

Grundlagen der Robotik -Teilsysteme eines Roboters

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Inhalt

- Mathematische Grundlagen
- Mechanische Komponenten
 - Gelenktypen
 - Grundkonfiguration f
 ür Roboter
 - Arbeitsraum
- Antriebe
- Sensoren
- Regelung und Steuerung

Teilsysteme 2 rrlab.cs.uni-kl.de

Modellierung von Robotersystemen

- Notation
- Trigonometrische Funktionen
- Additionstheoreme
- Winkel
- Kosinussatz/Sinussatz
- Vektoren
- Skalarprodukt, Vektorprodukt, Spatprodukt
- Matrizen und deren Eigenschaften
- Geometrie im Raum
- Physikalische Grundlagen

Teilsysteme 3 rrlab.cs.uni-kl.de

Notationen

- Skalare: Kleinbuchstaben, z.B. s
- Vektoren: Mit Pfeil, z.B. \vec{u}
- Matrizen: Großbuchstaben, z.B. A
- Bezeichner für Skalare, Vektoren bzw. Punkte: Index rechts unten, z.B. $\overrightarrow{u_1}$
- sinus bzw. cosinus als Matrizenkomponenten: Kurzschreibweise $cos(\theta_1) = c\theta_1 = c_1$ (sinus analog)

Teilsysteme 4 rrlab.cs.uni-kl.de

Notationen

- Koordinatensysteme (Frames):
 Großbuchstaben bzw. Ziffern, z.B. B
- Vektor mit Bezug auf bestimmtes Frame: Framebezeichner links oben, z.B. $^{B}\vec{u}$
- Matrix transformiert von Bezugsframe B in Basisframe A:
 Angabe unten bzw. oben links, z.B. ^A_BR

Teilsysteme 5 rrlab.cs.uni-kl.de

Trigonometrische Funktionen

Die trigonometrische Funktionen sin, cos, tan, cot sind als Seitenverhältnisse in einem rechtwinkligen Dreieck (zunächst nur 0° bis 90°) für einen Winkel α definiert als ...

$$\cos \alpha = \frac{\text{Ankathete}}{\text{Hypotenuse}} = \frac{b}{c}$$

$$\sin \alpha = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} = \frac{a}{c}$$

$$\tan \alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{a}{b} = \frac{a/c}{b/c} = \frac{\sin \alpha}{\cos \alpha}$$

$$\cot \alpha = \frac{\text{Ankathete}}{\text{Gegenkathete}} = \frac{b}{a} = \frac{b/c}{a/c} = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\tan \alpha}$$

Hypotenuse c

Teilsysteme 6 rrlab.cs.uni-kl.de

Trigonometrische Funktionen

- Für bel. Winkel wird Def. auf Einheitskreis überführt
 - Länge der Hypotenuse: $\sqrt{x^2 + y^2} = 1$
 - $\sin \alpha = y$
 - $\cos \alpha = x$
- Bogenmaß eines Winkels α (im Gradmaß) Länge des Kreisbogens, der den Winkel mit dem Einheitskreis (Radius r=1) einschließt

Teilsysteme 7 rrlab.cs.uni-kl.de

Eigenschaften von Sinus und Kosinus

	sin x	cos x
Definitionsbereich	$-\infty < x < \infty$	
Wertebereich	$-1 \le \sin x \le \infty$	$-1 \le \cos x \le \infty$
Periode	2π	
Symmetrie	Ungerade	Gerade
Nullstellen	$x_k = k \cdot \pi$	$x_k = \frac{\pi}{2} + k \cdot \pi$
Maxima	$x_k = \frac{\pi}{2} + k \cdot 2\pi$	$x_k = k \cdot 2\pi$
Minima	$x_k = \frac{3\pi}{2} + k \cdot 2\pi$	$x_k = \pi + k \cdot 2\pi$
Umrechnung	$\sin(90^{\circ} - \alpha) = \cos \alpha$	$\cos(90^{\circ} - \alpha) = \sin \alpha$

Teilsysteme 8 rrlab.cs.uni-kl.de

Wertetabelle von Sinus und Kosinus

	Sinus	Kosinus
0°	$\frac{1}{2}\sqrt{0}=0$	$\frac{1}{2}\sqrt{4}=1$
30°	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
45°	$\frac{1}{2}\sqrt{2}$	$=\frac{1}{\sqrt{2}}$
60°	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$
90°	$\frac{1}{2}\sqrt{4}=1$	$\frac{1}{2}\sqrt{0}=0$

Teilsysteme 9 rrlab.cs.uni-kl.de

Graphen von Sinus und Kosinus

Sinus Kosinus

Teilsysteme 10 rrlab.cs.uni-kl.de

Additionstheoreme

- Sinus
 - $\sin(x_1 \pm x_2) = \sin x_1 \cdot \cos x_2 \pm \cos x_1 \cdot \sin x_2$
- Kosinus
 - $\cos(x_1 \pm x_2) = \cos x_1 \cdot \cos x_2 \mp \sin x_1 \cdot \sin x_2$
- Tangens
 - $\tan(x_1 \pm x_2) = \frac{\tan x_1 \pm \tan x_2}{1 \mp \tan x_1 \cdot \tan x_2}$

Teilsysteme 11 rrlab.cs.uni-kl.de

Kosinussatz

Beziehungen zwischen den Seiten (a, b, c) eines ebenen Dreiecks und dem Kosinus eines der drei Winkel $(\alpha \text{ gegenüber } a, ...)$:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$$

$$b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

Teilsysteme 12 rrlab.cs.uni-kl.de

Winkel

Nebenwinkel: Zusammengerechnet 180°

Scheitelwinkel: Identisch

Stufenwinkel:
 An geschnittenen Parallelen identisch

Wechselwinkel:An geschnittenen Parallelen identisch

Teilsysteme 13 rrlab.cs.uni-kl.de

Skalarprodukt

- Skalarprodukt zweier Vektoren 0:
 Vektoren stehen senkrecht aufeinander
 - $\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$
- Definition: $\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \gamma$
 - γ: Kleinster Winkel zwischen a und b
 - Kommutativ- und Distributivgesetz gelten
 - Assoziativgesetz gilt nicht
 - Gemischt assoziativ: $n(\vec{a} \cdot \vec{b}) = (n \cdot \vec{a}) \cdot \vec{b} = \vec{a} \cdot (n \cdot \vec{b})$
- Es gelten ...
 - $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
 - $\overrightarrow{e_x} \cdot \overrightarrow{e_x} = \overrightarrow{e_y} \cdot \overrightarrow{e_y} = \overrightarrow{e_z} \cdot \overrightarrow{e_z} = 1$
 - $\bullet \overrightarrow{e_x} \cdot \overrightarrow{e_y} = \overrightarrow{e_y} \cdot \overrightarrow{e_z} = \overrightarrow{e_z} \cdot \overrightarrow{e_x} = 0$

systeme 14 rrlab.cs.uni-kl.de

Kreuzprodukt/Vektorprodukt

- Kreuzprodukt $\vec{a} \times \vec{b}$ im Raum: Vektor, der senkrecht auf der von Vektoren \vec{a}, \vec{b} aufgespannten Ebene steht
- Definition im \mathbb{R}^3 : $\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta \cdot \vec{e}$
 - θ : Winkel zwischen beiden Vektoren
 - \vec{e} : Der senkrecht zu den Vektoren stehende Einheitsvektor
- Kreuzprodukt komponentenweise berechenbar im \mathbb{R}^3

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

lsysteme 15 rrlab.cs.uni-kl.de

Kreuzprodukt/Vektorprodukt

- Betrag des Kreuzprodukts ist Flächeninhalt des Parallelogramms $A_P = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \phi$
- Für kollineare Vektoren ist Kreuzprodukt 0
- Es gilt $\vec{a} \times \vec{a} = \vec{0}$
- Es gelten Distributiv- und Antikommutativgesetz

$$|\vec{a} \times \vec{b}| = \begin{vmatrix} \overrightarrow{e_1} & a_1 & b_1 \\ \overrightarrow{e_2} & a_2 & b_2 \\ \overrightarrow{e_3} & a_3 & b_3 \end{vmatrix}$$

Teilsysteme 16 rrlab.cs.uni-kl.de

Spatprodukt

- Kombination aus Kreuz- und Skalarprodukt
- Größe: Orientiertes Volumens des Spats, der durch die drei Vektoren aufgespannt wird
 - V > 0 bei rechtshändigen Koordinatensystemen
 - V < 0 bei linkshändigen Koordinatensystemen
- Definition

$$V_{\vec{a},\vec{b},\vec{c}} = (\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b} = \det \begin{pmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{pmatrix}$$

- Falls Vektoren linear abhängig sind, ist Spatprodukt 0
- Vertauschen zweier Vektoren bewirkt Vorzeichenwechsel

Teilsysteme 17 rrlab.cs.uni-kl.de

Determinante

- Ordnet quadratischer Matrix eine Zahl zu
- Definition für $n \times n$ -Matrizen (Laplacescher Entwicklungssatz für i-te Zeile)
 - $\bullet \det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$
- Faustregel für 2 × 2-Matrizen: Satz von Sarrus

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Teilsysteme 18 rrlab.cs.uni-kl.de

Determinante

- $\det A = \det A^T$
- Vertauschen zweier Zeilen ändert VZ der Determinante
- Bel. Zeile/Spalte mit Skalar λ multiplizieren: Determinante multipliziert sich mit λ
- $\det(A^{-1}) = \frac{1}{\det A} \operatorname{mit} \det A \neq 0$
- Determinante 0, wenn ...
 - Alle Elemente einer Zeile/Spalte 0
 - Zwei Zeilen identisch oder linear abhängig

Teilsysteme 19 rrlab.cs.uni-kl.de

Determinante: Beispiel

Entwicklung nach erster Zeile:

$$\det\begin{pmatrix} 0 & 3 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} = 0 \cdot \det\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} - 3 \cdot \det\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} + 2 \cdot \det\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
$$= -3 \cdot -5 + 2 \cdot -3 = 15 - 6 = 9$$

Teilsysteme 20 rrlab.cs.uni-kl.de

Eigenwert einer Matrix

- Sei A n-reihige Matrix und E zugehörige Einheitsmatrix, so wird durch $(A \lambda E)\vec{x} = \vec{0}$ ein n-dimensionales Eigenwertproblem gegeben
- Eigenwert ist Lösung des char. Polynoms $det(A \lambda E) = \vec{0}$
- Zu jedem Eigenwert λ_i gehört ein Eigenvektor x_i mit (A A)

eilsysteme 21 rrlab.cs.uni-kl.de

Eigenschaften der Eigenwerte

- Spur einer Matrix ist Summe aller Eigenwerte
 - $Sp(A) = \sum_{i=1}^{n} \lambda_i$
- Determinante einer Matrix ist Produkt aller Eigenwerte
 - $\det(A) = \prod_{i=1}^{n} \lambda_i$
- Zu verschiedenen Eigenwerten gehörende Eigenvektoren sind linear unabhängig

eilsysteme 22 rrlab.cs.uni-kl.de

Adjungierte Matrix

- Sei $A \in \mathbb{H}^{n \times m}$ eine Matrix über dem Körper \mathbb{H} der reellen oder komplexen Zahlen, so gilt für die zu A adjungierte Matrix $A^* \in \mathbb{H}^{m \times n}$ $\langle Av, w \rangle_n = \langle v, A^*w \rangle_m$ für alle $(v, w) \in \mathbb{H}^m \times \mathbb{H}^n$, wobei $\langle \cdot, \cdot \rangle_k$ das Standardskalarprodukt des Körpers \mathbb{H}^k ist.
- Berechnung:
 - Ist A eine reelle Matrix, so gilt $A^* = A^T$
 - Ist A eine komplexe Matrix, so gilt $A^* = \overline{A}^T$

Inverse Matrix

Sei $A \in \mathbb{R}^{n \times n}$ eine reguläre Matrix, so gilt für die zugehörige inverse Matrix $A^{-1} \in \mathbb{R}^{n \times n}$

$$A \cdot A^{-1} = A^{-1} \cdot A = E$$

, wobei \cdot die Matrixmultiplikation darstellt, und E die Einheitsmatrix der Größe $n \times n$ ist.

Beispiel:

$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, A^{-1} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 6 - 5 & -10 + 10 \\ 3 - 3 & -5 + 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Berechnung der Inversen Matrix

- Gleichungssystem (Gauß-Jordan-Algorithmus):
 - Erweitern der Koeffizientenmatrix um die Einheitsmatrix

$$(A|I) = \begin{pmatrix} a_{11} & \dots & a_{1n} & 1 & & 0 \\ \vdots & & \vdots & & \ddots & \\ a_{n1} & \dots & a_{nn} & 0 & & 1 \end{pmatrix}$$

 Umformung von A mit elementarer Zeilenumformung auf obere Dreiecksgestalt

$$(D|B) = \begin{pmatrix} * & \dots & * & * & \dots & * \\ & \ddots & \vdots & \vdots & & \vdots \\ 0 & & * & * & \dots & * \end{pmatrix}$$

Berechnung der Inversen Matrix

 D auf Diagonalgestalt bringen und in Einheitsmatrix überführen

$$(I|A^{-1}) = \begin{pmatrix} 1 & & 0 & \hat{a}_{11} & \dots & \hat{a}_{1n} \\ & \ddots & & \vdots & & \vdots \\ 0 & & 1 & \hat{a}_{n1} & \dots & \hat{a}_{nn} \end{pmatrix}$$

Mit Hilfe der Determinante und adjungierten Matrix

$$A^{-1} = \frac{1}{\det A} \cdot A^*$$

Pseudoinverse Matrix

- Verallgemeinerung der inversen Matrix auf singuläre und nichtquadratische Matrizen
- Sei $A \in \mathbb{C}^{m \times n}$ eine Matrix, dann gilt für die eindeutig bestimmte Matrix $A^+ \in \mathbb{C}^{n \times m}$
 - $AA^{+}A = A$
 - $A^{+}AA^{+} = A^{+}$
 - $(AA^+)^* = AA^+$
 - $(A^+A)^* = A^+A$

, wobei A* der adjungierten zur Matrix A entspricht.

Jacobi-Matrix

Sei $f: \mathbb{R}^n \to \mathbb{R}$ totales Differential von y

$$\vec{y} = f(\vec{x}) \text{ mit } \vec{x}, \vec{y} \in \mathbb{R}^n$$

$$\overrightarrow{y_1} = f_1(x_1, x_2, \dots, x_n)$$

$$\overrightarrow{y_1} = f_1(x_1, x_2, \dots, x_n)$$

$$\vdots$$

$$\overrightarrow{y_n} = f_n(x_1, x_2, \dots, x_n)$$

$$dy_{1} = \frac{df_{1}}{dx_{1}} dx_{1} + \frac{df_{1}}{dx_{2}} dx_{2} + \dots + \frac{df_{1}}{dx_{n}} dx_{n}$$

$$dy_{2} = \frac{df_{2}}{dx_{1}} dx_{1} + \frac{df_{2}}{dx_{2}} dx_{2} + \dots + \frac{df_{2}}{dx_{n}} dx_{n}$$

$$\vdots$$

$$dy_{n} = \frac{df_{n}}{dx_{1}} dx_{1} + \frac{df_{n}}{dx_{2}} dx_{2} + \dots + \frac{df_{n}}{dx_{n}} dx_{n}$$

eilsysteme 28 rrlab.cs.uni-kl.de

Jacobi-Matrix in Vektorschreibweise

Vektorschreibweise

$$\begin{pmatrix} dy_1 \\ dy_2 \\ \vdots \\ dy_n \end{pmatrix} = \begin{pmatrix} \frac{df_1}{dx_1} & \frac{df_1}{dx_2} & \cdots & \frac{df_1}{dx_n} \\ \frac{df_2}{dx_1} & \frac{df_2}{dx_2} & \cdots & \frac{df_2}{dx_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{df_n}{dx_1} & \frac{df_n}{dx_2} & \cdots & \frac{df_n}{dx_n} \end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \\ \vdots \\ dx_3 \end{pmatrix}$$

• Alternativ $d\vec{y} = df(\vec{x}) = \frac{df(\vec{x})}{d\vec{x}} d\vec{x}$ mit Jacobi-Matrix $J(\vec{x}) = \frac{df(\vec{x})}{d\vec{x}}$

Teilsysteme 29 rrlab.cs.uni-kl.de

Geometrie im Raum

- Gerade $g = \vec{a} + \lambda \vec{b}$ im Raum mit ...
 - Stützpunkt *ā*
 - Richtungsvektor \vec{b}
- Abstand $d = \frac{|\vec{b} \times (\vec{x} \vec{a})|}{|\vec{b}|}$ zwischen Punkt x und Gerade g
- Abstand $d = \frac{|\overrightarrow{b_1} \times (\overrightarrow{a_2} \overrightarrow{a_1})|}{|\overrightarrow{b_1}|}$ zweier paralleler Geraden g_1, g_2

Teilsysteme 30 rrlab.cs.uni-kl.de

Geometrie im Raum

- Schnittwinkel $\varphi = \arccos\left(\frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{|\overrightarrow{b_1}| \cdot |\overrightarrow{b_2}|}\right)$ zweier Geraden g_1, g_2
- Ebene im Raum: $E = \vec{a} + \lambda \vec{b} + \mu \vec{c}$
 - Stützpunkt a
 - Richtungsvektoren \vec{b} , \vec{c}
- Ebene im Raum: $E = \vec{n} \cdot (\vec{a_1} \vec{a_2}) = 0$
 - Ortsvektor $\overrightarrow{a_2}$ des Stützpunktes
 - Ortsvektor $\overrightarrow{a_1}$ des laufenden Punktes
 - Normalvektor \vec{n} zu $(\vec{a_1} \vec{a_2})$

Teilsysteme 31 rrlab.cs.uni-kl.de

Geometrie im Raum

- Abstand $d = \frac{|\vec{n} \cdot (\vec{x} \overrightarrow{a_2})|}{|\vec{n}|}$ zwischen Punkt x und Ebene E
- Abstand $d = \frac{|\vec{n} \cdot (\overrightarrow{a_g} \overrightarrow{a_{E2}})|}{|\vec{n}|}$ mit ...
 - Ebene $E = \vec{n} \cdot (\overrightarrow{a_{E1}} \overrightarrow{a_{E2}})$
 - Gerade $g = \overrightarrow{a_g} + \lambda \overrightarrow{b_g}$

Teilsysteme 32 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Translation

Durch Trägheit bewegen sich Körper ohne Krafteinwirkung gleichförmig ohne Richtungsänderung.

- Geschwindigkeit $\vec{v}(t) = \frac{d\vec{s}(t)}{dt}$
- Ortsvektor $\vec{s}(t) = \int_0^t \vec{v}(t)$, falls Start im Ursprung zum Zeitpunkt t = 0
- Beschleunigung $\vec{a}(t) = \frac{d\vec{v}(t)}{dt}$
- Geschwindigkeit $\vec{v}(t)$
 - $\vec{v}(t) = \int_0^t \vec{a}(t)$, wenn $\vec{v}(0) = \vec{0}$
 - $\vec{v}(t) = \vec{a}t$, wenn $\vec{s}(t_0) = \vec{v}(t_0) = \vec{0}$ und $\vec{a}(t_0) = \text{const}$
 - Im freien Fall $v = gt, s = \frac{1}{2}gt^2, v = \sqrt{2gs}$ mit Erdbeschleunigung g und Fallhöhe s

ilsysteme 33 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Rotation

- Drehwinkel $\varphi = \frac{s}{r}$ (mit s in Radian)
 - Näherung für kleine Winkel: $\varphi = \frac{s^*}{r}$
- Winkelgeschwindigkeit $\omega(t) = \frac{d\varphi(t)}{dt}$

- Winkelbeschleunigung $\alpha(t) = \frac{d\omega(t)}{dt}$
 - $\omega = 2\pi f = \frac{2\pi}{T}$ für $\omega = \text{const}$, Kreisfrequenz f, Umlaufzeit T
- Tangentialgeschwindigkeit $|\vec{v}(t)| = r \frac{d\varphi(t)}{dt}$ bei gleichförmiger Kreisbewegung
- Radialbeschleunigung $\vec{a}(t) = \frac{d\vec{v}(t)}{dt}$ (zeigt zum Drehzentrum)

eilsysteme 34 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Kräfte

- Grundgleichung der Mechanik $\vec{F} = m \cdot \vec{a}$
- Gewichtskraft $G = m \cdot g$ (1kg \approx 9,81N)
- Zentrifugalkraft $\vec{F}_z = -m \cdot \overrightarrow{a_r} = -m \cdot \vec{r} \cdot \omega^2$
- Corioliskraft: Lenkt Körper in drehendem System ab, der sich in Richtung des Radius bewegt
 - Geradlinige Bahn B_1 bzgl. ruhendem Beobachter
 - Gekrümmte Bahn B₂ bzgl. Beobachter in dreh. System
 - Somit Kraft notwendig, um Körper in drehendem System auf gerader Bahn zu bewegen

Teilsysteme 35 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Drehmomente

- Drehmoment $\vec{M} = \vec{r} \times \vec{F}$ auf Körper mit Hebel \vec{r} und Kraft \vec{F}
 - Abstand r von Massenpunkt und Achse
- Betragsgleichung für Drehmoment $M = F \cdot r \cdot \sin \gamma$

Teilsysteme 36 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Trägheitsmomente

- Trägheitsmoment $dJ = r^2 dm$ für Massenpunkt mit Masse dm
- Trägheitsmoment $J = \int_{\text{Volumen}} r^2 dm$ für Körper
 - Maß J für Massenverteilung zur Drehachse
- Tensor: Trägheitsverhalten bzgl. x-y-z-System in homogenen Koordinaten $M = \int \vec{r} \cdot \vec{r}^T dm =$

```
\begin{pmatrix}
\int x^2 dm & \int yx dm & \int xz dm & \int x dm \\
\int xy dm & \int y^2 dm & \int yz dm & \int y dm \\
\int xz dm & \int yz dm & \int z^2 dm & \int z dm \\
\int x dm & \int y dm & \int z dm & \int dm
\end{pmatrix}
```

eilsysteme 37 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Arbeit

- Arbeit $A = \vec{F} \cdot \vec{s}$ mit Kraft \vec{F} und Weg \vec{s}
- $A = F \cdot s \cdot \cos \delta$ als Betragsgleichung für die Kraft
- $A = \int_{(s)} \vec{F_s} d\vec{s}$, falls Kraft nicht konstant $(\vec{F_s}$ in Richtung $d\vec{s}$)

eilsysteme 38 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Energie

- Potentielle Energie $P = m \cdot g \cdot h$ mit Masse m, Höhe h
- Kinetische Energie $K = \frac{1}{2} \cdot m \cdot v^2$
- Kin. Energie eines rotierenden Körpers

$$K_{\text{rot}} = \frac{1}{2} \cdot m \cdot v^2 = \frac{1}{2} \cdot m \cdot r^2 \cdot \omega^2 = \frac{1}{2} \cdot J \cdot \omega^2$$

Kin. Energie nach Fall aus Höhe h

$$K = m \cdot g \cdot h = m \cdot \frac{v^2}{2 \cdot g} \cdot g = \frac{1}{2} m \cdot v^2$$

Teilsysteme 39 rrlab.cs.uni-kl.de

Physikalische Grundlagen: Einheiten

Größe	Zeichen	Einheit	Name
Weg/Strecke	S	m	Meter
Zeit	t	S	Sekunde
Geschwindigkeit	v	m/s	
Beschleunigung	а	m/s^2	
Winkel- Geschwindigkeit	ω	$\frac{rad}{s}$	
Drehwinkel	arphi	rad	
Kraft	$ec{F}$	$N = \frac{kgm}{s^2}$	Newton
Trägheitsmoment	J	kgm^2	
Arbeit	А	$J = \frac{kgm^2}{s^2}$	Joule

Teilsysteme 40 rrlab.cs.uni-kl.de

Teilsysteme von Robotersystemen

Gelenktypen: Rotationsgelenk

Die Drehachse eines Rotationsgelenks (R) bildet einen rechten Winkel mit den Achsen der beiden angeschlossenen Glieder.

[Siegert, Bocionek 96]

Teilsysteme 42 rrlab.cs.uni-kl.de

Gelenktypen: Torsionsgelenk

Die Drehachse des Torsionsgelenks (T) verläuft parallel zu den Achsen der beiden Glieder.

Teilsysteme 43 rrlab.cs.uni-kl.de

Gelenktypen: Revolvergelenk

Das Eingangsglied des Revolvergelenks (V) verläuft parallel zur Drehachse, das Ausgangsglied steht im rechten Winkel zur Drehachse.

[Siegert, Bocionek 96]

Teilsysteme 44 rrlab.cs.uni-kl.de

Gelenktypen: Lineargelenk

Ein Lineargelenk (L) - auch Translationsgelenk, Schubgelenk oder prismatisches Gelenk genannt - bewirkt eine gleitende oder fortschreitende Bewegung entlang der Achse.

[Siegert, Bocionek 96]

Teilsysteme 45 rrlab.cs.uni-kl.de

Begriffserklärung

- Arbeitsraum: Besteht aus denjenigen Punkten im 3-D Raum, die von der Roboterhand angefahren werden können
 - Drei Freiheitsgrade in der Bewegung benötigt
 - Mindestens drei Gelenke
- Grundform des Arbeitsraums: Arbeitsraum, der sich ergibt, wenn die gegenseitige Behinderung der Roboterarme und die Begrenzung der Gelenkwinkel nicht berücksichtigt wird

Teilsysteme 46 rrlab.cs.uni-kl.de

Räumliche Koordinatensysteme

Kartesische Koordinaten Kugelkoordinaten

Zylinderkoordinaten

Teilsysteme 47 rrlab.cs.uni-kl.de

Umrechnung Koordinatensysteme

- Kartesische Koordinaten → Zylinderkoordinaten
 - $(x, y, z) \rightarrow (r, \alpha, z)$
 - $r = \sqrt{x^2 + y^2}$
 - $\tan \alpha = \frac{y}{x}$
 - z = z
- Zylinderkoordinaten → Kartesische Koordinaten
 - $(r, \alpha, z) \to (y, x, z)$
 - $x = r \cdot \cos \alpha$
 - $y = r \cdot \sin \alpha$
 - z = z

Teilsysteme 48 rrlab.cs.uni-kl.de

Umrechnung Koordinatensysteme

- Kartesische Koordinaten → Kugelkoordinaten
 - $(x, y, z) \rightarrow (r, \alpha, \beta)$

•
$$r = \sqrt{x^2 + y^2 + z^2}$$

- $\cos \beta = \frac{z}{r}$
- $\tan \alpha = \frac{y}{x}$
- Kugelkoordinaten → Kartesische Koordinaten
 - $(r, \alpha, \beta) \rightarrow (x, y, z)$
 - $x = r \cdot \sin \beta \cdot \cos \alpha$
 - $y = r \cdot \sin \beta \cdot \sin \alpha$
 - $z = r \cdot \cos \beta$

Teilsysteme 49 rrlab.cs.uni-kl.de

Kartesischer Roboter (Typ: LLL)

Grundform des Arbeitsraums: Quader
 [Siegert, Bocionek96]

Teilsysteme 50 rrlab.cs.uni-kl.de

Kartesischer Roboter (Typ: LLL)

Grundform des Arbeitsraums: Quader
 [Siegert, Bocionek96]

Teilsysteme 51 rrlab.cs.uni-kl.de

Roboterarm (Typ: LVL)

- Grundform des Arbeitsraums: Zylinder
- Andere Typen: TLL, LTL [Siegert, Bocionek96]

Teilsysteme 52 rrlab.cs.uni-kl.de

SCARA-Roboter (Typ: RRLT)

- Selective Compliance Assembly Robot Arm
- Grundform des Arbeitsraums: Zylinder
 [Siegert, Bocionek96]

Teilsysteme 53 rrlab.cs.uni-kl.de

Gelenkarm (Typ: TRR)

- Grundform des Arbeitsraums: Kugel
- Andere Typen: VVR

Teilsysteme 54 rrlab.cs.uni-kl.de

Handgelenk-Grundform (Typ: TRR)

Teilsysteme 55 rrlab.cs.uni-kl.de

Handgelenk-Grundform (Typ: TRT)

Teilsysteme 56 rrlab.cs.uni-kl.de

Puma-Roboter (Typ: TVRRRT)

Teilsysteme 57 rrlab.cs.uni-kl.de

Roboterkinematiken

[World Robotics 2003]

Teilsysteme 58 rrlab.cs.uni-kl.de

Roboterkinematik

[World Robotics 2003]

Teilsysteme 59 rrlab.cs.uni-kl.de

Antriebe

- Fluidische Antriebe (pneumatisch/hydraulisch)
 - Lineargetriebe
 - Rotatorische Antriebe
 - Muskelartiger Antrieb
- Elektrische Antriebe
 - Lineargetriebe (hohes Baugewicht, geringe Vorschubgeschwindigkeit)
 - Rotatorische Antriebe
 - Gleichstromservomotoren (bürstenlos, bürstenbehaftet)
 - Wechselstromservomotoren
 - Schrittmotoren

ilsysteme 60 rrlab.cs.uni-kl.de

Pneumatischer Antrieb

- Stellenergie: Komprimierte Luft, kein Getriebe
- Vorteile
 - Kostengünstig, einfacher Aufbau, geringe Reaktionszeit
 - Nutzbar in "ungünstiger" Umgebung
- Nachteile
 - Laut
 - Aufwändige Steuerung
 - Meist nur Punkt-zu-Punkt-Betrieb
 - Schlechte Positioniergenauigkeit (da Luft kompressibel)
- Einsatz
 - Kleinere Roboter mit schnellen Arbeitszyklen und wenig Kraft, z.B. Palettierung kleinerer Werkstücke

eilsysteme 61 rrlab.cs.uni-kl.de

Hydraulischer Antrieb

- Stellenergie: Öldruckpumpe und steuerbare Ventile
- Vorteile
 - Sehr große Kräfte
 - Mittlere Geschwindigkeit
- Nachteile
 - Laut
 - Zusätzlicher Platz für Hydraulik
 - Ölverlust führt zu Verunreinigung
 - Ölviskosität erlaubt keine guten Reaktionszeiten und keine hohen Positionier- und Wiederholgenauigkeit
- Einsatz
 - Große Roboter

lsysteme 62 rrlab.cs.uni-kl.de

Elektrischer Antrieb

- Stellenergie: Elektrische Energie
- Vorteile
 - Kompakt/Geringer Platzbedarf
 - Gute Regelbarkeit von Drehzahlmoment
 - Hohe Positionier- und Wiederholgenauigkeit (ermöglicht präzises Abfahren von Flächen und gekrümmten Bahnen)
- Nachteile
 - Geringe Kraft
- Einsatz:
 - Kleinere Roboter für Präzisionsarbeiten,
 z.B. zur Leiterplattenbestückung

Teilsysteme 63 rrlab.cs.uni-kl.de

Vergleich von Antrieben

Teilsysteme 64 rrlab.cs.uni-kl.de

Sensoren

- Interne Messgrößen
 - Stellung der Gelenke
 - Geschwindigkeit, mit der sich Gelenke bewegen
 - Kräfte und Momente, die auf die Gelenke einwirken
- Externe Messgrößen
 - Entfernungen
 - Lage von Positioniermarken und Objekten
 - Kontur von Objekten
 - Pixelbilder der Umwelt (CCD-Kamera)

Teilsysteme 65 rrlab.cs.uni-kl.de

Gelenkregelung

Teilsysteme 66 rrlab.cs.uni-kl.de

Steuerungsmodule für eine Roboterzelle

Teilsysteme 67 rrlab.cs.uni-kl.de

Literatur

- [Siegert, Bocionek 96] Siegert, H.-J. and Bocionek, S. (1996)
 Robotik: Programmierung intelligenter Roboter. Springer
 Verlag
- [World Robotics 2003] International Federation of Robotics,
 United Nation, New York and Geneva, 2003

Teilsysteme 68 rrlab.cs.uni-kl.de

Nächste Vorlesung ...

Grundlagen der Raumkinematik

- Beschreibung von Objekten und Objektlagen
- Orientierungsbeschreibung

Teilsysteme 69 rrlab.cs.uni-kl.de