PRACTICAL OPTIMIZATION ALGORITHMS 实用优化算法

徐翔

数学科学学院 浙江大学

Mar 18, 2022

第三讲: 最速下降法和牛顿法

• f(x)在 x_k 处附近连续可微, $g_k=\nabla f(x_k)\neq 0$, Taylor展开为 $f(x)=f(x_k)+\nabla^T f(x_k)(x-x_k)+\mathcal{O}(\|x-x_k\|^2)$

• f(x)在 x_k 处附近连续可微, $g_k = \nabla f(x_k) \neq 0$, Taylor展开为 $f(x) = f(x_k) + \nabla^T f(x_k)(x - x_k) + O(||x - x_k||^2)$

• $i \cdot x - x_k = \alpha p_k$, 满足 $g_k^T p_k < 0$ 的方向是下降方向

• f(x)在 x_k 处附近连续可微, $g_k = \nabla f(x_k) \neq 0$, Taylor展开为 $f(x) = f(x_k) + \nabla^T f(x_k)(x - x_k) + O(||x - x_k||^2)$

- $i \cdot x x_k = \alpha p_k$, 满足 $q_k^T p_k < 0$ 的方向是下降方向
- 如果 α 相同, α 相同, α 0, 取到 α 1, 即能使目标函数下降最多

给定 $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon \ll 1$;

给定
$$x_0 \in \mathbb{R}^n$$
, $0 \le \varepsilon \ll 1$;

 $\text{for } k=0,\ 1,\ \cdots$

算法1

给定 $x_0 \in R^n$, $0 \le \varepsilon \ll 1$; for $k = 0, 1, \cdots$

计算搜索方向 $p_k = -\nabla f(x_k)$;

```
给定x_0 \in \mathbb{R}^n, 0 \le \varepsilon \ll 1;
for k = 0, 1, \cdots
      计算搜索方向p_k = -\nabla f(x_k);
      计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha > 0} f(x_k + \alpha p_k);
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1;

for k = 0, 1, \cdots

计算搜索方向p_k = -\nabla f(x_k);

计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k);

x_{k+1} = x_k + \alpha_k p_k;
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1;

for k = 0, 1, \cdots

计算搜索方向p_k = -\nabla f(x_k);

计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k);

x_{k+1} = x_k + \alpha_k p_k;

if \|\nabla f(x_{k+1})\| \le \varepsilon
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1;

for k = 0, 1, \cdots

计算搜索方向p_k = -\nabla f(x_k);

计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k);

x_{k+1} = x_k + \alpha_k p_k;

if \|\nabla f(x_{k+1})\| \le \varepsilon

stop;
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1; for k=0,1,\cdots 计算搜索方向p_k = -\nabla f(x_k); 计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k); x_{k+1} = x_k + \alpha_k p_k; if \|\nabla f(x_{k+1})\| \le \varepsilon stop; end (if) end (for)
```

性质

性质

• 负梯度方向是下降最快的方向,但仅是局部性质。

性质

- 负梯度方向是下降最快的方向,但仅是局部性质。
- 如果采用精确线搜索方法,由于 $\varphi'(\alpha_k)=0$,则会出现 $p_{k+1}^Tp_k=0$. (当目标函数的等值线是一个扁长椭球时,会出现"锯齿现象",下降十分缓慢)

性质

- 负梯度方向是下降最快的方向,但仅是局部性质。
- 如果采用精确线搜索方法,由于 $\varphi'(\alpha_k)=0$,则会出现 $p_{k+1}^Tp_k=0$. (当目标函数的等值线是一个扁长椭球时,会出现"锯齿现象",下降十分缓慢)

• 总体是线性收敛的.

Theorem (Zoutendijk)

Theorem (Zoutendijk)

• 考虑任何一个线搜索算法, 如果 p_k 是一个下降方向,步长因子 α_k 满足 Wolfe 条件.

Theorem (Zoutendijk)

- 考虑任何一个线搜索算法,如果pk是一个下降方向,步长因子αk满足 Wolfe 条件.
- 假设f(x) 在 $\mathcal{N} \equiv \{x \mid : f(x) \leq f(x_0)\}$ 上连续可微并且有下界,其中 x_0 是 迭代起始点.

Theorem (Zoutendijk)

- 考虑任何一个线搜索算法,如果pk是一个下降方向,步长因子αk满足 Wolfe 条件.
- 假设f(x) 在 $\mathcal{N} \equiv \{x \mid : f(x) \leq f(x_0)\}$ 上连续可微并且有下界,其中 x_0 是 迭代起始点
- 假设 ∇f 在 \mathbb{N} 上 Lipschitz 连续,即存在常数 L > 0 使得

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathcal{N}.$$
 (2.1)

Theorem (Zoutendijk)

- 考虑任何一个线搜索算法,如果pk是一个下降方向,步长因子αk满足 Wolfe 条件.
- 假设f(x) 在 $\mathcal{N} \equiv \{x \mid : f(x) \leq f(x_0)\}$ 上连续可微并且有下界,其中 x_0 是 迭代起始点
- 假设 ∇f 在 N 上 Lipschitz 连续,即存在常数 L > 0 使得

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathcal{N}.$$
 (2.1)

Then

$$\sum_{k>0} \cos^2(\theta_k) \|\nabla f(x_k)\|^2 < \infty \tag{2.2}$$

which is called Zoutendijk condition.

Remark

Remark

• 如果使用 Goldstein 条件 strong Wolfe 条件, 类似结果也成立

Remark

- 如果使用 Goldstein 条件 strong Wolfe 条件, 类似结果也成立
- The Zoutendijk condition (2.2) implies that

$$\cos^2(\theta_k) \|\nabla f(x_k)\|^2 \to 0.$$
 (2.3)

Remark

- 如果使用 Goldstein 条件 strong Wolfe 条件, 类似结果也成立
- The Zoutendijk condition (2.2) implies that

$$\cos^2(\theta_k) \|\nabla f(x_k)\|^2 \to 0.$$
 (2.3)

• 可以推导 global convergence 结果.

Remark

Remark

• 如果 p_k 满足与 $-\nabla f(x_k)$ 的夹角 $\theta_k < 90^\circ$, 即存在正常数 $\delta > 0$,

$$\cos \theta_k \ge \delta > 0, \forall k \tag{2.4}$$

It follows immediately from (2.3) that

$$\lim_{k \to \infty} \|\nabla f(x_k)\| = 0. \tag{2.5}$$

Remark

• 如果 p_k 满足与 $-\nabla f(x_k)$ 的夹角 $\theta_k < 90^\circ$, 即存在正常数 $\delta > 0$,

$$\cos \theta_k \ge \delta > 0, \forall k \tag{2.4}$$

It follows immediately from (2.3) that

$$\lim_{k \to \infty} \|\nabla f(x_k)\| = 0. \tag{2.5}$$

• 即 $\|\nabla f(x_k)\| \to 0$, 只要 p_k 不靠近 $-\nabla f(x_k)$ 的正交方向。

最速下降法收敛速度

首先考虑二次函数 $f(x) = x^T G x$, 其中G对称正定。

二次函数最速下降法的收敛速度定理

假设 λ_1 和 λ_n 是G的最大和最小特征值. 设 x^* 是问题的解. 则最速下降法的收 敛 速度至少是线性的 并且满足

$$\frac{f(x_{k+1}) - f(x^*)}{f(x_k) - f(x^*)} \le \frac{(\kappa - 1)^2}{(\kappa + 1)^2} = \frac{(\lambda_1 - \lambda_n)^2}{(\lambda_1 + \lambda_n)^2},\tag{2.6}$$

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le \sqrt{\kappa} \frac{(\kappa - 1)}{(\kappa + 1)},\tag{2.7}$$

其中 $\kappa = \lambda_1/\lambda_n \ge 1$.

最速下降法收敛速度

一般函数最速下降法的收敛速度定理

设f(x)在 x^* 附近二次连续可微, $\nabla f(x^*) = 0$, $\nabla^2 f(x^*)$ 正定, 则

$$\frac{f(x_{k+1}) - f(x^*)}{f(x_k) - f(x^*)} = \beta_k < 1, \tag{2.8}$$

$$\limsup_{k \to +\infty} \beta_k \le \frac{M - m}{M} < 1, \tag{2.9}$$

其中M, m 满足 $0 < m \le \lambda_n \le \lambda_1 \le M$, $\lambda_n + \lambda_1 \ne \nabla^2 f(x)$ 的最小和最大特征值.

两点步长梯度法

两点步长梯度法

• 基本思想: $x_{k+1} = x_k - D_k \nabla f(x_k)$ 其中 $D_k = \alpha_k I$.

两点步长梯度法

- 基本思想: $x_{k+1} = x_k D_k \nabla f(x_k)$ 其中 $D_k = \alpha_k I$.
- 可以使 D_k 具有拟牛顿性质,即计算 α_k 使得

$$\min \|s_{k-1} - D_k y_{k-1}\| \le \pi \min \|D_k^{-1} s_{k-1} - y_{k-1}\|$$
 (2.10)

其中
$$s_{k-1} = x_k - x_{k-1}, y_{k-1} = \nabla f(x_k) - \nabla f(x_{k-1})$$

两点步长梯度法

- 基本思想: $x_{k+1} = x_k D_k \nabla f(x_k)$ 其中 $D_k = \alpha_k I$.
- 可以使 D_k 具有拟牛顿性质,即计算 α_k 使得

$$\min \|s_{k-1} - D_k y_{k-1}\| \le \pi \min \|D_k^{-1} s_{k-1} - y_{k-1}\|$$
 (2.10)

其中
$$s_{k-1} = x_k - x_{k-1}, y_{k-1} = \nabla f(x_k) - \nabla f(x_{k-1})$$

• 可以求出 α_k ,

$$\alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|^2}, \ \ \vec{\boxtimes} \ \ \vec{\Delta} \ \ \alpha_k = \frac{\|s_{k-1}\|^2}{s_{k-1}^T y_{k-1}}$$

两点步长梯度法

The Barzilai-Borwein gradient method

给定
$$x_0 \in \mathbb{R}^n$$
, $0 \le \varepsilon \ll 1$;

The Barzilai-Borwein gradient method

给定 $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon \ll 1$;

for $k=0, 1, \cdots$

给定
$$x_0 \in R^n$$
, $0 \le \varepsilon \ll 1$;
for $k = 0, 1, \cdots$
计算搜索方向 $p_k = -\nabla f(x_k)$;

```
给定x_0 \in \mathbb{R}^n, 0 \le \varepsilon \ll 1;
for k = 0, 1, \cdots
      计算搜索方向p_k = -\nabla f(x_k):
      计算步长\alpha_k,如果k=0,进行线搜索,
      如果k \neq 0, \alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|^2}, 或者 \alpha_k = \frac{\|s_{k-1}\|^2}{s^T y_{k-1}};
```

```
给定x_0 \in \mathbb{R}^n, 0 \le \varepsilon \ll 1;
for k = 0, 1, \cdots
      计算搜索方向p_k = -\nabla f(x_k):
      计算步长\alpha_k,如果k=0,进行线搜索,
      如果k \neq 0, \alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|^2}, 或者 \alpha_k = \frac{\|s_{k-1}\|^2}{s_{k-1}^T y_{k-1}};
      x_{k+1} = x_k + \alpha_k p_k;
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1; for k = 0, 1, \cdots 计算搜索方向p_k = -\nabla f(x_k); 计算步长\alpha_k,如果k = 0,进行线搜索,如果k \ne 0,\alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|^2},或者 \alpha_k = \frac{\|s_{k-1}\|^2}{s_{k-1}^T y_{k-1}}; x_{k+1} = x_k + \alpha_k p_k; if \|\nabla f(x_{k+1})\| \le \varepsilon
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1; for k = 0, 1, \cdots 计算搜索方向p_k = -\nabla f(x_k); 计算步长\alpha_k, 如果k = 0, 进行线搜索, 如果k \ne 0, \alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|^2}, 或者 \alpha_k = \frac{\|s_{k-1}\|^2}{s_{k-1}^T y_{k-1}}; x_{k+1} = x_k + \alpha_k p_k; if \|\nabla f(x_{k+1})\| \le \varepsilon stop;
```

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1;
for k=0, 1, \cdots
      计算搜索方向p_k = -\nabla f(x_k):
      计算步长\alpha_k,如果k=0,进行线搜索,
      如果k \neq 0, \alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|^2}, 或者 \alpha_k = \frac{\|s_{k-1}\|^2}{s_k^T y_{k-1}};
      x_{k+1} = x_k + \alpha_k p_k;
       if \|\nabla f(x_{k+1})\| \leq \varepsilon
             stop;
      end (if)
end (for)
```

性质

● 不需要做线搜索(k=0除外),

- 不需要做线搜索(k=0除外),
- 没有矩阵乘以向量运算,因此计算量小,

- 不需要做线搜索(k=0除外),
- 没有矩阵乘以向量运算,因此计算量小,
- 本质上是梯度法, 但是收敛速度要更快.

- ▼ 不需要做线搜索(k=0除外),
- 没有矩阵乘以向量运算,因此计算量小,
- 本质上是梯度法, 但是收敛速度要更快.
- Barzilai and Borwein 证明了对于二次目标函数问题,该算法是 R-superlinearly收敛.

- 不需要做线搜索(k=0除外),
- 没有矩阵乘以向量运算,因此计算量小,
- 本质上是梯度法,但是收敛速度要更快。
- Barzilai and Borwein 证明了对于二次目标函数问题,该算法是 R-superlinearly收敛.
- 对于非二次目标函数, α_k 有可能很大或很小, 因此我们需要给 α_k 设置上下 界.

$$f(x)$$
二次可微, $x_k \in R^n$, Hessian $\nabla^2 f(x_k)$ 正定,有二次Taylor展开
$$f(x_k+s) \approx f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s. \tag{2.11}$$

f(x)二次可微, $x_k \in \mathbb{R}^n$, Hessian $\nabla^2 f(x_k)$ 正定,有二次Taylor展开

$$f(x_k + s) \approx f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s.$$
 (2.11)

极小化二次近似函数, 可得到 $s = -[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$, 于是

$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$$
(2.12)

 $i \mathcal{L} p_k = -[\nabla^2 f(x_k)]^{-1} \nabla f(x_k), \ \alpha_k = 1,$ 则迭代格式可以写为 $x_{k+1} = x_k + p_k$.

Remark

记
$$\nabla^2 f(x_k) = G_k$$
, $g_k = \nabla f(x_k)$.
迭代格式记为 $x_{k+1} = x_k - G_k^{-1} g_k$

Remark

记
$$\nabla^2 f(x_k) = G_k, g_k = \nabla f(x_k).$$

迭代格式记为 $x_{k+1} = x_k - G_k^{-1} g_k$

◆牛顿法可以看作在椭球范数||·||_{Gk}下的最速下降法.

Remark

记
$$\nabla^2 f(x_k) = G_k, g_k = \nabla f(x_k).$$

迭代格式记为 $x_{k+1} = x_k - G_k^{-1} g_k$

- ◆牛顿法可以看作在椭球范数||·||_{Gk}下的最速下降法.
- 对于 $f(x_k + s) \approx f(x_k) + g_k^T s$, s是如下极小化问题的解

$$\min_{s \in R^n} \frac{g_k^T s}{\|s\|}$$

- 如果范数采用 l_2 , 则 $s_k = -g_k$.
- 如果范数采用 $\|\cdot\|_{G_k}$, 则原问题等价于 $\min_{s\in R^n} g_k^T s$ where $\|s\|_{G_k} \leq 1$. 由于 $(g_k^T s)^2 \leq (g_k^T G_k^{-1} g_k)(s^T G_k s)$, 则 $s_k = -G_k^{-1} g_k$.

牛顿法收敛性

如果f是二次函数,则牛顿迭代法一步就达到最优解.

牛顿法收敛性

如果f是二次函数,则牛顿迭代法一步就达到最优解.

牛顿法收敛定理

设f二次连续可微, x^* 充分靠近 x^* , $\nabla f(x^*)=0$, 如果 $\nabla^2 f(x^*)$ 正定,且Hessian矩阵G(x)满足Lipschitz条件,即存在L>0, 对所有的(i,j),

$$|G_{ij}(x) - G_{ij}(y)| \le L||x - y||.$$
 (2.13)

则对一切k, 牛顿迭代法得到的序列 x_k 收敛到 x^* , 并且具有二次收敛速度.

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

算法2(带步长因子的牛顿法)

给定 $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon \ll 1$;

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

牛顿法

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

算法2(带步长因子的牛顿法)

给定
$$x_0 \in \mathbb{R}^n$$
, $0 \le \varepsilon \ll 1$;

for $k=0, 1, \cdots$

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

给定
$$x_0 \in R^n$$
, $0 \le \varepsilon \ll 1$;

for
$$k = 0, 1, \cdots$$

计算搜索方向 $p_k = -[\nabla^2 f(x_k)]^{-1} f(x_k);$

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

算法2(带步长因子的牛顿法)

给定 $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon \ll 1$;

for
$$k = 0, 1, \dots$$

计算搜索方向
$$p_k = -[\nabla^2 f(x_k)]^{-1} f(x_k)$$
;
计算步长 α_k , 使得 $f(x_k + \alpha_k p_k) = \min_{\alpha>0} f(x_k + \alpha p_k)$;

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

算法2(带步长因子的牛顿法)

给定 $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon \ll 1$;

for
$$k = 0, 1, \dots$$

计算搜索方向
$$p_k = -[\nabla^2 f(x_k)]^{-1} f(x_k);$$

计算指长 q_k , de q_k , q_k , q_k , q_k

计算步长
$$\alpha_k$$
, 使得 $f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k)$;

$$x_{k+1} = x_k + \alpha_k p_k;$$

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

给定
$$x_0 \in R^n$$
, $0 \le \varepsilon \ll 1$;

for
$$k=0, 1, \cdots$$

计算搜索方向
$$p_k = -[\nabla^2 f(x_k)]^{-1} f(x_k)$$
;

计算步长
$$\alpha_k$$
, 使得 $f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k)$;

$$x_{k+1} = x_k + \alpha_k p_k;$$

if
$$\|\nabla f(x_{k+1})\| \le \varepsilon$$

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1;

for k = 0, 1, \cdots

计算搜索方向p_k = -[\nabla^2 f(x_k)]^{-1} f(x_k);

计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k);

x_{k+1} = x_k + \alpha_k p_k;

if \|\nabla f(x_{k+1})\| \le \varepsilon

stop;
```

REMARK G_k 不正定

在牛顿法中可以增加步长因子的搜索过程,使得当 G_k 不正定的时候也收敛.

$$p_k = -G_k^{-1} g_k, \ x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} p_k \tag{2.14}$$

```
给定x_0 \in R^n, 0 \le \varepsilon \ll 1;

for k = 0, 1, \cdots

计算搜索方向p_k = -[\nabla^2 f(x_k)]^{-1} f(x_k);

计算步长\alpha_k, 使得 f(x_k + \alpha_k p_k) = \min_{\alpha \ge 0} f(x_k + \alpha p_k);

x_{k+1} = x_k + \alpha_k p_k;

if \|\nabla f(x_{k+1})\| \le \varepsilon

stop;

end (if)
```

带步长因子牛顿法收敛性

定理

设f在开凸集D中二阶连续可微,又设对任意的 $x_0 \in D$,存在常数m > 0.使 得 f(x) 在水平集 $L(x_0) = \{x | f(x) \le f(x_0)\}$ 上满足

牛顿法

$$u^{T} \nabla^{2} f(x) u \ge m \|u\|^{2}, \forall u \in \mathbb{R}^{n}, x \in L(x_{0}).$$
 (2.15)

则在精确一维搜索条件下,带步长因子的牛顿法产生的迭代点列 $\{x_k\}$ 满足

- ① 当 x_k 为有限点列,则对某个k, $\nabla f(x_k) = 0$.
- ② 当 x_k 为无穷点列, $\{x_k\}$ 收敛到f的唯一极小值点.

GOLDSTEIN-PRICE修正牛顿法

• 如果 G_k 不正定,可以用 $p_k = -\nabla f(x_k)$ 代替 $p_k^N = -[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)$,因此也会适当引入步长因子.

GOLDSTEIN-PRICE修正牛顿法

- 如果 G_k 不正定,可以用 $p_k = -\nabla f(x_k)$ 代替 $p_k^N = -[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)$,因此也会适当引入步长因子.
- 给定阈值η > 0

$$p_k = \begin{cases} -G_k^{-1} g_k, & if \cos \theta \ge \eta \\ -g_k, & otherwise. \end{cases}$$

ALGORITHM 3 (修正牛顿法)

给定初始猜测点 x_0 ;

ALGORITHM 3 (修正牛顿法)

```
给定初始猜测点 x_0:
For k = 0, 1, 2, \cdots
     构造 矩阵 \bar{G}_k = \nabla^2 f(x_k) + v_k I,
       其中 v_k = 0 如 \nabla^2 f(x_k) 正定:
       otherwise, 选择 v_k > 0 使得 \bar{G}_k 正定:
```

ALGORITHM 3 (修正牛顿法)

```
给定初始猜测点 x_0:
For k = 0, 1, 2, \cdots
     构造 矩阵 \bar{G}_k = \nabla^2 f(x_k) + v_k I,
       其中 v_k = 0 如 \nabla^2 f(x_k) 正定:
       otherwise, 选择 v_k > 0 使得 \bar{G}_k 正定:
     求解 \bar{G}_k p_k = -\nabla f(x_k):
```

ALGORITHM 3 (修正牛顿法) 给定初始猜测点 xo: For $k = 0, 1, 2, \cdots$ 构造 矩阵 $\bar{G}_k = \nabla^2 f(x_k) + v_k I$, 其中 $v_k = 0$ 如 $\nabla^2 f(x_k)$ 正定: otherwise, 选择 $v_k > 0$ 使得 \bar{G}_k 正定: 求解 $\bar{G}_k p_k = -\nabla f(x_k)$: $\Rightarrow x_{k+1} \leftarrow x_k + \alpha_k p_k$ 其中 αk 满足 Wolfe, Goldstein, or strong Wolfe 条件;

End

当 $\nabla^2 f(x_k)$ 不定时, 如何选取 v_k ?

当 $∇^2 f(x_k)$ 不定时, 如何选取 v_k ?

应该大于G_k的最负特征值的绝对值.

当 $\nabla^2 f(x_k)$ 不定时, 如何选取 v_k ?

- 应该大于G₂的最负特征值的绝对值.
- 按照Gill-Murray的修改Cholesky分解($\bar{G}_k = \bar{L}_k \bar{D}_k \bar{L}_k^T$)算法确定 v_k .

当 $\nabla^2 f(x_k)$ 不定时, 如何选取 v_k ?

- 应该大于G₁的最负特征值的绝对值.
- 按照Gill-Murray的修改Cholesky分解($\bar{G}_k = \bar{L}_k \bar{D}_k \bar{L}_k^T$)算法确定 v_k .
- $v_k = \min\{b_1, b_2\}$ 其中

$$b_1 = \left| \min_{1 \le i \le n} \left\{ (G_k)_{ii} - \sum_{j \ne i} |(G_k)_{ij}| \right\} \right| \ge \left| \min_i \lambda_i \right|$$
 (2.16)

$$b_2 = \max_i \{e_{ii}\}, 其中 e_{ii} 是 E$$
的第 i 个对角元, (2.17)

 $E \not\in G_k$ Gill-Murray修正Cholesky分解: $G_k + E = LDL^T$

当 $\nabla^2 f(x_k)$ 不定时, 如何选取 v_k ?

- 应该大于G₁的最负特征值的绝对值.
- 按照Gill-Murray的修改Cholesky分解($\bar{G}_k = \bar{L}_k \bar{D}_k \bar{L}_k^T$)算法确定 v_k .
- $v_k = \min\{b_1, b_2\} \not\equiv \Psi$

$$b_1 = \left| \min_{1 \le i \le n} \left\{ (G_k)_{ii} - \sum_{j \ne i} |(G_k)_{ij}| \right\} \right| \ge \left| \min_i \lambda_i \right|$$
 (2.16)

$$b_2 = \max_i \{e_{ii}\}, 其中 e_{ii} 是 E$$
的第 i 个对角元, (2.17)

 $E \not\in G_k$ Gill-Murray修正 Cholesky分解: $G_k + E = LDL^T$

如何对G_k + E做Cholesky分解?

当 $\nabla^2 f(x_k)$ 不定时, 如何选取 v_k ?

- 应该大于G₁的最负特征值的绝对值.
- 按照Gill-Murray的修改Cholesky分解($\bar{G}_k = \bar{L}_k \bar{D}_k \bar{L}_k^T$)算法确定 v_k .
- $v_k = \min\{b_1, b_2\} \not\equiv \Psi$

$$b_1 = \left| \min_{1 \le i \le n} \left\{ (G_k)_{ii} - \sum_{j \ne i} |(G_k)_{ij}| \right\} \right| \ge \left| \min_i \lambda_i \right|$$
 (2.16)

$$b_2 = \max_i \{e_{ii}\}, 其中 e_{ii} 是 E$$
的第 i 个对角元, (2.17)

 $E \not\in G_k$ Gill-Murray修正Cholesky分解: $G_k + E = LDL^T$

- 如何对G_k + E做Cholesky分解?
 - 先做 G_k 的Cholesky分解, 再做 $\bar{G}_k = G_k + E$ 的分解 (不实用)

当 $\nabla^2 f(x_k)$ 不定时, 如何选取 v_k ?

- 应该大于G₁的最负特征值的绝对值.
- 按照Gill-Murray的修改Cholesky分解($\bar{G}_k = \bar{L}_k \bar{D}_k \bar{L}_k^T$)算法确定 v_k .
- $v_k = \min\{b_1, b_2\} \not\equiv \Psi$

$$b_1 = \left| \min_{1 \le i \le n} \left\{ (G_k)_{ii} - \sum_{j \ne i} |(G_k)_{ij}| \right\} \right| \ge \left| \min_i \lambda_i \right|$$
 (2.16)

$$b_2 = \max_i \{e_{ii}\}, 其中 e_{ii} 是 E$$
的第 i 个对角元, (2.17)

 $E \not\in G_k$ Gill-Murray修正Cholesky分解: $G_k + E = LDL^T$

- 如何对G_k + E做Cholesky分解?
 - 先做 G_k 的Cholesky分解, 再做 $\bar{G}_k = G_k + E$ 的分解 (不实用)
 - Gill-Murray修正Cholesky分解

Theorem

• 如果 f 在开集 D上二次连续可微.

Theorem

- 如果 f 在开集 D上二次连续可微.
- 如果起始点 x_0 使水平集 $\mathcal{L} = \{x \in \mathbb{D} : f(x) \le f(x_0)\}$ 是紧的

Theorem

- 如果 f 在开集 D上二次连续可微.
- 如果起始点 x_0 使水平集 $\mathcal{L} = \{x \in \mathbb{D} : f(x) \leq f(x_0)\}$ 是紧的
- 假设修正的Cholesky分解是有界的

$$\kappa(\bar{G}_k) = \|\bar{G}_k\| \|\bar{G}_k^{-1}\| \le C$$
, for some C , $\forall k = 0, 1, \cdots$

Theorem

- 如果 f 在开集 D上二次连续可微.
- 如果起始点 x_0 使水平集 $\mathcal{L} = \{x \in \mathbb{D} : f(x) \leq f(x_0)\}$ 是紧的
- 假设修正的Cholesky分解是有界的

$$\kappa(\bar{G}_k) = \|\bar{G}_k\| \|\bar{G}_k^{-1}\| \le C$$
, for some $C, \quad \forall k = 0, 1, \cdots$

• 则有

$$\lim_{k \to \infty} \nabla f(x_k) = 0.$$

• 对于无约束优化问题, 如果已有导数 $\nabla f(x)$, 那么可以通过前向差分或者 中心差分来计算Hessian

- 对于无约束优化问题, 如果已有导数 $\nabla f(x)$, 那么可以通过前向差分或者中心差分来计算Hessian.
- 在迭代中的第k步,可以计算

$$(A)_{\cdot j} = \frac{\nabla f(x_k + h_j e_j) - \nabla f(x_k)}{h_j}, j = 1, \dots, n,$$

$$A_k = \frac{A + A^T}{2},$$

$$x_{k+1} = x_k - A_k^{-1} \nabla f(x_k),$$

$$h_j = \sqrt{\eta} \max\{|x_j|, \tilde{x}_j\} \operatorname{sign}(x_j).$$

其中 \tilde{x}_i 通常是给定的估计值, η 大于机器精度的很小的数.

- 对于无约束优化问题, 如果已有导数 $\nabla f(x)$,那么可以通过前向差分或者中心差分来计算Hessian.
- 在迭代中的第k步, 可以计算

$$(A)_{.j} = \frac{\nabla f(x_k + h_j e_j) - \nabla f(x_k)}{h_j}, j = 1, \dots, n,$$

$$A_k = \frac{A + A^T}{2},$$

$$x_{k+1} = x_k - A_k^{-1} \nabla f(x_k),$$

$$h_j = \sqrt{\eta} \max\{|x_j|, \tilde{x}_j\} \text{sign}(x_j).$$

其中 \tilde{x}_i 通常是给定的估计值, η 大于机器精度的很小的数.

• 有时候需要计算 $\nabla^2 f(x_k)d$, 也可以用差分法来代替, 减少计算量

$$\nabla^2 f(x_k) d \approx \frac{\nabla f(x_k + hd) - \nabla f(x_k)}{h}$$

- 对于无约束优化问题, 如果已有导数 $\nabla f(x)$, 那么可以通过前向差分或者 中心差分来计算Hessian.
- 在迭代中的第k步,可以计算

$$(A)_{\cdot j} = \frac{\nabla f(x_k + h_j e_j) - \nabla f(x_k)}{h_j}, j = 1, \dots, n,$$

$$A_k = \frac{A + A^T}{2},$$

$$x_{k+1} = x_k - A_k^{-1} \nabla f(x_k),$$

$$h_j = \sqrt{\eta} \max\{|x_j|, \tilde{x}_j\} \text{sign}(x_j).$$

其中 \tilde{x}_i 通常是给定的估计值, η 大于机器精度的很小的数.

• 有时候需要计算 $\nabla^2 f(x_k)d$, 也可以用差分法来代替, 减少计算量

$$\nabla^2 f(x_k) d \approx \frac{\nabla f(x_k + hd) - \nabla f(x_k)}{h}$$

• 在一定的条件下,这种有限差分牛顿法仍然是二阶收敛的

• 如果导数abla f未知, 需要用差分来逼近梯度abla f以及abla fHessian $abla^2 f$.

- 如果导数 ∇f 未知, 需要用差分来逼近梯度 ∇f 以及Hessian $\nabla^2 f$.
- 首先逼近梯度

$$(\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k)}{h_j}, \text{ or } (\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k - h_j e_j)}{2h_j}.$$

- 如果导数 ∇f 未知, 需要用差分来逼近梯度 ∇f 以及Hessian $\nabla^2 f$.
- 首先逼近梯度

$$(\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k)}{h_j}, \text{ or } (\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k - h_j e_j)}{2h_j}.$$

逼近Hessian

$$\begin{split} (A_k)_{ij} &= \frac{\left[f(x_k + h_ie_i + h_je_j) - f(x_k + h_ie_i)\right] - \left[f(x_k + h_je_j) - f(x_k)\right]}{h_ih_j} \\ h_j &= \sqrt[3]{\eta} \max\{|x_j|, \tilde{x}_j\} \text{sign}(x_j) \end{split}$$

- 如果导数 ∇f 未知, 需要用差分来逼近梯度 ∇f 以及Hessian $\nabla^2 f$.
- 首先逼近梯度

$$(\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k)}{h_j}, \text{ or } (\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k - h_j e_j)}{2h_j}.$$

逼近Hessian

$$(A_k)_{ij} = \frac{[f(x_k + h_i e_i + h_j e_j) - f(x_k + h_i e_i)] - [f(x_k + h_j e_j) - f(x_k)]}{h_i h_j}$$

$$h_i = \sqrt[3]{\eta} \max\{|x_i|, \tilde{x}_i\} \text{sign}(x_i)$$

此时第k步牛顿迭代法为

$$x_{k+1} = x_k - A_k^{-1} \hat{g}_k$$

- 如果导数 ∇f 未知, 需要用差分来逼近梯度 ∇f 以及Hessian $\nabla^2 f$.
- 首先逼近梯度

$$(\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k)}{h_j}, \text{ or } (\hat{g}_k)_j = \frac{f(x_k + h_j e_j) - f(x_k - h_j e_j)}{2h_j}.$$

逼近Hessian

$$(A_k)_{ij} = \frac{[f(x_k + h_i e_i + h_j e_j) - f(x_k + h_i e_i)] - [f(x_k + h_j e_j) - f(x_k)]}{h_i h_j}$$

$$h_i = \sqrt[3]{\eta} \max\{|x_i|, \tilde{x}_i\} \text{sign}(x_i)$$

此时第k步牛顿迭代法为

$$x_{k+1} = x_k - A_k^{-1} \hat{g}_k$$

• 可以推导出如下收敛性 $\|x_{k+1}-x^*\|\leq \|A_k^{-1}\|\Big(\frac{v}{2}\|x_k-x^*\|^2+\|A_k-\nabla^2 f(x_k)\|\|x_k-x^*\|$ $+\|\hat{g}_k-\nabla f(x_k)\|$).

负曲率方向属于修正牛顿法,是处理在 $\nabla^2 f(x)$ 不定时,如何寻找搜索方向

定义

设 $f: \mathbb{R}^n \to \mathbb{R}$ 在开集D上二次连续可微

负曲率方向属于修正牛顿法,是处理在 $\nabla^2 f(x)$ 不定时,如何寻找搜索方向 定义

设 $f: \mathbb{R}^n \to \mathbb{R}$ 在开集D上二次连续可微

① 如果 $\nabla^2 f(x)$ 至少有一个负特征值,则称x为不定点

负曲率方向属于修正牛顿法,是处理在 $\nabla^2 f(x)$ 不定时,如何寻找搜索方向

定义

设 $f: \mathbb{R}^n \to \mathbb{R}$ 在开集D上二次连续可微

- ① 如果 $\nabla^2 f(x)$ 至少有一个负特征值, 则称x为不定点
- ② 如果x是一个不定点, 若方向p满足 $p^T \nabla^2 f(x) p < 0$,则 称 $p \to f(x)$ 在x处的 负曲率方向.

负曲率方向属于修正牛顿法,是处理在 $abla^2 f(x)$ 不定时,如何寻找搜索方向

定义

设 $f: \mathbb{R}^n \to \mathbb{R}$ 在开集D上二次连续可微

- ① 如果 $\nabla^2 f(x)$ 至少有一个负特征值, 则称x为不定点
- ② 如果x是一个不定点, 若方向p满足 $p^T \nabla^2 f(x) p < 0$,则 称 $p \to f(x)$ 在x处的 负曲率方向.
- ⑤ 如果x为不定点,

$$s^T \nabla f(x) \leq 0, p^T \nabla f(x) \leq 0, p^T \nabla^2 f(x) p < 0$$

则称(s,p)为不定点x处的下降对.

负曲率方向属于修正牛顿法,是处理在 $abla^2 f(x)$ 不定时,如何寻找搜索方向

定义

设 $f: \mathbb{R}^n \to \mathbb{R}$ 在开集D上二次连续可微

- ① 如果 $\nabla^2 f(x)$ 至少有一个负特征值, 则称x为不定点
- ② 如果x是一个不定点, 若方向p满足 $p^T \nabla^2 f(x) p < 0$,则 称 $p \to f(x)$ 在x处的 负曲率方向.
- ⑤ 如果x为不定点,

$$s^T \nabla f(x) \leq 0, p^T \nabla f(x) \leq 0, p^T \nabla^2 f(x) p < 0$$

则称(s,p)为不定点x处的下降对.

 \bullet 如果x不是一个不定点,(s,p)满足

$$s^T \nabla f(x) < 0, p^T \nabla f(x) \leq 0, p^T \nabla^2 f(x) p = 0$$

则称(s,p)为x处的下降对.

Remark

• 一个下降对例子

$$s = -\nabla f(x), p = \left\{ \begin{array}{ll} 0, & \text{ for } \mathbb{R} \nabla^2 f(x) \geq 0, \\ -\text{sign} \big(u^T \nabla f(x) \big) u, & otherwise, \end{array} \right.$$

其中u是 $\nabla^2 f(x)$ 的负特征值对应的特征向量.

Remark

• 一个下降对例子

$$s = -\nabla f(x), p = \left\{ \begin{array}{ll} 0, & \text{ for } \mathbb{R} \nabla^2 f(x) \geq 0, \\ -\text{sign} \big(u^T \nabla f(x) \big) u, & otherwise, \end{array} \right.$$

其中u是 $\nabla^2 f(x)$ 的负特征值对应的特征向量.

• 显然, 当且仅当 $\nabla f(x) = 0$ 且 $\nabla^2 f(x)$ 半正定时, 下降对不存在.

Remark

• 一个下降对例子

$$s = -\nabla f(x), p = \left\{ \begin{array}{ll} 0, & \text{ for } \mathbb{R} \nabla^2 f(x) \geq 0, \\ -\text{sign}(u^T \nabla f(x))u, & otherwise, \end{array} \right.$$

其中u是 $abla^2 f(x)$ 的负特征值对应的特征向量.

- 显然, 当且仅当 $\nabla f(x) = 0$ 且 $\nabla^2 f(x)$ 半正定时, 下降对不存在.
- 如果 $\nabla f(x) = 0$, 负曲率方向是下降方向.

Remark

• 一个下降对例子

$$s = -\nabla f(x), p = \left\{ \begin{array}{ll} 0, & \mbox{ if } \mathbb{R} \nabla^2 f(x) \geq 0, \\ -\mathrm{sign}(u^T \nabla f(x)) u, & otherwise, \end{array} \right.$$

其中u是 $\nabla^2 f(x)$ 的负特征值对应的特征向量.

- 显然, 当且仅当 $\nabla f(x) = 0$ 且 $\nabla^2 f(x)$ 半正定时, 下降对不存在.
- 如果 $\nabla f(x) = 0$, 负曲率方向是下降方向.
- 在一般点处($\nabla f(x) \neq 0$),
 - 如果负曲率方向p满足 $p^T \nabla f = 0$,则p p都是下降方向.
 - 如果负曲率方向p满足 $p^T \nabla f \leq 0$,则p是下降方向.
 - 如果负曲率方向p满足 $p^T \nabla f \ge 0$,则-p是下降方向.

基本思想: 当 G_k 阵有负特征值时,沿着负曲率方向,可以使目标函数值下降.

$$f(x_k + p_k) \approx f(x_k) + g_k^T p_k + \frac{1}{2} p_k^T G_k p_k,$$

 $\wp \# g_k^T p_k \le 0, \quad p_k^T G_k p_k < 0.$

基本思想: 当G16阵有负特征值时,沿着负曲率方向,可以使目标函数值下降,

$$f(x_k + p_k) \approx f(x_k) + g_k^T p_k + \frac{1}{2} p_k^T G_k p_k,$$

 $\wp \# g_k^T p_k \le 0, \quad p_k^T G_k p_k < 0.$

• 首先对 G_k 做Cholesky分解 $G_k = LDL^T$, 其中L是单位下三角矩阵, D为对 角矩阵.

基本思想: 当Gk阵有负特征值时,沿着负曲率方向,可以使目标函数值下降.

- 首先对 G_k 做Cholesky分解 $G_k = LDL^T$, 其中L是单位下三角矩阵, D为对 角矩阵.
- 如果 $d_{ii} < 0$. 求解 $L^T t = a$. 其中

$$a = \begin{cases} 1, & d_{ii} \le 0, \\ 0, & d_{ii} > 0. \end{cases}$$

基本思想: 当 G_k 阵有负特征值时,沿着负曲率方向,可以使目标函数值下降.

$$\begin{split} f(x_k + p_k) &\approx f(x_k) + g_k^T p_k + \frac{1}{2} p_k^T G_k p_k, \\ & \not \text{w. } \# \ g_k^T p_k \leq 0, \quad p_k^T G_k p_k < 0. \end{split}$$

- 首先对 G_k 做Cholesky分解 $G_k = LDL^T$, 其中L是单位下三角矩阵, D为对 角矩阵
- 如果 $d_{ii} < 0$,求解 $L^T t = a$. 其中

$$a = \begin{cases} 1, & d_{ii} \le 0, \\ 0, & d_{ii} > 0. \end{cases}$$

● 则如下的pk是负曲率下降方向

$$p_k = \begin{cases} t, & g_k^T t \le 0, \\ -t, & g_k^T t > 0. \end{cases}$$

基本思想: 当G&阵有负特征值时,沿着负曲率方向,可以使目标函数值下降,

$$f(x_k + p_k) \approx f(x_k) + g_k^T p_k + \frac{1}{2} p_k^T G_k p_k,$$

 $p \notin g_k^T p_k \leq 0, \quad p_k^T G_k p_k < 0.$

- 首先对 G_k 做Cholesky分解 $G_k = LDL^T$, 其中L是单位下三角矩阵, D为对 角矩阵
- $\omega + d_{ii} < 0$, $\varepsilon + \varepsilon + d_{ii} < 0$

$$a = \begin{cases} 1, & d_{ii} \le 0, \\ 0, & d_{ii} > 0. \end{cases}$$

● 则如下的pk是负曲率下降方向

$$p_k = \begin{cases} t, & g_k^T t \le 0, \\ -t, & g_k^T t > 0. \end{cases}$$

• 缺点: $d_{ii} \approx 0$ 或者 $d_{ii} = 0$.

FLETCHER-FREEMAN方法

如何稳定地分解对称不定矩阵?

FLETCHER-FREEMAN方法

如何稳定地分解对称不定矩阵?

• 对于任何对称矩阵, 存在排列矩阵P使得, $P^TG_kP = LDL^T$, 其中L是单位 下三角矩阵, D是块对角矩阵, 阶数是1或者2.

如何稳定地分解对称不定矩阵?

• 对于任何对称矩阵, 存在排列矩阵P使得, $P^TG_kP=LDL^T$, 其中L是单位下三角矩阵, D是块对角矩阵, 阶数是1或者2.

FLETCHER-FREEMAN方法

如何稳定地分解对称不定矩阵?

• 对于任何对称矩阵, 存在排列矩阵P使得, $P^TG_{l}P = LDL^T$, 其中L是单位 下三角矩阵, D是块对角矩阵, 阶数是1或者2.

• 求解系统 $L^T t = a$

$$a_i = \left\{ \begin{array}{ll} 1, & d_{ii} \leq 0, \\ 0, & d_{ii} > 0; \end{array} \right.$$
或者 $\left(\begin{array}{ll} a_i \\ a_{i+1} \end{array} \right)$ 是 $\left[\begin{array}{ll} d_{ii}, & d_{i,i+1} \\ d_{i+1,i} & d_{i+1,i+1} \end{array} \right]$ 的单位特征向量

FLETCHER-FREEMAN方法

如何稳定地分解对称不定矩阵?

• 对于任何对称矩阵, 存在排列矩阵P使得, $P^TG_{l}P = LDL^T$, 其中L是单位 下三角矩阵, D是块对角矩阵, 阶数是1或者2.

• 求解系统 $L^T t = a$

$$a_i = \left\{ \begin{array}{ll} 1, & d_{ii} \leq 0, \\ 0, & d_{ii} > 0; \end{array} \right.$$
或者 $\left(\begin{array}{ll} a_i \\ a_{i+1} \end{array} \right)$ 是 $\left[\begin{array}{ll} d_{ii}, & d_{i,i+1} \\ d_{i+1,i} & d_{i+1,i+1} \end{array} \right]$ 的单位特征向量

 $p_k^T L D L^T p_k = a^T D a = \sum_i \lambda_i < 0, \mathbb{E} p_k^T g_k \le 0.$

FLETCHER-FREEMAN 方法

当D有负特征值时,搜索方向还可以由其广义逆矩阵构造

$$p_k = -L^{-T} \tilde{D}^{\dagger} L^{-1} g_k$$
 其中 \tilde{D}^{\dagger} 是 \tilde{D} 的广义逆, $\tilde{D}_i = \left\{ egin{array}{ll} d_{ii}, & \exists \, d_{ii} > 0, \\ 0, & ext{其他.} \end{array}
ight.$

FLETCHER-FREEMAN 方法

当D有负特征值时,搜索方向还可以由其广义逆矩阵构造

$$p_k = -L^{-T} \tilde{D}^{\dagger} L^{-1} g_k$$
 其中 \tilde{D}^{\dagger} 是 \tilde{D} 的广义逆, $\tilde{D}_i = \left\{ egin{array}{ll} d_{ii}, & \exists \, d_{ii} > 0, \\ 0, & ext{其他.} \end{array}
ight.$

● 当D有零特征值时, 搜索方向pk可以由

$$LDL^T p_k = 0, \quad g_k^T p_k < 0.$$

FLETCHER-FREEMAN 方法

当D有负特征值时,搜索方向还可以由其广义逆矩阵构造

$$p_k = -L^{-T} \tilde{D}^{\dagger} L^{-1} g_k$$
 其中 $\tilde{D}^{\dagger} \stackrel{\cdot}{\mathcal{L}} \tilde{D}$ 的广义逆, $\tilde{D}_i = \left\{ egin{array}{ll} d_{ii}, & \exists \, d_{ii} > 0, \\ 0, & \hbox{其他.} \end{array}
ight.$

● 当D有零特征值时, 搜索方向pk可以由

$$LDL^T p_k = 0, \quad g_k^T p_k < 0.$$

● 当D的特征值为正数时, D中全是一阶块. 这时就是正常的牛顿法.

• 传统Cholesky分解 $G = LDL^T$, 有缺点 $d_{jj} \approx 0$

$$d_{jj} = g_{jj} - \sum_{s=1}^{j-1} d_{ss} l_{js}^2, \qquad l_{ij} = \frac{1}{d_{jj}} \left(g_{ij} - \sum_{s=1}^{j-1} d_{ss} l_{js} l_{is} \right), i \ge j+1.$$

• 传统Cholesky分解 $G = LDL^T$, 有缺点 $d_{jj} \approx 0$

$$d_{jj} = g_{jj} - \sum_{s=1}^{j-1} d_{ss} l_{js}^2, \qquad l_{ij} = \frac{1}{d_{jj}} \left(g_{ij} - \sum_{s=1}^{j-1} d_{ss} l_{js} l_{is} \right), i \ge j+1.$$

• 额外要求: 存在某个正数 $\delta > 0$ and $\beta > 0$, 使得

$$d_{jj} \ge \delta$$
, $|r_{ij} = l_{ij}\sqrt{d_{jj}}| \le \beta$, $i \ge j$.

• 传统Cholesky分解 $G = LDL^T$, 有缺点 $d_{jj} \approx 0$

$$d_{jj} = g_{jj} - \sum_{s=1}^{j-1} d_{ss} l_{js}^2, \qquad l_{ij} = \frac{1}{d_{jj}} \left(g_{ij} - \sum_{s=1}^{j-1} d_{ss} l_{js} l_{is} \right), i \ge j+1.$$

• 额外要求: 存在某个正数 $\delta>0$ and $\beta>0$, 使得

$$d_{jj} \ge \delta$$
, $|r_{ij} = l_{ij}\sqrt{d_{jj}}| \le \beta$, $i \ge j$.

ullet 假设前j-1步都满足以上额外要求,我们看第j步(分成两步)

第一步:计算
$$\gamma_{j} = \left| \xi_{j} - \sum_{s=1}^{j-1} d_{ss} l_{js}^{2} \right|$$
, 其中 $\xi_{j} = g_{jj}$, 然后取 $\bar{d} = \max\{\gamma_{j}, \delta\}$. 第二步:计算 $\left| r_{ij} = l_{ij} \sqrt{\bar{d}} \right|$, 如果 $\left| r_{ij} \right| < \beta$, 接受 $\bar{d} = d_{jj}$, $l_{ij} = r_{ij} / \sqrt{\bar{d}_{jj}}$ 否则 $d_{jj} = \left| d_{jj} + e_{jj} - \sum_{s=1}^{j-1} d_{ss} l_{js}^{2} \right|$, 选择正数 e_{jj} 使得 $\max|r_{ij}| = \beta$.

• 传统Cholesky分解 $G = LDL^T$, 有缺点 $d_{ij} \approx 0$

$$d_{jj} = g_{jj} - \sum_{s=1}^{j-1} d_{ss} l_{js}^2, \qquad l_{ij} = \frac{1}{d_{jj}} \left(g_{ij} - \sum_{s=1}^{j-1} d_{ss} l_{js} l_{is} \right), i \ge j+1.$$

• 额外要求: 存在某个正数 $\delta > 0$ and $\beta > 0$, 使得

$$d_{jj} \ge \delta$$
, $|r_{ij} = l_{ij}\sqrt{d_{jj}}| \le \beta$, $i \ge j$.

● 假设前j-1步都满足以上额外要求,我们看第j步(分成两步)

第一步:计算
$$\gamma_{j} = \left| \xi_{j} - \sum_{s=1}^{j-1} d_{ss} l_{js}^{2} \right|,$$
 其中 $\xi_{j} = g_{jj},$ 然后取 $\bar{d} = \max\{\gamma_{j}, \delta\}.$ 第二步:计算 $\left| r_{ij} = l_{ij} \sqrt{\bar{d}} \right|,$ 如果 $\left| r_{ij} \right| < \beta,$ 接受 $\bar{d} = d_{jj}, l_{ij} = r_{ij} / \sqrt{d_{jj}}$ 否则 $d_{jj} = \left| d_{jj} + e_{jj} - \sum_{s=1}^{j-1} d_{ss} l_{js}^{2} \right|,$ 选择正数 e_{jj} 使得 $\max|r_{ij}| = \beta.$

• 本质上完成了 $\bar{G}_k = G_k + E = LDL^T$ 的Cholesky分解.

Remark

E的选择与β有关. Gill-Murray证明

$$||E(\beta)||_{\infty} \le \left(\frac{\xi}{\beta} + (n-1)\beta\right)^2 + 2(\gamma + (n-1)\beta^2) + \delta$$

其中 $\xi \in G_k$ 的非对角元最大模, $\gamma \in G_k$ 的对角元最大模.

Remark

E的选择与β有关. Gill-Murray证明

$$||E(\beta)||_{\infty} \le \left(\frac{\xi}{\beta} + (n-1)\beta\right)^2 + 2(\gamma + (n-1)\beta^2) + \delta$$

其中 \mathcal{E} 是 G_k 的非对角元最大模, γ 是 G_k 的对角元最大模.

• 当 $\beta^2 = \xi/\sqrt{n^2-1}$ 时,上面的界是最小的. 因此取 β 满足

$$\beta^2 = \max\{\gamma, \xi/\sqrt{n^2 - 1}, \varepsilon_M(\Lambda, R, R, \xi)\}$$

Remark

E的选择与β有关. Gill-Murray证明

$$||E(\beta)||_{\infty} \le \left(\frac{\xi}{\beta} + (n-1)\beta\right)^2 + 2(\gamma + (n-1)\beta^2) + \delta$$

其中 \mathcal{E} 是 G_k 的非对角元最大模, γ 是 G_k 的对角元最大模.

• 当 $\beta^2 = \xi/\sqrt{n^2-1}$ 时,上面的界是最小的. 因此取 β 满足

$$\beta^2 = \max\{\gamma, \xi/\sqrt{n^2 - 1}, \varepsilon_M(\Lambda, R, R, \xi)\}$$

• Gill-Murray修正Cholesky分解,保证了 $d_{ii} > \delta$, \bar{G}_k 是正定的,其条件数 $\|\bar{G}_k\|\|\bar{G}_k^{-1}\| < \kappa$ 有一致的上界.

GILL-MURRAY修正CHOLESKY分解算法

```
第一步:确定分解因子元素的界\beta^2 = \max\{\gamma, \xi/\sqrt{n^2-1}, \varepsilon_M\}.
         这里\gamma和\varepsilon分别是G_{\iota}的对角元和非对角元最大值.
```

第二步:初始化. 令
$$j=1$$
, $c_{ii}=g_{ii}$ for $i=1,\dots,n$.

第三步: 求最小指标
$$q$$
, 使得 $|c_{qq}| = \max_{j \le i \le n} |c_{ii}|$, 交换 G_i .的 q 行和 j 行, q 列和 j 列的信息.

第四步: 计算
$$L$$
的第 j 行, 并求出 $l_{ij}d_{ij}$ 的最大值:

$$\diamondsuit l_{js} = c_{js}/d_{ss}, \ s = 1, \cdots, j-1;$$

计算
$$c_{ij} = g_{ij} - \sum_{s=1}^{j-1} l_{sj} c_{is}, i = j+1, \cdots, n;$$

$$\Rightarrow \theta_i = \max_{j+1 \le i \le n} |c_{ij}|, (\theta_i = 0 \ne j = n)$$

第五步: 计算
$$D$$
的第 j 个对角元: $d_{jj} = \max\{\delta, |c_{jj}|, \theta_j^2/\beta^2\};$

$$E$$
的对角元修改为 $E_i = d_{ij} - c_{ij}$, 如果 $j = n$, 则停止.

$$\diamond c_{ii} = c_{ii} - c_{ij}^2/d_{jj}, i = j + 1, \dots, n;$$

$$令 i = i + 1$$
,转第三步.

基本思想:

(i) 当 G_k 不定时,采用Gill-Murray修正Cholesky分解强制Hessian正定,

基本思想:

(i) 当 G_k 不定时,采用Gill-Murray修正Cholesky分解强制Hessian正定,

设
$$\bar{G}_k = G_k + E_k = L_k D_k L_k^T$$
, $D_k = diag(d_{ii})$, $E_k = diag(e_{ii})$.

(ii) 当 ∇f → 0时, 采用负曲率方向使目标函数值下降.

构造负曲率方向算法

第一步: 令 $\psi_i = d_{ii} - e_{ii}, j = 1, \dots, n$

第二步: 求下标t, 使得 $\psi_t = \min\{\psi_i | j = 1, \dots, n\}$.

第三步:如果 $\psi_t > 0$,则停止:否则,求解方程组 $L_t^T p = e_t$.

得到负曲率方向p, 其中 e_t 为第t个元素为1的单位向量.

基本思想:

(i) 当 G_k 不定时,采用Gill-Murray修正Cholesky分解强制Hessian正定,

读
$$\bar{G}_k = G_k + E_k = L_k D_k L_k^T$$
, $D_k = diag(d_{ii})$, $E_k = diag(e_{ii})$.

(ii) 当 ∇f → 0时, 采用负曲率方向使目标函数值下降.

构造负曲率方向算法

第一步: 令 $\psi_i = d_{ii} - e_{ij}, j = 1, \dots, n$

第二步: 求下标t, 使得 $\psi_t = \min\{\psi_i | j = 1, \dots, n\}$.

第三步:如果 $\psi_t > 0$,则停止:否则,求解方程组 $L_t^T p = e_t$.

得到负曲率方向p, 其中 e_t 为第t个元素为1的单位向量.

定理

设 G_k 为 f在 x_k 处的Hessian矩阵, $\bar{G}_k = G_k + E_k = L_k D_k L_k^T$. 则上述算法产生 的 p_k 是在 x_k 处的负曲率方向, 并且 p_k 和 $-p_k$ 中至少有一个是 x_k 处的下降方向.

GILL-MURRAY稳定牛顿法

第一步: 给定初始点 x_0 . $\varepsilon > 0$. k = 1

第二步: 计算 q_k 和 G_k .

第三步:使用Gill-Murray修正Cholesky分解,得到 $L_kD_kL_k^T=G_k+E_k$

第四步:如果 $||q_k|| > \varepsilon$,

求解方程 $L_k D_k L_k^T p_k = -g_k$, 得到搜索方向 p_k , 转第六步;

否则(即 $||q_k|| < \varepsilon$)转第五步

第五步: 调用构造负曲率方向算法,如果无负曲率方向.则停止:

否则, 求出负曲率方向pu满足,

$$p_k = \begin{cases} -p_k, & g_k^T p_k > 0, \\ p_k, & otherwise. \end{cases}$$

第六步:一维搜索求 α _k满足

$$f(x_k + \alpha_k p_k) = \min_{\alpha > 0} f(x_k + \alpha p_k)$$

 $\hat{\Rightarrow} x_{k+1} = x_k + \alpha_k p_k;$

定理: GILL-MURRAY稳定牛顿法收敛性

- 设 f二次连续可微
- 存在 $\bar{x} \in R^n$, 使得 $L(\bar{x}) = \{x | f(x) \le f(\bar{x})\}$ 为有界闭凸集
- 以上算法中 $\varepsilon = 0$
- 则序列{x_k}满足
 - \bullet 当 $\{x_k\}$ 为有限序列, 最后一个点是稳定点
 - ② 当{x_k}为无限序列,则必有聚点,且所有聚点都是稳定点.

不精确的牛顿法

考虑非线性方程组 F(x) = 0, 其中 $F: \mathbb{R}^n \to \mathbb{R}^n$, 满足

- (2)F在x*的领域中连续可微,
- (3)F'(x*)非奇异.

不精确的牛顿法

考虑非线性方程组 F(x) = 0, 其中 $F: \mathbb{R}^n \to \mathbb{R}^n$, 满足

- (2)F在x*的领域中连续可微,
- (3)F'(x*)非奇异.
- 经典牛顿法: $F(x_k + s) \approx F(x_k) + F'(x_k)s = 0$, $s = -(F'(x_k))^{-1}F(x_k)$

不精确的牛顿法

考虑非线性方程组 F(x) = 0, 其中 $F: \mathbb{R}^n \to \mathbb{R}^n$, 满足

- (2)F在x*的领域中连续可微,
- (3)F'(x*)非奇异.
- 经典牛顿法: $F(x_k + s) \approx F(x_k) + F'(x_k)s = 0$, $s = -(F'(x_k))^{-1}F(x_k)$
- 不精确牛顿法: $F'(x_k)s = -F(x_k) + r_k$, 其中 $\frac{r_k}{\|F(x_k)\|} \le \eta_k$. $r_k = F'(x_k)s + F(x_k)$ 表示残量, η_k 是一个控制不精确程度的序列.

引理: F'在x*附近非奇异

设 $F: R^n \to R^n$ 在 $x^* \in D$ 连续可微, $F'(x^*)$ 非奇异, 则存在 $\delta > 0, \gamma > 0, \epsilon > 0$, 使得当 $\|y - x^*\| < \delta$, $y \in D$ 时, F'非奇异, 且

$$||F'(y)^{-1}|| \le \gamma, \quad ||F'(y)^{-1} - F'(x^*)^{-1}|| \le \epsilon.$$

不精确的牛顿法收敛性

定理:线性收敛

设 $F: R^n \to R^n$ 满足假设条件(1)(2)(3). 设 η_k 满足 $0 \le \eta_k \le \eta_{\max} < t < 1$. 那么,对于某个 $\epsilon > 0$,如果 $\|x_0 - x^*\| < \epsilon$,则有不精确牛顿法产生的迭代序列 $\{x_k\}$ 线性收敛到 x^* ,

$$||x_{k+1} - x^*||_* \le t||x_k - x^*||_*,$$

其中 $||y||_* = ||F'(x^*)^{-1}y||.$

不精确的牛顿法收敛性

定理:线性收敛

设 $F: R^n \to R^n$ 满足假设条件(1)(2)(3). 设 η_k 满足 $0 \le \eta_k \le \eta_{\max} < t < 1$. 那么,对于某个 $\epsilon > 0$,如果 $\|x_0 - x^*\| < \epsilon$,则有不精确牛顿法产生的迭代序列 $\{x_k\}$ 线性收敛到 x^* ,

$$||x_{k+1} - x^*||_* \le t||x_k - x^*||_*,$$

其中 $\|y\|_* = \|F'(x^*)^{-1}y\|.$

引理

设
$$\alpha = \max\{\|F'(x^*) + \frac{1}{2\beta}\|, 2\beta\}, \ \beta = \|F'(x^*)^{-1}\|, \ 凡 当 \|y - x^*\|$$
充分小时,
$$\frac{1}{\alpha}\|y - x^*\| \le \|F(y)\| \le \alpha \|y - x^*\|.$$

不精确的牛顿法收敛性

定理:线性收敛

设 $F: R^n \to R^n$ 满足假设条件(1)(2)(3). 设 η_k 满足 $0 \le \eta_k \le \eta_{\max} < t < 1$. 那么,对于某个 $\epsilon > 0$,如果 $\|x_0 - x^*\| < \epsilon$,则有不精确牛顿法产生的迭代序列 $\{x_k\}$ 线性收敛到 x^* ,

$$||x_{k+1} - x^*||_* \le t||x_k - x^*||_*,$$

其中 $\|y\|_* = \|F'(x^*)^{-1}y\|.$

引理

设
$$\alpha = \max\{\|F'(x^*) + \frac{1}{2\beta}\|, 2\beta\}, \ \beta = \|F'(x^*)^{-1}\|, \ 则 当 \|y - x^*\|$$
充分小时,

$$\frac{1}{\alpha} \|y - x^*\| \le \|F(y)\| \le \alpha \|y - x^*\|.$$

定理: 超线性收敛

假设上述定理条件都成立,不精确牛顿法产生的序列 $\{x_k\}$ 是收敛到 x^* ,那么当且仅当 $\|r_k\| = o(\|F(x_k)\|), k \to \infty$ 时, $\{x_k\}$ 超线性收敛到 x^* .

THANKS FOR YOUR ATTENTION