CS4495/6495 Introduction to Computer Vision

3C-L2 Intrinsic camera calibration

Geometric Camera calibration

Composed of 2 transformations:

• From some (arbitrary) world coordinate system to the camera's 3D coordinate system. *Extrinisic* parameters (or camera pose)

Camera Pose

From World to Camera

$$\begin{bmatrix}
c & \overrightarrow{p} \\ | & \overrightarrow{p} \\ | & = \begin{bmatrix}
- & - & - \\ - & W & R & - \\ - & - & - \end{bmatrix} \begin{bmatrix}
c & \overrightarrow{t} \\ W & t \\ | & | & p
\end{bmatrix}$$

$$\begin{bmatrix}
c & \overrightarrow{t} \\ W & t \\ | & | & p
\end{bmatrix}$$

Homogeneous coordinates

From world to camera is the extrinsic parameter matrix (4x4) (sometimes 3x4 if using for next step in projection – not worrying about inversion)

Geometric Camera calibration

Composed of 2 transformations:

• From some (arbitrary) world coordinate system to the camera's 3D coordinate system. *Extrinisic* parameters (or camera pose)

 From the 3D coordinates in the camera frame to the 2D image plane via projection.

Intrinisic parameters

Ideal intrinsic parameters

Ideal Perspective projection:

$$u = f \frac{x}{z}$$

$$v = f \frac{y}{z}$$

Real intrinsic parameters (1)

But "pixels" are in some arbitrary spatial units

$$u = \alpha \frac{x}{z}$$

$$v = \alpha \frac{y}{z}$$

Real intrinsic parameters (2)

Maybe pixels are not square

$$u = \alpha \frac{x}{z}$$

$$v = \beta \frac{y}{z}$$

Real intrinsic parameters (3)

We don't know the origin of our camera pixel coordinates

$$u = \alpha \frac{x}{-} + u_{0}$$

$$z$$

$$v = \beta \frac{y}{z} + v_{0}$$

Really ugly intrinsic parameters (4)

May be skew between camera pixel axes

$$v'\sin(\theta) = v$$

$$u' = u - \cos(\theta)v' = u - \cot(\theta)v$$

Really ugly intrinsic parameters (4)

May be skew between camera pixel axes

$$u = \alpha \frac{x}{z} - \alpha \cot(\theta) \frac{y}{z} + u_{_0}$$

$$v = \frac{\beta}{\sin(\theta)} \frac{y}{z} + v_{0}$$

Intrinsic parameters, non-homogeneous coords

Intrinsic parameters, homogeneous coords

$$\begin{pmatrix} z * u \\ z * v \\ z \end{pmatrix} = \begin{pmatrix} \alpha & -\alpha \cot(\theta) & u_0 & 0 \\ 0 & \frac{\beta}{\sin(\theta)} & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ x \\ z \\ 1 \end{pmatrix}$$

In homogeneous pixels

Intrinsic matrix

In camerabased 3D coords

Kinder, gentler intrinsics

 Can use simpler notation for intrinsics – remove last column which is zero:

$$K = \begin{bmatrix} f & s & c_x \\ 0 & a & f & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$f - focal length$$

$$s - skew$$

$$a - aspect ratio$$

$$c_x, c_y - offset$$

$$(5 DOF)$$

Kinder, gentler intrinsics

• If square pixels, no skew, and optical center is in the center (assume origin in the middle):

$$K = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

In this case only one DOF, focal length *f*

Kinder, gentler intrinsics

 Can use simpler notation for intrinsics – remove last column which is zero:

$$K = \begin{bmatrix} f & s & c_x \\ 0 & a & f & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$f - focal length$$

$$s - skew$$

$$a - aspect ratio$$

$$c_x, c_y - offset$$

$$(5 DOF)$$

Quiz

The intrinsics have the following: a focal length, a pixel x size, a pixel y size, two offsets and a skew. That's 6. But we've said there are only 5 DOFS. What happened:

- a) Because f always multiplies the pixel sizes, those 3 numbers are really only 2 DOFs.
- b) In modern cameras, the skew is always zero so we don't count it.
- c) In CCDs or CMOS cameras, the aspect is carefully controlled to be 1.0, so it is no longer modeled.

Combining extrinsic and intrinsic calibration parameters

Combining extrinsic and intrinsic calibration parameters

Other ways to write the same equation

projectively similar

Finally: Camera parameters

- A camera (and its matrix) M (or Π) is described by several parameters
 - Translation T of the optical center from the origin of world coordinates
 - Rotation R of the camera system
 - focal length and aspect (f, a) [or pixel size (s_x, s_y)], principle point (x'_c, y'_c), and skew (s)
 - blue parameters are called "extrinsics," red are "intrinsics"

Finally: Camera parameters

Projection equation – the cumulative effect of all parameters:

Finally: Camera parameters

Projection equation – the cumulative effect of all parameters:

$$\mathbf{M} = \begin{bmatrix} f & s & x'_c \\ 0 & af & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

intrinsics projection rotation translation

$$DoFs: 5+0+3+3 = 11$$