Ray Casting and Ray Tracing

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

What is Ray Casting?

For every pixel

Construct a ray from the eye

For every object in the scene

Find intersection with the ray

Keep if closest

Shading

For every pixel

Construct a ray from the eye

For every object in the scene

Find intersection with the ray

Keep if closest

Shading - Recap

- Surface/Scene Characteristics:
 - Surface normal
 - Direction to light
 - Viewpoint
- Material Properties
 - Diffuse (matte)
 - Specular (shiny)
 - **–** ...
- Lighting Model etc.

What is Ray Tracing?

• Secondary rays (shadows, reflection, refraction)

Ray Tracing Scenes

Ray Casting - Basic Computations

```
For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade depending on light and normal vector
```


Finding the intersection and normal is the central part of ray casting

Ray Casting vs. Ray Tracing

- Ray Casting: Consider eye or camera rays only
- Ray Tracing: Consider secondary rays too

Ray Representation

- Two vectors:
 - Origin
 - Direction (normalized is better)
- Parametric line
 - -P(t) = origin + t * direction

P(t)

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

Cameras

For every pixel

Construct a ray from the eye
For every object in the scene
Find intersection with ray
Keep if closest

Abraham Bosse, Les Perspecteurs. Gravure extraite de la Manière

Pinhole Camera

- Box with a tiny hole
- Inverted image
- Similar triangles

- Perfect image if hole infinitely small
- Pure geometric optics
- No depth of field issue

Simplified Pinhole Camera

- Eye-image pyramid (frustum)
- Note that the distance/size of image are arbitrary

Camera Description

- Eye point *e* (*center*)
- Orthobasis *u*, *v*, *w* (horizontal, up, -direction)

Perspective vs. Orthographic

- Parallel projection
- No foreshortening
- No vanishing point

Orthographic Camera

- Ray Generation?
 - Origin = center + (x-0.5)*size*horizontal + (y-0.5)*size*up ??
 - Direction is constant

Other Weird Cameras

• E.g. fish eye, omnimax, panorama

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

Ray Casting – Finding Intersection

```
For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
```

First we will study ray-plane intersection

Recall: Ray Representation

- Parametric line
- $P(t) = R_o + t * R_d$
- Explicit representation

3D Plane Representation?

- Plane defined by
 - $-P_{o} = (x,y,z)$
 - -n = (A,B,C)
- Implicit plane equation

$$- H(P) = Ax+By+Cz+D = 0$$
$$= n \cdot P + D = 0$$

- Point-Plane distance?
 - If n is normalized,distance to plane, d = H(P)
 - d is the signed distance!

Explicit vs. Implicit?

- Ray equation is explicit $P(t) = R_o + t * R_d$
 - Parametric
 - Generates points
 - Hard to verify that a point is on the ray
- Plane equation is implicit $H(P) = n \cdot P + D = 0$
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the plane

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane & solve for t

Additional Checks

• Verify that intersection is closer than previous $P(t) < t_{current}$

Verify that it is not out of range (behind eye)

Normal

- For shading
 - diffuse: dot product between light and normal
- Normal is constant

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

- Sphere Representation : Implicit sphere equation
 - Assume centered at origin (easy to translate)

$$-H(P) = P \cdot P - r^2 = 0$$

 Insert explicit equation of ray into implicit equation of sphere & solve for t

$$P(t) = R_{o} + t*R_{d} H(P) = P \cdot P - r^{2} = 0$$

$$(R_{o} + tR_{d}) \cdot (R_{o} + tR_{d}) - r^{2} = 0$$

$$R_{d} \cdot R_{d} t^{2} + 2R_{d} \cdot R_{o} t + R_{o} \cdot R_{o} - r^{2} = 0$$

$$R_{d} \cdot R_{d} t^{2} + 2R_{d} \cdot R_{o} t + R_{o} \cdot R_{o} - r^{2} = 0$$

$$R_{d} \cdot R_{d} t^{2} + 2R_{d} \cdot R_{o} t + R_{o} \cdot R_{o} - r^{2} = 0$$

• Quadratic: $at^2 + bt + c = 0$

$$- a = 1 \text{ (remember, } ||R_d|| = 1)$$

$$-b = 2R_d \cdot R_o$$

$$-c = R_o \cdot R_o - r^2$$

$$d = \sqrt{b^2 - 4ac}$$

with discriminant

$$t_{\pm} = \frac{-b \pm d}{2a}$$

and solutions

- 3 cases, depending on the sign of $b^2 4ac$
- What do these cases correspond to?
- Which root (t+ or t-) should you choose?
 - Closest positive! (usually t-)

It's so easy that all ray-tracing

> images have spheres!

- Shortcut / easy reject
- What geometric information is important?
 - Ray origin inside/outside sphere?
 - Closest point to ray from sphere origin?
 - Ray direction: pointing away from sphere?

- Is ray origin inside/outside/on sphere?
 - $-(R_o \cdot R_o < r^2 / R_o \cdot R_o > r^2 / R_o \cdot R_o = r^2)$
 - If origin on sphere, be careful about degeneracies...

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, t_p = R_o · R_d
 If origin outside & t_p < 0 → no hit

35

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $t_P = -R_o \cdot R_d$
- Find squared distance, $d^2 = R_o \cdot R_o t_p^2$ - If $d^2 > r^2 \rightarrow no hit$

Geometric Ray-Sphere Intersection

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $t_P = -R_o \cdot R_d$.
- Find squared distance: $d^2 = R_0 \cdot R_0 t_P^2$
- Find distance (t') from closest point (t_p) to correct intersection: $\mathbf{t'}^2 = \mathbf{r}^2 \mathbf{d}^2$
 - If origin outside sphere \rightarrow t = t_p t'

Geometric vs. Algebraic

- Algebraic is simple & generic
- Geometric is more efficient
 - Timely tests
 - In particular for rays outside and pointing away

Sphere Normal

- Simply Q/||Q||
 - -Q = P(t), intersection point
 - (for spheres centered at origin)

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle

Ray-Triangle Intersection

Check if point is inside triangle parametrically

Check if point inside triangle.

$$0 \le \alpha \le 1$$
 and $0 \le \beta \le 1$ $\alpha + \beta \le 1$

Ray-Triangle Intersection

- Use general ray-polygon
- Or try to be smarter
 - Use barycentric coordinates (XM)

Barycentric Definition of a Plane

• $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$ [Möbius, 1827]

• Is it explicit or implicit?

P is the *barycenter*: the single point upon which the plane would balance if weights of size α , β , & γ are placed on points a, b, & c.

Barycentric Definition of a Triangle

- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
- AND $0 < \alpha < 1$ & $0 < \beta < 1$ & $0 < \gamma < 1$

How Do We Compute α , β , γ ?

Ratio of opposite sub-triangle area to total area

$$-\alpha = A_a/A$$
 $\beta = A_b/A$ $\gamma = A_c/A$

Use signed areas for points outside the triangle

Intuition Behind Area Formula

- P is barycenter of a and Q
- A_a is the interpolation coefficient on aQ
- All points on lines parallel to be have the same α (All such triangles have same height/area)

Simplify

• Since $\alpha + \beta + \gamma = 1$, we can write $\alpha = 1 - \beta - \gamma$

$$P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$$

$$P(\beta, \gamma) = (1-\beta-\gamma)a + \beta b + \gamma c$$

$$c = a + \beta(b-a) + \gamma(c-a)$$

Non-orthogonal coordinate system of the plane

rewrite

Intersection with Barycentric Triangle

Set ray equation equal to barycentric equation

$$P(t) = P(\beta, \gamma)$$

$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

Intersection if

Intersection with Barycentric Triangle

•
$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

 $R_{ox} + tR_{dx} = a_x + \beta(b_x - a_x) + \gamma(c_x - a_x)$
 $R_{oy} + tR_{dy} = a_y + \beta(b_y - a_y) + \gamma(c_y - a_y)$
 $R_{oz} + tR_{dz} = a_z + \beta(b_z - a_z) + \gamma(c_z - a_z)$
3 equations, 3 unknowns

• Regroup & write in matrix form:
$$\begin{bmatrix} a_x - b_x & a_x - c_x & R_{dx} \\ a_y - b_y & a_y - c_y & R_{dy} \\ a_z - b_z & a_z - c_z & R_{dz} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} a_x - R_{ox} \\ a_y - R_{oy} \\ a_z - R_{oz} \end{bmatrix}$$

Cramer's Rule

Used to solve for one variable at a time in system of equations

$$\beta = \frac{\begin{vmatrix} a_{x} - R_{ox} & a_{x} - c_{x} & R_{dx} \\ a_{y} - R_{oy} & a_{y} - c_{y} & R_{dy} \\ a_{z} - R_{oz} & a_{z} - c_{z} & R_{dz} \end{vmatrix}}{|A|} \qquad \gamma = \frac{\begin{vmatrix} a_{x} - b_{x} & a_{x} - R_{ox} & R_{dx} \\ a_{y} - b_{y} & a_{y} - R_{oy} & R_{dy} \\ a_{z} - b_{z} & a_{z} - R_{oz} & R_{dz} \end{vmatrix}}{|A|}$$

$$t = \frac{\begin{vmatrix} a_{x} - b_{x} & a_{x} - c_{x} & a_{x} - R_{ox} \\ a_{y} - b_{y} & a_{y} - c_{y} & a_{y} - R_{oy} \\ a_{z} - b_{z} & a_{z} - c_{z} & a_{z} - R_{oz} \end{vmatrix}}{|A|}$$

determinant

Can be copied mechanically into code

Advantages of Barycentric Intersection

- Efficient
- Stores no plane equation
- Get the barycentric coordinates for free
 - Useful for interpolation, texture mapping

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

General Quadric Surfaces

- Some Common Quadric Surfaces
 - Ellipsoid $(x^2/a^2 + y^2/b^2 + z^2/c^2 + 1 = 0)$
 - Cone $(x^2/a^2 y^2/b^2 + z^2/c^2 = 0)$
 - Cylinder
 - Hyperboloid
 - Paraboloid Eliptic, Hyperbolic etc.
- * Check out the following links for the figures & equations: https://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx https://mrl.cs.nyu.edu/~dzorin/rend05/lecture2.pdf (page12-14)

Ray - Quadric Surface Intersection

General Quadric Surface Equation

$$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0 \dots (1)$$

- Ray Equation : $P(t) = \mathbf{R}_0 + t * \mathbf{R}_d$
- So, $P_x = R_{0x} + t*R_{dx}$, Similar for P_y , P_z
- Put P_x, P_y, P_z as x, y, z in eq.(1) and solve for t
- Accept the smaller non –ve real value of t

- General Quadric Surface Normal
 - Use partial derivatives!

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

Mirror Reflection

- Compute reflected ray according to law of reflection on an ideal mirror
- Include contribution of this reflection in color

Mirror Reflection

Depth of recursion in reflection

Depth = 1

Depth = 2

Topics

- Ray Casting Basics
- Camera and Ray Generation
- Ray Object Intersection
 - Plane
 - Sphere
 - Triangle
 - General Quadric Surface
- Recursive Ray Tracing
 - Mirror Reflection
 - Refraction

Refraction

 Compute refracted ray – according to law of refraction

Base Case of Recursive Ray Tracing?

- A fixed no. of times (controlling recursion depth)
- When ray contribution becomes insignificant
- Both

Precision Issues

- What happens when
 - Origin is on an object?
 - Self shadowing!!
 - Self reflection!!
 - Grazing rays?
- Problem with floating-point approximation

The Evil ε

- In ray tracing, do NOT report intersection for rays starting at the surface (no false positive)
 - Because secondary rays requires epsilons

The Evil ε : Challenges

- Edges in triangle meshes
 - Must report intersection (otherwise not watertight)
 - No false negative

References

- Textbook : Fundamentals of Computer Graphics (3rd edition) by Peter Shirley, Steve Marschner et. al Chapter 4 (Extra Chapter 13) [May be insufficient]
- Computer Graphics MIT OpenCourseWare: Lecture 11, 12, 13 (Extra resource Lecture 14)
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/
- https://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx
- https://mrl.cs.nyu.edu/~dzorin/rend05/lecture2.pdf
- http://www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ray-tracing06.pdf
- Shirley P., M. Ashikhmin and S. Marschner, *Fundamentals of Computer Graphics*
- Shirley P. and R.K. Morley, Realistic Ray Tracing
- Jensen H.W., Realistic Image Synthesis Using Photon Mapping

Thank you ©