

Expressiveness: "The" five operators?

Looking at the five propositional connectives \neg , \wedge , \vee , \rightarrow and \leftrightarrow we can ask

- Q1: Do we need all we have?
 Do we need all five connectives? Could we "make do" with less?
- Q2: Do we have all we need?
 Are the five connectives we've defined the only connectives?
 Could we get extra expressive power by using ternary connectives (3 operands) or more?

Q1: Do we need all we have?

- Note the following equivalences:
 - 1. $\phi \leftrightarrow \psi$ and $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$.
 - 2. $\phi \rightarrow \psi$ and $\neg \phi \lor \psi$.
 - 3a. $\phi \wedge \psi$ and $\neg (\neg \phi \vee \neg \psi)$.
 - 3b. $\phi \lor \psi$ and $\neg(\neg \phi \land \neg \psi)$.

Q1: Do we need all we have?

• Note the following equivalences:

- 1. $\phi \leftrightarrow \psi$ and $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$.
- 2. $\phi \rightarrow \psi$ and $\neg \phi \lor \psi$.
- 3a. $\phi \wedge \psi$ and $\neg (\neg \phi \vee \neg \psi)$.
- 3b. $\phi \lor \psi$ and $\neg(\neg \phi \land \neg \psi)$.

• Alternative:

- Rewrite and/or/iff in terms of implies and not
- ullet Let ot represent the formula that is always false
- Rewrite $\neg \phi$ to $\phi \rightarrow \bot$

A minimal set of operators

- In fact we can get away with a single operator that represents a combination of *not* with *and* (sometimes called NAND)
- This was discovered multiple times, most notably by Henry Sheffer in 1913

In mathematical logic it is usually called the Sheffer stroke:

p	q	$p \mid q$
F	F	T
$\parallel F \parallel$	$\mid \mathcal{T} \mid$	<i>T</i>
$\parallel au \parallel$	F	T
$\parallel au \parallel$	$\mid \mathcal{T} \mid$	F

Actually, not with or (NOR) will do equally well

What other unary operators could there be?

p	$f_1(p)$	$f_2(p)$	$f_3(p)$	$f_4(p)$
0				
1				

What other unary operators could there be?

p	$f_1(p)$	$f_2(p)$	$f_3(p)$	$f_4(p)$
0	0	0	1	1
1	0	1	0	1

What other binary operators could there be?

What other binary operators could there be?

p	q	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

What ternary operators could there be?

p	q	r	• • •	f_i	• • •
0	0	0	• • •	0	
0	0	1	• • •	0	• • •
0	1	0	• • •	0	• • •
0	1	1	• • •	0	• • •
1	0	0	• • •	1	• • •
1	0	1	• • •	1	
1	1	0	• • •	0	• • •
1	1	$1 \mid$	• • •	1	

• Can we define f_i as a function of p, q, r, using only our existing connectives?