Пояснительная записка

Вычислительные техники решения задач линейного программирования в частично-целочисленной постановке и приемы работы с решателем SCIP

Подвойский А.О., Глазунова Е.В.

Содержание

1	Клі	очевые термины и определения	3					
2	Кратко о MPS-формате представления математической постановки задачи							
	2.1	Секция NAME	3					
	2.2	Секция OBJSENSE	3					
	2.3	.3 Секция ROWS						
	2.4	.4 Секция COLUMNS						
	2.5	Секция RHS	4					
	2.6	Ceкция BOUNDS	5					
3	Клі	очевые компоненты платформы SCIP	5					
	3.1	Решатель SCIP. Общие сведения	5					
		3.1.1 Установка решателя SCIP	5					
		3.1.2 Приемы работы с решателем SCIP в интерактивной оболочке scip	5					
		3.1.3 Приемы работы с решателем SCIP через обертку PySCIPOpt	6					
	3.2	.2 Декомпозиционный решатель GCG. Общие сведения						
		3.2.1 Установка решетеля GCG	6					
		3.2.2 Приемы работы с решателем GCG в интерактивной оболочке gcg	6					
		3.2.3 Приемы работы с решателем GCG через обертку PyGCGOpt	7					
4	Вы	явленные баги SCIP и тонкости процедуры поиска решения	7					
	4.1	1 Недопустимое решение для релаксированной постановки задачи						
	4.2	Неединственность релаксированного решения						
	4.3	Замечание о стабильности работы решателя SCIP на различных операционных си-						
		CTEMAX	7					
	4.4	Чтение/запись lp-фалов и порядок следования переменных	8					
5	Алн	Недопустимое решение для релаксированной постановки задачи 7 Неединственность релаксированного решения 7 Замечание о стабильности работы решателя SCIP на различных операционных системах 7 Чтение/запись lp-фалов и порядок следования переменных 8 тернативные решатели с открытым исходным кодом 8						
	5.1	Pemareль HIGHS	8					
		5.1.1 Установка решателя на Centos 7	8					
		5.1.2 Приемы работы с решателем	9					
	5.2	Решатель OPTIMUS (Scala)	12					
6	Сж	атая сводка результатов вычислительных экспериментов	12					

7	Прі	Приемы поиска решения 1					
	7.1	Прием	фиксации бинарно-целочисленных переменных в релаксированном решении	14			
	7.2	Прием	подавления подгруппы первичных эвристик низкой эффективности	15			
	7.3	Прием	подбора порога бинаризации для бинарных переменных в релаксированном				
		решен	ии	16			
8	Me	годы м	пашинного обучения в задачах комбинаторной оптимизации	17			
	8.1	Поста	новка задачи	17			
	8.2	Конце	пт матрицы признакового описания бинарных и целочисленных переменных	18			
	8.3	Страт	егии решения задачи	19			
		8.3.1	Стратегия №1. Обнаружение аномалий	19			
		8.3.2	Стратегия №2. Бинарная классификация со слабо выраженным миноритар-				
			ным классом	21			
	8.4	Транс	фер выявленного паттерна. Сценарии группы СОП	21			
		8.4.1	Сценарий tmpfvpqodxw.lp без бинарных переменных	22			
		8.4.2	Синтетический сценарий 1664182546_82382.1р с бинарными переменными	23			
		8.4.3	Синтетический сценарий 1664182533_1587787.1р с бинарными переменными	24			
		8.4.4	Синтетический сценарий 1664182480_4326847.1р с бинарными переменными	26			
		8.4.5	Синтетический сценарий 1664182523_380519.1р с бинарными переменными	27			
9	Опи	исание	вычислительных экспериментов на сценариях группы ИКП	29			
	9.1	Поиск	решения на сценариях без бинарных переменных.				
		Метак	онфигурации SUH, FZBIVSUHPB и ансамбль детекторов аномалий	29			
		9.1.1	Сценарий F398266B без бинарных переменных	29			
		9.1.2	Сценарий 50197DF7 без бинарных переменных	30			
		9.1.3	Сценарий 7FAC4231 без бинарных переменных	32			
		9.1.4	Сценарий СА485А55 без бинарных переменных	33			
		9.1.5	Сценарий 276 без бинарных переменных	35			
		9.1.6	Сценарий 337 без бинарных переменных	35			
		9.1.7	Сценарий 13D686AB без бинарных переменных	37			
		9.1.8	Сценарий А78СВЕАD без бинарных переменных	38			
		9.1.9	Сценарий 496 (hard) без бинарных переменных	36			
		9.1.10	Сценарий 514 (hard) без бинарных переменных	41			
		9.1.11	Сценарий 519 (hard) без бинарных переменных	42			
	9.2	Поиск	решения на сценариях c бинарными переменными.				
		Метак	онфигурация FZBIVSUHPB	43			
		9.2.1	Сценарий A78CBEAD с бинарными переменными	44			
		9.2.2	Сценарий 7FAC4231 с бинарными переменными	45			
		9.2.3	Сценарий 50197DF7 с бинарными переменными	47			
		9.2.4	Сценарий F398266B с бинарными переменными	48			
		9.2.5	Сценарий 337 с бинарными переменными	49			
	9.3	Поиск	решения на базе методов машинного и глубокого обучения	52			
		9.3.1	Простое декартово произведение сценариев $\it c$ бинарными переменными	53			
10	Опт	исание	вычислительных экспериментов на спенариях группы МВО	54			

11 Описание вычислительных экспериментов								
на сценариях MIPLIB 2017	5 4							
11.1 Сценарии со статусом «ореn»	54							
11.1.1 Сценарий DLR2	54							
11.1.2 Сценарий CVRPA-N64K9VRPI	54							
11.2 Сценарии со статусом «hard»	54							
11.2.1 Сценарий CRYPTANALYSISKB128N50BJ14	54							
11.3 Сценарии со статусом «easy»	54							
11.3.1 Сценарий NEOS-4332801-seret	54							
Список иллюстраций	5 5							
Список таблиц	56							
Список литературы 56								

1. Ключевые термины и определения

Cиенарий — это математическая постановка задачи, описанная в терманах математического программирования (например, линейного)

Сценарий обучающего поднабора — это сценарий из коллекции сценариев, которые используются на обучающей фазе алгоритма машинного обучения

Cиенарий mестового nоднабора — это сценарий, который используется для построения прогноза с помощью алгоритма машинного обучения

2. Кратко о MPS-формате представления математической постановки задачи

Больше деталей по ссылке https://www.gurobi.com/documentation/9.5/refman/mps_format.

MPS-формат – это старейший формат представления математчиских постановок. Различают два вида этого формата: фиксированный и свободный. В фиксированном формате под имя строки и столбца отводится ровно 8 символов (пробел считается частью имени), а в свободном формате имена могут иметь произвольную длину.

Строки, которые начинаются с символа * считаются комментариями.

2.1. Секция NAME

Первая секция в MPS-файле называется **NAME**. Она задает имя модели. В фиксированном формате имя модели начинается в 15 столбце.

2.2. Секция OBJSENSE

Следующая (необязательная) секция **OBJSENSE** указывает направление оптимизации (задача решается на минимум или на максимум).

2.3. Секция ROWS

В секции ROWS каждая строка описывает mun ограничения (E — равенство, L — меньше-илиравно, G — больше-или-равно) и ums ограничения. N указывает на целевую функцию.

Самая большая секция MPS-файла это секция COLUMNS, в которой описываются переменные с ненулевыми коэффициентами

```
...

COLUMNS

z_balance_plus_0_177360 z_balance_0_177360 1 0bj

3

z_balance_plus_100_177446 z_balance_100_177446 1 0bj

3

z_balance_plus_101_177488 0bj 3

z_balance_101_177488 1

z_balance_plus_102_177447 z_balance_102_177447 1 0bj

3
...
```

Первая строка говорит, что переменная z_balance_plus_0_177360 входит в ограничение z_balance_0_177360 с коэффициентом 1, а в целевую функцию – с коэффициентом 3.

2.4. Секция COLUMNS

Секция COLUMNS может дополнительно включать маркеры целочисленности. Переменные, расположенные между парой маркеров должны принимать целочисленные значения. Все переменные эти переменные по умолчанию имеют нижнюю границу 0 и верхнюю границу 1. Если требуется задать другие значения нижних и верхних границ, то это можно сделать в секции BOUNDS.

```
INTSTART
                     'MARKER'
                                                                    'INTORG'
                                                                              *начало секции
 y_tu_170_177684_9_10 out_throughput_vs_units_9
                                                                        1
 cdo_lower_1_2112221020_1_9_10
 y\_tu\_170\_177684\_9\_10 \quad \texttt{static\_load\_terminal\_170\_177684\_9\_10}
                                                                              665600
 multiplicity_of_fronts_284
 y_tu_170_177684_9_10 cdo_upper_1_2112221020_1_9_10
                                                                               Obi
                                 0
 y_tu_170_177685_9_10 cdo_upper_1_2112221020_1_9_10
                                                                            1
 cdo_lower_1_2112221020_1_9_10
 y_tu_9_177398_11_9
                       cdo_lower_1_251194210_1_11_9
 multiplicity_of_fronts_345
 540200
 static_load_terminal_9_177398_11_9
 y_tu_9_177398_11_9
                                                                           0bi
                      out_throughput_vs_units_8
                             0
TNTEND
                      'MARKER'
                                                                     'INTEND' *конец секции
```

Здесь INTSTART — это имя маркера (игнорируется), 'MARKER' — специальная строка (в одинарных ковычках), 'INTORG' — начало целочисленной секции и 'INTEND' — конце целочисленной секции.

2.5. Секция ВНЅ

Следующая секция RHS (right-hand side) MPS-файла описывает правую часть ограничения

```
RHS cdo_lower_1_2414112504_1_3_3 4

cdo_lower_1_2414112504_1_3_30 4

# cdo_lower_1_2414112504_1_3_3: +1 y_tu_170_177743_3_3 +1 y_tu_170_177744_3_3 >= +4

# cdo_lower_1_2414112504_1_3_30: +1 y_tu_170_177743_3_30 +1 y_tu_170_177744_3_30 >= +4
```

2.6. Секция BOUNDS

Это необязательная секция. По умолчанию каждая переменная имеет нижнюю границу 0 и бесконечную верхнюю границу. Каждая строка этой секции может изменять нижнюю границу, верхнюю границу или обе границы переменной.

Поддерживаются следующие типы:

- ∘ LO: нижняя граница,
- o UP: верхняя граница,
- FX: переменная, зафиксированная в какое-то конкретное значение,
- FR: свободная переменная (без верхней и нижней границы),
- MI: бесконечная нижняя граница,
- PL: бесконечная верхняя граница,
- BV: бинарная переменная (0 или 1),
- LI: нижняя граница для целочисленной переменной,
- UI: верхняя граница для целочисленной переменной,
- SC: верхняя граница для полунепрерывной переменной,
- SI: верхняя граница для полуцелочисленной переменной.

3. Ключевые компоненты платформы SCIP

3.1. Решатель SCIP. Общие сведения

SCIP (Solving Constraint Integer Programs) https://www.scipopt.org/ – решатель, предназначенный для решения задач *линейного* и *нелинейного* программирования в частично-целочисленной постановке.

3.1.1. Установка решателя SCIP

Pешатель проще всего установить вместе с оберткой PySCIPOpt https://github.com/scipopt/PySCIPOpt с помощью менеджеров pip или conda

```
# установить последнюю доступную версию SCIP
$ pip install pyscipopt
$ conda install -c conda-forge pyscipopt
# установить заданную версию SCIP
$ conda install -c conda-forge pyscipopt=3.4.0
```

3.1.2. Приемы работы с решателем SCIP в интерактивной оболочке scip

Для того чтобы сделать логи более подробными следует включить следующие строки в конфигурационный файл SCIP

```
scip.set
```

```
display/lpinfo = TRUE
display/ninfeasleaves/active = 2
display/allviols = TRUE
```

3.1.3. Приемы работы с решателем SCIP через обертку PySCIPOpt

Работа над задачей начинается с создания пустого экземпляра модели

```
import pyscipopt
model = pyscipopt.Model()
```

На созданном экземпляре можно вызывать методы чтения модели, конфигурационного файла параметров решателя и т.д.

```
model.readProblem("./problem.lp")
model.readParams("./scip.set")
...
```

3.2. Декомпозиционный решатель GCG. Общие сведения

GCG https://gcg.or.rwth-aachen.de/#about – это универсальный декомпозиционный решатель для задач линейного программирования в частично-целочисленной постановке, расширающий возможности базового решателя SCIP.

Он выявляет структуры в модели, к которым могут быть применены *переформулировка Данцига-*Вольфе или декомпозиция Бендера.

Модфицированная постановка задачи (после переформулировки Данцига-Вольфе) решается с помощью обобщения метода ветвей-и-границ, а именно с помощью метода ветвей-штрафовсекущих (branch-price-and-cut), включающего различные механизмы поиска решения – превичные эвристики, стратегии ветвления, стратегии стабилизации, стратегии назначения штрафов и пр.

3.2.1. Установка решетеля GCG

Проще всего решатель установить вместе с обреткой PyGCGOpt https://github.com/scipopt/ PyGCGOpt с помощью мендежера пакетов conda

```
$ conda install -c conda-forge pygcgopt
```

3.2.2. Приемы работы с решателем GCG в интерактивной оболочке gcg

Прочитать постановку задачи

Tipo initaib neetanebity saga in

Запустить процедуру редуцированния размерности

GCG> presolve

GCG> read problem.lp

Запустить процедуру поиска структур в матрице ограничений

GCG> detect

Записать постановку задачи сниженной размерности для gnuplot

GCG> write problem problem_reduced.gp

Фрагмент др-файла

```
set encoding utf8
set terminal pdf
set output "problem_reduced.pdf"
set xrange [-1:506441]
set yrange[347788:-1]
set object 1 rect from 0,0 to 506441,183384 fc rgb "#1340C7"
set object 3 rect from 163304,183384 to 163306,183385 fc rgb "#718CDB"
set object 4 rect from 163306,183385 to 163308,183386 fc rgb "#718CDB"
set object 5 rect from 163308,183386 to 163310,183387 fc rgb "#718CDB"
set object 6 rect from 163310,183387 to 163312,183388 fc rgb "#718CDB"
set object 7 rect from 163312,183388 to 163314,183389 fc rgb "#718CDB"
set object 8 rect from 163314,183389 to 163316,183390 fc rgb "#718CDB"
set object 10 rect from 163318,183391 to 163320,183392 fc rgb "#718CDB"
set object 11 rect from 163320,183392 to 163322,183393 fc rgb "#718CDB"
set object 11 rect from 163320,183392 to 163322,183393 fc rgb "#718CDB"
```

Создать pdf-файл декомпозиции задачи после шага снижения размерности

```
$ gnuplot problem_reduced.gp
```

3.2.3. Приемы работы с решателем GCG через обертку PyGCGOpt

4. Выявленные баги SCIP и тонкости процедуры поиска решения

4.1. Недопустимое решение для релаксированной постановки задачи

По состоянию на 18.06.2022 г. решатель SCIP версии 8.0.0 с оберткой PySCIPOpt версий 4.0.0 и 4.2.0 для операционной системы Windows 10 релаксированную постановку задачи (т.е. при снятых ограничениях на целочисленность переменных) оценивает как неспособную привести к допустимому решению.

SCIP версии 7.0.3 (PySCIPOpt 3.4.0) как на операционной системе Windows 10, так и на Unix-подобных операционных системах (в частности, MacOS Monterey 12.1 и Linux Centos 7) решает задачу в релаксированной постановке корректно.

4.2. Неединственность релаксированного решения

Если эвристические приемы строятся на базе релаксированного решения задачи, важно помнить, что релаксированные решения, полученные с помощью различных решателей с точки зрения распределения значений переменных могут существенно различаться¹, не смотря на то, что во всех случах зазор будет нулевым и целевая функция будет имееть одно и тоже значение (с оговоркой на допуск точности решателя).

4.3. Замечание о стабильности работы решателя SCIP на различных операционных системах

• Вычислительные эксперименты проводились на трех версиях решателя SCIP (7.0.0, 7.0.3, 8.0.0) и трех платформах: Windows 10, MacOS (Monterey 12), Linux (Centos 7). Разброс времени поиска решения для каждой конфигурации решателя оценивается минимум по 3 запускам сценария

 $^{^{1}}$ Потому как гиперплоскость целевой функции может касаться политопа не в вершине, а по грани

- На текущий момент наиболее стабильные и наиболее адекватные результаты получаются
 - -для OC Linux (Centos 7) и OC MacOS (Monterey12) на решателе SCIP версии 7.0.3 (обертка PySCIPOpt 3.4.0) и платформе Ecole версии 0.7.3 , собранных для однопоточной реализации
 - для ОС Windows 10 на решателе SCIP версии 8.0.0 (обертка PySCIPOpt 4.0.0), собранном для однопоточной реализации
- Последняя доступная версия решателя SCIP 8.0.0 (PySCIPOpt 4.1.0) на MacOS (Monterey 12.1) и Linux (Centos 7) при тех же настройках, что и для SCIP версии 7.0.3, как правило, работает значительно медленнее (2.5-2.85 раза) и в большинстве случаев либо не успевает найти решение за отведенное время, либо «просаживает» целевую функцию

4.4. Чтение/запись lp-фалов и порядок следования переменных

Чтение/запись файла математической постановки изменяет порядок следования переменных в целевой функции, что может непредсказуемо влиять на эффективность процедуры поиска решения. Если после модификации проблемы с помощью например фиксации нулей сразу запустить процедуру поиска, то будут одни результаты пресолвинга и картина поиска решения, а если модифицированную постановку записать и снова прочитать, то – другие. Причем последствия могут быть очень серьезными: в одном случае решение находится за 20 минут, в другом – за 3 часа. Какой порядок следования переменных «правильный»?

5. Альтернативные решатели с открытым исходным кодом

5.1. Решатель HIGHS

5.1.1. Установка решателя на Centos 7

Установить решатель HIGHS https://ergo-code.github.io/HiGHS/get-started.html можно следующим образом

1. Скачать репозиторий проекта

```
$ git clone https://github.com/ERGO-Code/HiGHS.git
```

2. Установить стаке версии >=3.15

```
# https://cmake.org/dowmload/
$ wget https://github.com/Kitware/CMake/releases/download/v3.24.2/cmake-3.24.2.tar.gz
$ tar -xvf cmake-3.24.2.tar.gz
$ cd cmake-3.24.2
$ ./bootstrap --prefix=/usr --datadir=share/cmake --docdir=doc/cmake && make
$ sudo make install
$ cmake --version # cmake version 3.24.2
```

3. Установить альтернативную версию комилятора gcc (например, версии 7) для сборки проекта

```
# https://linuxize.com/post/how-to-install-gcc-compiler-on-centos-7/
$ gcc --version # gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-36)
```

Чтобы получить доступ к альтернативной версии компилятора GCC 7, требуется запустить новый сеанс командной оболочки с помощью утилиты scl

```
$ scl enable devtoolset-7 bash
# unu dnn ZSH
# scl enable devtoolset-7 zsh
$ gcc --version # gcc (GCC) 7.3.1 20180303 (Red Hat 7.3.1-5)
```

4. В директории проекта HIGHS создать поддиректорию build и запустить из-под нее утилиту cmake

```
$ cd HiGHS
$ mkdir build
$ cd build
$ cmake -DFAST_BUILD=ON ...
$ cmake --build .
# Чтобы убедится в том, что сборка прошла успешно, рекомендуется запустить быстрые тесты
$ ctest
```

В результате будет создан исполняемый файл build/bin/highs

5. Добавить путь до утилиты в конфигурационный файл оболочки

```
.zshrc
```

```
...
export PATH=${HOME}/Projects/HiGHS/build/bin:$PATH
```

После внесения изменений в конфигурационный файл, можно перечитать конфигурацию сессии

```
$ source .zshrc
```

5.1.2. Приемы работы с решателем

Для запуска решателя в MILP-режиме требуется только передать путь до *.lp/*.mps-файла

```
$ highs /path/to/model.lp
$ highs --help
```

Для запуска решателя в режиме поиска релаксированного решения требуется параметру --solver передать название метода (на текущий момент поддерживается только симплекс-метод simplex и метод внутренней точки ipm)

```
# LP-задача будет решаться методом внутренней точки
$ highs --solver ipm --model_file 50197df7_bin.lp
```

Запуск решателя в параллельном MILP-режиме, с шагом снижения размерности задачи и ограничением по времени расчета будет выглядеть так

```
$ highs \
    --model_file 514.lp \
    --presolve on \
    --parallel on \
    --time_limit 950 \
    --solution_file highs_514.sol
```

Список управляющих параметров решателя доступен на странице документации HiGHS для интерфейса Rust https://www.maths.ed.ac.uk/hall/HiGHS/HighsOptions.html

```
HiGHS Options
presolve
Presolve option: "off", "choose" or "on"
type: string, advanced: false, default: "choose"
solver
Solver option: "simplex", "choose" or "ipm"
type: string, advanced: false, default: "choose"
parallel
Parallel option: "off", "choose" or "on"
type: string, advanced: false, default: "choose"
time_limit
Time limit
type: double, advanced: false, range: [0, inf], default: inf
ranging
Compute cost, bound, RHS and basic solution ranging: "off" or "on"
type: string, advanced: false, default: "off"
infinite_cost
Limit on cost coefficient: values larger than this will be treated as infinite
type: double, advanced: false, range: [1e+15, inf], default: 1e+20
infinite_bound
Limit on |constraint bound|: values larger than this will be treated as infinite
type: double, advanced: false, range: [1e+15, inf], default: 1e+20
small_matrix_value
Lower limit on |matrix entries|: values smaller than this will be treated as zero
type: double, advanced: false, range: [1e-12, inf], default: 1e-09
large_matrix_value
Upper limit on |matrix entries|: values larger than this will be treated as infinite
type: double, advanced: false, range: [1, inf], default: 1e+15
primal_feasibility_tolerance
Primal feasibility tolerance
type: double, advanced: false, range: [1e-10, inf], default: 1e-07
dual_feasibility_tolerance
Dual feasibility tolerance
type: double, advanced: false, range: [1e-10, inf], default: 1e-07
ipm_optimality_tolerance
IPM optimality tolerance
type: double, advanced: false, range: [1e-12, inf], default: 1e-08
objective_bound
Objective bound for termination
type: double, advanced: false, range: [-inf, inf], default: inf
objective_target
Objective target for termination
type: double, advanced: false, range: [-inf, inf], default: -inf
random_seed
random seed used in HiGHS
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 0
threads
number of threads used by HiGHS (0: automatic)
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 0
highs_debug_level
Debugging level in HiGHS
type: HighsInt, advanced: false, range: {0, 3}, default: 0
highs_analysis_level
Analysis level in HiGHS
type: HighsInt, advanced: false, range: {0, 63}, default: 0
simplex_strategy
Strategy for simplex solver
type: HighsInt, advanced: false, range: {0, 4}, default: 1
simplex_scale_strategy
```

```
Simplex scaling strategy: off / choose / equilibration / forced equilibration / max value 0 /
   max value 1 (0/1/2/3/4/5)
type: HighsInt, advanced: false, range: {0, 5}, default: 1
simplex_crash_strategy
Strategy for simplex crash: off / LTSSF / Bixby (0/1/2)
type: HighsInt, advanced: false, range: {0, 9}, default: 0
simplex_dual_edge_weight_strategy
Strategy for simplex dual edge weights: Choose / Dantzig / Devex / Steepest Edge (-1/0/1/2)
type: HighsInt, advanced: false, range: {-1, 3}, default: -1
simplex_primal_edge_weight_strategy
Strategy for simplex primal edge weights: Choose / Dantzig / Devex (-1/0/1)
type: HighsInt, advanced: false, range: {-1, 1}, default: -1
simplex_iteration_limit
Iteration limit for simplex solver
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647
simplex_update_limit
Limit on the number of simplex UPDATE operations
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 5000
ipm_iteration_limit
Iteration limit for IPM solver
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647
simplex_min_concurrency
Minimum level of concurrency in parallel simplex
type: HighsInt, advanced: false, range: {1, 8}, default: 1
simplex_max_concurrency
Maximum level of concurrency in parallel simplex
type: HighsInt, advanced: false, range: {1, 8}, default: 8
output_flag
Enables or disables solver output
type: bool, advanced: false, range: {false, true}, default: true
log_to_console
Enables or disables console logging
type: bool, advanced: false, range: {false, true}, default: true
solution_file
Solution file
type: string, advanced: false, default: ""
log_file
Log file
type: string, advanced: false, default: "Highs.log"
write_solution_to_file
Write the primal and dual solution to a file
type: bool, advanced: false, range: {false, true}, default: false
write_solution_style
Write the solution in style: 0=>Raw (computer-readable); 1=>Pretty (human-readable)
type: HighsInt, advanced: false, range: {0, 1}, default: 0
mip_detect_symmetry
Whether symmetry should be detected
type: bool, advanced: false, range: {false, true}, default: true
mip_max_nodes
MIP solver max number of nodes
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647
mip_max_stall_nodes
MIP solver max number of nodes where estimate is above cutoff bound
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647
mip_max_leaves
MIP solver max number of leave nodes
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647
mip_lp_age_limit
maximal age of dynamic LP rows before they are removed from the LP relaxation
type: HighsInt, advanced: false, range: {0, 32767}, default: 10
```

```
mip_pool_age_limit
maximal age of rows in the cutpool before they are deleted
type: HighsInt, advanced: false, range: {0, 1000}, default: 30
mip_pool_soft_limit
soft limit on the number of rows in the cutpool for dynamic age adjustment
type: HighsInt, advanced: false, range: {1, 2147483647}, default: 10000
mip_pscost_minreliable
minimal number of observations before pseudo costs are considered reliable
type: HighsInt, advanced: false, range: {0, 2147483647}, default: 8
mip_report_level
MIP solver reporting level
type: HighsInt, advanced: false, range: {0, 2}, default: 1
mip_feasibility_tolerance
MIP feasibility tolerance
type: double, advanced: false, range: [1e-10, inf], default: 1e-06
mip_heuristic_effort
effort spent for MIP heuristics
type: double, advanced: false, range: [0, 1], default: 0.05
```

ТОДО: При запуске решатля в режиме поиска релаксированного решения процесс зависает, если заданы параметры, управляющие подробностью вывода

```
o highs_debug_level = 2,
o mip_report_level = 2
```

Задать значения управлющих параметров можно в set-файле HiGHS

highs.set

```
time_limit = 7200
simplex_iteration_limit = 10000
ipm_iteration_limit = 5000
...
```

Теперь для запуска решателя в специфицрованном режиме остается только передать путь до файла настроек параметру --options_file

```
$ highs --model_file 496.lpl --options_file highs.set
```

5.2. Решатель OPTIMUS (Scala)

6. Сжатая сводка результатов вычислительных экспериментов

Все эксперименты проводились на OC Linux Centos 7 Intel Core[™] i7 (8 CPUs), $3.6 \mathrm{GHz}$; RAM 32Gb. Использовался MILP-решатель SCIP 7.0.3 (Python-обертка PySCIPOpt 3.4.0) и Python 3.8.0.

Pазвернутая сводка результатов приводится по ссылке https://docs.google.com/document/d/16p8_VjZaHCBdDWo_YNZaEpZVFgmLyDi5A6104gX3zK8/edit?usp=sharing

Обозначения

- CBC+DOH доменно-ориентированные эвристики, работающие поверх решателя CBC.
- CBC+MS мера подобия релаксированного решения, работающая поверх решателя CBC.
- SCIP(d) решатель SCIP с настройками по умолчанию.
- SUH метаконфигурация, работающая поверх решателя SCIP: подавляется подгруппа первичных эвристик низкой эффективности.

- FZBIVSUHPB метаконфигурация, работающая поверх решателя SCIP: подавляется подгруппа первичных эвристик низкой эффективности; при ветвлении и разрешении конфликтов решатель отдает предпочтение бинарными переменным; фиксируются нулевые бинарные и целочисленные переменные релаксированного решения.
- EAD(contamination; file_name) модель машинного обучения, работающая поверх решателя SCIP: подавляется подгруппа первичных эвристик низкой эффективности; при ветвлении и разрешении конфликтов решатель отдает предпочтение бинарными переменным; частично-заданное решение на фиксациях строится на основании прогноза ансамбля детекторов аномалий; contamintion − доля аномальных экземпляров в наборе данных, file_name − имя lp-файла математической постановки, на котором обучался ансамбль детекторов аномалий.
- Detector_name(contamination; file_name) детектор аномалий, работающий поверх решателя SCIP: подавляется подгруппа первичных эвристик низкой эффективности; при ветвлении и разрешении конфликтов решатель отдает предпочтение бинарными переменным; частично-заданное решение на фиксациях строится на основании прогноза детектора аномалий; contamintion доля аномальных экземпляров в наборе данных, file_name имя lp-файла математической постановки, на котором обучался детектор аномалий.
- RELAX релаксированное решение, найденное с помощью решателя SCIP.

Выводы

- 1. На всех сценариях группы ИКП метаконфигурация FZBIVSUHPB помогает решателю SCIP найти более низкое значение целевой функции и за меньшее время.
- 2. На всех сценариях группы ИКП (за исключением сценариев a78cbead_bin.lp, 7fac4231_bin.lp и 50197df7_bin.lp) ансамбль детекторов аномалий без подбора параметра контаминации EAD(0.10; f398266b_bin.lp) помогает решателю SCIP найти более низкое значение целевой функции и за меньшее время. На сценариях a78cbead_bin.lp, 7fac4231_bin.lp и 50197df7_bin.lp прием EAD не смог найти решение за отведенное время.
- 3. На сценариях 514.1p, 519.1p, a78cbead_bin.1p, 7fac4231_bin.1p и 50197df7_bin.1p изолированные детекторы аномалий помогают решателю SCIP найти более низкое значение целевой функции и за меньшее время.
- 4. На сценариях 514.1p, 519.1p, a78cbead_bin.1p, 7fac4231_bin.1p и 50197df7_bin.1p изолированные детекторы аномалий находят решения, которые по сравнению с решениями, полученными средствами CBC+DOH(MS), оказываются лучше в среднем на 50.73% по временным издержкам и в среднем на 6.32% по целевой функции.
- 5. На всех сценариях группы ИКП (за исключением сценариев 514.1р и 519.1р) метакон-фигурация FZBIVSUHPB находит решения, которые оказываются нехуже решений, полученных с помощью CBC+DOH(MS), как с точки зрения полного времени расчета (среднее улучшение 62.16%), так и с точки зрения целевой функции (среднее улучшение 7.03%). На сценарии 514.1р метаконфигурация получает решение, которое только по целевой функции (+18.616%) превосходит решение, найденное средствами CBC+DOH(MS). На сценарии 519.1р решение метаконфигурации уступает решению, найденному с помощью CBC+DOH(MS) и по временным издержкам (-14.29%) и по целевой функции (-2.302%).

Рис. 1. Сводка результатов вычислительных экспериментов на сценариях группы ИКП

7. Приемы поиска решения

7.1. Прием фиксации бинарно-целочисленных переменных в релаксированном решении

Часто фиксация целочисленных переменных² в релаксированном решении приводит к приемлемому допустимому целочисленному решению, которое потом можно использовать как «теплый старат» или как базовое решение для других схем фиксации.

```
ZERO = 0.0
relax_sol: pd.Series = read_relax_sol(path_to_relax_sol)
model = pyscipopt.Model()
model.readProblem(path_to_lp_file)
model.readParams(path_to_set_file)
all_vars: t.List[pyscipopt.scip.Variable] = model.getVars()
bin_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, BINARY)
int_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, INTEGER)
all_zero_bin_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax_sol,
 sub_group_vars=bin_vars,
all_zero_int_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax_sol,
  sub_group_vars=int_vars,
```

 $^{^{2}}$ Вообще говоря, фиксировать можно не только бинарные и целочисленные переменные

```
for var in all_zero_bin_vars + all_zero_int_vars:
   model.fixVar(var, ZERO)

model.optimize()
...
```

7.2. Прием подавления подгруппы первичных эвристик низкой эффективности

В некоторых случаях отдельные первичные эвристики могут оказаться не способными справится со своей задачей, не оказывая никакого влияния на процедуру поиска решения, и все же потреблять предоставленные ресурсы.

Такие эвристики – условимся их называть первичными эвристиками низкой эффективности (ПЭНЭ) – можно выявить путем анализа статистической сводки stat-файла в разделе Primal Heuristics

Фрагмент файла статистической сводки 337 bin default.stat

		•					
Primal Heuristics	:	ExecTime	SetupTime	Calls	Found	Best	
LP solutions	:	0.00	-	-	0	0	
relax solutions	:	0.00	-	-	0	0	
pseudo solutions	s :	0.00	-	-	0	0	
conflictdiving	:	0.00	0.00	0	0	0	
crossover	:	0.00	0.00	0	0	0	
dins	:	0.00	0.00	0	0	0	
distributiondivi	in:	0.00	0.00	0	0	0	
dualval	:	0.00	0.00	0	0	0	
farkasdiving	:	2032.89	0.00	1	0	0 # <	C- NB
feaspump	:	882.12	0.00	1	0	O # <	C- NB
fixandinfer	:	0.00	0.00	0	0	0	
intdiving	:	0.00	0.00	0	0	0	
intshifting	:	52.99	0.00	1	1	1	

В данном случае ПЭНЭ являются farkasdiving и feaspump. Чтобы подавить эти эвристики при следующем запуске SCIP, достаточно включить следующие строки в конфигурационный файл $scip.set^3$

```
scip.set
```

```
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
...
```

Доступ к статистической сводке можно получить либо в сессии SCIP, либо через одну из оберток над решателем (например, с помощью PySCIPOpt)

Фрагмент сессии scip. Получение статистической сводки

```
...
SCIP> read file.lp
```

 $^{^3}$ При запуске интерактивной сесии через утилиту командной строки scip, решатель ищет этот файл в текущей директории и, если находит, автоматически вычитывает. При работе через PySCIPOpt требуется явно передавать путь до файла методу модели readParams()

```
SCIP> opt
SCIP> display stat
```

Получение статистической сводки через обертку PySCIPOpt

```
import pyscipopt

model = pyscipopt.Model()
model.readProblem("...")
model.readParams("...")
model.optimize()

model.printStatistics()
```

7.3. Прием подбора порога бинаризации для бинарных переменных в релаксированном решении

Условимся ϕ иксацией называть стратегию инициализации подгруппы переменных x_k (вещественных, бинарных или целочисленных), значения которых задаются на основе каких-либо эврестических соображений, например, касающихся специальных свойств матрицы ограничений, и способных в результате привести к такой постановке задачи, которую, используя механизмы первичных эвристик, сепараторов, пропагаторов и пр. можно развить в ϕ 00 допустимое целочисленное решение.

Базовая идея построения ϕ иксации на бинарных переменных заключается в том, чтобы значения бинарных переменных в релаксированном решении ${rx_k^{(b)}}_{k=1,...}$ интерпретировать как степень уверенности решателя в том, что рассматриваемую бинарную переменную можно выставить в единицу.

Если значение k-ой бинарной переменной ${}^rx_k^{(b)}$ превосходит некоторый $nopor\ \theta$, то переменная выставляется в единицу, в противном случае – в ноль. Порог подбирается итерационно, начиная с некоторого нижнего значения θ_l (по умолчанию $\theta_l=0$), увеличивая текущее значение порога на величину шага $\Delta\theta$ и заканчивая верхним значением порога θ_u (по умолчанию $\theta_u=1$).

Для практических целей достаточно остановится на наименьшем значении порога θ , который отвечает такой фиксации, которую решатель SCIP не отклоняет как неспособную привести к допустимому целочисленному решению.

Фрагмент лога решателя SCIP для случая фиксации, которую невозможно развить в допустимое целочисленное решение

 $^{^4}$ Верхний левый индекс «r» указывает на релаксированное значение, а верхний правый «(b)» – на то, что речь идет о бинарной переменной

После того как порог θ подобран, бинарные переменные разбиваются на две подгруппы: подгруппу бинарных переменных, выставленных в ноль $\{x_k^{(b_0)}\}$, и подгруппу бинарных переменных, выставленных в единицу $\{x_k^{(b_1)}\}$. Долю бинарных переменных, выставленных в ноль обозначим через δ_{b_0} , долю бинарных переменных, выставленных в единицу – через δ_{b_1} , а целевую функцию, найденную при заданных долях – через $f_{\theta}(\delta_{b_0}, \delta_{b_1})$.

В результате получаем исследовательский инструмент, который дает возможность управлять решением через подбор долей δ_{b_0} и δ_{b_1} при найденном пороге θ . Часто оказывается эффективным прием управления решением через подбор доли нулевых бинарных переменных δ_{b_0} .

Целевая функция, вычисленная при единичной доле нулевых бинарных переменных $f_{\theta}(\delta_{b_0}=1)$, как правило, значительно уступает целевой функции релаксированного решения f_r . Но тем неменее это решение может быть улучшено, сокращением доли δ_{b_0} (см. рис. 2 и рис. 3).

Рис. 2. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий a78cbead

Как видно из графиков, на кривой изменения верхней границы решения существует точка с наименьшим значением целевой функции $f_{\theta}(\delta_{b_0})$ допустимого целочисленного решения. Эта точка и будет «оптимальной» для рассматриваемого сценария.

8. Методы машинного обучения в задачах комбинаторной оптимизации

8.1. Постановка задачи

Цель: Разработать процедуру построения частично-заданного решения на фиксациях для сценариев с матрицей ограничений произольной структуры.

Вход: произвольная матрица ограничений⁵.

Выход: набор бинарных и целочисленных переменных, фиксация которых в ноль с высокой вероятностью приведет к допустимому целочисленному решению.

⁵Предполагается, что матрица ограничений имеет низкую меру обусловленности

Прием подавления подгруппы первичных эвристик низкой эффективности (порог: 0.05) Общее количество переменных: 859230 Количество целочисленных переменных: 173622 Количество бинарных переменных: 155 Количество ограничений: 624637 4.0479e+10 (CBC+DOH)

Рис. 3. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий 337

База: частично-заданное решение, построенное на фиксациях нулевых бинарных и целочисленных переменных в релаксированном решении.

8.2. Концепт матрицы признакового описания бинарных и целочисленных переменных

В качестве признаков бинарно-целочисленных переменных предлагается использовать:

- 1. важный признак Значение переменной x_i в «усредненном» релаксированном решении 6 ,
- 2. Модифицированную Z-оценку на «усредненном» релаксированном решении,
- 3. бесполезный признак Дробную часть значения переменной x_i в «усредненном» релаксированном решении,
- 4. важный признак Пороги бинаризации на «усредненном» релаксированном решении (каждый порог это отдельный принак),
- 5. 6ажсный признак Число ограничений n_i , в которые входит рассматриваемая переменная x_i ,
- 6. $\mathit{важный}$ $\mathit{признак}$ Число положительных n_i^+ и отрицательных n_i^- коэффициентов в ограничениях, ассоциированных с рассматриваемой переменной x_i ,
- 7. Булев маркер удаления переменной x_i после шага снижения размерности задачи,
- 8. важный признак Коэффицент c_i при переменной x_i в целевой функции $\mathbf{c}^T\mathbf{x}$,
- 9. бесполезный признак Вероятность⁷ того, что *i*-ая бинарная или целочисленная переменная x_i будет выставлена в 1 (индекс «-i» означает без учета i-ой переменной)

$$\mathbf{P}(x_i = 1) = \sigma\left(\frac{1}{t} \left(\mathbf{c}^T \mathbf{x}\right)_{-i}\right),\,$$

 $^{^6}$ Задача линейного программирования в релаксированной постановке решается с использованием различных методов (двойственный симплекс-метод, метод внутренней точки и т.д.), а затем полученные решения усредняются

 $^{^{7}}$ Идея построения признака основана на способе вычисления вероятности единичного выхода нейрона в машинах Больцмана [2, стр. 653]

где σ — логистический сигмоид, t — «температура» (чем выше температура, тем случайнее выход), \mathbf{c} — вектор коэффициентов целевой функции, \mathbf{x} — вектор значений переменных в релаксированном решении.

10. Важность x_i переменной с точки зрения пресолверов.

8.3. Стратегии решения задачи

8.3.1. Стратегия №1. Обнаружение аномалий

Задачу построения частично-заданного решения на фиксациях предлагается свести к задаче обнаружения аномалий в данных. Бинарные и целочисленные переменные, которые как ожидается примут *нулевые значения* в допустимом целочисленном решении будем считать «<u>штатным</u>» режимом, а бинарные и целочисленные переменные, которые как ожидается примут *ненулевые значения* в допустимом целочисленном решении — <u>аномалиями</u>. Такие «аномальные» экзмепляры остаются без рекомендуемого значения для фиксации, а оставшиеся нулевые «штатные» бинарные и целочисленные переменные фиксируются в ноль и на этом процедура построения частично-заданного решения считается завершенной.

Для повышения надежности прогноза предлагается использовать ансамбль детекторов аномалий. Решение о фиксации бинарной или целочисленной переменной в ноль принимается на основании большинства голосов ансамбля детекторов.

Набор данных представляет собой неупорядоченную коллекцию матриц признакового описания, ассоциированных с соответствующими lp/mps-файлами математической постановки задачи (условимся называть их *сценариями*).

Ансамбль детекторов аномалий обучается по роторной схеме:

- \circ На i-ой итерации все mampuyы npuзнакового описания (всего в наборе S матриц/сценариев) кроме i-ой матрицы используются для обучения детекторов, а на i-ой матрице признакового описания строится прогноз аномальных экземпляров, которые помечаются как «-1». В результате получается коллекция бинарных и целочисленных переменных, помеченных либо как «0», либо как «-1». Построенное решение сравнивается с допустимым целочисленным решением с помощью различных метрик качества (параметрическое гармоническое среднее, каппа Коэна, коэффициент корреляции Метьюса и т.д.). Вычисленные для i-ой матрицы метрики качества и построенное частично-заданное решение на фиксациях сохраняются в директории результатов,
- Затем описанный шаг повторяется для оставшихся матриц признакового описания объекта.
 По окончании процедуры для каждого сценария:
- о будут вычислены метрики качества,
- о будет построенно частично-заданное решение на фиксациях,

Полученные частично-заданные решения на фиксациях подаются на вход решателю SCIP. Если SCIP удалось найти решение, обозначаемое как $s_{\rm ML}$, то оно сравнивается с решением $s_{\rm FZB}$, полученным с помощью метаконфигурации FZBIVSUHPB (см. подраздел 9.2), по времени работы и по значению верхней гранцы решения.

Замечание

Как правило, в задачах обнаружения аномалий не выполняют подбор гиперпараметров детектора, но в данном случае кажется полезным изучить поведение детектора хотя бы в зависимости от параметра контаминации. Дело в том, что на практике эффективность детектора может существенно изменяться в зависимости от значений управляющих параметров

На всех сценариях группы ИКП (см. раздел 9) обнаруживается серьезный дисбаланс экземпляров положительного («аномалии», ненулевые значения переменных) и отрицательного («штатные» экземпляры, нулевые значения переменных) классов. Ожидается, что эффективность модели машинного обучения главным образом будет зависеть от способности модели выявлять аномальные экземплеры.

Действительно, *ошибка первого рода* (ложное срабатывание, т.е. когда отрицательный «штатный» экземпляр принимается за «аномальный» положительный) приводит к тому, что нулевая переменная *не будет* зафиксирована в ноль в частично-заданном решении, что с высокой вероятностью снизит производительность решателя SCIP.

Тогда как *ошибка второго рода* (пропуск объекта, т.е. когда «аномальный» положительный экземпляр принимается за «штатный» отрицательный) приводит к тому, что ненулевая переменная в частично-заданном решении будет зафиксирована в ноль. Это сделает частично-заданное решение не способным развиться в допустимое целочисленное, что значительно хуже.

Таким образом, кажется разумным сосредоточить усилия на том, чтобы минимизировать ошибку второго рода, и в результате свести к минимуму число пропусков аномалий.

Проще всего оценить качество модели с учетом большего влияния ошибок второго рода с помощью F_{β} -меры при значениях параметра $\beta>1$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \text{ precision} + \text{recall}},$$

где precision – точность, recall – полнота.

Замечание

Провести анализ приема подбора порога бинаризации. И проработать схему подбора гиперпараметров детекторов

Анализ производительности методов обнаружения аномалий Рекомендуемые значения некотрых гиперпараметров для детекторов некоторых семейств звучат следующим образом [3]:

- \circ для KNN (k Nearest Neighbors⁸) и LOF (Local Outlier Factor): $k = \max(10; 0.03 |D|)$, где |D| число экземпляров в наборе данных,
- \circ для HBOS (Histogram-based Outlier Score): n_bins = $\sqrt{|D|}$,
- о для IForest (Isolation Forest): число деревьев n_estimators=100 и число экземпляров на дерево max_samples=256,
- \circ для CBLOF (Clustering-Based Local Outlier Factor): $\alpha = 0.90, \beta = 5$ и k = 10,
- \circ для OCSVM (One-Class Support Vector Machines): ядро RFB($\nu=0.5, \gamma=1/m$), где m число признаков в наборе данных D.

 $^{^8}$ Расстояние от k-ого ближайшего соседа рассматривается как мера аномальности экземпляра

Перечисленные ниже детекторы показали крайне низкую производительность на сценариях группы ИКП:

- o KNN.
- Feature Bagging,
- ABOD (Angle-Based Outlier Detection using approximation)/FastABOD,
- LOCI (Fast outlier detection using the local correlation integral),
- CBLOF (Clustering-Based Local Outlier Factor): достаточно быстрый, но результаты отвратительные (очень низкие значения ключевых метрик качества),
- XGBOOD⁹ (Extreme Boosting Based Outlier Detection): безумно медленный ¹⁰,
- R-Graph (Outlier detection by R-graph).

Главный детектор аномалий предлагается строить с помощью агрегатора $SUOD^{11}$ (Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection) на следующих базовых детекторах:

- ECOD (Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions),
- o COPOD (Copula-Based Outlier Detection),
- o IForest (Isolation Forest),
- $\circ\,$ HBOS (Histogram-based Outlier Score).

8.3.2. Стратегия №2. Бинарная классификация со слабо выраженным миноритарным классом

Задачу построения частично-заданного решения на фиксациях предлагатеся свести к задаче бинарной классификации со слабо выраженным миноритарным классом (данные с сильным дисбалансом).

Раздел в разработке ...

8.4. Трансфер выявленного паттерна. Сценарии группы СОП

Условимся *трансфером выявленного паттерна* (или просто *трансфером паттерна*) называть являение, состоящее в том, что модель, обученная на сценариях одной группы (сценарии обучающего поднабора), оказывается способной строить корректные прогнозы на сценариях другой группы (сценарии тестового поднабора), обладающих четкими дискриминирующими атрибутами (структурные особенности матрицы ограничений и пр.), которые позволяют с высокой степенью уверенности отделять сценарии обучающего поднабора от сценариев тестового поднабора.

Другими словами, в отличие от классической постановки машинного обучения – в которой экземпляры обучающего и тестового поднаборов данных должны быть похожи друг на друга – в данном случае модель машинного обучения предлагается обучать и тестировать на сценариях, которые значимо отличаются друг от друга по каким-то ключевым аттрибутам.

⁹Требует разметки

¹⁰B https://github.com/yzhao062/pyod/issues/152 рекомендуется использовать SUOD

¹¹ https://www.andrew.cmu.edu/user/yuezhao2/papers/21-mlsys-suod.pdf

8.4.1. Сценарий tmpfvpqodxw.lp без бинарных переменных

Исследование вопроса о трансфере паттерна начнем с рассмотрения простого сценария группы СОП tmpfvpqodxw.lp https://disk.yandex.ru/d/K7bvClpltotqlg, а обучать модель машинного обучения будем в соответствие со стратегией №1 (стр. 19).

В случае сценария tmpfvpqodxw.lp для простоты можно ограничиться рассмотрением только детектора HBOS (без агрегации прогнозов других детекторов с помощью обертки SUOD) и обучать его на сценарии группы ИКП f398266b_bin.lp (см. раздел 9.2.4).

Для того чтобы использовать не ансамбль детекторов аномалий, а лишь какой-то конкретный детектор, достаточно в конфигурационном файле main_config.yaml передать полю use детектора значение False

main config.yaml. Использовать только детектор HBOS

```
detector_config:
  # Строит ансамбль детекторов аномалий
 SUDD: # Scalable Unsupervised Outlier Detection https://www.andrew.cmu.edu/user/yuezhao2/
   papers/21-mlsys-suod.pdf
   use: !!bool False # <--- NB
    # Допустимые значения 'combination': average, maximization
   combination: !!str average # стратегия агрегации прогнозов ансамбля детектеров
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
    a(0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
   verbose: !!bool True # флаг подробного вывода информации о построении модели
  # Перечень детекторов для SUOD-ансамбля. Если SUOD.use=True, то перечисленные ниже детекторы,
  # ampu6ym DETECTOR.use=True, будут добавлены в список SUOD().base_estimators.
  # Ecnu SUOD.use=False, то поиск аномалий будет выполняться с помощью одного из приведенных ниж
    е детекторов,
  # y которого ampubym DETECTOR.use=True
 COPOD: # Copula Based Outlier Detector
   use: !!bool False # <--- NB
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
    a (0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
 ECOD: # Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions
   use: !!bool False # <--- NB
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
    a(0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
 IForest: # Wrapper of scikit-learn Isolation Forest with more functionalities
   use: !!bool False # <--- NB
   n_estimators: !!int 250 # число деревьев принятния решений в лесе
   contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
    a(0.0; 0.5)
   n_jobs: -1 # число параллельно выполняемых задач
 HBOS: # Histogram-based outlier detection
   use: !!bool True # <--- NB
   n_bins: !!int 10 # число бинов для построения гистограммы
   alpha: !!float 0.05 # параметр регуляризации
    contamination: !!float 0.10 # доля выбросов в наборе данных; принимает значения из диапазон
    a (0.0; 0.5)
```

Приведенный на рис. 4 график показывает, что

- настройки решателя SCIP, ответственные за выбор переменных при ветвлении ¹² и разрешении конфликтов ¹³, а также прием подавления подгруппы первичных эвристик низкой эффективности помогают снизить временные издержки при незначительном ухудшении целевой функции (зеленая кривая) относительно решения, полученного с помощью решателя SCIP с настройками по умолчанию (красная кривая),
- дополнительное снижение временных затрат можно получить подбором гиперпараметров детектора¹⁴ (синяя кривая).

Сценарий tmpfvpqodxw.lp (обучение на f398266b_bin.lp)

Общее количество переменных: 5308 Количество целочисленных переменных: 1197 Количество бинарных переменных: 0 Количество ограничений: 13065

Рис. 4. Сводка результатов вычислительных экспериментов на сценарии группы СОП tmpfvpqodxw.lp

Детектору аномалий HBOS с подбором параметра контаменации (contamination=0.04)¹⁵ удалось снизить количество бинарных переменных – на 98, ограничений – на 177, а временные издержки снизились в 2.38 раза.

8.4.2. Синтетический сценарий 1664182546_82382.1p с бинарными переменными

Статистика¹⁶

Общее количество переменных: 5100 (4123)

Количество целочисленных переменных: 0 (0)

Количество бинарных переменных: 1768 (1132)

Количество ограничений: 11193 (10461)

¹²Παραμέτρ branching/preferbinary

 $^{^{13}\}Pi$ apamerp conflict/preferbinar

¹⁴В данном случае подбирался только гиперпараметр контаменации

 $^{^{15}{\}rm B}$ библиотеке PyOD все детекторы аномалий имеют контаминацию уровня 0.10

¹⁶В скобках указана размерность задачи после шага пресолвинга с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

```
lp-файл: https://disk.yandex.ru/d/FuEBWt4zvFIsEA
```

Блок подавления подгруппы первичных эвристик низкой эффективности конфигурационного файла SCIP

Фрагмент файла scip.set. Сценарий 1664182546_82382.lp

```
heuristics/adaptivediving/freq = -1
heuristics/fracdiving/freq = -1
heuristics/linesearchdiving/freq = -1
heuristics/objpscostdiving/freq = -1
heuristics/pscostdiving/freq = -1
heuristics/rootsoldiving/freq = -1
heuristics/veclendiving/freq = -1
```

На рис. 5 приведены результаты сравнительного анализа запусков і) решателя SCIP с настройками по умолчанию, іі) решателя SCIP на частично-заданном решении, полученном с помощью ансамбля детекторов аномалий, и ііі) решателя SCIP на фиксации, подговтоленной с помощью изолированного детектора HBOS.

Как видно из рисунка, решатель SCIP с настройками по умолчанию (синяя кривая) первое допустимое целочисленное решение с адекватным зазором находит гораздо позже схемы на частично-заданном решении, полученном с помощью ансамбля детекторов (красная кривая). Однако, спустя некоторое время схема с настройками по умолчанию быстрее выходит на конкурентное значение целевой функции (41389.75 против 41557.30).

Схема с подбором гиперпараметра контаменации изолированного детектора HBOS, несмотря на то, что размерность задачи снижается, приводит к очень слабому решению.

Вывод по сценарию: принимая во внимание, что ансамбль детекторов аномалий обучался лишь на одном сценарии группы ИКП, который существенно и с точки зрения размерности, и с точки зрения структуры матрицы ограничений отличается от сценария, на котором строился прогнгоз модели, допустимо говорить о трансфере/переносе шаблона, выявленного на сценарии f398266b_bin.lp группы ИКП.

8.4.3. Синтетический сценарий 1664182533_1587787.1р с бинарными переменными

Статистика 17

```
Общее количество переменных: 4759 (3780)
Количество целочисленных переменных: 0 (0)
Количество бинарных переменных: 1701 (1063)
```

Количество ограничений: 10307 (9581)

lp-файл: https://disk.yandex.ru/d/n0Dqn6pr6GK9mg

Блок подавления подгруппы первичных эвристик низкой эффективности конфигурационного файла SCIP

Фрагмент файла scip.set. Сценарий 1664182533 1587787.lp

```
heuristics/adaptivediving/freq = -1
heuristics/fracdiving/freq = -1
heuristics/linesearchdiving/freq = -1
```

 $^{^{17}}$ В скобках указана размерность задачи после шага пресолвинга с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

Общее количество переменных: 5100 Количество целочисленных переменных: 0 Количество бинарных переменных: 1768 Количество ограничений: 11193

Рис. 5. Сводка результатов вычислительных экспериментов на сценарии группы СОП 1664182546_82382.1p

```
heuristics/objpscostdiving/freq = -1
heuristics/pscostdiving/freq = -1
heuristics/rootsoldiving/freq = -1
heuristics/veclendiving/freq = -1
```

На рис. 6 приведены результаты сравнительного анализа запусков і) решателя SCIP с настройками по умолчанию, іі) решателя SCIP на частично-заданном решении, полученном с помощью ансамбля детекторов аномалий, и ііі) решателя SCIP на фиксации, подговтоленной с помощью изолированного детектора HBOS.

Здесь схема с настройками по умолчанию проигрывает схеме на частично-заданном решении, построенном с помощью ансамбля детекторов аномалий, и по времени расчета, и по значению целевой функции. Подбор параметра контаминации детектора HBOS как и в предыдущем случае не позволяет улучшить решение — кривая «замирает» на асимптоте 52070.46.

Таким образом, в данном случае ансамбль детекторов аномалий с обреткой SUOD снижает временные издержки на получение решения и одновременно улучшает целевую функцию.

Вывод по сценарию: принимая во внимание, что ансамбль детекторов аномалий обучался лишь на одном сценарии группы ИКП, который существенно и с точки зрения размерности, и с точки зрения структуры матрицы ограничений отличается от сценария, на котором строился прогнгоз модели, допустимо говорить о трансфере/переносе шаблона, выявленного на сценарии f398266b_bin.lp группы ИКП.

Общее количество переменных: 4759 Количество целочисленных переменных: 0 Количество бинарных переменных: 1701 Количество ограничений: 10307

Рис. 6. Сводка результатов вычислительных экспериментов на сценарии группы СОП 1664182533_1587787.1p

8.4.4. Синтетический сценарий 1664182480_4326847.1р с бинарными переменными

Статистика¹⁸

Общее количество переменных: 7123 (6445)

Количество целочисленных переменных: 0 (0)

Количество бинарных переменных: 1548 (1324)

Количество ограничений: 17696 (16805)

lp-файл: https://disk.yandex.ru/d/f_6GH9mzzxAGQg

Блок подавления подгруппы первичных эвристик низкой эффективности конфигурационного файла SCIP

Фрагмент файла scip.set. Сценарий 1664182480_4326847.lp

```
heuristics/adaptivediving/freq = -1
heuristics/fracdiving/freq = -1
heuristics/linesearchdiving/freq = -1
heuristics/objpscostdiving/freq = -1
heuristics/pscostdiving/freq = -1
heuristics/rootsoldiving/freq = -1
heuristics/veclendiving/freq = -1
```

На рис. 7 приведены результаты сравнительного анализа запусков i) решателя SCIP с настройками по умолчанию и ii) решателя SCIP на фиксации, подговтоленной с помощью изолированного детектора HBOS.

На рассматриваемом сценарии получить решение с помощью ансамбля детекторов аномалий за отведенное для поиска время не удалось, однако, изолированный детектор HBOS с подобран-

¹⁸В скобках указана размерность задачи после шага пресолвинга с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

ным параметром контаминации смог выйти на значение целевой функции 53682.08. Это решение проигрывает решению, полученному с помощью SCIP базовой конфигурации (47245.97), но тем не менее указывает жизнеспособность концепции использования стратегии обнаружения аномалий для построения частично-заданного решения на фиксациях с подбором параметра контаминации детекторов.

Вывод по сценарию: принимая во внимание, что ансамбль детекторов аномалий обучался лишь на одном сценарии группы ИКП, который существенно и с точки зрения размерности, и с точки зрения структуры матрицы ограничений отличается от сценария, на котором строился прогнгоз модели, допустимо говорить о трансфере/переносе шаблона, выявленного на сценарии f398266b_bin.lp группы ИКП.

Сценрий 1664182480_4326847.lp (обучение на f398266b_bin.lp)

Общее количество переменных: 7123 Количество целочисленных переменных: 0 Количество бинарных переменных: 1548 Количество ограничений: 17696

Рис. 7. Сводка результатов вычислительных экспериментов на сценарии группы СОП 1664182480_4326847.1р

8.4.5. Синтетический сценарий 1664182523_380519.1р с бинарными переменными

Статистика¹⁹

Общее количество переменных: 4578

Количество целочисленных переменных: 0 Количество бинарных переменных: 1331

Количество ограничений: 10722

lp-файл: https://disk.yandex.ru/d/i-FhZ9LD8ToeXg

Блок подавления подгруппы первичных эвристик низкой эффективности конфигурационного файла SCIP

¹⁹В скобках указана размерность задачи после шага пресолвинга с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

Фрагмент файла scip.set. Сценарий 1664182523 380519.lp

```
heuristics/adaptivediving/freq = -1
heuristics/fracdiving/freq = -1
heuristics/linesearchdiving/freq = -1
heuristics/objpscostdiving/freq = -1
heuristics/pscostdiving/freq = -1
heuristics/rootsoldiving/freq = -1
heuristics/veclendiving/freq = -1
```

На рис. 8 приведены результаты сравнительного анализа запусков i) решателя SCIP с настройками по умолчанию, и ii) решателя SCIP на частично-заданном решении, полученном с помощью ансамбля детекторов аномалий.

Здесь ансамбль детекторов аномалий выигрывает 2.78 минуты при целевой функции, значение которой практически не отличается от значения целевой функции в решении, полученном с помощью решателя SCIP базовой конфигурации.

Сценрий 1664182523_380519.lp (обучение на f398266b_bin.lp)

Общее количество переменных: 4578 Количество целочисленных переменных: 0 Количество бинарных переменных: 1331 Количество ограничений: 10722

Рис. 8. Сводка результатов вычислительных экспериментов на сценарии группы СОП 1664182523_380519.1p

Вывод по сценарию: принимая во внимание, что ансамбль детекторов аномалий обучался лишь на одном сценарии группы ИКП, который существенно и с точки зрения размерности, и с точки зрения структуры матрицы ограничений отличается от сценария, на котором строился прогнгоз модели, допустимо говорить о трансфере/переносе шаблона, выявленного на сценарии f398266b_bin.lp группы ИКП.

9. Описание вычислительных экспериментов на сценариях группы ИКП

На всех сценариях группы ИКП (как с бинарными переменными, так и без них) решения удавалось найти с помощью *метаконфигурации* (см. раздел 9.2), включающей прием подавления подгруппы первичных эвристик низкой эффективности и процедуру построения частично-заданного решения на фиксациях (для нулевых бинарных и целочисленных переменных).

9.1. Поиск решения на сценариях *без* бинарных переменных. Метаконфигурации SUH, FZBIVSUHPB и ансамбль детекторов аномалий

Метаконфигурация 20 SUH (Suppress Useless Heuristics) процедуры поиска решения сводится к приему подавления подгруппы первичных эвристик низкой эффективности.

Замечание

Решение получено без доменно-ориентированных эвристик, «теплого» старта и подбора параметров решателя

Конфигурация решателя SCIP для всех сценариев группы ИКП (без бинарных переменных) имеет вид

scip.set. Сценарии группы ИКП без бинарных переменных

```
# критерии останова и перезапуска
limits/time = 7200
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

9.1.1. Сценарий F398266В без бинарных переменных

Статистика

Общее количество переменных: 774901

Количество целочисленных переменных: 172449

Количество бинарных переменных: 0 Количество ограничений: 650263

lp-файл: https://disk.yandex.ru/d/o_eAb9475u5ueg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

o INTSHIFING.

 $^{^{20}}$ Под метаконфигурацией понимается совокупность конфигурации решателя и набора эвристических приемов

• RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/URRnZ8soTaJEgQ

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/N2tfhj1N6RczzA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/-y7p5FyJyYirkw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/1JaMC9aFjubDbA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 1.063% лучше в смысле целевой функции и на 10.20% – в смысле временных издержек (рис. 9).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.155% лучше в смысле целевой функции и на 65.27% – в смысле временных издержек (табл. 1).

Синим цветом обозначен выигрыш в процентах.

Таблица 1. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий **f398266b** без бинарных переменных

$Cnoco\delta$	Полное время рас-	1 ,
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	21.38	5.905048
SCIP+SUH	19.27 + 9.87%	5.842154 + 1.065%
SCIP+FZB	9.43 +55.89%	5.836815 +1.155%

9.1.2. Сценарий 50197DF7 без бинарных переменных

Статистика

Общее количество переменных: 718464

Количество целочисленных переменных: 159332

Количество бинарных переменных: 0

Количество ограничений: 595797

lp-файл: https://disk.yandex.ru/d/KO_xj9dkgUdcog

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/R4B1fkTx-nE3tg

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/BLvUmZ43vtMFKg

Сценарий input f398266b-093b-ec11-a2d4-005056a5ee74.json

Общее количество переменных: 774901 Количество целочисленных переменных: 172449 Количество бинарных переменных: 0 Количество ограничений: 650263

Рис. 9. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий f398266b без бинарных переменных

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/yMFLr-6mLfdPAw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/XiRSvteL9xC4pg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.25% лучше в смысле целевой функции и на 46.43% — в смысле временных издержек (рис. 10).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.191% лучше в смысле целевой функции и на 82.13% – в смысле временных издержек (табл. 2).

Синим цветом обозначен выигрыш в процентах.

Таблица 2. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 50197df7 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	18.35	3.585532
SCIP+SUH	9.83 +46.43%	3.540567 + 1.252%
SCIP+FZB	3.28 + 82.13%	3.542843 +1.191%

Сценарий input 50197df7-ff50-ec11-a2d7-005056a5ee74.json

Общее количество переменных: 718464 Количество целочисленных переменных: 159332 Количество бинарных переменных: 0 Количество ограничений: 595797

Рис. 10. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 50197df7 без бинарных переменных

9.1.3. Сценарий 7FAC4231 без бинарных переменных

Статистика

Общее количество переменных: 737585

Количество целочисленных переменных: 147789

Количество бинарных переменных: 0 Количество ограничений: 540018

lp-файл: https://disk.yandex.ru/d/qiZAmraUNK1Peg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex. ru/d/20NeMuQ7NF_ccA

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk. yandex.ru/d/QxE0HoREHzgHQQ

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk. yandex.ru/d/FHZGj_Kyg8dDiw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https: //disk.yandex.ru/d/8H1vw6zkQS7DAg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 5.22% лучше в смысле целевой функции и на 27.10% – в смысле временных издержек (рис. 11).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 5.452% лучше в смысле целевой функции и на 90.16% – в смысле временных издержек (табл. 3).

Синим цветом обозначен выигрыш в процентах.

Таблица 3. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 7fac4231 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	16.05	1.087609
SCIP+SUH	11.67 +27.29%	1.030866 + 5.222%
SCIP+FZB	3.58 + 77.69%	1.028349 + 5.452%

Сценарий input_7fac4231-5951-ec11-a2d7-005056a5ee74.json

Общее количество переменных: 737585 Количество целочисленных переменных: 147789 Количество бинарных переменных: 0 Количество ограничений: 540018 1e10 SCIP 8.0.0 Windows 10 1.30 Отклонение ЦФ=-16.81% БРН=95.6047% SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-14.94% БРН=95.6788% 1.25 целевой функции SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-13.16% БРН=96.0402% 1.20 1.15 CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-1.38% л 3начение 1.10 БРН=97.8625% CBC+DOH БРН=97.9338% SCIP 7.0.3+SUH Linux (Centos 7) SCIP без "теплого" старта, Отклонение ЦФ=+5.22% доменно-ориентированных эвристик и 1.00 БРН=97.9048% подбора параметров решателя! 0.95 3 15 18 21 24 6 12 Полное время расчета t, мин

Рис. 11. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 7fac4231 без бинарных переменных

9.1.4. Сценарий СА485А55 без бинарных переменных

Статистика

Общее количество переменных: 718601

Количество целочисленных переменных: 140858

Количество бинарных переменных: 0 Количество ограничений: 514229

lp-файл: https://disk.yandex.ru/d/iSP6xrh4K_wHEQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/_WzkmgoueNb2Bg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/sLUW51xmpMBpcw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/3Ls6QrAWVUMdZw

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 0.683% лучше в смысле целевой функции и на 46.48% – в смысле временных издержек (рис. 12).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.244% лучше в смысле целевой функции и на 88.53% – в смысле временных издержек (табл. 4).

Синим цветом обозначен выигрыш в процентах.

Таблица 4. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий са485а55 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	20.05	4.597048
SCIP+SUH	10.73 +46.48%	4.565579 + 0.683%
SCIP+FZB	4.34 + 78.35%	4.539819 + 1.244%

Сценарий input_ca485a55-0485-ec11-a2db-005056a5ee74.json

Общее количество переменных: 718601 Количество целочисленных переменных: 140858 Количество бинарных переменных: 0 Количество ограничений: 514229 1e10 SCIP 8.0.0 Windows 10 Отклонение ЦФ=-5.70% БРН=92.8286% SCIP без "теплого" старта, 4.9 доменно-ориентированных эвристик и подбора параметров решателя! Значение целевой функции 9. 2. 8. 8. 8. 8. SCIP 7.0.3 Linux (Centos 7) 4.8 Отклонение ЦФ=-4.97 БРН=93.036% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-0.65% БРН=94.3883% CBC+DOH БРН=94.8141% SCIP 7.0.3 MacOS (Monterey 12) SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+0.34% БРН=94.6821% Отклонение ЦФ=+0.683% БРН=94.7174% 4.5 15 35 5 10 20 25 30 40 45 Полное время расчета t, мин

Рис. 12. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий са485а55 без бинарных переменных

9.1.5. Сценарий 276 без бинарных переменных

Статистика

Общее количество переменных: 809224

Количество целочисленных переменных: 162562

Количество бинарных переменных: 0 Количество ограничений: 602190

lp-файл: https://disk.yandex.ru/d/QaS5kd7VRZQ66A

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/M2V88djiiGM5PA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/G0ustAVT619CeA

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/YBXB5GCECJiBIA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 3.67% лучше в смысле целевой функции и на 51.56% – в смысле временных издержек (рис. 13).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 4.86% лучше в смысле целевой функции и на 78.35% – в смысле временных издержек (табл. 5).

Синим цветом обозначен выигрыш в процентах.

Таблица 5. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 276 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	29.87	1.430789
SCIP+SUH	14.47 + 51.56%	1.378299 + 3.669%
SCIP+FZB	3.95 + 78.35%	1.361368 + 4.857%

9.1.6. Сценарий 337 без бинарных переменных

Статистика

Общее количество переменных: 859075

Количество целочисленных переменных: 173622

Количество бинарных переменных: 0 Количество ограничений: 624327

Сценарий input 276.json

Общее количество переменных: 809224

Количество целочисленных переменных: 162562 Количество бинарных переменных: 0 Количество ограничений: 602190 1e10 Отклонение ЦФ=-28.64% ВРН=94.885% SCIP 8.0.0 Windows 10 1.9 SCIP без "теплого" старта, доменно-ориентированных эвристик и подбора параметров решателя! 1.8 SCIP 7.0.3 Linux (Centos 7) 3начение целевой функции 1.1 1.€ SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-26.73% 5PH=94.9826% Отклонение ЦФ=-24.11% БРН=94.9386% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-0.92% БРН=96.5865% CBC+DOH ■ 6PH=96.6934% 1.4 SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+3.67% БРН=96.7882% 1.3 35 40 10 15 20 25 30 45

Рис. 13. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276 без бинарных переменных

Полное время расчета t, мин

lp-файл: https://disk.yandex.ru/d/keyQLAagsD7Sbw

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/ZUIEo3dDq77FjA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/0nUXIrIKuzqZlw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/U0NCnMQN1akHUA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 22.12% лучше в смысле целевой функции и на 18.32% – в смысле временных издержек (рис. 14).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 22.59% лучше в смысле целевой функции и на 70.84% – в смысле временных издержек (табл. 6).

Синим цветом обозначен выигрыш в процентах.

Таблица 6. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 337 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeния, \times 10^{10}$
CBC+DOH	20.85	3.825042
SCIP+SUH	17.03 + 18.32%	2.978782 + 22.123%
SCIP+FZB	6.08 + 70.84%	2.961019 + 22.588%

Сценарий input 337.json

Общее количество переменных: 859075 Количество целочисленных переменных: 173622 Количество бинарных переменных: 0 Количество ограничений: 624327

Рис. 14. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337 без бинарных переменных

9.1.7. Сценарий 13D686AB без бинарных переменных

Статистика

Общее количество переменных: 786020

Количество целочисленных переменных: 168857

Количество бинарных переменных: 0

Количество ограничений: 598414

lp-файл: https://disk.yandex.ru/d/3KkYKzNl3PjGdg

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/EXylMeX6Ytz4tg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/dXUMVbSWRbqeDQ

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/Knavj89muxGw-w

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 9.40% лучше в смысле целевой функции и на 33.03% — в смысле временных издержек (рис. 15).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 10.44% лучше в смысле целевой функции и на 75.82% – в смысле временных издержек (табл. 7).

Синим цветом обозначен выигрыш в процентах.

Таблица 7. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 13d686ab без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^9$
CBC+DOH	28.82	8.774743
SCIP+SUH	19.30 +33.03%	7.949568 + 9.403%
SCIP+FZB	6.97 +75.82%	7.858548 + 10.441%

Сценарий input_13d686ab-9e77-ec11-a2da-005056a5ee74.json

Общее количество переменных: 786020 Количество целочисленных переменных: 168857 Количество бинарных переменных: 0 Количество ограничений: 598414 1e10 1.05 SCIP без "теплого" старта, SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-14.12% БРН=92.4941% доменно-ориентированных эвристик и подбора параметров решателя! 1.00 SCIP 8.0.0 Windows 10 ΟΤΚΛΟΗΘΗΙΙΘΕ ЦΦ=-13.39% SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-12.05% БРН=92.6924% БРН=92.4875% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-1.66% БРH=94.3008% CBC+DOH БРН=94.427% SCIP 7.0.3+SUH Linux (Centos 7) 0.80 Отклонение ЦФ=+9.40% БРН=94.6894% 10 15 35 40 Полное время расчета t, мин

Рис. 15. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 13d686ab без бинарных переменных

9.1.8. Сценарий А78СВЕАD без бинарных переменных

Статистика

Общее количество переменных: 795400

Количество целочисленных переменных: 180160

Количество бинарных переменных: 0

Количество ограничений: 658339

lp-файл: https://disk.yandex.ru/d/vTPPa1H3VFD7tA

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/fARVcHb66ToHxQ

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/4DItEZTja77cog

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/vn1K834mY5MEng

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к приему на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.57% лучше в смысле целевой функции и на 23.30% – в смысле временных издержек (рис. 16).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к приему построения решения на доменно-ориентированных эвристиках дает решение задачи, которое на 1.39% лучше в смысле целевой функции и на 81.04% – в смысле временных издержек (табл. 8).

Синим цветом обозначен выигрыш в процентах.

Таблица 8. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий a78cbead без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	26.05	3.801546
SCIP+SUH	19.98 + 23.30%	3.741685 + 1.576%
SCIP+FZB	4.94 +81.04%	3.748890 + 1.386%

9.1.9. Сценарий 496 (hard) без бинарных переменных

Статистика²¹

Общее количество переменных: 864743 (48862) (90762)

Количество целочисленных переменных: 177365 (5008) (25872)

Количество бинарных переменных: 0 (332) (27) Количество ограничений: 610819 (25438) (39119)

lp-файл: https://disk.yandex.ru/d/CUA7wSn35k7Gbw

Решение задачи было найдено с помощью первичной эвристики INTSHIFTING.

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/tbMiAbYmaAOrhg

²¹В первых скобках указана размерность задачи после шага пресолвинга с фиксацией FZBIVSUHPB, а во вторых – с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

Сценарий input_a78cbead-073b-ec11-a2d4-005056a5ee74.json

Общее количество переменных: 795400

Количество целочисленных переменных: 180160 Количество бинарных переменных: 0 Количество ограничений: 658339 1e10 4 15 SCIP 7.0.3 Linux (Centos 7) SCIP без "теплого" старта, Отклонение ЦФ=-7.13% БРН=93.7065% 4.10 доменно-ориентированных эвристик и подбора параметров решателя! 4.05 Значение целевой функции SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-6.70% БРН=93.7089% 4.00 SCIP 8.0.0 Windows 10 Отклонение ЦФ=-5.44% БРН=93.8405% 3.95 3.90 CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-0.79% 3.85 БРH=95.9525% CBC+DOH БРН=96.0087% 3.80 SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+1.57% БРН=96.0739% 3.75 30 5 10 15 20 25

Рис. 16. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий a78cbead без бинарных переменных

Полное время расчета t, мин

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/AQptE3s3NF4bug

Файл решения задачи (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/VMZLFWoT8OftXA

Файл статистической сводки (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/KckqXgoKfv2fyQ

Решение SCIP+ML получено с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов.

Вывод по сценарию: метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к приему на доменно-ориентированных эвристиках CBC+MS (measure of similarity) дает решение задачи, которое на 9.823% лучше в смысле целевой функции и на 69.13% – в смысле временных издержек (табл. 9).

Решение, полученное с помощью ансамбля детекторов аномалий, обученного на сценарии $f398266b_bin.1p$, на 9.678% превосходит CBC+MS в смысле целевой функции и на 71.82% – в смысле временных издержек.

SCIP+ML(0.10)f — решение, полученное с помощью ансамбля детекторов аномалий без подбора параметра контаменации при первом запуске приложения, SCIP+ML(0.10)e — то же самое, при запуске приложения в «исследовательском режиме» (матрица ограничений обучающего поднабора данных и релаксированные решения не вычисляются повторно).

Синим цветом обознаневниев процентех. решение было прервано

Таблица 9. Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и ансамбля детекторов аномалий. Сценарий 496 без бинарных переменных

Способ	Полное время рас- чета, мин	$Bерхняя$ граница решения, $\times 10^7$
CBC+MS*	5.00	6.536728
Gurobi 9.12	5.22 -0.04%	5.834197 + 10.747%
SCIP 7.0.3d**	15.42 -66.15%	10.66377 -38.702%
SCIP+FZB	1.54 +69.13%	5.894658 + 9.823%
$\overline{\text{SCIP}+\text{ML}(0.10)\text{f}}$	4.56 +8.8%	5.904120 + 9.678%
SCIP+ML(0.10)e	1.51 + 69.76%	5.904120 + 9.678%

9.1.10. Сценарий 514 (hard) без бинарных переменных

Статистика²²

Общее количество переменных: 775879 (77367) (120764)

Количество целочисленных переменных: 145292 (5817) (32895)

Количество бинарных переменных: 0 (30) (14) Количество ограничений: 541040 (45892) (61074)

lp-файл: https://disk.yandex.ru/d/jQqSqBKb6iG-vw

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING.
- RENS.

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/1N2FdsqwEQcVTQ

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/iIdbACgh59EpVg

Файл решения задачи (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/5kRy0UsIOatHsQ

Файл статистической сводки (ансамбль детекторов аномалий) доступен по ссылке https://disk.yandex.ru/d/rNUU8HmeBGLFRQ

Решение SCIP+ML получено с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов.

Вывод по сценарию: метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к приему построения решения с помощью меры подобия CBC+MS (measure of similarity) дает решение задачи, которое на 18.616% лучше в смысле целевой функции и на 51.82% хуже в смысле временных издержек (табл. 10).

Решение, полученное с помощью ансамбля детекторов аномалий 23 , обученного на сценарии f398266b_bin.lp, на 19.562% превосходит CBC+MS в смысле целевой функции и на 6.31% – в смысле временных издержек.

SCIP+ML(0.10)f – решение, полученное с помощью ансамбля детекторов аномалий без подбора параметра контаменации при первом запуске приложения, SCIP+ML(0.10)e – то же самое,

²²В первых скобках указана размерность задачи после шага пресолвинга с фиксацией FZBIVSUHPB, а во вторых - с фиксацией, полученной с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов

²³Решение принудительно останавливалось на 350 секунде (параметр limits/softtime = 350)

при запуске приложения в «исследовательском режиме» (матрица ограничений обучающего поднабора данных и релаксированные решения не вычисляются повторно).

Синим цветом обозначен выигрыш в процентах, а красным – проигрыш.

Таблица 10. Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и ансамбля детекторов аномалий. Сценарий 514 без бинарных переменных

Способ	Полное время рас- чета, мин	$Bерхняя$ граница решения, $\times 10^9$
CBC+MS*	13.00	5.243829
Gurobi 9.12	11.(6) + 10.31	4.239092 +19.160%
SCIP 7.0.3d**	60.32 -79.47%	47.82659 -89.036 %
SCIP+FZB	26.98 -51.82%	4.267692 +18.616%
$\overline{\text{SCIP}+\text{ML}(0.10)}$ f	12.171 + 6.38%	4.217134 +19.580%
SCIP+ML(0.10)e	6.53 +49.77%	4.217134 +19.580%

^{* –} опорное решение

9.1.11. Сценарий 519 (hard) без бинарных переменных

Статистика²⁴

Общее количество переменных: 684412 (75034)

Количество целочисленных переменных: 159200 (5424)

Количество бинарных переменных: 0 (44) Количество ограничений: 447182 (44735)

lp-файл: https://disk.yandex.ru/d/MMvnnYXK4J4Xxw

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- o ONEOPT.
- VECLENDI,
- LINESEARCH,
- RENS.

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/25B3mUiRYdid3A

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/L3TyaXp56rZjCA

Файл решения задачи (ансамбль детекторов аномалий) доступен по ссылке

Файл статистической сводки (ансамбль детекторов аномалий) доступен по ссылке

Решение SCIP+ML получено с помощью ансамбля детекторов аномалий без подбора гиперпараметров детекторов.

Вывод по сценарию: метаконфигурация FZBIVSUHPB (подробнее в разделе 9.2) по отношению к приему построения решения на доменно-ориентированных эвристиках CBC+MS (measure of similarity) дает решение задачи, которое на % лучше в смысле целевой функции и на % хуже в смысле временных издержек (табл. 11).

^{** –} решение было прервано

 $^{^{24}\}mathrm{B}$ скобках указана размерность задачи после шага пресолвинга с фиксацией FZBIVSUHPB

Решение, полученное с помощью отдельного детектора аномалий, обученного на сценарии $f398266b_bin.lp$, на % превосходит CBC+MS в смысле целевой функции и на % – в смысле временных издержек.

SCIP+ML(0.10)f – решение, полученное с помощью ансамбля детекторов аномалий без подбора параметра контаменации при первом запуске приложения, SCIP+ML(0.10)e – то же самое, при запуске приложения в «исследовательском режиме» (матрица ограничений обучающего поднабора данных и релаксированные решения не вычисляются повторно).

Синим цветом обозначен выигрыш в процентах, а красным – проигрыш.

Таблица 11. Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и ансамбля детекторов аномалий. Сценарий 519 без бинарных переменных

Способ	Полное время рас- чета, мин	$Bерхняя$ граница решения, $\times 10^7$
CBC+MS*	6.00	7.719212
Gurobi 9.12	3.48 +42.00%	7.062839 + 8.503%
SCIP 7.0.3d**	41.92 -91.70%	31.59748 + 77.647%
SCIP+FZB (a)	5.23 + 12.83%	7.901148 -2.302%
SCIP+FZB (b)	28.83 - 79.19%	7.374810 + 4.462%
m SCIP+ML(0.10)f	42.07 -85.74 %	7.014369 + 9.130%

^{* –} опорное решение

9.2. Поиск решения на сценариях c бинарными переменными. Метаконфигурация FZBIVSUHPB

На ранних стадиях изучения проблемы высокоразмерных сценариев с бинарными переменными, поиск решения осуществлялся в семь шагов:

- 1. Подавить подгруппу первичных эвристик низкой эффективности (см. раздел 7.2),
- 2. При разрешении конфликтов и ветвлении²⁵ отдавать предпочтение бинарным переменным,
- 3. Найти релаксированное решение задачи,
- 4. Подобрать порог бинаризации на релаксированном решении для бинарных переменных (см. раздел 7.3),
- 5. Зафиксировать *нулевые* 0-bin и *единичные* 1-bin *бинарные переменные*; подать фиксацию решателю,
- 6. В решении, найденном на предыдущей итерации, зафиксировать *нулевые целочисленные* 0-int и *единичные бинарные* 1-bin *переменные*; полученную фиксацию подать на вход решателю,
- 7. В решении, полученном на предыдущей итерации, зафиксировать *нулевые бинарные* 0-bin и *целочисленные* 0-int *переменные*; фиксацию подать на вход решателю.

Процедура поиска оказалась чувствительной к параметру autorestartnodes. Графическая интерпретация результатов вычислительных экспериментов с разверткой процедуры поиска верхней границы решения во времени приведена на рис. 17, 18, 19 и 20.

Позже описанную процедуру удалось упростить и свести к следующей метаконфигурации FZBIVSUHPB (Fixed Zero Binary and Integer Variables, Suppress Useless Heuristics, Prefer Binary):

^{** –} решение было прервано

 $^{^{25}{}m K}$ сожалению, на сценариях группы ИКП с бинарными переменными решателю SCIP не удается найти решение в корне дерева

- 1. Подавить подгруппу первичных эвристик низкой эффективности,
- 2. При разрешении конфликтов и ветвлении отдавать предпочтение бинарным переменным,
- 3. Зафиксировать *нулевые бинарные* 0-bin и *нулевые целочисленные* 0-int *переменные* в релаксированном решении (см. раздел 7.1).

Конфигурация решателя SCIP для всех сценариев группы ИКП (с бинарными переменными) имеет вид

scip.set. Сценарии группы ИКП с бинарными переменными

```
# критерии останова и перезапуска
limits/time = 7200
limits/autorestartnodes = -1
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# управление стратегиями анализа конфликтов и ветвления
conflict/preferbinary = True
branching/preferbinary = True

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/faaspump/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Все эксперименты проводились на виртуальной машине Linux (Centos 7) Intel Core[™] i7 (8 CPUs), $3.6 \mathrm{GHz}$, RAM $16 \mathrm{Gb}$.

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

Кодовая база решения доступна по ссылке https://gitdp.zyfra.com/ds_and_math_users/ml-dl-in-operations-reaseearches.git

9.2.1. Сценарий А78СВЕАО с бинарными переменными

Статистика

Общее количество переменных: 797818

Количество целочисленных переменных: 180160

Количество бинарных переменных: 2418

Количество ограничений: 663175

lp-файл: https://disk.yandex.ru/d/JbT3KR5Yi1ZomQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING,
- o ONEOPT,
- o GINS.

Фргамент лога сессии SCIP

```
...

time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr|
dualbound | primalbound | gap | compl.
```

```
d1790s | 1881 | 1668 | 1010k | 296.9 | distribu | 93 | 50k |
                                                           43k|
                                                                 43k|
                                                                        0 | 1 | 385 | 3585 |
   3.757279e+10 | 3.894342e+10 |
                                  3.65%
d1790s| 1881 | 1668 | 1010k| 296.9 |distribu| 93 |
                                                      50k|
                                                            43k|
                                                                 43k|
                                                                        0 | 1 | 385 | 3585 |
   3.757279e+10 | 3.894341e+10 |
                                  3.65%
                                           7.70%
i1792s| 1882 | 1667 | 1011k| 297.0 | oneopt| 93 |
                                                      50k|
                                                            43k|
                                                                 43k|8612 | 0 | 385 |3585 |
   3.757279e+10 | 3.893993e+10 |
                                  3.64%|
                                           7.70%
1796s | 1900 | 1687 | 1016k | 297.0 | 3669M | 93 |
                                                     50k|
                                                          43k|
                                                                43k|8644 | 1 | 387 |3585 |
   3.757279e+10 | 3.893993e+10 |
                                  3.64%|
                                           2.82%
L1902s| 1982 | 1769 | 1090k| 313.4 |
                                                           43k| 43k|8935 | 1 | 398 |3590 |
                                         gins| 93 |
                                                     50k|
   3.757279e+10 | 3.875897e+10 |
                                  3.16%
                                           2.83%
                                         gins| 93 |
                                                            43k|
                                                                 43k|8935 | 1 | 398 |3590 |
L1912s | 1982 | 1769 | 1090k | 313.4 |
                                                     50k|
                                           2.83%
   3.757279e+10 | 3.864257e+10 |
                                  2.85%
                                                                 43k|8935 | 1 | 398 |3590 |
i1920s| 1982 | 1769 | 1099k| 316.2 | oneopt| 93 |
                                                     50k|
                                                            43k|
   3.757279e+10 | 3.864241e+10 |
                                  2.85%
                                           2.83%
1954s| 2000 | 1787 | 1133k| 325.5 | 3731M | 93 |
                                                     50k|
                                                          43k|
                                                                43k|9004 | 1 | 398 |3591 |
   3.757279e+10 | 3.864241e+10 |
                                  2.85%
                                           2.83%
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/6FPE-S5VupA6iw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/9G-v54ywEK1TJA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.46% лучше в смысле целевой функции и на 19.64% – в смысле временных издержек (табл. 12).

В табл. 12 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepeomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 12. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий a78cbead с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeния, \times 10^{10}$
CBC+DOH	39.82	3.961502
SCIP+MC (a)	29.83 + 25.09%	3.894342 +1.70%
$\overline{\text{SCIP+MC}(b)}$	32.00 +19.64%	3.864241 + 2.46%

9.2.2. Сценарий 7FAC4231 с бинарными переменными

Статистика

Общее количество переменных: 740251

Количество целочисленных переменных: 147789

Количество бинарных переменных: 2666

Количество ограничений: 545350

lp-файл: https://disk.yandex.ru/d/3NbbjfLW5zhejQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- ONEOPT,
- o GINS,
- CROSSOVER,
- o ALNS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
               | primalbound | gap
    dualbound
                                      | compl.
                341 | 91171 | 102.3 | intshift | 309 | 41k | 33k | 34k | 2788 | 5 | 57 | 3711 |
r 454sl
         372 |
   1.053077e+10 | 1.309195e+10 | 24.32%|
                                          0.78%
         373 |
               340 | 91171 | 102.0 | oneopt| 309 | 41k| 33k| 34k|2788 | 0 | 57 |3711 |
   1.053077e+10 | 1.308634e+10 | 24.27%|
                                         0.78%
             369 | 93623 | 101.3 | 2493M | 309 | 41k| 33k| 34k|2950 | 1 | 57 |3761 |
   1.053077e+10 | 1.308634e+10 | 24.27% | 0.29%
                                        gins | 309 | 41k | 33k | 34k | 3084 | 1 | 57 | 3813 |
L 507s| 473 |
                442 |106991 | 113.9 |
   1.053077e+10 | 1.297515e+10 | 23.21%|
                                         0.29%
                                        gins| 309 | 41k|
        473 |
                442 | 106991 | 113.9 |
                                                           33k|
                                                                 34k|3084 | 1 | 57 |3813 |
L 512sl
   1.053077e+10 | 1.292548e+10 | 22.74%| 0.29%
                                                           33k|
                                                                 34k|3084 | 1 | 57 |3813 |
L 522s|
        473 |
               442 | 106991 | 113.9 |
                                        gins| 309 | 41k|
   1.053077e+10 | 1.289283e+10 | 22.43% | 0.29%
                                         gins| 309 |
                                                           33k|
         473 |
               442 | 106991 | 113.9 |
                                                     41k|
                                                                 34k|3084 | 1 | 57 |3813 |
L 525sl
   1.053077e+10 | 1.286340e+10 | 22.15%|
                                         0.29%
                442 | 112279 | 125.1 | oneopt | 309 |
                                                           33k|
                                                                 34k|3084 |
                                                     41k|
   1.053077e+10 | 1.285668e+10 | 22.09%|
                                         0.29%
                                                                 34k|3084 | 1 | 58 |3813 |
r 531sl
        474 |
                443 | 120630 | 142.5 | intshift | 309 | 41k |
                                                           33k|
   1.053077e+10 | 1.197786e+10 | 13.74% | 0.29%
i 532s| 474 |
               373 | 124926 | 151.6 | oneopt | 309 | 41k | 33k | 34k | 3084 | 1 | 58 | 3813 |
   1.053077e+10 | 1.197230e+10 | 13.69% | 0.29%
             399 | 126496 | 146.9 | 2579M | 309 | 41k | 33k | 34k | 3181 | 1 | 58 | 3822 |
   1.053077e+10 | 1.197230e+10 | 13.69% | 0.29%
             499 | 158520 | 175.8 | 2613M | 309 | 41k | 33k | 34k | 3641 | 1 | 60 | 3933 |
567s|
       600 l
   1.053095e+10 | 1.197230e+10 | 13.69% | 0.29%
                                       gins| 309 | 41k| 33k| 34k|4060 | 1 | 62 |3978 |
L 739s|
        659 |
                554 | 189783 | 207.6 |
   1.053095e+10 | 1.191898e+10 | 13.18%| 0.29%
       660 | 555 | 198453 | 220.4 | oneopt | 309 | 41k | 33k | 34k | 4060 | 1 | 62 | 3981 |
i 741sl
   1.053095e+10 | 1.191889e+10 | 13.18%|
                                          0.30%
             595 | 236166 | 261.7 | 2689M | 309 | 41k | 33k | 34k | 4418 | 1 | 62 | 4010 |
794s1
       700 I
   1.053095e+10 | 1.191889e+10 | 13.18%|
                                         0.32%
       800 | 695 | 277232 | 280.4 | 2728M | 309 | 41k | 33k | 34k | 4757 | 1 | 64 | 4027 |
   1.053219e+10 | 1.191889e+10 | 13.17%|
                                         0.32%
L 967s | 860 | 693 | 295017 | 281.5 | crossove | 309 | 41k | 33k | 34k | 5000 | 1 | 64 | 4059 |
   1.053219e+10 | 1.154287e+10 | 9.60% | 0.32%
                693 | 300734 | 288.1 | oneopt | 309 | 41k | 33k | 34k | 5000 | 1 | 64 | 4059 |
        860 |
   1.053219e+10 | 1.154284e+10 | 9.60% | 0.32%
       900 |
             733 |312921 | 288.9 | 2793M | 309 | 41k| 33k| 34k|5288 | 1 | 64 |4139 |
   1.053219e+10 | 1.154284e+10 | 9.60%|
                                         0.33%
1042s| 1000 | 823 | 346085 | 293.2 | 2816M | 309 | 41k | 33k | 34k | 5725 | 1 | 65 | 4281 |
   1.053219e+10 | 1.154284e+10 | 9.60% | 0.33%
L1083s| 1003 | 826 |347173 | 293.4 |
                                        alns | 309 | 41k | 33k | 34k | 5747 | 2 | 65 | 4284 |
                                          0.33%
   1.053219e+10 | 1.153273e+10 |
                                  9.50%|
i1084s| 1004 | 827 |352908 | 298.8 | oneopt| 309 | 41k| 33k| 34k|5747 | 1 | 65 |4284 |
    1.053219e+10 | 1.118743e+10 |
                                  6.22% | 0.33%
1113s| 1100 | 699 | 373504 | 291.4 | 2860M | 309 | 41k| 33k| 34k|6055 | 3 | 65 | 4323 |
    1.053219e+10 | 1.118743e+10 | 6.22%|
                                         0.44%
          1 |
                  0 |419115 |
                                 - | 3039M | 0 | 41k| 34k| 34k|
                                                                       0 | 0 | 65 |4323 |
    1.053219e+10 | 1.118743e+10 | 6.22% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/TmA6hqFV87eGTg
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/CsGV_oal40Tx0Q

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 3.38% лучше в смысле целевой функции и на 33.07% – в смысле временных издержек (табл. 13).

В табл. 13 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepsomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 13. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 7fac4231 с бинарными переменными

Способ	Полное время рас- чета, мин	$Bерхняя$ граница решения, $\times 10^{10}$
CBC+DOH	27.00	1.157865
$\overline{\text{SCIP+MC}(a)}$	18.05 +33.15%	1.153273 +0.40%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 33.07%	1.118743 + 3.38%

9.2.3. Сценарий 50197DF7 с бинарными переменными

Статистика

Общее количество переменных: 720954

Количество целочисленных переменных: 159332

Количество бинарных переменных: 2490

Количество ограничений: 600777

lp-файл: https://disk.yandex.ru/d/qWeSKb2WEs6kQA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- o ONEOPT,
- o GINS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr| dualbound | primalbound | gap | compl.

r 836s| 963 | 948 | 155676 | 53.5 | intshift| 409 | 41k| 34k| 35k|4367 | 1 | 69 | 7354 | 3.554610e+10 | 3.676991e+10 | 3.44%| unknown

i 836s| 964 | 947 | 155676 | 53.5 | oneopt| 409 | 41k| 34k| 35k|4367 | 0 | 69 | 7354 | 3.554610e+10 | 3.676497e+10 | 3.43%| unknown

846s| 1000 | 985 | 157559 | 53.4 | 2577M | 409 | 41k| 34k| 35k|4396 | 1 | 69 | 7444 | 3.554610e+10 | 3.676497e+10 | 3.43%| unknown

L 885s| 1064 | 1049 | 157869 | 50.5 | gins| 409 | 41k| 34k| 35k|4397 | 1 | 69 | 7484 | 3.554610e+10 | 3.659894e+10 | 2.96%| unknown
```

```
L 931s | 1064 | 1049 | 157869 | 50.5 |
                                         gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7484 |
   3.554610e+10 | 3.656967e+10 | 2.88% | unknown
i 962s| 1064 | 1049 | 161589 | 54.0 | oneopt| 409 | 41k| 34k| 35k|4397 | 1 | 69 | 7484 |
   3.554610e+10 | 3.656967e+10 | 2.88% unknown
969s| 1100 | 1085 | 161769 | 52.4 | 2620M | 409 | 41k| 34k| 35k|4397 | 1 | 69 | 7532 |
   3.554610e+10 | 3.656967e+10 | 2.88% | unknown
L 988s | 1164 | 1149 | 161992 | 49.7 |
                                         gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7557 |
   3.554610e+10 | 3.630031e+10 | 2.12% unknown
L 993s| 1164 | 1149 |161992 | 49.7 |
                                         gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7557 |
    3.554610e+10 | 3.625804e+10 | 2.00% | unknown
                                         gins| 409 | 41k| 34k| 35k|4397 | 1 | 69 |7557 |
L1000s| 1164 | 1149 | 161992 | 49.7 |
   3.554610e+10 | 3.623675e+10 | 1.94% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/2_FDqS70q0UBqA Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/SkRLoRYzQDI-Aw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.87% лучше в смысле целевой функции и на 36.08% — в смысле временных издержек (табл. 14).

В табл. 14 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepsomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 14. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 50197df7 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	28.27	3.730552
$\overline{\text{SCIP+MC}(a)}$	13.93 +50.73%	3.676991 + 1.44%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 36.08%	3.623675 + 2.87%

9.2.4. Сценарий F398266В с бинарными переменными

Статистика

Общее количество переменных: 777271

Количество целочисленных переменных: 172449

Количество бинарных переменных: 2370

Количество ограничений: 655003

lp-файл: https://disk.yandex.ru/d/4YFYJSB1I1wsmQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING,
- ONEOPT,

• CROSSOVER.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
                | primalbound | gap
                                       | compl.
d1163sl
         433 |
                 434 |462507 | 790.8 |distribu| 51 |
                                                      59k| 48k|
                                                                  49k|
                                                                         0 | 1 | 17 | 1387 |
   5.857793e+10 | 6.054807e+10 |
                                   3.36% unknown
         433 |
                434 |462644 | 791.1 |distribu| 51 |
                                                      59k|
                                                            48k|
                                                                  49k|
                                                                         0 | 1 | 17 | 1387 |
d1164s|
   5.857793e+10 | 6.054779e+10 |
                                  3.36% unknown
         433 | 434 |462746 | 791.3 |distribu| 51 |
                                                      59k|
                                                            48k|
                                                                  49k|
                                                                         0 | 1 | 17 | 1387 |
d1164sl
   5.857793e+10 | 6.054778e+10 |
                                  3.36% unknown
                                                                         0 | 1 | 17 | 1387 |
d1164s|
         433 | 434 |462780 | 791.4 |distribu| 51 |
                                                      59k|
                                                            48k|
                                                                  49k|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% | unknown
         433 | 434 |462801 | 791.4 |distribu| 51 |
                                                            48k|
                                                                         0 | 1 | 17 | 1387 |
d1164sl
                                                      59k|
                                                                  49k|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
         433 | 434 |462836 | 791.5 |distribu| 51 |
                                                            48k|
                                                                         0 | 1 | 17 | 1387 |
d1165sl
                                                      59k|
                                                                  49k l
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
d1165s| 433 | 434 |462856 | 791.6 |distribu| 51 |
                                                      59k|
                                                            48k|
                                                                  49k|
                                                                         0 | 1 | 17 | 1387 |
   5.857793e+10 | 6.054774e+10 |
                                  3.36% unknown
                                                                  49k|4333 | 0 | 17 |1387 |
i1167s| 434 |
                433 |463020 | 790.1 | oneopt| 51 |
                                                            48k|
                                                      59k|
   5.857793e+10 | 6.053918e+10 |
                                  3.35% unknown
                                                                 49k|4529 | 1 | 26 |1402 |
1250s|
        500 | 501 |531180 | 822.2 | 3321M | 51 |
                                                     59k|
                                                           48k|
   5.857793e+10 | 6.053918e+10 |
                                  3.35%| unknown
        600 |
                601 | 663342 | 905.6 | 3398M | 51 |
                                                     59k|
                                                           48k|
                                                                 49k|5175 | 1 | 36 |1426 |
   5.857932e+10 | 6.053918e+10 |
                                   3.35% | unknown
         634 l
                                                                  49k|5448 | 2 | 41 |1433 |
                 635 |704819 | 922.5 |crossove|
                                                      59k|
                                                            48k|
L1892sl
                                                55 l
   5.858028e+10 | 6.021605e+10 |
                                  2.79% | unknown
i1895s|
         634 |
                635 |715376 | 939.1 | oneopt | 55 |
                                                      59k|
                                                            48k|
                                                                  49k|5448 | 2 | 41 |1433 |
   5.858028e+10 | 6.021603e+10 |
                                  2.79%| unknown
                                                                 49k|5644 | 1 | 50 |1442 |
        700 | 701 | 770566 | 929.4 | 3457M | 63 |
                                                           48k|
1952sl
                                                     59k|
   5.858050e+10 | 6.021603e+10 |
                                  2.79% | unknown
        800 |
                801 |879949 | 950.0 | 3489M | 65 |
                                                           48k|
                                                                 49k|5964 | 1 | 62 |1476 |
                                                     59k|
   5.858065e+10 | 6.021603e+10 |
                                   2.79% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/KXzdrUx6TZbXEw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/FERoaFsr5zbkjA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 0.97% лучше в смысле целевой функции и на 56.24% – в смысле временных издержек (табл. 15).

В табл. 15 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepeomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

9.2.5. Сценарий 337 с бинарными переменными

Статистика

Общее количество переменных: 859230

Количество целочисленных переменных: 173622

Таблица 15. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий f398266b с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeния, \times 10^{10}$
CBC+DOH	72.17	6.080841
$\overline{\text{SCIP+MC }(a)}$	19.38 + 73.15%	6.054807 + 0.43%
$\overline{\text{SCIP+MC}(b)}$	31.58 + 56.24%	6.021603 + 0.97%

Количество бинарных переменных: 155

Количество ограничений: 624637

lp-файл: https://disk.yandex.ru/d/Kc11p9v7D-kxYA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- RENS,
- ONEOPT.

Фрагмент лога сессии SCIP

* pur mont viola ecconi 5011
time node left LP iter LP it/n mem/heur mdpt vars cons rows cuts sepa confs strbr
dualbound primalbound gap compl.
r 107s 1 0 55407 - intshift 0 56k 43k 45k 1799 13 0 0
2.947544e+10 4.344720e+10 47.40% unknown
L 247s 1 0 55407 - rens 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022206e+10 2.53% unknown
249s 1 0 55407 - 2785M 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022206e+10 2.53% unknown
i 250s 1 0 58839 - oneopt 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022205e+10 2.53% unknown
250s 1 0 58839 - 2809M 0 56k 43k 45k 1799 13 0 0
2.947544e+10 3.022205e+10 2.53% unknown
251s 1 0 58891 - 2813M 0 56k 43k 45k 1820 14 0 0
2.947544e+10 3.022205e+10 2.53% unknown
251s 1 0 58900 - 2813M 0 56k 43k 44k 1824 15 0 0
2.947544e+10 3.022205e+10 2.53% unknown
253s 1 0 59074 - 2816M 0 56k 43k 44k 1824 15 0 12
2.947544e+10 3.022205e+10 2.53% unknown
254s 1 0 59236 - 2821M 0 56k 43k 44k 1918 16 0 12
2.948327e+10 3.022205e+10 2.51% unknown
254s 1 0 59300 - 2821M 0 56k 43k 44k 1945 17 0 12
2.948327e+10 3.022205e+10 2.51% unknown
255s 1 0 59321 - 2821M 0 56k 43k 44k 1945 17 0 19
2.948327e+10 3.022205e+10 2.51% unknown
256s 1 0 59349 - 2825M 0 56k 43k 44k 1959 18 0 19
2.948327e+10 3.022205e+10 2.51% unknown
256s 1 0 59352 - 2825M 0 56k 43k 44k 1964 19 0 19
2.948327e+10 3.022205e+10 2.51% unknown
258s 1 0 59368 - 2825M 0 56k 43k 44k 1964 19 0 35
2.957927e+10 3.022205e+10 2.17% unknown
259s 1 0 59451 - 2829M 0 56k 43k 44k 2014 20 0 35
2.957927e+10 3.022205e+10 2.17% unknown
259s 1 0 59466 - 2829M 0 56k 43k 44k 2024 21 0 35
2.957927e+10 3.022205e+10 2.17% unknown
259s 1 2 59466 - 2829M 0 56k 43k 44k 2024 21 0 35
2.957927e+10 3.022205e+10 2.17% unknown

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/zwVhKYKEMlMlQw Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/T9sAbRH6uWh4Uw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на ...% лучше в смысле целевой функции и на ...% – в смысле временных издержек (табл. 16).

В табл. 16 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее *первому* допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее *последнему* допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 16. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 337 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, ×10 ¹⁰
CBC+DOH	18.00	4.047865
$\overline{\text{SCIP+MC }(a)}$	4.12 +77.11%	3.022206 +25.34%
SCIP+MC(b)	4.30 + 76.11%	3.022205 +25.34%

Сценарий input_a78cbead-073b-ec11-a2d4-005056a5ee74.json (1-ая и 2-ая фазы поиска решения)

Порог бинаризации: 0.14, релаксированное решние: СОРТ Общее количество переменных: 797818 Количество целочисленных переменных: 180160 Количество бинарных переменных: 2418 Количество ограничений: 663175 Число конфликтов autorestarnodes=-1 2250 4.125 autorestarnodes=2000 -x autorestarnodes=2000 4.100 2000 1750 4.050 1500 4.025 1250 💆 .9738e+10 =-0.3116% 4.000 1000 3.975 750 500 21 23 27 31 Полное время расчета, мин.

Рис. 17. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий input_a78cbead. Первая и вторая фазы поиска решения

Рис. 18. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья фаза поиска решения

Рис. 19. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья фаза поиска решения

9.3. Поиск решения на базе методов машинного и глубокого обучения

Условимся *сценарием обучающего поднабора* называть сценарий (математическую постановку задачи, описанную в терманах математического программирования) из коллекции сценариев, которые используются на *обучающей фазе* модели машинного обучения.

Рис. 20. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья фаза поиска решения

Сценарием тестового поднабора условимся называть сценарий, который используется для построения прогноза с помощью модели машинного обучения.

9.3.1. Простое декартово произведение сценариев c бинарными переменными

Рассмотрим *некоммутативные* пары вида «сценарий обучающего поднабора – сценарий тестового поднабора» подгруппы сценариев с бинарными переменными (см. раздел 9.2):

- o 7fac4231_bin.lp,
- o a78cbead_bin.lp,
- o f398266b_bin.lp,
- o 50197df7_bin.lp,
- o 337_bin.lp.

Если коллекция сценариев содержит n сценариев, то существует n(n-1) возможных некоммутативных пар.

обучение на сценарии 7fac4231_bin.lp, тестирование на сценарии 50197df7_bin.lp ... обучение на сценарии f398266b_bin.lp, тестирование на сценарии 50197df7_bin.lp ... обучение на сценарии 337_bin.lp, тестирование на сценарии 50197df7_bin.lp ...провал обучение на сценарии 7fac4231_bin.lp, тестирование на сценарии 50197df7_bin.lp

- Описание вычислительных экспериментов на сценариях группы MBO
- 11. Описание вычислительных экспериментов на сценариях MIPLIB 2017
- 11.1. Сценарии со статусом «open»
- 11.1.1. Сценарий DLR2

https://miplib.zib.de/WebData/instances/dlr2.mps.gz

11.1.2. Сценарий СVRРА-N64К9VRРІ

https://miplib.zib.de/WebData/instances/cvrpa-n64k9vrpi.mps.gz

- 11.2. Сценарии со статусом «hard»
- 11.2.1. Сценарий CRYPTANALYSISKB128N50BJ14

https://miplib.zib.de/WebData/instances/cryptanalysiskb128n5obj14.mps.gz

- 11.3. Сценарии со статусом «easy»
- 11.3.1. Сценарий NEOS-4332801-seret

https://miplib.zib.de/WebData/instances/neos-4332801-seret.mps.gz

Список иллюстраций

1	Сводка результатов вычислительных экспериментов на сценариях группы ИКП .	14
2	Зависимость верхней границы решения от доли бинарных переменных, выставлен-	
	ных в ноль. Сценарий a78cbead	17
3	Зависимость верхней границы решения от доли бинарных переменных, выставлен-	
	ных в ноль. Сценарий 337	18
4	Сводка результатов вычислительных экспериментов на сценарии группы СОП tmpfvp	qodxw.lp
		23
5	Сводка результатов вычислительных экспериментов на сценарии группы СОП 166418	2546_82382.1p
		25
6	Сводка результатов вычислительных экспериментов на сценарии группы СОП 166418	2533_1587787.3
		26
7	Сводка результатов вычислительных экспериментов на сценарии группы СОП 166418	2480_4326847.1
		27
8	Сводка результатов вычислительных экспериментов на сценарии группы СОП 166418	2523_380519.1
		28
9	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	
	f398266b без бинарных переменных	31
10	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	01
10	50197df7 без бинарных переменных	32
11	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	52
	7fac4231 без бинарных переменных	33
12	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	00
12	са485а55 без бинарных переменных	34
13	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276	94
10	без бинарных переменных	36
14	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337	50
14	без бинарных переменных	37
1 =		31
19	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	20
1.6	13d686ab без бинарных переменных	38
16	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий	40
17	a78cbead без бинарных переменных	40
	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий input_a78cbead.	F 1
1.0	Первая и вторая фазы поиска решения	51
18	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья	~ 0
	фаза поиска решения	52
19	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья	
	фаза поиска решения	52
20	Динамика изменения верхней границы решения и числа конфликтов во времени в	
	зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья	
	фаза поиска решения	53

Список таблиц

1	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий f398266b без бинарных переменных	30
2	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 50197df7 без бинарных переменных	31
3	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 7fac4231 без бинарных переменных	33
4	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий са485а55 без бинарных переменных	34
5	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 276 без бинарных переменных	35
6	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 337 без бинарных переменных	37
7	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 13d686ab без бинарных переменных	38
8	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий a78cbead без бинарных переменных	39
9	Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и	
	ансамбля детекторов аномалий. Сценарий 496 без бинарных переменных	41
10	Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и	
	ансамбля детекторов аномалий. Сценарий 514 без бинарных переменных	42
11	Сводка результатов анализа эффективности метаконфигураций FZBIVSUHPB и	
	ансамбля детекторов аномалий. Сценарий 519 без бинарных переменных	43
12	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий a78cbead с бинарными переменными	45
13	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 7fac4231 с бинарными переменными	47
14	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 50197df7 с бинарными переменными	48
15	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий f398266b с бинарными переменными	50
16	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 337 с бинарными переменными	51
пис	сок литературы	
	1 · · · - J F	
Ив	анов Конспект по обучению с подкреплением, 2022	

$C_{\mathbf{I}}$

- 1.
- 2. Жерон, О. Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем. - СПб.: ООО «Альфакнига», 2018. - 688 с.
- 3. Soenen J. etc. The Effect of Hyperparameter Tuning on the Comparative Evaluation of Unsupervised Anomaly Detection Methods, 2021