

Reconocimiento de Patrones

Version 2022-2

Confusion Matrix

Dr. José Ramón Iglesias
DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

[CONFUSION MATRIX]

The confusion matrix, **T**, is a $K \times K$ matrix, where K is the number of classes of our data. The element T(i,j) of the confusion matrix is defined as the number of samples that belong to class ω_i and were classified as ω_j . A perfect classification means that T(i,i) is N_i and T(i,j) = 0 for $i \neq j$, where N_i is the number of samples of class ω_i .

[CONFUSION MATRIX]

[CONFUSION MATRIX]

		ω_1	ω_2	ω_3	•••	ω_K
actual	ω_1	1230	90	78		9
	ω_2	66	890	120		5
	ω_3	59	95	1527		90
	:					
	ω_K	40	67	129		912

Example: there are 78 samples of class 1 that have been classified as class 3.

[CONFUSION MATRIX: TWO CLASSES]

[CONFUSION MATRIX: TWO CLASSES]

TARGET DETECTION

		predicted		
		ω_1	ω_0	
ual	ω_1	TP	FN	
actual	ω_0	FP	TN	

 ω_1 ω_0 Target No-Target

- True Positive (*TP*): number of targets correctly classified.
- True Positive (TN): number of non–targets correctly classified.
- False Positive (FP): number of non-targets classified as targets. The false positives are known as 'false alarms' and 'Type I error'.
- False Negative (FN): number of targets classified as no-targets. The false negatives are known as 'Type II error'.

[CONFUSION MATRIX: TWO CLASSES]

- True Positive (TP): number of targets correctly classified.
- True Negative (TN): number of non-targets correctly classified. .
- False Positive (FP): number of non–targets classified as targets. The false positives are known as 'false alarms' and 'Type I error'.
- False Negative (FN): number of targets classified as no-targets. The false negatives are known as 'Type II error'.

True positive rate, known as Sensitivity or Recall:

$$TPR = S_n = Re = \frac{TP}{P} = \frac{TP}{TP + FN}$$

[DEFINITIONS]

Precision or Positive Predictive Value:

$$Pr = \frac{TP}{D} = \frac{TP}{TP + FP}$$

True negative rate, known as Specificity:

$$TNR = Sp = \frac{TN}{N} = \frac{TN}{TN + FP}$$

False positive rate, known as 1-Specificity:

$$FPR = 1 - Sp = \frac{FP}{N} = \frac{FP}{TN + FP}$$

False negative rate, known as Miss Rate:

$$FNR = MR = \frac{FN}{P} = \frac{FN}{TP + FN}$$

Accuracy:

$$ACC = \frac{TP + TN}{P + N}$$

Red pixels: Positive instances (P) White pixels: Negative instances (N)

Detection using a classifier

Detection using a classifier

IDEAL TPR = 100% FPR = 0%

Extreme
No false positive

No false alarm

Reality: Trade-off between FPR and TPR

Extreme

All positive samples are detected

All targets detected

Curve Precision – Recall

Magenta pixels: True positives (TP) Blue pixels: False positives (FP) Red pixels: False negatives (FN) White pixels: True negatives (TN)

Pr = TP/(TP+FP)Re = TP/(TP+FN)

Curve ROC (Receiver Operation Characteristic)

Magenta pixels: True positives (TP) Blue pixels: False positives (FP) Red pixels: False negatives (FN) White pixels: True negatives (TN)

$$Pr = TP/(TP+FP)$$

Re = $TP/(TP+FN)$

TPR = TP/(TP+FN)FPR = FP/(TN+FP)

Magenta pixels: True positives (TP) Blue pixels: False positives (FP) Red pixels: False negatives (FN) White pixels: True negatives (TN)

$$Pr = TP/(TP+FP)$$

Re = $TP/(TP+FN)$

TPR = TP/(TP+FN)FPR = FP/(TN+FP)

Sensitivity = TPR Specificity = 1-FPR

[ROC curve - Example]

PAT05_ConfisionMatrix.pptx

[ROC curve - Example]

ROC curves (right) for different class distributions (left). The area under the curve (AUC) give a good measure of the performance of the detection. The obtained points (x_i, y_i) are used to fit the ROC curve to $y = (1 - a^{\gamma x^b})/(1 - a^{\gamma})$. In each ROC curve, the 'best operation point' is shown as *. This point is defined as the closest point to ideal operation point (0,1).

[ROC curve - Example]

AUC = 0.9755

AUC = 0.8896

AUC = 0.5912

0.8

27

0.8

FPR

0.4

0.2

 ${\tt PAT05_ConfisionMatrix.pptx}$