Probeklausur in Experimentalphysik 4

Prof. Dr. L. Fabbietti Sommersemester 2020 07.07.2020

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (9 Punkte)

In dieser Aufgabe wird wasserstoffartiges Zirkonium $\binom{90}{40}$ Zr³⁹⁺) betrachtet.

- (a) Berechnen Sie nach dem Bohrschen Atommodell den Bahnradius und die Gesamtenergie im Grundzustand für
 - ein Elektron
 - ein negatives Myon μ^- (Masse: $m_{\mu} = 207 m_e$)

im Feld eines Zirkonium-Kerns.

- (b) Nehmen Sie nun an, ein Anti-Proton werde von einem Zirkonium-Kern eingefangen.
 - Welche ist die tiefste Bohrsche Bahn, auf der das Anti-Proton den Kern noch nicht berührt?

Hinweis: Radius Zirkoniumkern: 5,3fm, Radius Antiproton: 1fm (Masse: $m_{p+} = 1836m_e$)

• Wie groß ist die Bindungsenergie für diese Bahn?

Lösung

(a) Den Bahnradius im Bohrschen Atommodell erhält man mit dem Bohrschen Radius $a_0=\frac{4\pi\varepsilon_0}{e^2}\frac{\hbar^2}{m_e}$

$$r_n = \frac{n^2}{Z} a_0 \tag{1}$$

Die Gesamtenergie im Grundzustand mit der Rydbergenergie $R_{\infty}=E_R=13,6\mathrm{eV}$

$$E_n = -\frac{Z^2}{n^2} E_R \tag{2}$$

• Mit n = 1 und Z = 40 erhält man

$$r_1(Zr) = 1,33 \cdot 10^{-12} \text{m}, \quad E_1(Zn) = -21,8 \text{keV}$$
 (3)

[2]

 $\bullet\,$ Mit $n=1,\,Z=40$ und m_{μ} erhält man für a_0 und E_R

$$a_0 = \frac{4\pi\varepsilon_0}{e^2} \frac{\hbar^2}{m_\mu} \Rightarrow a_0^\mu = \frac{1}{207} a_0$$

$$E_R = \left(\frac{e^2}{\pi\varepsilon_0}\right)^2 \frac{m_e Z^2}{8\hbar^2 n^2} \Rightarrow E_R^\mu = 207 E_R$$

Einsetzen ergibt

$$r_1^{\mu}(Zr) = 6,42 \cdot 10^{-15}, \quad E_1^{\mu}(Zn) = -4,51 \text{MeV}$$
 (4)

[2]

(b) • Abermals mit dem Bohrschen Radius

$$r_n^{\overline{p}} = \frac{m_e}{m_{\overline{p}}} \cdot a_0 \frac{n^2}{Z} = \frac{a_0}{1840} \frac{n^2}{Z} = 7, 2 \cdot 10^{-16} \text{m} \cdot n^2$$
 (5)

[1]

Damit das Anti-Proton und der Zirkoniumkern sich nicht berühren, muss gelten

$$r_n^{\overline{p}} > R = R_{Zn} + R_{\overline{p}}$$

 $r_n^{\overline{p}} = 7, 2 \cdot 10^{-16} \text{m} \cdot n^2 > R = 6, 3 \cdot 10^{-15}$
 $\Rightarrow n = 3 : r_3^{\overline{p}} = 6, 48 \cdot 10^{-15} \text{m}$

 $[\mathbf{1}]$

 $\bullet\,$ Die Bindungsenergie E_n erhält man aus

$$E_n = -\frac{m_{\overline{p}}e^4}{(4\pi\varepsilon_0)^2 \cdot \hbar^2} \frac{Z^2}{n^2} = -\frac{m_{\overline{p}}}{m_e} \cdot E_r \cdot \frac{Z^2}{n^2}$$
 (6)

Einsetzen ergibt

$$E_3 = -1840 \cdot \frac{40^2}{3^2} \cdot 13,6 \text{eV} = -4,45 \text{MeV}$$
 (7)

[1]

Aufgabe 2 (14 Punkte)

Ein Teilchen mit Masse m und kinetischer Energie $E < V_0$ trifft von links auf eine Potentialschwelle:

$$V(x) = V_0 \Theta(x) = \begin{cases} 0 & \text{für } x < 0 \\ V_0 & \text{für } x > 0 \end{cases}$$

- (a) Wie lautet der Lösungsansatz für die Potentialschwelle? Finden Sie die dabei auftretenden Koeffizienten und bestimmen Sie die Reflexionswahrscheinlichkeit R für den Fall $E = V_0/2$.
- (b) Wie lautet der Lösungsansatz für die Potentialschwelle für den Fall $E > V_0$? Was hat sich nun effektiv geändert? Bestimmen Sie die Reflexions- und Transmissionswahrscheinlichkeit R bzw. T für den Fall $E = 9V_0/5$ und zeigen Sie, dass R + T = 1 gilt.

Lösung

(a) Im Vergleich zur Potentialbarriere müssen hier nur zwei Bereiche betrachtet werden (x < 0) und x > 0). Für den Bereich I (x < 0) lautet die Lösung

$$\psi_I(x) = Ae^{ikx} + Be^{-ikx} \tag{8}$$

mit Wellenvektor $k=\sqrt{2mE}/\hbar>0$. Wir wählen o.B.d. A
 A=1. Im Bereich II (x>0) lautet die Lösung:

$$\psi_{II}(x) = Ce^{\kappa x} + De^{-\kappa x} \tag{9}$$

mit Wellenvektor $\kappa = \sqrt{2m(V_0 - E)}/\hbar > 0$. Aufgrund der Normierungsbedingung muss C = 0 sein, da sonst $\psi_{II}(x)$ für $x \to \infty$ divergieren würde. Zusammenfassend erhalten wir also

$$\psi(x) = \begin{cases} e^{ikx} + Be^{-ikx} & \text{für } x < 0\\ De^{-\kappa x} & \text{für } x > 0 \end{cases}$$

[3]

Die Anschlussbedingung an der Stelle x=0 lautet

$$\psi_I(0) = \psi_{II}(0) \tag{10}$$

und die entsprechende Stetigkeitsbedingung ist

$$\psi_I'(0) = \psi_{II}'(0) \tag{11}$$

[2]

Daraus erhalten wir das Gleichungssystem:

$$1 + B = D \tag{12}$$

$$ik(1-B) = -\kappa D. (13)$$

Man erhält für die Koeffizienten B und D:

$$B = \frac{ik + \kappa}{ik - \kappa}$$

$$D = \frac{2ik}{ik - \kappa}$$
(14)

$$D = \frac{2ik}{ik - \kappa} \tag{15}$$

[2]

Mit $k=\kappa=\frac{\sqrt{mV_0}}{\hbar}$ wird die Reflexionswahrscheinlichkeit R für den Fall $E=V_0/2$ gegeben

$$R = |B|^2 = \left| \frac{1+i}{i-1} \right|^2 = 1 \tag{16}$$

Die einfallende Welle wird also vollständig reflektiert. Trotzdem gibt es eine von Null verschiedene Aufenthaltswahrscheinlichkeit der Welle in der Barriere.

[2]

(b) Für den Fall $E > V_0$ ist die Wellenfunktion im Bereich I (x < 0) dieselbe wie davor (auch in diesem Fall gibt es einen reflektierten Anteil). In Bereich II (x > 0) jedoch ist die Wellenfunktion nun nicht mehr exponentiell abfallend sondern besteht aus einer transmittierten Welle mit Wellenvektor $k' = \sqrt{2m(E - V_0)}/\hbar$. Die Wellenfunktion lautet also insgesamt:

$$\psi(x) = \begin{cases} e^{ikx} + Be^{-ikx} & \text{für } x < 0\\ De^{ik'x} & \text{für } x > 0 \end{cases}$$
 (17)

[1]

Für die Koeffizienten B und D erhalten wir

$$1 + B = D \tag{18}$$

$$ik(1-B) = ik'D (19)$$

$$B = \frac{k - k'}{k + k'} = \frac{1 - \sqrt{1 - \frac{V}{E}}}{1 + \sqrt{1 - \frac{V}{E}}}$$
 (20)

. Für $E=9V_0/5$ ergibt sich die Reflexionswahrscheinlichkeit

$$R = |B|^2 = \left| \frac{1 - \sqrt{1 - 5/9}}{1 + \sqrt{1 - 5/9}} \right|^2 = \left| \frac{1/3}{5/3} \right|^2 = \frac{1}{25}$$
 (21)

[1]

und die Transmissionswahrscheinlichkeit

$$T = \frac{k'}{k}|D|^2 = \sqrt{1 - \frac{5}{9}} \left| \frac{2}{1 + \sqrt{1 - \frac{5}{9}}} \right|^2 = \frac{2}{3} \left| \frac{2}{5/3} \right|^2 = \frac{24}{25}$$
 (22)

Es gilt also R + T = 1 wie es die Energieerhaltung fordert.

[3]

Aufgabe 3 (5 Punkte)

Ermitteln Sie für einen Zustand mit l=2

- (a) das Betragsquadrat L^2 des Drehimpulses
- (b) den Maximalwert von L_z^2
- (c) den kleinstmöglichen Wert von $L_x^2 + L_y^2$

Lösung

(a)
$$|L|^2 = \left(\hbar\sqrt{l(l+1)}\right)^2 = 6\hbar^2$$
 (23)

[1]

(b)
$$L_z^2 = (m\hbar)^2 = m^2\hbar^2 = 4\hbar^2$$
 (24) [1]

(c) Es ist
$$L_x^2 + L_y^2 + L_z^2 = L^2 = l(l+1)\hbar^2 \tag{25}$$

Daraus folgt $L_x^2 + L_y^2 = L^2 - L_z^2 = l(l+1)\hbar^2 - m^2\hbar^2 = (6 - m^2)\hbar^2$ (26)

Dann hat $L_x^2 + L_y^2$ den minimalen Wert, wenn m maximal ist, also bei m=2:

$$(L_x^2 + L_y^2)_{min} = (6 - 2^2)\hbar^2 = 2\hbar^2$$
 (27)

[3]

Aufgabe 4 (4 Punkte)

- (a) Geben Sie die Quantenzahlen n,l,j und m_s für den Zustand eines $3d_{5/2}$ und eines $3d_{3/2}$ Elektrons an.
- (b) Atome mit einem $3d_{3/2}$ -Leuchtelektron werden durch eine Stern-Gerlach-Apparatur geschickt. Der für die Strahlaufspaltung verantwortliche Drehimpuls dieser Atome sei gleich dem Gesamtdrehimpuls des Leuchtelektrons. Wie viele Teilstrahlen ergeben sich nach dem Durchlaufen der Apparatur? Und warum?

Lösung

(a) Für das $3d_{5/2}$ -Elektron gilt: $n=3,\ j=5/2,\ l=2,\ m_s=1/2.$ Für das $3d_{3/2}$ -Elektron gilt: $n=3,\ j=3/2,\ l=2,\ m_s=-1/2.$

[2]

(b) Die Kraft auf ein Elektron im inhomogenen Magneten der Stern-Gerlach-Apparatur ist gegeben durch

$$\vec{F} = \mu_z \cdot \frac{\delta B}{\delta z} \vec{e}_z = m_j \hbar \frac{\delta B}{\delta z} \vec{e}_z \tag{28}$$

Da das entscheidende Elektron den Gesamtdrehimpuls j = 3/2 hat, existieren

$$-j \le m_j \le j, \tag{29}$$

insgesamt 2j + 1 = 4 verschiedene Möglichkeiten für die **magnetische Quantenzahl** und spaltet den Strahl somit in vier Komponenten auf.

[2]

Aufgabe 5 (11 Punkte)

Der atomare Übergang $7^3S_1 \rightarrow 6^3P_2$ in Quecksilber entspricht einer Wellenlänge von $\lambda = 546.10$ nm.

- (a) Begründen Sie, welcher Zeeman-Effekt vorliegt?
- (b) Berechnen Sie die Landé-Faktoren g_j der beiden Zustände und bestimmen Sie die Aufspaltung der 6^3P_2 Levels, wenn das 7^3S_1 Level im Magnetfeld mit $\Delta E = 3 \cdot 10^{-5}$ eV aufspaltet.
- (c) Skizzieren Sie ein Termschema, das diese Aufspaltung zeigt und zeichnen Sie die mit der Auswahlregel $\Delta m_i = 0, \pm 1$ erlaubten Übergänge ein.

Lösung

(a) Es liegt der anomale Zeeman-Effekt vor, da neben einem Bahndrehimpuls auch ein nichtverschwindender Spin existiert.

[1]

(b) Die Aufspaltung eines Levels aufgrund des anomalen Zeeman-Effekts ist mit

$$E = -\vec{\mu}_B \vec{B} = m_i g_i \mu_B B \tag{30}$$

gegeben. Der Landé-Faktor ist dabei definiert durch

$$g_j = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)}$$
(31)

[2]

Das Level 7^3S_1 ist im Zustand j=1, l=0, s=1. Damit folgt für g_j :

$$g_j\left(^3\mathbf{S}_1\right) = 2. \tag{32}$$

Für das Level $6^3\mathrm{P}_2$ gilt j=1, l=1, s=1 und somit

$$g_j \left(^3 \mathbf{P}_2\right) = 3/2 \tag{33}$$

[2]

Für den Energieunterschied zweier benachbarter Level gilt

$$\Delta E = g_j \mu_B B \tag{34}$$

Damit können wir das angelegte Magnetfeld aus der Aufspaltung des 7^3S_1 Levels berechnen (nicht unbedingt nötig, da es auch über die Verhältnisse von g_j geht:

$$B = \frac{\Delta}{E_{g_j}(^3S_1)\,\mu_B} = 0,25 \text{ T}$$
 (35)

Für die Größe der Aufspaltung eines 6³P₂-Niveaus erhält man

$$\Delta E = 2,26 \cdot 10^{-5} \text{ eV} \tag{36}$$

[2]

(c) [4]

Aufgabe 6 (14 Punkte)

In der Abbildung sind die niedrigsten Energieniveaus aus dem Termschema von Helium zu sehen. Gegeben sind Energien und Drehimpuls der Niveaus. Feinstruktur und weitere Korrekturen wurden nicht eingezeichnet.

- (a) Benennen Sie die gefragten Energieniveaus in spektroskopischen Symbolen auf ihrem Schreibblatt. Welches der beiden Schemata gehört zum Triplett- und welches zum Singulett-Helium?
- (b) Erläutern Sie den Unterschied zwischen dem Triplett- und dem Singulett-System des Helium- Atoms. Welches der beiden Systeme weist für $L \neq 0$ eine Feinstrukturaufspaltung auf? Begründen Sie ihre Antwort.
- (c) Warum gibt es keinen 1^3S_1 -Zustand? Geben Sie für diesen hypothetischen Zustand für beide Elektronen alle relevanten Quantenzahlen an.
- (d) Warum werden die Übergänge $2^1S_0 \rightarrow 1^1S_0$ und $2^3S_1 \rightarrow 1^1S_0$ nicht beobachtet?

Lösung

(a) [**5**]

(b) Singulett-System (links):

Die Spins der beiden Elektronen koppeln zu S=0, d.h. die Elektronenspins sind antiparallel. Alle Terme im Parahelium sind einfach.

Triplett-System (rechts):

Spins koppel
n zu S=1, d.h. die Spins der Elektronen sind parallel. Durch die LS-Kopplung kommt es im Orthohelium zur Feinstrukturaufspaltung. Die Terme sind dreifach aufgespaltet.

	n	l	m_l	m_s
Elektron 1	1	0	0	+1/2
Elektron 2	1	0	0	+1/2

(c) Es gilt S=1, also $m_{s1}=m_{s2}=\frac{1}{2}$. Die Quantenzahlen für den $1^3\mathrm{S}_1$ -Zustand wären daher: Das Pauli-Prinzip besagt jedoch, dass keine zwei Fermionen in einem geschlossenen System einen identischen Satz von Quantenzahlen haben dürfen. Der Zustand ist somit verboten.

[3]

(d) $2^1S_0 \to 1^1S_0$:

Übergänge mit $J=0 \rightarrow J=0$ sind verboten.

$$2^3S_1 \to 1^1S_0$$
:

Spinflips sind verboten, weil $\Delta S = 0$ verletzt würde. (Interkombinationsverbot)

[2]

Aufgabe 7 (6 Punkte)

Welche Spektralterme sind für die angeregten Konfigurationen Be: [He]2s2p; Ca: [Ar]4s3d möglich?

Lösung

Be: (He)(2s)(2p), $l_1 = 0, l_2 = 1 \rightarrow L = 1$, S = 0, 1. Es folgt für J: J = 1 bzw. J = 0, 1, 2 und somit: ${}^{1}P_{1}, {}^{3}P_{0,1,2}$.

Ca: (Ar)(4s)(3d), $l_1=0, l_2=2 \to L=2, S=0,1$. Es folgt für J: J=2 bzw. J=1,2,3 und somit: ${}^1\mathrm{D}_2, {}^3\mathrm{D}_{1,2,3}$.

[6]

Aufgabe 8 (7 Punkte)

Wir betrachten ein Molekül, das nicht rotiert (J=0), aber dafür ist der Abstand R der beiden Atomkerne nicht mehr konstant. Die Kerne können also gegeneinander schwingen. Für die potentielle Energie zwischen den Kernen ist das Morse-Potential eine sehr gute Näherung:

$$E_{pot}(R) = E_{diss} \left(1 - e^{-a(R - R_0)}\right)^2$$
 (37)

mit $a=2,75\cdot 10^{10}\frac{1}{\rm m}$. Da die Lösung der Schrödingergleichung mit Morse-Potential kompliziert ist, wollen wir uns hier auf die harmonische Näherung beschränken.

- (a) Geben Sie die Entwicklung des Morse-Potentials bis zur 2. Ordnung an und bringen Sie es auf die Form $E_{pot}(R) \approx \frac{1}{2}k(R-R_0)^2$.
- (b) Geben Sie die Energieeigenwerte für dieses Potential an.
- (c) Berechnen Sie die Anregungsenergien für die harmonischen Energieniveas für ein H₂-Molekül $(E_{diss} = 4,75 \text{ eV}, R_0 = 1,44 \text{ Å}).$

Lösung

(a) Zunächst wird das Morse-Potential um R_0 entwickelt:

$$E_{pot}(R) \approx E_{pot}(R_0) + E'_{pot}(R_0)(R - R_0) + \frac{1}{2}E''_{pot}(R_0)(R - R_0)^2$$
(38)

$$= 0 + 0 + \frac{1}{2} 2a^2 E_{diss} (R - R_0)^2 = \frac{1}{2} k (R - R_0)^2$$
(39)

wobei $k = 2a^2 E_{diss}$

[3]

(b) Das Potential $E_{pot}(R)=\frac{1}{2}k(R-R_0)^2$ ist das Potential eines eindimensionalen harmonischen Oszillators. Die zugehörigen Energieeigenwerte lauten:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right) \tag{40}$$

wobei $\omega = \sqrt{\frac{k}{M}}$ und M die reduzierte Masse ist.

[1]

(c) Die Anregungsenergie entspricht dem Unterschied zwischen zwei Energieniveaus:

$$\Delta E = E_{n+1} - E_n = \hbar \omega \tag{41}$$

Fürs H₂-Molekül ergibt sich damit

$$\Delta E = \hbar \sqrt{\frac{2a^2 E_{diss}}{0.5 M_H}} = 772 \text{ meV}$$
 (42)

Die Vibrationsanregungen sind immer noch um eine Größenordnung kleiner als die elektronischen Anregungen, aber deutlich größer als die Rotationsanregungen.

Konstanten

$$\begin{split} \hbar &= 1.05 \cdot 10^{-34} \text{Js} & m_e = 9.11 \cdot 10^{-31} \text{kg} \\ e &= 1.6 \cdot 10^{-19} \text{C} & m_p = 1.67 \cdot 10^{-27} \text{kg} \\ \epsilon_0 &= 8.85 \cdot 10^{-12} \text{As/V/m} & \alpha = 7.3 \cdot 10^{-3} \\ a_0 &= \frac{4\pi \varepsilon_0}{e^2} \frac{\hbar^2}{m_e} = 5, 3 \cdot 10^{-11} \text{m} & \mu_B = \frac{e \cdot \hbar}{2m_e} = 9, 27 \cdot 10^{-24} \text{N/A}^2 \\ R_\infty &= \frac{m_e e^4}{8c \epsilon_0^2 h^3} = 1, 10 \cdot 10^7 \text{m}^{-1} & A = 5, 9 \cdot 10^{-6} \text{eV} \\ N_A &= 6, 02 \cdot 10^{23} mol^{-1} & \mu_0 = 1, 26 \cdot 10^6 \text{N/m}^2 \end{split}$$