Pregunta 1	Dado un problema de optimización, el método voraz
Puntúa como 1,00	Seleccione una:
Marcar pregunta	⊚a siempre obtiene una solución factible. 🗶
	ℂ b. Ninguna de las otras dos opciones es cierta.
	Cc siempre obtiene la solución óptima.
Pregunta 2	En el método voraz
Incorrecta Puntúa como 1.00	
Puntua como 1,00	Seleccione una:
pregunta	Seleccione una: ⊚a siempre se encuentra solución pero puede que no sea la óptima. X
	b el dominio de las decisiones sólo pueden ser conjuntos discretos o discretizables.
	©c es habitual preparar los datos para disminuir el coste temporal de la función que determina cuál es la siguiente decisión a tomar.
	Dada la suma de la recurrencia
Pregunta 3 Corrects	
Puntúa como 1,00	$T(n) = \int_{-\infty}^{\infty} \frac{1}{n-1} dx$
V Marcar	$T(n) = \begin{cases} 1 & n = 0\\ \sum_{k=0}^{n-1} T(k) & n > 0 \end{cases}$
pregunta	k=0 ¿cuál de las siguientes afirmaciones es cierta?
	Seleccione una:
	a. $T(n) \in \Theta(n^2)$
	b. $T(n) \in \Theta(n!)$
	□ b. $T(n) \in \Theta(n!)$ □ c. $T(n) \in \Theta(2^n)$ ✓

Pregunta 4 Cuando se calculan los coeficientes binomiales usando la recursión $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r-1}$, con $\binom{n}{0} = \binom{n}{n} = 1$, qué problema se da y cómo se puede Puntúa como 1.00 resolver? Marcar pregunta Seleccione una Oa. La recursión puede ser infinita y por tanto es necesario organizarla según el esquema iterativo de programación dinámica. Ob. Se repiten muchos cálculos y ello se puede evitar usando programación dinámica. Oc. Se repiten muchos cálculos y ello se puede evitar haciendo uso de una estrategia voraz. La programación dinámica... Pregunta **5** Puntúa como 1,00 Seleccione una: a.... en algunos casos se puede utilizar para resolver problemas de optimización con dominios continuos pero probablemente pierda su eficacia ya que puede disminuir drásticamente el número de subproblemas repetidos. Marcar pregunta ⊚b. Las otras dos opciones son ciertas. ✓ Oc. ... normalmente se usa para resolver problemas de optimización con dominios discretizables puesto que las tablas se han de indexar con este tipo de valores. Pregunta 6 En la solución al problema de la mochila continua ¿por qué es conveniente la ordenación previa de los objetos? Oa. Para reducir la complejidad temporal en la toma de cada decisión: de $O(n^2)$ a $O(n\log n)$, donde n es el número de objetos a considerar. ⑤b. Para reducir la complejidad temporal en la toma de cada decisión: de O(n) a O(1), donde n es el número de objetos a considerar. ✓ Oc. Porque si no se hace no es posible garantizar que la toma de decisiones siga un criterio voraz. Pregunta 7 Se pretende implementar mediante programación dinámica iterativa la función recursiva unsigned f(unsigned x, unsigned v[]) { Puntúa como 1.00 if (x==0) return 0; unsigned m = 0; for (unsigned k = 0; k < x; k++) m = max(m, v[k] + f(x-k, v)); return m; ¿Cuál es la mejor estructura para el almacén? Seleccione una: Oa. int A Oc. int Af1f1 Un informático quiere subir a una montaña y para ello decide que tras cada paso, el siguiente debe tomarlo en la dirección de máxima pendiente hacia arriba. Además, entenderá que ha alcanzado la cima cuando llegue a un punto en el que no haya ninguna dirección que sea cuesta arriba. ¿qué tipo de algoritmo está usando nuestro informático? Pregunta 8 Correcta Puntúa como 1,00 Seleccione una: a. un algoritmo divide v vencerás. ⊚b. un algoritmo voraz. √

Cc. un algoritmo de programación dinámica

