TP Statistiques: Compte-rendu

Michel Yoeung, Charles-Frédérick Amaudruz, Alexandre Berrada (ENSIMAG - 1A - Groupe 2)

Avril 2018

1 Première stratégie.

Question 1

$$\forall i=1,...,n, X_i = \left\{ \begin{array}{ll} 1 & \quad si \ le \ i^{eme} \ poisson \ est \ bagu\'e \\ 0 & \quad \text{sinon} \end{array} \right.$$

De plus, les résultats des pêches successives sont indépendants et la probabilité que le i^{eme} poisson soit bagué est $p = \frac{n_0}{\theta}$.

Donc les X_i sont indépendants et identiques (iid) car suivent tous une loi de Bernoulli de paramètre de succès $p = \frac{n_0}{\theta}$.

Soit $\theta = 1000$ et $n_0 = 50$. On choisit n = 60 pour notre simulation sur R.

On obtient l'échantillon de données suivant :

On calcule ensuite sur R les moyennes et les variances (empiriques et théoriques) :

```
> source('~/ensimagl/Statistiques/projet/premiere_strategie.R')
```

- [1] "moyenne empirique :"
- [1] 0.06666667
- [1] "moyenne théorique :"
- [1] 0.05
- [1] "variance empirique :"
- [1] 0.06222222
- [1] "variance empirique :"
- [1] 0.0475

On constate que pour ce jeu de données la moyenne empirique est assez proche de la moyenne théorique et de même pour les variances.

Question 2

T est une variable aléatoire qui compte le nombre de poissons bagués parmi les n poissons pêchés donc $T = \sum_{i=1}^{n} X_i$ avec X_i qui suit une loi de Bernoulli.

Donc T suit une loi binomiale de paramètres n et $p = \frac{n_0}{\theta}$.

On donne ainsi avec R t le nombre de poissons pêchés sur notre échantillon de données :

[1] "nombre de poissons bagués parmi les n poissons pêchés :"

[1] 4

Question 3

Estimateur des moments : Soit \overline{X}_n la moyenne empirique,

$$E[X] \simeq \overline{X}_n \Rightarrow p \simeq \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Rightarrow \frac{n_0}{\theta} \simeq \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Rightarrow \theta \simeq \frac{n_0 * n}{\sum_{i=1}^n x_i}$$
(1)

Donc l'estimateur des moments (d'ordre 1) vaut $\tilde{\theta_n} = \frac{n_0 * n}{\sum_{i=1}^n x_i}$

Estimateur de maximum de vraisemblance :

$$\mathcal{L}(X_1 = x_1, ..., X_n = x_n, \theta) = \prod_{i=1}^n P(X_i = x_i, \theta)$$

$$= p^{\sum_{i=1}^n x_i} (1 - p)^{n - \sum_{i=1}^n x_i}$$

$$= (\frac{n_0}{\theta})^{\sum_{i=1}^n x_i} (1 - \frac{n_0}{\theta})^{n - \sum_{i=1}^n x_i}$$
(2)

$$\ln(\mathcal{L}(X_1 = x_1, ..., X_n = x_n, \theta)) = (\sum_{i=1}^n x_i)(\ln(n_0) - \ln(\theta)) + (n - \sum_{i=1}^n x_i)\ln(1 - \frac{n_0}{\theta})$$

En dérivant par rapport à θ :

$$\frac{\partial \ln(\mathcal{L}(X_1 = x_1, ..., X_n = x_n, \theta))}{\partial \theta} = -(\sum_{i=1}^n x_i) \frac{1}{\theta} + (n - \sum_{i=1}^n x_i) \frac{\frac{n_0}{\theta^2}}{1 - \frac{n_0}{\theta}}$$

$$= -(\sum_{i=1}^n x_i) \frac{1}{\theta} + (n - \sum_{i=1}^n x_i) \frac{n_0}{\theta^2 - \theta n_0}$$

$$= 0 \Rightarrow \theta = \frac{n_0 * n}{\sum_{i=1}^n x_i}$$
(3)

Donc l'estimateur de maximum de vraisemblance vaut $\hat{\theta_n} = \frac{n_0 * n}{\sum_{i=1}^n x_i}$

Donc ces deux estimateurs sont confondus.

On calcule ainsi sur R la valeur de ces estimateurs sur notre échantillon de données :

- [1] "estimateur des moments :"
- [1] 750
- [1] "estimateur de maximum de vraisemblance :"
- [1] 750

Sur l'échantillon simulée, on observe un estimateur de θ qui vaut 750 soit 25% de moins que la

vraie valeur de θ pour la simulation (1000). Cet estimateur n'est pas très précis.

Question 4

intervalle de confiance exact de seuil α pour θ :

On a $p = \frac{n_0}{\theta} \Rightarrow \theta = \frac{n_0}{p}$ donc en estimant p (avec la formule du cours), on obtient directement une estimation de θ .

$$\left[n_0 \left(1 + \frac{n-T}{T+1} f_{2(n-T),2(T+1),1-\frac{\alpha}{2}} \right), n_0 \left(1 + \frac{n-T+1}{T} f_{2(n-T+1),2T,\frac{\alpha}{2}} \right) \right]$$
(4)

avec $T = n\overline{X}_n = \sum_{i=1}^n x_i$ et $f_{\nu_1,\nu_2,\alpha} = F_{\mathscr{F}}^{-1}(1-\alpha,\nu_1,\nu_2), F_{\mathscr{F}}^{-1}$ étant ici la fonction quantile de la

intervalle de confiance asymptotique de seuil α pour θ :

On obtient l'intervalle associée avec la même démarche que précédement.

$$\left[\frac{n_0}{\overline{X_n} + u_\alpha \sqrt{\frac{\overline{X_n}(1 - \overline{X_n})}{n}}}, \frac{n_0}{\overline{X_n} - u_\alpha \sqrt{\frac{\overline{X_n}(1 - \overline{X_n})}{n}}}\right]$$
 (5)

avec $u_{\alpha} = F_{\mathcal{N}}^{-1}(1 - \frac{\alpha}{2})$, $F_{\mathcal{N}}^{-1}$ étant ici la fonction quantile de la loi normale. On calcule ainsi ces intervalles de confiance (exacts puis asymptotiques) associés aux valeurs de nos paramètres fixés sur R pour les différentes valeurs de α spécifiées dans l'énoncé :

- [1] "intervalle de confiance exact pour theta de seuil"
- [1] 0.01
- [1] 255.9594
- [1] 4375.487
- [1] "intervalle de confiance exact pour theta de seuil"
- [1] 0.05
- [1] 308.6672
- [1] 2708.298
- [1] "intervalle de confiance exact pour theta de seuil"
- [1] 0.1
- [1] 342.2379
- [1] 2165.389
- [1] "intervalle de confiance exact pour theta de seuil"
- [1] 0.2
- [1] 388.1135
- [1] 1701.15

On remarque que les intervalles exacts fournissent un encadrement plus précis de la vraie valeur de θ que les intervalles asymptotiques ce qui semble logique car les intervalles symptotiques sont plus efficaces pour un n très grand, or ici on a fixé n = 60 seulement.

Question 5

$$P(\hat{\theta}_n = +\infty) = P(\frac{n_0 * n}{\sum_{i=1}^n x_i} = +\infty) = P(\sum_{i=1}^n x_i = 0) = P(T = 0) = (1 - p)^n = (1 - \frac{n_0}{\theta})^n$$

Cet estimateur n'est pas convergent.

$$Biais(\hat{\theta}_n) = E[\hat{\theta_n}] - \theta$$

```
[1] "intervalle de confiance asymptotique pour theta de seuil"
```

- [1] 0.01
- [1] 334.1883
- [1] -3070.703
- [1] "intervalle de confiance asymptotique pour theta de seuil"
- [1] 0.05
- [1] 385.257
- [1] 14085.18
- [1] "intervalle de confiance asymptotique pour theta de seuil"
- [1] 0.1
- [1] 417.9345
- [1] 3650.342
- [1] "intervalle de confiance asymptotique pour theta de seuil"
- [1] 0.2
- [1] 463.2351
- [1] 1968.753

Comme $\hat{\theta}_n$ a une probabilité non nulle de valoir $+\infty$ alors $E[\hat{\theta}_n] = +\infty \Rightarrow E[\hat{\theta}_n] - \theta = +\infty$ (car θ est une constante) $\Rightarrow Biais(\theta_n) = +\infty$.

Donc on peut en déduire que le biais de cet estimateur vaut $+\infty$. Sur notre échantillon de données, on peut calculer la probabilité $P(\hat{\theta}_n = +\infty)$:

- [1] "probabilité que l'estimateur vale +infini :"
- [1] 0.0460698

Question 6

$$P(\hat{\theta}_n = +\infty) > \frac{1}{2} \Rightarrow (1 - \frac{n_0}{\theta})^n > \frac{1}{2}$$

$$\Rightarrow n \ln(1 - \frac{n_0}{\theta}) > \ln(\frac{1}{2})$$

$$\Rightarrow n < -\frac{\ln(2)}{\ln(1 - \frac{n_0}{\theta})}$$

$$\Rightarrow n \le \lfloor -\frac{\ln(2)}{\ln(1 - \frac{n_0}{\theta})} \rfloor$$
(6)

Toujours avec notre échantillon de données, on calcule sur R cette valeur de n pour laquelle la probabilité $P(\hat{\theta_n} = +\infty)$:

^{[1] &}quot;pour que la probalilité que l'estimateur vale +infini soit strictement supérieure à 1/2, n doit être inférieur à :"

^{[1] 13} [1] "probabilité que l'estimateur vale +infini avec cette valeur de n :" [1] 0.5133421

2 Deuxième stratégie.

Question 1

 $\forall j = 1,...,m,Y_j$ représente le nombre de poissons pêchés entre le j^{eme} poisson bagué et le $(j+1)^{eme}$. On répète successivement l'expérience "on pêche un poisson" jusqu'à ce qu'il soit bagué, de probabilité $\frac{n_0}{\theta}$. Les Y_i suivent donc tous une loi géométrique de paramètre $\frac{n_0}{\theta}$.

D'autre part, ils concernent des pêches différentes, donc ils sont de plus indépendants.

En théorie, la moyenne et la variance d'une loi géométrique G(p) sont données par $\frac{1}{p}$ et $\frac{1-p}{p^2}$, soit pour $n_0 = 50$ et $\theta = 1000$, $\mathbb{E}(Y) = 20$ et Var(Y) = 380. Pour notre échantillon, nous calculons : > mean(ech)

[1] 25.625

> var(ech) [1] 638.9462

Les résultats que nous obtenons sont proches des résultats théoriques.

Question 2

En notant N le nombre de poissons pêchés, on a $N = \sum_{j=1}^{m} Y_j$

$$\Omega(N) = [|m, +\infty[|$$

Soit $n \ge m$, et $x = (x_1, ..., x_n) \in (N = n)$.

On sait que $x_n = 1$ (le dernier poisson pêché est bagué par définition de Y_n), m-1 des n-1 autres pêches sont des poissons bagués. Ceci justifie que $\#(N=n)=\binom{n-1}{m-1}$. Chacun des éléments de (N=n) étant de probabilité $(\frac{n_0}{\theta})^m(1-\frac{n_0}{\theta})^{n-m}$, on obtient finalement : $\forall n \in \mathbb{N}, \mathbb{P}(N=m+n)=\binom{m+n-1}{m-1}(\frac{n_0}{\theta})^m(1-\frac{n_0}{\theta})^n$

$$\forall n \in \mathbb{N}, \mathbb{P}(N=m+n) = \binom{m+n-1}{m-1} \left(\frac{n_0}{\theta}\right)^m \left(1 - \frac{n_0}{\theta}\right)^r$$
Ici,

> n [1] 2050

Question 3

L'estimateur par la méthode des moments est $\overline{\theta}'_m = n_0 \overline{Y}$ On cherche à annuler la dérivée de la fonction de vraisemblance $\mathcal L$:

$$\mathcal{L}(\theta; y_1, ..., y_n) = \prod_{j=1}^{m} P(Y_j = y_j; \theta)$$

$$= \prod_{j=1}^{m} (1 - \frac{n_0}{\theta})^{y_i - 1} \frac{n_0}{\theta}$$

$$= (\frac{n_0}{\theta})^m \prod_{j=1}^{m} (1 - \frac{n_0}{\theta})^{y_i - 1}$$
(7)

On calcule donc $\frac{\partial \ln \mathcal{L}}{\partial t}$ et on cherche ensuite à l'annuler pour maximiser la log-vraisemblance :

$$\ln \mathcal{L}(\theta; y_1, ..., y_n) = m \ln \frac{n_0}{\theta} + \sum_{j=1}^m (y_i - 1) \ln 1 - \frac{n_0}{\theta}$$

$$\frac{\ln \partial \mathcal{L}}{\partial \theta} = \frac{-m}{\theta} + \sum_{j=1}^m (y_i - 1) \frac{-\frac{n_0}{\theta^2}}{1 - \frac{n_0}{\theta}}$$

$$= \frac{-m}{\theta} - \sum_{j=1}^m (y_i - 1) \frac{n_0}{\theta^2 - \theta n_0}$$
(8)

Avant simplification, on trouve $\hat{\theta}'_m = n_0 \frac{\sum_{j=1}^m (y_i-1)+m}{m}$, puis le +m au numérateur compense les -1, et on retrouve $\hat{\theta}'_m = n_0 \bar{Y}$ Ainsi, pour notre échantillon, nous calculons : $\stackrel{\text{> est}}{}_{[1]}$ 1281.25

Question 4

Les Y_i sont indépendantes et suivent la même loi, on a donc :

$$\mathcal{I}_{m} = m\mathcal{I}_{1}$$

$$= mVar\left(\frac{\partial}{\partial \theta} \ln \mathcal{L}(\theta, Y_{1})\right)$$

$$= mVar\left(\frac{\partial}{\partial \theta} \left[\ln \frac{n_{0}}{\theta}\right] + (Y_{1} - 1)\ln(1 - \frac{n_{0}}{\theta})\right)$$

$$= mVar\left(\frac{-1}{\theta} + (Y_{1} - 1)\frac{n_{0}}{\theta^{2} - \theta n_{0}}\right)$$

$$= m\left(\frac{n_{0}}{\theta^{2} - \theta n_{0}}\right)^{2}\left(\left(\frac{\theta}{n_{0}}\right)^{2} - \frac{\theta}{n_{0}}\right)$$
(9)

Finalement, $\mathcal{I}_m = \frac{m}{\theta^2 - \theta n_0}$ Pour notre échantillon, on obtient > I_m(teta) [1] 8.421053e-05

 $\mathbb{E}(\hat{\theta}'_m) = n_0 \mathbb{E}(\bar{Y}) = \theta$ donc $\hat{\theta}'_m$ est sans biais. À présent, on déduit de l'inégalité FDCR que cet estimateur est de variance minimale si et seulement si sa variance est égale à $\frac{1}{\mathcal{I}_m(\theta)}$, donc égale à $\frac{\theta^2}{m} - \frac{\theta n_0}{m}$.

$$Var(\hat{\theta}'_m) = Var(\frac{n_0}{m} \sum_{j=1}^m Y_i) \text{ (où les } Y_i \text{ sont indépendantes)}$$

$$= \frac{n_0^2}{m} Var(Y_1)$$

$$= \frac{n_0^2}{m} [(\frac{\theta}{n_0})^2 - \frac{\theta}{n_0}]$$

$$= \frac{\theta^2}{m} - \frac{\theta n_0}{m}$$
(10)

 $\ddot{\theta}'_m$ est donc effectivement de variance minimale.

Question 5 Le calcul des intervalles de confiance pour notre échantillon donne les résultats

suivants:

> IC(seuils)
[1] 0.01
[1] 919.5386 1642.9614
[1] 0.05
[1] 1006.022 1556.478
[1] 0.1
[1] 1050.271 1512.229
[1] 0.2
[1] 1101.288 1461.212

On obtient le tableau suivant :

α	Intervalle de confiance
1%	[919.5, 1643.0]
5%	[1006.0, 1556.5]
10%	[1050.3, 1512.2]
20%	[1101.3, 1461.2]

3 Application et comparaison des stratégies.

Question 1

nombre exact de poissons bagués, en déduire une estimation du nombre total de poissons. Sur 1000 poissons pêchés, 35 sont bagués. Il y a donc une proportion $p=\frac{35}{1000}=0.035$ de poissons bagués parmi les poissons pêchés. On peut donc estimer $\theta = 0.035$. On calcule les intervalles de confiances :

- 1. Intervalle de confiance exact : [0.02449753, 0.02533891]
- 2. Intervalle de confiance asymptotuque de seuil à 5%: [0.02544073, 0.04455927]

Question 2

La deuxième stratégie repose sur la supposition suivante : le nombre de poissons pêchés avant de tomber sur un poisson baqué suit une loi géométrique de paramètre λ à déterminer. Ce paramètre $\begin{array}{l} est \ le \ ratio \ pr\'ec\'edent, \ donc : \\ \lambda = \frac{Nombre De Poissons Bagues}{Nombre Total De Poissons}. \end{array}$

Donc une estimation de λ conduira de façon inévitable à une estimation du ratio. La deuxième stratégie consiste à évaluer λ .

On trouve $\lambda = 0.03521127$. Calculons l'intervalle de confiance asymptotique de seuil à 5%: [0.00000000, 0.08645611]

Question 3

R nous permet de tracer cet histogramme :

Cet histogramme ressemble fort à la représentation d'une variable aléatoire qui suit une loi géométrique. On peut donc considérer que l'hypothèse d'une loi géometrique est vérifiée. En tout cas, elle n'est pas absurde.

Question 4

Pour décider de la meilleure stratégie, comparons les intervalles de confiance asymptotiques. Intéressons nous plus particulièrement aux longueurs de ces intervalles :

- $1.\ Strat\'egie\ 1:0.01911855$
- $2. \ Stratégie \ 2: 0.08645611$

Il apparaît que la longueur pour la deuxième stratégie est presque 5 fois plus importante que celui de la première stratégie.

Il est donc préférable de choisir la première stratégie.

Vérifications expérimentales à base de simulations.

Question 1

On calcule en R les différentes proportions d'appartenance de θ pour les intervalles de confiance établis en variant les paramètres.

- "proportions (en pourcentage) en fonction de l'augmentation de theta (intervalles de confiance exacts) :" 98 95 96 94 98 96
- "proportions (en pourcentage) en fonction de l'augmentation de theta (intervalles de confiance asymptotiques) :" [1] 93 89 91 89 80 74

Lorsqu'on augmente θ , on remarque que la proportion d'appartenance aux intervalles de θ diminue lorsqu'on choisit l'intervalle de confiance asymptotique.

En effet, lorsqu'on augmente θ , la probabilité p diminue donc l'intervalle asymptotique a une plus grande probabilité de se "tromper" car le nombre n d'essais n'est pas grand.

- "proportions (en pourcentage) en fonction de l'augmentation de n0 (intervalles de confiance exacts) :"
- [1] "proportions (en pourcentage) en fonction de l'augmentation de n0 (intervalles de confiance asymptotiques) :" [1] 87 94 88 97 95 89

Lorsqu'on augmente n_0 , on remarque que la proportion d'appartenance augmente très légère-

En effet, comme n_0 est proportionnel à p et pour la même raison que précédemment, cela paraît cohérent.

- "proportions (en pourcentage) en fonction de l'augmentation de n (intervalles de confiance exacts) :"
- "proportions (en pourcentage) en fonction de l'augmentation de n (intervalles de confiance asymptotiques) :"

[1] 95 96 97 96 96 93

Lorsqu'on augmente n, on ne constate pas de changement particulier, ce qui peut paraître incohérent car concernant l'intervalle asymptotique, ce dernier devrait être plus précis lorsque n est grand.

```
[1] "proportions (en pourcentage) en fonction de l'augmentation de m (intervalles de confiance exacts) :"
[1] 95.00 94.00 95.20 94.60 95.02 95.62
```

"proportions (en pourcentage) en fonction de l'augmentation de m (intervalles de confiance asymptotiques) :" [1] 95.00 93.50 93.80 93.60 92.74 93.31

Lorsqu'on augmente m, on constate une stabilisation au niveau des proportions donc de la pré-

En effet, augmenter m permet juste de rendre la simulation plus précise puisqu'on se base sur un plus grand nombre d'essais pour établir les proportions.

```
"proportions (en pourcentage) en fonction de l'augmentation de alpha (intervalles de confiance exacts) :"
```

"proportions (en pourcentage) en fonction de l'augmentation de alpha (intervalles de confiance asymptotiques) :"

[1] 85 93 88 79 50 8

Lorsqu'on augmente α , quel que soit le type d'intervalle (exact ou asymptotique), il est cohérent que la proportion diminue car on baisse le niveau de confiance donc la précision de ces intervalles.

Question 2

On simule m = 100 échantillons de taille n = 5, 10, 100, 1000, 10000, 100000 de loi de Bernoulli, puis on compare les m moyennes empiriques avec les espérances (avec une erreur de $\epsilon = 0.01$) $pour\ illustrer\ la\ loi\ faible\ des\ grands\ nombres\ :$

```
[1] "valeur de n :"
[1] 5e+00 1e+01 1e+02 1e+03 1e+04 1e+05
[1]
    'proportions (en pourcentage) en fonction de n :"
[1]
         0 24
                85 100 100
```

Lorsque n augmente, on remarque que l'écart entre la moyenne empirique et l'espérance diminue. A partir de n=1000 environ, on peut dire que la moyenne empirique peut être approximée par l'espérance. La loi faible des grands nombres est ainsi illustrée.

Question 3

De la même manière que précédement, on va faire la même simulation avec m=100 et en faisant varier n = 5, 30, 50, 100, 1000, 10000, sauf qu'on va tracer les histogrammes (de même largeur en l'occurrence) des moyennes empiriques pour chaque valeur de n ainsi que les graphes de probabilités associés pour la loi normale :

On remarque que la courbe associée à l'histogramme s'apparente à celle modélisant la fonction de densité de la loi normale à partir de n=50 environ.

De même, en traçant les graphes de probabilité $(F_{\mathcal{N}}^{-1}(\overline{x_i}), F_{\mathcal{N}}^{-1}(\frac{i}{m}))$ où $\forall i = 1, ..., n \ \overline{x_i}$ est une des m moyennes empiriques de chaque groupe de $n \ x_i$ (avec les x_i qui sont iid et suivent chacune une loi de Bernoulli) de l'échantillon de données. On remarque de même l'apparence d'une droite à partir de n = 50 ce qui confirme le fait qu'à partir d'une certaine valeur, la moyenne empirique des x_i suit une loi normale. Le théorème centrale limite est ainsi illustré.