Ordres, treillis et Induction

Enseignants 2022-2023

- Marianne Huchard (6 cours/TD répartis sur 5 semaines -1h50)
- David Delahaye (6 semaines cours/TD 1h30)

Notions abordées dans le module

- Structures : ordres, ordres particuliers, treillis
- Raisonnement par induction

Modalités de contrôle des connaissances

- Session 1 : 100 % Ecrit, organisé par la Faculté Des Sciences
- Session 2 : 100 % Ecrit, organisé par la Faculté Des Sciences

Importance de la notion d'ordre

- Rangement, classification, ordonnancement
- Quelques exemples
 - Biologie : classification de plantes ou d'animaux
 - Sciences humaines et sociales : domination d'un individu par un autre
 - Recherche opérationnelle : ordonnancement entre tâches
 - Génie logiciel : hiérarchie d'héritage dans un langage de programmation par objets

Première partie : Ordres et treillis

Notions abordées

- relations et leurs propriétés, ensembles ordonnés, isomorphisme et type d'ordre
- chaînes, anti-chaînes, extensions, extensions linéaires, morphismes
- ordres particuliers (exemple de cette année : ordres produits)
- treillis et leurs éléments particuliers
- correspondance de Galois et treillis de Galois, réduction au cas des relations binaires (analyse formelle de concepts)

Applications en génie logiciel

- relation d'héritage
- relation de sous-typage
- structuration des classes

Relation binaire entre deux ensembles

Définition

```
Soient deux ensembles E et F, une relation binaire R est une partie du produit cartésien E \times F On note R \subseteq E \times F Il s'agit aussi d'un ensemble de couples (e,f) avec e \in E et f \in F. On écrira (e,f) \in R ou eRf.
```

Exemple (1. Associer une ville à un pays dont elle est la capitale)

```
\begin{split} E_v &= \{\textit{Paris}, \textit{Berlin}, \textit{Rome}, \textit{Montpellier}\} \\ F_p &= \{\textit{Allemagne}, \textit{France}, \textit{Italie}, \textit{Espagne}\} \\ R_{vp} &= \{(\textit{Paris}, \textit{France}), (\textit{Berlin}, \textit{Allemagne}), (\textit{Rome}, \textit{Italie})\} \end{split}
```

Exemple (2. Associer une variété de fleur à une couleur qu'elle peut avoir)

```
E_f = \{jasmin, muguet, petunia\}
F_c = \{blanc, jaune, rouge, rose, violet, vert\}
R_{fc} = \{(jasmin, blanc), (jasmin, jaune), (muguet, blanc), (petunia, blanc), (petunia, rouge), (petunia, rose), (petunia, violet)\}
```

Représentation d'une relation binaire pour $E \neq F$ par un graphe

Définition

À une relation binaire $R \subseteq E \times F$, $E \neq F$, on associe un graphe orienté $G = (E \cup F, R)$. Ses sommets sont les éléments de E et les éléments de F et ses arcs sont les couples de la relation R.

Exemple (Graphes associés aux relations R_{vp} (gauche) et R_{fc} (droite))

Relation binaire sur un ensemble

Définition

Soit un ensemble E, une relation binaire R sur E est une partie du produit cartésien $E \times E$.

On note $R \subseteq E \times E$.

Il s'agit aussi d'un ensemble de couples (e_1,e_2) avec $e_1 \in E$ et $e_2 \in E$.

On écrira $(e_1, e_2) \in R$ ou e_1Re_2 .

Exemple (Relation binaire sur un ensemble)

$$\begin{split} E &= \{e_1, e_2, e_3, e_4, e_5\} \\ R &= \{(e_1, e_1), (e_1, e_2), (e_1, e_3), (e_1, e_4), (e_3, e_5), (e_4, e_5), (e_5, e_4)\} \end{split}$$

Représentation d'une relation binaire sur un ensemble par un graphe

Définition

À une relation binaire sur E, $R \subseteq E \times E$, on associe un graphe orienté G = (E, R). Ses sommets sont les éléments de E et les éléments de F et ses arcs sont les couples de la relation R

Exemple (Relation binaire sur un ensemble)

$$\begin{split} E &= \{e_1, e_2, e_3, e_4, e_5\} \\ R &= \{(e_1, e_1), (e_1, e_2), (e_1, e_3), (e_1, e_4), (e_3, e_5), (e_4, e_5), (e_5, e_4)\} \end{split}$$

Relation réflexive

Définition

Soient un ensemble E et une relation binaire R sur E, R est réflexive si: $\forall e \in E$, $(e,e) \in R$ (que l'on note aussi eRe)

Exemple

Une relation non réflexive

Relation irréflexive

Définition

Soient un ensemble E et une relation binaire R sur E, R est irréflexive si : $\forall e \in E$, $(e,e) \notin R$

Relation symétrique

Définition

Soient un ensemble E et une relation binaire R sur E, R est symétrique si: $\forall e_1, e_2 \in E$, si $(e_1, e_2) \in R$, alors $(e_2, e_1) \in R$

Relation antisymétrique

Définition

Soient un ensemble E et une relation binaire R sur E, R est anti-symétrique si : $\forall e_1, e_2 \in E$, si $(e_1, e_2) \in R$ et $(e_2, e_1) \in R$, alors $e_2 = e_1$

Exemple

Une relation non antisymétrique

Relation transitive

Définition

Soient un ensemble E et une relation binaire R sur E, R est une relation transitive si $\forall e_1, e_2, e_3 \in E$, e_1Re_2 et $e_2Re_3 \implies e_1Re_3$

Relation d'équivalence

Définition

Soient un ensemble E une relation binaire R sur E, R est une relation d'équivalence si :

- réflexive
- symétrique
- transitive

Exemple

Une relation d'équivalence

Une relation qui n'est pas une relation d'équivalence

Préordre

Définition

Soient un ensemble E une relation binaire R sur E est un pré-ordre si :

- réflexive
- transitive

Exemple

Une relation qui n'est pas un préordre

Ordre

Définition

Soient un ensemble E une relation binaire R (notée \leq) sur E est un ordre si elle est :

- réflexive
- antisymétrique
- transitive

(E, <) est appelé un ensemble ordonné. On écrit x < y plutôt que $(x, y) \in <$.

Exemple

 $e_1 < e_1$, $e_1 < e_2$, $e_1 < e_5$

Une relation qui n'est pas un ordre

Vocabulaire

- y couvre x si $x \neq y$, $y \geq x$ et $\forall z$, si $y \geq z$ et $z \geq x$, on a x = z ou y = z
- x est un minorant de y si $x \le y$ (resp. majorant si $y \le x$)
- x et y sont comparables si $x \le y$ ou $y \le x$
- x et y sont incomparables si $x \not \leq y$ et $y \not \leq x$ (notation m x||y|)

Exemple

e₂ majore et couvre e₁, e₅ majore mais ne couvre pas e₁, e₂ et e₄ sont incomparables

Diagramme de Hasse

Définition

Soit un ensemble ordonné (E, \leq) son diagramme de Hasse est une représentation graphique de sa relation de couverture telle que chaque élément x de E est représenté par un point p(x) du plan avec :

- si $x \le y$, la droite horizontale passant par p(x) est au-dessous de la droite horizontale passant par p(y).
- lorsque y couvre x, un segment de droite joint p(x) et p(y).

Relation d'ordre strict

Définition

Soit un ensemble E, une relation binaire R sur E est une relation d'ordre strict (notée <) si elle est :

- irréflexive
- transitive

Elle est alors asymétrique : quand xRy, on n'a pas yRx.

Exemple

Un ordre strict

Une relation qui n'est pas un ordre strict

Relation d'ordre total

Définition

Soit un ensemble ordonné (E, \leq) , \leq est un ordre total si $\forall x, y \in E$ on a $x \not\leq y \implies y \leq x$

Morphisme entre relations binaires sur un ensemble E

Definition (Morphisme entre relations binaires sur un ensemble E)

Si R_p et R_q sont deux relations binaires sur E, un morphisme de R_p vers R_q est une application m de E vers E vérifiant : $\forall x,y \in E$, $xR_py \implies m(x)R_qm(y)$. Un morphisme préserve les couples et peut en ajouter.

Isomorphismes et types d'ordre, Morphismes

Définition (morphisme d'ordre)

Soient deux ensembles ordonnés $P=(E_P,\leq_P)$ et $Q=(E_Q,\leq_Q)$, une application a de E_P vers E_Q vérifiant : $\forall x,y\in E_P,\,x\leq_P y\implies a(x)\leq_Q a(y)$. a est appelée un morphisme d'ordre. a préserve l'ordre \leq_P .

Définition (isomorphisme d'ordre)

Deux ensembles ordonnés $P=(E_P,\leq_P)$ et $Q=(E_Q,\leq_Q)$ sont isomorphes (on dira aussi qu'ils sont du même type) lorsqu'il existe une bijection b de E_P and E_Q vérifiant : $\forall x,y\in E_P,x\leq_P y\Leftrightarrow b(x)\leq_Q b(y)$. b est appelée un isomorphisme d'ordre. b préserve l'ordre \leq_P et sa réciproque b^{-1} préserve l'ordre \leq_Q .

Exemple

Un isomorphisme d'ordre

Un morphisme d'ordre qui n'est pas un isomophisme

Exercices

- Oessiner des modèles UML pour les notions rencontrées et discuter des modélisations et de la sémantique apportée par la sémantique mathématique sous-jacente.
- On donne le diagramme de Hasse ci-dessous, reconstruire l'ordre qu'il représente.

- Formaliser la relation « est isomorphe à » et indiquer ses propriétés.
- Formaliser pour Java les relations suivante et indiquer leurs propriétés :
 - les relations extends et implements
 - a la relation extends+ qui relie une classe à elle-même ou à chacune de ses super-classes; ou une interface à elle-même ou à chacune de ses super-interfaces
- Soit un programme Java contenant des classes et des interfaces, existe-t-il un morphisme de la relation extends restreinte aux classes vers la relation extends ∪ implements? Et inversement? Poser formellement les éléments en jeu.
- Formaliser la relation d'inclusion entre paquetages en Java et indiquer ses propriétés.

4 D > 4 A > 4 B > 4 B >