Определение энергии активации по температурной зависимоти вязкости жидкости

1 Цель работы:

- 1) Измерение скорости падения шариков при разной температуре жидкости;
- 2) Вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

2 В работе используются:

Стеклянный цилиндр с глицерином, термостат, микроскоп, мелкие шарики, секундомер.

3 Экспериментальная установка:

4 Теоретическая часть

Рассмотрим свободное падение шарика в вязкой жидкости. На шарик действуют три силы: сила тяжести, архимедова сила и сила вязкости, зависящая от скорости.

Найдем уравнение движения шарика в жидкости. По второму закону Ньютона:

$$Vg(\rho - \rho_{\mathcal{H}}) - 6\pi\eta rv = V\rho \frac{dV}{dt}$$

Решая это уравнение, найдём:

$$v(t) = v_{ycm} - [v_{ycm} - v(0)]e^{\frac{-t}{\tau}}$$

$$v_{ycm} = \frac{Vg(\rho - \rho_{\mathcal{H}})}{6\pi\eta rv} = \frac{2}{9} gr^2 \frac{\rho - \rho_{\mathcal{H}}}{\eta}$$

$$\eta = \frac{2}{9} gr^2 \frac{\rho - \rho_{\mathcal{H}}}{v_{ycm}} \tag{1}$$

5 Обработка результатов измерений:

$\rho_{cme\kappa na}$	ρ_{cmanu}	L_0	L_1	L_2	d_{mp}
$2.5\frac{r}{cM^3}$	$7.8 \frac{e}{c M^3}$	$2.5 \pm 0.05 c$ м	$10.0 \pm 0.05 c$ M	$10.0 \pm 0.05 c$ M	$3.0 \pm 0.05 c$ м
T_1		T_2	T_3	T_4	T_5
$293.0 \pm$	0.3 K	$303.0 \pm 0.3 \text{ K}$	$313.0 \pm 0.3 \text{ K}$	$323.0 \pm 0.3 \text{ K}$	$333.0 \pm 0.3 \text{ K}$

T_1	1 стекл.	2 стекл.	1 сталь.	2 сталь.
d, MM	2.10	2.20	0.85	0.80
t, c	4.81	4.61	5.30	6.10
t_1 , c	17.13	17.15	19.05	20.36
t_2 , c	17.45	17.13	18.83	20.29
T_2	1 стекл.	2 стекл.	1 сталь.	2 сталь.
d, MM	2.10	2.10	0.70	0.75
t, c	2.60	2.65	3.96	3.60
t_1 , c	8.72	8.54	15.82	13.33
t_2 , c	8.64	8.73	15.64	13.79
T_3	1 стекл.	2 стекл.	1 сталь.	2 сталь.
- 3	I CICKA.	Z CICKAI.	i Clanb.	и сталь.
d, MM	2.05	2.05	0.80	0.80
	2.05 1.29			
d, MM	2.05	2.05	0.80	0.80
d, MM t , c	2.05 1.29	2.05 1.31	0.80 1.48	0.80 1.58
$egin{array}{c} d, \ ext{MM} \ t, \ ext{c} \ t_1, \ ext{c} \ t_2, \ ext{c} \ \end{array}$	2.05 1.29 5.29	2.05 1.31 5.29	0.80 1.48 5.03	0.80 1.58 5.33
$egin{array}{c} d, \ { m MM} \\ t, \ { m c} \\ t_1, \ { m c} \\ t_2, \ { m c} \\ \hline T_4 \\ \hline \end{array}$	2.05 1.29 5.29 5.43 1 стекл.	2.05 1.31 5.29 5.47 2 стекл.	0.80 1.48 5.03 5.19	0.80 1.58 5.33 5.39
$egin{array}{c} d, \ ext{MM} \ t, \ ext{c} \ t_1, \ ext{c} \ t_2, \ ext{c} \ \end{array}$	2.05 1.29 5.29 5.43	2.05 1.31 5.29 5.47 2 стекл. 2.10	0.80 1.48 5.03 5.19 1 сталь. 0.70	0.80 1.58 5.33 5.39 2 сталь. 0.75
$egin{array}{c} d, \ { m MM} \\ t, \ { m c} \\ t_1, \ { m c} \\ t_2, \ { m c} \\ \hline T_4 \\ \hline \end{array}$	2.05 1.29 5.29 5.43 1 стекл.	2.05 1.31 5.29 5.47 2 стекл.	0.80 1.48 5.03 5.19	0.80 1.58 5.33 5.39
$egin{array}{c} d, \ { m MM} \\ t, \ { m c} \\ t_1, \ { m c} \\ t_2, \ { m c} \\ \hline T_4 \\ d, \ { m MM} \\ \hline \end{array}$	2.05 1.29 5.29 5.43 1 стекл. 2.05	2.05 1.31 5.29 5.47 2 стекл. 2.10	0.80 1.48 5.03 5.19 1 сталь. 0.70	0.80 1.58 5.33 5.39 2 сталь. 0.75

T_5	1 стекл.	2 стекл.	1 сталь.	2 сталь.
d, mm	2.00	2.05	0.75	0.85
t, c	0.45	0.53	0.58	0.46
t_1 , c	1.54	1.72	2.23	1.67
t_2 , c	1.89	1.90	2.27	1.96

Вычислим значения η для каждого опыта по формуле (1):

$$[\eta] = \Pi a \cdot c$$

η_1	η_2	η_3	η_4	η_5
2.04 ± 0.1224	1.04 ± 0.0624	0.61 ± 0.0366	0.31 ± 0.0186	0.18 ± 0.0108

Оценим время релаксации au и путь релаксации S по формуле:

$$\tau = \frac{V\rho}{6\pi\eta r} = \frac{2}{9} \frac{r^2\rho}{\eta}, \qquad S = v_{ycm} \cdot t$$

$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$
0.0012 c	0.0024 c	0.0038 c	0.072 c	0.0075 c

S_1	S_2	S_3	S_4	S_5
$7.05 \cdot 10^{-3} \text{ MM}$	$2.7 \cdot 10^{-2} \text{ MM}$	$7.2 \cdot 10^{-2} \text{ MM}$	0.2 мм	0.5 мм

Путь релаксации $S \ll L_0 \Rightarrow$ скорость после L_0 является постоянной.

Построим график зависимости $\ln \eta$ от $\frac{1}{T}$:

Угловой коэффициент наклона равен $a=\frac{d\ln\eta}{d(1/T)}=75.628$ Оценим погрешности:

$$\varepsilon_L = \frac{\Delta_L}{L} = 0.02$$

$$\varepsilon_T = \frac{\Delta_T}{T} = 0.02$$

$$\varepsilon_r = \frac{\Delta_r}{r} = 0.048$$

$$\varepsilon_{\eta} = 0.0634$$

$$\varepsilon_W = 0.08452$$

Найдём энергию активации молекулы:

$$W = k \frac{d \ln \eta}{d(1/T)} = (1.04416 \pm 0.08825) \cdot 10^{-21}$$
Дж

Посчитаем число Рейнольдса:

Re_1	Re_2	Re_3	Re_4	Re_5
0.008	0.032	0.08	0.03	0.07

Каждое значение числа Рейнольдса $Re < 0.5 \Rightarrow$ обтекание можно считать ламинарным.