Since $(f_j)_{j\in J}$ is a basis of F, for every $j\in J'$, we must have

$$\sum_{i \in I'} \lambda_{ij} e_i^*(x) = 0, \quad \text{for all } x \in E.$$

But then $(e_i^*)_{i \in I'}$ would be linearly dependent, contradicting the fact that $(e_i^*)_{i \in I}$ is a basis of E^* , so we must have

$$\lambda_{ij} = 0$$
, for all $i \in I'$ and all $j \in J'$,

which shows that $\omega = 0$. Therefore, α_{\otimes} is injective.

(2) Let $(e_j)_{1 \leq j \leq n}$ be a finite basis of E, and as usual, let $e_j^* \in E^*$ be the linear form defined by

$$e_j^*(e_k) = \delta_{j,k},$$

where $\delta_{j,k} = 1$ iff j = k and 0 otherwise. We know that $(e_j^*)_{1 \leq j \leq n}$ is a basis of E^* (this is where we use the finite dimension of E). For any linear map $f \in \text{Hom}(E, F)$, for every $x = x_1 e_1 + \cdots + x_n e_n \in E$, we have

$$f(x) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) = e_1^*(x)f(e_1) + \dots + e_n^*(x)f(e_n).$$

Consequently, every linear map $f \in \text{Hom}(E, F)$ can be expressed as

$$f(x) = e_1^*(x)f_1 + \dots + e_n^*(x)f_n,$$

for some $f_i \in F$. Furthermore, if we apply f to e_i , we get $f(e_i) = f_i$, so the f_i are unique. Observe that

$$(\alpha_{\otimes}(e_1^*\otimes f_1+\cdots+e_n^*\otimes f_n))(x)=\sum_{i=1}^n(\alpha_{\otimes}(e_i^*\otimes f_i))(x)=\sum_{i=1}^ne_i^*(x)f_i.$$

Thus, α_{\otimes} is surjective, so α_{\otimes} is a bijection.

(3) Let (f_1, \ldots, f_m) be a finite basis of F, and let (f_1^*, \ldots, f_m^*) be its dual basis. Given any linear map $h: E \to F$, for all $u \in E$, since $f_i^*(f_j) = \delta_{ij}$, we have

$$h(u) = \sum_{i=1}^{m} f_i^*(h(u)) f_i.$$

If

$$h(u) = \sum_{j=1}^{m} v_j^*(u) f_j \quad \text{for all } u \in E$$
 (*)

for some linear forms $(v_1^*, \ldots, v_m^*) \in (E^*)^m$, then

$$f_i^*(h(u)) = \sum_{j=1}^m v_j^*(u) f_i^*(f_j) = v_i^*(u)$$
 for all $u \in E$,