Veriopt Theories

July 13, 2022

Contents

1 Optization DSLs 1.1 Canonicalization DSL	1 4
1 Optization DSLs	
theory Markup imports Semantics.IRTreeEval Snippets.Snipping begin	
datatype 'a Rewrite = $Transform$ 'a 'a (- \longmapsto - 10) $Conditional$ 'a 'a bool (- \longmapsto - when - 70) $Sequential$ 'a Rewrite 'a Rewrite $Transitive$ 'a Rewrite	
datatype 'a ExtraNotation = ConditionalNotation 'a 'a 'a (- ? - : -) EqualsNotation 'a 'a (- eq -) ConstantNotation 'a (const - 120) TrueNotation (true) FalseNotation (false) ExclusiveOr 'a 'a (- \oplus -) LogicNegationNotation 'a (!-) ShortCircuitOr 'a 'a (- \parallel -)	
definition $word :: ('a::len) \ word \Rightarrow 'a \ word \ \mathbf{where}$ $word \ x = x$	
ML -file $\langle markup.ML \rangle$	
ML structure IRExprTranslator : DSL-TRANSLATION = struct fun markup DSL-Tokens.Add = @{term BinaryExpr} \$ @{term BinAdd} markup DSL-Tokens.Sub = @{term BinaryExpr} \$ @{term BinSub}	

```
markup\ DSL\text{-}Tokens.Mul = @\{term\ BinaryExpr\} \$ @\{term\ BinMul\}
   markup\ DSL\text{-}Tokens.And = @\{term\ BinaryExpr\} \$ @\{term\ BinAnd\}
   markup\ DSL\text{-}Tokens.Or = @\{term\ BinaryExpr\} \$ @\{term\ BinOr\}
   markup\ DSL\text{-}Tokens.Xor = @\{term\ BinaryExpr\} \$ @\{term\ BinXor\}
  | markup\ DSL\text{-}Tokens.ShortCircuitOr = @\{term\ BinaryExpr\} \$ @\{term\ BinaryExpr\} \}
ShortCircuitOr}
   markup\ DSL\text{-}Tokens.Abs = @\{term\ UnaryExpr\} \$ @\{term\ UnaryAbs\}
  markup\ DSL-Tokens.Less = @\{term\ BinaryExpr\} \$ @\{term\ BinIntegerLessThan\}
  markup\ DSL\text{-}Tokens. Equals = @\{term\ BinaryExpr\} \$ \ @\{term\ BinIntegerEquals\} \\
   markup\ DSL\text{-}Tokens.Not = @\{term\ UnaryExpr\} \$ @\{term\ UnaryNot\}
   markup\ DSL\text{-}Tokens.Negate = @\{term\ UnaryExpr\} \$ @\{term\ UnaryNeg\}
  \mid markup\ DSL\text{-}Tokens.LogicNegate = @\{term\ UnaryExpr\} \$ @\{term\ UnaryLog-
icNegation
  | markup\ DSL\text{-}Tokens.LeftShift = @\{term\ BinaryExpr\} \$ @\{term\ BinLeftShift\}
    markup\ DSL\text{-}Tokens.RightShift = @\{term\ BinaryExpr\} \$ @\{term\ BinRight-
Shift
 | markup\ DSL-Tokens. UnsignedRightShift = @\{term\ BinaryExpr\} \$ @\{term\ BinaryExpr\} \}
URightShift
   markup\ DSL\text{-}Tokens.Conditional = @\{term\ ConditionalExpr\}
   markup\ DSL\text{-}Tokens.Constant = @\{term\ ConstantExpr\}
   markup\ DSL\text{-}Tokens.TrueConstant = @\{term\ ConstantExpr\ (IntVal32\ 1)\}
   markup\ DSL\text{-}Tokens.FalseConstant = @\{term\ ConstantExpr\ (IntVal32\ 0)\}
end
structure\ IntValTranslator: DSL-TRANSLATION =
struct
fun\ markup\ DSL\text{-}Tokens.Add = @\{term\ intval\text{-}add\}
   markup\ DSL-Tokens.Sub = @\{term\ intval\text{-}sub\}
   markup\ DSL\text{-}Tokens.Mul = @\{term\ intval\text{-}mul\}
   markup\ DSL\text{-}Tokens.And = @\{term\ intval\text{-}and\}
   markup\ DSL\text{-}Tokens.Or = @\{term\ intval\text{-}or\}
   markup\ DSL-Tokens. ShortCircuitOr = @\{term\ intval\text{-}short\text{-}circuit\text{-}or\}
   markup\ DSL\text{-}Tokens.Xor = @\{term\ intval\text{-}xor\}
   markup\ DSL-Tokens.Abs = @\{term\ intval-abs\}
   markup\ DSL\text{-}Tokens.Less = @\{term\ intval\text{-}less\text{-}than\}
   markup\ DSL\text{-}Tokens.Equals = @\{term\ intval\text{-}equals\}
   markup\ DSL\text{-}Tokens.Not = @\{term\ intval\text{-}not\}
   markup\ DSL-Tokens.Negate = @\{term\ intval\text{-}negate\}
   markup\ DSL\text{-}Tokens.LogicNegate = @\{term\ intval\text{-}logic\text{-}negation\}
   markup\ DSL-Tokens.LeftShift = @\{term\ intval-left-shift\}
   markup\ DSL\text{-}Tokens.RightShift = @\{term\ intval\text{-}right\text{-}shift\}
   markup\ DSL\text{-}Tokens.UnsignedRightShift = @\{term\ intval\text{-}uright\text{-}shift\}
   markup\ DSL\text{-}Tokens.Conditional = @\{term\ intval\text{-}conditional\}
   markup\ DSL-Tokens.Constant = @\{term\ IntVal32\}
   markup\ DSL\text{-}Tokens.TrueConstant = @\{term\ IntVal32\ 1\}
   markup\ DSL\text{-}Tokens.FalseConstant = @\{term\ IntVal32\ 0\}
```

 $structure\ WordTranslator: DSL-TRANSLATION =$

```
struct
fun \ markup \ DSL-Tokens.Add = @\{term \ plus\}
  | markup \ DSL-Tokens.Sub = @\{term \ minus\}|
  | markup \ DSL-Tokens.Mul = @\{term \ times\} |
 \mid markup\ DSL\text{-}Tokens.And = @\{term\ Bit\text{-}Operations.semiring-bit\text{-}operations-class.and}\}
   markup\ DSL\text{-}Tokens.Or = @\{term\ or\}
   markup\ DSL\text{-}Tokens.Xor = @\{term\ xor\}
   markup\ DSL\text{-}Tokens.Abs = @\{term\ abs\}
   markup\ DSL\text{-}Tokens.Less = @\{term\ less\}
   markup\ DSL\text{-}Tokens.Equals = @\{term\ HOL.eq\}
   markup\ DSL-Tokens.Not = @\{term\ not\}
   markup\ DSL\text{-}Tokens.Negate = @\{term\ uminus\}
   markup\ DSL\text{-}Tokens.LogicNegate = @\{term\ logic-negate\}
   markup\ DSL\text{-}Tokens.LeftShift = @\{term\ shiftl\}
   markup\ DSL-Tokens.RightShift = @\{term\ signed-shiftr\}
   markup\ DSL-Tokens. UnsignedRightShift = @\{term\ shiftr\}
   markup\ DSL-Tokens.Constant = @\{term\ word\}
   markup\ DSL\text{-}Tokens.TrueConstant = @\{term\ 1\}
   markup\ DSL-Tokens.FalseConstant = @\{term\ 0\}
end
structure\ IRExprMarkup = DSL-Markup(IRExprTranslator);
structure\ IntValMarkup = DSL-Markup(IntValTranslator);
structure\ WordMarkup = DSL-Markup(WordTranslator);
   ir\ expression\ translation
   syntax - expandExpr :: term \Rightarrow term (exp[-])
   parse-translation ( [(
                                     @{syntax-const}
                                                         -expandExpr
                                                                               IREx-
   prMarkup.markup-expr [])] \rightarrow
   value expression translation
   syntax - expandIntVal :: term \Rightarrow term (val[-])
   \textbf{parse-translation} \quad \leftarrow \quad [( \quad @\{syntax-const \quad -expandIntVal\}
                                                                             Int Val-
    Markup.markup-expr [])] \rightarrow
   word\ expression\ translation
   syntax - expandWord :: term \Rightarrow term (bin[-])
   parse-translation \leftarrow [( @\{syntax-const\}
                                                       -expand Word}
                                                                                Word-
   Markup.markup-expr [])] \rightarrow
```

```
ir\ expression\ example
```

```
value exp[(e_1 < e_2) ? e_1 : e_2]
```

 $Conditional Expr\ (Binary Expr\ Bin Integer Less Than\ e_1\ e_2)\ e_1\ e_2$

value expression example

value
$$val[(e_1 < e_2) ? e_1 : e_2]$$

intval-conditional (intval-less-than e_1 e_2) e_1 e_2

value
$$exp[((e_1 - e_2) + (const (IntVal32 \ \theta)) + e_2) \mapsto e_1 \text{ when True}]$$

value $val[((e_1 - e_2) + (const \ \theta) + e_2) \mapsto e_1 \text{ when True}]$

word expression example

value $bin[x \& y \mid z]$

intval-conditional (intval-less-than e_1 e_2) e_1 e_2

```
value bin[-x]
```

value val[-x]

value exp[-x]

value bin[!x]

value val[!x]

value exp[!x]

value $bin[\neg x]$

value $val[\neg x]$

value $exp[\neg x]$

value $bin[^{\sim}x]$

value $val[^{\sim}x]$

value $exp[^{\sim}x]$

value $^{\sim}x$

end

theory Phase

imports Main

begin

ML-file map.ML

ML-file phase.ML

 $\quad \text{end} \quad$

1.1 Canonicalization DSL

```
theory Canonicalization
 imports
   Markup
   Phase
   HOL-Eisbach.Eisbach
 keywords
   phase :: thy-decl and
   terminating :: quasi-command and
   print-phases :: diag and
   optimization :: thy-goal-defn
begin
\mathbf{ML} \langle
datatype 'a Rewrite =
  Transform of 'a * 'a \mid
  Conditional of 'a * 'a * term
  Sequential of 'a Rewrite * 'a Rewrite |
  Transitive of 'a Rewrite
type\ rewrite = \{name:\ string,\ rewrite:\ term\ Rewrite\}
structure\ RewriteRule: Rule =
struct
type\ T\,=\,rewrite;
fun\ pretty-rewrite\ ctxt\ (Transform\ (from,\ to)) =
     Pretty.block [
       Syntax.pretty-term ctxt from,
       Pretty.str \mapsto,
      Syntax.pretty-term ctxt to
 | pretty-rewrite ctxt (Conditional (from, to, cond)) =
     Pretty.block [
      Syntax.pretty-term ctxt from,
       Pretty.str \mapsto,
      Syntax.pretty-term ctxt to,
       Pretty.str when,
      Syntax.pretty\text{-}term\ ctxt\ cond
 | pretty-rewrite - - = Pretty.str not implemented
fun pretty ctxt t =
 Pretty.block [
   Pretty.str ((\# name\ t) \ \widehat{}:),
   pretty-rewrite ctxt (#rewrite t)
end
```

```
structure\ RewritePhase = DSL-Phase(RewriteRule);
val - =
 Outer-Syntax.command command-keyword (phase) enter an optimization phase
  (Parse.binding -- | Parse.$$$ terminating -- Parse.const -- | Parse.begin
    >> (Toplevel.begin-main-target true o RewritePhase.setup));
fun print-phases ctxt =
  let
   val thy = Proof\text{-}Context.theory\text{-}of ctxt;
   fun \ print \ phase = RewritePhase.pretty \ phase \ ctxt
   map print (RewritePhase.phases thy)
  end
fun print-optimizations thy =
 print-phases thy |> Pretty.writeln-chunks
val - =
  Outer-Syntax.command command-keyword (print-phases)
   print debug information for optimizations
   (Scan.succeed
     (Toplevel.keep (print-optimizations o Toplevel.context-of)));
ML-file rewrites.ML
fun rewrite-preservation :: IRExpr Rewrite \Rightarrow bool where
  rewrite-preservation (Transform x y) = (y \le x)
 rewrite-preservation (Conditional x y cond) = (cond \longrightarrow (y \le x))
 rewrite-preservation (Sequential xy) = (rewrite-preservation x \land rewrite-preservation
  rewrite-preservation (Transitive x) = rewrite-preservation x
fun rewrite-termination :: IRExpr Rewrite \Rightarrow (IRExpr \Rightarrow nat) \Rightarrow bool where
  rewrite-termination (Transform x y) trm = (trm x > trm y)
 rewrite-termination (Conditional x y cond) trm = (cond \longrightarrow (trm \ x > trm \ y))
 rewrite-termination (Sequential x y) trm = (rewrite-termination \ x \ trm \land rewrite-termination
y trm)
  rewrite-termination (Transitive x) trm = rewrite-termination x trm
fun intval :: Value Rewrite <math>\Rightarrow bool where
  intval\ (Transform\ x\ y) = (x \neq UndefVal\ \land\ y \neq UndefVal\ \longrightarrow x = y)\ |
  intval\ (Conditional\ x\ y\ cond) = (cond \longrightarrow (x = y))\ |
  intval (Sequential x y) = (intval x \land intval y) \mid
  intval (Transitive x) = intval x
fun size :: IRExpr \Rightarrow nat where
  size (UnaryExpr \ op \ e) = (size \ e) + 1
```

```
size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2)
  size (BinaryExpr op x y) = (size x) + (size y) \mid
  size (ConditionalExpr \ cond \ t \ f) = (size \ cond) + (size \ t) + (size \ f) + 2
  size (ConstantExpr c) = 1
  size (ParameterExpr ind s) = 2
  size (LeafExpr \ nid \ s) = 2
  size (Constant Var c) = 2
  size (VariableExpr x s) = 2
{\bf method} \ {\it unfold-optimization} =
  (unfold\ rewrite-preservation. simps,\ unfold\ rewrite-termination. simps,
   unfold intval.simps,
   rule conjE, simp, simp del: le-expr-def, force?)
 (unfold rewrite-preservation.simps, unfold rewrite-termination.simps,
   rule conjE, simp, simp del: le-expr-def, force?)
method unfold-size =
  (unfold size.simps, simp del: le-expr-def)?
 | (unfold size.simps)?
print-methods
\mathbf{ML} \ \ \checkmark
structure\ System: Rewrite System=
val\ preservation = @\{const\ rewrite-preservation\};
val\ termination = @\{const\ rewrite-termination\};
val\ intval = @\{const\ intval\};
end
structure\ DSL = DSL-Rewrites(System);
val - =
  Outer-Syntax.local-theory-to-proof~ \textbf{\textit{command-keyword}} \land optimization \rangle
   define an optimization and open proof obligation
   (Parse-Spec.thm-name: -- Parse.term
       >> DSL.rewrite-cmd);
```

 \mathbf{end}