Notebook in Algebraic Geometry

Notebook in Algebraic Geometry

Author: Tianle Yang

Email: loveandjustice@88.com

Homepage: tianleyang.com

 $Source\ code:\ github.com/MonkeyUnderMountain/Note_on_Algebraic_Geometry$

Version: 0.1.0

Last updated: June 21, 2025

Copyright © 2025 Tianle Yang

Contents

L	1 ne	FF	1
	1.1	Setup and the first examples	1
		1.1.1 Notations	1
		1.1.2 Examples	1
A	Con	nmutative Algebra	3
			3
		v · · · · · · · · · · · · · · · · · · ·	3
			3
			4
	A.2		4
			4
			5
	A.3	· · ·	6
			7
			8
			8
			9
		A.3.5 Regular rings	C
	A.4	Finite Algebra and Normality Yang: To be completed	
	A.5		2
		A.5.1 Modules of differentials and derivations	
		A.5.2 Applications to affine varieties	
В	Hor	nological Algebra 1	7
	B.1	Complexes and Homology	7
		Derived Functors	
	B.3	Applications to Commutative Algebra	
		B.3.1 Depth and Ext	7
		B.3.2 Regularity and cohomological dimension	7

CONTENTS

Chapter 1 The first properties

1.1 Setup and the first examples

1.1.1 Notations

All schemes are assumed to be separated. For a "scheme" which is not separated, we will use the term "prescheme".

Let A be a ring. We denote by Spec A the spectrum of A. For an ideal $I \subset A$, we use V(I) to denote the closed subscheme of Spec A defined by I.

Let S be Spec k , Spec \mathcal{O}_K or an algebraic variety. An S-variety is an integral scheme X which is of finite type and flat over S. For an algebraic variety, we mean a k -variety.

We will use k, K to denote fields, and k, K to denote their algebraically closure relatively.

Let X be an integral scheme. We denote by $\mathcal{K}(X)$ the function field of X. For a closed point $x \in X$, we denote by $\kappa(x)$ the residue field of x.

We denote the category of S-varieties by \mathbf{Var}_S . We denote by X(T) the set of T-points of X, that is, the set of morphisms $T \to X$.

Let X be an algebraic variety over k. A geometrical point is referred a morphism $\operatorname{Spec} \mathbf{k} \to X$.

When refer a point (may not be closed) in a scheme, we will use the notation $\xi \in X$. We use Z_{ξ} to denote the Zariski closure of $\{\xi\}$ in X. When we talk about a closed point on an algebraic variety, we will use the notation $x \in X(\mathbf{k})$.

Separated and proper morphisms

1.1.2 Examples

Appendix A

Commutative Algebra

A.1 Elementary Results Yang: To be completed

A.1.1 Notations

Proposition A.1.1. Let A be a ring, $\mathfrak{p}, \mathfrak{p}_i$ prime ideals of A and $\mathfrak{a}, \mathfrak{a}_i$ ideals of A.

- (a) Suppose $\mathfrak{a} \subset \bigcup_{i=1}^n \mathfrak{p}_i$. Then there exists i such that $\mathfrak{a} \subset \mathfrak{p}_i$.
- (b) Suppose $\bigcap_{i=1}^n \mathfrak{a}_i \subset \mathfrak{p}$. Then there exists i such that $\mathfrak{a}_i \subset \mathfrak{p}$.

Definition A.1.2. Let A be a ring and M an A-module. The *support* of M is defined as

 $\operatorname{Supp} M := \{ \mathfrak{p} \in \operatorname{Spec} A \colon M_{\mathfrak{p}} \neq 0 \}.$

Proposition A.1.3. Let A be a ring and M a finite A-module. Then Supp $M = V(\operatorname{Ann} M)$. In particular, Supp M is a closed subset of Spec A.

Proof. Yang: To be completed.

A.1.2 Nakayama's Lemma

Theorem A.1.4 (Nakayama's Lemma). Let A be a ring and \mathfrak{M} be its Jacobi radical. Suppose M is a finitely generated A-module. If $\mathfrak{a}M = M$ for $\mathfrak{a} \subset \mathfrak{M}$, then M = 0.

Proof. Suppose M is generated by x_1, \dots, x_n . Since $M = \mathfrak{a}M$, formally we have $(x_1, \dots, x_n)^T = \Phi(x_1, \dots, x_n)^T$ for $\Phi \in M_n(\mathfrak{a})$. Then $(\Phi - \mathrm{id})(x_1, \dots, x_n)^T = 0$. Note that $\det(\Phi - \mathrm{id}) = 1 + a$ for $a \in \mathfrak{a} \subset \mathfrak{M}$. Then $\Phi - \mathrm{id}$ is invertible and then M = 0.

Proposition A.1.5 (Geometric form of Nakayama's Lemma). Let $X = \operatorname{Spec} A$ be an affine scheme, $x \in X$ a closed point and \mathcal{F} a coherent sheaf on X. If $a_1, \dots, a_k \in \mathcal{F}(X)$ generate $\mathcal{F}|_x = \mathcal{F} \otimes \kappa(x)$, then there is an open subset $U \subset X$ such that $a_i|_U$ generate $\mathcal{F}(U)$.

Proof. Yang: To be completed.

Corollary A.1.6.

Proof. Yang: To be completed.

A.1.3 Nullstellensatz

Theorem A.1.7 (Noether's Normalization Lemma). Let A be a k-algebra of finite type. Then there is an injection $k[T_1, \dots, T_d] \hookrightarrow A$ such that A is finite over $k[T_1, \dots, T_d]$.

Remark A.1.8. Here A does not need to be integral. For example,

Theorem A.1.9 (Hilbert's Nullstellensatz). Let A be a

A.2 Associated prime ideals

A.2.1 Associated prime ideals

Definition A.2.1 (Associated prime ideals). Let A be a noetherian ring and M an A-module. The associated prime ideals of M are the prime ideals $\mathfrak p$ of form $\mathrm{Ann}(x)$ for some $x \in M$. The set of associated prime ideals of M is denoted by $\mathrm{Ass}(M)$.

Example A.2.2. Let $A = \mathbf{k}[x,y]/(xy)$ and M = A. First we see that $(x) = \operatorname{Ann} y, (y) = \operatorname{Ann} x \in \operatorname{Ass} M$. Then we check other prime ideals. For (x,y), if xf = yf = 0, then $f \in (x) \cap (y) = (0)$. If $(x-a) = \operatorname{Ann} f$ for some f, note that $y \in (x-a)$ for $a \in \mathbf{k}^*$, then $f \in (x)$. Hence f = 0. Therefore $\operatorname{Ass} M = \{(x), (y)\}$.

Example A.2.3. Let $A = \mathbf{k}[x,y]/(x^2,xy)$ and M = A. The underlying space of Spec A is the y-axis since $\sqrt{(x^2,xy)} = (x)$. First note that $(x) = \text{Ann } y, (x,y) = \text{Ann } x \in \text{Ass } M$. For (x,y-a) with $a \in \mathbf{k}^*$, easily see that xf = (y-a)f = 0 implies f = 0 since $A = \mathbf{k} \cdot x \oplus \mathbf{k}[y]$ as \mathbf{k} -vector space. Hence Ass $M = \{(x), (x,y)\}$.

Lemma A.2.4. Let A be a noetherian ring and M an A-module. Then the maximal element of the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}$$

belongs to Ass M.

Proof. We just need to show that such Ann x is prime. Otherwise, there exist $a, b \in A$ such that $ab \in A$ nn x but $a, b \notin A$ nn x. It follows that Ann $x \subseteq A$ nn ax since $b \in A$ nn $ax \setminus A$ nn $ax \cap A$ nn ax

An element $a \in A$ is called a zero divisor for M if $M \to aM, m \mapsto am$ is not injective.

Corollary A.2.5. Let A be a noetherian ring and M an A-module. Then

$$\{\text{zero divisors for }M\} = \bigcup_{\mathfrak{p} \in \text{Ass }M} \mathfrak{p}.$$

Lemma A.2.6. Let A be a noetherian ring and M an A-module. Then $\mathfrak{p} \in \operatorname{Ass}_A M$ iff $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proof. Suppose $\mathfrak{p}A_{\mathfrak{p}} \in \mathrm{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $\mathfrak{p}A_{\mathfrak{p}} = \mathrm{Ann}\, y_0/c$ with $y_0 \in M$ and $c \in A \setminus \mathfrak{p}$. For $a \in \mathrm{Ann}\, y_0$, $ay_0 = 0$. Then $a/1 \in \mathfrak{p}A_{\mathfrak{p}}$. It follows that $a \in \mathfrak{p}$. Hence $\mathrm{Ann}\, y_0 \subset \mathfrak{p}$.

Inductively, if Ann $y_n \subseteq \mathfrak{p}$, then there exists $b_n \in A \setminus \mathfrak{p}$ such that $y_{n+1} := b_n y_n$, Ann $y_{n+1} \subset \mathfrak{p}$ and Ann $y_n \subseteq A$ nn y_{n+1} . To see this, choose $a_n \in \mathfrak{p} \setminus A$ nn y_n . Then $(a_n/1)y_n = 0$ since $a_n/1 \in \mathfrak{p} A_{\mathfrak{p}}$. By definition, there exist $b_n \in A \setminus \mathfrak{p}$ such that $a_n b_n y_n = 0$. This process must terminate since A is noetherian. Thus Ann $y_n = \mathfrak{p}$ for some n. Hence $\mathfrak{p} \in A$ ss_A M.

Conversely, suppose $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M$. If $(a/s)(x/1) = 0 \in M_{\mathfrak{p}}$, there exist $t \in A \setminus \mathfrak{p}$ such that tax = 0. It follows that $ta \in \mathfrak{p}$ and then $(a/s) \in \mathfrak{p}A_{\mathfrak{p}}$. Hence $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proposition A.2.7. We have Ass $M \subset \operatorname{Supp} M$. Moreover, if $\mathfrak{p} \in \operatorname{Supp} M$ satisfies $V(\mathfrak{p})$ is an irreducible component of Supp M, then $\mathfrak{p} \in \operatorname{Ass} M$.

Proof. For any $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M$, we have $A/\mathfrak{p} \cong A \cdot x \subset M$. Tensoring with $A_{\mathfrak{p}}$ gives $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \hookrightarrow M_{\mathfrak{p}}$ since $A_{\mathfrak{p}}$ is flat. Hence $M_{\mathfrak{p}} \neq 0$ and $\mathfrak{p} \in \operatorname{Supp} M$.

Now suppose $\mathfrak{p} \in \operatorname{Supp} M$ and $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Supp} M$. First we show that $\mathfrak{p} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $x \in M_{\mathfrak{p}}$ such that $\operatorname{Ann} x$ is maximal in the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}.$$

Then we claim that $\operatorname{Ann} x = \mathfrak{p} A_{\mathfrak{p}}$. First, $\operatorname{Ann} x$ is prime by Lemma A.2.4. If $\operatorname{Ann} x \neq \mathfrak{p}$, then $V(\operatorname{Ann} x) \supset V(\mathfrak{p})$. This implies that $\operatorname{Ann} x \notin \operatorname{Supp} M_{\mathfrak{p}}$ since $\operatorname{Supp} M_{\mathfrak{p}} = \operatorname{Supp} M \cap \operatorname{Spec} A_{\mathfrak{p}}$. This is a contradiction. Thus $\mathfrak{p} A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. By Lemma A.2.6, we have $\mathfrak{p} \in \operatorname{Ass} M$.

Remark A.2.8. The existence of irreducible component is guaranteed by Zorn's Lemma.

Definition A.2.9. A prime ideal $\mathfrak{p} \in \operatorname{Ass} M$ is called *embedded* if $V(\mathfrak{p})$ is not an irreducible component of Supp M.

Example A.2.10. For $M = A = \mathbf{k}[x,y]/(x^2,xy)$, the origin (x,y) is an embedded point.

Proposition A.2.11. If we have exact sequence $0 \to M_1 \to M_2 \to M_3$, then Ass $M_2 \subset \text{Ass } M_1 \cup \text{Ass } M_3$.

Proof. Let $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M_2 \setminus \operatorname{Ass} M_1$. Then the image [x] of x in M_3 is not equal to 0. We have that $\operatorname{Ann} x \subset \operatorname{Ann}[x]$. If $a \in \operatorname{Ann}[x] \setminus \operatorname{Ann} x$, then $ax \in M_1$. Since $\operatorname{Ann} x \subsetneq \operatorname{Ann} ax$, there is $b \in \operatorname{Ann} ax \setminus \operatorname{Ann} x$. However, it implies $ba \in \operatorname{Ann} x$, and then $a \in \operatorname{Ann} x$ since $\operatorname{Ann} x$ is prime, which is a contradiction.

Corollary A.2.12. If M is finitely generated, then the set Ass M is finite.

Proof. For $\mathfrak{p}=\mathrm{Ann}\,x\in\mathrm{Ass}\,M$, we know that the submodule M_1 generated by x is isomorphic to A/\mathfrak{p} . Inductively, we can choose M_n be the preimage of a submodule of M/M_{n-1} which is isomorphic to A/\mathfrak{q} for some $\mathfrak{q}\in\mathrm{Ass}\,M/M_{n-1}$. We can take an ascending sequence $0=M_0\subset M_1\subset\cdots\subset M_n\subset\cdots$ such that $M_i/M_{i-1}\cong A/\mathfrak{p}_i$ for some prime \mathfrak{p}_i . Since M is finitely generated, this is a finite sequence. Then the conclusion follows by Proposition A.2.11.

A.2.2 Primary decomposition

Definition A.2.13. An A-module is called *co-primary* if Ass M has a single element. Let M be an A-module and $N \subset M$ a submodule. Then N is called *primary* if M/N is co-primary. If Ass $M/N = \{\mathfrak{p}\}$, then N is called \mathfrak{p} -primary.

Remark A.2.14. This definition coincide with primary ideals in the case M = A. Recall an ideal $\mathfrak{q} \subset A$ is called *primary* if $\forall ab \in \mathfrak{p}, a \notin \mathfrak{q}$ implies $b^n \in \mathfrak{q}$ for some n.

Let \mathfrak{q} be a \mathfrak{q} -primary ideal. Since Supp $A/\mathfrak{q} = \{\mathfrak{p}\}$, $\mathfrak{p} \in \operatorname{Ass} A/\mathfrak{q}$. Suppose $\operatorname{Ann}[a] \in \operatorname{Ass} A/\mathfrak{q}$. Then $\mathfrak{p} \subset \operatorname{Ann}[a]$ since $V(\mathfrak{p}) = \operatorname{Supp} A/\mathfrak{q}$. If $b \in \operatorname{Ann}[a]$, then $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Hence $b^n \in \mathfrak{q}$, and then $b \in \mathfrak{p}$. This shows that $\operatorname{Ass} A/\mathfrak{q} = \{\mathfrak{p}\}$ and \mathfrak{q} is \mathfrak{p} -primary as an A-submodule.

Let $\mathfrak{q} \subset A$ be a \mathfrak{p} -primary A-submodule. First we have $\mathfrak{p} = \sqrt{\mathfrak{q}}$ since $V(\mathfrak{p})$ is the unique irreducible component of Supp A/\mathfrak{q} . Suppose $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Then $b \in \mathrm{Ann}[a] \subset \mathfrak{p}$ since \mathfrak{p} is the unique maximal element in $\{\mathrm{Ann}[c]: c \in A \setminus \mathfrak{q}\}$. This implies that $b^n \in \mathfrak{q}$.

Definition A.2.15. Let A be a noetherian ring, M an A-module and $N \subset M$ a submodule. A minimal primary decomposition of N in M is a finite set of primary submodules $\{Q_i\}_{i=1}^n$ such that

$$N = \bigcap_{i=1}^{n} Q_i,$$

no Q_i can be omitted and Ass M/Q_i are pairwise distinct. For Ass $M/Q_i = \{\mathfrak{p}\}$, Q_i is called belonging to \mathfrak{p} .

Indeed, if $N \subset M$ admits a minimal primary decomposition $N = \bigcap Q_i$ with Q_i belonging to \mathfrak{p} , then $\mathrm{Ass}(M/N) = \{\mathfrak{p}_i\}$. For given i, consider $N_i := \bigcap_{j \neq i} Q_j$, then $N_i/N \cong (N_i + Q_i)/Q_i$. Since $N_i \neq N$, $\mathrm{Ass}\,N_i/N \neq \emptyset$. On the other hand, $\mathrm{Ass}\,N_i/N \subset \mathrm{Ass}\,M/Q_i = \{\mathfrak{p}\}$. It follows that $\mathrm{Ass}\,N_i/N = \{\mathfrak{p}_i\}$, whence $\mathfrak{p}_i \in \mathrm{Ass}\,M/N$. Conversely, we have an injection $M/N \hookrightarrow \bigoplus M/Q_i$, so $\mathrm{Ass}\,M/N \subset \bigcup \mathrm{Ass}\,M/Q_i$. Due to this, if Q_i belongs to \mathfrak{p} , we also say that Q_i is the \mathfrak{p} -component of N.

Proposition A.2.16. Suppose $N \subset M$ has a minimal primary decomposition. If $\mathfrak{p} \in \operatorname{Ass} M/N$ is not embedded, then the \mathfrak{p} component of N is unique. Explicitly, we have $Q = \nu^{-1}(N_{\mathfrak{p}})$, where $\nu : M \to M_{\mathfrak{p}}$.

Proof. First we show that $Q = \nu^{-1}(Q_{\mathfrak{p}})$. Clearly $Q \subset \nu^{-1}(Q_{\mathfrak{p}})$. Suppose $x \in \nu^{-1}(Q_{\mathfrak{p}})$. Then there exists $s \in A \setminus \mathfrak{p}$ such that $sx \in Q$. That is, $[sx] = 0 \in M/Q$. If $[x] \neq 0$, we have $s \in \text{Ann}[x] \subset \mathfrak{p}$. This contradiction enforces $Q = \nu^{-1}(Q_{\mathfrak{p}})$.

Then we show that $N_{\mathfrak{p}} = Q_{\mathfrak{p}}$. Just need to show that for $\mathfrak{p}' \neq \mathfrak{p}$ and the \mathfrak{p}' component Q' of N, $Q'_{\mathfrak{p}} = M_{\mathfrak{p}}$. Since \mathfrak{p} is not embedded, $\mathfrak{p}' \not\subset \mathfrak{p}$. Then $\mathfrak{p} \notin V(\mathfrak{p}) = \operatorname{Supp} M/Q'$. So $M_{\mathfrak{p}}/Q'_{\mathfrak{p}} = 0$.

Example A.2.17. If \mathfrak{p} is embedded, then its components may not be unique. For example, let $M=A=\mathbf{k}[x,y]/(x^2,xy)$. Then for every $n\in\mathbb{Z}_{\geq 1}$, $(x)\cap(x^2,xy,y^n)$ is a minimal primary decomposition of $(0)\subset M$.

Let A be a noetherian ring and $\mathfrak{p} \subset A$ a prime ideal. We consider the \mathfrak{p} component of \mathfrak{p}^n , which is called n-th symbolic power of \mathfrak{p} , denoted by $\mathfrak{p}^{(n)}$. We have $\mathfrak{p}^{(n)} = \mathfrak{p}^n A_{\mathfrak{p}} \cap A$. In general, $\mathfrak{p}^{(n)}$ is not equal to \mathfrak{p}^n ; see below example.

Example A.2.18. Let $A = \mathsf{k}[x, y, z, w]/(y^2 - zx^2, yz - xw)$ and $\mathfrak{p} = (y, z, w)$. We have $z = y^2/x^2, w = yz/x \in \mathfrak{p}^2 A_{\mathfrak{p}}$, whence $\mathfrak{p}^2 A_{\mathfrak{p}} = (z, w) \neq \mathfrak{p}^2$.

Theorem A.2.19. Let A be a noetherian ring and M an A-module. Then for every $\mathfrak{p} \in \mathrm{Ass}\,M$, there is a \mathfrak{p} -primary submodule $Q(\mathfrak{p})$ such that

$$(0) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} M} Q(\mathfrak{p}).$$

Proof. Consider the set

$$\mathcal{N} := \{ N \subset M \colon \mathfrak{p} \notin \mathrm{Ass}\, N \}.$$

Note that $\operatorname{Ass}\bigcup N_i=\bigcup\operatorname{Ass} N_i$ by definition of associated prime ideals. Then it is easy to check that $\mathcal N$ satisfies the conditions of Zorn's Lemma. Hence $\mathcal N$ has a maximal element $Q(\mathfrak p)$. We claim that $Q(\mathfrak p)$ is $\mathfrak p$ -primary. If there is $\mathfrak p'\neq\mathfrak p\in\operatorname{Ass} M/Q(\mathfrak p)$, then there is a submodule $N'\cong A/\mathfrak p$. Let N'' be the preimage of N' in M. We have $Q(\mathfrak p)\subsetneq N''$ and $N''\in\mathcal N$. This is a contradiction. By the fact $\operatorname{Ass}\bigcap N_i=\bigcap\operatorname{Ass} N_i$, we get the conclusion.

Corollary A.2.20. Let A be a noetherian ring and M a finitely generated A-module. Then every submodule of M has a minimal primary decomposition.

A.3 Dimension and Depth

There are three numbers measuring the "size" of a local ring (A, \mathfrak{m}) :

- $\dim A$: the Krull dimension of A.
- depth A: the depth of A.
- $\dim_{\kappa(\mathfrak{m})} T_{A,\mathfrak{m}}$: the dimension of Zariski tangent space $T_{A,\mathfrak{m}} := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ as a $\kappa(\mathfrak{m})$ -vector space.

Somehow the Krull dimension is "homological" and the depth is "cohomological".

Definition A.3.1. Let A be a noetherian ring. The *height of a prime ideal* \mathfrak{p} in A is defined as the maximum length of chains of prime ideals contained in \mathfrak{p} , that is,

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \mid \exists \text{ a chain of prime ideals } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}.$$

The $Krull\ dimension$ of A is defined as

$$\dim A := \max_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p}).$$

Definition A.3.2. Let A be a noetherian ring, $I \subset A$ an ideal and M a finitely generated A-module. A sequence $t_1, \dots, t_n \in I$ is called an M-regular sequence in I if t_i is not a zero divisor on $M/(t_1, \dots, t_{i-1})M$ for all i.

Example A.3.3. Let $A = k[x,y]/(x^2,xy)$ and I = (x,y). Then depth_I A = 0.

Definition A.3.4. Let A be a noetherian ring. For every $\mathfrak{p} \in \operatorname{Spec} A$, $\mathfrak{p}/\mathfrak{p}^2$ is a vector space over $\kappa(\mathfrak{p})$. The Zariski's tangent space $T_{A,\mathfrak{p}}$ of A at \mathfrak{p} is defined as $(\mathfrak{p}/\mathfrak{p}^2)^{\vee}$, the dual $\kappa(\mathfrak{p})$ -vector space of $\mathfrak{p}/\mathfrak{p}^2$.

A.3.1 Artinian Rings and Length of Modules

Definition A.3.5. Let A be a ring and M an A module. A simple module filtration of M is a filtration

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n = 0$$

such that M_i/M_{i-1} is a simple module, i.e. it has no submodule except 0 and itself. If M has a simple module filtration as above, we define the *length of M* as n and say that M has *finite length*.

The following proposition guarantees the length is well-defined.

Proposition A.3.6. Suppose M has a simple module filtration $M = M_{0,0} \supseteq M_{1,0} \supseteq \cdots \supseteq M_{n,0} = 0$. Then for any other filtration $M = M_{0,0} \supset M_{0,1} \supset \cdots \supset M_{0,m} = 0$ with m > n, there exist k < m such that $M_{0,k} = M_{0,k+1}$.

Proof. We claim that there are at least $0 \le k_1 < \cdots < k_{m-n} < m$ satisfies that $M_{0,k_i} = M_{0,k_{i+1}}$. Let $M_{i,j} := M_{i,0} \cap M_{0,j}$. Inductively on n, we can assume that there exist k_1, \cdots, k_{n-m+1} such that $M_{1,k} = M_{1,k+1}$. Consider the sequence

$$M_{0,0}/M_{1,0} \supset (M_{0,1}+M_{1,0})/M_{1,0} \supset \cdots \supset (M_{0,m}+M_{1,0})/M_{1,0} = 0$$

in $M_{0,0}/M_{1,0}$. Since $M_{0,0}/M_{1,0}$ is simple, there is at most one k_i with $M_{0,k_i}+M_{1,0}\neq M_{0,k_i+1}+M_{1,0}$. And note that if $M_{0,k_i}+M_{1,0}=M_{0,k_i+1}+M_{1,0}$ and $M_{0,k_i}\cap M_{1,0}=M_{0,k_i}\cap M_{1,0}$, then $M_{0,k_i}=M_{0,k_i+1}$ by the Five Lemma. \square

Example A.3.7. Let A be a ring and $\mathfrak{m} \in \mathrm{mSpec}\,A$. Then A/\mathfrak{m} is a simple module. Yang: To be completed.

Proposition A.3.8. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the sequence terminates.

Proposition A.3.9. The length l(-) is an additive function for modules of finite length. That is, if we have an exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ with M_i of finite length, then $l(M_2) = l(M_1) + l(M_3)$.

Proof. The simple module filtrations of M_1 and M_3 will give a simple module filtration of M_2 .

Proposition A.3.10. Let (A, \mathfrak{m}) be a local ring. Then A is artinian iff $\mathfrak{m}^n = 0$ for some $n \geq 0$.

Proof. Suppose A is artinian. Then the sequence $\mathfrak{m} \supset \mathfrak{m}^2 \supset \mathfrak{m}^3 \supset \cdots$ will stable. It follows that $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n. By the Nakayama's Lemma A.1.4, $\mathfrak{m}^n = 0$. Conversely, we have

$$\mathfrak{m}\subset\mathfrak{N}\subset\bigcap_{\mathrm{minimal\ prime\ ideal}}\mathfrak{p}$$

whence \mathfrak{m} is minimal.

Proposition A.3.11. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set $\{\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_k\}$. It has a minimal element $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ and for any maximal ideal \mathfrak{m} , $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subset \mathfrak{m}$. It follows that $\mathfrak{m} = \mathfrak{m}_i$ for some i. Let $\mathfrak{M} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ be the Jacobi radical of A. Consider the sequence $\mathfrak{M} \supset \mathfrak{M}^2 \supset \cdots$ and by Nakayama's Lemma, we have $\mathfrak{M}^k = 0$ for some k. Consider the filtration

$$A \supset \mathfrak{m}_1 \supset \cdots \supset \mathfrak{m}_1^k \supset \mathfrak{m}_1^k \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1^k \cdots \mathfrak{m}_n^k = (0).$$

We have $\mathfrak{m}_1^k \cdots \mathfrak{m}_i^j/\mathfrak{m}_1^k \cdots \mathfrak{m}_i^{j+1}$ is an A/\mathfrak{m}_i -vector space. It is artinian and then of finite length. Hence A is of finite length.

Theorem A.3.12. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0.

Proof. Suppose A is artinian. Then A is noetherian by Proposition A.3.11. Let $\mathfrak{p} \in \operatorname{Spec} A$. Then A/\mathfrak{p} is an artinian integral domain. If there is $a \in A/\mathfrak{p}$ is not invertible, consider $(a) \supset (a^2) \supset \cdots$, we see a = 0. Hence \mathfrak{p} is maximal and dim A = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In particular, A has only finite maximal ideal $\mathfrak{p}_1, \dots, \mathfrak{p}_n$. Let \mathfrak{q}_i be the \mathfrak{p}_i -component of (0). Then we have $A \hookrightarrow \bigoplus_i A/\mathfrak{q}_i$. We just need to show that A/\mathfrak{q}_i is of finite length as A-module. If $\mathfrak{q}_i \subset \mathfrak{p}_j$, take radical we get $\mathfrak{p}_i \subset \mathfrak{q}_j$ and hence i = j. So A/\mathfrak{q}_i is a local ring with maximal ideal $\mathfrak{p}_i A/\mathfrak{q}_i$. Then every element in $\mathfrak{p}_i A/\mathfrak{q}_i$ is nilpotent. Since \mathfrak{p}_i is finitely generated, $(\mathfrak{p}_i A/\mathfrak{q}_i)^k = 0$ for some k. Then A/\mathfrak{q}_i is artinian and then of finite length as A/\mathfrak{q}_i -module. Then the conclusion follows.

A.3.2 Dedekind Domains Yang: To be completed

A.3.3 Krull's Principal Ideal Theorem

Theorem A.3.13 (Krull's Principal Ideal Theorem). Let A be a noetherian ring. Suppose $f \in A$ is not a unit. Let \mathfrak{p} be a minimal prime ideal among those containing f. Then $\operatorname{ht}(\mathfrak{p}) \leq 1$.

Proof. By replacing A by $A_{\mathfrak{p}}$, we may assume A is local with maximal ideal \mathfrak{p} . Note that A/(f) is artinian since it has only one prime ideal $\mathfrak{p}/(f)$.

Let $\mathfrak{q} \subseteq \mathfrak{p}$. Consider the sequence $\mathfrak{q}^{(1)} \supset \mathfrak{q}^{(2)} \supset \cdots$, its image in A/(f) is stationary. Then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\mathfrak{q}^{(n)} + (f) = \mathfrak{q}^{(n+1)} + (f)$. For $x \in \mathfrak{q}^{(n)}$, we may write x = y + af for $y \in \mathfrak{q}^{(n+1)}$. Then $af \in \mathfrak{q}^{(n)}$. Since $\mathfrak{q}^{(n)}$ is \mathfrak{q} -primary and $f \notin \mathfrak{q}$, $a \in \mathfrak{q}^{(n)}$. Then we get $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)} + f\mathfrak{q}^{(n)}$. That is, $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)} = f\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)}$. Note that $f \in \mathfrak{p}$, by Nakayama's Lemma, $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)}$. That is, $\mathfrak{q}^n A_{\mathfrak{q}} = \mathfrak{q}^{n+1} A_{\mathfrak{q}}$. By Nakayama's Lemma again, $\mathfrak{q}^n A_{\mathfrak{q}} = 0$. It follows that $\mathfrak{q} A_{\mathfrak{q}}$ is minimal, whence $A_{\mathfrak{q}}$ is artinian. Therefore, \mathfrak{q} is minimal in A.

Corollary A.3.14. Let A be a noetherian local ring. Suppose $f \in A$ is not a unit. Then $\dim A/(f) \ge \dim A - 1$. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ be a sequence of prime ideals. By assumption, $f \in \mathfrak{p}_n$. If $f \in \mathfrak{p}_0$, we get a sequence of prime ideals in A/(f) of length n. Now we suppose $f \notin \mathfrak{p}_0$. Then there exists $k \geq 0$ such that $f \in \mathfrak{p}_{k+1} \setminus \mathfrak{p}_k$.

Choose \mathfrak{q} be a minimal prime ideal among those containing (\mathfrak{p}_{k-1}, f) and contained in \mathfrak{p}_{k+1} . Then by Krull's Principal Ideal Theorem A.3.13, $\mathfrak{q}_k \subsetneq \mathfrak{p}_{k+1}$. Replace \mathfrak{p}_k by \mathfrak{q}_k , we have $f \in \mathfrak{q}_k \setminus \mathfrak{p}_{k-1}$

Repeat this process, we get a sequence $\mathfrak{p}'_0 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ such that $f \in \mathfrak{p}'_1$. This gives a sequence $\mathfrak{p}'_1 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ in A/(f). Hence we get $\dim A/(f) \geq \dim A - 1$.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f) has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal in A. It follows that $\dim A/(f) + 1 \le \dim A$.

Proposition A.3.15. Let (A, \mathfrak{m}) be a local noetherian ring with residue field k. Then the following inequalities hold:

$$\operatorname{depth} A \leq \dim_{\mathsf{k}} T_{A,\mathfrak{m}}.$$

Proof. The first inequality is a direct corollary of Corollary A.3.14.

Let t_1, \dots, t_n be a $\kappa(\mathfrak{m})$ -basis of $\mathfrak{m}/\mathfrak{m}^2$. Then we have $\mathfrak{m}/(t_1, \dots, t_n) + \mathfrak{m}^2 = 0$, whence $\mathfrak{m}/(t_1, \dots, t_n) = \mathfrak{m}(\mathfrak{m}/(t_1, \dots, t_n))$. It follows that $\mathfrak{m} = (t_1, \dots, t_n)$ by Nakayama's Lemma. By Corollary A.3.14,

$$n + \dim A/(t_1, \dots, t_n) \ge n - 1 + \dim A/(t_1, \dots, t_{n-1}) \ge \dots \ge 1 + \dim A/(t_1) \ge \dim A.$$

We conclude the result. \Box

Definition A.3.16. Let X be a locally noetherian scheme and $k \in \mathbb{Z}_{\geq 0}$. We say that X verifies property (R_k) or is regular in codimension k if $\forall \xi \in X$ with codim $Z_{\xi} \leq k$,

$$\dim_{\kappa(\xi)} T_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

We say that X verifies property (S_k) if $\forall \xi \in X$ with depth $\mathcal{O}_{X,\xi} < k$,

$$\operatorname{depth} \mathcal{O}_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

Example A.3.17. Let A be a noetherian ring. Then A verifies (S_1) iff A has no embedded point.

Suppose A verifies (S_1) . If $\mathfrak{p} \in AssA$, every element in \mathfrak{p} is a zero divisor. Then depth $A_{\mathfrak{p}} = 0$. It follows that $\dim A_{\mathfrak{p}} = 0$ and then \mathfrak{p} is minimal.

Suppose A has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 0$. This means every element in $\mathfrak{p}A_{\mathfrak{p}}$ is a zero

divisor. Then

$$\mathfrak{p}\subset\{\text{zero divisors in }A\}=\bigcup_{\text{minimal prime ideals}}\mathfrak{q}$$

By Proposition A.1.1, $\mathfrak{p} = \mathfrak{q}$ for some minimal \mathfrak{q} , whence dim $A_{\mathfrak{p}} = 0$.

Example A.3.18. Let A be a noetherian ring. Then A is reduced iff it verifies (R_0) and (S_1) .

Suppose A is reduced. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be all minimal prime ideals of A. We have $\bigcap \mathfrak{p}_i = \mathfrak{N} = (0)$, where \mathfrak{N} is the nilradical of A. Hence A has no embedded point. Since $A_{\mathfrak{p}}$ is artinian, local and reduced, $A_{\mathfrak{p}}$ is a field and hence regular.

Conversely, let Ass A be equal to $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$. Then every \mathfrak{p}_i is minimal by (S_1) . Let f be in \mathfrak{N} . Then the image of f in $A_{\mathfrak{p}_i}$ is 0 since by (R_0) , $A_{\mathfrak{p}_i}$ is a field. It follows that $f \in \mathfrak{q}_i$, where \mathfrak{q}_i is the \mathfrak{p}_i component of (0) in A. Hence $f \in \bigcap \mathfrak{q}_i = (0)$. That is, A is reduced.

A.3.4 Cohen-Macaulay rings

Definition A.3.19 (Cohen-Macaulay). A noetherian local ring (A, \mathfrak{m}) is called *Cohen-Macaulay* if dim $A = \operatorname{depth} A$. A noetherian ring A is called *Cohen-Macaulay* if for every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is Cohen-Macaulay. This is equivalent to that A verifies (S_k) for all $k \geq 0$.

Example A.3.20 (Non Cohen-Macaulay rings). Yang: To be completed.

Proposition A.3.21. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring and M a finite A-module. Then

$$\operatorname{depth} M := \inf\{i : \operatorname{Ext}_A^i(\mathsf{k}, M) \neq 0\}.$$

Proof. Let $a \in \mathfrak{m}$ be M-regular and N = M/aM. Then we claim that

$$\inf\{i: \operatorname{Ext}\nolimits_A^i(\mathsf{k},N) \neq 0\} = \inf\{i: \operatorname{Ext}\nolimits_A^i(\mathsf{k},M) \neq 0\} - 1.$$

Indeed, we have an exact sequence

$$0 \to M \xrightarrow{a} M \to N \to 0.$$

It induces a long exact sequence

$$\cdots \to \operatorname{Ext}\nolimits_A^{i-1}(\mathsf{k},M) \to \operatorname{Ext}\nolimits_A^{i-1}(\mathsf{k},N) \to \operatorname{Ext}\nolimits_A^i(\mathsf{k},M) \xrightarrow{\operatorname{Ext}\nolimits_A^i(\mathsf{k},\operatorname{Mult}\nolimits_A)} \operatorname{Ext}\nolimits_A^i(\mathsf{k},M) \to \cdots.$$

Note that $a \in \mathfrak{m}$, then $\operatorname{Ext}_A^i(\mathsf{k},\operatorname{Mult}_a) = 0$. It follows that when $\operatorname{Ext}_A^{i-1}(\mathsf{k},M) = 0$, we have $\operatorname{Ext}_A^{i-1}(\mathsf{k},N) = 0$ iff $\operatorname{Ext}_A^i(\mathsf{k},M) = 0$, whence the claim.

Let $n = \inf\{i : \operatorname{Ext}_A^i(\mathsf{k}, M) \neq 0\}$. Induct on n. Suppose first n = 0. Since k is a simple A-module, there is an injective homomorphism $\mathsf{k} \to M$. Then $\mathfrak{m} \in \operatorname{Ass} M$ and hence depth M = 0.

Suppose n > 0., let $a_1, \dots, a_m \in \mathfrak{m}$ be any M-regular sequence. Using the claim inductively on $M/(a_1, \dots, a_m)M$, we have $n \geq \text{depth}$. If M has no regular element, then $\mathfrak{m} \subset \bigcup_{\mathfrak{p} \in \operatorname{Ass} M} \mathfrak{p}$. Then $\mathfrak{m} = \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Ass} M$. This show that we can find $x \neq 0 \in M$ such that $\mathfrak{p} = \operatorname{Ann} x$. It gives a homomorphism $\mathsf{k} = A/\mathfrak{m} \to M$. That is a contradiction and hence M has a regular element. Let a be M-regular and N = M/aM. Then depth N = n - 1 by the claim and induction hypothesis. Hence we have depth $M \geq n$.

Corollary A.3.22. Let A be a noetherian ring, M a finite A-module and $a \in A$ an M-regular element. Then depth $M = \operatorname{depth} M/aM + 1$.

Corollary A.3.23. Let A be a noetherian ring $a \in A$ a nonzero divisor. Then A verifies (S_d) iff A/aA verifies (S_{d-1}) .

Definition A.3.24. An ideal I of a noetherian ring A is called *unmixed* if

$$ht(I) = ht(\mathfrak{p}), \quad \forall \mathfrak{p} \in Ass(A/I).$$

Here ht(I) is defined as

$$\operatorname{ht}(I) := \inf\{\operatorname{ht}(\mathfrak{p}) : I \subset \mathfrak{p}\}.$$

We say that the unmixedness theorem holds for a noetherian ring A if any ideal $I \subset A$ generated by ht(I) elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian scheme X if $\mathcal{O}_{X,\xi}$ is unmixed for any

П

10

Theorem A.3.25. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for X if and only if X is Cohen-Macaulay.

Proof. We can assume that $X = \operatorname{Spec} A$ is affine.

Suppose X is Cohen-Macaulay. Let $I \subset A$ be an ideal generated by a_1, \dots, a_r with $r = \operatorname{ht}(I)$. We claim that a_1, \dots, a_r is an A-regular sequence. If so, we get that the unmixedness theorem holds for A by applying Example A.3.17 on A/I. Since $\operatorname{ht}(a_1, \dots, a_{r-1}) \leq r-1$ by Krull's Principal Ideal Theorem A.3.13 and $\operatorname{ht}(a_1, \dots, a_r) = r \leq \operatorname{ht}(a_1, \dots, a_{r-1}) + 1$, we have $\operatorname{ht}(a_1, \dots, a_{r-1}) = r-1$. By induction on r, we can assume that a_1, \dots, a_{r-1} is an A-regular sequence. Hence any prime ideal $\mathfrak{p} \in \operatorname{Ass} A/(a_1, \dots, a_{r-1})$ has height r-1. Now suppose a_r is a zero divisor in $A/(a_1, \dots, a_{r-1})$. Then there exists a prime ideal $\mathfrak{p} \in \operatorname{Ass} A/(a_1, \dots, a_{r-1})$ such that $a_r \in \mathfrak{p}$. Then $I \subset \mathfrak{p}$ and $\operatorname{ht}(I) \leq r-1$. This contradicts that $\operatorname{ht}(I) = r$.

Suppose the unmixedness theorem holds for A. Let $\mathfrak{p} \in \operatorname{Spec} A$ be a prime ideal with $\operatorname{ht}(\mathfrak{p}) = r$. Then $\mathfrak{p} \in \operatorname{Ass} A$ if and only if $\operatorname{ht}(\mathfrak{p}) = 0$. If r > 0, there is a nonzero divisor $a \in \mathfrak{p}$. By Krull's Principal Ideal Theorem A.3.13, $\operatorname{ht}(\mathfrak{p}A/aA) = r - 1$. Inductively, we can find a regular sequence a_1, \dots, a_r in \mathfrak{p} . Then depth $A_{\mathfrak{p}} = r$.

Theorem A.3.26. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let $F \subset X$ be a closed subset of codimension $\geq k$. Then the restriction $H^i(X, \mathcal{O}_X) \to H^i(X \setminus F, \mathcal{O}_X)$ is an isomorphism.

Proof. Yang: To be completed.

A.3.5 Regular rings

Definition A.3.27. A noetherian ring A is said to be regular at $\mathfrak{p} \in \operatorname{Spec} A$ if we have

$$\dim_{\kappa(\mathfrak{p})} T_{A,\mathfrak{p}} = \dim A_{\mathfrak{p}},$$

where dim $A_{\mathfrak{p}}$ is the Krull dimension of the local ring $A_{\mathfrak{p}}$.

A noetherian ring A is said to be regular if it is regular at every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$. This is equivalent to the condition that A verifies (R_k) for all $k \geq 0$.

Definition A.3.28. Let A be a noetherian ring that is regular at $\mathfrak{p} \in \operatorname{Spec} A$. A sequence $t_1, \dots, t_n \in \mathfrak{p}$ is called a regular system of parameters at \mathfrak{p} if their images form a basis of the $\kappa(\mathfrak{p})$ -vector space $\mathfrak{p}/\mathfrak{p}^2$.

Proposition A.3.29. Let (A, \mathfrak{m}) be a noetherian local ring that is regular at \mathfrak{m} . Let t_1, \dots, t_n be a regular system of parameters at \mathfrak{m} , $\mathfrak{p}_i = (t_1, \dots, t_i)$ and $\mathfrak{p}_0 = (0)$. Then \mathfrak{p}_i is a prime ideal of height i, and A/\mathfrak{p}_i is a regular local ring for all i. In particular, regular local ring is integral, and the regular system of parameters t_1, \dots, t_n is a regular sequence in A.

Proof. By the Krull's Principal Ideal Theorem A.3.13, we have

$$n-1 = \dim A - 1 \le \dim A/(t_1) \le \dim_{\kappa(\mathfrak{m}/(t_1))} T_{A/(t_1),\mathfrak{m}/(t_1)} \le n-1.$$

Hence dim $A/(t_1) = n - 1$ and ht $(t_1) = 1$. Since t_2, \dots, t_n generate $\mathfrak{m}/(t_1)$, we have that $A/(t_1)$ is regular at $\mathfrak{m}/(t_1)$ and the images of t_2, \dots, t_n form a regular system of parameters.

For integrality, we induct on the dimension of A. If dim A = 0, then A is a field and hence integral. Suppose dim A > 0, let \mathfrak{q} be a minimal prime ideal of A. Then $t_1 \notin \mathfrak{q}$. We have

$$n-1 = \dim A - 1 \le \dim A/(\mathfrak{q} + t_1 A) \le \dim_{\kappa(\mathfrak{q}/(t_1))} T_{A/(\mathfrak{q}+t_1 A),\mathfrak{q}/(t_1)} \le n-1.$$

By similar arguments, we have $A/(\mathfrak{q}+t_1A)$ is regular at $\mathfrak{m}/(\mathfrak{q}+t_1A)$. By induction hypothesis, both of A/t_1A and $A/(\mathfrak{q}+t_1A)$ are integral and of dimension n-1. Hence $t_1A=t_1A+\mathfrak{q}$, i.e. $\mathfrak{q}\subset t_1A$. For every $a=bt_1\in\mathfrak{q}$, we have $b\in\mathfrak{q}$ since $t_1\notin\mathfrak{q}$. Then $\mathfrak{q}\subset t_1\mathfrak{q}\subset\mathfrak{m}\mathfrak{q}$. By Nakayama's Lemma, $\mathfrak{q}=0$, whence A is integral.

Corollary A.3.30. A regular ring is Cohen-Macaulay.

Corollary A.3.31. A regular ring is normal.

Proposition A.3.32. A noetherian ring A is regular if and only if it is regular at every maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$

Proof. Suppose $\mathfrak{p} \subset \mathfrak{m}$ and A is regular at \mathfrak{m} . Yang: To be completed.

Remark A.3.33. Let k be arbitrary field, $A = \mathsf{k}[T_1, \cdots, T_n]$ and g_i irreducible polynomials in one variable T_i over k. Then for every $f \in A$, we can write

$$f = \sum_{I=(i_1,\dots,i_n)\in\mathbb{Z}_{>0}^n} a_I g_1^{i_1} \cdots g_n^{i_n}, \quad a_I \in A, \quad \deg_{T_i} a_I \le \deg g_i.$$

This is called the Taylor expansion of f with respect to g_1, \dots, g_n .

A.4 Finite Algebra and Normality Yang: To be completed

Definition A.4.1. An integral domain A is called *normal* if it is integrally closed in its field of fractions Frac(A).

Lemma A.4.2. Let $A \subset C$ be rings and B the integral closure of A in C, S a multiplicatively closed subset of A. Then the integral closure of $S^{-1}A$ in $S^{-1}C$ is $S^{-1}B$.

Proof. For every $b \in B$ and $\forall s \in S$, there exists $a_i \in A$ s.t.

$$b^n + a_1 b^{n-1} + \dots + a_n = 0.$$

Then

$$\left(\frac{b}{s}\right)^n + \frac{a_1}{s^1} \left(\frac{b}{s}\right)^{n-1} + \dots + \frac{a_n}{s^n} = 0.$$

Hence b/s is integral over $S^{-1}A$, $S^{-1}B$ is integral over $S^{-1}A$. If $c/s \in S^{-1}C$ is integral over $S^{-1}A$, then $\exists a_i \in S^{-1}A$ s.t.

$$\left(\frac{c}{s}\right)^n + a_1 \left(\frac{c}{s}\right)^{n-1} + \dots + a_n = 0.$$

Then

$$c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n} = 0 \in S^{-1}C$$

Then $\exists t \in S \text{ s.t.}$

$$t(c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n}) = 0 \in C.$$

Then

$$(ct)^n + a_1 st(ct)^{n-1} + \dots + a_n s^n t^n = t^n (c^n + a_1 sc^{n-1} + \dots + a_n s^n) = 0.$$

Hence ct is integral over A, then $ct \in B$. Then $c/s = (ct)/(st) \in S^{-1}B$. This completes the proof.

Proposition A.4.3. Normality is a local property. That is, for an integral domain A, TFAE:

- (i) A is normal.
- (ii) For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is normal.
- (iii) For any maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$, the localization $A_{\mathfrak{m}}$ is normal.

Proof. When A is normal, $A_{\mathfrak{p}}$ is normal by Lemma A.4.2.

Assume that $A_{\mathfrak{m}}$ is normal for every $\mathfrak{m} \in \mathrm{mSpec}\,A$. If A is not normal, let \tilde{A} be the integral closure of A in Frac A, \tilde{A}/A is a nonzero A-module. Suppose $\mathfrak{p} \in \mathrm{Supp}\,\tilde{A}/A$ and $\mathfrak{p} \subset \mathfrak{m}$. We have $\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}} = 0$ and $\tilde{A}_{\mathfrak{p}}/A_{\mathfrak{p}} = (\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}})_{\mathfrak{p}} \neq 0$. This is a contradiction.

Proposition A.4.4. Let A be a normal ring. Then A[X] is also normal.

Definition A.4.5. A scheme X is called *normal* if the local ring $\mathcal{O}_{X,\xi}$ is normal for any point $\xi \in X$. A ring A is called *normal* if Spec A is normal.

Remark A.4.6. For a general ring A, let $S := A \setminus (\bigcup_{\mathfrak{p} \in \operatorname{Ass} A} \mathfrak{p}) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} A} A \setminus \mathfrak{p}$. Then S is a multiplicative set. The localization $S^{-1}A$ is called *the total ring of fractions* of A.

Suppose A is reduced and Ass $A = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_n\}$. Denote its total ring of fractions by Q. Note that elements in Q are either unit or zero divisor. Hence any maximal ideal \mathfrak{m} is contained in $\bigcup \mathfrak{p}_i Q$, whence contained in some $\mathfrak{p}_i Q$. Thus $\mathfrak{p}_i Q$ are maximal ideals. And we have $\bigcap \mathfrak{p}_i Q = 0$. By the Chinese Remainder Theorem, we have $Q = \prod Q/\mathfrak{p}_i Q = \prod A_{\mathfrak{p}_i}$. Let A be a reduced ring with total ring of fractions Q. Then A is normal iff A is integral closed in Q. If A is normal, then for every $\mathfrak{p} \in \operatorname{Spec} A$, $A_{\mathfrak{p}}$ is integral. Then there is unique minimal prime ideal $\mathfrak{p}_i \subset \mathfrak{p}$. In particular, any two minimal prime ideal are relatively prime. By the Chinese Remainder Theorem, $A = \prod A/\mathfrak{p}_i$. Just need to check A/\mathfrak{p}_i is integral closed in $A_{\mathfrak{p}_i}$. This is clear by check pointwise.

Conversely, suppose A is integral closed in Q. Let e_i be the unit element of $A_{\mathfrak{p}_i}$. It belongs to A since $e_i^2 - e_i = 0$. Since $1 = e_1 + \cdots + e_n$ and $e_i e_j = \delta_{ij}$, we have $A = \prod A e_i$. Since $A e_i$ is integral closed in $A_{\mathfrak{p}_i}$, it is normal. Hence A is normal

Lemma A.4.7. Let A be a normal ring. Then A verifies (R_1) and (S_2) .

12

Proof. Since all properties are local, we can assume A is integral and local.

For (S_2) , by Example ??, we only need to show that $\operatorname{Ass}_A A/f$ has no embedded point. Let $\mathfrak{p} = (f:g) = \in \operatorname{Ass}_A A/fA$ and $t:=f/g \in \operatorname{Frac} A$. After Replacing A by $A_{\mathfrak{p}}$, we can assume that \mathfrak{p} is maximal. By definition, $t^{-1}\mathfrak{p} \subset A$. If $t^{-1}\mathfrak{p} \subset \mathfrak{p}$, suppose \mathfrak{p} is generated by (x_1, \dots, x_n) and $t^{-1}(x_1, \dots, x_n)^T = \Phi(x_1, \dots, x_n)^T$ for $\Phi \in M_n(A)$. There is a monic polynomial $\chi(T) \in A[T]$ vanishing Φ . Then $\chi(t^{-1}) = 0$ and $t^{-1} \in A$. This is impossible by definition of t. Then $t^{-1}\mathfrak{p} = A$, and $\mathfrak{p} = (t)$ is principal. By Krull's Principal Ideal Theorem A.3.13, $\operatorname{ht}(\mathfrak{p}) = 1$.

Now we show that A verifies (R_1) . Suppose (A, \mathfrak{m}) is local of dimension 1. Choosing $a \in \mathfrak{m}$, A/a is of dimension 0. Then by A.3.10, $\mathfrak{m}^n \subset aA$ for some $n \geq 1$. Suppose $\mathfrak{m}^{n-1} \not\subset aA$. Choose $b \in \mathfrak{m}^{n-1} \setminus aA$ and let t = a/b. By construction, $t^{-1} \notin A$ and $t^{-1}\mathfrak{m} \subset A$. After similar argument, we see that $\mathfrak{m} = tA$, whence A is regular.

Lemma A.4.8. Let (A, \mathfrak{m}) be a noetherian local ring of dimension 1. Then A is normal iff A is regular.

Proof. By lemma A.4.7, we just need to show that regularity implies normality.

Let $t \in \mathfrak{m} \setminus \mathfrak{m}^2$. Since A is regular, $\mathfrak{m} = (t)$. Let $I \subset \mathfrak{m}$ be an ideal. If $I \subset \bigcap_n \mathfrak{m}^n$, then for every $a \in I$, there exists a_n such that $a = a_n t^n$. Then we get an ascending chain of ideals $(a_1) \subset (a_2) \subset \cdots$. Hence a = 0 by Nakayama's Lemma. Suppose I is not zero. Then there is some n such that $I \subset \mathfrak{m}^n$ and $I \not\subset \mathfrak{m}^{n+1}$. For every $at^n \in I \setminus \mathfrak{m}^{n+1}$, $a \notin \mathfrak{m}$, whence a is a unit in A. Then $I = (t^n)$. Hence A is PID and hence normal.

Proposition A.4.9. Let A be a noetherian integral domain of dimension ≥ 1 verifying (S_2) . Then

$$A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A, \operatorname{ht}(\mathfrak{p}) = 1} A_{\mathfrak{p}}.$$

Proof. Clearly $A \subset \bigcap A_{\mathfrak{p}}$. Let $t = f/g \in \bigcap A_{\mathfrak{p}}$. Since $f \in gA_{\mathfrak{p}}$ and we have $gA = \bigcap (gA_{\mathfrak{p}} \cap A)$, $f \in gA$. It follows that $t \in A$.

Theorem A.4.10 (Serre's criterion for normality). Let X be a locally noetherian scheme. Then X is normal if and only if it verifies (R_1) and (S_2) .

Proof. One direction has been proved in Lemma A.4.7. Suppose X verifies (R_1) and (S_2) . Again we can assume $X = \operatorname{Spec} A$ is affine and A is local. By Remark A.4.6, we just need to show that A is integral closed in its total ring of fractions Q. Suppose we have

$$\left(\frac{a}{b}\right)^n + c_1 \left(\frac{a}{b}\right)^{n-1} + \dots + c_n = 0 \in Q.$$

Since A verifies (S_2) , $bA = \bigcap \nu_{\mathfrak{p}}^{-1}(b_{\mathfrak{p}}A_{\mathfrak{p}})$. So it is sufficient to show that $a_{\mathfrak{p}} \in b_{\mathfrak{p}}A_{\mathfrak{p}}$ with $\operatorname{ht}(\mathfrak{p}) = 1$. Note that $A_{\mathfrak{p}}$ is regular and hence normal by Lemma A.4.8. Then above equation gives us desired result.

A.5 Smoothness

A.5.1 Modules of differentials and derivations

In this subsection, let R be a ring and A an R-algebra.

Definition A.5.1 (Derivation). A derivation of A over R is an R-linear map $\partial: A \to M$ with an A-module such that for all $a, b \in A$, we have

$$\partial(ab) = a\partial(b) + b\partial(a).$$

Given the module M, the set of all derivations of A over R into M forms an A-module, denoted by $\operatorname{Der}_R(A, M)$.

Given a module homomorphism $f: M \to N$ of A-modules and a derivation $\partial \in \operatorname{Der}_R(A, M)$, the map $f \circ \partial$ is a derivation of A over R into N.

Proposition A.5.2. The functor $\operatorname{Der}_R(A,-)$ is representable. The representing object is denoted by $\Omega_{A/R}$, which is called the *module of differentials* of A over R.

Proof. First suppose A is a free R-algebra with a set of generators $a_{\lambda}, \lambda \in \Lambda$. Then an R-derivation $\partial \in \operatorname{Der}_{R}(A, M)$ is uniquely determined by its values on the generators a_{λ} . Let

$$\Omega_{A/R} := \bigoplus_{\lambda \in \Lambda} A \cdot \mathrm{d}a_{\lambda}$$

and $d: A \to \Omega_{A/R}$ be the R-derivation defined by $a_{\lambda} \mapsto da_{\lambda}$. For any R-derivation $\partial \in \operatorname{Der}_{R}(A, M)$, we can define a unique A-module homomorphism $\Phi_{\partial}: \Omega_{A/R} \to M$ by sending da_{λ} to $\partial(a_{\lambda})$ such that $\partial = \Phi_{\partial} \circ d$. This gives a bijection

$$\operatorname{Der}_R(A, M) \cong \operatorname{Hom}_A(\Omega_{A/R}, M), \quad \partial \mapsto \Phi_{\partial}.$$

Now suppose A = F/I is an arbitrary R-algebra, where F is a free R-algebra and I is an ideal of F. Then we can define the module of differentials

$$\Omega_{A/R} := \left(\Omega_{F/R} \otimes_F A\right) / \sum_{f \in I} A \cdot \mathrm{d}f.$$

The *R*-linear map $d_A: F \otimes_F A \xrightarrow{d_F} \Omega_{F/R} \otimes_F A \to \Omega_{A/R}$ is a derivation of *A* over *R*.

For any R-derivation $\partial \in \operatorname{Der}_R(A, M)$, note that $F \to A \xrightarrow{\partial} M$ is an R-derivation of F over R into M. Then we get an F-module homomorphism $\Omega_F \to M$. It gives an A-module homomorphism $\Omega_F \otimes_F A \to M, \mathrm{d} f \otimes 1 \mapsto \partial f$. This map factors into $\Omega_F \otimes_F A \to \Omega_{A/R}$ and $\Phi_{\partial} : \Omega_{A/R} \to M$. Since Φ_{∂} is A-linear and $\Omega_{A/R}$ is generated by $\mathrm{d} a_{\lambda}$ as A-module, such Φ_{∂} is unique.

Corollary A.5.3. Suppose A is of finite type over R. Then the module of differentials $\Omega_{A/R}$ is a finitely generated A-module.

Remark A.5.4. Let B be an A-algebra, M an A-module and N a B-module. If there is a homomorphism of A-modules $M \to N$, then we can extend it to a homomorphism of B-modules $M \otimes_A B \to N$ by sending $m \otimes b$ to $m \cdot b$. And such extension is unique in the sense of following commutative diagram:

$$M \xrightarrow{\longrightarrow} N$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \otimes_A B$$

Hence we get a natural bijection

$$\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(M \otimes_A B, N).$$

Proposition A.5.5. Let A, R' be R-algebras and $A' := A \otimes_R R'$. Then the module of differentials $\Omega_{A'/R'}$ is isomorphic to $\Omega_{A/R} \otimes_A A'$.

Proof. We check the universal property of $\Omega_{A/R} \otimes_A A'$. First, the map

$$d_{A'}: A \otimes_R R' \to \Omega_{A/R} \otimes_R R' \cong \Omega_{A/R} \otimes_A A', \quad a \otimes r \mapsto da \otimes r$$

is an R'-derivation of A' into $\Omega_{A/R} \otimes_A A'$. For any R'-derivation $\partial' : A' \to M$ into an A'-module M, we can compose it with the homomorphism $A' \to A$ and get an R-derivation $\partial : A \to M$. By the universal property of $\Omega_{A/R}$, there is a unique A-module homomorphism $\Phi : \Omega_{A/R} \to M$ such that $\partial = \Phi \circ d_A$. Then we can extend it to an A'-module homomorphism $\Phi' : \Omega_{A/R} \otimes_A A' \to M$ by Remark A.5.4. By the construction, we have $\Phi' \circ d_{A'} = \partial'$.

Proposition A.5.6. Let A be an R-algebra and S a multiplicative set of A. Then we have an isomorphism

$$\Omega_{S^{-1}A/R} \cong S^{-1}\Omega_{A/R}.$$

Proof. Let

14

$$d_{S^{-1}A}: S^{-1}A \to S^{-1}\Omega_{A/R}, \quad \frac{a}{s} \mapsto \frac{sda - ads}{s^2}.$$

By direct computation, $d_{S^{-1}A}$ is an R-derivation of $S^{-1}A$ over R into $S^{-1}\Omega_{A/R}$. For any R-derivation $\partial: S^{-1}A \to M$ into an $S^{-1}A$ -module M, we can get an $S^{-1}A$ -module homomorphism $\Phi': S^{-1}\Omega_{A/R} \to M$ as proof of Proposition A.5.5. We have

$$\partial(s \cdot \frac{a}{s}) = s\partial(\frac{a}{s}) + \frac{a}{s}\partial s.$$

It follows that

$$\partial(\frac{a}{s}) = \frac{s\partial a - a\partial s}{s^2} = \frac{s\Phi'(\mathrm{d}a) - a\Phi'(\mathrm{d}s)}{s^2} = \Phi'(\frac{s\mathrm{d}a - a\mathrm{d}s}{s^2}).$$

Thus, $\Phi' \circ d_{S^{-1}A} = \partial$.

Theorem A.5.7. Let A be an R-algebra and B an A-algebra. Then there is a natural short exact sequence

$$\Omega_{A/R} \otimes_A B \to \Omega_{B/R} \to \Omega_{B/A} \to 0$$

of B-modules.

Proof. Let $d_{A/R}: A \to \Omega_{A/R}$ be the R-derivation of A over R. The map $A \to B \xrightarrow{d_{B/R}} \Omega_{B/R}$ induces a B-linear map

$$u: \Omega_{A/R} \otimes_A B \to \Omega_{B/R}, \quad d_{A/R}(a) \otimes b \mapsto b d_{B/R}(a).$$

The map $d_{B/A}$ is an A-derivation and hence R-derivation. Then it induces a B-linear map

$$v: \Omega_{B/R} \to \Omega_{B/A}, \quad d_{B/R}(b) \mapsto d_{B/A}(b).$$

Since $\Omega_{B/A}$ is generated by elements of the form $d_{B/A}(b)$ for $b \in B$, the map v is surjective. And clearly $d_{B/A}(a) = ad_{B/A}(1) = 0$ for $a \in A$.

Consider the composition $B \xrightarrow{\mathrm{d}_{B/R}} \Omega_{B/R} \to \Omega_{B/R} / \operatorname{Im} u$. For every $a \in A, b \in B$, we have

$$[d_{B/R}(ab)] = [bd_{B/R}(a) + ad_{B/R}(b)] = [bd_{B/R}(a)] + [ad_{B/R}(b)] = [ad_{B/R}(b)].$$

Hence it is indeed an A-derivation of B. Then it induces a B-linear map

$$\varphi: \Omega_{B/A} \to \Omega_{B/R}/\operatorname{Im} u, \quad d_{B/A}(b) \mapsto [d_{B/R}(b)].$$

The map φ is surjective since $\Omega_{B/R}$ is generated by elements of the form $d_{B/R}(b)$ for $b \in B$. Note that the composition

$$\Omega_{B/A} \xrightarrow{\varphi} \Omega_{B/R} / \operatorname{Im} u \to \Omega_{B/A} / \operatorname{Ker} v$$

is the identity map. Thus, φ is injective and hence an isomorphism. In particular, we have $\operatorname{Ker} v = \operatorname{Im} u$.

Theorem A.5.8. Let A be an R-algebra and I an ideal of A. Set B := A/I. Then there is a natural short exact sequence

$$I/I^2 \to \Omega_{A/R} \otimes_A B \to \Omega_{B/R} \to 0$$

of B-modules.

Proof. Suppose $A = F/\mathfrak{b}$ for some free R-algebra F and an ideal \mathfrak{b} of F. Let \mathfrak{a} be the preimage of I in F. Let $\mathrm{d}\mathfrak{b}$ (resp. $\mathrm{d}\mathfrak{a}$) denote the image of \mathfrak{b} (resp. \mathfrak{a}) in $\Omega_{F/R}$. Then we have

$$\Omega_{A/R} \otimes_A B = \Omega_{F/R} \otimes_F B/(\mathrm{d}\mathfrak{b} \otimes_F B), \quad \Omega_{B/R} = \Omega_{F/R} \otimes_F B/(\mathrm{d}\mathfrak{a} \otimes_F B).$$

Clearly

$$I/I^2 \cong (\mathfrak{a}/\mathfrak{b}) \otimes_F B \to (\mathrm{d}\mathfrak{a} \otimes_F B)/(\mathrm{d}\mathfrak{b} \otimes_F B)$$

is surjective. Then the exact sequence follows.

Definition A.5.9. Let k be a field and A an integral k-algebra of finite type of dimension n. We say A is smooth at $\mathfrak{p} \in \operatorname{Spec} A$ if the module of differentials $\Omega_{A,\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module of rank n.

A.5.2 Applications to affine varieties

Let k be arbitrary field, $A = \mathsf{k}[T_1, \dots, T_n]$ and \mathfrak{m} a maximal ideal of A such that $\kappa(\mathfrak{m})$ is separable over k. We try to give an explanation of Zariski's tangent space at \mathfrak{m} using the language of derivation. We know that $\Omega_{A/\mathsf{k}} = \bigoplus_{i=1}^n A \mathrm{d} T_i$, thus $\Omega_{A_{\mathfrak{m}}/\mathsf{k}} \cong \bigoplus_{i=1}^n A_{\mathfrak{m}} \mathrm{d} T_i$. Then

$$\operatorname{Der}_{\mathsf{k}}(A_{\mathfrak{m}}, A_{\mathfrak{m}}) \cong \operatorname{Hom}_{\mathsf{k}}(\Omega_{A_{\mathfrak{m}}/\mathsf{k}}, A_{\mathfrak{m}}) \cong \bigoplus_{i=1}^{n} A_{\mathfrak{m}} \partial_{i},$$

where $\partial_i \in \operatorname{Der}_{\mathsf{k}}(A_{\mathfrak{m}}, A_{\mathfrak{m}})$ is the derivation defined by $\mathrm{d}T_i \mapsto 1$ and $\mathrm{d}T_j \mapsto 0$ for $j \neq i$. It coincides with the usual derivation $f \mapsto \partial f/\partial T_i$. Consider the restriction of ∂_i to \mathfrak{m} and take values in the residue field $\kappa(\mathfrak{m})$, we get

$$\Phi: \mathfrak{m} \xrightarrow{(\partial_1, \cdots, \partial_n)^T} A_{\mathfrak{m}}^n \to \kappa(\mathfrak{m})^n$$

Since $\kappa(\mathfrak{m})$ is separable over k, the map $\operatorname{Ker} \Phi = \mathfrak{m}^2$. Hence Φ induces an isomorphism $\mathfrak{m}/\mathfrak{m}^2 \cong \kappa(\mathfrak{m})^n$ of $\kappa(\mathfrak{m})$ -vector spaces. Then we get

$$T_{A,\mathfrak{m}} = (\mathfrak{m}/\mathfrak{m}^2)^{\vee} \cong \bigoplus_{i=1}^n \kappa(\mathfrak{m}) \cdot \partial_i|_x,$$

where $x \in \mathbb{A}^n_k$ is the point corresponding to \mathfrak{m} . This coincides with the usual tangent space at x in language of differential geometry.

Let B=A/I be a k of finite type, $I=(F_1,\ldots,F_m)\subset\mathfrak{m}$ and \mathfrak{n} the image of \mathfrak{m} in B. We have an exact sequence of $\kappa(\mathfrak{m})$ -vector spaces

$$0 \to I/(I \cap \mathfrak{m}^2) \to \mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2 \to 0.$$

It induces an isomorphism

$$T_{B,n} \cong \{ \partial \in T_{A,m} : \partial(f) = 0, \forall f \in I \}.$$

The Jacobian matrix of F_1, \ldots, F_m is the $m \times n$ matrix

$$J(F_1, \dots, F_m) := \left(\frac{\partial F_i}{\partial T_j}\right)_{1 \le i \le m, 1 \le j \le m}$$

with entries in B.

Theorem A.5.10. Setting as above. Then B is regular at \mathfrak{n} if and only if the Jacobian matrix J has maximal rank $n-\dim B_{\mathfrak{n}}$ after taking values in the residue field $\kappa(\mathfrak{m})$.

Proof. We have an exact sequence

$$0 \to T_{B,\mathfrak{n}} \to T_{A,\mathfrak{m}} \xrightarrow{\Psi} \kappa^m \to 0,$$

where Ψ sends $\partial \in T_{A,\mathfrak{m}}$ to $(\partial(F_1),\ldots,\partial(F_m))^T$. Note that the matrix of Ψ is just J^T , the transpose of the Jacobian matrix. Hence

$$\operatorname{rank} J = n - \dim_{\kappa} T_{B,\mathfrak{n}} \le n - \dim B_{\mathfrak{n}}$$

and the equality holds if and only if B is regular at \mathfrak{n} .

Remark A.5.11. If $\kappa(\mathfrak{m})$ is not separable over k, then we still have the inequality

$$\operatorname{rank} J \le n - \dim B_{\mathfrak{n}}.$$

Indeed, in any case, we have an exact sequence

$$0 \to I/(I \cap \mathfrak{m}^2) \to \mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2 \to 0.$$

Hence $\dim_{\kappa} I/(I \cap \mathfrak{m}^2) = n - \dim B_{\mathfrak{n}}$. There is a $\kappa(\mathfrak{m})$ -linear map

$$I/(I \cap \mathfrak{m}^2) \to \kappa(\mathfrak{m})^n, \quad [f] \mapsto (\partial_1(f), \dots, \partial_n(f))^T,$$

and every row of the Jacobian matrix J is in the image of this map. Thus, the rank of J is at most $n - \dim B_n$. Hence if rank $J = n - \dim B_n$, we can still see that B is regular at n. However, the converse does not hold in general.

Proposition A.5.12. Let k be a field, k the algebraic closure of k, A a k-algebra of finite type and $A_k := A \otimes_k k$. Yang: Suppose A_k is integral. Let $\mathfrak{m} \in \mathrm{mSpec}\,A$ and \mathfrak{m}' be a maximal ideal of A_k lying over \mathfrak{m} . Then

A.5. SMOOTHNESS

- (a) If A_k is regular at \mathfrak{m}' , then A is regular at \mathfrak{m} ;
- (b) suppose $\kappa(\mathfrak{m})$ is separable over k, the converse holds.

Proof. Regarding $J_{\mathfrak{m}}$ and $J_{\mathfrak{m}'}$ as matrices with entries in \mathbf{k} , they are the same and hence have the same rank. If $A_{\mathbf{k}}$ is regular at \mathfrak{m}' , since $\kappa(\mathfrak{m}) = \mathbf{k}$, then rank $J_{\mathfrak{m}'} = n - \dim A_{\mathbf{k},\mathfrak{m}'}$. Note that $\dim A_{\mathbf{k},\mathfrak{m}'} = \operatorname{trdeg}(\mathscr{K}(A_{\mathbf{k}})/\mathbf{k}) = \operatorname{trdeg}(\mathscr{K}(A_{\mathbf{k}})/\mathbf{k}) = \dim A_{\mathfrak{m}}$, we have rank $J_{\mathfrak{m}} = n - \dim A_{\mathfrak{m}}$. Hence A is regular at \mathfrak{m} .

Conversely, suppose A is regular at \mathfrak{m} and $\kappa(\mathfrak{m})$ is separable over k. Then rank $J_{\mathfrak{m}} = n - \dim A_{\mathfrak{m}}$. Hence A_k is regular at \mathfrak{m}' .

Proposition A.5.13. Let k be a field and A an integral k-algebra of finite type and of dimension n. Let k be the algebraic closure of k and $A_k := A \otimes_k k$. Then A is smooth at $\mathfrak{p} \in \operatorname{Spec} A$ if and only if A_k is regular at every \mathfrak{m}' over \mathfrak{m} .

Proof. Since $\Omega_{A_{\mathbf{k}}/\mathbf{k}} \cong \Omega_{A/\mathbf{k}} \otimes_A A_{\mathbf{k}}$ is free of rank n if and only if $\Omega_{A/\mathbf{k}}$ is free of rank n, we can assume that $\mathbf{k} = \mathbf{k}$. If A is smooth at \mathfrak{p} , then $\Omega_{A_{\mathfrak{p}}/\mathbf{k}} \cong \bigoplus A_{\mathfrak{p}} \mathrm{d} f_i$ is free of rank n. Let $\mathfrak{P}_i \in \mathrm{Der}_{\mathbf{k}}(A_{\mathfrak{m}}, A_{\mathfrak{m}})$ be the derivation defined by $\mathrm{d} f_i \mapsto 1$ and $\mathrm{d} T_j \mapsto 0$ for $j \neq i$. Then we have $\partial_i f_j = \delta_{ij}$ for $1 \leq i, j \leq n$. Then similar to above argument, we have an isomorphism

$$\mathfrak{m}/\mathfrak{m}^2 \xrightarrow{(\partial_1, \dots, \partial_n)^T} \mathbf{k}^n.$$

This shows that A_k is regular at \mathfrak{m} .

Conversely, suppose $A_{\mathbf{k}}$ is regular at \mathfrak{m} . Note that $\mathfrak{m}/\mathfrak{m}^2 \to \Omega_{A,\mathbf{k}} \otimes_A \mathbf{k}$ is surjective since $\Omega_{A_{\mathbf{k}}/\mathbf{k}} = 0$. Then by Nakayama's lemma, $\Omega_{A_{\mathfrak{m}}/\mathbf{k}}$ is generated by n elements as an $A_{\mathfrak{m}}$ -module.

Note that $\dim_{\mathcal{K}(A)} \Omega_{\mathcal{K}(A)/k} = \operatorname{trdeg}(\mathcal{K}(A)/k) = \dim A_{\mathfrak{m}} = n$. Yang: By induction on transcendental degree.

Yang: By Nakayama's Lemma, $\Omega_{A_{\mathfrak{m}}/k}$ is free of rank n as an $A_{\mathfrak{m}}$ -module.

Yang: To be completed.

Example A.5.14. Let k be an imperfect field of characteristic p > 2. Suppose $\alpha = \beta^p \in \mathsf{k}$ and β is not in k. Let $A = \mathsf{k}[x,y]/(x^2 - y^p - \alpha)$ and $\mathfrak{m} = (x,y^p - \alpha) = (x)$. Note that \mathfrak{m} is principal, so A is regular at \mathfrak{m} . However,

$$J_{\mathfrak{m}} = \left(\frac{\partial}{\partial x}(x^2 - y^p - \alpha), \frac{\partial}{\partial y}(y^p - \alpha)\right) = (2x, 0) = (0, 0) \in M_{1 \times 2}(\kappa(\mathfrak{m})).$$

Thus, A is not smooth at \mathfrak{m} . From the view of differentials, we have

$$\Omega_{A_{\mathfrak{m}}/k} = A_{\mathfrak{m}} dx \oplus A_{\mathfrak{m}} dy / A_{\mathfrak{m}} \cdot x dx = \kappa(\mathfrak{m}) dx \oplus A_{\mathfrak{m}} dy,$$

which is not free as an $A_{\mathfrak{m}}$ -module.

Appendix B Homological Algebra

- **B.1** Complexes and Homology
- **B.2** Derived Functors
- **B.3** Applications to Commutative Algebra
- B.3.1 Depth and Ext
- B.3.2 Regularity and cohomological dimension

Bibliography

 $[{\rm Mat70}]$ Hideyuki Matsumura. Commutative~algebra. Vol. 120. WA Benjamin New York, 1970.