Les calculatrices sont autorisées.

N.B. Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Ce problème porte sur l'étude d'une suite double et de différents contextes dans lesquels on retrouve cette suite.

On désigne par N l'ensemble des entiers naturels, par N* l'ensemble N privé de 0, par Z l'ensemble des entiers relatifs et par R l'ensemble des nombres réels.

Pour $n \in \mathbb{N}$, on note [0, n] l'ensemble des entiers naturels k tels que $0 \le k \le n$.

On note $M_{n+1}(\mathbf{Z})$ l'anneau des matrices carrées d'ordre n+1 à coefficients dans \mathbf{Z} . Pour $M \in M_{n+1}(\mathbf{Z})$, on note $M = \left(m_{p,q}\right)_{(p,q) \in [0,n]^2}$ où $m_{p,q}$ est l'élément de la ligne p et de la colonne q. Par exemple $M \in M_2(\mathbf{Z})$ sera noté $M = \begin{pmatrix} m_{0,0} & m_{0,1} \\ m_{1,0} & m_{1,1} \end{pmatrix}$.

Pour $M \in M_{n+1}(\mathbf{Z})$, on note $\det(M)$ le déterminant de M et com(M) la comatrice de M.

 $\mathbf{R}[X]$ désigne l'espace des polynômes à coefficients réels et, pour $n \in \mathbf{N}$, $\mathbf{R}_n[X]$ désigne le sous-espace de $\mathbf{R}[X]$ des polynômes de degré inférieur ou égal à n.

Les parties **II**, **III** et **IV** de ce problème sont indépendantes entre elles ; seule la suite étudiée dans la partie **I** apparaît dans une question de chacune de ces parties.

PARTIE I

On définit la suite double de nombres réels $(a_{p,q})_{(p,q)\in\mathbb{N}^2}$ par :

- (i) $a_{0,0} = 1$
- (ii) pour tout $p \in \mathbb{N}^*$, $a_{p,0} = 0$
- (iii) pour tout $q \in \mathbf{N}^*$, $a_{0,q} = 0$
- (iv) pour tout $(p,q) \in \mathbb{N}^2$, $a_{p+1,q+1} = a_{p,q} + (p+1)a_{p+1,q}$.

La considération d'un tableau, dans lequel les $a_{p,q}$ sont disposés avec p indice de ligne et q indice de colonne, pourra se révéler d'une utilité certaine.

- **I.1.** Pour $q \in \mathbb{N}$, calculer $a_{1,q}$.
- **I.2.** Calculer $a_{2,1}$ et $a_{2,2}$.
- **I.3.** Pour $q \ge 2$, exprimer $a_{2,q}$ en fonction de $a_{2,q-1}$. En déduire la valeur de $a_{2,q}$.
- **I.4.** Pour $p \in \mathbb{N}$, on considère la propriété P_p : "pour tout $q \in \mathbb{N}$, on a $a_{p,q} \in \mathbb{N}$ ". Montrer que pour tout $p \in \mathbb{N}$, la propriété P_p est vraie.
- **I.5.** Pour p > q, calculer $a_{p,q}$.
- **I.6.** Pour $p \in \mathbb{N}$, calculer $a_{p,p}$.
- **I.7.** Pour $n \in \mathbb{N}$, on désigne par A_n la matrice carrée d'ordre n+1 (c'est-à-dire à n+1 lignes et à n+1 colonnes), dont le terme de la ligne p et de la colonne q est $a_{p,q}$, pour tout $(p,q) \in [0,n]^2$.

Expliciter les matrices A_2 , A_3 , A_4 et A_5 .

PARTIE II

Dans cette partie, n désigne un entier naturel.

- **II.1.** Soit $M = (m_{p,q}) \in M_{n+1}(\mathbf{Z})$.
 - **II.1.1.** Montrer que $\det(M) \in \mathbb{Z}$.
 - **II.1.2.** Montrer que $com(M) \in M_{n+1}(\mathbf{Z})$.
- **II.1.3.** On rappelle qu'une matrice M est inversible dans $M_{n+1}(\mathbf{Z})$ si et seulement si M^{-1} existe et appartient à $M_{n+1}(\mathbf{Z})$. Montrer que M est inversible dans $M_{n+1}(\mathbf{Z})$ si et seulement si $\det(M) = \pm 1$.
- **II.2.** On définit la suite $(B_p)_{p\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$ par : $B_0=1$ et pour $p\in\mathbb{N}^*$, $B_p=\prod_{j=0}^{p-1} (X-j)$.
- **II.2.1.** Montrer que $(B_0, B_1, ..., B_n)$ est une base de l'espace vectoriel $\mathbf{R}_n[X]$; on notera (B) cette base.

On note (X) la base canonique $(1, X, ..., X^n)$ de $\mathbf{R}_n[X]$.

On note P_n la matrice de passage de la base (X) à la base (B) et Q_n la matrice de passage de la base (B) à la base (X).

- **II.2.2.** On prend n = 4, expliciter les matrices P_4 et Q_4 .
- II.2.3. Montrer que P_n est une matrice triangulaire supérieure à coefficients dans \mathbb{Z} .
- **II.2.4.** Calculer $\det(P_n)$.
- II.2.5 Montrer que Q_n est une matrice triangulaire supérieure à coefficients dans \mathbb{Z} .

On note
$$Q_n = (\beta_{p,q})_{(p,q) \in [0,n[]^2}$$
. Pour tout $q \in [0,n[],$ on a donc $X^q = \sum_{p=0}^q \beta_{p,q} B_p$.

- **II.2.6.** En donnant à X des valeurs particulières, déterminer les coefficients $\beta_{0,q}$, $\beta_{1,q}$, $\beta_{2,q}$ pour $q \in [0,n]$.
 - **II.2.7.** Montrer que $Q_n = A_n$ où A_n est la matrice définie au **I.7**.

PARTIE III

On note F l'espace vectoriel réel des applications de classe C définies sur $]0,+\infty[$ et à valeurs dans $\mathbf R$. On définit l'application ϕ de F dans F par :

$$\phi(f) = g$$
 où $g(x) = xf'(x)$.

Pour $q \in \mathbb{N}^*$, on note $\phi^q = \phi \circ \phi^{q-1}$; ainsi $\phi^2 = \phi \circ \phi$ (par convention: $\phi^0 = id_F$).

- III.1. Vérifier que ϕ est un endomorphisme de F. Est-il surjectif ? Est-il injectif ? Préciser le noyau de ϕ .
- III.2. Déterminer les vecteurs propres et les valeurs propres de ϕ .
- III.3. Pour $f \in F$, expliciter $\phi^2(f)$. Déterminer le noyau de ϕ^2 et en donner une base.
- **III.4.** Soit $n \in \mathbb{N}^*$. Montrer qu'il existe des entiers $d_{p,q}$ tels que, pour tout $q \in [1,n]$ et tout $f \in F$, on ait la relation : pour tout x dans $]0,+\infty[$, $\phi^q(f)(x)=\sum_{p=1}^q d_{p,q}x^pf^{(p)}(x)$, où $f^{(p)}$ est la dérivée p-ième de f.

On admet que cette décomposition est unique.

III.5. On convient que $d_{0,0}=1$ et que, pour $p \in \mathbb{N}^*$ et $q \in \mathbb{N}^*$, $d_{p,0}=d_{0,q}=0$ et $d_{p,q}=0$ si p>q.

Montrer que pour tout $(p,q) \in [1,n[]^2$, on a $d_{p,q} = a_{p,q}$, où les $a_{p,q}$ sont les termes définis dans la partie \mathbf{I} .

PARTIE IV

- **IV.1** Soit φ la fonction définie sur **R** par $\varphi(t) = \exp((\exp t) 1)$, où exp est la fonction exponentielle.
 - **IV1.1.** Déterminer le développement limité de φ à l'ordre 4 en t = 0.
 - **IV1.2.** Pour *n* variant de 1 à 4, en déduire la valeur de la dérivée n-ième de φ en 0.

Soit E un ensemble de cardinal n, $n \in \mathbb{N}$. On appelle partition de E, tout ensemble de parties non vides de E, deux à deux disjointes, dont la réunion est E. Chaque partie de la partition s'appelle une classe.

- **IV.2.** Pour tout entier $j \in \mathbb{N}^*$, on note P_n^j le nombre de partitions de E en j classes. Par convention, on note $P_0^0 = 1$ et, pour tout $n \in \mathbb{N}^*$ et $j \in \mathbb{N}^*$, $P_n^0 = P_0^j = 0$.
 - **IV.2.1.** Pour j > n, calculer P_n^j .
 - **IV.2.2.** Calculer P_n^1 et P_n^n pour $n \in \mathbb{N}^*$.
- **IV.2.3.** On suppose $j \ge 2$ et $n \ge 1$. Soit $a \in E$. En distinguant parmi les partitions de E en j classes, celles pour lesquelles le singleton $\{a\}$ est une classe de la partition, justifier l'égalité $P_n^j = P_{n-1}^{j-1} + jP_{n-1}^j$.
- **IV.2.4.** En déduire que pour tout $(j,n) \in \mathbb{N}^2$, on a $P_n^j = a_{j,n}$, les $a_{j,n}$ étant les termes définis dans la partie **I**.
- **IV.3.** On note P_n le nombre de partitions de E. Par convention $P_0 = 1$.
- **IV.3.1.** Pour n variant de 1 à 4, calculer P_n et comparer P_n à $\varphi^{(n)}(0)$ où φ est la fonction définie en **IV.1.**
 - **IV.3.2.** Exprimer P_n à l'aide des P_n^j . Dans la suite, on admettra la formule
 - (1) $P_{n+1} = \sum_{k=0}^{n} C_n^k P_k$ où les C_n^k sont les coefficients du binôme.
 - **IV.3.3** Montrer que pour tout $n \in \mathbb{N}$ on a $P_n \le n!$
- **IV.4** Pour $x \in \mathbf{R}$, on note $s(x) = \sum_{n=0}^{+\infty} \frac{P_n}{n!} x^n$ lorsque la série converge.
 - IV.4.1. Déduire de IV.3.3. que le rayon de convergence de la série est supérieur ou égal à 1.
- **IV.4.2.** Montrer à l'aide de (1) que pour |x| < 1, on a $s'(x) = s(x) \exp x$ (on pourra développer en série entière $\exp x$ et utiliser le produit de Cauchy de deux séries entières).
 - **IV.4.3.** En déduire s(x).
 - **IV.4.4.** Montrer que pour tout $n \in \mathbb{N}$, on a $P_n = \varphi^{(n)}(0)$.

Fin de l'énoncé.