OSM Bootcamp Lecture 3

John Stachurski

2018

Vector Analysis: Preliminaries

Let \mathbb{R}^n denote the set of all n vectors $x = (x_1, \dots, x_n)$

In matrix algebra, x defaults to column vector

The **Euclidean norm** $\|\cdot\|$ on \mathbb{R}^n is defined by

$$||x|| := \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$$

Interpretation:

- ||x|| represents the "length" of x
- ||x y|| represents distance between x and y

Fact. For any $\alpha \in \mathbb{R}$ and any $x,y \in \mathbb{R}^n$, the following statements are true:

1.
$$||x|| \geqslant 0$$
 and $||x|| = 0$ if and only if $x = 0$

2.
$$\|\alpha x\| = |\alpha| \|x\|$$
 finer homogeneity

- 3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- 4. $|x'y| \le ||x|| ||y||$ (Cauchy-Schwarz inequality)

(Here x'y is the **inner product** $\sum_{i=1}^{n} x_i y_i$)

The Set of Matrices $\mathcal{M}(n \times k)$

Let $\mathcal{M}(n \times k)$ be the set of $n \times k$ real matrices

Questions:

- When is matrix A "close" to matrix B?
- When does A_n converge to A?
- What does $\sum_{n=1}^{\infty} A_n$ mean?

To answer these questions, we introduce a norm on $\mathcal{M}(n \times k)$

The Spectral Norm

Given $A \in \mathcal{M}(n \times k)$, the **spectral norm** of A is

$$||A|| := \sup \left\{ \frac{||Ax||}{||x||} : x \in \mathbb{R}^k, \ x \neq 0 \right\}$$

- LHS is the spectral norm of A
- RHS is ordinary Euclidean vector norms

We often just say the **norm** of A

Properties of the Spectral Norm

Similar to Euclidean norms on vectors,

Fact. For all $A, B \in \mathcal{M}(n \times k)$,

- 1. $||A|| \geqslant 0$ and $||A|| = 0 \iff A = 0$
- 2. $\|\alpha A\| = |\alpha| \|A\|$ for any scalar α
- 3. $||A + B|| \le ||A|| + ||B||$

Ex. Show that

Pick
$$x \neq 0$$
. Superall

The $\frac{\|A \times \|}{\|x\|} \leq \|A\| \|x\|$
 $\|Ax\| \leq \|A\| \|x\|$

$$||Ax|| \le ||A|| \cdot ||x|| \quad \forall x \in \mathbb{R}^k$$

Fact. If AB is well defined, then $||AB|| \leq ||A|| ||B||$

Proof: Let $A \in \mathcal{M}(n \times k)$, let $B \in \mathcal{M}(k \times j)$ and let $x \in \mathbb{R}^j$ We have

$$\|ABx\| \leqslant \|A\| \cdot \|Bx\| \leqslant \|A\| \cdot \|B\| \cdot \|x\|$$

$$\downarrow_{lobaria} \\ \downarrow_{lobaria} \\ \downarrow_{lobaria} \\ \downarrow_{lobaria} \\ \vdots \qquad \frac{\|ABx\|}{\|x\|} \leqslant \|A\| \cdot \|B\|$$

$$\Rightarrow holds for all x

$$\Rightarrow holds for all x$$

$$\Rightarrow holds for all x

$$\Rightarrow holds for all x$$

$$\Rightarrow holds for$$

Called the submultiplicative property

Implication: $\|A^j\| \leqslant \|A\|^j$ for any $j \in \mathbb{N}$ and $A \in \mathcal{M}(n \times n)$

If $||A|| \le 1$ then A is called **nonexpansive**

If ||A|| < 1 then A is called **contractive**

Distance, Convergence, etc.

Having a norm on matrices gives us a notion of distance:

$$d(A,B) = \|A - B\|$$

Example. If $\|A_j - A\| \to 0$ then we say that A_j converges to A

Similarly,

$$\sum_{j=1}^{\infty} A_j = B \quad \iff \quad \lim_{J \to \infty} \left\| \sum_{j=1}^{J} A_j - B \right\| = 0$$

For $A \in \mathcal{M}(n \times n)$, the spectral radius is

$$r(A) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}$$

Fact. For all $A \in \mathcal{M}(n \times n)$, we have

- 1. $||A|| = \sqrt{r(A'A)}$
- 2. ||A'|| = ||A|| and r(A') = r(A)

Fact. (Gelfand's formula) For all $A \in \mathcal{M}(n \times n)$, we have

$$||A^k||^{1/k} \to r(A)$$
 as $k \to \infty$

Ex. Use Gelfand's formula to show that
$$\begin{cases} \text{Gelfand's formula to show that} \\ \text{Grant Grant} \end{cases} \qquad r(A) < 1 \implies \|A^k\| \to 0$$
 for a call North No

Neumann Series Lemma

Let $A \in \mathcal{M}(n \times n)$ and let I be the $n \times n$ identity

Fact. (Neumann series lemma.) If r(A) < 1, then I - A is nonsingular and

$$(I-A)^{-1} = \sum_{j=0}^{\infty} A^j$$

Example. If r(A) < 1, then x = Ax + b has the unique solution

Example. If
$$r(A) < 1$$
, then $x = Ax + b$ has the unique solution of $x = Ax + b$ has the unique solution of $x = Ax + b$ has the unique solution of $x = Ax + b$ has the unique solution $x = Ax +$

Proof of the NSL

Ex. Show that $B_J := \sum_{i=0}^J A^j$ is Cauchy and hence $\sum_{j=0}^\infty A^j$ exists

Now observe that $(I - A) \sum_{i=0}^{\infty} A^{i} = I$, since

$$\left\| (I - A) \sum_{j=0}^{\infty} A^j - I \right\| = \left\| (I - A) \lim_{J \to \infty} \sum_{j=0}^{J} A^j - I \right\|$$

$$= \lim_{J \to \infty} \left\| (I - A) \sum_{j=0}^{J} A^j - I \right\|$$

$$= \lim_{J \to \infty} \left\| A^{J+1} \right\| = 0$$

Linear Vector-Valued Systems

Let $A \in \mathcal{M}(n \times n)$ and consider the dynamic model

$$x_{t+1} = Ax_t + b$$
, x_0 given

Example. Next period inflation and output depend on current inflation and output via certain laws of motion

As a dynamical system,

- $\mathbb{X} = \mathbb{R}^n$
- g(x) = Ax + b

As before, a steady state is a vector x^* such that $x^* = g(x^*)$

That is,

$$x^* = Ax^* + b$$
Thus a vigue solution

Fact. If $\underline{r(A)} < 1$, then (X,g) is globally stable, with unique steady state

$$x^* = \sum_{j=0}^{\infty} A^j b$$

Existence and uniqueness follows from the Neumann Series Lemma

How about stability? Iteration gives

$$x_t = A^t x_0 + A^{t-1} b + \dots + b$$

Hence, for any x_0, y_0 in \mathbb{R}^n , we have

$$y_0$$
 in \mathbb{R}^n , we have effect of which $\|x_t - y_t\| = \|A^t x_0 - A^t y_0\|$

$$= \|A^t (x_0 - y_0)\|$$

$$\leq \|A^t\| \cdot \|x_0 - y_0\|$$
 so multiplicative

Using r(A) < 1 and setting $y_0 = x^*$ gives $x_t \to x^*$ were pure conveying to x^*

Linear Vector Systems with Noise

Next consider

- $x_{t+1} = Ax_t + b + C\xi_{t+1}$ with x_0 given
- $\{\xi_t\}$ is IID and satisfies

$$\mathbb{E}\left[\xi_{t+1}\right] = 0$$
 and $\mathbb{E}\left[\xi_{t+1}\xi_{t+1}'\right] = I$
elemetrical population no correlation

What is the time path of the first two moments

- $u_t := \mathbb{E}[x_t]$
- $\Sigma_t := \text{var}[x_t] := \mathbb{E}[(x_t u_t)(x_t u_t)']$

Dynamics of the Mean

First, regarding μ_t , take expectations over

$$x_{t+1} = Ax_t + b + C\xi_{t+1}$$

to get

$$\mu_{t+1} = A\mu_t + b$$
 Jeterministic linear system.

Fact. If r(A) < 1, then $\{\mu_t\}$ converges to the unique fixed point

$$\mu^* = \sum_{i=0}^{\infty} A^i b$$

regardless of μ_0

Figure: Convergence of μ_t to μ^* in the scalar model

Dynamics of the Variance

Consider again

$$x_{t+1} = Ax_t + b + C\xi_{t+1}$$

We want a similar law of motion for $\Sigma_t := \mathrm{var}[x_t]$

We will use the fact that $\mathbb{E}\left[x_t \mathcal{\xi}_{t+1}'
ight] = 0$

This follows from the assumptions above

At is a function of instrant consistent all past shoks as Magazine of \$ 500.

By definition,

$$var[x_{t+1}] = \mathbb{E}\left[(x_{t+1} - \mu_{t+1})(x_{t+1} - \mu_{t+1})' \right]$$
$$= \mathbb{E}\left[(A(x_t - \mu_t) + C\xi_{t+1})(A(x_t - \mu_t) + C\xi_{t+1})' \right]$$

The right hand side is equal to

$$\mathbb{E} \left[A(x_t - \mu_t)(x_t - \mu_t)'A' \right] + \mathbb{E} \left[A(x_t - \mu_t)\xi'_{t+1}C' \right]$$

$$+ \mathbb{E} \left[C\xi_{t+1}(x_t - \mu_t)'A' \right] + \mathbb{E} \left[C\xi_{t+1}\xi'_{t+1}C' \right]$$

Some further manipulations (check) lead to

Difference equation
$$\Sigma_{t+1} = A\Sigma_t A' + CC'$$

To repeat

$$\Sigma_{t+1} = g(\Sigma_t)$$
 where $g(\Sigma) = A\Sigma A' + CC'$

Variance is a trajectory of the dynamical system $(\mathcal{M}(n \times n), g)$

A steady state of this system is a Σ satisfying

$$\Sigma = A\Sigma A' + CC'$$

Fact. If r(A) < 1, then $(\mathcal{M}(n \times n), g)$ is globally stable

More generally, consider the discrete Lyapunov equation

$$\Sigma = A\Sigma A' + M$$

• all matrices are in $\mathcal{M}(n \times n)$ and Σ is the unknown

Given A and M, let ℓ be the Lyapunov operator

$$\ell \colon \mathcal{M}(n \times n) \ni \Sigma \mapsto A\Sigma A' + M \in \mathcal{M}(n \times n)$$

Fact. If r(A) < 1, then $(\mathcal{M}(n \times n), \ell)$ is globally stable

Proof: Suffices to show that ℓ^k is a Banach contraction on $(\mathcal{M}(n\times n),\|\cdot\|)$ for some $k\in\mathbb{N}$

From the definition,

$$\ell^{k}(\Sigma) = A^{k}\Sigma(A^{k})' + A^{k-1}M(A^{k-1})' + \dots + M$$

Hence, for any Σ , Λ in $\mathcal{M}(n \times n)$, we have

$$\|\ell^{k}(\Sigma) - \ell^{k}(\Lambda)\| = \|A^{k}\Sigma(A^{k})' - A^{k}\Lambda(A^{k})'\|$$

$$= \|A^{k}(\Sigma - \Lambda)(A^{k})'\|$$

$$\leq \|A^{k}\| \cdot \|\Sigma - \Lambda\| \cdot \|(A^{k})'\|$$

Transposes don't change norms, so $\|(A^k)'\| = \|A^k\|$ and hence

$$\|\ell^k(\Sigma) - \ell^k(\Lambda)\| \leqslant \|A^k\|^2 \|\Sigma - \Lambda\|$$

Since r(A) < 1, we can find $k \in \mathbb{N}$, $\lambda < 1$ such that

$$\|\ell^k(\Sigma) - \ell^k(\Lambda)\| \leqslant \lambda \|\Sigma - \Lambda\|$$
 for all $\Sigma, \Lambda \in \mathcal{M}(n \times m)$

Now apply Banach contraction mapping theorem

Note: Gives an algorithm for computing Σ^*

(Not always the best one)

Stochastic Processes: Key Ideas

Quizz: Whose favorite saying is this? Sargut

An economic model is a probability distribution on a sequence space

But what's a probability distribution on a sequence space?

Let's break this down and try to understand...

Consider a economic model of the form

$$X_{t+1} = F(X_t, \xi_{t+1}), \quad \text{where } \{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} \phi$$

Objects such as F and ϕ are determined by theory + estimation + calibration

Here

- X_t is called the **state variable**
- ullet It takes values in state space ${\mathbb X}$
- ξ_t is called the **shock** or **innovation**

An economic model is a probability distribution on a sequence space

The "sequence space" is

$$\times_{t=0}^{\infty} \mathbb{X} := \mathbb{X} \times \mathbb{X} \times \mathbb{X} \times \cdots$$

A typical element is

$$(x_0, x_1, x_2, \ldots)$$
 where each $x_t \in \mathbb{X}$

This is the set of all possible values for the time series

$$\mathbf{X} := (X_0, X_1, X_2, \ldots)$$

The "probability distribution" on this sequence space is a map \mathbb{P}_x , where

$$\mathbb{P}_{x}(B) = \mathsf{Prob}\{(X_0, X_1, X_2, \ldots) \in B\}$$

Here

- B is some "event" in the sequence space $\times_{t=0}^{\infty} \mathbb{X}$
- Prob means "probability of"

The subscript x in \mathbb{P}_x means that we are conditioning on $X_0=x$

An economic model is a probability distribution on a sequence space

Our economic model is $X_{t+1} = F(X_t, \xi_{t+1})$ with $\{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} \phi$

The model determines the probability distribution \mathbb{P}_x via

$$\mathbb{P}_{x}(B) = \text{Prob}\{(x, F(x, \xi_{1}), F(F(x, \xi_{1}), \xi_{2}), \ldots) \in B\}$$

This is the probability of the shock path

$$\{(z_1, z_2, \ldots) \mid (x, F(x, z_1), F(F(x, z_1), z_2), \ldots) \in B\}$$

according to the distribution $\times_{t=1}^{\infty} \phi$

The distribution \mathbb{P}_x tells us probabilities for the whole path $\{X_t\}$

It is the **joint distribution** of the sequence $\{X_t\}$

In theory, \mathbb{P}_{x} can be used to answer any question along the lines

"What's the probability that event B happens when $\{X_t\}$ is realized?"

Example. What's the probability that inflation falls each quarter for the next two years?

Example. Inventory dynamics

• See Wk2_Dynamics/inventory_dynamics.ipynb

Example. Samuelson multiplier-accelerator with stochastic govt spending

• See Wk2_Dynamics/accelerator.ipynb

Marginal Distributions

Some events concern only one point in time

Let

$$\psi_t(B) := \mathbb{P}_x\{X_t \in B\}$$
 where $B \subset \mathbb{X}$

This object ψ_t is called the **marginal distribution** of X_t

Intuitively, $\psi_t(B)$ is

- the frequency of X_t landing in B if we run the system many times
- the fraction of "particles" that lie in B if many independent particles are generated by the model

Applications: See the discussion of marginal distributions in

- Wk2 Dynamics/inventory dynamics.ipynb
- Wk2_Dynamics/accelerator.ipynb

