Notas de Álgebra Moderna III: Una Introducción a la Teoría de Galois Finita

Cristo Daniel Alvarado

25 de mayo de 2024

Índice general

1. Ani	illo de Polinomios															2
1.1.	Series de Potencias	 														2

Capítulo 1

Anillo de Polinomios

1.1. Series de Potencias

Observación 1.1.1

De ahora en adelante todos los anillos se considerarán como anillos connmutativos con identidad, a menos que se establezca lo contrario.

Definición 1.1.1

Sea A un anillo. Denotemos por

$$S_A = \left\{ f \middle| f : \mathbb{N} \cup \{0\} \to A \right\}$$

es decir que S_A es el **conjunto de sucesiones de** A. Si $f \in S_A$ escribimos a f como:

$$f = (a_0, a_1, ...)$$

Sobre S_A se definen dos operaciones, la **suma** y **producto**. A saber, si $f = (a_0, a_1, ...)$ y $g = (b_0, b_1, ...)$, entonces:

$$f + g = (a_0 + b_0, a_1 + b_1, ..., a_k + b_k, ...)$$

у,

$$fg = f \cdot g = (c_0, c_1, ..., c_k, ...)$$

donde

$$c_{k} = \sum_{i=0}^{k} a_{i}b_{k-i}$$

$$= a_{0}b_{k} + a_{1}b_{k-1} + \dots + a_{k}b_{0}$$

$$= \sum_{i=0}^{k} a_{k-i}b_{i}$$

$$= \sum_{i+j=k}^{k} a_{i}b_{j}$$

Observación 1.1.2

En la definición anterior, se tiene que S_A es un anillo con cero el elemento (0, 0, ..., 0, ...) e inverso $-f = (-a_0, -a_1, ..., -a_k, ...)$ para todo $f \in S_A$. Además, existe un monomorfismo de A en S_A , a saber:

$$A \hookrightarrow S_A, a \mapsto (a, 0, ..., 0, ...)$$

Por lo cual A está encajado en S_A . Debido a esto, se denotará de ahora en adelante como

$$a = (a, 0, ..., 0, ...), \forall a \in A$$

Definición 1.1.2

Sean A y x un objeto tal que $x \notin A$. x es llamado una **indeterminada para** A. Definimos para todo $n \in \mathbb{N} \cup \{0\}$ y para todo $a \in A$:

$$ax^n = (\underbrace{0, 0, 0, ..., 0, 0, 0, a}_{n+1-\text{\'esima entrada}}, 0, ...)$$

Si A tiene identidad, entonces

$$1x^n = x^n = (\underbrace{0, 0, 0, ..., 0, 0, 0, 1}_{n+1-\text{\'esima entrada}}, 0, ...)$$

En caso que $n=1,\,1x^1=x^1=x$ y si $n=0,\,1x^0=x^0=1$ (abusando en este caso de la notación). Se tiene entonces que

$$x^n \in S_A, \quad \forall n \in \mathbb{N} \cup \{0\}$$