Teorema

Sean $y_1(x)$, $y_2(x)$, $y_3(x)$, ..., $y_n(x)$ "n" soluciones de la ecuación diferencial lineal homogénea (EDLH) de enésimo orden. El conjunto de soluciones es linealmente independiente en I, si y sólo si,

$$w(y_1(x), y_2(x), y_3(x), ..., y_n(x)) \neq 0 \quad \forall x \in I.$$

Wronskiano

Suponga que cada una de las funciones $f_1(x), f_2(x), f_3(x), ..., f_n(x)$ posee al menos (n-1) derivadas. El determinante

donde todas las primas denotan derivadas, se llama el wronskiano de las funciones.

Ejemplos

- Demostrar que $y_1(x) = \frac{1}{x}$, $y_2(x) = x^2$ son soluciones de la ecuación diferencial $x^2y'' xy' 3y = 0$, y si es el caso, proponer la solución general.
- Dado que $y_1 = cos3x$ y $y_2 = sen3x$ son soluciones de y'' + 9y = 0. Obtener la solución general de la ecuación diferencial.
- Dado que $y_1=e^x$, $y_2=e^{2x}$ y $y_3=e^{3x}$ son soluciones de $y^{\prime\prime\prime}-6y^{\prime\prime}+11y^{\prime}-6y=0$. Obtener la solución general de la ecuación diferencial.