Chapter 5 Notions sur les fonctions en analyse

Exercice 1 (5.1)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1. $f(x) = x^2$.

2.
$$f(x) = \sqrt{1 - x}$$
.

$$3. \ f(x) = \frac{1}{\sqrt{x^2 - 5}}.$$

4.
$$f(x) = \frac{\sqrt{-x}}{\sqrt{x-1}}$$
.

5.
$$f(x) = \sqrt{\frac{-x}{x-1}}$$
.

6. $f(x) = \sqrt{x(x+1)^2}$.

7. $f(x) = \sqrt{-1 + 2x^2 - x^4}$.

8. $f(x) = \frac{1}{\sqrt{x - x^3}}$.

9. $f(x) = x^{1/\lfloor x \rfloor}$.

10. $f(x) = |x| + \frac{x^2}{x}$.

11. $f(x) = \frac{1}{|x|^3 - 7|x| + 6}$.

Exercice 2 (5.2)

La courbe d'équation y = f(x) étant donnée. Apparier chaque équation à sa courbe représentative. Expliquer votre choix.

(a) y = f(x - 4)

(c)
$$y = 2f(x+6)$$

$$(d) \ y = f(x) + 3$$

(e)
$$y = -f(x+4)$$

Exercice 3 (5.2)

La courbe de f étant donnée, dessiner les courbes suivantes

- (a) y = f(x + 4)
- (b) y = f(x) + 4
- (c) y = 2f(x)
- (d) $y = -\frac{1}{2}f(x) + 4$

Exercice 4 (5.2)

La courbe de f étant donnée, dessiner les courbes suivantes

- (a) y = f(2x)
- (b) y = f(-x)
- (c) $y = f\left(\frac{1}{2}x\right)$
- (d) y = -f(-x)

Exercice 5 (5.2)

Utiliser les courbes représentatives de f et g pour évaluer chacune des expressions suivantes, ou expliquer pourquoi elle ne sont pas définies.

- **1.** f(g(2)).
- **2.** $(g \circ f)(6)$.
- **3.** g(f(0)).
- **4.** $(g \circ g)(-2)$.
- **5.** $(f \circ g)(0)$.
- **6.** $(f \circ f)(4)$.

Exercice 6 (5.3)

La fonction $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto -\frac{1}{x}$ est-elle

- **1.** Croissante sur $\mathbb{R}_{\underline{}}^{\star}$?
- **2.** Croissante sur \mathbb{R}_+^{\star} ?
- **3.** Croissante?

- **4.** Strictement croissante sur \mathbb{R}^{\star} ?
- **5.** Strictement croissante sur \mathbb{R}_+^{\star} ?
- **6.** Strictement croissante?

Exercice 7 (5.3)

Vrai ou Faux?

Déterminer si les assertions suivantes sont vraies ou fausses ; justifier les vraies et produire des contreexemples pour les fausses.

- 1. La somme de deux fonctions croissantes est croissante.
- 2. La différence de deux fonctions croissantes est croissante.
- **3.** Le produit de deux fonctions croissantes est croissante.
- 4. La composée de deux fonctions croissantes est croissante.
- **5.** L'inverse d'une fonction croissante est croissante.
- **6.** La réciproque d'une bijection croissante est croissante.
- 7. Le produit d'une fonctions croissante par une constante est croissante.
- 8. Il existe des fonctions à la fois croissantes et décroissantes.

Exercice 8 (5.3)

Soient A,B,C trois parties de \mathbb{R} , $f:A\to B$ et $g:B\to C$. Vérifier la véracité du tableau suivant.

	f croissante	f décroissante
g croissante	$g \circ f$ croissante	gof décroissante
g décroissante	gof décroissante	$g \circ f$ croissante

Exercice 9 (5.4)

Déterminer si les fonctions d'une variables réelle suivantes sont paires et si elles sont impaires.

1.
$$x \mapsto \frac{1}{\sqrt[3]{(x-2)^2}}$$
.

2.
$$x \mapsto \frac{x^2}{|x|}$$
.

3.
$$x \mapsto \frac{3}{x(x^2+1)}$$
.

4.
$$x \mapsto 0$$
.

5.
$$x \mapsto \frac{1}{x-1} - \frac{1}{x-1}$$
.

6.
$$x \mapsto \frac{x^3}{x+1}$$
.

7.
$$x \mapsto x^2 - 2x + 1$$
.

8.
$$x \mapsto 2x^2 + 3$$
.

9.
$$x \mapsto \frac{(x^2-1)^2}{x^3}$$
.

10.
$$x \mapsto \frac{\ln x}{x}$$
.

$$\mathbf{11.} \ x \mapsto \ln\left(x + \sqrt{x^2 + 1}\right).$$

12.
$$x \mapsto \arcsin x$$
.

13.
$$x \mapsto \arccos x$$

13.
$$x \mapsto \arccos x$$
.
14. $x \mapsto \frac{3^{x} + 1}{3^{x} - 1}$.

Exercice 10 (5.4)

Quelle est la parité de la composée de deux fonctions impaires ? paires ? paire et impaire ?

Exercice 11 (5.4)

Réduire l'intervalle d'étude au maximum et indiquer comment obtenir la courbe entière.

1.
$$f: x \mapsto \sin x - \sin 3x$$
;

2.
$$f: x \mapsto \sin \frac{x}{2} \sin \frac{3x}{2}$$
;

3.
$$f: x \mapsto x^3 + x^2 + x$$
. (Indication: chercher un centre de symétrie d'abscisse $-\frac{1}{3}$)

Calculus

Exercice 12 (5.4)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1.
$$4x^5 + 5x^3 - 3x + 4$$

2.
$$x^{-1/\sqrt{2}}$$

3.
$$(x-a)(x^2-b^2)(x^3-c^3)$$
 où $a,b,c \in \mathbb{R}$.

4.
$$\frac{1+x}{1-x}$$

5.
$$\frac{7x-3}{x+2}$$

$$7. \ \frac{3x^4 - 5x^3 + 1}{2x^2 + x - 3}$$

Exercice 13 (5.4)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1.
$$ln(\sin x)$$

2.
$$\arctan(\ln x)$$

3.
$$e^{\cos x}$$

4.
$$\tan^3 x$$

5.
$$\arcsin(e^x)$$

6.
$$\sin(\ln x)$$

7.
$$sin(sin x)$$

8.
$$\arctan(\tan x)$$

10.
$$\arcsin(\cos x)$$

Exercice 14 (5.4)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1.
$$f(x^2)$$

$$2. \ f(\sin x)$$

3.
$$f\left(\frac{3x}{x^2+1}\right)$$

4.
$$\sin(f(x))$$

5.
$$\frac{1}{f(x)^{3/2}}$$
6. $\ln(f(e^x))$.

6.
$$\ln(f(e^x))$$

Exercice 15 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{x}{x^2 - 9}$$

Exercice 16 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sqrt{1 - x^2}}{x}$$

Préciser les demi-tangentes au point d'abscisse -1 et 1.

Exercice 17 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Exercice 18 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sin x}{1 + \cos x}$$

Exercice 19 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sin x}{2 + \cos x}$$

Exercice 20 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{1}{1 + e^{-x}}$$

Exercice 21 (5.4)

Étudier complètement la fonction définie par

$$f(x) = \arctan \frac{x}{x+1}.$$

Déterminer son domaine de définition, étudier sa continuité, rechercher ses asymptotes, calculer sa dérivée première, dresser le tableau de ses variations et esquisser son graphe.

53

Exercice 22 (5.4)

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$. $x \mapsto 1 - x^2 e^x$.

- **1.** Montrer que f établit une bijection de \mathbb{R}_+ vers $]-\infty,1]$.
- **2.** On note $g: \mathbb{R}_+ \to]-\infty, 1]$. Déterminer le domaine de dérivabilité de g^{-1} . $x \mapsto 1-x^2 e^x$
- 3. Déterminer $(g^{-1})'(1-e)$.