# Simultaneous Computation of Hecke Operators

MFO Workshop, "Lattices and Applications in Number Theory"

### Sebastian Schönnenbeck January 2016





# Algebraic Modular Forms

**Notation:**  $\mathbb{G}$  almost simple, linear algebraic group defined over  $\mathbb{Q}$ ,  $\mathbb{G}(\mathbb{R})$  compact, V a f.d.  $\mathbb{Q}$ -rational representation of  $\mathbb{G}$ ,  $\mathbb{A}_f$  the finite adeles of  $\mathbb{Q}$ .

### Definition [Gross '99]

 $K \leq \mathbb{G}(\mathbb{A}_f)$  open and compact.

$$M(V,K) := \left\{ f: \mathbb{G}(\mathbb{A}_f) \to V \mid f(gxk) = gf(x) \text{ for all } g \in \mathbb{G}(\mathbb{Q}), x \in \mathbb{G}(\mathbb{A}_f), k \in K \right\},$$

the space of algebraic modular forms of level K and weight V.

### Remark

- $|gKg^{-1} \cap \mathbb{G}(\mathbb{Q})| < \infty$  for all  $g \in \mathbb{G}(\mathbb{A}_f)$ .
- $|\mathbb{G}(\mathbb{Q})\backslash\mathbb{G}(\mathbb{A}_f)/K|<\infty$ .
- Let  $\mathbb{G}(\mathbb{A}_f) = \bigsqcup_{i=1}^r \mathbb{G}(\mathbb{Q}) \gamma_i K$  and  $\Gamma_i := \gamma_i K \gamma_i^{-1} \cap \mathbb{G}(\mathbb{Q})$  then we have

$$M(V,K) \cong_{\mathbb{Q}} \bigoplus_{i=1}^{r} V^{\Gamma_i}.$$

# The Hecke Algebra

#### **Definition**

 $K \leq \mathbb{G}(\mathbb{A}_f)$  open and compact.

$$H_K := \{ f : \mathbb{G}(\mathbb{A}_f) \to \mathbb{Q} \mid f \text{ } K\text{-biinvariant with compact support} \}$$

with multiplication given by convolution is called the *Hecke algebra* of  $\mathbb G$  w.r.t. K.

#### Remark

- $H_K$  has the natural basis  $\mathbb{1}_{K\gamma K},\ K\gamma K\in \mathbb{G}(\mathbb{A}_f)/\!\!/K$ .
- Let  $\gamma_1, \gamma_2 \in \mathbb{G}(\mathbb{A}_f)$  and  $K\gamma_i K = \bigsqcup_j \gamma_{i,j} K$ . Then the multiplication in  $H_K$  is given by

$$\mathbb{1}_{K\gamma_1 K} \mathbb{1}_{K\gamma_2 K} = \sum_{i,i'} \mathbb{1}_{\gamma_{1,j} \gamma_{2,j'} K}.$$

• If  $K = \prod_p K_p$  is a product of local factors, the Hecke algebra is the restricted tensor product

$$H_K = \otimes_p' H_{K_p}.$$

# The Action of the Hecke Algebra

#### Definition

For  $\gamma \in \mathbb{G}(\mathbb{A}_f)$  we define the linear map  $T(\gamma) \in \operatorname{End}_{\mathbb{Q}}(M(V,K))$  via

$$(T(\gamma)f)(x) = \sum_{i} f(x\gamma_i)$$

where  $f \in M(V, K)$  and  $K\gamma K = \bigsqcup_i \gamma_i K$ .

#### Remark

- The additive extension of  $\mathbb{1}_{K\gamma K} \mapsto T(\gamma)$  yields an algebra morphism  $H_K \to \operatorname{End}_{\mathbb{Q}}(M(V,K))$ .
- M(V,K) carries a scalar product, with respect to which  $T(\gamma)' = T(\gamma^{-1})$ .
- M(V, K) is a semisimple  $H_K$ -module.

### The Venkov Method

**Aim:** Find a way to compute two Hecke operators at once using the incidence relation on the affine building of  $\mathbb{G}$ .

**Idea:** Use a generalization of the following idea attributed to Venkov:  $L,L^{\prime}$  two lattices, then

$$\operatorname{mass}(\operatorname{genus}(L)) \frac{[\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L) : \operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L,L')]}{[\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L') : \operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L,L')]} = \operatorname{mass}(\operatorname{genus}(L')).$$

### Remark

Let U be a f.d. faithful representation of  $\mathbb G$  and  $L\subset U$  a lattice. Then  $K_L:=\operatorname{Stab}_{\mathbb G(\mathbb A_f)}(L)=\prod_p\operatorname{Stab}_{\mathbb G(\mathbb Q_p)}(L\otimes\mathbb Z_p)$  is an open compact subgroup of  $\mathbb G(\mathbb A_f)$ .

Let  $K_1, K_2$  be two open, compact subgroups of  $\mathbb{G}(\mathbb{A}_f)$  and  $K_2 = \bigsqcup_i m_i(K_1 \cap K_2)$ .

### Observation

If  $\mathbb{G}(\mathbb{A}_f) = \coprod_j K_1 \gamma_j \mathbb{G}(\mathbb{Q})$ , then one can find a system of representatives for  $K_2 \setminus \mathbb{G}(\mathbb{A}_f) / \mathbb{G}(\mathbb{Q})$  in the collection  $m_i \gamma_j$ .

## The Transfer Operator

#### Definition

We define the transfer operator  $T_2^1 := T(K_1, K_2)$  (w.r.t.  $K_1$  and  $K_2$ ) via

$$T_2^1: M(V, K_1) \rightarrow M(V, K_2), \ f \mapsto f' \ \text{where} \ f'(x) = \sum_i f(xm_i).$$

# Lemma [S.]

The operators  $T(K_1,K_2)$  und  $T(K_2,K_1)$  are adjoint to each other with respect to the scalar products on  $M(V,K_1)$  and  $M(V,K_2)$ . In particular  $T(K_2,K_1)$  is uniquely determined by  $T(K_1,K_2)$ .

### **Definition**

Let  $K_1=\bigsqcup_{i'}l_{i'}(K_1\cap K_2)$ , then we call  $\nu_{1,2}:=\nu(K_1,K_2):=\sum_{i,i'}\mathbbm{1}_{l_{i'}m_iK_1}$  the Venkov element w.r.t.  $K_1$  und  $K_2$ .

### **Proposition**

- $\nu_{1,2}$  is an element of  $H_{K_1}$ .
- $T_1^2T_2^1=T(\nu_{1,2})$ , in particular we see that  $T_1^2T_2^1$  acts as a (self adjoint) Hecke operator on  $M(V,K_1)$ .

Question: Which operators are obtainable in this fashion?

## Theorem [S.]

Let  $\mathbb G$  be simply connected,  $K_i=\prod_p K_{i,p}$  products of local factors with  $K_{1,p}=K_{2,p}$  for all  $p\neq q$  and  $K_{1,q},K_{2,q}$  parahoric subgroups of  $\mathbb G(\mathbb Q_p)$ , which contain a common lwahori subgroup I. Let  $\widetilde W$  be the extended affine Weyl group and  $W_i\leq \widetilde W$  with  $K_{i,q}=IW_iI$ ,  $W_{1,2}=W_1\cap W_2$  and  $[W_{1,2}\backslash W_2/W_{1,2}]$  a system of representatives of elements of shortest lengths. Then the following holds:

$$\nu_{1,2} = \sum_{\kappa \in [W_{1,2} \setminus W_2/W_{1,2}]} [I(W_1 \cap {}^{\kappa}W_1)I : I(W_1 \cap {}^{\kappa}W_1 \cap W_2)I] \mathbb{1}_{K_1 \kappa K_1}.$$

### Theorem [S.]

Let  $\mathbb G$  be of type  $C_n$  simply connected,  $K_1$  as above with  $K_{1,q}$  hyperspecial. If  $K_{i,q}, 2 \leq i \leq n+1$ , runs through the n further conjucacy classes of maximal parahoric subgroups, then the corresponding elements  $\nu(K_1,K_i)$  form a minimal generating system for the local Hecke algebra  $H_{K_{1,q}}$ .

## Example

Generators for the local (hyperspecial) Hecke algebra for  $\mathrm{Sp}_4$  (Type  $C_2$ , s.c.): Extended Dynkin diagram:

$$\widetilde{C}_2:$$
 $0$ 
 $1$ 
 $2$ 
 $0$ 

 $W_1:=\langle s_1,s_2\rangle, W_2:=\langle s_0,s_2\rangle, W_3:=\langle s_0,s_1\rangle.\ I\leq \mathrm{Sp}_4(\mathbb{Q}_q)$  lwahori subgroup,  $K_{i,q}=IW_iI, i=1,2,3.$ 

 $H_{K_{1,q}}$  is generated by  $\mathbb{1}_{K_1s_0K_1}, \mathbb{1}_{K_1s_0s_1s_0K_1}$ .

Coset decomposition and Venkov elements:

- $[W_{1,2}\backslash W_2/W_{1,2}] = \{1, s_0\}, {}^{s_0}W_1 \cap W_1 = \langle s_2 \rangle = {}^{s_0}W_1 \cap W_1 \cap W_2.$
- $\nu_{1,2} = (q^3 + q^2 + q + 1)\mathbb{1}_{K_1} + \mathbb{1}_{K_1 s_0 K_1}$ .
- $\bullet \ [W_{1,3} \setminus W_3 / W_{1,3}] = \{1, s_0, s_0 s_1 s_0\}, s_0 s_1 s_0 W_1 \cap W_1 = \langle s_1 \rangle = s_0 s_1 s_0 W_1 \cap W_1 \cap W_3.$
- $\nu_{1,3} = (q^3 + q^2 + q + 1)\mathbb{1}_{K_1} + (q+1)\mathbb{1}_{K_1s_0K_1} + \mathbb{1}_{K_1s_0s_1s_0K_1}.$

## Example (cont.)

 $L_1=\mathcal{O}_D^2, D=\left(rac{-2,-5}{\mathbb{Q}}
ight)$ , hyperspecial at  $p \neq 5$ . There are lattices  $L_3 \leq L_2 \leq L_1$ , such that  $L_i$  differ only at 2 and  $\operatorname{Stab}_{\mathbb{G}(\mathbb{Q}_2)}(L_i)=K_{i,2}$  (as above). Compute  $T(K_1s_0K_1)$  and  $T(K_1s_0s_1s_0K_1)$  acting on  $M(\operatorname{triv},K_1)$ :

- genus $(L_i) = \operatorname{class}(L_i) \sqcup \operatorname{class}(L'_i)$ , for  $1 \le i \le 3$ .
- $\bullet \ \, \text{Classical method:} \ \, T(K_1s_0K_1) = \begin{pmatrix} 21 & 9 \\ 30 & 0 \end{pmatrix}, \ \, T(K_1s_0s_1s_0K_1) = \begin{pmatrix} 96 & 24 \\ 80 & 40 \end{pmatrix}.$
- For each class in  $genus(L_1)$  we had to construct 30 (resp. 120) lattices and test them for isometry.
- $\bullet \ \ T_1^2 = \begin{pmatrix} 9 & 6 \\ 15 & 0 \end{pmatrix}, \ T_1^3 = \begin{pmatrix} 12 & 3 \\ 10 & 5 \end{pmatrix} \begin{pmatrix} \leadsto T_2^1 = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}, \ T_3^1 = \begin{pmatrix} 12 & 3 \\ 10 & 5 \end{pmatrix} \end{pmatrix}.$
- ullet For each class in in  $genus(L_1)$  we had to construct 15 (resp. 15) lattices and test them for isometry.
- $15I_2 + T(K_1s_0K_1) = \begin{pmatrix} 36 & 9\\ 30 & 15 \end{pmatrix} = T_1^2T_2^1.$
- $15I_2 + 3T(K_1s_0K_1) + T(K_1s_0s_1s_0K_1) = \begin{pmatrix} 174 & 51\\170 & 55 \end{pmatrix} = T_1^3T_3^1.$
- We also obtain the Hecke operators  $T_2^1T_1^2=3I_2+T(K_2s_1K_2)+T(K_2s_1s_2s_1K_2)$  and  $T_3^1T_1^3=15I_2+T(K_3s_2K_3)$  acting on  $M({\sf triv.},K_2)$  and  $M({\sf triv.},K_3)$  respectively.