1. Плоские кривые

ГКП-1, упр.1. Дана кривая

$$\gamma(t) = (x(t), y(t)) = (t^3 - 2t, t^2 - 2),$$

- (а) Во всех ли точках она регулярна?
- **(b)** Проверьте, лежат ли на её образе точки (1;-1), (4;2), (6;1).
- (с) Запишите неявное уравнение этой кривой.

ГКП-1, упр.2. Найдите репер Френе кривой $y = x^2 + 4x + 3$ в точках -1, 0, 1.

ГКП-1, упр.3. Найдите окружность, соприкасающуюся с данной окружностью $O = \{x^2 + y^2 = 1\}$ в точке (1,0).

ГКП-1, упр.4. Докажите формулу кривизны кривой γ с произвольной параметризацией:

$$\kappa = \frac{\det(\gamma', \gamma'')}{||\gamma'||^3}$$

ГКП-1, упр.5. Вычислите явные формулы различных определений кривизны *дискретной* кривой $\gamma = \{\gamma_1, \gamma_2 \dots\} \subset \mathbb{R}^2$:

- (а) угол поворота,
- (b) соприкасающаяся окружность,
- (с) изменение длины,
- (d) * формула Штейнера (вариант, отличный от предыдущих).

ГКП-1, упр.6*. Проверьте следующие формулы для гладких кривых γ и η (вариация длины):

$$\left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} \operatorname{length}(\gamma + \varepsilon \eta) = -\int_0^L \langle \eta(s), \kappa(s) N(s) \rangle ds,$$

$$\operatorname{length}(\gamma + \varepsilon N) = \operatorname{length}(\gamma) - \varepsilon \int_0^L \kappa(s) ds + o(\varepsilon).$$

ГКП-1, упр.7*. Какие возможны значения полной (т.е. суммарной по всей длине) кривизны замкнутой кривой?

ГКП-1, упр.8*. Окружность радиуса r катится без скольжения внутри окружности радиуса R > r. Составьте уравнение траектории точки M катящейся окружности. Изобразите траекторию при R = 2r и R = 3r.

ГКП-1, упр.9*. (практикум) Рассмотрим поток кривизны

$$\frac{d}{dt}\gamma_i(t) = \kappa_s(t)N_s(t),$$

где $\{\gamma_s(0)\}$ — исходная замкнутая дискретная кривая. Для каких определений дискретной кривизны выполняются следующие свойства потока кривизны (проверьте на компьютере и докажите)?

- (а) полная кривизна неизменна;
- (b) центр масс кривой неизменен;
- (с) правильный многоугольник переходит в себе подобный.

1. Плоские кривые

ГКП-1, упр.1. Дана кривая

$$\gamma(t) = (x(t), y(t)) = (t^3 - 2t, t^2 - 2),$$

- (а) Во всех ли точках она регулярна?
- **(b)** Проверьте, лежат ли на её образе точки (1;-1), (4;2), (6;1).
- (с) Запишите неявное уравнение этой кривой.

ГКП-1, упр.2. Найдите репер Френе кривой $y = x^2 + 4x + 3$ в точках -1, 0, 1.

ГКП-1, упр.3. Найдите окружность, соприкасающуюся с данной окружностью $O = \{x^2 + y^2 = 1\}$ в точке (1,0).

ГКП-1, упр.4. Докажите формулу кривизны кривой γ с произвольной параметризацией:

$$\kappa = \frac{\det(\gamma', \gamma'')}{||\gamma'||^3}$$

ГКП-1, упр.5. Вычислите явные формулы различных определений кривизны *дискретной* кривой $\gamma = \{\gamma_1, \gamma_2 \dots\} \subset \mathbb{R}^2$:

- (а) угол поворота,
- (b) соприкасающаяся окружность,
- (с) изменение длины,
- (d) * формула Штейнера (вариант, отличный от предыдущих).

ГКП-1, упр.6*. Проверьте следующие формулы для гладких кривых γ и η (вариация длины):

$$\left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} \operatorname{length}(\gamma + \varepsilon \eta) = -\int_0^L \langle \eta(s), \kappa(s) N(s) \rangle ds,$$

$$\operatorname{length}(\gamma + \varepsilon N) = \operatorname{length}(\gamma) - \varepsilon \int_0^L \kappa(s) ds + o(\varepsilon).$$

ГКП-1, упр.7*. Какие возможны значения полной (т.е. суммарной по всей длине) кривизны замкнутой кривой?

ГКП-1, упр.8*. Окружность радиуса r катится без скольжения внутри окружности радиуса R > r. Составьте уравнение траектории точки M катящейся окружности. Изобразите траекторию при R = 2r и R = 3r.

ГКП-1, упр.9*. (практикум) Рассмотрим поток кривизны

$$\frac{d}{dt}\gamma_i(t) = \kappa_s(t)N_s(t),$$

где $\{\gamma_s(0)\}$ — исходная замкнутая дискретная кривая. Для каких определений дискретной кривизны выполняются следующие свойства потока кривизны (проверьте на компьютере и докажите)?

- (а) полная кривизна неизменна;
- (b) центр масс кривой неизменен;
- (с) правильный многоугольник переходит в себе подобный.