兰州大学 2021~2022 学年第 二 学期

			73/1/16, A	11/11/11/11	A W/			
课程名称	₭:概3	率论与数3	埋统计	_ 任课教》	师:			
学院:			专业:		年	级:		
姓名: 校园卡号:								
	题号	_		三	四	五.	总分	
	分数							
一、选择	题(共 2	24 分)						'
1. 已知茅	共运动员 担	及球进的概	既率为 p,	则该运动	员投第4	次球恰好	是投进的	第二次的
概率为								

- A. $3p(1-p)^2$
- B. $6p(1-p)^2$
- C. $3p^2(1-p)^2$
- D. $6p^2(1-p)^2$

- 2.设 A,B 为随机事件, P(B)>0, P(A|B)=1,则
- A. $P(A \cup B) > P(A)$ B. $P(A \cup B) > P(B)$ C. $P(A \cup B) = P(A)$ D. $P(A \cup B) = P(B)$
- 3.已知某两个随机变量的概率密度函分别为 $f_1(x)$ 、 $f_2(x)$,分布函数分别为 $F_1(x)$ 、

$F_2(x)$,则下列选项中一定是概率密度函数的是

A. $f_1(x)f_2(x)$

B. $f_1(x)F_2(x)$

C. $F_1(x)F_2(x)$

- D. $f_1(x)F_2(x) + f_2(x)F_1(x)$
- 4. 设 X_1 , X_2 , X_3 , X_4 , 且 $X_1 \square N(0,1)$, $X_2 \square N(0,2^2)$, $X_3 \square N(5,3^2)$,

$$p_i = P\{-2 \le x \le 2\}$$
 (i=1,2,3), 则

- A. $p_1 > p_2 > p_3$ B. $p_2 > p_1 > p_3$ C. $p_3 > p_1 > p_2$ D. $p_1 > p_3 > p_3$
- 5.已知 X,Y 的联合分布服从 N(1,0;1,1;0) ,则 $P\{XY-Y\leq 0\}$ =
- A. 1/4
- B. 1/3
- C. 1/2
- D. 2/3
- 6.设 X,Y 为随机事件,且 X,Y 独立, $U = \max\{X,Y\}$, $V = \min\{X,Y\}$,则 E(UV) =
- A. E(U)E(V) B. E(UX)
- C. E(X)E(Y)
- D. E(YV)

- 7.已知随机变量 $X \square t(n)$, $Y = \frac{1}{X^2}$ 则 Y 服从

- A. $\chi^2(n)$ B. F(n,1) C. $\chi^2(n-1)$
- D. F(1,n)
- 8.设 X_1 , X_1 …, X_{16} 是来自总体 $N(\mu,4)$ 的简单随机样本,考虑假设检验问题:

$$H_0: \mu \le 10, H_1: \mu > 10$$

 $\Phi(x)$ 表示标准正态分布函数, 若假设检验问题的拒绝域为 $W:\{\bar{X}\geq 11\}$, 其中

$$\bar{X} = \frac{1}{16} \sum_{i=1}^{16} X_i$$
,则 $\mu = 11.5$ 时,该检验犯第二类错误的概率为

- A. $1 \Phi(0.5)$
- B. $1 \Phi(1)$
- C. $1 \Phi(1.5)$
- D. $1 \Phi(2)$

二、填空题(16分)

1. 设 A,B,C 满足 A,B 互不相容, A,C 互不相容, B,C 相互独立,

2.正态分布的概率密度函数为_______,已知 X_1, X_2 分别服从 $N(\mu_1, \sigma_1^2)$,

$$N(\mu_2,\sigma_2^2)$$
,则 X_1+X_2 的数学期望为_______,方差为______

- 3.估计量的评判标准是 、 、 、 、 、
- 4.甲乙两个盒子各装有 2 个红球和 2 个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球。令 X,Y 分别表示从甲盒和乙盒中取到的红球个
- 数,则 X与Y 的相关系数为_____

三、计算题

- 1.将5个人的帽子收集后随机分配,求恰好有2个人分配到自己的帽子的概率。
- 2.已知韦布尔分布的概率密度函数为 $f(t) = \begin{cases} \lambda \beta (\lambda t)^{\beta-1} e^{-(\lambda t)^{\beta}}, t > 0 \\ 0, else \end{cases}$ 求其分布函

数。

3.已知变量
$$X, Y$$
 的联合概率密度函数为 $f(x, y) = \begin{cases} \frac{1}{4}[1 + xy(x^2 - y^2)], |x| < 1, |y| < 1, \\ 0, else \end{cases}$

试分析 X,Y 是否独立? 是否相关?

4.已知某观测数据如下, 画出箱线图与修正的箱线图

1233445667788

10 12 12 13 15 18 23 55

5.已知随机变量 X_1 , X_1 …, X_n 均服从 $N(\mu,\sigma^2)$,且 μ 已知, σ^2 未知,求 σ^2 在置信水平为 1- α 的单侧置信上限。

6.某机器的工作时间均值为 10,经过改良技术后,随机抽查了 20 个机器并测试其工作时间如下,则在 α =0.95 的情况下是否认为新技术提升了平均工作时间 (μ >10)?

9.8	10.4	10.6	9.6	9.7	9.9	10.9	11.1	9.6	10.2
10.3	9.6	9.9	11.2	10.6	9.8	10.5	10.1	10.5	9.7

参考数据:

 $t_{0.05}(19)=1.7291$, $t_{0.05}(20)=1.7247$, $t_{0.025}(19)=2.0930$, $t_{0.025}(20)=2.0860$

答案(选择请以选项为主,答案仅供参考)

选择

1.C
$$3p^2(1-p)^2$$

2. C
$$P(A \cup B) = P(A)$$

3. D
$$f_1(x)F_2(x) + f_2(x)F_1(x)$$

4.A
$$p_1 > p_2 > p_3$$

6.C
$$E(X)E(Y)$$

7.B
$$F(n,1)$$

8.B
$$1 - \Phi(1)$$

填空

1.5/8

2.
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \mu_1 + \mu_2, \quad \sigma_1^2 + \sigma_2^2$$

3. 无偏性 有效性 一致性

4.1/5

计算题

1.
$$p = \frac{2C_5^2}{A_5^5} = \frac{1}{6}$$

2.
$$F(t) = \begin{cases} 1 - e^{-(\lambda t)^{\beta}}, t > 0 \\ 0, t \le 0 \end{cases}$$

3. E(XY)=E(X)=E(Y)=0,不独立,不相关

4. 略

5.
$$\sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2}$$
 \square $\chi^2(n)$,故单侧置信上限为 $\frac{\sum_{i=1}^n (X_i - \mu)^2}{\chi^2_{\alpha}(n)}$

6. 设 $H_0: \mu \leq 10, H_1: \mu > 10$, 计算得

$$\overline{X}=10.2$$
, $S=0.5099$, $\frac{\overline{X}-\mu}{S/\sqrt{n}}=1.7541>1.7291=t_{0.05}(19)$,故拒绝 H_0 ,即

认为提高了平均时间