1.2 Length and inner product (長度與內預)

Definition 6: u. v e R"

The inner product (N35) of u and v is defined by $u \cdot v = \sum_{i=1}^{n} u_i v_i = u_i v_i + u_2 v_2 + \cdots + u_n v_n$

Example 7: (1) $\begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 4 \times (-1) + 2 \times 2 = -4 + 4 = 0$

(a)
$$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} 2 \\ -1 \end{pmatrix} = 3 \times 2 + 1 \times (-1) + (\times (-3)) = 6 - 1 - 3 = 2$

Remark 8: $u, v, \omega \in \mathbb{R}^n$. $c \in \mathbb{R}$

(3)
$$(cu) \cdot v = c(u \cdot v)$$
.

(4) If
$$u \cdot v = 0$$
, then u and v are perpendicular (#).

Definition 9: The length (norm, 長度) of a vector $u \in \mathbb{R}^n$ is defined by

$$||u|| = \sqrt{u \cdot u} \approx \left(\sum_{i=1}^{n} u_i^2\right)^{1/2}$$

老以向量未看,這個長度內定義十分面點

Example 10: (1) U= (1/3) → IIUII = √12+32 = √10

(a)
$$U = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} \rightarrow \|U\| = \sqrt{1^2 + 4^2 + 5^2} = \sqrt{4a}$$

Lemmall: u, v e Rⁿ. 向量灰角 0. 则
u, v = ||u|| ||v|| cos 0.

Definition 14: A unit vector (單位向量) is a vector whose length = 1. Example 15: (1) $i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ | $k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ are unit vectors. (2) $\begin{pmatrix} \cos 0 \\ \sin 0 \end{pmatrix}$ is a unit vector. (3) $\begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix}$ is a unit vector. 如果用圖刑未看的該, unit vector 即為單位圖上的向量 unit vector Remark 16: $u \in \mathbb{R}^n$, $u \neq 0$, then v = - 11 ull is a unit vector in the same direction as u. 單位圆 Example 17: $u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, then $v = \frac{u}{||u||} = \frac{1}{\sqrt{2}} \left(\frac{1}{1}\right) = \left(\frac{1/\sqrt{2}}{1/\sqrt{2}}\right)$ is a unit vector. Remark 18: u. v & R": unit vector at angel 0. $\Rightarrow u \cdot v = \cos \theta$ and $|u \cdot v| \leq 1$. Proposition 19 (Triangle inequality, 三角 3 等式) $||u+v|| \leq ||u|| + ||v||$ 三角不等式是用建非常意动一個不等式. 番本想话和你們以前答的三角子等式是一樣 砂. proof: || u+ v || = (u+ v). (u+v) = u. u + 2u. v + v.v = 11 4112 + & 4.0 + 110112 = 114112 + & 11411 11011 + 110112 = (11411 + 11011)

在平面或多間上還有一個視面那內問期:	
Question: $u, v, \omega \in \mathbb{R}^3$. $b \in \mathbb{R}^8$	
Does there exist c1, c2, c3 & R such that	
b = c1u + c2v + c3w?	
這裏為了方便配见,我們用 R3. 但同樣的問題可以延伸到 R*	
建也是潮性代的前半郡在赣初内各、是不是对疗任意的 4	. v. w,
R3上羽江田的量都可以應成 u. v. w 的 linear combination ? 或者 u	1. v. u
害有升磨候杆? 殿定 U. U. W 豫. b 最多可以到那些局量?	
Example 20: $u = \begin{pmatrix} 1 \\ -1 \end{pmatrix} v = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \omega = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$	
是 否 存 c1. c2. c3 ∈ R 使得	
C1 U + C2 U + C3 ω = b ?	
Solution: $c_1 u + c_2 v + c_3 w = c_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
$\approx \begin{pmatrix} C_1 \\ -C_1 + C_2 \\ \sim C_2 + C_3 \end{pmatrix} \approx b \approx \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$	(-*
⇒ solving	
$\begin{pmatrix} c_1 & = b_1 \\ -c_1 + c_2 & = b_2 \\ -c_3 + c_3 = b_3 \end{pmatrix}$	
$\Rightarrow \begin{cases} C_1 = b_1 \\ C_2 = b_1 + b_2 \end{cases}$	
$\Rightarrow \begin{cases} c_2 = b_1 + b_2 \\ c_3 = b_1 + b_2 + b_3 \end{cases}$	
但施大多校的 linear system 並不是那度奶群、尤其是高	清產
的	

动一部。	特测,我们	門應該在	医摩解	?或者	影應該	香膏"有	引 秘";
計算. 墨	本上,在追	一章 教1	門介報	南神司	法:		
method 1:	利用 Gauss	sian elimir	nation (it	5 新消	五茂)		
method a:	利用矩阵						
將 (*)							
	(-1 1 0 0 0 0 -1 1)	(C ₁ \	(b ₁ \				
	0-11	C3 /	ba				
	= (uvw)	= C	= b				
-	= A						
î.e.,	AC=	b					
* 0.	夏利用		की द				
	0 0 1 111 1	, ,, <u>,,</u> ,,,					
這雨神方	法各有 傳	缺矣:					
	增	-		缺矣			
method 1	通用行	所有情	73	複雜			
method 2	看趣来	比較簡	單	2, PB 3	行可遂和	陣	
當 部 2章	南神方法	在這裏	看起多	机平石	· 是 狼 · 種	徐 但	如果雅
	- 英阳状						
	有物有有多						
但無論	₽1回方≥去。	瑟 鐵 " 未	连阵"是	無法以	跨 船 河.		