Assignment 4

4.7 Use linearity and the assumption that $V_o = 1$ V to find the actual value of V_o in Fig. 4.75.

4.15 For the circuit in Fig. 4.83, use superposition to find i. Calculate the power delivered to the 3- Ω resistor.

4.24 Use source transformation to find the voltage V_x in the circuit of Fig. 4.92.

4.41 Find the Thevenin and Norton equivalents at terminals *a-b* of the circuit shown in Fig. 4.108.

4.57 Obtain the Thevenin and Norton equivalent circuits at terminals *a-b* for the circuit in Fig. 4.123.

- **4.72** (a) For the circuit in Fig. 4.138, obtain the Thevenin equivalent at terminals *a-b*.
 - (b) Calculate the current in $R_L = 8 \Omega$.
 - (c) Find R_L for maximum power deliverable to R_L .
 - (d) Determine that maximum power.

