Problem F. Digit Sum

Time limit 2000 ms Mem limit 262144 kB

Problem Statement

For integers $b(b \ge 2)$ and $n(n \ge 1)$, let the function f(b, n) be defined as follows:

- f(b, n) = n, when n < b
- $f(b,n) = f(b,\operatorname{floor}(n/b)) + (n \bmod b)$, when $n \geq b$

Here, floor (n/b) denotes the largest integer not exceeding n/b, and $n \mod b$ denotes the remainder of n divided by b.

Less formally, f(b, n) is equal to the sum of the digits of n written in base b. For example, the following hold:

- f(10, 87654) = 8 + 7 + 6 + 5 + 4 = 30
- f(100, 87654) = 8 + 76 + 54 = 138

You are given integers n and s. Determine if there exists an integer $b(b \ge 2)$ such that f(b,n) = s. If the answer is positive, also find the smallest such b.

Constraints

- $1 \le n \le 10^{11}$
- $1 \le s \le 10^{11}$
- n, s are integers.

Input

The input is given from Standard Input in the following format:

```
egin{bmatrix} n \ s \end{bmatrix}
```

Output

If there exists an integer $b(b \ge 2)$ such that f(b, n) = s, print the smallest such b. If such b does not exist, print -1 instead.

Sample 1

Input	Output
87654 30	10

Sample 2

Input	Output
87654 138	100

Sample 3

Input	Output
87654 45678	-1

Sample 4

Input	Output
31415926535 1	31415926535

Sample 5

Input	Output
1 31415926535	-1