Department of Electronic and Telecommunication Engineering University of Moratuwa

Sri Lanka

EN1060 SIGNALS AND SYSTEMS: TUTORIAL 03 *

August 10, 2022

- 1. Use the Fourier transform analysis equation to calculate the Fourier transforms of
 - (a) $e^{-2(t-1)}u(t-1)$
 - (b) $e^{-2|t-1|}$
- 2. Use the Fourier transform analysis equation to calculate the Fourier transforms of
 - (a) $\delta(t+1) + \delta(t-1)$
 - (b) $\frac{d}{dt}[u(-2-t)+u(t-2)]$

Sketch and label the magnitude of each Fourier transform.

- 3. Determine the Fourier transform of each of the following periodic signals:
 - (a) $\sin(2\pi t + \pi/4)$
 - (b) $1 + \cos(6\pi t + \pi/8)$
- 4. Use the Fourier transform synthesis equation to determine the inverse Fourier transform of
 - (a) $X_1(i\omega) = 2\pi\delta(\omega) + \pi\delta(\omega 4\pi) + \pi\delta(\omega + 4\pi)$

(b)
$$X_2(j\omega) = \begin{cases} 2, & 0 \le \omega \le 2, \\ -2, & -2 \le \omega < 0, \\ 0, & |\omega| > 2. \end{cases}$$

5. Use the Fourier transform synthesis equation to determine the inverse Fourier transform of $X(j\omega) = |X(j\omega)|e^{j\angle X(j\omega)}$ where

$$|X(j\omega)| = 2[u(\omega+3) - u(\omega-3)]$$

$$\angle X(j\omega) = -\frac{3}{2}\omega + \pi$$

6. Compute the Fourier transform of each of the following signals:

^{*}All the questions are from Oppenheim et al. chapter 4.

Figure 1: Figure for Q6

- (a) $[e^{-\alpha t}\cos\omega_0 t]u(t)$, $\alpha > 0$
- (b) $e^{-3|t|} \sin 2t \omega_0 t$
- (c) $x(t) = \begin{cases} 1 + \cos \pi t, & |t| < 1 \\ 0, & |t| > 1 \end{cases}$
- (d) $\sum_{k=0}^{\infty} \alpha^k \delta(t kT)$, $|\alpha| < 1$
- (e) $[te^{-2t}\sin 4t]u(t)$ (f) $\left[\frac{\sin \pi t}{\pi t}\right] \left[\frac{\sin 2\pi (t-1)}{\pi (t-1)}\right]$
- (g) x(t) as shown in Figure 1a.
- (h) x(t) as shown in Figure 1b.
- 7. Determine the continuous-time signal corresponding to each of the following transfroms:
 - (a) $X(j\omega) = \frac{2\sin[3(\omega 2\pi)]}{\omega 2\pi}$
 - (b) $X(i\omega) = \cos(4\omega + \pi/3)$
 - (c) $X(j\omega)$ as given in the magnitude and phase plots of Figure 2a
 - (d) $X(j\omega) = 2[\delta(\omega 1) \delta(\omega + 1)] + 3[\delta(\omega 2\pi) + \delta(\omega + 2\pi)]$
 - (e) $X(i\omega)$ as in Figure 2b
- 8. Given that x(t) has the Fourier transform $X(j\omega)$, express the Fourier transforms of the signals listed below in terms of $X(i\omega)$. You may find useful the Fourier transform properties listed in the table in the book.
 - (a) $x_1(t) = x(1-t) + x(-1-t)$
 - (b) $x_2(t) = x(3t-6)$
 - (c) $x_3(t) = \frac{d^2}{dt^2}x(t-1)$
- 9. For each of the following Fourier transforms, use Fourier transform properties to determine whether the corresponding time-domain signal is (i) real, imaginary, or neither and (ii) even, odd, or neither. Do this without evaluating the given transforms.
 - (a) $X_1(j\omega) = u(\omega) u(\omega 2)$
 - (b) $X_2(i\omega) = \cos(2\omega)\sin(\omega/2)$
 - (c) $X_3(j\omega) = A(\omega)e^{jB(\omega)}$ where $A(\omega) = (\sin 2\omega)/\omega$ and $B(\omega) = 2\omega + \pi/2$

Figure 2: Figure for Q7

(d)
$$X_4(j\omega) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right)^{|k|} \delta\left(\omega - \frac{k\pi}{4}\right)$$

10. Consider the signal

$$x(t) = \begin{cases} 0, & t < \frac{1}{2}, \\ t + \frac{1}{2}, & -\frac{1}{2} \le t \le \frac{1}{2}, \\ 1, & t > \frac{1}{2}. \end{cases}$$

- (a) Use differentiation and integration properties and the Fourier transform pair for the rectangular pulse to find a closed-form expression for $X(j\omega)$.
- (b) What is the Fourier transform of $g(t) = x(t) \frac{1}{2}$?

11. Consider the signal

$$x(t) = \begin{cases} 0, & |t| > 1, \\ (t+1)/2, & -1 \le t \le 1. \end{cases}$$

- (a) With the help of tables, determine the closed-form expression for $X(j\omega)$.
- (b) Take the real part of your answer above, and verify that it is the Fourier transform of the even part of x(t).
- (c) What is the Fourier transform of the odd part of x(t)?

12. (a) Use tables to help determine the Fourier transform of the following signal:

$$x(t) = t \left(\frac{\sin t}{\pi t}\right)^2.$$

(b) Use Pasrseval's relation and the result of the previous part to determine the numerical value of

$$A = \int_{-\infty}^{\infty} t^2 \left(\frac{\sin t}{\pi t} \right)^4.$$

13. Given the relationship

$$y(t) = x(t) * h(t),$$

and

$$g(t) = x(3t) * h(3t),$$

and given that x(t) has Fourier transform $X(j\omega)$ and h(t) has Fourier transform $H(j\omega)$, use Fourier transform properties to show that g(t) has the form

$$g(t) = Ay(Bt)$$
.

Determine the values of *A* and *B*.

14. Consider the Fourier transform pair

$$e^{-|t|} \stackrel{\mathscr{F}}{\longleftrightarrow} \frac{2}{1+\omega^2}.$$

- (a) Use the appropriate Fourier transform properties to find the Fourier transform of $te^{-|t|}$.
- (b) Use the result from part (a), along with the duality property, to determine the Fourier transform of

$$\frac{4t}{(1+t^2)^2}.$$

Hint: See 15.

15. Let x(t) be a signal whose Fourier transform is

$$X(i\omega) = \delta(\omega) + \delta(\omega - \pi) + \delta(\omega - 5),$$

and let

$$h(t) = u(t) - u(t-2).$$

- (a) Is x(t) periodic?
- (b) Is x(t) * h(t) periodic?
- (c) Can the convolution of two aperiodic signals be periodic?

16. Consider a signal x(t) with Fourier transform $X(j\omega)$. Suppose we are given the following facts:

- (a) x(t) is real and non-negative.
- (b) $\mathscr{F}^{-1}(1+j\omega)X(j\omega) = Ae^{-2t}u(t)$, where *A* is independent of *t*.
- (c) $\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 2\pi$.

Determine a closed-form expression for x(t).