SSC-398A

ASSESSMENT OF RELIABILITY OF SHIP STRUCTURES

Appendices

This document has been approved for public release and sale; its distribution is unlimited DTIC QUALITY INSPECTED

SHIP STRUCTURE COMMITTEE 1997

SHIP STRUCTURE COMMITTEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research program to improve the hull structures of ships and other marine structures by an extension of knowledge pertaining to design, materials, and methods of construction.

RADM.J. C. Card, USCG (Chairman) Chief, Office of Marine Safety, Security and Environmental Protection U.S. Coast Guerd

Mr. John Grinstead Director, Policy and Legislation Marine Regulatory Directorate Transport Canada

Mr. Edwin B. Schimler Associate Administrator for Shipbuilding and Technology Development Maritime Administration

Dr. Donald Liu Senior Vice President American Bureau of Shipping

Mr. Robert McCarthy Director, Survivability and Structural Integrity Group (SEA O3P) Naval Sea Systems Command Mr. Thomas Connors Acting Director of Engineering (N7) Military Sealift Command Dr. Ross Grahm Head, Hydronautics Section Defence Research Establishment-Atlantic

EXECUTIVE DIRECTOR

CONTRACTING OFFICER TECHNICAL REPRESENTATIVE

CDR Stephen E. Sharpe, USCG LT Tom Miller, USCG

Mr. William J. Siekierka Naval Sea Systems Command

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for determinating the goals and objectives of the program and by evaluating and interpreting the results in terms of structural design, construction, and operation.

MI	JTARY SEALIF	T COMMAND	MARI	TIME ADM	INISTRATION		U. S. COA	ST GUARD
			光 体。不过时	以静中常语实		GA STROKE	在外的扩展的	MARKET L
Мг	Robert E. Van .	Jones (Chairman)	Mr, Fi	ederick Seil	oold		CAPT Geor	rge Wright
Mr	Rickard A. And	erson	Mr. R	ichard P. Vo	elker		Mr. Walter	Lincoln
Mr.	Michael W. Tou	uma.		hao H. Lin			Mr. Rubin S	Sheinberg
Mr.	Jeffrey E. Beac	h .	Dr. W	alter M. Ma	clean			a.k.saidh di
				经存款分类				
AM	ERICAN BUREA	U OF SHIPPING	NAVA	L SEA SY	STEMS CO	DMMAND	TRANSPOR	T CANADA
	Glassi Asha			/ Thomas D		学业等 其政	Me Data T	

Mr. Glenn Ashe Mr. W. Thomas Packard Mr. Peter, Timonin Mr. John F. Conlon Mr. Charles L. Null Mr. Felix Connolly Mr. Phillip G. Rynn Mr. Edward Kadala Mr. Francois Lamanque Mr. William Hanzalek Mr. Allen H. Engle

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC

Dr.: Neil Pegg LCDR Stephen Gibson Dr. Roger Hollingshead Mr. John Porter

SHIP STRUCTURE SUBCOMMITTEE LIAISON MEMBERS

MARINE BOARD

Dr. Robert Sielski

SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS
Dr. William Sandberg

CANADA CENTRE FOR MINERALS AND
ENERGY TECHNOLOGIES
COMMITTEE ON MARINE STRUCTURES
Dr. William R. Tyson
Dr. John Landes

U. S. NAVAL ACADEMY Dr. Ramswer Bhattacharyya

WELDING RESEARCH COUNCIL
Dr. Martin Prager

NATIONAL ACADEMY OF SCIENCES

U. S. MERCHANT MARINE ACADEMY Dr. C. B. Kim AMERICAN IRON AND STEEL INSTITUTE Mr. Alexander D. Wilson

U. S. COAST GUARD ACADEMY CDR Bruce R. Mustain OFFICE OF NAVAL RESEARCH Dr. Yapa D. S. Rajapaske

U. S. TECHNICAL ADIVSORY GROUP TO THE INTERNATIONAL STANDARDS ORGANIZATION CAPT Charles Piersall

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAPT Alan J. Brown

CAPT Charles Piersall

STUDENT MEMBER Mr. Jason Miller Massachusetts institute of Technology

AMERICAN WELDING SOCIETY Mr. Richard French Member Agencies:

American Bureau of Shipping
Defence Research Establishment
Atlantic
Maritime Administration
Military Sealift Command
Naval Sea Systems Command
Transport Canada
United States Coast Guard

Ship Structure Committee Address Correspondence to:

Executive Director Ship Structure Committee U.S. Coast Guard (G-MSE/SSC) 2100 Second Street, S.W. Washington, D.C. 20593-0001

Ph: (202) 267-0003 Fax: (202) 267-4816

An Interagency Advisory Committee

SSC-398 SR1344

April 30, 1997

ASSESSMENT OF RELIABILITY OF SHIP STRUCTURES

This work forms part of a series of Ship Structure Committee tasks in the structural reliability area. Previous work covered assessment of uncertainties associated with hull ultimate failure, uncertainties in stress analysis, uncertainties in strength models, probabilistic loads and load combinations. In addition, an introduction to structural reliability theory, a demonstration of probability based design procedures, and demonstration prototype design code have been funded.

This report presents a set of methodologies for assessing existing surface ship structural reliability. Areas included cover wave loads and load combinations, hull strength, the estimation of ship failure probabilities, fatigue reliability, and safety level selection. Methods for dealing with non-linearity associated with both loads and strength are presented. In addition to incorporating the results of previous work, the report presents additional information and developments in the various topic areas. In several cases results have been presented in the form of design charts and equations with worked out examples. Applications are made to four ships: two cruisers, a tanker, and an SL-7. For each of these ships loads, strength, reliability, and sensitivity to parameters have been estimated.

The report includes general guidelines for identifying significant parameters affecting reliability as well as recommendations. A set of 10 appendices provides more detail on selected topics.

Rear Admiral, U.S. Coast Guard Chairman, Ship Structure Committee

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.							
SSC-398 A	PB97-141592								
Title and Subtitle		5. Report Date							
Assessment of Reliability of	Existing Ship Structures	1997							
Appendices		6. Performing Organization Code							
		8. Performing Organization Report No.							
7. Author(s)									
A.Mansour, P.Wirsching, M. L	uckett, A. Plumpton, et al.								
9. Performing Agency Name and Address		10. Work Unit No. (TRAIS)							
Mansour Engineering, Inc.									
Attn: A.E. Mansour		11. Contract or Grant No.							
14 Maybeck Twin Drive		N00024-94-C-4059							
Berkeley, CA 94708		13. Type of Report and Period Covered							
12. Sponsoring Agency Name and Address									
Ship Structure Committee		Final							
U. S. Coast Guard (G-MSE/SSC)								
2100 Second St. S.W.	14. Sponsoring Agency Code								
Washington, DC 21\0593-0001		G-M							

15. Supplementary Notes

Sponsored by the Ship Structure Committee. Jointly funded by SSC agency members. The U.S. Navy was the contracting agent for the Ship Structure Committee for this project.

16. Abstract

A detailed approach has been developed for assessing structural safety and reliability of ships. The methodology provides a means for determining reliability levels associated with a hull girder, stiffened panel and unstiffened plate modes of failure. Procedures for esimating the non-linear extreme sea loads and structural strength which are required for the reliability analysis have been developed. Fatigue reliability of ship structural details was also addressed and further developed.

The methodology was demonstrated on four ships; two cruisers, a double hull tanker and an SL-7 containership. Reliability levels associated with each mode of failure of these ships were determined and compared. Sensitivity analysis has been conducted which provides sensitivity of a safety index to variations in design variables associated with extreme loading conditions as well as with fatigue loads.

Recommendations are made of target reliability levels for each ship type and failure mode. Design variables that have the highest impact on reliability have been identified and some guidelines are provided for improving design criteria.

17. Key Words reliability models, loads, ship structural details, structural reliability, stiffened plates, extreme loads, design criteria 18. Distribution Statement Distribution unlimited, available from: National Technical Information Service U.S. Department of Commerce Springfield, VA 22151 (703) 487-4690 19. Security Classif. (of this report) 20. SECURITY CLASSIF. (of this page) 21. No. of Pages 22. Price Unclassified

METRIC CONVERSION CARD

		Symbol		.달 .달	i∉	yd.	mi		\sin^2	mi ²			Z0	qı				go [J	in ³	t, t	1	ga ⊕3	vd ³		R F	•		100	-	212	water boils
Metric Measures		To Find		inches	feet	yards	miles		square inches	square miles	acics	(weight)	onuces	pounds	SHOFT TOTAL			fluid ounces	cubic inches	pints	quarts	gallons cubic feet	cubic vards	IRE (exact)			1	08 09	-	160	body temperature
ersions from		Multiply by	LENGTH	4	3.3 fe			AREA	0.16	4.0 4.0		MASS (2.2 1.1			VOLUME		9		0.1		6	E	oltinly by 0	add 32		20 37	-	80 98.6	
Approximate Conversions from Metric Measures		Symbol When You Know Multiply by		millimeters	meters	meters	kilometers		square centimeters	square kilometers	$(10,000 \mathrm{m}^2)$		grams	Kilograms	metric ton	(1,000 kg)		milliliters	milliliters	liters	liters	liters	cubic meters	TEN		Celsius		0 02- 0		0 32	water freezes
		Symbol		mm E	<u> </u>	E	至		cm^2	km ²	IIA		pı) 자 영				m.	ᄪ	,	٦.	٦ ٤	m3		ړ	J		94		ት 8	
_	cm 	1		2 		3		4		5	6 		7 			8 		9		10 		11 		1:	2 	1	3 	14 	4 	1!	5, 16 ₁
MEINIC CONVERSION	 Inc	 che	 s		 1					 2					 3						 1					 5					 6
		Symbol		E CE	3 E	km		s cm ²		km ²	III	۵	ស្ត	٠.			mL	mL	mĽ	뉱.	⊣ .	٦,_	ן,	H ₃	m ₃		ပူ				
IVI	Meure Measures	To Find	Œ	centimeters	meters	kilometers		square centimeters	square meters	square kilometers	(weight)		kilograms	metric-ton		E	milliliters	milliliters	milliliters	milliliters	liters	liters	liters	cubic meters	cubic meters	TEMPERATURE (exact)	2, degrees				
	IIVEISIOIIS I	Multiphy b	LENGTH	2.5	0.0	1.6	AREA	6.5	0.09	2.6	MASS	28	0.45	0.0		VOLUME	5	15	16	200	0.74	0.47 0.05	3.8	0.03	0.76	MPERAT	subtract 32,	nultiply by			
A same viscos	Approximate Co	When You Know Multiply by		inches feet	yards	miles		square inches	square feet	square miles	actics	ounces	spunod	short tons	(2000 10)		teaspoons	tablespoons	cubic inches	fluid ounces	cups	pints	gallons	cubic feet	cubic yards	TE		Fahrenheit m			
	,	Symbol		.E.	yd	im		in ²	ft ² vd2	mi ²		ZO	9				tsp	Tèsp	in 3	11 oz	ນ 1	ಕ್ಕ ಕ	r gal	ff3	yd3		수				

APPENDIX A EXTREME LOADS AND LOAD COMBINATIONS

APPENDIX A

Extreme Loads and Load Combinations

A. E. Mansour¹

A simple model for combining extreme responses of correlated load components has been developed in this paper for use in design of marine structures. The combined response has the form $f_c = f_1 + Kf_2$ for a two correlated load case and $f_c = f_1 + K_2f_2 + K_3f_3$ for a three correlated load case. The load factors K_i are determined from probabilistic analysis of the combined response of a multiple component system subjected to common input (waves). Application examples are given and modeling errors are discussed. The model is suitable for use in the usual deterministic design analysis or probabilistic and reliability design procedures. This is the first of a three-paper series on this subject.

Introduction

THE OBJECTIVE of this paper is to provide a simple design procedure for determining the combined load or response due to several individual load components acting on a marine structure, taking into consideration the correlation between the load components. In the case of a ship, these load components may consist of global (hull girder) loads such as waveinduced vertical, horizontal, torsional and springing moments, and local loads such as the dynamic wave pressure or internal cargo inertia loads acting on hull stiffened panels. Each of these load components is usually calculated using a separate computer program or simplified analysis. In many cases a characteristic (design) value can be determined on the basis of extreme value theory and statistical data analysis. The purpose of this paper is to provide a simple procedure for combining these characteristic load components or their responses with appropriate attention given to their phasing and correlation. Although the developed procedure can be used for any design analyses, it is particularly useful for probability-based or reliability design analysis. Slamming and fatigue loads are not explicitly addressed in this paper.

A simple format of the combined response is sought, in the form:

$$f_e = f_1 + K f_2$$
 $f_1 > f_2$ (1)

for the two-load case, or

$$f_c = f_1 + K_2 f_2 + K_3 f_3$$
 $f_1 > f_2 > f_3$ (2)

for the three-load case. f_1 , f_2 or f_3 is the individual response to a characteristic value (extreme) of a load component and f_c is the combined extreme response (e.g., stress or deflection). The K-factors appearing in equations (1) and (2) must necessarily depend on the degree of correlation between the individual load components and, as will be seen later, on their relative magnitude and the frequency content of the underlying processes of each component.

In the simplest possible estimation of the extreme load effect, one assumes that the combined extreme load effect is the sum of the extreme values from individual processes that contribute additive effects. This method, referred to sometimes as the "peak coincidence method," leads to an over-

sized structure, since it is not typical that extreme values from individual processes occur at the same instant of time. There are also other simplified approaches, two worth mentioning being Turkstra's rule (1970) and the square root of the sum of the squares (SRSS) method (Mattu 1980). The approximations involved in these two methods will be discussed later.

The load coincidence technique due to Wen (1977) and Wen & Pearce (1982) is rather general one in that it accounts for load correlations. The method, however, requires the use of an average coincidence rate.

Another class of methods is those which calculate the outcrossing rate of a vector load process from a safe domain defined by load and strength variables. Until recently, the most general use of the method was based on outercrossing rate bounds, e.g., Larrabee & Cornell (1981), who developed an upper bound based on a "point crossing" formula. A lower bound is also obtainable, and the method can be extended to nonstationary load processes. For more than two load processes, see Ditlevsen & Madsen (1983).

Recently, Hagen & Tvedt (1992) proposed a method to calculate the mean outcrossing rate that is applicable to both stationary and nonstationary stochastic vector processes, provided that the random variables representing the process and its time derivative process can be mapped into a set of independent standard normal variates. This method has been used for outcrossing rate calculations when the threshold level is varying (Friis Hansen 1993).

One unique aspect of the loads acting on a marine structure is that most of them have a common source-ocean waves. Unlike many civil engineering structures, this commonality of input tends to increase the correlation between the loads. Aside from stillwater loads, all other important loads including low-frequency and high-frequency (slamming and springing) loads as well as external dynamic pressure are due to waves. Mansour (1981,1975) developed an approach for combining these loads, taking into consideration the commonality of the load source. The methodology for short-term load combinations assumes a Gaussian wave process as a common input and a linear vessel system. In effect, for a given sea state, the system transfer functions can be determined and the variance of the combined load effect is obtained. The approach will be extended and further developed in this paper. The combination of the effects of the vertical and horizontal moments and local pressure was considered in a recent report for the American Bureau of Shipping (ABS) by Mansour et al (1992).

In the first section of the paper, the basic approach for

¹Department of Naval Architecture and Offshore Engineering, University of California, Berkeley, California.

Revised manuscript received at SNAME headquarters July 26, 1994.

combining n-load components that have a common source is outlined. Later sections address two- and three-load combination cases; then, application examples are given covering combinations of hull girder (global) loads, e.g., combinations of vertical and horizontal moment effects and combinations of hull girder and local load effects. Next, modeling errors associated with hull girder loads and with the approach to load combinations are addressed. Finally, the paper summarizes the main results and provides some conclusions.

The basic approach

A ship traveling in oblique irregular seas can be considered as a multiple linear system with the ocean waves representing a common input to the system. Over a short period of time the waves can be represented as a stationary random process in the wide sense. In general, the output of the system can be a time variation of any measurable quantity, e.g., motion, velocities, accelerations, loads, and stresses. The sum of the outputs y(t) of this multiple system represents the combined response, e.g., motion, acceleration, stress. Therefore, the probabilistic definition of the sum is of interest in design.

Figure 1 describes schematically the input/output procedure for n-linear systems. The analysis can be carried out in a frequency or time domain, both of which will be investigated here. For generality, the constants a_i are used to ensure uniformity of units and direction, e.g., to convert loads to stresses, all in the same direction. They can always be taken equal to one if not needed. The output is given by the convolution integral:

$$y(t) = \sum_{i=1}^{n} a_i \int_0^{\infty} h_i(\tau) x(t-\tau) d\tau$$
 (3)

where $h_i(\cdot)$ are the impulse response functions of the individual components and $x(\cdot)$ is the common input, i.e., a time history of wave surface elevation.

Since x(t) is a common input to all terms of equation (3) and since the summation and integration signs can be interchanged in this case, a composite impulse response function $h_c(t)$ can be defined as

$$h_c(t) = \sum_{i=1}^n a_i h_i(t) \tag{4}$$

Therefore, all the usual auto and cross-correlation and spectral density relationships valid for a single linear system can

Fig. 1 Model for correlated wave loads acting on a marine structure

be extended to the composite linear system using $h_c(t)$ as the system impulse response function.

In a frequency domain, the frequency response (transfer) function $H_i(\omega)$ for each component is obtained as the Fourier transform of $h_i(t)$, i.e.

$$H_i(\omega) = \int_0^\infty h_i(t)e^{-j\omega t}dt \tag{5}$$

Therefore, one can define a composite frequency response function $H_c(\omega)$ as

$$H_c(\omega) = \int_0^\infty h_c(t)e^{-j\omega t}dt \tag{6}$$

Substituting for $h_c(t)$ in (6) using equation (4) and noting equation (5), one can write:

$$H_{c}(\omega) = \sum_{i=1}^{n} a_{i} H_{i}(\omega)$$
 (7)

The relation between the input (sea) spectrum $S_x(\omega)$ and the output (response) spectrum $S_y(\omega)$ for a single component is given by the usual equation

$$S_{y}(\omega) = H_{i}(\omega)H_{i}^{*}(\omega)S_{x}(\omega) = |H_{i}(\omega)|^{2} S_{x}(\omega)$$
 (8)

where $H_i^*(\omega)$ is the complex conjugate of $H_i(\omega)$. For the composite system, an equation similar to (8) can thus be written

Nomenclature.

 $a_i = conversion factor associated$ with load component i

 f_i = characteristic value of response (stress or deflection) to load component i

 $f_c =$ combined response (stress or deflection)

 $h_c(t)$ = composite impulse response function

 $h_i(t)$ = impulse response function for load component i

 $H_c(\omega) = \text{composite}$ frequency response function

 $H_i(\omega)$ = frequency response function for load component i

 $H_i^*(\omega) = \text{conjugate complex of } H_i(\omega)$

K = load combination factor for two correlated load response

 $K_1, K_2, K_3 =$ load combination factors for three correlated load response

 N_i = number of peaks associated with load component i

 $r_i = stress ratios$

 $Re(\cdot)$ = real part of a complex func-

 $S_{x}(\omega), S_{y}(\omega) =$ wave and response spectra, respectively

t = time

x(t), y(t) =time histories of input and output, respectively

 α = ship heading angle

 $\alpha_i = a$ multiplier used to predict extreme response to load component i

 ϵ = bandwidth parameter

 $\zeta = peak amplitude$

 μ = wave spreading angle

 $\rho_{ii} = correlation coefficient be$ tween to response components i and i

 σ_c^2 or m_0 = variance of the combined response

> $\sigma_i = \text{standard deviation of re-}$ sponse to load component

 $\omega = frequency$

$$S_{y}(\omega) = H_{c}(\omega)H_{c}^{*}(\omega)S_{x}(\omega)$$

$$= S_{x}(\omega)\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}H_{i}(\omega)H_{j}^{*}(\omega)$$

$$= S_{x}(\omega)\sum_{i=1}^{n}a_{i}^{2}|H_{i}(\omega)|^{2}$$

$$+ S_{x}(\omega)\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}H_{i}(\omega)H_{j}^{*}(\omega)$$
(9)

where $|H_i(\omega)|$ are the moduli of the individual frequency response functions and the double summation terms in equation (9) represent the cross spectra terms. The first term in equation (9) is simply the sum of the individual response spectra, each modified by the factor a_i^2 . The second term, which can be either positive or negative, is a corrective term that reflects the correlation between the load components.

If the frequency response functions $H_i(\omega)$ do not overlap on a frequency axis, that is, if $H_i(\omega)H_j^*(\omega)=0$, then the second term in equation (9) drops out and the load components are uncorrelated. Furthermore, if the wave input is considered a normal process with zero mean, then the respective outputs of the n-components are jointly normal, and if uncorrelated it follows that they are also independent.

In general, the variance σ_c^2 of the combined output response is given as the zero moment m_0 of the output spectrum, i.e.

$$\sigma_c^2 = m_0 = \int_0^\infty S_y(\omega) d\omega$$

$$= \sum_{i=1}^n a_i^2 \int_0^\infty |H_i(\omega)|^2 S_x(\omega) d\omega$$

$$+ \sum_{i=1}^n \sum_{\substack{j=1\\i\neq j}}^n a_i a_j \int_0^\infty H_i(\omega) H_j^*(\omega) S_x(\omega) d\omega \qquad (10)$$

Equation (10) can be written in a different form that makes it easier to define the correlation coefficient between the different response components.

$$\sigma_c^2 = \sum_{i=1}^n a_i^2 \sigma_i^2 + \sum_{\substack{i=1 \ j=1 \ i \neq j}}^n \sum_{j=1}^n a_i a_j \rho_{ij} \sigma_i \sigma_j$$
 (11)

where σ_i^2 are variances of the individual load component

$$\sigma_i^2 = \int_0^\infty |H_i(\omega)|^2 S_x(\omega) d\omega \tag{12}$$

and ρ_{ij} are correlation coefficients between individual load components

$$\rho_{ij} = \frac{1}{\sigma_i \sigma_j} \int_0^{\infty} \text{Re}[H_i(\omega) H_j^*(\omega)] S_x(\omega) d\omega$$
 (13)

The above results can be generalized to the case of short-crested seas where the sea spectrum is defined in terms of frequency and a wave spreading angle μ . For a ship heading angle α , the combined response variance given by (11) is valid but with equations (12) and (13) replaced by

$$\sigma_i^2 = \int_{-11/2}^{\pi/2} \int_0^{\infty} |H_i(\omega, \alpha - \mu)|^2 S_x(\omega, \mu) \, d\omega d\mu \tag{14}$$

and

$$\rho_{ij} = \frac{1}{\sigma_i \sigma_j} \int_{-11/2}^{11/2} \int_0^{\infty} \text{Re}\{H_i(\omega, \alpha - \mu)H_j^*(\omega, \alpha - \mu)\}$$

 $S_{x}(\omega,\mu)d\omega d\mu$ (15)

Re $\{\cdot\}$ indicates the real part of the function and $H_j^*(\cdot)$ is the conjugate of the complex frequency response function.

Equation (11) with definitions (12) and (13) or (14) and (15) form the basis for combining the variances of a multiple system taking into consideration the correlation between the response components. If the response components are uncorrelated, i.e., if $\rho_{ij} = 0$, the second term in equation (11) drops out and the combined variance is simply the sum of the individual variances modified by the factors a_i^2 . On the other hand, if the individual components are perfectly correlated, ρ_{ij} will approach plus or minus one, and the effect of the second term in equation (11) on the combined variance can be substantial.

Considering a normal (Gaussian) seaway as common input, the output of the multiple system is also normal. The probability density function of the output peaks for a general normal random process with bandwidth parameter ϵ is given by (Rice 1944):

$$f(\zeta) = \frac{1}{\sqrt{2\pi m_0}} \left\{ \epsilon e^{-\zeta^2/2\epsilon^2 m_0} + \sqrt{\frac{2\pi (1 - \epsilon^2)}{m_0}} \zeta e^{-\zeta^2/2m_0} \Phi\left(\frac{\sqrt{1 - \epsilon^2}}{\epsilon} \cdot \frac{\zeta}{\sqrt{m_0}}\right) \right\}$$
(16)

where

$$\epsilon^2 = 1 - \frac{m_2^2}{m_0 m_4}; m_n = \int_0^\infty \omega^n S_y(\omega) d\omega; n = 0, 2, 4$$

$$\Phi(u) = \int_{-\infty}^u \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

When $\epsilon=0$, that is, a narrow-band process, equation (16) reduces to the Rayleigh distribution usually used to characterize the peak probabilities. If $\epsilon=1$, that is, a wide-band output spectrum, equation (16) of the peaks reduces to a normal distribution; that is, it reduces to the distribution of the process (elevation) itself.

Extreme values of the peaks of the combined response can be estimated from equation (16) (and the corresponding cumulative distribution function) using order statistics, outcrossing analysis, or Gumbel asymptotic distribution (see, for example, Mansour 1990).

Although the approach outlined above can be used to determine the extreme value of the combined response, equation (16) and the extreme value analysis are not suitable for direct use in design. For design purposes, simple formulations such as given by equations (1) and (2) are more suitable. A simplification of the described procedure is therefore necessary. In the next sections of the paper, a simplified procedure has been developed which reduces the above outlined analysis to equations (1) and (2) for the two- and three-load combination cases, respectively.

Two correlated load combinations

As mentioned earlier, a simple format of the combined response (stress) is sought, in the form

$$f_c = f_1 + K f_2 \qquad f_1 > f_2 \tag{1}$$

where K is a probabilistic load combination factor and f_1 and

 f_2 are the individual extreme stresses (characteristic values) corresponding to two load components.

The characteristic design values f_1 and f_2 are usually determined from extreme value theory. For example, the expected extreme stress peak f_i in N_i peaks during a Gaussian design sea state is given by (Cartwright & Longuet-Higgins 1956):

$$f_i = E[f_{i\max}] = \alpha_i \sigma_i \tag{17}$$

where σ_i^2 is the variance of the stress process i and α_i is a multiplier that depends on the number of peaks N_i and the bandwidth parameter ϵ_i given by

$$\alpha_i = \left[2 \ln(1 - \epsilon_i^2)^{1/2} N_i\right]^{1/2} + 0.2886 \left[2 \ln(1 - \epsilon_i^2)^{1/2} N_i\right]^{-1/2}$$
 (18)

If the most probable extreme value (mode) instead of the expected extreme value (mean) is used as a characteristic (design) value of the stress f_i , then equation (17) still holds but with α_i given by the first term only of equation (18). Similarly, the average of the highest 1/mth value, if used as a characteristic value, has the form of equation (17). Since for linear systems the individual responses to a Gaussian process is Gaussian, the combined response of the components is also Gaussian. This means that equations (17) and (18) are valid for the combined response f_c as well. Therefore, equation (1) can be solved for the probabilistic load combination factor K in terms of the variances, using equation (17):

$$K = \frac{f_c - f_1}{f_2} = \frac{\alpha_c \sigma_c - \alpha_1 \sigma_1}{\alpha_2 \sigma_2}$$
 (19)

where σ_1 , σ_2 , and σ_c are the root-mean-square (rms) values of the two load effects and the combined effect, respectively, and α_1 , α_2 , and α_c are the corresponding multipliers as determined from equation (18).

If the most probable extreme values are used as the characteristic value, then the coefficients α_i in equation (19) are, using (18), given by:

$$\alpha_i = \sqrt{2 \ln(1 - \epsilon_i^2)^{1/2} N_i}$$
 $i = 1, 2, c$ (20)

Substituting for σ_c in equation (19) by its value given by equation (11) for the two-load case, and noting that all a_i are equal to unity [since equations (1) and (20) involve stresses rather than moments], one obtains

$$K = \frac{m_r}{r} \left[m_c (1 + r^2 + 2\rho r)^{1/2} - 1 \right]$$
 (21)

where

$$r = \frac{\sigma_2}{\sigma_1}, m_r = \sqrt{\frac{\ln(1 - \epsilon_1^2)^{1/2} N_1}{\ln(1 - \epsilon_2^2)^{1/2} N_2}}$$
 and $m_c = \sqrt{\frac{\ln(1 - \epsilon_c^2)^{1/2} N_c}{\ln(1 - \epsilon_1^2)^{1/2} N_1}}$

 ρ is the correlation coefficient between the two rms stress components σ_1 and σ_2 given by equation (13) for long-crested seas or (15) for short-crested seas.

Typical values of ρ and the corresponding typical values of K will be given for specific load combinations in the next section of the paper. Equations (1) and (21) form the basis of the simplified approach to the two-load combination cases.

Figure 2 shows the trend of K as a function of the correlation coefficient and the ratio of the stresses for the special case when $m_r = m_c = 1$, e.g., all processes are narrow-band with approximately the same central frequency, as in the case of combining stresses due to vertical and horizontal bending moments. In this figure σ_1 was selected as the larger of the two stresses so that r always falls in the range zero to one. It is seen that for $\rho > 0.5$, K does not depend appreciably on r. From equation (21) or Fig. 2, the following extreme cases can be obtained:

- (a) If $\rho = 1$, i.e., the two stresses are fully correlated, K = 1 independent of the stress ratio r.
- (b) If $\rho = 0$, i.e., the two stresses are uncorrelated, K = 0.05 for r = 0.1 and K = 0.41 for r = 1.

The second extreme case indicates that even though the two loads or stresses are uncorrelated, the fact that a second load exists will contribute somewhat to the combined stress (5% of f_2 for r = 0.1 or 41% of f_2 for r = 1).

Comparison with Turkstra's rule

Turkstra (1970) proposed that structural safety can be checked using a set of design loads with each load at its maximum value and with the other loads at their accompanying "point in time" values. In the case of two-load effects, each a realization of a zero mean Gaussian random process x_1 or x_2 , the accompanying load effect (stress) value can be estimated from (Thayamballi 1993):

$$E(x_2/x_1) = \rho\left(\frac{\sigma_2}{\sigma_1}\right) x_1^* \tag{22}$$

where ρ is the correlation coefficient and x_1^* is the value of x_1 for which x_2 needs to be predicted. The σ_i are the stress process rms values. Also, the variance of x_2 , given x_1 , is obtained from

Fig. 2 Load factor for two correlated wave loads

$$Var(x_2/x_1) = \sigma_2^2(1 - \rho^2)$$
 (23)

Note that as ρ tends to ± 1 , the variance of the predicted value of x_2 tends to zero; i.e., the prediction is more certain. If ρ tends to zero, the variance of the predicted value of x_2 is larger; i.e., the prediction is less certain.

Equations (22) and (23) can be used to provide an estimate of the coexisting x_2 -value and the variability of that estimate when x_1 is an extreme value. Thus the combined stress according to Turkstra's rule, using equation (22), is

$$f_c = \max \left[f_1 + \rho \left(\frac{\sigma_2}{\sigma_1} \right) f_1; f_2 + \rho \left(\frac{\sigma_1}{\sigma_2} \right) f_2 \right]$$
 (24)

If one uses the same approximation made in Fig. 2, i.e., $\alpha_1 \cong \alpha_2$, one can write

$$\frac{\sigma_2}{\sigma_1} \cong \frac{f_2}{f_1} \tag{25}$$

where f_1 and f_2 are the extreme (characteristic) values of the stresses and σ_1 and σ_2 are the rms values. Substituting (25) in (24) one gets:

$$f_c = \max[f_1 + \rho f_2; f_2 + \rho f_1] = f_1 + \rho f_2 \text{ for } f_1 > f_2$$
 (26)

that is, in this case,

$$K = \rho$$

By comparison with Fig. 2, which shows how K derived in this paper varies with ρ and r, it can be seen that Turkstra's rule ($K = \rho$, i.e., a line connecting the origin and the point $\rho = 1, K = 1$) will underestimate the combined extreme stress. This conclusion was also reached by Nikolaidis & Kaplan (1991) when they compared Turkstra's rule with simulation results. Figure 2 shows also that the likely error in applying Turkstra's rule increases with increasing the stress ratio r.

Comparison with square root of sum of squares (SRSS) method

According to the SRSS method (Mattu 1980) the combined stress variance for the two-stress case is given by

$$\sigma_c^2 = \sigma_1^2 + \sigma_2^2 \tag{27}$$

Comparing the above equation with equation (11), it is clear that the SRSS method neglects the effect of correlation between the stresses, i.e., the second term of equation (11). It is therefore expected to give accurate results only if $\rho = 0$.

For extreme characteristic stress values f_1 and f_2 , the combined stress according to the SRSS method is

$$f_c = (f_1^2 + f_2^2)^{1/2}$$
$$= f_1 + Kf_2$$

where

$$K = \frac{m_r}{r} [m_c (1 + r^2)^{1/2} - 1]$$
 (28)

The probabilistic load combination factor K derived in this paper [equation (21)] is again more accurate than that given by the SRSS method [equation (28)] because it reflects the effect of correlation between the stress components. The error in estimating the combined stress according to the SRSS method increases as the correlation coefficient increases (see Fig. 2). If $\rho=0$, the SRSS method is expected to give accurate results.

Nikolaidis & Kaplan (1991) provided some results for combining wave-induced and slamming bending moments using simulation. The results were compared with Turksra's rule, the peak coincidence method, and the SRSS method. For a significant wave height of 6.14 m and ship speed of 25 knots the simulation result for the combined bending moment is 1.8×10^5 ton m. Turkstra's rule gave 1.3×10^5 ton m while the peak coincidence and the SRSS methods gave 2.1×10^5 and 1.5×10^5 ton m, respectively. The average maximum wave and slamming bending moments are given as 0.94×10^5 and 1.17×10^5 , respectively.

If equation (26) is used to determine approximately the correlation coefficient ρ according to Turkstra's combined moment result, one gets $\rho=0.138$. Using this value in equation (21), and assuming that $m_r=m_c=1$, one obtains $K\simeq 0.456$. This value gives a combined moment according to equation (1) of 1.60×10^5 ton·m., which is closer to the simulation results than the other methods.

Although the slamming bending moment is not linear with respect to the wave height, the proposed method results are closer to simulation results than the other methods. This example shows the potential of the presented method although, in this case, the correlation coefficient was estimated approximately.

Three correlated load combinations

The simplified procedure for the three-load case is similar to that for the two-load one. The sought combined stress has the form

$$f_c = f_1 + K_2 f_2 + K_3 f_3$$

$$f_c = f_2 + K_1 f_1 + K_3 f_3$$

$$f_c = f_3 + K_1 f_1 + K_2 f_2$$
(29)

where K_1 , K_2 , and K_3 are the load combination factors corresponding to the individual characteristic stresses f_1 , f_2 , and f_3 , respectively. By requiring that any of the above equations yield the same combined stress f_c , equations (29) can be solved simultaneously for the load factors, yielding

$$K_{1} = \frac{1}{2} \left(\frac{f_{c}}{f_{1}} + 1 - \frac{f_{2}}{f_{1}} - \frac{f_{3}}{f_{1}} \right)$$

$$K_{2} = \frac{1}{2} \left(\frac{f_{c}}{f_{2}} + 1 - \frac{f_{1}}{f_{2}} - \frac{f_{3}}{f_{2}} \right)$$

$$K_{3} = \frac{1}{2} \left(\frac{f_{c}}{f_{3}} + 1 - \frac{f_{1}}{f_{3}} - \frac{f_{2}}{f_{3}} \right)$$
(30)

The characteristic stress (extreme) f_i in each instance is $\alpha_i(\text{rms})_i$. Here we will consider only the case when $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_c$, i.e., the case of narrow-band processes with approximately the same central frequency. This case is adequate for combining stresses due to vertical and horizontal bending moments together with stress due to torsional moment or to local lateral pressure. In this case, equation (11) can be written in terms of f_i instead of σ_i and used to eliminate f_c from equation (30). This yields, for K_1 , K_2 , and K_3 :

$$K_1 = \frac{1}{2} \left(\rho^* - r_2 - r_3 + 1 \right) \tag{31}$$

$$K_2 = \frac{1}{2r_2}(\rho^* + r_2 - r_3 - 1) \tag{32}$$

$$K_3 = \frac{1}{2r_3} (\rho^* + r_3 - r_2 - 1) \tag{33}$$

where

JOURNAL OF SHIP RESEARCH

$$r_2 = \frac{f_2}{f_1}$$
 and $r_3 = \frac{f_3}{f_1}$

and

$$\rho^* = \left[1 + r_2^2 + r_3^2 + 2\rho_{12}r_2 + 2\rho_{13}r_3 + 2\rho_{23}r_2r_3\right]^{1/2} \quad (34)$$

The correlation coefficients ρ_{12} , ρ_{13} , and ρ_{23} between the individual stress components f_1 , f_2 , and f_3 are to be determined from equation (13) for long-crested seas or (15) for short-crested seas. Experimental or simulation data, if available for these coefficients, may be used instead of equation (13) or (15). Typical values are given next in the "Application" section of the paper for specific load combinations.

Since any of equations (29) will give an identical result for the combined stress f_c , it is sufficient to use the first equation of (29) [or equation (2)] and equations (32) and (33) to determine K_2 and K_3 appearing in (29). The Appendix shows some design charts for K_2 and K_3 [equations (32) and (33)] as a function of r_2 , r_3 , ρ_{12} , ρ_{13} , and ρ_{23} . These are to be used with the first of equations (29). f_1 was selected to be the largest stress so that r_2 and r_3 will always have values between zero and one. Note that the K-factors can be negative, but they always yield the correct value for the combined stress.

Application examples

Equation (1) with K determined from equation (21) is applicable to many two-load combination cases in marine structures. For ships as an example, these two equations can be used to combine the effects of vertical and horizontal bending moments, vertical and torsional moments, vertical and springing moments, and horizontal and torsional moments. They can be used also to combine stresses due to primary vertical bending moment (or any of the other primary moments) with secondary stresses due to lateral pressure. In all cases the characteristic stresses f_1 and f_2 may be taken as the most probable extreme values (or the expected values) of the individual stress components as given by equation (17) in the considered design sea state (Mansour & Hovem 1993).

Note that the frequency response functions $H_i(\omega)$ are readily computed in many ship motion computer programs for individual loads or moments rather than stresses, e.g., primary vertical, herizontal and torsional moments as well as external hydrodynamic pressure. These individual load frequency response functions must be converted to stress frequency response functions by multiplying by an appropriate conversion factor, e.g., by one over a section modulus to convert a moment component to a stress component. These conversion factors are accounted for through the constants a: appearing for example in equation (11). Therefore, in the case of a moment, a_i is equal to one over the section modulus. All stress components used in equations (1) and (2) must be at the same location and in the same direction. In case of a stress component due to external pressure, only the dynamic part of the pressure (i.e., excluding the stillwater pressure) is to be used in the calculation of the combined response; see Mansour & Thayamballi (1993). The stillwater stresses are to be added after obtaining the combined stress due to waves, in the usual manner.

The presented model for load combination can be also used in conjunction with the finite-element method. For example, in the case of vertical and horizontal moments, the K-factor determined from equation (21) provides the fraction of the horizontal bending moment to be applied simultaneously with the vertical bending moment on the hull.

The load combination factor K depends on the correlation coefficient ρ , which can be determined from equation (13) or (15), experimental data, or simulation. Some typical values of ρ are available for specific load combinations as follows:

- Stresses due to primary vertical and horizontal moments: For large tankers considered by Stiansen & Mansour (1975) the correlation coefficient was found to be dependent on sea state and heading with values close to 0.45. The International Ship Structures Congress (ISSC), in their 1973 session, recommended $\rho=0.32$. For r=0.67, the first value of ρ results in K=0.65 and the second value gives K=0.55 ($m_r=m_c=1$). That is to say, only about 60% of the stresses due to the horizontal moment should be added to those due to vertical moment.
- Stresses due to vertical moment and external hydrodynamic pressure: For Mariner class ships, ρ was determined to be in the range 0.70 to 0.78 for panels near the midship section. If one assumes $\rho=0.74$ and r=0.2, equation (21) with $m_r=m_c=1$ yields K=0.78. Note the high correlation between the primary bending stress due to hull girder wave vertical moment and the secondary stress due to the hydrodynamic pressure near the midship section. Note also that ρ and the corresponding K-factor are associated with the time-dependent part of the individual stress components. The time-independent part of the stresses due to still water, for both hull girder bending and hydrostatic pressure, should be added to the resulting combined wave stress in the usual manner.

Equation (2) for the three-load combination case may be also used in many applications to ships and marine structures. The K-factors appearing in the equation can be determined from equations (32) and (33). To get an appreciation of the factors K_2 and K_3 , consider the stress arising from vertical bending moment f_1 , horizontal bending f_2 , and local pressure f_3 near the midship section at a bottom plating. For $r_2 = 0.6$, $r_3 = 0.4$, $\rho_{12} = 0.4$, $\rho_{13} = 0.6$, and $\rho_{23} = 0.2$, equations (32) and (33) yield $K_2 = 0.67$ and $K_3 = 0.51$.

It is interesting to note that, for an extreme case when all three loads are fully correlated ($\rho_{12}=\rho_{13}=\rho_{23}=1$), the values of the K-factors are always unity, i.e., $K_2=K_3=1$, independent of the values of r_2 and r_3 . If, on the other hand, all three loads are uncorrelated ($\rho_{12}=\rho_{13}=\rho_{23}=0$), the K-factors will assume nonzero values and their magnitude will depend on r_2 and r_3 .

It is also interesting to note that the two-load combination case when $m_r = m_c = 1$ can be retrieved from the three-load combination equations by inserting zero for one of the load components. For example, if one inserts $r_3 = 0$ in equations (2), (32), and (33) and noting that $f_3/r_3 = f_1$, one obtains an equation for K_2 identical to K for the two-load case, i.e., equation (21).

Modeling errors

The presented simple procedure for combining two correlated loads [equations (1) and (21)] and three correlated loads [equations (2), (32), and (33)] may be used in either the usual deterministic design analysis or in probabilistic and reliability analysis. It is noted, however, that the load factors are determined on a probabilistic basis. Therefore, it is more consistent to use these equations in connection with probabilistic analyses or reliability methods.

The developed load combination factors are based on linear systems and the associated spectral analysis. If used in connection with reliability analysis, it is suggested that the K-factors be taken as normally distributed and the associated modeling error to have a bias of 1.0 and a coefficient of variation of 15%. These values are based on experience. Monte-Carlo simulation can be used to estimate the statistics of the modeling error. The associated characteristic stresses f_1 , f_2 , and f_3 can be taken as the most probable extreme values given by equations (17) and (20) and should be calculated for a specified duration in a design sea state. In

50

most cases the bandwidth parameter ϵ_i may be taken equal to zero in equation (20). If f_1 , f_2 , and f_3 are calculated on the basis of linear theory, which is likely the case, the modeling errors associated with them due to nonlinearities should be accounted for separately. For example, in the case of waveinduced vertical bending moment and the associated stress, the data provided by the Committee on "Applied Design" of the International Ship and Offshore Structures Congress (ISSC 1991) suggest a bias of 0.9 to be used to correct for overpredicting the moment or stresses due to the linearity assumption and short-crestedness of waves; i.e., the actual loads in high sea states are approximately 90% of the predicted values. In addition, since linear strip-theory spectral analysis programs give equal sagging and hogging moments, a bias of 1.15 is suggested to estimate sagging bending moments and a bias of 0.85 to estimate hogging bending moments. For more information on quadratic response, see Jensen et al (1992), and for a more complete discussion of modeling errors associated with extreme loads for use in reliability analysis, see Mansour & Hovem (1993).

Summary and conclusions

A simple model suitable for design analysis has been presented for combining extreme correlated loads and the associated stresses. The cases of two correlated loads [equations (1) and (21)] and three correlated loads [equations (2), (32), and (33)] have been modeled in a format suitable for use either in the usual deterministic design analysis or in

probabilistic and reliability analysis. The model is based on developing a composite frequency and impulse response functions of multiple linear systems subjected to common input (ocean waves). The requirement for the applicability of the model is the satisfaction of the stationarity condition of the common wave input and the linearity of the multiple system. The stationarity of the wave input implies short-term analysis, and the linearity assumption allows the use of the superposition principle but decreases the accuracy in high sea states. The model is consistent with the "standard" frequency-domain linear ship motion computer programs currently available in many design offices, classification societies, and government agencies. Modeling errors or correction factors can be incorporated in the model to account for the nonlinearities of the response in high sea states. Some typical values of the modeling errors are given in the paper, though additional work is necessary in this area.

The model is also suitable for use in the two level of analyses usually required in practice, i.e., the design-oriented and checking-oriented analyses. The design-oriented analysis usually requires preliminary estimates of load combinations, mostly to determine minimum scantlings and to develop the design further. Therefore, a design-oriented formulation must be simple and must be, to a large extent, independent of detailed information which is usually not available at the early stages of a design. The developed model can be used in this type of design-oriented analysis with load combination factors K_i estimated from typical values for the specific two- and three-load cases under consideration. Some typical values of the load factors are given in this paper, though a more thorough parametric study in this area is necessary.

Checking-oriented analysis, on the other hand, requires more accurate estimates of load combinations to be used to check the adequency of a completed preliminary design or an existing ship. This checking-oriented analysis will necessarily depend on more detailed information on the marine structure and the operation profile. The presented model for load combination can be used also for this type of checking analysis. A more accurate determination of the K-factors is possible for a completed design or an existing ship. A striptheory ship motion program can be used to determine the frequency response functions (transfer functions) of each individual load or stress component. The correlation coefficients can be then determined from equation (13) for longcrested seas or (15) for short-crested seas. An accurate determination of the K-factors is then possible from equation (21) for the two correlated load combination or from equation (32) and (33) for the three correlated load combination.

Acknowledgment

The author would like to acknowledge the support provided by the Ship Structure Committee (SSC) and the American Bureau of Shipping. Sincere thanks are expressed to Mr. John Conlon, Dr. H. Y. Jan, Dr. H. H. Chen, Dr. Y. N. Chen, and Dr. L. Ivanov of ABS for their discussions. The author would like also to thank Dr. J. Lozow for his valuable contribution and the SSC project technical committee and its chairman, Dr. Robert Sielski, for their advice. Sincere thanks are expressed to Mr. M. Jue for his help in the computation of the design charts given in the Appendix.

References

- CARTWRIGHT, D. AND LONGUET-HIGGINS, M. 1956 The statistical distribution of the maxima of a random function. Proceedings of the Royal Society of London, 237.
- DITLEVSEN, O. AND MADSEN, H. L. 1983 Transient load modelling: clipped normal processes. Journal of the Engineering Mechanics Division, American Society of Civil Engineers, 109, 2.
- Friis-Hansen, P. 1993 Reliability based design of a midship section.
 Ongoing dissertation work. Department of Ocean Engineering. The Technical University of Denmark, Lyngby.
- HAGEN, O. AND TVEDT, L. 1992 Parallel system approach for vector outcrossing. Trans. ASME, Journal of Offshore Mechanics and Arctic Engineering, 114, 2. SC 1973 Report of committees 3 and 10. Proceedings, Fifth Inter-
- national Ship Structures Congress, Hamburg.
- ISSC 1991 Report of committee on applied design. Proceedings, International Ship and Offshore Structures Congress, Wuxi, China.

 JENSEN, J. J., PEDERSEN, P., TERNDRUP, A., AND PETERSEN, J. 1992 Stresses in containerships. To appear in Schiffbautech-
- nische Gesellschaft.
- LARRABEE, R. D. AND CORNELL, C. A. 1981 Combination of various load processes. Journal of the Structural Division, American Society of Civil Engineers, 197, ST1.
- IANSOUR, A. E. 1981 Combining extreme environmental loads for reliability based design. *Proceedings*, SSC/SNAME Extreme Loads Re-Mansour, A. E. sponse Symposium, Arlington, Va.
- MANSOUR, A. E. 1990 An introduction to structural reliability theory.
- Ship Structure Committee report 351.

 MANSOUR, A. E. AND HOVEM, L. A. 1994 Probability-based ship struc-
- tural safety analysis. JOURNAL OF SHIP RESEARCH, 38, 4, 329-339.

 MANSOUR, A. E. AND THAYAMBALI, A. K. 1993 Probability based ship design procedures: loads and load combinations. Draft final report sub-
- mitted to Ship Structure Committee, project SR-1337.

 MANSOUR, A. E., THAYAMBALI, A. K., Li, M., AND JUE, M. 1992 A reliability based assessment of safety levels in the ABS double skin
- tanker guide. Final report to the American Bureau of Shipping.

 MATTU, R. K. 1980 Methodology for combining dynamic responses.

 NUREG-0484, rev. 1, office NRR, U.S. NRC.

 NIKOLAIDIS, E. AND KAPLAN, P. 1991 Uncertainties in stress analysis
- of marine structures. Ship Structure Committee Report SSC 363.
- RICE, S. O. 1994, 1945 Mathematical analysis of random noise. Bell System Technical Journal, 23, 24.
- STIANSEN, S. G. AND MANSOUR, A. E. 1975 Ship primary strength based on statistical data analysis. *Trans.* SNAME, 83.

 THAYAMBALLI, A. K. 1993 On predicting coexisting load values for ship
- design. Consulting development report, in preparation, May.
- TURKSTRA, C. J. 1970 Theory of structural safety. SM study no. 2, Solid Mechanics Division, University of Waterloo, Ontario, Canada. WEN, Y. K. 1977 Statistical combination of extreme loads. Journal of the Structural Division, American Society of Civil Engineers, 103, ST5.
- WEN, Y. K. AND PEARCE, H. T. 1982 Combined dynamic effects of correlated load processes. Nuclear Engineering and Design, 75.

Appendix

KC2 VS RHO12

R2=.6.R3=.3.RHO23=.3

KC3 VS RHO12

B2 = 6 B3 = 3 BHO23 = 3

KC2 VS RHO12

R2=.6,R3=.5,RHO23=.3

KC3 VS RHO12

R2=.6,R3=.5,RHO23=.3

KC2 VS RHO12

R2=.8.R3=.3.RHO23=.3

MARCH 1995

KC3 VS RHO12

R2= 8 R3= 3 RHO23= 3

JOURNAL OF SHIP RESEARCH

KC2 VS RHO12 R2=.8,R3=.5,RHO23=.3 0.8 0.78 0.76 0.74 0.7 0.68 0.66 0.64 0.62 0.4 RHO12 0.3 0.5 0.6 0.2

APPENDIX B

SKEWNESS, KURTOSIS AND ZERO UPCROSSING RATE OF COMBINED RESPONSE

APPENDIX B

SKEWNESS, KURTOSIS AND ZERO UPCROSSING RATE OF COMBINED RESPONSE

The standard deviation, skewness and kurtosis of the combined response x_c can be approximately estimated from the corresponding values of the individual components x_i whose individual means are zero, as follows:

$$x_c = x_1 + x_2$$

and

$$\sigma_c^2 = E[x_c^2] = \sigma_1^2 + \sigma_2^2 + 2E[x_1 x_2]$$

$$= \sigma_1^2 + \sigma_2^2 + 2\rho_{12} \sigma_1 \sigma_2$$
(B.1)

where E(*) denotes expected value, σ_i the standard deviation of x_i and

$$\rho_{12} = \frac{E[x_1 x_2]}{\sigma_1 \sigma_2}$$

as zero individual means are assumed.

The combined response skewness α_c can be determined from:

$$\alpha_c \, \sigma_c^3 = E[x_c^3] = E[(x_1 + x_2)^3]$$

$$= \alpha_1 \, \sigma_1^3 + \alpha_2 \, \sigma_2^3 + 3E[x_1^2 \, x_2] + 3E[x_1 \, x_2^2]$$

If x_1^2 is assumed independent of x_2 and x_2^2 independent of x_1 , then

$$\alpha_c = \frac{1}{\sigma_c^3} \left[\alpha_1 \sigma_1^3 + \alpha_2 \sigma_2^3 \right]$$
 (B.2)

The combined response kurtosis β_c can be determined from:

$$(\beta_c - 3)\sigma_c^4 = E[x_c^4] = E[(x_1 + x_2)^4]$$

$$= (\beta_1 - 3)\sigma_1^4 + (\beta_2 - 3)\sigma_2^4 + 4E[x_1^3 x_2] + 4E[x_1 x_2^3] + 6E[x_1^2 x_2^2]$$

If the x_i of higher powers are independent, then

$$\beta_c = \frac{1}{\sigma_c^4} \left[(\beta_1 - 3)\sigma_1^4 + (\beta_2 - 3)\sigma_2^4 + 6\sigma_1^2 \sigma_2^2 \right] + 3$$
 (B.3)

The combined response zero crossing can be approximately determined from the combined spectrum $S_c(\omega)$ as follows:

$$S_{c}(\omega) = S_{x}(\omega) \sum_{i} \left| H_{i}(\omega) \right|^{2} + S_{x}(\omega) \sum_{i} \sum_{j} H_{i}(\omega) H_{j}^{*}(\omega)$$

$$i \neq i$$
(B.4)

and

$$v_{0c}^2 = \left(\frac{1}{2\pi}\right)^2 \frac{m_{2,c}}{m_{0,c}} \tag{B.5}$$

where

$$\sigma_c^2 = m_{0,c} = \int_0^\infty S_c(\omega)d\omega$$
 and $m_{2,c} = \int_0^\infty \omega^2 S_c(\omega)d\omega$ (B.6)

In the above equations, $S_x(\omega)$ is the wave spectrum (common input spectrum to the two processes), $H_i(\omega)$ is the complex frequency response function and $H_j^*(\cdot)$ indicates the conjugate of $H_i(\cdot)$.

Substituting (B.6) in (B.5) and using (B.4) one gets

$$v_{0c}^{2} = \left(\frac{1}{2\pi}\right)^{2} \frac{\sum_{i} m_{2,i} + \sum_{i} \sum_{j} \rho_{ij,2} \sqrt{m_{2,i} \cdot m_{2,j}}}{\sum_{i} m_{0,i} + \sum_{i} \sum_{j} \rho_{ij} \sigma_{i} \sigma_{j}}$$

$$(B.7)$$

where

$$\rho_{ij} = \frac{1}{\sigma_i \sigma_j} \int_0^\infty S_x(\omega) \operatorname{Re} \left\{ H_i(\omega) H_j^*(\omega) \right\} d\omega$$
 (B.8)

$$\rho_{ij,2} = \frac{1}{\sqrt{m_{2,i} m_{2,j}}} \int_{0}^{\infty} \omega^{2} S_{x}(\omega) \operatorname{Re} \left\{ H_{i}(\omega) H_{j}^{*}(\omega) \right\} d\omega$$
 (B.9)

If the two processes are uncorrelated or if the correlation terms are neglected, then (B.7) reduces to

$$v_{0c}^2 \cong \left(\frac{1}{2\pi}\right)^2 \frac{\sum_{i} m_{2,i}}{\sum_{i} m_{0,i}}$$
 (B.10)

Otherwise the correlation terms must be calculated from (B.8) and (B.9). Using the relation

$$v_{0i}^2 \simeq \left(\frac{1}{2\pi}\right)^2 \frac{m_{2,i}}{m_{0,i}} \qquad i = 1,2$$

and for two processes only, i.e., i = 1, 2, (B.10) can be written as:

$$v_{0c}^2 = \frac{\sigma_1^2 v_{01}^2 + \sigma_2^2 v_{02}^2}{\sigma_1^2 + \sigma_2^2}$$
 (B.11)

APPENDIX C

COMPUTER CODES FOR STRUCTURAL RELIABILITY ANALYSIS

CALREL

Program for Structural Reliability Analysis

CALREL (CAL-RELiability) is a general-purpose structural reliability analysis program designed to compute probability integrals of the form

$$p = \int_{F} f_{X}(x) dx$$

where X is a vector of random variables with the joint probability density function $f_{X}(x)$, and F denotes the failure domain, which is defined as $F = \{g(x) < 0\}$ for a component problem, as $F = \{\bigcup_{i} g_i(x) \le 0\}$ for a series system problem, and as $F = \{\bigcup_{k} \bigcap_{i \in C_k} g_i(x) \le 0\}$ for a general system problem, where $g_i(x)$ denote limit-state functions and C_k denote cut sets. The functions $g_i(x)$ are provided by the user through an user-defined subroutine, which itself may call other subroutines or an entire subprogram (e.g., a finite-element program) supplied by the user.

CALREL incorporates four general techniques for computing the above probability:

- (1) First-order reliability method (FORM), where the limit-state surfaces are replaced by tangent hyperplanes at design points in a transformed standard normal space;
- (2) Second-order reliability method (SORM), where the limit-state surfaces are replaced by hyperparaboloids by either curvature fitting or point fitting in the standard normal space;
- (3) Directional simulation with exact or approximate surfaces; and
- (4) Monte Carlo simulation.

In addition to the above, CALREL has routines for computing reliability sensitivity measures with respect to parameters defining probability distribution functions or limit-state functions.

CALREL has a large library of probability distributions for independent as well as dependent random variables. Additional distributions can be included through a user-defined subroutine.

CALREL is written in FORTRAN-77 and operates on IBM-PC or compatible personal computers, as well as on computers with the UNIX operating system. It has been developed by P-L. Liu, H-Z. Lin and A. Der Kiureghian at the University of California at Berkeley. Further information and price quotation can be obtained by contacting Ken Wong at NISEE, Department of Civil Engineering, University of California, Berkeley, CA 94720, or by calling (415) 642-5113.

State-of-the-art computer program for probabilistic reliability and sensitivity analysis

PROBAN®

PROBAN helps to efficiently evaluate the impact of uncertainty on the reliability of a system - technical, financial, managerial or otherwise. Probabilistic reliability and sensitivity methods are used to quantify uncertainties and thereby to support achieving a required reliability and controlling risk. The methods provide a basis for decisions regarding optimal allocation of resources, and they complement and enhance experimental approaches and conventional deterministic analyses such as design-case evaluations or what-if sensitivity and parameter studies.

The benefits of a probabilistic approach are the clear treatment of uncertainty, the identification of key factors, the possibility of performing trade-off studies, and the fact that the only consistent way of reducing uncertainty when more information becomes available, e.g. through inspection, is through a probabilistic analysis.

Besides traditional reliability measures, the modern probabilistic methods in PROBAN provide a number of useful sensitivity results for reliability-based design and optimisation. Also, sensitivity measures may show the effect of changes in parameter values, and importance measures can be used in initial analyses to reduce the number of random variables and to focus attention on the important uncertain quantities for the problem at hand.

APPLICATIONS

PROBAN has been developed to be a general probabilistic analysis tool. Particularly efficient methods are available for computing small probabilities, as often arise in structural reliability problems. The program is used by engineers that run decision models already available in PROBAN, as well as by experienced analysts who formulate, implement, and apply new probabilistic models.

PROBAN is applied in many areas. The program has successfully been used in reliability studies for marine and offshore structures including:

- calibration of safety requirements in technical standards
- · fatigue and fracture reliability
- · cost-optimal inspection planning
- · re-qualification of existing structures
- foundation analysis and consolidation updating
- pipeline reliability
- probability-based fire and explosion analysis
- · ship hull reliability

PROBAN is also used in the mechanical industry and in aerospace companies and institutions. Applications here include:

- stochastic durability analysis
- probabilistic damage tolerance evaluation
- strength analysis of composites

In civil engineering, PROBAN has been applied to large structures such as bridges, e.g. for:

- · design basis determination
- traffic load modelling
- ship collision evaluation

Other applications of PROBAN include:

- stochastic finite element analysis
- economic risk analysis
- network scheduling under uncertainty

PROBAN is a Registered Trademark of Veritas Sesam Systems

TECHNICAL CAPABILITIES

PROBAN provides state-of-the-art computation facilities for the analysis of random variable models. It features general methods to determine probability density and distributions, reliability measures and probabilistic sensitivity and importance measures. The numerical routines, the execution facilities, and the implementation are of a high quality. The program features include:

Extensive modelling capabilities with a library of one- and multi-dimensional probability distributions. User-defined distributions can easily be specified by providing the density and distribution functions. General multivariate distributions are established by a sequential modelling in which a function of random variables can be used as a parameter in the distribution of another random variable.

The functions used to model probability distributions and to define the events of interest (for example the failure of a system) can be provided by the user as subroutines. In addition, PROBAN comes with a library of standard functions that can be used directly.

Full-featured first and second order reliability methods (FORM and SORM) for probability computation of single events, unions, intersections and unions of intersections are available. FORM and SORM are particularly efficient for computing very small probabilities, e.g. $10^{-3}-10^{-6}$. Exact parametric FORM sensitivity is provided for small and large intersections, as may be required in reliability updating, and the second order method includes exact SORM probability computation. Conditional reliability under inequality and equality events can be computed. PROBAN also contains a mean-based FORM, intended primarily for CPU-intensive models.

The approximate FORM/SORM results may be updated through importance sampling. The probability of general events can be computed by Monte Carlo simulation and directional sampling. Probability distribution computations can be performed by Monte Carlo simulation or Latin Hypercube sampling. Sensitivity analysis by simulation is also available.

DOCUMENTATION

The capabilities of PROBAN are documented in numerous scientific and technical papers and reports. The program comes well documented with User's Manual, Distribution Library Manual, Theory Manual and Example Manual.

USER-INTERFACE

PROBAN Version 3 (1991) is an interactive program, with a database for model and result data. The program is equipped with an efficient, graphical user-interface. The input is logged in a journal file from where it can be retrieved during a later (re)analysis. The program can also be executed in batch mode.

Many graphics and print options are available, for example, to display probability density and distribution functions of input and output random variables. Importance measures can be displayed in pie charts and automated parameter studies can be presented by graphs.

FURTHER DEVELOPMENT

PROBAN is the result of a major strategic research effort at Det norske Veritas, Norway, through A.S Veritas Research. The first version was made in the mid-seventies and it handled second-moment reliability computation for components. From 1984, PROBAN was developed at A.S Veritas Research, Høvik outside Oslo, Norway, in close cooperation with internationally leading researchers in the field. The first commercial version of PROBAN was made available in 1986.

Det norske Veritas intends to keep PROBAN at the leading edge. Further research and development are undertaken by the large group of specialists at A.S. Veritas Research and Veritas Sesam Systems A.S., Norway. This ensures long-term maintenance and support of the program. The implementation of new features in PROBAN is prioritised according to user needs. A number of special-purpose probabilistic analysis modules based on PROBAN have been developed for Det norske Veritas and other organisations.

PROGRAM INFORMATION

PROBAN is designed and maintained to be a state-of-theart, professional computer program. The program is supported worldwide by Veritas Sesam Systems. It is available for common computers from APOLLO/HP, DEC, IBM and SUN.

PROBAN is installed at an increasing number of companies in the petroleum industry, in engineering consultant and design firms, and in the aerospace industry. In addition, the program is installed at research centres and universities in Europe and the US.

Veritas Sesam Systems A.S Veritasveten 1 P.O. Box 300 N-1322 Høvik Norway Tel (02) 479900

Fax (02) 477272

Veritas Sesam Systems Ltd.
Veritas House
112 Station Road
Sidcup, Kent DA15 7BU
Great Britain
Tel (081) 309 7477
Fax (081) 309 1834

Veritas Sesam Systems Inc. 1325 South Dairy Ashtord Suite 100 Houston, Texas 7707 USA Tel (713) 558 1733 Fax (713) 558 2396

DET NORSKE VERITAS

Det norske Veritas (DnV) is a corporation whose objective is to safeguard life, property and the environment through services for managing quality, safety and risk. DnV was established in 1864 as a ship classification society and has remained an independent foundation. DnV provides a wide variety of services in shipping, offshore development and production, land-based industry, and aerospace and information technology. DnV operates in 110 countries. The headquarter is at Havik outside Oslo, Norway.

VERITAS SESAM SYSTEMS

Veritas Sesam Systems (VSS) is the company in the DnV-Group for marketing of engineering software. The company also develops, maintains, and operates software, and it serves as a market partner for R&D institutions. VSS' activities are based on the SESAM program system for structural engineering in the offshore and marine industry. VSS also offers the probabilistic analysis program PROBAN. VSS has subsidiary offices in London and Houston.

SUMMARY OF NESSUS CAPABILITIES

NESSUS, under funding from NASA LeRC, is a general purpose probabilistic structural analysis program which can model uncertainties in loading, material properties, geometry, initial conditions, and any userdefined random variables. NESSUS employs advanced probabilistic methods which can efficiently compute structural system reliability and risk and identify critical uncertainty parameters. This information can be used for cost-effective reliability-based design and analysis.

Capabilities

Analysis Types Static Natural frequency Buckling Harmonic excitation Random vibration Transient dynamics

Nonlinearities Plasticity Large displacement

Element Library Beam Plate Plane strain Plane stress Axisymmetric 3D solid

3D enhanced solid

Probabilistic Analysis Fast probability integration Efficient monte carlo Adaptive importance sampling Probabilistc fault tree Probabilistic sensitivities

Southwest Research Institute Dr. Y.-T. Wu 6220 Culebra Rd. P.O. Drawer 28510 San Antonio, TX 78228-0510 (512) 522-3167

NESSUS computes the probability of failure of a turbine blade as a function of rotational speed

NESSUS can be used to Compute:

- CDF analysis
- Probability of failure
- Structural reliability
- System reliability
- Probability of exceedance of disp, stress, strain, freq, ...
- Optimized inspection schedules
- Fault tree analysis
- Probability of rotor instability

Performance Function:

- NESSUS finite element module
- User-defined subroutine
- Custom made interfaces to third party finite element programs and other programs

Random Variables

- •Geometry
- ·Loads

Forces

Pressures

Temperatures

Material properties

Elastic modulus

Poisson's ratio

Shear modulus

Material orientation

Yield stress

Hardening parameters

- Harmonic excitation
- Random vibration
- Initial conditions
- •User-defied

Output Variables

Displacement

Stress

Strain

Plastic strain

Creep strain

Thermal strain

Natural frequency

Fatigue life

Fracture parameters

User-defined

Operating Systems Cray/Unicos™ Vax/VMS™

Unix

Patran™ Interfaces

TM Cray is a registered trademark of Cray Research Inc., Vax/VMS is a registered trademark of the Digital Equipment Corp., Patran is a registered trademark of PDA Inc.

Structural Risk Assessment Code NESSUS

system failure. NESSUS analysis can identify critical variables and failure modes for design optimization. user-defined uncertainty inputs to quantitatively predict, in probability terms, the risk of component or NESSUS integrates structural reliability methods with finite element and boundary element methods. The NESSUS code can simulate uncertainties in the loads, material properties, geometries, and other

Random Variables

Loads

- Forces
- Pressures
 Temperatures
- remperatures - Vibrations (PSD)

Material properties

- Moduli
- Poisson's ratio

C-5

- Yield stress
- Hardening parameters
 - Material orientation

Geometry

User-defined

Probabilistic Methods

Fast Probability Analysis

- Advanced Mean-Value
- First and Second-OrderFast Convolution

Sampling

- Standard Monte Carlo
- Latin Hypercube
- Adaptive importance

Probabilistic Fault Tree

Service Life

Probabilistic Results

- Full probability distribution
- Component/single-mode reliability
 - System/multiple-modes reliability
- Probabilistic sensitivities Probability-based costs

Performance Functions

- Structural responses: stress, strain, disp., freq., etc.
- Fatigue and fracture life
 - Creep rupture life
- User-defined subroutines
- External analysis programs (requires custom-made interface)

Analysis Types

Static

Transient dynamics Buckling Vibrations Nonlinearities

- *Nonlinearities* - Plasticity
- Large displacement

Element Library

Beam Plate Plane strain Plane stress Axisymmetric 3D solid Enhanced solids

Operating Systems Mainframes Workstations

Southwest Research Institute Structural Engineering Dept. P.O. Drawer 28510 San Antonio, TX 78228 (512) 522-3167

COMPASS

COMPASS (acronym for Computer Methods for Probabilistic Analysis of Structures and Systems) is a general purpose software system for the reliability analysis of stochastic systems. The program is developed, maintained, marketed and supported by Martec Limited: an advanced engineering consultancy based in Halifax, Nova Scotia, Canada.

The main motivation for the development of COMPASS was the provision of a robust, efficient, user-friendly, and reasonably affordable computational tool for probabilistic reliability and risk assessment.

FAST PROBABILITY INTEGRATORS & ADVANCED SIMULATION SCHEMES

PROBABILISTIC SENSITIVITY ANALYSIS & PARAMETRIC STUDIES

COMPASS has been demonstrated to produce accurate reliability and probabilistic sensitivity analysis results in several engineering applications.

General Features

COMPASS operates interactively or in a batch mode. The program currently has the following main features:

- ✓ Library of 16 probability distributions.
- ✓ Correlations between variables in U-space or X-space.
- ✓ Definition of limit state functions by user subroutine.
- \checkmark Calculation of component reliability index (β) and failure probability (P_i) by:
 - First-order Reliability Methods (FORM)
 - Second-order Reliability Methods (SORM)
 - Direct Monte Carlo Simulation (DMCS)
 - Importance Sampling Scheme (ISS)
- ✓ Systems reliability analysis methods based on:
 - Unimodal and Bimodal Bounds
 - Probabilistic Network Evaluation Technique (PNET)
 - Direct Monte Carlo Simulation (DMCS)
 - Importance Sampling Scheme (ISS)
- ✓ Calculation of parametric sensitivity and importance factors.

Unique Features

In addition to these general purpose features, COMPASS has unique analysis capabilities that are directed at special engineering requirements. Some of these capabilities are:

- ✓ Built-in library of limit state functions:
 - Fatigue Damage Accumulation
 - Probabilistic Fracture Mechanics
 - Composite Failure Criteria
- ✓ Customized limit state functions provided on request.
- ✓ Graphics support capabilities.
- ✓ Probabilistic data characterization.
- ✓ Efficient interface with the commercial FEA program VAST (customized interfaces with other commercial FEA packages are available on request).
- ✓ Parametric studies

IMPORTANCE FACTORS FOR RANDOM VARIABLES OF A COMPOSITE LAMINATE

APPENDIX D

GENERAL INFORMATION
ON
THE FOUR SELECTED SHIPS

Cruiser No. 1

Double Hull Tanker

W.B. TK. 45 W.B. TK 35 V.B. TK. 25 V.B. TK. 15 CARGO #15 CARGO #1P CARGO #45 CARGO #35 CARGO #25 V.B.V W.B. TK, 8S W.B. TK, 7S W.B. TK, 6S W.B. TK. 5S CARGO #75 CARGO #65 CARGO #55 CARGO #85 #9 C CARGO #8P

Tank Arrangement

Double Hull Tanker

Midship Section

Midship section of a double hull tanker (unit mm)

Double Hull Tanker

Longitudinal Bulkhead at 40 ft from CL

CHARACTERISTICS OF S. S. SEA-LAND McLEAN

Name '	SEA-LAND McLEAN
Builder:	Rotterdam Dry Dock (Hull 330)
Class:	SL-7 Containership
Length, overall	946' 1-1/2"
Length, between perpendiculars	\$30° 6°
Beam, molded	105' 6"
Depth to main deck, forward	64' 0"
Depth to main deck, aft	68' 6"
Draft, design	30' 0"
Draft, scantling	34' 0"
Dead weight - long tons	27,315
Displacement (34' 0" draft) - long tons	50,315
Machinery	Two separate cross-compound steam turbines driving two propeller shafts
Shaft horsepower-maximum continuous, both shafts	120,000
Propeller RPM	135
Speed, maximum, knots	33
Center of gravity - full load	399.32' forward of aft parpon- dicular 42.65' above base line

Container Capacity

	8' x 8.5' x 35'	8' x 8.5' x 40'	Total
Below deck	554	140	694
Above deck	342	60	402
TOTAL	896	200	1.096

D-10

APPENDIX E

COLLECTED LOAD DATA (SAMPLE) ON THE FOUR SELECTED SHIPS

Cruiser No. 1

CHARACTERISTICS

LBP	529		
B midship	55	ft	
T midship	21 4	ft	

Station of max area 290.95 ft aft of FP Station spacing 26.45 ft

Total Displacement 9680 tons

TROCHOIDAL WAVE CALCULATION RESULTS

Displacement	9335 L.Tons
LCĠ	10.8 ft aft
Wave length L	529 ft
Wave type	Trochoidal
Wave height	1.1 * sqrt (L)

Max BM and Min Shear force occur close to midship (About station 11, aft of midship station 10, 0 FP 20 AP) Max Shear force occurs about Station 6 fwd, 15 aft

ALLOWABLE STRESSES (per specs)

8.5 TSI at keel 9.5 TSI at 01 Level

SECTION AND MOMENT DATA

Neutral Axis Location

Stations 9,10,11 20.07, 19.76, 19.1 ft ABL

21.93, 22.24, 22.9 ft from 01 Level 20.17, 19.76, 19.1 ft above keel

Station	SM (top) 01 Level (in**2-ft)	SM (keel) (in**2-ft)	BM hogging (ft-tons)	BM sagging (ft-tons)
9	21388	23371	194236	105358
10	22805	25667	210234	111253
11	23168	27777	214972	108553

TROCHOIDAL STRESSES (TSI)

Station	01 Level		Keel			
	Tension	Compression	Tension	Compression		
9	9.08	4.93	4.51	8.31		
10	9.22	4.88	4.33	8.19		
11	9.28	4.69	3.91	7.74		

STILL WATER BENDING MOMENTS AND STRESSES

 $M_{sw} = 71,926$ ft-ton Hogging @ midship section

Figure 3 - Probability Distribution for Whipping Bending Moments

6 (a) Sea Trial Data for Hulls Disposed Toward Whipping
Figure 6 - Whipping Bending Moments

6 (b) Data from Fine Bow Hulls
Figure 6 continued

Lifetime Bending Moments for Ship 2.

Cruiser No. 2

CHARACTERISTICS

LBP 529 ft Draft 21.48 ft

LCG from amidships -7.109 ft (+ fwd)
Displacement 9019 Tons

Station of max area 288.95 ft from FP

Beam at that station 55.92 ft
Section area coefft 0.841
Prismatic coefft 0.5754
Block coefft 0.4839

(Above data from SHCP output, baseline ship)

TROCHOIDAL WAVE CALCULATION RESULTS

Displacement 7818 Tons
Wave length L 529 ft
Wave type Trochoidal

Wave height 1.1 * sqrt (L), 25.3 ft

Max BM and Min Shear force occur close to midship (Between station 11 aft, and midship station 10, 0 FP 20 AP) Max Shear force occurs between Station 6,7 fwd, 14 aft

SECTION AND MOMENT DATA

Location of Neutral Axis

Station 9,10,11 19.84, 20.11, 19 ft ABL

22.16, 21.89, 23 ft from top 19.94, 20.11, 19 ft from keel

Station	SM (01 Levl) (in**2-ft)	SM (keel) (in**2-ft)	BM hogging (ft-tons)	BM sagging (ft-tons)
9	22307	24906	179916	103400
10	24419	26581	190670	110224
11	22644	27411	190034	111258

TROCHOIDAL STRESSES (TSI)

Station	01 Level			
	Tension	Compression	Tension	Compression
9	8.07	4.64	4.16	7.25
10	7.80	4.51	4.16	7.18
11	8.39	4.91	4.06	6.93

STILL WATER BENDING MOMENTS AND STRESSES (Baseline ship, SHCP output)

Station	Bending Moment (ft-tons)	Stresses (TSI) 01 Level Tension	Keel Compression
9	51771 hogging	2.32	2.08
10	57875	2.37	2.18
11	61369	2.71	2.24

"SCORES" RESULTS — SAMPLE

Cruiser No. 2

RUN IDENTIFICATION: SEA STATE 6

INPUT VERIFICATION:

1- WATER	LINE LENGT	H LWL (M)		=	161.28
2- VESSE	L DISPLACE	MENT (TONNES)		=	8835.5
3- VERTI	CAL CENTER	OF GRAVITY (M)	=	7.10
4- ROLL	RADIUS OF	GYRATION (M)		=	6.95
5- FRACT	ION OF CRI	TICAL ROLL DA	MPING	=	.1000
6- SHIP	SPEED (KNO	TS)		=	15.00
7- SHIP	HEADING RE	LATIVE TO WAV	ES (DEG)	=	135.00
8- WATER	TYPE			=	SALT@15C
9- ISSC	TWO PARAME	TER SPECTRUM	EXCITATIO	NC	
10- SIGNI	FICANT WAV	E HEIGHT (M)		=	5.09
11- CHARA	CTERISTIC	WAVE PERIOD (S)	=	10.24
12- LOWER	FREQ.INTE	GRATION LIMIT	(R/S)	=	.26
13- UPPER	FREQ.INTE	GRATION LIMIT	(R/S)	=	1.70
STA.	BEAM[M]	AREA[M*M]	DRAFT[M]	W	EIGHT[T]
0	.00	.00	.00		300.0
1	4.02	20.26	7.13		375.6
2	7.98	42.53	7.02		775.0
3	11.74	61.82	6.89		926.1
4	15.32	80.08	6.78		1324.4
5	16.73	92.16	6.55		1295.7
6 7	16.79 16.26	89.37 69.52	6.42 6.31		1320.0
8	15.23	46.79	6.20		820.1 710.0
9	13.23		6.08		688.6
10	12.46	7.45	5.96		300.0

RUN IDENTIFICATION: SEA STATE 6

MOTION NATURAL FREQUENCIES AND PERIODS:

HEAVE NATURAL FREQUENCY = 1.120 RAD/S HEAVE NATURAL PERIOD = 5.61 SEC.

PITCH NATURAL FREQUENCY = 1.152 RAD/S PITCH NATURAL PERIOD = 5.45 SEC.

ROLL NATURAL FREQUENCY = .412 RAD/S ROLL NATURAL PERIOD = 15.25 SEC.

ROLL WAVE DAMPING = 0.103E+03

ADDED VISCOUS ROLL DAMPING = 0.397E+04

SEAKEEPING RESPONSE RESULTS:

SHIP SPEED = 15.0 KNOTS = 7.72 M/S

WAVE ANGLE [WITH HEAD SEAS 180 DEG.] =135.0 DEG.

ISSC TWO PARAMETER SPECTRUM - SIGN.HEIGHT = 5.09 M CHAR. PERIOD = 10.24 S

NONDIMENSIONAL MOTION RESPONSE:

WAVE	ENCOUNT.	WAVE	HEAV	VΕ	PITC	CH	ROI	LL
FREQ.	FREQ.	LENGTH	AMPL.	PHASE	AMPL.	PHASE	AMPL.	PHASE
R/S	R/S	M	ND	DEG.	ND	DEG.	ND	DEG.
.260	.298	911.5	0.998E+00	179.9	0.719E+00	84.4	0.148E+01	-136.0
.340	.404	533.0	0.986E+00	179.8	0.728E+00	80.2	0.420E+01	155.8
.420	.518	349.3	0.963E+00	-180.0	0.731E+00	74.0	0.180E+01	61.0
.500	.639	246.5	0.932E+00	-179.1	0.721E+00	65.3	0.918E+00	40.6
.580	.767	183.2	0.923E+00	-178.2	0.688E+00	52.7	0.585E+00	31.0
.660	.902	141.5	0.986E+00	176.5	0.614E+00	33.0	0.381E+00	25.0
.740	1.045	112.5	0.949E+00	147.0	0.441E+00	.4	0.225E+00	21.1
.820	1.194	91.6	0.358E+00	97.1	0.189E+00	-33.6	0.105E+00	21.4
.900	1.351	76.1	0.553E-01	-115.3	0.554E-01	-70.2	0.304E-01	44.7
.980	1.514	64.2	0.125E+00	-145.7	0.170E-01	-176.7	0.220E-01	134.5
1.060	1.685	54.8	0.732E-01	-168.4	0.169E-01	122.4	0.238E-01	151.5
1.140	1.863	47.4	0.227E-01	162.8	0.811E-02	94.3	0.130E-01	156.5
1.220	2.048	41.4	0.697E-02	85.6	0.151E-02	56.2	0.292E-02	174.9
1.300	2.240	36.5	0.495E-02	49.8	0.648E-03	-61.7	0.947E-03	-76.6
1.380	2.440	32.4	0.151E-02	55.7	0.441E-03	-22.0	0.173E-03	128.2
1.460	2.646	28.9	0.116E-02	-82.0	0.641E-03	-5.2	0.411E-03	142.5
1.540	2.860	26.0	0.255E-02	-96.9	0.318E-03	-80.5	0.745E-03	
1.620	3.080	23.5	0.109E-02	-135.3	0.503E-03	-163.0	0.744E-03	
1.700	3.308	21.3	0.156E-02	106.9	0.277E-03	144.9	0.698E-03	108.6

NO

ONDIME	NSIONAL MON	ENT RE	SPONSE FOR	RUN: SI	EA STATE 6			
WAVE	ENCOUNT.	WAVE	VERTICAL	L MOMENT	TRANS. N	MOMENT	TORS.	MOMENT
FREQ	FREQ.	LENGTH	AMPL.	PHASE	AMPL.	PHASE	AMPL.	PHASE
R/S	R/S	M	ND	DEG.	ND	DEG.	ND	DEG.
.260	.298	911.5	0.336E-03	.7	0.183E-03	79.9	0.119E-03	-164.8
.340	.404	533.0	0.139E-02	3	0.246E-03	53.1	0.850E-03	146.8
.420	.518	349.3	0.349E-02	-1.5	0.809E-03	91.3	0.684E-03	64.9
.500	.639	246.5	0.674E-02	-3.7	0.208E-02	79.9	0.516E-03	48.7
.580	.767	183.2	0.106E-01	-6.9	0.445E-02	72.6	0.385E-03	30.1
.660	.902	141.5	0.132E-01	-9.6	0.762E-02	65.8	0.274E-03	-14.9
.740	1.045	112.5	0.136E-01	-3.1	0.105E-01	61.1	0.395E-03	-68.6
.820	1.194	91.6	0.149E-01	5.6	0.119E-01	58.7	0.604E-03	89.3
.900	1.351	76.1	0.138E-01	8.1	0.110E-01	58.8	0.685E-03	-96.5
.980	1.514	64.2	0.956E-02	2.8	0.804E-02	61.8	0.547E-03	-95.4
1.060	1.685	54.8	0.266E-02	-16.3	0.381E-02	70.3	0.271E-03	-73.4
1.140	1.863	47.4	0.264E-02	179.7	0.709E-03	149.4	0.208E-03	3.0
1.220	2.048	41.4	0.334E-02	163.4	0.147E-02	-140.9	0.245E-03	25.0
1.300	2.240	36.5	0.125E-02	164.5	0.773E-03	-168.7	0.131E-03	22.4
1.380	2.440	32.4	0.606E-03	-101.2	0.140E-02	97.9	0.503E-04	-10.5
1.460	2.646	28.9	0.719E-03	163.5	0.176E-02	97.6	0.807E-04	-8.6
1.540	2.860	26.0	0.180E-02	107.7	0.984E-03	92.8	0.581E-04	-17.5
1.620	3.080	23.5	0.892E-03	58.4	0.525E-03	-2.9	0.919E-04	169.6
1.700	3.308	21.3	0.170E-02	-74.5	0.632E-03	-76.9	0.155E-03	122.2
MPLITUE	E RESPONSE	SPECTE	čA:					
FREQ	WAVE AMP.	HEAVE	PITCH	ROLL	VERT. MO	M. LA	T. MOM.	ors. Mom
R/S	M	M	DEG.	DEG.	T-M		T-M	T-M
.260	0.000	0.000	0.000	0.000	0.769E+0	0.2	29E+01 (.974E+00

AM

FREQ	WAVE AMP.	HEAVE	PITCH	ROLL	VERT. MOM.	LAT. MOM.	TORS. MOM.
R/S	M	M	DEG.	DEG.	T-M	T-M	T-M
.260	0.000	0.000	0.000	0.000	0.769E+01	0.229E+01	0.974E+00
.340	.798	.776	.193	6.414	0.306E+06	0.966E+04	0.115E+06
.420	4.112	3.811	2.335	14.181	0.997E+07	0.537E+06	0.384E+06
.500	4.765	4.137	5.282	8.560	0.432E+08	0.412E+07	0.252E+06
.580	3.567	3.039	6.514	4.713	0.795E+08	0.141E+08	0.105E+06
.660	2.342	2.276	5.725	2.204	0.819E+08	0.271E+08	0.351E+05
.740	1.493	1.346	2.973	.770	0.553E+08	0.328E+08	0.464E+05
.820	.960	.123	.527	.164	0.423E+08	0.269E+08	0.697E+05
.900	.629	.002	.043	.013	0.240E+08	0.153E+08	0.588E+05
.980	.423	.007	.004	.006	0.771E+07	0.544E+07	0.252E+05
1.060	.291	.002	.004	.007	0.411E+06	0.840E+06	0.424E+04
1.140	.205	0.000	.001	.002	0.285E+06	0.205E+05	0.176E+04
1.220	.147	0.000	0.000	0.000	0.326E+06	0.630E+05	0.176E+04
1.300	.108	0.000	0.000	0.000	0.336E+05	0.128E+05	0.369E+03
1.380	.080	0.000	0.000	0.000	0.587E+04	0.313E+05	0.406E+02
1.460	.061	0.000	0.000	0.000	0.626E+04	0.377E+05	0.790E+02
1.540	.047	0.000	0.000	0.000	0.303E+05	0.901E+04	0.314E+02
1.620	.036	0.000	0.000	0.000	0.576E+04	0.200E+04	0.611E+02
1.700	.029	0.000	0.000	0.000	0.166E+05	0.228E+04	0.136E+03

RESPONSE AMPLITUDE STATISTICS:

	M	M	DEG.	DEG.	T-M	T-M	T-M
R.M.S.	1.267	1.114	1.374	1.721	0.526E+04	0.319E+04	0.297E+03
AVE.	1.584	1.393	1.718	2.152	0.657E+04	0.399E+04	0.371E+03
SIGNIF.	2.535	2.228	2.748	3.443	0.105E+05	0.638E+04	0.593E+03
AVE1/10	3.232	2.841	3.504	4.389	0.134E+05	0.814E+04	0.756E+03
DESIGN V	ALUE WITH	N=1000 AND	ALPHA=0	.01	0.252E+05	0.153E+05	0.142E+04

RUN IDENTIFICATION: SEA STATE 7

INPUT VERIFICATION:

1-	WATERI	LINE LENGT	H LWL (M)		=	161.28
2-	VESSEI	DISPLACE	MENT (TONNES	;)	=	8835.5
3-	VERTIC	CAL CENTER	OF GRAVITY	(M)	=	7.10
4-	ROLL F	RADIUS OF	GYRATION (M)		=	6.95
5	FRACTI	ON OF CRI	TICAL ROLL D	AMPING	=	.1000
6-	SHIP S	SPEED (KNO	TS)		=	10.00
			LATIVE TO WA	VES (DEG)	=	135.00
				(= - ,	=	SALT@15C
8-	WATER	TYPE			=	SALTEISC
9-	issc 7	TWO PARAME	TER SPECTRUM	EXCITATION	N	
10-	SIGNII	FICANT WAV	E HEIGHT (M)		=	7.32
11-	CHARAG	CTERISTIC '	WAVE PERIOD	(S)	=	10.90
12-	LOWER	FREQ.INTE	GRATION LIMI	T (R/S)	=	.26
13-	UPPER	FREQ.INTE	GRATION LIMI	T (R/S)	=	1.70
			**			
;	STA.	BEAM[M]	AREA[M*M]	DRAFT[M]	W	EIGHT[T]
	0	.00	.00	.00		300.0
	1	4.02	20.26	7.13		375.6
	2	7.98	42.53	7.02		775.0
	3	11.74	61.82	6.89		926.1
	4	15.32	80.08	6.78		1324.4
	5	16.73	92.16	6.55		1295.7
	6	16.79	89.37	6.42		1320.0
	7	16.26	6.31		820.1	
	8	15.23	46.79	6.20		710.0
	9	13.96	24.14 7.45	6.08		688.6
	10	12.46	5.96		300.0	

RUN IDENTIFICATION: SEA STATE 7

MOTION NATURAL FREQUENCIES AND PERIODS:

HEAVE NATURAL FREQUENCY = 1.120 RAD/S HEAVE NATURAL PERIOD = 5.61 SEC.

PITCH NATURAL FREQUENCY = 1.152 RAD/S PITCH NATURAL PERIOD = 5.45 SEC.

ROLL NATURAL FREQUENCY = .412 RAD/S ROLL NATURAL PERIOD = 15.25 SEC.

ROLL WAVE DAMPING = 0.103E+03

ADDED VISCOUS ROLL DAMPING = 0.397E+04

SEAKEEPING RESPONSE RESULTS:

SHIP SPEED = 10.0 KNOTS = 5.14 M/S

WAVE ANGLE [WITH HEAD SEAS 180 DEG.] =135.0 DEG.

ISSC TWO PARAMETER SPECTRUM - SIGN.HEIGHT = 7.32 M CHAR. PERIOD = 10.90 S

NONDIMENSIONAL MOTION RESPONSE:

WAVE	ENCOUNT.	WAVE	HEA'	VE	PIT	СН	ROI	LL
FREQ.	FREQ.	LENGTH	AMPL.	PHASE	AMPL.	PHASE	AMPL.	PHASE
R/S	R/S	M	ND	DEG.	ND	DEG.	ND	DEG.
.260	.285	911.5	0.994E+00	179.9	0.716E+00	85.2	0.135E+01	-132.3
.340	.383	533.0	0.976E+00	179.8	0.719E+00	81.7	0.344E+01	-179.9
.420	.485	349.3	0.938E+00	179.9	0.714E+00	76.7	0.245E+01	71.5
.500	.593	246.5	0.876E+00	-179.2	0.693E+00	69.7	0.114E+01	44.8
.580	.705	183.2	0.799E+00	-177.1	0.647E+00	60.0	0.705E+00	34.2
.660	.822	141.5	0.740E+00	-174.8	0.567E+00	46.3	0.455E+00	28.9
.740	.943	112.5	0.696E+00	179.2	0.442E+00	25.2	0.278E+00	25.8
.820	1.069	91.6	0.452E+00	151.2	0.250E+00	-7.5	0.133E+00	27.0
.900	1.200	76.1	0.593E-01	-154.2	0.753E-01	-43.9	0.418E-01	49.6
.980	1.336	64.2	0.174E+00	-128.9	0.155E-01	-151.7	0.286E-01	134.4
1.060	1.477	54.8	0.114E+00	-152.9	0.215E-01	133.8	0.321E-01	154.3
1.140	1.622	47.4	0.371E-01	177.9	0.113E-01	104.7	0.185E-01	159.3
1.220	1.772	41.4	0.921E-02	98.0	0.197E-02	67.6	0.506E-02	175.2
1.300	1.927	36.5	0.666E-02	61.5	0.798E-03	-69.9	0.110E-02	-80.8
1.380	2.086	32.4	0.286E-02	78.3	0.620E-03	7.0	0.304E-03	54.5
1.460	2.251	28.9	0.129E-02	-82.3	0.983E-03	5.4	0.578E-03	110.0
1.540	2.420	26.0	0.362E-02	-95.4	0.510E-03	-76.9	0.969E-03	-115.4
1.620	2.593	23.5	0.221E-02	-143.8	0.905E-03	-159.4	0.121E-02	-138.8
1.700	2.772	21.3	0.315E-02	112.9	0.631E-03	136.9	0.931E-03	109.4

NO

ONDIMEN	ISIONAL MO	MENT RES	PONSE FOR	RUN: SE	EA STATE 7			
WAVE	ENCOUNT.	WAVE	VERTICAI	L MOMENT	TRANS. M	OMENT	TORS.	MOMENT
FREO.		LENGTH	AMPL.	PHASE	AMPL.	PHASE	AMPL.	PHASE
R/S	R/S	M	ND	DEG.	ND	DEG.	ND	DEG.
.260	.285	911.5	0.379E-03		0.237E-03	84.9	0.101E-0	3 -162.3
.340	.383	533.0	0.148E-02		0.437E-03	69.2	0.649E-0	3 168.5
.420	.485	349.3	0.364E-02		0.843E-03	94.9	0.870E-0	3 72.1
.500	.593	246.5	0.701E-02	-3.4	0.211E-02	86.8	0.611E-0	3 49.2
.580	.705	183.2	0.112E-01		0.433E-02	79.9	0.468E-0	30.2
.660	.822	141.5	0.149E-01		0.757E-02	73.3	0.351E-0	3 -7.6
.740	.943	112.5	0.161E-01		0.107E-01	67.3	0.440E-0	3 -59.9
.820	1.069	91.6	0.148E-01	-2.0	0.125E-01	63.0	0.646E-0	3 -84.3
.900	1.200	76.1	0.133E-01	5.4	0.118E-01	61.0	0.733E-0	3 -94.2
.980	1.336	64.2	0.943E-02	6.9	0.857E-02	62.3	0.594E-0	3 -95.5
1.060	1.477	54.8	0.333E-02	2.1	0.402E-02	70.9	0.299E-0	3 -78.4
1.140	1.622	47.4	0.193E-02	171.4	0.931E-03	152.6	0.194E-0	
1.220	1.772	41.4	0.306E-02	162.3	0.174E-02		0.250E-0	3 25.6
1.300	1.927	36.5	0.107E-02		0.757E-03	-150.7	0.147E-0	3 28.5
1.380	2.086	32.4	0.784E-03			87.7	0.446E-0	6.8
1.460	2.251	28.9	0.785E-03		0.181E-02	85.9	0.748E-0	4 -13.6
1.540	2.420	26.0	0.187E-02		0.122E-02		0.702E-0	4 -26.4
1.620	2.593	23.5			0.418E-03		0.824E-0	168.2
1.700	2.772	21.3	0.230E-02		0.827E-03	-83.2	0.167E-0	122.7
MPLITU	DE RESPONS	E SPECTI	RA:					
FREQ	WAVE AMP.	HEAVE	PITCH	ROLL	VERT. M		T. MOM.	TORS. MOM
R/S	M	M	DEG.	DEG.	T-M		T-M	T-M
.260	.012	.012	.001	.003			31E+03	0.238E+02
.340	3.654	3.478	.861	19.668	0.159E+		39E+06	0.307E+06
.420	10.376	9.122	5.616	66.015			47E+07	0.157E+07
.500	9.598	7.359	9.830	26.693			53E+07	0.714E+06
.580	6.500	4.155	10.511	12.482	0.162E+		43E+08	0.283E+06
				- 440	A 17A7	^^ ^	CABLAG	A 007840E

AMPLITUDE	RESPONSE	SPECTRA:
-----------	----------	----------

FREQ	WAVE AMP.	HEAVE	PITCH	ROLL	VERT. MOM.	LAT. MOM.	TORS. MOM.
R/S	M	M	DEG.	DEG.	T-M	T-M	T-M
.260	.012	.012	.001	.003	0.336E+03	0.131E+03	0.238E+02
.340	3.654	3.478	.861	19.668	0.159E+07	0.139E+06	0.307E+06
.420	10.376	9.122	5.616	66.015	0.274E+08	0.147E+07	0.157E+07
.500	9.598	7.359	9.830	26.693	0.941E+08	0.853E+07	0.714E+06
.580	6.500	4.155	10.511	12.482	0.162E+09	0.243E+08	0.283E+06
.660	4.060	2.221	8.466	5.449	0.179E+09	0.464E+08	0.997E+05
.740	2.520	1.222	5.036	1.987	0.130E+09	0.577E+08	0.973E+05
.820	1.594	.326	1.543	.436	0.693E+08	0.497E+08	0.133E+06
.900	1.035	.004	.131	.041	0.368E+08	0.288E+08	0.111E+06
.980	.691	.021	.005	.018	0.123E+08	0.101E+08	0.486E+05
1.060	.474	.006	.009	.021	0.105E+07	0.152E+07	0.845E+04
1.140	.332	0.000	.002	.007	0.248E+06	0.575E+05	0.251E+04
1.220	.238	0.000	0.000	0.000	0.446E+06	0.144E+06	0.298E+04
1.300	.174	0.000	0.000	0.000	0.397E+05	0.199E+05	0.750E+03
1.380	.130	0.000	0.000	0.000	0.159E+05	0.340E+05	0.515E+02
1.460	.098	0.000	0.000	0.000	0.121E+05	0.643E+05	0.110E+03
1.540	.075	0.000	0.000	0.000	0.528E+05	0.224E+05	0.742E+02
1.620	.059	0.000	0.000	0.000	0.194E+05	0.204E+04	0.793E+02
1.700	.046	0.000	0.000	0.000	0.489E+05	0.630E+04	0.257E+03

RESPONSE AMPLITUDE STATISTICS:

	М	M	DEG.	DEG.	T-M	T-M	T-M
R.M.S.	1.825	1.494	1.833	3.260	0.756E+04	0.428E+04	0.520E+03
AVE.	2.281	1.868	2.292	4.075	0.945E+04	0.535E+04	0.649E+03
SIGNIF.	3.650	2.989	3.667	6.519	0.151E+05	0.856E+04	0.104E+04
AVE1/10	4.654	3.811	4.675	8.312	0.193E+05	0.109E+05	0.132E+04
	LUE WITH	N=1000 AND	ALPHA=0	.01	0.363E+05	0.205E+05	0.249E+04

DOUBLE HULL TANKER

CHARACTERISTICS

LBP	625 ft
B molded	96 ft
Depth	50 ft
T design load	34 ft
Displacement	44513 L.Tons
Deadweight	34700 L.Tons
Web frame spacing	11.5 ft
Tank Length, typical	57.5 ft

VESSEL LOADING IS LOADMASTER CONTROLLED

ALLOWABLE STILL WATER BENDING MT AND SHEAR FORCE

Frame	No.	BM	(L.Ton-ft)	SF	(L.Tons)
-------	-----	----	------------	----	----------

57	Aft	421665	5810
67	Midship	421665	6323
77	Fwd	380060	5305

TYPICAL STILL WATER BM AND SF

	s % of Allowable (Location)	SF as % of Allowable (Location)
Light ship Fairweather ballast Max ballast Homogenous cargo Half cargo 3/4 cargo	52 (Bhd 62) 80 (Bhd 57) 98 (Bhd 62) 20 (Bhd 67) 70 (Bhd 72) 65 (Bhd 63)	32(Bhd 47) 51(Bhd 47) 60(Bhd 47) 10(Bhd 67) 60(Bhd 77) 60(Bhd 77)
-	•	

SL-7 SHIP

Weights, Centers and Gyradii for "Light" Load Condition

SEGMENT	WEIGHT1	LCG ²	VCG ³	K _{xx} ⁴	K _{yy} 5	Kzze
1	777.4	421.25	43.40	24.9	31.4	21.8
2	1859.9	355.93	32.88	25.3	30.3	22.8
รั	1217.9	297.07	58.52	36.7	32.6	31.0
Ā	1151.8	254.73	47.36	30.0	25.9	21.7
5	1379.2	214.75	48.67	33.2	27.2	25.1
6	1844.3	174.71	44.99	33.6	26.7	25.7
7	1990.6	134.72	33.36	32.7	25.6	25.9
1 2 3 4 5 6 7 8 9	2429.0	94.72	35.89	35.6	26.6	28.5
ğ	2547.5	54.73	34.42	36.1	26.3	29.4
10	2707.6	14.74	33.81	36.6	26.2	30.4
11	2714.9	-27.74	31.54	37.0	25.6	31.7
12	2697.9	-72.74	31.49	37.0	25.7	31.6
13	3284.9	-109.75	42.97	42.2	30.0	31.9
14	3031.4	-147.25	45.39	46.2	34.2	36.7
15	2726.3	-194.75	41.65	37.9	24.8	32.3
16	2757.4	-234.10	42.03	37.3	26.2	31.8
17	1631.3	-275.85	46.21	36.8	26.1	31.0
18	1217.7	-316.15	47.13	35.1	26.4	29.4
19	982.5	-355.30	41.47	32.7	24.1	28.4
20	901.2	-395.25	40.77	31.2	25.1	27.0
21	889.3	-429.25	44.36	24.3	21.1	18.6
22	682.9	-460.25	52.05	22.5	18.1	18.9
TOTAL	41422.8	-37.43	40.26	36.7	214.8	215.0

Long Tons (2240 lb)
2.Feet Forward of Midship

^{3.} Feet Above Baseline

^{4.} Roll Gyradius, Feet 5. Pitch Gyradius, Feet

⁶ Yaw Gyradius, Feet

APPENDIX F

SAMPLE OF INPUT/OUTPUT FILES OF:

SLAM SOST ALPS/ISUM CALREL

SLAM

For Help, prees F1

NUM:

3. Data Entry

The program provides several data input screens which ask for all necessary information: ship sections, loading, transfer function, sea state, and analysis. All of the required data is able to be input into the program manually. The ship sections and mass distribution, however, can also be imported from an outside source.

3.1 Ship Sections

The ship sections screen asks for the offsets, stiffness, shear modulus, station number, and location of the station from the forward perpendicular. The units and a brief description are as follows:

Input	<u>Units</u>
offsets, y and z coordinates	m
stiffness, Elz	MNm^2
E is Young's Modulus	MN/m
Iz is the moment of inertia around the z-axis	m^3
shear modulus, GkA	MN
G is the shear modulus	MN/m
k is the effective shear area factor	dimensionless
A is the area of the cross section	m^2
x-location, distance from the forward perpendicular	m

The ship geometry can be input manually by opening the "Ship Sections" sheet and typing in the y and z coordinates, stiffnesses, and location for the given station. This process may then be repeated for as many stations as desired. See Figure 1 for a sample sheet.

Figure 1 – Ship Section Sheet

It is also possible to inport data from ASCII files. The file must be named "ship.sec" and the format of the data must be as follows:

File Format	<u>Example</u>
[number of stations on file]	25
[station number x-coordinate stiffness shear modulus]	1 0 1E6 1E4
[number of offset points for the station]	3
[y offsets z offsets]	0 9.754
-	0.003 16.002
	0 16.002

The last three steps are then repeated for the appropriate number of stations.

3.2 Ship Loading

The mass distribution can be either input manually or imported. For manual input, the loading screen will require input of the position of the stations, the mass corresponding to that station, and the radius of gyration. See Figure 2 for a sample sheet.

Figure 2 – Ship Loading Sheet

The position of the stations must be input starting from the bow. The corresponding mass at that station may be in any loading condition desired, if applicable. The radius of gyration of the mass is defined as

$$r = \sqrt{\frac{h}{2}}$$
 where h = the height of the side of the vessel at that particular station.

The units of these inputs are as follows:

Input	<u>Units</u>
position (x coordinate) of station	m
mass	kg
radius of gyration	m ^{1/2}

The mass distribution can be imported from an ASCII file named "ship.loa" and has the following format:

File Format	<u>Example</u>
[number of loading points in file]	25
[x coordinate mass radius of gyration]	0 140000 2.82
The last step is then repeated for the approp	riate number of stations.

3.3 Transfer Functions

The transfer function sheet consists of the following fields as shown in Figure 3.

• number of frequencies

This tells the program how many frequencies should be run in the range specified in the following fields.

• low frequency (radians/second)

This tells the program the frequency at which to begin calculation.

• high frequency (radians/second)

This tells the program the frequency at which to stop calculation.

• integration points

This tells the program how many longitudinal points along the vessel are to be used for the numberical methods calculations.

Figure 3 – Transfer Function Sheet

3.4 Sea State

The sea state sheet consists of the following fields as shown in Figure 4.

- significant wave height, H_s (meters)

 Significant wave height is defined as the average of the highest 1/3 waves to be encountered.
- zero crossing period, T_z (seconds) Zero crossing period is the period of the wave and can be calculated by

$$T_z = 11.12 \sqrt{\frac{H_s}{g}}$$
 where g is the acceleration of gravity

Figure 4 – Sea State Sheet

Figure 5 – Analysis Sheet

3.5 Analysis

The analysis sheet consists of the following fields as shown in Figure 5.

• number of modes

Defines the number of modes used when the dynamic response due to the slamming impact is calculated. Two modes were used in all calculations for these vessels as higher modes produced insignificant changes in the results.

• number of simulations

The statistics of the response moments are calculated by simulations.

• x-bow (meters)

This is the longitudinal position at which slamming impact takes place. For this analysis, the position of slamming impact was taken as the location of damage which was determined using Figure 6. The percent of total length read from the chart was the mean value for a given block coefficient and in some cases had to be extrapolated. As will be shown later, the position of slamming impact will greatly influence the calculated slamming induced bending moments.

Figure 6 – Longitudinal Location of Damage [6]

• x-midship (meters)

This is the longitudinal position along the vessel at which the response is to be calculated. In the analysis, this position was taken to be the midship of the vessel.

damping ratio

This is a structural coefficient in the dynamic equations of motion. This analysis used a damping ratio of 0.0017.

• heading angle (degrees)

This is the angle of the vessel relative to the encountered waves where 0° signifies following seas and 180° signifies head seas.

velocity (meters/second)

The speed of the vessel corresponding to the particular sea state.

```
Results for CRUISER1.SHP --- page 1
```

```
RESULT IN AIR
Total mass of ship 9694063.3
Natural frequency 1 = 8.39 rad/sec w(L/g)^\frac{1}{2} = 34.02
Natural frequency 2 = 17.67 rad/sec w(L/g)^\frac{1}{2} = 71.64

RESULT IN WATER
Total mass of ship 9694063.3
Natural frequency 1 = 6.23 rad/sec w(L/g)^\frac{1}{2} = 25.26
Natural frequency 2 = 12.67 rad/sec w(L/g)^\frac{1}{2} = 51.36
```

TRANSFER FUNCTIONS

of wave frequencies 160 Velocity 4.00 Heading 180.0 XcG 76.90

Omega	H_a	H_p	P_a	P_p	M_a	M_p
0.050	0.99931	6.2825	0.00029	1.5488	0.00008	1.9097
0.101	0.99803	6.2823	0.00107	1.5662	0.00011	1.8899
0.151	0.99447	6.2825	0.00237	1.5791	0.00003	5.3136
0.201	0.98617	0.0002	0.00418	1.5963	0.00049	5.1542
0.252	0.96948	0.0020	0.00648	1.6205	0.00143	5.1657
0.302	0.93976	0.0041	0.00922	1.6535	0.00302	5.1798
0.352	0.89211	0.0051	0.01226	1.6976	0.00541	5.1958
0.403	0.82266	0.0015	0.01539	1.7547	0.00864	5.2187
0.453	0.73132	6.2696	0.01818	1.8284	0.01218	5.2397
0.503	0.61971	6.2308	0.02023	1.9098	0.01642	5.3327
0.553	0.49455	6.1447	0.02135	2.0192	0.02052	5.3907
0.604	0.37951	5.9728	0.02092	2.1597	0.02366	5.4737
0.654	0.29959	5.7030	0.01865	2.3481	0.02503	5.5917
0.704	0.25131	5.3929	0.01437	2.6121	0.02434	5.7586
0.755	0.20324	5.1034	0.00866	3.0940	0.02137	5.9870
0.805	0.21107	4.5605	0.00391	4.4329	0.01676	6.2624
0.855	0.29407	4.7795	0.00567	5.9653	0.01044	0.2933
0.906	0.21030	5.4482	0.00723	0.3827	0.00381	1.1502
0.956	0.08620	0.2660	0.00585	1.1722	0.00448	2.9396
1.006	0.04799	2.0559	0.00325	2.2386	0.00525	3.4844
1.057	0.03917	3.1075	0.00200	3.6013	0.00332	3.9486
1.107	0.01825	4.0111	0.00155	4.5826	0.00175	5.0521
1.157	0.01079	5.4708	0.00085	5.4181	0.00194	6.1253
1.208	0.00934	0.1259	0.00040	0.3101	0.00166	0.5347
1.258	0.00495	0.6203	0.00032	1.6138	0.00079	1.2757
1.308	0.00060	2.0676	0.00021	2.3113	0.00060	3.1552
1.358	0.00152	3.7744	0.00005	3.3060	0.00075	3.7080
1.409	0.00063	3.5464	0.00005	5.4432	0.00032	3.5027
1.459	0.00090	1.7619	0.00003	5.3216	0.00040	1.8484
1.509	0.00060	1.1539 5.3204	0.00004	3.5958 3.4898	0.00026	1.0668 5.4362
1.560 1.610	0.00057 0.00059	4.9183	0.00002 0.00003	0.4052	0.00035	5.1481
1.660	0.00033	2.2520	0.00004	0.7726	0.00042	2.0707
1.711	0.00066	2.1527	0.00003	2.8978	0.00042	2.2072
1.761	0.00021	4.2314	0.00005	3.7981	0.00023	4.3057
1.811	0.00067	5.1645	0.00003	5.4406	0.00063	5.2744
1.862	0.00026	0.3279	0.00004	0.4601	0.00033	0.8164
1.912	0.00057	1.8596	0.00003	2.0473	0.00073	1.9993
1.962	0.00024	3.3890	0.00004	3.4962	0.00034	3.6621
2.013	0.00044	4.9192	0.00002	5.1826	0.00064	5.0592
2.063	0.00022	0.5074	0.00003	0.3490	0.00040	0.7745
2.113	0.00034	1.7913	0.00002	2.2483	0.00058	1.9079
2.164	0.00023	3.9971	0.00002	3.6242	0.00044	4.1235
2.214	0.00022	5.0759	0.00002	5.6723	0.00039	5.2569
2.264	0.00023	1.0696	0.00001	0.8832	0.00051	1.2188
2.314	0.00010	2.6152	0.00002	2.8411	0.00024	2.9183
2.365	0.00017	4.4392	0.00001	4.9168	0.00043	4.5606
2.415	0.00012	0.7428	0.00001	0.1745	0.00035	0.7690
2.465	0.00007	1.9754	0.00001	2.4551	0.00019	2.0508
2.516	0.00013	4.1593	0.00001	4.5028	0.00036	4.2139
2.566	0.00008	0.4689	0.00001	6.0962	0.00026	0.5764
2.616	0.00004	1.5401	0.00001	2.2220	0.00010	1.7060
2.667	0.00008	3.8054	0.00000	4.5625	0.00024	3.8966
2.717	0.00005	0.3718	0.00000	5.6791	0.00019	0.6297

Marsden area No. 8: Fraction of time	: .059
Marsden area No. 9: Fraction of time	
Marsden area No. 10: Fraction of time	
Marsden area No. 11: Fraction of time	
Marsden area No. 15: Fraction of time	
Marsden area No. 16: Fraction of time	
Marsden area No. 17: Fraction of time	
Marsden area No. 23: Fraction of time	
Marsden area No. 24: Fraction of time	
Marsden area No. 25: Fraction of time	
Marsden area No. 26: Fraction of time	
Marsden area No. 27: Fraction of time	: .059
Total period (years)	: 15.000
Wal - wasting to limit for commiss speed	: 16.500
Hs1 = practical Hs limit for service speed Fraction of time with service speed when Hs <hs1< td=""><td></td></hs1<>	
Fraction of time with service speed when hs\ns1	
Fraction of time with minimum speed when Hs>Hs1	
Service speed >=	: 30.500
Exection of time with heading 0 deg (following)	: .111
Fraction of time with heading 0 deg (following)	
Fraction of time with heading 45 deg	
Fraction of time with heading 90 deg Fraction of time with heading 135 deg	: .333
Fraction of time with heading 135 deg Fraction of time with heading 180 deg (head)	: .333
rraction of time with heading 180 deg (head)	111
Main dimensions: L,B,T = 640.000, 96.000, 34.1	00
Rigid hull, bending moments, sagging s	tatistics
Migra Harry Delicating Memorials, Dagging D	040100100
Response at Station No	: 11
Fraction of time with non-zero response spectra	: .899D+00
Stress conversion factor for fatigue analysis	: .500D+08
Scale factor for S-N curve	
Slope of S-N curve	
Resulting fatigue damage	
Resulting fatigue damage (linear)	: .258D-02
Resulting latigue damage (linear)	• • 230D-U2

Long term probability of exceedance of + peaks during 15.0 years, corr. to 59944559 peaks (59588777 if Gaussian)

	i			
		der Poiss istics (k3=0,k		Individual peak exced.
2.200D+07 1.0 4.400D+07 1.0 6.600D+07 1.0 8.800D+07 1.0 1.100D+08 1.0 1.320D+08 1.0 1.540D+08 1.0 1.760D+08 1.0 2.200D+08 1.0 2.420D+08 1.0 2.420D+08 1.0 2.640D+08 1.0 2.860D+08 1.0 3.080D+08 1.0 3.300D+08 1.0	00D+00 1.00 00D+00 1.00	OD+00 1.000E	0+00	7.209D-01 5.154D-01 3.738D-01 2.767D-01 2.076D-01 1.576D-01 1.211D-01 9.406D-02 7.366D-02 5.809D-02 4.608D-02 3.673D-02 2.941D-02 2.363D-02 1.905D-02

	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.013D-02
4.180D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	8.234D-03
	.000D+00	1.000D+00	1.000D+00	1.000D+00	6.707D-03
	.000D+00	1.000D+00	1.000D+00	1.000D+00	5.472D-03
			1.000D+00	1.000D+00	4.471D-03
	.000D+00	1.000D+00			
	.000D+00	1.000D+00	1.000D+00	1.000D+00	3.658D-03
5.280D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	2.997D-03
	.000D+00	1.000D+00	1.000D+00	1.000D+00	2.459D-03
	.000D+00	1.000D+00	1.000D+00	1.000D+00	2.021D-03
	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.663D-03
			1.000D+00	1.000D+00	1.370D-03
	.000D+00	1.000D+00	_		1.131D-03
	.000D+00	1.000D+00	1.000D+00	1.000D+00	
	.000D+00	1.000D+00	1.000D+00	1.000D+00	9.342D-04
6.820D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	7.729D-04
7.040D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	6.403D-04
7.260D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	5.311D-04
	.000D+00	1.000D+00	1.000D+00	1.000D+00	4.411D-04
	.000D+00	1.000D+00	1.000D+00	1.000D+00	3.668D-04
	.000D+00	1.000D+00	1.000D+00	1.000D+00	3.054D-04
				1.000D+00	2.545D-04
	.000D+00	1.000D+00	1.000D+00		
1	.000D+00	1.000D+00	1.000D+00	1.000D+00	2.124D-04
	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.774D-04
8.800D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.484D-04
9.020D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.242D-04
9.240D+08 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.041D-04
	.000D+00	1.000D+00	1.000D+00	1.000D+00	8.734D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	7.335D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	6.166D-05
			1.000D+00	1.000D+00	5.188D-05
	.000D+00	1.000D+00			
	.000D+00	1.000D+00	1.000D+00	1.000D+00	4.370D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	3.684D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	3.108D-05
1.100D+09 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	2.625D-05
1.122D+09 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	2.218D-05
1.144D+09 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.876D-05
1.166D+09 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.589D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.346D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	1.141D-05
	.000D+00	1.000D+00	1.000D+00	1.000D+00	9.681D-06
	.000D+00	1.000D+00	1.000D+00	1.000D+00	8.219D-06
]		1.000D+00		1.000D+00	6.982D-06
	.000D+00		1.000D+00		
	.000D+00	1.000D+00	1.000D+00	1.000D+00	5.936D-06
1	.000D+00	1.000D+00	1.000D+00	1.000D+00	5.049D-06
1.342D+09 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	4.297D-06
1.364D+09 1	.000D+00	1.000D+00	1.000D+00	1.000D+00	3.659D-06
1.386D+09 1	.000D+00	1.000D+00	1.000D+00	9.999D-01	3.117D-06
	.000D+00	1.000D+00	1.000D+00	9.995D-01	2.656D-06
	.000D+00	1.000D+00	9.999D-01	9.973D-01	2.265D-06
	.000D+00	1.000D+00	9.991D-01	9.898D-01	1.932D-06
	.000D+00	1.000D+00	9.959D-01	9.711D-01	1.649D-06
1	.000D+00	1.000D+00	9.863D-01	9.352D-01	1.408D-06
i i	I.			8.786D-01	1.202D-06
	.000D+00	1.000D+00	9.643D-01		
	.000D+00	1.000D+00	9.248D-01	8.027D-01	1.027D-06
	.000D+00	1.000D+00	8.653D-01	7.125D-01	8.773D-07
	.000D+00	1.000D+00	7.879D-01	6.155D-01	7.498D-07
1.606D+09 1	.000D+00	1.000D+00	6.981D-01	5.189D-01	6.410D-07
1.628D+09 1	.000D+00	1.000D+00	6.027D-01	4.282D-01	5.481D-07
	.000D+00	1.000D+00	5.086D-01	3.471D-01	4.687D-07
	.000D+00	1.000D+00	4.206D-01	2.770D-01	4.009D-07
	.000D+00	1.000D+00	3.419D-01	2.184D-01	3.430D-07
	.000D+00	1.000D+00	2.740D-01	1.704D-01	2.935D-07
1	.000D+00	1.000D+00	2.169D-01	1.704D=01 1.318D=01	2.535D-07 2.511D-07
1 7200.00 1 1			しょ エロゴリーリー	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Z.511D-0/
					2 1405 07
1.760D+09 9	.998D-01	1.000D+00 1.000D+00	1.701D-01 1.322D-01	1.012D-01 7.725D-02	2.149D-07 1.839D-07

1.804D+09	9.980D-01	9.9990-01	1.021D-01	5.866D-02	1.574D-07
1.826D+09	9.951D-01	9.997D-01	7.838D-02	4.434D-02	1.348D-07
1.848D+09	9.895D-01	9.990D-01	5.987D-02	3.339D-02	1.154D-07
1.870D+09	9.797D-01	9.973D-01	4.552D-02	2.505D-02	9.877D-08
1.892D+09	9.643D-01	9.937D-01	3.448D-02	1.873D-02	8.456D-08
1.914D+09	9.423D-01	9.870D-01	2.603D-02	1.397D-02	7.239D-08
1.936D+09	9.130D-01				
		9.757D-01	1.959D-02	1.039D-02	6.198D-08
1.958D+09	8.762D-01	9.585D-01	1.470D-02	7.701D-03	5.307D-08
1.980D+09	8.327D-01	9.344D-01	1.099D-02	5.696D-03	4.543D-08
2.002D+09	7.836D-01	9.029D-01	8.205D-03	4.202D-03	3.890D-08
2.024D+09	7.302D-01	8.642D-01	6.107D-03	3.093D-03	3.330D-08
2.046D+09	6.741D-01	8.190D-01	4.535D-03	2.271D-03	2.851D-08
2.068D+09	6.169D-01	7.685D-01	3.359D-03	1.663D-03	2.441D-08
2.090D+09	5.601D-01	7.142D-01	2.483D-03	1.215D-03	2.090D-08
2.112D+09	5.048D-01	6.578D-01	1.830D-03	8.858D-04	1.789D-08
2.134D+09	4.520D-01	6.006D-01	1.346D-03	6.442D-04	1.531D-08
2.156D+09	4.024D-01	5.442D-01	9.880D-04	4.674D-04	1.311D-08
2.178D+09	3.563D-01	4.896D-01	7.234D-04	3.383D-04	1.122D-08
2.200D+09	3.141D-01	4.376D-01	5.284D-04	2.443D-04	9.602D-09

Long term probability of exceedance of - peaks

1				l		l !
Leve from z	_	Poisson	Order statistics	Poisson	Poisson	Individual
TIOM 2	e10	upcrossing	Statistics	(k3=0,k4=3)	Linear resp	peak exced.
0.000D	+00	1.000D+00	1.000D+00	1.000D+00	1.000D+00	8.993D-01
2.200D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	7.183D-01
4.400D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	5.075D-01
6.600D	+07	1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.614D-01
8.800D	+07	1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.617D-01
1.100D	+08	1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.918D-01
1.320D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.424D-01
1.540D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.071D-01
1.760D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	8.142D-02
1.980D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	6.238D-02
2.200D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	4.806D-02
2.420D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.719D-02
2.640D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.887D-02
2.860D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.247D-02
3.080D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.752D-02
3.300D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.367D-02
3.520D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.068D-02
3.740D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	8.347D-03
3.960D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	6.526D-03
4.180D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	5.104D-03
4.400D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.993D-03
4.620D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.125D-03
4.840D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.447D-03
5.060D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.917D-03
5.280D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.503D-03
5.720D		1.000D+00 1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.179D-03
5.720D		1.000D+00	1.000D+00 1.000D+00	1.000D+00 1.000D+00	1.000D+00	9.257D-04
6.160D		1.000D+00	1.000D+00	1.000D+00	1.000D+00 1.000D+00	7.274D-04
6.380D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	5.720D-04 4.502D-04
6.600D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.546D-04
6.820D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	
7.040D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.796D-04 2.206D-04
7.260D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.742D-04
7.480D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.742D-04 1.378D-04
7.700D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.090D-04
7.920D		1.000D+00	1.000D+00	1.000D+00	1.000D+00	
1.3200	. 55	1.000D±00	1.000D±00	1.000D±00	1.000D+00	8.634D-05

1 0 1400+00	1.000D+00	1.000D+00	1.000D+00	1.000D+00	6.845D-05
8.140D+08	1.000D+00	1.000D+00	1.000D+00	1.000D+00	5.433D-05
8.360D+08	1.000D+00	1.000D+00	1.000D+00	1.000D+00	4.316D-05
8.580D+08	1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.432D-05
8.800D+08		1.000D+00 1.000D+00	1.000D+00	1.000D+00	2.733D-05
9.020D+08	1.000D+00		1.000D+00	1.000D+00	2.178D-05
9.240D+08	1.000D+00	1.000D+00		1.000D+00	1.738D-05
9.460D+08	1.000D+00	1.000D+00	1.000D+00		1.738D-05
9.680D+08	1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.110D-05
9.900D+08	1.000D+00	1.000D+00	1.000D+00	1.000D+00	8.881D-06
1.012D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	
1.034D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	7.115D-06
1.056D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	5.705D-06
1.078D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	4.578D-06
1.100D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.676D-06
1.122D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.954D-06
1.144D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.375D-06
1.166D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.910D-06
1.188D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.536D-06
1.210D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	1.236D-06
1.232D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	9.944D-07
1.254D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	8.000D-07
1.276D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	6.435D-07
1.298D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	5.175D-07
1.320D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	4.161D-07
1.342D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	3.344D-07
1.364D+09	1.000D+00	1.000D+00	1.000D+00	1.000D+00	2.687D-07
1.386D+09	1.000D+00	1.000D+00	9.999D-01	9.999D-01	2.157D-07
1.408D+09	9.998D-01	1.000D+00	9.992D-01	9.995D-01	1.732D-07
1.430D+09	9.990D-01	9.998D-01	9.961D-01	9.973D-01	1.389D-07
1.452D+09	9.959D-01	9.987D-01	9.863D-01	9.898D-01	1.114D-07
1.474D+09	9.878D-01	9.952D-01	9.639D-01	9.711D-01	8.922D-08
1.496D+09	9.707D-01	9.862D-01	9.234D-01	9.352D-01	7.144D-08
1.518D+09	9.406D-01	9.675D-01	8.623D-01	8.786D-01	5.717D-08
1.540D+09	8.953D-01	9.354D-01	7.829D-01	8.027D-01	4.571D-08
1.562D+09	8.352D-01	8.880D-01	6.912D-01	7.125D-01	3.653D-08
1.584D+09	7.629D-01	8.259D-01	5.944D-01	6.155D-01	2.917D-08
1.606D+09	6.828D-01	7.522D-01	4.994D-01	5.189D-01	2.327D-08
1.628D+09	5.996D-01	6.712D-01	4.111D-01	4.282D-01	1.855D-08
1.650D+09	5.176D-01	5.877D-01	3.327D-01	3.471D-01	1.478D-08
1.672D+09	4.402D-01	5.060D-01	2.654D-01	2.770D-01	1.177D-08
1.694D+09	3.696D-01	4.293D-01	2.092D-01	2.184D-01	9.358D-09
1.716D+09	3.069D-01	3.597D-01	1.633D-01	1.704D-01	7.437D-09
1.738D+09	2.526D-01	2.981D-01	1.265D-01	1.318D-01	5.905D-09
1.760D+09	2.062D-01	2.449D-01	9.726D-02	1.012D-01	4.685D-09
1.782D+09	1.673D-01	1.996D-01	7.437D-02	7.725D-02	3.714D-09
1.804D+09	1.350D-01	1.617D-01	5.658D-02	5.866D-02	2.942D-09
1.826D+09	1.084D-01	1.303D-01	4.287D-02	4.434D-02	2.328D-09
1.848D+09	8.672D-02	1.045D-01	3.235D-02	3.339D-02	1.841D-09
1.870D+09	6.916D-02	8.348D-02	2.434D-02	2.505D-02	1.454D-09
1.892D+09	5.500D-02	6.649D-02	1.825D-02	1.873D-02	1.148D-09
1.914D+09	4.363D-02	5.282D-02	1.364D-02	1.397D-02	9.052D-10
1.936D+09	3.455D-02	4.185D-02	1.017D-02	1.039D-02	7.132D-10
1.958D+09	2.730D-02	3.310D-02	7.567D-03	7.701D-03	5.615D-10
1.980D+09	2.154D-02	2.613D-02	5.614D-03	5.696D-03	4.417D-10
2.002D+09	1.697D-02	2.059D-02	4.155D-03	4.202D-03	3.471D-10
2.024D+09	1.335D-02	1.621D-02	3.068D-03	3.093D-03	2.726D-10
2.046D+09	1.049D-02	1.274D-02	2.260D-03	2.271D-03	2.138D-10
2.068D+09	8.235D-03	9.998D-03	1.661D-03	1.663D-03	1.676D-10
2.090D+09	6.457D-03	7.839D-03	1.218D-03	1.215D-03	1.313D-10
2.112D+09	5.058D-03	6.139D-03	8.911D-04	8.858D-04	1.027D-10
2.134D+09	3.958D-03	4.804D-03	6.504D-04	6.442D-04	8.033D-11
2.156D+09	3.094D-03	3.755D-03	4.736D-04	4.674D-04	6.275D-11
2.178D+09	2.417D-03	2.932D-03	3.441D-04	3.383D-04	4.898D-11
2.200D+09	1.886D-03	2.288D-03	2.495D-04	2.443D-04	3.821D-11
,	,		,	•	• '

Marsden area No. 8: Fraction of time	.059
Marsden area No. 9: Fraction of time:	.059
Marsden area No. 10: Fraction of time:	.059
Marsden area No. 11: Fraction of time:	.059
Marsden area No. 15: Fraction of time:	.118
Marsden area No. 16: Fraction of time:	.118
Marsden area No. 17: Fraction of time:	.059
Marsden area No. 23: Fraction of time:	.118
Marsden area No. 24: Fraction of time:	.118
Marsden area No. 25: Fraction of time:	.118
Marsden area No. 26: Fraction of time:	.059
Marsden area No. 27: Fraction of time:	.059
Total period (years):	15.000
Hsl = practical Hs limit for service speed:	16.500
Fraction of time with service speed when Hs <hs1:< td=""><td>.800</td></hs1:<>	.800
Fraction of time with minimum speed when Hs>Hs1:	1.000
Service speed >=	30.500
betvice speed	30.300
Fraction of time with heading 0 deg (following):	.111
Fraction of time with heading 45 deg	.222
Fraction of time with heading 90 deg:	.222
Fraction of time with heading 135 deg:	.333
Fraction of time with heading 180 deg (head):	.111
Main dimensions: $L,B,T = 880.000,105.510, 32.429$	
Rigid hull, bending moments, sagging state	tistics
Response at Station No:	11
Fraction of time with non-zero response spectra:	.894D+00
Stress conversion factor for fatigue analysis:	.500D+08
Scale factor for S-N curve	.329D+13
Slope of S-N curve	-3.000
Resulting fatigue damage	.743D-02
Resulting fatigue damage (linear)	.699D-02

Long term probability of exceedance of + peaks during 15.0 years, corr. to 55596001 peaks (54925809 if Gaussian)

A L P S / I S U M

A COMPUTER PROGRAM OF
NONLINEAR ANALYSIS OF
LARGE PLATED STRUCTURES USING
IDEALIZED STRUCTURAL UNIT METHOD

DEVELOPED BY

JEOM K. PAIK

DEPARTMENT OF NAVAL ARCHITECTURE
AND OCEAN ENGINEERING
PUSAN NATIONAL UNIVERSITY
PUSAN, KOREA

NUMBER OF PLATE ELEMENT(NEP).... = 140

					. ,						
NOMBER OF BITTIES TELLS										51	
NUMBER OF BEAM ELEMENT(NEF)										25	
NUMBER OF NODAL POINT(NP)									1	18	
NUMBER OF LOADING STEP(NSTEP)=									5	00	
SKIP NUMBER OF OUTPUT PRINT(NSKIP)= 200											
NUM	BER O	LOAL	OING	POINT	(NR).	• • • •	• • • • • •	,=		59	
TYP	E OF	LOADIN	IG CO	NDITION)N (KT	YPE)	,=		2	
ARR	ANGEM	ENT NU	JMBER	OF PI	LATE	(NPI	NOP)				
(1)	1	2	61	60	(2)	11	38	97	70
(3)	21	59	118	80	(4)	24	58	117	83
(5)	29	57	116	88	(6)	1	3	62	60
(7)	4	2	61	63	(8)	3	4	63	62
(9)	3	5	64	62	(10)	5	6	65	64
(11)	7	4	63	66	(12)	6	7	66	65
(13)	6	8	67	65	(14)	9	7	66	68
(15)	8	9	68	67	(16)		12	71	67
(17)	10	9	68	69	(18)	11	10	69	70
(19)	13	10	69	72	(20)	12	13		71
(21)	12	14	73	71	(22)	14	15	74	73
(23)	16	13	72	75	(24)	15	16	75	74
(25)	15	17	76	74	(26)	17	18	77	76
(27)	18	11	70	77	(28)	18	19	78	77
(29)	19	20	79	78	(30)	20	21	80	79
(31)	20	22	81	79	(32)	22	23	82	81
(33)	23	24	83	82	(34)	23	25	84	82

F-13

,	351	25	26	0.5	0.4	,	261	2.6	2.7	0.6	
(35) 37)	27	26 28	85 87	84 86	(36)	26	27		
(39)	30	1	60	89	(38) 40)	28	29		87
ì	41)	31	30	89	90	(42)	2 32	31 30	90	61
ì	43)	33	32	91	92	(44)	31	34	89 93	91
ì	45)	34	33	92	93	(46)	35	33	92	90 94
ì	47)	34	36	95	93	(48)	36	35	94	95
ì	49)	39	35	94	98	(50)	36	37	96	95
ì	51)	37	38	97	96	(52)	37	40	99	96
ì	53)	40	39	98	99	(54)	41	39	98	100
ì	55)	42	41	100	101	(56)	40	43	102	99
ì	57)	43	42	101	102	(58)	44	42	101	103
ì	59)	45	44	103	104	ì	60)	38	45	104	97
ì	61)	46	45	104	105	(62)	47	46	105	106
ì	63)	48	47	106	107	(64)	49	47	105	108
ì	65)	50	49	108	109	ì	66)	51	50	109	110
ì	67)	52	50	109	111	(68)	53	52	111	112
i	69)	54	53	112	113	(70)	55	54	113	114
ì	71)	56	55	114	115	ì	72)	59	48	107	118
ì	73)	58	51	110	117	ì	74)	57	56	115	116
ì	75)	25	26	28	24	Ò	76)	23	27	28	24
ì	77)	24	28	29	58	ì	78)	24	29	57	58
ì	79)	58	56	55	51	(80)	51	55	54	50
ì	81)	51	55	53	52	ì	82)	84	85	87	83
ì	83)	82	86	87	83	ì	84)	83	87	88	117
ì	85)	83	88	116	117	ì	86)	117	115	114	110
į.	87)	110	114	113	109	ì	88)	110	114	112	111
Ċ	89)	20	23	24	21	ì	90)	21	24	58	59
(91)	59	58	51	48	ì	92)	48	51	50	47
(93)	79	82	83	80	ì	94)	80	83	117	118
(95)	118	117	110	107	(96)	107	110	109	106
(97)	18	20	21	11	(98)	11	21	59	38
(99)	11	59	48	38	(100)	38	48	47	45
(101)	77	79	80	70	(102)	70	80	118	97
(103)	70	118	107	97	(104)	97	107	106	104
(105)	15	16	13	12	(106)	12	13	9	8
(107)	8	9	7	6	(108)	6	7	4	3
(109)	3	4	2	1	(110)	1	2	31	30
(111)	30	31	34	33	(112)	33	34	36	35
(113)	35	36	40	39	(114)	39	40	43	42
(115)	74	75	72	71	(116)	71	72	68	67
(117)	67	68	66	65	(118)	65	66	63	62
(119)	62	63	61	60	(120)	60	61	90	89
(121)	89	90	93	92	(122)	92	93	95	94
(123)	94	95	99	98	(124)	98	99	102	101
(125)	10	11	38	37	(126)	69	70	97	96
(127)	20	22	24	21	(128)	79	81	83	80
(129)	48	51	49	47	(130)	107	110	108	106
(131) 133)	19	20	21	11	(132)	78	79	80	70
(135)	38 17	48	47	46 16	(134)	97	107	106	105
(135)	17 43	18 30	11	16	(136)	76	77	70	75
	137)		38 57	45 56	44	(138)	102	97	104	103
(133)	58	57	56	51	(140)	117	116	115	110

MATERIAL PROPERTY OF PLATE (E,SY,SYT,TC,EFCR)

- (1) .211E+05 .330E+02 .462E+02 .111E+02 .500E-01
- (2) .211E+05 .330E+02 .462E+02 .100E-01 .500E-01

(3)	.211E+05	.330E+02	.462E+02	.635E+01	.500E-01
ì	4)	.211E+05	.562E+02	.787E+02	.556E+01	.500E-01
ì	5)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
ì	6)	.211E+05	.547E+02	.765E+02	.175E+02	.500E-01
ì	7)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	8)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
ì	9)	.211E+05	.562E+02	.787E+02	.175E+02	.500E-01
ì	10)	.211E+05	.562E+02	.787E+02	.143E+02	.500E-01
ì	11)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
Ì	12)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
(13)	.211E+05	.544E+02	.762E+02	.143E+02	.500E-01
ì	14)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	15)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
ì	16)	.211E+05	.542E+02	.759E+02	.127E+02	.500E-01
ì	17)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
(18)	.211E+05	.536E+02	.751E+02	.714E+01	.500E-01
ì	19)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
(20)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
(21)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
(22)	.211E+05	.531E+02	.743E+02	.111E+02	.500E-01
(23)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
(24)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
(25)	.211E+05	.562E+02	.787E+02	.111E+02	.500E-01
ì	26)	.211E+05	.543E+02	.760E+02	.953E+01	.500E-01
ì	27)	.211E+05	.330E+02	.462E+02	.635E+01	.500E-01
ì	28)	.211E+05	.562E+02	.787E+02	.953E+01	.500E-01
ì	29)	.211E+05	.540E+02	.756E+02	.873E+01	.500E-01
ì	30)	.211E+05	.562E+02	.787E+02	.635E+01	.500E-01
(31)	.211E+05	.540E+02	.756E+02	.873E+01	.500E-01
(32)	.211E+05	.562E+02	.787E+02	.953E+01	.500E-01
(33)	.211E+05	.562E+02	.787E+02	.635E+01	.500E-01
(34)	.211E+05	.562E+02	.787E+02	.953E+01	.500E-01
(35)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
(36)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
(37)	.211E+05	.562E+02	.787E+02	.143E+02	.500E-01
ì	38)	.211E+05	.562E+02	.787E+02	.143E+02	.500E-01
ì	39)	.211E+05	.547E+02	.765E+02	.175E+02	.500E-01
(40)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
(41)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
(42)	.211E+05	.562E+02	.787E+02	.175E+02	.500E-01
ì	43)	.211E+05	.562E+02	.787E+02	.143E+02	.500E-01
ì	44)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	45)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
(46)	.211E+05	.544E+02	.762E+02	.143E+02	.500E-01
ì	47)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	48)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
ì	49)	.211E+05	.542E+02	.759E+02	.127E+02	.500E-01
ì	50)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	51)	.211E+05	.536E+02	.751E+02	.714E+01	.500E-01
ì	52)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	53)	.211E+05	.330E+02	.462E+02	.873E+01	.500E-01
ì	54)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
ì	55)	.211E+05	.531E+02	.743E+02	.111E+02	.500E-01
(56)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	57)	.211E+05	.330E+02	.462E+02	.111E+02	.500E-01
ì	58)	.211E+05	.562E+02	.787E+02	.111E+02	.500E-01
ì	59)	.211E+05	.543E+02	.760E+02	.953E+01	.500E-01
•	•					

(60)	.211E+05	.330E+02	.462E+02	.635E+01	.500E-01
(61)	.211E+05	.562E+02	.787E+02	.953E+01	.500E-01
(62)	.211E+05	.540E+02	.756E+02	.873E+01	.500E-01
(63)	.211E+05	.562E+02	.787E+02	.635E+01	.500E-01
(64)	.211E+05	.540E+02	.756E+02	.873E+01	.500E-01
(65)	.211E+05	.562E+02	.787E+02	.953E+01	.500E-01
(66)	.211E+05	.562E+02	.787E+02	.635E+01	.500E-01
(67)	.211E+05	.562E+02	.787E+02	.953E+01	.500E-01
(68)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
(69)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
(70)	.211E+05	.562E+02	.787E+02	.143E+02	.500E-01
(71)	.211E+05	.562E+02	.787E+02	.143E+02	.500E-01
(72)	.211E+05	.330E+02	.462E+02	.635E+01	.500E-01
į	73)	.211E+05	.562E+02	.787E+02	.556E+01	.500E-01
(74)	.211E+05	.562E+02	.787E+02	.127E+02	.500E-01
ì	75)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
ì	76)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
ì	77)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
ì	78)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
ì	79)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(80)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(81)	.211E+05	.330E+02	.462E+02	.500E+00	
(82)	.211E+05	.330E+02	.462E+02		.500E-01
(83)				.500E+00	.500E-01
	84)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(-		.330E+02	.462E+02	.500E+00	.500E-01
(85)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(86)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(87) 88)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(89)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(90)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(91)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(92)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(93)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
ì	94)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(95)	.211E+05	.330E+02	.462E+02	.500E+00	
ì	96)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(97)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
ì	98)	.211E+05	.330E+02	.462E+02		.500E-01
ì	99)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
	100)	.211E+05	.330E+02	.462E+02		.500E-01
(101)	.211E+05	.330E+02		.500E+00	.500E-01
(102)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(102)	.211E+05	.330E+02		.500E+00	.500E-01
	103)	.211E+05		.462E+02	.500E+00	.500E-01
(104)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(106)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(107)	.211E+05		.462E+02	.500E+00	.500E-01
(107)		.330E+02	.462E+02	.500E+00	.500E-01
(109)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(110)	.211E+05	.330E+02		.500E+00	.500E-01
(111)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
	111)			.462E+02	.500E+00	.500E-01
(-	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(113)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(114)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(115)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01
(116)	.211E+05	.330E+02	.462E+02	.500E+00	.500E-01

(117)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
Ì	118)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
ì	119)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
į	120)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
į	121)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
Ì	122)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
į	123)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
į	124)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
(125)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
(126.)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
(127)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
(128)			+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
Ċ	129)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
Ì	130)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
ì	131)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
ì	132)			+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
Ì	133)	. 2	11E	+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
ì	134)			+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
ì	135)			+05 .3301	E+02 .	462E+02	.500E+00	.500E-01	
ì	136)		11E		E+02 .	462E+02	.500E+00	.500E-01	
ì	137)		11E			462E+02	.500E+00	.500E-01	
ì	138)			+05 .3301		462E+02	.500E+00	.500E-01	
(139)			+05 .330		462E+02	.500E+00		
(140)			+05 .3301		462E+02	.500E+00		
`	,	• -							
PR	OPERTY	OF S	TIF	FENER IN :	STIFFEN	NED PLATE	}		
·				IFFENER N					
(1)	3	1	151.380				.118E+04	.209E+08
`	-,	0	0	.000	.00			.000E+00	.000E+00
(3.)	3	8	125.480				.875E+04	.976E+08
`	- •	0	0	.000	.00			.000E+00	.000E+00
(4)	3	9	125.480	106.68	30 3.18	5.590	.896E+04	.112E+09
•	•	0	0	.000	.00	00.00	.000	.000E+00	.000E+00
(5)	3	1	151.380	109.22	20 3.58	5.840	.118E+04	.211E+08
•	•	0	0	.000	.00	00.00	.000	.000E+00	.000E+00
(6)	3	1	152.400					.269E+08
`	- •	0	0	.000	.00			.000E+00	.000E+00
(7)	3	1	125.480				.109E+04	.127E+08
`		0	0	.000	.00		000.000	.000E+00	.000E+00
(8)	3	2	125.480				.219E+04	.249E+08
•	•	0	0	.000	.00	00.00	000.000	.000E+00	.000E+00
(11)	3	1	125.480	100.33	30 4.57	0 5.180	.109E+04	.127E+08
•	,	0	0	.000	.00			.000E+00	.000E+00
(12)	3	2	125.480	100.33	30 4.57	0 5.180	.219E+04	.249E+08
`	•	0	0	.000	.00			.000E+00	.000E+00
(13)	3	1	152.400	101.60	00 5.84	6.830	.158E+04	.263E+08
•	,	0	0	.000	.00	00.00	000.000	.000E+00	.000E+00
(14)	3	1	125.480	100.33				.127E+08
`	,	0	0	.000	.00				.000E+00
(15)	3	2	125.480					.249E+08
`	,	0	0	.000	.00				.000E+00
(16)	3	1	152.400					.260E+08
`	,	0	0	.000	.00				.000E+00
(18)	3	2	125.480					.246E+08
`	,	0	0	.000	.00				.000E+00
(20)	3	2	125.480					.249E+08
'	,	0	0	.000					.000E+00
		•	J				F-17	_	
							• -		

(22)	3	2	152.400 101	.600 5.840	6.830	.317E+04	.515E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(23)	3	2	125.480 100	330 4.570	5.180	.219E+04	.254E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(24)	3	1	125.480 100.	330 4.570	5.180	.109E+04	.127E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(26)	3	1	151.260 100.	790 5.030	5.690	.133E+04	.208E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(27)	3	5	100.330 100.	080 4.320	5.180	.476E+04	.372E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(29)	3	2	100.330 100.		5.180	.190E+04	.152E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(30)	3	3	125.480 106.		5.590	.299E+04	.377E+08
	•	0	0		000 .000	.000	.000E+00	.000E+00
(31)	3	2	100.330 100.		5.180	.190E+04	.152E+08
`		0	0		000 .000	.000	.000E+00	.000E+00
(33)	3	2	125.480 106.		5.590	.199E+04	.251E+08
`	••,	0	0		000 .000	.000	.000E+00	.000E+00
(35)	3	1	151.380 109.		5.840	.118E+04	.211E+08
`	33,	0	ō		000 .000	.000	.000E+00	
,	301	3	9					.000E+00
(38)			151.380 109.		5.840	.106E+05	.192E+09
,	201	0	0		000 .000	.000	.000E+00	.000E+00
(39)	3	1	152.400 101.		6.830	.158E+04	.269E+08
	40.	0	0		000 .000	.000	.000E+00	.000E+00
(40)	3	1	125.480 100.		5.180	.109E+04	.127E+08
		0	0		000.000	.000	.000E+00	.000E+00
(41)	3	2	125.480 100.		5.180	.219E+04	.249E+08
		0	0		000.000	.000	.000E+00	.000E+00
(44)	3	1	125.480 100.		5.180	.109E+04	.127E+08
		0	0		000.000	.000	.000E+00	.000E+00
(45)	3	2	125.480 100.		5.180	.219E+04	.249E+08
		0	0		000.000	.000	.000E+00	.000E+00
(46)	3	1	152.400 101.		6.830	.158E+04	.263E+08
	4= 1	0	0		.000	.000	.000E+00	.000E+00
(47)	3	1	125.480 100.		5.180	.109E+04	.127E+08
		0	0	.000 .		.000	.000E+00	.000E+00
(48)	3	2	125.480 100.		5.180	.219E+04	.249E+08
		0	0		.000	.000	.000E+00	.000E+00
(49)	3	1	152.400 101.		6.830	.158E+04	.260E+08
		0	0		000 .000	.000	.000E+00	.000E+00
(51)	3	2	125.480 100.	330 4.570	5.180	.219E+04	.246E+08
		0	0	.000 .	.000	.000	.000E+00	.000E+00
(53)	3	2	125.480 100.	330 4.570	5.180	.219E+04	.249E+08
		0	0	.000 .	.000	.000	.000E+00	.000E+00
(55)	3	2	152.400 101.	600 5.840	6.830	.317E+04	.515E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(56)	3	2	125.480 100.	330 4.570	5.180	.219E+04	.254E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(57)	3	1	125.480 100.	330 4.570	5.180	.109E+04	.127E+08
		0	0	.000 .	.000	.000	.000E+00	.000E+00
(59)	3	1	151.260 100.		5.690	.133E+04	.208E+08
		0	0	.000	.000	.000	.000E+00	.000E+00
(60)	3	5	100.330 100.		5.180	.476E+04	.372E+08
		0	0		.000	.000	.000E+00	.000E+00
(62)	3	2	100.330 100.0		5.180	.190E+04	.152E+08
	ž	0	0		000 .000	.000	.000E+00	.000E+00
(63)	3	3	125.480 106.0		5.590	.299E+04	.377E+08
•	-			=				

```
.000E+00
                                                                    .000E+00
               0
                        .000
                                 .000
                                          .000
                                                   .000
            0
                                                 5.180
                                                         .190E+04
                                                                    .152E+08
    64)
            3
               2
                    100.330 100.080
                                         4.320
(
                                                         .000E+00
                                                                    .000E+00
                0
                        .000
                                 .000
                                          .000
                                                  .000
            0
                                                 5.590
                                                         .199E+04
                                                                    .251E+08
    66)
            3
               2
                    125.480 106.680
                                         3.180
(
                                         .000
                                                  .000
                                                         .000E+00
                                                                    .000E+00
            0
               0
                        .000
                                 .000
                    151.380 109.220
    68)
            3
               1
                                         3.580
                                                 5.840
                                                         .118E+04
                                                                    .211E+08
(
                                                  .000
                                                         .000E+00
                                                                    .000E+00
            0
               0
                        .000
                                 .000
                                         .000
               9
                    151.380 109.220
                                                 5.840
                                                         .106E+05
                                                                    .192E+09
            3
                                         3.580
    71)
(
                                                  .000
                                          .000
                                                         .000E+00
                                                                    .000E+00
            0
               0
                        .000
                                 .000
    72)
            3
               8
                    125.480 100.330
                                         4.570
                                                 5.180
                                                         .875E+04
                                                                    .976E+08
(
                                 .000
                                         .000
                                                  .000
                                                         .000E+00
                                                                    .000E+00
            0
               0
                        .000
                                                 5.590
                                                         .896E+04
                                                                    .112E+09
(
    73)
            3
               9
                    125.480 106.680
                                         3.180
            0
               0
                                 .000
                                          .000
                                                  .000
                                                         .000E+00
                                                                    .000E+00
                        .000
                                                 5.840
                    151.380 109.220
                                         3.580
                                                         .118E+04
                                                                    .211E+08
    74)
            3
               1
(
                                          .000
            0
               0
                        .000
                                 .000
                                                  .000
                                                         .000E+00
                                                                    .000E+00
ARRANGEMENT NUMBER OF BEAM-COLUMN (NPNOF)
                           2)
                                      73
                                                3)
                                                      17
                                                           76
     1)
            5
                 64
                                 14
                                           (
(
                     (
                                                           81
     4)
           19
                 78
                           5)
                                 21
                                      80
                                                6)
                                                      22
(
                     (
                                           (
           25
                                 24
                                      83
                                                      26
                                                           85
     7)
                 84
                     (
                           8)
                                           (
                                                9)
(
                                                           91
           28
                 87
                          11)
                                29
                                      88
                                               12)
                                                      32
    10)
                                           (
(
                                                          105
           41
               100
                          14)
                                 44
                                     103
                                               15)
                                                      46
(
    13)
                     (
                                           (
                                     108
                                                      52
                                                          111
    16)
           48
               107
                          17)
                                 49
                                               18)
(
                     (
                                                          114
           51
               110
                          20)
                                 53
                                     112
                                               21)
                                                      55
    19)
                     (
                                          (
                                     116
                                                          117
    22)
           56
               115
                     (
                          23)
                                 57
                                          (
                                               24)
                                                      58
(
(
    25)
           59
               118
                     (
MATERIAL PROPERTY OF BEAM-COLUMN (NTYP, H1, B, T1, T2, ARF, ZIF)
(
     1) 3
               33.00
                       152.40
                                101.60
                                            5.84
                                                    6.83
                                                           .158E+04
                                                                      .257E+08
                                            5.84
                                                           .158E+04
                                                                      .237E+08
     2) 3
               33.00
                       152.40
                                101.60
                                                    6.83
(
                                                                       .204E+08
                       151.26
                                100.79
                                            5.03
                                                    5.69
                                                           .133E+04
     3) 3
               33.00
(
     4) 3
               33.00
                      125.48
                                100.33
                                            4.57
                                                    5.18
                                                           .109E+04
                                                                      .121E+08
(
                      125.48
                                100.33
                                            4.57
                                                    5.18
                                                           .109E+04
                                                                      .129E+08
     5) 3
               33.00
(
                                                    5.18
                                                           .952E+03
                                                                      .833E+07
     6) 3
               33.00
                       100.33
                                100.08
                                            4.32
(
                                                                      .209E+08
     7) 3
               56.20
                      151.38
                                109.22
                                           3.58
                                                    5.84
                                                           .118E+04
(
                      125.48
                                106.68
                                           3.18
                                                    5.59
                                                           .995E+03
                                                                       .128E+08
     8) 3
               56.20
(
     9) 3
               56.20
                       151.38
                                109.22
                                           3.58
                                                    5.84
                                                           .118E+04
                                                                      .219E+08
(
    10) 3
               56.20
                       151.38
                                109.22
                                           3.58
                                                    5.84
                                                           .118E+04
                                                                      .214E+08
(
                                                           .118E+04
                                                                      .209E+08
                       151.38
                                109.22
                                           3.58
                                                    5.84
    11) 3
               56.20
(
                                                                      .253E+08
    12) 3
               33.00
                       152.40
                                101.60
                                           5.84
                                                    6.83
                                                           .158E+04
(
    13) 3
               33.00
                       152.40
                                101.60
                                           5.84
                                                    6.83
                                                           .158E+04
                                                                      .263E+08
(
                                           5.03
                                                    5.69
                                                           .133E+04
                                                                      .211E+08
    14) 3
               33.00
                       151.26
                                100.79
(
                                                                      .125E+08
               33.00
                       125.48
                                100.33
                                           4.57
                                                    5.18
                                                           .109E+04
(
    15) 3
    16) 3
               33.00
                       125.48
                                100.33
                                           4.57
                                                    5.18
                                                           .109E+04
                                                                      .129E+08
(
               33.00
                       100.33
                                100.08
                                           4.32
                                                    5.18
                                                           .952E+03
                                                                      .781E+07
    17) 3
(
                                           3.58
                                                    5.84
                                                           .118E+04
                                                                      .203E+08
(
    18) 3
               56.20
                       151.38
                                109.22
                                106.68
                                           3.18
                                                    5.59
                                                           .995E+03
                                                                      .131E+08
    19) 3
               56.20
                       125.48
(
                       151.38
                                109.22
                                           3.58
                                                    5.84
                                                           .118E+04
                                                                      .206E+08
    20) 3
               56.20
(
                                109.22
                                           3.58
                                                    5.84
                                                           .118E+04
                                                                      .211E+08
(
    21) 3
               56.20
                       151.38
                                                    5.84
                                                           .118E+04
                                                                      .209E+08
    22) 3
               56.20
                       151.38
                                109.22
                                           3.58
(
                                190.50
                                           9.09
                                                   14.48
                                                           .484E+04
                                                                      .200E+09
    23) 3
               56.20
                       228.60
(
                       228.60
                                190.50
                                           9.09
                                                   14.48
                                                           .484E+04
                                                                       .200E+09
    24) 3
               56.20
(
                                                   14.48
                                                           .484E+04
                                                                      .200E+09
    25) 3
               33.00
                       228.60
                                190.50
                                           9.09
COORDINATE (XXG)
          .000E+00
                                .000E+00
   1)
                     .000E+00
(
          .000E+00
                     .000E+00
                                .137E+04
   2)
```

(3)	.000E+00	.129E+04	.762E+02
(4)	.000E+00	.129E+04	.145E+04
(5)	.000E+00	.193E+04	.172E+03
(6)	.000E+00	.258E+04	.293E+03
(7)	.000E+00	.258E+04	.166E+04
(8)	.000E+00	.387E+04	.566E+03
(9)	.000E+00	.387E+04	.194E+04
(10)	.000E+00	.451E+04	.211E+04
(11)	.000E+00	.451E+04	.457E+04
(12)	.000E+00	.516E+04	.988E+03
(13)	.000E+00	.516E+04	.236E+04
(14)	.000E+00	.580E+04	.127E+04
(15)	.000E+00	.741E+04	.216E+04
(16)	.000E+00	.677E+04	.282E+04
(17)	.000E+00	.774E+04	.308E+04
(18)	.000E+00	.821E+04	.457E+04
(19)	.000E+00	.825E+04	.526E+04
(20)	.000E+00	838E+04	.732E+04
(21)	.000E+00	.580E+04	.732E+04
	.000E+00	.838E+04	.937E+04
	.000E+00	.838E+04	.101E+05
• •	.000E+00	.645E+04	.101E+05
(24)	.000E+00	.838E+04	.107E+05
(25)	• • • • • • •		
(26)	.000E+00	.838E+04	.121E+05
(27)	.000E+00	.838E+04	.128E+05
(28)	.000E+00	.774E+04	.128E+05
(29)	.000E+00	.129E+04	.128E+05
(30)		129E+04	.762E+02
(31)		129E+04	.145E+04
(32) (33)		193E+04 258E+04	.172E+03
		258E+04	.166E+04
(34)		238E+04	.566E+03
(36)		387E+04	.194E+04
(37)		451E+04	.211E+04
(38)		451E+04	.457E+04
(39)		516E+04	.988E+03
(40)	.000E+00		.236E+04
(41)	.000E+00		.127E+04
(42)		741E+04	.216E+04
(43)		677E+04	.282E+04
(44)		774E+04	.308E+04
(45)		821E+04	.457E+04
(46)		825E+04	.526E+04
(47)		838E+04	.732E+04
(48)		580E+04	.732E+04
(49)		838E+04	.732E+04
(50)		838E+04	.101E+05
(51)	.000E+00 -		.101E+05
(52)	.000E+00 -		.107E+05
(52)		838E+04	.107E+05
(54)		838E+04	.128E+05
(55)		774E+04	.128E+05
(56)		774E+04	.128E+05
(57)	.000E+00	.000E+00	.128E+05
(58)	.000E+00	.000E+00	.120E+05
	.000E+00	.000E+00	.732E+04
(59)	.0005700	.0005700	./JZETU4

(60)	.244E+04	.000E+00	.000E+00
(61)	.244E+04	.000E+00	.137E+04
(62)	.244E+04	.129E+04	.762E+02
(63)	.244E+04	.129E+04	.145E+04
(64)	.244E+04	.193E+04	.172E+03
(65)	.244E+04	.258E+04	.293E+03
(66)	.244E+04	.258E+04	.166E+04
(67)	.244E+04	.387E+04	.566E+03
•	.244E+04	.387E+04	.194E+04
-	.244E+04	.451E+04	.211E+04
(69)		.451E+04	.457E+04
(70)	.244E+04		.988E+03
(71)	.244E+04	.516E+04	
(72)	.244E+04	.516E+04	.236E+04
(73)	.244E+04	.580E+04	.127E+04
(74)	.244E+04	.741E+04	.216E+04
(75)	.244E+04	.677E+04	.282E+04
(76)	.244E+04	.774E+04	.308E+04
(77)	.244E+04	.821E+04	.457E+04
(78)	.244E+04	.825E+04	.526E+04
(79)	.244E+04	.838E+04	.732E+04
(80)	.244E+04	.580E+04	.732E+04
(81)	.244E+04	.838E+04	.937E+04
(82)	.244E+04	.838E+04	.101E+05
(83)	.244E+04	.645E+04	.101E+05
(84)	.244E+04		.107E+05
(85)	.244E+04		.121E+05
(86)	.244E+04		.128E+05
(87)	.244E+04		.128E+05
(88)	.244E+04		.128E+05
(89)		129E+04	.762E+02
(90)		129E+04	.145E+04
(91)		193E+04	.172E+03
(92)		258E+04	.293E+03
(93)		258E+04	
(94)		387E+04	.566E+03
(95)		387E+04	.194E+04
(96)		451E+04	.211E+04
(97)		451E+04	.457E+04
(98)		516E+04	.988E+03
(99)		516E+04	.236E+04
		580E+04	.127E+04
(100)		741E+04	
(101)		677E+04	.282E+04
(102)		774E+04	.308E+04
(103)			.457E+04
(104)		821E+04	.526E+04
(105)		825E+04	
(106)		838E+04	.732E+04
(107)		580E+04	.732E+04
(108)		838E+04	.937E+04
(109)		838E+04	.101E+05
(110)		645E+04	.101E+05
(111)		838E+04	.107E+05
(112)		838E+04	.121E+05
(113)		838E+04	
(114)		774E+04	
(115)		129E+04	.128E+05
(116)	.244E+04	.000E+00	.128E+05

```
(118)
            .244E+04 .000E+00 .732E+04
LOADING
                    POINT
 (
      60)
              1
                  (
                       61)
                                1
                                    (
                                         62)
                                                 1
                                                     (
                                                          63)
                                                                   1
 (
      64)
              1
                  (
                       65)
                                1
                                    (
                                         66)
                                                 1
                                                     (
                                                          67)
                                                                   1
      68)
              1
                       69)
                                1
                                         70)
                                                 1
                                                          71)
 (
                  (
                                    (
                                                     (
                                                                   1
 (
     72)
              1
                       73)
                                1
                                         74)
                                                 1
                                                          75)
                                                                   1
                  (
                                    (
                                                     (
 (
     76)
              1
                  (
                       77)
                                1
                                         78)
                                                 1
                                                          79)
                                                                   1
                                                     (
 (
     80)
              1
                       81)
                                1
                                         82)
                                                 1
                                                          83)
                                                                   1
                  (
                                    (
                                                     (
     84)
              1
 (
                       85)
                                1
                                         86)
                                                 1
                                                          87)
                                                                   1
                  (
                                    (
                                                     (
 (
     88)
              1
                  (
                       89)
                                1
                                         90)
                                                 1
                                                          91)
                                                                   1
                                    (
                                                     (
     92)
              1
 (
                  (
                       93)
                                1
                                   (
                                        94)
                                                 1
                                                     (
                                                          95)
                                                                   1
 (
     96)
              1
                       97)
                                1
                                        98)
                                                 1
                                                          99)
                                                                   1
                  (
                                                     (
 (
    100)
              1
                     101)
                               1
                                       102)
                                                 1
                                                         103)
                                                                   1
 (
    104)
              1
                     105)
                  (
                               1
                                   (
                                       106)
                                                 1
                                                         107)
                                                    (
                                                                   1
 (
    108)
              1
                  (
                     109)
                               1
                                       110)
                                                 1
                                                         111)
                                   (
                                                     (
                                                                   1
    112)
              1
                                                 1
 (
                  (
                     113)
                               1
                                   (
                                       114)
                                                         115)
                                                                   1
                                                     (
    116)
              1
                     117)
                               1
                                       118)
                                                 1
(
                  (
                                   (
BOUNDARY COND. : 0=FIX, 1=FREE, -1=PRESCRIBED DISPLACEMENT
(
      1)
              0
                    0
                          0
                                      2)
                                             0
                                                    0
                                                          1
                                (
(
      3)
              0
                    1
                          1
                                             0
                                                    1
                                                          1
                                      4)
                                (
(
      5)
              0
                    1
                          1
                                      6)
                                             0
                                                          1
                               (
                                                    1
      7)
              0
                    1
                          1
                                             0
                                                   1
                                                          1
(
                                      8)
                               (
      9)
              0
                    1
                          1
(
                               (
                                     10)
                                             0
                                                   1
                                                          1
     11)
              0
                    1
                          1
                                     12)
                                             0
                                                   1
(
                                                          1
                               (
                    1
(
     13)
              0
                          1
                               (
                                     14)
                                             0
                                                   1
                                                          1
     15)
              0
                    1
                          1
                                     16)
                                             0
                                                   1
                                                          1
     17)
                    1
(
              0
                          1
                                     18)
                                             0
                                                   1
                                                         1
     19)
(
              0
                    1
                          1
                                    20)
                                             0
                                                   1
                                                          1
                               (
     21)
              0
                    1
                          1
(
                               (
                                    22)
                                             0
                                                   1
                                                         1
     23)
              0
                    1
                          1
                                                   1
(
                                    24)
                                             0
                                                         1
                               (
     25)
              0
                    1
                          1
                               (
                                    26)
                                             0
                                                   1
                                                         1
                    1
(
     27)
              0
                          1
                               (
                                    28)
                                             0
                                                   1
                                                         1
(
     29)
              0
                    1
                          1
                                    30)
                                             0
                                                   1
                                                         1
                               (
     31)
              0
                    1
(
                          1
                                    32)
                                             0
                                                   1
                                                         1
                               (
(
     33)
             0
                    1
                          1
                               (
                                    34)
                                             0
                                                   1
                                                         1
     35)
             0
                    1
                          1
(
                                    36)
                                             0
                                                   1
                                                         1
                               (
     37)
                    1
             0
                          1
                                    38)
                                             0
                                                   1
                                                         1
                               (
     39)
                    1
(
             0
                          1
                                    40)
                                             0
                                                   1
                                                         1
     41)
             0
                    1
(
                          1
                                    42)
                                             0
                                                   1
                                                         1
     43)
                    1
(
             0
                          1
                                    44)
                                             0
                                                   1
                                                         1
     45)
             0
                    1
                          1
                                    46)
                                                   1
                                             0
                                                         1
                    1
     47)
             0
                          1
(
                                    48)
                                             0
                                                   1
                                                         1
     49)
             0
                    1
                          1
                                    50)
(
                                             0
                                                   1
                                                         1
(
    51)
             0
                    1
                          1
                                    52)
                                             0
                                                   1
                                                         1
                    1
(
    53)
             0
                          1
                                    54)
                                             0
                                                   1
                                                         1
(
    55)
             0
                   1
                          1
                                    56)
                                             0
                                                   1
                                                         1
    57)
(
             0
                    1
                          1
                                    58)
                                             0
                                                   1
                                                         1
    59)
             0
                   1
                          1
(
                                    60)
                                           -1
                                                   0
                                                         0
                               (
    61)
            -1
                   0
(
                          1
                                    62)
                                           -1
                                                   1
                                                         1
(
    63)
            -1
                   1
                          1
                                    64)
                                           -1
                                                   1
                                                         1
(
    65)
            -1
                   1
                          1
                                    66)
                                           -1
                                                   1
                                                         1
(
    67)
            -1
                   1
                          1
                               (
                                    68)
                                           -1
                                                   1
                                                         1
    69)
            -1
                   1
                          1
(
                                    70)
                                           -1
                                                   1
                               (
                                                         1
    71)
            -1
                          1
                                    72)
(
                   1
                                           -1
                                                   1
                                                         1
```

.000E+00 .101E+05

(117)

.244E+04

(73)	-1	1	1	(74)	-1	1	1
(75)	-1	1	1	(76)	-1	1	1
(77)	-1	1	1	(78)	-1	1	1
(79)	-1	1	1	(80)	-1	1	1
(81)	-1	1	1	(82)	-1	1	1
(83)	-1	1	1	(84)	-1	1	1
(85)	-1	1	1	(86)	-1	1	1
(87)	-1	1	1	(88)	-1	1	1
(89)	-1	1	1	(90)	-1	1	1
(91)	-1	1	1	(92)	-1	1	1
(93)	-1	1	1	(94)	-1	1	1
(95)	-1	1	1	(96)	-1	1	1
(97)	-1	1	1	(98)	-1	1	1
(99)	-1	1	1	(100)	-1	1	1
(101)	-1	1	1	(102)	-1	1	1
(103)	-1	1	1	(104)	-1	1	1
(105)	-1	1	1	(106)	-1	1	1
(107)	-1	1	1	(108)	-1	1	1
(109)	-1	1	1	(110)	-1	1	1
(111)	-1	1	1	(112)	-1	1	1
(113)	-1	1	1	(114)	-1	1	1
(115)	-1	1	1	(116)	-1	1	1
(117)	-1	1	1	(118)	-1	1	1

HARD PLATE UNITS

36 37 69 70

LEN	NGTH(AA)	AND BREADT	H(BB)				
(1)	2438.400	1371.600	(2)	2438.400	9026.800
(3)	2438.400	5802.900	(4)	2438.400	6447.700
(5)	2438.400	1289.500	(6)	2438.400	1291.749
(7)	2438.400	1291.749	(8)	2438.400	1371.600
(9)	2438.400	651.819	(10)	2438.400	656.073
(11)	2438.400	1307.647	(12)	2438.400	1371.600
(13)	2438.400	1318.227	(14)	2438.400	1318.227
(15)	2438.400	1371.600	(16)	2438.400	1356.735
(17)	2438.400	666.630	(18)	2438.400	2464.800
į.	19)	2438.400	692.403	(20)	2438.400	1371.600
Ì	21)	2438.400	703.798	(22)	2438.400	1841.032
Ċ	23)	2438.400	1675.486	(24)	2438.400	920.695
(25)	2438.400	973.972	(26)	2438.400	1566.849
Ċ	27)	2438.400	3697.900	(28)	2438.400	687.103
(29)	2438.400	2061.310	(30)	2438.400	2577.600
(31)	2438.400	2057.401	(32)	2438.400	685.800
(33)	2438.400	1934.300	(34)	2438.400	673.300
(35)	2438.400	1346.000	(36)	2438.400	673.100
(37)	2438.400	644.816	(38)	2438.400	6447.866
(39)	2438.400	1291.749	(40)	2438.400	1291.749
(41)	2438.400	1371.600	(42)	2438.400	651.819
(43)	2438.400	656.073	(44)	2438.400	1307.647
(45)	2438.400	1371.600	(46)	2438.400	1318.227
(47)	2438.400	1318.227	(48)	2438.400	1371.600
(49)	2438.400	1356.735	(50)	2438.400	666.630
(51)	2438.400	2464.800	(52)	2438.400	692.403
(53)	2438.400	1371.600	(54)	2438.400	703.798
(55)	2438.400	1841.032	(56)	2438.400	1675.486
i	57)	2438.400	920.695	(58)	2438.400	973.972
	•				F-	-23	
					-		

(59)	2438.40	0 1	566.849	(60)	2438.4	100	369	7.900
(61)	2438.40	0 (687.103	(62)	2438.4	100		1.310
į	63)	2438.40		577.600	Ċ	64)	2438.4			7.401
į	65)	2438.40		685.800	ì	66)	2438.4			4.300
ì	67)	2438.40		573.300	ì	68)	2438.4			6.000
ì	69)	2438.40		573.100	•	70)	2438.4			4.816
	-	2438.40			(•				
(71)			447.866	(72)	2438.4			2.900
(73)	2438.40		447.700	(74)	2438.4			9.500
(75)	1491.78		167.709	(76)	1289.5			0.909
(77)	6447.78		010.291	(78)	3868.6		429	2.737
(79)	6447.78	3 30	010.291	(80)	1289.5	58	284	0.909
(81)	1491.78	6 21	167.709	(82)	1491.7	86	216	7.709
(83)	1289.55	8 28	340.909	(84)	6447.7	83	301	0.291
(85)	3868.60	0 42	292.737	(86)	6447.7	83	301	0.291
ĺ	87)	1289.55		340.909	(88)	1491.7			7.709
ì	89)	2255.95		780.582	ì	90)	6125.3			0.581
ì	91)	6125.30		780.581	(92)	2255.9			0.582
	-	2255.95				· · ·				
(93)			780.582	(94)	6125.3			0.581
(95)	6125.30		80.581	(96)	2255.9			0.582
(97)	3137.75		89.789	(98)	7414.8	50	415	6.412
(99)	7414.85	0 41	56.412	(100)	3137.7	50	288	9.789
(101)	3137.75	0 28	89.789	(102)	7414.8	50	415	6.412
(103)	7414.85	0 41	56.412	(104)	3137.7	50	288	9.789
(105)	2109.09	5 11	46.147	(106)	1356.7	35	137	1.600
(107)	1318.22	7 13	71.600	(108)	1307.6			1.600
(109)	1291.74		71.600	ì	110)	1291.7			1.600
ì	111)	1307.64		71.600	ì	112)	1318.2			1.600
ì	113)	1356.73		71.600	ì	114)	2109.0			6.147
ì	115)	2109.09		46.147	ì	116)	1356.7			1.600
(117)	1318.22		71.600	(118)	1307.6			
	119)	1291.74		71.600		-				1.600
(121)				(120)	1291.7			1.600
(1307.64		71.600	(122)	1318.2			1.600
(123)	1356.73		71.600	(124)	2109.0			5.147
(125)	9026.80		64.800	(126)	9026.8			4.800
(127)	2314.93		37.682	(128)	2314.9			7.682
(129)	2314.93				130)	2314.9	38	243	7.682
(3190.07	7 25	46.237	(132)	3190.0	77	254	5.237
(133)	3190.07	7 25	46.237	(134)	3190.0	77	254	5.237
(135)	2349.91	8 22	12.915	(136)	2349.9	18		2.915
(137)	2349.91	B 22	12.915		138)	2349.9			2.915
(3868.60		92.737		140)				2.737
•	·				`			•		, , ,
BU	CKLING	TERM OF I	NITTAL.	DEFLECTI	ron.	OF DIA	יםיד			
(1)	5.555 (.005		3)		,	4)	2.780
ì	5)	•		8.730	•	3) 7)		•	-	
(9)	•			-	•		•	8)	
		·		7.145	-	11)		(12)	
(•	7.145 (5.555	-	15)		(16)	
(17)	,		3.570		19)		(20)	4.365
(21)	6.350 (22)	5.555	•	23)		(24)	5.555
(25)	5.555 (26)	4.765	(27)	3.175	(28)	4.765
(29)	4.365 (30)	3.175	(31)	4.365	(32)	4.765
(33)	3.175 (34)	4.765	(35)	6.350	(36)	
(37)	7.145 (38)	7.145	(39)		Ò	40)	
(41)	4.365 (8.730		-	7.145	ì	44)	
(4.365 (7.145			5.555	ì	48)	
į	-	6.350 (5.555	•		3.570	ì	52)	
Ċ	53)	-		6.350				ì	56)	5.555
•	,	, , , ,	,	3.330	`	33,	J.JJ	(20)	J. 333

```
4.765 (
                                                       60)
                                                             3.175
          5.555 (
                     58)
                           5.555 (
                                      59)
(
    57)
                           4.365 (
                                            3.175 (
                                                       64)
                                                             4.365
    61)
          4.765 (
                     62)
                                      63)
(
                                                       68)
                                                             6.350
                           3.175
                                      67)
                                            4.765 (
    65)
          4.765 (
                     66)
                                 (
(
          6.350 (
                     70)
                           7.145 (
                                      71)
                                            7.145 (
                                                       72)
                                                             3.175
(
    69)
          2.780
                     74)
                           6.350 (
    73)
                (
(
INITIAL DEFLECTION OF BEAM-COLUMN
     1) 1219.200 (
                        2) 1219.200
                                     (
                                           3) 1219.200 (
                                                              4) 1219.200
(
                                                              8) 1219.200
                        6) 1219.200
                                           7) 1219.200 (
     5) 1219.200 (
(
                                     (
                       10) 1219.200
                                          11) 1219.200 (
                                                             12) 1219.200
     9) 1219.200
                                     (
(
                  (
    13) 1219.200
                       14)
                            1219.200
                                      (
                                          15) 1219.200 (
                                                             16)
                                                                  1219.200
(
                  (
    17) 1219.200 (
                       18)
                            1219.200 (
                                          19) 1219.200 (
                                                             20)
                                                                  1219.200
(
                                          23) 1219.200 (
                                                             24) 1219.200
    21) 1219.200 (
                       22)
                            1219.200 (
(
    25) 1219.200 (
(
ACTUAL COMPRESSIVE RESIDUAL STRESS OF PLATE
     1)
          -3.30
                   -.93 (
                              2)
                                   -3.30 -12.22 (
                                                       3)
                                                            -3.30
                                                                     -.87
(
                  -1.49 (
                                           -1.49 (
     4)
          -5.62
                              5)
                                   -5.62
                                                       6)
                                                            -5.47
                                                                    -1.45
(
                  -.87
    7)
          -3.30
                        (
                              8)
                                  -3.30
                                            -.62
                                                       9)
                                                            -5.62
                                                                   -1.50
(
                                                  (
                  -1.51 (
                                  -3.30
                                            -.88
    10)
          -5.62
                             11)
                                                      12)
                                                            -3.30
                                                                    -.62
(
                                                 (
(
    13)
          -5.44
                  -1.47
                         (
                             14)
                                   -3.30
                                            -.89
                                                  (
                                                      15)
                                                            -3.30
                                                                    -.62
         -5.42
                  -1.51
                             17)
                                  -3.30
                                           -.90 (
                                                      18)
                                                            -5.36
                                                                   -1.81
    16)
(
                  -.94 (
                             20)
                                   -3.30
                                            -.62 (
                                                                    -1.62
    19)
          -3.30
                                                      21)
                                                            -5.62
(
                  -1.34
                                           -.76 (
                                                                   -.62
(
    22)
         -5.31
                        (
                             23)
                                   -3.30
                                                      24)
                                                            -3.30
         -5.62 -2.24 (
                                   -5.43
                                           -1.74 (
                                                                    -.83
    25)
                             26)
                                                      27)
                                                            -3.30
(
                  -1.58
    28)
         -5.62
                             29)
                                   -5.40
                                           -1.52
                                                      30)
                                                            -5.62
                                                                    -1.49
(
                        (
                                                 (
         ~5.40
                  -1.52 (
                             32)
                                  -5.62
                                           -1.58 (
                                                            -5.62
                                                                   -1.49
(
    31)
                                                      33)
                 -1.55 (
                                           -1.55 (
    34)
         -5.62
                             35)
                                   -5.62
                                                      36)
                                                            -5.62
                                                                   -1.55
(
                                   -5.62
                                           -1.49 (
          -5.62
                  -1.49 (
                             38)
                                                                    -1.45
    37)
                                                      39)
                                                            -5.47
(
    40)
         -3.30
                  -.87 (
                             41)
                                   -3.30
                                           -.62 (
                                                      42)
                                                            -5.62
                                                                   -1.50
(
                                            -.88 (
         -5.62
                  -1.51 (
                             44)
                                   -3.30
    43)
                                                      45)
                                                            -3.30
                                                                    -.62
(
                 -1.47
                                                                    -.62
    46)
         -5.44
                             47)
                                  -3.30
                                           -.89 (
                        (
                                                      48)
                                                           -3.30
(
                  -1.51 (
                                            -.90 (
    49)
         -5.42
                             50)
                                  -3.30
                                                      51)
                                                           -5.36
                                                                   -1.81
(
   52)
         -3.30
                  -.94
                             53)
                                   -3.30
                                            -.62
                                                                    -1.62
                        (
                                                 (
                                                      54)
                                                            -5.62
(
                  -1.34 (
                                           -.76 (
   55)
         -5.31
                             56)
                                  -3.30
                                                                  -.62
(
                                                      57)
                                                           -3.30
                                           -1.74 (
(
   58)
         -5.62
                 -2.24 (
                             59)
                                  -5.43
                                                      60)
                                                           -3.30
                                                                    -.83
         -5.62
                 -1.58
                                           -1.52 (
                             62)
                                   -5.40
(
    61)
                        (
                                                      63)
                                                           -5.62
                                                                   -1.49
                 -1.52 (
(
    64)
         -5.40
                             65)
                                  -5.62
                                           -1.58 (
                                                      66)
                                                           -5.62
                                                                   -1.49
    67)
         -5.62
                  -1.55 (
                             68)
                                   -5.62
                                           -1.55 (
                                                      69)
                                                            -5.62
                                                                    -1.55
(
                  -1.49
    70)
         -5.62
                        (
                             71)
                                   -5.62
                                           -1.49
                                                 (
                                                      72)
                                                           -3.30
                                                                    -.87
(
                                           -1.49 (
    73)
         -5.62
                  -1.49 (
                             74)
                                   -5.62
COMPRESSIVE RESIDUAL STRESS OF BEAM-COLUMN
(
    1)
              .00
                  (
                        2)
                                 .00 (
                                           3)
                                                    .00 (
                                                              4)
                                                                       .00
    51
              .00
                        6)
                                 .00 (
                                           7)
                                                                       .00
(
                  (
                                                    .00 (
                                                             8)
    9)
              .00
                       10)
                                 .00 (
                                          11)
                                                    .00
                                                             12)
                                                                       .00
(
                  (
                                                        (
                       14)
(
   13)
              .00
                  (
                                 .00 (
                                          15)
                                                    .00
                                                        (
                                                             16)
                                                                       .00
              .00
(
   17)
                  (
                       18)
                                 .00 (
                                                    .00 (
                                                             20)
                                                                       .00
                                          19)
                                 .00 (
                                                    .00 (
(
   21)
              .00
                  (
                       22)
                                          23)
                                                             24)
                                                                       .00
   25)
              .00
                  (
TOTAL NUMBER OF UNKNOWNS =
                                 231
```

16411

REAL VALUE OF NWKPA

HULL MODULE DATA

LENGTH OF HULL MODULE (mm): .24384E+04

DEPTH OF HULL MODULE (mm): .12802E+05

BREADTH OF HULL MODULE (mm): .16764E+05

CROSS-SECTIONAL AREA (mm2): .14220E+07

HEIGHT TO NEUTRAL AXIS (mm): .60288E+04

MOMENT OF INERTIA, VERT. (m4): .31113E+02

SECTION MODULUS, BOTTOM (m3): .51607E+01

SECTION MODULUS, DECK (m3): .45938E+01

MOMENT OF INERTIA, HORI. (m4): .39306E+02

PLASTIC BENDING MOMENT, VERT.(ton-m)x10**5 : .29756E+01

PLASTIC BENDING MOMENT, HORI.(ton-m)x10**5: .32601E+01

WEIGHT OF FULL-HULL MODULE (ton): .27218E+02

L O A D I N G S T E P = 200

VERTICAL CURVATURE $\times 10**-7(1/mm) = -.33014E+01$

VERTICAL BENDING MOMENT x 10**5(ton-m) = -.17142E+01

HEIGHT TO NEUTRAL AXIS (mm) = .54780E+04

HORIZONTAL CURVATURE $\times 10**-7(1/mm) = .00000E+00$

HORIZONTAL BENDING MOMENT $\times 10**5(ton-m) = .00000E+00$

WIDTH TO NEUTRAL AXIS (mm) = .00000E+00

EXTERNAL LOAD/DISPL CEMENT

(

(60,	1)	.47373E+01	(61,	1)	.36332E+01
(62,	1)	.46760E+01	(63,	1)	.35718E+01

(64, 1) .45992E+01 (65, 1) .45017E+01

66, 1) .33975E+01 (67, 1) .42813E+01

68, 1) .31772E+01 (69, 1) .30410E+01

(70, 1) .10568E+01 (71, 1) .39420E+01

72, 1) .28379E+01 (73, 1) .37148E+01

74, 1) .29989E+01 (75, 1) .24698E+01

76, 1) .22590E+01 (77, 1) .10568E+01

78, 1) .50474E+00 (79, 1) -.11515E+01

(80, 1) -.11515E+01 (81, 1) -.28077E+01

82, 1) -.33598E+01 (83, 1) -.33598E+01

84, 1) -.39018E+01 (85, 1) -.49853E+01

	0.0	• •	55272E	. 0.1	,	87,	1)	55309	F±01
(86,	1)	55681E		(89,	1)	.46760	
(88,	1)	.35718E		(91,	1)	.45992	
(90,	1)	.35716E			93,	1)	.33975	
(92,	1)	.43017E		(95,	1)	.31772	
(94,	1)			(.10568	
(96,	1)	.30410E		(97,	1)	.28379	
(98,	1)	.39420E		(99,	1)		
(100,	1)	.37148E		(101,	1)	.299891	
(102,	1)	.24698E		(103,	1)	.22590	
(104,	1)	.10568E		(105,	1)	.50474	
(106,	1)	11515E		(107,	1)	11515	
(108,	1)	28077E		(109,	1)	33598	
(110,	1)	33598E		(111,	1)	39018	
(112,	1)	49853E		(113,	1)	55272	
(114,	1)	55309E		(115,	1)	55681	
(116,	1)	55681E		(117,	1)	33598	E+01
(118,	1)	11515E	+01	(
C	OLLA	PS				PLA			
(1)	5	.000	.000		000	.992	.833	.510
(2)	0	.000	.000		000	.049	.000	.000
(3)	0	.354	.490		000	.000	.000	.000
(4)	1	.996	.840		000	.000	.000	.000
(5)	2	.922	.993		000	.000	.000	.000
(6)	0	.000	.000	•	000	.566	.000	.000
(7)	0	.003	.000	•	000	.916	.000	.000
(8)	5	.000	.000	•	000	.993	.817	.492
(9)	0	.000	.000	•	000	.449	.000	.000
(10)	0	.000	.000	•	000	.432	.000	.000
(11)	0	.002	.000	•	000	.855	.000	.000
(12)	5	.000	.000		000	.994	.796	.471
(13)	0	.000	.000	•	000	.511	.000	.000
(14)	0	.002	.000	•	000	.760	.000	.000
(15)	5	.000	.000	•	000	.994	.771	.447
(16)	0	.000	.000	•	000	.457	.000	.000
(17)	0	.002	.000	•	000	.582	.000	.000
(18)	0	.000	.000		000	.120	.000	.000
(19)	0	.002	.000		000	.524	.000	.000
(20)	5	.000	.000	•	000	.992	.724	.418
(21)	0	.000	.000	•	000	.297	.000	.000
(22)	0	.000	.000	•	000	.358	.000	.000
(23)	0	.001	.000	•	000	.540	.000	.000
(24)	0	.000	.000		000	.564	.000	.000
(25)	0	.183	.000		000	.000	.000	.000
(26)	0	.091	.000	•	000	.000	.000	.000
(27)	0	.000	.000	•	000	.100	.000	.000
(28)	0	.002	.000		000	.013	.000	.000
(29)	0	.016	.090		000	.000	.000	.000
(30)	0	.145	.278		000	.000	.000	.000
į	31)	0	.268	.570		000	.000	.000	.000
ì	32)	0	.394	.000		000	.000	.000	.000
Ò	33)	0	.924	.786		000	.000	.000	.000
ì	34)	0	.539	.000		000	.000	.000	.000
ì	35)	2	.866	.992		000	.000	.000	.000
ì	36)	0	.000	.000		000	.654	.000	.000
Ò	37)	0	.000	.000		000	.723	.000	.000
ì	38)	2	.865	.994		000	.000	.000	.000
•	•								

(39)	0		•	651	.000	.000	.000	.000	.000
(40)	0			000	.000	.000	.905	.000	.000
(41)	5		•	000	.000	.000	.992	.815	.492
(42)	0		•	523	.000	.000	.000	.000	.000
(43)	0		•	504	.000	.000	.000	.000	.000
(44)	0		•	000	.000	.000	.846	.000	.000
(45)	5		•	000	.000	.000	.994	.796	.471
(46)	0		•	587	.000	.000	.000	.000	.000
(47)	0			000	.000	.000	.752	.000	.000
(48)	5		•	000	.000	.000	.993	.770	.447
(49)	0		•	526	.000	.000	.000	.000	.000
(50)	0			000	.000	.000	.577	.000	.000
(51)	0			000	.000	.000	.120	.000	.000
(52)	0			000	.000	.000	.517	.000	.000
(53)	5			000	.000	.000	.995	.730	.418
(54)	0			000	.000	.000	.295	.000	.000
(55)	0			063	.000	.000	.373	.000	.000
(56)	0			000	.000	.000	.539	.000	.000
į	57)	0			000	.000	.000	.566	.000	.000
(58)	0			055	.000	.000	.154	.000	.000
ì	59)	0			012	.000	.000	.076	.000	.000
ì	60)	0			000	.000	.000	.100	.000	.000
ì	61)	0			002	.000	.000	.013	.000	.000
ì	62)	0			016	.094	.000	.000	.000	.000
(63)	0			145	.276	.000	.000	.000	.000
(64)	0			268	.569	.000	.000	.000	.000
(65)	0			395	.000	.000	.000	.000	.000
(66)	0			923	.786	.000	.000	.000	.000
ì	67)	0			537	.000	.000	.000	.000	.000
ì	68)	2			853	.992	.000	.000	.000	.000
ì	69)	0			000	.000	.000	.653	.000	.000
ì	70)	0			000	.000	.000	.722	.000	.000
ì	71)	2			865	.995	.000	.000	.000	.000
ì	72)	0			354	.486	.000	.000	.000	.000
į	73)	1			995	.838	.000	.000	.000	.000
į	74)	2			915	.990	.000	.000	.000	.000
•	•									
C	OLLA	P	SE	1	M O D	E OF	BEA	M - C O	LUMN	
(1)		5	(2)	0	(3)	0	(4)	0
į	5)		0	(6)	0	(7)	0	(8)	0
ĺ	9)		0	(10)	0	(11)	0	(12)	5
į	13)		0	ì	14)	0	(15)	0	(16)	0
ì	17)		0	ì	18)	0	(19)	0	(20)	0
ì	21)		0	ì	22)	0	(23)	0	(24)	0
ì	25)		0	ì	,	•	(,		(/	v
•	·			•						
N	ODAL		D E	F	ORM	ATIO	N S			
(1)		.00	0E+(00 .0	00E+00	.000E+0	0		
(2)		.00	0E+(00 .0	000E+00 -	912E+0	0		
(3)		.00	0 E +(007	733E+00 -	528E+0	0		
(4)					193E+00 -				
(5)		.00	0E+(006	97E+00 -	335E+0	1		
(6)		.00	0 E +(001	50E+01 -	108E+0	1		
(7)		.000)+30	009	13E+00 -	175E+0	1		
(8)					02E+01 -				
(9)					.22E+01 -				
ì	10)					96E+00 -		1		
•	•							_ Tr'	28	

F-28

```
.000E+00 .202E-01 -.479E+01
(
    11)
             .000E+00 -.237E+01 -.305E+01
    12)
(
             .000E+00 -.155E+01 -.355E+01
    13)
(
             .000E+00 -.745E+01 .749E+01
(
    14)
             .000E+00 -.207E+01 -.397E+01
    15)
(
             .000E+00 -.189E+01 -.419E+01
    16)
(
             .000E+00 -.102E+01 -.449E+01
    17)
(
             .000E+00 -.446E+00 -.491E+01
    18)
(
             .000E+00 -.103E-01 -.499E+01
    19)
(
                       .276E-01 -.495E+01
             .000E+00
(
    20)
                       .851E-01 -.475E+01
    21)
             .000E+00
(
                       .447E-01 -.502E+01
    22)
             .000E+00
(
             .000E+00 -.162E+00 -.503E+01
    23)
(
             .000E+00 -.156E+00 -.468E+01
    24)
(
                       .166E+00 -.520E+01
(
    25)
             .000E+00
                       .119E+01 -.547E+01
    26)
             .000E+00
(
                       .146E+01 -.504E+01
             .000E+00
    27)
(
                       .103E+01 -.494E+01
(
    28)
             .000E+00
                       .167E+00 -.445E+01
    29)
             .000E+00
(
                       .659E+00 -.794E+00
    30)
             .000E+00
(
                       .441E+00 -.149E+01
    31)
             .000E+00
(
                       .130E+01 .118E+01
    32)
             .000E+00
(
                       .114E+01 -.149E+01
    33)
             .000E+00
(
                       .804E+00 -.216E+01
    34)
             .000E+00
(
                       .159E+01 -.241E+01
    35)
             .000E+00
(
                       .108E+01 -.302E+01
    36)
             .000E+00
(
                       .109E+01 -.380E+01
    37)
             .000E+00
(
                       .585E+00 -.429E+01
             .000E+00
    38)
(
                       .186E+01 -.344E+01
(
    39)
             .000E+00
    40)
             .000E+00
                       .127E+01 -.395E+01
(
                       .750E+01 .830E+01
    41)
             .000E+00
(
                       .171E+01 -.385E+01
    42)
(
             .000E+00
    43)
             .000E+00
                       .169E+01 -.425E+01
(
                       .820E+00 -.438E+01
             .000E+00
    44)
(
                       .103E+01 -.459E+01
(
    45)
             .000E+00
             .000E+00
                       .556E+00 -.468E+01
(
    46)
                       .521E+00 -.463E+01
    47)
             .000E+00
(
                       .492E+00 -.448E+01
             .000E+00
(
    48)
                       .585E+00 -.469E+01
    49)
             .000E+00
(
                       .857E+00 -.469E+01
    50)
             .000E+00
(
                       .840E+00 -.442E+01
    51)
             .000E+00
(
                      .615E+00 -.490E+01
    52)
             .000E+00
(
             .000E+00 -.138E+00 -.524E+01
(
    53)
             .000E+00 -.545E+00 -.481E+01
(
    54)
    55)
             .000E+00 -.117E+00 -.484E+01
(
             .000E+00
                       .340E+00 -.442E+01
    56)
(
                       .252E+00 -.418E+01
(
    57)
             .000E+00
                       .385E+00 -.434E+01
    58)
             .000E+00
(
                       .335E+00 -.439E+01
             .000E+00
(
    59)
    60)
             .474E+01
                       .000E+00 .000E+00
(
                       .000E+00 -.494E+00
    61)
             .363E+01
(
             .468E+01 -.734E+00 .410E+00
(
    62)
             .357E+01 -.508E+00 -.304E+00
    63)
(
             .460E+01 -.562E+00 -.325E+01
(
    64)
             .450E+01 -.151E+01 -.113E+00
(
    65)
             .340E+01 -.918E+00 -.780E+00
    66)
(
             .428E+01 -.202E+01 -.101E+01
    67)
```

```
69)
             .304E+01 -.100E+01 -.335E+01
 (
 (
     70)
             .106E+01 .761E-02 -.379E+01
 (
             .394E+01 -.236E+01 -.208E+01
     71)
 (
     72)
             .284E+01 -.155E+01 -.258E+01
 (
    73)
             .371E+01 -.722E+01 .799E+01
 (
    74)
             .300E+01 -.207E+01 -.299E+01
 (
    75)
             .247E+01 -.189E+01 -.321E+01
 (
    76)
             .226E+01 -.102E+01 -.351E+01
             .106E+01 -.448E+00 -.392E+01
 (
    77)
 (
    78)
             .505E+00 -.423E-01 -.401E+01
 (
    79)
            -.115E+01 .193E-01 -.396E+01
                        .780E-01 -.369E+01
 (
    80)
            -.115E+01
 (
    81)
            -.281E+01
                       .646E-01 -.403E+01
            -.336E+01 -.168E+00 -.404E+01
 (
    82)
 (
    83)
            -.336E+01 -.163E+00 -.357E+01
    84)
            -.390E+01 .135E+00 -.421E+01
    85)
            -.499E+01
                        .131E+01 -.448E+01
(
    86)
            -.553E+01
                       .147E+01 -.404E+01
 (
    87)
            -.553E+01
                        .104E+01 -.377E+01
(
    88)
            -.557E+01
                       .177E+00 -.282E+01
    89)
                       .656E+00 .141E+00
(
             .468E+01
    90)
             .357E+01
                       .455E+00 -.568E+00
    91)
                       .110E+01 .918E+00
             .460E+01
    92)
(
             .450E+01
                        .115E+01 -.525E+00
(
    93)
             .340E+01
                       .809E+00 -.119E+01
(
    94)
             .428E+01
                       .159E+01 -.145E+01
    95)
(
             .318E+01
                       .107E+01 -.206E+01
                       .110E+01 -.281E+01
(
    96)
             .304E+01
(
    97)
             .106E+01
                       .587E+00 -.327E+01
(
    98)
             .394E+01
                       .185E+01 -.246E+01
(
    99)
             .284E+01
                       .127E+01 -.298E+01
   100)
                       .721E+01 .871E+01
(
             .371E+01
   101)
(
             .300E+01
                       .171E+01 -.287E+01
(
   102)
             .247E+01
                       .169E+01 -.328E+01
   103)
                       .824E+00 -.340E+01
(
             .226E+01
   104)
             .106E+01
                       .103E+01 -.361E+01
(
   105)
(
            .505E+00
                       .577E+00 -.369E+01
   106)
(
            -.115E+01
                       .531E+00 -.364E+01
(
   107)
           -.115E+01
                       .503E+00 -.334E+01
   108)
(
           -.281E+01
                       .536E+00 -.370E+01
(
   109)
           -.336E+01
                       .855E+00 -.369E+01
(
   110)
           -.336E+01 .844E+00 -.321E+01
   111)
(
           -.390E+01
                       .580E+00 -.390E+01
(
   112)
           -.499E+01 -.302E+00 -.424E+01
(
   113)
           -.553E+01 -.555E+00 -.381E+01
(
   114)
           -.553E+01 -.127E+00 -.358E+01
   115)
(
           -.557E+01 .349E+00 -.288E+01
   116)
(
           -.557E+01
                      .262E+00 -.274E+01
           -.336E+01
                      .386E+00 -.289E+01
(
   117)
(
   118)
           -.115E+01 .337E+00 -.307E+01
AVERAGE
                 STRESS
                               0 F
                                      PLATE
(
           33.041
     1)
                      .812
                            -2.218
                                        (
                                             2)
                                                                      .001
                                                    7.874
                                                             1.267
(
           -8.061
                     -.183
     3)
                               .010
                                        (
                                             4)
                                                  -20.522
                                                             2.255
                                                                      .012
(
     5)
          -26.001
                     -.292
                             -.008
                                             6)
                                        (
                                                   41.258
                                                              .207
                                                                      -.103
(
     7)
           32.122
                     1.117
                               .085
                                             8)
                                                   33.362
                                                              .992
                                                                     -.134
```

F - 30

68)

(

.318E+01 -.122E+01 -.162E+01

(9)	37.928		025	(10)	37.212		064
(11)	31.046	1.098	.052	(12)	33.344	.919	039
(13)	39.055	.325	035	(14)	29.253	.985	.020
(15)	33.309	.845	037	(16)	36.879	.460	001
(17)	25.647	.973	.025	(18)	19.284	1.506	049
i	19)	24.123	.477	003	(20)	33.408	1.105	029
Ċ	21)	32.188	3.422	.113	(22)	32.011	.469	075
ì	23)	24.571		.004	i	24)	25.070	.606	012
ì	25)	22.666	233	014	Ċ	26)	15.570	049	002
(27)	10.505	.118	.023	ì	28)	6.478	.122	.006
(29)	-2.108	.082	.013	ì	30)	-7.147	068	.026
(31)	-11.365	114	.023	ì	32)	-14.868	182	.033
•	33)	-19.486	.040	.023	ì	34)	-17.503	207	.037
(-		075	.036	(36)	-45.500	120	.049
(35)	-25.568			•	•		367	004
(37)	-47.893	238	025	(38)	-26.716		
(39)	43.506	253	.095	(40)	32.256	1.795	085
(41)	33.381		.140	(42)	40.073	162	025
(43)	39.317	175	.083	(44)	31.154	1.680	053
(45)	33.343	.917	.042	(46)	41.153	121	.025
(47)	29.348	1.513	020	(48)	33.318	.871	.040
(49)	38.837	007	009	(50)	25.717	1.336	015
(51)	19.227	1.315	.068	(52)	24.230	1.027	005
(53)	33.334	.861	.029	(54)	32.399	4.125	127
i	55)	32.631	.392	.080	(56)	24.574	.728	004
ì	57)	24.967	.264	.012	(58)	22.102	.124	.013
ì	59)	15.118	.242	001	Ċ	60)	10.533	.210	007
ì	61)	6.497	.135	010	ì	62)	-2.115	.112	021
ì	63)	-7.145		036	ì	64)	-11.363	080	032
(65)	-14.893	154	042	ì	66)	-19.476	.055	003
(67)	-17.449	297	047	ì	68)	-25.317	221	042
•	69)	-45.525	200	054	ì	70)	-47.931	368	.029
(-	-45.323 -26.736	350	.002	(70) 72)	-8.045	213	022
(71)			003	(74)	-25.869	351	.000
(73)	-20.519	2.071	003	(/4)	-23.609	351	.000
	13 O V 1		RESS	0 F	ъτ	7 m 12			
		ING ST 34.810	32.46		.902	-11.	722		
(1)		32.93		.845	-13.			
(2)	33.457							
(3)	33.000	33.00		.300		873 406		
(4)	56.200	56.20		620	-1.			
(5)	56.200	56.20		.620	-1.			
(6)	56.736	54.09		.243	-13.			
(7)	34.498	32.60		.657	-8.			
(8)	34.784	32.45		.373	-11.			
(9)	58.206	55.62		.496	-13.			
(10)	58.168	55.63		.742	-12.			
(11)	34.449	32.62		6.677	-8.	472		
(12)	34.708	32.48	8 30	.866	-10.			
(13)	56.299	53.84	6 32	.550	-12.	553		
(14)	34.367	32.64	0 24	.034	-8.	102		
(15)	34.613	32.53	30 28	.960	-10.			
(16)	55.978	53.68	19 30	.149	-11.	734		
(17)	34.311	32.65	7 22	.921	-7.	755		
(18)	54.486	53.40		.365	-5.	663		
į	19)	34.222	32.65		.137	-7.	771		
ì	20)	34.466	32.61		.025	-8.			
ì	21)	57.856	55.87		.497	-8.			
Ì	22)	54.552	52.68		.728	-9.			
	221								

(23)	34.133	32.694	19.360	-6.884
ì	28)	34.183	32.694	29.350	-6.886
ì	25)	56.283	58.695	20.855	-2.335
ì	25)	56.234	56.295	-4.855	-2.929
(25)	58.854	32.869	-5.855	-3.989
	28)	56.458	38.889	5.859	-3.066
(-				
(29)	56.008	56.006	-5.289	-3.856
(39)	56.000	56.000	-5.680	-1.585
(30)	56.200	56.200	-5.600	-1.589
(32)	56.000	56.900	-5. 6 00	-1.589
(33)	56.200	56.200	-5.620	-1.586
(38)	56.200	56.200	-5.620	-1.588
(35)	56.200	56.200	-5.620	-1.55 2
(35)	56.200	56.200	-5.620	-1.551
(35)	56.200	56.200	-5.620	-1.586
(38)	56.200	56.200	-5.620	-1.486
Ċ	39)	56.200	56.200	-5. 62 0	-1.489
ì	3 9)	34.500	52.609	29.886	-8.489
(40)	34.588	32.459	32.883	-18.488
(42)	56.200	55.289	38.626	-11.508
(43)		56.200	-5.620	-1.502
(43)	56.200		25.628	-8.502
(45)	34.508		26.865	-10.864
(45)	54.400	52.400	30.866	-10.880
(48)	54.400	32.600	25.449	-1.980
(48)	34.622	32.531	28.969	-9.961
(49)	54.800	52.860	28.980	-9.998
(49)	54.208	52.860	25.590	-1.500
(50)	54.385		22.595	-5.686
(52)	54.286	52.668	22.389	-5.848
(52)	34.256			-8.588
Ċ	58)	94.8 56			-8.580
Ò	5 5)	53.896		22.582	-6.550
ì	55)	58.998		19.589	-6.945
ì	58)	34.188	32.698	20.859	-8.966
	58)	56.182	58.658	28.033	
(-9.266
(59)	56.780	56.068	5.088	-5.398
(59)	53.480	52.868	5.868	-8.378
(60)	58.459	58.830	5.845	-2.981
(62)	54.000	56.000	-5.500	-2.982
(63)	56.200	56.000	-5. 6 00	-1.583
(68)	56.200	56.000	-5.600	-1.589
(65)	56.200	56.000	-5.600	-1.589
(65)	56.200	56.200	-5.620	-1.586
(6 6)	56.200	56.200	-5.620	-1.588
(68)	56.200	56.200	-5.620	-1.552
(69)	56.200	56.200	-5.620	-1.551
(89)	56.200	56.200	-5.620	-1.586
(70)	56.200	56.200	-5.620	-1.486
(72)	56.000	56.000	-5.600	-1.885
Ì	72)	33.000	33.000	-3.300	873
ì	73)	56.200	56.200	-5.620	-1.486
ì	74)	56.200	56.200	-5.620	-1.486
•	· - ,			J. 020	-7.400
Δ	XIAL	2 4 5 5 5	S V D	D E 3 W	C O T 11 W Y
	1)	S T R E S 33.185			COLUMN
(-		(2)	32.158	•
(4)	4.368	(5)		(6) -22.512
				F-3	2

```
-27.603 (
                                              9)
                                                    -41.566
                           8)
          -32.510
                      (
(
    7)
                                                     33.185
                                              12)
                                -46.315
                                         (
                          11)
          -46.051
                       (
    10)
(
                                                      4.368
                                              15)
                          14)
                                 19.551
                                          (
                       (
    13)
          32.158
(
                                              18)
                                                    -32.474
                           17)
                                -22.392
                                          (
           -9.450
                       (
    16)
(
                                                    -46.030
                                              21)
                                -41.466
                                          (
          -27.631
                       (
                           20)
    19)
(
                                              24)
                                                    -28.603
                                -47.370
                                          (
                           23)
          -46.315
                       (
    22)
(
                       (
    25)
           -9.809
(
                                    PLATE
                STRAIN OF
AVERAGE
           .172E-02 -.512E-03 -.317E-03
     1)
(
           .434E-03 -.634E-04 .215E-05
    2)
(
          -.472E-03 -.439E-04 .120E-05
(
     3)
          -.138E-02 -.845E-04
                               .139E-05
     4)
(
          -.228E-02 -.658E-04 -.383E-05
     5)
(
           .193E-02 -.570E-03 -.128E-04
     6)
(
           .148E-02 -.390E-03 .105E-04
(
     7)
           .169E-02 -.516E-03 -.202E-04
     8)
(
           .190E-02 -.546E-03 -.306E-05
(
    9)
           .187E-02 -.536E-03 -.788E-05
(
    10)
           .143E-02 -.376E-03 .649E-05
    11)
(
           .162E-02 -.486E-03 -.562E-05
    12)
(
           .180E-02 -.525E-03 -.430E-05
    13)
(
           .135E-02 -.357E-03 .247E-05
    14)
(
           .153E-02 -.446E-03 -.505E-05
    15)
           .169E-02 -.485E-03 -.176E-06
    16)
(
           .128E-02 -.335E-03 .311E-05
(
    17)
           .840E-03 -.183E-03 -.607E-05
    18)
           .121E-02 -.337E-03 -.379E-06
    19)
           .139E-02 -.367E-03 -.365E-05
    20)
           .157E-02 -.313E-03 .141E-04
    21)
           .138E-02 -.391E-03 -.930E-05
    22)
           .109E-02 -.295E-03 .529E-06
    23)
           .112E-02 -.309E-03 -.149E-05
    24)
           .108E-02 -.153E-03 -.179E-05
    25)
           .680E-03 -.140E-03 -.275E-06
    26)
           .434E-03 -.125E-03 .289E-05
    27)
           .320E-03 -.849E-04 .690E-06
    28)
           -.133E-03 .248E-04 .165E-05
    29)
          -.472E-03 -.226E-04
                                .323E-05
    30)
          -.812E-03 -.366E-04 .291E-05
    31)
           -.126E-02 -.119E-04 .406E-05
(
    32)
          -.138E-02 -.270E-05 .287E-05
    33)
(
           -.149E-02 -.249E-03 .458E-05
    34)
          -.182E-02 -.200E-03 .473E-05
    35)
          -.216E-02 .641E-03 .599E-05
    36)
(
           -.227E-02 .670E-03 -.306E-05
    37)
(
           -.228E-02 .134E-03 -.261E-05
(
    38)
    39)
            .193E-02 -.523E-03 .118E-04
(
            .148E-02 -.361E-03 -.106E-04
    40)
 (
            .169E-02 -.513E-03 .212E-04
    41)
 (
            .190E-02 -.508E-03 -.313E-05
    42)
 (
            .187E-02 -.492E-03 .102E-04
    43)
 (
            .143E-02 -.352E-03 -.656E-05
 (
    44)
            .162E-02 -.486E-03 .597E-05
 (
    45)
            .180E-02 -.471E-03 .304E-05
 (
     46)
            .135E-02 -.335E-03 -.245E-05
     47)
 (
```

.153E-02 -.444E-03 .542E-05

48)

```
49)
           .169E-02 -.423E-03 -.107E-05
(
           .128E-02 -.321E-03 -.184E-05
    50)
(
(
    51)
           .840E-03 -.192E-03 .840E-05
           .121E-02 -.315E-03 -.580E-06
    52)
(
    53)
           .139E-02 -.378E-03 .362E-05
(
(
    54)
           .157E-02 -.281E-03 -.157E-04
           .138E-02 -.373E-03 .990E-05
(
    55)
           .109E-02 -.293E-03 -.536E-06
    56)
(
    57)
           .112E-02 -.324E-03 .151E-05
(
(
    58)
           .108E-02 -.212E-03 .158E-05
(
    59)
           .680E-03 -.169E-03 -.899E-07
    60)
           .434E-03 -.120E-03 -.919E-06
(
           .320E-03 -.841E-04 -.129E-05
(
    61)
(
    62)
          -.133E-03 .248E-04 -.255E-05
    63)
          -.472E-03 -.109E-04 -.442E-05
(
          -.812E-03 -.302E-04 -.394E-05
(
    64)
          -.126E-02 .111E-04 -.522E-05
(
    65)
          -.138E-02 -.715E-05 -.368E-06
(
    66)
          -.149E-02 -.312E-03 -.579E-05
(
    67)
(
    68)
          -.182E-02 -.253E-03 -.551E-05
(
    69)
          -.216E-02 .638E-03 -.671E-05
    70)
          -.227E-02 .664E-03 .360E-05
(
(
    71)
          -.228E-02 .730E-04 -.111E-05
    72)
          -.472E-03 -.278E-04 -.274E-05
(
          -.138E-02 -.708E-04 -.972E-06
    73)
(
(
    74)
          -.228E-02 -.676E-04 -.403E-05
AXIAL
          STRAIN
                          O F
                                BEAM-COLUMN
          .189E-02 (
     1)
                          2)
                                .152E-02 (
                                               3)
                                                      .927E-03
     4)
           .207E-03
(
                     (
                          5)
                               -.472E-03
                                          (
                                               6)
                                                     -.115E-02
     7)
          -.160E-02
                                               9)
(
                     (
                          8)
                               -.138E-02
                                          (
                                                     -.204E-02
          -.227E-02 (
(
   10)
                         11)
                               -.228E-02 (
                                              12)
                                                     .189E-02
   13)
           .152E-02
                         14)
                                .927E-03
                                          (
                                              15)
                                                      .207E-03
                     (
(
   16)
          -.472E-03
                         17)
                               -.115E-02
                                              18)
                                                    -.160E-02
(
   19)
          -.138E-02
                         20)
                               -.204E-02
                                              21)
                                                    -.227E-02
   22)
(
          -.228E-02
                         23)
                               -.228E-02
                                              24)
                                                    -.138E-02
   25)
         -.472E-03
```

CALREL

```
University of California Department of Civil Engineering
                    CALREL
                 CAL-RELiability program
Developed by
           P.-L. Liu, H.-Z. Lin and A. Der Kiureghian
                Last Revision: January 1990
                     Copyright @ 1990
       This version of CALREL is for the exclusive use of
       students and faculty at the University of California
       at Berkeley, California, USA. Unauthorized use is
       prohibited by law.
                      ********
>>>> NEW PROBLEM <
number of limit-state functions.....ngf=
number of independent variable groups ...nig=
total number of random variables ......nrx=
number of limit-state parameters ......ntp=
>>>> INPUT DATA <<<<
Ship Reliability Project
Cruiser 1
Primary Mode -- Ultimate Strength
Sagging Condition, Short-Term (CR1 PYSS)
type of system .....icl=
 icl=1 .....component
 icl=2 .....series system
 icl=3 .....general system
flag for gradient computation .....igr=
 igr=0 .....finite difference
 igr=1 .....formulas provided by user
optimization scheme used .....iop=
 iop=1 .....HL-RF method
 iop=2 .....modified HL-RF method
 iop=3 .....gradient projection method
 iop=4 .....sequential quadratic method
maximum number of iteration cycles .....ni1=
maximum steps in line search .....ni2=
convergence tolerance ......tol= 1.000E-03
statistical data of basic varibles:
available probability distributions:
 determinitic .....ids=0
 normal .....ids=1
 lognormal .....ids=2
 gamma .....ids=3
 shifted exponential .....ids=4
 shifted rayleigh .....ids=5
 uniform .....ids=6
 beta .....ids=7
 type i largest value ....ids=11
  type i smallest value ....ids=12
  type ii largest value ....ids=13
 weibull .....ids=14
 user defined .....ids>50
```

```
param2
                                             param3 param4
                                                              init. pt
                           4.08E+00 9.98E-02
                                                               5.96E+01
      1 6.14E+00 9.22E-01 6.14E+00 9.22E-01
Ms
                                                               6.14E+00
     Mω
    51
Md
Κw
     1 7.00E-01 1.05E-01 7.00E-01 1.05E-01
                                                               7.00E-01
>>>> FIRST-ORDER RELIABILITY ANALYSIS <<<<
print interval .....npr=
  npr<0 .....no first order results are printed
  npr=0 ......print the final step of FORM results
  npr>0 ......print the results of every npr steps
initialization flag ...............ini= 0
  ini=0 .....start from mean point
  ini=1 .....start from point specified by user
  ini=-1 ....start from previous linearization point
restart flag .....ist=
  ist=0 .....analyze a new problem
  ist=1 .....continue an unconverged problem
limit-state function
iteration number .....iter=
                                  10
value of limit-state function..g(x) = -5.507E-07
reliability index .....beta= 6.4746
var
           design point
                                        sensitivity vectors
          x *
                 u*
-3.750E+00
                                  alpha
                                          gamma delta
                                                              eta
      4.077E+01
                                                     .3024 -2.2182
Mu
                                 -.5791
                                           -.5791
                 -8.499E-01
4.064E+00
2.250E+00
Ms
       5.360E+00
                                  -.1313 -.1313
                                                      .1313 -.1116
                                   .6277 .6277
.3474 .3474
.2994 .2994
.2075 .2075
Μw
      3.142E+01
Md
      1.265E+01
      8.411E-01 1.939E+00
Kw
                                                   -.2994
-.2075
                                                            -.5805
-.2787
Kd
                   1.343E+00
>>>> SECOND-ORDER RELIABILITY ANALYSIS -- POINT FITTING <
type of integration scheme used .....itg=
  itg=1 .....improved Breitung formula
  itg=2 .....improved Breitung formula
       ..... Tvedt's exact integral
max. number of iterations for each fitting point ..inp= 4
limit-state function
coordinates and ave. main curvatures of fitting points in rotated space
axis u'i u'n G(u) u'i u'n G(u) a'i 1 2.941 6.502 -4.035E-05 -2.935 6.504 -1.018E-05 3.293
                                                    a 1
3.2933E-03
1.1142-
  2 2.979 6.484 -2.421E-06 -2.979 6.485 -3.334E-06
3 2.981 6.483 -7.339E-06 -3.000 6.394 6.982E-09
4 3.000 6.389 8.723E-10 -3.000 6.329 3.568E-10
5 2.884 6.527 -9.162E-05 -2.863 6.536 -5.451E-05
                                                   -4.2385E-03
                                                   -1.3009E-02
                                                     6.8979E-03
                                 improved Breitung
                                                     Tvedt's EI
generalized reliability index betag = 6.4669
probability Pf2 = 5.001E-11
                                                         6.4670
                                                        4.999E-11
```

```
>>>> SENSITIVITY ANALYSIS AT COMPONENT LEVEL <<<<
type of parameters for sensitivity analysis
.....isv=
  isv=1 .....distribution parameters
  isv=2 .....limit-state fcn parameters
  isv=0 ..distribution and limit-state fcn parameters
sensitivity with respect to distribution parameters
limit-state function 1
d(beta)/d(parameter):
       mean std dev par 1 par 2
1.347E-01 -3.724E-01 5.806E+00 -2.177E+01
1.424E-01 -1.210E-01 1.424E-01 -1.210E-01
                                                                  par 3 par 4
var
Mu
Ms
      -1.764E-01 -7.033E-01 0.000E+00 0.000E+00
-1.565E-01 -1.747E-01 0.000E+00 0.000E+00
-5.988E+00 -1.161E+01 -5.988E+00 -1.161E+01
Mw
Md
Kw
    -1.976E+00 -2.654E+00 -1.976E+00 -2.654E+00
Kd
d(Pf1)/d(parameter) :
                                                                 par 3 par 4
                                                  par 2
                      std dev
                                    par 1
var
        mean
       -4.239E-11 1.172E-10 -1.827E-09 6.851E-09
     -4.235E-11 1.1/2E-10 -1.82/E-09 6.851E-09

-4.481E-11 3.808E-11 -4.481E-11 3.808E-11

5.551E-11 2.213E-10 0.000E+00 0.000E+00

4.924E-11 5.497E-11 0.000E+00 0.000E+00

1.885E-09 3.653E-09 1.885E-09 3.653E-09

6.218E-10 8.353E-10 6.218E-10 8.353E-10
Mu
Ms
Mω
Md
Kw
Kd
```

Stop - Program terminated.

cr1st2-h.out

beta	group no.: 1 group type var 1ds mean st. dev. paral su 2 2.38£401 2.33£400 3.14£2 smb 2 2.67£401 1.07£400 3.28£2 smb 2 2.67£401 1.07£400 3.28£2 smb 1 6.14£401 9.22£400 6.14£2 sw 1 1.00£400 5.00£-02 1.00£2 smw 51 1.00£400 1.69£2 smpr<0no first order ren npr<0no first order ren npr<0print the final step npr>0print the results of initial step npr=0print the results of initial step npr>0print the results of initial step npr=0print the results of initial step npr=0print the results of initial step npr=0print the results of step npr=0print the results of step npr=0print the results of step npr=0	Ini=1start from point start from point start from previous linestart flag	type of parameters for sensitivity a isv=1 isv=1 isv=2 isv=2 isv=2 isv=2 isv=0 .distribution and limit-stalsv=0 limit-state function d (beta) /d(parameter) var mean sud 4.001E-01 -1.222E+00 smb 2.588E-01 -4.290E-01 6.459E+0 ms -1.27E-02 -1.849E-02 -1.727E-0 kw -4.835E+00 -7.865E+00 -4.835E+0
**************************************	CAL_REliability program PL. Liu, HZ. Lin and A. Der Klureghian Last Revision: January 1990 Copyright @ 1990 **********************************		Jop=1 Jop=2 Jop=2 Jop=2 Jop=2 Jop=2 Jop=2 Jop=3 Jop=4 Jop=3 Jop=4 Jop=2 Jop=

beta type type type weibu user	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • •	1ds=11 1ds=12 1ds=13 1ds=14				
group var su smb ms	1ds 2 2 1	grou st. dev. 2.33E+00 1.07E+00 9.22E+00	group type: ev. paraml +00 3.14E+00 +00 3.28E+00	1 param2 9.98E-02 4.00E-02 9.22E+00	раташ3	param4	init. pt 0.00E+00 0.00E+00 0.00E+00
X X X X X X X X X X	KW 1 1.00E+00 5.00E-02 1.00E+00 mw 51 1.69E+01 1.69E+01	5.00E-02 1.69E+01 ELIABILITY	1.69E+00 1.69E+02 ANALYSIS <	5.00E-02 1.69E+01 <<<<	0.002+00	0.00E+00	0.00E+00 1.69E+02
npr<0 npr=0 npr=0 initiali ini=1 ini=1 ini=1 ini=1 ist=0 ist=0 ist=1	npr<0no npr=0print npr>0print inttalization flag ini=1sta ini=1start fr restart flag ist=0 ist=1 int-state function	rar: tt	first order results are it the final step of FORM it the results of every npstart from mean art from point specified l rom previous linearizationanalyze a new l	grafi dge i gg	inted sults steps 0 point user point 0 oblem		
iteration value of reliabili probabili var	ty ty	mberiter- it-state function.g(x)= indexbeta- design point	1	699E-07 6.7292 532E-12	sensitivity	vectors	
ละ	x* 1.501E+01	u* -4.337E+00				delta .9306	eta -2.8447
SE XX	2.492E+01 7.131E+01 1.081E+00 2.800E+02	-1.738E+00 1.071E+00 1.627E+00 4.434E+00		2582 .1591 .2417 .6590	2582 .1591 .2417 .6590	1591 2417	4586 1704 3932

NENT LEVEL <<<

	0	arameters	arameters	arameters	
analysis	-AST	isv=1 parameters	isv=2limit-state fcn parameters	isv=0distribution and limit-state fcn parameters	
ype of parameters for sensitivity analysis		dist	limit-st	d limit-st	
rs for se				bution an	
paramete				.distri	
ype of	::::	isv=1	1sv=2	1sv=0	

bution parameters

limit-state function

d (be	d (beta) /d (parameter) :	eter):					
Var	mean	std dev	par 1	par 2	par 3	par 4	~
su	4.001E-01	4.001E-01 -1.223E+00	6.459E+00 -2.801E+01	-2.801E+01	•		
Smb	2.588E-01	2.588E-01 -4.290E-01	6.459E+00 -1.122E+01	-1.122E+01			
SE	-1.727E-02	-1.727E-02 -1.849E-02 -1.727E-02 -1.849E-02	-1.727E-02	-1.849E-02			
×	-4.835E+00	-4.835E+00 -7.865E+00 -4.835E+00 -7.865E+00	-4.835E+00 ·	-7.865E+00			

coordinates and ave. main curvatures of fitting points in rotated space Twedt's EI 6.7367 8.100E-12 2.0369E-03 2.5304E-04 1.8807E-04 5.2853E-03 0.000E+00 0.000E+00 -2.157E-02 -9.345E-02 0.000E+00 0.000E+00 par 4 >>>> SECOND-ORDER RELIABILITY ANALYSIS -- POINT FITTING <<<< sensitivity with respect to limit-state function parameters par 3 u'n G(u) 6.714 4.028E-11 6.731 -5.143E-08 6.731 -3.844E-08 6.777 -1.399E-05 improved Breitung
6.7367
8.101E-12 d (Pf1) /d (parameter)
0.000E+00 u'1 -3.000 -2.996 -2.996 generalized reliability index betag =
probability 1 2.885 6.779 -1.078E-04 2 2.993 6.732 -5.892E-08 3 2.996 6.731 -3.290E-08 4 2.906 6.770 -2.677E-05 d (beta) /d (parameter) Stop - Program terminated 0.000E+00 limit-state function limit-state function axis u'i F-39

students and faculty at the University of California This version of CALREL is for the exclusive use of at Berkeley, California, USA. Unauthorized use is prohibited by law.

>>> NEW PROBLEM <<<<

number of limit-state functions......nfg-number of independent variable groups ...nig-total number of random variablesrx-number of limit-state parametersntp-

>>>> INPUT DATA <<<<

| 101-3 | General system | 101-3 | General system | 101-3 | General system | 101-0 | 101-0 | General system | 101-1 | Gen icl=2series system 101*1

lop=4sequential quadratic method
maximum number of iteration cyclesnil= 100
maximum steps in line searchni2= 4 convergence tolerancetol= 1.000E-03 optimization parameter 1opl= 1.000E+00 optimization parameter 2op2= 0.000E+00 optimization parameter 3op3= 0.000E+00 10p=3gradient projection method optimization scheme usediop= 10p-4

available probability distributions: statistical data of basic varibles: shifted exponentialids=4 determiniticids=0 normalids=1 lognormalids=2 shifted rayleighids = 5

9=sp;

uni form

param3 param4 0.00E+00 0.00E+00
" 0 0
1 param2 9.98E-02 4.00E-02 5.02E+00 1.99E+01 1.05E-01
ids=7 ids=11 ids=13 ids=13 ids=14 ids=14 ids=10
type i largest valueids=17 type i largest valueids=11 type il largest valueids=12 type il largest valueids=13 weibullids=13 weibullids=14 user definedids=16 cup no: 1 group type z 2.37E+01 2.37E+00 3.166 d 2 2.37E+01 9.35E-01 3.156 d 2 2.37E+01 9.22E+00 6.146 l 1 6.14E+01 9.22E+00 6.146 l 1 1.00E+00 5.00E-02 1.00E 51 1.00E+01 1.05E-01 7.00E
largest va smallest v. largest v. fined 1 mean 2.37E+01 2.37E+01 6.14E+01 1.00E+00
beta type i i type i stype

>>>> FIRST-ORDER RELIABILITY ANALYSIS <<<<

npr=0print the final step of FORM results npr>0print the results of every npr steps initialization flagini= 0 ini-0start from mean point ini-1start from point specified by user ini-1start from previous linearization point print intervalno first order results are printed restart flagast- 0 istelcontinue an unconverged problem

limit-state function

-.3013 -.1094 -.5070 -1.2579 5068,--1.8689 .7439 .2347 .1361 -.2930 -.3510 1745.sensitivity vectors -.5556 -.2226 -.1361 .2930 .6173 probability design point Pfl= 1.763E-09 iteration numberiter=
yalue of limit-state function..g(x)=-9.490E-07
reliability indexbeta= 5.9050 alpha -.5556 -.2226 -.1361 .2930 .6173 .3397 3.644E+00 1.196E+00 -3.281E+00 -1.315E+00 -8.036E-01 1.730E+00 2.007E+00 * 8.256E-01 1.202E+02 1.701E+01 1,087E+00 2.217E+01 5.403E+01 2.977E+02 su smd ms kw mw kd

>>>> SENSITIVITY ANALYSIS AT COMPONENT LEVEL <<<<

| 15v-1 | ... distribution parameters | 15v-2 | ... distribution and limit-state fcn parameters | 15v-0 | ... distribution and limit-state fcn parameters type of parameters for sensitivity analysis

sensitivity with respect to distribution parameters

limit-state function

m par par par 1 std dev d (beta) /d (parameter) mean

par 4

cr1st2-s.out

	0.000E+00	0.000E+00		par 4					0.000E+00		0.000E+00			
				14	•									
	0.000E+00	0.000E+00		par 3					0.000E+00		0.000E+00	parameters		(
5.570E+00 -1.827E+01 5.570E+00 -7.321E+00 1.477E-02 -1.187E-02 5.860E+00 -1.014E+01	-6.321E-02	-1.549E-02		par 2	1.954E-07	7.830E-08	1.269E-10	1.084E-07	6.760E-10	2.466E-08	1.657E-10	e function		d(Pf1)/d(parameter
5.570E+00 -1.827E+00 5.570E+00 -7.321E+00 1.477E-02 -1.187E-02 -5.860E+00 -1.014E+01	-1.769E-02 -6.321E-02	-1.536E-02 -1.549E-02		par 1	-5.956E-08	-5.956E-08	-1.579E-10	6.268E-08	1.892E-10	2.062E-08	1.642E-10	limit-stat		d (Pf1) /
3.136E-01 -7.879E-01 2.511E-01 -3.222E-01 1.477E-02 -1.187E-02 5.860E+00 -1.014E+01	-1.769E-02 -6.321E-02 -1 928E+00 -2 305E+00 -1 928E+00 -2 305E+00	2000	er) :	std dev	8.426E-09		1.269E-10	1.084E-07		2.466E-08		respect to	tion 1	/d (parameter)
3.136E-01 2.511E-01 1.477E-02 -5.860E+00	-1.9288+00	7.7502	d(Pf1)/d(parameter)	mean	-3.354E-09	-2.685E-09	-1.579E-10	6.268E-08		2.062E-08		sensitivity with respect to limit-state function parameters	limit-state function	d (beta) /d (parameter)
su ms ms	3 T	g g	d (P£1	Var	ns	smd	SIL	κĸ	ME	kd	덜	sensi	limit	par

>>>> SECOND-ORDER RELIABILITY ANALYSIS -- POINT FITTING <<<<

H :ype of integration scheme useding= 2 1 itg=1	max. number of iterations for each fitting pointinp= 4	1
H :ype of integration scheme 1tg=1	max. number of iterations	limit-state function]

coordinates	a pue	ve. ma	in cur	vatures	of fitt	ing points in	coordinates and ave, main curvatures of fitting points in rotated space
axis u'i	u'n	(n) 9	_	u' i	u'n	n, u C(n)	a'1
1 3.000	2.867	3.126	E-10	-3,000		5.825 1.764E-09	-6.5869E-03
2 3.000	5.902	3.061	E-12		5.902	5.765E-12	-3.3805E-04
	5.911	-2.882	E-07		5,911	-3.200E-07	7.1046E-04
	5.947 -2.115E-05	-2.115	E-05		5.955	5.955 -7.200E-06	5.4309E-03
5 3,000	5.863	-1.980	E-08		5,717	2.424E-08	-1.3451E-02
6 2.950	5.930	5.930 -5.424E-06	E-06	-2.944		5.933 -3.997E-06	3.0581E-03
					1mprove	improved Breitung	Tvedt's EI
generalized reliability index	reliab	ility	1 ndex	betag =		5.8921	5.8922
probability				Pf2 =	1.9	1.907E-09	1.906E-09

Stop - Program terminated.

APPENDIX G PARAMETRIC STUDY AND COMPARISON OF RELIABILITY INDICES

2. Ship Length(ft) vs Wave Bending Moment Ratio

Table 6.1.5II Ship Length(ft) vs Wave Bending Moment Ratio

		Ships	nding Moi	Ratio(wave)
Primary	hogging	cruiser 1	529.00	1.37E+00
		cruiser 2	529.00	1.30E+00
		tanker	640.00	1.21E+00
		sl-7	880.50	1.10E+00
	sagging	cruiser 2	529.00	1.26E+00
		cruiser 1	529.00	1.15E+00
		tanker	640.00	1.08E+00
<u> </u>		sl-7	880.50	9.42E-01

(IV) Factor of Safety vs Safety Index (see Graph 4,5)

Table 6.1.4 Factor of Safety vs Safety Index

2-1		or of Safety vs S	Tarety in	<u> </u>		
Primary Stres						
<u>deck</u>	1-141-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		 -			<u> </u>
Ships	Initial yield moment	ABS moment	SFI	beta 1	beta 2	beta 3
sl-7	3.00E+06	1.80E+06	1.67E+00	3.32E+00	2.69E+00	3.11E+00
tanker	1.51 E+06	8.80E+05	1.71E+00	2.82E+00	2.32E+00	2.82E+00
cruiser 2	5.24E+05	2.71E+05	1.93E+00	6.23E+00	5.23E+00	5.56E+00
cruiser 1	8.34E+05	2.74E+05	3.04E+00	6.76E+00	5.56E+00	5.87E+00
bottom			ļ	<u> </u>		
Ships	Initial yield moment	ABS moment	SFI	beta 1	beta 2	beta 3
s/-7	2.38E+06	1.80E+06	1,33E+00	5.83E+00	5.70E+00	5.34E+00
tanker	1.58E+06	8.79E+05	1.80E+00	2.70E+00	2.29E+00	2.55E+00
cruiser 2	5.78E+05	2.71E+05	2.13E+00	5.10E+00	5.07E+00	4.83E+00
cruiser 1	9.12E+05	2.74E+05	3.32E+00	6.47E+00	6.18E+00	5.95E+00
nethod2 : Clos	REL structural program ed Form (by approximation)				1	
nethod2 : Clos		Moment				
nethod2 : Clos nethod3 : Mea	ed Form (by approximation)	Moment Nonlinear moment	SFu	beta 1	beta 2	beta 3
nethod2 : Clos nethod3 : Mea hogging	ed Form (by approximation) n Value First Order Second		SFu 1.91E+00	beta 1 2.82E+00	beta 2 2.32E+00	beta 3 2.82E+00
nethod2 : Clos nethod3 : Mea hogging Shlps	ed Form (by approximation) n Value First Order Second Ultimate moment	Nonlinear moment	1.91E+00	2.82E+00	2.32E+00	2.82E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker	ed Form (by approximation) n Value First Order Second Ultimate moment 1.12E+06	Nonlinear moment 5.86E+05	1.91E+00 1.96E+00	2.82E+00 3.32E+00	2.32E+00 2.69E+00	2.82E+00 3.11E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7	ed Form (by approximation) n Value First Order Second Ultimate moment 1.12E+06 1.90E+06	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05	1.91E+00 1.96E+00 2.81E+00	2.82E+00 3.32E+00 6.23E+00	2.32E+00 2.69E+00 5.23E+00	2.82E+00 3.11E+00 5.56E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7 cruiser 2 cruiser 1	ultimate moment 1.12E+06 1.90E+06 4.38E+05	Nonlinear moment 5.86E+05 9.70E+05	1.91E+00 1.96E+00	2.82E+00 3.32E+00	2.32E+00 2.69E+00	2.82E+00 3.11E+00 5.56E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7 cruiser 2 cruiser 1 sagging	ultimate moment 1.12E+06 1.90E+06 4.38E+05 5.23E+05	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05 1.69E+05	1.91E+00 1.96E+00 2.81E+00 3.09E+00	2.82E+00 3.32E+00 6.23E+00 6.76E+00	2.32E+00 2.69E+00 5.23E+00 5.56E+00	2.82E+00 3.11E+00 5.56E+00 5.87E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7 cruiser 2 cruiser 1	ultimate moment 1.12E+06 1.90E+06 4.38E+05	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05 1.69E+05 Nonlinear moment	1.91E+00 1.96E+00 2.81E+00 3.09E+00	2.82E+00 3.32E+00 6.23E+00 6.76E+00	2.32E+00 2.69E+00 5.23E+00 5.56E+00	2.82E+00 3.11E+00 5.56E+00 5.87E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7 cruiser 2 cruiser 1 sagging Shlps tanker	ed Form (by approximation) n Value First Order Second Ultimate moment 1.12E+06 1.90E+06 4.38E+05 5.23E+05 Ultimate moment 1.05E+06	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05 1.69E+05 Nonlinear moment 5.95E+05	1.91E+00 1.96E+00 2.81E+00 3.09E+00 SFu 1.77E+00	2.82E+00 3.32E+00 6.23E+00 6.76E+00 beta 1 2.70E+00	2.32E+00 2.69E+00 5.23E+00 5.56E+00 beta 2 2.29E+00	2.82E+00 3.11E+00 5.56E+00 5.87E+00 beta 3 2.55E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7 cruiser 2 cruiser 1 sagging Shlps	### Page 15 ### Page 25 ### P	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05 1.69E+05 Nonlinear moment 5.95E+05 2.14E+05	1.91E+00 1.96E+00 2.81E+00 3.09E+00 SFu 1.77E+00 2.13E+00	2.82E+00 3.32E+00 6.23E+00 6.76E+00 beta 1 2.70E+00 5.10E+00	2.32E+00 2.69E+00 5.23E+00 5.56E+00 beta 2 2.29E+00 5.07E+00	2.82E+00 3.11E+00 5.56E+00 5.87E+00 beta 3 2.55E+00 4.83E+00
nethod2 : Clos nethod3 : Mea hogging Ships tanker sl-7 cruiser 2 cruiser 1 sagging Ships tanker cruiser 2	ed Form (by approximation) n Value First Order Second Ultimate moment 1.12E+06 1.90E+06 4.38E+05 5.23E+05 Ultimate moment 1.05E+06	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05 1.69E+05 Nonlinear moment 5.95E+05	1.91E+00 1.96E+00 2.81E+00 3.09E+00 SFu 1.77E+00	2.82E+00 3.32E+00 6.23E+00 6.76E+00 beta 1 2.70E+00	2.32E+00 2.69E+00 5.23E+00 5.56E+00 beta 2 2.29E+00 5.07E+00 5.70E+00	2.82E+00 3.11E+00 5.56E+00 5.87E+00 beta 3 2.55E+00 4.83E+00 5.34E+00
nethod2 : Clos nethod3 : Mea hogging Shlps tanker sl-7 cruiser 2 cruiser 1 sagging Shlps tanker cruiser 2 sl-7 cruiser 2 sl-7 cruiser 1	### Page 15 ### P	Nonlinear moment 5.86E+05 9.70E+05 1.56E+05 1.69E+05 Nonlinear moment 5.95E+05 2.14E+05 1.07E+06	1.91E+00 1.96E+00 2.81E+00 3.09E+00 SFu 1.77E+00 2.13E+00 2.15E+00	2.82E+00 3.32E+00 6.23E+00 6.76E+00 beta 1 2.70E+00 5.10E+00 5.83E+00	2.32E+00 2.69E+00 5.23E+00 5.56E+00 beta 2 2.29E+00 5.07E+00	2.82E+00 3.11E+00 5.56E+00 5.87E+00

(V) Ship Length vs Moment Ratio

1. Ship Length(ft) vs Total Bending Moment Ratio

Table 6.1.5I Ship Length(ft) vs Total Bending Moment Ratio

		Ships	Length	Nonlinear Moment	ABS Moment	Ratio(total
Primary	hogging	cruiser 1	529.00	1.69E+05	2.74E+05	6.16E-01
		cruiser 2	529.00	1.56E+05	2.71E+05	5.75E-01
		tanker	640.00	5.86E+05	8.80E+05	6.66E-01
······································		sI-7	880.50	9.70E+05	1.80E+06	5.39E-01
	sagging	cruiser 1	529.00	1.99E+05	2.74E+05	7.25E-01
		cruiser 2	529.00	2.14E+05	2.71E+05	7.89E-01
		tanker	640.00	5.95E+05	8.79E+05	6.77E-01
		sl-7	880.50	1.07E+06	1.80E+06	5.92E-01

Appendix 5. Results of MVFOSM

Primary Stress

Shlp	: Cruiser1			
Condition	: short term , ho	gging , primary stress		
Method	: mean value fire	st order second moment		
art 1: Calcula	tion of the s.t.d. and	mean of limit-state function		
e.t.d.				
wed	4	bandwidth parameter		
***************************************	3	l term period (hours)		
NW-h	7.71429E+02	number of peaks associated with load con	nponent w	
Na	3.85714E+03	number of peaks associated with load con	npon ent d	
TW(mean)	1.69100E+05	mean of wave bending moment		
Id(mean)	8.76400E+04	mean of dynamic bending moment conversion factor associated with load cor		
alata W	3.72558E+00	conversion factor associated with load cor	nponeni w	
alafa d	4.13493E+00	conversion factor associated with load cor		
sigma u	6.01508E+04	standard deviation of response to load cor	npon eni u	
sigma s	9.21600E+03	standard deviation of response to load cor	nponent s	
sigma w	1.69100E+04	standard deviation of response to load col	nponentw	
sigma d	2.02920E+04	standard deviation of response to load cor	nponent d	
K-Kd	0	load combination factor for two correlated	load response	······································
7	0.83333333	stress ratio		
mr=mc	1	coefficients associated with loading factor		
FO	0	correlation coefficient between w and d		
sigma g	6.31585E+04	s.i.d. of limit-state function		
				······
mean	6.01508E+05	mean of load component u		·······
mu u	8.14400E+04	mean of load component s		***************************************
	1.69100E+05	mean of load component w		***************************************
mu w	6.76400E+04	mean of load component d		
mu d	3.70968E+05	mean of limit-state function		
mu g	3.709002.703			
art 2 : Probab	ility of Fallure			
				
beta g	5.87360E+00	safety index		
Pf	2.13920E-09	probability of failure		
				······
THE PART OF THE	e velue is from the input	varibles table "inputvars"		
		alculations of the input variables from " input	/a/3	

Ship	: Cruiser1		
Condition	: short term , sa	gging , primary stress	
Method		st order second moment	}
art 1: Calcula	tion of the s.t.d. and	mean of limit-state function	
#.t.d.			
De=We=e	· • · · · · · · · · · · · · · · · · · ·	bandwidth parameter	
t	3	term period (hours)	
Nw=n	7.71429E+02	number of peaks associated with load component w	
Nd	3.85714E+03	number of peaks associated with load component d	
fw(mean)	1.98900E+05	mean of wave bending moment	
fd(mean)	7.95600E+04	mean of dynamic bending moment	
alafa W	3.72558E+00	conversion factor associated with load component w	
alaia d	4.13493E+00	conversion factor associated with load component d	
sigma u	5.95640E+04	standard deviation of response to load component u	
sigma s	9.21600E+03	standard deviation of response to load component s	
sigma w	1.98900E+04	standard deviation of response to load component w	
sigma d	2.38680E+04	standard deviation of response to load component d	
K=Kd	0.7	load combination factor for two correlated load respons	<u>:</u>
<u> </u>	1.2	stress ratio	
mr=mc	1	coefficients associated with loading factor correlation coefficient between w and d	
ro	0.394		
sigma g	6.75975E+04	S.I.d. of limit-state function	
mean			
mu u	5.95640E+05	mean of load component u	
mu s	-6.14400E+04	mean of load component's	
mu w	1.98900E+05	mean of load component w	
mu d	7.95600E+04	mean of load component d	<u> </u>
mu g	4.02488E+05	mean of limit-state function	
art 2 : Probab	ility of Failure		
	T		
beta g	5.95418E+00	safety index	
Pf	1.31139E-09	probability of failure	
	1		
	· [· · · · · · · · · · · · · · · · · ·		
means th	e value is from the input	varibles lable " inputvers	

Ship	: Cruiser2	1	J
Condition	: short term , ho	gging , primary stress	
Method	: mean value firs	t order second moment	
	L		
art 1: Calcula	tion of the s.t.d. and	mean of limit-state function	
s.t.d.			
6=0W-0d	0	bandwidth parameter	
t	3	term period (hours)	
Nw-n	7.71429E+02	number of peaks associated with load component w	
Nd	3.85714E+03	number of peaks associated with load component d	
(w(mean)	1.55900E+05	mean of wave bending moment	
fd(mean)	6.23600E+04	mean of dynamic bending moment	
alafa W	3.72558E+00	conversion factor associated with load component w	
alafa d	4.13493E+00	conversion factor associated with load component d standard deviation of response to load component u	
sigma u	5.03398E+04		
sigma s	7.74000E+03	standard deviation of response to load component s	•
sigma w	1.55900E+04	standard deviation of response to load component w	*
algma d	1.87080E+04	standard deviation of response to load component d	
K=Ka	0	load combination factor for two correlated load respons	
7	0,833333333	stress ratio	
mr=me		coefficients associated with loading factor correlation coefficient between w and d	
ro	0		
sigma g	5.32639E+04	s.t.d. of limit-state function	
mean	······································		······
mu u	5.03398E+05	mean of load component u	······
mu s	5.16000E+04	mean of load component s	
mu w	1.55900E+05	mean of load component w	······
mu d	6.23600E+04	mean of load component d	
mu g	2.95898E+05	mean of limit-state function	
	I		
art 2 : Probab	llity of Fallure		
beta g	5.55531E+00	safety index	
P1	1.38919E-08	probability of failure	
	1		
s : means the	e value is πom the input	raribles table " inputvars " Iculations of the input variables from " inputvars "	

Ship	: Cruiser2			
Condition	: short term , sa	igging , primary stress		***************************************
Method	: mean value fir	st order second moment		
art 1: Calcula	tion of the s.t.d. and	mean of limit-state function		
s.t.d.				
	8	bandwidth parameter		
	3	term period (hours)	1	
Nw-n	7.71429E+02	number of peaks associated with load compone		
Nd	3.85714E+03	number of peaks associated with load compone	ent d	
fw(mean)	2.13900E+05	mean of wave bending moment		~~~~~
fd(mean)	8.55600E+04	mean of dynamic bending moment	1	**********
alafa W	3.72558E+00	conversion factor associated with load component		***************************************
alafa d	4.13493E+00	conversion factor associated with load component	ent d	
sigma u	5.23190E+04	standard deviation of response to load compon-		
sigma s	7.74000E+03	standard deviation of response to load compon-	eni s	
sigma w	2.13900E+04	standard deviation of response to load compon		
sigma d K=Kd	2.56680E+04	standard deviation of response to load compon		
K≟Ka	6.7	load combination factor for two correlated load	response	
r	1.2	stress ratio		
mr=mc		coefficients associated with loading factor		
70	0.394	correlation coefficient between w and d		
algma g	6.22629E+64	s.f.d. of limit-state function		
mean	 		 	
mu u	5.23190E+05	inean of load component u	ļ	
mu s	-5.16000E+04	mean of load component s		**********
mu w	2.13900E+05	mean of load component w	ļ	
mu d	8.55600E+04	mean of load component d	 	
mu g	3.00998E+05	mean of limit-state function	24	************
ert 2 : Probab	ility of Fallure			***********
	1			
beta g	4.83198E+00	safety index		
P1	6.76800E-07	probability of failure		
********************				*********
	1		 	
s :	e value is πom the input	varibles table "inputvars" alculations of the input variables from "inputvars"	1	

Shlp	: 81-7		
Condition	: short term , ho	gging , primary stress	
Method	: mean value fir	st order second moment	
	التالية والتالي والمستحدد والمناور والمناور والمناور والمناور والمناور والمناور والمناور والمناور والمناور والم	ALL THE PROPERTY WITH THE PARTY WAS A STATE OF THE PARTY	
art 1: Calcula	tion of the s.t.d. and	mean of limit-state function	
#.t.d.			
#.f.d.	0	bandwidth parameter	
t	3	term period (hours)	
Nw=n	7.71429E+02	number of peaks associated with load component w	
	3.85714E+03	number of peaks associated with load component d mean of wave bending moment	I
TW(mean)	9.69600E+05	mean of wave bending moment	T
rd(mean)	1.93920E+05	mean of dynamic bending moment	
alafa W	3.72558E+00	conversion factor associated with load component w	·
alaya d	4.13493E+00	conversion factor associated with load component d	
elgma u	2.40113E+05	standard deviation of response to load component u	
sigma s	8.98650E+04	standard deviation of response to load component s	-
	9.89600E+04	standard deviation of response to load component w standard deviation of response to load component d	
sigma w sigma d	5.81760E+04	standard deviation of response to load component d	
K-Kd	1	load combination factor for two correlated load response	
······································	0.8	stress ratio	
mr=mc	1	coefficients associated with loading factor	
ГО	0	correlation coefficient between w and d	
algma g	2.74101E+05	s.t.d. of limit-state function	
,			
mean	·		
mu u	2.182856+08	mean of load component u	·······
mu s	3.59460E+05	mean of load component s	
mu w	9.69600E+05		
mu d	1.93920E+05	mean of load component w mean of load component d	
mu g	8.53790E+05	mean of limit-state function	
	oility of Fallure		
art 2 ; Probat	onity of Fanure		
beta g	3.11487E+00	safety index	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Pf	9.20196E-04	probability of failure	
s : * * means th		varibles table Inputvars alculations of the input variables from 'inputvars'	

Ship	: s1-7			
Condition	: short term , sa	gging , primary stress		
Method	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	st order second moment		
	1			
ert 1: Calcula	tion of the s.t.d. and	mean of limit-state function		
s.t.d.	T	<u></u>		
e-ew-ed		bandwidth parameter		
······································	3	term period (hours)		
Nw=n	7.71429E+02	number of peaks associated with load cor		
Na	3.85714E+03	number of peaks associated with load cor	nponent d	
fw(mean)	1.06500E+06	mean of wave bending moment	T	•
(d(mean)	2.13000E+05	mean of dynamic bending moment		•
alafa W	3.72558E+00	conversion factor associated with load co.		
alata d	4.13493E+00	conversion factor associated with load co	mponent d	
sigma u	2.89103E+05	standard deviation of response to load co	mponent u	I*
sigma s	8.98650E+04	standard deviation of response to load co	mponent s	-
sigma w	1.06500E+05	standard deviation of response to load co standard deviation of response to load co	mponent w	
sigma d	8.39000E+04	standard deviation of response to load co	mponent d	
K=Kd	0.7	load combination factor for two correlated	load response	
······································	0.8	stress ratio		
mr=mc		coefficients associated with loading factor		
ro	0.547	correlation coefficient between w and d		
sigma g	3.31980E+06	s.t.d. of limit-state function		
				
mean	1			
mu u	2.62821E+06	mean of load component u		
mu s	-3.59460E+05	mean of load component s		
MU W	1.06500E+06	mean of load component w		L
mu d	2.13000E+05	mean of load component d		
mu g	1.77357E+08	mean of limit-state function		
art 2 : Probab	olity of Fallure			
T. A. F. CUBE	1			
beta g	5.34239E+00	safety index		
Pf	4.59638E-08	probability of failure		
	1	varibles table inputvars		

Ship	: Tanker		
Condition	: short term , ho	ging , primary stress	
Method	: mean value firs	t order second moment	
art 1: Calcula	tion of the s.t.d. and i	nean of limit-state function	
s.t.d.	T		
e=ew=ed	8	bandwidth parameter	
t	3	term period (hours)	
Nw-n	7.71429E+02	number of peaks associated with load component w	
Na	3.85714E+03	number of peaks associated with load component d	
Tw(mean)	5.86100E+05	mean of wave bending moment mean of dynamic bending moment conversion factor associated with load component w	
fd(mean)	1.17220E+05	mean of dynamic bending moment	
alata w	3.72558E+00	conversion factor associated with load component w	
alafa d	4.13493E+00	conversion factor associated with load component d	
sigma u	1,41457E+05	standard deviation of response to load component u	
sigma s	5.92350E+04	standard deviation of response to load component s	•
elgma w	5.88100E+04	standard deviation of response to load component w	
sigma d	3.51680E+04	standard deviation of response to load component d	
K-Kd	Ö	load combination factor for two correlated load response	-
r	0.6	stress ratio	
mr=mc	1	coefficients associated with loading factor	1
ro	0	correlation coefficient between w and d	
sigma g	1.64177E+05	s.t.d. of limit-state function	

mean			
mu u	1.28597E+08	mean of load component u	·····
mu s	2.36940E+05	mean of load component s	***************************************
mu w	5.86100E+05	mean of load component w	***************************************
mu d	1.17220E+05	mean of load component d	····
mu g	4.62933E+05	mean of limit-state function	
	1		
AIT 2 : Propac	ollity of Fallure		
beta g	2.81972E+00	safety index	
Pf	2.40333E-03	probability of failure	
·····		h	
***************************************		·	····-
means th	e value is from the input	Aribles table "inputvers	
		Iculations of the input variables from "inputvars	·····

Ship	: Tanker		
Condition	: short term . sa	gging , primary stress	
Method		st order second moment	
Method	1. Itteati value iii	st order second moment	
art 1: Calcula	tion of the s.t.d. and	mean of limit-state function	
s.t.d.	T		
e-ew-ed	· · · · · · · · · · · · · · · · · · ·	bandwidth parameter	
**************************************	3	term period (hours)	
Nw-n	7.71429E+62	number of peaks associated with load component w	·····
Nd	3.85714E+03	number of peaks associated with load component d	
fw(mean)	5.94800E+05	mean of wave bending moment	
fd(mean)	1.18960E+05		
alafa w	3.72558E+00	mean of dynamic bending moment conversion factor associated with load component w	
alafa d	4.13493E+00	conversion factor associated with load component d	
sigma u	1.32818E+05	standard deviation of response to load component u	·····
sigma s	3.25500E+04	standard deviation of response to load component s	
sigma w	5.94800E+04	standard deviation of response to load component w	
sigma d	3.56880E+04	standard deviation of response to load component d	
K=Ka	0.7	load combination factor for two correlated load respon	3.0
T	0.6	stress ratio	***************************************
mr=mo		coefficients associated with loading factor	
	0.547	correlation coefficient between w and d	
sigma g	1.56485E+05	s.t.d. of limit-state function	
***************************************	***************************************		***************************************
mean	······································	~ 	
mu u	1.20743E+06	mean of load component u	
mu s	1.30200E+05	mean of load component s	
mu w	5.94800E+05	mean of load component w	
mu d	1.18960E+05	mean of load component d	
mu g	3.99161E+05	mean of limit-state function	-
	U.S. S.	The art of millional languages	
	1114.4.2.4. Calleria	·~ ~~~~~~~~	
art Z : Prodad	liity of Fallure		
·····			
beta g	2.55080E+00	safety index	
Pf	5.37389E-03	probability of failure	
: " means the	value is from the input	varibles table " inputvars " alculations of the input variables from " inputvars "	l .

Appendix 6. Comparison of the Short-Term Primary Stress

·····		crulser 1		cruiser 2	
	ship	Pf	beta	Pf	beta
hogging					
iiiH.Si	method1	6.940E-12	6.760E+00	2.340E-10	6.230E+00
***************************************	method2	1.376E-08	5.557E+00	8.542E-08	5.229E+00
	method3	2.139E-09	5.874E+00	1.389E-08	5.555E+00
sagging					
***************************************	method1	4.920E-11	6.470E+00	1.700E-07	5.100E+00
***************************************	method2	3.265E-10	6.178E+00	2.040E-07	5.066E+00
····	method3	1.311E-09	5.954E+00	6.768E-07	4.832E+00
	ship	tanker		sl-7	
		Pf	beta	Pf	beta
hogging					
	method1	2.400E-03	2.820E+00	4.500E-04	3.320E+00
••••	method2	1.008E-02	2.323E+00	3.536E-03	2.693E+00
	method3	2.403E-03	2.820E+00	9.202E-04	3.115E+00
sagging					
	method1	3.470E-03	2.700E+00	2.780E-09	5.830E+00
······	method2	1.115E-02	2.285E+00	5.933E-09	5.702E+00
	method3	5.374E-03	2.551E+00	4.596E-08	5.342E+00
nit-State-Fun	<u> </u>	a M = M +	$\frac{1}{k_{w}(M_{w}+k_{d}M_{d})];}$	hogging:k = 0	

Appendix 7. Comparison of the Short-Term Secondary Stress

Comparison	of "Pf " and	l " beta " amoi	ng Three Meth	nods	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	secondary stre	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
			***************************************	***************************************	
	ship	cruiser 1		cruiser 2	
		Pf	beta	Pf	beta
hogging					
······································	method1	8.530E-12	6.730E+00	5.880E-07	4.860E+00
	method2	6.244E-08	5.287E+00	3.067E-05	4.009E+00
·····	method3	1.018E-08	5.609E+00	5.748E-06	4.387E+00
sagging					
	method1	1.720E-09	5.910E+00	7.840E-05	3.780E+00
***************************************	method2	9.899E-09	5.614E+00	5.333E-05	3.874E+00
·····	method3	4.850E-08	5.333E+00	2.180E-04	3.517E+00
·····					
·····	ship	tanker		sl-7	
***************************************		Pf	beta	Pf	beta
hogging					
hogging	method1	2.740E-01	6.000E-01	2.800E-03	2.770E+00
hogglng	method1 method2	2.740E-01 3.707E-01	6.000E-01 3.299E-01	2.800E-03 2.464E-02	2.770E+00 1.966E+00
hogging		······································	······································	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hogging sagging	method2	3.707E-01	3.299E-01	2.464E-02	1.966E+00
	method2	3.707E-01	3.299E-01	2.464E-02	1.966E+00
	method2 method3	3.707E-01 1.981E-01	3.299E-01 8.483E-01	2.464E-02 5.070E-03	1.966E+00 2.571E+00
	method2 method3 method1	3.707E-01 1.981E-01 1.540E-03	3.299E-01 8.483E-01 2.960E+00	2.464E-02 5.070E-03 N	1.966E+00 2.571E+00 N
sagging	method2 method3 method1 method2 method3	3.707E-01 1.981E-01 1.540E-03 7.544E-03 3.297E-03	3.299E-01 8.483E-01 2.960E+00 2.430E+00 2.717E+00	2.464E-02 5.070E-03 N N N	1.966E+00 2.571E+00 N N
sagging Sagging Limit-State Fund	method2 method3 method1 method2 method3 ction:	3.707E-01 1.981E-01 1.540E-03 7.544E-03 3.297E-03 g = \sigma_s SM_b - [M	3.299E-01 8.483E-01 2.960E+00 2.430E+00 2.717E+00	2.464E-02 5.070E-03 N N N	1.966E+00 2.571E+00 N N
sagging Limit-State Fund method1 : CALF	method2 method3 method1 method2 method3 ction:	3.707E-01 1.981E-01 1.540E-03 7.544E-03 3.297E-03 g = 0,SM, - [Moogram	3.299E-01 8.483E-01 2.960E+00 2.430E+00 2.717E+00	2.464E-02 5.070E-03 N N N	1.966E+00 2.571E+00 N N
sagging Limit-State Fund method1 : CALF method2 : Close	method2 method1 method2 method3 method3 ction: REL structural pred Form (by appl	3.707E-01 1.981E-01 1.540E-03 7.544E-03 3.297E-03 g = 0,SM, - [Moogram	3.299E-01 8.483E-01 2.960E+00 2.430E+00 2.717E+00 .+ k_(M_++k_d)	2.464E-02 5.070E-03 N N N	1.966E+00 2.571E+00 N N

Appendix 8. Comparison of the Short-Term Tertiary Stress

		l " beta " amon ertiary stress	g Inree Meu	loas	
orialion:					
 	ship	cruiser 1		cruiser 2	
		Pf	beta	Pf	beta
hogging	<u> </u>				
	method1	3.330E-16	8.060E+00	1.270E-09	5.960E+00
	method2	9.555E-10	6.006E+00	6.763E-07	4.768E+00
	method3	1.447E-10	6.305E+00	1.210E-07	5.164E+00
sagging					
	method1	2.190E-09	5.870E+00	5.420E-06	4.400E+00
	method2	1.137E-08	5.590E+00	5.648E-06	4.391E+00
	method3	5.578E-08	5.307E+00	2.212E-05	4.084E+00
					·····
······································	ship	tanker		sl-7	
		Pf	beta	Pf	beta
hogging					
	method1	1.420E-04	3.630E+00	1.170E-05	4.230E+00
***************************************	method2	1.238E-03	3.026E+00	1.246E-03	3.024E+00
***************************************	method3	2.727E-04	3.457E+00	3.013E-04	3.430E+00
sagging					
	method1	6.220E-06	4.370E+00	N	N
	method2	1.331E-04	3.646E+00	N	<u>N</u>
	method3	6.204E-05	3.838E+00	N	N
imit-State Fun			$l_a + k_w (M_w + k_d)$	M_d); hogging: k_d	<u>- 4</u>
	REL structural p				
nethod2 : Clos	ed Form (by app	roximation)			
	- Makes First On	der Second Momer		Į l	

Nomenclature

length between perpendiculars	LBP B
	_
waterplane coefficient block coefficient	C_{WP}
	Св
heading (0° = head seas)	θ
speed	V_s
stillwater bending moment	M_{sw}
ultimate failure bending moment	M_{ult}
mean	μ
standard deviation	σ
wave frequency	ω
encounter frequency	ω_{e}
significant wave height	$H_{1/3}$
mean wave period	T_{m}
moments of the response spectrum	
zeroth	m_0
second	m_2
fourth	m_4
probability density function	$f_x(x)$
cumulative distribution function	$F_{x}(x)$
standard normal cumulative distribution function	$\Phi_{x}(x)$
average response period	Tavg
bandwidth parameter	ε
number of encounters	N
expected maximum in N encounters	\mathbf{Q}_{N}
value with a probability of exceedance of α	$q(\alpha)$
probability of failure	$\mathbf{P_f}$

Cruiser I Particulars

Length (BP)	529.00	feet
Beam	55.00	feet
Draft	22.07	feet
Displacement	9403.40	LT
Speed	30+	knots
Trim	1.83	feet by stern
GM_T	2.56	feet
LCG	7.37	feet aft amidships
KG	23.28	feet
C_B	0.61	
C_{WP}	0.753	

Assumptions

The following assumptions are made concerning the ship and the environment for this analysis:

- M_{SW} is deterministic and known.
- Sea conditions are statistically stationary and the spectral content of the waves can be represented by a two-dimensional spectrum.
- The seas are long-crested and fully-developed.
- The ship's response to the waves is linear and can be represented by an RAO.
- M_{ult} is normally distributed with mean μ and a known coefficient of variation. (applies to both hogging and sagging strength)
- The bending moment response is a narrowband process and its peaks follow a Rayleigh distribution.
- Order statistics can be used to determine the extreme characteristics of the bending moment response.
- The ship's strength is statistically independent of the wave-induced bending moment.

Development of the Model

Determining the Response Spectrum

The wave forces that the ship encounters are modeled by a two-dimensional sea spectrum. This procedure utilizes the ISSC-63 wave spectrum. This is a two-parameter spectrum, with significant wave height and mean wave period as its parameters. A spectrum is generated for each case by looking up the given sea state in Table 1 and reading the corresponding $H_{1/3}$ and $T_{\rm m}$. The ISSC-63 spectrum is given by

$$S_W(\omega) = AB\omega^{-5}e^{-B\omega^{-4}}$$
 where $A = (0.25)(H_{\frac{1}{3}})^2$ and $B = \left(0.817 \times \frac{2\pi}{T_m}\right)^4$

Table 1: NATO Sea States

	lauic		O Oca o							
Sea State	$H_{1/3}$ (m)	$H_{1/3}$ (ft)	T _m (sec)	% Occuran	ice					
2	0.30	0.98	7.5	7.2						
3	0.88	2.89	7.5	22.4						
4	1.88	6.17	8.8	28.7						
5	3.25	10.66	9.7	15.5						
6	5.00	16.40	12.4	18.7						
7	7.50	24.61	15.0	6.1						
8	11.50	37.73	16.4	1.2						
9	20:00	65.62	20.0	0.05						
	14.00	45,9								
NOTES:	open-ocean	open-ocean, North Atlantic, fully developed seas,								
	most proba	able wave h	eights and	modal perio	ods					

In order to get the response spectrum, the bending moment RAO for the ship must be known at the given speed and heading. In this case, the RAO's are determined from a plot of non-dimensional RAO's. (Figure 1) The information in this plot is valid for ships with cruiser/destroyer-type hullforms (0.44 < C_B < 0.62 and 0.72 < C_{WP} < 0.84). The plot is entered with the frequency parameter and the returned value, the bending moment parameter is converted into the bending moment RAO value for the input frequency. Note that the RAO is a function of the length and beam of the ship and the given heading and speed.

Figure 1: RAO Plot

Frequency Parameter =
$$\frac{\omega \sqrt{|\cos \theta|}}{\sqrt{2\pi g/LBP}}$$

$$RAO(\omega) = \left\{ \rho gB(LBP)^2 F_1 F_2 \text{ BM Parameter}(\omega) \right\}^2$$

where
$$F_1 = \sqrt[3]{|\cos \theta|}$$
 and $F_2 = 1.1 \tanh(1.5 + V_s/g) + 0.03(V_s/g)^2$

Now, the response spectrum is simply $S_{BM}(\omega) = S_W(\omega) \times RAO(\omega)$. Converting the response in wave frequency into the response in encounter frequency is the next step. First, the response is divided into discreet, evenly spaced blocks. The total area and center frequency (ω_c) are calculated for each block. Next, each center frequency is converted to the corresponding encounter frequency by the formula

$$\omega_{c,e} = \omega_c + \frac{V_s \, \omega_c^2}{g} \cos \theta$$

The n^{th} moment of the response spectrum, now in terms of encounter frequencies, is given by

$$m_n = \sum \omega_{c,e}^n \times Area@\omega_{c,e}$$

Statistics of the Extreme Responses

It is now necessary to determine some of the characteristics of the extreme responses. First, the bandwidth parameter is calculated $\varepsilon = \sqrt{1-m_2^2/m_0m_4}$. So long as this is less than 0.6, we are well justified in assuming a narrowband process. Next, the average period of the response is determined by $T_{avg} \approx 2\pi\sqrt{m_0/m_2}$. This value is combined with the duration over which the analysis is being conducted (this must be ≤ 3 hours) to calculate the number of cycles (encounters) to be expected in the analysis period

$$N \approx \frac{\text{duration in seconds}}{T_{avg}}$$

At this point, it is useful to calculate, as a check, the expected maximum value of the bending moment in N cycles. This value, derived from the use of order statistics, is given by

$$Q_N \approx \sqrt{m_0} \left\{ \sqrt{2 \ln N} + \frac{0.5772}{\sqrt{2 \ln N}} \right\} \qquad \text{assuming a Rayleigh distribution for the peaks}$$
 or by
$$Q_N \approx \sqrt{m_0} \left\{ \sqrt{2 \ln \left[N \left(1 - \varepsilon^2 \right) \right]} + \frac{0.5772}{\sqrt{2 \ln \left[N \left(1 - \varepsilon^2 \right) \right]}} \right\} \text{ assuming a Rice distribution.}$$

These two values can then be compared with each other to get a qualitative measure of how much error is incurred by assuming that the process is perfectly narrowbanded for the remainder of the analysis. In practice, this error is small. For example, at 30 knots, sea state 9, head seas, we have $\varepsilon = 0.661$. This difference in the Q_N values is only 3.74%, and the value of Q_N derived from the Rayleigh distribution is larger. Thus, it seems that narrowbandness is a well-justified assumption even for values of ε slightly greater than 0.6—if anything, we are being more conservative.

Other values that are of use in obtaining a qualitative feel for the extreme bending moment are the value with a probability of exceedance of 0.1% and the value with a probability of exceedance of 50%. These are given by

$$q(\alpha) = \sqrt{2m_0 \left\{ \ln N + \ln \left[1 / \ln \left(\frac{1}{1-\alpha} \right) \right] \right\}}$$

Calculating the Probability of Failure

The first step in the actual calculation of the probability of failure is determining the probability distributions of both the strength and the load. In this case, strength is represented by the ultimate bending moment in both the hogging and sagging modes. We assume that the ultimate bending moments are normally distributed with the given mean and an assumed coefficient of variation. Note that the results are strongly dependent on the coefficient of variation that is assumed. For example, in the sample condition above, for a coefficient of variation of 15% the probability of failure (hogging) is 5.49 x 10⁻⁶ The corresponding probability of failure for a coefficient of variation of 12% is 2.22 x 10⁻⁸

For the loading, we assume that the peaks of the bending moment can be closely approximated by a Rayleigh distribution. While it would be more exact to represent the peaks of the bending moment by Rice's distribution, we have shown above that assuming the response in narrowbanded incurs only a small error.

Since we are also assuming that the strength and the load are statistically independent, we can represent the joint probability density function as the product of the probability density function of the load and the probability density function of the strength. By the application of order statistics, the probability of failure is given by

$$P_f = 1 - \int_{M_{SW}}^{\infty} f_{Str}(z) \left[F_{BM}(z) \right]^N dz$$
where
$$F_{BM}(z) = 1 - e^{-\left(\frac{z - M_{SW}}{\sqrt{2m_0}} \right)^2}$$
and
$$f_{Str}(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{z - \mu}{\sigma} \right)^2}$$

These equations are integrated numerically for both the hogging and sagging modes to determine the probability of failure for each mode.

Limitations

Any answers arrived at through a modeling procedure are only as accurate as the model is realistic. There are several simplifications made in modeling the ship's response and calculating the probabilities of failure with this procedure that anyone who is using it must understand. First, the probabilities generated by the model are conditional on the ship actually encountering the specified sea condition for the specified duration at the specified course and speed. Second, the sea spectrum is only two-dimensional and assumes long-crested, fully-developed seas. However, the model can be made more realistic by modifying the spectrum to include directional and transient effects.

A more pressing consideration is the use of a regression fit for the ship's bending moment RAO's. A more accurate procedure could involve using the ship's actual RAO's (from full-scale or model testing) instead of the regression fitted ones. A significant obstacle to this enhancement is the difficulty in obtaining RAO's for each speed and heading condition to be investigated. It is obvious the use of the regression RAO's is much simpler, but how much accuracy is lost? Table 2 shows a comparison between the method used here and those derived from the second order strip theory program SOST. One can see that the values obtained from this procedure are very close to the linear SOST analysis. Therefore, so long as a second-order analysis is not necessary, using the regression RAO's is a valid simplification, at least for this ship.

Table 2: Comparison with SOST

, 4.0.	O 2. O 017	ipanson man	000,	
Cruiser I 6 knots,	$H_{1/3} = 45'$,	$\Gamma_{\rm m} = 14 \text{ s}$		
duration: 2.78 hours		q(5	0%)	
		SOST	Lvl 3 Short-	Term
Condition A: $\theta = 0^{\circ}$	sagging	2.032E+05		ft-LT
	hogging	1.691E+05		ft-LT
	linear	1.811E+05	1.783E+05	ft-LT
Condition A: $\theta = 45^{\circ}$	sagging	1.408E+05		ft-LT
	hogging	1.134E+05		ft-LT
	linear	1.217E+05	1.227E+05	ft-LT

There is one other factor of importance that is not covered in this approach: loads on the ship due to slamming. This cannot be simply implemented in this framework. Its effects would be greatest in the higher sea states, adding approximately 1/3 of the expected wave bending moment to the total load.

Application of the Model

Figure 2: Probability of Failure at $\theta = 0^{\circ}$

Figure 3: Probability of Failure at $\theta = 30^{\circ}$

Heading 30° (Bow Seas)

Figure 4: Probability of Failure at $\theta = 45^{\circ}$

Figure 5: Probability of Failure at $\theta = 60^{\circ}$

Conclusions

The fully-probabilistic (Level III) reliability analysis is a viable option for the analysis of wave-induced longitudinal bending loads over a short period of time. Various simplifying assumptions can make this process tractable, even if the user has only limited amounts of computer resources and ship data available. The method can also be easily modified to increase its accuracy, at the price of needing more information. The only significant failing of the model is in its failure to account for the slamming loads at high sea states. So long as one is mindful of the limitations of the procedure, the data derived from it can be of great use to both designers and operators.

Sample Run of Model

Input Data

Ship: Cruiser I

Hydroste	atic I	Data
----------	--------	------

LBP:	529	ft	
Beam:	55	ft	
Draft:	22.07	ft	
Δ:	9403.4	LT	
C _P :	0.61		

0.753

Condition Data

÷ (> ()		
Speed:	30	knots
Heading:	0	° (relative)
Sea State	9	
Duration:	3	hour(s)

Strength Data

 $\mathbf{C}_{\mathbf{WP}}$:

M _{sw}	76,821	ft-LT	
Ultimate	e Failure Be	ending Mon	nent
	Sagging	Hogging	_
μ	-616,241	574,489	ft-LT
COV	15%	15%	
σ	92436	86173	ft-LT

Wave Re	sponse (Calculation	ns							
Density:		1.9905	lb-ft/s ²			m_0	842.7E+6			
Accel of G	ravity:	32.174	ft/s ²			m ₂	958.7E+6			
Sig Wave I		45.9	ft			m ₄	1.9E+9			
Mean Wav		20.0	sec							
ω	S _w (ω)	RAO	$S_{BM}(\omega)$	ω _c	ω _e	Area Blks	δm_2	δm_4	ω _e	$S_{BM}(\omega_e)$
s ⁻¹	ft²/s	$(ft-LT/ft)^2$	(ft-LT) ² /s	s ⁻¹	s ⁻¹	(ft-LT) ²	$(ft-LT)^2/s^2$	$(ft-LT)^2/s^4$	s ⁻¹	$(ft-LT)^2/s$
0.02	0	0	0	0.035	0.036928	0	0	0	0.02063	0
0.05	2E-295	0	0	0.065	0.071649	0	0	0	0.053934	0
0.08	6.73E-41	0	0	0.095	0.109203	0	0	0	0.090072	0
0.11	1.9E-08	0	0	0.125	0.14959	0	0	0		0
0.14	0.528018	0	0	0.155	0.19281	0	0	0		0
0.17	89.26811	0	0	0.185	0.238862	0	0	0	0.215482	0
0.2	474.7726	0	0	0.215	0.287747	0	0	0		0
0.23	754.1868	0	0	0.245	0.339465	635559.8			0.313252	0
0.26	745.2984	56850.59	42370650		0.394016			155261.51		23301606
0.29	604.1912	640664.9	3.87E+08			18362265				2.02E+08
0.32	450.9752		8.37E+08	0.335		30685395		2102360.6		4.17E+08
0.35	326.3703	3703235	1.21E+09	0.365			13706005			5.75E+08
0.38	234.6077		1.56E+09	0.395			21923204			
0.41		11826071		0.425			32373965			8.75E+08
0.44			2.29E+09			70799058		26315146		9.59E+08
0.47			2.43E+09			73839839		39494681		9.82E+08
0.5			2.49E+09				65182638			9.67E+08
0.53			2.51E+09				76616125			
0.56			2.47E+09					104997987		8.95E+08
0.59			2.39E+09					130386418		
0.62			2.08E+09					143051931		5.23E+08
0.65			1.59E+09					140601283		3.63E+08
		L	1.14E+09	0.695				130280922 117858154		
			7.97E+08	0.725						
			5.56E+08		1.032083	10027210	20077107	106014753 95079825	1.001793	1.07E+08
			3.93E+08				24315841			78434959
			2.76E+08 1.92E+08				18908065			53277828
			1.33E+08					63369571		
			92971192				11384187			24457732
			64701451			1634887		46618185		
			44291017			1109187				11100082
			29654769			757949.4				7260179
			20875190			537939.4			2.615397	+
			14987438			383833.5			2.742184	
	1.626661		10601465			269343.8			2.871803	
	1.417108		7354791			192608.5				
	1.239098		 			147794.3				
		4016782						14768211		
!		3626294	 					13850396		

	1.00	0.045006	2255770	0750050	1.005	0.605045	5 10 15 00		1000.000		
	1.22					3.635345					
ļ	1.25	0.748741	2944053	2204334	·	3.783377	59927.97			A	
ļ	1.28	0.665123	2692531	1790864	1.295	3.934242	48655.68				356118.9
	1.31	0.592458	2452239		1.325	4.08794				4.010737	
	1.34		2223175	1176302	1.355	4.244471		577614.5	10406033		225445.1
	1.37		2029002		1.385			513251.4	9953871.6		
	1.4		1889186	803152	1.415	4.56603	22110.41	460971.8	9610631.9	4.484578	148551.9
	1.43	0.382404	1754360	670875.2	1.445	4.731059	18463.38	413264.5	9250067.3	4.648191	121955.9
	1.46		1624525	560017.1	1.475	4.898921	15466.41	371185.1	8908229.9	4.814636	100085.4
	1.49		1512697	471077.2	1.505	5.069616	13205.27	339388.6	8722626.8	4.983914	82793.01
L	1.52		1451882	409273.9	1.535	5.243143	11478.57	315552.1	8674700.5	5.156025	70756.68
	1.55	0.255664	1392314	355963.9	1.565	5.419503	9987.94	293355.9	8616161.2	5.330969	60551.78
	1.58	0.232309	1333994	309898.8	1.595	5.598696	8687.61	272316.6	8535871.3	5.508745	51882.44
	1.61	0.211468	1273364	269275.2	1.625	5.780722	7451.508	249005.1	8320940.1	5.689355	44379.78
	1.64	0.19283	1179755	227492	1.655	5.96558	6291.339	223897.1	7968081.6	5.872797	36918.84
	1.67	0.176128	1089720	191930.6	1.685	6.153271	5303.826	200817.4	7603498.5	6.059072	30677.62
	1.7	0.161133	1003259	161657.7	1.715	6.343795	4463.16	179614.2	7228348.3	6.248179	25454.71
	1.73	0.147643	920370.3	135886.3	1.745	6.537152	3747.56	160149.6		6.440119	21083.24
	1.76	0.135486	841055.2	113951.1	1.775	6.733341	3138.607	142297.8	6451482	6.634893	17424.65
	1.79	0.12451	765313.3	95289.35	1.805	6.932364		125944.4	6052593.6	6.832499	14363.62
1	1.82	0.114584		79423.51	1.835	7.134219	2180.572	110984.7	5648798.2	7.032937	11804.04
	1.85	0.105593	624549.5	65947.93	1.865	7.338907	1806.98	·	5241780.3	7.236209	9665.634
	1.88	0.097435	559527.5	54517.41	1.895	7.546427	1490.327	84871.97	4833337.1	7.442313	7881.251
	1.91	0.090021	498078.9	44837.72	1.925	7.756781	1222.432	73550.84	4425380.8	7.65125	6394.627
	1.94	0.083275	440203.4	36657.73	1.955	7.969967	996.308		4019941.1	7.86302	5158.552
	1.97	0.077125	385901.3	29762.8	1.985	8.185986	805.9808	54009.07	3619167.3	8.077622	4133.36
	2	0.071513	335172.5	23969.25						8.295058	3285.684
			1000	00 14/	0		T				
			1550-	68 Wave	Spectra						
	_						H				
		00									
	7	00									
	6	00 +									
	<u>~</u> 5	00									
	Sw(a) (ft²-s)	00									
	(e) 7	00									
	Sw(
		00 †	- \								
	1	00 									
		0		-							
	-1	00 🖳	0.5	1		1.5					
	Wave Frequency (rad/sec)										
			·				H				
 		~ 7									
										i	
	- 1		1			ŀ	ì			! !	

G-26

Probabili	ty of Failu	ıre Calcu	lation	-							
Msw	76,821			BM_{RMS}	29,030				Rice	Rayleigh	
Step Size	4,465	ft-LT		ε	0.661	Wideband	Expecte		·		
m_0	842.7E+6	(ft-LT) ²		Tavg	5.89	s	in N	l peaks	1.13E+05	1.17E+05	ft-LT
m ₂	958.7E+6	$(ft-LT)^2/s^2$		N	1833.3	peaks	semi-p	rob FS	3.03	2.97	
m ₄	1.9E+9	(ft-LT) ² /s ⁴	1/	1000 value	1.56E+05	ft-LT					
		(/		50% value			% dif	ference	3.74%		
					$P_{f,sag}$	3.48E-10					
					$P_{f,log}$	5.49E-06					
Distributio	n Calculat	ions							-		
BM	f _{str,sag} (str)	for bog(str)	[f _{BM} (BM)] ^N	f _{BM} (BM)	F _{BM} (BM)	S(BM)	H(BM)				
(ft-LT)	Normal	Normal	Rayleigh	Rayleigh	Rayleigh	\ \					
-1209168				0		5.02E-15					
-1204702		1.26E-98		0	1	 					
-1200237		3.66E-98		0	1						
-1195772				0	1						
-1191307		3.07E-97		0	1	3.4E-14					
-1186841	2.29E-14			0	1	9.18E-14					
	3.09E-14		<u> </u>	0	1	6.18E-14					
-1177911	+		 	0	1	1.66E-13					
-1173446				0	1	1.11E-13					
-1168980				0	1	2.97E-13					
-1164515	9.9E-14	1.71E-94	0	0	1	1.98E-13					
-1160050	1.32E-13	4.87E-94	0	0	1	5.27E-13					
-1155585	1.75E-13	1.38E-93	0	0	1	3.49E-13					
-1151120	2.31E-13	3.9E-93	0	0	1	9.25E-13					
-1146654	3.06E-13	1.1E-92	0	0	1	6.11E-13					
-1142189	4.03E-13	3.09E-92	0	0	1	1.61E-12					
-1137724	5.3E-13	8.66E-92	0	0	1	1.06E-12					
-1133259	6.95E-13	2.42E-91	0	0	1	2.78E-12					
-1128793	9.09E-13	6.75E-91	0	0	1	1.82E-12					
-1124328	1.19E-12	1.88E-90	0	0		4.75E-12	4				
-1119863	1.55E-12	5.21E-90	0	0	1	3.09E-12					
-1115398	2.01E-12	1.44E-89	0	0	1	8.04E-12					
-1110932	2.61E-12	3.97E-89	0	0	1	5.21E-12	<u></u>				
-1106467	3.37E-12	1.09E-88	0	0	1	1.35E-11	 				<u> </u>
	4.35E-12	 	 	 				ļ			
-1097537		8.21E-88				2.24E-11		ļ			
	7.19E-12			}	<u> </u>	1.44E-11	+	ļ		ļ <u> </u>	
·	9.22E-12	+		 	ļ	3.69E-11		ļ			1
	1.18E-11			L		2.36E-11	4	ļ			
-1079676		4.48E-86				6.01E-11		<u> </u>			
	1.91E-11					3.82E-11		ļ			
	2.43E-11					9.71E-11		ļ			1
	3.08E-11		+	 		6.15E-11					
-1061815	3.89E-11	2.35E-84	0	0	1	1.55E-10	<u> </u>	1			

-1057349	4.9E-11	6.26F-84	0	0	1	9.8E-11					
<u> </u>	6.16E-11		0	0		2.46E-10					-
I	7.73E-11		0	0	·	1.55E-10					
	9.68E-11		0	0		3.87E-10					
	1.21E-10		0	0		2.42E-10					
	1.51E-10		0	0	1						
1	1.87E-10		0	0		3.75E-10					
	2.32E-10		0	0		9.29E-10					
	2.87E-10		0	0		5.75E-10					
1	3.55E-10		0	0		1.42E-09					
	4.37E-10		0			8.74E-10					
}		2.59E-79		5.5E-307		2.15E-09					
	•	6.71E-79		1.7E-304	-	1.32E-09					
		1.73E-78		5.1E-302		3.22E-09					
L		4.45E-78		1.5E-299		1.97E-09					
-994830		1.14E-77		4.3E-297		4.78E-09				-	
		2.92E-77		1.2E-294		2.91E-09					
		7.46E-77	6.1E-289			7.04E-09					
		1.9E-76	1.6E-286	9E-290		4.26E-09					
I		4.82E-76		2.4E-287				-			
		1.22E-75	1.1E-281	6E-285		1.03E-08 6.18E-09				ļ	
I		3.08E-75		1.5E-282		1.48E-08				<u> </u>	
		7.76E-75		3.7E-280		8.88E-09					
		1.95E-74	1.6E-274			2.12E-08					
		4.88E-74	3.7E-272	2E-275		1.26E-08					
		1.22E-73	8.5E-270			3.01E-08					
		3.04E-73	1.9E-267			1.78E-08					
	1.06E-08			2.2E-268	1		. ,				
	1.25E-08			4.7E-266		2.49E-08					
		4.62E-72		9.7E-264		5.88E-08			-		
		1.14E-71	3.6E-258	2E-261		3.46E-08					
	2.03E-08		7.1E-256		1						
		6.86E-71	1.4E-253			4.74E-08					
			2.6E-251			1.11E-07					
			4.7E-249			CAFE OO					
f	3.74E-08		8.4E-247		1	1.5E-07					
-896601		2.41E-69	1.5E-244	8E-248	1					-	
	5.02E-08			1.4E-245	1	2.01E-07					
-887670	5.79E-08	1.41E-68		2.3E-243	1	1.16E-07					
-883205		3.39E-68	6.8E-238		1						
-878740	7.65E-08	8.13E-68		5.9E-239	1	1.53E-07					
-874275	8.77E-08	1.94E-67	1.7E-233	9.2E-237	1	3.51E-07	·				
-869809	1E-07	4.64E-67	2.6E-231	1.4E-234	1	2E-07					
	1.14E-07	1.1E-66	3.8E-229	2.1E-232	1	4.57E-07					
-860879	1.3E-07		5.5E-227	3E-230	1	2.6E-07					
-856414	1.48E-07	6.21E-66	7.8E-225	4.3E-228	1	5.9E-07					
	1.67E-07		1.1E-222	5.9E-226	1	3.34E-07					
	1.89E-07	3.45E-65	1.5E-220	7.9E-224	1	7.55E-07					
	2.13E-07	8.1E-65	1.9E-218	1E-221	1	4.26E-07					
-838553	2.39E-07	1.9E-64	2.5E-216	1.3E-219	1	9.57E-07					

	0 (05 05)	4.425 (4)	2 1E 214	1.5E 015	1	5 27E 07	 			
L	2.69E-07				<u> </u>	5.37E-07				
	3.01E-07			2.1E-215		1.2E-06	 			
	3.36E-07		4.6E-210		L	6.71E-07	 j			
	3.74E-07			2.9E-211		1.5E-06				
	4.16E-07		6.1E-206		 	8.31E-07	 			
	4.61E-07			3.7E-207		1.84E-06	 			
	5.1E-07		7.4E-202			1.02E-06				
	5.63E-07			4.3E-203		2.25E-06				
	6.2E-07		8.2E-198			1.24E-06				
	6.81E-07		8.3E-196			2.72E-06				
-789435	7.46E-07	1.85E-60				1.49E-06				
-784970	8.16E-07	4.19E-60	8E-192	4.4E-195	1	3.26E-06				
-780505	8.9E-07	9.48E-60	7.6E-190	4.1E-193	_1	1.78E-06				
-776039	9.69E-07	2.14E-59	7E-188	3.8E-191	1	3.87E-06				
-771574	1.05E-06	4.81E-59	6.3E-186	3.4E-189	1	2.1E-06				
-767109	1.14E-06	1.08E-58	5.5E-184	3E-187	1	4.56E-06				·
	1.23E-06		4.8E-182	2.6E-185	1	2.46E-06				
	1.33E-06			2.2E-183		5.31E-06				
-753713	1.43E-06	1.2E-57	3.3E-178			2.86E-06				
	1.53E-06		2.6E-176			6.13E-06				
	1.64E-06		2.1E-174	1.1E-177	1	3.28E-06				
	1.75E-06		1.6E-172	8.6E-176	1	7.01E-06				
	1.87E-06					3.74E-06			- , .	
	1.99E-06				 	7.95E-06				
	2.11E-06				·	4.21E-06				
	2.23E-06				 	8.92E-06				
	2.35E-06					4.71E-06		····		
	2.48E-06					9.92E-06				
	2.61E-06				1	5.21E-06				
	2.73E-06					1.09E-05				
	2.86E-06				1	5.72E-06				
	2.98E-06					1.19E-05				
	3.11E-06		1.7E-152		···	6.21E-06				
	3.23E-06		9.8E-151			1.29E-05				
	3.34E-06				 	6.69E-06				
	3.46E-06			1.6E-150		1.38E-05				
	3.57E-06		1.6E-145			7.13E-06				
	3.67E-06			4.6E-147		1.47E-05				
	3.77E-06			2.4E-145		7.54E-06		······································		
	3.86E-06			1.2E-143		1.54E-05				
	3.94E-06		1.1E-138			7.89E-06				
	4.02E-06			2.7E-140	ļ	1.61E-05				
	4.09E-06			1.3E-138	 					
	4.15E-06			5.7E-137		1.66E-05				
-637617				2.5E-135		8.4E-06				
-633152				1.1E-133						
	4.28E-06			4.7E-132		8.55E-06	 			
				1.9E-130	 	1.72E-05	 			
	4.31E-06					8.63E-06	 			
	4.32E-06		5.6E-124			1.73E-05				
-0.5271	T.J.L00	1.07E-77	J.UL-127	72-14/	1	1.752-05				l

APPENDIX H SENSITIVITY ANALYSIS RESULTS

Primary ((IY)		β =	10.29		
	x*	u*	α	γ	δ	η
Mi	6.01E+01	-6.16E+00	-0.5978	-0.5978	0.9337	-3.7184
Ms	5.18E+00	-1.05E+00	-0.1022	-0.1022	0.1022	-0.1074
Mw	4.00E+01	6.05E+00	0.5876	0.5876	-0.33034	-1.84433
Md	1.71E+01	3.80E+00	0.3696	0.3696	-0.42088	-0.68545
Kw	1.16E+00	3.21E+00	0.3115	0.3115	-0.3115	-0.9991
Kd	9.49E-01	2.38E+00	0.2307	0.2307	-0.2307	-0.548
Deimon	au T		β =	6.47		
Primary (·			9	
	X*	u*	α	γ 0.5701	δ 0.0024	η 22192
Mu	40.77	-3.75	-0.5791	-0.5791	0.8024	-2.2182
Ms	5.36	-0.85	-0.1313	-0.1313	0.1313	-0.1116
Mw	31.42	4.06	0.6277			-1.39957
Md	12.65	2.25	0.3474	0.3474	-0.37404	-0.41753
Kw	1.10	1.94	0.2994	0.2994	-0.2994	-0.5805
Kd	0.84	1.34	0.2075	0.2075	-0.2075	-0.2787
Seconda	ry		β=	5.89		·
	x *	u*	α	γ	δ	η
Su	1.70E+01	-3.28E+00	-0.5556	-0.5556	0.7439	-1.8689
SMd	2.22E+01	-1.32E+00	-0.2226	-0.2226	0.2347	-0.3013
Ms	5.40E+01	-8.04E-01	-0.1361	-0.1361	0.1361	-0.1094
Kw	1.09E+00	1.73E+00	0.293	0.293	-0.293	-0.507
Mw	2.98E+02	3.64E+00	0.6173	0.6173	-0.35203	-1.25788
Kd	8.26E-01	1.20E+00	0.2024	0.2024	-0.2024	-0.2421
Md	1.20E+02	2.01E+00	0.3397	0.3397	-0.3671	-0.37021
Tertiary			β=	5.86		
	x*	u*	α	γ	δ	η
Su		-3.26E+00			0.7419	
SMd	<u> </u>	-1.31E+00				
Ms	5.41E+01	-8.01E-01	-0.1365	<u> </u>		
Kw	1.09E+00	}			-0.2931	-0.5043
Mw	2.97E+02					
Kd	8.25E-01	1.19E+00	0.2025	0.2025	-0.2025	-0.2408
		2.00E+00	0.3398	0.3398	-0.36734	-0.36854

Primary	(IY)		β =	10.45		
	x*	u*	αλπηα	γαμμα	δελτα	ετα
Mi	5.10E+01	-7.00E+00			1.0969	-4.731
Ms	7.44E+00	1.41E+00	0.1349	0.1349	-0.1349	-0.1902
Mw	3.80E+01	7.06E+00	0.6752	0.6752	-0.39377	-2.43191
Kw	1.15E+00	2.91E+00	0.278	0.278	-0.278	-0.808
Primary	(ULT)		β =	6.75		
	x*	u*	αλπηα	γαμμα	δελτα	ετα
Mu	3.82E+01	-4.52E+00	-0.6686	-0.6686	0.9772	-3.0698
Ms	7.15E+00	1.09E+00	0.162	0.162	-0.162	-0.1771
Mw	2.86E+01	4.60E+00	0.681	0.681	-0.37603	-1.68409
Kw	1.09E+00	1.70E+00	0.251	0.251	-0.251	-0.4255
Seconda	n/		β =	6.74		
Seconda	.X*	u*	<u> </u>			
Su	· · · · · · · · · · · · · · · · · · ·	-4.34E+00			δελτα	ετα
SMb		-1.74E+00				
Ms		1.07E+00	<u> </u>			
Kw		1.63E+00	0.1331			-0.3932
Mw	2.80E+02		0.659		-0.36453	-1.57931
-						
Tertiary			β=	8.06		
	X*	u*	αλπηα	γαμμα	δελτα	ετα
Su	1.68E+01	-5.26E+00	-0.6528	-0.6528	1.0028	-3.4835
SMb	2.46E+01	-2.11E+00	-0.2617	-0.2617	0.2843	-0.562
Ms	7.23E+01	1.18E+00	0.1462	0.1462	-0.1462	-0.1724
Kw		1.98E+00	0.2456	0.2456	-0.2456	-0.4862
Mw	3.10E+02	5.25E+00	0.6509	0.6509	-0.35946	-1.80154

Primary (IY)		β =	7.92		
	x*	u*	αλπηα	γαμμα	δελτα	ετα
Mi	6.93E+01	-4.56E+00		-0.5751	0.8159	-2.6623
Ms	A	-6.75E-01	-0.0851	-0.0851	0.0851	-0.0575
Mw	4.91E+01	4.95E+00	0.6242	0.6242	-0.34416	-1.64326
Md	2.00E+01	2.86E+00	0.3605	0.3605	-0.39078	-0.52705
Kw	1.12E+00		0.3081	0.3081	-0.3081	-0.7521
Kd	8.81E-01	1.73E+00	0.2178	0.2178	-0.2178	-0.3759
Primary (ULT)		β =	4.27		
· · · · · · · · · · · · · · · · · · ·	x*	u*	αλπηα	γαμμα	δελτα	ετα
Mu	4.63E+01		-0.5771	-0.5771	0.7265	-1.4801
Ms	5.69E+00	-4.95E-01	-0.1152		0.1152	-0.05
Mw	3.68E+01	2.68E+00	0.6243		-0.38976	-0.99302
Md	1.51E+01		0.3553		-0.39078	-0.3019
Kw	1.07E+00	1.31E+00	0.3049	0.3049	-0.3049	-0.39
Kd	7.95E-01	9.09E-01	0.2116			-0.192
				:		
Seconda	ry	!	β =	3.75		:
	· x *	u*	αλπηα	γαμμα	δελτα	ετα
Su	1.91E+01	-2.12E+00	-0.5625	-0.5625	0.6884	-1.244
SMd	2.26E+01	-8.51E-01	-0.2254	-0.2254	0.2335	-0.200
Ms	5.73E+01	-4.55E-01	-0.1205	-0.1205	0.1205	-0.054
Kw	1.06E+00	1.14E+00	0.3021	0.3021	-0.3021	-0.344
Mw	3.49E+02	2.26E+00	0.5985	0.5985	-0.39865	
Kd	7.83E-01	7.95E-01	0.2104	0.2104	-0.2104	-0.167
Md	1.45E+02	1.33E+00	0.3529	0.3529	-0.39245	-0.2627
Tertiary			β =	3.71		·
	x *	u*	αλπηα	γαμμα	δελτα	ετα
Su	1.90E+01	-2.10E+00	-0.5625	-0.5625	0.6872	-1.233
SMd	2.26E+01	-8.43E-01	-0.2254	-0.2254	0.2335	-0.198
Ms	5.73E+01	-4.53E-01	-0.121	-0.121	0.121	-0.054
Kw	1.06E+00	1.13E+00	0.3025	0.3025	-0.3025	-0.342
Mw	3.48E+02	 	 	0.5978	-0.39976	-0.8223
Kd	7.83E-01	·		0.2107	-0.2107	7 -0.16
Md	1.45E+02	<u> </u>				2 -0.2608
						

Primary	(IY)		β =	7.4		İ
	X*	u*	αλπηα	γαμμα	δελτα	ετα
Mi	6.35E+01	-4.56E+00	-0.6161	-0.6161	0.8742	-2.8542
Ms	6.82E+00	7.38E-01	0.0997	0.0997	-0.0997	-0.0735
Mw	5.14E+01	5.41E+00	0.7304	0.7304	-0.40398	-2.07653
Kw	1.10E+00	2.06E+00	0.2775	0.2775	-0.2775	-0.5705
Primary	(ULT)		β=	4.09		
	x*	u*	αλπηα	γαμμα	δελτα	ετα
Mu	4.61E+01	-2.63E+00				-1.7434
Ms	+	5.28E-01				
Mw	3.74E+01	2.90E+00	0.7089	0.7089	-0.43065	
Kw	1.05E+00	1.07E+00	0.2616	0.2616	-0.2616	-0.28
Seconda	ry		β =	4.16		
	X*	u*	αλπηα	γαμμα	δελτα	ετα
Su	1.79E+01	-2.59E+00	-0.6225	-0.6225	0.7907	-1.6666
SMb		-1.04E+00	-0.2494	-0.2494	0.2603	-0.2687
Ms	6.63E+01	5.23E-01	0.1256	0.1256	-0.1256	-0.0657
Kw		1.06E+00		0.2535	-0.2535	-0.2674
Mw	3.72E+02	2.85E+00	0.6857	0.6857	-0.41855	-1.14565
Tertiary			β=	5.43		
	x*	u*		γαμμα	δελτα	ετα
Su	2.03E+01	-3.35E+00		-0.6173	0.831	-2.1215
SMb	2.53E+01	-1.34E+00		-0.2474		
Ms	6.70E+01	6.03E-01		0.1109		-0.0668
Kw	1.07E+00	1.37E+00	0.2519	0.2519		
Mw	4.19E+02	3.77E+00	0.6942	0.6942	-0.39243	-1.45283

Primary ((IY)		β =	6.75		
	x*	u*	α	γ	δ	η
Mi	4.72E+01	-3.76E+00	-0.5563	-0.5563	0.7493	-2.132
Ms	4.64E+00	-6.82E-01	-0.101	-0.101	0.101	-0.0689
Mw	3.50E+01	4.33E+00	0.6411	0.6411	-0.35567	-1.50656
Md	1.41E+01	2.42E+00	0.3584	0.3584	-0.38524	-0.45695
Kw	1.10E+00	2.08E+00	0.308	0.308	-0.308	-0.6409
Kd	8.52E-01	1.45E+00	0.2144	0.2144	-0.2144	-0.3107
Primary ((ULT)		β =	5.1		
	x*	u*	α	γ	δ	η
Mu	3.88E+01	-2.95E+00	-0.5766	-0.5766	0.7532	-1.7516
Ms	4.71E+00	-5.88E-01	-0.1148	-0.1148	0.1148	-0.0675
Mw	3.04E+01	3.23E+00	0.6311	0.6311	-0.37086	-1.16609
Md	1.23E+01	1.79E+00	0.3495	0.3495	-0.37985	-0.34412
Kw	1.08E+00	1.54E+00	0.3009	0.3009	-0.3009	-0.4638
Kd	8.12E-01	1.07E+00	0.2081	0.2081	-0.2081	-0.2218
Seconda	ry	: !	β =	3.74		
	:X*	u*	α	γ	δ	η
Su	1.36E+01	-2.11E+00			,	
SMd	2.42E+01			-0.2233		
Ms	4.78E+01	-4.98E-01	-0.1318			-0.0656
Kw	1.06E+00	1.14E+00	0.3029			-0.3463
Mw	2.68E+02	2.27E+00	0.6003			-0.83546
Kd	7.84E-01	7.96E-01	0.2109			
Md	1.12E+02	1.34E+00	0.3538	0.3538	-0.39347	-0.26394
Tertiary			β=	4.38		
	x*	u*	α	γ	δ	η
Su	1.47E+01	-2.46E+00	-0.5579	-0.5579	0,7011	
SMd	2.40E+01	-9.84E-01	-0.2234	-0.2234	0.2327	-0.2286
Ms	4.74E+01	-5.41E-01	-0.1227	-0.1227	0.1227	-0.0663
Kw	1.07E+00	1.31E+00	0.2977	0.2977	-0.2977	-0.3904
Mw	2.83E+02	2.69E+00	0.6101	0.6101		
Kd	7.96E-01	9.10E-01	0.2066	0.2066	-0.2066	-0.1881
Md	1.16E+02	1.53E+00	0.3468	0.3468	-0.38165	-0.29529
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1

Primary	(IY)		β =	7.77		
	x*	u*	α	γ	δ	η
Mi	3.85E+01	-4.94E+00	-0.6359	· · · · · · · · · · · · · · · · · · ·	0.9238	-3.1848
Ms	6.01E+00	1.10E+00	0.1415	0.1415	-0.1415	-0.1554
Mw	2.94E+01	5.51E+00	0.7089	0.7089	0.393276	-2.04672
Kw	1.11E+00	2.10E+00	0.2704	0.2704	-0.2704	-0.5679
Primary			β =	6.22		
	x*	u*	α	γ	δ	η
Mu	3.33E+01	-4.11E+00			0.9381	-2.7628
Ms	5.89E+00	}	0.1532	0.1532	-0.1532	-0.146
Mw	2.54E+01		0.6906		-0.3836	-1.61304
Kw	1.08E+00	1.57E+00	0.2524	0.2524	-0.2524	-0.3964
Seconda			β =	4.86		
	· L	<u> </u>	α	γ		η
Su	+	-3.10E+00			ļ <u> </u>	
SMb		-1.24E+00	<u> </u>		0.2689	-0.3277
Ms	5.80E+01	8.24E-01	0.1695	0.1695	-0.1695	-0.1397
Kw	1.06E+00		0.242	0.242	-0.242	-0.2847
Mw	2.21E+02	3.23E+00	0.6635	0.6635	-0.39047	-1.2246
T				5.06		
Tertiary	•	•	β =	5.96	6	
	X*	u*		γ	δ	η
Su		-3.80E+00	-0.6366	-0.6366	0.8849	-2.4678
SMb	+	-1.52E+00	-0.2552	-0.2552	0.2712	-0.3982
Ms	5.87E+01	9.21E-01	0.1543	0.1543	-0.1543	-0.1421
Kw	1.07E+00		0.243	0.243	-0.243	-0.3521
Mw	2.44E+02	3.99E+00	0.6684	0.6684	-0.37487	-1.46687
	ļ					
		,				

Primary (TY)		β =	4.67		
	x*	u*	α	γ	δ	η
Mu	5.25E+01	-2.57E+00	-0.5478	-0.5478	0.6796	-1.4523
Ms	4.84E+00	-4.20E-01	-0.0894	-0.0894	0.0894	-0.0375
Mw	4.03E+01	3.04E+00	0.6477	0.6477	-0.3879	-1.13956
Md	1.64E+01	1.69E+00	0.3605	0.3605	-0.39297	-0.33748
Kw	1.07E+00	1.46E+00	0.3104	0.3104	-0.3104	-0.4524
Kd	8.06E-01	1.01E+00	0.2147	0.2147	-0.2147	-0.2164
Primary ((ULT)		β =	3.09		
	x*	u*		<u>.•</u>		η
Mu	4.33E+01	-1.85E+00	-0.5917	-0.5917	0.7078	-1.1467
Ms	4.91E+00	-3.30E-01	-0.1055	-0.1055	0.1055	-0.0348
Mw	3.47E+01	1.86E+00	0.5968	0.5968	-0.42864	-0.70684
Md	1.45E+01	1.15E+00	0.368	0.368	-0.41391	-0.23428
Kw	1.05E+00	9.83E-01	0.3147	0.3147	-0.3147	-0.3094
Kd	7.72E-01	6.86E-01	0.2194	0.2194	-0.2194	-0.1505
		!				
Seconda		:	β =			
	<u>x*</u>	u*				η
Su		-1.04E+00			0.6567	
SMd	2.46E+01	,		<u> </u>	0.24	
Ms	4.99E+01	-2.18E-01	-0.123	-0.123	0.123	-0.0268
Kw	1.03E+00		0.3252	0.3252	-0.3252	-0.1872
Mw	3.13E+02	 	0.5361	0.5361	-0.47899	-0.33378
Kd	7.41E-01	3.95E-01	0.2227	0.2227	-0.2227	-0.0879
Md	1.30E+02	6.64E-01	0.3746	0.3746	-0.4366	-0.11772
Tertiary			β =	2.39		
	x*	u*	α	γ	δ	η
Su	1.63E+01	-1.42E+00	-0.5824	-0.5824	0.6716	-0.878
SMd	2.44E+01	-5.67E-01	-0.2333		0.239	-0.1414
Ms	4.95E+01	-2.76E-01	-0.1136			-0.0314
Kw	1.04E+00	7.68E-01	0.3161	0.3161	-0.3161	-0.2428
Mw	3.27E+02	1.35E+00			-0.4493	-0.49703
Kd	7.56E-01	5.33E-01	0.2193	0.2193	-0.2193	-0.1169
C	1.275.02	DOAT OF	0.2670	0.3679	-0.42159	-0.17467
Md	1.37E+02	8.94E-01	0.3679	0.3079	-0.42133	-0.17407

Primary	(IY)	1	β =	4.54		
	x*	u*	α	γ	δ	η
Mi	4.72E+01	-2.68E+00	-0.5907		0.7386	
Ms	5.53E+00	4.86E-01	0.1073	0.1073	-0.1073	-0.0521
Mw	3.92E+01	3.41E+00	0.7515	0.7515	-0.43497	\$
Kw	1.06E+00	1.24E+00	0.2734	0.2734	-0.2734	-0.3389
Primary	(ULT)		β=	3.18		
	x*	u*	α	γ	δ	η
Mu	4.07E+01	-2.08E+00	-0.6503	-0.6503	0.7929	<u> </u>
Ms	5.46E+00	3.94E-01	0.1233	0.1233	-0.1233	-0.0486
Mw	3.38E+01	2.24E+00	0.6991	0.6991	-0.46737	-0.96228
Kw	1.04E+00	8.65E-01	0.2705	0.2705	-0.2705	-0.234
Seconda	ry		β =	1.89		
	X*	u*	α	γ	δ	η
Su	1.34E+01	-1.28E+00	-0.6678	-0.6678	0.7611	-0.9163
SMb	2.70E+01	-5.13E-01	-0.2676	-0.2676	0.2736	-0.1478
Ms	5.37E+01	2.75E-01	0.1437	<u> </u>	-0.1437	-0.0396
Kw	1.03E+00		0.2775	i	-0.2775	-0.1474
Mw	2.99E+02	1.19E+00	0.6203	0.6203	-0.52002	-0.48654
Tertiary			β=	3.03		
	x*	u*			δ	η
Su	1.49E+01	-1.93E+00	-0.635		0.7649	-1.2834
SMb	2.67E+01	-7.74E-01	-0.2545			-0.2071
Ms	5.45E+01		0.124	0.124		-0.0468
Kw	1.04E+00		0.264	0.264	-0.264	-0.2121
Mw	3.30E+02	2.03E+00	0.6685	0.6685	-0.46332	-0.8505
	j !				i	

Primary ((IY)		β =	6.26		
	x *	u*	α	γ	δ	η
Mi	1.92E+02	-3.52E+00	-0.5618	-0.5618	0.7653	-2.0216
Ms	2.11E+01	-1.65E+00	-0.2636	-0.2636	0.2636	-0.4349
Mw	1.77E+02	4.45E+00	0.7112	0.7112	-0.39547	-1.71949
Md	2.50E+01	8.83E-01	0.1409	0.1409	-0.16148	-0.06575
Kw	1.09E+00	1.80E+00	0.2868	0.2868	-0.2868	-0.5149
Kd	7.55E-01	5.26E-01	0.084	0.084	-0.084	-0.0442
Primary ((111.7)		β=	5.83		
Fillial y	x*	u*	α		δ	η
Mu		-3.43E+00	-0.5871	-0.5871		
Ms	2.19E+01		-0.2682	-0.2682	0.2682	-0.4197
Mw	1.68E+02	4.04E+00	0.6925			-1.54294
Md	2.47E+01	8.18E-01	0.1402	0.1402	-0.16148	-0.05934
Kw	1.08E+00		0.1402	0.1402	-0.2778	-0.4503
Kd	7.51E-01		0.0835	0.0835		-0.0407
Ku .	7.51L-01	4.60L-01	0.0033	0.0033	0.0000	0.0.0.
Seconda	ry	: 	β=			
	undefined	!				• •
Tertiary			β=			
refuery			μ-			
	undefined					
		<u> </u>			! !	
				<u> </u>	i	

Primary	(IY)	<u> </u>	β =	6.58		
	x*	u*	α	γ	δ	η
Mi	2.22E+02	-4.39E+00		4	0.9685	
Ms	5.20E+01	1.79E+00	0.2715	0.2715	-0.2715	-0.4848
Mw	1.57E+02	4.28E+00	0.6507	0.6507	-0.36142	+
Kw	1.08E+00	1.56E+00	0.2378	0.2378	-0.2378	-0.3717
Primary	(ULT)		β =	3.32		
	x *	u*	α	γ	δ	η
Mu	1.67E+02	-2.39E+00	-0.7138	-0.7138	0.911	-1.7732
Ms	4.65E+01	1.17E+00	0.3505	0.3505	-0.3505	-0.4112
Mw	1.16E+02	1.88E+00	0.5626	0.5626	-0.40255	-0.67231
Kw	1.04E+00	7.57E-01	0.2262	0.2262	-0.2262	-0.1713
Seconda			β =	2.74		
		u*		γ		η
Su		-1.94E+00		<u>: </u>		
SMb	+	-7.06E-01				
Ms		1.00E+00	 			-0.3625
Kw	1.03E+00		0.2215			
Mw	1.10E+03	1.43E+00	0.5156	0.5156	-0.40856	-0.48296
Tertiary	•		β =	4.21		
C	 	u*				η
Su SMb		-2.89E+00 -1.05E+00	-0.6824	-0.6824	0.908	-2.0322
Ms	4.79E+02		-0.2488			-0.2716
Kw	1.05E+00		0.3151 0.2172		-0.3151	-0.42
Mw	1.03E+00	2.41E+00	0.2172	0.2172	-0.2172 -0.37093	-0.1995
IATAA	1.24ET03	∠.41E⊤0U	0.3709	0.3709	-0.3/093	-0.83595
						

Primary (IY)		β =	5.88		
	x*	u*	α	γ	δ	η
Mi	2.34E+02	-3.86E+00	-0.6569	-0.6569	0.9175	-2.5894
Ms	4.93E+01	1.49E+00	0.2532	0.2532	-0.2532	-0.3769
Mw	1.72E+02	3.92E+00	0.6675	0.6675	-0.37518	-1.44522
Kw	1.07E+00	1.43E+00	0.2425	0.2425	-0.2425	-0.3457
Primary (ULT)		β =	2.67		
	x*	u*	α	γ		η
Mu	1.75E+02	-1.94E+00	-0.7186	-0.7186	0.8818	-1.464
Ms	4.41E+01	9.07E-01	0.3359	0.3359	-0.3359	-0.3046
Mw	1.27E+02	1.51E+00	0.5606	0.5606	-0.43512	-0.55378
Kw	1.03E+00	6.41E-01	0.2376	0.2376	-0.2376	-0.1524
Seconda	ry		β =	2.11		
	X*	u*	α	γ	δ	η
Su	9.61E+00	-1.50E+00			+	
SMb	1.74E+02	-5.48E-01				
Ms	4.26E+02					-0.2548
Kw	1.03E+00					-0.1164
Mw	1.22E+03	1.10E+00	0.5137	0.5137	-0.44145	-0.37241
Tertiary			β =	3.58		
	x*	u*	α	γ	δ	η
Su		-2.46E+00		-0.6829	0.8769	
SMb	1.72E+02	 				
Ms	4.56E+02	-				-0.3224
Kw	1.04E+00	 	+			-0.1844
	1.36E+03	 				
Mw	1.30ETU3	2.07L.00	+	- 		1
Mw	1.30E+03	2.07E 0				

Primary	(IY)		β =	5.87	:	!
	x*	u*	α	γ	;δ	η
Mi	1.24E+02	-3.81E+00	-0.6494	-0.6494	0.9038	American market and an area
Ms	1.19E+01	7.73E-01	0.1317	0.1317	-0.1317	-0.1019
Mw	9.30E+01	3.99E+00	0.6789	0.6789	-0.38068	-1.48869
Md	1.38E+01	8.10E-01	0.138	0.138	-0.15897	-0.05762
Kw	1.08E+00	1.60E+00	0.2723	0.2723	-0.2723	-0.4353
Kd	7.51E-01	4.83E-01	0.0822	0.0822	-0.0822	-0.0397
Primary	(III T)		β =	3.02		
' Timal y	x*	u*	 		9	
Mu		-2.16E+00	α 0.700	γ 0.700	δ 0.0072	η 1.6010
Ms	9.47E+01 1.13E+01	5.21E-01	 			
Mw	7.07E+01		0.1707			
	+	1.83E+00				
Md Kw	1.27E+01	4.90E-01	0.1607	4	-0.18975	-0.02958
	1.04E+00	8.34E-01	0.2733		L	
Kd	7.31E-01	2.90E-01	0.0952	0.0952	-0.0952	-0.0276
			1			
Seconda			β =	3.24		
	x*	u*	α	γ	δ	η
Su		-2.24E+00	· - · - · - · - · - · - · · · · · · · ·		0.8619	-1.5964
SMd	7.82E+01				0.2581	-0.2133
Ms	1.13E+02	5.34E-01	0.1632	0.1632	-0.1632	-0.0871
Kw	1.04E+00	8.62E-01	0.2636			-0.2273
Mw	7.14E+02	1.91E+00	0.5843			-0.70686
Kd	7.31E-01	2.99E-01	0.0914	+	-0.0914	-0.0273
Md	1.28E+02	5.05E-01	0.1543	0.1543	-0.18196	-0.03009
Tertiary			β =	4.63		
	x *	u*	α	γ	δ	η
Su	1.39E+01	-3.10E+00	-0.666	-0.666	0.9014	-2.1222
SMd	7.73E+01	-1.13E+00				-0.2835
Ms	1.16E+02	6.56E-01	0.1412		-0.1412	-0.0927
Kw	1.06E+00	1.19E+00	0.2556	 	-0.2556	
Mw	8.0.7E+02	2.89E+00	0.6211		-0.37812	-1.04899
Kd	7.41E-01	3.87E-01	0.0831	0.0831	-0.0831	-0.0322
Md	1.32E+02	6.50E-01	0.1398	 	-0.16318	-0.04263

Primary	(IY)		β =	5.01		
	x*	u*	α	γ	δ	η
Mi	1.23E+02	-3.38E+00	-0.6738	-0.6738	0.909	-2.3353
Ms	3.70E+01	1.77E+00	0.3528	0.3528	-0.3528	-0.625
Mw	8.13E+01	3.06E+00	0.6096	0.6096	-0.36408	-1.07824
Kw	1.06E+00	1.12E+00	0.2234	0.2234	-0.2234	-0.2506
Primary	(ULT)		β=	2.82		
	x*	u*	α	γ	δ	η
Mu	1.02E+02	-2.07E+00	-0.7255	-0.7255	0.9002	-1.569
Ms	3.33E+01	1.19E+00	0.4167	0.4167	-0.4167	-0.4946
Mw	6.66E+01	1.43E+00	0.5034	0.5034	-0.39801	-0.47355
Kw	1.03E+00	6.15E-01	0.2161	0.2161	-0.2161	-0.1329
Seconda	iry	1	β =	0.57	:	
	x*	u*	α	γ	δ	η
Su	8.63E+00	-4.21E-01	-0.7045	-0.7045	0.7475	-0.3717
SMb	1.01E+02	-1.54E-01	-0.2567	-0.2567	0.2588	-0.0496
Ms	2.75E+02	2.84E-01	0.4748		-0.4748	-0.1348
Kw	1.01E+00	1.30E-01	0.2179	0.2179	-0.2179	
Mw	5.89E+02	2.43E-01	0.4061	0.4061	-0.43698	-0.0162
Tertiary			β=	3.61		
	x*	u*	α	γ	δ	η
Su	1.10E+01	-2.53E+00	-0.6958	-0.6958	0.8985	-1.8241
SMb	9.76E+01	-9.22E-01	-0.2537	-0.2537	0.2635	-0.2437
Ms	3.45E+02	1.38E+00	0.3798	0.3798	-0.3798	-0.5243
Kw	1.04E+00			0.2072	-0.2072	-0.156
Mw	7.00E+02	1.87E+00	0.5141	0.5141	-0.369	-0.61003
				l		L

Primary	(IY)		β =	4.5		l
	x*	u*	α	γ	δ	η
Mi	1.41E+02	-2.47E+00	-0.5486	+···	0.6903	+
Ms	1.84E+01	-1.13E+00	-0.25	-0.25	0.25	-0.2816
Mw	1.34E+02	3.24E+00	0.7202	0.7202	-0.42275	-1.33529
Md	2.12E+01	7.01E-01	0.1556	0.1556	-0.18084	-0.05312
Kw	1.07E+00	1.31E+00	0.2917	0.2917	-0.2917	-0.3834
Kd	7.44E-01	4.17E-01	0.0926	0.0926	-0.0926	-0.0386
Primary	(ULT)		β =	2.17		
	x*	u*	α	γ	δ	η
Mu	1.04E+02	-1.29E+00	-0.5859	-0.5859	0.6773	-0.8147
Ms	2.10E+01	-7.24E-01	-0.3292	-0.3292	0.3292	-0.2384
Mw	1.07E+02	1.40E+00	0.6364	0.6364	-0.50724	-0.58589
Md	1.98E+01	4.11E-01	0.1867	0.1867	-0.22182	-0.02268
Kw	1.03E+00	6.83E-01	0.3104	0.3104	-0.3104	-0.212
Kd	7.26E-01	2.43E-01	0.1103	0.1103	-0.1103	-0.0268
Seconda	nry		β =	2.39		
	x*	u*	α	γ	δ	η
Su	1.34E+01	-1.38E+00			0.667	-0.848
SMd	7.92E+01	-5.04E-01	-0.2086	-0.2086	0.2132	-0.1133
Ms	2.08E+02	-7.61E-01	-0.315	-0.315	0.315	-0.2397
Kw	1.04E+00	7.27E-01	0.3009	0.3009	-0.3009	-0.2186
Mw	1.08E+03					
	1.00E+03	1.52E+00	0.6292	0.6292	-0.48753	-0.62427
Kd	7.27E-01	1.52E+00 2.57E-01	0.6292 0.1064	0.6292 0.1064	-0.48753 -0.1064	-0.62427 -0.0273
Kd Md	·					
	7.27E-01	2.57E-01	0.1064	0.1064	-0.1064	-0.0273
Md Tertiary	7.27E-01 1.99E+02 x*	2.57E-01 4.35E-01 u*	0.1064 0.1799 β =	0.1064 0.1799 3.56	-0.1064	-0.0273
Md Tertiary Su	7.27E-01 1.99E+02 x*	2.57E-01 4.35E-01	0.1064 0.1799 β =	0.1064 0.1799 3.56	-0.1064 -0.21338	-0.0273 -0.02528
Md Tertiary Su SMd	7.27E-01 1.99E+02 x* 1.56E+01 7.85E+01	2.57E-01 4.35E-01 u* -2.03E+00 -7.41E-01	0.1064 0.1799 $\beta = \alpha$ -0.5673 -0.2068	0.1064 0.1799 3.56 γ	-0.1064 -0.21338 δ 0.7019 0.2134	-0.0273 -0.02528 η -1.2073 -0.1613
Tertiary Su SMd Ms	7.27E-01 1.99E+02 x* 1.56E+01 7.85E+01 1.95E+02	2.57E-01 4.35E-01 u* -2.03E+00 -7.41E-01 -9.69E-01	0.1064 0.1799 $\beta = \alpha$ -0.5673 -0.2068 -0.2705	0.1064 0.1799 3.56 γ -0.5673 -0.2068 -0.2705	-0.1064 -0.21338 δ 0.7019 0.2134 0.2705	-0.0273 -0.02528 η -1.2073 -0.1613 -0.2621
Tertiary Su SMd Ms Kw	7.27E-01 1.99E+02 x* 1.56E+01 7.85E+01 1.95E+02 1.05E+00	2.57E-01 4.35E-01 u* -2.03E+00 -7.41E-01 -9.69E-01 1.02E+00	0.1064 0.1799 β = α -0.5673 -0.2068 -0.2705 0.2851	0.1064 0.1799 3.56 γ -0.5673 -0.2068 -0.2705 0.2851	-0.1064 -0.21338 δ 0.7019 0.2134 0.2705 -0.2851	-0.0273 -0.02528 η -1.2073 -0.1613
Md Tertiary Su SMd Ms Kw Mw	7.27E-01 1.99E+02 x* 1.56E+01 7.85E+01 1.95E+02 1.05E+00 1.20E+03	2.57E-01 4.35E-01 u* -2.03E+00 -7.41E-01 -9.69E-01	0.1064 0.1799 $\beta = \alpha$ -0.5673 -0.2068 -0.2705	0.1064 0.1799 3.56 γ -0.5673 -0.2068 -0.2705	-0.1064 -0.21338 δ 0.7019 0.2134 0.2705	-0.0273 -0.02528 η -1.2073 -0.1613 -0.2621
Tertiary Su SMd Ms Kw Mw Kd	7.27E-01 1.99E+02 x* 1.56E+01 7.85E+01 1.95E+02 1.05E+00	2.57E-01 4.35E-01 u* -2.03E+00 -7.41E-01 -9.69E-01 1.02E+00	0.1064 0.1799 β = α -0.5673 -0.2068 -0.2705 0.2851	0.1064 0.1799 3.56 γ -0.5673 -0.2068 -0.2705 0.2851	-0.1064 -0.21338 δ 0.7019 0.2134 0.2705 -0.2851	-0.0273 -0.02528 η -1.2073 -0.1613 -0.2621 -0.291
Md Tertiary Su SMd Ms Kw Mw	7.27E-01 1.99E+02 x* 1.56E+01 7.85E+01 1.95E+02 1.05E+00 1.20E+03	2.57E-01 4.35E-01 u* -2.03E+00 -7.41E-01 -9.69E-01 1.02E+00 2.39E+00	0.1064 0.1799 β = α -0.5673 -0.2068 -0.2705 0.2851 0.6675	0.1064 0.1799 3.56 γ -0.5673 -0.2068 -0.2705 0.2851 0.6675	-0.1064 -0.21338 δ 0.7019 0.2134 0.2705 -0.2851 -0.4351	-0.0273 -0.02528 η -1.2073 -0.1613 -0.2621 -0.291 -0.9694

Primary (IY)		β =	5.77		
	x*	u*	α	γ	δ	η
Mi	1.24E+02	-3.28E+00	-0.5674	-0.5674	0.7594	-1.9061
Ms	8.35E+00	-6.61E-01	-0.1144	-0.1144	0.1144	-0.0756
Mw	1.23E+02	4.42E+00	0.7656	0.7656	-0.4239	-1.83126
Kw	1.08E+00	1.62E+00	0.2807	0.2807	-0.2807	-0.4552
Primary (ULT)		β=	3.98		
	x*	u*		γ	δ	η
Mu	 	-2.34E+00	-0.5862	-0.5862	0.7448	-1.4253
Ms	1	-5.37E-01	-0.1351	-0.1351	0.1351	-0.0726
Mw	1.02E+02		0.7498	0.7498	-0.45128	-1.30073
Kw	1.06E+00		0.2755	0.2755	-0.2755	-0.3023
Seconda	ry		β =	0.61		
	x*	u*	α	γ	δ	η
Su	8.59E+00	-4.63E-01	-0.719			-0.4094
SMb	1.01E+02	-1.69E-01	-0.2621	-0.2621	0.2643	-0.0547
Ms	1.03E+02	1.22E-01	0.1898		-0.1898	-0.0232
Kw	1.01E+00		0.2859		-0.2859	-0.0526
Mw	7.53E+02	3.51E-01	0.5446	0.5446	-0.56956	-0.07576
Tertiary			β =	3.57		
	x*	u*	α	γ	δ	η
Su	1.12E+01	-2.32E+00	-0.6477	-0.6477	0.8218	-1.5655
SMb	9.79E+01	-8.47E-01	-0.2361	-0.2361	0.2446	-0.2092
Ms	1.12E+02	4.82E-01	0.1343	0.1343	-0.1343	-0.0647
Kw	1.05E+00	9.09E-01	0.2536	0.2536	-0.2536	-0.2306
Mw	9.45E+02	2.38E+00	0.6652	0.6652	-0.434	-0.96386
	1	T .	·	1		1

Primary	(IY)	[β =	3.86	!	[
	x*	u*	α	γ	δ	η
Mi	1.33E+02	-2.58E+00	-0.6667		0.8464	-1.7803
Ms	3.37E+01	1.25E+00	0.3223	0.3223	-0.3223	-0.4026
Mw	9.51E+01	2.43E+00	0.6283	0.6283	-0.40669	-0.92602
Kw	1.05E+00	9.25E-01	0.2386	0.2386	-0.2386	-0.2206
Primary	(ULT)		β =	1.72		
	x*	u*	α	γ	δ	η
Mu	1.11E+02	-1.28E+00	-0.7334	-0.7334	0.8472	-1.0143
Ms	3.00E+01	6.76E-01	0.3866	0.3866	-0.3866	-0.2612
Mw	7.94E+01	8.83E-01	0.5055	0.5055	-0.45908	-0.28997
Kw	1.02E+00	4.18E-01	0.239	0.239	-0.239	-0.0998
				:		
Seconda	irv		β =	-0.51	: :	
	½x*	u*	α	γ	δ	η
Su	9.39E+00		-0.7137	+		
SMb	1.02E+02	1.28E-01	-0.2601	-0.2601	0.2593	0.0229
Ms	2.43E+02	-2.15E-01	0.4372	0.4372	-0.4372	0.0941
Kw	9.94E-01	-1.20E-01	0.244	0.244	-0.244	0.0293
Mw	7.17E+02	-2.04E-01	0.4151	0.4151	-0.50226	0.171996
Tertiary			β =	2.55		
	X*	u*	α	γ	δ	η
Su	1.19E+01	-1.80E+00	-0.7	-0.7	0.8485	-1.3306
SMb	9.86E+01	-6.57E-01	-0.2552	-0.2552	0.2624	-0.1778
Ms	3.15E+02	9.00E-01	0.3494	0.3494	-0.3494	-0.3144
Kw	1.03E+00	5.84E-01	0.2269	0.2269	-0.2269	-0.1326
Mw	8.34E+02	1.34E+00	0.5208	0.5208	-0.42116	-0.46011

APPENDIX I THE LOGNORMAL FORMAT

APPENDIX I

THE LOGNORMAL FORMAT

The lognormal distribution and the lognormal format are summarized in Sections D.1 and D.2. Section D.3 provides the derivations of the properties of the lognormal. These are provided because they are not well documented in the literature.

I.1 The Lognormal Distribution

Consider the random variable, X. If Y = ln X has a normal distribution with mean and standard deviation (μ_Y, σ_Y) , then X has a lognormal distribution with mean and standard deviation (μ_X, σ_X) .

The probability density function of X is

$$f_{x}(x) = \frac{1}{\sqrt{2\pi} \sigma_{y} x} \exp \left[-\frac{\left(\ln x - \mu_{y} \right)^{2}}{2\sigma_{y}^{2}} \right]$$
 (I.1)

The moments of Y in terms of the moments of X are,

$$\mu_{v} = \ln \tilde{X} \tag{I.2}$$

$$\sigma_{\rm Y}^2 = \ln \left(1 + C_{\rm x}^2 \right) \tag{I.3}$$

where C_X is the coefficient of variation (COV)

$$C_{x} = \frac{\sigma_{x}}{\mu_{x}} \tag{I.4}$$

and where the median of X, denoted as $\boldsymbol{\tilde{X}}$, in terms of the mean value is

$$\tilde{X} = \frac{\mu_X}{\sqrt{1 + C_X^2}} \tag{I.5}$$

I.2 The Lognormal Format

Let g(X) be a function of the design factors, X. Define the failure function g(X) so that the failure condition is $g \le 1$. Assume that g(X) is a multiplicative function of K random design factors

$$g(X) = B \prod_{i=1}^{K} X_i^{a_i}$$
 (I.6)

where B and all a_i are constants. Let $Z = \ell n$ g.

$$Z = \ell n B + \sum_{i=1}^{K} a_i \ell n X_i$$
 (I.7)

Now assume that all X_i have lognormal distributions. Because X_i is lognormal, it follows that all ℓn X_i are normal.

The sum of normally distributed random variables is also normal. thus the probability of failure can be written as

$$p_{f} = P(g \le 1) = P(Z \le 0)$$

$$= P\left(\frac{Z - \mu_{Z}}{\sigma_{Z}} \le -\frac{\mu_{Z}}{\sigma_{Z}}\right)$$
(I.8)

The term on the left hand side is the standard normal variate. Define the safety index as

$$\beta = \frac{\mu_z}{\sigma_z} \tag{I.9}$$

Then,

$$p_f = \Phi(-\beta) \tag{I.10}$$

where Φ is the standard normal distribution function. μ_Z and σ_Z are,

$$\mu_{z} = \tilde{Z} = \ell n \ \tilde{g} = \ell n \left[B \prod_{i=1}^{K} \tilde{X}_{i}^{a_{i}} \right]$$
 (I.11)

$$\sigma_{\rm z}^2 = \ell n \left[\prod_{i=1}^{K} \left(1 + C_i^2 \right)^{a_i^2} \right]$$
 (I.12)

The tildes indicate median values and the C's are the COV's.

I.3 Derivations of the Properties of Lognormal Variables

Given X is lognormal with mean and standard deviation (μ_X, σ_X) , and median and coefficient of variation, (\tilde{X}, C_X)

Y = ln X. Thus Y is normal with mean and standard deviation (μ_Y, σ_Y) .

(1) Derive the expression for $f_X(x)$. The pdf of Y is,

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi} \sigma_{Y}} \exp \left[-\frac{\left(y - \mu_{Y}\right)^{2}}{\sigma_{Y}^{2}} \right]$$

In general, for a monotonically increasing function,

$$f_{x}(x) = f_{y}(y) \left| \frac{dy}{dx} \right|$$

Here,

$$\frac{dy}{dx} = \frac{1}{x}$$

So that,

$$f_{X}(x) = \frac{1}{\sqrt{2\pi} \sigma_{Y} x} \cdot \exp \left[-\frac{\left(\ln x - \mu_{Y}\right)^{2}}{2\sigma_{Y}^{2}} \right]$$
 (I.13)

(2) Show that $\mu_Y = \ell n \tilde{X}$. The 50% point is the same for both X and Y.

$$\tilde{Y} = \ln \tilde{X}$$

But, $\mu_Y = \widetilde{Y}$ (because Y is normal; f_Y is symmetrical). So that,

$$\mu_{v} = \ell n \tilde{X} \tag{I.14}$$

(3) Find the kth moment of X about the origin

$$E(X^{k}) = \frac{1}{\sqrt{2\pi} \sigma_{Y} x} \int_{-\infty}^{\infty} x^{k} \exp \left[-\frac{\left(\ln x - \mu_{Y} \right)^{2}}{2 \sigma_{Y}^{2}} \right] dx$$

After considerable manipulation, it can be shown that,

$$E(X^{k}) = \exp \left[k\mu_{Y} + \frac{k^{2} \sigma_{Y}^{2}}{2}\right]$$
 (I.15)

(4) Show that $\sigma_{\rm Y}^2 = \ln \left(1 + C_{\rm X}^2 \right)$

From the expression for $E(X^k)$,

$$\mu_{X} = E(X) = \exp\left[\mu_{Y} + \frac{\sigma_{Y}^{2}}{2}\right]$$

$$E(X^{2}) = \exp\left[2\mu_{Y} + 2\sigma_{Y}^{2}\right]$$
(I.16)

Thus,

$$\sigma_{X}^{2} = E(X^{2}) - \mu_{X}^{2} = \exp[2\mu_{Y} + \sigma_{Y}^{2}][\exp\sigma_{Y}^{2} - 1]$$

$$= \mu_{X}^{2}[\exp\sigma_{Y}^{2} - 1]$$

or

$$\exp \sigma_{Y}^{2} = 1 + \frac{\sigma_{X}^{2}}{\mu_{X}^{2}}$$

and thus

$$\sigma_{\mathbf{Y}}^2 = \ln\left(1 + C_{\mathbf{X}}^2\right) \tag{I.17}$$

(5) Derive an expression for μ_Y in terms of the moments of X.

From Eq. I.16

$$\mu_Y = \ell n \, \mu_X - \frac{1}{2} \, \sigma_Y^2$$

From Eq. I.17

$$\mu_{Y} = \ell n \, \mu_{X} - \frac{1}{2} \, \ell n \left(1 + C_{X}^{2} \right)$$

(6) Show that

$$\tilde{X} = \frac{\mu_X}{\sqrt{1 + C_X^2}}$$

From Eq. I.14

$$X = e^{\mu_Y} = \frac{\mu_X}{\exp\left[\frac{1}{2}\ln\left(1 + C_X^2\right)\right]}$$

Thus,

$$\widetilde{X} = \frac{\mu_X}{\sqrt{1 + C_X^2}} \tag{I.18}$$

(7) Multiplicative Functions of Lognormal Variates are Lognormal. Consider

$$g = B \prod_{i=1}^{k} X_{i}^{a_{i}}$$
 (I.19)

B, a_i are constants. All X_i have lognormal distributions. Take the log of both sides of Eq. I.19,

$$\ln g = \ln B + \sum_{i=1}^{k} a_i \ln X_i$$

Note that $Y_i = \ell n \ X_i$ has a normal distribution. Let $Z = \ell n$ g. Then, Z also has a normal distribution. The mean of \hat{Z} is,

$$\mu_z = \ln B + \sum a_i E(\ln X_i)$$

But

$$E(\ell n X_i) = \mu_{Y_i} = \ell n \tilde{X}_i$$

Thus

$$\mu_{z} = \ell n \left[B \prod_{i=1}^{k} \tilde{X}_{i}^{a_{i}} \right]$$
 (I.20)

The variance of Z is,

$$\sigma_Z^2 = \sum a_i^2 \underbrace{V(\ell n X_i)}$$

where the variance of $\ell n \ X_i = V(\ell n \ X_i) \equiv \sigma_{Y_i}^2$. But from Eq. I.17, $\sigma_Y^2 = \ell n \left(1 + C_i^2\right)$, where C_i is the COV of X_i and

$$\sigma_{z}^{2} = \ell n \left[\prod_{i=1}^{k} (1 + C_{i}^{2})^{a_{i}^{2}} \right]$$
 (I.21)

I.4 Base 10 Logs

All of the previous discussions related to base C logs. A summary of the base 10 log relationships is given below.

$$\begin{split} \mu_{Y} &= \log_{10} \widetilde{X}, \text{ or,} \\ &= \log_{10} \mu_{X} - \frac{1}{2} \log_{10} (1 + C_{X}^{2}) \\ \sigma_{Y}^{2} &= 0.434 \log_{10} (1 + C_{X}^{2}) \\ \end{split}$$

$$\mu_{X} &= 10^{\left\{\mu_{Y} + \frac{1}{2} (\sigma_{Y}^{2}/0.434)\right\}}$$

$$C_{x} = \sqrt{10^{\left(\sigma_{Y}^{2}/.434\right)} - 1}$$

APPENDIX J

CRITICAL DESIGN VARIABLES
BASED ON SENSITIVITY ANALYSIS

Critical Variables

- Which variables have the most impact on reliability?
- Determined by ranking importance factors for critical

	Cruiser I and Cruiser 2	SL-7 and Tanker
First	wave bending moment (M _w)	strength (M _U , S _{u,2} , or S _{u,3})
Second	strength (M_U , $S_{u,2}$, or $S_{u,3}$)	wave bending moment (M _w)
Third	dynamic bending moment (M _d)	stillwater bending moment (M _{sw})

Top three most important variables

Task VIII -- Recommendations for Improvements

- important in the sensitivity analysis, determine • Goal: Given the variables shown to be most
- what actual design parameters go into each of these variables
- how much control the naval architect has over these design parameters
- Examined four variables...
- wave bending moment
- structural strength (primary, secondary, and tertiary)
- dynamic bending moment (slamming)
- stillwater bending moment

Variable: Wave Moment

◆ Contributing Factors

- 1. environmental condition (waves)
- 2. operating conditions (speed, heading, operating area)
- 3. hull form
- 4. weight distribution (specifically, radii of gyration)

Controllable?

- 1. no, natural forces
- 2. marginal, requires restricting operation of ship
- 3. marginal, cause/effect relationship not well understood, restricted by mission-driven limitations (e.g.cargo requirements and shape of holds)
- 4. marginal, very difficult to reduce radii of gyration

Variables: Strengths $(M_u, S_{u,2}, S_{u,3})$

- ◆ Contributing Factors
- 1. section modulus
- 2. material yield strength
- 3. stiffening system design
- 4. quality control in construction
- Controllable?
- 1. yes, alter scantlings
- 2. yes, change material (caution: fatigue and buckling)
- 3. yes, add more and/or stronger stiffeners (cost!)
- 4. somewhat, high precision construction is very expensive

Variable: Dynamic Moment

- ◆ Contributing Factors
- 1. environmental conditions
- 2. operating conditions
- 3. weight distribution (gyradius)
- 4. shape of hull near bow (bow flare and flat of bottom forward)
- ◆ Controllable?
- 1. no, natural forces
- 2. marginal, requires restricting operation of ship
- 3. marginal, very difficult to reduce radii of gyration
- 4. yes, interactions well understood, changes are localized

Variable: Stillwater Bending Moment

- Contributing Factors
- 1. weight distribution
- 2. hull form (buoyancy distribution)
- Controllable?
- 1. yes, modifying weights to match buoyancy distribution is much easier than trying to change the gyradius
- 2. yes -- mostly, procedures for obtaining a desired sectional area curve by changing hull shape are well defined and constraints on required volumes at different locations widely understood, only limitation is mission-driven

PROJECT TECHNICAL COMMITTEE MEMBERS

The following persons were members of the committee that represented the Ship Structure Committee to the Contractor as resident subject matter experts. As such they performed technical review of the initial proposals to select the contractor, advised the contractor in cognizant matters pertaining to the contract of which the agencies were aware, performed technical review of the work in progress and edited the final report.

Chairman

Dr. William Richardson -

Naval Surface Warfare Center, Carderock Diviosion

Members

Dr. H. H. Chen

American Bureau of Shipping

Mr. Chris Morlan

American Bureau of Shipping

LCDR Rob Holzman

U. S. Coast Guard

Mr. Bob Sedat

U. S. Coast Guard

Mr. Fred Seibold

Maritime Administration

Dr. Neil Pegg

Defence Research Establishment Atlantic

Mr. Tom Packard

Naval Sea Systems Command

Dr. Kieth Hjelmstad

University of Illinois

Dr. Solomon Yim

Oregon State University

Mr. William Siekierka

Naval Sea Systems Command, Contracting Officer's

Technical Representative

Dr. Robert Sielski

Mr. Alex Stavovy

National Academy of Science,

Marine Board Liaison

CDR Steve Sharpe

CDR Mike Parmelee

U.S. Coast Guard, Executive Director

Ship Structure Committee

RECENT SHIP STRUCTURE COMMITTEE PUBLICATIONS

Ship Structure Committee Publications - A Special Bibliography This bibliography of SSC reports may be downloaded from the internet at: "http://www.dot.gov/dotinfo/uscg/hq/nmc/nmc/ssc1/index.htm".

SSC-397	Commercial Ship Design and Fabrication for Corrosion Control J.
	Parente, J. Daidola, N. Basar, R. Rodi 1997
SSC-396	Optimized Design Parameters for Welded TMCP Steels L. Malik, R. Yee, B. Graville, A. Dinovitzer 1997
SSC-395	Ship's Maintenance Project, Pt II & III B. Bea, T. Xu, K. Ma, R. Shulte-Strathaus 1997
SSC-394	Strength Assessment of Pitted Plate Panels J. Daidola, J. Parente, I. Orisamolu, K-t. Ma 1997
SSC-393	Evaluation of Ductile Fracture Models R. Dexter, M. Gentilcore 1997
SSC-392	Probability Based Ship Design: Implementation of Design Guidelines A. Mansour, P. Wirsching, G. White, B. Ayyub 1996
SSC-391	Evaluation of Marine Structures Education in North America R. Yagle 1996
SSC-390	Corrosion Control of Inter-hull Structures M. Kikuta, M. Shimko, D Ciscom 1996
SSC-389	<u>Inspection of Marine Structures</u> L. Demsetz, R. Cario, R. Schulte-Strathaus, B. Bea 1996
SSC-388	Ship Structural Integrity Information System-Phase II M. Dry, R. Schulte-Strathaus, B. Bea 1996
SSC-387	Guideline for Evaluation of Finite Elements and Results R. I. Basu, K. J. Kirkhope, J. Srinivasan 1996
SSC-386	Ship's Maintenance Project R. Bea, E. Cramer, R. Schulte-Strauthaus, R. Mayoss, K. Gallion, K. Ma, R. Holzman, L. Demsetz 1995
SSC-385	Hydrodynamic Impact on Displacement Ship Hulls - An Assessment of the State of the Art J. Daidola, V. Mishkevich 1995
SSC-384	Post-Yield Strength of Icebreaking Ship Structural Members C. DesRochers, J. Crocker, R. Kumar, D. Brennan, B. Dick, S. Lantos 1995