

ÉCOLE TECHNIQUE DES MÉTIERS DE LAUSANNE

2226 REGTHERMIQUE

PROJET ETML-ES

Neziri Taulant

16th June 2023

Contents

1	But du projet	4
2	Spécifications du projet 2.1 Schéma bloc 2.2 Planification 2.3 PCB(bloc 1 et 2) 2.4 Capteur(bloc 3) 2.5 Affichage + Régulation (bloc 4) 2.6 E/S	4 4 4 5 5 5 5
3	Tâches à réaliser	6
4	Jalons principaux	6
5	Livrables	6
6	Convention de nommage et liens 6.1 Stockage du fichier	7 7
7	Pré-étude7.1Résumé du projet7.2Schéma général du système	7 7 7
8	HMI (Human Machine Interaction) 8.1 Croquis du boîtier	8
9	Spécifications (Choix technologique) 9.1 Corps de chauffe 9.2 Ecran LCD 9.3 USB-UART (optionnel) 9.4 Capteurs de température 9.5 uC 9.6 Boîtier	8 9 9 10 10
10	Estimations des coûts	11
11	Planification	11
12	Conclusion et perspectives	11
	Conception schématique 13.1 Schéma électrique 13.2 Alimentations 13.2.1 Dimensionnement 13.3 HMI 13.4 Puissance 13.5 Régulation 13.6 Capteurs de température 13.7 uC 13.8 Conclusion 13.9 Modifications	12 12 13 13 15 16 17 18 19 20 20
14	Conception Hardware 14.1 Contraintes	21 21 21 22

$C{\rm HAPTER}\ -$

1	4.4 Montage	24
1	4.5 Modifications	24
15 S	oftware	25
1	5.1 Introduction	25
		25
	·	25
	5.4 Configuration des périphériques	27
		28
		29
16 T	Cest et Mesures	30
		30
		30
		30
		30
		31
		31
		31
		32
		33
		34
	**** * — ******* (**F ***, **F ***, ************	34
		34
		34
	ė t	34
		35
	6.16Mode d'emploi du système	36

1 BUT DU PROJET

Concevoir un système de régulation thermique dans un boîtier fermé pour les cours de REGL. L'utilisateur aura deux possibilités de réglages. La première pourra être effectuer via un générateur externe et des touches physiques (bouton, potentiomètre). La deuxième, se fera via USB.

2 SPÉCIFICATIONS DU PROJET

Voici les fonctions du projet représentés sous forme d'un schéma bloc.

2.1 SCHÉMA BLOC

Figure 1: Schéma bloc système de régulation PID

L'utilisateur aura le choix entre deux modes :

Mode 1 : (Configuration physique (Hardware)) L'utilisateur pourra utiliser les touches physiques (boutons poussoirs, potentiomètre) pour régler les paramètres du la régulation PID.

Mode 2 : (Configuration à distance) A l'aide d'un câble USB, l'utilisateur pourra relier le module de régulation à un PC. Ce dernier pourra ensuite configurer les paramètres de régulations à l'aide d'une interface Web graphique.

2.2 PLANIFICATION

Figure 2: Planification d'exemple

2.3 PCB(BLOC 1 ET 2)

Mode 1 : L'utilisateur pourra s'il le désire fournir une consigne via à un générateur de fonction externe ou directement paramétrer la période, la forme et la valeur crête de la consigne générée en interne par le PIC32. La régulation se fera dans ce même PIC32 en fonction de la valeur mesurée par l'un des capteurs (voir bloc 2), l'utilisateur pourra paramétrer le gain des trois composantes PID (Kp, Ki, Kd) via le bloc 4 afin de modifier la commande en sortie du μC.

Mode 2 : La consigne et le processus de régulation se feront via un script en python. Le PC recevra la valeur mesurée par l'un des capteurs (voir bloc 2) via USB et fournira la commande au système. Dans ce mode, le PIC32 est utilisé uniquement pour de l'affichage (voir bloc 4).

Mode 1 : et **Mode 2 :** : Les blocs 1 et 2 feront varier la puissance dissipée (via la commande) au travers de la résistance de puissance pour modifier la température ambiante. La résistance de puissance sera dissipée dans la partie isolée du boîtier. Le débit d'air pourra être modifié par l'utilisateur via le bloc 4 en mode 1.

2.4 CAPTEUR(BLOC 3)

Mode 1 : et **Mode 2 :** Le bloc capteur viendra mesurer la température produit par la résistance de puissance via deux sondes de température. L'une se trouvera à l'extrémité gauche du tube et l'autre sera près de la résistance de puissance. La valeur mesurée par une des sondes sera transmise soit au myRIO soit au PIC32 dépendant du mode.

2.5 AFFICHAGE + RÉGULATION (BLOC 4)

Mode 1 : L'écran pourra afficher différents menus gérés par des boutons et un encodeur incrémental. Ils permettront de régler le débit d'air du ventilateur, la consigne fournie par le PIC32 (forme, valeur crête et période du signal), les valeurs Kp / Ki / Kd et la source de la consigne (PIC32 ou générateur de fonction).

Mode 2 : La consigne, la commande et la mesure seront affichées sur un écran.

2.6 E/S

HMI (Human machine Interface):

- Une sortie analogique pour envoyer la consigne (pour affichage uniquement)
- Une sortie PWM pour envoyer la commande
- Une entrée analogique pour recevoir la mesure
- Un port USB pour communiquer avec le PIC32 en USB/UART

PIC32:

- Une entrée analogique pour recevoir la consigne
- Une sortie PWM pour envoyer la commande
- Deux entrées analogique pour recevoir la mesure
- Une sortie PWM pour modifier le débit d'air du ventilateur
- Une sortie PWM pour la commande de puissance du corps de chauffe
- Des entrées numériques pour gérer les boutons et le commutateur rotatif
- E/S numériques pour communiquer avec l'écran
- Deux E/S numériques pour communiquer avec le PC en UART -> USB

3 TÂCHES À RÉALISER

- 1. Concevoir le cahier des charges avec le supérieur technique
- 2. Déterminer les composants électroniques et mécaniques du projet
- 3. Faire un rapport de pré-étude
- 4. Concevoir un schéma électrique
- 5. Faire les plan 3D sur Solidworks des pièces mécaniques
- 6. Router le PCB sur Altium via le schéma électrique préalablement conçu
- 7. Concevoir un montage mécanique du projet, usiner ou faire usiner les pièces
- 8. Commander le PCB, les composants électroniques et les composants mécaniques
- 9. Monter les composants électroniques et les pièces mécaniques indispensables
- 10. Programmer le PIC32
- 11. Tester la carte, mise en service
- 12. Monter le reste des composants mécaniques
- 13. Tester le montage final dans les 2 modes

4 JALONS PRINCIPAUX

Voir planification 1.

5 LIVRABLES

- → Les fichiers sources de CAO électronique des PCB réalisés
- → Tout le nécessaire à fabriquer un exemplaire hardware de chaque
- → Fichiers de fabrication (GERBER) / liste de pièces avec références pour commande /implantation (prototype) / modifications / dessins mécaniques, etc
- → Les fichiers sources de programmation microcontrôleur (.c / .h)
- → Tout le nécessaire pour programmer les microcontrôleurs (logiciel ou fichier.hex)
- → Le cas échéant, les fichiers sources de programmation PC/Windows/Linux.
- → Le cas échéant, tout le nécessaire à l'installation de programmes sur PC/Windows/Linux.
- → Un mode d'emploi du système
- → Un calcul / estimation des coûts
- → Un rapport contenant les calculs dimensionnement de composants structogramme, etc

6 CONVENTION DE NOMMAGE ET LIENS

Le nom de ce fichier doit être unique et doit donc contenir le nom du projet avec le format suivant :

 $aaii_nomProjet - CDC_Vn.docx$

Avec:

→ CDC : pour Cahier des charges

→ aaii : numéro de projet, exemple 1708 pour projet de 2017 no 08

→ nomProjet : comme son nom l'indique

→ Vn: ou « n » indique la version du document

Exemple: $0910x_PICEthernet - CDC_V1.docx$

6.1 STOCKAGE DU FICHIER

Ce fichier sera stocké à la racine du dossier /doc d'un projet.

Ainsi, tous les fichiers de documentation faisant partie du projet sont centralisés dans le même répertoire.

7 Pré-étude

7.1 RÉSUMÉ DU PROJET

Basé sur le projet $2216_RegThermiqueMyRio$, dans le but de crée un régulateur de température PID compact et facile à utiliser. A la demande de M. Braun, seul le principe de régulation thermique PID devait être retenu. Le projet ayant comme objectif de fournir des outils pour les futurs cours de REGLAGES (REGL).

Le but du projet RegThermique est de crée un système de régulation thermique isolé. Dans l'intention d'avoir un outil pédagogique pour les cours de REGL. L'utilisateur devra pouvoir configurer/modifier manuellement les paramètres de régulation pour en observer les réactions.

7.2 SCHÉMA GÉNÉRAL DU SYSTÈME

Figure 3: Schéma du système

Le schéma ci-dessus est une approximation des futures fonctionnalités possibles. Il a principalement pour but de démontrer les différent mode d'utilisation et les blocs étant utilisé dedans.

8 HMI (HUMAN MACHINE INTERACTION)

Le système sera alimenté par une alimentation de laboratoire 30-60[V]/ 0-3[A]. Le boîtier contiendra une interface avec écran LCD ainsi que des boutons, potentiomètre. Permettant à l'utilisateur de faire le réglage des paramètres de régulation.

L'utilisateur pourra allumer et éteindre l'appareil. Il pourra également régler le "set point" de la température, la vitesse du fan et comme cité précédemment, les consignes de régulation. Un écran LCD permettra d'afficher les différent modes (Manuel, USB) ainsi que tous les paramètres de régulation.

Un port USB sera également disponible dans le cas d'une éventuelle utilisation via interface WEB.

8.1 Croquis du Boîtier

Figure 4: Croquis du boîtier

Le croquis de la Figure 4, représente mon approche sur la disposition des différents modules Hardware. Le dessin est arbitraire et ne représente pas entièrement tous les aspects de sa conception.

9 SPÉCIFICATIONS (CHOIX TECHNOLOGIQUE)

9.1 CORPS DE CHAUFFE

Afin de crée une régulation thermique, il est nécessaire d'avoir un corps de chauffe capable de fournir l'énergie recherchée. Selon la demande du C.d.c, le corps de chauffe doit être capable de réagir de manière rapide. Mon système peut être alimenté en 30-60 [V]/3 [A], souhaitant dissipé rapidement, je m'oriente sur une résistance de faible valeur : 5-10 $[\Omega]$.

Je détermine tout d'abord la puissance maximum dé livrable par l'alimentation :

$$P = U * I >> 60 * 3 = 180[W] \tag{1}$$

$$P = U * I >> 30 * 3 = 90[W]$$
 (2)

Suites à plusieurs tests effectués en atelier, j'ai conclu que les résistances de puissances avec corps en aluminium étaient à éviter en raison de leur inertie thermique.

Figure 5: Résistance de puissance

Les résistances cémentées sont quant à elle plus réactive en raison de leur corps en céramique.

9.2 ECRAN LCD

J'ai défini durant la pré-étude ce que je souhaite afficher pour le système. Sur cette base, j'ai décidé de choisir un écran LCD 4x20. Le chef de projet ayant donnée une consigne sur l'emplacement du LCD (posé sur PCB), cet LCD me convient donc parfaitement.

Figure 6: Ecran LCD (4x20)

Cet écran LCD consomme un courant maximum de 0.6 [mA] et dois être alimenté par une tension de 7[V] max. Ses caractéristiques conviennent donc au système.

9.3 USB-UART (OPTIONNEL)

Dans ce projet le deuxième mode permettra à l'utilisateur de connecter son PC afin de faire la configuration des paramètres de régulation.

Le port étant un USB 2.0 slave, un chip est nécessaire pour gérer la communication full-duplex. Ceci permettant la transmission des informations au uC.J'ai donc porté mon choix pour le CY7C64225- 28PVXC de chez infineon, le chip peut communiquer en Full Speed 12Mb/s.

L'utilisation d'un chip pour cette communication permet la simplification du design et du software

Figure 7: Transceiver UART

9.4 CAPTEURS DE TEMPÉRATURE

Pour effectuer une régulation, le système nécessite des capteurs de température précis et rapide. J'ai déterminer un capteur de 0.5[°C] ainsi que 10 bits de résolution convenable à mon application. Le capteur ayant un boîtier TO-92, les possibilité positionnement dans le boîtier sont larges.

Figure 8: Transceiver UART

9.5 UC

Afin de déterminer le microcontrôleur que je dois utiliser pour mon projet, il faut que je sache ce qu'il va devoir réaliser.

Dans le cadre de la régulation thermique, l'uC permettra de contrôler le corps de chauffe, le fan ainsi que les consignes PID de régulation. L'écran LCD sera également contrôlé par l'uC avec une communication parallèle.

Dans mon cas, le uC communique avec plusieurs modules en communication série :

- Capteurs de température, fan : Signaux analogiques
- (Port USB slave (IRH): UART) optionnel

Le Micro contrôleur doit posséder des pin GPIO et plusieurs ports de communication série. Pour se faire, je suis allé rechercher les possibilités de micro contrôleurs que me propose le fabricant Microchip et voici quelques exemples de micro contrôleur que je pourrais utiliser :

- PIC32MX370F512H (2-SPI/2-I2C/4-UART)
- ➡ PIC32MX250F128D (3-SPI/4-I2C/6-UART)
- PIC32MX795F512L (4-SPI/5-I2C/6-UART)

En vue de la situation actuelle dans le monde des semi-conducteurs, M.Bovey, m'as proposé de choisir le **PIC32MX250F128D** car c'est un 44 pins ayant toutes les fonctionnalités nécessaires pour le projet omis un convertisseur DAC(qui sera en externe).

Figure 9: Micro contrôleur PIC32

9.6 Boîtier

En raison des hautes températures que le boîtier atteindra, le choix du matériau est un aspect crucial au bon fonctionnement du système. L'aluminium est directement retiré des possibilités dû à une conduction thermique élevée.

Recherchant un matériau résistant à des températures de plus de 100[C] et une isolation thermique élevée. Le boîtier sera en plastique type : ABS, Silicone, etc...

(a) Boîtier semi transparent

(b) Boîtier ABS

Figure 10: Résistance de puissance

10 ESTIMATIONS DES COÛTS

Nom	Quantité	Туре	Fabriquant	N° Fabriquant	Fournisseur	Prix u	Total
Microcontrolleur	1	PIC32MX795F512L	Microchip	No stock	No stock	fr. 13,00	fr. 13,00
Capteurs thérmique	3	MAX31820PARMCR+-ND	Maxim Integrated	MAX31820PARMCR+	Digi-Key	fr. 4,55	fr. 4,55
Ecran LCD	1	DEM 20485 SYH	Display Elektronik	DEM 20485 SYH	Distrelec	fr. 21,20	fr. 21,20
Corps de chauffe (résistance)	2	Résistance de puissance		-	DEV-BOS	fr. 1,50	fr. 3,00
Conv. USB-UART (optionnel)	1	727-CY7C64225-28PVXC	Infenion	CY7C64225-28PVXC	Mouser	fr. 4,30	fr. 4,30
Boitier	1	ABS		-	-	fr. 30,00	fr. 30,00
						Total	fr. 76,05

Figure 11: Coûts estimé

11 PLANIFICATION

Voir annexes Points: ????

12 CONCLUSION ET PERSPECTIVES

Pour conclure, cette étape de pré-étude à permis de fixer les composants principaux du système de régulation. Durant la rédaction du rapport, plusieurs questions ont été soulevés tous au long de la recherche de composants. Ces questions suscitent plusieurs inconnues qui seront nécessaire d'aborder durant la phase de design/conception.

En terme de faisabilité, la pré-étude démontre que les composants primordiaux sont en stock et dé livrable dans un délai acceptable. Ces délais ont été jugé "acceptable" selon la planification globale du projet.

Pour finir, ce projet présente de bonnes solutions en ce qui concerne la méthode de régulation choisie (thermique isolée). Le boîtier reste cependant un point à approfondir dû aux aspects de maintien et dissipation thermique de ce dernier

13 CONCEPTION SCHÉMATIQUE

Sur la base du cahier des charges précédemment défini et approuvé, la conception du montage de régulation doit être effectuée. Voici un description du produit attendu qui sera résumé en trois points : principe, caractéristiques, schéma bloc.

Principe : Le principe de ce produit est de fournir un outil/support pour le cours de REGLAGE. Ce dernier se basera sur le principe de régulation thermique. Des capteurs de températures seront utilisés afin de récupérer la valeur de température. Le système de réglage PID contrôlera une résistance de puissance ainsi qu'un ventilateur afin de réguler la température à sa valeur de consigne.

Caractéristiques: Voici les caractéristiques principales du système :

- → Plage d'action de la température : 20 [C°] -> 50 [°C]
- → Précision de senseurs de températures : 0.2 -> 0.5 [°C]
- → Vitesse de régulation : ordre de la minute (1min -> 5min)

Schéma bloc : Afin de mieux représenter le fonctionnement du système, un schéma bloc contenant les composants/fonctions principales de chaque "modules" à été fait.

- *1 signifie que la flèche est valable uniquement en mode 1
- *2 signifie que la flèche est valable uniquement en mode 2

Lorsqu'il n'y a rien, cela veut dire que la flèche est valable dans les deux modes

Figure 12: Schéma bloc système

13.1 SCHÉMA ÉLECTRIQUE

Le schéma électrique complet se trouve en annexe. Voir figure : ???

13.2 ALIMENTATIONS

Le montage sera alimenté par l'alimentation de laboratoire qui délivre du 0-60V/0-3A. J'ai défini une alimentation +15[V]/-15[V] étant nécessaire pour le fonctionnement du montage. L'utilisateur devra alimenter le montage en utilisant les câbles banane.

Des régulations de tension sont nécessaires pour tout ce qui est IC logique et micro contrôleur. Une régulation 5V et 3V3 sera implémentée dans la schématique.

Pour éviter de parasiter les lignes de tensions, je sépare les niveaux de tension 5V et 3V3 avec deux régulateurs différents. Sur la base de la tension d'entrée Vin (15 [V]), j'utilise des régulateurs 15V -> 5V et 3V3.

Figure 13: Alimentation 5V/3.3V

13.2.1 DIMENSIONNEMENT

Pour réguler la tension, j'ai décidé d'utiliser des régulateurs MAX5035 qui sont des convertisseurs DC-DC en mode step-down.

Régulation 5[V]: Le **MAX5035** propose plusieurs topologies qui ont chacune des tensions se sorties différentes. Ce composants propose également un mode de tension de sortie ajustable(1.25[V] -> 13.2[V]). Je souhaitais utiliser une version avec une tension de sortie fixe @5[V], malheureusement après recherches, le composant n'étais plus disponible sur le marché. J'ai donc opté pour la version permettant d'ajuster la tension de sortie.

Afin d'ajuster la tension, un dimensionnement est nécessaire. Pour ce faire, j'ai utilisé la "marche à suivre" fournie par le datasheet. Le dimensionnement se trouve en page **10** du datasheet : MAX5035 Datasheet

Figure 14: MAX5035 datasheet (adjustable output)

Pour trouver les résistances R3 et R4 servant à fixer la sortie, j'ai utilisé la formules suivante :

$$R3 = \frac{(V_{OUT} - 1.22)}{1.22} * R4 \tag{3}$$

La résistance R4 est définie de manière empirique à une valeur égal ou inférieur à 15 $[k\Omega]$ selon les directives du datasheet. J'obtiens des valeurs de résistances de l'ordre de :

Valeur de $\mathbf{R4}$: 15 [k Ω]

$$R3 = \frac{(5 - 1.22)}{1.22} * 15k = 46.47k - > 48[k\Omega]$$
 (4)

Le choix de l'inductance est guidé par la différence de tension entre V_{OUT} et V_{IN} . Le but est de trouver la valeur minimum de l'inductance qui est donnée par :

$$L = \frac{(V_{IN} - V_{OUT}) * D}{0.3 * I_{OUTMAX} * f_{SW}}$$
 (5)

Ou le D est vaut :

$$D = \frac{V_{OUT}}{V_{IN}} = \frac{5}{15} = 0.\overline{33} \tag{6}$$

 f_{SW} représente la fréquence de fonctionnement(125kHz selon datasheet) et le courant I_{OUTMAX} est défini par rapport aux composants étant alimenté par le régulateur 5[V]. Dans notre cas, les composants étant alimentés en 5[V] sont :

- \rightarrow LCD (courant de back light) = 20[mA]
- → Pull-up (ligne DAC) = négligeable de l'ordre du [uA]

Le courant peut donc être fixé à une valeur de **100[mA]** (marge prise par mesure de sécurité). Nous obtenons donc une valeur d'inductance :

$$L = \frac{(15-5)*0.\overline{33}}{0.3*100m*125k} = 888u - > 890[uH]$$
 (7)

Les valeurs des condensateurs de découplages, filtrages ainsi que les résistances R1 et R2 ont été choisis selon les valeurs recommandées du datasheet.

Régulation 3.3[V]:

Pour la régulation 3.3[V], les MAX5035 avec tension de sortie fixe à 3.3[V] furent disponible sur le marché. Cependant, afin faciliter le dépannage ainsi que la commande des composants, un MAX5035 à sortie ajustable sera également utilisé.

Le dimensionnement de ce dernier est identique à la régulation du 5[V]. Quelques paramètres diffèrent comme le courant de sortie maximum et la tension de sortie. La procédure de dimensionnement étant déjà faite, le tout est simplifié en un tableau des valeurs définies et calculées :

Composants	Val.calculé	Val.final
R1	1K	1K
R2	1K	1K
R3	$25.57k\Omega$	$24k\Omega$
R4	$15k\Omega$	$15k\Omega$
I_{OUTMAX}	500[mA]	500[mA]
D	0.22	0.22
L	137.28[uH]	143[uH]
P_{max}	5.85[W]	6[W]

Table 1: dim.Régulation 3.3[V]

Composants	Val.calculé	Val.final
R1	1K	1K
R2	1K	1K
R3	$46.47k\Omega$	$48k\Omega$
R4	$15k\Omega$	$15k\Omega$
I_{OUTMAX}	100[mA]	100[mA]
D	$0.\overline{33}$	$0.\overline{33}$
L	888[uH]	890[uH]
P_{max}	1[W]	1[W]

Table 2: dim.Régulation 5[V]

Les données présentes dans la colonne sur-ligné en vert, représentent la valeur finale définie pour les composants de dimensionnement du régulateur. (Le choix des régulateurs a été modifié suite à le revue de la pré-étude)

13.3 HMI

L'interface humain-machine est composée des composants suivants:

- → Écran LCD
- → Boutons-poussoirs
- → Codeur incrémental

Les boutons-poussoirs ont été définis en mode pull-up et seront reliés à la carte via des fils de connexions. Les boutons seront fixés directement sur le boîtier. Le codeur incrémental quant à lui sera brasé directement sur le PCB. Un codeur horizontal sera choisi afin de faciliter son implémentation dans un boîtier.qui sera également fixé sur le boîtier. L'écran LCD quant à lui sera visible à travers le boîtier lui permettant d'être directement brasé sur le PCB.

Figure 15: Bloc LCD (Limitation de courant)

La source de courant est basée sur un projet antérieur utilisant le même écran LCD. Les deux transistors PNP servent de source de courant alors que le MosFet permet de contrôler le bakc light de l'LCD depuis l'uC.

Figure 16

En ce qui concerne les composants électromécanique(boutons, compteur incrémental), des résistances de pull-up ont été ajoutées. La valeur des ces résistances a été déterminée de manière empirique (valeur typique de pull-up).

13.4 Puissance

L'étage de puissance est constitué de deux composants significatifs au projet de régulation thermique. Une résistance de puissance étant alimentée à la tension d'entrée (15V) et un ventilateur alimenté en 5 V.Un signal PWM contrôle les MosFet, qui agissent en tant que « switch » actif, pour les deux composants du module de puissance.

Figure 17: Bloc Puissance

Dimensionnement:

Dans le schéma de la figure 17, le corps de chauffe (R) et le ventilateur sont remplacé par des connecteur berg puisqu'ils ne feront pas partis du PCB principal. La diode **D4** est une diode de protection de polarité(en cas d'inversion du courant). Pour le module de puissance, deux MosFet différents seront utilisés. Le MosFet commandant la résistance de puissance doit être capable de soutenir le courant important traversant le drain. Pour ce faire il est nécessaire de déterminer ce courant Id ainsi:

Résistance de puissance :

 \rightarrow Tension (U): 15 [V]

 \rightarrow Résistance (R) : $10[\Omega]$

 \rightarrow Courant (I_d) : 1.5 [A]

→ Puissance dissipé (sur R) : 22.5 [W]

Ventilateur:

 \rightarrow Tension U : 5 [V]

 \rightarrow Courant (I_d): 190 [mA]

→ Puissance dissipé (sur Ventilateur) : 950 [mW]

Le courant Id maximum est donc de **1.5** [A]. Cette valeur permet de définir la caractéristique principale du mosfet. Mosfet choisi :

Mosfet canal N : IRLML6344TRPBF (P_{max} : 1.3[W])

13.5 RÉGULATION

La régulation PID du système est faite de manière analogique ainsi que numérique. Les trois consignes PID sont contrôlées par un système analogique d'amplificateur commun. L'erreur ainsi que la consigne seront contrôlées par l'uC. Une partie de la régulation (Gestion de la consigne et erreur) sera effectuée de manière numérique à travers le uC.L'amplificateur commun a été choisi selon ses spécifications et la précédente utilisation dans des montages à régulation. Sa disponibilité sur le marché a également été un critère dans le choix du composant. J'ai décidé d'opter pour des **TL052ACD** afin de pouvoir les alimenter de manière symétrique selon les alimentations (+15[V] et -15[V]).

Figure 18: Régulation P et I

Figure 19: Régulation D

Le montage de chaque type de régulation (PID), a été fait sur la base des cours de **REGL** ainsi que d'exemple de schéma de régulation présent sur internet. Les trois signaux sont injecter à l'entrée d'un sommateur (qui en inverse le signal) puis d'un inverseur pour le rendre positif.

Figure 20: Régulation Sommateur/Inverseur

Les condensateurs ainsi que les composants de rétro-action du sommateur et inverseur ont été fixées. Ceci de manière théorique(Montage sommateur/ inverseur).Les résistances et condensateurs de chaque module de régulation n'ont pas été dimensionnés. Ce système de régulation ayant pour but d'être un outil pédagogique, les résistances et condensateurs seront remplacés par des connecteurs clamp ou berg pour faciliter la modification des paramètres(composants) de régulation.

13.6 CAPTEURS DE TEMPÉRATURE

Les capteurs de températures ont été choisis selon les caractéristiques suivantes :

- → Taille du capteur
- → Donnée/Communication analogique
- → Grande plage de température

Les **MAX6612MKK** possèdent une plage de température allant de -55[C] + 150[C] avec une précision de $+/^{-}1.2[C](maximum)$. La précision du capteur est suffisante pour son application dans le montage. Sa disponibilité sur le marché et son prix bas bas en font un candidat intéressant.

Voici sa fonction de transfert :

Transfer Function

The temperature-to-voltage transfer function has a linear positive slope and can be approximated by the equation:

 $V_{OUT} = 0.40V + (0.01953V)^{\circ}C \times T^{\circ}C) - (2 \times 10^{-6} \times T^{\circ}C^{2})$

where T is the MAX6612's die temperature in °C.

Therefore:

 $T (^{\circ}C) = (V_{OUT} - 0.40V) / 0.01953V/^{\circ}C$

(a) Fonction de transfert

(b) U_{OUT} en fonction de temp.

Figure 21: Donnée du datasheet MAX66112MKK

La sortie des capteurs sera traitée par une entrée analogique du micro contrôleur. Elle correspond à la valeur d'erreur dans le système de régulation. Les capteur seront monté sur une PCB à part afin de pouvoir directement placer ces dernier dans les zones à mesurer.

Figure 22: Schématique des capteurs de températures

L'application ne nécessitant pas un mode spécifique, je me suis basé sur le **Typical Application Circuit** fourni par le datasheet.

Datasheet: MAX6612MKK datasheet

13.7 UC

Le choix du microcontrôleur a été défini selon toutes les entrées/sorties nécessaires pour le bon fonctionnement du montage.

Param. externes:

→ Capteur de température : 3x entrée analogique

→ Contrôle de puissance : 2x signaux PWM

HMI:

- $\rightarrow 11x I/O$
- → 3x entrée analogique

Régulation PID:

- → 1x entrée analogique
- → 1x sortie analogique

Le micro contrôleur **PIC32MX250F128D** correspond presques à toutes les entrées/sorties nécessaires pour le fonctionnement du système. Cependant, cet uC ne possède pas de sortie analogique(DAC) pour l'envoi du signal corrigé (Consigne- erreur). La configuration minimum au fonctionnement de l'uC (Découplage, alimentation USB) a été faite sur la base du datasheet PIC32MXXX (voir annexes).

Figure 23: Module uC

Le bloc **uC**, contient tout les composants nécessaire au bon fonctionnement du micro contrôleur. Le choix des condensateurs de découplage a été fait sur la base du datasheet du fournisseur(MicroChip). Des sous-modules ont été défini d'un cadre bleu dans les figures 23 ci-dessus, ils permettent la programmation, le reset et l'ajout d'un clock externe.

Le quartz est un ajout préventif et le bloc du reset à pour but de faciliter la phase de design software en ayant une mise à zéro physique(Module inspiré par le kit PIC32 de l'ES). Veuillez trouver le schéma complet du module uC en annexe.

13.8 CONCLUSION

Durant cette phase de conception, plusieurs modules ont dû être modifiés pour satisfaire le cahier des charges. Plusieurs points restent tout de même critiques. Notamment le choix de la résistance de dissipation de chaleur reste un point important et doit être vérifié avec le chef de projet. Certains composants n'étant plus disponibles, ils doivent être modifiés pour assurer une future commande de ces derniers.

Actuellement, la schématique nécessite encore le choix de bons footprint et composants. Les composants constituant l'HMI et la partie corps de chauffe doivent corréler avec le futur boîtier dans lequel ils devront être installés.

Perspectives: La prochaine étape consistera à terminer le schéma électrique (avec footprint et composant livrable) pour ensuite enchaîner sur le design mécanique. En parallèle s'effectuera le design du PCB. Je dois étudier le cas critique (délai de livraison des composants) de mon projet pour avancer sur le PCB et le boîtier. Le but étant de démarrer l'algorithme software à temps.

13.9 Modifications

- → LCD : faire une rotation de 180° (afin d'avoir l'LCD dans le sens de lecture)
- → Potentiomètre(LCD) : pin une et deux du footprint inversé par rapport au schéma
- → Transistor Mosfet N: pin une et deux du footprint inversé par rapport au schéma

Veuillez trouver le document de modification en annexes.

14 CONCEPTION HARDWARE

14.1 CONTRAINTES

Aucunes contraintes majeures n'as été imposé selon le C.d.c. Seul la taille maximum du PCB pouvait être considéré comme condition. Le but étant de faire le PCB le plus petit possible afin d'économiser sur le coût de ce dernier.

14.2 PLACEMENT

Pour le placement des mes composants, j'ai procédé par bloc. C'est-à-dire que le PCB à été fait sur la base du schéma électrique séparé en différent blocs (uC, HMI, Puissance, etc...).

Figure 24: Placement des composants sur le PCB

La méthode de placement modulaire(par bloc) permet, si bien effectué, permet de faciliter le routage du PCB. Elle facilite également le dépannage des composants ces derniers étant groupé dans la même zone.

Le bloc de régulation assez large, ceci à raison de faciliter d'usage. Les utilisateurs devant modifier la valeur des gains PID, l'accès et l'utilisation de la zone de régulation dois être accessible aisément.

14.3 CARACTÉRISTIQUES (ROUTAGE)

Pour le routage du PCB plusieurs paramètres ont dû être fixé afin d'éviter des problèmes de puissances dissipée, brasage des composants, etc...

Voici la liste des paramètres modifiés :

Largeur de piste :

- → Net POWER: 0.5[mm] (Min Preferred width) 1.5[mm] (max width)
- → Net classic: 0.254[mm] (Min Preferred width) 0.3[mm] (max width)

Vias:

- → Via Diameter: 0.61[mm](Min), 0.8[mm](Max), 0.65[mm](Pref)
- → Via Hole Size : 0.25[mm](Min), 0.45[mm](Max), 0.3[mm](Pref)

Stitching:

- \rightarrow Grid: 10[mm]
- \rightarrow Via style : Diameter = 0.65[mm], Hole Size = 0.3[mm]
- → Via template : v65h30

Autres:

→ Track clearance : 0.151[mm](Min) (Consigne donnée par chef de projet)

Un plan de masse commun à été placé sur le Top et le Bottom du PCB. Cela permet de réduire le bruit sur les lignes d'alimentation et sur les signaux en général. Pour éviter des effet capacitif, un stitching reliant les deux plans (Top, Bot) est recommandé.

Vue PCB:

Figure 25: PCB vue Top

Figure 26: PCB vue Bottom

Le routing et placement du montage n'a nécessité aucune démarche supplémentaire. N'ayant pas eu de contraintes au niveau du PCB, le bon placement des composants était l'unique phase "critique" de la conception hardware.

Voici les vue 3D des différent PCB:

Figure 27: PCB principal vue 3D

(a) PCB résistance de puissance

(b) PCB capteur de temp.

Figure 28: Vue 3D des PCB

14.4 MONTAGE

Une fois tous les composants,PCB reçu, le montage des différentes cartes électroniques était à faire. Le montage des composants à été effectué de manière méthodique.

Les blocs d'alimentations ont été monté en premier. Le but étant de pouvoir tester le bon fonctionnement de ces derniers avant la suite du montage. A noter que les alimentations sont séparées du montage principale par des jumpers. Ce procédé permet une double sécuritée. Ensuite les blocs uC et régulation ont été monté. Cette fois également, le uC devait être programmable avant de poursuivre dans le montage des composants. Pour finir, pour des raisons de contraintes de brasure, l'écran LCD ainsi que l'étage de puissance ont été brasé.

14.5 MODIFICATIONS

Suite à le réception du PCB ainsi que du montage des composants, plusieurs erreurs ont été décelées. Il s'agit principalement d'erreurs de footprints. Une liste des modifications critiques se trouve ci-dessous. Un document de modification sera également annexé est rédiger de manière plus formelle, précise.

Footprint:

- → LCD : faire une rotation de 180° (afin d'avoir l'LCD dans le sens de lecture)
- → Potentiomètre(LCD) : pin une et deux du footprint inversé par rapport au schéma
- → Transistor Mosfet N: pin une et deux du footprint inversé par rapport au schéma

Veuillez trouver le document de modification en annexes.

15 SOFTWARE

15.1 Introduction

La partie software est la phase finale du projet. Une fois la conception schématique et hardware effectuée, un algorithme dois être établis sur la base d'un concept logiciel. Ce concept doit faire correspondre les demandes du cahier des charges afin de pouvoir mener à bien le produit.

15.2 CONCEPT LOGICIEL

Une première approche du concept logiciel à été faite lors du design schématique. Afin d'aborder le sujet de manière plus approfondie, une version plus détaillée a été réalisée.

Figure 29: Concept logiciel détaillé

Le flowchart présenté à la Figure 31, permet d'avoir une base sur laquelle s'appuyer pour l'écriture des structo-grammes/flowcharts du futur algorithme.

15.3 APPROCHE THÉORIQUE (FLOWCHART)

Mon approche est la suivante :

Premièrement, le software du produit de régulation thermique sera divisé en plusieurs sous modules. Le projet contenant plusieurs périphériques divers, je décide de séparé les différent éléments de la manière suivante :

- → Interface human machine (HMI) : LCD, PEC12, boutons
- → Gestion ADC / DAC
- → Régulation PID (Gestion OC (PWM))

Les différents périphériques seront traités dans l'ordre de lecture de la liste. Cette première représentation de l'algorithme (pseudo-code) sera faite sous forme de flowchart.

Figure 30: Flowchart HMI

La gestion du HMI est assez explicite. On choisit d'activer ou non le régulation thermique avec le codeur incrémental. Dans le cas ou le mode est actif, on peut régler la valeur de consigne du système toujours à l'aide du PEC12. La valeur de température est affichée constamment dès la fin de l'initialisation.

Figure 31: Flowchart régulation PID

Dès lors de son activation, la régulation est constante. Jusqu'à sa stabilisation, les correcteur PID feront varier les valeurs de l'OC (PWM) qui contrôle la résistance de puissance ainsi que le ventilateur. La pression maintenue du PEC12 stop la régulation à la manière d'une interruption.

15.4 CONFIGURATION DES PÉRIPHÉRIQUES

Pour le bon fonctionnement du software, les timers, ADC et le pinout du uC doivent être configuré. Pour cela il est important de connaître la précision recherché ainsi que la vitesse d'exécution de chaque tâches.

L'IDE MPLABX utilisé pour nos micro-contrôleur PIC32 possède une extension de configuration nommé **Harmony**. Ce dernier propose un type de configurateur graphique permettant de faciliter l'attribution des pins selon leur emplacement physique.

Voici la configuration du PIC32:

Figure 32: Config. Harmony uC

Mon application nécessite l'usage de timer, ADC et OC. Vous trouverez ci-dessous les calculs permettant de configurer ces derniers ainsi que la justification du choix. La fréquence système du $\mathrm{uC}(f_{SYSfreqCLK})$ est de 40[MHz].

Timers : Trois timers sont utilisé dans cette configuration. Le premier sert à cadencé le code principale (machine d'état globale) et les deux autres serviront de référence pour les outputs capture. Le calcul de la valeur de comptage se fait avec la formule suivante :

$$Countperiod = \frac{f_{SYSfreqCLK}}{prescaler * \frac{1}{Interrupt_{freq}}} - 1$$
 (8)

timer 1 : Ce timer servira à cadencer l'application principale. Il est fixé à une valeur de 1[kHz] soit 1[ms] de période. Cette valeur est choisie sur la base des travaux pratique effectué en cours et pour raison de bonne pratique. Il pourra être ralenti si nécessaire à l'aide de condition.

timer 2-3 : Les timers 2-3 sont des timers de paire. Ils peuvent servir comme base de temps à but d'interruption ou encore comme compteur pour les modules OC et IC. Dans mon cas je configure les deux timers séparément car les PWM de contrôle (R.puissance ventilateur) seront diriger de manière indépendante par la régulation.

Timers	Frequence	Prescaler	Periode.Count
timer1	1[kHz]	64	624
timer2	10[kHz]	1	3999
timer3	10[kHz]	1	3999

Table 3: Timer Config.

La valeur de prescaler des timers 2 et 3 à été choisie de sorte à avoir la précision de comptage la plus grande. Cela permettra un ajustement plus fin lors de la régulation PID.

OC: Comme cité précédemment, deux OC sont utilisé pour la gestion du module de puissance. Ils ont comme ID: OC2 et OC3 et se base sur le timer du chiffre respectif(timer2 > OC2, timer3 > OC3).

OC	Periode.Count
OC2	1999
OC3	1999

Table 4: OC Config.

Les périodes de count ont été fixé à la moitié de période count de leur timer. Les fixant donc à une valeur de 50 [%] de rapport cyclique. Cette valeur est arbitraire est permet de tester la sortie des OC. La valeur de la période count sera modifiée lors de la régulation PID.

ADC: L'ADC est un module présent dans le uC. C'est un convertisseur 10bits, ce qui veut dire que nous avons une plage de comptage allant de 0 à $2^{10}(1024)$.

DAC: Le **PIC32MX250F128D** ne possédant pas de DAC intégré, un convertisseur digital analogique externe à été choisi pour la valeur de consigne du système de réglage. Ce dernier communique en **SPI**. La communication série ne nécessitant pas une grande vitesse, l'utilisation d'une interruption n'est pas utile. Des libraires fournie par le cours de MINF sont disponible pour les communications en SPI.

15.5 ALGORITHME

En ce qui concerne l'implémentation du code, uniquement les points important seront traité dans ce sous-chapitre.

(a) Programme principal

```
S_ADCConvert ValConvert(void)
{
    // Variable declaration
    float Uin_l,Uin_2,Uin_3;
    float ValTemp;
    float ValRawed;

    //Raw value Struct;
    S_ADCResults ValRaw;
    //Convertion value Struct;
    S_ADCCOnvert ValConv;

    // Raw Value from ADC read
    ValRaw = BSP_ReadAllADC();

    //ValRaved = ValRaw;

    // Raw value to Tension convertion
    Uin_1 = (float)ValRaw.Chan0 / (float)ADC_SIZE;
    Uin_2 = (float)Uin_1 * (float)VAL_REFADC;
    Uin_3 = Uin_2;

    // Put Voltage value in struct
    ValConv.Val_U = Uin_3;

    // Tension value to temp convertion
    ValTemp = (Uin_2 - VALU)/VALDEGR;

    // Put Temperature value in struct
    ValConv.Val_T = ValTemp;
    return ValConv;
}
```

(b) Fonction de conversion ADC

Figure 33: Algorithme

System interrupt

```
void __ISR(_TIMER_1_VECTOR, ip12AUTO) IntHandlerDrvTmrInstanceO(void)
{
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_1);
    static int count= 0;
    if(count < 3000)
    {
        count ++;
    }
    else
    {
            APP_UpdateState(APP_STATE_SERVICE_TASKS);
    }
}
void __ISR(_TIMER_2_VECTOR, ip11AUTO) IntHandlerDrvTmrInstance1(void)
{
        PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}
void __ISR(_TIMER_3_VECTOR, ip11AUTO) IntHandlerDrvTmrInstance2(void)
{
        PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_3);
}</pre>
```

Figure 34: Fichier d'interruption

Main : Le code principale utilise une machine d'état avec les états : APP - INIT(Initialisation), APP - STATE - SERVICE - TASKS (Etat d'application du code) et enfin l'état APP - STATE - WAIT qui est un état d'attente. Le main est cadencé par l'interruption à une fréquence de 1[kHz] (peut être ralenti).

Fonction de conversion : Les librairies ADC ont été inspirées du kit de l'ETML ave le PIC32MX795F512L. Sur cette base j'ai ajouter une fonction de conversion de la valeur analogique brute en température. Pour ce faire, la formule présentée dans la figure 14 doit être implémentée en code. Sur les directives du datasheet, des calcules mathématiques sont effectués.

Fichier d'interruption : Le fichier d'interruption contient l'attente de 3 secondes faite à l'initialisation du code. Les timers 2 et 3 servant aux OC, ne sont pas modifié dans ce fichier.

15.6 ETAT D'AVANCEMENT

Le software du produit n'est pas fini à l'heure du rendu de ce rapport. L'état d'avancement est basé sur les délivrables attendu dans le cahier des charges. Les points principaux de la partie software sont les suivants :

- → Interface human machine (HMI): 100 %
- → Gestion ADC : 90 % (la fonction de conversion nécessite quelques ajustement sur la valeur obtenue)
- → Gestion DAC : 40 % (Les libraires SPI ont été implémenté mais ne sont pas encore fonctionnels avec le uC utilisé)
- → OC : 100 % (Les OC émettent des PWM à la fréquence configurée)
- → Régulation PID (Gestion OC (PWM)) : 20 % (Le code de régulation est en partie implémenté mais il manque l'algorithme de régulation ainsi que les fonctions de conversion DAC/ADC)

Pour résumé, les périphériques du systèmes sont presque tous fonctionnels. Cependant, afin de pouvoir implémenter de manière structurée et correct le code de régulation, il est nécessaire d'avoir des algorithme entièrement fonctionnel au niveau des périphériques. Niveau d'avancement global (Software) 60 %.

16 TEST ET MESURES

L'avancement du projet niveau software n'ayant pas atteint les jalons voulu, la phase de test et mesures n'a pas été faite de manière complète. Les alimentations en revanche ainsi que les lignes de communications LCD ont été mesurées.

16.1 SCHÉMA DE MESURE

Figure 35: Schéma de mesure

16.2 LISTE DE MATÉRIELS

→ P1 Oscilloscope: RohdeSchwarz RTB2004 2.5 GSA/s ES.SLO2.05.01.14

→ P2 Multimètre : Gw INSTEK ES.SLO2.00.00.79

16.3 MÉTHODE DE MESURE

Pour la méthode de mesure, les sondes d'oscilloscope ou les pointes de touches pour le multimètre ont été placé sur les points de tests disponible.

16.4 ALIMENTATION

Figure 36: Mesure sur la ligne 3V3

On remarque un mauvais filtrage sur la ligne qui pourrait être provoquer par un mauvais dimensionnement des capacités de filtrage ou encore de l'inductance du montage de régulation.

Une mauvaise manipulation lors des mesures, à provoquer un court-circuit sur l'alimentation 5[V]. Ne me permettant pas d'effectuer une bonne mesure de son fonctionnement. Aucun autres composants n'a été affecté par le c-c (jumper alimentation débranché).

16.5 CONCLUSION

En conclusion, cette pré-étude a permis d'identifier les principaux composants du système de régulation thermique. Malgré quelques problèmes rencontrés liés à la disponibilité des composants, des alternatives ont été trouvées. Les contributions personnelles ont été précieuses pour le dimensionnement des régulateurs de tension et la recherche de solutions.

Pour les perspectives, il est essentiel de poursuivre la phase de conception en abordant les problèmes liés au boîtier et à la gestion thermique. De plus, des tests approfondis seront nécessaires pour valider le bon fonctionnement du système de régulation. Ces efforts permettront d'optimiser le système et d'assurer son efficacité à long terme.

16.6 PROBLÈMES RENCONTRÉS

Durant la rédaction du rapport, j'ai rencontré plusieurs problèmes, notamment concernant la disponibilité des composants nécessaires pour la régulation thermique. Certains composants initialement envisagés n'étaient plus disponibles sur le marché, ce qui m'a obligés à revoir le choix et à opter pour des alternatives. Cela a nécessité des recherches supplémentaires pour trouver des composants équivalents.

Un autre problème rencontré concerne la dimensionnement des régulateurs de tension. Nous avons dû suivre les procédures de dimensionnement fournies par les datasheets des composants, ce qui a demandé du temps et des ajustements pour obtenir les valeurs adéquates.

16.7 APPORT PERSONNEL

Dans le cadre de ce projet, j'ai pu contribuer en apportant des connaissances et une compréhension approfondie des principes de régulation thermique. J'ai également participé activement à la recherche de composants de remplacement lorsque certains n'étaient plus disponibles sur le marché.

De plus, j'ai pu mettre en pratique mes compétences en dimensionnement des régulateurs de tension en suivant les procédures recommandées par les datasheets des composants.

Enfin, j'ai participé à la rédaction du rapport en soulevant des questions pertinentes et en proposant des suggestions pour améliorer le système de régulation.

Neziri Taulant	16.06.2023

16.8 PLANIFICATION

Figure 37: Planning effectif

16.9 **JOURNAL DE TRAVAIL**

AGENDA

Discussion ever M Braun pour valider les demandes du cahier des charges 30.aov Criture du la pré-étude 07.dée Finalisation et rendu de la pré-étude et début de la conception schématique (design) 21.dée Correction de la pré-étude et début de la conception schématique (design) 21.dée Correction de la pré-étude et début de la schématique 88.dée VACANCES 04.janv VACANCES 11.janv Design des blocs "externes" bloc: puissance, capteur 18.janv Design des blocs "externes" bloc: puissance, capteur 18.janv Design du us et de son montage minimum nécessaire, bloc allimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint 01.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc allimentation, HMI) 08.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 13.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des demiers footprints 01.mars Conception du PCB, placement des composants), recherche du boitler en parallèle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 29.mars Réception et des composants, organisation pour le montage, PCB début du montage Commande des PCB externe (capteur, corps de chauffe) et composants est. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 30.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 24.mai Lecure ADC fonctionnel mise en forme des valeur reques 31.mai Ecriture de la communication SPI pour le DAC - Rapport	DATE	HEURE ▼ ÉVÉNEMENT ▼
30.aov Ecriture du la pré-étude 07.déc Finalisation et rendu de la pré-étude 14.déc Présentation de la pré-étude et début de la conception schématique (design) 21.déc Correction de la pré-étude, avancement de la schématique 28.déc VACANCES 04.janv VACANCES 11.janv Design des blots "externes" blot: puissance, capteur 18.janv Design des blots "externes" blot: puissance, capteur 18.janv Design du uc et de son montage minimum nécessaire, blot alimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint 01.févr Recherches de footprint, correction du dimensionnement de certain composants (blot alimentation, HMI) Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des demiers footprints 01.mars Conception du PCB (placement des composants), recherche du boitier en paralièle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Rintion du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 19.avr Création du projet soft, communication avec PC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reques 51.mai Ecriture de la communication SPI pour le DAC - Repport	16.nov	Prise de connaissance du projet
14.dec Présentation de la pré-étude 14.dec Présentation de la pré-étude et début de la conception schématique (design) 21.dec Correction de la pré-étude, avancement de la schématique 28.déc VACANCES 04.janv VACANCES 11.janv Design des blocs "externes" bloc : puissance, capteur 18.janv Design des blocs "externes" bloc : puissance, capteur 18.janv Design du vC et de son montage minimum nécessaire, bloc alimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint 01.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) 08.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des demiers footprints 01.mais Conception du PCB (placement des composants), recherche du bottier en parallèle 15.mais Placement des composants, recherche du bottier en parallèle 22.mais Pinition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mais Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 11.mai Missen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel misse en forme des valeur reçues 31.mai	23.nov	Discussion avec M.Braun pour valider les demandes du cahier des charges
14.déc Présentation de la pré-étude et début de la conception schématique (design) 21.déc Correction de la pré-étude, avancement de la schématique 28.déc VACANCES 04.janv VACANCES 11.janv Design des blocs "externes" bloc : puissance, capteur 18.janv Design du u° et de son montage minimum névessaire, bloc alimentation et connecteurs 25.janv Rendu du rappon de design, correction de certaines erreurs schématiques, recherche de footprint 01.févr Recherches de footprint, correction du dimensionnement de certaine composants (bloc alimentation, HMI) 08.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des demiers footprints 01.mars Conception du PCB (placement des composants), recherche du botiter en parallèle 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 11.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 5:11.mai Ecriture de la communication SPI pour le DAC - Rapport	30.nov	Ecriture du la pré-étude
21.déc Correction de la pré-étude, avancement de la schématique 28.déc VACANCES O1.janv Design des blocs "externes" bloc: puissance, capteur 11.janv Design des blocs "externes" bloc: puissance, capteur 18.janv Design du UC et de son montage minimum nécessaire, bloc allimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint O1.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc allimentation, HMI) O8.févr Présentation de la partie conception schématique, début de la correction (seion points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints O1.mais Conception du PCB (placement des composants), recherche du boitier en parallèle O8.mais Placement términé, début du routage 15.mais Correction du PCB, placement modifiler, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mais Finition du PCB, placement modifiler, création de la Bom afin de contrôler tout les footprints, routage annulé 29.mais Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues Ecriture de la communication SPI pour le DAC + Rapport	07.déc	Finalisation et rendu de la pré-étude
28.déc 04.janv VACANCES 11.janv Design des blocs "externes" bloc : puissance, capteur 18.janv Design du Cet de son montage minimum nécessaire, bloc alimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint 01.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) 08.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints O1.mars Conception du PCB (placement des composants), recherche du boitier en parallèle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PICS2 fonctionnelle, finissions du PCB principel 03.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues Ecriture de la communication SPI pour le DAC + Rapport	14.déc	Présentation de la pré-étude et début de la conception schématique (design)
11-janv Design des blocs "externes" bloc : pulssance, capteur 18-janv Design du uC et de son montage minimum nécessaire, bloc alimentation et connecteurs 25-janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint 01.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) 08.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation to présentation du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints 01.mars Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints 01.mars Conception du PCB (placement des composants), recherche du boitier en paralièle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OCADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des vaieur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	21.déc	Correction de la pré-étude, avancement de la schématique
11.janv Design des blocs "externes" bloc : puissance, capteur 18.janv Design du uC et de son montage minimum nécessaire, bloc alimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint O1.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) O8.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints O1.mars Conception du PCB (placement des composants), recherche du boltier en parallèle O8.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom affin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage O5.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal O3.mai Configuration Harmony des périphériques (timer, OC, ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD Lecture ADC fonctionnel mise en forme des valeur reques 31.mai Ecriture de la communication SPI pour le DAC + Rapport	28.déc	VACANCES
18.janv Design du uC et de son montage minimum nécessaire, bloc alimentation et connecteurs 25.janv Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint O1.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) O8.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints O1.mars Conception du PCB (placement des composants), recherche du boitier en paralièle O8.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage O5.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal O3.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Ecriture de la communication SPI pour le DAC + Rapport	04.janv	VACANCES
Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint O1.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) O8.févr Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des demiers footprints O1.mars Conception du PCB (placement des composants), recherche du boltier en paralièle O8.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reques 31.mai Ecriture de la communication SPI pour le DAC + Rapport	11.janv	Design des blocs "externes" bloc : puissance, capteur
01.févr Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI) 08.févr Présentation de la partie conception schématique, début de la correction (seion points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints 01.mars Conception du PCB (placement des composants), recherche du boitier en parallèle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues Ecriture de la communication SPI pour le DAC + Rapport	18.janv	Design du uC et de son montage minimum nécessaire, bloc alimentation et connecteurs
Présentation de la partie conception schématique, début de la correction (selon points indiqué pendant la présentation) 15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints Conception du PCB (placement des composants), recherche du boitier en parallèle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD Lecture ADC fonctionnel mise en forme des valeur reques 31.mai Ecriture de la communication SPI pour le DAC + Rapport	25.janv	Rendu du rapport de design, correction de certaines erreurs schématiques, recherche de footprint
15.févr VACANCES 22.févr Correction du schéme électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints 01.mars Conception du PCB (placement des composants), recherche du boitier en parallèle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC, ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues Ecriture de la communication SPI pour le DAC + Rapport	01.févr	Recherches de footprint, correction du dimensionnement de certain composants (bloc alimentation, HMI)
22.févr Correction du schème électrique selon les consignes donnée pendant la présentation, recherche des derniers footprints O1.mars Conception du PCB (placement des composants), recherche du boitier en parallèle O8.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage O5.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal O3.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	08.févr	
15.mars Correction du PCB (placement des composants), recherche du boitier en parallèle 08.mars Placement términé, début du routage 15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues Ecriture de la communication SPI pour le DAC + Rapport	15.févr	VACANCES
15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	22.févr	
15.mars Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé 22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues Ecriture de la communication SPI pour le DAC + Rapport	01.mars	Conception du PCB (placement des composants), recherche du boitier en parallèle
22.mars Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB 29.mars Réception et des composants, organisation pour le montage, PCB début du montage 05.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	08.mars	Placement términé, début du routage
29.mars Réception et des composants, organisation pour le montage, PCB début du montage O5.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal O3.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	15.mars	Correction du PCB, placement modifier, création de la Bom afin de contrôler tout les footprints, routage annulé
O5.avr Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur 12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal O3.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	22.mars	Finition du PCB, correction des erreurs dans le DRC, validation avec EuroCircuit, commande du PCB
12.avr VACANCES 19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	29.mars	Réception et des composants, organisation pour le montage, PCB début du montage
19.avr VACANCES 26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	05.avr	Commande des PCB externe (capteur, corps de chauffe) et composants ext. Comme : ventilateur
26.avr Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal 03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	12.avr	VACANCES
03.mai Configuration Harmony des périphériques (timer, OC,ADC) 10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	19.avr	VACANCES
10.mai Recherche de la panne sur le LCD 17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	26.avr	Création du projet soft, communication avec PIC32 fonctionnelle, finissions du PCB principal
17.mai Misen forme de l'affichage LCD 24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	03.mai	Configuration Harmony des périphériques (timer, OC,ADC)
24.mai Lecture ADC fonctionnel mise en forme des valeur reçues 31.mai Ecriture de la communication SPI pour le DAC + Rapport	10.mai	Recherche de la panne sur le LCD
31.mai Ecriture de la communication SPI pour le DAC + Rapport	17.mai	Misen forme de l'affichage LCD
	24.mai	Lecture ADC fonctionnel mise en forme des valeur reçues
07.juin Ecriture de la communication SPI pour le DAC + Rapport	31.mai	Ecriture de la communication SPI pour le DAC + Rapport
	07.juin	Ecriture de la communication SPI pour le DAC + Rapport

Figure 38: Journal de travail

- 16.10 LISTING (APP.C, APP.H, INTERRUPT.C)
- 16.11 DOCUMENTS CAO
- **16.12 DOCUMENT DE MODIFICATION**
- 16.13 MODE D'EMPLOI DU SYSTÈME
- **16.14 AFFICHE**

16.15 RÉSUMÉ DU PROJET

La pré-étude a permis de définir les composants principaux du système de régulation. Des questions restent en suspens, nécessitant une approche lors de la phase de conception. La faisabilité du projet est confirmée, avec les composants disponibles dans des délais acceptables. Le choix de la régulation thermique est prometteur, mais des aspects liés à la dissipation thermique du boîtier doivent être approfondis.

La conception du montage de régulation repose sur le principe de régulation thermique avec des capteurs de température, un système de réglage PID et des composants spécifiques. Les caractéristiques principales incluent une plage de température de 20 à 50 °C, une précision des capteurs de 0.2 à 0.5 °C et une vitesse de régulation de 1 à 5 minutes.

L'alimentation du montage sera assurée par une alimentation de laboratoire avec des régulations de tension spécifiques pour les composants logiques. Des régulateurs MAX5035 en mode step-down sont utilisés, avec des valeurs de résistances et d'inductance déterminées pour réguler les tensions de 5V et 3.3V respectivement.

L'interface homme-machine comprend un écran LCD, des boutons-poussoirs et un codeur incrémental. Les composants électromécaniques sont équipés de résistances de pull-up pour leur fonctionnement.

L'étage de puissance comprend une résistance de puissance et un ventilateur, contrôlés par des MosFet activés par un signal PWM. Les composants sont dimensionnés en fonction des tensions et courants requis.

La régulation du système combine des éléments analogiques et numériques, avec des amplificateurs opérationnels, une gestion de la consigne et de l'erreur effectuée par l'uC. Les schémas des régulations P, I et D sont réalisés, avec les composants et condensateurs fixés.

En résumé, ce projet vise à concevoir un système de régulation thermique basé sur la méthode PID, avec des composants spécifiques dimensionnés pour assurer une régulation précise de la température. L'interface hommemachine et l'étage de puissance sont également pris en compte dans la conception.

16.16 MODE D'EMPLOI DU SYSTÈME

Titre: Mode d'emploi du Montage de Régulation Thermique

Introduction : Le Montage de Régulation Thermique est un outil conçu pour le cours de Réglage. Il utilise le principe de régulation thermique avec des capteurs de température, un système de réglage PID, une résistance de puissance et un ventilateur pour maintenir la température à sa valeur de consigne. Ce mode d'emploi vous guidera à travers les étapes nécessaires pour utiliser le produit de manière efficace.

Étape 1: Alimentation

- **9** Branchez l'alimentation de laboratoire fournissant du 0-60V/0-3A au montage.
- Utilisez les câbles banane pour connecter l'alimentation +15V/-15V aux bornes appropriées du montage.

Étape 2: Interface Humain-Machine (HMI)

L'écran LCD affiche les informations de température et les paramètres de réglage. Le codeur incrémental et les boutons-poussoirs permettent de naviguer dans les menus et de modifier les valeurs. Le codeur incrémental est utilisé pour ajuster les paramètres de manière précise.

Étape 3: Réglage de la Température

Vérifiez que les capteurs de température sont correctement connectés au montage. Sur l'écran LCD, utilisez le codeur incrémental pour régler la température de consigne dans la plage de 20°C à 50°C avec une précision de 0.2°C à 0.5°C.Le système de réglage PID ajuste automatiquement la résistance de puissance et le ventilateur pour maintenir la température à la valeur souhaitée.

Conclusion : Le Montage de Régulation Thermique est un outil puissant pour le cours de Réglage, offrant des fonctionnalités de régulation thermique précises. En suivant les étapes décrites dans ce mode d'emploi, vous serez en mesure d'utiliser le produit de manière optimale et d'explorer ses différentes fonctionnalités. Profitez de votre expérience d'apprentissage avec le Montage de Régulation Thermique!