Week 3: Classification

Classification with Logistic Regression

- → Motivations
 - ◆ In classification, y can only be a small range of possible values

Question	Ansv	ver "y"
Is this email spam?	no	yes
Is the transaction fraudulent?	no	yes
Is the tumor malignant?	no	yes

- In this case, y can only be one of two values → binary classification
- Common y values
 - Could be no or yes/false or true/0 or 1 (all of these refer to the same things
 - ◆ 0 is referred to as the negative class, while 1 is referred to as the positive class
- ◆ In classification, class = category (terminology)
 - Can be used interchangeably
- ◆ Could you apply linear regression to classification algorithms?
 - Example:

O Could have a best fit line like this:

- Linear regression does not only predict the values of 0 and 1; it predicts all values → our goal though is to predict categories
 - Could use a threshold approach

o if
$$f_{w,b}(x) < 0.5 \rightarrow \hat{y} = 0 (not malignant)$$

o if
$$f_{w,b}(x) \ge 0.5 \rightarrow \hat{y} = 1 (malignant)$$

But this doesn't work for all training sets

- If we add one more training example to the right of the graph, then doesn't work anymore as some malignant training examples will be classified as 0 as the output (some values are misclassified)
- → Logistic Regression
 - Classification algorithm

◆ Example Data Set:

• Fits an S sized curve to the data → different threshold than linear regression

◆ Sigmoid Function / Logistic Function

• Outputs values between 0 and 1

$$0 g(z) = \frac{1}{1+e^{-z}}$$
 where $0 < g(z) < 1$

- ♦ When z is large \rightarrow the value of g(z) will be close to 1
- ♦ When z is small \rightarrow the value of g(z) will be close to 0
- ◆ Logistic Regression Algorithm
 - Start with $z = \vec{w} \cdot \vec{x} + b$

$$\circ \rightarrow \text{pass it to } g(z) = \frac{1}{1+e^{-z}}$$

 $lack \rightarrow$ when combined they give you the logistic regression model

$$f_{\vec{w},b}(x) = g(\vec{w} \cdot \vec{x} + b) = g(z) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

- Interpeting the output
 - "Probability" the class is $1 = P(y = 1|x; \vec{w}, b)$
 - Equation means the probability y = 1 given x and the parameters \vec{w} and b
 - o Example:

$$f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}) = 0.7$$

◆ Model thinks there is a 70% chance that y is 1 for this patient

- 30% chance that y is 0 for this patient
- → Decision Boundary
 - ◆ You want the learning algorithm to decide whether to assign the y value 0 or 1

- Could set threshold
 - O Common choice to set threshold = 0.5

$$\bullet \quad \Rightarrow = \vec{w} \cdot \vec{x} + b < 0$$

$$\bullet = g(z) \ge 0.5$$

$$\bullet = z \ge 0$$

$$\bullet = \vec{w} \cdot \vec{x} + b \ge 0$$

- ◆ How does the model make a prediction?
 - Example with two features:

 $\circ \rightarrow$ Will use this model: $f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$

Pretend:

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$$

- $\bullet \quad z = x_1 + x_2 3$
- Look at when $z = \vec{w} \cdot \vec{x} + b = 0$
 - O This line when z = 0 is referred to as the

decision boundary

- ◆ Neutral about y being 0 or 1
- o For what x values is $z = x_1 + x_2 3 = 0$?

- → Results in the purple line (decision boundary)
- If to the right of the line → algorithm predicts 1
- If to the left of the line \rightarrow algorithm predicts 0

Non-linear decision boundaries

• You could use polynomials to get decision boundaries

$$\circ \quad \text{Set } g(z) = w_1 x_1^2 + w_2 x_2^2 + b$$

Pretend

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(\underbrace{w_1 x_1^2 + w_2 x_2^2 + b}_{1})$$

• $\rightarrow z = x_1^2 + x_2^2 - 1 = 0$ to get decision boundary o $\rightarrow x_1^2 + x_2^2 = 1$

◆ You get the following boundary

To get more complex boundaries, you can use higher order polynomial terms

Practice Quiz: Classification with Logistic Regression

1. Which is an example of a classification task?

1 point

- O Based on a patient's blood pressure, determine how much blood pressure medication (a dosage measured in milligrams) the patient should be prescribed.
- O Based on a patient's age and blood pressure, determine how much blood pressure medication (measured in milligrams) the patient should be prescribed.
- Based on the size of each tumor, determine if each tumor is malignant (cancerous) or not.
- **2.** Recall the sigmoid function is $g(z)=rac{1}{1+e^{-z}}$

1 point

sigmoid function

If z is a large positive number, then:

- $\bigcirc \ g(z)$ will be near 0.5
- $\bigcirc \ g(z)$ is near negative one (-1)
- $\bigcirc g(z)$ will be near zero (0)

A cat photo classification model predicts 1 if it's a cat, and 0 if it's not a cat. For a particular photograph, the logistic regression model outputs g(z) (a number between 0 and 1). Which of these would be a reasonable criteria to decide whether to predict if it's a cat?

- Predict it is a cat if g(z) < 0.5
- O Predict it is a cat if g(z) = 0.5
- Predict it is a cat if g(z) >= 0.5
- Predict it is a cat if g(z) < 0.7

4.

True/False? No matter what features you use (including if you use polynomial features), the decision boundary learned by logistic regression will be a linear decision boundary.

O True

False

Cost Function for Logistic Regression

- Cost Function for Logistic Regression
 - Example training model

	tumor size (cm)	 patient's age	malignant?	i = 1,, m training examples
	X1	Xn	У	j=1,,n features
i=1	10	52	1	target y is 0 or 1
:	2	73	0	target y is 0 or 1
	5	55	0	$f \rightarrow (\vec{\nabla}) = \frac{1}{1}$
	12	49	1	$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$
i=m				

- For this training set how do we choose the parameters (w and b)?
 - Squared Error Cost Function

•
$$J(\vec{w},b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2$$

For linear regression we get a convex/parabola looking cost function

O This function cannot work for logistic regression

Lots of local minima you can get stuck in

■ Logistic Loss Function

$$\begin{split} L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}),y^{(i)}) &= \left\{-\log\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})\ if\ y^{(i)} = 1\right\} or\left\{-\log\left(1-f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})\ if\ y^{(i)} = 0\right)\right\} \end{split}$$

Plotting -log

o f will always be between 0 and 1

■ First part of loss function

$$\left\{-log\;(f_{\vec{w},b}(\vec{x}^{(i)})\;if\;y^{(i)}=1\right\}$$

- If $f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \to 1$ then the loss will be 0 since the algorithm is pretty close
- If $f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \to 0$ then the loss is ∞ therefore the algorithm pushes to make more better movements
- Second part of the loss function

- If $f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \rightarrow 0$ then you're very close to optimzing and being close to the true value
- If $f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \to 1$ then the loss will be ∞ since you're further away from the true label 0

> Simplified Cost Function for Logistic Regression

$$L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)}) = \{-log \ (f_{\vec{w},b}(\vec{x}^{(i)}) \ if \ y^{(i)} = 1\} \ or \ \{-log (1 - f_{\vec{w},b}(\vec{x}^{(i)}) \ if \ y^{(i)} = 0)\}$$

■ → Could be simplified to

$$L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)}) = -y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)})) - (1 - y^{(i)})log(1 - f_{\vec{w},b}(\vec{x}^{(i)}))$$

• If $y^{(i)} = 1$ then $\rightarrow -log (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$

$$L(f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overline{\mathbf{w}},\underline{b}}(\overline{\mathbf{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}^{(i)}))$$
if $\mathbf{y}^{(i)} = 1$.

• If $y^{(i)} = 0$ then $\rightarrow -log(1 - f_{\vec{w},b}(\vec{x}^{(i)}))$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = -\underbrace{\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(t)}) \right) - \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right)}_{O}$$
if $\mathbf{y}^{(i)} = 1$.

Simplified cost function

$$L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)}) = -y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)})) - (1 - y^{(i)})log(1 - f_{\vec{w},b}(\vec{x}^{(i)}))$$

•
$$\rightarrow$$
 Cost function = $J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L[f_{\vec{w}, b}(\vec{x}^{(i)}), y^{(i)})]$

○ → Expanded Notation:

$$-\frac{1}{m} \sum_{i=1}^{m} \ [y^{(i)} log(f_{\vec{w},b}(\vec{x}^{(i)})) \ - \ (1-y^{(i)}) log(1-f_{\vec{w},b}(\vec{x}^{(i)}))]$$

Practice Quiz: Cost Function for Logistic Regression

1. 1 point

$$\overbrace{J(\overrightarrow{\mathbf{w}},b)}^{?} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})}_{?}$$

In this lecture series, "cost" and "loss" have distinct meanings. Which one applies to a single training example?

- ✓ Loss
- ☐ Cost
- ☐ Both Loss and Cost
- Neither Loss nor Cost

1 point

Simplified loss function

$$L(f_{\overline{\mathbf{w}},b}(\mathbf{\vec{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overline{\mathbf{w}},b}(\mathbf{\vec{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overline{\mathbf{w}},b}(\mathbf{\vec{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overline{\mathbf{w}},b}(\mathbf{\vec{x}}^{(i)}), \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overline{\mathbf{w}},b}(\mathbf{\vec{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overline{\mathbf{w}},b}(\mathbf{\vec{x}}^{(i)}))$$

For the simplified loss function, if the label $y^{(i)}=0$, then what does this expression simplify to?

 $\bigcirc \log(f_{\vec{w},b}(\mathbf{x}^{(i)})$

$$\bigcirc \log(1-f_{ec{\mathbf{w}},b}(\mathbf{x}^{(i)})) + log(1-f_{ec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$$

$$igotimes_{-\log(1-f_{ec{\mathbf{w}},b}(\mathbf{x}^{(i)}))}$$

$$\bigcirc \ -\log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)})) - log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$$

Gradient Descent for Logistic Regression

- Gradient Descent Implementation
 - Training logistic regression
 - Goal is to find \overrightarrow{w} and b
 - Given a new \vec{x} , output $f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$
 - o → model can then assess probability that y=1
 - **Gradient Descent**
 - Cost Function is $-\frac{1}{m}\sum_{i=1}^{m} [y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)})) (1-y^{(i)})log(1-y^{(i)})]$ $f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))]$
 - Algorithm would be

repeat {
$$\frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

} simultaneous updates

repeat {
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} \right]$$

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) \right]$$

} simultaneous updates

- These equations are the same or very similar to the ones we used in linear regression
 - This is not the case though since the definition of f(x) is not the same

Linear regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Logistic regression
$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

1. 1 point

Gradient descent for logistic regression

repeat { $w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \ (f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)}) \mathbf{x}_j^{(i)} \right]$ $b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^m \ (f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)}) \right]$

} simultaneous updates

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

Which of the following two statements is a more accurate statement about gradient descent for logistic regression?

- The update steps are identical to the update steps for linear regression.
- The update steps look like the update steps for linear regression, but the definition of $f_{\vec{w},b}(\mathbf{x}^{(i)})$ is different.

The Problem of Overfitting

- > The Problem of Overfitting
 - O What is overfitting and underfitting?
 - Regression Example (House Example)

• While you could do linear regression, it doesn't seem like the best fit

- o The model is **underfitting** the training data or has **high bias**
 - There is a preconception that the housing data will have a linear relationship between the size and the price indicates *high bias*

- Fitting a quadratic function
 - o Fits the training set pretty well
 - This is good because it allows for generalization
 - Generalization means the model would be a good predictor of training samples which are not currently in the training set (brand new examples)

Polynomial Function

- o Extremely good job at fitting the training data
 - Can get cost function to exactly to 0 since there are no error margins on any training samples
 - The shape of the model used though **overfits** the data as some results where size is bigger will lead to lower prices

- Fits the data *too well* and will not likely generalize to new examples
- Can also be said to have high variance (can use overfitting and high variance interchangeably)

Underfitting or high bias

- While the decision boundary is good, it doesn't look like the best one therefore the function might be underfitting the data
- Pretty good fit to the data

Overfit to the data

Overly complex division boundary that does not allow for generalization

Addressing Overfitting

- O Collect more training examples #1 way to address it
 - More data = function that will likely be less wiggly

- Select features to include/exclude
 - If you have a lot of features but not enough training data → Overfitting
 - Picking a subset of the most useful features may be helpful in getting to the "just right" point for fitting a model
 - This is called feature selection
 - A disadvantage of this is that the algorithm may be throwing away potential useful features

Regularization

- Way to gently reduce the impact of some features without eliminating it outright
 - Shrinks the value of the parameters without making them 0 and eliminating them entirely

- O Reduces the size of parameters w_j to allow for a better fit to the data
 - We usually don't regularize the b value
- Cost Function for Regularization
 - o Example

- Suppose you had a way of making w_3 and w_4 really small (close to 0)
 - If you do this you will have a fit more closely to the quadratic function with the tiny contribution from w_3 and w_4
- o If you have n features
 - You might not know which are the important features and which are not
 - In this case we shrink all the w_i parameters
 - Example:
 - You have parameters $w_1, w_2, \dots w_{100}, b$
 - O Penalize all them by adding a term to the cost function

- Lambda is the regularization parameter
 - $0 \lambda > 0$
 - If it is 0, you're not using the second term → will continue to have a complex model

(overfitting)

■ If it is a big number \rightarrow placing very heavy weight on the regularization term \rightarrow will lead all the w_i terms to be approximately $0 \rightarrow$ will lead to $f(x) = b \rightarrow$ underfitting

- Notice both the first and second term are scaled appropriately by 2m
 - Becomes easier to pick a number for lambda
- The first part of the term is referred to as the mean squared error terma and the second part is the regularization term
- Regularized Linear Regression
 - Our Cost function changes a bit since we added the lambda term

Gradient descent repeat {
$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \omega_j^i$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

$$don't have to$$
 regularize b

Implementation

repeat {
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left[(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})_{x_{j}^{(i)}} \right] + \frac{\lambda}{m} w_{j} \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})$$

} simultaneous update

Simplifying the first term

$$w_{j} = \underbrace{1w_{j} - \alpha \frac{\lambda}{m} w_{j}}_{w_{j}} - \underbrace{\alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(\vec{X}^{(i)}) - y^{(i)}\right) \chi_{j}^{(i)}}_{usual update}$$

- The second part of the term is the usual update for unregularized linear regression
- o The first part of the term is usually a number close to 1
 - This is because α and λ are usually small numbers. Divided by a big m value (number of examples in the training set), the value that you are multiplying by w_j is very close to 1
 - For example if you have the value in the parenthesis = 0.998 → every update the value of w_i will shrink just a little bit
- Regularized Logistic Regression
 - To add regularization to the cost function, you essentially add the same term to the logistic regression cost function as the linear regression cost function

$$J(\vec{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w},b}(\vec{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{w},b}(\vec{x}^{(i)}) \right) \right] + \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \omega_{j}^{2}}{2m}$$

- Implementation
 - The only difference is the f(x) function is the sigmoid function applied to z compared to linear regression

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right)$$
}

Practice Quiz: The Problem of Overfitting

1. Which of the following can address overfitting?

1 point

- Apply regularization
- Select a subset of the more relevant features.
- ✓ Collect more training data
- ☐ Remove a random set of training examples
- 2. You fit logistic regression with polynomial features to a dataset, and your model looks like this.

1 point

What would you conclude? (Pick one)

- O The model has high variance (overfit). Thus, adding data is, by itself, unlikely to help much.
- The model has high bias (underfit). Thus, adding data is, by itself, unlikely to help much.
- The model has high bias (underfit). Thus, adding data is likely to help
- The model has high variance (overfit). Thus, adding data is likely to help

* Regularization

1 point

Regularization

mean squared error

mean
$$f(\vec{w},b) = \min_{\vec{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$

Suppose you have a regularized linear regression model. If you increase the regularization parameter λ , what do

Suppose you have a regularized linear regression model. If you increase the regularization parameter λ , what do you expect to happen to the parameters $w_1, w_2, ..., w_n$?

- lacksquare This will reduce the size of the parameters $w_1, w_2, ..., w_n$
- igcirc This will increase the size of the parameters $w_1,w_2,...,w_n$