انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

vii																																					يباچي	. کاد	اب	بلی کتا ہلی کتا	یپ	مير
1																																		ات	سياو	رقی.	ه تفر	ىساد	اول	رجه ا	,	1
2																																				i.	ئە نە	نمو		1.1		
13																	ر_	پوا	· يب	تر ک	اور	ست	ماسم	ن ک	بدا	ا_م	ب لب	مط	إنى َ	بىٹر يا	جيو م	1 کا	y'	_	f	(x	, y)		1.2		
22																														ت	باوار	: ي مس	فر ق	ره ^ت	۔ کی سا	بحد گ	ل ^ع ا	قال		1.3	,	
40																																					می سا			1.4	1	
52																																			- /		ئ سا			1.5	,	
70																																					و ی			1.6)	
74																								ئيت	يكتأ	اور	يت	جود) وج	ل ک	ے: ف:	وات	مسا	ر قی	ن تفر	قيمت	رائی	ابتا		1.7	7	
81																																		ات	ساو	ق.	ه تفر	ى ساد	روم	ر جه ۱	,	2
81																														- (.;					نس			2.1		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·				- /					ن نقل	•		$\frac{2.1}{2.2}$		
98 113																											هر د	נס	ساد	U		•		_			**			$\frac{2.2}{2.3}$		
113	•	•	•	•	•	•	•	•	•															٠			•	څ	•	•							ر فيء سي					
																																					ر نلد رکون ^ا			2.4		
134																																				-		••		2.5		
143																																								2.6		
152																													٠											2.7		
164																													•						_		کاار			2.8	5	
																						•				_	ي کمک	مع	-,	**					•		2.8					
174																						:			٠,	;	٠.		•				تى	نه	بانمو	ار کح	ن ن اد و	برا		2.9		
185	•				•	•	•	•	•	•	•		•				Ĺ	احل	ت کا	وار	سياه	رقی.	تفر	ساده	کمی س	2)	فإنسر	رمتح	غير	سے	يقي	طر	کے	لنے	مبد	علوه	رارم	مق	2	.10)	
193																																٠	وات	مساو	, قی	ه تفر	ىساد	خطح	. جي	بند در	ļ	3
193																														, .	• ارد						نس			3.1		-
205																								ت	ماوار	سەل	فرق	ده ت	ساد				- /			-	نقل نقل	•		3.2		

iv	-نوان

غير متحانس خطی ساده تفرقی مساوات	3.3
میر ہو۔ مقدار معلوم ہدلنے کے طریقے سے غیر متجانس خطی سادہ تفرقی مساوات کاحل	3.4
تي مساوات	4 نظام تفر
قاك اور سمتىه كے بنیادی حقائق	4.1
سادہ تقر تی مساوات کے نظام بطوران نجینئر کی مسائل کے نمونے	4.2
نظر به نظام ساده آخر تی مساوات اور ورونسکی	4.3
250	1.5
متقل عدد ی سروالے نظام۔ شطح مرحلہ کی ترکیب	4.4
نقطه فاصل کے جانچ کیٹا کاملمہ معیار۔ استحکام	4.5
کھنے کا کہت کی تراکیب رائے غیر خطی نظام	4.6
1 - 2" , ••" -	4.0
4.6.1 منظم حركت پرايك در جي مساوات مين تبادله	4 7
	4.7
4.7.1 نامعلوم عددی سر کی ترکیب	
سل سے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل	ء ڪ طاقتي شل
تركيب طاقي تسكسل	5.1
ليرة انذر مساوات ـ ليرة انذر كثير ركني	5.2
مبسوط طاقتي تسلىل _ تركيب فروينيوس	5.3
5.3.1 عملي استعال	
مباوات بىيل اور بىيل تفاعل	5.4
بىيل تفاعل كى دوسرى قشم- عموى حل	5.5
قائمية الزادبية تفاعل كاسلسله	5.6
مئله سٹیورم لیوویل	5.7
قائميت ليرداندُر كثير ركني اوربيس تفاعل	5.8
يادلـ بادلـ) لايلا <i>س</i>
	6.1
تفرقات اور تکملات کے لاپلیس بدل-سادہ تفرقی مساوات	6.2
s محور پر منتقلی ، t محور پر منتقلی ، اکائی سیر همی نفاعل	6.3
ۇيراك دىليانى نفاعل - اكانى ضرب تفاعل - جزوى كسرى چىيلاو	6.4
الجماو	6.5
لا پلایس بدل کی تکمل اور تفرق به متغیر عددی سر والے سادہ تفر تی مساوات	6.6
تفرقی مساوات کے نظام	6.7
لاہلاں بدل کے عمومی کیلیے	6.8
عارضی باب	" سمتیات
•••	•

غير سمتيات اور سمتيات	7.1	
سمتىي كَ اجزاء	7.2	
سمتيات كالمجموعه، غير سمتى كے ساتھ ضرب	7.3	
سمتی فضا- نطح تابعیت اور غیر تابعیت	7.4	
اندرونی ضرب (ضرب نقطه)	7.5	
اندرونی ضرب فضا	7.6	
ستق ضرب	7.7	
ا جزاء کی صورت میں سمتی ضرب	7.8	
غير سمتی سه ضرب اور دیگر متعدّ د ضرب نیر متعدّ د ضرب کرد	7.9	
• • • • • • • • • • • • • • • • • • • •		
برا: قالب، سمتيه، مقطع يه خطي نظام	خطىالج	8
قالب اور سمتيات - مجموعه اورغير سمتي ضرب	8.1	
قالبي ضرب	8.2	
8.2.1 تبریلی محل		
خطی مساوات کے نظام۔ گاوسی اسقاط	8.3	
8.3.1 صف زینه دارصورت		
خطی غیر تالعیت در جبه قالب سمتی فضا	8.4	
خطی نظام کے حل: وجودیت، بکتائی	8.5	
دودر جي اورتين درجي مقطع قالب	8.6	
مقطع_ قاعده كريم	8.7	
معكوس قالب_گاوس جار فرن اسقاط	8.8	
ستى فضا،اندرونى خرب، خطى تادله	8.9	
ن ما	0.7	
برا: آئلنی قدر مبائل قالب	خطى الج	9
أَ تَكُنى قدر مسائل قالب _ آنگنى اقدار اور آنگنى سمتيات كا حصول	9.1	
آ نگنی مسائل کے چنداستعال	9.2	
١ ق منا ن ح چيدا معان	9.2	
يوت	اضافی ث	1
ملوات علوات	مفيدمع	
عنومات اعلی نفاعل کے مساوات	مفيد س	ب
التي نفاش کے مساوات	١.ب	

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔کوشش کی گئی ہے کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکنیکی الفاظ ہی استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ شکنیکی الفاظ کے چناؤ کے وقت اس بات کا دھیان رکھا گیا ہے کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اس مضمون پر لکھی گئی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس كتاب ميں موجود تمام غلطيال مجھ سے ہى ہوئى ہيں البتہ اسے درست بنانے ميں بہت لوگوں كا ہاتھ ہے۔ ميں ان سب كا شكريہ اداكرتا ہوں۔ يہ سلسلہ انجى جارى ہے اور كمل ہونے پر ان حضرات كے تاثرات يہاں شامل كئے جائيں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر كي

28 اكتوبر 2011

باب9

خطى الجبرا: آئگنی قدر مسائل قالب

آگئی قدر مسائل درج ذیل سمتی مساوات پر مبنی ہیں جہاں A چکور قالب، x نا معلوم سمتیہ اور λ نا معلوم غیر سمتیہ ہے۔

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

آگلیٰ قدر مسائل میں ہمیں وہ λ اور x درکار ہیں جو درج بالا مساوات پر پورا اترتے ہوں۔ λ کی ہر قیمت کے لئے x=0 مساوات 9.1 کا غیر اہم صفر حل ہے۔ ہم اس غیر اہم صفر حل میں دلچینی نہیں رکھتے ہیں للذا ہم غیر صفر حل $x\neq 0$ جم غیر صفر حل $x\neq 0$ جانا چاہیں گے۔

9.1 کی وہ قیمتیں جو مساوات 9.1 پر پورا اترتے ہیں A کے آئگنی اقدار 1 کہلاتے ہیں اور وہ x جو مساوات 2 کہلاتے ہیں۔ پر پورا اترتے ہیں A کے آئگنی سمتیات 2 کہلاتے ہیں۔

اس معصوم نظر آنے والا سمتی مساوات کے اندر حیران کن تفصیل چیپی ہے۔ آنگنی قدر مسائل انجینئری، طبیعیات، ریاضی، حیاتیات، ماحولیاتی سائنس، شہری منصوبہ بندی، معاشیات، نفسیات اور دیگر شعبوں میں عموماً در پیش آتے ہیں۔ آپ کو یقیناً ان سے زندگی میں واسطہ پڑے گا۔

> eigenvalues¹ eigenfunctions²

9.1 تَكُنَّى قدر مسائل قالب-آئگنی اقدار اور آئگنی سمتیات كاحصول

درج ذیل پر غور کریں جہال غیر صفر سمتیہ اور چکور قالب کے ضرب دکھائے گئے ہیں۔

(9.2)
$$\begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 33 \\ 27 \end{bmatrix}, \quad \begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \end{bmatrix}$$

بائیں ہاتھ کی ضرب میں ہمیں مکمل طور پر نیا سمتیہ حاصل ہوتا ہے جس کی لمبائی اور سمت ابتدائی سمتیہ کی لمبائی اور سمت سے مختلف ہیں۔ عموماً سمتیہ کو چکور قالب سے ضرب دینے سے مکمل طور پر مختلف سمتیہ حاصل ہوتا ہے۔ دائیں ہاتھ کی ضرب میں حاصل سمتیہ کو درج ذیل کھا جا سکتا ہے

$$\begin{bmatrix} 30 \\ 40 \end{bmatrix} = 10 \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

یعنی حاصل سمتیہ اور ابتدائی سمتیہ کی سمتیں ایک جیسی ہیں جبکہ حاصل سمتیہ کی لمبائی ابتدائی سمتیہ کی لمبائی کے دس گنا ہے جس کو $\lambda = 10$ کا کسا جائے گا۔ چکور قالب $\lambda = 10$ کا خصول اس باب کا مرکزی مضمون ہے۔

آئیں درج بالا مثاہدے کو دستوری شکل دیں۔فرض کریں کہ $A=[a_{jk}]$ غیر صفر n imes n جسامت کا چکور قالب ہے۔اب درج ذیل سمتی مساوات پر غور کریں۔

$$(9.3) Ax = \lambda x$$

ان که اور غیر صفر ع کے حصول کے مسئلے کو، جو مساوات 9.3 پر پورا اترے ہوں، آنگنی قدر مسئلہ کہتے ہیں۔

 λ ہوں گہ λ دیا گیا چکور قالب ہے جبکہ λ نا معلوم غیر سمتیہ اور x نا معلوم سمتیہ ہے۔ ہم وہ λ اور x عاصل کرنا چاہتے ہیں جو مساوات 9.3 پر پورا اترتے ہوں۔ جیومیٹریائی طور پر ہم وہ سمتیات x عاصل کرنا چاہتے ہیں جنہیں λ سے ضرب دینا ایسا ہی ہے جیسے ان سمتیوں کو غیر سمتی λ سے ضرب دیا جائے یعنی کہ λ اور x راست تناسب ہوں۔ یوں مثبت λ کی صورت میں ابتدائی اور حاصل سمتیات کی سمتیں ایک جب ہوں گی جبکہ منفی λ کی صورت میں الگ ہوں گی۔ (باب کی شروع میں سادہ مثال سے اس کی وضاحت کی گئی ہے۔)

آ مُلنی قدر مسکے کا حل چند مثالوں کی مدد سے سیکھتے ہیں۔

مثال 9.1: آنگنی اقدار اور آنگنی سمتیات کا حصول درج ذیل قالب کے آنگنی اقدار اور آنگنی سمتیات قدم به قدم دریافت کرتے ہیں۔

$$\boldsymbol{A} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

پہلے آنگنی اقدار دریافت کیے جاتے ہیں۔مساوات 9.3 درج ذیل ہو گا۔

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \quad \Longrightarrow \quad \begin{array}{c} -5x_1 + 2x_2 = \lambda x_1 \\ 2x_1 - 2x_2 = \lambda x_2 \end{array}$$

تمام اجزاء کو ایک طرف منتقل کرتے ہوئے

(9.4)
$$(-5 - \lambda)x_1 + 2x_2 = 0$$

$$2x_2 + (-2 - \lambda)x_2 = 0$$

قالبی صورت میں لکھتے ہیں۔

 $(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$

eigenvalue³
eigenvectors⁴
characteristic vectors⁵
spectrum⁶
spectral radius⁷

مسکلہ $x \neq 0$ (قالب A کا آنگنی سمتیہ جس کی ہمیں مسکلہ 8.15 کے تحت اس متجانس نظام کا غیر صفر اہم حل $x \neq 0$ (قالب $x \neq 0$ کا آنگنی سمتیہ جس کی ہمیں تلاش ہے) اس صورت ممکن ہو گا جب عددی سر قالب کا مقطع صفر کے برابر ہو گا۔

$$D(\lambda) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 6 = 0$$

 $D(\lambda)=0$ کو A کی امتیازی مقطع جبکہ اس کی بھیلی ہوئی صورت کو امتیازی کثیر رکنی اور A وار λ اور $\lambda_2=-6$ بیں جو امتیازی مساوات کہتے ہیں۔ اس دو در جی الجبرائی مساوات کے حل $\lambda_1=-1$ اور $\lambda_2=-6$ ہیں جو $\lambda_3=-1$ گئی اقدار ہیں۔ $\lambda_3=-1$ اقدار ہیں۔

$$\lambda_1 = -1$$
 کا مطابقتی آنگنی سمتیہ مساوات 9.4 میں $\lambda_1 = -1$ کا مطابقتی آنگنی سمتیہ مساوات 9.4 میں $\lambda_1 = -1$ کا مطابقتی آنگنی سمتیہ مساوات $\lambda_1 = -1$ $= -4x_1 + 2x_2 = 0$ $= 2x_2 + [-2 - (-1)]x_2 = 0$ $\Rightarrow 2x_2 - x_2 = 0$

ان میں سے کسی بھی مساوات کو حل کرتے ہوئے $x_2=2x_1$ ماتا ہے جس کو استعال کرتے ہوئے متعدد متوازی x_1 سے کسی بھی مساوات کو حل کرتے ہیں۔ یوں x_1 اور x_2 اور x_3 اور x_4 اور x_4 اور x_4 اور x_5 اور x_5

$$Ax_1 = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix} = (-1)x_1 = \lambda_1 x_1$$

کا مطابقتی آنگنی سمتیه مساوات 9.4 میں $\lambda=\lambda_1=-6$ پر کرتے ہوئے حاصل کرتے ہیں۔ $\lambda=-6$

$$\begin{aligned}
[-5 - (-6)]x_1 + 2x_2 &= 0 \\
2x_2 + [-2 - (-6)]x_2 &= 0
\end{aligned}
\implies \begin{aligned}
x_1 + 2x_2 &= 0 \\
2x_2 + 4x_2 &= 0
\end{aligned}$$

 $x_1=2$ ان میں سے کسی بھی مساوات کو حل کرتے ہوئے $x_2=-\frac{1}{2}x_1$ ماتا ہے۔ یوں $x_1=2$ ماتا ہے لہذا $x_2=-1$ کا مطابقتی آگنی سمتیہ $x_2=[2$ ماتا ہے لہذا $x_2=-1$ کا مطابقتی آگنی سمتیہ $x_2=[2$ ماتا ہے لہذا کرتے ہیں۔

$$egin{aligned} oldsymbol{A}oldsymbol{x}_2 &= egin{bmatrix} -5 & 2 \ 2 & -2 \end{bmatrix} egin{bmatrix} 2 \ -1 \end{bmatrix} = egin{bmatrix} -12 \ 6 \end{bmatrix} = (-6)oldsymbol{x}_2 = \lambda_2 oldsymbol{x}_2 \end{aligned}$$

آپ حصہ 9.1 کے آغاز میں مساوات 9.2 میں دیے گئے مثال کو حل کرتے ہوئے آئگنی اقدار 10 ، 3 اور مطابقی آئگنی سمتیات $[3 \quad 1]^T$ واصل کریں۔

درج بالا مثال میں استعال کی گئی ترکیب کی عمومی صورت پیش کرتے ہیں۔ مساوات 9.3 کو اجزاء کی صورت میں درج ذیل کھا جا سکتا ہے۔

$$a_{11}x_1 + \dots + a_{1n}x_n = \lambda x_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n = \lambda x_2$$

$$\vdots$$

$$a_{n1}x_1 + \dots + a_{nn}x_n = \lambda x_n$$

تمام اجزاء کو بائیں ہاتھ منتقل کرتے ہیں۔

$$(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0$$

اس کو قالب کی صورت میں لکھتے ہیں۔

$$(9.7) (A - \lambda I)x = 0$$

مسکلہ کر پمر (مسکلہ 8.15) کے تحت درج بالا متجانس نظام کا غیر صفر عل صرف اور صرف اس صورت ممکن ہو گا جب اس کے عددی سر قالب کا مقطع صفر کے برابر ہو:

(9.8)
$$D(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0$$

A کو A کا امتیازی قالب جبکہ $D(\lambda)$ کو A کا امتیازی مقطع کہتے ہیں۔ مساوات 9.8 کو $A-\lambda I$ کی امتیازی کثیر رکنی حاصل ہو گی۔ کی امتیازی کثیر رکنی حاصل ہو گ

مساوات 9.8 کو پھیلا کر حاصل کثیر رکنی میں λ^n بلند تر طاقت ہے لہذا اس سے زیادہ سے زیادہ n مختلف آئگنی اقدار حاصل ہو سکتے ہیں۔

مسئله 9.1: آنگنی اقدار

چور قالب A کے آگئی اقدار A کے امتیازی مساوات 9.8 سے حاصل ہوں گے۔ یوں n imes n قالب کی تم سے تم ایک عدد آگئی قدر اور زیادہ سے زیادہ n imes n

n کی بڑی قیت کی صورت میں آنگنی اقدار عموماً ترکیب نیوٹن یا کسی اور اعدادی ترکیب سے حاصل کئے جائیں گے۔

آ نگنی اقدار پہلے حاصل کیے جاتے ہیں۔باری باری ان آنگنی قدر کو مساوات 9.6 کے نظام میں پر کرتے ہوئے مطابقتی آنگنی سمتیہ (گاوسی اسقاط کی مدد سے) حاصل کیا جاتا ہے۔

آنگنی سمتیات درج ذیل خصوصیات رکھتے ہیں۔

مسُله 9.2: آنگنی سمتیات اور آنگنی فضا

w+x اگر قالب A کے کسی ایک آگلنی قدر λ کے مطابقتی آگلنی سمتیات w اور x ہوں تب x ہوں x وار x ہوں اور x جہاں x جہاں x ہوں اور x

یوں کسی ایک آئگنی قدر کے مطابقتی آئگنی سمتیات اور 0 سمتیہ مل کر فضا بناتے ہیں جس کو اس λ کے لئے A کی مطابقتی آئگنی فضا کہتے ہیں۔

اور $A x = \lambda x$ اور $A w = \lambda w$ ہے مراد درج ذیل ہے

 $A(w+x) = Aw + Ax = \lambda w + \lambda x = \lambda (w+x)$

 $m{x}$ $m{A}(km{w}+lm{x})=\lambda(km{w}+lm{x})$ ہے گندا $m{A}(km{w})=k(m{A}m{w})=k(m{\lambda}m{w})=\lambda(km{w})$

آئگنی سمتیہ کو معیار سے تقسیم کرتے ہوئے معیاری آئگنی سمتیہ لیعنی اکائی آئگنی سمتیہ حاصل کیا جا سکتا ہے۔ مثلاً مثال $x_1=[1\quad 2]^T$ مثال $x_1=[1\quad 2]^T$ کی لمبائی $x_2=[1\quad 2]^T$ مثال 9.1 کی سمتیہ $x_1=[1\quad 2]^T$ حاصل ہوتا ہے۔

مثال 9.2: متعدد آنگنی سمتیات درج ذیل قالب کے آنگنی اقدار اور آنگنی سمتیات دریافت کریں۔

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

حل:اس قالب کی امتیازی مساوات درج ذیل ہے

$$-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0$$

جس سے A کے جذر $\lambda_1=5$ اور $\lambda_2=\lambda_3=-3$ اور $\lambda_1=5$ ملتے ہیں۔(بلند درجی مساوات کا خط تھنج کر اس جس نے جذر با آسانی حاصل کیے جاتے ہیں)۔ نظام $\lambda_1=5$ میں $\lambda_1=5$ میں $\lambda_1=5$ میں کے جذر با آسانی حاصل کے جاتے ہیں)۔ نظام تخفیف شدہ صورت گاوسی اسقاط کی مدد سے حاصل کی گئی ہے درج ذیل مطابقتی امتیازی قالب ملتا ہے جس کی تخفیف شدہ صورت گاوسی اسقاط کی مدد سے حاصل کی گئی ہے

$$\mathbf{A} - \lambda \mathbf{I} = \mathbf{A} - 5\mathbf{I} = \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \qquad \overset{\text{def}}{\Longrightarrow} \qquad \begin{bmatrix} -7 & 2 & -3 \\ 0 & -\frac{24}{7} & -\frac{48}{7} \\ 0 & 0 & 0 \end{bmatrix}$$

 $x_2=2$ في $x_3=-1$ ميں $-\frac{24}{7}x_2-\frac{48}{7}x_3=0$ مين جي جوئ $x_3=-1$ مين $x_1=1$ في مين $x_1=1$ مين پر کرتے ہوئے $x_1=1$ مانا ہے۔يوں مانا ہوتا ہے۔ ان قيمتوں کو $x_1=1$ کا آگئی قدر $x_1=1$ کا مطابقی آگئی سمتیہ ہے۔

 $\lambda=-3$ سے درج ذیل انتیازی قالب ماتا ہے جس کی تخفیف شدہ صورت گاوی اسقاط کی مدد سے حاصل کی گئی ہے۔

$$A - \lambda I = A + 3I = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \xrightarrow{\text{birth}} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $x_3 = 0$ چنتے ہوئے $x_2 = 1$ کی اسکتا ہے۔ $x_1 = -2x_2 + 3x_3$ سے $x_1 + 2x_2 - 3x_3 = 0$ ماتا ہے جبکہ $x_2 = 0$ جنتے ہوئے $x_3 = 1$ ماتا ہے جبکہ $x_3 = 1$ کے مطابقتی درج ذیل دو مختلف آگئی سمتیات عاصل ہوتے ہیں۔

$$x_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$$

امتیازی کثیر رکنی کے جذر λ کے درجے کو λ کی الجبرائی کثرت m_{λ} کہا اور m_{λ} سے ظاہر کیا جاتا ہے۔ کس کے مطابقتی خطی طور غیر تابع آئلنی سمتیات کی تعداد کو جیومیٹریائی کثرت m_{λ} کہا اور m_{λ} سے ظاہر کیا جاتا ہے۔ یول λ کے مطابقتی آئلنی فضا کی بُعد m_{λ} ہو گی۔

 $\lambda=-3$ پونکہ آگئی کثیر رکنی کا درجہ n ہے لہذا تمام الجبرائی کثرت کا مجموعہ m ہو گا۔ مثال 9.2 میں $\Delta_{\lambda}=M_{\lambda}-m_{\lambda}$ ورجہ $m_{\lambda}=M_{\lambda}-m_{\lambda}$ اور $m_{\lambda}=M_{\lambda}=0$ فرق $m_{\lambda}=M_{\lambda}=0$ کے خامی $M_{\lambda}=0$ ہو گا۔ مثبت خامی کا پایا جانا عمومی بات ہے۔ $\Delta_{-3}=0$ ہو گا۔ مثبت خامی کا پایا جانا عمومی بات ہے۔

مثال 9.3: الجبرائی کثرت، جیومیٹریائی کثرت، مثبت خامی قالب A کے آگلنی قدر اور آگلنی سمتیات حاصل کرتے ہوئے الجبرائی کثرت، جیومیٹریائی کثرت اور خامی دریافت

algebraic multiplicity⁸ geometric multiplicity⁹ $defect^{10}$

کریں۔

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \implies \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0$$

 $x_2 = 0$ س $0x_1 + 2x_2 = 0$ ہے۔ $M_0 = 2$ ہے کی الجبرائی کثرت $\lambda = 0$ ہے کہ آگلنی قدر ہے جس کی الجبرائی کثرت $\lambda = 0$ ہے کہ الحق آگلنی شمتیہ کی صورت $\lambda = 0$ ہی ہمٹریائی $\lambda = 0$ ہے۔ λ

مثال 9.4: الجبرائی کثرت، جیومیٹریائی کثرت، مثبت خامی قالب A کے آگلنی قدر اور آگلنی سمتیات حاصل کرتے ہوئے الجبرائی کثرت، جیومیٹریائی کثرت اور خامی دریافت کریں۔

$$A = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} \implies \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 = 0$$

مثال 9.5: حقیقی قالب کے مخلوط آئلنی اقدار اور مخلوط آئلنی سمتیات چونکہ حقیقی کثیر رکنی کے مخلوط جذر ممکن ہیں (جو جوڑیوں کی صورت میں پائے جاتے ہیں) للذا حقیقی قالب کے مخلوط آنگنی اقدار اور آنگنی سمتیات ممکن ہیں۔درج ذیل منحرف تشاکلی قالب A کے آنگنی اقدار اور آنگنی سمتیات حاصل کرتے ہیں۔

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \implies \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0$$

 $-ix_1+x_2=-i$ يوں $\lambda_1=i=(\sqrt{-1})$ اور $\lambda_2=-i$ اور $\lambda_2=-i$ اور $\lambda_1=i=(\sqrt{-1})$ يوں $\lambda_1=i=(\sqrt{-1})$ اور $\lambda_1=i=(\sqrt{-1})$ يون $\lambda_1=i=(\sqrt{-1})$ اور $\lambda_1=i=(\sqrt{-1})$

$$oldsymbol{x}_1 = egin{bmatrix} 1 \ i \end{bmatrix}$$
, $oldsymbol{x}_2 = egin{bmatrix} 1 \ -i \end{bmatrix}$

اگلے جھے میں درج ذیل مسکے کی ضرورت پیش آئے گا۔

مسکہ 9.3: تبدیل محل قالب کے آنگنی سمتیات چکور قالب A کے تبدیل محل قالب A^{T} کے آنگنی سمتیات وہی ہوں گے جو A کے ہیں۔

ثبوت: صفحہ 8.13 پر مسلمہ 8.13-ت کے تحت تبدیلی محل سے امتیازی قالب کا مقطع تبدیل نہیں ہوتا ہے۔

سوالات

سوال 9.1 تا سوال 9.15 میں دیے قالب کے آئگنی اقدار اور ان کے مطابقتی آئگنی سمتیات دریافت کریں۔

$$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$
 :9.1 عوال 2, $[0 \quad 1]^T$; $[0 \quad 4, \quad 1] \quad 0$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 :9.2 سوال 9.2 :0, 0, $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 0 & 1 \end{bmatrix}^T$ جوابات:

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 :9.3 عوال 3, $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$; 1, $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$

يوال 9.4
$$\begin{bmatrix}2&3\\1&2\end{bmatrix}$$
 :9.4 يوال $2-\sqrt{3},~[1~-\frac{1}{\sqrt{3}}]^T;~2+\sqrt{3},~[1~\frac{1}{\sqrt{3}}]^T$ يوابات:

يوال 9.5 يوال
$$\begin{bmatrix}2&3\\-1&2\end{bmatrix}$$
 \vdots 9.5 يوال $2-i\sqrt{3},~[1~-\frac{i}{\sqrt{3}}]^T;~2+i\sqrt{3},~[1~\frac{i}{\sqrt{3}}]^T$

$$\begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$$
 :9.6 عوال -4 , $[1 & -1]^T$; -4 , $[1 & 1]^T$

$$\begin{bmatrix} 0 & -4 \\ 4 & 0 \end{bmatrix}$$
 :9.7 عوال $-4i, \ [1 \quad i]^T; \quad 4i, \ [1 \quad -i]^T$

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 :9.8 عوال $a-ib$, $\begin{bmatrix} 1 & -i \end{bmatrix}^T$; $a+ib$, $\begin{bmatrix} 1 & i \end{bmatrix}^T$ جوابات:

$$\begin{bmatrix} 0.4 & 0.6 \\ -0.6 & 0.4 \end{bmatrix}$$
 :9.9 عوال $-\frac{i}{\sqrt{5}}$, $\begin{bmatrix} 1 & -\frac{i\sqrt{5}+2}{3} \end{bmatrix}^T$; $\frac{i}{\sqrt{5}}$, $\begin{bmatrix} 1 & \frac{i\sqrt{5}-2}{3} \end{bmatrix}^T$ جوابات:

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad :9.10$$
 حوال $\cos\theta - i\sin\theta$, $\begin{bmatrix} 1 & i \end{bmatrix}^T$; $\cos\theta + i\sin\theta$, $\begin{bmatrix} 1 & -i \end{bmatrix}^T$

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} :9.11$$
 عوال -1 , $[1 & -3 & 2]^T$; 0 , $[0 & 1 & 0]^T$; 1 , $[1 & 1 & 0]^T$

وال 9.12
$$\begin{bmatrix} 2 & 5 & 2 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix}$$
 (9.12) 1, $[1 \quad -\frac{1}{4} \quad \frac{1}{8}]^T$; 2, $[1 \quad 0 \quad 0]^T$; 4, $[1 \quad \frac{2}{5} \quad 0]^T$ جوابات:

$$\begin{bmatrix} 13 & 5 & 2 \\ 2 & 7 & -8 \\ 5 & 4 & 7 \end{bmatrix} :9.13$$
 يوال 9, $\begin{bmatrix} 1 & -1 & \frac{1}{2} \end{bmatrix}^T$

$$\begin{bmatrix} -1 & 0 & 6 & 0 \ 0 & -1 & 0 & 6 \ 0 & 0 & -1 & -2 \ 0 & 0 & -2 & -1 \end{bmatrix}$$
 سوال $\lambda = -1$ کا مطابقی آگئی سمتیہ دریافت کریں۔

$$\begin{bmatrix} 3 & 0 & 4 & 2 \\ 0 & 1 & -2 & 4 \\ 2 & 4 & -1 & -2 \\ 0 & 2 & -2 & -3 \end{bmatrix}$$
 سوال 9.15 کا مطابقتی آنگنی شمتیه دریافت کریں۔

y = Ax کار تیبی محور ہیں۔ سوال 9.16 تا سوال 9.17 میں درکار تبادل $x = [x_1 \quad x_2 \quad x_3]^T$ کے $x = [x_1 \quad x_2 \quad x_3]^T$ کا فیصل کریں جہال $x = [x_1 \quad x_2]^T$ ہے۔ آگئنی اقدار اور آگئنی سمتیات دریافت کریں اور ان کی جیومیٹریائی اہمیت بیان کریں۔

سوال 9.16: $\frac{\pi}{2}$ میں گھڑی کی سو یُوں کی الٹ رخ، کار تیسی محدد کی مبدا کے گرد $\frac{\pi}{2}$ زاویہ گھومنا۔

جوابات: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ ہنگنی اقدار i اور i بیں۔ ان کے مطابقتی آنگنی سمتیات مخلوط ہیں لہذا گردشی تباد لے میں کوئی سمت بر قرار نہیں رہتی ہے۔

سوال 9.17: R^2 کا x_2 محور پر تظلیل قائمہ

جوابات: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$; $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ جبابہ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ جوابات: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

9.2 آنگنی مسائل کے چنداستعال

مثال 9.6: ليكدار جهلي كاتاننا

 x_1x_2 کی کیکدار جملی (شکل 9.6) کو یوں کھینچ کر پھیلایا جاتا ہے کہ نقطہ x_1x_2 کی کیکدار جملی (شکل 9.6) کو یوں کھینچ کر پھیلایا جاتا ہے کہ نقطہ $Q(y_1,y_2)$ کو منتقل ہوتا ہے جہاں اس نقطے کی ابتدائی اور اختتامی مقام کا تعلق درج ذیل ہے۔

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = Ax = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies \begin{cases} y_1 = 4x_1 + 2x_2 \\ y_2 = 2x_1 + 4x_2 \end{cases}$$

وہ صدد محود ¹¹ دریافت کریں جن پر N کی تعین کر سمتیہ اور Q کی تعین کر سمتیہ ایک ہی رخ یا الٹ رخ ہوں۔ تبدیلی کے بعد جھلی کا سرحد کس صورت کا ہو گا؟

 $Ax=\lambda x$ اور سمتیہ $y=\lambda x$ در کار ہیں۔اب چونکہ $y=\lambda x$ ہو گا ہمیں سمتیہ x اور سمتیہ جو آنگنی مسئلہ بیان کرتا ہے جس کو درج ذیل لکھا جا سکتا ہے۔

$$Ax = \lambda x \implies \frac{4x_1 + 2x_2 = \lambda x_1}{2x_1 + 4x_2 = \lambda x_2} \implies \frac{(4 - \lambda)x_1 + 2x_2 = 0}{2x_1 + (4 - \lambda)x_2 = 0}$$

principal axis¹¹

اس کی امتیازی مساوات لکھتے ہیں

$$\begin{bmatrix} 4 - \lambda & 2 \\ 2 & 4 - \lambda \end{bmatrix} = (4 - \lambda)^2 - 4 = 0$$

جس کے جذر $\lambda_1=6$ اور $\lambda_2=2$ ہمارے مسلے کے آنگنی اقدار ہیں۔آنگنی قدر $\lambda_1=6$ کے لئے اس مسلے کو درج ذیل لکھا جا سکتا ہے

$$-2x_1 + 2x_2 = 0$$
$$2x_1 - 2x_2 = 0$$

جس سے $x_1=x_1$ ماسل کرتے $x_1=x_1$ ماسل کرتے $x_2=x_1$ ماسل کرتے $x_1=x_2=x_1$ ماسل کرتے $x_2=x_1$ کا مطابقتی آنگنی سمتیہ $x_1=x_2=x_1$ ماتا ہے۔ آنگنی قدر $x_1=x_2=x_1$ کا مطابقتی آنگنی سمتیہ $x_1=x_2=x_1$ ماتا ہے۔ آنگنی قدر $x_1=x_2=x_1$ کے اس مسکلے کو درج ذیل کھا جا سکتا ہے

$$2x_1 + 2x_2 = 0$$

$$2x_1 + 2x_2 = 0$$

 $x_1=-1$ جس سے $x_2=-1$ ماتا ہے جہال x_1 اختیاری متعقل ہے۔ ہم $x_1=1$ چن کر $x_2=-x_1$ حاصل جس سے $x_2=-x_1$ کا مطابقتی آنگنی سمتیہ $x_1=-1$ ماتا ہے۔ کہ کا مطابقتی آنگنی سمتیہ $x_1=-1$ ماتا ہے۔

یہ آگئی سمتیات مثبت x_1 محور کے ساتھ 45° اور 135° زاویہ بناتے ہیں۔ صدر محور کے رخ اور ان آگئی سمتیات کے رخ ایک جیسے ہیں۔آگئی اقدار کے تحت ان صدر محور کی سمت میں جملی بالترتیب 6 اور 2 گنا پھیل گئی ہے۔ شکل 9.6 میں صدر محور کو نقطہ دار لکیروں سے ظاہر کیا گیا ہے۔

 u_1 سر ہم صدر محور کو نئی کار تیسی نظام u_1 کے محور یوں چنیں کہ $u_1 x_2$ نظام کی پہلی رابع میں شبت $u_2 = r \sin \phi$ ، $u_1 = r \cos \phi$ کو نقطے کو $u_2 = r \sin \phi$ ، $u_1 = r \cos \phi$ کو اور اس کی دوسری رابع میں شبت $u_2 = r \sin \phi$ ، $u_1 = r \cos \phi$ کو افسان کی دوسری رابع میں شبت کے بعد درج ذیل ہوگا۔ کھینچنے کے بعد درج ذیل ہوگا۔ کھینچنے کے بعد درج ذیل ہوگا۔

$$z_1 = 6\cos\phi, \quad z_2 = 2\sin\phi$$

اب چونکہ $\phi = \sin \phi = 1$ کے برابر ہے لہذا درج ذیل لکھا جا سکتا ہے جو ترخیم کی مساوات ہے۔ یول کھینچی گئی جھلی کا سرحد ترخیمی ہو گا۔

$$\frac{z_1^2}{6^2} + \frac{z_2^2}{2^2} = 1$$

شكل 9.1: صدر محور كونقطه دار لكيرسة ظاہر كيا گياہے۔(مثال 9.6)

حواليه

- [1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
- [2] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
- [3] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: University Press, 1944.

واله

اضافی ثبوت

صفحہ 143 پر مسلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

ثبوت: کیتائی (مئلہ 2.2) تصور کرس کہ کھلے وقفے I پر ابتدائی قیت مئلہ

$$(0.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں $y_1(x) \equiv y_2(x)$ ہو گا جو کیتائی کا ثبوت ہے۔

چونکہ مساوات 1.1 خطی اور متجانس ہے للمذا y(x) پر y(x) بھی اس کا حل ہو گا اور چونکہ y_1 اور y_2 دونوں یساں ابتدائی معلومات پر پورا اترتے ہیں للذا y درج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم نفاعل

$$(1.3) z = y^2 + y'^2$$

702

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو z' میں پر کرتے ہیں۔

$$(1.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه y اور y حقیقی تفاعل بین للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 3.1 کا استعال کیا گیا ہے۔مساوات 7.1-ب کو z=-z کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z=-z کھا جا سکتا ہے۔یوں مساوات 5.1 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = |q| \left| 2yy' \right| \le |q| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ ساتھ $p \leq |p|$ استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 1.5 کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ کے جزو میں استعال کرتے ہوئے

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا ہے۔اب

$$z' \leq (1+\big|p\big|+\big|q\big|)z$$

ماتا ہے۔ اس میں 1 + |q| + |p| = h کھتے ہوئے

$$(1.8) z' \le hz x \checkmark$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 1.7 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy' \\ \leq z + 2|p|z + |q|z = hz$$

مساوات 8. ااور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے مترادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) dx}, \qquad F_2 = e^{\int h(x) dx}$

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہاتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پر $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ ہو در کار ثبوت ہے۔

704 ضمير المنافى ثبوت

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(...2)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$-\ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{let} \quad e^{\ln x} = x \quad \text{where } a = x \text{ for } a =$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل

شكل2.ب:سائن نما تفاعل

 $10^{-\log x} = 10^{\log \frac{1}{x}} = \frac{1}{x}$ اور $10^{\log x} = 10^{\log x} = 10^{\log x}$ ہیں۔ 10^{x}

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احصائے کملات میں زاویہ کو ریڈئی میں ناپا جاتا ہے۔ یوں $\sin x$ اور $\cos x$ کا دور کی عرصہ $\sin x$ ہو گا۔ $\sin x$ طاق ہے لیخی $\sin x$ $\sin x$ ہو گا۔ $\cos x$ ہو گا۔ $\cos x$ ہو گا۔ $\cos x$

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ $\sin^2 x + \cos^2 x = 1$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

$$(-.9) \qquad \sin(\pi - x) = \sin x, \quad \cos(\pi - x) = -\cos x$$

(...10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(ب.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

ٹینجنٹ، کوٹینجنٹ، سیکنٹ، کوسیکنٹ (شکل 3.ب-الف، ب)

$$(-.15) \tan x = \frac{\sin x}{\cos x}, \cot x = \frac{\cos x}{\sin x}, \sec x = \frac{1}{\cos x}, \csc = \frac{1}{\sin x}$$

$$(-.16) \quad \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \quad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹىنىجنٹ اور كو ٹىنىجنٹ

بذلولي تفاعل (بذلولي سائن sin hx وغيره - شكل 4.ب-الف، ب)

$$(-.17) sinh x = \frac{1}{2}(e^x - e^{-x}), cosh x = \frac{1}{2}(e^x + e^{-x})$$

(-.18)
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$(-.19) \qquad \cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.21)
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(23)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما تفاعل (شکل 5.ب) کی تعریف درج ذیل کمل ہے
$$\Gamma(\alpha)$$

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

- coth x ہے۔ نقطہ دار خط tanh x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4. بذلولى سائن، بذلولى تفاعل ـ

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب ہے α کی ان قیمتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 24.ب سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات 25.ب استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہوگا جسے دوبارہ مساوات 25.ب میں استعال کرتے ہوئے $\Gamma(3)=2\times 1$ ملتا ہے۔ای طرح بار بار مساوات 25.ب استعال کرتے ہوئے κ کی کئی بھی عدد صحیح مثبت قیت κ کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات 25.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.27) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات 24. ب اور مساوات 27. ب مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے گیما تفاعل دیتے ہیں۔

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے یعنی

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 27.ب اور مساوات 28.ب سے ظاہر ہے کہ مخلوط α کی صورت میں $\alpha=0,-1,-2,\cdots$ پر علیما نفاعل کے قطب یائے جاتے ہیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

(
$$\downarrow$$
.29)
$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیمت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

(4.31)
$$P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, \quad Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.33) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x>0, y>0)$$

بیٹا تفاعل کو سمیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

(ب.34)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل(شكل 6.ب)

(-.35)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 35.ب کے تفرق $x=rac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

$$(-.36) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $erf\infty=1$

(ب.37)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل 7.س)

(-.38)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 6. ب: تفاعل خلل ـ

$$1$$
اور $\frac{\pi}{8}$ اور $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(-.40) s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل 8.ب)

برابر ہے۔ تکملہ تفاعل Si $\infty = \frac{\pi}{2}$

$$\sin(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} dt$$

complementary functions¹

تكمل كوسائن

$$(5.43) si(x) = \int_{x}^{\infty} \frac{\cos t}{t} dt (x > 0)$$

تكمل قوت نمائي

تكمل لوگارتممي

$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$