武汉大学

2005 年攻读硕士学位研究生入学考试试题

科目名称: 有机化学

CH₃

科目代码: 370

注意: 所有答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

- 一: 选择题(每题只有一个正确答案,每题1分,共15分)
- 1. 按 Hückel 规则, 下列化合物最具有芳香性的是 ()

2. 在核磁中,下列哪个化合物的 H 原子处在屏蔽区 ()

- A: 相同的化合物 B: 对映异构体 C: 非对映异构体 D: 不同的化合物
- 4. 在红外光谱中,羰基的特征吸收频率(cm⁻¹)处在 ()

A: 2900 – 3000 B: 2000 – 2100 C: 1650 – 1750 D:1000 –1500

5. 下列化合物发生亲电取代反应活性最大的是 ()

- 6. 比较下列负离子的亲核性最大的是
 - $A: C_6H_5O^{-}$

- B: OH^- C: $C_2H_5O^-$ D: $(CH_3)_3CO^-$

在加热的条件下,发生消除反应的主要

- 产物是

- A: C₆H₅CH=CH₂ B: CH₂=CH₂ C: CH₃CH=CHCH₃ D: CH₂=CHCH₂CH₃
- 8. 能将邻己二醇氧化成己二醛的试剂是 (
 - A: KMnO₄ / OH' B: Pb(OAc)₄ C: CrO₃
- D: HIO3
- 9. 下列化合物能与 Br₂/NaOH 发生溴仿反应的是
 - OH A: CH₃CHCH₂CH₃
- B: CH₂CH₂CCH₂CH₃

- 10. 下列化合物既能进行亲核取代反应,又能进行亲电取代反应的是

C:

11. 比较 E2 消除反应速度最快的是

12. 下列化合物与 CH₃CH₂CH₂MgBr 反应时,活性最大的是

14. 不适用于制备纯净一级胺的反应是

A: Hoffmann 烷基化反应 B: Gabriel 合成法

C: 腈的催化氢化

D: 醛酮的还原氨化

二:完成下列反应 (每题 1.5 分,共 60 分)

2.
$$Br$$
— $OCOCH_3 + H_3C$ — $OCOC_2H_5$ $A + B + C + D$

3.
$$\frac{(CH_3)_2SO_4}{NaOH} A \xrightarrow{n-BuLi} B \xrightarrow{D_2O} C \xrightarrow{DBr/D_2O} D$$

7.
$$\frac{1}{10}$$
 $\frac{1}{10}$ $\frac{1}{1$

14.
$$\frac{\text{KMnO}_4}{\text{N}}$$
 A $\frac{1. \text{SOCl}_2}{2. \text{NH}_3}$ B $\frac{\text{P}_2\text{O}_5}{\text{C}}$ C

15. $\text{CH}_3\text{CH} - (\text{CH}_2)_2\text{CH}_2\text{COOH}}$ $\frac{\text{H}^+}{\triangle}$

16. $\frac{\text{SeO}_2}{\text{A}}$ A $\frac{\text{CH}_2 = \text{PPh}_3}{\text{CH}_2 = \text{PPh}_3}$ B $\frac{\text{CH}_2 = \text{CHCN}}{\text{C}}$ C

- 三:用指定的原料和其他必要的化学试剂为原料合成下列化合物 (每题 8 分,共 40 分)
- 1. 以苯和水扬醛为主要原料合成抗心律失常药盐酸普罗帕酮

2. 以乙炔、苯、丁二酸酐为主要原料合成

3. 以萘为主要原料合成维生素 K3

4. 以环己酮为主要原料合成

5. 以乙酰乙酸乙酯为主要原料合成

四. 结构推导 (10分)

某化合物 $A(C_{10}H_{12}O_3)$,不溶于水、稀硫酸及稀碳酸氢钠溶液,与稀氢氧化钠溶液共热,然后进行水蒸气蒸馏,得出馏液 $B(C_3H_8O)$,B 可发生碘仿反应。将水蒸气蒸馏后的残余碱溶液酸化,得到一沉淀 $C(C_7H_6O_3)$,C 能够溶于碳酸氢钠并放出气体,与三氯化铁作用有显色反应。C 在酸性介质中水蒸汽蒸馏时,可随水蒸气挥发。试写出 A, B, C 的结构及各步反应。

五. 实验设计 (15分).

在一次合成实验中,用稍微过量的乳酸酰氯与一个杂环取代的一级胺发生反应,经过回流加热后,反应进行完毕。请你设计如何处理、分离该反应产物,可用哪中波谱方法快速鉴定产物的纯度并简要说明

六. 名词解释 (每题 2 分, 共 10 分)

- 1. 对映异构
- 2. 构象异构
- 3. Hoffmann 降解
- 4. Cope 重排
- 5. Michael 反应