Algorithms and Data Structures Hash Map, Universal Hashing

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithms and Data Structures, November 2018

Structure

Associative Arrays

Introduction Hash Map

Universal Hashing

Introduction
Probability Calculation
Proof
Examples

Reminder:

An associative array is like a normal array, only that the indices are not 0, 1, 2, ..., but different, e.g. telephone numbers

Problem:

- Quickly find an element with a specific key
- Naive solution: store pairs of key and value in a normal array
- \blacksquare For n keys searching requires $\Theta(n)$ time
- With a hash map this just requires $\Theta(1)$ in the best case, ... regardless of how many elements are in the map!

ldea:

- Mapping the keys onto indices with a hash function
- Store the values at the calculated indices in a normal array

Example:

The Hash Map

- Key set: $x = \{3904433, 312692, 5148949\}$
- Hash function: $h(x) = x \mod 5$, in the range [0, ..., 4]
- We need an array T with 5 elements. A "hash table" with 5 "buckets"
- The element with the key x is stored in T[h(x)]

Storage:

- insert(3904433,"A"): $h(3904433) = 3 \Rightarrow T[3] = (3904433, "A")$
- insert(312692, "B"): $h(312692) = 2 \Rightarrow T[2] = (312692, "B")$
- insert(5148949, "C"): $h(5148949) = 4 \Rightarrow T[4] = (5148949, "C")$

Searching:

- search(3904433): $h(3904433) = 3 \Rightarrow T[3] \rightarrow (3904433, "A")$
- search(123459): $h(123459) = 4 \Rightarrow T[4]$
 - ⇒ Value with key 123459 does not exist
- Search time for this example: $\mathcal{O}(1)$

- insert(876543, "D"): h(876543) = 3⇒ T[3] = (876543, "D") ⇒ Collision
- This happens more often than expected
 - Birthday problem: with 23 people we have the probability of 50 % that 2 of them have birthday at the same day

Problem:

Two keys are equal h(x) = h(y) but not the values $x \neq y$

Easiest Solution:

- Represent each bucket as list of key-value pairs
- Append new values to the end of the list

Best case:

- We have n keys which are equally distributed over m buckets
- We have $\approx \frac{n}{m}$ pairs per bucket
- The runtime for searching is nearly $\mathcal{O}(1)$ if **not** $n \gg m$

Best case

$$(m = 5, n = 10)$$

25

Worst case:

- All n keys are mapped onto the same bucket
- The runtime is $\Theta(n)$ for searching

Worst case (m = 5, n = 10)

Thought Experiment:

- A hash function is defined for a given key set
- Find a set of keys resulting in a degenerated hash table
 - The hash function stays fixed
 - For table size of 100: try $100 \times (99 + 1)$ different numbers
 - Worst case: all 100 key sets map to one bucket
- **Now:** find a solution to avoid that problem

Solution: universal hashing

- Out of a set of hash functions we randomly choose one
- The expected result of the hash function is an equal distribution over the buckets
- This hash function stays fixed for the lifetime of table Optional: copy table with new hash when degenerated

Figure: Hash func. 1

Figure: Hash func. 2

Figure: Hash func. coll.

Definition:

- lacktriangle We call $\Bbb U$ the set (universe) of possible keys
- \blacksquare The size m of the hash table T
- Set of hash functions $\mathbb{H} = \{h_1, h_2, \dots, h_n\}$ with $h_i : \mathbb{U} \to \{0, \dots, m-1\}$
- Idea: runtime should be $O(1 + \frac{|S|}{m})$, where $\frac{|S|}{m}$ is the table load

Figure: Hash function h_1

- We choose two random keys $x, y \in \mathbb{U} \mid x \neq y$
- An average of 3 out of 15 functions produce collisions

Figure: Set of hash functions ℍ

Definition: \mathbb{H} is *c*-universal if $\forall x, y \in \mathbb{U} \mid x \neq y$:

Number of hash functions that create collisions

$$\underbrace{|\{h \in \mathbb{H} : h(x) = h(y)\}|}_{|\mathbb{H}|}$$

$$\leq c \cdot \frac{1}{m}, \quad c \in \mathbb{R}$$

Number of hash functions

■ In other words, given an arbitrary but fixed pair x, y. If $h \in \mathbb{H}$ is chosen randomly then

$$Prob(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

Note: If the hash function assigns each key *x* and *y* randomly to buckets then:

$$Prob(Collision) = \frac{1}{m} \Leftrightarrow c = 1$$

- U: key universe
- S: used Keys
- $S_i \subseteq S$: keys mapping to Bucket i ("synonyms")
- Ideal would be $|S_i| = \frac{|S|}{m}$

Figure: Hash function $h \in \mathbb{H}$

- Let \mathbb{H} be a *c*-universal class of hash functions
- Let $\mathbb S$ be a set of keys and $h \in \mathbb H$ selected randomly
- Let S_i be the key x for which h(x) = i
- The expected average number of elements to search through per bucket is

$$\mathbb{E}[|\mathbb{S}_i|] \leq 1 + c \cdot \frac{|\mathbb{S}|}{m}$$

■ Particulary: if $(m = \Omega(|S|))$ then $\mathbb{E}[|S_i|] = \mathcal{O}(n)$

- We just discuss the discrete case
- Probability space Ω with elementary (simple) events
- Events e have probabilities ...

$$\sum_{e\in\Omega}P(e)=1$$

■ The probability for a subset of events $E \subseteq \Omega$ is

$$P(E) = \sum_{e \in E} P(e) \mid e \in E$$

Table: throwing a dice

е	P(e)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Probability Calculation

Example:

- Rolling a dice twice $(\Omega = \{1, ..., 6\}^2)$
- Each event $e \in \Omega$ has the probability P(e) = 1/36
- \blacksquare E = if both results are even, then P(E) =

Table: throwing a dice twice

e	P(e)
(1,1)	1/36
(1,2)	1/36
(1,3)	1/36
(6,5)	1/36
(6,6)	1/36

- Random variable
 - Assigns a number to the result of an experiment
 - For example: X = Sum of results for rolling twice
 - X = 12 and $X \ge 7$ are regarded as events
 - Example 1: P(X = 2) =
 - Example 2: P(X = 4) =

Table: throwing a dice twice

e	P(e)	X	
(1,1)	1/36	2	
(1,2)	1/36	3	
(1,3)	1/36	4	
(6, 5)	1/36	11	
(6, 6)	1/36	12	

Expected value is defined as $\mathbb{E}(X) = \sum (k \cdot P(X = k))$

■ Intuitive: the weighted average of possible values of X, where the weights are the probabilities of the values

Table: throwing a dice once

Table: throwing a dice twice

X	P(X)	
1	<u></u> 1/6	
2 3	1/6	
3	1/6	
4	1/6	
4 5 6	1/6	
6	1/6	

- **Example "rolling once":** $\mathbb{E}(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$
- **Example "rolling twice":** $\mathbb{E}(X) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \cdots + 12 \cdot \frac{1}{36} = 7$

Sum of expected values: for arbitrary discrete random variables $X_1, ..., X_n$ we can write:

$$\mathbb{E}(X_1 + \cdots + X_n) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)$$

Example: throwing two dice

- X_1 : result of dice 1: $\mathbb{E}(X_1) = 3.5$
- X_2 : result of dice 2: $\mathbb{E}(X_2) = 3.5$
- $X = X_1 + X_2$: total number
- Expected number when rolling two dices:

$$\mathbb{E}(X) = \mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2) = 3.5 + 3.5 = 7$$

Corollary:

The probability of the event E is p = P(E). Let X be the occurrences of the event E and n be the number of executions of the experiment. Then $\mathbb{E}(X) = n \cdot P(E) = n \cdot p$

Example (Rolling the dice 60 times)

$$\mathbb{E}$$
(occurences of 6) = $\frac{1}{6} \cdot 60 = 10$

Proof Corollary:

Indicator variable: X_i

$$X_i = \begin{cases} 1, & \text{if event occurs} \\ 0, & \text{else} \end{cases}$$

$$\Rightarrow X = \sum_{i=1}^{n} X_i$$

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i) \stackrel{\text{def. } \mathbb{E}\text{-value}}{=} \sum_{i=1}^{n} p = n \cdot p$$

Def. \mathbb{E} -value: $\mathbb{E}(X_i) = 0 \cdot P(X_i = 0) + 1 \cdot P(X_i = 1) = P(X_i = 1)$

- We pick two random keys $x, y \in \mathbb{S} \mid x \neq y$ and a random hash function $h \in \mathbb{H}$
- We know the probability of a collision:

$$P(h(x) = h(y)) \le c \cdot \frac{1}{m}$$

To proof:

$$\mathbb{E}[|\mathbb{S}_i|] \leq 1 + c \cdot \frac{|\mathbb{S}|}{m} \quad \forall i$$

We know:

$$\mathbb{S}_i = \{x \in \mathbb{S} : h(x) = i\}$$

If $\mathbb{S}_i = \emptyset \Rightarrow |\mathbb{S}_i| = 0$ otherwise, let $x \in \mathbb{S}_i$ be any key

We define an indicator variable:

$$I_y = \begin{cases} 1, & \text{if } h(y) = i \\ 0, & \text{else} \end{cases} \quad y \in \mathbb{S} \setminus \{x\}$$

$$\Rightarrow \qquad |\mathbb{S}_i| = 1 + \sum_{y \in \mathbb{S} \setminus x} I_y$$

$$\Rightarrow \quad \mathbb{E}(|\mathbb{S}_{i}|) = \mathbb{E}\left(1 + \sum_{y \in \mathbb{S} \setminus X} l_{y}\right) = 1 + \sum_{y \in \mathbb{S} \setminus X} \mathbb{E}(l_{y})$$

Auxiliary calculation: $\mathbb{E}[I_V] = P(I_V = 1)$

$$\mathbb{E}[l_y] = P(l_y = 1)$$

$$= P(h(y) = i)$$

$$= P(h(y) = h(x))$$

$$\leq c \cdot \frac{1}{m}$$

Hence:
$$\mathbb{E}[|\mathbb{S}_{i}|] = 1 + \sum_{y \in \mathbb{S} \setminus x} \mathbb{E}[I_{y}] \leq 1 + \sum_{y \in \mathbb{S} \setminus x} c \cdot \frac{1}{m}$$

$$= 1 + (|\mathbb{S}| - 1) \cdot c \cdot \frac{1}{m}$$

$$\leq 1 + |\mathbb{S}| \cdot c \cdot \frac{1}{m}$$

 $= 1 + c \cdot \frac{|S|}{m}$

Negative example:

Examples

- The set of all h for which $h_a(x) = (a \cdot x) \mod m$, for a $a \in \mathbb{U}$
- It is not c-universal.
- If universal:

$$\forall x,y \quad x \neq y : \frac{|\{h \in \mathbb{H} : h(x) = h(y)\}|}{|\mathbb{H}|} \leq c \cdot \frac{1}{m}$$

■ Which x,y lead to a relative collision count bigger than $\frac{c}{m}$?

Examples

Positive example:

- Let p be a big prime number, p > m and $p \ge |\mathbb{U}|$
- Let \mathbb{H} be the set of all h for which:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod m,$$

where $1 \le a < p, \ 0 \le b < p$

- This is ≈ 1-universal, see Exercise 4.11 in Mehlhorn/Sanders
- E.g.: $U = \{0, ..., 99\}, p = 101, a = 47, b = 5$
- Then $h(x) = ((47 \cdot x + 5) \mod 101) \mod m$
- Easy to implement but hard to proof
- Exercise: show empirically that it is 2-universal

Positive example:

■ The set of hash functions is *c*-universal:

$$h_a(x) = a \bullet x \mod m, \quad a \in \mathbb{U}$$

■ We define:

$$a = \sum_{0,\dots,k-1} a_i \cdot m^i, \qquad k = \text{ceil}(\log_m |\mathbb{U}|)$$
$$x = \sum_{0,\dots,k-1} x_i \cdot m^i$$

Intuitive: scalar product with base m

$$a \bullet x = \sum_{0,\dots,k-1} a_i \cdot x_i$$

Example (
$$\mathbb{U} = \{0, ..., 999\}, m = 10, a = 348$$
)

With
$$a = 348$$
: $a_2 = 3$, $a_1 = 4$, $a_0 = 8$

$$h_{348}(x) = (a_2 \cdot x_2 + a_1 \cdot x_1 + a_0 \cdot x_0) \mod m$$

= $(3x_2 + 4x_1 + 8x_0) \mod 10$

With
$$x = 127$$
: $x_2 = 1$, $x_1 = 2$, $x_0 = 7$

$$h_{348}(127) = (3 \cdot x_2 + 4 \cdot x_1 + 8 \cdot x_0) \mod 10$$

= $(3 \cdot 1 + 4 \cdot 2 + 8 \cdot 7) \mod 10$
= 7

■ Course literature

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf.

■ Hash Map - Theory

- [Wik] Hash table
 - https://en.wikipedia.org/wiki/Hash_table
- Hash Map Implementations / API
 - [Cpp] C++ hash_map
 - http://www.sgi.com/tech/stl/hash_map.html
 - [Jav] Java HashMap
 - https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
 - [Pyt] Python Dictionaries (Hash table)
 https://en.wikipedia.org/wiki/Hash_table