

Università degli Studi di Milano CORSO DI LAUREA IN SCIENZE NATURALI

Corso di Biologia generale e ambientale con elementi di istologia

COMPARTIMENTAZIONE e INVOLUCRO NUCLEARE

Citologia e Istologia – Capitolo 5

Anno accademico 2022-2023

COMPARTIMENTAZIONE

CITOSOL E SISTEMA MEMBRANOSO CITOPLASMATICO

CELLULA EUCARIOTICA ANIMALE

CITOSOL E SISTEMA MEMBRANOSO CITOPLASMATICO

CELLULA EUCARIOTICA ANIMALE

Le cellule eucariotiche, contrariamente alle cellule batteriche (costituite da un unico compartimento circondato da membrana), presentano dei COMPARTIMENTI O ORGANELLI immersi nel citoplasma.

La parte del citoplasma che non è contenuta negli organelli è il **CITOSOL**, una soluzione acquosa contenente proteine, grassi, zuccheri, ecc...

SIGNIFICATO DELLA COMPARTIMENTAZIONE

Nella cellula hanno luogo migliaia di <u>reazioni</u> <u>chimiche</u>, l'esistenza di compartimenti intracellulari specializzati garantisce che esse avvengano nei <u>COMPARTIMENTI</u> nel modo più efficiente possibile.

COMPARTIMENTI = MICROAMBIENTI diversi per attuare specifiche reazioni chimiche

ULTRASTRUTTURA DEL NUCLEO: CROMATINA

Quando una cellula non è in divisione, la **CROMATINA** si trova sotto forma di lunghi e sottili filamenti parzialmente srotolati che, aggregandosi tra loro, le conferiscono un aspetto granulare all'osservazione al microscopio elettronico.

CROMATINA = **DNA** + **proteine**

Istoniche (o istoni),

essenziali nella organizzazione spaziale del DNA

Non istoniche,

essenziali nella regolazione funzionale del DNA **CROMATINA**

nucleolo

poro nucleare

nucleoplasma

ULTRASTRUTTURA DEL NUCLEO: CROMATINA

Cellula in interfase (non in divisione): la maggior parte della cromatina è poco compattata (dispersa).

ETEROCROMATINA

cromatina interfasica altamente condensata, il cui DNA è temporaneamente o permanentemente NON trascritto.

ETEROCROMATINA

EUCROMATINA: cromatina interfasica meno compatta e maggiormente dispersa, il cui DNA è trascritto.

EUCROMATINA

ULTRASTRUTTURA DEL NUCLEO

EUCROMATINA ED ETEROCROMATINA

Plasmacellula osservato al TEM

ULTRASTRUTTURA DEL NUCLEO

ETEROCROMATINA

altamente condensata, il cui DNA è temporaneamente NON trascritto (regioni del genoma temporaneamente inattivate) in certi tipi di cellule di un organismo oppure in certi momenti della vita di una cellula. P.es.: corpo di Barr, presente nelle cellule somatiche femminili dei mammiferi, dovuto all'inattivazione casuale di uno dei due cromosomi X nelle fasi iniziali dello sviluppo embrionale.

altamente condensata, il cui DNA non è MAI trascritto (regioni del genoma inattivate in modo permanente in tutti gli stadi del ciclo cellulare di tutte le cellule di un organismo); in genere sono sequenze altamente ripetute di DNA, indicate come DNA satellite, contenenti un basso numero di geni. P.es.: centromero e telomeri.

ULTRASTRUTTURA DEL NUCLEO

EUCROMATINA ED ETEROCROMATINA

ULTRASTRUTTURA DEL NUCLEO

Il nucleo è una struttura dinamica la cui morfologia cambia nelle varie fasi del ciclo cellulare.

INVOLUCRO NUCLEARE e PORI NUCLEARI

Il nucleo è avvolto da una doppia membrana definito INVOLUCRO NUCLEARE.

Le membrana nucleare interna e esterna sono separate dallo spazio intermembrana.

La membrana esterna è in continuità con il **reticolo endoplasmatico rugoso** che porta ribosomi sulla sua superficie.

La membrana nucleare interna ha specifiche proteine transmembrana che legano la lamina nucleare che contribuisce al sostegno strutturale dell'involucro nucleare.

ULTRASTRUTTURA DEL PORO NUCLEARE

Si osservano la membrana nucleare interna, la membrana nucleare esterna e lo spazio perinucleare.

L'involucro nucleare è interrotto dai **PORI NUCLEARI**, in cui avviene lo scambio bidirezionale di molecole tra nucleo e citoplasma.

Tra nucleo e citoplasma esiste un'intensa attività di trasporto che interessa, per esempio, il movimento di proteine, sintetizzate nel citoplasma, ma che svolgono le loro funzioni all'interno del nucleo: per esempio, le <u>proteine impegnate nella replicazione e nella trascrizione del DNA</u> (DNA polimerasi, RNA polimerasi, fattori di trascrizione, enzimi); gli mRNA trascritti nel nucleo e destinati al citoplasma per essere tradotti in proteine; gli rRNA e le subunità ribosomali prodotti e assemblati nel nucleo e destinati al citoplasma.

COMPLESSO DEL PORO NUCLEARE

Il poro nucleare è costituito da una struttura proteica chiamata **complesso del poro nucleare** composta da 30-50 diverse proteine dette **NUCLEOPORINE**.

etero cromatina

È costituito da anello centrale, anello nucleare seguito da un canestro nucleare e anello citoplasmatico collegato a filamenti citoplasmatici (che sporgono verso il citoplasma).

COMPLESSO DEL PORO NUCLEARE

NUCLEOPLASMA

Nel poro si trovano <u>NUCLEOPORINE</u> con piccole sequenze amminoacidiche (XXFG, X = qualunque amminoacido, F = fenilalanina, G = glicina) dette <u>SEQUENZE FG</u>.

Le nucleoporine assumono una struttura filamentosa.

Nel canale centrale formano un **setaccio idrofobo** che impedisce il passaggio delle molecole più grandi.

Negli anelli nucleari e in quelli citoplasmatici, invece, le sequenze FG contribuiscono al **trasporto bidirezionale** delle macromolecole attraverso il poro, permettendo il passaggio di vari tipi di RNA e subunità ribosomali verso il citoplasma (OUT), e di proteine (RNA polimerasi, DNA polimerasi, istoni, lamìne, enzimi, ecc.) verso il nucleo (IN).

PORI NUCLEARI

PORI NUCLEARI

Pori nucleari

TRASPORTO DI PROTEINE DAL CITOPLASMA AL NUCLEO

Le proteine che devono essere trasportate dal citoplasma al nucleo contengono una **SEQUENZA DI LOCALIZZAZIONE NUCLEARE** o **NLS** (*Nuclear Localization Signal*) di 8-30 amminoacidi C-terminale o nella regione centrale della proteina.

La sequenza NLS è riconosciuta da **specifici recettori** o **IMPORTINE**.

La **proteina-NLS** da trasferire nel nucleo ha una sequenza di localizzazione nucleare (NLS) riconosciuta dal recettore **importina** α/β . Il complesso importina α/β -proteina-NLS interagisce con i filamenti citoplasmatici del poro (lega le sequenze FG delle NUCLEOPORINE), inducendo un cambiamento conformazionale dei filamenti citoplasmatici e determinando il trasporto attraverso il poro.

Le proteine che devono essere esportate dal nucleo al citoplasma contengono una **SEQUENZA DI ESPORTAZIONE NUCLEARE** o **NES** (*Nuclear Export Signal*), riconosciuta da **specifici recettori o ESPORTINE** (es. Importina α).

CICLO DELLE RAN-GTPASI

RITORNO DELLE IMPORTINE DAL NUCLEO AL CITOPLASMA

Nel nucleo Ran-GTP riconosce e lega l'importina-β e ne induce il distacco dall'importina-α, determinando il rilascio del carico proteina-NLS dentro il nucleo.

Ran-GTP-importina-β tornano nel citoplasma guidati dal gradiente di concentrazione di Ran-GTP (più concentrata nel nucleo che nel citoplasma).

[5-6] Nel citoplasma RanGAP1 induce la conversione Ran-GTP→ Ran-GDP con liberazione dell'importina-β nel citoplasma, dove può ricominciare un nuovo ciclo di trasporto.

[7] Ran-GDP a sua volta, seguendo il gradiente di concentrazione rientra nel nucleo dove incontra Ran-GEF che promuove la conversione di Ran-GDP in Ran-GTP pronta a ricominciare un nuovo ciclo.

L'importina-α viene riportata nel citoplasma grazie alla sua sequenza NES di esportazione nucleare, riconosciuta da una **esportina** (EXP), che rilascia la proteina nel citoplasma.

INVOLUCRO NUCLEARE e PORI NUCLEARI

La lamina nucleare è formata dalle lamine, una classe di proteine del citoscheletro.

La fosforilazione delle lamine determina la loro depolimerizzazione, con disgregazione dell'involucro nucleare. La defosforilazione delle lamine induce la loro polimerizzazione e determina la riorganizzazione dell'involucro nucleare dopo la divisione cellulare.

L'importanza delle lamine nell'organizzazione dell'involucro nucleare è indicata dal fatto che mutazioni nei geni che codificano per le lamine sono responsabili di malattie dette laminopatie, che determinano fragilità nucleare e/o invecchiamento precoce.

NUCLEOPLASMA COMPARTIMENTI SUBNUCLEARI

Il **NUCLEOPLASMA** è una matrice ricca di H₂O, ioni, proteine e DNA e ha un'organizzazione ben definita.

Nel nucleo la cromatina si organizza in maniera ordinata in specifici territori (TERRITORI NUCLEARI) e si ancora all'involucro nucleare per mezzo di interazioni con proteine.

Es: le fibre di cromatina che costituiscono un particolare cromosoma stanno in una determinata regione del nucleo che non si sovrappone mai ad altri domini nucleici (territori cromosomici).

NUCLEOPLASMA COMPARTIMENTI SUBNUCLEARI

Nel nucleoplasma sono presenti organelli detti CORPI NUCLEARI composti da DNA, proteine e RNA che intervengono nella trascrizione, maturazione e trasporto degli RNA, nell'assemblaggio di ribonucleoproteine (RNP) e in processi di controllo del ciclo cellulare.

Differentemente dagli organelli citoplasmatici i corpi nucleari non sono delimitati da membrana.

Il NUCLEOLO è il corpo nucleare di dimensioni maggiori e può raggiungere un diametro di 8 μm.

Il NUCLEOLO è l'unico CORPO NUCLEARE visibile al microscopio ottico.

NUCLEOLO

NUCLEOLO

La maggior parte delle cellule contiene un singolo nucleolo. Le dimensioni e il numero di nucleoli sono correlati con l'attività TRASCRIZIONALE e TRADUZIONALE delle cellule.

NUCLEOLO

NUCLEOLO OSSERVATO AL TEM

FC = RNA ribosomiali

GC = subunità ribosomiali

Al TEM si distinguono due regioni distinte del nucleolo:

[1] REGIONE FIBRILLARE (DFC: componente fibrillare densa), caratterizzata dal centro fibrillare (FC) che contiene regioni di DNA che codificano per gli rRNA: geni ribosomali trascrizionalmente attivi (cromatina poco condensata).

[2] REGIONE GRANULARE (GC: componente granulare) che contiene le subunità ribosomali in vari stadi di assemblaggio. Il nucleolo, infatti, è la sede di sintesi dei ribosomi (costituiti da rRNA e proteine). Intorno al nucleolo è presente la cromatina perinucleolare (PH).

Le PROTEINE RIBOSOMALI sono sintetizzate nel citoplasma e importate nel nucleo dove si associano nel nucleolo agli rRNA neosintetizzati.

Dal nucleolo le SINGOLE SUBUNITA' RIBOSOMALI sono esportate nel citoplasma dai pori nucleari.

TRASCRIZIONE E TRADUZIONE

DOGMA CENTRALE DELLA BIOLOGIA

Le informazioni genetiche (per sintesi proteine), contenute nel DNA, sono espresse attraverso trascrizione e traduzione.

Espressione genica: processo per cui l'informazione genetica fluisce dal DNA all'RNA – **TRASCRIZIONE** – e dall'RNA alle proteine – **TRADUZIONE**.

Il principio della direzionalità del flusso informazionale dal DNA all'RNA alle proteine è il dogma centrale della biologia.

I virus ad RNA sono un'eccezione poiché possono effettuare la trascrizione inversa grazie all'enzima trascrittasi inversa.

Ogni gene può essere espresso con efficienza diversa: REGOLAZIONE ESPRESSIONE GENICA. Una cellula può avere grandi quantità di certe proteine e scarse quantità di altre, o non averne affatto. Una cellula può regolare l'espressione dei suoi geni a seconda delle sue esigenze.

TRASCRIZIONE = SINTESI di mRNA
TRADUZIONE = SINTESI delle PROTEINE

TRASCRIZIONE E TRADUZIONE

TRASCRIZIONE DEGLI RNA

UNITÀ DI TRASCRIZIONE filamento unità di non trascritto trascrizione AAGCT Trascrizione DNA 3' **TRASCRIZIONE** filamento trascritto o STAMPO **mRNA** complementare al tratto di DNA 5' trascritto Codone Codone Codone **CATENA** Catena H₂N -Phe Cys Glu Cys POLIPEPTIDICA Traduzione-

TRADUZIONE

TRASCRIZIONE E TRADUZIONE

DIFFERENZA PROCARIOTI – EUCARIOTI

Nella CELLULA PROCARIOTICA

(batterica) che non ha nucleo, l'mRNA prodotto nel citoplasma dalla trascrizione è immediatamente tradotto senza subire ulteriori modificazioni.

CELLULA Nella **EUCARIOTICA**, nucleo separa nello spazio la trascrizione che avviene nel nucleo (ed seguita dalla maturazione dell'RNA che avviene nel nucleo) dalla traduzione che avviene nel citoplasma.

PROCARIOTI ED EUCARIOTI

Ricordiamo le differenze...

Caratteristiche	Bacteria	Eukarya
Involucro nucleare	Assente	Presente
Organelli delimitati da membrane	Assenti	Presenti
Cromosoma circolare	Presente (lineare in alcune specie)	Assente
Numero di cromosomi	Tipicamente uno (possono essere presenti anche plasmidi)	Tipicamente molti
Istoni associati al DNA	Assenti	Presenti
Peptidoglicano nella parete cellulare	Presente	Assente
Struttura dei lipidi di membrana	Acidi grassi a catena lineare legati al glicerolo attraverso legami esterei	Acidi grassi a catena linear legati al glicerolo attravers legami esterei
Dimensioni dei ribosomi	705	80S, a eccezione di quelli o mitocondri e cloroplasti
RNA polimerasi	Una sola	Diverse
Traduzione	Inizia con la formilmetionina	Inizia con la metionina
Crescita sopra i 70°C	Sì	No