3 (a) A spring is fixed at one end and is compressed by applying a force to the other end. The variation of the force *F* acting on the spring with its compression *x* is shown in Fig. 3.1.

Fig. 3.1

A compression of $0.045\,\mathrm{m}$ is produced when a force F_1 acts on the spring. The spring has a spring constant of $800\,\mathrm{N}\,\mathrm{m}^{-1}$.

(i) Determine F_1 .

$$F_1 = \dots N [2]$$

(ii) Fig. 3.1 to show that, for a compression of 0.045 m, the elastic potential energy of the spring is 0.81 J.

[2]

- **(b)** A child's toy uses the spring in **(a)** to launch a ball of mass 0.020 kg vertically into the air. The ball is initially held against one end of the spring which has a compression of 0.045 m. The spring is then released to launch the ball. The kinetic energy of the ball as it leaves the toy is 0.72 J.
 - (i) The toy converts the elastic potential energy of the spring into the kinetic energy of the ball. the information in (a)(ii) to calculate the percentage efficiency of this conversion.

	(ii)	(ii) Determine the initial momentum of the ball as it leaves the toy.			
		momentum = Ns [3]			
(c)	(c) The ball in (b) leaves the toy at point A and moves vertically upwards through the air. Point B is the position of the ball when it is at maximum height h above point A, as illustrated in Fig. 3.2.				
		В			
		ball reaches maximum ———————————————————————————————————			
		height at point B			
		ball at point A			
		kinetic energy 0.72 J A			
		mass 0.020 kg			
	Fig. 3.2 (not to scale)				
	The gravitational potential energy of the ball increases by 0.60 J as it moves from A to B.				
	(i)	Calculate h.			
	(-)				
		h = m [2]			
	(ii)	Determine the average force due to air resistance acting on the ball for its movement from A to B.			
		average force = N [2]			
		avorage 10100			

When there is air resistance, the ball takes time T to move from A to B.			
the ball to move from A to its maximum ime T if there is no air resistance.	State and explain whether the time height will be more than, less than or		
[1]			
[Total: 13]			