Electromagnetismo 1

S00 - Presentación del curso

Josue Meneses Díaz

Contacto

- Email: josue.meneses+electro1@usach.cl
- · Laboratorio Ultrasonidos
- · Uvirtual

¿Por qué estudiar electromagnetismo?

- · Electrónica
 - Pantallas
 - Circuitos
- Comunicaciones
 - Ethernet
 - · Wifi
 - Bluetooth
 - · Ondas de radio
- · Fenómenos naturales
 - · luz, Colores, Arcoiris
 - Microondas
- Aplicaciones
 - · Rayos x, Difracción de Rayos X
 - · Microscopia óptica/electrónica

Figure 1: Circuito esquematico de una fuente de poder de 200W

Espectro electromagnetico

Fuerza de Lorentz

$$\overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})$$

- Carga: q,
- · Velocidad de la partícula: $ec{v}$,
- \cdot Campo eléctrico: \overrightarrow{E} ,
- \cdot Campo magnético: \overrightarrow{B}

En general

$$\frac{d}{dt} \left[\frac{mv}{\left(1 - v^2/c^2\right)^{1/2}} \right] = \overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})$$

5

Ecuaciones de Maxwell

$$\begin{split} \nabla \cdot \vec{E} &= \frac{\rho}{\epsilon_0}, \\ \nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t}, \\ c^2 \nabla \times \vec{B} &= \frac{\partial \vec{E}}{\partial t} + \frac{j}{\epsilon_0}, \\ \nabla \cdot \vec{B} &= 0. \end{split}$$

Con las constantes:

$$\epsilon_0 c^2 = \frac{10^7}{4\pi} \qquad \frac{1}{4\pi\epsilon_0} \approx 9\times 10^9 \qquad [\epsilon_0] = \ {\rm coulomb^2/\ newton\ metro^2}$$

6

La situacion mas fácil de tratar es cuando nada depende del tiempo (casos estáticos) Todas las cargas están permanentemente fijas en el espacio o, si se mueven, lo hacen en forma de flujo estacionario en un circuito (de modo que ρ y j const. en el tiempo).

Electrostática:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0},$$

$$\nabla \times \vec{E} = 0.$$

Magnetostática:

$$\nabla \times \vec{B} = \frac{j}{\epsilon_0 c^2},$$

$$\nabla \cdot \vec{B} = 0.$$

Contenido del curso

- · Lunes y martes 13:45-15:05. Teoría
- Jueves 13:45-15:05. Ejercicios*

Sesión	Fecha	CONTENIDOS
1-3	18-21 Mar	Carga eléctrica. Ley de Coulomb
4-6	25-28 Mar	Campo Eléctrico. Fuerza de Lorentz sobre una carga.
		Distribución continua de carga.
7-9	1-4 Abr	Flujo de campo. Ley de Gauss.
		Teorema de la divergencia. Ley de Gauss en forma
		diferencial

Sesión	Fecha	Contenido
10-17	8-18 Abr	Energía potencial y potencial electrostático.
		Gradiente de potencial y campo.
		Energía potencial y campo eléctrico
		Ecuaciones de Laplace y Poisson.
		El problema electrostático general.
		Corriente eléctrica.
		Ecuación de continuidad
18	25-Abr	PEP 1

Fecha	Contenido
29-Apr 9-May	Ley de Ohm.
	Resistividad. Conductividad.
	Circuitos. Leyes de Kirchhoff
	Fuentes de campo magnético: imanes y corrientes.
	Ley de Biot-Savart.
	Fuerza de Lorentz
13-16 May	Semana libre de docencia
	29-Apr 9-May

Sesión	Fecha	Contenido
27-30	20-28 May	Circulación de un campo vectorial.
		Ley de Ampère
		Energía almacenda en un campo magnético.
		Ley de Gauss para el campo magnético
		Ley de Faraday-Lenz
31	6-Jun	PEP 2

Sesión	Fecha	Contenido
32-35 10-13	10-13 Jun	Inducción y autoinducción. Transformadores
		Circuitos de corriente alterna
		Circuitos RLC
		Leyes de Kirchhof. Fasores.

Sesión	Fecha	Contenido
36-40	17-Jun 2-Juli	Impedancias capacitiva, resistiva e inductiva.
		Filtros
		Dieléctricos.
		Polarización y momento dipolar
		Capacitancia de condensadores
		Magnetismo en dieléctricos
		Dipolo magnético
41	1-Jul	Ecuaciones de Maxwell
		Ecuación de onda
43	9-Jul	PEP 3
45	11-Jul	Prueba de Reemplazo

Fechas importantes - Evaluación

Sesión	Fecha	Contenido
18	25-Abr	PEP 1
	13-16 May	Semana libre de docencia
31	6-jun	PEP 2
41	9-Jul	PEP 3
45	11-Jul	Prueba de Reemplazo

Referencias

- Serway, Raymond A., and John W. Jewett. Física Para Ciencias e Ingeniería Con Física Moderna. 7ma ed. Vol. 2. CENGAGE learning, 2005.
- · Freedman, Young, and S. Zemansky. Física Universitaria, 2009.