

LingNLQ: Natural Language Query for linguistics

M2 TAL Software Project

Karolin Boczoń Roham Roshanfekr Dimitra NIAOURI
Muhammad SHAHZAIB

text-to-sparql models

text-to-sparql models 2/24

This model is a fine-tuned version of t5-base.

Model

Based on	Dataset	Date	Model Link
t5-base	lc-quad & qald9	2021-10-19	yazdipour/text-to-sparql-t5-base-qald9
t5-small	lc-quad & qald9	2021-10-19	yazdipour/text-to-sparql-t5-small-qald9
t5-base	lc-quad	2021-10-19	yazdipour/text-to-sparql-t5-base
t5-small	lc-quad	2021-10-19	yazdipour/text-to-sparql-t5-small

Figure: Different versions of the model

text-to-sparql models 3/24

Issues of the model

- ► The target and results' queries were not well-formed (grammatical errors, square brackets instead of curly ones etc.)
- Poor performance

text-to-sparql models 4/24

Model Architecture

Question	Which female actress is the voice over on south park and is employed as a singer?
Target	SELECT ?answer WHERE { wd:Q16538 wdt:P725 ?answer . ?answer wdt:P106 wd:Q177220}
Result	select distinct ?sbj where [?sbj wdt:voice_over wd:south_park . ?sbj wdt:instance_of wd:female_actress]

Figure: Example the Question-Target-Result architecture

text-to-sparql models 5/24

Training results Training Validation Bleu-Gen Loss Epoch Step Loss Len F1 Score **Bleu-precisions** bp 1.0 0.1310 19.0 0.0962 [92.48113990507008, 0.0770 nan 4807 0.5807 0.3276 6.4533 85.38781447185119. 80.57856404313097. 77.37314727416516]

Figure: Training results of the text-to-sparql-t5-base model

text-to-sparql models 6/24

Wine Ontology

Sample program to read a NL input and generate a sparql query to query the wine ontology and get results.

Issues:

- Code written in python version 2.7
- No available results

text-to-spargl models 7/24

Quepy

Python framework to transform natural language questions to queries in a database query language.

- easily customized to different kinds of questions in NL and database queries
- support for Sparql and MQL query languages

Issue: Code written in python version 2.

text-to-sparql models 8/24

MK-SQuIT and NeMo

Creates datasets to train machine translation systems to convert natural language questions into queries.

Figure: MK-SQuIT generation pipeline.

text-to-sparql models 9/24

MK-SQuIT and NeMo

Data Format

All data generated by the generator will produce files like this:

english	sparql			
What is the height of Getica's creator?	SELECT ?end WHERE { [Getica] wdt:P50 / wdt:P2048 ?end . }			

text-to-sparql models 10/24

LYMBA

Model for creating a knowledge base from text and converting text to SPARQL for widespread usage.

- question sent through the Lymba pipeline
- system establishes a semantic representation of the data
- system converts the plain English entry into SPARQL, queries the database, and displays the retrieved result

text-to-sparql models 11/24

TNTspa

- Machine Translating from Natural Language to SPARQL.
- evaluating the utilization of eight different Neural Machine Translation(NMT) models
- ▶ the results show a dominance of a CNN-based architecture

Datasets:

- Monument
- Monument80
- ► Monument50
- ► LC-QUAD
- DBNQA

text-to-spargl models 12/24

TNTspa

	Mon Mon8		n80	Mon50		LC-QUAD		DBNQA		
Models	V	T	V	T	V	T	V	T	V	T
NSpM	71 95	75 93	75 95	76 95	82 97	79 96	0 61	0 61	0 77	0 77
NSpM+Att1	71 95	75 93	77 96	78 96	83 97	82 97	1 68	1 66	63 93	63 93
NSpM+Att2	73 96	74 92	79 97	78 96	84 97	81 97	1 68	1 67	69 94	69 94
GNMT-4	70 95	71 92	67 95	68 95	77 96	75 96	0 62	0 61	1 84	1 84
GNMT-8	68 95	73 91	58 94	60 94	74 96	71 95	0 65	0 64	0 84	0 84
LSTM_Luong	75 94	76 94	82 95	84 96	90 98	89 97	0 68	0 67	34 82	34 82
ConvS2S	94 99	95 96	91 98	90 98	89 98	90 98	8 74	8 73	85 98	85 97
Transformer	88 98	91 95	83 96	84 96	86 92	84 92	7 71	4 70	3 79	3 80

Figure: Table of Accuracy (in %) of syntactically correct generated SPARQL queries \mid F1 score

text-to-sparql models 13/24

Question Decomposition Meaning Representation

Natural Language questions into Logical

Intermediate representation for Natural Language questions.

Question:	For each state, how many teachers are there?			
QDMR (Break)	#1 return states #2 return teachers in #1 #3 return number of #2 for each #1 #4 return #1 and #3			
QDMR logical form (Break)	#1 SELECT[states] #2 PROJECT[teachers in #REF, #1] #3 GROUP[count, #2, #1] #4 UNION[#1, #3]			
grounded QDMR (ours)	#1 SELECT[School.State] #2 PROJECT[teacher, #1] #3 GROUP[count, #2, #1] #4 UNION[#1, #3]			

Figure: Wolfson et al. (2020)

Natural Language questions into Logical

Figure: Dependency Parsing of NL

QDMR to SPARQL

Figure: using QDMR to generate SPARCQL

QDMR to SPARQL

Evaluation Metric: Execution Accuracy

Model	Train	Pretrain	Dev	Test	
BRIDGE	full	BERT	71.5	64.5	
SmBoP	full	GraPPa	78.2	66.4	
BRIDGE	subset	BERT	71.7	62.2	
SmBoP	subset	GraPPa	76.4	66.4	
Ours	subset	BERT	81.1	60.1	
Ours	subset	GraPPa	82.0	62.4	

Figure: using QDMR to generate SPARCQL

Processing SPARCQL for execution

19/24

Processing SPARCQL for execution

Processing Generated PARCQL

- ▶ Prefix Resolution
- Syntax issues
- Parenthesis

Resources

Resources 21/24

What is a part of linguistics?

For the purpose of this project: anything in "Linguistics" category on Wikipedia.

Index of linguistics articles

From Wikipedia, the free encyclopedia

Resources 22/24

Concepts

x is an instance of / subclass of* something studied by linguistics

Query timeout limit reached

Decisions to make:

- ▶ include all instances of languages (dialects, jargon...)
- (at first) focus only on basic concepts (listed in Outline of linguistics)
- include parts of articles (definitions, examples) to enhance the knowledge graph

Resources 23/24

Thank you!

Any questions?

Resources 24/24