The Notion of model

I. What we have seen last time		

A theory = a set of axioms + a decidable and non confusing congruence (often defined by a reduction system)

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land \text{-intro}$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash C} \land \text{-intro if } C \equiv A \land B$$

Proof reduction does not always terminate

But all (1) purely computational theories where (2) proof reduction terminates have the witness property

Next

Examples of theories

Prove termination of proof-reduction for some of these theories

For this: the notion of model

II. Models valued in $\{0,1\}$

The algebra $\{0,1\}$

$$\mathcal{B} = \{0, 1\}$$

 \leq : natural order on this set

$$\tilde{\top} = 1, \tilde{\bot} = 0$$

 $\tilde{\wedge},$ function from $\{0,1\}\times\{0,1\}$ to $\{0,1\}$

$\tilde{\wedge}$	0	1
0	0	0
1	0	1

 $\tilde{\lor}$ and $\tilde{\Rightarrow}$ similar

 $\tilde{\forall}$ and $\tilde{\exists}$ functions from $\mathcal{P}^+(\{0,1\})$ to $\{0,1\}$

$\widetilde{\forall}$	{0}	$\{0, 1\}$	{1}
	0	0	1

$\tilde{\exists}$	{0}	$\{0, 1\}$	{1}
	0	1	1

Models valued in $\{0,1\}$

A model for a language \mathcal{L} is formed with

- ullet for each sort s, a non empty set \mathcal{M}_s
- for each function symbol f of arity $\langle s_1,...,s_n,s'\rangle$, a function \hat{f} from $\mathcal{M}_{s_1}\times...\times\mathcal{M}_{s_n}$ to $\mathcal{M}_{s'}$
- for each predicate symbol P of arity $\langle s_1,...,s_n \rangle$, a function \hat{P} from $\mathcal{M}_{s_1} \times ... \times \mathcal{M}_{s_n}$ to \mathcal{B}

Interpretation in a model

 $[\![\,]\!]$ maps every term t of sort s, to an element $[\![t]\!]$ of \mathcal{M}_s every proposition A to an element $[\![A]\!]$ of \mathcal{B}

Morphism

$$[\![f(t_1,...,t_n)]\!] = \hat{f}([\![t_1]\!],...,[\![t_n]\!]) \\
 [\![P(t_1,...,t_n)]\!] = \hat{P}([\![t_1]\!],...,[\![t_n]\!]) \\
 [\![A \land B]\!] = [\![A]\!] \tilde{\land} [\![B]\!], \text{ etc.}$$

Completely defined by its image on the variables

Valuations

Function ϕ of finite domain associating to the variables $x_1, ..., x_n$ of sorts $s_1, ..., s_n$ elements $a_1, ..., a_n$ of $\mathcal{M}_{s_1}, ..., \mathcal{M}_{s_n}$

Any valuation ϕ extends to a morphism $[\![\]\!]_\phi$ between

- \bullet the terms and the propositions whose free variables are in the domain of ϕ
- ullet and the model ${\mathcal M}$

$$\bullet \ \llbracket x \rrbracket_{\phi} = \phi(x)$$

•
$$[f(t_1, ..., t_n)]_{\phi} = \hat{f}([t_1]_{\phi}, ..., [t_n]_{\phi})$$

•
$$[P(t_1,...,t_n)]_{\phi} = \hat{P}([t_1]_{\phi},...,[t_n]_{\phi})$$

$$\bullet \ \llbracket \top \rrbracket_{\phi} = \tilde{\top}, \, \llbracket \bot \rrbracket_{\phi} = \tilde{\bot}$$

$$\bullet \ \llbracket A \wedge B \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \tilde{\wedge} \ \llbracket B \rrbracket_{\phi}, \llbracket A \vee B \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \tilde{\vee} \ \llbracket B \rrbracket_{\phi}$$

$$\bullet \ \llbracket A \Rightarrow B \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \tilde{\Rightarrow} \llbracket B \rrbracket_{\phi}$$

•
$$\llbracket \forall x \, A \rrbracket_{\phi} = \tilde{\forall} \, \{ \llbracket A \rrbracket_{\phi, x=a} \mid a \in \mathcal{M}_s \}$$

$$\bullet \ [\![\exists x \ A]\!]_{\phi} = \tilde{\exists} \{ [\![A]\!]_{\phi, x=a} \mid a \in \mathcal{M}_s \}$$

Validity

A valid in $\mathcal M$ if for all ϕ , $[\![A]\!]_\phi \geq \widetilde{\top}$

 $A_1,...,A_n \vdash B$ valid in \mathcal{M} if the proposition $(A_1 \land ... \land A_n) \Rightarrow B$ is

 \mathcal{T} valid in \mathcal{M} if all its axioms are

Soundness: If the proposition A has a classical proof in $\mathcal T$, then it is valid in all models of $\mathcal T$

Completeness: If the proposition A is valid in all models of $\mathcal T$, then it has a classical proof in $\mathcal T$

Contrapositive of soundness

If a model of $\mathcal T$ s.t. A not valid in $\mathcal T$, then A not provable in $\mathcal T$

Exercise: two proposition symbols P and Q

A single axiom P

Q is not provable

 $\neg Q$ is not provable

Four problems

Adapt the notion of model to prove indep. of Q with single model

Adapt the notion of model to constructive provability

Adapt the notion of model to **Deduction modulo**

Adapt the notion of model to prove termination of proof-reduction

One solution: many valued models

Algebras

a binary relation \leq on \mathcal{B} two elements $\tilde{\top}$ and $\tilde{\bot}$ of \mathcal{B} three functions $\tilde{\wedge}$, $\tilde{\vee}$, and $\tilde{\Rightarrow}$ from $\mathcal{B} \times \mathcal{B}$ to \mathcal{B} a subset \mathcal{A} of $\mathcal{P}^+(\mathcal{B})$, a function $\tilde{\forall}$ from \mathcal{A} to \mathcal{B} a subset \mathcal{E} of $\mathcal{P}^+(\mathcal{B})$, a function $\tilde{\exists}$ from \mathcal{E} to \mathcal{B}

Models

A model for a language $\mathcal L$ is formed with

- ullet for each sort s, a non empty set \mathcal{M}_s
- an algebra $\mathcal{B} = \langle \mathcal{B}, \leq, \tilde{\top}, \tilde{\bot}, \tilde{\wedge}, \tilde{\vee}, \mathcal{A}, \tilde{\forall}, \mathcal{E}, \tilde{\exists}, \tilde{\Rightarrow} \rangle$,
- for each function symbol f of arity $\langle s_1,...,s_n,s'\rangle$, a function \hat{f} from $\mathcal{M}_{s_1}\times...\times\mathcal{M}_{s_n}$ to $\mathcal{M}_{s'}$
- for each predicate symbol P of arity $\langle s_1,...,s_n \rangle$, a function \hat{P} from $\mathcal{M}_{s_1} \times ... \times \mathcal{M}_{s_n}$ to \mathcal{B}

valued in the algebra ${\cal B}$

Valuation (as above): a function ϕ of finite domain associating to the variables $x_1,...,x_n$ of sorts $s_1,...,s_n$ elements $a_1,...,a_n$ of $\mathcal{M}_{s_1},...,\mathcal{M}_{s_n}$

Interpretation (as above):

•
$$[x]_{\phi} = \phi(x), [f(t_1, ..., t_n)]_{\phi} = \hat{f}([t_1]_{\phi}, ..., [t_n]_{\phi})$$

•
$$[P(t_1,...,t_n)]_{\phi} = \hat{P}([t_1]_{\phi},...,[t_n]_{\phi})$$

•
$$\llbracket A \wedge B \rrbracket_{\phi} = \llbracket A \rrbracket_{\phi} \tilde{\wedge} \llbracket B \rrbracket_{\phi}$$
, etc.

•
$$\llbracket \forall x \, A \rrbracket_{\phi} = \tilde{\forall} \, \{ \llbracket A \rrbracket_{\phi, x=a} \mid a \in \mathcal{M}_s \}$$

Validity (as above): for all ϕ , $[\![A]\!]_{\phi} \geq \tilde{\top}$

Examples of algebras

 $\{0, 1\}$

But also:

$$\mathcal{B} = \mathcal{P}(\{3,4\}) = \{\emptyset, \{3\}, \{4\}, \{3,4\}\}, \le = \subseteq,$$
 $\tilde{\top} = \{3,4\}, \tilde{\bot} = \emptyset,$

$$a \tilde{\wedge} b = a \cap b, a \tilde{\vee} b = a \cup b, a \tilde{\Rightarrow} b = (\{3,4\} \setminus a) \cup b,$$

$$\tilde{\forall} E = \bigcap_{x \in E} x, \tilde{\exists} E = \bigcup_{x \in E} x$$

Note
$$\tilde{\neg}\ a = a \ \tilde{\rightarrow}\ \tilde{\bot} = \{3,4\} \setminus a$$

$$\hat{P} = \tilde{\top} = \{3, 4\}$$

$$\hat{Q} = \{4\}$$

Neither Q nor $\neg Q$ is valid

Aggregates two models in one

$$\mathcal{M}_3: \hat{P} = 1, \hat{Q} = 0$$

$$\mathcal{M}_4: \hat{P} = 1, \hat{Q} = 1$$

$$\mathcal{M}: \hat{A} = \{i \mid A \text{ valid in } \mathcal{M}_i\}$$

From $\mathcal{P}(\{3,4\})$ to pre-Boolean algebras

Models where ${\cal B}$ is a powerset

Generalize: models where ${\cal B}$ is a Boolean algebra

A set with, an order, greatest lowerbounds $(\tilde{\top}, \tilde{\wedge}, \tilde{\forall})$ and least upperbounds $(\tilde{\bot}, \tilde{\vee}, \tilde{\exists})$ and a relative complement $\tilde{\Rightarrow}$

Generalize further: order: reflexive, antisymmetric, transitive

Antisymmetry useless and complicates proofs: drop it

Intuition: $A \leq B$ if $A \Rightarrow B$ provable: reflexive, transitive, not antisymmetric

Pre-Boolean algebras

Set \mathcal{B} , binary relation \leq , $\tilde{\top}$ and $\tilde{\bot}$ elements of \mathcal{B} , $\tilde{\wedge}$, $\tilde{\vee}$, and $\tilde{\Rightarrow}$ binary functions, $\tilde{\forall}$ function from a subset \mathcal{A} of $\mathcal{P}^+(\mathcal{B})$ to \mathcal{B} , and $\tilde{\exists}$ function from a subset \mathcal{E} of $\mathcal{P}^+(\mathcal{B})$ to \mathcal{B}

$$a \le a$$
, if $a \le b$ and $b \le c$ then $a \le c$

$$a\ \tilde{\wedge}\ b\leq a$$
, $a\ \tilde{\wedge}\ b\leq b$, if $c\leq a$ and $c\leq b$ then $c\leq a\ \tilde{\wedge}\ b$ etc.

 $\begin{array}{l} a \leq b \stackrel{\sim}{\Rightarrow} c \text{ if and only if } a \stackrel{\sim}{\wedge} b \leq c \\ \tilde{\top} \leq (a \stackrel{\sim}{\vee} (a \stackrel{\sim}{\Rightarrow} b)) \end{array}$

Examples of pre-Boolean algebras

 $\{0, 1\}$

 $\mathcal{P}(\{3,4\})$

but also $\{0\}$

and any set equipped with the full relation and any operations

Soundness and completeness

Soundness: If the proposition A has a classical proof in $\mathcal T$, then it is valid in all models of $\mathcal T$

Completeness: If the proposition A is valid in all models of $\mathcal T$, then it has a classical proof in $\mathcal T$

More models: soundness stronger, completeness weaker

The validity of the excluded-middle

Models valued in $\{0,1\}$ are all models of the excluded-middle

$$[\![A \vee \neg A]\!]_{\phi} = [\![A]\!]_{\phi} \ \tilde{\vee} \ \tilde{\neg} [\![A]\!]_{\phi} = \max([\![A]\!]_{\phi}, 1 - [\![A]\!]_{\phi}) = 1$$

Models valued in $\mathcal{P}(E)$ also

$$[\![A \lor \neg A]\!]_{\phi} = [\![A]\!]_{\phi} \tilde{\lor} \tilde{\neg} [\![A]\!]_{\phi} = [\![A]\!]_{\phi} \cup (E \setminus [\![A]\!]_{\phi}) = E$$

Models valued in a (pre-)Boolean algebra also

$$\tilde{\top} \le (a \, \tilde{\lor} \, (a \, \tilde{\Rightarrow} \, b))$$

Valid in all models but no constructive proof

From pre-Boolean algebra to pre-Heyting algebras

Just drop the condition

$$\tilde{\top} \le (a \, \tilde{\lor} \, (a \, \tilde{\Rightarrow} \, b))$$

pre-Heyting algebra

A pre-Heyting algebra that is not a pre-Boolean algebra

Instead of $\mathcal{P}(\mathbb{R})$, the open sets only

Pre-order ⊆ (antisymmetric in this case)

Everything works (open sets stable by unions, finite intersections) except infinite intersections and complement

In this case take the interior

$$\hat{P} = (-\infty, 0)$$

$$\tilde{\neg} \hat{P} = [0, +\infty) = (0, +\infty)$$

$$\hat{P} \tilde{\lor} \hat{\neg} \hat{P} = (-\infty, 0) \cup (0, +\infty) = \mathbb{R} \setminus \{0\}$$

Another pre-Heyting algebra that is not a pre-Boolean algebra

$$\{0, 1/2, 1\}$$

natural order

$$\tilde{\top} = 1, \tilde{\bot} = 0, a \tilde{\wedge} b = glb(a, b), a \tilde{\vee} b = lub(a, b),$$
 $\tilde{\forall} A = glb_{x \in A}x, \tilde{\exists} E = lub_{x \in E}x$

 $a \stackrel{\sim}{\Rightarrow} b = b$ if a > b, and 1 otherwise

 $a\leq (b\ \tilde{\Rightarrow}\ c)$ if and only if $(a\ \tilde{\land}\ b)\leq c$ (three cases: $b\leq c$, b>c and $a\leq c$, and b>c and a>c)

$$1/2 \tilde{\vee} (1/2 \tilde{\Rightarrow} 0) = 1/2 \tilde{\vee} 0 = 1/2$$

Soundness

If the proposition A has a constructive proof in $\mathcal T$, then it is valid in all models of $\mathcal T$

Lemma: If $\Gamma \vdash A$ has a constructive proof, then it is valid in all pre-Heyting models (By induction over proof structure)

Completeness

If the proposition A is valid in all models of $\mathcal T$, then it has a constructive proof in $\mathcal T$

Weak

A simple proof: build a single model where valid propositions are exactly those that have a constructive proof in ${\mathcal T}$

The Lindenbaum model

Idea: Interpret each term (resp. proposition) by itself

 \mathcal{M}_s = set of terms (of sort s), \mathcal{B} = set of propositions

Closed terms and prop. of $\mathcal{L} \cup S$, S infinite set of constants

 $A \leq B$ if $A \Rightarrow B$ has a constructive proof in $\mathcal T$

The operations $\tilde{\top}$, $\tilde{\bot}$, $\tilde{\wedge}$, $\tilde{\vee}$, and $\tilde{\Rightarrow}$, are \top , \bot , \wedge , \vee , and \Rightarrow

 $\mathcal{A}=\mathcal{E}$ set of subsets of \mathcal{B} of the form $\{(t/x)A\mid t\in\mathcal{M}_s\}$ for some A

A unique

$$\tilde{\forall} \{(t/x)A \mid t \in \mathcal{M}_s\} = (\forall x A)$$

$$\tilde{\exists} \{(t/x)A \mid t \in \mathcal{M}_s\} = (\exists x \ A)$$

 \hat{f} : function mapping $t_1,...,t_n$ to $f(t_1,...,t_n)$

 \hat{P} : function mapping $t_1,...,t_n$ to $P(t_1,...,t_n)$

Algebra of Lindenbaum model of \mathcal{T} : a pre-Heyting algebra

Lindenbaum model of \mathcal{T} : model of \mathcal{T}

A valid in the Lindenbaum model of ${\mathcal T}$ then A has a constructive proof in ${\mathcal T}$

V. Models and Deduction modulo	

Validity of a theory in Deduction modulo

 \equiv valid in ${\mathcal M}$ if for all A and B such that $A\equiv B$, for all ϕ $[\![A]\!]_\phi=[\![B]\!]_\phi$

 $\mathcal{T}, \equiv \mathsf{valid}$ in \mathcal{M} if all axioms of \mathcal{T} and \equiv are valid in \mathcal{M}

Soundness

If the proposition A has a constructive proof in $\mathcal T$, then it is valid in all models of $\mathcal T$

Lemma: If $\Gamma \vdash A$ has a constructive proof, then it is valid in all pre-Heyting models

(By induction over proof structure using the fact that the model is a model of the congruence to justify the replacement of a proposition by a congruent one in each rule)

Completeness

Lindenbaum model:

Replace terms by classes of terms modulo ≡

Replace propositions by classes of propositions modulo \sim

Only difficulty \sim not \equiv : $\{(t/x)A \mid t \in \mathcal{M}_s\}$ does not uniquely define A

A reason to drop antisymmetry

If $A \Leftrightarrow B$ provable in \mathcal{T}, \equiv ,

for all
$$\phi$$
, $[\![A]\!]_\phi \leq [\![B]\!]_\phi$ and $[\![B]\!]_\phi \leq [\![A]\!]_\phi$

If
$$A \equiv B$$
, then for all ϕ , $[\![A]\!]_\phi = [\![B]\!]_\phi$

With antisymmetry: same notion

Without

4=4 and 2+2=4 same interpretation

Fermat's little theorem and Fermat's last theorem different $\leq \geq$ interpretations

Consistency

If $\mathcal T$ has a model if and only if $\mathcal T$ consistent

Here: even non consistent theories have models

But: A pre-Heyting algebra is trivial if $a \leq b$ always

A theory \mathcal{T}, \equiv is consistent if and only if it has a model whose pre-Heyting algebra is non trivial

VI. Super-consistency

An exercise

A model valued in $\{0,1\}$ of the congruence defined by the reduction rule

$$P \longrightarrow (Q \Rightarrow Q)$$

That is: find \hat{P} and \hat{Q} such that $\hat{P}=(\hat{Q} \ \tilde{\Rightarrow} \ \hat{Q})$

A solution: $\hat{Q}=1$ and $\hat{P}=(1\ \tilde{\Rightarrow}\ 1)=1$

But ...

No property of the algebra $\{0,1\}$ really used

 $\hat{Q}=\tilde{\top}$ and $\hat{P}=(\tilde{\top}\ \tilde{\Rightarrow}\ \tilde{\top})$ works in any pre-Heyting algebra \mathcal{B}

Thus, the congruence \equiv has a model valued in $\{0,1\}$ and also in any algebra ${\cal B}$

Super-consistency

A theory is super-consistent if it has a model valued in any (full, ordered, and complete) pre-Heyting algebra

Why do we care: as we shall see super-consistency implies termination of proof-reduction, hence the witness property

Next time

Arithmetic