

Testing a Population Mean Difference

Julie Deeke Statistics Course Developer

Home Renovations

20 homes remodeling their kitchens, requesting cabinet quotes from 2 suppliers

Is there an average difference in cabinet quotes from these

two suppliers?

Variable: Difference in cabinet quotes (Supplier A – Supplier B)

Research Question

Is there an average difference between the cabinet quotes from the suppliers?

Populations - All houses

Parameter of Interest - Population mean difference of cabinet quotes μ_d (Supplier A - Supplier B)

Test for a significant mean difference in cabinet quotes at the 5% significance level.

Hypotheses

$$H_0: \mu_d = 0$$

$$H_0: \mu_d = 0$$

 $H_a: \mu_d \neq 0$

$$\alpha = 0.05$$

Cabinet Data

Supplier A	Supplier B	Difference
\$380	\$325	\$55
\$560	\$470	\$90
\$425	\$420	\$5
\$389	\$375	\$14
\$568	\$574	-\$6
\$651	\$595	\$56

Cabinet Data

Supplier A	Supplier B	Difference
\$380	\$325	\$55
\$560	\$470	\$90
\$425	\$420	\$5
\$389	\$375	\$14
\$568	\$574	-\$6
\$651	\$595	\$56

Cabinet Data

Cabinet Quotes of Two Suppliers

Supplier A	Supplier B	Difference
\$380	\$325	\$55
\$560	\$470	\$90
\$425	\$420	\$5
\$389	\$375	\$14
\$568	\$574	-\$6
\$651	\$595	\$56

Assumptions

We need to assume that we have a <u>random sample</u> of differences, i.e. a random sample of houses.

We also need the **population of differences to be**normally distributed. We can get around this assumption if we have a large sample size (about 25+).

Assumptions

We need to assume that we have a **random** sample of differences, i.e. a random sample of houses.

We also need the **population of differences to be normally distributed**. We can get around this assumption if we have a large sample size (about 25+).

Summarize the Data

Difference in Cabinet Quotes

Supplier A - Supplier B

n = 20 observations

Minimum = -\$30

Maximum = \$90

Median = \$13.50

Mean = \$17.30

Standard Deviation = \$28.49

Assuming the sampling distribution of the sample mean difference is normal,

t = best estimate - hypothesized estimate estimated standard error of estimate

Best estimate - Hypothesized estimate Estimated standard error of estimate

$$t = \frac{\bar{x}_d - 0}{(s_d / \sqrt{n})} = \frac{17.30 - 0}{28.49 / \sqrt{20}}$$

n = 20 observations

Best estimate - Hypothesized estimate Estimated standard error of estimate

$$t = \frac{\bar{x}_d - 0}{s_d / \sqrt{n}} = \frac{17.30 - 0}{28.49 / \sqrt{20}} = \frac{17.30}{6.37}$$
$$= 2.72$$

Best estimate - Hypothesized estimate Estimated standard error of estimate

$$t = \frac{\bar{x}_d - 0}{s_d / \sqrt{n}} =$$

Our observed mean difference is $t = \frac{\bar{x}_d - 0}{s_d / \sqrt{n}} = \frac{2.72 \text{ (estimated) standard errors above our null value of 0.}}{s_d / \sqrt{n}}$

Test Statistic Distribution & P-value

Decision & Conclusion

p-val = $0.014 < 0.05 = \alpha \rightarrow \text{reject null hypothesis}$

→ have evidence against mean difference in cabinet quotes is 0

Formally, based on our sample and our p-value, we reject the null hypothesis. We conclude that the mean difference of cabinet quote prices for Suppliers A less B is **significantly different** from 0.

95% Confidence Interval

$$n = 20 \rightarrow t^* = 2.093$$

Note 0 is NOT in our range of reasonable values for mean difference in cabinet prices.

$$\bar{x}_{d} \pm t^{*} \left(\frac{s_{d}}{\sqrt{n}}\right)$$

\$17.30
$$\pm$$
 2.093 (\$28.49/ $\sqrt{20}$)
\$17.30 \pm 2.093 (\$6.37)
\$17.30 \pm \$13.33
(\$3.97, \$30.63)

Wilcoxon Signed Rank Test

If normality doesn't hold, we can use the Wilcoxon Signed Rank Test to test for the median.

$$p-val = 0.020$$

Again, we reject H_0 and conclude that the median difference in the cabinet quotes, Supplier A less B, is different from 0.

Summary

Hypothesis Test allow you to assess theories about a population parameter of interest

~parameter = mean difference

Extension of the one mean hypothesis test

~with difference variable

~collected on same individual (house)

Can obtain similar information from Confidence Intervals and Wilcoxon Signed Rank Test