LDR SENSOR

INTERNET OF THINGS

Time: 60 mins

Introduction

In this class, the student/s will learn how to calculate and display the illumination values on the gauge and chart on the dashboard.

New Commands Introduced

float IdrVal = analogRead(LDR_PIN);
 Reads the analog value on the pin.

Converts the light intensity measured by the LDR into a

float voltage = IdrVal / 4063. * 3.3; voltage value .

• float resistance = 5000 * voltage / (1 - voltage Calculate the resistance value using the voltage of the LDR / 3.3);

Vocabulary

- Ilumination is the use of light to achieve aesthetic visual effects...
- **LUX** is the unit used to measure the illumination.
- Light intensity is displayed as illumination in gauge and chart format on the node-red dashboard.
- 4063 is the maximum analog value and is used to divide the ldrVal to scale it between 0 and 1.
- 3.3V is the maximum voltage range. It is used to multiply the scaled value to obtain the corresponding voltage value.

Learning Objectives

Student/s should be able to:

- Explain the LDR sensor and show how to connect it to the circuit connection.
- **Demonstrate** calculation of illumination using voltage and other constant values.
- Recall use of node-red charts and gauges and display the illumination data on the dashboard...

Activities

Class Narrative: (3 mins)

• Brief the student/s that Eva shared that few items are sensitive to sunlight where James came up with the sue of light monitoring sensors.

Concept Introduction Activity: (4 mins)

• Let the student/s observe that the light intensity is displayed as illumination in gauge and chart

format on the node-red dashboard.

• Explain that illumination can be detected and measured using a photoresistor sensor also

known as a light dependent resistor(LDR).

Explain how the LDR sensor works and its applications.

• Using the slides, explain that the student/s will learn:

o to connect the LDR sensor

o to calculate the illumination

to send the LDR data to Node-Red

Activity 1: Connect the LDR Sensor (10 mins)

Teacher Activity: (5 mins)

• Explain that the photoresistor sensor module includes a LDR (light-dependant resistor) in series

with a 10K resistor and describe its pin.

Explain how to connect the LDR sensor.

Student Activity: (5 mins)

Guide the student/s to connect the LDR sensor.

Activity 2: Calculate the Illumination (18 mins)

Teacher Activity: (7 mins)

• Explain that the values on the sensor and LCD do not match due to the difference in voltages of

both the devices.

• Demonstrate the correction of LUX values on both the devices.

Student Activity: (11 mins)

• Guide the student/s to calculate the LUX value and display the same value on LCD as that of

LDR sensor.

Activity 3: Display LDR Data on Node-Red (12 mins)

Teacher Activity: (6 mins)

- Recall that we send the temperature and humidity data from the MQTT server to node-red js nad represented it on dashboard. Re;ate it to illuminance values on the dashboard.
- Explain how to display the illumination data of LUX values on the dashboard.

Student Activity: (6 mins)

• Guide the student/s to add gauge and chart to the dashboard for displaying the illumination data.

Introduce the Post class project: (2 min)

• Ring the buzzer when it is exposed to a specific amount of illumination.

Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective activities.
- Summarize the overall class learning towards the end of the class.

Additional activities:

- Encourage the student/s to turn on the bulb when the illumination is low.
- Encourage the student/s to send the LED status data to the Node-red using MQTT server.

State the Next Class Objective: (1 min)

• In the next class, student/s will learn to automate the lights in the home.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table			
Activity	Activity Name	Link	
Class Presentation	LDR SENSOR	https://s3-whjr-curriculum-uploads.whj r.online/6055a7d7-17a2-4a39-9b7f-60	

		0184ec13de.html
Explore Activity	LDR SENSOR	https://s3.amazonaws.com/media-p.sli d.es/uploads/1525749/images/111819 37/C141_Activity.gif
Student Activity 1	Connect the LDR Sensor	https://wokwi.com/projects/3872506744 08184833
Teacher Reference: Student Activity 1 Solution	Connect the LDR Sensor	https://wokwi.com/projects/3872484712 70100993
Student Activity 2	Calculate Illuminance	https://wokwi.com/projects/3872552620 20878337
Teacher Reference: Student Activity 2 Solution	Calculate Illuminance	https://wokwi.com/projects/3872552780 78774273
Student Activity 3	Display LDR Data on Node-RED	https://github.com/Tynker-IOT/TNK-M1 8-C141-SAS-BP
Teacher Reference: Student Activity 3 Solution	Display LDR Data on Node-RED	https://github.com/Tynker-IOT/TNK-M1 8-C141-SAS
Student's Additional Activity 1	Automatic Lamp	https://wokwi.com/projects/3876199785 47968001
Teacher Reference: Student's Additional Activity 1 Solution	Automatic Lamp	https://wokwi.com/projects/3876194189 10344193
Student's Additional Activity 2	Sync LED to Node-red	https://github.com/Tynker-IOT/TNK-M1 8-C141-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Sync LED to Node-red	https://github.com/Tynker-IOT/TNK-M1 8-C141-SAS
Post Class Project	Light Based Alarm	https://wokwi.com/projects/3878022090 22131201
Teacher Reference: Post Class Project Solution	Light Based Alarm	https://wokwi.com/projects/3877979861 96515841