MATH-241 Calculus I Homework 9	Created by Rukiyah Walker Spring 2023
Question 1	(1 pts)
Fill in the blank:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
If the graph of f lies above all of its tangents of the graph of f lies below all of its tangents of	
A. An inflection point.A non-inflection point.	C. Concave upward. Concave downward.
B. Concave downward. Concave upward.	D. f' exists. f'' exists.
Question 2	(1 pts)
Suppose we have a point P on a curve $f(x)$. If for f ?	P is an inflection point, what does that mean
A. f'' is continuous.	
B. f is continuous at P and the curve characteristic ward (or concave downward to concave)	nanges from concave upward to concave downve upward).
C. f' is continuous.	
D. The graph of f is concave upward.	
Question 3	(1 pts)
Suppose we have a function f . If the graph of f does that tell us about $f''(x)$?	is concave downward on some interval I , what
A. $f''(x) < 0$ for all x in I .	C. $f''(x) > 0$ for all x in I .
B. $f'(x) > 0$ for all x in I .	D. $f'(x) < 0$ for all x in I .
Question 4	(1 pts)
Suppose f'' is continuous near c . Fill in the bla	nk:
If $f'(c) = 0$ and $f''(c) > 0$, then If $f'(c)$	= 0 and f''(c) < 0, then
A. f has an absolute minimum at c . f has an absolute maximum at c .	C. f has a local maximum at c . f has a local minimum at c .
B. f is concave upward.f is concave downward.	D. f has a local minimum at c . f has a local maximum at c .

(1 pts)

Let $f(x) = \frac{1}{x^r}$. When is $\lim_{x\to\infty} f(x)$ not defined?

A. When $x \leq 0$.

C. When x goes to $-\infty$.

B. When x goes to ∞

D. When $r \leq 0$.

_____ (1 pts)

Let $f(x) = 1 + \frac{1}{x} + \frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^5}$. Evaluate $\lim_{x \to \infty} f(x)$.

A. ∞

C. 1

B. 8

D. ∄