BAYESIAN LEARNING - LECTURE 10

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

OVERVIEW

- ► Bayesian model comparison
- ► Bayesian model averaging
- ► Computing marginal likelihoods

USING LIKELIHOOD FOR MODEL COMPARISON

- ▶ Consider two models for the data $\mathbf{y} = (y_1, ..., y_n)$: M_1 and M_2 .
- ▶ Let $p_i(\mathbf{y}|\theta_i)$ denote the data density under model M_i .
- ▶ If know θ_1 and θ_2 , the **likelihood ratio** is useful

$$\frac{p_1(\mathbf{y}|\theta_1)}{p_2(\mathbf{y}|\theta_2)}.$$

► The likelihood ratio with ML estimates plugged in:

$$\frac{p_1(\mathbf{y}|\hat{\theta}_1)}{p_2(\mathbf{y}|\hat{\theta}_2)}.$$

- ▶ Bigger models always win in estimated likelihood ratio.
- ► Hypothesis tests are problematic for non-nested models. End results is not very useful for analysis.

BAYESIAN MODEL COMPARISON

- ▶ Just use your priors $p_1(\theta_1)$ och $p_2(\theta_2)$.
- ▶ The marginal likelihood for model M_k with parameters θ_k

$$p_k(y) = \int p_k(y|\theta_k)p_k(\theta_k)d\theta_k.$$

- \triangleright θ_k is removed by the prior. Not a magic bullet. Priors matter!
- ► The Bayes factor

$$B_{12}(y) = \frac{p_1(y)}{p_2(y)}.$$

► Posterior model probabilities

$$\underbrace{\Pr(M_k|\mathbf{y})}_{\text{posterior model prob.}} \propto \underbrace{p(\mathbf{y}|M_k)}_{\text{marginal likelihood prior model prob.}} \cdot \underbrace{\Pr(M_k)}_{\text{prior model prob.}}$$

▶ Important: we have priors over the models $Pr(M_k)$, but also priors for the parameters θ_k within model M_k .

PRIORS MATTER

EXAMPLE: GEOMETRIC VS POISSON

- ► Model 1 **Geometric** with Beta prior:
 - \triangleright $y_1, ..., y_n | \theta_1 \sim Geo(\theta_1)$
 - $\theta_1 \sim Beta(\alpha_1, \beta_1)$
- ► Model 2 Poisson with Gamma prior:
 - \triangleright $y_1, ..., y_n | \theta_2 \sim Poisson(\theta_2)$
 - \bullet $\theta_2 \sim Gamma(\alpha_2, \beta_2)$
- ► Marginal likelihood for M₁

$$p_1(y_1, ..., y_n) = \int p_1(y_1, ..., y_n | \theta_1) p(\theta_1) d\theta_1$$

$$= \frac{\Gamma(\alpha_1 + \beta_1)}{\Gamma(\alpha_1) \Gamma(\beta_1)} \frac{\Gamma(n + \alpha_1) \Gamma(n\bar{y} + \beta_1)}{\Gamma(n + n\bar{y} + \alpha_1 + \beta_1)}$$

► Marginal likelihood for M₂

$$p_2(y_1, ..., y_n) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

GEOMETRIC AND POISSON

GEOMETRIC VS POISSON, CONT.

▶ Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

GEOMETRIC VS POISSON, CONT.

▶ Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

▶ **Data**: $v_1 = 0$. $v_2 = 0$.

-1 12 -		
$\alpha_1 = 1$, $\beta_1 = 2$	$lpha_1=$ 10, $eta_1=$ 20	$lpha_1=$ 100, $eta_1=$ 200
$\alpha_2 = 2$, $\beta_2 = 1$	$lpha_2=$ 20, $eta_2=$ 10	$lpha_2=$ 200, $eta_2=$ 100
1.5	4.54	5.87
0.6	0.82	0.85
0.4	0.18	0.15
	$\alpha_2 = 2, \beta_2 = 1$ 1.5 0.6	1.5 4.54 0.6 0.82

GEOMETRIC VS POISSON, CONT.

Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

▶ Data: $y_1 = 0$, $y_2 = 0$.

▶ Data: $y_1 = 3$, $y_2 = 3$.

	. , _		
	$\alpha_1 = 1$, $\beta_1 = 2$	$lpha_1=1$ 0, $eta_1=2$ 0	$\alpha_1 = 100, \beta_1 = 200$
	$\alpha_2 = 2$, $\beta_2 = 1$	$lpha_2=$ 20, $eta_2=$ 10	$\alpha_2 = 200, \beta_2 = 100$
BF_{12}	0.26	0.29	0.30
$\Pr(M_1 \mathbf{y})$	0.21	0.22	0.23
$\Pr(M_2 \mathbf{y})$	0.79	0.78	0.77

GEOMETRIC VS POISSON FOR POIS(1) DATA

GEOMETRIC VS POISSON FOR POIS(1) DATA

PROPERTIES OF BAYESIAN MODEL COMPARISON

Coherence of pair-wise comparisons

$$B_{12} = B_{13} \cdot B_{32}$$

▶ Consistency when true model is in $\mathcal{M} = \{M_1, ..., M_K\}$

$$\Pr\left(M = M_{TRUE}|\mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

▶ "KL-consistency" when $M_{TRUE} \notin \mathcal{M}$

$$\Pr\left(M = M^* | \mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

where M^* is the model that minimizes Kullback-Leibler distance between $p_M(\mathbf{y})$ and $p_{TRUE}(\mathbf{y})$.

- ▶ Smaller models always win when priors are very vague.
- ▶ Improper priors can't be used for model comparison.

MODEL CHOICE IN MULTIVARIATE TIME SERIES

Multivariate time series

$$\mathbf{x}_{t} = \alpha \beta' \mathbf{z}_{t} + \Phi_{1} \mathbf{x}_{t-1} + ... \Phi_{k} \mathbf{x}_{t-k} + \Psi_{1} + \Psi_{2} t + \Psi_{3} t^{2} + \varepsilon_{t}$$

- ► Need to choose:
 - ▶ Lag length, (k = 1, 2.., 4)
 - ▶ **Trend model** (s = 1, 2, ..., 5)
 - ▶ Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

The most prof	BABLE	(k, r, s)	COM	BINATI	ONS II	N THE	Danish	MON	ETARY	DATA.
\overline{k}	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

BAYESIAN HYPOTHESIS TESTING

▶ Hypothesis testing is just a special case of model selection:

$$\begin{aligned} M_0: &y_1, ..., y_n \overset{iid}{\sim} Bernoulli(\theta_0) \\ M_1: &y_1, ..., y_n \overset{iid}{\sim} Bernoulli(\theta), \theta \sim Beta(\alpha, \beta) \\ &p(y_1, ..., y_n | M_0) = \theta_0^s (1 - \theta_0)^f, \\ &p(y_1, ..., y_n | M_1) &= \int_0^1 \theta^s (1 - \theta)^f B(\alpha, \beta)^{-1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta \\ &= B(\alpha + s, \beta + f) / B(\alpha, \beta). \end{aligned}$$

► Posterior model probabilities

$$Pr(M_k|y_1,...,y_n) \propto p(y_1,...,y_n|M_k)Pr(M_k)$$
, for $k = 0, 1$.

► Equivalent to using 'spike-and-slab' prior:

$$p(\theta) = \pi I_{\theta_0}(\theta) + (1 - \pi) Beta(\alpha, \beta)$$

▶ Note: data can now *support* a null hypothesis (not only reject it).

SPIKE-AND-SLAB PRIOR

 π

MARGINAL LIKELIHOOD MEASURES OUT-OF-SAMPLE PREDICTIVE PERFORMANCE

▶ The marginal likelihood can be decomposed as

$$p(y_1,...,y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1,y_2,...,y_{n-1})$$

▶ If we assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta)p(\theta|y_1,...,y_{i-1})d\theta$$

- ▶ The prediction of y_1 is based on the prior of θ , and is therefore sensitive to the prior.
- ▶ The prediction of y_n uses almost all the data to infer θ . Very little influenced by the prior when n is not small.

NORMAL EXAMPLE

- ▶ **Model**: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- ▶ Prior: $\theta | \sigma^2 \sim N(0, \kappa^2 \sigma^2)$.
- ▶ Intermediate posterior at time i-1

$$\theta | y_1, ..., y_{i-1} \sim N \left[w_i(\kappa) \cdot \bar{y}_{i-1}, \frac{\sigma^2}{i - 1 + \kappa^{-2}} \right]$$

where $w_i(\kappa) = \frac{i-1}{i-1+\kappa^{-2}}$.

▶ Predictive density at time i-1

$$y_i|y_1, ..., y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \sigma^2\left(1 + \frac{1}{i-1+\kappa^{-2}}\right)\right]$$

- ► Terms with *i* large: $y_i|y_1,...,y_{i-1} \stackrel{approx}{\sim} N(\bar{y}_{i-1},\sigma^2)$, not sensitive to κ
- ▶ For i = 1, $y_1 \sim N\left[0, \sigma^2\left(1 + \frac{1}{x^{-2}}\right)\right]$ can be very sensitive to κ .

FIRST OBSERVATION IS SENSITIVE TO κ

First observation is sensitive to κ

LOG PREDICTIVE SCORE - LPS

- ▶ To reduce sensitivity to the prior: sacrifice n^* observations to train the prior into a better posterior.
- ► Predictive density score: PS

$$PS(n^*) = p(y_{n^*+1}|y_1,...,y_{n^*}) \cdots p(y_n|y_1,...,y_{n-1})$$

- Usually report on log scale: Log Predictive Score (LPS).
- ▶ But which observations to train on (and which to test on)?
- Straightforward for time series.
- ► Cross-sectional data: cross-validation.

MODEL AVERAGING

- Let γ be a quantity with an interpretation which stays the same across the two models.
- ▶ Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- \blacktriangleright The marginal posterior distribution of γ reads

$$p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$$

where $p_k(\gamma|\mathbf{y})$ is the marginal posterior of γ conditional on model k.

- Predictive distribution includes three sources of uncertainty:
 - ▶ **Future errors**/disturbances (e.g. the ε 's in a regression)
 - ► Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)

MARGINAL LIKELIHOOD IN CONJUGATE MODELS

- \triangleright Computing the marginal likelihood requires integration w.r.t. θ .
- ▶ Short cut for conjugate models by rearragement of Bayes' theorem:

$$p(y) = \frac{p(y|\theta)p(\theta)}{p(\theta|y)}$$

► Bernoulli model example

$$p(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$p(y|\theta) = \theta^{s} (1 - \theta)^{f}$$

$$p(\theta|y) = \frac{1}{B(\alpha + s, \beta + f)} \theta^{\alpha + s - 1} (1 - \theta)^{\beta + f - 1}$$

Marginal likelihood

$$p(y) = \frac{\theta^s (1-\theta)^f \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\frac{1}{B(\alpha+s,\beta+f)} \theta^{\alpha+s-1} (1-\theta)^{\beta+f-1}} = \frac{B(\alpha+s,\beta+f)}{B(\alpha,\beta)}$$

COMPUTING THE MARGINAL LIKELIHOOD

► Usually difficult to evaluate the integral

$$p(\mathbf{y}) = \int p(\mathbf{y}|\theta)p(\theta)d\theta = E_{p(\theta)}[p(\mathbf{y}|\theta)].$$

▶ Draw from the prior $\theta^{(1)}, ..., \theta^{(N)}$ and use the Monte Carlo estimate

$$\hat{\rho}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \rho(\mathbf{y} | \theta^{(i)}).$$

Unstable if the posterior is somewhat different from the prior.

▶ Importance sampling. Let $\theta^{(1)}, ..., \theta^{(N)}$ be iid draws from $g(\theta)$.

$$\int p(\mathbf{y}|\theta)p(\theta)d\theta = \int \frac{p(\mathbf{y}|\theta)p(\theta)}{g(\theta)}g(\theta)d\theta \approx N^{-1}\sum_{i=1}^{N} \frac{p(\mathbf{y}|\theta^{(i)})p(\theta^{(i)})}{g(\theta^{(i)})}$$

▶ Modified Harmonic mean: $g(\theta) = N(\tilde{\theta}, \tilde{\Sigma}) \cdot I_c(\theta)$, where $\tilde{\theta}$ and $\tilde{\Sigma}$ is the posterior mean and covariance matrix estimated from an MCMC chain, and $I_c(\theta) = 1$ if $(\theta - \tilde{\theta})'\tilde{\Sigma}^{-1}(\theta - \tilde{\theta}) \leq c$.

COMPUTING THE MARGINAL LIKELIHOOD, CONT.

- ▶ Rearrangement of Bayes' theorem: $p(\mathbf{y}) = p(\mathbf{y}|\theta)p(\theta)/p(\theta|\mathbf{y})$.
- ▶ We must know the posterior, **including** the normalization constant.
- ▶ But we only need to know $p(\theta|\mathbf{y})$ in a single point θ_0 .
- ▶ Kernel density estimator to approximate $p(\theta_0|\mathbf{y})$. Unstable.
- ► Chib (1995, JASA) provide better solutions for Gibbs sampling.
- ► Chib-Jeliazkov (2001, JASA) generalizes to **MH algorithm** (good for IndepMH, terrible for RWM).
- ► Reversible Jump MCMC (RJMCMC) for model inference.
 - ▶ MCMC methods that moves in model space.
 - ▶ Proportion of iterations spent in model k estimates $Pr(M_k|\mathbf{y})$.
 - Usually hard to find efficient proposals. Sloooow convergence.
- ► Bayesian nonparametrics (e.g. Dirichlet process priors).

APPROXIMATE MARGINAL LIKELIHOODS

► Taylor approximation of the log posterior

$$\ln p(\mathbf{y}|\theta)p(\theta) \approx \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^{2},$$
$$p(\mathbf{y}|\theta)p(\theta) \approx p(\mathbf{y}|\hat{\theta})p(\hat{\theta}) \exp \left[-\frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^{2}\right]$$

► The Laplace approximation:

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta}, \mathbf{y}}^{-1} \right| + \frac{p}{2} \ln(2\pi),$$

where p is the number of unrestricted parameters in the model.

- Note that $\hat{\theta}$ and $J_{\hat{\theta},\mathbf{y}}$ can be obtained with numerical optimization with BFGS update of Hessian.
- ▶ The BIC approximation is obtained if $J_{\hat{\theta}, \mathbf{y}}$ behaves like $n \cdot I_p$ in large samples

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$