

Preliminary definitions

Time series definition [3]

Informal definition

A time-series is a set of observation x_t each one being recorder at a specific time t.

Formal definition

A time series model for the observed data x_t is a specification of the joint distribution (or possible only the means covariance) of a sequence of random variable X_t of which x_t is postulated to be a realization

A binary process

Consider the sequence of iid random variables, with $P[X_t = 1] = p$ and $P[X_t = -1] = 1 - p$

Random walk

The random walk is obtained by cumulatively summing iid random variables. Thus a random walk with zero mean is obtained by defining

Stationarity, autocovariance and autocorrelation[3]

Mean Function

Let X_t be a time series with $E(x_t^2 < \infty$ The mean function of X_t is $\mu_X(t) = E(X_t)$. The covariance function of X_t is $\gamma_X(r,s) = Cov(X_r,X_S) = E[(X_r - \mu_X(r))(X_s - \mu_X(s))] \quad \forall r,s$

Weakly stationary TS

 X_t is weakly stationary if i) $\mu_X(t)$ is independent from time t and ii) $\gamma_X(t+h)$ is indipendent of t $\forall h$

Autocovariance function

At lag h the auto-covariance function is defined as $\gamma_X(h) = \mathit{Cov}(X_{t+h}, X_t)$

Autocorrelation function

At lag h the autocorrelation function is defined as

$$\rho(h)_X = \frac{\gamma_X(h)}{\gamma_X(0)} = Cor(X_{t+h}, X_t)$$

Stationarity, autocovariance and autocorrelation [3]

Stationarity, autocovariance and autocorrelation [5]

Definition [3]

Linear process

Time series X_t is a linear process if it has the representation

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$$

for all t, where $Z_t \approx \mathrm{WN}(0,\sigma^2)$ and ψ_j is a sequence of costants with $\sum_{j=-\infty}^\infty \psi_j < \infty$. In terms of backward shift operator B $BX_t = X_{t-1}$ we have $X_t = \varphi(B)Z_t$ Therefore the previous definition can be rewritten as $X_t = \varphi(B)Z_t$ in which $\varphi(B)$ can be thought as a linear filter that when applied to the white noise input series Z_t produces the output X_t

Definition [3]

Linear process

The time series X_t is an ARMA(1,1) process if its stationary and satisfiy (for every t)

$$X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}$$

where $Z_t \approx \mathrm{WN}(0, \varphi^2)$ and $\varphi + \theta \neq 0$ or in terms of filters φ and θ

$$\phi(B)X_t = \theta(B)Z_t$$

Remarks

- \bullet A stationary solution of the ARMA(1,1) equation exists if and only if $\varphi \neq \pm 1$
- If $|\varphi| < 1$, then the unique stationary solution is given by $X_t = Z_t + (\varphi + \theta) \sum_{j=1}^{\infty} \varphi^{j-1} Z_{t-j}$. In this case we say that X_t is causal or a causal function of Z_t or a causal function of Z_t since X_t can be expressed in terms of the current and past values Z_s , $s \le t$
- If $|\phi| > 1$, then the unique stationary solution is given by $X_t = -\theta \phi^{-1} Z_t (\phi + \theta) \sum_{j=1}^{\infty} \phi^{-j-1} Z_{t-j}$. The solution is non-causal, since X_t is then a functional of Z_s $s \ge t$

Wold decomposition [3]

Prediction operator based on the infinite past X_t , $-\infty < t < n$

$$\tilde{P}_n X_{n+h} = \lim_{m \to -\infty} P_{m,n} X_{n+h}$$

Wold decomposition X_t , $-\infty < t < n$

 X_t is a non-deterministic stationary time series, then

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} + V_t$$

where V_t is deterministic

Definition [3]

ARMA (p,q)

 X_t is an ARMA(p,q) process if X_t is stationary and if for every t,

$$X_{t} - \phi_{1}X_{t-1} - ... - \phi_{1}X_{t-q} - = Z_{t} + \theta Z_{t} + \theta_{1}Z_{t-1} + ... + \theta_{q}Z_{t-q}$$

where $Z_t \approx WN(0, \sigma^2)$ and the polynomials $(1 - \varphi_1 z - ... - \varphi_p z^p)$ and $(1 + \varphi_1 z + ... + \varphi_p z^p)$ have no common factor.

Definition [3]

Causality

An ARMA(p,q) process X_t is causal, or a causal function of Z_t if there exist constants ϕ_j such that $\sum_{i=0}^{\infty} |\phi_j| < \infty$ and

$$X_t = \sum_{j=0}^{\infty} \sum_{j=0} \phi_j Z_{t-j} \quad \forall \quad t$$

this is equivalent to the condition

$$\phi(z) = 1 - \phi_1 z - ... - \phi_p z^p \neq |z| < 1$$

Marzio De Corato Review 2 agosto 2024 12 / 48

Spectral Analysis

Spectral Analysis [3]

Spectral density

Given a zero mean stationary time series X_t with autocovariance function $\gamma()$ satisfying $\sum_{h=-\infty} |\gamma(h)| < \infty$, the spectral density of X_t is the function defined by

$$f(\lambda) = \frac{1}{2\pi} \sum_{h} e^{-ih\lambda} \gamma(h) - \infty < \lambda < \infty$$

with the condition that

$$f(\lambda) \ge 0 \quad \forall \lambda$$

$$\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda \forall h$$

Marzio De Corato Review 2 agosto 2024 14 / 48

Spectral Analysis [3]

Spectral Representation of The ACVF

A function $\gamma()$ defined on the integers is the ACVF of a stationary time series if and only if there exists a right-continuous, non-decresing, bounded function F on $[-\pi,\pi]$ with $F(-\pi)=0$ such that:

$$\gamma(h) = \int_{(-\pi,\pi]} e^{ih\lambda} dF(\lambda)$$

for all integers h. F is a generalized distribution function that is called the spectral distribution function of $\gamma(\tt)$

Linear process

The process Y_t is the output of a linear filter $C = \{c_{t,k}, t, k = 0 \pm 1, ...\}$ applied to an input process X_t if $Y_t = \sum_{k=-\infty}^{\infty} c_{t,k} X_k$ $t = 0, \pm 1, ...$

Time invariant

The filter is said to be time-invariant if the weights $c_{t,t-k}$ are independent of t e.g. $c_{t,t-k} = \phi_k$

$$Y_t = \sum_{k=-\infty}^{\infty} \phi_{t,k} X_{t-k}$$

$$Y_{t-s} = \sum_{k=-\infty}^{\infty} \phi_{t,k} X_{t-s-k}$$

The TLF ϕ is to be causal if $\phi_j = 0$ for j < 0

Transfer function

Let X_t be a stationary time series with mean zero and spectral density $f_{\varkappa}(\lambda)$. Suppose that $\Phi = \{\varphi_j, j=0,\pm 1,...\}$ is an absolutely summable TLF. Then the time series

$$Y_t = \sum_{j=-\infty}^{\infty} \phi_j X_{t-j}$$

is stationary with mean zero and spectral density

$$f_{\mathbf{Y}}(\lambda) = |\Psi(e^{-i\lambda})|^2 f_{\mathbf{X}}(\lambda) = \Psi(e^{-i\lambda}) \Psi(e^{i\lambda}) f_{\mathbf{X}}(\lambda)$$

where $\Psi(e^{-i\lambda})=\sum_{j=-\infty}^{\infty} \varphi_j e^{-ij\lambda}$ where $\Psi(e^{-i})$ is called the transfer function of the filter, and the squared modulus $|\Psi(e^{-i})|$ is referred to as the power transfer function of the filter.

Simple moving average

$$Y_t = \frac{1}{2q+1} \sum_{|j| < q} X_{t-j}$$

where
$$\psi = (2q + 1)^{-1}, j = -q, ..., q$$
 and ψ_j

Figure 4-12 The transfer function $D_{10}(\lambda)$ for the simple moving-average filter

Gibbs phenomenon

The poor approximation in the neighbourhood of cut-off frequency (ω_c)

Figure 4-13
The transfer function for the ideal low-pass filter and truncated Fourier approximations $\Psi^{(q)}$ for q = 2.10

Estimation

Esimation [3]

Gaussian Likehood

$$L(\widehat{\boldsymbol{\varphi}}, \widehat{\boldsymbol{\theta}}, \sigma^2) = \frac{1}{\sqrt{(2\pi\sigma)^n r_0 \dots r_{n-1})}} \exp(-\frac{1}{2\sigma^2} \sum \frac{(X_j - \widehat{X}_j)^2}{r_{j-1}})$$

Maximum Likehood Estimators

Differentiating $\ln L(\phi,\theta\,\sigma^2)$ partially with respect to σ^2 and noting that \hat{X}_j and r_j are independent of σ

$$\hat{\sigma}^2 = n^{-1} S(\widehat{\boldsymbol{\varphi}}, \widehat{\boldsymbol{\theta}})$$

$$S(\widehat{\boldsymbol{\phi}},\widehat{\boldsymbol{\theta}}) = \sum_{j=1}^{n} (X_j - \hat{X}_j)^2 / r_{j-1}$$

where $\widehat{\varphi}$, $\widehat{\theta}$ are the values of φ , θ that minimize:

$$\mathcal{L}(\phi,\theta) = \ln(n^{-1}S(\phi,\theta)) + n^{-1}\sum_{j=1}^{n} \ln r_{j-1}$$

Akaike information criterion

$$AICC = -2 \ln L(\widehat{\Phi}, \widehat{\theta}, S((\Phi_p, \theta_q)/n) + 2(p+q+1)n/(n-p-q-2)$$

Residual

$$\hat{W}_t = \left(X_t - \hat{X}_t \phi, \theta\right) / \left(r_{t-1}(\hat{\phi}, \hat{\theta})\right)^{1/2} \quad t = 1, ..., n$$

This should have properties similar to the white noise sequence, thus one can define the rescaled residuals

$$\hat{R}_t = \hat{W}_t / \hat{\sigma}$$

$$\hat{\sigma} = \sqrt{\left(\sum_{t=1}^{n} \hat{W}_{t}^{2}\right)/n}$$

Figure 5-5
The rescaled residuals after fitting the ARMA(1,1) model of Example 5.2.5 to the lake data

Nonstationary time series

Estimation [3]

Akaike information criterion

If d is a non-negative integer, then X_t is an ARIMA(p,d,q) process if

$$Y_t = (1 - B)^d X_t$$

is causal ARMA(p,q) process $BX_t = X_{t-1}$. Note that $\nabla X_t = X_t - X_{t-1}$

Multivariate time series

Multivariate time series [3]

Akaike information criterion

 $\{ \boldsymbol{X}_t \}$ is an ARMA (p,q) process if $\{ \boldsymbol{X}_t \}$ is stationary and if for every t,

$$\boldsymbol{X}_t - \varphi_1 \boldsymbol{X}_{t-1} - \dots - \varphi_p \boldsymbol{X}_{t-p} = \boldsymbol{Z}_t + \Theta_1 \boldsymbol{Z}_{t-1} + \dots + \Theta_q \boldsymbol{Z}_{t-q}$$

where $Z_t \approx \text{WN}(0,\Sigma)$

Vector Autoregression [4]

VAR(1)

$$\begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} a_{1,2} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} e_{1,t} \\ e_{2,t} \end{pmatrix}$$

Granger causality test (hamilton2020time)

 y_2 cause (in Granger sense) y_1 if the coefficent $a_{1,2}$ is signficantly not equal to 0

Marzio De Corato Review 2 agosto 2024 30 / 48

Vector Autoregression [4]

Impulse response function

 y_2 cause (in Granger sense) y_1 if the coefficent $a_{1,2}$ is signficantly not equal to 0

State-space models

Definition

A state-space model (SSM) is a partially observed Markov model in which the hidden state z_t evolves over time according to a Markov process and each hidden state generates some observations y_t at each step. The main goal is to infer the hidden states given the observations (and also to predict the future observations)

Non linear dynamical system

A state-space model (SSM) can be represented as a stochastic discrete time nonlinear dynamical system of the form

$$z = f(\mathbf{z}_{t-1}, \mathbf{u}_t, \mathbf{q}_t)$$
$$y_t = h(\mathbf{z}_t, \mathbf{u}_t, \mathbf{y}_{1:t-1}, \mathbf{r}_t)$$

where $z_t \in \mathbb{R}^N$ are the hidden states, $\mathbf{u}_t \in \mathbb{R}^N$ are the optional observed inputs, $y\mathbf{y}_t \in \mathbb{R}^N$ are observed output and \mathbf{f} is the transition function, \mathbf{q}_t is the process noise, \mathbf{h} is the observation function and \mathbf{r}_t is the observation noise. The transition model and the observational model are

$$\begin{split} & \rho(\mathbf{z}_t|\mathbf{z}_{t-1},\mathbf{u}_t) = \rho(\mathbf{z}_t|\mathbf{f}(\mathbf{z}_{t-1},\mathbf{u}_t)) \\ & \rho(\mathbf{y}_t|\mathbf{z}_t,\mathbf{u}_t,\mathbf{y}_{1:t-1}) = \rho(\mathbf{y}_t|\mathbf{h}(\mathbf{z}_t,\mathbf{u}_t,\mathbf{y}_{1:t-1})) \end{split}$$

Non linear dynamical system

Hidden Markov Model (HMM) ightarrow a SSM in which the hidden states are discrete, thus $z_t \in 1,...,K$

Time series segmentation

Time series segmentation

We want to segment a time series into different regimes, each of which correspond to a different statistical distribution. In particular we would like to segment this data stream in to K different regimes or states, each of which is associated with a Poisson observation model with rate λ_k :

$$p(y_t|z_t=k) = Poi(y_t|_k)$$

where a uniform prior over the initial states was considered. The transition matrix will be:

$$z_1 pprox \mathsf{Categorical}\left(\left\{rac{1}{4}, rac{1}{4}, rac{1}{4}, rac{1}{4}
ight\}
ight)$$
 $z_1|z_{t-1} pprox \mathsf{Categorical}\left(\left\{egin{align*} p & z_t = z_{t-1} \ rac{1-p}{4-1} & \mathsf{else} \end{pmatrix}
ight\}
ight)$
 $p(y_{1:T}|K) pprox \max_{\lambda} \sum p\left(y_{1:T}, z_{1:T}|\lambda, K
ight)$

Structural time series models [6]

Structural time series (STS)

Defined in terms of linear-Gaussian SSMs. Differently from ARMA method, they have much more flexibility: one can create non-linear, non-Gaussian and even hierarchical extension. Represent the observed scalar time series as a sum of C individual components

$$f(t) = f_1(t) + f(t) + ... + f_C(t) + \epsilon_t$$

Each single component (latent process) $f_c(t)$ is modeled by a linear Gaussian state-space model which is also called dynamic linear model. Since these are linear, one can combine in to a single state-space model.

$$p(z_t|z_{t-1}, \theta) = \mathcal{N}(z_t|Fz_{t-1}, Q)$$
$$p(y_t|z_t, \theta) = \mathcal{N}(y_t|Hz_t + \beta^T u_t, \sigma_y^2)$$

where F and Q are block structure matrices, with one block per component. The vector H then adds up all the relevant piecies from each component to generate the overall mean.

Structural time series models [6]

Local level model

The observation $y_t \in \mathbb{R}^N$ are generated by a Gaussian with (latent) mean μ_t , which evolves over over time according to a random walk

$$\begin{aligned} y_t &= \mu_t + \epsilon_{y,t} & \epsilon_{y,t} \approx \mathcal{N}(0, \sigma_y^2) \\ \mu_t &= \mu_{t-1} + \epsilon_{t-1\mu,t} & \mu_{t} \approx \mathcal{N}(0, \sigma_\mu^2) \end{aligned}$$

One can also assume that $\mu_1 \in \mathcal{N}(0, \sigma_\mu^2)$. Thus the latent mean at any future step has distribution $\mu_t \in \mathcal{N}(0, t\sigma_\mu^2)$ so the variance grows with time. Once can also use an autoregressive model in which $\mu_t = \rho \mu_{t-1} + \varepsilon_{\mu,t}$ where $|\rho < 1|$. In this case we have $\mu_\infty \approx \mathcal{N}(0, \frac{\sigma_\mu^2}{1-\rho^2})$: thus the uncertainty grows to finite asymptote instead of undoubtedly

Space representation of ARMA models

In this case we have

$$Z = \begin{pmatrix} Y_{t-p+1} \\ Y_{t-p+2} \\ \dots \\ Y_t \end{pmatrix} \tag{1}$$

And the observation equation is

$$Y_t = [0, 0, 0, ..., 1]X_t$$
 $t = \pm 0, \pm 1, ...$ (2)

And the state equation is

$$X_{t+1} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & & & & & \\ 0 & 0 & 0 & \dots & 1 \\ \phi_{\rho} & \phi_{\rho-1} & \phi_{\rho-2} & \dots & \phi_1 \end{pmatrix} X_{t} + \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{pmatrix} WN(0, \sigma^{2}) \quad t = 0, \pm 1, \dots$$
(3)

Marzio De Corato Review 2 agosto 2024 39 / 48

Traking and state estimation

A BSTS model with local linear trend and linear regression on inputs. The observed output is y_t . The latent state vector is defined by $z_t = (\mu_t, \delta_t)$. The (static) parameters are $\theta = (\sigma_y, \sigma_\mu, \sigma_\delta, \beta)$. The covariates are u_t

Intuitive idea [6]

Traking and state estimation

We want to track an object moving in 2D. The hidden state x_t encodes the location (x_{t1}, x_{t2}) and the velocity $\dot{x}_{t1}, \dot{x}_{t2}$ of the moving object. The observation \mathbf{y}_t is a noisy version of the location. Suppose that that the sampling period is Δ , thus

$$\mathbf{y}_{t} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \mathbf{x}_{t-1} + \mathbf{WN} \quad (5)$$

Intuitive idea [6]

Traking and state estimation

Possible tasks

- Prediction
- Filtering: estimate the unknown location (and velocity) of the object given the noisy obstervation (on-line)
- Smoothing: inference of the locations, given all the observations (off-line)

Intuitive idea [2]

General idea

Finding the best (in the sense of minimum square error) linear estimates of the state vector X_t in terms of observations Y_1, Y_2 and a random vector Y_0 that is orthogonal to V_t and W_t for all $t \ge 1$ for these three cases:

- $Y_0, ..., Y_{t-1}$ defines the prediction problem
- $Y_0, ..., Y_t$ defines the filtering problem
- $Y_0, ..., Y_n \ (n > t)$ defines the smoothing problem

Best linear predictor

For the random vector $X = (X_1,...,X_{\nu})'$

$$P(X) = (P_t(X_1), ..., P_t(X_v))'$$

where $P_t(X) = P(X_i | Y_0, Y_1, ..., Y_t)$ is the best linear predictor of X_i in terms of all components of $Y_0, Y_1, ..., Y_t$

Kalman prediction

For the state-space model

$$Y_t = G_t X_t + W_t$$
$$X_{t+1} = F_t X_t + V_t$$

where W and V are two uncorrelated noises. The one-step predictors $\hat{X}_t = P_{t-1}(X_t)$ and their error covariance matrices $\Omega_t = E\left[(X_t - \hat{X}_t)(X_t - \hat{X}_t)'\right]$ are uniquely determinated by the initial conditions

$$\hat{\boldsymbol{X}}_t = P(X_t|Y_0) \quad \Omega_1 = E\left[\left(\boldsymbol{X}_1 - \hat{\boldsymbol{X}}_1\right)\left(\boldsymbol{X}_1 - \hat{\boldsymbol{X}}_1\right)'\right]$$

and the recursion, for t = 1, ...,

$$\hat{\boldsymbol{X}}_{t+1} = F_t \hat{\boldsymbol{X}}_t + \Theta_t \Delta_t^{-1} \left(\boldsymbol{Y}_t - G_t \hat{\boldsymbol{X}}_t \right)$$

$$\Omega_{t+1} = F_t \Omega F_t' + Q_t - \Theta_t \Delta_t^{-1} \Theta_t'$$

where $\Delta_t = \textit{G}_t \Omega_t \textit{G}_t' + \textit{R}_t \quad \Theta_t = \textit{F}_t \Omega_t \textit{G}_t'$

Kalman Filtering

The filtered estimates $X_{t|t} = P_t(X_t)$ and their error covariance matrices $\Omega_{t|t} = E\left[\left(X_t - X_{t|t}\right)\left(X_t - X_{t|t}\right)'\right]$ are determinated by the relations

$$P_t \mathbf{X}_t = P_{t-1} \mathbf{X}_t + \Omega_t G_t' \Delta_t^{-1} \left(\mathbf{Y}_t - G_t \hat{\mathbf{X}}_t \right)$$

and

$$\Omega_{t|t} = \Omega_t - \Omega_t G_t' \Delta_t^{-1} G_t \Omega_t'$$

The Kalman Fixed-Point Smoothing

The smoothed estimates $X_{t|n} = P_n X_t$ and the error covariance matrices $\Omega_{t|n} = E\left[(X_t - X_{t|n})(X_t - X_{t|n})'\right]$ are determinated for fixed t by the following recursions, which can be solved successively for n = t, t+1, ...

$$P_{n}\mathbf{X}_{t}=P_{n-1}\mathbf{X}_{t}+\Omega_{t}G_{t}^{\prime}\Delta_{t}^{-1}\left(\mathbf{Y}_{n}-G_{n}\hat{\mathbf{X}}_{n}\right)$$

and

$$\begin{split} &\Omega_{t|n+1} = \Omega_{t,n} \left[F_n - \Theta_n \Delta_n^{-1} G_n \right] \\ &\Omega_{t|n} = \Omega_{t|n-1} - \Omega_{t,n} G_n' \Delta_n^{-1} G_n \Omega_{t,n}' \end{split}$$

Bibliography I

- [1] https://www.semanticscholar.org/paper/NON-STATIONARY-TIME-SERIES-AND-UNIT-ROOT-TESTING-Nielsen/2d0e62db75bdeafd2277fab1039f4866aef642b7.
- [2] https://www.lancaster.ac.uk/stor-i-student-sites/jacktrainer/how-nasa-used-the-kalman-filter-in-the-apolloprogram/.
- [3] Peter J Brockwell e Richard A Davis. Introduction to time series and forecasting. Springer, 2002.
- [4] James D Hamilton. *Time series analysis*. Princeton university press, 2020.
- [5] Jianhua Hao e Fangai Liu. "Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based 2-dimensional temporal convolution dense network". In: *Scientific Reports* 14.1 (2024), p. 1689.

Bibliography II

[6] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL: http://probml.github.io/book2.