(19)日本国特許庁 (JP)

#### (12) 公開特許公報(A)

(11)特許出職公開番号

特開平10-144988

(49)公開日 平成10年(1999)5月29日

(51)Int.CL®

識別記号

H01S 3/18

FI

H01S 3/18

審査請求 未請求 請求項の数6 OL (全 9 頁)

(21)出職業()

特數平8-293537

(22)/旧瞬日

平成8年(1996)11月6日

(71)出職人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出版人 000233527

日立来部セミコンダクタ株式会社 埼玉県入間都毛呂山町大学組合15番地

(72)発明者 中村 康弘

埼玉県人間都老宮山町大字組合15番地 目

立東部セミコンダクタ株式会社内

(74)代理人 弁理 : 秋田 収書

(54) 【発明の名称】 レーザダイオード・モジュール (57) [要約]

【課題】 レーザダイオード・モジュールの部品敷およびコストの低減。

# 図 1



【特許請求の範囲】

【請求項 2】 前記モジュール基板は冷間鍛造によって 形成されていることを特徴とする請求項 1に記載のレー ザダイオード・モジュール。

(請求項 3) 前記モジュール基板には取付孔が設けられているとともに、前記取付孔に一致した取付孔を一部に有し前記ハイブリッド I C基板に搭載された電子部品等を被いかつ前記モジュール基板に重ねられる電磁シールド機能を有したカバーを有することを特徴とする請求項 1または請求項 2に記載のレーザダイオード・モジュール。

【諸求項 4】 熱伝導性が良好な材料からなるモジュール基板と、前記モジュール基板に放熱可能に固定されるレーザダイオードと、前記モジュール単極に固定されが可能レーザダイオードに高周波を重量する回路を構・モジュールであって、前記ハイブリッド I Cを有するレーザイブリッド I Cを有するレーザイブリッド I Cを有するレーザイブリッド I Cを付ける I Cを引きない I Cを引きない I Cを引きない I Cを引きない I Cを引きない I Cを表して I Cを表して

【請求項 5】 前記モジュール基板にはカシメによって変形するピンが2本以上設けられているとともに、前記ハイブリッド I C基板には前記ピンが挿入される孔等によるガイドが設けられ、前記ハイブリッド I C基板の前記ガイドに挿入された前記ピンのカシメ変形によって前記モジュール基板に固定されていることを特徴とする請求項 4に記載のレーザダイオード・モジュール。

オード・モジュール。 【請求項 6】 前記モジュール基板は冷間鍛造によって 形成されていることを特徴とする請求項 5に記載のレー ザダイオード・モジュール。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はレーザダイオード・モジュール、特にレーザダイオード(LD: 半媒体レーザ) の反射戻り光による弊害を高周波重量(高周波パイアス法)によって解消するレーザダイオード・モジュールに関する。

[0002]

【従来の技術】半導体レーザは、光通僧や光ディスク, レーザピーム プリンタ等情報処理装置の光源として広く 使用されている。

【0003】半導体レーザから出射されたレーザ光の戻り光は雑音の発生に繋がり、システム 構成上好ましくない。たとえば、日経BP社発行「日経エレクトロニクス」1983年10月10日号、P173~P194には、半導体レーザにおける反射戻り光はビデオ・ディスクにおいては画質の劣化を引き起こすことが記載されている。

の劣化を引き起こすことが記載されている。 【0004】また、この文献には、ビデオディスク用のレーザとして、高周波モジュールを付加した半導体レーザ・パッケージ(レーザダイオード・モジュール)が記載されている。この光電子装置は、高周波を重量することによって戻り光の影響を解消し、安定したレーザ発振を行っている。

【0005】また、特願平6-153217号公報にも同様のL ロモジュールについて記載されている。同文献に開示されているLDモジュールは、その構成は要約すれば下記のとおりである。

【〇〇〇6】すなわち、LDモジュールは、板状のヒートシンクの一面にLDを実装し、他面に高周波パイアス回路や駆動回路が組み込まれたハイブリッドIOを実装した構造になっている。LDはTO型キャンパッケージ構造であ り、前記ヒートシンクに設けた貫通穴に篏合固定され、リード端子は前記ハイブリッドIOに接続されている。

【0007】また、ハイブリッド」のは、ケースの一端から4本の外部接続用ビン端子を突出させる構造となるとともに、前記ヒートシンク(モジュール基板)にリベットで固定されるカバーによってヒートシンクに固定されるようになっている。

【〇〇〇8】また、前記ハイブリッド1〇基板をヒートシンクに固定する手段として、ネジ止めする構造のものがある。

【0009】一方、発掘回路については、CQ出版社発行「実用電子回路ハンドブック昭和55年11月30日発行、P179およびP180、P184~P186、P190~P192等に記載されている。この文献には発掘回路としてコルピッツ回路が記載されている。

[0010]

【発明が解決しようとする課題】光磁気ディスクメモリシステム 用光源として使用されているレーザダイオード

・モジュールは、システム 動作時の鍵音(ノイズ)を抑制するための高周波重量発掘回路が組み込まれている。【〇〇11】また、ハイブリッド I Cのハイブリッド I Cを板をヒートシンク(モジュール 基板)に固定するために、前記カバーをリベットで固定したり、あるいは発いで固定したりしている。リベット固定やネジ固定は組立時間が多く掛かり、レーザダイオード・モジュールの製造コストの低減を妨げている。

【0012】本発明の目的は、ハイブリッド I C基板を モジュール基板に容易に固定する技術を提供することに よってレーザダイオード・モジュールのコスト低減を図 ることにある。

【0013】また、従来のレーザダイオード・モジュールは、内蔵 されている発振器から発掘される不要輻射の抑制のために、回路部分を金属製力パーやメタライズしたシールドシート等で覆う電磁シールド構造になっている

【○○14】 このため、レーザダイオード・モジュール の部品数が多くなり、レーザダイオード・モジュールの 製造コストの低減を妨げている。

【〇〇15】本発明の他の目的は、部品数の低速が図れるレーザダイオード・モジュールを提供することにあった。

【0016】本発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添付図面からあ きらかになるであ ろう。

[0017]

【課題を解決するための手度】本願において開示される 発明のうち代表的なものの概要を簡単に説明すれば、下 記のとおりである。

【ロロ18】 (1) 熱伝導性が良好な材料からなるモジ ュール基板と、前記モジュール基板に放熱可能に固定さ れるレーザダイオードと、前記モジュール基板に固定さ れかつ前記レーザダイオードに高周波を重畳する回路を 構成するハイブリッド | ○とを有し、前記ハイブリッド | ○のハイブリッド | ○参板は前記モジュール基板に重 なるように取り付けられてなる レーザダイオード・モジ ュールであって、前記モジュール墓板にはカシメによっ て変形するピンが2本以上設けられているとともに、前 記ハイブリッド I C基板には前記ピンが挿入される孔等 によるガイドが設けられ、前記ハイブリッドIC基板は 前記ハイブリッドIC基板の前記ガイドに挿入された前 記ピンのカシメ変形によって前記モジュール基板に固定 されている。前記モジュール基板は冷間鍛造によって形 成されている。前記モジュール基板には取付孔が設けら れているとともに、前記取付孔に一致した取付孔を一部 に有し前記ハイブリッドIC基板に搭載された電子部品 **等を被いかつ前記モジュール基板に重ねられる電磁シー** ルド機能を有したカバーを有する。

【0019】 (2) 熱伝導性が良好な材料からなるモジ

ュール基板と、前記モジュール基板に放熱可能に固定さ れるレーザダイオードと、前記モジュール基板に固定さ れかつ前記 レーザダイオードに高周波を重畳する回路を 排成するハイブリッド I Cとを有するレーザダイオード ・モジュールであ って、前記ハイブリッドICのハイブ リッドIC基板は前記モジュール基板に重なるようにか つ前記 ハイブリッド IC基板に実装 された各部品が前記 モジュール基板に対面するように取り付けられ、前記モ ジュール基板に対面しない前記ハイブリッド I C基板面 にはその晩全面に電磁シールド用のグランド配線が設け られている。前記モジュール基板にはカシメによって変 形するピンが2本以上設けられているとともに、前記ハ イブリッドIC基板には前記ピンが挿入される孔等によ るガイドが設けられ、前記ハイブリッド I C基板は前記 ハイブリッドIC基板の前記ガイドに挿入された前記ピ ンのカシメ変形によって前記モジュール基板に固定され ている。前記モジュール基板は冷間鍛造によって形成さ れている。

【0020】前記(1)の手段によれば、ハイブリッド I Cのハイブリッド I C基板はハイブリッド I C基板に カイブリッド I C基板に 設けられたガイドを介して前記モジュール基板に設けられたピンに挿入されかつ前記ピンのカシメ変形によって 固定される構造になっているととから、 しーザダイオード・モジュールの製造コストの低減を図ることができる。 【0021】また、カシメ固定は、ネジ止め固定のような緩みが発生せず固定の信頼性が高い。

【0022】また、前記モジュール基板は冷間鍛造によって形成されていることから、加工コストの低減が図れ、レーザダイオード・モジュールの製造コストの低減が達成できる。

【0023】また、前記ハイブリッド I C基板に搭載された電子部品等は電磁シールド機能を有したカバーによって被われていることから、高周波を重置する回路から発振されるため、レーザダイオード・モジュールを組み込んだシステム の電波雑音干渉が防止できることになる。

【0024】 前記(2)の手段によれば、高周波を重査する回路が組み込まれたハイブリッド I C 基板に実装された名部品がモジュール基板に対面するように取り付けられることと、前記では立ての略全面に電磁シールドイブリッド I C 基板面によその略全面に電磁シールドのグランド配線が設けられていることがら、従来のように金属製のカバーを廃止しても、高周波を重量する回路から発振される不要輻射としても、高周波を重量する回路がら発振される不要輻射としても、高周波を重量する回路がら発振される不要輻射としている。かになったのの低速音を表している。前記カバーの廃止により、レーザダイオード・モジュールの製造コストの低速が達成できる。

【〇〇25】また、ハイブリッド I C基版はハイブリッド I C基版に設けられたガイドを介して前記モジュール基版に設けられたピンに挿入されかつ前記ピンのカシメ変形によって固定される構造になっていることから、組立作業性が良いばかりでなく自動化も可能となり、レーザダイオード・モジュールの製造コストの低減を図ることができる。

【0026】また、カシメ固定は、ネジ止め固定のような緩みが発生せず固定の信頼性が高い。

【0027】また、前記モジュール基板は冷間鍛造によって形成されていることから、加工コストの低減が図れ、レーザダイオード・モジュールの製造コストの低減が達成できる。

[0028]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態を詳細に説明する。 なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。

【0029】(実施形態 1)図 1乃至図3は本発明の実施形態 1のレーザダイオード・モジュールに係わる図であって、図1はレーザダイオード・モジュールの分解斜視図、図2は斜視図、図3は平面図である。

【0030】また、図4万至図7は本実施形態1のレーザダイオード・モジュールの製造に係わる図であって、図4はモジュール基板にレーザダイオードを依合固定する状態を示す斜視図、図5はモジュール基板にハイブリッド1 C基板を重ねる状態を示す斜視図、図5はモジュール基板にハイブリッド1 C基板を固定する場合にはモジュール基板にハイブリッド1 C基板を固定する場合にはカカシメ固定後の状態を示す一部の断面図である。はもジュール基板にハイブリッド1 C基板を固定する場合におけるカシメ固定後の状態を示す一部の断面図である。【0031】本実施形態1では光斑気ディスクメモリシステム用光源としてのレーザダイオード・ザダイオード・サダイオード・モジュールにまかりまった。状態に関する。なお、構造説明において、その組立をも含んで説明することにする。

【0032】本実施形態1のレーザダイオード・モジュール1は、外観的に、図1乃至図3に示すように、平坦な略長方形のモジュール基板2と、前記モジュール基板2の主面に重ねられ両端にフランジ3を有する矩形箱形のカバー4とからなり、前記カバー4の開口部5から前記モジュール基板2の主面に平行に突出する4本のリード6を突出させる構造になっている。

【0033】前記モジュール基板2にはハイブリッドIC基板7が固定されていて、このハイブリッドIC基板7に前記リード6が固定されている。リード6は、特にその固定部分を図示はしないが、内端はクランプ形となり、ハイブリッドIC基板7の接続パッド部分を挟み込むようにクランブし、かつ半田のリフローによってハイブリッドIC基板7に固定されている。

【0034】前記モジュール基版2は熱伝導性が良好な材料、たとえば、2~3mmの厚さのアルミニウムで形成されている。また、アルミニウムのなかでも、冷間鍛造に適した材料、たとえば冷間鍛造材 A 1 0 5 0 が使用されている。

【0035】また、前記モジュール基板2の寒 面(図中下面)には、キャン封止型のレーザダイオード10のキャップ12部分が突出している。

【0036】レーザダイオード10は、図4に示すように、円形金属板からなるステム 11の主面(図4では上面)にキャップ12が気密的に固定されたパッケージ構造となるとともに、ステム 11の裏面(図4で下面)から3本のリード13を突出させる構造になっている。前記パッケージ内にはレーザダイオードチップが配置され、レーザダイオードチップの前方出射面から出射されたレーザ光を、前記キャップ12の天井部分の発光窓14から外部に発光するようになっている。また、前記パッケージ内には、前記レーザダイオードチップの後方出射面から出射されるレーザ光をモニターする受光素子が配置されている。

【0037】前記3本のリード13において、1本はグランド(GND)リードであり、1本はレーザダイオード(LD)に所定の電圧を印加するリードであり、残りの1本は受光素子(PD)によるモニター電流を取り出すリードである。

【0038】図4に示すように、前記モジュール基板2には篏合孔15が設けられ、この篏合孔15にレーザダイオード10の円形のステム 11が篏合固定されている。そして、レーザダイオードの3本のリード13は、図5に示すように、前記ハイブリッド I C基板7に設けられた接続孔16に貫通されるとともに、半田のリフローによってハイブリッド I C基板7の所定の配線と電気的に接続されている。

【0039】一方、前記カバー4のフランジ3には、レーザダイオード・モジュール1を所望の機器等に固定する際使用する取付孔20が設けられている。また、この取付孔20に一致するモジュール基板2部分にも同一の大きさの取付孔21が設けられている。

【〇〇4〇】また、略長方形となる前記モジュール基板2の一端陽部は、レーザダイオード・モジュール1の方向識別のために矩形に切り欠かれ、短い矩形の方向識別片22が形成されている。また、前記モジュール基板2の両端の側面部分には、レーザダイオード・モジュール1の組立時の位置決め基準となるV字状のノッチ23が設けられている。ノッチ23は、モジュール基板2の一端側では両側に設けられるが、他端側、すなわち方向識別片15側では一側にのみ設けられている。

【〇〇41】前記カバー4は、前記ハイブリッド I C基板7を被うようにしてモジュール基板2の主面に重ねられているだけであることから、図1に示すように、容易

に取り外すことができる。

【0042】図1に示すように、モジュール基板2の主面には、ハイブリッド | C基板7が固定されている。前記モジュール基板2の主面は、図5に示すように、一段高い台座30が設けられている。この台座30には前記ハイブリッド | C基板7が載置される。

【0043】また、ハイブリッドIC基板 7にはクランプ型のリード6が固定されるため、固定部分がハイブリッドIC基低 7の下方にわずかに突出する。したがって、この突出部分がモジュール基板 2に直接接触して電気的にショートを起こさないように、前記台座30は逃げ31を有するパターンになっている。

【0044】また、これが本発明の特徴の一つであるが、前記モジュール基板2の台座30には2カ所にカシメによって変形するピン(突起)32が設けられている。このピン32は前記ハイブリッド I C基板7の厚さよりもわずかに長くなっている。

【0045】他方、前記ピン32が挿入できるように、 図5に示すように、前記ハイブリッド I C基板7には前記ピン32に対応して孔からなるガイド33が設けられている。

【0046】前記モジュール基板2は、アルミニウム で 形成され、冷間鍛造に適した材料、たとえば冷間鍛造材 A1050を冷間鍛造によって形成する。モジュール基板2の台座30部分の厚さは、たとえば3mm程度であり、ピン32は直径1、4mmで長さが1、1mm程度である。

【0047】前記ハイブリッド I C基板7 は、幅が10mm程度、長さが16mm程度、厚さが0.8mm程度のガラエボ基板である。また、ハイブリッド I C基板7に穿たれたガイド33を構成する孔は直径1.4mm程度であり、前記ピン32が挿入できる嵌め合いになっている。

【0048】前記ハイブリッド I C基板 7 をモジュール 基板 2 に取り付ける場合、前記ハイブリッド I C基板 7 のガイド3 3 にモジュール基板 2 のピン3 2 を挿入させるようにして両者を重ね合わせる。相互に重ね合わせたモジュール基板 2 とハイブリッド I C基板 7 は、図5 に示すようにカシメ装置のテーブル3 4 上に位置決めされて裁置される。

【0049】その後、前記テーブル34の上方に位置するカシメ治具35を降下させて、前記ピン32に対面するように設けられた先端が円錐状に突出した形状からなるポンチ35で、前記ハイブリッド I C基板7の上面にあいたピン32を押圧して、図7に示すようにカシメる。

【0050】ポンチ36の先端は円継状に突出した形状になっていることから、ガイド33から突出するピン32の先端部分は中心から半径方向に押し広がるように変形し、このカシメ変形部37がハイブリッド I C基板7

の孔からなるガイド33の風縁を被うたの、ハイブリッドI C基板 7 はモジュール基板 2 に確実に固定されることになる。このカシメ固定は、その後短勤等によってもネジ固定のように緩むこともなく固定の信頼性が高い。 【0051】前記ハイブリッド | C基板7 は配換基板か

【ロロ51】前記ハイブリッド | C基板7は配線基板からなり、たとえば、ガラスエポキシ樹脂によるガラエポを板となり、主面(図1では上面)に、図9に示すように、配線25が設けられている。なお、図9以外では配線や搭載電子部品は省略してある。

【0052】この配線25は、図9に示すように、各電子部品を搭載するためのランド25g、前記リード6を取り付けるための接続パッド25g、前記レーザダイオード10のリード13との接続を図る接続部25c等を有している。なお25dはスルーホールである。

【0053】本実施形態1のレーザダイオード・モジュールの等価回路は図8に示すように、レーザダイオード L Dに高周波重量を加える回路構成になっている。すなわち、高周波重量を加える発掘回路としてはトランジスタ(Q1)ー石のコルピッツ回路を組み込んである。【0054】コルピッツ回路は、トランジスタのコレクタとエミッタ間およびエミッタとベース間にコイルを組み込むをともに、コレクタとベース間にコイル Lを組み込む構造となっている。

【〇〇55】そこで、本実施形態1のレーザダイオード・モジュール1では、図8に示すようにトランジスタ(Q1)のコレクタ Cとエミッタ目間にC2を組み込むともに、エミッタ目とベース日間に容全 C1を組み込み、かつコレクタ Cとベース日間にコイル L1を組み込んでコルピッツ回路を構成している。

【0056】また、外部端子はVoc, LD, PD, GN Dの4端子となっている。C1~C8はコンデンサ、R 1~R3は抵抗、L1, L2はインダクタ、LDはレー ザダイオード、PDは受光素子である。

【0057】図9に電子部品の搭載状態を示す。各コンデンサ、抵抗・インダクタ等の電子部品はランド25eに予め被害された半田のリフローによって固定される。また、ハイブリッド I C基板7に設けられた接続れ110対版が超過ではレーザダイオード10のリード13が挿入され、かつ接続部25cに予め被害された半田のリフローによって固定される。また、接続パッド25b部分にはクランプ構造のリード6がランプによって取り付けられ、前に接続パッド25bに予め被害された半田のリフローによって固定される。

【0058】図8に示す回路においては、2端子(Voc. GND)間に適度のDC電圧(Vcc)を加えると、電源投入時の接乱や熱による電流の不規則な振動を種とし、このうちの容量でとコイルして形成される共振回路に選択された成分が増幅され、正帰遠を繰り返して発掘を開始し継続する。この結果、レーザダイオード(LD)には高周波が重畳され、レーザダイオードチップか

ら出射されるレーザ光の発掘はマルチモードとなり、レーザ光の戻り光による発振の乱れは発生し難くなる。

【○○59】本実施形態1のレーザダイオード・モジュール1は、その組立において、図4に示すように、モジュール基板2の篏合孔15にレーザダイオード10を篏合固定する。その後、電子部品が搭載されかつリードらが取り付けられたハイブリッド1C基板7を、モジュール基板2の主面に重ねた後、図5および図7に示すように、カシメ装置によってハイブリッド1C基板7の方では、カシメ装置によってハイブリッド1C基板7の方では、カシメ装置によってハイブリッド1C基板7をモジュール基板2に固定する。

【0060】ついで、ハイブリッド I C基板 7 の接続孔 16に挿入されたレーザダイオード 1 0のリード 1 3を 半田リフローによって固定する。さらに、図1に示すように、前記モジュールを板2の主面側にハイブリッド I C基板 7を被うように重ねて図2の状態にすることによって出荷できる製品形態となる。

【0061】本実施形態 1のレーザダイオード・モジュール 1 は、以下の効果を築する。

【0062】(1) ハイブリッド I Cのハイブリッド I C基板 7 は、ハイブリッド I C基板 7 に設けられたガイド33を介して、モジュール基板 2 に設けられたピン3 2に挿入されかつ前記ピン32のカシメ変形によって固定される構造になっていることから、その後にネジ固定のように組み現象が発生しなくなり、固定の信頼性が高くなる。

【0063】(2)上記(1)により、本実施形態1の レーザダイオード・モジュール1は、ハイブリッドIC 基板7がモジュール基板2にカシメによって固定することから、組立が容易であり、組立作業性が高い。

【〇〇65】(4)上記(1)により、カシメ固定のためのピンの製造は、冷間解造によってモジュール基板を製造するとき同時に形成でき、前記ピンが入るハイブリッド I C基板製造におけるスルーホール製造時に同時に形成できるため、加工コストが低減される。

【0066】(5)本実施形態1のレーザダイオード・モジュール1は、その構成部品であるモジュール基板2は冷間鍛造によって製造されるため、製造コストが安価である。また、モジュール基板2のピン32も冷間鍛造によって製造することができるため、モジュール基板2とハイブリッドIC基板7の固定手段に掛かる経費の節減になる。

【0067】(6)本実施形態 1のレーザダイオード・

モジュール1は、ハイブリッド I C基板7 に搭載された電子部品等は電磁シールド機能を有したカバーによって被われていることから、高周波を重畳する回路から発掘される不要輻射はシールドされるため、レーザダイオード・モジュール 1 を組み込んだシステム の電波雑音干渉が防止できることになる。

- が防止できることになる。 【0068】(7)上記(1)~(6)により、本実施 形態1のレーザダイオード・モジュール1は、固定のた めの部品数の低減、モジュール基版2の加工コストの低 減、固定コストの自動化等によるコスト低減から製造コ ストの低減を図ることができる。

【0069】(実施形態2)図10および図11は本発明の実施形態2であるレーザダイオード・モジュールに係わる図であって、図10はレーザダイオード・モジュールの斜視図、図12はモジュール基板とハイブリッド C を板を示す模式的断面図である。

【0070】本実施形態2は、前記実施形態1の構造の レーザダイオード・モジュール1において前記カバーを 必要としない構造である。

【〇〇71】すなわち、図10に示すように、前記実施形態1のハイブリッド1 C 基板7を表 返してモジュール 基板2に固定したものであ る。そして、ハイブリッド1 C 基板7の裏 面には、他の配線に繋がらないようなパターンとし、かつできる限り広い面核に亘って、すなわち 支陸を来さない限り全面にグランド配線40を設けた構造になっている。

【ロロ72】 これにより、金属製のカバーを設けなくても、ハイブリッド I C基板 7 の表 面のグランド配線 4 D が電磁シールド体として作用することになる。

【ロロフ3】本実施形態2のレーザダイオード・モジュール1におけるハイブリッドIC基板7の配線パターンは、各電子部品を搭載する面がモジュール基板2の主面に対面することから、それに合わせて変更がなされている

【0074】また、図11に示すように、ハイブリッドIC基板7に搭載された電子部品群41がモジュール基板2の主面に接触したり、あるいは近接してショートを生じさせないようにするため、モジュール基板2の主面に設けるピン32を設付きピンとして、ハイブリッドIC基板7を浮かせて支持できるようになっている。

【ロロ75】本実施形態2のレーザダイオード・モジュール1は、前記実施形態1のレーザダイオード・モジュール1が奏する効果に加えて以下の効果を奏する。

【〇〇75】(1)本実施形態2のレーザダイオード・モジュール1は、高周波を重畳する回路が組み込まれたハイブリッド1 C 基板7が、ハイブリッド1 C 基板7に実装された各部品がモジュール基板2に対面するように取り付けられることから、ハイブリッド1 C 基板7をパッケージのカバーとして使用することができ、部品数の低減を図ることができる。

【0077】(2) カバーとして使用するハイブリッド I C基版7の裏 面には、時全面にグランド配線40が電磁シけられていることから、このグランド配線40が電磁シールド体として作用するため、高周波重量回路から発掘する不要輻射を外部に発散させなくなり、レーザダイオード・モジュール1を組み込んだシステムの電波強音干渉が防止できることになる。

1.

【0078】以上本発明者によってなされた発明を実施 形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範 囲で種々変更可能であることはいうまでもない、たとえ はモジュール基版2の主面に設けたピン32をだイドす るものとしては、前記実施形態のような孔以外にハイブ リッド I C基板7の側面に設けるV字溝のようなガイド でもよい。すなわち、前記ピン32を案内し、カシメ変 形を受ける物2に固定できるものならどのような形状、構 造でもよい。

【0079】また、電磁シールド構造のカバーとしては、金属カバー以外にも、たとえば銀粉等を樹脂に練り込んた樹脂製のカバーでもよい。また、ハイブリッド( を抜了の表面の電磁シールド体としては、箔の張り付け構造等でもよい。

【0080】以上の説明では主として本発明者によってなされた発明をその背景となった利用分野である光磁気ディスクメモリシステム 用光源に使用するレーザダイオード・モジュールに適用した場合について説明したが、それに限定されるものではない。本発明は少なくともレーザダイオードに高周波を重量させてレーザ光のマルチモード化を図る技術には適用できる。 【0081】

【発明の効果】本願において開示される発明のうち代表 的なものによって得られる効果を簡単に説明すれば、下 記のとおりであ る。

【0082】(1)モジュール基板にハイブリッドIC基板をカシメによって固定するため、固定の信頼性が高くなる。

【0083】(2)カシメ固定は作業が容易であるとともに自動化も図り易く固定のためのコストの低速が達成できる。

【0084】(3)カシメ固定のためのピンの製造は、冷間鍛造によってモジュール基板を製造するとき同時に形成でき、前記ピンが入るハイブリッド I C基板の孔はハイブリッド I C基板製造におけるスルーホール製造時に同時に形成できるため、加工コストが低減される。 【0085】(4)ハイブリッド I C基板を裏 返してモ

【0085】(4)ハイブリッド I C基板を裏 返してモジュール基板に固定するとともに、ハイブリッド I C基板の裏 面(外側の面)にグランド配線を晦全面に設ける

構造では、電磁シールド体であ り、搭載される電子部品を保護する役割を果たすカバーが不要になり、部品数の 低減により、レーザダイオード・モジュールのコストの 低減を達成することができる。

#### 【図面の簡単な説明】

【図1】本発明の実施形態1であ るレーザダイオード・モジュールの分解斜視図であ る。

【図2】本実施形態1のレーザダイオード・モジュールの斜視図である。

【図3】本実施形態 1 のレーザダイオード・モジュール の平面図である。

【図4】本実施形態1のレーザダイオード・モジュールの製造において、モジュール基板にレーザダイオードを 篏合固定する状態を示す斜視図である。

【図5】本実施形態1のレーザダイオード・モジュールの製造において、モジュール基板にハイブリッド I C基板を重ねる状態を示す斜視図である。

【図6】本実施形態1のレーザダイオード・モジュールの製造において、モジュール基板にハイブリッド I C基板を固定する場合におけるカシメ固定前の状態を示すー部の断面図である。

【図7】本実施形態1のレーザダイオード・モジュールの製造において、モジュール基板にハイブリッド C基板を固定する場合におけるカシメ固定後の状態を示すー部の断面図である。

【図8】本実施形態 1のレーザダイオード・モジュールの等価回路図である。

【図9】本実施形態1のレーザダイオード・モジュールのハイブリッドI C基板に搭載された電子部品を示す模式的平面図である。

【図 1 0】 本発明の実施形態 2 であ るレーザダイオード ・モジュールの斜視図であ る。

【図 1 1】本実施形態2のレーザダイオード・モジュールのモジュール基板とハイブリッド I C基板を示す模式 的断面図である。

#### 【符号の説明】

1…レーザダイオード・モジュール、2…モジュール基 板、3…フランジ、4…カバー、5…開口部、5…リード、7…ハイブリッド | C基板、10…レーザダイオード、11…ステム、12…キャップ、13…リード、14…発光窓、15… 篏合孔、16…接続れ、20,21 …取付孔、22…方向識別片、23…ノッチ、25。…軽線、25a…ランド、25b…接続パッド、25c…接続部、25d…スルーホール、30…台座、31…逃げ、32…ピン、33…ガイド、34…テーブル、35リックランド配線、41…電子部品群。



# 

#### LASER DIODE MODULE

Patent Number:

JP10144988

Publication date:

1998-05-29

Inventor(s):

**NAKAMURA YASUHIRO** 

Applicant(s):

HITACHI LTD;; HITACHI TOBU SEMICONDUCTOR LTD

Requested Patent: JP10144988

Application Number: JP19960293537 19961106

Priority Number(s):

IPC Classification:

H01S3/18

EC Classification:

Equivalents:

#### **Abstract**

PROBLEM TO BE SOLVED: To reduce the number of parts of a laser diode module and cost. SOLUTION: A module 1 has a module substrate 2 made of a material with improved thermal conductivity, a laser diode 10 that is fixed to the module substrate 2 so that it can be cooled, and a hybrid IC that is fixed to the module substrate 2 and constitutes a circuit for superposing a high frequency to the laser diode 10. Then, a by brid IC substrate 7 of the above hybrid IC is mounted, so that it overlaps with the module substrate 2. In this case, at least two pins 32 that are deformed by caulking are provided on the module substrate 2 and at the same time a guide according to, for example, a hole into which the pins 32 are inserted is provided on the hybrid IC substrate 7. The hybrid IC substrate 7 is fixed to the module substrate 7 by the caulking deformation of the pins inserted into the above guide of the hybrid IC substrate.

Data supplied from the esp@cenet database - 12

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

### IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: \_\_\_\_\_

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.