

Domaine UV-Visible

- Domaine du spectre ultraviolet utilisé en analyse : 190-400 nm.
- Domaine du spectre visible : 400-750 nm.
- Domaines complémentaires.

Processus d'absorption

Spectroscopie d'absorption : fondamental → excité

Structures vibrationnelles

Présentes sur certains spectres (aromatiques)

Phénomènes d'émission

- Fluorescence
- Phosphorescence
- Phénomènes parasites en spectrophotométrie UV-Visible

Les différentes transitions

DOM (diagramme d'orbitales moléculaires) : prévision des transitions possibles

Cas de la liaison carbonyle

Lien structure / spectre

Importance de la conjugaison

Compound	Solvent	λ _{max} (nm)	$\epsilon_{\rm max}$ (liter mol ⁻¹ cm ⁻¹)
Ethylene	vapor	162	10,000
cis-2-Butene	vapor	174	_
trans-2-Butene	vapor	178	13,000
1-Hexene	vapor	177	12,000
	hexane	179	<u> </u>
Allyl alcohol	hexane	189	7,600
Cyclohexene	vapor	176	8,000
	cyclohexane	183.5	6,800
Cholest-4-ene	cyclohexane	193	10,000
1,5-Hexadiene	vapor	178	26,000
1,3-Butadiene	vapor	210	
	hexane	217	21,000
1,3,5-Hexatriene	isooctane	268	43,000
1,3,5,7-Octatetraene	cyclohexane	304	
1,3,5,7,9-Decapentaene	isooctane	334	121,000
1,3,5,7,9,11-Dodecahexaene	isooctane	364	138,000

Terminologie utilisée en UV-visible

- Chromophore. Groupement insaturé responsable de l'absorption.
- Auxochrome. Groupement lié à un chromophore qui modifie λ et

l_{max}.

- Effet bathochromique. λ augmente. (contraire = hypsochromique).
 - Effet hyperchromique. A augmente (contraire = hypochromique).

Principe du spectrophotomètre

- Systèmes mono-faisceau
- Systèmes bi-faisceaux

Principe du spectrophotomètre

Source lumineuse

- Lampe à décharge au deutérium : 190-400 nm, maximum d'émission à 652 nm.
- Lampe à filament de tungstène : 350 à 800 nm.
- Lampe à décharge au xénon : UV et visible. Très intense, flash lors de la mesure.

Monochromateur

Prisme, réseau ou filtre coloré : système dispersif / fente d'entrée / fente de sortie.

Cuves

- Contient soit l'échantillon soit la solution de référence.
- Longueur définie : 5, 10, 20, 40 ou 50 mm.
- Doit être transparente aux radiations du domaine d'étude.
 - En UV : les cuves en quartz, ni en verre ni en plastique.

Détecteur: photodiode

- Semi-conducteur.
- Un photon transfère un électron de la bande de valence (niveau bas) vers la bande de conduction (niveau haut); création d'une paire électron - trou.
- Le nombre de paires électrons - trous est fonction de la quantité de lumière reçue.

Détecteur : barrette de diodes

- Permet une mesure simultanée sur toute l'étendue du spectre.
- Barrette CCD : alignement de photodiodes de petites dimensions (14μm x 14 μm) : intégrateur de lumière.
- Charge d'une photodiode proportionnelle à l'exposition (produit éclairement par temps de pose), et dépend de la longueur d'onde.
- A la fin du temps de pose, le contenu des capteurs est transféré dans un registre analogique à décalage et une nouvelle pose commence.
- Permet un tracé très rapide de spectres d'absorption.

Photomultiplicateur

- Photon arrache un électron de la cathode par effet photoélectrique.
- Electron accéléré vers une seconde électrode (dynode, un potentiel supérieur).
- Energie de l'électron incident permet d'arracher d'autres électrons : effet multiplicatif. (1 photon -> 100 électrons sur l'anode)

Dosages absorptiométriques en UV-Visible

Dosage spectro. UV-Vis.

- Détermination de λ_{travail}.
- Si la solution absorbe peu : $\lambda_{\text{travail}} = \lambda_{\text{max}}$

Dosage spectro. UV-Vis.

- Tracé de la gamme d'étalonnage (ou gamme des ajouts dosés)
- Animation

Gamme colorimétrique

Exploitations des données

Gamme d'étalonnage Méthode des ajouts dosés

Etudes cinétiques par spectro. UV-Vis.

Suivi de l'absorbance en fonction du temps

Conversion en profil de concentration ou de quantité

de matière

