>discussion forum</u> on QMPlus for other time
- Office hour

What this course is about

- Database
- Database Management System
- Data modelling
- Using query language (SQL) to define, create, maintain and control access to the database
- Transaction management
- Semi-structured data/NoSQL

Content

- Week 1
 - Introduction
 - Relational model
 - Relational Algebra
 - Entity-relationship(ER) modelling

- Week 2
 - EER modelling
 - ER to RelationalModel mapping
 - SQL
 - Database design
 - Normalization

Content

- Week 3
 - AdvancedNormalization
 - Transactionmanagement

- Week 4
 - Distributed DBMS
 - XML
 - NoSQL

Organisation of the module

- Lectures
- Lab: Six 2-hour lab sessions (starting from second teaching week)
- Assessment
 - Coursework: 10%
 - Mid-term test: 10%
 - Exam: 80%
 - Quizzes: beneficial to check your own learning, not assessed

Organisation of the module

- TAs: TBA
 - You can seek help from the TAs during lab-lectures and labs
- Modules Reps: 2 students
 - General communication with lecturers
 - SSLC meetings
 - Please contact me after the lecture if you are interested!

Textbook:

Database systems: a practical approach to design, implementation, and management, 6th edition, Thomas M. Connolly, Carolyn E. Begg. ISBN 9781292061184 Available from QMUL library as e-book http://www.library.qmul.ac.uk/

Recommended reading: Data Management: Databases & Organizations, 5th Edition, Richard T. Watson, ISBN 978-0-471-71536-8

Database

- Daily examples?
- Data: facts and statistics collected together for reference or analysis (Oxford dictionary)
- Database: a shared collection of logically related data (and a description of this data), designed to meet the information needs of an organization.
- System catalogue (metadata)
 provides description of data to
 enable program—data
 independence.

"Original database" by shinichi, flickr

- Logically related data comprises <u>entities</u>, <u>attributes</u>, and <u>relationships</u> of an organization's information.
- Entity: a distinct object in the organization that is to be represented in the database.
- E.g. person, place, thing, etc
- Attribute: a property that describes some aspect of the object that we wish to record.
- Relationship: an association between entities.

Lecturer	teaches	Student
staffNo		studentNo

Database Management Systems (DBMS)

 A software system that enables users to define, create, maintain, and control access to the database.

 (Database) application program: a computer program that interacts with database by issuing an appropriate request (SQL statement) to the DBMS.

Key concepts

- Data model
 - A model is a representation of 'real world' objects and events, and their associations.
- Schema vs Data
 - The description of the database is the database
 schema.
 - Data is the actual information stored in the database.
- Data definition language (DDL)
- Data manipulation language (DML)

Components of DBMS Environment

Roles in the Database Environment

- Data Administrator (DA)
- Database Administrator (DBA)
- Database Designers (Logical and Physical)
- Application Developers
- End Users (naive and sophisticated)

Data abstraction

The three-level ANSI-SPARC architecture

The three-level ANSI-SPARC architecture

- The objective of the three-level architecture is to separate each user's view of the database from the way the database is physically represented.
 - Users should be able to access same data but with customized view. Each user should be able to change the view without affecting other users.
 - Users should not have to deal with physical database storage details (users' interaction with database should be independent of storage considerations).
 - Users' views should be unaffected by changes to the physical aspects of storage.
 - Internal structure of the database should be unaffected by changes to the physical aspects of storage.
 - The DBA should be able to change the conceptual structure of the database with minimum affect to users' views.

History of DBMS (1)

- Early 60s
 - Charles Bachman (Turing Award 1973)
 - Integrated Data Store
 - Network Data Model
 - CODASYL
- Late 60s
 - IBM
 - Information Management Systems (IMS)
 - Hierarchichal Data Model
- 70s
 - Edgar Codd, IBM (Turing Award 1981)
 - Relational Data Model

Edgar F. Codd - Wikipedia

History of DBMS (2)

- 80s
 - Relational Data Model
 - SQL
 - Transaction Management (James Gray, Turing Award 1999)
- Now
 - Object-oriented Data Model
 - Data warehouse and data mining
 - Accessing databases through the web/internet
 - Multimedia data
 - Text data (information retrieval)
 - Structure of the data (XML)

1955 – 2017			
	Hierarchical		
	1965 – 2017		
	Spatial		
	1970 – 2017		
	Relational		
	1972 – 2017		
		Object-oriented	
		1990 – 2017	
			Hadoop distributed file system 2008 – 2017
			2008 – 2017
			Graph
			2008 – 2017
	Network		NoSQL
	1970 – 1980		2009 – 2017

Advantage of DBMSs

- Control of data redundancy
- Data consistency
- More information from the same amount of data
- Sharing of data
- Improved data integrity
- Improved security
- Enforcement of standards
- Economy of scale
- Balance conflicting requirements
- Improved data accessibility and responsiveness
- Increased productivity
- Improved maintenance through data independence
- Increased concurrency
- Improved backup and recovery services

Disadvantages of DBMSs

- Complexity
- Size
- Cost of DBMS
- Additional hardware costs
- Cost of conversion
- Performance
- Higher impact of a failure