Grundbegriffe der Informatik Aufgabenblatt 3

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr.			Naı	ne des Tutors:	
Ausgabe:	11. No	ovember	2015			
Abgabe:	20. No). November 2015, 12:30 Uhr				
	im GE	BI-Briefk	asten	im l	Untergeschoss	
	von G	ebäude	50.34			
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet						
abgegeben werden.						
Vom Tutor auszufüllen:						
erreichte Punkte						
Blatt 3:			/	/ 18	(Physik: 18)	
Blätter 1 – 3:			/	/ 48	(Physik: 45)	

Aufgabe 3.1 (2 + 4 = 6 Punkte)

Die Zahlen x_n , $n \in \mathbb{N}_0$, seien induktiv definiert durch

$$x_0 = 0$$
, für jedes $n \in \mathbb{N}_+ \colon x_n = n - x_{n-1}$.

- a) Geben Sie die Zahlenwerte von x_1 , x_2 , x_3 und x_4 an.
- b) Beweisen Sie durch vollständige Induktion, dass für jedes $n \in \mathbb{N}_0$ gilt:

$$x_n = \begin{cases} \frac{n}{2}, & \text{falls } n \text{ gerade,} \\ \frac{n+1}{2}, & \text{falls } n \text{ ungerade.} \end{cases}$$

Aufgabe 3.2 (1 + 1 + 1 = 3 Punkte)

- a) Es sei w = 10011. Geben Sie $u = \text{Num}_2(w)$ und $v = \text{Num}_3(w)$ an.
- b) Geben Sie $\mu = \text{Repr}_3(285)$ und $\nu = \text{Repr}_9(285)$ an.
- c) Das Wort μ der vorangegangenen Teilaufgabe hat die Länge 6. Geben Sie $\xi = \operatorname{Repr}_9(\operatorname{Num}_3(\mu(0)\mu(1))) \cdot \operatorname{Repr}_9(\operatorname{Num}_3(\mu(2)\mu(3))) \cdot \operatorname{Repr}_9(\operatorname{Num}_3(\mu(4)\mu(5)))$ und $\zeta = \operatorname{Num}_9(\xi)$ an.

Erinnerung: Für jedes $i \in \mathbb{Z}_6$ ist $\mu(i)$ das i-te Zeichen des Wortes μ .

Aufgabe 3.3 (2 + 4 + 3 = 9 Punkte)

Die Abbildung I sei induktiv definiert durch

$$I: \{0,1\}^* \to \{0,1\}^*,$$
 $\epsilon \mapsto 1,$
 $w \cdot 0 \mapsto w \cdot 1, \text{ wobei } w \in \{0,1\}^*,$
 $w \cdot 1 \mapsto I(w) \cdot 0, \text{ wobei } w \in \{0,1\}^*.$

- a) Berechnen Sie $I(\epsilon)$, $I(I(\epsilon))$, $I(I(I(\epsilon)))$ und $I(I(I(I(\epsilon))))$.
- b) Beweisen Sie durch vollständige Induktion über die Wortlänge, dass für jedes $w \in \{0,1\}^*$ gilt:

Es gibt ein
$$i \in \mathbb{Z}_{|I(w)|}$$
 so, dass $(I(w))(i) = 1$.

Erinnerung: Für jedes $w \in \{0,1\}^*$ und jedes $i \in \mathbb{Z}_{|I(w)|}$ ist (I(w))(i) das i-te Zeichen des Wortes I(w).

c) Es sei $E = \{u \in \{0,1\}^* \mid \text{ es gibt ein } i \in \mathbb{Z}_{|u|} \text{ so, dass } u(i) = 1\}$. Nach der vorangegangenen Teilaufgabe gilt $I(w) \in E$ für jedes $w \in \{0,1\}^*$. Definieren Sie induktiv eine Abbildung $S \colon E \to \{0,1\}^*$ so, dass für jedes $w \in \{0,1\}^*$ gilt: $\operatorname{Num}_2(S(I(w))) = \operatorname{Num}_2(w)$.