Platinové kovy

1	77	C conver															
1A-	U.S. co																5
IA .	2											13	14	15	16	17	8
H	2A											3B	4B	5B	6B	7B]
1.	2A	i									y	3A	4A	5A	6A	7A	
3	4	í										5	6	7	8	9	
Li	Be	3	4	5	6	7	8	9	10	11	12	В	С	N	0	F	1
11	12	3A	4A	5A	6A	7A	0	8A	10)	1B	2B	13	14	15	16	17	
Na	Mg	3B	4B	5B	6B	7B		-8B	_	1B	2B	Al	Si	P	S	Ci	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	1125
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At -	
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une	i								

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D y	H o	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	Lr

Platinové kovy

Fe	Co	Ni	triáda železa
Ru	Rh	Pd	ľahké Pt kovy
Os	Ir	Pt	ťažké Pt kovy

Hustota 12g/cm³

Hustota 22g/cm³

Prvok	I(1)	r ²⁺ (pm)	r ³⁺ (pm)	b. t. (K)	•	Oxidač	né stav	y y
Ru	720		69	2 5 5 5	+II	+III	+VI	+VII
Rh	720	86	66	2 233	+I	+III		
Pd	804	80		1825	+II		+IV	
Os	840		77	3 320		+IV	+VI	+VIII
Ir	840		68	2 720	+I	+III	+IV	
Pt	870	80		2 045	+II		+IV	

Elektronegativita X = 2,2

Striebrolesklé, Os nádych do modrosiva Pd rozpustí 900 x viac vodíka ako Pt

Platinové kovy

Pt kovy – odolnosť voči H⁺, analogické fyzikálne vlastnosti v prírode 10⁻⁶%; čisté, rudy Pt + As sperrylit sprevádza S²⁻, Cu, Ni ročná produkcia 100 t

význam – katalyzátory – HNO₃, organická syntéza Pt – kelímky, misky, Rh organická syntéza Ru, Os – RuO₄, OsO₄ (maximálne oxidačné číslo VIII) bežné II — VII

Rh, Ir – oxidačné stavy I a III, (IV a VI) Rh – H

Pd, Pt - Pd II, (IV); Pt II, IV, (VI) PtF₆
Pt, Pd(II) PtCl₂; PdCl₂ K₂[PtCl₄]
PdF₄; PtX₄ H₂[PtCl₆]

Ruténium a Osmium

ľahko tvoria binárne zlúč. s kyslíkom, Os sa priamo oxiduje na OsO₄

$$\begin{array}{ll} \text{HNO}_3 + \text{HCl} & \text{OsO}_4 \ (\textit{t.t.} \ 40 \, ^{\circ}\text{C}) \\ \text{K}_2[\text{Os}^{\text{VIII}} (\text{OH})_2\text{O}_4], & \text{K}_2[\text{Os}^{\text{VI}} (\text{OH})_4\text{O}_2] \end{array}$$

nestabilný $RuO_4 \longrightarrow Ru^{VII}O_4^-$, v taveninách alkalických peroxidov RuO_4^{2-} , OsO_4^{2-}

$$[Ru(H2O)6]2+ \longrightarrow [Ru(H2O)6]3+$$

Komplexy ruténia a osmia

Ródium a Irídium

Nižšie oxidačné stavy ako pri Ru a Os

Bežné zlúčeniny v ox. stupni I.

[M(H₂O)₆]³⁺, [Rh(H₂O)₆]ClO₄ [Rh(PPh₃)₂]Cl, cis-[RhCl(H₂)(PPh₃)₂]

Oxidy M₂O₃, hydroxidy M(OH)₃, halogenidy MCl₃

Paladium a platina II, IV

cis-[Pt(NH₃)₂Cl₂] ,,cisplatina"

trans-[Pt(NH₃)₂Cl₂]

Čierny PdO – reakcia Pd s O₂ pri vyššej teplote

PtO, Pt₂O₃, PtO₂ - nestále

Naopak veľmi stále sú sulfidy, PtS sa nerozpúšťa v kyselinách, hydroxidoch ani v lúčavke kráľovskej.

$$H_2PtCl_4 + H_2S \rightarrow PtS + 4 H_2S$$

$$H_2PtCl_6 + H_2S \rightarrow PtS_2 + 6 H_2S$$

Podskupina medi

1-	72	.C conver															1
1A-		pean con															(
1A		convention	on									13	14	15	16	17 r	8.
1	2 2A											3B	4B	5B	6B	7B	2
Н	2A											3A	4A	5A	6A	7A	H
3 Li	4 Be		70									5 B	6 C	7 N	8 O	9 F	1 N
		3	4	5	6	7	8	9	10	IT	12			1			
11	12	3A	4A	5 A	6A	7A		8A		1B	2B	13	14	15	16	17	1
Na	Mg	3B	4B	5B	6B	7B		—8B—		1B	2B	Al	Si	P	S	Cl	A
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	ŀ
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	5
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	>
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	8
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At-	F
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	E r	Tm	Yb	L u
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Skupina 11 (I.B)

Med', Striebro, Zlato – ušl'achtilé kovy konfigurácia Cu $4s^1 3d^{10}$ Ag $5s^1 4d^{10}$ Au $6s^1 5d^{10}$

Prvok	I(1)	r (pm)	r + (pm)	b. t. (K)	ρ	Oxio	lačné s	stavy
Cu	745	96	128	1357	8,93	+I	+II	+III
Ag	731	126	143	1234	10,5 0	+I	+II	+III
Au	889	137	144	1338	19,3 0	+I	+II	+III

Med'

Cu – Cu₂S chalkozín, CuFeS₂ chalkopyrit Cu₂O kuprit

výroba Cu₂S → oxid + C → Cu - surová Cu - surová — elektrolýza

Oxidačné stavy Cu (I) Cu (II)

Cu (I) Cu₂O – červený (kuprit) CuCl, CuI, CuCN, Cu₂S, Na₃[Cu(CN)₄], Cu(CO)Cl

Cu (II) CuO – čierny (tenorit), CuSO₄ · $5H_2O$, NO₃ – Cu(CH₃COO)₂ · $2H_2O$

Cu (III) komplexy, telluridy

Jahn-Telerovv efekt [Cu(NH₃)₄]²⁺

Striebro

Ag – Ag₂S argenit, Ag₃SbS₃ prusit AgAsS₃ pyrostilpnit

výroba: hutníctvo (Pb)

chudobné rudy: $Ag_2S + 4CN^- \longrightarrow 2[Ag(CN)_2]^-$

 $2Ag^{+} + 2OH^{-} \longrightarrow Ag_{2}O + H_{2}O$

AgF · 2H₂O – rozpustný vo vode; AgCl, AgBr, AgI slabo rozpustné vo vode

 $AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + 2H_2O$ $AgNO_3$; Ag_2SO_4

Fotografia AgX $\xrightarrow{\text{Na}_2\text{S}_2\text{O}_3}$ $[\text{Ag}(\text{S}_2\text{O}_3)_2]^{3-}$

Striebro

Ďalšie oxidačné stavy

Ag (II)
$$Ag^{+} + O_{3} \longrightarrow AgO^{+} + O_{2}$$

$$AgO^{+} + Ag^{+} + 2H^{+} \longrightarrow 2Ag^{2+} + H_{2}O$$

$$AgF_{2}; AgO$$

$$Ag(III) \quad KAgF_{4}$$

Zlato

Au – Výroba: kyanidový spôsob

$$4Au + 8CN^{-} + H_{2}O + O_{2} \longrightarrow$$

$$\longrightarrow 4[Au(CN)_{2}]^{-} + 4OH^{-}$$

$$2 \left[Au(CN)_2 \right]^- + Zn \longrightarrow 2Au + \left[Zn(CN)_4 \right]^{2-}$$

nestála kyselina H[AuCl₄]

Halogenidy zlatité Au₂X₆

Podskupina zinku

1 —	_IUPA	C conver	ntion														18
1A-	— Europ	pean con	vention														0
1A -	U.S. c	onvention	on													energy.	84
1	2											13	14	15	16	17	
H	2A											3B	4B	5B	6B	7B	2 H
	2A	i									7	3A	4A	5A	6A	7A	
3	4	í	20.								J	5	6	7	8	9	10
Li	Be	1 4		-	2	7	8	0	10	1.1	(12)	В	С	N	0	F	N
11	12	3	4	5 5 A	6	7	8	9	10	11 1.D	12	12	14	15	16	17	18
Na	Mg	3A	4A	5A	6A	7A		8A		1B	2B	13 Al	14 Si	15 P	16 S	17 Cl	A
	5	3B	4B	5B	6B	7B		_8B	$\overline{}$	1B	2B					<u> </u>	1
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	5
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	X
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	8
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	R
87	88	89	104	105	106	107	108	109		-					<i>y</i>		
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	E r	Tm	Yb	L u
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Skupina 12 (I I.B)

Zinok, Kadmium, Ortuť

konfigurácia n s^2 (n-1) d^{10}

Prvok	%	I(1)	r M (pm)	r ²⁺ (pm)	b. t. (K)	ρ
Zn	10-3	906	131	74	692	7,4
Cd	10-8	867	148	97	594	8,6
Hg	10-7	1008	149	110	234	13,60

Oxidačné stavy $\mathbb{Z}n^{2+}$, $\mathbb{C}d^{2+}$, $\mathbb{H}g^{2+}$ $[-\mathbb{H}g-\mathbb{H}g-]^{2+}$

<u>Oxidy</u>

$$ZnO - amfoterný$$

 $ZnO + 2 HCl \longrightarrow ZnCl_2 + H_2O$
 $ZnO + NaOH \longrightarrow Na_2[Zn(OH)_2]$

CdO, HgO – skôr bazické

Tepelná stálosť

$$HgO \longrightarrow Hg + O_2$$

Zinok a Kadmium

Zn – ZnCO₃ smitsonit

výroba: praženie
$$ZnCO_3 \longrightarrow ZnO$$

redukcia $ZnO + C \longrightarrow Zn + CO$

$$Zn + 2 HCl \longrightarrow ZnCl_2 + H_2$$

 $Zn + NaOH \longrightarrow Na_2[Zn(OH)_4] + H_2$

Cd – prímes Zn; CdS;
$$CdSO_4 \cdot 8/_3 H_2O$$

Ortut

Hg – HgS rumelka

 HgCl_2 – sublimát; $\operatorname{Hg(NO_3)_2}$; $[\operatorname{HgI_4}]^{2-}$ $\operatorname{Hg_2Cl_2}$ – kalomel – málo rozpustný; $\operatorname{Hg_2(NO_3)_2}$

Hg – použitie: teplomery, elektrolyzéry, fungicídy

Hg (I)
$$-\text{Hg}-\text{Hg}-\text{nie } O^{2-}, OH^{-}$$

 $\text{Hg}_{2}X_{2}$; $\text{Hg}_{2}\text{Cl}_{2}$ kalomel;
 $\text{HgCl}_{2} + \text{Hg} \longrightarrow \text{Hg}_{2}\text{Cl}_{2}$

Hg(II) HgO; Hg²⁺ + 2 OH⁻
$$\longrightarrow$$
 HgO žltý
Hg(NO₃)₂ \longrightarrow HgO + 2 NO₂ + ½ O₂ červený

dimetyl ortut' $Hg(CH_3)_2$