

การแข่งขันเคมีโอถิมปิกระดับชาติ ครั้งที่ 7 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วันศุกร์ที่ 6 พฤษภาคม พ.ศ. 2554 เวลา 8.30-13.30 น.

เฉลยข้อสอบภาคทฤษฎี

คำชี้แจงการสอบภาคทฤษฎี

- 1. ข้อสอบภาคทฤษฎี คะแนนรวม 120 คะแนน คิดเป็น 60 % ของคะแนนในการแข่งขันทั้งหมด
- 2. ให้นักเรียนตรวจสอบเอกสารก่อนลงมือทำ ดังนี้
 - 2.1 ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 20 หน้า (รวมปกและตารางธาตุ)
 - 2.2 กระดาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 39 หน้า (รวมปก)
 - 2.3 เลขประจำตัวสอบในข้อสอบภาคทฤษฎีและกระดาษคำตอบภาคทฤษฎีทุกหน้า
- 3. ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ" และเมื่อประกาศว่า "หมดเวลา" นักเรียนต้องหยุดทำข้อสอบทันที แล้วรวบรวมข้อสอบและกระดาษคำตอบใส่ซองเอกสาร วางไว้บนโต๊ะ รอจนกรรมการคุมสอบเก็บข้อสอบก่อนจึงออกจากห้องสอบ
- 4. ให้เขียนตอบในกระดาษคำตอบ<u>ด้วยปากกาสีน้ำเงินหรือดำเท่านั้น</u> โดยเขียนให้ตรงกับข้อ<u>ในกรอบที่กำหนด</u>

 <u>"ไว้"</u> กรณีเขียนผิดให้ขีดฆ่าและเขียนใหม่ให้ชัดเจน ห้ามลบด้วยน้ำยาลบคำผิด การทดหรือขีดเขียนอย่างอื่น
 ให้ทำในข้อสอบ
- 5. โจทย์คำนวณให้แสดงวิธีคิดตามที่โจทย์กำหนด กรณีคำตอบที่เป็นตัวเลขต้องคำนึงถึงเลขนัยสำคัญหรือ จำนวนทศนิยมตามที่โจทย์กำหนด
- 6. ในระหว่างการสอบ นักเรียนสามารถรับประทานอาหารว่างที่วางให้บนโต๊ะได้
- 7. ห้ามยืมเครื่องเขียนหรือเครื่องคิดเลขผู้อื่นใช้โดยเด็ดขาด
- 8. ห้ามนักเรียนนำเอกสารใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 9. ห้ามคุยหรือปรึกษากันในช่วงเวลาสอบ หากฝ่าฝืนจะถือว่าทุจริตในการสอบ <u>กรณีทุจริตใด ๆ ก็ตาม</u> นักเรียนจะหมดสิทธิ์ในการแข่งขัน และจะถูกให้ออกจากห้องสอบทันที

กำหนดให้

เลขอาโวกาโคร (Avogadro's number)

ค่าคงที่ของแก๊ส (gas constant)

 $N_A = \ 6.02 \times 10^{23} \, / mol$

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

 $= 0.082 \text{ L} \cdot \text{atm mol}^{-1} \text{ K}^{-1}$

 $= 1.987 \text{ cal mol}^{-1} \text{ K}^{-1}$

 $K = {}^{\circ}C + 273$

ค่าคงที่ของฟาราเคย์ (Faraday's constant)

ค่าคงที่ของพลังค์ (Planck's constant)

ความเร็วแสง

ปริมาตรต่อ โมลของแก๊สอุคมคติ (molar volume of gas)

สมการอาร์เรเนียส

 $F = 96,500 \text{ C/mol e}^-$

 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$

 $c = 3 \times 10^8 \text{ m/s}$

= 22.4 L ที่ STP

 $k = Ae^{-Ea/RT}$

1 atm = 760 mmHg

 $1 L = 1 dm^3 = 10^3 cm^3 = 10^3 mL$

1 cal = 4.184 J

คำตอบข้อที่ 1 (5.5 คะแนน)

1.1 X มีการจัดอิเล็กตรอนดังนี้

(0.5 คะแนน)

วิธีคิด (1 คะแนน) แสดงการคำนวณเพื่อสรุปว่า X เป็นธาตุใด

จากสูตรสารประกอบในข้อ ก. และข้ออื่น ๆ สรุปว่า X เป็นธาตุอโลหะและอยู่หมู่ VIA (เกิดไอออนลบ มีประจุ -2 และมีเลขออกซิเคชันสูงสุด +6)

สมมุติให้มวลอะตอมของ X = m

คังนั้น มวลโมเลกุลของ $extbf{XO}_2 = extbf{m} + 2(16)$

$$\frac{m}{m+32} = \frac{50}{100}$$

$$m = 32$$
(0.5 คะแนน)

ชาตุหมู่ VIA ที่มวลอะตอม = 32 คือ กำมะถัน ดังนั้นจึงสรุปว่า X เป็น *กำมะถัน (S)*

ถ้าตอบโดยแสดงวิธีมวลอะตอมเลย ได้ 1 คะแนน

1.2 สมการแสดงปฏิกิริยาที่เกิดขึ้นในข้อ ก ฉ และ ช (ตอบโดยใช้สัญลักษณ์ตามตารางธาตุ) (2.5 คะแนน)

1.3 (1) สูตรลิวอิสของ
$$X_2Cl_2$$
 เป็นดังนี้

ถ้าตอบ S₂Cl₂ ไม่ให้คะแนน

(0.5 คะแนน)

โครงสร้างโมเลกุลของ X_2Cl_2 เป็นดังนี้

(0.5 คะแนน)

รอบ S แต่ละอะตอมเป็นมุมงอเหมือน H_2S

(2) โครงสร้างของ $H_2X_2O_7$ เป็นคังนี้

คำตอบข้อที่ 2 (5.5 คะแนน)

2.1 สัญลักษณ์นิวเคลียร์ของ A คือ

$$^{259}_{103}$$
Lr

(0.5 คะแนน)

วิธีคิด (0.5 คะแนน)

$$^{252}_{98}$$
Cf + $^{10}_{5}$ B → $^{259}_{103}$ A + 3 $^{1}_{0}$ n
∴ A = Lr

2.2 สมการนิวเคลียร์เป็นดังนี้

$$\frac{^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{92}U}{^{239}_{92}U \rightarrow ^{239}_{93}Np + ^{0}_{-1}e}$$

$$\frac{^{239}_{92}Np \rightarrow ^{239}_{94}Pu + ^{0}_{-1}e}{^{239}_{94}Pu + ^{0}_{-1}e}$$
(1.5 กะแนน)

2.3 ครึ่งชีวิตของ $^{239}U =$

23.4 นาที

(0.5 คะแนน)

ตอบทศนิยม 1 ตำแหน่ง

วิธีคิด (1 คะแนน)

เริ่มต้น แอกทิวิตี
$$= A_0$$

เมื่อผ่านไป 117 นาที แอกทิวิตี =
$$A = \frac{1}{32} A_0$$
 หรือ $\frac{1}{(2)^5} A_0$ (0.5 คะแนน)

แสดงว่า
$$5t_{1/2} = 117$$
 $t_{1/2} = \frac{117}{5} = 23.4 นาที$ (0.5 คะแนน)

วิธีคิด (1 คะแนน)

10 วัน = 240 ชั่วโมง ถือว่า 5 ชั่วโมงแรก $^{239}{
m Np}$ ยังไม่สลายตัว

5 ชั่วโมงแรกเกิด Np $1.00~{
m g}$ นับเวลาที่ ${
m N}_{
m p}$ สลายตัว $=235~{
m g}$ ชั่วโมง สมมุติเหลือ ${
m w}~{
m g}$ (0.25 คะแนน)

 $2.303 \log \frac{w_0}{w} = \lambda t = \frac{0.693t}{t_{1/2}}$ จะได้ $w = 5.575 \times 10^{-2}$ หรือ 0.0558 g (0.5 คะแนน)

นั่นคือ เกิด 239 Pu = 1 - 0.0558 = 0.9442 g (0.25 คะแนน)

หมายเหตุ สำหรับธาตุหนักที่ไม่มีค่ามวลอะตอมที่ละเอียคมาให้ จะใช้ค่าเลขมวลแทนมวล อะตอม

3.1 ลำดับค่าพลังงานจลน์ของโฟโตอิเล็กตรอนเป็นดังนี้ (จากมากไปหาน้อย)

Cr > Mo > W

(0.5 คะแนน)

เหตุผล (0.5 คะแนน)

ระดับพลังงานของ 1s ออร์บิทัลของ <u>W</u> อยู่ที่ระดับต่ำที่สุด เพราะ<u>มีโปรตอนมากที่สุด ดึงดูดอิเล็กตรอนได้ดีมาก</u> จึงต้องใช้พลังงานมากในการดึงอิเล็กตรอนออก พลังงานส่วนเกินที่จะมาเป็นพลังงานจลน์ของอิเล็กตรอนจึง น้อยกว่า Mo และ Cr ตามลำดับ

3.2 จำนวนอิเล็กตรอนเดี่ยว =

7

อิเล็กตรอน

(0.5 คะแนน)

วิธีคิด (0.5 คะแนน)

Cr ในสถานะปกติจัดอิเล็กตรอนดังนี้ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ (0.25 คะแนน) เมื่ออิเล็กตรอนใน 1s ออร์บิทัลหลุดออกไป 1 ตัว ไอออนที่เกิดขึ้นในทันทีนั้นจะมีอิเล็กตรอน เดี๋ยวเพิ่มขึ้นอีก 1 ตัว (คือที่ 1s ออร์บิทัล) รวมเป็นอิเล็กตรอนเดี๋ยว 7 ตัว (0.25 คะแนน)

วิธีกิด (1 คะแนน)

คูจากหน่วยเซลล์ – อะตอมที่ศูนย์กลางจะมีอะตอมที่มุมล้อมอยู่ =8 อะตอม \$ ให้ความยาวตามขอบของหน่วยเซลล์ =a รัศมีอะตอม $=r_{o}$ ความยาวตามแนวทแยงของลูกบาศก์ (อะตอมสัมผัสกัน) $=4\,r_{o}$

(0.5 คะแนน)

(อะตอมตามแนวทแยงมุมสัมผัสกัน แต่อะตอมที่อยู่ตามแนวขอบ ไม่สัมผัสกัน)

$$4 r_o = \sqrt{3} a$$
 $(r_o = 128 pm)$

$$a = \frac{4 r_o}{\sqrt{3}} = \frac{4 \times 128}{\sqrt{3}} = 295.6 \text{ pm}$$

(0.5 คะแนน)

วิธีคิด (1 คะแนน)

ปริมาตรของหน่วยเซลล์ =
$$a^3$$
 = $\left(\frac{4 \, \mathrm{r_o}}{\sqrt{3}}\right)^3$ ($\mathrm{r_o} = 128 \, \mathrm{pm}$)

จำนวนอะตอมใน 1 หน่วยเซลล์ = $\left(8 \times \frac{1}{8}\right) + 1 = 2$ (0.5 คะแนน)

มวลต่อหน่วยเซลล์ = $\frac{2 \times 52.0}{N_0}$ ($N_0 = 6.02 \times 10^{23}$)

ความหนาแน่น D =
$$\frac{M}{V}$$
 = $\frac{2 \times 52.0}{\left(\frac{4 \times 128 \times 10^{23}}{\sqrt{3}}\right)^3 \times 6.02 \times 10^{23}}$ = 6.69 g/cm³ (0.5 คะแนน)

คำตอบข้อที่ 4 (7 คะแนน)

คอลัมน์ ก		คอลัมน์ ข	
8 ซึ่นอน	8, 12	1. เกิดกรดออกโซที่มีออกซิเจน 3 อะตอมที่แตกตัวให้โปรตอนได้ 2 ตัว	<u>P</u> S
5 ถิเทียม	5, 15	2. เกิดสารประกอบเฮไลด์ที่เสถียรมีมุมพันธะ 109.5° ทุกมุม	<u>Si</u>
1 ฟอสฟอรัส	1, 6	3. โลหะที่อยู่ในคาบ n ที่อาจมีเลขควอนตัม โมเมนตัมเชิงมุม l ได้ตั้งแต่ 0 ถึง 4	Rb <u>Sr</u> I Xe
11 ซัลเฟอร์	1, 11	4. ใอโซโทปของธาตุนี้ใช้ในการกำหนดมวลอะตอมของธาตุอื่น ๆ	(C)
3 สตรอนเชียม	u 3, 9	5. โลหะที่ทำปฏิกิริยากับแก๊สในโตรเจนเกิดสารประกอบในไตรด์ที่	<u>Li</u>
16 โบรอน	16	โลหะมีเลขออกซิเคชัน +1 ใค้	
6 อาร์เซนิก	6	6. เกิดสารประกอบ binary oxide ที่มีเลขออกซิเดชัน +5	P <u>As</u> I
ใอโอคีน	6, 7, 12, 17	7. รูปธรรมชาติเป็นโมเลกุลที่มี $1.2 imes 10^{24}$ อะตอมใน 1 โมล	<u>O</u> Cl I
15 รูบีเดียม	3, 15	8. เกิดสารประกอบที่มีเลขออกซิเดชัน +4 ได้	Si <u>Xe</u>
13 อลูมิเนียม	13	$9.$ อัตราส่วนของค่า ${ m IE}_1:{ m IE}_2:{ m IE}_3$ มีค่าประมาณ $1:1.9:8.2$	<u>Ca</u> Sr
		10. เป็นชาตุที่เกิดจากการสังเคราะห์ (artificial element)	(e.g., Am)
17 กลอริน2 ซิลิกอน	7, 17 2, 8, 16	11. อัญรูปหนึ่งของธาตุนี้ในธรรมชาติเป็นของแข็ง โครงสร้างโมเลกุล เป็นวงที่มี 8 พันธะ	<u>S</u>
9 แกลเซียม	9	 ใช้ใชบริคออร์บิทัล sp³d² เกิดสารประกอบหรือใอออนเตตระ ฟลูออไรค์ที่มีอิเล็กตรอนคู่โคคเคี่ยว 2 คู่ได้ 	<u>I</u> Xe
7 ออกซิเจน	7	13. สารประกอบออกไซด์มีสมบัติเป็น amphoteric	Al As
		14. ไอออนที่มีประจุ 2+ มีอิเล็กตรอนในออร์บิทัล <i>d</i> 5 ตัว	(Mn gr)
		15. ทำปฏิกิริยากับน้ำในอัตราส่วนโมล 1:1 ให้แก๊สไฮโครเจนและ ไฮครอกไซค์	Li <u>Rb</u>
		16. เกิดสารประกอบไฮไครด์ที่มีสูตรโมเลกุลและรูปร่างแตกต่างกันได้ เป็นจำนวนมาก	<u>B</u> Si
		17. เกิดกรดออกโซที่เรียกชื่อว่า hypo- และ per- ได้	<u>Cl</u> I

คำตอบข้อที่ 5 (6 คะแนน)

5.1 สูตรของสารประกอบโคออร์ดิเนชันของสาร

A [Mn(NH₃)₄Cl₂]Cl₂ (1 คะแนน)

B [Mn(NH₃)₄Cl₂]Cl (1 คะแนน)

5.2 ชื่อสารประกอบโคออร์ดิเนชันของสาร **B** เป็นภาษาอังกฤษ

tetraamminedichloromanganese(III) chloride

สลับลิแกนค์ใค้ (1 คะแนน)
ถ้าอ่านชื่อตาม **B** ที่ตอบใน 5.1 (แต่ผิค) ถูก ได้ 0.5 คะแนน

5.3 รูปแสดงโครงสร้างของไอโซเมอร์ที่เป็นไปได้ของไอออนบวกของสาร **A**

5.4 แผนภาพแสดงระดับพลังงานของ d-orbital ของอะตอมกลางในสาร ${f B}$

5.5 เปรียบเทียบสมบัติพาราแมกเนติกของสาร A และสาร B

คำตอบข้อที่ 6 (8 คะแนน)

6.1 สมการที่คุลแล้วคือ

ปฏิกิริยาออกซิเคชัน $2I^-(aq) \to I_2(s) + 2e^-$ (0.5 คะแนน) $\frac{1}{2} \frac{1}{2} \frac{1}{$

(ถ้าไม่ระบุสถานะ หักคะแนนครึ่งหนึ่ง)

6.2 แผนภาพเซลล์ คือ

วิธีคิด (1 คะแนน)

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$= -10 \times 96,500 \times 0.97 \qquad (0.5 \text{ AZUUU})$$

$$= -936,050 \text{ J} \qquad (0.5 \text{ AZUUU})$$

$$= -936.05 \text{ kJ}$$

วิธีคิด (0.5 คะแนน)

$$\Delta S^{o} = nF \left(\frac{\partial E}{\partial T}\right)_{P}$$

$$= 10 \times 96,500 \times 1.0 \times 10^{-4}$$

$$= 96.50 \text{ J/K}$$

วิธีคิด (1 คะแนน)

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta H^{\circ} = \Delta G^{\circ} + T \Delta S^{\circ}$$

$$= -936,050 + (298 \times 96.50)$$

$$= -907,293 \text{ J}$$

$$= -907.29 \text{ kJ}$$

$$(0.5 \text{ AZUUU})$$

6.6 ค่าคงที่สมคุล (
$$\ln K$$
) = 377.81 (0.5 คะแนน) ตอบทศนิยม 2 ตำแหน่ง

วิธีกิด (1 คะแนน)

$$\Delta G^{\circ} = -nFE^{\circ} = -RT \ln K$$
 (0.5 กะแนน)
-936,050 = -8.314 × 298 ln K (0.5 กะแนน)
 $\ln K = 377.81$

คำตอบข้อที่ 7 (5 คะแนน)

วิธีคิด (3.5 คะแนน)

คำตอบข้อที่ 8 (11.5 คะแนน)

เหลือสารตั้งต้น =
$$1.5 \times 10^{-6}$$
 mol (0.5 คะแนน) ตอบในรูป a $\times 10^{n}$ (ทศนิยม 1 ตำแหน่ง)

วิธีคิด (1.75 คะแนน)

ความเข้มข้นของสารละลาย
$$C_6H_8O_6$$
 = $\frac{0.0044~g}{100~mL} imes \frac{1~mol}{176.0~g} imes \frac{1000~mL}{1~L}$

= 0.00025 mol/L

สารละลาย $C_6H_8O_6$ 3.00 mL มี $C_6H_8O_6$ = 0.00025 mol/L $imes rac{3.00}{1000}$ L

=
$$7.5 \times 10^{-7} \text{ mol}$$
 (0.5 คะแนน)

ความเข้มข้นของสารละลาย $K_3 Fe(CN)_6$ = $\frac{0.1644 \text{ g}}{500 \text{ mL}} \times \frac{1 \text{ mol}}{329.1 \text{ g}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$

= 0.00100 mol/L

สารละลาย K_3 Fe(CN)₆ 3.00 mL มี K_3 Fe(CN)₆ = 0.00100 mol/L $\times \frac{3.00}{1000}$ L

$$= 3.00 \times 10^{-6} \,\mathrm{mol}$$
 (0.5 คะแนน)

 $C_6H_8O_6 + 2Fe(CN)_6^{3-} \rightarrow C_6H_6O_6 + 2Fe(CN)_6^{4-} + 2H^+ \dots (1)$

จากสมการ สารละลาย $C_6H_8O_6$ 1 mol ใช้สารละลาย $K_3Fe(CN)_6$ 2 mol (0.25 คะแนน)

สารละลาย $C_6H_8O_6$ 7.5×10^{-7} mol จะใช้สารละลาย $K_3Fe(CN)_6 = 7.5 \times 10^{-7} \times 2$ mol

$$= 1.5 \times 10^{-6} \,\mathrm{mol}$$
 (0.25 คะแนน)

คังนั้น เหลือสารละลาย
$$K_3$$
Fe(CN) $_6=(3.0\times 10^{-6}-1.5\times 10^{-6})$ mol $=1.5\times 10^{-6}$ mol $=1.5\times 10^{-6}$ mol

8.2
$$F_t = F_0 - 2(V_0 - V_t)$$
 (0.5 คะแนน)

วิธีคิด (1 คะแนน)

วิธีคิด (0.75 คะแนน)

ณ เวลาหนึ่ง
$$V_t = 5.50 \times 10^{-7}$$
 mol แทนค่า F_0 , V_0 , V_t ลงในสมการ $F_t = F_0 - 2(V_0 - V_t)$ (0.5 คะแนน)
$$= 3.00 \times 10^{-6} - 2(7.5 \times 10^{-7} - 5.5 \times 10^{-7})$$
 (0.25 คะแนน)
$$= 2.6 \times 10^{-6} \, \text{mol}$$

8.4
$$\frac{d[X]}{dt} = 0 \tag{0.5 คะแนน}$$

8.5 จำนวนโมลของ
$$K_3[Fe(CN)_6]$$
 ที่เวลา $t=10$ นาที = 2.3×10^{-6} mol (0.5 คะแนน) ตอบในรูป $a \times 10^n$ (ทศนิยม 1 ตำแหน่ง)

วิธีกิด (1 คะแนน)

จาก
$$A = \epsilon c 1$$

ได้ $A_0 = \epsilon c_0 1$ (0.25 คะแนน)

และ $A_t = \epsilon c_t 1$ (0.25 คะแนน)

คังนั้น $\frac{A_t}{A_0} = \frac{c_t}{c_0} = \frac{F_t}{F_0}$

หรือ $F_t = \left(\frac{A_t}{A_0}\right) F_0$ (0.25 คะแนน)

จากตาราง: ที่ $t = 10$ นาที $A_t = 0.39$

ที่ $t = 0$ นาที $A_0 = 0.51$

จากข้อ 8.1 $F_0 = 3.0 \times 10^{-6}$

แทนค่า ได้ $F_t = \left(\frac{0.39}{0.51}\right) \times 3.0 \times 10^{-6}$
 $= 2.3 \times 10^{-6}$ mol

8.6 ค่าการดูดกลื่นแสง (
$$A_t$$
) = 0.43 (0.5 คะแนน) ตอบทศนิยม 2 ตำแหน่ง

วิธีคิด (2.25 คะแนน)

จาก Beer and Lambert law :
$$A = \varepsilon \, c \, l \, \ldots (1)$$
 (0.25 คะแนน)

Slope $= \varepsilon \, l \, = \, 1020$ (0.25 คะแนน)

จาก (1) ใต้ $A_f = \varepsilon \, c_f \, l$

ดังนั้น $c_f = \frac{A_f}{1020}$ (0.25 คะแนน)

จากตารางที่กำหนด $A_f = 0.26$ (0.25 คะแนน)

จักตารางที่กำหนด $A_0 = 0.26$ (0.25 คะแนน)

จากตารางที่กำหนด $A_0 = 0.51$ (0.25 คะแนน)

 $k_{obs} = 2.60 \, L/mol \cdot s$ (0.25 คะแนน)

 $t = 5 \, u \, m = 5 \times 60 = 300 \, s$

แทนค่า A_f , A_0 , k_{obs} , c_f , t ลงในสมการ

 $A_t = \frac{A_f}{1 - \left(\frac{A_0 - A_f}{A_0}\right) e^{-c_f k_{obs} t}}$

$$A_{t} = \frac{0.26}{1 - \left(\frac{0.51 - 0.26}{0.51}\right) e^{-2.55 \times 10^{-4} \times 2.60 \times 300}}$$

$$= \frac{0.26}{1 - 0.49 e^{-0.199}}$$

$$= \frac{0.26}{1 - (0.49 \times 0.82)}$$

$$= 0.43$$

8.7 ค่าพลังงานก่อกัมมันต์ (
$$E_{\rm a}$$
) = $\begin{bmatrix} 5.97 \\$ cal (0.5 คะแนน)

วิธีกิด (0.75 คะแนน)

$$k = Ae^{-E_a/RT}$$
 $\ln k = \ln A - \frac{E_a}{RT}$
 $y = -3.006 \text{ x} + 11.8$

แสดงว่า
 $\ln k = -3.006 \text{ max}$
 $\ln k = -3.006 \text{ max}$
 $\ln k = \ln A - \frac{E_a}{RT}$
 $\ln k = \ln A - \frac{E_a}$

คำตอบข้อที่ 9 (5.5 คะแนน)

9.1
$$\frac{\Delta[A^*]}{\Delta t} = k_1[A]^2 - k_2[A^*][A] - k_3[A^*]$$
 (0.5 คะแนน)

9.2 ก. ที่ความดันปกติ
$$\frac{\Delta[{
m C}]}{\Delta t} = \frac{k_3k_1[{
m A}]^2}{k_3+k_2[{
m A}]}$$
 (0.5 คะแนน)

วิธีกิด (1.5 คะแนน)

อัตราการเกิดของ A* เท่ากับอัตราการหายของ A*

ดังนั้น
$$\frac{\Delta[A^*]}{\Delta t} = 0 \dots (1)$$
 (0.5 คะแนน)

จากข้อ 9.1 และสมการ (1) ได้

$$[A^*] = \frac{k_1[A]^2}{k_3 + k_2[A]}$$
 (0.5 คะแนน)

$$\frac{\Delta[C]}{\Delta t} = k_3[A^*] \tag{0.5 nzmun}$$

แทนค่า [A*] ใค้
$$\frac{\Delta[\mathrm{C}]}{\Delta t} = \frac{k_3 k_1 [\mathrm{A}]^2}{k_3 + k_2 [\mathrm{A}]}$$

เขียนเป็น differential ก็ได้

ข. ที่ความคันต่ำ
$$\frac{\Delta[C]}{\Delta t} = \frac{k_3 k_1 [A]^2}{k_3} = K[A]^2$$
 (0.5 คะแนน) อันคับของปฏิกิริยา คือ สอง (0.5 คะแนน)

วิธีกิด (0.5 คะแนน)

จาก
$$\frac{\Delta[\mathrm{C}]}{\Delta t} = \frac{k_3 k_1 [\mathrm{A}]^2}{k_3 + k_2 [\mathrm{A}]}$$
 ที่ความคันต่ำ $k_2[\mathrm{A}] <<< k_3$ จึงตัค $k_2[\mathrm{A}]$ ทั้งได้
$$\frac{\Delta[\mathrm{C}]}{\Delta t} = \frac{k_3 k_1 [\mathrm{A}]^2}{k_3} = K[\mathrm{A}]^2 = \mathrm{d}\mathbb{I} \mathbb{I}$$
กิริยาอันดับสอง

ค. ที่ความดันสูง
$$\frac{\Delta[C]}{\Delta t} = \frac{\frac{k_3k_1[A]}{k_2} = K[A]}{$$
 (0.5 คะแนน) อันดับของปฏิกิริยา คือ หนึ่ง (0.5 คะแนน)

วิธีคิด (0.5 คะแนน)

จาก
$$\frac{\Delta[C]}{\Delta t} = \frac{k_3 k_1 [A]^2}{k_3 + k_2 [A]}$$
 ที่ความคันสูง $k_2[A] >>> k_3$ จึงคัค k_3 ทึ้ง ได้
$$\frac{\Delta[C]}{\Delta t} = \frac{k_3 k_1 [A]^2}{k_2 [A]}$$

$$\frac{\Delta[C]}{\Delta t} = \frac{k_3 k_1 [A]}{k_2} = K[A] = ปฏิกิริยาอันคับหนึ่ง$$

คำตอบข้อที่ 10 (11.5 คะแนน)

10.1 จำนวนโมลแอมโมเนียจากสารตัวอย่าง =
$$4.830 \times 10^{-3}$$
 mol (**0.5 คะแนน**)

ตอบในรูป $a \times 10^n$ (ทศนิยม 3 ตำแหน่ง)

วิธีคิด (3 คะแนน)

mol H₂SO₄ เริ่มต้น = 0.05000 L H₂SO₄ soln ×
$$\frac{0.05000 \text{ mol H}_2SO_4}{1 \text{ L H}_2SO_4 \text{ soln}}$$

= 2.500 × 10⁻³ mol H₂SO₄ → Na₂SO₄ + 2 H₂O

mol H₂SO₄ ที่เหลือ = 0.00340 L NaOH soln × $\frac{0.05000 \text{ mol NaOH}}{1 \text{ L NaOH soln}}$ × $\frac{1 \text{ mol H}_2SO_4}{2 \text{ mol NaOH}}$ (0.5 คะแนน)

= 8.500 × 10⁻⁵ mol H₂SO₄ เริ่มต้น – mol H₂SO₄ ที่เหลือ (0.25 คะแนน)

mol H₂SO₄ ที่ทำปฏิกิริยาพอดี = mol H₂SO₄ เริ่มต้น – mol H₂SO₄ ที่เหลือ (0.25 คะแนน)

= (2.500 × 10⁻³) – (8.500 × 10⁻⁵) (0.25 คะแนน)

= 2.415 × 10⁻³ mol H₂SO₄ (0.5 คะแนน)

2 NH₃ + H₂SO₄ → (NH₄)₂SO₄

mol NH₃ = 2.415 × 10⁻³ mol H₂SO₄ × $\frac{2 \text{ mol NH}_3}{1 \text{ mol H}_2SO_4}$ (0.5 คะแนน)

= 4.830 × 10⁻³ mol NH₃

10.2 สูตรของตะกอนขาวคือ $BaCO_3$ (0.5 คะแนน) จำนวนโมลการ์บอนใดออกใชด์ = 7.245×10^{-3} mol (0.5 คะแนน) ตอบในรูป a \times 10 n (ทศนิยม 3

ตำแหน่ง)

วิธีกิด (1 คะแนน)
$$C_a H_b N_c O_d \rightarrow a CO_2 \rightarrow a BaCO_3$$
 molar mass $BaCO_3 = 137.3 + 12.0 + 3(16.0) = 197.3 \text{ g/mol}$ (0.5 กะแนน)
$$mol CO_2 = 1.4294 \text{ g } BaCO_3 \times \frac{1 \text{ mol } BaCO_3}{197.3 \text{ g } BaCO_3} \times \frac{1 \text{ mol } CO_2}{1 \text{ mol } BaCO_3}$$
 (0.5 กะแนน)
$$= 7.245 \times 10^{-3} \text{ mol}$$

วิธีคิด (1 คะแนน)

จาก
$$C_aH_bN_cO_d \rightarrow a\ CO_2 \rightarrow a\ BaCO_3$$
 คังนั้น $mol\ C = mol\ BaCO_3 = 7.245 \times 10^{-3}\ mol$ $ol\ C_aH_bN_cO_d \rightarrow c\ NH_4HSO_4 \rightarrow c\ NH_3$ คังนั้น $mol\ N = mol\ NH_3 = 4.830 \times 10^{-3}\ mol$ $ol\ N = mol\ N = mol\ N = 4.830 \times 10^{-3}\ mol$ $ol\ N = mol\ N = \frac{1\ mol\ O}{2\ mol\ N}$ $ol\ N = \frac{1\ mol\ O}{2\ mo$

x = 8

10.4 จำนวนไอโซเมอร์โครงสร้างแบบสมมาตร = 2 แบบ (0.5 คะแนน) พิจารณาเมื่ออัตราส่วนของ $C\,H\,N$ และ $O\,$ เป็น $C_3H_8N_2O\,$ เท่านั้น มีโครงสร้างดังนี้ (1 คะแนน)

CH₃-NH-CO-NH-CH₃ และ NH₂-CH₂-CO-CH₂-NH₂

โครงสร้างละ 0.5 คะแนน

วิธีกิด (1 คะแนน)

 $C_3H_8N_2O \rightarrow 2NH_3$

% A = $4.830 \times 10^{-3} \text{ mol NH}_3 \times \frac{1 \text{ mol A}}{2 \text{ mol NH}_3} \times \frac{88.0 \text{ g A}}{1 \text{ mol A}} \times \frac{1}{0.2500 \text{ g sample}} \times 100 \%$ = 85.0

คำตอบข้อที่ 11 (9.5 คะแนน)

วิธีคิด (2.5 คะแนน)

Solubility of gas = Henry's constant × partial pressure of gas $(s = k_H P)$

$$s = (2.3 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1} \cdot \text{atm}^{-1}) \times (3.04 \times 10^{-4} \text{ atm}) = 7.0 \times 10^{-6} \text{ mol/L}$$
 (0.5 คะแนน)

$$CO_2(g) + H_2O(l) \longrightarrow H_2CO_3(aq)$$

ความเข้มข้นของ
$$H_2CO_3 = 7.0 \times 10^{-6} \text{ mol/L}$$
 (0.25 คะแนน)

$$H_2CO_3 + H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
 $K_{a1} = 4.3 \times 10^{-7}$

$$\text{HCO}^{3-} + \text{H}_2\text{O} \rightleftharpoons \text{CO}_3^{2-} + \text{H}_3\text{O}^+$$
 $K_{a2} = 5.6 \times 10^{-11}$

$$K_{\rm a2}$$
 มีค่าน้อยมาก ถือว่าการแตกตัวขั้นที่ 2 ของ ${
m H}_2{
m CO}_3$ ตัดทิ้งได้ $(0.25~$ กะแนน)

$$K_{a1} = \frac{[\text{HCO}_3^-][\text{H}_3\text{O}^+]}{[\text{H}_2\text{CO}_3]} = 4.3 \times 10^{-7}$$

$$K_{\rm al} = \frac{({\rm x})({\rm x})}{(7.0 \times 10^{-6} - {\rm x})} = 4.3 \times 10^{-7}$$
 (0.25 Aziluu)

ถ้า x <<
$$7.0 \times 10^{-6}$$
; x = $\sqrt{7.0 \times 10^{-6} \times 4.3 \times 10^{-7}}$ = 1.7×10^{-7} ซึ่งใกล้เคียงกับ 7.0×10^{-6}

$$x^2 + 4.3 \times 10^{-7} x - 3.0 \times 10^{-12} = 0 \tag{0.25 nsuuu}$$

$$x = \frac{-4.3 \times 10^{-7} \pm \sqrt{(4.3 \times 10^{-7})^2 - 4(-3.0 \times 10^{-12})}}{2} = 1.53 \times 10^{-6}$$

$$[H_3O^+] = 1.53 \times 10^{-6} \text{ mol/L}$$
 (0.5 คะแนน)

$$pH = -log [H_3O^+] = -log (1.53 \times 10^{-6})$$
 (0.25 คะแนน)

pH = 5.82

ใช้ successive approximation ก็ได้

11.2 ความเข้มข้นของ
$$H_2CO_3 = 4.38 \times 10^{-3} \mod L$$
 (0.5 คะแนน) ความเข้มข้นของ $HCO_3^- = 1.18 \times 10^{-4} \mod L$ (0.5 คะแนน) ความเข้มข้นของ $CO_3^{2-} = 4.20 \times 10^{-10} \mod L$ (0.5 คะแนน) ตอบในรูป $a \times 10^n$ (ทศนิยม 2 ตำแหน่ง)

วิธีคิด (1.5 คะแนน)

$$\begin{aligned} \text{PH = 4.80;} \quad & [\text{H}_3\text{O}^+] = 10^{-4.80} = 1.58 \times 10^{-5} \, \text{mol/L} \\ & [\text{H}_2\text{CO}_3] + [\text{HCO}_3^-] + [\text{CO}_3^2] = 4.50 \times 10^{-3} \, \text{mol/L} \\ & \\ & K_{a1} = \frac{[\text{HCO}_3^-][\text{H}_3\text{O}^+]}{[\text{H}_2\text{CO}_3]} = 4.3 \times 10^{-7} \\ & [\text{HCO}_3^-] = \frac{K_{a1} [\text{H}_2\text{CO}_3]}{[\text{H}_3\text{O}^+]} = 5.6 \times 10^{-11} \\ & K_{a2} = \frac{[\text{CO}_3^{2-}][\text{H}_3\text{O}^+]}{[\text{HCO}_3^-]} = 5.6 \times 10^{-11} \\ & [\text{CO}_3^2] = \frac{K_{a2} [\text{HCO}_3^-]}{[\text{H}_3\text{O}^+]} = \frac{(5.6 \times 10^{-11})[\text{HCO}_3^-]}{(1.58 \times 10^{-5})} = 3.54 \times 10^{-6} [\text{HCO}_3^-] \\ & (0.25 \, \text{пешии}) \\ & \text{Ton (1), (2), (3);} \\ & (0.25 \, \text{пешии}) \\ & \text{Ton (1), (2), (3);} \\ & (1.27 \times 10^{-2} [\text{H}_2\text{CO}_3] + 9.6 \times 10^{-8} [\text{H}_2\text{CO}_3] = 4.50 \times 10^{-3} \, \text{mol/L} \\ & (0.25 \, \text{пешии}) \\ & 1.027 [\text{H}_2\text{CO}_3] = 4.50 \times 10^{-3} \, \text{mol/L} \\ & (1.27 \times 10^{-2} [\text{H}_2\text{CO}_3] = (2.7 \times 10^{-2})(4.38 \times 10^{-3}) = 1.18 \times 10^{-4} \, \text{mol/L} \\ & (1.27 \times 10^{-2} [\text{H}_2\text{CO}_3] = (2.7 \times 10^{-8})(4.38 \times 10^{-3}) = 4.20 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-10} \, \text{mol/L}) \\ & (1.27 \times 10^{-2} [\text{H}_2\text{CO}_3] = (2.7 \times 10^{-2})(4.38 \times 10^{-3}) = 4.20 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \text{I}_3 \times 10^{-8}) = 9.6 \times 10^{-8} [\text{H}_2\text{CO}_3] = (9.6 \times 10^{-8})(4.38 \times 10^{-3}) = 4.20 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-8}) = 9.6 \times 10^{-8} \, \text{I}_3 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-8} \, \text{I}_3 \times 10^{-8}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-8}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 1.18 \times 10^{-4} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-8}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2} \, \text{I}_3 \times 10^{-3}) = 9.6 \times 10^{-10} \, \text{mol/L} \\ & (1.27 \times 10^{-2}$$

วิธีคิด (3 คะแนน)

ปริมาตรน้ำฝน =
$$\left(20.00 \text{ mm} \times \frac{1 \text{ cm}}{10 \text{ mm}}\right) \times \left(2.6 \text{ km}^2 \times \frac{10^6 \text{ m}^2}{1 \text{ km}^2} \times \frac{10^4 \text{ cm}^2}{1 \text{ m}^2}\right)$$

$$= 5.2 \times 10^{10} \text{ cm}^3 \times \frac{1 \text{ L}}{1000 \text{ cm}^3} = 5.2 \times 10^7 \text{ L} \tag{0.5 คะแนน}$$

$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$

$$2SO_3(g) + 2H_2O(1) \longrightarrow 2H_2SO_4(aq)$$

$$SO_2$$
 50.0 kg × $\frac{1000 \text{ g}}{1 \text{ kg}}$ × $\frac{1 \text{ mol } SO_2}{64.1 \text{ g } SO_2}$ = 781.03 mol (0.25 คะแนน)

 $mol\ H_2SO_4\ =\ mol\ SO_2\ =\ 781.03\ mol$

ความเข้มข้นของ
$$\mathrm{H}_2\mathrm{SO}_4 = \frac{781.03\ \mathrm{mol}\ \mathrm{H}_2\mathrm{SO}_4}{5.2\times10^7\ \mathrm{L}} = 1.50\times10^{-5}\ \mathrm{mol/L}$$
 (0.25 คะแนน)

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$

$$HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+ \qquad K_{a2} = 1.2 \times 10^{-2}$$

$$K_{\rm a2} = \frac{[{\rm SO_4}^2-][{\rm H_3O^+}]}{[{\rm HSO_4}^-]} = 1.2 \times 10^{-2}$$

$$K_{\rm a2} = \frac{({\rm x})(1.50 \times 10^{-5} + {\rm x})}{(1.50 \times 10^{-5} - {\rm x})} = 1.2 \times 10^{-2}$$
 (0.5 คะแนน)

ถ้า $x \ll 1.50 \times 10^{-5}$; $x = 1.2 \times 10^{-2}$ ซึ่งไม่เป็นจริง

หรือ
$$C_0/K_{\rm a2}=\frac{1.50\times 10^{-5}}{1.2\times 10^{-2}}=0.00125$$
 ซึ่งน้อยกว่า 1000 จึงตัด ${\bf x}$ ทิ้งไม่ได้ $\qquad \qquad (0.25~ คะแนน)$

$$x^2 + 1.2 \times 10^{-2} x - 1.8 \times 10^{-7} = 0$$
 (0.25 คะแนน)

$$x = \frac{-1.2 \times 10^{-2} \pm \sqrt{(1.2 \times 10^{-2})^2 - 4(-1.8 \times 10^{-7})}}{2} = 1.5 \times 10^{-5}$$
 (0.5 กะแนน)

$$[H_3O^+] = 1.5 \times 10^{-5} + 1.5 \times 10^{-5} = 3.0 \times 10^{-5} \text{ mol/L}$$
 (0.25 คะแนน)

$$pH = -log [H_3O^+] = -log (3.0 \times 10^{-5})$$
 (0.25 คะแนน)

$$pH = 4.52$$

คำตอบข้อที่ 12 (11.5 คะแนน)

12.1 ต้องผ่านกระแสไฟฟ้าในสารละลายเป็นเวลา

53.37 นาที (0.5 คะแนน)

ตอบทศนิยม 2 ตำแหน่ง

น้ำหนักของโลหะ Cu และ Ni ที่ขั้วลาร์บอน = 0.50 g
คิดเป็นน้ำหนักของโลหะ Cu และ Ni ที่ขั้วลาร์บอน = 0.50 g
คิดเป็นน้ำหนักของโลหะ Cu = 0.50 g ×
$$\frac{60}{100}$$
 = 0.30 g
คิดเป็นน้ำหนักของโลหะ Cu = 0.30 g Cu × $\frac{1 \, \text{mol Cu}}{63.5 \, \text{g Cu}}$ = $4.72 \times 10^{-3} \, \text{mol Cu}$
คิดเป็นน้ำหนักของโลหะ Ni = 0.50 g × $\frac{40}{100}$ = 0.20 g
คิดเป็นข้ำนวนโมล Ni = 0.20 g Ni × $\frac{1 \, \text{mol Ni}}{58.7 \, \text{g Ni}}$ = $3.41 \times 10^{-3} \, \text{mol Ni}$
จำนวนโมล (Cu + Ni) = $4.72 \times 10^{-3} \, \text{mol Cu} + 3.41 \times 10^{-3} \, \text{mol Ni}$
= $8.13 \times 10^{-3} \, \text{mol (Cu + Ni)}$
จำกสมการ 2 mol e จะรีคิวซ์ 1 mol (Cu + Ni)
จำนวนโมล e = $8.13 \times 10^{-3} \, \text{mol (Cu + Ni)} \times \frac{2 \, \text{mol e}}{1 \, \text{mol (Cu + Ni)}}$
= $1.626 \times 10^{-2} \, \text{mol e}$
ปริมาณของกระแสไฟฟ้า (Q) = จำนวน mol e × ค่าลงที่ฟาราเดย์
= $1.626 \times 10^{-2} \, \text{mol e}$
= 1.626

 $= 53.37 \min$

(0.25 คะแนน)

12.2 ความเข้มข้นของ
$$\text{Cu}^{2+}$$
 ที่เหลือในสารละลาย = $\frac{1.12 \times 10^{-3}}{1.87 \times 10^{-2}}$ mol/L (0.5 คะแนน) ความเข้มข้นของ Ni^{2+} ที่เหลือในสารละลาย = $\frac{1.87 \times 10^{-2}}{1.87 \times 10^{-2}}$ mol/L (0.5 คะแนน)

ตอบในรูป $a \times 10^n$ (ทศนิยม 2 ตำแหน่ง)

วิธีคิด (1.5 คะแนน)

มาลด่อโมลของ CuSO₄-5H₂O = 249.6 g/mol
มาลด่อโมลของ NiSO₄ = 154.8 g/mol
อาณเข้มข้น Cu²⁺ =
$$\frac{5.00 \text{ g CuSO4-5H2O}}{1 \text{ L}} \times \frac{1 \text{ mol CuSO4-5H2O}}{249.6 \text{ g CuSO4-5H2O}} \times \frac{1 \text{ mol CuSO4-5H2O}}{1 \text{ L}} \times \frac{1 \text{ mol NiSO4}}{154.8 \text{ g NiSO4}} \times \frac{1 \text{ mol NiSO4}}{1 \text{ mol NiSO4}} \times \frac{1 \text{ mol NiSO4}}{1 \text{ mol NiSO4}} \times \frac{0.25 \text{ คะแนน}}{1 \text{ mol NiSO4}} \times \frac{1 \text{ mol NiSO4}}{1 \text{ mol NiSO4}} \times \frac{0.25 \text{ คะแนน}}{1 \text{ mol NiSO4}} \times \frac{1 \text{ mol NiSO4}}{1 \text{ mol NiSO4}} \times \frac{1 \text{ m$$

=
$$1.87 \times 10^{-2} \text{ mol/L}$$

 $(1.868 \times 10^{-2} \text{ mol/L})$

12.3 ตะกอนที่เกิดก่อน คือ

CuS

(0.25 คะแนน)

ตะกอนที่เกิดเป็นลำดับที่ 2 คือ

NiS

(0.25 คะแนน)

วิธีคิด (0.75 คะแนน)

CuS จะตกตะกอนเมื่อ [S²⁻] =
$$\frac{K_{\rm sp}}{[{\rm Cu}^{2+}]} = \frac{8.0 \times 10^{-37}}{1.12 \times 10^{-3}} = 7.14 \times 10^{-34} \, {\rm mol/L}$$
 (0.25 คะแนน)

 $(7.1428 \times 10^{-34} \text{ mol/L})$

NiS จะตกตะกอนเมื่อ [S²⁻] =
$$\frac{K_{\rm sp}}{[{\rm Ni}^{2+}]} = \frac{3.0 \times 10^{-21}}{1.87 \times 10^{-2}} = 1.60 \times 10^{-19} \, {\rm mol/L}$$
 (0.25 กะแนน)

 $(1.604 \times 10^{-19} \, mol/L)$

$$[S^{2-}]_{CuS} < [S^{2-}]_{NiS}$$
 เพราะฉะนั้น CuS จะตกตะกอนก่อน (0.25 คะแนน)

12.4 pH ต่ำสุดจากการคำนวณที่จะทำให้ ใอออนชนิดแรกตกตะกอนได้
=
pH สูงสุดจากการคำนวณที่จะทำให้ ใอออนอีกชนิดตกตะกอนได้

-5.59 (**0.5** กะแนน)

1.58

(0.5 คะแนน)

ตอบทศนิยม 2 ตำแหน่ง

วิธีคิด (2.5 คะแนน)

$$H_2S(aq) \rightleftharpoons H^+(aq) + HS^-(aq)$$
 $K_{a1} = 1.1 \times 10^{-7}$
 $(0.25$ กะแนน)

 $HS^-(aq) \rightleftharpoons H^+(aq) + S^{2-}(aq)$
 $K_{a2} = 1.0 \times 10^{-14}$
 $H_2S(aq) \rightleftharpoons 2H^+(aq) + S^{2-}(aq)$
 $K = K_{a1} \times K_{a2}$
 $= 1.1 \times 10^{-7} \times 1.0 \times 10^{-14} = 1.1 \times 10^{-21}$
 $\frac{[H^+]^2[S^{2-}]}{[H_2S]} = 1.1 \times 10^{-21}$
 $unu\dot{\eta} T[H_2S] = 0.10 \text{ mol/L}$ าะ ได้
 (0.25 กะแนน)
 $\frac{[H^+]^2[S^{2-}]}{0.10} = 1.1 \times 10^{-21}$

$$[H^+]^2 = \frac{1.1 \times 10^{-22}}{[S^{2-}]}$$

 $[H^+]^2[S^{2-}] = 1.1 \times 10^{-22}$

$$[H^+] = \sqrt{\frac{1.1 \times 10^{-22}}{[S^2-]}}$$

$$pH = -log [H^+] = -log \sqrt{\frac{1.1 \times 10^{-22}}{[S^2]}}$$

คำนวน $[S^{2-}]$ ที่ต่ำที่สุดที่ทำให้ Cu^{2+} ตกตะกอนเป็น CuS

(0.5 คะแนน)

(0. 5 คะแนน)

$$[Cu^{2+}][S^{2-}] = 8.0 \times 10^{-37}$$

$$1.12 \times 10^{-3} [S^{2-}] = 8.0 \times 10^{-37}$$

$$[S^{2-}] = \frac{8.0 \times 10^{-37}}{1.12 \times 10^{-3}} = 7.14 \times 10^{-34} \text{ mol/L} (7.1428 \times 10^{-34} \text{ mol/L})$$

คำนวน $[S^{2-}]$ ที่สูงที่สุดที่ไม่ทำให้ Ni^{2+} ตกตะกอนเป็น NiS

(0.5 คะแนน)

$$[Ni^{2+}][S^{2-}] = 3.0 \times 10^{-21}$$

$$1.87\times 10^{-2} \; [S^{2-}] \;\; = \;\; 3.0\times 10^{-21}$$

$$[S^{2-}] = \frac{3.0 \times 10^{-21}}{1.87 \times 10^{-2}} = 1.60 \times 10^{-19} \text{ mol/L} (1.604 \times 10^{-19} \text{ mol/L})$$

pH ที่ทำให้ Cu²⁺ ตกตะกอนเป็น CuS โดยจะไม่ทำให้ Ni²⁺ ตกตะกอนเป็น NiS

(0.5 คะแนน)

$$pH = -log \sqrt{\frac{1.1 \times 10^{-22}}{7.14 \times 10^{-34}}} \ \, \vec{\tilde{n}} \, \text{$^{-}log $\sqrt{\frac{1.1 \times 10^{-22}}{1.60 \times 10^{-19}}}$}$$

วิธีกิด (0.75 คะแนน)

ความเข็มข้นของ
$$Ni^{2+}$$
 ที่เหลือในสารละลายเท่ากับ $1.87 \times 10^{-2} \, \text{mol/L}$ (0.25 คะแนน)

 $V_{\text{EDTA}} = \frac{1.87 \times 10^{-2} \, \text{mol Ni}^{2+}}{1 \, \text{L}} \times 25.00 \, \text{mL} \times \frac{1 \, \text{mol EDTA}}{1 \, \text{mol Ni}} \times \frac{1 \, \text{L}}{0.0200 \, \text{mol EDTA}}$ (0.5 คะแนน)

 $= 23.375 \, \text{mL}$

คำตอบข้อที่ 13 (8.5 คะแนน)

13.1 รีเอเจนต์ **1** คือ

13.3 สเตอริโอไอโซเมอร์ของ (S)-ibuprofen คือ

13.5 โครงสร้างของสาร B คือ

13.7 โครงสร้างของสาร D คือ

13.2 รีเอเจนต์ **2** คือ

13.4 โครงสร้างของสาร ${\bf A}$ คือ

13.6 โครงสร้างของสาร \mathbf{C} ที่มีสเตอริโอเคมีที่ จะทำให้ได้ (S)-ibuprofen คือ

13.8 โครงสร้างของสาร ${\bf E}$ คือ

13.9 โครงสร้างของสาร $\mathbf F$ ที่มีสเตอริโอเคมีที่จะทำให้ได้ (S)-ibuprofen คือ

13.10 โครงสร้างของสเตอริโอไอโซเมอร์ทั้งหมดของสาร II เป็นดังนี้

คำตอบข้อที่ 14 (9.5 คะแนน)

14.1 โครงสร้างของสาร $\mathbf{X}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ และ \mathbf{E} คังต่อไปนี้

สาร X คือ	สาร A คือ	สาร B คือ
HO OH OH NSTO	CHO H — OH HO — H H — OH H — OH CH2OH	OH
HO OH OH	но он	ОН
(1 คะแนน)	(2 คะแนน)	(1 คะแนน)

สาร C คือ	สาร D คือ	สาร E คือ
OCH ₃ OH OCH ₃ OCH ₃	CHO H OCH ₃ H_3 CO H H OCH ₃ H OH CH_2 OCH ₃	OCH ₃
(1 กะแนน)	(1.5 กะแนน)	(1 คะแนน)

14.2 สมการของปฏิกิริยาระหว่างสาร E กับสารละลาย NaOH

คำตอบข้อที่ 15 (10 คะแนน)

15.1 กลไกปฏิกิริยาการเกิดปฏิกิริยาในขั้นที่ 1 (2 คะแนน)

$$H_3C-C-S-CoA$$
 $H_2C=C-S-CoA$
 $H_2C=C-S-CoA$
 $H_2C=C-S-CoA$
 $H_2C=C-S-CoA$

15.2 กลไกปฏิกิริยาการเกิดปฏิกิริยาในขั้นที่ 2 (3 คะแนน)

15.3 สารและหรือเอนไซม์ที่ใช้ (3 คะแนน)

ขั้นที่ 3 ใช้	NAD+ และ hydrogenase	(1 คะแนน)
ขั้นที่ 4 ใช้	dehydrase	(1 คะแนน)
ขั้นที่ 5 ใช้	NAD+ และ hydrogenase	(1 คะแนน)

15.2 โครงสร้างของสาร ${\bf X}$ และสาร ${\bf Y}$ (3 คะแนน)

สาร X คือ	สาร X คือ
H_3C-CH_2 O CH-C-S-CoA H_3C-CH_2	H_3C-CH_2 $H_3C-CH_2-CH-C-S-CoA$ H_3C-CH_2
(1 คะแนน)	(1 คะแนน)