

Rozwiązania Kontestu 1 – PreOM 2025

Zadanie 1. Znajdź wszystkie pary n, x spełniające równanie:

$$1^n + 2^n + 3^n + \dots + n^n = x!$$

gdzie n, x są całkowite nieujemne.

Źródło: AoPS: link

Rozwiązanie 1. Jedynymi parami spełniającymi równanie są (n, x) = (1, 1) oraz (n, x) = (1, 0). Załóżmy, że n jest liczbą parzystą i oznaczmy $\nu_2(n) = k$. Zauważmy, że dla $n \ge 4$ mamy x > n. W takim razie $2^{k+1} \mid x!$. Rozważmy teraz lewą stronę równania modulo 2^{k+1} . Ponieważ $\varphi(2^{k+1}) = 2^k$, korzystając z tw. Eulera, dla wszystkich $1 \le a \le n$ otrzymujemy:

$$a^n \equiv \begin{cases} 0 \pmod{2^{k+1}}, & \text{jeśli } 2 \mid a, \\ 1 \pmod{2^{k+1}}, & \text{w przeciwnym razie.} \end{cases}$$

Zatem

$$1^{n} + 2^{n} + 3^{n} + \dots + n^{n} \equiv \frac{n}{2} \not\equiv 0 \pmod{2^{k+1}},$$

co prowadzi do sprzeczności. Otrzymujemy więc, że n jest liczbą nieparzystą. Rozważmy teraz lewą stronę równania modulo n-1. Zauważamy, że

$$\left(\frac{n-1}{2}\right)^n + 1 \equiv x! \equiv 0 \pmod{n-1}.$$

Ponieważ jednak $\frac{n-1}{2}\mid n-1,$ mamy

$$\left| \frac{n-1}{2} \right| \left(\frac{n-1}{2} \right)^n + 1 \implies \frac{n-1}{2} \mid 1.$$

Stąd wynika, że n-1=2, czyli n=3, co nie spełnia równania. Otrzymujemy więc $n\leqslant 3$. Sprawdzając każdy przypadek ręcznie, widzimy, że dla n=1 otrzymujemy x=1 lub x=0, co kończy dowód.

Źródło: AoPS, rozwiązanie użytkownika Thapakazi: link

Zadanie 2. W trójkącie ABC, $\not A = 60^\circ$. Punkt D leży na odcinku BC. Niech O_1, O_2 będą środkami okręgów opisanych na trójkątach $\triangle ABD$, $\triangle ACD$, odpowiednio. Niech M będzie punktem przecięcia prostych BO_1, CO_2 , a N środkiem okręgu opisanego na $\triangle DO_1O_2$. Udowodnij, że przy zmianie położenia D na odcinku BC, prosta MN przechodzi przez stały punkt (niezależny od przesuwania D po odcinku BC).

Źródło: AoPS, Olimpiada Irańska 2005: link

Rozwiązanie 2. Zauważmy, że czworokąt ABCM jest wpisany w okrąg. Ponieważ

$$\stackrel{?}{\checkmark}O_1DO_2 = 180^\circ - (180^\circ - \stackrel{?}{\checkmark}BAD - \stackrel{?}{\checkmark}DAC) \implies \stackrel{?}{\checkmark}O_1DO_2 = 60^\circ$$

otrzymujemy

$$\angle O_1 N O_2 = 120^{\circ}$$

co oznacza, że czworokąt MO_1NO_2 również jest wpisany w okrąg. Ponieważ $O_1N=O_2N$, wynika stąd, że NM dwusieczna kąta

$$\not \triangleleft O_1 M O_2 = 60^\circ$$
.

Zatem MN przechodzi przez środek łuku BC.

Źródło: AoPS, rozwiązanie użytkownika Maths_1729: link

Zadanie 3. Rozstrzygnij czy istnieją dwa wielomiany o współczynnikach całkowitych P, Q stopni co najmniej 100 spełniające zależność

$$P(Q(x)) = 3Q(P(x)) + 1,$$

dla każdego rzeczywistego x.

Źródło: Aops, FKMO: link

Rozwiązanie 3. Zauważmy, że wielomiany $P(x) = 2x^2 + 2x$, Q(x) = 3x + 1 spełniają interesującą nas zależność (obie strony równania są równe $18x^2 + 18x + 4$). Co więcej, jeśli para (P,Q) spełnia tą zależność, to również pary (P(Q(x)),Q(x)) oraz (P(x),Q(P(x))) spełniają tą zależność. Zatem możemy wygenerować parę o dowolnie dużych stopniach korzystając z przedstawionej pary oraz obserwacji.

Źródło: Aops: link

Zadanie 4. Rozważmy 2018 parami przecinających się okręgów, takich że każda para okręgów przecina się dokładnie w dwóch punktach, a żadne trzy okręgi nie przechodzą przez ten sam punkt. Okręgi te dzielą płaszczyznę na obszary ograniczone przez łukowe *krawdzie*, które spotykają się w *wierzchokach*. Zauważmy, że na każdym okręgu znajduje się parzysta liczba wierzchołków.

Dla danego okręgu na przemian kolorujemy jego wierzchołki na czerwono i niebiesko. Każdy wierzchołek zostaje pokolorowany dwukrotnie - raz dla każdego z dwóch okręgów, które przecinają się w tym punkcie. Jeśli oba kolory w danym wierzchołku są takie same, to przyjmuje on ten kolor; w przeciwnym razie staje się żółty.

Pokaż, że jeśli jakiś okrąg zawiera co najmniej 2061 żółtych punktów, to istnieje obszar, którego wszystkie wierzchołki są żółte.

Źródło: IMO Shortlist 2018, Zadanie C7

Rozwiązanie 4. Zaczniemy od dwóch obserwacji.

Lemat 1. Rozważmy dowolne dwa okręgi. Jeśli jeden z ich punktów przecięcia jest żółty, to drugi punkt przecięcia również jest żółty.

Dowód. Nazwijmy obszar ograniczony przez oba okręgi ich pokryciem. Każdy okrąg wchodzi do pokrycia i wychodzi z niego równą liczbę razy, więc z powodów parzystości, drugi punkt przecięcia musi być żółty. ■

Lemat 2. Dla dowolnych trzech różnych okręgów, w ich 6 punktach przecięcia znajduje się dokładnie 2 lub 6 żółtych punktów.

Dowód. Niech $\omega_1, \omega_2, \omega_3$ będą naszymi trzema okręgami, a x, y, z będą łukami okręgów $\omega_1, \omega_2, \omega_3$. Ponieważ każdy okrąg inny niż ω_i musi przecinać cykl $x \cup y \cup z$ parzystą liczbę razy, więc jego usunięcie nie zmienia parzystości żółtych punktów w cyklu $x \cup y \cup z$. Zatem możemy założyć, że w płaszczyźnie znajdują się tylko okręgi $\omega_1, \omega_2, \omega_3$. Jeśli w płaszczyźnie znajdują się tylko trzy okręgi, można sprawdzić, że istnieje dokładnie 2 lub 6 żółtych punktów.

Teraz pokażemy, że istnieje obszar, którego wszystkie wierzchołki sa żółte.

Niech G będzie grafem na 2018 okręgach. Łączymy dwa wierzchołki w G, wtedy i tylko wtedy jeśli dwa okręgi reprezentujące te wierzchołki w G przecinają się w punkcie żółtym.

Z lematu (2) jest oczywiste, że G jest sumą dwóch grafów pełnych. Ponieważ istnieje okrąg, który zawiera co najmniej 2061 żółtych punktów, to jeden z komponentów w G ma co najmniej 1032 wierzchołki. Zatem, istnieje co najmniej $2\cdot 1032\cdot 986$ punktów nieżółtych.

Załóżmy nie wprost, że nie istnieje żaden obszar, którego wszystkie wierzchołki są żółte.

Zauważmy, że każdy wierzchołek należy dokładnie do 4 obszarów, w tym do obszaru zewnętrznego. Odwołując się do wzoru Eulera, istnieje dokładnie $2018^2-2018+2$ obszarów, w tym obszar zewnętrzny. Ponieważ każde dwa okręgi wzajemnie się przecinają, jest oczywiste, że każdy obszar ma co najmniej 2 punkty nieżółte. Zatem liczba par (v, V), gdzie v jest wierzchołkiem nieżółtym, a V jest jakimś obszarem, który zawiera v, jest co najmniej $2 \cdot (2018^2-2018+1)$ (z wyłączeniem obszaru zewnętrznego).

Z drugiej strony, każdy wierzchołek nieżółty należy do 4 obszarów, więc liczba par, które liczymy, to co najwyżej $4\cdot 2\cdot 986\cdot 1032$. Stąd otrzymujemy nierówność $2\cdot (2018^2-2018+1) \leq 4\cdot 2\cdot 1032\cdot 986$, co prowadzi do sprzeczności.

Źródło: AoPS, IMO Shortlist 2018, Zadanie C7 link

