Waveform Feature Extraction Using (Relatively) Slow Digitization

Jim Braun July 5, 2018

Motivation & Goals

- Slow digitization (~40 Msps) yields power and cost savings in proposed Gen2 optical module
- Single digitization source simplifies hardware, calibration, and downstream software
- Question: Do we impair physics capabilities with slower digitization?
- Goal: Evaluate effects of using a single, slow digitizer on feature extraction:
 - 1. Charge resolution
 - 2. Timing resolution
 - 3. Double-pulse separation

Analysis

- Simulate a 40 Msps device with identical low-pass pulse shaping to the IceCube fADC
 - Create 40 Msps waveforms by injecting pulses assuming the standard IceCube fADC SPE pulse template
 - Add random noise to each bin (128 total bins)
 - Make bin value discrete assuming SPE peak → 20 counts
- Unfold waveforms using wavedeform
 - Modified to handle waveforms from single digitizer
- Compare unfolded pulses to true injected pulses
- Do the same for ATWD-like device, for comparison

IceCube DOM fADC Noise

 Create a histogram of the first bin of fADC waveforms with local coincidence

- Noise peak is reasonably well-described by a Gaussian of width 54 μV
 - Use this Gaussian in model

Waveform Unfolding: Wavedeform

- Waveform is a superposition of SPEs
- SPE template waveform represents response to SPE
 - → Unfold the waveform using a vector of time-shifted SPE templates as a basis

Formulate the unfolding as a least-squares problem

- Solution is the weighted superposition of basis functions that minimizes the chi-squared (basis weight == charge)
- Basis weights must be non-negative: we can't simply invert the basis matrix to get the answer
- Use Lawson-Hanson NNLS: Represent the waveform using the fewest basis functions possible
- Use relatively dense basis with 1 ns spacing
- Use IceCube "road-grading": bins within 2σ of noise are set to zero

Waveform Unfolding

Expected Response and Noisy Digitization

Waveform Unfolding

• Iteration #1:

Waveform Unfolding

Iteration #2:

Free Parameter: Stopping Tolerance

- Add pulses to the waveform in order of max basis gradient
 - Stop when no member of basis set has a gradient larger than specified tolerance
 - Determine best tolerance by injecting noise only and single pulses

Free Parameter: Stopping Tolerance

- Add pulses to the waveform in order of max basis gradient
 - Stop when no member of basis set has a gradient larger than specified tolerance
 - Determine best tolerance by injecting noise only and single pulses
- 0.7 mV^2/PE tolerance avoids noise-only pulses and captures ~50% of 0.3 PE pulses
- Produces a 2nd
 pulse for ~50%
 of 100 PE pulses

Split Pulses

Occurs when pulse is injected in between start times in basis

- Data is fit nearly perfectly with unfolded solution
- Unfolding problem is extremely underdetermined
 - Behavior like this is impossible to avoid

Split Pulses

- Pulses > ~50 PE tend to be split
- Splitting pulses isn't necessarily bad
 - Photons don't all arrive at the same time in real life

Charge Resolution

Inject single pulses with charge 0.3 PE < Q < 1000 PE

- Poisson error dominates if using Q_unfolded to measure amplitudes
- Resolution better than 1 PE over entire range of Q_injected
- Shouldn't be significantly different with more complex waveforms

- Unfolding produces early pulses for Q > 30 PE
- Early pulses are problematic for reconstruction
 - A single early pulse can significantly affect track reconstruction
- This is a major problem

- A single early pulse can significantly affect track reconstruction
- This is a major problem

- Mechanism: Large pulse immediately preceding a start time in basis
 - Algorithm adds a pulse 1-2 waveform bins earlier to match leading edge

- Best description of waveform is a superposition of start times on either side of start time of injected pulse
 - This solution is not considered because tolerance is reached before neighboring basis function is allowed to become nonzero

 Ad hoc solution: Run unfolding until no basis has a positive gradient, then add back basis in order of charge until tolerance is reached

- Significantly reduces artificial early start times
- Work to improve algorithm is needed and is ongoing
- This problem indicates that waveform templates must be precise!

Median timing uncertainty from unfolding already near 1 ns at 1 PE

- Inject two pulses: Q1 = Q2 = 30 PE
- $\Delta T = 10 \text{ ns}$

- Double pulse not resolved
- Treated as single, large pulse

- Inject two pulses: Q1 = Q2 = 30 PE
- $\Delta T = 25 \text{ ns}$

 Waveform unfolded into three pulses, with largest in the middle of the two injected pulses

- Inject two pulses: Q1 = Q2 = 30 PE
- $\Delta T = 25 \text{ ns}$

- Same waveform, but with unfolding modifications from leading edge study
- Double pulse resolved even though not obvious from waveform by eye

- Inject two pulses, each with charge Q and separation ΔT
- Declare double-pulse resolved if there is a gap of at least
 0.9 * ΔT inside the 0.45 0.55 quantiles of unfolded charge

Fraction of double pulses resolved

Q = 1 PE: ~50 ns

• Q > 10 PE: ~20 ns

Not fully optimized!

Conclusions and Caveats

- We can extract charge and leading edge time from a 40 Msps waveform with accuracy better than other limitations (i.e. Poisson sampling, time calibration, etc.)
- We make the implicit assumption that the SPE template used for unfolding is the same one that we injected
 - If SPE template used for unfolding is not correct, results could be very different, particularly for large pulses
 - SPE pulse templates probably need to be more accurate than those used in IceCube
- The performance of wavedeform out-of-the-box is unacceptable for this use case
 - Modifications to the algorithm yield acceptable performance
 - Additional work likely needed if single 40 Msps digitizer is used in Gen2

Extra Slides

