Name	Darshit Bhagtani
UID no.	2021700006
Experiment No.	07

AIM:	To implement the N-Queen problem using backtracking.	
Program		
ALGORITHM/ THEORY:	Place (k, i) 2. { 3. For $j \leftarrow 1$ to $k - 1$ 4. do if $(x [j] = i)$ 5. or $(Abs \ x [j]) - i) = (Abs \ (j - k))$ 6. then return false; 7. return true; 8. } 1. N - Queens (k, n) 2. { 3. For $i \leftarrow 1$ to n 4. do if Place (k, i) then 5. { 6. $x [k] \leftarrow i$; 7. if $(k = n)$ then 8. write $(x [1n))$; 9. else 10. N - Queens $(k + 1, n)$; 11. } 12. }	

```
PROGRAM:
                  #include<stdio.h>
                  #include<math.h>
                  int a[30], count=0;
                  int place(int pos) {
                  int i;
                  for (i=1;i<pos;i++) {
                  if((a[i]==a[pos])||((abs(a[i]-a[pos])==abs(i-pos))))
                  return 0;
                  return 1;
                  void print_sol(int n) {
                  int i,j;
                  count++;
                  printf("\n\nSolution #%d:\n",count);
                  for (i=1;i<=n;i++) {
                  for (j=1;j<=n;j++) {
                  if(a[i]==j)
                  printf("Q\t"); else
                  printf("*\t");
                  printf("\n");
                  void queen(int n) {
                  int k=1;
                  a[k]=0;
                  while(k!=0) {
                  a[k]=a[k]+1;
                  while((a[k] \le n) &&!place(k))
                  a[k]++;
                  if(a[k] \le n)  {
                  if(k==n)
                  print_sol(n); else {
                  k++;
                  a[k]=0;
```

```
} else
k--;
}

void main() {
int i,n;
// clrscr();
printf("Enter the number of Queens\n");
scanf("%d",&n);
queen(n);
printf("\nTotal solutions=%d",count);
// getch();
}
```

```
RESULT:
   Enter the number of Queens
   Solution #1:
   Solution #2:
         Q
*
                              Q
  Solution #3:
                Q
   Solution #4:
   Solution #92:
                                                                  Q
                              Q
   Q
                     Q
                                                Q
            Q
                                                         Q
                                       Q
   Total solutions=92
   PS D:\Engineering\Program>
```

CONCLUSION:	Thus, we have implemented a solution to the N-Queen problem.