Lycée Buffon MPSI

DM 7 Année 2020-2021

1

Corrigé du devoir à rendre le 4/01/2021

Exercice 1

Soit $(a, b, c, d) \in \mathbb{C}^4$ tel que $c \neq 0$ et $ad - bc \neq 0$. On définit la suite u par $u_0 \in \mathbb{C}$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \quad \text{avec} \quad f : \mathbb{C} \setminus \{-d/c\} \to \mathbb{C} \setminus \{a/c\}, \ z \mapsto \frac{az+b}{cz+d}$$

On suppose que u_0 est tel que la suite soit bien définie.

- 1. On suppose que u converge.
 - (a) Montrer que si u converge alors sa limite est racine d'une équation du second degré(*).

Supposons que la suite u converge vers $\ell \in \mathbb{C}$. On a alors $\lim_{n \to +\infty} u_{n+1} = \ell$, $\lim_{n \to +\infty} (au_n + b) = a\ell + b$ et $\lim_{n \to +\infty} (cu_n + d) = c\ell + d$.

Pour affirmer que $\lim_{n\to +\infty} \frac{au_n+b}{cu_n+d} = \frac{a\ell+b}{c\ell+d}$, il faut s'assurer que $c\ell+d\neq 0$.

Si c'était le cas, alors on aurait $\ell = -d/c$ car $c \neq 0$ puis $a\ell + b \neq 0$ car $ad - bc \neq 0$; ce qui impliquerait la divergence de la suite $(u_{n+1})_{n \in \mathbb{N}}$.

Par conséquent, $c\ell + d \neq 0$ donc $\lim_{n \to +\infty} \frac{au_n + b}{cu_n + d} = \frac{az + b}{cz + d} = \frac{a\ell + b}{c\ell + d}$ et, par unicité de la limite $\ell = \frac{a\ell + b}{c\ell + d}$ puis ℓ ($c\ell + d$) = $a\ell + b$.

Ainsi, ℓ est racine du polynôme $cX^2 + (d-a)X - b$ qui est de degré 2 car $c \neq 0$.

(b) Soit r une racine de (*). Montrer que $u_{n+1} - r = (u_n - r) \frac{ad - bc}{(cu_n + d)(cr + d)}$ Par définition

$$u_{n+1} - r = \frac{au_n + b}{cu_n + d} - r = \frac{au_n + b}{cu_n + d} - \frac{ar + b}{cr + d}$$

car r est racine de (*). Ainsi,

$$u_{n+1} - r = \frac{(au_n + b)(cr + d) - (cu_n + d)(ar + b)}{(cu_n + d)(cr + d)} = \boxed{\frac{(ad - bc)(u_n - r)}{(cu_n + d)(cr + d)}}$$

(c) En déduire que u est constante si et seulement si un de ses terme est racine de (*)

Si u est constante à ℓ , alors elle converge vers ℓ donc, d'après la première question, tous ses termes sont racines de (*).

Réciproquement, si un des termes de u, u_{n_0} est égal à une racine r de (*), alors, d'après la question précédente, $u_{n_0+1}-r$ est nul, et par une récurrence évidente, pour tout $n \ge n_0$, $u_n = r$.

De plus, si $n_0 > 0$, alors $\frac{(ad - bc)(u_{n_0 - 1} - r)}{(cu_{n_0 - 1} + d)(cr + d)} = 0$. Comme $ad - bc \neq 0$, on en déduit que $u_{n_0 - 1} = r$; puis, par une récurrence finie évidente, que pour tout $n \leq n_0$, $u_n = r$. La suite u est donc constante.

Désormais on suppose que u n'est pas constante.

- 2. On suppose que (*) a deux racines distinctes r_1 et r_2 .
 - (a) Montrer que la suite $v = \left(\frac{u_n r_1}{u_n r_2}\right)_{n \in \mathbb{N}}$ est bien définie et géométrique de

Comme la suite u a été supposée non constante, alors, aucun de ses termes n'est racine de (*) donc, pour tout entier n, on a $u_n \neq r_2$. La suite v est donc bien définie.

De plus, pour tout entier n, on a :

$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - r_1}{u_{n+1} - r_2} \frac{u_n - r_2}{u_n - r_1}$$

ce qui d'après 1.b donne

$$\frac{v_{n+1}}{v_n} = \frac{(ad - bc)(u_n - r_1)}{(cu_n + d)(cr_1 + d)} \frac{(cu_n + d)(cr_2 + d)}{(ad - bc)(u_n - r_2)} \frac{u_n - r_2}{u_n - r_1} = \frac{cr_2 + d}{cr_1 + d}$$

La suite v est donc géométrique de raison $\lambda = \frac{cr_2 + d}{cr_1 + d}$

(b) En déduire u en fonction de λ Soit $n \in \mathbb{N}$. On a $v_n = v_0 \lambda^n = \frac{u_n - r_1}{u_n - r_2}$ donc $u_n (1 - v_0 \lambda^n) = r_1 - r_2 v_0 \lambda^n$. Comme $r_1 \neq r_2, v_n \neq 1$ donc

$$u_n = \frac{r_1 - r_2 v_0 \lambda^n}{1 - v_0 \lambda^n} = \boxed{\frac{r_1 (u_0 - r_2) - r_2 (u_0 - r_1) \lambda^n}{u_0 - r_2 - (u_0 - r_1) \lambda^n}}.$$

- (c) En déduire la nature convergente ou divergente de u.
 - \bullet Si $|\lambda|<1,$ alors $\lim_{n\to+\infty}\lambda^n=0$ donc u converge vers $\boxed{r_1.}$

• Si $|\lambda| > 1$, alors $\lim_{n \to +\infty} \lambda^{-n} = 0$ et , pour tout entier n,

$$u_n = \frac{r_1(u_0 - r_2)\lambda^{-n} - r_2(u_0 - r_1)}{(u_0 - r_2)\lambda^{-n} - (u_0 - r_1)}$$

donc u converge vers r_2 .

• Sinon $|\lambda| = 1$ et $\lambda \neq 1$ car $r_1 \neq r_2$. La suite $(\lambda^n)_{n \in \mathbb{N}}$ est donc divergente.

Or, pour tout entier n, on a $v_0 \lambda^n = \frac{u_n - r_1}{u_n - r_2}$. Comme $v_0 \neq 1$, si la suite u converge vers $\ell \neq r_2$, alors la suite $(\lambda^n)_{n \in \mathbb{N}}$ et si la suite u converge vers r_2 , alors, comme $r_1 \neq r_2$, la suite $(|\lambda|^n)_{n \in \mathbb{N}}$ diverge.

Comme la suite $(\lambda^n)_{n\in\mathbb{N}}$ est donc divergente et la suite $(|\lambda|^n)_{n\in\mathbb{N}}$ est constante à 1, on en déduit que la suit u diverge.

- 3. On suppose que (*) a une seule racine r_0 .
 - (a) Montrer que si $w = (\frac{1}{u_n r_0})_{n \in \mathbb{N}}$ alors

$$\forall n \in \mathbb{N}, \ w_{n+1} = w_n + \frac{2c}{a+d}$$

Soit $n \in \mathbb{N}$. D'après 1.b, on a

$$w_{n+1} = \frac{(cu_n + d)(cr_0 + d)}{(ad - bc)(u_n - r_0)} = \frac{cr_0 + d}{ad - bc} \frac{c(u_n - r_0) + cr_0 + d}{u_n - r_0}$$

De plus, comme le polynôme $cX^2 + (d-a)X - b$ n'a qu'une racine r_0 , on en déduit que $ad - bc = \frac{(a+d)^2}{4}$ et $cr_0 + d = \frac{a+d}{2}$ puis

$$w_{n+1} = \frac{2}{a+d} \left(c + \frac{a+d}{2} w_n \right)$$

$$donc w_{n+1} = w_n + \frac{2c}{a+d}$$

(b) En déduire la nature de u.

La suite w est arithmétique de raison $\frac{2c}{a+d}$ donc, pour tout entier n, on a $w_n = w_0 + \frac{2cn}{a+d}$. puis $u_n = r_0 + \frac{a+d}{w_0 + 2cn}$.

Comme $|w_0+2cn|\geq 2|c|n-|w_0|$, on a $\lim_{n\to+\infty}w_0+2cn=+\infty$. Par conséquent, la suite u tend vers $\boxed{r_0.}$

Exercice 2:

On considère la suite u définie par $u_0 \in \mathbb{R}^+$ et $\forall n \in \mathbb{N}^*, u_n = \sqrt{u_{n-1} + n}$.

1. Montrer que la suite u est bien définie et que $\forall n \in \mathbb{N}, u_n \geq \sqrt{n}$.

Pour tout entier n, on pose H(n): " u_n est bien défini et $\sqrt{n} \le u_n$ ".

Initialisation : H(0) est vraie par hypothèse.

Hérédité : soit $n \in \mathbb{N}$ tel que H(n) soit vraie. On a $u_n + n + 1 \ge 0$ donc u_{n+1} est bien défini et

$$u_{n+1} = \sqrt{u_n + n + 1} \ge \sqrt{n+1}$$

Ainsi, la suite u est bien définie et

$$\forall n \in \mathbb{N}, \quad u_n \ge \sqrt{n}$$

2. (a) Montrer que: $\forall x \in \mathbb{R}^+, \sqrt{x} \leq \frac{1}{2} (1+x)$.

La fonction $g: x \mapsto \frac{1}{2}(1+x) - \sqrt{x}$ est dérivable sur \mathbb{R}^{+*} et

$$\forall x \in \mathbb{R}^{+*}, \quad g'(x) = \frac{1}{2} - \frac{1}{2\sqrt{x}}$$

La fonction g est donc décroissante sur [0,1] et croissante sur $[1,+\infty[$. Elle admet donc un minimum global en 1 égal à g(1)=0.

La fonction g est donc positive sur \mathbb{R}^+ i.e.

$$\forall x \in \mathbb{R}^+, \sqrt{x} \le \frac{1}{2} (1+x).$$

(b) En déduire que $\forall n \in \mathbb{N}, u_n \leq n + \frac{u_0}{2^n}$ puis que $u_n = o(n^2)$.

Pour tout entier n, on pose H(n): " $u_n \le n + \frac{u_0}{2^n}$ ".

Initialisation : H(0) est vraie.

Hérédité : soit $n \in \mathbb{N}$ tel que H(n) soit vraie. On a

$$u_{n+1} = \sqrt{u_n + n + 1} \le \frac{1}{2} (1 + u_n + n + 1) \le \frac{1}{2} (1 + n + \frac{u_0}{2^n} + n + 1)$$

donc

$$u_{n+1} \le n + 1 + \frac{u_0}{2^{n+1}}$$

Ainsi,

$$\forall n \in \mathbb{N}, \quad u_n \le n + \frac{u_0}{2^n}$$

En particulier, $0 \le \frac{u_n}{n^2} \le \frac{1}{n} + \frac{u_0}{n2^n}$. Le théorème d'encadrement implique alors que :

$$u_n = o(n^2)$$

(c) Montrer que $u_n = o(n)$ et en déduire un équivalent de u_n .

Soit
$$n \in \mathbb{N}^*$$
, on a $\frac{u_n}{n} = \sqrt{\frac{u_{n-1}}{n^2} + \frac{1}{n}}$ donc $\lim_{n \to +\infty} \frac{u_n}{n} = 0$ i.e.

$$u_n = o(n)$$

Ainsi, $n + u_{n-1} \sim n$ donc

$$u_n \sim \sqrt{n}$$

(d) Soit $v = (u_n - \sqrt{n})_{n \in \mathbb{N}}$. Prouver que la suite v converge et donner sa limite. Soit $n \in \mathbb{N}^*$, on a

$$u_n - \sqrt{n} = \sqrt{n + u_{n-1}} - \sqrt{n} = \sqrt{n} \left(\sqrt{1 + u_{n-1}/n} - 1 \right)$$

Comme $\lim_{n\to+\infty}\frac{u_{n-1}}{n}=0$, on a $\sqrt{1+\frac{u_{n-1}}{n}}-1\sim\frac{u_{n-1}}{2n}\sim\frac{\sqrt{n}}{2}$. Ainsi,

$$\lim_{n \to +\infty} v_n = \frac{1}{2}.$$

(e) Calculer $\lim_{n \to +\infty} \sqrt{n} - \sqrt{n-1}$ puis $\lim_{n \to +\infty} u_n - u_{n-1}$.

Soit
$$n \in \mathbb{N}^*$$
, on a $\sqrt{n} - \sqrt{n-1} = \sqrt{n} \left(1 - \sqrt{1-1/n}\right) \sim \frac{\sqrt{n}}{2n}$. Donc

$$\lim_{n \to +\infty} \sqrt{n} - \sqrt{n-1} = 0$$

Soit $n \in \mathbb{N}^*$, on a

$$u_n - u_{n-1} = \sqrt{n} + \frac{1}{2} + o(1) - \left(\sqrt{n-1} + \frac{1}{2} + o(1)\right) = \sqrt{n} - \sqrt{n-1} + o(1) = o(1)$$

i.e.

$$\lim_{n \to +\infty} u_n - u_{n-1} = 0$$

(f) Montrer que $u_{n+1} - u_n$ est de même signe que $1 + u_n - u_{n-1}$ et en déduire que la suite u est monotone à partir d'un certain rang.

Soit $n \in \mathbb{N}$, on a

$$u_{n+1} - u_n = \sqrt{u_n + n + 1} - \sqrt{u_{n-1} + n} = \frac{u_n + 1 - u_{n-1}}{\sqrt{u_n + n + 1} + \sqrt{u_{n-1} + n}}$$

donc $u_{n+1} - u_n$ est de même signe que $1 + u_n - u_{n-1}$.

Comme $\lim_{n\to+\infty}u_n-u_{n-1}+1=1$, on en déduit qu'à partir d'un certain la suite $(u_n-u_{n-1}+1)_{n\in\mathbb{N}}$ est positive donc la suite u est monotone à partir de ce rang.

Exercice 3:

1. Prouver que, pour tout entier n non nul, l'équation $\frac{e^{-x^2}}{x} = \frac{1}{n}$ admet sur \mathbb{R}^{+*} une unique solution que l'on notera x_n .

On considère la fonction $f: x \mapsto \frac{e^{-x^2}}{x}$.

La fonction f est définie et dérivable sur \mathbb{R}^{+*} et

$$\forall x \in \mathbb{R}^{+*}, \quad f'(x) = \left(\frac{-1}{x^2} - 2\right)e^{-x^2} < 0$$

La fonction f est donc strictement décroissante sur l'intervalle \mathbb{R}^{+*} . Elle réalise donc une bijection de \mathbb{R}^{+*} dans $f(\mathbb{R}^{+*})$.

Comme $\lim_{t \to \infty} f = +\infty$ et $\lim_{t \to \infty} f = 0$, f réalise une bijection de \mathbb{R}^{+*} dans \mathbb{R}^{+*} .

En particulier, pour tout entier n non nul, le réel strictement positif 1/n admet un unique antécédent.

2. Montrer que $\lim_{n \to +\infty} x_n = +\infty$.

Par définition, pour tout entier n, on a $x_n = f^{-1}(1/n)$. Comme $\lim_{t \to \infty} f = 0$, on a $\lim_{t \to \infty} f^{-1} = 0$ donc

$$\lim_{n \to +\infty} x_n = +\infty$$

3. Montrer que, pour tout entier n non nul, on a :

$$x_n^2 + \ln x_n = \ln n$$

et en déduire un équivalent de x_n .

Pour tout entier n non nul, on a:

$$e^{-x_n^2} = \frac{x_n}{n}$$

donc $-x_n^2 = \ln(x_n) - \ln n$ i.e.

$$x_n^2 + \ln x_n = \ln n$$

Comme $\lim_{n\to+\infty} x_n = +\infty$, on a, par croissances comparées, $\lim_{n\to+\infty} \frac{\ln(x_n)}{x_n^2} = 0$ i.e. $\ln x_n = o(x_n^2)$ donc $x_n^2 \sim x_n^2 + \ln x_n = \ln n$ puis

$$x_n \sim \sqrt{\ln n}$$

4. Soit $u = \left(x_n - \sqrt{\ln n}\right)_{n \in \mathbb{N}}$. Trouver un équivalent de u et sa limite. Soit $n \in \mathbb{N}^*$, on a :

$$\left(u_n + \sqrt{\ln n}\right)^2 + \ln\left(u_n + \sqrt{\ln n}\right) = \ln n$$

soit

$$u_n^2 + 2u_n\sqrt{\ln n} + \ln\left(u_n + \sqrt{\ln n}\right) = 0.$$

Comme $x_n \sim \sqrt{\ln n}$, $u_n = o\left(\sqrt{\ln n}\right)$ puis $u_n^2 = o\left(2u_n\sqrt{\ln n}\right)$. Ainsi,

$$u_n^2 + 2u_n\sqrt{\ln n} \sim 2u_n\sqrt{\ln n} .$$

D'autre part,

$$\ln\left(u_n + \sqrt{\ln n}\right) = \frac{1}{2}\ln(\ln n) + \ln\left(1 + \frac{u_n}{\sqrt{\ln n}}\right)$$

Comme $u_n = o\left(\sqrt{\ln n}\right)$, on a $\frac{u_n}{\sqrt{\ln n}} = o(1)$ puis $\ln\left(1 + \frac{u_n}{\sqrt{\ln n}}\right) = o(1)$ et, a fortiori, $\ln\left(1 + \frac{u_n}{\sqrt{\ln n}}\right) = o(\ln(\ln n))$. Par suite,

$$\ln\left(u_n + \sqrt{\ln n}\right) \sim \frac{1}{2}\ln(\ln n)$$

puis

$$u_n \sim \frac{\ln(\ln n)}{4\sqrt{\ln n}}.$$

Par croissances comparées, $\lim_{x\to +\infty} \frac{\ln(x)}{4\sqrt{x}} = 0$ donc

$$\lim_{n \to +\infty} u_n = 0$$