Ferienkurs Experimentalphysik 4 2010

Übung 4 - Musterlösung

1 Matrixelement Man zeige durch Rechnung, dass das Dipolmatrixelement für den

Übergang 1s
$$\to$$
2s im H-Atom Null ist. $R_{10}(r) = 2\left(\frac{1}{a_0}\right)^{3/2}e^{-r/a_0}$, $R_{20}(r) = 2\left(\frac{1}{2a_0}\right)^{3/2}\left(1 - \frac{r}{2a_0}\right)e^{-r/2a_0}$

Lösung

$$\begin{split} \frac{M_{ik}}{e} &= \int \psi(2s) \cdot \vec{r} \cdot \psi(1s) d\tau \\ &= \frac{1}{4\pi\sqrt{2}a_0^3} \cdot \int \left(2 - \frac{r}{a_0}\right) e^{-\frac{r}{2a_0}} \vec{r} e^{-\frac{r}{a_0}} d\tau \\ &= a \int \int \int \left(2 - \frac{r}{a_0}\right) e^{-\frac{3r}{2a_0}} \vec{r} \cdot r^2 \sin\theta dr d\theta d\varphi \end{split}$$

Für die x-Koordinate:

$$\frac{(M_{ik})_x}{e} = a \cdot \int \int \int_{\varphi=0}^{2\pi} \left(2 - \frac{r}{a_0}\right) e^{-\frac{3r}{2a_0}} \cdot xr^2 \sin\theta dr d\theta d\varphi$$

Wegen $x = r \cdot \sin \theta \cos \varphi$ ergibt φ Integration

$$\sin\varphi|_0^{2\pi}=0$$

Entsprechendes gilt für $(M_{ik})_y$ mit $y = r \cdot \sin \theta \sin \varphi$. Für $(M_{ik})_z$ folgt wegen $z = r \cdot \cos \theta$ bei Integration über θ :

$$\int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta \cos \theta d\theta = \frac{1}{2} \sin^2 \theta \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 0$$

2 Linienbreite I

a) Die mittlere Lebensdauer des H(2p)-Zustands beträgt $\tau=1,6ns$. Berechnen Sie die natürliche Breite für die Lyman- α -Linie (2p-1s) und vergleichen Sie diese mit der Doppler-Breite bei Zimmertemperatur.

b) Vergleichen Sie die sich aus a) ergebenden Breiten der Linie (2p-1s) mit der Hyperfeinstrukturaufspaltung (HFS) des Wasserstoffgrundzustands, die durch die Wellenlänge $\lambda=21,1cm$ zwischen den beiden F-Zuständen charakterisiert ist. Welche Temperatur muß erreicht werden, damit die HFS von einem idealen Spektrometer aufgelöst werden kann?

Hinweis: Vernachlässigen Sie hierbei die Hyperfeinstruktur der 2p Energieniveaus

Lösung

1. Der Zusammenhang zwischen der natürlichen Breite der Lyman- α -Linie und der Lebensdauer des H(2p)-Zustandes ist gegeben durch

$$\Delta \nu_{nat.} = \frac{1}{2\pi\tau} \approx 100 MHz$$

Aus der Intensitätsverteilung des Dopplereffekts ergibt sich

$$\begin{split} \Delta\nu_{Dopp.} &= \frac{\nu_0}{c} \sqrt{8 \ln 2 \frac{k_B T}{m}} \\ &= \frac{2465 \ THz}{299798458 \ m/s} \sqrt{8 \ln 2 \frac{1,38 \cdot 10^{-23} \ J/K \ 293K}{1,673 \cdot 10^{-27} kg}} \\ &\approx 30,1 GHz \\ &= 301 \cdot \Delta\nu_{ngt} \end{split}$$

2. Beim Übergang von 2p zu 1s, können wir bei hinreichend guter Auflösung 2 Linien erkennen, jeweils für F=0 und F=1 der HFS des 1s Energieniveaus. Damit die Hyperfeinstrukturaufspaltung aufgelöst werden kann, muß die Dopplerverbreiterung kleiner sein als der Abstand zwischen den beiden Linien (21cm). $\nu_0 = \nu$ (2p-1s), was man leicht mit der üblichen Rydbergformel bestimmen kann.

$$\frac{\nu_0}{c} \sqrt{8 \ln 2 \frac{k_B T}{m}} \leq \Delta \nu$$

$$\Rightarrow T \leq \frac{mc^2}{8 \ln 2k_B} \left(\frac{\Delta \nu}{\nu_0}\right)^2$$

$$\approx 0.65K$$

3 Linienbreite II Wie groß sind Übergangswahrscheinlichkeit und natürliche Linienbreite

des Übergangs 3s \rightarrow 2p im H-Atom, wenn die Lebensdauer der Zustände $\tau(3s)=23ns$ und $\tau(2p)=2,1\mu s$ betragen? Vergleichen Sie dies mit der Dopplerbreite dieses Übergangs bei T=300K.

Lösung Das 3s-Niveau kann nur in das 2p-Niveau zerfallen. Deshalb ist die Übergangswahrscheinlichkeit für den Übergang $3s \rightarrow 2p$:

$$A_{ik} = \frac{1}{\tau(3s)} = \frac{10^9}{23}s^{-1} = 4, 3 \cdot 10^7 s^{-1}$$

Die natürliche Linienbreite ist

$$\delta\nu_n = \frac{1}{2\pi} \left(\frac{1}{\tau(3s)} + \frac{1}{\tau(2p)} \right) = 83 MHz$$

$$\delta\nu_D = 7, 16 \cdot 10^{-7} \nu_{ik} \cdot \sqrt{\frac{T}{M}} \sqrt{\frac{mol}{gK}} = 5,67 GHz$$

$$M = 1 \frac{g}{mol} , T = 300K$$

$$\frac{\delta\nu_n}{\delta\nu_d} = 0,014$$

4 Rotationsspektrum des ¹²C¹⁸O-Moleküls

a) Zeigen Sie, dass für das Trägheitsmoment I eines hantelförmigen Moleküls, das um seinen Schwerpunkt rotiert (vgl Abb. 1), folgendes gilt:

$$I = M \cdot R^2 \tag{1}$$

Dabei ist R der Abstand der Atome und M die reduzierte Masse

$$M = \frac{m_1 \cdot m_2}{m_1 + m_2}$$

Die Aufgabe kann durch Rechnung oder Begründung (kürzer) gelöst werden.

Abbildung 1: Rotation eines Moleküls um seinen Schwerpunkt.

Lösung Begründung: Analog zum z.B. Wasserstoffatom handelt es sich um ein Zweikörperproblem, allerdings mit festem Abstand und ohne Potential. Dieses kann durch Verwendung der reduzierten Masse M und von Relativkoordinaten R auf ein Einkörperproblem zurückgeführt werden. Für das Trägheitsmoment gilt deshalb

$$I = M \cdot R^2$$

Rechnung: Das Trägheitsmoment beträgt definitionsgemäß

$$I = m_1 R_1^2 + m_2 R_2^2$$

Man führt nun (1) in diesen Ausdruck über.

$$MR^{2} = \frac{m_{1}m_{2}}{m_{1} + m_{2}} (R_{1} + R_{2})^{2} = \frac{m_{1}m_{2}}{m_{1} + m_{2}} (R_{1}^{2} + 2R_{1}R_{2} + R_{2}^{2}) =$$

$$= \frac{1}{m_{1} + m_{2}} (m_{1}m_{2}R_{1}^{2} + m_{1}m_{2}R_{1}R_{2} + m_{1}m_{2}R_{1}R_{2} + m_{1}m_{2}R_{2}^{2}) =$$

$$= \frac{1}{m_{1} + m_{2}} (m_{1}m_{2}R_{1}^{2} + m_{1}m_{1}R_{1}^{2} + m_{2}m_{2}R_{2}^{2} + m_{1}m_{2}R_{2}^{2}) =$$

$$= \frac{1}{m_{1} + m_{2}} (m_{1} + m_{2}) (m_{1}R_{1}^{2} + m_{2}R_{2}^{2}) = m_{1}R_{1}^{2} + m_{2}R_{2}^{2}$$

Beim Übergang von der zweiten zur dritten Zeile wurde benutzt, dass bei Wahl des Ursprungs im Schwerpunkt gilt

$$m_1 R_1 = m_2 R_2$$

b) Für die Rotationsenergie des Moleküls gilt dann

$$E(J) = \frac{|J|^2}{2I} = \frac{j(j+1) \cdot \hbar^2}{2I} \equiv hcB \cdot j(j+1)$$

mit dem Drehmimpuls J und der sogenannten Rotationskonstanten B

$$B = \frac{h}{8\pi^2 \cdot cMR^2}$$

Zeigen sie, dass der energetische Abstand $\Delta E(J+1) - \Delta E(J)$ benachbarter Übergänge konstant ist, mit den Übergangsenergien $\Delta E(J) = E(J) - E(J-1)$.

Lösung

$$\Delta E(J+1) - \Delta E(J) = [E(J+1) - E(J)] - [E(J) - E(J-1)] =$$

$$= hcB [(J+1)(J+2) - J(J+1) - J(J+1) + (J-1)J]$$

$$= 2hcB$$

Zusammen mit der Auswahlregel $\Delta j=\pm 1$ bedeutet dies, dass man äquidistante Linien im Spektrum erhält.

c) Abb. 2 zeigt das Mikrowellentransmissionsspektrum des Kohlenmonoxids aus den Isotopen 12 C und 18 O. Bestimmen Sie die Bindungslänge in der Näherung des starren Rotators an Hand der Rotationsübergange von den gezeigten Niveaus J=3 bis J=9.

Abbildung 2: Mikrowellentransmissionsspektrum von ¹²C¹⁸O

Lösung Wie man aus Aufgabe b) erwartet, besteht das Transmissionsspektrum aus äquidistanten Linien. Der Abstand beträgt in etwa 3.9 cm^{-1} . Daraus folgt für die Rotationskonstante und somit für die Bindungslänge

$$B = 0.5 \cdot 3.9 \text{ cm}^{-1}$$

 $\rightarrow R = 1.14 \text{ Å}$

5 Schwingungs-Rotations-Übergänge von HCI

Wir betrachten ein zweiatomiges Molekül und lassen sowohl Schwingung als auch Rotation zu. Die Energie der Schwingungs-Rotationszustände beträgt dann

$$E = E_{\text{vib}} + E_{\text{rot}} =$$

$$= \hbar\omega \left(\nu + \frac{1}{2}\right) + hc \cdot B \cdot j(j+1)$$
mit $\nu = 0, 1, \dots$ und $j = 1, 2, \dots$

Die Schwingungsenergie ist dabei um ein Vielfaches größer als die Rotationsenergie.

Im Energiespektrum gehört deshalb zu jedem Schwingungszustand eine Gruppe von Rotationszuständen.

a) Skizzieren Sie das Energieniveausschema für $\nu=1,2$ und j=0,1,2,3 und zeichnen Sie die Absorptionsübergänge zwischen den Schwingungs-Rotations-Zuständen ein. Die Auswahlregeln für diese Übergänge sind

$$\Delta \nu = \pm 1$$
$$\Delta j = \pm 1$$

Abbildung 3: Termschema der Schwingungs-Rotations-Zustände für die Quantenzahlen $\nu=1,2$ und j=0,1,2,3 mit den erlaubten Absorptionsübergängen.

b) Abb. 4 zeigt das Infrarottransmissionsspektrum von Salzsäuredampf (HCl). Wie man erkennt zerfällt es in zwei Teile, einen sogenannten P-Zweig und einen R-Zweig. Ordnen Sie die Peaks im Transmissionsspektrum den Übergängen in ihrem Energie-niveauschema gemäß der angegebenen Nomenklatur zu $(R(0), R(1), \ldots, P(1), P(2), \ldots)$. Was charakterisiert P-Übergange/R-Übergänge? Warum ergibt sich im Spektrum eine Lücke? Welchem Übergang würde das entsprechen? Wie groß ist demmnach die Energie des ersten angeregten Vibrationszustandes?

Lösung Aus dem Vergleich von Termschema umd Transmissionsspektrum erhält man:

- ullet Im P-Zweig nimmt die Absorptionsenergie mit sinkendem j, im R-Zweig mit steigendem j zu.
- Im P-Zweig gilt $\Delta j = -1$, im R-Zweig $\Delta j = +1$.
- Der Übergang $J=0 \rightarrow J=0$ ist verboten. Deshalb fehlt im Spektrum diese Linie.
- Die Energie $E = hc \cdot \bar{\nu}$ des fehlenden Übergangs entspräche genau der Differenz $\Delta E = \hbar \omega$ zwischen Schwingungsrundzustand und erstem angeregten Zustand.

Abbildung 4: Infrarottransmissionsspektrum von HCl.

Die Energie des ersten angeregten Zustands beträgt

$$E_{\text{vib}}^{(1)} = \frac{3}{2}\hbar\omega = \frac{3}{2}hc\bar{\nu}$$

 $E_{\text{vib}}^{(1)} = \frac{3}{2}hc \cdot 2885.9 \text{ cm}^{-1} = 0.54 \text{ eV}$

c) Berechnen Sie den mittleren Kernabstand R des HCl-Moleküls.

$$(m_{\rm Cl} = 5.89 \cdot 10^{-26} \text{ kg}, m_{\rm H} = 1.67 \cdot 10^{-27} \text{ kg})$$

Lösung Der Kernabstand kann aus dem Energieintervall zwischen den Rotationspeaks bestimmt werden. Zwischen $\bar{\nu}=3059~\mathrm{cm^{-1}}$ und $\bar{\nu}=2652~\mathrm{cm^{-1}}$ befinden sich 19 (näherungsweise) äquidistante Linien (inklusive des fehlenden Mittelpeaks). Der mittlere Abstand ist dann

$$\Delta \bar{\nu} = \frac{3059 \text{ cm}^{-1} - 2652 \text{ cm}^{-1}}{20} = 20.4 \text{ cm}^{-1}$$

Über die Rotationskonstante erhält man

$$\Delta \bar{\nu} = 2B_e$$

$$R = \sqrt{\frac{\hbar}{2\pi c M \Delta \nu}}$$

$$\rightarrow R = 1.3 \text{ Å}$$

d) Bei genauer Betrachtung fällt auf, dass die Absorptions-Peaks eine Substruktur (Doppelpeak) haben. Wie erklären Sie diese Tatsache?

Lösung Chlor kommt in der Natur in zwei Isotopen vor: 35 Cl(75.5%) und 37 Cl(24.5%). Die Massenunterschied führt zu unterschiedlichen Trägheitsmomenten und damit zu ver-

schobenen Absorptionspeaks im Rotationsspektrum.