Trasporto ottimo - Esercizi

Esercizio 1

Siano date $\mu = \mathcal{L}^1_{\lfloor (0,1)}$, $\nu = 2x \cdot \mathcal{L}^1_{\lfloor (0,1)}$. Trovare la mappa di trasporto monotona $T : \mathbb{R} \to \mathbb{R}$ tale che $T_{\sharp}\mu = \nu$.

Esercizio 2

Siano dati X, Y spazi polacchi, $(\Omega, \mathcal{F}, \mu)$ spazio di misure e

$$S: \Omega \to X, \qquad T: \Omega \to Y$$

funzioni Borel-misurabili. Dimostrare che

$$(S,T)_{\sharp}\mu \in \Gamma(S_{\sharp}\mu, T_{\sharp}\mu).$$

Esercizio 3

Sia $f \in L^1_{loc}(\mathbb{R})$ una funzione T-periodica e $g \in C^0(\mathbb{R})$ (qui: T > 0 è semplicemente il periodo di f). Dimostrare che

$$\lim_{n \to +\infty} \int_a^b f(nx)g(x)\mathrm{d}x = \frac{1}{T} \int_0^T f(x)\mathrm{d}x \int_a^b g(x)\mathrm{d}x,$$

per ogni intervallo limitato $(a, b) \subset \mathbb{R}$.

Esercizio 4

Sia $f \in L^2_{loc}(\mathbb{R})$ una funzione T-periodica e $f_n(x) := f(nx)$. Dimostrare che

$$f_n \rightharpoonup \frac{1}{T} \int_0^T f(x) dx$$
 debolmente, in $L^2(a, b)$.

Last update: June 4, 2024