QUIZ #1

Nombre:

1. Considere la siguiente gráfica y complete lo que se solicita. En caso que algún límite no exista indique la razón.

a)
$$\lim_{x \to -8} f(x)$$

e) $\lim_{x \to -3} f(x)$

 $\lim_{x\to 14} f(x)$

b) $\lim_{x \to -3^-} f(x)$

f) $\lim_{x \to 4^-} f(x)$

j) f(0)

c) $\lim_{x \to -3^+} f(x)$

 $g) \quad \lim_{x \to 4^+} f(x)$

 $k) \quad \lim_{x \to 0^-} f(x)$

d) f(-3)

h) f(4)

 $\lim_{x\to 11^-} f(x)$

2. Calcule los siguientes límites (5 puntos c/u)

a)
$$\lim_{x \to 2} \frac{x^4 - 4x^2}{x^2 - 5x + 6}$$

b)
$$\lim_{x\to 0} \frac{(x+3)^2-9}{x^2+x}$$

c)
$$\lim_{x \to -1} \frac{2x^2 - x - 3}{x^3 + 2x^2 - 5x - 6}$$

d)
$$\lim_{x \to 5} \frac{2x^2 - 50}{x - \sqrt{4x + 5}}$$

3. Determine la pendiente de la recta tangente a $f(x) = \sqrt{x+6}$ en el punto donde x=3. Use la derivada como un límite. (5p)

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

4. Aplique las reglas de derivación y calcule la derivada en cada caso:

a)	f(x) =	$\frac{10}{r^2}$	$15\sqrt[5]{x}$ –	$5x^{3}$ —	12 <i>x</i>	(4p)

b)
$$g(x) = \frac{4x^3 + 7x - 4}{\sqrt[3]{x}}$$
 (4p)

c)
$$y = (3x^2 - 2x)^6$$
 (3p)

d)
$$f(x) = \sqrt{5x^2 - x}$$
 (3p)

e)
$$y = 2x\sqrt{1-x}$$
 (4p)

f)
$$y = \left(\frac{2x}{x-2}\right)^4$$
 (4p)