Capítulo 1

Fundamentos

Sumario

- Definición. Tipos de redes y su clasificación
- Modelo de Capas
- Servicios WAN: líneas dedicadas, RTC, RDSI, Frame Relay y ATM
- Estándares

Telemática: ciencia que utiliza las telecomunicaciones para potenciar las posibilidades y aplicaciones de la informática

Redes de computadoras y Sistemas distribuidos

- Redes de computadoras: conjunto de computadoras autónomas interconectadas entre sí
- Sistemas distribuidos: cuando un conjunto de computadoras independientes aparece ante sus usuarios como un sistema consistente y único.

Clasificación de las redes

- Por su ámbito:
 - Redes de área local o LAN (Local Area Network):
 Diseñadas desde el principio para transportar datos.
 - Redes de área extensa o WAN (Wide Area Network):
 Utilizan la base del sistema telefónico, diseñado inicialmente para transportar voz.
- Por su tecnología:
 - Redes broadcast (broadcast = radiodifusión)
 - Redes punto a punto

Clasificación de las redes por su ámbito

Distancia entre	Procesadores ubicados	Ejemplo
procesadores	en el mismo	
1 m	Sistema	Multiprocesador
10 m	Habitación	
100 m	Edificio	LAN
1 Km	Campus	
10 Km	Ciudad	MAN (o WAN)
100 Km	País	
1.000 Km	Continente	WAN
10.000 Km	Planeta	

Redes de área local o LAN (Local Area Network)

Características:

- Generalmente son de tipo broadcast (medio compartido)
- Cableado normalmente propiedad del usuario
- Diseñadas inicialmente para transporte de datos

• Ejemplos:

- Ethernet (IEEE 802.3): 1, 10, 100, 1000 Mb/s
- Token Ring (IEEE 802.5): 1, 4, 16, 100 Mb/s
- FDDI: 100 Mb/s
- HIPPI: 800, 1600, 6400 Mb/s
- Fibre Channel: 100, 200, 400, 800 Mb/s
- Redes inalámbricas por radio (IEEE 802.11): 1, 2, 5.5, 11 Mb/s
- Topología en bus (Ethernet) o anillo (Token Ring, FDDI)

Topologías LAN típicas

Redes de área extensa o WAN (Wide Area Network)

- Se caracterizan por utilizar normalmente medios telefónicos, diseñados en principio para transportar la voz.
- Son servicios contratados normalmente a operadoras (Telecom, Telefónica, Telmex, One, AT&T, etc.).
- Las comunicaciones tienen un costo elevado, por lo que se suele optimizar su diseño.
- Normalmente utilizan enlaces punto a punto temporales o permanentes, salvo las comunicaciones vía satélite que son broadcast. También hay servicios WAN que son redes de conmutación de paquetes.

Clasificación de las redes por su tecnología

Tipo	Broadcast	Enlaces punto a punto
Características	La información se envía a todos los nodos de la red, aunque solo interese a unos pocos	La información se envía solo al nodo al cual va dirigida
Ejemplos	 Casi todas las LANs (excepto LANs conmutadas) Redes de satélite Redes de TV por cable 	 Enlaces dedicados Servicios de conmutación de paquetes (X.25, Frame Relay y ATM). LANs conmutadas

Redes broadcast

- El medio de transmisión es compartido. Suelen ser redes locales. Ej.: Ethernet 10 Mb/s
- Los paquetes se envían a toda la red, aunque vayan dirigidos a un único destinatario. Posibles problemas de seguridad (encriptado)
- Se pueden crear redes planas, es decir redes en las que la comunicación entre dos ordenadores cualesquiera se haga de forma directa, sin routers intermedios.

Redes de enlaces punto a punto (I)

- La red esta formada por un conjunto de enlaces entre los nodos de dos en dos
- Es posible crear topologías complejas (anillo, malla,etc.)
- Generalmente la comunicación entre dos ordenadores cualesquiera se realiza a través de nodos intermedios que encaminan o conmutan los paquetes (conmutador o router).
- Un router o conmutador es un ordenador especializado en la conmutación de paquetes; generalmente utiliza un hardware y software diseñados a propósito (p. ej. sistemas operativos en tiempo real)
- En una red de enlaces punto a punto el conjunto de routers o conmutadores y los enlaces que los unen forman lo que se conoce como la *subred*. La subred delimita la responsabilidad del proveedor del servicio.

Algunas topologías típicas de redes punto a punto

Redes de enlaces punto a punto (II)

- En una red punto a punto los enlaces pueden ser:
 - Simplex: transmisión en un solo sentido
 - Semi-dúplex o half-duplex: transmisión en ambos sentidos, pero no a la vez
 - Dúplex o full-duplex: transmisión simultánea en ambos sentidos
- En el caso dúplex y semi-dúplex el enlace puede ser simétrico (misma velocidad en ambos sentidos) o asimétrico. Normalmente los enlaces son dúplex simétricos
- La velocidad se especifica en bps, Kbps, Mbps, Gbps, Tbps, ... Pero OJO:
 - 1 Kbps = 1.000 bps (no 1.024)
 - 1 Mbps = 1.000.000 bps (no 1.024*1.024)
- Ejemplo: la capacidad total máxima de un enlace de 64 Kbps son 128.000 bits por segundo (64.000 bits por segundo en cada sentido).

Clasificación de las redes

	Redes LAN	Redes WAN
Redes broadcast	Ethernet, Token Ring, FDDI	Redes vía satélite, redes CATV
Redes de enlaces punto a punto	HIPPI, LANs conmutadas	Líneas dedicadas, Frame Relay, ATM

Escenario típico de una red completa (LAN-WAN)

Posibles formas de enviar la información

- Según el número de destinatarios el envío de un paquete puede ser:
 - Unicast: si se envía a un destinatario concreto. Es el mas normal.
 - Broadcast: si se envía a todos los destinatarios posibles en la red.
 Ejemplo: para anunciar nuevos servicios en la red.
 - Multicast: si se envía a un grupo selecto de destinatarios de entre todos los que hay en la red. Ejemplo: emisión de videoconferencia.
 - Anycast: si se envía a uno cualquiera de un conjunto de destinatarios posibles. Ejemplo: servicio de alta disponibilidad ofrecido por varios servidores simultáneamente; el cliente solicita una determinada información y espera recibir respuesta de uno cualquiera de ellos.

Internetworking

- Se denomina así a la interconexión de redes diferentes
- Las redes pueden diferir en tecnología (p. ej. Ethernet-Token Ring) o en tipo (p. ej. LAN-WAN).
- También pueden diferir en el protocolo utilizado, p. ej. DECNET y TCP/IP.
- Los dispositivos que permiten la interconexión de redes diversas son:
 - Repetidores y amplificadores
 - Puentes (Bridges)
 - Routers y Conmutadores (Switches)
 - Pasarelas de nivel de transporte o aplicación (Gateways)

Sumario

- Definición. Tipos de redes y su clasificación
- Modelo de Capas
- Servicios WAN: líneas dedicadas, RTC, RDSI, Frame Relay y ATM
- Estándares

Planteamiento del problema

- La interconexión de ordenadores es un problema técnico de complejidad elevada.
- Requiere el funcionamiento correcto de equipos (hardware) y programas (software) desarrollados por diferentes equipos humanos.
- Cuando las cosas no funcionan es muy fácil echar la culpa al otro equipo.
- La interoperabilidad no cumple la propiedad transitiva. El correcto funcionamiento de A con B y de B con C no garantiza el correcto funcionamiento de A con C
- Estos problemas se agravan más aún cuando se interconectan equipos de distintos fabricantes.

La solución

- La mejor forma de resolver un problema complejo es dividirlo en partes.
- En telemática dichas 'partes' se llaman **capas** y tienen funciones bien definidas.
- El **modelo de capas** permite describir el funcionamiento de las redes de forma modular y hacer cambios de manera sencilla.
- El modelo de capas más conocido es el llamado modelo OSI de ISO (OSI = Open Systems Interconnection).

Ejemplo de comunicación mediante el modelo de capas

Dos artistas, uno en Moscú y el otro en Valencia, mantienen por vía telegráfica una conversación sobre pintura. Para entenderse disponen de traductores ruso-inglés y valenciano-inglés, respectivamente. Los traductores pasan el texto escrito en inglés a los telegrafistas que lo transmiten por el telégrafo utilizando código Morse.

Ejemplo de comunicación mediante el modelo de capas

Protocolos e Interfaces

Relación de servicio a protocolos

• Servicio: es un conjunto de primitivas que una capa proporciona a la capa que esta sobre ella.

• Protocolo: es un conjunto de reglas que rigen el formato y el significado de los paquetes, o mensajes, que se intercambian las entidades iguales en una capa.

Comunicación indirecta mediante el modelo de capas

Supongamos ahora que Moscú y Bs. As. no disponen de comunicación directa vía telégrafo, pero que la comunicación se realiza de forma indirecta por la ruta:

Moscú – Copenague: telégrafo por cable

Copenague – París: radiotelégrafo

París – Bs. As.: telégrafo por cable

Comunicación indirecta entre dos artistas a través de una red de telégrafos

Modelo de capas

- Actualmente todas las arquitecturas de red se describen utilizando un modelo de capas. El más conocido es el denominado Modelo de Referencia OSI (Open Systems Interconnect) de ISO, que tiene 7 capas (como el SNA).
- Los objetivos fundamentales del modelo de capas son:
 - Sencillez: hace abordable el complejo problema de la comunicación entre ordenadores
 - Modularidad: permite realizar cambios con relativa facilidad a una de sus partes sin afectar al resto
 - Compatibilidad: La comunicación entre dos entidades de una capa puede realizarse independientemente de las demás.

Arquitectura (de redes)

- La arquitectura es un patrón común al que han de ceñirse unos productos (hard y soft) para mantener un cierto grado de compatibilidad entre sí.
- La necesidad de diseñar arquitecturas de redes surgió en los 70s por razones parecidas a las que provocaron las primeras arquitecturas de computadores.
- La primera fue SNA (Systems Networks Architecture) de IBM en 1974 que utilizó un modelo de 7 capas.
- Actualmente todas las arquitecturas utilizan un modelo de capas. El caso más conocido y que suele utilizarse como referencia es el de OSI, que también tiene 7 capas.

Arquitectura de redes (cont.)

- El modelo de capas se basa en los siguientes principios:
 - La capa n ofrece sus servicios a la capa n+1
 - La capa n+1 solo usa los servicios de la capa n
 - La capa n solo habla con la capa n de otro sistema (comunicación de igual a igual o peer to peer) siguiendo el protocolo de la capa n
- Las capas y los protocolos forma la arquitectura de red.
- La comunicación entre dos capas adyacentes se realiza a través de la *interfaz*. Ésta no forma parte de la arquitectura
- El conjunto de protocolos que interoperan en todos los niveles de una arquitectura dada se conoce como *pila de protocolos* o *protocol stack*. Ejemplo: la pila de protocolos OSI, SNA, TCP/IP, etc.

Interfaz y Servicio

- Entidad y Entidad par
- SAP: Punto de acceso al servicio
- IDU: Unidad de Datos de la Interfaz
- SDU: Unidad de Datos de Servicio
- PDU: Unidad de Datos de Protocolo
- ICI: Información de Control de la Interfaz

Principios del modelo OSI

- Una capa se debe crear donde se necesite una abstracción bien definida.
- Cada capa debe realizar una función bien definida.
- La función de cada capa se debe elegir con la intención de definir protocolos estandarizados internacionalmente.
- Los limites de las capas se deben elegir a fin de minimizar el flujo de información a través de las interfaces.
- La cantidad de capas debe ser suficientemente grande para no tener que agrupar funciones distintas en la misma capa y lo bastante pequeña para que la arquitectura no se vuelva inmanejable.

El Modelo de referencia OSI de ISO (OSIRM)

• Fue definido entre 1977 y 1983 por la ISO (International Standards Organization) para promover la creación de estándares independientes de fabricante. Define 7 capas:

Capa Física

Transmite Especificación de medios de transmisión mecánicos, eléctricos, funcionales y Los Datos procedurales Medio físico

Capa de Enlace

N=2

Capa de Red

Suministra información sobre la ruta a seguir

¿Por donde debo ir a w.x.y.z?

N=3

Capa de Transporte

Capa de Sesión

Sincroniza el intercambio de datos entre capas inferiores y superiores

Capa de Presentación

WWW (HTTP)

Capa de Aplicación

¿Que debo enviar?

- Es la interfaz que ve el usuario final
- Muestra la información recibida
- En ella residen las aplicaciones
- Envía los datos de usuario a la aplicación de destino usando los servicios de las capas inferiores

Modelos TCP/IP e híbrido

- Los protocolos TCP/IP nacieron por la necesidad de interoperar redes diversas (internetworking)
- El modelo TCP/IP se diseñó después de los protocolos (puede decirse que primero se hizo el traje y después los patrones)
- Por eso a diferencia del OSI en el modelo TCP/IP hay unos protocolos 'predefinidos'.
- A menudo se sigue un modelo híbrido, siguiendo el OSI en las capas bajas y el TCP/IP en las altas. Además en LANs el nivel de enlace se divide en dos subcapas. Esto da lugar a lo que denominamos el modelo híbrido.

Comparación de modelos OSI, TCP/IP e híbrido

Protocolos y redes del modelo TCP/IP inicial

Comparación OSI-TCP/IP

- En OSI primero fue el modelo, después los protocolos; en TCP/IP primero fueron los protocolos, luego el modelo
- En OSI el modelo es bueno, los protocolos malos; en TCP/IP ocurre al revés
- En OSI los productos llegaban tarde, eran caros y tenían muchos fallos
- En TCP/IP los productos aparecían rápido, estaban muy probados (pues los usaba mucha gente), y a menudo eran gratis.
- Nosotros seguiremos el modelo OSI (modificado) pero veremos los protocolos TCP/IP

Comparación OSI-TCP/IP

- El modelo que utilizaremos es el siguiente:
 - 5: Capa de aplicación (incluye sesión y presentación)
 - 4: Capa de transporte
 - − **3**: Capa de red
 - − 2: Capa de enlace
 - 2.2: Subcapa LLC (Logical Link Control)
 - 2.1: Subcapa MAC (Media Acess Control)
 - 1: Capa física

Acceso a un servidor Web desde un cliente en una LAN Ethernet

Protocolos e información de control

- Normalmente todo protocolo requiere el envío de algunos mensajes especiales o información de control adicional a la que se transmite. generalmente esto se hace añadiendo una cabecera (a veces también una cola) al paquete a transmitir.
- La información de control reduce el caudal útil, supone un overhead.
- Cada capa añade su propia información de control.
 Cuantas mas capas tiene un modelo mas overhead se introduce.

Elementos de datos en el modelo TCP/IP

Los valores que aparecen para el nivel de enlace se aplican al caso de Ethernet. Según el tipo de red puede haber pequeñas variaciones

Acceso a un servidor Web a través de una conexión remota

Servicio orientado y no orientado a conexión

- Un Servicio orientado a conexión (CONS) establece el canal antes de enviar la información. Ejemplo: llamada telefónica.
- Un Servicio no orientado a conexión (CLNS) envía los datos directamente sin preguntar antes. Si la comunicación no es posible los datos se perderán. Ejemplo: servicio postal o telegráfico

¿Conexión o No Conexión? Ese es el dilema

- En el servicio orientado a Conexión (CONS):
 - Se respeta el orden de los paquetes
 - Se mantiene la misma ruta o camino para todos los paquetes
 - Los paquetes no necesitan llevar la dirección de destino
 - Si el canal se corta la comunicación se interrumpe
- En el servicio No orientado a Conexión (CLNS):
 - No se respeta el orden
 - Cada paquete ha de llevar la dirección de destino
 - La ruta puede variar para cada paquete
 - La red es más robusta, ya que si una ruta queda inservible se pueden usar otras

Redes CONS vs CLNS

- Ejemplos de redes/servicios CONS:
 - Red Telefónica conmutada (RTB, RDSI, GSM)
 - ATM, X.25, Frame Relay
- Ejemplos de redes/servicios CLNS
 - IP (Internet). Los paquetes IP se llaman datagramas.
 - Ethernet

Calidad de Servicio (QoS)

- La Calidad de Servicio (QoS, Quality of Service) consiste en fijar unos valores límite para un conjunto de parámetros, asegurando así que la red no se va a congestionar. Por ejemplo:
 - Throughput o ancho de banda: ≥ 256 Kb/s
 - Retardo o latencia: ≤ 200 ms
 - Fluctuación del retardo, o jitter: ≤ 100 ms
 - Disponibilidad: ≥ 99,95 % (21 min/mes fuera de servicio)
- Podemos ver la QoS como el 'contrato' usuarioproveedor.