Post-Quantum Cryptography Neural Network

Paper by Abel C. H. Chen Presented by Sadra Setarehdan

What is Quantum Computing?

Quantum computers are machines that use the properties of quantum physics to store data and perform computations. Classical computers encode information in binary "bits" that can either be 0s or 1s. In a quantum computer, the basic unit of memory is a quantum bit or qubit.

Qubits can be in many different arrangements all at once, a property known as quantum superposition.

AES

RSA

Key Generation

Select two prime number, p, and q.

Calculate n = pxq

Calculate $\mathbf{0}(n) = (p-1)x(q-1)$

Select integer a; $gcd(\mathbf{0}(n), a) = 1$; $1 \le a \le \mathbf{0}(n)$

Calculate b.

Public Key: $KU = \{a, n\}$

Private Key: $KR = \{b, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^{e} \pmod{n}$

Decryption

Ciphertext:

Plaintext: $M = C^{d} \pmod{n}$

How To Read A Tough Paper

Abstract

Purpose of the study

Innovations and ideas

Experiment

Sections guide

Section II

Code-based PQC

Introduce McEliece Method

Section III

PQC neural network

Adding random perturbations

Section IV

Practical demonstration

Evaluation methods

Section V

Conclusion and Discussion

$G = generator\ matrix$ $H = error\ detecting\ matrix$ $R = decoder\ matrix$ x = plaintext

$$y = xG$$
$$x = yR$$

$$z = y'H$$

$S = Scrambler \ matrix$ $G = generator \ matrix$ $P = permutation \ matrix$ x = plaintext

$$yP^{-1} = xG'P^{-1} = xSGPP^{-1}$$
$$yP^{-1} = xSG$$
$$yP^{-1}R = xS$$
$$yP^{-1}RS^{-1} = x$$

$$G' = SGP$$

$$y = xG' + r = xSGP + r$$

Neural Networks

MSE

-3 -2 -1 0 1 2 3 y

Normalization

Hamming code

McEliece

Cellular network signals (Practical experiment)

SLE I.	THE MSEs AND CDF VALUES UNDER DIFFERENT VAL
	OF α

Weight α	The MSEs of output layer	The chi-test CDF values of random numbers	The chi-test CDF values of ciphertexts Y
0.1	3.74E-05	0.009227	0.303414
0.2	5.86E-05	0.009227	0.202276
0.3	6.84E-05	0.009227	0.089382
0.4	8.27E-05	0.009227	0.038992
0.5	0.0001	0.009227	0.018034
0.6	0.0001	0.009227	0.013643
0.7	0.0002	0.009227	0.016572
0.8	0.0002	0.009227	0.012751
0.9	0.0003	0.009227	0.017519
1	0.0003	0.009227	0.017685

Thank you! Presented by Sadra Setarehdan