

Estatística I

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

Introdução

Gráficos para Variáveis Qualitativas

Gráfico de Barras

Gráfico de Pareto

Gráfico de Barras Empilhadas

Gráfico de Setores

Introdução

Gráficos e tabelas são uma constante em periódicos como jornais diários, revistas, periódicos técnicos e relatórios, acadêmicos ou não. Apesar disso, não existe uma teoria complexa sobre gráficos nos livros de Matemática e/ou Estatística. Na verdade, não existe muita teoria. No entanto, essa é uma parte essencial na formação de qualquer profissional. Na verdade, é essencial para a formação de qualquer cidadão.

As técnicas, os conceitos e o conteúdo sobre visualizações gráficas fazem parte da Estatística Descritiva e, conforme Unwin, 2015, é parte essencial da Análise de Dados.

As técnicas, os conceitos e o conteúdo sobre visualizações gráficas fazem parte da Estatística Descritiva e, conforme Unwin, 2015, é parte essencial da Análise de Dados.

Estatística Descritiva

A Estatística Descritiva emprega métodos numéricos e gráficos para investigar padrões em um conjunto de dados, resumir informações e apresentar resultados de maneira apropriada.

As técnicas, os conceitos e o conteúdo sobre visualizações gráficas fazem parte da Estatística Descritiva e, conforme Unwin, 2015, é parte essencial da Análise de Dados.

Estatística Descritiva

A Estatística Descritiva emprega métodos numéricos e gráficos para investigar padrões em um conjunto de dados, resumir informações e apresentar resultados de maneira apropriada.

Um Gráfico Estatístico é uma representação visual dos dados e, tem a vantagem de, rápida e concisamente, informar sobre sua variabilidade.

Cuidado!

Existem vários tipos e formatos de gráficos e, tanto a escolha quanto a forma como são visualizados podem ter uma influência importante nas conclusões tiradas em relação a análise dos dados. Não há limites para o número de possibilidades de interpretações. Isso significa que você precisa adquirir experiência na criação e visualização de gráficos para aprender a apreciar o que eles podem e não podem mostrar.

Cuidado!

Existem vários tipos e formatos de gráficos e, tanto a escolha quanto a forma como são visualizados podem ter uma influência importante nas conclusões tiradas em relação a análise dos dados. Não há limites para o número de possibilidades de interpretações. Isso significa que você precisa adquirir experiência na criação e visualização de gráficos para aprender a apreciar o que eles podem e não podem mostrar.

Não é o que você olha que importa, é o que você vê.

Henry David Thoreau

A utilização de gráficos com escalas truncadas ou manipuladas pode distorcer a percepção dos dados. Por exemplo, iniciar o eixo vertical (y) de um gráfico de barras em um valor diferente de zero pode exagerar diferenças entre categorias que, na realidade, são mínimas.

Cuidado!

Fonte: Wikipedia

Comparativo

Figura 1: O item C parece ser tão grande quanto o item A e o item D parece muito maior que o item B.

Figura 2: Na realidade, O item C é menos da metade do tamanho do item A. Os itens B e D são do mesmo tamanho.

Comparativo

Figura 3: Função exponencial $f(x) = 2^x$. Escala linear, mostrando claramente uma tendência exponencial.

Figura 4: Função exponencial $f(x) = 2^x$. Escala logarítmica, mostrando uma linha reta.

A depender do tipo de variável considerada, temos diferentes tipos de gráficos. Veremos alguns a partir de agora!

Gráficos para Variáveis

Qualitativas

Tomemos como ilustração a variável Y: grau de instrução da Tabela CompanhiaMB. Para organizar os dados provenientes de uma variável qualitativa, é usual fazer uma tabela de frequências, como a Tabela abaixo, antes de construir os gráficos.

Distribuições de Frequências

Tabela 1: Frequências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução.

Grau de	Frequência	Proporção	Porcentagem
instrução	n_i	f_i	100 <i>f</i> ;
Fundamental	12	0,3333	33,33
Médio	18	0,5000	50,00
Superior	6	0,1667	16,67
Total	36	1,0000	100,00

Fonte: Morettin e Bussab, 2017

O gráfico em barras consiste em construir retângulos ou barras, em que uma das dimensões é proporcional à magnitude a ser representada $(n_i \text{ ou } f_i)$, sendo a outra arbitrária, porém igual para todas as barras. Essas barras são dispostas paralelamente umas às outras, horizontal ou verticalmente. Na próxima Figura temos o gráfico em barras (verticais) para a variável "Grau de Instrução".

FIG 1: Gráfico em barras para a variável Y: grau de instrução.

FIG 1: Gráfico em barras para a variável Y: grau de instrução.

Os gráficos de barras são talvez o tipo de visualização de dados mais comumente usado. No entanto, para a representação de variáveis qualitativas, há também o gráfico de setores, popularmente conhecido como gráfico de pizza.

Gráfico de Pareto

Um gráfico de Pareto é um gráfico de barras em que as barras são ordenadas da maior frequência de ocorrência para a menor frequência de ocorrência. No gráfico de Pareto também acrescentamos uma linha acima das barras com a frequência acumulada da variável.

Gráfico de Pareto

Gráfico de Barras Empilhadas

Gráfico de Barras Empilhadas

Gráfico de Setores

O gráfico em setores é comumente utilizado para representar parte de um todo, geralmente em percentagens. Ele é bastante apropriado para mostrar frequências de ocorrências de variáveis qualitativas.

Gráfico de Setores

Tipo de Câmbio (Pacote mtcars)

Gráfico em setores para a variável Y: grau de instrução.

Fonte: Morettin (2017)

Um procedimento alternativo para resumir um conjunto de valores, com o objetivo de se obter uma idéia da forma de sua distribuição, é o ramo-e-folhas. Uma vantagem deste diagrama é que não perdemos (ou perdemos pouca) informação sobre os dados em si.

Diagrama de ramos e folhas para variáveis contínuas

Quando o número de observações é relativamente grande, este diagrama pode ser útil.

Tabela 2: Diagrama de Ramos e Folhas da idade

Ramo	Folhas																
2	0	3	5	6	6	7	8	9									
3	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	9
4	0	0	1	1	2	3	3	4	6	8							

Tabela 3: Diagrama de Ramos e Folhas dos Salários (× sal. Min)

Ramo	Folhas							
4	00	56						
5	25	73						
6	26	66	86					
7	39	44	59					
8	12	46	74	95				
9	13	35	77	80				
10	53	76						
11	06	59						
12	00	79						
13	23	60	85					
14	69	71						
15	99							
16	22		61					
17	26							
18	75							
19	40							
20 Fernando	de Souza	Bastos						

1. Há um destaque grande para o valor 23,30.

- 1. Há um destaque grande para o valor 23,30.
- 2. Os demais valores estão razoavelmente concentrados entre 4,00 e 19,40.

- 1. Há um destaque grande para o valor 23,30.
- 2. Os demais valores estão razoavelmente concentrados entre 4,00 e 19,40.
- 3. Um valor mais ou menos típico para este conjunto de dados poderia ser, por exemplo, 10,00.

- 1. Há um destaque grande para o valor 23,30.
- 2. Os demais valores estão razoavelmente concentrados entre 4,00 e 19,40.
- 3. Um valor mais ou menos típico para este conjunto de dados poderia ser, por exemplo, 10,00.
- 4. Há uma leve assimetria em direção aos valores grandes; a suposição de que estes dados possam ser considerados como amostra de uma população com distribuição simétrica, em forma de sino (a chamada distribuição normal), pode ser questionada.

Referências

Referências

- Morettin, Pedro Alberto e Wilton Oliveira Bussab (2017). Estatística básica. Saraiva Educação.
- Peternelli, Luiz Alexandre (s.d.). *Apostila (EST 106)*. Formato slide Disponível no PVANet Moodle.
- Unwin, Antony (2015). *Graphical data analysis with R.* Vol. 27. CRC Press.