日本国特許庁 JAPAN PATENT OFFICE

17.06.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 6月18日

REG'D 0 1 AUG 2003

出 願 番 号 Application Number:

特願2002-177143

[ST. 10/C]:

[JP2002-177143]

出 願 人
Applicant(s):

株式会社アマダ 株式会社エヌエスエンジニアリング

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月11日

【書類名】 特許願

【整理番号】 A2002131

【提出日】 平成14年 6月18日

【あて先】 特許庁長官殿

【国際特許分類】 B30B 15/18

【発明の名称】 プレス機械のサーボドライブシステム

【請求項の数】 5

【発明者】

【住所又は居所】 神奈川県伊勢原市石田318-3

【氏名】 内藤 欽志郎

【発明者】

【住所又は居所】 群馬県甘楽郡甘楽町天引258

【氏名】 関山 篤藏

【発明者】

【住所又は居所】 神奈川県小田原市東町1-9-8

【氏名】 大竹 俊昭

【発明者】

【住所又は居所】 神奈川県厚木市恩名1557-2-1

【氏名】 栗山 晴彦

【特許出願人】

【識別番号】 390014672

【氏名又は名称】 株式会社 アマダ

【特許出願人】

【識別番号】 595067372

【氏名又は名称】 株式会社 エヌエスエンジニアリング

【代理人】

【識別番号】

100083806

【弁理士】

【氏名又は名称】 三好 秀和

【電話番号】 03-3504-3075

【選任した代理人】

【識別番号】 100068342

【弁理士】

【氏名又は名称】 三好 保男

【選任した代理人】

【識別番号】 100100712

【弁理士】

【氏名又は名称】 岩▲崎▼ 幸邦

【選任した代理人】

【識別番号】 100087365

【弁理士】

【氏名又は名称】 栗原 彰

【選任した代理人】

【識別番号】 100079946

【弁理士】

【氏名又は名称】 横屋 赳夫

【選任した代理人】

【識別番号】 100100929

【弁理士】

【氏名又は名称】 川又 澄雄

【選任した代理人】

【識別番号】 100095500

【弁理士】

【氏名又は名称】 伊藤 正和

【選任した代理人】

【識別番号】 100101247

【弁理士】

【氏名又は名称】 高橋 俊一

【選任した代理人】

【識別番号】 100098327

【弁理士】

【氏名又は名称】 高松 俊雄

【手数料の表示】

【予納台帳番号】 001982

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0102134

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 プレス機械のサーボドライブシステム

【特許請求の範囲】

【請求項1】 ラムの動力源としてサーボモータを用いるプレス機械において、

前記サーボモータとして、互いに同一の速度ートルク特性に基づくトルクを合成して使うことで必要なラム圧力を発生可能な一対のサーボモータを採用し、

前記一対のサーボモータを、互いにミラーイメージで対称に構成したうえ、ラムを上下動させる作動軸の両端に互いに対向して設置し、

前記一対のサーボモータを一体として動作させることで、前記作動軸を直接駆動するように構成したことを特徴とするプレス機械のサーボドライブシステム。

【請求項2】 前記一対のサーボモータの一方のサーボモータ用のサーボアンプのパワー部と、他方のサーボモータ用のサーボアンプのパワー部とを、同一ゲート信号でドライブすることで、両サーボモータを一体として動作させることを特徴とする請求項1記載のプレス機械のサーボドライブシステム。

【請求項3】. 前記一対のサーボモータは、モータの速度ートルク特性に基づくトルクを使い、機構のイナーシャを利用しないで必要なラム圧力を発生するため、ラムの下降動作中にワークから負荷を受けると、その負荷に応じて両サーボモータの速度が減少することでラムの下降速度を低下させることを特徴とする請求項1記載のプレス機械のサーボドライブシステム。

【請求項4】 ラムを上下動させる前記作動軸はエキセンシャフトで構成され、このエキセンシャフトと前記一対のサーボモータの各ロータ主軸とを一体に構成したことを特徴とする請求項1記載のプレス機械のサーボドライブシステム

【請求項5】 前記一対のサーボモータの各ロータは、前記エキセンシャフトの左右各端延長部の周囲に、外周に偶数個の磁極用マグネットを円周方向に沿って所定間隔で備えたスリーブをそれぞれ嵌装し、左右両スリーブの磁極位置(磁極用マグネットの円周方向位置)が互いにミラーイメージで対称となるように位置決めしてそれぞれブッシュで固定することで構成し、また、前記一対のサー

ボモータの各ステータは、三相電機子巻線を巻いた外筒を前記各ロータにそれぞれ外装し、左右両外筒の三相電機子巻線の円周方向位置が互いにミラーイメージで対称となるように位置決めして、前記エキセンシャフトの左右の支持フレームにそれぞれ固定することで構成したことを特徴とする請求項4記載のプレス機械のサーボドライブシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、例えばタレットパンチプレスに適用されるプレス機械のサーボドライブシステムに関するものである。

[0002]

【従来の技術】

一般に、パンチプレスには、ラムの駆動源としてサーボモータを用いる電動式のものがある。このようなパンチプレスなどのプレス機械の打ち抜き加工では、加工中にきわめて大きい騒音が発生するので、この種の騒音をできるだけ減らすことが望まれている。

[0003]

このような打ち抜き加工における騒音の発生原理は複雑で、ワークの材質、板厚その他各種の条件によってさまざまであるが、ラムの駆動による打ち抜き速度が速いときは騒音は大きく、打ち抜き速度が遅くなるほど騒音は小さくなり、また、打ち抜き速度が一定であれば、負荷が軽いときは騒音は小さく、負荷が重いほど騒音は大きくなることが知られている。

[0004]

【発明が解決しようとする課題】

しかしながら、従来の電動式のパンチプレスは、例えばトグルやフライホイールなどの機構を利用することで加工に必要なトルクを発生しているため、この機構によるイナーシャがラムの往復動を遅らせる原因となり、また、それに加えて、サーボモータの主軸とラムを上下動させる作動軸とは、ギヤなどの動力伝達機構を介してドライブされるため、この動力伝達機構によるロスや遅れも生じるこ

とが避けられない。そのため、サーボモータの速度を制御してもラムの駆動速度 を追従させることが困難で、ラムを速度制御することに適していないという問題 があった。

[0005]

この発明の課題は、上記従来のもののもつ問題点を排除して、トグルやフライホイールなどの機構やギヤなどの動力伝達機構を利用せず、それにより、打ち抜き速度を負荷に応じて自動的に加減することで低騒音化を実現し、しかも、作動軸の片側に相当する機械各部にのみ歪みが生じることを防止して、安定した稼動を実現することのできるプレス機械のサーボドライブシステムを提供することにある。

[0006]

【課題を解決するための手段】

この発明は上記課題を解決するものであって、請求項1に係る発明は、ラムの動力源としてサーボモータを用いるプレス機械において、前記サーボモータとして、互いに同一の速度ートルク特性に基づくトルクを合成して使うことで必要なラム圧力を発生可能な一対のサーボモータを採用し、前記一対のサーボモータを、互いにミラーイメージで対称に構成したうえ、ラムを上下動させる作動軸の両端に互いに対向して設置し、前記一対のサーボモータを一体として動作させることで、前記作動軸を直接駆動するように構成したプレス機械のサーボドライブシステムである。

[0007]

請求項2に係る発明は、請求項1記載の発明において、前記一対のサーボモータの一方のサーボモータ用のサーボアンプのパワー部と、他方のサーボモータ用のサーボアンプのパワー部とを、同一ゲート信号でドライブすることで、両サーボモータを一体として動作させるプレス機械のサーボドライブシステムである。

[0008]

請求項3に係る発明は、請求項1記載の発明において、前記一対のサーボモータは、モータの速度ートルク特性に基づくトルクを使い、機構のイナーシャを利用しないで必要なラム圧力を発生するため、ラムの下降動作中にワークから負荷

を受けると、その負荷に応じて両サーボモータの速度が減少することでラムの下 降速度を低下させるプレス機械のサーボドライブシステムである。

[0009]

請求項4に係る発明は、請求項1記載の発明において、ラムを上下動させる前 記作動軸はエキセンシャフトで構成され、このエキセンシャフトと前記一対のサ ーボモータの各ロータ主軸とを一体に構成したプレス機械のサーボドライブシス テムである。

[0010]

請求項5に係る発明は、請求項4記載の発明において、前記一対のサーボモータの各ロータは、前記エキセンシャフトの左右各端延長部の周囲に、外周に偶数個の磁極用マグネットを円周方向に沿って所定間隔で備えたスリーブをそれぞれ嵌装し、左右両スリーブの磁極位置(磁極用マグネットの円周方向位置)が互いにミラーイメージで対称となるように位置決めしてそれぞれブッシュで固定することで構成し、また、前記一対のサーボモータの各ステータは、三相電機子巻線を巻いた外筒を前記各ロータにそれぞれ外装し、左右両外筒の三相電機子巻線の円周方向位置が互いにミラーイメージで対称となるように位置決めして、前記エキセンシャフトの左右の支持フレームにそれぞれ固定することで構成したプレス機械のサーボドライブシステムである。

[0011]

【発明の実施の形態】・

この発明の実施の形態を、図面を参照して説明する。

図1は、この発明によるプレス機械のサーボドライブシステムの一実施の形態を示す要部の縦断面図、図2はその右側面図であり、このプレス機械のサーボドライブシステム1は、タレットパンチプレス10に適用したものである。

[0012]

タレットパンチプレス10は、平行に立設したフレーム11a、11bに設けた軸受部12a、12bにエキセンシャフト20が軸支されている。フレーム11a、11b間のほぼ中央に位置するエキセンシャフト20の偏心軸部20eには、コンロッド21を介してラム22が取り付けられ、エキセンシャフト20が

回転または回動することで、コンロッド21を介してラム22がラムガイド23に沿って上下動し、ラム22の下端に取り付けられるストライカ24もラム22と一体に上下動する。そして、ラム22が下降するとき、ストライカ24が、タレット25に装着してあるパンチ金型26を押圧してワークを打ち抜くようになっている。

[0013]

また、エキセンシャフト20の両端延長部20a、20bはフレーム11a、11bから外方へ延び、この延長部20a、20bをモータ主軸31a、31bとするサーボモータ30a、30bが、フレーム11a、11bの外側にそれぞれ取り付けられている。

[0014]

サーボモータ30aは、モータ主軸31aすなわちエキセンシャフト20の延長部20aの周囲に、外周に偶数個(4個)の磁極用マグネット(永久磁石)32aを円周方向に沿って所定間隔(90°間隔)で備えたスリーブ33aを嵌装してブッシュ34aで固定し、これによりロータ(回転子)35aを構成する。すなわち、サーボモータ30aのロータ35aは、エキセンシャフト20の延長部20aと不可分一体のものであり、そのため、サーボモータ30aは、実質的にエキセンシャフト20をロータ35aとして用いるものである。

[0015]

また、サーボモータ30aは、三相電機子巻線Ua、Va、Waを巻いた外筒36aをロータ35aに外装してフレーム11aに固定し、これによりステータ(固定子)37aを構成する。

[0016]

一方、サーボモータ30bも、サーボモータ30aと同様に、モータ主軸31bすなわちエキセンシャフト20の延長部20bの周囲に、外周に偶数個(4個)の磁極用マグネット(永久磁石)32bを円周方向に沿って所定間隔(90°間隔)で備えたスリーブ33bを嵌装してブッシュ34bで固定し、これによりロータ(回転子)35bを構成することで、実質的にエキセンシャフト20をロータ35bとして用いるとともに、三相電機子巻線Ub、Vb、Wbを巻いた外

[0017]

このように、サーボモータ30aとサーボモータ30bとは、同様のものであるが、ただし、互いにミラーイメージで対称に構成されたものであり、このミラーイメージで対称である点を除けば、互いに全く同一のものであって、互いのロータ35a、ロータ35bが一体に構成されるから、ロータ35a、35bの回転角度を検出するロータリエンコーダ38は一方のサーボモータ30bにのみ設けて共用され、また、互いに同一の速度ートルク特性を有し、この速度ートルク特性に基づくトルクを合成して使うことで、必要なラム圧力を発生する性能を有するものである。

[0018]

すなわち、サーボモータ30aのロータ35aの磁極位置(磁極用マグネット32aの円周方向位置)と、サーボモータ30bのロータ35bの磁極位置(磁極用マグネット32bの円周方向位置)とは、互いにミラーイメージで対称に位置決めして取り付けられ、また、サーボモータ30aの三相電機子巻線Ua、Va、Waの円周方向位置と、サーボモータ30bの三相電機子巻線Ub、Vb、Wbの円周方向位置とは、互いにミラーイメージで対称に位置決めして取り付けられている。

[0019]

そのため、図3に示すように、サーボモータ30a用のサーボアンプ40aのパワー部41aと、サーボモータ30b用のサーボアンプ40bのパワー部41bとを、同一ゲート信号でドライブすれば、サーボモータ30aおよびサーボモータ30bには、同位相、同一電流値の三相交流電流しか流れないから、サーボモータ30aのトルクベクトルとサーボモータ30bのトルクベクトルとが同位相、同一となり、そのため、サーボモータ30aおよびサーボモータ30bの合成トルクは、正確に、両サーボモータ30a、30bのトルクの和となる。

[0020]

そして、サーボアンプ40a、40bの図示しない制御部の制御により、サー

ボモータ30a、30bは、ラム22がパンチング加工に要する所定の下降端位置Lと、この位置から戻されてラム22下端のストライカ24がパンチ金型26上面から離れる上昇端位置Hとの間を上下動するように、エキセンシャフト20をラム22の両位置L、H間に相当する角度範囲だけ往復して回動させることで、ワークにパンチング加工を行なうようになっている。

[0021]

図4 (a) に示すように、ラム22の前記下降端位置Lは、エキセンシャフト20の偏心量E (エキセンシャフト20の軸線と偏心軸部20 eの軸線との距離) によって決まるラム22の全上下動可能ストロークの下死点Bよりやや手前に設定され、また、ラム22の前記上昇端位置Hは、ラム22の全上下動可能ストロークの中間高さよりやや下方に設定される。すなわち、エキセンシャフト20の前記往復回動角度範囲は、使用するパンチ金型26のストロークにもよるが、約40°~60°程度に設定される。

[0022]

また、図4 (b) に示すように、サーボモータ30a、30bは、金型交換時、タレット回転時などには、エキセンシャフト20の偏心軸部20e(すなわちラム22)を上死点Tに位置決めする。そして、加工開始にともない、ラム22を上死点Tから下降端位置Lまで下降して1回目のパンチング加工を行なった後、上昇端位置Hまで戻してその位置でラム22を待機させ、2回目以降のパンチング加工では上昇端位置Hと下降端位置Lとの間を往復して回動させる。

[0023]

さらに、エキセンシャフト20の全周回転範囲のうち、つねに図4(b)に示すように片側半周分だけを使用すると、潤滑油の行き渡り方をはじめ各部が均等に使用されることにならず、図4(c)に示すように反対側の半周分も使用することが好ましいことから、サーボモータ30a、30bは、金型交換の都度またはタレット回転のたびに、あるいは、あらかじめ決められたパンチング回数ごとに、図4(b)に示す側と図4(c)に示す側とを切り換えて使用するようになっている。

[0024]

このタレットパンチプレス10は、以上のように、一対のサーボモータ30a、30bが、フレーム11a、11bの外側にそれぞれ取り付けられているため、エキセンシャフト20の片側に相当する機械各部にのみ歪みが生じることはない。すなわち、例えば、サーボモータ30a、30bを三相並列回路として一体に構成した1台のサーボモータ(30)を、片側のフレーム11aまたは11bの外側にのみ取り付けることも可能ではあるが、その場合は、サーボモータ(30)の重量による応力を片側のフレーム11aまたは11bのみで受けるため、両フレーム11a、11bに歪みが生じ、また、サーボモータ(30)の発熱により熱の不均一による歪みも生じ、さらには、軸受部12a、12bの応力も互いに異なるため、これらに対する対策を講じる必要がある。しかし、このタレットパンチプレス10の場合は、そのような応力歪みがなく、熱も分散・平均化されるという利点があり、そのため、安定した稼動を実現することができるものである。

[0025]

次に、上記の実施の形態の作用について、図5~図9に示す説明図を用いて説明する。

[0026]

図5は、サーボモータ30a、30bの速度ートルク特性の一例(①、②)を示し、この図は、ラム22にかかる負荷の大きさによって、その負荷の大きさに必要なラム22の駆動トルクを発生するうえで、サーボモータ30a、30bが運転可能な速度の上限を示したものである。

[0027]

図5からわかるように、サーボモータ30a、30bは、ラム22にかかる負荷が軽いときは必要なトルクが小さいため、ラム22の駆動速度が低下しなくてパンチングの打ち抜き速度は速く、一方、ラム22にかかる負荷が重いほど必要なトルクが大きくなるため、ラム22の駆動速度が低下してパンチングの打ち抜き速度は遅くなる。そのため、負荷が重いほどラム速度が低下することは、そのまま低騒音化につながるのである。しかも、このようなラム速度の低下は、作業効率を妨げるものではないことが、以下に示す実測に基づく波形データから明ら

かである。

[0028]

図6はノーワークのときの波形、図7は薄板のワークを小径のパンチで打ち抜いたときの波形、図8は同じワークを大径のパンチで打ち抜いたときの波形、図9は厚板のワークを小径のパンチで打ち抜いたときの波形を示す。

[0029]

図6に示すようにワークのないときは、ラム22の1サイクルの前半において、速度カーブおよびトルクカーブはいずれも正転方向に立ち上がって一定値を保ち、これによりラム位置カーブは上昇端位置Hから下降端位置Lまで実質的に均一に下降する。つぎに、ラム22の1サイクルの後半において、速度カーブおよびトルクカーブはいずれも逆転方向に立ち上がって一定値を保ち、これによりラム位置カーブは下降端位置Lから上昇端位置Hまで実質的に均一に上昇する。

[0030]

図7に示すように、薄板のワークを小径のパンチで打ち抜くときは、ラム22の1サイクルの前半における挙動が図6の場合と異なる。すなわち、初期動作は図6の場合と同様、速度カーブおよびトルクカーブはいずれも正転方向に立ち上がって一定値になり、これによりラム位置カーブは上昇端位置Hから実質的に均一に下降し始める。ところが、ラム22下端のストライカ24がパンチ金型26を押し込んでその先端がワーク上面に当たることでワークから負荷を受けると、トルクカーブが急激に上昇するとともに速度カーブが減少し、これにともなってラム位置カーブの下降が緩やかに(遅く)なる。そして、パンチ金型26の先端がワーク下面手前まで下降してワークから受ける負荷が急減すると、トルクカーブが急激に下降するとともに、速度カーブが速度減少分を取り戻すべく前記一定値を超えて加速し、これにともなってラム位置カーブも下降速度を加速する。その後ラム22の1サイクルの後半では、図6の場合と同様に、ラム位置カーブは下降端位置Lから上昇端位置Hまで実質的に均一に上昇する。

[0031]

図8に示すように、薄板のワークを大径のパンチで打ち抜くときは、ラム22 の1サイクルの前半における挙動が図7の場合と異なる。すなわち、初期動作は

図7の場合と同様、速度カーブおよびトルクカーブはいずれも正転方向に立ち上がって一定値になり、これによりラム位置カーブは上昇端位置 Hから実質的に均一に下降し始める。ところが、ラム22下端のストライカ24がパンチ金型26を押し込んでワークから負荷を受けると、図7の場合に比べてパンチの直径が大きいためワークから受ける負荷が大きく、そのため、トルクカーブが図7の場合より大きく上昇するとともに速度カーブが図7の場合より大きく減少し、これにともなってラム位置カーブの下降が図7の場合よりずっと緩やかに(遅く)なる。そして、パンチ金型26の先端がワーク下面手前まで下降してワークから受ける負荷が急減すると、トルクカーブが急激に下降するとともに、速度カーブが速度減少分を取り戻すべく図7の場合より大きく加速し、これにともなってラム位置カーブも下降速度を図7の場合より大きく加速する。その後ラム22の1サイクルの後半では、図7の場合と同様に、ラム位置カーブは下降端位置したら上昇端位置日まで実質的に均一に上昇する。

[0032]

図9に示すように、厚板のワークを小径のパンチで打ち抜くときも、図7の場合に比べてワークの板厚が厚いためワークから受ける負荷が大きく、そのためラム22の1サイクルの前半における挙動が図7の場合と異なるが、図8の場合と比べれば大差はない。

[0033]

このように、ラム22にかかる負荷の大きさによって、速度カーブが減少して ラム位置カーブの下降が緩やかに(遅く)なれば、その速度減少分を取り戻すべ く速度カーブが一定値を超えて加速し、ラム位置カーブも下降速度を加速するこ とで、負荷によるラム速度の低下は、ラム22の1サイクル中における加減速と して吸収・解消されてしまい、そのため、ラム22の1サイクルを通じて要する 時間には実質的な変化がなく、作業効率の妨げとはならない。

[0034]

このようなモータの速度ートルク特性は、つぎのように説明できる。モータは、供給される電気エネルギーを負荷に作用するエネルギーに変換するものであり、サーボモータ30a、30bの場合、供給される電気エネルギーは、サーボア

ンプ40a、40bによって容量が決定され、また電源電圧の制限も受け、電源電圧以上の電圧を印加することもできない。

[0035]

一方、負荷に作用するエネルギーすなわちモータトルクは、サーボモータ30a、30bの場合、ラム22を下降させる適宜加速度の正転と、ラム22を上昇させる適宜加速度の逆転とを繰り返すサイクルのラム下降動作中に、パンチングの打ち抜き動作を実行するものであるから、ラム22の運動エネルギー発生用のトルクと、打ち抜き加圧力発生用のトルクとに分けられる。

[0036]

このような場合、加速度がかなり低ければ(ラム22の上下動が遅ければ)、 運動エネルギー発生用のトルク分が少なくて済むため、モータトルクのほとんど すべてを加圧力発生用のトルクとして利用できる。そのため、ワークの板厚、材 質などの条件によって大きな加圧力を要求されても、その加圧力を充分に発生す ることができ、運動エネルギー発生用のトルクが不足してラム22の速度に影響 を及ぼすことはない。

[0037]

これに対し、実際には作業効率などから、ある程度高い加速度(ラム22の上下動が速い)が要請されるため、モータトルクのうち加圧力発生用のトルクとして利用できる分が限られる。そのため、ワークの板厚、材質などの条件によって大きな加圧力を要求されると、その加圧力を発生するのにモータトルクの大部分が使われ、運動エネルギー発生用のトルクが不足し、ラム22の速度を維持することができなくてラム22の下降速度が減速してしまう。

[0038]

ところが、このラム22の下降速度の減速こそが、パンチングの打ち抜き動作にともなう騒音、振動の低騒音化、低振動化にきわめて有用な特性である。すなわち、ワークの板厚、材質などの条件によって、要求される加圧力(加圧トン数)が比較的小さいときは、ラム22の下降速度の速度低下が少ないから、軽い負荷の打ち抜き動作は比較的速くなり、また、要求される加圧力(加圧トン数)が比較的大きいときは、ラム22の下降速度の速度低下が多いから、重い負荷の打

ち抜き動作は比較的遅くなり、しかも、このような打ち抜き速度の変動は、要求される加圧力(加圧トン数)に応じて自動的に決定されるから、打ち抜きトン数による打ち抜きパターン(ラム22の下降パターン)の指令が不要である。つまり、ラム22の下降速度を維持できなくなることによって、最適な打ち抜きパターン(ラム22の下降パターン)が自動的に生成されることになる。

[0039]

逆にいえば、サーボアンプ40a、40bによって供給される電気エネルギーの容量が決定されるサーボモータ30a、30bのモータトルクが、タレットパンチプレス10で取り扱うワークの種類に応じて、軽い負荷から重い負荷まで最適な打ち抜きパターン(ラム22の下降パターン)が生成されるモータトルクとなるように、使用するサーボモータ30a、30bの速度ートルク特性を設定することで、パンチングの打ち抜き動作にともなう騒音、振動の低騒音化、低振動化が実現できる。

[0040]

そして、トグルやフライホイールなどの機構を利用しないモーターラム作動軸 直結型の電動式パンチプレスにおいて、パンチングの打ち抜き動作にともなう騒 音、振動の低騒音化、低振動化が実現されるものは、結局、サーボモータ30a 、30bと同様の速度ートルク特性を備えているといえる。

[0041]

なお、上記の実施の形態では、両サーボモータ30a、30bを一体として動作させることを前提として説明したが、これに限定するものでなく、例えば、負荷が非常に軽くて片方のサーボモータ30aまたは30bのトルクだけで充分加工できるような場合は、いずれか一方のサーボモータ30aまたは30bのみに通電して動作させることも可能である。そうすれば、そのような非常に軽い負荷に対して両サーボモータ30a、30bを一体として動作させた場合に比べて、ラム22の下降速度が緩やかになって低騒音化につながる可能性があり、また、省電力効果も期待できる。ただし、冷却などの必要な発熱対策を講じておくことはもちろんである。

[0042]

また、上記の実施の形態では、エキセンシャフト20の両端延長部20a、20b自体を、サーボモータ30a、30bの主軸31a、31bとして構成したが、これに限定するものでなく、例えば、エキセンシャフト20と主軸31a、31bとを別部材として構成し、ボルト止めその他適宜の手段によりエキセンシャフト20の両端部に主軸31a、31bをそれぞれ固着することで、両者を一体に構成することが可能である。

[0043]

さらに、上記の実施の形態では、サーボドライブシステム1をタレットパンチプレス10に適用したが、これに限定するものでなく、パンチプレス以外の各種のプレス機械に適用することが可能である。

[0044]

【発明の効果】

この発明は以上のように、ラムの動力源としてサーボモータを用いるプレス機械において、前記サーボモータとして、互いに同一の速度ートルク特性に基づくトルクを合成して使うことで必要なラム圧力を発生可能な一対のサーボモータを採用し、前記一対のサーボモータを、互いにミラーイメージで対称に構成したうえ、ラムを上下動させる作動軸の両端に互いに対向して設置し、前記一対のサーボモータを一体として動作させることで、前記作動軸を直接駆動するように構成したので、トグルやフライホイールなどの機構やギヤなどの動力伝達機構を利用しないため、打ち抜き速度を負荷に応じて自動的に加減することができて、低騒音化を実現することができ、しかも、作動軸の片側に相当する機械各部にのみ歪みが生じることを防止して、安定した稼動を実現することができる効果がある。

【図面の簡単な説明】

【図1】

この発明によるプレス機械のサーボドライブシステムの一実施の形態を示す要 部の縦断面図である。

【図2】

図1に示す要部の右側面図である。

【図3】

図1のサーボモータとそれを駆動するサーボアンプの構成例を示す結線図である。

【図4】

エキセンシャフト/ラムの作動領域を示す説明図である。

【図5】

サーボモータの速度ートルク特性の一例を示す図である。

【図6】

ノーワークのときの実測波形を示す図である。

【図7】

ワークをパンチで打ち抜いたときの実測波形を示す図である。

【図8】

図7のワークを直径の大きいパンチで打ち抜いたときの実測波形を示す図である。

【図9】

図7のパンチで板厚の厚いワークを打ち抜いたときの実測波形を示す図である

【符号の説明】

- 1 プレス機械のサーボドライブシステム
- 10 タレットパンチプレス
- 11a、11b フレーム
- 12a、12b 軸受部
- 20 エキセンシャフト
- 20a、20b 延長部
- 20e 偏心軸部
- 21 コンロッド
- 22 ラム
- 23 ラムガイド
- 24 ストライカ
- 25 タレット

26 パンチ金型

30a、30b サーボモータ

31a、31b モータ主軸

32 a、32 b 磁極用マグネット(永久磁石)

33a、33b スリーブ

34a、34b ブッシュ

35a、35b ロータ (回転子)

36a、36b 外筒

37a、37b ステータ (固定子)

38 ロータリエンコーダ

40a、40b サーボアンプ

4 1 a 、 4 1 b パワー部

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

サポートモータ 速度-トルク特性

【図6】

【図7】

【図8】

【図9】

【書類名】 要約書

【要約】

【課題】 打ち抜き速度を負荷に応じて自動的に加減することで低騒音化を実現し、しかも、作動軸の片側に相当する機械各部にのみ歪みが生じることを防止して、安定した稼動を実現する。

【解決手段】 ラム22の動力源として、互いに同一の速度ートルク特性に基づくトルクを合成して使うことで必要なラム圧力を発生可能な一対のサーボモータ30a、30bを採用し、この一対のサーボモータ30a、30bを、互いにミラーイメージで対称に構成したうえ、ラム22を上下動させる作動軸20の両端に互いに対向して設置する。この一対のサーボモータ30a、30bを一体として動作させることで、作動軸20を直接駆動する。

【選択図】 図1

特願2002-177143

出願人履歴情報

識別番号

[390014672]

1. 変更年月日 [変更理由]

更理由]住 所氏 名

1990年11月 1日

新規登録

神奈川県伊勢原市石田200番地

株式会社アマダ

出願人履歷情報

識別番号

[595067372]

1. 変更年月日 [変更理由]

1995年 5月11日 新規登録

住 所氏 名

神奈川県伊勢原市石田318番地3株式会社エヌエスエンジニアリング