

Status of the JWST Science Instrument Payload

Matt Greenhouse
JWST Project Office
NASA Goddard Space Flight Center
26 June 2016

@NASAWebbTelescp
#JWST

The Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST

- ISIM is one of three elements that together make up the JWST space vehicle
 - Approximately 1.4 metric tons, ~20% of JWST by mass
 - Element-level I&T completed, ISIM was delivered to OTIS integration during March
- The ISIM system consists of:
 - Five sensors (4 science)
 - MIRI, NIRISS, FGS, NIRCam, NIRSpec
 - Nine instrument support systems:
 - Optical metering structure system
 - Electrical Harness System
 - Harness Radiator System
 - ISIM electronics compartment
 - ISIM Remote Services Unit
 - Cryogenic Thermal Control System
 - Command and Data Handling System
 - Flight Software System
 - Operations Scripts System

Three ISIM assemblies reside on the cryogenic side of the space vehicle

- Four science sensors:
 - NIRCam, NIRSpec, NIRISS, MIRI
- Fine guidance sensor (FGS)
 - Supports telescope pointing to $\sim 10^{-6}$ deg
- Optical metering structure
 - Sensor launch loads
 - Sensor optical alignment over ~ 250 deg ΔT
- Harness Radiator (HR)
 - Passive cooling for $\sim 2,700$ electrical wires
- Electronics Compartment (IEC)
 - Houses 11 electronics boxes
 - Manages 220 W power on cryo side of space vehicle

Flight ISIM test configuration

ISIM integration with OTE is on schedule for OTIS testing

Key 2016 integration milestones:

- ✓ ISIM Prime module integration w/ OTE: May
- ✓ MIRI FPE integration with IEC: Jun
 - FPE reworked after CV-3
- IEC integration w/ OTE: Aug
- Harness Radiator integration w/ OTE: Sep

The NIRCam will image the earliest epoch of galaxy formation

NIRCam Flight Model

NIRCam will provide the deepest near-infrared images ever and will identify primeval galaxy targets for the NIRSpec

- Developed by the University of Arizona with Lockheed Martin
 - Operating wavelength: 0.6 – 5.0 microns
 - Field of view: 2.2 x 4.4 arc minutes
 - Angular resolution (1 pixel): 32 mas < 2.3 microns, 65 mas > 2.4 microns
 - Imagery: R= 4, 10, 100 filters
 - Spectroscopy: grisim (slit-less) R~2000 2.4 – 5 microns
 - Coronagraph

NIRSpec can obtain spectra of 100 compact galaxies simultaneously

Aperture control: 250,000 programmable micro-shutters

The NIRSpec will acquire near-infrared spectra of up to 100 objects in a single exposure

- Developed by the European Space Technology Center (ESTEC) with Astrium and Goddard Space Flight Center
 - Operating wavelength: 0.6 – 5.0 microns
 - Spectral resolution: 100, 1000, 3000
 - Field of view: 3.4 x 3.4 arc minutes
 - Aperture control:
 - Programmable micro-shutters, 250,000 pixels
 - 203 x 463 mas clear aperture (267 x 528 mas pitch)
 - Fixed long slits & transit spectroscopy aperture
 - 200, 400, 1600 mas slit width
 - Image slicer (IFU) 3x3 arc sec FOV (100 mas slice width)
 - All aperture control modes available with any spectral resolution mode

MIRI will provide the first high resolution imagery of the mid-infrared universe

MIRI flight model

The MIRI will characterize circumstellar debris disks, extra-solar planets, and the evolutionary state of high redshift galaxies

- Developed by a consortium of 10 European countries and NASA/JPL
 - Operating wavelength: 5 – 28.5 microns
 - Broad-band imagery: 1.9×1.4 arc minutes FOV, 110 mas/pixel, 9 filters ($R \sim 5$)
 - Spectroscopy:
 - $R \sim 100$ long slit spectroscopy 5×0.2 arc sec
 - $R \sim 3000$ IFU spectroscopy (4 image slicers fed by dichroic beam splitters)
 - Slice width: 19, 19, 24, and 27 mas
 - Coronagraphic imagery: Three 4QPMs and 1 Lyot occulting mask, 110 mas/pixel

The MIRI cryo-cooler is complete and delivered to spacecraft I&T

- Pre-Ship review completed during May
- Flight spare cooler in final verification testing at JPL

Flight Cryocooler Precooler Performance @ Pinch Point
302W, 29.5Hz, 317K reject temp.

FGS can sense pointing to 1 millionth degree precision

NIRISS enables moderate contrast imagery at an inner working angle of $0.5\lambda/D$

Flight FGS

The FGS-Guider and NIRISS provide telescope pointing control imagery & slitless spectroscopy for Ly-a galaxy surveys and extra-solar planet transits

- Developed by the Canadian Space Agency with ComDev
- **FGS:** 4 mas noise equivalent angle (0.6 – 5 microns)
 - ~95% probability of guide star acquisition over whole sky
 - 7 mas LOS pointing stability
- **NIRISS:**
 - Wide-field slit-less spectroscopic imagery (grism)
 - $R \sim 150$, 0.8 – 2.25 microns optimized for Ly alpha galaxy surveys
 - Single object spectroscopic imagery (grism): 3 orders cross-dispersed
 - $R \sim 700$, 0.7 – 2.5 microns optimized for exoplanet transit spectroscopy
 - Aperture mask interferometric imaging (7 aperture NRM, 21 unique baselines) 3.8, 4.3, and 4.8 microns ($IWA \sim 0.5\lambda/D$)
 - 68 mas/pixel all modes

Simulated NIRISS aperture mask near-infrared image of a 1-2 M_{Jup} planet at ~1 AU of a M0V star 10 pc from the Sun.

JWST will achieve unprecedented infrared sensitivity

However, 30 m ground-based facilities can challenge JWST performance for $R > 1000$ spectroscopy at wavelengths < 1.7 microns

Observer take-aways

- The ISIM contains a Fine Guidance Sensor that enables the observatory to achieve 7 mas pointing stability
- The ISIM includes 4 science sensors that enable:
 - Nyquist sampled imagery in broad-band filters
 - Coronagraphic imagery with contrast $\sim 10^4 - 10^5$ over the whole JWST wavelength range
 - Slit-less, long slit, and multi-object spectroscopy with $R \sim 10^2 - 10^3$
 - IFU spectroscopy over the whole JWST wavelength range
 - Interferometric imagery over 4-5 microns with resolution $0.5\lambda/D$
- All ISIM sensors have sub-array detector readout capability to enable observation of bright targets
- All ISIM sensors are designed for simultaneous and continuous operation

Instrument module integration with OTE

[Click Video](#)

In Sum ...

- ISIM is on track to support the OTIS end-to-end optical test at JSC during April 2017
- Integration of the ISIM system to the OTE is proceeding without issue

Last element-level ISIM test was completed during February 2016 in the GSFC SES chamber

Observatory end-to-end optical test begins during April 2017 in JSC Chamber-A

Launch 2018 from Kourou Launch Center (French Guiana)

