AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (canceled.)
- 2. (previously presented): An image forming material comprising a support and an image forming layer which is laminated on the support and contains at least (A) a water-insoluble and alkali-soluble high-molecular compound and (B) a compound having a structure represented by the following general formula (1) and having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm:

General formula (1): X⁻M⁺
wherein in the general formula (1), X⁻ repr

wherein in the general formula (1), X represents an anion containing at least one substituent having an alkali-dissociating proton; and M⁺ represents a counter cation which is an atomic group having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm and is represented by the following general formula (A):

General formula (A)

$$\begin{array}{c|c}
 & Y^1 \\
 & Ar^1 \\
 & N^+ \\
 & R^1
\end{array}$$

$$\begin{array}{c|c}
 & Y^2 \\
 & Ar^2
\end{array}$$

wherein in the general formula (A), R¹ and R² each independently represents an alkyl group having from 1 to 4 carbon atoms, which may have a substituent selected from an alkoxy group, an aryl group, an amide group, an alkoxycarbonyl group, a hydroxyl group, a sulfo group, and a

U.S. Application No. 10/662,534

carboxyl group; Y^1 and Y^2 each independently represents an oxygen atom, a sulfur atom, a selenium atom, a dialkylmethylene group, or –CH=CH-; Ar^1 and Ar^2 each independently represents an aromatic hydrocarbon group, which may have a substituent selected from an alkyl group, an alkoxy group, a halogen atom, and an alkoxycarbonyl group, and may fuse an aromatic ring together with Y^1 or Y^2 and two carbon atoms adjacent thereto; and Q represents a polymethine group selected from a trimethine group, a pentamethine group, a heptamethine group, a nonamethine group, or an undecamethine group, and wherein the image forming material is a positive-type image recording material whose alkali solubility is increased by infrared exposure.

3. (previously presented): An image forming material comprising a support and an image forming layer which is laminated on the support and contains at least (A) a water-insoluble and alkali-soluble high-molecular compound and (B) a compound having a structure represented by the following general formula (1) and having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm:

General formula (1): X⁻M⁺

wherein in the general formula (1), X^{\dagger} represents an anion containing at least one substituent having an alkali-dissociating proton; and M^{\dagger} represents a counter cation which is an atomic group having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm and is represented by the following general formula (C):

General formula (C)

wherein in the general formula (C), Y³ and Y⁴ each independently represents an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom; M represents a methine chain having at least five or more conjugated carbon atoms; and R²¹ to R²⁴ and R²⁵ to R²⁸ each independently represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an aryl group, an alkenyl group, an alkynyl group, a carbonyl group, a thio group, a sulfonyl group, a sulfinyl group, an oxy group, or an amino group, and wherein the image forming material is a positive-type image recording material whose alkali solubility is increased by infrared exposure.

4. (previously presented): An image forming material comprising a support and an image forming layer which is laminated on the support and contains at least (A) a water-insoluble and alkali-soluble high-molecular compound and (B) a compound having a structure represented by the following general formula (1) and having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm:

General formula (1): X⁻M⁺

wherein in the general formula (1), X⁻ represents an anion containing at least one substituent having an alkali-dissociating proton; and M⁺ represents a counter cation which is an atomic group having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm and is represented by the following general formula (D):

General formula (D)

wherein in the general formula (D), R²⁹ to R³² each independently represents a hydrogen atom, an alkyl group, or an aryl group; R³³ and R³⁴ each independently represents an alkyl group, a substituted oxy group, or a halogen atom; n and m each independently represents an integer from 0 to 4; R²⁹ and R³⁰, or R³¹ and R³² may bond to form a ring; at least one of R²⁹ and R³⁰ may bond with R³³ to form a ring; at least one of R³¹ and R³² may bond with R³⁴ to form a ring; in the case when a plural number of R³³ or R³⁴ are present, the plurality of R³³ or the plurality of R³⁴ may bond with each other to form a ring; X² and X³ each independently represents a hydrogen atom, an alkyl group, or an aryl group; and Q represents an optionally substituted trimethine group or pentamethine group and may form a ring structure together with a divalent organic group, and wherein the image forming material is a positive-type image recording material whose alkali solubility is increased by infrared exposure.

5. (currently amended): An image forming material comprising a support and an image forming layer which is laminated on the support and contains at least (A) a water-insoluble and alkali-soluble high-molecular compound and (B) a compound having a structure represented by the following general formula (1) and having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm:

General formula (1): X⁻M⁺

wherein in the general formula (1), X represents an anion containing at least one substituent having an alkali-dissociating proton; and M represents a counter cation which is an

atomic group having an absorption maximum at a wavelength in a range of 760 nm to 1,200 nm and is represented by the following general formula (F-1) or (F-2):

General formula (F-1)

General formula (F-2)

wherein in the general formula (F-1) and (F-2), R⁵¹ to R⁵⁸ each independently represents a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group, and wherein the image forming material is a positive-type image recording material whose alkali solubility is increased by infrared exposure.

- 6. (previously presented): The image forming material according to claims 2, 3, 4 or 5, wherein in the general formula (1), the anion containing at least one substituent having an alkali-dissociating proton represented by X⁻ is selected from the group consisting of a phenolic hydroxyl group, a carboxyl group, a mercapto group, a phosphonic acid group, a phosphoric acid group, a sulfonamide group, a substituted sulfonamide based group, a sulfonic acid group, a sulfinic acid group, -C(CF₃)₂OH, and -COCH₂COCF₃.
- 7. (previously presented): The image forming material according to claims 2, 3, 4 or 5, wherein the compound having a structure represented by general formula (1) is an onium salt represented by the following general formula (1-A):

General formula (1-A): R^A-SO₃M⁺

wherein in the general formula (1-A), R^A represents a substituent containing at least one substituent having an alkali-dissociating proton; the substituent having an alkali-dissociating proton is synonymous with the substituent having an alkali-dissociating proton in the general formula (1); and M^+ is synonymous with M^+ in the general formula (1).

8. (previously presented): The image forming material according to claims 2, 3, 4 or 5, wherein the compound having a structure represented by general formula (1) is an onium salt represented by the following general formula (1-B):

General formula (1-B): Ar^B-SO₃-M⁺

wherein in the general formula (1-B), Ar^B represents an aryl group containing at least one substituent having an alkali-dissociating proton; the substituent having an alkali-dissociating

proton is synonymous with the substituent having an alkali-dissociating proton in the general formula (1); and M^+ is synonymous with M^+ in the general formula (1).

- 9. (previously presented): The image forming material according to claims 2, 3, 4 or 5, wherein the image forming layer further contains (C) a light-heat converting agent.
- 10. (previously presented): The image forming material according to claims 2, 3, 4 or 5, wherein the image forming material is a planographic printing plate precursor.
- 11. (previously presented): An image forming material comprising a support and an image forming layer which is laminated on the support and contains at least (A) a water-insoluble and alkali-soluble high-molecular compound, (C) a light-heat converting agent, and (D) an onium salt represented by the following general formula (2):

General formula (2): X⁻M₁⁺

wherein in the general formula (2), X^- represents an anion containing at least one substituent having an alkali-dissociating proton; and M_1^+ is quaternary ammonium, and the image forming material is a positive-type image recording material whose alkali solubility is increased by infrared exposure.

- 12. (canceled).
- 13. (currently amended): The image forming material according to claim 11, wherein the quaternary ammonium has a structure represented by the following general formula (M):

 General formula (M)

wherein in the general formula (M), R^{m1} to R^{m4} each independently represents a substituent having one or more carbon atoms and may bond with each other to form a ring structure.

14. (previously presented): The image forming material according to claim 11, wherein the quaternary ammonium has a structure represented by the following general formula (M-1):

General formula (M-1)

$$R^{1}N^{1+}$$

wherein in the general formula (M-1), R¹ represents a residue forming a ring structure containing an N¹ atom; R² and R³ each independently represents an organic group and may bond with each other to form a ring structure; and at least one of R² and R³ may be bonded to R¹ to from a ring structure.

- 15. (original): The image forming material according to claim 11, wherein in the general formula (2), the anion containing at least one substituent having an alkali-dissociating proton and represented by X is selected from the group consisting of a phenolic hydroxyl group, a carboxyl group, a mercapto group, a phosphonic acid group, a phosphoric acid group, a sulfonamide group, a substituted sulfonamide based group, a sulfonic acid group, a sulfinic acid group, -C(CF₃)₂OH, and -COCH₂COCF₃.
- 16. (original): The image forming material according to claim 11, wherein the onium salt represented by the general formula (2) is an onium salt represented by the following general formula (2-A):

General formula (2-A): R^A-SO₃-M₁+

wherein in the general formula (2-A), R^A represents a substituent containing at least one substituent having an alkali-dissociating proton; the substituent having an alkali-dissociating proton is synonymous with the substituent having an alkali-dissociating proton in the general formula (2); and M_1^+ is synonymous with M_1^+ in the general formula (2).

17. (original): The image forming material according to claim 11, wherein the onium salt represented by general formula (2) is an onium salt represented by the following general formula (2-B):

General formula (2-B): Ar^B-SO₃M₁⁺

wherein in the general formula (2-B), Ar^B represents an aryl group containing at least one substituent having an alkali-dissociating proton; the substituent having an alkali-dissociating proton is synonymous with the substituent having an alkali-dissociating proton in the general formula (2); and M_1^+ is synonymous with M_1^+ in the general formula (2).

- 18. (original): The image forming material according to claim 11, wherein the onium salt represented by the general formula (2) does not exhibit substantially absorption between 500 nm and 600 nm.
- 19. (original): The image forming material according to claim 11, wherein the image forming material is a planographic printing plate precursor.
- 20. (currently amended): The image forming material according to claim 2, wherein general formula (A) is represented by one of the following general formulae-(A-11) (A-1), (A-2) and (A-3):

General Formula (A-1)

wherein X^1 represents a hydrogen atom or a halogen atom, R^1 and R^2 each independently represents a hydrocarbon group having from 1 to 12 carbon atoms, Ar^1 and Ar^2 may be the same or different and each represents an optionally substituted aromatic hydrocarbon group, Y^1 and Y^2 may be the same or different and each represent a sulfur atom or a dialkylmethylene group having not more than 12 carbon atoms, R^3 and R^4 may be the same or different and each represent an optionally substituted hydrocarbon group having 1 to 4 carbon atoms, R^5 , R^6 , R^7 and R^8 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having not more than 12 carbon atoms;

General Formula (A-2)

wherein R^1 and R^2 each independently represents a hydrogen atom or a hydrocarbon group having from 1 to 12 carbon atoms, and R^1 and R^2 may bond with each other to form a ring structure, Ar^1 and Ar^2 may be the same or different and each represent an optionally substituted aromatic hydrocarbon group, Y^1 and Y^2 may be the same or different and each represent a sulfur

atom or a dialkylmethylene group having not more than 12 carbon atoms, R^3 and R^4 may be the same or different and each represent an optionally substituted hydrocarbon group having 1 to 4 carbon atoms, R^5 , R^6 , R^7 and R^8 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having not more than 12 carbon atoms, R^9 and R^{10} may be the same or different and each represent an optionally substituted aromatic hydrocarbon group having from 6 to 10 carbon atoms, an alkyl group having from 1 to 8 carbon atoms, or a hydrogen atom, or R^9 and R^{10} may bond with each other to form a ring having any one of the following structures:

$$-N$$
 R^9
 $-N$
 $N-CH_3$
 $N-Ph$
 $N-Ph$

General Formula (A-3):

wherein R^1 to R^8 , Ar^1 , Ar^2 , Y^1 , and Y^2 are respectively synonymous with those in the foregoing general formula (A-2), and Ar^3 represents an aromatic hydrocarbon group or a monocyclic or polycyclic heterocyclic group containing at least one of nitrogen, oxygen and sulfur atoms.