Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★

On pose $\mathcal{P}=\{z\in\mathbb{C},\ \mathrm{Im}(z)>0\}$ et $\mathcal{D}=\{z\in\mathbb{C},\ |z|<1\}$. On rappelle que $\mathbb{U}=\{z\in\mathbb{C},|z|=1\}$. Les trois questions sont complètement indépendantes.

- **1.** On définit l'application $f: \left\{ \begin{array}{ccc} \mathbb{C} \setminus \{-i\} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{iz+1}{z+i} \end{array} \right.$
 - **a.** L'application f est-elle injective?
 - **b.** Montrer que Im $f = \mathbb{C} \setminus \{i\}$. L'application f est-elle surjective?
 - **c.** Montrer que $f(\mathcal{P}) \subset \mathcal{D}$.
 - **d.** Montrer que f induit une bijection de \mathcal{P} sur \mathcal{D} .
 - **e.** Déterminer $f^{-1}(\mathbb{U})$.
- **2.** On définit l'application g : $\begin{cases} \mathcal{P} & \longrightarrow & \mathcal{P} \\ z & \longmapsto & -\frac{1}{z} \end{cases}$
 - **a.** Montrer que l'application g est bien définie, autrement dit que $g(z) \in \mathcal{P}$ pour tout $z \in \mathcal{P}$.
 - **b.** Montrer que g est bijective.
- $\textbf{3. Pour }\theta\in\mathbb{R}\text{, on d\'efinit l'application }A_{\theta}\text{ : }\left\{\begin{array}{ccc} \mathcal{P} & \longrightarrow & \mathcal{P} \\ z & \longmapsto & \frac{z\cos\theta-\sin\theta}{z\sin\theta+\cos\theta} \end{array}\right..$
 - **a.** Soit $\theta \in \mathbb{R}$. Vérifier que l'application A_{θ} est bien définie, autrement dit que pour tout $z \in \mathcal{P}$, $A_{\theta}(z)$ est bien défini et $A_{\theta}(z) \in \mathcal{P}$.
 - **b.** Que vaut A_0 ?
 - **c.** Soit $(\theta, \phi) \in \mathbb{R}^2$. Montrer que $A_{\theta} \circ A_{\phi} = A_{\theta + \phi}$.
 - **d.** Soit $\theta \in \mathbb{R}$. Montrer que A_{θ} est bijective et déterminer sa bijection réciproque.

Exercice 2 ★★

On souhaite montrer que

$$\forall z \in \mathbb{U}, \ \sqrt{3} \le |1+z| + |1-z+z^2| \le \frac{13}{4}$$

On pose pour $z \in \mathbb{U}$,

$$f(z) = |1 + z| + |1 - z + z^2|$$

1. On se donne $z \in \mathbb{U}$ et on note θ un de ses arguments. Montrer que

$$f(z) = 2 \left| \cos \left(\frac{\theta}{2} \right) \right| + \left| 4 \cos^2 \left(\frac{\theta}{2} \right) - 3 \right|$$

2. On pose pour $t \in \mathbb{R}$

$$g(t) = 2|t| + |4t^2 - 3|$$

Déterminer le minimum et le maximum de f sur l'intervalle [-1,1].

3. En déduire l'inégalité demandée.