Financial Sentiment Across News Sources

INTERIM REPORT

Repository: https://github.com/Roee104/FinancialSentimen tAnalysis.git Liel Ziv - 212541353 Roee Levi - 207496852 Adir Havakuk - 208636597

Description

Project: "Fine-Grained Financial Sentiment Analysis"

Classify financial news articles with respect to sentiment and confidence, on both ticker and sector levels.

Task:

Input: Full body news article, published between 2020–2025.

Output:

overall sentiment: {positive, neutral, negative}
ticker sentiments: {ticker (sentiment, confidence)}

sector sentiments: sector-level aggregation

Goal: Aggregate chunk-level sentiment into a reliable, explainable article-level prediction.

Data & Evaluation:

- Dataset: 100K financial articles (2020–2025).
- Labels: Manual + LLM-assisted annotation on a selected test set
- o Evaluation: Accuracy, macro-F1, average confidence, sector agreement

Previous Work

Source / Title	FinBERT: A Pretrained Language Model for Financial Communications (2019)	LLM Adaptation for Financial Sentiment Analysis (2024)	Snorkel: Weak Supervision for Financial Sentiment Analysis (2020–2023)
Approach / Model	Fine-tuned BERT on financial texts (PhraseBank)	GPT-4/3.5 used with zero-shot and few-shot prompting without fine-tuning	Labeling functions + probabilistic label model (Snorkel framework)
Data	Financial PhraseBank: 4,800 manually labeled financial sentences	Financial news articles (e.g., Reuters, Bloomberg)	Reddit comments, financial headlines, and domain-specific lexicons
Metrics	Accuracy, F1-score, Precision, Recall	Manual evaluation + average accuracy	Label coverage, agreement rate with human labels
Results	~87% accuracy for sentiment classification	~85% accuracy with GPT-4 few-shot	75–85% label agreement; 50k+ samples in hours

Our Plan

Preprocessing

Dataset:

100K financial news articles (2020–2025)

Preprocesses each article:

- Cleans HTML tags and symbols
- Splits into semantic clauses (chunking)
- Extracts dates and metadata
- Saves clean .jsonl structure

Labeling

- Manual annotations:3-level sentiment tagging: Positive / Neutral / Negative
- Annotators label selected subset for validation (Gold Standard)
- o Results saved in gold standard annotations.jsonl

Models - Compare Models

- VADER (baseline): Lexicon-based sentiment, no financial context
- o FinBERT Standard: Pretrained model, applied on chunked clauses

Evaluation

- Accuracy, F1-score per class (positive / neutral / negative)
- Sector-level and article-level comparison
- Visual plots (bar charts, histograms) from evaluation_results.json
- Gold standard comparison for reliability check

Data Exploration & Baseline

Dataset

- Financial news headlines (2020–2025), cleaned and deduplicated
- o 100,000 headlines collected from multiple online sources
- Each headline contains sector/company mentions and financial terminology
- Sentiment analysis task: classify each headline as Positive, Neutral, or Negative

Baseline 1: VADER

- Rule-based sentiment analyzer tailored for social media and general text
- No financial domain adaptation → poor handling of market context
- Performance on our dataset:
 - Accuracy: 53.1%
 - Major bias toward Positive and Neutral
 - Low F1 on Negative (often missed in market contexts)

Baseline 2: Standard FinBERT Pipeline

- Pretrained FinBERT model for financial sentiment classification
- Aggregates sentiment over tokens/entities using default heuristics
- Performance on our dataset:
 - Accuracy: 64.5%
 - Higher F1 scores across all classes
 - Better identification of Negative sentiment vs. VADER

F1 Scores by Sentiment Class

Insights & Recommendations

Key Insights:

- Standard FinBERT performs well on confident chunks, but struggles with ambiguous or short texts.
- VADER baseline underperforms significantly lacks domain-specific understanding.
- NER with SpaCy enhances ticker extraction and improves aggregation precision.
- Aggregation is essential: chunk-level sentiment doesn't always match ticker or article-level intent.

Recommendations:

- Fine-tune FinBERT on financial multi-entity datasets to improve generalization.
- Incorporate confidence-based weighting across chunk \rightarrow ticker \rightarrow sector \rightarrow article levels.
- Replace VADER with a stronger baseline (e.g., LLM-assisted classifier or zero-shot models).
- Use semi-supervised labeling (LLMs + manual validation) to scale high-quality labels.

Next Steps:

- Finalize gold-standard test set annotations (gold_standard_annotations.jsonl).
- Evaluate and compare models (Standard, Optimized, VADER) on held-out set.
- Visualize final performance and prepare results for reporting.