

Faculty of Electrical Engineering and Information Technology Institute for Microsystem and Semiconductor Technology

Calibration of Nano Composite Sensor using curve fitting techniques

Mahesh Eega 620071

Masters | Embedded systems

5th semester

Rajarajan Ramalingame Prof. Olfa Kanoun

Agenda

- Introduction
- Theoretical background
- Model generation
- Optimization of Parameters
- Results and Discussion
- Conclusion

Introdution

Ideal Response

Ideal response 300 — ideal response Measured paramater 200 100 50,000 100,000 150,000 Sensor ouput

Fig 1: Ideal Response of sensor plot

Actual Response

Fig 2: Actual Response of sensor plot

Introdution

Various modeling techniques:

- Method of analogy
- Difference methods

- Regression analysis
- Curve fitting

Modeling tools:

- MATLAB
- Origin Lab
- Python

Introdution

Theoretical background

Data Extraction

Compressive loads are applied on the sensor, when it is preloaded at 45° angled in the UTM(universal testing machine)

Data filtering

Regression

Regression Models

Simple Linear Model

- Least squares estimation fits the data to linear model
- $y_i = \beta_0 + \beta_1 x_i$

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \qquad \dots (1$$

•
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}, \ \hat{\beta}_1 = \frac{SXY}{SXX}$$
(2)

•
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ (3)

• SXY =
$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• SXX =
$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$
(4)

we estimate the function as follows

•
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$
(5)

Polynomial Model

•
$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_k x_i^k$$
(1)

In matrix form as Y = XB + E

Using least square estimation the matrix B is obtained

The estimated function is given as : $\hat{Y} = X\hat{B}$

https://www.originlab.com/doc/Origin-Help/LFit-Theory

Regression Results

Regression Model	Equation	Increasing (R ²)	Decreasing(R ²)
Degree = 1	$y_i = \beta_0 + \beta_1 x_i$	0.2495	0.3384
Degree = 2	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$	0.4471	0.5264
Degree = 3	$y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3}$	0.54625	0.6614
Degree = 4	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_{i^2} + \beta_3 x_{i^3} + \beta_4 x_{i^4}$	0.59392	0.7514
Degree = 5	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \beta_5 x_i^5$	0.71203	0.8178
Degree = 6	$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_{i^2} + \beta_3 x_{i^3} + \beta_4 x_{i^4} + \beta_5 x_{i^5} + \beta_6 x_{i^6}$	0.8181	0.8648
Degree = 7	$y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i^{2}} + \beta_{3}x_{i^{3}} + \beta_{4}x_{i^{4}} + \beta_{5}x_{i^{5}} + \beta_{6}x_{i^{6}} + \beta_{7}x_{i^{7}}$	0.82965	0.8947

Fig 2: Resistance vs time plot

Model Generation

- Non-Linear curve fitting is applied for the models shows behavior like sensor
 - 1)Logarithmic
 - 2)Exponential and
 - 3) Power.
- When a model is non-linear in its parameters, then least squares problem requires iterative solution algorithms
- Iterative Algorithms
 - 1) Levenberg-Marquardt(L-M) and
 - 2)Orthogonal Distance(ODR)

https://people.duke.edu/~hpgavin/ce281/lm.pdf

Iteration Algorithms

Levenberg-Marquardt(L-M)

- Basically, it is combination of the Gauss-Newton method and the steepest descent method.
- Good initial parameter values result in fast and reliable convergence.
- And fitting model, for example

$$ln(y) = ln(a) + ln(x^b)$$
....(2)

$$ln(y) = ln(a) + b ln(x)$$
(3)

Orthogonal Distance(ODR)

- Residual in ODR is the orthogonal distance from the data to the fitted curve.
- ODR algorithm is based ODRPACK95. [3]
- For explicit function, expressed as $\min(\sum_{i=1}^n (\omega_{yi^*}\epsilon^2 + \omega_{xi^*}\delta_i^2))$
- $y_{\tilde{l}} = f(x_i + \delta_i \beta) \epsilon_i$, i = 1, 2, ..., n

Were, ω_{x_i} , ω_{y_i} input weights of x_i , y_i ϵ_i residual corresponding to x_i , y_i , and β is the fitting parameter.

https://www.originlab.com/doc/Origin-Help/NLFit-Theory

ODR vs L-M

	ODR	L-M
Application	Both Implicit & Explicit	Only explicit functions
Weight	Support both x & y weights	Support only y weights
Residual Source	Orthogonal distance from the data to the fitted curve	Difference between observed & predicted value
Iteration Process	Adjusting fitting parameter values and independent variable	Adjusting the values of fitting parameters

Levenberg-Marquardt

0.4

0.35

0.25

0.2

0.15

0.05

0.10

0.05

0.10

0.15

0.2

0.25

Supports only y weight

Fig 11 Comparison between L-M and ODR

https://www.originlab.com/doc/originhelp/nlfit-theory

Comparison of Models

- Belehardek function of power category showing good fitting.
- Unlike other models it shows good variation along with sensor data

Fig 12: Non-linear fitting models

Selection of Model

Function	Fit status	Equation	R ² value	MSE			
Logarithmic category							
Log1	Under fitting	$y_i = a - b*In(x+c)$	0.6623	2522.18			
Log2	Under fitting	$y_i = a*In(-b*In(x_i))$	0.5776	3153.18			
Exponential Category							
Expdecay1	Constant prediction	$y_i = y_0 + a_1 * e^{(-(x_i - x_0))}/t_1$	0.95991	301.73809			
Expdecay2	Constant prediction	$y_i = y_0 + a_1 * e^{(-(x_i - x_0))} / t_1) + a_2 * e^{(-(x_i - x_0))} / t_2)$	0.9772	172.4409			
Expdecay3	Constant prediction	$y_i = y_0 + a_1 * e^{(-(x_i - x_0))} / t_1) + a_2 * e^{(-(x_i - x_0))} / t_2) + a_3 * e^{(-(x_i - x_0))} / t_3)$	0.97767	169.6951			
Power Category							
Allometric	Overfitting	$y_i = a^*x_i^b$	0.94594	405.013			
Belehardek	Good fitting	$y_i = a^*(x_i - b)^c$	0.9962	109.54			

Optimization of Parameters

- Belehradek and Porodko independently published [1].
- Used in microbiology, to describe the rate of biological reactions as a function of temperature.
- X shifted power function, combination of power and hyperbolic.
- y = $2032.85915 * (x 2137.74722)^{-0.7458}$

Fig 13: Flow chart for analysing the parameter sensitivity

Parameters sensitivity

Fig 14: Parameter sensitivity of the model

Parameters sensitivity

- Analyse the effect of one parameter on the function at a time, keeping the other parameters fixed.
- The parameter a is offset, b is coefficient, and c is power of the function y = a*(x-b)^c

Fig 15: Parameters sensitivity of the model

Model Optimisation

Fig 16: Flow chart for optimising the model

Results and discussion

Increasing Loading calculated formula

$$y1 = 24268.35857*(x - 2789.298881)^{-0.66939}$$

Decreasing loading calculated formula

$$y2 = 2332.85915*(x - 3179.64618)^{-0.551925}$$

Fig 17: Model verification for different cycles of data

Conclusion

- Each and every sensor output is different from one other, while it measured on same conditions
- Even there is change in measured sensor value, whenever it is measured.
- The model can predict future behavior or result that has not yet been measured.
- When we substitute the measured resistance value into the model, we can calculate the force applied on the sensor.
- When we know the applied force, we can calculate the resistance of the sensor.

- [1] T. RossDept. of Agricultural Science, University of Tasmania, G.P.O. Box 252C, Hobart 7001, Tasmania, Australia.
- [2]Comparison_result_of_inversion_of_gravity_data_of_a_fault_by_particle_swarm_optimization_and_Levenberg-Marquardt_methods.
- [3].https://eprints.cs.vt.edu/archive/00000707/01/odrTOMS04.pdf
- [4]. N. Li, T. Zong and Z. Zhang, "Prediction of the Electronic Work Function by Regression Algorithm in Machine Learning," 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), 2021, pp. 87-91, doi: 10.1109/ICBDA51983.2021.9403202.
- [5]. J. Ma, "Machine Learning in Predicting Diabetes in the Early Stage," 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2020, pp. 167-172, doi: 10.1109/MLBDBI51377.2020.00037.

Thank You