# Welcome to CSS 2!!

March 28, 2022

# Today

- 1. Introductions
- 2. Course overview
  - Lecture & lab
  - Resources
  - Assignments & grades
  - Course material

# Today

### 1. Introductions

- 2. Course overview
  - Lecture & lab
  - Resources
  - Assignments & grades
  - Course material

#### Erik Brockbank

ebrockbank@ucsd.edu

Office hours

9:00-10:00am Friday

2588 Mandler Hall

I'm here to help and support you!



# Purva Kothari pukothar@ucsd.edu

Office hours
TBD
1507 Mandler Hall



# Who are you?

Name

Year and Major

Something you're passionate about or like to do in spare time

# Today

- 1. Introductions
- 2. Course overview
  - Lecture & lab
  - Resources
  - Assignments & grades
  - Course material

#### Lectures:

M / W / F, 8:00-8:50am CENTR 222

### Lab:

M, 11:00-11:50am

W, 9:00-9:50am

**ERCA 117** 

This class is going to be an in-person adventure!



This class is going to be an in-person adventure!

If you need to miss a lab or lecture, shoot me an email ahead of time so we can figure out how to keep you on track!

This class is going to be an in-person adventure!

My commitments to you:

- 1. Health and safety come first
- 2. We will stay up to date with the latest UCSD policies
- 3. I will do <u>everything</u> I can to make this a supportive and successful learning environment!

# Today

1. Introductions

#### 2. Course overview

- Lecture & lab
- Resources
- Assignments & grades
- Course material

### **Resources**

#### **Resources**

Course website: <a href="https://ucsd-css-002.github.io">https://ucsd-css-002.github.io</a>

17 View syllabus, class schedule, policies

Download lecture notes, access other resources



#### Welcome to CSS 2

This course explores the use of computational methods across the social sciences. Topics include thinking like a computational social scientist; research design for big data; legal and ethical dimensions of Computational Social Science (CSS). Students will implement demonstrations of these methods in Python.

#### **Resources**

Campuswire: <a href="https://campuswire.com/p/GAEAAD197">https://campuswire.com/p/GAEAAD197</a>

Use code 2109 to join the course

- Ask questions about homework or labs
- View other students' questions and the answers they got
- Lend a hand by answering other students' questions!



#### Resources

Canvas: <a href="https://canvas.ucsd.edu/courses/36054">https://canvas.ucsd.edu/courses/36054</a>

View grades





Spring 2022

Home

#### **Resources**

Datahub: <a href="https://datahub.ucsd.edu/">https://datahub.ucsd.edu/</a>

View, work on, and submit problem sets and labs

Create new jupyter notebook files for taking notes

View feedback from graded problem sets and labs



# Today

- 1. Introductions
- 2. Course overview
  - Lecture & lab
  - Resources
  - Assignments & grades
  - Course material

### <u>Grades</u>

#### <u>Grades</u>

- 40% weekly problem sets (weeks 2-9)
- 35% weekly lab exercises (weeks 1-10)
- 15% final project
- 10% participation

#### **Grades**

- 40% weekly problem sets (weeks 2-9)
- 35% weekly lab exercises (weeks 1-10)
- 15% final project
- 10% participation

#### Problem sets and labs

- Hosted on UCSD datahub
  - See <a href="https://ucsd-css-002.github.io/course/datahub.html">https://ucsd-css-002.github.io/course/datahub.html</a>

### Problem sets and labs

- Hosted on UCSD datahub
  - See <a href="https://ucsd-css-002.github.io/course/datahub.html">https://ucsd-css-002.github.io/course/datahub.html</a>
- Labs
  - Group work meant to be finished during the lab
  - Due one week after lab in case you need more time to finish
- Purpose: practice the things demonstrated in lecture, teach and learn from your classmates (and Purva!)

#### Problem sets and labs

- Hosted on UCSD datahub
  - See <a href="https://ucsd-css-002.github.io/course/datahub.html">https://ucsd-css-002.github.io/course/datahub.html</a>
- Problem sets
  - Individual work meant to be completed outside of class
  - Due every Sunday (starting in week 2)
- Purpose: get comfortable doing the things you learned about in lecture and lab on your own

### **Grades**

- 40% weekly problem sets (weeks 2-9)
- 35% weekly lab exercises (weeks 1-10)
- 15% final project
- 10% participation

### Final project

See <a href="https://ucsd-css-002.github.io/course/final.html">https://ucsd-css-002.github.io/course/final.html</a>

<u>Task</u>: complete a large, well-motivated analysis of real-world data

### Final project

See <a href="https://ucsd-css-002.github.io/course/final.html">https://ucsd-css-002.github.io/course/final.html</a>

Task: complete a large, well-motivated analysis of real-world data

Setup: work with a group of ~5 people

### Final project

See https://ucsd-css-002.github.io/course/final.html

Task: complete a large, well-motivated analysis of real-world data

Setup: work with a group of ~5 people

<u>Deliverable</u>: a jupyter notebook with (a) a summary of your data incl. cleaning and formatting steps, (b) graphs showing key patterns in your data, (c) modeling and analysis of your data

### Final project

See <a href="https://ucsd-css-002.github.io/course/final.html">https://ucsd-css-002.github.io/course/final.html</a>

Task: complete a large, well-motivated analysis of real-world data

Setup: work with a group of ~5 people

<u>Deliverable</u>: a jupyter notebook with (a) a summary of your data incl. cleaning and formatting steps, (b) graphs showing key patterns in your data, (c) modeling and analysis of your data

Goal: Use the tools we learn about in this class to explore patterns in a large, publicly available data set

### Final project

See https://ucsd-css-002.github.io/course/final.html

<u>Task</u>: complete a large, well-motivated analysis of real-world data

Setup: work with a group of ~5 people

<u>Deliverable</u>: a jupyter notebook with (a) a summary of your data incl. cleaning and formatting steps, (b) graphs showing key patterns in your data, (c) modeling and analysis of your data

Goal: Use the tools we learn about in this class to explore patterns in a large, publicly available data set

Present in lab on 6/1, turn in final version by 6/8

#### Grades

- 40% weekly problem sets (weeks 2-9)
- 35% weekly lab exercises (weeks 1-10)
- 15% final project
- 10% participation

If you come to class and lab, do your best to answer questions, and ask if you're confused, you will get full participation points!

# Today

1. Introductions

#### 2. Course overview

- Lecture & lab
- Resources
- Assignments & grades
- Course material

### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

#### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

Week 1

Python review





IMPORTANT: if you're struggling with the review material this week, we will need to figure out how to get you up to speed!

#### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Python tools for doing data science
  - numpy
  - pandas







### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

#### Week 3

- Python tools for graphing data
  - matplotlib
  - seaborn





NOTE: in week 3 we will have two *guest lectures* and one recorded lecture so things may be a little hectic!

### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Python data modeling fundamentals
  - cleaning and structuring your data
  - formatting and processing your data



#### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Using models to make predictions
  - linear regression and friends



### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Using models to perform *classification* 
  - k-nearest neighbors, logistic regression, and friends



### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Using models to perform classification cont'd.
- Special topic: ethics in data science



### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Using models to perform *clustering* 
  - supervised versus unsupervised modeling
  - k-means clustering and friends



### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Using models to perform dimensionality reduction
  - principal components analysis and friends



### **Material**

See <a href="https://ucsd-css-002.github.io/course/syllabus.html">https://ucsd-css-002.github.io/course/syllabus.html</a>

- Review
- Plus work on your final projects

# Today

- 1. Introductions
- 2. Course overview
  - Lecture & lab
  - Resources
  - Assignments & grades
  - Course material

Questions?