

CIS CSC, NIST CSF, NIST SP 800-53, NERCv7, ISO7IEC 27001, COBIT 5, PCI DSSv3.2, HIPAA and IEC62443 **NIST Cybersecurity Framework**

Public Link: www.siemucsm.com

Introduction - Motivation

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 10

The primary objective of this research is to mitigate the impact of cyberattacks by providing a method to best match the current attack methodologies with detection capabilities.

Introduction – Problem Statement

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 9

This study proposes to investigate a possible methodology in assisting organisations and cybersecurity professionals in selecting SIEM Use Cases based on the catalogued techniques in the Mitre Att@ck Framework. This methodology should consider the respective technical and organisational environment, internal and external requirements, as well as best practices and the available security know-how of the company or organisation.

Introduction – Research questions

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 10

If cybersecurity risks are managed by frameworks and standards, can we combine the requirements listed in these documents with actual threat data to drive the SIEM Use Case selection process?

Use Case Selection

Threats & Detection

Standards

Selection

Main

Sub

Literature Review – Academic research

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 20

Following types of research paper have been identified:

The focus lies with the SIEM technology only

The focus is on specific detection capabilities

- The lack of research papers in the area of SIEM technologies can be an indicator that the area of SIEM technology is primarily driven by vendors
- There are however many research papers on various detection technologies. The research is mostly focused on a single topic
- There is no general SIEM Use Case design approach. It is generally assumed that organisations know how to protect their assets.

The answers to protect the identified risks are too vague and lead to alternative ways of interpretation and implementation

Literature Review – Threat resources

Sources reviewed:

- Manual research
- Vendor Reports
- Disclosed Vulnerabilities
- Mitre Att&ck Framework
- Hackmageddon
- Exploit-DB

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 21

Mitre Att@ck Data Sources

Figure 6: Mitre Att&ck Data Sources

Source: Methodology to select Security Information and Event Management (SIEM) Use

Cases - Page 32

Literature Review – Vendors

Vendors reviewed:

- Exabeam
- Logpoint
- RSA
- AlienVault
- Splunk
- Exploit-DB

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 43

Approaches	Count
Compliance	2
Insider Threats	1
Advanced Security	2
Best Practise	1
Custom	2

Table 1: Approaches recommended by the analysed vendors

- 1. SIEM Use Cases are selected by compliance
- 2. The data shows that the best practices of the respective vendors are used for marketing purposes
- 3. Customer SIEM Use Case library based on identified risks or motivators.

Literature Review – Cybersecurity Standards & Frameworks

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 48

Identified Mappings:

- NIST CSF Core
- CIS Controls v7.1 Mapping for Implementation Groups
- AuditScripts
- AuditScripts CSC Manual Assessment Tool
- CIS Controls v7.1 Mapping to NIST CSF

Literature Review

Mapping

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 49

Readily available mapping files. Support organisations who comply with existing frameworks

Literature Review – Conceptual Framework

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 49

Figure 2: Conceptual framework of the thesis

Design & Methodology – Limitations

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 58

Att&ck Detection No external Framework SIEM "Use Case" capability = Use influence Detection = SIEM Case Use Case Not measuring Data quality of NIST CSF effectiveness of ML is a Use Case used data Framework SIEM Sample rate of Application not Implementation **Data Privacy** public academic writing Cost

Design & Methodology – Use Case Selection

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 60

Identify Focus Areas: (1) Van de Moosdijk and Wagenaar, (2) Perniola and Grey and (3) Faircloth

	(1)	(2)	(3)	Combination
Organisation Requirements	Χ	X	Χ	Organization
Operational Requirements	Χ		Χ	Organisation
Compliance				Regulations
Log Management	Χ			
Correlation	Χ			Detection Canabilities
Alerting	Χ		Χ	Detection Capabilities
Response	Χ			
Risk Management		X	Χ	Risk Management
Subject Matter Experts		Χ	Χ	SMEs
Threats			Χ	Threats

Design & Methodology – Use Case Selection "Decision Galaxy"

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 61

Figure 14: Use Case decision galaxy

Design & Methodology – Use Case Selection "Simplification"

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 72

The focus areas of the SIEM Use Case selection process cover a vast expanse on influencing parameters. The Decision Galaxy can be further simplified by substitution.

Optimisation

- Organising Requirements
- Costs
- Size/Manageability

Focus area	Simplification source
Organisation (4.2.3)	NIST CSF Tiers, CIS CSC Implementation Groups
Regulation (4.2.4)	CIS CSC, NIST CSF, NIST SP 800-53, NERCv7, ISO7IEC
	27001, COBIT 5, PCI DSSv3.2, HIPAA and IEC62443
Detection (4.2.5)	Mitre Att&ck Framework
Risk Management (4.2.6)	NIST CSF
Subject Matter Experts (4.2.7)	Mitre Att&ck Framework
Threats (4.2.8)	Mitre Att&ck Framework

Design & Methodology – Use Case Selection "Decision Galaxy"

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 61

Figure 14: Use Case decision galaxy

Design & Methodology – Threat Detection

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 72

The research in chapters 2.2.2 has shown that the Mitre Att&ck Framework has proven to be the most effective dataset available.

- Much steeper maturity increase
- More likely to be able to identify an attacker
- Distinctive gap between the Mitre Att&ck Framework and the business side of organisations.

Design & Methodology – Standards Mappings

Figure 2: Comparison of mappings to NIST sub-categories

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 77

Figure 21: Data comparison of CIS - AuditScripts - NIST mappings to CSC Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 79

Design & Methodology – Standards Mappings

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 77

- CIS and NIST have the most overlap
- AuditScript mapping seems to be congruent to the other two mappings

Results do not allow for a decisive decision in selecting a mapping file. It rather became apparent, that an organization can select their preferable mapping file.

The organisation simply declares which mapping file has been used.

Design & Methodology – Combined Selection Process

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 86

Attack									CI	S Subcont	rol							
Process monitoring		8.3	6.2	6.3	2.8	2.9	6.7											
File monitoring		14.9	5.5	5.3	6.3	6.7	4.8											
Process command-line parameter		8.8	2.9	14.9	6.3	6.7												
API monitoring		8.8	14.9	6.3	5.3	5.4	6.7	11.3	8.3	2.8	5.5	2.9	16.6	6.2				
Process use of network		2.1	2.3	2.4	2.8	2.9	7.4	3.1	3.2	5.5	7.2	8.3	8.7	11.3	12.2	13.3	13.5	6
Windows Registry		5.5	6.3	6.7														
Packet capture		12.5																
Authentication logs		4.8	16.12	4.9	11.5	12.11	16.10	16.3	20.8	6.7								
Netflow/Enclave netflow		12.5	12.8	11.2	12.2	12.11	13.5	18.10	6.7									i –
Windows event logs		16.6	6.2	6.3	6.7													
Network protocol analysis		12.6	15.3	12.4	15.2	15.8	6.7											
Binary file metadata		7.10	6.3				• • • • • • • • • • • • • • • • • • • •											
DLL monitoring		2.8	6.3	6.7														
Loaded DLLs		2.8	6.3	6.7														
System calls		2.8	8.3	13.3	14.9	6.3	5.3	6.7										
Malware reverse engineering		7.10	18.7	15.5	11.5	0.5	5.5	0.7										
SSL/TLS inspection		12.10	10.7															
Network intrusion detection syste		12.6	15.3	9.3	9.4	12.2	12.7	6.7										1
Anti-virus		8.1	8.2	8.4	8.6	6.7	12.7	0.7										┢
Data loss prevention		13.3	13.5	14.7	14.8	14.5	13.7											┢
Application logs		9.5	6.3	6.7	14.0	14.5	13.7											┢
Windows Error Reporting		6.3	6.7	0.7														-
		12.9	12.10	7.4	7.6	7.5	13.4	6.7										1
Web proxy User interface		13.3	6.2	6.3	6.7	7.5	15.4	0.7										1
Network device logs	ion	9.1	9.3	11.3	13.3	15.1	15.2	15.3	6.7									-
Kernel drivers	Detection	5.5	6.3	6.7	13.3	15.1	15.2	15.3	6.7									
	Det	9.1	9.3	11.3	13.3	45.2	45.2	6.7										-
Host network interface					13.3	15.2	15.3	6.7										-
Email gateway		7.8	7.10	6.7 3.1			6.7											⊢
Third-party application logs		3.5	9.5	6.7	3.2	6.3	6.7											\vdash
Services		6.3	5.3	_	6.7													-
Web logs		12.9	12.10	18.10	6.7													₩
MBR		6.3	6.7															-
Mail server		20.4	6.7															-
Environment variable		8.8	6.3	6.7														-
Detonation chamber		7.10	18.7	6.7														
BIOS		8.3	5.3	5.4	6.7													
WMI Objects		6.3	6.7															1
Web application firewall logs		18.10	12.9	6.7														
VBR		6.3	5.3	5.4	6.7													
Sensor health and status		6.2	6.3	6.7														
PowerShell logs		8.8	2.9	14.9	6.7													
Named Pipes		6.3	6.7															
EFI		6.3	5.3	5.4	6.7													
DNS records		7.7	8.7	6.7														
Disk forensics		14.9	6.3	5.3														
Digital certificate logs		1.8	6.7															
Component firmware		11.3	6.3	5.3	5.4	6.7												
Browser extensions		7.2	7.3	6.7														
Asset management		1.1	1.2	1.3	1.4	1.5	1.6	1.8	2.1	2.5	4.1	9.1	12.1	13.1	13.7	15.1	16.1	1
Access tokens		4.4	11.5	12.11	15.8	16.3	6.7											

Figure 2: CIS and Mitre Att&ck mapping file

Source: Methodology to select Security Information and Event

Management (SIEM) Use Cases - Page 86

20

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 88

Figure 2: Relationship between all sub-questions

Figure 2: Proposed solution
Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 89

Figure 2: Prioritisation based on framework categorisation of the CIS controls

Source: Methodology to select Security Information and Event

Management (SIEM) Use Cases - Page 90

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 91

Figure 2: Att&ck data relevant for the mapping

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 91

Figure 2: Mapping between Att&ck log sources and CIS sub-controls

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 92

Figure 2: Mapping of CIS sub-controls to the individual mapping files

Figure 2: Mapping overview of all data sets

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 93

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 95

Filters &

Improvements

Figure 2: Ease of adjustment of the method

Design & Methodology – Proof of Concept

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 96

Figure 35: Log source collector and mapping selector

Source: Methodology to select Security Information and Event

Management (SIEM) Use Cases - Page 96

Selecting log sources:

- Technique
- Detection capabilities
- Killchain
- CIS mapping
- NIST CSF mapping

Figure 36: Detection method and associated NIST CSF sub-controls

Source: Methodology to select Security Information and Event

Management (SIEM) Use Cases - Page 97

Design & Methodology – Proof of Concept

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 99

Figure 2: CIS control doughnut chart

Analysis & Synthesis

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 100

SIEM Use Case Selection

The argument was to find quantitative replacements for the focus areas able to formulate a methodology on how SIEM Use Cases can be selected. The results thereof are direct relationships between the focus areas and standards and frameworks. With this approach, we can select Use Cases based on frameworks and standards.

Threats & Detection

The research in chapters 2.2.2 has shown that the **Mitre Att&ck Framework** has proven to be the most effective dataset available.

Standards

If there is a **declaration of which mapping file** is used, then any of the mapping files can be used. It is the same approach as if an organisation defines a standard for their organisation to follow.

Analysis & Synthesis

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 102

Selection

It has been shown in chapter 4.5.2 that such a mapping can be created. The mapping of Att&ck and CIS is done by matching the content of each source logically by terminology. For the remainder with ambiguity or with no direct linkage to sensor technology, the whole framework description and the attack data set had to be compared against each other.

Main Research Question

This research has shown that it is possible to have a unified approach in using SIEM Use Case focus areas necessary for their selection and combine them with the relevant cybersecurity standards and frameworks. The result is a flexible best practises solution allowing for various parameters to be configured to receive a list of applicable SIEM Use Cases.

Conclusion

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 103

The research has shown that it is possible to have a unified approach in using SIEM Use Case focus areas necessary for their selection and combine them with the relevant cybersecurity standards and frameworks.

- The result is a **flexible methodology** allowing for various parameters to be configured to receive a list of applicable SIEM Use Cases.
- With moving the detection capability of an organisation back into the focus, we can break down the goals based on the data gathered.
- None of the existing parameters was subdued or marginalised with this approach, and it still can be added if required.
- At the centre is still a **robust cybersecurity program** driving the organisational needs, but it will be supported with qualified data from a relevant threat source able to assist in formulating a roadmap of rolling out detection capabilities.
- It answers the questions of what is needed to be able to detect the cybersecurity threats trageting the organisation.

Flexibility of the method

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 103

The presented method is very diverse and highly flexible model to select SIEM Use Cases.

Further Research

Source: Methodology to select Security Information and Event Management (SIEM) Use Cases - Page 103

More Use Cases

 Incorporation of other SIEM Use Case resources such as SIGMA[1] or SOCPrime[2]. A guide could be provided also to include self-developed SIEM Use Cases and how to map them to the Att&ck Framework.

Public Portal

 Further development of the application to upload risk assessment results of one of the supported frameworks and then provide an overview of which SIEM Use cases to deploy in which prioritisation, the required log sources, the association to the other standards and the statistical overview of CIS, kill-chain and NIST CSF functions.

1. Att&ck Framework enhancement

 Reach out to Mitre for a suggestion to include businessrelevant information such as discussed in chapter 4.3.
 Increasing the reach of the Framework in order to protect organisations must be a goal of every cybersecurity practitioner.

2. Att&ck Framework enhancement

Reach out to Mitre to suggest the mapping to CIS. The impact
of a precise mapping is much more significant than done by
an individual. If the mapping can help to drive the adoption
rate, then it is a win for all.

