

Číselné soustavy

Mikroprocesorová technika a embedded systémy

doc. Ing. Tomáš Frýza, Ph.D.

září 2018

Obsah přednášky

1 Číselné soustavy v mikroprocesorové technice

Vyjádření záporných a desetinných čísel

3 Formát s plovoucí řádovou čárkou

Obsah přednášky

① Číselné soustavy v mikroprocesorové technice

Vyjádření záporných a desetinných čísel

Formát s plovoucí řádovou čárkou

Tomáš Frýza (UREL, VUT v Brně)

Používané číselné soustavy

- Dekadická (desítková) soustava:
 - základ soustavy: 10
 - využívá symboly: 0, 1, 2, ..., 9
 - označení soustavy pomocí sufixu 1100₁₀
 - ullet kladný celočíselný **rozsah** hodnot: 0 až 10^n-1 , kde n je počet použitých symbolů
- Hexadecimální (šestnáctková) soustava se především využívá pro přehlednější zápis binárních čísel:
 - základ soustavy: 16
 - využívá symboly: 0, 1, 2, ..., 9, a, b, ..., f
 - označení soustavy pomocí sufixu 2ba6₁₆, 4f6H, prefixů 0xd2, \$25a4
 - kladný **rozsah** hodnot: 0 až $16^n 1$
- Binární (dvojková) soustava se používá v číslicové a mikroprocesorové technice k reprezentaci hodnot:
 - základ soustavy: 2
 - využívá symboly: 0, 1
 - označení soustavy pomocí sufixu 1012, nebo prefixu 0b1010
 - kladný rozsah hodnot: 0 až 2ⁿ 1
- Pozn.: Osmičková (oktalová) soustava:
 - základ soustavy: 8
 - vvužívá symboly: 0. 1. 7
 - označení soustavy pomocí sufixu 1100₈
 - kladný **rozsah** hodnot: 0 až $8^n 1$

Binární formáty s řádovou čárkou

- V binární soustavě jsou hodnoty reprezentovány ve tvaru s tzv. pevnou řádovou čárkou (Fixed-point), tj. pozice binární čárky je pevně dána a je neměnná:
 - celá čísla neznaménková (unsigned, řádová čárka úplně vpravo)
 - celá čísla znaménková (signed)
 - zlomkový tvar (fractional)
 - o ostatní formáty (definuji si pozici tečky libovolně)
- nebo s plovoucí řádovou čárkou (Floating-point, IEEE 754):
 - jednoduchá/základní přesnost (single precision)
 - dvojitá přesnost (double precision)
 - rozšířená přesnost (extended precision)

- Pro 8bitovou reprezentaci uvažujme $\mathbf{d} = (d_7, d_6, \dots, d_1, d_0)$:
 - bit d_7 označuje most significant bit (MSB)
 - bit d₀ označuje least significant bit (LSB)
- Každá pozice má příslušnou váhu (mocninu dvou) v závislosti na pozici od řádové čárky: "jednotky": 2⁰, "desítky": 2¹, ...

Example

Převod kladného čísla $1011,101_2$ rozkladem dle příslušných mocnin.

Řešení

$$(1\cdot2^3) + (0\cdot2^2) + (1\cdot2^1) + (1\cdot2^0) + (1\cdot2^{-1}) + (0\cdot2^{-2}) + (1\cdot2^{-3}) = 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125 = 11.625_{10}$$

Převod mezi číselnými soustavami

Table: Převod hodnot mezi dekadickou, binární a hexadecimální soustavou

Dekadická	Hexadecimální	Binární	
0	0	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	

Dekadická	Hexadecimální	Binární	
10	a	1010	
11	b	1011	
12	С	1100	
13	d	1101	
14	е	1110	
15	f	1111	
16	10	10000	
17	11	10001	
18	12	10010	

- Pro převod hodnoty ze soustavy se základem X do jiné se základem Y lze použít metody postupného dělení (continuous dividing) a násobení (continuous multiplying):
 - dělení hodnot nalevo od řádové čárky hodnotou Y
 - násobení hodnot napravo od řádové čárky hodnotou Y

Převod celých čísel z dekadické do binární soustavy

- Pro převod hodnoty ze soustavy se základem X do jiné se základem Y lze použít metody postupného dělení (continuous dividing)
 a násobení (continuous multiplying):
 - dělení hodnot nalevo od řádové čárky hodnotou Y
 - násobení hodnot napravo od řádové čárky hodnotou Y

Řešení

Metoda postupného dělení hodnot nalevo od řádové čárky základem binární soustavy.

Example

Převeďte dekadickou hodnotu 25 do binární soustavy.

Výsledek: 11001₂.

Pozn.: Algoritmus je ukončen po dosažení hodnoty 0

Převod desetinné části z dekadické do binární soustavy

- Pro převod hodnoty ze soustavy se základem X do jiné se základem Y lze použít metody postupného dělení (continuous dividing)
 a násobení (continuous multiplying):
 - dělení hodnot nalevo od řádové čárky hodnotou Y
 - násobení hodnot napravo od řádové čárky hodnotou Y

Řešení

Metoda postupného násobení hodnot napravo od řádové čárky základem binární soustavy.

Example

Převeďte dekadickou hodnotu 0,375 do binární soustavy.

Výsledek: 0,0112.

Pozn.: Algoritmus lze ukončit pokud je desetinná část rovna 0, příp. po dosažení požadované bitové přesnosti

Rychlý převod celých dekadických čísel do binární soustavy

Podstatou je rozklad dekadické hodnoty na mocniny dvou, tj. na váhy jednotlivých bitů

Example

Převeďte dekadickou hodnotu 53 do binární soustavy pomocí rychlé metody.

Řešení

$$2^5+\ 2^4+\ 2^2+\ 2^0=\mathbf{1}\cdot 2^5+\ \mathbf{1}\cdot 2^4+\ \mathbf{0}\cdot 2^3+\ \mathbf{1}\cdot 2^2+\ \mathbf{0}\cdot 2^1+\ \mathbf{1}\cdot 2^0$$
 Výsledek: 110101 $_2$

Vzájemný převod mezi hexadecimální a dekadickou soustavou

- Algoritmus převodu z hexadecimální do dekadické soustavy:
 - Jednotlivé symboly lze váhovat obdobně jako u binární soustavy nebo použít algoritmy postupného dělení/násobení

Example

Rozklad čísla 356₁₆.

Řešení

$$(3.16^2) + (5.16^1) + (6.16^0) = 768 + 80 + 6 = 854_{10}$$

Example

Rozklad čísla 2af₁₆

Řešení

$$(2.16^2) + (10.16^1) + (15.16^0) = 512 + 160 + 15 = 687_{10}$$

Tomáš Frýza (UREL, VUT v Brně)

Vzájemný převod mezi hex. a dekadickou soustavou

- Algoritmus převodu z dekadické do hexadecimální soustavy:
 - Obdobný postup jako u převodu z dekadické do binární soustavy, tj. rozdělení čísla na celou a "desetinnou" část.

 Odlá Vást pod Víjensky v double v prevodu z dekadické do binární soustavy, tj. rozdělení čísla na celou a "desetinnou" část.
 - (a) Celá část se dělí základem soustavy (tj. 16) a zbytek po dělení udává hodnoty od "desetinné" čárky směrem k MSB
 - (b) Desetinná část se násobí základem soustavy a přenos udává hodnotu od "desetinné" čárky směrem k LSB

Example

Převeďte hodnotu 423,34 $_{
m 10}$ do hexadecimální soustavy.

Řešení

(a) Metoda postupného dělení základem hexadecimální soustavy.

423 : 16 = 26, zbytek **7** 16^0 LSB

 $26 : 16 = 1, zbytek 10 16^1$

1: 16 = 0, zbytek $1 16^2$ MSB

Výsledek: 1a7₁₆

Vzájemný převod mezi hex. a dekadickou soustavou

Řešení

(b) Metoda postupného násobení desetinné části základem hexadecimální soustavy.

```
0.34
                    5.44
                           16^{-1}
                                  první symbol po řádové čárce
         16
                           16^{-2}
0.44 \cdot 16 = 7.04
0.04 \cdot 16 = 0.64
                           16^{-3}
                           16^{-4}
0.64 · 16 =
                   10.24
                           16^{-5}
0.24
         16 =
                    3.84
```

Lze pokračovat, dokud není desetinná část násobení rovna nule, příp. po dosažení požadované bitové přesnosti.

Výsledek přibližně: 1a7,570a3₁₆

Tomáš Frýza (UREL, VUT v Brně)

Vzájemný převod mezi hexadecimální a binární soustavou – rychlý postup

 Algoritmus převodu z hexadecimální do binární soustavy: Každý symbol v hexadecimální soustavě se převádí odděleně a představuje právě čtveřici bitů

Example

Převeďte hodnotu -6f,aH do binární soustavy.

Řešení

$$-6f$$
, $a_{16} = -0110$ 1111, 1010₂

Tomáš Frýza (UREL, VUT v Brně)

Algoritmus převodu z binární do hexadecimální soustavy: Binární číslo se rozdělí na čtveřice bitů (tj. na nibly)
 a ty se převádí nezávisle na ostatních

Example

Převeďte binární hodnotu 0b11,000011001 do hex. soustavy.

Řešení

 $11,000011001_2 = 0011$, $0000 \quad 1100 \quad 1000_2 = 3,0c8_{16}$

13 / 32

září 2018

Číselné soustavy

Základní početní operace s neznaménkovými binárními čísly, příklady na tabuli

- Součet
- Součin
- Mocniny dvou (bitový posuv doleva, doprava)

14 / 32

Obsah přednášky

Vyjádření záporných a desetinných čísel

Tomáš Frýza (UREL, VUT v Brně)

Vyjádření záporných čísel ve fixed-point

- V číslicových systémech s pevnou řádovou čárkou se k vyjádření záporných celých čísel používá doplňkový kód ve tvaru dvojkového doplňku (Two's Complement)
- Dvojkový doplněk reprezentuje číslo opačné k dané hodnotě, tj. -5 k hodnotě 5, ale také +3 k hodnotě -3
- U znaménkových čísel informuje zda je hodnota kladná nebo záporná, bit na pozici MSB:
 - 0 ⇔ kladná hodnota; 1 ⇔ záporná hodnota

Figure: Grafická interpretace rozsahu binárních (znaménkových) hodnot

Dvojkový doplněk

- Algoritmus pro vytvoření dvojkového doplňku:
 - (a) negace všech bitů (tj. tvorba jednotkového doplňku)
 - (b) přičíst 1

Example

Doplňkový dvojkový kód k -2 = ?

Řešení

- (a) $+2: 0010 \rightarrow (negace) 1101$
- (b) 1101 + 0001 = 1110: -2

- Rychlá metoda tvorby dvojkového doplňku:
 - (1) opisovat všechny nulové bity od LSB směrem k MSB
 - (2) první jedničkový bit opsat
 - (3) zbývající bity negovat

Početní operace se znaménkovými čísly

- Aritmetické bitové operace pro záporná čísla ve dvojkovém doplňku platí stejně jako pro kladná čísla.
- Sčítání znaménkových hodnot:

$$\begin{array}{c}
01001 & (9) \\
+11110 & (-2) \\
\hline
00111 & (7)
\end{array}$$

- Odečítání znaménkových čísel lze vyjádřit pomocí součtu čísla opačného:
 - (1) k menšiteli vytvořit dvojkový doplněk
 - (2) tento doplněk přičíst k menšenci

$$\begin{array}{c} \text{Př.: } 9-4=9+(-4)=? \\ \text{00100 (+4)} \longrightarrow \text{negace:} & \text{11011} & \text{01001} & 9 \\ & & & & +\text{00001} & +\text{11100} & +(-4) \\ \hline & & & & & 00101 & 5, \ \text{C=1} \\ \end{array}$$

Rekapitulace (ne)znaménkových celých čísel pro fixed-point

- ullet Neznaménková celá čísla (unsigned) reprezentují hodnoty od 0 do 2^n-1 , kde n udává počet bitů
- ullet Znaménková celá čísla (signed) jsou v číslicové technice vyjádřena ve tvaru dvojkového doplňku a reprezentují hodnoty od -2^{n-1} až $2^{n-1}-1$
- Při použití celočíselného typu (signed, unsigned) mohou nastat dva problémy:
 - přetečení při součtu (výsledek je obecně vyjádřen n+1 bity)
 - přetečení při násobení (výsledek je obecně vyjádřen $2 \cdot n$ bity)

Tomáš Frýza (UREL, VUT v Brně)

Číselné soustavy

Odstranění problémů s přetečením u (ne)znaménkových čísel

- Potřebu většího počtu bitů pro vyjádření výsledku než mají operandy aritmetických operací je možné odstranit:
 - (1) saturací výsledku, tj. omezení/oříznutí na maximální počet bitů
 - (2) použitím zvýšené přesnosti pro výsledek, tj. větší počet bitů
 - (3) použitím zlomkového formátu
 - (4) použitím formátu plovoucí řádové čárky
- (1a) Saturace výsledků u neznaménkových čísel:
 - pokud $A \cdot B \leq 2^n 1$, pak výsledek = $A \cdot B$
 - pokud $A \cdot B > 2^n 1$, pak výsledek = $2^n 1$
- (1b) Saturace výsledků u znaménkových čísel:
 - pokud $-2^{n-1} \le A \cdot B \le 2^{n-1} 1$, pak výsledek = $A \cdot B$
 - pokud $A \cdot B > 2^{n-1} 1$, pak výsledek = $2^{n-1} 1$
 - \bullet pokud $-2^{n-1} > A \cdot B$, pak výsledek $= -2^{n-1}$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Odstranění problémů s přetečením u (ne)znaménkových čísel

- (2) Rozšíření počtu bitů pro reprezentaci početně korektního výsledku aritmetické operace přináší několik nevýhod:
 - zvýšení paměťové náročnosti (použití většího počtu registrů/paměťových pozic)
 - v případě, že výsledek aritmetické operace je následně operandem další operace, je nutné data upravit do původního počtu bitů
 - následné snížení počtu bitů je nutné také v případě vyslání vypočtené hodnoty do D/A převodníku
- (3) Použití zlomkového tvaru (formátu) zabraňuje přetečení při násobení, protože platí $|A \cdot B| < min(|A|, |B|)$

Tomáš Frýza (UREL, VUT v Brně)

21 / 32

Fixed-point: Zlomkový tvar

ullet Převod hodnoty zlomkového tvaru do dekadické soustavy; 32bitové vyjádření ${f d}=(d_{31},d_{30},\ldots,d_0)$:

$$v = -d_{31} \cdot 2^0 + \sum_{n=1}^{31} d_{31-n} \cdot 2^{-n}$$

- ullet tj. znaménkový bit (zde d_{31}) má váhu -1, ostatní bity mají váhu záporných mocnin: 1/2, 1/4, 1/8, \dots
- Zlomkový tvar nabývá hodnot $<-1,1-2^{-(n-1)}>$ pro n=8 je MAX=0,9921875

pro
$$n=16$$
 je $MAX=0,99996948242188$

Formáty s pevnou řádovou čárkou

Figure: Nejpoužívanější formáty s pevnou řádovou čárkou

Obsah přednášky

1 Číselné soustavy v mikroprocesorové technice

Vyjádření záporných a desetinných čísel

3 Formát s plovoucí řádovou čárkou

Tomáš Frýza (UREL, VUT v Brně)

Číselná reprezentace s plovoucí řádovou čárkou

- Pro reprezentaci desetinných čísel a pro zvýšení rozsahu je použita reprezentace s plovoucí řádovou čárkou (Floating-point)
- Základní formáty dle standardu ANSI/IEEE 754:
 - jednoduchá přesnost (Single precision, SP): 32 bitů
 - dvojitá přesnost (Double precision, DP): 64 bitů
 - rozšířená přesnost (Extended precision, EP): 80 bitů
- Formát IEEE floating-point reprezentuje běžné hodnoty, NaN (not a number) a nekonečno
- Formát binárního čísla se skládá ze tří částí:
 - znaménkový bit
 - exponent
 - mantisa

Floating-point, jednoduchá přesnost

- Znaménkový bit = 1 ⇔ záporné číslo:
 - záporná čísla tedy nejsou ve floating-point vyjádřena ve dvojkovém doplňku; čísla opačná se liší pouze znaménkovým bitem
- Mantisa (fraction):
 - reprezentuje nejdůležitější bity kódovaného čísla
 - hodnota je normována ⇒ desetinná čárka je přesunuta za první nenulovou číslicí (v binární soustavě za první jedničku)
- Exponent:
 - může vyjádřit jak kladný, tak i záporný exponent
 - k dané hodnotě je vždy přičtena konstanta, tzv. bias $2^{nexp-1}-1$, kde nexp je počet bitů pro vyjádření exponentu, proto je výsledná hodnota exponentu ve formátu floating-point vždy kladná. Bias pro SP: 127_{10}

Figure: Struktura formátu s plovoucí řádovou čárkou, jednoduchá přesnost

Floating-point, jednoduchá přesnost

Example

Vyjádřete desetinné číslo $+6,625_{10}$ ve tvaru s plovoucí řádovou čárkou, jednoduchá přesnost.

Řešení

- (1) Přepsat dané číslo do bin. soust.: $6,625 = 110,101_2$
- (2) Normovaná podoba čísla: $110,101
 ightarrow 1,10101 \cdot 2^2$
- (3) 23bitová mantisa (hodnoty nejdůležitějších bitů za první jedničkou, doplněných nulami): 1010 1000 0000 0000 0000 0000
- (4) Exponent: 2 + 127 (bias pro SP) = $129_{10} = 1000 \ 0001_2$
- (5) Znaménkový bit: 0 ⇔ kladné číslo

Floating-point, jednoduchá přesnost

Example

Podle standardu IEEE 754 přepište číslo 0100 1111 1001 0101 0000 0010 1111 1001 z plovoucí řádové čárky do dekadické podoby.

Řešení

- (1) Znaménkový bit: 0 ⇔ kladné číslo
- (2) Exponent: $1001\ 1111_2 127_{10} = 159 127 = 32$
- (3) $1,0010\ 1010\ 0000\ 0101\ 1111\ 001\cdot 2^{32}$ (tj. přesun binární čárky o 32 pozic doprava; ekvivalent zápisu z desítkové soustavy: $1,5\cdot 10^4=15\ 000$)

1 0010 1010 0000 0101 1111 0010 0000 0000

Výsledek: 5 000 000 000₁₀

Pozn.: Pro srovnání: ve dvojkovém doplňku (fixed-point) lze pomocí stejného počtu bitů (tj. 32) vyjádřit hodnoty od -2147 483 648 do 2147 483 647

Pozn.: Rozsah hodnot single-precision leží v intervalu cca $\pm 3.4 \cdot 10^{38}$

4 D > 4 D > 4 E > 4 E > E 990

28 / 32

Floating-point, dvojitá přesnost

Figure: Struktura formátu s plovoucí řádovou čárkou, dvojitá přesnost

- Formát s dvojitou přesností (double precision, 64 bitů) se skládá ze tří částí:
 - znaménkový bit (63)
 - 11bitový exponent (62:52)
 - 52bitová mantisa (51:0)
- Reálná hodnota je vyjádřena vztahem $(-1)^{sign} \cdot 2^{exp-bias} \cdot 1$, mantisa, kde posunutí $bias = 2^{nexp-1} 1$, tj. pro double precision $bias = 1\,023$ (pro SP: 127)
- Rozsah hodnot double-precision leží v intervalu cca $\pm 1,8\cdot 10^{308}$

Floating-point, dvojitá přesnost

Example

Podle standardu IEEE 754 přepište číslo z plovoucí řádové čárky do dekadické podoby

- 1
- 100 0001 1001
- 1101 0110 1111 0011 0100 0101 0100 0000 0000 0000 0000 0000 0000

Řešení

- (1) Záporné číslo
- (2) Exponent: exp=1049-1023=26
- (3) Mantisa: 1,1101 0110 1111 0011 0100 0101 0100 $\dots 2^{exp}$

Výsledek: -123 456 789

Floating-point, dvojitá přesnost

Example

 $\label{eq:Vyjadřete desetinné číslo} Vyjádřete desetinné číslo + 255,96875 \ ve \ tvaru \ s \ plovoucí řádovou čárkou (dvojitá přesnost).$

Řešení

- (1) Kladné číslo: sign=0
- (2) Přepsat hodnotu do binární soustavy: 255,96875 = 0b1111 1111,1111 1
- (3) Normovaná podoba: 1,111 1111 1111 1 · 2⁷
- (4) Exponent: exp=7 + 1023 = 1030 = 0b10000000110

Výsledek:

- 0
- 100 0000 0110

Speciální hodnoty ve formátu floating-point

Table: Některé speciální hodnoty formátu floating-point

Hodnota	Znaménko	Exponent	Mantisa
"Kladná" nula	0	0	0
"Záporná" nula	1	0	0
Nekonečno	1 nebo 0	0b1111_1111	0
NaN (not a number)	1 nebo 0	0b1111_1111	≠0

Figure: Struktura formátů s plovoucí řádovou čárkou: (a) single, (b) double precision