Шаг 1. Покажем, что любая краевая задача, в которой $a^2 + b^2 > 0$, всегда сводится к одной из двух краевых задач

$$\begin{cases} \phi''(\xi) = -q(\xi)\phi(\xi) \\ \phi(\xi_1) = 1 \\ \phi(\xi_2) = \gamma \end{cases}$$
 — задача A,

либо

$$\begin{cases} \phi''(\xi) = -q(\xi)\phi(\xi) \\ \phi(\xi_1) = 0 & -\text{задача Б,} \\ \phi(\xi_2) = 1 \end{cases}$$

в каждой из которых обязательно $\xi_1 < \xi_2$, а γ — число, равное либо $\frac{a}{b}$, либо $\frac{b}{a}$, в том числе возможно $\gamma = 0$.

- Замена $x=-\xi$ не меняет вид уравнения, поскольку $dx=-d\xi$, $d^2x=d^2\xi$, но позволяет поменять местами точки x_1 и x_2 , чтобы гарантированно получить $\xi_1<\xi_2$. Расстояние между точками ξ_1 и ξ_2 будет таким же, как и расстояние между исходными x_1 и x_2 .
- Замена $\xi = \alpha + \check{\xi}$ также не не меняет вид уравнения, но позволяет передвинуть точки ξ_1 и ξ_2 на те же места, на которых были точки x_1 и x_2 изначально.
- Наконец, замена $y(x) = k \varphi(x)$, где $k \neq 0$, не меняет вид уравнения. С надлежащим выбором числа k можно привести исходную краевую задачу либо к задаче А, либо к задаче Б. Подробнее говоря, исходная краевая задача сводится к задаче Б, если и только если после первых двух замен и получения $\xi_1 < \xi_2$ оказывается, что $y(\xi_1) = 0$.

Случай, когда a=b=0 — особый, и для него этими заменами можно добиться, чтобы $\xi_1<\xi_2.$

Таким образом, для существования и единственности решения исходной краевой задачи необходимо и достаточно, чтобы задачи А и Б и особая задача имели единственное решение.

Шаг 2. Найдём фундаментальную систему решений.

Общее решение имеет вид $\phi(\xi) = A\phi_1(\xi) + B\phi_2(\xi)$, где $\phi_1(\xi)$, $\phi_2(\xi)$ — линейно независимые частные решения уравнения $\phi'(\xi) = -q(\xi)\phi(\xi)$.

Рассмотрим задачу Коши

$$\begin{cases} \varphi_1''(\xi) = -q(\xi)\varphi_1(\xi) \\ \varphi_1(\xi_1) = 1 \\ \varphi_1'(\xi_1) = 1 \end{cases}$$

и положим $\phi_1(\xi)$ её решением. Поскольку $\phi_1''(\xi) = -q(\xi)\phi_1(\xi)$, а $q(\xi) \leqslant 0$, $\phi_1(\xi_1) > 0$, $\phi_1'(\xi_1) > 0$, имеем $\phi_1(\xi) \geqslant \phi_1(\xi_1) = 1$ при $\xi \in [\xi_1; +\infty)$ в силу доказанного в задаче 723. При этом всём $\phi_1''(\xi) = -q(\xi)\phi_1(\xi) \geqslant 0$, а значит $\phi_1''(\xi) \geqslant \phi_1'(\xi_1) = 1$ и $\phi_1(\xi)$ строго монотонно возрастает на $\xi \in [\xi_1; +\infty)$.

По формуле Остроградского-Лиувилля находим

$$\varphi_2(\xi) = \varphi_1(\xi) \left(\int_{\xi_1}^{\xi} \frac{1}{\varphi_1^2(t)} dt + C \right).$$

При этом интеграл $\int\limits_{\xi_1}^{\xi} \frac{1}{\varphi^2(t)} \ dt$ — собственный для всех $\xi \in [\xi_1; +\infty)$, поскольку

 $\varphi_1(\xi) \geqslant 1$. Выбор постоянной C произволен, и для простоты доказательства выберем C=0, то есть

$$\varphi_2(\xi) = \varphi_1(\xi) \cdot \int_{\xi_1}^{\xi} \frac{1}{\varphi_1^2(t)} dt.$$

В силу этого выбора получаем $\phi_2(\xi_1) = 0$, но

$$\varphi_2(\xi_2) = \varphi_1(\xi_2) \int_{\xi_1}^{\xi_2} \frac{1}{\varphi_1^2(t)} dt > 0.$$

Шаг 3. Докажем существование и единственность решения.

В общем случае преобразованная краевая задача равносильна системе линейных уравнений

$$\begin{cases} \varphi(\xi_1) = A\varphi_1(\xi_1) + B\varphi_2(\xi_1) \\ \varphi(\xi_2) = A\varphi_1(\xi_2) + B\varphi_2(\xi_2) \end{cases}$$

относительно чисел A, B. Поскольку $\phi_2(\xi_1) = 0$, определитель системы

$$\Delta_0 = \varphi_1(\xi_1)\varphi_2(\xi_1)$$

ненулевой.

Случай **1.** a = b = 0.

Особый случай преобразуется в краевую задачу

$$\begin{cases} \varphi''(\xi) = -q(\xi)\varphi(\xi) \\ \varphi(\xi_1) = 0 \\ \varphi(\xi_2) = 0 \end{cases}$$

а система уравнений становится однородной

$$\begin{cases} 0 = A\varphi_1(\xi_1) + B\varphi_2(\xi_1) \\ 0 = A\varphi_1(\xi_2) + B\varphi_2(\xi_2) \end{cases}$$

Эта система уравнений имеет только тривиальное решение, а искомая функция y(x) = 0 — единственное решение исходной краевой задачи.

Случай 2. $a^2 + b^2 > 0$.

Задача сводится либо к задаче А, либо задаче Б. Для них система уравнений будет иметь вид

$$\begin{cases} 1 = A\phi_1(\xi_1) + B\phi_2(\xi_1) \\ \gamma = A\phi_1(\xi_2) + B\phi_2(\xi_2) \end{cases} \bowtie \begin{cases} 0 = A\phi_1(\xi_1) + B\phi_2(\xi_1) \\ 1 = A\phi_1(\xi_2) + B\phi_2(\xi_2) \end{cases}$$

соответственно для задач A и Б. В любом из этих двух случаев система неоднородна, а поскольку определитель системы Δ_0 отличен от нуля, система имеет единственное решение. Окончательно, решение преобразованной краевой задачи существует и единственно, что и требовалось доказать.

Шаг 4. Докажем монотонность решения не только при b=0, а вообще во всех случаях, когда ab=0.

Особый случай a = b = 0 соответствует решению y(x) = 0, которое монотонно.

Если ab=0, то исходная краевая задача сводится либо к задаче Б, либо к задаче А, в которой $\gamma=0$. Важен тот факт, что все перечисленные замены переменных могут лишь изменить направление монотонности решения $\phi(\xi)$ относительно решения y(x), но сам факт наличия или отсутствия монотонности остаётся неизменным.

Покажем, что задача Б в вопросе монотонности решения сводится к задаче А.

Пусть дана задача Б. В силу уже доказанного решение этой задачи существует и единственно для всех ξ . Далее выберем любую точку $\xi_3 < \xi_1$ и рассмотрим новую краевую задачу

$$\begin{cases} \varphi''(\xi) = -q(\xi)\varphi(\xi) \\ \varphi(\xi_3) = \varphi(\xi_3) \neq 0 \\ \varphi(\xi_1) = 0 \end{cases}$$

задающую такую же функцию, как и данная задача Б. Поскольку $\xi_3 < \xi_1$, заменами переменных её можно свести к задаче А. Решение полученной задачи будет монотонным тогда и только тогда, когда будет монотонным решение данной задачи Б.

Итак, остаётся доказать, что монотонно убывает решение задачи А

$$\begin{cases} \varphi''(\xi) = -q(\xi)\varphi(\xi) \\ \varphi(\xi_1) = 1 \\ \varphi(\xi_2) = 0 \end{cases}$$

Задача приводит к системе уравнений

$$\begin{cases} 1 = A\varphi_1(\xi_1) + B\varphi_2(\xi_1) \\ 0 = A\varphi_1(\xi_2) + B\varphi_2(\xi_2) \end{cases}$$

имеющей решение $A=1,\,B=-\left(\int\limits_{\xi_{1}}^{\xi_{2}}\phi_{1}^{-2}(t)\;dt\right)^{-1}$. Отсюда получаем решение задачи A

$$\varphi(\xi) = \varphi_1(\xi) \left(1 - \frac{\int_{\xi_1}^{\xi} \frac{1}{\varphi_1^2(t)} dt}{\int_{\xi_1}^{\xi_2} \frac{1}{\varphi_1^2(t)} dt} \right).$$

Учитывая, что

$$\int\limits_{\xi_1}^{\xi_2} \frac{1}{\varphi_1^2(t)} \ dt - \int\limits_{\xi_1}^{\xi_2} \frac{1}{\varphi_1^2(t)} \ dt = \int\limits_{\xi}^{\xi_1} \frac{1}{\varphi_1^2(t)} \ dt + \int\limits_{\xi_1}^{\xi_2} \frac{1}{\varphi_1^2(t)} \ dt = - \int\limits_{\xi_2}^{\xi} \frac{1}{\varphi_1^2(t)} \ dt,$$

решение $\phi(\xi)$ упрощается до

$$\varphi(\xi) = \frac{-\varphi_1(\xi) \int_{\xi_2}^{\xi} \frac{1}{\varphi^2(t)} dt}{\int_{\xi_1}^{\xi_2} \frac{1}{\varphi_1^2(t)} dt}.$$

На множестве $\xi \in \left[\xi_2; +\infty\right)$ обе функции $\phi_1(\xi)$ и $\int\limits_{\xi_2}^{\varsigma} \frac{1}{\phi_1^2(t)} \, dt$ в числителе положительны и монотонно возрастают, в знаменателе находится положительное число, а потому $\phi(\xi)$ при таких ξ убывает.

Пусть теперь $\xi \in (-\infty; \xi_2)$. Имеем

$$\varphi'\big(\xi\big) = -\int\limits_{\xi_2}^{\xi} q(t)\varphi(t) \ dt + \varphi'\big(\xi_2\big) = \int\limits_{\xi}^{\xi_2} q(t)\varphi(t) \ dt + \varphi'\big(\xi_2\big).$$

Функция $\phi'(x)$ непрерывна. В частности,

$$\varphi'(\xi_2) = \lim_{\xi \to \xi_2 + 0} \varphi'(\xi) \leqslant 0.$$

Помимо ξ_2 , нулей у функции $\phi(\xi)$ нет, потому что иначе можно было бы составить из другого нуля и ξ_2 особый случай краевой задачи, единственное возможное решение которой – тождественный нуль. Это значит, что на $\left[\xi;\xi_2\right)$ функция $\phi(\xi)$ положительна, а значит

$$\varphi'(\xi) = \int_{\xi}^{\xi_2} q(t)\varphi(t)dt + \varphi(\xi_2) \leq 0.$$

и на луче $\xi \in (-\infty; \xi_2)$ функция $\phi'(\xi)$ также невозрастает. Утверждение доказано.

Замечание. Условие $q(x) \le 0$ нельзя опустить.

Например, краевая задача

$$\begin{cases} y''(x) + y(x) = 0 \\ y\left(\frac{\pi}{4}\right) = -1 \\ y\left(\frac{5\pi}{4}\right) = 1 \end{cases}$$

равносильна системе уравнений

$$\begin{cases} -1 = A \cdot \frac{1}{\sqrt{2}} + B \cdot \frac{1}{\sqrt{2}} \\ 1 = A \cdot \frac{1}{\sqrt{2}} + B \cdot \frac{1}{\sqrt{2}} \end{cases}$$

и потому не имеет решений.

А краевая задача

$$\begin{cases} y''(x) + y(x) = 0 \\ y\left(\frac{\pi}{4}\right) = 1 \\ y\left(\frac{5\pi}{4}\right) = 1 \end{cases}$$

приводит к

$$\begin{cases} 1 = A \cdot \frac{1}{\sqrt{2}} + B \cdot \frac{1}{\sqrt{2}} \\ 1 = A \cdot \frac{1}{\sqrt{2}} + B \cdot \frac{1}{\sqrt{2}} \end{cases}$$

и имеет бесконечно много решений.