Assignment 8 MAT 457

Q4: Suppose $||f_n - f||_p \to 0$ as $n \to \infty$. Since $||\cdot||_p$ is a norm, we have that the reverse triangle inequality holds, *i.e.* we have

$$|||f_n||_p - ||f||_p | \le ||f_n - f||_p.$$

Thus as $n \to \infty$, $||f_n||_p - ||f||_p |\to 0$ or equivalently $||f_n||_p \to ||f||$. Conversely suppose that $||f_n||_p \to ||f||_p$. We first claim that for any two functions f, g the following inequality holds:

$$2^{-p}|f+g|^p \le |f|^p + g^p.$$

Indeed we have that

$$|f+g|^p \le 2^p \max |f|^p, |g|^p \le 2^p (|f|^p + |g|^p).$$

Dividing by 2^p gives the desired inequality. Therefore we can write that

$$2^{-p}|f_n - f|^p \le |f|^p + |f_n|^p.$$

We now claim the Generalized Dominated Convergence Theorem. Given f_n, g_n with $f_n \to f, g_n \to g$ a.e., $|f_n| \le |g_n|$, and $\int g_n \to \int g$ then $\int f_n \to \int f$. Observe that by Fatou's lemma we have that

$$\int g - \int f \le \liminf \int g_n - f_n = \lim_n \int g_n - \limsup \int f_n = \int g - \limsup \int f_n.$$

Similarly, we have that

$$\int g + \int f \le \liminf \int g_n + f_n = \lim_{n \to \infty} \int g_n + \liminf \int f_n = \int g + \liminf \int f_n.$$

Thus we have that

$$\limsup \int f_n \le \int f \le \liminf \int f_n.$$

And we conclude that

$$\int f = \lim_{n \to \infty} \int f_n.$$

Since $||f_n||_p \to ||f_n||$, and $2^{-p}|f_n - f|^p \le |f|^p + |f_n|^p$, the generalized DCT tells us that

$$\lim_{n \to \infty} \int 2^{-p} |f_n - f|^p d\mu = \int 2^{-p} \left(\lim_{n \to \infty} |f_n - f| \right)^p = 0,$$

and thus $|f_n - f| \to 0$ as $n \to \infty$.