$$1. \qquad \delta = 2d + \frac{\lambda}{2}$$

2 The second sec

rayon 1 -> pas inversé car 1 < n

- 1. Étanges sont de droites parallèles à l'arête du coin. Françes brillantes si $\delta = K\lambda$, sombres si $\delta = K\lambda + \frac{1}{2}$. $i = \frac{\lambda}{2 \tan \alpha} = \frac{\lambda}{2 d} = 2,89 \cdot 10^{-2} \text{ mm}$
- 3. $\delta = 2d + \frac{\lambda}{2}$ et sur l'arête d = 0Danc $\delta = \frac{\lambda}{2} = >$ Frange sombre.
- 4. $\Delta i = i i'$ $\Rightarrow \text{vec}$ $i' = \frac{\lambda}{2n_B d}$ $\Delta i = \frac{\lambda}{2d} \frac{\lambda}{2n_B d} \Rightarrow n_B = \frac{\lambda}{\lambda 2\Delta i d} = 1,62$

 $1 \text{ nm} = 10^{-6} \text{ mm}$ avec $\lambda = 578 \times 10^{-6} \text{ mm}$ $\Delta i = 1,11 \times 10^{-2} \text{ mm}$

5.1. $I_1 = I_0 R_1$ $I_2 = I_0 T_1 R_2 T_1 = I_0 T_1^2 R_2$

5.2. Le traitement antireflet est efficace si $I_1 = I_2$. $N = \sqrt{n} = 1.32$. 5.3.

$$N = 1,32$$

$$\delta = 2eN = 7 e = \frac{\delta}{2N} = \frac{\lambda}{2N} \left(K + \frac{1}{2}\right)$$

si
$$K=0$$
 => $Q_{min} = \frac{\lambda}{2N} \times \frac{1}{2} = \frac{\lambda}{4N} = 105 \text{ nm}$