$^{\prime}$ الموسم الدراسي :

القسم: 2 تقني رياضي -

تمارين حول العمل والطاقة الحركية .

التمرين الاول:

نترك كرية كتلتها m=1kg تسقط سقوطا حرا بدون سرعة ابتدائية من نقطة A تقع على بعد 2m من نقطة أخرى Bأسفلها ثم تواصل حركتها على مستوى مائل على الأفق بزاوية $\alpha=30^\circ$ وطوله BC=3m بعد ذلك تكمل سيرها على طريق أفقي CD.

- 1- مثل الحصيلة الطاقوية للجملة (كرية) بين الوضعين A و B ، ثم اكتب معادلة انحفاظ الطاقة .
 - أحسب سر عتها عند B.
 - (BC) على طول المسار (BC) على طول المسار (BC) .
- باستعمال نظرية الطاقة الحركية اوجد عبارة السرعة عند C ثم احسبها .
 - . CD تتوقف الكرة عند النقطة D . احسب المسافة

$$g = 10N/kg$$

التمرين الثاني

- ينتقل متزحلق ثقله P=600~N على مستو ثلجي مستقيم يصنع مع الأفق زاوية $lpha=10^\circ$ ويتحرك على المستوي A، حيث ينطلق من الموضع A بدون سرعة ابتدائية يخضع المتزحلق الى قوى احتكاك مع الثلج والهواء محوصلة فى قوة f
 - 1- ما هي القوى المطبقة على المتزحلق عند انتقاله من A الى B ثم مثلها على الشكل .
 - 2- اذا كانت قيمة طويلة قوة الاحتكاك مساوية لـ f=100~N على المتزحلق.
 - 3- استنتج قيمة الطاقة الحركية وسرعة المتزحلق عند الموضع B.
 - ينزل الآن المتزحلق بدون احتكاك ابتداء من B على منحدر جليدي ثان B مائل بـ30 بالنسبة لسطح الارض أـ مثل الحصيلة الطاقوية للمتزحلق بين B و C.
 - ب- استنتج عمل قوة الثقل عند انتقال المتزحلق من B الى C.

ج- اوجد سرعة المتزحلق عند الموضع C.

g=10 N/Kg; AB = BC = 100 m

التمرين الثالث :

لتعيين شدة قوة الاحتكاك \vec{f}_r التي تعيق حركة جسم صلب (S') كتلته $m=400\,g$ ينتقل على سطح طاولة أفقية كبيرة ، نقوم بالتجربة التالية :

نعطى للجسم (S') سرعة ابتدائية معلومة \vec{v}_0 ، فينتقل على سطح الطاولة ليقطع مسافة AB=d قبل أن يتوقف عن الحركة .

. d الذي يمثل تغيرات مربع السرعة الابتدائية بدلالة المسافة المقطوعة $v_0^2 = f(d)$ الذي يمثل تغيرات مربع السرعة الابتدائية بدلالة المسافة المقطوعة

- (S') مثل القوى الخارجية المؤثرة على الجسم -1
- . $(f_r\,,d\,,m)$ بدلالة $v_0^2\,$ بعطيق التي تعطي ، أوجد العلاقة ، أوجد العلاقة . -2
 - .2 أوجد شدة القوة \vec{f}_r مستعينا بالبيان و العلاقة النظرية المستخرجة في السؤال 2.

التمرين الرابع

 $\alpha=30^{\circ}$ من النقطة A بدون سرعة ابتدائية على مستوى مائل طوله $\Delta B=2~m$ وزاوية ميله m=400~g مع m=400~g

الأفق يخضع الجسم بين النقطتين A و B لقوة احتكاك \overrightarrow{f} معاكسة لاتجاه الحركة قيمتها f=0,4N

AB على الجسم عندما يتحرك على \overrightarrow{P} أمثل القوى المطبقة على الجسم عندما يتحرك على \overrightarrow{P} أحسب بين A و B عمل كل من الثقل

1. أ) مثل الحصيلة الطّاقوية للجسم بين A و B ثم أكتب معادلة انحفاظ الطاقة D ب) أحسب الطاقة الحركية للجسم عند الموضع D.

 $\, . \, B \,$ استنتج سرعة الجسم عندما يصل إلى النقطة

B. يغادر الجسم النقطة B ليسقط على النقطة D (أنظر الشكل) . D مثل الحصيلة الطاقوية للجملة (جسم) بين النقطتين D و D) أكتب معادلة انحفاظ الطاقة .

. $v_{_D} = 10 m \, / \, s$ يصل الجسم إلى النقطة D بسرعة قيمتها

. $h\!=\!BC$ استنتج الارتفاع

و قوة الاحتكاك \overrightarrow{f}

g=10N/kg نهمل تأثير الهواء ونأخذ

التمرين الخامس

 $g=10\,SI$: نعتبر في هذا التمرين أن الاحتكاكات مهملة، و قيمة الجاذبية الأرضية هي

R=80cm يتحرك جسم كتلته m على مسار دائري أملس نصف قطره m حيث ينطلق ابتداء من الموضع A بدون سرعة ابتدائية ليمر بالموضع d المحدد بالزاوية d .

- $\sin\theta$ بدلالة (جسم) للجملة Ec الحركية الطاقة الحركية على المنحنى المقابل :
 - 1- مثل الحصيلة الطاقوية للجملة (جسم) بين الموضعين M و A ، ثم اكتب معادلة انحفاظ الطاقة .
 - . θ والزاوية R والزاوية θ .
- R و θ , m , g بدلالة M بدلالة الحركية عند الموضع θ , m , g
 - m بالاستعانة بالبيان و العبارة السابقة اوجد قيمة الكتلة m

حل التمرن الاول:

1- تمثيل الحصيلة الطاقوية:

- معادلة انحفاظ الطاقة :

$$Ec_A + w_p = Ec_B$$

- السرعة عند B:

$$Ec_A + w_p = Ec_B \implies m g h = \frac{1}{2} m v_B^2 \implies 2g h = v_B^2$$
$$v_B = \sqrt{2g h} = \sqrt{2 \times 10 \times 2} = 6.32 m/s$$

2- عبارة السرعة:

$$h' = BC \sin \alpha$$

$$v_C = \sqrt{\frac{m \ g \ BC \ \sin \alpha - f \times BC + \frac{1}{2} \ m \ v_B^2}{\frac{1}{2} \ m}} = \sqrt{\frac{1 \times 10 \times 3 \times \sin 30^\circ - 5 \times 3 + 0.5 \times 1 \times (6.32)^2}{0.5 \times 1}}$$

$$v_C = 6.32 \, m/s$$

- حساب المسافة DC

$$\Delta Ec = \sum w$$

$$Ec_D - Ec_C = +w_f \implies -\frac{1}{2} m v_C^2 = -f \times CD$$

$$\implies CD = \frac{-\frac{1}{2} m v_C^2}{-f} = \frac{0.5 \times 1 \times (6.32)^2}{5} = 4m$$