

WT588D 语音芯片及模块详细资料

V2.11

2013-12-17

Note:

WAYTRONIC ELECTRONIC CO.,LTD. reserves the right to change this document without prior notice. Information provided by WAYTRONIC is believed to be accurate and reliable. However, WAYTRONIC makes no warranty for any errors which may appear in this document. Contact WAYTRONIC to obtain the latest version of device specifications before placing your orders. No responsibility is assumed by WAYTRONIC for any infringement of patent or other rights of third parties which may result from its use. In addition, WAYTRONIC products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of WAYTRONIC.

WT588D 语音芯片及模块详细资料

广州唯创电子有限公司是一家致力于研发语音芯片的高新科技公司,拥有着雄厚的研发基础和具备开发经验以及实力 的研发团队,唯创人秉着对语音芯片的执着和追求,不断的以实力将语音芯片推向一个又一个高峰。有唯创人的地方就有声 音的完美展现。

WT588D 是一款具有单片机内核的语音芯片,因此,可以冠名为 WT588D 系列语音单片机。WT588D 系列语音单片 机是广州唯创科技有限公司联合台湾华邦共同研发出来的集单片机和语音电路于一体的可编辑语音芯片。功能多音质好应用 范围广性能稳定是 WT588D 系列语音单片机的特长,弥补了以往各类语音芯片应用领域狭小的缺陷, MP3 控制模式、按 键控制模式、按键组合控制模式、并口控制模式、一线串口控制模式、三线串口控制模式以及三线串口控制 I/O 口扩展输出 模式,让应用人员能将产品投放在几乎可以想象得到的场所。作为一款以语音为基础的芯片,对音质的追求当然也是精益求 精的,完全支持6K~22KHz 采样率的音频加载,芯片的独到之处便是将加载的音频音质几乎完整无损的展现出来。WT588D 系列语音单片机能通过配套软件 WT588D voiceChip 轻而易举的做到语音组合播放、插入完美的陶冶静音。静音的时长控 制得绝无丝毫误差!可控制的语音地址位能达到 220 个!每个地址位里能加载可组合语音为 128 段语音!WT588D 系列语 音单片机模块内置 SPI-FLASH 存储器,WT588D 系列语音单片机芯片可根据实际用法外置 SPI-FLASH 存储器,众多的控 制模式、语音组合只需更换 SPI-FLASH 的内容,即可完全实现操作方式的切换。WT588D系列语音单片机支持 SPI-FLASH 内容在线下载,这是一个应用人员不可或缺的优势!WT588D语音单片机的推出,非常的具有语音市场的前瞻性和革命性, 势必会在语音芯片的应用方面卷起一股旋风。如何将 WT588D 语音单片机在实际应用中发挥得淋漓尽致,还需请您详读 WT588D 系列语音单片机使用说明书。

最后,感谢您选择 WT588D 系列语音单片机作为语音电路的核心。希望 WT588D 系列语音单片机能为您的展飞添加 无暇的翅膀。

-第1页-

目 录

1、WT588D 语音芯片特征	4
2、WT588D 语音芯片功能概述	
3、WT588D 语音芯片选型	
· · · · · · · · · · · · · · · · · · ·	
4、FLASH 存储器及语音长度的关系	
5、应用领域	5
6、WT588D 语音芯片应用方框图	6
7、封装示意图	6
7.1、WT588DM01	6
7.2、WT588DM02	
7.3、WT588D-32L	
7.4、WT588D-20SS	
7.5、WT588D-16S	
8、引脚详细描述	10
9、电气参数	
10、环境绝对极限参数	11
11、控制模式	12
11.1、MP3 模式	12
11.2、按键控制模式	12
11.2.1、脉冲可重复触发	12
11.2.2、脉冲不可重复触发	12
11.2.3、电平保持可循环	12
11.2.4、电平保持不可循环	13
11.2.5、电平非保持循环	13
11.2.6、播放/停止	
11.2.7、下一曲不循环	
11.2.8、上一曲不循环	
11.2.9、下一曲可循环	
11.2.10、上一曲可循环	
11.2.11、暂停	
11.2.12、停止	
11.3、3×8 矩阵按键控制模式	
11.4、并口控制模式	
11.4.2、控制时序图	
11.5、一线串口控制模式	
11.5.1、端口分配表	
11.5.2、命令及语音码	
• • • • • • •	

广州唯创电子有限公司

WT588D芯片及模块详细资料

11.5.3、语音地址对应关系	17
11.5.4、控制时序图	17
11.5.5、一线串口控制时序例子	18
11.5.6、程序范例	18
11.6、三线串口控制模式	19
11.6.1、端口分配方式	19
11.6.2、语音及命令码对应表	19
11.6.3、语音地址对应关系	19
11.6.4、三线串口控制 I/O 口扩展输出	19
11.6.5、三线串口控制时序	20
11.6.6、命令码发送时间	21
11.6.7、程序范例	21
12、控制时序	22
12.1、控制时序框图	22
12.2、一线串口控制汇编程序	22
12.3、一线串口控制 C 语言程序	24
12.4、三线串口控制汇编程序	25
12.5、三线串口控制 C 语言程序	27
13、说明书版本历史记录	28

1、WT588D 语音芯片特征

- 模块封装(带 SPI-Flash 及外围电路)有 DIP16、DIP28,
 芯片封装有 SOP16、SSOP20 和 LQFP32 形式;
- 根据外挂或者内置 SPI-Flash 的不同,播放时长也不同,支持2M~32Mbit的 SPI-Flash 存储器;
- 内嵌 DSP 高速音频处理器,处理速度快;
- 内置 13Bit/DA 转换器,以及 12Bit/PWM 输出, 音质好;
- PWM 输出可直接推动 0.5W/8Ω扬声器,推挽电流充沛;
- 支持 DAC/PWM 两种输出方式;
- 支持加载 WAV 音频格式;
- 支持加载 6K~22KHz 采样率音频;
- 支持对已加载语音播放试听;
- 可通过专业上位机操作软件,随意组合语音,可插入静音,插入的静音不占用内存的容量,一个已加载语音可重复调用到多个地址:
- 220 段可控制地址位,单个地址位最多可加载 128 段语音,地址位内的语音组合播放;
- 最多可加载 500 段用于编辑的语音;
- USB 下载方式,支持在线下载/脱机下载;即便是在WT588D 语音芯片通电的情况下,也一样可以正常下载数据到 SPI-Flash;
- 芯片复位时间 5ms;

- 支持 MP3 控制模式、按键控制模式、3×8 按键组合控制模式、 并口控制模式、一线串口控制模式、三线串口控制模式以及三线 串口控制 I/O 口扩展输出模式;
- 三线串口控制模式切换到三线串口控制 I/O 口扩展输出模式只需发送数据就可以进行切换。切换后仍可把切换前的最后一工作状态带进切换后的模式工作;
- 任意设定显示语音播放状态信号的 BUSY 输出方式;
- 抗干扰性强,可应用在工业领域;
- 220 段可控制地址位,单个地址位最多可加载 128 段语音,地址位内的语音组合播放;
- 语音播放停止马上进入休眠模式,芯片转为完全停止状态;
- 15 种按键控制模式,任意一个按键可设定任意一种控制模式;
- 配套 WT588D VoiceChip 上位机软件,接口简单,使用方便。 能极大限度的发挥出 WT588D 语音单片机的各项功能;
- 简单的单片机编写方式,摆脱以往复杂繁琐的汇编思维;
- 单个芯片支持外挂多个存储器;
- 插入的静音时间范围 10ms~25min;
- 工作电压 DC2.8V~5.5V;
- 静态休眠电流小于 10uA;
- 支持 8 和弦 MIDI 播放 (此功能有待开放)。

2、WT588D 语音芯片功能概述

WT588D 语音芯片是一款功能强大的可重复擦除烧写的语音单片机芯片。WT588D 让语音芯片不再为控制方式而寻找合适的外围单片机电路,高度集成的单片机技术足于取代复杂的外围控制电路。配套 WT588D VoiceChip 上位机操作软件可随意更换 WT588D 语音单片机芯片的任何一种控制模式,把信息下载到 SPI-Flash 上即可。软件操作方式简洁易懂,撮合了语音组合技术,大大减少了语音编辑的时间。完全支持在线下载,即便是 WT588D 通电的情况下,一样可以通过下载器给关联的 SPI-Flash 下载信息,给 WT588D 语音芯片电路复位一下,就能更新到刚下载进来的控制模式。

支持插入静音模式,插入静音不占用 SPI-Flash 内存的容量,一个地址位可插入 10ms~25min 的静音;

MP3 控制模式下,完全迎合市场上 MP3 的播放/暂停、停止、上一曲、下一曲、音量+、音量-等功能;

按键控制模式下触发方式灵活,可随意设置任意按键为脉冲可重复触发、脉冲不可重复触发、无效按键、电平保持不可循环、电平保持可循环、电平非保持可循环、上一曲不循环、下一曲不循环、上一曲可循环、下一曲可循环、音量+、音量-、播放/暂停、停止、播放/停止等 15 种触发方式,最多可用 10 个按键触发控制输出;

3×8 按键组合控制模式下能以脉冲可重复触发的方式触发 24 个地址位语音,所触发地址位语音可在 0~219 之间设置;

并口控制模式可用 8 个 I/O 口进行控制,仅限于 WT588D-32L、WT588DM02;

一线串口控制模式可通过发码端控制语音播放、停止、循环播放和音量大小,或者直接触发 $0 \sim 219$ 地址位的任意语音,发码速度 600us ~ 2000 us ;

三线串口控制模式和**三线串口控制 I/O 口扩展输出模式**之间可通过发码切换,三线串口控制模式下,能控制语音播放、停止、循环播放和音量大小,或者直接触发 0~219 地址位的任意语音,三线串口控制 I/O 口扩展输出可以扩展输出 8 位,在两种模式下切换,能让上一个模式的最后一种状态保持着进入下一个模式。

PWM 和 DAC 输出方式, PWM 输出可直接推动 0.5W/8Ω的扬声器, DAC 输出外接功放, 音质好。

应用范围广,几乎可以涉及到所有的语音场所,如报站器、报警器、提醒器、闹钟、学习机、智能家电、治疗仪、电子玩具、电讯、倒车雷达以及各种自动控制装置等场所,工艺上达到工业应用的要求。

3、WT588D 语音芯片选型

详细的型号信息,可参考《货源信息》。

型 号	FLASH	I/O	封装形式	按键模式	并口模式	3×8 矩阵按键	MP3 模式	一线串口	三线串口
WT588DM01	16M	4	16PIN 模块	OK			OK	OK	OK
WT588DM02	16M	11	28PIN 模块	ОК	ОК	ОК	ОК	ОК	OK
WT588D-16S	外挂	2	SOP16	ОК				ОК	
WT588D-20SS	外挂	4	SSOP20	ОК			ОК	ОК	OK
WT588D-32L	外挂	11	LQFP32	ОК	ОК	ОК	ОК	ОК	OK

4、FLASH 存储器及语音长度的关系

表内数据是在语音为 6K 采样率时计算所得出来的,在扩展外挂多个存储器时,可获得更大的存储空间和语音地址。

存储器容量	2M	4M	8M	16M	32M
语音时间	30 秒	100 秒	200 秒	500 秒	1000 秒

5、应用领域

6、WT588D 语音芯片应用方框图

7、封装示意图

WT588D 系列语音单片机的封装有 16PIN 模块、28PIN 模块、SOP16、SSOP20 和 LQFP32 芯片,适合应用于各种场合,其引脚简图如下图。

7.1, WT588DM01

封装引脚	引脚标号	简述	功能描述
1	/RESET	/RESET	复位脚,低电平保持≥5ms 有效
2	DAC	DAC	DAC 音频输出脚,需要从软件设置 DAC 输出才生效
3	PWM+	PWM+	PWM+音频输出脚,需要从软件设置 PWM 输出才生效
4	PWM-	PWM-	PWM-音频输出脚,需要从软件设置 PWM 输出才生效
5	P14	DI	SPI-FLASH 数据输入脚
6	P13	DO	SPI-FLASH 数据输出脚
7	P16	CLK	SPI-FLASH 时钟脚
8	GND	GND	地线脚
9	P15	CS	SPI-FLASH 片选脚
10	P03	K4/CLK/DATA	按键/三线时钟/一线数据输入脚
11	P02	K3/CS	按键/三线片选输入脚
12	P01	K2/DATA	按键/三线数据输入脚
13	P00	K1	按键输入脚
14	VCC	VCC	存储器电源输入脚
15	BUSY	BUSY	语音播放忙信号输出脚

16 VDD VDD 数子电源制入脚	16	VDD	VDD	数字电源输入脚
--------------------------	----	-----	-----	---------

7.2, WT588DM02

WT588DM02

封装引脚	引脚标 号	简述	功能描述
1	P05	K6/A4/L5	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
2	P06	K7/A5/L6	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
3	P07	K8/A6/L7	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
4	P10	K9/A7/R1	按键/并口地址/矩阵行输入脚/三线串口扩展输出地址口
5	P11	K10/R2	按键/矩阵行输入脚/三线串口扩展输出地址口
6	P12	R3	矩阵行输入脚/三线串口扩展输出地址口
7	/RESET	/RESET	复位脚,低电平保持≥5ms 有效
8	PWM+/DAC	PWM+/DAC	PWM+/DAC 音频输出脚,视功能设置而定
9	PWM+/DAC	PWM+/DAC	PWM+/DAC 音频输出脚,视功能设置而定
10	PWM-	PWM-	PWM-音频输出脚
11	P14	DI	SPI-FLASH 数据输入脚
12	P13	DO	SPI-FLASH 数据输出脚
13	P16	CLK	SPI-FLASH 时钟脚
14	GND	GND	地线脚
15	P15	CS	SPI-FLASH 片选脚
16	P03	K4/A2/L3/CLK/DATA	按键/并口地址/矩阵列/三线时钟/一线数据输入脚
17	P02	K3/A1/L2/CS	按键/并口地址/矩阵列/三线片选输入脚
18	P01	K2/A0/L1/DATA	按键/并口地址/矩阵列/三线数据输入脚
19	P00	K1/L0/SBT	按键/矩阵列/SBT 并口地址触发输入脚/三线串口扩展输出地址口
20	VCC	VCC	模拟电源输入脚
21	BUSY	BUSY	语音播放忙信号输出脚
22	VDD	VDD	数字电源输入脚
23	P04	K5/A3/L4	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
24	NC	NC	空
25	NC	NC	空
26	NC	NC	空
27	NC	NC	空
28	NC	NC	空

7.3, WT588D-32L

WT588D-32L

封装引脚	引脚标号	简述	功能描述
1	P14	DI	SPI-FLASH 通讯数据输入脚
2	P15	CS	SPI-FLASH 通讯片选脚
3	P16	CLK	SPI-FLASH 通讯时钟脚
4	VDD-SIM	VDD-SIM	串口电源管理输入脚
5	P00	K1/L0/SBT	按键/矩阵列/SBT 并口地址触发输入脚/三线串口扩展输出地址口
6	P01	K2/A0/L1/DATA	按键/并口地址/矩阵列/三线数据输入脚
7	P02	K3/A1/L2/CS	按键/并口地址/矩阵列/三线片选输入脚
8	P03	K4/A2/L3/CLK/DATA	按键/并口地址/矩阵列/三线时钟/一线数据输入脚
9	P04	K5/A3/L4	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
10	P05	K6/A4/L5	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
11	P06	K7/A5/L6	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
12	P07	K8/A6/L7	按键/并口地址/矩阵列输入脚/三线串口扩展输出地址口
13	P10	K9/A7/R1	按键/并口地址/矩阵行输入脚/三线串口扩展输出地址口
14	P11	K10/R2	按键/矩阵行输入脚/三线串口扩展输出地址口
15	P12	R3	矩阵行输入脚/三线串口扩展输出地址口
16	VDD	VDD	芯片电源输入脚
17	P17	BUSY	语音播放忙信号输出脚
18	CVDD	CVDD	VDD 电源调准脚
19	OSCI	OSCI	RC 震荡输入脚
20	/RESET	/RESET	复位脚,低电平保持≥5ms 有效
21	PWM+/DAC	PWM+/DAC	PWM+/DAC 音频输出脚,视功能设置而定
22	VDD-SPK	VDD-SPK	音频电源输入脚
23	PWM-	PWM-	PWM-音频输出脚
24	VSS-SPK	VSS-SPK	音频电源地线脚
25	VSS	VSS	地线脚
26	NC	NC	空
27	NC	NC	空
28	NC	NC	空
29	NC	NC	空

30	NC	NC	空			
31	NC	NC	空			
32	P13	DO	SPI-FLASH 通讯数据输出脚			

7.4, WT588D-20SS

WT588D-20SS

封装引脚	引脚标号	简述	功能描述
1	P13	DO	SPI-FLASH 通讯数据输出脚
2	P14	DI	SPI-FLASH 通讯数据输入脚
3	P15	CS	SPI-FLASH 通讯片选脚
4	P16	CLK	SPI-FLASH 通讯时钟脚
5	VDD-SIM	VDD-SIM	串口电源管理脚
6	P00	K1	按键
7	P01	K2/DATA	按键/三线数据输入脚
8	P02	K3/CS	按键/三线片选输入脚
9	P03	K4/CLK/DATA	按键/三线时钟/一线数据输入脚
10	VDD	VDD	电源输入脚
11	P17	BUSY	语音播放忙信号输出脚
12	CVDD	CVDD	VDD 电源调准脚
13	OSCI	OSCI	RC 震荡输入脚
14	/RESET	/RESET	复位脚,低电平保持≥5ms 有效
15	VSS	VSS	地线脚
16	PWM+/DAC	PWM+/DAC	PWM+/DAC 音频输出脚,视功能设置而定
17	VDD-SPK	VDD-SPK	音频电源输入脚
18	PWM-	PWM-	PWM-音频输出脚
19	VSS-SPK	VSS-SPK	音频电源地线脚
20	NC	NC	空

7.5、WT588D-16S

封装引脚	引脚标号	简述	功能描述
1	VDD-SIM	VDD-SIM	串口电源管理脚
2	P00	K1	按键
3	P03	K4/DATA	按键/一线数据输入脚
4	VDD	VDD	电源输入脚
5	P17	BUSY	语音播放忙信号输出脚
6	CVDD	CVDD	VDD 电源调准脚
7	OSCI	OSCI	RC 震荡输入脚
8	RESET	RESET	复位脚,低电平保持≥5ms有效
9	PWM+/DAC	PWM+/DAC	PWM+/DAC 音频输出脚,视功能设置而定
10	VDD-SPK	VDD-SPK	音频电源输入脚
11	PMW-	PWM-	PWM-音频输出脚
12	VSS	VSS	地线脚
13	P13	DO	SPI-FLASH 通讯数据输出脚
14	P14	DI	SPI-FLASH 通讯数据输入脚
15	P15	CS	SPI-FLASH 通讯片选脚
16	P16	CLK	SPI-FLASH 通讯时钟脚

8、引脚详细描述

K1~K10的使用

K1~K10 被定义为 I/O 口按键触发控制端,所对应 I/O 口分别为 P00~P07、P10 和 P11。通过 K1~K10 拉低相关 I/O 口的电平或往相关 I/O 口输入脉冲,就可达到控制触发语音播放的效果。按键 K0~K9 的触发模式可以被设置为无效按 键、脉冲可重复触发、脉冲不可重复触发、电平保持不可循环、电平保持可循环、电平非保持可循环、上一曲不循环、下一 曲不循环、上一曲可循环、下一曲可循环、停止、播放/暂停、音量+、音量-及播放/停止等 15 种触发方式。

按键模式: P00→K1 P01→K2 P02→K3 P03→K4 P04→K5 P05→K6 P06→K7 P10→K9 P11→K10

P07→K8

一线串口模式: P00→K1 P04→K5 P07→K8

P01→K2 P05→K6 P10→K9 P02→K3 P06→K7 P11→K10 R1~R3、L0~L7的使用

在 3×8 矩阵按键控制模式下 I/O 口被定义为 $R1\sim R3$ 、 $L0\sim L7$, $R1\sim R3$ 为矩阵行输入口, $L0\sim L7$ 为矩阵列输入口。 当 R 和 L 输入口短接时,可触发播放一段语音, 3×8 矩阵按键模式下所有按键的触发方式被定义为脉冲可重复触发。矩阵的按键接线详见 $12.3\times3\times8$ 矩阵按键控制模式。

SBT 及 A0~A7 的使用

在并口控制模式下 I/O 口 P00、P01、P02、P03、P04、P05、P06、P07、P10 被分别定义为 SBT, A0、A1、A2、A3、A4、A5、A6、A7。SBT 为语音触发试听脚, A0~A7 为地址位,分别由低到高。具体 I/O 口分配详见 12.4、并口控制模式。

9、电气参数

(V_{DD} - V_{SS} = 4.5V, TA = 25°C, 没有负载)

参数	标记	环境条件	最小值	典型值	最大值	単位
工作电压	V_{DD}	F _{sys} =8MHz	2.8		5.5	V
工作电流	I_{OP1}	没有负载	Ī	4.5	5.5	mA
停止电流	I_{DD2}	没有负载	Ī	650	3	uA
休眠模式电流	I _{OP2}	没有负载	-	1	3	uA
低电压输入	V_{IL}	所有引脚输入	V_{SS}	-	$0.3V_{DD}$	V
高电压输入	V_{IH}	所有引脚输入	$0.7V_{DD}$	-	V_{DD}	V
输入电流 BP1、BP2、RESET	I_{IN1}	V _{IN} =0V 上拉阻抗=500KΩ	-5	-9	-14	uA
输入电流 BP1、BP2、RESET	I_{IN2}	V _{IN} =0V 上拉电阻=150KΩ	-15	-30	-45	uA
	I_{OL}	VDD=3V , VOUT=0.4V	8	12	-	mA
输出电流(BPO)	I _{OH}	VDD=3V , VOUT=2.6V	-4	-6	-	mA
	I_{OL}	VDD=4.5V , VOUT=1.0V	-	25	-	mA
	I _{OH}	VDD=4.5V , VOUT=2.6V	-	-12	-	mA
输出电流(BP1)	I_{OL}	VDD=3V , VOUT=0.4V	4	10	-	mA
制山电流(BPI)	I_{OH}	VDD=3V , VOUT=2.6V	-4	-6	-	mA
输出电流	I _{OL1}	RL=8Ω	+200	-	-	mA
PWM+/PWM-	I _{OH1}	[PWM+] [RL] [PWM-]	-200	-	-	mA
DAC具十中次	т	DI =1000	-2.4	-3.0	-3.6	m A
DAC 最大电流	I_{DAC}	RL=100Ω	-4.0	-5.0	-6.0	mA
上拉电阻测试	R _{PL}		75	150	225	

10、环境绝对极限参数

参数	标记	环境条件	额定值	单位
电源	$V_{DD} - V_{SS}$	-	-0.3 ~ +7.0	V
输入电压	V_{IN}	所有输入	V_{SS} -0.3 ~ V_{DD} +0.3	V
存储温度	T_{STG}	-	-55 ~ +150	°C

使用温度	T_OPR	-	-40 ~ +85	°C
	· 01 K			ı

11、控制模式

11.1、MP3 模式

MP3 模式下, WT588D 语音单片机自动默认 6 个 I/O 口的功能, 对应列表如下:

I/O □	P00	P01	P02	P03	P04	P05
功能	停止	播放/暂停	下一曲	上一曲	VOL+	VOL-

11.2、按键控制模式

所定义的管脚可以直接触发芯片的一个功能,使芯片动作,每个管脚的触发方式可单独设置。按键控制模式的按键防抖时间为 10ms。按键触发模式下包括脉冲可重复触发、脉冲不可重复触发、电平保持可循环、电平保持不可循环、电平非保持循环、上一曲不循环、下一曲不循环、上一曲可循环、下一曲可循环、无效按键、播放/暂停、停止、音量+、音量-以及播放/停止等 15 种触发方式。详细控制方法见如下触发时序图。

11.2.1、脉冲可重复触发

备注:负脉冲触发。当I/O口检测到有下降沿时(如该I/O口对地短路25ms以上),触发播放语音。在语音播放期间,再检测到下降沿,芯片会打断正在播放的语音,重新播放。只要有下降沿信号,就重新播放。

11.2.2、脉冲不可重复触发

备注:负脉冲触发。当I/O口检测到有下降沿时(如该I/O口对地短路25ms以上),触发播放语音。在语音播放期间,再检测到下降沿时,芯片不动作。直到语音结束后,检测到的下降沿才有效。

11.2.3、电平保持可循环

备注:低电平触发。当I/O口为低电平时,保持播放,高电平则停止。当第一遍结束后,还保持低电平,则继续重新播放,直到转变为高电平才停止。只要是低电平,则有声音;高电平,则没声音。

11.2.4、电平保持不可循环

备注:低电平触发。当I/O口为低电平时,保持播放,高电平则停止。当第一遍播放结束后,还保持低电平,也不会继续播放,触发后只播放一次就结束。如果需要重新播放,则需要让I/O口处于高电平,再拉为低电平,而后保持低电平即可。

11.2.5、电平非保持循环

备注:负脉冲/低电平触发。当I/O口检测到下降沿时(如该I/O口对地短路25ms以上),播放一遍语音然后停止。当 I/O为低电平时,保持播放,播放过程中,就算是给高电平也不停止,直到语音播放结束。当第一遍结束后,如果还保持低电平,则会继续重复播放,只要不保持低电平且播放完当前语音后才停止。

11.2.6、播放/停止

备注:负脉冲触发。I/O口检测到下降沿时(如该I/O口对地短路25ms以上)开始播放,下一个下降沿结束放音。不管声音是处于播放还是停止状态,都遵照这个规则。

11.2.7、下一曲不循环

备注: 负脉冲触发。I/O口检测到下降沿时(如该I/O口对地短路25ms以上)触发播放下一段语音,下一个下降沿继续触发播放下一段,触发播放完最后一段,则不会再有声音。

11.2.8、上一曲不循环

备注:负脉冲触发。I/O口检测到下降沿时(如该I/O口对地短路25ms以上)触发播放上一段语音,下一个下降沿继续触发播放上一段语音,播放完最前一段,则不再向前触发播放语音。

11.2.9、下一曲可循环

备注:负脉冲触发。I/O口检测到下降沿时(如该I/O口对地短路25ms以上)触发播放下一段语音,下一个下降沿继续触发播放下一段语音,重复操作,播放完最后一段语音,则会点播到第一段语音,如此循环触发播放语音。

11.2.10、上一曲可循环

备注:负脉冲触发。I/O口检测到下降沿时(如该I/O口对地短路25ms以上)触发播放上一段语音,下一个下降沿继续触发播放上一段语音,重复操作,播放完最前一段语音,则会点播到最后一段语音,如此循环触发播放语音。

11.2.11、暂停

备注:负脉冲触发。I/O口检测到下降沿时(如该I/O口对地短路25ms以上)令正在播放的语音处于暂停状态,下一个下降沿触发暂停的语音从暂停点继续播放。BUSY在暂停状态一直保持。

11.2.12、停止

义。

备注:负脉冲触发。I/O检测到下降沿时(如该I/O口对地短路25ms以上)令正在播放的语音停止。语音停止后再次触发无效。

11.3、3×8 矩阵按键控制模式

3×8按键组合模式下所有按键被默认为脉冲可重复触发方式,可以直接触发24段语音,各个按键所触发语音地址可定

I/O	P00	P01	P02	P03	P04	P05	P06	P07
P10	Key1	Key2	Key3	Key4	Key5	Key6	Key7	Key8
P11	Key9	Key10	Key11	Key12	Key13	Key14	Key15	Key16
P12	Key17	Key18	Key19	Key20	Key21	Key22	Key23	Key24

11.4、并口控制模式

并口模式的优点是控制速度会比较快,但也会占用较多的 I/O 口。目前仅有 WT588D-32L 语音芯片、WT588DM02 语音模块支持并口控制模式。P00 被定义为 SBT 触发脚,通过改变地址位 An 来触发播放语音。并口模式下的脚位定义如下表所示。

封装形式		管脚 									
打衣///上	P00	P01	P02	P03	P04	P05	P06	P07	P10		
WT588DM02	SBT	A0	A1	A2	А3	A4	A5	A6	A7		
WT588D-32L	SBT	A0	A1	A2	А3	A4	A5	A6	A7		

11.4.1、语音地址对应列表

语音	地址脚										
ины	A7	A6	A5	A4	А3	A2	A1	A0			
播放地址 0 语音	0	0	0	0	0	0	0	0			
播放地址1语音	0	0	0	0	0	0	0	1			
播放地址 2 语音	0	0	0	0	0	0	1	0			
播放地址 217语音	1	1	0	1	1	0	0	1			
播放地址 218语音	1	1	0	1	1	0	1	0			
播放地址219语音	1	1	0	1	1	0	1	1			

11.4.2、控制时序图

先在 I/O 口 P01~P10 处设置好地址,然后触发放音脚 SBT,即可放音,SBT 脚的触发方式可被定义为脉冲可重复触发、脉冲不可重复触发、播放/停止、上一曲不循环触发、下一曲不循环触发、上一曲可循环触发、下一曲可循环触发、电平保持可循环触发、电平保持可循环触发、电平保持循环触发和播放/暂停等触发模式。

触发过程中,地址信号稳定时间为 5ms,发送地址 5ms 后才能发送 SBT 触发语音播放,SBT 触发保持时间 25ms。 连续发送 SBT 时,要保证两个地址命令之间的间隔时间在 85ms 以上。

11.5、一线串口控制模式

通过一根数据线发送串口数据。一线串口可以实现控制语音播放、停止、音量调节和直接触发语音等功能。P00~P10

的按键可以选择屏蔽或者任意触发方式。一线串口控制模式下,芯片无休眠状态,语音停止后电流大约有 5mA,电池供电时请慎用。

11.5.1、端口分配表

封装形式					芯片 (模块) I/O 口					
到表形式	P00	P01	P02	P03	P04	P05	P06	P07	P10	P11
WT588D-16S	按键 K1			DATA						
WT588D-20SS	按键 K1	按键 K2	按键 K3	DATA						
WT588D-32L	按键 K1	按键 K2	按键 K3	DATA	按键 K5	按键 K6	按键 K7	按键 K8	按键 K9	按键 K10
WT588DM01	按键 K1	按键 K2	按键 K3	DATA						
WT588DM02	按键 K1	按键 K2	按键 K3	DATA	按键 K5	按键 K6	按键 K7	按键 K8	按键 K9	按键 K10

11.5.2、命令及语音码

命令码	功能	描述
E0H ~ E7H	音量调节	在语音播放或者待机状态发此命令可以调节 8 级音量, EOH 最小, E7H 音量最大。
F2H	循环播放	在语音播放过程中发送此命令可循环播放当前地址语音。
FEH	停止语音播放	停止播放语音命令。

11.5.3、语音地址对应关系

数据(十六进制)	功能
00Н	播放第 0 段语音
01H	播放第1段语音
02H	播放第2段语音
D9H	播放第 217 段语音
DAH	播放第 218 段语音
DBH	播放第 219 段语音

11.5.4、控制时序图

一线串口只通过一条数据通信线控制时序,依照电平占空比不同来代表不同的数据位。先发拉低 RESET 复位信号5ms,然后置于高电平等待大于17ms的时间,再将数据信号拉低5ms,最后发送数据。高电平与低电平数据占空比1:3即代表数据位0,高电平于低电平数据位占空比为3:1代表数据位1。高电平在前,低电平在后。数据信号先发低位再发高位。在发送数据时,无需先发送命令码再发送指令。D0~D7表示一个地址或者命令数据,数据中的00H~DBH为地址指令,E0H~E7H为音量调节命令,F2H为循环播放命令,FEH为停止播放命令。详细时序请见下图:

说明:RESET 为复位信号,发数据前对芯片进行复位,如不是在特殊的工业场合,可以不使用此复位信号。在每次发送数据前,不需要都发送复位信号,直接发送命令码或者地址数据即可。DATA 为一线串口数据通信线,复位芯片稳定后先拉低5ms 以唤醒芯片,低位在前,BUSY 为语音芯片忙信号输出,数据成功发送后等待20ms,BUSY 输出将作出响应。数据位占空比对应详见下图。

200us 高电平: 低电平=1:3,表示0 600us 200us 高电平: 低电平=3:1,表示1

一线串口高低电平时序范围: 100us: 300us~~250us: 750us

11.5.5、一线串口控制时序例子

例如,在一线串口控制模式下,发送数据 9CH 的时序参见下图:

11.5.6、程序范例

```
主控单片机: PIC16F54, 时钟主频 4MHz
Send oneline(unsigned char addr)
{
rst=0;
                    /* 对芯片进行复位 */
delay1ms(5);
                /* 复位信号保持低电平 5ms */
rst=1;
                /* 复位信号保持高电平 17ms */
delay1ms(17);
sda=0;
delay1ms(5);
                /* 数据信号置于低电平 5ms */
for(i=0;i<8;i++)
{ sda=1;
if(addr & 1)
{ delay1us(600);
               /* 高电平比低电平为 600us: 200us, 表示发送数据 1 */
sda=0;
delay1us(200); }
else {
delay1us(600);
                /* 高电平比低电平为 200us: 600us, 表示发送数据 0 */
sda=0;
delay1us(200); }
addr>>=1; }
sda=1; }
```

11.6、三线串口控制模式

三线串口控制模式由三条通信线组成,分别是片选 CS,数据 DATA,时钟 CLK,时序根据标准 SPI 通信方式。通过三线串口可以实现语音芯片命令控制、语音播放。三线串口模式下,所有按键均无效。

11.6.1、端口分配方式

芯片型号			芯片 (模块) I/O 口							
心力至亏	P00	P01	P02	P03	P04	P05	P06	P07	P10	P11
WT588D-20SS		DATA	CS	CLK						
WT588D-32L		DATA	CS	CLK						
WT588DM01		DATA	CS	CLK						
WT588DM02		DATA	CS	CLK						

11.6.2、语音及命令码对应表

命令码	功能	描述
E0H ~ E7H	音量调节	在语音播放或者待机状态发此命令可以调节 8 级音量, EOH 最小, E7H 音量最大。
F2H	循环播放	在语音播放过程中发送此命令可循环播放当前地址语音。
FEH	停止播放	停止播放语音命令。
F5H	进入 I/O 扩展输出	在常规三线串口模式下,发送此命令可进入 I/O 口扩展输出状态。
F6H	退出 I/O 扩展输出	在 I/O 口扩展输出状态下,发送此命令可进入常规三线串口控制模式

11.6.3、语音地址对应关系

数据(十六进制)	功能
00H	播放第0段语音
01H	播放第1段语音
02H	播放第2段语音
D9H	播放第 217 段语音
DAH	播放第 218 段语音
DBH	播放第 219 段语音

11.6.4、三线串口控制 I/O 口扩展输出

在三线串口控制模式下,发送数据 F5H,就可进入三线串口扩展输出模式,在这种模式下,发送二进制数据就可以让相关的 I/O 口输出高电平,从而控制外围电路。再次发送数据 F6H,便退出 I/O 口扩展数据模式,进入常规的三线串口控制模式。

地址	1/0 □							
	P12	P11	P10	P07	P06	P05	P04	P00
00Н	0	0	0	0	0	0	0	0

01H	0	0	0	0	0	0	0	1
02H	0	0	0	0	0	0	1	0
D9H	1	1	0	1	1	0	0	1
DAH	1	1	0	1	1	0	1	0
DBH	1	1	0	1	1	0	1	1

表格里,I/O 口所对应的数据中,0 为低电平输出,1 为高电平输出。从三线串口控制模式切换到 I/O 口扩展输出时,保留着三线串口控制模式下的最后一次语言触发模式。如果设置为循环播放,则,最后一次被触发的地址语音会继续循环播放,直到切换回常规三线串口模式下,更改其他触发方式为止。从 I/O 口扩展模式切换到常规三线串口控制模式时,也同样保留着最后一次操作的 I/O 扩展功能,如在 I/O 口扩展输出时,P00 为设置为高电平输出,在切换到常规三线串口控制模式后,P00 依然是高电平输出,直到切换回 I/O 口扩展输出,更改其设置为止。

I/O 扩展输出能应用在单片机 I/O 口紧缺的地方,可以方便的扩展 8 个 I/O 口输出。比如说用来控制 8 位 LED 显示,8 路继电器(需要三极管来驱动)等。

11.6.5、三线串口控制时序

三线串口控制模式由片选 CS、时钟 CLK 和数据 DATA 脚组成,时序仿照标准 SPI 通信方式,复位信号在发码前先拉低 5ms,然后拉高等待 17ms。工作时 RESET 需要一直保持高电平。片选信号 CS 拉低 5ms~10ms 以唤醒 WT588D 语音芯片,推荐使用 5ms。接收数据低位在先,在时钟的上升沿接收数据。时钟周期介于 300us~1ms 之间,推荐使用 300us。数据成功接收后,语音播放忙信号 BUSY 输出在 20ms 之后做出响应。发数据时先发低位,再发高位。发码完成后 DATA、CLK、CS 均要保持高电平。在发送数据时,无需先发送命令码再发送指令。D0~D7 表示一个地址或者命令数据,数据中的 00H~DBH 为地址指令,E0H~E7H 为音量调节命令,F2H 为循环播放命令,FEH 为停止播放命令,F5H 为进入三线串口控制 I/O 口扩展输出命令,F6H 为退出三线串口控制 I/O 口扩展输出命令。详细时序图如下:

说明:复位信号仅是在外因干扰比较强烈的环境中使用,如不是特殊的工业场合,不需要发送此复位信号,直接发送 片选、时钟和数据信号即可。

11.6.6、命令码发送时间

循环播放命令 F2H:循环播放命令需要在发送语音地址信号或者其他命令 30ms 之后、语音停止播放前发送,否则语音芯片不能有效接收。

停止播放命令 FEH:在语音播放的过程中发送此命令可以停止播放语音,在发送 DATA 信号 1ms 之后、语音停止前发送此命令则有效。

音量调节命令 EOH~E7H:在语音芯片工作状态中发送此命令可以调节音量大小,不管语音芯片是否处于语音播放还是语音停止状态。如果是先触发地址语音或者其他的命令,则需要等待 90ms 才能发送音量调节命令,否则无效。

11.6.7、程序范例

```
(主控单片机 PIC16F54, 系统频率 4MHz)
Send threelines(unsigned char addr)
{ rst=0;
                  /* 对芯片进行复位 */
                  /* 复位信号保持低电平 5ms */
delay1ms(5);
rst=1;
                /* 复位信号保持高电平 20ms */
delay1ms(20);
cs=0;
delay1ms(5);
                 /* 片选信号保持低电平 5ms */
for(i=0;i<8;i++)
{ scl=0;
if(addr & 1)sda=1;
else sda=0:
addr > = 1;
delay1us(150);
                 /* 时钟周期 300us */
scl=1;
delay1us(150); }
cs=1; }
```

12、控制时序

12.1、控制时序框图

12.2、一线串口控制汇编程序

说明:此程序跟《WT588D语音芯片及模块应用电路》中的一线串口控制模式应用电路相对应。测试芯片:AT89C2051。

ORG 0000H

KEY EQU P1.1 :按键引脚 RST EQU P1.4 :复位信号引脚 SDA EQU P3.0 :数据引脚

DAIFAZHI EQU 50H :发码值暂存地址 MOV DAIFAZHI,#0H;发码初始值为0 MOV R5,#8 :发码8位循环

MAIN:

JB KEY,MAIN

MOV R6,#20 ;延时20MS

LCALL DELAY1MS

JB KEY,MAIN :按键去抖判断 JNB KEY,\$:等待按键释放

LCALL one_line ;调用一线发码子程序

INC DAIFAZHI :发码值加1

MOV A, DAIFAZHI

CJNE A,#220,XX2;是否到达语音段最大值220

XX2: JC XX3

MOV DAIFAZHI,#0H

XX3: LJMP MAIN

one_line: ;////一线发码子程序

CLR RST

MOV R6,#5 ;延时5MS

LCALL DELAY1MS

SETB RST

MOV R6,#20 ;延时20MS

LCALL DELAY1MS

CLR SDA

MOV R6,#5 ;延时5MS

LCALL DELAY1MS

MOV A, DAIFAZHI

LOOP: SETB SDA

RRC A

JNC DIDIANPIN ;高电平脉冲 高:低=3:1

LCALL DELAY200US

LCALL DELAY200US

LCALL DELAY200US

CLR SDA

LCALL DELAY200US

LJMP LOOP1

DIDIANPIN: :低电平脉冲 高:低=1:3

LCALL DELAY200US

CLR SDA

LCALL DELAY200US

LCALL DELAY200US

LCALL DELAY200US

LOOP1: DJNZ R5,LOOP

MOV R5,#08H

SETB SDA

RET

DELAY200US: MOV R6,#100 ;延时400US子程序

DJNZ R6,\$

RET

DELAY1MS: ;延时1ms子程序,可以给R6赋值修改延时时间

L1: MOV R7,#248

DJNZ R7,\$

DJNZ R6,L1

RET

END

12.3、一线串口控制 C 语言程序

```
说明:此程序跟《WT588D语音芯片及模块应用电路》中的一线串口控制模式应用电路相对应。测试芯片:AT89C2051。
  #include <at89x2051.H>
  sbit KEY=P1^1; /*P1_1 为 P1 口的第 2 位*/
  sbit RST=P1^4; /*P1_4 为 P3 口的第 3 位*/
  sbit SDA=P3^0; /*P3_0 为 P3 口的第 4 位*/
 void delay1ms(unsigned char count) //1MS 延时子程序
 unsigned char i,j,k;
 for(k=count;k>0;k--)
  for(i=2;i>0;i--)
      for(j=248;j>0;j--);
}
 void delay100us(unsigned char count) //100US 延时子程序
 { unsigned char i;
 unsigned char j;
  for(i=count;i>0;i--)
      for(j=50;j>0;j--);
 }
      Send_oneline(unsigned char addr)
{
 unsigned char i;
 RST=0;
 delay1ms(5);
                  /*复位延时 5MS*/
 RST=1;
 delay1ms(20);
                      /* delay 20ms */
 SDA=0;
 delay1ms(5);
                     /* delay 5ms */
 for(i=0;i<8;i++)
      {SDA=1;
     if(addr & 1)
     {delay100us(6);
                         /* 600us */
          SDA=0;
          delay100us(2);
                             /* 200us */
          }
      else {
      delay100us(2);
                         /* 200us */
          SDA=0;
          delay100us(6);
                             /* 600us */
          }
```

```
addr>>=1; }
    SDA=1;
}
main()
{unsigned char FD=0;
P3=0XFF;
while(1)
{
    if(KEY = = 0)
    delay1ms(10);
    if(KEY = = 0)
               //通过按键 P1.1 来进行发码值的递增
       {
       Send_oneline(FD);
       FD++;
        if(FD==220) //一线串口时,语音段暂时最多为 220 段
            FD=0:
            while(KEY==0); //等待按键释放,以免一次按键误判成几次
        }
   }
 }
}
```

12.4、三线串口控制汇编程序

说明:此程序跟《WT588D语音芯片及模块应用电路》中的三线串口控制模式应用电路相对应。测试芯片:AT89C2051。ORG 0000H

```
KEY EQU P1.1 ;按键引脚
RST EQU P1.4 ;复位信号引脚
CS EQU P3.1 ;CS 触发引脚
SCL EQU P3.2 ;时钟引脚
SDA EQU P3.0 ;数据引脚
DAIFAZHI EQU 50H ;发码值暂存地址
MOV DAIFAZHI,#0H;发码初始值为 0
MOV R5,#8 ;发码 8 位循环

MAIN:
JB KEY,MAIN
MOV R6,#20 ; 延时 20MS
LCALL DELAY1MS
```

JB KEY,MAIN ; 按键去抖判断 JNB KEY,\$; 等待按键释放

LCALL THREE_LINE;调用三线发码子程序

INC DAIFAZHI ; 发码值加 1

MOV A, DAIFAZHI

CJNE A,#220,XX2 ; 是否到达语音段最大值 220

XX2: JC XX3

MOV DAIFAZHI,#0H

XX3: LJMP MAIN

THREE_LINE: ; ////三线发码子程序

CLR RST

MOV R6,#5 ; 延时 5MS

LCALL DELAY1MS

SETB RST

MOV R6,#20 ; 延时 20MS

LCALL DELAY1MS

CLR CS

MOV R6,#5 ; 延时 5MS

LCALL DELAY1MS

MOV A,DAIFAZHI

....

LOOP:

CLR SCL

RRC A

MOV SDA,C

LCALL DELAY150US

SETB SCL

LCALL DELAY150US

DJNZ R5,LOOP

MOV R5,#08H

SETB CS

RET

DELAY150US: MOV R6,#75 ; 延时 150US 子程序

DJNZ R6,\$

RET

DELAY1MS: ; 延时 1ms 子程序,可以给 R6 赋值修改延时时间

L1: MOV R7,#248

DJNZ R7,\$

DJNZ R6,L1

RET

END

12.5、三线串口控制 C 语言程序

说明:此程序跟《WT588D语音芯片及模块应用电路》中的三线串口控制模式应用电路相对应。测试芯片:AT89C2051。 #include <at89x51.H> sbit KEY=P1^1; /*P1_1 为 P1 口的第 2 位*/ sbit RST=P1^4; / *P1_4 为 P3 口的第 3 位*/ sbit CS=P3^1; /*P3_1 为 P3 口的第 4 位*/ sbit SCL=P3^2; /*P3_2 为 P3 口的第 5 位*/ sbit SDA=P3^0; /*P3 0 为 P3 口的第 6 位*/ //sbit DENG=P3^7; /*P3_5 为 P3 口的第 6 位*/ void delay1ms(unsigned char count) //1MS 延时子程序 { unsigned char i,j,k; for(k=count;k>0;k--) for(i=2;i>0;i--) for(j=248;j>0;j--);void delay150us(void) //150US 延时子程序 { unsigned char j; for(j=75;j>0;j--);} Send_threelines(unsigned char addr) //三线发码子程序 {unsigned char i; RST=0; delay1ms(5); RST=1; delay1ms(20); /* 复位拉高 20ms*/ CS=0; /* 片选拉低 5ms */ delay1ms(5); for(i=0;i<8;i++){SCL=0; if(addr & 1)SDA=1; else SDA=0; addr > = 1;delay150us(); /* 150us */ SCL=1; delay150us(); } CS=1: }

```
main()
 {unsigned char FD=0;
   P3=0XFF;
   while(1)
{
   if(KEY = = 0)
    delay1ms(20);
    if(KEY = = 0)
               //通过按键 P1.1 来进行发码值的递增
       Send_threelines(FD);
       FD++;
       if(FD==220//三线串口时,语音段暂时最多为 220 段
           FD=0;
        }
           while(KEY==0); //等待按键释放,以免一次按键误判成几次
        }
   }
}
 }
```

13、说明书版本历史记录

版本	日期	描述
V1.0	2008-5-17	原始版本
V1.1	2008-7-15	修正了部分描述
V1.2	2008-8-22	修正触发图、部分描述
V1.3	2008-8-30	修正了部分描述
V1.4	2008-9-12	修正了时序图
V1.5	2008-11-17	修正了一线串口、三线串口控制时序的描述
V1.6	2008-12-8	修正了部分描述
V1.7	2008-12-26	修改一线串口、三线串口控制程序时钟周期
V1.8	2009-1-13	增加存储器容量的描述
V1.9	2009-8-6	增加发码时间描述,修改整个布局及,修正多处错别字。
V1.91	2009-9-25	修改三线串口控制时序及相关描述
V2.10	2010-2-24	增加3×8矩阵按键电路,修改按键跟并口触发时间描述。
V2.11	2013-12-17	增加SOP16封装芯片,增加一线串口时序范围,修改模块名称,删掉DIP18封装

广州唯创电子有限公司——于 1999 年创立,现位深圳宝安区,为一专注于语音技术研究、语音产品方案设计及控制等软、硬件设计的高新技术公司。业务范围涉及汽车电子、多媒体、家居防盗、通信、家电、医疗器械、工业自动化控制、玩具及互动消费类产品等领域。团队有着卓越的 IC 软、硬件开发能力和设计经验,秉持着「积极创新、勇于开拓、满足顾客、团队合作」的理念,为力争打造"语音业界"的领导品牌。

我公司是一家杰出的语音芯片厂家,从事语音芯片研究及外围电路开发;同时为有特别需求的客户制订语音产品开发方案,并且落实执行该方案,完成产品的研发、测试,声音处理,直至产品的实际应用指导等一系列服务。经过多年的发展,公司形成了一个完善的新品流程体系,能快速研发出新品以及完善产品。语音芯片系列包含:WT、WTH、WTV、WTB、WTN等,每一款语音芯片我们都追求精益求精、精雕细琢不断开发和完善,以求更佳的品质、更好的体现语音 IC 的实用价值。产品、模块、编辑软件等的人性化设计,使得客户的使用更方便。于2006年成立的北京唯创虹泰分公司主要以销售完整的方案及成熟产品为宗旨,以便于为国内北方客户提供更好的服务。

不仅如此,还推出的多种语音模块,如 WT588D 语音模块,通过外围电路的扩展,更贴近广大用户的需求。

我们也是 MP3 芯片研发生产厂家。随着公司的外围技术扩展,在 2004 年开始生产 MP3 芯片,以及 提供 MP3 方案。在同行里面有相当高的知名度,到现在(2013-3)为止更新换代一起出了 6 种 MP3 解 决方案,并且得到市场的广泛认可。其中的 WT5001 芯片以音质表现极其优秀不断被客户所接受并使用。

在语音提示器方面,我们也从事于语音提示器生产厂家:经过多年的技术储备,开始向语音提示器 领域拓展,并且得到了可喜的成果,成为语音提示器生产厂家里的一员。根据探头的类别:有超声波语音提示器,红外人体感应语音提示器,光感应语音提示器。同时也针对不同的领域开发了:自助银行语音提示器,欢迎光临迎宾器,语音广告机,语音门铃等等产品。可以肯定将来会有更多的新产品上市,来满足广大的用户的需求。让我们的生活更加智能化,人性化。

总公司名称:广州唯创电子有限公司

电话: 0755-29605099/29606621/29606993 传真: 0755-29606626

全国统一服务热线: 4008-122-919

地址:广东省深圳市宝安区福永镇福海大道福海工业区C区C6栋三楼

分公司名称:北京唯创虹泰科技有限公司

电话: 010-89756745 传真: 010-89750195

地址:北京昌平区立汤路 186 号龙德紫金 3 号楼 902 室

广州唯创电子有限公司(智能事业部)

电话: 0755-36960299/83044339/83555462 传真: 0769-83044339-604

E-mail: <u>sos@1999c.com</u>

地址:深圳市宝安区宝源路 1009 号宝安互联网产业园 A 区 A158