Convert non-linear equation to linear. using Numerical method.

Chapter (2) Curve Fitting

Exponential model

Sometimes in least square method, we will use exponential curve to achieve *minimum error* with the given data.

Let the required curve has the form:

$$y = ae^{bx}$$

To use the least square method of a straight line, first we must make a transformation to the required equation, this transformation called *linearization* by taking the inverse of the required equation of the curve as the following:

$$lny = lna + bx$$

This equation can be written as:

$$Y = A + Bx \tag{2.4}$$

With the changes:

$$Y = lny$$
, $A = lna$, $B = b$, $x = x$.

Then we can apply least square equations to equation (2.4) as:

$$\sum Y_i = A(N) + B \sum x_i,$$

$$\sum x_i Y_i = A \sum x_i + B \sum x_i^2.$$

After solving the previous equations and getting the constants (A, B) we make a reverse operation to get (a, b) again, to express the equation $v = ae^{bx}$.

No.	Non-linear equation	Linear form	Relationship to $\hat{y} = a + b\hat{x}$	Values for least squares regression
1.	$y = cx^m$	$\ell n(y) = m\ell n(x) + \ell n(c)$	$\hat{y} = \ell n(y), \hat{x} = \ell n(x)$	$\ell n(x_i)$ and $\ell n(y_i)$
			$b = m, a = \ell n(c)$	
2.	$y = c e^{mx}$	$\ell n(y) = mx + \ell n(c)$	$\hat{y} = \ell n(y), \hat{x} = x$	x_i and $\ell n(y_i)$
			$b = m, a = \ell n(c)$	
3.	$y = c 10^{mx}$	$\log(y) = mx + \log c$	$\hat{y} = \log(y), \ \hat{x} = x$	x_i and $\ell n(y_i)$
			b = m, a = log(c)	
4.	$y = \frac{1}{mx + c}$	$\frac{1}{y} = mx + c$	$\hat{y} = \frac{1}{y}, \ \hat{x} = x$	x_i and $\frac{1}{y_i}$
			b = m, a = c	
5.	$y = \frac{mx}{c + x}$	$\frac{1}{y} = \frac{c}{mx} + \frac{1}{m}$	$\hat{y} = \frac{1}{y}, \ \hat{x} = \frac{1}{x}$	$\frac{1}{x_i}$ and $\frac{1}{y_i}$
			$b = \frac{c}{m}, a = \frac{1}{m}$	
6.	xy ^c = d Gas equation	$\log y = \frac{1}{c} \log d - \frac{1}{c} \log x$	$\hat{y} = \log y, \ \hat{x} = \log x$ $a = \frac{1}{\log d}, \ b = -\frac{1}{2}$	log x _i and log y _i
			c c	
7.	$y = cd^x$	$\log y = \log c + x \log d$	$\hat{y} - \log y$, $\hat{x} = x$	x _i and log y _i
			$a = \log c$, $b = \log d$	
8.	$y = c + d\sqrt{x}$	$y = c + d\hat{x}$	$\hat{y} = y$ and $\hat{x} = \sqrt{x}$	$\sqrt{x_i}$ and y_i
		where $\hat{\mathbf{x}} = \sqrt{\mathbf{x}}$	a = c and $b = d$	

Nonlinear machine learning algorithms:

Classification and Regression Trees, Naive Bayes, K-Nearest Neighbors, Learning Vector Quantization and Support Vector Machines.