Low-Dimensional Cohomology of the Witt and the Virasoro Algebra

based on 1707.06106 [math.RA] & on-going work with Martin Schlichenmaier

Jill Ecker

Mathematics Research Unit Faculty of Science, Technology and Communication University of Luxembourg

September 2017, PhD Away Days, Durbuy, Belgium

Outline

- Introduction: known results about the second cohomology group & continuous cohomology; motivation
- The Witt and the Virasoro algebra : two of the most important infinite-dimensional Lie algebras (exple : Bosonic string)
- The cohomology of Lie algebras : Interpretation of low-dimensional cohomology groups with values in the adjoint module
- Warm-up: Proof of the vanishing of the first cohomology group
- Comments on the proof of the vanishing of the third cohomology group
- Outlook

Introduction

- Main aim: Prove the vanishing of the first and third cohomology groups with values in the adjoint module of the Witt and the Virasoro algebra by purely algebraic means ⇒ algebraic cohomology
- Second cohomology group : Schlichenmaier [5, 6], see also Fialowski [1]
- Witt algebra \leftrightarrow subalgebra of $Vect(S^1) \Rightarrow$ compare to results from continuous cohomology (Fialowski & Schlichenmaier[2]) :

$$H^*(Vect(S^1), Vect(S^1)) = \{0\}$$

 First three cohomology groups → interpretation in terms of important Lie algebra objects (outer derivations, deformations, obstructions)

Lie Algebra

Definition: Lie algebra

A Lie algebra ${\mathcal L}$ is a vector space over a field ${\mathbb K}$ with a bilinear product $[\cdot,\cdot]$ called

Lie bracket satisfying (for $x, y, z \in \mathcal{L}$):

- Skew-symmetry : [x, y] = -[y, x]
- Jacobi identity : [x, [y, z]] + [y, [z, x]] + [z, [x, y]]

The Witt algebra

• Witt algebra \mathcal{W} generated as vector space over a field \mathbb{K} with $char(\mathbb{K}) = 0$ by the elements $\{e_n \mid n \in \mathbb{Z}\}$ satisfying the following Lie structure :

$$[e_n, e_m] = (m-n)e_{n+m}, \qquad n, m \in \mathbb{Z}$$

- \mathbb{Z} -graded Lie algebra : $deg(e_n) := n$
- Decomposition of $W: W = \bigoplus_{n \in \mathbb{Z}} W_n$, with each W_n a 1-dimensional homogeneous subspace generated by e_n
- Internally graded : $[e_0, e_n] = ne_n = deg(e_n)e_n$, i.e. e_n is eigenvector of $ad_{e_0} := [e_0, \cdot]$ with eigenvalue n
- Algebraic realization : Lie algebra of derivations of Laurent polynomials $\mathbb{K}[Z^{-1},Z]$
- Geometrical realization :
 - ▶ $\mathbb{K} = \mathbb{C}$, algebra of meromorphic vector fields on \mathbb{CP}^1 holomorphic outside of 0 and ∞ , with $e_n = z^{n+1} \frac{d}{dz}$
 - Lie algebra of polynomial vector fields on S^1 , with $e_n=e^{in\phi} \frac{d}{d\phi}$

The Virasoro algebra

- ullet The Virasoro algebra ${\cal V}$ is the universal one-dimensional central extension of the Witt algebra
- ullet As a vector space, $\mathcal{V}=\mathbb{K}\oplus\mathcal{W}$ generated by $\hat{oldsymbol{e}}_n:=(0,e_n)$ and $oldsymbol{t}:=(1,0)$
- Lie structure equation :

$$[\hat{\mathbf{e}}_n, \hat{\mathbf{e}}_m] = (m-n)\hat{\mathbf{e}}_{n+m} - \frac{1}{12}(n^3-n)\delta_n^{-m}t,$$

 $[\hat{\mathbf{e}}_n, t] = [t, t] = 0$

• $deg(\hat{e}_n) := deg(e_n) = n$ and $deg(t) = 0 \Rightarrow \mathcal{V}$ is \mathbb{Z} -graded

The Lie algebra cohomology

- Let \mathcal{L} : Lie algebra; $M: \mathcal{L}$ -module and $C^q(\mathcal{L}, M)$: vector space of q-multilinear alternating maps with values in M, called q-cochains $(q \in \mathbb{N})$ Convention: $C^0(\mathcal{L}, M) := M$
- Coboundary operators δ_a defined by :

$$\forall q \in \mathbb{N}, \qquad \delta_q : C^q(\mathcal{L}, M) \to C^{q+1}(\mathcal{L}, M) : \psi \mapsto \delta_q \psi,$$

$$(\delta_q \psi)(x_1, \dots x_{q+1}) : = \sum_{1 \le i < j \le q+1} (-1)^{i+j+1} \psi([x_i, x_j], x_1, \dots, \hat{x}_i, \dots, \hat{x}_j, \dots, x_{q+1})$$

$$+ \sum_{i=1}^{q+1} (-1)^i x_i \cdot \psi(x_1, \dots, \hat{x}_i, \dots, x_{q+1}),$$

with $x_1, \ldots, x_{q+1} \in \mathcal{L}$

- Adjoint module $M = \mathcal{L}$, $x \cdot m = [x, m]$; trivial module $M = \mathbb{K}$, $x \cdot m = 0$
- $\delta_{q+1} \circ \delta_q = 0 \ \forall \ q \in \mathbb{N} \to \text{complex of vector spaces}$:

$$\{0\} \xrightarrow{\delta_{-1}} M \xrightarrow{\delta_0} C^1(\mathcal{L},M) \xrightarrow{\delta_1} \dots \xrightarrow{\delta_{q-2}} C^{q-1}(\mathcal{L},M) \xrightarrow{\delta_{q-1}} C^q(\mathcal{L},M) \xrightarrow{\delta_{q+1}} C^{q+1}(\mathcal{L},M) \xrightarrow{\delta_{q+1}} \dots \longrightarrow \dots$$

where $\delta_{-1} := 0$

The Chevalley-Eilenberg cohomology

- q-cocycles : $Z^q(\mathcal{L}, M) := \ker \delta_q$
- q-coboundaries : $B^q(\mathcal{L}, M) := \text{im } \delta_{q-1}$
- q^{th} cohomology group of $\mathcal L$ with values in M:

$$H^q(\mathcal{L},M) := Z^q(\mathcal{L},M)/B^q(\mathcal{L},M)$$

Chevalley-Eilenberg cohomology :

$$H^*(\mathcal{L},M) := \bigoplus_{q=0}^{\infty} H^q(\mathcal{L},M)$$

The degree of a homogeneous cochain

- £ graded Lie algebra, M a graded £-module, M internally graded with respect to the same grading element as the Lie algebra £
 Examples: adjoint module M=C: trivial module M=K with K = A
- Examples : adjoint module $M=\mathcal{L}$; trivial module $M=\mathbb{K}$ with $\mathbb{K}=\bigoplus_{n\in\mathbb{Z}}\mathbb{K}_n$, $\mathbb{K}_0=\mathbb{K}$ and $\mathbb{K}_n=\{0\}$ for $n\neq 0$
- A q-cochain ψ is homogeneous of degree d if \exists a $d \in \mathbb{Z}$ s.t. for all q-tuple x_1, \ldots, x_q of homogeneous $x_i \in \mathcal{L}_{deg(x_i)}$, we have :

$$\psi(x_1,\ldots,x_q)\in M_n \text{ with } n=\sum_{i=1}^q deg(x_i)+d$$

 \sim decomposition of cohomology :

$$H^{q}(\mathcal{L}, M) = \bigoplus_{d \in \mathbb{Z}} H^{q}_{(d)}(\mathcal{L}, M)$$

• Result by Fuks [3] :

$$H_{(d)}^{q}(\mathcal{L}, M) = \{0\} \text{ for } d \neq 0 ,$$

 $H^{q}(\mathcal{L}, M) = H_{(0)}^{q}(\mathcal{L}, M)$

Interpretation in case of the adjoint module

$H^1(\mathcal{L},\mathcal{L})$: Outer derivations

• Kernel of δ_1 :

$$(\delta_1 \psi)(x_1, x_2) = \psi([x_1, x_2]) - [x_1, \psi(x_2)] - [\psi(x_1), x_2] = 0$$

$$\Leftrightarrow \psi([x_1, x_2]) = [x_1, \psi(x_2)] + [\psi(x_1), x_2]$$

• Image of δ_0 :

$$(\delta_0\phi)(x) = -[x,\phi] = ad_\phi(x),$$

with
$$\phi \in \mathit{C}^0(\mathcal{L},\mathcal{L}) = \mathcal{L}$$

ullet \sim first cohomology group :

$$\textit{H}^{1}(\mathcal{L},\mathcal{L}) = \frac{\ker(\delta_{1}:C^{1}(\mathcal{L},\mathcal{L}) \rightarrow C^{2}(\mathcal{L},\mathcal{L}))}{\operatorname{im}(\delta_{0}:C^{0}(\mathcal{L},\mathcal{L}) \rightarrow C^{1}(\mathcal{L},\mathcal{L}))} = \frac{\{\mathsf{derivations}\}}{\{\mathsf{inner}\;\mathsf{derivations}\}} = \{\mathsf{outer}\;\mathsf{derivations}\}$$

$H^2(\mathcal{L},\mathcal{L})$: Infinitesimal deformations

• Lie algebra $\mathcal L$ over field $\mathbb K$ with bracket $[\cdot,\cdot]$ expressed with anti-symmetric bilinear map ψ_0 :

$$\psi_0: \mathcal{L} \times \mathcal{L} \to \mathcal{L}, \qquad (x_1, x_2) \mapsto \psi_0(x_1, x_2) = [x_1, x_2]$$

 \mathcal{L} Lie algebra $\sim \psi_0$ must fulfill Jacobi identity

• Family of Lie algebra structures :

$$\mu_t = \psi_0 + \psi_1 \ t + \psi_2 \ t^2 + \dots$$

 $\psi_i: \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ anti-symmetric bilinear maps such that μ_t fulfills Jacobi identity $\leadsto \mathcal{L}_t := (\mathcal{L}, \mu_t)$ Lie algebra \leadsto deformation of (\mathcal{L}, μ_0)

- Deformation parameter t :
 - t is a variable → deformation over the affine line or the convergent power series → geometric or analytic deformation
 - t is a formal variable \sim deformation over the formal power series \sim formal deformation
 - deformation over the quotient $\mathbb{K}[[X]]/(X^{n+1}) \sim n$ -deformation. In particular $n=1 \sim$ infinitesimal deformation (i.e. $t^2=0$)

• The family μ_t must fulfill the Jacobi identity up to all orders, i.e.

$$\mu_t(\mu_t(x_1,x_2),x_3) + \text{ cyclic permutations of } (x_1,x_2,x_3) = 0$$

$$\Leftrightarrow \sum_{i,j\geq 0} \psi_i(\psi_j(x_1,x_2),x_3) \ t^{i+j} + \text{ cyclic permutations of } (x_1,x_2,x_3) = 0$$

• Infinitesimal deformations $t^2 = 0$:

- t^0 : original Jacobi identity for ψ_0 on $\mathcal L$
- $t^1: \psi_1([x_1, x_2], x_3) + \text{ cycl. perm. } + [\psi_1(x_1, x_2), x_3] + \text{ cycl. perm. } = 0$
- $\mu_t = \psi_0 + \psi_1 t$ is an infinitesimal deformation iff $\psi_1 \in Z^2(\mathcal{L}, \mathcal{L})$
- Notion of equivalence, two families $\mu_t' = \psi_0 + \psi_1' t$ and $\mu_t = \psi_0 + \psi_1 t$ equivalent $\leftrightarrow \psi_1'$ and ψ_1 are cohomologous
- \Rightarrow Elements of $H^2(\mathcal{L},\mathcal{L})$ correspond to inf. def. up to equivalence

$H^3(\mathcal{L},\mathcal{L})$: Obstructions

- Lift of infinitesimal deformation to formal deformation \rightsquigarrow step n to step n+1 lifting property
- Let $\mu_t = \sum_{i=0}^n \psi_i t^i$ be a *n*-deformation, i.e. the following holds :

$$\sum_{i+j=k, i, j \geq 0} \psi_i(\psi_j(x_1, x_2), x_3) + \text{ cycl. perm.} = 0$$
 $0 \leq k \leq n$

• Extension to n+1-deformation \leadsto Jacobi identity must be fulfilled also for k=n+1, i.e. :

$$\begin{split} & \sum_{i+j=n+1, i, j \geq 0} \psi_i(\psi_j(x_1, x_2), x_3) + \text{ cycl. perm.} = 0 \\ \Leftrightarrow & \left[(\psi_0(\psi_{n+1}(x_1, x_2), x_3) + \psi_{n+1}(\psi_0(x_1, x_2), x_3)) + \text{ cycl. perm.} \right] \\ & + \left[\sum_{i+j=n+1, i, j > 0} (\psi_i(\psi_j(x_1, x_2), x_3)) + \text{ cycl. perm.} \right] = 0 \\ \Leftrightarrow & (\delta_2 \psi_{n+1})(x_1, x_2, x_3) + \left[\sum_{i+j=n+1, i, j > 0} \psi_i(\psi_j(x_1, x_2), x_3) + \text{ cycl. perm.} \right] = 0 \end{split}$$

• 3-coboundary term plus an extra term called obstruction :

$$\Psi_{n+1} := \sum_{i+j=n+1, i,j>0} \psi_i(\psi_j(x_1, x_2), x_3) + \text{ cycl. perm.}$$

- We have $\Psi_{n+1} \in Z^3(\mathcal{L}, \mathcal{L})$
 - \Rightarrow a n-deformation can be extended to a n+1-deformation iff $\left[\Psi_{n+1}
 ight]=0$
 - in $H^3(\mathcal{L},\mathcal{L})$
- If $H^3(\mathcal{L},\mathcal{L}) = \{0\}$, all obstructions vanish at all levels
 - ⇒ every infinitesimal deformation can be extended to a formal deformation

The vanishing of $H^1(\mathcal{W},\mathcal{W})$ and $H^1(\mathcal{V},\mathcal{V})$

Theorem

The first cohomology of the Witt algebra $\mathcal W$ and the Virasoro algebra $\mathcal V$ over a field $\mathbb K$ with $\mathrm{char}(\mathbb K)=0$ and values in the adjoint module vanishes, i.e.

$$H^1(\mathcal{W},\mathcal{W}) = H^1(\mathcal{V},\mathcal{V}) = \{0\}$$

- Fuks : $H^1_{(d)}(\mathcal{W}, \mathcal{W}) = H^1_{(d)}(\mathcal{V}, \mathcal{V}) = \{0\}$ for $d \neq 0$
- Need to prove $H^1_{(0)}(\mathcal{W},\mathcal{W})=H^1_{(0)}(\mathcal{V},\mathcal{V})=\{0\}$
- ullet Here : Proof for ${\mathcal W}$; proof for ${\mathcal V}$ similar

Proof of $H_{(0)}^1(\mathcal{W},\mathcal{W}) = \{0\}$

- Let ψ be a degree zero 1-cocycle, i.e. $\psi(e_i) = \psi_i e_i$ with suitable $\psi_i \in \mathbb{K}$
- Consider 0-cochain $\phi = \psi_1 e_0$. Coboundary condition for ϕ :

$$(\delta_0\phi)(e_i)=[\phi,e_i]=i\psi_1e_i$$

- Cohomological change $\psi' = \psi \delta_0 \phi \Rightarrow \psi'_1 = 0$
- Cocycle condition for ψ' on (e_i, e_i) :

$$0 = \psi'\left(\left[e_i, e_j\right]\right) - \left[e_i, \psi'(e_j)\right] - \left[\psi'(e_i), e_j\right] \Leftrightarrow 0 = \left(j - i\right)\left(\psi'_{i+j} - \psi'_j - \psi'_i\right)$$

- For i = 1 and $i = 0 : \psi'_0 = 0$
 - For j=1 and i<0 decreasing : $\psi'_i=\psi'_{i+1}=0$
 - For j=1 and i>1 increasing : $\psi'_{i+1}=\psi'_i=\psi'_2$
- Next, taking j = 2 and for example i = 3:

$$\psi_5' - \psi_2' - \psi_3' = 0 \Leftrightarrow \psi_2' - \psi_2' - \psi_2' = 0 \text{ as we have } \psi_i' = \psi_2' \ \forall i > 1$$
$$\Leftrightarrow \psi_2' = 0$$

All in all, we conclude $|\psi_i'| = 0 \ \forall i \in \mathbb{Z}$

The main result : the vanishing of $H^3(\mathcal{W},\mathcal{W})$

Theorem

The third cohomology of the Witt algebra \mathcal{W} over a field \mathbb{K} with char(\mathbb{K})= 0 and values in the adjoint module vanishes, i.e.

$$H^3(\mathcal{W},\mathcal{W})=\{0\}$$

- Step 1 : Recall : $H^3_{(d)}(\mathcal{W},\mathcal{W}) = \{0\}$ for $d \neq 0$. Need to prove $H^3_{(0)}(\mathcal{W},\mathcal{W}) = \{0\} \implies \psi(e_i,e_j,e_k) = \psi_{i,j,k}e_{i+j+k} \text{ with suitable } \psi_{i,j,k} \in \mathbb{K}$
- Step 2 : Find ϕ to perform cohomological change $\psi'=\psi-\delta_2\phi$ s.t. as many $\psi'_{i,j,k}$ as possible are zero
- Step 3 : Use the fact that ψ' is a cocycle \to cocycle conditions \to all $\psi'_{i,j,k}$ are zero.
- Computation in six steps : show that $\psi'_{i,j,1}$, $\psi'_{i,j,0}$, $\psi'_{i,j,-1}$, $\psi'_{i,j,2}$ and $\psi'_{i,j,-2}$ vanish $\forall i,j \in \mathbb{Z}$, then use induction on the remaining index k in $\psi'_{i,j,k}$

Tools: Coboundary and cocycle conditions

• Coboundary condition on (e_i, e_j, e_k) :

$$(\delta_2 \phi)_{i,j,k} = (j-i)\phi_{i+j,k} + (k-j)\phi_{k+j,i} + (i-k)\phi_{i+k,j} - (j+k-i)\phi_{j,k} + (i+k-j)\phi_{i,k} - (i+j-k)\phi_{i,j}$$

• Cocycle conditions on (e_i, e_j, e_k, e_l) :

$$(\delta_{3}\psi)_{i,j,k,l} = (j-i)\psi_{i+j,k,l} - (k-i)\psi_{i+k,j,l} + (l-i)\psi_{i+l,j,k} + (k-j)\psi_{k+j,i,l} - (l-j)\psi_{l+j,i,k} + (l-k)\psi_{l+k,i,j} - (j+k+l-i)\psi_{j,k,l} + (i+k+l-j)\psi_{i,k,l} - (i+j+l-k)\psi_{i,j,l} + (i+j+k-l)\psi_{i,j,k} = 0$$

Outlook : $H^3(\mathcal{V}, \mathcal{V})$

Conjecture

The **third** cohomology groups of the **Witt** algebra $\mathcal W$ and the **Virasoro** algebra $\mathcal V$ over a field $\mathbb K$ with $char(\mathbb K)=0$ and values in the **trivial** module are one-dimensional, i.e.

$$\dim(H^3(\mathcal{W},\mathbb{K})) = \dim(H^3(\mathcal{V},\mathbb{K})) = 1 \tag{1}$$

Numerical evidence and $dim(H^3(Vect(S^1), \mathbb{R})) = 1$ in the case of continuous cohomology, see Gelfand and Fuks [3, 4].

Theorem

Under the assumption that Conjecture 1 is true, it follows that the third cohomology group of the Virasoro algebra $\mathcal V$ over a field $\mathbb K$ with $char(\mathbb K)=0$ and values in the adjoint module is one-dimensional, i.e.

$$\mathit{dim}(\mathit{H}^3(\mathcal{V},\mathcal{V}))=1$$

Thank you for your attention!

- Alice Fialowski, Formal rigidity of the Witt and Virasoro algebra, J. Math. Phys. **53** (2012), no. 7, 073501, 5.
- Alice Fialowski and Martin Schlichenmaier, *Global deformations of the Witt algebra of Krichever-Novikov type*, Commun. Contemp. Math. **5** (2003), no. 6, 921–945.
- D. B. Fuks, *Cohomology of infinite-dimensional Lie algebras*, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986, Translated from the Russian by A. B. Sosinskiĭ.
- I. M. Gelfand and D. B. Fuks, *Cohomologies of the Lie algebra of vector fields on the circle*, Funkcional. Anal. i Priložen. **2** (1968), no. 4, 92–93.
- Martin Schlichenmaier, An elementary proof of the formal rigidity of the Witt and Virasoro algebra, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Basel, 2013, pp. 143–153.
- Martin Schlichenmaier, An elementary proof of the vanishing of the second cohomology of the Witt and Virasoro algebra with values in the adjoint module, Forum Math. **26** (2014), no. 3, 913–929.