CS57300: Homework 2

Hasini, Urala Liyanage Dona Gunasinghe

1 Counting

(a) Following is the summary of the principal component analysis on the data with 35 numeric attributes.

```
Importance of components:
  Standard deviation
                                                                                                                                    0.0625713
                                                                                                                                                                                                                         0.02762336
                                                                                                                                                                                                                                                                     0.01343457
                                                                                                                                                                                                                                                                      0.01343457 0.01320704 0.009369629 0.008576537 0.004175016 0.002780275 0.002403578 0.94921192 0.96241895 0.971788583 0.980365120 0.984540136 0.987320411 0.989723989
  Proportion of Variance
                                                                                            0.8012007
                                                                                                                                                                             0.04438194
  Cumulative Proportion
                                                                                             0.8012007
                                                                                                                                     0.8637720
                                                                                                                                                                              0.90815398
                                                                                                                                                                                                                          0.93577735
                                                                                      Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18 Comp.19 Comp.20 Comp.21 Comp.22 6.780620300 6.638590351 5.811934150 5.701641177 5.320085275 4.7046892950 4.4671920018 4.1061028004 3.7079725711 3.640107370 3.0359178765
  Standard deviation
 Proportion of Variance 0.001469616 0.001408694 0.001079708 0.001039118 0.000904695 0.0007075008 0.0006378731 0.0005389204 0.0004394789 0.000423539 0.0002946084 Cumulative Proportion 0.991193605 0.992602300 0.993682008 0.994721126 0.995625821 0.9963333215 0.9969711946 0.9975101150 0.9979495940 0.998373133 0.9986677413
Comp. 23 Comp. 25 Comp. 25 Comp. 25 Comp. 25 Comp. 27 Comp. 27 Comp. 28 Comp. 29 Comp. 30 Comp. 31 Comp. 32 Standard deviation 3.025459181 2.5723657386 2.5197448872 2.3095050223 1.9263128189 1.714360e+00 1.496860019 1.295265e+00 1.167128e+00 1.069947e+00 Proportion of Variance 0.000292582 0.0002115098 0.000215098 0.0002415098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.000215098 0.
                                                                                   Comp.33 Comp.34 Comp.35
8.172108e-01 6.838136e-01 1.115767e-01
  Standard deviation
 Proportion of Variance 2.134682e-05 1.494653e-05 3.979352e-07 
Cumulative Proportion 9.999847e-01 9.999996e-01 1.000000e+00
```

(b) Following is the scree plot:

Accordingly, minimum six components are needed to explain more than 95% of data as the cumulative proportion of variance explained by the 6h component is 96.24%.

(c) By inspecting the loadings of the principal component matrix in R, only 11 attributes are shown with significant weights in the first principal component. The are: review_count, sun_noon_6, tue_6_mid, wed_6_mid, thu_noon_6, thu_6_mid, fri_noon_6, fri_6_mid, sat_noon_6, sat_6_mid, tip_count. Loadings matrix is shown below:

2	Comp.1	Comp. 2	Comp.3	Comp.4	Comp. 5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10	Comp.11	Comp.12	Comp.13	Comp.14
stars														
review_count	-0.797	0.548	0.184			-0.121								
longitude				-0.974										
latitude				-0.193										
sun_mid_6						0.148	-0.169							
sun_6_noon			-0.205		-0.134				-0.219					
sun_noon_6	-0.109	-0.132	-0.127		0.158	-0.154	-0.135	-0.141	-0.138			0.309	-0.328	0.347
sun_6_mid		-0.142						-0.318	-0.111	0.258	-0.165	-0.144	-0.181	0.259
mon_mid_6						0.103	-0.117							
mon_6_noon			-0.175		-0.158	-0.115	-0.110		-0.224	-0.112				
mon_noon_6		-0.157				-0.240	-0.141	-0.102			-0.135	0.346		-0.221
mon 6 mid		-0.175	0.110					-0.277		0.237	-0.268	-0.176	0.277	-0.532
tue_mid_6														
tue_6_noon			-0.196		-0.190	-0.144	-0.127		-0.268	-0.115		-0.132		
tue_noon_6		-0.175				-0.257	-0.133					0.337		
tue_6_mid	-0.101	-0.196			-0.129			-0.184		0.149	-0.157		0.335	0.468
wed_mid_6						0.103	-0.110							
ved_6_noon			-0.201		-0.192	-0.138			-0.250	-0.113		-0.155		
ved noon 6		-0.188	-0.103		0.152		-0.155		0.250	0.115		0.244		
	-0.118				-0.142	0.233	0.133	-0.102		0.144	-0.151		0.174	
thu_mid_6	0.110		0.133		01112	0 169	-0.189	0.102		0.1	0.131	0.131	0.1.	
thu_6_noon			-0.252		-0 223	-0.121			-0 238	-0.103		-0.235		
	-0 147	-0 307	-0.125		0.223			0 414		0.326	0.228	-0.284	-0 213	-0.153
thu_6_mid		-0.390			-0.309	0.230		0.323		0.520	0.215	0.204	0.141	0.317
fri_mid_6	0.100	0.550	0.244		0.303	0.403	-0.460		0.133		0.213		0.141	0.517
fri 6 noon			-0.413		-0 322	0.187		0.113	0.159	0.143	-0 213		-0.202	
	-0.230	-0 201	-0.250					0.208		-0.237		-0 331	0.202	
	-0.202					0.120			-0.300		0.313	0.283	-0.271	-0.291
sat_mid_6	-0.202	-0.271	0.207		-0.233		-0.446		-0.300	-0.303		0.116	-0.271	-0.231
sat_6_noon			-0.417		-0 303	0.253		0.113	0.187	0.239		0.273		
	-0.204	-0 101	-0.274			0.212			-0.217	0.233	0.489		0.394	
			0.121		0.40/	0.140	0.200	-0.267		0.312			-0.492	
	-0.122						-0.160			-0.512		-0.136		
liked_tip_count	0.221	0.141				0.100	0.100	0. 31/	0.493	J. JIO	0.210	0.150	3.109	
likes														
	Comp 1	5 Comp	16 Comp	17 Com	18 Cor	nn 10 C	omp 20 (Omn 21	Comp 23	2 Comp. 23	Comp 2	1 Comp 2	5 Comp 2	5
stars	Comp. 1	Comp.	to comp.	. 1/ COIII	,. 10 COI	пр. 15 СС	p. 20 (20mp. 21	Comp. 22	Comp. 2:	Comp. 24	- Comp. 2	5 Comp. 20	•
orar s														
	R	1	S			<u>_</u>	7							

(d) Following is the scree plot for the transformed data:

Now it takes minimum seven components to explain 95% of the data. And now there are 17 attributes shown with significant weights in the first principal component of the new loadings matrix. However, log of review count is not among them where as in original loadings matrix, review count was shown with a significant weight in the first principal component. New loadings matrix is shown below.

	Comp.1	Comp. 2	Comp. 3	Comp.4	Comp. 5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10	Comp.11	Comp.12	Comp.13
log_r_count													
stars													
longitude			-0.975										
latitude			-0.194										
sun_mid_6				-0.114		-0.184							
sun 6 noon		0.201			0.140			-0.228					0.109
sun_noon_6	-0.182			0.189	-0.128		-0.203	-0.140			-0.164	-0.392	0.406
sun_6_mid	-0.160	-0.131				0.137	-0.257		0.265	0.183	-0.196		0.304
mon_mid_6						-0.122							
mon_6_noon		0.161			0.176			-0.233				0.112	
mon_noon_6	-0.153			0.275			-0.171			0.131	0.155	-0.311	-0.219
mon_6_mid	-0.168	-0.158				0.121	-0.218		0.265	0.279	0.115	0.246	-0.526
tue_mid_6													
tue 6 noon		0.178		0.127	0.212			-0.274				0.155	
tue_noon_6	-0.154			0.304			-0.139				0.153	-0.305	
tue 6 mid	-0.173	-0.168			0.130		-0.121		0.222	0.159	0.281	0.130	0.354
wed_mid_6						-0.119							
wed_6_noon		0.184		0.121	0.214			-0.258				0.180	
wed_noon_6	-0.169			0.318		-0.111						-0.228	-0.117
wed_6_mid	-0.202	-0.198			0.140				0.186	0.156	0.105	0.178	
thu_mid_6				-0.128		-0.212							
thu_6_noon		0.237		0.104	0.241			-0.250		-0.104		0.236	
thu_noon_6	-0.261			0.431		-0.331	0.266	0.318	0.161	-0.193	-0.436	0.190	-0.153
thu_6_mid	-0.324	-0.357			0.297		0.372	0.137		-0.227	0.209		0.352
fri_mid_6				-0.292		-0.545							
fri_6_noon	-0.131	0.425		-0.213	0.285	0.105	0.161	0.175	0.109	0.224	-0.182		
fri_noon_6	-0.375	0.182			-0.506		0.249		-0.258	0.499		0.303	
fri_6_mid	-0.329	-0.322		-0.182	0.209	0.132	0.270	-0.341	-0.375		-0.113	-0.353	-0.278
sat_mid_6				-0.285		-0.531							
sat_6_noon	-0.143	0.425		-0.260	0.254	0.142	0.183	0.224	0.259			-0.268	
sat_noon_6	-0.336	0.205			-0.437	0.189	0.109	-0.169	0.277	-0.494	0.395		-0.106
sat_6_mid	-0.196	-0.143		-0.173		0.108	-0.210	-0.271	0.280	-0.258	-0.550		
tip_count	-0.349			-0.237			-0.521	0.462	-0.500	-0.251		0.103	
liked_tip_count													
likes													
	Comp. 1	4 Comp.	15 Comp.	.16 Com	p.17 Cor	mp.18 C	omp.19 (comp.20	Comp. 21	L Comp. 2	2 Comp. 2	3 Comp. 24	1
7	-								-				

(e) Analysis on a sample of size 100:

The minimum number of components to explain 95% of data is: 3. The scree plot is shown below:

Cumulative unexplained variance by the principal components of sample data.

Eight attributes have significant weights in the first principal component as shown below. Accordingly, the set of attributes which had significant weights in the first principal component w.r.t the sample dataset is a subset of that of the whole dataset, which is interesting.

Loadings:

_	Comp.1	Comp. 2	Comp. 3	Comp. 4	Comp. 5
stars					
review_count	-0.883	-0.306	-0.250		
longitude				-0.974	
latitude				-0.192	
sun_mid_6					
sun_6_noon			-0.185		-0.125
sun_noon_6		0.147	0.117		-0.272
sun_6_mid			0.258		
mon_mid_6					
mon_6_noon		0.123	-0.222		
mon_noon_6		0.260			
mon_6_mid			0.215		
tue_mid_6					
tue_6_noon		0.135	-0.234		-0.186
tue_noon_6		0.234			
tue_6_mid			0.198		
wed_mid_6					
wed_6_noon			-0.239		-0.122
wed_noon_6		0.223	-0.111		-0.300
wed_6_mid			0.142		
thu_mid_6					
thu_6_noon			-0.282		-0.189
thu_noon_6	-0.120	0.359			-0.455
thu_6_mid	-0.142		0.298		-0.142
fri_mid_6					
fri_6_noon			-0.334		0.350
fri_noon_6		0.383			0.238
fri_6_mid	-0.181	-0.203	0.138		-0.189
sat_mid_6					
sat_6_noon			-0.181		0.335
sat_noon_6	-0.148		0.326		0.169
sat_6_mid	-0.108		0.253		
tip_count	-0.205	0.369	0.158		0.332
liked_tip_count					
likes					

2 Scoring and Search

(a) Eigen vector values (component weights) in the solution returned by R is shown below:

(b) Plot of the PCA score (variance) of the projected data as a function of possible values for v1:

The solution with the best score (i.e:maximum variance of 4073.6674) is: v1=0.95 and v2=0.3122499.

Comparing it with the solution returned by R, we can observe that the **magnitudes** of the weights in principal component 1 are approximately equal in both the solutions. However, they have **opposite signs**.

One reason is that we searched only in the interval of [-0.95, +0.95], for v1 whereas the weight found by R for v1 is out of that interval. I tried making the interval [-1.0, +0.95] in which case I got -1 as the best weight for v1.

Likewise, if we extended our search space, we could have got values which are close to the values returned by R. These observations signals that the this algorithm is able to find the optimal solution for principal component vectors.

3 Transformations and Associations

(a) Top 30 categories:

[1] "Restaurants"	"Mexican"	"American (Tradition	al)" "Fast Food"	"Pizza"	"Sandwiches"
[7] "Nightlife"	"Bars"	"Food"	"American (New)"	"Italian"	"Chinese"
[13] "Burgers"	"Breakfast & Brunch"	"Japanese"	"Delis"	"Sushi Bars"	"Steakhouses"
[19] "Seafood"	"Sports Bars"	"Cafes"	"Buffets"	"Barbeque"	"Thai"
[25] "Coffee & Tea"	"Mediterranean"	"Chicken Wings"	"Asian Fusion"	"Pubs"	"Indian"

(b) Top 30 cities: (I used each unique string as a distinct city. i.e: Edinburgh and City of Edinburgh are two different cities.)

```
"Las Vegas"
"Madison"
                           "Phoenix"
                                                "Edinburgh"
                                                                       'Scottsdale"
                                                                                            "Mesa"
[1]
                          "Tempe"
                                                "Henderson"
                                                                      "Chandler"
                                                                                            "Glendale"
Γ61
                                                "North Las Vegas" "Surprise"
"Kitchener" "Queen Cree
    "Gilbert"
                          "Peoria"
                                                                                            "Goodyear"
   "Waterloo"
                                                                     "Queen Creek"
                          "Avondale"
                                                                                            "Middĺeton"
                                                                      "Apache Junction'
"Monona"
                                                "Fountain Hills"
    "Cave Creek"
                                                                                            "Buckeye'
                           "Casa Grande"
    "Sun Prairie"
                                                                                            "Sun City"
                                                "Maricopa"
                           "Fitchburg'
```

(c) Top five feature combinations with largest χ^2 scores along with the p-values:

```
attr score pval
Coffee & Tea_Edinburgh 5.344245e+02 3.078803e-118
Indian_Edinburgh 2.864583e+02 2.939462e-64
Food_Edinburgh 1.273845e+02 1.530541e-29
American (New)_Scottsdale 1.207110e+02 4.420669e-28
Mexican_Edinburgh 1.179061e+02 1.817955e-27
```

I think the associations among the above feature combinations can be expected.

All the above feature pairs with the highest χ^2 scores, seem to have the lowest p-values which are below the significance level (0.05). That means the null hypothesis of independence between the two features in each feature pair can be rejected.

Since Edinburgh is the capital of Scotland and the second most populous city in Scotland, it can be expected that there is an association between the city and the different types of restaurants in there.

However, looking at the following contingency tables related to each of the above feature pairs, it is hard to infer a reason behind the order of the χ^2 scores.

Edinburgh Indian 0 1 0 13039 950 1 125 77

Edinburgh Food 0 1 0 12183 847 1 981 180

Scottsdale American (New) 0 1 0 12297 851 1 880 163

Edinburgh Mexican 0 1 0 11450 1012 1 1714 15

(d) Feature pair with the largest χ^2 score: Coffee & Tea, Edinburgh
Feature pair with a score that is barely significant (selected from the following section
of the χ^2 score table): American (New), Glendale

Mexican_Casa Grande 3.952205e+00 4.680998e-02 Italian_Cave Creek 3.951397e+00 4.683246e-02 Coffee & Tea_Henderson 3.910551e+00 4.798387e-02 American (Traditional)_Cave Creek 3.904881e+00 4.814604e-02 Bars_Mesa 3.898307e+00 4.833478e-02 American (New)_Glendale 3.827959e+00 5.040427e-02 Coffee & Tea_Maricopa 3.652188e+00 5.599562e-02 Burgers_Chandler 3.650391e+00 5.605604e-02 Indian_Scottsdale 3.638907e+00 5.644398e-02 Chinese_Chandler 3.634144e+00 5.660569e-02 Pubs_Mesa 3.513621e+00 6.086628e-02 Plot of the mean χ^2 scores as a function of the sample size with error bars including standard deviation, for the aforementioned two feature pairs:

Plot of the mean p values as a function of the sample size with error bars including standard deviation, for the aforementioned two feature pairs:

 χ^2 score of (Coffee & Tea, Edinburgh) feature pair which has the largest score w.r.t the whole dataset, grows almost linearly with the increase of the sample size where as the χ^2 score of (American (New), Glendale) feature pair which has a barely significant p-value w.r.t the whole dataset, stays almost constant with the increase of the sample size. Therefore, the effect of sample size on the χ^2 score of the two feature pairs are different.

Looking at the variation of the p-values of χ^2 statistic of the two feature pairs with the sample size, we can conclude that the p values of the χ^2 statistic of both feature pairs vary with the sample size.

However, the sample size directly impacts the decision of rejecting or not rejecting the null hypothesis of independence between the two features only in the case of first feature pair: (Coffee & Tea, Edinburgh).

For example, if we analyzed only a sample of size below 1000, we would not have rejected the null hypothesis that those two features are independent, because the p-values of the χ^2 statistic is higher than 0.05 in such samples.

Another difference is that the variation of the p-value of the χ^2 statistic of the feature pair: (Coffee & Tea, Edinburgh) gets lower than that of the feature pair: (American (New), Glendale), as the increase of the sample size.

4 Identifying hypothesis

(a) Hypothesis 1: Indian restaurants gets more stars than fast food restaurants as Indian food is of more quality, authentic and healthy.

This is a directional, relational and causal hypothesis. However, we have data only to analyze the direction and the relationship, but not the cause. Cause was mentioned from the domain knowledge.

Hypothesis 2: Restaurants in Edinburgh gets more reviews than the restaurants in Waterloo because Edinburgh is a capital of a country with more population than Waterloo which is a suburb in Pheonix in Arizona state.

This is a directional relational causal hypothesis. In this case also, the dataset provides data only to analyze the direction and the relationship, but not the cause. Cause was mentioned from the domain knowledge.

(b) How the analysis of data led to the conjecture:

From the analysis of HW1, we observed that there is no interesting relationship between longitude/latitude and stars. And from the box plots drawn for part (g) of the last question of HW1, we observed there is a relationship between the no. of stars and the type of the restaurant. Also, from the analysis in the question 2 of HW2, we observed that there can be an association between the city and the categories of the restaurants. From those observations and the reasoning I gave to those previous observations, I came to form these two hypothesis, which I would like to investigate further with proper hypothesis testing.

(c) Following are two basic plots to support the two hypothesis. In order to come to a conclusion (whether to reject or not reject the hypothesis), we need to do a proper hypothesis testing.

Plot for hypothesis 1:

Plot to support hypothesis 1

Type of restaurant

Plot to support hypothesis 2

