МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по учебной практике

Тема: Поиск кратчайших путей. Алгоритм Дейкстры

Студент гр. 2383	 Сериков М.
Студент гр. 2303	 Мышкин Н.В
Руководитель	Фирсов М.А.

Санкт-Петербург 2024

ЗАДАНИЕ НА УЧЕБНУЮ ПРАКТИКУ

Студент Сериков М. группы 2383	
Студент Мышкин Н.В. группы 2303	
Тема практики: Алгоритм Дейкстры пои	ска кратчайших путей в графе.
Задание на практику:	
Командная итеративная разработка визу	ализатора алгоритма на Java с
графическим интерфейсом.	
Алгоритм: Алгоритм Дейкстры поиска в	сратчайших путей в графе.
Сроки прохождения практики: 26.06.202	24 – 09.07.2024
Дата сдачи отчета: 00.07.2024	
Дата защиты отчета: 00.07.2024	
Студент	Сериков М.
Студент	Мышкин Н.В.
Руководитель	Фирсов М.А.

АННОТАЦИЯ

Цель практики — создание программы с поддержкой графического интерфейса для нахождения кратчайшего пути с помощью алгоритма Дейкстры на графе с неторицательными весами ребер. Перед выполнением основного задания был составлен план разработки и спецификация программы согласно которым производилась работа.

SUMMARY

The goal of the practice is to create a program with graphical interface support to find the shortest path using Dijkstra's algorithm on a graph with non-negative edge weights. Before completing the main task, a development plan and program specification were drawn up according to which the work was carried out.

СОДЕРЖАНИЕ

	Введение	5
1.	Требования к программе	6
1.1.	Исходные требования к программе*	6
1.1.1.	Требования к вводу исходных данных	6
1.1.2	Требования к визуализации	6
1.1.3	Требования к интерфейсу	6
1.1.4	Требования к построению графа	10
1.1.5	Требования к работе алгоритма	10
1.1.6	Требования к выводимым пояснениям	11
1.2.	Уточнение требований после сдачи прототипа	0
1.3.	Уточнение требований после сдачи 1-ой версии	0
1.4	Уточнение требований после сдачи 2-ой версии	0
2.	План разработки и распределение ролей в бригаде	13
2.1.	План разработки	13
2.2.	Распределение ролей в бригаде	13
3.	Особенности реализации	0
3.1.	Структуры данных	0
3.2.	Основные методы	0
4.	Тестирование	9
4.1	Тестирование графического интерфейса	9
4.2	Тестирование кода алгоритма	9
4.3	Тестирование кода графа	9
	Заключение	0
	Список использованных источников	0
	Приложение А. Исходный код	0

ВВЕДЕНИЕ

Главная цель практической работы — реализация графического представления работы алгоритма Дейкстры поиска кратчайших путей в графе. Для достижения поставленной цели необходимо реализовать рассматриваемый алгоритм, пользовательский интерфейс и визуализировать работу алгоритма, после чего произвести тестирование всех компонент проекта.

1. ТРЕБОВАНИЯ К ПРОГРАММЕ

1.1. Исходные Требования к программе

1.1.1. Требования к вводу исходных данных

На вход программе должен подаваться неотрицательно взвешенный неориентированный граф и исходная вершина. Название вершин состоят из одного символа латинского алфавита. Ввод начальных данных осуществляется двумя возможностями в зависимости от выбора пользователя: непосредственно в рабочей пространстве программы или посредством файла формата txt с данными о графе в следующем формате:

количество вершин

количество ребер

Название вершины координата Х, координата У

Вершина начала ребра, вершина конца ребра, вес ребра

Пример:

2

1

A 50 50

B 100 100

A B 10

1.1.2. Требования к визуализации

Алгоритм в ходе работы сохраняет промежуточные решения в виде списка по которому будет пошаговая визуализация с контролем шагов со стороны пользователя. На каждом шагу вывод одного из следующих этапов работы алгоритма:

Проверка соседей текущей вершины: Для каждого соседа проверяется нахождение нового более оптимального пути. (цветом выделяется проверяемая вершина и ребро до соседней вершины).

Обновление данных соседней вершины: Если найден более оптимальный путь, то обновляется метка стоимости пути. (изменение цвета вершины)

Переход к следующей вершине: Из очереди выбирается новая вершина в качестве текущей с наименьшим весом (отрисовка пути с нуля путем перекрашивания соответствующих ребер).

На каждом шаге алгоритма сохраняется текущее состояние алгоритма и очередь вершин.

1.1.3. Требования к интерфейсу

Эскиз интерфейса представлен на рисунке 1.

Рисунок 1 — интерфейс программы

В верхней панели программы находится меню с вкладками File, Edit.

Вкладка File: содержит в себе инструменты для загрузки графа из файла, кнопку выхода из программы

Вкладка Edit: содержит в себе инструменты для перехода к окну визуализации

Основная панель инструментов содержит в себе кнопки для построения графа, рассмотрим все кнопки.

Рисунок 2 — кнопка перемещения вершин

Кнопка на рис. 2 необходима для перемещения вершин графа, пока активен режим каждую вершину можно перетащить посредством мыши.

Рисунок 3 — кнопка добавления вершин

Кнопка на рис.3 необходима для создания вершин графа, пока активен режим нажатием ЛКМ можно создавать вершины.

Рисунок 4 — кнопка добавления ребра

Кнопка на рис.4 необходима для добавления ребер графа, пока активен режим выделение двух вершин создает ребро.

Рисунок 5 — кнопка удаления вершин

Кнопка на рис.5 необходима для удаления вершин и ребер графа, пока активен режим выделение вершины или ребра удаляет его.

Рисунок 6 — кнопка очистки графа

Кнопка на рис.6 необходима для очистки графа, она очищает рабочую область.

Рисунок 7 — кнопка выбора начальной вершины

Кнопка на рис.7 необходима для выбора начальной вершины для работы алгоритма, она выделяет одну вершину меняя её цвет.

Эскиз окна визуализации работы алгоритма представлен на рисунке 8

Рисунок 8 — окно визуализации программы

В данном окне представлены инструменты для контроля визуализации работы алгоритма, в случае если выбрана вершина старта алгоритма, то кнопки становятся активными, для начала запуска визуализации алгоритма используется нижняя кнопка, также имеются кнопки паузы и переключения между следующим и предыдущим шагами визуализации. Кнопка начала визуализации запускает автоматическое воспроизведение шагов с небольшой задержкой, при нажатии паузы можно перемещаться между шагами работы алгоритма. Справа от рабочей области находится поле лога работы алгоритма.

1.1.4. Требования к построению графа

Для построения будут использоваться кнопки:

Режим перетаскивания вершин — нажимая ЛКМ и удерживая курсор на вершине возможно её перемещение внутри рабочей области программы (перемещение вершины вслед за курсором)

Режим добавления вершины — нажатие ЛКМ по свободному пространству создась вершину, которой можно будет присвоить название.

Режим добавления ребра — Необходимо выбрать пару вершин, выделение будет демонстрироваться как изменение цвета вершины, после выделения второй вершины будет построено ребро с возможностью ввода его веса, являющимся неотрицательным числом.

Режим удаления объекта — выделения ЛКМ вершины или ребра удаляет его из графа.

Кнопка очистки рабочей области — удаление всего графа.

1.1.5. Требования к работе алгоритма

За основу рассматриваемого алгоритма взят следующий псевдокод:

```
function Dijkstra (Graph, source):
      dist[source] \leftarrow 0
       for each vertex v in Graph:
           if v \neq source:
                dist[v] ← ∞
                prev[v] ← undefined
       Q \leftarrow \text{the set of all nodes in Graph}
       while Q is not empty:
           u ← vertex in Q with min dist[u]
           remove u from Q
            for each neighbor v of u:
                alt \leftarrow dist[u] + length(u, v)
                if alt < dist[v]:</pre>
                     dist[v] \leftarrow alt
                     prev[v] \leftarrow u
      return dist[], prev[]
```

Алгоритм должен уметь работать с неориентированными графами, с ограничением на не более чем 1 ребро между двумя вершинами и без петель, он должен реализовывать алгоритм Дейкстры, поиск кратчайших путей с заданной вершины. Алгоритм должен сохранять промежуточные результаты работы для пошаговой визуализации.

1.1.6. Требования к выводимым пояснениям

В ходе работы алгоритма пояснения должны включать следующие моменты:

1. Начало алгоритма:

- Сообщение о старте алгоритма.
- Указание начальной вершины, с которой начинается выполнение алгоритма.

2. Проверка соседей текущей вершины:

- Сообщение о проверке соседей текущей вершины.
- Перечисление всех соседних вершин и текущее расстояние до них.

3. Обновление данных соседней вершины:

- Сообщение о нахождении более оптимального пути к соседней вершине.
- Обновление метки стоимости пути до соседней вершины.
- Сообщение о новом значении метки для соседней вершины.

4. Переход к следующей вершине:

- Сообщение о переходе к следующей вершине с наименьшим весом.
- Указание новой текущей вершины.

5. Межшаговые действия:

- Сохранение текущего состояния алгоритма.
- Вывод текущей очереди вершин.
- Информация о промежуточных результатах.

6. Завершение алгоритма:

- Сообщение о завершении работы алгоритма.
- Вывод итоговых меток для всех вершин (кратчайших расстояний от начальной вершины до всех остальных вершин).

7. Общие сообщения:

- Сообщение об ошибке в случае некорректных входных данных (например, отрицательные веса, несоответствие формата данных).
- Информационные сообщения о текущем статусе и действиях программы. Эти пояснения должны отображаться в логовом поле, находящемся справа от рабочей области, и обновляться в реальном времени по мере выполнения шагов алгоритма.

2. ПЛАН РАЗРАБОТКИ И РАСПРЕДЕЛЕНИЕ РОЛЕЙ В БРИГАДЕ

2.1. План разработки

Дата	Этап проекта	Реализованные	Выполнено
		возможности	
27.06.24	Согласование		
	спецификации		
02.06.24	Сдача прототипа	Графический	
		интерфейс программы	
04.07.24	Сдача версии 1	Работа алгоритма без	
		контроля шагов, вывод	
		лога работы алгоритма,	
		возможность	
		построения графа,	
		обработка нажатий	
		кнопок рабочей среды.	
06.07.24	Сдача версии 2	Пошаговый контроль	
		работы алгоритма,	
		вывод пояснений,	
		обработка исключений,	
		улучшенный лог	
		работы алгоритма,	
		полное	
		функционирование всех	
		частей программы.	
08.09.24	Сдача отчёта		
08.09.24	Защита отчёта		

2.2. Распределение ролей в бригаде

Сериков М. - пользовательский интерфейс программы, визуализация алгоритма, связь графической состовляющей программы с основной логикой.

Мышкин Н.В. - реализация алгоритма, структур данных, тестирование

3. ОСОБЕННОСТИ РЕАЛИЗАЦИИ

- 3.1. Структуры данных
- 3.2. Основные методы

4. ТЕСТИРОВАНИЕ

- 4.1. Первый подраздел четвёртого раздела
- 4.2. Второй подраздел четвёртого раздела

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПРИЛОЖЕНИЕ А НАЗВАНИЕ ПРИЛОЖЕНИЯ