EA721 – Princípios de Controle e Servomecanismos

1º Semestre de 2005 − 1º Prova − Prof. Paulo Valente

RA: Nome: Ass.:

Figura 1: Sistema de controle em malha fechada.

Questões

1. Considere o sistema de controle da Figura 1 com as seguintes associações:

$$C(s) = k_c$$
, $P(s) = s^2 - 2s + 2$, $F(s) = \frac{1}{s^2 + 2s + 1}$ $(w = v = 0)$.

Determine os valores de k_c para os quais o sistema em malha fechada é estável.

2. Considere o sistema de controle da Figura 1 com as seguintes associações:

$$C(s) = k_c$$
, $P(s) = \frac{s+2}{s}$, $F(s) = 1$ $(v = 0)$.

Determine $k_c>0$ para que o valor absoluto da componente do erro de regime devida a uma entrada de distúrbio w do tipo degrau unitário seja igual a 0.001.

3. A faixa de passagem de um sistema de segunda ordem na forma padrão $(G(s)=\omega_n^2/(s^2+2\xi\omega_n s+\omega_n^2))$ é igual a ω_n se $\xi=0.7$. Supondo um sistema de controle como o ilustrado na Figura 1, com

$$C(s) = k_c, \quad P(s) = \frac{\omega_n}{s(s + 2\xi\omega_n)}, \quad F(s) = 1 \quad (w = v = 0),$$

determine k_c para que o sistema em malha fechada tenha uma faixa de passagem de $100 \, \mathrm{rad/s}$.

4. Considere o sistema de controle da Figura 1 com as seguintes associações:

$$C(s) = k_c, \quad P(s) = \frac{1}{(s+a)(s+b)}, \quad F(s) = 1 \quad (w = v = 0).$$

Determine o valor da sensibilidade do erro de regime para entrada degrau unitário à variação do parâmetro k_c . Assuma que os valores nominais dos parâmetros são $k_c=10$, a=1 e b=2. (A sensibilidade de um erro de regime e_x qualquer em relação a um dado parâmetro p é dada por $S_{e_x}^p=(\partial e_x/\partial p)(p/e_x)$.)

5. Considere um sistema de controle em malha fechada com equação característica dada por

$$1 + G(s) = 0$$
, $G(s) = \frac{5}{s^2(s+1)}$ $(k > 0, \tau > 0)$.

Esboce a curva \mathcal{C}_s no plano s adequada à análise. Esboce o Diagrama de Nyquist associado, indicando claramente o mapeamento $\mathcal{C}_s \to \mathcal{C}_G$. O sistema em malha fechada é estável ? Justifique.

Respostas

- 1. $k_c \in (-1/2, 1);$
- 2. $k_c = 1000$;
- 3. $k_c = 100$;
- 4. $S_{ed}^{k_c} = -0.83$. O sinal negativo indica que o erro diminui quando k_c aumenta;
- 5. \cdots . O ponto -1 é envolvido N=2 vezes no sentido horário. Como P=0 (nenhum pólo de G(s) no semi-plano direito) e Z=N+P, existirão Z=2 pólos no semi-plano direito, em malha fechada. O sistema será instável.