Intro to Proofs

Aamod Varma

 MATH - 2106, Fall 2024

Contents

Real Numbers

Definition 0.1 (Properties of real numbers). Properties of $\mathbb R$ are

- (d). \exists an order on \mathbb{R} which means $\forall x, y \in \mathbb{R}, x < y$ or x > y, or x = y Ordering follows the following properties,
 - (1). $x < y, y < z \Rightarrow x < z$ (transitivity)
 - (2). $x < y \Rightarrow x + z < y + z, \forall z \in \mathbb{R}$
 - (3). $x < y, z > 0 \Rightarrow xz < yz$

Theorem 0.2. $xy = 0 \Leftrightarrow x = 0 \text{ or } y = 0$

Proof. \Leftarrow Without loss of generality take, x = 0 Then we get,

0y.

We can write this as,

$$(0+0)y = 0y + 0y.$$

So,

$$0y = 0y + 0y.$$

Or, m

 \Rightarrow

Assume the contrary that, $x \neq 0$ and $y \neq 0$ We have, xy = 0. Without loss of generality we take the multiplicative inverse of x so,

$$\frac{xy}{x} = \frac{0}{x}.$$

We showed that 0(k) = 0 so y = 0

Which contradicts our assumption, hence our assumptoin must be wrong and x=0 or y=0

Theorem 0.3. (-)x = -x

Proof. We start with (-1)x and add x to both sides so,

$$(-1)x + x = x(1-1) = 0x = 0.$$

So we showed that (-1)x is the additive identity of x. We know that the additive identity is unique for any x. Therefore, (-1)x = -x

Theorem 0.4. $\forall x < y, z < 0$

xz > yz.

Proof. If z < 0 then that means z = -k for some k > 0. We can write x < y as x - y < 0Now if we multiply both sides be k we get,

$$k(x - y) < 0$$

Now if k(x-y)=z' we can say that $z'<0 \Rightarrow -z'>0$ Or that

$$(-1)k(x - y) > 0$$
$$z(x - y) > 0$$
$$xz > yz$$

Theorem 0.5. $\forall x \in \mathbb{R} \text{ if } x \neq 0 \text{ then } x^2 > 0$

Theorem 0.6. $x^2 = -(-x^2)$

Case 1, x > 0:

$$x \times x > x$$

$$x\times x>0x$$

$$x^2 > 0$$

Case 2, x < 0:

Then the additive inverse (-x) > 0

$$(-x)(-x) > (-x)0$$

$$(-)(-1)x^2 > 0$$

-(-1) = 1 as 1 is the additive inverse of -1

$$x^2 > 0$$

Example. $\forall a, b > 0$

$$\frac{a+b}{2} \ge \sqrt{ab}$$

 \Diamond

Proof.

$$0 \le (\sqrt{a} - \sqrt{b})^2 = a - 2\sqrt{ab} + b.$$
$$2\sqrt{ab} \le a + b$$
$$\sqrt{ab} \le \frac{a+b}{2}$$

Example. $x^2 - x + 1$

 \Diamond

Theorem 0.7. $\forall x, y \in \mathbb{R}$ we have,

$$|x| \ge x$$
 and $|x + y| \le |x| + |y|$.

Proof. We use proof by cases.

Proof related to Sets

Theorem 0.8.

$$A \cup B \backslash (A \cap B) = (A \backslash B) \cup (B \backslash A).$$

Proof. We need to show that,

$$A \cup B \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)$$
.

and,

$$(A \backslash B) \cup (B \backslash A) \subseteq A \cup B \backslash (A \cap B).$$

Theorem 0.9. $A \subseteq B \Leftrightarrow A \cup B = B$

Proof. \Rightarrow Take $\forall x \in A \cup B$, so either

Case 1, $x \in A$:

We know that by deifinition if, $A \subseteq B$ then for $x \in A, x \in B$ so $x \in B$ Case 2, $x \in B$: If $x \in B$ then we don't need to go further.

So we get $\forall x \in A \cup B, x \in B$

 \Leftarrow

 $\forall x \in A \Rightarrow x \in A \cup B = B$

So, $x \in B$ which means that, $A \subseteq B$

Disproofs

If we need to show existence, $\exists x.P(x)$. We can show using,

- 1. Direct constructions
- 2. Indirectly (contradiction). For instance we can show that, $\forall x, P(x)$ is false

Example. $\exists a, b, c \in R - Q \text{ s.t. } a^{bc} \in Q$

Example. Pigeonhole principle

Suppose there are m balls in n boxes, $m > n \ge 1$ then, \exists a box where there are at least, $\frac{m}{n} + 1$ balls

Proof. Assume pigeonhole is false.

Then, there are at most $\frac{m}{n}$ balls in each box. In case 1 where $\frac{m}{n} \notin N \Rightarrow$ total balls $\leq n[\frac{m}{n}] = \frac{nm}{n} = m$ which is a contradiction.

In case 2 where $\frac{m}{n} \in N$ there are at most $\frac{m}{n} - 1$ balls in each box. So total number of balls are $\frac{nm}{n} - n = m - n$ which is contradictory.

To disprove $\forall x P(x)$ we can show that, $\exists P(x)$

Example. 100 can't be written as the sum of two even integers and an odd integer.

Proof. Suppose it's false $\Rightarrow \exists a, b, c \in Z \text{ s.t. } 2|a, 2|b, 2 \not/c \text{ and } 100 = a+b+c$ But, $2|a, 2|b \Rightarrow 2|a+b$ but $2 / c \Rightarrow 2 / (a+b) + c = 100$ So we get, 2 / 100 which is a contradiction.

Which means that the original statement is true.

Example. ∄ the smallest positive real number

The smallest positive real number is defined as $x \in R$ s.t. x > 0 and $\forall y > 0, x \le 0$ y

Proof. Let's assume it is true which mean that $\exists x \in R \text{ s.t. } x > 0$ and $\forall y > 0, x \leq y$

We know that $x > 0 \Rightarrow \frac{x}{2} > 0$ So if we set $y = \frac{x}{2}$ then we get

$$x \leq \frac{x}{2}$$
.

Which is a contradiction.

Hence it cannot be the case that there exists the smalest positive number.

Example. $\not\exists f(x)$: a polynomial with integer coefficients s.t. $\forall n, f(n)$ is prime \diamond

Proof. Consider the general form of a polynomial,

$$f(x) = a_1 x^n + \dots + a_n$$

Case 1: $a_n = 0$

If $a_n = 0$ then for any x > 1 we can take x common and get

$$f(x) = x(a_1x^{n-1} + \dots + a_{n-1})$$

So we get a factor $x \neq 1$

Case 2: $a_n = 1$

In this case we can just plug x=0 and we get f(x) is neither prime or composite

Case 3: $a_n > 1$????

Example. Let $f(x) = x^3 + 2x - 5$ then \exists unique $x_0 \in [1,2]$ s.t. $f(x_0) = 0$

Proof. Using intermediate value theorem.

$$f(1) = -2$$

$$f(2) = 7$$

So because -2 < 0 < 7 we know that there must exists an $x_0 \in [1, 2]$ s.t. this is the case.

To show unique we need to show its strictly increasing. Or in other words, we need to show for every $x_1, x_2 \in [1, 2], x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$ So we need to show that,

$$x_1^3 + 2x_1 - 5 \le x_2^3 + 2x_2 - 5$$

$$x_1^3 + 2x_1 \le x_2^3 + 2x_2$$

$$(x_1^3 - x_2^3) + 2(x_1 - x_2) \le 0$$

It is enough to show that both $x_1^3 - x_2^3$ and $x_1 - x_2$ are smaller than or equal to 0.

$$x_1^3 - x_2^3 = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = k(x_1 - x_2) \le 0$$

Similarly,

$$2(x_1 - x_2) \le 0$$
 a $x_1 - x_2 \le 0$

So we have, $x_1^3 - x^3 + 2(x_1 - x_2) \le 0$

Which tells us that our function is strictly increasing which implies that we only have a unique $x_0 \in [1, 2]$

Mathematical Induction

Theorem 8.10 (Properties of Natural Numbers). (a). $1 \in N$

- (b). $\forall k \in \mathbb{N}, \exists k+1 \in \mathbb{N}$
- (c). $\forall k \in N \{1\}, \exists | n \in N, \text{ s.t. } k = n + 1 \in N$
- (d). Needs to be well-ordered.

An ordered set S is well-ordered if,

$$\forall A \in S \text{ s.t. } A \neq \phi, \exists x = \min A$$

Or,
$$\exists x \in A \text{ s.t. } y \in A, x \leq y$$

Example. \mathbb{Q} is not well-ordered as it does not have a minimum

Example. \mathbb{Z} is not well-ordered as it does not have a minimum

Axiom 8.11. N is well-ordered

Theorem 8.12. If $A \subseteq S$ and S is a well-ordered set then A is well-ordered.

Proof. Let $B \subseteq A$ and $B \neq \phi \Rightarrow B \subseteq S$

So B has a min x which means that A is well-ordered by definition. \Box

Example. $[1,\infty)$ is not well-ordered because a subset $(1,\infty)$ does not have a min

Theorem 8.13. $\forall a \in \mathbb{Z}, d \in \mathbb{N}, \exists q, r \in \mathbb{Z} \times \{0, 1, \dots, d-1\} \text{ s.t.}$

$$a = dq + r$$

Proof. Let $S = \{a - nd : n \in \mathbb{Z}, a - nd \in \mathbb{N}\}$

First we can see that S is non-empty as we can take

$$n = -|a| - 1 \Rightarrow a - nd > 0$$

Now because this is a subset of $\mathbb N$ it follows the well-ordering principle implying that $\min S=a-nd=m$

 $m \in S \Rightarrow \exists l \in \mathbb{Z} \text{ s.t. } m = a - ld$

Case 1: If m > d then

$$a - (l+1)d > 0$$

$$a - (l+1)d \in S \Rightarrow a - (l+1)d < m$$

Which is a contradiction. This means that $m \ge d$

Case 2: m = d

Let q = l + 1, r = 0

$$m = d \Rightarrow a - ld = d \Rightarrow a - (l+1)d = 0$$

Case 3: 0 < m < d

Let $q = l, r = m \Rightarrow a = dq + r$

Now to show uniqueness,

Suppose, $(q, r), (q', r') \in \mathbb{Z} \times \{0, 1, ..., d - 1\}$ and

$$a = qd + r = q'd + r'$$

We have,

$$(q - q')d = r' - r$$

$$0 - (d - 1) \le r' - r \le d - 1$$

And,

$$d|r' - r \Rightarrow r' - r = 0$$

Definition 8.14. Let $a,b\in\mathbb{N}, d=GCD(a,b)\in N$ if

- (a). d|a and d|b and
- (b). If $d' \in N$ s.t. d'|a and d'|b then $d \geq d'$

Theorem 8.15. $\forall a, b \in \mathbb{N}, \exists p, q \in \mathbb{Z} \text{ s.t. } GCD(a, b) = ap + bq$

Proof. Let $S = \{a_m + b_n : m, n \in \mathbb{Z}, a_m + b_n \subseteq \mathbb{N}\}$

We know S is non-empty as m, n = 1 makes it a + b > 0 as $a, b \in \mathbb{N}$ So by well-ordering principle we know that $\exists \min S = d$ and $p, q \in \mathbb{Z}$ s.t.

$$d = ap + bq$$

If $d' \in \mathbb{N}$ s.t. d'|a and $d'|b \Rightarrow d'|ap + bq = d$ So, $d \in \mathbb{N} \Rightarrow d \geq d'$

$$d \in \mathbb{N} \Rightarrow \exists m \in \mathbb{Z}, r \in \{0, \dots, d-1\} \text{ s.t. } a = md + r$$

Which means r = a - md = a - m(ap + bq) = a(1 - mp) + b(-mq)r < d but $d = \min S \Rightarrow r \notin S \Rightarrow r = 0$

So a = md so d|a. Similarly, d|b

This means d is the greatest common divisor.

Theorem 8.16 (Induction principle). Suppose $k \in N, S \subseteq N$ satisfy,

- (a). $k \in S$
- (b). if $n \in S$ then $n + 1 \in S$

then $\{k, k+1, \dots\} \subseteq$

Proof. Let $A = \{n \in \mathbb{N}, n \ge k : n \notin S\}$

Suppose $A \neq \phi \Rightarrow n_0 = \min A$ exists

Which means $n_0 \ge k$ but $k \not\in A$ due to (a). So, $n_0 > k \Rightarrow n_0 - 1 \ge k$ and $n_0 - 1 \not\in A$ as $n_0 = \min A$

(b). and $n_0 - 1 \notin A \Rightarrow n_0 \notin A$ contraid ciont which implies that $A = \phi$

Corollary 8.17. If a statement $P(n), n \in \mathbb{N}$ satisfies

- (a) P(k) is true
- (b) $P(n) \Rightarrow P(n+1)$

Then P(n) is true for all $n \geq k$