# Analysis and Detection of Differences in Spoken User Behaviors between Autonomous and Wizard-of-Oz Systems

Mikey Elmers, Koji Inoue, Divesh Lala, Keiko Ochi, and Tatsuya Kawahara

Graduate School of Informatics, Kyoto University, Japan

# **Background**

#### **Conversational Robots**

- Growing presence in daily life
- Gap between conversational robots and human-like interaction

#### **User Spoken Behaviors**

- Fillers "ano"/"eto" (Japanese) and "uh"/"um" (English)
- Backchannels "hai"/"un" (Japanese) and "mhmm"/"uh-huh" (English)
- Disfluencies lengthening, truncation, repair, word fragmentation
- Laughter

### **Research Question**

**How** do user spoken behaviors differ when interacting with an autonomous system versus a Wizard-of-Oz (WoZ) system?

# **Descriptive & Inferential Statistics**

| Attentive Listening |             |              |         |  |  |
|---------------------|-------------|--------------|---------|--|--|
|                     | Autonomous  | WoZ          | p-value |  |  |
| Length              | 9.91 (8.95) | 10.63 (9.75) | < 0.001 |  |  |
| Speaking Rate       | 6.04 (2.27) | 6.56 (2.47)  | < 0.001 |  |  |
| Fillers/second      | 0.26 (0.67) | 0.32 (0.88)  | < 0.001 |  |  |
| Backchannels/second | 0.34 (1.09) | 0.42 (1.29)  | < 0.001 |  |  |
| Disfluencies/second | 0.11 (0.67) | 0.10 (0.79)  | < 0.001 |  |  |
| Laughs/second       | 0.04 (0.32) | 0.06 (0.41)  | < 0.001 |  |  |
| Filler Count        | 26.88%      | 30.03%       | < 0.001 |  |  |
| Backchannel Count   | 10.69%      | 11.77%       | < 0.001 |  |  |
| Disfluency Count    | 8.12%       | 6.69%        | < 0.001 |  |  |
| Laugh Count         | 2.40%       | 4.00%        | < 0.001 |  |  |

| Job Interview       |               |               |         |  |  |
|---------------------|---------------|---------------|---------|--|--|
|                     | Autonomous    | WoZ           | p-value |  |  |
| Length              | 14.00 (13.33) | 11.46 (11.27) | < 0.001 |  |  |
| Speaking Rate       | 7.29 (2.50)   | 7.77 (2.91)   | < 0.001 |  |  |
| Fillers/second      | 0.48 (0.95)   | 0.46 (1.56)   | < 0.001 |  |  |
| Backchannels/second | 0.39 (1.27)   | 0.87 (2.03)   | < 0.001 |  |  |
| Disfluencies/second | 0.07 (0.63)   | 0.09 (0.88)   | >0.05   |  |  |
| Laughs/second       | 0.01 (0.13)   | 0.03 (0.29)   | < 0.001 |  |  |
| Filler Count        | 46.1%         | 30.1%         | < 0.001 |  |  |
| Backchannel Count   | 9.51%         | 17.10%        | < 0.001 |  |  |
| Disfluency Count    | 6.49%         | 5.80%         | >0.05   |  |  |
| Laugh Count         | 0.49%         | 2.51%         | < 0.001 |  |  |

Table 1. Feature comparison for each scenario + condition combination. Mean (Standard Deviation) in the first two columns and p-value in the third column.

# Variable Importance



Figure 2. Permutation-based variable importance analysis for the random forest models.

#### Method

#### **Experiment**

- Users interacted with ERICA in Japanese
- Evaluated user spoken material (i.e., not system responses)
- Scenarios attentive listening and job interview
- Conditions autonomous and WoZ

#### **Transcription**

- Inter-pausal unit (IPU) pause > 200 ms
- Linguistic count and #/second for fillers, backchannels, disfluencies, and laughter
- Length # of tokenized characters per IPU
- Speaking rate IPU length / IPU duration







Figure 1. Illustration of experimental setup. The top frame is a side profile view of a subject (left side) and ERICA (right side). The bottom-left and bottom-right frames depict the operator's activity during the WoZ condition.

# **Model Evaluation Metrics**

| Attentive Listening    |          |           |        |      |
|------------------------|----------|-----------|--------|------|
| Model                  | Accuracy | Precision | Recall | F1   |
| Baseline               | 0.64     | 0.64      | 1.00   | 0.78 |
| Logistic Regression    | 0.66     | 0.69      | 0.86   | 0.76 |
| Support Vector Machine | 0.71     | 0.73      | 0.87   | 0.79 |
| Random Forest          | 0.70     | 0.74      | 0.81   | 0.77 |

| Job Interview          |          |           |        |      |
|------------------------|----------|-----------|--------|------|
| Model                  | Accuracy | Precision | Recall | F1   |
| Baseline               | 0.51     | 0.49      | 1.00   | 0.66 |
| Logistic Regression    | 0.55     | 0.54      | 0.53   | 0.54 |
| Support Vector Machine | 0.67     | 0.66      | 0.68   | 0.67 |
| Random Forest          | 0.69     | 0.69      | 0.67   | 0.68 |

Table 2. Prediction if user is interacting with autonomous or WoZ system. Binary classification task with linguistic and acoustic features (14 in total) as input and autonomous/WoZ prediction as the output. Baseline model predicts majority class for all instances.

# Conclusion

# Limitations

- Data collection over years
- Topic differences
- Immediate context
- Evaluation did not include age, gender, or multi-modal cues

# Summary

- User's spoken behaviors differ between autonomous and WoZ systems
- Acoustic + linguistic predictive model performed best