

EE 657: Quiz 2

Duration: 50 minutes

Marks: 12

Date: April 11' 2016

Note: The question paper is quite explanatory. As far as possible, no clarifications or discretized cations or discussions on the questions will be entertained!

1. Consider a Support Vector Machine and the training data from two categories: $\omega_1 : \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- (a) Compute the weight vector that maximizes the margin of separation of the samples of the categories.
- (b) What is the margin of separation.
- (c) What are the support vectors.

[2.5+1+1.5]

2. You are given a data set $\{\mathbf{x}_i, y_i\}_{i=1}^N$ of size N. Each input \mathbf{x}_i is d-dimensional and its corresponding target y_i takes one of the 2 values (+1 or -1). The least squares version of the SVM classifier is obtained by reformulating the minimization problem of the traditional problem as:

$$\min_{\mathbf{w},b,\xi} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{2}\sum_{i=1}^N \xi_i^2$$

subject to the constraints:

$$y_i(\mathbf{w}^T\mathbf{x}_i + b] = 1 - \xi_i$$
 $i = 1, 2, 3, ..., N$

Here, C is a penalty factor set by the user. The variable b represents the bias and is a real-valued scalar.

- (a) Write down the Lagrangian Function $L(\mathbf{w}, b, \xi)$ corresponding to this optimization problem. Here $\boldsymbol{\xi} = \{\xi_1, \xi_2, \xi_N\}$.
- (b) State the Lagrangian conditions, that are to be satisfied at optimality .

[1+2.5]

3. Consider a one-dimensional two-category classification problem with priors, $P(\omega_1) = 2/5$ and $P(\omega_2) = 3/5$. Three i.i.d training observations were collected: $D_1 = \{1, 5, 6\}$ and $D_2 = \{3, 4, 8\}$ for ω_1 and ω_2 , respectively. It is desired to classify a test pattern using the Parzen Window technique, discussed in class. Using the window function $\phi(x) = \frac{1}{2} \exp^{-|x|}$, classify the pattern x = 4.5. It is known that: the misclassification of samples of ω_1 to ω_2 incurs a loss twice to that of ω_2 to ω_1 . Correct classifications are assigned zero loss. Assume, in addition that the loss incurred in misclassifying the pattern to ω_1 is 0.5.

[2]

4. Find the direction w that maximizes the projection of the line linking the means μ_1 and μ_2 of two categories ω_1 and ω_2 . (Use Cauchy Schwartz inequality!)

[1.5]