Cálculo para Engenharia

Generalidades sobre o conjunto dos números reais

Maria Elfrida Ralha

Departamento de Matemática (Universidade do Minho)

Licenciatura em Engenharia Informática

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

1/23

Índice

- Generalidades
 - O que significa CÁLCULO?
 - Exemplos
 - Definição de número real
 - Axiomática dos Números Reais
 - (Algumas) Definições e Propriedades dos Números Reais
 - Valor Absoluto
 - Intervalos
 - Majorantes e Minorantes

E. Ralha (DMat) Cálculo para Engenharia LEInf 2023'24 2 / 23

- CÁLCULO é Matemática Elementar (Aritmética, Geometria, Álgebra) "enriquecida" com o conceito de LIMITE.
 Nesta UC, perceber-se-á como é que as FUNÇÕES (reais de uma variável real) são fundamentais para o estudo do Cálculo:
 - revendo alguns conceitos sobre estas funções (representando-as graficamente, combinando-as e classificando-as) e
 - aprendendo novos conceitos, que modelam matematicamente o mundo em que vivemos.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

3 / 23

(Alguns) Exemplos

Matemática Elementar	Cálculo
Declive de uma Reta	Declive de uma Curva
Reta tangente a uma circunferência	Reta tangente a uma Curva
Área/Volume de um polígono/poliedro	Área/Volume de uma Região no plano/espaço
$a_1 + a_2 + \cdots + a_n$	$a_1+a_2+\cdots+a_n+\cdots$
Soma de um Número Finito de números	Soma de um Número Infinito de números
• • •	

E. Ralha (DMat) Cálculo para Engenharia LEInf 2023'24 4 / 23

Número real éⁱ o elemento de separação de duas classes, num corte qualquer feito no conjunto dos números racionais.

 Se esse elemento é um número racional, então o número real coincide com esse número e, neste caso, pode ser representado por uma dízima que é finita ou é infinita mas periódica.

EXEMPLO: O número $\frac{1}{3}$ é racional.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

5 / 23

Nota

Chamamos dízima finita a uma expressão da forma

$$a_0, a_1 a_2 \cdots a_n$$

onde $a_0 \in \mathbb{Z}$, $n \in \mathbb{N}$ e

$$a_1, a_2, \cdots, a_n \in \{0, 1, 2, ..., 9\};$$

sendo que

$$a_0, a_1 a_2 \cdots a_n = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n}$$

= $a_0 \times 10^0 + a_1 \times 10^{-1} + a_2 \times 10^{-2} + \cdots + a_n \times 10^{-n}$

F. Ralha (DMat)

ⁱEsta definição assenta no trabalho de R. Dedekind, em 1872.

• Se o elemento de separação não é racional, o número real diz-se irracional.

EXEMPLO: Os números $\sqrt{2},\,\phi,\,e$ e π são irracionais. Note-se, em particular, que

$$1 < \sqrt{2} < 2$$
 ... $1, 4 < \sqrt{2} < 1, 5$ $1, 4 < \sqrt{2} < 1, 41$...

O conjunto dos números racionais, \mathbb{Q} , reunido com o dos números irracionais formam o conjunto, \mathbb{R} , dos **Números Reais**.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

7 / 23

Exemplo

• $\sqrt{2}$ é um número irracional porque Admitamos (por absurdo) que $\sqrt{2}$ é um número racional, isto é, supondo a e b números inteiros sem qualquer fator comum ter-se-á

$$\sqrt{2} = \frac{a}{b} \Longrightarrow$$

$$\Longrightarrow 2 = \frac{a^2}{b^2} \Longleftrightarrow$$

$$\Longleftrightarrow a^2 = 2b^2 \Longleftrightarrow$$

$$\Longleftrightarrow \dots$$

Isto significa que a^2 é par ...

Logo

Absurdo!

\mathbb{R} é um corpo, ordenado e completo: AXIOMAS*

\mathbb{R} é corpo:

munido de 2 operações –uma adição e uma multiplicação (as usuais)– tais que

- A adição
 - é Associativa...
 - é Comutativa...
 - existe um elemento neutro para a adição -o zero-...
 - para cada número real, a, existe um elemento simétrico, denotado por

 -a...

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

9 / 23

\mathbb{R} é um corpo,...

- A multiplicação
 - é Associativa...
 - é Comutativa...
 - Existe um elemento "neutro" para a multiplicação –a unidade–...
 - Para cada número real, a diferente de zero, existe um elemento inverso, denotado $\frac{1}{a}$...

E ainda,

3 A multiplicação é distributiva em relação à adição...

* e lhe conferem a estrutura de CORPO.

E. Ralha (DMat)

\mathbb{R} é ordenado

\mathbb{R} é ordenado:

munido de uma relação de ordem, <, que verifica os seguintes Axiomas*:

- Transitividade: Se a < b e b < c, então a < c.
- Tricotomia: Ou a < b, ou b < a ou a = b.
- Monotonia da adição: Se a < b, então a + c < b + c, $\forall c \in \mathbb{R}$.
- Monotonia(s) da Multiplicação:
 Se a < b e 0 < c, então ac < bc.
 Se a < b e c < 0, então bc < ac.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

11 / 23

\mathbb{R} é ordenado...

Note-se que

Nota

• se, por absurdo, com a < b se tivesse -a < -b ter-se-ia

$$0 = a + (-a) < b + (-b) = 0.$$

• da "tricotomia", por exemplo, retiramos que

$$\mathbb{R} = \mathbb{R}^- \cup \{0\} \cup \mathbb{R}^+$$

e representamos geometricamente $\mathbb R$ na forma uma reta orientada (eixo).

Nota

A relação de ordem >, oposta de <, é tal que b>a define-se como significando o mesmo que a< b.

A relação lata $a \le b$ é sinónima de $b \ge a$ e significa $a < b \lor a = b$.

Teorema

Sejam a, b, c e d números reais.

- Se a < b e c < d, então a + c < b + d.
- Se a e b forem ambos positivos (ou ambos negativos) e a < b, então $\frac{1}{b} < \frac{1}{a}$.
- **.**..

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

13 / 23

$\mathbb R$ é completo

\mathbb{R} é completo:

porque entre dois quaisquer números reais distintos há sempre uma infinidade de números racionais e uma infinidade de números irracionais.

Nota

... Não há um número real positivo que é o mais pequeno de todos.

Exemplos/Exercícios

- ... O elemento 1 (unidade multiplicativa) é único.
- : $(-1) \times 1 = -1$.
- $\therefore a \times 0 = 0, \quad \forall a \in \mathbb{R}.$
- : $(-1) \times (-1) = 1$ porque

$$egin{aligned} 0 &= -1 imes 0 \ &= (-1) imes (-1+1) \ &= (-1) imes (-1) + (-1) imes 1 \ &= (-1) imes (-1) + (-1) \end{aligned}$$

Logo

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

15 / 23

Definições e Propriedades dos Números Reais: Valor Absoluto

• O valor absoluto de qualquer número real a (é uma "norma") –interpreta-se geometricamente como a distância do número à origem (Zero)ⁱⁱ–e pode definir-seⁱⁱⁱ como

$$|a| = \begin{cases} a, & \text{se } a \ge 0 \\ -a, & \text{se } a < 0 \end{cases}$$

$$|a| := \max\{a, -a\}$$

ou

$$|a| := \sqrt{a^2}$$

ⁱⁱDe modo análogo |a-c|, para qualquer número real c, interpreta-se geometricamente como a distância entre a e c.

ⁱⁱⁱOutras definições (equivalentes) poderiam ser

Com $a, b \in \mathbb{R}$, o valor absoluto é tal que

- $|a| \ge 0$
- $\bullet |a \times b| = |a| \times |b|$
- $|a+b| \le |a| + |b|$ (designaldade triangular)

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

17 / 23

Valor Absoluto...

Teorema

Sejam x e a números reais quaisquer e ε um número real positivo.

• $|x-a|<\varepsilon$ se e só se

$$a - \varepsilon < x < a + \varepsilon$$
.

• $|x-a|>\varepsilon$ se e só se

$$x < a - \varepsilon$$
 ou $x > a + \varepsilon$.

• ...

Exemplos/Exercícios

- $|-|a| \le a \le |a|$ porque
 - Se $a \ge 0$, então |a| = a e

$$-a \le a \le a$$
$$-|a| \le a \le |a|$$

• Se a < 0, então |a| = -a e

$$a \le a \le -a$$
$$-|a| \le a \le |a|$$

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

19 / 23

Definições e Propriedades dos Números Reais: Intervalos

• Intervalo (aberto) de números reais a e b, sendo a < b, escreve-se]a,b[e \acute{e}

$$\{x \in \mathbb{R} : a < x < b\}$$

.

Há vários tipos de intervalos:

-]a, b] e [a, b[
- [a, b]
- $[a, +\infty[e]a, +\infty[$
-] $-\infty$, b[e] $-\infty$, b]
-] $-\infty, +\infty$ [

Nota

a e b dizem-se extremidades do intervalo e os pontos do intervalo que não são extremidades dizem pontos interiores do intervalo.

O conjunto vazio também é um intervalo (pode escrever-se com diferentes tipos de extremidades).

É igualmente um intervalo qualquer conjunto unitário:

$$\{a\} = [a, a], \quad \forall a \in \mathbb{R}.$$

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

21 / 23

Definições e Propriedades dos Números Reais: "Limitação"

Um conjunto \mathcal{A} , não vazio, de números reais é

• majorado^{iv} (por *M*, dito "majorante") quando

$$\exists M \in \mathbb{R} : \forall x \in \mathcal{A}, \quad x \leq M$$

• minorado^v (por m, dito "minorante") quando

$$\exists m \in \mathbb{R} : \forall x \in \mathcal{A}, \quad m \leq x$$

• limitado quando é, simultaneamente, majorado e minorado.

E. Ralha (DMat)

 $^{^{}iv}$ Em vez de majorado também podemos dizer que $\mathcal A$ é limitado superiormente. Quando existir o menor dos majorantes do conjunto chamamos-lhe supremo e se o supremo pertencer ao conjunto chama-se máximo.

^vOu limitado inferiormente. Se existir o maior dos minorantes do conjunto chamamos-lhe Ínfimo. E se o ínfimo pertencer ao conjunto, chama-se mínimo.

Exemplos/Exercícios

O conjunto $\mathcal{A}=\{\left|n^2+sen\left(\frac{n\pi}{2}\right)\right|:n\in\mathbb{N}_0\}$ não é limitado mas é minorado e tem mínimo. Vi

• \mathcal{A} é minorado: $\left|n^2 + sen\left(\frac{n\pi}{2}\right)\right| \geq 0$, $\forall n \in \mathbb{N}_0$, pelo que qualquer número não positivo é minorante de \mathcal{A} . Além disso,

$$\inf A = \min A = 0.$$

• Por outro lado, $\forall M \in \mathbb{R}^+, \exists n \in \mathbb{N}_0 : \left| n^2 + sen\left(\frac{n\pi}{2}\right) \right| > M$, isto é, \mathcal{A} não é majorado. Faça-se, por exemplo,

$$n=[\sqrt{M}+1]+2.$$

Como Queríamos Demonstrar

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

23 / 23

vi Um conjunto pode, naturalmente, não ter mínimo mas se houver mínimo, então ele é único (analogamente para a existência de máximo de um conjunto).