QWIRE: A Core Language for Quantum Circuits

Jennifer Paykin Robert Rand Steve Zdancewic

University of Pennsylvania

jpaykin@seas.upenn.edu, rrand@seas.upenn.edu, stevez@cis.upenn.edu

Appendix A Type safety and normalization

Theorem 6 (Preservation). Suppose $\longrightarrow_{\mathrm{H}}$ satisfies preservation.

1. If $\vdash t : A \text{ and } t \longrightarrow t'$, then $\vdash t' : A$.

2. If \cdot ; $Q \vdash C : W$ and $C \Longrightarrow C'$, then \cdot ; $Q \vdash C' : W$.

1. If t steps via \longrightarrow_H then the result is immediate by the assumption that \longrightarrow_H satisfies preservation. Otherwise, suppose $t \longrightarrow_b t'$. It must be the case that $A = Circ(W_1, W_2)$ and $t = \mathsf{box}\ p \Rightarrow C$ where $\Omega \Rightarrow p \colon W_1$ and $\cdot; \Omega \vdash C \colon W_2$. If t steps via the structural rule with $C \Longrightarrow C'$, then $t' = \mathsf{box}\ p \Rightarrow C'$, and by the inductive hypothesis, $\cdot; \Omega \vdash C' \colon W_2$ and so $\cdot \vdash \mathsf{box}\ p \Rightarrow$ C': Circ(W_1, W_2).

If t steps instead by an η rule, then $t' = box p' \Rightarrow C\{p'/p\}$ where p' is concrete for W_1 . By Lemma 5 there is some \mathcal{Q} such that $\mathcal{Q} \Rightarrow p' : W_1$, so by the substitution lemma (Lemma 4), we have \cdot ; $\mathcal{Q} \vdash C \{p'/p\} : W_2$, and thus $\cdot \vdash t' : \mathsf{Circ}(W_1, W_2)$.

- 2. By induction on $C \Longrightarrow C'$.
- (a) If C = unbox t p then we have

$$\cdot \vdash t : \mathsf{Circ}(W_1, W) \quad \text{and} \quad \mathcal{Q} \Rightarrow p : W_1.$$

If C steps by a structural rule with $t \longrightarrow t'$, then by the inductive hypothesis we have $\cdot \vdash t' : Circ(W_1, W)$, and so $\mathcal{Q} \vdash \text{unbox } t' \ p : W$. If it steps via the β rule, then $t = \text{box } p' \Rightarrow N$, and so by inversion we know there is some $\mathcal{Q}' \Rightarrow p' : W_1$ such that $\cdot; \mathcal{Q}' \vdash N : W_2$. By the substitution lemma (Lemma 4), we have that $\cdot; \mathcal{Q} \vdash N \{p/p'\} : W$ as

(b) Suppose C is $p_2 \leftarrow \text{gate } g \ p_1; C_0$, where $Q = Q_1, Q_0$ and

$$Q_1 \Rightarrow p_1 : W_1 \qquad \Omega_2 \Rightarrow p_2 : W_2 \qquad : \Omega_2, Q_0 \vdash C_0 : W.$$

If C steps via a structural rule on C_0 , the result is straightforward from the induction hypothesis. Otherwise, it steps via an η -expansion:

 $p_2 \leftarrow \mathsf{gate}\ g\ p_1; C_0 \Longrightarrow p_2' \leftarrow \mathsf{gate}\ g\ p_1; C_0\ \{p_2'/p_2\}$

where $\mathcal{Q}_2 \Rightarrow p_2': W_1$. By Lemma 4 we know $:\mathcal{Q}_2, \mathcal{Q} \vdash C_0\{p_2'/p_2\}: W$, and so $:\mathcal{Q}_1, \mathcal{Q} \vdash p_2' \leftarrow \mathsf{gate}\ g\ p_2; C_0\{p_2'/p_2\}: W$.

(c) Finally, suppose $C = p \leftarrow C_1$; C_2 , where $Q = Q_1, Q_2$ and

$$\cdot; \mathcal{Q}_1 \vdash C_1 : W' \qquad \Omega \Rightarrow p : W' \qquad \cdot; \Omega, \mathcal{Q}_2 \vdash C_2 : W$$

If C steps via a structural rule, the result is immediate. If it steps via a β -rule, then $C_1 = \text{output } p'$, and by inversion, $Q_1 \Rightarrow p'$: W. By Lemma 4, we have $\mathcal{Q}_1, \mathcal{Q}_2 \vdash C' \{p'/p\} : W'$.

If $C_1 = p_2 \leftarrow \mathsf{gate}\ g\ p_1; C_0$ such that

$$p \leftarrow C_1; C_2 \Longrightarrow p_2 \leftarrow \mathsf{gate}\ g\ p_1; p \leftarrow C_0; C_2$$

by a commuting conversion, then by inversion we have $Q_1 =$ $\dot{\mathcal{Q}}_1', \mathcal{Q}_0$ where $g \in \mathcal{G}(W_1, W_2), \dot{\mathcal{Q}}_1' \Rightarrow p_1 : W_1, \Omega_2' \Rightarrow p_2 : W_2$, and $\cdot; \Omega_2', \mathcal{Q}_0 \vdash C_0 : W'$. Then $\cdot; \Omega_2', \mathcal{Q}_0, \mathcal{Q}_2 \vdash p \leftarrow$ C_0 ; C_2 : W and so

$$\cdot; \mathcal{Q}'_1, \mathcal{Q}_0, \mathcal{Q}_2 \vdash p_2 \leftarrow \mathsf{gate}\ g\ p_1; p \leftarrow C_0; C_2: W.$$

If $C_1 = x \Leftarrow \text{lift } p'$; C_0 such that

$$p \leftarrow C_1; C_2 \Longrightarrow x \Leftarrow \text{lift } p'; p \leftarrow C_0; C_2$$

by a commuting conversion, then by inversion we have $Q_1 =$ Q_0, Q' such that $Q_0 \Rightarrow p' : W_0$ and $x : |W_0|; Q' \vdash C_0 : W'$. In that case, $x : |W_0|; Q', Q_2 \vdash p \leftarrow C_0; C_2 : W$ and so $Q_0, Q', Q_2 \vdash x \Leftarrow \text{lift } p'; p \leftarrow C_0; C_2 : W$.

Theorem 7 (Progress). Suppose \longrightarrow_H satisfies progress with respect to the values v^{H} .

- 1. If $\cdot \vdash t : A$ then either t is a value v^{c} or there is some t' such that $t \longrightarrow t'$.
- 2. If \cdot ; $Q \vdash C : W$ then either C is normal or there is some C'such that $C \Longrightarrow C'$.

Proof.

1. By the progress hypothesis for \longrightarrow_{H} , either $t = v^{H}$ for some v^{H} or there exists some t' such that $t \longrightarrow_{\text{H}} t'$ (in which case $t \longrightarrow t'$ as well). In first case however, t is either a value in the original host language (v), or $t = box p \Rightarrow C$, where

$$\frac{\varOmega \Rightarrow p \colon W_1 \quad \cdot ; \varOmega \vdash C \colon W_2}{\cdot \vdash \mathsf{box} \ p \Rightarrow C \colon \mathsf{Circ}(W_1, W_2)}$$

If p is not concrete for W_1 , then box $p \Rightarrow C$ can step via the η rule. If p is concrete, then by the inductive hypothesis, C is either normal already (in which case so is box $p \Rightarrow \bar{C}$), or there is some C' such that $C \Longrightarrow C'$. In that case, box $p \Rightarrow C \longrightarrow_b \text{box } p \Rightarrow C'$.

- 2. By induction on the typing judgment of C.
- (a) If the last rule in the derivation is

$$\frac{\cdot \vdash t : \mathsf{Circ}(W_1, W_2) \quad \mathcal{Q} \Rightarrow p : W_1}{\cdot ; \mathcal{Q} \vdash \mathsf{unbox} \ t \ p : W_2}$$

then by the inductive hypothesis, either t can take a step to some t', or t is a value of the form box $p' \Rightarrow N$. In the first case, unbox $t \ p \Longrightarrow \text{unbox} \ t' \ p$, and in the second case, unbox $t p \Longrightarrow N \{p'/p\}$.

(b) Next, suppose the last rule in the derivation is

$$\frac{\mathcal{Q} \in \mathcal{G}(W_1, W_2)}{\mathcal{Q}_1 \Rightarrow p_1 : W_1 \quad \Omega_2 \Rightarrow p_2 : W_2 \quad :; \Omega_2, \mathcal{Q} \vdash C : W}{:; \mathcal{Q}_1, \mathcal{Q} \vdash p_2 \leftarrow \mathsf{gate} \ g \ p_1; C : W}$$

If C is not concrete, then $p_2 \leftarrow \text{gate } g$ p_1 ; C can step via an η rule. Otherwise, C is either normal, in which case $p_2 \leftarrow \text{gate } g$ p_1 ; C is also normal, or C can take a step, in which case so can $p_2 \leftarrow \text{gate } g$ p_1 ; C by the structural rule.

(c) Suppose the circuit is

$$\frac{\cdot; \mathcal{Q}_1 \vdash C : W \quad \Omega_0 \Rightarrow p : W \quad \cdot; \Omega_0, \mathcal{Q}_2 \vdash C' : W'}{\cdot; \mathcal{Q}_1, \mathcal{Q}_2 \vdash p \leftarrow C; C' : W'}$$

By the inductive hypothesis, either C can take a step, in which case so can $p \leftarrow C$; C', or C is normal. The following chart covers these remaining cases: if C is the normal circuit in the first column, then $p \leftarrow C$; C' steps to the circuit in the second column.

$$\begin{array}{ll} \text{output } p' & C'\left\{p'/p\right\} \\ p_2 \leftarrow \mathsf{gate} \ g \ p_1; \ C_0 & p_2 \leftarrow \mathsf{gate} \ g \ p_1; \ p \leftarrow C_0; \ C' \\ x \Leftarrow \mathsf{lift} \ p_0; \ C_0 & x \Leftarrow \mathsf{lift} \ p_0; \ p \leftarrow C_0; \ C' \end{array}$$

Theorem 8 (Normalization). Suppose that \longrightarrow_H is strongly normalizing with respect to v^H .

If · ⊢ t : A, there exists some value v^c such that t →* v^c.
 If ·; Q ⊢ C : W, there exists some normal circuit N such that C ⇒* N.

Proof. By induction on the number of constructors in the term and circuit.

1. By the normalization property for \longrightarrow_H , there is some value v^c such that $t \longrightarrow_H^* v^c$. This value v^c is either a regular host language value v, in which case we are done, or it is some uninterpreted boxed circuit box $(p:W) \Rightarrow C$. If p is concrete with respect to W, then by the inductive hypothesis, there is some N such that $C \Longrightarrow^* N$, and so box $p \Rightarrow C \longrightarrow^* \text{box } p \Rightarrow N$.

If p is not concrete, then by an η -expansion, there is some p' that is concrete for W and box $p\Rightarrow C\longrightarrow_b$ box $p'\Rightarrow C$ $\{p'/p\}$. By induction we know that C $\{p'/p\}$ normalizes (since the number of constructors in C $\{p'/p\}$ is the same as the number in C), and thus so does box $p\Rightarrow C$.

2. If C is an output or lifting circuit then it is already normal. If C is an unboxing operator of the form

$$\frac{ \ \, \cdot \vdash t \colon \mathsf{Circ}(\mathit{W}_1, \mathit{W}_2) \quad \mathcal{Q} \Rightarrow \mathit{p} \colon \mathit{W}_1 }{ \ \, \cdot ; \mathcal{Q} \vdash \mathsf{unbox} \ \, t \, \, \mathit{p} \colon \mathit{W}_2 }$$

then by the inductive hypothesis, there is some box $p' \Rightarrow N$ such that $t \longrightarrow^* \text{box } p' \Rightarrow N$, so unbox $t \ p \longrightarrow^* N \ \{p/p'\}$, which is also normal.

Next, consider a gate application:

$$\begin{array}{c} g \in \mathcal{G}(W_1, W_2) \\ \mathcal{Q}_1 \Rightarrow p_1 \colon W_1 \quad \Omega_2 \Rightarrow p_2 \colon W_2 \quad \cdot; \Omega_2, \mathcal{Q} \vdash C \colon W \\ \hline \quad \cdot; \mathcal{Q}_1, \mathcal{Q} \vdash p_2 \leftarrow \mathsf{gate} \ g \ p_1; C \colon W \end{array}$$

Again, if C is concrete, it normalizes by the inductive hypothesis; otherwise there is some $Q_2 \Rightarrow p_2' : W_2$ where C $\{p_2'/p_2\}$ normalizes to some N, in which case $p_2 \leftarrow \text{gate } g$ $p_1; C \Longrightarrow^* p_2' \leftarrow \text{gate } g$ $p_1; N$.

Finally, consider a composition operator:

$$\begin{array}{ccc}
\cdot; \mathcal{Q}_1 \vdash C : W & \Omega_0 \Rightarrow p : W & \cdot; \Omega_0, \mathcal{Q}_2 \vdash C' : W' \\
& \cdot; \mathcal{Q}_1, \mathcal{Q}_2 \vdash p \leftarrow C; C' : W'
\end{array}$$

By the inductive hypothesis, there is some N such that $C \Longrightarrow^* N$. If N = output p', then $p \leftarrow C$; $C' \Longrightarrow^* C' \{p'/p\}$, which normalizes by the inductive hypothesis for C'. If $N = p_2 \leftarrow \text{gate } g \ p_1$; C_0 , then $p \leftarrow C_0$; C' normalizes to some N' by the inductive hypothesis, and so

$$p \leftarrow C; C' \Longrightarrow^* p_2 \leftarrow \mathsf{gate} \ g \ p_1; N'.$$

Finally, if $N = x \Leftarrow \text{lift } p'; C_0$, then

$$p \leftarrow C; C' \Longrightarrow x \Leftarrow \text{lift } p'; p \leftarrow C_0; C',$$

which is immediately normal.

Appendix B Soundness of denotational semantics

Theorem 11 (Soundness). If \cdot ; $Q \vdash C : W$ and $C \Longrightarrow C'$, then $[\![Q \vdash C : W]\!] = [\![Q \vdash C' : W]\!]$.

Proof. By induction on the typing judgment.

If C is

$$\frac{\cdot; \mathcal{Q}' \vdash C : W \quad \pi : \mathcal{Q} \equiv \mathcal{Q}'}{\cdot; \mathcal{Q} \vdash C : W}$$

and $C \Longrightarrow C'$, then by the inductive hypothesis,

If

$$\frac{ \ \, \cdot \vdash t \colon \mathsf{Circ}(\mathit{W}_1, \mathit{W}_2) \quad \mathcal{Q} \Rightarrow p \colon \mathit{W}_1 }{ \ \, \cdot ; \mathcal{Q} \vdash \mathsf{unbox} \ t \ p \colon \mathit{W}_2 }$$

and the circuit steps by a structural rule with $t \longrightarrow t'$, then, assuming HOST is strongly normalizing we have some box $p' \Rightarrow N$ such that $t,t' \longrightarrow^* \text{box } p' \Rightarrow N$. Then

$$\llbracket \mathcal{Q} \vdash \mathsf{unbox} \ t \ p : W_2 \rrbracket = \llbracket \mathcal{Q} \vdash \mathsf{unbox} \ t' \ p : W_2 \rrbracket = \llbracket \mathcal{Q}' \vdash N : W_2 \rrbracket$$
 Suppose

$$\begin{array}{c} g \in \mathcal{G}(W_1, W_2) \\ \mathcal{Q}_1 \Rightarrow p_1 \colon W_1 \quad \Omega_2 \Rightarrow p_2 \colon W_2 \quad \cdot; \Omega_2, \mathcal{Q} \vdash C \colon W \\ \\ \cdot; \mathcal{Q}_1, \mathcal{Q} \vdash p_2 \leftarrow \mathsf{gate} \ g \ p_1; C \colon W \end{array}$$

If the circuit steps via a structural rule, the result is immediate. If it steps via an η rule to $p_2' \leftarrow \mathsf{gate}\ g\ p_1;\ C\ \{p_2'/p_2\}$, then the result follows from the fact that $[\![C\ \{p_2'/p_2\}]\!] = [\![C]\!]$ (Lemma 10).

Next, consider

$$\frac{\cdot; \mathcal{Q}_1 \vdash C_1 : W \qquad \Omega_0 \Rightarrow p : W \qquad \cdot; \Omega_0, \mathcal{Q}_2 \vdash C_2 : W'}{\cdot; \mathcal{Q}_1, \mathcal{Q}_2 \vdash p \leftarrow C_1; C_2 : W'}$$

If the circuit steps via a structural rule, the result follows immediately. Otherwise, we know C_1 is normal, and the circuit stepped via a β or commuting conversion rule. We proceed by a further case analysis on the typing judgment of C_1 .

For a permutation rule $\pi: \mathcal{Q}_1 \equiv \mathcal{Q}_1'$, by induction we know that

$$[\![Q_1', Q_2 \vdash p \leftarrow C_1; C_2 : W']\!] = [\![Q_1', Q_2 \vdash C' : W']\!]$$

But then

$$\begin{aligned}
& [\mathcal{Q}_{1}, \mathcal{Q}_{2} \vdash p \leftarrow C_{1}; C_{2} : W'] \\
&= [\Omega_{0}, \mathcal{Q}_{2} \vdash C_{2} : W'] \circ ([\mathcal{Q}_{1} \vdash C_{1} : W] \otimes \mathbf{I}^{*}) \\
&= [\Omega_{0}, \mathcal{Q}_{2} \vdash C_{2} : W'] \circ (([\mathcal{Q}'_{1} \vdash C_{1} : W] \circ [\pi]^{*}) \otimes \mathbf{I}^{*}) \\
&= [\Omega_{0}, \mathcal{Q}_{2} \vdash C_{2} : W'] \circ ([\mathcal{Q}'_{1} \vdash C_{1} : W] \otimes \mathbf{I}^{*}) \circ ([\pi] \otimes \mathbf{I})^{*} \\
&= [\mathcal{Q}'_{1}, \mathcal{Q}_{2} \vdash p \leftarrow C_{1}; C_{2} : W'] \circ ([\pi] \otimes \mathbf{I})^{*} \\
&= [\mathcal{Q}_{1}, \mathcal{Q}_{2} \vdash p \leftarrow C_{1}; C_{2} : W']
\end{aligned}$$

For
$$C_1 = \text{output } p' \text{ with } \mathcal{Q}_1 \Rightarrow p' : W$$
, where $p \leftarrow C_1; C_2 \Longrightarrow C_2 \{p'/p\},$

we know

$$\begin{split} & [\![\mathcal{Q}_1,\mathcal{Q}_2 \vdash p \leftarrow \text{output } p';C_2:W']\!] \\ &= [\![\Omega_0,\mathcal{Q}_2 \vdash C_2:W']\!] \circ \big([\![\mathcal{Q}_1 \vdash \text{output } p':W]\!] \otimes \mathbf{I}^*\big) \\ &= [\![\Omega_0,\mathcal{Q}_2 \vdash C_2:W']\!] \circ \big(\mathbf{I}^* \otimes \mathbf{I}^*\big) \\ &= [\![\Omega_0,\mathcal{Q}_2 \vdash C_2:W']\!] = [\![\mathcal{Q}_1,\mathcal{Q}_2 \vdash C_2 \{p'/p\}:W']\!] \end{split}$$

by Lemma 10.

If C_1 is

$$\frac{\mathcal{Q}_{1}' \Rightarrow p_{1} \colon W_{1}}{P_{1} \colon \mathcal{Q}_{1}', \mathcal{Q}_{2}' \vdash p_{2} \leftarrow \mathsf{gate} \ g \ p_{1} \colon C_{0} \colon W} \cdot : \mathcal{Q}_{1}' \vdash C_{0} \colon W}{P_{1} \vdash \mathcal{Q}_{1}', \mathcal{Q}' \vdash p_{2} \leftarrow \mathsf{gate} \ g \ p_{1} \colon C_{0} \colon W}$$

and steps via a commuting conversion

$$p \leftarrow C_1; C_2 \Longrightarrow p_2 \leftarrow \mathsf{gate}\ g\ p_1; p \leftarrow C_0; C_2$$

then

then
$$\begin{split} & \|\mathcal{Q}_1',\mathcal{Q}',\mathcal{Q}_2 \vdash p \leftarrow (p_2 \leftarrow \mathsf{gate}\; g\; p_1;C_0);C_2:W' \| \\ & = \|\Omega_0,\mathcal{Q}_2 \vdash C_2:W' \| \circ \left(\|\mathcal{Q}_1',\mathcal{Q}' \vdash p_2 \leftarrow \mathsf{gate}\; g\; p_1;C_0:W \| \otimes \mathbf{I}^* \right) \\ & = \|\Omega_0,\mathcal{Q}_2 \vdash C_2:W' \| \circ \left(\left(\|\Omega_2,\mathcal{Q}' \vdash C_0:W \| \circ (\|g\| \otimes \mathbf{I}^*) \right) \otimes \mathbf{I}^* \right) \\ & = \|\Omega_0,\mathcal{Q}_2 \vdash C_2:W' \| \circ \left(\|\Omega_2,\mathcal{Q}' \vdash C_0:W \| \otimes \mathbf{I}^* \right) \circ \left(\|g\| \otimes \mathbf{I}^* \right) \otimes \mathbf{I}^* \right) \\ & = \|\Omega_0,\mathcal{Q}_2 \vdash C_2:W' \| \circ \left(\|g_2,\mathcal{Q}' \vdash C_0:W \| \otimes \mathbf{I}^* \right) \circ \left(\|g\| \otimes \mathbf{I}^* \right) \\ & = \|\Omega_2,\mathcal{Q}',\mathcal{Q}_2 \vdash p \leftarrow C_0;C_2:W' \| \circ \left(\|g\| \otimes \mathbf{I}^* \right) \\ & = \|\mathcal{Q}_1',\mathcal{Q}',\mathcal{Q}_2 \vdash p_2 \leftarrow \mathsf{gate}\; g\; p_1;p \leftarrow C_0;C_2:W' \| \\ & = \|\mathcal{Q}_1',\mathcal{Q}',\mathcal{Q}_2 \vdash p_2 \leftarrow \mathsf{gate}\; g\; p_1;p \leftarrow C_0;C_2:W' \| \\ & = \|\mathcal{Q}_0 \Rightarrow p_0:W_0 \qquad x:|W_0|;\mathcal{Q}' \vdash C_0:W \\ & \qquad \vdots \mathcal{Q}_0,\mathcal{Q}' \vdash x \Leftarrow \mathsf{lift}\; p_0;C_0:W \end{split}$$

and steps via a commuting conversion

$$p \leftarrow C_1; C_2 \Longrightarrow x \Leftarrow \text{lift } p_0; p \leftarrow C_0; C_2$$

$$\begin{split} & \left[\left[\mathcal{Q}_{0}, \mathcal{Q}', \mathcal{Q}_{2} \vdash p \leftarrow (x \Leftarrow \operatorname{lift} p_{0}; C_{0}); C_{2} : W' \right] \right] \\ & = \left[\left[\mathcal{Q}_{0}, \mathcal{Q}_{2} \vdash C_{2} : W' \right] \circ \left(\left[\left[\mathcal{Q}_{0}, \mathcal{Q}' \vdash x \Leftarrow \operatorname{lift} p_{0}; C_{0} : W \right] \otimes \mathbf{I}^{*} \right) \right. \\ & = \left[\left[C_{2} \right] \circ \left(\left(\left[\sum_{\mid v \mid W_{0} \mid} \left[\mathcal{Q}' \vdash C_{0} \{v/x\} : W \right] \circ \left(\left[v : |W_{0}| \right]^{\dagger} \otimes \mathbf{I} \right)^{*} \right) \otimes \mathbf{I}^{*} \right) \\ & = \left[\left[C_{2} \right] \circ \sum_{\mid v \mid W_{0} \mid} \left(\left[\left[\mathcal{Q}' \vdash C_{0} \{v/x\} : W \right] \circ \left(\left[v : |W_{0}| \right]^{\dagger} \otimes \mathbf{I} \right)^{*} \right) \otimes \mathbf{I}^{*} \right) \\ & = \left[\left[C_{2} \right] \circ \sum_{\mid v \mid W_{0} \mid} \left(\left[\left[C_{0} \{v/x\} \right] \otimes \mathbf{I}^{*} \right) \circ \left(\left[v : |W_{0}| \right]^{\dagger} \otimes \mathbf{I}^{*} \otimes \mathbf{I}^{*} \right) \right. \\ & = \sum_{\mid v \mid W_{0} \mid} \left[\left[C_{2} \right] \circ \left(\left[\left[C_{0} \{v/x\} \right] \otimes \mathbf{I}^{*} \right) \circ \left(\left[v : |W_{0}| \right]^{\dagger} \otimes \mathbf{I}^{*} \right) \right. \\ & = \sum_{\mid v \mid W_{0} \mid} \left[p \leftarrow C_{0} \{v/x\}; C_{2} \right] \circ \left(\left[v : |W_{0}| \right]^{\dagger} \otimes \mathbf{I}^{*} \right) \\ & = \left[x \Leftarrow \operatorname{lift} p_{0}; p \leftarrow C_{0}; C_{2} \right] \end{split}$$

Appendix C Correctness of circuit case analysis

П

Theorem 12. For all terms t of type ICirc W1 W2 and c of type Circ(W_1, W_2), we have:

Proof.

```
1. Start with case analysis on t: ICirc W1 W2. If t = Output p,
   toICirc (fromICirc (Output p))
   = toICirc (box w => output (unpat p w))
   = Output (pat w => unpat p w)
When p=pat p1 => p2, then we have
   (pat w => unpat p w) = (pat p1 => unpat p p1)
   = pat p1 => p2 = p
as expected.
   If t = 0utput p g c then
   toICirc (fromICirc (Gate p g c))
   = toICirc (box (unpat (reverse-pat p) (w1,w0)) =>
                w2 <- gate g w1; unbox c (w2,w0))
   = Gate (pat (unpat (reverse-pat p) (w1,w0)) => (w1,w0))
          g (box (w2,w0) \Rightarrow unbox c (w2,w0))
By \eta expansion it is clear that
           box (w2, w0) => unbox c (w2, w0) = c,
and furthermore we have
pat (unpat (reverse-pat p) (w1,w0)) \Rightarrow (w1,w0) = p:
Suppose p = pat p1 => (p1',p0). In general, notice that pat p_0 \Rightarrow p_0' = pat p_0\{p'/p\} \Rightarrow p_0'\{p'/p\} for any compati-
ble substitution. Then
   pat (unpat (reverse-pat p) (w1,w0)) => (w1,w0)
     pat (unpat (reverse-pat p) (p1',p0)) => (p1',p0)
   = (pat p1 \Rightarrow (p1',p0)) = p
as expected.
   Next, suppose t = Lift p f. Then
   toICirc (fromICirc (Lift p f))
   = toICirc (box (unpat (reverse-pat p) (w,w')) =>
        x <= lift w; unbox (f x) w')
   = Lift (pat (unpat (reverse-pat p) (w,w')) => (w,w'))
            (fun x \Rightarrow box w' \Rightarrow unbox (f x) w')
As we saw in the case for Gate's,
 (pat (unpat (reverse-pat p) (w,w')) => (w,w')) = p,
and by \eta-expansion,
   fun x \Rightarrow (box w' \Rightarrow unbox (f x ) w')
   = (fun x \Rightarrow f x) = f
2. Next, by case analysis on N where c = box p \Rightarrow N.
   If N = \text{output } p, for some pattern p, then
   fromICirc (toICirc (box p => output p'))
   = fromICirc (Output (pat p => p'))
   = box w => output (unpat (pat p => p') w)
   = box p => output (unpat (pat p => p') p)
   = box p \Rightarrow p'.
   If N = p2 <- gate g p1; N', then let p0 be the pattern
corresponding to the intermediate context \Omega_0. Then
  fromICirc (toICirc (box p => (p2 <- gate g p1; N')))</pre>
   = fromICirc (Gate (pat p => (p1,p0)) g (box (p2,p0) => N'))
   = box (unpat (reverse-pat (pat p => (p1,p0))) (w1,w0)) =>
       w2 \leftarrow gate g w1; unbox (box (p2,p0) \Rightarrow N') (w2,w0)
   = box (unpat (pat (p1,p0) => p) (p1,p0)) =>
       p2 <- gate g p1; unbox (box (p2,p0) => N') (p2,p0)
   = box p => (p2 <- gate g p1; N')
    Finally, if N = (x \le lift p'; N'), then let p0 be the
pattern corresponding to the intermediate context \Omega_0. Then
   fromICirc (toICirc (box p => (x <= lift p'; N')))</pre>
   = fromICirc (Lift (pat p => (p',p0)) (fun x => box p0 => N'))
   = box (unpat (reverse-pat (pat p => (p',p0))) (w',w0)) =>
       x \leftarrow lift w'; unbox ((fun x \Rightarrow box p0 \Rightarrow N') x) w0
   = box (unpat (pat (p',p0) => p) (p',p0)) =>
```

 $x \leftarrow lift p'; unbox (box p0 \Rightarrow N') p0$

Appendix D Correctness of Circuit Reversal

To prove the circuit reversal operation reverse c is semantically correct, we assume that the reverse_gate operation is also correct; in other words, assume that reverse_gate g = Some g' implies $[g] \circ [g'] = I^* = [g'] \circ [g]$. Then we can prove the following

Theorem 13. If reverse c = Some c' then

$$\llbracket c \rrbracket \circ \llbracket c' \rrbracket = \mathbf{I}^* \quad and \quad \llbracket c' \rrbracket \circ \llbracket c \rrbracket = \mathbf{I}^*.$$

Proof. Notice that $[\![inSeq\ c\ c']\!] = [\![c']\!] \circ [\![c]\!].$ If $c = box\ p \Rightarrow output\ p'$ then it must be the case that $c' = \mathsf{box}\ p' \Rightarrow \mathsf{output}\ p.$ In that case we have $[\![c]\!] = [\![c']\!] = \mathbf{I}^*.$

Otherwise, it must be the case that $c = box p \Rightarrow p_2 \leftarrow$ gate $g p_1; N$; we can assume that reverse $(box (p_2, p_0) \Rightarrow N) =$ Some c'' and reverse_gate g = Some g'. Then

In this case, $\llbracket c \rrbracket = \llbracket N \rrbracket \circ (\llbracket g \rrbracket \otimes \mathbf{I}^*)$ and

$$\begin{aligned}
&\llbracket c'\rrbracket = \llbracket \mathsf{output}\ (p_1,w')\rrbracket \circ \left(\llbracket g'\rrbracket \otimes \mathbf{I}^*\right) \circ \llbracket c''\rrbracket \\
&= \left(\llbracket g'\rrbracket \otimes \mathbf{I}^*\right) \circ \llbracket c''\rrbracket
\end{aligned}$$

Therefore

$$\begin{bmatrix} c \end{bmatrix} \circ \begin{bmatrix} c' \end{bmatrix} = \begin{bmatrix} N \end{bmatrix} \circ (\begin{bmatrix} g \end{bmatrix} \otimes \mathbf{I}^*) \circ (\begin{bmatrix} g' \end{bmatrix} \otimes \mathbf{I}^*) \circ \begin{bmatrix} c'' \end{bmatrix}
 = \begin{bmatrix} N \end{bmatrix} \circ \begin{bmatrix} c'' \end{bmatrix} = \mathbf{I}^*$$

by the inductive hypothesis, and similarly for the other direction.

As a corollary, we have

Corollary. If reverse $c_1 = \text{Some } c_1'$ and reverse $c_2 = \text{Some } c_2'$ then $[c_1'] = [c_2']$.

We assert that syntactic version of this corollary is also true, namely that c'_1 is operationally equivalent to c'_2 , but we leave its proof to future work.