Normalizing Data with Pandas

Pratheerth Padman FREELANCE DATA SCIENTIST

Module Summary

What does normalizing data mean?

Why is data normalization important?

Simple feature scaling

Min-max scaling

Z-score normalization

Normalizing Data - What and Why?

Data Normalization

Data normalization is the process of transforming your data by scaling each feature in a given dataset to a particular range, usually from 0 - 1.

Data Normalization

Age	Salary
20	45000
30	250000
40	150000
50	500000

Age	Salary
0.2	0.09
0.3	0.5
0.4	0.3
0.5	1

Before normalization

Why Normalize Data?

Age	Salary
20	45000
30	250000
40	150000
50	500000

Age	Salary
0.2	0.09
0.3	0.5
0.4	0.3
0.5	1

The two features - age and salary are on completely different scales

Say we apply a ML model - linear regression for example

Income will unduly influence the model due to its much higher value

In reality, this may or may not be true

To avoid this, data normalization!

Methods to Normalise Data

Simple feature scaling

Min-max scaling

Z-score scaling

Simple Feature Scaling

Simple Feature Scaling

$$Xnew = \frac{X}{Xmax}$$

Age	Salary
20	45000
30	250000
40	150000
50	500000

Age	Salary
0.4	0.09
0.6	0.5
0.8	0.3
1	1

Formula

Before normalization

Min-Max Scaling

Min-Max Scaling

$$Xnew = \frac{X - Xmin}{Xmax - Xmin}$$

Age	Salary
20	45000
30	250000
40	150000
50	500000

Age	Salary
0	0
0.33	0.45
0.66	0.23
1	1

Formula

Before normalization

Z-Score Normalization

What is Z-Score?

Number of standard deviations from the mean, a given data point is

Also known as the standard score

Ranges from -3 to + 3

Z-Score Normalization

$$Xnew = \frac{X - \mu}{\sigma}$$

Age	Salary
20	45000
30	250000
40	150000
50	500000

Age	Salary
-1.34	-1.13
-0.44	0.08
0.44	-0.511
1.34	1.56

Formula

Before normalization

Points to Consider for Data Normalization

Points to Consider for Data Normalization

Data normalization or feature scaling is not always required

Should be used when applied model uses distance calculations like KNN's, Linear regression etc.

Naïve Bayes, Decision trees etc. do not require data normalization

Technique to use depends on use case

Summary

Data normalization - transforming features to a common range

Required to avoid any feature to unduly influence the result

Simple feature scaling

Min Max scaling

Z-score scaling

