

CC6900

单芯片霍尔效应电流传感器

5A/10A/20A/30A 系列

概述

CC6900 是一款高性能单端输出的线性电流传感器,可以更为有效的为交流(AC)或者直流(DC)电流检测方案,广泛应用于工业,消费类及通信类设备。

CC6900 内部集成了一颗高精度,低噪声的线性霍尔电路和一根低阻抗的主电流导线。当采样电流流经主电流导线,其产生的磁场在霍尔电路上感应出相应的电信号,经过信号处理电路输出电压信号,使得产品更易于使用。线性霍尔电路采用先进的 BiCMOS 制程生产,包含了高灵敏度霍尔传感器,霍尔信号预放大器,高精度的霍尔温度补偿单元,振荡器,动态失调消除电路和放大器输出模块。在无磁场的情况下,静态输出为 50%VCC。

在电源电压 5V 条件下,OUT 可以在 0.5~4.5V 之间随磁场线性变化,线性度可达 0.4%。CC6900 内部集成的动态失调消除电路使 IC 的灵敏度不受外界压力和 IC 封装应力的影响。

CC6900 提供 SOP8 封装,工作温度范围-40~125°C。

特性

- ◆ 静态共模输出点为 50% VCC
- ◆ 测量范围宽, 5A/10A/20A/30A
- ◆ 1MHz 斩波频率,高带宽,低噪声,单端模拟输出
- ◆ 导线引脚到信号引脚有 100V 的安全隔离电压
- ◆ 低功耗
- ◆ 常温误差 1%, 全温误差 3%
- ◆ 温度稳定性好,内部采用了芯进专利的霍尔信号放大电路和温度补偿电路
- ◆ 抗干扰能力强
- ◆ 抗机械应力,磁参数不会因为受外界压力而偏移
- ◆ ESD (HBM) 6000V

应用

- ◆ 电机控制
- ◆ 负载监测系统
- ◆ 开关电源
- ◆ 过流故障保护

功能框图

订购信息

产品名称	灵敏度(mV/A)	封装外形	包装
CC6900SO-05A	400	SOP8	编带,2000 片/袋
CC6900SO-10A	200	SOP8	编带,2000 片/袋
CC6900SO-20A	100	SOP8	编带,2000 片/袋
CC6900SO-30A	67	SOP8	编带,2000 片/袋

管脚定义

SOP8 封装

名称	编号	功能	名称	编号	功能
IP+	1	采样电流正端	GND	5	地
IP+	2	采样电流正端	NC	6	需悬空
IP-	3	采样电流负端	OUT	7	信号输出端
IP-	4	采样电流负端	VCC	8	电源电压

极限参数

参数	符号	数值	单位
电源电压	V _{cc}	7	V
输出电压	V _{OUT}	-0.3~VCC+0.3	V
输出源电流	lout (source)	400	uA
输出沉电流	I _{OUT} (SINK)	30	mA
通用型绝缘电压	V _{ISO}	100	VAC
工作环境温度	T _a	-40~125	°C
最大结温	T _J	165	°C
存储环境温度	Ts	-55~150	°C
磁场强度	В	无限制	mT
静电保护	ESD(HBM)	6000	٧
电流采样端瞬态冲击电流	IP	1pulse, 100ms	100A

注意:应用时不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响器件的可靠性。

推荐工作环境

参数	符号	最小值	最大值	单位
电源电压	V _{cc}	4.5	5.5	V
环境温度	T _a	-40	125	°C
直流电流容量	IP	-30	30	Α

注意:芯片实际可用的电流容量应根据芯片热阻并结合实际环境温度确定。

工作特性 (若无特别指明, V_{cc}=5V @ 25°C)

参数	符号	条件	最小值	典型值	最大值	单位
电气特性						
供电电压	V _{cc}	-	4.5	-	5.5	V
静态电流	I _{cc}	OUT 悬空	-	5	8	mA
输出电容负载	C _L		-	-	1	nF
输出电阻负载	R _L		20	-	-	kΩ
传输延迟时间	t _D			1	1.2	us
上升时间	tr		-	2	3.6	us
系统带宽	BW	-3dB	-	80	-	kHz
线性度误差	Lin _{ERR}		-	0.4	1	%
对称性误差	$\operatorname{Sym}_{\operatorname{ERR}}$		-	0.8	1.5	%
静态输出点	$V_{OUT(Q)}$		2.48	2.5	2.52	V
POR 时间	T_POR	输出从 0 到 90%	-	10	-	us
主电流端电阻	R_{P}		-	1.5	1.8	mΩ
结到环境热阻	θ _{ЈА}	铜箔连接到 1、2 脚及 3、4 脚,面积为 1500mm²,厚度 2oz	-	25	-	°C/W

5A 系列

参数	符号	条件	最小值	典型值	最大值	単位
电气特性						
电流范围	l _P	-	-5	-	5	Α
灵敏度	Sens	全电流范围	390	400	410	mV/A
输出噪声	$V_{NOISE(PP)}$		-	50	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.26	-	mV/°C
灵敏度温度系数	ΔSens		-	0.054	-	mV/A /°C
总输出误差	Етот		-3.0	-	3.0	%

10A 系列

参数	符号	条件	最小值	典型值	最大值	単位
电气特性						
电流范围	I _P	-	-10	-	10	Α
灵敏度	Sens	全电流范围	195	200	205	mV/A
输出噪声	V _{NOISE(PP)}		-	30	-	mV

10A 系列(续接上表)

参数	符号	条件	最小值	典型值	最大值	单位
电气特性						
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.30	-	mV/°C
灵敏度温度系数	ΔSens		-	0.027	-	mV/A /°C
总输出误差	Етот		-3.0	-	3.0	%

20A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电气特性						
电流范围	l _P	-	-20	-	20	А
灵敏度	Sens	全电流范围	95	100	105	mV/A
输出噪声	V _{NOISE(PP)}		-	20	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.34	-	mV/°C
灵敏度温度系数	ΔSens		-	0.017	-	mV/A /°C
总输出误差	E _{TOT}		-3.0	-	3.0	%

30A 系列

会 妣.	Art II	kt 111.	目儿妹	내 파기산	티스사	36 23.
参数	符号	条件	最小值	典型值	最大值	单位
电气特性						
电流范围	I _P	-	-30	-	30	Α
灵敏度	Sens	全电流范围	64	67	70	mV/A
输出噪声	V _{NOISE(PP)}		-	20	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.35	-	mV/°C
灵敏度温度系数	ΔSens		-	0.010	-	mV/A /°C
总输出误差	Етот		-3.0	-	3.0	%

典型应用电路

信号衰减电路

注: IOUT< 0.3 mA, 驱动能力按照 0.25mA 计算,电阻之和 (R1+R2) 需大于 $20k\Omega$

VCC

整流输出,代替电流互感器应用

输出特性

CC6900 静态输出点(IP = 0A 时)为 VCC / 2。

电流增大时, V_{OUT} 增大,直至输出运放的饱和电压(V_{CC} – 轨电压);电流减小时, V_{OUT} 减小,直至输出运放的饱和电压(GND + 轨电压)。芯进保证 V_{OUT} 在 0.5~4.5V 内的精度及线性度,为了保证大批量制造的一致性,该范围留有一定的余度,但是不建议客户使用该余度。

输入电流超过量程时, V_{OUT} 的输出趋近于电源的轨电压,输入电流未超过芯片的耐受极限时,该电压会一直保持,输入电流恢复到量程范围之内后, V_{OUT} 的输出会恢复正常,不会对芯片造成任何损伤。

产品名称	输入电流	灵敏度(mV/A)	计算公式(注 1)
CC6900SO-05A	-5A ~ +5A	400	$V_{OUT} = VCC / 2 + 0.400 \times I_{P}(A)(V)$
CC6900SO-10A	-10A ~ +10A	200	$V_{OUT} = VCC / 2 + 0.200 \times I_{P}(A)(V)$
CC6900SO-20A	-20A ~ +20A	100	$V_{OUT} = VCC / 2 + 0.100 \times I_{P}(A)(V)$
CC6900SO-30A	-30A ~ +30A	67	V _{OUT} = VCC / 2 + 0.067 × I _P (A)(V)

注 1:该公式仅适用于直流电流计算,交流电流应用时,应注意 I_{PEAK} = 1.414 × I_{RMS} ,并注意电流方向的正负。

曲线 & 波形 (若无特别指明, Vcc=5V @ 25°C)

Vour vs. IP(正向电流上升沿响应)(20A)

V_{OUT} vs. IP(正向电流下降沿响应)(20A)

Vout vs. IP(负向电流上升沿响应)(20A)

Vout vs. IP(负向电流下降沿沿响应)(20A)

t_D响应时间(20A)

静态电流 vs. Vcc

静态电流 vs. Ta

 $V_{\text{OUT}(Q)} \, \text{vs. Ta}$

V_{OUT} vs. IP (20A)

V_{OUT} error vs. Ta

Sens error vs. Ta

外形尺寸

SOP8 封装

注意:

1. 尺寸单位为英寸(毫米)。

打标:

第一行: CC6900SO产品名称

第二行: ELC-XXA

● XX: 检测电流范围

第三行: XXYYWW

- XX 代码
- YY 年度后两位数字
- WW 星期数

封装参考

注意: layout 布板的要求: 芯片的下方,不建议走线,禁止走大电流的线

包装&编带

卷盘尺寸信息

User Direction of Feed

注意: 每盘载带前后空 50±2 格

关于芯进

成都芯进电子有限公司(CrossChip Microsystems Inc.)成立于 2013 年,是一家国家高新技术企业,从事集成电路设计与销售。公司技术实力雄厚,拥有四十余项各类专利,主要应用于霍尔传感器信号处理,拥有下列产品线:

- ✓ 高精度线性霍尔传感器
- ✓ 各类霍尔开关
- ✓ 单相电机驱动器
- ✓ 单芯片电流传感器
- ✓ AMR 磁阻传感器

联系我们

成都

地址: 四川省成都市高新西区天辰路88号3号楼2单元4楼

电话: +86 - 28 - 87787685

邮箱: support@crosschipmicro.com 网址: http://www.crosschipmicro.com

深圳

地址:深圳市南山区高新南一道创维大厦 A1001

上海

地址:上海市嘉定区沪宜公路 4476 号魔方社区 3 楼创客工场