BUNDESREPUBLIK DEUTSCHLAND

Als Erfinder benannt:

9

Deutsche Kl.:

21 d3, 1/01

1803419 Offenlegungsschrift (11) P 18 03 419.0 Aktenzeichen: 2 Anmeldetag: 16. Oktober 1968 **43**) Offenlegungstag: 19. Juni 1969 Ausstellungspriorität: Unionspriorität 30 Datum: 20. Oktober 1967 82 Land: Großbritannien 33 Aktenzeichen: 47905 ③ 64) Bezeichnung: Insbesondere als Gasturbinentriebwerk ausgebildete rotierende Maschine Zusatz zu: 61) **@** Ausscheidung aus: Anmelder: Rolls-Royce Ltd., Derby, Derbyshire (Großbritannien) 7 Vertreter: Wallach, Dipl.-Ing. Curt; Koch, Dipl.-Ing. Günther; Haibach, Dr. Tino; Patentanwälte, 8000 München

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

Allen, Francis James, Derby, Derbyshire (Großbritannien)

@

PATENTANWALTE DIPL.-ING. CURT WALLACH DIPL.-ING. GUNTHER KOCH DR. TINO HAIBACH

1803419

* MUNCHEN 2, 16.0ktober 1968

UNSER ZEICHEN: 11630 - K/VM

Rolls-Royce Limited, Derby, Derbyshire, England.

Insbesondere als Gasturbinenstrahltriebwerk ausgebildete rotierende Maschine

Die Erfindung betrifft eine rotierende Maschine, z.B. ein Gasturbinentriebwerk, das mit einem Genezator ausgestattet ist.

Gemäß der Erfindung ist die rotierende Maschine mit einem angetriebenen, sich drehenden Teil ausgestattet, der das rotierende Ankersystem trägt, das einen Teil des Generators bildet, wobei die Anordnung derart getroffen ist, daß der Generator ein stationäres Polsystem besitzt, das mit dem stationären Teil der Maschine verbunden ist, und daß eine elektrische Last von dem rotierenden Teil der Maschine getragen und mit Strom g-speist wird, indem sie an den elektrischen Kreis angeschlossen ist, der den rotierenden Anker enthält.

Vorzugsweise rotieren die Belastung (dies kann z.B. eine elektrische Heizeinrichtung sein) und der Anker gemeinsam im gleichen Winkelsinn. Hierdurch ergibt sich der Vorteil, daß es unnötig ist, Schleifringe zwischen Last und rotierendem Anker vorzuseh n und es ist außerdem unnötig, einen Schleifring zwischen einer stationären Spannungsquelle und einer Feldwicklung vorzusehen, die einen Teil des stationären Polsystems bildet.

Das roti rende Ankersystem liegt vorzugsweis konzentrisch um das stationäre Polsystem herum. Das rotierende Ankersystem kann eine mehrphasige und vorzugsweise eine zweiphasige Ankerwicklung aufweisen.

Wie erwähnt, kann die Maschine ein Gasturbinentriebwerk sein. So kann das rotierende Ankersystem vom Kompressorrotor des Triebwerks getragen werden, während das stationäre Polsystem vom Kompressorstator des Triebwerks getragen wird.

Der Kompressorrotor kann z.B. an seinem stromoberseitigen Ende mit einem rotierenden Einlaßverkleidungskörper versehen sein, der mit einer Enteisungsheizung ausgestattet ist, welche die Heizlast bildet.

Nachstehend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung beschrieben. In der Zeichnung zeigen:

- Fig. 1 eine schematische Ansicht eines Gasturbinenstrahltriebwerks gemäß der Erfindung,
- Fig. 2 eine aufgebrochene Teilansicht des Gasturbinenstrahltriebwerkes nach Fig.1 in größerem Maßstab,
- Fig. 3 einen Teilschnitt, der Einzelheiten der Fig.2 in noch größerem Maßstab erkennen läßt,
- Fig. 4 eine Schnittansicht in Richtung des Pfeiles 4, gemäß Fig.3 betrachtet.
- Fig. 1 zeigt ein Gasturbinenmantelstromtriebwerk 10 mit einem äußeren Triebwerksgehäuse 11, in dem in Strömungsrichtung hintereinander ein Niederdruckkompressor 12, ein Hochdruckkompressor 13, eine Verbrennungseinrichtung 14, eine Hochdruckturbine 15 und eine Niederdruckturbine 16 gelagert sind, wobei die Turbinenabgase durch einen Abgaskanal 17 in die Atmosphäre ausgestoßen werden.

Wie am besten aus Fig.2 ersichtlich, ist der Niederdruckkompr ssor 12, der antriebsmäßig mit der Niederdruckturbine 16 über eine Welle 20 verbunden ist, mit einem Rotor ausgestattet, der eine erste Stufe 21 besitzt. Der Niederdruckkompressor 12 weist außerdem einen mit einer ersten Stufe 22 ausgestatteten Stator auf und diese erste Statorstufe 22 trägt radial innen ein Lager 23, in dem die Welle/drehbar gelagert ist.

Das Triebwerk 10 weist eine Einlaßnabenverkleidung 24 auf, die mit der ersten Stufe 21 des Rotors verbunden ist, so daß sie sich mit diesem dreht. Da der Einlaßkörper 24 unter gewissen Bedingungen einer Vereisungsgefahr ausgesetzt ist, ist er mit Enteisungsheizelementen 25 ausgestattet, die zusammen eine Heizlast für den insgesamt mit dem Bezugszeichen 26 gekennzeichn - ten Generator bilden. Die Heizelemente 25 können z.B. in einer nichtdargestellten Matrix aus synthetischem Kunstharz eingebettet sein.

Der Generator 26 weist ein drehbares Ankersystem 27 auf, das von der ersten Rotorstufe 21 getragen und von dieser angetrieben wird, und außerdem besitzt er ein stationäres Polsystem 28, wobei das rotierende Ankersystem 27 konzentrisch um das stationäre Polsystem 28 herum angeordnet ist. Das stationäre Polsystem 28-wird von der ersten Statorstufe 22 getragen und ist demgemäß stationär.

Das rotierende Ankersystem 27 besteht aus einem lamellierten Ringkern 31, der Ankerspulen 32 trägt, die in einer Mehrphasenwicklung geschaltet sind. Vorzugsweise wird eine zweiphasige Wicklung benutzt, weil sich dies als zweckmäßig zur Verteilung der Last erweist. Der lamellierte Ringkern 31 ist mit mehreren (z.B.192) im gleichen Abstand zueinander liegenden Schlitzen 33 ausgestattet, in die die Leiter der Ankerspulen 32 eingelegt sind. Diese Leiter sind vorzugsweise Aluminiumleiter, obgleich diese einen größeren Querschnitt benötigen als äquivalente Kupferleiter.

Jedoch sind sie dennoch weniger schwer und erzeugen bei der Drehung ine geringere Zentrifugalbelastung auf den lam llierten Ringkern 31, als dies bei Kupferwicklungen der Fall wäre.

Der lamellierte Ringkern 31 des rotierenden Ankersystems 27 wird von einem Flansch 34 der ersten Rotorstufe 21 getragen und dieser Flansch 34 liegt radial innerhalb der Plattformen 35 der Schaufeln der ersten Rotorstufe. Das stationäre Polsystem 28 ist ein heteropolares System, das z.B. vierundzwanzig Pole 36 aufweist, die auf einem Ringkörper 37 angeordnet sind, der von einem Flansch 38 getragen wird, der einen Teil der ersten Statorstufe 22 bildet und in der Nähe des Lagers 23 befindlich ist. Die Polschuhe 36 werden im Ringkörper 37 durch Keile 39 gehaltert.

Da sich das Ankersystem 27 dreht, unterstützen die Zentrifugalkräfte eine Einbettung der Ankerspulen 32 in die Schlitze 33, von denen je vier für jeden Pol 36 vorgesehen sind.

Jeder der Pole 36 weist eine Feldspule 40 auf. Da das Polsystem 28 stationär ist, ist es nicht nötig, Schleifringe zwischen den Feldspulen 40 und einer stationären elektrischen Spannungsquelle (nicht dargestellt) vorzuschen. Da im Hinblick auf ein gutes mechanisches Spiel ein ziemlich großer Luftspalt von z.B. 0,75 mm (0,030 Zoll) vorgeschen werden sollte, brauchen die Feldspulen 40 nicht aus Kupfer zu sein, um die erforderlichen Ampenwindungen in dem verfügbaren Raum unterzubringen.

Die Heizlast, die von den Heizelementen 25 gebildet wird, ist über nichtdargestellte Leiter an eine elektrische Schaltung ang schlossen, die die Ankerspulen 32 umfaßt. Da sich Heizlast und Ankersystem 27 gemeinsam in der gleichen Richtung drehen, ist es nicht erforderlich, Schleifringe vorzusehen.

Patentansprüche:

Patentansprüche:

- 1. Insbesondere als Gasturbinenstrahltriebw rk ausgebildet rotierende Maschine, dadurch gekennzeichne, daß ihr Rotor das rotierende Ankersystem (27) eines elektrischen Generators (26) trägt, dessen stationäres Polsystem (28) am stationären Teil der Maschine festgelegt ist, und daß eine elektrische Belastung (25) vom drehenden Teil der Maschine getragen und mit Strom gespeist wird, in dem die Last/eine elektrische Schaltung angeschlossen ist, die das drehbare Ankersystem (27) enthält.
- 2. Triebwerk nach Anspruch 1,
 dadurch gekennzeichnet,
 daß die Belastung (25) und das drehbare Ankersystem (27)
 sich gemeinsam in der gleichen Richtung drehen.
- 3. Triebwerk nach den Ansprüchen 1 oder 2, dadurch gekennzeich net, daß das drehbare Ankersystem (27) konzentrisch das stationäre Polsystem (28) umschließt.
- 4. Triebwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, daß das rotierende Ankersystem (27) eine mehrphasige Ankerwicklung (32) aufweist.
- 5. Triebwerk nach Anspruch 4,
 dadurch gekennzeichnet,
 daß die mehrphasige Ankerwicklung eine Zweiphasenankerwicklung (32) ist.

ORIGINAL INSPECTED

- 6. Triebwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, daß die elektrische Last eine elektrische Heizung (25) ist.
- 7. Triebwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, daß es ein Gasturbinenstrahltriebwerk (10) eines Flugzeugs ist.
- 8. Triebwerk nach Anspruch 7,
 dadurch gekennzeichnet,
 daß das drehbare Ankersystem (27) von dem Kompressorrotor (21) des Triebwerks (10) getragen wird und daß
 das stationäre Polsystem (28) von dem Kompressorstator
 (22) des Triebwerkes (10) getragen wird.
- 9. Triebwerk nach den Ansprüchen 6 und 8, dadurch gekennzeich hnet, daß der Kompressorrotor (21) am stromoberseitigen Ende mit einer sich drehenden Nabenverkleidung (24) versehen ist, die mit Enteisungselementen ausgestattet ist, welche die Heizbelastung (25) bilden.

9

21d3 1-01 18 03 419 O.T: 19.6.1969

1803419

