

[Original document](#)

# FIELD-EFFECT TRANSISTOR

Patent number: JP60223171  
 Publication date: 1985-11-07  
 Inventor: ITOU TOMOHIRO  
 Applicant: NIPPON ELECTRIC CO  
 Classification:  
 - international: H01L29/201; H01L29/78  
 - european:  
 Application number: JP19840078961 19840419  
 Priority number(s): JP19840078961 19840419

Also published

US486649  
 US474082

[View INPADOC patent family](#)

[Report a data error](#)

## Abstract of JP60223171

**PURPOSE:** To obtain the field-effect transistor having excellent characteristics wherein the two-dimensionally accumulated condition of a high mobility electron is maintained by a method wherein a structure with which the electron affinity of a semiconductor crystal will be reduced from the surface where an electron layer will be formed toward the inner part of the semiconductor crystal in the direction reverse to a gate electrode. **CONSTITUTION:** Numeral 42 in the diagram is a non-doped high purity AlAs layer, numeral 49 is a non-doped high purity Al<sub>x</sub>Ga<sub>1-x</sub>As layer, and the molar ratio of AlAs is continuously changed from 0 to 1 from a channel interface to the AlAs layer 42. An example of distribution is shown by the diagram 5. The energy band in depthwide direction of a gate part in a thermally equilibrium state is as shown by the diagram 6. As a steep delta potential well is formed by a hetero interface and an Al<sub>x</sub>Ga<sub>1-x</sub>As layer 49, the energy difference between E<sub>0</sub> and E<sub>1</sub> is made larger, and accordingly, the probability of generation of an intersubband scattering between E<sub>0</sub> and E<sub>1</sub> of the electron supplied from the AlGaAs layer 6 whereon n type impurities are doped is small unit it is brought to a high energy state. Accordingly, a large mobility can be maintained in the same manner as the low voltage region even at a large source-drain voltage, thereby enabling to show excellent transportational characteristics.



Data supplied from the [esp@cenet](mailto:esp@cenet) database - Worldwide

Description of corresponding document: [US4740822](#)

## BACKGROUND OF THE INVENTION

### 1. Field of the Invention

This invention relates to semiconductor field effect devices having high speed and high frequency performances, and more particularly to field effect transistors using one or more compound semiconductor materials.

## 2. Description of the Prior Art

Schottky gate field effect transistors (hereinafter, referred as MESFET's) for high frequency and high speed applications use GaAs having an electron mobility which is five to six times greater than Si. In such MESFET's, a GaAs layer is deposited on an insulator substrate and is heavily doped with N-type impurities, for example 10<sup>17</sup> cm<sup>-3</sup>. A Schottky metal layer is contacted with the GaAs layer to form a gate electrode. The electron mobility, however, is limited to a low value, for example 5,000 cm<sup>2</sup>/V.Sec at 300 DEG K., due to the scattering of ionized impurities.

To obtain an MESFET free from the effect of the scattering of ionized impurities, T. Mimura has proposed in U.S. Pat. No. 4,424,525 a usage of heterojunction structure in which an AlGaAs layer doped with donor impurities is deposited on a high purity GaAs layer. A Schottky gate electrode is contacted with the AlGaAs layer. With the heterojunction structure, electrons in the impurity doped AlGaAs move into the high purity GaAs to form an electron accumulation layer, that is so-called two-dimensional electron gas, in the high purity GaAs at the interface between the high purity GaAs layer and the impurity doped AlGaAs layer. The condition for forming the two-dimensional electron gas is that the electron affinity of the GaAs is higher than that of the AlGaAs. By the relationship between the electron affinities, a potential well for forming the two-dimensional electron gas is formed in the GaAs layer. Since the two-dimensional electron gas is produced in the high purity GaAs layer, the movement of electrons is not interfered with by the ionized impurities and results in an improved high mobility such as 6,000 cm<sup>2</sup>/V.Sec at 300 DEG K. or 20,000 cm<sup>2</sup>/V.Sec at 77 DEG K. The mobility is superior at a low temperature.

The proposed heterojunction MESFET achieves the improvement of high frequency and high speed characteristics to a considerable extent. It, however, still has a problem at high field operation. If the electrons in the two-dimensional electron gas are excited so as to exceed the upper energy level of energy sub-bands by the high electric field between source and drain regions, the electron mobility lowers due to inter-sub-bands scattering. Especially, since the energy level difference between energy sub-bands at the two-dimensional electron gas region in the proposed heterojunction MESFET is small, the inter-sub-bands scattering is apt to occur even by a small electrical field between source and drain regions. Thus, the high frequency and high speed operation of the proposed MESFET is easily deteriorated by the operating voltage between source and drain regions.

The proposed heterojunction MESFET has another problem. If the drain voltage VD is increased to exceed a voltage difference between the gate voltage VG and the gate threshold voltage VT, the potential well for forming the two-dimensional electron gas disappears near the drain region and the energy band structure of the channel region near the drain region declines from the interface portion between the AlGaAs and GaAs layers to the inner portion of the GaAs layer. This allows the electron flow to expand into the inner portion of the GaAs layer and results in an increment of drain-conductance in saturation operation. The drain-conductance increment is remarkable in short-channel MESFET's.

## SUMMARY OF THE INVENTION

The primary object of the present invention is to provide a field effect device having improved high frequency and high speed performances.

Another object of the present invention is to provide a heterojunction field effect device having a stable high speed operation even at a high voltage operation.

A further object of the present invention is to provide a heterojunction field effect device having a small and stable drain conductance.

According to the present invention, there is provided a field effect device which comprises a gate electrode, a channel forming region in which a current channel is produced in accordance with a voltage applied to the gate electrode, and source and drain regions formed on both sides of the channel forming region, the channel forming region being made of a semiconductor material having a graded electron affinity. The electron affinity is highest at the surface of said semiconductor material where the channel is formed and is decreased as the depth from the surface increases.

According to another aspect of the present invention, there is provided a heterojunction field effect device which comprises a channel region of a first semiconductor material having an electron affinity which is high at one surface thereof and gradually lowers, an additional region of a second semiconductor material formed on the channel region in contact with the one surface of the first semiconductor material, the second semiconductor material having an electron affinity which is lower than the electron affinity at the one surface of the first semiconductor material and being doped with impurities, a gate electrode formed on the additional region to form a Schottky barrier with the second semiconductor material, and source and drain regions formed on both sides of the channel region.

Since the electron affinity of the channel forming region of the first semiconductor material gradually lowers from the outer surface to the inner portion, a deep potential well is produced at the interface of the first and second semiconductor materials. The energy level difference between sub-bands of electron energy states becomes large in the deep potential well. There-

inter-sub-bands scattering does not occur so long as the source-drain voltage difference does not become considerably large. Thus, the high mobility is not deteriorated even in a high voltage operation.

Furthermore, since the channel forming region of the first semiconductor material has a lower electron affinity at the interface thereof than at its surface, the potential well for defining the region of current channel of the two-dimensional electron gas does not disappear near the drain region even if the drain voltage is considerably high. The path of electron flow is stably limited by the potential well throughout the region between the source and drain regions. Thus, the drain-conductance increment does not occur in the saturation operation.

#### BRIEF DESCRIPTION OF THE DRAWING

The above and further objects, features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a sectional view of a heterojunction MESFET in the prior art;

FIG. 2 is an energy band diagram at the thermal equilibrium at the section of the gate electrode portion of the heterojunction MESFET in the prior art;

FIG. 3 is an energy band diagram at the section of the channel region near the drain region when a high voltage is applied to the drain region of the heterojunction MESFET in the prior art;

FIG. 4 is a sectional view of a heterojunction MESFET according to a first embodiment of the present invention;

FIG. 5 is a diagram showing a variation of mole ratio X in the Al<sub>x</sub> Ga<sub>1-x</sub> As which is used in the first embodiment of the present invention;

FIG. 6 is an energy band diagram at the section of the gate electrode portion of the heterojunction MESFET according to the first embodiment of the present invention;

FIG. 7 is a sectional view of a heterojunction MESFET according to the second embodiment of the present invention; and

FIG. 8 is an energy band diagram at the section of the gate electrode portion of the heterojunction MESFET according to the second embodiment of the present invention when a positive voltage is applied to the gate electrode.

A MESFET conventionally proposed is shown in the sectional view of FIG. 1. A semi-insulating GaAs substrate 1 is used as a starting material on which is deposited a high purity GaAs layer 2 doped with no impurity. N<sub>+</sub>-source and drain regions 3 are separately formed in the GaAs layer 2. On the surface of the GaAs layer 2 between the source and drain regions 3, Si-doped AlGaAs layer 6 of N-type conductivity is deposited. Ionized Si-impurities 7 are distributed in the AlGaAs layer 6. A gate electrode 8 is formed on the AlGaAs layer 6 with a metal forming a Schottky barrier with the AlGaAs layer 6. Source and drain electrodes 5 are attached to the source and drain regions 3.

Here a normally-on type MESFET will be considered with FIGS. 1 and 2. The electron affinity of GaAs is larger than that of AlGaAs. At the interface of the heterojunction between GaAs and AlGaAs layers 2 and 6, a triangular potential well is formed inside the GaAs layer 2. Electrons in the Si-doped AlGaAs layer 6 are accumulated in the potential well to form a two-dimensional electron gas which contributes to the conductivity between the source and drain regions 3. The two-dimensional electron gas is modulated by the gate voltage.

In the potential well, quantum energy levels of electrons are formed. Here, for facilitating an understanding, the potential of the potential well in the GaAs layer 2 is assumed to be constant. In other words, the electrical field in the potential well in the perpendicular direction is assumed to be a constant value F<sub>s</sub>. The energy level E<sub>i</sub> (i=0, 1, 2, ...) measured from the lowest energy at the bottom of the conduction band of GaAs at the heterojunction interface can be approximately expressed as E<sub>i</sub> = -EQU1# where m\* is an effective mass of electron in GaAs, e is a charge of electron, and h is a value of Planck's constant divided by 2.pi.. In FIG. 2, E<sub>0</sub> and E<sub>1</sub> are shown as examples.

In a usual operation where the electrical field is low such that the electron distribution function is not deviated from the thermal equilibrium state, Fermi level E<sub>F</sub> exists between the energy levels E<sub>0</sub> and E<sub>1</sub> as shown in FIG. 2. Electrons move under a condition that their energies distribute between the energy level E<sub>0</sub> and the Fermi level E<sub>F</sub>. If, however, the electrical field becomes so large that the energies of electrons exceed the energy level E<sub>1</sub>, the so-called inter-sub-bands scattering occurs and the lower the electron mobility. In the conventional structure of the heterojunction MESFET, the lowest level of the conduction band of GaAs sharply drops near the interface of the heterojunction but slowly increases at a portion far from the interface, causing a small electrical field in a direction perpendicular to the interface. This small electrical field makes the difference between the energy levels E<sub>0</sub> and E<sub>1</sub> and E<sub>2</sub>. Therefore, even by a relatively small electrical field between source and drain regions, the lowering of electron mobility based on the inter-sub-bands scattering becomes notable and deteriorates the h

speed characteristics.

Another problem occurs when the voltage  $V_D$  at the drain region becomes so high that it exceeds the difference between voltage  $V_G$  at the gate electrode and the threshold voltage  $V_T$ . In such a case, the energy band diagram at the channel region near the drain region changes as shown in FIG. 3 in which the potential well for forming the two-dimensional electron gas disappears. Electrons which are shown in FIG. 3 by circles flow through a wide portion of GaAs layer 2, resulting in an increment of drain-conductance in saturation operation. This increment of the drain-conductance is remarkable in short channel FET and is another cause for deterioration of high frequency and high speed characteristics.

#### DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Now, a first preferred embodiment of the present invention will be described with reference to FIGS. 4, 5 and 6. A semi-insulating GaAs substrate 1 is used as a starting material. A high purity AlAs layer 42 is deposited on the GaAs substrate by molecular beam epitaxy with a thickness of 3,000 .ANG.. A high purity  $Al_xGa_{1-x}As$  layer 49 is further deposited on the AlAs layer 42 by molecular beam epitaxy with a thickness of 3,500 .ANG.. The mole ratio X is continuously changed from 1 to 1. That is, the  $Al_xGa_{1-x}As$  layer 49 is AlAs at the interface with the AlAs layer 49 and is GaAs at the top surface. Such a change of the mole ratio X is shown in FIG. 5 as one example. Source and drain regions 3 are separately formed in the  $Al_xGa_{1-x}As$  layer 49 by highly diffusing N-type impurities. On a portion of the  $Al_xGa_{1-x}As$  layer 49 between the source and drain regions 3, an N type AlGaAs layer 6 doped with donor impurities such as silicon with a concentration of 2.times.10<sup>17</sup> cm<sup>-3</sup> is deposited by molecular beam epitaxy with a thickness of 900 .ANG.. In the N type AlGaAs layer 6, ionized donor impurities are distributed. A metal such as aluminum which forms a Schottky barrier with the AlGaAs is deposited on the N type AlGaAs layer 6 as a gate electrode. Source and drain electrodes 5 are formed in contact with the source and drain region 3, with a metal such as Au/Ge/Au which ohmically contacts the AlGaAs.

At the interface of the AlGaAs layer 6 and the  $Al_xGa_{1-x}As$  layer 49, the  $Al_xGa_{1-x}As$  layer 49 is GaAs. Here, the electron affinity of GaAs is larger than AlGaAs. Therefore, a triangular potential well is formed at the interface between the AlGaAs layer 6 and the  $Al_xGa_{1-x}As$  layer 49 but inside the  $Al_xGa_{1-x}As$  layer 49. Electrons produced by the donor impurities in the AlGaAs layer 6 are accumulated in the potential well to form a two-dimensional electron gas. The two-dimensional electron gas is modulated by the voltage applied at the gate electrode 8. This operation is similar to the conventional MESFET shown in FIGS. 1, 2 and 3.

The energy band diagram at a portion of the gate electrode 8 and thereunder is shown in FIG. 6. The energy band structure of the  $Al_xGa_{1-x}As$  layer 49 is different from the conventional MESFET. At the interface between the AlGaAs layer 6 and the  $Al_xGa_{1-x}As$  layer 49, the band structure is the same as the conventional MESFET, but the lowest energy of the conduction band of the  $Al_xGa_{1-x}As$  layer linearly rises up to the lowest energy of the conduction band of the AlAs layer 42. As a result, a deep potential well is formed at the interface between the AlGaAs layer 6 and the  $Al_xGa_{1-x}As$  layer 49 inside the  $Al_xGa_{1-x}As$  layer 49. Due to such a deep potential well, the difference between the energy levels  $E_0$  and  $E_1$  is wide, as is apparent from the above-explained equation (1). Therefore, electrons staying at the lower energy level  $E_0$  cannot move its energy state to the upper energy level  $E_1$ , unless a considerably high electrical field is applied. In other words, unless a considerably high drain voltage  $V_D$  is applied, the inter-sub-bands scattering does not occur and the original high electron mobility is maintained. The good high electron mobility and high frequency operation is kept at a high voltage operation.

Furthermore, as shown in FIG. 6, the lowest energy level of the conduction band of the  $Al_xGa_{1-x}As$  rises up to a high energy level. For this reason, even if the drain voltage  $V_D$  is so high that it exceeds the difference between the gate voltage  $V_G$  and the threshold voltage  $V_T$ , the potential well does not disappear near the drain region. This means, even by such high drain voltage  $V_D$ , the path of current flow limited in the narrow potential well, results in no increment of drain-conductance in saturation operation. This effect becomes dominant in a shallow junction MESFET.

Other combinations of semiconductor materials applicable to the first embodiment are a combination of InP as the layer 42 and  $Al_xGa_{1-x}As$  as the layer 49 and AlGaAs doped with donor impurities as the layer 6 and a combination of GaAs as the layer 42 and  $Al_xGa_{1-x}As$  as the layer 49 and InAlAs doped with donor impurities as the layer 6. In each combination, the mole ratio X increases from a small value at the interface with the layer 6 and increases in accordance with the distance from the interface with the layer 6, so that an electron affinity decreases in accordance with the distance from the interface with the layer 6.

The present invention may be applied to an insulated gate type heterojunction field effect device. FIGS. 7 and 8 are such examples. On a semi-insulating GaAs substrate 1,  $GaxIn_{1-x}As$  layer 72 is deposited by molecular beam epitaxy with a thickness of 2,000 .ANG.. The mole ratio X is "1" at the surface of the GaAs substrate 1 and is decreased linearly to "0.3" at the interface with the SiO<sub>2</sub> layer 76. Source and drain regions 3 are separately formed by diffusing donor impurities with a high concentration. On the surface of the  $GaxIn_{1-x}As$  layer 72, SiO<sub>2</sub> layer 76 is deposited with a thickness of 800 .ANG.. A metal of AuGe/Au alloy is selectively deposited on the SiO<sub>2</sub> layer 76 and the source and drain regions 3 as a gate electrode 8 and source and drain electrodes 5.

The energy band diagram of the above-mentioned structure is shown in FIG. 8. The lowest energy level of the conduction band of the  $GaxIn_{1-x}As$  layer 72 increases from the interface with the SiO<sub>2</sub> layer 76 to the interface with the GaAs substrate 1. By application of positive voltage to the gate electrode 8, the lowest energy level of the conduction band of the  $GaxIn_{1-x}As$  layer 72 lowers below the Fermi level EF and produces a conductive channel of the two-dimensional electron gas.

According to such insulated gate field effect transistor, since the lowest energy band of conduction band of Gax In<sub>1-x</sub> As up to a high value, the difference between energy levels E<sub>0</sub> and E<sub>1</sub> is wide, as is apparent from the equation (1). Therefore inter-sub-bands scattering does not occur even in high voltage operation and thus the original high electron mobility is maintained. Furthermore, due to the lowest energy level of conduction the band of the Gax In<sub>1-x</sub> As layer 72 which sharpens up to high value, the potential well for forming the two-dimensional electron gas does not disappear in the channel portion of the drain region which is applied with a high voltage. The current channel does not spread near the drain region, resulting in increment of drain-conductance in saturation operation even in a high voltage operation.

Suitable other semiconductor material may be changeable with the Gax In<sub>1-x</sub> As for the layer 72. Such suitable semiconductor material should have an electron affinity decreasing in accordance with the distance from the interface with the SiO<sub>2</sub> layer. An example is In<sub>x</sub> Ga<sub>1-x</sub> P in which the mole ratio X increases in accordance with the distance from the interface with the SiO<sub>2</sub> layer 76.

Although some embodiments of the present invention have been explained hereinbefore, it is apparent that the present invention is not limited to the above embodiments. Any suitable combination of semiconductor materials may be used, as explained above. The present invention may be applicable to devices other than a transistor, for example a charge coupled device. In charge coupled devices, the source and drain regions are charge injection and charge detection regions and a plurality of electrodes are aligned between the charge injection and charge detection regions.

Data supplied from the *esp@cenet* database - Worldwide

Claims of corresponding document: US4740822

What is claimed is:

1. A field effect transistor comprising: a gate electrode applied with a gate voltage; an insulator film formed under said gate electrode; a channel-forming semiconductor region formed under said gate electrode in contact with said insulator film, said channel-forming semiconductor region primarily consisting of first and second semiconductor materials, said second semiconductor material having an electron affinity lower than said first semiconductor material, the content of said first semiconductor material in said channel-forming semiconductor region decreasing with distance from an upper surface thereof contacted with said insulator film, and said channel forming region forming a conductive channel in response to said gate voltage; and source and drain regions formed respectively on both sides of said channel-forming semiconductor region.
2. A field effect transistor as claimed in claim 1, wherein said first semiconductor material is selected from a group of In<sub>0.5</sub> Ga<sub>0.5</sub>P, and said second semiconductor material is selected from a group of GaAs and InP.
3. A field effect transistor as claimed in claim 2, wherein the content of said second semiconductor material increases with depth from zero at said upper surface, and the content of said first semiconductor material decreases with depth to thirty percent at the bottom of said channel-forming semiconductor region.
4. A field effect device comprising a channel forming region of a semiconductor material having an electron affinity which lowers in accordance with the depth from one surface thereof, an insulator material formed on said one surface and a control electrode formed on said insulator material, wherein said semiconductor material is selected from a group of Gax In<sub>1-x</sub> As and In<sub>x</sub> Ga<sub>1-x</sub> P in which the mole ratio x increases as the depth from said surface increases.
5. A field effect device comprising a channel forming region of a semiconductor material having an electron affinity which lowers in accordance with the depth from one surface thereof, an insulator material formed on said one surface and a control electrode formed on said insulator material, wherein said control electrode is a gate electrode and said field effect device comprises source and drain regions formed on both sides of said channel forming region, respectively, and wherein said semiconductor material is selected from a group of Gax In<sub>1-x</sub> As and In<sub>x</sub> Ga<sub>1-x</sub> P in which the mole ratio x increases as the depth from said one surface increases.
6. A field effect transistor comprising: a substrate of semi-insulating GaAs; a first semiconductor layer of pure AlAs formed on said substrate; a second semiconductor layer of a semiconductor material formed on said first semiconductor layer, said second semiconductor layer having a bottom surface contacting said first semiconductor layer and an upper surface, and said second semiconductor material being Al<sub>x</sub> Ga<sub>1-x</sub> As in which the mole ratio X increases from 0 at said upper surface to 1 at said bottom surface; source and drain regions separately formed in said second semiconductor layer to extend from said upper surface to said bottom surface; a third semiconductor layer formed on and contacting said upper surface of said second semiconductor layer located between said source and drain regions, said third semiconductor layer being formed of AlGaAs doped with donor impurities; and a gate electrode formed on and contacting said third semiconductor layer.
7. A field effect transistor comprising: a substrate of semi-insulating GaAs; a semiconductor layer formed on said substrate, said semiconductor layer having an upper surface on the side opposite said substrate, and said semiconductor layer being formed of Gax In<sub>1-x</sub> As in which the mole ratio x increases with depth from said upper surface from 0.3 to 1.0; source and drain regions

separately formed in said semiconductor layer to extend from said upper surface; an insulator layer formed on said upper of said semiconductor layer located between said source and drain regions; and a gate electrode of metal formed on said insulator layer.

---

Data supplied from the *esp@cenet* database - Worldwide

④日本国特許庁(JP)

④特許出願公開

④公開特許公報(A)

昭60-223171

④Int.Cl.

H 01 L 29/80  
29/201  
29/78

識別記号

府内整理番号

7925-5F

7514-5F

8422-5F 審査請求 未請求 発明の数 1 (全 5 頁)

④発明の名称 電界効果トランジスタ

④特 願 昭59-78961

④出 願 昭59(1984)4月19日

④發明者 伊東朋弘 東京都港区芝5丁目33番1号 日本電気株式会社内

④出願人 日本電気株式会社 東京都港区芝5丁目33番1号

④代理人 弁理士 内原晋

(従来技術とその問題点)

明細書

発明の名称 電界効果トランジスタ

特許請求の範囲

半導体結晶表面に形成された電子層をチャネルとし、該チャネルを制御するゲート電極と、該チャネルにオーム接続するソース電極及びドレイン電極を具備した電界効果トランジスタにおいて、前記半導体結晶の電子親和力が、前記電子層が形成される表面から、前記ゲート電極と反対方向の前記半導体結晶の内部に向って減少する構造としたことを特徴とする電界効果トランジスタ。

発明の詳細を説明

(産業上の利用分野)

本発明は電界効果トランジスタ、特に表面電子チャネルを有する電界効果トランジスタ(FET)に関するものである。

近年、SIより電子移動度が5~6倍大きいGaAsを用いたショットキーゲート型FET(MESFET)が高周波・高速用素子として市販に供され、またこれを用いた集積回路の研究が盛んに行なわれている。しかしながら、上記MESFETでは多量のドナー不純物を含むn形半導体層をチャネルとしているため、イオン化不純物散乱によって電子の移動度および速度が制限されており、例えばGaAsでは電子濃度(ドナー不純物密度) $10^{17} \text{ cm}^{-3}$ で、300Kにおける電子移動度は5000cm $/V\cdot S$ 程度である。ところでノンドープの高純度GaAs上にドナー不純物をドープしたAlGaAs層を有するヘテロ接合構造ではAlGaAs中の電子が、より電子親和力の大きいノンドープGaAs側へ移動するためにヘテロ界面のGaAs中に電子蓄積層が形成されるが、これらの電子のはほとんどは2次元電子ガスとして不純物のないGaAs中に存在するために、不純物散乱の影響が小さく、したがって特に低温において著しく移動

度が向上する。そこで、この電子蓄積層の電子濃度をAlGaAs層上に形成されたショットキゲート電極で制御する構造のFETが注目されている。

第1図はそのFETの基本構造を示す断面図である。

1は半絶縁性GaAs基板、2はノンドープGaAs層、3はn<sup>+</sup>コンタクト層、4は電子チャネル、5はソース電極、5'はドレイン電極、6はドナー不純物をドープしたAlGaAs層、7はイオン化したドナー不純物、8はゲート電極である。ここで、このようなFETの例えはノーマリオン型電子を考えると、熱平衡状態でのゲート部の深さ方向のエネルギー帯図は第2図に示すようになる。ところで、この様な構造では第2図に示すようにヘテロ界面のGaAs側に電子が蓄積し、界面近傍では蓄積電子密度が大きいためにGaAs側のポテンシャルが大きく曲がり一様の三角ポテンシャルが形成される。この三角ポテンシャルに閉込められた電子はいわゆる2次元電子ガスとして存在し、界面に垂直方向の運動エネルギーが量子力学的効果で

離散化され、いわゆる量子化エネルギー単位が形成される。今、簡単のため、三角ポテンシャルのGaAs側のポテンシャル勾配が一定、すなわち電界強度が一定値F<sub>s</sub>をとるとすれば、ヘテロ界面GaAs伝導帯端から測ったとのエネルギー単位E<sub>i</sub>(i=0, 1, 2, ..., )は近似的に次式で表わされる。

$$E_i \approx \left(-\frac{\hbar^2}{2m^*}\right)^{\frac{1}{2}} \left[ \frac{1}{2} \pi e F_s + \left(1 + \frac{i}{l}\right)^{-\frac{2}{3}} \right]$$

..... (1)

ここで、m\*はGaAs中電子の有効質量、eは電子電荷、lはプランク定数hを2πで割ったものである。第2図には一例としてE<sub>0</sub>とE<sub>1</sub>を示してある。さて、通常のFET動作でソース・ドレイン間の電界が小さく電子の分布関数が熱平衡状態からあまり離れないような場合には第2図に示すように、フェルミ単位E<sub>F</sub>はE<sub>0</sub>とE<sub>1</sub>の間に存在し、電子はエネルギーがE<sub>0</sub>とE<sub>F</sub>の間に分

布した状態で運動する。しかしある程度電界が大きくなり電子のエネルギーがE<sub>1</sub>を越えるようになると、E<sub>0</sub>の単位とE<sub>1</sub>の単位間で、いわゆるサブバンド間散乱が起り電子の移動度が低下するという問題が生じる。従来構造のFETでは第2図に示したように電子が蓄積している界面近傍ではポテンシャルの曲りが大きいが、界面よりはなれたGaAs中では蓄積電子密度に対して空間電荷密度が小さいためにバンドの曲りが小さく、従って界面に垂直方向の電界も小さいことより式(1)から判るようにE<sub>0</sub>とE<sub>1</sub>、あるいはE<sub>0</sub>とE<sub>F</sub>等のエネルギー差が小さい。このために比較的小なソース・ドレイン間電界でもサブバンド間散乱による電子移動度低下が顕著となり電子の高速動作という観点からは大きな問題となっている。

上記FET構造の別の問題点は、ドレイン電圧をV<sub>D</sub>、ゲート電圧をV<sub>G</sub>、ゲート閾値電圧をV<sub>T</sub>とするとき、ドレイン電圧を増加させてV<sub>D</sub>>V<sub>G</sub>-V<sub>T</sub>となった状態では、チャネルのドレイン端に近い場所の界面のエネルギー帯図は

第3図のようになり、電子に対するポテンシャルエネルギーがGaAs中で界面より内部に向って、低くなった状況となることである。

すなわち、電子(白丸)は界面から離れてGaAs層内部を走行するようになり、実効的な電流路がドレイン側で拡がる為に、特に短チャネルFETにおいて飽和特性のドレインコンダクタンスの増大をきたし、FET特性を劣化させる。

以上はヘテロ接合を有するFETについて説明したが、同様なことは絶縁ゲート形FET(MISFET)など表面チャネルを有するFETに共通の問題である。

#### (発明の目的)

本発明の目的は、上述のような問題点を解消し、高移動度電子の2次元的蓄積状態を維持した良好な特性を有する電界効果トランジスタを提供することにある。

#### (発明の構成)

本発明によれば、半導体結晶表面に形成された

電子層をチャネルとし、該チャネルを制御するゲート電極と、該チャネルにオーム接続するソース電極及びドレイン電極を具備した電界効果トランジスタにおいて、前記半導体結晶の電子親和力が前記電子層が形成される表面から、前記ゲート電極と反対方向の前記半導体結晶の内部に向って減少する構造としたことを特徴とする電界効果トランジスタが得られる。

## (実施例)

以下本発明を実施例により詳細に説明する。

第4図は本発明の一実施例を示す電子チャネルの電界効果トランジスタの構造の断面図で、第1図と同一番号のところは同一内容を表わし、42はノンドープ高純度のAlAs層、49はノンドープ高純度Al<sub>x</sub>Ga<sub>1-x</sub>As層でAlAsのモル比xをチャネル界面から42のAlAs層に向って0から1まで連続的に変化させたもので、分布の一例を第5図に示す。熱平衡状態におけるゲート部の深さ方向のエネルギー帯図は第6図に示すようになる。

ノンドープ高純度Al<sub>x</sub>Ga<sub>1-x</sub>As中を流れる電子による空間電荷制限電流の影響はきわめて小さく、したがって従来例の短チャネル素子で顕著であった基板側を流れる電流によるドレインコンダクタンスの増加も防止できる。

以上説明した本発明による電界効果トランジスタの第一の実施例は以下のように製作される。例えば、半絶縁性GaAs基板上に分子線エピタキシー法によりノンドープ高純度AlAs層を3000Å、ノンドープ高純度Al<sub>x</sub>Ga<sub>1-x</sub>As層を第5図に示したAlAsのモル比xの分布に従って3500Å、さらに有効ドナー不純物密度 $2 \times 10^{17} \text{ cm}^{-3}$ のAlGaAs層を900Å成長する。次いでイオン注入法によりソースおよびドレインにn<sup>+</sup>領域を形成し、ゲート電極およびソース、ドレイン電極を通常の方法により形成すれば素子が完成する。

以上はヘテロ接合を有するFETについて説明したが本発明は絶縁ゲートを有するFET(MISFET)についてもきわめて良好な特性を有する素子を実現させる。第7図はMISFETに適用した場合の構

ヘテロ界面とAl<sub>x</sub>Ga<sub>1-x</sub>As層49により急峻な三角ポテンシャル井戸が形成されるために、前述の議論から明らかなる様に、この場合はE<sub>1</sub>とE<sub>2</sub>のエネルギー差が大きく、従ってn型不純物をドープしたAlGaAs層6から供給された電子はかなり高エネルギーの状態になるまでE<sub>1</sub>とE<sub>2</sub>の間でサブバンド間散乱を起す確率が小さい。この為に、大きなソース・ドレイン間電圧でも低電圧領域と同様に大きな移動度を保持し良好な輸送特性を示すこととなる。

さらに本構造では、たとえドレインバイアスの大きい動作状態においても、ソースからドレインにわたってチャネル電子の基板側にはAl<sub>x</sub>Ga<sub>1-x</sub>As層49からなるポテンシャル障壁が既に存在するために、電子はヘテロ界面近傍を走行する。したがって従来例のような電流挿り効果によるドレインコンダクタンスの増大劣化がない。またソース側のn<sup>+</sup>コンタクト層から注入される電子は、ほとんどが電子親和力の大きいヘテロ界面上に注入されるために、ヘテロ界面より基板側の

造図で、例えば半絶縁性GaAs基板1上にGa<sub>x</sub>In<sub>1-x</sub>Asを分子線エピタキシー法によりxを1から0.3まで変化させて2000Å成長し、その上に例えばCVD SiO<sub>2</sub>層76を800Å成長しさらに窓開けを施してイオン注入法によりn<sup>+</sup>コンタクト層3を形成して通常の方法でゲート電極及びソース・ドレイン電極を形成して素子が完成する。ゲートに正バイアスを印加してチャネルに電子を誘起した時のエネルギー帯図を第8図に示す。

本構造では実施例1で説明したと同様な特徴および効果を有するとともに、さらに例えばチャネルが形成されるGa<sub>x</sub>In<sub>1-x</sub>As層のGaAsのモル比xが自由に選択できる特徴を有する。ここではGaAsを基板とした場合のGa<sub>x</sub>In<sub>1-x</sub>As層を一例として示したが、他の基板及び混晶半導体層に本発明が適用できることは明らかであろう。

## (発明の効果)

以下の説明において詳述した様に、本発明によ

れば從来技術における電子チャネルの拡がりによる問題点のない極めて良好な動作特性を有する電界効果トランジスタが実現され、特に短チャネルにおいて高性能な電界効果トランジスタが実現できる。さらに前記本発明は個別素子のみならず、集積回路およびオプトエレクトロニクス関係へも応用することができる。

## 図面の簡単な説明

第1図、第2図、第3図はヘテロ接合を利用したFETの從来例を示すもので第1図は構造、第2図はゲート部の深さ方向での熱平衡状態におけるエネルギー帯図、第3図はドレインに高電圧を印加した場合のゲートのドレイン端での深さ方向のエネルギー帯図である。また第4図、第5図、第6図、第7図、第8図は本発明によるFETの一実施例を説明するための図で、第4図はヘテロ接合を利用したFETの構造、第5図は $\text{Al}_x\text{Ga}_{1-x}\text{As}$ 層中 $\text{AlAs}$ のモル比分布、第6図は熱平衡状態でのエネルギー帯図、第7図はMISFETの構

造、第8図はゲートに正電圧を印加した時のエネルギー帯図を示す。

図において、

- 1 ……半絶縁性 GaAs 基板
- 2 ……ノンドープ高純度 GaAs 層
- 3 …… $n^+$  コンタクト層
- 4 ……電子蓄積層
- 5 ……ソース電極
- 5' ……ドレイン電極
- 6 ……ドナー形不純物ドープ AlGaAs 層
- 7 ……イオン化ドナー
- 8 ……ゲート電極
- 42 ……ノンドープ高純度 AlGaAs 層
- 49 ……ノンドープ高純度  $\text{Al}_x\text{Ga}_{1-x}\text{As}$  層
- 72 ……ノンドープ高純度  $\text{Ga}_x\text{In}_{1-x}\text{As}$  層
- 76 ……ゲート絶縁膜
- $E_F$  ……フェルミレベル
- $E_C$  ……伝導帶
- $E_V$  ……価電子帶
- 白丸 ……電子

第 1 図



第 2 図



第 3 図



第 4 図



第 5 図



第 7 図



第 8 図

$-8 \rightarrow 76 \rightarrow 72 \rightarrow 1 -$



第 6 図



*THIS PAGE BLANK (verso)*