4. Successioni geometriche

Si dice successione (o progressione) geometrica di ragione q la successione

$$a_1$$
 , $a_2 = a_1 q$, $a_3 = a_2 q$, ... , $a_n = a_{n-1} q$, ...

Essendo

$$a_n = a_1 q^{n-1}$$

si ha:

- a) se $a_1=0$ allora $a_n=0$ $\forall n\in\mathbb{N}$, pertanto $\lim_{n\to\infty}a_n=0$
- b) se $a_1 \neq 0$ allora
 - se $q \le -1$ la successione è indeterminata
 - se |q| < 1 la successione converge a zero
 - se q=1 la successione converge ad a_1
 - se q > 1 la successione diverge positivamente

La somma dei primi n termini di una successione geometrica

$$S_n = a_1 + a_2 + \dots + a_n$$

è uguale a :

$$S_n = \begin{cases} a_1 \frac{1 - q^n}{1 - q} & \text{se } q \neq 1 \\ na_1 & \text{se } q = 1 \end{cases}$$

Esempi

(gli esercizi con asterisco sono avviati)

Per ciascuna delle seguenti successioni geometriche

- a) stabilire se sono convergenti, divergenti oppure indeterminate
- b) calcolare la somma dei primi n termini, per il valore di n indicato a fianco

*1)
$$a_n = \left(\frac{4}{5}\right)^n$$
 , $n \in \mathbb{N}$, $n = 10$

*2)
$$a_n = \left(\frac{7}{2}\right)^n$$
 , $n \in \mathbb{N}$, $n = 5$

*3)
$$a_n = \left(-\frac{7}{2}\right)^n$$
, $n \in \mathbb{N}$, $n = 10$

L. Mereu – A. Nanni Successioni numeriche

Soluzioni

*1.S. converge a zero; (ragione $q = \frac{4}{5}$; $S_{10} = \frac{1 - \left(\frac{4}{5}\right)^{10}}{1 - \frac{4}{5}} \approx 4,46$);

- ***2.S.** diverge positivamente; (ragione $q = \frac{7}{2} > 1$; $S_5 = \frac{1 \left(\frac{7}{2}\right)^5}{1 \frac{7}{2}} \cong 209,69$);
- *3.S. indeterminata ; (ragione $q=-\frac{7}{2}<-1$; $S_{10}=\frac{1-\left(-\frac{7}{2}\right)^{10}}{1+\frac{7}{2}}\cong-6$,13 \cdot 10⁴) ;