

Applications of & Introduction to Artificial Intelligence

Support Vector Machines for Image Recognition

Technische Hochschule Rosenheim Sommer 2020 Prof. Dr. J. Schmidt

Motivation

- assume two linearly separable classes
- compute linear decision boundary that
 - allows for separation of training data
 - generalizes well

Motivation

Many, many solutions...

Optimal Separating Hyperplane

Vapnik 1996: Optimal separating hyperplane that

- separates two classes and
- maximizes the distance to the closest point from either class.

This results in

- unique solution for hyperplanes, and
- (in most cases) better generalization.

Optimal Separating Hyperplane

- Plane equation: $f(x) = w^T x + w_0$
 - normal vector: w

point on plane:

$$f(\mathbf{x}) = 0$$

 \bullet point above plane: f(x) > 0

$$f(\mathbf{x}) > 0$$

 \bullet point below plane: f(x) < 0

$$f(\mathbf{x}) < 0$$

"above" = in direction of plane normal

- Signed distance *d* of a point to hyperplane
 - normalize w, such that |w| = 1:

$$d = p(\mathbf{x}) = \frac{1}{|\mathbf{w}|} f(\mathbf{x}) = \frac{1}{|\mathbf{w}|} \mathbf{w}^T \mathbf{x} + \frac{1}{|\mathbf{w}|} w_0$$

distance of plane from origin: $-\frac{1}{|w|}w_0$

SVM – Classification

- \triangleright data point: x_i
- ▶ class of data point x_i is $y_i \in \{-1, +1\}$
- ightharpoonup Classifier: $g(x_i) = \operatorname{sgn}(\mathbf{w}^T x_i + w_0)$

- > Functional margin of x_i : $y_i (\mathbf{w}^T \mathbf{x}_i + w_0)$
 - + can be increased/decreased by scaling plane equation
 - \Rightarrow scale such that support vectors have distance -1/+1
- Functional margin for data set: 2x minimum functional margin of all points: $\frac{2}{|w|}$

SVM – Training

Training =

- ϕ find hyperplane maximizing the margin $\frac{2}{|w|}$
 - subject to constraint y_i ($\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0$) ≥ 1 for all data points
- \bullet instead of plane equation, only support vectors x_i and their corresponding Lagrange multipliers λ_i are required

Remarks

- Details of training algorithm are not discussed here
- this is a convex optimization problem
 - local optimum is always a global one solution is unique
- there exist efficient algorithms for convex optimization

SVM - Classification with threshold

Classification:

$$g(\mathbf{x}) = \sum_{i} \lambda_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x} + w_{0}$$

inner (scalar) product

- Classification without threshold
 - decide for class based on g(x) < 0 or g(x) > 0
- Classification with confidence threshold t

$$+ g(x) < -t$$
:

$$+ g(x) > t$$
:

$$+ -t < g(x) < t$$
: reject

Hard and Soft Margin Problem

data are not linearly separable in this case

- allow some errors
 - allow miss-classification of difficult or noisy samples

Kernels / Non-linear Boundaries

- Limitations of linear decision boundaries
 - too simple for most practical purposes
 - non-linearly separable data cannot be classified
 - noisy data cause problems

Possible solution

Map data to higher dimensional feature space using non-linear

feature transform,

then use a linear classifier

Feature Transforms

Select a feature transform $\phi \colon \mathbb{R}^d \to \mathbb{R}^D$ such that the resulting features $\phi(x_i)$ are linearly separable.

Applied feature transform in example: $\phi(x_i) = (x_1^2, x_2^2)^T$

Kernel-Trick

The feature transforms can be easily incorporated into SVMs:

Replace
$$x_i^T x$$
 by $\phi^T(x_i)\phi(x) = \langle \phi(x_i), \phi(x) \rangle$ volume $\langle \cdot \rangle$ notation for inner product

Classification/Decision boundary:

$$g(\mathbf{x}) = \sum_{i} \lambda_{i} y_{i} \phi^{T}(\mathbf{x}_{i}) \phi(\mathbf{x}) + w_{0} = \sum_{i} \lambda_{i} y_{i} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle + w_{0}$$

- in SVM training/classification, data appear only in the form of inner products $\langle \phi(x_i), \phi(x_j) \rangle$
- > a Kernel-function is a function computing this inner product directly:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

- ϕ i.e., without first transforming the features using $\phi(x)$
- it can be computed in the original low-dimensional space!

Common Kernel Functions

Linear:

$$K(x_i, x_j) = \langle x_i, x_j \rangle$$

Polynomial:

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + 1)^a$$

Laplacian radial basis function (RBF):

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\left\|\mathbf{x}_i - \mathbf{x}_j\right\|_1}{\sigma^2}}$$

Gaussian radial basis function (RBF):

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = e^{-\frac{\left\|\boldsymbol{x}_i - \boldsymbol{x}_j\right\|_2^2}{\sigma^2}}$$

> Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\alpha \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \beta)$$

Multiclass-SVM

- split into multiple binary classifications
- one-vs-all
 - one binary SVM per class, separating this class from all others
 - winner-takes all strategy (winner = class with highest value)
- one-vs-one
 - train binary SVMs for each pair of classes
 - each SVM votes: max-wins strategy
- SVMs in scikit-learn:
 - https://scikit-learn.org/stable/modules/svm.html

Н

Features for Image Recognition

- Pre-Processing (depending on input and application)
 - conversion to gray-scale
 - reduce noise (Median, low-pass filter)
 - compute edge images (Sobel, Laplace, Canny)
 - segmentation of relevant objects
 - resize/crop images (all of same size)

Н

- Normalization (only parameters irrelevant to class!)
 - position and/or orientation of relevant objects in image
 - size of objects in image
 - illumination(e.g. same mean gray value/variance)
 - subtract mean image of training data set

Features for Image Recognition

- feed in (pre-processed) image pixels
 - convert to vector (row-wise or column-wise) 2D neighborhood information is lost
 - pre-processing: at least subtract mean image vector of training set
- compute features from image
 - and collect these in a feature vector
 - more is not necessarily better!
 - apply feature normalization if necessary (e.g. z-Score)
 - many possibilities
 - example: use first n coefficients of orthogonal transformation
 - Discrete Fourier Transform (DFT)
 - Discrete Cosine Transform (DCT)
 - Principal Component Analysis (PCA)
 - Discrete Wavelet-Transforms (DWT)

Discrete Cosine Transform (DCT)

Computation of a 1D DCT for N-dimensional input vector *f*

$$c = \Phi f$$

with
$$\Phi_{jk} = \sqrt{\frac{2}{N}} \cos\left(\frac{\pi}{N}\left(j + \frac{1}{2}\right)\left(k + \frac{1}{2}\right)\right)$$

DCT is separable, i.e., for an image:

- 1. transform column vectors
- transform transformed rows (or vice versa)

- Matrix Φ
 - is square (size defined by input vector f)
 - is orthogonal, i.e.

$$\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} = \boldsymbol{I}$$
$$\boldsymbol{\Phi}^{-1} = \boldsymbol{\Phi}^{\mathrm{T}}$$

- widely used
 - e.g. in JPEG as 8x8 DCT
- note:
 - there are other variants in use, e.g., where the orthogonality does not hold

$$\Phi_{jk} = \cos\left(\frac{\pi}{N}\left(k + \frac{1}{2}\right)j\right)$$

fast algorithms available

DCT – Frequencies

concentrates energy in low order coefficients

DCT, logarithmic scale – fully invertible

DCT – Selecting Coefficients

For 2D transformation: Select coefficients as features Use frequencies in horizontal/vertical direction equally: Zig-Zag-Scan

DCT – Examples

inverse DCT (full)

inverse DCT (using first 25% of DCT coefficients)

DCT – Examples

Inverse (10% of coefficients)

Inverse (1000 coefficients)

Inverse (100 coefficients)

References

slides based on

- slides of the lecture Pattern Recognition taught at the FAU Erlangen-Nuremberg, courtesy of D. Hahn, J. Hornegger, S. Steidl and E. Nöth.
- Ray Mooney: Support Vector Machines. Slides, University of Texas at Austin.
- Ch. Manning, P. Nayak: Introduction to Information Retrieval, Lecture 14: Support vector machines and machine learning documents. Stanford University.