Relation entre variables

Analyse de régression

variables avec lien de causalité ex. variable indépendante (x) et dépendante (y)

Analyse de corrélation

variable interdépendantes, sans hiérarchie

Régression

En deux mots

Modèles linéaires

Régresseur

ligne théorique $y = a + b_1 x_1 + \cdots + b_n x_n$

Modèle

observations $y_i = a + b_1 x_{1,i} + \cdots + b_n x_{1,n} + \epsilon_i$

Méthode des moindres carrés

minimiser la somme quadratique des déviations des observations aux prédictions

$$\sum_{i} (y_i - y)^2$$

Résidus

$$e_i = y_i - y$$

Résidus

$$e_i = y_i - y$$

Figure 7.9: Sample data with their best fitting lines (top row) and their corresponding residual plots (bottom row).

Coefficient de corrélation (R)

$$R^{2} = \frac{\sum_{i} (y_{i,m} - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

 $R^2 = rac{\sum_i (y_{i,m} - \bar{y})^2}{\sum_i (y_i - \bar{y})^2}$ fraction de la variation de y expliquée par la régression

Coefficient de corrélation (R)

$$R^{2} = \frac{\sum_{i} (y_{i,m} - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

 $R^2 = rac{\sum_i (y_{i,m} - ar{y})^2}{\sum_i (y_i - ar{y})^2}$ fraction de la variation de y expliquée par la régression

$$0 \le R^2 \le 1$$

Regardez les données avant d'interpreter R

Quartet d'Anscombe

4 datasets très différents, mais avec même propriétés statistiques de base

Prédictions

Erreur d'échantillonnage

Erreur de prediction

PREDICTION

Erreur de prediction

