Image compression

Dr. Tushar Sandhan

Introduction

- Storage
 - memory devices are cheaper
 - compression & decompression add extra computational burden
 - o do we really need compression?

Introduction

- Storage
 - o memory devices are cheaper
 - compression & decompression add extra computational burden
 - o do we really need compression?

Introduction

Storage

- memory devices are cheaper
- compression & decompression add extra computational burden
- o do we really need compression?

- Saturn
 - o infrared view of southern hemisphere
 - by Casssini spacecraft
 - o taken from 1.3 million Km
 - o obtained ground resolution 77 Km

Compression need

- Storage & transmission
 - o raw data occupies huge space
 - 1920 x 1080 image at 24 bits per pixels has a size of about 6.2 MB uncompressed
 - JPEG makes it 200KB
 - your 1hr long video lec recordings ~100MB

Compression need

- Storage & transmission
 - o raw data occupies huge space
 - 1920 x 1080 image at 24 bits per pixels has a size of about 6.2 MB uncompressed
 - JPEG makes it 200KB
 - your 1hr long video lec recordings ~100MB

- We will see
 - O JPEG
 - JPEG2000

- Joint Photographic Experts Group
 - o JPEG: a lossy compression algorithm
 - o it's not a file format
 - standardized in 1992
 - o a lossy compression

- Joint Photographic Experts Group
 - JPEG: a lossy compression algorithm
 - o it's not a file format
 - standardized in 1992
 - a lossy compression

- Joint Photographic Experts Group
 - JPEG: a lossy compression algorithm
 - o it's not a file format
 - standardized in 1992
 - a lossy compression

- RGB → YCbCr
 - o Y Luma
 - o Cb blue chroma
 - Cr red chroma
 - o used in TV, videos, JPEG, MPEG
 - allocate high bandwidth for Y & low for chromas
 - o other variations:
 - YUV=PAL, YIQ=NTSE

EE604: IMAGE PROCESSING

- RGB → YCbCr
 - o Y Luma
 - Cb blue chroma
 - o Cr red chroma
 - o used in TV, videos, JPEG, MPEG
 - allocate high bandwidth for Y & low for chromas
 - o other variations:
 - YUV=PAL, YIQ=NTSE

$$\begin{bmatrix} Y \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \frac{1}{256} \begin{bmatrix} 65.73 & 129.05 & 25.06 \\ -37.94 & -74.49 & 112.43 \\ 112.43 & -94.15 & -18.28 \end{bmatrix} \bullet \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- RGB → YCbCr
 - o Y Luma
 - Cb blue chroma
 - o Cr red chroma
 - o used in TV, videos, JPEG, MPEG
 - allocate high bandwidth for Y & low for chromas
 - o other variations:
 - YUV=PAL, YIQ=NTSE

$$\begin{bmatrix} Y \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \frac{1}{256} \begin{bmatrix} 65.73 & 129.05 & 25.06 \\ -37.94 & -74.49 & 112.43 \\ 112.43 & -94.15 & -18.28 \end{bmatrix} \bullet \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- RGB → YCbCr
 - o Y Luma
 - Cb blue chroma
 - o Cr red chroma
 - o used in TV, videos, JPEG, MPEG
 - allocate high bandwidth for Y & low for chromas
 - o other variations:
 - YUV=PAL, YIQ=NTSE

$$\begin{bmatrix} Y \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \frac{1}{256} \begin{bmatrix} 65.73 & 129.05 & 25.06 \\ -37.94 & -74.49 & 112.43 \\ 112.43 & -94.15 & -18.28 \end{bmatrix} \bullet \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 $Y \in [16/255, 235/255]$ $C_b, C_r \in [16/255, 240/255]$

EE604: IMAGE PROCESSING

Cb

Cr

- RGB → YCbCr
 - o Y Luma
 - Cb blue chroma
 - o Cr red chroma
 - o used in TV, videos, JPEG, MPEG
 - o allocate high bandwidth for Y & low for chromas
 - o other variations:
 - YUV=PAL, YIQ=NTSE

$$\begin{bmatrix} Y \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \frac{1}{256} \begin{bmatrix} 65.73 & 129.05 & 25.06 \\ -37.94 & -74.49 & 112.43 \\ 112.43 & -94.15 & -18.28 \end{bmatrix} \bullet \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

RGB

 $Y \in [16/255, 235/255]$ $C_b, C_r \in [16/255, 240/255]$

Additional non-image info can be added

Chroma subsampling 1-12 Crub BI

- Decimating only chroma
 - o subsampling is done only in chroma
 - 4:2:0 JPG, video H.264 codec
 - Y is stored at full resolution

Y0	Y1
Y2	Y3

2 x 2 Chroma Subsampling

Cr

Y' ₀₀ Cb ₀₀ Cr ₀₀	Y′ ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y′ ₃₀	
Y′ ₀₁	Y′ ₁₁	Υ′21	Υ′31	

Chroma subsampling

- Decimating only chroma
 - o subsampling is done only in chroma
 - 4:2:0 JPG, video H.264 codec
 - Y is stored at full resolution

2 x 2 Chroma Subsampling

Y′ ₀₀ Cb ₀₀ Cr ₀₀	Y′ ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y′ ₃₀
Y′ ₀₁	Υ′11	Y′ ₂₁	Y′ ₃₁

Chroma subsampling

- Decimating only chroma
 - o subsampling is done only in chroma
 - 4:2:0 JPG, video H.264 codec
 - Y is stored at full resolution

YO	Y1
Y2	Y3

2 x 2 Chroma Subsampling

Y′ ₀₀ Cb ₀₀ Cr ₀₀	Y′ ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y′ ₃₀
Y′ ₀₁	Υ′11	Y′ ₂₁	Y′ ₃₁

	Subsampling
PC	4:4:4
Movies	4:2:0
Video Games	4:4:4
Sports	4:2:0
TV Shows	4:2:0

Blocking

- Analyze the image into smaller blocks
 - o small blocks called subimage
 - o subimage sizes 8x8, 16x16 etc.
 - Jpeg uses 8x8

Blocking

- Analyze the image into smaller blocks
 - o small blocks called subimage
 - o subimage sizes 8x8, 16x16 etc.
 - Jpeg uses 8x8

Blocking artifacts

DCT

$$I \longrightarrow C \longrightarrow C_r \downarrow \longrightarrow B \boxplus \longrightarrow C \longrightarrow Q \longrightarrow Z \longrightarrow R \longrightarrow I$$

Discrete cosine transform

basis
$$[i, j] = \cos\left[\pi \frac{i}{N}\left(x + \frac{1}{2}\right)\right] \times \cos\left[\pi \frac{j}{N}\left(y + \frac{1}{2}\right)\right]$$

$$=\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

[7,7]

DCT

DCT

Quantization

- Psycovisually-tunned quantization tables
 - experiments on human subjects to find quantization values

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

$$\hat{c}[k_1, k_2] = \text{round}(c[k_1, k_2]/Q[k_1, k_2])$$

Quantization

- Psycovisually-tunned quantization tables
 - o experiments on human subjects to find quantization values

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

$$\hat{c}[k_1, k_2] = \text{round}(c[k_1, k_2]/Q[k_1, k_2])$$

Uniform

0

Coding

- Zig-zag coding
 - o what can we achieve?

Coding

- Zig-zag coding
 - o what can we achieve?

-24_	-23	0	9	9_	9	0	0
-19	4	1	0	0	0	0	0
5	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0/	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

RLE: Runlength encoding

ightharpoonup Quantized: $\hat{C} =$

Coding:

RLE: Runlength encoding

ightharpoonup Quantized: $\hat{C} =$

Coding:

- \triangleright [(r,s),c]
 - c current value
 - r #of 0 before c
 - s #bits needed to encode c
 - $0 \le s \le 11$; $0 \le r \le 15$
 - $(r,s) \leftarrow 8$ bits uchar

$$[(0,7), 100], [(0,6), -60], [(4,3), 6], [(3,4), 13], [(8,1), -1], [(0,0)]$$

Hoffman coding

- Lossless coding method
 - RLE output can be coded by any lossless coding methods (e.g. methods from communications, networks etc.)
 - JPEG uses Hoffman coding (1952)
 - o it's a variable length code

RLE: AABAABADC → 001100110101100

Hoffman coding

- Lossless coding method
 - RLE output can be coded by any lossless coding methods (e.g. methods from communications, networks etc.)
 - JPEG uses Hoffman coding (1952)
 - o it's a variable length code

$$p(A) = 0.38$$
 $p(B) = 0.32$

$$p(C) = 0.1$$
 $p(D) = 0.2$

RLE: AABAABADC -- 001100110101100

Pseudocode

 $: RGB \rightarrow YCbCr$

: CbCr dessimation (4:2:0) to Cb'Cr'

: For each channel in [Y, Cb', Cr']:

: blockify into 8x8 subblocks

: For each subblock

: get DCT

: pyscovisually quantize

: zig-zag coding

: RLE

: Huffman

Comparison

JPEG

0.25bpp

JPEG 2000

0.25bpp

Courtesy: Christopoulos et al.

Comparison

JPEG

JPEG 2000

- DCT
- Blocks
- Less compression ratio
- Less computations
- Quality low at low bit rate

- DWT
- Tiles
- High compression ratio
- Relatively higher computations
- Better quality at low bit rate

Example

References

- Compression

References

Compression

- ☐ Dennis Gabor, 'STFT: short time Fourier transform', 1946
- □ N. Ahmed et al. 'Discrete cosine transform', IEEE Trans. on computers, 1974
- ☐ G. Zweig, 'The first continuous wavelet transform', 1975
- ☐ J. Li, 'Image compression: the mathematics of jpeg 2000', modern sig proc 2003
- ☐ HA. Rowley et al., 'Neural network-based face detection', IEEE CVPR, 1996
- H. Noda et al., 'Colorization in YCbCr Color Space and Its Application to JPEG Images', IEEE ICIP, 2007

References

- Compression

- ☐ Dennis Gabor, 'STFT: short time Fourier transform', 1946
- □ N. Ahmed et al. 'Discrete cosine transform', IEEE Trans. on computers, 1974
- ☐ G. Zweig, 'The first continuous wavelet transform', 1975
- ☐ J. Li, 'Image compression: the mathematics of jpeg 2000', modern sig proc 2003
- ☐ HA. Rowley et al., 'Neural network-based face detection', IEEE CVPR, 1996
- H. Noda et al., 'Colorization in YCbCr Color Space and Its Application to JPEG Images', IEEE ICIP, 2007

