

PROGRESS UPDATE

- Support began ~a year ago
 - Originally explored as dependency of DeepSpeed
 - Pytorch 2.0 accelerated our involvement
- Where is the code?
 - Some code is upstream
 - Fork: http://github.com/ROCmSoftwarePlatform/triton (track our progress!)
 - Soon to be an official "3rd-party backend"
- Hardware Support
 - Initial support for CDNA2 GPUs (mi100/mi200)
 - Experimental support on RDNA GPUs
 - Device detection at runtime
- Full support for torch.compile in Pytorch 2.0
- When calling into triton.compile, use device_type="hip"

RECENT COMPLETED ITEMS

- Configurable warp size/wavefront size for Triton
 - CDNA2 devices use 64 thread wavefronts [1]
- MatrixCore enablement (MFMA instructions)
 - 32x32 fp16/bf16 initially, other variants coming [1][2]
- Flash attention Support [1] [2]
 - Blocksize 64
 - Keep resultant tensors in registers [1] [2] [3]
- Shared memory bank conflict mitigation for dot operations [1] [2]
- Adjustable workgroup-size to optimally use VGPRs [1]
- Vector loads [1][2]

GEMM PERFORMANCE

M=N=K=1024 - 8192

FA FWD PERFORMANCE

- Embedding size = 3072
- Batch = 4
- seqLen = 1024 16384

THANK YOU!