Chapter 46 Even Answers

 $2.27 \times 10^{23} \text{ Hz},$ $1.32 \times 10^{-15} \text{ m}$ 2. \overline{v}_{μ} , v_e 4. (b) $v_e = 0.919 c$, $v_p = 380 \text{ km/s}$ (a) 0.782 MeV 6. The electron is relativistic, the proton is not. $\sim 10^{-16} \text{ m}$ 8. **10**. $\overline{\nu}_{\mu}$ **12**. (a) L_e and L_u baryon number (b) charge baryon number (e) charge **14**. The second reaction does not conserve baryon number. **16**. 0.828c(b) $E_e=E_{\gamma}=469~{
m MeV}\,,~p_e=p_{\gamma}=469~{
m MeV}/c$ 18. See solution (a) 0.999 999 4 c (c) The ρ^0 decays via the strong interaction; the K^0_s must decay via the weak interaction. 20. 22. electron and lepton numbers (b) lepton number (a) charge and strangeness conservation (d) baryon number (c) (e) strangeness 24. baryon number, charge, L_e , L_τ (a) baryon number, charge, L_e , L_μ , L_τ (b) strangeness, charge, L_e , L_μ , L_τ (c) baryon number, strangeness, charge, L_e , L_μ , L_τ (d) baryon number, strangeness, charge, $L_{\rm e}$, L_{μ} , L_{τ} (e) baryon number, strangeness, charge, L_e , L_μ , L_τ (f) **32**. a neutron, udd

- **34.** (a) -e, antiproton
- (b) 0, antineutron
- **36.** (a) 590.07 nm
- (b) 597 nm

(c) 661 nm

- **38.** (a) $c\left(\frac{z^2 + 2z}{z^2 + 2z + 2}\right)$
- (b) $\frac{c}{H} \left(\frac{z^2 + 2z}{z^2 + 2z + 2} \right)$

40. (a) $\sim 10^{13} \text{ K}$

- (b) $\sim 10^{10} \text{ K}$
- **42**. (a) 1.61×10^{-35} m
- (b) 5.38×10^{-44} s
- (c) yes

- **44.** (a) charge conservation
- (b) energy conservation
- (c) baryon number conservation

- **46.** a neutron
- **48.** 2.04 MeV
- **50.** 1116 MeV/ c^2 (a Λ^0 particle)
- **52.** 70.4 MeV
- **54.** 29.7 MeV
- **56.** (a) Electron-positron annihilation; e⁻
 - (b) A neutrino collides with a neutron; W^+