

DATABASE FOUNDATIONS

ORACLE ACADEMY

6 DE MAYO DE 2025

https://academy.oracle.com/ HTTPS://GITHUB.COM/ISC-UPA/2025-2-ISC05-DB

Contenido

1. Int	troduction	2
1.1.	Introduction	4
1.2.	Introduction to Databases	5
1.3.	Types of Database Models	7
1.4.	Business Requirements	8
2. Da	atabases and Data Modeling	9
2.1.	Relational Databases	
2.2.	Conceptual and Physical Data Models	11
2.3.	Entities and Attributes	
2.4.	Unique Identifiers	
2.5.	Relationships	13
2.6.	Entity Relationship Modeling (ERDs)	
3. Re	efining the Data Model	18
3.1.	More with Relationships	18
3.1	1.1. Identifying (Barred) Relationships	18
3.1	1.2. M:M Relationships	18
3.1	1.3. Non-Transferable Relationships ♦	
3.1	1.4. Supertype and Subtype Entities	19
3.1	1.5. Modeling Hierarchical Data	20
3.1	1.6. Recursive Relationships	20
3.1	1.7. Arc Relationship O	20
3.2.	Tracking Data Changes \$\$	
3.3.	Normalization and Business Rules	21
3.4.	Data Modeling Terminology and Mapping	21
4. Or	racle SQL Developer Data Modeler	22
4.1.	Oracle SQL Developer Data Modeler	22
4.2.	Convert a Logical Model to a Relational Model	22
5. Ma	apping to the Physical Model	23
5.1.	Mapping Entities and Attributes	23
5.2.	Mapping Primary and Foreign Keys	23
6. Int	troduction to SQL	24
6.1.	Introduction to Oracle Application Express	24
6.2.	Structured Query Language (SQL)	24
6.3.	Data Definition Language (DDL)	24

6.4.	Data Manipulation Language (DML)	24
6.5.	Transaction Control Language (TCL)	24
6.6.	Retrieving Data Using SELECT	24
6.7.	Restricting Data Using WHERE	24
6.8.	Sorting Data Using ORDER BY	24
6.9.	Joining Tables Using JOIN	24

1. Introduction

DFo Foundations Página 2 de 25

DFo Foundations Página **3** de **25**

1.1. Introduction

Technological Requirements:

Oracle SQL Developer or Oracle APEX application Oracle Data Modeler

 \rightarrow

DFo Foundations Página **4** de **25**

1.2. Introduction to Databases

Data vs Information.

Data: Collected facts about a topic or item

Information: The result of combining, comparing, and performing calculations on data.

Introduction to Relational Databases

- A relational database stores information in tables with rows and columns
- A table is a collection of records
- A row is called a record (or instance)
- A record is a collection of fields
- A column is referred to as a field (or attribute)

DFo Foundations Página **5** de **25**

DFo Foundations Página **6** de **25**

1.3. Types of Database Models

 \rightarrow

DFo Foundations Página **7** de **25**

1.4. Business Requirements

Case Scenario: Need a Database Solution				Case Scenario: Possible Database Solution									
	STUDENT_ID	SPORT_1	PRICE_1	SPORT_2	PRICE_2		Student Deta	ails Table					
Record 1	ST0001	Tennis	\$100	Badminton	\$150		ID	FIRST_NAME	LAST_NAME			Flat file was split	
Record 2	ST0002	Soccer	\$175	Tennis	\$100		ST0001	Sean	Smith			into three tables	
Record 3	ST0003	Cycling	\$200	Badminton	\$150		Sport Details	Table				eliminating issues	
							ID	NAME	PRICE			related to:	
							TN001	Tennis	\$100	٦ ا		 Redundancy 	
						Participant Details Table				• Data entry			
							STUDENT_ID	SPORT_ID	SEMESTER_ DETAILS			anomaliesInconsistency	
							ST0001	TN001	Fall2017			meonsistemey	

Importance of Business Rules

It is important to identify and document business rules when designing a database

Business rules:

- Allow the developer/architect to understand the relationship and constraints of the participating entities
- Help you understand the standardization procedure that an organization follows when handling huge data
- Should be simple and easy to understand
- Must be kept up-to-date

Note: Not all business rules can be modeled in a database, but must be documented

Case Scenario: Identifying Key Business Rules, Problems, and Assumptions

- Business rule: Used to understand business processes and the nature, role, and scope of the data
- Assumption: Can be defined as a fact or a statement that has been taken for granted
- Problem: Can be defined as a situation or scenario that requires attention and a possible solution to alleviate the situation

Example:

Note	Business Rule	Assumption	Problem	
To ensure that new book arrivals happen on the 21st of every month.				
Librarian cannot easily identify DVDs that are seriously overdue (more than two weeks late).				
Our current system probably uses Oracle Database 10g and is on UNIX.				
Identify the statements as a business rule, a problem, or an assumption.				

DFo Foundations Página 8 de 25

2. Databases and Data Modeling

2.1. Relational Databases

DFo Foundations Página **9** de **25**

Rules for Relational Database Tables

- Each table has a distinct name
- Each table may contain multiple rows
- Each table has a value to uniquely identify the rows
- Each column in a table has a unique name
- Entries in columns are single values
- Entries in columns are of the same kind
- Order of rows and columns is insignificant

Key Terms

Table –A basic storage structure

Column—attribute that describes the information in the table

Primary Key –the unique identifier for each row

Foreign Key –a column that refers to a primary key column in another table

Row—data for one table instance

Field –the one value found at the intersection of a row and column

DFo Foundations Página **10** de **25**

2.2. Conceptual and Physical Data Models

MEMBERS PK (Id)

Physical data Model: Relationships -> Attributes -> Constrains Entities -> BOOK_AUTHORS Is a extesion to a logical data model: BOOKS_Id PF" AUTHORS_Id NUMBER Atrributes data types and BOOK_AUTHORS_PK (BOOKS_Id, AUTHORS_Id) precision S BOOK_AUTHORS_BOOKS_FK (BOOKS_Id)
BOOK_AUTHORS_AUTHORS_FK (AUTHORS_Id) Identifies indexes Primary keys (P) воокѕ BOOK_TRANSACTIONS Foreign keys (F) VARCHAR2 (15) Tran Date DATE Type MEMBERS_Id VARCHAR2 Title VARCHAR2 (50) Unique keys (U) PUBLISHERS_Id VARCHAR2 (15) PF" BOOKS_Id BOOKS_PK (Id) BOOK_TRANSACTIONS_PK (Tran_Date, BOOKS_Id) S BOOK_TRANSACTIONS_BOOKS_FK (BOOKS_Id)
BOOK_TRANSACTIONS_MEMBERS_FK (MEMBERS_Id) 🚰 BOOKS_PUBLISHERS_FK (PUBLISHERS_Id) **Modeling Performed:** Entities → Tables Attributes → Columns PUBLISHERS AUTHORS Relationships → Foreign keys First Name VARCHAR Last_Name Street_Address VARCHAR VARCHAR2 (30) Name VARCHAR2 (50) Name City VARCHAR PUBLISHERS_PK (Id) AUTHORS_PK (Id) State VARCHAR

DFo Foundations Página **11** de **25**

2.3. Entities and Attributes

Identify UID(#), mandatory(*), optional(o), volatile or derivate(age), and nonvolatile(birthDate) attributes

Entity Types

An entity can be classified as one of the following types:

Name	Description	Example	Tipos de Entidad: Principal
Prime	Exists independently	CUSTOMER, INSTRUCTOR	Caracteristica Interseccion
Characteristic	Exists because of another (prime) entity	ORDER, CLASS OFFERING	Entidades:
Intersection	Exists because of two or more entities	ORDER ITEM, CLASS ENROLLMENT	Fuertes Débiles

DFo Foundations Página **12** de **25**

2.4. Unique Identifiers

Artificial UIDs do not occur in the natural world but are created for identification purposes in a system Example Composite UID: Bank No and Account No.

2.5. Relationships

DFo Foundations Página **13** de **25**

 \rightarrow

DFo Foundations Página **14** de **25**

2.6. Entity Relationship Modeling (ERDs)

DB roles: designers, database administrators, and application developers

Logical Modeling:

Includes all entities, attributes, UIDs and relationships as well as optionality and cardinality of these ítems

DFo Foundations Página **15** de **25**

DFo Foundations Página **16** de **25**

Logical Data Model

Physical data Model

7

DFo Foundations Página 17 de 25

3. Refining the Data Model

3.1. More with Relationships

3.1.1. Identifying (| Barred) Relationships

3.1.2. M:M Relationships

DFo Foundations Página **18** de **25**

3.1.3. Non-Transferable Relationships ♦

3.1.4. Supertype and Subtype Entities

- Supertype has a parent-child relationship with one or more subtypes
- Subtype is a subgrouping of the entity in an entity type which has attributes that are distinct from those in other subgroupings

DFo Foundations Página **19** de **25**

3.1.5. Modeling Hierarchical Data

3.1.6. Recursive Relationships

- A recursive relationship is always modeled with a loop.
- A recursive relationship is one where an entity instance is related to another instance in the same entity

3.1.7. Arc Relationship

DFo Foundations Página **20** de **25**

- 3.2. Tracking Data Changes \$\$
- 3.3. Normalization and Business Rules

3.4. Data Modeling Terminology and Mapping

 \rightarrow

DFo Foundations Página **21** de **25**

- 4. Oracle SQL Developer Data Modeler
 - 4.1. Oracle SQL Developer Data Modeler
 - 4.2. Convert a Logical Model to a Relational Model

 \rightarrow

DFo Foundations Página 22 de 25

5. Mapping to the Physical Model

5.1. Mapping Entities and Attributes

5.2. Mapping Primary and Foreign Keys

 \rightarrow

DFo Foundations Página 23 de 25

6. Introduction to SQL

- 6.1. Introduction to Oracle Application Express
- 6.2. Structured Query Language (SQL)
- 6.3. Data Definition Language (DDL)
- 6.4. Data Manipulation Language (DML)
- 6.5. Transaction Control Language (TCL)
- 6.6. Retrieving Data Using SELECT
- 6.7. Restricting Data Using WHERE
- 6.8. Sorting Data Using ORDER BY
- 6.9. Joining Tables Using JOIN

 \rightarrow

DFo Foundations Página **24** de **25**

DFo Foundations Página **25** de **25**