3. CURVE SKETCHING

- 1. Find all the values of x giving the zeros and the maxima and minima of the function $f: x \to 2 \sin x + \sin 2x$ $(0 \le x \le 4\pi)$. Give a sketch of the graph of the function. (J72/I/5)
- 2. Expand $\frac{9}{(3+h)^3} \frac{(4+h)^{\frac{5}{2}}}{16}$ in ascending powers of h as far as the term in h^2 .

Hence, or otherwise, sketch the graph of $y = \frac{9}{(x+2)^3} - \frac{(x+3)^{\frac{5}{2}}}{16} + \frac{5}{3}$

in the neighbourhood of x = 1, giving a clear indication of the concavity of the curve there. (J73/I/1)

3. Express $f(x) = \frac{3x-1}{x^2(x-3)}$ in partial fractions.

Show that the curve of y = f(x) has only one stationary point and determine its nature. Sketch the curve. (N73/I/2)

- 4. Prove that the cubic curve, $y = a(x^3 3h^2x)$, where a and h are real, non-zero constants, has
 - (a) a point of inflexion, C (whose co-ordinates should be stated),
 - (b) two distinct turning points, A and B (whose coordinates should be stated),
 - (c) point symmetry about C.

Prove also that the tangent to the curve at each of the points P, $x = \frac{1}{2}h$, and Q, $x = \frac{1}{2}h$

 $-\frac{1}{2}h$, passes through a turning point.

Which, if any, of the above properties (a), (b), (c), are true for the general cubic curve $y = ax^3 + bx^2 + cx + d$? (N73/II/1)

5. If $y = \frac{9}{x+1} - \frac{1}{x-1}$, obtain expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Find the stationary values of y.

Show that there is only one point of inflexion and that this occurs for a value of x lying between 2 and 3. Sketch the graph of y against x. (J74/I/6)

6. Show that x-3 is a factor of x^3-x^2+x-21 . Find the point of inflexion of the curve $y=x^3-x^2+x-21$.

Draw the graph of this curve paying particular attention to the nature of the curve at its point of inflexion. Sketch the graph of $y = \frac{1}{x^3 - x^2 + x - 21}$ (N74/I/2)

7. A curve has the parametric equations $x = b \cot \theta$, $y = a \sec \theta$ ($0 < \theta < \frac{1}{2}\pi$).

Determine in any form the equation of the tangent at the point P where $\theta = \alpha$. If this tangent meets the x-axis at G, and F is the foot of the perpendicular from P to Ox, find the area of triangle PFG. (N74/I/8)

- 8. Sketch the boundary curves and shade the solution space for the non-linear inequalities $x+1 \ge y^2$ and $x^2+y^2 \le 7$. Find the greatest value of the expression E=3y+2x subject to the given inequalities. Some attempt to justify that your solution is the greatest value should be given. (N74/II/7)
- 9. Show that the expression $y = \frac{4x^2 + 4x + 21}{4x + 3}$ (x real), cannot take values between -5 and 4. Find the coordinates of the turning points of the graph of y against x. Sketch the graph. (N74/II/8)
- 10. Find all the zeros and stationary points of the function $f: x \cos 2x + 4 \cos x 1$, $(0 \le x \le 4\pi)$. Sketch the graph of the function f. (J75/I/6)
- 11. Express $y = \frac{-x^2 + x + 5}{x^2 x 2}$ in partial fraction form. Show that y cannot take values in the interval $-\frac{7}{3} < y < -1$.

Sketch the graph of y. (N75/I/1)

12. Find the stationary points of the function

 $f: x - \frac{(x+1)^4}{x^4+1}$ (x \epsilon R, the set of all real numbers).

Sketch the graph of f.

Determine the dependence of the number of real roots of the equation $(x+1)^4 = a(x^4+1)$ on the value of the real number a. (J76/I/6)

13. Sketch the sets

 $A = \{(x, y): x \in \mathbb{R}, y \in \mathbb{R} \text{ and } y \le x + 1\},\ B = \{(x, y): x \in \mathbb{R}, y \in \mathbb{R} \text{ and } x^2 + y^2 \le 5\}$ in the plane. (R is the set of all real numbers.) The function f is defined on $A \cap B$ by f(x, y) = 3x + y. Show that the maximum value of f is $5 \lor 2$. (J76/II/8)

14. A curve has parametric equations $x=t-\frac{1}{t}, y=t+\frac{1}{t}, (t \in \mathbb{R})$ (the set of real numbers), $t \neq 0$). Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t.

Sketch the graph of the curve, indicating clearly the coordinates of the points at which the tangent to the curve is parallel to the x-axis. (J77/I/6)

15. (a) Sketch the graph of $y = \frac{4x-1}{x+5}$

Hence, or otherwise, find the set of values of x for which $-1 < \frac{4x-1}{x+5} < 1$.

- (b) Find the set of values of x for which $3x^3 + 2x^2 + 6 \ge 19x$. (J80/I/1)
- 16. Sketch the curve with equation $y = x^3(1-x^2)$. Hence, or otherwise, sketch the curve with equation $y^2 = x^3(1-x^2)$. Show that, if the line y = ax is to touch the curve $y^2 = x^3(1-x^2)$ at a point other than the origin, then $a^2 = (2\sqrt{3})/9$. (J80/I/5)

17. By considering $y = \frac{x-3}{(x-2)(x+1)}$ as a quadratic equation in x, or otherwise, prove that for real values of x the value of y cannot lie between $\frac{1}{9}$ and 1.

Find the values of x for which $y = \frac{1}{9}$ and y = 1, and sketch the graph given by the above equation. (N83/I/1)

Write down the equations of asymptotes of the curve $y = x + \frac{4}{x^2}$ and give a sketch of the curve. (J86/I/4)

Obtain the equations of the asymptotes of the curve $y = \frac{x^2}{x+1}$, and give a sketch of the curve. (N86/I/1)

20. The curve C has equation $y = \frac{2x^2 + 3x + 1}{x - 1}$. (i) Verify that $y = 2x + 5 + \frac{6}{x - 1}$, and hence write down the equations of the

(ii) Show that $\frac{dy}{dx} = 0$ for just two values of x.

(iii) Draw a sketch of C (J87/I/1)

21. Write down the equations of the asymptotes of the curve $y = \frac{2x+1}{x-1}$, and sketch the graph of y.

In the same diagram, sketch the graph of $y = \frac{1}{x^2}$, and deduce, or prove otherwise, that the equation $2x^3 + x^2 - x + 1 = 0$ has exactly one real root. (N87/I/1)

22. The curve C has equation $y = 2x + 1 - \frac{5}{2x + 1}$.

(i) Write down the equations of the asymptotes of C.

(ii) Show that $\frac{dy}{dx}$ is positive at all points of C.

(iii) Draw a sketch of C.

(1/88/1/1)

23. The curve C has equation $y = \frac{(x-1)^2}{x+1}$.

(i) Obtain the equations of the asymptotes of C.

(ii) Show that C has two stationary points and find their coordinates.

(iii) Draw a sketch of C.

(iv) In the same diagram draw a sketch of the curve $y = -\frac{1}{x^2}$ and deduce that the equation $x^2(x-1)^2 + x + 1 = 0$ has no real roots. (N88/I/2)

24. Given that the curve $y = \frac{4 - ax^2}{b + x}$ has asymptotes x = -1 and y = 1 - x, find the values of a and b.

Show that, at all points of the curve, $\frac{dy}{dx}$ is negative. Sketch the curve.

(J89/I/1)

25. The curve C has equation $y = \frac{(x-1)^2}{x+1}$.

- Verify that $y = x 3 + \frac{4}{x + 1}$, and hence write down the equations of the asymptotes of C.
- (ii) Find the values of x for which $\frac{dy}{dx} = 0$.

(iii) Sketch C.

(N89/I/1)

- 26. The curve C has equation $y = \frac{x^2 + 3x}{x 1}$.
 - (i) Find the equations of the asymptotes of C.
 - (ii) Find the coordinates of the points C at which $\frac{dy}{dx} = 0$.
 - (iii) Draw a sketch of C.
 - (iv) In the same diagram, draw a sketch of the curve $y = (x 1)^2 + 3$ and hence find the number of real roots of the equation $x^3 4x^2 + 3x 4 = 0$.

(J90/I/I)

 $\sqrt{2}$. The curve C has equation $y = \frac{x^2 + 3}{x + 1}$.

- (i) Find the equations of the asymptotes of C.
- (ii) Find the values of x for which $\frac{dy}{dx} = 0$.
- (iii) Draw a sketch of C, marking the coordinates of the turning points.

(N90/I/1)