สมาคมคนรักเลย์(ภาคโหด)

Memory Limit: <u>64 MB</u> / Time Limit: 1 sec. ****ข้ามเนื้อเรื่องไปเลยก็ได้นะ****

หลังจากที่คุณแก้โจทย์ใน otog ไม่สำเร็จ เพราะมัวงมหา bug แต่ก็ไม่เจอ (ทั้งๆที่จริงๆ คุณก็เขียนผิดอยู่ที่เดียว ก็แค่เปลี่ยน m เป็น n คุณก็จะได้คะแนน 100 เต็มแล้ว จากที่ไม่ได้ คะแนนเลย) คุณก็เลยขอพักก่อน กินขนมอร่อยๆดีกว่า แต่มีข่าวร้ายก็คือ มีโจทย์ใหม่มาอีกแล้ว

Puzz ชอบกินเลย์เป็นชีวิตจิตใจ เรียกได้ว่าแทนข้าวได้เลยทีเดียว และเขาเชื่อว่า ไม่ได้มีแค่ เขาคนเดียวแน่ที่ชอบกินเลย์ขนาดนี้ เขาเลยตามหาเพื่อนร่วมอุดมการณ์มาได้ถึง N คน และตั้ง สมาคมคนรักเลย์แห่ง otog ขึ้นมา โดยแต่ละคนมีเลขประจำตัวเป็น 1 ,2 ,3 ,... ,N

มีการแข่งขันกินเลย์นานาชาติเกิดขึ้นเป็นระยะๆ มีกติกาก็คือ ผู้เข้าแข่งขันจะต้องทานเลย์ ให้ได้จำนวนห่อมากที่สุดใน 2 ชั่วโมง ใครมากที่สุดก็จะชนะไป รับประกันว่าทุกห่อที่นำมาแข่ง มี ปริมาตรขนมรวมในแต่ละห่อเท่ากันเพื่อความยุติธรรม

Puzz ซึ่งเป็นประธานสมาคม จะต้องส่งคนในสมาคมไปแข่ง เขาเลือกที่จะส่งคนที่มี หมายเลขประจำตัว 1 – K เข้าร่วมการแข่งขัน แต่เขาอยากให้สมาคมชนะการแข่งขันในครั้งนี้ จึง ออกนโยบายว่า ในแต่ละวัน จะให้สมาชิกแต่ละคนซ้อมแข่ง จับเวลา 2 ชั่วโมงเช่นกัน แล้วทานให้ ได้มากที่สุด และจะบันทึกว่าใครทานได้กี่ห่อ ถ้าห่อไหนทานไม่หมดก็จะไม่นับห่อนั้น ทำเช่นนี้ทุก ๆ วัน เขาจะเก็บสถิติที่ดีที่สุดของแต่ละคนไว้ และถ้าสถิติการทานเลย์ของใครดีขึ้น ก็จะนำสถิตินั้น มาแทนสถิติเดิม

มีเหตุการณ์ 2 อย่าง เกิดขึ้นรวมกันทั้งหมด M เหตุการณ์ ดังนี้

B: มีสถิติใหม่เกิดขึ้น คือ คนที่ P ได้สถิติการกินใหม่เป็น S ห่อ <u>มากกว่าเดิมแน่นอน</u>

C : มีการแข่งขันกำลังจะเกิดขึ้น ซึ่ง Puzz จะส่งคนหมายเลข 1 ถึง K ไปแข่งขัน Puzz จะถามคุณว่า สถิติการทานเลย์ที่ดีที่สุดของคนที่ 1 ถึง K เป็นเท่าไหร่

ดังนั้น ก็อย่างที่โจทย์บอก นั่นก็คือ ในแต่ละครั้งที่เหตุการณ์ C เกิดขึ้น คุณจะต้องหาว่า สถิติการ กินที่ดีที่สุดของคนที่ 1 ถึง K เป็นเท่าไหร่ โดยในตอนแรก แต่ละคนจะมีสถิติที่ดีที่สุดเป็น 0

ข้อมูลนำเข้า

บรรทัดแรก รับจำนวนสมาชิก(N) และจำนวนเหตุการณ์ (M)

โดย 3 <= N <= 30,000 และ 1 <= M <= <u>1,000,000</u>

M บรรทัดต่อมา แต่ละบรรทัด รับตัวอักษรแทนชนิดของเหตุการณ์ (E_i) โดย $1{<}=i{<}=M$

ถ้า $E_i = B^*$ ให้รับค่าจำนวนเต็ม P_i และจำนวนเต็ม S_i

โดยที่ 1 <= P_i <= N , 0 < S_i \leq = 2^{64}

ถ้า E_i = "C" ให้รับค่าจำนวนเต็ม K_i โดยที่ $1 <= K_i <= N$

ข้อมูลส่งออก

จำนวนบรรทัด เท่ากับจำนวนเหตุการณ์ C แต่ละบรรทัด แสดงคำตอบ(ค่าสถิติที่ดีที่สุดในบรรดา K คนแรกในขณะนั้น)

ตัวอย่าง

INPUT	OUTPUT
5 5	3
В 2 3	0
B 4 5	
C 3	
C 1	
В 1 9	

อธิบาย

เหตุการณ์	INPUT	1	2	3	4	5	OUTPUT
0		0	0	0	0	0	
1	B 2 3	0	3	0	0	0	
2	B 4 5	0	3	0	5	0	
3	C 3	0	3	0	5	0	Max[1,3] = 3
4	C 1	0	3	0	5	0	Max[1,1] = 0
5	B 1 9	9	3	0	5	0	