1. Gini impurity for the given condition SI: x710 to be calculated for all three features for both the classes

(i) Feature a

S1: a>10

$$P1 = P(class = +1 | a 710) = 1 = 0.5$$

$$P2 = P(class = -1 | a > 10) = 1 = 0.5$$

$$g(s1) = 1 - \rho_1^2 - \rho_2^2 = 1 - 0.25 - 0.25 = 0.5$$

$$P_2 = P(closs = -1 | b > 10) = 0$$

 $g(s_1) = 1 - 0^2 - 0^2 = 1$

2. Gini impurity for the given condition x < 5 to be calculated for all three features for both the classes

(i) Feature a

s2: a < 5

$$P_1 = P(class = + | a \leq 5) = 1$$

$$g(s2) = 1 - P_1^2 - P_2^2 = 1 - 1 - 0 = 0$$

$$\rho_1 = \rho(\text{class} = +1 \mid b \leq 5) = \frac{1}{2} = 0.5$$

$$P_2 = P(class = -1 \mid b \le 5) = \frac{1}{2} = 0.5$$

$$q(s_2) = 1 - P_1^2 - P_2^2 = 1 - 0.25 - 0.25 = 0.5$$

$$\rho_1 = P(class = +1 \mid c \leq 5) = \frac{1}{5}$$

$$g(s_2) = 1 - \rho_1^2 - \rho_2^2 = 1 - 1 - 16 = 8 = 0.32$$

from the dataset, feature a has a value of greater than 5 6 times out of 8

$$E(a,5) = \frac{6}{8}g(a>5) + \frac{2}{8}g(a \le 5)$$

$$g(a>5) = 1 - \left[P(class = +1 \mid a>5)\right]^{2} - \left[P(class = -1 \mid a>5)\right]^{2}$$

$$= 1 - \left(\frac{2}{6}\right)^{2} - \left(\frac{4}{6}\right)^{2} = 1 - \left(\frac{1}{3}\right)^{2} - \left(\frac{2}{3}\right)^{2}$$

$$= 1 - 1 - 4 = 1 - 5 = 4$$
 $= 9$
 $= 9$

$$E(a, 5) = \frac{6}{8}(\frac{4}{9}) + \frac{2}{8}(0) = \frac{1}{3}$$

$$E(b,5) = P(b75) g(b75) + P(b55) g(b55)$$

$$= 4 g(b75) + 4 g(b55)$$

$$g(b>5) = 1 - \left[P(class = +1 | b>5)\right]^{2} - \left[P(class = -1 | b>5)\right]^{2}$$
$$= 1 - \left(\frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} = 1 - 0.25 - 0.25 = 0.5$$

$$(\frac{1}{2})$$
 $(\frac{1}{2})$

$$g(b \le 5) = 0.5$$
 From previous
 $E(b, 5) = \frac{1}{2}(\frac{1}{2}) + \frac{1}{2}(\frac{1}{2}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

$$E(c,5) = P(c>5)g(c>5) + P(c≤5)g(c≤5)$$

$$= 1 g(c>5) + 1 g(c≤5)$$

$$g(c>5) = 1 - [P(c|ass = +1 | c>5)]^2 - [P(dass = -1 | c>5)]^2$$

= $1 - (\frac{1}{3})^2 - (o)^2 = 1 - \frac{1}{9} = \frac{8}{9}$

$$E(c,5) = \frac{1}{2} \left(\frac{8}{9}\right) + \frac{1}{2} \left(\frac{8}{25}\right)$$

$$= \frac{4}{9} + \frac{4}{25} = 0.44 + 0.16 = 0.6$$

4.	Q >	5		
	Т /	\ F(\le)		
	b 7 4	C 7 3		
	T/ \F(5)	1 >		
	b78	C78 +1		
		T/ \F(<)		
•	+1 [-1]	[-] [+1]		
	SAMPLE		PREDICTION	
2	1		-1	
	2		+ 1	
	3		+ 1	
	4		-1	
	5		-1	
	6		-1	
	7		-1	
	8		-1	
	· ·			