Лабораторная работа 3.7.3 **Изучение длинной линии**

Самойлов Михаил Б06-205

10 апреля 2024 г.

1 Цель работы

- ознакомиться и проверить на практике теорию распространения электрических сигналов вдоль длинной линии
- измерить амплитудо- и фазово-частотные характеристики коаксиальной линии
- определить погонные характеристики такой линии
- на примере модели длинной линии изучить вопрос распределения амплитуды колебаний сигнала по длине линии.

2 Оборудование

В работе используются:

- осциллограф АКТАКОМ ADS-6142H
- генератора АКИП 3420/1
- бухта с коаксиальным кабелем pk 50-4-11
- схематический блок "модель длинной линии"
- магазин сопротивления Р33
- соединительные провода

3 Введение

Удельная индуктивность единицы длины коаксиального кабеля, состоящего из тонкого сплошного цилиндрического проводника радиусом r_1 на оси изолированного коаксиального элемента радиусом r_2 , между которыми проложена сплошная среда с диэлектрической проницаемостью ϵ и магнитной восприимчивостью μ , выражается следующим образом:

$$L_x = \frac{dL}{dx} = 2\mu ln \frac{r_2}{r_1} \tag{1}$$

Формула, составляющая общую удельную ёмкость единицы длины кабеля, представлена ниже:

$$C_x = \frac{dC}{dx} = \frac{\epsilon}{2ln\frac{r_2}{r_1}} \tag{2}$$

На концах элемента dx возникает падение напряжения в результате появления ЭДС индукции и существованием омического сопротивления проводников. обратно пропорционального удельной проводимости σ , а также разность токов, связанная с тем, что часть заряда перетекает на заряженные элементы кабеля:

$$\begin{cases} U(x) = U(x + dx) + \frac{L_x dx}{c^2} \frac{\partial I}{\partial t} + R_x dx I \\ I(x) = I(x + dx) + \frac{\partial q}{\partial t} \end{cases}$$
 (3)

Эта система называется системой телеграфных уравнений. Дифференцируя её один и второй раз, можно получить каноническое уравнение вида:

$$\frac{\partial^2 U}{\partial t^2} - V_{\Phi}^2 \frac{\partial^2 U}{\partial x^2} + \gamma \frac{\partial U}{\partial t} = 0 \tag{4}$$

, где фазовая скорость $V_{\Phi} = \frac{c}{\sqrt{L_x C_x}} = \frac{c}{\sqrt{\mu\epsilon}}$ (это получается при подстановке значений удельной ёмкости и индуктивности элемента), и декремент затухания $\gamma = R_x C_x V_{\Phi}^2 = (C_x V_{\Phi}^2)/\sigma S$. Решая каноническое уравнение, можно получить выражение для зависимости тока от координаты в проводе и напряжения на нагрузке в конце линии от времени:

$$I(x,t) = U_0 \frac{C_x w}{k + i\alpha} e^{iwt} e^{(-\alpha + ik)x}$$

$$\tag{5}$$

$$U_n(t) = U_0 * e^{-\alpha l} e^{ikl} e^{-iwt} \tag{6}$$

Здесь волновое число $\mathbf{k}=w/V_{\Phi}$, где w - частота сигнала, α – коэффициент затухания. При этом если согласовать нагрузку с длинной линией так, чтобы эта нагрузка воспринималась её бесконечным продолжением, т.е. выставить $R_0=\sqrt{L_x}/c\sqrt{C_x}$, то напряжение в конце длинной линии будет выражаться формулой $U_H(t)=U_0e^{-\alpha I}$. Набег фазы при таком сопротивлении будет равен $\Delta\varphi=\mathbf{kl}$. Из последних двух выражений однозначно выражаются волновое число \mathbf{k} и коэффициент затухания α .

Экспериментальная установка

Коаксиальный кабель подключается к генератору и осциллографу. На канал 1 выводится сигнал, подаваемый генератором, а с канала 2 снимается напряжение на нагрузке. Схема экспериментальной установки изображена ниже.

Рис. 1: Схема экспериментальной установке

4 Практическая часть

4.1 Оценка вазовой и групповой скорости

В этой части работы будем определять резонансные частоты для синусоидального (СС) и прямоугольного (ПС) сигналов с нагрузкой, соответствующей согласованной линии и без нагрузки. Для синусоидального сигнала резонансные частоты численно соответствуют сдвигу фаз на 2π , откуда можно получить выражение

$$v_n = \frac{V_{\Phi}}{l}(n+n_0)$$

откуда можно получить фазовую скорость из углового коэффициента линейной зависимости резонансной частоты от её номера. Численные результаты эксперимента приведены ниже:

n	1	2	3	4	5	6	7
v_n , (согласованная линия) М Γ ц	3.9	7.8	11.7	15.7	19.6	23.5	27.5
v_n , (без нагрузки) МГц	4	8	12	16	20	24	28

Таблица 1: Результаты определения резонансных частот для синусоидальных колебаний.

Рис. 2: График зависимости резонансных частот от их номера для синусоидальных сигналов.

Среднеквадратичная ошибка для согласованной линии (с ее линнеаризацией) составила:

$$sd = 0.028$$

Из ошибки линейной аппроксимации, не превыщающей относительную погрешность измерения можно сделать вывод о почти нулевой дисперсии (что и видно из среднеквадратичной ошибки). Из графика по данным с согласованной нагрузкой можно получить информацию о угле наклона и фазовой скорости.

$$k_1 = \frac{V_{\Phi}}{l} = (4 \pm 0.003) \text{ M} \Gamma$$
ц $V_{\Phi} = (2.012 \pm 0.002) * 10^{10} \text{ cm/c}$

А для сигнала без нагрузки:

$$k_2 = \frac{V_{\Phi}}{l} = (3.93 \pm 0.006) \ \mathrm{M}\Gamma$$
ц $V_{\Phi} = (1.977 \pm 0.003) * 10^{10} \ \mathrm{cm/c}$

Для прямоугольного сигнала будет наблюдаться резонанс, когда сдвиг между сигналами равен $\Delta t = l/V_{\rm групповая}$ на входе и выходе будет совпадать или кратен периоду подачи этих сигналов $T = (n+n_0)(1/v_n)$

Из этого равенства можно получить выражение для зависимости резонансной частоты от её номера, из углового коэффициента которой однозначно получается значение групповой скорости:

$$v_n = \frac{V_{\rm rp}}{l}(n+n_0)$$

Приведем данные и график полученный по этим данным

n	1	2	3	4	5
v_n , (согласованная линия) М Γ ц	3.92	7.82	11.74	15.65	19.59
v_n , (без нагрузки) МГц	3.9	7.8	11.7	15.7	19.5

Таблица 2: Данные для прямоугольного сигнала

Рис. 3: График зависимости резонансных частот от их номера для прямоугольных сигналов.

Для данных графиков получаем приведенные значения снизу. Для согласованной линии получаем:

$$k_1 = \frac{V_{\Phi}}{l} = (3.917 \pm 0.003) \ \mathrm{M}\Gamma$$
ц $V_{\Phi} = (1.97 \pm 0.02) * 10^{10} \ \mathrm{cm/c}$

А для сигнала без нагрузки:

$$k_2 = \frac{V_{\Phi}}{l} = (3.91 \pm 0.002) \text{ МГц}$$

 $V_{\Phi} = (1.966 \pm 0.02) * 10^{10} \text{ см/c}$

4.2 Амплитудно-частотные и фазово-частотные характеристики.

Построим амплитудно-частотные (снимая амплитуду с первого канала в начале длинной линии и второго в её конце) и фазово-частотные (для сдвига фаз двух каналов друг относительно друга) характеристики кабеля на согласованной нагрузке. Для каждой частоты также определим коэффициент затухания и волновое число, исходя из полученных в теоретической части формул для набега фаз $\Delta \varphi$ и амплитуд в начале и конце линии U_0 и U_H :

$$\alpha(w) = \frac{a}{l} ln(\frac{U_0}{U_H}) \tag{7}$$

$k(w) = \frac{\Delta \varphi}{l}$	(8)
1	(-)

<i>v</i> , МГц	U_0 , М Γ ц	U_H , М Γ ц	$\Delta \varphi$, рад	$k, 10^{-3} \text{ cm}^{-1}$	$\alpha, 10^{-3} \text{ cm}^{-1}$
1.0	54.0	50.8	2.87624	0.57182	0.01214
2.0	53.9	49.6	5.57664	1.10868	0.0169
3.0	53.9	48.8	5.12448	1.01878	0.02013
4.0	54.0	48.4	5.19984	1.03377	0.02177
7.0	54.0	46.0	10.06684	2.00136	0.03188
9.0	54.0	45.0	13.33872	2.65183	0.03625
12.0	53.9	43.6	15.61459	3.10429	0.04253
15.5	54.1	41.2	19.70162	3.91682	0.05379
19.0	54.0	40.8	24.7947	4.92936	0.05579
22.5	53.9	39.6	29.87082	5.93853	0.06166
26.0	54.0	38.8	34.94192	6.9467	0.06572
31.0	54.0	36.0	39.61738	7.87622	0.08061
36.0	53.9	34.2	46.36901	9.21849	0.09081
40.0	54.0	33.2	51.42064	10.22279	0.09671

Таблица 3: Основные данные секции Б

Рис. 4: АЧХ и ФЧХ для наших данных.

Погрешности составляют $\sigma_v=1$ к Γ ц, $\sigma_U=0.1$ В. Для исследования АЧХ и ФЧХ используем решение канонического уравнения, находя его в виде двойной экспоненты. Разделив мнимую и действительную части полученного подстановкой выражения, наблюдаем следующее (система X):

$$\begin{cases} w^2 = V_{\Phi}^2(k^2 - \alpha^2) \\ 2\alpha k V_{\Phi}^2 = w\gamma \end{cases} \tag{9}$$

На следующем графике построим зависимость $(k^2 - \alpha^2)(w^2)$, учитывая что $w^2 = V_\Phi^2(k^2 - \alpha^2)$, а значит угловой коэфицент полученного графика получится $(C_x L_x)/c^2$. Построим же этот график.

Рис. 5: График зависимости $(k^2 - \alpha^2)(w^2)$

По данному графику получаем значения:

$$L_x C_x = (1.52 \pm 0.04)$$

В нашем случае R_0 равно 50 Ом, так что можно написать соотношения $L_x=cR_0=(2.05\pm0.03)$ ед СГС, $C_x=(0.74\pm0.02)$. Фазовая скорость же равна $V_\Phi=(2.43\pm0.07)*10^{10}$ см/с. Данное значение сходится с полученным в первом пункте с погрешностью 28%. Зная, что r1/r2 = 2.92, можно получить $\epsilon=1.58\pm0.04$ и $\mu=0.96\pm0.03$

4.3 Определение удельной проводимости проводников.

4.3.1 Метод А

Можем связать параметры данным уравнением

$$\alpha(w) = \frac{1}{l} \ln(\frac{U_0}{U_H}) = \frac{4}{\sqrt{\sigma}d} C_x \frac{V_{\Phi}}{c} \sqrt{v}$$
(10)

А значит, построив график $\alpha(\sqrt{v})$ сможем по наклону предполагаемой прямой на графике определить σ .

Рис. 6: График для первого метода определения σ

Получаем значение

$$\sigma = (1.06 \pm 0.04) * 10^{18}$$

4.3.2 Метод Б

Для данного метода построим зависимость αk от $v^{3/2}$, чтобы из углового коэфицента определить $\sigma.$

Рис. 7: График для второго способа определения σ

Используя (25) и тот факт, что можно заменить декремент затухания, исходя из $\gamma = R_x C_x V_\Phi^2$ получаем соотношение $2\alpha k = w R_x C_x$. Зная угловой коэфицент мы могли бы оценить σ , но данные выровнялись на 2 прямые. Значит, получим 2 значения σ :

$$\sigma_{left} = (4.56 \pm 0.18) * 10^{17}$$

$$\sigma_{right} = (2.99 \pm 0.11) * 10^{17}$$

Это значение в пару раз меньше полученного прошлым методом.

4.4 Модель длинной волны

Рис. 8: Используемая в работе установка

Прежде, чем приступить к работе определим предельную частоту распространения сигнала $v_0=1/\pi\sqrt{LC}=38$ кГц, согласованную нагрузку $R_0=\sqrt{L/C}=178$ Ом. Теперь приведем экспериментальные данные.

ν, кΓц	1	3	6	10	15	20	23	24	27	30	33
$\Delta \varphi$	6.34	16.77	32.21	50.83	78.94	101.2	118.6	122.9	136.0	154.0	166.0

Таблица 4: Данные по длинной волне

Из теоретических формул можно вывести, что коэфицент наклона графика должен быть равен $2\pi/\epsilon_0 = 5.96*10^{-3}c^{-2}$. Построим график и получим свой коэфицент наклона.

Рис. 9: График зависимост сдвига фаз в ячейке от частоты сигнала

Угловой коэфицент составил $(5.02 \pm 0.04) * 10^{-3} c^{-2}$, что отличается от теоретического на 20%.

Для трёх резонансных частот при бесконечно большом сопротивлении нагрузки снимем напряжение между ячейками (от 4-й слева до крайней справа) и построим график зависимости напряжения между ячейками от номера:

Рис. 10: Зависимость амплитуды между ячейками от номера.

5 Вывод

Проведя исследование длинной линии и изучив изменение электрического сигнала на ее концах, мы разработали способы определения групповой и фазовой скоростей сигналов различных форм. Благодаря использованию амплитудно-частотной характеристики длинной линии, мы смогли определить ее характеристики, такие как диэлектрическая и магнитная проницаемости слоя между проводящими элементами. Преобразовав АЧХ и ФЧХ с помощью вспомогательных величин, таких как коэффициент затухания и волновой коэффициент, мы также изучили несколько способов определения удельной проводимости материала. Однако, результаты этих способов заметно отличались друг от друга, что может быть связано с ошибками в измерении амплитуды.

Кроме того, мы исследовали модель длинной линии, представленную последовательными ячейками известной ёмкости и индуктивности. Мы обнаружили, что эта модель влияет на сигнал аналогичным длинной линии образом с погрешностью порядка 20%. Кроме того, распределение амплитуды по последовательным ячейкам модели длинной линии может соответствовать распределению в длинной линии.