Practical and Secure Policy-based Chameleon Hash for Redactable Blockchains

Nan Li $^1,\ {\rm Yingjiu}\ {\rm Li}^2,\ {\rm Mark\ Manulis}^3,\ {\rm Yangguang\ Tian}^4\ {\rm and}\ {\rm Guomin\ Yang}^5$

¹School of Computing and Information Technology, University of Wollongong, Australia ²Computer and Information Science, University of Oregon, USA ³Department of Computer Science, Universitat der Bundeswehr Munchen, Germany ⁴Department of Computer Science, University of Surrey, UK ⁵School of Computing and Information Systems, Singapore Management University, Singapore

Email: yangguang.tian@surrey.ac.uk

1. SECURITY ANALYSIS OF THE COM-POSITE ASSUMPTION

Theorem 1.1. Let $(\epsilon_1, \epsilon_2, \epsilon_T)$: $\mathbb{Z}_q \to \{0, 1\}^*$ be three random encodings (injective functions) where \mathbb{Z}_q is a prime field, and the encoding of group elements are $\mathbb{G} = \{\epsilon_1(a) | a \in \mathbb{Z}_q\}, \mathbb{H} = \{\epsilon_2(b) | b \in \mathbb{Z}_q\}, \mathbb{G}_T = \{\epsilon_T(c) | c \in \mathbb{Z}_q\}.$ If $(a, b, c) \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and encodings $\epsilon_1, \epsilon_2, \epsilon_T$ are randomly chosen, we define the advantage of the adversary in solving the composite assumption with at most \mathcal{Q} queries to the group operation oracles $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_T$ and the bilinear pairing $\hat{\mathbf{e}}$ as

$$\begin{split} |\mathrm{Adv}_{\mathcal{A}}^{Com}(\lambda) &= & \mathrm{Pr}[\mathcal{A}(q,\epsilon_1(1),\epsilon_1(a_1),\epsilon_1(a_2),\epsilon_1(a_1\cdot\alpha_1^{\ell+1}),\\ & \epsilon_1(a_2\cdot\alpha_2^{\ell+1}),\{\epsilon_1(\alpha_1),\cdots,\epsilon_1(\alpha_1^{\ell})\},\\ & \{\epsilon_1(\alpha_2),\cdots,\epsilon_1(\alpha_2^{\ell})\},\epsilon_1(s),\epsilon_1(t_0),\epsilon_1(t_1),\\ & \epsilon_2(1),\epsilon_T(1)) \\ &= & w:(a_1,a_2,\alpha_1,\alpha_2,s\xleftarrow{R}\mathbb{Z}_q,w\in(0,1),\\ & t_w=(\alpha_1^{\ell}+\alpha_2^{\ell}),t_{1-w}=s)]-1/2|\\ &\leq & \frac{2(\ell+2)(2\ell+9)^2}{q} \end{split}$$

Proof. Let S play the following game for A. S maintains three polynomial-sized dynamic lists: $L_1 = \{(p_i, \epsilon_{1,i})\}, L_2 = \{(q_i, \epsilon_{2,i})\}, L_T = \{(t_i, \epsilon_{T,i})\}.$ The $p_i \in \mathbb{Z}_q[A_1, A_2, AL_1, AL_2, S, T_0, T_1]$ are 7-variate polynomials over \mathbb{Z}_q , such that $p_0 = 1, p_1 = A_1, p_2 = A_2, p_3 = A_1 \cdot AL_1^{\ell+1}, p_4 = A_2 \cdot AL_2^{\ell+1}, \{p_u = AL_1^u\}_{u=1}^{\ell}, \{p_v = AL_2^v\}_{v=1}^{\ell}, p_{2\ell+5} = T_0, p_{2\ell+6} = T_1.$ S also generates $q_0 = 1, t_0 = 1$. Then, S sets three lists as $L_1 = \{(p_i, \epsilon_{1,i})\}_{i=0}^{2\ell+6}, L_2 = (q_0, \epsilon_{2,0}), L_T = (t_0, \epsilon_{T,0}), \text{ where } (\{\epsilon_{1,i}\}_{i=0}^{2\ell+6} \in \{0,1\}^*, \{\epsilon_{2,0}\} \in \{0,1\}^*, \{\epsilon_{T,0}\} \in \{0,1\}^*)$ are arbitrary distinct strings.

At the beginning of the game, S sends the encoding strings $(\{\epsilon_{1,i}\}_{i=0,\dots,2\ell+6}, \epsilon_{2,0}, \epsilon_{T,0})$ to A. Next, S

simulates the group operation oracles $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_T$ and the bilinear pairing $\hat{\mathbf{e}}$ as follows. We assume that all requested operands are obtained from \mathcal{S} .

- \mathcal{O}_1 : The group operation involves two operands $\epsilon_{1,i}, \epsilon_{1,j}$. Based on these operands, \mathcal{S} searches the list L_1 for the corresponding polynomials p_i and p_j . Then, \mathcal{S} perform the polynomial addition or subtraction $p_l = p_i \pm p_j$ depending on whether multiplication or division is requested. If p_l is in the list L_1 , then \mathcal{S} returns the corresponding ϵ_l to \mathcal{A} . Otherwise, \mathcal{S} uniformly chooses $\epsilon_{1,l} \in \{0,1\}^*$, where $\epsilon_{1,l}$ is unique in the encoding string L_1 , and appends the pair $(p_l, \epsilon_{1,l})$ into the list L_1 . Finally, \mathcal{S} returns $\epsilon_{1,l}$ to \mathcal{A} as the answer. Group operation queries in \mathbb{H} , \mathbb{G}_T (i.e., \mathcal{O}_2 , \mathcal{O}_T) are treated similarly.
- ê: The group operation involves two operands $\epsilon_{T,i}, \epsilon_{T,j}$. Based on these operands, \mathcal{S} searches the list L_T for the corresponding polynomials t_i and t_j . Then, \mathcal{S} perform the polynomial multiplication $t_l = t_i \cdot t_j$. If t_l is in the list L_T , then \mathcal{S} returns the corresponding $\epsilon_{T,l}$ to \mathcal{A} . Otherwise, \mathcal{S} uniformly chooses $\epsilon_{T,l} \in \{0,1\}^*$, where $\epsilon_{T,l}$ is unique in the encoding string L_T , and appends the pair $(t_l, \epsilon_{T,l})$ into the list L_T . Finally, \mathcal{S} returns $\epsilon_{T,l}$ to \mathcal{A} as the answer.

After querying at most \mathcal{Q} times of corresponding oracles, \mathcal{A} terminates and outputs a guess $b' = \{0,1\}$. At this point, \mathcal{S} chooses random $a_1, a_2, \alpha_1, \alpha_2, s \in \mathbb{Z}_q$, generates $t_b = (\alpha_1^{\ell+1} + \alpha_2^{\ell+1})$ and $t_{1-b} = s$. \mathcal{S} sets $A_1 = a_1, A_2 = a_2, AL_1 = \alpha_1, AL_2 = \alpha_2, S = s, T_0 = t_b, T_1 = t_{1-b}$. The simulation is perfect unless the abort event happens. Thus, we bound the probability of event abort by analyzing the following cases:

1. $p_i(a_1, a_2, \alpha_1, \alpha_2, s, t_0, t_1) = p_j(a_1, a_2, \alpha_1, \alpha_2, s, t_0, t_1)$: The polynomial $p_i \neq p_j$ due to the construction method of L_1 , and $(p_i-p_j)(a_1,\cdots)$ is a non-zero polynomial of degree $[0,1,\cdots,\ell+2]$ $(\ell+2)$ is produced by $A_1\cdot AL_1^{\ell+1}$. The maximum degree of $A_1\cdot AL_1^{\ell+1}(p_i-p_j)(a_1,\cdots)$ is $\ell+2$. By using Lemma 1 in [1], we have $\Pr[(p_i-p_j)(a_1,\cdots)=0]\leq \frac{\ell+2}{q}$ and thus $\Pr[p_i(a_1,\cdots)=p_j(a_1,\cdots)]\leq \frac{\ell+2}{q}$. Therefore, we have the abort probability is $\Pr[\mathrm{abort}_1]\leq \frac{\ell+2}{q}$.

- 2. $q_i(a_1, \cdots) = q_j(a_1, \cdots)$: The polynomial $q_i \neq q_j$ due to the construction method of L_2 , and $(q_i q_j)(a_1, \cdots)$ is a non-zero polynomial of degree 0. The maximum degree is "0" since the list L_2 contains a single string $\epsilon_{(2,0)}$ only (note that we do not include group elements in \mathbb{H}). Therefore, the abort probability is "0".
- 3. $t_i(a_1,\cdots)=t_j(a_1,\cdots)$: The polynomial $t_i\neq t_j$ due to the construction method of L_3 , and $(t_i-t_j)(a_1,\cdots)$ is a non-zero polynomial of degree $[0,1,\cdots,\ell+2]$. The maximum degree of $(A_1\cdot AL_1^{\ell+1}(t_i-t_j)(a_1,\cdots))$ is also $\ell+2$. Therefore, we have $\Pr[(t_i-t_j)(a_1,\cdots)=0]\leq \frac{\ell+2}{q}$ and thus $\Pr[t_i(a_1,\cdots)=t_j(a_1,\cdots)]\leq \frac{\ell+2}{q}$.

By summing over all valid pairs (i, j) in each case (i.e., at most $2\binom{2\ell+9}{2}$ pairs), we have the abort probability is

$$\begin{split} \Pr[\mathsf{abort}] &= \Pr[\mathsf{abort}_1] + \Pr[\mathsf{abort}_2] + \Pr[\mathsf{abort}_3] \\ &\leq 2 \binom{2\ell+9}{2} \cdot (\frac{\ell+2}{q} + \frac{\ell+2}{q}) \\ &\leq \frac{2(\ell+2)(2\ell+9)^2}{q}. \end{split}$$

2. SECURITY ANALYSIS OF THE MODI-FIED CHAMELEON HASH FUNCTION

Theorem 2.1. The modified DL-based CH scheme is collision-resistant if the classic DL-based CH scheme is collision-resistant, and the NIZK proof is simulation extractable.

Proof. Let \mathcal{S} denote an attacker against the classic DL-based CH scheme, who is given a chameleon public key pk^* , a hash oracle and an adapt oracle, aims to find a collision which was not simulated by the adapt oracle. \mathcal{S} simulates the game for \mathcal{A} as follows.

- S sets the chameleon public key as pk^* .
- For a hash query on a message m, S forwards m to his hash oracle and receives a hash value h and a randomness r, where $h = (pk^*)^m \cdot g^r$. Then, S returns (h, ξ) to A, where $\xi = (R = g^r, \Pi)$ and Π is a NIZK proof for $\log(R)$. For an adapt query, S obtains a new randomness r' from his adapt oracle and returns (m', h, ξ') to A, where $\xi' = (R' = g^{r'}, \Pi')$ and Π' is a NIZK proof for $\log(R')$.

• If \mathcal{A} outputs a collision $(m^*, \xi^*, m'^*, \xi'^*, h^*)$, such that the chameleon hash is valid $h^* = (pk^*)^{m^*} \cdot R^* = (pk^*)^{m'^*} \cdot R'^*$, and the NIZK proofs (ξ^*, ξ'^*) are valid, \mathcal{S} extracts (r^*, r'^*) from (ξ^*, ξ'^*) due to NIZK's simulation-sound extractability. We require that either (h^*, m^*, ξ^*) or (h^*, m'^*, ξ'^*) must be a fresh collision, i.e., one that was never queried adapt oracle. Then, \mathcal{S} outputs $(m^*, r^*, m'^*, r'^*, h^*)$ as a collision to the CH scheme; otherwise, \mathcal{S} aborts the game.

Theorem 2.2. The modified DL-based CH scheme is indistinguishable if the classic DL-based CH is indistinguishable.

Proof. Let \mathcal{S} denote an attacker against the DL-based CH, who is given a chameleon public key pk^* and a HashOrAdapt oracle, aims to break the classic CH's indistinguishability. \mathcal{S} sets the chameleon public key as pk^* .

If \mathcal{A} submits two messages (m_0, m_1) to \mathcal{S} , \mathcal{S} obtains a chameleon hash (h_w, r_w) from his HashOrAdapt oracle on messages (m_0, m_1) , where $w \in [0, 1]$. Then, \mathcal{S} generates $\xi_w = (R_w = g^{r_w}, \Pi_w)$, where Π_w is a NIZK proof for $\log(R_w)$, and returns (m_w, h_w, ξ_w) to \mathcal{A} . \mathcal{S} outputs whatever \mathcal{A} outputs. If \mathcal{A} guesses the random bit correctly, then \mathcal{S} can break the classic CH's indistinguishability.

3. CORRECTNESS OF THE DECRYPTION.

We provide the correctness of the decryption process. Suppose that the user holds a decryption key in the form of $\mathbf{sk}_{(\delta,t)} = (\mathbf{sk}_0, \{\mathbf{sk}_y\}_{y \in \delta}, \mathbf{sk}')$, where $\mathbf{sk}_0 = (h^{b_1 \cdot r_1}, h^{b_2 \cdot r_2}, h^r, h^{r+r'})$, and $\mathbf{sk}_3' = g^{d_3} \cdot g^{-\sigma'} \cdot F(t)^{r+r_x+r'}$ (i.e., the user is not revoked at time t).

• The ciphertext associated with $y_1 \in \delta$ and $y_2 = \{1, 2, 3\}$ is calculated as

$$\begin{split} A &=& \quad \hat{\mathbf{e}}(\mathbf{H}(y_{1}11)^{s_{1}\cdot\gamma_{i}}\cdot\mathbf{H}(y_{1}12)^{s_{2}\cdot\gamma_{i}},h^{b_{1}\cdot r_{1}}) \\ &\quad \cdot \hat{\mathbf{e}}(\mathbf{H}(y_{1}21)^{s_{1}\cdot\gamma_{i}}\cdot\mathbf{H}(y_{1}22)^{s_{2}\cdot\gamma_{i}},h^{b_{2}\cdot r_{2}}) \\ &\quad \cdot \hat{\mathbf{e}}(\mathbf{H}(y_{1}31)^{s_{1}\cdot\gamma_{i}}\cdot\mathbf{H}(y_{1}32)^{s_{2}\cdot\gamma_{i}},h^{r}) \\ &\quad \cdot \hat{\mathbf{e}}(F(t)^{s},h^{r+r'})\cdot\hat{\mathbf{e}}(F(t),h^{r_{x}\cdot s}) \\ &=& \quad \hat{\mathbf{e}}(\mathbf{H}(y_{1}11)^{s_{1}\cdot b_{1}\cdot r_{1}\cdot\gamma_{i}},h)\cdot\hat{\mathbf{e}}(\mathbf{H}(y_{1}12)^{s_{2}\cdot b_{1}\cdot r_{1}\cdot\gamma_{i}},h) \\ &\quad \cdot \hat{\mathbf{e}}(\mathbf{H}(y_{1}21)^{s_{1}\cdot b_{1}\cdot r_{2}\cdot\gamma_{i}},h)\cdot\hat{\mathbf{e}}(\mathbf{H}(y_{1}22)^{s_{2}\cdot b_{2}\cdot r_{2}\cdot\gamma_{i}},h) \\ &\quad \cdot \hat{\mathbf{e}}(\mathbf{H}(y_{1}31)^{s_{1}\cdot r\cdot\gamma_{i}},h)\cdot\hat{\mathbf{e}}(\mathbf{H}(y_{1}32)^{s_{2}\cdot r\cdot\gamma_{i}},h) \\ &\quad \cdot \hat{\mathbf{e}}(F(t)^{s},h^{r_{x}+r+r'}) \end{split}$$

2

• The first pairing in B is calculated as

$$\begin{array}{l} \operatorname{\hat{e}}(\operatorname{H}(\pi(i)11)^{b_1 \cdot r_1 \cdot \gamma_i/a_1} \cdot \operatorname{H}(\pi(i)21)^{b_2 \cdot r_2 \cdot \gamma_i/a_1} \cdot \operatorname{H}(\pi(i)31)^{r\gamma_i/a_1} \\ \cdot g^{\sigma_i \cdot \gamma_i/a_1} \cdot (g^{d_1})^{\operatorname{\mathbf{M}}_{(i,1)} \cdot \gamma_i} \\ \cdot \prod_{j=2}^{n_2} [\operatorname{H}(0j11)^{b_1 \cdot r_1/a_1} \cdot \operatorname{H}(0j21)^{b_2 \cdot r_2/a_1} \\ \cdot \operatorname{H}(0j31)^{r/a_1} \cdot g^{\sigma_j'/a_1}]^{\operatorname{\mathbf{M}}_{(i,j)} \cdot \gamma_i}, h^{a_1 \cdot s_1}) \end{array}$$

 \bullet The second pairing in B is calculated as

$$\hat{\mathbf{e}}(\mathbf{H}(\pi(i)12)^{b_1 \cdot r_1 \cdot \gamma_i/a_2} \cdot \mathbf{H}(\pi(i)22)^{b_2 \cdot r_2 \cdot \gamma_i/a_2} \cdot \mathbf{H}(\pi(i)32)^{r \cdot \gamma_i/a_2}. \text{ KeyUp. } \mathcal{S} \text{ just keep track of the present time } t.$$

$$\cdot g^{\sigma_i \cdot \gamma_i/a_2} \cdot (g^{d_2})^{\mathbf{M}_{(i,1)} \cdot \gamma_i} \cdot \prod_{j=2}^{n_2} [\mathbf{H}(0j12)^{b_1 \cdot r_1/a_2} \cdot \mathbf{H}(0j22)^{b_2 \cdot r_2/a_2} \text{decryption keys for decryption queries. The first case is } t \neq t^*. \text{ We show } \mathcal{S} \text{ can simulate a decryption keys at time } t = t_1 || \cdots || t_{\bar{k}} || \cdots || t_{\ell},$$

• The third pairing in B is calculated as

$$\hat{\mathbf{e}}(\underline{g^{d_3} \cdot g^{-\sigma'} \cdot F(t)^{r+r_x+r'}} \cdot \prod_{i=2}^{n_2} (g^{-\sigma'_j})^{\mathbf{M}_{(i,j)} \cdot \gamma_i}, h^s)$$

 \bullet By multiplying above three parings in B, we have

$$\begin{split} B &=& \hat{\mathbf{e}}(\mathbf{H}(\pi(i)11)^{b_1 \cdot r_1 \cdot s_1 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)21)^{b_2 \cdot r_2 \cdot s_1 \cdot \gamma_i}, h) \\ &\cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)31)^{r \cdot s_1 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)12)^{b_1 \cdot r_1 \cdot s_2 \cdot \gamma_i}, h) \\ &\cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)22)^{b_2 \cdot r_2 \cdot s_2 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)32)^{r \cdot s_2 \cdot \gamma_i}, h) \\ &\cdot \hat{\mathbf{e}}(g^{d_1 \cdot a_1 \cdot s_1}, h) \cdot \hat{\mathbf{e}}(g^{d_2 \cdot a_2 \cdot s_2}, h) \cdot \hat{\mathbf{e}}(g^{d_3 \cdot s}, h) \\ &\cdot \hat{\mathbf{e}}(F(t)^{r + r_x + r'}, h^s) \end{split}$$

where σ_i and σ'_j in B were cancelled out when multiplying, and recall that $\sum_{i \in I} \gamma_i \cdot \mathbf{M}_i =$ $(1,0,\cdots,0).$

• Eventually, B/A is calculated as below

$$\begin{split} B/A &=& \hat{\mathbf{e}}(g^{d_1 \cdot a_1 \cdot s_1}, h) \cdot \hat{\mathbf{e}}(g^{d_2 \cdot a_2 \cdot s_2}, h) \cdot \hat{\mathbf{e}}(g^{d_3 \cdot (s_1 + s_2)}, h) \\ &=& \hat{\mathbf{e}}(g, h)^{s_1 \cdot (d_1 \cdot a_1 + d_3)} \cdot \hat{\mathbf{e}}(g, h)^{s_2 \cdot (d_2 \cdot a_2 + d_3)} \\ &=& T_1^{s_1} \cdot T_2^{s_2}. \end{split}$$

SECURITY ANALYSIS OF FB-ABE

Theorem 4.1. The proposed FB-ABE scheme is semantically secure if the proposed composite assumption is held in the asymmetric pairing groups.

Proof. We assume a simulator S whose goal is to the break the security of the composite assumption. $\mathcal S$ chooses a challenge time $t^* = t_1^* ||t_2^*|| \cdots ||t_\ell^*||$ and a challenge identity id^* .

• S simulates the public parameters as $g_c = \bar{g}^{\gamma} \cdot g^{\alpha_1^{\ell}}$, $\bar{g} = g^{z_c}, T_{1/2} = \hat{\mathbf{e}}(g,h)^{d_{1/2} \cdot a_{1/2}} \cdot \hat{\mathbf{e}}(g_c,h^{\alpha_1}), g_0 =$ $\bar{g}^{\delta} \cdot g^{\alpha_1^{\ell} \cdot t_1^*} \cdot \dots \cdot g^{\alpha_1 \cdot t_{\ell}^*} \cdot g^{\alpha_1 \cdot \mathbf{H}_q(id^*)}, g_1 = \bar{g}^{\gamma_1} / g^{\alpha_1^{\ell}}, \dots, g_{\ell} =$ $\bar{g}^{\gamma_{\ell}}/g^{\alpha_1}$, where $d_{1/2}, \gamma, \gamma_1, \cdots \gamma_{\ell}, \delta, z_c \in \mathbb{Z}_q$ are chosen by \mathcal{S} . Since \mathcal{S} can easily break the composite problem if $g^{\alpha_1^{\ell+1}}$ is unknown, we use it to simulate the updated decryption keys.

to the scheme's description. By setting up the parameters as such, S implicitly sets $d_3 = \alpha_1$, and $g_c^{d_3} = \bar{g}^{\alpha_1 \cdot \gamma} g^{\alpha_1^{\ell+1}}$. Below, we mainly focus on the $g_c^{d_3}$ -related simulations.

• S simulates the key update, break in, and decryption queries as follows.

2. We consider two cases in simulating users' case is $t \neq t^*$. We show S can simulate a decryption key at time $t = t_1 || \cdots || t_{\bar{k}} || \cdots || t_{\ell}$, where $\bar{k} \in [1, \ell]$. Note that $t_{\bar{k}} \neq t_{\bar{k}}^*$, which implies that \bar{k} is not prefix of t^* , and \bar{k} is the smallest index at time t.

In this case, S first chooses $z \in \mathbb{Z}_q$, and sets $r=\frac{\alpha_1^{\tilde{k}}}{t_{\tilde{k}}-t_{\tilde{k}}^*}+z.$ Then, ${\mathcal S}$ computes key components

$$(h^r, \frac{g_c^{d_3}}{g_x} \cdot g^{-\sigma'} \cdot \underbrace{(g_0 \cdot g_1^{t_1} \cdots g_{\bar{k}}^{t_{\bar{k}}} \cdot g_\ell^{\mathsf{H}_q(id)})^r}, g_{\bar{k}+1}^r, \cdots, g_\ell^r)}_{(1)}$$

This is a well-formed key at time $t = t_1 || \cdots || t_{\bar{k}}$, where g_x, σ' are chosen by \mathcal{S} . We show how to calculate the underlined (U) term in (1).

$$\begin{split} U &= & [\bar{g}^{\delta} \cdot g^{\alpha_{1}^{\ell} \cdot t_{1}^{*}} \cdots g^{\alpha_{1} \cdot t_{\ell}^{*}} \cdot g^{\alpha_{1} \cdot \mathbf{H}_{q}(id^{*})} (\bar{g}^{\gamma_{1}}/g^{\alpha_{1}^{\ell}})^{t_{1}} \cdots \\ & & (\bar{g}^{\gamma_{\bar{k}}}/g^{\alpha_{\ell-\bar{k}+1}})^{t_{\bar{k}}} \cdot (\bar{g}^{\gamma_{\ell}}/g^{\alpha_{1}})^{\mathbf{H}_{q}(id)}]^{r} \\ &= & [\bar{g}^{\delta+\sum_{i=1}^{\bar{k}} t_{i} \cdot \gamma_{i} + \gamma_{\ell} \cdot \mathbf{H}_{q}(id)} \cdot \prod_{i=1}^{\bar{k}-1} g^{t_{i}^{*} - t_{i}}_{\ell-i+1} \cdot g^{t_{\bar{k}}^{*} - t_{\bar{k}}}_{\ell-\bar{k}+1} \\ & & \cdot \prod_{i=\bar{k}+1}^{\ell} g^{t_{i}^{*}}_{\ell-i+1} \cdot g^{\alpha_{1} \cdot [\mathbf{H}_{q}(id^{*}) - \mathbf{H}_{q}(id)]}]^{r} \\ &= & Z \cdot g^{r(t_{\bar{k}}^{*} - t_{\bar{k}})}_{\ell-\bar{k}+1} \end{split}$$

where Z is shown as follows

$$\begin{split} Z &= & [\bar{g}^{\delta+\Sigma_{i=1}^{\bar{k}}t_i\cdot\gamma_i+\gamma_\ell\cdot\mathbf{H}_q(id)} \\ &\cdot \prod_{i=1}^{\bar{k}-1} g_{\ell-i+1}^{t^*-t_i} \cdot \prod_{i=\bar{k}+1}^{\ell} g_{\ell-i+1}^{t^*} \cdot g^{\alpha_1\cdot(\mathbf{H}_q(id^*)-\mathbf{H}_q(id))}]^r \end{split}$$

S can compute all the terms in Z, and the underlined term in Z is equal to 1 because t_i = $g_1^{t_1}\cdots g_{\bar{k}}^{t_{\bar{k}}})^r$ is $g_{\ell-\bar{k}+1}^{r(t_{\bar{k}}^*-t_{\bar{k}})}$. Since $r=\frac{\alpha_1^{\bar{k}}}{t_{\bar{k}}-t_{\bar{k}}^*}+z$, we can rewrite it as follows

$$g_{\ell-\bar{k}+1}^{r\cdot(t_{\bar{k}}^*-t_{\bar{k}})} = g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^*-t_{\bar{k}})} \cdot g_{\ell-\bar{k}+1}^{(t_{\bar{k}}^*-t_{\bar{k}})\frac{\alpha_1^{\bar{k}}}{t_{\bar{k}}-t_{\bar{k}}^*}} = \frac{g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^*-t_{\bar{k}})}}{g_{\ell-\bar{k}+1}^{\alpha_1^{\ell+1}}}$$

Hence, the second component in (1) is equal to

$$\begin{split} & \frac{g_c^{d_3}}{g_x} \cdot g^{-\sigma'} \cdot \underbrace{(g_0 \cdot g_1^{t_1} \cdots g_{\bar{k}}^{t_{\bar{k}}})^r}_{\bar{k}} \\ &= & g^{\alpha_1^{\ell+1}} \cdot \frac{\bar{g}^{\alpha_1 \cdot \gamma}}{g_x} \cdot Z \cdot \frac{g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^* - t_{\bar{k}})}}{g^{\alpha_1^{\ell+1}}} \\ &= & \frac{\bar{g}^{\alpha_1 \cdot \gamma}}{g_x} \cdot Z \cdot g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^* - t_{\bar{k}})} \end{split}$$

To this end, \mathcal{S} can simulate the second component in (1) because the unknown value $g^{\alpha_1^{\ell+1}}$ is cancelled out. The first component h^r in (1), and other components $(g_{\bar{k}+1}^r,\cdots,g_\ell^r)$ can be easily computed by \mathcal{S} since they do not involve $g^{\alpha_1^{\ell+1}}$. This completes the simulation of $g_c^{d_3}$ -related key components at time $t\neq t^*$. \mathcal{S} simulates other key components using the same approach described in FAME [2]. Specifically, \mathcal{S} first obtains the composite assumption challenge $(h^{a_1\cdot\alpha_1^{\ell+1}},h^{a_2\cdot\alpha_2^{\ell+1}},h^{\alpha_1^{\ell+1}+\alpha_2^{\ell+1}})$. Then, \mathcal{S} derives $(h^{a_1\cdot\alpha_1^{\ell+1}\cdot\bar{r}},h^{a_2\cdot\alpha_2^{\ell+1}\cdot\bar{r}},h^{(\alpha_1^{\ell+1}+\alpha_2^{\ell+1})\cdot\bar{r}})$ to simulate other key components, where \bar{r} is a randomly chosen value from \mathbb{Z}_q .

The second case is $t=t^*$, but $id\neq id^*$. If \mathcal{A} issues a decryption key query on an attribute set δ (i.e., $1\neq \Lambda^*(\delta)$, \mathcal{S} simulates a decryption key using the similar approach as above, but using the fact that $id\neq id^*$ instead of $t_{\overline{k}}\neq t_{\overline{k}}^*$. Recall that user's decryption key sk_3' involves $F(t,id)=g_0\cdot\prod g_i^{t_i}\cdot g_\ell^{\mathsf{H}_q(id)}\in\mathbb{G}$. \mathcal{S} sets $r=\frac{\alpha_1^\ell}{\mathsf{H}_q(id)-\mathsf{H}_q(id^*)}+z$ in equation (1) for $z\in\mathbb{Z}_q$, and the simulation follows the similar approach as above.

3. Break in. S simulates a decryption key at break in time \bar{t} using the same method described above (i.e., the first case in simulating users' decryption keys). S can simulate it since \bar{t} is not prefix of t^* .

Last, \mathcal{S} can easily answer decryption queries and revoke queries.

• In the challenge phase, S returns a challenge ciphertext $C^* \leftarrow \mathsf{Enc}(\mathsf{mpk}, m_b, \Lambda^*, t^*)$ to A, where ct_0 can be

$$\begin{split} b &= 0 \quad : \quad (h^{a_1 \cdot \alpha_1^{\ell+1} \cdot \bar{r'}}, h^{a_2 \cdot \alpha_2^{\ell+1} \cdot \bar{r'}}, h^{(\alpha_1^{\ell+1} + \alpha_2^{\ell+1}) \cdot \bar{r'}}, \\ & \qquad \qquad g^{z_c \cdot (\delta + \sum_{i=1}^{\ell} \gamma_i \cdot t_i^*) \cdot (\alpha_1^{\ell+1} + \alpha_2^{\ell+1})}) \\ b &= 1 \quad : \quad (h^{a_1 \cdot \alpha_1^{\ell+1} \cdot \bar{r'}}, h^{a_2 \cdot \alpha_2^{\ell+1} \cdot \bar{r'}}, h^{s \cdot \bar{r'}}, g^{z_c \cdot (\delta + \sum_{i=1}^{\ell} \gamma_i \cdot t_i^*) \cdot s}) \end{split}$$

Note that $\bar{r'}$ is a randomly chosen value from \mathbb{Z}_q .

Since there are at most k system users and \mathcal{T} times, we have

$$\mathsf{Adv}^{\operatorname{FB-ABE}}_{\mathcal{A}}(\lambda) \quad \leq \quad k \cdot \mathcal{T} \cdot \mathsf{Adv}^{Com}_{\mathcal{S}}(\lambda)$$

5. SECURITY ANALYSIS OF FB-PCH

Theorem 5.1. The FB-PCH scheme is forward/backward-secure collision resistant if the modified DL-based CH scheme is collision resistant, and the FB-ABE scheme is semantically secure.

Proof. We define a sequence of games \mathbb{G}_i , $i=0,\cdots,3$ and let $Adv_i^{\mathrm{FB-PCH}}$ be the advantage of the adversary in game \mathbb{G}_i . We assume that \mathcal{A} issues at most q queries to the Hash oracle.

- \mathbb{G}_0 : This is original game for forward/backward-secure collision-resistance.
- \mathbb{G}_1 : This game is identical to game \mathbb{G}_0 except the following difference: \mathcal{S} randomly chooses $g \in [1,q]$ as a guess for the index of the query to the Hash oracle at time t^* which returns the chameleon hash $(m^*, h^*, \xi^*, C^*, t^*)$. \mathcal{S} will output a random bit if \mathcal{A} 's attacking query does not occur in the g-th query. Because we assume the upper-bound of time is \mathcal{T} , we have

$$Adv_0^{\mathrm{FB-PCH}} = q \cdot \mathcal{T} \cdot Adv_1^{\mathrm{FB-PCH}}$$
 (2)

• \mathbb{G}_2 : This game is identical to game \mathbb{G}_1 except that in the g-th query, \mathcal{S} replaces the encrypted trapdoor tr^* in C^* by \bot (i.e., empty value). Below we show that the difference between \mathbb{G}_1 and \mathbb{G}_2 is negligible if the FB-ABE is semantically secure.

Let S be an attacker against the FB-ABE scheme with semantic security, who is given a public key pk^* and a set of oracles, aims to distinguish between encryption of M_0 and M_1 under an access structure Λ at time t^* . S simulates the game for A as follows.

- \mathcal{S} sets up $mpk = pk^*$ and completes the remainder of Setup honestly.
- S can honestly answer all queries made by A using the given set of oracles. In the g-th query, S submits an identity id, two messages (tr,0), an access structure Λ^* and a time t^* to his challenger and obtains a challenge ciphertext C^* . Eventually, S returns (m^*, h^*, ξ^*, C^*) to A, where $h^* = (g^{tr})^{m^*} \cdot R^*, \xi^* = (R^* = g^{r^*}, \Pi^*)$ and Π^* is a NIZK for log (R^*) . Since the trapdoor tr and the randomness r^* are randomly chosen by S, S can simulate the adapt queries successfully.

If the encrypted message in C^* is tr, then the simulation is consistent with \mathbb{G}_1 ; Otherwise, the simulation is consistent with \mathbb{G}_2 . Therefore, if the advantage of \mathcal{A} is significantly different in \mathbb{G}_1 and \mathbb{G}_2 , \mathcal{S} can break the semantic security of the FB-ABE scheme. Hence, we have

$$\left|\mathtt{Adv}_1^{\mathrm{FB-PCH}} - \mathtt{Adv}_2^{\mathrm{FB-PCH}}\right| \leq \mathtt{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda). \tag{3}$$

G₃: This game is identical to game G₂ except that in the g-th query, S outputs a random bit if A outputs a valid collision (id*, h*, m*, ξ*, m'*, ξ'*, C*, C'*, t*). Below we show that the difference between G₂ and G₃ is negligible if the modified DL-based CH scheme is collision resistant.

Let S denote an attacker against the modified DL-based CH, who is given a chameleon public key pk^* , a hash oracle, and an adapt oracle, aims to find a collision which was not simulated by the adapt oracle. S simulates the game for A as follows.

- S sets the chameleon public key of the g-th query as pk*, and completes the remainder of Setup honestly.
- S can answer all adapt queries at different time made by A by choosing different trapdoors. For the g-th hash query, S returns (h, ξ, C) to A as the response to the hash oracle on the hashed message m, where a chameleon hash value $h = (pk^*)^m \cdot R$, a NIZK proof $\xi = (R = g^r, \Pi)$, and a ciphertext C encrypting "0". For the g-th adapt query, Sreturns (m', h, ξ', C') to A, where $\xi' = (R' = g^r', \Pi')$.
- When \mathcal{A} outputs a collision $(id^*, m^*, \xi^*, m'^*, \xi'^*, h^*, C^*, C'^*, t^*)$, such that the chameleon hash is valid $h^* = (\mathbf{pk}^*)^{m^*} \cdot R^* = (\mathbf{pk}^*)^{m'^*} \cdot R'^*$, and the NIZK proofs (ξ^*, ξ'^*) are valid. We require that either (h^*, m^*, ξ^*, C^*) or $(h^*, m'^*, \xi'^*, C'^*)$ must be a fresh collision, i.e., one that was never queried adapt oracle. Then, \mathcal{S} outputs $(m^*, \xi^*, m'^*, \xi'^*, h^*)$ as a collision to the modified DL-based CH scheme; otherwise, \mathcal{S} aborts the game. Therefore, we have

$$\left|\mathtt{Adv}^{\mathrm{FB\text{-}PCH}} - \mathtt{Adv}^{\mathrm{FB\text{-}PCH}}\right| \leq \mathtt{Adv}_{\mathcal{S}}^{\mathrm{CH}}(\lambda). \tag{4}$$

Combining the above results together, we have

$$\mathrm{Adv}_{\mathcal{A}}^{\mathrm{FB-PCH}}(\lambda) \quad \leq \quad q \cdot \mathcal{T} \cdot (\mathrm{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda) + \mathrm{Adv}_{\mathcal{S}}^{\mathrm{CH}}(\lambda)).$$

Theorem 5.2. The FB-PCH is indistinguishable if the modified DL-based CH scheme is indistinguishable, and the FB-ABE scheme is semantically secure.

Proof. We define a sequence of games \mathbb{G}_i , $i = 0, \dots, 3$ and let $Adv_i^{\text{FB-PCH}}$ be the advantage of the adversary in game \mathbb{G}_i . We assume that \mathcal{A} issues at most q hash queries at each game.

- \mathbb{G}_0 : This is original game for indistinguishability.
- \mathbb{G}_1 : This game is identical to game \mathbb{G}_0 except the following difference: \mathcal{S} randomly chooses $g \in [1,q]$ as a guess for the challenge query at time t^* in the challenge phase. \mathcal{S} will output a random bit if \mathcal{A} 's

attacking query does not occur in the g-th query. Since the upper-bound of time is \mathcal{T} , we have

$$Adv_0^{\mathrm{FB-PCH}} = q \cdot \mathcal{T} \cdot Adv_1^{\mathrm{FB-PCH}}$$
 (5)

• \mathbb{G}_2 : This game is identical to game \mathbb{G}_1 except that in the g-th query, \mathcal{S} replaces the encrypted trapdoor tr^* in C^* by \perp (i.e., empty value). By using the same security analysis as described in the above game \mathbb{G}_2 , we have

$$|\mathsf{Adv}_1^{\mathrm{FB-PCH}} - \mathsf{Adv}_2^{\mathrm{FB-PCH}}| \le \mathsf{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda).$$
 (6)

\$\mathbb{G}_3\$: This game is identical to game \$\mathbb{G}_2\$ except that in the g-th query, \$\mathcal{S}\$ directly hashes a message \$m\$, instead of calculating the chameleon hash and randomness (h, r) using the trapdoor \$tr\$. Below we show the difference between \$\mathbb{G}_2\$ and \$\mathbb{G}_3\$ is negligible if the CH scheme is indistinguishable.

Let \mathcal{S} denote an attacker against the modified DL-based CH, who is given a chameleon public key pk^* and a HashOrAdapt oracle, aims to break the CH's indistinguishability. \mathcal{S} generates a master key pair, and simulates all users' (attribute-based) keys honestly. \mathcal{S} sets the chameleon public key of the g-th query as pk^* .

In the g-th query, if \mathcal{A} submits $(id, m_0, m_1, \Lambda, \delta, t)$ to \mathcal{S} , \mathcal{S} obtains a chameleon hash (h_w, r_w) from his HashOrAdapt oracle on messages (m_0, m_1) , where $w \in [0,1]$. Then, \mathcal{S} honestly generates a NIZK proof $\xi_w = (R_w = g^{\mathsf{r}_w}, \Pi_w)$ and a ciphertext C according the protocol's description (note that \mathcal{S} sets the encrypted trapdoor as \bot). Eventually, \mathcal{S} returns (m_w, h_w, ξ_w, C) to \mathcal{A} . \mathcal{S} outputs whatever \mathcal{A} outputs. If \mathcal{A} guesses the random bit correctly, then \mathcal{S} can break CH's indistinguishability. Hence, we have

$$\mathrm{Adv}^{\mathrm{FB\text{-}PCH}}_{\mathcal{A}}(\lambda) \ \leq \ \mathrm{Adv}^{\mathrm{CH}}_{\mathcal{S}}(\lambda)).$$

Combining the above results together, we have

$$\mathrm{Adv}_{\mathcal{A}}^{\mathrm{FB-PCH}}(\lambda) \ \leq \ q \cdot \mathcal{T} \cdot (\mathrm{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda) + \mathrm{Adv}_{\mathcal{S}}^{\mathrm{CH}}(\lambda)).$$

REFERENCES

- [1] Victor Shoup. Lower bounds for discrete logarithms and related problems. In *EUROCRYPT*, pages 256–266, 1997.
- [2] Shashank Agrawal and Melissa Chase. Fame: fast attribute-based message encryption. In *CCS*, pages 665–682, 2017.