

FCC RADIO TEST REPORT

FCC ID: 2ABV4SVC565

Product: HD WI-FI Security Camera

Trade Name: SHARPER IMAGE

Model Name: SVC565

Serial Model: N/A

Report No.: UNIA2018113010FR-01

Prepared for

Southern Telecom Inc.

5601 1st Ave, 2nd Floor Brooklyn NY

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name: Southern Telecom Inc.

Address:	5601 1st Ave, 2nd Floor Brooklyn NY
Manufacture's Name:	Southern Telecom Inc.
Address:	5601 1st Ave, 2nd Floor Brooklyn NY
Product description	
Product name:	HD WI-FI Security Camera
Trade Mark:	SHARPER IMAGE
Model and/or type reference :	SVC565
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013
Co., Ltd., and the test results swith the FCC requirements. A report. This report shall not be reproducted a stered or reduced the stered that the stered	has been tested by Shenzhen United Testing Technology show that the equipment under test (EUT) is in compliance nd it is applicable only to the tested sample identified in the duced except in full, without the written approval of UNI, this evised by Shenzhen United Testing Technology Co., Ltd., noted in the revision of the document.
Date of Test	
Date (s) of performance of tests Date of Issue	
Test Result	
Prepared by:	Kahn Yang Kahn yang/Editor
Reviewer:	Sherwin Olian/Supervisor
Approved & Authorized Signe	livee

Table of Contents Page 11. TEST SUMMARY 22. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT 2.2 Carrier Frequency of Channels 2.3 Operation of EUT during testing 2.4 DESCRIPTION OF TEST SETUP 2.5 MEASUREMENT INSTRUMENTS LIST 33. CONDUCTED EMISSIONS TEST 3.1 Conducted Power Line Emission Limit 3.2 Test Setup 3.3 Test Procedure 3.4 Test Result 9 4. RADIATED EMISSION TEST 12 4.1 Radiation Limit 12 12 4.2 Test Setup 4.3 Test Procedure 13 4.4 Test Result 13 5. BAND EDGE 28 5.1 Limits 28 5.2 Test Procedure 28 5.3 Test Result 28 6. OCCUPIED BANDWIDTH MEASUREMENT 31 6.1 Test Limit 31 6.2 Test Procedure 31 6.3 Measurement Equipment Used 31 6.4 Test Result 31 7. POWER SPECTRAL DENSITY TEST 40 7.1 Test Limit 40 7.2 Test Procedure 40 7.3 Measurement Equipment Used 40 7.4 Test Result 40 8. PEAK OUTPUT POWER TEST 47 8.1 Test Limit 47 8.2 Test Procedure 47

Table of Contents	Page
8.3 Measurement Equipment Used	47
8.4 Test Result	47
9. OUT OF BAND EMISSIONS TEST	48
9.1 Test Limit	48
9.2 Test Procedure	48
9.3 Test Setup	48
9.4 Test Result	48
10. SPURIOUS RF CONDUCTED EMISSION	51
10.1 Test Limit	51
10.2 Test Procedure	51
10.3 Test Setup	51
10.4 Test Result	51
11. ANTENNA REQUIREMENT	64
12.PHOTOGRAPH OF TEST	65
12.1 Radiated Emission	65
12.2 Conducted Emission	66

11. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
BAND EDGE	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
POWER SPECTRAL DENSITY	COMPLIANT
PEAK OUTPUT POWER	COMPLIANT
OUT OF BAND EMISSIONS	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

Page 6 of 66

Report No.: UNIA2018113010FR-01

22. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

HD WI-FI Security Camera
SHARPER IMAGE
SVC565
1
2ABV4SVC565
Internal Antenna
0.95dBi
802.11b/g/n20/ n40: 2412~2462 MHz
802.11b/g/n20/n40: 11CH
CCK, OFDM, DBPSK, DAPSK
1
DC 5V from adapter with AC 120(240)V/60Hz
M/N: HA-190501000UU
Input: AC 100-240V, 50/60Hz, 0.25A
Output: DC 5V, 1A

							<u> </u>
	Channel List for 802.11b/g/n(20MHz/40MHz)						
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz)							Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	i.e.	

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode for 802.11b/g/n (20MHz/20MHz)

Low Channel: 2412MHz/2422MHz

Middle Channel: 2437MHz

High Channel: 2462MHz/2452MHz

Test SW Version:RtkWiFiTest 1.0.1 20131119.

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Table for auxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
Adapter	HONGGUANGDE	HA-19050100UU	N/A

Page 8 of 66

Report No.: UNIA2018113010FR-01

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti
		CONDUCTED	EMISSIONS TEST		U
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9
2	AMN	ETS	3810/2	00020199	2019.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9
-		RADIATED	EMISSION TEST	1	20
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29
3	PREAMP	HP	8449B	3008A00160	2019.9.9
4	PREAMP	HP	8447D	2944A07999	2019.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2019.3.14
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2019.3.14
15	RF power divider	Anritsu	K241B	992289	2019.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.9.8
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.9.8
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10
26	Frequency Meter	VICTOR	VC2000	997406086	2019.05.10
27	DC Power Source	HYELEC	HY5020E	055161818	2019.05.10
		Test	software		, rd
1	E3	XINHUA	6.101223a	N/A	N/A

Page 9 of 66 Report No.: UNIA2018113010FR-01

33. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage(dBμV)				
Frequency	CLA	CLASS A		SS B	
(MHz)	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

Pass

Remark:

- 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
- 2. All modes were tested at Low, Middle, and High channel, only the worst result of 802.11b Low Channel was reported as below:

Temperature:	24 ℃	Relative Humidity:	48%
Test Date:	Dec. 3, 2018	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode of 802.11b 241	2MHz	, ri

	-	*	Limit	Over	D
	rreq	Level	Line	Limit	Remark
-	MHz	dBuV	dBuV	dB	-
1	0.166	38.87	55.16	-16.29	Average
2	0.166	55.30	65.16	-9.86	QP
3	0.518	35.99	46.00	-10.01	Average
4	0.518	44.20	56.00	-11.80	QP
5	1.049	29.60	46.00	-16.40	Average
6	1.049	40.10	56.00	-15.90	QP
7	1.734	28.15	46.00	-17.85	Average
8	1.734	34.51	56.00	-21.49	QP
9	2.448	27.05	46.00	-18.95	Average
10	2.448	30.31	56.00	-25.69	QP
11	16.750	29.78	50.00	-20.22	Average
12	16.750	39.43	60.00	-20.57	QP

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

	and the second s			
Temperature:	24 ℃	Relative Humidity:	48%	
Test Date:	Dec. 3, 2018	Pressure:	1010hPa	
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral	
Test Mode:	Transmitting mode of 80	02.11b 2412MHz		

			TIMIL	Over	
	Freq	Level	Line	Limit	Remark
17	MHz	dBuV	dBuV	dB	1
1	0.156	38.98	55.69	-16.71	Average
2	0.156	54.60	65.69	-11.09	QP
3	0.214	35.83	53.05	-17.22	Average
4	0.214	47.58	63.05	-15.47	QP
5	0.524	32.82	46.00	-13.18	Average
6	0.524	41.30	56.00	-14.70	QP
7	1.054	27.71	46.00	-18.29	Average
8	1.054	35.20	56.00	-20.80	QP
9	3.156	23.81	46.00	-22.19	Average
10	3.156	26.63	56.00	-29.37	QP
11	16.140	25.27	50.00	-24.73	Average
12	16.140	31.58	60.00	-28.42	QP

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Page 12 of 66 Report No.: UNIA2018113010FR-01

4. RADIATED EMISSION TEST

4.1 Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(μV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).
- 8. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

Remark:

- 1. All modes of 802.11b/g/n20 were test at Low, Middle, and High channel, only the worst result of 802.11b Low Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

Below 1GHz Test Results:

Temperature:	22℃	Relative Humidity:	48%
Test Date:	Dec. 3, 2018	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Horizontal
Test Mode:	Transmitting mode of 802.11b 241	2MHz	

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	22 °C	Relative Humidity:	48%					
Test Date:	Dec. 3, 2018	Pressure:	1010hPa					
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical					
Test Mode:	t Mode: Transmitting mode of 802.11b 2412MHz							

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

2

4

5

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results:

CH Low of 802.11b Mode (2412MHz)

Horizontal:

					100000	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	62.47	-3.51	58.83	74	-15.17	PK
4824	50.94	-3.51	47.30	54	-6.70	AV
7236	57.36	-0.82	56.41	74	-17.59	PK
7236	47.26	-0.82	46.31	54	-7.69	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

	16.					
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.81	-3.64	59.17	74	-14.83	PK
4824	51.24	-3.64	47.60	54	-6.40	AV
7236	57.43	-0.95	56.48	74	-17.52	PK
7236	47.38	-0.95	46.43	54	-7.57	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

CH Middle of 802.11b Mode (2437MHz)

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
62.24	-3.51	58.60	74	-15.40	PK
51.34	-3.51	47.70	54	-6.30	AV
58.73	-0.82	57.78	74	-16.22	PK
48.32	-0.82	47.37	54	-6.63	AV
	Result (dBµV) 62.24 51.34 58.73	Result (dBµV) (dB) 62.24 -3.51 51.34 -3.51 58.73 -0.82	Result Factor Emission Level (dBμV) (dB) (dBμV/m) 62.24 -3.51 58.60 51.34 -3.51 47.70 58.73 -0.82 57.78	Result Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 62.24 -3.51 58.60 74 51.34 -3.51 47.70 54 58.73 -0.82 57.78 74	Result Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 62.24 -3.51 58.60 74 -15.40 51.34 -3.51 47.70 54 -6.30 58.73 -0.82 57.78 74 -16.22

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.83	-3.51	58.19	74	-15.81	PK
4874	50.59	-3.51	46.95	54	-7.05	AV
7311	58.36	-0.82	57.41	74	-16.59	PK
7311	47.37	-0.82	46.42	54	-7.58	AV
7.00						The second

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH High of 802.11b Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.32	-3.43	58.68	74	-15.32	PK
4924	50.44	-3.43	46.80	54	-7.20	AV
7386	58.57	-0.75	57.62	74	-16.38	PK
7386	47.73	-0.75	46.78	54	-7.22	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.76	-3.43	59.03	74	-14.97	PK
4924	50.24	-3.43	47.41	54	-6.59	AV
7386	58.35	-0.75	57.59	74	-16.41	PK
7386	47.52	-0.75	46.82	54	-7.18	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11g Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	62.24	-3.51	58.60	74	-15.40	PK
4824	51.43	-3.51	47.79	54	-6.21	AV
7236	58.48	-0.82	57.53	74	-16.47	PK
7236	48.17	-0.82	47.22	54	-6.78	AV
Remark: Fact	tor = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.74	-3.51	59.03	74	-14.97	PK
4824	50.39	-3.51	47.41	54	-6.59	AV
7236	58.62	-0.82	57.59	74	-16.41	PK
7236	47.33	-0.82	46.82	54	-7.18	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH Middle of 802.11g Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.83	-3.51	59.19	74	-14.81	PK
4874	50.35	-3.51	46.71	54	-7.29	AV
7311	58.42	-0.82	57.47	74	-16.53	PK
7311	47.34	-0.82	46.39	54	-7.61	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.22	-3.51	59.03	74	-14.97	PK
4874	50.71	-3.51	47.41	54	-6.59	AV
7311	58.84	-0.82	57.59	74	-16.41	PK
7311	47.47	-0.82	46.82	54	-7.18	AV
	·	·		·	·	The second

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH High of 802.11g Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.52	-3.51	58.88	74	-15.12	PK
4924	50.44	-3.51	46.80	54	-7.20	AV
7386	58.32	-0.82	57.37	74	-16.63	PK
7386	47.66	-0.82	46.71	54	-7.29	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	61.37	-3.51	59.03	74	-14.97	PK
4924	50.35	-3.51	47.41	54	-6.59	AV
7386	58.29	-0.82	57.59	74	-16.41	PK
7386	47.72	-0.82	46.82	54	-7.18	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11n/H20 Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	61.34	-3.43	57.70	74	-16.30	PK
4824	50.76	-3.43	47.12	54	-6.88	AV
7236	58.23	-0.75	57.28	74	-16.72	PK
7236	47.65	-0.75	46.70	54	-7.30	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.54	-3.43	59.03	74	-14.97	PK
4824	50.37	-3.43	47.41	54	-6.59	AV
7236	58.15	-0.75	57.59	74	-16.41	PK
7236	47.61	-0.75	46.82	54	-7.18	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH Middle of 802.11n/H20 Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	61.56	-3.43	57.92	74	-16.08	PK
4874	50.68	-3.43	47.04	54	-6.96	AV
7311	58.53	-0.75	57.58	74	-16.42	PK
7311	47.25	-0.75	46.30	54	-7.70	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

		A STATE OF THE PARTY OF THE PAR				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.51	-3.43	59.03	74	-14.97	PK
4874	50.62	-3.43	47.41	54	-6.59	AV
7311	58.21	-0.75	57.59	74	-16.41	PK
7311	47.67	-0.75	46.82	54	-7.18	AV
	-	-	-		-	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH High of 802.11n/H20 Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.25	-3.43	58.61	74	-15.39	PK
4924	50.36	-3.43	46.72	54	-7.28	AV
7386	58.74	-0.75	57.79	74	-16.21	PK
7386	47.61	-0.75	46.66	54	-7.34	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.61	-3.43	59.03	74	-14.97	PK
4924	50.14	-3.43	47.41	54	-6.59	AV
7386	58.36	-0.75	57.59	74	-16.41	PK
7386	47.52	-0.75	46.82	54	-7.18	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11n/H40 Mode (2422MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.73	-3.43	59.30	74	-14.70	PK
4824	50.26	-3.43	46.83	54	-7.17	AV
7236	58.35	-0.75	57.60	74	-16.40	PK
7236	47.42	-0.75	46.67	54	-7.33	AV
			-			

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.75	-3.43	58.32	74	-15.68	PK
4824	50.61	-3.43	47.18	54	-6.82	AV
7236	58.33	-0.75	57.58	74	-16.42	PK
7236	47.21	-0.75	46.46	54	-7.54	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH Middle of 802.11n/H40 Mode (2437MHz)

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
62.63	-3.43	59.20	74	-14.80	PK
50.42	-3.43	46.99	54	-7.01	AV
57.61	-0.75	56.86	74	-17.14	PK
48.29	-0.75	47.54	54	-6.46	AV
	Result (dBµV) 62.63 50.42 57.61	Result (dBµV) (dB) 62.63 -3.43 50.42 -3.43 57.61 -0.75	Result Factor Emission Level (dBμV) (dB) (dBμV/m) 62.63 -3.43 59.20 50.42 -3.43 46.99 57.61 -0.75 56.86	Result Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 62.63 -3.43 59.20 74 50.42 -3.43 46.99 54 57.61 -0.75 56.86 74	Result Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 62.63 -3.43 59.20 74 -14.80 50.42 -3.43 46.99 54 -7.01 57.61 -0.75 56.86 74 -17.14

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.84	-3.43	58.41	74	-15.59	PK
4874	51.66	-3.43	48.23	54	-5.77	AV
7311	58.41	-0.75	57.66	74	-16.34	PK
7311	47.31	-0.75	46.56	54	-7.44	AV
						The second second

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH High of 802.11n/H40 Mode (2452MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	61.60	-3.43	58.17	74	-15.83	PK
4924	51.64	-3.43	48.21	54	-5.79	AV
7386	57.82	-0.75	57.07	74	-16.93	PK
7386	48.67	-0.75	47.92	54	-6.08	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.12	-3.43	58.69	74	-15.31	PK
4924	50.67	-3.43	47.24	54	-6.76	AV
7386	58.32	-0.75	57.57	74	-16.43	PK
7386	47.61	-0.75	46.86	54	-7.14	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Page 28 of 66

Report No.: UNIA2018113010FR-01

5. BAND EDGE

5.1 Limits

FCC PART 15.247 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10kHz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

We tested at 802.11b/802.11g/802.11n HT20/40 mode at the antenna single and recored the worst data 802.11b mode in report.

Horizontal:

i ionzontai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2310	57.34	-5.81	51.53	74	-22.47	PK
2310	1	-5.81	1	54	/	AV
2390	63.82	-5.84	57.98	74	-16.02	PK
2390	1	-5.84	1	54	/	AV
2400	65.67	-5.84	59.83	74	-14.17	PK
2400	1	-5.84	1	54	/	AV
	U		124	-	Ĺ	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

v Ci ticai.			<u> </u>			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2310	56.31	-5.81	50.50	74	-23.50	PK
2310	1	-5.81	1	54	1	AV
2390	65.47	-5.84	59.63	74	-14.37	PK
2390	1	-5.84	1	54	1	AV
2400	65.82	-5.84	59.98	74	-14.02	PK
2400	1	-5.84	1	54	/	AV
					U	
	120		ri .			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2480MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.19	-5.65	49.54	74	-24.46	PK
2483.5	1	-5.65	1	54	/	AV
2500	56.63	-5.72	50.91	74	-23.09	PK
2500	43	-5.72	1	54	/	AV
			The second secon			

Vertical:

v or trour.					Control of the Contro	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.35	-5.65	50.70	74	-23.30	PK
2483.5	· di	-5.65	1	54	1	AV
2500	56.28	-5.72	50.56	74	-23.44	PK
2500	1	-5.72	1	54	1	AV
The second secon						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 31 of 66

Report No.: UNIA2018113010FR-01

6. OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Limit

FCC Part15(15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result

PASS

lea .	TX 802.11b Mode								
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result						
2412	10.06	>=500KHz	PASS						
2437	10.07	>=500KHz	PASS						
2462	10.06	>=500KHz	PASS						

CH: 2412MHz

CH: 2437MHz

CH: 2462MHz

TX 802.11g Mode								
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result					
2412	16.53	>=500KHz	PASS					
2437	16.50	>=500KHz	PASS					
2462	16.51	>=500KHz	PASS					

CH: 2412MHz

CH: 2437MHz

CH: 2462MHz

70.407								
TX 802.11n/HT20 Mode								
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result					
2412	17.72	>=500KHz	PASS					
2437	17.74	>=500KHz	PASS					
2462	17.73	>=500KHz	PASS					

CH: 2412MHz

CH: 2437MHz

CH: 2462MHz

Report No.: UNIA2018113010FR-01

TX 802.11n/HT40 Mode				
Frequency 6dB Bandwidth Channel Separation (MHz) (MHz) Res				
2422	36.43	>=500KHz	PASS	
2437	36.40	>=500KHz	PASS	
2452	36.42	>=500KHz	PASS	

CH: 2422MHz

CH: 2452MHz

Page 40 of 66

Report No.: UNIA2018113010FR-01

7. POWER SPECTRAL DENSITY TEST

7.1 Test Limit

FCC Part15(15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=3KHz, VBW=10KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

7.3 Measurement Equipment Used

Same as Radiated Emission Measurement

7.4 Test Result

PASS

	No.				
TX 802.11b Mode					
Frequency Power Density Limit (MHz) (dBm/3KHz) Result					
2412	-9.500	8	PASS		
2437	-9.899	8	PASS		
2462	-10.358	8	PASS		

Page 41 of 66

CH: 2412MHz

CH: 2437MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Techno

United Testing Technology(Hong Kong) Limited

深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

CH: 2462MHz

TX 802.11g Mode			
Frequency (MHz)	Result		
2412	-12.886	8	PASS
2437	-12.406	8	PASS
2462	-15.418	8	PASS

CH: 2412MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 2437MHz

CH: 2462MHz

TX 802.11n/HT20 Mode				
Frequency Power Density Limit (MHz) (dBm/3KHz) (dBm/3KHz)				
2412	-14.556	8	PASS	
2437	-16.628	8	PASS	
2462	-15.787	8	PASS	

CH: 2412MHz

CH: 2437MHz

CH: 2462MHz

TX 802.11n/HT40 Mode				
Frequency (MHz)	Result			
2422	-18.498	8	PASS	
2437	-16.892	8	PASS	
2452	-15.787	8	PASS	

CH: 2422MHz

深圳市优耐检测技术有限公司 MSC Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 2437MHz

CH: 2452MHz

Report No.: UNIA2018113010FR-01

8. PEAK OUTPUT POWER TEST

8.1 Test Limit

FCC Part15(15.247), Subpart C				
Section Test Item Limit Frequency Range (MHz)				Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 Test Procedure

1. The EUT was directly connected to the Power meter.

8.3 Measurement Equipment Used

Same as Radiated Emission Measurement

8.4 Test Result

PASS

All the test modes completed for test.

		TX 802.11b Mode	
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	(dBm)
CH01	2412	17.706	30
CH06	2437	17.355	30
CH11	2462	17.026	30
	5	TX 802.11g Mode	
CH01	2412	18.543	30
CH06	2437	18.423	30
CH11	2462	18.185	30
i.		TX 802.11n20 Mode	The state of the s
CH01	2412	17.964	30
CH06	2437	18.055	30
CH11	2462	17.437	30
		TX 802.11n40 Mode	17
CH03	2422	17.839	30
CH06	2437	18.113	30
CH09	2452	17.226	30

| Recorded Manager Control of C

Page 48 of 66

Report No.: UNIA2018113010FR-01

2). Test results including cable loss.

9. OUT OF BAND EMISSIONS TEST

9.1 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

9.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. Set detected by the spectrum analyzer with peak detector.

9.3 Test Setup

9.4 Test Result

PASS

Page 51 of 66

Report No.: UNIA2018113010FR-01

10. SPURIOUS RF CONDUCTED EMISSION

10.1 Test Limit

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.
- 3.For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

10.2 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013, For 9KHz-150kHz, Set RBW=1kHz and VBW= 3KHz; For 150KHz-10MHz, Set RBW=10kHz and VBW= 30KHz:For 10MHz-25GHz, Set RBW=100kHz and VBW= 300KHz in order to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.

10.3 Test Setup

10.4 Test Result

PASS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.and record the worstest data for Antenna B in report.