Feasibility study of layer separation using 2D patterned internal laser damage in silicon

Yuan Yao*,** Non-member, Andrea Vergara*a) Member Zhengnan Tang* Student Member, Shuji Tanaka* Senior Member

Laser lift-off (LLO) technology is widely used to separate ultra-thin electronic devices and in advanced packaging but typically relies on a specialized laser-responsive layer, adding complexity. This paper presents an innovative take on stealth dicing by using a pulse laser in a two-dimensional plane to create a separation interface without requiring a special layer, thus simplifying the fabrication process. The relationship between shear strength and laser ablation parameters was analyzed through shear force tests, with the modified layer morphology also examined. Shear strength for separation ranged from 200 to 20 MPa, with lower values achieved by reducing scanning pitch, increasing laser power, or enlarging the separated area. These findings highlight the potential of 2D stealth dicing as an LLO technique for ultra-thin devices.

Keywords: Stealth dicing, Laser lift-off, 2D laser damage, layer separation, Silicon slicing

1. Introduction

Electronic devices are gradually transitioning from flat, rigid components to curved or flexible ones. The growing demand for wearable devices has accelerated the development of flexible transducers (1)~(3). One direct approach is to use naturally soft materials, such as polymers and fluids (4). However, this often results in sacrificing performance. As a result, various techniques have been developed to transform or transfer rigid microdevices onto flexible substrates while retaining their high performance (5)~(9). Many of these techniques rely on etching sacrificial layers, but this approach is challenging to apply to piezoelectric MEMS devices, which have gained popularity due to their compactness, low voltage requirements, and ultra-low energy consumption. Several examples of thin-film piezoelectric layers grown on Si or other rigid substrates and then transferred to flexible substrates can be found in the literature (10)~(13). The major challenge with this approach is the risk of delamination due to poor adhesion to the target substrate, underscoring the need for a more reliable method.

Recently, laser lift-off (LLO) technology has gained significant attention in the development of ultra-thin electronic devices due to its non-contact processing advantage (14). It has been widely used in micro-LED fabrication and advanced packaging for electronic components (15)-(21), with companies like EVG (22), Disco (23), and TEL (24) releasing their own LLO technologies. Current LLO methods typically require a laser-responsive layer that facilitates separation when ablated. This method, while effective, introduces limitations such as addi-

tional fabrication steps and material constraints. In the case of piezoelectric devices, the laser-responsive layer typically cannot withstand the high temperatures required for piezoelectric thin-film deposition.

To overcome these challenges, we explored stealth dicing (SD) (25)-(28), an advanced laser-based technique that ablates substrates at arbitrary depths without needing a special absorbing layer. Unlike typical LLO technology, SD uses a high numerical aperture lens to focus the laser pulse into a condensed point, concentrating the laser energy. As a result, even when the material is transparent to the laser, the laser can interact with the material inside at the focal point by two-photon absorption, creating voids, cracks, or other damages. Also, rapid temperature increase generates an "SD layer" through a thermal shockwave (29)-(31). As the laser scans, the SD layer forms continuously, and interactions between these layers induce cracks in the material, greatly reducing the substrate's mechanical strength.

However, SD is conventionally used to dice chips into smaller pieces. In this study, the pulsed laser was used to "cut" closely spaced lines within the Si substrate, creating a weakened plane that allows easy separation by applying shear stress (32). This method could greatly simplify the transfer of piezoelectric devices to flexible substrates while preserving the integrity of the active device layers. For example, Figure 1 illustrates the conceptual fabrication process of a high-performance flexible piezoelectric micromachined ultrasonic transducer (pMUT) array. In this paper, shear force tests were conducted to evaluate the mechanical strength under different laser ablation parameters, and the morphology of the SD layer after laser ablation was analyzed using optical and scanning electron microscopy (SEM).

2. Experimental methods

1

Figure 2 illustrates the fabrication process and experiment

a) Correspondence to: vergara@tohoku.ac.jp

^{*} Department of Robotics, Tohoku University

^{6-6-01,} Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan.

^{**} School of Mechanical and Aerospace Eng., Jilin University Changchun 130022, China.

1. pMUT array fabricated by conventional process

2. 2D stealth dicing

3. Separation by shear stress

4. Bonding to flexible substrate

Fig. 1. Conceptual fabrication process of flexible pMUT array for wearable devices. The initial fabrication of the pMUT is done by conventional MEMS processes, then the proposed two-dimensional stealth dicing layer is cut to generate a weakened plane at an arbitrary height, which is later separated by the application of shear stress, and the resulting ultra-thin pMUTs are bonded to a flexible substrate.

flow of the test samples beginning with a plain silicon wafer. The first step involved using Deep Reactive Ion Etching (DRIE) (MUC-21 ASE-SRE, Sumitomo Precision Products Co. Ltd., Japan) to form the desired square shapes. Subsequently, a pulsed fiber laser (1064 nm wavelength, pulse width 200 ns, max. power 1.2 W, repetition frequency 20 – 500 kHz, model SP-12P-HS-B-B-B-B, SPI Lasers, UK) was employed to induce internal damage beneath the smooth Si surface along a two-dimensional patterned path. The configuration of the laser dicer equipment used is shown in Figure 3. The laser scanning pattern was a square grid with a scanning pitch ranging from 5 to 15 μ m. Finally, shear force tests were conducted to evaluate the separation strength.

Figure 4 presents a series of photographs taken during the actual experimental process. Figure 4(a) shows the mask design used for lithography and DRIE. A thick wall was included to prevent the formation of black silicon during the DRIE process, with the square pattern sizes ranging from $100 \text{ to } 500 \, \mu\text{m}$, as larger sizes tend to fracture the Si substrate during the shear force test. Figure 4(b) depicts the wafer after

1. Initial wafer

Fig. 2. Experiment flow. (1) Initial Si wafer (1 0 0) of $400\,\mu\text{m}$ thickness. (2) Fabrication of square-shaped structures by DRIE. (3) Stealth laser ablation to induce easy separation. (4) Separation using shear force measurement equipment.

Fig. 3. Configuration of laser dicer equipment.

lithography, which has an orientation of ;100; and a thickness of $400\pm15~\mu m$. The photoresist used was PMER P-LA 900 PM (Tokyo Ohka Kogyo, Japan), which was thick enough to avoid its partial removal during the DRIE process. Figure 4(c) shows the wafer after DRIE and cleaning. The average height of the DRIE etching was around $200~\mu m$. Resist removal was performed using acetone and Piranha solution (98% sulfuric acid: hydrogen peroxide = 3:1). Figure 4(d) illustrates the dicing step (DAD3240, DISCO Co., Japan), where the 4-inch wafer was divided into 2×2 cm² dies, as the

Fig. 4. Photographs of the testing sample (a) Mask design; (b) Lithography; (c) DRIE and cleaning; (d) Dicing; (e) Stealth laser ablation; (f) Shear force test.

laser dicer is limited to processing samples of this size.

Figure 4(e) displays the stealth laser ablation step using the laser dicer, which employs a $\times 100$ IR lens to focus the laser into a very small point, inducing internal damage within the Si. The sample stage moved freely at 2 mm/s in the X-Y plane, guided by points from a CSV file, allowing for

customizable laser scanning paths. Figure 4(f) captures the shear force test conducted using a Bonding Force Measurement System (PTR-1101, Rhesca Co. Ltd., Japan), where the shear force, F, required to separate each pattern was measured. After dividing by the pattern size, the shear stress (τ) was calculated, providing crucial data for evaluating mechanical strength and optimizing laser scanning pitches and other processing parameters.

A detailed schematic diagram of the shear force test is presented in Figure 5. During internal laser ablation, voids with diameters between 1 and 3 μ m are created by two-photon absorption and high temperatures at the laser focal point, which also generates a thermal shock wave, leading to the formation of the SD layer. As the laser scans, the SD layer continuously forms and interacts, creating internal cracks that significantly reduce the mechanical strength of the material. In the shear force test, by aligning the blade with the SD layer and applying horizontal shear force, the Si above the SD layer can be easily separated.

While the cross-sectional morphology of stealth dicing has been extensively studied (25)-(30), the top-view structures have not been reported. Therefore, photographs of the SD layer, substrate, and separated layer were taken and analyzed. Dur-

Fig. 5. Schematic diagram of (a) isometric view of the shear force test; (b) magnified cross-section view of the shear force test.

ing the imaging of the top layer, the sample is typically very small and prone to displacement following the application of shear force. To prevent this, adhesive tape is applied to the surface prior to conducting the shear force test.

3. Results and discussion

3.1 Results Three parameters have shown distinctive effects in lowering shear strength: laser scanning pitch, laser power and the pattern size. The scanning speed was kept constant at a maximum of 2 mm/s. The combination of parameters used is summarized in Table 1. As shown in Fig. 6, the correlations between shear stress (τ) , and these parameters are detailed.

Figure 6(a) presents the relationship between shear stress and laser scanning pitch, conducted with a sample size of $300\times300~\mu\text{m}^2$ and a laser power of 130. The results indicate a positive correlation between shear stress (τ) and laser scanning pitch. This suggests that a denser laser path facilitates layer separation in Si. However, it also results in a longer processing time during the stealth laser ablation step.

Figure 6(b) is conducted with a laser path pitch of $10 \mu m$ and a sample size of $300\times300 \mu m^2$. The shear stress decreases rapidly as laser intensity increases from 130 to 150. The laser intensity can be selected in the controller from 0 to 1000, where 1000 means 100% intensity. In Table 1, the estimated laser power in Watts is included as a reference, though it was not confirmed. Beyond this range, the reduction in shear stress became less pronounced. In practical experi-

T 11 1	~	C		
Table 1.	Summary	of paramet	ters used in	the experiments.

Parameter	Value					
Scanning pitch (µm)		5	10*	15		
Laser power	130*(~ 0.147 W)	150(~ 0.17 W)	200(~ 0.22 W)	250(~ 0.282 W)	300(~ 0.339 W)	
Pattern size (um ²)	100×100	200 × 200	300 × 300*	400 × 400	500 × 500	

* Default value when varying other parameters.

Fig. 6. Relationship between the shear stress and (a) laser scanning pitch (μm) ; (b) laser intensity (percentage); (c) pattern sizes $(\mu m2)$.

ments, laser intensities above 300 are hazardous, while intensities around 100 or lower are insufficient to damage silicon. Therefore, a laser intensity of 150 is recommended.

Figure 6(c) illustrates an experiment conducted with a laser power of 130 and a laser path pitch of $10 \, \mu \text{m}$. The shear stress exhibits a negative correlation with pattern size, suggesting that larger patterns are easier to separate. However, any pattern with a side length greater than $500 \, \mu \text{m}$ is likely to cause substrate breakage during shear force test.

Figure 7 presents a selection of optical and scanning elec-

Fig. 7. Microscopic images of (a) smooth silicon surface after laser ablation, (b) substrate after the shear force test, (c) magnified substrate after the shear force test, and (d) the separated layer on top.

tron microscopy (SEM; SU-70, Hitachi, Japan) images of the tested samples. Figure 7(a) illustrates the effect of laser ablation on the smooth Si surface, showing significant morphological changes from left to right. This variation was due to slight height differences in either the sample or the stage, resulting in varied interactions of the SD layer. Figure 7(b) depicts the texture of the SD layer on the substrate after the shear force test, where the top layer has been completely removed, revealing a distinct laser scanning path. Figure 7(c) provides a magnified view of the laser-ablated layer on the substrate after the shear force test, clearly showing the presence of voids. Figure 7(d) shows the separated top layer, which was collected during the shear test using tape. The border of this layer is slightly damaged, but the central part remained intact, demonstrating the theoretical feasibility of developing a separation technology for transferring ultra-thin electronic devices.

3.2 Discussion The shear stress required to separate the patterns from the substrate was below 200 MPa for most conditions, and it could get to a minimum of 13.1 MPa by increasing the laser power. Typical metal-to-metal bonding shear strength is several ten MPa or higher. Therefore, a shear strength of 13.1 MPa is as a result of the SD layer. On the other hand, this shear strength is still too high to separate the device without damage. Based on the data from the shear force test, shear stress can be reduced by narrowing the laser scanning pitch, increasing laser power, and enlarging the pattern size. It is possible that even a lower shear strength could be obtained by using, for example, a scanning pitch of 5 μ m, laser power of 150 and pattern size of 500×500 μ m2.

It is also worth mentioning that the laser used in this study was a commercially available one and different from one used in Disco's stealth dicers, which was specially optimized for stealth dicing. It is expected that using such a special laser can significantly reduce the shear stress for separation. Although it is currently challenging to remove the top layer without causing damage, the results presented here indicate that it is possible. Future work should focus on further optimizing laser ablation parameters to identify the optimal separation conditions. Additionally, the current separation force is limited to shear force; however, applying a combination of forces, including shear, lifting, and torsional forces, could make damage-free separation more easily achievable.

4. Conclusion

The feasibility of using stealth laser dicing along a two-dimensional patterned path was investigated. The test samples consisted of Si substrate with square-shaped structures fabricated by DRIE, that were then ablated by laser stealth dicing following a 2D path and finally separated using a shear stress measurement equipment. The relationships between laser scanning pitch, laser intensity, pattern size, and shear strength have been measured, and the top-view morphology of the SD layer was examined. Lower shear strengths were obtained with smaller scanning pitch, higher laser power and bigger pattern size up to about 20 MPa. The obtained shear strengths, almost all under 200 MPa, suggest that 2D stealth laser dicing could be a viable technique for transferring ultrathin electronic devices.

References

- (1) Y. Li, Y. Li, R. Zhang, S. Li, Z. Liu, J. Zhang and Y. Fu: "Progress in wear-able acoustical sensors for diagnostic applications", *Biosensors and Bioelectronics*, Vol. 237, 115509 (2023).
- (2) T. R. Ray, J. Choi, A. J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, R. Ghaffari and J. A. Rogers: "Bio-integrated wearable systems: A comprehensive review", *Chemical Reviews*, Vol. 119, No. 8, pp. 5461–5533 (2019).
- (3) T. Yokota, K. Fukuda and T. Someya: "Recent Progress of Flexible Image Sensors for Biomedical Applications", Advanced Materials, Vol. 33, No. 19, 2004416 (2021).
- (4) M. Lin, Z. Zhang, X. Gao, Y. Bian, R. S. Wu, G. Park, Z. Lou, Z. Zhang, X. Xu, X. Chen, A. Kang, X. Yang, W. Yue, L. Yin, C. Wang, B. Qi, S. Zhou, H. Hu, H. Huang, M. Li, Y. Gu, J. Mu, A. Yang, A. Yaghi, Y. Chen, Y. Lei, C. Lu, R. Wang, J. Wang, S. Xiang, E. B. Kistler, N. Vasconcelos and S. Xu: "A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects", *Nature Biotechnology*, Vol. 42, No. 3, pp. 448–457 (2024).
- (5) H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes III, J. Xiao, S. Wang, Y. Huang and J. A. Rogers: "A hemispherical electronic eye camera based on compressible silicon optoelectronics", *Nature*, Vol. 454, No. 7205, pp. 748–753 (2008).
- (6) J.-H. Ahn and J. H. Je: "Stretchable electronics: Materials, architectures and integrations", *Journal of Physics D: Applied Physics*, Vol. 45, No. 10, 103001 (2012).
- (7) K. Huang, R. Dinyari, G. Lanzara, J. Y. Kim, J. Feng, C. Vancura, F.-K. Chang and P. Peumans: "An Approach to Cost-Effective, Robust, Large-Area Electronics using Monolithic Silicon", in 2007 IEEE International Electron Devices Meeting (Washington DC, USA), pp. 217–220 (2007).
- (8) J. P. Rojas, A. Arevalo, I. G. Foulds and M. M. Hussain: "Design and characterization of ultra-stretchable monolithic silicon fabric", *Applied Physics Letters*, Vol. 105, No. 15, 154101 (2014).
- (9) W.-L. Sung, W.-C. Lai, C.-C. Chen, K. Huang and W. Fang: "Micro devices integration with large-area 2D chip-network using stretchable electroplating copper spring", in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS) (San Francisco, CA, USA), pp. 1135–1138 (2014).
- (10) S. V. Joshi, S. Sadeghpour and M. Kraft: "Fabrication of High-Frequency 2D Flexible pMUT Array", in 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS) (Munich, Germany), pp. 331–334

- (2023).
- (11) S. V. Joshi, S. Sadeghpour and M. Kraft: "Bendable polymer-based high-frequency pMUTs on transparent SU8 and polyimide substrates", in 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (Kyoto, Japan), pp. 849–852 (2023).
- (12) F. Pavageau, C. Dieppedale, P. Perreau, R. Liechti, A. Hamelin, C. Licitra, F. Casset and G. Le Rhun: "Highly transparent piezoelectric PZT membranes for transducer applications", *Sensors and Actuators A: Physical*, Vol. 346, 113866 (2022).
- (13) T. Samoto, H. Hirano, T. Somekawa, K. Hikichi, M. Fujita, M. Esashi and S. Tanaka: "Wafer-to-wafer transfer process of barium strontium titanate for frequency tuning applications using laser pre-irradiation", *Journal of Mi*cromechanics and Microengineering, Vol. 25, No. 3, 035015 (2015).
- (14) F. Wang, Q. Liu, J. Xia, M. Huang, X. Wang, W. Dai, G. Zhang, D. Yu, J. Li and R. Sun: "Laser Lift-Off Technologies for Ultra-Thin Emerging Electronics: Mechanisms, Applications, and Progress", *Advanced Materials Technologies*, Vol. 8, No. 7, 2201186 (2023).
- (15) R. Delmdahl, R. Pätzel and J. Brune: "Large-area laser-lift-off processing in microelectronics", *Physics Procedia*, Vol. 41, pp. 241–248 (2013).
- (16) R. Delmdahl, M. Fricke and B. Fechner: "Laser lift-off systems for flexible-display production", *Journal of Information Display*, Vol.15, No.1, pp.1–4 (2014).
- (17) T. Ueda, M. Ishida and M. Yuri: "Separation of thin GaN from sapphire by laser lift-off technique", *Japanese Journal of Applied Physics*, Vol.50, 041001 (2011).
- (18) C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin, H.-C. Kuo and S. C. Wang : "Study of GaN light-emitting diodes fabricated by laser lift-off technique", *Journal of Applied Physics*, Vol.95, No.8, pp.3916–3922 (2004).
- (19) S.-J. Kim, T. Ahn, M. C. Suh, C.-J. Yu, D.-W. Kim and S.-D. Lee: "Low-leakage polymeric thin-film transistors fabricated by laser assisted lift-off technique", *Japanese Journal of Applied Physics*, Vol.44, L1109 (2005).
- (20) L. Yue, J. Xu, X. Wang, J. Zhou, Y. Wang, L. Yao, M. Niu, M. Wang, B. Cao, Y. Xu, J. Wang and K. Xu: "Flexible arrays of GaN-based micro-LEDs fabricated on different substrates by a laser lift-off process", *Japanese Journal of Applied Physics*, Vol.63, 051007 (2024).
- (21) F. Chancerel, P. Urban, J. Slabbekoorn, S. Halas, J. Bravin, S. Brems, T. Uhrmann, M. Wimplinger, A. Phommahaxay and E. Beyne: "IR Laser Release for 3D Stacked Devices: Effect of the Release Stack Structure on the Debonding Mechanism", in 2024 IEEE 74th Electronic Components and Technology Conference (ECTC) (Denver, CO, USA), pp.343–347 (2024).
- (22) "IR LayerReleaseTM Technology." Accessed: Nov. 22, 2024. [Online]. Available: https://www.evgroup.com/technologies/ir-layerrelease-technology.
- (23) "Rēzārifutoofu (LLO, Laser Lift-Off) kakō", Accessed: Jan. 20, 2024. [Online]. Available: https://technology.disco.co.jp/jp/method/laser-lift-off/ (In Japanese).
- (24) "Saisentan debaisu 3-jigen jissõ no gijutsu kakushin ni kõken suru rēza hakuri gijutsu o kaihatsu." Accessed: Jan. 20, 2024. [Online]. Available: https://www.tel.co.jp/news/product/2023/20231211_001.html (In Japanese).
- (25) M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi and K. Fukumitsu: "Advanced dicing technology for semiconductor wafer Stealth dicing", IEEE Transactions on Semiconductor Manufacturing, Vol.20, No.3, pp.259–265 (2007).
- (26) M. Fujita, Y. Izawa, Y. Tsurumi, S. Tanaka, H. Fukushi, K. Sueda, Y. Nakata, M. Esashi and N. Miyanaga: "Debris-free Low-stress High-speed Laserassisted Dicing for Multi-layered MEMS", *IEEJ Trans. SM*, Vol.130, No.4, pp.118–123 (2010).
- (27) Y. Izawa, Y. Tsurumi, S. Tanaka, H. Fukushi, K. Sueda, Y. Nakata, M. Esashi, N. Miyanaga and M. Fujita: "Debris-Free High-Speed Laser-Assisted Low-Stress Dicing for Multi-Layered MEMS", *IEEJ Trans. SM*, Vol.129, No.3, pp.63–68 (2009).
- (28) M. R. Marks, K. Y. Cheong and Z. Hassan: "A review of laser ablation and dicing of Si wafers", *Precision Engineering*, Vol.73, pp.377–408 (2022).
- (29) D. K. Lim, V. R. S. P. Vempaty, A. H. Shah, W. H. Sim and H. V. Singh : "Modeling of Laser Absorption and Modification Layer Formation Within Silicon Due to Stealth Dicing", *IEEE Transactions on Components, Packaging and Manufacturing Technology*, Vol.13, No.9, pp.1486–1493 (2023).
- (30) W. H. The: "Stealth Dicing Characterization, Optimization, Integration, and Operations Management for Ultra-Thin Stacked Memory Dies", M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge (2015).
- (31) L. Wang, C. Zhang, F. Liu, H. Zheng and G. J. Cheng: "Ultrafast pulsed laser stealth dicing of 4H-SiC wafer: Structure evolution and defect generation", *Journal of Manufacturing Processes*, Vol.81, pp.562–570 (2022).
- (32) Y. Yao, A. Vergara, and S. Tanaka: "Feasibility Study of Layer Separation using 2D Patterned Internal Laser Damage in Silicon", in 37th International Microprocesses and Nanotechnology Conference (MNC 2024) (Kyoto, Japan), 15D-2-3 (2024).

Yuan Yao (Non-member) He has been an undergraduate student at the

School of Mechanical and Aerospace Engineering, Jilin University, China, since 2021. From October 2023 to August 2024, he was an exchange student at the Department of Robotics, Tohoku University. His research interests include microfabrication and laser technology.

Andrea Vergara

(Member) She received the B.E. and Mechanical Engineering degrees from the University of Chile in 2015 and Dr. Eng. Degree from Tohoku University in 2021. She is an assistant professor at Tohoku University. She is also a member of the IEEE, the JSME and the IEEJ. Her research interests include piezoelectric MEMS devices and materials, and microfabrication technology.

Zhengnan Tang

(Student Member) He received the B.E. from Dalian University of Technology, China, in 2021, and the M.E. from Tohoku University, Japan, in 2023. He is currently pursuing Ph.D. degree in Tohoku University. His research interests include piezoelectric MEMS design and fabrication technology.

Shuji Tanaka (Senior Member) He received B.E., M.E. and Dr. Eng.

degrees in mechanical engineering from The University of Tokyo in 1994, 1996 and 1999, respectively. He is currently Professor at Department of Robotics and Micro System Integration Center (μ SIC), Tohoku University. He was also Fellow of Center for Research and Development Strategy, Japan Science and Technology Agency from 2004 to 2006, and was Selected Fellow till 2018. He is IEEE Fellow and JSME Fellow. His research interest is industry-relevant

MEMS technology including MEMS sensors, MEMS packaging and integration, acoustic wave devices, and piezoelectric devices and materials.