

CFD Analysis in Pumps

Srečko Mitruševski

SM Pumps, Ljubljana, Slovenia

Associate professor Andrej Lipej, Ph.D.

Faculty of Mechanical Engineering, Novo mesto, Slovenia

What are basic questions of the CFD?

- accuracy of the results

- Basic equation of fluid dynamics,
- Turbulence modelling,
- Basic discretization techniques, Grid generation
- The analysis and resolution of numerical schemes

- analysis time

- Complexity of application,
- Computer performance.

Basic equations

Navier – Stokes equations

$$\rho \frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = -\frac{\partial p}{\partial x_j} + \mu \frac{\partial^2 u_j}{\partial x_i^2} + \rho f_i$$

$$\frac{\partial \rho}{\partial t} + \rho \frac{\partial u_k}{\partial x_k} = 0$$

Basic equations

Reynolds averaged equations

$$\rho \frac{\partial \overline{u_j}}{\partial t} + \rho u_k \frac{\partial \overline{u_j}}{\partial x_k} = -\frac{\partial p}{\partial x_j} + \mu_t \frac{\partial^2 \overline{u_j}}{\partial^2 x_i} + \rho f_i$$

- RANS Reynolds Averaged N-S
- URANS Unsteady RANS
- SRS Scale-Resolving Simulation

- Scale-Resolving Simulation (SRS)
- SRS refers to all turbulence models, which resolve at least a portion of the turbulence spectrum in at least a part of the domain
 - Scale-Adaptive Simulation (SAS)
 - Hybrid RANS-LES Methods (DES ...)
 - Embedded and Zonal LES (ELES)
 - Modelled LES (WMLES)
 - Large Eddy Simulation (LES)

Direct Numerical Simulation (DNS) – extremely expensive

Computational grid

10

Pump sump

Reversible pump turbine

Multi stage pump – stream lines

Multi stage pump

FLOW DISTRIBUTION FOR THREE OPERATING POINTS

Inlet recirculation

Dimensionless Q-NPSH characteristic of the existing pump

Geometry of optimised pump

Geometry and computational grid

Operating points

Operating	Flow rate
point	Q/Q _{opt}
А	0.26
В	0.33
С	0.46
D	0.56
E	0.62
F	0.65

Impeller inlet flow conditions

Inlet axial velocity distribution between hub and shroud

Inlet recirculation

Inlet vortex at vertical cross section for six operating points

Inlet velocity

Recirculation at the inlet – velocity vectors

Vortices between impeller blades

Recirculation between impeller blades – velocity vectors

Vortices between impeller blades

Recirculation between impeller blades

Flow inside the computational domain

Inlet flow animation

unsteady analysis – impeller inflow for operating point A (local unsteadiness)

Inlet flow animation

unsteady analysis – impeller inflow for operating point E (negligible unsteadiness)

Flow animation

unsteady analysis

NPSH

Dimensionless NPSH characteristic of the optimised pump

NUMERICAL MODEL

A Frictionless Support-+z

B Frictionless Support-y

Frictionless Support-ground

D Fixed Support

Loading conditions:

Pressure: 10 MPa

Temperature: 400 °C (50 °C/h)

Material properties:

Young's modulus: 200 GPa

Poisson's ratio: 0.3

S-N curve for mean stress equal to 0 MPa

(without other influences):

RESULTS – ALTERNATING STRESS

Alternating stress from S-N curve for Infinity-Life Design: 393 MPa

30

RESULTS – ALTERNATING STRESS

$$K_f = 0.7$$

STRESS ANALYSIS

Results

a. Deformations – max 0.05722 mm (red colour)

b. Stresses – max 17.813 MPa (Equivalent von-Mises stresses)

HEAT TRANSFER

Cooling tower – flow analysis around buildings

Conclusions

- Computation is now firmly established as the third pillar of science alongside theory and experiment.
- CFD is very powerful tool for energetic, cavitation and dynamic analysis of all types of centrifugal pumps.
- Reliable results can be obtained by experienced engineer or researcher.
- CFD can replace a lot of experimental work.
- For some special applications a high performance computing facilities is necessary.
- There are many scientific problems which stretch the limits of the largest supercomputers in the world.