$b_i = \text{number of basis functions (edges)}$ in box i $L_{\lambda} = \text{number of Legendre points in level } \lambda$ m = number of points in Lagrange polynomial interpolation

 $d_{\lambda} = \text{diameter of every box in level } \lambda$

Data	Shape	Indexing			$\mathcal{I}_i^{\mathcal{S}}$	$\mathcal{I}_i^{\mathcal{F}}$	$\mathcal{I}_i^{\mathcal{S}}$	
Z_{ij}^{near}	$b_i \times b_j$	$\lambda_{max}, \mathcal{B}_i, \mathcal{B}_j: \mathcal{B}_j \in \mathcal{I}_i^{\mathcal{N}}$	r					
I_i	$b_i \times 1$	$\lambda_{max}, \mathcal{B}_i$	\mathbf{r}	r				
V_{i}	$b_i \times 1$	$\lambda_{max}, \mathcal{B}_i$	w					w
$\hat{\kappa}$	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	λ						
F_{ij}	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda_{max}, j \in \mathcal{B}_i$		r				
$R_{ij}\ ilde{ ilde{F}_i}$	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda_{max}, j \in \mathcal{B}_i$						r
$ ilde{F}_i$	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda, {\cal B}_i$		w	rw	r		
G_i	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda, {\cal B}_i$				w	rw	\mathbf{r}
\mathcal{T}_i	$2(L_{\lambda}+1)\times(L_{\lambda}+1)$	$\lambda, {\cal B}_i$				r		
\mathcal{P}	$m \times m$??	$\mathcal{P}_{\theta}, \mathcal{P}_{\phi}$			r		r	

Near Field

$$V_{i}^{b_{i}\times1} = Z_{ij}^{b_{i}\times b_{j}} I_{j}^{b_{j}\times1}, \quad \forall \mathcal{B}_{j} \text{ neighbor } \mathcal{B}_{i}$$

$$V = [\mathbf{V_{x}} \mathbf{V_{y}} \mathbf{V_{z}}] \quad Z = [\mathbf{Z_{x}} \mathbf{Z_{y}} \mathbf{Z_{z}}] \quad I = [\mathbf{I_{x}} \mathbf{I_{y}} \mathbf{I_{z}}]$$

$$\mathbf{V_{x}} = \mathbf{Z_{x}} \mathbf{I_{x}} \quad \mathbf{V_{y}} = \mathbf{Z_{y}} \mathbf{I_{y}} \quad \mathbf{V_{z}} = \mathbf{Z_{z}} \mathbf{I_{z}}$$

$$(1)$$

Box Field

$$\tilde{F}_{m\lambda}^{K_{\lambda}\times 1} = F_{m}^{K_{\lambda}\times b_{m}} I_{m}^{b_{m}\times 1}, \quad \forall \mathcal{B}_{m} \in \lambda_{max} \wedge \lambda = \lambda_{max}$$
 (2)

C2P

$$\tilde{F}_{P,\lambda-1}^{K_{\lambda-1}\times 1} = \sum_{\mathcal{B}_C} E_{CP}^{K_{\lambda}\times 1} \odot A_{1,\lambda} \tilde{F}_{C\lambda}^{K_{\lambda}\times 1} A_{2,\lambda} , \quad \forall \mathcal{B}_C \text{ child of } \mathcal{B}_P
E_{mn} = e^{i\kappa_n \mathbf{d}_{\mathcal{B}_n,\mathcal{B}_m}}$$
(3)

Far Field

$$G_{m\lambda}^{K_{\lambda}\times 1} = \sum_{\mathcal{B}_n} T_{nm}^{K_{\lambda}\times 1} \odot \tilde{F}_{n\lambda}^{K_{\lambda}\times 1}, \quad \forall \mathcal{B}_n \in \mathcal{I}_{m\lambda}^{\mathcal{F}}$$

$$\tag{4}$$

P2C

$$G_{C,\lambda+1}^{K_{\lambda+1}\times 1} = -E_{CP}^{K_{\lambda}\times 1} \odot B_{1,\lambda} G_{P\lambda}^{K_{\lambda}\times 1} B_{2,\lambda} , \quad \forall \mathcal{B}_C \text{ child of } \mathcal{B}_P$$
 (5)

Receiving

$$V_m^{b_m \times 1} = R_m \odot G_{m, \lambda_{max}}^{K_{\lambda_{max}} \times 1}, \quad \mathcal{B}_m \in \lambda_{max}$$
 (6)

$$V_i = Z_{ij}I_j \tag{1}$$

$$\tilde{F}_m = F_m I_m \tag{2}$$

$$\tilde{F}_P = \cdots \tilde{F}_C \cdots \tag{3}$$

$$G_m = \cdots \tilde{F}_n \cdots \tag{4}$$

$$G_C = \cdots G_P \cdots \tag{5}$$

$$V_m = \cdots G_m \cdots \tag{6}$$

• Specific $D_{L_{max} \times g}$ is dummy data owned by every host for L=L_max-1:-1:1 for gi=1:g C2P_t D(L+1, gi),D(L,gi) XLT_t D(L , gi-1),D(L,gj) ; for gj=1:g end end for L=1:L_max for gi=1:g P2C_t D(L-1,gi),D(L,gi) end end for gi=1:g for gj=1:g NF_t D(L_max,gi),D(L_max,gj) end end C2P_t(A,B) Kernel A , B are partitioned hierarchically for a in A for b in B c2p_t(a,b); end end end C2P_t(D1,D2) Kernel for p in D2 for c in p.children c2p_t c,p end end end XLT_t(D1,D2) Kernel for x in D2for b in D1 if b in x.far_field xlt_t b,x end end endP2C_t(D1,D2) Kernel

for p in D1

for c in p.children

```
if c in D2, p2c_t p,c
end
end
end
```

 \bullet General

type,D1,D2,D3,d3_box