Implémentez un Modèle de Scoring

PROJET 07/ Openclassrooms

Gulsum Kapanoglu

Dans ce Project..

- ✓ Problématique
- **▼EDA (Analyse des données)**
- ✓ Recherche de Meilleur Model
- ✓ Modélisation
- √ Choix de Model (LGBT)
- **√**Feature Importance
- **✓** Api
- **✓ Dashboard & Streamlit**
- **✓** Conclusion

Problématique

Problématique

- Entreprise « Prêt à dépenser » :
- Prêt à dépenser souhaite développer un modèle de Scoring de la probabilité de défaut de paiement du client pour étayer la décision d'accorder ou non un prêt à un client potentiel.
- Objectifs :
 - Construire un Modèle de scoring de la probabilité de défaut de paiement du client
 - Construire un Dashboard interactif à destination des chargés de relation client

Données

Analyse des données

Analyse des données Analyse de la TARGET

Problème de classification à 2 classes: **0** ou **1**

- >0: Client rembourse son prêt
- ➤1: Client n'honore pas son prêt (totalement ou partiellement)

Classes déséquilibrés

- ▶91,2% des clients en classe o
- ▶8,1% des clients en classe 1

Préparation des Données avec un kernel

Feature engineering: Les features sont créées en appliquant les fonctions min, max, moyenne, somme, pourcentage, division, et variance à des tables groupées(PAYMENT_RATE, ANNUITY_INCOME_PERC.....)

Preprocessing: Encodage des variables catégorielles avec One-hot encoding

• Jointures : Toutes les tables sont jointes à l'aide de la clé SK_ID_CURR

Source:

- Kernel LightGBM with Simple Features
- Lien : https://www.kaggle.com/jsaguiar/lightgbm-with-simple-features

Modélisation

Modelisation

Application_test.csv

Ce dataset ne contenant pas de target sera utilisé dans la partie dashboard pour simuler des nouveaux clients. 1

Equilibrage des données

3

Essais de modélisation

- Utilisation de la librairie imblearn
- Under-Sampling

2

ENTRAINEMENT

ET OPTIMISATION

Choix de la meilleure Hypothèse

- •Utilisation d'une régression logistique comme baseline
- •Hypothèse retenue : Domain Features

- ✓ DummyClassifier (Baseline)
- ✓ Light Gradient Boosting Machine
- √ Régression Logistique
- ✓ RandomForestClassifier

4

Optimisation du modèle le plus prometteur

Modèle retenu : XGBoost

 Optimisation par RandomizedSearchCV

Processus de rééquilibrage

On va utiliser 3 approches et comparer les résultats pour l'ensemble des modèles.

- •Undersampling : supprimer des observations de la classe majoritaire afin de rééquilibrer le jeu de données
- •Oversampling : répéter des observations de la classe minoritaire afin de rééquilibrer le jeu de données
- •Weight_balanced : indiquer au modèle le déséquilibre afin qu'il en tienne compte directement

```
#Undersampling
rus = RandomUnderSampler(random_state=42,sampling_strategy=0.4)
xtrain_us, ytrain_us = rus.fit_resample(xtrain , y_train)
```

```
#Oversampling
smote = SMOTE(random_state=42,sampling_strategy=0.4)
xtrain_os, ytrain_os = smote.fit_resample(xtrain , y_train)
```

Choix du Modèle

LGBT & Undersampling

	Algorithm	Balancing_method	AUC	AUC_test	Time
0	Baseline	Undersampling	0.500	0.500	0.016013
1	Baseline	Oversampling	0.500	0.500	0.040002
2	Baseline	Balanced	0.499	0.506	0.032003
3	LGBM	Undersampling	0.773	0.771	106.270308
4	LGBM	Oversampling	0.758	0.757	986.328474
5	LGBM	Balanced	0.774	0.773	303.566205
6	LogisticRegression	Undersampling	0.740	0.740	111.869798
7	LogisticRegression	Oversampling	0.728	0.730	1643.591990
8	LogisticRegression	Balanced	0.738	0.739	300.206112
9	RandomForest	Undersampling	0.740	0.738	154.615660
10	RandomForest	Oversampling	0.665	0.663	2058.111072
11	RandomForest	Balanced	0.732	0.733	826.940315

Optimisation du Seuil

le seuil est fixé à 0,32

Feature Importance

Importance des variables du modèle

Analyse SHAP

Outils utilisés

Deploy API avec Heroku

Lien de Heroku: https://p7opencgk.herokuapp.com/

SCHÉMA FONCTIONNEL DE L'APPLICATION

Dashboard

Dans ce Dashboard;

Développement d'un Dashboard interactif pour que les chargés de relation client puissent à la fois expliquer de façon la plus transparente possible les décisions de crédit.

Le Dashboard doit permettre de :

- 1. Visualiser le score pour chaque client
- 2. Visualiser des informations descriptives relatives à un client
- 3. Comparer les informations descriptives relatives à un client à l'ensemble des clients ou à un groupe de clients similaires

Dashboard & Streamlit

Scoring Crédit

Tableau de bord interactif pour les responsables de la relation client

--Ce tableau de bord est produit à partir du modèle créé à partir des données historiques des clients.-

N° client Sélectionné: 365820

Le score et la décision du modèle de crédit

Afficher les variables ayant le plus contribué à la décision du modèle ?

Risque de défaut: 4.5%

Décision: Acceptation de la demande de prêt pour le client

Made with Streamlit

Dashboard

Lien de Dashboard: https://glsm-p7-openclassroom-dash-streamlit-mq31bu.streamlit.app/

Conclusion

Conclusion

- i. Le modèle final est LGBM, nous avons utilisé le Under Sampling pour faire face au déséquilibrage des classes
- i. Création d'une API web avec Flask pour le côté serveur, et Streamlit pour le côté dashboard

Merci!