Politechnika Wrocławska	Wrocław, 2016
Wydział Budownictwa Lądowego i Wodnego	
Zakład konstrukcji betonowych	
Prefabrykowana hala żelbeto	owa
,	
Wykonał:	Sprawdzający:
Piotr Kopka	Dr inż. Wojciech Pawlak

Opis techniczny

1. Podstawa opracowania

Podstawę opracowania stanowi temat ćwiczenia projektowego z przedmiotu Konstrukcje Betonowe-Obiekty wydany przez dr inż. Wojciecha Pawlaka.

2. Podstawa formalna

Podstawę formalną stanowią następujące dokumenty:

- PN-EN 1990:2004 Eurokod: Podstawy projektowania konstrukcji
- PN-EN 1991-1-1:2004 Eurokod 1: Oddziaływania na konstrukcje. Część 1-1: Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach.
- PN-EN 1991-1-2:2005 Eurokod 1: Oddziaływania na konstrukcje. Część 1-2: Oddziaływania ogólne.
 Oddziaływania na konstrukcje w warunkach pożaru.
- PN-EN 1991-1-3:2005 Eurokod 1: Oddziaływania na konstrukcje. Część 1-3: Oddziaływania ogólne Obciążenie śniegiem.
- PN-EN 1992-1-1:2008 Eurokod 2: Projektowanie konstrukcji z betonu Część 1-1: Reguły ogólne i reguły dla budynków
- PN-EN 1992-1-2: 2008 Eurokod 2: Projektowanie konstrukcji z betonu Część 1-2: Reguły ogólne Projektowanie z uwagi na warunki pożarowe

3. Podstawa merytoryczna

Podstawę merytoryczną stanowią następujące publikacje:

- Janusz Pędziwiatr, "Wstęp do projektowania konstrukcji żelbetowych wg PN-EN 1992-1:2008.",
 DWE 2010
- Agnieszka Golubińska, Michał Knauff, Piotr Knyziak, "Tablice i wzory do projektowania konstrukcji żelbetowych z przykładami obliczeń", Wydawnictwo Naukowe PWN, Warszawa 2014
- Andrzej Łapko, Zeszyt 2 Builder "Projektowanie konstrukcji żelbetowych"

4. Przedmiot opracowania

Przedmiotem opracowania jest zaprojektowanie żelbetowego słupa w hali prefabykowanej. Lokalizacja obiektu to Drezdenko. Hala znajduje się w II strefie śniegowej i I strefie wiatrowej. Hala składa się z dwóch naw o rozpiętości 25,35 m oraz 20,87 m i wysokości odpowiednio 15,33 m oraz 10,25 m. W wyższej nawie zaprojektowano suwnicę o udźwigu 125 kN. Klasa konstrukcji to S4. Przyjęte materiały to beton C35/45 oraz stal B500SP.

5. Cel i zakres opracowania

Celem jest wykonanie projektu żelbetowego słupa w hali prefabykowanej

Zakres opracowania to:

- Opis techniczny
- Obliczenia statyczno- wytrzymałościowe
- Rysunki architektoniczno budowlane

6. Opis rozwiązań konstrukcyjnych

Hala ma wymiary 46,15 m x 132,60 m. Obudowę dachu stanowią płyty Kingspan KS1000 X-DEK 80 mm. Są one ułożone na płatwiach strunobetonowych Consolis P-200/600/12 o wysokości 600 mm, których rozstaw wynosi 5 m na wyższej nawie, 2 m na niższej nawie w obrębie worka śnieżnego oraz 3,9 m w pozostałej części nawy. Obudowę ścian stanowią płyty Kingspan KS1000 AWP 50 mm. Są one przytwierdzone do rygli ściennych stalowych zimnogiętych Pruszyński BP/Z400x85/75x3,00 400 mm ułożonych w rozstawie 1,5 m. Rama główna składa się z słupów żelbetowych oraz rygli strunobetonowych. Rozstaw rym wynosi 12 m. Rygle dachowe to dźwigary strunobetonowe Consolis I-500/1350/25 o wysokości 1350 mm oraz długości 25 m na wyższej nawie oraz Consolis I-500/1500/20,5 o wysokości 1350 mm oraz długości 20,5 m na niższej nawie. Słupy zaprojektowano jako prefabrykowane żelbetowe z betonu C35/45 o zmiennym przekroju ze wspornikami do oparcia dźwigarów dachowych oraz belek podsuwnicowych. Przyjęto belki podsuwnicowe kablobetonowe KBP 120/II oraz szyny podsuwnicowe Rialex A75. Dobrano suwnicę pomostową dwudźwigarową SPe1H o udźwigu 125 kN.

7. Technologia wykonania

Hala została zaprojektowana jako prefabrykowana. Wszystkie elementy zostaną wykonane w wytwórniach prefabrykatów oraz dostarczone na plac budowy, gdzie należy dokonać ich montażu.

8. Uwagi

Na każdym etapie montażu wymagana jest kontrola geodezyjna ustawienia elementów.

Na każdym etapie wymagany jest nadzór osoby uprawnionej do kierowania robotami budowlanymi w odpowiednim zakresie.

Obliczenia statyczno – wytrzymałościowe

1. Obciążenie śniegiem (PN-EN 1991-1-3:2005)

Drezdenko → 2 strefa obciążenia śniegiem gruntu →

charakterystyczne obciążenie śniegiem gruntu: $s_k=0.9\frac{kN}{m^2}$

nachylenie połaci dachu: 5%, $\alpha = 2,86^{\circ}$

charakterystyczne obciążenie śniegiem dachu: $s = \mu_i * C_e * C_t * s_k$

współczynnik ekspozycji: $C_e=1.0$

współczynnik termiczny: $C_t = 1.0$

współczynnik kształtu dachu: $\mu_i = 0.8$ dla $0^{\circ} < \alpha < 30^{\circ}$

$$s = \mu_i * C_e * C_t * S_k$$

współczynniki kształtu dachu:

$$\mu_1 = 0.8$$

$$\mu_2 = \mu_S + \mu_W$$

$$\mu_{\scriptscriptstyle S}=0$$
 dla $lpha \leq 15^\circ$

$$\mu_w = \frac{b_1 + b_2}{2h} \le \gamma \frac{h}{S_k}$$

ciężar objętościowy śniegu: $\gamma=2rac{kN}{m^3}$

szerokość wyższej nawy hali: $b_1 = 25,75 m$

szerokość niższej nawy hali: $b_2 = 20,95 m$

$$h = 5.5 m$$

$$\mu_w = \frac{b_1 + b_2}{2h} = \frac{25,75 + 20,95}{2*5,5} = 4,25 < \gamma \frac{h}{s_k} = 2*\frac{5,5}{0,9} = 12,22$$

$$0.8 \le \mu_w \le 4$$

przyjęto
$$\mu_w=4$$

$$\mu_2 = \mu_S + \mu_W = 0 + 4 = 4$$

długość zaspy
$$l_s = 2h = 2 * 5,5 = 11 m$$

$$5 \le l_s \le 15 m$$

Przypadki

(i)
$$s_1 = \mu_1 * C_e * C_t * s_k = 0.8 * 1.0 * 1.0 * 0.9 = 0.72 \frac{kN}{m^2}$$

(ii)
$$s_2 = \mu_2 * C_e * C_t * s_k = 4 * 1.0 * 1.0 * 0.9 = 3.6 \frac{kN}{m^2}$$

Przypadek

2. Obciążenie wiatrem (PN-EN 1991-1-4:2008)

Drezdenko → 1 strefa wiatrowa

wysokość nad poziomem morza: A = 28 m n. p. m. < 300 m n. p. m.

kategoria terenu: III

wymiar chropowatości: $z_0=0$,3 m

podstawowa bazowa prędkość wiatru: $v_{b,0}=22\frac{m}{s}$

bazowe ciśnienie prędkości wiatru: $q_{b,0}=0.30rac{kN}{m^2}$

współczynnik kierunkowy: przyjęto $C_{dir}=1.0$

współczynnik sezonowy: przyjęto $C_{season}=1.0$

bazowa prędkość wiatru: $v_b = C_{dir} * C_{season} * v_{b,0} = 1$,0 * 1,0 * 22 $\frac{m}{s} = 22 \frac{m}{s}$

średnia prędkość wiatru: $v_m(z) = c_r(z) * c_0(z) * v_b$

Nawa wyższa

wysokość nad poziomem terenu: z=15,5~m

współczynnik chropowatości: $c_r(z) = 0.8 * \left(\frac{z}{10}\right)^{0.19} = 0.8 * \left(\frac{15.5}{10}\right)^{0.19} = 0.87$

współczynnik ekspozycji: $c_e(z)=1.9*\left(\frac{z}{10}\right)^{0.26}=1.9*\left(\frac{15.5}{10}\right)^{0.26}=2.13$

współczynnik orografii: przyjęto $c_0(z)=1$,0

$$v_m(z) = c_r(z) * c_0(z) * v_b = 0.87 * 1.0 * 22 \frac{m}{s} = 19.14 \frac{m}{s}$$

Nawa niższa

wysokość nad poziomem terenu: z=10.5 m

współczynnik chropowatości:
$$c_r(z) = 0.8*\left(\frac{z}{10}\right)^{0.19} = 0.8*\left(\frac{10.5}{10}\right)^{0.19} = 0.81$$

współczynnik ekspozycji:
$$c_e(z)=1.9*\left(\frac{z}{10}\right)^{0.26}=1.9*\left(\frac{10.5}{10}\right)^{0.26}=1.92$$

współczynnik orografii: przyjęto $c_0(z)=1$,0

$$v_m(z) = c_r(z) * c_0(z) * v_b = 0.81 * 1.0 * 22 \frac{m}{s} = 17.82 \frac{m}{s}$$

Turbulencja wiatru

współczynnik turbulencji: przyjęto $k_l=1$,0

Nawa wyższa

intensywność turbulencji

$$I_v(z) = \frac{k_l}{c_0(z) * \ln(\frac{z}{z_0})} = \frac{1.0}{1.0 * \ln(\frac{15.5}{0.3})} = 0.25$$

Nawa niższa

intensywność turbulencji

$$I_v(z) = \frac{k_l}{c_0(z) * \ln(\frac{z}{z_0})} = \frac{1.0}{1.0 * \ln(\frac{10.5}{0.3})} = 0.28$$

Wartość szczytowa ciśnienia prędkości

gęstość powietrza: przyjęto ho=1,25 $rac{kg}{m^3}$

Nawa wyższa

$$q_p(z) = [1 + 7 * I_v(z)] * \frac{1}{2} * \rho * v_m^2(z) = [1 + 7 * 0.25] * \frac{1}{2} * 1.25 * 19.14^2 = 0.630 \frac{kN}{m^2}$$

Nawa niższa

$$q_p(z) = [1 + 7 * I_v(z)] * \frac{1}{2} * \rho * v_m^2(z) = [1 + 7 * 0.28] * \frac{1}{2} * 1.25 * 17.82^2 = 0.587 \frac{kN}{m^2}$$

Ciśnienie wiatru

Ściany pionowe

Wiatr od strony nawy wyższej

$$d = 46,7 m$$

$$b = 133 \, m$$

$$h = 15,5 m$$

$$e = \min\{b; 2h\} = \min\{133 \, m; 31 \, m\} = 31 \, m$$

$$\frac{h}{d} = \frac{15,5}{46,7} = 0,33$$

Pole	Α	В	С	D	E
h/d	$c_{pe,10}$ $c_{pe,10}$ c		$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$
0,33	. pc)20		-0,5	0,71	-0,32

Wiatr od strony nawy niższej

$$d = 46,7 m$$

$$b = 133 \, m$$

$$h = 10,5 m$$

$$e = \min\{b; 2h\} = \min\{133 \ m; 21 \ m\} = 21 \ m$$

$$\frac{h}{d} = \frac{10,5}{46,7} = 0,22$$

Pole	Α	В	С	D	E
h/d	$c_{pe,10}$	$c_{pe,10}$ $c_{pe,10}$		$c_{pe,10}$	$c_{pe,10}$
0,22	-1,2	-0,8	-0,5	0,7	-0,3

Wiatr od czoła

$$d = 133 \, m$$

$$b = 46,7 m$$

$$h = 15,5 m$$

$$e = \min\{b; 2h\} = \min\{46,7 m; 31 m\} = 31 m$$

$$\frac{h}{d} = \frac{15,5}{133} = 0,12$$

F	Pole	АВ		С	D	Е	
	h/d $c_{pe,10}$		$c_{pe,10}$ $c_{pe,10}$ $c_{pe,10}$		$c_{pe,10}$	$c_{pe,10}$	
	0,12	-1,2	-0,8	-0,5	0,7	-0,3	

Połać dachowa

Pochylenie dachu $\alpha=2,86^{\circ}<5^{\circ}$ zatem obliczenia przeprowadzono jak dla dachu płaskiego

Rysunek 7.6 - Oznaczenia dachów płaskich

Nawa wyższa

Wiatr od boku

b = 133 m

d = 25,65 m

h = 15,5 m

 $e = \min\{b; 2h\} = \min\{133 \ m; 31 \ m\} = 31 \ m$

Pole						
F	F G H					
$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$			
-1,8	-1,2	-0,7	-0,2(0,2)			

Wiatr od czoła

b = 25,65 m

 $d = 133 \, m$

h = 15,5 m

 $e = \min\{b; 2h\} = \min\{25,65 m; 31 m\} = 25,65 m$

Pole							
F	F G H						
$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$				
-1,8	-1,2	-0,7	-0,2(0,2)				

Nawa niższa

Wiatr od boku

 $b = 133 \, m$

d = 20,95 m

h = 10,5 m

 $e = \min\{b; 2h\} = \min\{133 \ m; 21 \ m\} = 21 \ m$

Pole						
F	F G H					
$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$			
-1,8	-1,2	-0,7	-0,2(0,2)			

Wiatr od czoła

b = 20,95 m

 $d = 133 \, m$

h = 10,5 m

 $e = \min\{b; 2h\} = \min\{20,95 \, m; 21 \, m\} = 20,95 \, m$

Pole						
F	F G H					
$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$	$c_{pe,10}$			
-1,8	-1,2	-0,7	-0,2(0,2)			

Ciśnienie wiatru $w_e = q_p(z) * c_{pe,10}$

$$w_e(h_1) = q_p(z_1) * c_{pe,10} = 0,630 \frac{kN}{m^2} * c_{pe,10}$$

$$w_e(h_2) = q_p(z_2) * c_{pe,10} = 0.587 \frac{kN}{m^2} * c_{pe,10}$$

	Wiatr od czoła									
	Pole	Α	В	С	D	Е				
Ściany pionowe	$c_{pe,10}$	-1,2	-0,8	-0,5	0,7	-0,3				
	$w_e(h_1)$	-0,756	-0,504	-0,315	0,441	-0,189				
	Pole	F	G	Н	I	-				
Połać dachowa	$c_{pe,10}$	-1,8	-1,2	-0,7	-0,2	1				
	$w_e(h_1)$	-1,134	-0,756	-0,441	-0,126	1				
	Wiatro	od strony	nawy w	yższej						
	Pole	Α	В	С	D	E				
Ściany pionowe	$c_{pe,10}$	-1,2	-0,8	-0,5	0,71	-0,32				
	$w_e(h_1)$	-0,756	-0,504	-0,315	0,447	-0,202				
	Pole	F	G	Н	I	-				
Połać dachowa	$c_{pe,10}$	-1,8	-1,2	-0,7	-0,2	ı				
	$w_e(h_1)$	-1,134	-0,756	-0,441	-0,126	1				
	Wiatr	od stron	y nawy ni	iższej						
	Pole	Α	В	С	D	Е				
Ściany pionowe	$c_{pe,10}$	-1,2	-0,8	-0,5	0,7	-0,3				
	$w_e(h_2)$	-0,704	-0,470	-0,294	0,411	-0,176				
	Pole	F	G	Н	ı	-				
Połać dachowa	$c_{pe,10}$	-1,8	-1,2	-0,7	-0,2	-				
	$w_e(h_1)$	-1,134	-0,756	-0,441	-0,126	-				

3. Dobór elementów

3.1. Dobór płyt dachowych

Obciążenia

Obciążenie	Obciążenie charakterystyczne k [kN/m²]		'F	Obciążenie obliczeniowe d [kN/m²]	
	[KN/III]	>1	≤ 1	>1	≤ 1
	Zmienne q				
Śnieg w obrębie worka śnieżnego	3,6	1,5	0	5,4	0
Śnieg w pozostałej części	0,72	1,5	0	1,08	0

Przyjęto płyty dachowe Kingspan KS1000 X-DEK:

okładzina wewnętrzna: stal 0,9 mm

okładzina zewnętrzna: membrana PCV 1,5 mm

powłoka wewnętrzna: poliester, rdzeń izolacyjny ze sztywnej pianki poliizocyjanurowej 80

mm

grubość płyty: 80 mm

ciężar własny: 15,87 $\frac{kg}{m^2}=0$,16 $\frac{kN}{m^2}$

dopuszczalne obciążenie:

Ok	adzina zewnętrzn	a	TR20/TR2	7/PVC		Okładzina	wewnętrzi	na		0,9mm	
Grubość	Stan	Klerunek				R	ozpiętość [i	m]			
plyty [mm]	Graniczny	Obciążenia	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
Δ	Δ	10		PŁYTA J	EDNOPRZĘ	SŁOWA			_	3	
	Noteed (CCN)	Parcie [kN/m²]	10,380	8,260	6,850	5,355	4,704	3,561	2,758	2,279	1,915
00	Nośność (SGN)	Ssante [kN/m²]	15,780	10,155	7,095	5,250	3,329	2,417	1,785	1,529	1,329
80	5-b	Parcle [kN/m²]	6,920	5,510	4,570	3,400	2,622	1,757	1,220	0,929	0,725
	Sztywność (SGU)	Ssante [kN/m²]	10,520	6,770	4,730	3,500	2,500	1,728	1,240	0,946	0,740
	Noteed (CCN)	Parcie [kN/m²]	10,380	8,260	6,850	5,355	4,704	3,639	2,885	2,378	1,993
	Nośność (SGN)	Ssante [kN/m²]	15,780	10,155	7,095	5,250	3,433	2,559	1,949	1,487	1,145
100	F-9	Parcie [kN/m²]	6,920	5,510	4,570	3,400	2,619	1,777	1,251	0,963	0,760
	Sztywność (SGU)	Ssante [kN/m²]	10,520	6,770	4,730	3,500	2,350	1,717	1,300	0,969	0,740
	a _{min} (r	nm)		5	0				40		

3.2. Dobór płatwi dachowych

Obciążenia

Obciążenie	Obciążenie charakterystyczne k [kN/m²]		F	Obciążenie obliczeniowe d [kN/m²]			
	[KN/III]	>1	≤ 1	>1	≤1		
	Stałe g						
Płyta dachowa Kingspan KS1000 X-DEK	0,16	1,35	1,0	0,22	0,16		
	Zmienne q						
Śnieg w obrębie worka śnieżnego	3,6	1,5	0	5,4	0		
Śnieg w pozostałe części	0,72	1,5	0	1,08	0		

Nawa wyższa

długość: 12 m

rozstaw: 5 m

obciążenie obliczeniowe: $E_d = (1,35*0,16+1,5*0,72)*5 = 6,48\frac{kN}{m}$

Nawa niższa

długość: 12 m

rozstaw: 2 m w obrębie worka śnieżnego

obciążenie obliczeniowe: $E_d = (1,35*0,16+1,5*3,6)*2 = 11,23\frac{kN}{m}$

4,5 m w pozostałej części

obciążenie obliczeniowe: $E_d = (1,35*0,16+1,5*0,72)*4,5 = 5,83\frac{kN}{m}$

Przyjęto płatwie strunobetonowe prostokątne P-200/600/12 firmy Consolis

długość: 12 m

szerokość przekroju poprzecznego: 200 mm

wysokość przekroju poprzecznego: 600 mm

ciężar własny: 3,00 $\frac{kN}{m}$

dopuszczalne obciążenie: $14,19 \frac{kN}{m}$

Tab. 1. Płatwie

					q _{ch,zew}	[kN/m]				
L [m]	P-200/550/	P-250/500/	P-200/600/	P-250/600/	P-300/600/	P-200/700/	P-250/700/	P-300/700/	P-250/800/	P-300/800/
6	50,57	61,36	64,32	74,88	87,15	82,90	103,87	130,28	140,67	167,31
6,5	42,75	51,90	54,43	63,34	73,70	70,20	87,96	110,36	119,24	141,82
7	36,55	44,39	46,59	54,18	63,02	60,12	75,34	94,55	102,24	121,59
7,5	31,54	38,33	40,26	46,79	54,41	52,00	65,15	81,79	88,52	105,27
8	27,44	33,38	35,08	40,74	47,37	45,34	56,82	71,35	77,29	91,91
8,5	24,05	29,27	30,78	35,73	41,53	39,83	49,91	62,70	67,99	80,84
9	21,20	25,82	27,19	31,53	36,63	35,21	44,12	55,45	60,19	71,56
9,5	18,79	22,91	24,14	27,98	32,49	31,30	39,22	49,32	53,59	63,71
10	16,74	20,42	21,54	24,94	28,95	27,96	35,04	44,08	47,95	57,01
10,5	14,97	18,28	19,31	22,33	25,91	25,09	31,44	39,57	43,11	51,24
11	13,44	16,42	17,37	20,07	23,27	22,60	28,32	35,66	38,90	46,24
11,5	12,10	14,81	15,67	18,09	20,97	20,43	25,60	32,26	35,24	41,88
12	10,92	13,38	14,19	16,36	18,95	18,52	23,21	29,26	32,02	38,05
12,5						16,84	21,10	26,62	29,18	34,67
13						15,35	19,23	24,28	26,66	31,68
13,5						14,02	17,57	22,20	24,42	29,01
14						12,83	16,08	20,33	22,41	26,62
14,5						11,76	14,74	18,65	20,61	24,47
15						10,79	13,53	17,14	18,98	22,54
15,5										20,79
16										19,20
16,5										17,75
17										16,43
17,5										15,22
18										14,11
g_k [kN/m]	2,75	3,13	3,00	3,75	4,50	3,50	4,38	5,25	5,00	6,00

3.3. Dobór dźwigarów dachowych

Obciążenia

Obciążenie	Obciążenie charakterystyczne k	γ_F		Obcią obliczei					
		>1 ≤1		>1	≤ 1				
Stałe g									
Płyta dachowa Kingspan KS1000 X-DEK	0,16 [kN/m²]	1,35	1,0	0,22 [kN/m²]	0,16 [kN/m²]				
Płatew strunobetonowa Consolis P-200/600/12	3,00 [kN/m]	1,35	1,0	4,05 [kN/m]	3,00 [kN/m]				
	Zmienne q								
Śnieg w obrębie worka śnieżnego	3,6 [kN/m²]	1,5	0	5,4 [kN/m²]	0				
Śnieg w pozostałej części	0,72 [kN/m²]	1,5	0	1,08 [kN/m²]	0				

Nawa wyższa

długość dźwigara: 25 m

rozstaw: 12 m

obciążenie obliczeniowe:
$$E_d=1,35*(g_k^{plyty}*12+\frac{g_k^{platwi}}{5}*12)+1,5*0,72=1,35*(0,16*12+\frac{3,00}{5}*12)+1,5*0,72=13,39\frac{kN}{m}$$

Dla nawy wyższej przyjęto dźwigary dachowe strunobetonowe dwuteowe o pasach równoległych I-500/1350/25 firmy Consolis

długość dźwigara: 25 m

wysokość: 1350 mm

szerokość półki: 500 mm

ciężar własny: 8,25 $\frac{kN}{m}$

dopuszczalne obciążenie zewnętrzne: $q=19{,}70rac{kN}{m}$

Nawa niższa

długość dźwigara: 20,5 m

rozstaw: 12 m

obciążenie obliczeniowe: $E_d=1,35*(g_k^{p\nmid yty}*12+\frac{g_k^{p\nmid txi}}{2}*12)+1,5*3,6=1,35*(0,16*12+\frac{3,00}{2}*12)+1,5*3,6=32,29\frac{kN}{m}$

Dla nawy niższej przyjęto dźwigary dachowe strunobetonowe dwuteowe o pasach równoległych I-500/1500/20,5 firmy Consolis

długość dźwigara: 25 m

wysokość: 1500 mm

szerokość półki: 500 mm

ciężar własny: $8,70\frac{kN}{m}$

dopuszczalne obciążenie zewnętrzne: $q=47,\!40\frac{kN}{m}$

	q_k [kN/m]												
T-500/2700/	I-500/2400/	I-500/2250/	1-500/2100/	1-500/1950/	I-500/1800/	1-500/1650/	1-500/1500/	1-500/1350/	1-500/1200/	I-500/1050/			
8										150,5			
8,5										137			
9										122,5 111			
9,5 10 604,1 535,3	470,5	411,1	358,9	310,8	267,3	228,4	192,1	159,6	129	101,5			
10,5 546,4 481,8	425,3	373,1	326,9	283,9	244,6	209,4	176,3	146,6	118,3	92			
11 493,7 437,3	387,4	341	299,5	260,8	225,1	192,9	162,5	135,1	108,9	84,1			
11,5 449,7 399,6	355,2	313,4	275,9	240,6	208	178,4	150,3	124,9	100,5	76			
12 412,2 367,4	327,3	289,5	255,3	223	192,9	165,6	139,5	115,8	92,9	69,2			
12,5 380 339,5	303,1	268,5	237,2	207,4	179,5	154,1	129,8	106,4	86,2	63			
13 352 315,2	281,8	250	221,1	193,5	167,6	143,9	121,1	97,8	80	57,9			
13,5 327,4 293,7	262,9	233,6	206,8	181	156,8	134,6	113,2	90	74,4	53			
14 301,9 274,6 14,5 280,7 257,5	246,1 231	218,8 205,6	192,6 178,8	169,8 159,6	147,1 138,3	125,5 116,4	106 99,4	83,1 76,9	69,3 64,6	49 45			
15 261,6 242,1	217,2	193,6	166,4	150,4	130,3	108,2	93,4	71,3	60,3	41,6			
15,5 244,3 228,2	202,8	182,7	155,1	141,1	122,8	100,7	87,9	66,3	56,3	38			
16 228,6 213,7	189,6	172,7	144,3	131,8	116	93,9	82,8	61,7	52,6	35,4			
16,5 214,2 200,2	177,6	163,6	135,1	123,3	109,8	87,8	77,9	57,5	49,2				
17 201,2 187,9	166,7	154,4	126,7	115,6	104	82,2	72,8	53,7	45,8				
17,5 189,2 176,7	156,7	144,4	118,9	108,5	98,6	77	68,2	50,1	42,6				
18 178,2 166,4	147,5	135,9	111,9	102	92,2	72,3	64	47	39,8	\vdash			
18,5 168 156,9 19 158,7 148,2	138,4 130,7	128,1 120,9	105,4 99,4	96,1 90,6	86,7 81,7	68 64	60,1 56,6	44 41,3	37,1 34,4				
19,5 150,1 139,5	123,5	114,3	93,8	85,5	77,1	60,3	53,3	38,8	32,2	\vdash			
20 142,1 132	116,9	108,1	88,7	80,8	72,8	56,9	50,2	36,4	30,2	\vdash			
20,5 134,7 125,1	110,8	102,4	83,9	76,4	68,9	53,7	47,4	34,1	55,2				
21 127,2 118,7	105	97,1	79,2	72,4	65,2	50,8	44,8	31,8					
21,5 120,9 112,8	99,7	92,2	75,1	68,3	61,8	48	42,3	29,9					
22 114,9 107,2	94,8	87,6	71,3	64,8	58,6	45,5	39,7	28,2					
22,5 109,4 102	90,2	83,3	67,7	61,5	55,6	43,1	37,5	26,5					
23 104,2 97,1 23,5 99,3 92,6	85,8 81,8	79,3 75,1	64,4 61,3	58,5 55,6	52,8 50,2	40,9 38,8	35,4 33,4	25 23,6					
24 94,8 88,3	78	71,6	58,4	52,9	47,8	36,8	31,6	22,3					
24,5 90,5 84,3	74,4	68,3	55,6	50,4	45,5	34,9	29,8	20,9					
25 86,5 80,6	71,1	65	53	48,1	43,3	33,1	28,3	19,7					
25,5 82,7 77	67,9	62,1	50,6	45,8	41,2	31,4	26,8						
26 79,1 73,7	64,6	59,4	48,3	43,7	39,2	29,6	25,4						
26,5 75,8 70,5	61,8	56,8	46,1	41,7	37,3	28,1	24,1						
27 72,6 67,6	59	54,3	44,1	39,9	35,5	26,7	22,9						
27,5 69,6 64,7 28 66,7 62,1	56,5 54,2	52 49,8	42 40,1	38,1 36,4	33,9 32	25,4 24,2	21,7 20,6						
28,5 64 59,6	52	47,8	38,4	34,7	30,5	23	20,0						
29 61,5 57,2	49,8	45,8	36,8	33,2	29,1	21,9							
29,5 59 54,6	47,8	43,9	35,2	31,7	27,8	20,8							
30 56,8 52,4	45,9	42,2	33,8	30,3	26,6	19,8							
30,5 54,3 50,4	44,1	40,5	32,4	28,7									
31 52,2 48,4	42,4	38,9	31,1	27,4									
31,5 46,6	40,8	37,4	29,8										
32 44,8	39,2	36	28,6										
32,5	37,7 36,3	34,6 33,2											
33,5	30,3	31.9											
34		30,4											
g _k [kN/m] 12,30 11,85	11,40	10,95	10,50	10,05	9,60	9,15	8,70	8,25	7,80	7,35			

3.4. Dobór płyt ściennych

Obciążenia

Obciążenie	Obciążenie charakterystyczne k [kN/m²]	γ_F		Obciążenie obliczeniowe d [kN/m²]		
	[KN/fff-]		≤ 1	>1	≤ 1	
	Zmienne o	7				
Wiatr (ssanie)	0,756	1,5	0	1,13	0	
Wiatr (parcie)	0,447	1,5	0	0,67	0	

Przyjęto płyty ścienne Kingspan KS1000 AWP:

okładzina wewnętrzna: stal 0,4 mm

okładzina zewnętrzna: stal 0,6 mm

powłoka wewnętrzna: poliester, rdzeń izolacyjny ze sztywnej pianki poliizocyjanurowej 50

 mm

grubość płyty: 50 mm

ciężar własny: 10,77 $\frac{kg}{m^2}=0$,11 $\frac{kN}{m^2}$

Okładzina zewnętrzna TYP M Okładzina wewnętrzna Typ I

dopuszczalne obciążenie:

		tn (mm)	0,6				tn(mm)	0,4					
		kolor	2				kolor						
Grubość rdzenia	Obstatestess					Makeuma		żenie, kN/n	n? nrzy roz	mlatoéci ne	[m] clast		
(mm)	Obciążenie ze względu na	Kierunek obciąże [kN/m2]	inia _	2	2,5	3	3,5	4	4.5	spiętości pi 5	5,5	6	6,5
Δ	Δ ,			- р		OPRZESŁO		_	-,-		2,2	_	حرت
		Parcle	\neg	4,49	3,59	2,99	-	-	-	-	-	-	
	NOŚNOŚĆ (SGN)	Ssanle		4,28	2,74	1,90	-	-	-	-	-	-	_
50		Parcle		1,94	0,99	0,38	-	-	-	-	-	-	
	SZTYWNOŚĆ (SGU)	Ssanle		2,04	1,20	0,58	-	-	-	-	-	-	-
	a (mm)						4	0					
	Nothood con	Parcie		5,53	4,43	3,69	3,16	-	-	-	-	-	-
	NOŚNOŚĆ (SGN)	Ssanle		5,15	3,30	2,29	1,68	-	-	-	-	-	-
60	CZTOMAJOĆĆ (CCIA	Parcle		2,70	1,63	0,91	0,41	-	-	-	-	-	-
	SZTYWNOŚĆ (SGU)	Ssanle		2,79	1,73	1,09	0,60	-	-	-	-	-	-
	a (mm)						6	0					
	sandsandd arms	Parcie		6,47	5,17	4,31	3,70	2,91	-	-	-	-	-
70	NOŚNOŚĆ (SGN)	Ssanle		6,02	3,85	2,68	1,97	1,51	-	-	-	-	-
	emplainté cels	Parcle		3,44	2,20	1,42	0,84	0,43	-	-	-	-	-
	SZTYWNOŚĆ (SGU)	Ssanle		3,44	2,30	1,50	1,00	0,60	-	-	-	-	-
	a (mm)						6	0					
	NOŚNOŚĆ (SGN)	Parcle		6,84	5,47	4,56	3,91	3,33	2,63	2,13	-	-	-
		Ssanle		6,89	4,41	3,06	2,25	1,72	1,36	1,10	-	-	-
80	SZTYWNOŚĆ (SGU)	Parcle		4,10	2,79	1,85	1,25	0,77	0,43	0,21	-	-	-
		Ssanle		4,10	2,81	1,94	1,33	0,93	0,59	0,35	-	-	-
	a (mm)						6	0					
	NOŚNOŚĆ (SGN)	Parcle		6,06	4,85	4,04	3,46	3,03	2,69	2,42	2,20	1,86	-
	NOSINOSC (SGIN)	Ssanle		7,94	5,52	3,83	2,82	2,16	1,70	1,38	1,14	0,96	-
100	SZTYWNOŚĆ (SGU)	Parcie		5,45	3,83	2,77	1,96	1,40	1,02	0,67	0,42	0,25	-
	3211441403C (3G0)	Ssante		5,45	3,83	2,77	2,05	1,48	1,08	0,80	0,56	0,37	-
	a (mm)						6	0					
	NOŚNOŚĆ (SGN)	Parcle		4,86	3,89	3,24	2,78	2,43	2,16	1,94	1,77	1,62	1,4
	THOSPHOSE (SCHI)	Ssanle		9,54	6,63	4,61	3,38	2,59	2,05	1,66	1,37	1,15	0,9
120	SZTYWNOŚĆ (SGU)	Parcle		6,83	4,88	3,59	2,70	2,02	1,50	1,13	0,86	0,60	0,4
		Ssanle		6,83	4,88	3,59	2,70	2,08	1,57	1,19	0,92	0,71	0,5
	a (mm)	_					6						
	NOŚNOŚĆ (SGN)	Parcle		5,46	4,37	3,64	3,12	2,73	2,43	2,19	1,99	1,82	1,6
		Ssanle		9,93	6,35	4,41	3,24	2,48	1,96	1,59	1,31	1,10	0,9
150	SZTYWNOŚĆ (SGU)	Parcle		8,94	6,49	4,86	3,73	2,90	2,29	1,79	1,39	1,10	0,87
	,	Ssanle		8,94	6,49	4,86	3,73	2,90	2,29	1,84	1,46	1,16	0,93
	a (mm)						6	0					

3.5. Dobór rygli ściennych

Obciążenia

Obciążenie	Obciążenie charakterystyczne k	γ	F	Obciążenie obliczeniowe d [kN/m²]					
	[kN/m²]		≤ 1	>1	≤ 1				
Stałe g									
Płyta ścienna Kingspan KS1000 AWP	0,11	1,35	1,0	0,15	0,14				
	Zmienne q								
Wiatr (ssanie)	0,756	1,5	0	1,13	0				
Wiatr (parcie)	0,447	1,5	0	0,67	0				

obciążenie obliczeniowe: $E_d=0.15+1.13=1.28\frac{kN}{m^2}$

obciążenie charakterystyczne: $E_k=0.11+0.756=0.87 rac{kN}{m^2}$

Przyjęto rygle stalowe zimnogięte BP/Z400x85/75x3.00 firmy Pruszyński w rozstawie 1,5 m

profil: Z

wysokość: $H = 400 \, mm$

szerokość półki dolnej: $B_d=75\ mm$

szerokość półki górnej: $B_g=85\ mm$

grubość blachy: t = 3 mm

stal: S350

długość: 12 m

dopuszczalne obciążenie:

TABELA NOŚNOŚCI ZETOWNIKÓW

dla belki 2-przęsłowej (gatunek stali S350) (nośność wyliczona zgodnie z wyszczególnionymi w opisie

uwagami i przyjętymi warunkami)

ROZPIĘTOŚĆ 12,0 m

Oznoszonia	Masa	Tożnik	Obci	ążenie Qd [kN/mb2] pr	zy rozstawi	e [m]	Obcia	żenie [kN	/mbb]
Oznaczenie	[kN/mb]	Tężnik	1.00	1.50	2.00	2.50	3.00	Qd + N=10	Wd	q L/200
BP/Z250x75/65x1.50	5.39	3	0.50	0.34	0.25	0.20	0.17	0.42	-0.79	0.50
x2.00	7.13	3	0.78	0.52	0.39	0.31	0.26	0.69	-1.17	0.78
x2.50	8.84	3	1.03	0.69	0.52	0.41	0.34	0.95	-1.51	1.03
x3.00	10.57	3	1.26	0.84	0.63	0.51	0.42	1.15	-1.83	1.26
BP/Z280x75/65x1.50	5.77	3	0.57	0.38	0.29	0.23	0.19	0.45	-0.89	0.57
x2.00	7.64	3	0.85	0.56	0.42	0.34	0.28	0.75	-1.29	0.85
x2.50	9.48	3	1.13	0.75	0.56	0.45	0.38	1.04	-1.68	1.13
x3.00	11.34	3	1.41	0.94	0.71	0.57	0.47	1.31	-2.08	1.41
BP/Z300x75/65x1.50	6.06	3	0.62	0.42	0.31	0.25	0.21	0.50	-0.97	0.62
x2.00	8.02	3	0.91	0.61	0.46	0.37	0.30	0.81	-1.39	0.91
x2.50	9.95	3	1.21	0.81	0.60	0.48	0.40	1.11	-1.81	1.21
x3.00	11.91	3	1.53	1.02	0.77	0.61	0.51	1.43	-2.27	1.53
BP/Z350x75/65x1.50	6.70	3	0.74	0.49	0.37	0.29	0.25	0.59	-1.12	0.74
x2.00	8.88	3	1.06	0.71	0.53	0.42	0.35	0.93	-1.61	1.06
x2.50	11.03	3	1.39	0.93	0.70	0.56	0.46	1.28	-2.10	1.39
x3.00	13.20	3	1.77	1.18	0.89	0.71	0.59	1.66	-2.65	1.77
BP/Z400x75/65x1.50	7.35	3	0.84	0.56	0.42	0.34	0.28	0.68	-1.26	0.84
x2.00	9.75	3	1.22	0.81	0.61	0.49	0.41	1.08	-1.84	1.22
x2.50	12.11	3	1.60	1.06	0.80	0.64	0.53	1.48	-2.44	1.60
x3.00	14.50	3	2.03	1.36	1.02	0.81	0.68	1.88	-3.03	2.03
BP/Z280x85/75x1.50	6.08	3	0.56	0.37	0.28	0.22	0.19	0.50	-0.88	0.56
x2.00	8.05	3	0.98	0.65	0.49	0.39	0.33	0.90	-1.46	0.98
x2.50	10.00	3	1.35	0.90	0.68	0.54	0.45	1.26	-2.00	1.35
x3.00	11.91	3	1.69	1.13	0.84	0.68	0.56	1.59	-2.48	1.69
BP/Z350x85/75x1.50	6.99	3	0.70	0.46	0.35	0.28	0.23	0.61	-1.08	0.70
x2.00	9.26	3	1.23	0.82	0.62	0.49	0.41	1.14	-1.81	1.23
x2.50	11.51	3	1.70	1.13	0.85	0.68	0.57	1.60	-2.51	1.70
x3.00	13.72	3	2.13	1.42	1.07	0.85	0.71	2.03	-3.13	2.13
BP/Z400x85/75x1.50	7.64	3	0.79	0.53	0.40	0.32	0.26	0.70	-1.21	0.79
x2.00	10.13	3	1.41	0.94	0.71	0.56	0.47	1.31	-2.07	1.41
x2.50	12.59	3	2.01	1.34	1.00	0.80	0.67	1.87	-2.94	2.01
x3.00	15.02	3	2.47	1.65	1.24	0.99	0.82	2.34	-3.60	2.47

4.Suwnica

4.1. Dobór suwnicy

Przyjęto suwnicę pomostową dwudźwigarową SPe1H produkowaną przez Fabrykę Urządzeń Dźwigarowych w Mińsku Mazowieckim.

A_m	-	A_{min} [mm]	B [mm]	D [mm]	E [mm]	F [mm]	H [mm]	R [mm]	<i>R</i> ₁ [mm]	Z [mm]	S [mm]	P [mm]	L [m]	$H_{p,max}$ [m]
223	15	1780	195	2805	1000	1100	110	4500	2300	900	630	560	23,5	16,1

Parametry techniczne suwnicy

ciężar własny suwnicy $Q_c=230\;kN$

udźwig suwnicy $Q_h=125\ kN$

nacisk pionowy koła $Q_r=141\ kN$

rozpiętość mostu suwnicy L=23.5~m

rozstaw kół a = 4,5 m

najmniejsza odległość między położeniem haka, a osią toru jezdnego $e_{min}=1,1\ m$

klasa wykorzystania: U₄

klasa podnoszenia: HC2

prędkość podnoszenia: $v_h = 0.2 \frac{m}{s}$

ciężar własny suwnicy $G_c=230~kN$

ciężar własny wózka suwnicy $G_t = 30 \ kN$

liczba kół suwnicy na jednym torze n=2

liczba torów jezdnych $n_r=2$

liczba kół napędzanych $m_w=2$

4.2. Obciążenia od suwnicy

Pionowe naciski kół suwnicy

Minimalne oddziaływanie kół suwnicy (bez ładunku przy maksymalnym zbliżeniu wózka do lewego toru)

$$Q_{r,min} = \frac{\varphi_1(G_c - G_t)}{2n} + \frac{\varphi_1G_t(L - e_{min})}{nL}$$

współczynnik dynamiczny do obciążeń pionowych: przyjęto $\varphi_1=1,1$

$$Q_{r,min} = \frac{\varphi_1(G_c - G_t)}{2n} + \frac{\varphi_1G_t(L - e_{min})}{nL} = \frac{1,1*(230 - 30)}{2*2} + \frac{1,1*30*(23,5 - 1,1)}{2*23,5} = 70,73 \ kN$$

Minimalne dopełniające oddziaływanie kół suwnicy (bez ładunku przy maksymalnym zbliżeniu wózka do lewego toru)

$$Q_{r,(min)} = \frac{\varphi_1(G_c - G_t)}{2n} + \frac{\varphi_1G_te_{min}}{nL}$$

współczynnik dynamiczny do obciążeń pionowych dla wartości dopełniających: przyjęto $\varphi_1=1,0$

$$Q_{r,(min)} = \frac{\varphi_1(G_c - G_t)}{2n} + \frac{\varphi_1G_te_{min}}{nL} = \frac{1,0*(230 - 30)}{2*2} + \frac{1,0*30*1,1}{2*23.5} = 50,70 \text{ kN}$$

Maksymalne oddziaływanie kół suwnicy (z ładunkiem przy maksymalnym zbliżeniu wózka do lewego toru)

$$Q_{r,max} = Q_{r,min} + \frac{\varphi_2 * Q_{h,nom} * (L - e_{min})}{n * L}$$

współczynnik dynamiczny do obciążeń pionowych

$$\varphi_2 = \varphi_{2,min} + \beta_2 * v_h$$

Według PN-EN 1991-1-3:2009 dla klasy podnoszenia HC2 $\beta_2=0.34$ i $\varphi_{2,min}=1.10$

$$\varphi_2 = \varphi_{2,min} + \beta_2 * v_h = 1.10 + 0.34 * 0.2 = 1.17$$

$$Q_{r,max} = Q_{r,min} + \frac{\varphi_2 * Q_{h,nom} * (L - e_{min})}{n * L} = 70,73 + \frac{1,17 * 125 * (23,5 - 1,1)}{2 * 23,5} = 140,43 \ kN$$

Maksymalne oddziaływanie dopełniające kół suwnicy (z ładunkiem przy maksymalnym zbliżeniu wózka do lewego toru)

$$Q_{r,(max)} = Q_{r,(min)} + \frac{\varphi_2 * Q_{h,nom} * e_{min}}{n * L} = 50,70 + \frac{1,17 * 125 * 1,1}{2 * 23,5} = 54,12 \text{ kN}$$

Siły poziome

Siły poziome podłużne (równoległe do toru)

$$H_{L,i} = \varphi_5 * K * \frac{1}{n_r}$$

siła napędowa suwnicy $K=K_1+K_2=\mu*\sum Q_{r,min}$

współczynnik tarcia (stal o stal) $\mu=0.2$

$$\sum Q_{r,min} = m_w * Q_{r,min} = 2 * 70,73 = 141,46 \ kN$$

$$K = K_1 + K_2 = \mu * \sum Q_{r,min} = 0.2 * 141,46 = 28,29 \text{ kN}$$

współczynnik dynamiczny do obciążeń poziomych: przyjęto $\varphi_5=1,3$ (jak dla układów, w których siły zmieniają się łagodnie)

$$H_{L,i} = \varphi_5 * K * \frac{1}{n_r} = 1,3 * 28,29 * \frac{1}{2} = 18,39 \ kN$$

Siły poziome poprzeczne (prostopadłe do toru)

$$H_{T,1} = \varphi_5 * \xi_2 * \frac{M}{q}$$

$$H_{T,2} = \varphi_5 * \xi_1 * \frac{M}{a}$$

$$\xi_1 = \frac{\sum Q_{r,max}}{\sum Q_{r,max}}$$

$$\sum Q_{r,max} = 2 * Q_{r,max} = 2 * 140,43 = 280,86 \, kN$$

$$\sum_{r} Q_r = 2 * (Q_{r,max} + Q_{r,(max)}) = 2 * (140,43 + 54,12) = 389,10 \text{ kN}$$

$$\xi_1 = \frac{\sum Q_{r,max}}{\sum Q_r} = \frac{280,86}{389,10} = 0,72$$

$$\xi_2 = 1 - \xi_1 = 1 - 0.72 = 0.28$$

moment napędu $M = K * L_s$

$$L_s = (\xi_1 - 0.5)L = (0.72 - 0.5) * 23.5 = 5.17 m$$

$$M = K * L_s = 28,29 * 5,17 = 146,26$$
 kNm

$$H_{T,1} = \varphi_5 * \xi_2 * \frac{M}{a} = 1.3 * 0.28 * \frac{146,26}{4.5} = 11.83 \ kN$$

$$H_{T,2} = \varphi_5 * \xi_1 * \frac{M}{a} = 1.3 * 0.72 * \frac{146,26}{4,5} = 30,42 \text{ kN}$$

4.3. Dobór szyny podsuwnicowej

Przyjęto szynę podsuwnicową Rialex A75

Sekcja	Oznakowanie	Rozmiar główny	Moment bezwładności	Wskaźnik przekroju	Wytrzymałość na rozciąganie	Waga
		н в Р А	Jx cm4	Wx cm3	Kg/mm2	Kg/m
1	A 45	55 45 125 24	90	27,0	70	22,1
2	A 55	65 55 150 31	178	45,6	70	31,8
3	A 65	75 65 175 38	319	71,4	70	43,1
4	A 75	85 75 200 45	531	105,4	70	56,2
5	A 100	95 100 200 60	858	162,2	70	74,3
6	A 120	105 120 220 72	1361	235,1	70	100,0
7	A 150	150 150 220 80	4373	565,7	70	150,3

 $g_{szyny} = 0.56 * 12 = 6.72 \ kN$

4.4. Statyka belki podsuwnicowej

Wstępnie przyjęto belkę podsuwnicową kablobetonową KBP-120 o ciężarze własnym $g_{bp}=150\ kN$ długość belki podsuwnicowej $L_{eff}=12\ m$ rozstaw kół suwnicy $a=4,5\ m$

Obciążenie	Obciążenie charakterystyczne k [kN]	γ	F	Obciążenie obliczeniowe d [kN]						
	[KN]	>1 ≤ 1		>1	≤ 1					
Stałe g										
Belka podsuwnicowa KBP- 120	150	1,35	1,0	202,5	150					
Szyna Rialex A75	6,72	1,35	1,0	9,07	6,72					
Σ	156,72	-	-	211,57	156,72					
	Zmienne q									
Oddziaływanie suwnicy $Q_{r,max}$	140,43	1,5	0	210,65	0					

$$a = 4.5 m < 0.586 L_{eff} = 7.03 m$$

$$M_{Ed}^{max} = \frac{Q_{r,max,d}}{8*L_{eff}}*\left(2*L_{eff} - a\right)^2 = \frac{210,65}{8*12}*\left(2*12 - 4,5\right)^2 = 834,37\;kNm$$

$$a = 4.5 m < L_{eff} = 12 m$$

$$V_{Ed}^{max} = Q_{r,max,d} * \frac{2L_{eff} - a}{L_{eff}} = 210,65 * \frac{2 * 12 - 4,5}{12} = 342,31 \, kN$$

Przyjęto belkę podsuwnicową kablobetonową KBP 120/II

długość: 12 m

wysokość: 1,2 m

dopuszczalny moment zginający wywołany obciążeniem suwnicą (bez ciężaru własnego belki): $M_{max}=862\ kNm$

dopuszczalna siła tnąca wywołana obciążeniem suwnicą (bez ciężaru własnego belki): $V_{max}=443\ kN$

ciężar własny: $g = 150 \ kN$

5. Obliczenia statyczne układu poprzecznego hali

Schemat statyczny układu poprzecznego

Schemat statyczny słupa środkowego

Kombinacje obciążeń (PN-EN 1990)

6.10a

$$\sum_{j \geq 1} \gamma_{G,j} G_{k,j} \, "+ "\gamma_{Q,1} \Psi_{0,1} Q_{k,1} "+ " \sum_{i > 1} \gamma_{Q,i} \Psi_{0,i} Q_{k,i}$$

 $\max \gamma_{G,j} = 1,35$

$$min \gamma_{G,j} = 1.0$$

6.10b

$$\sum_{j\geq 1} \xi_j \gamma_{G,j} G_{k,j} "+" \gamma_{Q,1} Q_{k,1}" +" \sum_{i\geq 1} \gamma_{Q,i} \Psi_{0,i} Q_{k,i}$$

$$\max \xi_j \gamma_{G,j} = 1,15$$

$$\min \xi_j \gamma_{G,j} = 1.0$$

$$\gamma_Q = 1.5$$

$$\mathsf{śnieg}\,\Psi_0=0.5$$

wiatr
$$\Psi_0 = 0.6$$

suwnica
$$\Psi_0 = 1.0$$

Zebranie obciążeń

Obciążenia stałe – dach

Kombinacja 6.10a

Obciążenie	Obciążenie charakterystyczne k [kN/m]	γ	F	Obciążenie obliczeniowe d [kN/m]	
	[KN/111]	>1	≤ 1	>1	≤ 1
Płyta dachowa Kingspan KS1000 X- DEK $0.16 \frac{kN}{m^2} * 12m$	1,92	1,35	1,0	2,59	1,92
Nawa niższa Płatew strunobetonowa Consolis P-200/600/12 $\frac{3,00\frac{kN}{m}}{2m}*12m$	18,00	1,35	1,0	24,30	18,00
Nawa wyższa Płatew strunobetonowa Consolis P-200/600/12 $\frac{3,00\frac{kN}{m}}{5m}*12m$	7,20	1,35	1,0	9,72	7,20
Nawa niższa Dźwigar dachowy strunobetonowy Consolis I-500/1500/20,5	8,70	1,35	1,0	11,75	8,70
Nawa wyższa Dźwigar dachowy strunobetonowy Consolis I-500/1350/25	8,25	1,35	1,0	11,14	8,25

Nawa wyższa

max:
$$2,59 + 9,72 + 11,14 = 23,45 \frac{kN}{m}$$

min:
$$1,92 + 7,20 + 8,25 = 17,37 \frac{kN}{m}$$

Nawa niższa

max:
$$2,59 + 24,30 + 11,75 = 38,64 \frac{kN}{m}$$

min:
$$1,92 + 18,00 + 8,70 = 28,62 \frac{kN}{m}$$

Kombinacja 6.10b

Obciążenie	Obciążenie charakterystyczne k	γ	F	Obciążenie obliczeniowe d [kN/m]	
	[kN/m]	>1	≤ 1	>1	≤ 1
Płyta dachowa Kingspan KS1000 X- DEK $0,16 \frac{kN}{m^2} * 12m$	1,92	1,15	1,0	2,21	1,92
Nawa niższa Płatew strunobetonowa Consolis P-200/600/12 $\frac{3,00\frac{kN}{m}}{2m}*12m$	18,00	1,15	1,0	20,70	18,00
Nawa wyższa Płatew strunobetonowa Consolis P-200/600/12 $\frac{3,00 \frac{kN}{m}}{5m} * 12m$	7,20	1,15	1,0	8,28	7,20
Nawa niższa Dźwigar dachowy strunobetonowy Consolis I-500/1500/20,5	8,70	1,15	1,0	10,01	8,70
Nawa wyższa Dźwigar dachowy strunobetonowy Consolis I-500/1350/25	8,25	1,15	1,0	9,49	8,25

Nawa wyższa

max:
$$2,21 + 8,28 + 9,49 = 19,98 \frac{kN}{m}$$

min:
$$1,92 + 7,20 + 8,25 = 17,37 \frac{kN}{m}$$

Nawa niższa

max:
$$2,21 + 20,70 + 10,01 = 32,92 \frac{kN}{m}$$

min:
$$1,92 + 18,00 + 8,70 = 28,62 \frac{kN}{m}$$

Obciążenia stałe – słupy i obudowa ścian

Kombinacja 6.10a

Obciążenie	Obciążenie charakterystyczne k [kN/m]	γ_F		Obciążenie obliczeniowe d [kN/m]	
		>1	≤ 1	>1	≤ 1
Płyta ścienna Kingspan KS1000 AWP $0,11rac{kN}{m^2}*12m$	1,32	1,35	1,0	1,78	1,32
Stup 0,4m x 0,7m $25 \frac{kN}{m^3} * 0,4m * 0,7m$	7,00	1,35	1,0	9,45	7,00
Stup 0,4m x 0,6m $25 \frac{kN}{m^3} * 0,4m * 0,6m$	6,00	1,35	1,0	8,10	6,00
Stup 0,4m x 0,4m $25 \frac{kN}{m^3} * 0,4m * 0,4m$	4,00	1,35	1,0	5,40	4,00

Kombinacja 6.10b

Obciążenie	Obciążenie charakterystyczne k [kN/m]	γ_F		Obciążenie obliczeniowe d [kN/m]	
	[/, 111]	>1	≤ 1	>1	≤ 1
Płyta ścienna Kingspan KS1000 AWP $0,11\frac{kN}{m^2}*12m$	1,32	1,15	1,0	1,52	1,32
Stup 0,4m x 0,7m $25 \frac{kN}{m^3} * 0,4m * 0,7m$	7,00	1,15	1,0	8,05	7,00
Stup 0,4m x 0,6m $25 \frac{kN}{m^3} * 0,4m * 0,6m$	6,00	1,15	1,0	6,90	6,00
Słup 0,4m x 0,4m $25 \frac{kN}{m^3} * 0,4m * 0,4m$	4,00	1,15	1,0	4,60	4,00

Obciążenia zmienne – śnieg

Obciążenie	Obciążenie charakterystyczne k	γ_F		Obciążenie obliczeniowe d [kN/m]		
	[kN/m]	>1	≤ 1	>1	≤ 1	
S2 Snieg w obrębie worka Snieżnego $3,6 \frac{kN}{m^2} * 12m$	43,20	1,5	0	64,80	0	
\$1 \$\text{Snieg w pozostałej części} \\ 0.72 \frac{kN}{m^2} * 12m	8,64	1,5	0	12,96	0	

Obciążenia zmienne – wiatr

Obciążenie	Obciążenie charakterystyczne k γ/		'F	Obciążenie obliczeniowe d [kN/m]			
	[KIV/III]	>1	≤ 1	>1	≤ 1		
Wiatr od strony nawy wyższej							
Pole G $-0.756 \frac{\text{kN}}{\text{m}^2} * 12m$	-9,07	1,5	0	-13,61	0		
Pole H $-0.441 \frac{\text{kN}}{\text{m}^2} * 12m$	-5,29	1,5	0	-7,94	0		
Pole I $-0.126 \frac{\text{kN}}{\text{m}^2} * 12m$	-1,51	1,5	0	-2,27	0		
Pole D $0,447 \frac{\text{kN}}{\text{m}^2} * 12m$ Pole E	5,36	1,5	0	8,04	0		
Pole E $-0.202 \frac{\text{kN}}{\text{m}^2} * 12m$	-2,42	1,5	0	-3,63	0		
	Wiatr od strony nawy	niższ	ej				
Pole G $-0.756 \frac{\text{kN}}{\text{m}^2} * 12m$	-9,07	1,5	0	-13,61	0		
Pole H $-0.441 \frac{\text{kN}}{\text{m}^2} * 12m$	-5,29	1,5	0	-7,94	0		
Pole I $-0.126 \frac{\text{kN}}{\text{m}^2} * 12m$	-1,51	1,5	0	-2,27	0		
Pole D $0,411 \frac{\text{kN}}{\text{m}^2} * 12m$	4,93	1,5	0	7,40	0		
Pole E $-0.176 \frac{\text{kN}}{\text{m}^2} * 12m$	-2,11	1,5	0	-3,17	0		
Wiatr od czoła							
Pole H $-0.441 \frac{kN}{m^2} * 12m$	-5,29	1,5	0	-7,94	0		
Pole B $-0.470 \frac{\text{kN}}{\text{m}^2} * 12m$	-5,64	1,5	0	-8,46	0		

Obciążenia zmienne – suwnica

Obciążenie	Obciążenie charakterystyczne k [kN]	γ_F		Obciążenie obliczeniowe d [kN]		
	[884]	>1	≤ 1	>1	≤ 1	
	Stałe g					
Belka podsuwnicowa P70 KBP-120/II	150	1,35	1,0	202,5	150	
Szyna Rialex A75	6,72	1,35	1,0	9,07	6,72	
Σ	156,72	-	-	211,57	156,72	
Zmienne q						
Oddziaływanie suwnicy $Q_{r,max}$	140,43	1,5	0	210,65	0	
Oddziaływanie suwnicy dopełniające $Q_{r,(max)}$	54,12	1,5	0	81,18	0	
Siła pozioma H _{T,1}	11,83	1,5	0	17,75	0	
Siła pozioma H _{T,2}	30,42	1,5	0	45,63	0	

$$V_{d,max} = 211,57 + 210,65 = 422,22 \, kN$$

$$V_{d,(\text{max})} = 211,57 + 81,18 = 292,75 \ kN$$

$$H_{T,1}=17,75\;kN$$

$$H_{T,2} = 45,63 \ kN$$

Wyniki obliczeń

Kombinacja 6.10a

Cabanat								P	rzekroj	e słupa								
Schemat obciążenia		1			2			3			4			5			6	
Obciążenia	М	Ν	V	М	N	V	М	N	V	М	N	V	М	N	V	М	N	V
							Ob	ciążenia	stałe -	dach								
1	0,80	587,47	-14,40	-99,99	587,47	-14,40	22,22	293,16	-2,39	19,82	293,16	-2,39	49,14	293,14	-2,39	39,57	293,14	-2,39
2	0,49	690,47	-20,27	-141,37	690,47	-20,27	28,77	293,10	-3,70	25,07	293,10	-3,70	54,38	293,08	-3,70	39,56	293,08	-3,70
3	0,37	511,43	-15,01	-104,71	511,43	-15,01	21,31	217,11	-2,74	18,57	217,11	-2,74	40,28	217,09	-2,74	29,31	217,09	-2,74
4	0,07	614,43	-20,88	-146,09	614,43	-20,88	27,86	217,05	-4,05	23,81	217,05	-4,05	45,52	217,03	-4,05	29,30	217,03	-4,05
						Ob	ciążenia	stałe - sł	upy i o	budowa	ścian							
5	2,15	117,18	-0,15	1,09	38,57	-0,15	-0,85	38,58	-0,40	-1,25	28,70	-0,40	1,62	28,70	-0,40	0,00	0,00	-0,40
6	1,59	86,81	-0,11	0,80	28,57	-0,11	-0,63	28,59	-0,30	-0,93	21,27	-0,30	1,20	21,26	-0,30	0,00	0,00	-0,30
							Obci	ążenia zr	nienne	- śnieg								
7	0,52	294,93	-6,28	-43,41	294,93	-6,28	10,40	161,83	-0,95	9,45	161,83	-0,95	25,63	161,82	-0,95	21,85	161,82	-0,95
8	-16,06	529,02	-16,94	-134,61	529,02	-16,94	28,13	161,68	-4,50	23,64	161,88	-4,50	39,81	161,65	-4,50	21,82	161,65	-4,50
							Obci	ążenia zr	nienne	- wiatr								
9	-274,92	-77,77	18,31	-146,78	-77,77	18,31	-154,31	-55,56	39,54	-116,58	-55,56	35,91	-122,12	-55,61	35,91	-7,51	-55,61	21,39
10	281,56	-68,13	-25,18	105,34	-68,13	-25,18	88,27	-28,42	-36,35	55,62	-28,42	-28,95	52,77	-28,38	-28,95	-3,83	-28,38	0,65
11	-74,61	-184,12	28,47	124,71	-184,12	28,47	91,27	-101,33	2,19	89,23	-101,33	-6,27	79,09	-101,31	-6,27	-13,68	-101,31	-40,11
							Obcią	żenia zm	ienne -	suwnica	1							
12	-81,29	294,33	25,63	98,12	294,33	25,63	83,50	294,18	28,69	112,19	294,18	28,69	-114,55	1,44	28,69	0,19	1,44	28,69
13	-25,57	423,12	34,38	215,07	423,12	34,38	193,70	423,52	26,71	220,42	423,52	26,71	-106,68	1,33	26,71	0,18	1,33	26,71
14	66,68	292,89	14,60	168,86	292,89	14,60	153,83	293,62	0,42	154,25	293,62	0,42	-72,56	0,90	18,17	0,12	0,90	18,17
15	-229,27	295,76	36,67	27,43	295,76	36,67	13,18	294,75	56,95	70,13	294,75	56,95	-156,54	1,98	39,20	0,27	1,98	39,20
16	-223,77	424,07	57,60	179,42	424,07	57,60	158,54	423,45	70,25	228,79	423,45	70,25	-98,31	1,23	24,62	0,17	1,23	24,62
17	172,63	422,16	11,16	250,73	422,16	11,16	228,87	423,59	-16,82	212,05	423,59	-16,82	-115,05	1,42	28,81	0,19	1,42	28,81

						-		- Przekroje	e słu	pa							
	1 2		3		4			5			6						
	M_{max}^{+}	344,78		M _{max} +	226,66		M _{max} +	325,84		M _{max} +	318,29		M _{max} +	123,36		M _{max} +	50,77
1	N_{Tow}	1233,40	1	N_{Tow}	937,73	1	N_{Tow}	765,32	1	N_{Tow}	757,96	1	N_{Tow}	341,82	1	N_{Tow}	376,03
	V_{Tow}	-21,64		V_{Tow}	13,69		V_{Tow}	-21,76		V_{Tow}	60,24		V_{Tow}	-10,11		V_{Tow}	35,94
	M _{min}	-400,59		M_{min}	-300,66		M_{min}	-72,13		M _{min}	-52,63		M _{min}	-188,33		M_{min}	21,09
2	N_{Tow}	1214,85	2	N_{Tow}	860,85	2	N_{Tow}	222,35	2	N_{Tow}	212,47	2	N_{Tow}	206,96	2	N_{Tow}	156,24
	V_{Tow}	18,20		V_{Tow}	-18,47		V_{Tow}	20,58		V_{Tow}	18,41		V_{Tow}	57,71		V_{Tow}	-28,42
	N _{max}	1496,23		N _{max}	1417,62	·	N _{max}	836,25		N _{max}	826,39		N _{max}	404,73		N _{max}	376,03
3	M_{Tow}	-229,16	3	M_{Tow}	-28,17	3	M_{Tow}	255,44	3	M_{Tow}	242,44	3	M_{Tow}	-92,97	3	M_{Tow}	50,77
	V_{Tow}	28,71		V_{Tow}	28,71		V_{Tow}	-20,09		V_{Tow}	-21,86		V_{Tow}	35,94		V_{Tow}	35,94

Kombinacja 6.10b

Cabanast								.———P	rzekroj	e słupa								
Schemat		1			2			3			4			5			6	
obciążenia	М	N	٧	М	N	V	М	N	V	М	N	V	М	N	V	М	N	V
							Ok	ciążenia	stałe -	dach								
1	0,55	544,07	-14,75	-102,68	544,07	-14,75	21,70	249,76	-2,59	19,11	249,76	-2,59	44,08	249,74	-2,59	33,71	249,74	-2,59
2	0,42	588,27	-17,27	-120,44	588,27	-17,27	24,51	249,73	-3,16	21,36	249,73	-3,16	46,33	249,71	-3,16	33,71	249,71	-3,16
3	0,37	511,43	-15,01	-104,71	511,43	-15,01	21,31	217,11	-2,74	18,57	217,11	-2,74	40,28	217,09	-2,74	29,31	217,09	-2,74
4	0,24	555,63	-17,53	-122,47	555,63	-17,53	24,12	217,08	-3,31	20,82	217,08	-3,31	42,53	217,06	-3,31	29,30	217,06	-3,31
						Ob	ciążenia	stałe - s	upy i o	budowa	ścian							
5	1,83	99,86	-0,13	0,93	32,87	-0,13	-0,72	32,88	-0,35	-1,07	24,46	-0,35	1,38	24,46	-0,35	0,00	0,00	-0,35
6	1,59	86,81	-0,11	0,80	28,57	-0,11	-0,63	28,59	-0,30	-0,93	21,27	-0,30	1,20	21,26	-0,30	0,00	0,00	-0,30
							Obci	ążenia zr	nienne	- śnieg								
7	0,52	294,93	-6,28	-43,41	294,93	-6,28	10,40	161,83	-0,95	9,45	161,83	-0,95	25,63	161,82	-0,95	21,85	161,82	-0,95
8	-16,06	529,02	-16,94	-134,61	529,02	-16,94	28,13	161,68	-4,50	23,64	161,88	-4,50	39,81	161,65	-4,50	21,82	161,65	-4,50
_							Obci	ążenia zı	nienne	- wiatr								
9	-274,92	-77,77	18,31	-146,78	-77,77	18,31	-154,31	-55,56	39,54	-116,58	-55,56	35,91	-122,12	-55,61	35,91	-7,51	-55,61	21,39
10	281,56	-68,13	-25,18	105,34	-68,13	-25,18	88,27	-28,42	-36,35	55,62	-28,42	-28,95	52,77	-28,38	-28,95	-3,83	-28,38	0,65
11	-74,61	-184,12	28,47	124,71	-184,12	28,47	91,27	-101,33	2,19	89,23	-101,33	-6,27	79,09	-101,31	-6,27	-13,68	-101,31	-40,11
_						-	Obcią	żenia zm	ienne -	suwnica	ì					_		
12	-81,29	294,33	25,63	98,12	294,33	25,63	83,50	294,18	28,69	112,19	294,18	28,69	-114,55	1,44	28,69	0,19	1,44	28,69
13	-25,57	423,12	34,38	215,07	423,12	34,38	193,70	423,52	26,71	220,42	423,52	26,71	-106,68	1,33	26,71	0,18	1,33	26,71
14	66,68	292,89	14,60	168,86	292,89	14,60	153,83	293,62	0,42	154,25	293,62	0,42	-72,56	0,90	18,17	0,12	0,90	18,17
15	-229,27	295,76	36,67	27,43	295,76	36,67	13,18	294,75	56,95	70,13	294,75	56,95	-156,54	1,98	39,20	0,27	1,98	39,20
16	-223,77	424,07	57,60	179,42	424,07	57,60	158,54	423,45	70,25	228,79	423,45	70,25	-98,31	1,23	24,62	0,17	1,23	24,62
17	172,63	422,16	11,16	250,73	422,16	11,16	228,87	423,59	-16,82	212,05	423,59	-16,82	-115,05	1,42	28,81	0,19	1,42	28,81

			-				•	- Przekroje	e słu	pa		-	•	-	-	-	
	1 2				3			4			5			6			
	M _{max} +	456,83		M _{max} +	223,81		M _{max} +	321,58		M _{max} +	314,58		M _{max} +	146,71		M _{max} +	55,83
1	N_{Tow}	1145,43	1	N_{Tow}	888,63	1	N_{Tow}	721,95	1	N_{Tow}	714,59	1	N_{Tow}	253,69	1	N_{Tow}	413,54
	V_{Tow}	-32,04		V_{Tow}	13,36		V_{Tow}	-21,22		V_{Tow}	60,78		V_{Tow}	-12,03		V_{Tow}	35,31
	M_{min}^{-}	-510,39		M_{min}^{-}	-335,76		M _{min}	-133,72		M_{min}^{-}	-99,08		M_{min}^{-}	-188,33		M _{min}	15,62
2	N_{Tow}	1124,94	2	N_{Tow}	770,94	2	N_{Tow}	194,43	2	N_{Tow}	186,01	2	N_{Tow}	206,96	2	N_{Tow}	115,75
	V_{Tow}	28,87		V_{Tow}	-7,80		V_{Tow}	36,45		V_{Tow}	32,82		V_{Tow}	57,71		V_{Tow}	-43,72
	N _{max}	1641,22		N _{max}	1574,23		N _{max}	787,15		N _{max}	778,75		N _{max}	438,00		N _{max}	413,54
3	M _{Tow}	-237,58	3	M _{Tow}	-74,70	3	M _{Tow}	255,05	3	M _{Tow}	241,91	3	M _{Tow}	-85,45	3	M _{Tow}	55,83
	V_{Tow}	23,26		V_{Tow}	23,26		V_{Tow}	-20,24		V_{Tow}	-22,01		V_{Tow}	35,31		V_{Tow}	35,31

Przykładowe obliczenia dla przekroju 1

Kombinacja 6.10a

$$M_{max}^{+} = 0.80 + 2.15 + 0.5 * 0.52 + 0.6 * 281.56 + 1.0 * 172.63 = 344.78 \, kNm$$

 $N_{Tow} = 587.47 + 117.18 + 0.5 * 294.93 + 0.6 * (-68.13) + 1.0 * 422.16 = 1233.40 \, kN$
 $V_{Tow} = -14.40 + (-0.15) + 0.5 * (-6.28) + 0.6 * (-25.18) + 1.0 * 11.16 = -21.64 \, kN$

$$M_{min}^- = 0.07 + 1.59 + 0.5 * (-16.06) + 0.6 * (-274.92) + 1.0 * (-229.27) = -400.59 \ kNm$$
 $N_{Tow} = 614.43 + 86.81 + 0.5 * 529.02 + 0.6 * (-77.77) + 1.0 * 295.76 = 1214.85 \ kN$
 $V_{Tow} = -20.88 + (-0.11) + 0.5 * (-16.94) + 0.6 * 18.31 + 1.0 * 36.67 = 18.20 \ kN$

$$N_{max} = 690,47 + 117,18 + 0,5 * 529,02 + 0,6 * 0 + 1,0 * 424,07 = 1496,23 \, kN$$

 $M_{Tow} = 0,49 + 2,15 + 0,5 * (-16,06) + 0,6 * 0 + 1,0 * (-223,77) = -229,16 \, kNm$
 $V_{Tow} = -20,27 + (-0,15) + 0,5 * (-16,94) + 0,6 * 0 + 1,0 * 57,60 = 28,71 \, kN$

Kombinacja 6.10b

$$M_{max}^{+} = 0.55 + 1.83 + 281.56 + 0.5 * 0.52 + 1.0 * 172.63 = 456.83 \ kNm$$

 $N_{Tow} = 544.07 + 99.86 + (-68.13) + 0.5 * 294.93 + 1.0 * 422.16 = 1145.43 \ kN$
 $V_{Tow} = -14.75 + (-0.13) + (-25.18) + 0.5 * (-6.28) + 1.0 * 11.16 = -32.04 \ kN$

$$M_{min}^- = 0.24 + 1.59 + (-274.92) + 0.5 * (-16.06) + 1.0 * (-229.27) = -510.39 \, kNm$$

 $N_{Tow} = 555.63 + 86.81 + (-77.77) + 0.5 * 529.02 + 1.0 * 295.76 = 1124.94 \, kN$
 $V_{Tow} = -17.53 + (-0.11) + 18.31 + 0.5 * (-16.94) + 1.0 * 36.67 = 28.87 \, kN$

$$N_{max} = 588,27 + 99,86 + 529,02 + 0,6 * 0 + 1,0 * 424,07 = 1641,22 \, kN$$

 $M_{Tow} = 0,42 + 1,83 + (-16,06) + 0,6 * 0 + 1,0 * (-223,77) = -237,58 \, kNm$
 $V_{Tow} = -17,27 + (-0,13) + (-16,94) + 0,6 * 0 + 1,0 * 57,60 = 23,26 \, kN$

6. Wymiarowanie słupa

Beton: C35/45

$$f_{ck} = 35 MPa$$

$$f_{cd} = \frac{f_{ck}}{\gamma_c} = \frac{35}{1.4} = 25 MPa$$

Stal: B500SP

$$f_{vk} = 500 MPa$$

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{500}{1,15} = 434,78 MPa$$

Otulina

Klasa ekspozycji: XC3

Klasa konstrukcji: S4

$$c_{min,dur} = 25 \ mm$$

$$\Delta c_{dev} = 5 mm$$

$$c_{nom} = c_{min,dur} + \Delta c_{dev} = 25 + 5 = 30 \; mm$$

$$a = c_{nom} + \emptyset_s + \frac{1}{2}\emptyset = 30 + 8 + 12,5 = 50,5 \ mm$$

Przekrój 1 – Kombinacja 6.10b – M_{max}+

Wymiary

$$b = 0.4 m$$

$$h = 0.7 m$$

$$l = 7 m$$

Siły przekrojowe

$$M_{max} = 456,83 \ kNm$$

$$N_{Tow} = 1145,43 \ kN$$

Smukłość

$$\lambda = \frac{l_0}{i}$$

$$l_0 = 1.6 * l = 1.6 * 7 = 11.2 m$$

$$i = \sqrt{\frac{I}{A}}$$

$$I = \frac{bh^3}{12} = \frac{0.4 * 0.7^3}{12} = 0.01143 \, m^4$$

$$A = bh = 0.4 * 0.7 = 0.28 m^2$$

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{0,01143}{0,28}} = 0,20 \ m$$

$$\lambda = \frac{l_0}{i} = \frac{11,2}{0,20} = 56$$

Pełzanie

$$\begin{split} h_0 &= \frac{2*A_c}{u} \\ A_c &= b*h = 0,4*0,7 = 0,28 \, m^2 \\ u &= 2*0,4+2*0,7 = 2,2 \, m \\ h_0 &= \frac{2*A_c}{u} = \frac{2*0,28}{2,2} = 0,255 \, m = 255 \, mm \\ RH &= 50\% \\ t_0 &= 28 \, dni \end{split}$$

a) środowisko we wnętrzach RH = 50 %

$$\varphi_{ef} = \varphi(\infty, t_0) = 2,1$$

Smukłość graniczna

$$\lambda_{\lim} = \frac{20ABC}{\sqrt{n}}$$

$$A = \frac{1}{1 + 0.2 * \varphi_{ef}} = \frac{1}{1 + 0.2 * 2.1} = 0.7$$

$$B = 1,1$$

$$C = 0.7$$

$$n = \frac{N_{Ed}}{A_c * f_{cd}} = \frac{1145,43}{0,28 * 25000} = 0,16$$

$$\lambda_{\text{lim}} = \frac{20ABC}{\sqrt{n}} = \frac{20*0.7*1.1*0.7}{\sqrt{0.16}} = 26.95$$

$$\lambda_{
m lim} = 26,95 < \lambda = 56$$
 – Należy uwzględnić efekty II rzędu

Efekty II rzędu

$$e_s = \frac{M_{Ed}}{N_{Ed}} = \frac{456,83}{1145,43} = 0,399 m$$

$$e_i = \max \begin{cases} \frac{h}{30} = \frac{700}{30} = 23 \text{ mm} \\ 20 \text{ mm} = 28 \text{ mm} = 0,028 \text{ m} \\ \frac{l_0}{400} = \frac{11200}{400} = 28 \text{ mm} \end{cases}$$

$$e_0 = e_s + e_i = 0.399 + 0.028 = 0.427 m$$

$$M_{0,Ed} = N_{Ed} * e_0 = 1145,43 * 0,427 = 489,10 \text{ kNm}$$

$$N_B = \pi^2 \frac{EI}{l_0^2}$$

$$EI = K_c * E_{cd} * I_c + K_s * E_s * I_s$$

$$E_{cd} = \frac{E_{cm}}{\gamma_{CE}} = \frac{34}{1,2} = 28,33 \ GPa$$

$$E_{cd,eff} = \frac{E_{cd}}{1 + \varphi_{ef}} = \frac{28,33}{1 + 2,1} = 9,14 \text{ GPa}$$

$$I_c = \frac{bh^3}{12} = \frac{0.4 * 0.7^3}{12} = 0.01143 \, m^4$$

$$E_s = 200 GPa$$

$$I_s = \rho * b * h * \left(\frac{h}{2} - a\right)^2 = 0.02 * 0.4 * 0.7 * \left(\frac{0.7}{2} - 0.051\right)^2 = 0.0005006 m^4$$

$$K_{\rm s} = 1.0$$

$$K_c = \frac{k_1 k_2}{1 + \varphi_{ef}}$$

$$k_1 = \sqrt{\frac{f_{ck}}{20}} = \sqrt{\frac{35}{20}} = 1,32$$

$$k_2 = n \frac{\lambda}{170} = 0.16 * \frac{56}{170} = 0.053 < k_{2,max} = 0.20$$

$$K_c = \frac{k_1 k_2}{1 + \varphi_{ef}} = \frac{1{,}32 * 0{,}053}{1 + 2{,}1} = 0{,}023$$

$$EI = K_c * E_{cd} * I_c + K_s * E_s * I_s = 0.023 * 9140000 * 0.01143 + 1 * 200000000 * 0.0005006$$

= 102522.81 $kN * m^2$

$$N_B = \pi^2 \frac{EI}{l_0^2} = \pi^2 * \frac{102522,81}{11,2^2} = 8066,48 \, kN$$

$$M_{Ed} = M_{0,Ed} \left(1 + \frac{\beta}{\frac{N_B}{N_{Ed}} - 1} \right)$$

$$\beta = 1.0$$

$$M_{Ed} = M_{0,Ed} \left(1 + \frac{\beta}{\frac{N_B}{N_{Ed}} - 1} \right) = 489,10 * \left(1 + \frac{1}{\frac{8066,48}{1145,43} - 1} \right) = 570,05 \text{ kNm}$$

Zbrojenie

$$d = h - a = 0.7 - 0.051 = 0.649 m$$

$$e_0 = \frac{M_{Ed}}{N_{Ed}} = \frac{570,05}{1145,43} = 0,498 \, m$$

$$e_{s1} = e_0 + 0.5h - a = 0.498 + 0.5 * 0.7 - 0.051 = 0.797 m$$

$$e_{s2} = e_{s1} - d + a = 0.797 - 0.649 + 0.051 = 0.199 m$$

$$x_{eff} = x_{eff,lim} = \xi_{eff,lim} * d = 0.5 * 0.649 = 0.325 m$$

$$A_{s,min} = max \begin{cases} \frac{0,10N_{Ed}}{f_{yd}} = \frac{0,10*1145,43}{434780} = 0,0002634 \, m^2 = 2,63 \, cm^2 \\ 0,002*A = 0,002*0,28 = 0,00056 \, m^2 = 5,6 \, cm^2 \end{cases} = 5,6 \, cm^2$$

$$\begin{split} A_{s2} &= \frac{N_{Ed} * e_{s1} - f_{cd} * b * x_{eff} * \left(d - 0.5x_{eff}\right)}{f_{yd} * \left(d - a_{2}\right)} \\ &= \frac{1145,43 * 0,797 - 25000 * 0.4 * 0.325 * \left(0.649 - 0.5 * 0.325\right)}{434780 * \left(0.649 - 0.051\right)} \\ &= -0,002570 \, m^{2} < 0 \end{split}$$

$$A_{s2} = A_{s,min} = 5.6 \ cm^2$$

$$\begin{split} x_{eff} &= d - \sqrt{d^2 - \frac{2*\left[N_{Ed}e_{s1} - f_{yd}A_{s2}(d - a_2)\right]}{f_{cd}b}} \\ &= 0,649 \\ &- \sqrt{0,649^2 - \frac{2*\left[1145,43*0,797 - 434780*0,000628*(0,649 - 0,051)\right]}{25000*0,4}} \\ &= 0,128 \ m > 2a = 2*0,051 = 0,102 \ m \\ A_{s1} &= \frac{f_{cd}bx_{eff} - N_{Ed}}{f_{yd}} + A_{s2} = \frac{25000*0,4*0,128 - 1145,43}{434780} + 0,000628 = 0,0009375 \ m^2 \\ &= 9,38 \ cm^2 > A_{s,min} \end{split}$$

Wyniki dla pozostałych przekrojów i kombinacji oraz przyjęte zbrojenie

						D. J. /14				
<u> </u>						Przekrój 1		1	T	I
b [m]	h [m]	[m]		6.1	0a		A_{s1}	A _{s2}	A _{s1,przyjęte}	A _{s2,przyjęte}
[]	[]	[]	M _{max} ⁺	344,78	N_{Tow}	1233,40	5,6	5,6		
			M _{min} -	-400,59	N_{Tow}	1214,85	5,6	6,24		
			N _{max}	1496,23	M_{Tow}	-229,16	5,6	5,6		
0,4	0,7	7		6.1	0b				4Ø20=12,57	5Ø20=15,71
			M_{max}^{+}	456,83	N _{Tow}	1145,43	9,38	5,6		
			M_{min}^{-}	-510,39	N_{Tow}	1124,92	5,6	12,38		
			N_{max}	1641,22	M_{Tow}	-237,58	5,6	5,6		
						Przekrój 2				
b [m]	h [m]	[m]		6.1	0a		A _{s1}	A _{s2}	A _{s1,przyjęte}	A _{s2,przyjęte}
			M_{max}^{+}	226,66	N_{Tow}	937,73	5,6	5,6		
			M _{min} -	-300,66	N_{Tow}	860,85	5,6	5,6		
			N _{max}	1417,62	M_{Tow}	-28,17	5,6	5,6		
0,4	0,7	7		6.1	0b				4Ø20=12,57	5Ø20=15,71
			M _{max} ⁺	223,81	N_{Tow}	888,63	5,6	5,6		
			M_{min}^{-}	-335,76	N_{Tow}	770,94	5,6	5,99		
			N_{max}	1574,23	M_{Tow}	-74,70	5,6	5,6		
						Przekrój 3	}			
b [m]	h [m]	[m]		6.1	0a		A _{s1}	A _{s2}	A _{s1,przyjęte}	A _{s2,przyjęte}
			M_{max}^{+}	325,84	N_{Tow}	765,32	4,8	4,8		
			M _{min} -	-72,13	N_{Tow}	222,35	4,8	4,8		
			N_{max}	836,25	M_{Tow}	255,44	4,8	4,8		
0,4	0,6	1		6.1	0b				2Ø20=6,28	2Ø20=6,28
			M_{max}^{+}	321,58	N_{Tow}	721,95	4,8	4,8		
			M_{min}^{-}	-133,72	N_{Tow}	194,43	4,8	4,8		
			N_{max}	787,15	M_{Tow}	255,05	4,8	4,8		

						Przekrój	4			
b [m]	h [m]	[m]		6.1	0a		A _{s1}	A _{s2}	A _{s1,przyjęte}	A _{s2,przyjęte}
			M_{max}^+	318,29	N_{Tow}	757,96	4,8	4,8		
			M_{min}^{-}	-52,63	N_{Tow}	212,47	4,8	4,8		
			N_{max}	826,39	M_{Tow}	242,44	4,8	4,8		
0,4	0,6	1		6.10	0b				2Ø20=6,28	2Ø20=6,28
			M_{max}^+	314,58	N_{Tow}	714,59	4,8	4,8		
			M_{min}^{-}	-99,08	N_{Tow}	186,01	4,8	4,8		
			N_{max}	778,75	M_{Tow}	241,91	4,8	4,8		
						Przekrój	5			
b [m]	h [m]	 [m]		6.1	0a		A _{s1}	A _{s2}	A _{s1,przyjęte}	A _{s2,przyjęte}
			M_{max}^+	123,36	N_{Tow}	341,82	8,43	3,2		
			M_{min}^{-}	-188,33	N_{Tow}	206,96	3,2	14,21		
			N_{max}	404,73	M_{Tow}	-92,97	3,2	5,40		
0,4	0,4	4		6.10	0b				4Ø20=12,57	5Ø20=15,71
			M_{max}^{+}	146,71	N_{Tow}	253,69	10,46	3,2		
			M_{min}^{-}	-188,33	N_{Tow}	206,96	3,2	14,21		
			N_{max}	438,00	M_{Tow}	-85,45	3,2	4,63		
	1	r				Przekrój	6	T		
b [m]	h [m]	 [m]		6.1	0a		A_{s1}	A _{s2}	A _{s1,przyjęte}	A _{s2,przyjęte}
			M_{max}^+	50,77	N_{Tow}	376,03	3,2	3,2		
			M_{min}^{-}	21,09	N_{Tow}	156,24	3,2	3,2		
			N_{max}	376,03	M_{Tow}	50,77	3,2	3,2		
0,4	0,4	4		6.10	0b			1	4Ø20=12,57	5Ø20=15,71
			M_{max}^{+}	55,83	N_{Tow}	413,54	3,2	3,2		
			M_{min}^{-}	15,62	N_{Tow}	115,75	3,2	3,2		
			N_{max}	413,54	M_{Tow}	55,83	3,2	3,2		

Sprawdzenie ścinania

Przekrój 1 i 2

$$V_{Ed,max} = 32,04 \, kN$$

$$V_{Rd,c} = \left[C_{Rd,c} * k * (100\rho_l * f_{ck})^{\frac{1}{3}} + k_1 * \sigma_{cp}\right] * b_w * d > \left(\nu_{min} + k_1 * \sigma_{cp}\right) * b_w * d$$

$$C_{Rd,c} = \frac{0.18}{\gamma_c} = \frac{0.18}{1.4} = 0.129$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{649}} = 1,56 < 2,0$$

$$f_{ck} = 35 MPa$$

$$b = 0.4 m$$

$$d = 0,649 m$$

$$\rho_l = \frac{A_{sl}}{bd} = \frac{28,28}{40*64,9} = 0,01 < 0,02$$

$$v_{min} = 0.035 * k^{\frac{3}{2}} * \sqrt{f_{ck}} = 0.035 * 1.56^{\frac{3}{2}} * \sqrt{35} = 0.40$$

$$V_{Rd,c} = \left[C_{Rd,c} * k * (100\rho_l * f_{ck})^{\frac{1}{3}} + k_1 * \sigma_{cp} \right] * b_w * d$$

$$= \left[0.129 * 1.46 * (100 * 0.01 * 35)^{\frac{1}{3}} \right] * 400 * 649 = 175.28 \, kN$$

$$> \left(\nu_{min} + k_1 * \sigma_{cp} \right) * b_w * d = 0.40 * 0.4 * 0.649 = 104.25 \, kN$$

$$V_{Rd,c} = 175,28 \ kN > V_{Ed} = 32,04 \ kN$$

Wyniki dla pozostałych przekrojów

Przekrój	$V_{\text{Ed,max}}$		$V_{Rd,c}$
1 i 2	32,04	<	175,28
3 i 4	60,78	<	123,34
5 i 6	57,71	<	130,96

Strzemiona

Rozstaw maksymalny

$$s_{max} = min \begin{cases} 20\Phi = 20 * 25 = 500 \ mm \\ b = 400 \ mm \\ 400 \ mm \end{cases} = 400 \ mm$$

$$0.6 s_{max} = 0.6 * 400 = 240 mm$$

Przyjęto strzemiona dwucięte $\Phi 8$ w rozstawie 400 mm, na odcinkach równych h=700~mm powyżej i poniżej połączenia ze wspornikami oraz w strefie połączenia prętów podłużnych na zakład rozstaw zmniejszono do 240 mm.

Długość zakładu prętów

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{bd}}$$

$$\sigma_{sd} = f_{vd} = 434,78 \, MPa$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd}$$

$$\eta_1 = 1.0$$

$$\eta_2 = 1.0$$

$$f_{ctd} = \alpha_{ct} * \frac{f_{ctk,0,05}}{v_c} = 1.0 * \frac{2.2}{1.4} = 1.57 MPa$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd} = 2,25 * 1,0 * 1,0 * 1,57 = 3,53 MPa$$

$$\begin{split} l_{b,rqd} &= \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{bd}} = \frac{20}{4} * \frac{434,78}{3,53} = 615 \ mm \\ l_{bd} &= \alpha_1 * \alpha_2 * \alpha_3 * \alpha_5 * \alpha_6 * l_{b,rqd} = 1,0 * 0,7 * 1,0 * 1,0 * 1,0 * 615 = 430 \ mm \\ l_{b,min} &= \max\{0,3 * l_{b,rqd}; 15\phi; 200mm\} = \max\{185 \ mm; 300 \ mm; 200mm\} = 300 \ mm \\ l_{bd} &= 430 \ mm > l_{b,min} = 300 \ mm \end{split}$$

Przyjęto $l_{bd}=430\ m$

7. Wymiarowanie wsporników

Wspornik pod dźwigar dachowy nawy niższej

$$F_{v,Ed} = 705,92 \, kN$$

$$H_{Ed} = 0.2 * F_{v.Ed} = 0.2 * 705.92 = 141.18 \, kN$$

Sprawdzenie geometrii

$$\frac{a_F}{h} = \frac{215}{400} = 0.54$$

$$0.3 < \frac{a_F}{h} = 0.54 < 1.0$$

$$v = 0.6 * \left(1 - \frac{f_{ck}}{250}\right) = 0.6 * \left(1 - \frac{35}{250}\right) = 0.52$$

$$a_H = c_{nom} + \frac{1}{2}\emptyset = 30 + \frac{1}{2} * 20 = 40 \ mm$$

$$d = h - a = 400 - 40 = 360 \, mm$$

$$F_{v,Ed} = 705,92 \ kN < F_{v,Rd} = 0.5 * v * f_{cd} * b * d = 0.5 * 0.52 * 25000 * 0.4 * 0.36 = 936 \ kN$$

Wymiarowanie zbrojenia

Zbrojenie główne

$$A_{s} = \frac{1}{f_{yd}} * \left(F_{v,Ed} * \frac{a}{z} + H_{Ed} * \frac{a_{H} + z}{z} \right)$$

$$a_1 = \frac{F_{v,Ed}}{f_{cd}} * b = \frac{705,92}{25000} * 0,4 = 0,011 m$$

$$a = a_F + 0.5 * a_1 = 0.215 + 0.5 * 0.011 = 0.221 m$$

$$a_2 = d - \sqrt{d^2 - 2 * a_1 * a} = 0.36 - \sqrt{0.36^2 - 2 * 0.011 * 0.221} = 0.007 m$$

$$z = d - 0.5 * a_2 = 0.36 - 0.5 * 0.007 = 0.357 m$$

$$A_{s} = \frac{1}{f_{yd}} * \left(F_{v,Ed} * \frac{a}{z} + H_{Ed} * \frac{a_{H} + z}{z} \right) = \frac{1}{434780} * \left(705,92 * \frac{0,221}{0,357} + 141,18 * \frac{0,04 + 0,357}{0,357} \right)$$
$$= 0.001355 \, m^{2} = 13,55 \, cm^{2}$$

$$A_{s,min} = \rho_{min} * b * h = 0.004 * 0.4 * 0.4 = 0.00064 m^2 = 6.4 cm^2 < A_s = 13.55 cm^2$$

Przyjęto 2 pętle ϕ 25 o $A_s = 19,63 \ cm^2$

Długość zakotwienia zbrojenia głównego

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{bd}}$$

$$\sigma_{sd} = \frac{A_{s,req}}{A_{s,rrov}} * f_{yd} = \frac{13,55}{19,63} * 434,78 = 300,12 MPa$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd}$$

$$\eta_1 = 1.0$$

$$\eta_2 = 1.0$$

$$f_{ctd} = \alpha_{ct} * \frac{f_{ctk,0,05}}{\gamma_c} = 1.0 * \frac{2.2}{1.4} = 1.57 \text{ MPa}$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd} = 2,25 * 1,0 * 1,0 * 1,57 = 3,53 MPa$$

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{hd}} = \frac{25}{4} * \frac{300,12}{3.53} = 531 \ mm$$

$$l_{bd} = \alpha_1 * \alpha_2 * \alpha_3 * \alpha_4 * \alpha_5 * l_{b,rqd} = 1,0 * 0,7 * 1,0 * 1,0 * 1,0 * 531 = 372 mm$$

$$l_{b,min} = \max\{0,3 * l_{b,rqd}; 10\phi; 100mm\} = \max\{159 mm; 250 mm; 100mm\} = 250 mm$$

$$l_{bd} = 372 \ mm > l_{b,min} = 250 \ mm$$

Przyjęto $l_{bd}=380\ mm$

Zbrojenie poprzeczne

Strzemiona poziome

$$A_{sw,h} \ge 0.3A_s = 0.3 * 19.63 cm^2 = 5.89 cm^2$$

$$0.3 < \frac{a_F}{h} = 0.54 < 0.6$$

$$A_{SW,h} \ge 0.5A_S = 0.5 * 19.63 cm^2 = 9.82 cm^2$$

$$s \le 0.25 \ h = 0.25 * 0.4 = 0.1 \ m$$

$$s \le 0.15 \, m$$

Przyjęto 7 strzemion dwuciętych $\phi 10$ o $A_s=11,00~cm^2$

Wspornik pod belkę podsuwnicową

$$F_{v,Ed} = 422,22 \ kN$$

$$H_{Ed} = \min\{0.2 * F_{v,Ed}; H_{T,1}; H_{T,2}\} = 0.2 * F_{v,Ed} = 0.2 * 422,22 = 84,44 \text{ kN}\}$$

Sprawdzenie geometrii

$$\frac{a_F}{h} = \frac{675}{1250} = 0.54$$

$$0.3 < \frac{a_F}{h} = 0.54 < 1.0$$

$$\nu = 0.6 * \left(1 - \frac{f_{ck}}{250}\right) = 0.6 * \left(1 - \frac{35}{250}\right) = 0.52$$

$$a_H = c_{nom} + \frac{1}{2}\emptyset = 30 + \frac{1}{2} * 25 = 42,5 mm$$

$$d = h - a = 1250 - 42,5 = 1208 \, mm$$

$$F_{v,Ed} = 422,\!22 \; kN < F_{v,Rd} = 0,\!5 * v * f_{cd} * b * d = 0,\!5 * 0,\!52 * 25000 * 0,\!4 * 1,\!208 = 3140,\!8 \; kN$$

Wymiarowanie zbrojenia

Zbrojenie główne

$$A_s = \frac{1}{f_{yd}} * \left(F_{v,Ed} * \frac{a}{z} + H_{Ed} * \frac{a_H + z}{z} \right)$$

$$a_1 = \frac{F_{v,Ed}}{f_{cd}} * b = \frac{422,22}{25000} * 0,4 = 0,007 m$$

$$a = a_F + 0.5 * a_1 = 0.675 + 0.5 * 0.007 = 0.679 m$$

$$a_2 = d - \sqrt{d^2 - 2 * a_1 * a} = 1,208 - \sqrt{1,208^2 - 2 * 0,007 * 0,679} = 0,004 m$$

$$z = d - 0.5 * a_2 = 1.208 - 0.5 * 0.004 = 1.206 m$$

$$A_S = \frac{1}{f_{yd}} * \left(F_{v,Ed} * \frac{a}{z} + H_{Ed} * \frac{a_H + z}{z} \right) = \frac{1}{434780} * \left(422,22 * \frac{0,679}{1,206} + 84,44 * \frac{0,043 + 1,206}{1,206} \right)$$
$$= 0.000748 \ m^2 = 7.48 \ cm^2$$

$$A_{s,min} = \rho_{min} * b * h = 0.004 * 0.4 * 1.2 = 0.00192 m^2 = 19.2 cm^2 > A_s = 7.48 cm^2$$

Przyjęto 2 pętle $\phi 25$ o $A_s = 19,63$ cm^2

Długość zakotwienia zbrojenia głównego

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{bd}}$$

$$\sigma_{sd} = \frac{A_{s,req}}{A_{s,prov}} * f_{yd} = \frac{19,2}{19,63} * 434,78 = 425,26 MPa$$

$$f_{bd} = 2.25 * \eta_1 * \eta_2 * f_{ctd}$$

$$\eta_1 = 1.0$$

$$\eta_2 = 1.0$$

$$f_{ctd} = \alpha_{ct} * \frac{f_{ctk,0,05}}{\gamma_c} = 1.0 * \frac{2.2}{1.4} = 1.57 MPa$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd} = 2,25 * 1,0 * 1,0 * 1,57 = 3,53 MPa$$

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{bd}} = \frac{25}{4} * \frac{425,26}{3.53} = 753 \ mm$$

$$l_{bd} = \alpha_1 * \alpha_2 * \alpha_3 * \alpha_4 * \alpha_5 * l_{b,rad} = 1,0 * 0,7 * 1,0 * 1,0 * 1,0 * 752,94 = 527 mm$$

$$l_{b,min} = \max\{0.3 * l_{b,rqd}; 10\phi; 100mm\} = \max\{226 mm; 250 mm; 100mm\} = 250 mm$$

$$l_{bd} = 527 \ mm > l_{b,min} = 250 \ mm$$

Przyjęto $l_{bd}=530\ mm$

Zbrojenie poprzeczne

Strzemiona poziome

$$A_{sw,h} \ge 0.3A_s = 0.3 * 19.63 cm^2 = 5.89 cm^2$$

$$0.3 < \frac{a_F}{h} = 0.54 < 0.6$$

$$A_{sw,h} \ge 0.5A_s = 0.5 * 19.63 cm^2 = 9.82 cm^2$$

$$s \le 0.25 h = 0.25 * 1.25 = 0.313 m$$

$$s \le 0,15 \, m$$

Przyjęto 8 strzemion dwuciętych $\phi 10$ o $A_s=12,57~cm^2$

Wspornik pod dźwigar dachowy nawy wyższej

$$F_{v,Ed} = 411,57 \ kN$$

$$H_{Ed} = 0.2 * F_{v,Ed} = 0.2 * 411.57 = 82.31 \, kN$$

Sprawdzenie geometrii

$$\frac{a_F}{h} = \frac{215}{400} = 0.54$$

$$0.3 < \frac{a_F}{h} = 0.54 < 1.0$$

$$v = 0.6 * \left(1 - \frac{f_{ck}}{250}\right) = 0.6 * \left(1 - \frac{35}{250}\right) = 0.52$$

$$a_H = c_{nom} + \frac{1}{2}\emptyset = 30 + \frac{1}{2} * 25 = 42,5 mm$$

$$d = h - a = 400 - 42,5 = 358 \, mm$$

$$F_{v,Ed} = 411,57 \ kN < F_{v,Rd} = 0.5 * v * f_{cd} * b * d = 0.5 * 0.52 * 25000 * 0.4 * 0.358 = 930.8 \ kN$$

Wymiarowanie zbrojenia

Zbrojenie główne

$$A_{S} = \frac{1}{f_{yd}} * \left(F_{v,Ed} * \frac{a}{z} + H_{Ed} * \frac{a_{H} + z}{z} \right)$$

$$a_1 = \frac{F_{v,Ed}}{f_{cd}} * b = \frac{411,57}{25000} * 0.4 = 0.007 m$$

$$a = a_F + 0.5 * a_1 = 0.215 + 0.5 * 0.007 = 0.219 m$$

$$a_2 = d - \sqrt{d^2 - 2 * a_1 * a} = 0.358 - \sqrt{0.358^2 - 2 * 0.007 * 0.219} = 0.004 m$$

$$z = d - 0.5 * a_2 = 0.358 - 0.5 * 0.004 = 0.356 m$$

$$A_{S} = \frac{1}{f_{yd}} * \left(F_{v,Ed} * \frac{a}{z} + H_{Ed} * \frac{a_{H} + z}{z} \right) = \frac{1}{434780} * \left(411,57 * \frac{0,219}{0,356} + 82,31 * \frac{0,043 + 0,356}{0,356} \right)$$
$$= 0.000795 \ m^{2} = 7.95 \ cm^{2}$$

$$A_{s,min} = \rho_{min} * b * h = 0.004 * 0.4 * 0.4 = 0.00064 m^2 = 6.4 cm^2 < A_s = 7.95 cm^2$$

Przyjęto pętlę $\phi 25$ o $A_s = 9,82$ cm^2

Długość zakotwienia zbrojenia głównego

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{bd}}$$

$$\sigma_{sd} = \frac{A_{s,req}}{A_{s,vrov}} * f_{yd} = \frac{7,95}{9,82} * 434,78 = 351,99 MPa$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd}$$

$$\eta_1 = 1.0$$

$$\eta_2 = 1.0$$

$$f_{ctd} = \alpha_{ct} * \frac{f_{ctk,0,05}}{\gamma_c} = 1.0 * \frac{2.2}{1.4} = 1.57 MPa$$

$$f_{bd} = 2,25 * \eta_1 * \eta_2 * f_{ctd} = 2,25 * 1,0 * 1,0 * 1,57 = 3,53 MPa$$

$$l_{b,rqd} = \frac{\phi}{4} * \frac{\sigma_{sd}}{f_{hd}} = \frac{25}{4} * \frac{351,99}{3,53} = 623 \ mm$$

$$l_{bd} = \alpha_1 * \alpha_2 * \alpha_3 * \alpha_4 * \alpha_5 * l_{b,rqd} = 1,0 * 0,7 * 1,0 * 1,0 * 1,0 * 623,21 = 436 \ mm$$

$$l_{b,min} = \max \left\{ 0.3 * l_{b,rqd}; 10\phi; 100mm \right\} = \max \left\{ 187 \; mm; 250 \; mm; 100mm \right\} = 250 \; mm; 100mm = 250 \; mm; 100m$$

$$l_{bd} = 436 \: mm > l_{b,min} = 250 \: mm$$

Przyjęto $oldsymbol{l}_{bd}=440~mm$

Zbrojenie poprzeczne

Strzemiona poziome

$$A_{SW,h} \ge 0.3A_S = 0.3 * 9.82 cm^2 = 2.95 cm^2$$

$$0.3 < \frac{a_F}{h} = 0.54 < 0.6$$

$$A_{SW,h} \ge 0.5A_S = 0.5 * 9.82 cm^2 = 4.91 cm^2$$

$$s \le 0.25 \ h = 0.25 * 0.4 = 0.1 \ m$$

$$s \le 0,15 \, m$$

Przyjęto 4 strzemiona dwucięte $\phi 10$ o $A_s=6$, $28~cm^2$

8. Faza składowania

$$g_{1} = b * h * \gamma_{b} * 1,35 = 0,4 * 0,7 * 25 * 1,35 = 9,45 \frac{kN}{m}$$

$$g_{2} = b * h * \gamma_{b} * 1,35$$

$$= \frac{0,4 * 1,03 * 0,4 + 0,4 * \frac{0,85}{2} * 0,85 + 0,4 * 0,85 * 0,4 + 0,4 * 0,6 * 1}{1,4} * 25 * 1,35$$

$$= 16,52 \frac{kN}{m}$$

$$g_{3} = b * h * \gamma_{b} * 1,35 = \frac{0,4 * 0,4 * 3,6 + 0,4 * 0,55 * 0,4}{4} * 25 * 1,35 = 5,60 \frac{kN}{m}$$

$$g_{4} = b * h * \gamma_{b} * 1,35 = 0,4 * 0,12 * 25 * 1,35 = 1,62 \frac{kN}{m}$$

Wykres momentów zginających [kNm]

Wykres sił tnących [kN]

Nośność przekroju

$$d = h - c_{nom} - \phi_{strz} - \frac{\phi}{2} = 0.4 - 0.03 - 0.008 - \frac{0.02}{2} = 0.352 \, m$$

$$\xi_{eff} = \frac{A * f_{yd}}{b * d * f_{cd}} = \frac{2 * \frac{\pi * 0,02^2}{4} * 434780}{0,4 * 0,352 * 21430} = 0,091$$

$$\begin{split} M_{Rd,min} &= \xi_{eff} * \left(1 - \frac{\xi_{eff}}{2}\right) * d^2 * b * f_{cd} = 0,091 * \left(1 - \frac{0,091}{2}\right) * 0,352^2 * 0,4 * 21430 \\ &= 92,25 \; kNm > M_{Ed,max} = 42,53 \; kNm \end{split}$$

$$V_{Rd.c.min} = 123,34 \ kN > V_{Ed.max} = 46,10 \ kN$$

9. Faza montażu

$$q^{od} = 1\frac{kN}{m^2}$$

Przyjęto współczynnik dynamiczny $\gamma_d=1$,1

$$\begin{split} P &= \left(g_1*7.7 + g_2*1.4 + g_3*4 + g_4*1.8 + A*q^{od}\right)*\gamma_d \\ &= \left(9.45*7.7 + 16.52*1.4 + 5.60*4 + 1.62*1.8 + 9.08*1\right)*1.1 = 143.32 \ kN \end{split}$$

Dobrano hak kulowy Pfeifer DR 15,0

Nr katalogowy	Тур/	N _{R,dop} *	Wymiary	[mm]			Ciężar ok.
	rozmiar	[kN]	h	D	d	b	[kg/szt.]
05.180.013.h.2	DR 1,3	13	55, 65, 85, 120	18	10	25	0,06 - 0,10
05.180.025.h.2	DR 2,5	25	70, 85, 120, 140, 170	25	14	35	0,16 - 0,27
05.180.050.h.2	DR 5,0	50	75, 95, 120, 160, 180, 210, 240	36	20	50	0,34 - 0,76
05.180.075.h.2	DR 7,5	75	85, 95, 120, 140, 165, 200, 300	46	24	60	0,58 – 1,36
05.180.100.h.2	DR 10,0	100	120, 135, 150, 170, 200 220, 250, 340	46	28	70	0,93 – 1,98
05.180.150.h.2	DR 15,0	150	400	69	34	85	3,70
05.180.200.h.2	DR 20,0	200	500	69	39	99	5,87

Dobrano uchwyt kulowy Pfeifer WK/DR 20,0

PFEIFER - uchwyt kulowy WK

Nr katalogowy	Typ/rozmiar	N _{R,dop}	$V_{R,dop}$	Dla kotew			Ciężar					
		[kN]	[kN]	o nośności	D	Н	h	В	S	d	f	[kg/szt.]
05.184.013.3	WK/DR 1,3	13	6,5	1,3	54,0	162,0	74,0	33,0	11,5	46,0	74,0	0,99
05.184.025.3	WK/DR 2,5	25	12,5	2,5	63,0	194,0	89,0	42,0	16,0	55,0	86,0	1,41
05.184.050.3	WK/DR 5,0	50	25,0	5,0	82,0	236,0	112,0	60,0	21,5	70,0	118,0	3,22
05.184.100.3	WK/DR 10,0	100	50,0	10,0	105,0	339,0	155,0	84,0	29,0	84,0	160,0	8,92
05.184.200.3	WK/DR 20,0	200	100,0	20,0	153,0	441,0	231,0	115,0	41,0	118,0	186,0	22,00

Dobrano zawiesie linowe dwucięgnowe firmy Warmel o dopuszczalnym obciążeniu 16 t = 160 kN

Dopuszczalne obciążenie robocze DOR [t] zawiesi linowych											
średnica liny	Jednoc	iegnowe	Dwucięgn	owe	Trzy i Czterocięgnowe						
[mm]	W linii prostej	W obw. zamkniętym	0 - 90	90 - 120	0 - 90	90 - 120					
8	0,6	0,5	0,8	0,6	1,2	0,9					
10	1,0	0,8	1,5	1,0	2,0	1,6					
12	1,5	1,2	2,0	1,5	3,2	2,3					
14	1,8	1,4	2,5	1,8	4,0	2,8					
16	2,4	1,9	3,2	2,4	5,0	3,7					
18	3,4	2,7	4,8	3,4	7,2	5,2					
20	4,3	3,4	6,0	4,3	9,0	6,5					
22	5,2	4,1	7,2	5,2	11,0	7,8					
25	6,6	5,3	9,4	6,6	14,0	10,0					
28	8,4	6,7	11,8	8,4	18,0	12,5					
32	10,0	8,0	14,0	10,0	20,5	15,0					
36	14,0	11,2	20,0	14,0	29,0	21,0					
40	16,0	12,5	20,0	16,0							