UCI Adult Income Dataset - Exploratory band Descriptive Analysis

In this notebook, we carry out an in-depth exploratory and descriptive analysis of the UCI Adult Income Dataset, a widely used dataset for income prediction tasks based on individual demographic and employment attributes.

This phase of analysis is essential for uncovering patterns, detecting potential biases, and gaining intuition about the dataset's structure before applying any modelling procedures. We examine the distribution of key numerical and categorical variables, investigate relationships between demographic features and income levels, and use visualizations to summarize insights. Particular focus is placed on income disparities across **age groups**, **geographical regions**, **races**, **and education-occupation combinations**, helping lay a solid foundation for downstream modeling and policy-relevant interpretation.

We begin our analysis by importing the core Python libraries required for data handling, numerical computation, visualization, and directory management:

- pandas: Enables efficient manipulation, filtering, and aggregation of structured tabular data, forming the backbone of our analysis pipeline.
- numpy: Provides support for fast numerical operations, array-based computation, and statistical routines.
- os: Facilitates interaction with the file system, allowing us to construct flexible and portable directory paths for data and output management.
- plotly.express: A high-level graphing library that enables the creation of interactive, publication-quality visualizations, which we use extensively to uncover patterns and present insights throughout the notebook.

```
# Import libraries
import os
import pandas as pd
import numpy as np
import plotly.express as px
```

Define and Create Directory Paths

To ensure reproducibility and organized storage, we programmatically create directories if they don't already exist for:

- raw data
- · processed data
- results
- documentation

These directories will store intermediate and final outputs for reproducibility.

```
# get woorking directory
Current_dir = os.getcwd()
# Go one directory up to the root directory
project_root_dir = os.path.dirname(Current_dir)
# Define paths to the data files
data_dir = os.path.join(project_root_dir, 'data')
raw_dir = os.path.join (data_dir, 'raw')
processed_dir = os.path.join(data_dir,'processed')
# Define paths to results folder
results_dir = os.path.join(project_root_dir, 'results')
# define paths to docs folder
docs_dir = os.path.join(project_root_dir, 'docs')
# create directories if they do not exist
os.makedirs(raw_dir, exist_ok = True)
os.makedirs(processed_dir, exist_ok = True)
os.makedirs(results_dir, exist_ok = True)
os.makedirs(docs_dir, exist_ok = True)
```

Loading the Cleaned Dataset

We load the cleaned version of the UCI Adult Income Dataset from the processed data directory into a Pandas DataFrame. The head(10) function shows the first ten records, giving a glimpse into the data columns such as age, workclass, education_num, etc.

```
adult_data_filename = os.path.join(processed_dir, "adult_cleaned.csv")
adult_df = adult_df = pd.read_csv(adult_data_filename)
adult_df.head(10)
```

	age	workclass	fnlwgt	education_num	marital_status	relationship	race	sex
0	39	state-gov	77516	13	single	single	white	male
1	50	self-employment	83311	13	married	male-spouse	white	$_{\mathrm{male}}$
2	38	private	215646	9	divorced or separated	single	white	male
3	53	private	234721	7	married	male-spouse	black	male
4	28	private	338409	13	married	female-spouse	black	female
5	37	private	284582	14	married	female-spouse	white	female
6	49	private	160187	5	divorced or separated	single	black	female
7	52	self-employment	209642	9	married	male-spouse	white	male
8	31	private	45781	14	single	single	white	female
9	42	private	159449	13	married	male-spouse	white	$_{\mathrm{male}}$

Check the shape of the dataset and datatype

Here, we examine the structure of the dataset:

- There are 32,513 entries and 16 variables.
- The dataset includes both numerical (e.g., age, hours_per_week) and categorical variables (e.g., sex, education_level).

Understanding data types and null entries is essential before proceeding with analysis.

adult_df.shape

(32514, 16)

adult_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32514 entries, 0 to 32513
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	age	32514 non-null	int64
1	workclass	32514 non-null	object
2	fnlwgt	32514 non-null	int64
3	education_num	32514 non-null	int64
4	marital_status	32514 non-null	object
5	relationship	32514 non-null	object
6	race	32514 non-null	object

```
7
                        32514 non-null
                                         object
     sex
8
     capital_num
                        32514 non-null
                                         int64
9
                        32514 non-null
                                         int64
     capital_loss
    hour_per_week
                        32514 non-null
 10
                                         int64
 11
     income
                        32514 non-null
                                         object
     education level
 12
                        32514 non-null
                                         object
 13
     occupation group
                        32514 non-null
                                         object
 14
    native_region
                        32514 non-null
                                         object
 15
    age_group
                        32514 non-null
                                         object
dtypes: int64(6), object(10)
```

memory usage: 4.0+ MB

Summary Statistics: Numerical Variables

This summary provides a snapshot of key distribution characteristics. We see that:

- Age ranges from 17 to 90, with a mean of 38.6 years. It is slightly right-skewed (positively skewed). While the average age is approximately 38.6 years, an examination of the percentiles reveals that the majority of individuals are clustered in the younger to middleage range, with fewer observations in the older age brackets. This skewed age distribution might suggest labor force participation is concentrated in specific age groups, which could reflect broader demographic or economic realities.
- Capital gains/losses are highly skewed, with most values at 0 (the 75th percentile is 0). This indicates that a small number of individuals report very large gains or losses, especially evident in the capital gain variable which reaches up to \$99,999. These variables act as proxies for wealth-related income that goes beyond regular wages or salaries. Individuals with non-zero values for capital gains or losses often represent a distinct socioeconomic subset of the population — typically more financially literate, or with access to investment assets. The stark inequality in their distributions mirrors real-world disparities in asset ownership and investment returns.
- The dataset has individuals working anywhere from 1 to 99 hours per week, with a median of 40. This aligns with the standard full-time work week in many countries (8 hours per day for 5 working days). The mean is slightly above that at 40.4 hours, suggesting a mild right skew, with a small subset of individuals working significantly longer hours. The mode is also 40, further reinforcing the prevalence of full-time work. A non-trivial number of individuals report working very few hours, possibly due to part-time work, unemployment, or semi-retirement. On the other extreme, some report working more than 45 hours per week, which may indicate multiple jobs, weekend-work, self-employment, or informal labor, and could reflect socio economicecessity.

```
adult_df.describe()
```

	age	fnlwgt	education_num	$capital_num$	$capital_loss$	hour_per_week
count	32514.000000	3.251400e+04	32514.000000	32514.000000	32514.000000	32514.000000
mean	38.589746	1.897964e + 05	10.081626	1079.206619	87.430030	40.440949
std	13.639033	1.055780e + 05	2.571975	7390.514416	403.237687	12.349994
\min	17.000000	1.228500e + 04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178330e + 05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783630e + 05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370615e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e + 06	16.000000	99999.000000	4356.000000	99.000000

Categorical Variables

adult_df.describe(include="object")

	workclass	marital_status	relationship	race	sex	income	education_level	oco
count	32514	32514	32514	32514	32514	32514	32514	325
unique	8	4	5	5	2	2	8	5
top	private	married	male-spouse	white	male	$\leq =50k$	secondary-school graduate	wh
freq	22650	14984	13178	27772	21758	24678	10484	165

adult_df['workclass'].value_counts()

```
workclass
private
                   22650
self-employment
                   3656
local-gov
                   2093
unknown
                   1836
state-gov
                   1298
government
                    960
voluntary
                     14
                      7
unemployment
Name: count, dtype: int64
```

adult_df['workclass'].value_counts(normalize=True)

workclass

private 0.696623 self-employment 0.112444 local-gov 0.064372 unknown 0.056468 state-gov 0.039921 government 0.029526 voluntary 0.000431 unemployment 0.000215 Name: proportion, dtype: float64

adult_df['marital_status'].value_counts(normalize=True)

marital_status

married 0.460848 single 0.327705 divorced or separated 0.180907 widowed 0.030541 Name: proportion, dtype: float64

adult_df['relationship'].value_counts(normalize=True)

relationship

male-spouse 0.405302
single 0.360706
own-child 0.155595
female-spouse 0.048225
extended-relative 0.030172
Name: proportion, dtype: float64

adult_df['marital_status'].value_counts(normalize=True)

 ${\tt marital_status}$

married 0.460848 single 0.327705 divorced or separated 0.180907 widowed 0.030541 Name: proportion, dtype: float64

adult_df['race'].value_counts(normalize=True)

Name: proportion, dtype: float64

Income Distribution

Given that income is the target variable, most of the analysis hereafter will be based on it. We first of all examine the income distribution in the dataset.

This pie chart visualizes the overall income split: 76% of individuals earn 50K, while 24% earn >50K. This means that nearly 3 out of 4 individuals fall into the lower income bracket (<=50K). This shows that there is a significant imbalance.

```
adult_df_Income = adult_df.groupby('income').size().reset_index(name='total')
adult_df_Income
```

	income	total
0	<=50k	24678
1	>50k	7836

```
fig = px.pie(adult_df_Income, names='income', values='total', title='Overall Income Distribut
fig.show()
```

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

Income by Age Group

The bar chart visualizes the income distribution across age groups, using percentages within each group. There is an evident pattern in terms of income progression over the years with a gradual increase in terms of the number of people earning $>50\mathrm{K}$ starting from 0 amongst those aged 18 and below, peaking between 36 and 60 years, then declining after 60 years but not to zero.

All individuals under 18 earn $<=50 \mathrm{K}$, likely due to being students, minors, or ineligible for full-time employment. Extremely few young adults (2.1%) exceed $50 \mathrm{K}$, as most are early in their careers, pursuing education, or in entry-level jobs. For the 26-35 age group, there's a noticeable improvement — roughly 1 in 5 individuals in this group earn $>50 \mathrm{K}$, reflecting early career progression and accumulation of qualifications/experience. A substantial income increase is seen in the 36-45 age group: over a third now earn $>50 \mathrm{K}$. This is typically considered prime earning age where individuals settle into stable, higher-paying positions. Highest proportion of $>50 \mathrm{K}$ earners is seen amongst individuals aged between 46 and 60— nearly 4 in 10. This reflects career maturity, peak seniority levels, and accumulated experience. There's a drop-off in high incomes as many transition to retirement, part-time, or less demanding roles in the age group 61-75. Yet about 1 in 4 still earn $>50 \mathrm{K}$. Most in 76+ age group earn $<=50 \mathrm{K}$, likely due to retirement, pensions, or fixed incomes — but a small minority still earn higher incomes, possibly through continued work or investments.

adult_df_Income_age = adult_df.groupby(['age_group','income']).size().reset_index(name='total
adult_df_Income_age

	age_group	income	total_by_age
0	18-25	<=50k	5334
1	18-25	>50 k	114
2	26-35	$\leq =50k$	6910
3	26-35	>50k	1591
4	36-45	$\leq =50k$	5230
5	36-45	>50k	2771
6	46-60	$\leq =50k$	4479
7	46-60	>50 k	2809
8	61-75	$\leq =50k$	1580
9	61-75	>50k	511
10	76+	$\leq =50k$	200
11	76+	>50 k	40
12	<18	$\leq =50k$	945

total_per_group = adult_df_Income_age.groupby('age_group')['total_by_age'].transform('sum')
adult_df_Income_age['percentage'] = (adult_df_Income_age['total_by_age']/total_per_group)*10
adult_df_Income_age

	age_group	income	total_by_age	percentage
0	18-25	<=50k	5334	97.907489
1	18-25	>50k	114	2.092511

	age_group	income	total_by_age	percentage
2	26-35	<=50k	6910	81.284555
3	26-35	>50k	1591	18.715445
4	36-45	$\leq =50k$	5230	65.366829
5	36-45	>50k	2771	34.633171
6	46-60	$\leq =50k$	4479	61.457190
7	46-60	>50k	2809	38.542810
8	61-75	$\leq =50k$	1580	75.561932
9	61-75	>50k	511	24.438068
10	76+	$\leq =50k$	200	83.333333
11	76+	>50k	40	16.666667
12	<18	$\leq =50k$	945	100.000000

```
fig = px.bar(
    adult_df_Income_age,
    x = 'age_group',
    y = 'percentage',
    color = 'income',
    title='Income Distribution by Age Group(%)',
    barmode='group',
    color_discrete_sequence=px.colors.sequential.RdBu,
    text='percentage'
)
fig.update_traces(texttemplate = '%{text:.2f}%')
fig.show()
```

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

```
themes = ["plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn", "simple_white", "protection theme in themes:
    fig.update_layout(template=theme)
    fig.show()
```


adult_df_income_native_region = adult_df.groupby(['native_region', 'income']).size().reset_income_native_region

	$native_region$	income	$total_income_distr$
0	asia	<=50k	465
1	asia	>50 k	206
2	central america	$\leq =50k$	466
3	central america	>50k	58
4	europe	$\leq =50k$	369
5	europe	>50k	152
6	north america	$\leq =50k$	22769
7	north america	>50k	7250
8	other	$\leq =50k$	435
9	other	>50k	146
10	south america	$\leq =50k$	174
11	south america	>50k	24

Asia (30.7%) and Europe (29.2%) have the highest proportions of high-income earners. This suggests these immigrant groups might be better integrated into high-paying professional roles, or may represent a more skilled migrant profile in the dataset. Central America (11.1%) and South America (12.1%) have the lowest proportions of >50K earners. With 24.2% of North

Americans earning $>50 \mathrm{K}$, this serves as a middle-ground baseline. Interestingly, both Asian and European groups outperform the native-born population proportionally in high-income brackets. The 'Other' group sits around 25.1%, close to North America's rate. This likely reflects a diverse mix of regions not explicitly listed.

adult_df_income_native_region = adult_df.groupby(['native_region', 'income']).size().reset_income_native_region

	$native_region$	income	$total_income_distr$
0	asia	<=50k	465
1	asia	>50 k	206
2	central america	$\leq =50k$	466
3	central america	>50k	58
4	europe	$\leq =50k$	369
5	europe	>50k	152
6	north america	$\leq =50k$	22769
7	north america	>50k	7250
8	other	$\leq =50k$	435
9	other	>50k	146
10	south america	$\leq =50k$	174
11	south america	>50 k	24

total_per_region = adult_df_income_native_region.groupby('native_region')['total_income_dist
adult_df_income_native_region['percentage'] = (adult_df_income_native_region['total_income_d
adult_df_income_native_region

	native_region	income	$total_income_distr$	percentage
0	asia	<=50k	465	69.299553
1	asia	>50 k	206	30.700447
2	central america	$\leq =50k$	466	88.931298
3	central america	>50 k	58	11.068702
4	europe	$\leq =50k$	369	70.825336
5	europe	>50 k	152	29.174664
6	north america	$\leq =50k$	22769	75.848629
7	north america	>50 k	7250	24.151371
8	other	$\leq =50k$	435	74.870912
9	other	>50 k	146	25.129088
10	south america	$\leq =50k$	174	87.878788
11	south america	>50k	24	12.121212

```
import plotly.express as px
fig = px.bar(
   adult_df_income_native_region,
   x='native_region',
   y='percentage',
   color='income',
   title='Income Distribution By Native Region (%)',
   barmode='group',
    color_discrete_sequence=['black', 'yellow'],
   text='percentage',
    width=700,
   height=600,
fig.update_traces(texttemplate='%{text:.2f}%')
fig.update_layout(template= 'presentation',paper_bgcolor= "rgba(0,0,0,0)",plot_bgcolor = "rg
fig.write_image(os.path.join(results_dir,'income_distribution_bar_plot.jpg'))
fig.write_image(os.path.join(results_dir,'income_distribution_bar_plot.png'))
fig.write_html(os.path.join(results_dir,'income_distribution_bar_plot.html'))
fig.show()
```


Asian or Pacific Islander (26.6%) and White (25.6%) populations have the highest proportions of >50K earners. Asians/Pacific Islanders marginally outperform Whites, a pattern often attributed to occupational concentration in high-paying sectors like technology and medicine. On the other hand, American Indian or Eskimo (11.6%), Black (12.4%), and Other (9.2%) groups show significantly lower rates of high-income earners. These figures reflect long-standing economic disparities rooted in historical exclusion, occupational segregation, and systemic inequality.

```
adult_df_income_race = adult_df.groupby(['race', 'income']).size().reset_index(name='total_income_race)
adult_df_income_race
```

	race	income	$total_income_distr$
0	american indian or eskimo	<=50k	275
1	american indian or eskimo	>50k	36
2	asian or pacific islander	$\leq =50k$	762
3	asian or pacific islander	>50k	276
4	black	$\leq =50k$	2735
5	black	>50k	387
6	other	$\leq =50k$	246
7	other	>50k	25
8	white	$\leq =50k$	20660
9	white	>50k	7112

total_per_race= adult_df_income_race.groupby('race')['total_income_distr'].transform('sum')
adult_df_income_race['percentage'] = (adult_df_income_race['total_income_distr']/total_per_radult_df_income_race

	race	income	$total_income_distr$	percentage
0	american indian or eskimo	<=50k	275	88.424437
1	american indian or eskimo	>50k	36	11.575563
2	asian or pacific islander	$\leq =50k$	762	73.410405
3	asian or pacific islander	>50k	276	26.589595
4	black	$\leq =50k$	2735	87.604100
5	black	>50k	387	12.395900
6	other	$\leq =50k$	246	90.774908
7	other	>50k	25	9.225092
8	white	$\leq =50k$	20660	74.391473
9	white	>50 k	7112	25.608527

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html

The stark differences in high-income proportions:

- Between Whites and Blacks: 25.6% vs 12.4% slightly over double the proportion.
- Between Asians and Others: 26.6% vs 9.2% nearly triple.

These disparities are consistent with well-documented wage gaps and underrepresentation of marginalized groups in higher-paying roles.

```
adult_df_income_edu_occ = adult_df.groupby(['education_level', 'occupation_group', 'income']
adult_df_income_edu_occ
```

	education_level	occupation_group	income	total
42	secondary-school graduate	blue collar	<=50k	3976
71	tertiary	white collar	>50k	3545
70	tertiary	white collar	$\leq =50k$	3369
60	some-college	white collar	$\leq =50k$	3004
50	secondary-school graduate	white collar	$\leq =50k$	2900
39	secondary	unknown	>50k	3
35	secondary	military	>50k	2
16	high school	unknown	>50k	2
14	high school	service	>50k	1
27	primary	service	>50 k	1

From the bar chart, we can pick out the largest groups per income-level. We see that secondary-school graduates working a blue collar job occupy the largest group in the dataset (3976). This reflects a common socio-economic profile: individuals with basic schooling in manual or technical trades predominantly earning lower incomes. The largest high-income group are tertiary-educated individuals in white collar roles. This highlights the strong earning advantage conferred by higher education and skilled jobs.

	education_level	occupation_group	income	total	edu_occ
42	secondary-school graduate	blue collar	<=50k	3976	secondary-school graduate blue collar
71	tertiary	white collar	>50k	3545	tertiary white collar
70	tertiary	white collar	$\leq =50k$	3369	tertiary white collar
60	some-college	white collar	$\leq =50k$	3004	some-college white collar
50	secondary-school graduate	white collar	$\leq =50k$	2900	secondary-school graduate white collar
			•••	•••	
39	secondary	unknown	>50k	3	secondary unknown
35	secondary	military	>50k	2	secondary military
16	high school	unknown	>50k	2	high school unknown
14	high school	service	>50k	1	high school service
27	primary	service	>50 k	1	primary service

adult_df_income_edu_occ.head(15)

	education_level	occupation_group	income	total	edu_occ
42	secondary-school graduate	blue collar	<=50k	3976	secondary-school graduate blue collar
71	tertiary	white collar	>50k	3545	tertiary white collar
70	tertiary	white collar	$\leq =50k$	3369	tertiary white collar
60	some-college	white collar	$\leq =50k$	3004	some-college white collar
50	secondary-school graduate	white collar	$\leq =50k$	2900	secondary-school graduate white collar
52	some-college	blue collar	$\leq =50k$	1503	some-college blue collar
46	secondary-school graduate	service	$\leq =50k$	1276	secondary-school graduate service
32	secondary	blue collar	$\leq =50k$	1182	secondary blue collar
8	associate	white collar	$\leq =50k$	1015	associate white collar
61	some-college	white collar	>50k	858	some-college white collar
43	secondary-school graduate	blue collar	>50 k	796	secondary-school graduate blue collar
56	some-college	service	$\leq =50k$	769	some-college service

51 secondary-school graduate white collar >50k 731 secondary-school graduate white collar 23 primary blue collar <=50k 634 primary blue collar 36 secondary service <=50k 554 secondary service		education_level	occupation_group	income	total	edu_occ
between the secondary service	23	primary		<=50k	634	primary blue collar

fig=px adult_df_income_edu_occ.head(15),

```
(
               education_level occupation_group income
                                                          total
42
     secondary-school graduate
                                     blue collar
                                                   <=50k
                                                           3976
71
                                    white collar
                                                    >50k
                                                           3545
                      tertiary
70
                                                   <=50k
                      tertiary
                                    white collar
                                                           3369
                                                   <=50k
60
                  some-college
                                    white collar
                                                           3004
50
     secondary-school graduate
                                    white collar
                                                   <=50k
                                                           2900
52
                  some-college
                                     blue collar
                                                   <=50k
                                                           1503
46
     secondary-school graduate
                                         service
                                                   <=50k
                                                           1276
32
                     secondary
                                     blue collar
                                                   <=50k
                                                           1182
8
                                                   <=50k
                     associate
                                    white collar
                                                           1015
61
                  some-college
                                    white collar
                                                    >50k
                                                            858
43
     secondary-school graduate
                                     blue collar
                                                    >50k
                                                            796
                                                   <=50k
56
                  some-college
                                         service
                                                            769
51
     secondary-school graduate
                                    white collar
                                                    >50k
                                                            731
23
                       primary
                                     blue collar
                                                   <=50k
                                                            634
                                                  <=50k
36
                     secondary
                                         service
                                                            554
                                       edu_occ
42
      secondary-school graduate | blue collar
71
                      tertiary | white collar
70
                      tertiary | white collar
60
                  some-college | white collar
     secondary-school graduate | white collar
50
52
                   some-college | blue collar
46
          secondary-school graduate | service
32
                      secondary | blue collar
8
                     associate | white collar
61
                  some-college | white collar
43
      secondary-school graduate | blue collar
56
                       some-college | service
51
     secondary-school graduate | white collar
23
                        primary | blue collar
36
                           secondary | service
```

```
num= 15
adult_df_combos = adult_df_income_edu_occ.head(num)
fig = px.bar(
   adult_df_combos,
   x = 'total',
   y = 'edu_occ',
   color = 'income',
    orientation = 'h',
   title = f'Top{num} Education and Occupation Groups Combinations by Income Group',
   # barmode = 'group',
   height = 500,
   width=1100,
    color_discrete_sequence=px.colors.sequential.RdBu,
   text = 'total'
fig.update_layout(template="presentation", xaxis_title='Number of Individuals',
                  yaxis_title='Education | Occupation Group',
                  legend_title=dict(text='Income Level'),
                margin=dict(1=450, r=50, t=50, b=50))
fig.write_image(os.path.join(results_dir,'income_Distribution_by_nativeregion_bar_plot.jpg')
fig.write_image(os.path.join(results_dir,'income_Distribution_by_nativeregion_bar_plot.png')
fig.write_html(os.path.join(results_dir,'income_Distribution_by_nativeregion_bar_plot.html')
fig.show()
```


Top15 Education and Occupation Groups Combinations by Income Group

Some of the key patterns we can get from the dataset are:

- Education matters, but isn't deterministic Tertiary education combined with white-collar work offers the highest income prospects. Yet a substantial number of tertiary-educated white-collar workers earn <=50K, likely early career, part-time, or structural pay gaps.
- Blue-collar and service work predominantly pay <=50K, regardless of education. Even some college education doesn't guarantee high incomes in these sectors. Manual and service sector income is highly occupation-dependent (some skilled trades can break the 50K mark).
- Some non-tertiary education groups do reach >50K Secondary-school graduates in blue-collar and white-collar work have decent representation among >50K earners. This reflects upward mobility possible through skilled trades, tenure, or niche roles.