

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования.

Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет). (МГТУ им. Н. Э. Баумана)

Разработка программы построения ЗД сцен помещений различной планировки

Студент: ИУ7-55Б Талышева Олеся Николаевна

Руководитель: Мартынюк Наталья Николаевна

Цель и задачи

Цель - разработка программного обеспечения для создания и редактирования 3D сцен помещений с возможностью интерактивно го добавления объектов (стен, окон, дверей), их перемещения, изменения, поворота, а также обеспечения сохранения и загрузки моделей.

Для достижения цели были поставлены следующие задачи:

- 1) проанализировать требования к программе и исследовать существующие решения;
- 2) изучить алгоритмы реализации технических решений и выбрать наиболее подходящие для работы с 3D сценами;
- 3) разработать архитектуру и реализовать программу;
- 4) протестировать программу целиком и её отдельные модули;
- 5) исследовать производительность программы;
- 6) подготовить отчётную документацию.

Описание объектов сцены

- Пол, состоящий из заданного числа плиток;
- Стена параллелепипед;
- Дверь стена с отверстием у пола;
- Окно стена, с отверстием выше пола;
- Источник света, характеризующийся углом освещения сцены;
- Камера, благодаря которой можно менять угол обзора сцены.

Эти объекты могут иметь различные параметры, что позволяет создавать уникальные конфигурации помещений, соответствующие потребностям пользователя и требованиям дизайна.

В рамках данной работы была выбрана поверхностная модель задания объектов.

Алгоритмы удаления невидимых линий и поверхностей

Алгоритм	Необходимость	Временная	Возможность реализации
	в сортировке	сложность	оптических эффектов
Плавающий горизонт	да	$O(n \cdot \log n)$	да
Робертса	нет	$O(n^2)$	нет
Варнака	нет	$O(n \cdot \log n)$	нет
Вейлера-Азертона	да	$O(n^2)$	да
Художника	да	$O(n \cdot \log n)$	да
Трассировки лучей	нет	$O(C \cdot n)$	да
Z-буфера	нет	$\mathbf{O}(\mathbf{n})$	нет
Построчного сканирования	нет	$O(n \cdot S)$	нет

Где n – количество граней, С – количество пикселей окна, S – количество строк окна.

Алгоритмы отрисовки теней

В связи с выбором алгоритма Z-буфера для удаления невидимых линий и плоскостей, удобно использовать его и для алгоритма построения теней.

Алгоритм Z-буфера основывается на хранении информации о глубине объектов сцены для каждого пикселя экрана. При расчёте теней алгоритм проходит два этапа:

1. Первый проход:

Сцена анализируется с позиции источника света. Вычисляются точки, видимые со стороны источника, и их глубины заносятся в теневой Z-буфер.

1. Второй проход:

Сцена визуализируется с позиции наблюдателя. Для каждого пикселя проверяется, находится ли он в тени, путём сравнения его координат с данными теневого Z-буфера.

простая закраска (метод гранения)

Метод закраски

Для визуализации выбрана модель простой закраски, обеспечивающая достаточный уровень реализма для задачи отрисовки многогранников

(слева) и 32000 треугольников (справа)

Цвет поверхности рассчитывается по закону Ламберта:

где:

$$I = I_L \cdot k_d \cdot \cos \theta,$$

- I результирующая интенсивность света;
- I_L интенсивность источника света;
- $-k_{d}$ коэффициент диффузного отражения материала;

сфера с закраской по Фонгу: около 2000 (слева) и 32000 треугольников (справа)

- θ – угол между нормалью к поверхности и направлением на источник света.

Алгоритм Z-буфера удаления невидимых линий

Алгоритм Z-буфера с отрисовкой теней

Структура классов

Пример интерфейса

- ✓ Углы поворота камеры: (0, 0, 0)
- ✓Углы поворота источника света: (0, 0, 0)

Демонстрация работы программы

Сравнение времени последовательного и параллельного формирования Z-буфера основного и теневого

Заключение

В ходе выполнения курсовой работы была достигнута поставленная цель: разработано программное обеспечение для построения 3Д сцен помещений различной планировки.

Также были решены все поставленные задачи:

- 1) проанализированы требования к программе и исследованы существующие решения;
- 2) изучены алгоритмы реализации технических решений и выбраны наиболее подходящие для работы с 3D сценами;
- 3) разработана архитектура и реализована программы;
- 4) протестирована программа целиком и её отдельные модули;
- 5) проведены исследования производительности программы;
- б) подготовлена отчётная документация.