Principles of Information Security

Assignment- 2

- 1. (a) Explain Strong One way function and Weak One way function.
 - (b) Prove "Weak one way functions exist if and only if strong one way functions exist".
 - (c) Prove "A collection of one way functions exists if and only if one way functions exist".
- 2. Define the length-preserving, keyed function F by $F_k(x) = k \oplus x$. Prove that F is not a pseudo random function by describing and analyzing a concrete distinguisher.
- 3. Given a PRF F: $\{0,1\}^k x \{0,1\}^n \mapsto \{0,1\}^n$, construct a PRF G: $\{0,1\}^k x \{0,1\}^n \mapsto \{0,1\}^{2n}$, which is a secure PRF as long as F is secure.
- 4. Which of the following is collision resistant. Justify Your Answer
 - (a) $H'(m)=H(m)\oplus H(m)$
 - (b) H'(m) = H(H(H(m)))
 - (c) H'(m)=H(m)[0,...,31] (i.e. output the first 32 bits of the hash)
 - (d) H'(m)=H(m) (i.e. hash the length of m)
 - (e) H'(m)=H(m) \oplus H(m \oplus 1|m|) (where m \oplus 1|m| is the complement of m)
 - (f) H'(m) = H(m) ||H(m)|
 - (g) H'(m)=H(H(m))

Assuming H: $M \mapsto T$ be a collision resistant hash function. and \parallel represents the Concatenation

- 5. (a) What do you understand by Merkle-Demgard Transform? Explain its Construction Briefly.
 - (b) Is it necessary that the Hash Function generated from Merkle-Demgard tranform will be Collision free if the initial Fixed length hash function was collision free? Prove your Answer.
- 6. Tell whether these are true or False and Justify your answer in brief (Either By explanation or by example):
 - (a) Collision resistance implies 2nd-preimage resistance of hash functions.
 - (b) collision resistance does not guarantee preimage resistance.
 - (c) Let h_k be a keyed hash function which is a MAC algorithm (thus has the property of computation-resistance). Then h_k is, against chosen-text attack by an adversary without knowledge of the key k,

- i. both 2nd-preimage resistant and collision resistant; and
- ii. preimage resistant (with respect to the hash-input).
- (d) If either h_1 or h_2 is a collision resistant hash function, then $h(x) = h_1(x) \parallel h_2(x)$ is a collision resistant hash function.
- 7. Note: Read the Concept below before attempting the questions:

A Hash Family is Considered as a four Tuples (X,Y,K,H), where X a set (finite or Infinite) of Possible Messages, Y is the finite set of possible Message digests, K is the Key Space which is a finite set of possible Keys, for each $k \in K$, there exists a Hash Function $h_k \in H$. A Pair (x,y) is valid pair if $h_k(x)=y$. Let $F^{X,Y}$ denotes the set of all hash functions. Suppose |X|=N, and |Y|=M. Then clearly, $|F^{X,Y}|=M^N$. Any hash Family $F \subseteq F^{X,Y}$ is known as (N,M) hash Family.

The Random Oracle Model Attempts to capture the concept of a ideal hash function. If a hash function h is well designed, it should be the case that the only efficient way to determine the value of h(x) for a given x is to evaluate the value x on the function x. This should not be the case that if $h(x_1), h(x_2)$ is already computed then there exists a x_3 such that $h(x_3)$ can be calculated from the previously computed hash values.

Theorem 1: suppose $h \in F^{x,y}$ are chosen randomly and let $X_0 \subseteq X$. Suppose that the value h(x) have been determined (by querying for h) if and only if $x \in X_0$. Then the $\Pr[h(x)=y] = 1/M$ for all $x \in X - X_0$ and all $y \in Y$.

From security Point of View, Some algorithms are discussed as below along wit there pseudo code:

```
Problem 1: PriImage
Instances: A hash Function h: X \mapsto Y
Find: x \in X such that h(x) = y.
Algorithms 1: Find-PreImage (h,y,Q)
choose any X_0 \subset X, |X_0| = Q
for each x in X_0:
     if (h(x) == v):
          return (x)
return (failure)
Problem 2: Second PreImage
Instances: A Hash function h: X \mapsto Y and an element x \in X.
Find: x' \in X such that x' != x and h(x') = h(x).
Algorithms 2: Find-Second-PreImage (h,x,Q)
y = h(x)
choose any X_0 \subset X\{X_0, |X_0| = Q - 1\}
for each x0 in X_0$:
     if (h(x0)==y):
          return (x0)
return (failure)
```

Problem 3: Collision

Instances: A Hash function h: $X \mapsto Y$.

Find: $x, x' \in X$ such that x' != x and h(x') = h(x).

Algorithm 3: Find-Collision (h,Q) choose any $X_0 \subset X, |X_0| = Q$

```
for each x in X_0$:
    y_x = h(x)
if (y_x==y_x') for some x'!=x:
    return (x,x')
else return (failure)
```

Prove or refute:

- (a) suppose that the hash function h: $Z_n \times Z_n \mapsto Z_n$ is a linear function given by $h(x,y)=ax+by \mod n$ for a,b ϵZ_n and n>=2 is a positive Integer. h follows the radical oracle model.
- (b) For any $X_0 \subseteq X$ with $abs(X_0) = Q$, The Average case success probability of the algorithm 1 is $p = 1 (1 1/M)^Q$.
- (c) For any $X_0 \subseteq X \{x\}$ with $abs(X_0) = Q 1$, The Average case success probability of the algorithm 2 is $p = 1 (1 1/M)^{Q-1}$.
- (d) For any $X_0 \subseteq X$ with $abs(X_0) = Q$, The Average case success probability of the algorithm 3 is $p = 1-[\{(M-1)/M\}^*\{(M-1)/M\}^*...\{(M-Q+1)/M\}]$
- 8. if we define a hash function (or comparison function) h that will hash an n-bit binary string to an m-bit binary string, we can view h as a function from Z_{2^n} to Z_{2^m} , it is tempting to define h using operation modulo 2^m . suppose that n = m > 1, and $h: Z_{2^m} \mapsto Z_{2^m}$ is defined as: $h(x) = x^2 + ax + b \mod 2^m$. Prove that it is easy to solve second primage for any $x \in Z_{2^m}$ without having to solve the quadratic equation.
- 9. Consider a hash function h which is second PreImage and Collision resistant and Defined as $h: \{0,1\}^* \mapsto \{0,1\}^n$. Consider Another hash function h_1 which is defined as follow: $h_1: \{0,1\}^* \mapsto \{0,1\}^{n+1}$ and given by rule:
 - $h_1 = \begin{cases} 0 || x & \text{if } x \in \{0, 1\}^n \\ 1 || h(x) & \text{otherwise} \end{cases}$ Prove that h_1 is not preimage resistant but still second preimage and collision resistant.
- 10. suppose $h_1: \{0,1\}^{2m} \mapsto \{0,1\}^m$ is a collision resistent function.
 - (a) Define h_2 : $\{0,1\}^{4m} \mapsto \{0,1\}^m$ as follow:
 - i. write $x \in \{0,1\}^{4m}$ as $x = x_1 \parallel x_2$ where $x_1, x_2 \in \{0,1\}^{2m}$.
 - ii. Define $h_2(x) = h_1(h_1(x_1)||h_1(x_2))$.

Prove that h_2 is collision resistant.

- (b) for any integer i >= 2, Define has function h_i : $\{0,1\}^{2^i m} \mapsto \{0,1\}^m$ recursively from h_{i-1} as follow:
 - i. write $x \in \{0,1\}^{2^{im}}$ as $x = x_1 \parallel x_2$ where $x_1, x_2 \in \{0,1\}^{2^{i-1}m}$.
 - ii. Define $h_i(x) = h_{i-1}(h_{i-1}(x_1)||h_{i-1}(x_2))$.

Prove that h_i is collision resistant.

11. Let m be a message consisting of l AES blocks (say l=100). Alice encrypts m using CBC mode and transmits the resulting ciphertext to Bob. Due to a network error, ciphertext block number l/2 is corrupted during transmission. All other ciphertext blocks are transmitted and received correctly. Once Bob decrypts the received ciphertext, how many plaintext blocks will be corrupted?