CS1231S: Discrete Structures

Tutorial #11: Graph II and Tree

(Week 13: 11 - 15 April 2022)

I. Discussion Questions

You are strongly encouraged to discuss D1 – D3 on LumiNUS forum. No answers will be provided.

- D1. For any simple connected graph with n (n > 0) vertices, what is the minimum and maximum number of edges the graph may have?
- D2. (AY2016/17 Semester 1 Exam Question) How many simple graphs on 3 vertices are there? In general, how many simple graphs on $n \ (n > 1)$ vertices are there?
- D3. Given the following binary tree, write the pre-order, in-order, and post-order traversals of its vertices.

CS1231S: Discrete Structures Tutorial #11: Graph II and Tree Answers

II. Definitions

Definition 1. If G is a simple graph, the *complement* of G, denoted \overline{G} , is obtained as follows: the vertex set of \overline{G} is identical to the vertex set of G. However, two distinct vertices v and w of \overline{G} are connected by an edge if and only if v and w are not connected by an edge in G.

The figure below shows a graph G and its complement \overline{G} .

A graph G and its complement \overline{G} .

Definition 2. A self-complementary graph is isomorphic with its complement.

Definition 3. A simple circuit (cycle) of length three is called a *triangle*.

You can freely use the following lemma (without proof). The proof is left as an optional exercise.

Lemma 10.5.5. Let G be a simple, undirected graph. Then if there are two distinct paths from a vertex v to a different vertex w, then G contains a cycle (and hence G is cyclic).

III. Tutorial Questions

1. (a) For the following graph G, draw its complement graph \bar{G} .

(b) Consider simple graphs on n vertices. Draw all self-complementary graphs with n vertices (for n=3,4,5,6), or justify why there are none.

Answers

For n=3, K_3 has 3 edges. Cannot be evenly divided into 2 equal halves.

For n=6, K_6 has 15 edges. Cannot be evenly divided into 2 equal halves.

2. (AY2016/17 Semester 1 Exam Question) Let G be a simple graph with n vertices where every vertex has degree at least $\left\lfloor \frac{n}{2} \right\rfloor$. Prove that G is connected.

Answer:

Proof by contradiction: Suppose G is not connected. Let u and v be the vertices in two separate connected components. Then the number of vertices in the union of their neighborhood, including u and v, is at least $\left|\frac{n}{2}\right| + \left|\frac{n}{2}\right| + 2 \ge n + 1$.

But this exceeds the number of vertices in the graph. Hence, G must be connected.

3. Consider the graph ${\it G}$ given below. How many spanning trees of ${\it G}$ are there?

There are 2 cycles $C_1 = \{a, b, c, d\}$ and $C_2 = \{c, e, f\}$. They are edge-disjoint (no common edge). We need to remove 1 edge from each cycle: 4 choice for C_1 and 3 choice for C_{12} . Product rule: Total ways = $4 \times 3 = 12$.

- 4. (a) Draw all non-isomorphic trees with n nodes, n = 1,2,3,4.
 - (b) For each non-isomorphic tree in part (a), how many isomorphic copies are there?

Answer:

(b) For each non-isomorphic tree above, we label the vertices and determine how many different ways to permute the labels.

For n=3, there are 3!/2=3 different ways to permute the labels of the graph. For n=4, there are 4!/2=12 different ways to permute the labels of the a-b-c-d path, and 4 ways to select the middle vertex for the other non-isomorphic graph.

- 5. (a) Let G = (V, E) be a simple, undirected graph. Prove that if G is connected, then $|E| \ge |V| 1$.
 - (b) Is the converse true?

Answer: (a)

- 1. Suppose that G = (V, E) is connected.
- 2. Then G has a spanning tree T = (V, F), where $F \subseteq E$, (by Theorem 10.7.1)
- 3. Then |F| = |V| 1 (by Theorem 10.5.2)
- 4. Thus, $|E| \ge |F| = |V| 1$.

(b)

Converse is NOT true.

This graph G' = (V', E') has (|V'|-1) edges, but the graph is not connected.

- 6. (a) Let G = (V, E) be a simple, undirected graph. Prove that if G is acyclic, then $|E| \leq |V| 1$.
 - (b) Is the converse true?

Answer:

- (a)
- 1. Suppose that G = (V, E) is acyclic.
- 2. Let the connected components in G=(V,E) be $H_1=(V_1,E_1), H_2=(V_2,E_2), ..., H_k=(V_k,E_k),$ where $k\geq 1$.
 - 2.1. where each $H_i = (V_i, E_i)$, is connected. (definition of connected components)
 - 2.2. Each $H_i = (V_i, E_i)$, is connected *and acyclic*. (since G is acylic)
 - 2.3. Hence, each $H_i = (V_i, E_i)$, is a tree. (definition of tree)
 - 2.4. Hence, $|E_i| = |V_i| 1$, for i = 1, 2, ..., k. (by Theorem 10.5.2)
- 3. So, $|E| = |E_1| + |E_2| + \cdots + |E_k|$ (by Addition Rule) = $(|V_1| - 1) + (|V_2| - 1) + \cdots + (|V_k| - 1) = |V| - k$. (by 2.4)
- 4. Hence, $||V| |E| = k \ge 1$, and so $|E| \le |V| 1$.

[Note to students: Given that G is any simple, undirected graph that is acyclic, we do not have any good leverage/property to use in our proof.

But, we have many theorems (magic wands) dealing with connected graphs. So, one way is to consider Case 1: G is connected and Case 2: G is not connected. When G is not connected, we can consider the G components of G. In this problem, Case 1 just happen to be a special case where G in the Case 1 is just "absorbed" into Case 2.]

(b)

Converse is NOT true.

This graph G' = (V', E') has (|V'|-1) edges, but cyclic. (Also not connected.)

7. Let G = (V, E) be a simple, undirected graph. Prove that if G is a tree if and only if there is exactly one path between every pair of vertices.

Answer:

(⇒)

- 1. Let G be a tree.
- 2. Then G is connected. (by definition of a tree)
- 3. Hence, there is a path between any pair of vertices x and y. (since G is connected)
- 4. If some pair of vertices *x* and *y* has two or more paths connecting them, then by Lemma 10.5.5, the graph G is cyclic.
- 5. This contradiction 1 above.
- 6. Therefore, every pair of vertices has exactly one path between them.

(⇔)

- 1. Suppose the is exactly one path between every pair of vertices.
- 2. Then *G* is connected.
- 3. Suppose that G is cyclic, then there is a cycle C in G. (definition of cyclic)
- 4. Let x and y be two distinct vertices in the cycle C.
- 5. Then there are two paths connecting x and y in the cycle C.
- 6. This contradicts 1 above.
- 7. Hence G is acyclic.
- 8. And therefore *G* is tree. (by 2 and 7, and definition of a tree.

- 8. (a) Draw all possible binary trees with 3 vertices X, Y and Z with in-order traversal: X Y Z.
 - (b) Draw all possible binary trees with 4 vertices A, B, C and D with in-order traversal: A B C D.

Answer:

(a) 5 possible binary trees (3 vertices: X, Y, Z)

(b) 14 possible binary trees (4 vertices A, B, C, D)

(Strategy: Fix the root of the binary tree; then we know #nodes in left and right subtrees.)

Rooted at A: 5

Rooted at B: 2

Rooted at C: 2

Rooted at *D*: 5 (not shown)

[Optional, for the FUN of it] The above strategy also gives hint to a recurrence relation, that when solved gives the general solution for larger n. It is an example of a *convolution recurrence*. This sequence is called the Catalan's number sequence: 1, 2, 5, 14, 42, 132,...

The general form for the Catalan's number is $C_n = \frac{1}{(n+1)} {2n \choose n}$.]

9. (a) A binary tree T_1 has 9 nodes. The in-order and pre-order traversals of T_1 are given below. Draw the tree T_1 and give its post-order traversal.

In-order: E A C K F H D B G Pre-order: F A E K C D H G B

Answer:

Post-order: E C K A H B G D F

Strategy:

- The first node in pre-order traversal is root of tree. (In our example, this is node F.
- Find node F in in-order traversal.
 All nodes appearing before F (in-order) belong to left subtree;
 All nodes appearing after F (in-order) belong to right subtree;
- Recursively apply procedure to left subtree and right subtree;
- (b) A binary tree T_2 has 9 nodes. The in-order and post-order traversals of T_2 are given below. Draw the tree T_2 and give its pre-order traversal.

In-order: D B F E A G C H K
Post-order: D F E B G K H C A

Answer:

Pre-order: A B D E F C G H K.

Strategy:

Now last node in post-order traversal is root of tree. (In our example, this is node A.)

Apply a similar method.

10. (Modified from AY2016/17 Semester 1 Exam Question)

The figure below shows a graph where the vertices are Pokestops. Using either Kruskal's algorithm or Prim's algorithm, find its minimum spanning tree (MST). If you use Prim's algorithm, you must start with the top-most vertex.

Indicate the order of the edges inserted into the MST in your answer.

[OPTIONAL, for the FUN of it] In addition to (but not in place of), you can also use Guan's algorithm from the optional notes. The one that repeatedly removes the longest edge in *any* cycle.

Answer: Kruskal's algorithm

Prim-Dijkstra's algorithm.

[OPTIONAL: Just for the FUN of it.]

Guan's algorithm.

Cycles considered:

C1: {20, 2, 16}

C2: {3, **7**, 2)

C3: {8, **18**, 5, 16}

C4: {25, 21, 12}

C5: {3, **12**, 8, 2}

C6: {**16**, 13,5}

