Homework 3 writeups

Name: Oorjit Chowdhary

Section: AMATH 301 B

Problem 1

Part (a) and Part (b)

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        import os
        # Coding Problem 1
        M = np.genfromtxt('Plutonium.csv', delimiter=',')
        ## Data plot
        t = M[0, :]
        P = M[1, :]
        plt.figure()
        plt.plot(t, P, '-ok')
        plt.xlabel('Time (years)')
        plt.ylabel('Plutonium-239 remaining (kg)')
        plt.title('Plutonium-239 remaining since beginning of experiment')
        plt.legend(['Data'])
        ## Derivative plot
        h = t[1] - t[0] # Step size
        A4 = (-3*P[0] + 4*P[1] - P[2])/(2*h) # Forward difference at t = 0
        A5 = (3 * P[40] - 4 * P[39] + P[38]) / (2 * h) # Backward difference at t = 40
        dP = [] # Array of central differences with forward and backward differences at
        dP.append(A4)
        for i in range(1, 40):
            dP.append((P[i+1] - P[i-1]) / (2*h))
        dP.append(A5)
        A6 = np.array(dP)
        plt.figure()
        plt.plot(t, A6, '-og')
        plt.xlabel('Time (years)')
        plt.ylabel('dP/dt')
        plt.title('Rate of change approximations of plutonium-239 remaining')
        plt.legend(['dP/dt'])
```

Out[]: <matplotlib.legend.Legend at 0x118c28b20>

Part (c)

We can see that the derivative at time t=0 is a giant outlier when compared to the derivatives at any other points until t=40, which I feel is the most confusing aspect of this plot. I think the reason for that is the error caused by the forward difference scheme approximation for t=0 because the true value of the derivative at t=0 should be 0, which should be the y-intercept of the plot.

The derivative is not a smooth curve because the function is not a smooth curve too. The derivative values are just the calculated slope values between every 2 points from t = 0 to t = 40. For a derivative to be a smooth curve, we would have to find its true value for which we would need the symbolic function and symbolic derivative functions. In this case, it would be a linear function with a constant function for the derivative.

Part (d)

Based on the answer above and the errors in the approximations, taking the mean of the calculated decay rate to calculate the half life is a good idea because the mean reduces the errors overall and takes you closest to the true value of the decay rate.

Problem 2

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        import scipy.integrate
        # Coding Problem 2
        mu = 85
        sigma = 8.3
        integrand = lambda x: np.exp(-(x-mu)**2/(2*sigma**2))/np.sqrt(2*np.pi*sigma**2)
        left = 110
        right = 130
        Int, err = scipy.integrate.quad(integrand, left, right)
        All = Int # True value
        power = -np.linspace(1, 16, 16)
        h = 2 ** power
        LHR = []
        for dx in h:
            x = np.arange(left, right + dx, dx)
            y = integrand(x)
            S = np.sum(y[:-1]) * dx
            LHR.append(S approx)
        A12 = np.array(LHR) # Left hand rule approximations
        RHR = []
        for dx in h:
            x = np.arange(left, right + dx, dx)
            y = integrand(x)
            S = np.sum(y[1:]) * dx
            RHR.append(S approx)
```

```
A13 = np.array(RHR) # Right hand rule approximations
midpoint_approx = []
for dx in h:
    x = np.arange(left, right + dx, dx)
    y = integrand(x)
    MPR = 0
    for i in range(x.size - 1):
        MPR += integrand((x[i] + x[i+1])/2) * dx
    midpoint approx.append(MPR)
A14 = np.array(midpoint_approx) # Midpoint rule approximations
A15 = (A12 + A13) / 2 # Trapezoidal rule approximations
Simpson_approx = []
for dx in h:
    x = np.arange(left, right + dx, dx)
    y = integrand(x)
    simpson = (dx / 3)*(y[0] + 4*sum(y[1:-1:2]) + 2*sum(y[2:-2:2]) + y[-1])
    Simpson approx.append(simpson)
A16 = np.array(Simpson_approx) # Simpson's rule approximations
# Error values
LHR errors = np.abs(Int - A12)
RHR errors = np.abs(Int - A13)
midpoint errors = np.abs(Int - A14)
trapezoidal_errors = np.abs(Int - A15)
Simpson errors = np.abs(Int - A16)
# Plotting
plt.figure()
plt.loglog(h, LHR_errors, '-or', label='Left hand rule')
plt.loglog(h, RHR_errors, '-ob', label='Right hand rule')
plt.loglog(h, midpoint errors, '-og', label='Midpoint rule')
plt.loglog(h, trapezoidal errors, '-oy', label='Trapezoidal rule')
plt.loglog(h, Simpson errors, '-ok', label='Simpson\'s rule')
# Convergence of numerical integration methods
# LHR, RHR - O(h), midpoint - O(h^2), trapezoidal - O(h^2), Simpson - O(h^4)
plt.loglog(h, 10**(-3.5)*h, ':', label='O(h)', linewidth=2)
plt.loglog(h, 10**(-5)*h**2, '-.', label='O(h^2)', linewidth=2)
plt.loglog(h, 10**(-7)*h**4, '-', label='0(h^4)', linewidth=2)
# Machine precision line
plt.loglog(h, 10**(-16)*np.ones(h.size), '--k', label='Machine precision', line
plt.xlabel('Step size')
plt.ylabel('Error')
plt.title('Convergence of numerical integration schemes')
plt.legend()
```

Out[]: <matplotlib.legend.Legend at 0x16b37e230>

Part (g)

- i. Simpson's rule has the highest order of accuracy as we can see from the graph of its order $O(h^4)$. The $O(h^4)$ line has the highest slope, hence it is the most accurate.
- ii. The true error values for Simpson's rule goes lower than the machine precision, hence the error stops decreasing.

Step size