0.1 子空间、直和与商空间

定理 0.1 (基扩张定理)

设 V 是 n 维线性空间, v_1,v_2,\cdots,v_m 是 V 中 m(m < n) 个线性无关的向量,又假设 $\{e_1,e_2,\cdots,e_n\}$ 是 V 的一组基,则必可在 $\{e_1,e_2,\cdots,e_n\}$ 中选出 n-m 个向量,使之和 v_1,v_2,\cdots,v_m 一起组成 V 的一组基. 基扩张定理还有几种等价形式:

- (1)n 维线性空间 V 中任意 m(m < n) 个线性无关的向量均可扩张为 V 的一组基.
- (2)n 维线性空间 V 的任意一个子空间的基均可扩张为 V 的一组基.

证明 若 m < n, 将 $e_i(1 \le i \le n)$ 依次加入向量组 v_1, v_2, \cdots, v_m , 则必有一个 e_i , 使得 $v_1, v_2, \cdots, v_m, e_i$ 线性无关. 这是因为若任意一个 e_i 加入 v_1, v_2, \cdots, v_m 后均线性相关,则由命题??可知,每个 e_i 都可用 v_1, v_2, \cdots, v_m 线性表示,由定理??可得 $n \le m$,矛盾.将新加入的向量 e_i 记作 v_{m+1} ,则原线性无关向量组扩张为 $v_1, v_2, \cdots, v_{m+1}$,并且仍线性无关.若 m+1 < n,则同理又可从 e_1, e_2, \cdots, e_n 中找到一个向量,加入 $v_1, v_2, \cdots, v_{m+1}$ 之后仍线性无关.将新加入的向量记作 v_{m+2} ,则原线性无关向量组扩张为 $v_1, v_2, \cdots, v_{m+2}$,并且仍线性无关.不断这样做下去,直到 m+n-m-1=n-1 < n 时,同理可从 e_1, e_2, \cdots, e_n 中找到一个向量,加入 $v_1, v_2, \cdots, v_{n-1}$ 之后仍线性无关.将新加入的向量记作 v_n ,则可将 v_1, v_2, \cdots, v_m 扩张成为 v_1, v_2, \cdots, v_n ,并且仍线性无关.此时 v_1, v_2, \cdots, v_n 就是 V 的一组基.

定义 0.1 (直和)

设 V_1, V_2, \dots, V_k 是线性空间 V 的子空间, 若对任意的 $i(1 \le i \le k)$, 均有

$$V_i \cap (V_1 + \cdots + V_{i-1} + V_{i+1} + \cdots + V_k) = 0,$$

则称和 $V_1 + V_2 + \cdots + V_k$ 是直接和,简称直和,记为 $V_1 \oplus V_2 \oplus \cdots \oplus V_k$.

定理 0.2 (直和的等价条件)

设 V_1, V_2, \dots, V_k 是线性空间 V_0 的子空间, $V_0 = V_1 + V_2 + \dots + V_k$, 则下列命题等价:

- (1) $V_0 = V_1 \oplus V_2 \oplus \cdots \oplus V_k$;
- (2) 对任意的 $2 \le i \le k$, 有 $V_i \cap (V_1 + V_2 + \cdots + V_{i-1}) = 0$;
- (3) $\dim V_0 = \dim V_1 + \dim V_2 + \cdots + \dim V_k$;
- (4) V_1, V_2, \dots, V_k 的一组基可以拼成 V_0 的一组基;
- (5) V_0 中的向量表示为 V_1, V_2, \dots, V_k 中的向量之和时其表示唯一.
- (6) 在 $V_1 + V_2 + \cdots + V_k$ 中零向量的表示唯一, 即如果

$$v_1 + v_2 + \cdots + v_k = 0, v_i \in V_i, i = 1, 2, \cdots, k.$$

则 $v_i = 0, i = 1, 2, \dots, k$.

证明

定理 0.3 (交和空间维数公式)

设 V_1, V_2 是线性空间V的两个子空间,则

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).$$

证明 设 dim $V_1 = n_1$, dim $V_2 = n_2$, dim $(V_1 \cap V_2) = m$. 取 $V_1 \cap V_2$ 的一组基 $\{\alpha_1, \dots, \alpha_m\}$, 由于 $V_1 \cap V_2$ 是 V_1 的子空间, 故可添上 V_1 中的向量 $\alpha_{m+1}, \dots, \alpha_{n_1}$, 使 $\{\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_{n_1}\}$ 是 V_1 的一组基. 同样道理, 可添上

 $\boldsymbol{\beta}_{m+1},\cdots,\boldsymbol{\beta}_{n_2}$, 使 $\{\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m,\boldsymbol{\beta}_{m+1},\cdots,\boldsymbol{\beta}_{n_2}\}$ 成为 V_2 的一组基. 显然, V_1+V_2 中的向量均可由向量组

$$\alpha_1, \cdots, \alpha_m, \alpha_{m+1}, \cdots, \alpha_{n_1}, \beta_{m+1}, \cdots, \beta_{n_2}$$

的线性组合给出. 如能证明上式中的向量线性无关,则它们构成 $V_1 + V_2$ 的一组基,由此即可推出所要的结论. 现假设

$$\lambda_1\alpha_1+\cdots+\lambda_m\alpha_m+\lambda_{m+1}\alpha_{m+1}+\cdots+\lambda_{n_1}\alpha_{n_1}+\mu_{m+1}\beta_{m+1}+\cdots+\mu_{n_2}\beta_{n_2}=\mathbf{0},$$

则

$$\lambda_1\alpha_1+\cdots+\lambda_m\alpha_m+\lambda_{m+1}\alpha_{m+1}+\cdots+\lambda_{n_1}\alpha_{n_1}=-(\mu_{m+1}\beta_{m+1}+\cdots+\mu_{n_2}\beta_{n_2}).$$

上式左端属于 V_1 , 右端属于 V_2 , 故

$$\mu_{m+1}\boldsymbol{\beta}_{m+1} + \cdots + \mu_{n_2}\boldsymbol{\beta}_{n_2} \in V_1 \cap V_2,$$

即存在 $\xi_1, \dots, \xi_m \in \mathbb{K}$, 使

$$\mu_{m+1}\boldsymbol{\beta}_{m+1} + \cdots + \mu_{n_2}\boldsymbol{\beta}_{n_2} = \xi_1\alpha_1 + \cdots + \xi_m\alpha_m.$$

但 $\alpha_1, \dots, \alpha_m, \beta_{m+1}, \dots, \beta_{n_2}$ 是 V_2 的基, 因此 $\mu_{m+1} = \dots = \mu_{n_2} = \xi_1 = \dots = \xi_m = 0$. 再由 $\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_{n_1}$ 线性无关得 $\lambda_1 = \dots = \lambda_m = \lambda_{m+1} = \dots = \lambda_{n_1} = 0$.

推论 0.1

设 V_1,V_2 是线性空间 V 的两个子空间, $\dim V_1=n_1,\dim V_2=n_2,\dim(V_1\cap V_2)=m$, 取 $V_1\cap V_2$ 的一组基

$$\{\alpha_1,\cdots,\alpha_m\},\$$

将其扩张为VI的一组基

$$\{\alpha_1,\cdots,\alpha_m,\alpha_{m+1},\cdots,\alpha_{n_1}\},\$$

再将其扩张为 V2 的一组基

$$\{\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_m,\boldsymbol{\beta}_{m+1},\cdots,\boldsymbol{\beta}_{n_2}\}.$$

则

$$\{\alpha_1,\cdots,\alpha_m,\alpha_{m+1},\cdots,\alpha_{n_1},\boldsymbol{\beta}_{m+1},\cdots,\boldsymbol{\beta}_{n_2}\}$$

就是 $V_1 + V_2$ 的一组基.

证明 显然, $V_1 + V_2$ 中的向量均可由向量组

$$\alpha_1, \cdots, \alpha_m, \alpha_{m+1}, \cdots, \alpha_{n_1}, \beta_{m+1}, \cdots, \beta_{n_2}$$

的线性组合给出. 现假设

$$\lambda_1\alpha_1+\cdots+\lambda_m\alpha_m+\lambda_{m+1}\alpha_{m+1}+\cdots+\lambda_{n_1}\alpha_{n_1}+\mu_{m+1}\beta_{m+1}+\cdots+\mu_{n_2}\beta_{n_2}=\mathbf{0},$$

则

$$\lambda_1\alpha_1+\cdots+\lambda_m\alpha_m+\lambda_{m+1}\alpha_{m+1}+\cdots+\lambda_{n_1}\alpha_{n_1}=-(\mu_{m+1}\beta_{m+1}+\cdots+\mu_{n_2}\beta_{n_2}).$$

上式左端属于 V_1 , 右端属于 V_2 , 故

$$\mu_{m+1}\boldsymbol{\beta}_{m+1} + \cdots + \mu_{n_2}\boldsymbol{\beta}_{n_2} \in V_1 \cap V_2,$$

即存在 $\xi_1, \dots, \xi_m \in \mathbb{K}$,使

$$\mu_{m+1}\boldsymbol{\beta}_{m+1} + \cdots + \mu_{n_2}\boldsymbol{\beta}_{n_2} = \xi_1\alpha_1 + \cdots + \xi_m\alpha_m.$$

但 $\alpha_1, \dots, \alpha_m, \beta_{m+1}, \dots, \beta_{n_2}$ 是 V_2 的基, 因此 $\mu_{m+1} = \dots = \mu_{n_2} = \xi_1 = \dots = \xi_m = 0$. 再由 $\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_{n_1}$ 线性无关得 $\lambda_1 = \dots = \lambda_m = \lambda_{m+1} = \dots = \lambda_{n_1} = 0$.

0.1.1 证明直和的方法

证明直和的方法大致有两种:

第一种: 先证和, 再证直和.

第二种: 对于给定的 V, V_1, V_2 , 求证 $V = V_1 \oplus V_2$ 的题目, 如果 "和"不好证明的话, 可以记 $W = V_1 + V_2$, 先证 $W = V_1 \oplus V_2$, 再证 V = W(证明 V = W 通常会利用命题**??**). 具体例子见例题 0.3

命题 0.1

设V是数域 \mathbb{F} 上n 阶矩阵组成的向量空间, V_1 和 V_2 分别是 \mathbb{F} 上对称矩阵和反对称矩阵组成的子集. 求证: V_1 和 V_2 都是V 的子空间且 $V=V_1 \oplus V_2$.

 $\stackrel{\bigcirc}{\mathbf{v}}$ **笔记** 要证明向量空间 V 是其子空间 V_1, V_2 的直和, 只需证明两件事: 一是证明 V 中任一向量均可表示为 V_1 与 V_2 中向量之和, 即 $V = V_1 + V_2$; 二是证明 V_1 与 V_2 的交等于零.

证明 由于对称矩阵之和仍是对称矩阵,一个数乘以对称矩阵仍是对称矩阵,因此 V_1 是 V 的子空间. 同理 V_2 也是 V 的子空间. 又由命题??可知,任一 n 阶矩阵都可以表示为一个对称矩阵和一个反对称矩阵之和,故 $V = V_1 + V_2$. 若一个矩阵既是对称矩阵又是反对称矩阵,则它一定是零矩阵. 这就是说 $V_1 \cap V_2 = \mathbf{0}$. 于是 $V = V_1 \oplus V_2$.

命题 0.2

设 V_1, V_2, \cdots, V_n 是数域 \mathbb{F} 上的 n 个线性空间, 且 $V_1 \oplus V_2 \oplus \cdots \oplus V_n$. 若

$$W_1 \subseteq V_1, W_2 \subseteq V_2, \cdots, W_n \subseteq V_n,$$

则

$$W_1 \oplus W_2 \oplus \cdots \oplus W_n$$
.

证明 因为 $V_1 \oplus V_2 \oplus \cdots \oplus V_n$, 所以由直和的等价条件 (6)知, 如果

$$v_1 + v_2 + \cdots + v_n = 0, \ v_i \in V_i, \ i = 1, 2, \cdots, n,$$

则 $v_i = 0, i = 1, 2, \dots, n$. 设

$$w_1 + w_2 + \cdots + w_n = 0, \ w_i \in W_i, \ i = 1, 2, \cdots, n.$$

则 $w_i \in W_i \subseteq V_i, i = 1, 2, \dots, n$. 从而 $w_i = 0, i = 1, 2, \dots, n$. 故 $W_1 + W_2 + \dots + W_n$ 中零向量的表示唯一, 因此由直和的等价条件 (6)知

$$W_1 \oplus W_2 \oplus \cdots \oplus W_n$$
.

例题 0.1 设 V_1, V_2 分别是数域 \mathbb{F} 上的齐次线性方程组 $x_1 = x_2 = \cdots = x_n$ 与 $x_1 + x_2 + \cdots + x_n = 0$ 的解空间, 求证: $\mathbb{F}^n = V_1 \oplus V_2$.

堂 笔记 要证明向量空间 V 是其子空间 V_1, V_2 的直和, 只需证明两件事: 一是证明 V 中任一向量均可表示为 V_1 与 V_2 中向量之和, 即 $V = V_1 + V_2$; 二是证明 V_1 与 V_2 的交等于零.

证明 由线性方程组解的定理知, V_1 的维数是 $1,V_2$ 的维数是 n-1. 若列向量 $\alpha \in V_1 \cap V_2$, 则 α 既是第一个线性方程组的解, 也是第二个线性方程组的解, 不难看出 α 只能等于零向量, 因此 $V_1 \cap V_2 = 0$. 又因为

$$\dim(V_1 \oplus V_2) = \dim V_1 + \dim V_2 = 1 + (n-1) = n = \dim \mathbb{F}^n$$
,

故 $\mathbb{F}^n = V_1 \oplus V_2$.

例题 0.2 设 U,V 是数域 \mathbb{K} 上的两个线性空间, $W = U \times V$ 是 U 和 V 的积集合, 即 $W = \{(u,v)|u \in U,v \in V\}$. 现在 W 上定义加法和数乘:

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2), k(u, v) = (ku, kv).$$

验证: $W \in \mathbb{K}$ 上的线性空间 (这个线性空间称为 U 和 V 的外直和).

又若设 $U' = \{(\boldsymbol{u}, \boldsymbol{0}) | \boldsymbol{u} \in U\}, V' = \{(\boldsymbol{0}, \boldsymbol{v}) | \boldsymbol{v} \in V\}, 求证: U', V' 是 W 的子空间, U' 和 U 同构, V' 和 V 同构, 并且 <math>W = U' \oplus V'$.

证明 易验证 W 在上述加法和数乘下满足线性空间的 8 条公理, 从而是 \mathbb{K} 上的线性空间. 任取 $(u_1, \mathbf{0}), (u_2, \mathbf{0}) \in U', k \in \mathbb{K}$, 则 $(u_1, \mathbf{0}) + (u_2, \mathbf{0}) = (u_1 + u_2, \mathbf{0}) \in U', k(u_1, \mathbf{0}) = (ku_1, \mathbf{0}) \in U'$, 因此 U' 是 W 的子空间. 同理可证 V' 是 W 的子空间. 构造映射 $\varphi: U \to U', \varphi(u) = (u, \mathbf{0})$, 容易验证 φ 是一一对应并且保持加法和数乘运算, 所以 $\varphi: U \to U'$ 是一个线性同构. 构造映射 $\psi: V \to V', \psi(v) = (\mathbf{0}, v)$, 同理可证 $\psi: V \to V'$ 是一个线性同构. 显然 $U' \cap V' = 0$, 又 对 W 中任一向量 (u, v), 有 $(u, v) = (u, \mathbf{0}) + (\mathbf{0}, v) \in U' + V'$, 因此 $W = U' \oplus V'$.

例题 0.3 给定数域 P, 设 A 是数域 P 上的一个 n 级可逆方阵, A 的前 r 个行向量组成的矩阵为 B, 后 n-r 个行向量组成的矩阵为 C, n 元线性方程组 BX = 0 与 CX = 0 的解空间分别为 V_1, V_2 , 证 $P^n = V_1 \oplus V_2$.

证明 先记 $W = V_1 + V_2$. 若 $\alpha \in V_1 \cap V_2$, 则 $\mathbf{B}\alpha = \mathbf{C}\alpha = 0$, 所以

$$A\alpha = \begin{pmatrix} B \\ C \end{pmatrix} \alpha = 0.$$

由于 A 可逆, 知 $\alpha = 0$, 所以 $V_1 \cap V_1 = \{0\}$, 即 $W = V_1 \oplus V_2$.

最后说 $W = P^n$: 显然 r(B) = r, r(C) = n - r, 则 $\dim V_1 = n - r, \dim V_2 = n - (n - r) = r$. 所以

 $\dim W = \dim V_1 + \dim V_2 = n = \dim P^n.$

又 $W = V_1 \oplus V_2 \subseteq P^n$, 从而 $W = P^n$, 即

$$P^n = V_1 \oplus V_2$$
.

命题 0.3 (任意子空间一定存在相应的补空间)

设 $U \neq V$ 的子空间,则一定存在 V 的子空间 W, 使得 $V = U \oplus W$. 这样的子空间 W 称为子空间 U 在 V 中的**补空间**.

注 在这个命题中 $U \cap W = \{0\}$, 而不是 $U \cap W = \emptyset$; 同时 V = U + W 是子空间的和, 而不是 $V = U \cup W$. 因此, 补空间绝不是补集, 请读者务必注意! 一般来说, 补空间并不唯一. 例如下面证明中, 取 U 中不同的基, 再将基扩张得到的补空间也不相同. 还例如, 若 dim $V = \dim U \ge 1$ 且 dim $U \ge 1$, 则 U 有无限个补空间.

证明 取子空间 U 的一组基 $\{e_1, \dots, e_m\}$,由基扩张定理可将其扩张为 V 的一组基 $\{e_1, \dots, e_m, e_{m+1}, \dots, e_n\}$. 令 $W = L(e_{m+1}, \dots, e_n)$,则 V = U + W. 由于 $\{e_{m+1}, \dots, e_n\}$ 是 W 的一组基,故 $\dim V = \dim U + \dim W$,从而 $V = U \oplus W$.

命题 0.4

若 $V = U \oplus W$ 且 $U = U_1 \oplus U_2$, 求证: $V = U_1 \oplus U_2 \oplus W$.

证明 由 $U = U_1 \oplus U_2$ 可得 $U_1 \cap U_2 = 0$; 由 $V = U \oplus W$ 可得 $(U_1 + U_2) \cap W = U \cap W = 0$, 因此由定理 0.2(2) 可得 $U_1 + U_2 + W$ 是直和, 从而 $V = U_1 + U_2 + W = U_1 \oplus U_2 \oplus W$.

命题 0.5

每一个 n 维线性空间均可表示为 n 个一维子空间的直和.

证明 设 V 是 n 维线性空间,取其一组基为 $\{e_1, e_2, \cdots, e_n\}$. 设 $V_i = L(e_i)(1 \le i \le n)$,则 V_i 是 V 的一维子空间. 任取 $\alpha \in V$,存在唯一一组常数 k_1, k_2, \cdots, k_n ,使得 $\alpha = k_1e_1 + k_2e_2 + \cdots + k_ne_n$,而 $k_ie_i \in V_i$, $i = 1, 2, \cdots, n$. 因此 $V = V_1 + V_2 + \cdots + V_n$. 注意到 $\dim V = n = \dim V_1 + \dim V_2 + \cdots + \dim V_n$,故由定理 0.2(3)可知, $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$. (注意到 V_i 的基是 $\{e_i\}$,因此 $V_i(1 \le i \le n)$ 的基能拼成 V 的基,故由定理 0.2(4)也可得到结论. 再注意到 V 中任一向量写成基向量 $\{e_1, e_2, \cdots, e_n\}$ 的线性组合时,其表示是唯一的. 这就是说,V 中任一向量写成 V_i 中的向量之和时,其表示是唯一的,故由定理 0.2(5)同样可得结论.)

命题 0.6

设 V_0 是数域 \mathbb{F} 上n维向量空间V的真子空间,则 V_0 至多包含n-1个V中的基向量.

证明 反证法, 若 V_0 包含 $n \wedge V$ 中的基向量, 则 V_i 就包含了 V 的一组基. 不妨设 V_0 中的这组基向量为 $\{e_1, e_2, \cdots e_n\}$, 则 $\forall \alpha \in V$, 有 $\alpha = k_1 e_1 + k_2 e_2 + \cdots + k_n e_n \in V_0$, 其中 $k_i \in \mathbb{F}, i = 1, 2, \cdots, n$. 故 $V_0 \supset V$, 又 $V_0 \subset V$, 因此 $V_0 = V$. 这与 $V_0 \in V$ 的真子空间矛盾.

命题 0.7

设 V_1, V_2, \cdots, V_m 是数域 \mathbb{P} 上向量空间 V 的 m 个真子空间, 证明: 在 V 中必存在一个向量 α , 它不属于任何一个 V_i .

Ŷ 笔记 这个命题表明:有限个真子空间不能覆盖全空间.

证明 证法一: 对个数 m 进行归纳, 当 m=1 时结论显然成立. 设 m=k 时结论成立, 现要证明 m=k+1 时结论也成立. 由归纳假设, 存在向量 α , 它不属于任何一个 $V_i(1 \le i \le k)$. 若 α 也不属于 V_{k+1} , 则结论已成立, 因此可设 $\alpha \in V_{k+1}$. 在 V_{k+1} 外选一个向量 β , 作集合

$$M=\{t\alpha+\beta|t\in\mathbb{F}\}.$$

事实上, 我们可将 M 看成是通过 β 的终点且平行于 α 的一根 "直线", 现要证明它和每个 V_i 最多只有一个交点. 首先, M 和 V_{k+1} 无交点, 因为若 $t\alpha+\beta\in V_{k+1}$, 则从 $t\alpha\in V_{k+1}$ 可推出 $\beta\in V_{k+1}$, 与假设矛盾. 又若对某个 $V_i(i< k+1)$, 存在 $t_1\neq t_2$, 使得 $t_1\alpha+\beta\in V_i$, $t_2\alpha+\beta\in V_i$, 则 $(t_1-t_2)\alpha\in V_i$, 从而导致 $t_2\alpha\in V_i$, 与假设矛盾. 因此, $t_2\alpha\in V_i$ 最多只有一个交点, 从而 $t_2\alpha\in V_i$,则 $t_1\alpha\in V_i$,而 $t_2\alpha\in V_i$,即 $t_1\alpha\in V_i$,即 $t_1\alpha\in V_i$,即 $t_1\alpha\in V_i$ 的一根"直线", 现实证明它和每个 $t_1\alpha\in V_i$ 最多只有一个交点,从而 $t_1\alpha\in V_i$,如 $t_1\alpha\in$

证法二:任取 V 的一组基 $\{e_1,e_2,\cdots,e_n\}$. 对任意的正整数 k, 构造 V 中向量 $\alpha_k=e_1+ke_2+\cdots+k^{n-1}e_n$, 设向量族 $S=\{\alpha_k|k=1,2,\cdots\}$. 由例题??可知,S 中任意 n 个不同的向量都构成 V 的一组基. 因为 V_i 都是 V 的真子空间,所以每个 V_i 至多包含 S 中 n-1 个向量. 因此 $\bigcup_{i=1}^m V_i$ 至多包含 S 中 m(n-1) 个向量. 又由于 S 是无限集合,故存在某个向量 α_k ,使得 α_k 不属于任何一个 V_i .

注上述证明要用到任意一个数域都有无穷个元素这一事实. 因此, 对于有限域 (读者以后可能会学到) 上的向量空间, 上例结论不一定成立.

命题 0.8

设 V_1, V_2, \dots, V_m 是数域 \mathbb{F} 上向量空间 V 的 m 个真子空间, 证明:V 中必有一组基, 使得每个基向量都不在诸 V_i 的并中.

证明 证法一: 由命题 0.7可知, 存在非零向量 $e_1 \in V$, 使得 $e_1 \notin \bigcup_{i=1}^m V_i$. 定义 $V_{m+1} = L(e_1)$, 再由命题 0.7可知, 存在

向量 $e_2 \in V$, 使得 $e_2 \notin \bigcup_{i=1}^{m+1} V_i$. 由推论??可知, $e_2 \notin L(e_1)$ 意味着 e_1, e_2 线性无关. 重新定义 $V_{m+1} = L(e_1, e_2)$, 再由命

题 0.7可知, 存在向量 $e_3 \in V$, 使得 $e_3 \notin \bigcup_{i=1}^m V_i$. 再由推论??可知, $e_3 \notin L(e_1,e_2)$ 意味着 e_1,e_2,e_3 线性无关. 不断重复上述讨论, 即添加线性无关的向量重新定义 V_{m+1} , 并反复利用命题 0.7和推论??的结论, 最后可以得到 n 个线性无关的向量 e_1,e_2,\cdots,e_n , 它们构成 V 的一组基, 且满足 $e_j \notin \bigcup_{i=1}^m V_i (1 \leqslant j \leqslant n)$.

证法二:任取 V 的一组基 $\{e_1, e_2, \cdots, e_n\}$. 对任意的正整数 k, 构造 V 中向量 $\alpha_k = e_1 + ke_2 + \cdots + k^{n-1}e_n$, 设向量族 $S = \{\alpha_k | k = 1, 2, \cdots\}$. 由例题??可知,S 中任意 n 个不同的向量都构成 V 的一组基. 因为 V_i 都是 V 的真子空间, 所以每个 V_i 至多包含 S 中 n-1 个向量. 因此 $\bigcup_{i=1}^{m} V_i$ 至多包含 S 中 m(n-1) 个向量. 又由于 S 是无限集合, 故

存在某个向量 α_k ,使得 α_k 不属于任何一个 V_i . 进一步,在 S 中一定还存在 n 个不同的向量 $\alpha_{k_1}, \alpha_{k_2}, \cdots, \alpha_{k_n}$,使得每个 α_{k_i} 都不属于任何一个 V_i ,此时 $\{\alpha_{k_1}, \alpha_{k_2}, \cdots, \alpha_{k_n}\}$ 就构成了 V 的一组基.

定义 **0.2** (*U*- 陪集与商空间)

设 V 是数域 \mathbb{K} 上的线性空间,U 是 V 的子空间. 对任意的 $v \in V$, 集合 $v + U := \{v + u | u \in U\}$ 称为 v 的U **陪集**. 在所有 U — 陪集构成的集合 $S = \{v + U | v \in V\}$ 中, 定义加法和数乘如下, 其中 $v_1, v_2 \in V, k \in \mathbb{K}$:

$$(v_1 + U) + (v_2 + U) := (v_1 + v_2) + U, \ k \cdot (v_1 + U) := k \cdot v_1 + U.$$

S在上述加法和数乘下成为数域 \mathbb{K} 上的线性空间, 称为 V 关于子空间 U 的**商空间**, 记为 V/U.

注 商空间的向量是 U- 陪集. 商空间的零向量就是 0+U=U.

命题 **0.9** (*U*- 陪集的性质)

- (1) U- 陪集之间的关系是: 作为集合或者相等, 或者不相交;
- (2) $v_1 + U = v_2 + U$ (作为集合相等) 当且仅当 $v_1 v_2 \in U$. 特别地,v + U 是 V 的子空间当且仅当 $v \in U$;
- (3) S 中的加法以及 \mathbb{K} 关于 S 的数乘不依赖于代表元的选取, 即若 $v_1 + U = v_1' + U$ 以及 $v_2 + U = v_2' + U$, 则 $(v_1 + U) + (v_2 + U) = (v_1' + U) + (v_2' + U)$, 以及 $k \cdot (v_1 + U) = k \cdot (v_1' + U)$;

证明

(1) 设 $(v_1 + U) \cap (v_2 + U) \neq \emptyset$, 即存在 $u_1, u_2 \in U$, 使得 $v_1 + u_1 = v_2 + u_2$, 从而 $v_1 - v_2 = u_2 - u_1 \in U$, 于是 $v_1 + U = v_2 + (v_1 - v_2) + U \subseteq v_2 + U$, $v_2 + U = v_1 + (v_2 - v_1) + U \subseteq v_1 + U$,

因此 $v_1 + U = v_2 + U$.

(2) 由 (1) 的证明过程即得. 特别地,v+U 是 V 的子空间 \Rightarrow $\mathbf{0} \in v+U \Rightarrow$ 存在 $u \in U$, 使得 $\mathbf{0} = v+u \Rightarrow v = -u \in U$. 若 $v \in U$, 则一方面, $\forall \alpha \in v+U$, 存在 $u' \in U$, 使得 $\alpha = v+u'$. 又 $v \in U$, 因此 $\alpha = v+u' \in U$. 故 $v+U \subset U$. 另一方面, $\forall \beta \in U$, 有 $\beta = v+\beta-v$. 又由 $v \in U$ 可知 $\beta - v \in U$, 于是 $\beta = v+\beta-v \in v+U$. 故 $v+U \supset U$. 因此 v+U=U 是 V 的子空间.

(实际上, 若 $v \in U$, 则因为 $v \in U$ 并且 $v \in v + U$, 所以 $v + U \cap U \neq \emptyset$. 故由 (1) 可知v + U = U 是 V 的子空间. 这样也能得到证明.)

(3) 若 $v_1+U=v_1'+U$ 以及 $v_2+U=v_2'+U$, 则存在 $u_1,u_2\in U$, 使得 $v_1-v_1'=u_1,v_2-v_2'=u_2$, 从而 $(v_1+v_2)-(v_1'+v_2')=u_1+u_2\in U, k\cdot v_1-k\cdot v_1'=k\cdot u_1\in U$, 于是由 (2) 可得

$$(v_1 + U) + (v_2 + U) = (v_1 + v_2) + U = (v'_1 + v'_2) + U = (v'_1 + U) + (v'_2 + U),$$

$$k \cdot (v_1 + U) = k \cdot v_1 + U = k \cdot v'_1 + U = k \cdot (v'_1 + U).$$

注 若 $v_1 + U = v_1' + U$ 以及 $v_2 + U = v_2' + U$, 则 $\forall u_1' \in U$, 有 $v_1 + u_1' \in v_1 + U = v_1' + U$. 从而存在 $u_1'' \in U$, 使得 $v_1 + u_1' = v_1' + u_1''$. 于是 $v_1 - v_1' = u_1'' - u_1'$. 再令 $u_1 = u_1'' - u_1'$, 则 $v_1 - v_1' = u_1 \in U$. 同理可得, 存在 $u_2 \in U$, 使得 $v_2 - v_2' = u_2 \in U$.

命题 0.10 (商空间的维数公式和商空间与补空间同构)

设 V 是数域 \mathbbm{K} 上的 n 维线性空间,U 是 V 的子空间,W 是 U 的补空间,证明:dim V/U = dim V – dim U, 并且存在线性同构 $\varphi:W\to V/U$.

证明 取子空间 U 的一组基 $\{e_1, \cdots, e_m\}$, 补空间 W 的一组基 $\{e_{m+1}, \cdots, e_n\}$, 则 $\{e_1, \cdots, e_m, e_{m+1}, \cdots, e_n\}$ 是 V

的一组基. 我们断言 $\{e_{m+1}+U,\cdots,e_n+U\}$ 是商空间 V/U 的一组基. 一方面,对任意的 $v\in V$,设 $v=\sum_{i=1}^n a_ie_i$,则

$$v + U = \left(\sum_{i=1}^{n} a_i e_i\right) + U = \left(\sum_{i=m+1}^{n} a_i e_i\right) + U = \sum_{i=m+1}^{n} a_i (e_i + U).$$

另一方面, 设
$$a_{m+1}, \dots, a_n \in \mathbb{K}$$
, 使得 $\sum_{i=m+1}^n a_i(e_i+U) = \mathbf{0} + U$, 即 $\left(\sum_{i=m+1}^n a_i e_i\right) + U = U$, 从而 $\sum_{i=m+1}^n a_i e_i \in U$. 于是存

另一方面,设 $a_{m+1}, \cdots, a_n \in \mathbb{K}$,使得 $\sum_{i=m+1}^n a_i(e_i+U) = \mathbf{0} + U$,即 $\left(\sum_{i=m+1}^n a_ie_i\right) + U = U$,从而 $\sum_{i=m+1}^n a_ie_i \in U$. 于是存在 $a_1, \cdots, a_m \in \mathbb{K}$,使得 $\sum_{i=m+1}^n a_ie_i = -\sum_{i=1}^n a_ie_i$,即 $\sum_{i=1}^n a_ie_i = \mathbf{0}$,从而 $a_i = 0 (1 \leqslant i \leqslant n)$. 于是 $\{e_{m+1} + U, \cdots, e_n + U\}$ 线性无关. 因此, $\dim V/U = n - m = \dim V - \dim U$. 对任意的 $\mathbf{w} \in W$,设 $\mathbf{w} = \sum_{i=m+1}^n a_ie_i$,定义映射 $\varphi: W \to V/U$ 为

$$\varphi(\mathbf{w}) = \mathbf{w} + U = \sum_{i=m+1}^{n} a_i(\mathbf{e}_i + U).$$

容易验证 φ 保持加法和数乘, 并且是一一对应 (W 的基 e_i 映射过去得到 $\varphi(e_i)$ 仍是 V/U 的基, $i=m+1,\cdots,n$.), 从 而是线性同构.

0.1.2 练习

△ 练习 0.1 设 $V = M_n(\mathbb{K})$ 是数域 \mathbb{K} 上的 n 阶矩阵全体组成的线性空间, $A \in V$, 求证: 与 A 乘法可交换的矩阵全体 C(A) 组成 V 的子空间且其维数不为零. 又若 T 是 V 的非空子集, 求证: 与 T 中任一矩阵乘法可交换的矩阵全体 C(T) 也构成 V 的子空间且其维数不为零.

证明 由于纯量阵 cI_n 与任一 n 阶矩阵 A 乘法可交换, 故 $L(I_n) \subseteq C(A)$. 任取 $B,C \in C(A),k \in \mathbb{K}$, 容易验证 $B+C \in C(A), kB \in C(A)$, 故 C(A) 是 $M_n(\mathbb{K})$ 的子空间且其维数不为零. C(T) 的结论同理可证.

△ 练习 0.2 设 α_1 = (1,0,-1,0), α_2 = (0,1,2,1), α_3 = (2,1,0,1) 是四维实行向量空间 V 中的向量, 它们生成的子空 间为 V_1 , 又向量 $\beta_1 = (-1, 1, 1, 1)$, $\beta_2 = (1, -1, -3, -1)$, $\beta_3 = (-1, 1, -1, 1)$ 生成的子空间为 V_2 , 求子空间 $V_1 + V_2$ 和 $V_1 \cap V_2$ 的基.

解 解法一: $V_1 + V_2$ 是由 α_i 和 β_i 生成的, 因此只要求出这 6 个向量的极大无关组即可. 将这 6 个向量按列分块方

$$\begin{pmatrix} 1 & 0 & 2 & -1 & 1 & -1 \\ 0 & 1 & 1 & 1 & -1 & 1 \\ -1 & 2 & 0 & 1 & -3 & -1 \\ 0 & 1 & 1 & 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -1 & 1 & -1 \\ 0 & 1 & 1 & 1 & -1 & 1 \\ 0 & 2 & 2 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -1 & 1 & -1 \\ 0 & 1 & 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & -2 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

故可取 $\alpha_1, \alpha_2, \beta_1$ 为 $V_1 + V_2$ 的基 (不唯一).

再来求 $V_1 \cap V_2$ 的基. 首先注意到 $\alpha_1, \alpha_2 \in V_1$ 的基(从上面的矩阵即可看出),又不难验证 $\beta_1, \beta_2 \in V_2$ 的基, V_2 中的向量可以表示为 $m{eta}_1, m{eta}_2$ 的线性组合. 假设 $t_1m{eta}_1+t_2m{eta}_2$ 属于 V_1 , 则向量组 $m{lpha}_1, m{lpha}_2, t_1m{eta}_1+t_2m{eta}_2$ 和向量组 $m{lpha}_1, m{lpha}_2$ 的 秩相等 (因为 α_1,α_2 是 V_1 的基). 因此, 我们可以用矩阵方法来求出参数 t_1,t_2 . 注意到

$$\begin{pmatrix} 1 & 0 & -t_1 + t_2 \\ 0 & 1 & t_1 - t_2 \\ -1 & 2 & t_1 - 3t_2 \\ 0 & 1 & t_1 - t_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -t_1 + t_2 \\ 0 & 1 & t_1 - t_2 \\ 0 & 2 & -2t_2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -t_1 + t_2 \\ 0 & 1 & t_1 - t_2 \\ 0 & 0 & -2t_1 \\ 0 & 0 & 0 \end{pmatrix},$$

故可得 $t_1 = 0$, 所以 $V_1 \cap V_2$ 的基可取为 β_2 .

解法二: 求 $V_1 + V_2$ 的基同解法 1, 现用解线性方程组的方法来求 $V_1 \cap V_2$ 的基. 因为 α_1, α_2 是 V_1 的基, β_1, β_2 是 V_2 的基, 故对任一向量 $\gamma \in V_1 \cap V_2, \gamma = x_1\alpha_1 + x_2\alpha_2 = (-x_3)\beta_1 + (-x_4)\beta_2$. 因此, 求向量 γ 等价于求解线性方程组

$$x_1\alpha_1 + x_2\alpha_2 + x_3\beta_1 + x_4\beta_2 = \mathbf{0}.$$

通过初等行变换将其系数矩阵 $(\alpha_1,\alpha_2,oldsymbol{eta}_1,oldsymbol{eta}_2)$ 进行化简:

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

故上述线性方程组的通解为 $(x_1, x_2, x_3, x_4) = k(-1, 1, 0, 1)$, 从而 $\gamma = -k(\alpha_1 - \alpha_2) = -k\beta_2 (k \in \mathbb{R})$, 于是 β_2 是 $V_1 \cap V_2$ 的基.