Teoría de la Medida e Integración 2023

Lista 4

20.marzo.2023

1. La Medida de Stieltjes. Sea μ una medida en $(\mathbb{R};\mathcal{B}(\mathbb{R}))$ tal que $\mu[-n,n)<\infty$, para todo $n\in\mathbb{N}$. Muestre que la función

$$F_{\mu}(x) = \begin{cases} \mu[0, x), & x > 0; \\ 0, & x = 0; \\ -\mu[x, 0), & x < 0. \end{cases}$$

es una función monótona continua por la izquierda $F_{\mu}:\mathbb{R} \to \mathbb{R}.$

(Recordemos que las funciones monótonas crecientes y continuas por la izquierda se llaman funciones de Stieltjes).

i) Sea $F:\mathbb{R} \to \mathbb{R}$ una función de Stieltjes. Mostrar que

$$\nu_F([a,b)) = F(b) - F(a), \quad \text{para } a, b \in \mathbb{R}, \ a < b,$$

posee una única extensión a una medida sobre $\mathcal{B}(\mathbb{R})$.

- ii) Concluya que para toda medida μ en $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, con $\mu[-r, r) < \infty$, r > 0, existe una función de Stieltjes $F = F_{\mu}$, tal que $\mu = \nu_F$.
- iii) ¿Cuál es la función de Stieltjes F que corresponde a la medida de Lebesgue 1-dimensional λ ?
- iv) ¿Cuál es la función de Stieltjes F que corresponde a la medida de Dirac δ_0 ?
- v) Mostrar que F_{μ} es continua en $x \in \mathbb{R}$ si, y sólo si, $\mu(\{x\}) = 0$.

2. Sea μ^* una medida exterior en X, y sea $\{A_k\}_{k\geq 1}$ una secuencia de conjuntos disjuntos a pares, μ^* -mesurables, esto es $A_k\in\mathcal{A},\ \forall k\geq 1$. Probar que

$$\mu^* \Big(Q \cap \bigcup_{k \ge 1} A_k \Big) = \sum_{k \ge 1} \mu^* (Q \cap A_k).$$

3. Lema de Borel-Cantelli. Probar el siguiente teorema:

Teorema (Borel-Cantelli). Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Para cada secuencia de eventos $\{A_k\}_{k\geq 1}$ en \mathcal{F} , vale

$$\sum_{k>1} \mathbb{P}(A_k) < 1 \quad \Longrightarrow \quad \mathbb{P}\Big(\bigcap_{n=1}^{\infty} \bigcup_{k>n} A_k\Big) = 0.$$

[Sugerencia: usar la Proposición 4.3(vii) y el hecho que \mathbb{P} es subaditiva.

Para la recíproca del Teorema de Borel Cantelli, leer el Teorema 24.9 (Schilling).

- 4. Sea μ una medida en $\mathcal{A}=\{\varnothing,\ [0,1),\ [1,2),\ [0,2)\},\ X=[0,2),\ \text{tal que }\mu([0,1))=\frac{1}{2},\ \mu([1,2))=\frac{1}{2}\ \text{y }\mu([0,2))=1.$ Denotemos por μ^* y por \mathcal{A}^* la medida exterior y la σ -álgebra que aparecen en la prueba del Teorema de Carathéodory.
 - Hallar $\mu^*(a,b)$ y $\mu^*\{a\}$ para todo $0 \le a < b < 2$, si usamos $\mathcal{S} = \mathcal{A}$.
 - Mostrar que (0,1) y $\{0\}$ no están en \mathcal{A}^* .
- 5. Mostrar que las siguientes cuatro condiciones son equivalentes: $u: X \to \mathbb{R}$ es mesurable si, y sólo si,

i)
$$\{u \geq a : \} \in \mathcal{A}$$
, para todo $a \in \mathbb{R}$ ó \mathbb{Q} ,

iii)
$$\{u \leq a:\} \in \mathcal{A}$$
, para todo $a \in \mathbb{R}$ ó \mathbb{Q} ,

ii)
$$\{u > a : \} \in \mathcal{A}$$
, para todo $a \in \mathbb{R}$ ó \mathbb{Q} ,

iv)
$$\{u < a : \} \in \mathcal{A}$$
, para todo $a \in \mathbb{R}$ ó \mathbb{Q} .

6. Sea (X,\mathcal{A}) un espacio mesurable. Sean $f,g:X\to\mathbb{R}$ funciones mesurables. Mostrar que para todo $A\in\mathcal{A}$, la función $h:X\to\mathbb{R}$ dada por

$$h(x) = \begin{cases} f(x), & x \in A; \\ g(x), & x \notin A. \end{cases}$$

es mesurable.

7. **Gluing Lemma.** Sea (X, \mathcal{A}) un espacio mesurable. Sea $\{f_k\}_{k\geq 1}$ una secuencia de funciones mesurables, y sean $\{A_k\}_{k\geq 1}$ una secuencia de conjuntos mesurables en \mathcal{A} , con $X=\bigcup_k A_k$. Suponga que

$$f_n\big|_{A_n\cap A_k}=f_k\big|_{A_n\cap A_k}, \text{ para todo } k,n\in\mathbb{N}.$$

Si definimos $f: X \to \mathbb{R}$ por $f(x) = f_k(x)$, si $x \in A_k$, mostrar que f es mesurable.

- 8. Probar que $f \in \mathcal{E}$ implica que $f^+, f^- \in \mathcal{E}$. ¿Es la recíproca cierta?
- 9. Comprobar que para toda función $u:X\to\mathbb{R}$, vale $u=u^+-u^-$ y $|u|=u^++u^-$.
- 10. Sea $E \in \mathcal{B}(\mathbb{R})$, $Q: E \to \mathbb{R}$, dada por $Q(x) = x^2$, y sea $\lambda_E = \lambda(E \cap \cdot)$ (la medida de Lebesgue en E).
 - i) Mostrar que Q es $\mathcal{B}(E)/\mathcal{B}(\mathbb{R})$ -mesurable.
 - ii) Hallar $\nu\circ Q^{-1}$ si para E=[0,1], $\nu=\lambda_E$ y para E=[-1,1] y $\nu=\frac{1}{2}\lambda_E$.