Булгаков Илья, Сенотов Валерий, Гусев Илья

Московский физико-технический институт

Москва, 2023

Содержание

1 Задача RMQ. Напоминание

2 Дерево отрезков

Задача RMQ. Напоминание

RMQ - Range Minimum (Maximum) Query - задача поиска минимума на отрезке.

Дан массив чисел, к нему делаются запросы на поиск минимума на отрезке $\left[\mathsf{I}, \, \mathsf{r} \right]$

Введение

Рассмотрим еще одну структуру данных для решения задачи RMQ. Дерево отрезков – это двоичное дерево, в каждой вершине которого написано значение заданной функции на некотором отрезке. Функция в нашем случае – это минимум.

Построение и хранение

Как храним дерево?

Храним подобно бинарной куче - заведём массив T[2n-1].

Свойства:

- Корень будет лежать в первом элементе массива
- Листы лежат в элементах с номерами от n до 2n-1.
- Сыновья i-ой вершины будут лежать в элементах с номерами 2i и 2i+1 левый и правый соответственно.
- T[i] = min(T[2i], T[2i+1]) для i-ой вершины, не являющейся листом.

Построение за O(n) подобно бинарной куче.

Теория: фундаментальные отрезки

Фундаментальный отрезок – такой отрезок, что существует вершина в дереве, которой он соответствует.

Утверждение: на каждом уровне их количество не превосходит 2.

Теория: фундаментальные отрезки

Утверждение: на каждом уровне число фундаментальных отрезков не превосходит 2.

Идея доказательства: смотрим на отрезок, для которого вычисляем RMQ. Находим длину максимального фундаментального отрезка T, которое входит в отрезок. Таких отрезков не больше 2. Если бы их было >=3, то либо отрезок был разрывный, либо включал фундаментальный отрезок длиной 2T. Рассматриваем оставшиеся части отрезка, находим для них максимальный фундаментальный отрезок. Длина полученного отрезка строго меньше T, а их число тоже не может превышать 2x по той же логике.

Вычисление

Два способа вычисления решения:

- Вычисление сверху
- Вычисление снизу

Вычисление сверху

Начнем проверять детей вершины root.

Возможны два варианта:

- отрезок $[I \dots r]$ попадает только в одного сына корня. Просто перейдём в того сына, в котором лежит наш отрезок-запрос, и применим алгоритм к нему.
- отрезок пересекается с обоими сыновьями. Перейти в левого сына и посчитать ответ в нём, а затем перейти в правого сына, посчитать его ответ, выбрать min(max).

Вычисление снизу

Заведём два указателя – I и r. В начале I и r указывают на листы, соответствующие запросу.

- Если I указывает на вершину, являющуюся правым сыном своего родителя, то эта вершина принадлежит разбиению на фундаментальные отрезки, иначе не принадлежит.
- Для r если он указывает на вершину, являющуюся левым сыном своего родителя, то добавляем её в разбиение.
- Потом сдвигаем оба указателя на уровень выше и повторяем операцию. Продолжаем операции пока указатели не зайдут один за другой.

Модификация точечная

Как изменить значение элемента дерева? Заметим, что для каждого листа есть ровно log(n) фундаментальных отрезков, которые его содержат — все они соответствуют вершинам, лежащим на пути от нашего листа до корня.

Значит, при изменении элемента достаточно просто пробежаться от его листа до корня и обновить значение во всех вершинах на пути по формуле T[i] = min(T[2i], T[2i+1]).

Модификация на отрезке

Как изменить значение не одной ячейки массива, а, а целого интервала (a[I], a[r])? Например, увеличить значения всех ячеек из интервала на заданное число X.

Модификация на отрезке

Реализуется через запрос сверху и несогласованные поддеревья Благодаря определённой модификации, дерево отрезков может выполнять обновление элементов (увеличение или присваивание) на отрезках произвольной длины за O(logN). Эта модификация достаточно общая, и позволяет решать с помощью дерева отрезков целый класс новых задач.

Модификация на отрезке. Тривиальное решение

Вариант 1. Пусть в процессе выполнения запроса присваивания на отрезке мы спустились в вершину, полностью принадлежащую этому отрезку. По логике нам нужно изменить значение в этой вершине, и во всех вершинах её поддерева. Но сложность такой операции неприемлемо высока: O(NlogN).

Модификация на отрезке. Решение

Вариант 2. Изменяем значение только в самой вершине, не обновляя её поддерево (таким образом, в поддереве теперь хранятся устаревшие некорректные значения), и запоминаем, что у этой вершины есть несогласованная модификация. На этом выполнение запроса для вершины и её поддерева завершено.

Если последующие запросы не будут обращаться к поддереву с несогласованной модификацией, то они будут выполняться корректно. Но рано или поздно может поступить запрос, который требуется обработать индивидуально для дочерних вершин с несогласованной модификацией. Тогда передадим модификацию дочерним вершинам (только дочерним вершинам, а не всему поддереву). Теперь данная вершина согласована, а несогласованность перешла к её дочерним. Такая операция называется проталкиванием модификации.

Оценка работы

Оценки работы: Препроцессинг - O(n) Запрос - O(log(n)).

Полезные ссылки І

E-maxx: sqrt-декомпозиция
https://e-maxx.ru/algo/sqrt_decomposition

Xa6p: Static RMQ
https://habr.com/ru/post/114980/

Xa6p: RMQ - 2. Дерево отрезков
https://habr.com/ru/post/115026/

segmenttree
https://brestprog.by/topics/segmenttree/