Random Forest Group 22

- Amanda Aleong
- Francis Cruz
- Han Hu
- Youngmok Ko
- Hao Xing
- Shi Yu

Random Forest Comparisons Code Classification Regression Conclusion

Random Forest

- Supervised ML algorithm used for classification or regression
- Ensemble technique which utilizes multiple decision trees

- The power of crowd
- Another example of an ensemble technique:
 - Bagging

Sample#	F1	F2	F3
1			
2			
3			
4			
5			
6			

Set aside as test data

Sample#	F1	F2	F3
1			
2			
3			
4			
5			

Step 1: Bootstrap sample

Sample#	F1	F2	F3
1			
2			
4			

Step 1: Bootstrap sample

Step 2: Select m features

Step 1: Bootstrap sample

Step 2: Select m features

Step 3: Pass as input to tree# 1

Planting a Random Forest

	Sample#	F1	F2	F3
	1			
→	2			
	3			
→	4			
→	5			

•	 the mean of the prediction (regression) 			
	Sample#	F1	F2	
	2			
	4			

Aggregate outcome of each tree by taking

the mode of the classes (classification) or

Create n bootstrap sample sets

Train each tree in parallel

Select m features

5

Step 1: Bootstrap sample

Step 2: Select m features

Step 3: Pass as input to tree# 2

Random Forest Comparisons Code Classification Regression Conclusion

Planting a Random Forest

	Sample#	F1	F2	F3
	1			
→	2			
→	3			
→	4			
	5			

Create n bootstrap sample sets

- Select m features
- Train each tree in parallel
- Aggregate outcome of each tree by taking
 - the mode of the classes (classification) or
 - the mean of the prediction (regression)

Sample#	F2	F3
2		
3		
4		

Step 1: Bootstrap sample

Step 2: Select m features

Step 3: Pass as input to tree# 3

Growing a Random Forest

n1

Sample#	F1	F3
1		
2		
4		

F1 F3

n2

Sample#	F1	F2
2		
4		
5		

F2 F1

n3

Sample#	F2	F3
2		
3		
4		

Random Forest Comparisons Code Classification Regression Conclusion

Roaming a Random Forest

Sample#	F1	F2	F3
6			

Hyperparameters:

Min_samples_leaf Criterion Max_depth N_estimators Max_features

Sample#	F1	F2	F3
6			

Difference Between RF and Bagging

	Bagging	Random Forest
Ensemble Technique	Yes	Yes
Uses Decision Trees	Sometimes	Always
Bootstrap Sampling	Yes	Yes
Feature space per tree	Uses all M features	Uses m features <m< td=""></m<>
Reduces Variance	Yes	Yes
Reduces correlation	No	Yes

Random Forest and Cross Validation

Cross-Validation:

Random Forest

- Random forest already subsamples the data set to train each tree.
 - Out-of-bag score: aggregated accuracy from trees where a sample was not a part of the subset used for training.

Random Forest

Advantages

Handle missing values and maintains accuracy for missing data

Less likely to overfit the model

Handle large data set with higher dimensionality

Disadvantages

Computational complexity (Computationally expensive/takes long to solve)

Feels like a black box approach (Loss of explainability)

Random Forest Comparisons Code Classification Regression Conclusion

Python Code: Import Libraries and Data

UCI data URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data'

Library

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
```

Import Data

```
names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'num']
heart_disease = pd.read_csv(urlopen(UCI_data_URL), names=names)

# Load testing and training data provided in https://www.kaggle.com/c/house-prices-advanced-regression-techniques
train_housing_data = pd.read_csv('train_housing.csv')
test_housing_data = pd.read_csv('test_housing.csv')
```

Python Code: Decision Tree Classification

Instance

```
fit_dt = DecisionTreeClassifier(random_state=42)
```

Set Parameters

Training

```
fit_dt.fit(X_train, y_train)
```

• Predict

```
y_test_predict = fit_dt.predict(X_test)
```

Assess

```
scores_DT_gridsearch_classifier = cross_val_score(fit_dt, X, y, cv = 5)
ave_score_DT_gridsearch_classifier = np.mean(scores_DT_gridsearch_classifier)*100
print('The average score using CV is %.2f%%' % ave_score_DT_gridsearch_classifier)
```

The average score using CV is 73.29%

Python Code: Random Forest Classification

Instance

fit rf = RandomForestClassifier(random state=42,oob score = False)

Set Parameters

```
fit rf.set params(bootstrap = True,
                 criterion = 'entropy',
                 max_depth = 3,
                 max features = 'sqrt',
                 min samples leaf = 2,
                 n estimators=90,
                 oob score = True)
```

Training

```
fit rf.fit(X train, y train)
```

Predict

```
y_test_predict = fit_rf.predict(X_test)
```

```
ave oob score RF best classifier = (fit rf.oob score )*100
print('The average score using Out-of-Bag estimate is %.2f%%' % ave oob score RF best classifier)
```

The average score using Out-of-Bag estimate is 84.62%

Assess

```
scores_RF_best_classifier = cross_val_score(fit_rf, X, y, cv = 5)
ave_cv_score_RF_best_classifier = np.mean(scores_RF_best_classifier)*100
print('The average score using CV is %.2f%%' % ave cv score RF best classifier)
```

The average score using CV is 83.78%

Python Code: Decision Tree Regression

Instance

• Set Parameters

Training

• Predict

Assess

```
# cross validation with cv = 5
scores_DT_regressor = cross_val_score(fit_dtr, X_features_train_file, y_train_file, cv = 5)
ave_score_DT_regressor = np.mean(scores_DT_regressor)*100
print('The average score using CV is %.2f%%' % ave_score_DT_regressor)
```

The average score using CV is 78.04%

Python Code: Random Forest Regression

Instance

RF_regressor = RandomForestRegressor(random_state=42)

Set Parameters

Random Forest

Training

```
RF_regressor.fit(X_features_train_file, y_train_file)
```

y_test_file = RF_regressor.predict(X_features_test_file)

• Predict

```
# Out-of-Bag score
ave_oob_score_RF_best_classifier = (RF_regressor.oob_score_)*100
print('The average score using Out-of-Bag estimate is %.2f%%' % ave_oob_score_RF_best_classifier)
```

The average score using Out-of-Bag estimate is 83.61%

Assess

```
# cross validation with cv = 5
scores_RF_regressor = cross_val_score(RF_regressor, X_features_train_file, y_train_file, cv = 5)
ave_score_RF_regressor = np.mean(scores_RF_regressor)*100
print('The average score using CV is %.2f%' % ave_score_RF_regressor)
```

19

Classification

Heart Disease Prediction

- Input features:
 - Medical history
 - i.e. Age, sex, num (previous heart diseases), cp (chest pain), thal (heart defect), etc.
- Binary output:
 - 1: Disease present
 - 0: Disease not present

Classification: Maximize Test Accuracy

Classification: Minimize Bias & Variance

Confusion Matrix: Post-tuning

Housing Attribute Price Estimation

- Input features:
 - House amenities i.e. pool, garage, lot area, patio space, etc.
- Continuous output:
 - Estimated price of the house in thousands of USD

Regression: Maximize Test Accuracy

Regression: Minimize Bias & Variance

Random Forest Comparisons Code Classification Regression Conclusion

Conclusion

- ✓ Demonstrated the use of both RF and DT for classification and regression problems
- ✓ Discussed differences between bagging and RF
- ✓ Discussed similarities and differences between cross validation and random forest

References

- https://scikit-learn.org/stable/auto examples/ensemble/plot ensemble oob.html
- https://scikit-learn.org/stable/modules/tree.html#tree
- Cross Validation: http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics
- Evaluation Metrics: https://scikit-learn.org/0.15/model_selection.html
- Hyperparameter Selection:
 - https://towardsdatascience.com/random-forests-and-the-bias-variance-tradeoff-3b77fee339b4
 - https://medium.com/@mohtedibf/indepth-parameter-tuning-for-decision-tree-6753118a03c3
- Decision Tree Score: https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/base.py#L358
- https://stackoverflow.com/questions/8961586/do-i-need-to-normalize-or-scale-data-for-randomforest-r-package

Decision Trees: Basic Unit of a Random Forest

- Supervised learning used mostly for classification but can work for continuous inputs and outputs
- Uses a series of logic statements to determine the variable you are trying to predict.
- The goal of a decision tree to produce homogeneous subsets of the predicted variable.
- Advantages:
 - Easy to understand
 - Useful in data exploration
- Disadvantages
 - Overfitting

Appendix A: Boosting

- Ensemble technique where multiple models are trained in sequence.
- The misclassified samples of each tree are up-weighted when passed to the next tree so that each tree is building off the last.
- https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/

Appendix B: Bias & Variance Formula

- Zero-one-loss function: $L(y, y') = \begin{cases} 1 & \text{if } y \neq y' \\ 0 & \text{if } v = v' \end{cases}$

- Bias Regression : $\frac{\sum (y \hat{y})^2}{n}$ Bias Classification: $\frac{\sum L(y, \hat{y})^2}{n}$ Variance Regression : $\frac{\sum (\hat{y} \hat{y})^2}{n}$ Variance Classification : $\frac{\sum L(\hat{y}, \hat{y})^2}{n}$

Appendix C: Loss Functions

- Entropy
- Gini Index
- Misclassification Error

Appendix D: Variable Importance

Regression: N_estimators tuning

Regression: N_estimators tuning

Classification: N_estimator Tuning

Classification: N_estimator Tuning

Classification: Cross Validation & OOB

Regression: Cross Validation & OOB

