Phân tích thuật toán

Nguyễn Mạnh Hiển hiennm@tlu.edu.vn

Nội dung

- 1. Phân tích thuật toán là gì?
- 2. Các ký hiệu tiệm cận
- 3. Tốc độ tăng của các hàm
- 4. Các ví dụ phân tích thuật toán

1. Phân tích thuật toán là gì?

Phân tích thuật toán

- Nhằm xác định **thời gian chạy** (độ phức tạp) của thuật toán dưới dạng một hàm f của kích thước đầu vào n
 - VD: Thời gian tìm tuần tự một phần tử x trong một dãy
 n phần tử là f(n) = n
- Đơn vị thời gian:
 - Không phải là giờ, phút, giây
 - Mà là thao tác cơ bản, VD: cộng, nhân, so sánh
 - Mỗi thao tác cơ bản có thời gian chạy là hằng (một lượng thời gian nhỏ không phụ thuộc vào kích thước đầu vào n)

Đếm số thao tác cơ bản

- Nhận diện các thao tác cơ bản trong thuật toán
- Xác định thao tác cơ bản T chiếm nhiều thời gian chạy nhất so với các thao tác cơ bản còn lại
 - Thao tác T này thường xuất hiện trong các vòng lặp
- Đếm số lần thực hiện thao tác T, sẽ thu được hàm thời gian chạy f(n)

Ví dụ đếm số thao tác cơ bản

```
for (i = 0; i < n; i++)
   cout << a[i] << endl;</pre>
Số lần in ra màn hình = n
Ví dụ 2: Nhân ma trận tam giác
dưới với véctơ (mã giả)
for i \leftarrow 1 to n
   C_i \leftarrow 0
for i \leftarrow 1 to n
   for j \leftarrow 1 to i
     c_i \leftarrow c_i + a_{ii} * b_i
Số phép nhân = \sum_{i=1}^{n} i = n(n+1)/2
```

Ví dụ 1: In các phần tử (C++)

```
Ví dụ 3: Kiểm tra tính sắp xếp (C++)
template <class T>
bool isSorted(T *a, int n)
   bool sorted = true;
   for (int i=0; i<n-1; i++)
       if (a[i] > a[i+1])
          sorted = false;
   return sorted;
Số phép so sánh = n – 1
Có thể cải tiến thuật toán bên trên?
```

2. Các ký hiệu tiệm cận

Phân tích tiệm cận

- Nhằm xem xét tốc độ tăng trưởng của hàm f(n) khi n dần tới +∞
- Cho phép quy các dạng hàm f(n) khác nhau về một vài dạng cơ bản (như log n, n, n²), từ đó giúp so sánh thời gian chạy của các thuật toán dễ dàng hơn
- Có 3 cách phân tích tiệm cận tương ứng với ba ký hiệu tiệm cận sau đây:
 - Ô lớn: O \rightarrow tìm cận trên của f(n)
 - Ô-mê-ga lớn: Ω \rightarrow tìm cận dưới của f(n)
 - Tê-ta lớn: $\Theta \longrightarrow$ tìm cận chặt của f(n)

Ký hiệu O

$$f(n) = O(g(n))$$

 $khi \ va \ chi \ khi \ \exists \ c > 0 \ va \ n_0 > 0 \ sao \ cho \ f(n) \le cg(n) \ \forall n \ge n_0$

Ký hiệu Ω

$$f(n) = \Omega(g(n))$$

$$khi và chỉ khi \exists c > 0 và n_0 > 0 sao cho cg(n) \le f(n) \forall n \ge n_0$$

f(n) bị chặn dưới bởi g(n) theo nghĩa tiệm cận

Ký hiệu ⊕

$$f(n) = \Theta(g(n))$$

 $khi \ va \ chi \ khi \ \exists \ c_1 > 0, \ c_2 > 0 \ va \ n_0 > 0 \ sao \ cho$
 $c_1g(n) \le f(n) \le c_2g(n) \ \forall n \ge n_0$

f(n) có cùng tốc độ tăng với g(n) theo nghĩa tiệm cận

Ví dụ phân tích tiệm cận

$$\begin{split} f(n) &= 3n^2 + 17 \\ &- \Omega(1), \, \Omega(n), \, \Omega(n^2) & \rightarrow \text{cận dưới} \\ &- O(n^2), \, O(n^3), \, ... & \rightarrow \text{cận trên} \\ &- \Theta(n^2) & \rightarrow \text{cận chặt} \end{split}$$

Hãy điền vào dấu chấm hỏi sau đây!

$$f(n) = 1000 n^2 + 17 + 0,001 n^3$$

- $-\Omega(?)$ \rightarrow cận dưới
- O(?) \rightarrow cận trên
- $-\Theta(?) \rightarrow cận chặt$

1,n2,n3 cg(n)=c.n^3<=0,001n^3+1000n2 (c-0,001)n<=1000

Tính chất bắc cầu

- Nếu f(n) = O(g(n)) và g(n) = O(h(n))
 → f(n) = O(h(n))
- Nếu $f(n) = \Omega(g(n))$ và $g(n) = \Omega(h(n))$ $\rightarrow f(n) = \Omega(h(n))$
- Nếu f(n) = Θ(g(n)) và g(n) = Θ(h(n))
 - \rightarrow f(n) = Θ (h(n))

Một số quy tắc

- Nếu $f(n) = a_0 + a_1 n + ... + a_k n^k (a_k > 0)$ $\rightarrow f(n) = O(n^k)$
- log^kn = O(n) với k là một hằng số
 (hàm lôgarit tăng chậm hơn hàm tuyến tính)

Chú ý: Trong môn học này, khi viết hàm lôgarit mà không chỉ rõ cơ số, ta ngầm hiểu cơ số đó là 2

3. Tốc độ tăng của các hàm

Tốc độ tăng của một số hàm cơ bản

Hàm	Tên
С	Hằng
log n	Lôgarit
log ² n	Lôgarit bình phương
n	Tuyến tính
n log n	
n^2	Bậc hai
n ³	Bậc ba
2 ⁿ	Hàm mũ

Hàm nào tăng chậm hơn?

- $f(n) = n \log n$ và $g(n) = n^{1,5}$
- Lời giải:
 - Chú ý rằng $g(n) = n^{1,5} = n * n^{0,5}$
 - Vì vậy, chỉ cần so sánh log n và n^{0,5}
 - Tương đương với so sánh log² n và n
 - Tham khảo bảng trong slide trước: log²n tăng chậm hơn n

f(n)

Suy ra f(n) tăng chậm hơn g(n)

Ví dụ về tốc độ tăng của các hàm

- Xét một chiếc máy tính thực hiện được 1.000.000 thao tác cơ bản trong một giây
- Khi thời gian chạy vượt quá 10²⁵ năm, ta viết "very long"

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

4. Các ví dụ phân tích thuật toán

Vòng lặp

```
1 for (i = 0; i < n; i++)
2 {
3          x = a[i]/2;
4          a[i] = x + 1;
5 }</pre>
```

- Có 4 thao tác cơ bản ở các dòng 3 và 4 gồm 2 phép gán, 1 phép chia và 1 phép cộng
- Cả 4 thao tác đó được lặp lại n lần
- Thời gian chạy: t(n) = 4n = O(n)

Chú ý: Ở đây, ta bỏ qua 3 thao tác cơ bản điều khiển quá trình lặp ở dòng 1. Kết quả phân tích thuật toán sẽ không thay đổi nếu tính thêm cả 3 thao tác đó.

Vòng lặp có câu lệnh break

```
1 for (i = 0; i < n; i++)
2 {
3          x = a[i]/2;
4          a[i] = x + 1;
5          if (a[i] > 10) break;
6 }
```

- Có 5 thao tác cơ bản ở các dòng 3, 4, 5 gồm 2 phép gán, 1 phép chia, 1
 phép cộng và 1 phép so sánh
- Không thể đếm chính xác số lần thực hiện 5 thao tác đó vì ta không biết khi nào điều kiện a[i]>10 xảy ra
- Trong trường hợp tồi nhất, tức là điều kiện a[i]>10 xảy ra ở bước lặp cuối cùng hoặc không xảy ra, cả 5 thao tác cơ bản được lặp lại n lần
- Thời gian chạy (trong trường hợp tồi nhất): t(n) = 5n = O(n)

Các vòng lặp tuần tự

```
for (i = 0; i < n; i++)
{
      ... // 3 thao tác cơ bản ở đây
}
for (i = 0; i < n; i++)
{
      ... // 5 thao tác cơ bản ở đây
}</pre>
```

- Chỉ cần cộng thời gian chạy của các vòng lặp
- Thời gian chạy tổng thể: t(n) = 3n + 5n = 8n = O(n)

Các vòng lặp lồng nhau

- Phân tích các vòng lặp từ trong ra ngoài:
 - Vòng lặp bên trong thực hiện 3n thao tác cơ bản
 - Mỗi bước lặp của vòng lặp bên ngoài thực hiện 2 + 3n thao tác cơ bản
- Thời gian chạy tổng thể: $t(n) = (2 + 3n)n = 3n^2 + 2n = O(n^2)$

Câu lệnh if-else

```
1 if (x > 0)
2          i = 0;
3 else
4          for (j = 0; j < n; j++)
5          a[j] = j;</pre>
```

- Có 3 thao tác cơ bản:
 - Phép so sánh ở dòng 1 được thực hiện 1 lần
 - Phép gán ở dòng 2 được thực hiện 0 hoặc 1 lần
 - Phép gán ở dòng 5 được thực hiện 0 hoặc n lần
- Trong trường hợp tồi nhất (điều kiện x > 0 sai), phép gán ở dòng 5 chạy n lần
- Thời gian chạy: t(n) = 1 + n = O(n)

Hàm đệ quy

```
long factorial(int n)
        if (n <= 1)
              return 1;
5
        else
              return n * factorial(n - 1);

    Nếu n = 1, chỉ mất 1 phép so sánh ở dòng 3

• Nếu n > 1:

    Dòng 3 có 1 phép so sánh

    Dòng 6 có 1 phép nhân, 1 phép trừ và 1 lời gọi hàm đệ quy

    tốn thời gian t(n-1)
```

Hàm đệ quy (tiếp)

Suy ra thời gian chạy của thuật toán:

$$t(1) = 1$$
 (với n = 1)
 $t(n) = 3 + t(n - 1)$ (với n > 1)
 $= 3 + 3 + t(n - 2)$
 $= 3 + 3 + 3 + t(n - 3)$
...
 $= 3k + t(n - k)$
• Chọn $k = n - 1$, khi đó:
 $t(n) = 3(n - 1) + t(1) = 3n - 2 = O(n)$

Tìm kiếm tuần tự

```
for (i = 0; i < n; i++)
{
    if (a[i] == x) return i;
}
return -1;</pre>
```

- Trong trường hợp tồi nhất (x nằm ở cuối mảng hoặc x không có trong mảng), ta phải thực hiện n phép so sánh a[i]==x
- Thời gian chạy: t(n) = n = O(n)

Tìm kiếm nhị phân

- Cho mảng a đã sắp xếp tăng dần
- Tìm x trong mảng a:
 - So sánh x với phần tử ở chính giữa mảng a[mid]
 - Nếu x < a[mid], tìm x ở nửa bên trái của mảng
 - Nếu x > a[mid], tìm x ở nửa bên phải của mảng
 - Nếu x = a[mid], báo cáo vị trí tìm được x là mid
 - Nếu không còn phần tử nào để xét, báo cáo không tìm được x

Tìm kiếm nhị phân – ví dụ

Giả sử x = 11 và ta phải tìm x trong mảng a bên dưới

Tìm kiếm nhị phân – thuật toán

```
function binarySearch(a, n, x)
{
    left \leftarrow 1, right \leftarrow n
    while (left ≤ right)
         mid \leftarrow (left + right) / 2
                   (x < a[mid]) right \leftarrow mid - 1
         else if (x > a[mid]) left \leftarrow mid + 1
         else
                                     return mid
    return -1
```

Tìm kiếm nhị phân – phân tích

- Nếu n = 1, chỉ mất một phép so sánh x với phần tử duy nhất của mảng
- Nếu n > 1, mất một phép so sánh x với phần tử chính giữa mảng, sau đó là mất thời gian tìm x trong một nửa (trái hoặc phải) của mảng
- Suy ra thời gian chạy của thuật toán:

```
t(1) = 1 (với n = 1)

t(n) = 1 + t(n/2) (với n > 1)

= 1 + 1 + t(n/4)

= 1 + 1 + 1 + t(n/8)

...

= k + t(n/2^k)
```

• Chọn k = log n, khi đó:

```
t(n) = \log n + t(1) = \log n + 1 = O(\log n)
```