2+2

Total: 15 Marks

- 1. Let $PAL = \{ww^R : w \in \{a,b\}^*\}$, the language of even palindromes. Consider the argument: 1. Let $PAL \cap a^*bb^*a^* = L$. Then $L = \{a^nb^{2m}a^n, n \geq 0, m > 0\}$. 2. PAL is a CFL but not a DCFL. 3. Thus L is the intersection of CFL that is not a DCFL, with a regular language. 4. The intersection of a DCFL with a regular language is a DCFL. 5. Since PAL is not a DCFL, L is not a DCFL.
 - a) Which among the steps 1,2,3,4,5 are logically or factually flawed? What are the flaws? *Soln:* Steps 1, 2, 3, 4 are correct. But nothing rules out the possibility that the intersection of non-DCFL with a regular language could still be a DCFL. Hence step 5 does not logically follow from 1,2,3 and 4.
 - b) Though the argument above is wrong, is the conclusion that L is not a DCFL actually true (provable in some other way)? Justify your answer. Soln: L is a DCFL. A DPDA can push first a^s in the stack, then pop out each a when a b is read, pushing remaining b^s in the stack and matching them with c^s .
- 2. Let $M_1=(Q_1,\{a,b\},\{A,B,\$\},\delta_1,s_1,F_1)$. be a PDA and and $M_2=(Q_2,\{a,b\},\delta_2,s_2,F_2)$ be a finite automation accepting languages L_1 and L_2 respectively. Let $q_1,p_1\in Q_1$ and $q_2,p_2\in Q_2$. Let $\delta_1(q_1,\epsilon,A)=\{(p_1,AA)\},\,\delta_1(q_1,a,A)=\delta_1(q_1,b,A)=\{(p_1,BA)\}$ and $\delta_2(q_2,a)=\delta_2(q_2,b)=p_2$. M_2 has no epsilon transitions. Consider the product automata $M=(Q_1\times Q_2,\{a,b\},\{A,B,\$\},\delta,(s_1,s_2),F_1\times F_2)$ accepting $L_1\cap L_2$.
 - a) Define $\delta((q_1, q_2), \epsilon, A)$. Justify your choice. Soln: $\delta((q_1, q_2), \epsilon, A) = \{(p_1, q_2), AA\}$. M_1 moves according to its transition and M_2 does not change state as no input is read.
 - b) Suppose M_2 is a DFA and M_1 has the property that $\delta_1(q_1, c, X)$ contains exactly one element for each $c \in \{a, b\}$, $X \in \{A, B, \$\}$, then will M be deterministic? Justify your answer. Soln: M may be non-deterministic because $\delta_1(q_1, \epsilon, X)$ may not be empty.
 - c) M accepts input w if and only if $((s_1, s_2), w, \$) \vdash_M^* ((f_1, f_2), \epsilon, \gamma \$)$ for some $f_1 \in F_1, f_2 \in F_2$ and $\gamma \in \Gamma^*$
 - d) Which (all) statements are true among the following? Indicate the statement numbers. 1) If M_1 and M_2 are deterministic then it could be true that M is non-deterministic. 2. M may be deterministic even though M_1 is non-deterministic. 3) M_1 is deterministic, M_2 is non-deterministic, but M is deterministic. 4) None of the (1),(2),(3) can happen. Justify your answer. Soln: None of them can happen the product machine will be deterministic if and only if both M_1 and M_2 are deterministic.
- 3. Recall that we proved in the class that the language $L = \{ww : w \in \{a, b, c\}^*\}$ cannot be accepted by any single tape turing machine in $\Omega(n^2)$ (time) complexity in the worst case. Consider now the language $L' = \{ww^R : w \in \{a, b, c\}^*\}$, where w^R is the reverse of w. Define $L'_n = \{wc^{\frac{n}{2}}w^R : w \in \{a, b\}^{\frac{n}{4}}\}$ for n any positive multiple of 4. For $\frac{n}{4} < i \le \frac{3n}{4}$ define the crossing sequence $c_i(z)$ for each string $z \in L'_n$ exactly the way we did in the class.
 - a) Suppose x, y are distinct strings in $\{a, b\}^{\frac{n}{4}}$ and $\frac{n}{4} < i, j \leq \frac{3n}{4}$. Is it true that $c_i(xc^{\frac{n}{2}}x^R) \neq c_j(yc^{\frac{n}{2}}y^R)$? Answer YES/NO and give brief proof/counter example. Soln: If $c_i(xc^{\frac{n}{2}}x^R) = c_j(yc^{\frac{n}{2}}y^R)$, if α is the sub-string consisting of symbols in positions 1 to i in the first string and β is the substring of symbols in positions j+1 to n of the second string, then $\alpha\beta$ will have to be accepted by the machine because the crossing sequences at i and j are the same. But $\alpha\beta$ does not belong to the language (why) and hence this is a contradiction. Hence, equality can't hold as was assumed.
 - b) Will the same proof used in L work for proving an $\Omega(n^2)$ lower bound for the complexity of L'? Answer YES/NO. Justify your answer. Soln: The proof will go through without any modification.
- 4. Use Pumping Lemma (for context free languages) to prove that $L = \{a^p : p \text{ prime }\}$ is not context free. Soln: Suppose L is regular. Let k be the constant specified by the pumping lemma. Let p be a prime greater than 2k+2. Since $a^p \in L$, pumping lemma asserts that we can find strings u, v, w, x, y such that $a^p = uvwxy$, $|vwx| \le k$ and $|vx| \ge 1$ such that $uv^iwx^iy \in L$ for all $i \ge 0$. Let |vx| = t and |uwy| = s. Note that $t \ge 1$ and s > k > 1 as p > 2k + 2. By pumping lemma we have $a^{s+it} \in L$ for all values of L, or s + it must be prime for all values of i. But this is impossible, for by setting i = s, we require s(1 + t) to be prime, which is a contradiction.

1x4

2+1

4