PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-042957

(43)Date of publication of application: 13.02.1992

(51)Int.CI.

H01L 25/065

H01L 25/07

H01L 25/18

H01L 27/00

(21)Application number: 02-147845

(71)Applicant: MATSUSHITA ELECTRON CORP

(22)Date of filing:

06.06.1990

(72)Inventor: UEDA SEIJI

(54) MANUFACTURE OF SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

(57)Abstract:

PURPOSE: To make possible the formation of a semiconductor integrated circuit having a good yield and a good fraction non-defective, which are accompanied by a high density and a multilayer interconnection, by a method wherein semiconductor elements, wirings and electrode pads are respectively provided on first and second semiconductor substrates and the second semiconductor substrate is superposed and fixed on the first semiconductor substrate in such a way that the substrates are connected to each other via bumps.

CONSTITUTION: A first semiconductor substrate is formed by a method wherein an element, such as a MOS transistor or the like, is formed on a silicon substrate 21, an interlayer insulating film 22 is deposited on this element, contact holes are opened, first AI wirings 23 are formed, then, a surface protective film 24 is deposited, windows for electrode pad use are opened and a barrier metal film 25 and each gold bump 26 are deposited on each electrode pad 23. A second semiconductor substrate is formed like the first semiconductor substrate. Then, the first semiconductor substrate 1 is bonded to die pads 7 of the second semiconductor substrate.

After this, the second semiconductor substrate 2 is superposed on the substrate 1, the pads 23 of both substrates 1 and 2 are aligned to each other, are thermally fixed by pressure, bumps 31 are alloyed and the substrates 1 and 2 are connected to each other.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

⑩日本国特許庁(JP)

①特許出願公開

® 公 開 特 許 公 報 (A) 平4-42957

Int. Cl.

識別記号

庁内整理番号

H 01 L 25/065 25/07 25/18 27/00

301 B

7514-4M

7638-4M H 01 L 25/08

B (全4頁)

審査請求 未請求 請求項の数 1

会発明の名称

半導体集積回路装置の製造方法

②特 願 平2-147845

②出 顧 平2(1990)6月6日

@発明者 上田

田 誠二

大阪府門真市大字門真1006番地 松下電子工業株式会社内

切出 願 人 松下電子工業株式会社

大阪府門真市大字門真1006番地

190代 理 人 弁

弁理士 粟野 重孝

外1名

明細

1、発明の名称

半導体集費回路装置の製造方法

2、特許請求の範囲

第1の半導体基板上および第2の半導体基板上 にそれぞれ半導体素子、配線および電極パッドを 設け、両半導体基板上の対応する電極パッドがパ ンプを介して接続されるように、両半導体基板を 重ね固定する半導体集積回路装置の製造方法。

3、発明の詳細な説明

産業上の利用分野

本発明は、高密度多層配線を有する半導体集積回路装置の製造方法に関する。

従来の技術

半導体集積回路装置を高密度化。高集積化するため、半導体や間辺を微細化するとともに、配線の高密度化、多層配線化が進められている。とくに、高密度、多層配線の集積回路装置を実現するために、配線層の加工特度の向上、配線のパターン欠陥の減少、製造のリードタイム(ターンアラ

ウンド時間)の短輪が大きな課題になっている。 従来この種の半導体装置は第3図に示すような構 成であった。第3図は従来の3層メタル配線を存 するゲートアレイのメタル記載部分のみを模式的 に示している。第3図では、MOS型トランジス タ、容量素子などの半導体基板に搭載される素子 を省略したが、実際の半導体集費回路設置では、 種々の素子を搭載することにより表面に凹凸が生 じ、複雑な表面形状を形成している。この複雑な 形状の表面上に多層メタル配線を形成することに なる。第3図に示すようにシリコン基板41に MOS型トランジスタ, 容量素子などの素子(関 示せず)を形成し、この上に第1の層間絶縁膜42 を堆積し、この層間絶縁膜4.2.に、それぞれのコ ンタクトホール(図示せず)を形成し、第1のメ タル電極配線43を形成する。つぎに、第2の層 間絶級膜44を地積し、第1メタル配線43から の接続部分にパイアスホール51を開孔した後、 第2のメタル配線45を形成する。ふたたび、第 3の展問絶縁膜46を堆積し、第2のメタル配線

45からの接続部分にパイアスホール52を開孔 し、第3のメタル配線47を形成する。つぎに、 表面保服機48を堆積する。以上のように、ゲト アレイなどの半導体集積回路装置では、装置の高 密度化。高集積化を実現するためには、配線の多 層化が必須になってきている。

発明が解決しようとする課題

ぞれの電極がパンプを介して接続するようにした ものである。

作用

実施例

本発明の半導体集費回路装置の一実施例を第1 図に示す。第1図は、本発明の半導体集費回路装置をプラスチック對止したDIL(DUAL IN LINE型)パッケージの要部構造を模式的に示したものである。半導体素子を搭載した第1の半導体素を搭載した第1の半導体基板1には、電極パッドA3が設けられ、この上に保護膜5が堆積され、電極部分3のみ開えりされている。第1の半導体基板1はろう材により 第2の問題点として、半導体集積回路装置を製造するときのリードタイムの増加がある。この製造リードタイムの増加は将来開発される複雑な大規模集積回路装置の実現に要する開発期間を長くするので、半導体装置製造上だけでなく開発についても大きな課題である。

本発明はこのような課題を解決するもので、高 密度、多層配線に伴う歩留りや良品率の低下を起 さず、製造のリードタイムを短縮し、開発期間を 短縮する半導体集積回路を提供することを目的と するものである。

課題を解決するための手段

この課題を解決するために本発明は、第1の半 郷体基板に搭載された半導体装置の電極または配 線接続の一部を第2の半導体基板上に形成し、前 配第1の半導体基板上の半導体装置と前記第2の 半導体基板上に形成された電極または配線のそれ ぞれに電極パッドを設け、前記電極パッドを相互 に接続するようにしたものである。さらに、この 二つの半導体基板が対向して重ねあわされ、それ

ダイパッド?に接着され、一部の電極パッド12 は、ワイヤ9によりリード10に接続されている。 第2の半導体基板2には、アルミ配線のみ1~2 層形成され、それぞれに電極パッド4が設けられ ている。本実施例では、第1の半導体基板にパンプが形成され、第1の半導体基板および第2の半 導体基板は熱圧着されて1つの半導体集積回路接 置か形成される。その後このチップは樹脂針止される。

維養し、電極パッド用の窓を開孔する。つぎに、 第2図的に示すように電極パッド23上に、例え ば、チタンタングステンからなるパリアメタル 25,金パンプ26を堆積する。

第2図(c)に第1の半導体基板の断面構造を示す。 第2図(a)に示した第2の半導体基板と同じく、シリコン基板21に絶縁膜27を堆積し、この絶縁 膜27に、第2のアルミ配線29を形成する。この上に層間絶縁膜28を堆積し、この層間絶縁態 28に、パイアホールを開孔する。つぎに、第3 のアルミ配練30を形成する。つぎに、第3 のアルミ配練30を形成する。つぎに、第3 は24を堆積し、電低パッド用の窓を開孔する。 電低パッドには、第1の半導体基板と同じく、パリアメタル25をアルミ膜上に形成する。

つぎに、ウエハ状態で作製した前記半導体基板を、半導体装置毎に切断して第1図に示したように、ダイパッド7に第1の半導体基板1を接着する。この後、同様に切断された第2の半導体基板2を第2図(d)に示すように、第1の半導体基板1に重ね合わせ、それぞれの電極パッド位置を合わ

半導体基板で形成することが可能なため、マスタスライス方式で、第1の半導体基板を作製し、ダイパットに接着しておけば、同時に平行して第2の半導体基板を製作することができ、半導体集積回路装置の製造のリードタイムを著しく短輪できる。また、半導体装置 A および B をそれぞれ 個別にテストしたのち接着すれば、良品率が向上するという効果が得られる。

4、図面の簡単な説明

第1図は本発明の一実施例の半導体集積回路位置の断面図、第2図(a)~第2図(d)は同半導体集積回路接置の半導体基板部分の製造工程を示す断面図、第3図は従来の半導体集積回路接置の断面図である。

1 ……第1の半導体基板、2 ……第2の半導体 基板、3 ……電極パッドA、4 ……電極パット B、6 ……パンプ、21 ……シリコン基板、2 2 ……層間絶縁膜、2 3 ……第1のアルミ配線、2 4 ……表面保護膜、2 5 ……パリアメタル、2 6 … …金パンプ、2 7 ……絶縁膜、2 8 ……層間絶縁 せ、熱圧着し、バンプ31を合金化し、半導体基板を接続する。このようにして2つ以上の半導体基板から1つの半導体集積回路装置が形成される。

なお、本実施例では、シリコン基板の例を示し たが、化合物半導体基板でも同様に適用可能を示 る。また、本実施例では、金パンプにより、後 を行っているが、より微細な電極パッドを形成 し、このパッド上にピラー(柱状突起)を形成 し、これに対向する電極を合金化し、接続すること とも可能であり、電極パッドの形状や、面積によ りいくつかの接続方式がある。

発明の効果

以上の実施例の説明からも明らかなように本発明の半導体集積回路袋間によれば、多層メタル配線の一部、または大部分を別半導体基板上に形成できるため、複雑な多層配線であっても、下地に形成された素子による凹凸の影響を受けず、平坦な基板上で第2、第3のメタル配線を形成でき、製造工程がかなり容易になる。さらに、配線を別

膜、29……第2のアルミ記線、30……第3の アルミ配線、31……金パンプ。

代理人の氏名 弁理士 栗野貮孝 ほか1名

特開平4-42957(4)

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第2区分 【発行日】平成7年(1995)10月13日

【公開番号】特開平4-42957

【公開日】平成4年(1992)2月13日

【年通号数】公開特許公報4-430

【出願番号】特願平2-147845

【国際特許分類第6版】

H01L 25/065

25/07

25/18

[FI]

H01L 25/08

B 7220-4M

GEV/

手続補正曹

平成1年1月13日

特许疗员官政

1 事件の表示

2 発明の名称

半導体業費回路装置の製造方法

3 梯正をする者

事件との関係 平桌5年10月20日住所变要请(一括) 住 肵 大阪府高板市中町1番1号

名 S. (584) 松下電子工業株式会社

代 表

移 山 一 齊

4 代 型 人 7571

佳

大阪府門其市大字門真1006番地

其市大学門其1006番地 松下電器虛葉株式会社内 弁理士 小 朝 於 明 (7242) 弁理士 小 観 治 明

(ほか 2名)

[連絡先 電話 08-9434-9471 知的財産権センター]

5 補正により増加する請求項の数・ 0

6 補正の対象

明和書の発明の詳細な説明の概

- (1) 明細音の第2頁第18行の「パイアスホール51」を「パイアホール51」 に補正致します。
- ② 同邦3貫第1行の『パイアスホール52』を「パイアホール52」に補正 致します。
- (8) 関第5頁第20行の「ろう材により」を「ろう材8により」に補正改しま t.
- (4) 図面の第8回を別紙の造り補正改します。

第 3 図

