Automotive door control Dynamic Design Analysis

PROJECT 3: ADVANCED EMBEDDED SYSTEMS NANMODEGREE

Table of Contents

1- F	or ECU 1	2
1-	Sequence Diagram	2
	tate Machine Diagram	
1-	_	
2-		
2- For I	ECU2	5
1 - Se	equence Diagram	5
2- St	tate Machine Diagram	6
1-	State machine diagram for ECU 2 operation	6
		6
2-	State Machine diagram for each Component	7
1-	· Door Control Task	7
2-	Basic communication module	7
3-	· Light	8

1- Sequence Diagram

Using Visual Paradigm application

2- State Machine Diagram

Using Wondershare EdrawMAX application

1- State machine diagram for ECU operation

2- State Machine for each component

CPU Load

Light Switch Task execution time : 5ms

Door Sensor Task execution time: 2ms

Speed sensor Task execution time: 1ms

Task	Period	Execution time
Door sensor	10ms	2ms
Speed Sensor	5ms	1ms
Light Sensor	20ms	5ms

CPU Load = (8/20) *100 = 40%

1 - Sequence Diagram

Using visual paradigm

2- State Machine Diagram

1- State machine diagram for ECU 2 operation

2- State Machine diagram for each Component Using Wondershare EdrawMAX application

1- Door Control Task

2- Basic communication module

3- Light

4- Buzzer

CPU Load

Door_Control_Task Execution time: 2ms

Task	Period	Execution time
Door_Control_Task	5ms	2ms

CPU Load = (2/5) *100 = 40%

Bus Load = (Data Transmitted in 1 Second) / (Maximum Data Transfer Rate of the Bus)

let's say the bit rate of the CAN bus is 500 kbps and 5000 bits are transmitted on the bus in 1 second. To calculate the bus load:

Total number of bits that can be transmitted on the bus in 1 second = (bit rate) x (time period) = 500 kbps x 1 second = 500,000 bits

Bus load = (number of bits transmitted / total number of bits that can be transmitted) x 1%

- $= (5000 \text{ bits} / 500,000 \text{ bits}) \times 100\%$
- = 1%