CMPE 315: Principles of VLSI Design Lab Cover Page

Lab #	:	2	
Lab Title	:Sche	ematic Design and Spec	tre Simulations
Name	: <u> </u>	Nem Negash	-
Section	:	1	•
Date Submitted	:	09/29/2021	
TA / Grader Use Only:	•		
	(200/		
Late Submission Deduction	n (20%	per day late):	
Other Deductions:			
other Deductions.			
Final Lab Grade:			
Comments to student:			

Table of Contents

Lab Procedure	3
Gate pMOS and nMOS Sizes	
Schematics and Plots	
INVx1	
INVx2	
INVx4	11
NOR2x1	14
NAND2x1	18
Computations	23
Fall time for Inverters	23
Fall time delay for Inverters	24
Rise time for Inverters	25
Rise time delay for Inverters	26
Rise time for NAND and NOR	27
Fall time for NAND and NOR	28

Lab Procedure:

The lab had three parts to complete which was to create schematics, create symbols, creating configurations, running simulations, and plotting results. We used a cadence tool that allowed to do all these steps to complete the lab. Creating schematics was done by creating cell views and in those cell-views designing the specific gates like the inverter, NOR and NAND gates. From those cell-views, I created other cell-views to create symbols who the schematics. Form there I create other schematics in the library that incorporated the inverter, NOR, and NAND gates alongside other instances such as vdd and vpulse. These schematics were used to create simulation and for that I must set up configurations for each schematic. From there I select the libraries need and what simulator to use for the simulation. After selecting the input and output of the driver gate to be plotted I run the simulation and get the plot. This is done for a INVx1, INVx2, INVx4, NOR2x1, NAND2x1 gates where the INV gates each had 5 schematics where they are driving 1,2,4,8, and 16 copies of INVx1 gate. The NOR2x1 and NAND2x1 gates each had three schematics where they are driving 1,2,4 copies of the INVx1 gate. These three schematics were repeated by flipping the two inputs. These gives a total of 27 schematics and plots.

pMOS and nMOS sizes for gates:

Table 1: pMOS and nMOS width sizes for gates

Gate	pMOS width	nMOS width
INVx1	2.4u	1.5u
INVx2	4.8u	1.5u
INVx4	9.6u	1.5u
NOR2x1	2.4u	1.5u
NAND2x1	4.8u	3u

Schematics and Plots Discussion:

INVx1:

Figure 1: Schematic for INVx1

INVx1 driving 1 INVx1:

Figure 2: Simulation Plot for INVx1 driving 1 INvx1

INVx1 driving 2 INVx1:

Figure 3: Simulation plot for INVx1 driving 2 INVx1

INVx1 driving 4 INVx1:

Figure 4: Schematic for INVx1 driving 4 INVx1

Figure 5: Simulation plot for INVx1 driving 4 INVx1

INVx1 driving 8 INVx1:

Figure 6: Simulation plot for INVx1 driving 8 INVx1

INVx1 driving 16 INVx1:

Figure 7: Simulation plot for INVx1 driving 16 INVx1

INVx2:

Figure 8: Schematic for INVx2

INVx2 driving 1 INVx1:

Figure 9: Simulation plot for INVx2 driving 1 INVx1

INVx2 driving 2 INVx1:

Figure 10: Simulation plot for INVx2 driving 2 INVx1

INVx2 driving 4 INVx1:

Figure 11: Schematic for INVx2 driving 4 INVx1

Figure 12: Simulation plot for INVx2 driving 4 INVx1

INVx2 driving 8 INVx1:

Figure 13: Simulation plot for INVx2 driving 8 INVx1

INVx2 driving 16 INVx1:

Figure 14: Simulation plot for INVx2 driving 16 INVx1

INVx4:

Figure 15: Schematic for INVx4

INVx4 driving 1 INVx1:

Figure 16: Simulation plot for INVx4 driving 1 INVx1

INVx4 driving 2 INVx1:

Figure 17: Simulation plot for INVx4 driving 2 INVx1

INVx4 driving 4 INVx1:

Figure 18: Schematic for INVx4 driving 4 INVx1

Figure 19: Simulation plot for INVx4 driving 4 INVx1

INVx4 driving 8 INVx1:

Figure 20: Simulation plot for INVx4 driving 8 INVx1

INVx4 driving 16 INVx1:

Figure 21: Simulation plot for INVx4 driving 16 INVx1

NOR2x1:

Figure 22: Schematic for NOR2x1

NOR2x1 driving 1 INVx1:

Figure 23: Simulation plot for NOR2x1 driving 1 INVx1

NOR2x1 driving 1 INVx1 flipped:

Figure 24: Simulation plot for NOR2x1 driving 1 INVx1 with flipped inputs

NOR2x1 driving 2 INVx1:

Figure 25: Simulation plot for NOR2x1 driving 2 INVx1

NOR2x1 driving 2 INVx1 flipped:

Figure 26: Simulation plot for NOR2x1 driving 2 INVx1 with flipped inputs

NOR2x1 driving 4 INVx1:

Figure 27: NOR2x1 driving 4 INVx1

Figure 28: Simulation plot for NOR2x1 driving 4 INVx1

NOR2x1 driving 4 INVx1 flipped:

Figure 29: Simulation plot for NOR2x1 driving 4 INVx1 with flipped inputs

NAND2x1:

Figure 30: Schematic for NAND2x1

NAND2x1 driving 1 INVx1:

Figure 31: Simulation plot for NAND2x1 driving 1 INVx1

NAND2x1 driving 1 INVx1 flipped:

Figure 32: Simulation plot for NAND2x1 driving 1 INVx1 with flipped inputs

NAND2x1 driving 2 INVx1:

Figure 33: Simulation plot for NAND2x1 driving 2 INVx1

NAND2x1 driving 2 INVx1 flipped:

Figure 34: Simulation plot for NAND2x1 driving 2 INVx1 with flipped inputs

NAND2x1 driving 4 INVx1:

Figure 35: Schematic for NAND2x1 driving 4 INVx1

Figure 36: Simulation plot for NAND2x1 driving 4 INVx1

NAND2x1 driving 4 INVx1 flipped:

Figure 37: Simulation plot for NAND2x1 driving 4 INVx1 with flipped inputs

Computations:

Fall Time for Inverters:

*****ALL TIME VALUES ARE IN NANOSECONDS (ns) BELOW*****

Table 2: Fall times for each inverter gate with different number of load inverters

	_		
Gate	rise 4.5	rise .5	rise
INVx1 1	7.01124	6.76348	0.24776
INVx1 2	7.08828	6.77789	0.31039
INVx1 4	7.23014	6.80113	0.42901
INVx1 8	7.50434	6.83804	0.6663
INVx1 16	8.05798	6.88727	1.17071
INVx2 1	6.95456	6.75383	0.20073
INVx2 2	6.99572	6.76074	0.23498
INVx2 4	7.06569	6.77315	0.29254
INVx2 8	7.1962	6.79556	0.40064
INVx2 16	7.44561	6.83056	0.61505
INVx4 1	6.93246	6.74836	0.1841
INVx4 2	6.94955	6.75138	0.19817
INVx4 4	6.98762	6.77835	0.20927
INVx4 8	7.05537	6.77065	0.28472
INVx4 16	7.18021	6.79188	0.38833

Figure 38: Plot for fall times for each inverter with different number of load inverters

The table and figure above show the fall times for each inverter with different number of load inverters. They clearly show that the width of the pMOS in the inverter heavily influences the fall time of the gate, where the higher the width the lower the fall time. The number of load inverters also has a large effect on the fall time, since when the number of load inverters increase the fall time also increases.

Fall Time Delay for Inverters:

Table 3: Fall time delays for each inverter gate with different number of load inverters

Gate	rise- out	fall- in	delay fall
INVx1 1	6.88549	6.75	0.13549
INVx1 2	6.91925	6.75	0.16925
INVx1 4	6.97745	6.75	0.22745
INVx1 8	7.08005	6.75	0.33005
INVx1 16	7.29342	6.75	0.54342
INVx2 1	6.86229	6.75	0.11229
INVx2 2	6.87978	6.75	0.12978
INVx2 4	6.91034	6.75	0.16034
INVx2 8	6.96353	6.75	0.21353
INVx2 16	7.05677	6.75	0.30677

INVx4 1	6.85165	6.75	0.10165
INVx4 2	6.86065	6.75	0.11065
INVx4 4	6.87711	6.75	0.12711
INVx4 8	6.90652	6.75	0.15652
INVx4 16	6.95696	6.75	0.20696

Figure 39: Plot for fall time delays for each inverter with different number of load inverters

The table and figure above show the fall time delays for each inverter with different number of load inverters. They clearly show that the width of the pMOS in the inverter heavily influences the fall time delay of the gate, where the higher the width the lower the fall time delay. The number of load inverters also has a large effect on the fall time delay, since when the number of load inverters increase the fall time delay also increases.

Rise Time for Inverters:

Table 4: Rise times for each inverter gate with different number of load inverters

Gate	fall 4.5	fall .5	fall
INVx1 1	1.27454	1.50581	0.23127
INVx1 2	1.28747	1.58341	0.29594
INVx1 4	1.30956	1.72831	0.41875
INVx1 8	1.34477	2.00551	0.66074

INVx1 16	1.39312	2.56306	1.16994
INVx2 1	1.23987	1.42348	0.18361
INVx2 2	1.24639	1.4588	0.21241
INVx2 4	1.25844	1.52737	0.26893
INVx2 8	1.27911	1.65059	0.37148
INVx2 16	1.31206	1.87864	0.56658
INVx4 1	1.2219	1.38979	0.16789
INVx4 2	1.25519	1.40576	0.15057
INVx4 4	1.23153	1.43791	0.20638
INVx4 8	1.24307	1.5039	0.26083
INVx4 16	1.26307	1.61654	0.35347

Figure 40: Plot for rise times for each inverter with different number of load inverters

The table and figure above show the rise times for each inverter with different number of load inverters. They clearly show that the width of the pMOS in the inverter heavily influences the rise time of the gate, where the higher the width the lower the rise time. The number of load inverters also has a large effect on the rise time, since when the number of load inverters increase the rise time also increases.

Rise Time Delay for Inverters:

Table 5: Rise times delays for each inverter gate with different number of load inverters

Gate	fall- out	rise- in	delay rise
INVx1 1	1.39771	1.25	0.14771
INVx1 2	1.4319	1.25	0.1819
INVx1 4	1.49128	1.25	0.24128
INVx1 8	1.59865	1.25	0.34865
INVx1 16	1.81971	1.25	0.56971
INVx2 1	1.34783	1.25	0.09783
INVx2 2	1.36516	1.25	0.11516
INVx2 4	1.39577	1.25	0.14577
INVx2 8	1.44822	1.25	0.19822
INVx2 16	1.53681	1.25	0.28681
INVx4 1	1.32356	1.25	0.07356
INVx4 2	1.33261	1.25	0.08261
INVx4 4	1.34919	1.25	0.09919
INVx4 8	1.37825	1.25	0.12825
INVx4 16	1.42752	1.25	0.17752

Figure 41: Plot for rise time delays for each inverter with different number of load inverters

The table and figure above show the rise time delay for each inverter with different number of load inverters. They clearly show that the width of the pMOS in the inverter heavily influences the rise time delay of the gate, where the higher the width the lower the rise time delay. The number of load inverters also has a large effect on the rise time delay, since when the number of load inverters increase the rise time delay also increases.

Rise Time for NAND2x1:

Table 6: Rise times for NAND2x1 gate with different number of load inverters

Gate	rise 4.5	rise .5	rise
NAND2x1 1	7.20015	6.82202	0.37813
NAND2x1 1 flipped	7.09977	6.81934	0.28043
NAND2x1 2	7.27132	6.83201	0.43931
NAND2x1 2 flipped	7.17397	6.82954	0.34443
NAND2x1 4	7.40913	6.84954	0.55959
NAND2x1 4 flipped	7.31382	6.84773	0.46609

Rise Time for NOR2x1:

Table 7: Rise times for NOR2x1 gate with different number of load inverters

Gate	rise 4.5	rise .5	rise
NOR2x1 1	7.07629	6.7504	0.32589
NOR2x1 1 flipped	7.10265	6.80123	0.30142
NOR2x1 2	7.14097	6.76181	0.37916
NOR2x1 2 flipped	7.16478	6.81097	0.35381
NOR2x1 4	7.26582	6.78104	0.48478
NOR2x1 4 flipped	7.28731	6.82638	0.46093

Figure 42: Plot for rise times for NOR2x1 and NAND2x1 with different number of load inverters

Fall Time for NAND2x1:

Table 8: Fall times for NAND2x1 gate with different number of load inverters

Gate	fall 4.5	fall .5	fall
NAND2x1 1	1.27119	1.51539	0.2442
NAND2x1 1 flipped	1.2399	1.51544	0.27554
NAND2x1 2	1.27823	1.56849	0.29026
NAND2x1 2 flipped	1.24919	1.57058	0.32139
NAND2x1 4	1.29087	1.674	0.38313
NAND2x1 4 flipped	1.26577	1.68009	0.41432

Fall Time for NOR2x1:

Table 9: Fall times for NOR2x1 gate with different number of load inverters

Gate	fall 4.5	fall .5	fall
NOR2x1 1	1.33941	1.59911	0.2597
NOR2x1 1 flipped	1.34461	1.75766	0.41305
NOR2x1 2	1.34861	1.76487	0.41626
NOR2x1 2 flipped	1.35358	1.83064	0.47706
NOR2x1 4	1.36515	1.81813	0.45298
NOR2x1 4 flipped	1.37015	1.97238	0.60223

Figure 43: Plot for fall times for NOR2x1 and NAND2x1 with different number of load inverters

The tables and figure above show the rise times for the NAND and NOR gates. They both show that flipped the input has some form of effect on the output. This could be due to the length of wires and how the transistors are set up in the schematics.