

Traitement d'image

Segmentation et Localisation d'un *Mélanome*

Rédigé par

+SAISSI HASSANI Mehdi

- +LACHHAB Nouhaila
- +ELMERZOUKI Layla
- +IMANDOU Rachida

I. Polype:

- On a essayé de travailler sur la segmentation et la localisation d'un Polype lors d'un examen coloscopie. Malheureusement, on n'a pas réussi à isoler l'anomalie vu que les valeurs des pixels étaient proches, et c'est ainsi que la segmentation ne nous a pas donné des résultats optimales. Du coup on avait l'impossibilité de détecter les contours de la tumeur et l'extraire.
- Après avoir expliquer notre situation à notre professeure, elle nous a proposé de changer
 l'image en question d'une détection de Polype à celle du Mélanome vu la difficulté du sujet.

II. Mélanome:

1. But du projet :

- Isoler la tumeur des images médicales scannées d'un Mélanome.
- Localiser la tumeur dans l'image avec les méthodes de notre choix.
- Proposer une solution optimale et comparer l'erreur.

Les 3 images médicales et les 3 vérités terrains qu'on nous a données ne contenaient qu'une seule tumeur. On a donc réalisé le projet pour isoler et localiser une seule tumeur dans une image.

2. Traitement de l'image :

a. Filtrage:

- Les méthodes de filtrage utilisées: moyenneur, médian, gaussien, exponentiel.
- Après comparaison entre les différentes images filtrées et l'image originale, on a constaté que l'image n'est pas bruitée et on peut s'en servir de l'image originale.

b. Manipulation d'histogrammes:

 Après avoir afficher et analyser l'histogramme de l'image originale, on a constaté que les pixels sont propagés sur l'intervalle [50-230]bits mais ils sont plus nombreux vers [120-210].

c. Segmentation:

- Les méthodes utilisées: la binarisation par seuillage, la binarisation par extraction de fenêtre d'intensité, L'expansion de la dynamique, l'égalisation d'histogramme, Otsu, Binary.
- La méthode choisie: "Binarisation par seuillage": Après avoir comparer visuellement toutes les méthodes qu'on a essayé, on a finalement décidé de travailler avec la 'Binarisation par seuillage' puisque c'est celle qui nous apporte une image avec le moins d'erreurs possible.

d. Bruitage/Filtrage:

• Elle nous permet de mieux visualiser l'image et aussi de réduire le bruit dans une image, d'accentuer les détails ou encore de détecter les contours des objets.

e. Détection de contours :

• On a utilisé la méthode : Edge extractor.

f. Comparaison de l'image résultante avec la VTT sous 3 méthodes.

- → Visuellement entre les deux images.
- → Calcul d'erreur sous deux méthodes: +La fonction Erreur_tae +La fonction Erreur_mse
- → Comparaison d'histogrammes.

3. Bonus:

 Retrouver une méthode automatique (hors programme) pour détecter la tumeur de façon avancée tout en utilisant la méthode de la librairie cv2 qui s'appelle 'findContours'.

4. Conclusion:

 Similitudes: On a obtenu à peu près les mêmes similitudes pour Binarisation par seuillage quand on a comparé nos résultats aux vérités terrains (VTT) avec un taux d'erreur (-20%). Pour une des vérités terrains, parfois on obtient une similitude un peu plus élevée car on n'avait pas de bruit dans les contours de l'image. Les similitudes étaient proches de 1 (entre 0.7 et 0.8) donc nos résultats sont bons.