Name: Minh Khai Tran

zID: z5168080

Question 5:

- If we schedule the production of the chemicals in order C_1 , C_2 , C_3 , ..., C_i , ..., C_n .
- Then, at the end of 1st day, the total amount of chemical is:

$$W_{total} = W_1(1-p)$$

Because on the first day, we only produce W_1 kilograms of chemical C_i and the amount of evaporate is

At the end of 2nd day, the total amount of chemicals is:

$$W_{total} = (W_1(1-p) + W_2)(1-p) = W_1(1-p)^2 + W_2(1-p)$$

Because on the second day, we produce W_2 kilograms of chemical C_2 , and the amount before evaporation happens is

$$W_{produce} = W_1(1-p) + W_2$$

So, at the end of second day, $W_{total} = W_{produce} * (1-p)$

Similarly, at the end of n^{th} day, the amount of total amount of chemicals is:

$$W_{total} = W_1(1-p)^n + W_2(1-p)^{n-1} + W_3(1-p)^{n-2} + \dots + W_n(1-p)$$

- Therefore, in order to produce total extra weight of all chemicals needed to produce to compensate for the evaporation loss is as small as possible the W_{total} must be maximum.
- We claim that, if the chemicals are ordered in an increasing order of weights, the total weight W_{total} will be
 maximised.
- Proof:
 - $\quad \text{ Assume } W_1 < W_2 < W_3 < \dots < W_k < W_{k+1} < \dots < W_n$
 - O Let us see what happens if we swap to adjacent chemicals W_k and W_{k+1}
 - o The expected total weight before the swap and after swap are, respectively,

$$W_{total} = W_1(1-p)^n + W_2(1-p)^{n-1} + \dots + W_k(1-p)^{n-(k-1)} + W_{k+1}(1-p)^{n-k} + \dots + W_n(1-p)$$

$$W'_{total} = W_1(1-p)^n + W_2(1-p)^{n-1} + \dots + W_{k+1}(1-p)^{n-(k-1)} + W_k(1-p)^{n-k} + \dots + W_n(1-p)$$

• Thus,

$$\begin{split} W_{total} - W_{total}' &= (1-p)^{n-(k-1)} (W_k - W_{k+1}) + (1-p)^{n-k} (W_{k+1} - W_k) \\ W_{total} - W_{total}' &= (1-p)^{n-k} ((1-p)(W_k - W_{k+1}) + W_{k+1} - W_k) \\ W_{total} - W_{total}' &= (1-p)^{n-k} (pW_{k+1} - pW_k) \\ W_{total} - W_{total}' &= p(1-p)^{n-k} (W_{k+1} - W_k) > 0 \ because \ W_{k+1} > W_k \end{split}$$

Therefore,

$$W_{total} > W'_{total}$$

- Consequently, $W_{total} > W'_{total}$, if and only if $W_k < W_{k+1}$, which means that the swap decreases the expected total weight just in case $W_k < W_{k+1}$.
- Consequently, the maximum total weight is obtained when there are no inversions.
- When we have the maximum total weight after nth day, which means the amount of chemicals we need to reproduce will be minimum.