Question 1 (20 points): Write a subroutine called BiggerThanTen that receives a value x in \$a0. The value x is represented in 32-bit IEEE 754 floating-point representation. BiggerThanTen returns one of the following combination of values:

Return Values		Meaning	
\$v1	\$v0	wieaming	
1	1	x is +infinity or -infinity	
1	0	x is not a number	
0	1	x is larger than $+10$	
0	0	x is smaller than or equal to $+10$	

Recall that the 32-bit IEEE 754 representation has the following specification:

31	30		23	22	0
S		exponent		fraction	

$$N = \begin{cases} (-1)^S \times 0.fraction \times 2^{-126} & \text{if } exponent = 0 \\ (-1)^S \times 1.fraction \times 2^{exponent-127} & \text{if } 0 < exponent < 254 \\ (-1)^S \times \infty & \text{if } exponent = 255 \text{ and } fraction = 0 \\ NaN & \text{if } exponent = 255 \text{ and } fraction \neq 0 \end{cases}$$

• (10 points) What is the binary representation of +10.0 in the IEEE 754 floating-point representation?

• (20 points) Write the MIPS subroutine BiggerThanTen. Follow all the MIPS subroutine calling conventions. You are <u>not</u> allowed to use any floating point instructions in your subroutine.