

Elektrochemie

FS 2025 – Mario Graf

Autoren: Luna Haas

https://github.com/lu-haa/Elektrochemie

V1.1.20250608

1 Aufbau der Stoffe (sw 1-2)

1.1 PSE - Periodensystem

- Protonen und Neutronen sind sog. Nukleonen, sie wird oftmals auch Massenzahl bezeichnet.

1.2 Stoffe

1.3 Aggregatzustand

Aggregatzustand		Dispersitätsgrad	
Dispersionsmittel	Dispergierter Stoff	Heterogen	Homogen
gasförmig (g)	gasförmig (g)	=	Gasgemisch
gasförmig (g)	flüssig (l)	Nebel	=
gasförmig (g)	fest (s)	Rauch	=
flüssig (l)	gasförmig (g)	wenig haltbarer Schaum	Gaslösung
flüssig (l)	flüssig (l)	wenig haltbare Emulsion	Flüssigkeitslösung
flüssig (l)	fest (s)	Suspension	feststofflösung
fest (s)	gasförmig (g)	fester Schaum*	
fest (s)	flüssig (l)	brei	
fest (s)	fest (s)	Feststoffgemische	legierung zweier Metalle
*(zB, Schaumstoff)			

1.4 Eselsbrücke

HONCIBrIF - "der Brief vom Onkel"

Die Buchstaben stellen dabei die Elemente des PSE dar, die in der Natur nur 2-atomig vorkommen.

Ausnahme:

P₄ (Phosphor) und S₈ (Schwefel)

1.5 Kugelwolkenmodell

1.6 Bindungswinkel

1.7 Schreibweisen von Lewis

- Der Atomrumpf wird durch das Atomsymbol der entsprechenden Atomsorte wiedergegeben.
- Eine einfach besetzte Kugelwolke der Valenzschale wird durch einen Punkt symbolisiert.
- Eine doppelt besetzte Kugelwolke der Valenzschale wird durch einen Strich symbolisiert.
- Punkte und Striche werden regelmässig rund um das Atomsymbol angeordnet.

Anzahl anhand der Hauptgruppen (1-8) im PSE bestimmbar

Beispiel:

Natrium (Na): 1. Hauptgruppe = 1 Ve Kohlenstoff (C): 4. Hauptgruppe = 4 Ve

Bestimmung der **Nebengruppen** komplizierter/unmöglich -> nicht Prüfungsrelevant

1.8 Isotope

Isotope sind Nuklide (=gleichen Atomsorte) mit der gleichen Ordnungszahl (=Protonen), **aber unterscheiden sich von der Anzahl Neutronen**. Die meisten <u>natürlichen Elemente haben ein oder paar stabile Isotope</u>, während andere Isotope vom gleichen Element <u>radioaktiv</u> sind (=instabil). Dann spricht man von $\alpha, \beta, \gamma - Zerfall$.

2 Stoffklassen (sw 2-5)

2.1 Inhalt

- metallische Stoffe
- Halbleiter
- Einteilung der Stoffe

2.2 Metallische Stoffe

Eigenschaften Aufbau, elektrische Leitfähigkeit, Energiebänder, Verformbarkeit

2.3 Halbleiter

• insbesondere die Dotierung von Halbleitern (n-Halbleiter, p-Halbleiter).

2.4 molekulare Stoffe, Einteilung der Stoffe

3 Flüssigkristalle (sw 4)

3.1 Inhalt

- Definition
- Atomarer Aufbau
- flüssigkristalline Phasen
- TN-Zellen

3.2 Definition

3.3 Molekülstruktur

3.4 TN-Zelle

4 Ablauf chemischer Reaktionen (5-6)

4.1 Inhalt

- Thermochemie
- Reaktionsgeschwindigkeit
- Katalysatoren

5 Säure, Basen und pH-Wert (sw 7)

5.1 Inhalt

- Definition
- Protolysen
- Säure-Base-Reihe GGW (lese beschreibung!)
- pH-Wert
- neutralisation

5.2 Bedeutung

5.3 Säure-Base GGW

Bergab = GGW rechts: $HCl + H_2O \rightleftharpoons Cl^- + H_3O^+$ Bergauf = GGW links: $HS^- + H_2O \rightleftharpoons S^{2-} + H_3O^+$

6 Redox-Reaktionen (SW 10-13)

6.1 Inhalt

- Definitionen
- Oxidationszahlen
- Redoxreihe

7 Korrosion (sw 13 - 14)

7.1 Inhalt

- Korrosionstypen Metallkorrosion, elektrochemische Korrosion
- oxidschichten (passivierung)
- Korrosionsarten (Flächenkorrosion, Kontaktkorrosion, Lochfrass)

- BelüftungselementePassivatoren und Depassivatoren
- H2- und O2-Typ Korrosion

8 Anhang

8.1 praktische Anwendungen der Redox Reaktionen

8.1.1 Inhalt

- galvanische Zellen
- Batterien und Akkus
- Brennstoffzellen
- elektrolytische Verfahren