Unsupervised learning

Gosia Migut

Slides credit: Tom Viering

Unlabelled data: what now?

Unsupervised learning: no labels/targets present

Unsupervised learning

- Clustering
 - Discover structures in unlabelled data
- Dimensionality reduction
 - does not use information about the labels

Dimensionality reduction

 Many data sets are high-dimensional: each instance is described by many features.

- Why do we want to reduce data dimensionality?
- What does it mean to reduce dimensionality?
- How to reduce dimensionality with Principal Component Analysis?

Dimensionality reduction

- Why do we want to reduce data dimensionality?
 - Make storage or processing of data easier
 - (Visual) discovery of hidden structure in the data
 - Remove redundant and noisy features
 - Intrinsic dimensionality might be smaller

Dimensionality reduction Visual discovery of data structure

Dimensionality reduction Redundant features

- Get a population, predict some property
 - instances represented as {urefu, height} pairs
 - what is the dimensionality of this data?

"height" = "urefu" in Swahili

Dimensionality reduction Intrinsic dimensionality

Dimensionality reduction Curse of dimensionality

- As dimensionality grows fewer observations per region
- Statistics need repetition

Dimensionality reduction

 Many data sets are high-dimensional: each instance is described by many features.

- Why do we want to reduce data dimensionality?
- What does it mean to reduce dimensionality?
- How Principal Component Analysis reduces dimensionality?

Reducing dimensionality: methods

- Feature selection
 - pick a subset of the original dimensions $X_1 X_2 X_3 ... X_{d-1} X_d$
 - Use domain knowledge
 - Use statistics-based selection methods

Feature extraction

- construct a new set of dimensions $E_i = f(X_1...X_d)$

(linear) combinations of original

Reducing dimensionality Feature extraction

- Many important dimensionality reduction techniques are linear techniques
- These project the data onto a linear subspace of lower dimensionality

Dimensionality reduction

 Many data sets are high-dimensional: each instance is described by many features.

- Why do we want to reduce data dimensionality?
- What does it mean to reduce dimensionality?
- How Principal Component Analysis reduces dimensionality?

Principal component analysis

PCA: What it does

- PCA finds new basis vectors u_1 , u_2
- Called principal components
- They are orthogonal and have a specific order: the first is the most important
- As many as original dimensionality of data
- How to find them?
 - Minimum error formulation
 - Variance maximization formulation
- How to do a dimensionality reduction?
- How many components to use?
- Limitations

Which one has the smallest projection errors e_i ?

Which one has the smallest projection errors e_i ?

Which one has the largest variance after the projection?

Which one has the largest variance after the projection?

The first principal component is chosen such that

- It has the smallest projection error
- It has the largest variance after projection

PC1

Equivalent

Principal components analysis

- Principal Components Analysis maps the data onto a linear subspace, such that
 - the variance of the projected data is maximized
 - The projection error is minimized

PCA: minimum error formulation

Let x be original data, \tilde{x} is the projection on $M \leq D$ PC's. Find M orthogonal PC's such that the projection error

$$\frac{1}{N} \sum_{n=1}^{N} \|x_n - \tilde{x}_n\|^2$$

is smallest.

PCA: maximum variance formulation

Let x be original data, u_1 defines the direction of projection space. Find M orthogonal PC's such that the variance after projection is maximized:

$$\max_{\|u_1\|^2=1} var(u_1^T x)$$

Principal components analysis

Our objective is to maximize variance:

$$\max_{\|u_1\|^2=1} var(u_1^T x)$$

The variance of the projected data is given by (S is covariance matrix): (see slide 30 for derivation)

$$var(u_1^T x) = [u_1^T X X^T u_1] = u_1^T S u_1$$

• Enforce constraint using Lagrange multiplier λ (condition is $u_1^T u_1 = 1$):

$$\max_{\|u_1\|^2=1} var(u_1^T X) = \max_{u_1,\lambda} u_1^T Su_1 - \lambda(1 - u_1^T u_1)$$

• Find stationary point by setting derivative with respect to u_1 to zero:

$$Su_1 = \lambda u_1$$

This proves that eigenvales of covariance matrix give dimensions with max variance.

Principal components analysis

The variance of the projected data is given by:

$$var(u_1^T x) = \frac{1}{N} \sum_{n=1}^{N} (u_1^T x_n - u_1^T \bar{x})^2 = \frac{1}{N} \sum_{n=1}^{N} (u_1^T x_n - u_1^T \bar{x}) (u_1^T x_n - u_1^T \bar{x})^T$$

$$= \frac{1}{N} \sum_{n=1}^{N} (u_1^T x_n - u_1^T \bar{x}) (x_n^T u_1 - \bar{x}^T u_1) = \frac{1}{N} \sum_{n=1}^{N} u_1^T (x_n - \bar{x}) (x_n^T - \bar{x}^T) u_1 = \frac{1}{N} \sum_{n=1}^{N} u_1^T (x_n - \bar{x}) (x_n - \bar{x})^T u_1$$

$$= u_1^T x x^T u_1 = u_1^T S u_1$$

- Where $(u_1^T \bar{x})$ is the mean of projected data where \bar{x} is the sample mean
- Where S is covariance matrix
- $xx^T = S$ if data is zero-mean (mean of each dimension equals zero)

Eigenvalues & eigenvectors: Definition

- M square matrix, λ constant, e a non-zero column vector
- λ is an eigenvalue of M and e is the corresponding eigenvector of M if

$$Me = \lambda e$$

- Avoiding ambiguity regarding length: eigenvector to be unit vector
- λ and e form eigenpairs
- Watch: 3blue1brown: Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14

Principal components analysis

 Principal components are given by the eigenvectors of the covariance matrix:

$$Su_1 = \lambda u_1$$

- Covariance matrix is positive and semi-definite. This implies that the smallest possible eigenvalue is 0.
- First principal component is given by the eigenvector with the corresponding highest eigenvalue, etc.

How to find eigenpairs?

- Pivotal condensation
- Power iteration

How to find eigenpairs? Pivotal condensation

• Restate definition eigenpair $Su = \lambda u$ as:

$$(S - \lambda I)u = 0$$

- For this to hold the determinant of $(S \lambda I)$ must be 0
- Determinant of $(S \lambda I)$ is an n-th degree polynomial from which we can get the n values for λ that are eigenvalues of S

Eigenpairs: Pivotal condensation (example)

• Set S to
$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

• Then
$$S - \lambda I$$

$$\begin{bmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{bmatrix}$$

- Determinant is $(3-\lambda)(6-\lambda)-4$
- Setting to zero, solving equation $\lambda^2 9\lambda + 14 = 0$
- Gives solutions $\lambda = 7$ and $\lambda = 2$ being principal eigenvalues
- Let **u** be vector of unknowns $\begin{bmatrix} x \\ y \end{bmatrix}$
- Solve $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 7 \begin{bmatrix} x \\ y \end{bmatrix}$

Eigenpairs: Pivotal condensation (example)

• Two equations:
$$\begin{bmatrix} 3x + 2y & = & 7x \\ 2x + 6y & = & 7y \end{bmatrix}$$

- Both saying the same thing y = 2x
- Possible eigenvector: $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- Make unit vector (divide by length): $\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$
- Second eigenvalue: repeat with $\lambda=2$
- Equation becomes: x = -2y
- Second eigenvector: $\begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}$

How to find eigenpairs?

- Pivotal condensation
- Power iteration

How to find eigenpairs? Power iteration

- Start with any unit vector x₀ (of appropriate length)
- Compute until it converges (*):

$$x_{k+1} \coloneqq \frac{S x_k}{\|S x_k\|}$$

||A|| frobenius norm; the square root of the sum of the absolute squares of elements of N

$$\|A\|_{ ext{F}} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \left|a_{ij}
ight|^2}$$

- Limiting vector is the principal eigenvector (eigenvector with largest eigenvalue)
- When converged, compute eigenvalue $\lambda_1 = x^T S x$
- To find second eigenpair create new matrix $S^* = S \lambda_1 x x^T$
- Use power iteration on S* to compute its principal eigenvector, etc.

Find eigenpairs with power iteration Example

• Let
$$S = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

- Start with x₀ being vector with 1s
- Multiply $S \mathbf{x}_0$:

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

Frobenius norm equals

$$\sqrt{5^2 + 8^2} = \sqrt{89} = 9.434$$

Obtain x₁:

$$\mathbf{x}_1 = \left| \begin{array}{c} 0.530 \\ 0.848 \end{array} \right|$$

Find eigenpairs with power iteration Example

Next iteration:

$$\left[\begin{array}{cc} 3 & 2 \\ 2 & 6 \end{array}\right] \left[\begin{array}{c} 0.530 \\ 0.848 \end{array}\right] = \left[\begin{array}{c} 3.286 \\ 6.148 \end{array}\right]$$

• Frobenius norm equals 6.971 so x_2 becomes

$$\mathbf{x}_2 = \left[\begin{array}{c} 0.471 \\ 0.882 \end{array} \right]$$

- Repeat, converges to $x = \begin{bmatrix} 0.447 \\ 0.894 \end{bmatrix}$
- Principal eigenvalue

$$\lambda = \mathbf{x}^T \mathbf{S} \mathbf{x} = \begin{bmatrix} 0.447 & 0.894 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 0.447 \\ 0.894 \end{bmatrix} = 6.993$$

Find eigenpairs with power iteration Example

To find second eigenpair create new matrix

$$S^* = S - \lambda_1 x x^T$$

Use power iteration on S* to compute its principal eigenvector, etc.

Reducing dimensionality

- X matrix whose rows represent points in Euclidean space
- Compute covariance matrix S and its eigenpairs
- E matrix whose columns are the eigenvectors, ordered as largest eigenvalues first
- X^TE: points of X transformed into new coordinate space
 - First axis (largest eigenvalue) most significant
 - Second axis (second eigenpair), next most siginificant
- Let E_M be first M columns of E
- Then $X^T E_M$ is *M-dimensional* representation of X

Reducing Dimensionality

ORIGINAL SPACE: 2D

PCA SPACE: 2D

Reducing Dimensionality

ORIGINAL SPACE: 2D

PCA SPACE: 1D

Reducing Dimensionality in 3D

PCA

• Dimensionality reduction if M < D

PCA on MNIST

- Why can we expect to reduce the dimensionality?
- Many pixels are correlated
- Some pixels are always black together / white together
- Redundant information

PCA on MNIST

PCA reconstructions

PCA for visualization

ORIGINAL IMAGE SPACE (786 D)

PCA SPACE 2D

Colors indicate class

PCA scree plot

- Scree plot of eigenvalues shows amount of variance retained by the eigenvectors (principal components, PCs):
- Eigenvalue represents the total amount of variance that can be explained by a given principal component.
- First M PCs explains $\frac{\sum_{m=1}^{M} \lambda_m}{\sum_{d=1}^{D} \lambda_d} * 100\%$ of variance
- For example: keep 95% of original variance
- Equivalent: accept a projection error of 5%

*the eigenvalues corresponding to 9 first components are positive and non-zero; some eigenvalues are zero if e.g. there are correlated features.

Eigenfaces

Suppose we are applying PCA on the following set of face images:

- Image is matrix; but represented as a row vector!
- Eigenvectors also row vector, so eigenvector is also an image!

Eigenfaces

• Example of first eigenvectors of set of face images (faces were aligned):

Principal components analysis

• Example reconstructions of face images and digits (using 30D PCA subspace):

original

reconstructed

PCA: practical issues

- Covariance extremely sensitive to large values
 - Multiply some dimensions by 1000
 - Dominates covariance
 - Becomes a principal component
 - Normalize each dimension to zero mean and unit variance: $x' = \frac{x \mu}{\sigma}$
- PCA assumes underlying subspace is linear
 - 1d: straight line, 2d: plane

PCA and classification

PCA is unsupervised

- maximizes overall variance of the data along a set of directions
- does not know anything about class labels
- can pick direction that makes it hard to separate classes

Discriminative approach

- look for a dimension that makes it easy to separate classes
 - Lower dimensions, simpler models, thus less overfitting
 - Training is faster

Principal Components Analysis

Pros

- allows to visualize high dimensional data
- dramatic reduction in size of data
 - faster processing (as long as reduction is fast), smaller storage

Cons

- too expensive for many applications (Twitter, web)
- need to understand assumptions behind the methods (linearity)

PCA resources

- http://setosa.io/ev/principal-component-analysis/
- http://peterbloem.nl/blog/pca

