Exploratory data analysis-1

```
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
Added columns: genP full generation probability weighted by VJ usage for our data (aging); ageing_occur -
number of occurrences in aging dataset, should be normalized by 29,989,055 - total number of rearrangements
in aging data.
TOTAL_REARRANGEMENTS_AGING = 29989055
df = read.table("VDJDB fullP.txt", header=T, sep="\t")
# Fix issue with SLYNTVATL epitope labelled as CMV in 1555537 -> should put an issue in vdjdb-db!
# which is actually HIV
df$antigen.species = as.factor(ifelse(df$antigen.epitope == "SLYNTVATL", "HIV-1", as.character(df$antig
df$obsP = df$ageing_occur / TOTAL_REARRANGEMENTS_AGING
Only intercept (constant) bias is present (from plot):
ggplot(df, aes(x=obsP, y=genP)) +
  geom_point(shape=21)+
  geom_smooth(method="lm") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") +
  scale_x_{log10}(limits = c(1e-13, 1e-3)) +
  scale_y_log10(limits = c(1e-13, 1e-3)) +
  theme bw()
## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 3632 rows containing non-finite values (stat_smooth).
```



```
# Not quite obvious from ANOVA..
lmP = lm(log10(obsP) \sim log10(genP), subset(df, obsP > 0 & genP > 0))
summary(lmP)
##
## Call:
## lm(formula = log10(obsP) ~ log10(genP), data = subset(df, obsP >
      0 \& genP > 0))
##
##
## Residuals:
       Min
                 1Q
                      Median
                                   ЗQ
                                           Max
## -1.50718 -0.30004 0.00176 0.28453 2.19940
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.500653
                         0.069658
                                   -21.54
                                             <2e-16 ***
## log10(genP) 0.647065
                          0.008907
                                     72.65
                                             <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4461 on 2873 degrees of freedom
## Multiple R-squared: 0.6475, Adjusted R-squared: 0.6474
## F-statistic: 5278 on 1 and 2873 DF, p-value: < 2.2e-16
anova(lmP)
```

Analysis of Variance Table

```
##
## Response: log10(obsP)
                Df Sum Sq Mean Sq F value
                 1 1050.23 1050.2 5277.5 < 2.2e-16 ***
## log10(genP)
## Residuals
              2873 571.73
                               0.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Lets try GLM
glmP = glm(obsP * TOTAL_REARRANGEMENTS_AGING ~ genP, data = df, family = poisson)
summary(glmP)
##
## Call:
## glm(formula = obsP * TOTAL_REARRANGEMENTS_AGING ~ genP, family = poisson,
       data = df
##
##
## Deviance Residuals:
##
      Min
                10
                    Median
                                  30
                                          Max
           -5.567
                    -5.567
                              -3.180 121.239
## -73.017
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.741e+00 3.083e-03
                                     888.9
                                              <2e-16 ***
              1.268e+06 1.795e+03
                                     706.7
                                              <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 622590 on 6506
                                      degrees of freedom
## Residual deviance: 430074 on 6505
                                      degrees of freedom
## AIC: 441862
## Number of Fisher Scoring iterations: 7
```

Comparing genP across epitopes

Filter epitopes with few representative TCRs, remove everything with 0 generation prob

```
df.tcr.per.epitope = df %>%
  filter(genP > 0) %>%
  group_by(antigen.epitope) %>%
  dplyr::summarise(count = n(), genP_med = median(genP)) %>%
  filter(count >= 30)
```

Compare rearrangement prob across epitopes and their parent species

```
df.1 = subset(df, antigen.epitope %in% df.tcr.per.epitope$antigen.epitope & genP > 0)
df.1$antigen.epitope = factor(df.1$antigen.epitope, levels = df.tcr.per.epitope$antigen.epitope[order(d
ggplot(df.1, aes(x=antigen.epitope, group = antigen.epitope, y=genP, fill = antigen.species)) +
    geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "white", color="black") +
    scale_y_log10() +
```

```
coord_flip() +
scale_fill_brewer(palette = "Set3") +
theme_bw()
KLVALGINAV
```



```
ggplot(df.1, aes(x=antigen.species, group = antigen.species, y=genP)) +
  geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "red", color="white") +
  geom_hline(yintercept = median(df.1$genP), linetype = "dashed", color = "red") +
  scale_y_log10() +
  coord_flip() +
  theme_bw()
```



```
a1 = aov(log10(genP) ~ antigen.epitope, df.1)
summary(a1)
##
                    Df Sum Sq Mean Sq F value Pr(>F)
                                        4.959 2.4e-16 ***
## antigen.epitope
                    28
                          230
                                8.197
## Residuals
                  4564
                         7544
                                1.653
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
a2 = aov(log10(genP) ~ antigen.species, df.1)
summary(a2)
##
                    Df Sum Sq Mean Sq F value
                                                Pr(>F)
## antigen.species
                     6
                           40
                                6.692
                                        3.968 0.000578 ***
## Residuals
                  4586
                                1.686
                         7734
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(a2, "antigen.species")
    Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = log10(genP) ~ antigen.species, data = df.1)
## $antigen.species
```

lwr

0.043890929 -0.15589589 0.2436777 0.9951538 0.049775136 -0.24522150 0.3447718 0.9988914

upr

diff

##

EBV-CMV

HCV-CMV

```
0.172112230 -0.01339119 0.3576157 0.0895409
## HIV-1-CMV
## HomoSapiens-CMV
                              0.120723624 -0.07063342 0.3120807 0.5066893
                              ## InfluenzaA-CMV
## YellowFeverVirus-CMV
                              0.186990017 -0.30935016 0.6833302 0.9249008
## HCV-EBV
                              0.005884207 -0.28680542 0.2985738 1.0000000
                              0.128221301 -0.05359102 0.3100336 0.3646205
## HIV-1-EBV
## HomoSapiens-EBV
                              0.076832695 -0.11094834 0.2646137 0.8917625
                              ## InfluenzaA-EBV
## YellowFeverVirus-EBV
                              0.143099088 -0.35187341 0.6380716 0.9791885
## HIV-1-HCV
                              0.122337094 -0.16079532 0.4054695 0.8637450
## HomoSapiens-HCV
                              0.070948488 -0.21605319 0.3579502 0.9908239
## InfluenzaA-HCV
                              0.229203315 -0.05994720 0.5183538 0.2260047
## YellowFeverVirus-HCV
                              0.137214881 -0.40325345 0.6776832 0.9894256
## HomoSapiens-HIV-1
                             -0.051388606 -0.22389503 0.1211178 0.9757661
## InfluenzaA-HIV-1
                              0.106866221 -0.06919208 0.2829245 0.5546221
## YellowFeverVirus-HIV-1
                              0.014877787 -0.47450399 0.5042596 1.0000000
## InfluenzaA-HomoSapiens
                              0.158254827 - 0.02396077 \ 0.3404704 \ 0.1381275
## YellowFeverVirus-HomoSapiens 0.066266393 -0.42536408 0.5578969 0.9996950
## YellowFeverVirus-InfluenzaA -0.091988434 -0.58487643 0.4008996 0.9980396
```

Comparing selection prob

Pre-filter

```
df.tcr.per.epitope.2 = df %>%
 filter(genP > 0 \& obsP > 0) %>%
  group_by(antigen.epitope) %>%
  dplyr::summarise(count = n(), logOddsSel_med = median(log10(obsP) - log10(genP))) %>%
  filter(count >= 30)
df.2 = subset(df, antigen.epitope %in% df.tcr.per.epitope.2$antigen.epitope & genP > 0 & obsP > 0)
df.2$logOddsSel = with(df.2, log10(obsP) - log10(genP))
df.2$antigen.epitope = factor(df.2$antigen.epitope, levels = df.tcr.per.epitope.2$antigen.epitope[order
med log odds = median(df.2$logOddsSel)
```

Compare selection factors

```
ggplot(df.2, aes(x=antigen.epitope, group = antigen.epitope, y=logOddsSel, fill = antigen.species)) +
 geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "white", color="black") +
  geom_hline(yintercept = med_log_odds, linetype = "dashed", color = "black") +
  coord_flip() +
  scale_fill_brewer(palette = "Set3") +
  theme_bw()
```



```
ggplot(df.2, aes(x=antigen.species, group = antigen.species, y=logOddsSel)) +
  geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "red", color="white") +
  geom_hline(yintercept = med_log_odds, linetype = "dashed", color = "red") +
  coord_flip() +
  theme_bw()
```



```
a1 = aov(logOddsSel ~ antigen.epitope, df.2)
summary(a1)
##
                    Df Sum Sq Mean Sq F value
                                               Pr(>F)
                           34 2.0029
                                       6.628 1.02e-15 ***
## antigen.epitope
                    17
## Residuals
                  2333
                          705 0.3022
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
a2 = aov(logOddsSel ~ antigen.species, df.2)
summary(a2)
##
                    Df Sum Sq Mean Sq F value
                                               Pr(>F)
## antigen.species
                     6
                        15.9 2.6429
                                      8.566 3.13e-09 ***
                  2344 723.2 0.3085
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(a2, "antigen.species")
    Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = logOddsSel ~ antigen.species, data = df.2)
## $antigen.species
```

lwr

0.07615086 -0.04581397 0.1981156819 -0.17590525 -0.36754090 0.0157303872

diff

##

EBV-CMV

HCV-CMV

```
## HIV-1-CMV
                                 -0.11772431 -0.23591821
                                                          0.0004695923
                                -0.10193062 -0.21729323
## HomoSapiens-CMV
                                                          0.0134319894
## InfluenzaA-CMV
                                -0.14566815 -0.26133593 -0.0300003714
## YellowFeverVirus-CMV
                                 -0.14197351 -0.43720897
                                                          0.1532619512
## HCV-EBV
                                 -0.25205611 -0.43998231 -0.0641299075
## HIV-1-EBV
                                -0.19387516 -0.30595476 -0.0817955644
## HomoSapiens-EBV
                                 -0.17808148 -0.28717121 -0.0689917412
## InfluenzaA-EBV
                                 -0.22181900 -0.33123140 -0.1124066047
## YellowFeverVirus-EBV
                                 -0.21812436 -0.51096564
                                                          0.0747169155
## HIV-1-HCV
                                 0.05818095 -0.12732010
                                                          0.2436819901
## HomoSapiens-HCV
                                 0.07397463 -0.10973539
                                                          0.2576846521
## InfluenzaA-HCV
                                  0.03023711 -0.15366470
                                                          0.2141389106
## YellowFeverVirus-HCV
                                 0.03393175 -0.29409998
                                                          0.3619634758
                                                          0.1206504922
## HomoSapiens-HIV-1
                                 0.01579369 -0.08906312
## InfluenzaA-HIV-1
                                 -0.02794384 -0.13313629
                                                          0.0772486135
## YellowFeverVirus-HIV-1
                                 -0.02424920 -0.31554011
                                                          0.2670417095
                                 -0.04373753 -0.14573844
## InfluenzaA-HomoSapiens
                                                          0.0582633861
## YellowFeverVirus-HomoSapiens -0.04004289 -0.33019652
                                                          0.2501107415
## YellowFeverVirus-InfluenzaA
                                 0.00369464 -0.28658046
                                                          0.2939697353
##
                                    p adj
## EBV-CMV
                                0.5192687
## HCV-CMV
                                0.0964773
## HIV-1-CMV
                                0.0517068
## HomoSapiens-CMV
                                0.1241213
## InfluenzaA-CMV
                                0.0038930
## YellowFeverVirus-CMV
                                0.7916860
## HCV-EBV
                                0.0015125
## HIV-1-EBV
                                0.0000074
## HomoSapiens-EBV
                                0.0000319
## InfluenzaA-EBV
                                0.000001
## YellowFeverVirus-EBV
                                0.2968490
## HIV-1-HCV
                                0.9685425
## HomoSapiens-HCV
                                0.8987796
## InfluenzaA-HCV
                                0.9990400
## YellowFeverVirus-HCV
                                0.9999348
## HomoSapiens-HIV-1
                                0.9994188
## InfluenzaA-HIV-1
                                0.9865313
## YellowFeverVirus-HIV-1
                                0.9999819
## InfluenzaA-HomoSapiens
                                0.8677225
## YellowFeverVirus-HomoSapiens 0.9996491
## YellowFeverVirus-InfluenzaA
```

Summary so far

- There is a difference in both rearrangement prob and selection prob across epitopes
- There is large difference in selection prob across species, no such difference for rearrangement prob
- Difference in selection prob shows that EBV and CMV are favored compared to other species. This can be due to clonal expansions, but: 1) no such difference for Flu 2) we don't account for clonal size, only counting unique rearrangements 3) A02-NLVP is not the top favoured epitope

Features

Epitope len for MHCI

Its more likely to generate TCR recognizing longer epitope, however the observed occurrence frequency is independent of the length of cognate epitope => differences in selection.

```
df.epi = df %>% filter(mhc.class=="MHCI" & genP > 0 & obsP > 0)
df.epi$epi.len = nchar(as.character(df.epi$antigen.epitope))
df.epi.s = df.epi %>%
  group_by(epi.len) %>%
  dplyr::summarise(count = n()) %>%
  arrange(-count)
print(df.epi.s)
## # A tibble: 7 × 2
##
     epi.len count
       <int> <int>
##
          9 1533
## 1
## 2
          10
              805
## 3
          11
               142
## 4
          8
               125
## 5
          12
                 2
## 6
          13
                 2
          15
## 7
                 1
df.epi = df.epi %>% filter(epi.len < 12)</pre>
ggplot(df.epi, aes(x=epi.len, group=epi.len, y=genP)) +
  geom_violin() + geom_boxplot(color="red", width=0.2) +
  scale_y_log10() +
  theme_bw()
```


summary(lm(log10(genP) ~ epi.len, df.epi))

```
##
## Call:
## lm(formula = log10(genP) ~ epi.len, data = df.epi)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -4.1111 -0.6086 0.0077 0.6617 2.4467
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.8034 0.2611 -33.713 < 2e-16 ***
                           0.0278 4.035 5.61e-05 ***
                0.1122
## epi.len
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9391 on 2603 degrees of freedom
## Multiple R-squared: 0.006217, Adjusted R-squared: 0.005835
## F-statistic: 16.28 on 1 and 2603 DF, p-value: 5.61e-05
ggplot(df.epi, aes(x=epi.len, group=epi.len, y=obsP)) +
 geom_violin() + geom_boxplot(color="red", width=0.2) +
 scale_y_log10() +
theme_bw()
```


summary(lm(log10(obsP) ~ epi.len, df.epi))

```
##
## Call:
## lm(formula = log10(obsP) ~ epi.len, data = df.epi)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                           Max
                                   3Q
  -0.98982 -0.65729 -0.07098 0.54683 2.43085
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.66039 0.20994 -31.725
                                            <2e-16 ***
                                             0.481
               0.01575
                          0.02235 0.705
## epi.len
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.755 on 2603 degrees of freedom
## Multiple R-squared: 0.0001907, Adjusted R-squared: -0.0001934
## F-statistic: 0.4966 on 1 and 2603 DF, p-value: 0.4811
ggplot(df.epi, aes(x=epi.len, group=epi.len, y=log10(obsP)-log10(genP))) +
 geom_violin() + geom_boxplot(color="red", width=0.2) +
theme_bw()
```


summary(lm(log10(obsP)-log10(genP) ~ epi.len, df.epi))

```
##
## Call:
## lm(formula = log10(obsP) - log10(genP) ~ epi.len, data = df.epi)
##
## Residuals:
##
       Min
                    Median
                 1Q
                                  3Q
                                          Max
## -1.74844 -0.34320 -0.04468 0.29191 3.15282
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.14298 0.15415 13.902 < 2e-16 ***
                       0.01641 -5.876 4.73e-09 ***
## epi.len
              -0.09643
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5544 on 2603 degrees of freedom
## Multiple R-squared: 0.01309, Adjusted R-squared: 0.01271
## F-statistic: 34.53 on 1 and 2603 DF, p-value: 4.732e-09
```

CDR3 features

Load annotations produced by VDJdb/Annotate

```
# some dummy stuff
df.ann = read.table("ann.aging_annot_0.txt", header = T, sep = "\t") %>%
```

```
merge(df) %>%
filter(obsP > 0 & genP > 0) %>%
mutate(logOddsSel = log10(obsP) - log10(genP))
```

The only effect comes from length..

```
ggplot(df.ann, aes(x=base.cdr3length / 3, y=log0ddsSel)) +
  geom_violin(aes(group = base.cdr3length / 3)) +
  geom_boxplot(aes(group = base.cdr3length / 3), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

`geom_smooth()` using method = 'gam'


```
ggplot(df.ann, aes(x=aaprop.strength, y=logOddsSel)) +
  geom_violin(aes(group = aaprop.strength)) +
  geom_boxplot(aes(group = aaprop.strength), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

```
## `geom_smooth()` using method = 'gam'
## Warning: Computation failed in `stat_smooth()`:
## x has insufficient unique values to support 10 knots: reduce k.
```



```
ggplot(df.ann, aes(x=aaprop.polarity, y=logOddsSel)) +
  geom_violin(aes(group = aaprop.polarity)) +
  geom_boxplot(aes(group = aaprop.polarity), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

`geom_smooth()` using method = 'gam'


```
ggplot(df.ann, aes(x=aaprop.charge, y=log0ddsSel)) +
  geom_violin(aes(group = aaprop.charge)) +
  geom_boxplot(aes(group = aaprop.charge), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

```
## `geom_smooth()` using method = 'gam'
## Warning: Computation failed in `stat_smooth()`:
## x has insufficient unique values to support 10 knots: reduce k.
```



```
ggplot(df.ann, aes(x=round(aaprop.hydropathy), y=logOddsSel)) +
  geom_violin(aes(group = round(aaprop.hydropathy))) +
  geom_boxplot(aes(group = round(aaprop.hydropathy)), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

`geom_smooth()` using method = 'gam'

Further work

Need to annotate Robins data. Check HLA-mediated effect. Can we consistently rule out clonal expansions.. well we can show effect both in CMV+ and CMV- patients for specific clonotypes