

# Agenda

**Business Problem** 

Data Sources and Insights

Feature Engineering

Data Modeling

**Future Work** 





### **Business Problem**

Severe weather events caused >1,300 deaths and >\$100B in damages from 2015 to 2020 in the US alone.

For **communities** to better prepare for those events, our goal is to predict if a severe weather event is likely to happen in the near future and if so which type of event.

For **insurances** to be able to allocate funds early and respond to those events quickly, our second goals is to predict the expected damage from severe weather events.

### **Data Sources**

#### Weather

- 16 unique weather attributes
- Data available on a daily basis including latitude and longitude
- Selected data at a 500hPa pressure level
- Approx. 3.5M rows of data accessed via the Copernicus API





Joined sources by date and a 58x58 miles grid of the US

### Severe Events

- Data on event type and the related damages, deaths, and injuries
- Data available by date of the event including latitude and longitude
- Approx. 60K rows of data scraped from NOAA website with BeautifulSoup



# **Exploratory Data Analysis**

| WEATHER EVENT            | COUNT  |
|--------------------------|--------|
| Thunderstorm Wind        | 23,471 |
| Hail                     | 14,619 |
| Flash Flood              | 6,885  |
| Flood                    | 6,807  |
| Marine Thunderstorm Wind | 4,027  |
| Heavy Rain               | 2,276  |
| Tornado                  | 2,015  |
| Lightning                | 963    |

### **Distribution of Severe Weather Events**



## **Exploratory Data Analysis: Location Features**



### **Severe Weather Events: Longitude**



# **Exploratory Data Analysis: Weather Features**





# **Exploratory Data Analysis: Weather Features**



# **Feature Engineering**

### **Relevant steps:**

- Applied variance threshold to drop low variance features
- Dropped highly correlated features
- Lagged data by one day
- Created 10-day rolling averages, standard deviations, minima and maxima
- Created 4 geo clusters based on latitude and longitude

| #        | Column                                                             | Dtype              |
|----------|--------------------------------------------------------------------|--------------------|
| 0        | latitude                                                           | float64            |
| 1        | longitude                                                          | float64            |
| 2        | EVENT_TYPE                                                         | object             |
| 3        | INJURIES_DIRECT                                                    | float64            |
| 4        | INJURIES_INDIRECT                                                  | float64            |
| 5        | DEATHS_DIRECT                                                      | float64            |
| 6        | DEATHS_INDIRECT                                                    | float64            |
| 7        | DAMAGE PROPERTY                                                    | float64            |
| 8        | DAMAGE CROPS                                                       | float64            |
| 9        | fraction cloud cover                                               | float64            |
| 10       | relative humidity                                                  | float64            |
| 11       | temperature                                                        | float64            |
| 12       | u_component_wind                                                   | float64            |
| 13       | v_component_wind                                                   | float64            |
| 14       | vertical_velocity                                                  | float64            |
| 15       | fraction_cloud_cover_10_day_mean                                   | float64            |
| 16       | relative_humidity_10_day_mean                                      | float64            |
| 17       | temperature_10_day_mean                                            | float64            |
| 18       | u_component_wind_10_day_mean                                       | float64            |
| 19       | <pre>v_component_wind_10_day_mean</pre>                            | float64            |
| 20       | vertical_velocity_10_day_mean                                      | float64            |
| 21       | fraction_cloud_cover_10_day_std                                    | float64            |
| 22       | relative_humidity_10_day_std                                       | float64            |
| 23       | temperature_10_day_std                                             | float64            |
| 24       | u_component_wind_10_day_std                                        | float64            |
| 25       | v_component_wind_10_day_std                                        | float64            |
| 26       | vertical_velocity_10_day_std                                       | float64            |
| 27<br>28 | fraction_cloud_cover_10_day_max                                    | float64            |
|          | relative_humidity_10_day_max                                       | float64            |
| 29<br>30 | temperature_10_day_max                                             | float64<br>float64 |
| 31       | <pre>u_component_wind_10_day_max v_component_wind_10_day_max</pre> | float64            |
| 32       | vertical_velocity_10_day_max                                       | float64            |
| 33       | fraction_cloud_cover_10_day_min                                    | float64            |
| 34       | relative_humidity_10_day_min                                       | float64            |
| 35       | temperature_10_day_min                                             | float64            |
| 36       | u_component_wind_10_day_min                                        | float64            |
| 37       | v component wind 10 day min                                        | float64            |
| 38       | vertical velocity 10 day min                                       | float64            |
| 39       | geo_cluster                                                        | int64              |
| 40       | vear                                                               | int64              |
| 41       | month                                                              | int64              |
| 42       | day                                                                | int64              |
|          |                                                                    |                    |



# **Binary Classification**

### **Target: Severe Weather Y/N**

- 1. Logistic Regression
- 2. Random Forest
- 3. AdaBoost
- 4. Gradient Boost

#### **RAW DATA**

- Grid search for best parameters
- Optimize Prediction Threshold
- Ensemble Results

#### **UNDERSAMPLED DATA**

- Grid search for best parameters
- Optimize Prediction Threshold
- Ensemble Results

## Random Under-Sampled Data Results





Accuracy score: 0.98
Precision/Recall Score (class 1): 0

### **RUS Data Prediction Threshold**

### Threshold: 0.75

• **Precision: 0.107** 

• Recall: 0.58

Accuracy: 0.91



# **Ensemble Model Performance Comparison**

### **RUS vs Raw Data**

Precision: 37.5% lift

• Recall: 117% lift



# Weather Event Classification

Classification of Top 3
Weather Events by Frequency

| Weather Event           | Count  |
|-------------------------|--------|
| Wind Related<br>Events  | 27,498 |
| Hail                    | 14,619 |
| Flood Related<br>Events | 13,692 |

#### **MODELING**

- Logistic Regression, SVM, Random Forest,
   AdaBoosting, KNeighbors Classifier, XGBoost
- Examined accuracy, weighted average accuracy,
   and generalization gap for model selection
- Optimized the model hyperparameters using Randomized Cross Validation

#### **VARIOUS TECHNIQUES**

- Applied various techniques to see if performance could be improved
  - o PCA
  - Random Undersampling
  - SMOTE Oversampling

### **Weather Event Classification**

#### **Random Forest Classifier:**

- Training accuracy: 66%
- Test accuracy: 63%
- Test Weighted Accuracy: 62%



#### **XGBoost Classifier:**

- Training accuracy: 67%
- Test accuracy: 64%
- Test Weighted Average: 63%



### Randomly Undersampled Data

### **Original XGBoost Model**

• Training accuracy: 67%

• Test accuracy: 64%

Test Weighted Average: 63%





• Training accuracy: 62%

Test accuracy: 60%

• Test Weighted Average: 60%



## Damage Model

- Experimented with different target variables (regression, multiclass classification)
- Settled on a binary classification of the target variable "damage above \$100K"
- Training on a mix of over- and undersampled data (50:50 split among classes)
- Tested SVMs, Decision Trees, Random Forests, Gradient Boosting, Ada Boosting and Artificial Neural Networks

#### **Ada Boosting:**

- Optimized the model hyperparameters using Randomized Cross Validation
- Training accuracy: 80%
- Test accuracy: 78%

#### **Neural Network:**

- 3 layers with a total of 20 neurons using relu and sigmoid as activation functions
- Training accuracy: 71%
- Test accuracy: 61%

Selected Ada Boosting as final model due to superior accuracy, precision, and stability when applied to unseen data

### Randomly Under- and Oversampled Data

### **Ada Boosting**

Measures for damage >100\$:

- Train / test precision: 79% / 2%
- Train / test recall: 83% / 83%



#### **Neural Network**

Measures for damage >100\$:

- Train / test precision: 66% / 1%
- Train / test recall: 84% / 84%





### **Future Work**

- Increased computing power
  - Limited original dataset to only 5 years could be better with all 10 years of data
  - Including hourly data
  - Decreasing grid size for our locations
- Further investigation of features
  - Regions of the US
  - More relevant features to predict damage (such as infrastructure given lat/long)
  - Image Data → Google Nowcasting
- Talk with domain experts to verify/expand on assumptions

