1 Variables

2 root

	var	symbol	documentation	type	units	eqs
21	$u_{N,t,u}$	u_Ntu	input signal in control domain	network		
5	$F^{source}{}_{A,I}$	F_AI_source	incidence matrix AI source	network		
6	$F^{sink}{}_{A,I}$	F_AI_sink	incidence matrix AI sink	network		
22	$y_{N,t,u}$	y_Ntu	output signal in control domain	network		
9	$S_{I,p}$	S_Ip	selection matrix interface to control input	network		
16	mv_I	mv_I	interface variable macro -> control	network		
27	$I_{N,A}$	I_NA	$ \ identity \ mapping \ from \ < N > \ to \ < A > $	network		
7	$F^{source}{}_{N,A}$	F_NA_source	incidence matrix NA source	network		
18	cz_I	cz_I	interface variable macro -> control	network		
4	$F^{sink}{}_{N,I}$	F_NI_sink	incidence matrix NI sink	network		
12	$S_{A,p}$	S_Ap	selection matrix interface species-related measures	network		
20	$A_{N,t,u}$	A_Ntu	mapping from input elements to outputs	network		
11	$I_{t,u}$	I_tu	identity mapping from $<$ t $>$ to $<$ u $>$	network		
13	$S_{I,q}$	S_Aq	selection matrix arcs to outputs	network		
15	$S_{N,q,t}$	S_Nqt	selection matrix or splitter	network		
14	$S_{N,p,q}$	S_Npu	selection matrix for stacker	network		
17	cz_N	cz_N	output from control	network		
19	$A_{N,p,q}$	A_Npq	mapping from inputs to outputs	network		
2	$F_{N,A}$	F	incidence matrix	network		
3	$F^{source}{}_{N,I}$	F_NI_source	incidence matrix NI source	network		
10	$S_{I,q}$	S_Iq	selection matrix interface to control output	network		
8	$F^{sink}{}_{N,A}$	F_NA_sink	incidence matrix NA sink	network		

	var	symbol	documentation	type	units	eqs
1	t	t	time	frame	s	
106	t^e	te	end time	frame	s	5
107	Δt	t_interval	time interval	frame	s	6
105	t^o	to	starting time	frame	s	4
103	1	one	numerical value one	constant		2
102	0	zero	numerical value zero	constant		1
101	#	value	numerical value	constant		
104	0.5	oneHalf	numerical value one half	constant		3

3 physical

	var	symbol	documentation	type	units	eqs
25	r_{zN}	r_z	z-coordinate	frame	m	
24	r_{yN}	r_y	y-coordinate	frame	m	
23	r_{xN}	r_x	x-coordinate	frame	m	
108	U_N	U	fundamental state – internal energy	state	kgm^2s^{-2}	
137	m_N	m	mass	state	kg	30
144	C_N	C	fundamental state – charge	state	As	
109	S_N	S	fundamental state – internal entropy	state	$kgm^2K^{-1}s^{-2}$	
111	$n_{N,S}$	n	fundamental state – molar mass	state	mol	93
110	V_N	V	volume	state	m^3	7
122	k^B	Boltz	Boltzmann constant	constant	$kgm^2K^{-1}s^{-2}$	
132	λ_S	Mm	molecular masses	constant	$kgmol^{-1}$	
121	N^A	Avo	Avogadro constant	constant	mol^{-1}	
123	R	R	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	17
149	A_{xzN}	Axz	cross sectional are xz	secondaryState	m^2	41
150	A_{yzN}	Ayz	cross sectional area yz	secondaryState	m^2	42
148	A_{xyN}	Axy	cross sectional area xy	secondaryState	m^2	40
143	$ ho_N$	rho	density	secondaryState	$kg m^{-3}$	36

4 macroscopic

	var	symbol	documentation	type	units	eqs
154	$\hat{n}_{xA,S}^d$	fnd_x	diffusion flow in x-direction	transport	$mol s^{-1}$	46 89
156	$\hat{n}_{zA,S}^d$	fnd_z	diffusion flow in z-direction	transport	$mol s^{-1}$	48 91
157	d_A	d	flow direction of convective flow	transport		49
151	\hat{q}_{xA}	fq_x	heat flow in x-direction	transport	kgm^2s^{-3}	43
159	\hat{V}_A	fV	volumetric flow in x-direction	transport	$m^3 s^{-1}$	51
158	$c_{A,S}$	c_AS	concentration in convective event-dynamic flow	transport	$m^{-3} mol$	50
155	$\hat{n}_{yA,S}^d$	fnd_y	diffusion flow in y-direction	transport	$mol s^{-1}$	47 90
194	$\dot{n}_{N,S}$	anc	accumulation of molar mass due to convection	transport	$mol s^{-1}$	87
153	\hat{q}_{zA}	fq_z	heat flow in z-direction	transport	$kg m^2 s^{-3}$	45
160	$\hat{n}_{xA,S}^c$	fnc_x	molar convective flow in x-direction	transport	$mol s^{-1}$	52
195	$\dot{n}^d{}_{N,S}$	and_x	accumulation due to diffusion in x-direction	transport	$mol s^{-1}$	88
152	\hat{q}_{yA}	fq_y	heat flow in y-direction	transport	$kg m^2 s^{-3}$	44
193	$h_{A,S}$	hA	partial molar enthalpiies in arc	properties	$kg m^2 mol^{-1} s^{-2}$	86
192	$\hat{k}_z^{d,Fick}{}_{A,S}$	kdAFick_z	Fick diffusivity in arc and z-direction	properties	ms^{-1}	85
187	k_{yA}^q	kqA_y	thermal conductivity in arc and y-direction	properties	$kg K^{-1} s^{-3}$	80
190	$\hat{k}_x^{d,Fick}{}_{A,S}$	kdAFick_x	Fick's diffusivity in arc and x-direction	properties	ms^{-1}	83
183	k_{xA}^c	kcA_x	convective mass conductivity in arc and x diretion	properties	$m^{-1} s$	76
181	$k_{yA,S}^d$	kdA_y	diffusivity in arc and y-direction	properties	$kg^{-1}m^{-4}mol^2s$	74
186	k_{xA}^q	kqA_x	thermal conductivity in arc and x-direction	properties	$kg K^{-1} s^{-3}$	79
191	$\hat{k}_y^{d,Fick}{}_{A,S}$	kdAFick_y	Fick diffusivity in arc and y-direction	properties	ms^{-1}	84
182	$k_{zA,S}^d$	kdA_z	diffusivity in arc and z-direction	properties	$kg^{-1} m^{-4} mol^2 s$	75
180	$k_{xA,S}^d$	kdA_x	diffusivity in arc and x-direction	properties	$kg^{-1} m^{-4} mol^2 s$	73
185	k_{zA}^c	kcA_z	convecive mass conductivity in arc and y-direction	properties	$m^{-1} s$	78

	var	symbol	documentation	type	units	eqs
184	k_{yA}^c	kcA_y	convective mass conductivity in arc and y-direction	properties	$m^{-1} s$	77
189	ρ_A	rhoA	density in arc	properties	$kg m^{-3}$	82
188	k_{zA}^q	kqA_z	thermal conductivity in arc and z-direction	properties	$kg K^{-1} s^{-3}$	81
115	H_N	Н	Enthalpy	state	kgm^2s^{-2}	11
117	G_N	G	Gibbs free energy	state	kgm^2s^{-2}	13
116	A_N	A	Helmholtz energy	state	kgm^2s^{-2}	12
113	T_N	Т	temperature	effort	K	9
112	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	8
114	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	10 54
161	$\mu^{o}_{N,S}$	chemPotStandard	instantiating standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	53
118	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	14
138	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	31
136	$h_{N,S}$	h	partial molar enthalpies	secondaryState	$kg m^2 mol^{-1} s^{-2}$	29
140	$x_{N,S}$	x	mole fraction	secondaryState		33
139	$n^t{}_N$	nt	total number of moles	secondaryState	mol	32
142	c_{VN}	cV	specific heat capacity at constant volume	secondaryState	$m^2 K^{-1} s^{-2}$	35
120	v_{zN}	V_Z	velocity in z-direction	secondaryState	ms^{-1}	16
119	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	15
124	Cp_N	Cp	total heat capacity at constant pressure	secondaryState	$kg m^2 K^{-1} s^{-2}$	18
141	c_{pN}	ср	specific heat capacity at constant pressure	secondaryState	$m^2 K^{-1} s^{-2}$	34
125	CV_N	CV	total heat capacity at constant volume	secondaryState	$kg m^2 K^{-1} s^{-2}$	19
196	$\dot{n}_{N,S}$	an	differential mass balance without reaction	diffState	$mol s^{-1}$	92

5 reactions

	var	symbol	documentation	type	units	eqs
26	$N_{S,CS}$	N	stoichiometric matrix	constant		
167	$T_{N,p}$	Т	link variable T to interface reactions	effort	K	60
171	$V_{N,p}$	V	link variable V to interface reactions	secondaryState	m^3	64
163	$c_{N,S,p}$	С	link variable c to interface reactions	secondaryState	$m^{-3} mol$	56
165	$x_{N,S,p}$	x	link variable x to interface reactions	secondaryState		58
169	$\xi_{N,CS,p}$	probability	probability of reaction to take place	conversion		62
168	$f_{N,S,CS,p}$	factor	factor for probability computation	conversion		61

6 macroscopic-reactions

	var	symbol	documentation	type	units	eqs
162	$_c_{I,S}$	_c	link variable c to interface macroscopic $\gg>$ reactions with source:node	get	$m^{-3} mol$	55
164	$_x_{I,S}$	_x	link variable x to interface macroscopic $\gg>$ reactions with source:node	get		57
170	$_V_I$	_V	link variable V to interface macroscopic $\gg>$ reactions with source:node	get	m^3	63
166	$_T_I$	_T	link variable T to interface macroscopic $\gg>$ reactions with source:node	get	K	59

7 Equations

8 Generic

no	equation	documentation	layer
1	$0 := \mathbf{Instantiate}(\#, \#)$	numerical value zero	root
2	$1 := \mathbf{Instantiate}(\#, \#)$	numerical value one	root
3	$0.5 := \mathbf{Instantiate}(\#, \#)$	numerical value one half	root
4	$t^o := \mathbf{Instantiate}(t, \#)$	starting time	root
5	$t^e := \mathbf{Instantiate}(t, \#)$	end time	root
6	$\Delta t := \mathbf{Instantiate}(t, \#)$	time interval	root
7	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
8	$p_N := rac{\partial U_N}{\partial V_N}$	thermodynamic pressure	physical
9	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	macroscopic
10	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$	chemical potential	macroscopic
11	$H_N := U_N - p_N \cdot V_N$	Enthalpy	macroscopic
12	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	macroscopic
13	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	macroscopic
14	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocity in x-direction	macroscopic
15	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y-direction	macroscopic
16	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	macroscopic

no	equation	documentation	layer
17	$R := N^A \cdot k^B$	gas constant	physical
18	$Cp_N := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	macroscopic
19	$CV_N := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	macroscopic
29	$h_{N,S} := H_N \cdot (n_{N,S})^{-1}$	partial molar enthalpies	macroscopic
30	$m_N := \lambda_S \stackrel{S}{\star} n_{N,S}$	mass	macroscopic
31	$c_{N,S} := (V_N)^{-1} \cdot n_{N,S}$	molar concentration	macroscopic
32	$n^{t}{}_{N} := \mathbf{reduceSum}\left(n_{N,S},S ight)$	total number of moles	macroscopic
33	$x_{N,S} := \left(n^t{}_N\right)^{-1} \cdot n_{N,S}$	mole fraction	macroscopic
34	$c_{pN} := Cp_N \cdot (m_N)^{-1}$	specific heat capacity at constant pressure	physical
35	$c_{VN} := CV_N \cdot \left(m_N\right)^{-1}$	specific heat capacity at constant volume	macroscopic
36	$\rho_N := \left(V_N\right)^{-1} . m_N$	density	physical
40	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy	physical
41	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional are xz	physical
42	$A_{yzN} := r_{yN} \cdot r_{zN}$	cross sectional area yz	physical
43	$\hat{q}_{xA} := k_{xA}^q \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} T_N$	heat flow in x-direction	macroscopic
44	$\hat{q}_{yA} := k_{yA}^q \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} T_N$	heat flow in y-direction	macroscopic
45	$\hat{q}_{zA} := k_{zA}^q \cdot A_{xyN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in z-direction	macroscopic

no	equation	documentation	layer
46	$\hat{n}_{xA,S}^d := \hat{k}_x^{d,Fick}{}_{A,S} \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in x-direction	macroscopic
47	$\hat{n}_{yA,S}^d := \hat{k}_y^{d,Fick}{}_{A,S} \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in y-direction	macroscopic
48	$\hat{n}_{zA,S}^d := \hat{k}_z^{d,Fick}{}_{A,S} \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} c_{N,S}$	Fick diffusion flow in z-direction	macroscopic
49	$d_A := \mathbf{sign}\left(F_{N,A} \stackrel{N}{\star} p_N ight)$	flow direction of convective flow	macroscopic
50	$c_{A,S} := (0.5 \cdot (F_{N,A} - d_A \cdot F_{N,A})) \stackrel{N}{\star} c_{N,S}$	concentration in convective event- dynamic flow	macroscopic
51	$\hat{V}_A := (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} p_N$	volumetric flow in x-direction	macroscopic
52	$\hat{n}_{xA,S}^c := \hat{V}_A \cdot c_{A,S}$	molar convective flow in x-direction	macroscopic
53	$\mu^o{}_{N,S} := \mathbf{Instantiate}(\mu_{N,S},\#)$	instantiating standard chemical potential	macroscopic
54	$\mu_{N,S} := \mu^{o}_{N,S} + R \cdot T_{N} \cdot \ln \left(x_{N,S} \right)$	chemical potential standard model with mole fraction	macroscopic
61	$f_{N,S,CS,p} := x_{N,S,p}^{((N_{S,CS}))}$	factor for probability computation	reactions
62	$\xi_{N,CS,p} \coloneqq \prod_S f_{N,S,CS,p}$	probability of reaction to take place	reactions
73	$k_{xA,S}^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{xN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and x-direction	macroscopic
74	$k_{yA,S}^d := I_{N,A} * \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{yN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and y-direction	macroscopic
75	$k_{zA,S}^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and z-direction	macroscopic
76	$k_{xA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN} \right)$	convective mass conductivity in arc and x diretion	macroscopic
77	$k_{yA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN} \right)$	convective mass conductivity in arc and y-direction	macroscopic

no	equation	documentation	layer
78	$k_{zA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN} \right)$	convecive mass conductivity in arc and y-direction	macroscopic
79	$k_{xA}^q := I_{N,A} * \left((V_N)^{-1} \cdot Cp_N \cdot v_{xN} \right)$	thermal conductivity in arc and x-direction	macroscopic
80	$k_{yA}^q := I_{N,A} * \left((V_N)^{-1} . Cp_N . v_{yN} \right)$	thermal conductivity in arc and y-direction	macroscopic
81	$k_{zA}^q := I_{N,A} * \left((V_N)^{-1} \cdot Cp_N \cdot v_{zN} \right)$	thermal conductivity in arc and z-direction	macroscopic
82	$ ho_A := I_{N,A} \stackrel{N}{\star} ho_N$	density in arc	macroscopic
83	$\hat{k}_x^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction	macroscopic
84	$\hat{k}_{y}^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{yN} \cdot \frac{\partial U_{N}}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and y-direction	macroscopic
85	$\hat{k}_z^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and z-direction	macroscopic
86	$h_{A,S} := I_{N,A} \stackrel{N}{\star} h_{N,S}$	partial molar enthalpiies in arc	macroscopic
87	$\dot{n}_{N,S} := F_{N,A} \stackrel{A}{\star} \hat{n}_{xA,S}^c$	accumulation of molar mass due to convection	macroscopic
88	$\dot{n}^d{}_{N,S} := F_{N,A} \stackrel{A}{\star} \hat{n}^d_{xA,S}$	accumulation due to diffusion in x-direction	macroscopic
89	$\hat{n}_{xA,S}^d := k_{xA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) *^{N} \mu_{N,S}$	Fick diffusion flow in x-direction	macroscopic
90	$\hat{n}_{yA,S}^d := k_{yA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) *^{N}_{\star} \mu_{N,S}$	Fick diffusion flow in y-direction	macroscopic
91	$\hat{n}_{zA,S}^d := k_{zA,S}^d \cdot (A_{xyN} \cdot F_{N,A}) *^{N} \mu_{N,S}$	mass diffusion flow in z-direction	macroscopic
92	$\dot{n}_{N,S} := \dot{n}_{N,S} + \dot{n}^d{}_{N,S}$	differential mass balance without reaction	macroscopic

no	equation	documentation	layer
93	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt$	fundamental state – molar mass	macroscopic

9 Interface Link Equation

no	equation	documentation	layer
55	$_c_{I,S} := F^{source}{}_{N,I} \stackrel{N}{\star} c_{N,S}$	interface equation	macroscopic -> reactions
56	$c_{N,S,p} := \left(F^{sink}_{N,I} \cdot _c_{I,S}\right) \overset{I}{\star} S_{I,p}$	interface equation	reactions
57	$_x_{I,S} := F^{source}_{N,I} \overset{N}{\star} x_{N,S}$	interface equation	macroscopic -> re- actions
58	$x_{N,S,p} := (F^{sink}_{N,I} \cdot _x_{I,S}) \overset{I}{\star} S_{I,p}$	interface equation	reactions
59	$_T_I := F^{source}{}_{N,I} \stackrel{N}{\star} T_N$	interface equation	macroscopic -> re- actions
60	$T_{N,p} := \left(F^{sink}_{N,I} \cdot _T_I\right) \overset{I}{\star} S_{I,p}$	interface equation	reactions
63	$_V_I := F^{source}{}_{N,I} \stackrel{N}{\star} V_N$	interface equation	macroscopic -> re- actions
64	$V_{N,p} := \left(F^{sink}_{N,I} \cdot _V_I\right) \stackrel{I}{\star} S_{I,p}$	interface equation	reactions