Dirac planar map for paint and AT notes

November 4, 2015

1 Basics

We consider graphs embedded on surfaces without boundary. These come in two flavors: the orientable surfaces surfaces Σ_g which is the sphere with g handles; and the non-orientable surfaces Π_h which is the sphere with h cross-caps. The Euler genus ε of Σ_g is 2g and the Euler genus of Π_h is h. The Euler genus of a graph G is the smallest Euler genus of a surface on which G can be embedded. By Euler's formula, if a graph G is embedded on a surface of Euler genus ε , then $n-m+f\geq 2-\varepsilon$ where $n=|G|,\ m=|G|$ and f is the number of faces of G. It follows that if G is embedded on a surface of Euler genus ε , then $|G| \leq 3|G| - 6 + 3\varepsilon$. The Heawood number is given by

$$H(\varepsilon) = \left\lfloor \frac{7 + \sqrt{24\varepsilon + 1}}{2} \right\rfloor.$$

When $\varepsilon \geq 1$, the bound on ||G|| above implies that if G is embedded on a surface of Euler genus ε , then G has a vertex of degree at most $H(\varepsilon) - 1$. In particular, the graphs embedded on a surface of Euler genus $\varepsilon \geq 1$ are $H(\varepsilon)$ -AT and hence $H(\varepsilon)$ -paintable. The goal is to show that the only obstruction to G being $(H(\varepsilon) - 1)$ -AT is G containing $K_{H(\varepsilon)}$.

Conjecture 1.1. Let G be a graph embedded on a surface of Euler genus $\varepsilon \geq 1$. If $K_{H(\varepsilon)} \nsubseteq G$, then G is $(H(\varepsilon) - 1)$ -AT.

2 With Kernel Magic

We can get almost all the way there for paint using the follow result from [1].

Definition 1. The maximum independent cover number of a graph G is the maximum $\operatorname{mic}(G)$ of $\sum_{v \in I} d_G(v)$ over all independent sets I of G. A set I that witnesses this maximum is said to be optimal.

In [1] it was shown that $\operatorname{mic}(G) \geq |G| - 1$ for all G and $\operatorname{mic}(G) \geq |G|$ if G is a connected graph that is not a Gallai tree.

Definition 2. A graph G is P-reducible to H if H is a nonempty induced subgraph of G which is f_H -paintable where $f_H(v) := \delta(G) + d_H(v) - d_G(v)$ for all $v \in V(H)$. If G is not P-reducible to any nonempty induced subgraph, then it is P-irreducible.

Theorem 2.1. Every P-irreducible graph G satisfies $mic(G) \le 2 \|G\| - (\delta(G) - 1) |G| - 1$.

A minimal counterexample G to Conjecture 1.1 for paint is clearly P-irreducible. So, if G has Euler genus ε , then we have

$$\operatorname{mic}(G) \le 2 \|G\| - (\delta(G) - 1) |G| - 1 \le 2(3 |G| - 6 + 3\varepsilon) - (\delta(G) - 1) |G| - 1.$$

Since $\delta(G) \geq H(\varepsilon) - 1$, this becomes

$$\operatorname{mic}(G) \le (8 - H(\varepsilon))|G| + 6\varepsilon - 13.$$

Since G is 2-connected and not complete, it is not a Gallai tree, thus we have $mic(G) \ge |G|$ which gives

$$0 \le (7 - H(\varepsilon))|G| + 6\varepsilon - 13.$$

Since H(2) = 7, we conclude that $\varepsilon \neq 2$.

References

[1] Hal Kierstead and Landon Rabern, Improved lower bounds on the number of edges in list critical and online list critical graphs, arXiv preprint, http://arxiv.org/abs/1406.7355 (2014).