Harmonic points

Jongmin Lim

June 16, 2025

1 Warm up

- 1. On $\triangle ABC$, let D be a point on BC such that AD is the internal angle bisector of $\angle BAC$. Show that AB/AC = DB/DC.
- 2. Let E be a point on BC such that AE is the external angle bisector of $\angle BAC$. Show that AB/AC = EB/EC.
- 3. Let X be a random point on line BC. Show that $\frac{AB\sin BAX}{AC\sin CAX} = \frac{XB}{XC}$.

2 Harmonic points

Definition. A, X, B, Y are harmonic points on a line if AX/BX = AY/BY.

- 1. (Apollonious circle) Let A, B be fixed points. Choose a number r > 1. Let the locus of P such that AP/BP = r be γ . Show that γ is a circle.
- 2. In the above diagram, let line AB meet γ at points X,Y. Show that A,X,B,Y are harmonic.
- 3. In this diagram, let AT be a tangent to γ . Show that $AB \perp BT$.
- 4. Using this diagram, show that in general, if A, X, B, Y are harmonic points and if M is the midpoint of XY,
 - (a) Show that $XM^2 = MA \times MB$.
 - (b) Show that $AX \times AY = AB \times AM$
 - (c) Show that $BX \times BY = BA \times BM$
- 5. On this diagram again, choose a point B_0 on segment BT. Let AB_0 meet the circle again at X_0 and Y_0 . Show that A, X_0, B_0, Y_0 is harmonic.
- 6. Let X be a point in the interior of $\triangle ABC$. Let AX, BX, CX intersect the sides of $\triangle ABC$ again at D, E, F respectively. Let $EF \cap BC = T$. Show that B, D, C, T is harmonic.

3 Harmonic Pencil

Definition. For four points on the line A, X, B, Y, a cross ratio is the value (AX/BX)/(AY/BY).

- 1. In general, let A, X, B, Y be harmonic points on line ℓ_0 and let J be a point not on the line.
 - (a) Show that the cross ratio of AXBY is independent of the lengths JA, JX, JB, JY, but only on the angles $\angle AJX, \angle XJB, \angle BJY$.
 - (b) Draw another line ℓ_1 such that AJ, XJ, BJ, YJ meets ℓ_1 at A_1, X_1, B_1, Y_1 . Show that A_1, X_1, B_1, Y_1 are harmonic.
 - (c) Let Γ be a circle passing through J. Let AJ, BJ, XJ, YJ meet the circle at A_2, X_2, B_2, Y_2 . Then A_2, X_2, B_2, Y_2 are harmonic, that is, $A_2X_2/B_2X_2 = A_2Y_2/B_2Y_2$ (line segment lengths).
- 2. Consider triangle PAB and let X be the midpoint of side AB. Let $PY \parallel AB$. Show that PA, PB, PX, PY is a harmonic pencil.
- 3. Let BT, DT be tangents to the circumcircle of $\triangle ABD$. Let AT meet the circle again at C.
 - (a) Show that AB/BC = AD/CD.
 - (b) Let the circle centred at T with radius BT = DT meet lines AB, AD again at E, F. Show that E, T, F are colliear.
 - (c) Let M be the midpoint of BD. Show that $\triangle ABM \sim \triangle AFT$. Thus, show that AT is a symmedian of $\triangle ABD$.
- 4. Show that a cyclic quadrilateral ABCD is harmonic if and only if A, C, T are collinear, where T is the intersection of the tangents at B, D. Show that ABCD is harmonic if and only if AC is a symmetrian of $\triangle ABD$.

3.1 Example

1. Let ABCD be a cyclic quadrilateral with $AB \cap CD = X$, $AD \cap BC = Y$, $AC \cap BD = Z$. Show that XB, XC, XZ, XY is a harmonic pencil.

4 Harmonics and inversions

- 1. Let X be a point outside circle γ . Let $A, B \in \gamma$ such that X, A, B collinear. Let the intersection of XA and the pole of X be Y. Then XAYB is harmonic.
- 2. Let A, B, C, D be on a line ℓ and AB/BC = AD/DC. Let X be a point not on ℓ . Show that the inversion of A, B, C, D forms a cyclic harmonic quadrilateral.
- 3. Let A, B, C, D be a cyclic harmonic quadrilateral. Let X be a point on the circle. Show that the inversion of A, B, C, D forms harmonic points on a line.

4. Let A, B, C, D be a cyclic harmonic quadrilateral. Let X be a point not on the circle. Show that the inversion of A, B, C, D forms a cyclic harmonic quadrilateral.

4.1 Example

- 1. Let ABCD be a quadrilateral with an inscribed circle ω which is tangent to the sides AB, BC, CD, DA at points P, Q, R, S respectively. We want to show that AC, BD, PR, QS meet at one point.
 - (a) Let $PR \cap QS = X$. Let CX meet the circle again at points G and H. Show that QGRH a harmonic quadrilateral.
 - (b) Describe an inversion which maps $P \to R$, $Q \to S$.
 - (c) Show that A, C, G, H collinear.

5 Harmonic points in the Big diagram

- 1. (The Big Diagram) Let ABCD be a cyclic quadrilateral on circle ω with centre O. $AB \cap CD = X$, $AD \cap BC = Y$, $AC \cap BD = Z$. Let K be the inversion of Z over ω . Let $XZ \cap AD = P$, $XZ \cap BC = Q$.
 - (a) Show APDY harmonic. Show BQCY harmonic.
 - (b) Hence show that Y is the pole of XZ.
 - (c) Hence show that XY is the pole of Z.
 - (d) Show that BODK, AOCK is cyclic.
 - (e) Show that OK is the angle bisector of $\angle AKC$.
 - (f) Show that XADK, XBCK, YKAB, YKDC cyclic.
 - (g) Show that K is the Miquel point of ABCD.
- 2. Let ABCD be a quadrilateral with an inscribed circle ω which is tangent to the sides AB, BC, CD, DA at points P, Q, R, S respectively.
 - (a) Show that AC, PQ, RS concurrent. Show that they concur at the pole of BD.
 - (b) Let $PR \cap QS = Z$. What is the polar of Z?
 - (c) Hence prove again that AC, BD, PR, QS are concurrent.
- 3. (Butterfly theorem) Consider a cyclic quadrilateral ABCD on circle ω and centre O and let $AC \cap BD = Z$. Choose a line $\ell \perp OZ$ passing through Z. Let $\ell \cap AD = P$, $\ell \cap BC = Q$. Show that PZ = QZ.