Assignment 11 - F.15 and F.16

E.15

compare plots before to your sketches (see code on learning suiter)

F.16 (see code on learning suite)
using the following gains gives the hole plots
below:

sigma: 0.05 kp_z: -0.147 ki_z: 0.0 kd_z: -0.213 kp_h: 4.218 ki_z: 1.0 kd_h: 4.779 kp_th: 7.099 kd_th: 1.064

A) from code =>

$$C_{lon} P_{lon} = \frac{3.3275^2 + 2.8455 + 0.667}{5^3 (0.055 + 1)}$$

So $l = 3$ 3.

 $e_{ss} = \lim_{s \to 0} \frac{1}{5^3 + CP} \cdot S^{3-k}$

For a parahola input, $k = 2$ =>

 $e_{ss} = 0$

b) % error =
$$Y_n \cdot 100 \Rightarrow$$

 $Y_n = M_{cunPun}(\omega_{n0}) = 0.0615 \Rightarrow$
% error = 6.15%

C) % of
$$D_{in} = Y_{din}$$
. $100 \Rightarrow$

$$Y_{din} = \frac{M_{P_{in}}(\omega_{din})}{M_{ConP_{in}}(\omega_{din})} = 0.131 \Rightarrow$$
% error = 13.1%

d) assume that
$$|N| \approx 1$$
 degree =) (if you chose $|E| = 0.1 \le |V_n| 1$ degree =) differently, that,

$$Y_n = 0.1$$
, where does $M_{CP}(\omega_n) = Y_n = 0.1$?

