Stima & Filtraggio: Lab 3

Anna Scampicchio

(credits: Giacomo Baggio)

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Padova

anna.scampicchio@phd.unipd.it

April 30, 2020

Anna Scampicchio S&F: Lab 3 April 30, 2020

Wiener Filtering vs. Kalman Filtering

Stationariety constraint on signals

• LTI stable systems with I/O representation

• Start at $t_0 = -\infty$

Projections onto infinite-dimensional spaces

S&F: Lab 3 April 30, 2020

Wiener Filtering vs. Kalman Filtering

- Start at $t_0 = -\infty$ \hookrightarrow Start at finite time
- - *Always closed → Projection Theorem √

Anna Scampicchio S&F: Lab 3 April 30, 2020

- Recap on Systems Theory
- Community
 Kalman Filter & Predictor

- Recap on Systems Theory (in MATLAB®)
- (in MATLAB®)

- Recap on Systems Theory
 - State space representation
 - Internal/external stability
 - Reachability/Stabilizability & Observability/Detectability

State Space systems (continuous-time)

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases} x(t_0) = x_0$$
output
output
vector
input
vector
initial
condition

5

State Space systems (continuous-time)

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases} x(t_0) = x_0$$
output initial condition

5

Anna Scampicchio S&F: Lab 3 April 30, 2020

State Space systems (discrete-time)

$$\begin{cases} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases} x(t_0) = x_0$$
output
output
vector
input
vector
initial
condition

State Space systems (discrete-time)

Anna Scampicchio S&F: Lab 3 April 30, 2020

State Space systems in MATLAB®

(from Control System Toolbox)

Continuous-time case >> sys_c = ss (mA, mB, mC, mD)

Discrete-time case >> sys_d = ss(mA, mB, mC, mD, dTs)

State Space systems in MATLAB®

(from Control System Toolbox)

Continuous-time case >> sys_c = ss (mA, mB, mC, mD)

Discrete-time case >> sys_d = ss(mA, mB, mC, mD, dTs)

sampling period dTs = −1: not specified

State Space systems in MATLAB®

(from Control System Toolbox)

Continuous-time case >> sys_c = ss (mA, mB, mC, mD)

Discrete-time case >> sys_d = ss (mA, mB, mC, mD, dTs)

Recover A, B, C, D \Rightarrow [mA, mB, mC, mD] = ssdata(sys)

From SS to TF >> sys_tf = tf(sys_ss)

From SS to ZPK \Rightarrow sys_zpk = zpk (sys_ss)

Stability

(continuous-time)

$$\Sigma: \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$W(s) = C(sI - A)^{-1}B + D \stackrel{\text{after zeros/poles cancellations}}{\longmapsto} \tilde{W}(s)$$

Stability

(discrete-time)

$$\Sigma: \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$W(z) = C(zI - A)^{-1}B + D \stackrel{\text{after zeros/poles cancellations}}{\longmapsto} \tilde{W}(z)$$

Anna Scampicchio S&F: Lab 3 April 30, 2020

Stability in MATLAB®

Eigenvalues of $A \rightarrow \text{eig}(mA)$

Minimal realization >> sys_min = minreal(sys)

N.B. Minimal realization of $\Sigma=$ state space realization of Σ with smallest possible state dimension

Anna Scampicchio S&F: Lab 3 April 30, 2020 10

Reachability & Observability

(continuous-time & discrete-time)

$$\Sigma : \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

Anna Scampicchio S&F: Lab 3 April 30, 2020 11

Reachability & Observability

(continuous-time & discrete-time)

$$\Sigma: \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad \begin{matrix} A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m} \end{matrix}$$

11

Anna Scampicchio April 30, 2020

Reachability & Observability in MATLAB®

(Rank of a matrix
$$X \rightarrow \text{iRank} = \text{rank} (mX)$$
)

Anna Scampicchio S&F: Lab 3 April 30, 2020 12

Stabilizability & Detectability (continuous-time)

$$\Sigma : \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$-$$
 rank $[A-sI \mid B] = n$, $∀s ∈ λ(A)$ s.t. $Re s ≥ 0$

13

Stabilizability & Detectability (continuous-time)

$$\Sigma : \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

•
$$(A,C)$$
 detectable

rank $\left[\frac{A-sI}{C}\right]=n, \ \forall s\in\lambda(A) \ \text{s.t.} \ \text{Re } s\geq 0$

13

Stabilizability & Detectability (discrete-time)

$$\Sigma : \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad \begin{array}{c} A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m} \end{array}$$

• rank
$$[A-zI\mid B]=n, \ \forall z\in\lambda(A)$$
 s.t. $|z|\geq 1$

14

Anna Scampicchio S&F: Lab 3 April 30, 2020

Stabilizability & Detectability (discrete-time)

$$\Sigma : \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

•
$$(A, C)$$
 detectable
• $\operatorname{rank}\left[\frac{A-zI}{C}\right] = n, \ \forall z \in \lambda(A) \ \text{s.t.} \ |z| \geq 1$

14

- Dynamical equation: $m\ddot{x}(t) = -kx(t) \mu\dot{x}(t) + u(t)$
- Measured output: Position x(t)

- Dynamical equation: $m\ddot{x}(t) = -kx(t) - \mu\dot{x}(t) + u(t)$
- Measured output: Position x(t)

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{\mu}{m} \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \end{cases}$$

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \end{cases}$$

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}
\end{cases}$$

In MATLAB®...

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}
\end{cases}$$

Is the system internally stable?

Is the system externally stable?

15

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}
\end{cases}$$

Is the system reachable?

Anna Scampicchio S&F: Lab 3 April 30, 2020 15

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}
\end{cases}$$

Is the system observable?

15

Anna Scampicchio S&F: Lab 3 April 30, 2020

Other useful functions from CST

Impulse response >> [CVY, CVT] = impulse(sys)

Step response >> [cvY, cvT] = step(sys)

Bode plot >> bode (sys)

Zero/pole plot >> pzmap(sys)

Output response >> cvY = lsim(sys,cvU,cvT,cvX0)

16

Practice time 1!

Ex 1.1. Create a function

[bInt,bExt] = checkStability(mA,mB,mC,mD,strSysType)

that has as inputs matrices $\mathtt{mA} \in \mathbb{R}^{n \times n}$, $\mathtt{mB} \in \mathbb{R}^{n \times m}$, $\mathtt{mC} \in \mathbb{R}^{p \times n}$, $\mathtt{mD} \in \mathbb{R}^{p \times m}$, and a string strSysType that can be set to either 'continuous' or 'discrete' depending on the type of system considered. The function returns

- boolean bInt = true if the system internally stable and bInt = false otherwise.
- boolean bExt = true if the system is externally stable and bExt = false otherwise.

Practice time 1!

Ex 1.2. Create a function

[bReach, bStab] = checkReachStab(mA, mB, strSysType)

that has as inputs matrices $\mathtt{mA} \in \mathbb{R}^{n \times n}$, $\mathtt{mB} \in \mathbb{R}^{n \times m}$ and a string $\mathtt{strSysType}$ that can be set to either 'continuous' or 'discrete' depending on the type of system considered.

The function returns

- boolean bReach = true if (mA, mB) is reachable and bReach = false otherwise.
- boolean bStab = true if (mA, mB) is stabilizable and bStab
 false otherwise.

Practice time 1!

Ex 1.3. Create a function

[bObs,bDetec] = checkObsDetec(mA,mC,strSysType)

that has as inputs matrices $\mathtt{mA} \in \mathbb{R}^{n \times n}$, $\mathtt{mC} \in \mathbb{R}^{p \times n}$ and a string strSysType that can be set to either 'continuous' or 'discrete' depending on the type of system considered.

The function returns

- boolean bObs = true if (mA, mC) is observable and bObs = false otherwise.
- boolean bDetec = true if (mA, mC) is detectable and bDetec = false otherwise.

- (2) Kalman Filter & Predictor
 - Quick recap
 - Steady state behavior
 - MATLAB® tools

Setup

The model

$$\begin{cases} x(t+1) &= Ax(t) + v(t) \\ y(t) &= Cx(t) + w(t) \end{cases} \qquad x(t_0) = x_0$$

19

Setup

The model

$$\begin{cases} x(t+1) &= Ax(t) + v(t) \\ y(t) &= Cx(t) + w(t) \end{cases} \qquad x(t_0) = x_0$$

Standing assumptions

•
$$\mathbb{E}\left\{\begin{bmatrix}v(t)\\w(t)\end{bmatrix}\begin{bmatrix}v^{\top}(s) & w^{\top}(s)\end{bmatrix}\right\} = \begin{bmatrix}Q & S\\S^{\top} & R\end{bmatrix}\delta(t-s), R>0$$

•
$$\mathbb{E}\left\{x_0\begin{bmatrix}v^\top(t) & w^\top(t)\end{bmatrix}\right\} = 0, \ \forall t \geq t_0$$

•
$$\mathbb{E}\{x_0\} = \mu_0$$
, $\text{Var}\{x_0\} = P_0$

19

Anna Scampicchio S&F: Lab 3 April 30, 2020

Setup

An equivalent model...

- $F := A SR^{-1}C$
- $\tilde{v}(t) := v(t) \hat{\mathbb{E}}[v(t) | w(t)] = v(t) SR^{-1}(v(t) Cx(t))$
- $\tilde{v}(t) \perp w(t)$, $Var \, \tilde{v}(t) = \tilde{Q} := Q SR^{-1}S^{\top}$

19

Anna Scampicchio S&F: Lab 3 April 30, 2020

Kalman Filtering equations

Initial definitions

$$P(t|t-1) := \operatorname{Var} \tilde{x}(t|t-1), \qquad P(t|t) := \operatorname{Var} \tilde{x}(t|t)$$
 (prediction error covariance) (estimation error covariance)

$$\Lambda(t) := CP(t|t-1)C^{\top} + R, \quad L(t) := P(t|t-1)C^{\top}\Lambda^{-1}(t)$$
 (innovation process covariance) (filter gain)

Initial conditions

$$\hat{x}(1|0) := \mu_0, \quad P(1|0) := P_0$$
 $t_0 = 1$

Anna Scampicchio S&F: Lab 3 April 30, 2020 20

Kalman Filtering equations

• Estimation •

$$\hat{x}(t|t) = \hat{x}(t|t-1) + L(t)(y(t) - C\hat{x}(t|t-1))$$

$$P(t|t) = P(t|t-1) - P(t|t-1)C^{\top}\Lambda(t)^{-1}CP(t|t-1)$$

 $= (I - L(t)C)P(t|t-1)(I - L(t)C)^{\top} + L(t)RL^{\top}(t)$

• Prediction •

$$\hat{x}(t+1|t) = F\hat{x}(t|t) + SR^{-1}y(t)$$

$$P(t+1|t) = FP(t|t)F^{\top} + \tilde{Q}$$

20

Anna Scampicchio S&F: Lab 3 April 30, 2020

By decoupling the previous equations...

★
$$\hat{x}(t+1|t) = A\hat{x}(t|t-1) + G(t)(y(t) - C\hat{x}(t|t-1))$$

★
$$P(t+1|t) = \Gamma(t)P(t|t-1)\Gamma^{\top}(t) + K(t)RK^{\top}(t) + \tilde{Q}$$

where...

- K(t) := FL(t)(Kalman gain)
- $G(t) := K(t) + SR^{-1}$ (predictor gain)
- $\Gamma(t) := A G(t)C = F K(t)C = F (I L(t)C)$ (closed-loop matrix)

Anna Scampicchio S&F: Lab 3 April 30, 2020 21

Block diagram representation

$$\hat{x}(t+1|t) = F\hat{x}(t|t-1) + K(t)(y(t) - C\hat{x}(t|t-1)) + SR^{-1}y(t)$$

Block diagram representation

$$\hat{x}(t+1|t) = A\hat{x}(t|t-1) + G(t)(y(t) - C\hat{x}(t|t-1))$$

$$G(t) = K(t) + SR^{-1}$$

Block diagram representation

$$\hat{x}(t+1|t) = \Gamma(t)\hat{x}(t|t-1) + G(t)y(t)$$
$$\Gamma(t) = A - G(t)C$$

N.B. The steady-state prediction error covariance satisfies

$$\bar{P} = F\bar{P}F^{\top} - F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}C\bar{P}F^{\top} + \tilde{Q} \quad \text{(ARE)}$$

Anna Scampicchio S&F: Lab 3 April 30, 2020 22

N.B. The steady-state prediction error covariance satisfies

$$\bar{P} = F\bar{P}F^{\top} - F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}C\bar{P}F^{\top} + \tilde{Q} \quad \text{(ARE)}$$

Fundamental Theorem of KF Theory:

(F,C) detectable & $(F, \tilde{Q}^{rac{1}{2}})$ stabilizable

- $\exists ! \, \bar{P} = \bar{P}^{\top} \text{ of (ARE)}$
- \bullet \bar{P} stabilizing
- $\bullet \quad \lim_{t \to \infty} P(t) = \bar{P}, \ \forall \ P_0 = P_0^\top \ge 0$

22

Anna Scampicchio S&F: Lab 3 April 30, 2020

$$\hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + \bar{G}(y(t) - C\hat{x}_{\infty}(t|t-1))$$

where...

- $\bar{K} := F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}$ (steady-state Kalman gain)
- $\bar{G} := \bar{K} + SR^{-1}$ (steady-state predictor gain)
- $\bar{\Gamma} := A \bar{G}C = F \bar{K}C$ (steady-state closed-loop matrix)

$$\star \hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + \bar{G}(y(t) - C\hat{x}_{\infty}(t|t-1))$$

where...

- $\bar{K} := F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}$ (steady-state Kalman gain)
- ullet $ar{G}:=ar{K}+SR^{-1}$ (steady-state predictor gain)
- $\bar{\Gamma} := A \bar{G}C = F \bar{K}C$ (steady-state closed-loop matrix)

N.B. If
$$A$$
 stable, $ar P=ar \Sigma-\hat \Sigma_\infty$ with $\hat \Sigma_\infty:=\operatorname{\sf Var}\hat x_\infty(t|t-1)$ and $ar \Sigma$ sol. of

$$ar{\Sigma} = A ar{\Sigma} A^{ op} + Q$$
 (DLE)

Anna Scampicchio S&F: Lab 3 April 30, 2020

$$\hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + \bar{G}(y(t) - C\hat{x}_{\infty}(t|t-1))$$

$$e_{\infty}(t)$$

22

Anna Scampicchio S&F: Lab 3 April 30, 2020

MATLAB® tools for Kalman Filtering

DLE
$$\Rightarrow$$
 X = dlyap(A,Q)

>> help dlyap

dlyap Solve discrete Lyapunov equations.

X = dlyap(A,Q) solves the discrete Lyapunov matrix equation:

$$A \star X \star A' - X + Q = 0$$

MATLAB® tools for Kalman Filtering

>> help dare
dare Solve discrete-time algebraic Riccati
equations.
[X,L,G] = dare(A,B,Q,R,S,E) computes the unique
stabilizing solution X of the discrete-time
algebraic Riccati equation

Dynamical equation:

$$m\ddot{x}(t) = -kx(t) - \mu\dot{x}(t) + n(t)$$

 $\mathbb{E}\left\{n(t)n(s)\right\} = \sigma_n^2 \delta(t-s)$

Measured output:

Noisy position
$$x(t) + w(t)$$

 $\mathbb{E}\{w(t)w(s)\} = \sigma_R^2 \delta(t-s)$
 $n(t) \perp w(s), \forall t, s \geq 0$

Task: W.r.t. the sampled system (sampling period $T_s = 1 \, \mathrm{s}$), (i) write down the steady-state Kalman predictor equation for the position $\hat{x}_{\infty}(t|t-1)$, and (ii) compute the steady-state prediction error covariance \bar{P} .

Dynamical equation:

$$m\ddot{x}(t) = -kx(t) - \mu\dot{x}(t) + n(t)$$

 $\mathbb{E}\left\{n(t)n(s)\right\} = \sigma_n^2 \delta(t-s)$

Measured output:

Noisy position
$$x(t) + w(t)$$

 $\mathbb{E}\left\{w(t)w(s)\right\} = \sigma_R^2 \delta(t-s)$
 $n(t) \perp w(s), \forall t, s \geq 0$

Pick
$$m = 1$$
, $\mu = 1$, $k = 2$, $\sigma_n^2 = 1$, $\sigma_R^2 = 1$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} n(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \\ 0 &= 1 \end{cases}$$

Pick
$$m = 1$$
, $\mu = 1$, $k = 2$, $\sigma_n^2 = 1$, $\sigma_R^2 = 1$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} n(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \\ D &= 1 \end{cases}$$

$$exp(\bar{A}T_s) \qquad v(t) = \int_0^{T_s} e^{\bar{A}\tau} Bn(t + T_s - \tau) d\tau \\ \begin{cases} x(t+1) \\ \dot{x}(t+1) \end{bmatrix} &= \begin{bmatrix} 0.3711 & 0.4445 \\ -0.8890 & -0.0734 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + v(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \end{cases}$$

Anna Scampicchio S&F: Lab 3 April 30, 2020

24

$$\begin{cases} \begin{bmatrix} x(t+1) \\ \dot{x}(t+1) \end{bmatrix} &= \begin{bmatrix} 0.3711 & 0.4445 \\ -0.8890 & -0.0734 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + v(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \\ C & D = 1 \end{cases}$$

$$Q = \int_0^{T_{\mathrm{s}}} \exp(\bar{A}\tau)BB^\top \exp(\bar{A}^\top\tau)\,\mathrm{d}\tau = \begin{bmatrix} 0.1168 & 0.0988 \\ 0.0988 & 0.2997 \end{bmatrix}, \quad R = 1$$

N.B.
$$v(t) \perp w(s), \forall t, s \Rightarrow F = A \text{ and } \tilde{Q} = Q!$$

Anna Scampicchio S&F: Lab 3 April 30, 2020 24

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 y(t) = \begin{bmatrix}
 1 & 0 \\
 C
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 D = 1$$

$$Q = \begin{bmatrix}
 0.1168 & 0.0988 \\
 0.0988 & 0.2997
\end{bmatrix} \\
 R = 1$$

Is (F, C) detectable?

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 y(t) = \begin{bmatrix}
 1 & 0 \\
 \dot{x}(t)
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 C \end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 D = 1$$
 $\tilde{Q} = \begin{bmatrix}
 0.1168 & 0.0988 \\
 0.0988 & 0.2997
\end{bmatrix}$

$$R = 1$$

Is $(F, \tilde{Q}^{\frac{1}{2}})$ stabilizable?

Yes!

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 y(t) = \begin{bmatrix}
 1 & 0 \\
 \dot{x}(t)
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 C$$

$$\tilde{Q} = \begin{bmatrix}
 0.1168 & 0.0988 \\
 0.0988 & 0.2997
\end{bmatrix}$$

Compute the prediction error state covariance

R=1

Anna Scampicchio S&F: Lab 3 April 30, 2020 24

0.0154 0.4553

the model
$$\begin{cases} x(t+1) \\ \dot{x}(t+1) \end{bmatrix} = \begin{bmatrix} 0.3711 & 0.4445 \\ -0.8890 & -0.0734 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + v(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t)$$

$$C \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t)$$

$$D = 1$$

$$Q = \begin{bmatrix} 0.1168 & 0.0988 \\ 0.0988 & 0.2997 \end{bmatrix}$$

$$R = 1$$

And the steady-state Kalman predictor is...

$$\begin{bmatrix} \hat{x}_{\infty}(t+1|t) \\ \hat{x}_{\infty}(t+1|t) \end{bmatrix} = F \begin{bmatrix} \hat{x}_{\infty}(t|t-1) \\ \hat{x}_{\infty}(t|t-1) \end{bmatrix} + \bar{K} \left(y(t) - C \begin{bmatrix} \hat{x}_{\infty}(t|t-1) \\ \hat{x}_{\infty}(t|t-1) \end{bmatrix} \right)$$

Anna Scampicchio S&F: Lab 3 April 30, 2020 24

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 y(t) = \begin{bmatrix}
 1 & 0 \\
 \dot{x}(t)
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 C & D = 1
\end{cases} \qquad \tilde{Q} = \begin{bmatrix}
 0.1168 & 0.0988 \\
 0.0988 & 0.2997
\end{bmatrix} \\
 R = 1$$

And the steady-state Kalman predictor is...

$$\hat{x}_{\infty}(t+1|t) = 0.4445\hat{x}_{\infty}(t|t-1) - 0.0767y(t) + 0.2944\hat{x}_{\infty}(t|t-1)$$

Anna Scampicchio S&F: Lab 3 April 30, 2020 24

Ex 2.1. Create a function

that has as inputs a discrete-time state space system sys

$$\begin{cases} x(t+1) &= Ax(t) + Bn(t) \\ y(t) &= Cx(t) + Dn(t) \end{cases}$$

with n(t) unit variance white noise, a measurement vector cvY0, a state vector cvX0, and an initial prediction error covariance matrix mP0.

The function returns

- the one-step Kalman prediction cvXhat,
- the prediction error covariance matrix mP.

Ex 2.2. Create a function

that has as inputs a discrete-time state space system sys

$$\begin{cases} x(t+1) &= Ax(t) + Bn(t) \\ y(t) &= Cx(t) + Dn(t) \end{cases}$$

with n(t) unit variance white noise, a measurement vector cvY0, a state vector cvX0. The function returns

- the steady-state one-step Kalman prediction cvXhatSS,
- the steady-state prediction error covariance matrix mPSS,

whenever these quantities exist. If this is not the case cvXhatSS and mPSS are left empty.

Ex 2.3. Suppose that the state space model of Ex 2.1-2.2 is described by an I/O model W(z) with

• zeros in
$$z_1 = -0.9$$
 and $z_2 = -1.15$

• poles in
$$p_1 = 0.8 + j0.1$$
 and $p_2 = p_1^*$

such that y(t) = W(z)n(t). We want to compare the performance of the Wiener predictor, the Kalman predictor and the steady-state Kalman predictor.

In particular:

• Obtain the state space form of the system described by W(z) and generate the measurement vector $\{y(t)\}$, $t=0,1,\ldots,100$ with initial condition $x(0)\sim\mathcal{N}(\mathbf{0}_2,100I_2)$, and noise $n(t)\sim\mathcal{N}(0,1)$.

Then, plot and compare on [0,100]:

- \bullet the measurements y_t
- the Wiener predictor $\hat{y}_W(t|t-1)$ (Lab 2, Ex 3.2)
- the Kalman predictor $\hat{y}_K(t|t-1)$
- the steady state Kalman predictor $\hat{y}_{\infty}(t|t-1)$.

Finally, show that the transfer function that maps $n(t) = \bar{\Lambda}^{-1/2}e(t)$ to y(t) associated to the steady state Kalman predictor

$$egin{cases} \hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + ar{G}e(t) \ y(t) = C\hat{x}_{\infty}(t|t-1) + e(t) \end{cases}$$

is equal to the minimum phase spectral factor of $S_Y(z)$ computed for the Wiener filter.