2007—2008 学年第二学期大学物理期末试题

班级	学号	姓名	成绩	
一 填空是	延 (共 55 分)			
1 (3 分) 一	空题答案写在卷面扩 ·质点沿 x 轴作直线式 点在 $t=0$ 时刻的速度 速度为零时,该质点	运动,它的运动学 $ar{v}_0 = $		-t ³ (SI),则
量是时间的 在下列两种 (1) 开始	个相互作用的物体 A 函数,表达式为 P_A 情况下,写出物体 B 台时,若 B 静止,则台时,若 B 的动量为	$=P_{0}-bt$,式中 B B的动量作为时间 $BP_{B1}=$	<i>P</i> ₀ 、 <i>b</i> 分别为正值 函数的表达式: ; 。	
的小球,开清水平面上的距离达到作 圆周	根长为 <i>l</i> 的细绳的一始时绳子是松弛的,一直线运动,该直约 <i>l</i> 时,绳子绷紧从而运 动 时 的 动 自	小球与 O 点的距离 战垂直于小球初始位 使小球沿一个以 C 能 E_K 与 初 动	离为 h。使小球以某 位置与 O 点的连线 D 点为圆心的圆形转	某个初速率沿该光 。当小球与 <i>O</i> 点 仇迹运动,则小球
用下质点的 (1) 力 F (2) 力 F	一个力 F 作用在质量运动学方程为 $x = 3t$ 的冲量大小 $I =$ 对质点所作的功 W 长为 I ,质量为 m 的	$-4t^2+t^3$ (SI)。在 $=\underline{\qquad}$	0 到 4 s 的时间间 。	隔内,

大学物理 A1 共8页 第1页 m

m O 2*m*

\overline{x} (小球的尺寸不计)。棒可绕通过棒中点 o 的水平轴在铅直平面内自由转动,如图
所示。则由两个小球和细棒组成的这一刚体相对于转轴 0 轴的转动惯量 $J=$
。若棒从水平位置由静止开始转动,则该刚体在水平位置时的角加速度
$\alpha=$; 该刚体通过铅直位置时的角速度
$\omega =$ \circ
6(5分) 一长为 l 、重 W 的均匀梯子,靠墙放置,如 B/W
图。梯子下端连一劲度系数为 k 的弹簧. 当梯子靠墙竖直
放置时,弹簧处于自然长度。墙和地面都是光滑的. 当梯
子依墙而与地面成 $ heta$ 角且处于平衡状态时,
(1) 地面对梯子的作用力的大小为,
(2) 墙对梯子的作用力的大小为,
(3) W 、 k 、 l 、 θ 应满足的关系式为。
7(3分) $A \times B \times C$ 三个容器中皆装有理想气体,它们的分子数密度之比为 $n_A : n_B :$
n_C =4:2:1,而分子的平均平动动能之比为 $\overline{w_A}$: $\overline{w_B}$: $\overline{w_C}$ =1:2:4,则它们的压
强之比 $p_A:p_B:p_C=$ 。
ELECT
8 (5 分) 用总分子数 N 、气体分子速率 v 和速率分布函数 $f(v)$ 表示下列各量:
(1) 速率大于 v_0 的分子数=;
(2) 速率大于 v_0 的那些分子的平均速率=;
(3) 多次观察某一分子的速率,发现其速率大于 v_0 的概率=。
9(3分)一定量的某种理想气体在等压过程中对外作功为 200 J。若此种气体为单原
子分子气体,则该过程中需吸热 J; 若为双原子分子气体,则需吸热
J。
10 (4 分) 熵是
理想气体经历一个等温膨胀过程,它的熵将 。(填入:增加,

减少,不变。)

11(3分) 一质点作简谐振动。其振动曲线如图所示。根据此图,它的周期 $T = _____$,用余弦函数描述时初相 $\phi = _____$ 。

12(4 分)如图所示,假设有两个同相的相干点光源 S_1 和 S_2 ,发出波长为 λ 的光。A 是它们连线的中垂线上的一点。若在 S_1 与 A 之间插

入厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的相位差 $\Delta \phi =$ _____。若已知 $\lambda =$ 500 nm,n=1.5,A 点恰为第四级明纹中心,则 e= _____nm。(1 nm = 10^{-9} m)

13 (3分) 已知在迈克耳孙干涉仪中使用波长为λ 的单色光。在干涉仪的可动反射 镜移动距离 d 的过程中,干涉条纹将移动_____条。

14 (3 分)用波长为 λ 的单色平行光垂直入射在一块多缝光栅上,已知光栅常数 d=3 μ m,缝宽 a=1 μ m,则在单缝衍射的中央明条纹中共有_____条谱线(主极大);该光栅缺级的主极大级次为 k=

15(3分)一束自然光垂直穿过两个偏振片,两个偏振片的偏振化方向成45°角。已知通过此两偏振片后的光强为 *I*,则入射至第二个偏振片的线偏振光强度为。

二 计算题(共45分)

请将计算题答案写在答题本上。

- 1. (10 分) 用波长为 600 nm 的单色光垂直入射到宽度为 a = 0.10 mm 的单缝上,来观察夫琅禾费衍射图样。若已知透镜焦距 f = 1.0 m,屏在透镜的焦平面处。求:
 - (1) 中央衍射明条纹的宽度 Δx_0 ;
 - (2) 屏幕上第二级暗纹离中央明纹中心的距离x2。

2.(10分)唱机的转盘可绕着通过盘心的固定竖直轴转动,如图所示。将唱片放到转动的唱盘上去,它会受到转盘摩擦力作用而随转盘转动。已知唱片质量为m,半径为R,

可被看成均匀薄圆盘,且唱片与转盘之间的滑动摩擦系数为 μ_k 。若转盘原来以角速度 ω 匀速转动,唱片刚放上去时它受到的摩擦力矩是多大?唱片达到角速度 ω 需要多长时间?

 $3(10 \, f)$ 一列平面简谐波以 u=0.5m/s 的速度沿 x 轴的负向传播。已知 t=2s 时的波形如图,求这列平面简谐波的波函数。

- 4 (10 分)如图所示,在绝热刚性容器中有一可无摩擦移动且不漏气的极薄导热隔板,将容器分为 A、B 两部分。A、B 中分别有 1 mol 的氦气和 1 mol 的氦气,它们可被视为刚性分子理想气体。已知初态氦气和氦气的温度分别为 $T_A=300\,\mathrm{K}$ 、 $T_B=400\,\mathrm{K}$,压强 $p_A=p_B=1\,\mathrm{atm}$ 。忽略导热板的质量并不计其体积的变化,求:
- (1) 整个系统达到平衡时两种气体的温度。
- (2) 整个系统达到平衡时两种气体压强。
- (3) 氮气末态与初态的熵差。

5 (5 分)已知在同一直线上两个频率不同的简谐振动

 $y_1 = A\cos(\omega_1 t + \varphi) = y_2 = A\cos(\omega_2 + \varphi)$

 $t+\varphi$)

的合振动为

$$y = y_1 + y_2 = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}\right)t \cdot \sin\left(\frac{\omega_1 + \omega_2}{2}t + \varphi\right)$$

当两个振动频率都较大且相近时,合振动会产生拍的现象。

将两个正弦波信号发生器的输出端各接一个扬声器,并在这两个扬声器之间放置一个麦克风。已知两个信号发生器发出的信号的频率相近,将麦克风的输出信号经放大接到示波器后,观察到如图所示图形。求(1)图示合振动的拍频 (2) 这两个信号发生器发出的信号频率各为多大?

学习权益部整理

参考答案

一 填空题 (共 55 分)

1 (3分)
$$5\vec{i}$$
 m/s, $17\vec{i}$ m/s

$$2(4 分)$$
 bt , $-P_0 + bt$

3 (3分)
$$h^2/l^2$$
,

5
$$(5 \%)$$
 $J = \frac{5}{6}ml^2$, $\alpha = \frac{3g}{5l}$, $\omega = \sqrt{\frac{6g}{5l}}$

6 (5 分)
$$W$$
, $kl\cos\theta$ 或 $\frac{W}{2}\cot\theta$, $W=2kl\sin\theta$

7 (3
$$\%$$
) p_A : p_B : $p_C = 1:1:1$

8 (5分)
$$\int_{v_0}^{\infty} Nf(v) dv , \int_{v_0}^{\infty} vf(v) dv / \int_{v_0}^{\infty} f(v) dv , \int_{v_0}^{\infty} f(v) dv$$

10(4分)大量微观粒子热运动所引起的无序性(或热力学系统的无序性),增加。

11 (3 分) 3.43 s ,
$$-2\pi/3$$

12
$$(4 \%) 2\pi (n-1) e / \lambda, \quad 4 \times 10^3$$

14
$$(3 \%)$$
 5, $\pm 3m$ $(m=1, 2, 3, \cdots)$

二 计算题(共 45 分)

1. (10分)

解: (1) 对于第一级暗纹,有 $a \sin \varphi_1 \approx \lambda$

因
$$\varphi_1$$
很小,故 $\tan \varphi_1 \approx \sin \varphi_1 = \lambda/a$ 3分 故中央明纹宽度 $\Delta x_0 = 2f \operatorname{tg} \varphi_1 = 2f \lambda/a = 1.2 \operatorname{cm}$ 3分 2分 2分

$$x_2 = f \operatorname{tg} \varphi_2 \approx f \sin \varphi_2 = 2f \lambda / a = 1.2 \operatorname{cm}$$

2. (10分)

解:
$$dS = 2\pi r d r$$
 $dm = \frac{m}{\pi R^2} dS$

$$dM = rdf = r\mu_k dmg = r\mu_k g \frac{m}{\pi R^2} dS$$

$$M = \int dM = \int_{0}^{R} g\mu_{k} \frac{m}{\pi R^{2}} 2\pi r^{2} dr = \frac{2}{3} \mu_{k} mgR$$

$$\alpha = \frac{M}{J} = M / \left(\frac{1}{2} mR^2\right) = \frac{4\mu_k g}{3R}$$

 $\omega = \omega_0 + \alpha t = \alpha t$

$$t = \frac{\omega}{\alpha} = \frac{3R\omega}{4\mu_k g}$$

3(10分)

解:
$$A = 0.5$$
m, $\lambda = 2$ m

 $y = A\cos(\omega t + kx + \varphi_0)$

$$k = \frac{2\pi}{\lambda} = \pi$$

$$\omega = ku = 0.5\pi$$
 1分

$$\varphi_0 = \pi/2$$

$$y = 0.5\cos(0.5\pi t + \pi x + \frac{\pi}{2})$$

4 (10分)

解: (1) 将氦气和氦气作为一个系统,因为容器是绝热刚性的,所以系统进行的过程与外界没有 热交换,系统对外不作功。由热力学第一定律可知,系统的总内能始终不变,即

$$C_{VA}(T - T_A) + C_{VB}(T - T_B) = 0$$
 2 $\%$

所以

$$T = \frac{C_{\text{VA}}T_{\text{A}} + C_{\text{VB}}T_{\text{B}}}{C_{\text{VA}} + C_{\text{VB}}} = \frac{\frac{3}{2}RT_{\text{A}} + \frac{5}{2}RT_{\text{B}}}{\frac{3}{2}R + \frac{5}{2}R} = 362.5 \text{ K}$$
1 \(\frac{\partial}{2}\)

(2) 设 $A \times B$ 两部分初态的体积为 $V_A \times V_B$, 末态的体积为 $V_A' \times V_B'$, 则有

$$V_{\rm A}+V_{\rm B}=V_{\rm A}'+V_{\rm B}'$$

由状态方程

$$V_{\mathrm{A}} = \frac{RT_{\mathrm{A}}}{p_{\mathrm{A}}}$$
, $V_{\mathrm{B}} = \frac{RT_{\mathrm{B}}}{p_{\mathrm{B}}}$, $V_{\mathrm{A}}' = V_{\mathrm{B}}' = \frac{RT}{p}$

可得

$$\frac{RT_{A}}{p_{A}} + \frac{RT_{B}}{p_{B}} = 2\frac{RT}{p}$$
2 \Re

所以

$$p = \frac{2T}{T_A + T_B} p_A = 1.04 \text{ atm}$$
 1 $\%$

(3) 由理想气体的克劳修斯熵变公式

大学物理 A1 共8页 第7页

$$\Delta S = \nu C_{\text{V,m}} \ln \frac{T_2}{T_1} + \nu R \ln \frac{V_2}{V_1} = \nu C_{\text{p,m}} \ln \frac{T_2}{T_1} + \nu R \ln \frac{p_1}{p_2}$$
2 \(\frac{1}{2}\)

氮气熵变

$$\Delta S = C_{\text{pB}} \ln \frac{T}{T_{\text{B}}} + R \ln \frac{p_{\text{B}}}{p} = \frac{7}{2} \times 8.31 \times \ln \frac{362.5}{400} + 8.31 \times \ln \frac{1}{1.04} = -3.19 \text{ J/K}$$
 2 \(\frac{1}{2}\)

5 (5分)

解: 由图见拍的周期为 $120-60=60\times10^{-3}$ s,

则有拍频

$$f_{\text{fi}} = 1/(60 \times 10^{-3}) = 16.6 \text{Hz}$$

由图可以看出80-40之间13次振动

故合振动振幅变化的周期为

$$T = \frac{(80 - 40) \times 10^{-3}}{13}$$
相应的频率为 $1/(\frac{40}{13} \times 10^{-3}) = 325$ Hz 3 分

由题中已给出的振动合成公式得

$$\frac{f_1 + f_2}{2} = 325$$
Hz , $\frac{f_1 - f_2}{2} = \frac{1}{2} \times 16.6 = 8.4$ Hz

联立以上两式求出,每个话筒的频率分别是

$$f_1 = 325 + 8.4 = 333.4$$
Hz
 $f_2 = 325 - 8.4 = 316.6$ Hz

2分

学习权益部整理