Math 591 Lecture 35

Thomas Cohn

11/30/20

Final remarks on orientation:

Recall: If M is oriented, $\exists \{(U_{\alpha}, \varphi_{\alpha})\}$, a positive atlas of M. This means all transition functions $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ have the determination nant of their Jacobian positive at every point, and the coordinate frames are positive.

Conversely, if M is an atlas satisfying he above property, then one can define an orientation of M by requiring the coordinate frames are positive.

In general, to show a manifold is orientable, exhibit such an atlas.

Ex: Check: The atlas of \mathbb{RP}^n used in homework has this condition, so it is orientable.

Observe: If $S \subset M$ is a codim-1 submanifold, and M is oriented, and there exists a continuous field of normal vectors on

$$S \ni p \mapsto \vec{n}_p \in T_p M$$
 s.t. $T_p M = T_p S \oplus \mathbb{R} \vec{n}_p$

then S is orientable, and the convention for its orientation is: a basis $\{b_1, \ldots, b_{n-1}\}$ of T_pS is positive iff $\{\vec{n}_p, b_1, \ldots, b_{n-1}\}$ is positive w.r.t. M.

TL;DR, put the normal vector first.

Ex: We can embed the Klein bottle in a dim-3 manifold M s.t. there exists a continuous \vec{n} , but M is non-orientable.

Partitions of Unity

This is a very technical, but very useful tool. We begin with point-set topology.

Defn: An indexed covering (not necessarily open) $\{S_{\alpha}\}_{{\alpha}\in A}$ of (a manifold) M (doesn't have to be a manifold) (with $S_{\alpha}\subset M$) is said to be locally finite iff every $p\in M$ has a neighborhood U s.t. $\{\alpha\in A\mid S_{\alpha}\cap U\neq\emptyset\}$ is finite. That is, every p is in only finitely-many S_{α} .

Thm: (Thm 1.15 in Lee) Any topological manifold is <u>paracompact</u>: every open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ has a countable, locally-finite refinement $\{V_i\}_{i\in\mathbb{N}}$. That is, $\forall i\in\mathbb{N},\ V_i$ is <u>open</u>, and $\exists \alpha\in A$ s.t. $V_i\subset U_{\alpha}$ and M is covered by $\{V_i\}_{i\in\mathbb{N}}$.

Proof: This proof is long and complex, but it only uses point-set topology. This is the first time we're using the fact that M is second-countable!

Observe: If \mathscr{B} is any basis of M, the V_i can be chosen to be in \mathscr{B} .

Defn: Let M be a smooth manifold. A partition of unity on M is an indexed family $\{\chi_{\alpha}\}_{{\alpha}\in A}$ of C^{∞} functions on M s.t.

- (1) $\{\sup(\chi_{\alpha})\}_{\alpha\in A}$ is a locally finite cover of M. (2) $\forall p\in M, \sum_{\alpha\in A}\chi_{\alpha}(p)=1\in\mathbb{R}$. (Note that this is a finite sum by (1).)

Thm: Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of M. Then $\exists \{\chi_{\alpha}\}_{{\alpha}\in A}$, a partition of unity, that is <u>subordinate</u> to $\{U_{\alpha}\}_{{\alpha}\in A}$, i.e., $\forall \alpha \in A, \, \operatorname{supp} \chi_{\alpha} \subseteq U_{\alpha}.$

Proof: We'll use paracompactness. (It may be easier to start by just thinking of a compact manifold.) Let \mathscr{B} be the set of normal coordinate balls in M; we define $B \subset M$ to be a normal coordinate ball in M iff there's a chart (U,ϕ) s.t. $\overline{B} \subset U$ and $\phi(B) = B_r(0) \subset \mathbb{R}^n$, the ball of radius r centered at 0 in \mathbb{R}^n , and also $\exists r' > r$ s.t. $B_r(0) \subset B_{r'}(0) \subset \phi(U)$.

We claim that \mathscr{B} is a basis of the topology of M. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be any open cover. Use the theorem on paracompactness: $\exists \{B_i\}_{i\in\mathbb{N}}$, a locally-finite refinement, and $\forall i\in\mathbb{N}, B_i$ is a normal coordinate ball. $\forall i\in\mathbb{N}$, let

$$\phi_i(B_i) = B_{r_i}(0) \subset \overline{B_{r_i}(0)} \subset B_{r'_i}(0)$$

and H_i be a function on $\operatorname{Im}(\phi_i)$ such that $H_i: \operatorname{Im}(\phi_i) \to \mathbb{R}$ is smooth, with

- $H_i > 0$ on $B_{r_i}(0)$ - $H_i = 0$ on $B_{r_i}(0)^{\complement}$

Thus, supp $H_i = \overline{B_{r_i}(0)}$.

Define $\psi_i \in C^{\infty}(M)$ by $\psi_i = H_i \circ \phi_i$ on dom ϕ_i , and 0 everywhere else. Then supp $\psi_i = \overline{B_i} \subset M$. We claim that $\{\overline{B_i}\}_{i \in \mathbb{N}}$. Observe that $\forall p, \sum_{i \in \mathbb{N}} \psi_i(p) > 0$, because $\{B_i\}_{i \in \mathbb{N}}$ forms a cover of M, and $\psi_i|_{B_i} > 0$.

Now, define

$$f_i = \frac{1}{\sum_{i \in \mathbb{N}} \psi_i} \psi_i$$

so that $\{\operatorname{supp} f_i\}_{i\in\mathbb{N}}=\{\overline{B_i}\}\$ is locally finite, and $\sum_{i\in\mathbb{N}}f_i=1,\ \forall p\in M.$ Then, we just have to fix it so that he indexing sets are the same as $\{U_\alpha\}_{\alpha\in A}$ by $\forall i\in\mathbb{N}$, pick $\alpha(i)\in A$ such that $B_i\subset U_{\alpha(i)}$ and $\forall \alpha\in A$, let

$$\chi_{\alpha} = \sum_{\substack{i \text{ s.t.} \\ \alpha(i) = \alpha}} f_i$$

(Note that $\chi_{\alpha} = 0$ if the sum is empty.)

We claim that $\left\{\operatorname{supp}\chi_{\alpha(i)}\right\}_{i\in\mathbb{N}}$ is still locally finite. This follows from $\left\{\operatorname{supp}f_i\right\}_{i\in\mathbb{N}}$ being locally finite. \square

There are many applications of partitions of unity!

Ex: Existence of C^{∞} sections of any vector bundle.

Say $E \to M$ is a vector bundle of rank r. Then there exist $\{(U_\alpha, f_\alpha)\}$ local trivializations:

Let $\{\chi_{\alpha}\}$ be a partition of unity on M subordinate to $\{U_{\alpha}\}$. Then let $s = \sum_{\alpha \in A} \chi_{\alpha} \cdot s_{\alpha}$ (we interpret $\chi_{\alpha} \cdot s_{\alpha}$ as a C^{∞} section on M).

The main application of partitions of unity is integrating forms.

Defn: Let M be an oriented n-dimensional manifold. Let $\mu \in \Omega_0^n(M)$ be a top degree form with compact support. Let $\{\phi_\alpha\}$ be a positive atlas, and $\{\chi_\alpha\}$ a subordinate partition of unity (i.e. supp $\chi_\alpha \subseteq \text{supp } \phi_\alpha$, $\forall \alpha$). Then we define

$$\int_{M} \mu = \sum_{\alpha} \int (\phi_{\alpha}^{-1})^{*} (\chi_{\alpha} \mu)$$

We have to check that the right hand side is independent of choice of coordinates. We'll do this next time...