Aufgabe 2

a) .

ε	Näherung von $\Phi(1)$	Fehler	Auswertungen von φ
2^{-10}	0.841872145243	0.000527399174928	8,193
2^{-11}	0.841608445731	0.000263699662581	16,385
2^{-12}	0.841476595919	0.000131849850067	32,769
2^{-13}	0.841410670998	$6.59249297345 \cdot 10^{-5}$	65,537
2^{-14}	0.841377708535	$3.2962466027 \cdot 10^{-5}$	131,073
2^{-15}	0.841361227302	$1.64812333044 \cdot 10^{-5}$	$262,\!145$
2^{-16}	0.841352986685	$8.24061673221 \cdot 10^{-6}$	524,289
2^{-17}	0.841348866377	$4.12030840213 \cdot 10^{-6}$	1,048,577
2^{-18}	0.841346806223	$2.06015417292 \cdot 10^{-6}$	2,097,153
2^{-19}	0.841345776146	$1.03007711127 \cdot 10^{-6}$	4,194,305
2^{-20}	0.841345261107	$5.15038520166 \cdot 10^{-7}$	8,388,609
2^{-21}	0.841345003588	$2.57519345293 \cdot 10^{-7}$	16,777,217
2^{-22}	0.841344874828	$1.287596193 \cdot 10^{-7}$	33,554,433
2^{-23}	0.841344810448	$6.43797478661 \cdot 10^{-8}$	67,108,865
2^{-24}	0.841344778258	$3.21899319422 \cdot 10^{-8}$	$134,\!217,\!729$
2^{-25}	0.841344762163	$1.60949265027 \cdot 10^{-8}$	$268,\!435,\!457$
2^{-26}	0.841344738021	$8.04746325135 \cdot 10^{-9}$	536,870,913
2^{-27}	0.841344742044	$4.02373162568 \cdot 10^{-9}$	1,073,741,825
2^{-28}	0.841344744056	$2.01186581284 \cdot 10^{-9}$	$2,\!147,\!483,\!649$
2^{-29}	0.841344745062	$1.00593290642 \cdot 10^{-9}$	4,294,967,298
2^{-30}	0.841344745565	$5.02966453209 \cdot 10^{-10}$	$8,\!589,\!934,\!595$

Aufgabe 4

a) $P_{p_o(0)}(S_2 \le 0) = P_{p_o(0)}(S_2 = 0) = \beta$(Kleiner als 0 ist nicht möglich)

$$\Leftrightarrow \binom{2}{0} \cdot p_o(0)^0 \cdot (1 - p_o(0))^2 = \beta$$

$$\Leftrightarrow (1 - p_o(0))^2 - \beta = 0$$

$$\Leftrightarrow 1 - 2p_o(0) + p_o(0)^2 - \beta = 0$$

$$\Leftrightarrow p_o(0)^2 - 2p_o(0) + 1 - \beta$$

das kann man in die Mitternachtsformel einsetzen:

$$\frac{2\pm\sqrt{4-4\cdot(1-\beta)}}{2}=\frac{2\pm\sqrt{4\beta}}{2}$$

$$=\frac{2\pm2\sqrt{\beta}}{2}=1\pm\sqrt{\beta}$$

 $=\frac{2\pm2\sqrt{\beta}}{2}=1\pm\sqrt{\beta}$ Da $1+\sqrt{\beta}$ nicht geht (P wäre dann größer als 1), bleibt nur $1-\sqrt{\beta}$ übrig.

$$P_{p_o(1)}(S_2 \le 1) = \beta$$

$$P_{p_o(1)}(S_2 = 0) + P_{p_o(1)}(S_2 = 1) = \beta$$

$$(1 - p_o(1))^2 + {2 \choose 1} \cdot p_o(1) \cdot (1 - p_o(1)) = \beta$$

$$p_o(1)^2 - 2p_o(1) + 1 + 2 \cdot p_o(1) - 2 \cdot p_o(1)^2 = \beta$$

$$-p_o(1)^2 + 1 - \beta = 0$$

Wieder mit der Mitternachtsformel:

$$\frac{0\pm\sqrt{-4\cdot(-1)\cdot(1-\beta)}}{-2}=\frac{\pm\sqrt{4-4\beta}}{-2}$$

$$=\frac{\pm\sqrt{4(1-\beta)}}{-2}=\frac{2\cdot\sqrt{1-\beta}}{-2}=\pm\sqrt{1-\beta}\\ -\sqrt{1-\beta} \text{ macht keinen Sinn (P < 0)}\to\sqrt{1-\beta} \text{ bleibt übrig.}$$

$$Pp_u(1)(S_2 < 1) = 1 - \beta$$

$$Pp_u(1)(S_2 \le 0) = 1 - \beta$$

$$(1 - Pp_u(1))^2 = 1 - \beta$$

$$p_u(1)^2 - 2p_u(1) + \beta = 0$$

 $Mitternachtsformel \Rightarrow \frac{2\pm\sqrt{(14-4*1*\beta)}}{2}$

$$\Rightarrow 1 \pm \sqrt{1-\beta}$$

$$Ergebnis: 1 - \sqrt{1-\beta}$$

$$Pp_u(2)(S_2 < 2) = 1 - \beta$$

$$Pp_u(2)(S_2 \le 1) = 1 - \beta$$

$$-p_u(2)^2 + \beta = 0$$

 $Mitternachtsformel \Rightarrow \frac{\pm \sqrt{(-4(-1)+\beta)}}{-2}$

$$\Rightarrow \pm \sqrt{\beta}$$

 $Ergebnis: +\sqrt{\beta}$

Nur ein Ergebnis, da das Ergebnis nicht negativ sein darf!