Prediction intervals

$$(1 - \alpha) \times 100\%$$

STAT 464 / 864 | Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

Distribution of the innovations

- The process {Xt} is Gaussian (identically distributed normal RVs)
 (True for ARMA models if their noise process {Zt} is Gaussian)
- 2) ACVF of {Xt} is known

For h-step ahead prediction, the error $X_{N+h}-P_NX_{N+h}$

Is normally distributed with mean = 0, and variance

Prediction Intervals

Derivation

$$(1-lpha/2)$$
 - quantile of std. Normal distribution

Implications of knowing the ACVF

Suppose the ACVF $\gamma_x(h)$ is known \rightarrow we know exactly:

- covariance matrix Γ of $X := (X_N, ..., X_1)$
- Vector γ of covariances Cov(Xn+h, X)
- The prediction $P_N X_{N+h} = a_1 X_N + \cdots + a_N X_1$ where vector **a** satisfies $\Gamma a = \gamma$
- $MSE = \gamma_X(0) a^T \gamma$

Remarks

In practice, assumptions 1 & 2 (Gaussian, known ACVF) aren't very accurate.
 Can do checks / transformations → assumptions are approx. correct

- Assumption 2: we almost always need to estimate the ACVF.
 - Get sample ACVF → input into innovations algorithm
 - → get h-step ahead prediction, minimum MSE