В части 1 необходимо произвести программную реализацию вычислителя заданной математической функции для заданных аргументов, причем исключительно средствами примитивной и частичной рекурсии, или формально доказать невозможность этого. Привести примеры выполнения вычислений. В части 2 необходимо, используя метод абстрактной интерпретации, для произвольной программной процедуры определить знаки всех переменных.

Варианты заданий к части 1.

Вариант 1. f(x, y) = x % y, где % - остаток от деления одного числа на другое.

Вариант 2. $f(x, y) = x^y$, где — это операция возведения в степень, а $y \ge 0$.

Вариант 3. f(x, y) = x * (y + 1).

Вариант 4. f(x, y) = (x - 1) * (y + 1).

Вариант 5. $f(x) = x^x, x \ge 0$.

Вариант 6. $f(x) = 2^{x!}, x \ge 0$, двойка может задаваться явно или неявно.

Вариант 7. $f(x, y) = \{1, \text{ если } x/y \text{ представляет собой правильную дробь; 0, если <math>x/y$ представляет собой неправильную дробь, -1, если $y = 0\}$.

Вариант 8. f(x, y) = gcd(x, y), где gcd — наибольший общий делитель.

Вариант 9. $f(x) = 2^{x^2}$, где ^— это операция возведения в степень.

Вариант 10. f(x) = 3*x + 2.

Вариант 11. f(x) = x/2, если x – четное, и (x+1)/2 — в противном случае.

Вариант 12. f(x) = x % 5, где % — это остаток от деления.

Вариант 13. f(x) = sign x.

Вариант 14. f(x, y) = lcm(x, y), где lcm — наименьшее общее кратное.

Вариант 15. $f(x) = 3^{x^3}$, где ^ – это операция возведения в степень.

Вариант 16. f(x, y, z) = x * (y + 1) % z, где % — это операция вычисления остатка.

Варианты заданий к части 2.

Программная процедура для абстрактной интерпретации предлагается студентом.