1) The relationship between compressive force applied to a strain gage sensor in MPa (x) and its electrical output in microvolts (y) is under investigation. Determine least-squares estimates for slope (β_1) and intercept (β_0) of the simple linear regression model for output voltage vs. force.

Formulae:

$$\hat{\beta}_{1} = \frac{\sum y_{i} x_{i} - \frac{(\sum y_{i})(\sum x_{i})}{n}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}} = \frac{S_{XY}}{S_{XX}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

	σ (Mpa)	V (μV)
	(x)	(y)
1	0	-0.0127
2	100	8.21
3	200	11.96
4	300	14.02
5	400	15.27
6	500	15.65
7	600	15.28
8	700	13.25
9	800	10.35

$$\sum_{i} y_{i}^{2} = 2000000$$

$$\sum_{i} y_{i}^{2} = 1401.265$$

$$S_{XY} = 48075 - \frac{3600 - 103.9773}{9}$$

$$S_{XY} = 6484.08$$

$$S_{XX} = 2040000 - \frac{3600}{9}$$

$$S_{XX} = 600,000 + \frac{3}{100}$$

Write an equation for the estimated regression line (\hat{y}) with your actual numbers for \hat{eta}_0 and \hat{eta}_1 .

$$y = \beta_0 + \beta_1 \times y = 7.23031 + 0.0108068 \times y$$

Write a 95% confidence interval on the mean voltage at x = 650 MPa.

$$\frac{1}{4} \frac{1}{|650|} = 7.23031 + 0.0108068.650$$

$$= 14.25473 (uV)$$

$$= \frac{1}{4}.25473 = 1.025, = 2.365$$

$$0 = \frac{129.9403246}{9-2} = 18.56290352 + 1$$

C.I.:
$$14.25473 \pm 2.365 \left[18.56290352 \left[\frac{1}{9} + \frac{(650 - 406)^2}{600,000} \right] \right]$$

Write a 95% confidence interval on the value of slope and use it to test the following hypotheses that the slope is zero.

is zero.

$$H_0: \hat{\beta}_1 = 0$$

 $H_1: \hat{\beta}_1 \neq 0$ 0.010 8068 $\pm 2.365\sqrt{18.56/600,000}$
 $= 0.002347$ $= 0.002396$

List two theoretical scenarios that would fail to reject H_0 . What does your conclusion imply about the relationship output voltage and compressive force?

Write a 95% confidence interval on the correlation coefficient ρ , if y and x may both be considered random variables. (Ignore the fact that $n \ge 30$.)

$$R = 1 - \frac{85F}{58F}$$

$$= 1 - \frac{129.9}{200.0} = 0.3505 + 11$$

$$0 R = + \sqrt{0.3505} = 0.5920$$

$$Z_{A12} = 1.160 + 1$$

$$tanh^{-1} (0.5920) = 0.6307 + 1$$

$$tanh (0.6807 + \frac{1.960}{\sqrt{6}})$$

$$= 0.1189 = P = 0.9016$$

15