

Official Crib Sheet de MSCTM-DATL and MUM-DATS: Prof. Lídia Montero -DEIO Page. 1

Independent random components $\mathbf{Y}^T = (Y_1, ..., Y_n)$ from exponential family: $E[\mathbf{Y}] = \mu$. Systematic Component $\eta = X \beta$ where η is nx1, X nxp an β px1.

Link function $\eta_i = g(\mu_i)$.

One parameter $\overline{\boldsymbol{\theta}}$ Exponential Family (canonical parameter) $\left| f_Y(y, \boldsymbol{\theta}, \boldsymbol{\phi}) = \exp \left(\frac{y \boldsymbol{\theta} - b(\boldsymbol{\theta})}{a(\boldsymbol{\phi})} + c(y, \boldsymbol{\phi}) \right) \right|$ where

 $a(\phi)$: dispersion function - ϕ : dispersion parameter - b(.): Cumulant function

	$N(\mu,\sigma^2)$	$m{B}(m,\mu)$ /m	$P(\mu)$	$G(\mu, v)$
Canònic Link	1	Logit	Log	Inverse
$E[Y] = \mu$	θ	$e^{\theta}/(1+e^{\theta})$	$\exp(\theta)$	$-1/\theta$
V[Y]	σ^2	$\mu(1-\mu)$	μ	μ^2/ν
ϕ	σ^2	1/m	1	1/v
$b(\theta)$	$\theta^2/2$	$\ln(1+e^{\theta})$	$\exp(\theta)$	$-\ln(-\theta)$
$V[\boldsymbol{\mu}] = b^{"}(\boldsymbol{\theta})$	1	$\mu(1-\mu)$	μ	μ^2
$D(y,\hat{\mu})$	$\sum_{i=1}^{n} (y_i - \hat{\boldsymbol{\mu}}_i)^2$	$2\sum_{i=1}^{n} \left\{ m_{i} y_{i} \log \left(\frac{y_{i}}{\hat{\boldsymbol{\mu}}_{i}} \right) + \left(m_{i} - m_{i} y_{i} \right) \log \left(\frac{1 - y_{i}}{1 - \hat{\boldsymbol{\mu}}_{i}} \right) \right\}$	$2\sum_{i=1}^{n} \left\{ y_i \log \frac{y_i}{\hat{\boldsymbol{\mu}}_i} - \left(y_i - \hat{\boldsymbol{\mu}}_i \right) \right\}$	$2\sum_{i=1}^{n} \left\{ -\log \frac{y_i}{\hat{\boldsymbol{\mu}}_i} + \frac{(y_i - \hat{\boldsymbol{\mu}}_i)}{\hat{\boldsymbol{\mu}}_i} \right\}$

Score Properties : $b'(\theta) = \mu = E[Y]$, $V[Y] = a(\phi)b''(\theta)$ and $V[\mu] = b''(\theta)$

$$\mathbf{E}\left[\frac{\partial \ell}{\partial \boldsymbol{\theta}_{i}}\right] = \mathbf{E}\left[\mathbf{U}_{i}\right] = 0 \quad \forall i = 1, ..., n \qquad \mathbf{IE}\left(\boldsymbol{\theta}\right) = \mathfrak{T} \text{ Fisher}: \ \mathfrak{I}_{ij} = \mathbf{E}\left[U_{i} \cdot U_{j}^{T}\right] = \mathbf{E}\left[\frac{\partial \ell}{\partial \boldsymbol{\theta}_{i}} \frac{\partial \ell}{\partial \boldsymbol{\theta}_{j}}\right] = \mathbf{E}\left[-\frac{\partial^{2} \ell}{\partial \boldsymbol{\theta}_{i} \partial \boldsymbol{\theta}_{j}}\right]$$

Goodness of Fit:
$$D(y, \hat{\mu}) = D'(y, \hat{\mu}) \phi$$
 $D'(y, \hat{\mu}) = 2(\ell(y, \phi, y) - \ell(\hat{\mu}, \phi, y)) \approx \chi_{n-p}^2$ $X^2 = \sum_{i=1}^n \frac{(y_i - \hat{\mu}_i)^2}{V[\hat{\mu}_i]} \approx \chi_{n-p}^2$

Residuals Deviance:
$$D(y, \hat{\mu}) = \sum_{i=1,\dots,n} r_{D_i}^2$$
, $r_D = sign(y_i - \hat{\mu}_i) \sqrt{d_i}$ Pearson: $r_P = \frac{y - \mu}{\sqrt{V[\mu]}}$ $X^2 = \sum_{i=1}^n r_{P_i}^2$

Estimation ML:
$$\hat{\boldsymbol{\theta}} \approx N_{p}(\boldsymbol{\theta}, IE(\boldsymbol{\theta})^{-1})$$
 $AIC = 2(-\ell(\hat{\mu}, y) + p)$ $BIC = -2\ell(\hat{\mu}, y) + p \log n$

$$\boxed{\text{Contrasts}} \quad \mathbf{H}_0 : \boldsymbol{\theta} = \boldsymbol{\theta}_0 \quad \text{Wald} \quad W = \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\right)^T V \left[\hat{\boldsymbol{\theta}}\right]^{-1} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\right) \quad \approx \quad \chi_p^2 \quad \text{where} \quad V \left[\hat{\boldsymbol{\theta}}\right]^{-1} = IE(\boldsymbol{\theta}) \approx IE(\hat{\boldsymbol{\theta}}) \approx IO(\hat{\boldsymbol{\theta}})$$

If $\boldsymbol{\theta}^T = (\boldsymbol{\theta}_1^T, \boldsymbol{\theta}_2^T)$ dim $(\boldsymbol{\theta}_2) = \mathbf{q}$ and $\mathbf{H}_0 : \boldsymbol{\theta}_2 = \mathbf{0}$

Wald test:
$$W = \hat{\boldsymbol{\theta}}_{2}^{T} V \left[\hat{\boldsymbol{\theta}}_{2} \right]^{-1} \hat{\boldsymbol{\theta}}_{2} \approx \boldsymbol{\chi}_{a}^{2}$$

Wald test:
$$W = \hat{\boldsymbol{\theta}}_2^T V [\hat{\boldsymbol{\theta}}_2]^{-1} \hat{\boldsymbol{\theta}}_2 \approx \boldsymbol{\chi}_q^2$$
Deviance Test: $\Delta D_0 = D(\mathbf{y}, \hat{\mu}_0) - D(\mathbf{y}, \hat{\mu}) \approx \boldsymbol{\chi}_q^2$

Score Test:
$$\mathbf{H}_0 : \boldsymbol{\theta} = \boldsymbol{\theta}_0 \quad Q = \mathbf{u}(\hat{\boldsymbol{\theta}}_0)^T IE[\hat{\boldsymbol{\theta}}_0]^{-1} \mathbf{u}(\hat{\boldsymbol{\theta}}_0) \approx \chi_n^2 \text{ where } \mathbf{u}(\boldsymbol{\theta}) \approx N_n(\mathbf{0}, IE(\boldsymbol{\theta}))$$

Score Test:
$$\mathbf{H}_0 : \boldsymbol{\theta} = \boldsymbol{\theta}_0 \quad Q = \mathbf{u}(\hat{\boldsymbol{\theta}}_0)^T IE[\hat{\boldsymbol{\theta}}_0]^{-1} \mathbf{u}(\hat{\boldsymbol{\theta}}_0) \approx \chi_p^2 \text{ where } \mathbf{u}(\boldsymbol{\theta}) \approx N_p(\mathbf{0}, IE(\boldsymbol{\theta}))$$

Score method for ML estimation $X^T W^{(m)} X \hat{\boldsymbol{\beta}}^{(m+1)} = X^T W^{(m)} Z^{(m)}$ $m=0,1,...$ $\mathfrak{I}^{(*)} = X^T W^{(*)} X$ where $\mathbf{u}(\boldsymbol{\theta}) \approx N_p(\mathbf{0}, IE(\boldsymbol{\theta}))$

with
$$(w_{kk}^{(m)})^{-1} = V[\boldsymbol{\mu}_k^{(m)}](g'(\boldsymbol{\mu}_k^{(m)}))^2$$
 and $g(y_k) \approx g(\boldsymbol{\mu}_k^{(m)}) + (y_k - \boldsymbol{\mu}_k^{(m)})g'(\boldsymbol{\mu}_k^{(m)}) = z_k^{(m)}$

Normal Outcomes

OLS Estimation
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \varepsilon$$
, $\mathbf{V}[\varepsilon] = \sigma^2 \mathbf{I}$: $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^T \mathbf{X}^T \mathbf{Y}$ and $\hat{\mathbf{Y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^T \mathbf{X}^T \mathbf{Y} = \mathbf{P} \mathbf{Y}$

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}} = (\mathbf{I} - \mathbf{P}) \mathbf{Y} \qquad \mathbf{E}[\mathbf{e}] = \mathbf{0} \qquad V[\mathbf{e}] = \boldsymbol{\sigma}^2 (\mathbf{I} - \mathbf{P}) \qquad s^2 = \frac{\mathbf{e}^T \cdot \mathbf{e}}{n - p} = \frac{(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}})^T \cdot (\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}})}{n - p} = \frac{\mathbf{R} SS}{n - p}$$

If **TSS=RSS+ESS**
$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

1.
$$\hat{\beta} \approx N_p \left(\beta, \, \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \right)$$
 2. $\left(\hat{\beta} - \beta \right)^T V \left[\hat{\beta} \right]^{-1} \left(\hat{\beta} - \beta \right) \approx \chi_p^2$

Official Crib Sheet de MSCTM-DATL and MUM-DATS: Prof. Lídia Montero -DEIO Page. 2

3.
$$\hat{\beta} = (X^T X)^{-1} X^T Y$$
 is independent of s².

4.
$$RSS/\sigma^2 = (n-p)s^2/\sigma^2 \approx \chi_{n-p}^2$$

$$\underline{\text{Individual CI:}} \ t = \frac{\hat{\beta}_i - \beta_i}{\hat{\sigma}_{\hat{\beta}_i}} \approx t_{n-p} \ \rightarrow \ \hat{\beta}_i \pm t_{n-p}^{\alpha/2} \hat{\sigma}_{\hat{\beta}_i} \text{ where}$$

$$\hat{\boldsymbol{\sigma}}_{\hat{\boldsymbol{\beta}}_i} = s\sqrt{(X^T X)_{ii}^{-1}}$$

Contrast Fisher Test.
$$F = \frac{(RSS_H - RSS)/q}{RSS/(n-p)} \rightarrow F_{q,n-p}$$
 ESTIMATION: OLS/Weighted/Generalized

MODEL	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \mathbf{V}[\boldsymbol{\varepsilon}] = \sigma^2 \mathbf{I}$	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \mathbf{V}[\boldsymbol{\varepsilon}] = \sigma^2 \mathbf{D}$	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \mathbf{V}[\boldsymbol{\varepsilon}] = \sigma^2 \mathbf{W} = \sigma^2 \mathbf{K} \mathbf{K}^T$
Transformació	$Y \rightarrow Y$, $X \rightarrow X$	$\mathbf{Y} \to \mathbf{D}^{-\frac{1}{2}} \mathbf{Y}, \ \mathbf{X} \to \mathbf{D}^{-\frac{1}{2}} \mathbf{X}$	$Y \rightarrow K^{-1}Y$, $X \rightarrow K^{-1}X$
$S(oldsymbol{eta})$ Sum of squares	$(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$	$(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{D}^{-1} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$	$(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{W}^{-1} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$
Normal Equations $\mathbf{S}\boldsymbol{\beta} = \mathbf{Q}$	$S = X^{T}X, Q = X^{T}Y$	$\mathbf{S} = \mathbf{X}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{X}, \ \mathbf{Q} = \mathbf{X}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{Y}$	$S = X^{T}W^{-1}X, Q = X^{T}W^{-1}Y$
Estimates β	$\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{Y}$	$\left(\mathbf{X}^T \mathbf{D}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{D}^{-1} \mathbf{Y}$	$\left(\mathbf{X}^T \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{-1} \mathbf{Y}$
Variance $\hat{m{eta}}$	$\sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$	$\sigma^2 (\mathbf{X}^T \mathbf{D}^{-1} \mathbf{X})^{-1}$	$\sigma^2 (\mathbf{X}^T \mathbf{W}^{-1} \mathbf{X})^{-1}$
RSS	$\mathbf{Y}^{\mathrm{T}}\mathbf{Y} - \left(\mathbf{X}^{\mathrm{T}}\mathbf{Y}\right)^{\mathrm{T}}\hat{\boldsymbol{\beta}}$	$\mathbf{Y}^{\mathrm{T}}\mathbf{D}^{-1}\mathbf{Y} - \left(\mathbf{X}^{\mathrm{T}}\mathbf{D}^{-1}\mathbf{Y}\right)^{\mathrm{T}}\hat{\boldsymbol{\beta}}$	$\mathbf{Y}^{\mathrm{T}}\mathbf{W}^{-1}\mathbf{Y} - \left(\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}\mathbf{Y}\right)^{\mathrm{T}}\hat{\boldsymbol{\beta}}$

Validation

$$h(Y) = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda} & \lambda \neq 0 \\ \log Y & \lambda = 0 \end{cases}$$

$$Tranf.Box - Cox$$

Influent data: a priori i s.t. $p_{ii} > 2 p/n$.

Influent data: a posteriori Cook's distance.

General Linear Model

Two-way Anova: Factor A levels i=1,...,I and Factor B levels j=1,...,J

p=1Null model: $Y_{iik} = \mu + \varepsilon_{iik}$

Reparam. Base-Line: $\alpha_I = 0$ $\beta_I = 0$

A*B: $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$ p = I*J

 $\gamma_{Ii} = 0 \quad \forall j = 1 \dots J, \quad \gamma_{iI} = 0 \quad \forall i = 1 \dots I$

A+B: $Y_{iik} = \mu + \alpha_i + \beta_i + \varepsilon_{iik}$ p=I+J-1 Reparam. Zero-Sum: $\sum_{i=1}^{I} \alpha_i = 0$ $\sum_{j=1}^{J} \beta_j = 0$

 $Y_{iik} = \mu + \alpha_i + \varepsilon_{iik}$ A: p=I

p=J $Y_{ijk} = \mu + \beta_i + \varepsilon_{ijk}$

 $\sum_{i=1}^{I} \gamma_{ij} = 0 \quad \forall j = 1...J, \ \sum_{i=1}^{J} \gamma_{ij} = 0 \ \forall i = 1...I$

ANCOVA 1 FACTOR and 1 COVARIATE: Factor A levels i=1,..,I X - Covariate

A*X: $Y_{ik} = \mu + \alpha_i + (\lambda + \theta_i) x_{ik} + \varepsilon_{ik} p = I + I$

A+X: $Y_{ik} = \mu + \alpha_i + \lambda x_{ik} + \varepsilon_{ik}$ p=I+1 Reparam. Base-Line: $\alpha_I = 0$ $\theta_I = 0$

A: $Y_{iik} = \mu + \alpha_i + \varepsilon_{iik}$

Reparam. Zero-Sum: $\sum_{i=1}^{I} \alpha_i = 0$ $\sum_{i=1}^{I} \theta_i = 0$

(SLR) X: $Y_{ik} = \mu + \lambda x_{ik} + \varepsilon_{ik}$ p=2

Binary Outcomes
$$Y \approx B(m, \pi)$$
 $E[Y] = m\pi = \mu$ $V[Y] = m\pi(1-\pi)$ $V[\mu] = \mu \cdot (m-\mu)/m$

$$X^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{\boldsymbol{\mu}}_{i})^{2}}{V[\hat{\boldsymbol{\mu}}_{i}]} = \sum_{i=1}^{n} \frac{m_{i}(y_{i} - \hat{\boldsymbol{\mu}}_{i})^{2}}{\hat{\boldsymbol{\mu}}_{i}(m_{i} - \hat{\boldsymbol{\mu}}_{i})} \approx \chi_{n-p}^{2} \quad D'(y, \hat{\boldsymbol{\mu}}) = D(y, \hat{\boldsymbol{\mu}}) = 2\sum_{i=1}^{n} \left\{ y_{i} \log\left(\frac{y_{i}}{\hat{\boldsymbol{\mu}}_{i}}\right) + (m_{i} - y_{i}) \log\left(\frac{m_{i} - y_{i}}{m_{i} - \hat{\boldsymbol{\mu}}_{i}}\right) \right\} \approx \chi_{n-p}^{2}$$

Link	$\eta = g(\pi)$	$\pi = g^{-1}(\eta)$	Latent Scale
Logit	$\mathbf{logit}(\boldsymbol{\pi}) = \log\left(\frac{\boldsymbol{\pi}}{1-\boldsymbol{\pi}}\right)$	$\frac{\exp(\boldsymbol{\eta})}{1+\exp(\boldsymbol{\eta})}$	Logístic law (Standard): location parameter 0 and scale $1 \rightarrow E[\bullet] = 0 \ V[\bullet] = \pi^2/3$
Probit	$\Phi_Z^{-1}(\pi)$	$\Phi_{_{Z}}(\eta)$	Standard Normal $-Z$ - $N(0,1)$
C-Log-Log (Gompit)	$\log(\log(1/(1-\pi)))$	$1 - \exp(-\exp(\boldsymbol{\eta}))$	Min Extreme Value – Gompertz Std - Location 0 and Scale 1 \rightarrow E[\bullet]= -0.577216 . $V[\bullet]=\pi^2/6$

Official Crib Sheet de MSCTM-DATL and MUM-DATS:

Official Crib Sheet at IVISCIIVE 27.7.

Prof. Lídia Montero -DEIO Page. 3 22/12/2022

Log-Log $-\log(\log(1/\pi))$ $1-\exp(-\exp(-\eta))$ Max Extreme Value – Gumbel Std - Location 0 and Scale $1 \to E[\bullet] = 0.577216$. $V[\bullet] = \pi^2/6$

$$R_A^2 = 1 - \frac{D(\mathbf{y}, \pi_A)}{D(\mathbf{y}, \pi_0)} = \frac{G(\mathbf{y}, \pi_A)}{G(\mathbf{y}, \pi_A) + D(\mathbf{y}, \pi_A)} \quad on \quad G(\mathbf{y}, \pi_A) = D(\mathbf{y}, \pi_0) - D(\mathbf{y}, \pi_A) \qquad \boxed{D(\mathbf{y}, \pi_0)} : \text{Null Model}$$

ROC=0.5(1+D de Sommer)

Polytomous Outcomes $Y \approx MN(m, \pi)$ $\pi^T \approx (\pi_1, ..., \pi_J)$ $\gamma^T \approx (\gamma_1, ..., \gamma_{J-1}, 1)$ $\gamma_j = \pi_1 + ... + \pi_j$ j = 1, ... J - 1

Nominal:

$$\frac{\log \frac{\pi_{ij}(\mathbf{x_i})}{\pi_{i1}(\mathbf{x_i})} = \alpha_j + \beta_j^{\mathbf{T}} \mathbf{x_i} \quad j = 2, ..., J}{i = 1, ..., n} \quad \text{J-1 Equations } \underline{\text{Odds j over 1}} : \frac{\pi_{ij}(\mathbf{x_i})}{\pi_{i1}(\mathbf{x_i})} = \exp \left\{ \alpha_j + \beta_j^{\mathbf{T}} \mathbf{x_i} \right\}$$

Null Model:
$$\log \frac{\pi_{ij}(\mathbf{x}_i)}{\pi_{i1}(\mathbf{x}_i)} = \alpha_j$$
 $j = 2, ..., J$ $i = 1, ..., n$

$$\pi_{i1}(\mathbf{x}_i) = \frac{1}{1 + \sum_{i=1}^{n} \pi_{ii}(\mathbf{x}_i) / \pi_{iI}(\mathbf{x}_i)}$$

Ordinal: $\gamma_i = P(Y \le j)$

Link	$\eta_{ij} = g(\gamma_{ij})$	$\gamma_{ij} = g^{-1}(\eta_{ij})$	Latent Scale
Logit	$\log \frac{\boldsymbol{\gamma}_{j}(\mathbf{x}_{i})}{1-\boldsymbol{\gamma}_{i}(\mathbf{x}_{i})} = \boldsymbol{\alpha}_{j} + \boldsymbol{\beta}^{T}\mathbf{x}_{i} j = 1,,J-1$	$\gamma_{ij} = \frac{\exp(\eta_{ij})}{1 + \exp(\eta_{ii})}$	Standard Logistic: location 0 and scale 1 $\rightarrow E[\bullet] = 0 V[\bullet] = \pi^2/3$
	$\alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{J-1}$	$j=1,\ldots,J-1$	/ L[*] = 0 * [*] = n / 3
Probit	$\Phi_Z^{-1}(\boldsymbol{\gamma}_j(\mathbf{x}_i)) = \boldsymbol{\alpha}_j + \boldsymbol{\beta}^T \mathbf{x}_i j = 1, \dots, J - 1$	$\gamma_{ij} = \Phi_Z(\eta_{ij})$	Standard Normal – Z-N(0,1)
	$\boldsymbol{\alpha_I} \leq \boldsymbol{\alpha_2} \leq \ldots \leq \boldsymbol{\alpha_{J-I}}$	$j=1,\ldots,J-1$	
C-Log-Log	$\log(-\log(\mathbf{I} - \boldsymbol{\gamma}_{j}(\mathbf{x}_{i}))) = \boldsymbol{\alpha}_{j} + \boldsymbol{\beta}^{T}\mathbf{x}_{i} j = 1, \dots, J - 1$	$\gamma_{ij} = 1 - \exp(-\exp(\eta_{ij}))$	Min Extreme – Gompertz Std. –
(Gompit)	$\boldsymbol{\alpha_1} \leq \boldsymbol{\alpha_2} \leq \ldots \leq \boldsymbol{\alpha}_{J-1}$	j = 1,, J - 1	Location 0 and scale 1
		•	$\rightarrow E[\bullet] = -0.577216 \cdot V[\bullet] = \pi^2/6$
Log-Log	$-\log(-\log(\boldsymbol{\gamma}_{j}(\mathbf{x}_{i}))) = \boldsymbol{\alpha}_{j} + \boldsymbol{\beta}^{T}\mathbf{x}_{i} j = 1,,J-1$	$\gamma_{ij} = 1 - \exp(-\exp(-\eta_{ij}))$	Max Extreme – Gumbel Std Location
	$\boldsymbol{\alpha_1} \leq \boldsymbol{\alpha_2} \leq \ldots \leq \boldsymbol{\alpha_{J-I}}$	$j=1,\ldots,J-1$	0 and scale 1
		•	$\rightarrow E[\bullet] = 0.577216 \cdot V[\bullet] = \pi^2/6$

Log-lineal Models $Y \approx \wp(\mu) \rightarrow V[Y_i] = E[Y_i] = \mu_i \quad p_Y(y) = (\mu^y/y!)e^{-\mu} \quad y = 0, 1, ...$ $\log(\mu_i) = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta} \quad i = 1, ..., n$

$$\log(\mu_i) = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta} \quad i = 1, \dots, n$$

 $V[Y_i] = \phi E[Y_i] = \phi \mu_i$ with $|\phi\rangle 1$ Quasi Likelihood-Score method $V[\mu_i] = \phi \mu_i$. Estimates

QML:
$$V_{QMV}[\beta] = \phi (X^T W X)^{-1} = \phi V_{MV}[\beta]$$
 and $\hat{\phi} = \frac{X^2}{n-p}$.

Case
$$Y \approx BNeg(\boldsymbol{\alpha} = 1/\boldsymbol{\sigma}^2, \boldsymbol{\beta} = 1/\boldsymbol{\sigma}^2)$$

$$Y/\theta \approx \wp(\theta\mu)$$
, si $\theta \approx \Gamma(\alpha = \beta = 1/\sigma^2) \rightarrow P(\{Y = y\}) = \frac{\Gamma(\alpha + y)}{y!} \frac{\beta^{\alpha} \mu^{y}}{(\mu + \beta)^{\alpha + y}}$ and $V[\mu] = \mu + \mu^{2} \sigma^{2}$