Арифметика с плавающей запятой

Лисицын Сергей МФТИ 2020г.

История

1976

DEC, National Superconductor, Zilog, Motorola, Intel VAX (DEC) VS K-C-S (Уильям Кэхэн, Джероми Кунен и Гарольд Стоун)

Стандарт IEEE 754:

- формат чисел с плавающей точкой;
- представление положительного и отрицательного нуля, положительной и отрицательной бесконечностей, а также нечисла;
- методы, используемые для преобразования числа при выполнении математических операций;
- исключительные ситуации: деление на ноль, переполнение, потеря значимости, работа с денормализованными числами и другие;
- операции: арифметические и другие.

Основы

$$(-1)^s \times M \times B^E$$

s — знак

В – основание

Е — порядок

М — мантисса

В = 2 наиболее устойчиво к ошибкам округления

$$1,010e+1 = 10,10e+0 = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} = 2 + 0,5 = 2,5$$

Тип float6

 $(-1)^s \times M \times 2^E$

ex	κр	ma	nti	ssa		res	
0	0	0	0	0	=	0	
0	0	0	0	1	=	1	
0	0	0	1	0	=	2	
0	0	0	1	1	=	3	
0	0	1	0	0	=	4	
0	0	1	0	1	=	5	
0	0	1	1	0	=	6	
0	0	1	1	1	=	7	
0	1	0	0	0	=	0	
0	1	0	0	1	=	2	
0	1	0	1	0	=	4	
0	1	0	1	1	=	6	
0	1	1	0	0	=	8	
0	1	1	0	1	=	10	
0	1	1	1	0	=	12	
0	1	1	1	1	=	14	
1	0	0	0	0	=	0	
1	0	0	0	1	=	4	
1	0	0	1	0	=	8	
1	0	0	1	1	=	12	
1	0	1	0	0	=	16	
1	0	1	0	1	=	20	
1	0	1	1	0	=	24	
1	0	1	1	1	=	28	
1	1	0	0	0	=	0	
1	1	0	0	1	=	8	
1	1	0	1	0	=	16	
1	1	0	1	1	=	24	
1	1	1	0	0	=	32	
1	1	1	0	1	=	40	
1	1	1	1	0	=	48	
1	1	1	1	1	=	56	

Нормальная форма

 $(-1)^s \times 0.M \times 2^E$

Повтор значений

ex	κр	ma	nti		res	
0	0	0	0	0	=	0
0	1	0	0	0	=	0
1	0	0	0	0	=	0
1	1	0	0	0	=	0

exp		ma	nti		res	
0	0	0	1	0	=	0.25
0	1	0	0	1	=	0.25

exp		ma	nti		res	
0	0	1	0	0	=	0.5
0	1	0	1	0	=	0.5
1	0	0	0	1	=	0.5

ex	ф	ma	nti		res	
0	1	1 0 0		0	=	1
1	0	0	1	0	=	1
1	1	0	0	1	=	1

Нормализованные числа

 $(-1)^s \times 1.M \times 2^E$

Денормализованные числа

(-1)^s × 1.M × 2^E, если Emin≤E≤Emax

 $(-1)^s \times 0.M \times 2^{Emin}$, если E=Emin-1

Emax = 3, Emin = 1, E = 0 — денормализованные числа

	ر,	۱P		a 1 1 C 1 3	Ju		103
	0	0	0	0	0	=	0
	0	0	0	0	1	=	0.25
	0	0	0	1	0	=	0.5
$0.M \times 2^{1}$	0	0	0	1	1	=	0.75
	0	0	1	0	0	=	1
	0	0	1	0	1	=	1.25
	0	0	1	1	0	=	1.5
	0	0	1	1	1	=	1.75
	0	1	0	0	0	=	2
	0	1	0	0	1	=	2.25
	0	1	0	1	0	=	2.5
$1.M \times 2^1$	0	1	0	1	1	=	2.75
1	0	1	1	0	0	=	3
	0	1	1	0	1	=	3.25
	0	1	1	1	0	=	3.5
	0	1	1	1	1	=	3.75
	1	0	0	0	0	=	4
	1	0	0	0	1	=	4.5
	1	0	0	1	0	=	5
$1.M \times 2^{2}$	1	0	0	1	1	=	5.5
7	1	0	1	0	0	=	6
	1	0	1	0	1	=	6.5
	1	0	1	1	0	=	7
	1	0	1	1	1	=	7.5
	1	1	0	0	0	=	8
	1	1	0	0	1	=	9
	1	1	0	1	0	=	10
$1.M \times 2^{3}$	1	1	0	1	1	=	11
7	1	1	1	0	0	=	12
	1	1	1	0	1	=	13
	1	1	1	1	0	=	14
	1	1	1	1	1	=	15

mantissa

res

Специальные числа

(-1)^s × 1.M × 2^E, если Emin≤E≤Emax

 $(-1)^s \times 0.M \times 2^{Emin}$, если E=Emin-1

Emin = 1, Emax = 2

Неассоциативность арифметики

$$(10^{20} + 1) - 10^{20} == 0$$

 $(10^{20} - 10^{20}) + 1 == 1$

$$x^2 - y^2 vs (x - y)(x + y)$$

 $x == y vs (x - y) < \varepsilon$

$$\Delta = 2^{\text{E-M.size-1}}$$

exp		mantissa				res		
0	0	0	0	0	=	0		
0	0	0	0	1	=	0.25		
0	0	0	1	0	=	0.5		
0	0	0	1	1	=	0.75		
0	0	1	0	0	=	1		
0	0	1	0	1	=	1.25		
0	0	1	1	0	=	1.5		
0	0	1	1	1	=	1.75		
0	1	0	0	0	=	2		
0	1	0	0	1	=	2.25		
0	1	0	1	0	=	2.5		
0	1	0	1	1	=	2.75		
0	1	1	0	0	=	3		
0	1	1	0	1	=	3.25		
0	1	1	1	0	=	3.5		
0	1	1	1	1	=	3.75		
1	0	0	0	0	=	4		
1	0	0	0	1	=	4.5		
1	0	0	1	0	=	5		
1	0	0	1	1	=	5.5		
1	0	1	0	0	=	6		
1	0	1	0	1	=	6.5		
1	0	1	1	0	=	7		
1	0	1	1	1	=	7.5		
1	1	0	0	0	=	+∞		
1	1	0	0	1	=	NaN		
1	1	0	1	0	=	NaN		
1	1	0	1	1	=	NaN		
1	1	1	0	0	=	NaN		
1	1	1	0	1	=	NaN		
1	1	1	1	0	=	NaN		
1	1	1	1	1	=	NaN		

IEEE 754

(-1)^s × 1.M × 2^{E-127}, если Emin≤E-127≤Emax (-1)^s × 0.M × 2^{Emin}, если E=Emin-1 Emin = -126, Emax = 127 E-127 = -127 — денормализованные числа E-127 = 128 — специальные числа (±∞, NaN)

Округление до четного

Название	Полное название	Основание	Кол-во двоичных разрядов мантиссы	Число десятичных разрядов	Экспонента (бит)	Десятичный Е max	Смещение экспоненты ^[1]	E min	E max	Примечания
binary16	Половинная точность	2	11	3.31	5	4.51	24-1 = 15	-14	+15	Не основной
binary32	Одинарная точность	2	24	7.22	8	38.23	2 ⁷ -1 = 127	-126	+127	
binary64	Двойная точность	2	53	15.95	11	307.95	2 ¹⁰ -1 = 1023	-1022	+1023	
binary128	Четырёхкратная точность	2	113	34.02	15	4931.77	2 ¹⁴ -1 = 16383	-16382	+16383	
binary256	Восьмикратная точность	2	237	71.34	19	78913.2	2 ¹⁸ -1 = 262143	-262142	+262143	Не основной
decimal32		10	7	7	7.58	96	101	-95	+96	Не основной
decimal64		10	16	16	9.58	384	398	-383	+384	
decimal128		10	34	34	13.58	6144	6176	-6143	+6144	

Вычисление ряда

$$\sum_{x=1}^{len} \frac{6}{\pi^2 x^2}$$

\$ mpirun -n [processes] ./series [seriesLength]

- Проверить аргументы
- Разослать seriesLength
- Посчитать
- Собрать результат
- Вывести

[RES] 1.00000 [TIME] 1.85353

Арифметика с плавающей запятой

Лисицын Сергей МФТИ 2020г.