R Made Easier for SAS Programmers

Sunil Gupta, Founder of R-Guru.com, Author and CDISC SME GuptaProgramming@gmail.com

What Does R Mean to You?

Open Source Type of Tasks

Free Software Learning Curve

Validation Pharmaverse

R Shiny Reviews FDA Programming

Hundreds of R Packages
Replace SAS or Enhance w/ R?

InfoWorld identified the 80/20 dilemma, where most data analysts spend 80% of their time in data management and manipulation, while spending 20% of their time in actual analysis!

InfoWorld

While Learning R, Avoid these Objects

- Topic: Data Science Applications
 - Database Programming is more direct and more focused
- Variable Types: Integers, Lists, Loops, Logical
 Use Numeric, Character and Date Variable Types
- Objects: Vectors, Arrays, Matrix, row_names()
 Use Data Frames and observation numbers
- ✓ Packages: Non-common, similar multiple
 - Best to pick one package/function for each type of task
 - Tidyverse and dply functions instead of base R functions
 - Do not re-invent the wheel, search for packages
 - QC each package before use in production
- Functions: same name, attach(), loops, user defined R functions
 - Use common R packages, functions and defaults

Similar to SAS Procedures / Excel Functions

What is R?

No Variable Lengths in R

(Requires valid parameters, inputs and syntax to get results)

Upside Down World

- √ 'Data' Centric Flexibility

 Data Cleaning, Data Management, Data
 Analysis, Data Reporting, Graphs
 Ideal for Data Science
 Statistician's Toolbox
- ✓ Process Interchangeable Objects Abstract, Many Moving Parts
- √ 100's of Built-in 'Intuitive'-Based Functions

 NA represent missing values
- ✓ Symbol-Based Programming Language\$ references variables[] is used for subsetting

Validation of R Packages/Functions/SAS Risk Assessment: Identify & Minimize IQ/OC QC Test Plan - One Data Input Accuracy – How close do R and - One Specification SAS numbers match? - Run R1, R2 and SAS - Compare the Accuracy of Expected Results Traceability - Can you - No Errors, Warnings document and audit the process to match the specifications? **Factors** - Task: Input, Management, etc. - Stable R Package Version **Reproducibility** – *Is their* - R Package Dependency control in R packages, versions, - # of Downloads functions and parameters? - R Package/Function Usage - Examples and User Documentation

Ready to Leverage *R Advantages* over *SAS*?

- Direct Replacement of SAS
 - Leadership commitment to R

 data input (excel, csv, etc.), management, analysis, reporting (pdf, excel, csv, rtf, etc.) and graphing (Tidyverse, DPLYR, magrittr (%>% Piping), Haven, Hmisc, readxl, writexl, GT & ggplot2)

Remove Pain Points in SAS

Graphs vs SAS's Graphical Template Language (GTL)

Enhance Work Flow Process

- Data Frame options, Derivations based on Direct Variable and Row reference
- Pharmaverse R Packages vs SAS in-house silos
- R Shiny Apps vs SAS's Dashboards
- Latest Statistical Modeling R packages
- Easily create dummy data

R and SAS have similar Work Flow Process

GOAL

To Create Adverse Event (AE) table of clinical trial using R.

Steps to create AE Table in

R

Step 1: - Setup

Step 2 - Selection of

records/variables

Step 3: Select Highest

Toxicity Grade AEs

Step 4: Get Freq and

Calculate % - ANY AE / SOC/

SOC-PT

Step 5: Data Arrangement

Step 6: Transpose Data

Step 7: Reporting Prep

Step 8: Reporting

COMPARISON OF R WITH SAS

In R In SAS

1.read.csv > read ext file 2.subset > subset obs

and variables in data
3.order > Sorting data
4.%>% (pipe) – for

multiple action & one's ourput pass next

5.group_by > grouping of records 6.arrange > order obs 7.slice_head>take 1st

ob. 8.summarise > get stats

9.mutate > creation of var and manipulations 10.rbind > stacking

datasets 11.spread > transpose 12.kbl > reporting 1.PROC IMPORT

2.Keep/Drop AND WHERE conditions 3.PROC SORT

4.Similar (not exactly)
-multiple
statements in one
Data Step

5.By statement > for grouping

6.PROC SORT 7.Like FIRST. and LAST.

8.Like PROC FREQ

9.Like DATA Step

10.SET statement> stacking

11.PROC TRANSPOSE 12.Proc REPORT

Fully Understand Key Differences between R and SAS

Parameters	SAS	R
Availability / Cost	SAS is commercial software, so it needs a financial investment.	R is open source software, So, anyone can use it.
Ease of Learning	SAS is the easiest tool to learn. So, people with limited knowledge of SQL can learn it easily.	R programmers need to write tedious and lengthy codes.
Statistical Abilities	SAS offers a powerful package which offers all types of statistical analysis and techniques.	R is an open source tool which allows users to submit their own packages/libraries. The latest technologies are often released in R first.
File Sharing	You can't share SAS generated files with another user who does not use SAS.	Since anyone uses r, it is much easier to share files with another user.
Updates	SAS relatively less frequently updated.	R is an open source tool, so it is continuously updated.

R-Guru Learning Process for SAS Programmers in the Pharma and Medical Device Industries R (Tidyverse, DPLYR) > SDTMs & ADaMs > TLGs

R Programming

- Assume no prior knowledge or experience with R
- Learn common R packages and functions
- Compare and Contrast SAS with R
- Compare and Contrast similar R functions
- Introduce SASSY package

SDTMs & ADaMs

- Use Tidyverse to replicate SAS tasks for SDTMs & ADaMs
- Apply Best Practices and User-Defined Functions and Metadata Programming
- Leverage Pharmaverse Packages

Tables, Lists and Graphs

- Leverage common R packages and templates to create Tables, Lists and Graphs
- Leverage Pharmaverse Packages

Tidyverse has Most all Relevant R Libraries! One R Package has it All! Working Folder: setwd("C:/study/analysis/output") # create working folder in advance getwd() # confirm new working folder, default C:/Users/Sunil/Documents # important for using saveRDS and readRDS functions for storing & reading files Write Function: write.csv(dm, "C:/study/analysis/output/mydm.csv", row.names = FALSE) Save Function: saveRDS(asl2, file = "asl2.RDS") # save asl2 as permanent data frame Read Function: myasl <- readRDS("asl2.RDS") # read permanent asl2 data frame Import Tidy Transform -→ Visualise ggplot2 tibble dplyr readr readxl tidyr forcats haven hms lubridate httr Program Model rvest stringr broom purrr xml2 modelr magrittr

