Potential Factors of Decreasing Birth Rates in the US since the Great Recession and Beyond*

Reproduction of 'The Puzzle of Falling US Birth Rates since the Great Recession' (Kearney, Levine & Pardue, 2022)

Chay Park

February 9, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

2 Data

2.1 Source

```
# Load necessary libraries
library(ggplot2)
library(gridExtra)

# Set seed for reproducibility
set.seed(123)

# Read the data from CSV file
data <- read.csv(file = here::here("outputs/data/figs_2a_2b.csv"))

# Plotting the first line graph (Graph A)
graph_A <- ggplot(data, aes(x = year)) +
    geom_line(aes(y = brate_1519, color = "blue"), size = 0.7) +
    geom_line(aes(y = brate_2024, color = "orange"), size = 0.7) +</pre>
```

^{*}Code and data are available at: https://github.com/Chay-HyunminPark/Social-Science-Study.

Birth Rates collected from CDC Vital Statistics Births Reports for 2015, 2019, and 2020.

Figure 1: Trend in US Birth Rates

Figure 2: Trends in Birth Rates by Population Subgroup

```
geom_line(aes(y = brate_2529, color = "grey"), size = 0.7) +
   geom_line(aes(y = brate_3034, color = "yellow"), size = 0.7) +
   geom_line(aes(y = brate_3539, color = "cyan"), size = 0.7) +
   geom_line(aes(y = brate_4044, color = "green"), size = 0.7) +
   geom_text(data = data[data$year == 2020,], aes(x = year, y = brate 1519, label = "Age 15
   geom_text(data = data[data\$year == 2020,], aes(x = year, y = brate_2024, label = "Age 2000]
   geom_text(data = data[data\$year == 2020,], aes(x = year, y = brate_2529, label = "Age 25")
   geom_text(data = data[data\$year == 2020,], aes(x = year, y = brate_3034, label = "Age 30")
   geom_text(data = data[data$year == 2020,], aes(x = year, y = brate_3539, label = "Age 35
   geom_text(data = data[data\$year == 2020,], aes(x = year, y = brate_4044, label = "Age 40")
   geom_vline(xintercept = 2007, linetype = "dotted") +
   annotate("text", x = 2007, y = 120, label = "2007", vjust = -0.5, hjust = 0.5, color = "
   geom_hline(yintercept = seq(0, 140, by = 20), color = "lightgrey") +
   scale y continuous(limits = c(0, 140), breaks = seq(0, 140), by = 20), labels = NULL) +
   scale_x_continuous(limits = c(1980, 2020), breaks = seq(1980, 2020, by = 1), labels = fu
   labs(x = NULL,
            y = 'Births per 1,000 women in relevant population subgroup',
            title = "A: Five-year age group",
            caption = NULL,
            family = "Times") +
   theme_classic() +
   theme(axis.text.x = element text(angle = -45, hjust = 1, family = "Times", size = 8),
              plot.title = element_text(size = 10, family = "Times"),
              legend.position = "none")
# Plotting the second line graph (Graph B)
graph_B \leftarrow ggplot(data, aes(x = year)) +
   geom_line(aes(y = brate_hisp, color = "grey"), size = 0.9) +
   geom_line(aes(y = brate_blacknh, color = "orange"), size = 0.9) +
   geom_line(aes(y = brate_whitenh, color = "blue"), size = 0.9) +
   geom_text(data = data[data$year == 2020,], aes(x = year, y = brate_hisp, label = "Hispan")
   geom_text(data = data[data$year == 2020,], aes(x = year, y = brate_blacknh, label = "Blacknh, lab
   geom_text(data = data[data$year == 2020,], aes(x = year, y = brate_whitenh, label = "Whi
   geom_vline(xintercept = 2007, linetype = "dotted") + annotate("text", x = 2007, y = 120,
   geom hline(yintercept = seq(0, 140, by = 20), color = "lightgrey") + scale_y_continuous(
            title = "B: Race and ethnicity (ages 15-44)",
            caption = "Birth rates by age group, race, and ethnicity, and marital status gather
   theme classic() +
   theme(axis.text.x = element_text(angle = -45, hjust = 1, family = "Times", size = 8),
              plot.title = element_text(size = 10, family = "Times"),
              legend.position = "none")
```

```
# Arrange both graphs side by side
grid.arrange(graph_A, graph_B, nrow = 1)
```

Warning: Removed 10 rows containing missing values (`geom_line()`).
Removed 10 rows containing missing values (`geom_line()`).
Removed 10 rows containing missing values (`geom_line()`).

2.2 Methodology

2.3 Features

2.3.1 Data Cleaning

2.3.2 Data Modification

2.3.3 Data Visualization

3 Results

The results section should convey findings. ## Table, graph, table, graph

4 Discussion

In the discussion section, and any other relevant section, please be sure to discuss ethics and bias, with reference to relevant literature.

4.1 Findings

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

- 4.2 Ethical Implication
- 4.3 Accounting for bias
- 4.4 Limitation
- 4.5 Future Research

References