Bin packing – An approximation algorithm

How good is the FFD heuristic - A weak bound

PROBLEM: We are concerned with storing/packing of objects of different sizes, with the objective of minimizing the amount of wasted space. The *bin* packing problem is posed formally as follows:

Let $S = (s_1, \dots, s_n)$, where $0 < s_i \le 1$ for $i = 1, \dots, n$ be the sizes of n given objects. It is required to find a partition U_1, \dots, U_N of S where the sum of the sizes of the objects in each partition is at most 1 and N the minimum. It is possible to treat each partition as a bin of unit size. Then the problem is to pack the given objects into as few bins (call this value opt(S)) as possible. It is convenient to refer to s_i as the corresponding object itself.

Applications: The problem arises packing files on disk tracks, program segments into memory pages, packing TV commercials into station breaks etc.

Worst case: opt(S) = n – this necessary and sufficient.

Brute-Force approach: Consider all ways to partition S, so that total size of the objects in each partition is ≤ 1 . The number of possibilities exceed $\left(\frac{n}{2}\right)^{\frac{n}{2}}$. It is unlikely that the problem can be solved by a polynomial-time algorithm in view of the following result:

April 2008 1 bping

Theorem: The bin packing problem is NP-hard.

The proof follows from a reduction of the subset-sum problem to bin packing.

THE FIRST-FIT DECREASING HEURISTIC (FFD)

- FFD is the traditional name strictly, it is first-fit nonincreasing.
- An early known approximation algorithm.
- Works on greedy strategy.
- Produces *good* solutions in practice.
- Has a running time $O(n^2)$ in the worst case.

Algorithm FFD

- 1. Order the given objects in a non-decreasing order so that we have $s_1 \geq \cdots \geq s_n$. Initialize a counter N = 0.
- 2. Let the bins be B_1, \dots, B_n . Put the next (first) object in the first "possible" bin, scanning the bins in the order B_1, \dots, B_n . If a new bin is used, increment N.
- 3. Return N.

Complexity: Step 1 takes $\Theta(n \log n)$ time. In Step 2, the first object requires a scan of B_1 only. Second object requires scanning at most B_1 and B_2 ; etc. Therefore, the total number of scans is in $O(n^2)$, which is also the worst-case running time of FFD. It can be seen that FDD can be implemented to run in worst-time $\Theta(n \log n)$.

April 2008 2 bping

FFD is not optimal

Example: Instance given - 0.6, 0.6, 0.5, 0.4, 0.3, 0.2, 0.2, 0.2.

FFD will pack these as

$$[0.6|0.4]$$
, $[0.6|0.3|$], $[0.5|0.2|0.2|$], $[0.2|$].

That is N = 4 in FFD. The optimal value opt(S) = 3.

It is easy to see that there are infinite instances that require N bins by FFD when opt(S) = N - 1.

The theorem below tells how bad can be FFD - that is, how bad is N in FFD as compared to opt(S). We begin with two lemmas.

Lemma 1: Let $S = (s_1, \dots, s_n)$ with $s_1 \ge \dots \ge s_n$. Let N > opt(S). Let s be the size any object placed by FFD in any "extra" bin (selected from $B_{opt(S)+1}, \dots, B_N$). Then $s \le \frac{1}{3}$.

Proof: Let s_i be the first object placed by FFD in $B_{opt(S)+1}$. Since the objects in S are in nondecreasing order, it suffices to show $s_i \leq \frac{1}{3}$. Assume $s_i > \frac{1}{3}$. This implies that, when s_i is picked by FFD $s_1, \dots, s_{i-1} > \frac{1}{3}$. Therefore the number of objects in each of the bins $B_1, \dots, B_{opt(S)}$ is ≤ 2 . Claim: There exists a $k \geq 0$ such that the first k bins contain one object each and the remaining opt(S) - k bins contain two objects each.

If not, there will be two bins B_p and B_q where p < q, as shown below

$$B_p: [s_t|s_u|] \qquad B_q: [s_v|],$$

where B_p will have 2 objects and B_q will have only 1. As the objects are considered by FFD in nondecreasing order, $s_t \geq s_v$ and $s_u \geq s_i$. Hence

April 2008 3 bping

 $1 \ge s_t + s_u \ge s_u + s_i$. This implies that FFD would have placed s_i in B_q and the claim is true.

Therefore, the objects are filled thus:

$$B_1: [s_1] \ \cdots \ B_k: [s_k] \] \ B_{k+1}: [s_{k+1}|s_x|] \cdots$$

Since FFD did not place any of s_{k+1}, \cdots, s_i in the first k bins, none of these objects will fit together with any of s_1, \cdots, s_k in any bin. That is, in the optimal solution, the objects s_1, \cdots, s_k are the sole objects in their bins. Without loss of generality, let these bins be the first k bins in the optimal solution; the remaining objects s_{k+1}, \cdots, s_{i-1} will be in bins $B_{k+1}, \cdots, B_{opt(S)}$. As the sizes of all these objects are $> \frac{1}{3}$ and as these bins contain two objects, s_i cannot fit into any bin in the optimal solution. This is a contradiction and therefore the assumption $s_i > \frac{1}{3}$ must be false.

Lemma 2: For any instance $S = (s_1, \dots, s_n)$, the total number of objects placed by FFD in the extra bins is $\leq opt(S) - 1$.

Proof: All the objects can be packed into opt(S) bins. Therefore

$$\sum_{i=1}^{n} s_i \le opt(S). \tag{1}$$

Assume that FFD places opt(S) objects with sizes $t_1, \dots, t_{opt(S)}$ in the extra bins.

Let $b_j = \text{final contents (size) of bin } B_j$, where $1 \leq j \leq opt(S)$.

Now, $b_j + t_j > 1$ as otherwise FFD could have placed t_j in B_j .

April 2008 4 bping

Therefore

$$\sum_{i=1}^{n} s_i \ge \sum_{j=1}^{opt(S)} b_j + \sum_{j=1}^{opt(S)} t_j = \sum_{j=1}^{opt(S)} (b_j + t_j) > opt(S).$$
 (2)

Clearly, (2) contradicts (1). Therefore the assumption is wrong.

Theorem: For an input instance S, let $\rho_{FFD}(m)$ be defined as N/m, where N=value returned by FFD and m = opt(S). Then

$$\rho_{FFD}(m) \le \frac{4}{3} + \frac{1}{3m}.\tag{3}$$

Proof: FFD puts at most m-1 objects into the extra bins. Each of those objects have a size $\leq \frac{1}{3}$. Therefore

$$N \ \le \ m + \big\lceil \frac{(m-1)}{3} \big\rceil.$$
 Now, $\rho_{FFD}(m) = \frac{N}{m} \le 1 + \frac{m+1}{3m} \le \frac{4}{3} + \frac{1}{3m}$,

which establishes (3).

The known stronger result is: $\rho_{FFD}(m) \leq \frac{11}{9} + \frac{4}{m}$. It has been emperically found that the expected number of extra bins used by FFD is about $0.3\sqrt{n}$.

Reference

S.Baase and A.v.Gelder, Computer Algorithms – Introduction to Design and Analysis, Pearson Education Asia, 2000.

April 2008 5 bping