1

1

Solutions: Linear Algebra by Hoffman and Kunze

G V V Sharma*

CONTENTS

	Lincar	Lquanons	1
	1.1	Fields and Linear Equations	1
	1.2	Matrices and Elementary	
		Row Operations	6
	1.3	Row Reduced Echelon Matrices	14
	1.4	Matrix Multiplication	17
	1.5	Invertible Matrices	20
2	Vector Spaces		23
	2.1	Vector Spaces	23
	2.2	Subspaces	26
	2.3	Bases and Dimension	29

Abstract—This book provides solutions to the Linear Algebra book by Hoffman and Kunze.

1 Linear Equations

1.1 Fields and Linear Equations

Linear Equations

1.1.1. Verify that the set of complex numbers numbers described in the form of c where x and y are rational is a sub-field of C.

Solution: Lets consider the set $S = \{x + y\sqrt{2}, x, y \in Q\}$, $S \subset C$ We must verify that S meets the following two conditions:

$$0, 1 \in S$$
 (1.1.1.1)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$a, b \in S, a + b, -a, ab, a^{-1} \in S$$
 (1.1.1.2)

Throughout let

$$a = x + y\sqrt{2}, b = w + z\sqrt{2}$$
 (1.1.1.3)

If a)

f)

$$x = 0, y = 0 \in Q, a = 0 + \sqrt{2}.0 = 0, 0 \in S$$
(1.1.1.4)

b) $x = 1, y = 0, a = 1 + \sqrt{2}.0 = 1, 1 \in S$ (1.1.1.5)

c) $a + b = x + y\sqrt{2} + w + z\sqrt{2} = b + a$ (1.1.1.6)

d) $-a = -x - y\sqrt{2}, x, y \in Qso - x, -y \in Q, a \in S$ (1.1.1.7)

e)
$$ab = (x + y\sqrt{2})(w + z\sqrt{2}) = ba, ab \in S$$
 (1.1.1.8)

 $a^{-1}a = (x + y\sqrt{2})^{-1}(x + y\sqrt{2}) = 1, a^{-1} \in S$ (1.1.1.9)

Hence (1.1.1.1) ,(1.1.1.2) is verified. Therefore by considering the (1.1.1.1) and (1.1.1.2) we can say set complex numbers of given form $x + y\sqrt{2}$ is subfield of C.

1.1.2. Let F be the field of complex numbers. Are the following two systems of linear equations equivalent? If so, express each equation in each system as a linear combination of the equations in the other system.

$$x_1 - x_2 = 0$$
$$2x_1 + x_2 = 0$$

and

$$3x_1 + x_2 = 0$$
$$x_1 + x_2 = 0$$

Solution: The given system of linear equations can be written as,

$$\mathbf{A}\mathbf{x} = 0 \tag{1.1.2.1}$$

$$\Longrightarrow \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.2.2}$$

$$\mathbf{B}\mathbf{x} = 0 \tag{1.1.2.3}$$

$$\implies \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.2.4}$$

Now we can obtain \mathbf{B} from matrix \mathbf{A} by performing elementary row operations given as,

$$\mathbf{B} = \mathbf{C}\mathbf{A} \tag{1.1.2.5}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} = \mathbf{C} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \tag{1.1.2.6}$$

where C is product of elementary matrices given as,

$$\mathbf{C} = (\mathbf{E}_{7}\mathbf{E}_{6}\mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1})$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} & \frac{4}{3} \\ \frac{-1}{3} & \frac{2}{3} \end{pmatrix} \quad (1.1.2.7)$$

Now, performing elementary operations on the right side of A we obtain matrix B given as,

$$\mathbf{B} = \mathbf{AP} \tag{1.1.2.8}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{P} \tag{1.1.2.9}$$

where, **P** is product of elementary matrices given by,

$$\mathbf{P} = (\mathbf{E}_{1}\mathbf{E}_{2}\mathbf{E}_{3}\mathbf{E}_{4}\mathbf{E}_{5})$$

$$= \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{4}{3} & \frac{2}{3} \\ \frac{-5}{3} & \frac{-1}{3} \end{pmatrix} \quad (1.1.2.10)$$

Similarly, \mathbf{A} can be obtained from matrix \mathbf{B} from (1.1.2.5) as,

$$\mathbf{A} = \mathbf{C}^{-1}\mathbf{B} \tag{1.1.2.11}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \mathbf{C}^{-1} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \tag{1.1.2.12}$$

Matrix **C** is product of elementary matrices and hence invertible and is given as,

$$\mathbf{C}^{-1} = \begin{pmatrix} \mathbf{E_1}^{-1} \mathbf{E_2}^{-1} \mathbf{E_3}^{-1} \mathbf{E_4}^{-1} \mathbf{E_5}^{-1} \mathbf{E_6}^{-1} \mathbf{E_7}^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-1}{3} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad (1.1.2.13)$$

Matrix \mathbf{A} can also be obtained from (1.1.2.8) given as,

$$\mathbf{A} = \mathbf{B}\mathbf{P}^{-1} \tag{1.1.2.14}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{P}^{-1} \tag{1.1.2.15}$$

where,

$$\mathbf{P}^{-1} = \left(\mathbf{E}_{5}^{-1}\mathbf{E}_{4}^{-1}\mathbf{E}_{3}^{-1}\mathbf{E}_{2}^{-1}\mathbf{E}_{1}^{-1}\right)$$

$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{-1}{2} & -1 \\ \frac{5}{2} & 2 \end{pmatrix} \quad (1.1.2.16)$$

Thus (1.1.2.4) can be obtained from (1.1.2.2) by multiplying it with matrix \mathbb{C} , and by inverse row operations (1.1.2.2) can be obtained back from (1.1.2.4) since \mathbb{C} is product of elementary matrices and hence invertible.

Thus the two given homogeneous systems are row equivalent.

Now writing equations in matrix-vector form

as,

$$3x_{1} + x_{2} = \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.17)

$$\Rightarrow \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \frac{1}{3} \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} + \frac{4}{3} \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.18)

$$x_{1} + x_{2} = \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.19)

$$\Rightarrow \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = \frac{-1}{3} \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} + \frac{2}{3} \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.20)

(1.1.2.18), (1.1.2.20) is same as multiplying **C** with **A** as it takes the linear combination of each rows of matrix **A** i.e, (1.1.2.6)

$$x_{1} - x_{2} = \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} \qquad (1.1.2.21)$$

$$\Rightarrow \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = (1) \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} + (-2) \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$

$$(1.1.2.22)$$

$$2x_{1} + x_{2} = \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x} \qquad (1.1.2.23)$$

$$\Rightarrow \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x} = \frac{1}{2} \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} + \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$

$$(1.1.2.24)$$

(1.1.2.22), (1.1.2.24) is same as multiplying C^{-1} with **B** as it takes the linear combination of each rows of matrix **B** i.e, (1.1.2.12)

Thus each equation in each system can be expressed as a linear combination of the equations in the other system when they are equivalent.

1.1.3. Are the following two systems of linear equations equivalent?

$$-x_1 + x_2 + 4x_3 = 0$$

$$x_1 + 3x_2 + 8x_3 = 0$$

$$\frac{1}{2}x_1 + x_2 + \frac{5}{2}x_3 = 0$$
(1.1.3.1)

Solution:

$$x_1 - x_3 = 0$$

$$x_2 + 3x_3 = 0$$
(1.1.3.2)

System of linear equations in (1.1.3.1) can be

expressed in matrix form as,

$$\mathbf{A}\mathbf{x} = 0 \tag{1.1.3.3}$$

$$\begin{pmatrix} -1 & 1 & 4 \\ 1 & 3 & 8 \\ \frac{1}{2} & 1 & \frac{5}{2} \end{pmatrix} \mathbf{x} = 0 \tag{1.1.3.4}$$

System of linear equations in (1.1.3.2) can be expressed in matrix form as,

$$\mathbf{B}\mathbf{x} = 0 \tag{1.1.3.5}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.3.6}$$

Two system of linear equations are equivalent if one system can be expressed as a linear combination of other system.

Matrix **B** can be obtained from matrix **A** as,

$$\mathbf{B} = \mathbf{C}\mathbf{A} \tag{1.1.3.7}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \mathbf{C} \begin{pmatrix} -1 & 1 & 4 \\ 1 & 3 & 8 \\ \frac{1}{2} & 1 & \frac{5}{2} \end{pmatrix}$$
 (1.1.3.8)

$$\mathbf{C} = \begin{pmatrix} -1 & 1 & -2\\ \frac{1}{2} & -\frac{1}{2} & 2 \end{pmatrix} \tag{1.1.3.9}$$

Now, writing equations in matrix-vector form,

$$x_1 - x_3 = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \mathbf{x}$$

$$\implies (1 \quad 0 \quad -1)\mathbf{x} = -1(-1 \quad 1 \quad 4)\mathbf{x} + 1(1 \quad 3 \quad 8)\mathbf{x} - 2(\frac{1}{2} \quad 1 \quad \frac{5}{2})\mathbf{x} \quad (1.1.3.10)$$

$$x_2 + 3x_3 = \begin{pmatrix} 0 & 1 & 3 \end{pmatrix} \mathbf{x}$$

$$\implies \begin{pmatrix} 0 & 1 & 3 \end{pmatrix} \mathbf{x} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 4 \end{pmatrix} \mathbf{x}$$
$$-\frac{1}{2} \begin{pmatrix} 1 & 3 & 8 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} \frac{1}{2} & 1 & \frac{5}{2} \end{pmatrix} \mathbf{x} \quad (1.1.3.11)$$

Equations (1.1.3.10) and (1.1.3.11) is same as multiplying **C** with **A** which is the linear combination of rows of matrix **A**.

Thus each equation in second system can be expressed as linear combination of the equations in first system.

Therefore, the two system of linear equations are equivalent.

1.1.4. Let \mathbb{F} be the field of complex numbers. Are the following two systems of linear equations

equivalent? If so, express each equation in each system as a linear combination of equations in other system. First system of equations:

$$2x_1 + (-1 + i)x_2 + x_4 = 0 (1.1.4.1)$$

$$3x_2 - 2ix_3 + 5x_4 = 0 (1.1.4.2)$$

The second system of equations:

$$(1+\frac{i}{2})x_1 + 8x_2 - ix_3 - x_4 = 0$$
 (1.1.4.3) Hence the given systems of linear equations are not equivalent.
$$\frac{2}{3}x_1 - \frac{1}{2}x_2 + x_3 + 7x_4 = 0$$
 (1.1.4.4) 1.1.5. Let \mathbb{F} be a set which contains exactly two elements 0 and 1 Define an addition and multiple of the contains of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and 1 Define and 1 De

Solution: Let \mathbf{R}_1 and \mathbf{R}_2 be the reduced row echelon forms of the augumented matrices of the following systems of homogeneous equations respectively.

$$\mathbf{AX} = \mathbf{0} \tag{1.1.4.5}$$

$$\mathbf{BX} = \mathbf{0} \tag{1.1.4.6}$$

Where **A** and **B** as follows

$$\mathbf{A} = \begin{pmatrix} 2 & -1+i & 0 & 1\\ 0 & 3 & -2i & 5 \end{pmatrix} \tag{1.1.4.7}$$

$$\mathbf{B} = \begin{pmatrix} 1 + \frac{i}{2} & 8 & -i & -1 \\ \frac{2}{3} & \frac{-1}{2} & 1 & 7 \end{pmatrix}$$
 (1.1.4.8)

On performing elementary row operations on (1.1.4.7),

$$\mathbf{R_1} = \mathbf{CA}$$
 (1.1.4.9)

where C is the product of all elementary matrices. Reducing the first system of linear equations, we get,

$$\mathbf{C} = \begin{pmatrix} 1 & \frac{1-i}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.1.4.10)

$$\mathbf{R_1} = \begin{pmatrix} 1 & 0 & \frac{-1-i}{3} & \frac{4}{3} - \frac{5i}{6} \\ 0 & 1 & \frac{-2i}{3} & \frac{5}{3} \end{pmatrix}$$
 (1.1.4.11)

On performing elementary row operations on (1.1.4.8),

$$\mathbf{R}_2 = \mathbf{D}\mathbf{A}$$
 (1.1.4.12)

where **D** is the product of all elementary matrices. Reducing the second system of linear equations, we get,

$$\mathbf{D} = \begin{pmatrix} \frac{4}{5}(1 - \frac{i}{2}) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-2}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{-6(143 + 43i)}{4909} \end{pmatrix} \begin{pmatrix} 1 & \frac{16(-2+i)}{5} \\ 0 & 1 \end{pmatrix} e$$

$$(1.1.4.13)$$
1 is an identity element of · operation of ·

$$\mathbf{R_2} = \begin{pmatrix} 1 & 0 & \frac{6702}{4909} - \frac{708i}{4909} & \frac{46620}{4909} - \frac{1998i}{4909} \\ 0 & 1 & \frac{-2(441 + 472i)}{4909} & \frac{-2(3283 + 1332i)}{4909} \end{pmatrix}$$
(1.1.4.14)

From the equations (1.1.4.11) and (1.1.4.14), we can say that

$$\mathbf{R_1} \neq \mathbf{R_2}$$
 (1.1.4.15)

elements,0 and 1.Define an addition and multiplication by tables. Verify that the set \mathbb{F} ,

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

together with these two operations, is a field. **Solution:**

To prove that $(\mathbb{F},+,\cdot)$ is a field we need to satisfy the following,

- a) + and \cdot should be closed
 - For any a and b in \mathbb{F} , $a+b \in \mathbb{F}$ and $a \cdot b$ $\in \mathbb{F}$. For example 0+0=0 and $0\cdot 0=0$.
- b) + and \cdot should be commutative
 - For any a and b in \mathbb{F} , a+b=b+a and a · $b = b \cdot a$. For example 0+1=1+0 and $0 \cdot a$ 1=1.0.
- c) + and \cdot should be associative
 - For any a and b in \mathbb{F} , a+(b+c)=(a+b)+cand $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. For example 0+(1+0)=(0+1)+0 and $0\cdot(1\cdot0)=(0\cdot1)\cdot0$.
- d) + and · operations should have an identity element
 - If we perform a + 0 then for any value of a from F the result will be a itself. Hence 0 is an identity element of + operation.If we perform a \cdot 1 then for any value of a from F the result will be a itself. Hence 1 is an identity element of \cdot operation.
- - For additive inverse to exist, \forall a in \mathbb{F} a+(a)=0. For example. 1-1=0 and 0-0=0.

- f) \forall a \in \mathbb{F} such that a is non zero there exists a multiplicative inverse
 - For multiplicative inverse to exist, \forall a such that a is non zero in \mathbb{F} , $a \cdot a^{-1} = 1$. For example $1 \cdot 1^{-1} = 1$.
- g) + and \cdot should hold distributive property
 - For any a,b and c in \mathbb{F} the property $a \cdot (b+c) = a \cdot b + a \cdot c$ should always hold true. For example $0 \cdot (1+1) = 0 \cdot 1 + 0 \cdot 1$.

Since the above properties are satisfied we can say that $(\mathbb{F},+,\cdot)$ is a field.

1.1.6. Prove that if two homogenous systems of linear equations in two unknowns have the same solutions, then they are equivalent.

Solution: Let the two systems of homogenous equations be

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 (1.1.6.1)

$$\mathbf{B}\mathbf{y} = \mathbf{0}$$
 (1.1.6.2)

We can write

$$CAx = 0$$
 (1.1.6.3)

$$DBv = 0$$
 (1.1.6.4)

where C and D are product of elementary matrices that reduce A and B into their reduced row echelon forms R_1 and R_2

(1.1.6.3) and (1.1.6.4) imply

$$\mathbf{R_1} \mathbf{x} = 0 \tag{1.1.6.5}$$

$$\mathbf{R_2} \mathbf{y} = 0 \tag{1.1.6.6}$$

Given that they have same solution, we can write

$$\mathbf{R_1} \mathbf{x} = 0 \tag{1.1.6.7}$$

$$\mathbf{R_2} \mathbf{x} = 0 \tag{1.1.6.8}$$

$$\implies (\mathbf{R_1} - \mathbf{R_2})\mathbf{x} = 0 \tag{1.1.6.9}$$

Note that for a solution to exist, $\mathbf{R_1}$ and $\mathbf{R_2}$ can be either of matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{1.1.6.10}$$

Case 1 Let us assume that the solution is unique. The unique solution is

$$\mathbf{x} = \mathbf{0} \tag{1.1.6.11}$$

Since they have the same solution, both R_1 , R_2 must have their rank as 2.

So.

$$\mathbf{R_1} = \mathbf{R_2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{1.1.6.12}$$

Case 2 Let us assume that (1.1.6.3),(1.1.6.4) have infinitely many solutions So.

$$rank(\mathbf{A}) = rank(\mathbf{B}) = 1$$
 (1.1.6.13)

equation (1.1.6.9) for solutions other than zero solution implies

$$\mathbf{R_1} = \mathbf{R_2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{1.1.6.14}$$

So, in both the cases, we have

$$\mathbf{R_1} = \mathbf{R_2} \tag{1.1.6.15}$$

$$\implies$$
 CA = **DB** (1.1.6.16)

Since **C**, **D** are product of elementary matrices, they are invertible.

$$\implies \mathbf{A} = \mathbf{C}^{-1}\mathbf{DB} \tag{1.1.6.17}$$

$$\mathbf{B} = \mathbf{D}^{-1}\mathbf{C}\mathbf{A} \tag{1.1.6.18}$$

Let
$$C^{-1}D = E$$
 (1.1.6.19)

where ${\bf E}$ is also a product of elementary matrices

(1.1.6.17) and (1.1.6.18) hence become

$$\mathbf{A} = \mathbf{EB} \tag{1.1.6.20}$$

$$\mathbf{B} = \mathbf{E}^{-1} \mathbf{A} \tag{1.1.6.21}$$

Hence the two systems of equations are equivalent.

1.1.7. Prove that each subfield of the field of complex number contains every rational number

Solution:

Complex Numbers: A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $i^2 = -1$. The set of complex numbers is denoted by \mathbb{C}

$$\mathbb{C} = \{ (a, b) : a, b \in \mathbb{R} \}$$
 (1.1.7.1)

Rational Numbers: A number in the form $\frac{p}{q}$, where both p and q(non-zero) are integers, is called a rational number. The set of rational numbers is denoted by \mathbb{Q} Let \mathbb{Q} be the set of

rational numbers.

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z}_{\neq 0} \right\}$$
 (1.1.7.2)

Let $\mathbb C$ be the field of complex numbers and given \mathbb{F} be the subfield of field of complex numbers $\mathbb C$ Since $\mathbb F$ is the subfield , we could say that

$$0 \in \mathbb{F} \tag{1.1.7.3}$$

$$1 \in \mathbb{F} \tag{1.1.7.4}$$

Closed under addition: Here \mathbb{F} is closed under addition since it is subfield

$$1 + 1 = 2 \in \mathbb{F} \quad (1.1.7.5)$$

$$1 + 1 + 1 = 3 \in \mathbb{F}$$
 (1.1.7.6)

$$1 + 1 + \dots + 1$$
(p times) = $p \in \mathbb{F}$ (1.1.7.7)

$$1 + 1 + \dots + 1$$
(q times) = $q \in \mathbb{F}$ (1.1.7.8)

By using the above property we could say that zero and other positive integers belongs to \mathbb{F} . Since p and q are integers we say,

$$p \in \mathbb{Z} \tag{1.1.7.9}$$

$$q \in \mathbb{Z} \tag{1.1.7.10}$$

Additive Inverse: Let x be the positive integer belong \mathbb{F} and by additive inverse we could say,

$$\forall x \in \mathbb{F} \tag{1.1.7.11}$$

$$(-x) \in \mathbb{F} \tag{1.1.7.12}$$

Therefore field \mathbb{F} contains every integers. Let n be a integer then,

$$n \in \mathbb{Z} \implies n \in \mathbb{F}$$
 (1.1.7.13)

$$\mathbb{Z} \subseteq \mathbb{F} \tag{1.1.7.14}$$

Where \mathbb{Z} is subset of \mathbb{F} Multiplicative Inverse: Every element except zero in the subfield \mathbb{F} has an multiplicative inverse. From equation (1.1.7.8), since $q \in \mathbb{F}$ we could say,

$$\frac{1}{q} \in \mathbb{F} \quad \text{and } q \neq 0 \tag{1.1.7.15}$$

Closed under multiplication: Also, F is closed under multiplication and thus, from equation (1.1.7.7) and (1.1.7.15) we get,

$$p \cdot \frac{1}{q} \in \mathbb{F}$$
 (1.1.7.16)

$$\implies \frac{p}{a} \in \mathbb{F}$$
 (1.1.7.17)

$$\implies \frac{p}{q} \in \mathbb{F} \tag{1.1.7.17}$$

where , $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{\neq 0}$ (from equation (1.1.7.3) and (1.1.7.15)) Conclusion From (1.1.7.2) and (1.1.7.17) we could say,

$$\mathbb{Q} \subseteq \mathbb{F} \tag{1.1.7.18}$$

From equation (1.1.7.18) we could say that each subfield of the field of complex number contains every rational number

Hence Proved

 $1+1+1=3\in\mathbb{F}$ (1.1.7.6) 1.1.8. Prove that, each field of the characteristic zero contains a copy of the rational number field.

> Solution: The characteristic of a field is defined to be the smallest number of times one must use the field's multiplicative identity (1) in a sum to get the additive identity. If this sum never reaches the additive identity (0), then the field is said to have characteristic zero.

Let Q be the rational number field. Hence,

$$0 \in \mathbb{Q}$$
 [Additive Identity] (1.1.8.1)

$$1 \in \mathbb{Q}$$
 [Multiplicative Identity] (1.1.8.2)

As addition is defined on \mathbb{Q} hence we have,

$$1 \neq 0$$
 (1.1.8.3)

$$1 + 1 = 2 \neq 0 \tag{1.1.8.4}$$

And so on,

$$1 + 1 + \dots + 1 = n \neq 0 \tag{1.1.8.5}$$

From the definition of characteristic of a field and from (1.1.8.3), (1.1.8.4) and so on upto (1.1.8.5), the rational number field, \mathbb{Q} has characteristic 0.

- 1.2 Matrices and Elementary Row Operations
- 1.2.1. Find all solutions to the system of equations

$$(1-i) x_1 - ix_2 = 0$$

2x₁ + (1-i) x₂ = 0 (1.2.1.1)

Solution: System of Linear Equations (1.2.1.1)

can be expressed in matrix form as,

$$\mathbf{A}\mathbf{x} = 0 \tag{1.2.1.2}$$

$$\begin{pmatrix} 1-i & -i \\ 2 & 1-i \end{pmatrix} \mathbf{x} = 0 \tag{1.2.1.3}$$

By row reduction,

$$\begin{pmatrix} 1-i & -i \\ 2 & 1-i \end{pmatrix} \xrightarrow[R_1 \leftarrow R_1/2]{R_1 \leftarrow R_1/2} \begin{pmatrix} 1 & \frac{1-i}{2} \\ 1-i & -i \end{pmatrix} \quad (1.2.1.4)$$

$$\stackrel{R_2 \leftarrow R_2 - (1-i)R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1-i}{2} \\ 0 & 0 \end{pmatrix} \quad (1.2.1.5)$$

$$\left(1 \quad \frac{1-i}{2}\right)\mathbf{x} = 0 \tag{1.2.1.6}$$

$$\left(1 \quad \frac{1-i}{2}\right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{1.2.1.7}$$

$$x_1 = -\frac{1-i}{2}x_2 \tag{1.2.1.8}$$

$$\mathbf{x} = \begin{pmatrix} -\frac{1-i}{2}x_2 \\ x_2 \end{pmatrix} \tag{1.2.1.9}$$

$$\implies \mathbf{x} = x_2 \begin{pmatrix} -\frac{1-i}{2} \\ 1 \end{pmatrix} \tag{1.2.1.10}$$

1.2.2.

$$\mathbf{A} = \begin{pmatrix} 6 & -4 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & 3 \end{pmatrix} \tag{1.2.2.1}$$

Find all solutions of AX = 2X and all solutions of AX = 3X. The symbol cX denotes the matrix each entry of which is c times corresponding entry.

Solution:

$$\mathbf{A} = \begin{pmatrix} 6 & -4 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & 3 \end{pmatrix} \tag{1.2.2.2}$$

To calculate solution of AX = 2X and all solutions of AX = 3X we calculate eigen values of A:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{X} = 0 \tag{1.2.2.3}$$

Substituting values in (1.2.2.3),

$$\begin{pmatrix} 6 - \lambda & -4 & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{pmatrix} \mathbf{X} = 0 \quad (1.2.2.4)$$

Simplifying:

$$\begin{pmatrix} 6 - \lambda & -4 & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - R_2}$$

$$\begin{pmatrix} 2 - \lambda & -2 + \lambda & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{pmatrix}$$
 (1.2.2.5)

Taking $(3-\lambda)$ and $(2-\lambda)$ common from C_3 and R_1

$$(3-\lambda)(2-\lambda)\begin{pmatrix} 1 & -1 & 0\\ 4 & -2-\lambda & 0\\ -1 & 0 & 1 \end{pmatrix}$$
 (1.2.2.6)

$$\begin{pmatrix} 1 & -1 & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & -\lambda + 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
(1.2.2.7)

Taking $(2 - \lambda)$ common from R_2 :

$$(2-\lambda)^2(3-\lambda)\begin{pmatrix} 1 & -1 & 0\\ 0 & 1 & 0\\ -1 & 0 & 1 \end{pmatrix}$$
 (1.2.2.8)

Eigen values are:

$$\lambda_1 = 2 \tag{1.2.2.9}$$

$$\lambda_2 = 3$$
 (1.2.2.10)

solution to $\mathbf{AX} = 2\mathbf{X}$ is eigen vector corresponding to $\lambda = 2$

$$(\mathbf{A} - 2\mathbf{I})\mathbf{X} = 0 \tag{1.2.2.11}$$

Substituting values:

$$\begin{pmatrix} 4 & -4 & 0 & 0 \\ 4 & -4 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{4}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 4 & -4 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \xleftarrow{R_3 \leftarrow R_3 - R_1} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xleftarrow{R_3 \longleftrightarrow R_2}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow -R_2} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2}$$

$$\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(1.2.2.12)

So, x_3 is a free variable: Let $x_3 = c$.

$$x_2 - x_3 = 0 \implies x_2 = x_3 = c$$
 (1.2.2.13)

$$x_1 - x_3 = 0 \implies x_1 = x_3 = c$$
 (1.2.2.14)

So, the solution to AX = 2Xis

$$\mathbf{X} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{1.2.2.15}$$

solution of AX = 3X is eigen vector corresponding to $\lambda = 3$

$$(\mathbf{A} - 3\mathbf{I})\mathbf{X} = 0$$
 (1.2.2.16)

substituting we have:

$$\begin{pmatrix} 3 & -4 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{3}} \begin{pmatrix} 1 & -\frac{4}{3} & 0 & 0 \\ 4 & -5 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1}$$

$$\begin{pmatrix} 1 & -\frac{4}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_1} \begin{pmatrix} 1 & -\frac{4}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & -\frac{4}{3} & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{R_2}{3}}$$

$$\begin{pmatrix} 1 & \frac{-4}{3} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{4}{3} & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - \frac{4}{3}R_2} \begin{pmatrix} 1 & \frac{4}{3} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_1 + \frac{4}{3}R_2} \qquad \mathbf{E_{31}E_{21}D_{1}A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 + i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(1.2.2.17)

So x_3 is a free variable:

$$x_1 = 0 (1.2.2.18)$$

$$x_2 = 0 (1.2.2.19)$$

$$x_3 = c (1.2.2.20)$$

So, the solution to AX = 3X is,

$$\mathbf{X} = c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{1.2.2.21}$$

1.2.3. Find a row-reduced matrix which is row equiv-

alent to,

$$\mathbf{A} = \begin{pmatrix} i & -(1+i) & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix}$$
 (1.2.3.1)

Solution: Step 1: Performing scaling operation to matrix **A** as $R_1 \leftarrow \frac{1}{i}R_1$ by scaling matrix D_1 given as,

$$\mathbf{D_1} = \begin{pmatrix} \frac{1}{i} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (1.2.3.2)$$

$$\mathbf{D_1A} = \begin{pmatrix} \frac{1}{i} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i & -(1+i) & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} (1.2.3.3)$$

$$\implies \mathbf{D_1 A} = \begin{pmatrix} 1 & -1 + i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} (1.2.3.4)$$

Step 2: Performing $R_2 \leftarrow R_2 - R_1$ and $R_3 \leftarrow$ $R_3 - R_1$ given by elementary matrix $\mathbf{E_{31}E_{21}}$ on equation (1.2.3.4),

$$\mathbf{E_{31}E_{21}} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
(1.2.3.5)

$$\mathbf{E_{31}}\mathbf{E_{21}}\mathbf{D_{1}}\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix}$$
(1.2.3.6)

(1.2.2.17)
$$\implies \mathbf{A_1} = \mathbf{E_{31}} \mathbf{E_{21}} \mathbf{D_1} \mathbf{A} = \begin{pmatrix} 1 & -1+i & 0 \\ 0 & -1-i & 1 \\ 0 & 1+i & -1 \end{pmatrix}$$
(1.2.3.7)

Step 3: Performing $R_2 \leftarrow \frac{-1}{1+i}R_2$ given by $\mathbf{D_2}$

on equation (1.2.3.7),

$$\mathbf{D_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}(-1+i) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(1.2.3.8)$$

$$\mathbf{D_2A_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}(-1+i) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 0 & -1-i & 1 \\ 0 & 1+i & -1 \end{pmatrix}$$

$$(1.2.3.9)$$

$$\implies \mathbf{A_2} = \mathbf{D_2A_1} = \begin{pmatrix} 1 & -1+i & 0 \\ 0 & 1 & \frac{1}{2}(-1+i) \\ 0 & 1+i & -1 \end{pmatrix}$$

Step 4: Performing $R_3 \leftarrow R_3 - (1+i)R_2$ given by E_{32} on equation (1.2.3.10),

$$\mathbf{E}_{32} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -(1+i) & 1 \end{pmatrix} \tag{1.2.3.11}$$

$$\mathbf{E}_{32}\mathbf{A}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 - i & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 + i & 0 \\ 0 & 1 & \frac{-1 + i}{2} \\ 0 & 1 + i & -1 \end{pmatrix}$$
(1.2.3.12)

$$\implies \mathbf{A_3} = \mathbf{E_{32}A_2} = \begin{pmatrix} 1 & -1+i & 0\\ 0 & 1 & \frac{-1+i}{2}\\ 0 & 0 & 1 \end{pmatrix}$$
(1.2.3.13)

Step 5: Performing $R_1 \leftarrow R_1 - (-1+i)R_2$ given by E_{12} on equation (1.2.3.13),

$$\mathbf{E_{12}} = \begin{pmatrix} 1 & 1 - i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1.2.3.14}$$

$$\mathbf{E}_{12}\mathbf{A}_{3} = \begin{pmatrix} 1 & 1-i & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0\\ 0 & 1 & \frac{-1+i}{2}\\ 0 & 0 & 1 \end{pmatrix}$$
(1.2.3.15)

$$\implies \mathbf{A_4} = \mathbf{E_{12}A_3} = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix} \quad (1.2.3.16)$$

Step 6: Performing $R_1 \leftarrow R_1 - iR_3$ and $R_2 \leftarrow R_2 - \frac{-1+i}{2}R_3$ given by $\mathbf{E_{13}E_{23}}$ on equation

(1.2.3.16),

$$\mathbf{E_{13}E_{23}} = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & -\left(\frac{-1+i}{2}\right) \\ 0 & 0 & 1 \end{pmatrix}$$
 (1.2.3.17)

$$\mathbf{E_{13}E_{23}A_{4}} = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & -\left(\frac{-1+i}{2}\right) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

$$(1.2.3.18)$$

$$\implies \mathbf{A_5} = \mathbf{E_{13}E_{23}A_{4}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(1.2.3.19)$$

 \therefore Row-reduced matrix of **A** given by equation (1.2.3.1) is,

$$\mathbf{A} = \begin{pmatrix} i & -1 - i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$
(1.2.3.20)

1.2.4. Prove that the following two matrices are not row equivalent

$$\begin{pmatrix} 2 & 0 & 0 \\ a & -1 & 0 \\ b & c & 3 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & -1 \\ 1 & 3 & 5 \end{pmatrix}$$
 (1.2.4.1)

Solution: Call the first matrix **A** and the second matrix **B**.

$$\mathbf{A}^T = \begin{pmatrix} 2 & a & b \\ 0 & -1 & c \\ 0 & 0 & 3 \end{pmatrix} \tag{1.2.4.2}$$

 \mathbf{A}^T is a upper triangular matrix with non-zero

diagonal. Hence it has full rank = 3.

$$\mathbf{B}^{T} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 2 & -1 & 5 \end{pmatrix} \xrightarrow{R_{2} \to R_{2} - R_{1}} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 3 & 3 \end{pmatrix}$$

$$(1.2.4.3)$$

$$\xrightarrow{R_{3} \leftarrow R_{3}/3} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$(1.2.4.4)$$

$$\xrightarrow{R_{3} \leftarrow R_{3} - R_{2}} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(1.2.4.5)$$

 \mathbf{B}^T is a upper triangular matrix with zero diagonal. Hence it doesn't have full rank. Therefore both matrices have different rank, so it cannot be row equivalent.

1.2.5. Let

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{1.2.5.1}$$

be a 2×2 matrix with complex entries. Suppose A is row-reduced and also that a+b+c+d=0. Prove that there are exactly three such matrices. **Solution:** A matrix is in row echelon form if it follows the following conditions

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry (i.e. left most nonzero entry) of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero Row Reduced Echelon Form A matrix is in row reduced echelon form if it follows the following conditions
- 1. The matrix should be row echelon form
- 2. The leading entry in each nonzero row is 1.
- 3. Each leading 1 is the only nonzero entry in its column. Proof Given ,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{1.2.5.2}$$

Condition 1 : Matrix **A** should be in row-reduced echelon form

Condition 2 : a + b + c + d = 0 where a,b,c and d are the elements of the matrix **A**

Reducing the matrix A from equation (1.2.5.2)

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \xrightarrow{R_1 = \frac{1}{a}R_1} \begin{pmatrix} 1 & \frac{b}{a} \\ c & d \end{pmatrix} \tag{1.2.5.3}$$

$$\stackrel{R_2=R_2-cR_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & \frac{ad^a-bc}{a} \end{pmatrix}$$
 (1.2.5.4)

$$\stackrel{R_2 = \frac{a}{ad - bc} R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix}$$
(1.2.5.5)

$$\stackrel{R_1=R_1-\frac{b}{a}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{1.2.5.6}$$

Case 1: Matrix A of Rank 2

From the equation (1.2.5.4), for the matrix to be in row reduced echelon form,

$$b = 0$$

$$a \neq 0$$

$$d = 1$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(1.2.5.7)

For the condition 2 to get satisfied,

$$a + 0 + c + 1 = 0 ag{1.2.5.8}$$

$$\implies a = -(c+1) \tag{1.2.5.9}$$

$$\implies c \neq -1$$
 (1.2.5.10)

Both the condition gets satisfied and so exactly one matrix **A** can be formed of Rank 2 with given conditions

Case 2: Matrix A of Rank 1

From the equation (1.2.5.4), for the matrix to be in row reduced echelon form,

$$a \neq 0$$
$$d = 0$$
$$c = 0$$

For the condition 2 to get satisfied,

$$a + b + 0 + 0 = 0$$
 (1.2.5.11)

$$\implies b = -a \tag{1.2.5.12}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \tag{1.2.5.13}$$

Both the condition gets satisfied and so exactly one matrix A can be formed of Rank 1 with given conditions

Case 3: Matrix A of Rank 0

From equation (1.2.5.2), for the matrix to be in

row reduced echelon form,

$$a = 0$$

$$b = 0$$

$$c = 0$$

$$d = 0$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
(1.2.5.14)

Both the condition gets satisfied and so exactly one matrix **A** can be formed of Rank 0 with given conditions

Therefore matrix A shown in equation (1.2.5.7),(1.2.5.13) and (1.2.5.14) are the exactly three such matrices that can be formed with given conditions.

1.2.6. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

Solution: Let **A** be a 3×3 matrix with having row vectors $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 .

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \tag{1.2.6.1}$$

Let's exchange row \mathbf{a}_1 and \mathbf{a}_2 . Let's call this elementary operation \mathbf{E}_1 .

$$\mathbf{E}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1.2.6.2}$$

(1.2.6.3)

Now performing operation \mathbf{E}_1

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix}$$
 (1.2.6.4)

Now, to prove that same matrix can be obtained by elementary operations let's call them E_2 and E_3 .Now performing operation E_2 by adding row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix}$$
 (1.2.6.5)

Using elementary operation E_2 we will subtract

row 1 from row 2.

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \quad (1.2.6.6)$$

Using elementary operation E_2 we will add row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \tag{1.2.6.7}$$

Using elementary operation E_3 we will multiply row 2 by -1.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix}$$
 (1.2.6.8)

Hence, we can say that,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} (1.2.6.9)$$

Let us assume a matrix A

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \tag{1.2.6.10}$$

Let's exchange row \mathbf{a}_1 and \mathbf{a}_2 by applying operation \mathbf{E}_1 .

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
 (1.2.6.11)

Now, to prove that same matrix can be obtained by other two elementary operations. We will first perform elementary operation $\mathbf{E_2}$ by adding row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad (1.2.6.12)$$

Using elementary operation E_2 we will subtract

row 1 from row 2.

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.2.6.13)

Using elementary operation E_2 we will add row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.2.6.14)

Using elementary operation E_3 we will multiply row 2 by -1.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.2.6.15)

Hence, we can say that,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\times \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$(1.2.6.16)$$

1.2.7. Consider the system of equations AX = 0 where

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a 2×2 matrix over the field F. Prove the following -

- If every entry of **A** is 0, then every pair x_1 and x_2 is a solution of AX = 0.
- If $ad bc \neq 0$, then the system $\mathbf{AX} = 0$ has only the trivial solution $x_1 = x_2 = 0$
- If ad bc = 0 and some entry of **A** is different from 0, then there is a solution x_1^0 and x_2^0 such that x_1 and x_2 is a solution if and only if there is a scalar y such that $x_1 = yx_1^0$ and $x_2 = yx_2^0$

Solution: Solution 1 If every entry of **A** is 0

then the equation AX = 0 becomes,

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$
 (1.2.7.1)

$$\implies 0.x_1 + 0.x_2 = 0 \forall x_1, x_2 \in F$$
 (1.2.7.2)

Hence proved, every pair x_1 and x_2 is a solution for the equation $\mathbf{AX} = 0$. Solution 2 **Case 1:** Let a = 0. Since $ad - bc \neq 0$. As $bc \neq 0$ therefore $b \neq 0$ and $c \neq 0$. Hence, we can perform row reduction on the augmented matrix of equation $\mathbf{AX} = 0$ as follows,

equation
$$AX = 0$$
 as follows,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & b & 0 \\ c & d & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{c} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d & 0 \\ 0 & b & 0 \end{pmatrix}$$

$$(1.2.7.3)$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ 0 & b & 0 \end{pmatrix}$$

$$(1.2.7.4)$$

$$= \begin{pmatrix} 1 & -\frac{d}{c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$(1.2.7.5)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$(1.2.7.6)$$

Case 2: Let $a, b, c, d \neq 0$. Considering the following case,

$$\mathbf{AX} = \mathbf{u} \tag{1.2.7.7}$$

$$\implies \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \tag{1.2.7.8}$$

Row Reducing the augmented matrix of (1.2.7.8) we get,

$$\begin{pmatrix} \frac{1}{a} & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & u_1\\ c & d & u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{u_1}{a}\\ c & d & u_2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0\\ 0 & \frac{a}{ad-bc} \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{u_1}{a}\\ 0 & \frac{ad-bc}{a} & \frac{au_2-cu_1}{a}\\ (1.2.7.10) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -\frac{b}{a}\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{u_1}{a}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc}\\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \end{pmatrix}$$

From (1.2.7.12) we get,

$$x_1 = \frac{du_1 - bu_2}{ad - bc} \tag{1.2.7.13}$$

$$x_2 = \frac{aa - bc}{au_2 - cu_1}$$

$$x_2 = \frac{aa - bc}{ad - bc}$$
(1.2.7.14)

Since $u_1 = 0$ and $u_2 = 0$ then from (1.2.7.13) and (1.2.7.14),

$$x_1 = 0 (1.2.7.15)$$

$$x_2 = 0 (1.2.7.16)$$

Hence we get,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.2.7.17}$$

In (1.2.7.6) and (1.2.7.17), we can see that $\mathbf{AX} = 0$ has only one trivial solution i.e $x_1 = x_2 = 0$ in all cases. Hence proved, the equation $\mathbf{AX} = 0$ has only one trivial solution $x_1 = x_2 = 0$ Solution 3 **Case 1:** Let, $a \neq 0$ for **A**. Given ad - bc = 0, we can perform row reduction on augmented matrix of equation $\mathbf{AX} = 0$ as follows,

$$\begin{pmatrix} \frac{1}{a} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & 0 \\ c & d & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \frac{b}{a} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad [\because ad - bc = 0]$$

$$(1.2.7.19)$$

Hence from (1.2.7.19), AX = 0 if and only if

$$x_1 = -\frac{b}{a}x_2 \qquad [a \neq 0] \tag{1.2.7.20}$$

Letting $x_1^0 = -\frac{b}{a}$ and $x_2^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 (1.2.7.21)$$

$$x_2 = yx_2^0 (1.2.7.22)$$

which is a solution of the equation $\mathbf{AX} = 0$. **Case 2:** Let, $b \neq 0$ for **A**. Given ad - bc = 0, at first we multiply by elementary matrix to change the columns and the we can perform row reduction on augmented matrix of equation $\mathbf{AX} = 0$ as follows.

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} b & a & 0 \\ d & c & 0 \end{pmatrix}$$
 (1.2.7.23)

Hence using the result obtained from (1.2.7.19)

we can conclude for (1.2.7.23), $\mathbf{AX} = 0$ if and only if

$$x_2 = -\frac{a}{b}x_1 \qquad [b \neq 0] \tag{1.2.7.24}$$

Letting $x_2^0 = -\frac{a}{b}$ and $x_1^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 (1.2.7.25)$$

$$x_2 = yx_2^0 (1.2.7.26)$$

which is a solution of the equation $\mathbf{AX} = 0$. **Case 3:** Let, $c \neq 0$ for **A**. Given ad - bc = 0, we can perform row reduction on augmented matrix of equation $\mathbf{AX} = 0$ as follows,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{c} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d & 0 \\ a & b & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ a & b & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad [\because ad - bc = 0]$$

$$(1.2.7.29)$$

Hence from (1.2.7.29), $\mathbf{AX} = 0$ if and only if

$$x_1 = -\frac{d}{c}x_2 \qquad [a \neq 0] \tag{1.2.7.30}$$

Letting $x_1^0 = -\frac{d}{c}$ and $x_2^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 (1.2.7.31)$$

$$x_2 = yx_2^0 (1.2.7.32)$$

which is a solution of the equation $\mathbf{AX} = 0$. **Case 4:** Let, $d \neq 0$ for **A**. Given ad - bc = 0, at first we multiply by elementary matrix to change the columns and then we can perform row reduction on augmented matrix of equation $\mathbf{AX} = 0$ as follows,

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b & a & 0 \\ d & c & 0 \end{pmatrix}$$

$$= \begin{pmatrix} d & c & 0 \\ b & a & 0 \end{pmatrix}$$

$$(1.2.7.34)$$

Hence using the result from (1.2.7.29) we can conclude for (1.2.7.34), $\mathbf{AX} = 0$ if and only if

$$x_2 = -\frac{c}{d}x_1 \qquad [a \neq 0] \tag{1.2.7.35}$$

Letting $x_2^0 = -\frac{c}{d}$ and $x_1^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 (1.2.7.36)$$

$$x_2 = yx_2^0 (1.2.7.37)$$

which is a solution of the equation AX = 0.

1.3 Row Reduced Echelon Matrices

1.3.1. Find all solutions to the following system of equations by row-reducing the co-efficient matrix:

$$\frac{1}{3}x_1 + 2x_2 - 6x_3 = 0 (1.3.1.1)$$

$$-4x_1 + 5x_3 = 0 (1.3.1.2)$$

$$-3x_1 + 6x_2 - 13x_3 = 0 (1.3.1.3)$$

$$-\frac{7}{3}x_1 + 2x_2 - \frac{8}{3}x_3 = 0 (1.3.1.4)$$

Solution: The coefficient matrix is:

$$A = \begin{pmatrix} \frac{1}{3} & 2 & -6 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -\frac{7}{2} & 2 & -\frac{8}{2} \end{pmatrix}$$
 (1.3.1.5)

The number of rows of this coefficient matrix is m = 4 and the number of columns is n = 3, So in this case, n < m. Now the row operations

are:

$$\begin{pmatrix} \frac{1}{3} & 2 & -6 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -\frac{7}{3} & 2 & -\frac{8}{3} \end{pmatrix} \xrightarrow{R_4 \leftarrow R_4 \times 3} \begin{pmatrix} 1 & 6 & -18 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -7 & 6 & -8 \end{pmatrix}$$

$$(1.3.1.6)$$

$$\stackrel{R_3 \leftarrow R_2 + R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 6 & -18 \\
-4 & 0 & 5 \\
-7 & 6 & -8 \\
-7 & 6 & -8
\end{pmatrix}
\stackrel{R_4 \leftarrow R_4 - R_3}{\longleftrightarrow}$$

(1.3.1.7)

$$\begin{pmatrix} 1 & 6 & -18 \\ -4 & 0 & 5 \\ -7 & 6 & -8 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + 4R_1} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ R_3 \leftarrow R_3 + 7R_1 \end{pmatrix} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ 0 & 48 & -138 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(1.3.1.8)$$

$$\stackrel{R_3 \leftarrow R_3/2}{\longleftrightarrow} \begin{pmatrix}
1 & 6 & -18 \\
0 & 24 & -67 \\
0 & 24 & -69 \\
0 & 0 & 0
\end{pmatrix}
\stackrel{R_3 \leftarrow R_3 - R_2}{\longleftrightarrow}$$

(1.3.1.9)

$$\begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow \frac{R_3}{(-2)}} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(1.3.1.10)$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{4}}{\longleftrightarrow} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 6 & -\frac{67}{4} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow}$$

 $(1\ 3\ 1\ 11)$

$$\begin{pmatrix} 1 & 0 & -\frac{5}{4} \\ 0 & 6 & -\frac{67}{4} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{R_2}{6}} \begin{pmatrix} 1 & 0 & -\frac{5}{4} \\ 0 & 1 & -\frac{67}{24} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(1.3.1.12)$$

$$\xrightarrow{R_2 \leftarrow R_2 + \frac{67R_3}{24}} \xrightarrow{R_1 \leftarrow R_1 + \frac{5R_3}{4}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \tag{1.3.1.13}$$

Now,

$$A\mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \tag{1.3.1.14}$$

So,

$$\mathbf{I_3x} = 0 \tag{1.3.1.15}$$

$$\implies \mathbf{x} = 0 \tag{1.3.1.16}$$

1.3.2. Let

$$\mathbf{A} = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \tag{1.3.2.1}$$

For which triples (y_1, y_2, y_3) does the system AX = Y have a solution ?

Solution:

Given,

$$\mathbf{AX} = \mathbf{Y} \tag{1.3.2.2}$$

$$\begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \mathbf{X} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
 (1.3.2.3)

Now we try to find the matrix \mathbf{B} such that $\mathbf{B}\mathbf{A}$ gives the row echelon form of matrix \mathbf{A} . Here, \mathbf{B} is given by ,

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & 1 & 0 \\ -\frac{7}{5} & \frac{8}{5} & 1 \end{pmatrix} \tag{1.3.2.4}$$

$$\implies \mathbf{BA} = \begin{pmatrix} 3 & -1 & 2 \\ 0 & \frac{5}{3} & -\frac{1}{3} \\ 0 & 0 & -\frac{6}{5} \end{pmatrix} \tag{1.3.2.5}$$

Therefore, from (1.3.2.5) rank of matrix **A** is 3 and it is a full rank matrix.

Hence the columns of **A** are linearly independent.

Therefore, the triples (y_1, y_2, y_3) are linear combination of columns of matrix **A**.

$$\implies \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = a \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} + c \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \quad (1.3.2.6)$$

where a,b,c can be any real value.

1.3.3. Let

$$\mathbf{A} = \begin{pmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{pmatrix} \tag{1.3.3.1}$$

For which (y_1, y_2, y_3, y_4) does the system of equations $\mathbf{AX} = \mathbf{Y}$ have a solution? **Solution:**

Given,

$$\mathbf{AX} = \mathbf{Y} \tag{1.3.3.2}$$

$$\begin{pmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{pmatrix} \mathbf{X} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$
 (1.3.3.3)

Now we try to find the matrix **B** such that **BA** gives the row echelon form of matrix **A** Here, **B** is given by ,

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{2}{3} & 1 & 0 & 0 \\ -\frac{2}{7} & -\frac{3}{7} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix}$$
 (1.3.3.4)

$$\mathbf{BA} = \begin{pmatrix} 3 & -6 & 2 & -1 \\ 0 & 0 & \frac{7}{3} & \frac{7}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.3.3.5}$$

Therefore, rank of matrix **A** is 2 Now **B** is expressed in terms of two block matrices

$$\mathbf{B} = \begin{pmatrix} \mathbf{B_1} \\ \mathbf{B_2} \end{pmatrix} \tag{1.3.3.6}$$

$$\mathbf{B_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{2}{3} & 1 & 0 & 0 \end{pmatrix} \tag{1.3.3.7}$$

$$\mathbf{B_2} = \begin{pmatrix} -\frac{2}{7} & -\frac{3}{7} & 1 & 0\\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \tag{1.3.3.8}$$

Multiplying matrix \mathbf{B} to both sides on the equation (1.3.3.2), we get,

$$\begin{pmatrix} \mathbf{B_1} \\ \mathbf{B_2} \end{pmatrix} \mathbf{AX} = \begin{pmatrix} \mathbf{B_1} \\ \mathbf{B_2} \end{pmatrix} \mathbf{Y} \tag{1.3.3.9}$$

We know that, matrix A is of rank 2 The augumented matrix of (1.3.3.9) is given by

$$\begin{pmatrix} \mathbf{B_1 A} & \mathbf{B_1 Y} \\ \mathbf{B_2 A} & \mathbf{B_2 Y} \end{pmatrix} \tag{1.3.3.10}$$

$$\mathbf{B_1A} = \begin{pmatrix} 3 & -6 & 2 & -1 \\ 0 & 0 & \frac{7}{3} & \frac{7}{3} \end{pmatrix}$$
 (1.3.3.11)

$$\mathbf{B_2A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.3.3.12}$$

Since B₂A is zero matrix and for the given

system AX = Y to have a solution,

$$\mathbf{B_2Y} = 0$$
 (1.3.3.13)

$$\begin{pmatrix} -\frac{2}{7} & -\frac{3}{7} & 1 & 0\\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} y_1\\ y_2\\ y_3\\ y_4 \end{pmatrix} = 0 \qquad (1.3.3.14)$$

The augumented matrix of (1.3.3.14) is given by,

$$\begin{pmatrix} -\frac{2}{7} & -\frac{3}{7} & 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 & 0 \end{pmatrix}$$
 (1.3.3.15)

By row reduction technique,

$$\stackrel{R_1 = -\frac{7}{2}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & -\frac{7}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (1.3.3.16)

$$\stackrel{R_2=2R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & -\frac{7}{2} & 0 & 0 \\ 0 & 1 & -3 & 2 & 0 \end{pmatrix}$$
 (1.3.3.17)

$$\stackrel{R_1 = R_1 - \frac{3}{2}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 & -3 & | & 0 \\ 0 & 1 & -3 & 2 & | & 0 \end{pmatrix} \quad (1.3.3.18)$$

Equation (1.3.3.14) can be modified as,

$$\begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = 0$$
 (1.3.3.19)

Here y_3 and y_4 are free variables If $y_3 = a$ and $y_4 = b$, then the solution to the system of equation AX = Y is given by,

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = a \begin{pmatrix} -1 \\ 3 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$
 (1.3.3.20)

One of the solution when a = 1 and b = 2 is given by ,

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$
 (1.3.3.21)

1.3.4. Suppose **R** and **R**' are 2×3 row-reduced echelon matrices and that the system **RX**=0 and **R**'**X**=0 have exactly the same solutions. Prove that **R** = **R**'.

Solution:

Since **R** and **R**' are 2 × 3 row-reduced echelon matrices they can be of following three types:-

a) Suppose matrix R has one non-zero row then RX=0 will have two free variables. Since R'X=0 will have the exact same solution as RX = 0, R'X=0 will also have two free variables. Thus R' have one non zero row. Now let's consider a matrix A with the first row as the non-zero row R and second row as the second row of R'.

$$\mathbf{R} = \begin{pmatrix} 1 & a & b \\ 0 & 0 & 0 \end{pmatrix} \tag{1.3.4.1}$$

$$\mathbf{R}' = \begin{pmatrix} 1 & c & d \\ 0 & 0 & 0 \end{pmatrix} \tag{1.3.4.2}$$

(1.3.4.3)

Let X satisfy

$$\mathbf{RX} = 0 \tag{1.3.4.4}$$

$$\left(1 \quad \mathbf{a}^T \right) \begin{pmatrix} x \\ \mathbf{y} \end{pmatrix} = 0$$
 (1.3.4.5)

$$x + \mathbf{a}^T \mathbf{v} = 0 \tag{1.3.4.6}$$

where

$$\mathbf{a} = \begin{pmatrix} a \\ b \end{pmatrix} \tag{1.3.4.7}$$

$$\mathbf{R}'\mathbf{X} = 0 \tag{1.3.4.8}$$

$$(1 \quad \mathbf{b}^T) \begin{pmatrix} x \\ \mathbf{v} \end{pmatrix} = 0$$
 (1.3.4.9)

$$x + \mathbf{b}^T \mathbf{y} = 0 \tag{1.3.4.10}$$

where

$$\mathbf{b} = \begin{pmatrix} c \\ d \end{pmatrix} \tag{1.3.4.11}$$

Subtracting (1.3.4.10) from (1.3.4.6),

$$x + \mathbf{a}^T \mathbf{y} - x - \mathbf{b}^T \mathbf{y} = 0 \tag{1.3.4.12}$$

$$(\mathbf{a}^T - \mathbf{b}^T)\mathbf{y} = 0 (1.3.4.13)$$

Since v is a 2×1 vector,

$$\implies y_1 \mathbf{a} - y_2 \mathbf{b} = 0 \tag{1.3.4.14}$$

Which can be written as,

$$\mathbf{a} = k\mathbf{b} \tag{1.3.4.15}$$

where, $k = \frac{y_2}{y_1}$ assuming $y_1 \neq 0$. Now, Substituting (1.3.4.15) in

(1.3.4.6)

$$x + k\mathbf{b}^T \mathbf{y} = 0 \tag{1.3.4.16}$$

Comparing (1.3.4.16) with (1.3.4.10)

$$x + \mathbf{b}^T \mathbf{y} = 0 \tag{1.3.4.17}$$

$$x + k\mathbf{b}^T\mathbf{y} = 0 \tag{1.3.4.18}$$

Hence k=1 which means $y_1=y_2$ and from this we can say that $\mathbf{a}=\mathbf{b}$. If in the above case we take $y_1=0$ then

$$y_1 \mathbf{a} - y_2 \mathbf{b} = 0 \tag{1.3.4.19}$$

$$y_2 \mathbf{b} = 0$$
 (1.3.4.20)

Hence for the (1.3.4.20) to be always true **b** should be zero. Now from (1.3.4.15) we will see that **a** will also be 0. Hence, $\mathbf{R} = \mathbf{R}'$

b) Let **R** and **R**' have all rows as non zero.

$$\mathbf{R} = \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & c \end{pmatrix} \tag{1.3.4.21}$$

$$\mathbf{R}' = \begin{pmatrix} 1 & 0 & e \\ 0 & 1 & f \end{pmatrix} \tag{1.3.4.22}$$

Let X satisfy

$$\mathbf{RX} = 0$$
 (1.3.4.23)

$$\mathbf{X}^T \mathbf{R}^T = 0 \tag{1.3.4.24}$$

Here,

$$\mathbf{R} = \begin{pmatrix} \mathbf{I} & \mathbf{a} \end{pmatrix} \tag{1.3.4.25}$$

$$\mathbf{a} = \begin{pmatrix} b \\ c \end{pmatrix} \tag{1.3.4.26}$$

$$\mathbf{R}^T = \begin{pmatrix} \mathbf{I} \\ \mathbf{a}^T \end{pmatrix} \tag{1.3.4.27}$$

Now for,

$$\mathbf{R}'\mathbf{X} = 0 \tag{1.3.4.31}$$

$$\mathbf{X}^T \mathbf{R'}^T = 0 \tag{1.3.4.32}$$

Here,

$$\mathbf{R}' = \begin{pmatrix} \mathbf{I} & \mathbf{b} \end{pmatrix} \tag{1.3.4.33}$$

$$\mathbf{b} = \begin{pmatrix} e \\ f \end{pmatrix} \tag{1.3.4.34}$$

Let,

$$\mathbf{X}^T = \begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \tag{1.3.4.35}$$

where z is a scalar constant. Now, substituting (1.3.4.35) and (1.3.4.33) in (1.3.4.32)

$$\begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{b}^T \end{pmatrix} = 0 \tag{1.3.4.36}$$

$$\mathbf{y}^T + z\mathbf{b}^T = 0 \tag{1.3.4.37}$$

Subtracting (1.3.4.37) from (1.3.4.30)

$$\mathbf{y}^{T} + z\mathbf{a}^{T} - \mathbf{y}^{T} - z\mathbf{b}^{T} = 0 \qquad (1.3.4.38)$$

$$(\mathbf{a}^T - \mathbf{b}^T)z = 0$$
 (1.3.4.39)

$$\mathbf{a}^T = \mathbf{b}^T \qquad (1.3.4.40)$$

c) Suppose matrix **R** have all the rows as zero then **RX**=0 will be satisfied for all values of **X**. We know that **R**'**X**=0 will have the exact same solution as **RX**=0 then we can say that for all values of **X**=0 equation **R**'**X**=0 will be satisfied.Hence, **R**'=**R**=0.

1.4 Matrix Multiplication

Let,

$$\mathbf{X}^T = \begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \tag{1.3.4.28}$$

where z is a scalar constant. Now, substituting (1.3.4.28) and (1.3.4.25) in (1.3.4.24)

$$\begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{a}^T \end{pmatrix} = 0 \tag{1.3.4.29}$$

$$\mathbf{v}^T + z\mathbf{a}^T = 0 \tag{1.3.4.30}$$

1.4.1. Let

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (1.4.1.1)

Verify directly that $A(AB) = A^2B$ Solution:

$$A^{2} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}$$
 (1.4.1.2)

$$A^{2} = \begin{pmatrix} 2 & -1 & 1 \\ 5 & -2 & 3 \\ 6 & -3 & 4 \end{pmatrix}$$
 (1.4.1.3)

and

$$AB = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (1.4.1.4)

$$AB = \begin{pmatrix} 5 & -1 \\ 8 & 0 \\ 10 & -2 \end{pmatrix} \tag{1.4.1.5}$$

Now RHS is

$$A^{2}B = \begin{pmatrix} 2 & -1 & 1 \\ 5 & -2 & 3 \\ 6 & -3 & 4 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (1.4.1.6)

$$A^2B = \begin{pmatrix} 7 & -3\\ 20 & -4\\ 25 & -5 \end{pmatrix} \tag{1.4.1.7}$$

Now LHS is

$$A(AB) = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 8 & 0 \\ 10 & -2 \end{pmatrix}$$
 (1.4.1.8)

$$A(AB) = \begin{pmatrix} 7 & -3\\ 20 & -4\\ 25 & -5 \end{pmatrix} \tag{1.4.1.9}$$

Hence verified.

1.4.2. Find two different 2×2 matrices **A** such that $\mathbf{A}^2 = 0$ but $\mathbf{A} \neq 0$

Solution: The matrix A can be given by,

$$\mathbf{A} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \tag{1.4.2.1}$$

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \tag{1.4.2.2}$$

Now,

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \mathbf{0} \tag{1.4.2.3}$$

$$\implies$$
 $\mathbf{A}^2 = (\mathbf{Am} \ \mathbf{An}) = (\mathbf{0} \ \mathbf{0}) \ (1.4.2.4)$

From (1.4.2.4), we say that the the null space of **A** contains columns of matrix **A**. Also atleast one of the columns must be non-zero since given $\mathbf{A} \neq 0$. Thus, the null space of **A** contains non zero vectors, $rank(\mathbf{A}) < 2$. Hence, **A** is a singular matrix. This implies that the columns

of A are linearly dependent.

$$\mathbf{A}\mathbf{x} = 0 \tag{1.4.2.5}$$

$$(\mathbf{m} \quad \mathbf{n}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$
 (1.4.2.6)

$$x_1 \mathbf{m} + x_2 \mathbf{n} = 0 \tag{1.4.2.7}$$

$$\mathbf{n} = \frac{-x_1}{x_2} \mathbf{m} \tag{1.4.2.8}$$

$$\implies$$
 n = k **m** (1.4.2.9)

where $\mathbf{m} \neq 0$ as $\mathbf{A} \neq 0$ Now from (1.4.2.4),

$$\mathbf{Am} = 0$$
 (1.4.2.10)

$$m_1 \mathbf{m} + m_2 \mathbf{n} = 0 \tag{1.4.2.11}$$

$$(m_1 + km_2) \mathbf{m} = 0 (1.4.2.12)$$

Thus we get, $m_1 = -km_2$

$$\mathbf{A} = \begin{pmatrix} -km_2 & -k^2m_2 \\ m_2 & km_2 \end{pmatrix}; m_2 \neq 0 \qquad (1.4.2.13)$$

(1.4.2.9) can be written as,

$$\implies \mathbf{m} = \frac{1}{k}\mathbf{n} \tag{1.4.2.14}$$

$$\implies$$
 m = c **n** (1.4.2.15)

where $\mathbf{n} \neq 0$ as $\mathbf{A} \neq 0$ From (1.4.2.4),

$$\mathbf{An} = 0$$
 (1.4.2.16)

$$n_1 \mathbf{m} + n_2 \mathbf{n} = 0 \tag{1.4.2.17}$$

$$(cn_1 + n_2)\mathbf{n} = 0 (1.4.2.18)$$

Thus we get, $n_2 = -cn_1$

$$\mathbf{A} = \begin{pmatrix} cn_1 & n_1 \\ -c^2n_1 & -cn_1 \end{pmatrix}; n_1 \neq 0 \qquad (1.4.2.19)$$

From (1.4.2.13), (1.4.2.19) two different 2×2 matrices **A** can be given as,

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \tag{1.4.2.20}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \tag{1.4.2.21}$$

non zero vectors, $rank(\mathbf{A}) < 2$. Hence, \mathbf{A} is a 1.4.3. Let \mathbf{A} be an $m \times n$ matrix and \mathbf{B} be an singular matrix. This implies that the columns $n \times k$ matrix. Show that the columns of $\mathbf{C} = \mathbf{A}\mathbf{B}$ are linear combinations of columns of \mathbf{A} . If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the columns of \mathbf{A} and

 $\gamma_1, \gamma_2, \dots, \gamma_k$ are the columns of C then,

$$\gamma_{\mathbf{j}} = \sum_{r=1}^{n} B_{rj} \alpha_{\mathbf{r}}$$
 (1.4.3.1)

Solution:

$$\mathbf{C} = \mathbf{AB} \tag{1.4.3.2}$$

$$\mathbf{C} = \begin{pmatrix} \gamma_1 & \gamma_2 & \dots & \gamma_k \end{pmatrix} \tag{1.4.3.3}$$

$$\mathbf{A} = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \tag{1.4.3.4}$$

$$\mathbf{B} = \begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_k \end{pmatrix} \tag{1.4.3.5}$$

$$= \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1k} \\ B_{21} & B_{22} & \dots & B_{2k} \\ \vdots & \vdots & \dots & \vdots \\ B_{n1} & B_{n2} & \dots & B_{nk} \end{pmatrix}$$
(1.4.3.6)

By matrix multiplication, we can write

$$(\gamma_1 \quad \gamma_2 \quad \dots \quad \gamma_k) = (\mathbf{A}\beta_1 \quad \mathbf{A}\beta_2 \quad \dots \quad \mathbf{A}\beta_k)$$

$$(1.4.3.7)$$

Consider γ_1

$$\gamma_1 = \mathbf{A}\beta_1 \qquad (1.4.3.8)$$

$$= \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \begin{pmatrix} B_{11} \\ B_{21} \\ \vdots \\ B_{n1} \end{pmatrix}$$
 (1.4.3.9)

=
$$B_{11}\alpha_1 + B_{21}\alpha_2 + \ldots + B_{n1}\alpha_n$$
 (1.4.3.10) 1.4.5. Let,

Similarly, considering j^{th} column of C

$$\gamma_{\mathbf{j}} = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \dots & \alpha_{\mathbf{n}} \end{pmatrix} \begin{pmatrix} B_{1j} \\ B_{2j} \\ \vdots \\ B_{nj} \end{pmatrix}$$
(1.4.3.11)

$$= B_{1j}\alpha_1 + B_{2j}\alpha_2 + \ldots + B_{nj}\alpha_n \qquad (1.4.3.12)$$

$$\implies \gamma_{\mathbf{j}} = \sum_{r=1}^{n} B_{rj} \alpha_{\mathbf{r}} \qquad (1.4.3.13)$$

which proves that columns of C are linear combinations of columns of A

1.4.4. Let **A** and **B** be $n \times n$ matrices such that AB = I. Prove that BA = I. Solution: Let BX = 0 be a system of linear equation with n unknowns and n equations as **B** is $n \times n$ matrix. Hence,

$$\mathbf{BX} = 0 \tag{1.4.4.1}$$

$$\implies \mathbf{A}(\mathbf{BX}) = 0 \tag{1.4.4.2}$$

$$\implies (\mathbf{AB})\mathbf{X} = 0 \tag{1.4.4.3}$$

$$\Longrightarrow$$
 IX = 0 [: **AB** = **I**] (1.4.4.4)

$$\implies \mathbf{X} = 0 \tag{1.4.4.5}$$

From (1.4.4.5) since $\mathbf{X} = 0$ is the only solution of (1.4.4.1), hence $rank(\mathbf{B}) = n$. Which implies all columns of **B** are linearly independent. Hence **B** is invertible. Therefore, every left inverse of **B** is also a right inverse of **B**. Hence there exists a $n \times n$ matrix C such that,

$$BC = CB = I$$
 (1.4.4.6)

Again given that AB = I. Hence,

$$\mathbf{AB} = \mathbf{I} \tag{1.4.4.7}$$

$$\implies ABC = C \tag{1.4.4.8}$$

$$\implies \mathbf{A}(\mathbf{BC}) = \mathbf{C} \tag{1.4.4.9}$$

$$\implies$$
 A = **C** [: **BC** = **I**] (1.4.4.10)

Hence using (1.4.4.10) and (1.4.4.6) we can write,

$$\mathbf{BA} = \mathbf{I} \tag{1.4.4.11}$$

Hence Proved.

$$\mathbf{C} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \tag{1.4.5.1}$$

be a 2×2 matrix. We inquire when it is possible to find 2×2 matrices **A** and **B** such that C=AB-BA. Prove that such matrices can be found if and only if $C_{11} + C_{22} = 0$. Solution: We have to find,

$$tr(\mathbf{C}) = C_{11} + C_{22} = tr(\mathbf{AB} - \mathbf{BA})$$
 (1.4.5.2)

$$\implies tr(\mathbf{C}) = tr(\mathbf{AB}) - tr(\mathbf{BA}) \quad (1.4.5.3)$$

We know that,

$$tr(\mathbf{AB}) = \sum_{i=1}^{2} (\mathbf{AB})_{ii}$$
 (1.4.5.4)

$$\implies \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} b_{ji} \qquad (1.4.5.5)$$

$$\implies \sum_{j=1}^{2} \sum_{i=1}^{2} b_{ji} a_{ij} \qquad (1.4.5.6)$$

$$\implies tr(\mathbf{AB}) = \sum_{j=1}^{2} \mathbf{BA}_{jj} \qquad (1.4.5.7)$$

$$\implies tr(\mathbf{AB}) = tr(\mathbf{BA})$$
 (1.4.5.8)

Substituting equation (1.4.5.8) to (1.4.5.3) we get

$$\implies tr(\mathbf{C}) = tr(\mathbf{AB}) - tr(\mathbf{BA}) = 0 \quad (1.4.5.9)$$

1.5 Invertible Matrices

1.5.1. Let

$$\mathbf{A} = \begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix} \tag{1.5.1.1}$$

For which **X** does there exist a scalar c such that AX = cX

Solution: Given

$$\mathbf{A} = \begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix} \tag{1.5.1.2}$$

The given matrix has single eigenvalue as it is the lower triangular matrix and has equal diagonal elements. Hence $c_1 = c_2 = c_3 = 5$. To find the corresponding eigenvector, consider the following

$$(\mathbf{A} - c\mathbf{I})\mathbf{X} = 0 \tag{1.5.1.3}$$

$$\implies \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{1.5.1.4}$$

Solving the homogeneous system of linear equations by performing rref, we get

$$\begin{pmatrix} 30 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \longleftrightarrow R_1} \begin{pmatrix} 31 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(1.5.1.5)

Hence we get,

$$x_1 = 0, x_2 = 0, x_3 = t$$
 (1.5.1.6)

where, x_3 is arbitrary. Therefore,

$$\mathbf{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} t \tag{1.5.1.7}$$

Hence, the given matrix has single eigenvector and is not diagonalizable.

1.5.2. Discover whether

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix} \tag{1.5.2.1}$$

is invertible, and find A^{-1} if it exists.

Solution: The matrix **A** is in row reduced echolon form with four pivot elements. Therefore the rank(**A**) is 4. Hence the rows of matrix **A** constitute of 4 linearly independent vectors. Thus it can be concluded that matrix **A** is invertible. Using Gauss-Jordan Elimination, if there exists an elimentary matrix **E** such that $\mathbf{E}[\mathbf{A}\ \mathbf{I}] = [\mathbf{I}\ \mathbf{E}]$ then **E** is the inverse of **A** i.e $\mathbf{E} = \mathbf{A}^{-1}$.

$$[\mathbf{A} \ \mathbf{I}] = \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.5.2.2)

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (1.5.2.3)$$

$$\stackrel{R_2 \leftarrow R_2 - R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & | & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (1.5.2.4)$$

$$\stackrel{R_{3} \leftarrow R_{3} - R_{4}}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & | & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 0 & | & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\stackrel{R_{4} \leftarrow \frac{R_{4}}{4}}{\longleftrightarrow} \stackrel{R_{2}}{\longleftrightarrow} \stackrel{R_{3}}{\to} \stackrel{R_{3}}{\to} \stackrel{R_{3}}{\to} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 1 & | & 0 & 0 & 0 & \frac{1}{4}
\end{pmatrix}$$

$$= [I E]$$

$$(1.5.2.6)$$

Therefore, for the given problem,

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{pmatrix}$$
 (1.5.2.7)

Generalization of above result to a matrix of any arbitrary size: Let

$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_N \\ 0 & a_2 & a_3 & \dots & a_N \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_N \end{pmatrix}$$
 (1.5.2.8)

Then

$$\mathbf{E}_{1}\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1} & a_{2} & a_{3} & \dots & a_{N} \\ 0 & a_{2} & a_{3} & \dots & a_{N} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_{N} \end{pmatrix} \qquad \mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a_{1}} & -\frac{1}{a_{1}} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{a_{2}} & -\frac{1}{a_{2}} & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{a_{3}} & -\frac{1}{a_{3}} & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & \frac{1}{a_{N}} \end{pmatrix}$$

$$(1.5.2.9)$$

$$= \begin{pmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & a_3 & \dots & a_N \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & a_N \end{pmatrix}$$
 (1.5.2.10)

$$\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1} & 0 & 0 & \dots & 1.5 \cdot \beta \\ 0 & a_{2} & a_{3} & \dots & a_{N} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_{N} \end{pmatrix}$$
Suppose \mathbf{A} is a 2×1 matrix and \mathbf{B} is 1×2 matrix. Prove that $\mathbf{C} = \mathbf{A}\mathbf{B}$ is non invertible. Solution: Let's take \mathbf{A} and \mathbf{B} to be non zero vectors. Now, we know that for \mathbf{C} to be non invertible $\mathbf{C}\mathbf{x} = 0$ should have a non trivial solution So

$$= \begin{pmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & a_N \end{pmatrix}$$
 (1.5.2.12)

Proceeding in similar manner, we get

$$\mathbf{E}_{N}\mathbf{E}_{N-1}\dots\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \mathbf{U} = \begin{pmatrix} a_{1} & 0 & 0 & \dots & 0 \\ 0 & a_{2} & 0 & \dots & 0 \\ 0 & 0 & a_{3} & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & a_{N} \end{pmatrix}$$

$$(1.5.2.13)$$

$$= \operatorname{diag} \begin{pmatrix} a_{1} & a_{2} & \dots & a_{N} \end{pmatrix}$$

$$(1.5.2.14)$$

$$\implies \mathbf{A} = \mathbf{L}\mathbf{U} \tag{1.5.2.15}$$

where $\mathbf{L} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \dots \mathbf{E}_N^{-1}$ $\implies \mathbf{A}^{-1} = \mathbf{U}^{-1} \mathbf{L}^{-1}$ (1.5.2.16)

$$\Rightarrow \mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{a_2} & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{a_3} & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & \frac{1}{a_N} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & \dots \end{pmatrix}$$

Therefore

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a_1} & -\frac{1}{a_1} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{a_2} & -\frac{1}{a_2} & 0 & \dots & 0\\ 0 & 0 & \frac{1}{a_3} & -\frac{1}{a_3} & \dots & 0\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{a_N} \end{pmatrix}$$
(1.5.2.18)

From (1.5.2.18) for the above problem

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{pmatrix}$$
 (1.5.2.19)

invertible Cx = 0 should have a non trivial solution.So.

$$\mathbf{C}\mathbf{x} = 0$$
 (1.5.3.1)

$$\implies \mathbf{ABx} = 0 \tag{1.5.3.2}$$

Here, we know that **B** is 1×2 matrix and **x** is 2×1 matrix then **Bx** will result to a scalar constant k.

$$\implies \mathbf{A}k = 0 \tag{1.5.3.3}$$

For (1.5.3.3) to be true k should be zero. We also know that **B** is 1×2 matrix i.e. rows are less than column hence,

$$\mathbf{B}\mathbf{x} = 0$$
 (1.5.3.4)

will have a non trivial solution. Hence, using (1.5.3.3) and (1.5.3.4) we can say,

$$\mathbf{ABx} = 0 \tag{1.5.3.5}$$

will have a non trivial solution so, C is non invertible.

- 1.5.4. Let **A** be an $n \times n$ (square) matrix, Prove the following two statements:
 - a) If **A** is invertible and $\mathbf{AB} = 0$ for some $n \times n$ matrix **B**, then $\mathbf{B} = 0$.
 - b) If **A** is not invertible, then there exists an $n \times n$ matrix **B** such that AB = 0 but $B \neq 0$.

Solution:

a) Given **A** is an invertible matrix and $\mathbf{AB} = 0$ then,

$$\mathbf{AB} = 0 \tag{1.5.4.1}$$

$$\implies \mathbf{A}^{-1}(\mathbf{AB}) = 0 \tag{1.5.4.2}$$

$$\implies (\mathbf{A}^{-1}\mathbf{A})\mathbf{B} = 0 \tag{1.5.4.3}$$

$$\implies \mathbf{IB} = 0 \quad [\because \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}]$$
(1.5.4.4)

$$\implies \mathbf{B} = 0 \tag{1.5.4.5}$$

b) If **A** is not invertible, then there exists an $n \times n$ matrix **B** such that $\mathbf{AB} = 0$ but $\mathbf{B} \neq 0$. Since **A** is not invertible, $\mathbf{AX} = 0$ must have a non-trivial solution. Let the non-trivial solution be,

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \tag{1.5.4.6}$$

Let **B** which is an $n \times n$ matrix have all its columns as **y**.

$$\mathbf{B} = \begin{pmatrix} \mathbf{y} & \mathbf{y} & \cdots & \mathbf{y} \end{pmatrix} \tag{1.5.4.7}$$

From equation (1.5.4.7), we can say that $\mathbf{B} \neq 0$ but $\mathbf{AB} = 0$

1.5.5. Let A be a $m \times n$ matrix. Show that by a

finite number of elementary row and/or column operations one can pass from A to a matrix R which is both row-reduced echelon and column-reduced echelon , i.e., $R_{ij} = 0$ if $i \neq j$, $R_{ii} = 1$, $1 \leq i \leq r$, $R_{ii} = 0$, if i > r. Show that R = PAQ, where P is an invertible $m \times m$ matrix and Q is an invertible $n \times n$ matrix.

Solution:

Lemma Every elementary matrix is invertible and the inverse is again an elementary matrix. If an elementary matrix E is obtained from I by using a certain row or column operation q, then E^{-1} is obtained from I by the "inverse" operation q^{-1} .

Solution Given **A** is a $m \times n$ matrix. Converting **A** into row reduced echelon form by performing a series of elementary row operations **P**. Let **R**' be the row reduced echelon matrix. Also, by using the lemma we can tell that **P** is invertible and order $m \times m$.

$$\mathbf{R}' = \mathbf{PA} \tag{1.5.5.1}$$

where,

$$\mathbf{R'} = \begin{pmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

I is an identity matrix, F is Free variables matrix and 0 represents a block of zeroes

 \mathbf{R}' is in row-reduced echelon form. To perform column operations, elementary matrices should be multiplied on the right side in order to convert the \mathbf{R}' into column-reduced echelon form

$$\mathbf{R} = \mathbf{R}'\mathbf{Q} \tag{1.5.5.2}$$

But performing column operations on a matrix is equivalent to performing row operations on the transposed matrix.

$$\mathbf{R}^{T} = (\mathbf{R}'\mathbf{Q})^{T}$$

$$\implies \mathbf{R}^{T} = \mathbf{Q}^{T}\mathbf{R}'^{T}$$
(1.5.5.3)

Hence, by using lemma it can be observed that \mathbf{Q}^T is invertible and of the order $n \times n$. Converting \mathbf{R}^T to row-reduced echelon is equivalent to converting \mathbf{R} to column-reduced echelon.

$$\mathbf{R} = \mathbf{PAQ} \tag{1.5.5.4}$$

where,

$$\mathbf{R} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \tag{1.5.5.5}$$

I is an identity matrix and 0 represents a block of zeroes. Q is a upper triangular matrix. R in (1.5.5.4) is in both row and column reduced echelon form. Hence proved. Example Let,

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 7 \\ 1 & 2 & 3 & 4 \end{pmatrix} \tag{1.5.5.6}$$

To convert (1.5.5.6) into row reduced echelon form, **A** has to be multiplied by **P**

$$\mathbf{P} = \begin{pmatrix} -5 & 3 & 0 \\ 2 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \tag{1.5.5.7}$$

$$\mathbf{R}' = \mathbf{PA} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (1.5.5.8)

 \mathbf{R}' is in row reduced echelon form. To convert (1.5.5.8) into column-reduced echelon form, elementary operations have to be performed on \mathbf{R}'^T . By multiplying all the elementary matrices,

$$\mathbf{Q}^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} \tag{1.5.5.9}$$

$$\implies \mathbf{Q} = \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (1.5.5.10)

So **PAQ** is in both row-reduced and column-reduced echelon form.

$$\mathbf{R} = \mathbf{PAQ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.5.5.11}$$

The inverses of \mathbf{P} and \mathbf{Q} are,

$$\mathbf{P}^{-1} = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 5 & 0 \\ 1 & 3 & 1 \end{pmatrix}; \quad \mathbf{Q}^{-1} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.5.5.12)

2 Vector Spaces

(1.5.5.6) *2.1 Vector Spaces*

2.1.1. If **F** is a field, verify that vector space of all ordered n-tuples \mathbf{F}^n is a vector space over the field \mathbf{F} .

Solution: Let \mathbf{F}^n be a set of all ordered n-tuples over \mathbf{F} i.e

$$\mathbf{F}^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_1, a_2, \dots, a_n \in \mathbf{F} \right\}$$
 (2.1.1.1)

For \mathbf{F}^n to be a vector space over \mathbf{F} it must satisfy the closure property of vector addition and scalar multiplication.

Vector Addition in \mathbf{F}^n :

Let $\alpha = (a_i)$ and $\beta = (b_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then

$$\alpha + \beta = (a_i) + (b_i) \qquad (2.1.1.2)$$

$$= \left(a_i + b_i\right) \tag{2.1.1.3}$$

Since

$$a_i + b_i \in \mathbf{F} \ \forall \ i = 1, 2, \cdots, n$$
 (2.1.1.4)

$$\implies \alpha + \beta \in \mathbf{F}^n$$
 (2.1.1.5)

Scalar multiplication in F^n over F:

Let $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbb{F}^n$ and $a \in \mathbb{F}$ then

$$a\alpha = (aa_i) \tag{2.1.1.6}$$

Since

$$aa_i \in \mathbf{F} \ \forall \ i = 1, 2 \cdots, n$$
 (2.1.1.7)

$$\implies a\alpha \in \mathbf{F}^n$$
 (2.1.1.8)

Associativity of addition in F^n :

Let
$$\alpha = (a_i)$$
, $\beta = (b_i)$, $\gamma = (g_i) \ \forall \ i = 1, 2, \dots, n \in \mathbb{F}^n$ then

$$\alpha + (\beta + \gamma) = (a_i) + (b_i + g_i)$$
 (2.1.1.9)
= $(a_i + b_i + g_i)$ (2.1.1.10)
= $(a_i + b_i) + (g_i)$ (2.1.1.11)
= $(\alpha + \beta) + \gamma$ (2.1.1.12)

Existence of additive identity in \mathbf{F}^n :

We have
$$\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbf{F}^n \text{ and } \alpha = (a_i) \ \forall \ i = a_i$$

 $1, 2, \cdots, n \in \mathbf{F}^n$ then

$$(a_i) + (0) = (a_i + 0)$$
 (2.1.1.13)
= (a_i) (2.1.1.14)

Therefore $\mathbf{0}$ is the additive identity in \mathbf{F}^n .

Existence of additive inverse of each element of \mathbf{F}^n :

If $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then Hence \mathbf{F}^n is a vector space over \mathbf{F} .

(a) $\in \mathbf{F}^n$ Also we have $(-a_i) \in \mathbf{F}^n$. Also we have

$$\left(-a_i\right) + \left(a_i\right) = \mathbf{0} \tag{2.1.1.15}$$

Therefore $-\alpha = (-a_i)$ is the additive inverse of α . Thus \mathbf{F}^n is an abelian group with respect to addition.

Futher we observe that

a) If $a \in \mathbf{F}$ and $\alpha = (a_i)$, $\beta = (b_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then

$$a(\alpha + \beta) = a(a_i + b_i)$$
 (2.1.1.16)

$$= (a[a_i + b_i])$$
 (2.1.1.17)

$$= (aa_i + ab_i)$$
 (2.1.1.18)

$$(aa_i) + (ab_i)$$
 (2.1.1.19)

$$= a(a_i) + a(b_i)$$
 (2.1.1.20)

$$= a(a_i) + a(a_i)$$
 (2.1.1.21)

$$= a\alpha + a\beta \tag{2.1.1.21}$$

then

$$(a+b)\alpha = ([a+b]a_i)$$
 (2.1.1.22)

$$= \left(aa_i + ba_i\right) \tag{2.1.1.23}$$

$$= (aa_i) + (ba_i) \tag{2.1.1.24}$$

$$= a(a_i) + b(a_i)$$
 (2.1.1.25)

$$= a\alpha + b\alpha \tag{2.1.1.26}$$

c) If $a,b \in \mathbf{F}$ and $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$

$$(ab)\alpha = ([ab]a_i) \tag{2.1.1.27}$$

$$= \left(a[ba_i]\right) \tag{2.1.1.28}$$

$$= a \left(b a_i \right) \tag{2.1.1.29}$$

$$= a(b\alpha) \tag{2.1.1.30}$$

d) If 1 is the unity element of **F** and α = $(a_i) \ \forall \ i = 1, 2, \cdots, n \in \mathbf{F}^n \text{ then}$

$$1\alpha = (1a_i) \tag{2.1.1.31}$$

$$= (a_i) \tag{2.1.1.32}$$

$$= \alpha \tag{2.1.1.33}$$

Hence \mathbf{F}^n is a vector space over \mathbf{F} .

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$
(2.1.2.1)

Solution: Using property of commutativity of (+) in \mathbf{V}

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = (\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4)$$
(2.1.2.2)

Using property of associativity of (+) in V

$$(\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4) = \alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)]$$
(2.1.2.3)

Using property of commutativity of (+) in V

$$\alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)] = \alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4$$
(2.1.2.4)

Using property of associativity of (+) in V

$$\alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4 = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$
(2.1.2.5)

b) If $a,b \in \mathbb{F}$ and $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbb{F}^n$ 2.1.3. Let V be the set of all pairs (x,y) of real numbers and let F be the field of real numbers.

Define

$$(x, y) + (x_1, y_1) = (x + x_1, y + y_1)$$
 (2.1.3.1)
 $c(x, y) = (cx, y)$ (2.1.3.2)

Is V with these operations, a vector space over 2.1.5. Let V be the set of pairs (x, y) of real numbers the field of real numbers?

Solution: $V = \{(x,y) \mid x,y \in R\}$, consider u = $(x_1, y_1) \in V, a, b, c \in R$. Axioms with respect to addition and scalar multiplication.

a)

$$(a+b)u = (a+b)(x_1, y_1)$$
 (2.1.3.3)

$$= ((a+b)x_1, y_1) \neq au + bu \qquad (2.1.3.4)$$

Since V with the given operations the equation (2.1.3.4) contradicts the axioms of scalar multiplication. Hence it is not vector space over real number with these operations.

2.1.4. If \mathbb{C} is the field of complex numbers, which

vectors in \mathbb{C}^3 are linear combinations of $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$,

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$?

Solution: Expressing the given vectors as the columns of a matrix.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \tag{2.1.4.1}$$

The row reduced echelon form of the matrix on performing elementary row operations can be given as,

$$\mathbf{R} = \mathbf{C}\mathbf{A} \tag{2.1.4.2}$$

where C is the product of elementary matrices,

$$\mathbf{C} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} \tag{2.1.4.3}$$

Thus we get,

$$\mathbf{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{2.1.4.4}$$

From (2.1.4.4), $rank(\mathbf{A}) = 3$. Thus \mathbf{A} is a full rank matrix. Hence the columns of A are linearly independent i.e., the given vectors are linearly independent and forms the basis for

 \mathbb{C}^3 .

Hence any vector $\mathbf{Y} \in \mathbf{C}^3$ can be written as the

linear combinations of
$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

and let F be the field of real numbers. Define

$$(x, y) + (x_1, y_1) = (x + x_1, 0)$$
 (2.1.5.1)

$$c(x, y) = (cx, 0)$$
 (2.1.5.2)

Is V, with these operations, a vector space? **Solution:** V is a vector space if it satisfies all properties of the vector space. Let us consider the property of Existence of additive identity. According to Existence of additive identity, there is a unique vector **0** in **V** called the zero vector, such that $\alpha + \mathbf{0} = \alpha$ for all α in \mathbf{V} .

Let $u = (x_1, y_1) \in \mathbf{V}$

$$u + \mathbf{0} = (x_1, y_1) + (0, 0)$$

$$= (x_1 + 0, 0)$$

$$= (x_1, 0)$$

$$\neq u$$
(2.1.5.3)

From (2.1.5.3), there does not exist an additive identity for V.

Hence **V** is not a vector space.

2.1.6. Let V be the set of all complex-valued functions f on the real line such that

$$f(-t) = \overline{f(t)} \tag{2.1.6.1}$$

The bar denotes complex conjugation. Show that V, with the operations

$$(f+g)(t) = f(t) + g(t)$$
 (2.1.6.2)

$$(cf)(t) = cf(t)$$
 (2.1.6.3)

is a vector space over the field of real numbers. Give an example of a function in V which is not real valued.

Solution: To prove that V with the given operations is a vector space over the field of real numbers, we have to start by proving that additivity and homogeneity both hold true. So, we have to prove that (cf+g)(t) is equal to cf(t)+g(t).

$$(cf+g)(t)$$
 (2.1.6.4)

$$= (cf)(t) + g(t)$$
 (2.1.6.5)

$$= cf(t) + g(t) (2.1.6.6)$$

Now, we know that $f(-t) = \overline{f(-t)}$ and so (cf+g)(t) should also satisfy the property,

$$(cf+g)(-t)$$
 (2.1.6.7)

$$= cf(-t) + g(-t)$$
 (2.1.6.8)

$$= c\overline{f(t)} + \overline{g(t)} \tag{2.1.6.9}$$

$$= \overline{cf(t) + g(t)}$$
 (2.1.6.10)

$$= \overline{(cf+g)(t)}$$
 (2.1.6.11)

Example Let's take f(x)=a+ix

$$f(1) = a + i \tag{2.1.6.12}$$

Hence, f(x) is not real valued. Now,

$$f(x) = a + ix (2.1.6.13)$$

$$f(-x) = a - ix (2.1.6.14)$$

$$f(-x) = \overline{f(x)}$$
 (2.1.6.15)

Since a and $x \in \mathbb{R}$, so $f \in \mathbb{V}$

2.2 Subspaces

2.2.1. Is the vector $\begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$ in the subspace of \mathbf{R}^4 2.2.2. Let \mathbf{W} be the set of all $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^5

spanned by the vectors $\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \\ 9 \end{bmatrix}$

? **Solution:** Expressing the given three vectors as columns of a matrix,

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 1 \\ 3 & 1 & 9 \\ 2 & -3 & -5 \end{pmatrix} \tag{2.2.1.1}$$

and

$$\mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix} \tag{2.2.1.2}$$

For the vector **b** to be in the subspace of \mathbb{R}^4 spanned by the three vectors.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.2.1.3}$$

must have a solution.

$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 1 \\ 3 & 1 & 9 \\ 2 & -3 & -5 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$
 (2.2.1.4)

Forming the augmented matrix and row reducing it by elementary row operations,

$$\begin{pmatrix} 2 & -1 & 1 & 3 \\ -1 & 1 & 1 & -1 \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & -1 \end{pmatrix} \xrightarrow{R_2 \leftarrow 2R_2 + R_1, R_3 \leftarrow R_3 - \frac{3}{2}R_1} \xrightarrow{R_4 \leftarrow R_4 - R_1}$$

$$\begin{pmatrix}
2 & -1 & 1 & 3 \\
0 & 1 & 3 & 1 \\
0 & \frac{5}{2} & \frac{15}{2} & \frac{-9}{2} \\
0 & -2 & -6 & -4
\end{pmatrix}
\xrightarrow{R_3 \leftarrow 2R_3 - 5R_2}
\begin{pmatrix}
2 & -1 & 1 & 3 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & -14 \\
0 & 0 & 0 & -2
\end{pmatrix}$$
(2.2.1.6)

From (2.2.1.6), it is clear that the system does

not have a solution. Hence the vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ does

not lie in the subspace of \mathbb{R}^4 spanned by the given three vectors.

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0 (2.2.2.1)$$

$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$
 (2.2.2.2)

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0 (2.2.2.3)$$

Find a finite set of vectors which spans **W**. **Solution:** The given equations are,

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0 (2.2.2.4)$$

$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$
 (2.2.2.5)

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0 (2.2.2.6)$$

which can be written as,

$$\begin{pmatrix} 2 & -1 & \frac{4}{3} & -1 & 0 \\ 1 & 0 & \frac{2}{3} & 0 & -1 \\ 9 & -3 & 6 & -3 & -3 \end{pmatrix} \mathbf{x} = 0$$
 (2.2.2.7)

Now, the augmented matrix,

$$\begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
1 & 0 & \frac{2}{3} & 0 & -1 & 0 \\
9 & -3 & 6 & -3 & -3 & 0
\end{pmatrix}$$

$$(2.2.2.8)$$

$$\stackrel{R_3=R_3-3R_1-3R_2}{\longleftrightarrow} \begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
1 & 0 & \frac{2}{3} & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.9)$$

$$\stackrel{R_2=R_2-\frac{1}{2}R_1}{\longleftrightarrow} \begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.10)$$

$$\stackrel{R_2=2R_2}{\longleftrightarrow} \begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.11)$$

$$\stackrel{R_1=R_1+R_2}{\longleftrightarrow} \begin{pmatrix}
2 & 0 & \frac{4}{3} & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

So,

$$2x_1 + \frac{4}{3}x_3 - 2x_5 = 0 (2.2.2.13)$$

$$x_2 + x_4 - 2x_5 = 0 (2.2.2.14)$$

(2.2.2.12)

Solving the equations we get,

$$x_1 = -\frac{2}{3}x_3 + x_5 \tag{2.2.2.15}$$

$$x_2 = -x_4 + 2x_5 \tag{2.2.2.16}$$

which can be written as,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
 (2.2.2.17)

$$= \begin{pmatrix} -\frac{2}{3}x_3 + x_5 \\ -x_4 + 2x_5 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
 (2.2.2.18)

$$= x_3 \begin{pmatrix} -\frac{2}{3} \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 (2.2.2.19)

where x_3, x_4 and $x_5 \in \mathbb{R}$. Hence, the vectors

$$\begin{pmatrix} -\frac{2}{3} \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ will span } \mathbf{W}$$

- 2.2.3. Let **F** be a field and let n be a positive integer (n≥2). Let **V** be the vector space of all n×n matrices over **F**. Which of the following set of matrices **A** in **V** are subspaces of **V**?
 - a) all invertible A;
 - b) all non-invertible A;
 - c) all A such that AB = BA, where B is some fixed matrix in V;
 - d) all **A** such that $A^2 = A$.

Solution:

a) Let the matrices A and $B \in V$, be set of invertible matrix. For them to be a subspace they need to be closed under addition. Let,

$$\mathbf{A} = \mathbf{I} \tag{2.2.3.1}$$

$$\mathbf{B} = -\mathbf{I} \tag{2.2.3.2}$$

It could be easily proven that both matrices

A and B are invertible as,

$$rank(\mathbf{I}_{nxn}) = rank \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{nxn}$$

$$(2.2.3.3)$$

$$\implies rank(-\mathbf{I}_{nxn}) = rank(\mathbf{I}_{nxn}) = n$$

$$(2.2.3.4)$$

or it is a full rank matrix as there are n pivots.

$$\therefore \mathbf{A} + \mathbf{B} = \mathbf{0}. \tag{2.2.3.5}$$

But the zero matrix **0** is non-invertible as,

$$rank(\mathbf{0}_{nxn}) = rank \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{nxn}$$

$$(2.2.3.6)$$

$$\implies rank(\mathbf{0}_{nxn}) = 0$$

$$(2.2.3.7)$$

- .. the set of invertible matrices are not closed under addition. Hence not a subspace of V.
- b) Let the matrices $A_1, A_2, \cdots, A_n \in V$, be set of non-invertible matrix. For them to be a subspace they need to be closed under addition. Let,

$$\mathbf{A_1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{nxn}$$
 (2.2.3.8)

$$\mathbf{A_2} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{nxn}$$
 (2.2.3.9)

$$\mathbf{A_n} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{nxn}$$
 (2.2.3.10)

It could be proven that matrices A_1 ,

 A_2, \dots, A_n are non-invertible as,

$$rank(\mathbf{A}_{1}) = rank \begin{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \end{pmatrix}$$

$$(2.2.3.12)$$

$$\implies rank(\mathbf{A}_{1}) = 1$$

$$(2.2.3.13)$$

or there is only one pivot hence rank is 1.

$$\Rightarrow \mathbf{A_1} + \mathbf{A_2} + \mathbf{A_3} + \cdots + \mathbf{A_n} = \mathbf{I}_{nxn}$$
(2.2.3.14)

Now the identity matrix I is invertible as shown in equation (2.2.3.4). ∴ the set of non-invertible matrices are not closed under addition. Hence not a subspace of V.

c) **Theorem 1:**. A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α , β in W and each scalar $c \in F$, the vector $c\alpha + \beta \in W$.

Let the matrices A_1 and A_2 satisfy,

$$\mathbf{A_1B} = \mathbf{BA_1} \tag{2.2.3.15}$$

$$\mathbf{A_2B} = \mathbf{BA_2} \tag{2.2.3.16}$$

Let, $c \in \mathbf{F}$ be any constant.

$$(cA_1 + A_2)B = cA_1B + A_2B$$
 (2.2.3.17)

Substituting from equations (2.2.3.15) and (2.2.3.16) to (2.2.3.17),

$$\Rightarrow (c\mathbf{A}_1 + \mathbf{A}_2) \mathbf{B} = c\mathbf{B}\mathbf{A}_1 + \mathbf{B}\mathbf{A}_2$$

$$(2.2.3.18)$$

$$\Rightarrow \mathbf{B}c\mathbf{A}_1 + \mathbf{B}\mathbf{A}_2$$

$$(2.2.3.19)$$

$$\Rightarrow \mathbf{B}(c\mathbf{A}_1 + \mathbf{A}_2)$$

$$(2.2.3.20)$$

Thus, $(cA_1 + A_2)$ satisfy the criteria and from Theorem-1 it can be seen that the set is a subspace of V.

d) Let A and $B \in V$ be set of matrices such that,

$$\mathbf{A}^2 = \mathbf{A} \tag{2.2.3.21}$$

$$\mathbf{B}^2 = \mathbf{B} \tag{2.2.3.22}$$

Now for them to be closed under addition,

$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A} + \mathbf{B} \tag{2.2.3.23}$$

Which is not always same. Example let,

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \tag{2.2.3.24}$$

$$\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{2.2.3.25}$$

Clearly,

$$\mathbf{A}^2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{A}$$
(2.2.3.26)

$$\mathbf{B}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{B}$$
(2.2.3.27)

Now,

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$(2.2.3.28)$$

$$\implies (\mathbf{A} + \mathbf{B})^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
(2.2.3.29)

Hence, clearly from equations (2.2.3.28) and (2.2.3.29),

$$(\mathbf{A} + \mathbf{B})^2 \neq \mathbf{A} + \mathbf{B}$$
 (2.2.3.30)

 \therefore the set of all A such that $A^2 = A$ is not closed under addition. Hence, not a 2.3.1. Let V be a vector space over a subfield F subspace of V.

2.2.4. Let W_1 and W_2 be subspaces of a vector space V such that

$$\mathbf{W_1} + \mathbf{W_2} = \mathbf{V} \tag{2.2.4.1}$$

and
$$W_1 \cap W_2 = 0$$
 (2.2.4.2)

Prove that for each vector α in **V** there are unique vectors α_1 in W_1 and α_2 in W_2 such that

$$\alpha = \alpha_1 + \alpha_2 \tag{2.2.4.3}$$

Solution: Suppose, vectors α_1 and α_2 are not unique.

Consider

$$\alpha_1' \in \mathbf{W_1}, \qquad (2.2.4.4)$$

$$\alpha_2' \in \mathbf{W_2} \tag{2.2.4.5}$$

such that
$$\alpha = \alpha'_1 + \alpha'_2$$
 (2.2.4.6)

(2.2.4.3) and (2.2.4.6) indicate

$$\alpha_1 + \alpha_2 = \alpha_1' + \alpha_2' \tag{2.2.4.7}$$

$$\implies \alpha_1 - \alpha_1' = \alpha_2' - \alpha_2 \tag{2.2.4.8}$$

For α_1 and α'_1 lying in subspace W_1 , defined on field \mathbb{F} , the following holds

$$\alpha_1 + c\alpha_1' \in \mathbf{W}_1, c \in \mathbb{F} \tag{2.2.4.9}$$

$$c = -1 \implies \alpha_1 - \alpha_1' \in \mathbf{W_1} \qquad (2.2.4.10)$$

Similarly,
$$\alpha_2' - \alpha_2 \in \mathbf{W_2}$$
 (2.2.4.11)

$$(2.2.4.8) \implies \alpha_1 - \alpha_1' \in \mathbf{W_2}$$
 $(2.2.4.12)$

(2.2.4.2),(2.2.4.10),(2.2.4.12) indicate

$$\alpha_1 - \alpha_1' = \alpha_2' - \alpha_2 = \mathbf{0} \tag{2.2.4.13}$$

$$\Rightarrow \alpha_1 = \alpha_1' \qquad (2.2.4.14)$$

$$\alpha_2 = \alpha_1' \qquad (2.2.4.15)$$

$$\alpha_2 = \alpha_2' \qquad (2.2.4.15)$$

So, there exists a unique $\alpha_1 \in W_1$ and $\alpha_2 \in W_2$ such that

$$\alpha = \alpha_1 + \alpha_2 \tag{2.2.4.16}$$

where $\alpha \in \mathbf{V}$

2.3 Bases and Dimension

of complex numbers. Suppose α , β and γ are linearly independent vectors in V. Prove that $(\alpha+\beta),(\beta+\gamma)$ and $(\gamma+\alpha)$ are linearly independent.

Solution: Let α , β and γ be three n× 1 dimensional vectors. We need to prove that,

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha)\mathbf{x} = 0 \qquad (2.3.1.1)$$

will only have a trivial solution. The above equation can be written as

$$\begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = 0 \qquad (2.3.1.2)$$

$$\mathbf{x}^{T} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^{T} \\ \beta^{T} \\ \gamma^{T} \end{pmatrix} = 0 \qquad (2.3.1.3)$$

Since, α , β and γ are independent.

$$\mathbf{x}^T \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 0 \tag{2.3.1.4}$$

In the above equation we can see that the 3×3 matrix has linearly independent rows and hence will have a trivial solution. So, **x** is a zero vector. Hence, $(\alpha+\beta)$, $(\beta+\gamma)$ and $(\gamma+\alpha)$ are linearly independent.