Chapter 2 - Sets and Venn Diagrams

2.1 - Number Sets

Definition 2.1.1 (Set)

• A set is a collection of objects.

Example 2.1.2

- The set of vowels: $V = \{a, e, i, o, u\}$
- The set of all positive integers: $\mathbb{Z}^+ = \{1,2,3,4,\ldots\}$
- The set of all positive even integers: $E=\{2,4,6,8,\ldots\}$

Question: Can you think of a set that contains only one element?

Definition 2.1.3 (Element)

• The objects in a set are called **elements** or **members** of the set.

In mathematics, we use \in to denote that an element is in a set, and \notin to denote that an element is not in a set.

Example 2.1.4

Let $V = \{a, e, i, o, u\}$ be the set of vowels.

- a ∈ V
- b ∉ V

Let \mathbb{Z}^+ be the set of all positive integers.

- $1 \in \mathbb{Z}^+$
- -1 $\notin \mathbb{Z}^+$

Let $E=\{2,4,6,8,\ldots\}$ be the set of all positive even integers.

• 2 ∈ E

Definition 2.1.5 (Empty Set)

• The set that contains no elements is called the empty set.

We use \emptyset or $\{\}$ to denote the empty set.

Exercise 2.1.6

- Is 1 an element of the empty set?
- Is anything an element of the empty set?

Definition 2.1.7 (Cardinality)

• The cardinality of a set is the number of elements in the set.

We use |S| or n(S) to denote the cardinality of a set S.

Example 2.1.8

Let $V = \{a, e, i, o, u\}$ be the set of vowels.

- |V| = 5
- n(V) = 5
- The cardinality of the set of vowels is 5.

We say that V is a **finite set**.

Let $\ensuremath{\mathbb{Z}}^+$ be the set of all positive integers.

- $|\mathbb{Z}^+| = \infty$
- $n(\mathbb{Z}^+)=\infty$
- The cardinality of the set of all positive integers is infinity.

We say that \mathbb{Z}^+ is an **infinite set**.

Example 2.1.9 (Special Sets)

• $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, 7,\}$ is the set of all **natural** or **counting numbers**.

• $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4,\}$ is the set of all **integers**.

• $\mathbb{Z}^+ = \{1, 2, 3, 4, 5, 6, 7,\}$ is the set of all **positive integers**.

• \mathbb{Q} is the set of all **rational numbers**, or numbers which can be written in the form $\frac{p}{q}$ where p and q are integers, $q \neq 0$.

For example: $\frac{15}{4}$, $10 = \frac{10}{1}$, $0.5 = \frac{1}{2}$, and $-\frac{3}{8}$ are all rational numbers.

We cannot represent the rational numbers on a number line, because there are infinitely many of them, and in between them are **irrational numbers** which cannot be written in rational form. For example:

- Radicals or surds such as $\sqrt{2}$ and $\sqrt{7}$ are irrational.
- $\pi \approx 3.141\,592\,65$ is an irrational number.
- ► Decimal numbers which neither terminate nor recur are irrational.

 \bullet R is the set of all **real numbers**, which are all numbers which can be placed on the number line.

 \mathbb{R} includes all rational and irrational numbers.

 $\frac{2}{0}$ and $\sqrt{-2}$ are not real numbers because we cannot write them in decimal form or place them on a number line.

Exercise 2.1.10

EXERCISE 2A

- Write using set notation:
 - 8 is an element of set P.
 - k is not an element of set S.
 - 14 is not an element of the set of all odd numbers.
 - There are 9 elements in set Y.
- True or false?

 $3 \in \mathbb{Z}^+$

b $6 \in \mathbb{Z}$ **c** $\frac{3}{4} \in \mathbb{Q}$ **d** $\sqrt{2} \notin \mathbb{Q}$

 $-\frac{1}{4} \notin \mathbb{Q}$

 $1 2 \frac{1}{3} \in \mathbb{Z}$

 \mathbf{g} $0.3684 \in \mathbb{R}$

 $\frac{1}{0.1} \in \mathbb{Z}$

Determine whether each of the following numbers is rational, irrational, or neither:

a 8

-8

c $2\frac{1}{3}$ d $-3\frac{1}{4}$ e $\sqrt{3}$

 $\sqrt{-3}$

 $\sqrt{400}$

h 9.176 **i** $\frac{1}{0}$ **j** $\pi - \pi$

- For each of the following sets:
 - list the elements of the set
 - determine whether the set is finite or infinite
 - if the set is finite, find the number of elements in the set.

a $A = \{\text{factors of } 6\}$

 $b B = \{\text{multiples of 6}\}$

 $C = \{\text{factors of } 17\}$

d $D = \{\text{multiples of } 17\}$ e $E = \{\text{prime numbers less than } 20\}$

- f $F = \{\text{composite numbers between } 10 \text{ and } 30\}$
- Show that each of the following numbers is rational:

a $0.\overline{7}$

b $0.\overline{41}$

 $0.\overline{324}$

- Explain why 0.527 is a rational number.
- Explain why $0.\overline{9} \in \mathbb{Z}$.
- Give examples to show that these statements are false:
 - The sum of two irrationals is irrational.
 - The product of two irrationals is irrational.

2.2 - Interval Notation

Definition 2.2.1 (Interval)

An **interval** is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.

- Open Interval: $(a,b) = \{x | a < x < b, x \in \mathbb{R}\}$
- Closed Interval: $[a,b] = \{x | a \le x \le b, x \in \mathbb{R}\}$
- Half-Open Interval: $[a,b) = \{x | a \le x < b, x \in \mathbb{R}\}$
- Half-Open Interval: $(a,b] = \{x | a < x \le b, x \in \mathbb{R}\}$

where $\{x \in \mathbb{R} | a < x < b\}$ is read as "the set of all x in the real numbers such that a < x < b".

Example 2.2.2

There can also be intervals where x is a integer, or a natural number, or a rational number, etc.

- $\{x | a \leq x \leq b, x \in \mathbb{N}\}$
- $\{x | a < x < b, x \in \mathbb{Q}\}$

However, there are no simple notations for these intervals.

For example:

 $\bullet \quad \{x \mid -3 < x \leqslant 2, \ x \in \mathbb{R}\}$

reads "the set of all real x such that x lies between minus 3 and 2, including 2".

We can represent the set on a number line as:

an open circle indicates a closed circle indicates

Unless stated otherwise, we assume we are dealing with real numbers. Thus, the set can also be written as $\{x \mid -3 < x \le 2\}$.

 $\{x \mid -5 < x < 5, \ x \in \mathbb{Z}\}\$

reads "the set of all integers x such that x lies between minus 5 and 5".

We can represent the set on a number line as:

Exercise 2.2.3

Example 2

Self Tutor

Write using interval notation:

a

$$\{x\mid 1\leqslant x\leqslant 5,\ x\in\mathbb{N}\}$$
 or
$$\{x\mid 1\leqslant x\leqslant 5,\ x\in\mathbb{Z}\}$$

b
$$\{x \mid -3 \leqslant x < 6\}$$

EXERCISE 2B

1 Explain the meaning of:

$$\{x \mid x > 4\}$$

b
$$\{x \mid x \le 5, \ x \in \mathbb{Z}\}$$

$$\{y \mid 0 < y < 8\}$$

$$\mathbf{d} \quad \{x \mid 1 \leqslant x \leqslant 4, \ x \in \mathbb{Z}\}$$

$$\{t \mid 2 < t < 7, \ t \in \mathbb{R}\}$$

d
$$\{x \mid 1 \leqslant x \leqslant 4, \ x \in \mathbb{Z}\}$$
 e $\{t \mid 2 < t < 7, \ t \in \mathbb{R}\}$ **f** $\{n \mid n \leqslant 3 \ \text{or} \ n > 6\}$

2 Write using interval notation:

b

9

3 Represent each of the following number sets on a number line:

b $\{x \mid -5 < x \le 4, \ x \in \mathbb{Z}\}$

 $\{x \mid -3 < x \le 5, \ x \in \mathbb{R}\}$

 $\{x \mid x \leq 6\}$

 $\{x \mid -5 \le x \le 0\}$

Write in interval notation:

- a the set of all real numbers greater than 7
- **b** the set of all integers between -8 and 15
- the set of all rational numbers between 4 and 6, including 4.

2.3 - Subsets and Complements

Definition 2.3.1 (Subset)

- A set A is a **subset** of a set B if every element of A is also an element of B.
- We use $A \subseteq B$ to denote that A is a subset of B.
- If not every element of A is an element of B, then A is not a subset of B, denoted by $A \not\subseteq B$.

Example 2.3.2

Let $A=\{1,2,3\}$, $B=\{1,2,3,4,5\}$, and $C=\{2,4,6\}$.

- $A \subseteq B$
- $C \not\subseteq B$
- ullet $B\subseteq \mathbb{Z}^+$
- B ⊆ B

Exercise 2.3.3

- 1 For each of the following sets A and B, decide whether $A \subseteq B$:
 - a $A = \{2, 5, 6\}, B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - **b** $A = \{4, 8, 11, 12\}, B = \{2, 4, 6, 8, 10, 12, 14, 16\}$
 - $A = \emptyset, B = \{1, 4, 7, 10\}$
 - $A = \{5, 10, 15, 20, 25, 30\}, B = \{10, 15, 20\}$
 - $A = \{6, 7, 8\}, B = \mathbb{N}$

Definition 2.3.4 (Complement)

Let U denote the **universal set**, which usually refers to the set of all elements under consideration.

- The **complement** of a set A is the set of all elements in U that are not in A.
- We use A' to denote the complement of A, hence

$$A' = \{x | x \notin A, x \in U\}$$

Example 2.3.5

Let $U=\{1,2,3,4,5,6\}$, $A=\{1,2,3\}$, and $B=\{2,4,6\}$.

- $A' = \{4, 5, 6\}$
- $B' = \{1, 3, 5\}$

Exercise 2.3.5

5 Suppose $U = \{x \mid x \leq 9, \ x \in \mathbb{Z}^+\}$. Find the complement of:

a $A = \{2, 5, 6\}$

b $B = \{ \text{prime numbers in } U \}$

 $C = \{ \text{odd numbers in } U \}$

d $D = \{\text{multiples of 4 in } U\}$

e $E=\varnothing$

 $f F = \{x \mid x < 3, \ x \in \mathbb{Z}^+\}.$

6 Suppose $U = \{\text{letters of the English alphabet}\}$. Find the complement of:

 $P = \{C, F, J, M, P, U, Y, Z\}$

 $Q = \{consonants\}$

 $R = \{\text{letters in the word HOSPITAL}\}$

d $S = \{ letters after J in the alphabet \}.$

2.4 - Venn Diagrams

Definition 2.4.1 (Venn Diagram)

A Venn diagram is a diagram that uses circles to represent sets and their relationships.

It consists of a rectangle that represents the universal set U and circles that represent sets that are subsets of U.

Example 2.4.2

Example 5

Self Tutor

Consider the set $S = \{2, 4, 6, 7\}$ within the universal set $U = \{x \mid x \leq 10, x \in \mathbb{Z}^+\}$.

- \bullet Draw a Venn diagram to show S.
- **b** List the elements of the complement set S'.
- Find:
- n(S)
- n(S')
- n(U)

a

b
$$S' = \{1, 3, 5, 8, 9, 10\}$$

$$n(S) = 4$$

$$ii \quad n(S') = 6$$

iii
$$n(U) = 10$$

Example 7

Self Tutor

Consider $U = \{x \mid 0 \leqslant x \leqslant 12, x \in \mathbb{Z}\}, A = \{2, 3, 5, 7, 11\}, and B = \{1, 3, 6, 7, 8\}.$

Illustrate A and B on a Venn diagram.

3 and 7 are in both A and B, so the circles representing A and B must overlap.

We place 3 and 7 in the overlap, then fill in the rest of A and the rest of B.

The remaining elements of ${\cal U}$ are placed outside the two circles.

Example 6

Illustrate the following numbers on a Venn diagram:

$$\sqrt{3}$$
, $8\frac{1}{2}$, -2 , 7.1 , 16 , 0.115

Exercise 2.4.3

Suppose $U = \{x \mid x \leqslant 8, \ x \in \mathbb{Z}^+\}$ and $A = \{\text{prime numbers} \leqslant 8\}.$

Show set A on a Venn diagram.

b List the set A'.

• Find:

in(A) iin(A') iiin(U)

- 2 Suppose $U = \{ \text{letters of the English alphabet} \}$ and $V = \{ \text{letters of the English alphabet which are vowels} \}.$
 - **a** Show these sets on a Venn diagram.
- **b** List the set V'.

- Find:
- n(V)
- n(V')
- m(U)

3

- **a** List the elements of:
 - U
- \mathbf{N}
- M
- **b** Find n(N) and n(M).
- Is $M \subseteq N$?

- 4 Illustrate A and B on a Venn diagram if:
 - **a** $U = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$
 - **b** $U = \{4, 5, 6, 7, 8, 9, 10\}, A = \{6, 7, 9, 10\}, B = \{5, 6, 8, 9\}$
 - $U = \{3, 4, 5, 6, 7, 8, 9\}, A = \{3, 5, 7, 9\}, B = \{4, 6, 8\}$
- 5 Suppose the universal set is $U = \mathbb{R}$, the set of all real numbers.
 - \mathbb{Q} , \mathbb{Z} , and \mathbb{N} are all subsets of \mathbb{R} .
 - a Copy the given Venn diagram and label the sets U, \mathbb{Q} , \mathbb{Z} , and \mathbb{N} .
 - **b** Place these numbers on the Venn diagram:

$$\frac{2}{3}$$
, $\sqrt{7}$, $0.\overline{4}$, -1 , $-8\frac{1}{3}$, 0, 4, and

 $\alpha = 0.564\,105\,923\,6\,....$ which does not terminate or recur.

Shade the region representing the set of irrationals \mathbb{Q}' .

- 6 Show the following information on a Venn diagram:
 - **a** $U = \{ \text{triangles} \}, \quad E = \{ \text{equilateral triangles} \}, \quad I = \{ \text{isosceles triangles} \}$
 - **b** $U = \{\text{quadrilaterals}\}, P = \{\text{parallelograms}\}, R = \{\text{rectangles}\}$
- 7 Suppose $U = \{x \mid x \leq 30, \ x \in \mathbb{Z}^+\},$ $A = \{\text{prime numbers} \leq 30\},$ $B = \{\text{multiples of } 5 \leq 30\},$ and $C = \{\text{odd numbers} \leq 30\}.$

Use the Venn diagram shown to display the elements of the sets.

2.5 - Set Operations

Definition 2.5.1 (Union)

- The **union** of two sets A and B is the set of all elements that are in A or B or both.
- We use $A \cup B$ to denote the union of A and B.

Definition 2.5.2 (Intersection)

- The **intersection** of two sets A and B is the set of all elements that are in both A and B.
- We use $A \cap B$ to denote the intersection of A and B.

 $A \cap B$ is shaded red.

 $A \cup B$ is shaded green.

Example 8

Self Tutor

Suppose $U = \{ \text{positive integers} \leq 12 \}$, $A = \{ \text{primes} \leq 12 \}$, and $B = \{ \text{factors of } 12 \}$.

- **a** List the elements of the sets A and B.
- **b** Show the sets A, B, and U on a Venn diagram.
- List the elements in: A'
- $n(A \cap B)$
- $A \cap B$
- $A \cup B$

d Find:

- $n(A \cup B)$
- n(B')

Definition 2.5.3 (Disjoint)

- Two sets A and B are disjoint or mutually exclusive if $A \cap B = \emptyset$.
- It means that A and B have no elements in common.

EXERCISE 2E.2

1

On separate Venn diagrams, shade regions for:

- $A \cap B$
- $A' \cup B$
- $A' \cap B$
- $b A \cap B'$
- \mathbf{d} $A \cup B'$
- $A' \cap B'$

PRINTABLE VENN DIAGRAMS

2 Describe in words, the shaded region of:

3

On separate Venn diagrams, shade regions for:

- $A \cup B$
- $(A \cup B)'$
- $A' \cap B'$

- iv $A \cap B'$
- $(A \cap B)'$
- $\mathbf{vi} \quad A' \cup B'$

- vii $(A' \cup B')'$
- **b** Hence verify that:

$$(A \cap B)' = A' \cup B'$$

 $(A \cap B)' = A' \cup B'$ $(A \cup B)' = A' \cap B'$

Suppose A and B are two disjoint sets. Shade on separate Venn diagrams:

B'

 $\mathbf{d} \quad A' \cap B$

- **a** A
- $A \cup B$
- $(A \cap B)'$

This Venn diagram consists of three intersecting sets.

a Shade on separate Venn diagrams:

b Verify that:

$$\begin{array}{ll} \mathbf{i} & A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ \mathbf{ii} & A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\ \end{array}$$

EXERCISE 2E.1

1

List the elements of set:

b Find:

2

a List the elements of set:

b Find:

3 Consider $U = \{x \mid x \le 12, x \in \mathbb{Z}^+\}, A = \{2, 7, 9, 10, 11\}, and B = \{1, 2, 9, 11, 12\}.$

- **a** Show these sets on a Venn diagram.
- **b** List the elements of:
- $A \cap B$
- $A \cup B$
- B'

- \bullet Find: i n(A)
- n(B')
- $n(A \cap B)$
- iv $n(A \cup B)$

4 If A is the set of all factors of 36 and B is the set of all factors of 63, find:

a $A \cap B$

 $b A \cup B$

5 If $X = \{A, B, D, M, N, P, R, T, Z\}$ and $Y = \{B, C, M, T, W, Z\}$, find:

 ${\color{red}\mathbf{a}} \quad X\cap Y$

b *X* ∪ *Y*

6 Suppose $U = \{x \mid x \leqslant 30, \ x \in \mathbb{Z}^+\}, \quad A = \{\text{factors of } 30\}, \quad \text{and} \quad B = \{\text{prime numbers} \leqslant 30\}.$

- **a** Find:
- n(A)
- n(B)
- $n(A \cap B)$
- iv $n(A \cup B)$

b Show that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

7 Simplify:

- **a** $X \cap Y$ for $X = \{1, 3, 5, 7\}$ and $Y = \{2, 4, 6, 8\}$
- **b** $A \cup A'$ for any set $A \in U$.
- $A \cap A'$ for any set $A \in U$.

2.6 - Expressing Number of Elements in a Set using Venn Diagrams

Sometimes it is too difficult to count the number of elements in a set by listing them out.

In this case, we can just put the number of elements in the set in the corresponding region of the Venn diagram.

Example 10

In the Venn diagram given, (5) means that there are 5 elements in the set $A \cap B$.

How many elements are there in:

- **a** A
- **b** B'
- $A \cup B$

- \mathbf{d} A, but not B
- \bullet B, but not A
- f neither A nor B?

- a n(A) = 12 + 5 = 17
- $n(A \cup B) = 12 + 5 + 8 = 25$
- n(B, but not A) = 8

- **b** n(B') = 12 + 6 = 18
- d n(A, but not B) = 12
- f n(neither A nor B) = 6

EXERCISE 2F

1

How many elements are there in:

B

b A'

 $A \cup B$

- \mathbf{d} A, but not B
- \bullet B, but not A
- f neither A nor B?

2 In the Venn diagram below, (a) means that there are a elements in that region.

- a Write an expression for:
 - n(A)

n(B)

- $n(A \cap B)$
- iv $n(A \cup B)$

- **b** Show that:
 - $n(A \cup B) = n(A) + n(B) n(A \cap B)$
 - $ii \quad n(A \cap B) = n(A) + n(B) n(A \cup B)$
 - iii if A and B are disjoint, then $n(A \cup B) = n(A) + n(B)$.

3

Use the Venn diagram to show that:

- $n(A \cap B') = n(A) n(A \cap B)$
- **b** $n(A \cup B') = n(U) n(A' \cap B)$

4 Given n(U) = 20, n(A) = 12, n(B) = 13, and $n(A \cap B) = 8$, find:

a $n(A \cup B)$

b n(B, but not A)

5 Given n(U) = 28, n(M) = 14, $n(M \cap N) = 3$, and $n(M \cup N) = 18$, find:

a n(N)

 $b \quad n((M \cup N)')$

2.7 - Solving Set Problems using Venn Diagrams

Example 12

■ Self Tutor

The Venn diagram alongside illustrates the number of people in a sporting club who play tennis (T) and hockey (H).

Determine the number of people:

- **b** who play hockey
- who play both sports
- d who play neither sport

- e who play at least one sport.
- a n(U) = 15 + 27 + 26 + 7 = 75There are 75 people in the club.
- $n(T \cap H) = 27$ 27 people play both sports.
- $n(T \cup H) = 15 + 27 + 26 = 68$ 68 people play at least one sport.
- **b** n(H) = 27 + 26 = 53 53 people play hockey.
- d $n(T' \cap H') = 7$ 7 people play neither sport.

EXERCISE 2G

1 The Venn diagram alongside illustrates the number of students in a particular class who study French (F) and Spanish (S).

Determine the number of students:

- a in the class
- **b** who study both subjects
- who study at least one of the subjects
- d who only study Spanish.
- 2 In a survey at a resort, people were asked whether they went sailing (S) or fishing (F) during their stay.

Use the Venn diagram to determine the number of people:

- a in the survey
- c who did neither activity

- **b** who did both activities
- **d** who did exactly one of the activities.

In a class of 30 students, 19 study Physics, 17 study the number of students who study:	y Che	mistry, and 15 study both subjects. Determine
a at least one of the subjects	Ь	Physics, but not Chemistry
c exactly one of the subjects	d	neither subject.
In a class of 40 students, 19 play tennis, 20 play number of students in the class who:	y netb	pall, and 8 play neither sport. Determine the
a do not play netball	Ь	play at least one of the sports
• play exactly one of the sports	d	play netball, but not tennis.
In a class of 25 students, 15 play hockey, 16 plathe number of students who play:	ay bas	ketball, and 4 play neither sport. Determine
a both sports	Ь	hockey but not basketball.
In a class of 40 students, 34 like bananas, 22 lil number of students who:	ke pir	neapples, and 2 dislike both fruits. Find the
a like both fruits	b	like at least one fruit.
In a class of 40 students, 23 have dark hair, 18 ha or both. How many students have:	ive br	own eyes, and 26 have dark hair, brown eyes
a dark hair and brown eyes	Ь	neither dark hair nor brown eyes
dark hair but not brown eyes?		
	a at least one of the subjects c exactly one of the subjects In a class of 40 students, 19 play tennis, 20 play number of students in the class who: a do not play netball c play exactly one of the sports In a class of 25 students, 15 play hockey, 16 play the number of students who play: a both sports In a class of 40 students, 34 like bananas, 22 linumber of students who: a like both fruits In a class of 40 students, 23 have dark hair, 18 has or both. How many students have: a dark hair and brown eyes	a at least one of the subjects c exactly one of the subjects d In a class of 40 students, 19 play tennis, 20 play neth number of students in the class who: a do not play netball c play exactly one of the sports d In a class of 25 students, 15 play hockey, 16 play bas the number of students who play: a both sports b In a class of 40 students, 34 like bananas, 22 like pin number of students who: a like both fruits b In a class of 40 students, 23 have dark hair, 18 have bror both. How many students have: a dark hair and brown eyes b

Review Exercises

REVIEW SET 2A

1 Explain why 1.3 is a rational number.

2 Is $\sqrt{4000} \in \mathbb{Q}$?

3 Let P be the set of all prime numbers between 20 and 40.

a Is $37 \in P$?

b Find n(P).

4 Write a statement describing the meaning of $S = \{t \mid -1 \le t < 3\}$.

5 Write using interval notation:

6 For each of the following sets P and Q, decide whether $P \subseteq Q$:

a $P = \{5, 6, 7, 8\}, Q = \{1, 2, 3, 4, 5, 6, 7\}$

b $P = \{\text{multiples of 4 between 10 and 30}\}, Q = \{\text{even numbers between 0 and 40}\}$

7 Suppose $U = \{x \mid x \le 10, x \in \mathbb{Z}^+\}$. Find the complement of:

a $A = \{3, 7, 9\}$

b $B = \{\text{composite numbers in } U\}.$

8 Suppose $U = \{x \mid x \le 12, x \in \mathbb{Z}^+\}$ and $A = \{\text{multiples of } 3 \le 12\}.$

a Show A on a Venn diagram.

b List the set A'.

 \bullet Find n(A').

True or false?

a $\mathbb{N}\subseteq\mathbb{Z}^+$

b $\mathbb{Q} \subseteq \mathbb{Z}$

10

a List the elements of set:

 \mathbf{i} A

III U

iv $A \cup B$

 $\mathbf{v} \quad A \cap B$

b Find:

 $\mathbf{i} \quad n(A) \qquad \qquad \mathbf{ii} \quad n(B)$

iii $n(A \cup B)$

11 Consider $U = \{x \mid x \le 10, x \in \mathbb{Z}^+\}, P = \{2, 3, 5, 7\}, \text{ and } Q = \{2, 4, 6, 8\}.$

a Show these sets on a Venn diagram.

b List the elements of:

i $P \cap Q$

ii $P \cup Q$

c Find:

i n(P') ii $n(P \cap Q)$ iii $n(P \cup Q)$

d Is $P \cap Q \subseteq P$?

12 Describe in words the shaded region:

a

- **13** How many elements are there in:
 - $\mathbf{a} \quad A$

 \mathbf{b} B

 $A \cup B$

d neither A nor B?

400 families were surveyed. It was found that 90% had a TV set, and 60% had a computer. Every family had at least one of these items. How many families had both a TV set and a computer?

REVIEW SET 2B

- 1 Is $-2 \in \mathbb{Z}^+$?
- Show that $0.\overline{51}$ is a rational number.
- Sketch the number set $\{x \mid x \leq 3 \text{ or } x > 7, x \in \mathbb{R}\}.$
- **4** For each of the following sets:
 - i list the elements of the set
 - ii determine whether the set is finite or infinite
 - iii if the set is finite, find the number of elements in the set.
 - a $A = \{\text{factors of } 15\}$

- **b** $B = \{\text{multiples of } 8\}$
- $C = \{ \text{odd numbers between } 30 \text{ and } 50 \}$ **d** $D = \{ \text{prime numbers less than } 30 \}$
- **5** Suppose $P = \{3, 4, 5, 6, 7, 8, 9, 10, 11\}, Q = \{4, 9, 10\}, and <math>R = \{5, 6, 12\}.$ Decide whether Q and R are subsets of P.
- **6** Suppose $U = \{x \mid x \le 12, x \in \mathbb{Z}^+\}$ and $A = \{\text{prime numbers less than } 12\}$. Find:
 - \mathbf{a} A
- b A'
- c n(A) d n(A')
- e n(U)

7 Illustrate these numbers on a Venn diagram like the one shown:

$$-1, \sqrt{2}, 2, 3.1, \pi, 4.\overline{2}$$

- Show this information on a Venn diagram:
 - **a** $U = \{10, 11, 12, 13, 14, 15\}, A = \{10, 12, 14\}, B = \{11, 12, 13\}$
 - **b** $U = \{\text{quadrilaterals}\}, S = \{\text{squares}\}, R = \{\text{rectangles}\}$
- **9** If A is the set of all factors of 24 and B is the set of all factors of 18, find:
 - a $A \cap B$

b $A \cup B$

- **10** On separate Venn diagrams like the one shown, shade the region representing:
 - $\mathbf{a} \ B'$

- **b** in A and in B
- $(A \cup B)'$

11

Using separate Venn diagrams like the one shown, shade regions to verify that $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

- **12** Given n(U) = 30, n(A) = 14, n(B) = 10, and $n(A \cap B) = 6$, find:
 - a $n(A \cup B)$

- **b** n(B, but not A)
- 13 In a certain town, three newspapers are published. 20% of the population read A, 16% read B, 14% read C, 8% read A and B, 5% read A and C, 4% read B and C, and 2% read all 3 newspapers. What percentage of the population read:
 - a none of the papers

b at least one of the papers

c exactly one of the papers

d either A or B

e A only?