Homework

Two identical dashpots are arranged parallel to each other, as shown. Show that if the damping coefficient $c < \sqrt{mk}$, then the block of mass m will vibrate as an underdamped system.

Homework

A (bullet) of (mass m) has a velocity (\mathbf{v}_0) just before it strikes the target of mass M. If the bullet embeds in the target, and the dashpot's damping coefficient is $0 < c << c_c$ \Rightarrow under damped determine the springs' maximum compression. The target is free to move along the two horizontal guides that are "nested" in the springs. m Vo = (M+m) V;

 $g = \frac{C}{2 (M+m) W_n}$

Homework

Determine the differential equation of motion for the damped vibratory system shown. What type of motion occurs? Take k = 100 N/m, $c = 200 \text{ N} \cdot \text{s/m}$, m = 25 kg.

