Satellite Collision Avoidance

Carlos Andrés Ramiro Sergio Pérez Morillo Jaime Pérez Sánchez

Description and Objectives

Description and Objectives

Description and Objectives

GOAL

Predict high-risk events two days in advance.

Our Approach

- 1. Data Description
- 2. Data Wrangling
- 3. Exploratory Data Analysis
- 4. Feature Selection
- 5. Feature engineering
- 6. Deep Learning Modeling

1. Data Description

Our Dataset

Our dataset has 162,634 rows and 103 columns.

We have 13,154 unique events, each potential collision event is made of several rows.

There are **3 categorical features** and the rest are numerical.

The features are related to the **movement** of objects in space.

The target feature is the risk of collision between the satellite and the chasing object.

1. Data Description

Main Problems

Target Feature Distribution

2. Data Wrangling

Data for DL Models

X and Y arrays

Data Augmentation

- 1. Imputing NaNs (kNN)
- 2. Padding Sequences
- 3. Overlapping Windows
- 4. Siamese Pairs
- 5. Oversampling (SMOTE)
- 6. Moving High-Risk Threshold

3. Exploratory Data Analysis

Categorical Features

3. Exploratory Data Analysis

Correlations

3. Exploratory Data Analysis

4. Feature Selection

5. Feature Engineering

Brute Force

~2,000 new features transforming the best ones using primitives: +, -, *, /, x^2 , log(x), etc.

Event Information

Event length
High risk timestamps
Mean time step length
Mean risk changes
Positive risk changes
Negative risk changes

Domain-Specific

Route of the chaser

Previous Considerations

Data Splitting

Train, Validation and Test Sets

Data Scaling

Min-Max, Standardization and Quantiles

Problem Modeling

Classification, Regression and Anomaly Detection

Hyperparameter-Tuning

Random Search with Keras Tuner and Trial and Error

Evaluation Tools

Evaluation Metric

$$L(r,\hat{r}) = rac{1}{F_2} MSE(r,\hat{r})$$

Metric Configuration:

- 1. **F-beta** with β =2
- 2. **MSE** just for high-risk events

Baselines

Competition Baseline

Predicting always a constant value

e.g.:
$$y_1 = -5$$
, $y_2 = -5$, $y_3 = -5$

Time Series Baseline

Predicting always the last risk value in X for each event

e.g.:
$$X = -1.5$$
, $\Rightarrow y = -1.5$

FeedForward Neural Networks

Layers: 5 Dense

Neurons: 256, 128, 64, 16, 4

FFN configuration:

1. Activation: ReLu

2. L2 Regularizer: 0.01

Optimizer: RAdam

Batch: 32, Epochs: 40

Class Weights: 45/2

	L	MSE	f-beta
FFN	1.16	0.555	0.479
Competition	9.07	0.461	0.050
Time Series	0.86	0.423	0.487

Recurrent Neural Networks

Layers: 4 LSTM + 1 Dense

Neurons: 50, 25, 12, 5, 1

LSTM configuration:

1. Dropout: 0.1, R-Dropout: 0.2

2. Batch normalization

3. L2: 0.001, Stateless

Optimizer: Adam, Timesteps: 8

Batch: 256, **Epochs:** 100

Class Weights: 300/1

	L	MSE	f-beta
LSTM	0.429	0.186	0.433
Competition	6.819	0.340	0.050
Time Series	0.600	0.372	0.620

Convolutional Neural Networks

Layers: 2 VGG16-like Conv1D blocks

+ 2 Dense

Total params: ~10K

Optimizer: Nadam, Timesteps: 8

Batch: 64, Epochs: 50

Class Weights: 100/1

Input shape approaches:

- 1. (events, features*timestep, 1)
- 2. (events, timestep, features)

	L	MSE	f-beta
Conv1D	0.534	0.231	0.432
Competition	6.819	0.340	0.050
Time Series	0.600	0.372	0.620

Autoencoders

Modeling: Anomaly detection

Train set: Low risk events

Test set: Entire Dataset

Layers: 4 LSTM

Neurons: 32, 16, 16, 32

LSTM-Activation: SELU

Optimizer: Nadam, Timesteps: 10

Batch: 64, Epochs: 50

It did not work!

Siamese Neural Networks

Layers: 2 LSTM + 1 Manhattan distance

Neurons: 32, 16

LSTM configuration:

1. Dropout: 0.25, R-Dropout: 0.5

2. Batch normalization

3. Stateless neurons

Optimizer: Nadam w/ Gradient clipping

Timesteps: 17, Batch: 512, Epochs: 20

Two approaches:

- 1. Few Shots Learning
- 2. Data augmentation

	L	MSE	f-beta
MaLSTM	1.535	0.266	0.173
Competition	6.375	0.253	0.040
Time Series	0.429	0.221	0.516

Deep Ensembles

Input:

5 FFN pre-trained models

Stack model:

Random Forest Classifier

	L	MSE	f-beta
Ensemble	1.13	0.514	0.454
Competition	9.07	0.461	0.050
Time Series	0.86	0.423	0.487

Conclusions

The **dataset was a mess**: raw data, variable timestep, unbalanced classes, lots of missing values, useless features, etc.

We explored **many different approaches**: imputation techniques, padding sequences, oversampling, feature selection, feature engineering, etc.

We used **many DL models and configurations**: FeedForward NNs, Convolutional NNs, Recurrent NNs, Autoencoders, Deep Ensembles, and Siamese NNs.

Although we beat the two baselines with RNN and CNN models and ranked among the best in the competition, we think that the evaluation metric is flawed and might not produce the best models.

Thanks!

EXTRA

2. Data Wrangling

Missing Values & Imputation

Missing Values Distribution

Simplified Dataset Sample

Event	Time to collision	Risk
Event1 - t1	1.5	-30
Event2 - t1	5.2	-25
Event2 - t2	1.1	-6
Event3 - t1	7	-1