MecânicaQuântica

Natã

August 11, 2025

1 Introdução

Os fenômenos da mecânica quântica foram bem descritos utilizando o formalismo da álgebra linear, com a observações: Os operadores que representam quantidades físicas mensuráveis são hermitianos e seus autovalores são os possíveis valores medidos em laboratório. Dessa forma, formalismo da mecânica quântica começa com a promoção das quantidades físicas a operadores em um espaço vetorial de funções. Seja $\mathcal Q$ uma quantidade física essa quantidade na mecânica quântica será representada por um operador $\mathcal Q$. E os nossos objetos de interesse que descrevem as amplitudes de probabilidade são as funções de onda $\psi(\mathbf r) \in \mathcal E$, onde $\mathcal E$ é o espaço de estados. Esse é um espaço dotado do produto interno.

$$\langle \psi, \phi | \psi, \phi \rangle := \int_{\mathbb{R}^3} d^3 r \, \psi^* \phi$$

E esse espaço equipado com esse produto interno será completo e dessa forma será dito um espaço de Hilbert. Como esse espaço é de dimensão infinita podemos expressar nossas funções de onda como

$$\psi(\mathbf{r}) = \sum_{i=0}^{\infty} c_i u_i(r), \text{ tal que } c_i = \langle u_i, \psi | u_i, \psi \rangle$$

Sendo que o conjunto $\{u_i\}$ é um conjunto de vetores ortogonais e está indexado por um conjunto enumerável, que gera os vetores do meu espaço, sendo que esta ultima característica é chamada de completude. Assim os conjuntos que respeitam essas propriedades conotar-los por bases discretas. Agora apresento a seguinte notação que será muito útil que é conhecida como notação de Dirac. Segue abaixo a expansão de uma função de onda em uma base discreta

$$\psi = \sum \langle u_i, \psi | u_i, \psi \rangle u_i$$

Podemos motivados por essa notação de produto interno definir que os elementos do espaço vetorial são denotados por $|\psi\rangle$ e os covetores por $\langle\psi|$. Então essa equação se torna

$$|\psi\rangle = \sum \langle u_i | \psi | u_i | \psi \rangle | u_i \rangle = \sum c_i | u_i \rangle$$

2 Formulando a Dinâmica do formalismo

A seguinte pergunta pode ser feita no presente momento: "Como o estado de um sistema quântica é formulado?, Qual é a equação dinâmica do formalismo?". Dessa forma pode-se com base em experimentos postular que: i)Em um tempo fixo t_0 o estado de um sistema físico é definido conhecendo $|\psi(t_0)\rangle \in \mathcal{E}$. ii) Toda quantidade física mensurável \mathcal{Q} é descrita por um operador linear hermitiano e observável A agindo no espaço de estados.iii) Os únicos possíveis resultados de uma medição de \mathcal{Q} são os autovalores do operador linear $\mathcal{Q}.iv$) Quando uma quantidade física é medida em um estado normalizado a probabilidade de medir o autovalor digamos a_n será dada por:

$$\mathcal{P}(a_n) = \sum_{i=1}^{g_n} |\langle u_n^i | \psi \rangle|^2$$

onde g_n é a degenerescência do autovalor a_n Podemos também agora propor o seguinte operador $U(t, t_0)$ tal que

$$|\psi,t_1\rangle = U(t_1,t_0) |\psi,t_0\rangle$$

e exigimos que ele conserve a probabilidade justamente e isso implica que ele seja unitário, temos que

$$|\psi, t_2\rangle = U(t_2, t_1) |\psi, t_1\rangle = U(t_2, t_1) U(t_1, t_0) |\psi, t_0\rangle$$

Portanto temos a seguinte igualdade

$$U(t_2, t_0) = U(t_2, t_1)U(t_1, t_0)$$

Mostra que é o produto é uma evolução temporal e associativo, fazendo $t_2=t_0$ temos que:

$$I = U(t_0, t_1)U(t_1, t_0) \implies U^{-1}(t_1, t_0) = U(t_0, t_1)$$

E também podemos escrever o operador $U(t_n, t_1)$ da seguinte forma

$$U(t_n, t_1) = U(t_n, t_{n-1}) \dots U(t_3, t_2) U(t_2, t_1)$$

Um resultado importante para a formulações os propagadores.

, assim expandindo em Taylor até a primeira ordem temos que $U(t,t_0)=I+\epsilon\Omega$ e usando que $U^+U=I$, onde o simbolo "+" indica que esse é o adjunto, podemos então

$$U^{+}U = (I + \epsilon \Omega t^{+})(I + \epsilon \Omega t) = I + t\epsilon(\Omega^{+} + \Omega) + O(\epsilon^{2}) = I$$

Desprezando os termos de segunda ordem teremos que $\Omega = -\Omega^+$ esses operadores (lembrando que foi assumido que esses operadores não dependem explicitamente do tempo) podem ser redefinidos utilizando a unidade imaginária, $-Hi = \Omega$, e então é sabido que U pode ser escrito como $U = exp\{iHt\}$. Porém,

temos que na mecânica clássica o gerador da evolução temporal é o hamiltoniano então podemos realizar o mesmo aqui apenas redefinindo que $H\to H/\hbar$ isso deve-se ao fato de que H tem dimensão de inverso do tempo, então utilizando a relação de planck temos que $E/\hbar=\omega$. Dessa forma essa definição satisfaz as leis que foram obtidas anteriormente na teoria. E a partir dessa definição temos que o operador U satisfaz a seguinte equação diferencial.

$$\partial_t U = -\frac{i}{\hbar} H U$$

Podemos aplicar dos dois lados um vetor de estado e essa equação será valida independente de U, então obtemos a seguinte equação que nos permite conhecer a evolução temporal dos vetores de estado essa equação é chamada de Equação de Schrödinger.

$$i\hbar\partial_t |\psi,t\rangle = H |\psi,t\rangle$$

newpage

3 Operador densidade

Até o momento apenas analisei casos em que o estado era supostamente bem conhecido esses estados são ditos estados puros, podemos ter estados com mistura de outros, a forma como abordamos matematicamente é com uma combinação convexa entre esses estados, i.e. os coeficientes possuem a seguinte relação $\sum p_k = 1, p_k \geq 0$

$$|\psi,t\rangle = \sum p_k |\psi_k\rangle$$

Como podemos expressar cada ψ_k em termos de uma base u_k , supomos que ela é discreta. Então

$$|\psi,t\rangle = \sum_{k} \sum_{n} c_{n}(t) \left| u_{n}^{k} \right\rangle$$

Sendo que todos os vetores de estado são normalizados. Se A for um observável,com $\langle u_n|A|u_p\rangle$ Temos que

$$\langle A \rangle_k(t) = \langle \psi, t | A | \psi, t \rangle = \sum_{n,m} (c_n^{*k} c_m^k \langle u_n^k | A | u_m^k \rangle)$$

Sendo que irei definir o seguinte elemento objeto

$$[\rho_k]_{mn} = c_n^{*k}(t)c_m^k(t)$$

Dessa forma obtemos simplificando o seguinte

$$\sum_{n,m} [\rho_k]_{mn} A_{nm} = \sum_{k,n,m} p_k C_m m = \operatorname{Tr} \{\rho_k A\}$$

E definindo que o valor esperado do observável A é a média ponderada do valor esperado $\langle A\rangle_k$

$$\langle A \rangle := \sum_{k} p_k \operatorname{Tr} \rho_k A = \operatorname{Tr} \{ \rho A \}$$

Onde foi definido o seguinte operador dito operador densidade

$$\rho = \sum_{k} \rho_{k} = \sum_{k} p_{k} |\psi_{k}\rangle\langle\psi_{k}|$$

Agora irei comentar sobre seu significado, os coeficientes do operador densidade são em geral uma média ponderada das probabilidades de encontrar determinando estado, os termos mistos (indices distintos) são os termos de interferência, quando os os termos mistos são nulos os estados são ditos incoerentes e os termos da diagonal medem a probabilidade do estado ser medido se não houvesse interferência. E utilizando a derivação temporal de um operador temos que em geral os coeficientes são dados por:

$$\rho_n p(t) = \rho_{np}(0) exp \left\{ -\frac{i}{\hbar} (E_n - E_p) \right\}$$