# PROGRAMMABLE LOGIC DEVICES (PLD)

DR. FATMA ELFOULY

# PROBLEMS BY USING BASIC GATES

# Many components on PCB:

- As no. of components rise, nodes interconnection complexity grow exponentially
- Growth in interconnection will cause increase in interference,
   PCB size, PCB design cost, and manufacturing time

## **PLDC**

- The purpose of a PLD device is to permit elaborate digital logic designs to be implemented by the user in a single device.
- Can be erased electrically and reprogrammed with a new design, making them very well suited for academic and prototyping
- Types of Programmable Logic Devices
  - SPLDs (Simple Programmable Logic Devices)
    - PLA (Programmable Logic Array)
    - PAL (Programmable Array Logic)
    - GAL (Generic Array Logic)
  - CPLD (Complex Programmable Logic Device)
  - FPGA (Field-Programmable Gate Array)



## **PLD**

- 3 categories of PLDs:
  - SPLD (Simple Programmable Logic Device)
    - PLA (Programmable Logic Array)
    - PAL (Programmable Array Logic)
    - Registered PAL
  - 2. CPLD (Complex Programmable Logic Device)
  - 3. FPGA (Field Programmable Gate Array)

# ARCHITECTURE OF PLDS



Generic Architecture of PLDs

# PROGRAMMABLE LOGIC ARRAY (PLA)

- The connections in the AND plane are programmable
- The connections in the OR plane are programmable





The PLA Architecture

## Gate Level Version of PLA

$$f_1 = x_1x_2 + x_1x_3' + x_1'x_2'x_3$$
  
 $f_2 = x_1x_2 + x_1'x_2'x_3 + x_1x_3$ 



Programmable Array Logic (PAL)

The connections in the AND plane are programmable

 The connections in the OR plane are <u>NOT</u> programmable



PAL



PAL



PAL



# CPLD STRUCTURE

Integration of several PLD blocks with a programmable interconnect on a single chip





# PLD - MACROCELL

Can implement combinational or sequential logic





# FPGA ARCHITECTURE

# FPGA - GENERIC STRUCTURE

### FPGA BUILDING BLOCKS:





PROGRAMMABLE LOGIC
BLOCKS
IMPLEMENT
COMBINATORIAL AND
SEQUENTIAL LOGIC

PROGRAMMABLE
INTERCONNECT
WIRES TO CONNECT
INPUTS AND OUTPUTS
TO LOGIC BLOCKS



PROGRAMMABLE I/O
BLOCKS
SPECIAL LOGIC BLOCKS
AT THE PERIPHERY OF
DEVICE FOR EXTERNAL
CONNECTIONS



# OTHER FPGA BUILDING BLOCKS



Clock distribution



Embedded memory blocks



Special purpose blocks:

DSP blocks:

•Hardware multipliers, adders and registers

Embedded

microprocessors/microcontrollers

High-speed serial transceivers

# FPGA - BASIC LOGIC ELEMENT

- LUT to implement combinatorial logic
- Register for sequential circuits
- Additional logic (not shown):
   Carry logic for arithmetic functions
   Expansion logic for functions requiring more than 4 inputs





# LOOK-UP TABLES (LUT)

- Look-up table with N-inputs can be used to implement any combinatorial function of N inputs
- LUT is programmed with the truth-table

| Α     | В | С | D | Z |
|-------|---|---|---|---|
| 0     | 0 | 0 | 0 | 0 |
| 0     | 0 | 0 | 1 | 1 |
| 0     | 0 | 1 | 0 | 1 |
| 0     | 0 | 1 | 1 | 1 |
| 0 0 0 | 1 | 0 | 0 | 0 |
| 0     | 1 | 0 | 1 | 1 |
| 0     | 1 | 1 | 0 | 1 |
| 0     | 1 | 1 | 1 | 1 |
| 1     | 0 | 0 | 0 | 0 |
| 1     | 0 | 0 | 1 | 1 |
| 1     | 0 | 1 | 0 | 1 |
| 1     | 0 | 1 | 1 | 1 |
| 1     | 1 | 0 | 0 | 0 |
| 1     | 1 | 0 | 1 | 0 |
| 1     | 1 | 1 | 0 | 0 |



Truth-table

Gate implementation

# LUTIMPLEMENTATION

- Example: 3-input LUT
- Based on multiplexers
   (pass transistors)
- LUT entries stored in configuration memory cells





- Interconnect hierarchy (not shown)
  - Fast local interconnect
  - · Horizontal and vertical lines of various lengths



# SWITCH MATRIX OPERATION

Before Programming



- 6 pass transistors per switch matrix interconnect point
- Pass transistors act as programmable switches
- Pass transistor gates are driven by configuration memory cells

After Programming



# FPGA VENDORS



Altera

Xilinx

Actel

Lattice

QuickLogic



## FPGA DESIGN FLOW



## **Design Entry/RTL Coding**

Behavioral or Structural Description of Design

#### **RTL Simulation**

- Functional Simulation
- Verify Logic Model & Data Flow (No Timing Delays)



### **Synthesis**

- Translate Design into Device Specific Primitives
- Optimization to Meet Required Area & Performance Constraints

# Figure 18 - Xilms XX-1400 Configurable Logic Block (CLB).

#### Place & Route

- Map Primitives to Specific Locations inside
   Target Technology with Reference to Area &
- Performance Constraints
- Specify Routing Resources to Be Used



## FPGA DESIGN FLOW



## **Timing Analysis**

- Verify Performance Specifications Were Met
- Static Timing Analysis



## **Gate Level Simulation**

- Timing Simulation
- Verify Design Will Work in Target Technology





## **Program & Test**

- Program & Test Device on Board