Universitatea tehnică "Gheorghe Asachi" din Iași

Facultatea de Automatică și Calculatoare- Domeniul Calculatoare și Tehnologia Informației Prelucrarea Imaginilor-Proiect

Raport Intermediar-Eliminarea efectelor de blur(deblurring)

Echipă: **E13**

Moisii Andreea

Grupa 1310A

Voroneanu Teodora

Grupa 1310A

1. Descrierea temei alese și obiective

Imaginile pot fi distorsionate de neclaritate datorită:

- mișcarii în timpul procesului de captare a imaginii, de către cameră sau, atunci când sunt folosiți timpi de expunere lungi, de către subiect
- Opticii nefocalizate, utilizarea unui obiectiv cu unghi larg, turbulență atmosferică sau un timp de expunere scurt, care reduce numărul de fotoni capturați
- Distorsiunea luminii împrăștiate în microscopia confocală

Deblurarea este procesul de eliminare a obiectelor neclare din imagini.

Blurul este reprezentat de un operator de distorsiune, numit și funcția punct spread (PSF).

Diferiti algoritmi de estompare estimează și elimină neclaritatea pe baza PSF-ului și zgomotului din imagine.

O imagine neclară sau degradată poate fi descrisă aproximativ prin această ecuație g = Hf + n, unde g este imaginea blurata, H este operatorul de distorsiune(PSF), f este imaginea originală adevărată iar n zgomot aditiv, care corupe imaginea.

Pe baza acestui model, sarcina fundamentală a unui deblurring este de a de-convolta imaginea neclară cu PSF-ul care descrie exact distorsiunea. Deconvoluția este procesul de

inversare a efectului convoluției.

Lucrarea de față propune eliminarea efectelor de blur dintr-o imagine focusată necorespunzator si deblurare unei imagini distorsionate în urma mișcării camerei foto in timpul captării unei imagini.

Deblurare imagine nefocalizata

Deblurare imagine distorsionată de miscare

Metode de deblurare a imaginilor/Utilizări practice

În matematică, deconvoluția este un proces bazat pe algoritmi folosit pentru a spori semnalele din datele înregistrate. În cazul în care datele înregistrate pot fi modelate ca un semnal pur care este distorsionat de un filtru (prin procesul de convoluție), deconvoluția poate fi utilizată pentru a restabili semnalul original.

Conceptul de deconvoluție este utilizat pe scară largă în tehnicile de procesare a semnalului și de procesare a imaginilor. De asemenea, a avut o aplicare timpurie în seismologie.

În optică și imagistică, termenul "deconvoluție" este utilizat în mod specific pentru a se referi la procesul de inversare a distorsiunii optice care are loc într-un microscop optic, microscop electronic, telescop sau alt instrument de imagistică, creând astfel imagini mai clare.

Înainte și după deconvoluția unei imagini a unui crater lunar

Pe lângă aceste aplicații, deblurarea mai poate fi utilă în restaurarea scrisului dintro imagine sau a detaliilor precum numărul de înmatriculare al unei mașini.

Rămâne deopotrivă și aplicabilitatea în cazurile în care se dorește restabilirea fotografiilor personale în care sunt inlcuse persoane, obiecte.

Se cunosc **4 metode** principale prin care procesul de deconvoluție poate fi realizat:

- Deblurare folosind deconvoluția oarbă(Blind Deconvolution Algorithm): Algoritmul de deconvoluție oarbă poate fi utilizat în mod eficient atunci când nu se cunosc informații despre distorsiune (estompare și zgomot).
- Deblurare folosind metoda Lucy-Richardson
- Utilizarea unui filtru regularizat
- Utilizarea filtrului Wiener : Deconvoluția Wiener poate fi utilizată eficient atunci când caracteristicile de frecvență ale imaginii și zgomotul aditiv sunt cunoscute, cel puțin într-o oarecare măsură.

Blind Deconvolution

În matematică, deconvoluția este un proces bazat pe algoritmi, utilizat pentru a spori semnalele din datele înregistrate. În cazul în care datele înregistrate pot fi modelate ca un semnal pur care este distorsionat de un filtru (un proces cunoscut sub numele de convoluție), deconvoluția poate fi utilizată pentru a restabili semnalul original.

Presupunem că spectrul imaginii defocalizate este S, iar spectrul imaginii originale nedistorsionate este U, atunci putem exprima spectrul imaginii defocalizate ca:

$$S = H \cdot U + N$$

unde H este funcția de răspândire a punctului PSF, iar N este zgomotul aditiv

Funcția de răspândire a punctului PSF

Distribuția câmpului luminos al imaginii de ieșire se numește răspuns la impuls, deci funcția de răspândire a punctului este, de asemenea, funcția de răspuns la impuls a sistemului optic. Într-o imagine defocalizată, PSF-ul existent este, în general, o cartografiere obiect-punct, în special funcția circulară de răspândire a punctului PSF este foarte potrivită pentru a descrie acest tip de imagine defocalizată

Efectuăm deblurrarea și filtrarea imaginii defocalizate în domeniul frecvenței, iar ceea ce obținem nu este o imagine originală 100% clară, ci doar spectrul imaginii estimat și reconstituit prin imaginea neclară. Folosim U'pentru a estima spectrul de imagine Zis, poate fi exprimat prin următoarea formulă:

$$U' = H_w \cdot S$$

unde Hw este filtrul de restaurare utilizat în domeniul frecvenței, în general un filtru Wiener. Reprezentarea simplă a filtrului Wiener este după cum urmează:

$$H_w = rac{H}{\left|H
ight|^2 + rac{1}{SNR}}$$

unde H este funcția noastră anterioară de distribuire a punctelor PSF, iar SNR este raportul semnal-zgomot al funcției de distribuire a punctelor.

Deci, prin formula de mai sus, putem ști că, dacă dorim să obținem o imagine neclară a unei imagini defocalizate, trebuie să definim o funcție adecvată de distribuire a punctelor PSF și apoi să calculăm un filtru Wiener prin această funcție Dispozitiv de distribuire a punctelor PSF. Apoi utilizați filtrul Wiener pentru a deblura filtrul imaginii defocalizate în domeniul frecvenței și, în cele din urmă, pentru a obține o imagine restaurată relativ clară.

2. Modalitatea de lucru în echipă

Git repository: https://github.com/TeodoraVoroneanu/ProiectPl

Identificarea si alocarea task-urilor

Task ID	Descriere task	Membru echipă	Grad de finalizare
Documentare	Constă în acumularea Informațiilor Necesare pentru a dezvolta un plan de organizare corespunzător temei	Moisii Andreea Voroneanu Teodora	Finalizat
Implementare	Ne propunem să implementăm următoarele etape:	Moisii Andreea Voroneanu Teodora	Nefinalizat

	1)Citirea imaginii în		
	tonuri de gri în		
	spațiul de lucru		
	2)6:		
	2)Simularea unei imagini care ar		
	putea fi blurată din		
	cauza mișcării		
	camerei sau a lipsei		
	de focalizare		
	3)Restabilirea		
	imaginii neclare		
	folosind PSF-		
	uri(Point Spread		
	Function) de diferite dimensiuni		
	începând de fiecare		
	dată de la o matrice		
	uniformă		
	4)Analiza PSF-ului		
	restaurat care		
	facilitează		
	aproximarea dimensiunii		
	potrivite PSF-ului		
	inițial		
	,		
	5)Îmbunătățirea		
	restaurării prin care		
	se suprimă aproape		
	toate zgomotele din		
	imagine		
	6)Utilizarea		
	constrângerilor		
	suplimentare la		
	restaurarea PSF-ului		
Testare	Presupune	Moisii Andreea	Nefinalizat
	verificarea celor	Voroneanu Teodora	
	doua exemple		
	prezentate mai sus si anume:		
	Si diluine:		
	l	<u> </u>	

	1)Deblurarea unei imagini Nefocalizate		
	2)Deblurarea unei imagini distorsionate de mișcare		
Raportare	Crearea unui raport în conformitate cu rezultatele obținute in cadrul etapei de testare	Moisii Andreea Voroneanu Teodora	Nefinalizat

Referințe

https://en.wikipedia.org/wiki/Deconvolution?fbclid=lwAR2FD2gXsbia4vaSX6 usUG6ino2vUTU_w7k7lqADBhRXjaEtWA-TYY5NeEg

https://www.mathworks.com/help/images/image-deblurring.html?fbclid=IwAR3-

FUiUZLzBFyCqwwVRgNo7QlYNyLH8YLDrTqfmOc5h3a4W5oT3rHdLHmw

https://www.mathworks.com/help/images/deblurring-images-using-the-blind-deconvolution-

algorithm.html?fbclid=IwAR34MCcPGKB0tvnXkS 8rggUm6HJ4dZC6IXikO5ytN 8cj_ERu2nsWCGDPxY

https://yuzhikov.com/articles/BlurredImagesRestoration1.htm?fbclid=IwAR3 ohdn4hxhJZ4nkEMMyG9tgVrMAUIQFbLIK-8kAyRxR9g8sCHVS23iH8ps

https://en.wikipedia.org/wiki/Blind_deconvolution?fbclid=IwAR2958M0gGdzKftnrYgUJT69gDz0vKlOiw8iSugaYc1Ti7TRfv0bhRJhhAg

https://www.mathworks.com/help/images/create-your-own-deblurring-functions.html

https://mathworld.wolfram.com/Deconvolution.html?fbclid=IwAR2uq76pqE osvq1phuHj7BivFLk3bCBaez46KwDGLs5TJpoHS4MWa60r02E http://matlab.izmiran.ru/help/toolbox/images/deblurr8.html?fbclid=IwAR0
TvBVXhKEhT0ncRQSeqNA_idY3BQilcOldFNyJT4g4wgy8A7sVzVy-pSI

https://www.researchgate.net/publication/220502265 Blind and Semi-Blind Deblurring of Natural Images

https://softwareengineering.stackexchange.com/questions/86795/can-wetechnically-un-blur-

<u>images?fbclid=IwAR3cs6_HI8LQZ3LQ3bcV0qLnx78cBDpKtWg7pWhQ79RlxTXcURtp2kMzpaM</u>

https://cs.nyu.edu/~fergus/papers/deblur_fergus.pdf

https://openaccess.thecvf.com/content_ICCV_2017/papers/Wieschollek_Learning_Blind_Motion_ICCV_2017_paper.pdf?fbclid=lwAR3lgEU2HLGvr_9TA6rw0VEtrMU1JvflkTlye933Ut4dbAR7G0Ul9X7kNmw

https://dilipkay.files.wordpress.com/2019/04/priors_cvpr11.pdf

https://ro.gaz.wiki/wiki/Deconvolution