

Smile Function Decoder

標準タイプ

AYA002-4

このマニュアルは、DCC 用ファンクッションデコーダーの取り付け方法及び CV 設定方法 について説明しています。

ご注意

接続間違いや過負荷により、本デコーダーが故障したり、発熱したり、する場合があります。ご使用には十分お気をつけください。

1. 特徴

本デコーダーは Arduino というオープンハード、オープンソフトウエアを使用して作られております、DCC 用ファンクッションデコーダーです。

あらかじめ、標準ファンクッションデコーダスケッチ(プログラム)が書き込まれていますので、すぐにご使用できます。また、各種スケッチは、Github に公開していますので、 ご自由に改造改変ができますので、カスタマイズできます。

2. 仕様

項目	詳細
СРИ	Atmel ATtiny85
プログラムメモリ	8kByte
EEPROM	512Byte
SRAM	512Byte
クロック	8MHz
プラットフォーム	Arduino
DCC ライブラリ	NMRA DCC ライブラリ(2011-06-26 Initial Version)
DCC アドレス	2桁アドレス,4桁アドレス
STEP	28STEP/128STEP 自動認識
CV 値読み込み機能	無し
CV 書き込みモード	Direct モード
アナログ運転モード	機能なし(使用不可)
ファンクッション出力	4出力
	O1 端子 デジタル端子
	O2 端子 アナログ/デジタル端子
	O3 端子 デジタル端子
	O4 端子 アナログ/デジタル端子
出力段 FET	FAIRCHILD FDC6561AN Nch 素子スペック(Ic=2.5A,RDS=0.145Ω)
FET 入力電流	最大 100mA
アクセサリ用出力電圧	V1,V2,V3 5V-5mA ※1kΩの抵抗が実装されています。
	V4 5V-100mA ※制限回路が無いのでご注意ください。
	V5 12V-500mA ※制限回路ないのでご注意ください。
寸法	980mil x 380mil (24.892mm x 9.652mm)
質量	約1g

3. CV 値一覧

CV	値(詳細)
1	2桁アドレス(初期設定3)
8	デコーダーの工場出荷状態に設定する (値は何でも良い)
17	4桁アドレス上位
18	4桁アドレス下位
29	2桁アドレス(2)・4桁アドレス(22)切り替え
49	ライトエフェクト設定(初期設定 01)

4. CV49 設定一覧

CV 4 9	値(詳細) F0のON/OFFによるO4端子の制御方法の設定
0、1	ON/OFF のみ
2	モヤっと点灯。パッと消灯
3	三角波
4	ランダム (もどき)
5	マーズライト (もどき)
6	フラッシュライト (もどき)
7	シングルパルスストロボ (もどき)
8	ダブルパルスストロボ(もどき)
9	ミディアムパルスストロボ(もどき)
1 0	グロー管蛍光灯(もどき)
1 1	グロー管蛍光灯消えそう(もどき)
2 0	ヘッドライトコントロール (02と04が割り当てられます)
	速度によって、自動的に調光します。速度0で減光、速度1で点灯
2 1	ヘッドライト・テールライトコントロール(02と04が割り当てられます)

3.1 CV01:2 桁アドレス

CV01は、2桁アドレスを設定します。

工場出荷値:3

3.2 CV08:工場出荷状態

CV08 は、デコーダーの CV 値を工場出荷状態に設定するときに使用します。 08 を書き込むと CV 値がリセットされます。

3.3 CV17 · CV18:4 桁アドレス

CV17、CV18 は、4桁アドレスを設定します。 CV17:十の位と一の位、CV18:千の位と百の位

アドレス 1234 に設定する場合

関数電卓で10進数:1234を16進数:0x4d2に変換します。

0x4d2 に 0xc000 を加算します。0xc4d2。上位と下位を分けて、10 進数に変換します。

 $0xc4 \rightarrow 196 \ 0xd2 \rightarrow 210$

CV17に196、CV18に210、CV29に34を書き込みます。

※DCS50K では page モードを使うと簡単です。

(PROG->PAGE->LOCO->Ad4) で4桁アドレスを設定してください。

※DCD50Kで page モードを使って、2 桁アドレスに設定しても、CV29 が変わらない為 4 桁のままになっておりますので、direct モードで CV29 に 2 を設定してください。 ぬっきーさんサイトにある 4 桁アドレス計算用 CGI を使うと簡単に計算できます。

http://web.nucky.jp/dcc/decoder/old/adrs.html

3.4 CV29: 2 桁アドレス、4 桁アドレス設定

デコーダーアドレスを2桁または4桁で使用するかを設定します。

CV29:02、2桁アドレス

CV29:34、4桁アドレス

工場出荷值:02

3.5 CV49:F0 機能割り当て

F0 ボタン押下した時の動作を設定します。

工場出荷值:1

5. 外観説明

6. 実装方法

(1)電車の先頭車両に組み込む場合

P1,P2 端子 (レールへ接続)

O4 端子(12V テープ LED のマイナス端子)

O3 端子(ヘッドライト LED のカソード端子)

O2端子(テールライト LED のカソード端子)

V5 端子 (12V 電源: テープ LED のプラス端子: 保護抵抗が無いのでご注意)

V2 端子(5V-1kΩ内蔵端子 LED アノード)

V1 端子(5V-1kΩ内蔵端子 LED アノード)

テープ LED

(12V タイプ・電流制限抵抗内蔵)

(2)電車の中間車両に組み込む場合

P1,P2 端子 (レールへ接続)

O4 端子(12V テープ LED のマイナス端子)

V5 端子 (12V 電源: テープ LED のプラス端子: 保護抵抗が無いのでご注意)

(12V タイプ・電流制限抵抗内蔵)

(3) 安定しないときは・・・

キープアライブコンデンサを実装してみてください。

7. スケッチ変更方法

SmileWriter を使うことで、スケッチ(プログラム)の変更ができます。

8. 回路図

Smile Function decoder 通常版 取扱説明書

初版:2017/2/12

Copyright@ Desktop Station

問合せ先

Web:http://desktopstation.net/index_jp.html Web:http://dcc.client.jp/

本製品に関する仕様、価格、デザインは予告なく変更する事があります。予めご了承ください安全に組み立て、お使いいただくために、ご使用前は必ず「取扱説明書」をご覧ください。 誤動作、誤組み立て等によって、人身事故や物損事故に至る事が考えられますので、しっかり チェックした上でご使用してください。

当社の製品は、十分な知識がある方の監修のもとでご使用ください。