In [64]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb

In [65]: df=pd.read_csv("E:/Full Stack Data Scientist Bootcamp/project resources-2023

In [66]: **df**

Out[66]: Car_Name Year Selling_Price Present_Price Kms_Driven Fuel_Type Se 0 ritz 2014 3.35 5.59 27000 Petrol 1 sx4 2013 4.75 9.54 43000 Diesel 2 ciaz 2017 7.25 6900 Petrol 9.85 3 wagon r 2011 2.85 5200 Petrol 4.15 4 swift 2014 4.60 6.87 42450 Diesel 296 city 2016 9.50 11.60 33988 Diesel 297 5.90 brio 2015 4.00 60000 Petrol 298 city 2009 11.00 87934 Petrol 3.35 299 city 2017 11.50 12.50 9000 Diesel

 $301 \text{ rows} \times 9 \text{ columns}$

brio 2016

```
In [67]: df.columns
```

300

5.30

5.90

5464

Petrol

In [68]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 301 entries, 0 to 300
        Data columns (total 9 columns):
                            Non-Null Count Dtype
             Column
        - - -
             -----
                            -----
         0
            Car Name
                            301 non-null
                                            object
         1
                            301 non-null
                                            int64
            Year
         2
             Selling_Price 301 non-null
                                            float64
         3
             Present Price 301 non-null
                                            float64
            Kms Driven
         4
                            301 non-null
                                            int64
         5
             Fuel_Type
                            301 non-null
                                            object
         6
             Seller Type
                            301 non-null
                                            object
         7
             Transmission
                            301 non-null
                                            object
         8
             0wner
                            301 non-null
                                            int64
        dtypes: float64(2), int64(3), object(4)
        memory usage: 21.3+ KB
        df.isna().sum()
In [69]:
                          0
Out[69]: Car Name
         Year
                          0
         Selling Price
                          0
         Present Price
                          0
         Kms Driven
                          0
         Fuel Type
                          0
         Seller Type
                          0
         Transmission
                          0
         0wner
                          0
         dtype: int64
In [70]: df['Car Name'].value counts()
Out[70]: city
                                     26
         corolla altis
                                     16
                                     14
         verna
         fortuner
                                     11
         brio
                                     10
                                     . .
         Honda CB Trigger
                                      1
         Yamaha FZ S
                                      1
         Bajaj Pulsar 135 LS
                                      1
         Activa 4g
                                      1
         Bajaj Avenger Street 220
                                      1
         Name: Car Name, Length: 98, dtype: int64
In [71]: df.head()
```

Out[71]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Selle
	0	ritz	2014	3.35	5.59	27000	Petrol	
	1	sx4	2013	4.75	9.54	43000	Diesel	
	2	ciaz	2017	7.25	9.85	6900	Petrol	
	3	wagon r	2011	2.85	4.15	5200	Petrol	
	4	swift	2014	4.60	6.87	42450	Diesel	

In [72]: df.groupby(['Car_Name','Year','Selling_Price','Present_Price','Kms_Driven','

Out[72]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Sell
	0	800	2003	0.35	2.280	127000	Petrol	- Iı
	1	Activa 3g	2008	0.17	0.520	500000	Petrol	lı
	2	Activa 3g	2016	0.45	0.540	500	Petrol	Iı
	3	Activa 4g	2017	0.40	0.510	1300	Petrol	lı
	4	Bajaj ct 100	2015	0.18	0.320	35000	Petrol	lı
	5	Bajaj Avenger 150	2016	0.75	0.800	7000	Petrol	lı
	6	Bajaj Avenger 150 street	2016	0.60	0.800	20000	Petrol	lı
	7	Bajaj Avenger 220	2016	0.72	0.950	500	Petrol	lı
	8	Bajaj Avenger 220	2017	0.75	0.950	3500	Petrol	lı
	9	Bajaj Avenger 220	2017	0.90	0.950	1300	Petrol	lı
	10	Bajaj Avenger 220 dtsi	2010	0.45	0.950	27000	Petrol	li
	11	Bajaj Avenger 220 dtsi	2015	0.60	0.950	16600	Petrol	lı
	12	Bajaj Avenger Street 220	2011	0.45	0.950	24000	Petrol	li
	13	Bajaj Discover 100	2013	0.27	0.470	21000	Petrol	lı
	14	Bajaj Discover 125	2011	0.15	0.570	35000	Petrol	lı
	15	Bajaj Discover 125	2012	0.20	0.570	25000	Petrol	lı
	16	Bajaj Dominar 400	2017	1.45	1.600	1200	Petrol	li
	17	Bajaj Pulsar NS 200	2014	0.60	0.990	25000	Petrol	lı

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Sell
18	Bajaj Pulsar 135 LS	2014	0.40	0.640	13700	Petrol	lı
19	Bajaj Pulsar 150	2006	0.10	0.750	92233	Petrol	lı
20	Bajaj Pulsar 150	2008	0.20	0.750	60000	Petrol	Iı
21	Bajaj Pulsar 150	2008	0.25	0.750	26000	Petrol	lı
22	Bajaj Pulsar 150	2015	0.65	0.740	5000	Petrol	li
23	Bajaj Pulsar 220 F	2010	0.52	0.940	45000	Petrol	lı
24	Bajaj Pulsar 220 F	2016	0.51	0.940	24000	Petrol	lı
25	Bajaj Pulsar NS 200	2012	0.45	0.990	14500	Petrol	lı
26	Bajaj Pulsar NS 200	2012	0.50	0.990	13000	Petrol	lı
27	Bajaj Pulsar NS 200	2013	0.50	0.990	45000	Petrol	lı
28	Bajaj Pulsar RS200	2016	1.05	1.260	5700	Petrol	lı
29	Hero CBZ Xtreme	2008	0.20	0.787	50000	Petrol	li
30	Hero Ignitor Disc	2013	0.20	0.650	24000	Petrol	lı
31	Hero Extreme	2013	0.65	0.787	16000	Petrol	li
32	Hero Extreme	2014	0.55	0.787	15000	Petrol	li
33	Hero Glamour	2013	0.25	0.570	18000	Petrol	lı
34	Hero Honda CBZ extreme	2011	0.38	0.787	75000	Petrol	lı
35	Hero Honda	2012	0.30	0.510	60000	Petrol	lı

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Sell
	Passion Pro						
36	Hero Hunk	2007	0.20	0.750	49000	Petrol	lı
37	Hero Passion Pro	2015	0.40	0.550	6700	Petrol	lı
38	Hero Passion Pro	2016	0.45	0.550	1000	Petrol	lı
39	Hero Passion X pro	2016	0.50	0.550	31000	Petrol	lı
40	Hero Splender Plus	2016	0.30	0.480	50000	Petrol	lı
41	Hero Splender iSmart	2015	0.40	0.540	14000	Petrol	lı
42	Hero Splender iSmart	2016	0.45	0.540	14000	Petrol	lı
43	Hero Super Splendor	2005	0.20	0.570	55000	Petrol	Iı
44	Honda Activa 125	2016	0.35	0.570	24000	Petrol	Ī.
45	Honda Activa 4G	2017	0.45	0.510	4000	Petrol	lı
46	Honda Activa 4G	2017	0.48	0.510	4300	Petrol	Iı
47	Honda CB Hornet 160R	2016	0.60	0.870	15000	Petrol	lı
48	Honda CB Hornet 160R	2017	0.75	0.870	11000	Petrol	lı
49	Honda CB Hornet 160R	2017	0.80	0.870	3000	Petrol	lı
50	Honda CB Shine	2007	0.12	0.580	53000	Petrol	Iı
51	Honda CB Shine	2013	0.30	0.580	30000	Petrol	Iı
52	Honda CB Trigger	2013	0.42	0.730	12000	Petrol	Iı
53	Honda CB Unicorn	2015	0.38	0.720	38600	Petrol	Iı

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Sell
54	Honda CB twister	2010	0.16	0.510	33000	Petrol	lı
55	Honda CB twister	2013	0.25	0.510	32000	Petrol	li
56	Honda CBR 150	2013	0.60	1.200	32000	Petrol	li
57	Honda CBR 150	2014	0.65	1.200	23500	Petrol	li
58	Honda Dream Yuga	2017	0.48	0.540	8600	Petrol	lı
59	Honda Karizma	2010	0.31	1.050	213000	Petrol	Iı
: df	[df['Car Namo	a!l!	200 i 1				
. 01	[ui[cai_waiii	=]==	900]				
:	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Sell
37	800	2003	0.35	2.28	127000	Petrol	- Iı

In [73]

Out[73]

In [74]: df1=pd.concat([df,df],axis=0)

df1 In [75]:

Car_Name Year Selling_Price Present_Price Kms_Driven Fuel_Type Out[75]: 0 ritz 2014 3.35 5.59 27000 Petrol sx4 2013 4.75 9.54 43000 Diesel 2 ciaz 2017 7.25 9.85 6900 Petrol 3 wagon r 2011 2.85 4.15 5200 Petrol 4 swift 2014 4.60 6.87 42450 Diesel 296 city 2016 9.50 11.60 Diesel 33988 297 5.90 brio 2015 4.00 60000 Petrol 298 city 2009 3.35 11.00 87934 Petrol 11.50 299 city 2017 9000 12.50 Diesel 300 brio 2016 5.90 5.30 5464 Petrol

 $602 \text{ rows} \times 9 \text{ columns}$

In [76]: dfl.groupby(['Car_Name','Year','Selling_Price','Present_Price','Kms_Driven',

Out[76]:	Car_Name	299
	Year	299
	Selling_Price	299
	Present_Price	299
	Kms_Driven	299
	Fuel_Type	299
	Seller_Type	299
	Transmission	299
	0wner	299
	0	299
	dtype: int64	

In [77]: **df**

t[77]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Se
	0	ritz	2014	3.35	5.59	27000	Petrol	
	1	sx4	2013	4.75	9.54	43000	Diesel	
	2	ciaz	2017	7.25	9.85	6900	Petrol	
	3	wagon r	2011	2.85	4.15	5200	Petrol	
	4	swift	2014	4.60	6.87	42450	Diesel	
	296	city	2016	9.50	11.60	33988	Diesel	
	297	brio	2015	4.00	5.90	60000	Petrol	
	298	city	2009	3.35	11.00	87934	Petrol	
	299	city	2017	11.50	12.50	9000	Diesel	

5.90 5464

Petrol

301 rows \times 9 columns

300 brio 2016 5.30

In [78]: df=df.drop('Car_Name',axis=1)

In [79]: **df**

Out[79]:		Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	т		
	0	2014	3.35	5.59	27000	Petrol	Dealer			
	1	2013	4.75	9.54	43000	Diesel	Dealer			
	2	2017	7.25	9.85	6900	Petrol	Dealer			
	3	3 2011 2.85 4.15 5200 Petrol Dealer								
	4	4 2014 4.60 6.87 42450 Diesel Dealer								
	•••									
	296	2016	9.50	11.60	33988	Diesel	Dealer			
	297	2015	4.00	5.90	60000	Petrol	Dealer			
	298	2009	3.35	11.00	87934	Petrol	Dealer			
	299	2017	11.50	12.50	9000	Diesel	Dealer			
	300	2016	5.30	5.90	5464	Petrol	Dealer			
	301 rd	ows ×	8 columns							
In [80]:	<pre># Which arre the categroical feature in our data set # i think the Fuel_Type, Transsmission, Owner, Seller_Type # are the Categorical Column in Our dataste # so count and see the unique value in the categorical column:</pre>									
In [81]:			ype'].unique()	·						
					h+\					
OUT[81]:	arra	у([Ре	trot, blese	', 'CNG'], dty	pe=object)					
In [82]:	df['(Owner'].unique()							
Out[82]:	arra	y([0,	1, 3], dtype=i	int64)						
In [83]:	df[']	Transm:	ission'].uniqu	e()						
Out[83]:	arra	y(['Ma	nual', 'Automa	atic'], dtype=o	bject)					
In [84]:	df['5	Seller_	_Type'].unique	()						
Out[84]:	arra	y([ˈDe	aler', 'Indivi	idual'], dtype=	object)					
In [85]:	# Mak	king tl	he new column	from the Year (Colmn					
In [86]:	df['\	/ear']	unique()							
Out[86]:	arra	-		2011, 2018, 2 2004, 2007],		009, 2010, 2	2012, 2003,			
In [87]:	df['(Current	t_Year']=2020							

In [88]: # df['Year_count']= 2020 - ([for i in df['Year']])
df['no_year']=df['Current_Year'] -df['Year']

In [89]: df.head()

Out[89]:

	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Tra
0	2014	3.35	5.59	27000	Petrol	Dealer	
1	2013	4.75	9.54	43000	Diesel	Dealer	
2	2017	7.25	9.85	6900	Petrol	Dealer	
3	2011	2.85	4.15	5200	Petrol	Dealer	
4	2014	4.60	6.87	42450	Diesel	Dealer	

In [90]: list_year_drop=['Year','Current_Year']
 df.drop(list_year_drop,axis=1,inplace=True)

In [91]: df

Out[91]:

:	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transm
0	3.35	5.59	27000	Petrol	Dealer	1
1	4.75	9.54	43000	Diesel	Dealer	ľ
2	7.25	9.85	6900	Petrol	Dealer	ľ
3	2.85	4.15	5200	Petrol	Dealer	1
4	4.60	6.87	42450	Diesel	Dealer	ľ
296	9.50	11.60	33988	Diesel	Dealer	ľ
297	4.00	5.90	60000	Petrol	Dealer	ľ
298	3.35	11.00	87934	Petrol	Dealer	ľ
299	11.50	12.50	9000	Diesel	Dealer	ľ
300	5.30	5.90	5464	Petrol	Dealer	1

 $301 \text{ rows} \times 8 \text{ columns}$

In [92]: sns.boxplot(data=df,orient='h')

Out[92]: <AxesSubplot:>

In [93]: df.describe()

\cap			г	0	\neg	7
- 1 1		т.		u	\prec	
\cup	u	υ.		J	J	

	Selling_Price	Present_Price	Kms_Driven	Owner	no_year
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	4.661296	7.628472	36947.205980	0.043189	6.372093
std	5.082812	8.644115	38886.883882	0.247915	2.891554
min	0.100000	0.320000	500.000000	0.000000	2.000000
25%	0.900000	1.200000	15000.000000	0.000000	4.000000
50%	3.600000	6.400000	32000.000000	0.000000	6.000000
75 %	6.000000	9.900000	48767.000000	0.000000	8.000000
max	35.000000	92.600000	500000.000000	3.000000	17.000000

In [94]: sns.pairplot(df)

Out[94]: <seaborn.axisgrid.PairGrid at 0xle44719f640>

In [95]: df=pd.get_dummies(df,drop_first=True)

In [96]: **df**

Out[96]:		Selling_Price	Present_Price	Kms_Driven	Owner	no_year	Fuel_Type_Die
	0	3.35	5.59	27000	0	6	
	1	4.75	9.54	43000	0	7	
	2	7.25	9.85	6900	0	3	
	3	2.85	4.15	5200	0	9	
	4	4.60	6.87	42450	0	6	
	296	9.50	11.60	33988	0	4	
	297	4.00	5.90	60000	0	5	
	298	3.35	11.00	87934	0	11	
	299	11.50	12.50	9000	0	3	
	300	5.30	5.90	5464	0	4	

 $301 \text{ rows} \times 9 \text{ columns}$

```
In [97]: df.columns
```

In [98]: df.corr()

Out[98]:	0	u	t	[9	8]	:
----------	---	---	---	---	---	---	---	---

	Selling_Price	Present_Price	Kms_Driven	Owner	n
Selling_Price	1.000000	0.878983	0.029187	-0.088344	-0.
Present_Price	0.878983	1.000000	0.203647	0.008057	0.
Kms_Driven	0.029187	0.203647	1.000000	0.089216	0.
Owner	-0.088344	0.008057	0.089216	1.000000	0.
no_year	-0.236141	0.047584	0.524342	0.182104	1.
Fuel_Type_Diesel	0.552339	0.473306	0.172515	-0.053469	-0.
Fuel_Type_Petrol	-0.540571	-0.465244	-0.172874	0.055687	0.
Seller_Type_Individual	-0.550724	-0.512030	-0.101419	0.124269	0.
Transmission_Manual	-0.367128	-0.348715	-0.162510	-0.050316	-0.

In [99]: df.describe()

count		Selling_Price	Present_Price	Kms_Driven	Owner	no_year	Fu
		301.000000	301.000000	301.000000	301.000000	301.000000	
	mean	4.661296	7.628472	36947.205980	0.043189	6.372093	
	std	5.082812	8.644115	38886.883882	0.247915	2.891554	
	min	0.100000	0.320000	500.000000	0.000000	2.000000	
	25%	0.900000	1.200000	15000.000000	0.000000	4.000000	
	50%	3.600000	6.400000	32000.000000	0.000000	6.000000	
	75 %	6.000000	9.900000	48767.000000	0.000000	8.000000	
	max	35.000000	92 600000	500000.000000	3.000000	17.000000	

sb.pairplot(df) In [100...

Out[99]

Out[100... <seaborn.axisgrid.PairGrid at 0xle44bda6160>


```
In [101... corrmat=df.corr()
    top_corr_features=corrmat.index
    plt.figure(figsize=(20,20))
    g=sb.heatmap(df[top corr features].corr(),annot=True,cmap="RdYlGn")
```



```
In [102... # dividing the dataset in to the dependent and independent dataset
    x=df.iloc[:,1:]
```

```
In [103... y=df.iloc[:,0]
```

In [104... x.head()

```
Present_Price Kms_Driven Owner no_year Fuel_Type_Diesel Fuel_Type_Pe
Out[104...
          0
                      5.59
                                 27000
                                              0
                                                                         0
                                                       6
                                                       7
          1
                      9.54
                                 43000
                                              0
                                                                         1
          2
                      9.85
                                  6900
                                                                         0
                                              0
                                                       3
          3
                      4.15
                                  5200
                                              0
                                                       9
                                                                         0
          4
                      6.87
                                 42450
                                              0
                                                       6
                                                                         1
In [105... y.head()
Out[105... 0
               3.35
          1
               4.75
          2
               7.25
          3
               2.85
               4.60
          Name: Selling_Price, dtype: float64
In [106... from sklearn.ensemble import ExtraTreesRegressor
         model=ExtraTreesRegressor()
         model.fit(x,y)
Out[106... ExtraTreesRegressor()
In [107... model.score(x,y)
Out[107... 1.0
In [108... model.feature importances
Out[108... array([0.38244606, 0.04093561, 0.000415 , 0.07862471, 0.22260659,
                 0.01267155, 0.13051966, 0.13178082])
In [109... feat importance=pd.Series(model.feature importances ,index=x.columns)
         feat importance.nlargest(5).plot(kind='barh')
```

Out[109... <AxesSubplot:>


```
0.40
In [110... from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.20)
In [111... x_train.shape
Out[111... (240, 8)
In [112... x test.shape
Out[112... (61, 8)
In [113... from sklearn.ensemble import RandomForestRegressor
         model_2=RandomForestRegressor()
In [114... # Grid SearchCV
         # for n estimator
         n_estimators=[int(x) for x in np.linspace(start=100, stop=1200,num=12)]
         # for max featrue
         max_features=['auto','sqrt']
         # for depth
         max_depth=[int(x) for x in np.linspace(5,30,num=6)]
          # for min sample split
         min_samples_split=([2,5,10,15,100])
         # fro min sample leaf
         min_samples_leaf=[1,2,5,10]
In [115... | from sklearn.model selection import RandomizedSearchCV
```

```
random_grid={
    'n_estimators':n_estimators,
    'max_features':max_features,
    'max_depth':max_depth,
    'min_samples_split':min_samples_split,
    'min_samples_leaf':min_samples_leaf
}

In [116... rf=RandomizedSearchCV(estimator=model_2, param_distributions=random_grid, sc
In [117... rf.fit(x_train,y_train)
```

```
Fitting 5 folds for each of 10 candidates, totalling 50 fits
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples sp
lit=5, n estimators=900; total time=
                                       2.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples sp
lit=5, n estimators=900; total time=
                                       3.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples sp
lit=5, n estimators=900; total time=
                                       4.0s
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples sp
lit=5, n estimators=900; total time=
                                       2.6s
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples sp
lit=5, n estimators=900; total time=
                                       3.2s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples sp
lit=10, n estimators=1100; total time=
                                        3.5s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples sp
lit=10, n estimators=1100; total time=
                                        4.8s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples sp
lit=10, n estimators=1100; total time=
                                         3.1s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples sp
lit=10, n estimators=1100; total time=
                                         3.9s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples sp
lit=10, n estimators=1100; total time=
                                         7.0s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=100, n estimators=300; total time=
                                         1.3s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=100, n estimators=300; total time=
                                         1.5s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=100, n estimators=300; total time=
                                         2.2s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=100, n estimators=300; total time=
                                         1.2s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=100, n estimators=300; total time=
                                         1.1s
[CV] END max depth=15, max features=auto, min_samples_leaf=5, min_samples_sp
lit=5, n estimators=400; total time=
                                       1.4s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=5, n estimators=400; total time=
                                       1.2s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=5, n estimators=400; total time=
                                       1.2s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=5, n estimators=400; total time=
                                       1.2s
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=5, n estimators=400; total time=
                                       1.6s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n estimators=700; total time=
                                        2.8s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n estimators=700; total time=
                                        2.3s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n estimators=700; total time=
                                        1.7s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n estimators=700; total time=
                                        1.2s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n estimators=700; total time=
                                        1.3s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=2, n_estimators=1000; total time=
                                        2.1s
[CV] END max depth=25, max features=sqrt, min samples leaf=1, min samples sp
lit=2, n estimators=1000; total time=
                                        2.7s
[CV] END max depth=25, max features=sqrt, min samples leaf=1, min samples sp
```

```
lit=2, n estimators=1000; total time=
                                        2.8s
[CV] END max depth=25, max features=sqrt, min samples leaf=1, min samples sp
lit=2, n estimators=1000; total time=
                                        2.1s
[CV] END max depth=25, max features=sqrt, min samples leaf=1, min samples sp
lit=2, n estimators=1000; total time=
                                        2.6s
[CV] END max depth=5, max features=sqrt, min samples leaf=10, min samples sp
lit=15, n estimators=1100; total time=
                                         3.4s
[CV] END max depth=5, max features=sqrt, min samples leaf=10, min samples sp
lit=15, n estimators=1100; total time=
                                         2.5s
[CV] END max depth=5, max features=sqrt, min samples leaf=10, min samples sp
lit=15, n estimators=1100; total time=
                                         3.1s
[CV] END max depth=5, max features=sqrt, min samples leaf=10, min samples sp
lit=15, n estimators=1100; total time=
                                         3.5s
[CV] END max depth=5, max features=sqrt, min samples leaf=10, min samples sp
lit=15, n estimators=1100; total time=
                                         2.4s
[CV] END max depth=15, max features=sqrt, min samples leaf=1, min samples sp
lit=15, n estimators=300; total time=
                                        0.5s
[CV] END max depth=15, max features=sqrt, min samples leaf=1, min samples sp
lit=15, n estimators=300; total time=
                                        0.5s
[CV] END max depth=15, max features=sqrt, min samples leaf=1, min samples sp
lit=15, n estimators=300; total time=
                                        0.9s
[CV] END max depth=15, max features=sqrt, min samples leaf=1, min samples sp
lit=15, n estimators=300; total time=
                                        1.7s
[CV] END max depth=15, max features=sqrt, min samples leaf=1, min samples sp
lit=15, n estimators=300; total time=
                                        2.0s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_spl
it=10, n estimators=700; total time=
                                       4.1s
[CV] END max depth=5, max features=sqrt, min samples leaf=2, min samples spl
it=10, n estimators=700; total time=
                                       3.8s
[CV] END max depth=5, max features=sqrt, min samples leaf=2, min samples spl
it=10, n estimators=700; total time=
                                       4.1s
[CV] END max depth=5, max features=sqrt, min samples leaf=2, min samples spl
it=10, n estimators=700; total time=
                                       3.1s
[CV] END max depth=5, max features=sqrt, min samples leaf=2, min samples spl
it=10, n estimators=700; total time=
                                       2.8s
[CV] END max depth=20, max features=auto, min samples leaf=1, min samples sp
lit=15, n estimators=700; total time=
                                        3.5s
[CV] END max depth=20, max features=auto, min samples leaf=1, min samples sp
lit=15, n estimators=700; total time=
                                        3.1s
[CV] END max depth=20, max features=auto, min samples leaf=1, min samples sp
lit=15, n estimators=700; total time=
                                        2.6s
[CV] END max depth=20, max features=auto, min samples leaf=1, min samples sp
lit=15, n estimators=700; total time=
                                        2.3s
[CV] END max depth=20, max features=auto, min samples leaf=1, min samples sp
lit=15, n estimators=700; total time=
                                        2.0s
```

```
Out[117... RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n jobs=1,
                             param distributions={'max depth': [5, 10, 15, 20, 25, 3
          0],
                                                   'max features': ['auto', 'sqrt'],
                                                   'min_samples_leaf': [1, 2, 5, 10],
                                                   'min samples split': [2, 5, 10, 15,
                                                                          100],
                                                   'n estimators': [100, 200, 300, 40
          0,
                                                                    500, 600, 700, 80
          0,
                                                                     900, 1000, 1100,
                                                                     1200]},
                              random state=42, scoring='neg mean squared error',
                             verbose=2)
In [118...
         rf.best params
Out[118... {'n estimators': 700,
           'min samples split': 15,
           'min_samples_leaf': 1,
           'max features': 'auto',
           'max depth': 20}
In [119... y pred=rf.predict(x test)
In [120...
         y pred
Out[120... array([23.27699711,
                                                                        0.62459747,
                               3.69874845,
                                             0.68444389,
                                                          0.2847245 ,
                  0.25029553,
                               0.41243903,
                                             4.49915519,
                                                          3.8583009 ,
                                                                        1.16288033,
                 23.27699711, 23.28469344,
                                             7.43330901,
                                                          2.77303057,
                                                                        7.27768673,
                  0.3060368 , 5.28840354,
                                             7.33407163,
                                                                        5.35142082,
                                                          4.93966888,
                  0.68476858,
                               5.28558101,
                                             0.59793313,
                                                          1.17992504,
                                                                        0.56746235,
                               2.97811358, 17.97085404,
                 10.50297087,
                                                          8.75905635,
                                                                        0.30876405,
                  2.8108766 ,
                              1.1635106 , 4.54067581,
                                                          6.20926818,
                                                                        2.70491992,
                               0.57032066, 10.0128442 ,
                  2.81115306,
                                                          0.36521691,
                                                                        1.16133974,
                  0.65264802,
                               7.47208922,
                                            7.17726758,
                                                          5.67686153,
                                                                        9.35655894,
                  2.76377987,
                               4.34621969,
                                             0.29295418,
                                                          1.97251475,
                                                                        0.33698417,
                                                          4.73191599,
                               0.32672353,
                                             0.41374821,
                                                                        3.30874455,
                  4.43117365,
                  4.99163158, 11.50917179, 23.27699711,
                                                          2.99640056,
                                                                        6.39369547,
                 10.69921968])
In [121...
         rf.score(x test,y test)
Out[121... -8.154630980730952
In [122... y_pred
```

```
Out[122... array([23.27699711,
                               3.69874845,
                                             0.68444389,
                                                           0.2847245 ,
                                                                        0.62459747,
                  0.25029553,
                               0.41243903,
                                             4.49915519,
                                                           3.8583009 ,
                                                                        1.16288033,
                 23.27699711, 23.28469344,
                                             7.43330901,
                                                           2.77303057,
                                                                        7.27768673,
                               5.28840354,
                                             7.33407163,
                                                                        5.35142082,
                  0.3060368 ,
                                                          4.93966888,
                  0.68476858,
                               5.28558101,
                                             0.59793313,
                                                           1.17992504,
                                                                        0.56746235,
                               2.97811358, 17.97085404,
                                                                        0.30876405,
                 10.50297087,
                                                          8.75905635,
                  2.8108766 ,
                               1.1635106 ,
                                             4.54067581,
                                                          6.20926818,
                                                                        2.70491992,
                  2.81115306,
                               0.57032066, 10.0128442 ,
                                                          0.36521691,
                                                                        1.16133974,
                  0.65264802,
                               7.47208922,
                                             7.17726758,
                                                          5.67686153,
                                                                        9.35655894,
                  2.76377987,
                               4.34621969,
                                             0.29295418,
                                                           1.97251475,
                                                                        0.33698417,
                  4.43117365,
                               0.32672353,
                                             0.41374821,
                                                          4.73191599,
                                                                        3.30874455,
                  4.99163158, 11.50917179, 23.27699711,
                                                          2.99640056,
                                                                        6.39369547,
                 10.69921968])
```

In [123... sb.distplot(y_test-y_pred)

E:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[123... <AxesSubplot:xlabel='Selling_Price', ylabel='Density'>

In [124... sb.scatterplot(y_test,y_pred)

E:\Anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only v alid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[124... <AxesSubplot:xlabel='Selling_Price'>


```
In [125... # import pickle

# file=open('car_model.pkl','wb')
# pickle.dump(rf,file)
```

In [126... x_train.head()

Out[126		Present_Price	Kms_Driven	Owner	no_year	Fuel_Type_Diesel	Fuel_Type
	288	13.60	34000	0	5	0	
	223	9.40	61381	0	5	1	
	245	9.40	71000	0	8	1	
	239	4.43	23709	0	8	0	
	173	0.51	1300	0	3	0	

In [127... #Use pickle to save our model so that we can use it later

import pickle

```
pickle.dump(rf, open('car rf model.pkl','wb'))
In [129... x train['Owner'].nunique()
Out[129... 2
In [130... df
               Selling_Price Present_Price Kms_Driven Owner no_year Fuel_Type_Die
Out[130...
            0
                        3.35
                                       5.59
                                                   27000
                                                               0
                                                                         6
                                       9.54
                                                   43000
            1
                        4.75
                                                               0
                                                                         7
                        7.25
                                       9.85
                                                    6900
                                                                         3
            2
                                                               0
            3
                        2.85
                                                    5200
                                                                         9
                                       4.15
                                                               0
            4
                        4.60
                                       6.87
                                                   42450
                                                               0
                                                                         6
          296
                        9.50
                                      11.60
                                                   33988
                                                               0
                                                                         4
          297
                        4.00
                                       5.90
                                                   60000
                                                               0
                                                                         5
          298
                        3.35
                                      11.00
                                                   87934
                                                               0
                                                                        11
          299
                       11.50
                                      12.50
                                                    9000
                                                                         3
          300
                        5.30
                                       5.90
                                                    5464
                                                               0
                                                                         4
         301 \text{ rows} \times 9 \text{ columns}
In [131...
                                                     Traceback (most recent call last)
        ~\AppData\Local\Temp\ipykernel_8704\2250394493.py in <module>
         ----> 1 df.Seller Type
        E:\Anaconda\lib\site-packages\pandas\core\generic.py in getattr (self, na
        me)
           5573
                         ):
           5574
                              return self[name]
                         return object. getattribute (self, name)
         -> 5575
            5576
            5577
                     def __setattr__(self, name: str, value) -> None:
        AttributeError: 'DataFrame' object has no attribute 'Seller Type'
 In [ ]:
 In [ ]:
```

In []:

This notebook was converted with convert.ploomber.io