

DOME REPORT

Rectangular bar with a transverse hole in bending

Made by
Abhishek mittal
Shristi agrawal

Model and dimensions

Thickness-3.07 mm
Length-30mm
Width-20mm
Moment-40Nm

Figure A-15-2

Rectangular bar with a transverse hole in bending. $\sigma_0 = Mc/I$, where $I = (w - d)h^3/12$.

Ansys model

A: Static Structural

Fixed Support Time: 1. s 07-11-2022 18:12

A Moment: 40. N·m

B Fixed Support

Ansys model with mesh

0.02 (m)

Stress distribution

A: Static Structural

Equivalent Stress

Type: Equivalent (von-Mises) Stress

Unit: Pa Time: 1 s

07-11-2022 17:24

Results

Ansys model results

Theoritical results

Implementing the code

- Linear regression of order 2 using the sklearn python library
- Trained model using 900 simulation results
- Used pandas library to read the simulation data
- Achieved 97.24% accuracy

```
from sklearn.preprocessing import PolynomialFeatures
poly=PolynomialFeatures(degree=2, include_bias=False)
x_train_poly=poly.fit_transform(x_train_scaled)
x_test_poly=poly.transform(x_test_scaled)
model=LinearRegression()
model.fit(x_train_poly,y_train)
```

Outcome of the model

Training data

Mean Absolute Error: 0.056394100951824885

Mean Squared Error: 0.005596098289003984

Root Mean Squared Error: 0.07480707378987621

R2 Score: 0.9724630711159834

ACCURACY OF MODEL IS: 97.24630711159834

d/W	Kt by ansys	Kt by python model
0.4	1.432668	1.448028
0.401	1.435425	1.446134
0.402	1.461936	1.44424619
0.403	1.459901	1.44236402
0.404	1.396059	1.44048783

Best fit line curve

Problems faced

- Tried using ansys script but during which we faced a lot of difficulty.
- Errors faced during creating python model

Thank You

