

IIC2213 — Lógica para ciencia de la computación — 1' 2023

## TAREA 5

Publicación: Martes 23 de mayo.

Entrega: Lunes 5 de junio hasta las 23:59 horas.

#### **Indicaciones**

- Cada pregunta tiene 6 puntos (+1 base) y la nota de la tarea es el promedio de las preguntas.
- La solución debe estar escrita en LATEX. No se aceptarán tareas escritas de otra forma.
- La tarea es individual, pudiendo discutirla con sus pares. Toda referencia externa debe citarse.

# Objetivos

- Demostrar resultados de complejidad en lógica de primer orden.
- Utilizar isomorfismos entre estructuras para demostrar propiedades.
- Estudiar definibilidad de propiedades.

#### Pregunta 1: Complejidad en LPO

Sea  $\mathcal{L}$  un vocabulario arbitrario. Demuestre que el siguiente lenguaje es indecidible

 $VAL_{\geq 2} = \{ \varphi : \varphi \text{ es } \mathcal{L}\text{-oración tal que para toda } \mathcal{L}\text{-estructura } \mathfrak{A} \text{ con más de un elemento en el dominio, } \mathfrak{A} \models \varphi \}$ 

### Solución P1.

En primer lugar, recordemos la definición de VAL vista en clases.

 $VAL = \{ \varphi : \varphi \text{ es } \mathcal{L}\text{-oración tal que para toda } \mathcal{L}\text{-estructura } \mathfrak{A} \text{ se tiene } \mathfrak{A} \models \varphi \}$ 

Por lo tanto, si definimos VAL<sub><2</sub> =  $\{\varphi : \varphi \text{ es } \mathcal{L}\text{-oración tal que para toda } \mathcal{L}\text{-estructura } \mathfrak{A} \text{ con un solo elemento en el dominio se tiene } \mathfrak{A} \models \varphi\}$  se tiene que

$$VAL = VAL_{\geq 2} \cup VAL_{\leq 2}$$

Ahora notemos que VAL $_{<2}$  es decidible ya que podemos construir una máquina  $\mathcal M$  tal que dado un input w

- 1. Revisa si es una  $\mathcal{L}$ -oración  $\varphi$ .
- 2. Reemplaza las variables cuantificadas y funciones por un elemento x.

3. Revisa si para toda interpretación de las relaciones se cumple la oración, si es así se acepta w y si no, se rechaza.

Notemos que esto es un proceso que siempre termina, ya que existen finitas  $\mathcal{L}$ -estructuras  $\mathfrak{A}$  con dominio  $\{x\}$ . Además,  $L(\mathcal{M}) = \mathrm{VAL}_{<2}$ , ya que claramente la máquina acepta un input w si y solo si w es una  $\mathcal{L}$ -oración y toda  $\mathcal{L}$ -estructura con dominio  $\{x\}$  satisface la oración. Esto es suficiente, ya que podemos construir un isomorfismo de cualquier  $\mathcal{L}$ -estructura de un elemento a una con dominio  $\{x\}$ , entonces si tenemos que una oración se satisface en toda  $\mathcal{L}$  estructura con dominio  $\{x\}$ , se debe satisfacer en toda  $\mathcal{L}$ -estructura con un solo elemento en el dominio.

Ahora, supongamos que  $VAL_{\geq 2}$  es decidible, entonces VAL es la unión de dos lenguajes decidibles y por lo visto en clases sabemos que esto significaría que VAL es decidible, por lo que llegamos a una contradicción.

Probablemente muchas respuestas utilicen una reducción, en ese caso dar 3 pts. por construir la reducción y 3 pts. por la justificación.

En caso de hacer el ejercicio como la pauta, dar 3 pts. por probar que el lenguaje  $VAL_{<2}$  es decidible y 3 pts. por concluir correctamente lo pedido. Bajar 1 punto si no menciona teorema de isomorfismo.

# Pregunta 2: Isomorfismos

En ambos incisos, si utiliza un isomorfismo no olvide demostrar que efectivamente es un isomorfismo (biyección y propiedades de un isomorfismo entre estructuras).

- (a) Sea  $\mathcal{L} = \{+\}$  vocabulario con + símbolo de función binaria. Sean  $\mathfrak{A} = \langle \mathbb{N}, +^{\mathfrak{A}} \rangle$  y  $\mathfrak{B} = \langle \mathbb{Z}, +^{\mathfrak{B}} \rangle$   $\mathcal{L}$ -estructuras tales que el símbolo + se interpreta como la suma usual. Decida si estas estructuras son isomorfas y demuestre su respuesta.
- (b) Sea  $\mathcal{L} = \{0\}$  con 0 símbolo de constante y considere la  $\mathcal{L}$ -estructura  $\mathfrak{A} = \langle \mathbb{N}, 0^{\mathfrak{A}} \rangle$ , donde la interpretación del símbolo 0 es el cero de los naturales. Demuestre, usando el teorema de isomorfismo, que en  $\mathfrak{A}$  no es definible el siguiente conjunto

$$S = \{(a, b) \in \mathbb{N}^2 \mid b \text{ es sucesor de } a\}$$

Es decir, en esta pregunta demostrará que la relación sucesor no es definible en esta estructura.

#### Solución P2.

### Parte (a)

Estas estructuras no son isomorfas. Para demostrar eso supongamos que existe un isomorfismo  $h: \langle \mathbb{Z}, +^{\mathfrak{B}} \rangle \to \langle \mathbb{N}, +^{\mathfrak{A}} \rangle$  por teorema de isomorfismo, sabemos que si una oración se satisface en  $\mathfrak{B}$  entonces se debe satisfacer en  $\mathfrak{A}$  para esto primero definimos la oración

$$\varphi_0(x) = \forall y. \ x + y = x$$

Claramente tenemos que esta oración se cumple con x=0 en  $\mathfrak{B}$  y por teorema de isomorfismo se debe cumplir con x=h(0) es  $\mathfrak{A}$ , por lo tanto tenemos que h(0)=0. Además sabemos que en  $\mathbb{Z}$ 

$$1 + (-1) = 0$$

entonces tenemos que

$$h(1) + h(-1) = h(0) = 0$$

Sin embargo, sabemos que en los naturales no existe inverso respecto a la suma y tendríamos que h(1) = h(-1) = 0, por lo que h no sería inyectiva y llegamos a una contradicción.

Hay muchas formas de llegar a la contradicción necesitada, por lo tanto se otorgará un punto por la estructura de la demostración (usar teorema de isomorfismo para llegar a una contradicción) y 2 pts. por la construcción de la contradicción.

#### Parte (b)

En primer lugar tomemos la función  $h: \langle \mathbb{N}, 0^{\mathfrak{A}} \rangle \to \langle \mathbb{N}, 0^{\mathfrak{A}} \rangle$  tal que h(1) = 2, h(2) = 1 y h(n) = n para los otros naturales. Notemos que esta función es biyectiva y h(0) = 0, por lo tanto es un isomorfismo. Sin embargo, tenemos que h((1,2)) = (2,1), por lo tanto tenemos que  $S \neq h(S)$  y por teorema de isomorfismo tenemos que el conjunto S no es definible.

Es esta pregunta se dará un punto por cada una de las siguientes cosas: construir el isomorfismo, argumentar por qué es isomorfismo y concluir usando el teorema.

## Pregunta 3: Definibilidad de propiedades

(a) Sea  $\mathcal{L}$  un vocabulario arbitrario. Demuestre que si una propiedad  $\mathcal{P}$  es elementalmente definible, entonces la propiedad

$$\overline{\mathcal{P}} = \mathrm{S}[\mathcal{L}] \setminus \mathcal{P}$$

también es elementalmente definible.

(b) Considere el vocabulario  $\mathcal{L} = \{a, b, E\}$  con símbolos de constantes a y b, y símbolo de relación E binaria. Demuestre usando el teorema de compacidad que la siguiente propiedad no es elementalmente definible

$$\mathcal{P} = \{\mathfrak{A} \in S[\mathcal{L}] \mid \mathfrak{A} \text{ tiene un camino de largo finito entre } a^{\mathfrak{A}} \text{ y } b^{\mathfrak{A}} \}$$

#### Solución P3.

## Parte (a)

Supongamos que tenemos una propiedad elementalmente definible  $\mathcal{P}$ , entonces existe una  $\mathcal{L}$ -oración  $\varphi$  tal que se satisface en una estructura si y solo si la estructura está en  $\mathcal{P}$ . Luego notemos que podemos definir  $\psi = \neg \varphi$ , esta oración será satisfecha por las  $\mathcal{L}$ -estructuras que no satisfacen  $\varphi$ , por lo tanto se satisface en  $\mathcal{L}$ -estructuras en  $\overline{\mathcal{P}}$ . Es decir,  $\overline{\mathcal{P}}$  es elementalmente definible.

Un punto por costruir la negación de la oración que define  $\mathcal{P}$  y 2 pts. por argumentar correctamente lo pedido.

## Parte (b)

En primer lugar, definimos las siguientes  $\mathcal{L}$ -oraciones

$$\varphi_{n} = \forall x_{1} \dots \forall x_{n}. \left( \bigwedge_{\substack{i,j \in [n] \\ i \neq j}} \neg(x_{i} = x_{j}) \right) \land \left( \neg E(a, x_{1}) \lor \neg E(x_{n}, b) \lor \bigvee_{i \in [n-1]} \neg E(x_{i}, x_{i+1}) \right)$$

Notemos que si una estructura cumple alguna  $\varphi_i$  entonces la estructura no tiene un camino de largo i+1. Por otro lado, definimos las  $\mathcal{L}$ -estructuras  $\mathfrak{A}_n = \langle [n+2], a^{\mathfrak{A}_n}, b^{\mathfrak{A}_n}, E^{\mathfrak{A}_n} \rangle$  con  $a^{\mathfrak{A}_n} = 1$ ,  $b^{\mathfrak{A}_n} = n+2$  y  $E^{\mathfrak{A}_n} = \{(i, i+1) : i \in [n-1]\}$ .

Ahora, supongamos que existe una  $\mathcal{L}$ -oración  $\varphi$  tal que define la propiedad  $\mathcal{P}$ , entonces podemos tomar el conjunto

$$\Sigma = \{\varphi\} \cup \{\varphi_n : n \in \mathbb{N}\}$$

Este conjunto es finitamente satisfacible, ya que en cualquier subconjunto finito vamos a tener un n máximo, luego la estructura  $\mathfrak{A}_{n+1}$  lo satisface contenga o no a  $\varphi$ , por compacidad concluimos que  $\Sigma$  es satisfacible. Sin embargo, notemos que si esto sucede, tenemos una estructura que tiene un camino finito entre a y b, pero no tiene un camino de ningún largo entre a y b, por lo que llegamos a una contradicción.

Otorgar un punto por cada una de las siguientes cosas: definir las oraciones, explicar correctamente por qué son finitamente satisfacibles y llegar a la contradicción usando compacidad.