

Operadores, axiomas, propriedades, expressões lógicas

Operadores lógicos

Operador lógico	Operação
+	OU lógico (Soma lógica – função OR)
•	E lógico (Multiplicação lógica – função AND)
	Inversão lógica (também se utiliza! ou' – função NOT)
\oplus	OU-exclusivo (Função XOR)
Ο	Não ou-exclusivo (também chamado de coincidência — função XNOR)

Tipos de lógica

Lógica positiva	Operação
VERDADEIRO	Nível lógico "1"
Falso	Nível lógico "0"

Lógica negativa	Operação
VERDADEIRO	Nível lógico "0"
Falso	Nível lógico "1"

Sendo A uma variável lógica, tem-se

•
$$A = 1 = \bar{A} = 0$$

• (Ā é o inverso, ou complemento de A)

Axiomas

1)	0 + 0 = 0	5)	1 + 1 = 1
2)	0 + 1 = 1	6)	1 . 1 = 1
3)	0.0=0	7)	A + 0 = A
4)	0.1=0	8) /	A . O = 0

Axiomas

9)
$$\overline{(\overline{A})} = A$$

10)
$$A \bullet A = A$$

11)
$$A \bullet \overline{A} = 0$$

Propriedades

12)	A + B = B + A	Comutativa em relação à operação ou
13)	A . B = B . A	Comutativa em relação à operação E
14)	A + (B + C) = (A + B) + C	Associativa em relação à operação ou
14)	A . (B . C) = (A . B) . C	Associativa em relação à operação ou
15)	$A \cdot (B + C) = A \cdot B + A \cdot C$	Distribuiva da operação E em relação à operação ou
16)	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distribuiva da operação OU em relação à operação E

Propriedades

17)
$$A + \overline{A} . B = A + B$$

18)
$$\overline{A} + A.B = \overline{A} + B$$

Teoremas de DeMorgan

O complemento de uma soma lógica é o produto dos complementos dos termos da soma:

$$\overline{(A+B)} = \overline{A} \bullet \overline{B}$$

$$\overline{(A+B+C)} = \overline{A} \bullet \overline{B} \bullet \overline{C}$$

O complemento de uma multiplicação lógica é a soma dos complementos dos termos da multiplicação:

$$\overline{(A \bullet B)} = \overline{A} + \overline{B}$$
$$\overline{(A \bullet B \bullet C)} = \overline{A} + \overline{B} + \overline{C}$$

- Operação NOT: Altera o valor de uma variável de 0 para 1 ou de 1 para 0.
- Tabela Verdade: Combinações dos bits de entrada e respectivos bits de saída após a operação lógica.
- O símbolo lógico (porta lógica) que representa a operação NOT é o seguinte:
- O segundo símbolo não é de um inversor, mas de um buffer. Repare que um buffer não possui um círculo na saída. Este círculo representa a inversão do bit de entrada e pode ser encontrado nas entradas e saídas de qualquer porta lógica, conforme veremos ainda nesta unidade.

Tabela Verdade

Circuitos Lógicos

Porta NÃO (NOT)

Porta AND

Tabela Verdade

\boldsymbol{A}	В	$A \bullet B$
0	0	0
0	1	0
1	0	0
1	1	1

Símbolos

Quatro entradas. Uma porta lógica pode ter N entradas.

Porta OR

Tabela Verdade

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Símbolos

Quatro entradas. Uma porta lógica pode ter N entradas.

Tabela Verdade

$\begin{array}{c|cccc} A & B & \overline{A \bullet B} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ \end{array}$

0

Porta NAND

Símbolos

Símbolo resultante.

Porta NOR

Tabela Verdade

A	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

Símbolos

Transformando uma NOR em uma NOT.

- A operação XOR significa Exclusive-OR (OU Exclusivo).
- A saída de uma porta XOR de duas entradas será 1 se somente uma das for igual a 1.
- Em um XOR de três entradas. Duas entradas são comparadas entre si e o resultado é comparado com a outra entrada.

XOR

A B	$A \oplus B$	
0 0 0 1 1 0 1 1	0 1 1 0	$A \oplus B$

XOR 3 entradas

A B C	$A \oplus B \oplus C$	
0 0 0 0 0 1 0 1 0 0 1 1	0 1 1 0	$A \oplus B \oplus C$
1 0 0 1 0 1 1 1 0 1 1 1	1 0 0 1	$ \begin{array}{c} A & \bullet \\ B & \bullet \\ C & \bullet \end{array} $ $ A \oplus B \oplus C $

 A operação XNOR significa Exclusive-NOR. A saída de uma XNOR de duas entradas é zero quando uma das entradas for igual a 1.

XNOR

A	3	$\overline{A \oplus B}$	
0 0 0 1 1 0 1 1		1 0 0 1	$A \bullet B$ $B \bullet B$

Portas lógicas

$A \bullet \overline{A}$	NOT: Operação que inverte o sinal de entrada
$A \bullet B$ $B \bullet A \bullet B$	AND: Saída igual a 1, se todas as entradas forem iguais a 1.
OR: Saída igual a 1, se qualquer entrada for igual a 1	
$A \bullet \longrightarrow \longrightarrow \longrightarrow A \bullet B$	NAND: Saída igual a 1, se qualquer entrada for igual a 0.
$A \bullet \longrightarrow \longrightarrow \overline{A + B}$	NOR: Saída igual a 1, se todas as entradas forem iguais a 0.
$A \bullet B$ $B \bullet B$	XOR: Saída igual a 1, se as entradas forem diferentes.
$A \bullet \longrightarrow A \oplus B$	XNOR: Saída igual 1, quando todas as entradas forem iguais.

- Durante o projeto de um circuito lógico algumas expressões complexas são obtidas e é necessário que sejam simplificadas, para se obter um circuito mais simples.
- ▶ Uma vez que o circuito lógico pode ser resultado da expressão e vice-e-versa.

Teoremas de DeMorgan

Circuitos resultantes

$$\overline{(A+B+C)} = \overline{A} \bullet \overline{B} \bullet \overline{C}$$

$$A \bullet \overline{A} \bullet \overline{B} \bullet \overline{C}$$

Identidades Booleanas Úteis

$$A + A \bullet B = A$$

A	В	$A \bullet B$	$A + A \bullet B$
/Ô\	0	0	/ 0\
0	1	0	$\langle 0 \rangle$
1	0	0	1
1	1	1	1

$$A + \overline{A} \bullet B = A + B$$

A	В	\overline{A}	$\overline{A} \bullet B$	$A + \overline{A} \cdot B$	A+B
0	0	1	0	0	O\
0	1	1	1	1	$\langle 1 \rangle$
1	0	0	0	1	1
1	1	0	0	1/	1

- As identidades booleanas apresentadas acima são confirmadas através de suas respectivas tabelas verdades.
- Podemos também verificar a primeira identidade através de atribuição de valores às variáveis: $A + A \bullet 0 = A + 0 = A$

$$A + A \bullet 1 = A + A = A$$

Ou através da lei distributiva:

$$A + A \bullet B = A \bullet (1 + B)$$
$$= A \bullet (1) = A$$

Simplificações Algébricas

Exemplo:

$$f = A \bullet B + A \bullet \overline{B}$$

$$f = A \bullet \left(B + \overline{B}\right)$$

$$f = A \bullet 1 = A$$

O exemplo ao lado apresenta uma situação onde possuímos duas entradas no circuito: A e B.

No entanto, ao simplificarmos a equação verificamos que o circuito precisa apenas de uma das entradas, somente a entrada A.

Simplificações Algébricas

Utilize os axiomas e propriedades da Algebra de Boole para resolver os exercícios abaixo:

$$(1)f = A \bullet B \bullet C + B \bullet C$$

$$(2)f = \overline{(A + \overline{B} + C) + (B + \overline{C})}$$

$$(3)f = (A+B+C) \bullet (A+B)$$

$$(4)f = A \bullet B + A \bullet B \bullet C + A \bullet B \bullet \overline{C}$$

$$(5)f = 1 + A \bullet (A + \overline{B} + C + \overline{D} + \overline{E}) \bullet (\overline{B + A}) \bullet C \bullet D$$

$$(6)f = \left(\overline{(A+B)} \bullet (\overline{B+C})\right) \bullet (A+B+C) \bullet 0$$

Extrair expressões booleanas de circuitos lógicos

- O primeiro passo é escrever a expressão de saída de cada bloco básico (porta lógica).

 $A = \overline{A}$ ou $B = \overline{B}$

 Se a saída de uma porta lógica possui o círculo, símbolo que representa a inversão, toda a expressão de saída desta porta lógica receberá a barra que identifica sinal invertido:

$$\overline{\left(\overline{A} \bullet \overline{B}\right)} + \left(C \bullet D\right)$$

Extrair expressões booleanas de circuitos lógicos

Resolva os exercícios a seguir:

Extrair expressões booleanas de circuitos lógicos

Resolva os exercícios a seguir:

Circuitos lógicos obtidos de expressões booleanas

Exemplo $f = (A + B) \bullet C \bullet (B + D)$ Operação OR Operação NOR
Operação AND

- Primeiro passo: extrair o circuito representado pelas operações entre parênteses.
- ▶ Segundo passo: extrair o circuito invertendo os sinais de entrada ou saída onde houver uma barra na expressão.
- ▶ Terceiro passo: extrair o circuito representado pelas operações que estão fora dos parênteses.
- Quarto passo: extrair o circuito invertendo os sinais de entrada ou saída onde houver uma barra na expressão.
- ▶ **Observação:** Quando não houver parênteses deve ser respeitado a prioridade de operação entre os sinais. Por exemplo: Primeiro AND depois OR. Os passos acima **não** são uma regra! É necessário identificar os termos prioritários em cada expressão lógica.

Circuitos lógicos obtidos de expressões booleanas

Exemplo
$$f = (A+B) \bullet \overline{C} \bullet \overline{(B+D)}$$

Circuitos lógicos obtidos de expressões booleanas

Circuitos resultantes

Circuitos lógicos obtidos de expressões booleanas

Resolva os exercícios a seguir:

$$(15)f = A \bullet B \bullet C + (A+B) \bullet C$$

$$(16)f = \overline{(\overline{A \bullet B} + \overline{C \bullet D})}$$

$$(17)f = \left(\left(\overline{\overline{A} + B}\right) + \left(\overline{\overline{C} + D}\right)\right) \bullet \overline{D}$$

Lembrar da observação anterior! Quem tem prioridade?

$$(18)f = \overline{\left(\overline{A} \bullet B\right)} + \overline{\left(C \bullet \overline{D}\right)} \bullet E + \left(\left(A \bullet \overline{D} \bullet \overline{E}\right) + \left(C \bullet D \bullet E\right)\right) \bullet \overline{A}$$

$$(19)f = \overline{(A \oplus B)} + C + D \bullet E + A + (C \oplus D)$$

$$(20)f = \overline{(A + (B \oplus C)) \bullet (A + B) \bullet (A + C)}$$

Tabela Verdade obtida de uma expressão booleana

Tabela Verdade obtida de uma expressão booleana

Resolva os exercícios a seguir:

$$(21)f = \overline{A} + B + A \bullet B \bullet \overline{C}$$

$$(22)f = (A \oplus B) + \overline{C \bullet D} + \overline{B}$$

$$(23)f = C \bullet B + B \bullet A + \left(\overline{A} + \overline{C}\right)$$

$$(24)f = A + B \bullet \overline{C} \bullet A + B$$

Expressão booleana obtida de uma tabela verdade

 Existem duas formas para se obter a expressão booleana através de tabelas verdades. Elas são conhecidas como soma de produtos e produto de somas. A forma mais intuitiva e portanto, mais usual é a soma de produtos..

Resolver os seguintes exercícios:

	Α	В	C	S
		0	0	1
	0	0	1	1
(25)		1		0
(25)		1	1	0
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

(26)

Α	В	С	S1	S2	S 3
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

As saídas estão identificadas pela letra S.

Expressão booleana obtida de uma tabela verdade

Resolver os seguintes exercícios:

-		~	~~ .	~~	~~
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0	1	1	1
0	1	1	_	1	
1	0	0	0	0	0
1	0	1	0	0	1
1	1	0		1	1
1	1	1	1	1	0
	0 0 0 1 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0	0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1

(28)

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0		1	0	0
0		1	1	0
0	-	0	0	0
0	1	0	1	1
0	1	1	0	1
0	Ψ-	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	-	0	0	1
1	1	0	1	1
1	-1	1	0	1
1	1	1	1	0

As saídas estão identificadas pela letra S.