Apellido y Nombres:		,,,,,,,
	Padrón:	
	Año:	0 0
Correo electrónico:		

Análisis Matemático III. Examen Integrador. Primera fecha. 19 de marzo de 2021.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Calcular el valor principal de:

$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x+1)(x^2+1)} \, dx$$

Decidir si la integral impropia es convergente.

Ejercicio 2. Determinar el mayor dominio abierto D de convergencia de la serie

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1+z}{1-z} \right)^n$$

Explicar por qué

$$f(z) = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1+z}{1-z} \right)^n$$

es holomorfa en D y dar una expresión de f(z) para todo $z \in D$.

Ejercicio 3. Plantear el problema de la distribución de la temperatura en estado estacionario en la semifranja $\{(x,y) \in \mathbb{R}^2 : 0 < x < \pi, y > 0\}$ con los lados verticales perfectamente aislados y el lado inferior con temperatura f(x) en cada $x \in (0,\pi)$. ¿Qué condición adicional garantiza unicidad de solución? Resolver el problema para tal caso, bajo las hipótesis necesarias sobre f.

Ejercicio 4. Resolver el siguiente problema de ecuaciones diferenciales en derivadas parciales:

$$\begin{cases} u_{xx}(x,t) - u_t(x,t) = 0 & 0 < x < +\infty, \ t > 0 \\ u(0,t) = 0 & t \geqslant 0 \\ u(x,0) = \mathbb{1}_{(0,1)}(x) & 0 \leqslant x < \infty \end{cases}$$

Ejercicio 5. Estudiar si las funciones $f, g: (0, +\infty) \to \mathbb{R}$ dadas por

$$f(x) = \operatorname{sen}(e^{x^2}), \quad g(x) = xe^{x^2} \operatorname{sen}(e^{x^2})$$

son o no de orden exponencial. Para cada una, analizar si existe su transformada de Laplace y en caso afirmativo, dar su abscisa de convergencia.