(Fall 2001Midterm)

An ideal gas mixture was put together by mixing the contents of three vessels, each containing a single component ideal gas at the specified temperature and pressure listed below.

Vessel	Component in	Molar Mass,	Volume of the	Temperature,	Pressure,
number	the vessel	(kg/kmol)	vessel, (m ³)	(°C)	(kPa)
1	CH ₄	16	0.85	0	800
2	CO_2	44	0.30	25	400
3	N_2	28	0.35	35	600

The mixed gas was transferred to a fourth container whose volume was known to be 1.0 m³. The mixture was then heated to a temperature of 400 K. Calculate the following for this mixture:

- a. Number of moles of each component in the mixture.(4.5 points)
- b. Mass of each component in the mixture. (4.5 points)
- c. Mass fraction of CO_2 in the mixture.(2 points)
- d. Mole fraction of CH₄ in the mixture. (2 points)
- e. Pressure of the mixture after heating to 400 K. (4 points)
- f. Partial pressure of CH₄ after heating to 400 K (3 points)

a)
$$n_{CHY} = \frac{PV}{RT} = \frac{(800 \text{ k/g})}{(8.314 \frac{\text{k/pam}^2}{\text{kmol K}})} = 6.299 \text{ kmol}$$

$$n_{CO_2} = \frac{PV}{RT} = \frac{(400 \text{ k/g})}{(8.314 \frac{\text{k/pam}^2}{\text{kmol K}})} (273.15\text{k}) = 299 \text{ nol}$$

$$n_{N_2} = \frac{PV}{RT} = \frac{(600 \text{ k/g})}{(8.314 \frac{\text{k/pam}^2}{\text{kmol K}})} (298.5\text{k}) = 0.0484 \text{ kmol}$$

$$= \frac{148.4 \text{ nol}}{(8.314 \frac{\text{k/pam}^2}{\text{kmol k}})} (308.15\text{k}) = 0.08197 \text{ knol}$$

$$= \frac{81.97 \text{ nol}}{(8.314 \frac{\text{k/pam}^2}{\text{kmol k}})} = \frac{14784 \text{ g}}{(308.15\text{ k})}$$

$$= \frac{14784 \text{ g}}{(309.15\text{ k})}$$

$$m_{CO_2} = \frac{18.4 \text{ nol}}{(309.15\text{ k})} \times \frac{16 \text{ g}}{(309.15\text{ k})} = \frac{1230 \text{ g}}{(309.15\text{ k})}$$

$$= \frac{1300 \text{ g}}{(309.15\text{ k})} = \frac{1300 \text{ g}}{(309.15\text{ k})}$$

$$= \frac{1300 \text{ g}}{(309.15\text{ k})} = \frac{1300 \text{ g}}{(309.15\text{ k})} =$$

$$\frac{\partial}{\partial CH_{Y}} = \frac{\Omega_{CH_{Y}}}{\Omega_{tot}} = \frac{299 \text{ mol}}{299 \text{ mol} + 48.4 \text{ mol} + 81.97 \text{ mol}}$$
$$= 0.696$$

$$P_{\text{mix}} = \frac{\Omega_{\text{tot}} R T}{V}$$

$$= \left(\frac{429 \text{ nol}}{8.314 \text{ kPa m}^3}\right) \left(\frac{400 \text{k}}{1000 \text{ nol}}\right)$$

$$= \left[\frac{1427 \text{ kPa}}{V}\right]$$

$$= \frac{1427 \text{ kPa}}{V}$$

$$= \frac{1427 \text{ kPa}}{V}$$

$$= \frac{1427 \text{ kPa}}{V}$$