Title

D. Zack Garza

August 19, 2019

Contents

0.1 Qual Problems	1
[prob:1.1] If $\sigma = (i_1 i_2 \cdots i_r) \in S_n$ and $\tau \in S_n$, then show that $\tau \sigma \tau^{-1} = (\tau(i_1)\tau(i_2)\cdots\tau(i_r))$.	
[prob:1.2] Show that $S_n \cong \langle (12), (123 \cdots n) \rangle$ and also that $S_n \cong \langle (12), (23 \cdots n) \rangle$	

[prob:1.3] Let G be a finite abelian group that is not cyclic. Show that G contains a subgroup isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$ for some prime p.

[prob:1.4] Determine all abelian groups of order n for $n \leq 20$.

[prob:1.5] Let G be a group and $A \subseteq G$ be a normal abelian subgroup. Show that G/A acts on A by conjugation and construct a homomorphism $\varphi: G/A \to \operatorname{Aut}(A)$.

[prob:1.6] Let Z(G) be the center of G. Show that if G/Z(G) is cyclic, then G is abelian.

Note that Hungerford uses the notation C(G) for the center.

[prob:1.7] Let G be a finite group and $H \subseteq G$ a normal subgroup of order p^k . Show that H is contained in every Sylow p-subgroup of G.

[prob:1.8] Let $|G| = p^n q$ for some primes p > q. Show that G contains a unique normal subgroup of index q.

0.1 Qual Problems

[prob:1.9] Let G be a finite group and p a prime number. Let X_p be the set of Sylow-p subgroups of G and n_p be the cardinality of X_p . Let $\operatorname{Sym}(X)$ be the permutation group on the set X_p .

- 1. Construct a homomorphism $\rho: G \to \operatorname{Sym}(X_p)$ with image a transitive subgroup (i.e. with a single orbit).
- 2. Deduce that G is simple and the order of G divides $n_p!$.
- 3. Show that for any $1 \le a \le 4$ and any prime power p^k , no group of order ap^k is simple.

[prob:1.10] Let G be a finite group and H < G a subgroup. Let n_H be the number of subgroups of G that are conjugate to H. Show that n_H divides the order of G.

[prob:1.11] Let $G = S_5$, the symmetric group on 5 elements. Identify all conjugacy classes of elements in G, provide a representative from each class, and prove that this list is complete.