Теория типов

Михайлов Максим

13 сентября 2021 г.

Оглавление

Лекция	1 7 сентября
1 Ля	мбда-исчисление
1.3	Определение
1.2	В Булево исчисление
1.3	Числа
1.4	Типизированное лямбда-исчисление
1 5	$\delta - Y$ -комбинатор и противоречивость нетипизированного λ -исчисления . $- 4$

Лекция 1

7 сентября

1 Лямбда-исчисление

То, чем мы будем заниматься, можно назвать прикладной матлогикой.

В рамках курса матлогики мы рукомахательно рассмотрели изоморфизм Карри-Ховарда, в этом курсе мы его формализуем. Мы затронем систему типов Хиндли-Милнера (*Haskell*) и язык Arend, основанный на гомотопической теории типов.

1.1 Определение

В 20-30х годах XX века Алонзо Чёрчем была создана альтернатива теории множеств как основе математики — лямбда-исчисление. Основная идея — выбросить из языка все, кроме вызова функций.

В лямбда исчислении есть три конструкции:

- Функция (абстракция): $(\lambda x.A)$
- Применение функции (аппликация): (АВ)
- Переменная (атом): x

Большими буквами начала латинского алфавита мы будем обозначать термы, малыми буквам конца — переменные. λ жадная, как \forall и \exists в исчислении предикатов. Аппликация идёт слева направо, т.е. $\lambda p.p$ F $T = \lambda p.((p\ F)\ T)$

Вычисление происходит с помощью β -редукции, его мы определим позже, общее понимание у нас есть из вводной лекции функционального программирования.

1.2 Булево исчисление

Определим булево исчисление в λ -исчислении:

- $T := \lambda x. \lambda y. x$ истина
- $F \coloneqq \lambda x. \lambda y. y$ ложь
- Not := $\lambda p.p F T$

Not
$$F \to_{\beta}$$

 $((\lambda x.\lambda y.y) F) T \to_{\beta}$
 $(\lambda y.y) T \to_{\beta} T$

• And $:= \lambda a. \lambda b. a \ b \ F$

And берёт свой второй аргумент, если первый аргумент истина и ложь иначе.

Апd использует идею карринга — функция от 2 аргументов есть функция от первого аргумента, возвращающая другую функцию от второго аргумента. Например, в выражении " $((+)\ 2)\ 3$ " $((+)\ 2)$ это функция, которая прибавляет к своему аргументу 2.

1.3 Числа

Числа в лямбда-исчислении кодируются **нумералами Чёрча**. Это только один из способов кодировки, есть и другие. Общая идея — число n применяет данную функцию к данному аргументу n раз.

- $0 = \lambda f.\lambda x.x$
- $1 = \lambda f. \lambda x. f x$
- $3 = \lambda f.\lambda x.f(f(f(x)))$
- $\overline{n+1} = \lambda f. \lambda x. f(\overline{n} f x)$
- $(+1) = \lambda n. \lambda f. \lambda x. n \ f \ (f \ x)$ функция инкремента.
- $(+) = \lambda a.\lambda b.b \ ((+) \ \overline{1}) \ a.b$ раз прибавляет единицу к a.
- $(\cdot) = \lambda a.\lambda b.a \ ((+) \ b) \ \overline{0}$: a раз прибавляет b к 0.

Ходят легенды, что Клини изобрел декремент у зубного врача под действием наркоза. Существует много способов определить декремент различных степеней упоротости.

Рассмотрим декремент, основанный на следующей идее: пусть есть упорядоченная пара $\langle a,b\rangle$ и функция $(*):\langle a,b\rangle\mapsto\langle b,b+1\rangle$. Тогда применив (*) n раз к $\langle 0,0\rangle$ и взяв первый элемент, возьмём первый элемент пары.

 $^{^{1}}$ Аналогично для n аргументов.

Упорядоченная пара определяется следующим способом:

$$MkPair = \lambda a. \lambda b. (\lambda p. p \ a \ b)$$

Можно потрогать эмулятор лямбда-исчисления 1сі, будет полезно для домашних заданий.

1.4 Типизированное лямбда-исчисление

Лямбда-исчисление для нас будет просто языком программирования. Для начала мы его типизируем, потому что нетипизированное лямбда-исчисление противоречиво.

Пусть у каждого выражения A есть тип τ , что обозначается $A:\tau$. Также используется некоторый контекст с переменными и их типами, обозначаемый M. Все вместе это записывается как $M \vdash A:\tau$, что напоминает исчисление предикатов.

1.5 Y-комбинатор и противоречивость нетипизированного λ -исчисления

Мы хотим, чтобы \to_{β} сохраняло значения, т.к. иначе мы вообще не можем говорить о равенстве термов.

Определение. $Y \coloneqq \lambda f.(\lambda x.f~(x~x))(\lambda x.f~(x~x)) - Y$ -комбинатор, для него верно $Yf \approx f(Yf)$. Такое свойство называется "быть комбинатором неподвижной точки", т.е. он находит неподвижную точку функции: A такое, что f(A) = A.

Пусть мы добавили бинарную операцию (\supset) — импликацию с некоторыми аксиомами. Оказывается, что доказуемо любое A. Мы это докажем на последующих лекциях.

Y-комбинатор полезен тем, что позволяет реализовывать рекурсию.

Пример. Запишем факториал в неформальном виде:

Fact =
$$\lambda n$$
.If (IsZero n) $\overline{1}$ (Fact $(n-1) \cdot n$)

На самом деле Fact есть неподвижная точка функции

$$\lambda f.\lambda n.$$
If (IsZero n) $\overline{1}$ ($f(n-1)\cdot n$)

по определению неподвижной точки функции. Тогда Fact это

$$Y(\lambda f.\lambda n. \text{If (IsZero } n) \ \overline{1} \ (f \ (n-1) \cdot n))$$

У нас появляется проблема: есть выражения, которым мы не можем приписать значение, например

$$Y(\lambda f.\lambda x.f (\text{Not } x))$$

Эта проблема происходит из-за того, что наш язык слишком мощный — мы написали решатель любых уравнений, даже тех, у которых нет решения. Логичный выход из этой ситуации — запретить то, из-за чего у нас возникают проблемы. Как запретить Y? Оказывается, это позволяют сделать типы — они будут делить выражения на добропорядочные и недобропорядочные.