Exercises 2.2.4 — Problem 3

Problem. If x is a real number, show that there exists a Cauchy sequence of rationals $x_1, x_2, ...$ representing x such that $x_n < x$ for all n.

Proof. Pick $y_1, y_2, ...$ a Cauchy sequence of rationals with $\lim_{k \to \infty} y_k = x$, we know that $\forall n \in \mathbb{N}, \exists m(n) \in \mathbb{N}$ such that $|y - y_k| < 1/n$ for all $k \ge m(n)$. We will then edit the sequence $\{y_k\}$ such that every $y_k < y$ but we will not change the limit x.

First, choose some rational number $q \in \mathbb{Q}$ such that q < y. Then change the first m(1) elements of $\{y_k\}$ to have the value q. Since the sequence is Cauchy, m(1) must be finite so we have just changed a finite number of terms of $\{y_k\}$. Thus, the $\lim_{k \to \infty} y_k$ did not change must still be x.

Next we construct a sequence $\{m_k\}$ where the first m(1) elements are 0, the next m(2) elements are 1, the next m(3) elements are 1/2, the next m(4) elements are 1/3, and so on:

$$0, 0, ..., 0, 1, 1, ..., 1, 1/2, 1/2, ..., 1/2, 1/3, 1/3, ... 1/3, 1/4, ...$$

We can see that $\{m_k\}$ is Cauchy and that $\lim_{k\to\infty} m_k = 0$. This implies that $\lim_{k\to\infty} (y_k - m_k) = x - 0 = x$. However, for each k, we have constructed m_k such that $y_k - m_k < x$. Then let $x_k = y_k - m_k$ and we have a Cauchy sequence of rationals x_1, x_2, \ldots that represents x such that $x_k < x$ for all $k \in \mathbb{N}$.