November Camp - 2019 Algebra L4 - Revision

Revision 1. Let P and Q be polynomials and P(Q(x)) = Q(P(x)) for every $x \in \mathbb{R}$. Find as many pairs of P and Q as you can.

Revision 2. Polynomials A(x), B(x), C(x), D(x) satisfy the equation

$$A(x^5) + xB(x^5) + x^2C(x^5) = (1 + x + x^2 + x^3 + x^4)D(x)$$
 for all $x \in \mathbb{R}$.

Find all possible values of A(1).

Revision 3. A sequence a_1, a_2, \ldots, a_n is called k-balanced if

$$a_1 + a_{k+1} + \ldots = a_2 + a_{k+2} + \ldots = \ldots = a_k + a_{2k} + \ldots$$

Suppose the sequence a_1, a_2, \ldots, a_{50} is k-balanced for k = 3, 5, 7, 11, 13, 17. Prove that a_i are all zeros.

Revision 4. Suppose we have the following polynomial with integer coefficients

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0.$$

If there exists a prime number p such that the following three conditions all apply:

- p divides each a_i for $0 \le i < n$,
- p does not divide a_n ,
- p^2 does not divide a_0 ,

then P(x) is irreducible.