PC4: Exercices Correction

Exercice 1 Après obtention d'une mesure z d'un paramètre θ , la densité de probabilité conditionnelle a posteriori de θ est de la forme $f(\theta|z) = \exp(z - \theta)$, pour $z \leq \theta$.

1. Calculer les estimateurs du risque moyen en valeur absolue, du risque moyen quadratique et du maximum de vraisemblance a posteriori.

Le risque moyen en valeur absolue s'écrit : $r_{MVA} = \underset{\theta}{\mathbf{E}} |\theta - \hat{\theta}|$ ce qui s'écrit $r_{MVA} = \underset{\theta|Z}{\mathbf{E}} |\theta - \hat{\theta}|$ soit $\int_{z}^{+\infty} |\theta - \hat{\theta}| f(\theta|Z) d\theta$.

Pour minimiser ce risque, on cherche $\hat{\theta}$ tel que $\frac{\partial}{\partial \hat{\theta}} \int_z^{+\infty} |\theta - \hat{\theta}| \exp(z - \theta) d\theta = 0$, soit $\frac{\partial}{\partial \hat{\theta}} \int_z^{\hat{\theta}} |\theta - \hat{\theta}| \exp(z - \theta) d\theta + \frac{\partial}{\partial \hat{\theta}} \int_{\hat{\theta}}^{+\infty} |\theta - \hat{\theta}| \exp(z - \theta) d\theta = 0$ qui se réduit à $-\frac{\partial}{\partial \hat{\theta}} \int_z^{\hat{\theta}} (\theta - \hat{\theta}) \exp(z - \theta) d\theta + \frac{\partial}{\partial \hat{\theta}} \int_{\hat{\theta}}^{+\infty} (\theta - \hat{\theta}) \exp(z - \theta) d\theta = 0$ soit $\hat{\theta}$ doit satisfaire $\int_z^{\hat{\theta}} \exp(z - \theta) d\theta = \int_{\hat{\theta}}^{+\infty} \exp(z - \theta) d\theta$, soit $\hat{\theta} = z + \ln(2)$.

On retrouve ici une propriété de l'estimateur pour le risque moyen en valeur absolue. En effet la médiane associée à la densité exponentielle $e^{-\theta}$ avec $\theta \geq 0$ est l'argument de $\frac{1}{2}$ soit $\theta = \ln(2)$. Après décalage de z, on retrouve bien l'estimateur du risque moyen en v. a. $\hat{\theta} = z + \ln(2)$.

Le risque quadratique s'écrit : $r_{MVA} = \mathop{\mathbf{E}}_{\theta}(\theta - \hat{\theta})^2$. Par le même raisonnement que précédemment, $\hat{\theta}$ minimisant ce risque doit satisfaire $\frac{\partial}{\partial \hat{\theta}} \int_z^{+\infty} (\theta - \hat{\theta})^2 \exp(z - \theta) d\theta = 0$ soit $2 \int_z^{+\infty} (\theta - \hat{\theta}) \exp(z - \theta) d\theta = 0$ soit $\hat{\theta} \int_z^{+\infty} \exp(z - \theta) d\theta = \int_z^{+\infty} \theta \exp(z - \theta) d\theta$ ou encore $\hat{\theta} = \int_z^{+\infty} \theta \exp(z - \theta) d\theta$. On retrouve le résultat classique sur l'estimateur bayésien du risque quadratique, à savoir que $\hat{\theta}$ est l'espérance a posteriori, qui vaut ici z + 1.

On retrouve également le résultat classique de correspondance entre l'estimateur du risque moyen quadratique et l'estimateur de la moyenne a posteriori. La moyenne (espérance) associée à la densité $e^{-\lambda\theta}$ est égale à λ . Dans le cas présent, $\lambda=1$, et après décalage de z, on retrouve bien l'estimateur de la moyenne a posteriori $\hat{\theta}=z+1$, égal à l'estimateur du risque moyen quadratique.

Pour le maximum de vraisemblance a posteriori, l'estimateur doit maximiser $f(\theta|z)$ donc maximiser $(z-\theta)$ avec $\theta \geq z$ donc $\hat{\theta}=z$

Exercice 2 Loi *a priori* de Jeffreys dans le cas gaussien. On considère la suite de variables aléatoires gaussiennes indépendantes de paramètres θ et σ^2 , où θ est une variable aléatoire

1. $f(z|\theta)$ est la densité d'une loi gaussienne $\mathcal{N}(\theta, \sigma^2)$ donc $f(z|\theta)$ est proportionnelle à $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\theta)^2}{2\sigma^2}\right)$

- 2. La vraisemblance s'écrit $L(\theta; z_1, ..., z_n) = f(z_1, ..., z_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z_i \theta)^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (z_i \theta)^2\right).$
- 3. La log-vraisemblance s'écrit alors : $\ln L(\theta; z_1, ..., z_n) = -\frac{n}{2} \ln(2\pi\sigma^2) \frac{1}{2\sigma^2} \sum_{i=1}^{n} (z_i \theta)^2$. Ainsi, la matrice d'information de Fisher s'écrit (σ est une constante déterministe) : $I(\theta) = -E(\frac{\partial^2 \ln L}{\partial^2 \theta}) = E(\frac{n}{\sigma^2}) = \frac{n}{\sigma^2}$.
- 4. La loi a priori de Jeffreys sur θ s'exprime sous la forme $\pi(\theta) \propto \sqrt{\det(I(\theta))} = \frac{\sqrt{n}}{\sigma}$.

Dans le cas considéré, la loi a priori de θ est la loi uniforme sur un intervalle que l'on choisira grand (σ constante)

Exercice 3 On considère une variable aléatoire représentant la réussite ou l'échec d'une réalisation. Cette variable, nommée X dans la suite suit une loi de Bernouilli de paramètre θ

Le paramètre θ est supposé représenter une variable aléatoire de loi a priori définie par $\mathbb{P}(\theta = \theta_1) = p$ et $\mathbb{P}(\theta = \theta_2) = 1 - p$

1. Loi
$$\pi(\theta|Z=z)$$
 : $\mathbb{P}(Z=0) = 1 - \theta$, $\mathbb{P}(Z=1) = \theta$

$$\pi(\theta=\theta_1|Z=0) = \frac{(1-\theta_1)p}{(1-\theta_1)p+(1-\theta_2)(1-p)}$$

$$\pi(\theta=\theta_1|Z=1) = \frac{\theta_1p}{\theta_1p+\theta_2(1-p)}$$

$$\pi(\theta=\theta_2|Z=0) = \frac{(1-\theta_2)(1-p)}{(1-\theta_1)p+(1-\theta_2)(1-p)}$$

$$\pi(\theta=\theta_2|Z=1) = \frac{\theta_2(1-p)}{\theta_1p+\theta_2(1-p)}$$
;

- 2. On considère l'estimateur défini par $T(0) = \mu_1$, $T(1) = \mu_2$. Pour $C(\theta, T) = (\theta T)^2$ pour z = 1 et z = 0, $\mathbb{E}^{\pi}[C(\theta, T)|z = 0]$ est égal à $(\theta_1 \mu_1)^2 \pi(\theta = \theta_1|Z = 0) + (\theta_2 \mu_1)^2 \pi(\theta = \theta_2|Z = 0)$ $\mathbb{E}^{\pi}[C(\theta, T)|z = 1]$ est égal à $(\theta_1 \mu_2)^2 \pi(\theta = \theta_1|Z = 1) + (\theta_2 \mu_2)^2 \pi(\theta = \theta_2|Z = 1)$ $\mathbb{E}^{\pi}[C(\theta, T)|z = 0] = (\theta_1 \mu_1)^2 \lambda_1 + (\theta_2 \mu_1)^2 (1 \lambda_1)$ avec $\lambda_1 = \frac{(1 \theta_1)p}{(1 \theta_1)p + (1 \theta_2)(1 p)}$ $\mathbb{E}^{\pi}[C(\theta, T)|z = 1] = (\theta_1 \mu_2)^2 \lambda_2 + (\theta_2 \mu_2)^2 (1 \lambda_2)$ avec $\lambda_2 = \frac{\theta_1 p}{\theta_1 p + \theta_2(1 p)}$
- 3. L'estimateur de Bayes associé à ce coût minimise $\mathbb{E}^{\pi}[C(\theta,T)|z=0]$ et $\mathbb{E}^{\pi}[C(\theta,T)|z=1]$. Pour $\mathbb{E}^{\pi}[C(\theta,T)|z=0] = (\theta_1-\mu_1)^2\lambda_1+(\theta_2-\mu_1)^2(1-\lambda_1)$, l'expression s'écrit $\mathbb{E}^{\pi}[C(\theta,T)|z=0] = \lambda(\theta_1^2+\mu_1^2-2\theta_1\mu_1)+(1-\lambda)(\theta_2^2+\mu_1^2-2\theta_2\mu_1)(1-\lambda)$

- $\bullet = \mu_1^2 2(\theta_1 \lambda + \theta_2 (1 \lambda) \mu_1 + \theta_1^2 \lambda + \theta_2^2 (1 \lambda)$
- $\bullet = (\mu_1 (\theta_1 \lambda + \theta_2 (1 \lambda)))^2 + f(\theta_1, \theta_2, \lambda)$

On cherche $\hat{\mu}_1$ qui minimise cette expression.

On obtient $\hat{\mu}_1 = \theta_1 \lambda_1 + \theta_2 (1 - \lambda_1)$

Les calculs sont identiques pour μ_2 et donne $\hat{\mu}_2 = \theta_1 \lambda_2 + \theta_2 (1 - \lambda_2)$

Exercice 4 Soit Z une v.a. telle que $Z \propto \mathcal{N}(\theta, 1)$ où θ est un paramètre qui suit une loi de probabilité $\mathcal{N}(0,\sigma^2)$ où σ^2 est inconnu et fixé. Pour estimer θ , on considère la fonction de perte quadratique : $\mathcal{R}(\theta, a) = (\theta - a)^2$.

1. La loi de $\theta|Z=z$ est définie par $\pi(\theta|Z=z)=\frac{f(Z|\theta)\pi(\theta)}{\int f(Z|t)\pi(t)dt}$ qui est proportionnelle au produit $\mathcal{N}(\theta, 1)\mathcal{N}(0, \sigma^2)$

Le terme de l'exponentielle s'écrit $-(z-\theta)^2 - \frac{\theta^2}{\sigma^2}$ et par transformation, on peut montrer que la loi est proportionnelle à $\mathcal{N}(\frac{\sigma^2 z}{1+\sigma^2}, \frac{\sigma^2}{1+\sigma^2})$ (les autres termes ne dépendent pas de θ .

L'estimateur de Bayes est a qui minimise $\int_{\Theta} \mathcal{R}(\theta, a) d\mathbb{P}(\theta|Z = z)$ a doit vérifier : $\frac{\partial}{\partial a} \int_{\Theta} \mathcal{R}(\theta, a) d\mathbb{P}(\theta|Z = z) = 0$ soit $\frac{\partial}{\partial a} \int_{\Theta} \mathcal{R}(\theta, a) f(\theta|Z = z)$ $z)d\theta = 0$

ce qui s'écrit $\int_{\Theta} (\theta - a) f(\theta | Z = z) d\theta = 0$

on en déduit que $a=\frac{\int_{\Theta}^{\infty}\theta f(\theta|Z=z)d\theta}{\int_{\Theta}f(\theta|Z=z)d\theta}$, c'est donc la moyenne de $f(\theta|Z=z)$ soit

 $\frac{\sigma^2 z}{1+\sigma^2}.$ Il faut vérifier que ce la correspond bien à un minimum (dérivation).

Exercice 5 Soit l'estimateur $\hat{\theta} = arg \max_{\Theta} \pi(\theta|x) = arg \min_{\Theta} \left(\frac{||x - M\theta||^2}{2\sigma^2} + \frac{||\theta||^2}{2\mu^2} \right)$

1. En calculant le gradient de $\frac{||x-M\theta||^2}{2\sigma^2} + \frac{||\theta||^2}{2\mu^2}$ et en cherchant la valeur de θ qui l'annule, on obtient $\hat{\theta} = (M^t M + \lambda^2 I)^{-1} M^t x$ avec $\lambda = \frac{\sigma^2}{\mu^2}$ Il s'agit ensuite de vérifier si cela correspond bien à un minimum.

Exercice 6 Loi a posteriori

1. — Fonction de vraisemblance :

$$L(\theta|t_1, ..., t_n) = f_{\theta}(t_1, ..., t_n) = \prod_{i=1}^n f_{\theta}(t_i) = \theta^n \exp\left(-\theta \sum_{i=1}^n t_i\right)$$
 (1)

Fonction de log-vraisemblance :

$$\ln L(\theta|t_1, ..., t_n) = n \ln(\theta) - \theta \sum_{i=1}^{n} t_i$$
(2)

— En calculant les dérivées successives par rapport à θ , il vient :

$$\begin{cases} \frac{\partial \ln L(\theta|t_1,...,t_n)}{\partial \theta} &= \frac{n}{\theta} - \sum_{i=1}^n t_i \\ \frac{\partial^2 \ln L(\theta|t_1,...,t_n)}{\partial \theta^2} &= -\frac{n}{\theta^2} \end{cases}$$
(3)

Ainsi, $\frac{\partial \ln L(\theta|t_1,\dots,t_n)}{\partial \theta} = 0$ équivaut à $\theta = \frac{n}{\sum_{i=1}^n t_i}$, et comme $\frac{\partial^2 \ln L(\theta|t_1,\dots,t_n)}{\partial \theta^2} < 0$ pour tout θ , il s'agit d'un maximum. Ainsi, l'estimateur du maximum de vraisemblance est donné par : $\hat{\theta}^{(MV)} = \frac{n}{\sum_{i=1}^n t_i}$.

2. — Fonction de vraisemblance :

$$L(\theta|t_1,...,t_n) = \frac{f_{\theta}(t_1,...,t_n)g(\theta)}{f_{T_1,...,T_n}(t_1,...,t_n)} = \frac{g(\theta)}{f_{T_1,...,T_n}(t_1,...,t_n)} \prod_{i=1}^n f_{\theta}(t_i) = \frac{\lambda \theta^n}{f_{T_1,...,T_n}(t_1,...,t_n)} \exp\left(-\lambda \theta - \theta \sum_{i=1}^n t_i d_i\right)$$

— Fonction de log-vraisemblance :

$$\ln L(\theta|t_1, ..., t_n) = -\ln(f_{T_1, ..., T_n}(t_1, ..., t_n)) + \ln(\lambda) + n\ln(\theta) - \lambda\theta - \theta \sum_{i=1}^n t_i$$
(5)

— En calculant les dérivées successives par rapport à θ , il vient :

$$\begin{cases} \frac{\partial \ln L(\theta|t_1,...,t_n)}{\partial \theta} &= \frac{n}{\theta} - \lambda - \sum_{i=1}^n t_i \\ \frac{\partial^2 \ln L(\theta|t_1,...,t_n)}{\partial \theta^2} &= -\frac{n}{\theta^2} \end{cases}$$
 (6)

Ainsi, $\frac{\partial \ln L(\theta|t_1,\dots,t_n)}{\partial \theta} = 0$ équivaut à $\theta = \frac{n}{\lambda + \sum_{i=1}^n t_i}$, et comme $\frac{\partial^2 \ln L(\theta|t_1,\dots,t_n)}{\partial \theta^2} < 0$ pour tout θ , il s'agit d'un maximum.

Ainsi, l'estimateur du maximum a posteriori est donné par : $\hat{\theta}^{(MV)}=\frac{n}{\lambda+\sum_{i=1}^n t_i}.$

3.

$$\frac{\hat{\theta}^{(MV)}}{\hat{\theta}^{(MAP)}} = 1 + \frac{\lambda}{\sum_{i=1}^{n}} \to_{n \to \infty} 1.$$
 (7)

Ainsi, les deux estimateurs sont équivalents pour n grand.