

# Introduction to Spark and PySpark



March 25th, 2024

Shashank



### **Introduction to Apache Spark**

An open-source, distributed computing system that provides an interface for programming entire clusters with implicit data parallelism and fault tolerance.

- **In-Memory Processing (Speed):** Spark's in-memory computing offers fast data processing by reducing disk I/O, ideal for iterative algorithms and real-time analytics.
- **Distributed Computing:** Enables parallel processing by distributing data and computations across a cluster, ensuring efficient resource use, scalability, and high availability.
- **Broad Language Support:** Offers APIs in Scala, Java, Python, and R, accommodating diverse development and data science.
- Integration with Big Data Ecosystem: Compatible with various data storage systems like HDFS, HBase, Cassandra, and Amazon S3, facilitating easy data reads/writes and integration with big data tools and frameworks.



## **Introduction to PySpark**

#### Python API for Spark.



- Allows for data transformation and analysis on large data sets, supports SQL queries, streaming data, machine learning, and graph processing, all within Python's syntax
- A vast library of resources, tools, and support available due to the large Python and Spark communities.







- Best for batch and real-time data processing that requires fast execution, especially for machine learning algorithms and data transformations.
- Complexity and Flexibility: Ideal for complex data pipelines that involve aggregations, joins, window functions, and more.



#### Spark/PySpark vs. Hadoop/Hive

- **Processing Speed:** Spark provides in-memory processing which is significantly faster than the disk-based processing of Hadoop.
- **Ease of Use:** PySpark and Spark offer high-level APIs in Python, Java, Scala, and R, making them more accessible than Hadoop's MapReduce model.
- **Real-Time Processing:** Spark supports real-time processing capabilities, whereas Hadoop is primarily designed for batch processing. This makes Spark more suitable for applications requiring live data feeds.



| Criteria                 | Hadoop/Hive                                                                   | Spark/PySpark                                                                  |
|--------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Data Processing Speed    | Optimal for batch processing where real-time speed is not critical.           | Preferred for real-time analytics and when speed is crucial.                   |
| Data Size and Storage    | Ideal for very large datasets; cost-effective storage on HDFS.                | Best for processing that can fit data in memory; more expensive for storage.   |
| Processing Type          | Suited for batch processing and long-running jobs.                            | Ideal for both batch and real-time/streaming processing.                       |
| Complexity of Operations | Good for standard data warehousing operations with SQL-like queries (HiveQL). | Better for complex data transformations and ML algorithms.                     |
| Language Support         | Primarily uses HiveQL for queries.                                            | Supports Scala, Java, Python, and R, offering broader development flexibility. |
| Ecosystem Integration    | Mature ecosystem with extensive tool integration for data management.         | Robust integration with big data tools, but focuses more on analytics.         |
| Cost                     | More cost-effective for data storage.                                         | In-memory processing can be costly for very large datasets.                    |
| Use Cases                | Data warehousing and historical data analysis, Large scale ETL jobs           | Real-time data processing, Interactive data analysis, Machine learning         |

