

L'usage de la calculatrice scientifique non programmable est autorisé.

On donnera les expressions littérales avant de passer aux applications numériques.

Le sujet comporte quatre exercices.

Exercice 1 (7 points)

- Etude de quelques réactions chimiques d'acide éthanoïque.

Exercice 2 (2,5 points)

- Etude de quelques transformations nucléaires du tritium.

Exercice 3 (5 points)

- Réponse d'un dipôle RL à un échelon de tension ;
- Etude d'un circuit LC;
- Modulation d'amplitude d'un signal.

Exercice 4 (5,5 points)

- Etude de la chute d'une balle ;
- Etude du mouvement d'une balançoire.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2023 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم التجريبية العلوم التحريبية العلوم العلوم التحريبية العلوم التحريب العلوم التحريب التحريب العلوم التحريب التحريب التحريب العلوم التحريب التحر

EXERCICE 1 (7 points)

Dans cet exercice on se propose d'étudier la réaction d'acide éthanoïque avec :

- 1'eau;
- une solution aqueuse de méthanoate de sodium ;
- le méthanol.

1- Etude d'une solution aqueuse d'acide éthanoïque

On prépare un volume V d'une solution aqueuse S_A d'acide éthanoïque CH_3COOH de concentration molaire $C_A = 5.10^{-2}$ mol. L^{-1} . Son pH est pH = 3,05.

- 1.1- Écrire l'équation de la réaction de l'acide éthanoïque avec l'eau. (0,5 pt)
- **1.2-** On définit la proportion de l'espèce CH_3COOH dans la solution S_A à l'état d'équilibre par :

$$\alpha(\text{CH}_{3} \text{COOH}) = \frac{\left[\text{CH}_{3} \text{COOH}\right]_{\text{éq}}}{\left[\text{CH}_{3} \text{COOH}\right]_{\text{éq}} + \left[\text{CH}_{3} \text{COO}^{-}\right]_{\text{éq}}}.$$

En vous aidant du tableau d'avancement, montrer que $\alpha(CH_3COOH)=1-\tau$ avec τ étant le taux d'avancement final de la réaction de l'acide éthanoïque avec l'eau. Calculer alors la valeur de $\alpha(CH_3COOH)$. (0,75pt)

1.3- Montrer que la valeur du $pK_{A1} = pK_A(CH_3COOH_{(aq)}/CH_3COO_{(aq)}^-)$ est : $pK_{A1} \simeq 4,79$. (0,5 pt)

2-Etude de la réaction de l'acide éthanoïque avec l'ion méthanoate

On mélange un volume V_1 de la solution S_A avec un volume $V_2 = V_1$ d'une solution aqueuse S_B de méthanoate de sodium $Na_{(aq)}^+ + HCOO_{(aq)}^-$ de concentration molaire $C_B = C_A$.

- 2.1- Ecrire l'équation de la réaction qui se produit entre les ions méthanoate et l'acide éthanoïque. (0,75pt)
- **2.2-** Trouver l'expression du quotient de réaction à l'équilibre $Q_{r,\acute{e}q}$ associée à cette réaction en fonction des constantes d'acidité K_{A1} et K_{A2} des couples intervenant. Calculer sa valeur sachant que

$$pK_{\rm A2} \!=\! pK_{\rm A}(HCOOH_{\rm (aq)}\,/\,HCOO_{\rm (aq)}^{-}) = \! 3,75\,.\, \textbf{(0,75pt)}$$

2.3- Trouver l'expression du pH du mélange réactionnel en fonction de pK_{A1} et pK_{A2} . Calculer sa valeur. (0,5pt)

3- Etude de la réaction de l'acide éthanoïque avec le méthanol

On réalise deux mélanges équimolaires de l'acide éthanoïque avec du méthanol CH₃OH:

$$n_0 (CH_3COOH) = n_0 (CH_3OH) = 0.9 \text{ mol }.$$

Le suivi temporel de la quantité de matière n_a de l'acide éthanoïque dans chaque mélange, à une même température θ , a permis d'obtenir les courbes C_1 et C_2 de la figure cicontre. L'une des deux courbes est obtenue en utilisant un catalyseur pour l'un des deux mélanges.

- **3.1-** Ecrire l'équation modélisant la réaction qui se produit en utilisant les formules semi-développées. (**0.5 pt**)
- **3.2-** Indiquer, en justifiant la réponse, la courbe correspondant à la réaction utilisant le catalyseur. **(0,5pt)**
- **3.3-** Déterminer la composition du mélange réactionnel à l'équilibre. **(0,5pt)**

- **3.4-** Trouver la valeur de $t_{1/2}$, le temps de demi- réaction dans le cas de la transformation chimique correspondant à la courbe C_2 . (0,5 pt)
- 3.5- Calculer le rendement de la transformation chimique étudiée. (0,75 pt)
- **3.6-** Quand l'état d'équilibre est atteint, on ajoute à l'un des deux mélanges réactionnels la quantité de matière n=0,1mol d'acide éthanoïque.

Sachant que la constante d'équilibre de la transformation chimique étudiée est K=4, trouver la nouvelle valeur du rendement de cette transformation. (0,5 pt)

EXERCICE 2 (2,5 points)

Dans cet exercice on se propose d'étudier la désintégration du tritium 3_1H et sa réaction de fusion avec le deutérium 2_1H . 2_1H et 3_1H sont deux isotopes de l'élément hydrogène.

Données: - On prend la masse molaire du tritium: $M(_1^3H)=3g.mol^{-1}$;

- Nombre d'Avogadro : $N_A = 6,02.10^{23} \text{ mol}^{-1}$;
- Demi-vie du tritium ${}_{1}^{3}$ H: $t_{1/2}$ =12,32 an ;
- Energies de liaison de quelques noyaux :

Noyau	${}_{1}^{2}H$	${}_{1}^{3}\mathrm{H}$	⁴ He
$E_{\ell}(MeV)$	2,366	8,475	28,296

- On prend: $1an = 3,16.10^7 s$.

1- Désintégration du tritium

Le tritium est un isotope radioactif émetteur β^- . Le noyau formé est l'un des isotopes de l'hélium.

1-1- Choisir parmi les affirmations suivantes l'affirmation juste : (0,5 pt)

A	Le noyau ³ ₂ He a un nombre de masse égal à 5.	
В	La radioactivité β est caractéristique des noyaux très lourds.	
C	Au bout du temps $t=2t_{1/2}$, à partir du début de désintégration, le nombre de noyaux désintégrés dans un échantillon radioactif représente 25% du nombre de noyaux initial.	
D		
E	Lors d'une réaction de fission nucléaire, de la masse est convertie en énergie.	

- 1-2- Ecrire l'équation de la réaction de désintégration du noyau du tritium. (0,25pt)
- 1-3- Etablir la relation entre la demi-vie $t_{1/2}$ et la constante radioactive λ . (0,25pt)
- 1-4- A un instant $t_0 = 0$ on a un échantillon du tritium radioactif de masse $m_0 = 2 \mu g$.

Calculer en unité Bq, l'activité a₁ de l'échantillon à l'instant où 90% des noyaux du tritium sont désintégrés. (**0,5pt**)

2- Réaction de fusion du tritium 3_1H et de deutérium 2_1H

La réaction de fusion entre un noyau de deutérium et un noyau de tritium conduit à la formation d'un noyau d'hélium ⁴₂He et s'accompagne de l'émission d'un neutron.

- **2-1-** Pour chaque affirmation suivante répondre par vrai ou faux en justifiant :
- **a-** L'énergie qu'il faut fournir à un noyau de tritium au repos pour le dissocier en ces nucléons au repos est de 8,475 MeV. **(0,25pt)**
- **b-** Le tritium est plus stable que le deutérium. (0,25pt)
- **2-2-** Calculer, en unité MeV, l'énergie libérée $E_{lib} = |\Delta E|$ par la réaction de fusion d'un noyau de tritium et d'un noyau de deutérium. (0,5pt)

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2023 - الموضوع - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار فرنسية)

EXERCICE 3 (5 points)

Cet exercice se propose d'étudier :

- la réponse d'un dipôle RL à un échelon de tension ;
- un circuit oscillant LC;
- la modulation d'amplitude d'un signal.

1- Réponse d'un dipôle RL à un échelon de tension

On réalise le montage électrique, représenté sur le schéma de la figure 1, comportant:

- un générateur de tension de force électromotrice E = 24 V;
- un conducteur ohmique de résistance R;
- une bobine (b) d'inductance L et de résistance négligeable ;
- un interrupteur K.

On ferme l'interrupteur K à l'instant de date $t_0 = 0$. Un système d'acquisition

informatisé adéquat permet d'obtenir la courbe représentant l'évolution temporelle de l'intensité du courant électrique i(t) dans le circuit (figure 2) .La droite (T) représente la tangente à la courbe au point d'abscisse $t_0 = 0$.

1-2- L'expression de l'intensité du courant circulant dans le

circuit est : $i(t) = A + B \cdot e^{-\frac{t}{\tau}}$ avec A et B deux constantes et τ la constante de temps du circuit.

1-2-1- Déterminer les expressions de A et B en fonction de E et R. (0,5 pt)

1-2-2- Montrer que $L=1 H \cdot (0.5 pt)$

1-3- Déterminer, en unité SI, l'expression numérique de la tension u_L(t) aux bornes de la bobine lors de l'établissement du courant. (0,5 pt)

2- Circuit oscillant LC

On réalise un circuit oscillant LC en associant la bobine (b) précédemment utilisée avec un condensateur de capacité C chargé totalement par un générateur de tension de force électromotrice E_0 (figure 3).

- 2-2-1- Trouver la valeur de la capacité C du condensateur. (On prend $\pi^2 = 10$). (0,5 pt)
- **2-2-2-** Trouver l'énergie magnétique \mathbf{E}_{m} emmagasinée dans la bobine à l'instant $t = 1.8 \,\mathrm{ms} \cdot (0.75 \,\mathrm{pt})$

3- Modulation d'amplitude d'un signal

La courbe de la figure 5 représente l'évolution temporelle de la tension u(t) associée à un signal modulé en amplitude.

Figure 3

Figure 4

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2023 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزياء (خيار فرنسية)

une constante, m est le taux de modulation, f_s et f_p sont respectivement les fréquences du signal modulant et de la porteuse.

3-1- Choisir la bonne proposition : (0,5 pt)

	· · · · ·
A	La fréquence du signal modulant est de 4kHz.
В	La fréquence de la porteuse est de 4kHz.
С	La fréquence du signal modulant est de 100 Hz
D	La fréquence de la porteuse est de 200 Hz.
	7 1 1 0

- 3-2- Répondre par vrai ou faux en justifiant :
- **a-** Le taux de modulation est m = 0, 4. (0,5 pt)
- **b** La valeur de la composante continue de la tension est : $U_0 = 2V$. (0,25 pt)
- **3-3-** Représenter l'allure du spectre de fréquences du signal modulé u(t) sans respect d'échelle très précise. **(0,5 pt)**

EXERCICE 4 (5,5 points)

Les deux parties sont indépendantes

Partie I : Etude de la chute d'une balle

Dans le champ de pesanteur, on lance verticalement vers le haut à l'instant t = 0, à partir d'un point O, une balle (S) de masse m et de centre d'inertie G, avec une vitesse initiale de valeur $V_0 = 12 \, \text{ms}^{-1}$ (figure 1).

On étudie le mouvement du centre d'inertie G de la balle dans un repère $(O;\vec{k})$ lié à un référentiel terrestre supposé galiléen en deux phases:

- mouvement de chute libre de la balle dans la première phase.
- mouvement de chute de la balle avec frottement dans la deuxième phase.

Données: - La masse: m = 80 g;

- L'intensité de la pesanteur : g=10 m.s⁻².

1- Mouvement de la balle en chute libre

Pendant son mouvement le centre d'inertie G de la balle est considéré en chute libre.

- **1-1-** En appliquant la deuxième loi de Newton, déterminer les équations horaires numériques donnant la vitesse $v_z(t)$ et la position z(t) du centre d'inertie G de la balle. **(0,75 pt)**
- **1-2-** En utilisant les équations $V_z(t)$ et z(t) déterminer :
- 1-2-1- la hauteur maximale h atteinte par G.(0,5 pt)
- 1-2-2- la valeur algébrique V_{OZ} de la vitesse de G lors de son passage vers le bas par le point O. (0,5 pt)

2- Mouvement de chute de la balle avec frottement

A partir de l'instant du passage du centre d'inertie G par le point O vers le bas, qu'on prend comme nouvelle origine des dates $t_0 = 0$, la balle est soumise, en plus de son poids \vec{P} , à une force de

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2023 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيانية (خيار فرنسية)

frottement fluide modélisée par $\vec{f} = -\lambda \vec{v}$ avec $\vec{v} = v_z \vec{k}$ et $\lambda = 0,12$ S.I. (On néglige la poussée d'Archimède devant ces deux forces).

- **2-1-** Montrer que l'équation différentielle vérifiée par la vitesse v_z du centre d'inertie G de la balle s'écrit : $\frac{dv_z}{dt} + \frac{1}{\tau} v_z + g = 0$ avec τ le temps caractéristique du mouvement. (0,5 pt)
- 2-2- Déduire la norme de la vitesse limite du mouvement du centre d'inertie G de la balle. (0,25 pt)
- **2-3-** Déterminer, en utilisant la méthode d'Euler, la valeur algébrique $v_z(t_i)$ de la vitesse à l'instant t_i sachant que l'accélération du mouvement à l'instant t_{i-1} est $a_{i-1} = 5 \, \text{m.s}^{-2}$ et on prend le pas de calcul $\Delta t = 66 \, \text{ms}$. (0,75 pt)

Partie II: Etude du mouvement d'une balançoire

Un enfant oscille à l'aide d'une balançoire (figure2).

On modélise la balançoire avec l'enfant par un pendule formé par un corps solide (S) de masse m et de centre d'inertie G, suspendu en un point O par une tige rigide, de masse négligeable et de longueur ℓ pouvant effectuer un mouvement de rotation dans un plan vertical autour d'un axe horizontal (Δ) passant par O (figure 3) . On étudie le mouvement du pendule dans un repère $(G_0; \vec{k})$ lié à un référentiel terrestre supposé galiléen.

On écarte le pendule de sa position d'équilibre stable d'un angle petit $\theta_0=9^\circ$, dans le sens positif, puis on le lâche sans vitesse initiale à l'instant de date $t_0=0$.

On repère la position du pendule à un instant de date t par l'abscisse angulaire θ . On néglige tous les frottements et on choisit le plan horizontal passant par G_0 (position de G à l'équilibre stable) comme état de référence de l'énergie potentielle de pesanteur $(E_{pp}\!=\!0)$.

- Le moment d'inertie du pendule par rapport à l'axe de rotation (Δ) est : $J_{\Delta} = m \ell^2$;
- Accélération de la pesanteur : $g=10 \,\mathrm{m.s^{-2}}$; $\ell=2,4 \,\mathrm{m}$
- Pour les oscillations de faible amplitude, on prend $\cos \theta \approx 1 \frac{\theta^2}{2}$; θ en radian.
- **1-** Montrer que l'expression de l'énergie potentielle de pesanteur du pendule à un instant t pour les oscillations de faible amplitude est : $E_{pp} = \frac{1}{2} mg \ell \theta^2$. (**0,5 pt**)
- 2- En exploitant la conservation de l'énergie mécanique du pendule :
- **2-1-** Déterminer la vitesse angulaire maximale $\dot{\theta}_{max}$ du centre d'inertie G. (0,5 pt)
- 2-2- Etablir l'équation différentielle du mouvement vérifiée par l'abscisse angulaire $\theta(t)$. (0,75 pt)
- **3-** Calculer la période propre de ce pendule sachant qu'il est analogue à un pendule simple de longueur ℓ et de masse m. **(0,5 pt)**

Z Figure 2 $O(\Delta)$ G_0 Figure 3