Sensing

Instructor: Deepak Gangadharan

Outline

- Definitions
- Sensor Classification
- Sensor Characteristics
- Sensor Working Principles

Upstream Information Flow in IoT

Sensing an inevitable process in IoT!

Source: http://ocw.cs.pub.ro/courses/_media/iot2015/courses/picture11.png?w=450&tok=584430

What is a Sensor?

• A sensor detects (senses) changes in the ambient conditions or in the state of another device or a system, and forwards or processes this information in a certain manner [1].

• "A device which detects or measures a physical property and records, indicates, or otherwise responds to it" [2]. – Oxford dictionary

References

- 1. http://www.businessdictionary.com/definition/sensor.html
- 2. https://en.oxforddictionaries.com/definition/sensor

Block Diagram

Source: https://www.codrey.com/electronics/different-types-of-sensors/

Sensors

• Perform some input function by sensing or feeling the physical changes in characteristics of a system in response to some stimuli

• Example: In a temperature sensor, heat is converted to electrical signals

Transducers

Convert one form of energy into another

• Example: In a sound system, a microphone converts sound waves into electrical signals, which are then amplified by an amplifier and a loudspeaker converts the electrical signals back into sound waves

• It is a collective term that includes both sensors and actuators

Sensor – Energy Converter

- A sensor may incorporate several transducers. The last part is a direct sensor producing electrical output
- Example: A chemical sensor produces electrical signal in response to a chemical reaction. It may have two parts: first one converts the energy of a chemical reaction to heat (transducer) and the other part (thermopile) converts the heat into an electrical signal
- Direct sensor and Indirect Sensor

Sensor Features

• Sensitive only to the measured property (temperature sensor only senses the ambient temperature)

• Insensitive to any other property encountered in the system

Does not influence the measured property

Sensor Classes (Based on Output)

Analog Sensor

Digital Sensor

Sensor Classes (Based on Data Type)

 Scalar Sensor: Produces output voltage which is proportional to the magnitude of the quantity measured Physical quantities: temperature, color, pressure, etc

 Vector Sensor: Produces output voltage which is proportional to the magnitude, direction and the orientation of the quantity measured (Camera sensor)

Physical quantities: Sound, image, velocity, acceleration

Intermediate Output Datatype Stages Scalar Analog Direct sensor Indirect Digital Vector sensor

Introduction to IoT (Spring 2022)

Direct Sensor:

Converts a stimulus into an electrical signal or modifies an electrical signal by using an appropriate physical effect

Example: Thermocouple

• Indirect Sensor:

Includes one or more transducers for multiple conversion steps before a direct sensor generates an electrical output

Intermediate Power Output Datatype Stages Requirement Direct Analog Scalar Active sensor Indirect Digital Vector **Passive** sensor

Passive Sensor:

Does not need any additional energy source and directly generates an electrical signal in response to external stimulus.

Most passive sensors are direct sensors as defined earlier.

Example: Thermocouple, photodiode, piezoelectric sensor

Active Sensor:

Requires external power for its operation, which is called an excitation signal.

Example: LiDAR, GPS, infrared sensor

Absolute Sensor:

Detects a stimulus in reference to an absolute physical scale that is independent of the measurement conditions

Example: Thermistor

Relative Sensor:

Stimulus is sensed with respect to a fixed or variable reference that is not an absolute value independent of measurement conditions

Example: Thermocouple

Contact sensor:
 Requires physical contact with the stimulus
 Example: strain gauges, temperature sensors

Non-contact sensor:
 Requires no physical contact
 Example: optical and magnetic sensors

Sensor Characteristics

- Static Characteristics
 - ✓ Range and Span
 - ✓ Accuracy
 - ✓ Resolution
 - ✓ Precision
 - ✓ Errors
 - √ Sensitivity
 - ✓ Linearity
 - √ Hysterisis
- Dynamic Characteristics

Range and Span

Range

Minimum and Maximum value of a physical quantity that a sensor can measure Example: A Resistance Temperature Detector (RTD) for the measurement of temperature has a range of -200 to 800°C

Span

Difference between maximum and minimum values of input measured In the above example, span of RTD = $800 - (-200) = 1000^{\circ}$ C

Accuracy and Resolution

- Accuracy is the capacity of a sensor to give results close to the TRUE VALUE of the measured quantity
 - Measured by absolute and relative errors ABSOLUTE ERROR = RESULT – TRUE VALUE RELATIVE ERROR = ABSOLUTE ERROR / TRUE VALUE

• **Resolution** is the minimal change of the input necessary to produce a detectable change at the output

Precision

• Capacity of a sensor to give same reading when repetitively measuring the same quantity under the same prescribed conditions

Source: https://www.electrical4u.com/characteristics-of-sensors/

Errors

- Systematic Errors

 Due to interfering or modifying variables (e.g., temperature), loading, attenuation, etc.
- Random Errors
 A signal that carries no information such as environmental noise

Thank You!