Machine Learning

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Classification

Classification Examples

Classification Algorithms

- Classification algorithms are used when the output variable is categorical, which means there are two or more classes.
- Algorithms
 - Naïve Bayes
 - Logistic Regression
 - Support vector Machines
 - Random Forest
 - Decision Trees

How to Perform Classification

Evaluation of a Classifier

FC: Family Car

NFC: Not a Family Car

Car	Actual	Predicted
1	FC	FC
2	FC	NFC
3	NFC	FC
4	FC	FC
5	NFC	FC
6	NFC	NFC
7	FC	NFC
8	FC	FC
9	NFC	FC
10	FC	FC
11	NFC	NFC
12	NFC	NFC

- True positives (TP): data points predicted/labeled as positive that are actually positive
- False positives (FP): data points predicted/labeled as positive that are actually negative
- True negatives (TN): data points predicted/labeled as negative that are actually negative
- False negatives (TN): data points predicted/labeled as negative that are actually positive

Car	Actual	Predicted
1	FC	FC
2	FC	FC /
3	NFC	FC /
4	FC	FC
5	NFC	FC 2
6	NFC	NFC /
7	FC	NFC /
8	FC	FC
9	FC	FC
10	FC	NFC /
11	NFC	NFC
12	NFC	NFC

Confusion Matrix		Actual	
		Positive (FC)	Negative (NFC)
cted	Positive (FC)	5	2
Predicted	Negative (NFC)	2	3

Car	Actual	Predicted
1	FC	FC
2	FC	FC
3	NFC	FC
4	FC	FC
5	NFC	FC
6	NFC	NFC
7	FC	NFC
8	FC	FC
9	FC	FC
10	FC	NFC
11	NFC	NFC
12	NFC	NFC

- Accuracy: Closeness of a measured value to a standard or known value ((TP + TN)/(TP+TN+FN+FP)) = 8/12 = 0.67
- Recall: Ability of a classification model to identify all relevant instances (TP / TP + FN) = 5/7
- Precision: Ability of a classification model to return only relevant instances (TP / TP + FP) = 5/7
- **F1 score:** A single metric that combines recall and precision using the harmonic mean (2 (Precision * Recall)/(Precision + Recall)) = ?

Example 2

Confusion Matrix		Actual	
		Positive	Negative
ted	Positive		
Predicted	Negative		

- Accuracy = ?
- Recall = ?
- Precision = ?
- F1-Score = ?

_	Images	Actual Label	Predicted Label
	lmage1	Нарру	Sad
	Image2	Sad	Sad
е			
	Image3	Sad	Нарру
	Image4	Нарру	Нарру
	Image5	Нарру	Нарру
	Image6	Sad	Нарру
	Image7	Sad	Нарру
	Image8	Нарру	Нарру

Example 3

Positive

Accuracy = ?

Negative

• Recall = ?

Predicted

• Precision = ?

• F1-Score = ?

Negative

Actual

Positive

Patient1

Patient2

Patient3

Images

Not Corona

Not Corona

Not Corona

Actual Label

Not Corona Not Corona

Not Corona

Model 1

Not Corona

Not Corona Not Corona

Not Corona Corona

Not Corona

Model 2 ~

Not Corona

Patient4 Not Corona Patient5

Not Corona

Not Corona Not Corona

Patient6 Not Corona

Not Corona

Not Corona Corona

Patient8

Patient9

Patient7

Not Corona Corona ~

Not Corona Corona

Not Corona Corona

Patient10 Corona V

Not Corona Corona

Slides Courtesy: Dr. Kamran Malik

•
$$P(X = 0) =$$

•
$$P(Y = 3) =$$

•
$$P(X = 1, Y = 2) =$$

•
$$P(Y = 2, X = 1) =$$

•
$$P(X = 1 | Y = 2) =$$

•
$$P(Y = 2 | X = 1) =$$

X	Y
X 0	0
0	1
1	0
1	2
1 2	3
2	0
	3
1	3
1	2
0	3
0	2
0	0

•
$$P(X = 0) = 5/12$$

•
$$P(Y = 3) = 4/12$$

•
$$P(X = 1, Y = 2) = 2/12$$

•
$$P(Y = 2, X = 1) = 2/12$$

•
$$P(X = 1 | Y = 2) = 2/3$$

•
$$P(Y = 2 | X = 1) = 2/4$$

X	Y
0	0
0	1
1	0
1	2
1 2	3
2	0
2	3
1	3
1	2
0	3
0	2
0	0

$$P(bag1) = 0.3$$

- P(Red|bag1) =
- P (Red) =

• P(bag1|Red) =

P(bag2) = 0.5

P(bag3) = 0.2

- $P(A, B) \text{ or } P(A \cap B) = ?$
- P(A, B) = P(A | B) * P(B) = P(B | A) * P(A)
- P(A,B|C) = P(A|B,C) * P(B|C) = P(B|A,C) * P(A|C)

• $P(A \cap B \cap C) = P(A, B, C)$

• $P(A \cap B \cap C \cap D) = ?$

if all events are independent

- P(A, B) = P(A) * P(B)
- P (A , B , C) =
- P (A , B , C, D) =
- P(A1,A2,...,An) =

Conditionally independent

- P (A , B | C) = P(A | C) * P (B | C)
- P(A,B,C|D)=
- P(A1,A2, . . . , An | Z) =

Homework

- Book 1: 2.1, 2.2, 2.3, 5.6
- Book 2: Start Reading Chapter 3
- Book 3: Chapter 2 (2.1 to 2.5)