Задание и порядок выполнения лабораторной работы.

В лабораторной работе необходимо провести исследование эффективности использования абсолютно-оптимальных рекуррентных алгоритмов для оценки параметров линейного регрессионного объекта в случае, когда предположения об объекте оказались правильными, и в случае, когда были сделаны неверные предположения о помехе, при различных статистических характеристиках распределения вероятности шума измерений. В этой связи необходимо выполнить ряд действий.

- 1. Изучить основы теории абсолютно-оптимальных рекуррентных алгоритмов.
- 2. Записать абсолютно-оптимальный рекуррентный алгоритм и асимптотическую ковариационную матрицу ошибки оценки при условиях:
 - а) Идентифицируемый процесс изучили хорошо, плотность распределения шума, принимаемая для расчетов, совпадает с «реальной» (функция распределения Коши);
 - b) Идентифицируемый процесс изучили плохо, плотность распределения шума, принимаемая для расчетов, имеет нормальный закон распределения и не совпадает с «реальной» (функция распределения Коши). Запишите ожидаемую асимптотическую ковариационную матрицу ошибки оценки.

Реализовать полученные рекуррентные алгоритмы на языке Python в Jupyter Notebook.

- 3. Провести исследование полученных асимптотических ковариационных матриц ошибок оценки.
- 4. Повторить исследования (п. 2) для различных значений параметра s плотности распределения шума измерений.
- 5. Построить графики скользящей ошибки оценки в зависимости от номера измерений при различных значениях параметра распределения *s*.
- 6. Оформить отчет по лабораторной работе.

Моделируемый объект: $y(i) = c_0 + c_1 u_1(i) + c_2 u_2(i) + c_3 u_3(i) + c_4 u_4(i) + \eta(i)$

Шум измерений имеет распределение Коши: $f(\eta) = \frac{1}{\pi s} \frac{1}{(1 + (\eta/s)^2)}$

В качестве «входов» имитируемого объекта используются псевдослучайные нормально распределенные числа с параметрами распределения, например: $\mu(\mathbf{u}) = 1 \ \sigma_u^2 = 50 \ (\text{для разных входов можно назначить свою дисперсию и свое мат.ожидание})$

Параметры объекта заданы в таблице по вариантам:

№ вар	c_0	$\mathbf{c_1}$	c_2	c ₃	c ₄
1	9	2	3	1	4
2	5	2	10	17	14
3	1.5	2.5	-3.5	4.5	5
4	1.9	-0.9	0.8	0	2.5
5	3.5	-0.3	0	6.0	-2.2
6	1.5	0.2	-0.1	0.3	1
7	2	4	7	3	5
8	5	2.5	0.1	-3	-2.5
9	-12.7	4.3	-1.8	9.1	2.4

Надо провести 3 серии экспериментов для различных значений параметра распределения Коши s (s=0.1, s=2, s=10) по 2 эксперимента в каждой серии, соответствующие двум алгоритмам оценивания (когда угадали с функцией распределения помехи и когда нет). Для каждой серии построить графики скользящей ошибки оценки в зависимости от номера измерений (на одном рисунке 2 графика).