Nalaiya Thiran

Professional Readiness for Innovation, Employability, Enterpreneurship.

Estimate the Crop Yield using Data Analytics

R.Gokila 952019104006
 B.Jeevadharshini 952019104009
 S.Bhavani 952019104002
 R.Sakthi Priya 952019104021

In partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

P.S.R.R COLLEGE OF ENGINEERING SIVAKASI- 626140

ANNA UNIVERSITY::CHENNAI 600025 NOV/DEC-2022

TABLE OF CONTENTS

S.NO	TITLE	PAGE NO
1	INTRODUCTION	4
	1.1 Project Overview	4
	1.2 Purpose	5
2	LITERATURE SURVEY	5
	2.1 Existing Problem	5
	2.2 References	6
	2.3 Problem Statement Definition	7
3	IDEATION AND PROPOSED SOLUTION	8
	3.1 Empathy Map Canvas	8
	3.2 Ideation and Brainstroming	9
	3.3 Proposed Solution	11
	3.4 Problem Solution Fit	12
4	REQUIREMENT ANALYSIS	13
	4.1 Functional Requirement	13
	4.2 Non-Functional Requirements	14
5	PROJECT DESIGN	15
	5.1 Data Flow Diagram	15
	5.2 Solution & Technical Architecture	17
	5.3 User Stories	18
6	PROJECT PLANNING & SCHEDULING	20
	6.1 Sprint Planning & Estimation	20

	6.2 Sprint Delivery Schedule	22	
	6.3 Reports from JIRA	25	
7	CODING & SOLUTIONING	27	
	7.2 Feature 1	27	
	7.2 Feature 2	34	
8	TESTING	38	
	8.1 Test Cases	38	
	8.2 User Acceptance Testing	41	
9	RESULTS	42	
	9.1 Performance Metrics	42	
10	ADVANTAGES & DISADVANTAGES	47	
11	CONCLUSION	47	
12	FUTURE SCOPE	48	
13	APPENDIX	49	
	Source Code	49	
	Github & Project Demo Link	53	

1. INTRODUCTION

1.1 Project Overview

Agriculture forms the basis for food security and hence it is important. In India, majority of the population i.e., above 55% is dependent on agriculture as per the recent information. Agriculture is the field that enables the farmers to grow ideal crops in accordance with the environmental balance. Farmers also grow nonfood items like rubber, cotton, jute etc. More than 70% of the household in the rural area depend on agriculture. This domain provides employment to more than 60% of the total population and has a contribution to GDP also (about 17%). In the farm output, India ranks second considering the world wide scenario. This is the widest economic sector and has an important role regarding the framework of socio-economic fabric of India. Farming depends on various factors like climate and economic factors like temperature, irrigation, cultivation, soil, rain fall, pesticide and fertilizers. Historical information regarding crop yield provides major input for companies engaged in this domain. These companies make use of agriculture products as raw materials, animal feed, paper production and so on. The estimation of production of crop helps these companies in planning supply chain decision like production scheduling. The industries such as fertilizers, seed, agrochemicals and agricultural machinery plan production and activities like marketing based on the estimates of crop yield. Farmers experience was the only way for prediction of crop yield in the past days. Technology penetration into agriculture field has led to automation of the activities like yield estimation, crop health monitoring etc.

Achieving maximum crop yield at minimum cost is one of the goals of agricultural production. Early detection and management of problems associated

with crop yield indicators can help increases yield and subsequent profit. Additionally, these predictions could be used to maximize crop prediction when potential exists for favorable growing conditions.

Crop yield prediction helps the farmers in various ways by providing the record of previous crop yield. Knowing what crops has been grown, and how much area of it had been shown historically, combined with the prices.

This project works on achieving the more quality of the crop that will help the farmers to gain more money. In this project we have collected the datasets of all the factors that are depends of the crops of several years. Using this data the prediction is obtained to show that the harvest of the crop that is growth in that region.

1.2 Purpose

It is been observed that farmers are facing the problem at the time of the yield of the crop because of the rapid changes in the weather where it effect the yield of the crop. Decrease the quality of the crop and which in turn provide less income to the farmers. This project works on achieving the more quality of the crop that will help the farmers to gain more money. In this project we have collected the datasets of all the factors that are depends of the crops of several years. Using this data the prediction is obtained to show that the harvest of the crop that is growth in that region.

2. LITERATURE SURVEY

2.1 Existing Problem

A research group conducted a work with an objective of accurate prediction of crop yield through big data analytics to assess various crop yield influencing

factors such as Area under Cultivation (AUC) interims of hectors, Annual Rainfall (AR) rates and Food Price Index (FPI) and to develop relationship among these parameters. Regression Analysis (RA) methodology was applied to examine the selected factors and their impact on crop prediction and final yield. RA methodology is a multivariable investigation practice which can categorize the factors in to groups such as explanatory and response variables and helps to assess their interaction to obtain a resolution. All the selected factors of the present study design known as AR, AUC and FPI were measured for a period of 10 years between the years 1990-2000. A novel method called Linear Regression (LR) is applied to analyze the relationship between explanatory variables (AR, AUC, FPI) and the crop yield considered as response variable. Study reported that the R2 value for the studied factors clearly indicate that crop yield is principally depends on AR. Study also reported that the other two factors (AUC and FPI) screened were also found to have significant impact after the AR. Study shall be continued to analyze the impact of for other substantial factors like Minimum Support Price (MSP), Cost Price Index (CPI), Wholesale Price Index (WPI) etc. and their relationship on the yields of different crops.

2.2 References

- [1] Dakshayini Patil, M.S. Shirdhonkar.,(2017) "Rice Crop Yield Prediction using Data Mining Techniques", International Journal of Advanced Research in Computer Science and Software Engineering.
- [2] David B. Lobell(2013), "The use of satellite data for crop yield gap analysis", Field Crops Research.

- [3] Dhivya B H, Manula R, Siva Bharathi S. Madhumathi R.(2017)," A Survey on Crup Yield Prediction based on Agricultural Data", International Journal of Innovative Research in Science, Engineering and Technology.
- [4] Jharna Majumdar, Sneha Naraseeyappa, Shilpa Ankalaki(2017), "Analysis of agriculture data using datamining techniques: application of big data". Journal of Big data.
- [5] Majumdar J, Ankalaki S(2016), "Comparison of clustering algorithms using quality metrics with invariant features extracted from plant leaves", International Conference on Computational Science and Engineering.

2.3 Problem Statement Definition

India is an agricultural country. Yield of each crop depends on its dependent factors. It is very important to predict the yield of a crop to help farmers. Crop Yield Prediction is predicting the yield of a crop in future based on the dependent factors. Crop yield is dependent on factors like rainfall, pressure, temperature and area orthe geographical location. This is achieved by

- (a) Designing a system to estimate crop yield.
- (b) Providing graphical user interface to view estimation result and historical datasets.

3. IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brainstorming

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

1 20 minutes

3.3 Proposed Solution

S.No	Parameter	Description
1	Problem Statement (Problem to be	Crop yield prediction is predicting
	solved)	the yield of a crop in future based
		on the dependent factors. Crop yield
		is dependent on factors like weather.
		This is achieved by
		(a) Designing a system to predict
		yield.
		(b) Providing graphical user
		interface to view(estimate) predict
		results.
2	Idea / Solution description	To predict the yield, one of the
		machine learning algorithms called
		Multiple Linear Regression
		algorithm is used. The result of
		prediction is plotted via graph.
3	Novelty / Uniqueness	By using of data analytics in crop
		yield estimation helps in analysing
		some important visualization,
		creating dashboard and by going
		through these we will get most of
		the insights of crop production in
		India.
4	Social Impact / Customer	Customer(farmer) can satisfied by
	Satisfaction	increased income, reduced crop loss
		and high yield.
5	Business Model (Revenue Model)	Initially an raw data set was
		collected and subjected to analysis.
		From the dataset, it is subjected to

		feature selection for make a
		predictive modelling. Final
		representation represents the
		graphical result which is helpful for
		analysis or estimation of crops in
		specified rainfall.
6	Scalability of the Solution	Effectively analysis large dataset.
		Easy to predict by using previous
		data.

3.4 Problem Solution Fit

4 REQUIREMENT ANALYSIS

4.1 Functional Requirement

FR No	Functional Requirement (Epic)	Sub Requirement(
		Story/SubTask)
FR-1	User login	Login through internet or app
FR-2	Login through internet or app	User can update their profile with
		name, mobile number and
		password
FR-3	Analyse the dataset	Analyse the dataset and process
		data preprocessing to avoid noise
		data.
FR-4	Choose the crop	Through which the user can
		choose particular crop for their
		convenience.
FR-5	Predict result	The result will be predicted based
		on the previous year data in the
		way of production per hectare for
		particular rainfall measure in that
		area.
FR-6	Estimation of the result	The graphical representation
		shown the estimation analysis of
		the crop to increase more yield.

4.2 Non-Functional Requirements

NFR No	Non-	Description
	FunctionalRequirement	
NFR-1	Usability	Contains easy user interface in order to use by uneducated people also
NFR-2	Security	Information of the personal data are kept secure. By using data analytics, no loss or corruption of the data in dataset. The structure of the system is kept feasible enough so that there should not be any problem from the users' point of view
NFR-3	Reliability	The best technique for rainfall is Simple RNN with a mean absolute error of 22.14 mm. After applying various techniques we found out that in Crop Yield and Crop Name. Random Forest yields the best result with minimum mean absolute error
NFR-4	Performance	Performance analysis is done to find out whether the proposed system is time efficient and accurate. It is essential that the process of performance analysis and definition must be conducted in

		parallel. The application's load time	
		should not be more than one second	
		for users.	
NFR-5	Availability	User can predict and estimate the	
		crop yield throughout the period at	
		any time. Platforms & tools used in	
		this project are widely used. So the	
		skilled manpower is readily	
		available in the industry.	
NFR-6	Scalability	It can also work with an large	
		dataset without performance	
		degradation. All changes should be	
		in positive direction, there will be	
		increased level of efficiency and	
		better customer service	

5. PROJECT DESIGN

5.1 Data Flow Diagram

A data flow diagram is a way of representing a flow of data through a process or a system. The data flow diagram also provides information about the outputs and inputs of each entity and the process itself.

- (1) User (farmer) can login into project. User can also update their profile using First name, last name, phone number, password.
 - (2) User can enter the available dataset(rainfall, area, production etc).
- (3) The project analyse the dataset and show the prediction in graphical Format.
- (4) Then the user can use these prediction to increase the crop yield and reduce the crop loss.
 - (5) Then user can exit.

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requireme nt (Epic)	User Story Numb	User Story / Task	Acceptance criteria	Prio rity	Relea se
		er				
Custom	Registration	USN-1	As a user, I can	I can access	High	sprint 1
er			register for the	my account		
(Mobile			application by	/ dashboard		
user)			entering my			
			email, password,			
			and confirming			
			my password.			
		USN-2	As a user, I will	I can	High	sprint 1
			receive	receive		
			confirmation	confirmati		
			email once I have	on email &		
			registered for the	click		
			application	confirm		
		USN-3	As a user, I will	I can	Low	sprint 1
			receive	register &		
			confirmation	access the		
			email once I have	dashboard		
			registered for the	with		
			application	Facebook		
				Login		
		USN-4	As a user, I can		Medi	sprint 1
			register for the		um	
			application			
			through Gmail			
	Login	USN-5	As a user, I can		High	sprint 1

			log into the		
			application by		
			entering email &		
			password		
	Dashboard	USN-6	Creating an		sprint 2
			interactive		
			dashboard from		
			the datasets		
Custom					
er (Web					
user)					
Custom					
er Care					
Executi					
ve					
			In data pre-	Medi	sprint 2
			processing	um	
			module data is		
			cleaned and only		
			necessary		
			attributes are		
			taken for further		
			analysis		
			Prediction is	High	sprint 3
			result of Apriori		
			and Naïve bayes		
			which predicts		
			the crop yield in		
			quintals.		
			Final	High	sprint 4
			representation		

	represents the		
	graphical result		
	of K-means and		
	Naïve bayes		
	which is helpful		
	for analysis of		
	crops in specified		
	rainfall.		

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

S.no	Milestone	Activities	Start Date	End Date
1	Solution	Creating the IBM Cognos for	22-Aug-	24-Aug-
	Requirement	creating dashboard and data	2022	2022
		visualization charts.		
2	Project	Prepare the project	22-Aug-	24-Aug-
	Objectives	objectives.	2022	2022
3	Project Flow	Prepare the project flow.	22-Aug-	24-Aug-
			2022	2022
4	IBM Cloud	Creating IBM cloud account.	22-Aug-	24-Aug-
	Account		2022	2022
5	IBM Cognos	Creating IBM cognos	22-Aug-	24-Aug-
	Analytics	account.	2022	2022
6	Working with	Understanding The Dataset	24-oct-	19-Nov-
	the Dataset	Loading The Dataset.	2022	2022
7	Data	➤ Seasons With Average	24-oct-	19-Nov-
	Visulization	Productions	2022	2022
	Charts	➤ With Years Usage of Area		
		And Production		
		➤ Top 10 States with Most		

		Area		
		➤ State With Crop		
		Production		
		➤ States With the Crop		
		Production Along with		
		Season		
8	Creating the	Creating The Dashboard	24-oct-	19-Nov-
	Dashboard		2022	2022
9	Export the	Export The Analytics	24-oct-	19-Nov-
	Analytics		2022	2022
10	Ideation Phase	➤ Literature Survey On The	22-Aug-	17-Sept-
		Selected Project &	2022	2022
		Information Gathering		
		Prepare		
		➤ Empathy Map		
		➤ Ideation		
11	Project Design	➤ Proposed Solution	22-Aug-	17-Sept-
	Phase - I	➤ Problem Solution Fit	2022	2022
		➤ Solution Architecture		
12	Project Design	➤ Customer Journey	22-Aug-	01-Oct-
	Phase - II	➤ Functional Requirement ➤	2022	2022
		Data Flow Diagrams		
		➤ Technology Architecture		
13	Project	➤ Prepare Milestone &	17-Oct-	22-Oct-
	Planning Phase	Activity List	2022	2022
		➤ Sprint Delivery Plan		
14	Project	➤ Project Development -	24-Aug-	19-Nov-
	Development	Delivery of Sprint-1	2022	2022
	Phase	➤ Project Development -		
		Delivery of Sprint-2		
		➤ Project Development -		

	Delivery of Sprint-3	
	➤ Project Development -	
	Delivery of Sprint-4	

6.2 Sprint Delivery Schedule

Sprint	Functional	User	User Story /	Story	Priority	Team
	Requireme	Story	Task	Poin		Membe
	nt (Epic)	Numb		ts		rs
		er				
Sprint-1	Registrati on	USN-1	As a user, I can register for by entering my Agri - id card and request	2	High	Gokila R
		USN-3	As a user, I can register for the application through Gmail	2	Medium	jeevadhar shini B
	Login	USN-4	As a user, I can Call and request or Approach for datase	2	High	Bhavani S
	Working with the Dataset	USN-5	To work on the given dataset, Understand the Dataset.	2	High	Sakthi Priya R
		USN-6	Load the dataset to Cloud platform	10	High	Gokila R

			then Build the			
			required			
			Visualizations.			
Sprint-2	Data	USN-7	Using the Crop			
	Visualizati		production in			
	on Chart		Indian dataset,			
			create various			
			graphs and charts			
			to highlight the			
			insights and			
			visualizations.			
			*Build a	4	Medium	Sakthi
			Visualization to			Priya R
			showcase			
			Average Crop			
			Production by			
			Seasons			
			*Showcase the	4	Medium	Jeevadha
			Yearly usage of			rshini B
			Area in Crop			
			Production			
			*Build a	4	Medium	Bhavani
			visualization to			S
			show case top 10			
			States in Crop			
			Yield Production			
			by Area.			
			*Build the	4	Medium	Sakthi
			required			Priya R

			Visualization to showcase the Crop Production by State. *Build Visual analytics to represent the Sates with Seasonal Crop Production using a Text representation	n	4	Medium	Gokila R
Sprint-3	Creating The dashboard	USN-8		the by ted	20	High	Gokila R Jeevadha rshini B Bhavani S Sakthi Priya R
Sprint-4	Export The Analytics	USN-9	Export to the created Dashboard	the	20	High	Gokila R Jeevadha rshini B Bhavani S Sakthi Priya R

6.3 Reports from JIRA

Sprint	Total Story Poin ts	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Complet ed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity: We have a 24-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = Sprint Duration / Velocity = 24 / 20 = 1.2$$

Burndown Chart :A burn down chart is a graphical representation of work left to do versus time. It is often used in agilesoftware developmentmethodologies such as Scrum. However, burn down charts can be applied any project containing measurable progress over time.

7. CODING AND SOLUTIONING

7.1 Feature 1

Login

A login page is a web page or an entry page to a website that requires user identification and authentication, regularly performed by entering a username and password combination.

Logins are used by websites, computer applications, and mobile apps. They are a security measure designed to prevent unauthorized access to confidential data. When a login fails (i.e, the username and password combination does not match a user account), the user is disallowed access.

SAMPLE CODING

```
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<title> Login Page </title>
<style>
Body {
font-family: Calibri, Helvetica, sans-serif;
```

```
background-color:lightred;
button {
    background-color:#CBC3E3;
    width: 100%;
    color: black;
    padding: 15px;
    margin: 10px 0px;
    border: none;
    cursor: pointer;
form {
    border: 3px solid #f156189;
input[type=text], input[type=password] {
    width: 100%;
    margin: 8px 0;
    padding: 12px 20px;
    display: inline-block;
    border: 2px white;
    box-sizing: border-box;
  }
button:hover {
    opacity: 0.7;
  }
 .cancelbtn {
    width: auto;
    padding: 10px 18px;
    margin: 10px 5px;
  }
.container {
    padding: 25px;
```

```
background-color: skyblue;
</style>
</head>
<body>
  <center> <h1>Login Form </h1> </center>
  <form>
    <div class="container">
       <label>Username : </label>
       <input type="text" placeholder="Enter Username" name="username"
required>
       <label>Password : </label>
       <input type="password" placeholder="Enter Password" name="password"
required>
       <button type="submit">Login</button>
       <input type="checkbox" checked="checked"> Remember me
       <button type="button" class="cancelbtn"> Cancel</button>
       <a href="#"> Forgot password? </a>
    </div>
  </form>
</body>
</html>
```

Registration

The register module provides a conceptual framework for entering data on those patients in a way that: eases data entry & accuracy by matching the OpenMRS entry to the data source (usually paper files created at point of care), ties easily back to individual patient records to connect registers to patient data.

SAMPLE CODING

```
<!DOCTYPE html>
<html>
<head>
<title></title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" type="text/css"</pre>
href="{{url_for('static',filename='style.css')}}">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/4.7.0/css/font-awesome.min.css">
<!-- jQuery library -->
<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
<!-- Latest compiled JavaScript -->
<script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></scrip
t>
<script src="https://www.google.com/recaptcha/api.js" async defer></script>
<style type="text/css">
.error
{
color: red;
}
</style>
</head>
<body>
<?php
include 'header.php';
?>
<div class="heading fix">
<label>REGISTRATION</label>
```

```
</div>
<div class="outerbox">
<div class="fixedbox">
<span class="content">
<h4>Hello, Friend!</h4>
Enter your personal details and start journey with us
</span>
</div>
<div class="scrollbox">
<div class="registerdonor">
<form action="process.php" method="POST" id="myform">
<div class="login">
<h3>Login Details</h3>
>
<label class="username">User Name:-</label>
<input type="text" name="user_name" required pattern="^[A-Za-z0-9._%+-</pre>
@]{5,10}$" title="Enter a username between 5 to 10 letter" autocomplete="off">
>
<label>Full Name:-</label>
<input type="text" name="user_full_name" required pattern="[A-z ]+$" title="Use</pre>
only character & whitespace" autocomplete="off">
<label>Email Id:-</label>
<input type="email" name="user_email" required pattern="[A-Za-z0-9._%+-</pre>
+@[A-z0-9.-]+\.[a-z]{2,}" title="Email id is not Valid" autocomplete="off">
```

```
<label>Password:-</label>
<input type="password"name="password" required pattern="(?=.*\d)(?=.*[a-
z])(?=.*[A-Z]).{6,}" title="Must contain at least one number and one uppercase
and lowercase letter, and at least 6 or more characters" id="password"
autocomplete="off">
>
<label>Confirm Password:-</label>
<input type="text" name="confirm_password" required pattern="(?=.*\d)(?=.*[a-
z])(?=.*[A-Z]).{6,}" title="Must contain at least one number and one uppercase
and lowercase letter, and at least 6 or more characters" id="confirm_password"
autocomplete="off">
</div>
<div class="contact">
<h3>Contact Details</h3>
>
<label>Mobile Number:-</label>
<input type="text" name="user_number" required pattern="^[1-9]{1}[0-9]{9}$"</pre>
title="Number is not valid" autocomplete="off">
<label>Address:-</label>
<textarea name="Address" placeholder="---Type---" required></textarea>
```

```
<label>Pincode</label>
<input type="text" name="pincode" required pattern="^[0-9]{6}$" title="Pincode"</pre>
is not valid" autocomplete="off">
<label>City:-</label>
<input type="text" name="city" >
>
<label>State:-</label>
<input type="text" name="state">
</div>
<div class="personal">
<h3>Personal Details</h3>
<label>Date Of Birth:-</label>
<input type="date" name="date_of_birth" required autocomplete="off">
<label>Gender:-</label>
<div class="radio">
<input type="radio" name="gender" class="radio1" value="Male"><span
```

```
class="radioname" required autocomplete="off">Male</span>
<input type="radio" class="radio2" name="gender" value="Female"><span
class="radioname" required autocomplete="off">Female</span>
</div>
<input type="reset" name="submit" value="Reset">
<a href="login.html"><input type="button"onclick="href='login.html';"
value="Submit"></a>
</div>
</form>
</div>
</div>
</div>
<!-- Responsive Table -->
<div class="rregisterdonor">
<form action="process.php" method="POST" id="myform">
</html>
```

7.2 Feature 2

Data Visualization Chart

Data visualization charts are graphical representations of data that tell a story using symbols in order to improve the understanding of large amounts of data. Visual data metaphors such as charts effectively engage human perceptual processes and amplify human cognition more so than semantic data alone.

Creating the dashboard

A data dashboard is a tool many businesses use to track, analyze, and display data—usually to gain insight into the overall wellbeing of an organization, department, or specific process.

Step 1: Import the necessary data into Excel. No data.

Step 2: Set up your workbook

Step 3: Add raw data to a table

Step 4: Data analysis

Step 5: Determine the visuals

Step 6: Create your Excel dashboard

Step 7: Customize your dashboard

8.TESTING

8.1 Test Cases

Test Case No	1	
Module Tested	Login Credentials	
Input	User Name	
	Password	
Expected Output	Entry to the website with correct credentials	
Actual Output	Entry to the website with correct credentials	
Comments	Successfull	

Test Case No	2	
Module Tested	Registration Credentials	
Input	First Name	
	Last Name	
	Phone Number etc.,	
Expected Output	Update Profile Details	

Actual Output	Update Profile Details	
Comments	Successful	

Test Case No	3	
Module Tested	Estimation Result	
Input	Dataset(crop name, season)	
Expected Output	Graph is generated based on the analysis	
Actual Output	Graph is generated based on the analysis	
Comments	Successful	

8.2 User Acceptance Testing

Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the crop yield estimation through data analytics project at the time of the release to user acceptance testing(UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	7	5	3	2	17
Duplicate	1	0	2	0	3
External	3	2	0	1	6
Fixed	11	3	5	15	34
Not	0	0	0	1	1
Reproduced					
Skipped	0	1	0	1	2
Won't Fix	0	3	5	1	9
Totals	22	14	15	21	72

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested.

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	6	0	0	6

Client Application	40	0	0	40
Security	2	0	0	2
Outsource shipping	3	1	1	2
Exception Reporting	9	7	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9. RESULTS

9.1 Performance Metrics

S.No	Parameter	Screenshots / values
	Dashboard design	No of visualization / Graphs - 10
		2 20,00000 HEADERS NAMED AND MARKET LANGUAGES

10. ADVANTAGES & DISADVANTAGES

Advantages

- ➤ Helps in the interpretation of data pattern that assist decision-making and performance improvement.
- ➤ Helps in analysing some important visualization, creating a dashboard and by going through these we will get most of the insights of crop production.
- ➤ Helps to make the decision about when to plant and harvest crops based of rainfall, season, area.
- ➤ This will reduce the waste generated and improve the profit of the farmer in a digitialized way.

Disadvantages

Some uneducated farmers cannot able to use this application.

11. CONCLUSION

As a result of penetration of technology into agriculture field, there is a marginal improvement in the productivity. The innovations have led to new concepts like digital agriculture, smart farming, precision agriculture etc. The activities of agriculture field are numerous like weather forecasting, soil quality assessment, seeds selection, crop yield prediction etc. In this project, the specific activity, crop yield estimation has been surveyed and the major trends have been identified.

It can be concluded that the research in the field of agriculture with reference to using IT trends like data analytics is in its infancy. As the food is the basic need of humans, the requirement of getting the maximum yields using optimal resource will become the necessity in near future as a result of growing population.

Based on our analysis, model will be more accurate if the more datasets are available. So as the data point increases our system will become more and more accurate. Our system accuracy is more than the existing system. Since we are displaying the results in the form of graph with actual and predicted in the graphical user interface it is easy to compare the previous year's data. This model will help farmers to grow the crop which will give more yield so that it will be more profitable.

12. FUTURE SCOPE

In future, this model can be implemented throughout the India by adding the data points for all the region. According to our analysis model will give more accuracy as the data points increases, so to get better accuracy model data points can be increased. Our system can be integrated with messaging module so that registered farmers can get the notification of the prediction directly to their registered mobile numbers.

This project solves one of the fundamental problems that the Indian farmers are facing that is selection of which type of crop will yield the maximum results. The sole objective is to increase farmer's income. Lack of proper dataset is the major hurdle while predicting the name of the crops but we were able to manage that by merging different data sets. This project right now covers only five features that are season , area , temperature, rainfall and crop name but that's not the end, this project holds numerous possibilities such as the addition of vapour pressure, soil quality and market integration.

This project if compiled with a bigger data set can be a boon for the government as it may help them plan properly and in turn help our objective.

13. APPENDIX

Source code

```
import pandas as pd
df = pd.read_csv('DOC-20221020-WA0012..csv', encoding='utf-8')
df
df = df[df['State_Name'] == "Andhra Pradesh"]
df['Yield'] = df['Production']/df['Area']
df
import matplotlib.pyplot as plt
import seaborn as sb
C_{mat} = df.corr()
fig = plt.figure(figsize = (15,15))
sb.heatmap(C_mat, vmax = .8, square = True)
plt.show()
df = df[df['Crop\_Year'] >= 2004]
df
df = df.join(pd.get_dummies(df['District_Name']))
df = df.join(pd.get_dummies(df['Season']))
df = df.join(pd.get_dummies(df['Crop']))
df = df.join(pd.get_dummies(df['Crop_Year']))
df = df.join(pd.get_dummies(df['State_Name']))
df
df=df.drop('District_Name', axis=1)
df = df.drop('Season',axis=1)
df = df.drop('Crop',axis=1)
```

```
df = df.drop('Crop_Year', axis=1)
df = df.drop('Production', axis=1)
df = df.drop('State_Name', axis=1)
df
from sklearn import preprocessing
x = df[['Area']].values.astype(float)
X
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
x_scaled
df['Area'] = x_scaled
df
df.head()
df = df.fillna(df.mean())
from sklearn.model_selection import train_test_split
b = df['Yield']
a = df.drop('Yield', axis = 1)
a_train, a_test, b_train, b_test = train_test_split(a, b, test_size = 0.3, random_state
= 42)
print(a_train)
print(a_test)
print(b_train)
print(b_test)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as seabornInstance
from sklearn.linear_model import LinearRegression
```

```
from sklearn import metrics
%matplotlib inline
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
a_train = sc.fit_transform(a_train)
a_test = sc.transform(a_test)
from sklearn.ensemble import RandomForestRegressor
 regr = RandomForestRegressor(max_depth=2, random_state=0,
n_estimators=100)
 regr.fit(a_train, b_train)
 b_pred = regr.predict(a_test)
 from sklearn.metrics import mean_squared_error as mse
 from sklearn.metrics import mean_absolute_error as mae
 from sklearn.metrics import r2_score
print('MSE =', mse(b_pred, b_test))
 print('MAE =', mae(b_pred, b_test))
 print('R2 Score =', r2_score(b_pred, b_test))
from sklearn.svm import SVR
regressorpoly=SVR(kernel='poly',epsilon=1.0)
regressorpoly.fit(a_train,b_train)
pred=regressorpoly.predict(a_test)
print(regressorpoly.score(a_test,b_test))
print(r2_score(b_test,b_pred))
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
```

```
from sklearn.metrics import mean_absolute_error
from matplotlib import pyplot as plt
import seaborn as sb
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import warnings
from keras.callbacks import History
warnings.filterwarnings('ignore')
warnings.filterwarnings('ignore', category=DeprecationWarning)
NN_model = Sequential()
# The Input Layer:
NN_model.add(Dense(128, kernel_initializer='normal',input_dim =
a train.shape[1], activation='relu'))
# The Hidden Layers:
NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))
NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))
NN_model.add(Dense(256, kernel_initializer='normal',activation='relu'))
# The Output Layer:
NN model.add(Dense(1, kernel initializer='normal',activation='linear'))
# Compile the network:
NN_model.compile(loss='mean_absolute_error', optimizer='adam',
metrics=['mean_absolute_error'])
NN model.summary()
from keras.callbacks import History
history = History()
History=NN_model.fit(a_train, b_train, epochs=50, batch_size=500,
validation_split = 0.2, callbacks=[history])
```

```
print(history.history.keys())
plt.plot(History.history['mean_absolute_error'])
plt.ylabel('mean_absolute_error')
plt.xlabel('epoch')
plt.plot(History.history['mean_absolute_error'])
plt.plot(History.history['val_mean_absolute_error'])
plt.title('mean_absolute_error')
plt.ylabel('mean_absolute_error')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(History.history['loss'])
plt.plot(History.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```

Github & Project Demo Link

https://github.com/IBM-EPBL/IBM-Project-48151-1660804985

https://youtu.be/OW_ilBKzSd8

