CHORDS AND ARCS

In this unit, students will learn how to:

Prove the following theorems along with corollaries and apply them to solve appropriate problems.

- If two arcs of a circle (or of congruent circles) we congruent then the corresponding chords are equal.
- If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.
- Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

THEOREM 1

11.1 (i) If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.

Given:

ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. So that in $\widehat{ADC} = \widehat{mA'D'C'}$

To prove:

$$m \overline{AC} = m \overline{A'C'}$$

Construction:

Join O with A, O with C, O' with, A' and O' with C'. Se that we can form A' OAC and O' A' C'.

Statements	Reasons
In two equal circles ABCD and A'B'C'D' with centres O and O' respectively.	Given
$\widehat{MADC} = \widehat{A'D'C'}$	
$m\angle AOC = m\angle A'O'C'$	Given Central angles subtended by equalercs of the equal circles.
Now in $\triangle AOC \leftrightarrow \triangle A'O'C'$	
$m \overline{OA} = m \overline{O'A'}$	Radii of equal circles
$m\angle AOC = m\angle A'O'C'$	Already Proved
VAOC = VA(O,C) VAOC = VA(O,C)	Radii of equal circles. S.A.S = S.A.S
and in particular in $\overline{AC} = m \overline{A'C'}$ Similarly we can prove the theorem in the same circle.	

THEOREM 2

Converse of Theorem 1

11.1 (ii) If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.

In equal circles or in the same circle, if two chords are equal, they cut off equal arcs.

Given:

ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. So that chord m $\overrightarrow{AC} = m\overrightarrow{A'C'}$.

To prove:

$$\widehat{MADC} = \widehat{MA'D'C'}$$

Construction:

Join O with A, O with C, O' with A 'and O' with C".

Proof:			
Statemen	19	Reasons	
- Differences	<u> </u>		

ln	ΔAOC ↔ Λ A'O'C	
	$m \overrightarrow{OA} = m \overrightarrow{O'A'}$	Radii of equal circles
	$m\overline{OC} = m\overline{O'C'}$	Radii of equal circles Given
	$m\overline{AC} = m\overline{A'C'}$	S.S.S ≅ S.S.S
	$\triangle AOC \cong \triangle A'O'C'$	
\Rightarrow	$m\angle AOC = m\angle A'O'C'$	
Heno	ce m $\widehat{ADC} = \widehat{MA'D'C'}$	Arcs corresponding to equal central angles.

Example 1:

A point P on the circumference is equidistant from the radii \overline{OA} and \overline{OB} . Prove that $\widehat{MAP} = \widehat{MBP}$

Given:

AB is the chord of a circle with centre O. Point P on the circumference of the circle is equidistant from the radii \overline{OA} and \overline{OB} so that m $\overline{PR} = m \overline{PS}$.

To prove:

$$m\widehat{AP} = m\widehat{BP}$$

Construction:

Join O with P. Write $\angle 1$ and $\angle 2$ as shown in the figure.

Proof:

	Statements	Reasons
In	\angle rt \triangle OPR and \angle rt \triangle OPS m $\overrightarrow{OP} = m \overrightarrow{OP}$ m $\overrightarrow{PR} = m \overrightarrow{PS}$	Common Point P is equidistance from radji (Given)
∴ So ⇒	$\triangle OPR \cong \triangle OPS$ $m \angle 1 = m \angle 2$ Chord $AP \cong Chord BP$	($\ln \angle rtA^*$ H.S \cong H.S) Central angles of a circle.
Henc	e m $\widehat{AP} = m \widehat{BP}$	Arcs corresponding to equal chords in a circle.

THEOREM 3

11.1 (iii)Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centers).

Given:

ABC and A'B'C' are two congruent circles with centres O and O' respectively. So that $\overline{AC} = \overline{A'C'}$

To prove:

∠AOC ≅ ZA'O'C'

Construction:

Let if possible $m\angle AOC \neq m\angle A'O'C'$ then consider $\angle AOC \cong \angle A'O'D'$

Proof:		
Statements		Reasons
∠AOC ≡ ∠A'O'D'		Construction
$\widehat{AC} \cong \widehat{A'D'}$	(i)	Arcs subtended by equal
7.6 = 1. D	(.,	Central angles in congruent circles
75 77 5 3		Using Theorem 1
AC ≅ A'D'	(ii)	Given
But $\overline{AC} = \overline{A'C'}$	(iii)	Using (ii) and (iii)
$\therefore \overline{A'C'} = \overline{A'D'}$		
Which is only possible, if C' concid	les with D'.	
Hence $m \angle A'O'C = m \angle A'O'D'$	(iv)	
But m∠AOC = m∠A'O'D'	(v)	Construction
$\Rightarrow m\angle AOC = m\angle A'O'C'$	` '	Using (iv) and (v)

Corollary 1.

In congruent circles or in the same circle, if central angles are equal then corresponding sectors are equal.

Corollary 2.

In congruent circles or in the same circle, unequal arcs will subtend unequal central angles.

Example 1:

The internal bisector of a central angle in a circle bisects an arc on which it stands.

Solution:

In a circle with centre O. OP is an internal bisector of central angle AOB.

To prove:

$$\widehat{AP} \cong \widehat{BP}$$

Construction:

Draw \overline{AP} and \overline{BP} , then write \angle_1 and \angle_2 as shown in the figure.

	Statements	Reasons
ln and	$\Delta OAP \leftrightarrow \Delta OBP$ $m \overline{OA} = m \overline{OB}$ $m \angle 1 = m \angle 2$ $m \overline{OP} = m \overline{OP}$ $\Delta OAP \cong \Delta OBP$	Radii of the same circle Given OP as an angle bisector of ∠AOB Common (S.A.S ≅ S.A.S)
Hence	e AP ≅ BP AP ≅ BP	Arcs corresponding to equal chords in a circle.

Example 2:

In a circle if any pair of diameters are \perp to each other then the lines joining its ends in order, form a square.

Given:

AC and BD are two perpendicular diameters of a circle with centre O. So ABCD is a quadrilateral.

To prove:

ABCD is a square

Construction:

Write $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ as shown, in the, figure.

Proof:

Statements	Reasons
AC and AD are two 1 diameters of a circle	Given
with centre O	
$m \angle 1 = m \angle 2 - m \angle 3 = m \angle 4 = 90^{\circ}$	Pair of diameters, are 1 to each other. Arcs opposite to the equal central angles
$\widehat{MAB} = \widehat{MBC} = \widehat{MCD} = \widehat{MDA}$	in a circle. Chords corresponding to equal arcs.
$\Rightarrow m_{\bullet} \overline{AB} = m \overline{BC} = m \overline{CD} = m \overline{DA} (i)$	
Moreover $m\angle A = m\angle 5 + m\angle 6$	
$= 45^{\circ} + 45^{\circ} = 90^{\circ}$ (ii)	
Similarly $m\angle B = m\angle C = m\angle D = 90^{\circ}$ (iii)	
Hence ABCD is a square	Using (i), (ii) and (iii).

THEOREM 4

11.1 (iv) If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

Given:

ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. So that $m\angle AOC = m\angle A'O'C'$

To prove:

$$\widehat{MAC} = \widehat{MA'C'}$$

Statements	Reasons
Since ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. Place the circle ABCD on the circle A'B'C'D' So that point O falls on O' (i) Also m \(\times AOC = m \times A'O'C' \) m \(\times A = m \times A' \) and m \(\times OC = in \times O'C' \) so point A will coincide with A' and point C will Coincide with C' Now every point on \(\times ADC \) or on \(\times A'D'C' \) is equidistant from the centres O and O'	Given Given Radii for congruent circles Radii for congruent circles Using (i), (ii) and (iil)
respectively. Hence \widehat{ADC} coincides with $\widehat{A'D'C'}$. or $\widehat{mAC} = \widehat{mA'C'}$ i.e., $\widehat{m(\widehat{ADC})} = \widehat{m(\widehat{A'D'C'})}$	Using theorem 1

SOLVED EXERCISE 11.1

In a circle two equal chords AB and CD intersect each other.
Prove that mAD = mBC.

Solution:

Given:

In a circle having centre at O.

 $m \overrightarrow{OB} \cong m \overrightarrow{CD}$

To prove:

 $m\overline{AD} = m\overline{BC}$

Construction:

Join A to C, A to B, A to D and B to C.

