

ER2 - 1 heure - le 12 novembre 2015

Sans document ni calculatrice

N° étudiant :	
Prénom :	
Nom :	.\
	-

Le principe de notation associé au QCM consiste à attribuer deux points à une réponse juste et à soustraire un point pour une réponse fausse. L'absence de réponse se traduit par zéro. **Une ou deux réponses** justes par question QCM. Pour les questions 6, 11c et 15c qui ne sont pas du type QCM, appelées « EX », aucun point bien sûr n'est retiré en cas de réponse fausse. Les questions « EX » sont sur 4 points.

sûr n'est retiré en cas de	réponse fausse. Le	es questions « EX » sont su	ır 4 points.	
1:QCM				
Un module à effet Peltie	r peut			
☐ transformer une éner	gie électrique en é	nergie thermique	☐ mesurer un champ ma	gnétique
☐ transformer une éner	gie thermique en é	énergie électrique	☐ mesurer un éclairemer	nt
<u>2 : QCM</u>				
	élivré par un piézo	électrique peut, sous cert $I = \frac{Ae}{L} \frac{dL}{dt}$	taines conditions, être mod	élisé ainsi :
où A est la surface de la	face principale du		efficient piézoélectrique, dL	/L l'allongement
relatif du piézoélectrique	e et t le temps. Que	elle est l'unité de e ?		
\square C/m ²	\square As/m ²	□ sans unité	$\square \ \Omega/m$	
3 : QCM				
Quelle est l'utilité des di en énergie électrique à l'		_	nettant de convertir une énd	ergie mécanique
\square obtenir une tension co	ontinue à partir d'ι	une tension alternative	□ atténuer	
\square obtenir une tension a	lternative à partir d	d'une tension continue	\square amplifier	
4 : QCM				
Dans le cadre de la COP2 Terre d'ici 2100 ?	21, quel est l'objec	tif de limitation de l'augn	nentation de la température	e moyenne de la
□ 0°C	☐ 4°C	□ 6°C	☐ 3°C	□ 2°C
<u>5 : QCM</u>				
	•		tes) permettant d'achemine es dans cette ligne, il faut :	er une puissance
\square La tension de la sourc	e la plus élevée po	ssible et le déphasage en	tre la tension et le courant ¡	oroche de $\pi/2$
\square La tension de la sourc	e la plus élevée po	ssible et le déphasage en	tre la tension et le courant ¡	oroche de zéro
\square La tension de la sourc	e la plus basse pos	sible et le déphasage ent	re la tension et le courant p	roche de zéro
☐ La tension de la sourc	e la plus basse pos	sible et le déphasage ent	re la tension et le courant p	roche de $\pi/2$
	Source	R_l I	Utilisation	

Fig.1

ER2 - 1 heure - le 12 novembre 2015

Sans document ni calculatrice	
<u>6 : EX</u>	
Citez deux objectifs des « smart grids » :	
7 : QCM	
Quelles sont la ou les « applis » Smartphone actuelle(s) ou e	
☐ étudier la qualité du sommeil	☐ soigner le syndrome Gilles de la Tourette
détecter la maladie de Parkinson	☐ soigner les rhumes
8 : QCM	
Soit un capteur dont la grandeur électrique de sortie est la t capteur et un mesurande constant au cours du temps (e présentée sur la figure 2.	
8a. Vous pouvez conclure de ce graphe que le capteur est	
□ plutôt fidèle U [volts]	3
☐ plutôt juste	100
☐ plutôt pas fidèle	90
☐ plutôt pas juste	
8b. La ou les source(s) des erreurs vous semble(nt)	
\square systématique et certainement pas aléatoire	50
\square aléatoire et certainement pas systématique	40 a
\square aléatoire et peut-être aussi systématique	20
\square systématique et peut-être aussi aléatoire	0 100 200 200 400 500 6 temps [secondes]
9 : QCM	Fig.2
Lequel de ces capteurs de température fait preuve intrins conditionnement étant supposé optimal pour ces 4 capteurs	
□ CTN	☐ thermocouple
□ Pt100	□ СТР

ER2 - 1 heure - le 12 novembre 2015

Sans document ni calculatrice

10 : QCM

Soit un thermocouple de type J dont le coefficient de Seebeck est donné sur la figure 3 (en $\mu V/^{\circ}C$). La température de référence est égale à 200°C et la tension mesurée entre les deux bornes du thermocouple est égale à 1,06 mV. Quelle est *approximativement* la *différence* de température (en valeur absolue) entre la température de référence et la température mesurée ?

11: QCM et EX

Soit la CTP (PTC en anglais) dont la caractéristique est donnée sur la figure 4. On utilisera par la suite la courbe « Tsense 140°C » (en trait plein).

11a. Pourquoi le fabricant précise	e-t-il « measured a	at low signal	voltage » ?		
☐ pour économiser l'énergie		\square pour que le capteur ne perturbe pas le mesurande			
\square pour ne pas endommager le capteur		□ pour améliorer la fidélité			
11b. Sur quel intervalle de tempér	ratures la CTP est-	-elle utilisabl	e préférentielleme	nt ? De	
☐ 10°C à 130°C	☐ 10°C à 250°C		☐ 210°C à 250°C		☐ 130°C à 210°C
11c. Pour déterminer la résistanc élémentaire de la figure 5 où l'ar qualité du montage du point de vi intervalle de températures préfére	mpèremètre et le ue de l'emballeme	générateur	sont supposés par	rfaits. Discu	tez brièvement la

ER2 - 1 heure - le 12 novembre 2015

Sans document ni calculatrice

A est un ampèremètre

Fig.5

12:QCM

Soit un capteur magnétique dont la courbe $V_{out}(B)$ (B en gauss, V_{out} en volts) est donnée sur la figure 6. L'erreur de mesure sur la tension V_{out} est supposée de ± 10 mV dans le pire cas. Quelle est l'incertitude sur le champ magnétique B qui en résulte ?

□ +4 G

 $\Box \pm 1 G$ $\Box \pm 10 G$

□ ± 40 G

13:QCM

Pourquoi une boussole utilisant des capteurs à effet Hall est-elle généralement constituée de deux de ces capteurs et non d'un seul ?

☐ pour en avoir un de secours

☐ pour mesurer les deux composantes du champs

☐ pour améliorer la finesse

□ pour améliorer la fidélité

14: QCM

Soit un aimant fixé sur une pale d'une éolienne et un capteur à effet Hall fixé sur le pied de cette éolienne. Rappelons que le coefficient de Hall, R_H, relie le champ magnétique B à la tension mesurée V_{mes} ainsi :

$$V_{\text{mes}} = R_H IB/z$$

avec R_H = 1/qN (la charge élémentaire q = 1,6.10⁻¹⁹ C, N la densité volumique de porteurs de charges libres), I le courant injecté dans le capteur, z l'épaisseur du matériau composant le capteur.

14a. Quel est le mesurande primaire et quel est le mesurande secondaire de ce dispositif?

\square 1 aire : champ magnétique, 2 aire : vitesse de rota	ation de l'éolienne
---	---------------------

☐ 1^{aire} : tension électrique, 2^{aire} : vitesse de rotation de l'éolienne

☐ 1^{aire} : champ magnétique, 2^{aire} : il n'y en a pas

☐ 1^{aire} : vitesse de rotation de l'éolienne, 2^{aire} : champ magnétique

14b. Quel est le principe de l'effet Hall?

☐ La résistivité du matériau dépend du champ magnétique : en mesurant une tension on peut en déduire le courant

 \Box La résistivité du matériau dépend du champ magnétique : en mesurant une résistance, on peut en déduire le champ magnétique

☐ Les électrons, globalement statiques, sont mis en mouvement par le champ magnétique, créant une tension électrique

 \square Les électrons en mouvement grâce à un générateur de courant sont déviés par le champ magnétique vers l'une des faces, créant une différence de potentiel

ER2 - 1 heure - le 12 novembre 2015

Sans document ni calculatrice

14c. Afin d'avoir une bonne sensibilité, vous proposez

□ d'utiliser un semi-conducteur (par exemple GaAs) plutôt qu'un conducteur (par exemple Cu)

□ de diminuer le plus possible le courant injecté I

□ de diminuer le plus possible la charge électrique élémentaire

□ de diminuer le plus possible l'épaisseur z

14d. Après conditionnement du capteur à effet Hall (entre autres avec un trigger), la tension délivrée en sortie est de 5 V quand il n'y a pas de champ magnétique détecté et de 0 V quand il y en a un. La tension délivrée en sortie est donnée sur la figure 7. Quelle est la vitesse de rotation de l'éolienne ?

□ 0,05 tour/s

□ 2 tours/s

□ 20 tours/s

□ 10 tours/s

15 : QCM et EX

La caractéristique d'une photodiode est donnée sur la fig.8 pour différents éclairements. Cette photodiode est placée dans le circuit de la fig.9 où E = 1,2 V et $R_{LOAD} = 8 \text{ k}\Omega$.

15a. Que vaut approximativement ϕ_r pour V_{mes} = 0,8 V ?

 $\Box \phi_r = 2 \text{ mW/cm}^2$

 $\Box \phi_r = 1.2 \text{ mW/cm}^2$

 $\Box \phi_r = 1.6 \text{ mW/cm}^2$

 $\Box \phi_r = 0.8 \text{ mW/cm}^2$

ER2 - 1 heure - le 12 novembre 2015

Sans document ni calculatrice

15b. Lequel de ces schémas équivalents modélise <i>le mieux</i> cette photodiode placée dans le circuit de la fig.9 ?
□ [un générateur de tension orienté convenablement délivrant une tension V= $K\phi_r$ avec $K = 5$ cm ² /A et ϕ_r en mW/cm ²] // [une résistance] // [un condensateur].
□ [un générateur de courant orienté convenablement délivrant un courant $I = K\varphi_r$ avec $K = 0.05$ cm ² /V et φ_r en mW/cm ²] // [une résistance] // [un condensateur].
□ [un générateur de tension orienté convenablement délivrant une tension V= $K\phi_r$ avec K = 5 cm ² /A et ϕ_r en mW/cm^2] en série avec [une résistance] en série avec [un condensateur].
□ [un générateur de courant orienté convenablement délivrant un courant $I = K\phi_r$ avec $K = 0.05$ cm ² /V et ϕ_r en mW/cm ²] en série avec [une résistance] en série avec [un condensateur].
15c. Discutez de manière argumentée, qualitative et brève le comportement de cette photodiode en mode photorécepteur (utilisée en capteur) quand l'éclairement varie avec le temps, par exemple de manière sinusoïdale. (Vous pourrez en particulier discuter le rôle, bénéfique ou néfaste, du condensateur présent dans le schéma équivalent de la photodiode.)
<u>16 : QCM</u>
Un capteur a comme mesurande x et comme grandeur électrique de sortie y. La réponse asymptotique du capteur $ H = \left \frac{\widetilde{Y}}{\widetilde{X}}\right $ (module du rapport des amplitudes complexes de y et de x) en fonction de la fréquence est donnée sur la figure 10. A quelle(s) fréquence(s) ce capteur aura-t-il un fonctionnement optimal ? (Vous supposerez qu'en-dessous 1 Hz, le comportement du capteur est le même qu'entre 1 Hz et 1 kHz.)
☐ de 0 à 10 kHz ☐ de 1 kHz à 10 kHz ☐ à 1 kHz ☐ de 0 à 1 kHz
H ♠ (unité : unité de y divisée par unité de x)
1 Hz 10 Hz 100 Hz 1 kHz 10 kHz fréquence
Fig.10