Option Pricing via Monte Carlo simulations

Raj Patil - CS18BTECH11039

2021-11-05 Fri 16:02

Monte Carlo Methods

Context

- a broad class of computational algorithms
 - repeated random sampling
- increasing utility value with increasing complexity
 - can be difficult to capture all variables with deterministic models

Principle

- essentially sample mean
- provides an unbiased estimate of the entity being estimated
 - the entity can be a deterministic one (includes the expectation of a stochastic entity)
- ▶ "The Law of Large Numbers" ensures convergence to true value

Notation

```
r \triangleq \text{risk free interest rate}
T \triangleq \text{time to maturity}
S \triangleq \text{stock Price}
\mu \triangleq \text{drift of stock (expected increment)}
\sigma \triangleq \text{volatality of the stock}
W \triangleq \text{geometric brownian motion}
```

Computing S_t

The stock price can be modeled as the following Ito process:

$$dS = S\mu dt + S\sigma dW(t)$$

Prerequisites

- given that this is an Ito's Process, one may choose to employ Ito's Lemma
- one may wish to formulate this as a Markov chain and then use the Euler-Maruyama approximation

What follows is a brief summary of the two

Ito's Lemma

$$dS = S\mu dt + S\sigma dW(t)$$
 $rac{dS}{S} = \mu dt + \sigma dW(t)$ $d(In(S)) = \mu dt + \sigma dW(t)$

Given that this is an Ito Process i.e. the resultant integrand $(\ln(S_t))$ will be a random variable instead of a definite value; Using Ito's Lemma, which states that given a random variable S follows an Ito Process, then another twice differentiable function G = f(s,t) also follows an Ito Process given by:

$$dG = \left(\frac{\partial G}{\partial S}S\mu + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial^2 S}S^2\sigma^2\right)dt + \frac{\partial G}{\partial S}S\sigma dW(t)$$

using G = In(S), we have ..

Ito's Lemma (cont.)

$$\begin{aligned} \frac{\partial G}{\partial S} &= \frac{1}{S} \\ \frac{\partial G}{\partial t} &= 0, \text{note partial derivative} \\ \frac{\partial^2 G}{\partial^2 S} &= \frac{-1}{S^2} \end{aligned}$$

using these in the differential:

$$dG = \left(\frac{1}{S}S\mu + 0 - \frac{1}{2}\frac{1}{S^2}S^2\sigma^2\right)dt + \frac{1}{S}\sigma dW(t)$$
$$= \left(\mu - \frac{sigma^2}{2}\right)dt + \sigma dW(t)$$

now using that

$$\int_0^T dW(t) = \sqrt{T}$$

we have

$$G_T - G_0 = ln(\frac{S_T}{S_0}) = (\mu - \frac{\sigma^2}{2})T + \sigma\sqrt{T}$$

Ito's Lemma (cont.)

for computational reasons, so that we can accumulate results and save repeated work for some time stamps, using the form:

$$ln(S_t) = ln(S_0) + \int_0^t (\mu - \frac{\sigma^2}{2}) dt + \int_0^t \sigma dW(t), \forall t \in \{0, dt, 2dt, \cdots, T\}$$

Note that now we can run a cumulative sum along the dimension on time for the latter two integrals and don't have to recompute S_t for each time-stamp separately

Euler-Maruyama Approximation

Given an Ito process with its stochastic differential equation being:

$$dS_t = a(S_t, t)dt + b(S_t, t)dW(t)$$

for the time interval [0, T]. Note that in our specific case:

- ightharpoonup $a(S_t,t)=S\mu$
- $b(S_t,t) = S\sigma$

Defining a Markov chain Y as follows:

- Partitioning [0, T] into intervals of width $\Delta t > 0$
 - $ightharpoonup 0 = au_0 < au_1 < \cdots < au_N = T$
 - $ightharpoonup \Delta t = \frac{T}{N}$
- ightharpoonup setting $Y_0 = s_0$
- lacktriangleright recursively defining $Y_n, \forall n \in \{0,1,\cdots,N-1\}$
 - $Y_{n+1} = Y_n + a(Y_n, \tau_n) \Delta t + b(Y_n, \tau_n) \Delta W_n$
 - ightharpoonup where: $\Delta W_n = W_{\tau_{n+1}} W_{\tau_n}$
 - ightharpoonup recall that ΔW_n are I.I.D $\mathcal{N}(0,\Delta t)$

Project Summary

Code

- pricer for European options
 - Black-Scholes as a baseline
 - tested antithetic variate

Experiments

- Effect of Number of Simulations
- ► Effect of Granularity
- Effect of Antithetic Paths

Number of simulations

Reduction in standard error

Number of simulations

Convergence towards Black-Scholes (call)

Number of simulations

Convergence towards Black-Scholes (put)

Variation with Granularity

No effect on standard error

Antithetic Variate

Principle

for every sampling session of Brownian motion, the antithetic path (should occur with equal probability) is also considered under the estimate

```
▶ original : \{\epsilon_1, \epsilon_2, \cdots, \epsilon_M\}
▶ antithetic : \{-\epsilon_1, -\epsilon_2, \cdots, -\epsilon_M\}
```

do note that this will only invert the effect of the volatility term and not the one corresponding to the drift of the stock

Advantage

- lesser number of samples needed to gain a certain amount of usable paths
- reduces the variance of the estimate (if the stock's volatility is relatively greater compared to its drift)

Effect of Antithetic Paths

Lower variance for lesser simulation

observation tapers off for large number of simulations

Call

Effect of Antithetic Paths

Lower variance for lesser simulation

observation tapers off for large number of simulations

Put

Conclusion

- Closed form solutions are only available for relatively simple derivatives
- Complicated derivatives can only be bounded by closed form approaches
 - Monte Carlo pricing can be applied with ease
 - simply the expectation of the discounted value of the derivative
 - some examples being:
 - Up and Out, Down and Out, Asian, American

Issues/Aspects

- Variance reduction
 - explored one solution (Antithetic Paths) but several other variants target this issue
- Compute
 - not really an issue these days

