Quiz 6---Microbial Growth

CENG 340-Introduction to Environmental Engineering Instructor: Deborah Sills, **15 November**, **2013**

Name:

KEY

Environmental engineers use a mixed-order kinetic model (the Monod model), described by Eq.1 and presented in Fig. 1, to estimate the net growth rate of bacteria in biological treatment reactors.

$$\frac{\mathrm{dX}}{\mathrm{dt}} = \frac{\mu_{\mathrm{max}} \mathrm{XS}}{\mathrm{K_s + S}} \tag{1}$$

Figure 1: Net growth rate of microroganisms as a function of substrate concentration.

1. (5 pts) Describe very briefly under what conditions the growth rate $(\frac{dX}{dt})$ is zero order with respect to S, and write the resulting zero-order rate equation.

S, and write the resulting zero-order wir.t. S when $S >> k_S$: $\frac{dx}{dt} = \lim_{x \to \infty} x$ $\frac{dx}{dt} = \lim_{x \to \infty} x$

2. (5 pts) Describe very briefly under what conditions the growth rate $(\frac{dX}{dt})$ is first order with respect to S, and write the resulting first-order rate equation.

 $\frac{dx}{dt} = \lim_{x \to \infty} X_{x} = \lim_{x \to \infty} X_{x}$