<u>Assignment</u>: Implementation of 2:1 MUX (Data flow), 4:1 MUX (Dataflow, ifelse, using case), 1:4 DEMUX (using case and data flow) using Xilinx ISE

Software used: Xilinx ISE

Property Name	Value
Device family	Spartan3
Device	CX3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST (VHDL/Verilog)
Simulator	ISim (VHDL/Verilog)
Preferred Language	VHDL

Truth Table (2:1 MUX):

INPUT			OUTPUT		
I 1	10	S	0		
Χ	0	0	0		
X	1	0	1		
0	X	1	0		
1	X	1	1		

Data flow Model (2:1 MUX):

Code (2:1 MUX):

1. DataFlow Model Code:

 $O \le (I(0) \text{ and (not S)}) \text{ or } (I(1) \text{ and S});$

2. Behavioral Model Code:

```
begin
--O<=(I(0) and (not S)) or (I(1) and S);
process(I,S)
begin
if S='0' then
O<=I(0);
else
O<=I(1);
end if;
end process;
end Behavioral;</pre>
```

Output:

<u>4:1 MUX</u>

Truth Table of 4:1 MUX						
13	12	11	10	S1	S0	O (Output)
х	х	х	0	0	0	0
х	х	х	1	0	0	1
х	х	0	х	0	1	0
х	х	1	х	0	1	1
х	0	х	х	1	0	0
х	1	х	х	1	0	1
0	х	х	х	1	1	0
1	х	Х	х	1	1	1

Data flow Model:

Code:

1. DataFlow Model Code:

O < = ((not S(0)) and (not S(1)) and I(0)) or (S(0)) and (not S(1)) and I(1) or ((not S(0))) and I(1) and I(2) or (S(0)) and I(1) and I(2) an

2. Behavioral Model Code:

```
begin
--O<=((not S(0)) and (not S(1)) and I(0)) or
-- (S(0) and (not S(1)) and I(1)) or
-- ((not S(0)) and S(1) and I(2)) or (S(0) and S(1) and I(3));
process(I,S)
begin
case S is
when "00"=>O<=I(0);
when "01"=>O<=I(1);
when "10"=>O<=I(2);
when "11"=>O<=I(3);
when others=> O<='X';
end case;
end process;
end Behavioral;</pre>
```

Output:

Name	Value	0 ns	200 ns	400 ns	600 ns	800 ns
▶ ¾ i(3:0)	0010			0010		
> 😽 s[1:0]	01			01		
	1					ř

1:4 **DEMUX**:

Truth Table:

D	S1	S0	Y3	Y2	Y1	YO
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Data flow Model:

Code:

1. Behavioral Model Code:

```
begin
process(I,S)
begin
0<= (others=>'0');
case S is
when "00"=>0(0)<=I;
when "01"=>0(1)<=I;
when "10"=>0(2)<=I;
when "11"=>0(3)<=I;
when others=>0<= (others=>'0');
end case;
end process;
end Behavioral;
```

2. Data flow Model Code:

 $O \le ("0001" \text{ when } S = "00" \text{ else } "0010" \text{ when } S = "01" \text{ else } "0100" \text{ when } S = "10" \text{ else } "1000" \text{ when } S = "11" \text{ else } "0000" \text{)};$

Output:

