

WARSAW UNIVERSITY OF TECHNOLOGY Faculty of Mathematics and Information Science

Multi-Layer Perceptron

Neural Network

Omer Berk Gencer

Table of Contents

Multi-Layer Neural Network	3
Usage and Tests:	3
With Mnist	
With Car Evalation	
With Iris	F

Multi-Layer Neural Network

The project aim to crate MLP algorithm with work with different data-sets. I choose two dataset (Iris and Car Evalution) from UC Irvine Machine Learning Repository and Mnist data-set crated by Yann LeCun, I chose backpropagation as a learning method.

Mnist contains 60000 examples, and the test set 10000 examples.

Iris Data-Set contains 150 examples, and 5 attributes: sepal length in cm, sepal width in cm, petal length in cm, petal width in cm and as a classifier name of iris.

Example: 5.0,3.5,1.3,0.3, Iris-setosa

Car Evaluation Data-Set contains 1728 examples and 6 attributes: buying, maint, doors, persons, lug_boot and as a classifier safety.

Example: vhigh, vhigh, 2, 2, small, low, unacc

In this program, if graph directly go to 0, it is mean validation set start to increase.

Usage and Tests:

Add Layer	_
Reg Paremater	
DataSet'	
Epochs	
Mnist = 1 Car = 2	
Iris = 3 RUN	

Add Layer: Adding layer with in entered neuron number, input type int.

Regularization Parameter: This is a form of regression, that constrains/ regularizes or shrinks the coefficient estimates towards zero. In other words, this technique discourages learning a more complex or flexible model, so as to avoid the risk of overfitting. input type float.

Dataset: For choosing data set according to their codes, Mnist=1, Car=2, Iris=3.

Epochs: Declare number of iteration number, input type int.

Run: Start training, learning and testing phases.

With Mnist

Input: two hidden layers with 10 neurons and 200 iteration

With Car Evaluation

Input: two hidden layers with 5 neurons and 200 iteration

With Iris

Input: two hidden layers with 10 neurons and 100 iteration

