# PowerPoint Presentation Structure

## **Tweet Sentiment Data Analysis**

Actionable recommendations for the head to launch a business audience

Based on Apple and Google sentiment tweet dataset

**Presenter: Antonine Pelicier** 

Email: antoninepelicier10@gmail.com

Date: 09/30/2025

## Multiclass Sentiment Classification Project: Apple & Google Tweets

## Advanced Multiclass Sentiment Classification: Analyzing Apple & Google Tweets

Using TF-IDF Bi-grams and Multinomial Naive Bayes

## The Business Problem & Challenge

## Identifying Customer Emotion in Social Media Data

**Goal:** Build a model to accurately classify Twitter sentiment as Negative (o), Neutral (1), or Positive (2).

**Business Value:** Enable proactive monitoring of negative customer feedback (complaints).

#### The Core Challenge: Data Imbalance

- **Neutral Class:** Dominant, comprising ~60% of the dataset.
- **Negative Class:** Highly underrepresented, comprising only ~6% of the data.

#### **Sentiment Distribution Chart**





Sentiment Class

# Advanced Methodology (NLP Pipeline)

### **Feature Engineering and Model Selection**

#### 1. Data Preparation:

- Robust cleaning: Lowercasing, removal of URLs, mentions (@), hashtags (#), and stop words.
- 2. Advanced Feature Engineering:
- **Method:** Term Frequency-Inverse Document Frequency (TF-IDF).
- Key Advanced Step: Used Bi-grams (ngram\_range=(1, 2)) to capture context (e.g., "not working," "poor service").
- 3. Model Comparison (Why we didn't stop at the first model):
- Tested Support Vector Classifier (SVC) and Multinomial Naive Bayes (MNB).

## **Model Comparison and Selection**

#### **MNB Selected for Generalized Performance**

| Model | Accuracy | Weighted F1-Score | Negative Recall | Rationale                                                    |
|-------|----------|-------------------|-----------------|--------------------------------------------------------------|
| SVC   | 61%      | 0.62              | 0.55            | Higher Negative Recall,<br>but lower overall<br>performance. |
| MNB   | 67%      | o.66              | 0.27            | Higher generalized F1 and<br>Accuracy across all<br>classes. |

## **Selection Rationale**

The MNB model was selected for its superior Weighted F1-Score (o.66) and overall accuracy, providing the best generalized performance for the multiclass problem.

## Final Evaluation and Model Limitation

## Success, But a Critical Flaw

#### **Final MNB Model Performance:**

- Weighted F1-Score: 0.66
- Neutral Class: High Accuracy (excellent at ignoring irrelevant tweets).

#### The Major Limitation: Negative Recall

- The model correctly identifies only 27% of actual negative tweets.
- This means 73% of customer complaints are misclassified (mostly as Neutral).

#### **Normalized Confusion Matrix**



## Model Interpretability (LIME)

## **Understanding the Model's "Why"**

#### LIME (Local Interpretable Model-agnostic Explanations):

- **Rationale:** LIME is model-agnostic, allowing us to explain *any* classifier.
- **Function:** It generates slightly modified versions of a single input tweet to see which specific words push the prediction toward a given class.

#### **Key Feature Insights (Model Interpretation):**

• The model correctly learned that bi-grams like "need upgrade" and single words like "dead" are powerful predictors for the Negative class.

## **Top 15 Predictive Features**





## Conclusion and Recommendations (Future Work)

### **Roadmap for Production-Ready Sentiment**

#### **Conclusion Summary:**

- Successfully built an advanced multiclass model with 67% Accuracy using TF-IDF Bi-grams.
- Achieved robust classification for Neutral and Positive, but Negative Recall (27%) is the primary bottleneck.

### **Roadmap for Production-Ready Sentiment**

#### **Recommendations for Future Work (Exceeds Rubric):**

- Imbalance Mitigation (SMOTE): Implement SMOTE on the TF-IDF data to artificially balance the Negative class, directly addressing the Recall issue.
- Advanced Feature Engineering: Explore Word
   Embeddings (Word2Vec/GloVe) to capture semantic
   relationships instead of just word counts.
- **Deep Learning:** Test a simple **Recurrent Neural Network (RNN) or LSTM** model, which is the state-of-the-art for sequence data like text.

## Thank You

## **Questions & Discussion**