Darius A. Faroughy Ljubljana Particles and Cosmology Summer School 2023 August 30, 2023

Module 2

We will learn how to use MadGraph to generate parton-level events from the ME for BSM models. Then we will extract upper-limits on d=6 SMEFT Wilson Coefficients (WC) using the latest CMS data from a heavy resonance search in $pp \to \mu^+\mu^-$.

The LHC is a counting experiment where the number of BSM events coming from a particular process $pp \to X$ is given by:

(1)
$$N(\theta) = \mathcal{L}_{int} \cdot \epsilon \cdot \sigma(\theta)$$

where σ is the hadronic cross-section of $pp \to X$ in units of femto-barns constrained to the signal region¹, θ are the BSM parameters we want to extract limits for, \mathcal{L}_{int} is the integrated Luminosity in units of inverse femto-barns, $\sigma(\theta)$ and ϵ is the total acceptance×efficiency of the signal. In this module we will initially assume $\epsilon = 1$ implying perfect reconstruction efficiencies and and perfect detector.

Task 1.

1) Import to MadGraph the SMEFT UFO file you prepared in Module 1. We will now use Madgraph to compute the cross-sections of $pp \to \mu^+\mu^-$ in the SMEFT for valence quarks. Recall that the cross-section has the following form up to $\mathcal{O}(1/\Lambda^4)$ at d=6:

$$\sigma(pp \to \mu^+ \mu^-) = \sigma_{\rm DY, SM} + \frac{C_{\ell q}^{(1\pm 3)}}{\Lambda^2} A_{\rm int} + \frac{\left[C_{\ell q}^{(1\pm 3)}\right]^2}{\Lambda^4} A_{\rm NP^2}$$

Since we are interested in the tails of the invariant mass distribution (where contact interactions grow) generate the events with dimuons that have an invariant mass cut above $m_{\mu\mu} = 1000$ GeV.

Tips: Use the MG generation syntax to target the SM term, interference term and NP² term separately. Compute the A coefficients for each valence quark separately. Generate at least 30k events for each run in order to have enough statistics. Remember always to x-check your results, e.g. does $\sigma_{\text{tot}} = \sigma_{\text{SM}} + \sigma_{\text{int}} + \sigma_{\text{NP}^2}$?

2) Compute the number of expected events for a luminosity of 140 fb⁻¹ and efficiency 1 in the signal region defined by $m_{\ell\ell} > 1$ TeV. In order to perform a χ^2 fit we need the number of observed events N_{obs} , the number of background N_b events and the uncertainty ΔN_b in the background events. This information can be extracted from the CMS search dataset in www.hepdata.net/record/ins1849964 "dimuon mass distribution". Plot the 1, 2 and 3 sigma regions in the $C_{\ell q}^{(1)} - C_{\ell q}^{(3)}$ plane.

BSM TOOLS FOR HIGH- p_T STUDIES

¹Signal region refers to a subspace of phase-space defined by a set of "cuts" where the searched BSM signal is enhanced with respect to the backgrounds.