# Aiyagari (1994): A Guide to Matlab Files Supplement to Lecture 3b

Alessandro Di Nola

University of Konstanz

## The Model

Household's recursive problem

$$V(z) = \max_{\hat{a}_{+} \geq 0} \left\{ u[z - \hat{a}_{+}] + \beta \sum_{i=1}^{n} \pi_{i} V(w\overline{e}_{i} + (1+r)\hat{a}_{+} - r\Phi) \right\}$$

where  $\hat{a} \equiv a + \Phi$  and a '+' denotes next-period values.

- Let  $\hat{a}_+ = A(z)$  be the policy function for the recursive problem. Write C(z) = z A(z) for consumption.
- The policy function for next-period asset holdings is  $a_+(z) = A(z) \Phi$ .
- Marginal factor pricing conditions:
  - $r = F_K(K, L) \delta$
  - $w = F_L(K, L)$
- Market clearing for assets:
  - $K = \int a d\mu$

## Calibration

- Remark: the following calibration is purely for illustrative purposes.
- $f(k) = k^{0.3}$ ,  $u(c) = -c^{-2}/2$ ,  $\delta = 0.1$ ,  $\beta = 0.95$ .
- 1000 grid points from  $z_1 = 0.01$  to  $z_{1000} = 50$ .
- For  $\hat{a}$ , choose a grid of the same size from  $\hat{a}_1=0$  to  $\hat{a}_{1000}=z_{999}$ .
- Two productivity states:  $\bar{s}_1 = 0.2$ ,  $\bar{s}_2 = 1.8$ . Remark: i.i.d. is unrealistic in that there is too little persistence. Further, one needs quite high productivity fluctuations to generate enough precautionary savings.
- Obtain frequency distributions of assets from simulation over 100,000 periods.
- Compare two economies:
  - Zero borrowing,  $\Phi = 0$ .
  - Natural debt limit,  $\Phi = w\overline{s}_1/r$ .

# Zero borrowing

With  $\Phi = 0$ , the equilibrium interest rate is  $r^* = 0.87\%$ 



Figure: Simulated time series for productivity, assets and consumption

# Zero borrowing

With  $\Phi = 0$ , the equilibrium interest rate is  $r^* = 0.87\%$ 



Figure: Asset distribution

#### Natural debt limit

With  $\Phi = w\overline{s}_1/r$ , the equilibrium interest rate is  $r^* = 3.6\%$ 



Figure: Simulated time series for productivity, assets and consumption

#### Natural debt limit

With  $\Phi = w\overline{s}_1/r$ , the equilibrium interest rate is  $r^* = 3.6\%$ 



Figure: Asset distribution