18th January 2024

du = dq +dw

Juisa state function, Quand Ware not To distinguish state functions and to path functions, we write du for state and of Q and of W for not state func

Exact differential

Inexact differential.

Example: System discribed by (x, y)

and df = ydx + xdy

We want to calculate,

$$\Delta f = \int_{(0,0)}^{(1,1)} df = \int_{(0,0)}^{(0,1)} d(xy) = (xy) \Big|_{(0,0)}^{(1,1)}$$

(1)(1)-(0)(0) = !

Note their we do not need to care about the path taken.

in doing the integral.

The change of the function does not dependenpois the parthe

2) Agreautity g s.f olg = yolx We want to colculate.

$$\Delta g = \int_{(0,0)}^{(1,1)} y dx$$

We cannot proceedunless we know the path.

Say the path,

 $\frac{A}{(0,0)} = \frac{1}{2}$ \frac{A}

=> Thegrecantity elepends on the path.
Putting it mathematically,

F₁(x,y) dx + F₂(x,y) dy is exact if it can be written as some ol(f)

$$- \cdot olf = \left(\frac{\partial f}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y}\right) dy$$

By Comparison,

$$F_1 = \frac{\partial f}{\partial x}$$
, $F_2 = \frac{\partial f}{\partial y}$

Now, saw, F = 7 f

So most forces that are expansed as gradient of a scalar have exact differential structure.

So,
$$\int_{-F_1}^{2} (x,y) dx + F_2(x,y) dy$$

forly at enel points.

DUse Stokes theogen for a closed loop to show, $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial y \partial x}$ or $\frac{\partial f_2}{\partial x} = \frac{\partial F_1}{\partial y}$ thunitinexact $dQ = \left(\frac{\partial u}{\partial T}\right)_{V} dT + \left(p + \left(\frac{\partial u}{\partial V}\right)_{T}\right) dv$ Again, true in general. This again shows that dQis inexact. =) da= CvdT + (p+(3u)_T) dv $C_{1} = \left(\frac{2Q}{2T}\right)_{1} = \left(\frac{2U}{2T}\right)_{2}$ In the special care of ideal gas, AQ = CVQT+PdV We calculated dQ for reveral processes, 2Q=0 for adiabatic procurs. Isothormal, pv = constant Adiabatic, PNR = Const R= SP (B) , A Adiabata Isotherm, pdu+pvdp=0 3 gg = - g Adiabati, + V8dp =0 > de = - 1 = 5 of in stope of graph. T>1 (as cp>cv) -> Adiabats have steeper slope as compared to isotherms.

Of diabatic lapse rate ->
& Aigis had thermal conductors.
Thus, we can take approximation that expunsion
of MAIN addance
We want to find out how temp changes aswed
goup theatmosphere.
(Ideal gas assumption.
Some wow Know that, pv=const
Usingideal gasean,
> PIN PI-8 & T & = const
Now taking differential (Standard Strategy)
$\Rightarrow \mathcal{A}(p'-r-r) = 0$
$\Rightarrow \frac{dP}{P} = \frac{8}{8-1} \frac{dT}{T}$
Easiest to take log before differentiation,
(n (ptryr) = In (const) = const
=) (1-8) lup + 8 lu(T) = const.
$= \left((-r) \frac{dp}{p} + (r) \frac{dT}{T} = 0 \right)$
$\frac{\partial}{\partial r} = \frac{r}{r-1} \frac{\partial r}{\partial r}$
-10>h+dh
De = - Rigolh P marsofaire 1 moigas
NOW, PN=RT >) P(m) = RT

Those fore,

$$\frac{df}{P} = -\frac{gM}{RT} dh$$

$$-\frac{1}{2} \frac{dT}{dh} = -\frac{8-1}{8} \frac{gM}{R}$$

If we plugin the numbers, $\frac{dT}{dh} = 9.7^{\circ} c / km$ Observational -> 7°C 1Km.

We can apply this to many other systems.