

دانشكده مهندسي كامپيوتر

پاسخ تمرین سه (فصل5)

پاسخ بخش نظری

.1

الف)

 $M/M/1/\infty/\infty$

ب)

پس داریم $\mu > \lambda$.پس سیستم استیبل است. حال طبق فرمول هاي داده شده براي این نوع سیستم داریم:

$$\rho = \lambda / \mu = 13/24 = 0.5416$$

$$L = \rho/(1-\rho) = 1.1818$$

$$w = 1/\mu(1-\rho) = 1.092 \text{ min}$$

$$wQ = L/\mu = 0.5909$$

$$LQ = \rho L = 0.64$$

ج) حدودا 49 تومان هزینه در بر خواهد داشت.

.2

	Two M/M/1 queues	M/M/2 queue
ρ	$\frac{\lambda}{\mu}$	$\frac{\lambda}{\mu}$
L	$\frac{2\rho}{1-\rho}$	$\frac{2\rho}{1-\rho^2}$
w	$\frac{1}{\mu(1-\rho)}$	$\frac{1}{\mu(1-\rho^2)}$
w_Q	$\frac{\rho}{\mu(1-\rho)}$	$\frac{\rho^2}{\mu(1-\rho^2)}$
L_Q	$\frac{2\rho^2}{1-\rho}$	$\frac{2\rho^3}{1-\rho^2}$

طبق جدول بالا مشاهده می شود که سیستم M/M/2 از سیستم دو صف M/M/1 عملکرد بهتری دارد. در سیستم M/M/2 میانگین تعداد مشتریان در سیستم و در صف و میانگین زمان انتظار در سیستم و در صف، همگی کوچکتر از یک سیستم با دو صف M/M/1 است.

.3

برای یک صف M/G/∞ با M/G/hour و 1/2 من µ = 1/2 داریم:

$$P_n = \frac{-e^{-\frac{\lambda}{\mu}} \left(\frac{\lambda}{\mu}\right)^n}{n!}$$

حال اگر c تعداد فضاهای خالی باشد، احتمال اینکه بیشتر از c فضا نیاز داشته باشیم برابر است با:

$$P(L(\infty) > c) = \sum_{n=c+1}^{\infty} P_n = 1 - \sum_{n=0}^{c} P_n \le 0.001 \Rightarrow \sum_{n=0}^{c} P_n \ge 0.999$$

حال اگر عبارت بالا را محاسبه كنيم c برابر 132 بدست مى آيد. يعنى با حداقل 132 جاى پارك 99.9% مواقع جاى يارك خالى خواهيم داشت.