LATEX 2ε Cheat Sheet

Differential equations

Lemma 1 (Cromwall). Suppose that $0 \le \phi(t) \le c + L \int_0^t \phi(\tau) d\tau, \, c, L > 0, \, \phi$ continuous. Then $\phi(t) < ce^{Lt}$.

Definition. Equilibrium point x = 0 is stable if $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{s.t. from} \; ||x_0|| < \delta \; \text{follows}$ $||x(t)|| \le \epsilon, \ \forall t \ge 0.$

Definition. Equilibrium point x = 0 is asymptotically stable if it is stable and exist $\delta > 0$ s.t. from $||x_0|| < \delta$ follows $\lim_{t\to\infty} x(t) \to 0.$

Nonlinear systems

Definition. Point $x^* = 0$ is stable if $\forall \epsilon > 0$ and $\forall t_0 \geq 0, \ \exists \delta > 0 \text{ s.t. from } ||x_0|| < \delta$ follows $||x(t)|| < \epsilon, \forall t > t_0$.

Definition. Point $x^* = 0$ is uniformly stable if $\forall \epsilon > 0 \ \exists \delta > 0$, s.t $\forall t_0 > 0$, from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon, \forall t \geq t_0$.

Definition. Point $x^* = 0$ asymptotically stable if it is stable and $\forall t_0 \ge 0 \quad \exists c > 0$, s.t from $||x_0|| < c$ follows $\lim_{t \to \infty} ||x(t)|| \to 0$.

Definition. Point $x^* = 0$ uniformly asymptotically stable if it is uniformly stable and $\exists c > 0$, s.t $\forall t_0 > 0$ from $||x_0|| < c$ follows $\lim_{t\to\infty} ||x(t)|| \to 0.$

Definition. Convergence: $\forall \eta > 0 \ \forall t_0 \geq 0$, $\exists T > 0 \text{ such that } \forall t \geq t_0 + T \text{ follows}$ $||x(t)|| < \eta.$

Definition. Uniform convergence: $\forall \eta > 0 \ \exists T > 0 \text{ such that } \forall t_0 \geq 0 \text{ and }$ $\forall t > t_0 + T \text{ follows } ||x(t)|| < \eta.$

Definition. Point $x^* = 0$ is globally uniformly asymptotically stable if it is uniformly stable with $\delta \to \infty$ for $\epsilon \to \infty$ and $\forall c, \eta \quad \exists T > 0 \text{ such that } \forall t_0 > 0 \text{ from }$ $||x_0|| < c$ follows $||x(t)|| < \eta$, $\forall t \ge t_0 + T$.

Theorem 0.1 (Lyapunov's direct method). Let $f:[0,\infty)\times D\to R^n$ is continuous and let $x^* = 0$ be equilibrium point. If there is a differentiable function $V:[0,\infty)\times D\to R$ with:

• $W_1(x) < V(t,x) < W_2(x)$, $\forall t > 0, \ x \in D$

• $\dot{V}(t,x) \leq 0, \forall t \geq 0, x \in D$

where $W_1, W_2: D \to R$ continuous and positive definite, then $x^* = 0$ is uniformly

If further $\dot{V}(t,x) < -W_3(x), \forall t > 0, x \in D$ with $W_3: D \to R$ continuous and positive definite, the $x^* = 0$ is uniformly asymptotically stable.

If $D = \mathbb{R}^n$ and W_1 is radialy unbounded then $X^* = 0$ is globally uniformly asymptotically

Definition. A function $\alpha:[0,\delta)\to[0,\infty)$ is (of) "class K" if it is continuous, strictly increasing, and $\alpha(0) = 0$.

Definition. A function $\alpha:[0,\delta)\to[0,\infty)$ is "class K_{∞} " if $\alpha \in K$ and $\lim_{r \to \infty} \to \infty$.

Definition. A function

 $\beta: [0,\delta) \times [0,\delta) \to [0,\infty)$ is "class KL if it is continuous, $\beta(\cdot, s) \in K$ for all fixed s, and for each fixed r, $\beta(r, \cdot)$ is strictly decreasing: $\lim_{s\to\infty} \beta(r,s) = 0$

Lemma 2. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly stable iff $\exists \alpha \in K$ and c > 0 s.t. $\forall t \geq t_0, \forall ||x(t_0)|| < c$ and $||x(t)|| \le \alpha(||x(t_0)||).$

Lemma 3. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly asymptotically stable iff $\exists \beta \in KL$ and c > 0 s.t. $\forall t > t_0$, $\forall ||x(t_0)|| < c \text{ and } ||x(t)|| < \beta(||x(t_0)||, t - t_0).$

System with inputs

Definition. System (??) is input-to-state stable (ISS) if $\exists \beta \in KL, \gamma \in K \text{ s.t. } \forall x_0 \in \mathbb{R}^n$, $\forall t > 0 \text{ follows}$ $||x(t)|| \le \beta(||x_0||, t) + \gamma(\sup_{\tau \in [0, t]} ||u(\tau)||).$

Theorem 0.2. Suppose that there exists a continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ and $\alpha_1, \alpha_2 \in K_{\infty}$ and $\alpha_3, \rho \in K$ such that $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$, $\forall x \in \mathbb{R}^n$ and $\frac{\partial V}{\partial x} f(x, u) \leq -\alpha_3(||x||)$, $\forall x : ||x|| \geq \rho(||u||)$. Then (??) is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$

Theorem 0.3. Assume that:

- f is globally Lipschitz:
- x = 0 is a globally exponentially stable EP for $\dot{x} = f(x,0)$

Then the system (??) is ISS.

Theorem 0.4 (Artstein). There exists $k: \mathbb{R}^n \to \mathbb{R}^m$ (state feedback) which is continuous on $\mathbb{R}^n \setminus \{0\}$ s.t. $x^* = 0$ is globally asymptotically stable EP for $\dot{x} = f(x) + G(x)k(x)$ iff there exists a CLF.

Sontag's formula" Fix $c \ge 0, a(x) := L_f V(x), b(x) := (L_G V(x))^T$

 $k(x) = \left\{ \begin{array}{l} -cb(x) - \frac{a(x) + \sqrt{a(x)^2 + (b(x)^Tb(x))^2}}{b(x)^Tb(x)} b(x)^{\sum_{i=1}^{T} a_i} (x) \\ 0, \quad b(x) = 0 \end{array} \right. \\ \left. b(x) = \int_0^T s(u(\tau), y(\tau)) (x)^{\sum_{i=1}^{T} a_i} (x) (x)^{\sum_{i=1}^{T} a_i} (x)^{\sum_{i=1}^{T}$

Backstepping

Integrator backstepping

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2 \tag{2}$$

$$\dot{x}_2 = u$$

$$u = \left(-\frac{\partial V_1}{\partial e_1}g_1(e_1) + \dot{\alpha}_1\right) - k_2 e_2, \ k_2 > 0 \quad (2)$$

$$\dot{x_1} = f_1(x_1) + g_1(x_1)x_2$$

$$\dot{x_2} = f_2(x_1, x_2) + g_2(x_1, x_2)u$$

Definition (dissipativity).

$$S(x(t)) \le S(x_0) + \int_0^t s(u(\tau), y(\tau)) d\tau \qquad (3)$$

Introduce "available storage"

Theorem 0.5. System is dissipative w.r.t. the supply rate
$$s$$
 iff $S_a(x) < \infty$ for all $x \in \mathbb{R}^n$

Moreover, if $S_a(x) < \infty$ for all $x \in \mathbb{R}^n$, then S_a is a storage function and $S(x) \geq S_a(x) \ \forall x \in \mathbb{R}^n$ for all storage functions

If system is dissipative then x = 0 is asymptotically stable.

$$\dot{x} = f(x, u), \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

$$u = \alpha_2(x_1, x_2) = \frac{1}{g_2(x_1, x_2)} \left(-\frac{\partial V_1}{\partial x_1} g_1(x_1) + \dot{\alpha}_1 - k_2(x_2 - \alpha_1(x_1)) - f_2(x_1^y = h(x), \ y \in \mathbb{R}^m \right)$$

$$(4)$$

Definition. System is passive if it is $\alpha_i(x_1, \dots x_i) = \frac{1}{a_i} (\dot{\alpha}_{i-1} - \frac{\partial V_{i-1}}{\partial e_{i-1}} g_{i-1} - k_i (x_i - \alpha_{i-1}) \text{ signature w.r.t. supply rate } s(u, y) = u^T y$

Systems with inputs and outputs

Two-step approach:

- 1. Bring x(t) to $S := \{x \in \mathbb{R}^n | S(x) = 0\}$ in finite time
- 2. Have x(t) going to zero asymptotically
 - switching between nodes 1 and 2
 - mode 2 is "sliding mode"

$$V(X) = \frac{1}{2}s(x)^2$$

$$u = -\frac{1}{L_g s(x)} (L_f s(x) + \hat{u} sgn(s(x))), \ \hat{u} > 0$$

$$\dot{x} = f(x) + g(x)\sigma(x) + g(x)u$$
 If $|\sigma(x)| \le \beta(x)$

Definition. System is zero-state observable (ZSO) if (for u(t) = 0) y(t) = 0 for all $t > 0 \Rightarrow x(t) = 0$ for all t > 0

Theorem 0.6. Let system (4) be i) passive in differentiable storage set ii)ZSO. Then the feedback u = -Py, P > 0 renders the origin asymptotically stable.

Theorem 0.7. Feedback interconnection with $u \equiv 0$. H_1 and H_2 are ZSO and dissipative with S_1 , S_2 w.r.t.

$$s_i(u_i, y_i) = u_i^T y_i - \rho_i y_i^T y_i - \nu_i u_i^T u_i, \ i = 1, 2, \ \rho, \nu \in \mathbb{R}$$

The origin $(x_1, x_2) = (0, 0)$ for interconnection is asymptotically stable if $\nu_1 + \rho_2 > 0$ and $\nu_2 + \rho_1 > 0.$

If is sabisfied with $v_i = 0$: "output - feedback $u = -\frac{1}{L_{gS}(x)}(L_{f}s(x) + (\hat{u} + \beta(x)|L_{g}s(x)|)sgn(s(x))$ passive". If (5) satisfied with $p_i = 0$: "input féadforward passive".