Statistical Inference Project

Erik Rehnberg Steeb

7/23/2020

```
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
```

Overview

Setup

The first step is to set our initial variables and set the seed so this is fully reproducible.

```
ECHO=TRUE
set.seed(1775)
lambda = 0.2
exp = 40
```

Next we run our simulation with the parameters set above.

```
sim_means = NULL
for (i in 1 : 1000) {
   sim_means = c(sim_means, mean(rexp(exp, lambda)))
}
```

Compare Sample and Theoretical Means

```
mean_sim_means <- mean(sim_means)
mean_sim_means</pre>
```

Sample Mean

```
## [1] 5.013338
```

Theoretical mean The theoretical mean of the distribution is lambda $\hat{\ }$ -1

```
theo_mean <- lambda^-1
theo_mean
```

```
## [1] 5
```

Comparison The difference is fairly small.

```
abs(mean_sim_means - theo_mean)
```

Sample Variance and Theoretical Variance

Sample Variance Again, this is very simple

```
var_sim <- var(sim_means)</pre>
```

Theoretical Variance The theoretical variance follows

```
theo_var <- (lambda * sqrt(exp))^-2
```

Compared variances Again, a very slight difference between the two

```
abs(var_sim - theo_var)
```

[1] 0.02075072

[1] 0.013338

Distribution

Next, I'll directly compare a density histogram of the one thousand simulations with the normal distribution, which has a mean of lambda $^-1$ and std deviation of (lambda * sqrt(n)) $^-1$, which is the theoretical distribution for the simulations. They are fairly similar, with the exception of the peak of the simulation occurring just after the peak of the theoretical mean.

Histogram of Simulations

