Supplementary material of the paper: Robustness Envelopes of Networks, reference [36] there.

This online supplement contains the detailed simulation results for *energy* and *sensitivity*, as referred in Section 4. All displayed values have been multiplied by 10^{-3} to remove clutter. In the first columns, from top to bottom: node betweenness (Be), node closeness (Cl), node degree (Dg), node eigenvector (EV) and random attack (Rnd).

Table 1: Simulated giant component size's energy and sensitivity for multiple attack strategies.

Giant component		$G_{ m ER}$		G_{WS} (p=0.1)		$G_{ m BA}$		Lattice	
		$p \approx 2p_c$	$p \approx 15 p_c$	q=10	q=64	m=3	m=5	20x20	100x10
Be	$\mathcal{E}^{(\mathscr{P}_{bot})}$	474	476	471	476	476	476	476	476
	$\mathcal{E}^{(\mathscr{P}_{top})}$	412	476	391	475	214	317	465	442
CI	$\mathcal{E}^{(\mathscr{P}_{bot})}$	475	476	475	476	476	476	476	476
	$\mathcal{E}^{(\mathscr{P}_{top})}$	434	476	410	476	255	352	458	433
Dg	$\mathcal{E}^{(\mathscr{P}_{bot})}$	474	476	469	476	476	476	390	337
	$\mathcal{E}^{(\mathscr{S}_{top})}$	425	476	420	476	207	313	408	416
EV	$\mathcal{E}^{(\mathscr{S}_{bot})}$	476	476	475	476	476	476	476	474
	$\mathcal{E}^{(\mathscr{S}_{top})}$	445	476	463	476	308	384	465	464
Rnd	$\mathscr{E}^{(\mathscr{P})}_{\operatorname{avg}}$	463	476	434	476	436	459	327	279
	S	11	0	33	0	36	18	36	42

Table 2: Simulated efficiency's energy and sensitivity for multiple attack strategies.

Efficiency		$G_{ m ER}$		G_{WS} (p=0.1)		$G_{ m BA}$		Lattice	
		$p\approx 2p_c$	$p \approx 15 p_c$	q=10	q=64	m=3	m=5	20x20	100x10
Be	$\mathscr{E}^{(\mathscr{P}_{bot})}$	162	266	123	236	145	167	42	21
	$\mathcal{E}^{(\mathscr{P}_{top})}$	125	253	89	227	50	88	38	18
C	$\mathcal{E}^{(\mathscr{P}_{bot})}$	164	267	128	238	150	170	43	21
	$\mathcal{E}^{(\mathscr{P}_{top})}$	131	254	93	229	54	93	34	18
Dg	$\mathscr{E}^{(\mathscr{P}_{bot})}$	163	267	125	238	146	168	34	16
	$\mathcal{E}^{(\mathscr{P}_{top})}$	126	254	97	229	49	88	27	14
EV	$\mathscr{E}^{(\mathscr{P}_{bot})}$	164	268	131	240	150	170	42	20
	$\mathcal{E}^{(\mathscr{P}_{top})}$	134	255	116	231	63	100	34	15
Rnd	$\mathscr{E}_{\mathrm{avg}}^{(\mathscr{P})}$	148	261	106	232	123	150	27	13
	S	8	3	10	5	15	10	2	1

Table 3: Real graph's *energy* and *sensitivity* for multiple attack strategies.

All		Giant component size				Efficiency				
		CA	USp	EUp	EUr	CA	USp	EUp	EUr	
Ç	$\mathscr{E}^{(\mathscr{P}_{bot})}$	397	309	178	321	41.5	18.3	4.5	5.2	
	$\mathcal{E}^{(\mathscr{P}_{top})}$	135	207	182	150	12.4	8.5	5.0	2.6	
Be	$\mathscr{E}^{(\mathscr{P}_{bot})}$	407	475	190	473	42.2	20.9	4.5	6.3	
	$\mathscr{E}^{(\mathscr{P}_{top})}$	56	63	19	94	4.3	2.4	0.5	1.5	
CI	$\mathscr{E}^{(\mathscr{P}_{bot})}$	455	476	288	474	54.7	23.1	7.7	7.5	
	$\mathscr{E}^{(\mathscr{S}_{top})}$	95	144	89	169	6.5	4.3	1.9	2.7	
Dg	$\mathscr{E}(\mathscr{P}_{bot})$	416	415	131	249	44.6	19.0	2.7	4.1	
	$\mathscr{E}^{(\mathscr{P}_{top})}$	78	56	13	110	7.1	2.4	0.4	1.5	
Rnd	$\mathscr{E}_{\mathrm{avg}}^{(\mathscr{P})}$	280	204	58	126	24.6	8.4	1.4	1.8	
	. I	13	36	17	27	1.4	1.2	0.4	0.2	