KU LEUVEN

Regular Spanning Trees in Cayley Graphs

Geometric versions of the Von Neumann conjecture and Burnside's problem

Gael Deniz

Faculty of Science
Department of Mathematics

Main theorem of the day

Theorem: Regular trees of Cayley graphs

Let G be a finitely generated infinite group, then there exists a Cayley graph Cay(G, S) of G allowing a regular spanning tree.

2 failed conjectures

- 2. The Von Neumann conjecture: Does every nonamenable finitely generated group contain the free group \mathbb{F}_2 ?

The 2 parts of the theorem

• If *G* amenable, 2-regular spanning tree (= bi-infinite Hamiltonian path)

Burnside problem

• If G nonamenable, k-regular spanning tree for all $k \ge 3$. **Von Neumann conjecture**

Sources

- [7] Clara Löh. Geometric group theory. Springer, 2017.
- [8] Brandon Seward. Burnside's problem, spanning trees and tilings. Geometry & Topology, 18(1):179–210, 2014.
- Kevin Whyte. Amenability, bilipschitz equivalence, and the von neumann conjecture. arXiv preprint math/9704202, 2008.

Table of Contents

Introduction

Early questions?

History and results of my thesis

Proof of the bilipschitz equivalences of trees

Proof of the transitive geometric Von Neumann theorem

Overview

Introduction

Early questions?

History and results of my thesis

Proof of the bilipschitz equivalences of trees

Proof of the transitive geometric Von Neumann theorem

Cayley graphs

Definition (Cayley graph)

Let G be a finitely generated group and let $S \subset G$ be a generating set. Then we define the Cayley graph of G as

$$Cay(G, S) := (G, E),$$

where the edges *E* link the elements $x, y \in G$ for which

$$x = sy$$

for some $s \in S \cup S^{-1}$.

Cayley graphs Examples

• the *n*-dimensional grids $Cay(\mathbb{Z}^n, \{e_1, ..., e_n\})$

Cayley graphs Examples

- the *n*-dimensional grids $Cay(\mathbb{Z}^n, \{e_1, ..., e_n\})$
- Cay(F₂, {a, b})

Figure: The Cayley graph of \mathbb{F}_2 .

 The degree or valency of a vertex is the number of adjacent edges.

Introduction

Figure: Representation of $G = \mathbb{Z} * \mathbb{Z}_3$.

Cayley graphs $D_{\infty} = \langle a, b | b^2, abab \rangle$

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Figure: The graph $Cay(D_{\infty}, \{ab, b\})$.

A connected graph is a metric space

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Holy Trinity (Drie-eenheid)

Definition Regular spanning trees

Definition (Regular trees)

Let $k \in \mathbb{N}$, we define the k-regular tree T_k as the tree where each vertex has valency k.

Definition (Spanning subgraph)

Let Γ be a graph. A spanning subgraph $\Phi \subset \Gamma$ satisfies

$$V(\Gamma) = V(\Phi)$$
.

Hamiltonian path

Definition (Hamiltonian path)

Let Γ be a graph. A Hamiltonian path P on Γ is a path hitting **every** vertex once.

Examples

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Figure: The graph $Cay(D_{\infty}, \{ab, b\})$.

Functions

A function $f: X \to Y$ is

· a quasi-isometric embedding if and only if

$$\forall x_1, x_2 \in X: C^{-1}d(x_1, x_2) - b < d(f(x_1), f(x_2)) < Cd(x_1, x_2) + b.$$

• a quasi-isometry if it also is *C*-dense ie f(X) is *C*-dense in *Y*.

$$B_C(f(X)) = Y$$

A bilipschitz equivalence if it also is bijective.

A quasi-isometry: just a bad printer...

A quasi-isometry: just a bad printer...

Bilip Eq Trees

3 P

A quasi-isometry: just a bad printer...

Definition amenable

Definition (Amenable)

A discrete metric space X is amenable if and only if it contains a Følner sequence. A Følner sequence consists of finite sets F_n (growing balls) such that for any R > 0:

$$\text{lim}\,\frac{|\partial_R F_n|}{|F_n|}=0.$$

(Volume >> boundary)

Amenability

- Examples are \mathbb{Z}^n and \mathbb{R}^n
- Volume ball of size $R \approx R^n$.
- Surface/Boundary ball of size $R \approx R^{n-1}$.

Amenability

- Examples are \mathbb{Z}^n and \mathbb{R}^n
- Volume ball of size $R \approx R^n$.
- Surface/Boundary ball of size R ≈ Rⁿ⁻¹.
- Why is Usain Bolt quicker than Blake.

Amenability

Figure: The Cayley graph of \mathbb{F}_2 .

Early questions?

Everything clear about: Cayley graphs, Quasi-isometry, Amenable, Trees, paths...

Overview

Introduction

Early questions?

History and results of my thesis

Proof of the bilipschitz equivalences of trees

Proof of the transitive geometric Von Neumann theorem

2 failed conjectures

- 2. The Von Neumann conjecture: Does every nonamenable finitely generated group contain the free group \mathbb{F}_2 ?

2 failed conjectures

- 2. The Von Neumann conjecture: Does every nonamenable finitely generated group contain the free group \mathbb{F}_2 ?

Figure: Alfred Tarski. Source: Wikipedia

Translation-like actions, a geometric messias

Definition (Translation-like action)

An action by Γ on X is translation-like if it is **free**, and satisfies for all g,

$$(\cdot g) pprox \operatorname{Id}_X$$
.

Or equivalently, $\{d(x \cdot g, x) | x \in X\}$ is bounded for all g.

Translation-like actions, a geometric messias

Theorem (Geometric Burnside Problem)

A finitely generated group G is infinite if and only if it admits a **translation-like action by** \mathbb{Z} .

Theorem (Geometric Von Neumann Theorem)

A finitely generated group G is nonamenable if and only if it admits a **translation-like action by** the free group \mathbb{F}_2 .

Transitive translation-like actions

Theorem (Burnside Problem transitive version)

G is infinite and has at most 2 ends if and only if it admits a transitive translation-like action by \mathbb{Z} .

Theorem (Geometric Von Neumann Theorem)

G is nonamenable if and only if it admits a **transitive** translation-like action by the free group \mathbb{F}_2 .

Transitive translation-like actions

Theorem (Burnside Problem transitive version)

G is infinite **and has at most 2 ends** if and only if it admits a **transitive** translation-like action by \mathbb{Z} .

Theorem (Geometric Von Neumann Theorem)

G is nonamenable if and only if it admits a **transitive** translation-like action by the free group \mathbb{F}_2 .

Definition (Ends)

"Ends are infinite components you can separate by removing a finite part."

Drawing ends

History and results of my thesis

Figure: The results of the day and their relations. (T)BP: (transitive) geometric Burnside problem. VN: geometric Von Neumann theorem.

Stop talking about actions, Start talking about subgraphs

Theorem

- Let H
 ¬ G be a translation-like action.
- Take Cay(H, U)
- then there exists a Cayley graph Cay(G, W) of G

Theorem

- Let H
 ¬ G be a translation-like action.
- Take Cay(H, U)
- then there exists a Cayley graph Cay(G, W) of G
 ... containing a spanning subgraph Φ whose connected
 components are isomorphic to Cay(H, U).

Theorem

- Let H
 ¬ G be a translation-like action.
- Take Cay(H, U)
- then there exists a Cayley graph Cay(G, W) of G
 ... containing a spanning subgraph Φ whose connected
 components are isomorphic to Cay(H, U).
- In particular, if the action is transitive, then

$$\Phi \cong Cay(H, U)$$
.

$$\Phi = (G, \{\{g, g \cdot u\} | g \in G, u \in U\}).$$

Figure: The Cayley graph of \mathbb{F}_2 .

Translation-like action ⇒ Subgraph

- Translation-like action ⇒ Subgraph
- Bilipschitz equivalence ⇒ Subgraph

• G has a transitive translation-like action by \mathbb{Z} .

- G has a transitive translation-like action by \mathbb{Z} .
 - \Rightarrow we have a spanning subgraph $\mathbb{Z}\subset\mathsf{Cay}(G,S).$

- *G* has a transitive translation-like action by \mathbb{Z} .
 - \Rightarrow we have a spanning subgraph $\mathbb{Z} \subset Cay(G, S)$.
 - \Rightarrow Hamiltonian path.

- G has a transitive translation-like action by Z.
 - \Rightarrow we have a spanning subgraph $\mathbb{Z} \subset Cay(G, S)$.
 - \Rightarrow Hamiltonian path.

Theorem (Hamiltonian paths in Cayley graphs)

Let G be a finitely generated group with at most two ends, then there exists a Cayley graph Cay(G,S) of G allowing a bi-infinite Hamiltonian path.

Von Neumann in graph theoretic setting

Theorem (Transitive geometric Von Neumann theorem)

Let G be a finitely generated group and $k \in \mathbb{Z}_{\geq 3}$, then the following statements are equivalent.

- 1. G is non-amenable.
- 2. There exists a k-regular spanning tree $\Phi \subset Cay(G, W)$.

$$\Phi \cong T_k$$

.

Bilipschitz equivalence of trees

Theorem (Bilipschitz equivalence of non-amenable trees)

Let T, T' be two trees with uniformly bounded valencies¹. Let all valencies be equal or larger than 3, then $T \sim_{Bilio} T'$.

Main theorem of the day

We have the following

- If G has at most two ends, G admits a 2-regular spanning tree.
- If G in nonamenable, G admits a k-regular spanning tree for all k ≥ 3.

Main theorem of the day

We have the following

- If G has at most two ends, G admits a 2-regular spanning tree.
- If G in nonamenable, G admits a k-regular spanning tree for all k ≥ 3.

Theorem: Regular trees of Cayley graphs

Let G be a finitely generated infinite group, then there exists a Cayley graph Cay(G, S) of G allowing a regular spanning tree.

History and results of my thesis

Figure: The results of the day and their relations. (T)BP: (transitive) geometric Burnside problem.

VN: geometric Von Neumann theorem.

Examples of the theorem

Figure: The graph $Cay(D_{\infty}, \{a, b\})$.

Examples of the theorem

Figure: \mathbb{Z}^2 Hamiltonian path

Open questions

- Does this hold for every Cayley graph?
 - If G amenable, OPEN
 - If G non-amenable, NO

counterexample

Figure: Representation of $G = \mathbb{Z} * \mathbb{Z}_3$.

Overview

Introduction

Early questions?

History and results of my thesis

Proof of the bilipschitz equivalences of trees

Proof of the transitive geometric Von Neumann theorem

Proof of the bilipschitz equivalences of trees

Theorem (Bilipschitz equivalence of non-amenable trees)

Let T, T' be two trees with uniformly bounded valencies². Let all valencies be equal or larger than 3, then $T \sim_{Bilip} T'$.

Basic concepts in trees

Figure: The "family" tree

Here comes the drawing of layers

- It suffices to show that $T \sim_{\mathsf{Bilip}} T_M$ for all M > D
- Nonamenable Quasi-isometric spaces are bilipschitz equivalent.

How to construct a quasi-isometry

Overview

Introduction

Early questions?

History and results of my thesis

Proof of the bilipschitz equivalences of trees

Proof of the transitive geometric Von Neumann theorem

Theorem (Transitive geometric Von Neumann theorem)

Let G be a finitely generated group and $k \in \mathbb{Z}_{\geq 3}$, then the following statements are equivalent.

- 1. G is non-amenable.
- 2. $\exists \operatorname{Cay}(G, W)$ with a spanning subgraph $\Phi \subset \operatorname{Cay}(G, W)$ so

$$\Phi \cong | T_k$$

3. $\exists \operatorname{Cay}(G, W)$ with a k-regular spanning tree $\Phi' \subset \operatorname{Cay}(G, W)$

$$\Phi' \cong T_k$$
.

Lemma

Let G be a finitely generated group and $k \in \mathbb{Z}_{>3}$, if we have that:

 There exists a Cayley graph Cay(G, W) of G such that there exists a spanning subgraph Φ ⊂ Cay(G, W) such that

$$\Phi\cong \coprod T_k$$
.

Then it holds that:

 There exists a Cayley graph Cay(G, W) of G such that there exists a k-regular spanning tree Φ' ⊂ Cay(G, W).

$$\Phi' \cong T_k$$
.

Begin proof

Start with the spanning subgraph $\Phi \cong | | T_k$.

Drawing of Φ and Φ'

Construction of Φ'

- Add edges to make Φ a spanning tree.
- Use the bilipschitz equivalence of trees.

Some more questions?

Figure: The results of the day and their relations. (T)BP: (transitive) geometric Burnside problem. VN: geometric Von Neumann theorem.

Proof of the transitive Burnside problem

The transitive Burnside problem

Theorem (The transitive Geometric Burnside problem)

Let G have at most two ends, then there exists a Cayley graph Cay(G, S) of G allowing a bi-infinite Hamiltonian path.

The transitive Burnside problem

Theorem (The transitive Geometric Burnside problem)

Let Γ be a connected infinite graph with $\deg(v) \leq D$, then Γ is bilipschitz equivalent to a graph Γ' admitting a bi-infinite Hamiltonian path P' if and only if Γ has at most two ends.

If G has more ends

If G has at most 2 ends

Outline

- Construct P hitting
 - At least 1 time at every vertex
 - At most 2 times every edge.

Outline

- Construct P hitting
 - At least 1 time at every vertex
 - At most 2 times every edge.
 - \Rightarrow At most *D* times at every vertex

Outline

- Construct P hitting
 - At least 1 time at every vertex
 - At most 2 times every edge.
 - \Rightarrow At most *D* times at every vertex

First 1 end and then 2 ends.

Outline

- Construct P hitting
 - At least 1 time at every vertex
 - At most 2 times every edge.
 - \Rightarrow At most *D* times at every vertex

First 1 end and then 2 ends.

 Construct a Hamiltonian path P'. By deleting the duplicated vertices in P.

Existence of Eulerian paths

Theorem (Existence of Eulerian paths)

A countably infinite connected multigraph³ Γ admits an Eulerian path if and only if the following conditions are satisfied:

- I. The degree of every vertex is **even**. (or infinite)
- II. Γ has at most 2 ends.
- III. Removing a finite subgraph $\Phi \subset \Gamma$ with **even** valencies, we have that $\Gamma E(\Phi)$ has **one infinite connected component**.

Construct P

- Let Γ have one end.
- Double all edges.

Existence of Eulerian paths

Theorem (Existence of Eulerian paths)

A countably infinite connected multigraph³ Γ admits an Eulerian path if and only if the following conditions are satisfied:

- I. The degree of every vertex is **even**. (or infinite)
- II. Γ has at most 2 ends.
- III. Removing a finite subgraph $\Phi \subset \Gamma$ with **even** valencies, we have that $\Gamma E(\Phi)$ has **one infinite connected component**.

Construct P

Let Γ have two ends.

Figure 1

Proof of the transitive Burnside problem

Proof of the transitive Burnside problem

Double all edges not in P_1 and P_2 . Then every vertex has even degree.

Existence of Eulerian paths

Theorem (Existence of Eulerian paths)

A countably infinite connected multigraph³ Γ admits an Eulerian path if and only if the following conditions are satisfied:

- I. The degree of every vertex is **even**. (or infinite)
- II. Γ has at most 2 ends.
- III. Removing a finite subgraph $\Phi \subset \Gamma$ with **even** valencies, we have that $\Gamma E(\Phi)$ has **one infinite connected component**.

Satisfying the third point: Figure 4

$$\sum \deg v = 2 \cdot \text{ number of edges}$$

Hence w has even degree. w is the only edge in Λ_i to have odd degree.

We have found *P*

We have found a path P

Construction of P'

Why can we do this and why do we need this

- Hall
- This way two consecutive elements y n, y_{n+1} are at most 2M 1 edges away along P.

Hall's selection theorem

Intuitively: "If you can insert every finite part. You can insert everything."

Construct Γ'

We then define the 2M - 1-bilipschitz equivalent graph Γ' as

$$(V(\Gamma), \{\{v, v'\} | d_{\Gamma}(v, v') \leq 2M - 1\}).$$