Hierarchical hyperbolicity of graph products

Daniel Berlyne (Joint work with Jacob Russell)

City University of New York, The Graduate Center

Hyperbolicity

Definition (Hyperbolicity)

A finitely generated group is δ -hyperbolic if all geodesic triangles in its Cayley graph are δ -thin.

i.e. Any side of a triangle is contained in the δ -neighbourhood of the other two sides.

e.g. $\mathbb{Z} * \mathbb{Z}$ is 0-hyperbolic.

Hyperbolicity

Generalisations of hyperbolicity:

- Relative hyperbolicity (Gromov, Farb, et al.)
- Hierarchical hyperbolicity (Behrstock-Hagen-Sisto)
 - Axiomatises Masur and Minsky's treatment of mapping class groups using subsurface projections and curve graphs.
- e.g. (1) Mapping class groups (groups of homeomorphisms of surfaces up to isotopy)
 - (2) Most fundamental groups of 3-manifolds
 - (3) Groups acting properly and cocompactly on CAT(0) cube complexes, e.g. right-angled Artin groups (RAAGs)
 - (4) **Graph products** (B.–Russell)

Graph products

Definition (Graph product)

Let Γ be a finite simplicial graph with each vertex v labelled by a group G_v . Then the graph product G_{Γ} is the group

$$G_{\Gamma} = \left(igoplus_{v \in V(\Gamma)} G_{v} \right) / \left\langle \left\langle \left[g_{v}, g_{w} \right] \mid g_{v} \in G_{v}, g_{w} \in G_{w}, \left\{ v, w \right\} edge \right\rangle \right\rangle$$

If $G_v = \mathbb{Z}$ for all v, then this is called a *right-angled Artin group* (RAAG).

Graph products

Definition (Graph product)

Let Γ be a graph with each vertex v labelled by a group G_v . Then the graph product G_{Γ} is the group

$$G_{\Gamma} = \left(\frac{\bigstar}{v \in V(\Gamma)} G_{v} \right) / \left\langle \left\langle \left[g_{v}, g_{w} \right] \mid g_{v} \in G_{v}, g_{w} \in G_{w}, \left\{ v, w \right\} edge \right\rangle \right\rangle$$

$$G_{\Gamma}$$
 F_3 \mathbb{Z}^3 $\mathbb{Z} * \mathbb{Z}^2$ $F_2 \times F_2$

Definition of HHG

Let X = Cay(G, S) for some finite generating set S. A proto-hierarchy structure on G consists of:

- (1) A collection of geodesic spaces $\{CW\}_{W\in\mathfrak{S}}$ where \mathfrak{S} is some index set.

 (2) Projections $X_W: X \to CW$.
- (3) Nesting (\sqsubseteq) , orthogonality (\bot) and transversality (\land) relations between elements of S.

We say X is (relatively) hierarchically hyperbolic if each CW is (\sqsubseteq -minimal or) hyperbolic and $\{CW\}_{W\in\mathfrak{S}}$ "captures precisely the geometry of X" via the projections and relations.

Theorem (B.-Russell)

Graph products are relatively hierarchically hyperbolic groups.

Proto-hierarchy structure of G_{Γ} : index set and nesting

Each subgraph $\Lambda \subseteq \Gamma$ generates a subgroup $\langle \Lambda \rangle \leqslant G_{\Gamma}$ isomorphic to G_{Λ} . We call these the **graphical subgroups**.

- Index set: $\mathfrak{S} = \{g\langle\Lambda\rangle\}/\sim$ where $g\langle\Lambda\rangle\sim h\langle\Lambda\rangle$ iff $g\langle\Lambda\rangle$ and $h\langle\Lambda\rangle$ are parallel.
- Nesting: $g\langle \Lambda \rangle \sqsubseteq h\langle \Omega \rangle$ if $\Lambda \subseteq \Omega$ and there is some $k \in G_{\Gamma}$ such that $g\langle \Lambda \rangle$ is parallel to $k\langle \Lambda \rangle$ and $h\langle \Omega \rangle$ is parallel to $k\langle \Omega \rangle$.

Proto-hierarchy structure of G_{Γ} : orthogonality

Definition (Link, star, and join)

- The *link* of Λ , denoted lk(Λ), is the set of vertices of $\Gamma \setminus \Lambda$ which are connected to every vertex of Λ .
- The *star* of Λ , denoted $st(\Lambda)$, is $\Lambda \cup lk(\Lambda)$.
- We say Λ is a *join* if it can be written as $\Lambda = \Lambda_1 \sqcup \Lambda_2$ where every vertex of Λ_1 is connected to every vertex of Λ_2 .
- A join subgraph of Γ generates a subgroup of G_{Γ} which splits as a direct product.
- $\langle \operatorname{st}(\Lambda) \rangle$ is the largest subgroup of G_{Γ} which splits as a direct product with $\langle \Lambda \rangle$ as one of the factors: $\langle \operatorname{st}(\Lambda) \rangle \cong \langle \Lambda \rangle \times \langle \operatorname{lk}(\Lambda) \rangle$.
- Orthogonality: $g\langle \Lambda \rangle \perp h\langle \Omega \rangle$ if $\Omega \subseteq \text{lk}(\Lambda)$ and there is $k \in G_{\Gamma}$ such that $g\langle \Lambda \rangle$ is parallel to $k\langle \Lambda \rangle$ and $h\langle \Omega \rangle$ is parallel to $k\langle \Omega \rangle$.

Want to kill any geometry appearing in vertex groups.

Definition (Syllable metric) [Kim-Koberda]

 $S(\Gamma)$ is the graph where:

- S(r) = Cay(Gr, V, Gr)
- Vertices are elements of G_{Γ}
- \blacksquare g, h are joined by an edge if $g^{-1}h \in G_v$ for some v.

Label edge between g and h by $g^{-1}h$.

Triangles:

$$g, h$$
 in common vertex group

Squares: h

g, h in adjacent vertex groups

We denote distance in $S(\Gamma)$ by d_{syl} and call $d_{syl}(g,h)$ the syllable distance between g and h.

Good news: $S(\Gamma)$ has a rich geometry similar to that of cube complexes, developed extensively by Genevois.

Bad news: $S(\Gamma)$ is still not hyperbolic.

Solution: Kill all geometry occurring in *any* proper graphical subgroup.

word notes

Definition

Let $\Lambda \subseteq \Gamma$. If $\Lambda = v$, define $C(\langle \Lambda \rangle) = G_v$. Otherwise, $C(\langle \Lambda \rangle)$ is the graph where:

- Vertices are elements of $\langle \Lambda \rangle$
- g, h are joined by an edge if $g^{-1}h \in \langle \Omega \rangle$ for some strict subgraph $\Omega \subsetneq \Lambda$.

For each coset $g(\Lambda)$ we can define $C(g(\Lambda))$ similarly.

Theorem (B.-Russell)

For each $g\Lambda \in \mathfrak{S}$, either $g\Lambda$ is \sqsubseteq -minimal or $C(g\langle \Lambda \rangle)$ is $\frac{7}{2}$ -hyperbolic.

Proof: (Sketch)

Projections

Genevois and Martin construct a gate map $\mathfrak{g}_{\Lambda} : S(\Gamma) \to \langle \Lambda \rangle$:

Definition

 $\mathfrak{g}_{\Lambda}(x)$ is the longest initial subword of x contained in $\langle \Lambda \rangle$ (with respect to syllable length).

- $\mathfrak{g}_{\Lambda}(x)$ is the unique element of $\langle \Lambda \rangle$ such that $\mathsf{d}_{syl}(x,\mathfrak{g}_{\Lambda}(x)) = \mathsf{d}_{syl}(x,\langle \Lambda \rangle).$
- This defines a nearest point projection.
- Projections: $G_{\Gamma} \hookrightarrow S(\Gamma) \xrightarrow{gate} \langle \Lambda \rangle \hookrightarrow C(\langle \Lambda \rangle)$

Consequences

Theorem (B.-Russell)

Graph products are hierarchically hyperbolic relative to their vertex groups.

Corollary

Any graph product of hierarchically hyperbolic groups is again a hierarchically hyperbolic group.

This is a strengthening of a result of Berlai and Robbio.

Corollary

Any graph product endowed with the syllable metric is hierarchically hyperbolic.