PCA 学习 (二)

PCA 证明及特征脸提取

王泽民

691077364@qq.com

软件学院

中山大学

2014.10.30

提纲

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

结果展示

PCA 数学证明

最大化方差 最小化误差

特征脸提取

代码

目录

PCA 数学证明 最大化方差 最小化误差

特征睑提取

PCA 学习 (二)

王泽民

3 PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

PCA 学习 (二)

王泽民

在 Ng 的机器学习课上说关于 PCA 有 9-10 种数学解释 今天主要从两个角度:

- ▶ 最大化方差理论
- ▶ 最小化误差

4 PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

PCA 学习 (二)

王泽民

在 Ng 的机器学习课上说关于 PCA 有 9-10 种数学解释 今天主要从两个角度:

- ▶ 最大化方差理论
- ▶ 最小化误差

4 PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

问题引出

最好的 k 维特征是将 n 维样本点转换为 k 维后,每一维上的样 本方差都很大

比如下图有 5 个样本点:(已经做过预处理,均值为 0,特征方差 归一)

×

 \times

PCA 学习 (二) 干泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取 代码

PCA 数学证明

最大化方差 最小化误差

特征脸提取

代码

结果展示

Figure: 此方向上投影方差较大

Figure: 此方向上投影方差较大

Figure: 此方向上投影方差较小

投影

红色点样例u直线斜率,直线的方向向量 (单位向量)蓝色点样例在 u 上的投影

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取代码

投影

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

结果展示

告果展示

这些样本

点(样例)的每一维特征均值都为 0,因此投影到 u 上的样本点 (只有一个到原点的距离值)的均值仍然是 0

$$Var(a) = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)T} \mu)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (x^{(i)T} u)^{T} (x^{(i)T} u)$$

$$= \frac{1}{m} u^{T} x^{(i)^{T}} x^{(i)} u$$

$$= u^{T} [\frac{1}{m} x^{(i)} x^{(i)T}] u$$

 $\Sigma = \frac{1}{m} x^{(i)} x^{(i)T}$

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

结果展示

记

36

问题

$$\max \boldsymbol{\mu}^T \boldsymbol{\Sigma} \boldsymbol{\mu}$$

st
$$\mu^{\mathsf{T}}\mu=1$$

定义:

$$L(\mu, \lambda) = \mu^T \Sigma \mu - \lambda (\mu^T \mu - 1)$$

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差 最小化误差

特征脸提取

代码

结果展示

26

拉格朗日乘子法

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

特征脸提取

代码

结果展示

Ĺ

是一种寻找变量受等值条件所限制的多元函数的极值的方法 先看一个二维的例子:

假设有函数:f(x, y), 要求其极值.

且满足条件:

$$g\left(x,y\right) =c$$

拉格朗日乘子法

PCA 学习 (二) 王泽民

PCA 数学证明

最大化方差

最小化误差特征胎提取

代码

结果展示

绿线 约束 g(x,y) = c 的点的轨迹 蓝线 f 的等高 (值) 线, $d_1 < d_2$ 箭头 斜率,和等高线的法线平行

想像我们沿着 g = c 的可行集 走;因为大部分情况下 f 的等高 线和 g 的可行集线不会重合, 但在有解的情况下,这两条线会 相交。想像此时我们移动 g = c上的点,因为 f 是连续的方程, 我们因此能走到 $f(x,y) = d_n$ 更高或更低的等高线上,也就是 说 d_n 可以变大或变小

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

代码

最大化方差

最小化误差 特征脸提取

代码

结果展示

只有当 g = c 和 $f(x,y) = d_n$ 相切,也就是说,此时,我们正 同时沿着 g = c 和 $f(x, y) = d_n$ 走。这种情况下,会出现极值

用向量的形式来表达的话,我们 说相切的性质在此意味着 f 和 g 12 的切线在某点上平行。此时引 λ - λ + λ + λ + λ + λ

$$\nabla \Big[f(x,y) + \lambda (g(x,y) - c) \Big] = 0$$

且 $\lambda \neq 0$

PCA 学习 (二) 王泽民

PCA 数学证明

最大化方差

特征脸提取

代码

矩阵求导

行向量 y^T 对列向量 x 求导:

注意 $1\times M$ 向量对 $N\times 1$ 向量求导后是 $N\times M$ 矩阵 将 Y 的每一列对 \times 求偏导,将各列构成一个矩阵

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

重要结论:

$$\frac{dx^{T}}{dx} = I$$

$$\frac{d(fg)}{dx} = \left(\frac{df^{T}}{dx}\right)g + \left(\frac{dg}{dx}\right)f^{T}$$

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

求解

PCA 学习 (二)

王泽民

最大化方差

代码

结果展示

最小化误差

特征脸提取

$$L(\mu, \lambda) = \mu^T \Sigma \mu - \lambda (\mu^T \mu - 1)$$

对 μ 求偏导:

$$\nabla L = 2\Sigma \mu - 2\lambda \mu = 0$$

μ 就是特征向量, 选取前 k 个特征值:

$$y^{(i)} = \begin{bmatrix} \mu_1^T x^{(i)} \\ \mu_2^T x^{(i)} \\ \vdots \\ \mu_k^T x^{(i)} \end{bmatrix}$$

最小化误差

假设有这样的二维样本点(红色点),本质是求直线,那么度量直线求的好不好,不仅仅只有方差最大化的方法。再回想我们最开始学习的线性回归等,目的也是求一个线性函数使得直线能够最佳拟合样本点,那么我们能不能认为最佳的直线就是回归后的直线呢?

PCA 学习 (二)

王泽民

CA 数学证明

最大化方差

取小化沃左

代码

最小化误差

$$\begin{pmatrix} -1 & -1 & 0 & 2 & 0 \\ -2 & 0 & 0 & 1 & 1 \end{pmatrix}$$

最小二乘法:

$$a = \frac{N\Sigma xy - \Sigma x \Sigma y}{N\Sigma x^2 - (\Sigma x)^2}$$

解得斜率为 3/3

PCA:

解得斜率为1

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差特征险提取

代码

Figure: PCA 结果

投影并不改变数据的分布

Figure:回归结果

令直线 L 穿越 m(样本中心点), w 为其指向向量,且 $\|\mathbf{w}\| = 1$ 直线 | 上的任一点可表示如下:

代码

PCA 学习 (二) 干泽民

结果展示

$$\mathbf{x} = \mathbf{m} + c\mathbf{w}$$

其中 c 为一纯量,|c| 代表 x 至 m 的距离。一旦 w 给定,我们 可以用 $\mathbf{m} + c_k \mathbf{w}$ 来近似 \mathbf{x}_k ,

最佳的近似系数 c_1, \ldots, c_n 必须最小化均方误差:

$$E_{1}(\{c_{k}\}, \mathbf{w}) = \frac{1}{n-1} \sum_{k=1}^{n} \|(\mathbf{m} + c_{k}\mathbf{w}) - \mathbf{x}_{k}\|^{2}$$

$$= \frac{1}{n-1} \sum_{k=1}^{n} \|c_{k}\mathbf{w} - (\mathbf{x}_{k} - \mathbf{m})\|^{2}$$

$$= \frac{1}{n-1} \left(\sum_{k=1}^{n} c_{k}^{2} \|\mathbf{w}\|^{2} - 2 \sum_{k=1}^{n} c_{k}\mathbf{w}^{T} (\mathbf{x}_{k} - \mathbf{m}) + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2} \right).$$

从几何上来看:

 c_k w 即是离差 $x_k - m$ 在直线 L 的正交投影

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

$c_k = \mathbf{w}^T (\mathbf{x}_k - \mathbf{m})$

利用这一关系进行化简:

$$E_{1}(\mathbf{w}) = \frac{1}{n-1} \left(\sum_{k=1}^{n} c_{k}^{2} - 2 \sum_{k=1}^{n} c_{k}^{2} + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2} \right)$$

$$= -\frac{1}{n-1} \sum_{k=1}^{n} (\mathbf{w}^{T} (\mathbf{x}_{k} - \mathbf{m}))^{2} + \frac{1}{n-1} \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

$$= -\frac{1}{n-1} \sum_{k=1}^{n} \mathbf{w}^{T} (\mathbf{x}_{k} - \mathbf{m}) (\mathbf{x}_{k} - \mathbf{m})^{T} \mathbf{w} + \frac{1}{n-1} \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

$$= -\mathbf{w}^{T} \left(\frac{1}{n-1} \sum_{k=1}^{n} (\mathbf{x}_{k} - \mathbf{m}) (\mathbf{x}_{k} - \mathbf{m})^{T} \right) \mathbf{w} + \frac{1}{n-1} \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2},$$

上面使用了 $\mathbf{w}^T(\mathbf{x}_k - \mathbf{m}) = (\mathbf{x}_k - \mathbf{m})^T \mathbf{w}$ 令

$$S = \frac{1}{n-1} \sum_{k=1}^{n} (\mathbf{x}_k - \mathbf{m}) (\mathbf{x}_k - \mathbf{m})^T$$

 $\sum_{k=1}^{n} \|\mathbf{x}_k - \mathbf{m}\|^2$ 是一常数,所以最小化 $E_1(\mathbf{w})$ 等价于最大化 $\mathbf{w}^T S \mathbf{w}$,这和之前转到同一个问题

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

持征脸提取

代码

再来推广一下:

$$\mathbf{x} = \mathbf{m} + z_1 \mathbf{w}_1 + \dots + z_r \mathbf{w}_r$$

$$E_r(\{\mathbf{w}_j\}) = \sum_{k=1}^n \left\| \left(\mathbf{m} + \sum_{j=1}^r z_{kj} \mathbf{w}_j \right) - \mathbf{x}_k \right\|^2$$

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

代码

化简:

$$z_{kj} = w_i^T (x_k - m)$$

$$E_{r}(\{\mathbf{w}_{j}\}) = \sum_{k=1}^{n} \left\| \left(\mathbf{m} + \sum_{j=1}^{r} z_{kj} \mathbf{w}_{j} \right) - \mathbf{x}_{k} \right\|^{2}$$

$$= \sum_{k=1}^{n} \left\| \sum_{j=1}^{r} z_{kj} \mathbf{w}_{j} - (\mathbf{x}_{k} - \mathbf{m}) \right\|^{2}$$

$$= \sum_{k=1}^{n} \left\| \sum_{j=1}^{r} z_{kj} \mathbf{w}_{j} \right\|^{2} - 2 \sum_{k=1}^{n} \sum_{j=1}^{r} z_{kj} \mathbf{w}_{j}^{T} (\mathbf{x}_{k} - \mathbf{m}) + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{r} z_{kj}^{2} - 2 \sum_{k=1}^{n} \sum_{j=1}^{r} z_{kj}^{2} + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

$$= -\sum_{k=1}^{n} \sum_{j=1}^{r} (\mathbf{w}_{j}^{T} (\mathbf{x}_{k} - \mathbf{m}))^{2} + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

$$= -\sum_{j=1}^{r} \mathbf{w}_{j}^{T} \left(\sum_{k=1}^{n} (\mathbf{x}_{k} - \mathbf{m}) (\mathbf{x}_{k} - \mathbf{m})^{T} \right) \mathbf{w}_{j} + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

$$= -\sum_{j=1}^{r} \mathbf{w}_{j}^{T} S \mathbf{w}_{j} + \sum_{k=1}^{n} \|\mathbf{x}_{k} - \mathbf{m}\|^{2}$$

PCA 学习 (二) 王泽民

最大化方差

最小化误差

征脸提取

结果展示

36

PCA 字习 (二)

王泽民

PCA 数学证明

最大化方差

特征脸提取

付低腔旋取

代码

结果展示

 $\max_{\mathbf{w}_{i}^{T}\mathbf{w}_{j}=\delta_{ij}}\sum_{i=1}^{r}\mathbf{w}_{j}^{T}S\mathbf{w}_{j}$

 $\delta_{ij}=1$ 若 i=j,否则 $\delta_{ij}=0$ 定义

$$L(\{\mathbf{w}_j\}, \{\mu_{ij}\}) = \sum_{j=1}^r \mathbf{w}_j^T S \mathbf{w}_j - \sum_{i=1}^r \sum_{j=1}^r \mu_{ij} (\mathbf{w}_i^T \mathbf{w}_j - \delta_{ij})$$

计算偏异数:

$$\frac{\partial L}{\partial \mathbf{w}_j} = 2S\mathbf{w}_j - 2\mu_{jj}\mathbf{w}_j - \sum_{i \neq j} (\mu_{ij} + \mu_{ji})\mathbf{w}_i = \mathbf{0}, \quad j = 1, \dots, r$$

对于 $i \neq i$,设

$$\mu_{ij} + \mu_{ji} = 0S\mathbf{w}_j = \mu_{jj}\mathbf{w}_j, \quad j = 1, \dots, r$$

当 $\mathbf{w}_1, \ldots, \mathbf{w}_r$ 是样本协方差矩阵 S 的最大 r 个特征值 $\lambda_1, \ldots, \lambda_r$ 的对应 (标准正交) 特征向量时, 目标函数

$$\sum_{j=1}^{r} \mathbf{w}_{j}^{T} S \mathbf{w}_{j} = \sum_{j=1}^{r} \lambda_{j} \mathbf{w}_{j}^{T} \mathbf{w}_{j} = \sum_{j=1}^{r} \lambda_{j}$$

有最大值

PCA 学习 (二) 干泽民

代码 结果展示

目录

PCA 数学证明

特征脸提取 代码 结果展示

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差最小化误差

24 特征脸提取

代码

读取数据

Matlab:

```
numOfPic = 12;
picSize = 64;
trainSet = zeros( numOfPic, 64*64 );
for i = 1 : numOfPic
    str=sprintf('res/face%05d.bmp',i);
    img = imread( str );
    img = imresize(img,[64,64]);
    img = double(img);
    trainSet(i,:) = img(:);
end
```

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

特征脸提取

25) 代码

读取数据

Matlab:

```
numOfPic = 12;
picSize = 64;
trainSet = zeros( numOfPic, 64*64 );
for i = 1 : numOfPic
    str=sprintf('res/face%05d.bmp',i);
    img = imread( str );
    img = imresize(img,[64,64]);
    img = double(img);
    trainSet(i,:) = img(:);
end
```

- ▶ 一行是一个数据, 12 个样本
- ▶ 每个样本 64*64=4096 维

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

特征脸提取

25) 代码

结果展示

给果族亦

读取数据

Matlab:

```
numOfPic = 12;
picSize = 64;
trainSet = zeros( numOfPic, 64*64 );
for i = 1 : numOfPic
    str=sprintf('res/face%05d.bmp',i);
    img = imread( str );
    img = imresize(img,[64,64]);
    img = double(img);
    trainSet(i,:) = img(:);
end
```

- ▶ 一行是一个数据, 12 个样本
- ▶ 每个样本 64*64=4096 维

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

特征脸提取

5 代码

平均脸:

```
meanValue = mean( trainSet );
trainSet_norm = bsxfun(@minus,trainSet,
    meanValue);
sigma = std(trainSet_norm); %每一列的标准差
trainSet_norm = bsxfun(@rdivide,
    trainSet_norm, sigma);
imwrite(uint8(reshape(meanValue, picSize,
    picSize)), 'ans/mean.bmp');
```

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差特征助提取

26) 代码

协方差矩阵与特征向量


```
X = trainSet_norm;
[m, n] = size(X);
Cov = 1/m*X'*X;
[U,S,V] = svd(Cov);
eigValue = diag(S);
AllSum = sum(eigValue);
cur_Sum = 0;
p = 0;
while( cur Sum/ AllSum < 0.9)</pre>
p = p + 1;
        cur Sum = sum(eigValue(1:p));
end;
```

PCA 学习 (二) **干**泽民

- A - #46-244 1-11-11-11

PCA 数学证明

最小化误差特征胎提取

代码

代码 结果展示

for i = 1:p

ef = P(:,i)';

minVal = min(ef);

ef =ef - minVal;

max_val = max(abs(ef));


```
PCA 学习 (二)
    干泽民
PCA 数学证明
最大化方类
显小化误差
特征脸提取
```

代码

特征脸

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差 特征脸提取

测试与还原


```
PCA 学习 (二)
干泽民
```

```
PCA 数学证明
```

```
最小化误差特征标提取
```

80 代码

```
结果展示
```

```
testSet = zeros(4, 64*64);
for i = 3 :6
    str=sprintf('res/test%d.bmp',i);
    img = imread(str);
    img = double(img);
    testSet(i,:) = img(:);
end;
```

测试与还原


```
testNorm = bsxfun(@minus, testSet, meanValue
   );
Z = testNorm * P;
rc = Z * P';
for i = 3 : 6
   face = rc(i,:) + meanValue;
   rface = reshape(face, 64, 64);
   str = sprintf('res/test re%d.bmp',i);
   imwrite(uint8(rface),str);
end;
```

PCA 学习 (二)

王泽民

PCA 数学证明

最小化误差特征险提取

1 代码

Figure:测试图片

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

32) 代码

Figure:测试图片

Figure: 还原结果

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取

2 代码

1200 个样本

平均脸

PCA 数学证明 最大化方差

看上去比较模糊,只是人脸的轮

廓

最小化误差

特征脸提取

代码

特征脸

从 19×19 降到 21

王泽民

最大化方差

代码

PCA 学习 (二)

PCA 数学证明

最小化误差 特征脸提取

Ng 在课堂上展示的特征脸

- 1. 从左到右是否被照亮
- 2. 脸部明亮度
- 3. 脸部的阴影

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差

特征脸提取代码

1000

4果展示

36

测试与还原

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差

最小化误差特征脸提取

代码

结果展示

Figure:测试数据

测试与还原

PCA 学习 (二)

王泽民

PCA 数学证明

最大化方差最小化误差

特征脸提取

代码

5 结果展示

Figure: 还原结果

Figure:测试数据

