Math	146 - Calculus II	
How	fast can you work?	1

For this activity we are going to look at a measurement of how computers work to do a given task - computer scientists call these *fundamental operations*. Measuring the number of fundamental computer operations is important in our world of big data!

Computer scientists measure the efficiency of a computer program (what can be called an algorithm) by the number of fundamental operations (such as adding, comparing, multiplying, or dividing numbers) it takes to complete a task. In most cases the cumulative number of operations is a function of the input size n. For example, let's say your algorithm was to square a number n. It would take more fundamental operations to compute a large n, such as 347634^2 versus 5^2 . One way computer scientists denote the efficiency of this algorithm is with "big O" notation. Algorithms may have a different efficiency, such as $O(n^2)$ or $O(n \ln n)$, which approximates the number of fundamental operations needed to complete the calculation for a given value of n. For this activity we will focus on comparing different functions f(n) in O(f(n)).² An efficient algorithm needs fewer operations.

1. You are considering four different algorithm speeds:

A: $n \ln(n)$

B: $n(\ln(n))^2$

C: n^2

D: $e^{\ln(2)n}$ (This is really just 2^n , but we are going to write it this way (see footnote 2).

Complete the following table, rounding to the nearest whole number.

n	1	10	100	1000	10000	107
A						
В						
С						
D						

2. Based on the evidence in the table, which algorithm do you think is the most efficient as n increases?

¹This example is based on problem 4.7.110 in your textbook

²Computer scientists also use logarithms of base 2, i.e. $\log_2(n)$ or $\lg(n)$. For ease of use we will just stick with the natural logarithm. For large n the distinctions between $\lg(n)$ and $\ln(n)$ are not as important.

4. Another way we could investigate efficiency is to compare the ratio of these algorithms and evaluate the limit as n grows large. For example if we compare Algorithm A to Algorithm B we have:

$$\lim_{n \to \infty} \frac{\text{Algorithm A:}}{\text{Algorithm B:}} = \lim_{n \to \infty} \frac{n \ln(n)}{n (\ln(n))^2}$$

(a) Simplify this expression, and then evaluate the limit as $n \to \infty$, using your graph and table as a guide. Write your answer below.

(b) Based on the graph you made and the conclusion you found from the limit, which Algorithm (A or B) is more efficient?

- 5. Notice that you had some nice algebraic simplification in the last problem.
 - (a) Explain why if we were to repeat this analysis for Algorithm C and Algorithm D this would not be the case.

(b) Our tables and graphs seem to suggest that Algorithm C is more efficient. Another way we could evaluate this efficiency is to investigate the ratio of the rates of change of each algorithm, in the hopes of some nice simplification. If $f(n) = n^2$ and $g(n) = e^{\ln(2)n}$, develop expressions for the ratio of the rates of change:

$$\lim_{n\to\infty}\frac{f'(n)}{g'(n)}=$$

(c) You may notice that the ratio of the rates does not simplify algebraically. Both of these algorithms are increasing as n increases. Another comparison we could make is in regards how fast the rate of change is increasing (i.e. the second derivative):

$$\lim_{n\to\infty}\frac{f''(n)}{g''(n)}=$$

What is the result of this limit calculation? Which algorithm (C or D) has the smaller rate of increase, and therefore is more efficient?