A Collection of Exercises From Real Analysis II

Owen Drummond Department of Mathematics, Rutgers University owen.drummond@rutgers.edu

1 Introduction

The following exercises are an assortment of homework problems from *MATH 502 - Theory of Functions of a Real Variable II* with Professor Dennis Kriventsov at Rutgers University. Topics include Radon Measures, weak convergence, Haar measures, Fourier analysis, PDEs, distributions, and probability theory.

Problem 1 (Folland 7.24). Find examples of sequences $\{\mu_n\}$ in $M(\mathbb{R})$ such that

- (a) $\mu_n \to 0$ vaguely, but $\|\mu_n\| \not\to 0$.
- (b) $\mu_n \to 0$ vaguely, but $\int f d\mu_n \not\to \int f d\mu$ for some bounded measurable f with compact support.
- (c) $\mu_n \geq 0$ and $\mu_n \to 0$ vaguely, but there exists $x \in \mathbb{R}$ such that $F_n(x) \not\to F(x)$ (notation as in Proposition 7.19).
- *Proof.* (a) Let $\mu_n = \delta_n$. First, $\mu_n \to 0$ since $\int_{\mathbb{R}} f d\mu_n = \int_{\mathbb{R}} f d\delta_n = f(n) = 0$ as $n \to 0$ since f vanishes at ∞ , yet $||\mu_n|| = \delta_n(\mathbb{R}) = 1$, and thus $||\mu_n|| \to 0$.
 - (b) Let $\mu_n = \delta_{1/n} \delta_{-1/n}$. $\mu_n \to 0$ since $\int_{\mathbb{R}} f d[\delta_{1/n} \delta_{-1/n}] = f(1/n) f(-1/n) \to 0$ as $n \to \infty$. Now let $f = \chi_{[0,1]}$. It is easy to see that f is bounded and compactly supported, yet $\int_{\mathbb{R}} f d\mu_n = f(1/n) f(-1/n) = 1 \neq 0$ for all $n \in \mathbb{N}$ and thus $\int_R f d\mu_n \to \int_R f d\mu = 0$.
 - (c) Let $\mu_n = \delta_{-n}$. We have that $\mu_n \to 0$ since $\int_{\mathbb{R}} f d\delta_{-n} = f(-n) \to 0$ as $n \to \infty$. Now for any $x \in \mathbb{R}$, $\exists n \in \mathbb{N}$ s.t. $n > x \implies F_n(x) = \mu_n((-\infty, x]) = \delta_{-n}((-\infty, x]) = 1$ as $-n < -|x| < n \implies F_n(x) \to F(x) = 0$

Problem 2 (Folland 7.27). Let $C^k([0,1])$ be as in Exercise 9 in §5.1. If $I \in C^k([0,1])^*$, there exist $\mu \in M([0,1])$ and constants c_0, \ldots, c_{k-1} , all unique, such that

$$I(f) = \int f^{(k)} d\mu + \sum_{j=0}^{k-1} c_j f^{(j)}(0).$$

(The functionals $f \mapsto f^{(j)}(0)$ could be replaced by any set of k functionals that separate points in the space of polynomials of degree < k.)

Proof. Given that $f \in C^k$, using Taylor's Theorem, we can write $f(x) = T_{k-1}(x) + R_k(x)$, where

$$T_{k-1}(x) = f(0) + f'(0)x + \dots + \frac{f^{(k-1)}(0)}{(k-1)!}x^{k-1}$$

and

$$R_k(x) = \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t) dt$$

and by the linearity of I, we have that $I(f(x)) = I(T_{k-1}(x)) + I(R_k(x))$. By the Riesz Representation Theorem, $I(f) = \int_0^1 f d\tilde{\mu}$, for a unique Radon measure $\tilde{\mu}$. Thus,

$$I(T_{k-1}(x)) = I(f(0)) + I(f'(0)x) + \dots + I(\frac{f^{(k-1)}(0)}{(k-1)!}x^{k-1})$$

$$= \int_0^1 f(0)d\tilde{\mu} + f'(0) \int_0^1 xd\mu + \dots + \frac{f^{(k-1)}(0)}{(k-1)!} \int_0^1 x^{k-1}d\tilde{\mu}$$

$$= c_0 + f'(0)c'_1 + \dots + c'_{k-1}$$

Now each c'_i is uniquely determined by $\tilde{\mu}$ as basis elements of $C^*([0,1])$. Setting $c_i = \frac{c'_i}{(k-1)!}$, we obtain the desired sum, namely $I(T_{k-1}(x)) = \sum_{j=1}^{k-1} c_j f^{(j)}(0)$. Next,

$$I(R_k(x)) = \int_0^1 \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t) dt d\tilde{\mu}(x)$$

$$= \int_0^1 \int_0^1 \chi_{[0,x]} \frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t) dt d\tilde{\mu}(x)$$

$$= \int_0^1 f^{(k)}(t) \left[\int_0^1 \chi_{[0,x]} \frac{(x-t)^{k-1}}{(k-1)!} d\tilde{\mu}(x) \right] dt$$

by Fubini's theorem since both $f^{(k)}$ and $\frac{(x-t)^{k-1}}{(k-1)!}$ are functions in C([0,1]). Lastly, setting $g(t) = \int_0^1 \chi_{[0,x]} \frac{(x-t)^{k-1}}{(k-1)!} d\tilde{\mu}(x)$, we have the integral $\int_0^1 f^{(k)}(t)g(t)dt$, and by setting $d\mu = g(t)dt$, we obtain that $I(R_k(x)) = \int_0^1 f^{(k)}d\mu$, as required

$$\implies I(f) = I(T_{k-1}(x)) + I(R_k(x)) = \int f^{(k)} d\mu + \sum_{j=1}^{k-1} c_j f^{(j)}(0)$$

Problem 3. Let $\mu \in M(\mathbb{R}^n)$ be a signed Radon Measure with $\int f d\mu$ for all $f \in C_c^{\infty}(U)$ for some open set U. Show that $|\mu(U)| = 0$.

Proof. Assume for the sake of a contradiction that $|\mu(U)| > 0$. Then either $\mu^+(W) > 0$ or $\mu^-(W) > 0$ for some $W \subset K \subset U$, where K is compact. We can construct a sequence of

smooth functions approximating χ_W , and $\operatorname{supp}(\chi_W) \subset K$. Denote $\{f_n\}_{n \in \mathbb{N}}$ as this sequence, s.t.

$$\int_{A \subset \mathbb{R}^n} f_n(x) d\mu(x) = \mu(A)$$

and thus

$$\int_{U} f_n d\mu \to \mu(U) \ge \mu(W) = \mu^{+}(W) - \mu^{-}(W) > 0$$

which is a contradiction, and therefore $|\mu(U)| = 0$

Problem 4. (a) Prove a kind of converse to Proposition 0.1 above: assume that μ_k, μ are (positive) Radon measures on X with $\sup_k \|\mu_k\| < \infty$,

(a) for all open U

$$\mu(U) \leq \liminf_{k \to \infty} \mu_k(U)$$

(b) for all compact K.

$$\mu(K) \ge \limsup_{k \to \infty} \mu_k(K)$$

Show that $\mu_k \stackrel{*}{\rightharpoonup} \mu$. [Hint: given $f \in C_0(X)$ nonnegative, write

$$\int f d\mu_k = \int_0^\infty \mu_k(\{f > t\}) dt,$$

show that the integrands converge for all but countably many t, and use dominated convergence.]

- (b) Assume for $\mu_k \in M(X)$, $\mu_k \stackrel{*}{\rightharpoonup} \mu \in M(X)$ and $\|\mu_k\| \to \|\mu\|$. Show that $|\mu_k| \stackrel{*}{\rightharpoonup} |\mu|$. [Hint: To check (0.2), use that $X \setminus K$ is open and Proposition 0.1.]
- Proof. (a) Write $\int f d\mu_k = \int_0^\infty \mu_k(\{f > t\}) dt$ for a given $f \in C_0(X)$. Note that for some large N, $\exists K_N$ compact such that $\forall x \notin K_N$, $f(x) < \epsilon$ for any $\epsilon > 0$, so for $t \ge \epsilon$, we have that $\{f > t\} \subset K_N$, and hence $\mu_k(\{f > t\}) \le \mu_k(K_N) < \infty$ since the μ_k 's are Radon and therefore finite on compact sets. Moreover, for any $\epsilon > 0 \exists K$ compact such that $K \subset X$ and $\mu_k(X \setminus K) < \epsilon$, and so the μ_k 's are uniformly bounded. Now note that $\{f > t\}$ is an open set since f is continuous, and hence

$$\mu(\{f > t\}) \le \liminf \mu_k(\{f > t\})$$

However, this set $\{f > t\}$ can also be approximated by some compact set such that the difference is measure zero, i.e.

$$\limsup \mu_k(\{f > t\}) \le \mu(\{f > t\}) \le \liminf \mu_k(\{f > t\})$$

which demonstrates that indeed $\mu_k(\{f>t\}) \to \mu(\{f>t\})$ expect on a set of Lebesgue Measure zero, so for countably many t. Lastly, $\forall t \in (0, \infty)$, we have that $\mu_k(\{f>t\}) \leq \sup_k \mu_k(\{f>t\}) \leq \sup_k |\mu_k(\{f>t\})| \leq \sup_k \mu_k(\{f>t\})$ is the function that dominates $\mu_k(\{f>t\})$. Thus, we can now employ dominated convergence:

$$\lim_{k \to \infty} \int_0^\infty \mu_k(\{f > t\}) dt = \int_0^\infty \lim_{k \to \infty} \mu_k(\{f > t\}) dt = \int_0^\infty \mu(\{f > t\}) dt = \int f d\mu$$

and so $\mu_k \stackrel{*}{\rightharpoonup} \mu$ as required.

(b) Given that $||\mu_k|| \to ||\mu||$, the measures are converging in total variation, and thus $|\mu_k| \to |\mu|$. Moreover, $|\mu|(X)$ is finite:

$$\exists K \text{compact}, |\mu|(X \setminus K) \leq \liminf |\mu_k|(x \setminus K) < \epsilon, \forall \epsilon > 0$$

by Proposition 0.1. Combined with the fact that $\mu_k \stackrel{*}{\rightharpoonup} \mu$, the $|\mu_k|$'s are uniformly bounded. Without loss of generality, assume f is nonnegative, $|fd|\mu_k|| \leq (f+1)\sup_k ||\mu_k|| = g_k(x)\forall k$. Thus, we can apply dominated convergence to conclude:

$$\lim_{k \to \infty} \int_X f d|\mu_k| = \int_X \lim_{k \to \infty} f d|\mu_k| = \int_X f d|\mu|$$

Thus, $|\mu_k| \stackrel{*}{\rightharpoonup} |\mu|$

Problem 5. Let $\phi : \mathbb{R}^n \to [0,1]$ be a smooth radial function with $\int \phi = 1$, and set $\phi_r(x) = \frac{1}{r^n}\phi\left(\frac{x}{r}\right)$. Let μ be a signed Radon measure on \mathbb{R}^n , and

$$\mu_r(E) = \iint_{E \times \mathbb{R}^n} \phi_r(x - y) \, d\mu(y) \, dx.$$

Show that as $r \to 0$, $\mu_r \stackrel{*}{\rightharpoonup} \mu$ and $|\mu_r| \stackrel{*}{\rightharpoonup} |\mu|$ (i.e. in the weak-* topology). Do they converge in $M(\mathbb{R}^n)$ norm topology?

Proof. As the measure μ_r is the convolution of μ with the smooth radial function ϕ_r . $\phi_r(x) = \frac{1}{r^n}\phi(\frac{x}{r})$ is essentially a rescaled version of ϕ , and since $\int \phi = 1$, ϕ acts as an approximation of the identity function. Moreover, as $r \to 0$, $\phi_r(x)$ approaches the Dirac delta function of x. This, $\mu_r = \phi_r * \mu$ should converge to μ as $r \to 0$. Thus, we have

$$\int_{\mathbb{R}^n} f d\mu_k = \int_{\mathbb{R}^n} f(\phi_r * \mu) = \iint_{\mathbb{R}^n \times \mathbb{R}^n} f(x) \phi_r(x - y) d\mu(y) dx$$

Now since ϕ , and by extension the ϕ_k 's are smooth and hence bounded, and f is bounded since it is continuous with compact support, we can bound $f(x)\phi_r(x-y)$ by some function M(y), which is integrable w.r.t $\mu(y)$. Therefore, by an application of Fubini's Theorem and Dominated convergence, we have that

$$\lim_{r \to 0} \int_{\mathbb{R}^n} f d\mu_k = \lim_{r \to 0} \iint_{\mathbb{R}^n \times \mathbb{R}^n} f(x) \phi_r(x - y) d\mu(y) dx$$

$$= \lim_{r \to 0} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) \phi_r(x - y) dx d\mu(y)$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \lim_{r \to 0} f(x) \phi_r(x - y) dx d\mu(y) = \int_{\mathbb{R}^n} f(y) d\mu(y) = \int_{\mathbb{R}^n} f d\mu$$

and so $\mu_r \stackrel{*}{\rightharpoonup} \mu$ as desired. The fact that $|\mu_r| \stackrel{*}{\rightharpoonup} |\mu|$ is a consequence of the fact that $||\mu_r|| \to ||\mu||$. However, in the norm topology, this is not true in the norm topology $M(\mathbb{R}^n)$, as we do not have the same uniform convergence of $\phi_r(x)$ to δ_x , and thus the limit does not converge within the integral.

Problem 6 (Folland 11.2). If μ is a Radon measure on the locally compact group G and $f \in C_c(G)$, the functions $x \mapsto \int L_x f d\mu$ and $x \mapsto \int R_x f d\mu$ are continuous.

Proof. First, fix $g \in G$ and $\epsilon > 0$. We define the compact subsets K_0, K_1 in the following way: $K_0 = \text{supp } f$, and K_1 as a compact neighborhood of g. Define $K = K_0 K_1^{-1}$. Since $f \in C_c(G)$, f is left-uniform continuous, and hence we have that $||f - L_v(f)||_u < \frac{\epsilon}{\mu(k)+1}$ for any $v \in V$ since $\mu(K)$ is finite, and $U = K_1 \cap gV$, so now we have that

$$\left| \int_{G} L_{g} f d\mu - \int_{G} L_{u} f d\mu \right| \leq \left| \int_{G} |L_{g} f - L_{u} f| d\mu$$

$$\leq \int_{K} |L_{g} f - L_{u} f| d\mu$$

$$\leq \int_{K} |L_{g} f - L_{g} L_{g^{-1} u} f| d\mu$$

$$\leq \mu(K) ||f - L_{g^{-1} u} f||_{U} < \epsilon$$

The same argument can be repeated to show $x \mapsto \int R_x f d\mu$ is also a continuous map.

Problem 7 (Folland 11.3). Let G be a locally compact group that is homeomorphic to an open subset U of \mathbb{R}^n in such a way that, if we identify G with U, left translation is an affine map — that is, $xy = A_x(y) + b_x$ where A_x is a linear transformation of \mathbb{R}^n and $b_x \in \mathbb{R}^n$. Then $|\det A_x|^{-1}$ dx is a left Haar measure on G, where dx denotes Lebesgue measure on \mathbb{R}^n . (Similarly for right translations and right Haar measures.)

Proof. Define $m(E) = \int_E |det A_x|^{-1} dx$ for $E \subset G$. We want to show for a Borel $E \subset G$, $m(E) = m(gE) \forall g \in G$, and this will suffice to show $|det A_x|^{-1} dx$ is a left Haar measure.

$$m(gE) = \int_{gE} |\det A_x|^{-1} dx$$

now let $x = gy = A_g(y) + b_g \implies dx = |\det A_g|dy$

$$\implies \int_{E} |\det A_{gy}|^{-1} |\det A_{g}| dy$$

Note that A_{gy} is a linear transformation over \mathbb{R}^n , and thus $A_{gy} = A_g A_y$

$$= \int_{E} |\det A_g \det A_y|^{-1} |\det A_g| dy$$
$$= \int_{E} |\det A_y|^{-1} dy = m(E)$$

The same argument holds for the right translation of E.

Problem 8 (Folland 11.4). The following are special cases of Exercise 3.

(a) If G is the multiplicative group of nonzero complex numbers z = x+iy, $(x^2+y^2)^{-1} dx dy$ is a Haar measure.

- (b) If G is the group of invertible $n \times n$ real matrices, $|\det A|^{-n} dA$ is a left and right Haar measure, where dA = Lebesgue measure on $\mathbb{R}^{n \times n}$. (To see that the determinant of the map $X \mapsto AX$ is $|\det A|^n$, observe that if X is the matrix with columns X^1, \ldots, X^n , then AX is the matrix with columns AX^1, \ldots, AX^n .)
- (c) If G is the group of 3×3 matrices of the form

$$\begin{pmatrix}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix}$$

where $(x, y, z \in \mathbb{R})$, then dx dy dz is a left and right Haar measure.

(d) If G is the group of 2×2 matrices of the form

$$\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}$$

where $(x > 0, y \in \mathbb{R})$, then $x^{-2} dx dy$ is a left Haar measure and $x^{-1} dx dy$ is a right Haar measure.

Proof. (a) Here, we have that $m(E) = \int_E \frac{1}{x^2 + y^2} dx dy$, so define the translation T(E) = wE, where $E \subset \mathbb{C}$. We see that if w = u + iv and z = x + iy, then wz = ux - vy + i(uy + vx), so set $\tilde{x} = ux - vy$ and $\tilde{y} = uy + vx$. Moreover, the Jacobian of this transformation from $(x, y) \to (\tilde{x}, \tilde{y})$ is $\frac{\partial \tilde{x}}{\partial x} \frac{\partial \tilde{y}}{\partial y} - \frac{\partial \tilde{x}}{\partial y} \frac{\partial \tilde{y}}{\partial x} = u^2 + v^2 \implies d\tilde{x}d\tilde{y} = (u^2 + v^2)dxdy$. Thus, we have

$$m(T(E)) = \int_{wE} \frac{1}{x^2 + y^2} dx dy = \int_E \frac{1}{\tilde{x}^2 + \tilde{y}^2} d\tilde{x} d\tilde{y}$$

after where \tilde{x}, \tilde{y} are defined as above. Note that we can write $\tilde{x}^2 + \tilde{y}^2 = (xu - yv)^2 + (xv + yu)^2 = (u^2 + v^2)(x^2 + y^2)$. Finally, substituting $d\tilde{x}d\tilde{y} = (u^2 + v^2)dxdy$ into the integral, we have

$$\int_{E} \frac{1}{\tilde{x}^{2} + \tilde{y}^{2}} d\tilde{x} d\tilde{y} = \int_{E} \frac{1}{(u^{2} + v^{2})(x^{2} + y^{2})} (u^{2} + v^{2}) dx dy = \int_{E} \frac{1}{x^{2} + y^{2}} dx dy$$

(b) Let $X \subset GL(n,\mathbb{R})$ be a Borel subset of $GL(n,\mathbb{R})$, and we desire to show that $m(AX) = \int_{AX} \frac{dA}{|\det A|^n}$. Now we can see that for $T: GL(n,\mathbb{R}) \to GL(n,\mathbb{R})$ defined as the left translation T(X) = AX, $T(X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n) = AX_1 \bigoplus AX_2 \bigoplus \cdots \bigoplus AX_n$, and thus we see that the Jacobian of T is $\det(A)^n$ by applying the determinant through the tensor product. Now we preform a change of variables to obtain that

$$\int_{T(X)} \frac{dx}{|\det(x)|^n} = \int_X \frac{1}{|\det Au|^n} (\det A)^n du = \int_E \det(u)^{-n} du = m(E)$$

(c) Here, note that for left multiplication, fix a matrix $M \in G$ such that $M = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ and for $g \in g$,

$$Mg = \begin{pmatrix} 1 & a+x & az+b+y \\ 0 & 1 & c+z \\ 0 & 0 & 1 \end{pmatrix}$$

and

$$gM = \begin{pmatrix} 1 & a+x & b+cx+y \\ 0 & 1 & c+z \\ 0 & 0 & 1 \end{pmatrix}$$

in both cases, dxdydz is invariant under these translations, since $\det Mg = \det gM = \det g = 1$, and hence the volume is preserved under both left and right translation. So indeed, dxdydz is a Haar Measure.

(d) Here, we see that for $M = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, and for $g \in G$

$$Mg = \begin{pmatrix} ax & ay+1 \\ 0 & 1 \end{pmatrix}$$

and

$$gM = \begin{pmatrix} ax & by+1 \\ 0 & 1 \end{pmatrix}$$

So we see that left multiplication scales the matrix g by a factor of a^2 , and right multiplication scales by a factor of a. The Haar Measures given correctly account for this scaling factor, and are left and right invariant, respectively.

Problem 9. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of complex numbers, and let $s_n = \sum_{k=1}^n z_k$ be partial sums. Let $\sigma_n = \frac{1}{n} \sum_{k=1}^n s_k$.

- (a) Show that if $s_n \to s$, then $\sigma_n \to s$.
- (b) Give an example of $\{z_n\}$ for which σ_n converges but s_n does not.
- (c) Assume that $\sigma_n \to \sigma$ and $nz_n \to 0$, then $s_n \to \sigma$. [Hint: show directly that $s_n \sigma_n \to 0$.]

Proof. (a) Given $s_n \to s$, $\exists \epsilon > 0$ s.t. $|s_n - s| < \epsilon n \ge N$, for some $N \in \mathbb{N}$. Note that

$$|s_n - \sigma_n| = |\sum_{k=1}^n z_n - \frac{1}{n} \sum_{k=1}^n s_n|$$
$$= |s_n - \frac{1}{n} \sum_{k=1}^N s_k - \frac{1}{n} \sum_{k=N+1}^n s_k|$$

now as $n \to \infty$, we have that $s \to s_n$, $\frac{1}{n} \sum_{k=1}^N s_k \to 0$ as $\sum_{k=1}^N s_k$ is some finite sum not depending on n, and $\frac{1}{n} \sum_{k=N+1}^n s_k \to s_n \to s$, and this $|s_n - \sigma_n| \to |s - s_n| < \epsilon \implies \sigma_n \to s_n \to s$ which is what we desired to show.

(b) Here, we can choose $z_n = \frac{1}{n}$. It is clear that

$$\lim_{n \to \infty} s_n = \sum_{k=1}^{\infty} \frac{1}{n}$$

diverges as the harmonic series. However note that

$$\ln(n) < s_n < \ln(n+1)$$

$$\implies \frac{1}{n} \sum_{k=1}^n \ln(n) < \sigma_n < \frac{1}{n} \sum_{k=1}^n [\ln(k) + 1]$$

Now notice that $\frac{1}{n}\sum_{k=1}^n\ln(n)=\frac{1}{n}\ln(\prod_{k=1}^nk)=\frac{1}{n}\ln(n!)\approx\frac{1}{n}\ln(\sqrt{2\pi n}(n/e)^n)=ln(n/e)+\frac{ln(\sqrt{2\pi n})}{n}$ by Stirling's formula. Thus, asymptotically, we have that $\ln(n)-1<\sigma_n<\ln(n)+1$. Thus, as $n\to\infty$, $\ln(n)-1$ and $\ln(n)+1$ both diverge, but their difference remains constant. Thus, σ_n approaches a definite trend, and converges as a sum of Cesaro terms. In fact, $\lim_{n\to\infty}\sigma_n=\gamma$, where γ is the Euler Mascheroni constant, though this is much harder to prove.

(c) First note that we can write $\sigma_n = \frac{1}{n}(s_1 + s_2 + ... + s_n) = \frac{1}{n}(z_1 + (z_1 + z_2) + ...) = \frac{1}{n}(nz_1 + (n-1)z_2 + (n-2)z_3 + ... + 2z_{n-1} + z_n)$. Thus, we have that

$$s_n - \sigma_n = \sum_{k=1}^n z_k - \frac{1}{n} (nz_1 + (n-1)z_2 + (n-2)z_3 + \dots + 2z_{n-1} + z_n)$$
$$= \frac{1}{n} z_2 + \frac{2}{n} z_3 + \dots + \frac{n-2}{n} z_{n-1} + \frac{n-1}{n} z_n$$

Since we assume that $nz_n \to 0$, then each of the terms converges to zero as $n \to \infty$. Thus, we have that $s_n - \sigma_n \to 0 \implies s_n \to \sigma_n \to \sigma$.

Problem 10. This question is about convolutions on \mathbb{R}^n :

$$f * g(x) = \int f(y)g(x - y)dy.$$

(a) Show that if $f \in L^1$ and $g \in L^p$, $1 \le p \le \infty$, then $f * g \in L^p$ and

$$||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}.$$

- (b) Show that for $f, g, h \in L^1$, f * g = g * f and (f * g) * h = f * (g * h).
- *Proof.* (a) Here, we have that $||f * g||_{L^p} = (\int_{\mathbb{R}^n} |\int_{\mathbb{R}^n} f(y)g(x-y)dy|^p dx)^{1/p}$. Now by Minkowski's integral inequality, we can switch the powers and order of integration to obtain:

$$\left(\int_{\mathbb{R}^n} | \int_{\mathbb{R}^n} f(y) g(x - y) dy |^p dx \right)^{1/p} \le \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x) g(x - y)|^p dx \right)^{1/p} dy$$

Now by the translation invariance of the L_p norm, we have that

$$\int_{\mathbb{R}^n} (\int_{\mathbb{R}^n} |f(x)g(x-y)|^p dx)^{1/p} dy \le \int_{\mathbb{R}^n} |f(y)| ||g||_{L^p} dy = ||g||_{L^p} \int_{\mathbb{R}^n} |f(y)| dy = ||f||_{L^1} ||g||_{L^p}$$
 and thus $||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}$

(b) First note that $f * g = \int_{\mathbb{R}^n} f(y)g(x-y)dy$ and after the change of variables $z = x - y \implies dy = dz$ we have $\int_{\mathbb{R}^n} f(x-z)g(z)dy$ and this is precisely the definition of g * f. For associativity, note that

$$((f*g)*h)(x) = \int_{\mathbb{R}^n} (\int_{\mathbb{R}^n} f(z)g(y-z)dz)h(x-y)dy = \int_{\mathbb{R}^n} f(z)(\int_{\mathbb{R}^n} g(y-z)h(x-y)dy)dz$$

by Fubini's Theorem. Now we can make the substitution v = x - y to obtain

$$\int_{\mathbb{R}^n} f(z) (\int_{\mathbb{R}^n} g(x - z - v) h(v) dv) dz = \int_{\mathbb{R}^n} f(z) (g * h) (x - z) dz = (f * (g * h))(x)$$

and thus ((f * g) * h)(x) = (f * (g * h))(x)

Problem 11. Let $f \in C^1(\mathbb{T})$. Show that $\lim_{|n| \to \infty} n|\hat{f}(n)| = 0$.

Proof. Here, we have that $\hat{f}(n) = \int_{\mathbb{T}} f(x)e^{-2\pi inx}dx$. Since we are told that $f \in C^1$, we can employ integration by parts and differentiate f: set $u = f \implies u' = f'$ and $v' = e^{-2\pi inx} \implies v = -\frac{e^{-2\pi inx}}{2\pi in}$. This yields

$$\hat{f} = -\frac{f(x)e^{-2\pi inx}}{2\pi in}|_{\mathbb{T}} + \frac{1}{2\pi in} \int_{\mathbb{T}} f'(x)e^{2\pi inx} dx = \frac{1}{2\pi in} \int_{\mathbb{T}} f'(x)e^{2\pi inx} dx$$

since f is 1-periodic so its boundary points cancel out in the first term. Now we have that $\lim_{|n|\to\infty} n|\hat{f}(n)| = \lim_{|n|\to\infty} \frac{1}{2\pi i} \int_{\mathbb{T}} f'(x)e^{-2\pi i nx} dx$. Now since $f'(x), e^{-2\pi i nx} \in L^1(\mathbb{T})$, we can employ Lebesgue Dominated Convergence to pass the limit through the integral, and hence we obtain

$$\lim_{|n|\to\infty} \frac{1}{2\pi i} \int_{\mathbb{T}} f'(x)e^{-2\pi i nx} dx = \frac{1}{2\pi i} \int_{\mathbb{T}} \lim_{|n|\to\infty} f'(x)e^{-2\pi i nx} dx = 0$$

as $\lim_{|n|\to\infty} e^{-2\pi i nx} = 0$. Therefore, $\lim_{|n|\to\infty} n|\hat{f}(n)| = 0$ which is what we desired to show.

Problem 12. Let $f(x) = \min\{x, 1-x\}$ (extended to be 1-periodic from [0,1]).

- 1. Compute \hat{f} .
- 2. Use this to compute $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ and $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$.

Proof. (a) Here, we consider the Fourier transform as two integrals that represent our given f(x) on the intervals [0, 1/2] and [1/2, 1] respectively.

$$\implies \hat{f} = \int_0^{1/2} x e^{-2\pi i nx} dx + \int_{1/2}^1 (1-x) e^{-2\pi i nx} dx$$

and we see that after a using integration by parts and summing both integrals, we have that

$$\hat{f} = \frac{\sin^2(\frac{\pi n}{2})\cos(\pi n)}{\pi^2 n^2} + i \frac{\sin(\pi n)(\cos(\pi n) - 1)}{2\pi^2 n^2}$$

(b) Here, we have that $\Re(\hat{f}(2n+1)) = \frac{1}{\pi^2(2n+1)^2}$. Now using the fact that $\int_0^1 f(x)dx = \sum_{n=-\infty}^{\infty} \hat{f}(n)$, we first evaluate that $\int_0^1 f(x)dx = \int_0^{1/2} xdx + \int_{1/2}^1 (1-x)dx = 1/4$. So now

$$1/4 = \frac{1}{\pi^2} \sum_{n=-\infty}^{\infty} \frac{1}{(2n+1)^2} \implies \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} - 1$$

A similar calculation yields that

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96} - 1$$

Problem 13. Let $L \in GL_n(\mathbb{R})$, and $f \in L^1(\mathbb{R}^n)$.

- (a) If g(x) = f(Lx), find the relation between \hat{f} and \hat{g} .
- (b) Specialize to the case of $L \in SO_n(\mathbb{R})$ to show that if f is radial, so is \hat{f} .

Proof. (a)

$$\hat{g}(\xi) = \int g(x)e^{2\pi ix\cdot\xi}dx = \int f(Lx)e^{2\pi ix\cdot\xi}dx$$

Now we perform the change of variables $Lx = y \implies |\det L| dx = dy \implies dx = \frac{1}{|\det L|} dy$ to obtain

$$\int f(y)e^{2\pi i(L^{-1}y)\cdot\xi} \frac{1}{|\det L|} dy$$

$$= \frac{1}{|\det L|} \int f(y)e^{2\pi iy\cdot(L^{-1})^T\xi} dy$$

$$= \frac{1}{|\det L|} \hat{f}((L^{-1})^T\xi)$$

$$\implies \hat{g}(\xi) = \frac{1}{|\det L|} \hat{f}((L^{-1})^T\xi)$$

(b) f is radial, and hence f(x) depends on the norm of x alone for any $x \in \mathbb{R}^n$. Now since orthogonal matrices preserve distance, that is, for any $A \in O_n(\mathbb{R})$, ||Ax|| = ||x||. Therefore, for f radial, f(Ax) = f(x). Now assume $L \in SO_n(\mathbb{R})$, and observe

$$\hat{f}(L\xi) = \int f(x)e^{2\pi ix \cdot (L\xi)} dx = \int f(x)e^{2\pi i(Lx) \cdot \xi} dx$$

Now perform the change of variables $Lx = y \implies x = L^{-1}y = L^{T}y \implies |\det L|dx = dy \implies dx = dy \text{ since } L \in SO_n(\mathbb{R}) \text{ and hence } \det L = 1.$

$$\implies \hat{f}(L\xi) = \int f(L^T y) e^{2\pi i y \cdot \xi} dy = \int f(y) e^{2\pi i y \cdot \xi} dy = \hat{f}(\xi)$$

since L^T is also orthogonal so $f(L^Ty) = f(y)$ and thus $\hat{f}(L\xi) = \hat{f}(\xi)$, and $L \in SO_n(\mathbb{R}) \subset O_n(\mathbb{R})$ so \hat{f} is indeed radial.

Problem 14. Let $f: \mathbb{R} \to \mathbb{C}$ be a continuously differentiable function with $|f| + |f'| \le C(1+|x|)^{-\alpha}$ for some $C, \alpha > 0$.

- (a) Find a formula for \hat{f}' in terms of \hat{f} .
- (b) Show that

$$\int_{\mathbb{R}} |f|^2 \le 2\sqrt{\int_{\mathbb{R}} x^2 |f(x)|^2 dx} \int_{\mathbb{R}} |f'(x)|^2 dx.$$

[Hint: integrate by parts to get $x(|f|^2)'$.]

(c) Show that

$$\left(\int_{\mathbb{R}} |f|^2\right)^2 \frac{1}{16\pi^2} \le \int_{\mathbb{R}} x^2 |f(x)|^2 dx \int_{\mathbb{R}} \xi^2 |\hat{f}(\xi)|^2 d\xi.$$

In other words, if $\int_{\mathbb{R}} |f|^2$ is fixed, there is a limit to how much both f and \hat{f} can be localized near the origin.

(d) Find all the f for which

$$\left(\int_{\mathbb{R}} |f|^2\right)^2 \frac{1}{16\pi^2} = \int_{\mathbb{R}} x^2 |f(x)|^2 dx \int_{\mathbb{R}} \xi^2 |\hat{f}(\xi)|^2 d\xi.$$

Proof. (a) Note that $\hat{f}'(\xi) = \int_{-\infty}^{\infty} f'(x)e^{-2\pi ix\xi}dx$. Here, we perform integration by parts, setting $u = e^{2\pi ix\xi}$ and v' = f'(x), so we have

$$\hat{f}'(\xi) = f(x)e^{-2\pi ix\xi}\Big|_{-\infty}^{\infty} + \int 2\pi i\xi f(x)e^{-2\pi ix\xi}dx$$
$$= 2\pi i\xi \int f(x)e^{-2\pi ix\xi}dx$$
$$= 2\pi i\xi \hat{f}(\xi)$$

since $|f| + |f'| \le C(1 + |x|)^{-1-\alpha}$, and hence f vanishes at ∞ and $f(x)e^{-2\pi ix\xi}|_{-\infty}^{\infty} = 0$. Therefore, $\hat{f}'(\xi) = 2\pi i\xi \hat{f}(\xi)$.

(b) Using integration by parts, we set $u = |f|^2$ and v' = 1, and we have that $u' = (|f|^2)'$ and v = x. Thus,

$$\int_{\mathbb{R}} |f|^2 dx = (x|f|^2)|_{-\infty}^{\infty} - \int_{\mathbb{R}} x(|f|^2)' dx$$

Now by Cauchy-Schwarz, we have that

$$(\int_{\mathbb{R}} x(|f|^2)'dx)^2 \le \int_{\mathbb{R}} x^2 dx \int ((|f|^2)')^2 dx \le 4 \int_{\mathbb{R}} |x|^2 f(x)^2 \int_{\mathbb{R}} (f'(x))^2 dx$$

Taking square roots on both sizes, we obtain

$$\int_{\mathbb{R}} |f|^2 \le 2\sqrt{\int_{\mathbb{R}} x^2 |f(x)|^2 dx \int_{\mathbb{R}} |f'(x)|^2 dx}$$

as desired.

(c) Using the previous inequality and squaring both sides, we obtain that

$$(\int_{\mathbb{R}} |f|^2)^2 \le 4 \int_{\mathbb{R}} x^2 |f(x)|^2 dx \int_{\mathbb{R}} |f'(x)|^2 dx$$

Now note that due to the decay condition given by $|f| + |f'| \le C(1 + |x|)^{-\alpha-1}$, as $|x| \to \infty$, $C(1 + |x|)^{-\alpha-1}0$, and hence $|f| + |f'| \to 0 \implies |f|, |f'| \to 0$. Given this decay condition, we have that $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, and we can employ Plancherel's Theorem:

$$(\int_{\mathbb{R}} |f|^{2})^{2} \leq 4 \int_{\mathbb{R}} x^{2} |f(x)|^{2} dx \int_{\mathbb{R}} |f'(x)|^{2} dx$$

$$= 4 \int_{\mathbb{R}} x^{2} |f(x)|^{2} dx \int_{\mathbb{R}} |\hat{f}'(\xi)|^{2} d\xi$$

$$= 4 \int_{\mathbb{R}} x^{2} |f(x)|^{2} dx \int_{\mathbb{R}} |2\pi i \xi \hat{f}(\xi)|^{2} d\xi$$

$$= 16\pi^{2} \int_{\mathbb{R}} x^{2} |f(x)|^{2} dx \int_{\mathbb{R}} |\xi|^{2} |\hat{f}(\xi)|^{2} d\xi$$

$$\implies (\int_{\mathbb{R}} |f|^{2})^{2} \frac{1}{16\pi^{2}} \leq \int_{\mathbb{R}} x^{2} |f(x)|^{2} dx \int_{\mathbb{R}} |\xi|^{2} |\hat{f}(\xi)|^{2} d\xi$$

(d) Note that the inequality obtained from part (b) is Holder's inequality for L^2 functions. In order for this inequality to be an equality, we require that the two functions g = x and $h = (|f|^2)'$ are linearly independent w.r.t the L^2 norm, that is $g^2 = \lambda h^2 \implies x^2 = \lambda ((|f|^2)')^2$. We see that setting $f(x) = \rho x$, where $\rho \in \mathbb{R}$ satisfies this condition for linear independence:

$$x^2 = \lambda((|f|^2)')^2 \implies x^2 = \lambda((|\rho x|^2)')^2 = (2\rho x)^2 = 4\rho^2 x^2 = \lambda x^2$$

after setting $\lambda = 4\rho^2$. Thus, the family of functions satisfying this condition are given by

$$\mathcal{F} = \{ \rho x : \rho \in R \}$$

Problem 15. Assume that $f \in L^1(\mathbb{R})$ is a function with Fourier Transform supported on B_R .

(a) Show that $f \in L^{\infty}(\mathbb{R}^n)$ and

$$||f||_{L^{\infty}(\mathbb{R}^n)} \le CR^n ||f||_{L^1(\mathbb{R}^n)},$$

and that this is the only possible dependence on R in such an estimate (i.e. there is a family of functions f_R with \hat{f}_R supported on B_R for which $R^n ||f_R||_{L^1} \leq c||f_R||_{L^{\infty}}$).

(b) Show that $\hat{f} \in C^{\infty}(\mathbb{R}^n)$ and

$$\sup_{\mathbb{R}^n} |D^k f| \le (CR)^n ||f||_{L^1(\mathbb{R}^n)}.$$

[More precisely, show that f coincides with a smooth function almost everywhere.]

П

(c) Conclude that f is real analytic (its Taylor series around any point has positive radius of convergence and converges to f).

Proof. (a) Since $f \in L^1(\mathbb{R})$, we can use the Fourier Inversion formula, which states that

$$f(x) = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi$$

and derive the following inequality since \hat{f} is supported on B_R :

$$f(x) = \int_{B_R} \hat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi$$

$$\implies |f(x)| \le \int_{B_R} |\hat{f}(\xi)| \cdot |e^{2\pi i \xi \cdot x}| d\xi = \int_{B_R} |\hat{f}(\xi)| d\xi$$

$$\implies ||f||_{L^{\infty}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n} |f(x)| \le \sup_{x \in \mathbb{R}^n} \int_{B_R} |\hat{f}(\xi)| d\xi$$

$$\implies ||f||_{L^{\infty}(\mathbb{R}^n)} \le CR^n ||\hat{f}||_{L^{\infty}(\mathbb{R}^n)}$$

$$\implies ||f||_{L^{\infty}(\mathbb{R}^n)} \le CR^n ||f||_{L^{1}(\mathbb{R}^n)}$$

(b) Since the Fourier Transform of f is compactly supported, by the Paley-Weiner Theorem, f can be extended to an entire function on \mathbb{C}^n , which suffices to show that $f \in C^{\infty}(\mathbb{R}^n)$. Moreover, we have the k-th derivative of f is given by $D^k(f) = (2\pi i \xi)^k \hat{f}(\xi)$ and thus we have that

$$\sup_{x \in \mathbb{R}^n} |D^k f(x)| \le \int_{B_R} |(2\pi i \xi)^k \hat{f}^k| d\xi$$

but \hat{f} is bounded and hence $(2\pi i\xi)^k$ grows as $R^|k|$, and the integral is bounded by a constant C times $R^{n+|k|}$, as so

$$\int_{B_R} |(2\pi i \xi)^k \hat{f}^k| d\xi \le (CR)^{|k|} ||\hat{f}||_{L^1(\mathbb{R}^n)}$$

for the appropriate choice of C.

(c) First, $f \in C^{\infty}(\mathbb{R}^n)$, and the Taylor series expansion of f is given by $f(x+h) \sum_k \frac{D^k f(x)}{k!} h^k$, and using the bound for the k-th derivative of f, we have that the remainder term of this taylor series expansion of f converges to 0, and hence f has a convergent power series expansion at every $x \in \mathbb{R}^n$, and so f is real-analytic.

Problem 16. Show that if $f \in L^1(\mathbb{R}^n)$ and both f and \hat{f} have compact support, then f = 0 almost everywhere.

Proof. Here we can appeal to 15(c). Since \hat{f} has compact support, f is real-analytic and can be extended to an analytic function on all of \mathbb{C}^n as a consequence of Paley-Weiner theorem. Now f also has compact support, and thus f is identically zero on $U = \mathbb{R}^n \setminus \text{supp} f$. By the identity theorem, since U a non-empty open set in \mathbb{C}^n and hence contains (infinitely many) accumulation points and $f|_U = 0$, then f must be zero on its entire domain of analyticity, which is all of \mathbb{R}^n . Therefore, $f \equiv 0$ a.e.

Problem 17. Consider the partial differential equation

$$-\Delta u + u = f \text{ on } \mathbb{R}^n,$$

where $\Delta u = div(\nabla u) = Tr(D^2u)$.

- (a) For $f \in \mathcal{S}$ (the Schwartz space), show that there exists a unique $u \in \mathcal{S}$ which solves this equation.
- (b) Show that, for $f \in \mathcal{S}$ and u the solution you found,

$$\sum_{|\alpha| \le 2} \|\partial^{\alpha} u\|_{L^{2}(\mathbb{R}^{n})} \le C \|f\|_{L^{2}(\mathbb{R}^{n})}$$

for a C > 0 depending only on n.

- (c) (Optional) Is this still true with higher-order derivatives on the left?
- *Proof.* (a) Here, we can apply the Fourier Transform to both sides of the equation. The Fourier Transform of the Laplacian Δu is $-|\xi|^2 \hat{u}(\xi)$, and thus

$$-\Delta u + u = f \implies |\xi|^2 \hat{u}(\xi) + \hat{u}(\xi) = \hat{f}(\xi)$$

now solving for \hat{u} , we have that

$$\hat{u}(\xi) = \frac{\hat{f}(\xi)}{|\xi|^2 + 1}$$

and now we take the inverse Fourier transform of u. Since $f \in \mathcal{S}$, $\frac{f(\xi)}{|\xi|^2+1} \in \mathcal{S}$ since the denominator moderates any growth of \hat{f} . After taking the inverse Fourier Transform, we obtain that $u \in \mathcal{S}$ since the denominator $(|\xi|^2+1)^{-1}$ ensures that u decays rapidly enough, as any derivatives $D^{\alpha}u$ will decay faster than u. Moreover, $u \in C^{\infty}(\mathbb{R}^n)$ since the denominator of $D^{\alpha}u$ is never zero. For uniqueness: say that $v = u_1 - u_2$ are two solutions of the given differential equation, then letting f = 0 yields

$$-\Delta v + v = 0 \implies (|\xi|^2 + 1)\hat{v}(\xi) = 0 \implies v = 0 \implies u_1 = u_2$$

(b) Given that $D^{\alpha}(u) = (i\xi)^{\alpha} \hat{u}(\xi)$, we have that

$$||D^{\alpha}(u)||_{L^{2}} = ||(i\xi)^{\alpha}\hat{u}(\xi)||_{L^{2}} = \left(\int_{\mathbb{R}^{n}} ((i\xi)^{\alpha}\hat{u}(\xi))^{2}d\xi\right)^{1/2}$$

now replacing $\hat{u} = \frac{\hat{f}}{|\xi|^2 + 1}$, we have that

$$(\int_{\mathbb{R}^n} ((i\xi)^\alpha \hat{u}(\xi))^2 d\xi)^{1/2}) = \int_{\mathbb{R}^n} ((i\xi)^\alpha (\frac{\hat{f}}{|\xi|^2 + 1})(\xi))^2 d\xi)^{1/2}$$

Now since $|\alpha| \leq 2$, $(i\xi)^{\alpha}$ is at most of order $|\xi|^4$, we have that

$$||D^{\alpha}(u)||_{L^{2}} \le \left(\int_{\mathbb{R}^{n}} \frac{|\xi|^{4} |\hat{f}|^{2}}{(|\xi|^{2} + 1)^{2}} d\xi\right)^{1/2}$$

and since $|\xi + 1|^2 \le |\xi|^4$, we have that

$$||D^{\alpha}(u)||_{L^{2}} \le (\int_{\mathbb{R}^{n}} |\hat{f}|^{2} d\xi)^{1/2} = ||f||_{L^{2}}$$

Passing through sums, we have

$$\sum_{|\alpha| \le 2} \|D^{\alpha}(u)\|_{L^2} \le (\sum_{|\alpha| \le 2} 1) \|f\|_{L^2}$$

setting $C = (\sum_{|\alpha| \leq 2} 1)$, which depends only on N, we obtain the desired inequality, namely:

$$\sum_{|\alpha| \le 2} ||D^{\alpha}(u)||_{L^2} \le C||f||_{L^2}$$

(c) No, since $(i\xi)^{\alpha}$ would be of order $|\xi|^k$, where k > 4, which cannot guarantee the decay condition in the integral used in part (b).

Problem 18. Consider the partial differential equation

$$-\Delta u = f \ on \ \mathbb{R}^n.$$

- (a) Assume $f \in C_c^{\infty}(\mathbb{R}^n)$. Show that if n > 2, there exists a solution $u \in C^{\infty}(\mathbb{R}^n)$ for which u and all of its derivatives are bounded.
- (b) Show that for the solution you found, $|u(x)| \leq \frac{C}{|x|^{n-3}}$ (where the constant depends on f). [Hint: take derivatives on the Fourier side.]
- (c) (Optional) Show that for the solution you found, in fact $|u(x)| \leq \frac{C}{|x|^{n-2}}$.
- (d) (Optional) For every k > n-2, find explicit conditions on f such that the solution u has $|u(x)| \leq \frac{C}{|x|^k}$.

Proof. (a) $-\Delta u = f \implies |\xi|^2 \hat{u}(\xi) = \hat{f}(\xi) \implies \hat{u}(\xi) = \frac{\hat{f}(\xi)}{|\xi|^2}$. Now since $f \in C_c^{\infty}(\mathbb{R}^n)$, $\hat{f}(\xi)$ decays rapidly and vanishes at ∞ . Since f has compact support and \hat{f} is smooth, \hat{u} vanishes at least as fast as $\frac{1}{|\xi|^2}$, and hence \hat{u} is a tempered distribution. Now u is given by

$$u(x) = \mathcal{F}^{-1}(\frac{\hat{f}(\xi)}{|\xi|^2})$$

and since \mathcal{F}^{-1} of a smooth rapidly decreasing function is itself a smooth function, and so $u(x) \in C^{\infty}$. The derivatives of u are all bounded since \hat{u} is rapidly decreasing.

(b) It is clear that away from 0, $\hat{u}(\xi) = \frac{\hat{f}(\xi)}{|\xi|^2}$ decreases rapidly. Note that \hat{f} is smooth, and hence can be expressed as Taylor series around $\xi = 0$. We have that $\hat{f}(\xi) \approx \hat{f}(0) + O(|\xi|)$, and since f has integral 0 as a compactly supported function with at least one non-vanishing derivative, $\hat{f}(0) = \int f(x) dx = 0$, and hence $\hat{f}(0) = O(|\xi|)$ as $\xi \to 0$. Therefore, as $\xi \to 0$, $\hat{u}(\xi)$ behaves like $O(|\xi|^{-1})$. Now the inverse Fourier transform in \mathbb{R}^n scales like $\frac{1}{|x|^{n-2}}$ when the Fourier transform is $O(|\xi|^{-1})$. Due to the presence of a $|\xi|^2$ in the denominator of \hat{u} , this decreases the decay rate of u(x) by a factor of $\frac{1}{|x|}$. Therefore, u(x) behaves like $\frac{1}{|x|^{n-3}}$ for large n, and so

$$u(x) \le \frac{C}{|x|^{n-3}}$$

for some C > 0

Problem 19. For $u: \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$, consider the heat equation

$$\begin{cases} \partial_t u - \Delta u = 0 & on \ \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = u_0(x) \end{cases}$$

(a) For $u_0 \in \mathcal{S}$, find a candidate solution u using the Fourier transform in the x variables only, and give a formula for u in the form $u(x,t) = u_0 * K_t$, where $K_t(x) : \mathbb{R}^n \to \mathbb{R}$ is explicit.

Hint: we saw this in class; solve ODEs on the Fourier side.

- (b) Show that the u given by this formula is in S for every t, is continuously differentiable in t for t > 0, and actually solves $\partial_t u = \Delta u$ for t > 0.
- (c) Show that the u is continuous up to t = 0 and $u(x, 0) = u_0(x)$

Hint: recall our theorems about approximate identities.

Proof. (a) Here, we apply the Fourier Transform to the heat equation to obtain:

$$\partial_t u - \Delta u = 0 \implies \partial_t \hat{u}(\xi, t) - 4\pi^2 |\xi|^2 \hat{u}(\xi, t) = 0$$

Now we see that this is the ODE

$$\frac{d\hat{u}}{dt} + 4\pi^2 |\xi|^2 \hat{u} = 0$$

which has the solution

$$\hat{u}(\xi, t) = \hat{u}_0(\xi)e^{-4\pi^2|\xi|^2t}$$

Now in the Fourier space, the expression $e^{-4\pi^2|\xi|^2t}$ corresponds to the heat kernel given by

$$K_t(x) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}$$

which has the Fourier transform

$$\hat{K}_t(\xi) = e^{-4\pi^2|\xi|^2 t}$$

Now note that

$$u(x,t) = \mathcal{F}^{-1}[\hat{u}(\xi,t)](x)$$

and the Fourier transform of a convolution is the product of Fourier transforms, and so

$$u(x,t) = u_0 \circledast K_t(x) = \int_{\mathbb{D}_n} u_0(y) K_t(x-y) dy$$

as required.

(b) First, note that $u_0 \in \mathcal{S}$, and $K_t(x) \in C^{\infty}(\mathbb{R}^n)$ and its derivatives decay exponentially fast. Hence,

$$\frac{\partial}{\partial t}u(x,t) = \frac{\partial}{\partial t} \int_{\mathbb{R}^n} u_0(y) K_t(x-y) dx = \int_{RR^n} \frac{\partial}{\partial t} [u_0(y) K_t(x-y)] dx$$

differentiation w.r.t. t of the heat kernel is smooth for the reasons given, so indeed u is continuously differentiable under t. Lastly, note that

$$\partial_t u(x,t) = \int_{\mathbb{R}^n} u_0(y) \frac{\partial}{\partial t} K_t(x-y) dy$$

and

$$\Delta u(x,t) = \int_{\mathbb{R}^n} u_0(y) \Delta K_t(x-y) dy$$

so it will suffice to show that $\Delta K_t(x-y) = \frac{\partial}{\partial t} K_t(x-y)$. We have that

$$\frac{\partial}{\partial t}K_t(x-y) = \frac{\partial}{\partial t}\left[\frac{1}{(4\pi t)^{n/2}}e^{-\frac{|x|^2}{4t}}\right] = \left(-\frac{n}{2\pi(4\pi t)^{n/2}} + \frac{|x|^2}{4t^2(4\pi t)^{n/2}}\right)\left(e^{-\frac{|x|^2}{4t}}\right)$$

and

$$\Delta K_t(x-y) = \mathcal{F}^{-1}(-4\pi^2|\xi|^2 e^{-4\pi^2|xi|^2t}) = \frac{\partial}{\partial t} K_t(x)$$

by the properties of Fourier inversion and convolutions and since $\Delta e^{-\frac{|x|^2}{4t}}$ in the Fourier domain corresponds to multiplication by $-|\xi|^2$. Thus $\Delta K_t(x-y) = \frac{\partial}{\partial t} K_t(x-y)$, and so $\Delta u(x,t) = \frac{\partial}{\partial t} u(x,t)$.

(c) We want to show that

$$\lim_{t \to 0^+} u(x,t) = \lim_{t \to 0^+} \int_{RR^n} u_0(y) K_t(x-y) dy = u_0(t)$$

Given the fact that $K_t(x) \in C^{\infty}(\mathbb{R}^n)$ and decays rapidly except around of neigborhood of y = x, by the dominated convergence theorem, we have that

$$\lim_{t \to 0^+} \int_{RR^n} u_0(y) K_t(x - y) dy = \int_{RR^n} \lim_{t \to 0^+} u_0(y) K_t(x - y) dy$$

now the heat kernel $K_t(x-y)$ behaves like a mollifier, meaning that it converges to the Dirac delta function $\delta(x-y)$ in the sense of distributions. Therefore,

$$\int_{RR^n} \lim_{t \to 0^+} u_0(y) K_t(x - y) dy = \int_{RR^n} u_0(y) \delta(x - y) dy = u_0(x)$$

and thus

$$\lim_{t \to 0^+} u(x,t) = u_0(t)$$

as required.

Problem 20. We have seen that there are two basic estimates on the Fourier transform (of, say, a function $f \in \mathcal{S}$):

$$\|\hat{f}\|_{\infty} \le \|f\|_{1}$$
$$\|\hat{f}\|_{2} \le \|f\|_{2}.$$

It is possible to interpolate between these to get that

$$\|\hat{f}\|_q \le \|f\|_p$$

where $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$ (e.g. Folland 8.30). Consider, now, whether an inequality like

$$\|\hat{f}\|_{q} \le C_{p,q} \|f\|_{p} \tag{1}$$

is possible for other values of $p, q \in [1, \infty]$.

- (a) Use the behavior of the Fourier transform under rescaling to show that if (0.1) is true, then $\frac{1}{p} + \frac{1}{q} = 1$.
- (b) Let $\phi(x) = e^{-\pi|x|^2}$, and take for any R > 0 the sequence $f_n(x) = \phi(x + nR)e^{2\pi i nRx}$. Show that $||f_n||_p = ||f||_p = c_p$ do not depend on n or R.
- (c) Show that, for each N,

$$2Nc_p = 2\sum_{n=1}^N ||f_n||_p \ge \left\| \sum_{n=1}^N f_n \right\|_p \ge \frac{1}{2} N^{1/p} c_p$$

- (d) If R is large enough. [Optional: you can take R independent of N.] Use the show that (0.1) is only possible if $q \ge 2p$, so the result in Folland 8.30 cannot be extended.
- *Proof.* (a) Consider the scaling of a function f given by $f_{\lambda}(x) = f(\lambda x)$, and note that $\hat{f}(x) = (\frac{1}{\lambda^n})\hat{f}(\frac{\xi}{\lambda^n})$ for $f \in L^1(\mathbb{R}^n)$. In the L^p norm, we have that

$$||f_{\lambda}||_p^p = \int_{\mathbb{R}^n} |f(\lambda x)|^p dx = \frac{1}{\lambda^p} ||f||_p^p$$

Now if we apply the given inequality, we have

$$\left(\int_{\mathbb{R}^n} \left| \frac{1}{\lambda^n} \hat{f}(\frac{\xi}{\lambda}) \right|^q d\xi \right)^{1/q} \le C_{p,q} \left(\frac{1}{\lambda^n} \int_{\mathbb{R}^n} |f(x)|^p dx \right)^{1/p}$$

now after making the change of variables $\xi' = \xi/\lambda$, we have that

$$\frac{1}{\lambda^{n/q}} (\int_{\mathbb{R}^n} |f(\xi')|^q d\xi')^{1/q} \le C_{p,q} \lambda^{-n/p} ||f||_p$$

and simplifying further, we have that

$$\lambda^{n(1/p-1/q)} \|\hat{f}\|_q \le C_{p,q} \|f\|_p$$

For this inequality to hold, we must have that

$$n(\frac{1}{p} - \frac{1}{q}) = 0 \implies \frac{1}{p} - \frac{1}{q} = 0 \implies \frac{1}{p} + \frac{1}{q} = 1$$

where p and q are Hölder conjugates.

(b) Here, note that

$$||f_n||_p^p = \int_{\mathbb{R}} e^{-\pi p|x+nR|^2} dx$$

since this is a Gaussian integral, the translation by nR in the exponent does not effect the integral over \mathbb{R} , and hence

$$||f_n||_p^p = \int_{\mathbb{R}} e^{-\pi p|x|^2} dx$$

and this integral is evaluated as

$$\int_{\mathbb{R}} e^{-\pi p|x|^2} dx = \left(\frac{1}{\sqrt{p}}\right)^n \int_{\mathbb{R}} e^{\pi x^2} dx$$

and hence

$$||f_n||_p = (\frac{1}{p^{n/2p}})(\frac{1}{\sqrt{\pi}})^{n/p} = c_p$$

and c_p does not depend on the choice of n or R.

(c) Here, denote $S_N(x) = \sum_{n=1}^N f_n(x)$. From part (b), $||f_n||_p = c_p$ independent of n and R, and so

$$2Nc_p = 2\sum_{n=1}^{N} ||f_n||_p$$

and by applying triangle inequality through the sum, we have

$$||S_n||_p \le \sum_{n=1}^N ||f_n||_p = c_n \implies ||S_n||_p^p = Nc_p^p \implies ||S_n||_p = N^{1/p}c_p$$

combining everything, we have that

$$2Nc^{1/p} \ge ||S_N||_p \ge N^{1/p}c_p$$

which is what we desired to show.

(d) For q < p, the L_q norm of a sum of altered Gaussians would grow faster than what the previous inequality would permit due to non-overlapping supports in the Fourier domain. This implies that

$$\|\hat{f}\|_q \le C_{p,q} \|f\|_p$$

cannot hold for q < p, which is a contradiction. Thus, the condition $q \ge p$ is required.

Problem 21 (Folland 9.4). Suppose that U and V are open in \mathbb{R}^n and $\Phi: V \to U$ is a C^{∞} diffeomorphism. Explain how to define $F \circ \Phi$ if $\Phi \in D'(U)$ for any $F \in D'(V)$.

Proof. Here, given $\phi \in \mathcal{D}$ we begin by defining the pullback of ϕ by a test function Φ by $\phi \circ \Phi^{-1}$, and the action of F defined on the pullback of a test function is given by $\langle F, \phi \circ \Phi^{-1} \rangle$. From this definition, we have that

$$\langle F \circ \Phi, \phi \rangle = \langle F, \phi \circ \Phi^{-1} \rangle$$

by a change of variables within the integral. This is given by

$$< F \circ \Phi, \phi > = \int_{\mathbb{R}^n} f(\Phi^{-1}(x))\phi(x) |\det D\phi^{-1}(x)| dx$$

where $D\phi^{-1}(x)$ is the Jacobian of $\phi^{-1}(x)$. $\langle F \circ \Phi, \phi \rangle \in \mathcal{D}'(\mathbb{R}^n)$ since $f(\Phi^{-1}(x))\phi(x)$ is continuous in the integral by the continuity of f and smoothness of Φ .

Problem 22 (Folland 9.5). Suppose that f is continuously differentiable on \mathbb{R} except at x_1, \ldots, x_m , where f has jump discontinuities, and that its pointwise derivative $\frac{df}{dx}$ (defined except at the x_i 's) is in $L^1_{loc}(\mathbb{R})$. Then the distribution derivative f' of f is given by

$$f' = \left(\frac{df}{dx}\right) + \sum_{j=1}^{m} \left[f(x_j^+) - f(x_j^-)\right] \tau_{x_j} \delta.$$

Proof. First, notice that $\frac{df}{dx}$ can be defined in the traditional sense away from the jump discontinuities $x_1, ..., x_m$. The distributional derivative f' is given by

$$\langle f', \phi \rangle = -\int_{\mathbb{R}} f(x)\phi'(x)dx$$

where $\phi \in C_c^{\infty}(\mathbb{R})$, by an application of integration by parts. Now for each jump discontinuity x_i , we introduce the term $[f(x_i+)-f(x_i-)]\tau_{x_i}\delta$, where δ is the Dirac delta function centered at x_i . Now by the properties of the delta distribution, we have

$$\langle [f(x_i+) - f(x_i-)]\tau_{x_i}\delta, \phi \rangle = [f(x_i+) - f(x_i-)]\phi$$

$$\Longrightarrow \sum_{i=1}^m \langle [f(x_i+) - f(x_i-)]\tau_{x_i}\delta, \phi \rangle = \sum_{i=1}^m [f(x_i+) - f(x_i-)]\phi$$

Now accounting for the classical derivative and jump discontinuities in the distribution of f, we have

$$\langle f', \phi \rangle = -\int_{\mathbb{R}} f(x)\phi'(x)dx + \sum_{i=1}^{m} [f(x_i+) - f(x_i-)]\phi$$

and by integration by parts, we have

$$< f', \phi > = \int_{\mathbb{R}} (\frac{df}{dx}) \phi dx + \sum_{i=1}^{m} [f(x_i +) - f(x_i -)] \phi$$

and as this holds for all test functions ϕ , we conclude that

$$f' = \frac{df}{dx} + \sum_{i=1}^{m} [f(x_i+) - f(x_i-)]\tau_{x_i}\delta$$

Problem 23. Let $l_k(f) = k[f(\frac{1}{k}) - f(-\frac{1}{k})]$ be distributions on \mathbb{R} . Show that $l_k \to l$ in the sense of distributions to some $l \in \mathcal{D}^*$, and find l.

Proof. Here it is clear that as $k \to \infty$, we would expect $f(\frac{1}{k}) - f(-\frac{1}{k}) \to 0$, and so we will consider a neighborhood around 0 of f. At x = 0, the Taylor expansion of f is given by

$$f(x) = f(0) + xf'(0) + O(x^2)$$

and now substituting $x = \pm \frac{1}{k}$, we have

$$f(\frac{1}{k}) - f(-\frac{1}{k}) = \frac{2}{k}f'(0) + O(\frac{1}{k^2})$$

multiplying by k yields

$$l_k(f) = k(\frac{2}{k}f'(0) + O(\frac{1}{k^2})) = 2f'(0) + O(\frac{1}{k})$$

and now taking $k \to \infty$, we have

$$\lim_{k \to \infty} l_k(f) = l(f) = 2f'(0)$$

and we can pair this result with the distributional derivative of the delta function to obtain

$$l(f) = 2f'(0) = 2 < \delta', f >$$

and thus $l_k \to l$ in the sense of distributions.

Problem 24. We say a distribution $l \in \mathcal{D}^*$ is positive if $l(u) \geq 0$ for all $u \in \mathcal{D}$ with $u \geq 0$. Classify all positive distributions [Hint: you actually did this on a past homework].

Proof. Denote the space of positive distributions as

$$\mathcal{D}_{\mathcal{P}}^* = \{ l \in D_P^* : l(u) \ge 0, \forall u \in \mathcal{D} \}$$

For an an arbitrary $T \in \mathcal{D}_{\mathcal{P}}^*$, T as a distribution (and positive linear functional) is uniquely characterized some Radon measure $\mu \in \mathbb{R}^n$ by the Riesz Representation Theorem, that is, for non-negative $\phi \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$< T, \phi > = \int_{\mathbb{R}^n} \phi d\mu$$

Thus, for any non-negative $\phi \in C_c^{\infty}(\mathbb{R}^n)$, T as a positive distribution uniquely characterized as integration against a positive Radon measure.

Problem 25 (Folland 9.17). Suppose that $F \in S'$. Show that

(a)
$$(\tau_y F)^{\wedge} = e^{-2\pi i \xi \cdot y} \hat{F}, \quad \tau_n F = [e^{2\pi i n \cdot x} F]^{\wedge}.$$

(b)
$$\partial^{\alpha} F = [(-2\pi i x)^{\alpha} F]^{\wedge}, \quad (\partial^{\alpha} F)^{\wedge} = (2\pi i \xi)^{\alpha} \hat{F}.$$

(c)
$$(F \circ T)^{\wedge} = |\det T|^{-1} F \circ (T^*)^{-1} \text{ for } T \in GL(n, \mathbb{R}).$$

(d)
$$(F * \psi) = \psi \hat{F}$$
 for $\psi \in S$.

Proof. (a) First, notice that using the properties of tempered distributions, we have that

$$<\widehat{\tau_yF}, \phi> = <\tau_yF, \widehat{\phi}> = < F, \tau_{-y}\widehat{\phi}>$$

and since $\tau_{-y}\widehat{\phi} = \widehat{\phi(x+y)}$, and by definition,

$$\widehat{\phi(x+y)} = \int_{\mathbb{R}^n} e^{-2\pi i(x+y)\xi} \phi \xi d\xi = e^{-2\pi i y\xi} \widehat{\phi(x)}$$

and thus

$$< F, \tau_{-y} \widehat{\phi} > = < F, e^{-2\pi i y \xi} \widehat{\phi(x)} > = < F, \widehat{\phi} > e^{-2\pi i y \xi} = < \widehat{F}, \phi > e^{-2\pi i y \xi}$$

and hence we have that $\widehat{\tau_{-y}F} = e^{-2\pi i y \xi} \widehat{F}$ as required.

(b) First of all, we know that for a test function in the Schwarz Space, we have that

$$<\partial^{\alpha}F, \phi> = (-1)^{\alpha} < F, \partial^{\alpha}\phi>$$

and note that

$$\partial^{\alpha} \hat{\phi} = (2\pi i)^{|\alpha|} \int e^{-2\pi i x \cdot s} x^{\alpha} \phi(x) dx$$

and thus we have that

$$<\widehat{\partial^{\alpha}F}, \phi> = (-1)^{|\alpha|} < F, \partial^{\alpha}\widehat{\phi}> = (-1)^{|\alpha|} (2\pi i)^{|\alpha|} < F, x^{\alpha}\widehat{\phi}>$$

and since $(-1)^{|\alpha|}(2\pi i)^{|\alpha|}=(2\pi i)^{|\alpha|}$, we have that

$$<\widehat{\partial^{\alpha}F},\phi>=(2\pi is)^{|\alpha|}<\widehat{F},\phi> \Longrightarrow \widehat{\partial^{\alpha}F(s)}=(2\pi is)^{\alpha}F(s)$$

which is what we desired to show.

(c) First, note that $(\widehat{F} \circ T)(\phi) = f \circ T(\widehat{\phi})$. Using a change of variables, we see that for $x \in \mathbb{R}^n$

$$\hat{\phi}(T^{-1}x) = |\det T|^{-1} \int_{\mathbb{R}^n} e^{-2\pi i (T^{-1}x,\xi)} \phi \xi d\xi$$

but we also have that $T * T^{-1}$ is the identity, and so

$$\hat{\phi}(T^{-1}x) = |\det T|^{-1} \int_{\mathbb{R}^n} e^{-2\pi i(x,(T*)^{-1}\xi} \phi(\xi) d\xi$$

and from this we obtain

$$(\widehat{F \circ T})(\phi) = |\det T|^{-1} F(\widehat{\phi \circ (T*)^{-1}}) = |\det T|^{-1} \widehat{F}((T*)^{-1}\xi)(\phi)$$

(d) First, note that $\langle F * \psi(x), \phi \rangle = \langle F, \psi * \psi(-x) \rangle$ and taking the Fourier transform, we have

$$\widehat{(F * \psi)}(\xi) = \hat{F}(\xi) \cdot \widehat{\psi} * \widehat{\phi(-x)} = \hat{F}(\xi) \cdot \widehat{\psi} \cdot \widehat{\phi(-x)}$$

since the Fourier transform of a convolution is a product of Fourier transforms. Substituting this back into the original equation, we have that

$$(\widehat{F*\psi}) = \hat{F}\hat{\psi}$$

as required.

Problem 26 (Problem 10.5). If X is a random variable with distribution $dP_X(t) = f(t) dt$ where f(t) = f(-t), then the distribution of X^2 is $dP_{X^2}(t) = t^{-1/2} f(t^{1/2}) \chi_{(0,\infty)}(t) dt$

Proof. Here, notice that for t < 0, the probability $F_{X^2}(t) = 0$ since X^2 is never negative. Now for $t \ge 0$, we have that $x^2 \le t$ if X is in the interval $[-t^{1/2}, t^{1/2}]$ and hence

$$F_{X^2}(t) = P(Y \le t) = P(-t^{1/2} \le X \le t^{1/2})$$

Now note that if f(t) is the probability density function of X, then we have that

$$F_{X^2}(t) = \int_{-t^{1/2}}^{t^{1/2}} f(x)dx = 2\int_0^{t^{1/2}} f(x)dx$$

by the symmetry of the integral. By differentiating, we have

$$\frac{d}{dt}F_{X^2}(t) = 2f(t^{1/2})\frac{d}{dt}(t^{1/2}) = t^{-1/2}f(t^{1/2})$$

by the fundamental theorem of calculus. Now accounting for the fact that the probability density function is identically zero for t < 0, we multiply by the characteristic function on $(0, \infty)$ to obtain

$$dP_{X^2}(t) = t^{-1/2} f(t^{1/2}) \chi_{(0,\infty)}(t) dt$$

Problem 27 (Folland 7.7). Let δ_t denote the point mass at $t \in \mathbb{R}$. Given $0 , let <math>\beta_p = p\delta_1 + (1-p)\delta_0$, and let β_p^{*n} be the nth convolution power of β_p . Then

$$\beta_p^{*n} = \sum_{k=0}^n \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \delta_k,$$

and the mean and variance of β_p^{*n} are np and np(1-p), respectively. β_p^{*n} is called the binomial distribution on $\{0,\ldots,n\}$ with parameter p.

Proof. Notice that the *n*-th convolution power β_p^{*n} is the measure corresponding to the sum of *n* independent variables each distributed according to β_p . We know that the probability mass function is given by $\binom{n}{k}p^k(1-p)^{n-k}$, and hence β_p^{*n} is the measure which picks out the probability mass function at each point k, which yields

$$\beta_p^{*n} = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta_k$$

From this, we obtain that the mean μ is given by

$$\mu = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

which simplifies to np by binomial theorem. Moreover, the variance σ^2 is given by

$$\sigma^{2} = \sum_{k=0}^{n} (k - \mu)^{2} \binom{n}{k} p^{k} (1 - p)^{n-k}$$

which simplifies to np(1-p) after recognizing that the variance of a Bernoulli random variable is p(1-p), summed n times.

Problem 28. This is a modification of Folland 10.7 to avoid using convolutions explicitly.

- (a) Let $\Omega_n = \{0,1\}^n$, $\mathcal{F}_n = 2^{\Omega_n}$ be the entire power set. For a $p \in (0,1)$, construct a probability on this space as a product $P(E_1 \times \ldots \times E_n) = q(E_1)q(E_2)\ldots q(E_n)$, where $q(\{1\}) = p$, $q(\{0\}) = 1 p$ and then extending to all events by additivity. Check that this gives a well-defined probability.
- (b) Let $X_k(\omega) = \omega_k$, i.e., X_k is 1 if the k-th entry is 1 and 0 if it is 0. Find the distribution μ_{X_k} and the expectation and variance of X_k .
- (c) Let $S_k = \sum_{j=1}^k X_k$. Compute the expectation and variance of S_k .
- (d) Find the distribution μ_{S_k} . [This is the formula in Folland 10.7.]
- Proof. (a) First, it is clear that P is non-negative, as it is the product of finitely many $q(E_j)$ which are all non-negative since $0 . Moreover, we have that <math>P(\Omega_n) = q(\{0,1\}) \times \cdots \times q(\{0,1\})$. However, $q(\{0,1\}) = q(\{1\}) + q(\{0\}) = p + (1-p) = 1$ and hence $P(\Omega_n) = 1 \times \cdots \times 1 = 1$. P is also finitely additive due to the fact that all events in Ω_n are independent (and finite), fulfilling countable additivity as well.

(b) Since $X_k(\omega) = \omega_k$ can only take two values and each entry in ω is independent, this is a Bernoulli distribution with parameter p, and this distribution is given by $\mu_{X_k}(0) = 1-p$ and $\mu_{X_k}(1) = p$. The expectation is given by

$$\mathbb{E}[X_k] = 0(\mu_{X_k}(0)) + 1(\mu_{X_k}(1)) = p$$

and the variance is given by

$$Var(X_k) = \mathbb{E}[(X_k)^2] - (\mathbb{E}[X_k])^2 = p - p^2 = p(1-p)$$

(c) Here, we see that S_k follows a binomial distribution with k and p. We have that

$$\mathbb{E}[S_k] = \mathbb{E}[\sum_{j=1}^k X_j] = \sum_{j=1}^k \mathbb{E}[X_j] = \sum_{j=1}^k p = kp$$

and moreover

$$Var(S_k) = \sum_{j=1}^k Var(X_j) = \sum_{j=1}^k p(1-p) = kp(1-p)$$

(d) Each X_j in the sum is a Bernoulli distribution which follows a binomial distribution for variables n and p. This corresponds to

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Now for the random variable S_k , there are k trials and the probability of success for each of them is p, giving:

$$P(S_k = x) = \binom{k}{x} p^x (1-p)^{k-x}$$

and in fact this is the binomial distribution μ_{S_k} for S_k .