The Hong Kong Polytechnic University Department of Applied Mathematics

AMA1120 Tutorial Set #01

Question 1

(a) (1)
$$f'(x) = 6x^2 - 18x - 24$$

(2)
$$f'(x) = \frac{2}{3}x^{-1/3}$$

(3)
$$f'(x) = 2x e^{x^2}$$

(4)
$$f'(x) = 3 \sec^2 (3x - 1)$$

(5)
$$f'(x) = \frac{1}{1+x^2}$$

(6)
$$f'(x) = 4x - \frac{1}{x}$$

(b) (1)
$$f''(x) = 12x - 18$$

(2)
$$f''(x) = -\frac{2}{9}x^{-4/3}$$

(3)
$$f''(x) = 2e^{x^2} + 4x^2 e^{x^2} = 2e^{x^2}(1 + 2x^2)$$

(4)
$$f''(x) = 18 \sec^2 (3x - 1) \tan (3x - 1)$$

(5)
$$f''(x) = -\frac{2x}{(1+x^2)^2}$$

(6)
$$f''(x) = 4 + \frac{1}{x^2}$$

Question 2

(a)
$$f'(x) = 6x^2 - 18x - 24 = 0 \iff x = -1, 4$$

 \therefore f has stationary points at x = -1, 4.

(b)
$$f'(x) = 4x - \frac{1}{x} = 0 \implies 4x^2 - 1 = 0 \implies x = \frac{1}{2}, -\frac{1}{2}$$
 (rej.)

 \therefore f has a stationary point at $x = \frac{1}{2}$.

(c)
$$f'(x) = \frac{(1+x^2)-x(2x)}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2} = 0 \iff x = \pm 1$$

 \therefore f has stationary points at $x = \pm 1$.

(d)
$$f'(x) = 2x e^{-x} - x^2 e^{-x} = e^{-x} x (2 - x) = 0 \iff x = 0, 2$$

 \therefore f has stationary points at x = 0, 2.

Question 3

(a)

The intervals where f is strictly increasing are: $(-\infty, -1)$, $(4, +\infty)$

The interval where f is strictly decreasing is: (-1, 4)

(b)

$$\begin{array}{c|ccc} x & (0,\frac{1}{2}) & (\frac{1}{2},+\infty) \\ \hline f'(x) & - & + \end{array}$$

The interval where f is strictly increasing is: $(\frac{1}{2}, +\infty)$

The interval where f is strictly decreasing is: $(0, \frac{1}{2})$

(c)

$$\begin{array}{c|ccccc} x & (-\infty, -1) & (-1, 1) & (1, +\infty) \\ \hline f'(x) & - & + & - \end{array}$$

The interval where f is strictly increasing is: (-1, 1)

The intervals where f is strictly decreasing are: $(-\infty, -1)$, $(1, +\infty)$

(d)

The interval where f is strictly increasing is: (0, 2)

The intervals where f is strictly decreasing are: $(-\infty, 0)$, $(2, +\infty)$

Question 4

(a)

By first derivative test, f has a local maximum at x = -1 and a local minimum at x = 4.

By second derivative test,

 $f''(-1) = -30 < 0 \implies f$ has a local maximum at x = -1

f''(4) = 30 > 0 \Rightarrow f has a local minimum at x = 4

(b)
$$\begin{array}{c|cccc} x & (0,\frac{1}{2}) & (\frac{1}{2},+\infty) \\ \hline f'(x) & - & + \end{array}$$

By first derivative test, f has a local minimum at $x = \frac{1}{2}$

By second derivative test, $f''(\frac{1}{2}) = 8 > 0 \implies f$ has a local minimum at $x = \frac{1}{2}$

(c)
$$\frac{x | (-\infty, -1) | (-1, 1) | (1, +\infty)}{f'(x) | - | + | -}$$

By first derivative test, f has a local minimum at x = -1 and a local maximum at x = 1.

$$f''(x) = \frac{(1+x^2)^2(-2x) - (1-x^2) \cdot 2(1+x^2)(2x)}{(1+x^2)^4}$$
$$= \frac{(1+x^2)(-2x) - (1-x^2)(4x)}{(1+x^2)^3} = \frac{2x^3 - 6x}{(1+x^2)^3} = \frac{2x(x^2 - 3)}{(1+x^2)^3}$$

By second derivative test, f''(-1) > 0 and f''(1) < 0, f has a local minimum at x = -1 and a local maximum at x = 1.

Question 5

(a) If f is constant, then the result is trivial. Hence WLOG assume f is nonconstant. Say suppose there is $x_0 \in (a, b)$ such that $f(x_0) > f(a) = f(b)$. Since f is continuous on [a, b], this suggests there must be a local maximum attained at $x = \xi \in (a, b)$. Since f is differentiable in (a, b), $f'(\xi) = 0$. On the other hand, if no $x \in (a, b)$ satisfies f(x) > f(a) = f(b), then since f is nonconstant, there must be $x_0 \in (a, b)$ such that $f(x_0) < f(a) = f(b)$. Since f is continuous on [a, b], this suggests there must be a local minimum attained at $x = \xi \in (a, b)$. Since f is differentiable in (a, b), $f'(\xi) = 0$.

(b) Let
$$g(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right)$$
.

If f is continuous on [a, b] and differentiable in (a, b), so is g.

Observe that g(a) = f(a) - f(a) = 0 and g(b) = f(b) - f(b) = 0.

Hence by Rolle's Theorem, $\exists \ \xi \in (a, b)$ such that

$$0 = g'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} \iff f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Question 6

(a)
$$f(x) = x^3 - x^2 - x + 1$$
, $f'(x) = 3x^2 - 2x - 1$, $f(2) = 3$, $f(1) = 0$, $\frac{f(2) - f(1)}{2 - 1} = 3$

$$\therefore f'(\xi) = 3\xi^2 - 2\xi - 1 = 3 \implies \xi = \frac{2 \pm \sqrt{2^2 - 4(3)(-4)}}{2(3)} = \frac{1 \pm \sqrt{13}}{3}$$
Note $\xi \in (1, 2)$, $\xi = \frac{1 + \sqrt{13}}{3}$

(b)
$$f(x) = x^{2/3}$$
, $f'(x) = \frac{2}{3}x^{-1/3}$, $f(8) = 4$, $f(-8) = 4$, $\frac{f(8) - f(-8)}{8 - (-8)} = 0$
 $\therefore f'(\xi) = \frac{2}{3}\xi^{-1/3} = 0 \implies \frac{2}{3} = 0$, which is a contradiction.

Hence such ξ does not exist in (-8, 8).

Question 7 (Standard Level)

Let $f(u) = e^u$, which is continuous on [0, x] and differentiable in (0, x), $0 < x \le 1$. By Mean Value Theorem, $\exists \ \xi \in (0, x)$ such that

$$\frac{f(x) - f(0)}{x - 0} = f'(\xi) \iff \frac{e^x - 1}{x} = e^{\xi}$$

$$1 = e^0 < e^{\xi} < e^x \le e \implies 1 < \frac{e^x - 1}{r} < e \implies 1 + x < e^x < 1 + ex$$

Question 8 (Standard Level)

If x = 0, the inequality is trivial. WLOG suppose x > 0. Let $f(u) = \ln(1 + 2u) - 2u$ which is continuous on [0, x) and differentiable in (0, x). Note that $f'(u) = \frac{2}{1 + 2u} - 2$ for u > 0.

By Mean Value Theorem, $\exists \xi \in (0, x)$ such that

$$\frac{f(x) - f(0)}{x - 0} = f'(\xi) \iff \ln(1 + 2x) - 2x = \left(\frac{2}{1 + 2\xi} - 2\right)x < 0 \iff \ln(1 + 2x) < 2x.$$

Let $g(u) = \ln(1+2u) - 2u + 2u^2$ which is continuous on [0, x) and differentiable in (0, x). Note that $g'(u) = \frac{2}{1+2u} - 2 + 4u$ for u > 0.

By Mean Value Theorem, $\exists \eta \in (0, x)$ such that

$$\frac{g(x) - g(0)}{x - 0} = g'(\xi) \iff \ln(1 + 2x) - 2x + 2x^2 = \left(\frac{2}{1 + 2\eta} - 2 + 4\eta\right)x = \left(4\eta - \frac{4\eta}{1 + 4\eta}\right)x > 0.$$

Hence we have shown that $2x - 2x^2 \le \ln(1 + 2x) \le 2x$ for $x \ge 0$.

Question 9 (Standard Level)

Let $f(x) = \tan^{-1} x$, which is continuous on [a, b] and differentiable in (a, b), 0 < a < b. By Mean Value Theorem, $\exists \ \xi \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(\xi) \iff \frac{\tan^{-1} b - \tan^{-1} a}{b - a} = \frac{1}{1 + \xi^2}$$

$$a < \xi < b \implies \frac{1}{1 + a^2} > \frac{1}{1 + \xi^2} > \frac{1}{1 + b^2} \implies \frac{1}{1 + a^2} > \frac{\tan^{-1} b - \tan^{-1} a}{b - a} > \frac{1}{1 + b^2}$$

$$\implies \frac{b - a}{1 + b^2} < \tan^{-1} b - \tan^{-1} a < \frac{b - a}{1 + a^2}$$

Put
$$a = 1$$
, $b = \frac{4}{3}$, we have $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$

Question 10 (Standard Level)

Since $f(x) = 2x + \sin 3x$, which is continuous on $[0, \pi]$ and differentiable in $(0, \pi)$.

Note that $f'(x) = 2 + 3 \cos 3x$. By Mean Value Theorem, $\exists \xi \in (0, \pi)$ such that

$$\frac{f(\pi) - f(0)}{\pi - 0} = f'(\xi) \iff 2\pi = (2 + 3\cos 3\xi) \pi.$$

For such $\xi \in (0, \pi)$,

$$2\pi = (2 + 3\cos 3\xi) \pi \iff 2 = 2 + 3\cos 3\xi \iff \cos 3\xi = 0$$

Hence if we pick $\xi = \frac{\pi}{6} \in (0, \pi)$, the statement of the Mean Value Theorem is verified.