Input: the policy π to be evaluated Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal},\cdot) = 0$ Algorithm parameters: step size $\alpha > 0$, a positive integer n Initialize value-function weights \mathbf{w} arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

All store and access operations $(S_t \text{ and } R_t)$ can take their index mod n+1

n-step semi-gradient TD for estimating $\hat{v} \approx v_{\pi}$

Loop for each episode: Initialize and store $S_0 \neq \text{terminal}$

 $T \leftarrow \infty$ Loop for t = 0, 1, 2, ...:

If t < T, then:

Take an action according to $\pi(\cdot|S_t)$ Observe and store the next reward as R_{t+1} and the next state as S_{t+1}

If S_{t+1} is terminal, then $T \leftarrow t+1$ If $\tau > 0$:

 $G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i$

 $\tau \leftarrow t - n + 1$ (τ is the time whose state's estimate is being updated)

If $\tau + n < T$, then: $G \leftarrow G + \gamma^n \hat{v}(S_{\tau+n}, \mathbf{w})$

 $(G_{\tau \cdot \tau + n})$

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G - \hat{v}(S_{\tau}, \mathbf{w}) \right] \nabla \hat{v}(S_{\tau}, \mathbf{w})$ Until $\tau = T - 1$