

Super Tree

Jepet pema me rrënjën dhe n kulme, që identifikohen nga indekset $0, \ldots, n-1$. Rrënja ka indeksin 0. Për secilën $i \in \{0,\ldots,n-1\}$, indekset janë i (p.sh., kulmi me indeks i ka një numër të plotë a_i të përcaktuar për të). Le të jetë f_v vlera e biteve AND (tani e tutje shënohet me &) e vlerës a_i në rrugën e thjeshtë nga kulmi v deri te rrënja. (Shënim: Rruga e thjeshtë nga kulmi v në kulmin v i përfshin të dyja kulmet v dhe v.) Le të jetë v0 pemës vlera:

$$\sum_{0 \leq u,v < n} f_u \cdot f_v,$$

dhe le të jetë superfuqia e pemës vlera:

$$\sum_{0 \le u < v \le n} f_u \cdot f_v.$$

Do të themi se një kulmu i përket *nënpemës së një kulmi v* në qoftë se v i përket rrugës së thjeshtë nga kulmi u deri te rrënja. Shënim: nënpema e një kulmi v e përfshin dhe kulmin v.

Ju paraqiten q update. Secili update përshkruhet nga dy numra të plotë, v dhe x, dhe ju kërkon të vendosni $a_u := a_u \& x$ për çdo kulm u në nënpemën e kulmit v. Pas çdo update, ju duhet të shfaqni si output fuqinë dhe superfuqinë e pemës aktuale.

Meqenëse vlerat e daljes mund të jenë të mëdha, shfaqni ato si modul $10^9 + 7$.

Formati i Input-it

Rreshti i parë i input-it përmban numrat e plotë n dhe q.

Rreshti i dytë i input-it përmban n-1 numrat e plotë, dmth p_1 , p_2 , \ldots , p_{n-1} , të cilat përcaktojnë strukturën e pemës. Për çdo $i\in\{1,\ldots,n-1\}$, p_i është indeksi i prindit të kulmit i, dhe $0\leq p_i < i$

Rreshti i tretë i input-it përmban n numrat e plotë, dmth a_0 , a_1 , ..., a_{n-1} . Këto janë vlerat që u janë caktuar kulmeve.

Secili nga q rreshtat përmban dy numra të plotë, v ($0 \le v < n$) dhe x. Këta numra të plotë specifikojnë update-t individuale.

Formati i Ouput-it

Output q+1 rrjeshta. Secili rresht duhet të përmbajë dy numra të plotë të ndarë nga një hapësirë. Në rreshtin e parë, afishoni fuqinë dhe superfuqinë (modulo 10^9+7) të pemës fillestare. Në rreshtin e i-të e q rreshtave të ngelur ($i\in\{1,\ldots,q\}$), afishoni fuqinë dhe superfuqinë (modulo 10^9+7) e pemës pas update të i-të.

Kufijtë e input-it

- $1 \le n, q \le 10^6$.
- $0 \le a_i < 2^{60}$ për secilin $i \in \{0, \dots, n-1\}$.
- $0 \le x < 2^{60}$ për çdo update (v, x).

Pikët

Për një rast testimi të caktuar, zgjidhja juaj do të marrë 50% të rezultatit nëse ofron vlera të sakta të fuqisë për të gjitha update-t në atë rast testimi, por jep një vlerë superfuqie të pasaktë për të paktën një update.

Gjithashtu, 50% e rezultatit për një rast testimi të caktuar do t'i jepet një zgjidhjeje që llogarit saktë vlerat e superfuqisë për të gjitha updatet-t në atë rast testimi, por siguron një vlerë të gabuar të fuqisë për të paktën një update.

Subtasks

- 1. (4 pikë) n = 3.
- 2. (7 pikë) $n, q \le 700$.
- 3. (13 pikë) $n, q \leq 5000$.
- 4. (6 pikë) $n\leq 10^5$, $p_i=i-1$ (për secilën $i\in\{1,\dots,n-1\}$), dhe $a_i,x<2^{20}$ (për secilën $i\in\{0,\dots,n-1\}$ dhe për çdo update (v,x)).
- 5. (7 pikë) $p_i=i-1$ (për secilën $i\in\{1,\ldots,n-1\}$).
- 6. (12 pikë) $a_i, x < 2^{20}$ (për secilën $i \in \{0, \dots, n-1\}$ dhe për çdo update (v, x)).
- 7. (14 pikë) $n \le 10^5$.
- 8. (11 pikë) $n \le 5 \cdot 10^5$.
- 9. (26 pikë) Nuk ka kufizime shtesë.

Shembull rast prove 1

Input

Output

```
196 61
169 50
81 14
25 6
```

Spjegime

Fillimisht kemi:

$$f_0 = 7, f_1 = 7\&3 = 3, f_2 = 7\&4 = 4.$$

Prandaj, fuqia e pemës është e barabartë me: $f_0 \cdot f_0 + f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_0 \cdot f_0 + f_1 \cdot f_1 \cdot f_1 \cdot f_1 \cdot f_2 \cdot f_0 + f_1 \cdot f_0 \cdot f_0 \cdot f_0 + f_1 \cdot f_0 \cdot f_0 + f$

Superfuqia është e barabartë me:

$$f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_2 = 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 4 = 61.$$

Pas update-it të parë:

$$a_0 = 7, \ a_1 = 3\&6 = 2, \ a_2 = 4;$$
 $f_0 = 7, \ f_1 = 2, \ f_2 = 4.$

Pas update-it të dytë:

$$a_0=7,\ a_1=2,\ a_2=4\&2=0;$$
 $f_0=7,\ f_1=2,\ f_2=0.$

Pas update-it të tretë:

$$a_0=7\&3=3,\; a_1=2\&3=2,\; a_2=0\&3=0;$$
 $f_0=3,\; f_1=2,\; f_2=0.$

Shembull rast prove 2

Input

4 2 0 0 1 6 5 6 2 1 2 0 3

Output

256 84 144 36 16 4

Spjegime

Fillimisht kemi:

$$f_0=6,\; f_1=6\&5=4,\; f_2=6\&6=6,\; f_3=2\&5\&6=0.$$

Pas update-it të parë:

$$a_0=6,\ a_1=5\&2=0,\ a_2=6,\ a_3=2\&2=2;$$
 $f_0=6,\ f_1=0,\ f_2=6,\ f_3=2\&0=0.$

Pas update-it të dytë:

$$a_0=7,\ a_1=2,\ a_2=4\&2=0;$$
 $f_0=7,\ f_1=2,\ f_2=0.$

Shembull rast prove 3

Input

```
7 3
0 0 1 1 2 2
7 6 5 7 3 4 2
4 4
3 3
2 1
```

Output

```
900 367
784 311
576 223
256 83
```