BSc Thesis Colloquium: Domain-Dependent Policy Learning using Neural Networks in Classical Planning

Lukas Schäfer

Foundations of Artificial Intelligence Research Group, Universität des Saarlandes

Reviewers: Prof. Dr. Jörg Hoffmann, Dr. Mario Fritz Supervisors: Prof. Dr. Jörg Hoffmann, Patrick Ferber, Maximilian Fickert

August 20, 2018

Planning

Planning

Classical Automated Planning

- "big goal": Solve arbitrary tasks with a single planner
- find a sequence of actions that leads to a goal
- classical (automated) planning limited to finite, deterministic, fully-observable tasks
- dominant approach: state-based heuristic search

STRIPS

Planning

0.0

Planning

0.0

Formalisation as STRIPS task $\Pi = (\mathcal{P}, \mathcal{A}, c, I, G)$:

ullet propositions ${\cal P}$

Planning

- ullet propositions ${\cal P}$
- actions A as triples (pre_a, add_a, del_a) with

STRIPS

Planning

- ullet propositions ${\cal P}$
- actions A as triples (pre_a, add_a, del_a) with
 - pre₃: preconditions of a
 - add_a: add-list of a
 - del_a: delete-list of a

STRIPS

Planning

- ullet propositions ${\cal P}$
- actions A as triples (pre_a, add_a, del_a) with
 - pre_a: preconditions of a
 - add_a: add-list of a
 - del_a: delete-list of a
- cost function c
- initial state /
- goal(s) G

Planning

Learning in Automated Planning

- planning is still dominated by domain-independent heuristics
- learning domain-specific knowledge can improve performance
- learning generalized policies
- computed by AlphaGo (Zero) with neural networks and combined with Monte-Carlo tree search

Idea

- neural network architecture suited for planning
- proposed by Toyer et al. in 2017
- learns domain-specific generalized policy
- can be learned from small problems and exploited on arbitrary ones of this domain

Architecture

Architecture

- alternating proposition and action layers
- modules correspond to ground actions/ propositions
- **policy** π^{θ} represents probability to choose action a in state s
- sparse connectivity based on **relatedness** R(a, p) iff p appears in pre_a , add_a or del_a

Action Modules

compute hidden representation $\phi_a^l = f(W_a^l \cdot u_a^l + b_a^l) \in \mathbb{R}^{d_h}$

Action Modules

compute hidden representation $\phi_a^l = f(W_a^l \cdot u_a^l + b_a^l) \in \mathbb{R}^{d_h}$

- nonlinear activation function f
- learned weight matrix $W_2^I \in \mathbb{R}^{d_h \times d_a^I}$ and bias $b_2^I \in \mathbb{R}^{d_h}$
- input vector $u_a^l \in \mathbb{R}^{d_a^l}$: concatenation of hidden representations of related proposition modules

compute hidden representation $\phi_a^l = f(W_a^l \cdot u_a^l + b_a^l) \in \mathbb{R}^{d_h}$

- nonlinear activation function f
- learned weight matrix $W_2^I \in \mathbb{R}^{d_h \times d_a^I}$ and bias $b_2^I \in \mathbb{R}^{d_h}$
- input vector $u_a^l \in \mathbb{R}^{d_a^l}$: concatenation of hidden representations of related proposition modules

$$R(a, p_i)$$
 for $i = 1, ..., M : u'_a = \begin{bmatrix} \psi_1^{l-1} \\ \vdots \\ \psi_M^{l-1} \end{bmatrix}$

Action Modules

Action Modules

same structure for all actions of the 'drive' schema $\rightarrow W_a^I$ and b_a^I can be **shared** for all actions in layer I of the drive schema

Input Layer

Input Layer

first input vectors u_a^1 for state $s \in S$ include

- ullet binary values indicating iff $p_i \in s$
- binary values indicating iff $p_i \in G$
- value indicating iff $pre_a \subseteq s$

Input Layer

first input vectors u_a^1 for state $s \in S$ include

- binary values indicating iff $p_i \in s$
- binary values indicating iff $p_i \in G$
- value indicating iff $pre_a \subseteq s$
- additional heuristic features

Toyer et al. experimented with disjunctive action landmark features

Output Layer

Output Layer

- has to compute policy π^{θ} as probability distribution
- masked softmax activation function

• compute hidden representation $\psi_p^l = f(W_p^l \cdot v_p^l + b_p^l) \in \mathbb{R}^{d_h}$

- compute hidden representation $\psi_p^l = f(W_p^l \cdot v_p^l + b_p^l) \in \mathbb{R}^{d_h}$
- difficulty: number of related actions can vary

- compute hidden representation $\psi_p^l = f(W_p^l \cdot v_p^l + b_p^l) \in \mathbb{R}^{d_h}$
- difficulty: number of related actions can vary
- example:

- compute hidden representation $\psi_p^l = f(W_p^l \cdot v_p^l + b_p^l) \in \mathbb{R}^{d_h}$
- difficulty: number of related actions can vary
- example:

- compute hidden representation $\psi_p^l = f(W_p^l \cdot v_p^l + b_p^l) \in \mathbb{R}^{d_h}$
- difficulty: number of related actions can vary
- example:

- compute hidden representation $\psi_p^l = f(W_p^l \cdot v_p^l + b_p^l) \in \mathbb{R}^{d_h}$
- difficulty: number of related actions can vary
- example:

solution: Pooling

Empirical Experiment

- experiment for probabilistic and classical planning
 - comparison with multiple state-of-the-art baseline planners
 - ullet ASNets with h^{LM-cut} and h^{add} teacher policy

Empirical Experiment

- experiment for probabilistic and classical planning
 - comparison with multiple state-of-the-art baseline planners
 - ASNets with h^{LM-cut} and h^{add} teacher policy
- results
 - prob. planning: ASNets mostly outperformed baseline planners
 - class. planning: ASNets were outperformed by LAMA planners

• focus on application in deterministic, classical planning

- focus on application in deterministic, classical planning
- implementation of ASNets in Fast-Downward planning system

- focus on application in deterministic, classical planning
- implementation of ASNets in Fast-Downward planning system
 - network definition
 - extension and integration in Fast-Downward
 - training algorithm

- focus on application in deterministic, classical planning
- implementation of ASNets in Fast-Downward planning system
 - network definition
 - extension and integration in Fast-Downward
 - training algorithm
- extensive experiment to evaluate suitability of ASNets for classical automated planning

Implementation

network architecture based on planning task

- network architecture based on planning task
- Fast-Downward translation builds PDDL representation

- network architecture based on planning task
- Fast-Downward translation builds PDDL representation
- computation of relations between groundings

- network architecture based on planning task
- Fast-Downward translation builds PDDL representation
- computation of relations between groundings
 - compute relations between action schemas and predicates

Planning

- network architecture based on planning task
- Fast-Downward translation builds PDDL representation
- computation of relations between groundings
 - compute relations between action schemas and predicates
 - instantiate abstracts to groundings

 ASNets architecture implemented with Keras on Tensorflow backend

- ASNets architecture implemented with Keras on Tensorflow backend
- modules implemented as custom Keras layers

- ASNets architecture implemented with Keras on Tensorflow backend
- modules implemented as custom Keras layers
- distinguished between input extraction and shared main module

- ASNets architecture implemented with Keras on Tensorflow backend
- modules implemented as custom Keras layers
- distinguished between input extraction and shared main module


```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8:
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

 $n_{epoch} \leftarrow n_{epoch} + 1$

Algorithm Training Cycle on set of training problems Ptrain

12:

anning Cycle

```
1: procedure TRAIN(P_{train})
        \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                Sampled states
        n_{epoch} \leftarrow 0
                                                                                                 ▷ Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                  ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                          7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8:
                                                                                                  \triangleright Sample on p
                      OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                  Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
```

Planning

Algorithm Training Cycle on set of training problems P_{train}

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5:
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                    Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{enoch} \leftarrow n_{epoch} + 1
```

• T_{max-epochs}: maximum number of training cycle epochs

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8:
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                    Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

```
Algorithm Training Cycle on set of training problems P_{train}
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train-epochs})
                                                                                                    Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{enoch} \leftarrow n_{epoch} + 1
```

• terminate the training when network is performing very well

Conclusion

Training Cycle

```
Algorithm Training Cycle on set of training problems P_{train}
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                   asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                    Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

- terminate the training when network is performing very well
- less restrictive than Sam Toyer's early stopping

```
Algorithm Training Cycle on set of training problems P_{train}
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train-epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

• iterate over all training problems in P_{train}

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11.
                  \mathcal{M} \leftarrow \emptyset
12:
              n_{epoch} \leftarrow n_{epoch} + 1
```

```
    function Build-Model(p, weights)

                                              task_meta \leftarrow COMPUTE_META(p)
                                                  ▷ Compute task meta information
2:
     asnet_p \leftarrow CREATE\_MODEL(task\_meta, p)
3.
     if weights exist then
4:
5:
        asnet<sub>p</sub>.load_weights(weights)
                                                          return asnet<sub>p</sub>
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11.
                  \mathcal{M} \leftarrow \emptyset
12:
              n_{epoch} \leftarrow n_{epoch} + 1
```

```
1: function BUILD-MODEL(p, weights)
                                              task_meta \leftarrow COMPUTE_META(p)
                                                 ▷ Compute task meta information
2:
     asnet_p \leftarrow CREATE\_MODEL(task\_meta, p)
3.
     if weights exist then
4:
5:
        asnet<sub>p</sub>.load_weights(weights)
                                                          return asnet<sub>p</sub>
```

```
Algorithm Training Cycle on set of training problems P_{train}
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11.
                  \mathcal{M} \leftarrow \emptyset
12:
              n_{epoch} \leftarrow n_{epoch} + 1
```

```
    function Build-Model(p, weights)

                                              task_meta \leftarrow COMPUTE_META(p)
                                                   ▷ Compute task meta information
2:
3.
     asnet_p \leftarrow CREATE\_MODEL(task\_meta, p)
     if weights exist then
4:
5:
        asnet<sub>p</sub>.load_weights(weights)
                                                          return asnet<sub>p</sub>
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11.
                  \mathcal{M} \leftarrow \emptyset
12:
              n_{epoch} \leftarrow n_{epoch} + 1
```

```
    function Build-Model(p, weights)

                                              task_meta \leftarrow COMPUTE_META(p)
                                                  ▷ Compute task meta information
2:
     asnet_p \leftarrow CREATE\_MODEL(task\_meta, p)
3.
     if weights exist then
4:
5:
        asnet<sub>n</sub>.load_weights(weights)
                                                          return asnet<sub>p</sub>
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11.
                  \mathcal{M} \leftarrow \emptyset
12:
              n_{epoch} \leftarrow n_{epoch} + 1
```

```
    function Build-Model(p, weights)

                                              task_meta \leftarrow COMPUTE_META(p)
                                                  ▷ Compute task meta information
2:
     asnet_p \leftarrow CREATE\_MODEL(task\_meta, p)
3.
     if weights exist then
4:
5:
        asnet<sub>p</sub>.load_weights(weights)
                                                          return asnet<sub>p</sub>
```

Algorithm Training Cycle on set of training problems P_{train}

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8:
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train-epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

• execute $T_{prob-epochs}$ problem epochs


```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                  \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{enoch} \leftarrow n_{epoch} + 1
```

ullet sample states using network search $\mathcal{S}^{ heta}$ and teacher search \mathcal{S}^*

Conclusion

Training Cycle

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5.
                   asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                   \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                    Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
              n_{epoch} \leftarrow n_{epoch} + 1
```

- ullet sample states using network search $\mathcal{S}^{ heta}$ and teacher search \mathcal{S}^*
- more about the sampling process after this cycle

Algorithm Training Cycle on set of training problems P_{train}

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                     \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                    Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

• update θ using $T_{train-epochs}$ gradient descent steps

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                 Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
 5.
             for all p \in P_{train} do
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train-epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

- update θ using $T_{train-epochs}$ gradient descent steps
- minimize crossentropy loss:

$$\mathcal{L}_{\theta}(\mathcal{M}) = \sum_{s \in \mathcal{M}} \sum_{a \in A} -(1 - y_{s,a}) \cdot log(1 - \pi^{\theta}(a \mid s)) - y_{s,a} \cdot log \ \pi^{\theta}(a \mid s)$$

Algorithm Training Cycle on set of training problems P_{train}

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                  Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train-epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{enoch} \leftarrow n_{epoch} + 1
```

• save network weights after training for problem p

```
Algorithm Training Cycle on set of training problems P_{train}
```

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8.
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train-epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{enoch} \leftarrow n_{epoch} + 1
```

- save network weights after training for problem p
- reset sampled states

```
1: procedure TRAIN(P_{train})
         \mathcal{M} \leftarrow \emptyset
 2:
                                                                                                  Sampled states
         n_{epoch} \leftarrow 0
                                                                                                   Epoch counter
 3:
         while n_{epoch} < T_{max-epochs} and not early stopping do
 4:
             for all p \in P_{train} do
 5:
                  asnet_p \leftarrow Build-Model(p, weights)
                                                                                                    ▷ ASNet model
 6:
                  for n_{p-epoch} = 1, ..., T_{prob-epochs} do
                                                                                           7:
                      \mathcal{M} \leftarrow \text{SAMPLE}(p)
 8:
                                                                                                    \triangleright Sample on p
                       OPT\_TRAIN(asnet_p, \mathcal{M}, T_{train\_epochs})
                                                                                                   Train network
 9:
                  weights \leftarrow asnet_p.save\_weights()
10:
11:
                  \mathcal{M} \leftarrow \emptyset
12:
             n_{epoch} \leftarrow n_{epoch} + 1
```

Sampling for problem *p*:

• extract $s_0^{\theta},...,s_N^{\theta}$ with network exploration \mathcal{S}^{θ}

- extract $s_0^{\theta},...,s_N^{\theta}$ with network exploration \mathcal{S}^{θ}
 - $\rightarrow \mathsf{improve} \ \mathsf{upon} \ \mathsf{previous} \ \mathsf{performance}$

- extract $s_0^{\theta},...,s_N^{\theta}$ with network exploration \mathcal{S}^{θ}
 - \rightarrow improve upon previous performance
- ullet apply \mathcal{S}^* from explored states to extract $s_0^*,...,s_N^*$

Planning

- extract $s_0^{\theta}, ..., s_N^{\theta}$ with network exploration S^{θ}
 - → improve upon previous performance
- apply S^* from explored states to extract $s_0^*, ..., s_N^*$
 - → learn "good" policy states

Policies in Fast-Downward

Policies:

addition of policies in Fast-Downward

Policies:

- addition of policies in Fast-Downward
- ullet based on preferred operators o added preferences

Policies:

- addition of policies in Fast-Downward
- ullet based on preferred operators o added preferences
- network policy communicates with a network representation in Fast-Downward based on a *Protobuf* network model

Policies:

Planning

- addition of policies in Fast-Downward
- ullet based on preferred operators o added preferences
- network policy communicates with a network representation in Fast-Downward based on a *Protobuf* network model

Policy search:

• new search-engine for policies in Fast-Downward

Policies:

- addition of policies in Fast-Downward
- based on preferred operators → added preferences
- network policy communicates with a network representation in Fast-Downward based on a *Protobuf* network model

Policy search:

- new search-engine for policies in Fast-Downward
- naive search following the most probable action

Policies:

Planning

- addition of policies in Fast-Downward
- based on preferred operators → added preferences
- network policy communicates with a network representation in Fast-Downward based on a *Protobuf* network model

Policy search:

- new search-engine for policies in Fast-Downward
- naive search following the most probable action
- allows solely evaluating the network policy quality

evaluate the suitability of ASNets for classical automated planning

evaluate the suitability of ASNets for classical automated planning

can ASNets learn good (or even optimal) policies

evaluate the suitability of ASNets for classical automated planning

- can ASNets learn good (or even optimal) policies
- on which domains do ASNets perform well

evaluate the suitability of ASNets for classical automated planning

- can ASNets learn good (or even optimal) policies
- on which domains do ASNets perform well
- how long do we need to train ASNets

ASNet Configurations

Planning

- two layers and hidden representation size $d_h = 16$
- ELU activation function
- L₂ regularization and dropout
- ullet $T_{max-epochs}=10$, $T_{prob-epochs}=3$ and $T_{train-epochs}=100$
- Adam optimizer with $\alpha = 0.001$

ASNet Configurations

Planning

- two layers and hidden representation size $d_h = 16$
- ELU activation function
- L₂ regularization and dropout
- ullet $T_{max-epochs}=10$, $T_{prob-epochs}=3$ and $T_{train-epochs}=100$
- Adam optimizer with $\alpha = 0.001$
- three teacher searches
 - A^* with h^{LM-cut} (optimal)
 - \triangle A* with h^{add}
 - **3** GBFS with h^{FF} using preferred operators in dual-queue

ASNet Configurations

Planning

- two layers and hidden representation size $d_h = 16$
- ELU activation function
- L₂ regularization and dropout
- $T_{max-epochs} = 10$, $T_{prob-epochs} = 3$ and $T_{train-epochs} = 100$
- Adam optimizer with $\alpha = 0.001$
- three teacher searches
 - \bullet A* with h^{LM-cut} (optimal)
 - \triangle A* with h^{add}
 - 3 GBFS with h^{FF} using preferred operators in dual-queue
- time limit for training of two hours

Baseline Planners

- **1** A^* with h^{LM-cut}
- \triangle A* with h^{add}

Baseline Planners

- **1** A^* with h^{LM-cut}
- \triangle A* with h^{add}
- **3** GBFS with h^{FF} using preferred operators in dual-queue
- LAMA-2011
 - winner of 2011 IPC
 - iterative GBFS and (W)A*
 - h^{LM} s and h^{FF}

Baseline Planners

- **1** A^* with h^{LM-cut}
- \triangle A* with h^{add}
- 4 LAMA-2011
 - winner of 2011 IPC
 - iterative GBFS and (W)A*
 - h^{LM} s and h^{FF}

Evaluation time limit of 30 minutes

Domain	number of	number of training	expected difficulty	
	evaluation	problems		
	problems			
Tyreworld	20	2	simple	
TurnAndOpen	19	3	simple	
Sokoban	30	2	simple - mediocre	
Hanoi	20	3	mediocre	
Floortile	20	1	mediocre - hard	
Blocksworld	35	3	hard	
Elevator	30	1	hard	
ParcPrinter	10	4	hard	

Domain	number of evaluation problems	number of training problems	expected difficulty
Tyreworld	20	2	simple
TurnAndOpen	19	3	simple
Sokoban	30	2	simple - mediocre
Hanoi	20	3	mediocre
Floortile	20	1	mediocre - hard
Blocksworld	35	3	hard
Elevator	30	1	hard
ParcPrinter	10	4	hard

Domain	number of evaluation	number of training problems	expected difficulty	
	problems	problems		
Tyreworld	20	2	simple	
TurnAndOpen	19	3	simple	
Sokoban	30	2	simple - mediocre	
Hanoi	20	3	mediocre	
Floortile	20	1	mediocre - hard	
Blocksworld	35	3	hard	
Elevator	30	1	hard	
ParcPrinter	10	4	hard	

Domain	number of	number of training	expected difficulty	
	evaluation	problems		
	problems			
Tyreworld	20	2	simple	
TurnAndOpen	19	3	simple	
Sokoban	30	2	simple - mediocre	
Hanoi	20	3	mediocre	
Floortile	20	1	mediocre - hard	
Blocksworld	35	3	hard	
Elevator	30	1	hard	
ParcPrinter	10	4	hard	

Domain	number of	number of training	expected difficulty	
	evaluation	problems		
	problems			
Tyreworld	20	2	simple	
TurnAndOpen	19	3	simple	
Sokoban	30	2	simple - mediocre	
Hanoi	20	3	mediocre	
Floortile	20	1	mediocre - hard	
Blocksworld	35	3	hard	
Elevator	30	1	hard	
ParcPrinter	10	4	hard	

Domain	number of evaluation problems	number of training problems	expected difficulty
Tyreworld	20	2	simple
TurnAndOpen	19	3	simple
Sokoban	30	2	simple - mediocre
Hanoi	20	3	mediocre
Floortile	20	1	mediocre - hard
Blocksworld	35	3	hard
Elevator	30	1	hard
ParcPrinter	10	4	hard

Domain	A* LM	A* add	GBFS	LAMA	ASNet LM	ASNet add	ASNet FF
Tyreworld	3/20	6/20	20/20	20/20	20/20	0/20	20/20
Turnandopen	0/19	17/19	15/19	19/19	0/19	0/19	0/19
Sokoban	28/30	29/30	29/30	29/30	0/30	0/30	0/30
Hanoi	13/20	15/20	16/20	15/20	3/20	2/20	2/20
Floortile	6/20	20/20	9/20	9/20	0/20	1/20	0/20
Blocksworld	28/35	35/35	35/35	35/35	7/35	7/35	4/35
Elevator	2/30	15/30	30/30	30/30	0/29	0/30	0/30
Parcprinter	6/10	8/10	10/10	10/10	1/10	1/10	4/10

Domain	A* LM	A* add	GBFS	LAMA	ASNet LM	ASNet add	ASNet FF
Tyreworld	3/20	6/20	20/20	20/20	20/20	0/20	20/20
Turnandopen	0/19	17/19	15/19	19/19	0/19	0/19	0/19
Sokoban	28/30	29/30	29/30	29/30	0/30	0/30	0/30
Hanoi	13/20	15/20	16/20	15/20	3/20	2/20	2/20
Floortile	6/20	20/20	9/20	9/20	0/20	1/20	0/20
Blocksworld	28/35	35/35	35/35	35/35	7/35	7/35	4/35
Elevator	2/30	15/30	30/30	30/30	0/29	0/30	0/30
Parcprinter	6/10	8/10	10/10	10/10	1/10	1/10	4/10

That looks quite disappointing

Domain	A* LM	A* add	GBFS	LAMA	ASNet LM	ASNet add	ASNet FF
Tyreworld	3/20	6/20	20/20	20/20	20/20	0/20	20/20
Turnandopen	0/19	17/19	15/19	19/19	0/19	0/19	0/19
Sokoban	28/30	29/30	29/30	29/30	0/30	0/30	0/30
Hanoi	13/20	15/20	16/20	15/20	3/20	2/20	2/20
Floortile	6/20	20/20	9/20	9/20	0/20	1/20	0/20
Blocksworld	28/35	35/35	35/35	35/35	7/35	7/35	4/35
Elevator	2/30	15/30	30/30	30/30	0/29	0/30	0/30
Parcprinter	6/10	8/10	10/10	10/10	1/10	1/10	4/10

Some learning is visible

Domain	A* LM	A* add	GBFS	LAMA	ASNet LM	ASNet add	ASNet FF
Tyreworld	3/20	6/20	20/20	20/20	20/20	0/20	20/20
Turnandopen	0/19	17/19	15/19	19/19	0/19	0/19	0/19
Sokoban	28/30	29/30	29/30	29/30	0/30	0/30	0/30
Hanoi	13/20	15/20	16/20	15/20	3/20	2/20	2/20
Floortile	6/20	20/20	9/20	9/20	0/20	1/20	0/20
Blocksworld	28/35	35/35	35/35	35/35	7/35	7/35	4/35
Elevator	2/30	15/30	30/30	30/30	0/29	0/30	0/30
Parcprinter	6/10	8/10	10/10	10/10	1/10	1/10	4/10

Overall still not the desired performance

• Floortile & TurnAndOpen:

• Floortile & TurnAndOpen:

ullet too expensive teacher search o sampling did not terminate

Floortile & TurnAndOpen:

- ullet too expensive teacher search o sampling did not terminate
- Floortile: dead-ends were successfully prevented

- Floortile & TurnAndOpen:
 - ullet too expensive teacher search o sampling did not terminate
 - Floortile: dead-ends were successfully prevented
- Floortile, Sokoban & TurnAndOpen:

- Floortile & TurnAndOpen:
 - ullet too expensive teacher search o sampling did not terminate
 - Floortile: dead-ends were successfully prevented
- Floortile, Sokoban & TurnAndOpen:
 - indecisive movement → inverting actions are applied

• Floortile & TurnAndOpen:

- ullet too expensive teacher search o sampling did not terminate
- Floortile: dead-ends were successfully prevented

Floortile, Sokoban & TurnAndOpen:

- ullet indecisive movement o inverting actions are applied
 - limited receptive field:
 - interchangeable paths:

Floortile & TurnAndOpen:

- ullet too expensive teacher search o sampling did not terminate
- Floortile: dead-ends were successfully prevented

Floortile, Sokoban & TurnAndOpen:

- ullet indecisive movement o inverting actions are applied
 - limited receptive field: additional input features
 - interchangeable paths:

• Floortile & TurnAndOpen:

- ullet too expensive teacher search o sampling did not terminate
- Floortile: dead-ends were successfully prevented

Floortile, Sokoban & TurnAndOpen:

- ullet indecisive movement o inverting actions are applied
 - limited receptive field: additional input features
 - interchangeable paths: symmetry pruning

• Blocksworld, Hanoi & ParcPrinter:

- Blocksworld, Hanoi & ParcPrinter:
 - convincing training data

- convincing training data
 - training terminated before one hour for Blocksworld and Hanoi
 - ullet stable, considerable success rate above 70%

- convincing training data
 - training terminated before one hour for Blocksworld and Hanoi
 - stable, considerable success rate above 70%
- but: limited generalisation

- convincing training data
 - training terminated before one hour for Blocksworld and Hanoi
 - stable, considerable success rate above 70%
- but: limited generalisation
- Blocksworld & Hanoi: problem solutions are too diverse

- convincing training data
 - training terminated before one hour for Blocksworld and Hanoi
 - stable, considerable success rate above 70%
- but: limited generalisation
- Blocksworld & Hanoi: problem solutions are too diverse
- ParcPrinter:

Planning

- convincing training data
 - training terminated before one hour for Blocksworld and Hanoi
 - stable, considerable success rate above 70%
- but: limited generalisation
- Blocksworld & Hanoi: problem solutions are too diverse
- ParcPrinter:
 - complex task with various components
 - scheduling is learned almost perfectly

Planning

- convincing training data
 - training terminated before one hour for Blocksworld and Hanoi
 - stable, considerable success rate above 70%
- but: limited generalisation
- Blocksworld & Hanoi: problem solutions are too diverse
- ParcPrinter:
 - complex task with various components
 - scheduling is learned almost perfectly
 - only images are frequently printed on the wrong sheets

• Tyreworld:

• Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent

Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - \rightarrow indecisiveness is not harming the performance

• Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - → indecisiveness is not harming the performance
- but: even for Tyreworld ASNets are not perfect

Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - ightarrow indecisiveness is not harming the performance
- but: even for Tyreworld ASNets are not perfect
- Model creation:

Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - ightarrow indecisiveness is not harming the performance
- but: even for Tyreworld ASNets are not perfect

Model creation:

ASNets contain one module for each grounding in every layer

Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - ightarrow indecisiveness is not harming the performance
- but: even for Tyreworld ASNets are not perfect

Model creation:

- ASNets contain one module for each grounding in every layer
 - ightarrow potentially very large networks

Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - ightarrow indecisiveness is not harming the performance
- but: even for Tyreworld ASNets are not perfect

Model creation:

- ASNets contain one module for each grounding in every layer
 - → potentially very large networks
 - considerable memory consumption
 - · long network creation time

Planning

Tyreworld:

- only domain ASNets generalise well on
- entirely repetitious pattern for each tyre can be learned
- subproblems of replacing each tyre are independent
 - ightarrow indecisiveness is not harming the performance
- but: even for Tyreworld ASNets are not perfect

• Model creation:

- ASNets contain one module for each grounding in every layer
 - → potentially very large networks
 - considerable memory consumption
 - long network creation time
- for each evaluated problem a network is necessary

Model Creation

Model Creation

Loss development

• similarly loss values do not further decrease

Loss development

similarly loss values do not further decrease

Figure: Loss development for the Hanoi domain with A* hadd teacher

Loss development

similarly loss values do not further decrease

Figure: Loss development for the Hanoi domain with A* hadd teacher

ullet loss values are very volatile o seem to overfit for problems

Additional input features

- Additional input features
 - heuristic landmark features as proposed by Sam Toyer

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

- Additional input features
 - heuristic landmark features as proposed by Sam Toyer
 - action costs
- Sampling:

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

• most sampled states are taken from teacher search trajectories

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

Improved network search:

search with backtracking

Planning

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

- search with backtracking
- combine ASNets with heuristics

Planning

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - ightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

- search with backtracking
- combine ASNets with heuristics
 - use network policy probabilities for tiebreaking

Planning

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

- search with backtracking
- combine ASNets with heuristics
 - use network policy probabilities for tiebreaking
 - 2 for $s \stackrel{a}{\to} s'$: combine $\pi^{\theta}(a \mid s), h(s')$ and potentially g(s')

Planning

Additional input features

- heuristic landmark features as proposed by Sam Toyer
- action costs

Sampling:

- most sampled states are taken from teacher search trajectories
 - \rightarrow network policy is trained to imitate the teacher search
- uniform sampling strategy

- search with backtracking
- combine ASNets with heuristics
 - use network policy probabilities for tiebreaking
 - ② for $s \stackrel{a}{\to} s'$: combine $\pi^{\theta}(a \mid s), h(s')$ and potentially g(s')
- add pruning techniques to remove symmetric, interchangeable states

contributions:

- ASNet definition using Keras
- Fast-Downward extension for ASNet relations and policies
- training cycle with novel sampling search
- extensive evaluation of ASNets for classical planning

- contributions:
 - ASNet definition using Keras
 - Fast-Downward extension for ASNet relations and policies
 - training cycle with novel sampling search
 - extensive evaluation of ASNets for classical planning
- only impressive performance on Tyreworld domain

- contributions:
 - ASNet definition using Keras
 - Fast-Downward extension for ASNet relations and policies
 - training cycle with novel sampling search
 - extensive evaluation of ASNets for classical planning
- only impressive performance on Tyreworld domain
- considerable learning could be found for further domains

- contributions:
 - ASNet definition using Keras
 - Fast-Downward extension for ASNet relations and policies
 - training cycle with novel sampling search
 - extensive evaluation of ASNets for classical planning
- only impressive performance on Tyreworld domain
- considerable learning could be found for further domains
 - → shortcomings of the current approach were identified

- contributions:
 - ASNet definition using Keras
 - Fast-Downward extension for ASNet relations and policies
 - training cycle with novel sampling search
 - extensive evaluation of ASNets for classical planning
- only impressive performance on Tyreworld domain
- considerable learning could be found for further domains
 - \rightarrow shortcomings of the current approach were identified
- modifications for further research were proposed

Planning

- contributions:
 - ASNet definition using Keras
 - Fast-Downward extension for ASNet relations and policies
 - training cycle with novel sampling search
 - extensive evaluation of ASNets for classical planning
- only impressive performance on Tyreworld domain
- considerable learning could be found for further domains
 - → shortcomings of the current approach were identified
- modifications for further research were proposed

The final verdict regarding the suitability of ASNets for classical planning is still outstanding