

Decision Procedures for CFLs

Membership: Given a language *L* and a string *w*, is *w* in *L*?

Two approaches:

• If *L* is context-free, then there exists some context-free grammar *G* that generates it. Try derivations in *G* and see whether any of them generates *w*.

Problem: $S \rightarrow ST \mid a$ Try to derive aaa

• If *L* is context-free, then there exists some PDA *M* that accepts it. Run *M* on *w*.

Problem:

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the following two forms:

- $X \rightarrow a$, where $a \in \Sigma$, or
- $X \rightarrow BC$, where B and C are elements of $V \Sigma$.

Advantages:

- Parsers can use binary trees.
- Exact length of derivations is known:

Conversion to Chomsky Normal Form

- 1. Remove all ϵ -rules, using the algorithm removeEps. (We have seen this before.)
- 2. Remove all unit productions (rules of the form $A \rightarrow B$).
- 3. Remove all rules whose right hand sides have length greater than 1 and include a terminal:

(e.g.,
$$A \rightarrow aB$$
 or $A \rightarrow BaC$)

4. Remove all rules whose right hand sides have length greater than 2:

(e.g.,
$$A \rightarrow BCDE$$
)

Removing ε-Productions

Definition: a rule is *modifiable* iff it is of the form:

 $P \rightarrow \alpha Q\beta$, for some nullable Q, $P \neq \alpha\beta \neq \epsilon$

removeEps(G: cfg) =

- 1. Let G' = G.
- 2. Find the set N of nullable variables in G'.
- 3. For each modifiable rule $P \rightarrow \alpha Q\beta$ of G do Add the rule $P \rightarrow \alpha \beta$.
- 4. Delete from G' all rules of the form $X \to \varepsilon$.
- 5. Return *G*′.

$$L(G') = L(G) - \{\epsilon\}$$

Unit Productions

A *unit production* is a rule $A \rightarrow B$ (right-hand side consists of a single nonterminal symbol)

removeUnits(G)

- 1. Let G' = G.
- 2. Until no unit productions remain in G' do:
 - 2.1 Choose some unit production $X \rightarrow Y$.
 - 2.2 Remove it from G'.
 - 2.3 Consider only rules that still remain. For every rule $Y \to \beta$, where $\beta \in V^*$, do: Add to G' the rule $X \to \beta$ unless it is a rule that has already been removed once.
- 3. Return G'.

Example

Example: Nullable: A,B,C

$$A \rightarrow B \mid a$$

 $C \rightarrow CC \mid \varepsilon$

$$B \rightarrow C \mid c$$
 $S \rightarrow aACa \mid aAa \mid aCa \mid aa$

$$A \rightarrow B \mid a$$

 $B \rightarrow C \mid c$

$$C \rightarrow cC \mid c$$

Example

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid c$$

$$C \rightarrow CC \mid C$$

Remove
$$A \rightarrow B$$
. Add $A \rightarrow C \mid c$.

Remove
$$B \to C$$
. Add $B \to cC$ ($B \to c$, already there).

Remove
$$A \rightarrow C$$
. Add $A \rightarrow C$ ($A \rightarrow C$, already there).

So removeUnits returns:

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow a \mid c \mid cC$$

$$B \rightarrow c \mid cC$$

$$C \rightarrow cC \mid c$$

Mixed Rules

removeMixed(G) =

- 1. Let G' = G.
- 2. Create a new nonterminal T_a for each terminal a in Σ .
- 3. Modify each rule whose right-hand side has length greater than 1 and that contains a terminal symbol by substituting T_a for each occurrence of the terminal a.
- 4. Add to G, for each T_a , the rule $T_a \rightarrow a$.
- 5. Return G'.

Example

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

 $A \rightarrow a \mid c \mid cC$

$$B \rightarrow c \mid cC$$

$$C \rightarrow CC \mid C$$

removeMixed returns:

$$S \rightarrow T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$

$$A \rightarrow a \mid c \mid T_c C$$

$$B \rightarrow c \mid T_c C$$

$$C \rightarrow T_c C \mid c$$

$$T_a \rightarrow a$$

$$T_{\rm c} \rightarrow c$$

Long Rules

removeLong(G) =

- 1. Let $G' = \hat{G}$.
- 2. For each rule *r* of the form:

$$A \rightarrow N_1 N_2 N_3 N_4 \dots N_n$$
, $n > 2$

create new nonterminals M_2 , M_3 , ... M_{n-1} .

- 3. Replace *r* with the rule $A \rightarrow N_1 M_2$.
- 4. Add the rules:

$$M_2 \rightarrow N_2 M_3$$

$$M_3 \rightarrow N_3 M_4$$

$$M_{n-1} \rightarrow N_{n-1}N_n$$
.

5. Return G'.

Example

$$S \rightarrow T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$

$$A \rightarrow a \mid c \mid T_c C$$

$$B \rightarrow c \mid T_c C$$

$$C \rightarrow T_c C \mid c$$

$$T_a \rightarrow a$$

$$T_{\rm c} \rightarrow c$$

removeLong returns:

$$S \rightarrow T_a S_1$$
 $S \rightarrow T_a S_3$ $S \rightarrow T_a S_4$ $S \rightarrow T_a T_a$
 $S_1 \rightarrow A S_2$ $S_3 \rightarrow A T_a$ $S_4 \rightarrow C T_a$

$$S_1 \rightarrow AS_2$$

 $S_2 \rightarrow CT_a$

$$A \rightarrow a \mid c \mid T_c C$$

$$B \rightarrow c \mid T_c C$$

$$C \rightarrow T_{c}C \mid c$$

$$T_a \rightarrow a$$

$$T_{\rm c} \rightarrow c$$

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

- 1. If given a PDA, build G so that L(G) = L(M).
- 2. If $w = \varepsilon$ then if S_G is nullable then accept, else reject.
- 3. If $w \neq \varepsilon$ then:
 - 3.1 Construct G' in Chomsky normal form such that $L(G') = L(G) \{\epsilon\}.$
 - 3.2 If *G* derives w, it does so in $2 \cdot |w| 1$ steps. Try all derivations in *G* of $2 \cdot |w| 1$ steps. If one of them derives w, accept. Otherwise reject.

Emptiness

Given a context-free language L, is $L = \emptyset$?

decideCFLempty(G: context-free grammar) =

- 1. Let G' = remove unproductive(G).
- 2. If S is not present in G' then return *True* else return *False*.

Finiteness

Given a context-free language *L*, is *L* infinite?

decideCFLinfinite(G: context-free grammar) =

- 1. Lexicographically enumerate all strings in Σ^* of length greater than b^n and less than or equal to $b^{n+1} + b^n$.
- 2. If, for any such string *w*, *decideCFL*(*L*, *w*) returns *True* then return *True*. *L* is infinite.
- 3. If, for all such strings *w*, *decideCFL*(*L*, *w*) returns *False* then return *False*. *L* is not infinite.

Why these bounds?

The Undecidable Questions about CFLs

- Is $L = \Sigma^*$?
- Is the complement of L context-free?
- Is L regular?
- Is $L_1 = L_2$?
- Is $L_1 \subseteq L_2$?
- Is $L_1 \cap L_2 = \emptyset$?
- Is L inherently ambiguous?
- Is G ambiguous?