Seminar 8

Sintaxa logicii cu predicate de ordinul I

Pentru a construi mulțimea de formule a logicii cu predicate de ordinul I, **LP1**, vom porni cu următoarele mulțimi de simboluri:

- $X = \{x_1, x_2, ...\}$ variabile
- $\mathcal{P} = \{\mathcal{P}_0, \mathcal{P}_1, \ldots\}$: simboluri predicative
 - o fiecare \mathcal{P}_i este o mulțime cel mult numărabilă de predicate de aritate i (i \in N). Elementele lui \mathcal{P}_0 se mai numesc și variabile predicative.
- $\mathcal{F} = \{ \mathcal{F}_0, \mathcal{F}_1, ... \}$: simboluri funcționale
 - o fiecare \mathcal{F}_i este o mulțime cel mult numărabilă de funcții de aritate i (i \in N). Elementele lui \mathcal{F}_0 se numesc și constante (funcționale).
- $C_1 = \{ \rceil, \vee, \wedge \}$: conectori logici
- $C_2 = \{(\forall x) \mid x \in \mathcal{X}\}\ U\ \{(\exists\ x) \mid x \in \mathcal{X}\}\$ cuantificatori universali, respectiv existențiali
- P = { (,) }

Alfabetul:

$$\mathcal{A}ff = X \cup (\bigcup_{i=0}^{\infty} \mathcal{P}_i) \cup (\bigcup_{i=0}^{\infty} \mathcal{F}_i) \cup C_1 \cup C_2 \cup P$$

Se definește constructiv **mulțimea termilor** \mathcal{T} :

Baza. $X \subseteq T$ și $\mathcal{F}_o \subseteq T$ (variabilele și constantele sunt termi).

Pas constructiv. Pentru fiecare $n \in \mathbb{N}^*$, pentru fiecare $f \in \mathcal{F}_n$, pentru fiecare $t_1, t_2, \ldots, t_n \in \mathcal{T}$, $f(t_1, t_2, \ldots, t_n) \in \mathcal{T}$.

Se definește mulțimea **formulelor atomice**, notată cu $\mathcal{A}t$, prin:

- (i) $P_0 \subseteq \mathcal{A}t$ (variablele predicative sunt formule atomice).
- (ii) Pentru fiecare $n \in \mathbb{N}^*$, pentru fiecare $P \in \mathcal{P}_n$, pentru fiecare $t_1, t_2, ..., t_n \in \mathcal{T}$, avem $P(t_1, t_2, ..., t_n) \in \mathcal{A}t$.

Mulțimea formulelor calculului cu predicate de ordinul I, LP1, este dată constructiv prin:

Baza. $At \subseteq LP1$ (formulele atomice sunt formule)

Pas constructiv.

- (i) Dacă $F \in \mathbf{LP1}$ atunci $(\ \ F) \in \mathbf{LP1}$.
- (ii) Dacă $F_1, F_2 \in \mathbf{LP1}$ atunci $(F_1 \wedge F_2), (F_1 \vee F_2) \in \mathbf{LP1}$
- (iii) Dacă $F \in \mathbf{LP1}$ atunci $(\forall x)(F) \in \mathbf{LP1}$ și $(\exists x)(F) \in \mathbf{LP1}$, pentru fiecare $x \in \mathcal{X}$

Exerciții

- Identificați simbolurile care apar în formule.
- Construiți mulțimea subformulelor și arborele asociat.

Formulele:

- 1. $(\forall x)(P(x, a) \land Q(y) \lor \neg(\exists z)P(z, x))$
- 2. $(\exists x)(\forall z)(P(x, y, z) \lor \neg Q(x)) \land (\forall x)(Q(X) \land R(f(x, z), a))$