TEJ4M1 Unit 5 – Practice Assignment #1 Due: Not To Be Handed In

K8	kU	/10	APPL		/18	TIF	S	/1	16	COM	/	/6
Na	ame:						N	Лark:				/50
A:	Lo	ogic Trai	<u>nslation</u>	[AF	PP:_		_/8]					
			d Marsha nd Marsha									
1.	Identi	ify this a	ıs a <i>stater</i>	<i>ment</i> or	a pr	oposi	tion.	State y	/ou	r reasor	n(s)	[2]
	This i	s a										
	Reas	on(s)										
2.	State	approp	riate input	ts and c	outpu	it for t	he a	bove. [2	2]			
3	Cons	truct a T	Fruth Tabl	e for the	e abo	ove.	[2]					
0.	00110	ii dot d	ratii rabi	0 101 111	o do		(-)					
4.	State	the Boo	olean Equ	ation re	elatin	g the	inpu	ts to the	e oı	utput. [2]	
								1 1 1 1				

TEJ4M1 Unit 5 – Practice Assignment #1 Due: Not To Be Handed In

B: [K&U:_____/10]

Question 1: [5 marks]

Fill in the Truth Table below based on the Karnaugh Map shown to the right. Note: **A, B, C, D** are inputs and **M** represents the output. Show the inputs in standard Truth Table format.

Α	В	С	D	M

\	AB				
CD		00	01	11	10
	00	1			1
	01		1	1	
	11		1	1	
	10	1			1

Question 2: [5 marks]

Prove or disprove using Truth Tables:

$$.\,\overline{\overline{A+B}+C}=\overline{C}(A+B)$$

C: Boolean Algebra Simplification	[TIPS:	/6
-----------------------------------	--------	----

Simplify $B \bullet \overline{C} \bullet D + ACD + ABD$.

Step	Left Side	Reason
1	$B \bullet \overline{C} \bullet D + ACD + ABD$	Given
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		

$$\therefore B \bullet \overline{C} \bullet D + ACD + ABD =$$

D: Boolean Algebra Ghost Proof [TIPS: _____/10] RTP: $\overline{A} \bullet B \bullet \overline{C} + ABD + \overline{A} \bullet \overline{C} \bullet \overline{D} + B \bullet \overline{C} \bullet D + ACD = \overline{A} \bullet \overline{C} \bullet \overline{D} + B \bullet \overline{C} \bullet D + ACD$ For full marks, each line should only be one step and must be justified by either quoting a Rule Number, Operations Rule (COM, ASSOC, DIST) or De Morgan's Laws (DM1 or DM2). **Note:** $A \bullet B$ is the same as AB.

Step	Left Side	Right Side	Reason
1	$\overline{A} \bullet B \bullet \overline{C} + ABD + \overline{A} \bullet \overline{C} \bullet \overline{D} + B \bullet \overline{C} \bullet D + ACD$	$\overline{A} \bullet \overline{C} \bullet \overline{D} + B \bullet \overline{C} \bullet D + ACD$	Given
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			

 $\therefore \overline{A} \bullet B \bullet \overline{C} + ABD + \overline{A} \bullet \overline{C} \bullet \overline{D} + B \bullet \overline{C} \bullet D + ACD = \overline{A} \bullet \overline{C} \bullet \overline{D} + B \bullet \overline{C} \bullet D + ACD$

TEJ4M1 Unit 5 – Practice Assignment #1 Due: <u>Not To B</u>	e Handed Ir	η
--	-------------	---

E:	De Morgan	Transformations	[APPL:	/41
			[· ·· · —·	

Find the De Morgan Transformation for: $Y = A\overline{B}C + A\overline{C}$

Step	Expression					
	$\overline{ABC} + \overline{AC}$					
1						
2						
3						
4						

$$\therefore Y = A\overline{B}C + A\overline{C} =$$

F: NAND Emulation	[COMM:	/6]
-------------------	--------	-----

Draw the NAND Emulation circuit for:

 $Y = \overline{A} + \overline{BC}$ Note: Your circuit should only contain NAND gates.

G: Karnaugh Maps [APPL:_____/6]

For the following truth table:

- a) Show the Karnaugh Map for M. [3]
- b) Using the Karnaugh Map, write the minimal Boolean Algebra Expression for M in terms of A,B,C and D. [3]

Α	В	С	D	М
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Boolean Algebra Rule Sheet

The table below lists basic rules that are useful in manipulating and simplifying **Boolean Expressions**. Always justify each line of your proof by quoting the Rule Number or Short Form of the expressions listed below.

Number		Rule	
1	$\mathbf{A} + 0 = \mathbf{A}$	or	$0 + \mathbf{A} = \mathbf{A}$
2	A + 1 = 1	or	$1 + \mathbf{A} = 1$
3	$\mathbf{A} \bullet 0 = 0$	or	$0 \bullet \mathbf{A} = 0$
4	$\mathbf{A} \bullet 1 = \mathbf{A}$	or	$1 \bullet \mathbf{A} = \mathbf{A}$
5	$\mathbf{A} + \mathbf{A} = \mathbf{A}$	or	A + A = A
6	$\mathbf{A} + \overline{\mathbf{A}} = 1$	or	$\overline{\mathbf{A}} + \mathbf{A} = 1$
7	$\mathbf{A} \bullet \mathbf{A} = \mathbf{A}$	or	$A \bullet A = A$
8	$\mathbf{A} \bullet \overline{\mathbf{A}} = 0$	or	$\overline{\mathbf{A}} \bullet \mathbf{A} = 0$
9	$\overline{\mathbf{A}} = \mathbf{A}$	or	$\mathbf{A} = \overline{\mathbf{A}}$
10	A + AB = A	or	AB + A = A
11	$A + \overline{A}B = A + B$	or	$\overline{A}B + A = A + B$
12	$(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C}) = \mathbf{A} + \mathbf{BC}$	or	$(\mathbf{A} + \mathbf{C})(\mathbf{A} + \mathbf{B}) = \mathbf{A} + \mathbf{BC}$

A, B or C can represent a single variable or a combination of variables. Write down the rule number in proofs for justification.

DeMorgan's Theorems

The two theorems developed by DeMorgan are listed below.

Theorem Short Form

 $\frac{\overline{X \bullet Y} = \overline{X} + \overline{Y}}{X + Y} = \overline{X} \bullet \overline{Y} \qquad DM1$ DM2

Rules of Operation

Law	Example	Short Form
Commutative Law	$A \bullet B = B \bullet A$	СОМ
	A+B=B+A	
Associative Law	$(A \bullet B) \bullet C = A \bullet (B \bullet C)$	ASSOC
	(A + B) + C = A + (B + C)	
Distributive Law	$A \bullet (B + C) = A \bullet B + A \bullet C$	DIST
	$\boldsymbol{A} + (\boldsymbol{B} \bullet \boldsymbol{C}) = (\boldsymbol{A} + \boldsymbol{B}) \bullet (\boldsymbol{A} + \boldsymbol{C})$	

TEJ4M1 Unit 5 – Practice Assignment #1 Due: Not To Be Handed In

