

Super-Resolution Using A Unified Latent Diffusion Model For Medical Imaging

Ava kouhana¹, Mojtaba Jafaritadi¹, Garry Chinn¹, Craig S. Levin^{1,2}

¹Stanford University, Radiology Department

² Stanford University, Physics, Electrical Engineering, and Bioengineering Department

{akouhana, mojjaf, gchinn, cslevin}@stanford.edu

Purpose

- Motivation: Super-resolution (SR) techniques reconstruct high-resolution images from low-resolution data. In medicine, high-quality imaging is costly but crucial for diagnosis. Deep learning-based SR methods have been developed to address this. While diffusion models show promise in generating high-resolution images, their potential for medical image enhancement remains unexplored.
- Purpose: To investigate the potential of a conditional latent diffusion model (LDM) architectures as a viable alternative to GANs for SR in medical imaging.

New Metrics

We propose Laplacian variance and FFT as alternative metrics to PSNR, SSIM, and NRMSE for better capturing perceptual differences in SR image quality.

NRMSE: 0.064 PSNR: 24.33 MS-SSIM: 0.976

NRMSE: 0.061 PSNR: 23.96 MS-SSIM: 0.979

Methods

The conditional LDM architecture, conditioned on LR image, relies on a U-Net-like structure with 4 convolutional layers. A pretrained Auto-encoder was used to encode and decode LR and HR images in the latent space.

Results

${f Metrics}$	Laplacian Variance	\mathbf{FFT}
LR image	26.83 ± 10.05	-58.08 ± 9.95
Bicubic	48.9 ± 25.9	-39.39 ± 7.90
SRGAN	292.0 ± 125.2	-1.16 ± 6.72
Our LDM	549.80 ± 198.0	3.20 ± 6.89
HR original image	554.68 ± 224.1	4.45 ± 8.02

- Laplacian variance measures image sharpness by quantifying edge frequency. Higher variance indicates more edges and greater sharpness. It's calculated as: $\sigma L^2 = (1/N) \Sigma (Li \bar{L})^2$ where N is pixel count, Li is Laplacian of ith pixel, and \bar{L} is mean Laplacian value.
- FFT decomposes an image into frequency components. Blur reduces high frequencies more than low frequencies. Lower μ (mean value) indicates more blur; higher μ suggests a sharper image with $F(u,v) = \sum \sum I(x,y) e^{-(-2\pi i(ux+vy)/N)}$.
- The average Laplacian variance for the LR, SRGAN, predictions, and HR original images were 27, 292, 550, and 555 respectively. Similarly, the average FFT values were -58, -1, 3, and 4, respectively.

Conclusions

● The results indicate that the synthetic SR images generated by the conditional LDM exhibit enhanced sharpness and reduced blurriness <u>compared to state-of-the-art SRGAN</u>, highlighting LDM's potential for advancing SR techniques in radiology.

Reverse Diffusion Process $q\theta(x_{t-1}|x_t)$

- Diffusion model-based SR could enhance medical image quality, potentially improving diagnoses without costlier HR imaging and limitations risks for patients health.
- Limitations: Diffusion models are computationally intensive and resource-demanding at sampling time compared to other generative models like GANs.
- Also, in imaging, diffusion models may generate nonexistent features, potentially leading in the context of medical imaging to potential misdiagnosis.