Note: Preview of slides from (leftrightinverseoflineartransformations.tex) by Qirui Li (https://orcid.org/0000-0002-6042-1291). For educational and non-commercial use only. Any unlawful use will be prosecuted.

© 2025 Qirui Li Licensed under CC BY-NC-SA 4.0. You may modify, share, or adapt with proper attribution, for non-commercial educational use only, and must include the license link: https://github.com/honeymath/Linear-Algebra-Slides/blob/main/LICENSE

Full license: https://creativecommons.org/licenses/by-nc-sa/4.0/

Left and right inverse for Linear Transformations

We add those pages for completness, read those proofs by yourself as a homework. And try to prove it directly without using induced transformation and cancellation rule.

Left Inverse for injective

Proposition 1

Let V, W be finite dimensional vector spaces. If $T: V \longrightarrow W$ is an **injective** linear transformation , then it has a **left inverse** $R: W \longrightarrow V$ with

$$R \circ T = \mathrm{id}_V$$

Proof:Let \mathcal{E} be a basis of V, since T is **injective**, then $T\mathcal{E}$ is also **linealy independent** in $W(\mathsf{By\ Prop.}\boxed{c_I})$. Therefore there exists a linear transformation $R:W\longrightarrow V$ with $R(T\mathcal{E})=\mathcal{E}(\mathsf{By\ Prop.}\boxed{I\mapsto S})$, therefore,

$$R \circ T \circ L_{\mathcal{E}} = L_{\mathcal{E}} = \mathrm{id}_{V} \circ L_{\mathcal{E}}$$

Since $\mathcal E$ span the whole space , $L_{\mathcal E}$ is a surjective , use the right cancellation rule we have

$$R \circ T = id_V$$
.

Right Inverse for surjective

Proposition 2

Let V, W be finite dimensional vector spaces. If $T: V \longrightarrow W$ is an **surjective** linear transformation , then it has a **right inverse** $R: W \longrightarrow V$ with

$$T \circ R = \mathrm{id}_W$$

Proof:Let \mathcal{E} be a basis of V, since T is **surjective**, then $T\mathcal{E}$ **span the whole space** $W(\mathsf{By\ Prop.} C_S)$. Let \mathcal{F} be a subtuple of \mathcal{E} such that $T\mathcal{F}$ is a **basis** of W. Then there exists a linear transformation $R:W\longrightarrow V$ with $R(T\mathcal{F})=\mathcal{F}(\mathsf{By\ Prop} F)$. So $T(R(T\mathcal{F}))=T\mathcal{F}$

Now we have

$$T \circ R \circ L_{TF} = L_{TF} = \mathrm{id}_W \circ L_{TF}$$

Since $T\mathcal{F}$ span the whole space , $L_{T\mathcal{F}}$ is a surjective , by right cancellation rule we have $T \circ R = \mathrm{id}_W$.