SymInfer: Inferring Program Invariants using Symbolic States

ThanhVu (Vu) Nguyen*,

Matthew B. Dwyer*, Willem Visser †

*University of Nebraska-Lincoln, †Stellenbosch University

ASE 2017

Introduction

Program invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

Pre/Post conditions, loop invariants, assertions

Introduction

Program invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

• Pre/Post conditions, loop invariants, assertions

Numerical invariants, e.g., relations among numerical variables

- E.g., $x = 2y + 3, 0 \le idx \le |arr| 1, x \le y^2, x = qy + r$
- *Nonlinear* polynomial invariants: $x \le y^2, x = qy + r, ...$

2

Introduction

Program invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

Pre/Post conditions, loop invariants, assertions

Numerical invariants, e.g., relations among numerical variables

- E.g., $x = 2y + 3, 0 \le idx \le |arr| 1, x \le y^2, x = qy + r$
- *Nonlinear* polynomial invariants: $x \le y^2, x = qy + r, ...$

Techniques for automatic invariant generation

- Statically examine program code, dynamically analyze concrete states (traces), or hybridization of dynamic inference and static checking
- SymInfer: hybridization using symbolic states
 - Symbolic states: obtained from symbolic execution, intermediate representation of states, consist of path conditions and local variables
 - Infer: use symbolic states to generate sample traces and infer invariants
 - Check: use symbolic states to check candidate invariants

Example: Numerical Invariants

```
What does this program do? What
int cohendiv(int x, int y){
                              properties hold at L1 and L2?
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1;
   int b=y;
   while [L1] (r > 2*b){
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

Example: Numerical Invariants

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
  int q=0; int r=x;
 while (r > y) {
   int a=1:
   int b=y;
   while [L1] (r > 2*b){
     a = 2*a;
     b = 2*b:
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

```
• loop invariants at L1:

x = qy + r, b = ya, y \le b,

b < r, r < x, a < b, 2 < a + y
```

• postconditions at L2: x = qy + r, $1 \le q + r$, $r \le y - 1$, $0 \le r$, $r \le x$

Example: Numerical Invariants

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
  int q=0; int r=x;
 while (r > y) {
   int a=1:
   int b=y;
   while [L1] (r > 2*b){
     a = 2*a;
     b = 2*b:
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

• loop invariants at L1: x = qy + r, b = ya, $y \le b$, b < r, r < x, a < b, 2 < a + y

• postconditions at L2: x = qy + r, $1 \le q + r$, $r \le y - 1$, $0 \le r$, $r \le x$

Invariants describe program's semantic,
 e.g., x = qy + r for integer division and
 reveal useful information, e.g., remainder r
 is non-negative

Symbolic States

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r \ge y){
   int a=1;
   int b=y;
   while [L1] (r \ge 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  L21
 return q;
```

Run symbolic execution to obtain

- Path conditions over input variables
- Relationships among local variables

4

Symbolic States

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while (r \ge y) {
   int a=1;
   int b=y;
   while [L1] (r \geq 2*b) {
     a = 2*a;
     b = 2*b:
   r=r-b:
   q=q+a;
  L21
 return q;
```

Run symbolic execution to obtain

- Path conditions over input variables
- Relationships among local variables
- At L1:

```
Pathconds
x \ge y \land y > 0
x \ge 2y \land y > 0
4y > x \ge 2y + y \land y > 0
2y + y \land y > 0
3y = 0 \land r = x \land a = 1 \land b = y
4y > x \ge 2y + y \land y > 0
4y > x \ge 2y + y \land y > 0
4y > x \ge 2y + y \land y > 0
4y > x \ge 2y + y \land y > 0
5y = 0 \land r = x \land a = 1 \land b = y
6y = 0 \land r = x \land a = 1 \land b = y
9y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = 1 \land b = y
1y \Rightarrow 0 \land r = x \land a = x
```

Symbolic States

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
  int q=0; int r=x;
 while (r \ge y) {
   int a=1;
   int b=y;
   while [L1] (r \geq 2*b) {
     a = 2*a;
     b = 2*b:
   r=r-b:
   q=q+a;
  L21
 return q;
```

Run symbolic execution to obtain

- Path conditions over input variables
- Relationships among local variables
- At I 1:

```
Pathconds Locals x \ge y \land y > 0 \qquad q = 0 \land r = x \land a = 1 \land b = y x \ge 2y \land y > 0 \qquad q = 0 \land r = x \land a = 2 \land b = 2y 4y > x \ge 2y + y \land y > 0 \qquad q = 2 \land r = x - 2y \land a = 1 \land b = y \vdots \qquad \vdots
```

Symbolic states at L1

Disjunctions of pathconds and locals

• An intermediate representation of states

SymInfer: Invariants Inference using Symbolic States

SymInfer: Invariants Inference using Symbolic States

- Use symbolic states for both inference and checking
- An iterative approach
 - Inferring: use symbolic states to generate traces, then apply DIG's algorithms to infer numerical invariants from traces
 - Checking: use symbolic states to check candidate invariants and generate counterexample traces

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
  assert(x>0; y>0);
  int q=0; int r=x;
  while(r >= y){
    int a=1; int b=y;
    while[L1](r >= 2*b){
      a = 2*a; b = 2*b;
    }
    r=r-b; q=q+a;
}
return q;
}
```

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
   assert(x>0; y>0);
   int q=0; int r=x;
   while(r >= y){
      int a=1; int b=y;
      while[L1](r >= 2*b){
      a = 2*a; b = 2*b;
    }
   r=r-b; q=q+a;
}
return q;
}
```

				Tra	ces:
X	У	а	b	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
			:		
4	1	1	1	0	4
4	1	2	2	0	4
			:		

Example: Dynamic Inference using DIG

Loop invariants at L1:

```
equations: x = qy + r b = ya
inequalities: 2 \le a + y a \le b y \le b
b < r r < x
```

X	У	a	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4

Terms and degrees

$$V = \{r, y, a\}; \ \deg = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	a	Ь	q	r
1.		1	2	0	15
1.		2	4	0	15
1	5 2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$
 $T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$

X	y	a	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

System of *linear* equations

trace 1
$$\rightarrow$$
 { $r = 15, y = 2, a = 1$ } eq 1 \rightarrow $c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0$ \vdots

7

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	а	Ь	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

System of *linear* equations

trace 1
$$\rightarrow$$
 { $r = 15, y = 2, a = 1$ }
eq 1 \rightarrow $c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0$
 \vdots

Solve for coefficients c_i

$$V = \{x, y, a, b, q, r\}; \text{ deg} = 2 \longrightarrow x = qy + r, b = ya$$

7

Checking Using Symbolic States

General Idea

- **Goal**: prove/refute candidate invariants (1) using symbolic states (S)
- **Approach**: call SMT solver to check for validity of $S \Rightarrow I$
 - valid: invariant is valid and accepted
 - invalid: invariant is spurious and rejected, solver produces cex's to help inference

Checking Using Symbolic States

General Idea

- **Goal**: prove/refute candidate invariants (1) using symbolic states (S)
- **Approach**: call SMT solver to check for validity of $S \Rightarrow I$
 - valid: invariant is valid and accepted
 - invalid: invariant is spurious and rejected, solver produces cex's to help inference

Implementation: use JPF/SPF to obtain symbolic states

- Bounded by depth k: invariants only valid over symbolic states S computed with k
- If I is valid with S_k , then check again if I is also valid with S_{k+1} to gaint confidence
- Can be *unsound* (will not attempt all possible depths), but in practice is *very effective* in refuting bad invariants and finding cex's

Evaluation

Setup

- SymInfer works with Java programs, implemented in SAGE/Python (with JPF/SPF and Z3 SMT solver),
- Test machine: 10-core 2.4GHZ CPU, 128GB Ram, Linux OS

Benchmark (3 objectives)

- Program Understanding: NLA testsuite, 27 programs with nonlinear invariants
- 2 Complexity Analysis: 19 programs collected from static complexity analysis work
- Program Verification: HOLA benchmark, 46 programs with assertions, compare against PIE

Example: Program Understanding

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r \ge y){
   int a=1:
   int b=y;
   while [L1] (r \ge 2*b) {
     a = 2*a:
     b = 2*b;
   r=r-b:
   q=q+a;
  L21
 return q;
```

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

• loop invariants at L1: x = qy + r, b = ya, $y \le b$, $b \le r$, $r \le x$, $a \le b$, $2 \le a + y$

• postconditions at L2: x = qy + r, $1 \le q + r$, $r \le y - 1$, $0 \le r$, $r \le x$

Invariants describe program's semantic,
 e.g., integer division and reveal useful
 information, e.g., remainder is non-negative

Results: Program Understanding

Prog	Locs	Invs	Time (s)	Correct
cohendiv	2	10	21.05	✓
divbin	2	11	58.97	✓
manna	1	6	35.33	✓
hard	2	6	29.40	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
sqrt1	1	5	20.03	✓
dijkstra	2	16	93.01	✓
freire1	1	-	-	-
freire2	1	-	-	-
cohencu	1	4	21.90	- ✓
egcd1	1	14	122.22	✓
egcd2	2	-	-	-
egcd3	3	-	-	-
prodbin	1	7	56.17	✓
prod4br	1	9	84.37	- ✓ ✓
knuth	1	-	-	
fermat1	3	17	60.26	✓
fermat2	1	8	36.83	✓
lcm1	3	24	248.17	✓
lcm2	1	7	34.17	- - - - - - - - - - - - - -
geo1	1	8	158.27	✓
geo2	1	9	147.75	✓
geo3	1	-	-	-
ps2	1	3	18.39	✓
ps3	1	3	19.69	✓
ps4	1	3	19.92	✓
ps5	1	3	46.19	- - - - - - - - - - - - - -
ps6	1	3	41.19	✓

Experiment

- NLA suite: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths

Results: Program Understanding

Prog	Locs	Invs	Time (s)	Corre
cohendiv	2	10	21.05	✓
divbin	2	11	58.97	✓
manna	1	6	35.33	✓
hard	2	6	29.40	✓
sqrt1	1	5	20.03	>>>>>
dijkstra	2	16	93.01	✓
freire1	1	-	-	-
freire2	1	-	-	-
cohencu	1	4	21.90	✓
egcd1	1	14	122.22	✓
egcd2	2	-	-	-
egcd3	3	-	-	-
prodbin	1	7	56.17	✓
prod4br	1	9	84.37	✓
knuth	1	-	-	-
fermat1	3	17	60.26	✓
fermat2	1	8	36.83	-
lcm1	3	24	248.17	✓
lcm2	1	7	34.17	✓
geo1	1	8	158.27	✓
geo2	1	9	147.75	✓
geo3	1	-	-	-
ps2	1	3	18.39	✓
ps3	1	3	19.69	✓
ps4	1	3	19.92	✓
ps5	1	3	46.19	- > > > >
рѕб	1	3	41.19	✓

Experiment

- NLA suite: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths

Results: SymInfer found correct invariants in 21/27 (\checkmark) programs

- Most results equivalent to or stronger than (imply) ground truths
- Several unexpected and undocumented invariants
- Some invariants reveal "how" program works in details

```
void triple(int M, int N, int P){ Complexity of this program?
  assert (0 \le M);
                                        • Use t to count loop iterations
  assert (0 \le N);
 assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0;
 while(i < N){</pre>
   j = 0; t++;
    while(j < M){</pre>
     j++; k = i; t++;
     while (k < P){
      k++; t++;
      i = k;
    i++;
  [L]
```

```
void triple(int M, int N, int P){ Complexity of this program?
  assert (0 <= M);
  assert (0 \le N);
  assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0:
  while(i < N){
   j = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
       k++: t++:
     i = k;
   i++;
  [L]
```

- Use t to count loop iterations
- At first glance: t = O(MNP)
- A more precise complexity bound: t = O(N + NM + P)

```
void triple(int M, int N, int P){ Complexity of this program?
 assert (0 <= M):
 assert (0 \le N);
 assert (0 <= P):
 int i = 0, j = 0, k = 0;
 int t = 0:
 while(i < N){
   i = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
      k++: t++:
     i = k;
   i++;
  [L]
```

- Use t to count loop iterations
- At first glance: t = O(MNP)
- A more precise complexity bound: t = O(N + NM + P)
- SymInfer found a very *unexpected* inv: $P^2Mt + PM^2t - PMNt - M^2Nt PMt^2 + MNt^2 + PMt - PNt - 2MNt +$ $Pt^2 + Mt^2 + Nt^2 - t^3 - Nt + t^2 = 0$

```
void triple(int M, int N, int P){
 assert (0 <= M);
 assert (0 \le N);
 assert (0 <= P):
 int i = 0, j = 0, k = 0;
 int t = 0:
 while(i < N){
   i = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
       k++: t++:
     i = k;
   i++:
  [L]
```

```
Complexity of this program?
```

- Use t to count loop iterations
- At first glance: t = O(MNP)
- A more precise complexity bound: t = O(N + NM + P)
- SymInfer found a very unexpected inv: $P^{2}Mt + PM^{2}t - PMNt - M^{2}Nt - PMt^{2} + MNt^{2} + PMt - PNt - 2MNt + Pt^{2} + Mt^{2} + Nt^{2} - t^{3} - Nt + t^{2} = 0$
- Solve for t yields the most precise, unpublished bound:

```
t = 0 when N = 0,

t = P + M + 1 when N \le P,

t = N - M(P - N) when N > P
```

 Nonlinear invariants can represent disjunctive properties capturing different complexity bounds

Results: Complexity Analysis

Prog	Invs	Time (s)	
cav09_fig1a	1	12.41	
cav09_fig1d	1	12.44	✓
cav09_fig2d	3	58.40	✓
cav09_fig3a	3	8.75	✓
cav09_fig5b	6	49.44	✓
pldi09_ex6	6	57.00	✓
pldi09_fig2	6	60.60	V
pldi09_fig4_1	3	56.24	✓
pldi09_fig4_2	5	28.32	✓
pldi09_fig4_3	3	59.19	✓
pldi09_fig4_4	-	-	-
pldi09_fig4_5	3	103.70	✓
popl09_fig2_1	2	50.86	11
popl09_fig2_2	2	53.48	11
popl09_fig3_4	4	58.62	✓
popl09_fig4_1	4	65.19	✓
popl09_fig4_2	2	51.24	11
popl09_fig4_3	5	31.57	✓
popl09_fig4_4	3	36.89	✓

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- Goal: compare against results from prev work

Results: Complexity Analysis

Prog	Invs	Time (s)	
cav09_fig1a	1	12.41	√
cav09_fig1d	1	12.44	✓
cav09_fig2d	3	58.40	✓
cav09_fig3a	3	8.75	✓
cav09_fig5b	6	49.44	✓
pldi09_ex6	6	57.00	✓
pldi09_fig2	6	60.60	V
pldi09_fig4_1	3	56.24	✓
pldi09_fig4_2	5	28.32	✓
pldi09_fig4_3	3	59.19	✓
pldi09_fig4_4	-	-	-
pldi09_fig4_5	3	103.70	✓
popl09_fig2_1	2	50.86	11
popl09_fig2_2	2	53.48	11
popl09_fig3_4	4	58.62	✓
popl09_fig4_1	4	65.19	✓
popl09_fig4_2	2	51.24	11
popl09_fig4_3	5	31.57	✓
popl09_fig4_4	3	36.89	✓

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- Goal: compare against results from prev work

Results: Obtain equivalent (14 \checkmark) or more precise bounds (4 \checkmark \checkmark) in 18/19 progs

Example: Verification

```
void f(int u1, int u2) {
                                       void g(int n, int u1) {
  assert(u1 > 0 \&\& u2 > 0);
                                         assert(u1 > 0);
  int a = 1, b = 1, c = 2, d = 2;
                                         int x = 0;
  int x = 3, y = 3;
                                         int m = 0;
  int i1 = 0, i2 = 0;
  while (i1 < u1) {</pre>
                                         while (x < n) {
                                           if (u1) {
   i1++:
   x = a + c; y = b + d;
                                             m = x;
   if ((x + y) \% 2 == 0) {
   a++: d++:
                                           x = x + 1:
   } else { a--;}
   i2 = 0:
                                          [L] //SymInfer found:
   while (i2 < u2 ) {
                                         //m^2 = nx - m - x, mn = x^2 - x
     i2++; c--; b--;
                                         //-m \le x, x \le m + 1, n \le x
                                         if (n > 0)
                                           assert(0 \le m \&\& m \le n);
  [L] //SymInfer found:
  //b + 1 = c, a + 1 = d,
  //a + b \le 2, 2 \le a
  assert(a + c == b + d);
```

Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results: Found equiv or stronger invariants in 40/46 programs

- Time: median 9.3s, mean 5.4s
- Nonlinear invariants can prove many nontrivial and unsupported properties

documentation, code, benchmark programs
https://bitbucket.org/nguyenthanhvuh/symtraces/

Extra Slides

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \le 1000$
 - Basic CEGIR: iter 1: $t \le 2$, iter: 2 $t \le 3$, iter 3: $t \le 7$, ...
 - \blacksquare Not terminating if t has no bounds

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \le 1000$
 - Basic CEGIR: iter 1: $t \le 2$, iter: 2 $t \le 3$, iter 3: $t \le 7$, ...
 - Not terminating if t has no bounds
- Approach: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \le t \le k$, where k = 100000

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \le 1000$
 - Basic CEGIR: iter 1: $t \le 2$, iter: 2 $t \le 3$, iter 3: $t \le 7$, ...
 - Not terminating if t has no bounds
- Approach: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \le t \le k$, where k = 100000
 - Finding upperbound (ub): check if $t \le k$
 - If no (i.e., t > k) then will not find ub of t

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \le 1000$
 - Basic CEGIR: iter 1: $t \le 2$, iter: 2 $t \le 3$, iter 3: $t \le 7$, ...
 - Not terminating if t has no bounds
- Approach: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \le t \le k$, where k = 100000
 - Finding upperbound (ub): check if $t \le k$
 - If no (i.e., t > k) then will not find ub of t
 - Otherwise use divide and conquer to find ub of t within range [-k, k]
 - ► Compute mid value mv = (-k + k)/2, check if $t \le mv$
 - ▶ If yes, find ub of t within the range [-k, mv]
 - ▶ If no, find ub of t within the range [mv, k]

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \le 1000$
 - Basic CEGIR: iter 1: $t \le 2$, iter: 2 $t \le 3$, iter 3: $t \le 7$, ...
 - Not terminating if t has no bounds
- Approach: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \le t \le k$, where k = 100000
 - Finding upperbound (ub): check if $t \le k$
 - If no (i.e., t > k) then will not find ub of t
 - Otherwise use divide and conquer to find ub of t within range [-k, k]
 - ► Compute mid value mv = (-k + k)/2, check if $t \le mv$
 - ▶ If yes, find ub of t within the range [-k, mv]
 - ▶ If no, find ub of t within the range [mv, k]
- Support octagonal invariants: term t represent x, y, x y, x + y, -x y, ...

Using Symbolic States for Invariant Inference

- Reusability: pre-compute and reuse symbolic states at L, e.g., for checking
- Expressiveness: a symbolic state (e.g., $x \ge 0, y \ge x$) represents many concrete states and also encodes relationahips among variables (e.g., $y \ge x$)
- Diversity: each symbolic state represent a different program "path", produce better traces
- Usability and Optimization: encoded logical formulas, checked with different solvers and optimized (e.g., perform slicing when checking)