Measuring Classification Performance

Measure of classification performance is

error rate = fraction of points that are classified incorrectly

The training error rate is

training error = - $I(\hat{y}_i \neq y_i)$

• The (expected) test error rate is given by $\mathbf{E}\left(I(\hat{Y}_0) \neq Y_0\right)$

• We have to construct f to minimize the test error rate

```
\Longrightarrow we need a loss function L(\hat{y},y) for penalizing errors in \hat{y}=f(x) when truth is y
```

Strongly contingent on application

Measuring Classification Performance

- Measure of classification performance is
 - error rate = fraction of points that are classified incorrectly
- The training error rate is

training error =
$$\frac{1}{n} \sum_{i=1}^{n} I(\hat{y}_i \neq y_i)$$

- The (expected) test error rate is given by $\mathbf{E}\left(I(\hat{Y}_0) \neq Y_0\right)$
- We have to construct \hat{f} to minimize the test error rate \implies we need a loss function $L(\hat{y},y)$ for penalizing errors in $\hat{y}=\hat{f}(x)$ when truth is y
- Strongly contingent on application

This Week's Practical

Continuing various classification methods and evaluating performance...

