DSE, ICEF, Fall 2023 HA-02, theory

1. Consider a small dataset of five observations. The predictor is continuous, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $x_5 = 5$, and the response variable is discrete, $y_1 = A$, $y_2 = A$, $y_3 = B$, $y_4 = C$, $y_5 = A$.

- (a) Construct the classification tree. Use Gini impurity index as the splitting criterion. Split the node if there are more than two observations inside.
- (b) What are the forecasted probabilities for x = 4.7?
- 2. Consider a small dataset of five observations. The predictor is continuous, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $x_5 = 5$, the response variable is also continuous, $y_1 = 100$, $y_2 = 120$, $y_3 = 130$, $y_4 = 60$, $y_5 = 70$.
 - (a) Construct the regression tree. Use residual sum of squares as the splitting criterion. Split the node if there are more than two observations inside.
 - (b) What is the forecasted value of y for x = 4.7?
- 3. Random variables $y_1, y_2, ..., y_n$ is a random sample from uniform distribution on [0; 1]. Consider one of the bootstrap samples, $y_1^*, y_2^*, ..., y_n^*$.
 - (a) Find $\mathbb{E}(y_1^*)$. Explain in one or two lines why it is equal to or different from $\mathbb{E}(y_1)$.
 - (b) Find $Var(y_1^*)$. Explain in one or two lines why it is equal to or different from $Var(y_1)$.
 - (c) Find $\mathbb{C}ov(y_1, y_1^*)$.
 - (d) Find $\mathbb{C}ov(y_1^*, y_2^*)$. Explain in one or two lines why it is equal to or different from $\mathbb{C}ov(y_1, y_2)$.
 - (e) Find $Var(\bar{y}^*)$.