Introduction aux réseaux et modèle OSI

Réseaux - Fiche 1

I. Types de réseau

1. Taille

Type de réseau	Distance
Bus	< 1m
PAN (personal)	< 10m
LAN (local)	< 10km
MAN (metropolitan)	< 100km
WAN (wide)	> 100km

2. Topologie

- Bus
- Anneau
- Etoile
- Boucle
- Maillage régulier
- Maillage irrégulier

II. Mode de communication

1. Connecté/Non-connecté

• Connecté:

- o Demande de connexion
- o Réponse
- o Mise en place d'un circuit virtuel
- Transfert de données
- o Libération de la connexion

• Non-connecté:

- o Envoi de messages avec une adresse de destination
- o Transfert sans souci du contenu et du support

2. Type de commutation

- Commutation de circuits : Crée un circuit particulier avant échange
- Commutation de messages : Envoi d'un message complet par des nœuds de commutation
- Commutation de paquets : Découpage du message en paquets envoyés indépendamment
- Commutation de cellules : Petit paquet de taille fixe envoyés en commutation de circuits

Introduction aux réseaux et modèle OSI

Réseaux - Fiche 1

III. Modèle OSI

1. Présentation globale

- Dialogue vertical (N ↔ N+1) : Réalisé par des primitives de service
- Dialogue horizontal (N \leftrightarrow N) : Réalisé par un protocole commun

2. Dialogue vertical

SDU	Service Data Unit	Données N
PCI	Protocol Control Interface	Instructions N
PDU	Protocol Data Unit (SDU + PCI)	Paquet N
ICI	Information Control Interface	Primitive N±1

3. Couche 1

Encodage : ASCII / UTF8 / ...Méthode : Série / Parallèle

Mode: Synchrone / Asynchrone

• Sens: simplex / half-duplex (talkie) / full-duplex

• Codage: Bande de base (TOR, NRZ, bipolaire, Manchester, ...) / Modulé (phase, ampl., fréq.)

• Multiplexage: Aucun / Fréquentiel / Temporel / Statistique

• Support : Paire torsadée / Coaxial / Fibre / Hertzien

Introduction aux réseaux et modèle OSI

Réseaux - Fiche 1

4. Couche 2

• Détection d'erreur :

- O Bit de parité : Ajout d'un bit tel que nombre de 1 toujours pair (détection de 2n + 1 erreurs)
- o CRC:
 - Message : M(x) / Polynôme correcteur : G(x) degré r
 - Calculs : $R(x) = x^r M(x) / G(x)$
 - **Envoi** : $M'(x) = x^r M(x) + R(x)$
 - **Réception** : $M'(x)/G(x) \neq 0 \Rightarrow \text{erreur}$
- Détection et correction :
 - o Code de Hamming : Augmente la taille des mots pour les rendre différents

5. Couche 3

a. Adressage et nommage

- Méthodes d'adressage / de nommage : Plat / Hiérarchique
- Communication :
 - o Pas de champ d'adresse (point à point)
 - 1 adresse (maitre esclave)
 - o 2 adresses (source et destination)

b. Routage

- Statique: Table du nœud suivant pour chaque adresse
- **Diffusion**: Message envoyé sur plusieurs routes
- Inondation : Message envoyé sur toutes les routes (autodestruction du message grâce à une durée de vie limite)
- Plus court chemin:
 - o **Vecteur de distance :** Les routeurs s'échangent leur table
 - o Etat de lien: Echange des modifs à chaque changement d'état des liens

c. Gestion de congestion

- Contrôle de flux
- Contrôle d'admission
- Lissage du trafic