ISU Programování na strojové úrovni

stránka předmětu:

https://www.fit.vutbr.cz/study/courses/ISU/

Přednášky

- 1. Úvod, číselné soustavy, reprezentace čísel, binární aritmetika.
- 2. Základní funkce procesoru, strojový jazyk, jazyk symbolických instrukcí, asembler.
- 3. Architektura procesoru registry, typy operandů, formát instrukcí, adresování paměti, přerušení.
- 4. Architektura procesoru přenosy, aritmetické a logické instrukce.
- 5. Architektura procesoru posuny a rotace, předávání řízení.
- 6. Architektura procesoru další instrukce.
- 7. Půlsemestrální test.

- 8. Zásady programování ve strojovém jazyku, základní řídící konstrukce.
- 9. Funkce, standardní předávání řízení a parametrů.
- 10. Programové moduly, knihovny, služby operačního systému.
- 11. Koprocesor FPU architektura, reprezentace reálných čísel, instrukční sada.
- 12. Koprocesor FPU instrukční sada, programování a ukázky použití.
- 13. Překladač jazyka symbolických instrukcí pseudoinstrukce, direktivy, výrazy, operátory, operandy a makra.

1. Úvod, číselné soustavy, reprezentace čísel, binární aritmetika

Číselné soustavy

z ... základ číselné soustavy (přirozené číslo > 1)

 a_i ... číslice soustavy (celé číslo: $0 \le a_i < z$)

Soustava	základ	číslice
dvojková	2	0 1
trojková	3	0 1 2
• • •		
osmičková	8	0 1 2 3 4 5 6 7
devítková	9	0 1 2 3 4 5 6 7 8
desítková	10	0123456789
• • •		
šestnáctková	16	0123456789ABCDEF

. . .

$$\check{c}islo = a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + K + a_0z^0 + a_{-1}z^{-1} + a_{-2}z^{-2} + K = (a_{n-1}a_{n-2}a_0.a_{-1}a_{-2}K)_z$$

$$\check{c}islo = a_{n-1}a_{n-2}K \ a_0.a_{-1}a_{-2}K \ (pro\ implicitni\ základ\ z)$$

Příklad (desítkové číslo 13.75):

$$1 \cdot 10^{1} + 3 \cdot 10^{0} + 7 \cdot 10^{-1} + 5 \cdot 10^{-2} = (13.75)_{10} = 13.75$$

$$1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = (1101.11)_{2} = 1101.11$$

$$1 \cdot 8^{1} + 5 \cdot 8^{0} + 6 \cdot 8^{-1} = (15.6)_{8} = 15.6$$

$$D \cdot 16^{0} + C \cdot 16^{-1} = (D.C)_{16} = D.C$$

Příklad (některá čísla v různých soustavách):

$$(0)_2 = (0)_8 = (0)_{10} = (0)_{16}$$

$$(1)_2 = (1)_8 = (1)_{10} = (1)_{16}$$

$$(10)_2 = (2)_{10}$$

$$(10)_8 = (8)_{10}$$

$$(10)_{16} = (16)_{10}$$

Je dobré znát nazpaměť:

Desítková	dvojková	šestnáctková-hexadecimální
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	<u> </u>
16	10000	10
17	10001	11

Převod čísla z desítkové soustavy do soustavy o základu z

Nechť značí:

```
n počet číslic celé části čísla (je dáno převodem),
m počet číslic necelé části čísla (musí být zadáno předem),
a[i] i-tou číslici čísla
```

vše v soustavě o základu z.

Dále nechť

```
číslocelé ← celá část převáděného čísla číslo číslonecelé ← číslo - číslocelé
```

a nechť div a mod jsou operátory celočíselného dělení:

```
div ... výsledkem operace je celočíselný podílmod ... výsledkem operace je zbytek po celočíselném dělení
```

```
Převod celé části čísla
i \leftarrow 0;
dokud (číslocelé # 0) opakuj
\{ a[i] \leftarrow \check{c}islocel\acute{e} \mod z;
\check{c}islocel\acute{e} \leftarrow \check{c}islocel\acute{e} \operatorname{div} z;
i \leftarrow i+1; \}
n \leftarrow i;
```

```
Převod necelé části čísla

pro i \leftarrow -1 do -m opakuj

\{pom \leftarrow \check{c}islonecelé * z;
a[i] \leftarrow cela\_cast(pom);
\check{c}islonecelé \leftarrow pom - a[i];
i \leftarrow i - 1;
```

Pak

```
(\check{c}islo)_{10} = (a[n-1]a[n-2]....a[0].a[-1]a[-2]....a[-m])_z
```

a) převod celé části čísla do soustavy

,	<u>dvojkové</u>	•	osmičkové		<u>šestnáctkové:</u>	
	číslocelé	: 2	2 číslocelé : 8		číslocelé : 16	
	div =	mod =	div =	mod =	div =	mod =
i	číslocelé	a[i]	číslocelé	a[i]	číslocelé	a[i]
	586	: 2	586	: 8	586	: 16
0	293	0	73	2	36	A
1	146	1	9	1	2	4
2	73	0	1	1	0	2
3	36	1	0	1		
4	18	0				
5	9	0	$(586)_{10} = (100)_{10}$	<mark>01001010</mark>	$(2)_2 = (1112)_8 =$	$=(24A)_{16}$
6	4	1				
7	2	0				
8	1	0				

904

808

-11

-12

b) převod desetinné části čísla do soustavy

,	<u>dvojkové</u>	•	osmičkov	<u>é:</u>	šestnáctko	ové:
	číslonece	elé*2	číslonecel	lé*8	číslonecel	é*16
	trunc =	cisnece	trunc =	cisnecel	trunc =	cisnecel
i	a[i]		a[i]		a[i]	
	0.248	* 2	0.248	* 8	0.248	* 16
-1	0	496	1	984	3	968
-2	0	992	7	872	F = 15	488
-3	1	984	6	976	7	808
-4	1	968	7	808		
-5	1	936				
-6	1	872				
-7	1	744	$(0.248)_{10} = 0$	0.0011111	$\frac{10111}{10111} = 0$	$(0.1767)_{0} =$
-8	1	488	10	(0.0011111		(311/3/)8
-9	0	976	$(0.3F7)_{16}$			
-10	1	952				

Tedy:

$$(586.248)_{10} = (1001001010.0011111110111)_2 = (1112.1767)_8 = (24A.3F7)_{16}$$

$$z_1 = z_2^j$$
 $8 = 2^3$ $16 = 2^4$

Zpětný převod čísla ze soustavy o základu z do desítkové soustavy je jednoduchý:

$$(\check{c}islo)_{10} = a[n-1] * z^{n-1} + a[n-2] * z^{n-2} + \dots + a[-m] * z^{-m}$$

$$2^{9} + 2^{6} + 2^{3} + 2^{1} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-8} + 2^{-10} + 2^{-11} + 2^{-12} =$$

$$= 8^{3} + 8^{2} + 8^{1} + 2 * 8^{0} + 8^{-1} + 7 * 8^{-2} + 6 * 8^{-3} + 7 * 8^{-4} =$$

$$= 2 * 16^{2} + 4 * 16^{1} + 10 * 16^{0} + 3 * 16^{-1} + 15 * 16^{-2} + 7 * 16^{-3}$$

$$= 586.24780$$

Zobrazení čísel dvojkové soustavy v počítači:

Základní pojmy:

bit binary digit – dvojková číslice

rozsah zobrazení interval ohraničený zleva nejmenším a zprava největším

zobrazitelným číslem

rozlišitelnost zobrazení nejmenší (kladné) zobrazitelné číslo

přesnost zobrazení počet platných dekadických číslic,

které je možné zobrazit v daném paměťovém prostoru (hodnota

nezávislá na velikosti

zobrazovaného čísla!)

a) Zobrazení čísel v pevné řádové čárce

Uvažujme k-bitový paměťový prostor, které má n míst vlevo a m míst vpravo od řádové tečky (k = n + m):

Pozn.: Hodnoty m, resp. n mohou být i záporné, vždy však musí platit k = m + n!

aa) Zobrazení čísel bez znaménka (tj. kladných čísel)

Rozsah zobrazení	$<0, (2^n - 2^{-m})>$
------------------	-----------------------

Rozlišitelnost zobrazení 2^{-m}

Přesnost zobrazení $k * log_{10}(2)$

V současné době se v pevné řádové čárce zobrazují prakticky výlučně jen celá čísla (m = 0, k = n). Pak rozsah zobrazení je dán intervalem <0, ($2^n - 1$)> a rozlišitelnost zobrazení hodnotou 1.

Počet bitů	Rozsah	Přesnost	Označení
4	<0, 15>	1.2	nibble
8	<0, 255>	2.4	byte
16	<0, 65535>	4.8	word
32	<0, 4294967295>	9.6	doubleword
64	$<0, \approx 1.84 \cdot 10^{19} >$	19.2	quadword
128	$<0, \approx 3.40 \cdot 10^{38} >$	34.8	double
			quadword

Základní aritmetické operace ve dvojkové soustavě:

sečítání:

přenosy do vyššího řádu

odečítání:

$$\begin{array}{c|cccc}
0 & 10 & 1 & 1 \\
- & 0 & 1 & 0 & 1 \\
= & 0 & 1 & 0
\end{array}$$

$$\begin{array}{cccc}
10 & 11 \\
-1 & -1 \\
\hline
0 & -1 \\
\end{array}$$

výpůjčky z vyššího řádu

násobení:

dělení:

$$\begin{array}{ccccc}
0 & 0 & 1 & 1 \\
\vdots & 0 & 1 & 0 \\
\hline
 & & 1 & 0 \\
 & & & 1
\end{array}$$

$$\begin{array}{ccccc}
 & \frac{1}{x} & \frac{1}{1} \\
 & & \uparrow & \text{nepovolen\'e operace}
\end{array}$$

Aritmetické operace v omezeném paměťovém prostoru (projednoduchost uvažujme k = n = 4, m = 0, \Rightarrow rozsah zobrazení <0,15>):

Sečítání:

1) Výsledek lze zobrazit v daném prostoru

$$\begin{array}{ccc}
 3 & 0011 \\
 + & 7 & 0111 \\
 = & 10 & 1010
\end{array}$$

2) Výsledek nelze zobrazit v daném prostoru

Odečítání:

1) Výsledek lze zobrazit v daném prostoru

2) Výsledek nelze zobrazit v daném prostoru

ab) Zobrazení čísel se znaménkem

Nechť *x* značí zobrazované číslo (kladné nebo záporné) a nechť *X* značí jeho obraz (kladné číslo ukládané do paměti). K převodu se nejčastěji používají tři transformace:

a) Přímý kód:

$$X = x$$
 pro x z intervalu <0 , $2^{n-1} - 2^{-m}>$ $X = 2^{n-1} - x$ pro x z intervalu $<-(2^{n-1} - 2^{-m})$, $0>$

b) Doplňkový kód:

$$X = x$$
 pro x z intervalu <0 , $2^{n-1} - 2^{-m}>$ $X = 2^{n} + x$ pro x z intervalu $<-2^{n-1}$, $-2^{-m}>$

c) Kód transformované nuly (například): $X = 2^{n-1} + x$ pro x z intervalu $<-2^{n-1}$, $2^{n-1} - 2^{-m}>$

Grafická znázornění uvedených transformací

c) Kód transformované nuly

Příklad: $k = n = 4, m = 0 \rightarrow X \in (0, 15)$

b) Doplňkový kód $x \in <-8, 7>$

Přímý kód:

$$X = x$$
 pro x z intervalu <0 , $2^{n-1} - 2^{-m}>$ $X = 2^{n-1} - x$ pro x z intervalu $<-(2^{n-1} - 2^{-m})$, $0>$

Necht'
$$k = n = 8$$
 bitů, $m = 0$. Pak:

$$X = x$$
 pro x z intervalu <0 , 127>

$$X = 128 - x$$
 pro x z intervalu $<-127, 0>$

Příklad převodu (např. čísel 28, –28 a 0):

$$x = 28 \rightarrow X = x = 28$$
 00011100

$$x = -28 \rightarrow X = 128 - (-28) = 156$$
 10011100

$$x = 0 \rightarrow X = x = 0$$
 00000000

$$\rightarrow$$
 X = 128 - 0 = 128 10000000

Číslo kladné se od stejného čísla záporného v přímém kódu liší pouze hodnotou nejvyššího bitu (0 pro kladná čísla, 1 pro záporná čísla)! Nula v tomto kódu má dva rovnocenné obrazy!

Doplňkový kód:

$$X = x$$
 pro x z intervalu <0 , $2^{n-1} - 2^{-m}>$ $X = 2^n + x$ pro x z intervalu $<-2^{n-1}$, $-2^{-m}>$

Necht'
$$k = n = 8$$
 bitů, $m = 0$. Pak:

$$X = x$$
 pro x z intervalu <0, 127>

$$X = 256 + x$$
 pro x z intervalu <-128, -1>

Příklad převodu (např. čísel 28, -28):

$$x = 28 \rightarrow X = x = 28$$
 00011100
 $x = -28 \rightarrow X = 256 + (-28) = 228$ 11100100

Číslo kladné se od stejného čísla záporného v doplňkovém kódu liší hodnotou nejvyššího bitu (0 pro kladná čísla a nulu, 1 pro záporná čísla) i hodnotou všech ostatních bitů! Prakticky se číslo s opačným znaménkem získá inverzí hodnot všech bitů a aritmetickým přičtením jedničky k nejnižšímu bitu!

Příklad praktického převodu mezi kladným a záporným číslem:

	00011100	-28	11100100
	11100011		00011011
	+1		+1
-28	$\overline{11100100}$	28	$\overline{00011100}$

Doplňkový kód má ve výpočetní technice zásadní důležitost pro jednoduchost svých aritmetických operací!

Doplňkový kód - aritmetické operace v omezeném paměťovém prostoru (pro jednoduchost opět uvažujme k = n = 4, m = 0, \Rightarrow rozsah zobrazení <-8, 7> a sledujme přenosy/výpůjčky z a do nejvyššího bitu):

Sečítání (přenosy z (C) a do (P) nejvyššího bitu):

1) Dvě kladná čísla, výsledek je zobrazitelný

$$\begin{array}{rr}
3 & 0011 \\
+2 & 0010 \\
= 5 & 0101 & C = 0, P = 0
\end{array}$$

2) Dvě kladná čísla, výsledek není zobrazitelný

5 0101
+
$$\frac{6}{-5}$$
 $\frac{0110}{1011}$ $C = 0, P = 1$

3) Dvě záporná čísla, výsledek je zobrazitelný

$$-4$$
 1100
+ -2 1110
= -6 11010 $C = 1, P = 1$

4) Dvě záporná čísla, výsledek není zobrazitelný

$$-4$$
 1100
+ -6 1010
6 10110 $C = 1, P = 0$

5) Kladné a záporné číslo, výsledek je kladný (musí být zobrazitelný)

$$5 0101
+ -2 1110
= 3 10011$$
 $C = 1, P = 1$

6) Kladné a záporné číslo, výsledek je záporný (musí být zobrazitelný)

$$4 0100
+ -6 1010
= -2 1110
C = 0, P = 0$$

Odečítání (výpůjčky do (C) a z (P) nejvyššího bitu):

1) Dvě kladná čísla, výsledek je kladný (musí být zobrazitelný)

$$7 0111 \\
-2 0010 \\
= 5 0101$$
C =0, P = 0

2) Dvě kladná čísla, výsledek je záporný (musí být zobrazitelný)

$$\begin{array}{cccc}
5 & 10101 \\
- & 6 & 0110 \\
= & -1 & 1111
\end{array}$$

$$C = 1, P = 1$$

- 3) Dvě záporná čísla, výsledek je záporný (musí být zobrazitelný)
 - 1 1100

$$-\frac{-2}{=-2}$$
 $\frac{1110}{1110}$

$$C = 1, P = 1$$

- 4) Dvě záporná čísla, výsledek je kladný (musí být zobrazitelný)
 - 1100

$$-\frac{-6}{2}$$
 $\frac{1010}{0010}$

$$= 2 0010$$

$$C = 0, P = 0$$

5) Kladné a záporné číslo, výsledek je kladný a zobrazitelný

6) Kladné a záporné číslo, výsledek je záporný a zobrazitelný

$$\begin{array}{rrr}
-6 & 11010 \\
- & -4 & 1100 \\
= & -2 & 1110 & C = 1, P = 1
\end{array}$$

7) Kladné a záporné číslo, výsledek je záporný a není zobrazitelný

$$\begin{array}{cccc}
-6 & 1010 \\
- & 4 & 0100 \\
\# & 6 & 0110 & C = 0, P = 1
\end{array}$$

8) Kladné a záporné číslo, výsledek je kladný a není zobrazitelný

Ve všech příkladech byl výsledek správný, pokud byly oba přenosy C i P stejné (C = P = 0, nebo C = P = 1) a výsledek byl nesprávný (nezobrazitelný), pokud došlo pouze k jednomu z těchto dvou přenosů (P # C)!

Zjištěná vlastnost doplňkového kódu (lze ji snadno matematicky dokázat) je při operacích sečítání a odečítání využívána k nastavení příznaku přetečení O (*overflow*):

= 154

Násobení:

Násobení se obvykle provádí s kladnými čísly a pokud byl jeden a právě jeden z činitelů záporný, změní se znaménko výsledku.

Uvažujme
$$k = n = 8$$
, $m = 0 \implies x \in <0, 255>$.

1) Výsledek je zobrazitelný:

-	11 *	<u>14</u>
	11	
	44	
=	154	

00001011 * 00001110
0000000
00000000
00000000
00000000
00001011
00001011
00001011
00000000
000000010011010

2) Výsledek není zobrazitelný (je větší než 255):

```
00010010 * 00010001
0000000
 0000000
  0000000
   00010010
    0000000
     0000000
      0000000
       00010010
000000100110010
                   = 306
                   # 50
```

Celočíselné dělení:

Pro celočíselné dělení jsou definovány dva výsledky: celočíselný podíl (operátor *div*) a zbytek po celočíselném dělení (operátor *mod*):

a	b	a div b	a <i>mod</i> b
114	5	22	4
-114	5	-22	-4
114	-5	-22	4
-114	-5	22	-4

Oba výsledky jsou vždy zobrazitelné (dělení nulou je zakázané!).

Dělení se opět obvykle provádí s kladnými operandy a upraví se pouze znaménka výsledků.

Příklad (114 / 5):

Kód transformované nuly (například):

$$X = 2^{n-1} + x$$
 pro x z intervalu $(-2^{n-1}, 2^{n-1} - 2^{-m})$

Nechť
$$k = n = 8$$
 bitů $m = 0$. Pak:
 $X = 128 + x$ pro x z intervalu $\langle -128, 127 \rangle$

Příklad převodu (např. čísel 28, –28):

$$x = 28$$
 \rightarrow $X = 128 + 28 = 156$ 10011100
 $x = -28$ \rightarrow $X = 128 + (-28) = 100$ 01100100

Číslo kladné se od stejného čísla záporného v kódu transformované nuly liší opět hodnotou nejvyššího bitu (tentokrát 1 pro kladná čísla, 0 pro záporná čísla!) i hodnotou ostatních bitů! Ve výše uvedené variantě tohoto kódu se číslo prakticky získá z čísla v doplňkovém kódu změnou hodnoty nejvyššího bitu!

Příklad (k = n = 8 bitů):

$$(28)_{DOP}$$
 00011100
 $(28)_{TN}$ 10011100

$$(-28)_{DOP}$$
 11100100
 $(-28)_{TN}$ 01100100

Informaci o znaménku čísla ve všech uvedených kódech nese nejvyšší bit, který se proto nazývá bit znaménkový.

Všechny ostatní bity nesou informaci o hodnotě čísla a souhrnně se pak označují jako bity významové.

Procesory architektury IA-32 používají:

- Doplňkový kód pro zobrazení čísel celých.
- Přímý kód pro zobrazení mantis reálných čísel.
- Kód transformované nuly (poněkud odlišný od právě prezentovaného kódu) pro zobrazení exponentů reálných čísel.

b) Zobrazení čísel v pohyblivé řádové čárce

± exponent mantisa

Pozn.: Zobrazování reálných čísel (standard IEEE) bude podrobně popsáno v jedenácté přednášce.

c) Zobrazení BCD čísel (Binary Coded Decimal)

Každá desítková číslice je zobrazena samostatně čtyřmi bity dvojkové soustavy.

$$(586.248)_{10} = (\overline{0101} \ \overline{1000} \ \overline{0110} \ . \ \overline{0010} \ \overline{0100} \ \overline{1000})_{BCD}$$

d) Zobrazení znaků

Různé kódy reprezentují jednotlivé znaky čísly bez znaménka, tzv. pořadovými/ordinálními čísly znaků.

Požadavky na tyto kódy jsou následující:

- Různé znaky musí být reprezentovány různými čísly.
- Písmeno větší v abecedě musí být reprezentováno větším číslem.
- Číslice musí být reprezentovány jako BCD číslice na nejnižších čtyřech bitech svých ordinálních čísel.

ASCII (American Standard Code for Information Interchange): 47/49

	0	1	2	3	4	5	6	7	8 F
0	NUL	DLE	SP	0	<u>a</u>	P	`	p	
1	SOH	DC1	į	1	A	Q	a	q	
2	STX	DC2	**	2	В	R	b	r	
3	ETX	DC3	#	3	C	S	C	s	
4	EOT	DC4	\$	4	D	T	d	t	
5	ENQ	NAK	%	5	E	U	e	u	
6	ACK	SYN	&	6	F	V	f	v	Různé
7	BEL	ETB	T	7	G	W	g	W	národní
8	BS	CAN	(8	H	X	h	x	znaky
9	HT	EM)	9	I	Y	i	У	
A	LF	SUB	*	•	J	Z	j	Z	
В	VT	ESC	+	;	K	[k	{	
C	FF	FS	,	<	L	\	1	I	
D	CR	GS	-	=	M]	m	}	
E	SO	RS	•	>	N	^	n	~	
F	SI	US	/	?	0	_	0	DEL	

Pouze pro zajímavost:

Všechny dříve uvedené kódy lze používat pro zobrazení záporných čísel v libovolných soustavách.

Uvažujme například desítkovou soustavu a doplňkový kód:

$$X = x$$
 pro x z intervalu <0, $10^{n-1} - 10^{-m}$ > $X = 10^{n} + x$ pro x z intervalu <- 10^{n-1} , -10^{-m} >

Příklad převodu čísla (k = 6, n = 4, m = 2):

$$x = -0567.23 \rightarrow X = 10000 + (-567.23) = 9432.77$$

Ke stejnému číslu dospějeme, zaměníme-li číslice původního kladného čísla jejich doplňky do devíti (9-0, 8-1, 7-2, 6-3, 5-4) a k nejnižšímu číslu přičteme jedničku:

$$0567.23 \rightarrow 9432.76 + 1$$
 9432.77

Aritmetika je pak opět podobná:

Příklad:
$$786.59 - 567.23 = 219.36$$

$$-567.23 = (9432.77)_{d}$$

$$0786.59$$
 0786.59 $- 0567.23$ $+ 9432.77$ 0219.36 10219.36