IN310 - Mathématiques pour l'informatique 2^{ieme} contrôle continu 2019-2020

Durée: 1h.

Les documents sont autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Question 1

Montrer par induction que pour tout $n \ge 0$, $\sum_{k=0}^{n} k \cdot (k!) = (n+1)! - 1$.

Question 2

Si $a, b \in \mathbb{R}$, on note $f_{a,b}$ la fonction

$$f_{a,b}: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto ax + b$$

Déterminer pour quelles valeurs de (a, b) la fonction $f_{a,b}$ est injective et pour quelles valeurs elle est surjective.

Question 3

Dire si les relations suivantes sont réflexives, symétriques ou transitives. Sont-elles des relations d'équivalence ? Si oui, calculer la classe d'équivalence de $1 \in \mathbb{Z}$.

- (a) La relation \mathcal{R} sur \mathbb{Z} définie par $a\mathcal{R}b$ si $a^2 b^2 \leq 7$.
- (b) La relation \mathcal{R} sur \mathbb{Z} définie par $a\mathcal{R}b$ si $2a + 5b \equiv 0 \pmod{7}$.

Question 4

- 1. Donner le résultat des calculs ci-dessous. La réponse doit être un entier compris entre 0 et n-1, où n est le module.
 - (a) $10 \cdot 13 + 9 \mod 12$ (b) $34 \cdot 20 \mod 18$ (c) $(29 + 22) \cdot 51 \mod 26$ (d) $556 \cdot 32 \mod 27$
 - (e) $483 \cdot 2415 \mod 24$
- 2. Calculer la table de multiplication de $\mathbb{Z}/9\mathbb{Z}$.
- 3. Les éléments 3 et 8 sont-ils inversibles modulo 9?
- 4. Calculer $3^3 \mod 9$ et $6^6 \mod 9$.