<u>Задача 9-2</u>

В книге Ильи Леенсона «Язык химии» приведено следующее описание металлов X, Y и Z:

X: греки называли его *molybdos* (См. Z). Происхождение слова «X» неясно. Самое удивительное здесь то, что в большинстве славянских языков X называется... Y! Вещество A — желтый оксид элемента X — издавна использовали в качестве желтого пигмента, название которого происходит от итал. marzacotta — «гончарная лазурь» (слово арабского происхождения).

Y: в древнем Риме Y называли «белым X». Возможно «Y» – от греч. άλφός; это слово означает «белый». По-видимому, от этого и произошло слово «Y», что указывало на цвет металла. Древнегреческое название Y (*kassiteros*) дало также название минералу B.

 ${f Z}$: по-гречески molybdos — « ${f X}$ », отсюда лат. Molibdaena — так в Средние века называли и ${f X}$ `овый блеск (вещество ${f C}$) и более редкий ${f Z}$ `вый блеск (вещество ${f D}$), и другие похожие минералы, оставлявшие черный след на бумаге, в том числе графит.

1. Напишите символы элементов X, Y, Z.

Несмотря на известность \mathbf{D} с древних времен, сам элемент \mathbf{Z} был открыт лишь в конце XVIII столетия. Карл Шееле выделил в чистом виде оксид нового элемента, который образуется в результате сгорания \mathbf{D} на воздухе. При этом из 10.00~ г \mathbf{D} можно получить до 9.00~ г оксида, в качестве продукта реакции также образуется бесцветный газ \mathbf{E} с резким, неприятным запахом и плотностью 2.86~ г/л при н.у.

2. Напишите формулы веществ ${\bf A} - {\bf D}$ и уравнение реакции сгорания ${\bf D}$.

Элементы X и Y известны человечеству настолько давно, что теперь уже невозможно установить их первооткрывателя. Ещё в древнем Риме использовали припой, содержащий 1 часть (по массе) X и y частей Y. Состав этого припоя очень близок к составу смеси с минимальной температурой плавления равной 183 °C.

Навеску такого припоя массой 1.000 г полностью растворили в избытке горячей соляной кислоты. К образовавшемуся раствору добавили сульфида натрия до полного выделения осадка, при этом масса образовавшегося осадка составила 1.231 г.

- 3. Напишите уравнения реакций растворения припоя в соляной кислоте и все реакции, протекающие при добавлении сульфида натрия к упомянутому раствору. Будет ли наблюдаться выпадение осадка при использовании недостатка сульфида натрия. Если да, то каков будет его состав?
 - **4**. Рассчитайте значение *v*.
- 5. Как называются расплавы с наименьшей температурой кристаллизации?

Решение задачи 9-2 (авторы: Романов А.С.)

- 1. Учитывая древнюю историю элемента X (его знали даже древние греки!), низкая температура плавления, компонент припоя получаем, что X = Pb. Известно, что свинец часто путали с оловом (не просто путали, а не различали), то Y = Sn. Исходя из греческого названия очевидно, что Z = Mo.
- **2.** Почти всегда «блеском» называют сульфидные минералы, значит скорее всего свинцовый блеск $\mathbf{C} = \mathbf{PbS}$, молибденовый блеск $\mathbf{D} = \mathbf{MoS_2}$. Единственный жёлтый оксид свинца $\mathbf{A} = \mathbf{PbO}$. Олово встречается в виде минерала касситерита $\mathbf{B} = \mathbf{SnO_2}$. Напишем уравнение сгорания сульфида молибдена(IV):

$$2\text{MoS}_2 + 7\text{O}_2 \xrightarrow{\text{t °C}} 2\text{MoO}_3 + 4\text{SO}_2.$$

Таким образом $\mathbf{E} = \mathbf{SO}_2$, что можно подтвердить расчётом молярной массы с помощью плотности: $M(\mathbf{E}) = 22,4\cdot2,86 = 64$ г/моль.

3. Напишем уравнения реакций растворения припоя в соляной кислоте и реакции с сульфидом натрия:

$$\begin{split} Pb + 2HCl &\xrightarrow{t \, ^\circ C} PbCl_2 + H_2 \text{ или } Pb + 4HCl \xrightarrow{t \, ^\circ C} H_2[PbCl_4] + H_2 \\ Sn + 2HCl &\xrightarrow{t \, ^\circ C} SnCl_2 + H_2 \text{ или } Sn + 3HCl \xrightarrow{t \, ^\circ C} H[SnCl_3] + H_2 \\ PbCl_2 + Na_2S &\to PbS \downarrow + 2NaCl \text{ или } H_2[PbCl_4] + 2Na_2S &\to PbS \downarrow + 4NaCl + H_2S, \\ SnCl_2 + Na_2S &\to SnS \downarrow + 2NaCl \text{ или } 2H[SnCl_3] + 3Na_2S &\to 2SnS \downarrow + 6NaCl + H_2S, \\ Na_2S + 2HCl &\to H_2S + 2NaCl. \end{split}$$

При добавлении недостатка сульфида натрия среда в растворе будет кислой и будет наблюдаться выпадение осадка сульфида свинца, поскольку последний нерастворим в кислотах неокислителях.

Масса выпавших сульфидов составляет 1.231 г. Составим систему уравнений, принимая во внимание, что в исходной смеси m(Pb) = a, m(Sn) = b:

$$\begin{cases} a+b = 1.000 \\ \frac{a}{207} \cdot 239 + \frac{b}{119} \cdot 151 = 1.231 \end{cases}$$

Решая систему, находим $a\approx 1/3,\,b\approx 2/3$. Отсюда находим y=2.

Расплавы с наименьшей температурой кристаллизации называются эвтектическими.

Система оценивания:

1.	Символы элементов X, Y, Z по 1 баллу.	3 балла
2.	Формулы веществ $A - D$ и уравнение реакции сгорания по 1	5 баллов
	баллу	3 Ualliub
3.	Уравнения реакций олова и свинца с соляной кислотой,	7 баллов
	уравнения реакций хлоридов металлов и сульфида натрия,	
	а также реакция сульфида натрия с соляной кислотой – по 1	
	баллу.	
	Расчёт состава припоя – 1 балл.	
	Название расплавов – 1 балл.	
	ИТОГО:15 баллов	