Algebraic geometry 1 Exercise sheet 9

Solutions by: Eric Rudolph and David Čadež

11. Dezember 2023

Exercise 2.

1. Suppose we have a vector bundle of rank n on \mathbb{P}^1_k . How do we construct a matrix $\in \mathrm{GL}_n(k[T^{\pm 1}])$?

Take a rank n vector bundle \mathcal{E} . Since Picard group of U_0 and U_1 are trivial, we have isomorphisms α, β . So on $\operatorname{Spec}(k[T^{\pm 1}]) \subseteq U_0$ we have an isomorphism $\Gamma(U_0 \cap U_1, \mathcal{O}_{U_0}^n) = (k[T^{\pm 1}])^n \cong \mathcal{E}(U_0 \cap U_1)$.

Combining this with an isomorphism $\mathcal{E}(U_0 \cap U_1) \cong (k[T^{\pm 1}])^n = \Gamma(U_0 \cap U_1, \mathcal{O}_{U_1}^n)$, we get an isomorpism $(k[T^{\pm 1}])^n \cong (k[T^{\pm 1}])^n$.

Let \mathcal{D} be another rank n vector bundle on \mathbb{P}^1_k , and let $\varphi \colon \mathcal{E} \to \mathcal{D}$ be an isomorphism between them. On U_0 and U_1 we get induced isomorphisms

$$(k[T])^n = \mathcal{E}(U_0) \to \mathcal{D}(U_0) = (k[T])^n$$

and

$$(k[T^{-1}])^n = \mathcal{E}(U_1) \to \mathcal{D}(U_1) = (k[T^{-1}])^n$$

2. Take $G = \begin{pmatrix} p_1 & p_2 \\ p_3 & p_4 \end{pmatrix} \in \mathrm{GL}_n(k[T^{\pm 1}])$. We can writte each $p_i = \frac{g_i}{T^{k_i}}$ for some $g_i \in k[T]$. We can take $k_i = k$ to be all the same. Then

$$\begin{pmatrix} p_1 & p_2 \\ p_3 & p_4 \end{pmatrix} = \begin{pmatrix} T^{-k} & 0 \\ 0 & T^{-k} \end{pmatrix} \begin{pmatrix} g_1 & g_2 \\ g_3 & g_4 \end{pmatrix} = \tag{1}$$

3.