P525/2
CHEMISTRY
Paper 2
(Theory)
July/August.2024
2 ½ hours

TORORO ARCHDIOCESE EXAMINATIONS BOARD

Uganda Advanced Certificate of Education MOCK EXAMINATIONS 2024

CHEMISTRY

Paper 2

(Theory)

2 hours 30 minutes.

INSTRUCTIONS TO CANDIDATES:

Answerfive questions including three questions from section A and any two from section B.

Write the answers in the answer booklet(s) provided.

Begin each question on a fresh page.

Mathematical tables and graph papers are provided. Non- programmable scientific electronic calculators may be used.

Use equations where necessary to illustrate your answer.

Where necessary use the following:

[H = 1; C = 12; N = 14; O = 16]

Turn Over

SECTION A; (60 MARKS)

Answer three questions from this section.

Any additional question answered will **not** be marked.

1. (a)(i) State Raoult's law.

(1 mark)

(ii) Explain what is meant by an ideal solution.

(2 marks)

- (b) Two pure liquids **A** and **B** have vapour pressures of 1.7 x 10⁴Nm⁻² and 3.5 x 10⁴ Nm⁻² respectively at 25°C. Given that a mixture of **A** and **B** obeys Raoult's law, calculate the mole fraction of **A** in a mixture of **A** and **B** which has a total vopour pressure of 2.78 x 10⁴ Nm⁻² at 25°C.
- (c) An acid, **Q**, and water are completely miscible. The boiling points of a mixture of **Q** and water at different compositions of **Q** are given in the table below.

 (4 marks)

Boiling point/°C					(**************************************		
	118	115	110	106	103	100	
Composition of \mathbf{Q} (liquid)	100	000					
	100	90.0	70.0	50.0	30.0	0	
Composition of \mathbf{Q} (vapour)	100						
		84.0	54.0	32.0	16.0	0	
					1		

- (i) On the same axes, Plot boiling point/Composition curves for mixtures of \mathbf{Q} and water. (4 marks)
- (ii) Which of the two liquids is more volatile? Give a reason for your answer. (2 marks)
- (iii) Determine the composition of the vapour produced when a mixture containing 40% water is boiled. (2 marks)
- (iv) Using the diagram, describe how pure liquid acid \mathbf{Q} can be obtained from a mixture containing 50% \mathbf{Q} . (5 marks)

2. The structural formulae of the organic compound Y and Z are shown below.

Y

Z

(a) Describe the reactions of **Y** and **Z** with nitric(III) acid. (Your answer should include observations and equations for the reaction.)

(5marks)

- (b)(i) Write equation(s) to show how **Z** can be prepared from nitrobenzene. (Your answer should include reagents and conditions) (3marks)
- (ii) **Z** can be used in the manufacture of a zo-dye, Phenylazo -2 naphthol.

Outline the steps you would follow in preparing the azo-dye starting from **Z**. (Your answer should include observations and equations) (4 marks)

(c) A polymer X formed by loss of water molecules has the structure.

When 5 x 10^{-3} moles of polymer X were completely hydroysed, 13.1g of the monomers were obtained.

- (i) Write the structure and name of the monomer. (2 marks)
- (ii) State thetype of polymerization involved in the formation of the polymer. (1 mark)
- (iii) Calculate the value of **n** and the relative formula mass of the polymer. (4marks)
- (iv) Give one use of the polymer X. (1 mark)

3

			7 10/01			
3. (a) (b)	What is meant by the term weak acid?	(1 mark)				
	One of the factors that affect the pH of weak acids is the degree of					
	ionization.					
	(i)	Define the term degree of ionization.	(1 mark)			
	(ii)	State and explain the other two factors.	(4 marks)			
(c)(i)	0.1M benzoic acid. Calculate the pH of the resultant solution. State any					
		(Ka for benzoic acid = 6.4×10^{-5} moldm ⁻³).	(4marks)			
(ii)	State and explain what would happen to the pH of the resultant					
		solution in c(i) above when a small amount of dilute hydr				
		was added to it.	(3 marks)			
(d)		To $50cm^3$ of a 0.02M benzoic acid was added an equal volume of 0.02M sodium hydroxide solution.				
	(ii)	Calculate the pH of the resultant solution.	(5 marks)			
	(ii)	Explain your answer in (d) (i)	(3 marks)			
4. (a)		Describe one general method for preparing the halogens (fluorine) in the laboratory and write an equation for the re	excluding eaction.			
			(4 ½ marks)			
(b)	Describe the reactivity of fluorine, chlorine and bromine v	vith:				
		(i) water	(6marks)			
		(ii) concentrated hot sodium hydroxide solution.	(6marks)			
	(your description should include equations for reac					
(c)	How would you distinguish between sodium bromide and	sodium				
		iodide, given dilute nitric acid, bleaching nowder and tetra				

chloromethane?

(3 ½ marks)

SECTION B (40 MARKS)

Answer any two questions from this section.

Any additional question(s) answered will not be marked.

- 5. A saturated organic compound G contains 72% carbon, 12% hydrogen (a) and the rest oxygen. (2marks) Determine the empirical formula of G. (i) Given that the vapour density of ${\bf G}$ is 50, determine the (ii) (2marks) molecular formula of G. G is neutral to litmus and reacts with sodium metal to form bubbles of (b) (2marks) hydrogen gas and compound T. Identify G and T. Write the equation and suggest a mechanism for the reaction between: (c) (3marks) **G** and hot orthophosphoric acid. (i) (3½ marks) (ii) G and ethanoyl chloride. G was heated with acidified chromium(VI) oxide. (d) State what was observed and write equation for the reaction. (i) (2marks)
 - (ii) the organic product from d(i) was treated with semi-carbazide in dilute sulphuric acid. Write equation for the reaction and suggest the mechanism for the reaction. (5 ½ marks)
- 6. (a) Explain what is meant by the terms;
 - (i) Ionisation energy. (2marks) (ii) Atomisation energy (2marks)
 - (b) Draw a complete, well labeled energy diagram for the formation of potassium bromide. (4marks)
 - (c) Using the information supplied below, calculate the lattice energy of potassium bromide. (3marks)

Reaction	△H/kJmol ⁻¹	
$K_{(s)} + \frac{1}{2} Br_{2(l)} \rightarrow KBr_{(s)}$	-392	
$K_{(s)} \rightarrow K_{(g)}$	+90	
$K_{(g)} \rightarrow K^{+}_{(g)} + e$	+420	
$Br_{2(l)} \rightarrow 2Br_{(g)}$	+224	
$Br_{(g)} + e \rightarrow Br_{(g)}$	-342	

(d) The values of the lattice energies of the potassium halides are shown below.

Compound	KF	KCI	KI	
Lattice energy/kJmol ⁻¹	-813	-710	-643	

State the trend and explain the variation in the lattice energies of the potassium halides (4 marks)

- (e) The following are some thermochemical data.
- (I) $4NH_{3(g)} + 3O_{2(g)} \rightarrow 2N_{2(g)} + 6H_2O_{(i)}$ -153kJ
- (II) $N_2O_{(g)} + H_{2(g)} \rightarrow N_{2(g)} + H_2O_{(i)}$ -367kJ
- (III) $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_{2}O_{(i)}$ -286kJ
- (i) Calculate the enthalpy change for the reaction: $2NH_{3(g)} + 3N_2O_{(g)} \rightarrow 4N_{2(g)} + 3H_2O_{(l)}$ (3 ½ marks)
- (ii) Is the reaction in e(i) above feasible or not? Give a reason for your answer. (1½ marks)
- 7. Explain each of the following observations.
 - (a) Lead(IV) oxide does not react with dilute hydrochloric acid but reacts with cold concentrated hydrochloric acid to form a bright yellow liquid.

 (4marks)
 - (b) Ethanol can be dehydrated by concentrated sulhuric acid at 170°C whereas 2-methyl propan-2-ol can be dehydrated by the same acid at 100°C. (3 ½ marks)

6

- (c) 0.1M urea solution and 0.2M ethanoic acid solution have the same freezing point when benzene is used as a solvent. (3marks)
- A mixture of water and bromobenzene boils at 98.6°C whereas the boiling points of pure water and bromobenzene are 100°C and 150°C respectively.

 (3½ marks)
- (e) When aqueous sodium hydroxide is added to lead(II) nitrate solution, a white precipitate is formed which dissolves in excess alkali to form a colourless solution. When ammonia solution is used, a white precipitate is formed insoluble in excess. (6marks)
- 8. (a) (i) Name and write the formula of the principal ore of aluminium. (1mark)
 - (ii) Describe how aluminium is extracted from the ore in a(i) above.
 [Your answer should include equations. Diagram is not required] (8marks)
 - (b) With reference to aluminium oxide, explain the term **amphoteric** oxide.

[Write appropriate equations]

(2marks)

- (c) Explain, giving necessary equations, why:
 - (i) solutions of aluminium nitrate are acidic.
- (2½ marks) trongly soapy
- (ii) aluminium utensils should not be washed in strongly soapy solutions. (2marks)
- (d) Dilute sodium hydroxide solution was added dropwise to aluminium nitrate solution until in excess in a test tube.
 - (i) State what was observed.

(1½ marks)

(ii) Write equations for the reaction(s) taking place.

(3marks)

END