Nama / NPM Mahasiswa 1: / / /	Nama / NPM Mahasiswa 2: / Kelas :
PR 2 Analisis Numerik	Apabila sebuah matriks $$ (misalkan A) memiliki faktorisasi Cholesky, dikatakan
Cholesky Factorization [3 poin]	bahwa matriks tersebut definit Namun, apabila
Cari matriks G sehingga $A=GG^{T}$ dengan faktorisasi Cholesky di mana $A=\begin{pmatrix} 4&-2&0\\-2&2&-3\\0&-3&10 \end{pmatrix}$	ketika setelah dikalikan dengan -1 (misalkan menjadi $-A$) baru dapat memiliki
	faktorisasi Cholesky, matriks tersebut definit .
	Least Square Problem [4 poin]
Tunjukkan langkah-langkah yang Anda lakukan.	Di Scele telah tersedia tiga buah source code bernama normaleqnsolve.m, householdersolver.m, dan givensrotationsolver.m yang berguna untu menyelesaikan least square problem. Lengkapi baris yang ditandai % TODO pada source code dan tuliskan di kolom yang disediakan di bawah.
	householdersolver.m baris 32
	givensrotationsolver.m baris 22 dan baris 23
	Dengan memanfaatkan program tersebut, selesaikan SPL $Ax=b$ di bawah
	$\begin{pmatrix} 3 & -1 & 2 \\ 4 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 1 & 5 \\ -2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 0 \\ 7 \\ 1 \end{pmatrix}$

Disclaimer:

yang memiliki solusi eksak

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Perhatikan bahwa karena ada nilai eksak yang memenuhi SPL yang *overdetermined* ini, kita peroleh nilai minimal $||b-Ax||_2$ adalah 0. Jalankan program yang telah Anda lengkapi dengan parameter A dan b di atas dan tuliskan keluaran apa yang diberikan oleh masing-masing program. Hitung pula *absolute error* $e(\hat{x}) = ||\hat{x} - x||_2$ dari masing-masing hasil komputasi \hat{x} terhadap solusi eksak x.

	Normal Equation	Householder	Givens Rotation
\hat{x}			
R			
qb			
$e(\hat{x})$			

Note: gunakan perintah format long pada MATLAB/Octave agar hasil komputasi yang ditampilkan lebih akurat.

Floating Point Operations [3 poin]

Dalam komputasi numerik, operasi yang paling memakan waktu adalah operasioperasi *floating-point* (FLOPs := *floating point operations*) yang dilakukan saat menjalankan algorima. FLOPs yang sering muncul adalah operasi aritmatika. Perhatikan bahwa satu FLOP adalah perhitungan untuk satu buah operasi dua buah bilangan *floating-point*.

Sebagai contoh, pada potongan kode

```
>> a = 1.3;
>> b = 2.1;
>> c = a + b;
```

Banyak FLOP yang dijalankan adalah 1, yaitu penjumlahan dua bilangan *floating-point* pada baris ketiga. Perhatikan bahwa baris pertama dan kedua tidak ada FLOP yang dilakukan.

```
Sementara itu, pada potongan kode

>> a = [0.3; 0.1; 0.4; 0.2];

>> b = [1.2; 1.3; 0.3; -0.2]

>> c = a + b;
```

Banyak FLOP yang dilakukan adalah 4 buah dari menghitung a + b, di mana terjadi 4 buah penjumlahan *floating-point*; satu untuk masing-masing komponen yang bersesuaian.

Untuk menghitung FLOPs dari suatu implementasi algoritma, Anda selalu dapat menghitungnya langsung dari implementasi algoritmanya pada MATLAB/Octave. Sebagai contoh, berikut adalah contoh implementasi *forward elimination*:

```
1 function [x] = fe(L, b)
       % :param L: lower triangle matrix
      % :param b: vector
 3
      % :return x: vector such that L * x = b
      [n n] = size(L);
      x = zeros(n, 1);
       for i = 1 : n
 8
          x(i) = b(i);
 9
          for j = 1 : i-1
              x(i) = x(i) - L(i, j) * x(j);
10
           endfor
11
          x(i) = x(i) / L(i, i);
12
13
       endfor
14 endfunction
```

Mari kita analisis algoritma ini. Anda melakukan $for\ loop\$ dengan variabel i dari 1 hingga n. Dalam $loop\$ ini dilakukan $for\ loop\$ lagi dengan variabel i dari i hingga i- i. Di dalam $loop\$ terakhir, pada setiap iterasi terdapat dua FLOP : satu pengurangan dan satu perkalian. Di luar $loop\$ tersebut, ada satu buah FLOP : satu pembagian. Anda dapat menghitung banyak FLOP pada program ini dalam n (ukuran matriks) dengan formula berikut :

$$\sum_{i=1}^{n} \left(1 + \sum_{j=1}^{i-1} 2 \right)$$

Jika ekspresi sigma kita evaluasi dan disederhanakan, hasilnya adalah

$$\sum_{i=1}^{n} (1 + 2(i-1)) = \sum_{i=1}^{n} (2i-1) = 2\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = 2\frac{n(n+1)}{2} - n = n^{2}$$

Sehingga diperoleh banyak FLOPs yang dilakukan program di atas tepat n^2 FLOPs.

Misalkan α, β adalah skalar, \vec{u}, \vec{v} adalah vektor $N \times 1$, A matriks $M \times N$, B matriks $N \times L$, dan R matriks triangular berukuran $N \times N$. Anda dapat menggunakan tabel di bawah untuk membantu perhitungan jumlah FLOPs.

Operasi	#FLOPs		
$sign(\alpha), \alpha^2, \sqrt{\alpha}$	1		
$\alpha + \beta, \alpha - \beta, \alpha \cdot \beta, \alpha/\beta$	1		
$lpha*ec{u}$	N		
$\vec{u} + \vec{v}$, $\vec{u} - \vec{v}$	N		
$ec{u}^T * ec{v}$	2N - 1		
$\ \vec{v}\ _2$	2 <i>N</i>		
$A*\vec{v}$	M(2N-1)		
A*B	ML(2N-1)		
$A \backslash \vec{v}$	$\frac{2}{3}N^3$		
$R \backslash \vec{v}$	N ²		

Hitunglah jumlah FLOPs pada program householdersolver.m atau givensrotationsolver.m untuk menyelesaikan SPL over-determined Ax=b pada soal sebelumnya, untuk m=5 dan n=3.

Berikan penjelasan hitungan Anda dalam m dan n terlebih dahulu, kemudian						
substitusi nilai $m=5$ dan $n=3$ pada ekspresi yang Anda peroleh.						
uliskan secara eksplisit program apa yang akan Anda hitung FLOPs-nya.						