《图》练习题

一、单	.项选择题				
1,	在一个具有	fn 个顶点的有向图中	, 若所有顶点的出	度数之和为 s,则所有	顶点的度
数之	之和为()	•			
	A. s	B. s-1	C. s+1	D. 2s	
2,	在一个具有	有 n 个顶点的无向完全	图中,所含的边数	(为()。	
3、		B. n(n-1) 司图中,若两顶点之间		D. n(n+1)/2 该路径上的顶点数为()。
4.		B. k+1 具有 n 个顶点的无向连		D. 2k 通分量的个数为()。
	A. 0	B. 1	C. n	D. n+1	
5、	若一个图片	中包含有 k 个连通分量	, 若要按照深度优	先搜索的方法访问所有	顶点,则
必须	页调用()次深度优先搜索遍	历的算法。		
	A. k	B. 1	C. k-1	D. k+1	
6、	若要把 n ′	个顶点连接为一个连通	图,则至少需要()条边。	
	A. n	B. n+1	C. n-1	D. 2n	
7、	在一个具有	有 n 个顶点和 e 条边的]无向图的邻接矩阵	中,表示边存在的元素	(又称为
有效	女元素)的个	数为()。			
8,			C. e 的有向图的邻接矩[D. 2×e 阵中,表示边存在的元	素个数为
() 。				
		B. n×e	С. е	D. 2×e	
9、				的个数等于该顶点的()。
	A. 出边数	B. 入边数	C. 度数	D. 度数减 1	
10,	若一个图的			E), (D, F)}, 则从顶点	A 开始对
该图	图进行深度优	先搜索,得到的顶点	序列可能为()。	
	A. A, B, C,	F, D, E	В. А, С, І	F, D, E, B	
	C. A, B, D,	C, F, E	D. A, B, I), F, E, C	
11,	若一个图的	勺边集为{(A, B), (A, C)	, (B, D), (C, F), (D,	E),(D,F)},则从顶点	A 开始对
该图	国进行广度优	先搜索,得到的顶点	序列可能为()。	
	A. A, B, C, D, E, F		B. A, B, C, F, D, E		
	C. A, B, D,	C, E, F	D. A, C, I	B, F, D, E	
12,	若如下图所	听示的无向连通图,则	从顶点 A 开始对	该图进行广度优先遍历	,得到的
顶点	点序列可能为	J()°			

A. A,B,C,D,E,F,G C. A,B,F,C,D,E,G B. A,B,C,D,E,G,F D. A,B,F,C,D,G,E

二、填空题

- 2. 在一个具有 n 个顶点的无向完全图中,包含有 $_{\underline{n^*(n-1)/2}}$ 条边,在一个具有 n 个 顶点的有向完全图中,包含有 $_{\underline{n^*(n-1)}}$ 条边。
- 3. 假定一个有向图的顶点集为 {a, b, c, d, e, f} , 边集为 {<a, c>, <a, e>, <c, f>, <d, c>, <e, b>, <e, d>} , 则出度为 0 的顶点个数为 2 , 入度为 1 的顶点个数为 4 。
- 5. 图的_<u>深度</u> 优先搜索遍历算法可以使用栈结果实现或用递归算法,图的_<u>广度</u> 优先搜索遍历算法则需要使用队列结构。
- 6. 若一个连通图中每个边上的权值均不同,则得到的最小生成树是___唯一___(唯一/不唯一)的。
- 7. 以下有向图中,从顶点 A 出发到达顶点 E 的最短路径长度为 34 。

三、判断题

- 1、 用邻接矩阵表示图进行深度优先遍历时,通常是采用队列来实现算法的。(0)
- 2、n个顶点的连通图,至少有n-1条边。(1)
- 3、 有向图的邻接矩阵是对称矩阵, 无向图的邻接矩阵是非对称矩阵。(0)
- 4、 若连通图 G 中的一条边 e 是所以边中权值最小的边,则图 G 必存在着一最小生成棵包含边 e 的最小生成树。(1)

四、应用题

1、 设无向网 G=(V,E) 如下图所示,顶点集 V 利用线性表 $\{A,B,C,D,E,F\}$ 进行存储,求该网的邻接矩阵,并分别求出该图的深度优先和广度优先遍历结果。

深度: ACBDEF

广度: ACFBDE

2、 设图 G=(V,E),其中 $V=\{A,B,C,D,E,F\}$,其邻接矩阵如下所示,按照 Prim 方法,从顶点 A 出发,求该网的最小生成树的产生过程,并计算该最小生成树的代价值。

$$\mathbf{A}(G) = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} & \mathbf{F} \\ \mathbf{0} & \infty & 10 & \infty & 30 & 100 \\ \infty & 0 & 5 & \infty & \infty & \infty \\ 10 & 5 & 0 & 50 & \infty & \infty \\ \infty & \infty & 50 & 0 & 20 & 10 \\ 30 & \infty & \infty & 20 & 0 & 60 \\ 100 & \infty & \infty & 10 & 60 & 0 \end{bmatrix} \begin{matrix} B \\ E \\ F \end{matrix}$$

最小生成树:

3、 设无向网 G=(V,E) 如下图所示,按照 Dijkstra 算法,求从 A 出发到达其余各顶点的最短路径

A->B: AB10

A->C: ADC 16

A->D: AD 5

A->E: ABE 19

A->F: ADF 23