Econ 237: Introduction

Martin Schneider & Chris Tonetti

Winter 2020

Tolstoi on heterogeneous agent models

Happy families are all alike; every unhappy family is unhappy in its own way.

Anna Karenina, p.1

Why heterogenous agent models?

- "Frictionless" models with competitive markets
 - aggregation theorems under some conditions
 - e.g. asset pricing (complete markets),
 Gorman aggregation of demand functions (linear Engel curves)
 - even if representative agent exists (literally or approximately)
 - heterogeneity still matters for some predictions, e.g. trading volume
 - welfare: e.g. who gains & loses from free.trade?
 - representative agent often assumed to simplify
 - appropriate abstraction for some questions
- Models with frictions
 - household borrowing limits & collateral requirements
 - boundaries of the firm: financing, organization
 - incomplete and/or illiquid markets
- Why care about frictions?
 - new predictions
 - effects on aggregates & cross section

Frictions & predictions

- Frictionless models & irrelevance theorems
 - Modigliani-Miller theorem: indeterminacy of shareholder payout & capital structure
 - Ricardian equivalence & irrelevance of money extensions
 - many asset structures complete the market
- Data: household, firm & investor patterns
 - payout & leverage procyclical & vary by size, profitability etc.
 - household wealth composition different over time & by age, income
 - financial institutions' leverage & portfolio composition in a crisis
 - frictionless models have little to say
- Data: market patterns beyond price & quantity
 - search activity: unemployment, vacancies, house listings, dealer inventory, search ranges by geography
 - duration: time on market, time to find a job, holding period
 - network effects: geography, trading relationships
 - even for P & Q: price dispersion & its dependence on trade quantity

Effects of frictions on aggregates & cross section

- Composition effects matter for aggregates
 - household responses to stimulus payments
 - consumption of constrained agents responds more
 - firm responses to banking crisis
 - activity of bank-dependent firms responds more
 - risky asset price responses to news
 - \bullet risk tolerant agents lose more \to amplification
- Redistribution shocks
 - inflation & interest rate changes
 - tax reform
- Learning from the from cross section (often short time series!)
 - match house prices & credit in aggregate & across regions / qualities
 - match jointly asset prices, trading volume & portfolio holdings

Organization of the course

Daily life

- lectures on tools + topics
- weekly readings + 5 minute presentations
- computer problem sets using tools: weeks 2-4, 6, 7
- class project: quantitative modeling exercise
 - week 2: area of interest (1 paragraph)
 - week 4: project outline (1 page)
 - week 5: individual meetings → executable plan
 - week 10: presentation of results
- groups of up to three people allowed & encouraged

Calendar

- week 1: intro
- weeks 2-4: lectures on optimal choice problems & equilibrium concepts
- week 5: individual meetings on class problem
- weeks 6-7 lectures on properties & computation of equilibrium
- weeks 8-9: lectures on topics TBD
- week 10: presentation of class projects

Numerical tools for problem sets & class project

- Matlab works well for many problem set questions
- For frontier research, invest in one faster language
 - now is a good time to make such an investment
 - the classic choice is C++; it remains a great option, but hard to learn
- Two strong newer languages:
 - Julia: domain specific language for scientific computing & stats
 - https://julialang.org
 - syntax similar to matlab, so works well for matlab users
 - Python: general purpose language
 - one neat distribution: https://www.anaconda.com
 - harder to learn; good at strings → popular in data science
 - very nice tutorials by Tom Sargent and John Stachurski https://lectures.quantecon.org
- Homework for next class
 - get set up to be able to write code in one faster language

Weeks 2-4 - three basic classes of models

- Consumption & savings with labor income risk ("one tradable riskless asset, one nontradable asset")
 - data on household income & time series models
 - computation of consumption-savings problems
 - role of borrowing constraints
- Portfolio choice ("many tradable assets")
 - data on asset returns & time series models
 - · computation of portfolio problems
 - role of non-separable preferences
- Consumption, savings & portfolio choice ("combining 1. and 2.")
 - data on household wealth positions, institutions' holdings
 - problems with multiple risks & various constraints
 - application: lifecycle portfolio choice with housing
 - matching models & data, presentation of results

Weeks 6-7: equilibrium

- Equilibrium without aggregate risk
 - Setups with & without production
 - Stationary recursive rational expectations equilibrium
 - key simplification: constant distribution of endogenous state variables (e.g. wealth, internal funds)
 - Existence, uniqueness, computation & calibration
 - Transition dynamics
 - Welfare
- Equilibrium with aggregate risk
 - Adding aggregate shocks
 - Approximations to stationary REE (Krusell-Smith, Reiter)
 - key challenge: moving distribution of endogenous state variables
 - Temporary equilibrium
 - Applications
 - business cycles with heterogeneous agents
 - asset pricing with frictions

Optimal choice models: a household example

- ullet Many household index by i choose consumption, savings & portfolios
- Preferences: time separable power utility over consumption plans

$$E_0\left[\sum_{t=0}^T \beta_i^t \frac{\left(c_t^i\right)^{1-\gamma_i}-1}{1-\gamma_i}\right]$$

- could allow random T; define $I_t = \text{set of agents alive at } t$
- Stochastic income process y_t^i (idiosyncratic & aggregate components)
- Assets
 - ullet short safe bond: quantity b_t trades at price q_t , pays off one next period
 - infinitely lived stock: quantity s_t trades at price p_t , pays off stochastic dividend stream (d_t)
 - ullet collateral constraint: borrow only up to ϕ (value of stocks)
- Constraints

$$c_t^i + q_t b_t^i + p_t s_t^i = b_{t-1}^i + (p_t + d_t) s_{t-1}^i + y_t^i \\ -b_t \le \phi p_t \theta_t, \quad c_t \ge 0; \quad b_{-1}, \theta_{-1} \text{ given}$$

Optimal choice models: a household example

Optimal choice problem

$$\max_{\left\{c_t^i, \theta_t^i, b_t^i\right\}_{t=0}^T} E_0 \left[\sum_{t=0}^T \beta_i^t \frac{\left(c_t^i\right)^{1-\gamma_i} - 1}{1-\gamma_i} \right]$$

$$c_t^i + q_t b_t^i + p_t s_t^i = b_{t-1}^i + (p_t + d_t) s_{t-1}^i + y_t^i = ext{cash on hand} \ -b_t \le \phi p_t heta_t, \quad c_t \ge 0; \qquad b_{-1}^i, s_{-1}^i ext{ given}$$

- Exogenous variables (stochastic processes)
 - individual specific: household income y_t^i
 - ullet aggregate: bond price q_t , stock price p_t , dividend d_t
- Parameters
 - parameters describing distribution of $(q_t, p_t, d_t, (y_t^i)_{i \in I_t})$
 - other individual specific parameters: β_i , γ_i
 - ullet other common parameters: maximal LTV ratio ϕ
- ullet Individual choices: consumption $c_t^i, \#$ bonds $b_t^i, \#$ stocks s_t^i
- Aggregates: consumption $C_t = \int_L c_t^i di$ etc $c_t + c_t + c$

Optimal choice models: a household example

Optimal choice problem

$$\max_{\left\{c_t^i, \theta_t^i, b_t^i\right\}_{t=0}^T} E_0 \left[\sum_{t=0}^T \beta_i^t \frac{\left(c_t^i\right)^{1-\gamma_i} - 1}{1-\gamma_i} \right]$$

$$c_t^i + q_t b_t^i + p_t s_t^i = b_{t-1}^i + (p_t + d_t) s_{t-1}^i + y_t^i = ext{cash on hand} \ -b_t \le \phi p_t \theta_t, \quad c_t \ge 0; \qquad b_{-1}^i, s_{-1}^i ext{ given}$$

- Parameters
 - parameters describing distribution of $(q_t, p_t, d_t, (y_t^i)_{i \in I_t})$
 - ullet other individual specific parameters: $eta_i, \ \gamma_i$
 - ullet other common parameters: maximal LTV ratio ϕ

• What changes with heterogenous beliefs?

Optimal choice models: a firm example

- Many firms indexed by i choose inputs, payout & capital structure
- ullet Technology: capital K^i_t & labor L^i_t make output $Z^i_t(K^i_t)^{lpha_i}(L^i_t)^{1-lpha_i}$
 - ullet $Z_t^i = ext{total factor productivity shocks (again aggregate + idiosyncratic)}$
 - ullet capital chosen one period ahead, rel price = 1, depreciation rate δ_i
- ullet Firms maximize shareholder value $E_0\left[\sum_{t=0}^T M_0^t D_t^i
 ight]$
 - $m{O}_t^i = {
 m payout} \ {
 m to} \ {
 m shareholders}; \ M_0^t = {
 m state} \ {
 m prices} \ {
 m normalized} \ {
 m by} \ {
 m probs}$
- Financing
 - ullet equity & nonnegative shareholder payout $D_t^i \geq 0$;
 - ullet one period debt & borrowing constraint $B_t^i \leq \phi K_{t+1}^i$
 - firm cash flow

$$D_t^i = Z_t^i (K_t^i)^{lpha_i} (L_t^i)^{1-lpha_i} - w_t L_t^i + q_t B_t^i - B_{t-1}^i - I_t^i - ext{taxes}$$

taxes proportional to firm profits → advantage for debt

$$\mathsf{taxes} = \tau \left(Z_t^i (K_t^i)^{\alpha_i} (L_t^i)^{1-\alpha_i} - w_t L_t^i - I_t^i - (1 - q_{t-1}) B_{t-1}^i - \delta_i K_t^i \right)$$

Optimal choice models: a firm example

Optimal choice problem

$$\max_{\left\{I_{t}^{i}, K_{t}^{i}, L_{t}^{i}, B_{t}^{i}, D_{t}^{i}\right\}_{t=0}^{T}} E_{0} \left[\sum_{t=0}^{T} M_{0}^{t} D_{t}^{i} \right]$$

$$\begin{split} D_t^i &= Z_t^i (K_t^i)^{\alpha_i} (L_t^i)^{1-\alpha_i} - w_t L_t^i + q_t B_t^i - B_{t-1}^i - I_t^i - \text{taxes} \\ K_{t+1}^i &= (1-\delta_i) \ K_t^i + I_t^i, \qquad D_t^i \geq 0, \qquad B_t^i \leq \phi K_{t+1}^i \end{split}$$

- Parameters
 - parameters describing distribution of $((M_0^t), q_t, w_t, (Z_t^i)_{i \in I_t})$
 - ullet other individual specific parameters: deprec rate δ_i , capital share α_i
 - ullet other common parameters: tax rate au
- Individual choices: I_t^i , K_t^i , L_t^i , B_t^i , D_t^i
- ullet Aggregates: investment $I_t=\int I_t^i di$ etc

Optimal choice models: a firm example

Optimal choice problem

$$\max_{\left\{I_{t}^{i}, K_{t}^{i}, L_{t}^{i}, B_{t}^{i}, D_{t}^{i}\right\}_{t=0}^{T}} E_{0} \left[\sum_{t=0}^{T} M_{0}^{t} D_{t}^{i} \right]$$

$$D_t^i = Z_t^i (K_t^i)^{lpha_i} (L_t^i)^{1-lpha_i} - w_t L_t^i + q_t B_t^i - B_{t-1}^i - I_t^i - axes$$
 $K_{t+1}^i = (1-\delta_i) K_t^i + I_t^i, \qquad D_t^i \geq 0, \qquad B_t^i \leq \phi K_{t+1}^i$

- Parameters
 - parameters describing distribution of $((M_0^t), q_t, w_t, (Z_t^i)_{i \in I_t})$
 - ullet other individual specific parameters: deprec rate δ_i , capital share $lpha_i$
 - ullet other common parameters: tax rate au

• What changes if we allow the option to default?

Optimal choice models: general notation

- ullet Discrete time, probability Pr in background, agents $i \in I_t$
- Exogenous variables $x_t = (x_t^0, (x_t^i)_{i \in I_t})$
 - ullet individual specific $x_t^i \in X_t^i$: aggregate $x_t^0 \in X_t^0$
 - "exogenous" is context-specific e.g. weather!
- Fixed parameters $\theta = (\theta^{\mathsf{x}}, (\theta^i)_{i \in \cup_t I_t}, \theta^0) \in \Theta$
 - parameters θ^{x} describing distribution of x_t (incl. correlation!)
 - ullet individual characteristics $heta^i$: risk aversion, beliefs, technology
 - ullet common $heta^0$: maximal LTV ratio, bankruptcy cost, tax rates
- Individual choice over horizon T (may depend on i!)
 - histories $x^t = (x_{\underline{0}}, ..., x_t) \in \times_t X_t$
 - actions $a=(a_t)_{t=0}^T$, $a_t:X^t\to A_t$: C & savings; sales, I, leverage
 - constraints $a_t \in C_t^i(x^t, a^{t-1}; \theta)$: budget, borr. const., cap. accum.
- Objective function $U_t(a; x^t, a^{t-1}, \theta)$
 - describes ranking of plans from x^t on: utility, shareholder value,...
 - ullet may reflect beliefs $eq \mathsf{Pr}$; dependence on a^{t-1} from nonseparability
- Information structure: measurability restrictions on C_t^i, U_t^i

Optimal choice models & data

Content of model

$$((x_{\tau}^0, x_{\tau}^i,)_{\tau=0}^t, \theta) \Rightarrow \text{ optimal choices } a_t^i$$

- find mapping by solving agent optimization problems
- Quantitative analysis with micro data
 - Inputs
 - ullet parameters heta
 - initial conditions for x and past as (or sufficient state variables)
 - Outputs
 - distribution of a given $x, \theta \rightarrow \text{joint distribution of } x \text{ and } a$
 - · optimal choice restricts joint distribution
- Comparison model vs data
 - form moments of x and a in cross section & time series
 - savings & portfolio composition by household over time
 - investment, leverage, payout by firm over time
- Once we have the mapping: counterfactuals

Optimal choice models: numbers

- What can be done before computing the model?
 - if xs observable, fit parametric distribution to x data \rightarrow part of θ^{x}
 - some other elements from literature or direct observation;
 e.g. factor shares, maximal LTV values
- Unobservable x
 - specify parametric distribution
- ullet Finding other parameters in heta
 - select set of target moments from distribution of x and a
 - \bullet infer θ by comparing model & data moments
 - form distance function & minimize (calibration, estimation or mix)
- Identification of parameters
 - exploit variation in choices
- Measures of success
 - degree of data compression
 - plausibility of structure (interpret of data through lens of a model)

Optimal choice problems: numbers ctd.

- Extra assumption that deliver parsimony
 - rational expectations
 - ullet tightly relates U_t and P_t
 - requires "probabilistically sophisticated" preferences
 - stationarity: x transitions & decision rules independent of calendar time → stronger identification from time series variation
- Use of univariate linear regression
 - observe exogenous variable z_t orthogonal to other xs
 e.g. construct z by projection (IV)
 - ullet identify derivative of optimal action function da_t/dz_t locally
 - provides information about model fit & sometimes directly delivers parameter of interest
 - info content depends on model structure
- Beware of nonlinearities (orange juice futures!)

General equilibrium: an example

- Asset pricing with heterogeneous agents
 - income & assets as in household problem before
 - assume infinite horizon $T = \infty$
 - · competitive equilibrium
 - all agents maximize utility given prices + price & income expectations
 - market clearing: bonds $\int b_t^i di = 0$, stocks $\int s_t^i di = 1$, goods
- Rational expectations equilibrium without aggregate risk
 - suppose dividends deterministic, income shocks idiosyncratic
 - cash on hand is only endogenous state variable needed
 - steady state: interest rate, stock price + distribution for cash on hand
 - transition: moving from initial asset distribution to new steady state
 - e.g. unanticipated shock that tightens borrowing limits
- Rational expectations equilibrium with aggregate risk
 - suppose dividends stochastic and/or aggregate component in income
 - assume stationary processes for x, find stationary equilibrium process for x, prices & wealth distribution
 - ullet time varying risk premia as wealth shifts between agents with diff. γ_i s

General equilibrium models: general notation

- Additional endogenous variables y_t
 - prices, aggregates,...
 - in constraints $C_t^i(x^t, a^{t-1}, y^t; \theta)$: price in budget, collateral constraint
 - in objective function $U_t(a; x^t, a^{t-1}, y^t, \theta)$: externalities (habit, knowledge spillover)
 - objective function must detail expectations about future y_t
 - determined by agents' interaction $y_t = G\left((a_{\tau}^i)_{\tau=0}^t, x^t, y^{t-1}, \theta\right)$
- Flavors of interaction
 - competitive equilibrium
 - equilibrium of a game
 - hybrid (e.g. search models)
- Definition of equilibrium contains optimal choice given y!
- Content of model

$$(x_{\tau}^{0})_{\tau=0}^{t}, (y_{t})_{\tau=0}^{t-1}, \theta, \left\{ (x_{\tau}^{i},)_{\tau=0}^{t}, (a_{\tau}^{i})_{\tau=0}^{t-1}) \right\}_{i \in I_{t}} \Rightarrow \text{ choices } a_{t}^{i} \& y_{t}$$

Example second year papers

- Tim Landvoigt (RFS 2016)
 - household behavior in boom: optimism or lax credit constraints?
 - optimal savings & portfolio choice with collateral constraints
 - allow for general beliefs about housing returns
 - fit to wealth holding in SCF 2001 and 2007
- Juliane Begenau & Juliana Salomao (RFS 2019)
 - firm financing by size over the business cycle
 - optimal investment, payout & capital structure with endogenous default
 - fit to Compustat data on quantities
- Edison Yu (JET 2018)
 - information aggregation in markets, volume & prices
 - dynamic GE model of asset trading; two agents of different sophistication
 - relate to data on institutional trading & returns

Stanford flyouts, winter 2020

- GSB Finance January 15: Geoffrey Zheng
 - overlapping generations of heterogenous households
 - role of incumbents vs new entrants in evolution of inequality?
- GBS Finance January 22: Chen Lian
 - investors who misperceive their tradable wealth
 - puzzles about response of consumption to income shocks?
- Econ January 28: Christian Wolf
 - GE effects of government transfers with heterogenous households or firms
 - in what economies can they be measured with reduced form tools?
- Econ February 4: Adrien Bilal
 - what explains regional unemployment & job losing rates?
 - heterogenous firms sort into heterogenous locations

Three families of agents, three literatures

- 4 Households
- 2 Firms
- Investors

Common themes across literatures

- Inequality
 - long run distribution of wealth / size depends on shocks, opportunity sets
- Systematic life cycle patterns
 - cross section: consumption / payout, savings/ investment /financing
 - time series: slow moving trends (demographics, market structure)
- Distributional dynamics over the business cycle
 - time variation in volatility, skewness of income, employment etc.
- Financial frictions
 - misallocation (opportunities vs funding)
 - debt & propagation: originally firms, now investors, households
- Risk sharing
 - asset structure shapes gains from trade

Households

- Data
 - Panel Study of Income Dynamics, Survey of Consumer Finances
 - international data, e.g. European HFCS
- Key questions
 - sources of inequality (consumption, income, wealth)
 - household finance (participation & portfolio choice by group)
 - policy & risk sharing (social security, welfare progams)
- Tools
 - choice models & competitive models with frictions
- Gaps
 - making sense of risky assets with volatile prices
 - beyond "economic" characteristics
- Recent survey papers
 - risk sharing & inequality Krueger-Mitman-Perri 16
 - household finance: Campbell 12
 - aging: De Nardi 16
 - survey expectations: Manski 17

Housing & mortgage debt

- Data
 - CoreLogic transaction & assessor data
 - HMDA mortgage applications
- Key questions
 - · determination of house prices
 - household debt overhang, business cycle & policy responses
 - mortgage design, securitization & government subsidies
- Tools
 - as above, but increasingly also search models
- Gaps
 - as above + supply side & volume
 - international evidence
- Recent survey papers
 - Piazzesi-Schneider 16, Han-Strange 15 (search), Campbell 16

Firms

- Data
 - Compustat
 - Census data (public use + restricted data from census data center)
- Key questions
 - size distribution
 - investment, payout & capital structure in the cross section
 - cross section of returns & firm characteristics
- Gaps
 - what is a firm: beyond production functions or entrepreneurs
 - mergers
- Recent survey papers
 - firm size distribution & misallocation: Hopenhayn 16
 - corporate finance: Strebulaev-Whited 2012

Investors

- Data
 - Prices: CRSP, FISD, Bloomberg...
 - Positions: Financial Accounts of the US, Call Reports, Dealscan, TAQ
- Key questions
 - excess volatility of asset prices & predictability of excess returns
 - connection prices & investor choice (households, institutions)
 - macroprodential regulation
 - monetary policy & asset prices
- Gaps
 - volume, prices & positions; networks
- Recent survey papers
 - asset pricing: Cochrane 12
 - institutions: active literature

More sources

- Elsevier handbooks
- Annual Reviews of Econ, Fin Econ
- Journal of Economic Perspectives
- Journal of Economic Literature
- google scholar

New themes?

- Financial literacy & endogenous information acquisition
- Belief formation & survey data
- Corporate governance
- Flavors of intermediation, segmentation & asset pricing
- Geography within countries (or cities)
- Climate & environment