Notes for Vector Calculus

Zhao Wenchuan

October 19, 2021

Contents

1	Vector Spaces		
	1.1	Linear Maps	2
	1.2	Linear Spans and Combinations	2
	1.3	Linear Dependency	3

Chapter 1.

Vector Spaces

§1.1 Linear Maps

Definition 1.1.1. Let X and Y be vector spaces over the same scalar field F.

A map $f: X \to Y$ is said to be linear, iff for any $\mathbf{u}, \mathbf{v} \in X$, and $a, b \in \mathbb{F}$,

$$f(a\mathbf{u} + b\mathbf{v}) = af(\mathbf{u}) + bf(\mathbf{v}).$$

Note 1.1.1. Assume b = 0, then we have

$$f(a\mathbf{u}) = af(\mathbf{u}).$$

Assume a = b = 1, then Definition 1.1.1 gives

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}).$$

§1.2 Linear Spans and Combinations

Definition 1.2.1. Let X be a vector space over the scalar field F, and let $(\mathbf{v}_i)_{i=1}^n$ be a tuple of vectors in X.

The span of (\mathbf{v}_i) is a subset of X defined as

$$\operatorname{span}((\mathbf{v}_i)) := \{\mathbf{a} \cdot (\mathbf{v}_i) : \mathbf{a} \in F^n\}.$$

An element $\mathbf{u} \in X$ is a linear combination of (\mathbf{v}_i) iff $\mathbf{u} \in \text{span}((\mathbf{v}_i))$.

Note 1.2.1. By dot product,

$$\mathbf{u} = \sum_{i=1}^{n} a_i \mathbf{v}_i.$$

Note 1.2.2. For any vector $\mathbf{a} \in \mathbb{R}^n$, the linear combination form of \mathbf{a} is

$$\mathbf{a} = \sum_{i=1}^{n} a_i \hat{e}_i,$$

where \hat{e}_i denotes the *i*-th basis of \mathbb{R}^n ; i.e., for any $\mathbf{u} \in \mathbb{R}^n$ satisfies that $u_i \neq 0$ and for any $j \in \{1, \dots, n\} \setminus \{i\}, u_j = 0$,

$$\hat{e}_i = \frac{\mathbf{u}}{|\mathbf{u}|}.$$

§1.3 Linear Dependency

Definition 1.3.1. Let X be a vector field over the scalar field F.

A tuple $(\mathbf{v}_i)_{i=1}^n$ of vectors in X is said to be *linearly independent* iff for any $\mathbf{a} \in F^n \setminus \{\mathbf{0}\},$

$$\mathbf{a} \cdot (\mathbf{v}_i) \neq \mathbf{0}$$
.

 (\mathbf{v}_i) is linearly dependent iff it is not linearly independent.