

Random Forest Classifier Performance in Low False Alarm and Low Missed Detection Regimes

Kush R. Varshney^{1,2}, Ryan J. Prenger², Barry Y. Chen², Tracy D. Lemmond², and William G. Hanley² (1) Massachusetts Institute of Technology; (2) National Security Engineering Division, Lawrence Livermore National Laboratory

- Different types of errors have different costs in most decision-making problems
- Binary classification problems have two types of errors: false alarms and missed detections
- We present new analysis of the Random Forest, a state-of-the-art ensemble classifier, that takes the two types of errors into account
- The theoretical analysis is supported by comparisons to empirical classification performance

Basic Classification Problem Setup decision boundary learned from training examples missed detection false alarm

Different Operating Points

measurement feature x₁

Random Forest Classifier

A Random Forest is an ensemble of decision trees trained using bootstrapped samples

- At each node in the decision tree, m features are randomly selected and used to determine a linear decision boundary
- m is known as the split dimension
- linear splits can be done by various methods: Gini impurity, Fisher's linear discriminant analysis, and Anderson-Bahadur linear discriminant analysis
- Average score from tree votes is compared to a threshold to determine classification
- different thresholds are different operating points

Generalization Error Bound

- total error rate ≤ E_G
- $E_G = \rho(1-s^2)/s^2$
- based on Chebyshev inequality [Breiman, 2001]
- $\blacksquare \rho$ is the correlation among trees in the forest

- s is the strength of the forest
- For small overall classification error, want high strength and low correlation
- Result is only for overall error
- false alarms and missed detections are not considered separately

Comparison of classification error and E_G for 20 different datasets with Gini Random Forest

Comparison of area under ROC and E_G for 20 different datasets with Gini Random Forest

Class-Specific Error Bounds

- Would like error bounds for false alarm rate and missed detection rate separately
- Based on class-specific strengths s_{-1} , s_{+1} , and correlations ρ_{-1} , ρ_{+1}
- calculated for subset of samples of prescribed class
- Denote score threshold as t, where $-1 \le t \le +1$
- false alarm rate $\leq \rho_{-1}(1-s_{-1}^2)/(\rho_{-1}(1-s_{-1}^2)+(t+s_{-1}^2)^2)$ • valid when $t > -s_{-1}$
- false alarm rate $\geq (t+s_{-1})^2/(\rho_{-1}(1-s_{-1}^2)+(t+s_{-1}^2)^2)$
- valid when $t < -s_1$
- missed det. rate $\geq (t-s_{+1})^2/(\rho_{+1}(1-s_{+1}^2)+(t-s_{+1}^2)^2)$
- valid when t > s_{⊥1}
- missed det. rate $\leq \rho_{+1}(1-s_{+1}^2)/(\rho_{+1}(1-s_{+1}^2)+(t-s_{+1}^2)^2)$
- valid when t < s₊₁
- Can state lower bound on entire ROC using the parameters E_F and E_M
- $\blacksquare E_{M} = \rho_{+1}(1-s_{+1}^{2})/(s_{-1}+s_{+1})^{2}$

Class-Specific Comparison

 Comparison of ROC and class-specific bounds for SPECTF dataset with Gini Random Forest and 15 different split dimensions (blue = 1, red = 15) Receiver Operating Characteristic

 Comparison of ROC and class-specific bounds for SPECTF dataset with 3 different Random Forest methods and m = 5 (green = Gini, blue = Fisher, red = Anderson-Bahadur)

- Comparisons of ROCs and bounds illustrate that the bounds are predictive of ROC behavior
- Correlation between class-specific areas of ROC (A_F, A_M) and (E_F, E_G, E_M) shows that class-specific bound parameters are predictive of classification performance in low false alarm and low missed detection regimes (correlation over three Random Forest methods):

	E _F	E_G	E _M
A_{F}	0.6976	0.3878	-0.6401
•	largest in the row		smallest in the row
A_M	-0.6905	0.2994	0.8392
	smallest in the row		largest in the row