Overview of Regression Models Cross-Sectional Data

	OLS (Ordinary Least Squares)	IV (Instrument Variables)	2SLS (2 Stage Least Squares)	GLS (General Least Squares)
Estimator: $\hat{\beta}$	$\hat{\beta}_{OLS} = (X'X)^{-1}X'y$ simple model with one x: $\hat{\beta}_{OLS} = \frac{\hat{c} o v(x_i, y_i)}{\hat{v} a r(x_i)}$	$\hat{\beta}_{IV} = (Z'X)^{-1}Z'y$ simple model: $\hat{\beta}_{IV} = \frac{\sum_{i=1}^{n} (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^{n} (z_i - \bar{z})(x_i - \bar{x})}$	$\hat{\beta}_{2SLS} = (\hat{X}'X)^{-1}(\hat{X}'Y) = (\hat{X}'\hat{X})^{-1}(\hat{X}'Y)$	$\hat{\beta}_{GLS} = (X'\Omega^{'-\frac{1}{2}} \cdot \Omega^{-\frac{1}{2}}X)^{-1} \cdot X'\Omega^{'-\frac{1}{2}} \cdot \Omega^{-\frac{1}{2}}y$ $\hat{\beta}_{GLS} = \left(\sum_{i=1}^{N} X_i'\Omega^{-1}X_i\right)^{-1} \sum_{i=1}^{N} X_i'\Omega^{-1}y_i$
Population: β	$\beta_{OLS} = E[(X'X)]^{-1}E[X'y]$	$\beta_{IV} = E(Z'X)^{-1}E(Z'y)$, simple: $\beta_{IV} = \frac{cov(z, y)}{cov(z, x)}$	$\beta_{2SLS} = E[(\hat{X}'X)^{-1}(\hat{X}'Y)] = E[(\hat{X}'\hat{X})^{-1}(\hat{X}'Y)]$	$\beta_{GLS} = E(x_i' \Omega^{-1} x_i)^{-1} E(x_i' \Omega^{-1} y_i)$
Model: y	$y_i = x_i \beta + u_i$	$y_i = x_i \beta + u_i$	$y_i = x_i'\beta + u_i$	$y_i = x_i'\beta + u_i$
Why OLS fails		$E(x_i \cdot u_i) \neq 0$ or $cov(x_K, u) \neq 0, x_i$ endogenous	$E(x_i \cdot u_i) \neq 0$ or $cov(x_K, u) \neq 0, x_i$ endogenous	Heteroskedasticity and autocorrelation possible
Assumptions	 OLS.1: Linearity: Observations are IID and satisfy y_i = x'_iβ + u_i OLS.2: Strict Exogenity: E(u_i X) = 0 OLS.3: Variables have finite second moments: E(y_i²) < ∞ OLS.4: Invertibility (no multicollinearity) E(x_ix'_i) = Q_{xx} is positive definite OLS.5: Homoskedastic: Ω = E(uu' X) = σ² 	 IV.1: exogenity (exclusion restriction): c o v(z₁, u_i) = 0 (not testable) IV.2: relevance: θ₁ ≠ 0, where x_i = δ₀ + δ_jx_j + θ_iz_i + r_k, E(r_k) = 0 (test by first stage) 	 2SLS.1: exogenity E(z'u) = 0 2SLS.2: a) rank E(z'z) = L b) rank E(z'x) = K, L ≥ K 2SLS.3: Homoscedasticity: E(u² z) = σ² 	 GLS.1: E(X_i ⊗ u_i) = 0 (cor(X_i, u_i) = 0) → implies: E(u_i) = 0, alternatively and simpler: E(X'_iΩ⁻¹u_i) = 0 GLS.2: Ω is positive definite and E(X'_iΩ⁻¹X_i) is nonsingular GLS.3: System homoscedasticity assumption: E(X'_iΩ⁻¹u_uu'_iΩ⁻¹X_i) = E(X'_iΩ⁻¹X_i)
Structure			$\begin{array}{l} \text{1st Stage: } z \equiv (1, x_2, \dots, x_{K-1}, z_1, \dots, z_M) \\ \hat{x}_k = \hat{\delta}_0 + \hat{\delta}_1 x_1 + \dots + \hat{\delta}_{K-1} x_{K-1} + \hat{\theta}_1 z_1 + \dots + \hat{\theta}_M z_M + r_k \\ \text{Test: } H_0 : \theta_i = 0 \ \forall_i \\ \text{2nd Stage: } \hat{x}_i \equiv (1, x_{i,2}, \dots, x_{i,K-1}, \hat{x}_{i,K}) \\ y = \beta_0 + \beta_1 x_1 + \dots + \beta_{K-1} \hat{x}_{K-1} + \beta_K \hat{x}_K + e \end{array}$	We estimate a model where the error vector has a scalar var-cov matrix: $\Omega^{-\frac{1}{2}}y_i = \Omega^{-\frac{1}{2}} \cdot X_i \beta + \Omega^{-\frac{1}{2}} \cdot u_i$, where $\Omega = E(u_i u_i')$ thus $y = X\beta + u$ must hold.
Specials		unique solution only if rank $E(z'x) = K$	- rank $E(z'x) = K, M \ge K$ - $\hat{X} = Z(Z'Z)^{-1}Z'X = PX$	$Var(\tilde{u} \mid \tilde{X}) = Var(\Omega^{-\frac{1}{2}} \cdot u) = \Omega^{-1} \cdot Var(u)$ = $Var(u)^{-1} \cdot Var(u) = I_n$ \rightarrow since this error term is homoscedastic, GLS must be BLUE
Properties	- unbiased if OLS.1 - OLS.4 hold: $E(\hat{\beta}_{OLS}) = \beta$ - consistent if OLS.1, OLS.3, OLS.4 & $E(u_i x_i) = 0$ hold - asymptotically efficient if OLS.1 - OLS.5 hold - BLUE if OLS.1 - OLS.5 holds	- <u>not</u> unbiased - consistent if IV.1 and IV.2 hold: $\hat{\beta}_{IV} \stackrel{p}{\to} \beta$ as $N \to \infty$	 consistent if 2SLS.1 - 2SLS.2 hold: β̂_{2SLS} → β as N → ∞ asymptotically normal if 2SLS.1 - 2SLS.2 hold asymptotically efficient if 2SLS.1 - 2SLS.3 hold - in the class of all instrument variables estimators using instruments linear in z 	 consistent if GLS.1 - GLS.2 hold: β̂_{GLS} → β as N → ∞ asymptotically normal if GLS.1 - GLS.2 hold asymptotically efficient if GLS.1 - GLS.3 hold (no estimator with smaller variance) BLUE even if homoscedasticity does not hold
Variance	$\begin{aligned} & \frac{\text{Heteroscedastic Robust Variance conditional on } x:}{V_{\hat{\beta}} = Var(\hat{\beta} \mid X) = (X'X)^{-1}(X'\Omega X)(X'X)^{-1}} \\ & \hat{V}_{\hat{\beta}} = \hat{V}ar(\hat{\beta} \mid X) = (X'X)^{-1}(X'\hat{\Omega}X)(X'X)^{-1}} \\ & se(\hat{\beta}_j) = \sqrt{[\hat{V}_{\hat{\beta}}]_{jj}} \\ & \frac{\text{If OLS.5 holds (homoskedastic):}}{V_{\hat{\beta}} = Var(\hat{\beta} \mid X) = \sigma^2(X'X)^{-1}} \\ & \hat{V}_{\hat{\beta}} = \hat{V}ar(\hat{\beta} \mid X) = \hat{s}^2(X'X)^{-1}, \hat{s}^2 = \frac{1}{N-K} \sum_{i=1}^{N} \hat{u}_i^2 \end{aligned}$			 Var(β X) = (X'Ω⁻¹X)⁻¹ GLS gives more weight to those observations which provide more useful information Ω is higher where the variance of the error is higher, therefore Ω⁻¹ puts less weight on this observations Feasible GLS: Ω = Var(u X) = E(v_iv_i') Ω is symmetric: Ω = Ω'
Asymptotic Distribution $\sqrt{N}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(0, V)$	$ \begin{aligned} &\frac{\text{Heteroscedastic Robust Asymptotic Variance (OLS.1 - OLS.4):}}{V_{\beta} = AVar(\sqrt{N}(\hat{\beta} - \beta)) =} \\ &[E(x_i x_i')]^{-1} E(x_i x_i' u_i^2)[E(x_i x_i')]^{-1} \\ &\hat{V}_{\beta} = A\hat{V}ar(\sqrt{N}(\hat{\beta} - \beta)) = \\ &\left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i' \hat{u}_i^2\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right)^{-1} \\ &\rightarrow \text{It holds that: } n \cdot \hat{V}_{\hat{\beta}} \xrightarrow{p} V_{\beta} \mid n\hat{V}_{\hat{\beta}} = \hat{V}_{\beta} \mid \hat{V}_{\hat{\beta}} \xrightarrow{p} V_{\hat{\beta}} \approx \frac{V_{\beta}}{n} \end{aligned} $		Robust Asymptotic Variance (2SLS.1 - 2SLS.2): $A\hat{V}ar(\sqrt{N}(\hat{\beta}-\beta)) = (\hat{X}'\hat{X})^{-1} \left(\sum_{i=1}^{N} \hat{u}_{i}^{2}\hat{x}_{i}'\hat{x}_{i}\right) (\hat{X}'\hat{X})^{-1}$ If additionally 2SLS3 holds: $AVar(\sqrt{N}(\hat{\beta}-\beta)) = \sigma^{2}[E(x'z)^{-1}E(z'z)E(z'x)^{-1}]$ $A\hat{V}ar(\sqrt{N}(\hat{\beta}-\beta)) = \hat{\sigma}^{2}(\hat{X}'\hat{X})^{-1} \text{ where } \hat{\sigma}^{2} = \frac{1}{N-K}\sum_{i=1}^{N} \hat{u}_{i}^{2}$	Robust Asymptotic Variance (GLS.1 - GLS.2): $A\hat{V}ar(\sqrt{N}(\hat{\beta}_{GLS} - \beta)) = E(X_i'\Omega^{-1}X_i)^{-1}E(X_i'\Omega^{-1}u_uu_i'\Omega^{-1}X_i)E(X_i'\Omega^{-1}X_i)^{-1}$
Notes	special case of GLS		2SLS equals IV if there is only one instrument for x_k	GLS is not feasible as Variance is unknown. In FGLS we use the estimated variance More efficient when there is autocorrelation or heteroskedasticity (different u are correlated)

Overview of Regression Models Panel Data

	POLS (Pooled OLS)	RE (Random Effects)	FE (Fixed Effects)	FD (First Differences)
Estimator: $\hat{\beta}$	$\hat{\beta}_{POLS} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} x'_{it} x_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} x'_{it} y_{it}\right)$	$\hat{\beta}_{RE} = \left(\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} y_i\right)$	$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \dot{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{y}_{it}\right)$	$\hat{\beta}_{FD} = (\Delta X' \Delta X)^{-1} \Delta X' \Delta y$
Model: y	$y_{it} = x_{it}\beta + v_{it}$, where $v_{it} = c_i + u_{it}$	$y_{it} = x_{it}\beta + v_{it}$, where $v_{it} = c_i + u_{it}$	$y_{it} = x_{it}\beta + c_i + u_{it}$	$y_{it} = x_{it}\beta + c_i + u_{it}$
Why POLS fails			c_i arbitrarily correlated with the x_{it}	c_i arbitrarily correlated with the x_{it}
Assumptions	 POLS.1: contemporaneous (only for the same time) exogenity E(x'_tv_t) = 0, t = 1,,T → E(x'_tc) = 0 POLS.2: rank [∑_{t=1}^T E(x'_tx_t)] = K POLS.3: a) homoscedasticity: E(u_t²x'_tx_t) = σ²E(x'_tx_t) b) no serial correlation: E(u_tu_sx'_tx_s) = 0 	 RE.1: unrelated effects: a) strict exogenity: E(u_{it} x_{i1}, x_{i2},, x_{iT}, c_i) = 0 b) orthogonality between c_i and x_{it}: E(c_{it} x_{i1}, x_{i2},, x_{iT}) = E(c_i) = 0 RE.2: Ω = E(v_iv'_i) = Var(v_i) is nonsingular and rank E(X'_iΩ⁻¹X_i) = K RE.3: a) homoscedasticity on u: E(u_iu'_i x_i, c_i) = σ_u²I_T b) homo on the unobserved effect c_i: E(c_i² x_i) = σ_c² 	- FE.1 : strict exogenity: $E(u_{it} \mid x_i, c_i) = 0$ - FE.2 : rank $\left[\sum_{t=1}^T E(\ddot{x}_{it}'\ddot{x}_{it})\right] = K$ (rules out elements without time variation (c)) - FE.3 : $E(u_iu_i' \mid x_i, c_i) = \sigma_u^2 I_T$ (idiosyncratic errors have constant variance across t (homoscedasticity) & no serially correlation (serial uncorrelated))	 FD.1: strict exogenity: E(u_{it} x_i, c_i) = 0 FD.2: rank [∑_{t=2}^T E(Δx'_{it}Δx_{it})] = K FD.3: E(e_ie'_i x_{i1},, x_{iT}, c_i) = σ_e² I_{T-1}, e_{it} = Δu_{it} (homoscedasticity and no series correlation of first differences Δu_{it})
Structure	The Pooled OLS model applies the Ordinary Least Squares (OLS) methodology to panel data	 The individual-specific effect is a random variable c that is uncorrelated with the explanatory variables, thus its in the error term. RE is asymptotically equivalent to GLS under RE.1-RE.3 	 Average the original equation across t to get a cross sectional equation: ȳ_i = x̄_iβ + c_i + ū̄_i (between equation) y_{it} - ȳ = (x_{it} - x̄_i)β + ū_{it} - ū → ȳ_{it} = x̄_{it}β + ū̄_{it} 	 The FD estimator is the POLS estimator from the regression Δy_{it} on Δx_{it} FD explicitly lose the first time period Δy_{it} Δx_{it} = x_{i,t} - x_{i,t-1}
Specials	 Appropriate if there is no reason to belief that there is individual or time specific effects in the data, i.e. each observation is indecent of each other Inference should be made robust to serial correlation and heteroskedasticity 	More efficient than POLS if $Var(c_i) > 0$	Removes c_i	Removes c_i by differencing adjacent observations
Properties	- unbiased if POLS.1 hold: $E(\hat{\beta}_{POLS}) = \beta$ - consistent if POLS.1 - POLS.2 hold: $\hat{\beta}_{POLS} \stackrel{p}{\rightarrow} \beta$ as $N \rightarrow \infty$ - <i>asymptomatically</i> normal if POLS.1 and POLS.2 hold	 unbiased if RE.1 hold: E(β̂_{RE}) = β consistent if RE.1 and RE.2 hold β̂_{RE} → β as N → ∞ asymptotically normal if RE.1 and RE.2 hold asymptotically efficient if RE.1 - RE.3 hold - in the class of estimators consistent under E(v_i x_i) = 0 	 unbiased if FE.1 hold: E(β̂_{FE}) = β consistent if FE.1 and FE.2 hold: β̂_{FE} → β as N → ∞ asymptotically normal if FE.1 - FE.2 hold asymptotically efficient if FE.1 - FE.3 hold - in the class of all estimators using the strict exogenity assumption FE.1 	 unbiased if FD.1 hold: E(β̂_{FD}) = β consistent if FD.1 and FD.2 hold: β̂_{FD} → β as N → ∞ asymptotically normal if FD.1 - FD.2 hold asymptotically efficient if FD.1 - FD.3 hold - in the class of all estimators using strict the exogenity assumption FD.1, If FE.3 is violated but FD.3 isn't FD is the better estimator
Asymptotic Distribution $\sqrt{N}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(0, V)$	Homoscedastic Asymptotic Variance (POLS.3): $AVar(\sqrt{N}(\hat{\beta}_{POLS} - \beta)) = \sigma^{2}[E(X_{i}'X_{i}')^{-1}]/N$ $A\hat{V}ar(\sqrt{N}(\hat{\beta}_{POLS} - \beta)) = \hat{\sigma}^{2}(X'X)^{-1} = \hat{\sigma}^{2}\left(\sum^{N} \sum^{T} x_{i}'.x_{i}\right)^{-1}$	$\frac{\text{Heteroscedastic Robust Asymptotic Variance:}}{A\hat{V}ar(\sqrt{N}(\hat{\beta}_{RE} - \beta))} = \left(\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} \hat{v}_i \hat{v}_i \hat{\Omega}^{-1} X_i\right) \left(\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} X_i\right)^{-1}$ $serial \ correlation \ not \ changing \ variances \ \Omega \neq E(v_i v_i')$ $\underline{\text{If additionally RE.3 holds:}}$ $A\hat{V}ar(\sqrt{N}(\hat{\beta}_{RE} - \beta)) = \left(\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} X_i\right)^{-1}$ $\hat{\Omega} = \begin{pmatrix} \hat{\sigma}_v^2 & \dots & \hat{\sigma}_c^2 & \hat{\sigma}_c^2 \\ \hat{\sigma}_c^2 & \hat{\sigma}_v^2 & & \hat{\sigma}_c^2 \\ \vdots & & \ddots & \vdots \\ \hat{\sigma}_a^2 & \dots & \hat{\sigma}_a^2 & \hat{\sigma}_v^2 \end{pmatrix} = \hat{\sigma}_u^2 I_T + \hat{\sigma}_c^2 j_T j_T'$	Heteroscedastic Robust Asymptotic Variance: $ \widehat{A\widehat{V}ar}(\sqrt{N}(\widehat{\beta}_{FE} - \beta)) = 1 $ $ \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it}\ddot{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{r=1}^{T} \widehat{v}_{it}\widehat{v}_{it}\ddot{x}'_{ir}\ddot{x}_{ir}\right) \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it}\ddot{x}_{it}\right)^{-1} $ $ \underline{If additionally FE.3 holds:} $ $ Avar(\sqrt{N}(\widehat{\beta}_{FE} - \beta)) = \sigma_{u}^{2}[E(\ddot{X}'_{t}\ddot{X}_{i})]^{-1} $ $ A\widehat{v}ar(\sqrt{N}(\widehat{\beta}_{FE} - \beta)) = \widehat{\sigma}_{u}^{2}[E(\ddot{X}'_{t}\ddot{X}_{i})]^{-1} $ $ \widehat{\sigma}_{u}^{2} = \frac{\sum \sum \widehat{u}_{it}^{2}}{N \cdot (T - 1) - K} = \frac{\text{SSR}_{FE}}{N(T - 1) - K} $	$\frac{\text{Heteroscedastic Robust Asymptotic Variance:}}{A\hat{V}ar(\sqrt{N}(\hat{\beta}_{FD} - \beta))} = \\ (\Delta X'\Delta X)^{-1} \left(\sum_{i=1}^{N} \Delta X'_i \hat{e}_i \hat{e}'_i \Delta X_i\right) (\Delta X'\Delta X)^{-1}$ $\frac{\text{If additionally FD.3 holds:}}{A\hat{V}ar(\sqrt{N}(\hat{\beta}_{FD} - \beta))} = \hat{\sigma}_e^2 (\Delta X'\Delta X)^{-1}, \\ \hat{\sigma}_e^2 = \frac{\sum_{i=1}^{N} \sum_{t=2}^{T} \hat{e}^2_{it}}{N(T-1) - K} = \frac{\text{SSR}_{FD}}{N(T-1) - K}$
Notes	OLS for panel data but we ignore the fact that it is panel data	POLS: contemporaneous exogenity, RE: strict exogenity	FE uses within variance, between is lost due to demeaning RE uses within and between variance	FE & FD are the same when T=2 If u_{it} follows a random walk FD is more efficient than FE