

- 1. Begriffe
 - Bäume als spezielle Graphen
 - Eigenschaften
- 2. Binäre Suchbäume
 - Einfügen
 - Entfernen (*Hibbard deletion*)

Programmiertechnik II

1. Begriffe

- Bäume als spezielle Graphen
- Eigenschaften
- 2. Binäre Suchbäume
 - Einfügen
 - Entfernen (*Hibbard deletion*)

Programmiertechnik II

Beispiel: Entscheidungsbäume (decision trees)

Programmiertechnik II

Klassifikation: Phylogenetischer Baum des Lebens

Programmiertechnik II

- 1. Begriffe
 - Bäume als spezielle Graphen
 - Eigenschaften
- 2. Binäre Suchbäume
 - Einfügen
 - Entfernen (*Hibbard deletion*)

Programmiertechnik II

Allgemein: Graphen

- **Definition (Graph)**. Ein **Graph** G = (V, E) besteht aus einer Menge V von Knoten (*vertices, nodes*) und einer Menge $E \subseteq V \times V$ von Kanten. G ist **ungerichtet** falls $\forall (v, v') \in E \rightarrow (v', v) \in E$. Ansonsten ist G **gerichtet**. Jede Kante $(v, v') \in E$ heißt **ausgehend** für v und **eingehend** für v'.
- **Definition (Pfad)**. Eine Folge von Kanten $e_1, e_2, ..., e_n$ heißt **Pfad der Länge** n genau dann wenn für alle i: $e_i = (v', v)$, $e_{i+1} = (v, v'')$ und $v' \neq v''$.
- **Definition (Zusammenhängender Graph)**. Ein Graph *G* ist **zusammenhängend** falls jedes Knotenpaar über mindestens einen Pfad verbunden ist. Ein gerichteter Graph ist **schwach zusammenhängend**, falls der zugehörige ungerichteten Graph zusammenhängend ist.
- **Definition (Azyklischer Graph)**. Ein Pfad $(v_1, v_2), (v_2, v_3), ..., (v_{n-1}, v_n)$ ist azyklisch wenn alle v_i verschieden sind. Ein Graph G ist **azyklisch** falls alle Pfad azyklisch sind.

Programmiertechnik II

Bäume als zusammenhängende Graphen

- Definition (Ungerichteter Baum). Ein ungerichteter, zusammenhängender, azyklischer Graph ist ein ungerichteter Baum.
- Definition (Gerichteter Baum). Ein gerichteter, schwach zusammenhängender, azyklischer Graph, in dem jeder Knoten höchstens eine eingehende Kante hat, ist ein gerichteter Baum.
- Lemma. In einem ungerichteten Baum gibt es genau einen Pfad zwischen jedem Knotenpaar.

Verwurzelte Bäume

- **Definition (Wurzel)**. Sei der Knoten v in einem gerichteten Baum ohne eingehende Kanten, dann nennen wir v die Wurzel des Baums und den Baum einen **verwurzelten Baum** (auch "gewurzelt").
- **Lemma**. In einem gerichteten, verwurzelten Baum gibt es genau einen Pfad zwischen der Wurzel und jedem anderen Knoten.

Terminologie

- Ein Knoten ohne ausgehende Kanten ist ein
 Blatt. Alle anderen Knoten sind innere Knoten.
- Die **Tiefe** (auch "Niveau") eines Knotens v ist die Länge des (einzigen) Pfades von der Wurzel zu v.
- Die **Höhe** von *T* ist die Tiefe des tiefsten Blattes.
- Der Grad von T ist die maximale Anzahl von Kindern, die ein Knoten haben darf.
 - Binäre Bäume haben Grad 2.
- **Ebene** i bezeichnet alle Knoten mit Tiefe i.

Schnelltest

- Was ist die Tiefe des Knotens F?
 - **3**
- Was ist die Höhe von *T*?
- Was ist der Grad von *T*?
 - **3**

Mehr Terminologie

- Sei T ein Baum und v ein Knoten in T. Dann ist definiert:
 - Alle Knoten an ausgehenden Kanten von v sind dessen Kinder.
 - v ist der **Vater** (Elternknoten) aller seiner Kinder.
 - Alle Knoten auf dem Pfad von der Wurzel zu v sind die **Vorgänger** von v.
 - Alle Knoten, die von v erreichbar sind, sind dessen
 Nachfolger.
 - \Box Der **Rang** eines Knotens v ist die Anzahl seiner Kinder.
 - Rang(v)ist stets kleiner-gleich Grad(T)

Noch mehr Terminologie

13/35

- **Definition (Vollständiger Baum)**. Sei *T* ein gerichteter Baum mit Grad k. T ist vollständig falls
 - Alle inneren Knoten den Rang k haben,
 - und alle Blätter die gleiche Tiefe haben.
- In der VL zumeist: Verwurzelte, gerichtete, binäre Bäume

Rekursive Definition von Bäumen

- Bisher: Bäume als Graph mit bestimmten Bedingungen
- Aber: Traversierung oft mit rekursiven Funktionen
- Rekursive Definition (Baum): Ein Baum hat folgende Struktur
 - Ein einzelner Knoten ist ein Baum der Höhe 0.
 - Falls T_1 und T_2 Bäume sind, dann ist die folgende Struktur ein Baum der Höhe $\max(\text{H\"ohe}(T_1), \text{H\"ohe}(T_2)) + 1$ und v ist dessen Wurzel:
 - Neuer Knoten v
 - o Neue Kanten von v zu den Wurzeln von T_1 und T_2

Programmiertechnik II

- 1. Begriffe
 - Bäume als spezielle Graphen
 - Eigenschaften
- 2. Binäre Suchbäume
 - Einfügen
 - Entfernen (Hibbard deletion)

Programmiertechnik II

Eigenschaften von Bäumen

- Sei T = (V, E) ein Baum mit Grad k. Dann gilt
 - |V| = |E| + 1 bzw. |E| = |V| 1
 - □ Falls T vollständig ist, hat er $k^{H\ddot{o}he(T)}$ Blätter.
 - Falls T ein vollständiger binärer Baum ist, hat er $2^{\text{H\"{o}}\text{he}(T)+1} 1$ Knoten.
 - Darunter $2^{\text{H\"{o}}\text{he}(T)}$ Blätter und $2^{\text{H\"{o}}\text{he}(T)}-1$ innere Knoten
 - □ Falls T ein binärer Baum ist, gilt
 Höhe $(T) \in [\lfloor \log(|V|) \rfloor, |V| 1]$

Programmiertechnik II

Traversierung: Tiefensuche (*Depth first traversal (DFS)*)

- Systematisches, rekursives Durchlaufen aller Knoten des Baums
- In-Order:
 - 1. linker Teilbaum, 2. Knoten, 3. rechter Teilbaum
 - $\ \square \quad A \to B \to C \to D \to E \to F \to G$
 - Beispiel: Schlüsselreihenfolge in einem Suchbaum

Pre-Order:

- 1. Knoten, 2. linker Teilbaum, 3. rechter Teilbaum
- $\square \quad D \to B \to A \to C \to F \to E \to G$
- Beispiel: Ordnerstruktur in Dateisystem

Post-Order:

- 1. linker Teilbaum, 2. rechter Teilbaum, 3. Knoten
- $\sqcap \quad A \to C \to B \to E \to G \to F \to D$

Programmiertechnik II

Traversierung: Breitensuche (*Breadth first traversal (BFS)*)

- Auch: "Levelorder"-Durchlauf bzw. "Breitensuche"
 - $\mathsf{D} \to \mathsf{B} \to \mathsf{F} \to \mathsf{A} \to \mathsf{C} \to \mathsf{E} \to \mathsf{G}$
 - Wird mit Hilfe einer queue implementiert

Programmiertechnik II

Unit 8a - Bäume

■ Tiefensuche als Spezialfall wenn *queue* durch *stack* ausgetauscht wird!

1. Begriffe

- Bäume als spezielle Graphen
- Eigenschaften

2. Binäre Suchbäume

- Einfügen
- Entfernen (*Hibbard deletion*)

Programmiertechnik II

Binäre Suchbäume

- Definition (Binäre Suchbäume). Ein binärer Suchbaum (binary search tree (BST)) ist ein geordneter binärer Baum.
- Binäre Suchbäume sind entweder
 - Leer
 - Zwei disjunkte binäre Teilbäume
- Geordneter Baum. Jeder Knoten hat einen Schlüssel. In jedem Knoten gilt für den Schlüssel
 - größer als alle Schlüssel im linken Teilbaum
 - kleiner als alle Schlüssel im rechten Teilbaum

Binäre Suchbäume II

- Idee von Suchbäumen: Jeder Knoten speichert "Nutzdaten"
 - Das was wir suchen möchten (Symboltabellen)
- Binäre Suchbäume (oft auch nur Binärbäume genannt) implementieren die folgenden Operationen auf effiziente Weise:
 - 1. **Get**(x): Finde x in der Datenstruktur bzw. stelle fest, dass x nicht enthalten ist.
 - **2. Put**(x): Füge x in die Datenstruktur ein.
 - 3. **Remove**(x): Lösche x aus der Datenstruktur wenn es darin enthalten ist

Probleme

- Effizienz nicht trivial erreichbar
- Änderungen erfordern Reorganisation des Baums (Balancieren)
 - Zunächst aber: Unbalancierte binäre Suchbäume

Programmiertechnik II

Unit 8a - Bäume

st.h

Binärer Baum als Abstrakter Datentyp

type BTree(T)

operators

empty: \rightarrow BTree

is_empty: Btree \rightarrow Bool

bin: BTree \times T \times BTree \rightarrow BTree

left: BTree \rightarrow BTree right: BTree \rightarrow BTree value: BTree \rightarrow T

axioms

 $\forall x, y \in BTree, v \in T: left(bin(x, v, y)) = x$

 $\forall x, y \in BTree, v \in T: right(bin(x, v, y)) = y$

 $\forall x, y \in BTree, v \in T: value(bin(x, v, y)) = v$

 $\forall x, y \in BTree, v \in T: is_empty(bin(x, v, y)) = false$

is_empty(empty) = true

Programmiertechnik II

Binäre Suchbäume in C++

- **Klasse**: Ein BST ist ein Zeiger auf den Wurzelknoten (*node*)
- Node: Ein Knoten hat 4 Felder
 - Schlüssel (key) und Wert (val)
 - Zeiger auf die Wurzel des linken (left) und rechten (right) Teilbaums

```
struct Node {
    Key key;
    Value val;
    Node* left;
    Node* right;
    int size;

// constructor with values
    Node(const Key& k, const Value& v, int s) :
        key(k), val(v), size(s),
        left(nullptr), right(nullptr) {}
};
```

Nützlich und zeitsparend für Rang

Programmiertechnik II

Binäre Suchbäume in C++ (Gerüst)


```
template <typename Key, typename Value>
class BST : public ST<Key, Value> {
   Node∗ root; ←
    int size(const Node* n) const {
        return (n ? n->size : 0);
  public:
   void put(const Key& key, const Value& val) { ...
    const Value* get(const Key& key) const { ... }
    void remove(const Key& key) { ... }
    bool contains(const Key& key) const { return (get(key) != nullptr); }
    bool is empty() const { return (size() == 0); }
   int size() const { return (size(root)); }
```

-Wurzel des BST

_const weil get nichts _verändert im Suchbaum

Programmiertechnik II

Binäre Suchbäume: get

Suche nach R


```
// use recursion to find the correct node
const Value* get(const Node* n, const Key& key) const {
    if (n == nullptr) return (nullptr);
    if (key < n->key) return (get(n->left, key));
    if (key > n->key) return (get(n->right, key));
    return &(n->val);
}

public:
const Value* get(const Key& key) const {
    return (get(root, key));
}
```

<u>bst.h</u>

Programmiertechnik II

Unit 8a - Bäume

Aufwand: Anzahl Vergleiche = Tiefe des Baums + 1

- 1. Begriffe
 - Bäume als spezielle Graphen
 - Eigenschaften
- 2. Binäre Suchbäume
 - Einfügen
 - Entfernen (*Hibbard deletion*)

Programmiertechnik II

Binäre Suchbäume: put

Aufwand: Anzahl Vergleiche = Tiefe des Baums + 1

```
// uses recursion to put a key-value pair into the tree
Node* put(Node* n, const Key& key, const Value& val) const {
     if (n == nullptr) {
         auto node = new Node(key, val, 1);
         node->left = nullptr;
         node->right = nullptr;
         return (node);
     if (kev < n->kev)
         n->left = put(n->left, key, val);
     else if (key > n->key)
         n->right = put(n->right, key, val);
     else
         n->val = val;
    n->size = size(n->left) + size(n->right) + 1;
     return (n);
public:
void put(const Key& key, const Value& val) {
     root = put(root, key, val);
```

Baumform (tree shape)

How Tall is a Tree?

Bruce Reed CNRS, Paris, France reed@moka.ccr.jussieu.fr

Für die gleichen Schlüssel, gibt es viele BSTs

schlechtester Fall

Satz (Reed 2003). Wenn *n* Schlüssel in **zufälliger** Reihenfolge in einen binären Suchbaum eingefügt werden, dann ist die erwartete Anzahl an Vergleichen für Suche/Einfügen $\approx 1.39 \cdot \log_2(n)$ und der Baum hat eine erwartete Tiefe von $\approx 3 \cdot \log_2(n)$.

Programmiertechnik II

Symboltabelle: Komplexitäten

Implementierung	Garantiert			Average		
	Suche (get)	Einfügen (put)	Löschen (remove)	Suche (get)	Einfügen (put)	Löschen (remove)
Sequentielle Suche	n	'n	n	$\frac{n}{2}$	n	$\frac{n}{2}$
Binäre Suche	$\log_2(n)$	n	n	$\log_2(n)$	$\frac{n}{2}$	$\frac{n}{2}$
Binäre Suchbäume	n	n	n	$1.39 \cdot \log_2(n)$	$1.39 \cdot \log_2(n)$?

^{*} Bei gleicher Semantik wie beim BST: wenn der Schlüssel schon vorhanden ist, soll nur der Wert überschrieben werden.

Programmiertechnik II

Unit 8a - Bäume

29/35

- 1. Begriffe
 - Bäume als spezielle Graphen
 - Eigenschaften
- 2. Binäre Suchbäume
 - Einfügen
 - Entfernen (Hibbard deletion)

Programmiertechnik II

Binäre Suchbäume: min und remove_min

Finden und Entfernen des Minimums

Den Link zum rechten Teilbaum zurückgeben und all Größen updaten

```
// finds the minimum of a tree rooted at n
Node* min(Node* n) const {
   if (n->left == nullptr)
       return (n);
   else
      return (min(n->left));
}
```

```
// removes the minimum node of a tree rooted at n
Node* remove_min(Node* n) const {
    if (n->left == nullptr) {
        return (n->right);
    } else {
        n->left = remove_min(n->left);
        n->size = 1 + size(n->left) + size(n->right);
        return (n);
    }
}
```

Programmiertechnik II

Binäre Suchbäume: remove (Hibbard deletion)

■ Fall 1 (keine Kinder): Lösche C

■ Fall 2 (ein Kind): Lösche R

Knoten der gelöscht werden soll

Thomas Hibbard (1929 - 2016)

Programmiertechnik II

Hibbard Deletion: Fall 3 (zwei Kinder)

Lösche E

Knoten der gelöscht werden soll

Programmiertechnik II

Binäre Suchbäume: remove


```
// removes the node with the a key from a tree rooted at n
 Node* remove(Node* n, const Key& key) const {
    if (n == nullptr) return (nullptr);
    if (key < n->key) n->left = remove(n->left, key);
    else if (key > n->key) n->right = remove(n->right, key);
    else {
        // one child case: just return the other child
        if (n->right == nullptr || n->left == nullptr) {
            Node* t = (n->right) ? n->right : n->left;
            delete (n):
             return (t);
        // two child chase
        Node* t = n:
        n = min(t->right);
        n->right = remove_min(t->right);
        n->left = t->left;
        delete t;
    n->size = 1 + size(n->left) + size(n->right);
    return (n);
public:
void remove(const Key& key) { root = remove(root, key); }
```

• Satz: Die durchschnittliche Anzahl von Schritten von Löschoperationen ist \sqrt{n} .

Programmiertechnik II

Viel Spaß bis zur nächsten Vorlesung!