lam	е	,		1	,	8	rup	pe.	18			Kl	ass	е			Da	tur	n			M	AQ	5			Se	ite		1	1	
lam L	ni	6a	M	6	asi	en	un					Ne	un	eni	h	1	,	AL	pa b	e	bis.	/	15	.5.	20	18	Bl	att		1		
Nan	1)																															
			1																													
			A	· ×	=	Ь																										
			4	=	1	2		0		10)					Ь	=	1	4													
			-/ \		1	1		0		2								(5	1												
	2)			A.	co	6,																										-
			(A	_	10	-	I=		- 1																			
				b	-	f	20		0		0				E	=		0		0		0)		1	- :	= 0	7	0		0	1
						1	0		0	1	2	/					(-1		0		0	/				10		0		0	
		0				4	_			+	_				1 2		0		0	1		1		0		0		-1)			
		By	-		0		(E	-		-)	=			0		10		0 1 2	1		+		0		0		0	/			
															0		0				1											
												-			6		0		0)											
													-		1.2		0		0	1												
		S	p.l	bal	Lrao	la		32	:							,				/												
			fea					7)									1	-	- 1		0											
						de	E	((3	_	λ:	I)	=		de	6			0		-1		C									
									U								1		1-1-		0		-)	,	/							
														Com		- >	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		de	C	1	_	1 1 2		-15)					
																							2			1						
														=	-	1			(7	2		1	-)								
																7	e	(,	1 -	1-12)	(1.	+ 1	,	, and	(•)				
							0						\		0			('	1		,				-/							
							Cig	enw	WE	-:		,	1,	-					1	/				b								
													1/2	=	2				-	1		P	(Sa	-/	=	ma	* 2	2/1	0/;	121	1;
													λ_{3}	-	-	1 2)						-		12	<	-	1	
																								-	2)			7		28	ince	4

	ne											IVLO	ass				Do	tur	11										. (_	
	26	las,	1er	ma	un																						Bla	att			
	Sau	n_	C	1.0																											
	Jan	45	Je	aex																											
				,	4	=	D	de	E	_	F																				
					0	2		0		0	1						_	O		0		0	1				0		6	-,	1
			b	7		0		1		0				E				0		0		o	1		F	= (0		0	C	1
						0		0		2	/						-	1		0		0	_			1	0		0	0	/
									0																						
		B	33	30-	(1)-	E)		F																					
					1		2		0		0	1	-		1	0		0		-1	1										
									1		0					0		0		0	1										
						-	1		0		2)				1	0		0		0,			-								
,	1					_																	Ne		J	iver	6 eru	uy	(0	-E)
1	7120		0		0			(0		0		-	-1)					2		O		6		1	,	1		0		0
1	- 4		0		1 - 2	1		18			0		0	/					0		1		0				0		1	-	0
																			1		0		2	,	-		9		0		1
1	0		0		-12		1												2		0		0				1		0	(
1	0		0		0														0		10		2			VE.	012		1	0	
	0				1-4	/															0		-						•		
																			1		0		0				120		0	()
				,												1			0		0		1				0 10		0		
																											4				
																-															
		Sp	db	nlr	ndiu	0	B	fj																							
															1		7		0		- 12		1								
				de	ŧ (B	g,	_	1	I)	1		de	6		0			-1		0										
						-	,								(()		U		4 -	-	1								
																		,		A		0	1								
											11		-)			de	£	(C	2	4	0	١ ١								
																						,									
											_		-,	1		(-,	١.	(7		1))								
											_	•	1	2		1.	1		1)			0								
													1				4		1	1											
	Eig	euw	46	:			1		=	0				7		/	n	1					1-			1 1	1	,		1	e 1
							X		-	1				1		p(Rg.	1	=	m	ax	2	101	1		10	1)	; ;	- 1	46	1

						Kl	ass	е			Da	tur	n								Se	ite		3	TE
C. Wa	Semana																				Bla	att			
2 1																									
b)	Dacobi	*																							
	Jacobi			10	1						14)				1	2		0		1)			
		(b) *	=	0					5	11				A	=		0		1		0	1			
				0							کو ۱	/				-	1		0		2	/			
		Cal			1			,							1				1	J					
		×A	=	-	2				4	-	-	,	1.	0		-		-	2		4	=	2		
								(-						/										
		14			A																				
		**	=		1 .			0	-		0)	=	C	0										
																			_						
		23	1=	1		(5	_	-	1.	0)	=		1 2	. 5	=		7						
					10		1																		
		×	(1)	= 1	0 5)																		
				1	5	1/																			
		X (2	=	7	1	(4	-	1	1 .	3	(=		1 -2		3	-	,	3-					
		(1)				1					4														
		X	=		1 1	- (6			0	1	=	0												
		X)	=		1-2	(5	-	1	(.	2)	=	1 2		3:	=	3							
					1	2	1																		
			× (2	, =		0																			
					1	3/2	1																		
		×	(2)	2	1-2	1	4	-	1		3=) =		1		5 1	-	5-4							
			(2)																						
		X	-	0																					
		X	(3)	=	1 2		(5			1		3 /) :	-	1-2	. 1.	7		1.	2					
																			9						
		1	X (3) =	1 3	0 2/8	1																		
			1		1	2/8	1									,									
			(4)				1			1		17	1		,	1		15			15				
		1	(4)	=	1 2		4	-	1	1 .		8	/	-	3			8	-		15				
)	(u)	-	0																				
			× (4			1	1-			1		5) =		1 -2			15			13				
			7	=		2	(5			1		5	, -		2			4	•		8				
					X	(4)	=		15	TAL	1														

Name C.C	Jarre		huya							Kla	ass	е			Da	tun	n							-	Seit Blat	e '(4	mi
Saufi-	seidel	:		<u> </u>	0	1									,4	1						A	2		0	1	1	
	,	(0)	=	1	0	1							0 =		0	1				A	-		0		1	0		
				1	0	/								1	5							1	1		0	2	/	
			1																									
		X	(A)	=		1-2		(4	_	1	1 .	0)	=	4		4	=	2								
			(1)																									
		X	2	-		1 7		(0	-	0)	=		0													
		X	(1)	=		1 - 2		(5	_	1		2)	=	7		1	, _		3-2							
																					~							
		×	a	=	-	0																						
					1	3/2	1																					
			(2)	=		1		(4				3	1	=	1-2			5		14								
		X	-	-		1-2		(9		1		32	1	-	2			2	=	4								
		×	(2)	=		0																						
			(2)	=		1-2		/_			1	*	1	(A)		1		13			15							
		X	7	-		2	-	5	-	-	(.	54	/	-		1/2		4	=		8							
			1	,	1	500	F	1																				
			X	:	= [5/0																						
					1	15	8/																					
			(3)				_											15			4-							
		X,	1				1	(4	-	1		13	=)	=		1		8	=		1	5						
			(3)	=	C																							
		X.	-														60			-								
		X	(3)	=		12	(5 -		1.		16) =		1		16	7		31								
								12	-		1																	
			2	× (3	> =	- /		(3)	16																			
						1	(3/	32		/																	
		X	(4)	=			7	(1 -		1		63)	-		-		6	2	=	-6	5					
		1					2				1	•	12	/				2	3	2		-	4					
		×2	(4)	-		0																						
			14	-		1		1 5	-		1		64)	=		15			23	5	=	8	28	_			
		X	3	-		7							64	/	-		2			23	4		1	28				
				(4)		1	65	/	64	-	1																
			2	X'	-	-			C)	0.0	1																
							1	25.	5/	1	28	/																

Blatt 4) Eizenwerte weithen von der ersten Liveng um 4-7 Nachtemen tellen ab: minimale absolute affirms en enden Liveng = 5,8755.10 minimale absolute affirms er ersten Liveng = 3,7585.16 Die Senenigent kenn jedoch durch die Wille Epitons Epitons erhäht warden. Livenbung en 2 b) für Kabin A = (a,3), ; = 1,, a a; = 3,1 ; = i it j = i arhalte ich (Erste einer meiner Erretter riktigen Junghen enternag) fleche Egoluine blenn ich alle dings der Matin A = (a, 1); = 1,, a a; = 3,1 ; = i viall prhalte ich das in der Aufgebrastellung beschrieben derselle Egoluis (7,0,, 0) Deshelb ich in Bellen-Ook die auch Versien	Name Maga	Klass	e Da	atum		Seite 5
Eigenverte weichen von der erreten Living war 4-7 Northkommer bellen ab: minimike absolute afferent van erreten Living ~ 5,8755 10 minimike absolute afferent van erreten Living ~ 3,7585 16 Die Senangkent kann jedoch durch die Liddle eines bleineren Epilons erhöht warden. (wurchung va 2 6) für Malnin A = (a, j); j = 1,, a a, = { 1, j = i } j < i whalte ich (troce einer meine Errethten vichtigen Jugelen en Grang) Alche Ergebriese Wenn ich alle dage die Malnir at 1 j = i vähle, erhalte ich das in der Aufgeben erblung beschreben benn korrelle Ergebnis (1, 0,, 0) T	C. Wassermann					Blatt
in windle absolute liferent ten evolute Living \$\sim\$ 5,8755-10 in windle absolute Different ten evolute Living \$\sim\$ 3,7585-10 Die Servenigheit haun jedoch durch die Wahl cines bleinenen Epilow erhäht warden. leunerhung ten 2 b) für Mabrix A = (a, j) : j = 1,, arhalle ich (Eretz einer neiner Erschten mibtigen Duglen enternag) floche Egebring betren ich alle dinger die Matrix A = (a, j) : j = 1,, ariz = 2 i + j = i i + j	Eigenverte wei		der exale	ten Lovery	iim 4	- 7
für Matrix $A = (a_{ij})_{i,j=1,,n}$ $a_{ij} = \begin{cases} 0 & j > i \\ i + j & j < i \end{cases}$ where we have the sine matrix Exactions white and supplementations of the supplementations o	Die Senauzh	minimale absolution absolution to have jed	60 Different	e eur exallen	Loseny ~	
Alche Egebaine. Wenn ich alle dings die Machin A = (a;); is a a a = 2 1 5 = i valle schalte ich das in der Aufgebenstellung beschriebene horselle Egebais (1, 0,, 0)			, 69	a; = {	1 :	> : : :
beschrieben horrelle Ezabais (1,0,,0)	Alche Eg	ebuise . Wenn		alings die	Madrix 0	lemen Gerung
		sechn ebene	londle E	abuis (1,	Aufgubens	7