Corrigé de l'interrogation de contrôle continu n°3

Exercice 1. Questions de cours (4 pts)

La fonction sin étant strictement croissante et continue sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, elle définit une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur $\left[-1; 1\right]$. arcsin est définie comme la réciproque de cette bijection.

La dérivée de \sin n'étant nulle qu'en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$, \arcsin est dérivable $\sup]-1;1[$. Sa dérivée est donnée par (formule de la dérivée de la réciproque) :

$$\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))}$$

 $\text{Or } \cos^2(\arcsin(x)) + \sin^2(\arcsin(x)) = 1 \text{ donc } \cos^2(\arcsin(x)) = 1 - \sin^2(\arcsin(x)) = 1 - x^2. \text{ Comme } \arcsin(x) \in] - \frac{\pi}{2}; \frac{\pi}{2}[\text{, } \cos(\arcsin(x)) > 0 \text{ et donc } \cos(\arcsin(x)) = +\sqrt{1-x^2}.$

On a donc:

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$

Exercice 2. Equation différentielle (5 pts)

- 1. $\varphi'(x) = -\frac{x}{1+x^2}$.
- 2. Comme $(x^2+1) \neq 0$ pour tout $x \in \mathbb{R}$, l'équation différentielle $(x^2+1)y'+xy=0$ est équivalente à :

$$y' = -\frac{x}{1+x^2}y$$

Il s'agit donc d'une équation différentielle linéaire du premier ordre homogène de la forme y'=a(x)y avec $a(x)=-\frac{x}{1+x^2}=\varphi'(x)$. Une primitive de a est donc donnée par : $A(x)=\varphi(x)=-\frac{1}{2}\ln(1+x^2)$. Les solutions de l'équation sont donc données par :

$$y = Ke^{-\frac{1}{2}\ln(1+x^2)} = \frac{K}{\sqrt{1+x^2}} \text{ avec } K \in \mathbb{R}$$

3. L'équation différentielle $(x^2 + 1)y' + xy = 2x$ est équivalente à :

$$y' = -\frac{x}{1+x^2}y + \frac{2x}{1+x^2}$$

Il s'agit d'une équation linéaire du premier ordre avec second membre. L'équation homogène associée a été résolue dans la question précédente. Ses solutions sont :

$$y_0 = \frac{K}{\sqrt{1+x^2}}$$
 avec $K \in \mathbb{R}$

Une solution particulière évidente est $y_p=2$. Par conséquent les solutions de l'équation sont données par :

$$y = 2 + \frac{K}{\sqrt{1+x^2}}$$
 avec $K \in \mathbb{R}$

Exercice 3. Fonctions réciproques et développements limités (11 pts)

- 1. (a) La dérivée de g vaut : $g'(x) = \frac{x^4}{1+x^2}$. Cette dérivée est positive sur \mathbb{R} et ne s'annule qu'en un point isolé (x=0), donc g est strictement croissante sur \mathbb{R} .
 - (b) La fonction g étant continue, l'ensemble $J=g(]0,+\infty[)$ est un intervalle. g étant croissante, les bornes de cet intervalle sont données par les limites de g. On a $\lim_{x\to 0}g(x)=g(0)=0$ et

$$\lim_{x\to +\infty}g(x)=+\infty \ \text{car} \ \lim_{x\to +\infty}\arctan(x)=\frac{\pi}{2} \ \text{et} \ \lim_{x\to +\infty}-x+\frac{x^3}{3}=\lim_{x\to +\infty}\frac{x^3}{3}=+\infty \ . \ \text{On en déduit que } J=]0,+\infty[.$$

- (c) g étant strictement croissante sur \mathbb{R} , g définit une bijection de \mathbb{R} dans $g(\mathbb{R})$. Or $g(\mathbb{R}) = \mathbb{R}$ (car $\lim_{x \to -\infty} g(x) = -\infty$), donc pour tout $\lambda \in g(\mathbb{R}) = \mathbb{R}$, il existe une unique solution à l'équation $g(x) = \lambda$. Lorsque $\lambda > 0$, on a $\lambda \in J = g(]0, +\infty[)$ donc l'unique solution $c(\lambda)$ de l'équation $g(x) = \lambda$ est dans $]0, +\infty[$.
- (d) La fonction $c(\lambda)$ est la réciproque de la fonction g. Comme g' ne s'annule pas sur $]0, +\infty[$, $c=g^{-1}$ est dérivable sur J. Cette dérivée est donnée par la formule de dérivée des fonctions réciproques :

$$c'(\lambda) = \frac{1}{g'(g^{-1}(\lambda))} = \frac{1}{g'(c(\lambda))} = \frac{1 + c^2(\lambda)}{c^4(\lambda)} \text{ pour } (\lambda \in J)$$

- (e) On a g'(0) = 0 donc c n'est pas dérivable en g(0) = 0 et par conséquent n'a pas de développement limité d'ordre 1 en 0.
- 2. (a) Le développement limité d'arctan en 0 peut être obtenue par intégration du développement limité de sa dérivée $\arctan'(x) = \frac{1}{1+x^2}$.

En posant $X=x^2$ et en utilisant le DL de $\frac{1}{1+X}=1-X+X^2+X^2\varepsilon(X)$, on obtient $\arctan'(x)=1-x^2+x^4+x^4\varepsilon(x)$. En intégrant ce développement limité, on obtient donc :

$$\arctan(x) = \arctan(0) + x - \frac{x^3}{3} + \frac{x^5}{5} + x^5 \varepsilon(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + x^5 \varepsilon(x)$$

On en déduit :

$$g(x) = \frac{x^5}{5} + x^5 \varepsilon(x)$$

(b) L'équation de la tangente à Γ en 0 est donnée par le développement limité en 0 à l'ordre 1 de g. C'est donc y=0. La position relative de la tangente par rapport à Γ est donnée par le signe de $g(x)-0=x^5+x^5\varepsilon(x)$ qui est du signe de x^5 au voisinage de x^5 . Donc au voisinage de x^5 0, la tangente est au-dessus de x^5 0 et en dessous pour x>0.