Matemática Discreta I - MATA42 - Ila Unidade

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 09/04/2019

Teoria de Conjuntos - Produto Cartesiano

DEFINIÇÃO: (Par Ordenado)

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$. Denominamos PAR ORDENADO, e indicamos por $\langle a, b \rangle$ todos os pares tais que $a \in A$ e $b \in B$, respeitando a ordem que os elementos a e b aparecem; ou seja, a é o primeiro elemento do par e b é o segundo.

OBSERVAÇÃO.1: Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$.

Então, em geral, $\langle a, b \rangle \neq \langle b, a \rangle$.

OBSERVAÇÃO.2: Sejam os conjuntos $A, B, C, D \in \mathcal{P}(\mathcal{U})$. Então:

$$\langle a,b\rangle = \langle c,d\rangle \Leftrightarrow (a=c)e(b=d); a\in A, b\in B, c\in C, d\in D.$$

Teoria de Conjuntos - Produto Cartesiano

DEFINIÇÃO: (Produto Cartesiano)

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$. Dizemos que o conjunto $A \times B := \{\langle a, b \rangle \mid a \in A \in b \in B\}$ é o PRODUTO CARTESIANO (ou PRODUTO CRUZADO) entre os conjuntos $A \in B$; ou seja, $A \times B$ é o conjunto de todos os pares ordenados $\langle a, b \rangle$ com $a \in A$ e $b \in B$.

Exemplos:

```
Sejam A := \{1, 2, 3\} e B := \{4, 5\}. Então; A \times B := \{\langle 1, 4 \rangle, \langle 1, 5 \rangle, \langle 2, 4 \rangle, \langle 2, 5 \rangle, \langle 3, 4 \rangle, \langle 3, 5 \rangle\} B \times A := \{\langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle, \langle 5, 1 \rangle, \langle 5, 2 \rangle, \langle 5, 3 \rangle\}
```

Teoria de Conjuntos - Produto Cartesiano

OBSERVAÇÃO.3: Seja o conjunto $A \in \mathcal{P}(\mathcal{U})$. Então, $A \times \emptyset = \emptyset \times A = \emptyset$.

D]: Sabemos que $A \times \emptyset := \{ \langle a, b \rangle \mid a \in A \text{ e } b \in \emptyset \}$; porém, o conjunto \emptyset não possui elementos, então não existe o elemento b em \emptyset ; portanto $A \times \emptyset = \emptyset$.

Observação.4: Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então,

- (i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$;
- (ii) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- (iii) $A \times (B C) = (A \times B) (A \times C)$.

Relações

DEFINIÇÃO: (Relações)

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$. Dizemos que \mathcal{R} é uma RELAÇÃO (binária) de A para B(ou de A em B) se, e somente se,

 $\mathcal{R} \subseteq A \times B := \{ \langle x, y \rangle \mid x \in A \text{ e } y \in B \}.$

Podemos denotar por $x\mathcal{R}y$ o par $\langle x,y \rangle \in \mathcal{R}$

($l\hat{e}$ -se: x está \mathcal{R} -relacionado a y)

OBSERVAÇÃO.5: Seja o conjunto $A \in \mathcal{P}(\mathcal{U})$. Dizemos que \mathcal{R} é uma ENDORELAÇÃO ou (Auto-relação) em A se, e somente se, $\mathcal{R} \subseteq A \times A := \{\langle x, y \rangle \mid x \in A \text{ e } y \in A\}.$

Relações

DEFINIÇÃO: (Domínio e Imagem)

Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$ e \mathcal{R} uma RELAÇÃO em $A \times B$. Dizemos que;

- (i) O DOMÍNIO DE \mathcal{R} é o conjunto; $Dom(\mathcal{R}) := \{x \in A \mid \langle x, y \rangle \in \mathcal{R} \text{ para algum } y \in B\}.$
- (ii) A IMAGEM DE \mathcal{R} é o conjunto; $Im(\mathcal{R}) := \{ y \in B \mid \langle x, y \rangle \in \mathcal{R} \text{ para algum } x \in A \}.$

OBSERVAÇÃO.5: Os conjuntos $Dom(\mathcal{R})$ e $Im(\mathcal{R})$ são subconjuntos de A e B, respectivamente; ou seja, $Dom(\mathcal{R}) \subseteq A$ e $Im(\mathcal{R}) \subseteq B$; onde B é o CONTRA-DOMÍNIO da relação.

Relações

Exemplo.1:

Sejam $A:=\{1,2,3\}$ e $B:=\{4,5\}$. Então; $A\times B:=\{\langle 1,4\rangle\,,\langle 1,5\rangle\,,\langle 2,4\rangle\,,\langle 2,5\rangle\,\langle 3,4\rangle\,,\langle 3,5\rangle\}$ e seja, a relação $\mathcal{R}\subseteq A\times B$; $\mathcal{R}:=\{\langle 1,4\rangle\,,\langle 2,5\rangle\,,\langle 3,5\rangle\}$ Pela representação no diagrama, temos:

Exemplo.2:

Seja $A:=\{1,2,3\}$, Então; $A\times A:=\{\langle 1,1\rangle\,,\langle 1,2\rangle\,,\langle 1,3\rangle\,,\langle 2,1\rangle\,,\langle 2,2\rangle\,,\langle 2,3\rangle\,\langle 3,1\rangle\,,\langle 3,2\rangle\,,\langle 3,3\rangle\}$ e seja, a relação $\mathcal{R}\subseteq A\times A$; tal que, $\mathcal{R}:=\{\langle x,y\rangle\ |\ x>y\}=\{\langle 2,1\rangle\,,\langle 3,1\rangle\,,\langle 3,2\rangle\}$ Neste caso, o conjunto domínio $Dom(\mathcal{R})=\{2,3\}$ e o conjunto imagem $Im(\mathcal{R})=\{1,2\}.$

DEFINIÇÃO.1: (Relação Reflexiva)

Seja $\mathcal R$ uma RELAÇÃO em A. Dizemos que $\mathcal R$ é uma RELAÇÃO REFLEXIVA se, e somente se, $\forall x \in A$; $\langle x, x \rangle \in \mathcal R$; ou seja, $\nexists x$ tal que $x \in A$ e $\langle x, x \rangle \notin \mathcal R$.

Exemplo: $\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = y \}$

DEFINIÇÃO.2: (Relação Irreflexiva)

Seja $\mathcal R$ uma RELAÇÃO em A. Dizemos que $\mathcal R$ é uma RELAÇÃO IRREFLEXIVA se, e somente se, $\forall x \in A; \langle x, x \rangle \notin \mathcal R$; ou seja, $\nexists x$ tal que $x \in A$ e $\langle x, x \rangle \in \mathcal R$.

Exemplo: $\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x \neq y \}$

Observação:

Uma relação $\mathcal R$ reflexiva não pode ser ao mesmo tempo irreflexiva. Todavia, se uma relação $\mathcal R$ não for reflexiva não podemos afirmar que esta é irreflexiva; do mesmo modo, se uma relação $\mathcal R$ não for irreflexiva não podemos afirmar que esta é reflexiva.

DEFINIÇÃO.3: (Relação Simétrica)

Seja $\mathcal R$ uma RELAÇÃO em A. Dizemos que $\mathcal R$ é uma RELAÇÃO SIMÉTRICA se, e somente se, $\forall x,y\in A; \langle x,y\rangle\in \mathcal R\Rightarrow \langle y,x\rangle\in \mathcal R;$ ou seja,

 $\exists x, y \text{ tais que } x, y \in A \text{ e } \langle x, y \rangle \in \mathcal{R} \text{ e } \langle y, x \rangle \notin \mathcal{R}.$

```
Exemplo: \mathcal{R} = \{\langle x,y \rangle \in \mathbb{R} \times \mathbb{R} \mid x=y \} Observação: Seja A = \{1,2\} e as seguintes relações em A: \mathcal{R} = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} "reflexiva e simétrica"; \mathcal{S} = \{\langle 1,1 \rangle, \langle 2,2 \rangle, \langle 1,2 \rangle\} "reflexiva e assimétrica"; \mathcal{T} = \{\langle 2,1 \rangle, \langle 1,2 \rangle\} "irreflexiva e simétrica".
```

Definição.4: (Relação Anti-Simétrica)

Seja $\mathcal R$ uma RELAÇÃO em A. Dizemos que $\mathcal R$ é uma RELAÇÃO ANTI-SIMÉTRICA se, e somente se, $\forall x,y\in A; \langle x,y\rangle\in \mathcal R$ e $\langle y,x\rangle\in \mathcal R\Rightarrow x=y;$ ou seja, $\nexists x,y$ tais que $x,y\in A$ e $\langle x,y\rangle\in \mathcal R$ e $\langle y,x\rangle\in \mathcal R$ e $x\neq y$.

```
Exemplo: \mathcal{R} = \{\langle x,y \rangle \in \mathbb{N} \times \mathbb{N} \mid x=y \}
Observação: Seja A = \{1,2\} e as seguintes relações em A: \mathcal{R} = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} "reflexiva, simétrica e anti-simétrica" ; \mathcal{S} = \{\langle 1,1 \rangle, \langle 2,2 \rangle, \langle 1,2 \rangle\} "reflexiva, assimétrica e anti-simétrica" ; \mathcal{T} = \{\langle 2,1 \rangle, \langle 1,2 \rangle\} "irreflexiva, simétrica e não é anti-simétrica".
```

Observação:

Os termos "simétrico" e "anti-simétrico" não são opostos. Porém, o termo "assimétrico" é oposto ao "simétrico". Então, uma relação $\mathcal R$ simétrica pode ser anti-simétrica, mas não pode ser assimétrica.

Exemplo:
$$\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = y \}$$

Neste caso, \mathcal{R} é simétrica e anti-simétrica ao mesmo tempo.

DEFINIÇÃO.5: (Relação Transitiva)

Seja $\mathcal R$ uma RELAÇÃO em A. Dizemos que $\mathcal R$ é uma RELAÇÃO TRANSITIVA se, e somente se, $\forall x,y,z\in A$; $\langle x,y\rangle\in\mathcal R$ e $\langle y,z\rangle\in\mathcal R\Rightarrow\langle x,z\rangle\in\mathcal R$; ou seja, $\nexists x,y,z$ tais que $x,y,z\in A$ e $\langle x,y\rangle\in\mathcal R$ e $\langle y,z\rangle\in\mathcal R$ e $\langle x,z\rangle\notin\mathcal R$.

```
Exemplo: \mathcal{R} = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = y \}
Observação:
```

Seja $A = \{1, 2\}$ e as seguintes relações em A:

 $\mathcal{R}=\{\langle 1,1\rangle\,,\langle 2,2\rangle\}$ "reflexiva, simétrica, anti-simétrica e transitiva" ;

 $\mathcal{S}=\{\langle 1,1\rangle\,,\langle 2,2\rangle\,,\langle 1,2\rangle\}$ "reflexiva, assimétrica, anti-simétrica e transitiva." :

 $\mathcal{T}=\{\langle 2,1\rangle\,,\langle 1,2\rangle\}\,$ "irreflexiva, simétrica, não é anti-simétrica e nem transitiva".

 $\mathcal{L} = \left\{ \left\langle 1,1 \right\rangle, \left\langle 2,2 \right\rangle, \left\langle 2,1 \right\rangle, \left\langle 1,2 \right\rangle \right\} \text{ "reflexiva, simétrica, não é anti-simétrica e é transitiva"}.$

 $\mathcal{O} = \{\langle 2, 1 \rangle\}$ "irreflexiva, assimétrica, anti-simétrica e transitiva".

DEFINIÇÃO.6: (Relação Conectada)

Seja $\mathcal R$ uma Relação em A. Dizemos que $\mathcal R$ é uma Relação Conectada(Linear ou Total) se, e somente se,

 $\forall x,y \in A; \langle x,y \rangle \in \mathcal{R}$ ou $\langle y,x \rangle \in \mathcal{R}$; ou seja,

 $\exists x, y \text{ tais que } x, y \in A \text{ e } \langle x, y \rangle \notin \mathcal{R} \text{ e } \langle y, x \rangle \notin \mathcal{R}.$

Exemplos: Seja $A = \{1, 2\}$ e as seguintes relações em A:

 $\mathcal{R}=\{\langle 1,1\rangle\,,\langle 2,2\rangle\}\,$ "reflexiva, simétrica, anti-simétrica, transitiva e não é conectada";

 $\mathcal{S}=\left\{\left\langle 1,1\right\rangle ,\left\langle 2,2\right\rangle ,\left\langle 1,2\right\rangle \right\}$ "reflexiva, assimétrica, anti-simétrica, transitiva e é conectada." ;

 $\mathcal{T} = \{\langle 2, 1 \rangle, \langle 1, 2 \rangle\}$ "irreflexiva, simétrica, não é anti-simétrica, nem transitiva e nem é conectada.".

 $\mathcal{L} = \left\{ \left\langle 1,1 \right\rangle, \left\langle 2,2 \right\rangle, \left\langle 2,1 \right\rangle, \left\langle 1,2 \right\rangle \right\} \text{ "reflexiva, simétrica, não é anti-simétrica, é transitiva e conectada"}.$

 $\mathcal{O} = \{\langle 2, 1 \rangle\}$ "irreflexiva, assimétrica, anti-simétrica, transitiva e não é conectada".

DEFINIÇÃO.7: (Relação de Equivalência)

Seja \mathcal{R} uma RELAÇÃO em A. Dizemos que \mathcal{R} é uma RELAÇÃO DE EQUIVALÊNCIA se, e somente se, \mathcal{R} é *reflexiva*, *simétrica* e *transitiva*.

Exemplos:

- RELAÇÃO DE IGUALDADE $\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x = y \}$
- ② RELAÇÃO IDENTIDADE $\Delta_X = \{\langle x, x \rangle \mid x \in X\}; X \text{ \'e um conjunto n\~ao vazio.}$ $\Delta_{\mathbb{N}} = \{\langle x, x \rangle \mid x \in \mathbb{N}\}$
- RELAÇÃO UNIVERSAL
 $\nabla_X = X \times X; X$ é um conjunto não vazio.
 $\nabla_{\mathbb{N}} = \mathbb{N} \times \mathbb{N}$

Observação:

Seja o conjunto $A \neq \emptyset$ e consideremos $\mathcal{R} = \emptyset$ uma relação **vazia** em A; visto que $\emptyset \subseteq A \times A$.

Podemos então dizer que \mathcal{R} é uma relação simétrica, anti-simétrica, transitiva e irreflexiva, mas \mathcal{R} não é conectada e nem reflexiva, consequentemente, também não é relação de equivalência.

Relações - Propriedades - Exercícios

Exercícios: Verifique as relações binárias nos itens abaixo e classifique-as em *reflexivas*, *irreflexivas*, *simétricas*, *assimétricas*, *anti-simétricas*, *transitivas*, *conectadas*, *equivalências*.

- **①** Sejam $A = \mathbb{N}$ e $\mathcal{R} = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x + y \text{ \'e par } \}.$
- ② Sejam $A = \mathbb{N}^*$ e $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N}^* \times \mathbb{N}^* \mid x \text{ divide } y\}.$
- **3** Sejam $A = \mathbb{N}$ e $\mathcal{R} = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x = y^2\}.$