Exercting (%) la courbe représentative de la fonction g définie sur $]-\infty$; 3[par $f(x)=rac{3x-4}{2x-6}$

- 1. Montrer que $g(1)=rac{1}{4}$
- 2. En déduire les coordonnées d'un point appartenant à la courbe (\mathcal{C}) .
- 3. Montrer que le point A(-2;1) appartient à la courbe (\mathcal{C}) .
- 4. Montrer que le symétrique de A par rapport à l'origine O du repère appartient à la courbe (\mathcal{C}) .
- 5. Peut-on en déduire que la fonction g est impaire ? Expliquer.
- 6. Déterminer les coordonnées du point B d'abscisse -1 appartenant à (\mathscr{C}) .
- 7. La fonction g est-elle paire ou impaire sur $[-2\,;\,2]$? Justifier.
- 8. Montrer que la courbe (\mathscr{C}) coupe l'axe des abscisses en un point d'abscisse $\frac{4}{3}$.
- 9. Déterminer les coordonnées du point d'intersection de la courbe (\mathscr{C}) avec l'axe des ordonnées.
- 10. Dresser le tableau de valeurs de la fonction g sur $[-2\ ;\ 2]$ avec un pas régulier de 1.
- 11. Tracer sur $[-2\,;\,2]$ la courbe (\mathscr{C}) dans un repère orthonormé avec pour unité graphique $1\,\mathrm{cm}$.
- Notons (\mathscr{C}) la courbe représentative de la fonction f définie sur $]-3;+\infty[$ par $f(x)=rac{7x+6}{x+3}.$
 - 1. Montrer que le point $A\left(2\;;\;4\right)$ appartient à $\left(\mathscr{C}\right)$.
 - 2. Montrer que le point $B\left(1\,;\,3
 ight)$ n'appartient pas à $(\mathscr{C}).$
 - 3. Déterminer les coordonnées du point C d'abscisse -1 appartenant à (\mathscr{C}) .
 - 4. Déterminer les coordonnées du point D d'ordonnée -8 appartenant à (\mathscr{C}) .
 - 5. En déduire que la fonction n'est ni paire ni impaire.
 - 6. Déterminer les coordonnées du point d'intersection de la courbe avec l'axe des ordonnées.
 - 7. Déterminer les coordonnées du point d'intersection de la courbe avec l'axe des abscisses.
 - 8. Dresser le tableau de valeurs de la fonction f sur $[-1\ ;\ 3]$ avec un pas régulier de 1.
 - 9. Tracer la courbe (\mathscr{C}) dans un repère orthonormé avec pour unité graphique $1\,\mathrm{cm}$.