函数的连续性 Continuous of function

1.4函数的间断点 1.5运算法则 2.区间连续

1. 点连续: 左极限=右极限=极限值=函数值

1.1定义1 1.2定义2 1.3定义3

- 3.单侧连续
- 1. 点连续
- 1.1 定义一 对于 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists |x - x_0| < \delta$, 有 $|f(x) - f(x_0)| < \varepsilon$, 则称函数

这一定义通常被用来证明函数在某点是连续的。

f(x) 在点 x_0 处连续。

1.2 定义二 设函数f(x) 在 $U(x_0,\delta)$ 内有定义,如果当自变量 $^{ extsf{Q}}$ 的增量 Δx 趋向于0时,对应的 函数增量 Δy 也趋向于0,即

 $\lim_{\Delta x
ightarrow 0} \Delta y = 0$ 或 $\lim_{\Delta x
ightarrow 0} \Delta \left[f \left(x_0 + \Delta x
ight) - f \left(x_0
ight)
ight] = 0$ 那么就称函数 f(x) 在点 x_0 处连续。

$$y \rightarrow y = f(x)$$

2. 设 f(x) 在 x_0 的某邻域内有定义,如果当自变量的增量 $\Delta x = x - x_0$ 趋近于零 $\lim_{\Delta x o 0} f(x_0 + \Delta x) = f(x_0)$,则函数y = f(x)在 x_0 点链续;

义:

时, $\lim f(x) = f(x_0)$,则函数 y = f(x) 在 x_0 点连续。 更多的情况下,我们一般使用第3个等价定义 $^{f Q}$,我们用 $arepsilon-\delta$ 语言来描述第3个等价定

3. 设f(x) 在 x_0 的某邻域内有定义,如果当自变量 $^{ extsf{Q}}$ 的增量 $\Delta x = x - x_0$ 趋近于零

极限 $^{\mathbf{Q}}$ 定义,有 $\lim_{x o x_0} f(x) = f(x_0)$,再根据本文第3个等价定义,也就恰好证明 5函 数 f(x) 在 x_0 点连续。 1.4函数的间断点

根据以上定义,函数 f(x) 在点 x_0 处连续必须满足:

a.f(x) 在点 x_0 处有定义;

 $b.\lim_{x\to x_0}f(x)$ 存在;

设 f(x) 在 x_0 的某邻域内有定义。如果对任意的 $\varepsilon>0$, 总存在正数 δ , 使当

 $|x-x_0|<\delta$ (相較极限定义中 $0<|x-x_0|<\delta$, 少ろた半边大于0 的部分, 这 样保证3x 可以取值为 x_0 ,即 $f(x_0)$ 存在)时,不等式 $|f(x)-f(x_0)|<arepsilon$,对比

 $c.\lim_{x
ightarrow x_{0}^{-}}f\left(x
ight) =\lim_{x
ightarrow x_{0}^{+}}f\left(x
ight)$; $d\lim_{x \to x_{0}} f(x) = f(x_{0}),$ 上述条件只要有一个不满足,则称函数 f(x) 在点 x_0 处不连续 $^{\mathbf{Q}}$ 或间断,并称点 x_0 为f(x)的间断点^Q。

,故 $x=rac{\pi}{2}$ 是y= an x的间断点 $^{\mathbf{Q}}$ 。又 $\lim_{x orac{\pi}{2}}f(x)=\infty$,故称 $x=rac{\pi}{2}$ 为an x的

无穷间断点。

例子 例.正切函数 $^{\mathsf{Q}}y=\tan x$ 在 $x=rac{\pi}{2}$ 处没有定义,所以破坏多等式 $\lim_{x orac{\pi}{2}}f(x)=f(rac{\pi}{2})$

 3π $\overline{2}$

类别. ① 如果 x0 是 f(x) 的间断点,左极限 f(x0-) 与右极限 f(x0+) 都存在(不一定相等),则称 x0 为第 一类间断点(可去间断点、跳跃间断点)。 ②如果 f(x0) 左右极限有一个不存在或两个都不存在,则称 x0 为第二类间断点 (无穷间断点、振 荡间断点)。

例2.函数 $y=\sin{1\over x}$ 在点 x=0 处没有定义,当 x o 0 时, ${1\over x} o \infty$,函数值在-1和1之间变动无限多次,所以x=0称为函数 $\sinrac{1}{x}$ 的振荡间断点。

1

读的描述如下图所示:

右连续。

对任意的 x_0 ,有 (1) 若 f(x) 是多项式函数, 我们前面证明过 $\lim_{x o x_0}f(x)=f(x_0)$,亦即多项式函数在任意一点处的极限值都等于该点处的函数值 $^{\mathsf{q}}$,故多项式函数 $^{\mathsf{q}}$ 于 $\left(-\infty,+\infty\right)$ 内连续。 (2) 若 $F(x) = \frac{P(x)}{Q(x)}$ 为有理函数^a, 由前面的证明知

 $\Delta y = \sin(x+\Delta x) - \sin x = 2\sin(rac{\Delta x}{2})\cos(rac{2x+\Delta x}{2}) = 2\sin(rac{\Delta x}{2})\cos$ $\left(x+\frac{\Delta x}{2}\right)$

下面再补充一个例题: 例6:证明函数 f(x) 在点 x_0 处连续且 $f(x_0) \neq 0$, 则存在 x_0 的某邻域 $U(x_0)$, 使 当 $U(x_0)$ 时, $f(x) \neq 0$ 。

证明:由于f(x)于 x_0 处连续,所以 $\lim_{x o x_0}f(x)=f(x_0)
eq 0$,由第七讲中极限的

保号性定理 $^{\mathbf{Q}}$ 之定理 $^{\mathbf{Q}}$ (戳我多解),存在 x_0 的某去心邻域 $U(x_0)$,使当 $U(x_0)$ 时,

例3.函数 $y=rac{x^2-1}{x-1}$ 在点 x=1 ,没有定义,所以函数 $^{\mathsf{Q}}$ 在 x=1 不连续,但 $\lim_{x o 1}rac{x^2-1}{x-1}=\lim_{x o 1}(x+1)=2$,如果补充点 $\left(1,2
ight)$,则函数在x=1处就连续3, 所以x=1为该函数的可去间断点。 y $y = \frac{x^2 - 1}{x - 1}$ 例4.函数 $f(x)=egin{cases} x & x
eq 1 \ rac{1}{2} & x=1 \end{cases}$ 存 x=1 处有定义 $f(1)=rac{1}{2}$,又 $\lim_{x o 1}f(x)=\lim_{x o 1}x=1
eq f(1)$,所以x=1是f(x)的间断点。但如果改变f(x)在x=1处的函数值: f(1)=1 , 则 f(x) 于x=1点处连续,所以x=1是 f(x)的可去间断点。 $\overline{2}$

老函数 $u=arphi\left(x
ight)$ 在点 x_0 连续,且 $arphi\left(x_0
ight)=u_0$,而函数 $y=f\left(u
ight)$ 在点 u_0 连续, 则复合函数 $^{\mathbf{Q}}y=f\left[arphi\left(x
ight) \right]$ 在点 x_{0} 也连续。 2. 区间连续 若函数 f(x) 在开区间 (a,b) 内每一点连续,则称该函数在 (a,b) 内连续。 若函数 f(x) 在闭区间 $^{\mathbf{Q}}[a,b]$ 内每一点连续且在 x=a 和 x=b 处分别 方连续和 方连 读,则称该函数在[a,b]上连读。 3.单侧连续 • 函数的单侧连续概念: 如果函数 f(x) 九极限 $^{\mathsf{Q}}\lim_{x o x_0^-}f(x)=f(x_0^-)$ 存在且等于 $f(x_0)$,则称 f(x) 在 x_0 点

九遊读;如果右极限 $\lim_{x o x_0^+}f(x)=f(x_0^+)$ 存在且等于 $f(x_0)$,则称 $f(x_0)$ 于 x_0 点

②如果函数 f(x) 在开区间 $^{\mathbf{Q}}(a,b)$ 内每一点连续,则称 f(x) 是开区间 (a,b) 上的连 读函数,或称f(x) 在开区间(a,b)上连读;函数f(x) 在闭区间 $^{\mathsf{Q}}[a,b]$ 连读,是指

f(x) 在开区间 (a,b) 连续,且于た端点 a 右连续,右端点 b た连续。关于た右端点连

y=f(x)

x从左侧趋近 于右边端点 b,所以说右端 b点左连续

X

注: ①函数在一点连续的充要条件是在该点处既亢连续又右连续。

x从右侧趋近 于左边端点 a,所以说左端 a点右连续

×

连续函数^Q的例号:

 $Q(x_0) \neq 0$,便有 $\lim_{x \to x_0} F(x) = F(x_0)$,因此有理函数在其定义域 内是连续的。 (3) 函数 $y = \sin x$ 在 $(-\infty, +\infty)$ 内连续^Q,下面给出证明:

证明:设x是区间 $(-\infty,+\infty)$ 内任意一点,当x有增量 Δx 时,对应函数的增量

 $\Delta y = \sin(x + \Delta x) - \sin x$,由三角函数和差化积公式 $^{\mathsf{Q}}$

 $|f(x)|>rac{|f(x_0)|}{2}$,故当 $x\in U(x_0)$ 时,f(x)
eq 0 。

 $rac{|cos(x+rac{\Delta x}{2})|\leq 1}{\longrightarrow} |\Delta y| = |2\sin(rac{\Delta x}{2})\cos(x+rac{\Delta x}{2})| \leq |2\sin(rac{\Delta x}{2})| = 2|\sin(rac{\Delta x}{2})|$