0.0.1 Leverage

Leverage can be defined through the projection matrix that results from a transformation of the model with the inverse of the Cholesky decomposition of V, or an oblique projector: $Y = H\hat{Y}$.

While H is idempotent, it is generally not symmetric and thus not a projection matrix in the narrow sense.

$$h_{ii} = x_i'(X'X)^{-1}x_i$$

The trace of \boldsymbol{H} equals the rank of \boldsymbol{X} . If V_{ij} denotes the element in row i, column j of \boldsymbol{V}^{-1} , then for a model containing only an intercept the diagonal elements of \boldsymbol{H} .

$$h_{ii} = \frac{\sum v_{ij}}{\sum \sum v_{ij}}$$

Nobre Singer: Mixed Model Residuals

Usually one assumes

- $b_i \sim N_q(0,G)i = 1,...,m$
- $e_i \sim N_{n_i}(0, \sigma_i)$
- b_i and e_i independent
- G and σ_i are $(q \times q)$ and $(n_i \times n_i)$ positive denite matrices with elements expressed as functions of a vector of covariance parameters θ not functionally related to β
- If $\sigma_i = I_{n_i}\sigma^2$: homoskedastic conditional independence model

$$\left[egin{array}{c} oldsymbol{b} \ oldsymbol{e} \end{array}
ight]\sim\mathcal{N}_{qm+n}$$

$$Q = V^{-1} - V^{-1}X(X^TV^{-1}X)^{-1}$$

Sensitivity and residual analysis of the underlying assumptions constitute important tools for evaluating the fit of any model to given data.

Generalized Leverage