The	uniform continuity.
	: continuity is about the local behavior of f at a.
	In particular, 13 dependent on a, on 270 as well.
	tronger notion: uniform continuity (7 continuity itself)
	$f: A \rightarrow IR$, we say $f: S$ uniformly continuous on $A: f: V \in S$ $I: f: X \rightarrow f: Y > I < E$ $f: X \rightarrow Y \in A$ s.t. $I: X \rightarrow Y = S$
	key different: 500 only depend on 500 but not depend on locations of points x, y any more
Rmk:	there are many situations that continuous functions are not uniformly continuous.
	$\delta x \cdot I = f(x) = x^2 \cdot f(x) = R \rightarrow R$
	Still not uniformly continuous on R
	proof: Assume otherwise that f is uniformly continuous.
	Pirk E=1, by def, 7500 s.t. (fix)-f(y) = E = 1 f x, y \in \text{R where } x-y = \in \text{S}.
	$() x^2-y^2 < \text{ for } x, y \in \mathbb{R} \text{ with } x-y \leq \delta$
	Prok X = n E M, y = nt f. of course 1x-y1 = f.
	In this case, $(x=n, y=n+5)$ $ x^2-y^2 = y^2-x^2 = n+5 ^2 - n^2 = 2nf + f ^2 < 1$
	This is absured if we pick $n > 26$
	Mean value theorem: f(y) - f(x) = (y-x)f'(c) for some c \((x, y) \)
	In this case $f(x+g) - f(x) = g - f(g) = g - g - g - g - g - g - g - g - g - g$
	2. $g(o:1) \rightarrow \mathbb{R}$ $g(x) = \frac{1}{X}$

 Theorom:	Given	acb	, a.	berr												
	Let f	. Ia,	67 ->	R be	, a c	continu	ous fu	ution.								
	Then,															
								show	7870	s.T.	lf(x)-	fy /<	for a	ell xiyi	tla,6],	lx-ylef.
	Let													•		
	Cles						•		•			V				
	Note				J					fact	CETI	a,6]				
	We									J						
						liction										
			cont													
		2				Const	art	Scro	s.t.	Ifix)- f(c)/<	$\frac{2}{2}$ for	/x-	$c \mid \leq d_z$	
						c -							,			
						δι) <i>ϵ</i>					adicti	on .				
						ty he							Choo	se nev	18=	min(f, fe)
	1					x, ye										
				U		ev x				-						
		V				≤ fo			0			p/ <	돌 +	£ =	٤	4
					U	,										