Problem Solutions

Chapter 3

Pierre Paquay

Problem 3.1

First, we generate 2000 examples uniformly for the two semi-circles, this means that we will have approximately 1000 examples for each class.

```
set.seed(101)
init_data <- function(N, rad, thk, sep) {</pre>
  D <- data.frame(x = numeric(), y = numeric())</pre>
  y <- numeric()</pre>
  repeat {
    x1 \leftarrow runif(1, min = -25, max = 40)
    x2 \leftarrow runif(1, min = -30, max = 20)
    if ((x2 \ge 0) \& (rad^2 \le x1^2 + x2^2) \& (x1^2 + x2^2 \le (rad + thk)^2)) {
      D \leftarrow rbind(D, c(x1, x2))
      y < -c(y, -1)
    else if ((x2 < -sep) & (x1 - rad - thk / 2)^2 + (x2 + sep)^2) & (x2 + sep)^2)
              ((x1 - rad - thk / 2)^2 + (x2 + sep)^2 \le (rad + thk)^2)) {
      D \leftarrow rbind(D, c(x1, x2))
      y < -c(y, +1)
    if (nrow(D) >= N)
      break
  colnames(D) <- c("x1", "x2")
  return(cbind(D, y))
}
rad <- 10
thk <- 8
sep <- 5
D <- init_data(2000, rad, thk, sep)
p \leftarrow ggplot(D, aes(x = x1, y = x2, col = as.factor(y + 3))) + geom_point() +
  theme(legend.position = "none") +
  coord_fixed()
p
```


(a) Then, we run the PLA starting from w=0 until it converges and we plot the data with the final hypothesis.

```
h <- function(D, w) {
    scalar_prod <- cbind(1, D$x1, D$x2) %*% w

    return(as.vector(sign(scalar_prod)))
}

iter <- 0
w_PLA <- c(0, 0, 0)
repeat {
    y_pred <- h(D, w_PLA)
    D_mis <- subset(D, y != y_pred)
    if (nrow(D_mis) == 0)
        break
    xt <- D_mis[1, ]
    w_PLA <- w_PLA + c(1, xt$x1, xt$x2) * xt$y
    iter <- iter + 1
}
p + geom_abline(slope = -w_PLA[2] / w_PLA[3], intercept = -w_PLA[1] / w_PLA[3])</pre>
```


(b) Now, we use linear regression for classification to obtain w_{lin} .

```
X <- as.matrix(cbind(1, D[, c("x1", "x2")]))
y <- D$y
X_cross <- solve(t(X) %*% X) %*% t(X)
w_lin <- as.vector(X_cross %*% y)
p + geom_abline(slope = -w_lin[2] / w_lin[3], intercept = -w_lin[1] / w_lin[3])</pre>
```


As we may see, linear regression can also be used for classification (the values $sign(w_{lin}^T x)$ will likely make good classification predictions). The linear regression weights w_{lin} are also an approximate solution for the perceptron model.

Problem 3.2

In this problem, we consider again the double-semi-circle of Problem 3.1 and we vary sep in the range $\{0.2, 0.4, \dots, 5\}$, with these values we generate 2000 examples and we run PLA starting with w = 0. Below, we plot sep versus the number of iterations PLA takes to converge.

```
set.seed(10)
sep_seq \leftarrow seq(0.2, 5, 0.2)
iterations <- numeric()</pre>
iterations max <- numeric()</pre>
for (sep in sep_seq) {
  D <- init_data(2000, rad, thk, sep)
  iter <- 0
  w_{PLA} \leftarrow c(0, 0, 0)
  repeat {
    y_{pred} \leftarrow h(D, w_{PLA})
    D_mis <- subset(D, y != y_pred)</pre>
    if (nrow(D_mis) == 0)
       break
    xt <- D_mis[1, ]
    w_{PLA} \leftarrow w_{PLA} + c(1, xt$x1, xt$x2) * xt$y
    iter <- iter + 1
  }
  iterations <- c(iterations, iter)</pre>
  R \leftarrow \max(\text{apply}(\text{cbind}(1, D[, 1:2]), 1, FUN = \text{function}(x) \text{ sqrt}(1 + x[2]^2 + x[3]^2)))
  Rho <- min(D_y^* * apply(cbind(1, D[, 1:2]), 1, FUN = function(x) sum(w_PLA * x)))
  iterations_max <- c(iterations_max, R^2 * sum(w_PLA^2) / Rho^2)
ggplot(data.frame(sep = sep_seq, iterations = iterations), aes(x = sep, y = iterations)) +
  geom_line()
```


We may see that the number of iterations tends to decrease when sep increases. This trend is confirmed

by the theoretical results (see Problem 1.3), to see this we plot below sep versus the theoretical maximum number of iterations.

```
ggplot(data.frame(sep = sep_seq, iterations = iterations_max), aes(x = sep, y = iterations)) +
  geom_line(col = "red") +
  ylab("Maximum number of iterations (theoretical)")
```


Problem 3.3

Here again, we consider the double-semi-circle of Problem 3.1 and we set sep = -5 (which makes the data non linearly separable) and we generate 2000 examples.

```
set.seed(101)

sep <- -5
D <- init_data(2000, rad, thk, sep)
p <- ggplot(D, aes(x = x1, y = x2, col = as.factor(y + 3))) + geom_point() +
    theme(legend.position = "none") +
    coord_fixed()
p</pre>
```


- (a) If we run PLA on these examples, it will never stop updating.
- (b) Now, we run the pocket algorithm for 100000 iterations and we plot E_{in} versus the iteration number t for $t = 1, \dots, 100$.

```
set.seed(101)
start_time_pocket <- Sys.time()</pre>
E_in <- numeric()</pre>
E_in_pocket <- numeric()</pre>
w \leftarrow c(0, 0, 0)
w_pocket <- w
E_{in} \leftarrow c(E_{in}, mean(D$y != h(D, w)))
E_in_pocket <- E_in</pre>
for (iter in 1:100000) {
  D_{mis} \leftarrow subset(D, y != h(D, w))
  if (nrow(D_mis) == 0)
    break
  xt <- D_mis[sample(nrow(D_mis), 1), ]</pre>
  w \leftarrow w + c(1, xt\$x1, xt\$x2) * xt\$y
  E_{in} \leftarrow c(E_{in}, mean(D$y != h(D, w)))
  if (E_in[length(E_in)] < E_in_pocket[length(E_in_pocket)]) {</pre>
    w_pocket <- w
  E_in_pocket <- c(E_in_pocket, mean(D$y != h(D, w_pocket)))</pre>
end_time_pocket <- Sys.time()</pre>
ggplot(data.frame(t = 1:100000, E_in = E_in_pocket[-1]), aes(x = t, y = E_in)) +
  geom_line(col = "red") +
  coord_cartesian(xlim = c(1, 100))
```


We clearly see that the E_{in} is monotonously decreasing (as opposed to what would happen if we had used the PLA).

(c) Below, we plot the data and the final hypothesis obtained in (b).

```
p + geom_abline(slope = -w_pocket[2] / w_pocket[3], intercept = -w_pocket[1] / w_pocket[3])
```


(d) Here, we use the linear regression algorithm to obtain w and we compare this result with the pocket algorithm in terms of computation time and quality of the solution.

```
start_time_lin <- Sys.time()
X <- as.matrix(cbind(1, D[, c("x1", "x2")]))
y <- D$y
X_cross <- solve(t(X) %*% X) %*% t(X)</pre>
```

```
w_lin <- as.vector(X_cross %*% y)
E_in_lin <- mean(D$y != h(D, w_lin))
end_time_lin <- Sys.time()
p + geom_abline(slope = -w_lin[2] / w_lin[3], intercept = -w_lin[1] / w_lin[3])</pre>
```


For the pocket algorithm (with 100000 iterations), we have a computation time of 1.7378043, and for the linear regression algorithm, we have a computation time of 0.0053225. The linear regression algorithm is clearly better than the pocket algorithm in terms of computation time. When we take into account the quality of the solution, the pocket algorithm has a (final) E_{in} of 0.086, and the linear regression algorithm has a E_{in} of 0.0995. So, regarding the quality of the solution, the pocket algorithm is a little better than the linear regression algorithm.

(e) Here, we repeat the points (b) to (d) with a 3rd order polynomial feature transform

$$\Phi(x) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3).$$

First, we run the pocket algorithm for 100000 iterations and we plot E_{in} versus the iteration number t.

```
start_time_pocket <- Sys.time()</pre>
E_in <- numeric()</pre>
E_in_pocket <- numeric()</pre>
w \leftarrow rep(0, 10)
w_pocket <- w
E_in <- c(E_in, mean(D_trans$y != h_trans(D_trans, w)))</pre>
E_in_pocket <- E_in
for (iter in 1:100000) {
  D_mis <- subset(D_trans, y != h_trans(D_trans, w))</pre>
  if (nrow(D mis) == 0)
    break
  xt <- D_mis[sample(nrow(D_mis), 1), ]</pre>
  w \leftarrow w + c(1, as.numeric(xt[1:9])) * xt$y
  E_in <- c(E_in, mean(D_trans$y != h_trans(D_trans, w)))</pre>
  if (E_in[length(E_in)] < E_in_pocket[length(E_in_pocket)]) {</pre>
    w_pocket <- w
  E_in_pocket <- c(E_in_pocket, mean(D_trans$y != h_trans(D_trans, w_pocket)))</pre>
end_time_pocket <- Sys.time()</pre>
ggplot(data.frame(t = 1:100000, E_in = E_in_pocket[-1]), aes(x = t, y = E_in)) +
  geom_line(col = "red") +
  coord_cartesian(xlim = c(1, 200))
    0.16 -
    0.12 -
    0.08 -
    0.04 -
                                                                         150
                                50
                                                    100
                                                                                              200
```

Then, we plot the data and the final hypothesis obtained above.

t

Finally, we use the linear regression algorithm to obtain the weights w.

For the pocket algorithm (with 100000 iterations), we have a computation time of 2.7625689, and for the linear regression algorithm, we have a computation time of 0.0067704. The linear regression algorithm is once again clearly better than the pocket algorithm in terms of computation time. When we take into account the quality of the solution, the pocket algorithm has a (final) E_{in} of 0.0445, and the linear regression algorithm has a E_{in} of 0.021. In this case, regarding the quality of the solution, the linear regression algorithm is also better than the pocket algorithm.

Problem 3.4

(a) We can write $e_n(w)$ as a piecewise function

$$e_n(w) = \begin{cases} 0 & \text{si } y_n w^T x_n > 1 \\ (1 - y_n w^T x_n)^2 & \text{si } y_n w^T x_n < 1 \end{cases};$$

and this function is actually continuous as we have

$$\lim_{w:y_nw^Tx_n\to 1^{\pm}}e_n(w)=0.$$

This function is also differentiable, to see this we note that

$$\nabla e_n(w) = \begin{cases} 0 & \text{si } y_n w^T x_n > 1 \\ -2y_n (1 - y_n w^T x_n) x_n & \text{si } y_n w^T x_n < 1 \end{cases},$$

and

$$\lim_{w:y_n w^T x_n \to 1^{\pm}} \nabla e_n(w) = 0.$$

(b) Let us consider first the case where $\operatorname{sign}(w^Tx_n) \neq y_n$, which means that $y_nw^Tx_n \leq 0 < 1$. In this case, we have $[[\operatorname{sign}(w^Tx_n) \neq y_n]] = 1$ and $e_n(w) = (1 - y_nw^Tx_n)^2 \geq 1$, consequently

$$[[\operatorname{sign}(w^T x_n) \neq y_n]] \leq e_n(w).$$

Now we consider the second case where $\operatorname{sign}(w^Tx_n)=y_n$, which means that $y_nw^Tx_n\geq 0$. In this case, we have $[[\operatorname{sign}(w^Tx_n)\neq y_n]]=0$, $e_n(w)=(1-y_nw^Tx_n)^2\geq 0$ if $0\leq y_nw^Tx_n<1$ and $e_n(w)=0$ if $y_nw^Tx_n\geq 1$; consequently

$$[[\operatorname{sign}(w^T x_n) \neq y_n]] \leq e_n(w).$$

In conclusion, we have that

$$E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} [[\text{sign}(w^T x_n) \neq y_n]] \le \frac{1}{N} \sum_{n=1}^{N} e_n(w).$$

- (c) If we apply SGD to our upper bound above, we get the following algorithm.
 - 1. Select an initial w.
 - 2. Repeat until CONDITION: Select (x_n, y_n) randomly and let $s_n = w^T x_n$. If $y_n s_n = y_n w^T x_n \le 1$, we have

$$\nabla e_n(w) = -2y_n(1 - y_n s_n)x_n,$$

and we update w as

$$w \leftarrow w - \eta \nabla e_n(w) = w + 2\eta y_n (1 - y_n s_n) x_n = w + 2\eta (y_n - s_n) x_n = w + \eta' (y_n - s_n) x_n.$$

And if $y_n s_n = y_n w^T x_n > 1$, we have $\nabla e_n(w) = 0$, and we update w as

$$w \leftarrow w - \eta \nabla e_n(w) = w - \eta \cdot 0 = w.$$

Which is exactly the Adaline algorithm.

Problem 3.5

(a) We can write $e_n(w)$ as a piecewise function

$$e_n(w) = \begin{cases} 0 & \text{si } y_n w^T x_n > 1\\ 1 - y_n w^T x_n & \text{si } y_n w^T x_n < 1 \end{cases}$$
;

and this function is actually continuous everywhere as we have

$$\lim_{w: y_n \, w^T x_n \to 1^{\pm}} e_n(w) = 0.$$

However, this function is not differentiable everywhere, to see this we note that

$$\nabla e_n(w) = \begin{cases} 0 & \text{si } y_n w^T x_n > 1 \\ -y_n x_n & \text{si } y_n w^T x_n < 1 \end{cases};$$

moreover

$$\lim_{w:y_nw^Tx_n\to 1^+} \nabla e_n(w) = 0 \text{ and } \lim_{w:y_nw^Tx_n\to 1^-} \nabla e_n(w) = -y_nx_n \neq 0.$$

Thus, the function $e_n(w)$ is differentiable everywhere except when $y_n w^T x_n = 1 \iff y_n = w^T x_n$.

(b) Let us consider first the case where $\operatorname{sign}(w^Tx_n) \neq y_n$, which means that $y_nw^Tx_n \leq 0 < 1$. In this case, we have $[[\operatorname{sign}(w^Tx_n) \neq y_n]] = 1$ and $e_n(w) = 1 - y_nw^Tx_n \geq 1$, consequently

$$[[\operatorname{sign}(w^T x_n) \neq y_n]] \leq e_n(w).$$

Now we consider the second case where $\operatorname{sign}(w^Tx_n) = y_n$, which means that $y_nw^Tx_n \geq 0$. In this case, we have $[[\operatorname{sign}(w^Tx_n) \neq y_n]] = 0$, $e_n(w) = 1 - y_nw^Tx_n \geq 0$ if $0 \leq y_nw^Tx_n < 1$ and $e_n(w) = 0$ if $y_nw^Tx_n \geq 1$; consequently

$$[[\operatorname{sign}(w^T x_n) \neq y_n]] \leq e_n(w).$$

In conclusion, we have that

$$E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} [[\text{sign}(w^T x_n) \neq y_n]] \le \frac{1}{N} \sum_{n=1}^{N} e_n(w).$$

- (c) If we apply SGD to our upper bound above, we get the following algorithm.
 - 1. Select an initial w.
 - 2. Repeat until CONDITION: Select (x_n, y_n) randomly. If $y_n w^T x_n < 1$, we have

$$\nabla e_n(w) = -y_n x_n,$$

and we update w as

$$w \leftarrow w - \eta \nabla e_n(w) = w + \eta y_n x_n.$$

And if $y_n s_n = y_n w^T x_n > 1$, we have $\nabla e_n(w) = 0$, and we update w as

$$w \leftarrow w - \eta \nabla e_n(w) = w - \eta \cdot 0 = w.$$

Which is a new perceptron learning algorithm.