Fast Moment-Based Estimation for Hierarchical Models

Patrick O. Perry New York University

Motivating Application: Recommender Systems

- Large population of Users and Items
- Goal: Recommend items to users
- Examples: online shopping ("you might also like..."), targeted advertising

Items

movie		title	genre
1	Toy Story	(1995)	Comedy
2	Jumanji	(1995)	Children
3	Grumpier Old Men	(1995)	Comedy
4	Waiting to Exhale	(1995)	Drama
5	Father of the Bride Part II	(1995)	Comedy
		•	
		•	
		•	•
10677	Bedtime Stories	(2008)	Children
10678	Manhattan Melodrama	(1934)	Drama
10679	Choke	(2008)	Comedy
10680	Revolutionary Road	(2008)	Drama
10681	Blackadder Back & Forth	(1999)	Comedy

Users

user
1
2
3
4
5
•
•
•
•
•
69873
69874
69875
69876
69877
69878

Ratings

	user	movie	score		time
1	36072	21	3	1995-01-09	11:46:49
2	36072	47	5	1995-01-09	11:46:49
3	36072	1058	3	1995-01-09	11:46:49
4	34294	1	4	1996-01-29	00:00:00
5	34294	10	4	1996-01-29	00:00:00
	•	•	•		•
	•	•	•		•
	•	•	•		•
10000050	61718	2395	3.5	2009-01-05	04:52:12
10000051	61718	6887	3.5	2009-01-05	04:52:17
10000052	61718	2869	2	2009-01-05	04:52:22
10000053	61141	4691	2.5	2009-01-05	04:55:03
10000054	61141	9153	3	2009-01-05	05:02:16

Two Main Approaches

Content-based: recommend items similar to those the user liked in the past

Collaborative: recommend items that similar users liked

A Model That Does Both

Group (User) i = 1,...,M:

- predictors X_i (n_i × p)
- response y_i (n_i)

Model:

$$E(y_{ij} \mid \beta_i) = x_{ij}^T \beta_i$$
$$\beta_i \sim N(\mu, \Sigma)$$

(Condliff et al. 1999; Ansari et al. 2000)

Response

$$y_i = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{in_i} \end{bmatrix}$$

Features

$$X_{i} = \begin{bmatrix} x_{i11} & x_{i12} & \cdots & x_{i1p} \\ x_{i21} & x_{i22} & \cdots & x_{i2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{in_{i}1} & x_{in_{i}2} & \cdots & x_{in_{i}p} \end{bmatrix}$$

```
rating
5
3
5
3
5
.
.
```

User i's expected rating for item j:

Example:

"User i likes action movies, movie j is an action movie; we should recommend movie jto user i."

User i's tastes:

Example:

"User i likes action movies, users who like action tend to dislike drama; we should assume that user i dislikes drama."

Hierarchical Model

Content-based:

$$E(y_{ij} \mid \beta_i) = x_{ij}^T \beta_i$$

Collaborative:

$$\beta_i \sim N(\mu, \Sigma)$$

Problem: Fitting at Commercial Scale

(Zhang and Koren, 2007; Agarwal, 2008; Naik et al., 2008; Agarwal and Chen, 2009)

Likelihood-Based Fitting is Slow

Method	Initial Cost	Cost per Iteration	Iterations
Expectation-Maximization	Np ²	Mp^3	Hundreds
Newton-Raphson	Np ²	Mp ⁴	Tens
Profile Likelihood (Ime4)	Np ²	Mp^3	Tens to Hundreds

(Movielens: $M \approx 10^5$, $N \approx 10^7$, $p \approx 10$)

Popular Approach #1: Split/Combine

Idea: divide data between K processors, compute separate estimates, then combine

Pro: cuts wall clock time by a factor of K (but does not reduce total amount of computation)

(Huang and Gelman, 2005; Gebregziabher et al. 2012; Scott et al. 2013, ...)

Popular Approach #2: Stochastic Gradient Descent (SGD)

Idea: maximize h-likelihood (treating random effects like parameters), use gradient-based optimization

Pro: often faster than maximum likelihood

Con: requires tuning parameters, can sometimes be inconsistent

(Lee and Nelder 2006; Dror et al. 2011, ...)

Today's Talk: Moment-Based Estimation

Idea: split data into M chunks, compute groupspecific effect estimates, then use moment matching for population parameters

Pro: non-iterative (typically faster than ML), trivially parallelizable

Con: loss in statistical efficiency (sometimes)

Comparison

Method	Initial Cost	Cost per Iteration	Iterations
Expectation-Maximization	Np^2	Mp^3	Hundreds
Newton-Raphson	Np ²	Mp ⁴	Tens
Profile Likelihood (Ime4)	Np ²	Mp^3	Tens to Hundreds
Stochastic Gradient Descent	0	Np	Tens
Moment-Based	Np ²	Mp^3	2

Computation Time

Remainder of the Talk

- 1. Moment-based as fast alternative to likelihood-based estimation
- 2. Consistent, asymptotically normal
- 3. Performs well in practice

Moment-based estimation: A new (old) estimation method, dramatically faster

History: Cochran (1937), Yates and Cochran (1938), Cochran (1954), Swamy (1970), Carter and Yang (1986), Cox and Solomon (2002)

Intuition for Moment-Based Estimation

- 1. Compute group-specific coefficient estimates
- 2. Estimate population parameters by matching coefficient moments.

Intuition for Moment-Based Estimation (Details)

1. Model:

$$y_i = X_i \beta_i + \varepsilon_i$$
 $\beta_i \sim N(\mu, \Sigma), \ \varepsilon_i \sim N(0, \sigma^2 I)$

2. Group-specific coefficient estimates:

$$b_i = (X_i^\mathsf{T} X_i)^{-1} X_i^\mathsf{T} y_i$$

3. Moments:

$$\mathsf{E}(b_i) = \mu \qquad \qquad \mathsf{Cov}(b_i) = \Sigma + \sigma^2 (X_i^\mathsf{T} X_i)^{-1}$$

Problem: Rank-Degenerate X

Group-specific coefficient estimates:

$$b_i = (X_i^{\mathsf{T}} X_i)^{\dagger} X_i^{\mathsf{T}} y_i$$

Biased estimate:

$$E(b_i | \beta_i) \neq \beta_i$$

Solution for Rank-Degenerate X

1. Group-specific coefficient estimates:

$$b_i = (X_i^T X_i)^{\dagger} X_i^T y_i$$
 (biased in nullspace of X_i)

2. Choose weight matrices:

 W_i

(same nullspace as X_i)

3. Moments:

$$\mathsf{E}(W_i b_i) = W_i \mu \qquad \mathsf{Cov}(W_i b_i) = W_i \{ \Sigma + \sigma^2 (X_i^\mathsf{T} X_i)^\dagger \} W_i^\mathsf{T}$$

Moment Matching for Mean

$$\hat{\mu} = \Omega_1^{-1} \sum_{i=1}^{M} W_i b_i$$

$$\Omega_1 = \sum_{i=1}^{N} W_i$$

Moment Matching for Covariance

$$\hat{A} = \sum_{i=1}^{M} W_i (b_i - \hat{\mu}) (b_i - \hat{\mu})^T W_i$$

$$\text{vec}(\hat{\Sigma}) = \Omega_2^{-1} \text{vec}(\hat{A}) - \text{Bias}$$

$$\Omega_2 = \sum_{i=1}^{M} W_i \otimes W_i$$

Optimal Weights

Orthonormal columns, same span as X_i^T

Unknown parameters

Computational Complexity

- Compute M group-specific estimates: O(Np²)
- Match weighted moments: O(Mp³)

Theoretical Properties

Theorem 1: Moment-Based Estimates are Consistent

Theorem 1: Details

Statement:

$$\hat{\mu} = \mu + O_P(\|\Omega_1^{-1}\|^{1/2})$$

$$\hat{\Sigma} = \Sigma + O_P(\|\Omega_2^{-1}\|^{1/2})$$

Main Assumption:

group-specific estimates have finite fourth moments

Proof:

Linear Algebra + Markov's Inequality

Theorem 2: Two-Step Moment Based Estimates are Asymptotically Relatively Efficient

Theorem 2: Details

Statement:

$$\hat{\mu}_{\text{two-step}} = \hat{\mu}_{\text{optimal}} + o_P(\|\Omega_1^{-1}\|^{1/2})$$

Assumptions:

(same as Theorem 1)

Proof:

Taylor expansion / Matrix inverse perturbation

Theorem 3: Two-Step Moment Based Estimates are Asymptotically Normal

Theorem 3: Details

Statement:

$$\Omega_1^{1/2}(\hat{\mu}-\mu) \Longrightarrow \mathcal{N}(0,I)$$

Assumptions:

(same as Theorem 1 + large M)

Proof:

Central Limit Theorem

Theory: Recap

- Estimates are consistent
- Two-step estimates are asymptotically relatively efficient
- Estimates are asymptotically normal

Performance in Hierarchical Linear Model Simulations

Linear Model: Time

Linear Model: Accuracy

Performance in Hierarchical Logistic Model Simulations

Logistic Model: Time

Logistic Model: Accuracy

Performance in Practice

Application: MovieLens 10M

MovieLens 10M dataset:

- 10 million ratings
- 70 thousand users
- 10 thousand movies
- · Predictors: genre, item popularity, user mood

Time to fit with glmer: 10 hours

Time to fit with mhglm: 10 minutes

Response

- Given that user i rates movie j:
 y_{ij} = rating is positive (4 or 5 stars)
- Ratings per user: 140 (ranges from 10 to 1000)

Predictors

- Genre: Action, Children, Comedy, or Drama
- Popularity: logit(current popularity of movie), computed from 30 most recent ratings
- Previous: indicator of whether user's previous review was positive

Out-of-Sample Performance

Table 3: MovieLens test set error.

Method	Loss Function		
	Log	Squared Error	Misclassification
Hierarchical	0.55	0.18	0.28
Local	0.57	0.19	0.29
Global	0.59	0.20	0.32

Summary: Moment-Based Estimation

- Fast
- Theoretically Sound
- Works In Practice

R package: mbest

Available on CRAN

Thank you!