

FLOW STRUCTURE

- □ Project Goal
- EDA Exploratory Data Analysis
- ☐ Preprocessing & Feature Engineering
- ☐ Training ML Model
- ☐ Conclusion

PROJECT GOAL

- ☐ Supervised Learning Techniques
- ☐ Build a Machine Learning model
- ☐ predict whether a patient has diabetes or not

EXPLORATORY DATA ANALYSIS

RELATIONSHIP BETWEEN PREDICTOR VARIABLES AND THE OUTCOME VARIABLE

DISTRIBUTION OF EACH PREDICTOR VARIABLES

DISTRIBUTION OF PREDICTOR VARIABLES FOR INDIVIDUALS WITH AND WITHOUT DIABETES

PROCESSING & FEATURE ENGINEERING

FEATURE ENGINEERING

With the help of Subject Expert

AGE GROUP BINNING

- Grouping age in ranges
- Figuring out Type-1 diabetes

BMI CATEGORIES

- Categories
 - Underweight
 - Normal
 - Overweight
 - Obese
- Obese are more diabetes positive

RATIO

Insulin to Glucose ratio

MODEL BUILDING

MODEL COMPARISON

K NEIGHBORS CLASSIFIER

RANDOM FOREST CLASSIFIER

Model 2 (Random Forest) Evaluation:

Accuracy: 0.78 Precision: 0.6

Recall: 0.46153846153846156 F1-Score: 0.5217391304347826

ROC-AUC: 0.7988565488565489

Model 1 (KNeighborsClassifier) Evaluation:

Accuracy: 0.76 Precision: 0.55

Recall: 0.4230769230769231 F1-Score: 0.47826086956521735 ROC-AUC: 0.7697505197505197

2023 Pitch deck title

FEATURE IMPORTANCE

