From Stationarity to Deep Learning: A Comparative Framework for Stock Price and Volatility Forecasting

Vishvas Ranjan

Table of contents

Time-Series Model	3
Introduction	3
Zero-mean models	4
IID noise:	4
Simple Symmetric Random Walk:	4
Models with trends and seasonality	5
Population of the USA, 1790-1990	6
Level of Lake Huron 1875–1972	11
Stationary Models	13
Examples:	15
Sample Autocorrelation Function	21
Illustration of Sample ACF through IID $N(0,1)$ noise	22
Lake Huron Residuals Modeling Process	29
Estimation and Elimination of Trend and Seasonal Components	36
Estimation and Elimination of Trend in the Absence of Seasonality	37
Trend Estimation	37
Trend Elimination by Differencing	39
Estimation and Elimination of Both Trend and Seasonality $\ \ldots \ \ldots$	41
Estimation of Trend and Seasonal components	41
Elimination of Trend and Seasonal Components by Differencing .	42

Testing the Estimated Noise Sequence	44
Basic Properties of Stationary Processes	44
Non-Negative Definite Functions	44
Autocovariance Characterization	44
Remarks:	45
Properties of Strictly Stationary Series $\{X_t\}$	45
Constructing Strictly Stationary Time Series via Filtering:	45
The MA(q) Process \dots	46
Proposition 1:	46
Linear Processes	46
Properties of Linear Processes	46
Proposition 2	47
Proof:	47
Remark:	48
AR(1) Process	49
Remark	51
ARMA Processes	52
Definition of ARMA(1,1) process	52
Invertibility:	53
Properties of the sample mean and autocorrelation function	54
Estimation of Sample mean μ	54
Proposition 3	55
Estimation of Autocovariance $\gamma(\cdot)$ and Autocorrelation $\rho(\cdot)$ Functions	56
Example 1: IID Noise	57
Example 2: An MA(1) Process	60
GARCH Process	61
Definition: $GARCH(p,q)$	61
LSTM Neural Network	62

Comparing Forecasting through ARMA-GARCH with LSTM on	
Time-Series Data	62
LSTM Model	63
Data Preprocessing	63
Model Training and Forecasting	65
Visual Analysis of Actual vs Predicted (Forecasted) Closing Prices	66
ARMA Method	72
Volatility Prediction	76
Volatility Prediction through ARMA-GARCH:	77
Volatility Prediction through LSTM-GARCH	82
Conclusion: Methodological Synergy and Divergence	87

Time-Series Model

Introduction

A time series model specifies how the random variables $\{X_t\}$ behave jointly over time. This can be done in two main ways:

- 1. Full Joint Distribution: The model might completely specify the joint probability distribution of $\{X_t\}$.
- 2. Moments (Means and Covariances): In many practical situations, especially when dealing with linear processes or Gaussian assumption: it is sufficient to specify just the means and covariances (or autocovariances) of the process. This is because for Gaussian processes, the mean and covariance completely determine the joint distribution.

Definition

A time series model for the observed data $\{x_t\}$ is a specification of the joint distributions (or possibly only the means and covariances) of a sequence of random variables $\{X_t\}$ of which $\{x_t\}$ is postulated to be a realization. Here, x_t is the single outcome of stochastic process X_t .