FindMe FM

Final Project: Group 3

Dorna Abdi Manuel Elizadi Christian Koehlinger Cailyn Miller Mike Prue Joshua Rhodes

Project Outline

Topic: Can machine learning predict what songs a user will enjoy based on the audio features of a song they like?

Reason for topic: Interest in the use of Spotify API and other available spotify datasources.

Data Source: Kaggle dataset - Spotify Dataset 1922-2021 ~600k tracks

- Contains info on the audio features of each song (danceability, acousticness, tempo, etc.)
- Dataset is created using the Spotify API

Data Structure: Tracks

Primary:

ID

Numerical

- acousticness (ranges from 0 to 1)
- danceability (ranges from 0 to 1)
- energy (ranges from 0 to 1)
- duration_ms (ranges from 0 to 1)
- instrumentalness (ranges from 0 to 1)
- valence (ranges from 0 to 1)
- popularity (ranges from 0 to 1)
- tempo (ranges from 0 to 1)
- liveness (ranges from 0 to 1)
- loudness (ranges from 0 to 1)
- speechiness (ranges from 0 to 1)

Boolean

- mode (0 = Minor, 1 = Major)
- explicit (0 = No explicit content, 1 = explicit content)

Categorical

- key: all keys on octave encoded as values ranging from 0 to 11, starting C as 0, C# as 1 and so on...
- timesignature: the predicted timesignature, most typically 4
- artists: the artist(s) who made this song
- artists_ids: the ids for each artist
- release_date : date of when the song was released
- name: title of the song

Data Structure: Artists

Primary:

• id: ID of artist

Numerical

- number of followers: total number of followers the artist has
- popularity: popularity of artists based on all their tracks

Categorical

- name: name of artist
- genres: genres associated with the artist

Data Structure: Dictionary of Artist to Artist Relationships

```
"any": [
"first",
"second",
"third".
"nth"
"blank:[],
"first:
"any",
"third",
"Second
```

- The lists are in descending order
- "first" the most similar to "any",
 "second" the second most, and so on.
 - max 20 similar artists

Questions We Hope to Answer with Data

Can we use audio elements of a track to predict a song a user would like based on an input of another song they like?

Descriptions of the data exploration phase of the project

Created a mapping between the different data sources

Explored the datatypes

Description of the analysis phase of the project

acousticness	danceability	energy	instrumentalness	liveness	loudness	popularity	speechiness	tempo
1.597267	-1.402608	-0.434803	0.527065	0.681875	-2.560544	0.401476	-0.384211	0.481201
-0.026886	-0.362256	0.666427	-0.519699	0.799534	-1.552361	1.193404	-0.071579	0.280969
3.212922	-1.633991	0.005412	1.118260	0.249359	-1.904048	-0.143154	1.033555	0.752712
-1.105168	-1.309363	-0.297432	0.131040	0.100094	-0.986246	-0.980184	-1.432502	0.749119
-1.037801	-0.886208	1.048483	1.097711	0.860369	-0.453503	0.875575	-1.344493	1.213830

We ran a PCA analysis to understand which audio elements had the greatest variability.

Technologies, languages, tools, and algorithms

K-Means: The Machine Learning Algorithm that is being used to cluster songs together based on elements.

Heroku: Cloud platform being used to store all of data and website.

pgAdmin: Platform being used to store the database.

Flask: Module being used to create the website.

Tableau: Platform being used to visualize the data analysis.

SQL: Language being used to query and restructure the database.

Python: Language being used to clean the data and run Machine Learning algorithms.