Método ShellSort

ÊNIO GABRIEL TALISMAR COSTA

Um pouco da história do Shell Sort

Criado por Donald Shell em 1959, publicado pela Universidade de Cincinnati, Shell sort é o mais eficiente algoritmo de classificação dentre os de complexidade quadrática. É um refinamento do método de inserção direta. Basicamente o algoritmo passa várias vezes pela lista dividindo o grupo maior em menores. Nos grupos menores é aplicado o método da ordenação por inserção.

Comparação entre o ShellSort e o

O método Shell utiliza o tamanho do vetor (h) para então inicar a verificação através de "saltos". Esses saltos então iniciam com o h = n /2, até que o h fique em h = 1, para assim ele se usar o insetionsort.

Curiosodades sobre a complexidade do método Shell Sort

Shell Sort Complexity

Time Complexity	
Best	O(nlog n)
Worst	O(n ²)
Average	O(nlog n)
Space Complexity	O(1)
Stability	No

Towns cond [Anton And]	Commission	D'amasas
Termo geral [Autor Ano]	Sequência	Pior caso
$\left\lfloor \frac{n}{2^k} \right\rfloor$, $k \ge 1$ [Shell 1959]	$\left\lfloor \left\lfloor \frac{n}{2} \right\rfloor, \left\lfloor \frac{n}{4} \right\rfloor,, 1$	$\Theta(n^2)$
		[Frank and Lazarus 1960]
$2^k - 1, k \ge 1$ [Hibbard 1963]	$1, 3, 7, 15, 31, 63, \dots$	$\Theta(n^{3/2})$ [Pratt 1972]
$2^p 3^q, p \in \mathbb{N} \text{ e } q \in \mathbb{N} \text{ [Pratt 1972]}$	1, 2, 3, 4, 6, 8,	$\Theta(n\log^2 n)$ [Pratt 1972]
$a_k = 3 \cdot a_{k-1} + 1, k \ge 2 e a_1 = 1$	1, 4, 13, 40, 121,	$\Theta(n^{3/2})$
[Knuth 1973]		[Pratt 1972]
$\prod a_k$		
$0 < k < r$ $k \neq ((r^2 + r)/2) - q$		
, onde $r = \left\lfloor \sqrt{2q + \sqrt{2q}} \right\rfloor$ e		$O(n^{1+\sqrt{8\ln{(5/2)}/\ln{n}}})$
$a_k = \min\left(m \in \mathbb{N} : m \ge \left(\frac{5}{2}\right)^{k+1}, \forall p:\right)$	$1, 3, 7, 21, 48, \dots$	[Incerpi and Sedgewick 1983]
$0 \le p < k \Rightarrow mdc(a_p, m) = 1$		
[Incerpi and Sedgewick 1983]		
$4^k + 3 \cdot 2^{k-1} + 1, k \ge 2$	1, 8, 23, 77, 281,	$O(n^{4/3})$
[Sedgewick 1986]		[Sedgewick 1986]
$a_k = \max\left(\left\lfloor \frac{5a_{k-1}}{11} \right\rfloor, 1\right), k \ge 2 e a_1 = n$	$\left[\left\lfloor \frac{5n}{11}\right\rfloor, \left\lfloor \frac{5}{11} \left\lfloor \frac{5n}{11} \right\rfloor \right\rfloor,\right]$	em aberto
[Gonnet and Baeza-Yates 1991]	, 1	
$\left[\frac{9^k - 4^k}{5 \cdot 4^{k-1}}\right], k \ge 1$ [Tokuda 1992]	$1, 4, 9, 20, 46, \dots$	em aberto
Sequência obtida empiricamente	1, 4, 10, 23, 57,	em aberto
[Ciura 2001]	132, 301, 701, 1750	

Sequencias estudadas ao longo do tempo referentes ao ShellSort

Conclusões:

Sequência [Autor Ano]	Existente	Obtida
	Pior Caso Analítico	Empírico
Shell, 1959	$\Theta(n^2)$ [Frank and Lazarus 1960]	$\Theta(n^2)$
Pratt, 1971	$\Theta(n \lg^2 n)$ [Pratt 1972]	$\Theta(n \lg^2 n)$
	Caso Médio Analítico	Empírico
Pratt, 1971	$\Theta(n \lg^2 n)$ [Pratt 1972]	$\Theta(n \lg^2 n)$
	Caso Médio Empírico	Empírico
Shell, 1959	$\Theta(n^{1,226})$ [Shell 1959]	$\Theta(n \lg^3 n)$
Hibbard, 1963	$\Theta(n^{1,26})$ ou $\Theta(n \lg^2 n)$ [Knuth 1973]	$\Theta(n^{1,203})$
Knuth, 1973	$\Theta(n^{1,25})$ ou $\Theta(n \lg^2 n)$ [Weiss 1991]	$\Theta(n \lg^3 n)$
Incerpi e Sedgewick, 1985	em aberto	$\Theta(n \lg n)$
Sedgewick, 1986	$\Theta(n^{7/6})$ [Weiss 1991]	$\Theta(n \lg^2 n)$
demais autores (a partir de 1991)	em aberto	$\Theta(n \lg n)$

Referências:

Estudos com o método ShellSort -

https://www.bdtd.uerj.br:8443/bitstream/1/7668/1/Raquel%20Marcolino%20de%20Souza_Dissertacao%20Mestrado.pdf

Programiz - https://www.programiz.com/dsa/shell-sort