

PONTIFICADA UNIVERSIDAD CATÓLICA

MAT2854

Análisis Funcional

Autor: Sebastián Lepe V.

30 de junio de 2025

${\rm \acute{I}ndice}$

1.	Preliminares	3
	1.1. Topología	4
	1.2. Bases	
	1.3. Topología sobre espacios métricos y Funciones	
2.	Espacios de Operadores Lineales Acotados	17
	2.1. Ejemplos de Espacios Banach	18
	2.2. Criterio de Completitud, Completación y Espacio Cociente	
	2.3. Operadores Acotados y Continuos	
	2.4. Operadores Adjuntos	
3.	Teorema Hanh-Banach	36
	3.1. Resultados del teorema de HB:	
	3.2. Teoremas de Categorias de Baire y sus Consecuencias	
4.	Topología Débiles y Dualidad	62
	4.1. Convergencia en Topología débil y débil estrella	78
5.	Espectro de un Operador Acotado	86
	5.1. Un poco de Variable Compleja	96
6.	Espacios de Hilbert	100
	6.1. Ejemplos de Espacios Euclidianos y Espacios de Hilbert	105
	6.2. Operadores Adjuntos II	113
	6.3. Operadores Adjuntos en Espacios Hilbert	
	6.4. Ejemplos Operadores Autoadjuntos	
7.	Sistemas Ortonormales	12 6
	7.1. Algoritmo de Gram-Schmidt	127
	7.2. Ejemplos de Sistemas Ortonormales	

Introducción

1. Preliminares

Trabajaremos con nociones principales de métrica y espacio topológico. Por lo que tenemos que definir los espacios métricos y topológicos con sus respectivas propiedades.

Definición: Sea V un espacio vectorial sobre \mathbb{R} ($\delta \mathbb{C}$). Una norma en V es una función,

$$\|\cdot\|:V\to[0,\infty)$$

que satisface las siquientes propiedades:

- (i) ||x|| = 0 si y sólo si x = 0.
- (ii) Para todo $x \in V$ y para todo $\lambda \in \mathbb{R}$ ($\delta \mathbb{C}$) se satisface que,

$$\|\lambda x\| = |\lambda| \|x\|$$

(iii) Para todo $x, y \in V$ se satisface que,

$$||x + y|| \le ||x|| + ||y||$$

 $Si \parallel \cdot \parallel$ es una norma en V, entonces decimos que $(V, \parallel \cdot \parallel)$ es un espacio vectorial normado o bien, e.v.m.

Definición: Sea X un conjunto no vacío. Sea $d: X \to X \to [0, \infty)$ una función sobre X que satisface las siguientes propiedades:

- (i) d(x,y) = 0 si y sólo si x = y para todo $x, y \in X$.
- (ii) d(x,y) = d(y,x) para todo $x,y \in X$.
- (iii) $d(x,y) \leq d(x,z) + d(z,y)$ para todo $x,y,z \in X$.

Si tal d existe, decimos que es una métrica y al par (X,d) le llamamos espacio métrico o e.m.

Proposición: Sea $(V, \|\cdot\|)$ es un e.v.m. Entonces $d_{\|\cdot\|}(x, y) := \|x - y\|$ es una métrica sobre V.

Demostración: Debemos probar los tres axiomas de métrica.

(i) Notemos que,

$$d_{\|\cdot\|}(x,y) = 0 \Leftrightarrow \|x - y\| = 0$$
$$\Leftrightarrow x - y = 0$$
$$\Leftrightarrow x = y$$

- (ii) Claramente $d_{\|\cdot\|}(x,y) = d_{\|\cdot\|}(y,x)$.
- (iii) Sean $x, y, z \in V$. Notemos que,

$$d_{\|\cdot\|}(x,y) = \|x - y\| = \|x - z + (z - y)\|$$

$$\leq \|x - z\| + \|z - y\| = d_{\|\cdot\|}(x,z) + d_{\|\cdot\|}d(z,y)$$

Por lo tanto $d_{\|\cdot\|}$ es una métrica.

1.1. Topología

Definición: Sea X un conjunto no vacío. Decimos que $\tau \subseteq \mathcal{P}(X)$ es una topología sobre X si satisface que,

- (i) $\emptyset, X \in \tau$.
- (ii) Si $U_{\gamma} \in \tau$ donde $\gamma \in \Gamma$ con Γ arbitrario, entonces,

$$\bigcup_{\gamma \in \Gamma} U_{\gamma} \in \tau$$

(iii) Si $U_i \in \tau$ donde $i = 1, \dots, n$, entonces,

$$\bigcap_{i=1}^{n} U_i \in \tau$$

En tal caso decimos que (X, τ) es un espacio topológico.

Nota: A los subconjunto de X que son elementos de la topología τ , los llamamos abiertos de la topología a τ .

Ejemplo: Sea $X = \mathbb{R}$. Entonces las siguientes colecciones son topologías sobre \mathbb{R} :

- (i) $\tau_1 = \{\emptyset, \mathbb{R}\}$ (topología trivial).
- (ii) $\tau_2 = \mathcal{P}(\mathbb{R})$.
- (iii) $\tau_3 = \{\bigcup_{n \in \mathbb{N}} (a_n, b_n) : a_n \in \mathbb{R} \cup \{-\infty\}, b_n \in \mathbb{R} \cup \{+\infty\}\}.$

Definición: Sea (X, τ) es espacio topológico y sea $Y \subseteq X$. Definimos la topología τ restringida a Y por:

$$\tau\big|_{V} := \{U \cap Y : U \in \tau\}$$

Afirmación: $(Y, \tau|_{Y})$ es espacio topológico.

Demostración: Por comodidad digamos que $\nu = \tau \big|_{Y}$. Debemos demostrar los tres axiomas de espacio topológico.

- (i) Claramente $\emptyset, Y \in \nu$.
- (ii) Sea $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ colección arbitraria de abiertos en ν . Luego para todo ${\gamma}\in\Gamma$ se cumple que,

$$U_{\gamma} = V_{\gamma} \cap Y$$

donde $V_{\gamma} \in \tau$. De esta forma,

$$\bigcup_{\gamma \in \Gamma} U_{\gamma} = \bigcup_{\gamma \in \Gamma} (V_{\gamma} \cap Y)$$
$$= \underbrace{\left(\bigcup_{\gamma \in \Gamma} V_{\gamma}\right)}_{\in \tau} \cap Y$$

Por tanto la unión de los U_{γ} es un abierto en ν .

(iii) Haciendo de forma análoga al punto anterior, se concluye que la intersección finita de abiertos de ν , es un abierto de ν .

Por tanto ν es topología sobre Y.

Definición: Sea (X, τ) espacio topológico. Decimos que un conjunto N es una vecindad de $x \in X$ en τ si existe $U \in \tau$ tal que $x \in U$ y $U \subseteq N$, es decir,

$$x \in U \subseteq N$$

Observación: Diremos que N es vecindad abierta de $x \in X$ si $N \in \tau$.

Definición: Sea (X, τ) espacio topológico. Decimos que $F \subseteq X$ es conjunto cerrado, si su complemento $X \setminus F$ es un abierto.

Proposición: Sea (X, τ) es un espacio topológico. Entonces se cumple,

- (i) \emptyset , X son cerrados.
- (ii) Sea $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$ una familia de cerrados con Γ arbitrario. Entonces,

$$\bigcap_{\gamma \in \Gamma} F_{\gamma}$$

es cerrado.

(iii) Sean F_1, \dots, F_n certados, entonces,

$$\bigcup_{i=1}^{n} F_i$$

es cerrado.

Demostración:

- (i) Por definición sabemos que \emptyset y X son abiertos, entonces $X \setminus \emptyset = X$ y $X \setminus X = \emptyset$ son cerrados por definición de cerrado.
- (ii) Sea $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$ una familia de cerrados con Γ arbitrario. Consideremos la familia de abiertos $\{U_{\gamma}:=X\setminus F_{\gamma}\}_{{\gamma}\in\Gamma}$, entonces,

$$\bigcup_{\gamma \in \Gamma} U_{\gamma} \ \text{ es abierto} \Leftrightarrow \left(\bigcup_{\gamma \in \Gamma} U_{\gamma}\right)^{c} \ \text{ es cerrado}$$

$$\Leftrightarrow \ \bigcap_{\gamma \in \Gamma} F_{\gamma} \ \text{ es cerrado}$$

(iii) De forma análoga al punto anterior se puede concluir que la unión finita de cerrados es un cerrado.

Demostrando la proposición.

Definición: Sea (X, τ) un espacio topológico. Sea $A \subseteq X$, definimos la clausura de A como el conjunto cerrado más pequeño que contiene a A y lo denotamos por \overline{A} o cl(A).

Afirmación: La clausura de A está bien definida.

Demostración: Definimos,

$$M := \bigcap_{\substack{F \text{ cerrado} \\ F \supset A}} F$$

Entonces M es cerrado al ser intersección arbitraria de cerrado y además es el cerrado más pequeño que contiene a A puesto que si N es cerrado y contiene a A, entonces,

$$A \subseteq M \subseteq N$$

De esta forma la clausura de A existe para todo subconjunto de X y por tanto,

$$\overline{A} = \bigcap_{\substack{F \text{ cerrado} \\ F \supset A}} F$$

Otra forma de definir la clausura de A es de la siguiente forma:

Proposición: Sea (X, τ) espacio topológico y sea $A \subseteq X$. Entonces,

 $\overline{A} = \{x \in X : toda\ vecindad\ de\ x\ intersecta\ a\ A\}$

Demostración: Sea $M := \{x \in X : \text{toda vecindad de } x \text{ intersecta a } A\}$. Vamos a demostrar por doble inclusión. Sea $x \in \overline{A}$, entonces para todo F que contiene a A y es cerrado, se tiene que $x \in F$. Sea V vecindad de x, luego existe U abierto tal que,

$$x \in U \subseteq V$$

Supongamos que $A \cap V = \emptyset$, entonces $A \cap U = \emptyset$ y entonces,

$$A \subseteq U^c$$

donde U^c es cerrado que contiene a A, es decir, $x \in U^c$, sin embargo tenemos que $x \in U$, siendo esto una contradicción, por lo tanto $A \cap V \neq \emptyset$ para toda vecindad de x, por lo que $x \in M$.

Supongamos ahora que $x \in M$. Sea F cerrado que contiene a A. Si $x \notin F$ entonces se tiene que,

$$x \in F^c \subseteq A^c$$

Es decir, F^c es una vecindad abierta de x tal que $F^c \cap A = \emptyset$ siendo contradicción ya que por definición toda vecindad de x debe intersectarse de forma no vacía con A, por lo tanto $x \in F$ para todo F cerrado que contiene a A, es decir, $x \in \overline{A}$.

Finalmente concluimos que $\overline{A} = M$.

Definición: Sea (X, τ) un espacio topológico. Sea $A \subseteq X$, definimos el interior de A como el conjunto abierto más grande contenido en A y lo denotamos por A° o int(A).

Afirmación: El interior de A está bien definida.

Demostración: Definimos,

$$M := \bigcup_{\substack{V \text{ abierto} \\ V \subset A}} V$$

Entonces M es abierto al ser unión arbitraria de abiertos y además es el más grande contenido en A puesto que si N es abierto contenido en A, entonces,

$$N \subseteq M \subseteq A$$

Por lo tanto existe el interior de A para todo subconjunto de X, y por tanto,

$$\boldsymbol{A}^{\circ} = \bigcup_{\substack{V \text{ abierto} \\ V \subseteq A}} V$$

Ejemplo: Si $A \subseteq X$ y $B = X \setminus A$, entonces $A^{\circ} = X \setminus \overline{B}$. Para ver esto notemos que $X \setminus \overline{B}$ es abierto y si consideramos abierto $U \subseteq A$, entonces,

$$B = X \setminus A \subseteq X \setminus U$$

Luego aplicando la clausura de B se obtiene que,

$$\overline{B} \subseteq X \setminus U \Leftrightarrow U \subseteq X \setminus \overline{B}$$

Es decir, $X \setminus \overline{B}$ es el mayor abierto contenido en A faltar ver que está incluido en A

1.2. Bases

Definición: Sea (X, τ) un espacio topológico. Sea β una colección de subconjuntos de X. Decimos que β es una base de τ si se satsiface que,

- (i) $\beta \subseteq \tau$,
- (ii) Todo elemento de τ es unión arbitraria de elementos de β .

Ejemplo: Sea (\mathbb{R}, τ_3) donde τ_3 es la topología definida en el ejemplo anterior. Consideremos,

$$\beta := \{(a, b) : a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{+\infty\}\}\$$

Entonces β es una base de τ .

Proposición: Sea X no vacío. Sea β una familia de subconjuntos de X, entonces, β es una base de una topología de X si y sólo si,

- (i) $\bigcup_{V \in \beta} V = X \ y \ \emptyset \in \beta$.
- (ii) Para todo $V_1, V_2 \in \beta$ existe una familia $\{V_\gamma\}_{\gamma \in \Gamma} \subseteq \beta$ tal que,

$$V_1 \cap V_2 = \bigcup_{\gamma \in \Gamma} V_\gamma$$

Demostración: Supongamos que τ es una topología de X con base β . Entonces es evidente que,

$$\bigcup_{V \in \beta} V = X \quad \mathbf{y} \quad \emptyset \in \beta$$

Y si tenemos $V_1, V_2 \in \beta$, entonces $V_1, V_2 \in \tau$ por definición y luego $V_1 \cap V_2 \in \tau$. Luego por definición de base de β se tiene que existe una colección $\{V_\gamma\}_{\gamma \in \Gamma} \subseteq \beta$ tal que,

$$V_1 \cap V_2 = \bigcup_{\gamma \in \Gamma} V_{\gamma}$$

Ahora demostremos la otra dirección. Definimos la colección.

 $\tau := \{V : V \text{ es unión arbitraria de elementos de } \beta\}$

donde β satisfacde (i) y (ii). Si probamos que τ es una topología, entonces β es una base. Demostremos los tres axiomas de topología:

- (i) Claramente $\emptyset, X \in \tau$.
- (ii) Sea $\{V_{\gamma}\}_{{\gamma}\in\Gamma}$ colección arbitraria de elementos de τ . Luego,

$$\bigcup_{\gamma \in \Gamma} V_{\gamma} \in \tau$$

al ser unión de uniones de elementos de β , es decir, es unión de elementos de β .

(iii) Sean $V_1, V_2 \in \tau$. Entonces,

$$V_1 = \bigcup_{\gamma \in \Gamma} U_{\gamma}, \ V_2 = \bigcup_{\omega \in \Omega} U_{\omega}$$

donde U_{γ}, U_{ω} son elementos de β . Luego,

$$V_1 \cap V_2 = \bigcup_{\substack{\gamma \in \Gamma \\ \omega \in \Omega}} (U_\gamma \cap U_\omega)$$

Notemos que la intersección de dos elemento de β es la unión arbitraria de elementos de β por hipótesis, por lo tanto $V_1 \cap V_2$ es unión de elementos de β , es decir, $V_1 \cap V_2 \in \tau$.

Finalmente por recurrencia se tiene que al tomar $V_1, \dots, V_n \in \tau$, se cumple que,

$$\bigcap_{i=1}^{n} V_i \in \tau$$

Por lo tanto τ es una topología sobre X y β es base de τ . Demostrando la proposición.

Definición (raro, revisar): Sea (X, τ) espacio topológico. Decimos que $\nu \subseteq \mathcal{P}(X)$ es una base de vecindades de un punto $x_0 \in X$ de τ si para toda vecindad N de x en (X, τ) existe $V \in \nu$ tal que $V \subseteq N$.

Definición: Sean $(X, \tau), (Y, \sigma)$ espacios topológicos. Definimos la topología producto como la topología con base,

$$\mathcal{M} = \{ U \times V : U \in \tau, V \in \sigma \}$$

Afirmación: M es una base bien definida.

Demostración: Demostremos usando la proposición anterior.

(i) Notemos que $\emptyset \in \mathcal{M}$ y que,

$$\bigcup_{U\times V\in\mathcal{M}}U\times V=X\times Y$$

dado que τ y σ son topologías.

(ii) Sean $W_1, W_2 \in \mathcal{M}$. Se tiene que,

$$W_1 = U_1 \times V_1$$
$$W_2 = U_2 \times V_2$$

Luego,

$$W_1 \cap W_2 = \underbrace{(U_1 \cap U_2)}_{\in \tau} \times \underbrace{(V_1 \cap V_2)}_{\in \sigma}$$

Luego $W_1 \cap W_2 \in \mathcal{M}$.

Demostrando que \mathcal{M} está bien definida.

1.3. Topología sobre espacios métricos y Funciones

Sea (X, d) un espacio métrico. Definimos la bola de centro x y radio r en X por:

$$B(x,r) := \{ y \in X : d(x,y) < r \}$$

con $x \in X$ y $r \ge 0$. Entonces,

$$\mathcal{B} := \{ B(x, r) : x \in X, r \ge 0 \}$$

Es una base. Para ver esto notemos que,

$$B(x,0) = \emptyset$$
 y $\bigcup_{x \in X} B(x,r) = X$

Y que dada dos bolas $B(x_1, r_1)$, $B(x_2, r_2)$, entonces $B(x_1, r_1) \cap B(x_2, r_2)$ es un abierto de forma métrica en X, entonces se tiene que la intersección es unión arbitraria de bolas de X. Por lo tanto \mathcal{B} es una base de alguna topología de X.

En particular,

$$\tau = \{abiertos de X en el sentido métrico \}$$

Es la topología de X que tiene base \mathcal{B} .

Definición: Sea (X, d) espacio métrico. Se define la topología inducida por d por la topología de base \mathcal{B} , el cual es el conjunto de todos los abiertos en el sentido métrico de X.

Definición: Sean $(X, \tau), (Y, \sigma)$ espacios topológicos. Consideremos la función $f: X \to Y$. Diremos que f es continua si y sólo si para todo $V \in \sigma$ se tiene que $f^{-1}(V) \in \tau$.

Nota: A veces escribiremos $f:(X,\tau)\to (Y,\sigma)$ para representar una función entre dos espacios topológicos.

Proposición: Sean $(X, d_x), (Y, d_y)$ espacios métricos. Consideremos la función $f: X \to Y$. Entonces f es continua en X en el sentido métrico por definición ε - δ si y sólo si f es continua en X en el sentido topológico sobre las topologías inducidas de X e Y.

Demostración: Supongamos que $f: X \to Y$ es continuo en el sentido métrico, es decir, para todo $x_0 \in X$ se tiene que para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si para todo $x \in X$ se tiene que $d_X(x, x_0) < \delta$, entonces $d_Y(f(x), f(x_0)) < \varepsilon$. Esto es equivalente a decir que, para todo $x_0 \in X$, para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si

$$x \in B_X(x_0, \delta) \Rightarrow f(x) \in B_Y(f(x_0), \varepsilon)$$

Sin pérdida de generalidad consideremos la bola $B_Y(y_0,\varepsilon)$ con $y_0 = f(x_0) \in f(X)$ y $\varepsilon > 0$ (elemento de la base topológica de Y inducida por d_Y). Probemos que $f^{-1}(B_Y(f(x_0),\varepsilon))$ es abierto topológico en X. Si $x \in f^{-1}(B_Y(f(x_0),\varepsilon))$, entonces $f(x) \in B_Y(f(x_0),\varepsilon)$, luego existe $\delta > 0$ tal que si,

$$x \in B_X(x_0, \delta) \Rightarrow f(x) \in B_Y(f(x_0), \varepsilon) \Rightarrow x \in f^{-1}(B_Y(f(x_0), \varepsilon))$$

Es decir,

$$x \in B_X(x_0, \delta) \subseteq f^{-1}(B_Y(f(x_0), \varepsilon))$$

Por lo tanto $f^{-1}(B_Y(f(x_0), \varepsilon))$ es abierto en el sentido métrico y por tanto lo es en el sentido topológico. Esto implica que la preimagen de todo abierto topológico en X, es un abierto topológico en Y, por lo que f es continua en el sentido topológico.

Supongamos ahora que f es continua en el sentido topológico. Sea $x_0 \in X$, sea $\varepsilon > 0$, si $B_Y(f(x_0), \varepsilon)$ es abierto en Y, entonces $f^{-1}(B_Y(f(x_0), \varepsilon))$ es abierto en X, luego para $x_0 \in f^{-1}(B_Y(f(x_0), \varepsilon))$ existe $\delta > 0$ tal que,

$$x_0 \in B(x_0, \delta) \subseteq f^{-1}(B_Y(f(x_0), \varepsilon))$$

terminar luego f es continua en el sentido métrico.

Proposición: Sean $f:(X,\tau) \to (Y,\sigma)$ y $g:(Y,\sigma) \to (Z,\nu)$ dos funciones continuas topológicamente. Entonces la función,

$$g \circ f : (X, \tau) \to (Z, \nu)$$

es continua topológicamente.

Demostración: Sea $U \in \nu$, luego $g^{-1}(U) \in \sigma$ y entonces $(f^{-1} \circ g^{-1})(U) \in \tau$. Lo que implica que $g \circ f$ es continua.

Definición: Sea $f:(X,\tau)\to (Y,\sigma)$ una función entre espacios topológicos. Diremos que es un homeomorfismo si f es biyectiva y que f sea bicontinua $(f,f^{-1}$ son continuas).

Definición: Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión en un espacio topológico (X,τ) . Decimos que x_n converge a $x_0 \in X$ cuando $n \to \infty$ si y sólo si para toda vecindad N de x_0 , existe $n_0 \in \mathbb{N}$ tal que $x_n \in N$ para todo $n \ge n_0$.

Observación: Sea (X, d) espacio métrico y consideremos la topología inducida por d. Entonces que una sucesión $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ converga a $x_0\in X$ es equivalente a decir que para todo $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que $d(x_n,x_0)<\varepsilon$ para todo $n\geq n_0$. (demostrar)

Proposición: Sea (X, d) un espacio métrico, sea $F \subseteq X$, entonces es cerrado en X con respecto a la topología inducida por d si y sólo si F contiene todos los puntos límites de sucesiones en F.

Demostración: Supongamos que F contiene todos los puntos límites de F. Supongamos que F no es cerrado, que es equivalente a que $X \setminus F$ no sea abierto, es decir, existe $x_0 \in X \setminus F$ tal que para todo r > 0 se tiene que,

$$B(x_0,r) \not\subseteq X \setminus F$$

Sea $1 > r_1 > 0$, luego existe $x_1 \in B(x_0, r_1)$ y $x_1 \in F$, ahora tomamos $1/2 > r_2 > 0$, y luego existe $x_2 \in B(x_0, r_2)$ y $x_2 \in F$. De forma recursiva obtenemos $1/n > r_n$ y $x_n \in B(x_0, r_n)$ tal que $x_n \in F$, obteniendo las sucesiones $\{x_n\}_{n \in \mathbb{N}} \subseteq F$ y $\{r_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R}$ donde,

$$x_n \stackrel{n \to \infty}{\longrightarrow} x_0$$
$$r_n \stackrel{n \to \infty}{\longrightarrow} 0$$

Lo importante es que x_n converge a x_0 porque para $\varepsilon > 0$ podemos escoger n_0 tal que $1/n_0 < \varepsilon$ y entonces para todo $n \ge n_0$ se tiene que,

$$d(x_n, x_0) < \frac{1}{n} \le \frac{1}{n_0} < \varepsilon$$

O bien,

$$x_n \in B(x_0, \varepsilon)$$

para todo $n \ge n_0$. Por hipótesis, x_0 es un punto límite de F, por lo tanto $x_0 \in F$, sin embargo esto es una contradicción, por lo tanto, necesariamente F es cerrado.

Supongamos ahora que F es cerrado. Sea x punto límite de F, es decir, existe $\{x_n\}_{n\in\mathbb{N}}\subseteq F$ tal que x_n converge a x. Supongamos que $x\notin F$, luego $x\in X\setminus F$ y si F es cerrado, entonces $X\setminus F$ es abierto, por lo que existe F0 tal que,

$$x \in B(x,r) \subset X \setminus F$$

Ahora, para tal r > 0 existe $n_0 \in \mathbb{N}$ tal que,

$$x_n \in B(x,r) \subseteq X \setminus F$$

para todo $n \ge n_0$, pero esto es imposible puesto que por definición $x_n \in F$ para todo $n \in \mathbb{N}$. Por lo tanto, necesariamente $x \in F$, de forma que F contiene todo los puntos límites de F.

Hemos demostrado la proposición. ■

Definición: Sea X un conjunto y sean τ , σ topologías de X. Si $\sigma \subseteq \tau$, entonces diremos que σ es más grueso que τ o τ es más fino que σ , siendo este último, un refinamiento.

Proposición: Sea X un conjunto con dos topologías σ, τ . Entonces, τ es un refinamiento de σ si y sólo si la función identidad,

$$id: (X, \tau) \to (X, \sigma)$$

es continua.

Demostrar: Notemos que si $U \subseteq X$, entonces $\operatorname{id}^{-1}(U) = U \subseteq X$. Luego si τ es refinamiento de σ , se tendría que para U abierto en σ , se tiene,

$$id^{-1}(U) = U \in \sigma \subseteq \tau$$

Luego id es continua, y por otro lado, si id es continua, se tiene que para todo $U \in \sigma$, se cumple que,

$$U=\operatorname{id}^{-1}(U)\in\tau$$

Es decir, $\sigma \subseteq \tau$.

Ejemplo: Sean $(X, \tau), (Y, \nu)$ y sea $\sigma \subseteq \tau$ refinamiento espacios topológicos. Demostremos o determinemos un contraejemplo de:

- i) Si $f:(X,\tau)\to (Y,\nu)$ es continua, entonces $f:(X,\sigma)\to (Y,\nu)$ es continua.
- ii) Si $g:(Y,\nu)\to (X,\tau)$ es continua, entonces $g:(Y,\nu)\to (X,\sigma)$ es continua.

Solución:

i) Contraejemplo: Consideremos $X = Y = \mathbb{R}$, $\tau = \nu = \mathcal{P}$ $\sigma = \{\emptyset, \mathbb{R}\}$ y f = id. Entonces $f : (\mathbb{R}, \mathcal{P}) \to (\mathbb{R}; \mathcal{P})$ es continua pero $f : (\mathbb{R}, \{\emptyset, \mathbb{R}\}) \to (\mathbb{R}, \mathcal{P})$ no lo es, puesto que dado $U \in \mathcal{P}(\mathbb{R})$ distinto de \mathbb{R} y de vacío, se tiene que $U = \text{id}^{-1}(U) \notin \{\emptyset, \mathbb{R}\}$.

ii) **Demostración:** Sea $U \in \sigma$, entonces $U \in \tau$, entonces $g^{-1}(U) \in \nu$, por lo tanto $g: (Y, \nu) \to (X, \sigma)$ es continua.

Definición: Sea (X, τ) un espacio topológico. Diremos que X es Hausdorff si para todo $x, y \in X$ existen U_x, U_y abiertos disjuntos tales que,

$$x \in U_x, y \in U_y$$

Ejemplo: Sea $X = [0, \infty)$ y consideremos la topología $\tau = \{\emptyset, X\} \cup \{[0, a) : a > 0\}$. Este espacio no puede ser Hausdorff. Para ver esto basta notar que la intersección de dos abiertos es vacío si y sólo si uno de los dos es el elemento vacío.

Definición: Sea (X,τ) espacio topológico. Diremos que X es compacto si para todo subcubrimiento abierto de X, admite un subcubrimiento finito de X abiertos. Y dado $K \subseteq X$, diremos que es compacto sobre X si $(K,\tau|_K)$ es compacto.

Proposición: Sea (X,d) espacio métrico. Entonces $K \subseteq X$ es compacto sobre la topología inducida si y sólo si toda sucesión en K tiene una subsucesión convergente en K.

Demostrar es dificil...

Proposición Sea (X, τ) un espacio topológico y sea $K \subseteq X$ compacto. Si $F \subseteq X$ es cerrado y $F \subseteq K$, entonces F es compacto.

Demostrar: Sea $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ cubrimiento abierto de $\tau|_F$ de F, es decir,

$$F \subseteq \bigcup_{\gamma \in \Gamma} U_{\gamma} \subseteq F \; ; \quad U_{\gamma} = V_{\gamma} \cap F$$

con $V_{\gamma} \in \tau$. Ahora consideremos la colección $\{\widetilde{U}_{\gamma}\}_{{\gamma} \in \Gamma}$, donde,

$$\widetilde{U}_{\gamma} := (U_{\gamma} \cup F^c) \cap K$$

$$= (\underbrace{V_{\gamma} \cup F^c}_{\in \tau}) \cap K \in \tau \big|_{K}$$

Notemos que $\{V_{\gamma} \cup F^c\}_{\gamma}$ es un cubrimiento abierto de X, luego dado $k \in K$ se tiene que $k \in X$ y entonces $x \in V_{\gamma} \cup F^c$ para algún $\gamma \in \Gamma$, por lo que se concluye que,

$$K\subseteq\bigcup_{\gamma\in\Gamma}\widetilde{U}_{\gamma}$$

Como K es compacto, entonces existe un subcubrimiento finito tal que,

$$K \subseteq \bigcup_{i=1}^{n} \widetilde{U}_{\gamma_i}$$

Ahora demostremos que $\{U_{\gamma_i}\}_{i=1}^n \subseteq \tau|_F$ es subcubrimiento abierto de F. Sea $f \in F \subseteq K$, entonces existe γ_i tal que,

$$f \in \widetilde{U}_{\gamma_i} = (V_\gamma \cup F^c) \cap K$$

Aquí se concluye que $f \in V_{\gamma_i}$, por tanto $f \in U_{\gamma}$. Finalmente,

$$F \subseteq \bigcup_{i=1}^{n} U_{\gamma_i}$$

Es decir. F es compacto.

Proposición: Sea (X, τ) espacio topológico Hausdorff. Sea $K \subseteq X$, si K es compacto, entonces es cerrado.

Demostración: Demostremos que $K^c = X \setminus K$ es abierto. Sean $y \in K^c$ $x \in K$, dado que X es Hausdorff exsiten U_x, V_x abiertos tales que $y \in U_x, x \in V_x$ y que $U_x \cap V_x = \emptyset$. Tomemos y fijos, luego consideremos la colección de abiertos $\{V_x\}_{x \in K}$ consecuencia de aplicar Hausdorff a cada $x \in K$. Observemos que,

$$K \subseteq \bigcup_{x \in K} V_x$$

Si K es compacto, entonces existe una colección finita $\{1, \dots, n\}$ tal que,

$$K \subseteq \bigcup_{i=1}^{n} V_{x_i}$$

Notemos que los $\{x_1, \cdots, x_n\}$ inducen una colección finita $\{U_{x_i}\}_{i=1}^n$ de abiertos. Definimos,

$$U_y := \bigcap_{i=1}^n U_{x_i}$$

Luego U_y es abierto que contiene a y. Se cumple que,

$$U_y \cap \left(\bigcup_{i=1}^n V_{x_i}\right) = \emptyset$$

Aqui podemos concluir que,

$$U_u \cap K = \emptyset$$

Ahora vamos a tomar $y \in K^c$ arbitrario, de forma que,

$$\bigcup_{y \in K^c} U_y \cap K = \emptyset$$

Esto implica que,

$$\bigcup_{y \in K^c} U_y \subseteq K^c$$

Y si,

$$K^c \subseteq \bigcup_{y \in K^c} U_y$$

Se obtiene que,

$$K^c = \bigcup_{y \in K^c} U_y$$

Es decir, K^c es unión arbitraria de abierto de τ . Por lo tanto K^c es abierto y finalmente K es cerrado.

Teorema: Sea $f:(X,\tau)\to\mathbb{R}$ una función topológica continua (\mathbb{R} se considera las bolas abiertas). Sea $K\subseteq X$ compacto, entonces $f(K)\subseteq\mathbb{R}$ es acotado y alcanza sus máximos en K.

Demostración: Definimos,

$$A_n := \{ x \in X : f(x) < n \}$$

En particular, $A_n \subseteq A_{n+1}$. Observemos que,

$$A_n = f^{-1}(-\infty, n)$$

Si $(-\infty, n)$ es abierto en \mathbb{R} , entonces por continuidad se tiene que A_n es abierto en τ . Por otro lado,

$$K \subseteq X = \bigcup_{n \in \mathbb{N}} A_n$$

Luego $\{A_n\}_{n\in\mathbb{N}}$ es un cubrimiento abierto de K. Dado que K es compacto, existe una colección finita $\{n_1,\dots,n_s\}$ tal que $\{A_{n_i}\}_{i=1}^s$ cubren a K. Por tanto,

$$K \subseteq \bigcup_{i=1}^{s} A_i \subseteq A_s$$

Es decir, $f(K) \subseteq (-\infty, s)$. Esto implica que es acotado superiormente.

Demostremos que f(K) alcanza al máximo. Dado que f(K) es acotado superiormente, entonces existe el supremo, sea $S := \sup f(K)$. Definimos,

$$B_n := \{ x \in X : f(x) < s - 1/n \}$$

En particular $B_n \supseteq B_{n+1}$. Luego $B_n = f^{-1}(-\infty, s-1/n)$, de forma que B_n es abierto en τ . Además, se cumple que,

$$\bigcup_{n \in \mathbb{N}} B_n = \{ x \in X : f(x) < s \}$$

Aqui tenemos dos posibles casos:

- (1) Existe un $\overline{x} \in K$ tal que $f(\overline{x}) = S$. En este caso estamos listo.
- (2) No existe tal \overline{x} .

Supongamos que ocurre (2), entonces f(x) < S para todo $x \in K$, esto implica que,

$$K \subseteq \bigcup_{n \in \mathbb{N}} B_n$$

Luego como K es compacto se tiene que existen $\{n_1, \dots, n_l\}$ tal que $\{B_{n_i}\}_{i=1}^l$ es un cubrimiento abierto de K. Entonces,

$$K \subseteq \bigcup_{i=1}^{l} B_{n_i} \subseteq B_{n_1}$$

es decir, $f(x) < S - 1/n_1$ para todo $x \in K$. Pero esto implica que $S - 1/n_1$ es una cota superior menor al supremo S, siendo contradicción. Por lo tanto el caso (2) es imposible que suceda y por lo tanto, existe $\overline{x} \in K$ tal que $f(\overline{x}) = S$.

2. Espacios de Operadores Lineales Acotados

Sea $(X, \|\cdot\|)$ un espacio vectorial normado. Sabemos que induce una métrida $d_{\|\cdot\|}$, pero el inverso no es tan simple.

Afirmación: Sea (X, d) un espacio métrico con X vectorial, este está definido por una norma si y sólo si,

i)
$$d(x+z,y+z) = d(x,y)$$
 para todo $x,y,z \in X$

ii)
$$d(\lambda x, \lambda y) = |\lambda| d(x, y)$$
 para $todox, y \in X \ y \ \lambda \in \mathbb{R} \ (\delta \ \mathbb{C})$

Demostrar: Supongamos que se cumplen i) y ii). Definimos la función $\|\cdot\|: X \to [0, \infty)$ dada por,

$$||x|| := d(x,x)$$

Probemos que es una norma.

i)
$$||x|| = 0 \Leftrightarrow d(x,x) = 0$$

terminar....

Veamos que pasa con los espacios topológicos.

Definición: Sea (X, τ) un espacio topológico. Decimos que es un espacio vectorial topológico si las funciones,

$$\phi: X \times X \to x$$
$$\phi(x, y) = x + y$$
$$\psi: \mathbb{R} \times X \to X$$
$$\psi(\lambda x) = \lambda x$$

Son continuas $(X \times X \ y \ \mathbb{R} \times X \ considerando la topología producto)$.

Nota:

- En un espacio vectorial, un subespacio se refiere a un subespacio lineal y en un espacio vectorial normado, un subespacio hereda la norma.
- Un subespacio cerrado de un espacio vectorial normado es un subespacio cerrado de acuerdo a la topología inducida por la norma.
- Sea X espacio vectorial, dado $Z \subseteq X$, definimos,

$$\operatorname{span}(Z) := \left\{ \sum_{k=1}^{n} \lambda z_k : n \in \mathbb{N}, \lambda_k \in \mathbb{R}, z_k \in Z \right\}$$

Definición: Decimos que un espacio métrico es completo si toda sucesión de Cauchy convergente.

Proposición: Un subespacio métrico de un espacio métrico completo es completo si y sólo si cerrado.

Demostración: Sea X espacio métrico completo y sea $K \subseteq X$. Si K es completo, sea k punto límite de K, entonces existe sucesesión $\{k_n\}_{n\in\mathbb{N}}\subseteq K$ el cual es Cauchy, como K es completo, entonces necesariamente $k\in K$. Luego todo punto límite de K está en K, es decir, K es cerrado.

Supongamos ahora que K es cerrado. Sea $\{k_n\}_{n\in\mathbb{N}}\subseteq K$ una sucesión de Cauchy sobre K, esto implica que sea sucesión sobre X y como X es completo, se tiene que la sucesión converge en $k\in X$. Dado que k es punto límite, se tiene que necesariamente $k\in K$. Luego K es completo.

Definición: Decimos que un espacio vectorial normado es Banach si es completo.

Proposición: Un subespacio vectorial normado es Banach si y sólo si es cerrado.

Demostración: La demostración proviene de la proposición anterior.

Definición: Sea (X, τ) un espacio topológico. Decimos que $Z \subseteq X$ es denso si y sólo si $\overline{Z} = X$.

Definición: Decimos que un espacio métrico (X,d) es separable si existe subconjunto denso y numerable.

Ejemplo: \mathbb{R} es un espacio métrico separable, dado que $\overline{\mathbb{Q}} = \mathbb{R}$.

Proposición: Sea (X,d) espacio métrico separable. Si $Y\subseteq X$, entonces $(Y,d\big|_{Y})$ es separable.

Ejemplo: $\mathbb{R} \setminus \mathbb{Q}$ es separable (pero no de forma evidente) **Demostrar**

Nota: En un espacio vectorial normado $(X, \|\cdot\|)$ definimos,

- $B(x,r) := \{ y \in X : ||x y|| < r \}$ (bola abierta).
- $\overline{B(x,r)} := \{ y \in X : \|x-y\| \le r \} \text{ (bola cerrada)}.$
- $S(x,r) := \{ y \in X : ||x y|| = r \}$ (borde de la bola).
- Dados $A, B \subseteq X$, se tiene,

$$A + \lambda B = \{a + \lambda b : a \in A, b \in B\}$$

Observación: Se satisface que $B(x,r) = \{x\} + rB(0,1)$, y entonces podemos concluir que las bolas centradas en x_0 forman una base de vecindades de x_0 .

2.1. Ejemplos de Espacios Banach

Ejemplo: \mathbb{R} es un espacio vectorial normado Banach con norma $|\cdot|$ (valor absoluto).

Afirmación: \mathbb{C} es un espacio Banach con respecto a la norma $|\cdot|$.

Demostración: Sea $z_n = x_n + iy_n \in \mathbb{C}$ sucesión de Cauchy. Entonces se tiene que,

$$|x_n - x_m|^2 \le |x_n - x_m|^2 + |y_n - y_m|^2 = |z_n - z_m|^2$$

 $|y_n - y_m|^2 \le |x_n - x_m|^2 + |y_n - y_m|^2 = |z_n - z_m|^2$

Entonces es directo que $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son sucesiones Cauchy en \mathbb{R} y por tanto son convergentes. Entonces, si $x_n \to x$ e $y_n \to y$, entonces $z_n \to z$. Por lo que \mathbb{C} es completo.

Ejemplo: El espacio vectorial normado $(\mathbb{R}^n, \|\cdot\|_p)$ donde si $p \in [1, \infty)$, se define la norma p por,

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Y si $p = \infty$, definimos,

$$||x||_{\infty} := \max_{i=1,\dots,n} |x_i|$$

Afirmación: $(\mathbb{R}^n, \|\cdot\|_p)$ es Banach para todo $p \in [1, \infty]$.

Demostración: No demostraremos que $\|\cdot\|_p$ es norma para todo $p \in [1, \infty]$, solo demostraremos que es Banach.

■ Caso $1 \leq p < \infty$: Sea $\{x_k\}_{k \in \mathbb{N}}$ Cauchy donde $x_k = (x_k^1, x_k^2, \dots, x_k^n)$. De forma que obtenemos las sucesiones $\{x_k^i\}_{k \in \mathbb{N}}$ para todo $i = 1, \dots, n$. Notemos que,

$$|x_k^i - x_s^i| \le \|x_k - x_s\|_p; \quad \text{para todo } i = 1, \cdots, n.$$

Entonces si la sucesión de los x_k es Cauchy, entonces las sucesiones de la forma x_k^i con $i=1,\dots,n$ son Cauchy en \mathbb{R} y por tanto convergen, digamos que x_k^i converge a x_0^i . Entonces se tiene que x_k converge a $x_0 = (x_0^1, x_0^2, \dots, x_0^n)$. Luego $(\mathbb{R}^n, \|\cdot\|_p)$ es Banach para todo $p \in [1,\infty)$.

• Caso $p = \infty$: Es análogo al anterior, en particular,

$$|x_k^i - x_s^i| \le ||x_k - x_s||_{\infty}$$

Luego podemos definir x_0 igual que antes y verificar que $(\mathbb{R}^n, \|\cdot\|_{\infty})$ es Banach.

Afirmación: Si $0 , entonces <math>\|\cdot\|_p$ no es norma.

Demostración: Sea $p \in (0,1)$. Podemos definir,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Si tomamos $x = (1, 0, \dots, 0)$ e $y = (0, 1, \dots, 0)$, entonces,

$$||x + y||_p = 2^{1/p} > 2 = ||x||_p + ||y||_p$$

Por lo que no se cumple la desigualdad triangular.

Ejemplo: El espacio vectorial normado $(L^p, \|\cdot\|_p)$ se define sobre el conjunto,

$$L^{p} := \left\{ \{x_{n}\}_{n \in \mathbb{N}} : \sum_{n \in \mathbb{N}} |x_{n}|^{p} < \infty \right\}$$

Con norma definida,

$$||x||_p = \left(\sum_{n \in \mathbb{N}} |x_n|^p\right)^{1/p}$$

donde $p \in [1, \infty)$. Y el espacio vectorial normado $(l_{\infty}, \|\cdot\|_{\infty})$ se define sobre el conjunto,

$$l_{\infty} := \{ \{x_n\}_{n \in \mathbb{N}} : \text{existe } M > 0 \text{ tal que } |x_n| \leq M \text{ para todo } n \in \mathbb{N} \}$$

Con norma definida,

$$||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|$$

Afirmación: $(L^p, \|\cdot\|_p)$ es Banach para todo $p \in [1, \infty]$.

Demostración: Sea $\{x_k\}_{n\in\mathbb{N}}$ una sucesión de Cauchy en L^p . Notemos que se cumple que,

$$|x_k^i - x_s^i| \le ||x_k - x_s||_p$$

para todo $i \in \mathbb{N}$ y para todo $p \in [1, \infty]$. Luego cada componente es Cauchy y luego converge a un valor x_0^i . Finalmente definimos $x_0 = (x_0^1, x_0^2, \cdots)$ tal que $x_0 \in L^p$ y que x_k converge a x_0 . **terminar...** algun dia

Ejemplo: El espacio vectorial normado $(C_0, \|\cdot\|_{\infty})$ se define sobre el conjunto,

$$C_0 := \{ \{x_n\}_{n \in \mathbb{N}} : x_n \stackrel{n \to \infty}{\longrightarrow} 0 \}$$

Con norma $\|\cdot\|_{\infty}$ sobre sucesiones.

Afirmación: $(C_0, \|\cdot\|_{\infty})$ es Banach.

Demostración: Sea $\{x_k\}_{k\in\mathbb{N}}$ sucesión de Cauchy, entonces,

$$|x_k^i - x_s^i| \le ||x_k - x_s||_{\infty}$$

Luego aquí podemos definir un punto límite $x_0 = (x_0^1, x_0^2, \cdots)$ donde $x_0 \in C_0$ y que x_k converge a x_0 .

Ejemplo: Sea S un conjunto cualquiera y sea,

$$\mathcal{F}_b(S) := \{ f : S \to \mathbb{R} : f \text{ acotada} \}$$

Y definimos,

$$||f||_{\infty} := \sup_{x \in S} |f(x)|$$

Afirmación: $(\mathcal{F}_b(S), \|\cdot\|_{\infty})$ es un espacio vectorial normado Banach.

Demostración: Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de Cauchy en $\mathcal{F}_b(S)$. Sea $x\in S$, entonces definimos la sucesión real $x_n:=f_n(x)\in\mathbb{R}$ tal que,

$$|x_n - x_m| = |f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty}$$

Esto implica que $\{x_n\}_{n\in\mathbb{N}}$ es de Cauchy en \mathbb{R} y por tanto, converge a x_0 . Definimos la función,

$$f_0: S \to \mathbb{R}$$

 $x \mapsto f_0(x) = \lim_{n \to \infty} f_n(x)$

Además f_0 es acotado puesto que,

$$|f_0(x)| = |f_0(x) - f_n(x) + f_n(x) - f_n(y)| \le |f_0(x) - f_n(x)| + |f_n(x)|$$

terminar

Ejemplo: Sea (X, τ) espacio topológico y sea $C_b(X) := \{f : X \to \mathbb{R} : f \text{ es acotada y continua}\}$. Consideremos,

$$||f||_{\infty} := \sup_{x \in X} |f(x)|$$

Afirmación: $(C_b(X), \|\cdot\|_{\infty})$ es un espacio vectorial normado Banach.

Ejemplo: Sea (K, σ) espacio topológico compacto y Hausdorff. Sea $C(K) := \{f : K \to R : f \text{ continua}\}$. Consideremos,

$$||f||_{\infty} := \sup_{x \in K} |f(x)|$$

Afirmación: $(C(K), \|\cdot\|_{\infty})$ es espacio vectorial normado Banach.

Ejemplo: Sea X = C[0,1] (funciones continuas de [0,1] a \mathbb{R}). Consideremos,

$$||f|| := \int_0^1 |f(x)| dx$$

Afirmación: $(X, \|\cdot\|)$ es un espacio vectorial normado pero no es Banach.

Demostración: Ver que es e.v.n.

Demostremos que no es Banach. Consideremos la sucesión de funciones continuas,

$$f_n(x) := \begin{cases} 0, & 0 \le x \le \frac{1}{2} \\ n\left(x - \frac{1}{2}\right), & \frac{1}{2} < x < \frac{1}{2} + \frac{1}{n} \\ 1, & \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

Notemos que,

$$||f_n - f_m|| = \int_0^1 |f_n(x) - f_m(x)| dx$$
$$= \int_{1/2}^1$$

terminar. Por lo que es Cauchy en X. Esta función converge a,

$$f(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} \\ 1, & \frac{1}{2} < x \le 1 \end{cases}$$

Que no es continua y por tanto X no es Banach.

Observación: Para que $(C[0,1], \|\cdot\|)$ sea Banach debemos completar con elementos. Al hacer esto obtenemos la completación que es $L^1[0,1]$.

Ejemplo: Sea X = C[0,1] y sea,

$$||f||_2 := \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}$$

Afirmación: $(X, \|\cdot\|_2)$ es un espacio vectorial normado no Banach.

Demostración: Probar que es norma

Para ver que no es Banach, basta usar la misma función del ejemplo anterior, es decir, tomar,

$$f_n(x) := \begin{cases} 0, & 0 \le x \le \frac{1}{2} \\ n\left(x - \frac{1}{2}\right), & \frac{1}{2} < x < \frac{1}{2} + \frac{1}{n} \\ 1, & \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

Que converge a una función $f:[0,1]\to\mathbb{R}$ no continua. Por lo que X no puede ser Banach.

Observación: Si completamos $(C[0,1], \|\cdot\|_2)$ obtenemos L^2 y en general, si consideramos C[0,1] y tomamos la norma,

$$||f||_p := \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}$$

con $p \in [1, \infty)$. Entonces no es Banach con completación Banach L^p .

Ejemplo: Sea ([0, 1], $\mathcal{B}[0, 1], \lambda$) un espacio de medida. Se define,

$$L^p([0,1]) := \left\{ f : [0,1] \to \mathbb{R} : f \text{ medible tal que } \int_0^1 |f(x)|^p dx \right\} / \sim$$

Donde $f \sim g$ si y sólo si f = g en casi todas partes. Se define la norma,

$$||f||_p := \left(\int_0^1 |f(x)|^p dx\right)^{1/2}$$

para $1 \le p < \infty$. Y para $p = \infty$ se define la norma,

$$||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|$$

Afirmación: $(L^p([0,1]), ||f||_p)$ es un espacio vectorial normado Banach para todo $p \in [1,\infty]$. Demostrar...

Nota: El espacio vectorial normado $(L^p(\mathbb{R}), \|\cdot\|_p)$ también es Banach para todo $p \in [1, \infty]$.

Ejemplo: Sea $X = C[-1,1] \cap \{f : [-1,1] \to \mathbb{R} : f \text{ continua y } f'(0) \text{ existe}\}$. Consideremos,

$$||f||_* := \sup_{x \in [-1,1]} |f(x)| + |f'(0)|$$

Afirmación: $(X, \|\cdot\|_*)$ es un espacio vectorial normado no Banach.

Demostrar que es e.v.n y que es no es Banach.

Ejemplo: Consideremos el siguiente conjunto,

$$X = \left\{ f(t) = \sum_{k=-n}^{n} C_k e^{ikt} : n \in \mathbb{N}, k \in \mathbb{C} \right\}$$

Y consideremos la función,

$$||f|| = \left(\sum_{k=-n}^{n} |C_k|^2\right)^{1/2}$$

Afirmación: (X, ||f||) es un espacio vectorial normado no Banach.

Demostrar que es e.v.n y que no es Banach.

2.2. Criterio de Completitud, Completación y Espacio Cociente

Hemos vistos varios ejemplos de espacios Banach y otros que no lo son. Podemos ver que determinar cuando un espacio es Banach no es tan fácil y que en algunos casos podemos completar el conjunto para que sea Banach.

Teorema: Sea $(X, \|\cdot\|)$ un espacio vectorial normado. Entonces X es Banach si y sólo si para toda sucesión $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ se satisface,

$$\sum_{n\in\mathbb{N}} \|x_n\| < \infty \Rightarrow \lim_{N\to\infty} \sum_{n=1}^{N} x_n \text{ existe en } X$$

Demostración: Supongamos que X es Banach. Sea $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ tal que,

$$\sum_{n \in \mathbb{N}} \|x_n\| < \infty$$

Sea $S_n := x_1 + x_2 + \cdots + x_n \in X$, y consideremos $n \geq m$, entonces,

$$||S_n - S_m|| = \left\| \sum_{i=m+1}^n x_i \right\| \le \sum_{i=m+1}^n ||x_i||$$

Si la serie de los $||x_n||$ converge, entonces la suma que parte de m+1 a n de los $||x_k||$ está controlado, entonces se tiene que $\{S_n\}_{n\in\mathbb{N}}$ es Cauchy en X, luego como X es Banach, S_n converge a un punto límite $S_0 \in X$, es decir,

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=1}^N x_n = S_0 \in X$$

De forma que existe el límite en X.

Probemos la otra dirección. Sea $\{x_n\}_{n\in\mathbb{N}}$ Cauchy. Podemos definir la sucesión $\{x_{n_k}\}_{k\in\mathbb{N}}$ tal que,

$$||x_{n_{k+1}} - x_{n_k}|| < 2^{-k}$$

Luego definimos $y_1 := x_{n_1}$ y $y_k = x_{n_k} - x_{n_{k-1}}$ con $k \ge 2$. Entonces se cumple que,

$$\sum_{k \in \mathbb{N}} \|y_k\| = \|x_{n_1}\| + \sum_{k \in \geq 2} \|y_k\|$$

$$\leq \|x_{n_1}\| + \sum_{k \geq 2} 2^{-(k-1)} < \infty$$

Luego por hipótesis se tiene que,

$$\lim_{N \to \infty} \sum_{k=1}^{N} y_k = \lim_{N \to \infty} x_N$$

existe en X y por lo tanto X es Banach.

Definición: Sea (X,d) un espacio métrico. Decimos que $(\widetilde{X},\widetilde{d})$ es una completación de X si satisface las siguientes propiedades,

- 1) $(\widetilde{X}, \widetilde{d})$ es completo.
- 2) $\widetilde{d}|_X = d$.
- 3) $X \subseteq \widetilde{X}$ es denso en \widetilde{X} .

Ejemplo: La completación de $(\mathbb{Q}, |\cdot|)$ es $(\mathbb{R}, |\cdot|)$ puesto que es completo, tomamos el valor absoluto como métrica y $\overline{\mathbb{Q}} = \mathbb{R}$.

Ejemplo: El espacio métrico $(C[0,1], \|\cdot\|_p)$ tiene por completación $(L^p[0,1], \|\cdot\|_p)$

Teorema: Para todo espacio métrico, existe una única completación salvo isometría.

Teorema: Para todo espacio vectorial normado X existe un Banach \widetilde{X} tal que $X \subseteq \widetilde{X}$ es denso en \widetilde{X} , y es único (salvo isometría.)

Definición: Sea X un espacio vectorial. Sea $Z \subseteq X$, definimos la relación de equivalencia módulo Z por,

$$x \sim y \Leftrightarrow x - y \in Z$$

para todo $x, y \in X$

Afirmación: ~ es, enfecto, una relación de equivalencia.

Demostración: Basta con demostrar que \sim es reflexiva, simétrica y transitiva.

- Reflexiva: Si Z es subespacio, entonces contiene a 0. Luego $x \sim x$ puesto que $x x = 0 \in Z$.
- Simétrica: Si $x \sim y$, entonces $x y \in Z$. Como Z es subespacio, entonces,

$$y - x = 0 - (x - y) \in Z$$

De forma que $y \sim x$.

■ Transitiva: Supongamos que $x \sim y$ e $y \sim z$, luego,

$$x - z = (x - y) + (y - z) \in Z$$

De forma que $x \sim z$.

Luego \sim es una relación de equivalencia.

Definición: Sea X espacio vectorial y sea $Z \subseteq X$. Definimos el espacio cociente sobre Z por,

$$X/Z = X/ \sim := \{ [x] : x \in X \}$$

Donde $[x] = \{y \in X : x \sim y\} = \{y \in X : x - y \in Z\} = x + Z.$

Afirmación: X/Z es un \mathbb{K} -espacio vectorial hederado por X un \mathbb{K} -espacio vectorial.

Por demostrar

Si consideramos X un espacio vectorial normado y Z subespacio vectorial normado cerrado de X. Entonces en X/Z podemos definir la norma,

$$||[x]|| := \inf\{||y|| : x \sim y\}$$

= \inf\{||x + z|| : z \in Z\}

Afirmación: $(X/Z, \|\cdot\|)$ es un espacio vectorial normado.

Demostración: Debemos probar los tres axiomas de norma sobre X/Z.

i) Notemos que,

$$||[0]|| = \inf\{||y|| : 0 \sim y\} = \inf\{||z|| : z \in Z\} = 0$$

Puesto que Z al ser subespacio, claramente $0 \in Z$. Por otro lado, sea $x \in X$ tal que,

$$||[x]|| = 0 \Leftrightarrow \inf\{||x+z|| : z \in Z\} = 0$$

Luego existe una sucesión $\{z_n\}_{n\in\mathbb{N}}\subseteq Z$ tal que,

$$\lim_{n \to \infty} ||x + z_n|| = 0$$

Pero esto es equivalente a decir que z_n converge a -x cuando $n \to \infty$ (convergencia en espacios normados), es decir, -x es un punto límite de Z, y si Z se puede pensar como espacio métrico y es cerrado, se tiene que $-x \in Z$ y por tanto [-x] = [x] = 0.

ii) Sea λ escalar. Notemos que,

$$\lambda[x] = [\lambda x]$$

Entonces para todo $\lambda \neq 0$ se tiene que,

$$\begin{split} \|\lambda[x]\| &= \|[\lambda x] = \inf\{\|\lambda x + z\| : z \in Z\} \\ &= \inf\{|\lambda| \|x + z/\lambda\| : z \in Z\} \\ &= |\lambda| \inf\{\|x + z/\lambda\| : z \in Z\} = |\lambda| \|[x]\| \end{split}$$

La ultima igualdad se verifica puesto que z/λ se puede pensar como cualquier elemento de $z \in Z$. Si $\lambda = 0$ entonces es directo que,

$$||0[x]|| = ||[0]|| = 0 = 0||[x]||$$

iii) Sea $[w] \in X/Z$, se cumple que,

$$||[w]|| = \inf\{||w + z|| : z \in Z\} \le ||w + 0|| = ||w||$$

Por otro lado si $w \sim y$, en particular $w = y + z_1$ con $z_1 \in Z$ fijo, entonces,

$$||[w]|| = \inf\{||w + z|| : z \in Z\} = \inf\{||y + z_1 + z|| : z \in Z\} = ||[y]||$$

Entonces se tiene que,

$$||[x+y]|| < ||x|| + ||y|| \Leftrightarrow ||[x+y]|| - ||x|| < ||y||$$

Luego para todo $w \in X$ tal que $w \sim y$ se tiene que $x + w \sim x + y$ y se cumple,

$$||[x+y]|| - ||x|| = ||[x+w]|| - ||x|| < ||w||$$

Luego se tiene que,

$$||[x+y]|| \le ||x|| + ||[y]||$$

De forma análoga con x se puede concluir que,

$$||[x+y]|| \le ||[x]|| + ||[y]||$$

Por lo que se cumple la desigualdad triangular.

Demostrando que $\|\cdot\|$ es una norma en X/Z.

2.3. Operadores Acotados y Continuos

Definición: Sean X, Y espacios vectoriales. Un operador de X en Y, es un mapa $T: X \to Y$ que satisface,

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2)$$

para todo $x_1, x_2 \in X$ y λ_1, λ_2 escalares. Definimos el espacio de los operadores lineales por,

$$\mathcal{L}(X,Y) = \{T : X \to Y : T \text{ es lineal}\}\$$

Con respecto a un operador lineal T, definimos el kernel y el conjunto imagen por,

$$\ker T := T^{-1}(\{0\})$$

 $\operatorname{Im} T := T(X)$

Afirmación: Ambos conjuntos son subespacios vectoriales sobre sus respectivos conjuntos.

Demostración: Solo demostraremos que ker T es subespacio de X ya que ImT es análogo. Notemos que T(0) = 0, luego $0 \in \ker T$. Sean $x, y \in \ker T$ y λ, μ escalares, entonces,

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y) = 0$$

Entonces $\lambda x + \mu y \in \ker T$, de forma que es subespacio de X.

Definición: Sea $T: X \to Y$ un operador lineal. Diremos que es un isomorfismo si y sólo si T es inyectiva y sobreyectiva. En tal caso decimos que $X \cong Y$ o que son isomorfos.

El concepto de isomorfismo, nos dices que tienen una estructura similar salvo los elementos.

Afirmación: El conjunto $\mathcal{L}(X,Y)$ es un espacio vectorial sobre el cuerpo de Y.

Demostración: Notemos que λT donde $T \in \mathcal{L}(X,Y)$ con λ , está bien definida puesto que $\lambda T(x) \in Y$ para todo $x \in X$ e Y es un espacio vectorial. Notemos que la suma también está bien definida, puesto que si $T, S \in \mathcal{L}(X,Y)$, entonces,

$$(T+S)(x) = T(x) + S(x) \in Y$$

para todo $x \in X$. Luego toda combinación lineal de los elementos de $\mathcal{L}(X,Y)$ está bien definido. Además, 0 ver que otra cosa falta

Definición: Diremos que un operador lineal $T \in \mathcal{L}(X,Y)$ es acotado si existe C > 0 tal que,

$$||Tx||_Y \le C||x||_X$$

para todo $x \in X$. Además definimos el conjunto de todos los operadores lineales por:

$$B(X,Y) := \{T \in \mathcal{L}(X,Y) : T \ acotado\}$$

Nota: En algunos casos escribiremos Tx en vez de T(x) y también en algunos casos no especificaremos el conjunto donde esta definido la norma, escribiendo simplemente $\|\cdot\|$.

Proposición: B(X,Y) es un espacio vectorial.

Demostración (revisar): Sean $T, S \in B(X, Y)$ y sean λ, μ escalares, entonces,

$$\|(\lambda T + \mu S)(x)\|_{Y} = \|\lambda Tx + \mu Sx\|_{Y}$$

$$\leq |\lambda| \|Tx\|_{Y} + |\mu| \|Sx\|_{Y}$$

$$\leq |\lambda| C_{X} \|x\|_{X} + |\mu| C_{Y} \|x\|_{X}$$

$$= (|\lambda| C_{X} + |\mu| C_{Y}) \|x\|_{X}$$

Esto se cumple para todo $x \in X$. Por lo tanto $\lambda T + \mu S \in B(X,Y)$.

Notación: Sea X un \mathbb{R} -espacio vectorial. Denotamos el espacio dual algebraico de X por $X' = \mathcal{L}(X, \mathbb{R})$, y denotaremos el dual topológico de X por $X^* = B(X, \mathbb{R})$. Y para $f \in X^*$ (ó X') tenemos $f(x) = \langle f, x \rangle$, donde,

$$\langle \cdot, \cdot \rangle : X' \times X \to \mathbb{R}$$

es bilineal.

Teorema: Sean X, Y espacios vectoriales normados y sea $T \in \mathcal{L}(X, Y)$. Entonces las siguientes afirmaciones son equivalentes:

- i) T es continua en X (con la topología inducida por las normas).
- ii) T es continua en un punto $x_0 \in X$.
- iii) T es acotado.

Demostración: Como estamos usando la topología inducida por las normas, podemos pensar la continuidad habitual en espacios métricos al ser equivalentes.

- i) implica ii): Si T es continua en X, entonces claramente es continua en $x_0 \in X$.
- ii) implica iii): Sea T continua en $x_0 \in X$. Sabemos que,

$$T(x_0) + B_Y(0,1)$$

es una vecindad de $T(x_0)$. Luego por la continuidad en x_0 , existe $\delta > 0$ tal que si $x = x_0 + z$ donde $z \in \delta B_X(0, 1)$, entonces,

$$T(x_0) + T(z) = T(x) \in T(x_0) + B_Y(0, 1)$$

Lo importante es que $T(z) \in B_Y(0,1)$, es decir, si $||z||_X < \delta$, entonces $||T(z)||_Y < 1$. Por lo tanto, para $0 < \widetilde{\delta} < \delta$ se tiene que,

$$||T(x)||_Y = \left| \left| T\left(\frac{\widetilde{\delta}x}{||x||_X}\right) \right| \cdot \frac{1}{\widetilde{\delta}} ||x||_X$$

Observemos que,

$$\widetilde{\delta} \frac{x}{\|x\|} \le \widetilde{\delta} < \delta$$

Entonces,

$$||T(x)||_Y \le \frac{1}{\tilde{\delta}} ||x||_X$$

para todo $x \in X$. Por lo que T es acotado.

• iii) implica i): Sea T acotado, luego existe C > 0 tal que,

$$||T(x)||_Y \le C||x||_X$$

para todo $x \in X$. Notemos que para todo $x, y \in X$ se cumple que,

$$||T(x) - T(y)||_Y \le C||x - y||_X$$

Esto implica que T es Lipschitz y por tanto T es continua en X.

Demostrando el teorema. ■

Este teorema es importante ya que entonces B(X,Y) es el conjunto de todas las funciones continuas de X a Y.

Definición: Sean X,Y espacio vectorial normado. Entonces X,Y son isomorfos isométricos topologicamente si y sólo si existe $T:X\to Y$ tal que es isometría lineal biyectiva bicontinua.

Corolario: Sean X, Y espacios vectoriales normados. Sea $T \in \mathcal{L}(X, Y)$, entonces T es isomorfia topologicamente si y sólo si $T \in B(X, Y)$ es invertible y $T^{-1} \in B(Y, X)$.

Demostración: Si T es isomorfía topologicamente, entonces es lineal, biyectiva y bicontinua, es decir, $T \in B(X,Y)$ y $T^{-1} \in B(Y,X)$. Por otro lado, si $T \in B(X,Y)$ y $T^{-1} \in B(Y,X)$, entonces T es biyectiva lineal y bicontinua, es decir, T es isomorfía topologicamente.

Observación: Sea X espacio vecorial normado. Supongamos que tiene dos normas $\|\cdot\|_1, \|\cdot\|_2$, entonces generan la misma topología si y sólo si existen c, d > 0 tales que,

$$c||x||_1 \le ||x||_2 \le d||x||_1$$

Definición: Sean X, Y espacios vectoriales normados. En B(X, Y) definimos la norma por,

$$||T|| := \inf\{C > 0 : ||Tx||_Y \le C||x||_X \text{ para todo } x \in X\}$$

Proposición: Sea X, Y espacios vectoriales normado. Entonces la norma en B(X, Y) está bien definida y se alcanza.

Demostración: Sea $T \in B(X,Y)$, entonces por definición T es acotado, es decir existe C > 0 tal que $||Tx|| \le C||x||$ para todo $x \in X$. Esto implica que el conjunto,

$$\{C>0: \|Tx\|_Y \leq C \|x\|_X \text{ para todo } x \in X\}$$

no es vacío. Además está incluido en el conjunto $(0, \infty)$, es decir, es acotado inferiormente, por lo que el ínfimo existe.

Demostremos que se alcanza. Sea $\varepsilon > 0$, luego $||T|| + \varepsilon$ no es cota inferior, existe $0 \le \delta < \varepsilon$ tal que,

$$||T|| + \delta \in \{C > 0 : ||Tx|| \le C||x|| \text{ para todo } x \in X\}$$

Luego para todo $x \in X$ se tiene que,

$$||Tx||_Y \le (||T|| + \delta)||x||_X$$

$$\le (||T|| + \varepsilon)||x||_X$$

Luego para todo $\varepsilon > 0$ se tiene que,

$$||Tx||_Y \le (||T|| + \varepsilon)||x||_X$$

Lo que implica que,

$$||Tx||_Y \le ||T|| ||x||_X$$

Es decir, el ínfimo se alcanza. ■

Nota: Con respecto a la norma de B(X,Y) en algunos casos no denotaremos $\|\cdot\|_{B(X,Y)}$ pero en otros casos cuando ya trabajemos con más conjuntos acotado lo denotaremos por un tema de orden.

Proposición: Sea X, Y espacios vectoriales normado. Entonces la norma de B(X, Y) satisface que,

$$||T|| = \sup_{\|x\|_X \le 1} ||Tx||_Y$$

$$= \sup_{\|x\|_X = 1} ||Tx||_Y$$

$$= \sup_{x \ne 0} \frac{||Tx||_Y}{\|x\|_X}$$

Demostración: Vamos a decir que,

$$(1) = \sup_{\|x\|_X \le 1} \|Tx\|_Y$$

$$(2) = \sup_{\|x\|_X = 1} \|Tx\|_Y$$

$$(3) = \sup_{x \ne 0} \frac{\|Tx\|_Y}{\|x\|_X}$$

Por definición sabemos que $||Tx||_Y \le ||T|| ||x||_X$ para todo $x \in X$. Aquí tenemos tres casos:

a) Si $||x||_X \le 1$, entonces $||Tx||_Y \le ||T||$, por lo que $(1) \le ||T||$.

- b) Si $||x||_X = 1$, entonces $||Tx||_Y \le ||T||$, por lo que $(2) \le ||T||$.
- c) Si $x \neq 0$, entonces,

$$||Tx||_Y \le ||T|| ||x||_X \Leftrightarrow \frac{||Tx||_Y}{||x||_X} \le ||T||$$

Por lo que $(3) \leq ||T||$.

Por lo tanto $(1),(2),(3) \leq ||T||$. Probemos la otra desigualdad. Si $\widetilde{C} < ||T||$, entonces existe $\widetilde{x} \in X$ tal que,

$$\widetilde{C}\|\widetilde{x}\| \le \|T\widetilde{x}\|_Y$$

donde $\widetilde{x} \neq 0$. Entonces,

$$\widetilde{C} < \frac{\|T\widetilde{x}\|_{Y}}{\|\widetilde{x}\|_{X}} \Leftrightarrow \widetilde{C} < \left\|T\left(\frac{\widetilde{x}}{\|\widetilde{x}\|_{X}}\right)\right\|_{Y}$$

De aquí podemos concluir que $\widetilde{C} < (1), (2), (3)$. Esto implica $||T|| \leq (1), (2), (3)$, por lo tanto,

$$||T|| = (1) = (2) = (3)$$

Como queriamos demostrar.

Afirmación: ||T|| es una norma bien definida en B(X,Y).

Demostración: Debemos probar los tres axiomas de norma.

i) Sea $T \in B(X, Y)$. Entonces,

$$||T|| = 0 \Leftrightarrow ||Tx||_Y \le 0$$
 para todo $x \in X$
 $\Leftrightarrow T = 0$

ii) Para todo $x \in X$ se cumple que,

$$\frac{\|Tx\|_Y}{\|x\|_X} = \frac{\|(\lambda T)x\|_Y}{|\lambda| \|x\|_X}$$

aplicando el supremo sobre los $x \neq 0$, se obtiene que,

$$||T|| = \frac{1}{|\lambda|} ||\lambda T||$$

Por lo tanto $||\lambda T|| = |\lambda|||T||$.

iii) Sean $T, S \in B(X, Y)$. Entonces,

$$||T + S|| = \sup_{\|x\|_X = 1} ||(T + S)(x)||_Y$$

$$\leq \sup_{\|x\|_X = 1} (||Tx||_Y + ||Sx||_Y)$$

$$\leq \sup_{\|x\|_X = 1} ||Tx||_Y + \sup_{\|x\|_X = 1} ||Sx||_Y$$

$$= ||T|| + ||S||$$

Por lo tanto ||T|| es norma bien definida.

Teorema: Sea X, Y espacios vectoriales normado. Si Y es Banach, entonces B(X, Y) es Banach.

Demostración: Sea $\{T_n\}_{n\in\mathbb{N}}\subseteq B(X,Y)$ una sucesión de Cauchy. Entonces para todo $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que,

$$||T_n - T_m|| < \varepsilon$$

para todo $n, m \ge N$. Sea $x \in X$ fijo, entonces $\{T_n x\}_{n \in \mathbb{N}}$ es una sucesión definida en Y. Notemos que para $\varepsilon > 0$, si tomamos N como antes, se tiene que,

$$||T_n x - T_m x||_Y \le ||T_n - T_m|| ||x||_X \le \varepsilon ||x||_X$$

para todo $n, m \geq N$. Como x es fijo, se tiene que $\{T_n x\}_{n \in \mathbb{N}}$ es una sucesión de Cauchy en Y, por lo que converge en Y. Digamos que,

$$Tx := \lim_{n \to \infty} T_n x \in Y$$

Esto define una función,

$$T: X \to Y$$
$$x \mapsto Tx = \lim_{n \to \infty} T_n x$$

Afirmación: T es una función lineal y acotada.

Demostración: Demostremos que es lineal y acotada.

• Lineal: Sean $x, y \in X$ y λ, μ escalares, entonces,

$$T(\lambda x + \mu \lambda) = \lim_{n \to \infty} T_n(\lambda x + \mu y)$$

$$= \lim_{n \to \infty} \lambda T_n(x) + \mu T_n(y)$$

$$= \lambda \lim_{n \to \infty} T_n(x) + \mu \lim_{n \to \infty} T_n(y)$$

$$= \lambda T(x) + \mu T(y)$$

Luego T es lineal.

■ Acotada: Sea $x \in X$, para $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que,

$$||T_n x - T_m x||_Y < \varepsilon$$

para todo $n, m \geq N$. Entonces,

$$||Tx||_{Y} \le ||Tx - T_{m}x||_{Y} + ||T_{m}x||_{Y}$$

$$= \lim_{n \to \infty} ||T_{n}x - T_{m}x||_{Y} + ||T_{m}x||_{Y}$$

$$< \varepsilon + ||T_{m}x||_{Y}$$

$$\le \varepsilon + ||T_{m}|| ||x||_{X}$$

tomando $m \geq N$. Si consideremos $||x||_X \leq 1$, obtenemos que,

$$||Tx||_Y \le \varepsilon + ||T_m||$$

Por definición la norma se define por:

$$||T|| = \sup_{||x||_X \le 1} ||Tx||_Y$$

Luego,

$$||T|| \le \varepsilon + ||T_m|| < \infty$$

para todo $m \geq N$. Es decir, la norma es acotada y por tanto bien definida. Esto implica que T es acotada.

De esta forma $T \in B(X,Y)$, es decir, es lineal y acotada.

Demostremos que $\{T_n\}_{n\in\mathbb{N}}$ converge a T. Sea $x\in X$, entonces,

$$||Tx - T_m x||_Y = \lim_{n \to \infty} ||T_n x - T_m x||_Y$$

$$\leq \lim_{n \to \infty} ||T_n - T_m|| ||x||_X$$

Sea $\varepsilon > 0$, entonces existe $N \in \mathbb{N}$ tal que $||T_n - T_m||_Y < \varepsilon$ para todo $n, m \ge N$. Entonces al tomar $m \ge N$ se obtiene que,

$$||Tx - T_m x||_Y < \varepsilon ||x||_X$$

Esto implica que para todo $m \geq N$ se tiene que,

$$||T - T_m|| = \sup_{\|x\|_X \le 1} ||Tx - T_m x||_Y < \varepsilon$$

Es decir,

$$\lim_{n \to \infty} T_n = T$$

Demostrando que B(X,Y) es Banach.

Nota: Sea X un \mathbb{R} -e.v normado (ó bien en \mathbb{C}). Entonces el espacio dual topólógico $X^* = B(X, \mathbb{R})$ es Banach por el resultado anterior.

Por otro lado, podemos extender la norma en B(X,Y) a todo $\mathcal{L}(X,Y)$. Esta norma se define como,

$$||T|| = \sup_{\|x\| \le 1} ||Tx|| \in \mathbb{R} \cup \{+\infty\}$$

Luego podemos entender B(X,Y) de la siguiente forma:

$$B(X,Y) = \mathcal{L}(X,Y) \cap \{ ||T|| < \infty \}$$

2.4. Operadores Adjuntos

Sean X, Y espacios vectoriales normado sobre \mathbb{R} (ó \mathbb{C}). Sea $T \in B(X, Y)$ Definimos el operador adjunto de T por:

$$T^*: Y^* \to X^*$$
$$g \mapsto T_g^*$$

donde $T_g^*(x) = g(T(x)).$

Afirmación: T^* está bien definido, es lineal y es acotado.

Demostración:

- Bien definido: Sea $g: Y \to \mathbb{R}$ una función lineal acotada $(g \in Y^*)$, si $T \in B(X,Y)$, entonces $g \circ T \in B(X,\mathbb{R})$ al ser ambas acotadas y lineales. Entonces $g \circ T \in X^*$ y por lo tanto $T_q^* \in X^*$, de forma que está bien definida.
- Lineal: Sean $g, f \in Y^*$ y sean λ, μ escalares. Entonces para todo $x \in X$ se tiene que,

$$T^*_{\lambda g + \mu f}(x) = (\lambda g + \mu f)(T(x))$$

$$= \lambda g(T(x)) + \mu f T((x))$$

$$= \lambda T^*_g(x) + \mu T^*_f(x)$$

$$= (\lambda T^*_g + \mu T^*_f)(x)$$

Por lo tanto T^* es lineal.

 \blacksquare Acotado: Debemos demostrar que para todo $g \in Y^*$ existe C > 0 tal que

$$||T_q^*||_{X^*} \le C||g||_{Y^*}$$

Sea $x \in X$, entonces $T_g^*(x) \in \mathbb{R}$, luego se tiene que,

$$\begin{aligned} |T_g^*(x)| &= |g(T(x))| \\ &\leq ||g||_{Y^*} ||Tx||_Y \\ &\leq ||g||_{Y^*} ||T||_{B(X,Y)} ||x||_X \end{aligned}$$

Por tanto,

$$||T_g^*||_{X^*} = \sup_{\|x\|_X \le 1} |T_g^*(x)|$$
$$= ||T||_{B(X,Y)} ||g||_{Y^*}$$

Por lo tanto $T^* \in B(X^*, Y^*)$.

Demostrando la afirmación.

Dado que $T^* \in B(X^*,Y^*)$ entonces se le puede definir una norma:

$$||T^*||_{B(X^*,Y^*)} = \sup_{||g||_{Y^*} \le 1} ||T_g^*||_{X^*}$$

En particular,

$$||T^*||_{B(X^*,Y^*)} = \sup_{||g||_{Y^*} \le 1} ||T_g^*||_{X^*}$$

$$\le ||T||_{B(X,Y)}$$

De esta forma obtenemos una relación interesante,

$$||T^*||_{B(Y^*,X^*)} \le ||T||_{B(X,Y)}$$

Más adelante veremos que esto es una igualdad y finalmente escribimos con abuso de notación que,

$$||T^*|| = ||T||$$

Y en notación corchete escribimos,

$$T_g^*(x) = \langle T^*g, x \rangle_{X^* \times X}$$
$$g(T(x)) = \langle g, Tx \rangle_{Y^* \times Y}$$

Teorema: Sean X, Y, Z espacios vectoriales normados y sean $T \in B(X, Y), S \in B(Y, Z)$. Entonces $ST = S \circ T \in B(X, Z)$ y,

$$||ST||_{B(X,Z)} \le ||S||_{B(Y,Z)} ||T||_{B(X,Y)}$$

En particular, si B(X) := B(X,X) es cerrado bajo la composición de operadores, entonces B(X) es un álgebra de Banach con unidad (identidad), es decir, es un álgebra con unidad y con X Banach tal que para todo $A, B \in B(X)$ se tiene que,

$$||AB||_{B(X)} \le ||A||_{B(X)} ||B||_{B(X)}$$

Demostración: Solo demostraremos la primera parte. Vamos a probar que ST es lineal, acotado y satisface la desigualdad del enunciado.

• Lineal: Sean $x, y \in X$ y λ, μ constantes, entonces,

$$(ST)(\lambda x + \mu y) = S(\lambda Tx + \mu Ty) = \lambda STx + \mu STy$$

• Acotada: Sea $x \in X$, entonces,

$$\|(ST)(x)\|_Z = \|S(Tx)\|_Z \le \|S\|_{B(Y,Z)} \|Tx\|_Y \le \|S\|_{B(Y,Z)} \|T\|_{B(X,Y)} \|x\|_X$$

Luego ST es acotada.

■ **Desigualdad:** De lo anterior se tiene que para todo $||x||_X \le 1$, se cumple que,

$$||(ST)(x)||_Z \le ||S||_{B(Y,Z)} ||T||_{B(X,Y)}$$

Es decir, $||S||_{B(Y,Z)}||T||_{B(X,Y)}$ es cota superior de $||(ST)(x)||_Z$ cuando $||x||_X \le 1$, es decir,

$$||(ST)||_{B(X,Z)} \le ||S||_{B(Y,Z)} ||T||_{B(X,Y)}$$

Demostrando el teorema.

3. Teorema Hanh-Banach

Vamos a introducir el teorema de Hanh-Banach, pero antes necesitamos resultados previos y definiciones.

Definición: Sea X un conjunto dotado con un orden binario \leq , es decir, (X, \leq) es una par donde \leq es reflexivo, es antisimétrico y es transitivo.

- Diremos que X está totalmente ordenado, es decir, para todo $x, y \in X$ se tiene que $x \le y$ ó $y \le x$.
- Diremos que X está parcialmente ordenado, es decir, existen pares $(x,y) \in X \times X$ tales que $\sim (x \leq y)$ y $\sim (y \leq y)$ (hay elementos que no se puede ordenar).
- Diremos que un subconjunto de $S \subseteq X$ es una cadena si está totalmente ordenado, es deicir $(S, \leq |_{\varsigma})$ está ordenado.
- Un elemento $x \in X$ es maximal si para todo $y \in X$ tal que $x \leq y$, entonces x = y.
- Un elemento $x \in X$ es cota superior de un conjunto $S \subseteq X$, si $y \le x$ para todo $y \in S$.

Lema de Zorn: Sea X un conjunto parcialmente ordenado que satisface:

- $i) X \neq \emptyset.$
- ii) Toda cadena en X admite una cota superior en X.

Entonces X tiene al menos un elemento maximal.

El lema de Zorn es un resultado muy importante. Este además es equivalente al axioma de elección sobre la teoría de conjuntos.

Corolario: Todo espacio vectorial tiene una base.

Corolario del lema de Zorn: Sea X conjunto parcialmente ordenado tal que $X \neq \emptyset$ y toda cadena en X admite una costa superior en X. Entonces para todo $a \in X$ existe un elemento maximal $b \in X$ tal que $a \leq b$.

Demostración Por hacer no fácil:

Sea X espacio vectorial normado (sobre \mathbb{R} ó \mathbb{C}). Nos interesa estudiar el dual topológico $X^* = B(X, \mathbb{R})$.

- ¿Será vacío?
- Si $x, z \in X$ ¿existirá $f \in X^*$ único tal que $f(x) \neq f(z)$?
- ¿Cual es el dual topológico de X^* ?

Observación: Sea $f \in X^*$ y consideremos la bola $B = B_X(0,1)$, entonces $f(B) \subseteq \mathbb{R}$ es un conjunto acotado, en particular,

$$|f(x)| \le ||f||_{X^*}$$

para todo $x \in B$. Por lo que,

$$f(B) \subseteq [-\|f\|_{X^*}, \|f\|_{X^*}]$$

Afirmación: Sea $f \in X' \setminus X^*$, entonces $f(B) = \mathbb{R}$.

Demostración: Tenemos que f es una función lineal no acotada. Para todo $\lambda > 0$ existe $x_{\lambda} \in B$ tal que,

$$|f(x_{\lambda})| > \lambda$$

Entonces,

$$[-\lambda, \lambda] \subseteq \{f(sx_{\lambda}) : s \in [-1, 1]\} \subseteq f(B)$$

Tomando $\lambda \to \infty$ se concluye que $f(B) = \mathbb{R}$.

Definición: Sea X espacio vectorial. Sea $Y \subseteq X$ subespacio vectorial de codimensión 1, es decir, $\dim X - \dim Y = 1$. Sea $H := \{\lambda x_0 : \lambda \text{ escalar}\} \oplus Y \text{ con } x_0 \in X \setminus Y$, entonces diremos que H es un hiperplano afín.

Afirmación: Todo elemento de $x \in X$ se escribe de forma única como $x = y + \lambda x_0$ sobre el hiperlano afín H.

Demostración: Supongamos que x tiene dos escrituras, es decir,

$$x = y_1 + \lambda_1 x_0 = y_2 + \lambda_2 x_0$$

Entonces,

$$(\lambda_1 - \lambda_2)x_0 = (y_2 - y_1)$$

Si $\lambda_1 \neq \lambda_2$, entonces se tiene que $x_0 \in Y$ siendo imposible, por lo tanto $\lambda_1 = \lambda_2$ y entonces $y_1 = y_2$. Por lo tanto la escritura de x en H es única.

Definición: Sea $f \in X'$ no nulo. Entonces definimos (reescribimos) el kernel de f por:

$$K(f) := \ker(f) = f^{-1}(\{0\})$$

Y definimos el hiperplano de f por:

$$I(f) := f^{-1}(\{1\})$$

Teorema: Sea X espacio vectorial.

a) Si $f \in X'$ y si existe $x_0 \in X$ tal que $f(x_0) \neq 0$, entonces K(f) es un subespacio vectorial de X con codimensión 1 y además, para todo $x \in X$ existen únicos $y \in K(f)$ y escalar λ tal que,

$$x = y + \lambda x_0$$

Además, I(f) es un hiperplano que no contiene al $0 \in X$.

- b) Sean $f, g \in X' \setminus \{0\}$. Entonces $f = \lambda g$ para algún escalar λ , si y sólo si K(f) = K(g).
- c) El mapa $f \mapsto I(f)$ es una biyección entre $X' \setminus \{0\}$ y los hiperplanos afines de X que no contienen al 0.

Demostración: Por hacer...

Ejemplo: Consideremos $X = \mathbb{R}^n$ Para todo $f \in X'$, podemos asociarlo a único elemento $x_f \in \mathbb{R}^n$ tal que,

$$f(x) = x_f \cdot x$$

para todo $x \in \mathbb{R}^n$. En particular,

$$K(f) = \{x \in \mathbb{R}^n : x_f \cdot x = 0\}$$
$$I(f) = \{x \in \mathbb{R}^n : x_f \cdot x = 1\}$$

Afirmación: $X' \cong \mathbb{R}^n$.

Demostración: Supongamos que trabajamos con las coordenadas habituales en \mathbb{R}^n , entonces,

$$f(x) = f(x_1e_1 + \dots + x_ne_n)$$

= $x_1f(e_1) + \dots + x_nf(e_n)$

donde e_i es el vector con 1 en el índice i y ceros en el resto. Esto define un elemento x_f con coordenadas,

$$\begin{bmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{bmatrix}$$

De esta forma existe un $x_f \in \mathbb{R}^n$ asociado a f, es más, este x_f es único, si existieran x_f, y_f asociados a f entonces,

$$x_f \cdot x = f(x) = x_g \cdot x$$

Esto para todo $x \in \mathbb{R}^n$, pero esto implica que $x_f = x_g$, luego x_f es único. Acabamos de construir el siguiente mapa:

$$\gamma: X' = \mathcal{L}(\mathbb{R}^n, \mathbb{R}) \to \mathbb{R}^n$$

 $f \mapsto g(f) = x_f$

Claramente es inyectivo por la unicidad de x_f y es sobreyectivo puesto que dado $y \in \mathbb{R}^n$, podemos definir $f_y(x) := y \cdot x$ el cual es lineal que va de \mathbb{R}^n a \mathbb{R}^n . Luego γ es una biyección.

Veamos que γ es lineal. Sean $f, g \in X'$ y sean λ, μ escalares, luego,

$$\gamma(\lambda f + \mu g) = (x_{\lambda f + \mu g}) \cdot x$$

$$= \begin{bmatrix} (\lambda f + \mu g)(e_1) \\ \vdots \\ (\lambda f + \mu g)(e_n) \end{bmatrix} \cdot x$$

$$= \begin{pmatrix} \lambda \begin{bmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{bmatrix} + \mu \begin{bmatrix} g(e_1) \\ \vdots \\ g(e_n) \end{bmatrix} \end{pmatrix} \cdot x$$

$$= (\lambda x_f + \mu x_g) \cdot x = \lambda \gamma(f) + \mu \gamma(g)$$

Por lo tanto γ es un isomorfismo y X' es isomorfo a \mathbb{R}^n .

Definición: Sea X espacio topológico. Decimos que $A \subseteq X$ es denso en ninguna parte si,

$$int(\overline{A}) = \emptyset$$

Teorema: Sea X un espacio vectorial normado (sobre \mathbb{R} $\delta \mathbb{C}$).

- a) Sea $f \in X^*$ no nulo. Entonces K(f), I(f) son cerrado y densos en ninguna parte en X. Por otro lado, si $f \in X' \setminus X^*$, entonces K(f), I(f) son densos en X.
- b) El mapa $f \mapsto I(f)$ es una biyección entre $X^* \setminus \{0\}$ y los hiperplanos cerrados en X que no contienen a 0.

Demostración:

a) Por definición $K(f) = f^{-1}(\{0\})$ y $I(f) = f^{-1}(\{1\})$ donde $\{0\}, \{1\}$ son cerrados en sus respectivos conjuntos. Dado que f es continua, entonces K(f), I(f) son conjuntos cerrados. Demostremos ahora que son densos en ninguna partde X.

Si f no es nulo, entonces existe $x_0 \in X$ tal que $f(x_0) \neq 0$. Luego para todo $x \in K(f)$ se tiene que,

$$f(x + \varepsilon x_0) = \varepsilon f(x_0) \neq 0$$

para todo ε escalar. Supongamos que el interior de K(f) tiene un elemento \widetilde{x} , entonces existe r>0 tal que,

$$B(\widetilde{x},r) \subseteq K(f)$$

Sin embargo podemos tomar $\varepsilon > 0$ suficientemente pequeño tal que,

$$\widetilde{x} + \varepsilon x_0 \in B(\widetilde{x}, r)$$

sin embargo $f(\tilde{x} + \varepsilon x_0) \neq 0$, siendo contradicción, por lo tanto necesariamente int $K(f) = \emptyset$

Probemos ahora que I(f) es denso en ninguna parte. De forma análoga notemos que podemos tomar $x \in X$ tal que $f(x_0) \neq 1$, luego $f(x + \varepsilon x_0) \neq 1$ con $x \in I(f)$ y $\varepsilon \neq 0$.

Supongamos ahora que $f \in X' \setminus X^*$. Supongamos que K(f) no es denso, esto implica que existe un $x_0 \in X$ tal que existe una vecindad, digamos la bola $B(x_0, \delta)$, no intersecta a K(f), es decir,

$$B(x_0, \delta) \cap K(f) = \emptyset$$

Ahora tenemos que,

$$f(B(x_0, \delta)) = f(x_0) + \delta f(B(0, 1)) = \mathbb{R}$$

Pero como la intersección con K(f) es vaçia, se tiene que no tiene a 0, pero esto impplica que f(B(0,1)) no es \mathbb{R} (ó \mathbb{C}), siendo una contradicción, por lo tanto K(f) es denso.

Ahora I(f) es una translación de K(f), es más I(f) es denso si y sólo si K(f).

b) Probemos que el mapa es biyectivo. Sean $f, g \in X^* \setminus \{0\}$ tal que I(f) = (g). Sea $x \in X$, entonces,

$$f(x) \in I(g)$$

terminar

Demostrando el teorema. ■

Observación: Sea $f \in X'$, entonces,

$$f(B_X(x_0,r)) = f(x_0) + rf(B_X(0,1))$$

Este no contiene a 0, lo que permite estimar ||f||, puesto que,

$$|f(x_0)| > r|f(x)|$$

para todo $x \in B_X(0,1)$, luego,

$$||f|| \le \frac{1}{r}|f(x_0)|$$

Definición: Sea $Y \subseteq X$ espacio vectorial y sea $f \in X', g \in Y'$, decimos que f es una extensión de g si f(y) = g(y) para todo $y \in Y$.

Definición: Consideremos una función de la forma $p: X \to \mathbb{R}_+ \cup \{\infty\}$. Diremos que es funcional convexo si,

- i) $p(\lambda x) = \lambda p(x)$ para todo $\lambda > 0$ para todo $x \in X$.
- ii) Para todo $x, y \in X$ para todo $\lambda \in (0,1)$ se satisface que,

$$p(\lambda x + (1 - \lambda)y) < \lambda p(x) + (1 - \lambda)p(y)$$

Afirmación: La condición ii) es equivalente a decir que p es subaditivo, es decir, $p(x + y) \le p(x) + p(y)$ para todo $x, y \in X$.

Demostrar Supongamos que p es funcional convexo y que se cumple ii), entonces

Convención: Seguiremos las siguientes reglas:

$$\begin{aligned} \infty + \infty &= \infty \\ t + \infty &= 0; \quad \text{para todo } t \in \mathbb{R} \\ t \cdot \infty &= 0; \quad \text{para todo } t > 0 \end{aligned}$$

Observación: Si X es un espacio vectorial normado y C > 0, entonces p(x) = C||x|| es funcional convexo. Además, si consideremos $f \in X^*$ tal que $||f|| \le C$, este es equivalente a decir que $f \in X'$ y |f(x)| está dominado por p(x) = C||x|| (decimos que está dominado si $|f(x)| \le p(x)$ para todo $x \in X$)

Lema: Sea X un \mathbb{R} espacio vectorial normado. Sea $f_0 \in Y'$ donde Y es subespacio vectorial de X con codimY=1. Supongamos que f_0 es dominado por p un funcional convexo. Entonces existe una extensión $f \in X'$ de f_0 dominado por p

Demostración: (Revisar) Sea $z \in X \setminus Y$ fijo. Como $Y \subseteq X$ es subespacio tal que codimY = 1, entonces todo elemento de $x \in X$ puede ser escrito de la siguiente forma,

$$x = y + \lambda z$$

donde $y \in Y$ y λ es escalar, son únicos. Sea $f \in X'$ tal que,

$$f(x) = f(y) + \lambda f(z)$$

Podemos tomar f lineal tal que $f(y) = f_0(y)$ y como z es un valor fijo, podemos tomar c := f(z). De esta forma $f \in X'$ es una extensión. Veamos que está dominado por p. Queremos demostrar que,

$$f(x) = f(y + \lambda z) \le p(y + tz)$$

terminar

Teorema Hanh-Banach: Sea X un \mathbb{R} espacio vectorial y sea Y subespacio de X. Sea $p: X \to \mathbb{R}_+ \cup \{\infty\}$ funcional convexo. Si $f_0 \in Y'$ está dominado por p, entonces existe $f \in X'$ dominado por p que extiende a f_0 .

Demostración: Consideremos $\mathcal{F} = \{f_{\gamma} : Y_{\gamma} \to \mathbb{R} : \gamma \in \Gamma\}$ la colección de todas las extensiones lineales de f_0 dominadas por p con Y_{γ} subespacio vectorial de X que contiene a Y. Notemos que \mathcal{F} es no vacío, puesto que $f_0 \in \mathcal{F}$. Vamos a definir la relación \subseteq de la siguiente forma,

$$f_{\gamma} \subseteq f_{\nu} \Leftrightarrow Y_{\gamma}$$
 es subespacio de Y_{ν} y f_{γ} es extensión de f_{ν}

Afirmación: (\mathcal{F}, \subseteq) es de orden parcial.

Demostración: Debemos probar que es solamente reflexiva, antisimétrica y transitiva.

■ Reflexiva: Claramente Y_{γ} es su propio subespacio vectorial y f_{γ} es su propia extensión. Luego \subseteq es simétrico.

■ Antisimétrico: Sean $f_{\gamma}, f_{\nu} \in \mathcal{F}$ tales que,

$$f_{\gamma} \subseteq f_{\nu} \quad \text{y} \quad f_{\nu} \subseteq f_{\gamma}$$

Esto implica que $Y_{\gamma} \subseteq Y_{\nu}$ y $Y_{\eta} \subseteq Y_{\gamma}$, por lo que $Y_{\gamma} = Y_{\nu}$, y si f_{ν} es extensión de f_{γ} y viceversa, entonces necesariamente $f_{\gamma} = f_{\nu}$. De forma que \subseteq es antisimétrico.

■ Transitivo: Sean $f_{\gamma}, f_{\eta}, f_{\beta} \in \mathcal{F}$ tales que,

$$Y_{\gamma} \subseteq Y_{\nu} \quad \text{y} \quad Y_{\nu} \subseteq Y_{\beta}$$

Luego, $Y_{\gamma} \subseteq Y_{\nu} \subseteq Y_{\beta}$, es decir, Y_{γ} es subespacio de Y_{β} , y si f_{β} es extensión de f_{ν} , y este es extensión de f_{γ} , entonces f_{β} es extensión de f_{γ} . Por lo tanto $f_{\gamma} \subseteq f_{\beta}$, de forma que \subseteq es transitiva.

Finalmente \subseteq es de orden parcial.

Consideremos \mathcal{F}_0 una cadena, es decir, $(\mathcal{F}_0,\subseteq)$ está totalmente ordenado, donde,

$$\mathcal{F}_0 = \{ f_{\nu} : \nu \in \Gamma_0 \}$$

Definimos,

$$\widetilde{Y} := \bigcup_{\nu \in \Gamma_0} Y_{\nu}$$

Afirmación: \widetilde{Y} es subespacio vectorial de X.

Demostración: Claramente $0 \in \widetilde{Y}$ al ser unión de subespacio. Sean $x, y \in \widetilde{Y}$, digamos que $x \in Y_{\nu_1}$ e $y \in Y_{\nu_2}$. Como \mathcal{F}_0 es totalmente ordenado, entonces sin pérdida de generalidad supongamos que $Y_{\nu_1} \subseteq Y_{\nu_2}$, entonces $x, y \in Y_{\nu_2}$, esto implica que $\lambda x + \mu y \in Y_{\nu_2}$ con λ, μ escalare. Finalmente,

$$\lambda x + \mu y \in \widetilde{Y}$$

Por lo que \widetilde{Y} es subespacio de X.

Definimos $\widetilde{f}: \widetilde{Y} \to \mathbb{R}$ de la siguiente forma, $\widetilde{f}(y) = y$ para todo $y \in Y_{\nu}$ y $\nu \in \Gamma_0$.

Afirmación: \widetilde{f} es una función lineal bien definida que es cota superior \mathcal{F} , que además está dominado por p.

Demostrar...

Por el lema de Zorn existe $\hat{f}: \hat{Y} \to \mathbb{R}$ maximal en \mathcal{F} , donde \hat{f} es una extensión de f_0 , \hat{Y} es subespacio vectorial de X y está dominado por p.

Nos falta demostrar que $\hat{Y} = X$. Supongamos que $\hat{Y} \neq X$, entonces existe $z \in X \setminus \hat{Y}$. Ahora, por el lema anterior podemos extender \hat{f} a un funcional lineal en el subespacio vectorial,

$$\operatorname{span}\left\{\hat{Y}\cup\left\{z\right\}\right\}$$

dominado por p, pero esto implica que \hat{f} no es máximal siendo contradicción. Por lo tanto $\hat{Y} = X$. Demostrando el teorema.

Corolario: Sea X un \mathbb{R} espacio vectorial y Y un subespacio de X. Entonces si $f_0 \in Y^*$, entonces existe $f \in X^*$ que extiende a f_0 y además,

$$||f||_{X^*} = ||f_0||_{Y^*}$$

Demostración: Sea $f_0 \in Y^*$. Consideremos la función,

$$p(x) := ||x||_X \cdot ||f_0||_{Y^*}$$

Entonces claramente p es funcional convexo, puesto que para todo $\lambda > 0$ se tiene,

$$p(\lambda x) = \|\lambda x\|_X \|f_0\|_{Y^*}$$

= $\lambda \|x\|_X \|f_0\|_{Y^*} = \lambda p(x)$

Y para todo $\lambda \in (0,1)$ se tiene,

$$p(\lambda x + (1 - \lambda)y) = \|\lambda x + (1 - \lambda)y\|_X \|f_0\|_{Y^*}$$

$$\leq \lambda \|x\|_X \|f_0\|_{Y^*} + (1 - \lambda)\|y\|_X \|f_0\|_{Y^*}$$

$$= \lambda p(x) + (1 - \lambda)p(y)$$

Además,

$$||f_0||_{Y^*} = \sup_{\substack{y \neq 0 \\ y \in Y}} \frac{|f_0(y)|}{||y||_Y}$$

Lo que implica que,

$$|f_0(y)| = \frac{|f_0(y)|}{\|y\|_Y} \cdot \|y\|_Y \le \|f_0\|_{Y^*} \|y\|_Y = p(y)$$

para todo $y \neq 0$ (si p es funcional convexa sobre X, entonces también lo es sobre Y, además $\|\cdot\|_Y = \|\cdot\|_X$). Por el teorema anterior existe $f \in X^*$ que es extensión de f_0 y que está dominado por p. Además,

$$|f(x)| \le ||x||_X ||f_0||_{Y^*}$$

Esto implica que,

$$||f||_{X^*} \leq ||f_0||_{Y^*}$$

Y para ver la igualdad, notemos que si f es extensión de f_0 , entonces,

$$||f_0||_{Y^*} = \sup_{\substack{y \neq 0 \\ y \in Y}} \frac{|f_0(y)|}{||y||_Y}$$

$$= \sup_{\substack{y \neq 0 \\ y \in Y}} \frac{|f(y)|}{||y||_X}$$

$$\leq \sup_{\substack{x \neq 0 \\ x \in Y}} \frac{|f(x)|}{||x||_X} = ||f||_{X^*}$$

Finalmente,

$$||f||_{X^*} = ||f_0||_{Y^*}$$

Demostrando el corolario.

Se puede extender el resultado a un espacio vectorial sobre \mathbb{C} . Sea X un espacio vectorial normaod sobre \mathbb{C} . Sea $X_{\mathbb{R}}$ el espacio vectorial normado sobre \mathbb{R} hederado de X, luego $X_{\mathbb{R}}^* = B(X_{\mathbb{R}}, \mathbb{R})$ y el mapa,

$$r: X^* \to X_{\mathbb{R}}^*$$
$$r(f) = \Re(f)$$

Es 1-1 sobreyectivo que preserva la norma, es decir,

$$||f||_{X^*} = ||r(f)||_{X_{\mathbb{R}}^*}$$

Y,

$$r^{-1}: X_{\mathbb{R}}^* \to X^*$$

 $g \mapsto r^{-1}(g) = g(x) - ig(ix)$

Extendiendo a \mathbb{C} el resultado.

3.1. Resultados del teorema de HB:

El teorema HB nos entrega resultados muy interesantes. Veamos algunos.

Corolario: Sea X un espacio vectorial normado sobre \mathbb{R} y sea $x_0 \in X$. Entonces existe $f \in X^*$ tal que $||f||_{X^*} = 1$ y que $f(x_0) = ||x_0||_X$. Además,

$$||x_0||_X = \sup_{\substack{\|g\|_{X^*} \le 1 \\ g \in X^*}} |g(x_0)|$$

Demostración: Supongamos que $x_0 \neq 0$. Sea $Y := \text{span}\{x_0\} = \{\lambda x_0 : \lambda \in \mathbb{R}\}$. Definimos la función,

$$f_0: Y \to \mathbb{R}$$

$$y = \lambda x_0 \mapsto f(\lambda x_0) = \lambda ||x_0||_X$$

Notemos que es lineal puesto que,

$$f_0(\nu y_1 + \mu y_2) = f_0(\nu \lambda_1 x_0 + \mu \lambda_2 x_0)$$

$$= f_0((\nu \lambda_1 + \mu \lambda_2) x_0)$$

$$= (\nu \lambda_1 + \mu \lambda_2) \|x_0\|_X$$

$$= \nu (\lambda_1 \|x_0\|_X) + \mu (\lambda_2 \|x_0\|_X) = \nu f_0(y_1) + \mu f_0(y_2)$$

para todo $y_1, y_2 \in Y$, para todo ν, μ escalares. Y es acotada puesto que,

$$|f_0(y)| = |\lambda||x_0||_X = |\lambda|||x_0||_X = ||\lambda x_0||_X = ||y||_X$$

para todo $y \in Y$. Por lo tanto, $f_0 \in Y^*$ y por tanto, tiene definida una forma. Por definición,

$$||f_0||_{Y^*} = \sup_{y \neq 0} \frac{|f_0(y)|}{||y||_X}$$
$$= \sup_{\lambda \neq 0} \frac{|f_0(\lambda x_0)|}{||\lambda x_0||_X}$$
$$= \sup_{\lambda \neq 0} 1 = 1$$

Por el teorema HB, existe $f \in X^*$ que extiende a f_0 tal que $f(x_0) = f_0(x_0) = ||x_0||_X$ y tal que,

$$||f||_{X^*} = ||f_0||_{Y^*} = 1$$

Ahora caractericemos la norma de x_0 . Sea $g \in X^*$ tal que $||g||_{X^*} \le 1$, entonces,

$$|g(x_0)| \le ||x_0||_X ||g||_{X^*} \le ||x_0||_X$$

Esto implica que,

$$\sup_{\substack{\|g\|_{X^*} \le 1 \\ g \in X^*}} |g(x_0)| \le \|x_0\|_X$$

Para ver la igualdad basta tomar f anterior, luego se tiene,

$$||x_0||_X = f_0(x_0)$$

$$= f(x_0)$$

$$\leq ||x_0||_X = \sup_{\substack{||g||_{X^*} \leq 1\\ g \in X^*}} |g(x_0)|$$

Probando la igualdad. Probando el corolario.

Corolario: Sea X un espacio vectorial normado. Sea $x_0 \in X$ tal que $f(x_0) = 0$ para todo $f \in X^*$, entonces $x_0 = 0$.

Demostración: Por el corolario anterior se tiene que,

$$||x_0||_X = \sup_{\substack{f \in X^* \\ ||f||_{X^*} = 1}} |f(x_0)|$$
$$= \sup_{\substack{f \in X^* \\ ||f||_{X^*} = 1}} 0 = 0$$

Entonces $x_0 = 0$.

Teorema: Sean X, Y espacios vectoriales normados. Sea $T \in B(X, Y)$, entonces $T^* \in B(Y^*, X^*)$ y,

$$||T^*||_{B(Y^*,X^*)} = ||T||_{B(X,Y)}$$

Demostración: Ya hemos demostrado que $T^* \in B(Y^*, X^*)$ y que,

$$||T^*||_{B(Y^*,X^*)} \le ||T||_{B(X,Y)}$$

Por lo que falta demostrar la otra desigualdad. Sea $\varepsilon > 0$ y sea $x_0 \in X$ tal que $||x_0||_X = 1$, entonces,

$$||Tx_0||_Y \ge ||T||_{B(X,Y)} - \varepsilon$$

Como hemos demostrado anteriormente, existe $g \in Y^*$ tal que,

$$g(Tx_0) = ||Tx_0||_Y$$
$$||g||_{Y^*} = 1$$

Luego, con respecto a este g se cumple,

$$(T^*g)(x_0) = g(Tx_0)$$

= $||Tx_0||_Y \ge ||T||_{B(X,Y)} - \varepsilon$

Dado que $||x_0||_X = 1$ se cumple que,

$$||T^*g||_{X^*} = \sup_{||x_0||_X = 1} |(T^*g)(x_0)| \ge ||T||_{B(X,Y)} - \varepsilon$$

Y dado que $||g||_{Y^*} = 1$, se cumple que,

$$||T^*||_{B(Y^*,X^*)} = \sup_{||g||_{Y^*}=1} ||T^*g||_{X^*} \ge ||T||_{B(X,Y)} - \varepsilon$$

Finalmente se tiene que para todo $\varepsilon > 0$ se cumple que,

$$||T^*||_{B(Y^*,X^*)} \ge ||T||_{B(X,Y)} - \varepsilon$$

Finalmente concluimos que,

$$||T^*||_{B(Y^*,X^*)} = ||T||_{B(X,Y)}$$

Sea X espacio vectorial normado. Sabemos que $X^* = B(X, \mathbb{R})$ es un espacio vectorial normado, de forma que podemos definir el dual topológico del dual topológico de X, en particular,

$$X^{**} := (X^*)^* = B(X^*, \mathbb{R})$$

Hay una inmersión natural de X en X^{**} ,

$$i: X \to X^{**}$$

 $x \mapsto \hat{x} = i(x)$

Tal que si $v \in X^*$, $\hat{x}(v) = v(x) : X \to \mathbb{R}$ o bien,

$$\langle \hat{x}, v \rangle_{X^{**} \times X^*} = \langle v, x \rangle_{X^* \times X}$$

Claramente,

$$|\hat{x}(v)| = |v(x)| \le ||v||_{X^*} ||x||_X$$

Luego,

$$\|\hat{x}\|_{X^{**}} = \sup_{v \neq 0} \frac{|\hat{x}(v)|}{\|v\|_{X^{*}}}$$

$$\leq \sup_{v \neq 0} \|x\|_{X} = \|x\|_{X}$$

Es decir,

$$\|\hat{x}\|_{X^{**}} \le \|x\|_X \Leftrightarrow \|i(x)\|_{X^{**}} \le \|x\|_X$$

Obteniendo una desigualdad interesante del mapa i.

Afirmación: El mapa i es una inyección lineal continua.

Demostración: Demostremos que es invección, lineal y continua.

■ Inyectiva: Sean $x, y \in X$ tales que i(x) = i(y), entonces para todo $f \in X^*$ se tiene que,

$$(i(x))(f) = (i(y))(f) \Leftrightarrow \hat{x}(f) = \hat{y}(f)$$

 $\Leftrightarrow f(x) = f(y)$
 $\Leftrightarrow f(x - y) = 0$

Es decir, para todo $f \in X^*$ se tiene que f(x-y) = 0, por lo que, por el corolario anterior se cumple que x - y = 0. Lo que implica que i es inyectiva.

• Lineal: Sean $x, y \in X$ y sean λ, μ escalares. Entonces para todo $f \in X^*$ se cumple que,

$$i(\lambda x + \mu y)(f) = f(\lambda x + \mu y)$$
$$= \lambda f(x) + \mu f(y)$$
$$= (\lambda i(x) + \mu i(y))(f)$$

Por lo tanto i es lineal.

■ Continua: Con la desigualdad que hemos deducido, nos indica que i es Lipschitz, puesto que,

$$||i(x) - i(y)||_{X^{**}} = ||i(x - y)||_{X^{**}} \le ||x - y||_X$$

Por lo tanto i es continua.

Demostrando la afirmación.

Teorema: Sea X espacio vectorial normado y sea X^{**} el doble dual topológico de X. Consideremos el mapa inmersión $i: X \to X^{**}$, entonces i es una inyección lineal continua isométrico.

Demostración: Ya hemos demostrado que i es inyectivo, lineal y continua. Demostremos que es isometría. Usando la caracterisación de la norma sobre funciones X^* , se tiene quem

$$||x||_X = \sup_{\substack{\|f\|_{X^*}=1\\f \in X^*}} |f(x)|$$

$$= \sup_{\substack{\|f\|_{X^*}=1\\f \in X^*}} |\hat{x}(f)|$$

$$= ||i(x)||_{X^{**}}$$

Por lo tanto i preserva la norma.

Definición: Sea X un espacio vectorial normado y consideremos el mapa inmersivo $i: X \to X^{**}$. Decimos que X es reflexivo si $i(X) = X^{**}$

Ejemplo: Pensemos en $L^p(\mathbb{R})$ con $p \in [1,\infty)$. Este es un espacio vectorial normado por lo que tiene definido el doble dual topológico. Se cumple que el dual topológico es isomorfo al espacio $L^q(\mathbb{R})$ donde q es el cociente conjugado (1/p + 1/q = 1), es decir,

$$L^q(\mathbb{R}) \cong (L^p(\mathbb{R}))^*$$

Entonces,

$$(L^p(\mathbb{R}))^{**} \cong (L^q(\mathbb{R}))^* \cong L^p(\mathbb{R})$$

Por lo tanto,

$$L^p(\mathbb{R}) \cong (L^p(\mathbb{R}))^{**}$$

Definición: Sea X espacio vectorial sobre \mathbb{R} . Sea $q: X \to \mathbb{R} \cup \{\infty\}$, diremos que es funcional cóncavo si -q es funcional convexo, es decir,

- i) q es positívamente homogéno.
- ii) $q(\lambda x + (1 \lambda)y) \ge \lambda q(x) + (1 \lambda)q(y)$ para todo $x, y \in X$ y para todo $\lambda \in (0, 1)$.

Teorema HB Fuerte: Sea X un espacio vectorial sobre \mathbb{R} y sea Y subespacio vectorial de X. Sean p, q funcionales convexo y cóncavo respectivamente. Si $f_0 \in Y'$ es tal que,

$$f_0(y) \le p(x+y) - q(x)$$

para todo $y \in Y, x \in X$. Entonces existe $f \in X'$ extensión de f_0 tal que,

$$q(x) \le f(x) \le p(x)$$

para todo $x \in X$.

Por demostrar.....

Corolario: Sea X espacio vectorial sobre \mathbb{R} . Sean q, p funcionales cóncavo y convexo respectivamente tal que $q(x) \leq p(x)$ para todo $x \in X$. Entonces existe $f \in X'$ tal que,

$$q(x) \le f(x) \le p(x)$$

para todo $x \in X$.

Demostración: Sea $Y = \{0\} \subseteq X$. Sea $f_0 : \{0\} \to \mathbb{R}$ el mapa que manda $0 \in X$ a $0 \in \mathbb{R}$. Claramente se cumple que,

$$f_0(y) \le p(x+y) - q(x)$$

para todo $x \in X$ e $y \in Y$. Luego por HB fuerte existe $f \in X'$ tal que,

$$q(x) \le f(x) \le p(x)$$

para todo $x \in X$.

Teorema HB geométrico: Sea X espacio vectorial \mathbb{R} . Sean A, B conjuntos disjuntos no vacíos convexos. Supongamos que existe $\alpha \in A$ tal que para todo $x \in X$ existe $\varepsilon_x > 0$ tal que,

$$\alpha + tx \in A$$

para todo $|t| < \varepsilon_{\varepsilon}$. Entonces A y B pueden ser separados por un hiperplano.

Nota: Que dos conjuntos A y B puedan ser separados signiica que existe $f \in X'$ no nulo y $c \in \mathbb{R}$ tal que,

$$f(x) \le c$$
, para todo $x \in A$
 $f(y) \ge c$, para todo $y \in B$

Demostración: Sin pérdida de generalidad supongamos que $\alpha = 0$ (ver que pasa en gewneral). Entonces apra todo $x \in X$ existe $\varepsilon_x > 0$ tal que $tx \in A$ para todo $|t| < \varepsilon_x$, es decir,

$$[-\varepsilon_x x, \varepsilon_x x] \subseteq A$$

Definimos,

$$p(x) := \inf\{t \ge 0 : x \in tA\}$$

 $q(x) := \sup\{t \ge 0 : x \in tB\}$

Afirmación: q, p son funcionales cóncavo y convexo respectivamente.

demostrar....

Como $tA \cap tB = \emptyset$ para todo t > 0, entonces,

$$q(x) \le p(x)$$

para todo $x \in X$. Por el corolario anterior existe $f \in X'$ no nulo tal que,

$$q(x) \le f(x) \le p(x)$$

para todo $x \in X$. En particular, si $x \in A$ e $y \in B$, entonces,

$$f(x) \le p(x) \le 1 \le q(y) \le f(y)$$

Luego nuestra constante es c=1 y por tanto $I(f)=f^{-1}(1)$ separa a A y B.

3.2. Teoremas de Categorias de Baire y sus Consecuencias

Teorema de Baire: Sean G_1, G_2, \ldots una sucesión de conjuntos abiertos densos en un espacio métrico completo X. Entonces,

$$G := \bigcap_{n \in \mathbb{N}} G_n$$

es denso en X.

Observación: Sea X espacio vectorial normado. Entonces,

• Se cumple la igualdad $\overline{B}_r(x) = \overline{B_r(x)}$. Notemos que es evidente que,

$$\overline{B_r(x)} \subseteq \overline{B}_r(x)$$

Para ver la igualdad tomamos $y \in \overline{B}_r(x)$, por lo que $||x - y||_X \le r$. Definimos $y_n = x/n + (1 - 1/n)y$, en particular se tiene que,

$$||x - y_n||_X = \left| \left| x - \left(\frac{x}{n} + \left(1 - \frac{1}{n} \right) y \right) \right| \right|_X$$
$$= \left(1 - \frac{1}{n} \right) ||x - y||_X$$
$$< ||x - y||_X \le r$$

Es decir, $||x - y_n||_X < r$. Entonces se tiene que $y_n \in B_r(x)$ y además,

$$\lim_{n \to \infty} y_n = y$$

Por tanto y es punto límite de elementos de $B_r(x)$ y por tanto $y \in \overline{B}_r(x)$. Probando la igualdad.

En espacios métrico se cumple $\overline{B_r(x)} \subseteq \overline{B_r(x)}$, pero no necesariamente la igualdad.

■ Para todo $\varepsilon > 0$ se tiene que $\overline{B}_r(x) \subseteq B_{r+\varepsilon}(x)$, ya que dado $y \in \overline{B}_r(x)$, se tiene que,

$$||x - y||_X \le r < r + \varepsilon$$

Demostración: (Revisar clase 7/4 Vamos a demostrar que para todo $x \in X$ existe r > 0 tal que $B_r(x) \cap G \neq \emptyset$. Sea $x \in X$ y r > 0, escogemos $x_1 \in X$ y $0 < r_1 < 1$ tal que,

$$B_{r_1}(x_1) \subseteq G_1 \cap B_r(x)$$

por la densidad de G_1 . Ahora escogemos $x_2 \in X$ y $0 < r_2 < 1/2$ tal que,

$$B_{r_2}(x_2) \subseteq G_2 \cap B_{r_1}(x)$$

por la densidad de G_2 . Y así construimos las sucesiones $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ y $\{r_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ tal que $r_n\to 0$ cuando $n\to\infty$, y además,

$$B_{r_{n+1}}(x_{n+1}) \subseteq G_n \cap B_{r_n}(x)$$

De esta forma,

$$B_{r_{n+1}}(x_{n+1}) \subseteq B_{r_n}(x_n) \subseteq \cdots \subseteq B_r(x)$$

En particular se tiene una sucesión de Cauchy. Como X es completo, entonces $x_n \to x_0 \in X$ cuando $n \to \infty$ donde $x_0 \in B_{r_n}(x_n)$ para todo $n \in \mathbb{N}$, es más,

$$\bigcap_{n \in N} B_{r_n}(x_n) = \{x_0\}$$

Notemos también que $B_{r_n}(x_n) \subseteq G_n$ para todo $n \in \mathbb{N}$ y que $x_0 \in B_r(x)$. Luego

$$\bigcap_{n\in\mathbb{N}} B_{r_n}(x_n) \subseteq \bigcap_{n\in\mathbb{N}} G_n = G$$

Por lo tanto $B_r(x) \cap G \neq \emptyset$.

Enunciado equivalente: Sea X espacio métrico completo. Supongamos que,

$$X = \bigcup_{n \in \mathbb{N}} F_n$$

con F_n cerrado. Entonces al menos uno de los F_n tiene interior no vacío.

Demostración: Sea $G_n := X \setminus F_n$, entonces obtenemos que,

$$\bigcap_{n\in\mathbb{N}}G_n=\emptyset$$

Notemos que si todos los G_n es denso entonces la intersección sería no vacío, por lo que existe un G_n no denso.

Afirmación: $int(F_n) = X \setminus \overline{G_n}$

Demostración: Notemos que $X \setminus \overline{G_n}$ es un abierto, es más, si $x \in X \setminus \overline{G_n}$, entonces $x \in X \setminus G_n = F_n$ (como $\overline{G_n} \subseteq G_n$). Por tanto, por la caracterisación del interior de F_n , se tiene que,

$$X \setminus \overline{G_n} \subseteq \operatorname{int}(F_n)$$

Ahora, sea $A \subseteq F_n$ abierto (todo abierto de un subconjunto topológico inducido por una norma, es un abierto en todo el espacio topológico inducido por la norma, por lo que podemos pensar en A abierto en X), entonces,

$$G_n = X \setminus F_n \subseteq \underbrace{X \setminus A}_{\text{cerrado}}$$

Luego se tiene que,

$$\overline{G_n} \subseteq X \setminus A \Leftrightarrow A \subseteq X \setminus \overline{G_n}$$

Luego tomando $A = int(F_n)$ se concluye que,

$$int(F_n) = X \setminus G_n$$

Demostrando la afirmación.

Finalmente tenemos que el interior de F_n es no vacío.

Definición: Sea X espacio topológico y sea $Y \subseteq X$. Diremos que Y es denso en ninguna parte en X si $int(\overline{Y}) = \emptyset$.

Observación: $Y \subseteq X$ es denso en ninguna parte si y sólo si $\overline{Y} \subseteq X$ es denso en ninguna parte.

Definición: Sea X espacio topológico. Diremos que un subconjunto $Z \subseteq X$ es magro (meager) si es de primera categoría, es decir, Z es unión numerable de conjuntos denso en ninguna parte. Es decir,

$$Z = \bigcup_{n \in \mathbb{N}} Z_n$$

 $donde\ int(\overline{Z_n}) = \emptyset.$

Observación: Unión numerable de conjuntos magros es un conjunto magro.

Definición: Sea X espacio topológico. Diremos que un subconjunto $U \subseteq X$ es de segunda categoría si para todo $\{F_n\}_{n\in\mathbb{N}}$ colección numerable de cerrados que cubren a U, al menos uno e estos F_n tiene interior no vacío.

Teorema de Baire (Equivalente): El complemento de un subconjunto magro en un espacio métrico completo X es denso.

Demostración: Sea $Z \subseteq X$ magro, por lo que,

$$Z = \bigcup_{n \in \mathbb{N}} Z_n$$

donde Z_n es denso en ninguna parte en X. Sin pérdida de generalidad supongamos que Z_n son cerrados. **terminar**

Afirmación: Si X es espacio métrico completo, entonces es de segunda categoría.

Demostración: Sea $\{F_n\}_{n\in\mathbb{N}}$ una colección de cerrados que cubre a X, es decir,

$$X = \bigcup_{n \in \mathbb{N}} F_n$$

Supongamos que $\operatorname{int}(F_n) = \emptyset$ para todo $n \in \mathbb{N}$. Pero esto implica que X es un conjunto magro (primera categoría) y entonces por el teorema anterior se tiene que $\emptyset = X \setminus X$ es denso, siendo una contradicción, por lo tanto existe al menos un F_n con interior no vacío y por tanto X es de segunda categoría.

Afirmación: Sea X espacio métrico completo. Entonces el complemento de un conjunto de primera categoría es de segunda categoría.

Demostración: Sea $Z \subseteq X$ de primera categoría, por lo que se puede escribir como,

$$Z = \bigcup_{n \in \mathbb{N}} Z_n$$

donde int $(\overline{Z_n}) = \emptyset$. Sea $Y = X \setminus Z$ y sea $\{F_n\}_{n \in \mathbb{N}}$ una colección de cerrados que cubren a Y, por lo que,

$$Y \subseteq \bigcup_{n \in \mathbb{N}} F_n$$

Y supongamos que para todo F_n tiene interior vacío. **terminar**

Por lo tanto concluimos que en un espacio métrico completo X. Un conjunto $Y\subseteq X$ es de segunda categoría si y sólo si su complemento es de primera categoría.

Teorema (Principio de Acotamiento Uniforme): Sea X espacio métrico y sea $U \subseteq X$ de segunda categoría. Sea \mathcal{F} una familia de funciones continuas $f: X \to \mathbb{R}$ tal que,

$$\mathcal{B}_u := \{ f(u) : f \in \mathcal{F} \} \subseteq \mathbb{R}$$

sea acotada para todo $u \in U$. Entonces existen $x_0 \in X, r > 0$ y $N \in \mathbb{N}$ tal que $|f(x)| \leq N$ para todo $f \in \mathcal{F}$ y $x \in B(x_0, r)$. En particular, el resultado se mantiene si además X es completo y \mathcal{B}_u es acotado para todo $u \in X$.

Demostración: Definimos,

$$F_n := \{x \in X : |f(x)| \le n, \text{ para todo } f \in \mathcal{F}\}$$

para todo $n \in \mathbb{N}$. Notemos que,

$$F_n = \bigcap_{f \in \mathcal{F}} f^{-1}([-n, n])$$

Por hipótesis se tiene que,

$$U \subseteq \bigcup_{n \in \mathbb{N}} F_n$$

pero U es de segunda categoría por lo que existe un $N \in \mathbb{N}$ tal que F_N tiene interior no vacío, es decir, existe $x_0 \in F_N$ y r > 0 tal que $B(x_0, r) \subseteq F_N$, entonces para todo $x \in B(x_0, r)$ se tiene que $|f(x)| \leq N$ para todo $f \in \mathcal{F}$.

Ahora supongamos que X es completo y que \mathcal{B}_u es acotado para todo $u \in X$, entonces como hemos visto se tiene que X es de segunda categoría y luego podemos replicar la demostración observando que existen $x_0 \in X, r > 0$ y $N \in \mathbb{N}$ tal que $|f(x)| \leq N$ para todo $f \in \mathcal{F}$ y para todo $x \in B(x_0, r)$.

Teorema Cota Uniforme (Banach-Stranhauss): Sean X, Y espacios vectoriales y sea $U \subseteq X$ de segunda categoría. Sea $\mathcal{F} \subseteq B(X,Y)$ tal que para todo $u \in U$ se tiene que,

$$\sup\{\|Tu\|_Y: T \in \mathcal{F}\} < \infty$$

Entonces existe M > 0 tal que,

$$||T||_{B(X,Y)} \le M$$

para todo $T \in \mathcal{F}$. En particular, el resultado se mantiene si además X es completo y para todo $u \in X$ se tiene que,

$$\sup\{\|Tu\|_Y:T\in\mathcal{F}\}<\infty$$

Demostración: Sea $T \in \mathcal{F}$, luego,

$$f_T: X \to \mathbb{R}$$
$$x \mapsto ||Tx||_Y$$

Notemos que es continua puesto que,

$$\lim_{x \to x_0} ||Tx||_Y = \left\| \lim_{x \to x_0} Tx \right\|_Y = ||Tx_0||_Y$$

donde $\|\cdot\|_Y$ es continuo al ser norma. Entonces generamos una colección $\mathcal{F} = \{f_T : T \in B(X,Y)\}$ de funciones continuas. En particular,

$$\mathcal{B}_u = \{ f_T(u) : T \in \mathcal{F} \}$$

es acotada puesto que,

$$f_T(u) \le \sup\{||Tu||_Y : T \in \mathcal{F}\} < \infty$$

Luego por el teorema anterior existe $x_0 \in X, r > 0$ y $N \in \mathbb{N}$ tal que para todo $T \in \mathcal{F}$ y para todo $x \in B(x_0, r)$ se tiene que,

$$||Tx||_Y \le N$$

Luego para todo $||z|| \le 1$ y $T \in \mathcal{F}$ se tiene que,

$$||Tz||_Y = \frac{2}{r} ||T(x_0 + \frac{r}{2}z) - T(x_0)||$$

 $\leq \frac{2}{r}(2N) = \frac{4N}{r}$

Entonces,

$$||T||_{B(X,Y)} \le \frac{4N}{r}$$

para todo $T \in \mathcal{F}$.

Nota: Para el teorema de Banach-Stranhauss, usaremos la abreviación BS.

Teroema BS (Forma alternativa): Sea X espacio vectorial normado completo y Y espacio vectorial normado. Dado $\gamma \in \Gamma$ definimos $T_{\gamma}: X \to Y$ lineal tal que para todo $\gamma \in \Gamma$ existe $M_{\gamma} > 0$ tal que,

$$\sup_{\|x\|_X \le 1} \|Tx\|_Y \le M_{\gamma}$$

 $Y \ existe \ M_X > 0 \ tal \ que,$

$$\sup_{\gamma \in \Gamma} \|T_{\gamma}x\|_{Y} \le M_{Y}$$

para todo $||x||_X \leq 1$. Entonces existe M tal que,

$$\sup_{\gamma \in \Gamma} \sup_{\|x\|_X \le 1} \|T_\gamma x\|_Y \le M$$

Demostrar...

Corolario: Sean X, Y espacios vectoriales normados con X completo. Sea $\{T_n\}_{n\in\mathbb{N}}\subseteq B(X,Y)$ tal que,

$$\lim_{n\to\infty} T_n x$$

existe para todo $x \in X$. Entonces podemos definir $T: X \to Y$ donde $Tx = \lim_{n \to \infty} T_n x$ donde $T \in B(X,Y)$ y tal que,

$$||T||_{B(X,Y)} \le \limsup_{n \to \infty} ||T_n||_{B(X,Y)}$$

Demostrar: Definimos la función,

$$T: X \to Y$$
$$x \mapsto \lim_{n \to \infty} T_n x$$

Claramente está bien definido por hipótesis. Demostremos que $T \in B(X,Y)$.

■ Lineal: Sean $x, y \in X$ y α, β escalares, entonces,

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y)$$

$$= \lim_{n \to \infty} \alpha T_n(x) + \beta T_n(y)$$

$$\alpha \lim_{n \to \infty} T_n(x) + \beta \lim_{n \to \infty} T_n(y)$$

$$= \alpha T(x) + \beta T(y)$$

Por álgebra de límites. Luego $T \in \mathcal{L}(X,Y)$.

■ Acotado: terminar

Corolario: Sean X, Y espacios vectoriales normados donde X es además completo. Sea $T_n \in B(X, Y)$ una sucesión tal que,

$$T_n x \to y \in Y$$

para todo $x \in X$. Entonces existe un funcional $T: X \to Y$ donde,

$$Tx = \lim_{n \to \infty} T_n x$$

 $con T \in B(X,Y) \ y \ donde,$

$$||T|| \le \limsup_{n \to \infty} ||T_n||$$

Demostrar

Teorema de Condensación de Singularidades: Sean X, Y espacios vectoriales normados con X completo y sean $T_{nm} \in B(X, Y)$ donde $n, m \in \mathbb{N}$ tal que,

$$\limsup_{m \to \infty} ||T_{nm}||_{B(X,Y)} = \infty$$

para todo $n \in \mathbb{N}$. Entonces existe $U \subseteq X$ de segunda categoría en X tal que para todo $u \in U$ se tiene que,

$$\limsup_{m \to \infty} ||T_{nm}(u)||_Y = \infty$$

para todo $n \in \mathbb{N}$.

Demostración: Sea $n \in \mathbb{N}$ y sea $V_n \subseteq X$ definido de la siguiente forma,

$$V_n := \left\{ u \in X : \limsup_{m \to \infty} ||T_{nm}(u)|| < \infty \right\}$$

Por el teorema BS cada V_n es de primera categoría, por lo tanto,

$$V := \bigcup_{n \in \mathbb{N}} V_n$$

es de primera categoría, dado que X es completo. Entonces $U:=X\setminus V$ es de segunda categoría y este U satisface la hipótesis del enunciado.

Notación: Sea X espacio vectorial normado. Escribiremos la bola abierta de centro 0 y radio 1 por $B_X = B_X(0,1)$.

Lema: Sean X, Y espacios vectoriales normados con X completo. Sea $T \in B(X, Y)$ y si,

$$B_Y(0,s) \subseteq \overline{T(B_X(0,r))}$$

para algún r, s > 0. Entonces,

$$B_Y(0,s) \subseteq T(B_X(0,r))$$

Demostración: Sin pérdida de generalidad supongamos que r = s = 1. Sea,

$$A = B_Y(0,1) \cap T(B_X(0,1))$$

Afirmación: $\overline{A} = \overline{B_Y}$.

Demostración: Sea $y \in B_Y$, si por hipótesis se tiene que $B_Y \subseteq \overline{T(B_X)}$, entonces existe una sucesión $\{y_n\}_{n\in\mathbb{N}} \subseteq T(B_X)$ tal que $y_n \to y$. Como B_Y es abierto existe $N \in \mathbb{N}$ tal que $y_n \in B_Y$ para todo $n \geq N$, luego,

$$\{y_n\}_{n>N} \subseteq T(B_X) \cap B_Y = A$$

Entonces $y \in \overline{A}$ y por tanto $B_Y \subseteq \overline{A}$. Finalmente $\overline{B}_Y \subseteq \overline{A}$. La igualdad se observa puesto que $A \subseteq B_Y$, lo que implica que $\overline{A} = \overline{B_Y}$.

Sea $z \in B_Y$, existe $\delta > 0$ tal que,

$$||z|| < 1 - \delta < 1$$

Definimos $y := z/1 - \delta \in Y$. Sea $\{y_n\}_{n \in \mathbb{N}_0} \subseteq Y$ tal que,

$$y_0 = 0$$

$$y_n - y_{n-1} \in \delta^{n-1} A$$

$$||y_n - y|| < \delta^n$$

Esto se puede hacer pues dado y_{n-1} con **propiedades correspondientes** tenemos $y \in B(y_{n-1}, \delta^{n-1})$ y el conjunto $\delta^{n-1}A$ es denso en $B_Y(0, \delta^{n-1})$. Por la definición de A existe $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ tal que,

$$Tx_n = y_n - y_{n-1} \text{ y } ||x_n||_X < \delta^{n-1}$$

Luego,

$$x = \sum_{n \in \mathbb{N}} x_n$$

existe dado que X es compelto y que la serie infinita $||x_n||$ converge. Entonces,

$$||x|| \le \sum_{n \in \mathbb{N}} ||x_n|| < \sum_{n \in \mathbb{N}} \delta^{n-1} = \frac{1}{1 - \delta}$$

Y como $T \in B(X,T)$ y $y_n \to y$, entonces,

$$T\left(\sum_{n=1}^{m} x_n\right) = \sum_{n=1}^{m} T(x_m)$$
$$= \sum_{n=1}^{m} y_n - y_{n-1}$$
$$= (y_m - y_0) = y_m$$

Entonces T(x) = y, es decir $x \in B_X(0, \frac{1}{1-\delta})$ tal que T(x) = y, entonces $z = T((1-\delta)x)$ y $(1-\delta)x \in B_X$, por lo tanto $B_Y \subseteq T(B_X)$ como queriamos demostrar.

Teorema de la Aplicación Abierta: Sean X, Y Banach y sea $T \in B(X, Y)$ sobreyectivo. Entonces T es un mapa abierto, es decir, para todo U abierto en X tal que T(U) es abierto en Y.

Demostración: Sea $G = T(B_X)$. Como T es lineal, basta demostar que G es una vecindad de O.

Observación: Se cumple que,

$$T(B_X(0,r)) = rT(B_X)$$
$$\overline{rG} = r\overline{G}$$

para todo $r \in \mathbb{R}$. Como,

$$Y = T(X) = T\left(\bigcup_{n \in \mathbb{N}} nB_X\right)$$
$$= \bigcup_{n \in \mathbb{N}} nT(B_X) = \bigcup_{n \in \mathbb{N}} n\overline{G}$$

Como Y es completo por el teorema de Baire, existe $N \in \mathbb{N}$ tal que $N\overline{G}$ tiene interior no vacío, por lo tanto \overline{G} tiene interior no vacío. Como \overline{G} es simétrico respecto al cero $(\overline{G} = -G)$ y como es convexo $(T \text{ lineal } B_X \text{ es convexo y simétrico a } 0 \in X)$, entonces $\operatorname{int}(\overline{G}) \neq \emptyset$, entonces existe $B_Y(y_0, r) \subseteq \overline{G}$ (*) (es decir, si $B_Y(0, r) \subseteq \overline{T(B_X)}$ por el lema $B_Y(80, r) \subseteq T(B_X)$, X completo. demostrar)

Teorema del Mapeo Inverso: Sean X,Y espacio vectoriales normados Banach. Si $T \in B(X,Y)$ es biyectivo, entonces $T^{-1} \in B(Y,X)$.

Demostración: Si T es biyectivo, entonces $T^{-1}:Y\to X$ existe, demostremos que es lineal y acotado.

■ Lineal: Sean $y, w \in Y$ y λ, μ escalares, entonces existen $x, z \in X$ tales que T(x) = y, T(z) = w, luego,

$$T^{-1}(\lambda y + \mu w) = T^{-1}(\lambda T(x) + \mu T(z))$$

= $T^{-1}(T(\lambda x + \mu z))$
= $\lambda x + \mu z$
= $\lambda T^{-1}(y) + \mu T^{-1}(w)$

Luego $T^{-1} \in \mathcal{L}(Y, X)$.

■ Acotado: Por el teorema de la aplicación directa, se tiene que T es un mapa abierto (para todo abierto $U \subseteq X$, se tiene que $T(U) \subseteq Y$ es abierto), lo que implica que T^{-1} es continuo y por tanto es acotado.

Demostrando que $T^{-1} \in B(Y, X)$.

Corolario: Sea X un espacio vectorial y sean $\|\cdot\|_1, \|\cdot\|_2$ normas en X tal que X es completo con ambas normas. Entonces las normas son equivalentes.

Demostración: Definimos la función identidad,

$$\mathrm{Id}: (X, \|\cdot\|_2) \to (X, \|\cdot\|_1)$$

Notemos que Id es lineal y continua con X completo, entonces su inversa también es lineal y continua, en particular es acotada, lo que implica que para todo $x \in X$ existen $C_1, C_2 > 0$ tales que,

$$||x||_1 = ||\operatorname{Id}(x)||_1 \le C_2 ||x||_2$$

 $||x||_2 = ||\operatorname{Id}^{-1}(x)||_2 \le C_1 ||x||_1$

Es decir, las normas son equivalentes.

Teorema del Grafo Cerrado: Sean X,Y espacios vectoriales Banach y sea $T \in \mathcal{L}(X,Y)$, entonces $T \in B(X,Y)$ si y sólo si el subgrafo $\Gamma(T) := \{(x,Tx) : x \in X\} \subseteq X \times Y$ es cerrado en $X \times Y$ con la topología producto.

Demostración (Revisar):

Afirmación: La topología producto $X \times Y$ es la topología de $X \times Y$ inducida por la norma $\|(x,y)\|_{X\times Y} = \|x\|_X + \|y\|_Y$ para todo $(x,y) \in X \times Y$.

Demostración: Recordemos que la topología producto $X \times Y$ tiene base,

$$\beta_1 = \{U \times V, U \subseteq X, V \subseteq Y, \text{ abierto en sus respectivas topologías}\}$$

Antes de demostrar la afirmación verifiquemos que en efecto $\|(\cdot,\cdot)\|_{X\times Y}$ es una norma en $X\times Y$, para ello debemos demostrar los tres axiomas de norma:

i) Notemos que,

$$||(x,y)||_{X\times Y} = 0 \Leftrightarrow ||x||_X + ||y||_Y = 0 \Leftrightarrow x = y = 0$$

Además $||(x,y)||_{X\times Y} \ge 0$ para todo $(x,y) \in X\times Y$.

ii) Sea λ un escalar, luego,

$$\|\lambda(x,y)\|_{X\times Y} = \|(\lambda x, \lambda y)\|_{X\times Y}$$

$$= \|\lambda x\|_X + \|\lambda y\|_Y$$

$$= |\lambda|(\|x\|_X + \|y\|_Y) = |\lambda|\|(x,y)\|_{X\times Y}$$

para todo $(x, y) \in X \times Y$.

iii) Sean $(x_1, y_1), (x_2, y_2) \in X \times Y$, entonces,

$$\begin{aligned} \|(x_1, y_1) + (x_2, y_2)\|_{X \times Y} &= \|(x_1 + x_2, y_1 + y_2)\|_{X \times Y} \\ &= \|x_1 + x_2\|_X + \|y_1 + y_2\|_Y \\ &\leq \|x_1\|_X + \|x_2\|_X + \|y_1\|_Y + \|y_2\|_Y \\ &= \|(x_1, x_2)\|_{X \times Y} + \|(y_1, y_2)\|_{X \times Y} \end{aligned}$$

De esta forma $\|(\cdot,\cdot)\|_{X\times Y}$ es una norma en $X\times Y$.

Tenemos que la topología de X e Y están inducida por su respectiva norma. Sea β_2 la base de $X \times Y$ con respecto a la topología inducida por la norma $\|(\cdot, \cdot)\|_{X \times Y}$, es decir,

$$\beta_2 = \{ B_{X \times Y}((x, y), r) : (x, y) \in X \times Y, r > 0 \}$$

Demostremos que β_1 y β_2 generan la misma topología. **terminar**

Por lo tanto basta trabajar con la topología inducida por la norma $\|(\cdot,\cdot,\cdot)\|_{X\times Y}$.

Continuemos con la demostración del teorema. Supongamos que $T \in B(X,Y)$ y sea $\{(x_n,Tx_n)\}_{n\in\mathbb{N}}$ una sucesión en $\Gamma(T)$ convergente a $(x_0,y_0)\in X\times Y$. Entonces,

$$\lim_{n \to \infty} (x_n, Tx_n) = (x_0, Tx_0) \Leftrightarrow \lim_{n \to \infty} x_n = x_0 \text{ y } \lim_{n \to \infty} Tx_n = y_0$$

Como T es continua se tiene que,

$$y_0 = \lim_{n \to \infty} T(x_n) = T\left(\lim_{n \to \infty} x_n\right) = Tx_0$$

Es decir $(x_0, T(x_0)) \in \Gamma(T)$, por lo tanto el subgrafo es cerrado.

Probemos la otra dirección. Supongamos que $\Gamma(T)$ es cerrado.

Afirmación: Dado que $T \in \mathcal{L}(X,Y)$, entonces $\Gamma(T)$ es subespacio vectorial de $X \times Y$.

Demostración: Sean $(x, T(x)), (z, T(z)) \in \Gamma(T)$ y sean λ, μ escalares, entonces,

$$\lambda(x, T(x)) + \mu(z, T(z)) = (\lambda x + \mu z, \lambda T(x) + \mu T(z))$$
$$= (\lambda x + \mu z, T(\lambda x + \mu z)) \in \Gamma(T)$$

Luego $\Gamma(T)$ es subespacio vectorial.

Afirmación: $X \times Y$ es Banach.

Demostración: Sea $\{(x_n, y_n)\}_{n \in \mathbb{N}}$ una sucesión de Cauchy en $X \times Y$. Tenemos las sucesiones $\{x_n\}_{n \in \mathbb{N}}$ e $\{y_n\}_{n \in \mathbb{N}}$ en X e Y respectivamente. Notemos que,

$$||x_n - x_m||_X \le ||x_n - x_m||_X + ||y_n - y_m||_Y = ||(x_n, y_n) - (x_m, y_m)||_{X \times Y}$$

Luego se concluye que $\{x_n\}_{n\in\mathbb{N}}$ es Cauchy en X y por tanto converge a un $x_0\in X$. De forma análoga se concluye que $\{y_n\}_{n\in\mathbb{N}}$ es Cauchy en Y y por tanto converge a un $y_0\in Y$. Finalmente,

$$\lim_{n \to \infty} x_n = x_0 \text{ y } \lim_{n \to \infty} y_n = y_0 \Leftrightarrow \lim_{n \to \infty} (x_n, y_n) = (x_0, y_0) \in X \times Y$$

Como trabajamos en espacios métricos. Por lo tanto $X \times Y$ es Banach.

Como $\Gamma(T)$ es cerrado con $X \times Y$ Banach, entonces $(\Gamma(T), \|(\cdot, \cdot)\|_{X \times Y})$ es Banach. Consideremos la función,

$$U:\Gamma(T)\to X$$

 $(x,Tx)\mapsto x$

Entonces U es lineal (basta estudiar la primera coordenada) además,

$$||Ux||_X = ||x||_X \le ||x||_X + ||Tx||_Y = ||(x, Tx)||_{X \times Y}$$

Por lo que $U \in B(\Gamma(T), X)$, es más, U es biyectivo y como estamos trabajando en espacios Banach por el teorema del mapeo inverso $U^{-1} \in B(X, \Gamma(T))$, por lo que es acotado y entonces,

$$||Tx||_Y \le ||x||_X + ||Tx||_Y = ||U^{-1}x||_{X\times Y} \le ||U^{-1}||_{B(X,\Gamma(T))}||x||$$

Por tanto T es acotado y entonces $T \in B(X,Y)$. Demostrando el teorema.

Podemos obversar que el teorema de la aplicación abierta, del mapeo inverso y del grafo cerrado toman una condición inicial importante. Siempre consideran espacios vectoriales normados Banach y siempre se trabaja con un operador lineal acotado.

AQUI FALTA ALGO IMPORTANTE DE IMPLICANCIA DE LOS TEOREMA. CLASE 7/4

4. Topología Débiles y Dualidad

Definición: Sea (X, τ) espacio topológico. Decimos que $\sigma \subseteq \tau$ es una subbase si todo abierto en τ es unión arbitraría de intersecciones finitas de σ . Es decir, σ es subbase si y sólo si,

$$\left\{\bigcap_{\gamma\in\Gamma_0} U_\gamma: |\Gamma_0|<\infty, \Gamma_0\subseteq\Gamma\right\}$$

es una base de τ .

Sea (X,τ) un espacio topológico y sea $\{(X_{\gamma},\tau_{\gamma})\}_{\gamma\in\Gamma}$ espacios topológicos. Sean las funciones,

$$f_{\gamma}: X \to X_{\gamma}$$

con $\gamma \in \Gamma$. Entonces existe una única topología débil tal que todas las funciones

$$f_{\gamma}:(X,\tau)\to(X_{\gamma},\tau_{\gamma})$$

son continuas. A esta topología se le conoce como topología débil de X inducida por la colección,

$$\mathcal{F} = \{ f_{\gamma} : X \to (X_{\gamma}, \tau_{\gamma}) : \gamma \in \Gamma \}$$

y se denota por $\sigma(X, \mathcal{F})$.

Afirmación: La topología $\sigma(X, \mathcal{F})$ tiene subbase $\sigma = \{f_{\gamma}^{-1}(U_{\gamma}) : U_{\gamma} \in \tau_{\gamma}, \gamma \in \Gamma\}$

Demostrar...

Por lo tanto, $U \subseteq X$ es un abierto en $\sigma(X, \mathcal{F})$ si y sólo si para todo $x \in U$ existen $\gamma_1, \dots, \gamma_n \in \Gamma$ y $U_1 \in \tau_{\gamma_1}, \dots, U_n \in \tau_{\gamma_n}$ tales que,

$$x \in \bigcap_{i=1}^{n} f_{\gamma_i}^{-1}(U_i) \subseteq U$$

Proposición: Sea (Y, ν) espacio vectorial y sea $f: (Y, \nu) \to (X, \sigma(X, \mathcal{F}))$, entonces f es continua si y sólo si,

$$f_{\gamma} \circ f : (Y, \nu) \to (X_{\gamma}, \tau_{\gamma})$$

es continua para todo $\gamma \in \Gamma$ (propiedad universal).

Demostración: Supongamos que f es continua. Sea $\gamma \in \Gamma$ y sea $U_{\gamma} \subseteq X_{\gamma}$ abierto en τ_{γ} , luego,

$$(f_{\gamma} \circ f)^{-1}(U_{\gamma}) = f^{-1}(f_{\gamma}^{-1}(U_{\gamma}))$$

Como trabajamos en la topología débil $\sigma(X, \mathcal{F})$ se tiene que $f_{\gamma}^{-1}(U_{\gamma}) \in \sigma(X, \mathcal{F})$ y dado que f es continua, se tiene que,

$$f^{-1}(f_{\gamma}^{-1}(U_{\gamma})) \in \nu$$

Por lo tanto $f_{\gamma} \circ f$ es continua para todo $\gamma \in \Gamma$.

Supongamos ahora que $f_{\gamma} \circ f$ es continua para todo $\gamma \in \Gamma$. Sea $U \subseteq X$ abierto en $\sigma(X, \mathcal{F})$, entonces por definición se tiene que,

$$U = \bigcup_{\gamma \in \Gamma^*} \bigcap_{i=1}^n f_{\gamma,\gamma_i}^{-1}(U_{\gamma,\gamma_i})$$

Tomando la preimagen de f y usando propiedades de la preimagen, se obtiene que,

$$f^{-1}(U) = \bigcup_{\gamma \in \Gamma^*} \bigcap_{i=1}^n f^{-1}(f_{\gamma,\gamma_i}^{-1}(U_{\gamma,\gamma_i}))$$
$$= \bigcup_{\gamma \in \Gamma^*} \bigcap_{i=1}^n (f_{\gamma,\gamma_i} \circ f)^{-1}(U_{\gamma,\gamma_i})$$

Como $f_{\gamma,\gamma_i} \circ f$ es continua, entonces $f^{-1}(U)$ es unión arbitraria de intersecciones finitas de abiertos en ν , por lo tanto $f^{-1}(U)$ es un abierto en ν y por tanto f es continua.

Ejemplo: Sean $(X_{\gamma}, \tau_{\gamma})$ espacios topológicos para todo $\gamma \in \Gamma$. Consideremos el producto cartesiano,

$$X := \prod_{\gamma \in \Gamma} X_{\gamma}$$

Sea $x \in X$, definimos la componente γ -ésima por,

$$x: \Gamma \to \bigcup_{\gamma \in \Gamma} X_{\gamma}$$
$$\gamma \mapsto x(\gamma) = x_{\gamma} \in X_{\gamma}$$

o bien $x=(x_{\gamma})_{\gamma\in\Gamma}$. Definimos la proyección de la componente γ por,

$$p_{\gamma}: X \to X_{\gamma}$$
$$x \mapsto x_{\gamma}$$

La topología producto es la topología más débil en X tal que los p_{γ} son continuos. Notemos que dado un abierto $U_{\gamma_0} \in \tau_{\gamma_0}$, se tiene que,

$$p_{\gamma_0}^{-1}(U_{\gamma_0}) = \prod_{\gamma \neq \gamma_0} X_{\gamma} \times U_{\gamma_0}$$

Por lo tanto, $U \subseteq X$ es abierto si y sólo si para todo $x \in X$ existen $\gamma_1, \dots, \gamma_n \in \Gamma$ tales que $x_{\gamma_i} \in U_{\gamma_i}$ para todo $i = 1, \dots, n$ tales que,

$$\bigcap_{i=1}^{n} p_{\gamma_i}^{-1}(U_{\gamma_i}) \subseteq U$$

En particular,

$$\bigcap_{i=1}^{n} p_{\gamma_i}^{-1}(U_{\gamma_i}) = \prod_{i=1}^{n} U_{\gamma_i} \times \prod_{\substack{\gamma \neq \gamma_i \\ i=1,\dots,n}} X_{\gamma_i}$$

Ejemplo: Sea $\Gamma = [0, 1]$, sea $X_{\gamma} = \mathbb{R}$ para todo $\gamma \in [0, 1]$. Entonces,

$$X = \prod_{\gamma \in \Gamma} X_{\gamma}$$

Notemos que si $x \in X$, entonces la componente γ con $\gamma \in [0,1]$ de x es un número real x_{γ} . Luego,

$$X = \{ \text{funciones } f : [0, 1] \to \mathbb{R} \}$$

Sea τ la topología del producto, entonces $U \subseteq X$ es abierto si y sólo si dado $f \in U$ existen $\gamma_1, \dots, \gamma_n \in [0, 1]$ y abierto $U_{\gamma_1}, \dots, U_{\gamma_n} \subseteq \mathbb{R}$ tales que,

$$f \in \bigcap_{i=1}^{n} p_{\gamma_i}^{-1}(U_{\gamma_i}) \subseteq U \Leftrightarrow f \in \{\text{funciones } g : [0,1] \to \mathbb{R} \text{ tal que } g(\gamma_i) \in U_{\gamma_i}, i=1,\cdots,n\} \subseteq U$$

Afirmación: Si $\{f_n\}_{n\in\mathbb{N}}$ una sucesión en X, entonces f_n converge a $f\in X$ en el sentido de la topología producto si y sólo si converge puntualmente.

Demostración: Si la sucesión converge a f en el sentido topológico, entonces para toda vecindad V de f, existe $N \in \mathbb{N}$ tal que $f_n \in V$ para todo $n \geq N$. Sea $\varepsilon > 0$, luego se tiene que,

$$|f_n(x) - f(x)| < \varepsilon \Leftrightarrow f(x) - \varepsilon < f_n(x) < f(x) + \varepsilon$$

Sea $U_x := (f(x) - \varepsilon, f(x) + \varepsilon) \subseteq \mathbb{R}$. Tomando la preimagen de la proyección x obtenemos que,

$$p_x^{-1}(U_x) = \prod_{\gamma \in [0,1] \setminus \{x\}} \mathbb{R} \times U_x =: U$$

Como trabajamos en la topología producto $\sigma(X,\mathcal{F})$, entonces $p_x^{-1}(U_x)$ es abierto, además,

$$f \in U$$

Puesto que es una función $f:[0,1] \to \mathbb{R}$ tal que $f(x) \in U_x$, por lo tanto U es una vecindad abierta de f y por tanto existe $N \in \mathbb{N}$ tal que $f_n \in U$ para todo $n \geq N$. Para concluir la convergencia puntual sobre le punto x proyectamos sobre x de forma que,

$$p_x(f_n) = f_n(x) \in U_x \Leftrightarrow |f_n(x) - f(x)| < \varepsilon$$

para todo $n \geq N$. Por lo tanto,

$$f_n(x) \stackrel{n \to \infty}{\longrightarrow} f(x)$$

para todo $x \in [0, 1]$.

Probemos la otra implicancia. Supongamos que f_n converge puntualmente a f. Sin pérdida de generaldiad sea U vecindad abierta de f, entonces existen $\gamma_1, \dots, \gamma_n \in [0, 1]$ y abiertos $U_{\gamma_1}, \dots, U_{\gamma_n} \subseteq \mathbb{R}$ tales que,

 $f \in \{\text{funciones } g: [0,1] \to \mathbb{R} \text{ tales que } g(\gamma_i) \in U_{\gamma_i} \text{ para todo } i=1,\cdots,n\} \subseteq U$

En particular,

$$\lim_{n \to \infty} f_n(\gamma_i) = f(\gamma_i) \in U_{\gamma_i}$$

para todo $i=1,\cdots,n$. Para $\varepsilon>0$ suficientemente pequeño existe $N_i\in\mathbb{N}$ tal que,

$$|f_n(\gamma_i) - f(\gamma_i)| < \varepsilon \Leftrightarrow f_n(\gamma_i) \in (f(\gamma_i) - \varepsilon, f(\gamma_i) + \varepsilon) \subseteq U_{\gamma_i}$$

para todo $n \geq N$ y para todo $i = 1, \dots, n$. Tomando $N := \max\{N_1, \dots, N_n\}$ se tiene que,

$$f_n(\gamma_i) \in U_{\gamma_i}$$

para todo $i = 1, \dots, n$ y para todo $n \ge N$, esto implica que,

$$f_n \in \{\text{funciones } g: [0,1] \to \mathbb{R} \text{ tales que } g(\gamma_i) \in U_{\gamma_i} \text{ para todo } i=1,\cdots,n\} \subseteq U$$

para todo $n \geq N$. Por lo tanto para toda vecindad V de f existe $N \in \mathbb{N}$ tal que $f_n \in V$ para todo $n \geq N$ que es la definición de convergencia topológica. Demostrando la afirmación.

Definición: Sea X espacio vectorial normado sobre \mathbb{R} . Sea $X^* = B(X, \mathbb{R})$ el dual topológico de X.

- i) Definimos la topología fuerte de X es la topología inducida por la norma.
- ii) Definimos la topología débil de X por $\sigma(X, X^*)$ y los abiertos en esta topología le decimos ω abiertos o abiertos débiles.

Un conjunto $U \subseteq X$ es abierto débil si para todo $x \in U$ existen $T_1, \dots, T_n \in B(X, \mathbb{R})$ y $U_1 \subseteq \mathbb{R}, \dots, U_n \subseteq \mathbb{R}$ tales que,

$$x \in \bigcap_{i=1}^{n} T_i^{-1}(U_i) \subseteq U \Leftrightarrow x \in \{x \in X : T_i(x) \in U_i, i = 1, \dots, n\} \subseteq U$$

Observación: La topología débil es más gruesa que la topología fuerte.

Definición: Sea X espacio vectorial normado. En X^* definimos la topología débil estrella por $\sigma(X^*,X)$ donde usamos la identificación $i:X\to X^{**}$. A los elementos de la topología débil estrella decimos ω^* abiertos o abiertos débiles estrella.

Recordemos que la incrustación $i: X \to X^{**}$ está dada por $x \mapsto \hat{x}(f) = f(x)$ donde $f \in X^*$. Estamos pensando $\sigma(X^*, X)$ con X como una colección de funciones \hat{x} donde son continuas.

Veamos como se comporta un abierto débil estrella. Por definición, $G \subseteq X^*$ es débil estrella si y sólo si para todo $g \in G$ existen $x_1, \dots, x_n \in X$ (pensandolo como funciones de X^{**}) y existen abierto $U_1 \subseteq \mathbb{R}, \dots, U_n \subseteq \mathbb{R}$ tales que,

$$g \in \bigcap_{i=1}^{n} \hat{x}_{i}^{-1}(U_{i}) \subseteq G \Leftrightarrow g \in \{f \in X^{*} : \hat{x}_{i}(f) \in U_{i}, i = 1, \dots, n\} \subseteq G$$
$$\Leftrightarrow g \in \{f \in X^{*} : f(x_{i}) \in U_{i}, i = 1, \dots, n\} \subseteq G$$

Por comodidad podemos tomar $U_i = (g(x_i) - \varepsilon_i, g(x_i) + \varepsilon_i) \subseteq \mathbb{R}$ con $\varepsilon_i > 0$ suficientemente pequeño de forma que,

$$g \in \{f \in X^* : |f(x_i) - g(x_i)| < \varepsilon_i, i = 1, \dots, n\} \subseteq \{f \in X^* : f(x_i) \in U_i, i = 1, \dots, n\} \subseteq G$$

Por lo tanto para ver que $G \subseteq X^*$ es un abierto débil estrella, basta ver que para todo $g \in G$ existen $x_1, \dots, n \in X$ y $\varepsilon_1, \dots, \varepsilon_n > 0$ tales que,

$$g \in \{f \in X^* : |f(x_i) - g(x_i)| < \varepsilon_i : i = 1, \dots, n\} \subseteq G$$

En particular,

$$\{f \in X^* : |f(x_j) - g(x_j)| < \varepsilon_j : j = 1, \dots, n\} = \bigcap_{j=1}^n \{f \in X^* : |\hat{x}_j(f - g)| < \varepsilon_j\}$$

Corolario: Sea X espacio vectorial normado y sea $Y \subseteq X$ subespacio vectorial normado. Entonces,

$$\sigma(Y, Y^*) = \sigma(X, X^*)\big|_Y$$

Definición: Sea X conjunto. Un sistema \mathcal{F} de subconjuntos de X se dice de carácter finito si todo subconjunto $A \in \mathcal{F}$ si y sólo si todos los subconjuntos fintios de A están en \mathcal{F}

Lema de Tukey: Sea \mathcal{F} de caracter finito y sea $F \in \mathcal{F}$. Entonces \mathcal{F} tiene elemento maximal contenido en F.

Demostración: Consideremos,

$$\mathcal{F}_0 = \{ A \in \mathcal{F} : F \subseteq A \}$$

Ordenemos \mathcal{F}_0 con la relación de inclusión, es decir,

$$A \leq B \Leftrightarrow A \subseteq B$$

Luego \leq es un orden parcial en \mathcal{F}_0 y si $\mathcal{C} \subseteq \mathcal{F}_0$ es una cadena tomemos,

$$D = \bigcup_{C \in \mathcal{C}} C$$

Luego $D \in \mathcal{F}_0$ porque todos los subconjunos finitos de D están en \mathcal{F} y $F \subseteq D$, luego D es una cadena superior de \mathcal{C} . Por el lema de Zorn \mathcal{F}_0 tiene un elemento maximal, esto es un elemento maximal de \mathcal{F} que contiene a F.

Definición: Sea X un conjunto. Decimos que un sistema de subconjuntos \mathcal{F} de X tiene la propiedad de intersección finita si,

$$\bigcap_{i=1}^{n} F_n \neq \emptyset$$

para todo $F_1, \dots, F_n \in \mathcal{F}$.

Proposición: Sea (X, τ) espacio topológico, entonces es compacto si y sólo si cualquier familia \mathcal{F} de conjuntos de X con la propiedad de intersección finita, satisface que,

$$\bigcap_{F\in\mathcal{F}}\overline{F}\neq\emptyset$$

Demostración: Supongamos que X es compacto. Sea \mathcal{F} una familia de subconjuntod e X que satisface la propiedad de intersección finita. Supongamos que,

$$\bigcap_{F\in\mathcal{F}}\overline{F}=\emptyset\Leftrightarrow\bigcup_{F\in\mathcal{F}}X\setminus\overline{F}=X$$

Tenemo que $\{X \setminus \overline{F}\}_{F \in \mathcal{F}}$ es un cubrimiento abierto, por lo que existe $F_1, \dots, F_n \in \mathcal{F}$ tales que,

$$X = \bigcup_{i=1}^{n} X \setminus \overline{F_i} \Leftrightarrow \emptyset = \bigcap_{i=1}^{n} \overline{F_i}$$

Pero esto es una contradicción a la propiedad de intersección finita puesto que,

$$\bigcap_{i=1}^{n} F_i \subseteq \bigcap_{i=1}^{n} \overline{F_i} = \emptyset$$

Por lo tanto,

$$\bigcap_{F \in \mathcal{F}} \overline{F} \neq \emptyset$$

Probemos la otra dirección. Sea $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ cubrimiento abierto de X, luego se tiene que,

$$\emptyset = \bigcap_{\gamma \in \Gamma} X \setminus U_{\gamma}$$

Es decir, $\{X \setminus U_{\gamma}\}_{{\gamma} \in \Gamma}$ es una familia de subconjuntos el cual no satisface la propiedad de intersección finita (si lo satisface llegamos a una contradicción), luego existen $\gamma_1, \dots, \gamma_n \in \Gamma$ tales que,

$$\emptyset = \bigcap_{i=1}^{n} X \setminus U_{\gamma_i} \Leftrightarrow X = \bigcup_{i=1}^{n} U_{\gamma_i}$$

Encontrando un subcubrimiento finito. Por lo tanto X es compacto.

Teorema de Tyohonov: Sea $(X_{\gamma}, \tau_{\gamma})$ con $\gamma \in \Gamma$ espacios topológicos compactos, entonces,

$$X = \prod_{\gamma \in \Gamma} X_{\gamma}$$

es compacto con la topología producto.

Demostración: Sea \mathcal{A} un sistema en X que cumple la propiedad de intersección finita. Sea \mathcal{F} la colección de todos los sistemas de conjuntos con la propiedad de intersección finita. Entonces \mathcal{F} es de carácter finito y por el lema de Tukey existe un sistema de conjunto maximal \mathcal{B} con la propiedad de intersección finita que contiene a \mathcal{A} . Asumiremos que $\mathcal{A} = \mathcal{B}$ (es decir, \mathcal{A} es maximal puesto que,

$$\bigcap_{B\in\mathcal{B}}\overline{B}\subseteq\bigcap_{A\in\mathcal{A}}\overline{A}$$

). Como \mathcal{A} es maximal (con respecto a la propiedad de intersección finita). Si $A_1, A_2 \in \mathcal{A}$ entonces $A_1 \cap A_2 \in \mathcal{A}$ y,

$$\bigcap_{i=1}^{n} A_i \in \mathcal{A}$$

Si $A_1, \dots, A_n \in \mathcal{A}$. Por lo tanto si $B \subseteq X$ es tal que $B \cap A \neq \emptyset$ para todo $A \in \mathcal{A}$, entonces $B \in \mathcal{A}$ y si $B \supseteq A$ para algún $A \in \mathcal{A}$, entonces $B \in \mathcal{A}$.

Ahora como,

$$X = \prod_{\gamma \in \Gamma} X_{\Gamma}$$

para cada $\gamma \in \Gamma$ $\{p_{\gamma}(A) : A \in \mathcal{A}\}$ es un sistema de conjuntos en X_{γ} que satisface la propiedad de intersección finita, luego,

$$\bigcap_{A\in\mathcal{A}}\overline{p_{\gamma}(A)}^{X_{\gamma}}\neq\emptyset$$

dado que X_{γ} es compacto. Sea,

$$x_{\gamma} \in \bigcap_{A \in \mathcal{A}} \overline{p_{\gamma}(A)}$$

en X_{γ} . Para toda vecindad U_{γ} de x_{γ} en X_{γ} , $p_{\gamma}^{-1}(U_{\gamma})$ intersecta a A para todo $A \in \mathcal{A}$. Entonces,

$$p_{\gamma}^{-1}(U_{\gamma}) \in \mathcal{A}$$

y,

$$\bigcap_{i=1}^{n} p_{\gamma_i}^{-1}(U_{\gamma_i}) \in \mathcal{A}$$

para todo $\gamma_1, \dots, \gamma_n \subseteq \Gamma$ y U_{γ_i} vecindad de x_{γ} . Sea $x = \{x_{\gamma}\}_{{\gamma} \in \Gamma} \in X$ y sea U una vecindad de x en la topología producto de X. Entonces existen $\gamma_1, \dots, \gamma_n$ en Γ y existen $U_{\gamma_1}, \dots, U_{\gamma_n}$ vecindades de x_{γ_i} con $i = 1, \dots, n$ tal que,

$$\bigcap_{i=1}^{n} p_{\gamma_i}^{-1}(U_{\gamma_i}) \subseteq U$$

Entonces $U \in \mathcal{A}$ y entonces $U \cap A \neq \emptyset$ para todo $A \in \mathcal{A}$. Como queríamos demostrar.

Ejercicio: Demostrar el caso $\{(X_n, \tau_n)\}_{n \in \mathbb{N}}$ una sucesión de espacios métricos.

Teorema de Alaoglu: Sea X espacio vectorial normado. La bola cerrada unitaria,

$$\overline{B}(X^*) = \{ f \in X^* : ||f||_{X^*} \le 1 \} \subseteq X^*$$

es compacta en la topología débil estrella $\sigma(X^*, X)$

Demostración Caso \mathbb{R} : Sea $x \in X$, definimos,

$$D_x = \{ \xi \in \mathbb{R} : |\xi| \le ||x||_X \}$$

Sea $D = \prod_{x \in X} D_x$ con la topología producto. Cada D_x es compacto en \mathbb{R} al ser cerrado y acotado. Luego por el teorema de Tychonov D es compacto con la topología producto. Sea $B^* = B(X^*)$ con la topología débil estrella. Sea,

$$\varphi: B^* \to D$$

 $f \mapsto (f(x))_{x \in X} = \varphi(f)$

Afirmación: φ es una función continua e inyectivo.

Demostración: Notemos que,

$$\varphi: (B^*, \sigma(X^*, X)|_{B^*}) \to (D, \tau_P)$$

donde τ_P es la topología producto de D.

■ Continua: Sea $p_x:(D,\tau_P)\to (D_x,\tau_\mathbb{R})$ la proyección sobre el elemento x. Notemos que,

$$p_x \circ \varphi : (B^*, \sigma(X^*, X)|_{B^*}) \to (D_x, \tau_{\mathbb{R}})$$

donde,

$$(p_x \circ \varphi)(f) = p_x((f(x))_{x \in X}) = f(x)$$

Es más, sabemos que $\hat{x}: X^* \to \mathbb{R}$ donde además si tomamos $f \in B^*$, entonces,

$$\hat{x}(f) = f(x)$$

donde $|f(x)| \leq ||f||_{X^*} ||x||_X \leq ||x||_X$, por lo tanto $\hat{x}(B^*) \subseteq D_x$ o mejor dicho, podemos pensar en,

$$\hat{x}: (B^*, \sigma(X^*, X)\big|_{B^*}) \to (D_x, \tau_{\mathbb{R}})$$

donde $\hat{x} = p_x \circ \varphi$. Por lo tanto, por definición de $\sigma(X^*, X)$ se tiene que $p_x \circ \varphi$ es continua para todo $x \in X$ y por tanto φ es continua.

• Inyectivo: Sean $f, g \in B^*$ tal que,

$$\varphi(f) = \varphi(g) \Leftrightarrow (f(x))_{x \in X} = (g(x))_{x \in X}$$

Igualando por coordenadas se puede ver que g(x) = f(x) para todo $x \in X$. Luego φ es invectivo.

Demostrando la afirmación.

También por la definición de $\sigma(X^*, X)$ y por la topología producto, se tiene que,

$$\varphi^{-1}: \varphi(B^*) \to B^*$$

es continua. Luego B^* es homeomorfo a $\varphi(B^*) \subseteq D$. Si D es compacto, basta demostrar que B^* es compacto lo cual basta demostrar que $\varphi(B^*)$ es cerrado en D.

Probemos esto que $\varphi(B^*)$ es cerrado en D. Sea $\xi = (\xi_x)_{x \in X} \in D$ y $\xi \in \overline{\varphi(B^*)}$ (clausura en D). Definimos la función,

$$f: X \to \mathbb{R}$$
$$x \mapsto f(x) = \xi_x$$

Afirmación: f es lineal.

Demostración: Sean $x, z \in X$ y α, β escalares. Como $\xi \in \overline{\varphi(B^*)}$ existe una sucesión $\{f_n\}_{n \in \mathbb{N}}$ en B^* tal que,

$$|\xi_x - f_n(x)| + |\xi_z - f_n(z)| + |\xi_{\alpha x + \beta z} - f_n(\alpha x + \beta z)| < \frac{1}{n}$$

Luego,

$$|\alpha f(x) + \beta f(z) - f(\alpha x \beta z)| \leq |\alpha f(x) - \alpha f_n(x) + \beta f(z) - \beta f_n(z) + \alpha f_n(x) + \beta f_n(z) - f(\alpha x + \beta z)|$$

$$\leq |\alpha (f(x) - f_n(x)) + \beta (f(z) - f_n(z)) + \alpha f_n(x) + \beta f_n(z) - f(\alpha x + \beta z)|$$

$$< \frac{|\alpha| + |\beta| + 1}{n} \xrightarrow{n \to \infty} 0$$

Luego f es lineal.

Si $\xi_x \in D_x$ entonces,

$$|f(x)| = |\xi_x| \le ||x||_X$$

Entonces $f \in B^*$, es decir, $\xi = \varphi(f)$ con $f \in B^*$ y por tanto $\varphi(B^*)$ es cerrado (sobre D) y entonces,

$$\overline{\varphi(B^*)} = \varphi(B^*)$$

Ahora, esto implica que $\varphi^{-1}(\varphi(B^*)) = B^*$ es cerrado y compacto por continuidad. Luego se tiene que $B^* = \overline{B}(X^*)$ es compacto débil estrella como queríamos demostrar.

Sea X un espacio vectorial normado. Nos preguntamos que propiedades tiene la topología débil $\sigma(X, X^*)$ de X y la topología débil estrella $\sigma(X^*, X)$.

Afirmación: La topología débil en X y la topología débil estrella en X* son Hausdorff.

Demostración: Si X es espacio vectorial normado, consideramos la topología débil $\sigma(X, X^*)$. Sean $x, z \in X$ distintos, podemos tomar $Y := \text{span}\{x, z\}$ y definimos,

$$f_0: Y \to \mathbb{R}$$
$$x \mapsto 1$$
$$z \mapsto 0$$

donde $f_0 \in Y'$. Como Y es de dimensión finita, se tiene que $f_0 \in Y^*$, entonces por HB existe $f \in X^*$ que extiende a f_0 y definimos,

$$U_x = \{u \in X : f(u) > 1/2\}$$
 es vecidad de x en la topología débil $U_z = \{u \in X : f(u) < 1/2\}$ es vecidad de z en la topología débil

donde $U_x \cap U_z = \emptyset$, de forma que la topología débil es Hausdorff.

Ahora para ver X^* con la topología débil estrella es Hausdorff, basta observar que si tomamos $f, g \in X^*$ distintos, existe $x \in X$ tal que $f(x) \neq g(x)$, luego,

$$V_f = \left\{ h \in X^* : |h(x) - f(x)| < \frac{|f(x) - g(x)|}{2} \right\}$$
$$V_g = \left\{ h \in X^* : |h(x) - g(x)| < \frac{|f(x) - g(x)|}{2} \right\}$$

Son vecindades abiertas de f y g respectivamente en la topología débil estrella que separa de forma vacía f de g. De forma que $\sigma(X^*, X)$ es Hausdorff

Teorema: Sea X un espacio vectorial normado. Entonces X es isometricamente isomorfo a un subespacio vectorial de C(K) donde $K = \overline{B}(X^*)$ con la topología débil estrella.

Observación: El conjunto $\overline{B}(X^*)$ es espacio topológico compacto Hausdorff bajo la topología débil estrella.

Demostración: Para $x \in X$ tomemos $i(x) = \hat{x} \in X^{**}$ definido como,

$$\hat{x}(x^*) = x^*(x)$$

para todo $x^* \in X^*$. Sea $f_x = \hat{x}|_K$, luego $f_x \in C(K)$ (definición de la topología débil estrella) y el mapa,

$$X \to C(K)$$
$$x \mapsto f_x$$

es lineal, además por el corolario HB tenemos que,

$$||f_x||_{C(K)} = \sup\{|f_x(x^*)| : x^* \in K\}$$
$$= \sup\{|x^*(x)| : x^* \in \overline{B}(X^*)\} = ||x||_X$$

Demostrando el teorema. ■

Proposición: Sea (X, τ) espacio topológico. Sean $\mathcal{F}_1 \subseteq \mathcal{F}_2$ dos familias de conjuntos de funciones de la forma $f_{\gamma}: (X, \tau) \to (X_{\gamma}, \tau_{\gamma})$. Entonces se cumple que $\sigma(X, \mathcal{F}) \subseteq \sigma(X, \mathcal{F})$.

Demostración: Sin pérdida de generalidad supongamos que,

$$\mathcal{F}_1 = \{ f_{\gamma} : (X, \tau) \to : (X_{\gamma}, \tau_{\gamma}) : \gamma \in \Gamma_1 \}$$

$$\mathcal{F}_2 = \{ f_{\gamma} : (X, \tau) \to : (X_{\gamma}, \tau_{\gamma}) : \gamma \in \Gamma_2 \}$$

Dado que \mathcal{F}_1 es más grueso que \mathcal{F}_2 , necesariamente $\Gamma_1 \subseteq \Gamma_2$. Sea $U \in \sigma(X, \mathcal{F}_1)$, sin pérdida de generalidad supongamos que,

$$U = \bigcap_{i=1}^{n} f_{\gamma_i}^{-1}(U_i)$$

donde $f_{\gamma_i} \in \mathcal{F}_1$ y $U_i \in \tau_{\gamma_i}$ donde $\gamma_i \in \Gamma$ para todo $i = 1, \dots, n$. Claramente $f_{\gamma_i} \in \mathcal{F}_2$ y $\gamma_i \in \Gamma_2$ para todo $i = 1, \dots, n$. Lo que implica que U es intersección finita de elementos de la subbase de $\sigma(X, \mathcal{F}_2)$ y por tanto es elemento de este. Demostrando que,

$$\sigma(X, \mathcal{F}_1) \subseteq \sigma(X, \mathcal{F}_2)$$

Observación: Sea X un espacio vectorial normado. En X^* tenemos tres topologías importantes.

- Topología fuerte: Es la topología dada por la topología inducida por la norma $\|\cdot\|$, el cual denotamos $\tau_{\|\cdot\|}$.
- Topología débil: Es la topología dada por $\sigma(X^*, X^{**})$.
- Topología débil estrella: Es la topología dada por $\sigma(X^*, X)$

Dado que $i: X \to X^{**}$ es inyectivo, se tiene que $i(X) \subseteq X^{**}$. Luego se satisface,

$$\sigma(X^*,X)\subseteq\sigma(X^*,X^{**})\subseteq\tau_{\|\cdot\|}$$

Por lo tanto, en X^* un abierto débil estrella también es abierto débil y también es abierto fuerte. Es más, si U es cerrado débil estrella, entonces $X \setminus U$ es abierto débil estrella y luego es abierto débil y abierto fuerte, luego U es cerrado débil y cerrado fuerte. Sin embargo, no todo abierto fuerte es débil ni todo abierto débil estrella.

Observación: En X solo tenemos,

$$\sigma(X, X^*) \subseteq \tau_{\|\cdot\|}$$

Teorema: Sea X espacio vectorial normado. Sea $C \subseteq X$ convexo, entonces C es cerrado fuerte si y sólo si es ω cerrado débil.

Demostración: Claramente si C es cerrado débil, entonces es cerrado fuerte. Probemos la otra implicancia. Supongamos que C es cerrado fuerte. Observemos que si $f \in X^*$ y dado $c \in \mathbb{R}$, la función,

$$f:(X,\|\cdot\|)\to\mathbb{R}$$

Es continua, luego $f:(X,\sigma(X,X^*))\to\mathbb{R}$ es continua por la definición de topología débil, y entonces,

$$\mathbb{H}_{f,c}^+ = f^{-1}([c,\infty))$$

es cerrado débil. Sabemos que si C es convexo y cerrado fuerte, por HB se comprueba que,

$$C = \bigcap_{C \subseteq \mathbb{H}_{f,c}^+} \mathbb{H}_{f,c}^+$$

Luego C es intersección arbitraria de cerrados débiles, por lo tanto C es cerrado débil.

Proposición: Sea X un espacio vectorial de dimensión infinita. Sea $S = \{x \in X : ||x|| = 1\}$ (S es cerrado fuerte), entonces $\overline{S}^{\omega} = \overline{B}(X)$ (\overline{S}^{ω} es la clausura sobre la topología débil)

Demostración: Probemos que $B(X) = \{x \in X : ||x|| < 1\} \subseteq \overline{S}^{\omega}$. Sea $x_0 \in B(X)$ y sea U una vecindad débil de x_0 , sin pérdida de generalidad supongamos que,

$$U = \{ z \in X : |f_i(x_0) - f_i(z)| < \varepsilon_i, i = 1, \dots, n \}$$

donde claramente $x_0 \in U$ y U es un abierto débil. Ahora sin pérdida de generalidad supongamos que $f_i \neq 0$ para todo $i = 1, \dots, n-$. Como X es de dimensión infinita se tiene que,

$$\bigcap_{j=1}^{n} \ker f_j \neq \{0\}$$

Existe $y_0 \neq 0$ tal que $f_j(y_0) = 0$ para todo $j = 1, \dots, n$ y por tanto existe t_0 tal que,

$$||x_0 + t_0 y_0|| = 1$$

Luego $x_0 + t_0 y_0 \in S$. Esto se puede hacer puesto que $||x_0|| < 1$ y dado que,

$$||x_0 + ty_0|| \stackrel{t \to \infty}{\longrightarrow} \infty$$

Entonces por continuidad ese t_0 existe. Además,

$$f_i(x_0 + t_0 y_0) = f_i(x_0)$$

para todo $i = 1, \dots, n$. Por lo que $x_0 + t_0 y_0 \in U$, es decir, para todo $x_0 \in B(X)$ y para todo U vecindad débil de x_0 es tal que $U \cap S \neq \emptyset$, lo que implica que $x_0 \in \overline{S}^{\omega}$ y por tanto $B(X) \subseteq \overline{S}^{\omega}$. Dado que ser cerrado débil es un cerrado fuerte, se tiene que,

$$\overline{B}(X) \subseteq \overline{S}^{\omega}$$

Probemos la igualdad. Sabemos que $\overline{B}(X)$ es convexo y fuerte cerrado, entonces es cerrado débil y por tanto,

$$\overline{B}(X) = \overline{B(X)}^{\omega} = \overline{B(X) \cup S}^{\omega}$$
$$= \overline{B(X)}^{\omega} \cup \overline{S}^{\omega} = \overline{S}^{\omega}$$

Demostrando la proposición.

Corolario: Si X es un espacio vectorial de dimensión infinita, entonces B(X) no es abierto débil.

Demostración: Sabemos que $\overline{B}(X)$ es un cerrado débil, luego,

$$S = \overline{B}(X) \cap B(X)^c$$

Notemos que S no es cerrado débil, ya que si lo fuera entonces $S = \overline{S}^{\omega} = \overline{B}(X) = \{x \in X : \|x\|_X \le 1\}$ siendo una clara contradicción. Luego si $\overline{B}(X)$ es cerrado débil, necesariamente $B(X)^c$ no es ω cerrado, es decir, B(X) no es abierto débil como queríamos demostrar.

Teorema: Sea X espacio vectorial normado. Entonces $\overline{\overline{B}(X)}^{\omega^*} = \overline{B}(X^{**})$

Nota: Estamos tomando pensando los elementos de $\overline{B}(X)$ como elemento de X^{**} , por lo que usamos la identificación $i: X \to X^{**}$, en particular, el teorema es equivalente a trabajar con,

$$\overline{i(\overline{B}(X))}^{\omega*} = \overline{B}(X^{**})$$

Por otro lado, tenen encuenta que si trabajamos con $i(\overline{B}(X)) \subseteq X^{**}$, entonces la topología débil estrella es la topología $\sigma(X^{**}, X^*)$.

Demostración: Demostremos por contradicción. Supongamos que existe $\xi_0 \in \overline{B}(X^**)$ que no esté en $\overline{i(\overline{B}(X))}^{\omega*}$. Por definición de clausura, existe un vecindad U abierto débil estrella que no intersecta a $\overline{i(\overline{B}(X))}^{\omega*}$, en particular, existen $f_1, \dots, f_n \in X*$ y $\varepsilon > 0$ tales que,

$$U = \{ \xi \in X^{**} : |\xi(f_i) - \xi_0(f_i)| < \varepsilon, i = 1, \dots, n \}$$

(generalmente tomamos $\varepsilon_1, \dots, \varepsilon_n$ pero tomaremos $\varepsilon > 0$ suficientemente pequeño para solo usar uno.) Se tiene que $U \cap \overline{i(\overline{B}(X))}^{\omega*} = \emptyset$. Luego para todo $x \in \overline{B}(X)$ existe un $i = 1, \dots, n$ tal que,

$$|i(x)(f_i) - \xi_0(f_i)| \ge \varepsilon$$

Sea $\phi: X \to \mathbb{R}^n$ dada por,

$$\phi(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

Se puede ver que ϕ es linea y continua que además,

$$\|\phi(x) - \alpha\|_{\infty} \ge \varepsilon$$

donde,

$$\alpha = \begin{bmatrix} \xi_0(f_1) \\ \vdots \\ \xi_0(f_n) \end{bmatrix} \in \mathbb{R}^n$$

para todo $x \in \overline{B}(X)$. Por lo tanto $\alpha \notin \overline{\phi(\overline{B}(X))}^{\omega^*}$ donde $\phi(\overline{B}(X))$ es convexo. Por el teorema HB en \mathbb{R}^n , existe $\beta: \mathbb{R}^n \to \mathbb{R}$ lineal y existe $c \in \mathbb{R}$ tal que,

$$\beta(\phi(x)) \le c < \beta(\alpha)$$

para todo $x \in \overline{B}(X)$. (Usamos la identificación $(\mathbb{R}^n)' = \mathbb{R}^n$ donde $\beta(z) = \sum_{i=1}^n \beta_i z_i$). Pero luego para todo $||x|| \le 1$ se tiene que,

$$\sum_{i=1}^{n} \beta_i f_i(x) \le c < \sum_{i=1}^{n} \beta_i \xi(f_i)$$

Estudiemos las \leq y < de la desigualdad anterior, digamos (a) y (b) respectivamente. Si deinimos $f = \sum_{i=1}^{n} \beta_i f_i \in X^*$ con $f_i \in X^*$ para todo $i = 1, \dots, n$. Entonces por (a)

$$f(x) < c$$
 para todo $||x||_X < 1$

Entonces $||f||_{X^*} \le c$ y por (b),

$$c < \xi_0(f) \le \|\xi\|_{X^{**}} \|f\|_{X^*} \le c$$

Entonces c < c siendo una contradicción, por lo tanto,

$$\overline{B}(X^{**}) \subseteq \overline{i(\overline{B}(X))}^{\omega^*}$$

Demostramos la igualdad. Sabemos que,

$$i(\overline{B}(X)) \subseteq \overline{B}(X^{**})$$

Veamos que $\overline{B}(X^{**})$ es cerrado débil estrella. Sea $\xi_0 \notin \overline{B}(X^{**})$, luego $\|\xi_0\|_{X^{**}} > 1$ y entonces,

$$\sup_{\substack{f \in X^* \\ \|f\|_{X^*=1}}} |\xi_0(f)| > 1$$

Luego existe $f_0 \in X^*$ y $\varepsilon > 0$ tal que $|\xi_0(f_0)| > 1 + \varepsilon$. Entonces,

$$U = \{ \xi \in X^{**} : |\xi(f_0) - \xi_0| < \varepsilon \}$$

es una vecindad débil estrella de ξ_0 y si $\xi \in U$, entonces,

$$|\xi(f_0)| \ge |\xi_0(f_0)| - |\xi(f) - \xi_0(f_0)| > 1 + \varepsilon - \varepsilon = 1$$

Entonces $\||\xi\|_{X^{**}} \ge |\xi(f_0)| > 1$ donde $\|f_0\|_{X^*} = 1$. Entonces $U \cap \overline{B}(X^{**}) = \emptyset$ por lo tanto $\overline{B}(X^{**})$ es cerrado débil estrella. Finalmente,

$$\overline{i(\overline{B}(X))}^{\omega^*} \subseteq \overline{B}(X^{**})$$

Lo que demuestra el teorema. ■

Teorema: Sea X espacio vectorial normado. Entonces X es reflexivo si y sólo si B(X) es compacto débil.

Observación: X y sobre la topología débil, una vecindad débil U de $x_0 \in X$ es tal que existen $f_1, \dots, f_n \in X^*$ y $\varepsilon > 0$ tal que,

$$x_0 \in \{z \in X : |f_i(z) - f_i(x_0)| < \varepsilon, i = 1, \dots, n\} \subseteq U$$

En $\sigma(X^{**}, X^*)$, una vecindad débil estrella U de $x_0^{**} \in X^**$ es tal que existen $f_1, \dots, f_n \in X^*$ y $\varepsilon > 0$ tal que,

$$x_0^{**} \in \{z^{**} \in X^{**} : |z^{**}(f_i) - x_0^{**}(f_i)| < \varepsilon, i = 1, \dots, n\} \subseteq U$$

Luego la función,

$$i: (X, \sigma(X, X^*)) \to (X^{**}, \sigma(X^{**}, X^*))$$

es continua. Y si restringimos el codominio al recorrido obtenemos

$$i:(X,\sigma(X,X^*))\to (i(X),\sigma(X^{**},X^*)\big|_{i(X)})$$

Una función biyectiva y por tanto un homeomorfismo. Esto implica que,

$$i: (\overline{B}(X), \sigma(X, X^*)|_{\overline{B}(X)}) \to (i(\overline{B}(X)), \sigma(X^{**}, X^*)|_{i(\overline{B}(X))})$$

es un homeomorfismo, es decir, es bivectica bicontinua.

Observación; Si Y es un espacio vectorial normado Banach, entonces B(X,Y) es Banach Esto implica que todo dual topológico es Banach (es decir, X^*, X^{**}, \cdots son espacios Banach.)

Demostración: Supongamos que X sea refelxivo, entonces $i(X) = X^{**}$, en particular,

$$i(\overline{B}(X)) = \overline{B}(X^{**})$$

Por el teorema de Alaoglu se tiene que la bola cerrada unitaria $\overline{B}(X^{**}) = i(\overline{B}(X))$ es compacta débil estrella (en $\sigma(X^{**}, X^*)$), entonces $\overline{B}(X^{**})$ es compacta débil estrella restringida a $\overline{B}(X^{**})$ (es $\sigma(X^{**}, X^*)|_{\overline{B}(X^{**})}$ compacta.) Como i es homeomorfismo, se tiene que,

$$i^{-1}(i(\overline{B}(X))) = \overline{B}(X)$$

es $\sigma(X, X^*)|_{\overline{B}(X)}$ compacto. Finalmente obtenemos que $\overline{B}(X)$ es $\sigma(X, X^*)$ compacta o es débil compacta.

Probemos la otra implicancia. Supongamos que $\overline{B}(X)$ es $\sigma(X,X^*)$ compacta. Entonces también es $\sigma(X,X^*)|_{\overline{B}(X)}$ compacta y por tanto aplicando i obtenemos que $i(\overline{B}(X))$ es $\sigma(X^{**},X^*)|_{i(\overline{B}(X))}$ compacta. Extendiendo a todo la topología débil estrella, se tiene que $i(\overline{B}(X))$ es $\sigma(X^{**},X^*)$ compacta donde este topología es Hausdorff en X^{**} , por lo tanto,

$$i(\overline{B}(X)) = \overline{i(\overline{B}(X))}^{\omega^*} = \overline{B}(X^{**})$$

Demostrando que X es reflexivo.

Corolario: Si X es espacio vectorial normado reflexivo y si $Y \subseteq X$ es subespacio cerrado fuerte de X, entonces Y es reflexivo.

Demostración: Sabemos que $\overline{B}(Y) = \overline{B}(X) \cap Y$ donde tenemos una intersección de cerrados fuertes, entonces dado que $\overline{B}(Y)$ es convexo y cerrado fuerte, se tiene que es $\sigma(X,X^*)$ cerrado. Como X es reflexivo, entonces $\overline{B}(X)$ es $\sigma(X,X^*)$ compacto y dado que es Hausdorff, entonces $\overline{B}(Y)$ es $\sigma(X,X^*)$ compacto, luego restringiendo la topología a Y obtenemos que $\overline{B}(Y)$ es $\sigma(X,X^*)|_{Y}$ compacto. Sabemos que,

$$\sigma(X,X^*)\big|_Y = \sigma(Y,Y^*)$$

Entonces $\overline{B}(Y)$ es $\sigma(Y,Y^*)$ compacto y por el resultado anterior Y es reflexivo.

Teorema: Sea X Banach. Entonces las siguientes afirmaciones son equivalentes:

- i) X es reflexivo
- ii) X^* es reflexivo
- *iii*) $\sigma(X^*, X) = \sigma(X^*, X^{**})$

Recordemos la siguiente cadena de topologías en X^* ,

$$\sigma(X^*, X) \subseteq \sigma(X^*, X^{**}) \subseteq \tau_{\parallel \cdot \parallel}$$

Demostración: (falta i) ¡-¿ii) ayudantía).

- \bullet i) \Rightarrow ii):
- i) \Rightarrow iii): Supongamos que X es reflexivo, entonces $i(X) = X^{**}$. Sea $U \in \sigma(X^*, X^{**})$, sin pérdida de generalidad podemos pensar en que,

$$U = \{g \in X^* : |F_i(g) - F_i(f)| < \varepsilon, i = 1, \dots, n\}$$

donde $F_1, \dots, F_n \in X^{**}$ y $\varepsilon > 0$ (existen por la definición de topología débil), luego existen $x_1, \dots, x_n \in X$ tales que $\hat{x}_i = F_i$ para todo $i = 1, \dots, n$ y entonces,

$$U = \{ g \in X^* : |\hat{x}_i(g) - \hat{x}_i(f)| < \varepsilon, i = 1, \dots, n \}$$

Es decir, $U \in \sigma(X^*, X)$, por lo tanto,

$$\sigma(X^*, X) = \sigma(X^*, X^{**})$$

• iii) \Rightarrow ii): Supongamos $\sigma(X^*, X) = \sigma(X^*, X^{**})$. Sabemos que $\overline{B}(X^*)$ es $\sigma(X^*, X)$ compacta por el teorema de Alaogl, luego también es $\sigma(X^*, X^{**})$ compacta por hipótesis, por lo tanto X^* es reflexivo.

Terminar ■

Corolario: Sea X espacio vectorial normado reflexivo. Si K es convexo cerrado fuerte y acotado, entonces es compacto débil

Demostración: Tenemos K convexo cerrado fuerte, entonces como hemos visto, se tiene que K es cerrado débil. Si K es acotad entonces existe R > 0 tal que $K \subseteq R \cdot \overline{B}(X)$ ($||x|| \le R$ para todo $\in K$). En particular, $R \cdot \overline{B}(X)$ es compacto débil por Alaoglu y dado que la topología débiles es Hausdorff, se tiene que K es compacto débil

4.1. Convergencia en Topología débil y débil estrella

Recordemos la convergencia de una sucesión. Si (Z, τ) es un espacio topológico, decimos que $\{z_n\}_{n\in\mathbb{N}}$ es una sucesión en Z, converge a $z\in Z$ si para toda vecindad con respecto a τ de z, existe $n\in\mathbb{N}$ tal que $z_n\in U$ para todo $n\geq N$.

Notación: Sea X espacio vectorial normado.

- \blacksquare Cuando hablemos de convergencia fuerte usamos la notación \rightarrow
- Cuando hablamos de convergencia débil usamos la notación →
- Y en X^* cuando hablamos de convergencia débil estrella usamos la notación $\stackrel{*}{\rightharpoonup}$

Proposición: Sea X espacio vectorial normado. Entonces,

- i) $x_n \to x$ en la topología fuerte si y sólo si $||x_n x||_X \to 0$
- ii) $x_n \rightharpoonup x$ en la topología débil $\sigma(X, X^*)$ si y sólo si,

$$\lim_{n \to \infty} f(x_n) = f(x)$$

para todo $f \in X^*$.

iii) $f_n \stackrel{*}{\rightharpoonup} f$ (convergencia débil estrella) si y sólo si $f_n(x) \to f(x)$ para todo $x \in X$.

Demostración:

i) Tenemos la topología fuerte el cual tiene por base,

$$\{B(x,r): x \in X, r > 0\}$$

Sabemos que $x_n \to x$ si para toda vecindad de U de x existe $N \in \mathbb{N}$ tal que $x_n \in U$ para todo $n \geq N$. Sin pérdida de generalidad podemos asumir que U = B(x, r). Luego dado $\varepsilon > 0$ podemos tomar la bola $B(x, \varepsilon)$ de forma que existe $N \in \mathbb{N}$ tal que $x_n \in B(x, \varepsilon)$ para todo $n \geq N$, que es equivalente a decir que $||x_n - x||_X < \varepsilon$ para todo $n \geq N$ y por tanto $||x_n - x||_X \to 0$ cuando $n \to \infty$.

Ahora para la otra implicancia notemos que para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que,

$$||x_n - x||_X < \varepsilon \Leftrightarrow x_n \in B(x, \varepsilon)$$

para todo $n \geq N$. Luego para toda vecindad U de x podemos tomar la bola $B(x,\varepsilon)$ de forma que,

$$x_n \in B(x,\varepsilon) \subseteq U$$

para todo $n \geq N$. Luego $x_n \to x$ en la topología fuerte.

ii) Supongamos que para todo $f \in X^*$ se tiene que $f(x_n) \to f(x)$ cuando $n \to \infty$. Sea U una vecindad débil de x (en $\sigma(X, X^*)$), leugo existen $f_1, \dots, f_n \in X^*$ y $\varepsilon > 0$ tal que,

$$x \in V := \{z \in X : |f_i(z) - f_i(x)| < \varepsilon, i = 1, \dots, n\} \subset U$$

Notemos que,

$$\lim_{n \to \infty} f_i(x_n) = f_i(x)$$

para todo $i=1,\dots,n$ por hipótesis. En particular, para $\varepsilon>0$ existen $N_1,\dots,N_n\in\mathbb{N}$ tales que,

$$|f_i(x_n) - f_i(x)| < \varepsilon$$

para todo $n \geq N_i$ (tomando cada f_i asociado) para todo $i = 1, \dots, n$. Tomando $N := \max\{N_1, \dots, N_n\}$ tenemos que,

$$|f_i(x_n) - f_i(x)| < \varepsilon$$

para todo $n \geq N$ para todo $i = 1, \dots, n$. Por lo tanto $x_n \in V$ para todo $n \geq N$. Como tomamos una vecindad débil arbitraria, se concluye que para toda U vecindad débil de x, existe $N \in \mathbb{N}$ tal que $x_n \in U$ para todo $n \geq N$, y por tanto $x_n \rightharpoonup x$.

Sea $f \in X$ *, entonces por definición de la topología débil se tiene que,

$$f:(X,\sigma(X,X^*))\to\mathbb{R}$$

es continua. Supongamos que $f(x_n)$ no converge a f(x), entonces existe $\varepsilon > 0$ tal que para todo $N \in \mathbb{N}$ existe $n \geq N$ tal que,

$$|f(x_n) - f(x)| > \varepsilon \Leftrightarrow f(x_n) \notin (f(x) - \varepsilon, f(x) + \varepsilon) \subset \mathbb{R}$$

Luego,

$$x_n \notin \underbrace{f^{-1}((f(x) - \varepsilon, f(x) + \varepsilon))}_{\text{es vecindad abierto débil de } x} =: U$$

Luego existe una vecindad débil U de x tal que para todo $N \in \mathbb{N}$ se tiene que existe $n \geq N$ tal que $x_n \notin U$ y por tanto $x_n \not\rightharpoonup x$ siendo una contradicción. Por lo tanto para todo $f \in X^*$ se tiene que,

$$\lim_{n \to \infty} f(x_n) = f(x)$$

iii) Supongamos que para todo $x \in X$ se tiene que,

$$\lim_{n \to \infty} f_n(x) = f(x)$$

Sea U vecindad débil estrella de f, entonces existen $x_1, \dots, x_n \in X$ y $\varepsilon > 0$ tales que,

$$f \in V := \{g \in X^* : |g(x_i) - f(x_i)| < \varepsilon, i = 1, \dots, n\} \subseteq U$$

Se tiene que,

$$\lim_{n \to \infty} f_n(x_i) = f(x_i)$$

para todo $i=1,\cdots,n$. De forma análogo al punto ii) podemos tomar un N maximal de forma que dado $\varepsilon>0$ se tiene que,

$$|f_n(x_i) - f(x_i)| < \varepsilon$$

para todo $n \geq N$ para todo $i = 1, \dots, n$. Luego $f_n \in V$ para todo $n \geq N$. Por lo tanto para todo vecindad débil estrella U de f existe $N \in \mathbb{N}$ tal que $f_n \in U$ para todo $n \geq N$, es decir, $f_n \stackrel{*}{\rightharpoonup} f$.

Supongamos que $f_n \stackrel{*}{\rightharpoonup} f$. Sabemos que.

$$\hat{x}: (X^*, \sigma(X^*, X)) \to \mathbb{R}$$

es continua. Supongamos que existe un $x \in X$ tal que $f_n(x)$ no converge a f(x), luego existe $\varepsilon > 0$ tal que para todo $N \in \mathbb{N}$ existe $n \geq N$ tal que,

$$|f_n(x) - f(x)| \ge \varepsilon \Leftrightarrow \hat{x}(f_n) = f_n(x) \notin (f(x) - \varepsilon, f(x) + \varepsilon) \subseteq \mathbb{R}$$

Luego,

$$f_n \notin \hat{x}^{-1}((f(x) - \varepsilon, f(x) + \varepsilon))$$

Luego existe una vecindad débil estrella U de f tal que para todo $N \in \mathbb{N}$ se tiene que existe $n \geq N$ tal que $f_n \notin U$, siendo esto una contradicción por lo tanto $f_n(x) \to f(x)$ para todo $x \in X$.

Recordemos que en X^* tenemos la siguiente cadena de topologías,

$$\sigma(X^*,X)\subseteq\sigma(X^*,X^{**})\subseteq\tau_{\|\cdot\|}$$

Afirmación: Sea $\{f_n\}_{n\in\mathbb{N}}\subseteq X^*$ una sucesión de funcionales acotados y sea $f\in X^*$. Entonces se tiene la siguiente cadena de implicancias,

$$f_n \to f \Rightarrow f_n \rightharpoonup f \Rightarrow f_n \stackrel{*}{\rightharpoonup} f$$

Demostración: Sea (a) la primera implicancia y (b) la segunda implicancia.

(a) Supongamos que $f_n \to f$ en la topología fuerte. Sea $F \in X^{**}$, se tiene que,

$$|F(f_n) - F(f)| = |F(f_n - f)|$$

 $\leq ||F||_{X^{**}} ||f_n - f||_{X^*} \stackrel{n \to \infty}{\longrightarrow} 0$

Entonces se tiene que $F(f_n) \to F(f)$ cuando $n \to \infty$ para todo $F \in X^{**}$. Por lo tanto $f_n \rightharpoonup f$.

(b) Supongamos que $f_n \rightharpoonup f$, es decir, para todo $F \in X^{**}$ se tiene que $F(f_n) \rightarrow F(f)$. Notemos que para todo $x \in X$ entonces $i(x) \in X^{**}$, luego se tiene que,

$$i(x)(f_n) \stackrel{n \to \infty}{\longrightarrow} i(x)(f) \Leftrightarrow f_n(x) \stackrel{n \to \infty}{\longrightarrow} f(x)$$

para todo $x \in X$. Por lo tanto $f_n \stackrel{*}{\rightharpoonup} f$.

Demostrando la afirmación.

Proposición: Sea X espacio vectorial normado. Sea $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ y sea $x\in X$, entonces,

- i) Si $x_n \to x$ entonces $x_n \rightharpoonup x$
- ii) Si $x_n \rightharpoonup x$, entonces la sucesión $\{\|x_n\|_X\}_{n\in\mathbb{N}} \subseteq \mathbb{R}$ es acotado y,

$$||x||_X \le \liminf_{n \to \infty} ||x_n||_X$$

iii) Si $x_n \rightharpoonup x$ y $f_n \rightarrow f$ entonces $\langle f_n, x_n \rangle \rightarrow \langle f, x \rangle$.

Demostración:

i) Recordemos que $x_n \rightharpoonup x$ si y sólo si $f(x_n) \to f(x)$ para todo $f \in X^*$, entonces

$$|f(x_n) - f(x)| = |f(x_n - x)| \le ||f||_{X^*} ||x_n - x||_X \stackrel{n \to \infty}{\longrightarrow} 0$$

Luego se tiene que $x_n \rightharpoonup x$.

ii) Sea $\{x_n\}_{n\in\mathbb{N}}\subseteq X$, usando la identificación $i:X\to X^{**}$, obtenemos la sucesión $\{i(x_n)\}_{n\in\mathbb{N}}\subseteq X^{**}$, donde $i(x_n)\in B(X^*,\mathbb{R})$. Como $x_n\rightharpoonup x$, entonces $f(x_n)\to f(x)$ para todo $f\in X^*$, entonces,

$$i(x_n)(f) \stackrel{n \to \infty}{\longrightarrow} i(x)(f)$$

para todo $f \in X^*$. Luego $\{i(x_n)\}_{n \in \mathbb{N}}$ es una familia de operadores lineales acotados de un Banacha en otro, que es puntualmente acotado, en particular,

$$\sup_{n\in\mathbb{N}}|i(x_n)(f)|=c<\infty$$

Por HB existe M > 0 tal que,

$$\sup_{n\in\mathbb{N}} ||i(x_n)||_{X^{**}} \le M$$

Entonces $||x_n||_{n\in\mathbb{N}}\leq M$ para todo $n\in\mathbb{N}$. Además, si $f\in X^*$ y $||f||_{X^*}=1$, se tiene que,

$$|f(x_n)| \le ||f||_{X^*} ||x_n||_X = ||x_n||_X$$

Tomando el límite inferior, obtenemos,

$$|f(x)| = \liminf_{n \to \infty} ||x_n||_X$$

para todo $f \in X*$ con ||f|| = 1. Recordemos que,

$$||x||_X = \sup_{\substack{f \in X^* \\ ||f||_{X^*} = 1}} |f(x)|$$

Entonces,

$$||x||_X \le \liminf_{n \to \infty} ||x_n||_X$$

iii) Si $f_n \to f$ y $x_n \rightharpoonup x$, entonces,

$$|\langle f_n, x_n \rangle - \langle f, x \rangle| = |\langle f_n, x_n \rangle - \langle f, x_n \rangle + \langle f, x_n \rangle - \langle f, x \rangle|$$

$$\leq |\langle f_n, x_n \rangle - \langle f, x_n \rangle| + |\langle f, x_n \rangle - \langle f, x \rangle|$$

$$\leq ||f_n - f||_{X^*} ||x_n||_X + |\langle f, x_n \rangle - \langle f, x \rangle|$$

$$\xrightarrow{n \to \infty} 0$$

Demostrando la proposición.

Definición: Sea X espacio vectorial. Sea $A \subseteq X$, decimos que y es combinación convexa de elementos en A si existen $x_1, \dots, x_n \in A$ y $c_1, \dots, c_n \in [0, 1]$ tal que,

$$\sum_{i=1}^{n} c_i = 1 \quad y \quad \sum_{i=1}^{n} c_i x_i = y$$

Definición: Sea X espacio vectorial y sea $A \subseteq X$. Definimos la envoltura convexa de A,

 $co(A) = \{todas\ las\ combinaciones\ convexas\ de\ puntos\ en\ A\}$

Definición: Sea X espacio vectorial. Sea $C \subseteq X$, decimos que es convexo si para todo $x, y \in C$ y para todo $\lambda \in [0,1]$ tal que $\lambda x + (1-\lambda)y \in C$.

Proposición: Sea X espacio vectorial. Sea $A \subseteq X$, entonces co(A) es el menor conjunto convexo que contiene a A.

Demostración: Veamos que es convexo. Sea $x, y \in co(A)$ y sea $\lambda \in [0, 1]$. Se tiene que,

$$x = \sum_{i=1}^{n} c_i a_i$$
$$y = \sum_{i=1}^{m} d_i b_i$$

donde,

$$\sum_{i=1}^{n} c_i = 1$$

$$\sum_{i=1}^{m} d_i = 1$$

Sin pérdida de generalidad supongamos que $m \geq n$ y entonces,

$$x = \sum_{i=1}^{m} c_i a_i$$

donde $c_i = 0, a_i = 0$ para todo $i \ge n + 1$. Entonces,

$$\lambda x + (1 - \lambda)y = \lambda \sum_{i=1}^{n} c_i a_i + (1 - \lambda) \sum_{i=1}^{m} d_i b_i$$
$$= \sum_{i=1}^{m} \lambda c_i a_i + (1 - \lambda) d_i b_i$$

terminar

Sea U otro conjunto convexo que contiene a A. Sea $x \in coA$ terminar esto

Teorema de Mazur: Sea X espacio vectorial normado. Si $x_n \to x$, entonces existe una sucesión $\{y_n\}_{n\in\mathbb{N}}$ que consiste en combinaciones convexas de los x_n tal que $y_n \to x$.

Demostración (Teorema de Mazur): Sea $\{x_n\}_{n\in\mathbb{N}}$ tal que $x_n \rightharpoonup x$. Sea $A = \{x_n : n \in \mathbb{N}\} \subseteq X$. Luego co(A) es convexo, en particular,

$$x \in \overline{A}^{\omega} \subseteq \overline{\operatorname{co}(A)}^{\omega}$$

Si los conjuntos convexos son fuertes y débiles, entonces,

$$\overline{\operatorname{co}(A)}^{\omega} = \overline{\operatorname{co}(A)}$$

Afirmación: $Si\ C\ es\ convexo,\ entonces\ \overline{C}\ también\ (clausura\ fuerte)$

Demostración: Pensemos en X espacio vectorial normado con $C \subseteq X$. Sea $x, y \in \overline{C}$, entonces existen sucesión $\{x_n\}_{n\in\mathbb{N}}, \{y_n\}_{n\in\mathbb{N}}$ en C tales que $x_n \to x$ e $y_n \to y$ cuando $n \to \infty$. Luego,

$$\lim_{n \to \infty} tx_n + (1-t)y_n = tx + (1-t)y$$

Donde $tx_n + (1-t)y_n \in C$ para todo $n \in \mathbb{N}$. Esto implica que $tx + (1-t)y \in \overline{C}$, por lo tanto \overline{C} es convexo.

Como $x \in \overline{\operatorname{co}(A)}$, entonces existe una sucesión $\{y_n\}_{n \in \mathbb{N}}$ en $\operatorname{co}(A)$ tal que $y_n \to x$.

Nota: Podemos escoger los y_n como elementos de $co(\{x_1, \dots, x_n\})$.

Proposición: Sea X espacio vectorial normado. Sea $\{f_n\}_{n\in\mathbb{N}}\subseteq X^*$, entonces,

i) Si $f_n \stackrel{*}{\rightharpoonup} f$, entonces $\{\|f_n\|_{X^*}\} \subseteq \mathbb{R}$ es acotado y,

$$||f||_{X^*} \le \liminf_{n \to \infty} ||f_n||_{X^*}$$

ii) Si $f_n \stackrel{*}{\rightharpoonup} f$ y $x_n \to x$, entonces $\langle f_n, x_n \rangle \to \langle f, x \rangle$.

Demostración (falta):

- i) Si f_n converge débilmente estrella a f, entonces para todo $x \in X$ se tiene que $f_n(x) \to f(x)$
- ii) Notemos que,

$$|\langle f_n, x_n \rangle - \langle f, x \rangle| = |\langle f_n, x_n \rangle - \langle f_n, x \rangle + \langle f_n, x \rangle - \langle f, x \rangle|$$

$$\leq |\langle f_n, x_n \rangle - \langle f_n, x \rangle| + |\langle f_n, x \rangle - \langle f, x \rangle|$$

$$\leq ||f_n||_{X^*} ||x_n - x||_X + |\langle f_n, x \rangle - \langle f, x \rangle|$$

$$\xrightarrow{n \to \infty} 0$$

Demostrando la proposición.

Teorema: Sea X espacio vectorial normado Banach. Sea $A \subseteq X$, entonces las siguientes afirmaciones son equivalentes:

- i) A compacto débil
- ii) A es secuencialmente compacto débil (es decir, toda sucesión de A tiene una subsucesión que converge de forma débil en A)

Afirmación: La implicancia i) \Rightarrow ii) se satisface su X es separable.

Demostrar...:

Teorema: Sea X espacio vectorial normado reflexivo. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión acotada en X. Entonces hay una subsucesión convergente en la topología débil.

Demostración: Si $\{x_n\}_{n\in\mathbb{N}}$ es acotado, existe R>0 tal que,

$$\{x_n\}_{n\in\mathbb{N}}\subseteq R\cdot\overline{B}(0,1)$$

Si X es reflexivo, entonces $R \cdot \overline{B}(0,1)$ es compacto débil y luego es secuencialmente compacto débil y luego existe una subsucesión convergente en la topología débil.

Definición: Sea X espacio vectorial. Sea $\varphi: X \to \mathbb{R} \cup \{+\infty\}$. Decimos que,

- φ es propia si $\varphi \not\equiv \infty$.
- φ es convexo si para todo $x, y \in X$ y para todo $\lambda \in [0, 1]$ se tiene que,

$$\varphi(\lambda x + (1 - \lambda)y) \le \lambda \varphi(x) + (1 - \lambda)\varphi(y)$$

• φ es semi continua inferior si,

$$\varphi^{-1}((-\infty,\alpha])$$

es cerrado fuerte para todo $\alpha \in \mathbb{R}$.

• φ es coerciva si,

$$\lim_{\|x\|_X \to \infty} \varphi(x) = \infty$$

Teorema: Sea X espacio vectorial normado Banach reflexivo. Sea $\varphi: X \to \mathbb{R} \cup \{+\infty\}$ una función propia convexo semi continua inferior fuerte y coerciva, entonces existe $x_0 \in X$ tal que,

$$\varphi(x_0) \le \inf_{x \in X} \varphi(x)$$

Observación: φ es semi continua inferior en un punto x_0 si,

$$\varphi(x_0) \le \liminf_{x \to x_0} \varphi(x)$$

Y es semi continua en X si lo es en todo punto $x_0 \in X$.

Observación: Si φ es continua en X, entonces semi continua inferior en X.

Observación: Si φ es convexo, entonces,

$$\varphi^{-1}((-\infty,\alpha])$$

son convexos en X para todo $\alpha \in \mathbb{R}$ (o \emptyset)

Demostración: Sea $m = \inf_{x \in X} \varphi(x) \in [-\infty, \infty)$. Sea $t_n \in \mathbb{R}$ tal que $t_n \downarrow m$, luego,

$$\varphi^{-1}(-\infty,t_1])$$

es acotado (por coersividad). Sea,

$$A_1 := \varphi^{-1}((-\infty, t_n]) \neq \emptyset$$

para todo $n \in \mathbb{N}$. Luego $A_1 \supseteq A_2 \supseteq \cdots$, de forma que tenemos una cadena de conjuntos no vacíos convexos (por φ convexo), cerrados fuertes y acotado. Luego los A_i son cerrados débiles (HB) y como son acotados y X es reflexivo, se tiene que A_i son compactos débiles, luego,

$$\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$$

Sea $x_0 \in \bigcap_{n \in \mathbb{N}} A_n$, entonces,

$$\varphi(x_n) \le t_n$$

para todo $n \in \mathbb{N}$. Entonces,

$$\varphi(x_0) = m$$

en particular $m > -\infty$.

5. Espectro de un Operador Acotado

A partir de aquí trabajaremos con espacios Banach definidos sobre \mathbb{C} , es decir, espacios vectoriales definidos con el cuerpo \mathbb{C} con norma y que es completo.

Nota: Todas las definiciones se pueden definir en \mathbb{R} .

Definición: Un álgebra asociativa sobre $\mathbb C$ es un espacio vectorial sobre $\mathbb C$ equipado con \cdot : $A \times A \to A$ que satisface:

$$i) (x+y) \cdot z = x \cdot z + y \cdot z$$

$$ii)$$
 $z \cdot (x + y) = z \cdot x + z \cdot y$

$$iii) (\alpha x) \cdot (\beta y) = (\alpha \beta)(x \cdot y)$$

$$iv) (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Nota: Por comodidad en algunos casos escribiremos el producto de a con b por ab.

Definición: Un álgebra de Banach unital A, es un espacio vectorial normado completo sobre \mathbb{C} que es un álgebra asociativa sobre \mathbb{C} tal que:

- Tiene una unidad $e \in A$, es decir, $e \cdot a = a \cdot e = a$ para todo $a \in A$ y $||e||_A = 1$.
- $||a \cdot b||_A \le ||a||_A ||b||_A$ para todo $a, b \in A$.

Ejemplo: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Entonces B(X) es un álgebra de Banach unital con unidad $I: X \to X$. Para ver esto debemos ver que es un álgebra asociativa, ver que tiene unidad con norma 1 y que se satisface la desigualdad del producto.

• Algebra asociativa: En B(X) definimos el producto dado por,

$$B(X) \times B(X) \to B(X)$$

 $(T, S) \mapsto T \cdot S = T \circ S$

Claramente es un álgebra asociativa sobre \mathbb{C} como X tiene por cuerpo los complejos.

• Unidad: Notemos que para todo $T \in B(X)$ se tiene que,

$$IT = TI = T$$

Y además,

$$||I||_{B(X)} = \sup_{\|x\|_X=1} ||Ix||_X = \sup_{\|x\|_X=1} 1 = 1$$

■ Desigualdad del producto: Sean $T, S \in B(X)$, luego,

$$||TS||_{B(X)} = \sup_{\|x\|_X = 1} ||TSx||_X$$

$$\leq \sup_{\|x\|_X = 1} ||T||_{B(X)} ||Sx||_X$$

$$\leq ||T||_{B(X)} \sup_{\|x\|_X = 1} ||Sx||_X$$

$$= ||T||_{B(X)} ||S||_{B(X)}$$

Como queriamos verificar.

Definición: Sea A un álgebra de Banach unital. Decimos que un elemento $a \in A$ es invertible si existe $b \in A$ tal que $a \cdot b = b \cdot a = e$. En tal caso denotamos $a^{-1} = b$ y decimos que es la inversa de a.

Definición: Sea A un álgebra de Banach unital. Para $a \in A$ definimos el espectro de a por,

$$\sigma_A(a) = \{ \lambda \in \mathbb{C} : \lambda e - a \text{ no es invertible} \}$$

Definición: Sea A un álgebra de Banach unital.

i) Dado $a \in A$ definimos el conjunto resolvente de a por el conjunto,

$$\delta_A(a) = \mathbb{C} \setminus \sigma_A(a)$$

A los elementos del conjunto resolvente les decimos punto regular de a.

ii) La función,

$$R: \delta_A(a) \to A$$

 $\lambda \mapsto (\lambda e - a)^{-1}$

Es la función resolvente de a y el elemento $R(\lambda)$ es la resolvente de a en $\lambda \in \delta_A(a)$.

Veamos con los operadores. Sea X un espacio vectorial normado Banach sobre \mathbb{C} . Consideremos el álgebra de Banach unital A = B(X). Sea $T \in A$, entonces por definición,

$$\sigma_A(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \text{ no es invertible} \}$$

Por comodidad en operadores escribimos el espectro de T simplemente por $\sigma(T)$ ya que más adelante definiremos algo similar. El conjunto resolvente lo escribimos por,

$$\rho(T) := \delta_A(T) = \mathbb{C} \setminus \sigma(T)$$

Volvamos a un A álgebra Banach unital arbitrario. Podemos pensar A como un subconjunto de B(A) usando la siguiente identificación,

$$A \to L_a$$

 $a \mapsto L_a(x) = a \cdot x$

Que es la multiplicación por la izquierda o la premultiplicación.

Afirmación: $L_a: A \to A$ es un operador lineal acotado.

Demostración: Veamos que es lineal y, luego que es acotado.

• Lineal: Sean $x, y \in A$ y escalares λ, μ . Entonces,

$$L_a(\lambda x + \mu y) = a \cdot (\lambda x + \mu y)$$
$$= \lambda a \cdot x + \mu a \cdot y$$
$$= \lambda L_a(x) + \mu L_a(y)$$

Luego $L_a \in \mathcal{L}(A)$.

■ Acotado: Sea $x \in A$, entonces,

$$||L_a(x)||_A = ||a \cdot x||_A \le ||a||_A ||x||_A$$

Luego L_a es acotado.

Por tanto $L_a \in B(A)$.

Observación: Consideremos la multiplicación por la izquierda L_a .

- i) Si $a \in A$ es invertible, entonces L_a también es invertible con inversa $S = L_{a^{-1}} \in B(A)$.
- ii) Si L_a es invertible, entonces a es invertible con inversa $b = (L_a)^{-1}e \in A$.

Afirmación: $\sigma_A(a) = \sigma(L_a)$

Demostración: Primero vamos a demostrar los puntos de la observación anterior y luego concluir el resultado.

i) Sea $a \in A$ invertible, entonces podemos definir $L_{a^{-1}}: A \to A$ donde $x \mapsto a^{-1}x$. Notemos que,

$$(L_a L_{a^{-1}})(x) = L_a(a^{-1}x) = aa^{-1}x = ex = x$$

 $(L_{a^{-1}}L_a)(x) = L_{a^{-1}}(ax) = a^{-1}ax = ex = x$

Luego $(L_a)^{-1} = L_{a^{-1}}$.

ii) Sea L_a invertible con inversa $(L_a)^{-1}$. Notemos que,

$$e = L_a((L_a)^{-1}(e)) = a(L_a)^{-1}e$$

 $e = (L_a)^{-1}(e)(L_a)(e) = ((L_a)^{-1}e)a$

Por lo tanto $a^{-1} = (L_a)^{-1}e$

Concluimos que $a \in A$ es invertible si y sólo si $L_a \in B(A)$ es invertible. Demostremos el enunciado. Sea $\lambda \in \sigma_A(a)$,

$$\lambda e - a$$
 no es invertible $\Leftrightarrow L_{\lambda e - a}$ no es invertible $\Leftrightarrow \lambda I - L_a$ no es invertible $\Leftrightarrow \lambda \in \sigma(L_a)$

Por tanto $\sigma_A(a) = \sigma(L_a)$

Definición: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Sea $T \in B(X)$, definimos el espectro puntual de T por,

$$\sigma_p(T) = \{ \lambda \in \mathbb{C} : \ker(\lambda I - T) \neq \{0\} \}$$

A los elementos de $\sigma_p(T)$ se les llama valores propios de T. Para un valor propio $\lambda \in \sigma_p(T)$, los elementos de $\ker(\lambda I - T)$ que no son nulos, son los vectores propios de T asociados al valor propio que satisfacen,

$$Tx = \lambda x \Leftrightarrow x \in \ker(\lambda I - T)$$

a $\ker(\lambda I - T)$ se le llama espacio propio de T asociado al valor propio de λ . Claramente se cumple,

$$\sigma_p(T) \subseteq \sigma(T)$$

Proposición: Sea X espacio vectorial de dimensión finita.

- i) Se cumple que $\mathcal{L}(X,X) = B(X,X)$.
- ii) Sea $T: X \to X$ operador lineal, entonces se cumple que T es inyectiva si y sólo si T es sobreyectiva.
- *iii*) $\sigma_p(T) = \sigma(T)$.

Demostración: Sea X espacio vectorial de dimensión finita. Sea B(X) álgebra de Banach unital.

- i) terminar
- ii) Sea $\beta = \{v_1, \dots, v_n\}$ base de X. Supongamos que T es inyectivo (ker $T = \{0\}$) y consideremos el conjunto $\eta = \{T(v_1), \dots, T(v_n)\}$. Notemos que si consideramos $c_1, \dots, c_n \in \mathbb{C}$ escalares tales que,

$$c_1T(v_1) + \dots + c_nT(v_n) = 0 \Leftrightarrow T(c_1v_1 + \dots + c_nv_n) = 0$$

$$\Leftrightarrow c_1v_1 + \dots + c_nv_n = 0$$

Luego se tiene que necesariamente $c_1 = c_2 = \cdots = c_n = 0$. Por lo que el conjunto η es linealmente independiente y si dim $X = |\eta| = n$, entonces η es base de X. Aquí se concluye que para todo $y \in X$ se puede expresar como,

$$y = c_1 T(v_1) + \cdots + c_n T(v_n) = T(c_1 v_1 + \cdots + c_n v_n)$$

Escogiendo $x = c_1v_1 + \cdots + c_nv_n \in X$ obtenemos que T(x) = y.

Ahora probemos la otra dirección. Sea T sobreyectiva y sea $\xi = \{\xi_1, \dots, \xi_n\}$ el conjunto tal que $T(\xi_i) = v_i$ para todo $i = 1, \dots, n$ (esto se puede hacer en virtud de la sobreyectividad de T). Notemos que si tomamos $c_1, \dots, c_n \in \mathbb{C}$ tales que,

$$c_1\xi_1 + \dots + c_n\xi_n = 0 \Rightarrow T(c_1\xi_1 + \dots + c_n\xi_n) = 0$$

$$\Leftrightarrow c_1T(\xi_1) + \dots + c_nT(\xi_n) = 0$$

$$\Leftrightarrow c_1v_1 + \dots + c_nv_n = 0$$

Lo que implica que $c_1 = c_2 = \cdots = c_n = 0$ y por tanto ξ es base (dim $X = |\xi| = n$). Sea $x \in \ker T$, entonces existen $d_1, \dots, d_n \in \mathbb{C}$ tales que,

$$x = d_1 \xi_n + \dots + d_n \xi_n$$

Pero esto implica que,

$$T(x) = 0 \Leftrightarrow d_1v_1 + \dots + d_nv_n = 0$$

Y entonces $d_1 = d_2 = \cdots d_n = 0$ y esto implica que x = 0. Por lo tanto ker $T = \{0\}$, es decir, T es inyectiva. Demostrando que T es inyectiva si y sólo si es sobreyectiva.

iii) Sabemos que $\sigma_p(T) \subseteq \sigma(T)$. Sea $\lambda \in \sigma(T)$, entonces,

$$\lambda I - T$$
 no es invertible $\Leftrightarrow \ker(\lambda I - T) \neq 0$

Esta equivalencia se cumple puesto que X es de dimensión finita. Luego $\lambda \in \sigma_p(T)$ y por lo tanto $\sigma_p(T) = \sigma(T)$

Demostrando la proposición.

Veamos un ejemplo donde el espectro puntual de un operador es distinto a su espectro.

Ejemplo: Sea $X = l^2$ y sea $T: l^2 \to l^2$ dada por,

$$(x_1, x_2, x_3, \cdots) \mapsto (0, x_1, x_2, \cdots)$$

Este operador es llamado Shift derecha. Notemos que,

$$||Tx||_2 = ||(0, x_1, x_2, \cdots)||_2$$

= $||(x_1, x_2, \cdots)||_2 = ||x||_2$

Entonces $||T||_{B(l^2)} = 1$. Queremos estudiar $\ker(\lambda I - T)$ con $\lambda \in \mathbb{C}$. Si $\lambda \neq 0$, entonces,

$$(\lambda I - T)x \Leftrightarrow (\lambda x_1, \lambda x_2 - x_1, \cdots) = 0$$

 $\Leftrightarrow x_i = 0 \text{ para todo } i \in \mathbb{N}$

Luego $\ker(\lambda I - T) = \{0\}$. Si $\lambda = 0$, entonces $\ker(-T) = \{0\}$ puesto que T es inyectivo. Por lo tanto $\sigma_p(T) = \emptyset$.

Veamos que pasa con el espectro de T.

Afirmación: $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$

Demostración: Como hemos visto $\lambda I - T$ es inyectivo para todo $\lambda \in \mathbb{C}$ por lo que no nos sirve para estudiar, por lo que sólo nos queda ver no es sobreyectivo. Sea $y = \{y_n\}_{n \in \mathbb{N}} \in l^2$ y supongamos que existen $x = \{x_n\}_{n \in \mathbb{N}} \in l^2$ que lo mapea, luego,

$$(\lambda I - T)x = y \Leftrightarrow (\lambda x_1, \lambda x_2 - x_1, \cdots) = (y_1, y_2, \cdots)$$

Entonces se cumple,

$$y_n = \lambda x_n - x_{n-1}, \ n \ge 2$$
$$y_1 = \lambda x_1$$

En particular, si tomamos $y = (1, 0, 0, \cdots)$ obtenemos que,

$$0 = \lambda x_n - x_{n-1}, \ n \ge 2$$
$$1 = \lambda x_1$$

Si $\lambda = 0$ entonces 1 = 0 lo cual es imposible. Si $\lambda \neq 0$ entonces,

$$x_n = \frac{x_{n-1}}{\lambda} = \dots = \frac{1}{\lambda^n}$$

Por como hemos escogido $x \in l^2$, necesariamente,

$$||x||_2 = \sum_{n \in \mathbb{N}} |x_n|^2 = \sum_{n \in \mathbb{N}} \frac{1}{|\lambda|^{2n}}$$

debe convergen. Sin embargo, si tomamos $|\lambda| \in (0,1]$ ocurre que,

$$\sum_{i=1}^{N} \frac{1}{|\lambda|^{2i}} \ge \sum_{i=1}^{N} 1 = N$$

Tomando $N \to \infty$ obtenemos que,

$$||x||_2 = \sum_{n \in \mathbb{N}} \frac{1}{|\lambda|^{2n}} = \infty$$

Y por tanto T no es sobreyectiva cuando $|\lambda| \in [0,1]$.

Nos falta estudiar cuando $|\lambda| > 1$. Tomemos $y \in l^2$ general, entonces, **cosopajero**.

Por lo tanto T no es sobreyectivo en $|\lambda| \le 1$ y por tanto $\sigma(T) = D[0,1]$ (disco o bola cerrado de centro 0 y radio 1).

Finalmente encontramos un caso donde $\sigma_p(T) \neq \sigma(T)$.

Observación: Podemos definir $S: l^2 \to l^2$ dada por $x = (x_1, x_2, \dots) \mapsto Sx = (x_2, x_3, \dots)$. Luego se tiene que S(Tx) = x pero $T(Sx) \neq x$ por lo que $S \neq T^{-1}$.

Recordatorio: Si X es un espacio vectorial normado Banach sobre . Entonces,

• Si $\{x_n\}_{n\in\mathbb{N}}$ es tal que,

$$\sum_{n \in \mathbb{N}} \|x_n\|_X < \infty$$

Entonces,

$$\sum_{n\in\mathbb{N}} x_n \in X$$

 \bullet Sea $f:[0,1]\to X$ una función cualquiera. Decimos que es Riemann integrable si existe $I\in X$ tal que ,

$$\lim_{\|\mathcal{P}\| \to 0} \left\| \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) - I \right\| = 0$$

En tal caso definimos la integral de f por,

$$\int_0^1 f(x)dx = I \in X$$

• Si |z| < 1 con $z \in \mathbb{C}$, entonces,

$$\sum_{n>0} z^n = \frac{1}{1-z} \in \mathbb{C}$$

Teorema: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Sea $T \in B(X)$ tal que $||T||_{B(X)} < 1$, entonces $(I - T) \in B(X)$ es invertible y,

$$(I-T)^{-1} = \sum_{n\geq 0} T^n$$

donde la serie es absolutamente convergente en B(X)

Demostración: Si $||T||_{B(X)} < 1$, entonces,

$$||T^n||_{B(X)} \le ||T||_{B(X)}^n$$

para todo $n \in \mathbb{N}_0$ y si,

$$\sum_{n\geq 0} \|T\|_{B(X)}^n < \infty$$

Entonces dado que B(X) es Banach, se tiene que la serie,

$$\sum_{n \ge 0} T^n \in B(X)$$

converge, es decir, en la topología fuerte $\|\cdot\|_{B(X)}$ tenemos la convergencia fuerte,

$$\sum_{n=0}^{N} T^n \stackrel{N \to \infty}{\longrightarrow} S = \sum_{n \ge 0} T^n$$

Probemos ahora que (I-T) es invertible. Demostremos que $S=(I-T)^{-1}$. Notemos que,

$$(I-T)S = (I-T) \lim_{N \to \infty} \sum_{n=0}^{N} T^n$$

$$= \lim_{N \to \infty} (I-T) \sum_{n=0}^{N} T^n$$

$$= \lim_{N \to \infty} \sum_{n=0}^{N} (T^n - T^{n+1})$$

$$= \lim_{N \to \infty} (I-T^{N+1}) = I$$

Usando la continuidad de (I-T) y dado que $||T^{N+1}||_{B(X)} \to 0$ cuando $N \to \infty$. Para el caso S(I-T) se procede de forma análogo, demostrando que $(I-T) \in B(X)$ es invertible y además,

$$(I-T)^{-1} = \sum_{n>0} T^n$$

Corolario: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Sea $\lambda \in \mathbb{C}$ no nulo y sea $T \in B(X)$ tal que $||T||_{B(X)} < |\lambda|$, entonces $(\lambda I - T)^{-1}$ es invertible y,

$$(\lambda I - T)^{-1} = \sum_{n \ge 0} \frac{T^n}{\lambda^{n+1}}$$

Demostración: Notemos que si $||T/\lambda||_{B(X)} < 1$, entonces el operador $I - T/\lambda \in B(X)$ es invertible con inversa,

$$\left(I - \frac{T}{\lambda}\right)^{-1} = \sum_{n \ge 0} \frac{T^n}{\lambda^n}$$

Entonces $\lambda I - T \in B(X)$ y es invertible con inversa $\lambda^{-1}(I - T/\lambda)^{-1}$, puesto que,

$$(\lambda I - T)\lambda^{-1} \left(I - \frac{T}{\lambda}\right)^{-1} = \left(I - \frac{T}{\lambda}\right) \left(I - \frac{T}{\lambda}\right)^{-1}$$

$$= I$$

$$= \left(I - \frac{T}{\lambda}\right)^{-1} \left(I - \frac{T}{\lambda}\right) = \lambda^{-1} \left(I - \frac{T}{\lambda}\right) (\lambda I - T)$$

Luego,

$$(\lambda I - T)^{-1} = \lambda^{-1} \left(I - \frac{T}{\lambda} \right)^{-1} = \sum_{n \ge 0} \frac{T^n}{\lambda^{n+1}}$$

Como queriamos demostrar.

Teorema: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Sean $S, T \in B(X)$ con T invertible $y \|S - T\|_{B(X)} < \|T^{-1}\|_{B(X)}^{-1}$, entonces S es invertible y,

$$||S^{-1} - T^{-1}||_{B(X)} \le \frac{||T^{-1}||_{B(X)}^2 ||S - T||_{B(X)}}{1 - ||T^{-1}||_{B(X)} ||S - T||_{B(X)}}$$

Demostración: Sea $R := T^{-1}(T-S) \in B(X)$, entonces $||R||_{B(X)} \le ||T^{-1}||_{B(X)} ||T-S||_{B(X)} < 1$, por el teorema anterior se tiene que (I-R) es invertible donde,

$$(I-R)^{-1} = \sum_{n>0} R^n \Leftrightarrow (I-T^{-1}(T-S))^{-1} = \sum_{n>0} (T^{-1}(T-S))^n$$

Por otro lado,

$$R = T^{-1}(T - S) \Leftrightarrow S = T(I - R)$$

Entonces S es invertible y,

$$S^{-1} = (I - T^{-1}(T - S))^{-1}T^{-1} = \sum_{n \ge 0} (T^{-1}(T - S))^n T^{-1}$$

Concluimos que,

$$||S^{-1} - T^{-1}||_{B(X)} = \left\| \sum_{n \ge 0} (T^{-1}(T - S))^n T^{-1} - T^{-1} \right\|_{B(X)}$$

$$= \left\| \sum_{n \ge 0} ((T^{-1}(T - S))^n - I) T^{-1} \right\|_{B(X)}$$

$$= \left\| \sum_{n \ge 1} (T^{-1}(T - S))^n T^{-1} \right\|_{B(X)}$$

$$\le \sum_{n \ge 1} (||T^{-1}||_{B(X)} ||T - S||_{B(X)})^n ||T^{-1}||_{B(X)}$$

$$\le \frac{||T^{-1}||_{B(X)}^2 ||S - T||_{B(X)}}{1 - ||T^{-1}||_{B(X)} ||S - T||_{B(X)}}$$

Como queriamos demostrar.

Definición: Sea X espacio vectorial normado sobre \mathbb{C} . En B(X) definimos,

$$\mathcal{G}(X) := \{ T \in B(X) : T \text{ es invertible} \}$$

Corolario: Consideremos el conjunto $\mathcal{G}(X)$. Entonces,

- i) $\mathcal{G}(X)$ es abierto en B(X)
- ii) Si $A, B \in \mathcal{G}(X)$, entonces $AB \in \mathcal{G}(X)$
- iii) La operación multiplicación (composición),

$$*: \mathcal{G}(X) \times \mathcal{G}(X) \to \mathcal{G}(X)$$

 $(A, B) \mapsto AB$

Es una función continua.

iv) El mapeo $T \mapsto T^{-1}$ con $T \in \mathcal{G}(X)$, es un homeomorfismo de $\mathcal{G}(X)$ a $\mathcal{G}(X)$

Observación: Si $\lambda_0 \in \rho(T)$, entonces para $\lambda \in \rho(T)$ se tiene que,

$$R(\lambda) = (\lambda I - T)^{-1} = \sum_{n>0} (\lambda_0 - \lambda)^n R(\lambda_0)^{n+1}$$

para todo $|\lambda - \lambda_0| < ||R(\lambda_0)||^{-1}$

Corolario: $\sigma(T)$ es un subconjunto cerrado del disco $\{\lambda \in \mathbb{C} : |\lambda| \leq ||T||_{B(X)}\}$. Si $||T||_{B(X)} < |\lambda|$, entonces,

$$R(\lambda) = (\lambda I - T)^{-1} = \sum_{n > 0} \frac{T^n}{\lambda^{n+1}}$$

 $y \|R(\lambda)\| \le 1/(|\lambda| - \|T\|_{B(X)}).$

Demostración: Hemos demostrado que si $||T||_{B(X)} < |\lambda|$, entonces $\lambda I - T \in B(X)$ es invertible. Esto implica que si $\lambda I - T$ no es invertible, entonces necesariamente $|\lambda| \leq ||T||_{B(X)}$, de aquí cooncluimos que $\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \leq ||T||_{B(X)}\}$. Probemos que $\sigma(T)$ es cerrado, supongamos que no es cerrado, entonces $\rho(T) = \mathbb{C} \setminus \sigma(T)$ no es abierto, por lo que existe un $\lambda_0 \in \rho(T)$ tal que para todo r > 0 es tal que,

$$D(\lambda_0, r) \not\subseteq \rho(T)$$

Notemos que $R(\lambda_0)$ está bien definido y tiene norma no nula, entonces podemos escoger $r = \|R(\lambda_0)\|_{B(X)}^{-1}$ y entonces existe un $\lambda \in D(\lambda, \|R(\lambda_0)\|_{B(X)}^{-1}$ tal que $\lambda I - T$ no es invertible. Pero luego tenemos que,

$$\|\lambda I - T - (\lambda_0 I - T)\|_{B(X)} = |\lambda - \lambda_0| \|I\|_{B(X)} < \|R(\lambda_0)\|^{-1}$$

Si $R(\lambda_0) = (\lambda_0 I - T)^{-1}$, entonces necesariamente $\lambda I - T$ es invertible pero esto es una contradicción ya que $\lambda I - T$ no es invertible. Por lo tanto necesariamente $\sigma(T)$ es cerrado.

Ahora, si $||T||_{B(X)} < |\lambda|$, entonces,

$$R(\lambda) = \sum_{n \ge 0} \frac{T^n}{\lambda^{n+1}}$$

Por último estudiemos la norma, se tiene que,

$$||R(\lambda)||_{B(X)} = \left\| \sum_{n \ge 0} \frac{T^n}{\lambda^{n+1}} \right\|_{B(X)}$$

$$\le \frac{1}{|\lambda|} \sum_{n \ge 0} \left\| \frac{T}{\lambda} \right\|_{B(X)}^n$$

$$= \frac{1}{|\lambda|} \left(\frac{|\lambda|}{|\lambda| - ||T||_{B(X)}} \right) = \frac{1}{|\lambda| - ||T||_{B(X)}}$$

Demostrando el corolario.

5.1. Un poco de Variable Compleja

Hemos estudiado $\sigma(T)$, pero no sabemos si este conjunto es vacío para ciertos T. Para ello usaremos un poco de variable compleja para demostrar que $\sigma(T) \neq 0$ para todo $T \in B(X)$ con X un espacio vectorial normal Banach en \mathbb{C} .

Definición: Sea $D \subseteq \mathbb{C}$ abierto (con respecto a la topología dada por la norma $|\cdot|$). Decimos que $f: D \to \mathbb{C}$ es analítica si para todo $z_0 \in D$ existe R > 0 tal que en $|z - z_0| < R$ se cumple que,

$$f(z) = \sum_{n>0} a_n (z - z_0)^n$$

donde $a_n \in \mathbb{C}$ y la serie converge absolutamente.

Teorema: Sea $f: D \to \mathbb{C}$ una función compleja con D abierto. Entonces f es analítica en D si y sólo,

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

existe en \mathbb{C} para todo $z_0 \in D$.

Sea $f: D \to \mathbb{C}$ una función compleja. Si el límite,

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

existe, decimos que f es holomorfa en $z_0 \in D$, por lo que f es analítica en D si y sólo si es holomorfa en D.

Observación: Sea z = x + iy donde $x, y \in \mathbb{R}$ y sea $f : \mathbb{C} \to \mathbb{C}$ una función compleja, entonces podemos pensar f(z) = u(x, y) + iv(x, y) donde $u, v : \mathbb{R}^2 \to \mathbb{R}$ son la parte real e imaginaria de la función f respectivamente. Entonces f es holomorfa en $D \subseteq$ abierto si $\nabla f(z_0)$ existe para todo $z_0 \in D$ si y sólo si,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Teorema de Louville: Sea $f: \mathbb{C} \to \mathbb{C}$ una función entera (definido de \mathbb{C} a \mathbb{C}). Supongamos que es analítica en todo \mathbb{C} y que existe M > 0 tal que,

$$|f(z)| \leq M$$

para todo $z \in \mathbb{C}$, entonces f es una función constante.

Corolario: Sea $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ un polinomio complejo donde $a_n \neq 0$ (es de grado n). Entonces p tiene al menos una raíz en \mathbb{C} .

Demostración: Supongamos que p no tiene raíz en \mathbb{C} , por lo que podemos definir sin problemas la función,

$$f(z) = \frac{1}{p(z)}$$

para todo $z \in \mathbb{C}$. Notemos que p(z) al ser un polinomio, entonces es holomorfa en todo \mathbb{C} donde derivada,

$$p'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1}$$

Y f es holomorfa donde,

$$f'(z) = (p(z)^{-1})' = -\frac{p'(z)}{p^2(z)}$$

que está bien definida dado que $p^2(z) \neq 0$ para todo $z \in \mathbb{C}$. Entonces f es analítica para en \mathbb{C} . Ahora, por otro lado,

$$|f(z)| = \frac{1}{|p(z)|}$$

$$= \frac{1}{|z|^n \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z} + a_n \right|}$$

$$\stackrel{|z| \to \infty}{\longrightarrow} 0$$

Esto implica que f se puede acotar en \mathbb{C} . Finalmente tenemos f acotada analítico en \mathbb{C} y por tanto es constante, es más, necesariamente f(z) = 0 para todo $z \in \mathbb{C}$ para que el límite anterior se satisfaga, y esto implica que p(z) = 1/0 siendo imposible. Por lo tanto p tiene una raíz en \mathbb{C} .

Generalizemos el concepto de analítica para espacios vectoriales.

Definición: Sea X espacio vectorial normado Banach en \mathbb{C} . Sea $D \subseteq \mathbb{C}$ abierto. Decimos que $F: D \to X$ es analítica en D si para todo $z_0 \in D$ existe $r(z_0) > 0$ tal que,

$$F(z) = \sum_{n>0} a_n (z - z_0)^n$$

para todo $z \in D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| < r\}$ donde $a_n \in X$ (estos dependen de z_0 y r) y la serie es absolutamente convergente en X.

Observación: La resolvente $R: \rho(T) \to B(X)$ es una función analítica con respecto a valores en B(X), es decir,

$$R(\lambda) = \sum_{n>0} (\lambda - \lambda_0)^n R(\lambda_0)^{n+1}$$

para todo $|\lambda - \lambda_0| < ||R(\lambda_0)||_{B(X)}^{-1}$ para todo $\lambda_0 \in \rho(T)$.

Observación: Si $F: D \to X$ es analítica en $z_0 \in D$ con D abierto, entonces,

$$F'(z_0) := \lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0}$$

existe en X. Además, la derivada está bien definida puesto que al ser analítica en z_0 , existe R > 0 tal que,

$$F(z) = \sum_{n>0} a_n (z - z_0)^n$$

para todo $|z - z_0| < R$ y $F(z_0) = a_0$. Luego,

$$\frac{F(z) - F(z)}{z - z_0} = \sum_{n > 1} a_n (z - z_0)^{n-1}$$

Por tanto,

$$F'(z_0) = \lim_{z \to z_0} \sum_{n \ge 1} a_n (z - z_0)^{n-1} = a_1$$

donde la serie converge absolutamente.

Proposición: Sea $F:D\to X$ analítico con D abierto y sea $\phi\in X^*=B(X,\mathbb{C})$, entonces $\phi\circ F:D\to\mathbb{C}$ es analítica.

Demostraciónn: Sea $z_0 \in D$ y entonces,

$$\frac{d\phi \circ F}{dz}(z_0) = \lim_{z \to z_0} \frac{(\phi \circ F)(z) - (\phi \circ F)(z_0)}{z - z_0}$$
$$= \lim_{z \to z_0} \phi \left(\frac{F(z) - F(z_0)}{z - z_0}\right)$$

por la linealidad de ϕ . Ahora, dado que F es analítica en z_0 y ϕ es continua, se tiene que se puede introducir el límite y obtener,

$$\frac{d\phi \circ F}{dz}(z_0) = \phi\left(\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0}\right) = \phi(F'(z_0)) \in \mathbb{C}$$

Por lo tanto $\phi \circ F$ es holomorfa en z_0 y por tanto es analítica. Finalmente se concluye que $\phi \circ F$ es analítica en D.

Teorema de Louville: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Si $F:\mathbb{C}\to X$ es analítica y existe M>0 tal que $\|F(z)\|_X\leq M$ para todo $z\in\mathbb{C}$, entonces F es constante.

Demostración: Sea $\phi \in X^*$. Luego $\phi \circ F : \mathbb{C} \to \mathbb{C}$ es una función entera que es analítica. Además,

$$|(\phi \circ F)(z)| = |\phi(F(z))|$$

 $\leq ||\phi||_{X^*} ||F(z)||_X$
 $< ||\phi||_{X^*} M$

para todo $z \in \mathbb{C}$. Luego por el teorema de Louville sobre funciones complejas, se tiene que $\phi \circ F$ es una función constante para todo $\phi \in X^*$. Es más,

$$\phi(F(0)) = \phi(F(z))$$

para todo $z \in \mathbb{C}$ y para todo $\phi \in X^*$, luego por HB se tiene que F(0) = F(z) para todo $z \in \mathbb{C}$, y esto implica que F es constante.

Teorema: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Sea $T \in B(X)$, entonces $\sigma(T) \neq \emptyset$.

Demostración: Supongamos que $\sigma(T) = \emptyset$. Sea $R : \rho(T) \to B(X)$ donde $\rho(T) = \mathbb{C} \setminus \sigma(T) = \mathbb{C}$ es una función analítica en todo \mathbb{C} . Además,

$$||R(\lambda)|| \le \frac{1}{|\lambda| - ||T||_{B(X)}} \stackrel{|\lambda| \to \infty}{\longrightarrow} 0$$

Si $\lambda \in \mathbb{C} \mapsto ||R(\lambda)||$ es una función continua que se va a 0 cuando $|\lambda| \to \infty$, entonces,

$$||R(\lambda)|| < M$$

para todo $\lambda \in \mathbb{C}$ con M > 0. Por Louville se tendría que R es constante, es más, $R \equiv 0$, pero esto es una contradicción puesto que $R(\lambda) = (\lambda I - T)^{-1}$ es invertible. Por lo tanto $\sigma(T) \neq \emptyset$.

Teorema: Sea X espacio vectorial normado Banach sobre \mathbb{C} . Sea $T \in B(X)$, luego $\sigma(T)$ es no vacío cerrado contenido en el disco,

$$\{\lambda \in \mathbb{C} : |\lambda| \le ||T||_{B(X)}\}$$

Además, si λ es punto regular de T tal que,

Finalmente resumimos todo lo que hemos estado trabajando.

$$d(\lambda, \sigma(T)) := \min\{|\lambda - \mu| : \mu \in \sigma(T)\} = d$$

Entonces $||R(\lambda)|| \ge 1/d$.

6. Espacios de Hilbert

Definición: Sea V espacio vectorial en \mathbb{C} (o sobre \mathbb{R}). Un producto interno en V es una función compleja (o \mathbb{R} en el caso real),

$$(\cdot,\cdot):V\times V\to\mathbb{C}$$

tal que para todo $x, y, z \in V$ y para todo $\lambda, \mu \in \mathbb{C}$ se cumple que,

i)
$$(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z)$$
.

$$ii) (x,y) = \overline{(y,x)}.$$

$$iii)$$
 $(x,x) \geq 0$.

$$iv)$$
 $(x, x) = 0$ si y $solo si $x = 0$.$

 $A(V, (\cdot, \cdot))$ se le llama un espacio vectorial con producto interno o bien EVPI.

Notación: Para un producto interno denotamos $(x, y), \langle x, y \rangle$ o $x \cdot y$.

Observación: Notemos que la condición ii) implica que $(x,x) = \overline{(x,x)}$, es decir, $(x,x) \in \mathbb{R}$.

Teorema: Sea V un EVPI. Entonces se cumple,

■ **Designaldad de Cauchy-Schawrz:** Para todo $x, y \in V$ se tiene que,

$$|(x,y)|^2 \le (x,x)(y,y)$$

■ **Designaldad triangular:** Para todo $x, y \in V$ se tiene que,

$$(x+y,x+y)^{1/2} \le (x,x)^{1/2} + (y,y)^{1/2}$$

Demostración: Demostremos primero la desigualdad de Cauchy-Schawrz. Sean $x, y \in V$ no nulos, luego existe $\alpha \in \mathbb{C}$ con $|\alpha| = 1$ tal que $(\alpha x, y) \in \mathbb{R}$. Notemos que,

$$(\alpha x, \alpha x) = |\alpha|^2(x, x) = (x, x)$$

Tenemos que para todo $t \in \mathbb{R}$ se cumple que,

$$0 \le (t\alpha x + y, t\alpha x + y)$$

= $t^2(x, x) + 2t(\alpha x, y) + (y, y)$

Este último es un polinomio real que tiene a lo más una raíz, entonces el discriminante es no positivo, es decir,

$$4(\alpha x, y)^2 - 4(x, x)(y, y) \le 0 \Leftrightarrow (\alpha x, y)^2 \le (x, x)(y, y)$$

Entonces,

$$|(x,y)|^2 = |(\alpha x, y)|^2 \le (x,x)(y,y)$$

Si x o y es nulo es directo la desigualdad puesto que,

$$(0,y) = (x,0) = 0$$

para todo $x, y \in V$. Además, la igualdad se alcanza si y sólo si existe $\hat{t} \in \mathbb{R}$ tal que,

$$(\alpha \hat{t}x + y, \alpha \hat{t}x + y) = 0 \Leftrightarrow \alpha \hat{t}x + y = 0$$
$$\Leftrightarrow y = -\alpha \hat{t}x$$

Ahora demostremos la desigualdad triangular. Notemos que,

$$0 \le (x+y, x+y) = (x, x) + (x, y) + (y, x) + (y, y)$$

$$\le (x, x) + 2|(x, y)| + (y, y)$$

$$\le (x, x) + 2(x, x)^{1/2}(y, y)^{1/2} + (y, y)$$

$$= ((x, x)^{1/2} + (y, y)^{1/2})^2$$

Esto implica que,

$$(x+y,x+y)^{1/2} \le (x,x)^{1/2} + (y,y)^{1/2}$$

Demostrando el teorema.

Observación: Sea (x, x) = 0, entonces para todo $y \in V$ se tiene que (x, y) = 0 puesto que,

$$|(x,y)|^2 \le (x,x)(y,y) = 0$$

para todo $y \in V$.

Definición: Sea V un EVPI. Decimos sque $x, y \in V$ son ortogonales bajo ese producto interno si(x, y) = 0.

Afirmación: La función $f: V \to \mathbb{R}$ dada por $f(x) = (x, x)^{1/2}$ es una norma en V.

Demostración: Probemos que está bien definida y los tres axiomas de norma.

- Bien definida: Sabemos que $(x,x) = \overline{(x,x)}$ lo que implica que $(x,x) \in \mathbb{R}$ y además $(x,x) \geq 0$. Entonces $f(x) \in \mathbb{R}$ para todo $x \in V$.
- Primer axioma: Notemos que,

$$f(x) = 0 \Leftrightarrow x = 0$$

Segundo axioma: Sea $\lambda \in \mathbb{C}$ escalar, entonces,

$$f(\lambda x) = |\lambda|(x, x)^{1/2} = |\lambda|f(x)$$

■ Tercer axioma: Sean $x, y \in V$, entonces,

$$f(x+y) = (x+y, x+y)^{1/2} \le (x,x)^{1/2} + (y,y)^{1/2} = f(x) + f(y)$$

Por lo tanto f es una norma.

Definición: Sea V EVPI, entonces definimos la norma inducida por $||x||_V = (x, x)^{1/2}$ para todo $x \in V$.

Definición: Decimos que un espacio vectorial normado es Euclidiano o pre-Hilbert si la norma está inducida por un producto interno. Y decimos que un espacio Euclidiano es un espacio de Hilbert si es completo bajo la norma inducida.

Observación: En un espacio Euclidiano, si (\cdot, \cdot) es el producto interno que induce la norma, entonces en virtud de la desigualdad de Cauchy-Schwarz se tiene que $(\cdot, \cdot): V \times V \to \mathbb{C}$ es continua.

Afirmación: (\cdot, \cdot) es continua.

Demostración: Usaremos la notación $\langle \cdot, \cdot \rangle$ para producto interno y (\cdot, \cdot) para un par del elemento $V \times V$. Sea $\{(v_n, w_n)\}_{n \in \mathbb{N}}$ una sucesión en $V \times V$ tal que (v_n, w_n) converge fuertemente a $(v, w) \in V \times V$. Demostremos que,

$$\langle v_n, w_n \rangle \stackrel{n \to \infty}{\longrightarrow} \langle v, w \rangle$$

Si V es un espacio vectorial normado, entonces se cumple que $v_n \to v, w_n \to w$ cuando $n \to \infty$. Ahora notemos que,

$$\begin{aligned} |\langle v_n, w_n \rangle - \langle v, w \rangle| &= |\langle v_n, w_n \rangle - \langle v_n, w \rangle + \langle v_n, w \rangle - \langle v, w \rangle| \\ &= |\langle v_n, w_n - w \rangle + \langle v_n - v, w \rangle| \\ &\leq |\langle v_n, w_n - w \rangle| + |\langle v_n - v, w \rangle| \\ &\leq \|v_n\|_V \|w_n - w\|_V + \|v_n - v\|_V \|w\|_V \end{aligned}$$

La última desigualdad usamos CS. Si $w_n \to w$ y $v_n \to v$, entonces $||v_n||$ se puede acotar y $||v_n - v|| \to 0$, $||w_n - w|| \to 0$ cuando $n \to \infty$, entonces,

$$|\langle v_n, w_n \rangle - \langle v, w \rangle| \stackrel{n \to \infty}{\longrightarrow} 0$$

Por lo tanto,

$$\langle v_n, w_n \rangle \stackrel{n \to \infty}{\longrightarrow} \langle v, w \rangle$$

Demostrando que el producto interno es continuo.

Afirmación: Sea $f_y: V \to \mathbb{C}$ con $y \in V$ dado por $f_y(x) = (x, y)$, entonces $f_y \in V^*$.

Demostración: Sea $y \in V$ arbitrario. Claramente f_y es lineal por la linealdiad del producto interno. Y es acotada puesto que,

$$|f_y(x)| = |(x,y)| \le (x,x)^{1/2} (y,y)^{1/2} = ||y||_V ||x||_V$$

faltar eso es más, $||f_y||_{V^*} = ||y||_V$.

Identidades de Polarización: Sea V un EVPI donde (\cdot, \cdot) es el producto interno $y \parallel \cdot \parallel_V$ es la norma inducida por el producto interno. Entonces se cumple que,

$$4(x,y) = ||x+y||_V^2 - ||x-y||_V^2 + i||x+iy||_V^2 - i||x-iy||_V^2$$

En el caso real (producto interno real y V real) se cumple que,

$$2(x,y) = \frac{1}{2}(\|x+y\|_V^2 - \|x-y\|_V^2)$$

Demostración:

• Caso complejo: Tenemos que $||x||_V = (x,x)^{1/2}$. Entonces,

$$||x + y||_V^2 = ||x||_V^2 + ||y||_V^2 + (x, y) + (y, x)$$

$$||x - y||_V^2 = ||x||_V^2 + ||y||_V^2 - (x, y) - (y, x)$$

$$||x + iy||_V^2 = ||x||_V^2 + ||y||_V^2 - i(x, y) + i(y, x)$$

$$||x - iy||_V^2 = ||x||_V^2 + ||y||_V^2 + i(x, y) - i(y, x)$$

Entonces,

$$||x + y||_V^2 - ||x - y||_V^2 = 2(x, y) + 2(y, x)$$
$$i||x + iy||_V^2 - i||x - iy||_V^2 = 2(x, y) - 2(y, x)$$

Si sumamos obtenemos el caso complejo.

■ Caso real: Aquí es más sencillo ya que (x,y) = (y,x) (estamos tomando V real con producto interno real). Luego,

$$||x + y||_V^2 - ||x - y||_V^2 = 4(x, y)$$

Demostrando la identidades de polarización.

Identidades de Polarización Generalizada: Sea $(V, (\cdot, \cdot))$ un espacio Euclidiano sobre \mathbb{C} y sea $T: V \to V$ lineal. Entonces,

$$4(T(x), y) = (T(x+y), x+y) - (T(x-y), x-y) + i(T(x+iy), x+iy) - i(T(x-iy), x-iy)$$

Demostración: Notemos que,

$$\begin{split} (T(x+y),x+y) &= (T(x),x) + (T(y),y) + (T(x),y) + (T(y),x)) \\ (T(x-y),x-y) &= (T(x),x) + (T(y),y) - (T(x),y) - (T(y),x)) \\ (T(x+iy),x+iy) &= (T(x),x) + (T(y),y) - i(T(x),y) + i(T(y),x)) \\ (T(x-iy),x-iy) &= (T(x),x) + (T(y),y) + i(T(x),y) - i(T(y),x)) \end{split}$$

Luego,

$$(T(x+y), x+y) - (T(x-y), x-y) = 2(T(x), y) + 2(T(y), x)$$
$$i(T(x+iy), x+iy) - i(T(x-iy), x-iy) = 2(T(x), y) - 2(T(y), x)$$

Entonces al sumar obtenemos 4(T(x), y) que es la identidad de polarización generalizada.

Corolario: Sea V un espacio Euclidiano y $T: V \to V$ lineal tal que,

$$(Tx, x) = 0$$

para todo $x \in V$, entocnes $T \equiv 0$.

Demostración: Sabemos que (Tx,x)=0 para todo $x\in V$ implica que (Tx,y)=0 para todo $x,y\in V$ por la polarización generalizada. Tomando y=Tx obtenemos que para todo $x\in V$ se tiene que (Tx,Tx)=0, es decir, $T\equiv 0$.

Teorema de Pitágoras y Regla del paralelogramo: Sea E un espacio Euclidiano. Sean $x_1, \dots, x_n \in E$ ortogonales a pares, entonces,

$$\left\| \sum_{i=1}^{n} x_i \right\|_{E}^{2} = \sum_{i=1}^{n} \|x_i\|_{E}^{2}$$

y además para todo $x, y \in E$ se tiene que,

$$||x + y||_E^2 + ||x - y||_E^2 = 2||x||_E^2 + 2||y||_E^2$$

Demostración: Por definición de norma inducida se tiene que,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i, x_j)$$

$$= \sum_{i=1}^{n} (x_i, x_i) = \sum_{i=1}^{n} \|x_i\|^2$$

Demostremos la regla del paralelogramo. Por definición,

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y)$$
$$= 2(x, x) + 2(y, y) = 2||x||^2 + ||y||^2$$

Demostrando el teorema. ■

6.1. Ejemplos de Espacios Euclidianos y Espacios de Hilbert Ejemplo:

■ En \mathbb{C}^n para $x=(x_1,\cdots,x_n)$ e $y=(y_1,\cdots,y_n)$ definimos el producto interno,

$$(x,y) = \sum_{i=1}^{n} x_i \overline{y_i}$$

Afirmación: El producto interno está bien definido y \mathbb{C}^n es un espacio de Hilbert.

Demostración: Demostremos que cumple los cuatro axiomas de producto interno.

i) Sea $x, z, y \in \mathbb{C}^n$ y sea $\lambda, \mu \in \mathbb{C}$. Entonces,

$$(\lambda x + \mu z, y) = \sum_{i=1}^{n} (\lambda x_i + \mu z_i) \overline{y_i}$$
$$= \lambda \sum_{i=1}^{n} x_i \overline{y_i} + \mu \sum_{i=1}^{n} z_i \overline{y_i}$$
$$= \lambda (x, y) + \mu (z, y)$$

Luego es lineal en el primer argumento.

ii) Sean $x, y \in \mathbb{C}^n$, entonces,

$$\overline{(x,y)} = \overline{\sum_{i=1}^{n} x_i \overline{y_i}}$$

$$= \overline{\sum_{i=1}^{n} y_i \overline{x_i}} = (y,x)$$

Luego es Hermitiana.

iii) Sea $x \in \mathbb{C}^n$. Entonces,

$$(x,x) = \sum_{i=1}^{n} x_i \overline{x_i}$$
$$= \sum_{i=1}^{n} |x_i|^2 \ge 0$$

Luego es positiva.

iv) Notemos que,

$$(x,x) = 0 \Leftrightarrow \sum_{i=1}^{n} |x_i|^2 = 0$$

 $\Leftrightarrow x_i = 0$; para todo $i = 1, \dots, n$
 $\Leftrightarrow x = 0$

Luego es un producto interno. Luego \mathbb{C}^n es un espacio Euclidiano donde $||x||_{\mathbb{C}^n} = (x,x)^{1/2}$. Podemos ver que la norma inducida es la norma usual de \mathbb{C}^n que ya hemos demostrado que es completo, por tanto \mathbb{C}^n es un espacio de Hilbert.

■ En $l^2(\mathbb{C})$ para $x = \{x_n\}_{n \in \mathbb{N}}, y = \{y_n\}_{n \in \mathbb{N}}$ definimos el producto interno,

$$(x,y) = \sum_{n \in \mathbb{N}} x_i \overline{y_i}$$

Afirmación: El producto interno está bien definido y $l^2(\mathbb{C})$ es un espacio de Hilbert.

Demostración: Demostremos que los cuatro axiomas de producto interno.

i) Sean $x, z, y \in l^2(\mathbb{C})$ y sean $\lambda, \mu \in \mathbb{C}$ escalares. Entonces,

$$(\lambda x + \mu z, y) = \sum_{n \in \mathbb{N}} (\lambda x_n + \mu z_n) \overline{y_n}$$

$$= \sum_{n \in \mathbb{N}} \lambda x_n \overline{y_n} + \mu z_n \overline{y_n}$$

$$= \lambda \sum_{n \in \mathbb{N}} x_n \overline{y_n} + \mu \sum_{n \in \mathbb{N}} z_n \overline{y_n}$$

$$= \lambda (x, y) + \mu (z, y)$$

Podemos separar la serie como trabajamos con límites bien definidos. Luego es lineal en el primer argumento.

ii) Sean $x, y \in l^2(\mathbb{C})$, entonces,

$$\overline{(x,y)} = \overline{\sum_{n \in \mathbb{N}} x_i \overline{y_i}}$$

Terminar ■

■ En $C[0,1] = \{f: [0,1] \to \mathbb{C} \text{ continua}\}$ para $f,g \in C[0,1]$ definimos el producto interno,

$$(f,g) = \int_0^1 f(z)\overline{g(z)}dz$$

Afirmación: El producto interno está bien definido pero C[0,1] es solamente un espacio Euclidiano (no es espacio de Hilbert).

■ En $L^1[0,1]$ falta algo (clase de equivalencia de funciones iguales ctp). Para $f, g \in L^1[0,1]$ definimos el producto interno,

$$(f,g) = \int_0^1 f(x)\overline{g(x)}dx$$

Afirmación: El producto interno está bien definido y $L^1[0,1]$ es un espacio de Hilbert.

Teorema: Sea E un espacio Euclidiano, entonces la completación \overline{E} de E también es Euclidiana y por tanto es un espacio de Hilbert.

Demostración: Demostraremos que el producto interno,

$$(\cdot,\cdot): E \times E \to \mathbb{C}$$

puede ser extendido a \overline{E} . Sean $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ sucesiones de Cauchy en E. Sea x,y los puntos límites de las sucesiones respectivamente en \overline{E} . Definimos,

$$\langle \overline{x}, \overline{y} \rangle = \lim_{n \to \infty} (x_n, y_n)$$

Este límite está bien definido puesto que,

$$|(x_n, y_n) - (x_m, y_m)| \le |(x_n - x_m, y_n)| + |(x_m, y_n - y_m)|$$

$$\le ||x_n - x_m||_E ||y_n||_E + ||x_m||_E ||y_n - y_m||_Y$$

$$\xrightarrow{n, m \to \infty} 0$$

Notemos que a $\overline{x}, \overline{y}$ podemos tomar cualquier sucesión en E que converga ellos. Ahora, $\langle \cdot, \cdot \rangle$ es un producto interno usando álgebra de límites. Por lo tanto \overline{E} es un espacio Euclidiano y por tanto es un espacio de Hilbert.

Definición: Sea E espacio Euclidiano y sea $S \subseteq E$, definimos,

$$S^{\perp} := \{ y \in E : (y, x) = 0 \text{ para todo } x \in S \}$$

Observación: Sea $x \in E$, entonces,

$$\{x\}^{\perp} = \{y \in E : (x,y) = 0\} =: x^{\perp}$$

Observación: Sabemos que $(\cdot,\cdot) \to \mathbb{C}$ es continua y si pensamos en $f_x(y) = (y,x)$ con $y \in E$, entonces $x^{\perp} = f_x^{-1}(0)$ es un subespacio vectorial de E cerrado y ademas,

$$S^{\perp} = \bigcap_{x \in S} x^{\perp}$$

Por lo que S es un subespacio vectorial de E cerrado.

Proposición: Sea E espacio Euclidiano y sea $S \subseteq E$. Definimos F = span(S), entonces,

$$F^{\perp} = S^{\perp}$$

Demostración: Sea $x \in F^{\perp}$, entonces (x,y) = 0 para todo $y \in F$, dado que $S \subseteq F$, entonces (x,y) = 0 para todo $y \in S$, por lo que $F^{\perp} \subseteq S^{\perp}$.

Para demostrar la igualdad notemos que si $x \in S^{\perp}$, entonces (x,y) = 0 con $y \in S$ y si F = span(S), entonces para todo $f \in F$ se puede escribir,

$$f = \sum_{i=1}^{n} c_i s_i$$

donde c_i son escalares, $s_i \in S$ y $n \in \mathbb{N}$. Entonces para $f \in F$ se tiene que,

$$(x,f) = \left(x, \sum_{i=1}^{n} c_i s_i\right) = \sum_{i=1}^{n} \overline{c_i}(x, s_i) = 0$$

Luego $F^{\perp} = S^{\perp}$.

Observación: Si F es un subespacio vectorial de E, entonces,

$$F \cap F^{\perp} = \{0\}$$

Además, si $x \in F$ e $y \in F^{\perp}$, entonces,

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Con la norma inducida por el producto interno. Entonces,

$$F + F^{\perp} \to F$$

$$x + y \mapsto x$$

$$F + F^{\perp} \to F$$

$$x + y \mapsto y$$

En general $F + F^{\perp} \subseteq E$, pero no necesariamente son iguales.

Teorema: Sea E espacio Euclidiano y sea $F \subseteq E$ subespacio vectorial completo, entonces $F \oplus F^{\perp} = E$. Además, $||x_2|| = ||x - x_1|| < ||x - y||$ para todo $y \in F$ distinto de x_1 .

Demostración: Sea $d := \inf_{y \in F} ||x - y||$ y sea $\{y_n\}_{n \in \mathbb{N}} \subseteq F$ tal que,

$$||x - y_n|| < d^2 + \frac{1}{n}$$

Veamos que la sucesión es de Cauchy en F. Por la regla del paralelogramo,

$$||y_n - y_m||^2 = 2||x - y_n||^2 + 2||x - y_m||^2 - \underbrace{||2x - y_n - y_m||^2}_{\geq 4d^2}$$

$$< 2\left(\frac{1}{n} + \frac{1}{m}\right) \xrightarrow{n,m \to \infty} 0$$

Luego dado que F es completo, se tiene que $y_n \to x_1 \in F$. Luego,

$$||x_1 - x||^2 \le d^2$$

Y esto implica que $||x| - x||^2 = d^2$. Ahora definimos $x_2 = x - x_1$, veamos que $x_2 \perp y$ para todo $y \in F$. Supongamos que no, por lo que existe $y \in F$ tal que,

$$(x_2, y) \neq 0$$

Sea $z = (x_2, y)y \in F$, luego se satisface,

$$(x_2, z) = (x_2, (x_2, y)y) = \overline{(x_2, y)}(x_2, y)$$

= $|(x_2, y)|^2 > 0$

Entonces,

$$||x - (x_1 + \varepsilon z)||^2 = ||x_2 - \varepsilon z||^2$$
$$= ||x_2||^2 - 2\varepsilon(x_2, z) + \varepsilon^2 ||z||^2$$

Definition $h(\varepsilon) = ||x - (x_1 + \varepsilon z)||^2$, entonces,

$$h'(\varepsilon)\big|_{\varepsilon=0} = -2(x_2, z) < 0$$

Luego si $\varepsilon > 0$ es suficientemente pequeño se tiene que,

$$||x - (x_1 + \varepsilon z)||^2 < ||x_2||^2 = d^2$$

Lo que contradice la definición de d. Por lo tanto concluimos que $(x_2, y) = 0$ para todo $y \in F$, es decir, $x_2 \in F^{\perp}$. Ahora, si $y \in F$ e $y \neq x_1$, entonces,

$$||x - y||^2 = ||x_1 + x_2 - y||^2 = ||x_2||^2 + ||x_1 - y||^2 > ||x_2||^2 = d$$

si y sólo si $x_1 \neq y$. Esto demuestra la unicidad y cooncluimos el teorema.

Definición: Sea E espacio Eucliando y $F \subseteq E$ subespacio vectorial completo definimos el complemento ortogonal de F por F^{\perp} donde $F \oplus F^{\perp} = E$. Además definimos las proyección ortogonal de F por,

$$P_F: E \to E$$
$$x_1 + x_2 \mapsto x_1$$

donde $x_1 \in F \ y \ x_2 \in F^{\perp}$.

Corolario: Sea E espacio Euclidiano y sea F subespacio vectorial completo. Entonces la proyección es única y $P_F \in B(E)$ tal que,

$$P_F(x) = \begin{cases} x, & x \in F \\ 0, & x \in F^{\perp} \end{cases}$$

La proyección ortogonal además cumple las siguientes propiedades,

- i) $ImP_F = F \ y \ker P_F = F^{\perp}$
- ii) $P_F^2 = P_F \ y \ (I P_F)^2 = I P_F$
- iii) Si $x, y \in E$, entonces,

$$(P_F x, y) = (P_F x, P_F y) = (x, P_F y)$$

iv) Si $F \neq \{0\}$, entonces $||P_F|| = 1$ y si $F \neq E$, entonces $||I - P_F|| = 1$.

Demostrar: Demostremos que es única y que $P_F \in B(X)$. Claramente es única puesto que por definición depende de la suma directa de $F \oplus F^{\perp}$. Veamos que es linea y acotada.

■ Lineal: Sean $x = x_1 + x_2, y = y_1 + y_2 \in E$ donde $x_1, y_1 \in F$ y $x_2, y_2 \in F^{\perp}$, y sean escalares $\lambda, \mu \in \mathbb{C}$. Entonces,

$$P_F(\lambda x + \mu y) = P_F(\underbrace{(\lambda x_1 + \mu y_1)}_{\in F} + \underbrace{\lambda x_2 + \mu y_2}_{\in F})$$

$$= \lambda x_1 + \mu y_1$$

$$= \lambda P_F(x_1 + x_2) + \mu P_F(y_1 + y_2)$$

$$= \lambda P_F(x) + \mu P_F(y)$$

Luego P_F es lineal.

• Acotada: Sea $x = x_1 + x_2 \in E$ donde $x_1 \in F, x_2 \in F^{\perp}$, entonces,

$$||P_F(x)||_E = ||x_1||_E < ||x_1||_E + ||x_2||_E = ||x_1 + x_2||_E = ||x||_E$$

Luego P_F es acotada.

Finalmente se cumple si $x \in F$, entonces x = x + 0 con $0 \in F^{\perp}$, luego $P_F(x) = x$. Y si $x \in F^{\perp}$, entonces x = 0 + x con $0 \in F$, luego $P_F(x) = 0$. Por lo tanto,

$$P_F(x) = \begin{cases} x, & x \in F \\ 0, & x \in F^{\perp} \end{cases}$$

Demostremos las propiedades.

i) Claramente $\text{Im}P_F = F$ y,

$$x \in \ker P_F \Leftrightarrow P_F(x) = 0$$

 $\Leftrightarrow x \in F^{\perp}$

Luego ker $P_F = F^{\perp}$.

ii) Sea $x \in F$, entonces,

$$P_F^2(x) = P_F(x)$$

Y si $x \in F^{\perp}$, entonces,

$$P_F^2(x) = P_F(0) = 0 = P_F(x)$$

Luego $P_F^2 = P_F$. Por otro lado tenemos,

$$(I - P_F)^2 = I - 2P_F + P_F^2 = I - P_F$$

iii) Sean $x = x_1 + x_2, y = y_1 + y_2 \in E$ con $x_1, y_1 \in F$ y $x_2, y_2 \in F^{\perp}$ Entonces,

$$(P_F x, y) = (P_F x, y_1 + y_2)$$

$$= (P_F x, P_F y) + \underbrace{(P_F x, y_2)}_{=0}$$

$$= (P_F x, P_F y)$$

$$= \underbrace{(x_2, P_F y)}_{=0} + (P_F x, P_F y)$$

$$= (x_1 + x_2, P_F y) = (x, P_F y)$$

Demostrando la igualdad.

iv) Supongamos que F no es subespacio trivial. Notemos que,

$$||P_F||_{B(E)} = ||P_F^2||_{B(E)} \le ||P_F||_{B(X)}^2$$

Entocnes $1 \leq \|P_F\|_{B(X)} \leq 1$ y luego $\|P_F\|_{B(E)} = 1$. Ahora supongamos que $F \neq E$, entonces para $x = x_1 + x_2 \in E$ con $x_1 \in F$ y $x_2 \in F^{\perp}$ se tiene que,

$$||(I - P_F)(x)||_E = ||x - P_F x||_E = ||x_2||_E \le ||x_1||_E + ||x_2||_E = ||x||_E$$

Luego $||I - P_F||_{B(E)} \le 1$. Por otro lado,

$$||I - P_F||_{B(E)} = ||(I - P_F)^2||_{B(X)} \le ||I - P_F||_{B(X)}^2$$

Lo que implica que $||I - P_F||_{B(X)} = 1$.

Demostrando el corolario.

Corolario: Sea H espacio de Hilbert y sea $S \subseteq H$ y sea M = span(S), entonces $(S^{\perp})^{\perp} = (M^{\perp})^{\perp} = M$

Demostración: Sabemos que se cumple que,

$$M^{\perp} = S^{\perp}$$

Si H es espacio de Hilbert y dado que M, M^{\perp} son cerrados. Entonces M, M^{\perp} son completos, por lo tanto,

$$M \oplus M^{\perp} = (M^{\perp})^{\perp} \oplus M^{\perp} = H$$

Si además, $M\subseteq (M^\perp)^\perp$, necesariamente se tiene que $(M^\perp)^\perp=M^\perp$.

Teorema de Representación de Riesz: Sea H espacio Hilbert y sea $f \in H^*$, entonces existe un único $x_0 \in H$ tal que,

$$f(x) = (x, x_0)$$

para todo $x \in H$. Además $||f||_{H^*} = ||x_0||_H$.

Observación: La función $(\cdot, x_0): H \to \mathbb{C}$ está en H^* .

Demostración: Si $F \equiv 0$ entonces estamos listo puesto que x_0 es el único que cumple. Supongamos que $f \not\equiv 0$ y sea $M = \ker f$ que es un subespacio vectorial cerrada de H de codimensión 1. Por el teorema del complemento ortogonal existe M^{\perp} el complemento ortogonal de M ($H = M \oplus M^{\perp}$) que tiene dimensión 1.

Luego sea $x_1 \in M^{\perp}$ con $||x_1|| = 1$. Se tiene que,

$$M^{\perp} = \{\lambda x_1 : \lambda \in \mathbb{C}\} \subseteq H$$

Sea $x_0 = \overline{f(x_1)}x_1 \in M^{\perp}$ $(x_0 \neq 0)$. Para todo $x \in H$ se puede escribir,

$$x = y + \lambda x_1$$

donde $y \in M, \lambda \in \mathbb{C}$ y entonces,

$$(x, x_0) = (y + \lambda x_1, \overline{f(x_1)}x_1) = (\lambda x_1, \overline{f(x_1)}x_1)$$

$$= \lambda f(x_1)(x_1, x_1)$$

$$= \lambda f(x_1) \|x_1\|_H^2$$

$$= f(\lambda x_1) = f(y + \lambda x_1) = f(x)$$

Es decir, $f(x) = (x, x_0)$ para todo $x \in H$. La unicidad del x_0 se obtiene viendo que si x_0, x_0^* cumplen esta condición, entonces para todo $x \in H$ se tiene,

$$(x, x_0) = (x, x_0^*) \Leftrightarrow (x, x_0 - x_0^*) = 0$$
 para todo $x \in H$
 $\Leftrightarrow x_0 - x_0^* = 0$

Luego por CS se obtiene que,

$$|f(x)| = |(x, x_0)| \le ||x||_H ||x_0||_H$$

para todo $x \in H$, y entonces $||f||_{H^*} \le ||x_0||_H$. Y por otro lado,

$$||x_0||_H^2 = (x_0, x_0) = f(x_0) \le ||f||_{H^*} ||x_0||_H$$

Probando que $||f||_{H}^{*} = ||x_{0}||_{H}$.

Corolario: Sea H espacios Hilbert. Para todo $y \in H$ definimos $f_y \in M^*$ tal que $f_y(x) = (x, y)$. El mapa,

$$H \mapsto H^*$$

 $y \mapsto f_y$

es una isometría antisomorfo $(f_{\lambda y} = \overline{\lambda} f_y)$. Si H es un espacio de Hilbert sobre \mathbb{R} , el mapa es una isometría isomorfa. $(H = H^*)$

6.2. Operadores Adjuntos II

Retomemos el concepto de un operador adjunto. Sea X un espacio vectorial normado y sea X^* su dual topológico $(X^* = B(X, \mathbb{R}) \text{ o } X^* = B(X, \mathbb{C}))$. Sea $f \in X^*$, entonces tenemos la siguiente notación,

$$f(x) = \langle x, f \rangle_{X \times X^*} = \langle f, x \rangle_{X^* \times X}$$

Donde,

$$\langle \cdot, \cdot \rangle : X \times X^* \to (\mathbb{C} \circ \mathbb{R})$$

Es una forma bilineal (es lineal en cada argumento) si es sobre \mathbb{R} y es antilineal (lineal en el primer argumento) si es sobre \mathbb{C} .

Nota: En algunos casos escribiremos $\langle \cdot, \cdot \rangle$ sin decir donde va X y X^* .

Siguendo esta notación tenemos las siguentes propiedades:

$$\begin{aligned} |\langle x, f \rangle| &\leq ||f||_{X^*} ||x||_X \\ ||f||_{X^*} &= \sup_{\|x\|_X = 1} |\langle x, f \rangle| \\ ||x||_X &= \sup_{\|f\|_{X^*} \leq 1} |\langle x, f \rangle| \end{aligned}$$

Hemos definido $T^* \in B(Y^*, X^*)$ como el operador lineal tal que,

$$T^*: Y^* \to X^*$$
$$g \mapsto T^*(g)$$

con $(T^*(g))(x) = g(T(x))$. Ocupando la notación obtenemos que,

$$g(T(x)) = \langle Tx, g \rangle_{Y \times Y^*} = \langle x, T^*g \rangle_{X \times X^*} = (T^*(g))(x)$$

Por otro lado notemos que el operador adjunto T* es único al estar relacionado directamente con T.

Definición: Definimos el operador adjunto o dual de T^* por $T^{**} = (T^*)^* \in B(X^{**}, Y^{**})$ donde,

$$\langle T^{**}\varphi, g \rangle_{Y^{**}\times Y^*} = \langle \varphi, T^*g \rangle_{X^{**}\times X^*}$$

para todo $g \in Y^*$ y para todo $\varphi \in X^{**}$.

Teorema: Sean X, Y, Z espacios vectoriales normados. Sean $T, T_1, T_2 \in B(X, Y)$ y sea $S \in B(Y, Z)$. Entonces,

- a) $T^* \in B(Y^*, X^*)$ $y ||T^*|| = ||T||$.
- b) Sean λ_1, λ_2 escalares, entonces,

$$(\lambda_1 T_1 + \lambda_2 T_2)^* = \overline{\lambda}_1 T_1^* + \overline{\lambda}_2 T_2^*$$

c) Consideremos la inclusión canónica. Con abuso de notación se cumple que $T^{**}|_X=T$, es decir, $T^{**}x=Tx$ para todo $x\in X$.

- d) $(ST)^* = T^*S^*$.
- e) Si T es invertible $(T^{-1} \in B(Y,X))$. Entonces T^* también es invertible $y(T^*)^{-1} = (T^{-1})^*$

Demostración:

a) Por definición de operador adjunto, se tiene que,

$$|(T^*g)(x)| = |g(Tx)| \le ||g||_{Y^*} ||T|| ||x||_X$$

Luego,

$$||T^*|| = \sup_{\|g\|=1} ||T^*g||$$

 $< ||T||$

Por el corolario de HB se tiene que $||T^*|| \le |T||$ (visto anteriormente), demostrando la igualdad.

b) Usaremos la definición antilineal de $\langle \cdot, \cdot \rangle$. Entonces,

$$\langle (\lambda_1 T_1 + \lambda_2 T_2)^* g, x \rangle_{X^* \times X} = \langle g, (\lambda_1 T_1 + \lambda_2 T_2) x \rangle_{Y^* \times Y}$$

$$= \overline{\lambda}_1 \langle g, T_1 x \rangle_{Y^* \times Y} + \overline{\lambda}_2 \langle g, T_2 x \rangle_{Y^* \times Y}$$

$$= \overline{\lambda}_1 \langle T_1^* g, x \rangle_{Y^* \times Y} + \overline{\lambda}_2 \langle T_2^* g, x \rangle_{Y^* \times Y}$$

$$= \langle (\overline{\lambda}_1 T_1^* + \overline{\lambda}_2 T_2^*) g, x \rangle_{X^* \times X}$$

Por la unicidad del operador adjunto, se tiene que,

$$(\lambda_1 T_1 + \lambda_2 T_2)^* = \overline{\lambda}_1 T_1^* + \overline{\lambda}_2 T_2^*$$

Nota: En el caso real se cumple,

$$(\lambda_1 T_1 + \lambda_2 T_2)^* = \lambda_1 T_1 + \lambda_2 T_2$$

c) La igualdad

$$T^{**}\big|_X = T$$

No está de forma explícita. Cuando hablamos de la igualdad queremos decir que,

$$(T^{**} \circ i_x) = (i_y) \circ T$$

donde $i_x: X \to X^{**}$ y $i_y: Y \to Y^{**}.$ Por definición se tiene que,

$$\langle T^{**} \circ i_x x, g \rangle_{Y^{**} \times Y^*} = \langle T^{**}(i_x((x)), g \rangle_{Y^{**} \times Y^*}$$

$$= \langle i_x(x), T^* g \rangle_{X^{**} \times X^*}$$

$$= \langle x, T^* g \rangle_{X \times X^*}$$

$$= \langle Tx, g \rangle_{Y \times Y^*}$$

$$= \langle (i_y \circ T)(x), g \rangle_{Y^{**} \times Y^*}$$

esto para todo $x \in X$. Concluyendo la igualdad.

d) Por definición se tiene que,

$$\langle (ST)^*g, x \rangle_{X^* \times X} = \langle g, STx \rangle_{Z^* \times Z}$$
$$= \langle S^*g, Tx \rangle_{Y^* \times Y}$$
$$= \langle T^*S^*g, x \rangle_{X^* \times X}$$

Luego por unicidad se tiene que $(ST)^* = T^*S^*$.

e) Si $T^{-1} \in B(Y,X)$ está bien definido, entonces tiene un operador adjunto $(T^{-1})^* \in B(X^*,Y^*)$. Luego por d) se tiene que,

$$T^*(T^{-1})^* = (T^{-1}T)^* = I^* = (TT^{-1})^* = (T^{-1})^*T^*$$

Estudiemos I^* . Por construcción del operador adjunto se tiene que para todo $x \in X$

$$(I^*(g))(x) = g(Ix) = g(x) = (I_{X^*}(g))(x)$$

donde I_{X^*} es la identidad de X^* a X^* . Esto implica que $I^* = I_{X^*}$ y por tanto,

$$T^*(T^{-1})^* = (T^{-1})^*T^* = I_{X^*}$$

Lo que implica el operador adjunto de T es invertible y que $(T^{-1})^* = (T^*)^{-1}$.

Demostrando el teorema. ■

Corolario: Si X es reflexivo, entonces $T^{**} = T$ (con la inyección canónica $X \cong X^{**}$)

6.3. Operadores Adjuntos en Espacios Hilbert

Definición: Sean H, K espacios de Hilbert. Sea $T \in B(H, K)$, definimos el operador adjunto de T por $T^* \in B(K, H)$ que satisface,

$$(Tx,y)_{K\times K} = (x,T^*y)_{H\times H}$$

para todo $x \in H$ y para todo $y \in K$ bajo el producto interno.

Observación: El producto interno $(\cdot, \cdot): H \times H \to (\mathbb{R} \circ \mathbb{C})$ es una forma bilineal si H está definido sobre \mathbb{R} y es Hermitiana si está definido sobre \mathbb{C} . Y la idenficiación,

$$x_0 \in H \to f_{x_0} \in H^*$$

 $x_0 \mapsto (\cdot, x_0)_{H \times H}$

es antilineal si H está definido sobre \mathbb{C} .

Teorema: Sean H, K, W espacios de Hilbert. Sean $T, T_1, T_2 \in B(H, K)$ y $S \in B(K, W)$. Entonces.

- a) $T^* \in B(K, H)$ con $||T^*|| = ||T||$.
- b) Para todo λ_1, λ_2 escalares se tiene que,

$$(\lambda_1 T_1 + \lambda_2 T_2)^* = \overline{\lambda}_1 T_1^* + \overline{\lambda}_2 T_2$$

- c) $(ST)^* = T^*S^*$.
- d) $T^{**} = T$.
- e) Si K = H, entonces,

$$||T||_{B(H)}^2 = ||T^*T||_{B(H)} = ||TT^*||_{B(H)} = ||T^*||_{B(H)}^2$$

Demostración:

a) Sea $y \in K$ y consideremos $f_y(\cdot) = (\cdot, y) \in K^*$. Entonces,

$$f_u(Tx) = (Tx.y)$$

Sea $g: X \to (\mathbb{R} \circ \mathbb{C})$ Por el teorema de representación de Riezs existe un único $u \in H$ tal que g terimar...

b) Sean λ_1, λ_2 escalares, entonces,

$$(x, (\lambda_1 T_1 + \lambda_2 T_2)^* y)_{X \times X} = ((\lambda_1 T_1 + \lambda_2 T_2) x, y)_{Y \times Y}$$

$$= \lambda_1 (T_1 x, y)_{Y \times Y} + \lambda_2 (T_2 x, y)_{Y \times Y}$$

$$= (x, \overline{\lambda}_1 T_1^* y)_{X \times X} + (x, \overline{\lambda}_2 T_2^* y)_{X \times X}$$

$$= (x, (\overline{\lambda}_1 T_1^* + \overline{\lambda}_2 T_2^*) y)_{X \times X}$$

Lo que implica que,

$$(\lambda_1 T_1 + \lambda_2 T_2)^* = \overline{\lambda}_1 T_1^* + \overline{\lambda}_2 T_2^*$$

c) Por definición se tiene que,

$$((ST)^*x, y)_{H \times H} = (x, STy)_{W \times W}$$
$$= (S^*x, Ty)_{K \times K}$$
$$= (T^*S^*x, y)_{H \times H}$$

para todo $x \in W$ e $y \in H$. Luego por unicidad se tiene que $(ST)^* = T^*S^*$.

d) Si $T \in B(H, K)$, entonces $T^* \in B(K, H)$. Tomando el dual de T^* obtenemos que $T^{**} \in B(H, K)$ donde además,

$$(Tx, y)_{Y \times Y} = (x, T^*y)_{X \times X}$$

 $(x, T^*y)_{X \times X} = (T^{**}x, y)_{Y \times Y}$

Luego,

$$((T - T^{**})x, y)_{Y \times Y} = 0$$

para todo $x \in H, y \in K$. Por lo tanto,

$$T^{**}x = Tx$$

para todo $x \in H$.

e) Supongamos que H = K, entonces,

$$||T||_{B(H)}^{2} = \sup_{\|x\|_{H}=1} ||Tx||_{Y}^{2}$$

$$= \sup_{\|x\|_{H}=1} (Tx, Tx)$$

$$= \sup_{\|x\|_{H}=1} (x, T^{*}Tx)$$

$$\leq \sup_{\|x\|_{H}=1} ||T^{*}T\|_{B(H)} ||x||_{H}^{2}$$

$$\leq ||T^{*}T||_{B(X)}$$

Luego,

$$||T||_{B(H)}^2 \le ||T^*T||_{B(H)} \le ||T^*||_{B(H)} ||T||_{B(H)} = ||T||_{B(H)}^2$$

Por lo tanto,

$$||T||_{B(H)}^2 = ||T^*T||_{B(H)}^2$$

Para la otra igualdad basta tomar el adjunto de T^*T .

Demostrando el teorema. ■ terminar demostradion 4/6...

Definición: Sea X espacio vectoria normado y sea X^* el dual topológico. Sea $K \subseteq X$ subconjunto, definimos el aniquilador de K por,

$$K^o := \{ f \in X^* : \langle x, f \rangle_{X \times X^*} = 0 \text{ para todo } x \in K \}$$

Sea $L \subseteq X^*$, definimos el aniquilador de L por,

$$^{o}L := \{x \in X : \langle x, f \rangle_{X \times X^*} = 0 \text{ para todo } f \in L\}$$

Notación: Las notaciones $K^{o,o}L$ también se ocupa para denotar el conjunto polar.

Observación:

i) K^o es subespacio vectorial cerrado de X^* y oL es subespacio vectorial cerrado de X.

ii)
$$K^o = (\operatorname{span}(K))^o = (\overline{\operatorname{span}(K)})^o$$
 y $^oL = ^o(\operatorname{span}(L)) = ^o(\overline{\operatorname{span}(L)})$.

Teorema: Sea X, Y espacio vectorial normado $T \in B(X, Y)$, entonces,

$$\ker T = {}^{o} (ImT^{*})$$
$$ImT = (\ker T^{*})^{o}$$

Demostración: Por definición,

$$\ker T = \{x \in X : Tx = 0\}$$

$$= \{x \in X : \langle Tx, g \rangle = 0 \text{ para todo } g \in Y^*\}$$

$$= \{x \in X : \langle x, T^*g \rangle = 0 \text{ para todo } g \in Y^*\}$$

$$= \{x \in X : \langle x, f \rangle = 0 \text{ para todo } f \in \text{Im}T^*\}$$

$$= {}^{o} (\text{Im}T^*)$$

Similarmente para $\text{Ker}T^* = (\text{Im}T)^o$. Demostrando el teorema.

Observación:

i) Si X es reflexivo, entonces podemos identificar $L \subseteq X^*$ con X con X^{**} canónicamente,

$$L^o_{\subseteq X**} = ^o L_{\subseteq X}$$

ii) Si H es espacio de Hilbert y identificando H con H^* , entonces,

$$L^o = ^o L = L^{\perp}$$

Corolario: Si H, K son espacios de Hilbert y sea $T \in B(H, K)$, entonces,

$$\ker T = (ImT)^{\perp}$$
$$\ker T^* = (ImT)^{\perp}$$

Demostrar...

Observación: En general la imagen de T no es igual a $(\ker T)^{\perp}$ (o bien la imagen de T no es igual al aniquilador de $\ker T$).

Proposición: Se cumple que,

$$\overline{ImT} = o(\ker T^*)$$

Definición: Sea H Hilbert y sea $T \in B(H)$. Decimos que T es Hermitiano o autoadjunto si y sólo,

$$(Tx, y)_{H \times H} = (x, Ty)_{H \times H}$$

para todo $x, y \in H$.

Observación: Si S, T son autoadjunto y conmutan, entonces ST es autoadjunto puesto que,

$$(STx, y)_{H \times H} = (Tx, Sy)_{H \times H} = (x, TSy)_{H \times H} = (x, TSy)_{H \times H}$$

Observación: Si T es autoadjunto, entonces T^n también lo es para todo $n \in \mathbb{N}$. Además, si,

$$||T^2||_{B(H)} = ||T^*T||_{B(H)} = ||T||_{B(H)}^2$$

Entonces para todo $k \in \mathbb{N}$ se tiene que,

$$||T^{2^k}||_{B(H)} = ||T||_{B(H)}^{2^k}$$

Tomando $1 \le n \le 2^k$, entonces,

$$||T^{2^{k}}||_{B(H)} = ||T^{n}T^{2^{n-n}}||_{B(H)}$$

$$\leq ||T^{n}||_{B(H)}||T^{2^{k-n}}||_{B(H)}$$

$$\leq ||T^{n}||_{B(H)}||T||_{B(H)}^{2^{k-n}}$$

$$\leq ||T||_{B(H)}^{2^{k}} = ||T^{2^{k}}||_{B(H)}$$

Luego,

$$||T^n||_{B(H)}||T||_{B(H)}^{2^k-n} = ||T||_{B(H)}^{2^k} \Leftrightarrow ||T^n||_{B(H)} = ||T||^n$$

Probando para todo $n \in \mathbb{N}$.

Observación: Si T es autoadjunto y H es un espacio de Hilbert sobre \mathbb{C} , entonces,

$$(Tx, x)_{H \times H} = (x, Tx)_{H \times H} = \overline{(Tx, x)}_{H \times H}$$

Entonces $(Tx, x) \in \mathbb{R}$ para todo $x \in H$. En particular, podemos definir,

$$H \times H \to \mathbb{C}$$

 $(x,y) \mapsto (Tx,y)_{H \times H} =: \langle x,y \rangle_T$

Entonces,

- i) $\langle \alpha x + \beta z, y \rangle_T = \alpha \langle x, y \rangle_T + \beta \langle z, y \rangle_T$.
- ii) $\langle x, y \rangle_T = \overline{\langle y, x \rangle_T}$

Por lo que es una forma Hermitianda.

Observación: Si $T \in B(H)$ con H espacio de Hilbert, entonces T^*T es autoadjunto y posivo ya que,

$$(T^*Tx, y)_{H\times H} = (Tx, Ty)_{H\times H} = (x, T^*Ty)_{H\times H}$$

y,

$$(T^*Tx, x) = (Tx, Tx) = ||Tx||^2 \ge 0$$

De forma análoga TT^* es autoadjunto y positivo.

Teorema: Sea H espacio de Hilbert sobre \mathbb{C} . Si $T \in B(H)$, entonces existen únicos $T_1, T_2 \in B(H)$ autoadjuntos tales que $T = T_1 + iT_2$.

Demostración: Sea $T \in B(H)$, definimos,

$$T_1 := \frac{1}{2}(T + T^*)$$

 $T_2 := -\frac{1}{2}i(T - T^*)$

Entonces $T_1, T_2 \in B(H)$ son autoadjuntos puesto que,

$$T_1^* = \frac{1}{2}(T^* + T^{**}) = \frac{1}{2}(T + T^*) = T_1$$

$$T_2^* = \frac{1}{2}i(T^* - T^{**}) = -\frac{1}{2}i(T - T^*) = T_2$$

Y además,

$$T_1 + iT_2 = \frac{1}{2}(2T) = T$$

Probando que existen T_1, T_2 autoadjuntos. Demostremos unicidad. Supongamos que $S_1, S_2 \in B(H)$ son autoadjuntos tales que,

$$T = T_1 + iT_2 = S_1 + iS_2$$

Entonces,

$$(T_1 - S_1) + i(T_2 - S_2) = 0$$

En particular $T_1 - S_1, T_2 - S_2$ son autoadjuntos y entonces,

$$S_1 + iS_2 = 0 = 0^* = (S_1 + iS_2)^* = S_1 - iS_2$$

Por lo tanto $S_1 = S_2 = 0$. Demostrando el teorema.

6.4. Ejemplos Operadores Autoadjuntos

Ejemplo: Sea H espacio de Hilbert y sea $M \subseteq H$ subespacio vectorial cerrado. Entonces se cumple que $H = M \oplus M^{\perp}$ y podemos definir la proyección $P_M : H \to H$, entonces se cumple que,

$$H = \ker P_M \oplus (\ker P_M)^{\perp}$$
$$= \operatorname{Im} P_M \oplus (\operatorname{Im} P_M)^{\perp}$$

Donde además se cumple que,

$$(P_M x, y)_{H \times H} = (x, P_M y)_{H \times H} = (P_M x, P_M y)_{H \times H}$$

Entonces P_M es un operador autadjunto.

Ejemplo: Sea $\varphi \in C[0,1]$ ($\varphi : [0,1] \to \mathbb{C}$ continua). Definimos el operador multiplicación e L^2 de φ por,

$$T_{\varphi}: L^2[0,1] \to L^2[0,1]$$

 $f \mapsto T_{\varphi}(f)$

donde,

$$T_{\varphi}(f)(t) = f(t)\varphi(t)$$

para todo $t \in [0,1]$. Este es un operador lineal acotado $T_{\varphi} \in B(L^2)$ y en $L^2[0,1]$ definimso el producto interno,

$$(f,g) = \int_0^1 f(t)\overline{g(t)}dt$$

con $f, g \in L^2[0, 1]$. Entonces tenemos que,

$$(T_{\varphi}(f), g) = \int_{0}^{1} f(t)\varphi(t)\overline{g(t)}dt$$
$$= \int_{0}^{1} f(t)\overline{\overline{\varphi(t)}}g(t)dx$$
$$= (f, T_{\overline{\varphi}}(g))$$

Por lo tanto,

$$T_{\varphi}^* = T_{\overline{\varphi}}$$

Afirmación: T_{φ} es autoadjunto si y sólo si φ es una función real y T_{φ} es positivo, es decir, $(T_{\varphi}f, f) \geq 0$ si y sólo si $\varphi \geq 0$.

Ejemplo: Sea $H = l^2(\mathbb{N})$ donde $x = (x_1, x_2, \cdots) \in l^2(\mathbb{N})$ si y sólo si $\sum_{n \in \mathbb{N}} |x_n|^2 < \infty$ con $x_n \in \mathbb{C}$. Definimos el producto interno,

$$(x,y) = \sum_{n \in \mathbb{N}} x_n \overline{y}_n$$

Sea $T: H \to H$ el Shift a la derecha, es decir,

$$x = (x_1, x_2, \cdots) \stackrel{T}{\mapsto} Tx = (0, x_1, x_2, \cdots)$$

Entonces T es lineal acotado, es decir, $T \in B(H)$. Entonces, ¿cuál es el operador adjunto de T? Por definición es $T^*: H \to H$ lineal acotado tal que,

$$(Tx,y) = \sum_{n \in \mathbb{N}} x_n \overline{y_{n+1}} = (x, T^*y)$$

Por lo tanto podemos pensar en,

$$y = (y_1, y_2, \cdots) \stackrel{T^*}{\mapsto} T^* y = (y_2, y_3, \cdots)$$

Es decir, T^* es el Shift a la izquierda.

Observación: Notemos que,

$$||T||_{B(H)} = ||T^*||_{B(H)} = 1$$

Y que $T^*T = I$. Sin embargo $TT^* \neq I$ puesto que si tomamos $x = (x_1, x_2, \cdots)$ con $x_1 \neq 0$, entonces,

$$TT^*x = (0, x_2, \cdots)$$

11/6/2025

Teorema: Sea H espacio de Hilbert y sea $P \in B(H)$ autoadjunto de proyección (es decir $P^2 = P = P^*$). Entonces M = ImP es cerrado y P es la proyección ortogonal de M.

Demostración: Como P es autoadjunto, entonces,

$$\ker P = (\operatorname{Im} P^*)^{\perp} = \operatorname{Im} P$$

Entonces,

$$H = \ker P \oplus \operatorname{Im} P$$

Entonces $M = \operatorname{Im} P$ es cerrado y por lo tanto P es la proyección ortogonal sobre $M \blacksquare$

Definición; Sea H espacio de Hilbert y sea $T \in B(H)$. Entonces diremos que T,

- i) es normal si $T^*T = TT^*$.
- ii) es unitario si T es invertible y $T^{-1} = T^*$.

Teorema: Sea H espacio de Hilbert. Sea $T \in B(H)$.

- i) T es normal si y sólo si $||Tx||_H = ||T^*x||_H$ para tood $x \in H$.
- ii) Si T es normal, entonces,

$$||T^n||_{B(H)} = ||T||_{B(H)}^n$$

 $\ker T = \ker T^* = (ImT)^{\perp} = (ImT^*)^{\perp}$

Demostración:

i) Para $x \in H$ notemos que,

$$||Tx||_H^2 - ||T^*x||_H^2 = (Tx, Tx) - (T^*x, T^*x)$$
$$= (T^*Tx, x) - (TT^*x, x)$$
$$= ((T^*T - TT^*)x, x) = 0$$

Luego T es normal si y sólo si $||Tx||_H = ||T^*x||_H$ para todo $x \in H$.

Observación: T es normal si y sólo si T, T^* conmutan.

ii) Si T es normal, entonces Tx = 0 si y sólo si $T^*x = 0$, entonces,

$$(\operatorname{Im} T^*)^{\perp} = \ker T = \ker T^* = (\operatorname{Im} T)^{\perp}$$

Como T^*T es autoadjunto,

$$||(T*T)^n|| = ||T^*T||^n = (||T||^2)^n = ||T||^{2n}$$

Luego,

$$||T||^{2n} = ||(T^*T)^n||$$

$$= ||(T^*)^n T^n||$$

$$\leq ||(T^*)^n|||T^n||$$

$$\leq ||T^n|||T^*||^n$$

$$\leq ||T^*||^n||T||^n$$

$$\leq ||T||^{2n}$$

Entonces por sandwich se tiene que,

$$||T^n|| = ||T||^n$$

Demostrando el teorema.

Corolario: Sea H espacio de Hilbert. Sea $P \in B(H)$ tal que $P^2 = P$ donde P es normal. Entonces M = ImP es cerrado y P es la proyección ortogonal sobre M.

Demostración: Si P es normal, entonces $\ker P = (\operatorname{Im} P)^{\perp}$, entonces podemos escribir,

$$H = \ker P \oplus \operatorname{Im} P$$

De aquí concluimos que ${\rm Im} P$ es cerrado y que P es proyección sobre ${\rm Im} P$.

Teorema: Sea H espacio de Hilbert y sea $U \in B(H)$ tal que ImU = H. Entonces son equivalentes,

- i) U es unitario.
- ii) U es una isometría,

$$||Ux||_H = ||x||_H$$

para todo $x \in H$.

iii) U preserva el producto interno, es decir,

$$(Ux, Uy) = (x, y)$$

para todo $x, y \in H$.

Demostración:

• ii) \Leftrightarrow iii): Si U preserva el producto interno, entonces U es isometría. Para la otra dirección usamos la identidad de polarización, notemos que para todo $x, y \in H$ se cumple que,

$$\begin{aligned} 4(x,y) &= \|x+y\|_H^2 - \|x-y\|_H^2 + i\|x+iy\|_H^2 - i\|x-iy\|_H^2 \\ &= \|U(x+y)\|_H^2 - \|U(x-y)\|_H^2 + i\|U(x+iy)\|_H^2 - i\|U(x-iy)\|_H^2 \\ &= \|U(x) + U(y)\|_H^2 - \|U(x) - U(y)\|_H^2 + i\|U(x) + iU(y)\|_H^2 - i\|U(x) - iU(y)\|_H^2 \\ &= 4(Ux, Uy) \end{aligned}$$

Entonces (Ux, Uy) = (x, y).

• i) \Rightarrow iii): Si U es unitario, entonces,

$$(Ux, Uy) = (x, U^*Uy) = (x, y)$$

para todo $x, y \in H$.

• iii), ii) \Rightarrow i): Notemos que por iii) se tiene que para todo $x, y \in H$ se tiene,

$$(x,y) = (Ux, Uy) = (U^*Ux, y)$$

Lo que implica que $U^*U = I$. Entonces necesariamente U es inyectiva y por hipótesis, U es sobrevectiva, entonces $U^{-1} \in \mathcal{L}(H)$. Ahora por ii) se tiene,

$$||Ux||_H = ||x||_H \Leftrightarrow ||U^{-1}y||_H = ||y||_H$$

con Ux = y. Lo que implica que U^{-1} es acotado y luego $U^{-1} \in B(H)$. Finalmente si U es invertible, entonces U^* tambíen donde además $(U^*)^{-1} = (U^{-1})^*$, por lo que,

$$U^*=U^{-1} \ \text{y} \ UU^*=I$$

Por lo tanto U es unitario.

Demostrando el teorema. ■

Tenemos el teorema de que si T es invertible, entonces T^* es invertible, pero ¿cuándo se cumple que si T^* es invertible, entonces T es invertible?

Definición: Decimos que $T \in B(X,Y)$ es acotado por debajo si existe $\varepsilon > 0$ tal que ,

$$||Tx||_Y \ge \varepsilon ||x||_X$$

para todo $x \in X$.

Teorema: Sea X espacio Banach y sea Y espacio vectorial normado. Sea $T \in B(X,Y)$. Entonces T es invertible (T^{-1} existe y $T^{-1} \in B(Y,X)$) si y sólo si ImT denso en Y y T es acotado por abajo.

Demostración: Supongamos que T es invertible, entonces $\mathrm{Im} T=Y$ y si $T^{-1}\in B(Y,X),$ entonces,

$$||T^{-1}y||_X \le c||y||_Y \Leftrightarrow \frac{1}{c}||x||_X \le ||Tx||_Y$$

Probemos la otra dirección. Sea T acotado por abajo con imagen denso en Y. Entonces si $x, y \in X$ son tales que Tx = Ty, entonces,

$$||x - y||_X \le c||T(x - y)|| = 0$$

De forma que T es invectivo.

Probemos que es sobreyectiva, sea $Z = \operatorname{Im} T$, entonces $T^{-1} \in \mathcal{L}(Z,X)$ y si Z es denso en Y entonces para todo $y \in Y$ existen una sucesiones $\{z_n\}_{n \in \mathbb{N}}$ en Y y $\{x_n\}_{n \in \mathbb{N}}$ en X tales que $z_n \to y$ y con $Tx_n = z_n$. En particular,

$$||z_n - z_m||_Y = ||Tx_n - Tx_m||_Y$$

$$= ||T(x_n - x_m)||_Y$$

$$\ge ||x_n - x_m||_X$$

Entonces $\{x_n\}_{n\in\mathbb{N}}$ es un sucesión de Cauchy en X, por lo que existe $x\in X$ tal que $x_n\to x$ y si $T\in B(X,Y)$, entonces,

$$y \stackrel{n \to \infty}{\longleftarrow} z_n = Tx_n \stackrel{n \to \infty}{\longrightarrow} Tx$$

Por unicidad de límites se tiene que Tx = y y por lo tanto ImT = Y. Finalmente T es invertible y $T^{-1} \in \mathcal{L}(Y, X)$. Como T es acotado por abajo, se tiene que,

$$||T^{-1}||_{B(Y,X)} \le \frac{1}{\varepsilon}$$

Por lo tanto $T^{-1} \in B(Y, X)$.

Teorema: Sea X espacio Banach y sea Y espacio vectorial normado tal que $T \in B(X,Y)$. Entonces T invertible si y sólo si T^* es invertible.

Demostración: Si T es invertible, entonces T^* es invertible.

Supongamos que T* es invertible. Probemos que T es acotado por abajo y que su imagen es deno en Y.

Notemos que $\{0\} = \ker T^* = (\operatorname{Im} T)^o$, luego $\operatorname{Im} T$ es denso en Y por HB. Sea $x \in X$ y sea $f \in X^*$ tal que $||f||_{X^*} = 1$ y $\langle x, f \rangle = ||x||$. Luego,

$$||x||_{X} = \langle x, f \rangle$$

$$= \langle x, T^{*}(T^{*})^{-1} f \rangle$$

$$= \langle Tx, (T^{*})^{-1} f \rangle$$

$$\leq ||Tx||_{Y} ||(T^{*})^{-1} f||_{X^{*}}$$

$$\leq ||Tx||_{Y} ||(T^{*})^{-1} ||_{B(X^{*}, Y^{*})} ||f||_{X^{*}}$$

$$= ||Tx||_{Y} ||(T^{*})^{-1} ||_{B(X^{*}, Y^{*})}$$

Es decir,

$$||Tx||_Y \ge \frac{1}{||(T^*)^{-1}||} ||x||$$

para todo $x \in X$. Por lo tanto T es acotado por abajo y por lo tanto T es invertible.

Observación: Si ImT = Z no es denso en Y, en ese caso existe $\rho \in Y^*$ no nulo tal que,

$$\overline{Z}\subseteq \ker \rho$$

Luego $\langle x, T^*\rho \rangle = \langle Tx, \rho \rangle = 0$ para todo $x \in X$. Entonces $T^*\rho = 0$ luego T^* no es invertible.

Lema: $Si\ T^*$ es acotado por debajo, entonces ImT denso en Y.

Teorema: Sen X espacio Banach e Y espacio vectorial normado. Sea $T \in B(X,Y)$, entonces son equivalentes,

- i) T invertible.
- ii) T^* invertible.
- c) ImT denso en Y y T es acotado por abajo.
- d) $T \ y \ T^* \ son \ acotados \ por \ abajo.$

7. Sistemas Ortonormales

Definición: Sea E un espacio Euclidiano. Sea $S \subseteq E$ no vacío. Entonces,

- i) Diremos que S es ortogonal si (x,y) = 0 para todo $x,y \in S$.
- ii) Diremos que es ortonormal si es ortogonal y además $||x||_E = 1$ para todo $x \in S$.
- iii) Diremos que S es fundamental o total si es ortogonal tal que,

$$\overline{span(S)} = E$$

- iv) Diremos que S es un conjunto ortonormal (sistema ortonormal) completo si es maximal.
- v) Un sistema ortonormal completo se llama base ortonormal.

Teorema: Sea E espacio Euclidiano y sea $S \subseteq E$ ortonormal. Entonces,

- i) Si S es fundamental, entonces S es completo.
- ii) Si E es espacio de Hilbert y S es completo, entonces S es es fundamental.

Demostración: Sea E espacio Euclidiano.

i) Si S es fundamental, entonces,

$$S^{\perp} = (\overline{\operatorname{span}(S)})^{\perp} = E^{\perp} = \{0\}$$

Por lo tanto S es maximal y luego es fundamental.

ii) Si S es maximal, entonces $M = \overline{\text{span}(S)}$ es el elemento maximal. Luego,

$$S^{\perp} = \{0\} = M^{\perp}$$

Como estamos en un espacio de Hilbert se tiene que,

$$M = (M^{\perp})^{\perp} = E$$

Por lo tanto S es fundamental.

Demostrando el teorema.

7.1. Algoritmo de Gram-Schmidt

Teorema: Sea E espacio Euclidiano. Sea x_1, x_2, \cdots una secuencia de elementos linealmente independientes en E. Entonces existe y_1, y_2, \cdots una secuencia ortonormal de E tal que,

$$span(\{x_1, x_2, \cdots, x_n\}) = span(\{y_1, y_2, \cdots, y_n\})$$

para todo $n \in \mathbb{N}$.

Demostración: Para $k \in \mathbb{N}$ definimos,

$$M_k := \operatorname{span}\{x_1, \cdots, x_k\}$$

que es subespacio cerrado de E de dimensión finita (también definimos $M_0 = \{0\}$). Definimos,

$$z_{k+1} := x_{k+1} - P_{M_k} x_{k+1}$$

para todo $k \ge 0$, que es distinto de 0 como los x_k son linealmente independientes. Además,

$$z_{k+1} \perp M_k$$
 y span $\{\{x_1, \dots, x_k\} \cup \{z_{k+1}\}\} = M_k$

Finalmente tomamos $y_k := z_k/\|z_k\|$ obteniendo lo pedido.

Observación: Si $\{y_1, \dots, y_k\}$ es una base ortonormal de M_k para todo $x \in E$ se tiene que,

$$P_{M_k}x = \sum_{j=1}^k (x, y_j)y_j$$

Puesto que,

$$\left(x - \sum_{j=1}^{k} (x, y_j)y_j, y_i\right) = 0$$

para todo $i = 1, \dots, k$, es decir,

$$\left(x - \sum_{j=1}^{k} (x, y_j) y_j\right) \perp M_k$$

revissar

Nota: Abreviaremos por GS cuando usemos Gram-Schmidt.

Teorema:

- a) Si E es un espacio Euclidiano separable (tiene un subconjunto denso y numerable), entonces E admite una sucesión ortonormal fundamental.
- b) Si E es un espacio Euclidiano, entonces todo conjunto ortonormal está contenido en un sistema ortonormal maximal.

Demostración:

a) Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión densa en E. Podemos tomar la sucesión de tal forma que sea linealmente independiente, si existe un x_n que es combinación de otros elementos de la sucesión, entonces lo quitamos y dejamos los otros (esto se puede hacer dado que E es de dimensión finita). Luego,

$$E = \overline{\operatorname{span}(\{x_n : n \in \mathbb{N}\})}$$

Sea $\{y_n\}_{n\in\mathbb{N}}$ la sucesión ortonormal obtenida por GS a partr de $\{x_n\}_{n\in\mathbb{N}}$. Luego,

$$\operatorname{span}\{y_k : k \in \mathbb{N}\} \supseteq \{x_k : k \in \mathbb{N}\} = E$$

Luego la sucesión de los y_k es un sistema ortonormal maximal.

b) Sea S_0 un conjunto ortonormal, definimos,

$$\Sigma := \{ S \text{ sistema ortonormal que contiene a } S_0 \}$$

Y consideremos el orden parcial de inclusión. Si $\Sigma' \subseteq \Sigma$ es una cadena (subconjunto totalmente ordenado), entonces,

$$S' = \bigcup_{S \in \Sigma'} S$$

es una cota superior de Σ' en Σ . Luego por el lema de Zorn, existe \hat{S} elemento maxima en Σ y por tanto \hat{S} es un sistema ortonormal maximal que contiene a S_0 .

Demostrando el teorema. ■

Clase 18/6/2025

7.2. Ejemplos de Sistemas Ortonormales

Ejemplo: En l^2 definimos,

$$(x,y) = \sum_{n \in \mathbb{N}} x_i \overline{y_i}$$

Sabemos que este es un espacio de Hilbert y la coleción $\{e_i : i \in \mathbb{N}\}$ donde e_i es el elemento con solo un elemento no nulo en la componente i. Luego este es una base ortonormal.

Ejemplo En $C([0,2\pi]) = \{f : [0,2\pi] \to \mathbb{C} \text{ continuas} \}$. Tenemos el producto interno,

$$(f,g) = \frac{1}{2\pi} \int_0^{2\pi} f(z) \overline{g(z)} dz$$

Luego tenemos un espacio Euclidiano. Definimos la familia $\{e^{int} : n \in \mathbb{Z}\}$, entonces este es una familia ortonormal,

$$(e^{int}, e^{imt}) = \frac{1}{2\pi} \int_0^{2\pi} e^{int} \overline{e^{imt}} dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-m)t} dt$$
$$= \begin{cases} 0, & n \neq m \\ 1, & n = m \end{cases}$$

Además, por Stone-Weierstrass,

$$\overline{\operatorname{span}\{e^{int}:n\in\mathbb{Z}\}}^{\|\cdot\|_{\infty}}=C([0,2\pi])$$

Υ,

$$||f - g||_{L^2} \le ||fg||_{\infty}$$

Entonces es un sistema ortonormal fundamental, más aún, si $L^2([0,2\pi])$ es la completación de $C([0,2\pi])$ terminar...

Ejemplo: En C([-1,1]) la familita $\{1,t,t^2,\cdots\}$ es linealmente independientes con,

$$(f,g) = \int_{-1}^{1} f(x)\overline{g(x)}dx$$

y su span es denso, entonces por GS obtenemos una familia $\{y_1, y_2, \dots\}$ de polinomios ortonormales y forman un sistema ortonormal fundamental de C([-1, 1]) con,

$$y_n = P_n(t) = \frac{1}{2^n n!} D^n[(t^2 - 1)^n]$$

donde D es el operador derivada.

Teorema: Sea $\{\varphi_n\}_{n\in\mathbb{N}}$ un sistema ortonormal en el espacio de Hilbert H y sea $\{c_n\}_{n\in\mathbb{N}}$ una sucesión de escalares (en \mathbb{R} o en \mathbb{C}), luego,

$$\sum_{n \in N} c_n \varphi_n$$

converge en H si y sólo si la serie,

$$\sum_{n\in\mathbb{N}} |c_n|^2$$

converge (en \mathbb{R} o en \mathbb{C}).

Demostración: Sea $x_n = c_1 \varphi_1 + \cdots + c_n \varphi_n$, entonces por pitágoras se tiene que,

$$||x_n||_H^2 = \sum_{k=1}^n ||c_k \varphi_k||^2 = \sum_{k=1}^n |c_k|^2$$

Luego para m > n con $m, n \in \mathbb{N}$ se tiene,

$$||x_m - x_n||^2 = \sum_{k=m+1}^m |c_k|^2 = \left| \sum_{k=1}^n |c_k|^2 - \sum_{k=1}^m |c_k|^2 \right|$$

Entonces, $\{x_n\}_{n\in\mathbb{N}}$ converge si y sólo si $\{x_n\}_{n\in\mathbb{N}}$ es de Cauchy en H, y esto es si y sólo si,

$$\left\{ \sum_{k=1}^{n} |c_k|^2 \right\}_{n \in \mathbb{N}}$$

es Cauchy (en \mathbb{R} o en \mathbb{C}) y esto es equivalente a decir que,

$$\sum_{n\in\mathbb{N}} |c_n|^2$$

converge. Como queriamos demostrar.

Observación: Del teorema anterior se puede concluir que,

$$\left\| \sum_{n \in \mathbb{N}} c_n \varphi_n \right\|^2 = \sum_{n \in \mathbb{N}} |c_n|^2$$

Teorema: Sea H espacio de Hilbert y sea $\{\varphi_n\}_{n\in\mathbb{N}}$ sistema ortonormal. Sea $M:=\overline{span(\{\varphi_n\})}$, entonces para todo $x,y\in H$ se tiene que,

i)
$$\sum_{n\in\mathbb{N}}(x,\varphi_n)\varphi_n=P_Mx$$
.

ii)
$$\sum_{n \in \mathbb{N}} |(x, \varphi_n)|^2 = ||P_M x||_H^2 \le ||x||_H^2$$
.

- iii) $\sum_{n\in\mathbb{N}}(y,\varphi_n)\overline{(x,\varphi_n)}=(P_Mx,P_My)=(x,P_My)=(P_Mx,y).$
- iv) Si $\{c_n\}_{n\in\mathbb{N}}$ es una sucesión de reales tal que $\sum_{n\in\mathbb{N}} |c_n|^2 < \infty$, entonces existe un único $u\in M$ tal que $c_n=(u,\varphi_n)$ para todo $n\in\mathbb{N}$ y,

$$u = \sum_{n \in \mathbb{N}} c_n \varphi_n$$

Definición: Sea H espacio de Hiblert y sea $\{\varphi_n\}_{n\in\mathbb{N}}$ sistema ortonormal. Si $u\in H$, entonces,

$$c_n := (u, \varphi_n)$$

son los coeficientes de Fourier de u con respecto a $\{\varphi_n\}_{n\in\mathbb{N}}$.

Demostración:

i) Sea $x_n = \sum_{k=1}^n (x, \varphi_k) \varphi_k$, luego,

$$(x - x_n, \varphi_j) = 0$$

para todo $j=1,\cdots,m$. Entonces $x_n\in \operatorname{span}\{\varphi_1,\cdots,\varphi_n\}$. y $x=x_n+(x-x_n)$ donde $x_n\perp (x-x_n)$, luego por pitágoras,

$$||x||_H^2 = ||x_n||_H^2 + ||x - x_n||_H^2$$
$$\ge ||x_n||_H^2 = \sum_{k=1}^n |(x, \varphi_k)|^2$$

Como la serie,

$$\sum_{n\in\mathbb{N}\}} |(x,\varphi_n)|^2$$

converge en \mathbb{R} , entonces $\widetilde{x} = \sum_{n \in \mathbb{N}} (x_n, \varphi_n) \varphi_n$ converge en H y para todo $k \in \mathbb{N}$ se tiene que,

$$(x - \widetilde{x}, \varphi_k) = \lim_{n \to \infty} (x - x_n, \varphi_k) = 0$$

Entonces $x - \widetilde{x} \perp M$ y por lo tanto $\widetilde{x} = P_m x$.

ii) Por el indice anterior,

$$||P_M x||_H^2 = ||\widetilde{x}||_H^2 = \sum_{n \in \mathbb{N}} |(x, \varphi_n)|^2$$

y como $||P_Mx||_H \le ||x||_H$ se obtiene lo pedido.

iii) Sean $x, y \in H$. Sean,

$$x_n = \sum_{k=1}^n (x, \varphi_n) \varphi_n \xrightarrow{n \to \infty} P_M x$$
$$y_n = \sum_{k=1}^n (y, \varphi_n) \varphi_n \xrightarrow{n \to \infty} P_M y$$

Entonces,

$$(x, P_M y) = (P_M x, y) = (P_M x, P_M y)$$

$$= \lim_{n \to \infty} (x_n, y_n)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^n (x, \varphi_n) \varphi_n, \sum_{k=1}^n (y, \varphi_n) \varphi_n \right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^n (x, \varphi_k) \overline{(y, \varphi_k)}$$

$$= \sum_{n \in \mathbb{N}} (x, \varphi_n) \overline{(y, \varphi_n)}$$

iv) Si la serie,

$$\sum_{n\in\mathbb{N}} |c_n|^2$$

converge, entonces,

$$u := \sum_{n \in \mathbb{N}} c_n \varphi_n$$

existe en H y en particular,

$$\lim_{n \to \infty} \sum_{k=1}^{n} c_k \varphi_k$$

y,

$$(u, \varphi_j) = \lim_{n \to \infty} \left(\sum_{k=1}^n c_k \varphi_k, \varphi_j \right) = c_j$$

para todo $j \in \mathbb{N}$. Para la unicidad se verifica si $v \in H$ es tal que $(v, \varphi_k) = c_k$ para todo $k \in \mathbb{N}$, entonces,

$$v = P_m v = \sum_{n \in \mathbb{N}} (v, \varphi_n) \varphi_n$$
$$= \sum_{n \in \mathbb{N}} c_n \varphi_n = u$$

Demostrando el teorema. ■

Corolario: Sea E espacio Euclidiano, sea $\{\varphi_n\}_{n\in\mathbb{N}}$ sistema ortonormal. Entonces para todo $x\in E$,

$$\sum_{n \in \mathbb{N}} |(x, \varphi_n)|^2 \le ||x||_E^2$$

Si ahora tenemos un espacio de Hilbert H, entonces para todo $x, y \in H$ se tiene que,

$$\sum_{n \in \mathbb{N}} |(x, \varphi_n)|^2 = ||x||_H^2$$
$$\sum_{n \in \mathbb{N}} (x, \varphi_n) \overline{(y, \varphi_n)} = (x, y)$$

Demostración ¿?

Teorema: Sea H espacio de Hilbert separable, sea $\{\varphi_n\}_{n\in\mathbb{N}}$ base ortonormal de H, entonces el mapa,

$$H \to l^2$$

 $x \in H \mapsto \hat{x} := \{(x, \varphi_n)\}_{n \in \mathbb{N}} \in l^2$

Es una isometría lineal de H en l^2 que preserva el producto interno $(x,y)_H = (\hat{x},\hat{y})_{l^2}$. Es más, todo H separable de dimensión infinita es isometricamente isomorfo a l^2 . Si H es de dimensión n, entonces $H \cong \mathbb{R}^n$.

Teorema: Sea H espacio de Hilbert, existe $\Gamma = \{\varphi_n\}_{n \in \mathbb{N}}$ sistema ortonormal/fundamental/completo y para todo $x \in H$ tal que,

$$||x||_H^2 = \sum_{n \in \mathbb{N}} |(x, \varphi_n)|^2$$

$$Y(H,(\cdot,\cdot)) \cong (l^2(\Gamma),(\cdot,\cdot)_{l^2(\Gamma)}).$$

Ayudantías

Ayudantía 1

Solución P1: Usaremos la noción de que las topologías inducidas por un espacio métrico están dadas por las bolas abiertas de estas.

• i) implica ii): Sea $O \in \tau_Y$ abierto. Demostremos que $f^{-1}(O)$ es abierto en el sentido métrico. Sea $x_0 \in f^{-1}(O)$, luego $f(x_0) \in O$. Si O es abierto, entonces existe $\varepsilon > 0$ tal que,

$$f(x_0) \in B_2(f(x_0), \varepsilon) \subseteq O$$

$$\Leftrightarrow$$

$$x_0 \in f^{-1}(B_2(f(x_0), \varepsilon)) \subseteq f^{-1}(O)$$

Por continuidad de f para tal $\varepsilon > 0$ existe $\delta > 0$ tal que si $y \in B_1(x_0, \delta)$, entonces $f(y) \in B_2(f(x_0, \varepsilon))$, o mejor dicho,

$$y \in B_1(x_0, \delta) \Rightarrow y \in f^{-1}(B_2(f(x_0), \varepsilon))$$

Por lo tanto,

$$x_0 \in B_1(x_0, \delta) \subseteq f^{-1}(B_2(f(x_0), \varepsilon)) \subseteq f^{-1}(O)$$

Lo que implica que para todo $x_0 \in f^{-1}(O)$ podemos encontrar una bola abierta de τ_X que contiene a x_0 y que está incluido en $f^{-1}(O)$, es decir, $f^{-1}(O)$ es abierto en τ_X . Probando lo que queriamos demostrar.

- ii) implica iii): Sea $F \subseteq Y$ cerrado. Luego F^c es abierto en τ_Y , entonces $f^{-1}(F^c)$ es abierto. Si $(f^{-1}(F^c)^c = f^{-1}(F)$, entonces $f^{-1}(F)$ es cerrado, como se quería demostrar.
- iii) implica i): Demostraremos que f es continua en un punto arbitrario $x_0 \in X$. Sea $\varepsilon > 0$ y consideremos la bola abierta,

$$B_2 := B_2(f(x_0), \varepsilon) \in \tau_Y$$

Notemos que B_2^c es cerrado, luego por iii) se tiene que $f^{-1}(B_2)^c$ es cerrado. Tomando el complemento, obtenemos que $f^{-1}(B_2)$ es abierto en τ_X . Si $x_0 \in f^{-1}(B_2)$, entonces existe $\delta > 0$ tal que,

$$x_0 \in B_1(x_0, \delta) \subseteq f^{-1}(B_2(f(x_0), \varepsilon))$$

Por lo tanto, si $x \in B_1(x_0, \delta)$, entonces,

$$x \in f^{-1}(B_2(f(x_0), \varepsilon)) \Leftrightarrow f(x) \in B_2(f(x_0), \varepsilon)$$

Dicho de otra forma, para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $d_1(x, x_0) < \delta$, entonces $d_2(f(x), f(x_0)) < \varepsilon$, que es la definición de que f sea continua en $x_0 \in X$.

Aplicando este argumento para todo punto deX, se concluye que f es continua en X.

Solución P2: Notemos que $(F, \tau|_{\tau})$ es espacio topológico bien definido. Sea $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ cubrimiento abierto de F, es decir,

$$F \subseteq \bigcup_{\gamma \in \Gamma} U_{\gamma}$$

Si F es cerrado, entonces F^c es abierto, ahora consideremos la colección $\{U_{\gamma} \cup F^c\}_{\gamma \in \Gamma}$, el cual es cubrimiento abierto de X.Como X es compacto, existe una colección finita de abiertos $\{U_{\gamma_i} \cup F^c\}_{i=1}^n$ que cubre a X, por lo que también cubre a F,

$$F \subseteq \bigcup_{i=1}^{n} (U_{\gamma_i} \cup F^c)$$

Como $F \cap F^c = \emptyset$, entonces se concluye que,

$$F \subseteq \bigcup_{i=1}^{n} U_{\gamma_i}$$

Es decir, F es compacto.

Observación: Sea (X, τ) espacio topológico compacto. Entonces $F \subseteq X$ es compacto si y sólo si F es cerrado.

Solución P3:

a) Tenemos los espacios topológicos $(X, \tau_{\|\cdot\|_1}), (X, \tau_{\|\cdot\|_2})$ donde las topologías tienen por base las bolas definidas en su respectiva norma. Queremos demostrar que si O es un abierto en $\tau_{\|\cdot\|_2}$, entonces O es abierto $\tau_{\|\cdot\|_1}$.

Recordemos que O es abierto métricamente en $\tau_{\|\cdot\|_2}$ si y sólo si para todo $x \in O$ existe un abierto V tal que,

$$x \in V \subseteq O$$

En particular, podemos tomar r > 0 tal que,

$$x \in B_{\|\cdot\|_2}(x,r) \subseteq O$$

Observemos que,

$$B_{\|\cdot\|_1}(x, r/c_1) = \{ y \in X : \|x - y\|_1 < r/c_2 \} \subseteq B_{\|\cdot\|_2}(x, r)$$

Es decir, existe un abierto en $\tau_{\|\cdot\|_1}$ tal que,

$$x \in B_{\|\cdot\|_1}(x, r/c_1) \subseteq O$$

De forma que O es un abierto en $\tau_{\|\cdot\|_1}$. Para la otra dirección se demuestra de forma análoga. Por lo tanto, $\tau_{\|\cdot\|_1} = \tau_{\|\cdot\|_2}$.

b)

Solución P4:

a) Debemos demostrar que $f^{-1}: Y \to X$ es continua. Usaremos la definición de preimagen de cerrados es un cerrado para la continuidad de f. Sea $U \in \tau_1$ cerrado, luego si $U \subseteq X$ con X compacto, se tiene que U es compacto.

Afirmación: f(U) es compacto.

Demostración: Sea $\{V_{\gamma}\}_{{\gamma}\in\Gamma}$ cubrimiento abierto de f(U), por lo que,

$$f(U) \subseteq \bigcup_{\gamma \in \Gamma} V_{\gamma}$$

Aplicando f^{-1} obtenemos,

$$U \subseteq \bigcup_{\gamma \in \Gamma} f^{-1}(V_{\gamma})$$

donde $f^{-1}(V_{\gamma})$ es abierto en τ_1 , entonces $\{f^{-1}(V_{\gamma})\}_{\gamma\in\Gamma}$ es cubrimiento abierto de U. Como U es compacto existe una colección finita de abiertos tales que,

$$U \subseteq \bigcup_{i=1}^{n} f^{-1}(V_{\gamma_i})$$

Ahora aplicando f se obtiene,

$$f(U) \subseteq \bigcup_{i=1}^{n} V_{\gamma_i}$$

Por lo tanto f(U) es compacto.

Si $f(U) \subseteq Y$ es compacto con Y hausdorff, entonces f(U) es cerrado y por tanto f^{-1} es continuo. Demostrando que f es un homeomorfismo.

b) Consideremos la función identidad:

id:
$$(X, \tau_1) \to (X, \tau_2)$$

Observemos que es biyección y es continua puesto que $\tau_2 \subseteq \tau_1$. Si (X, τ_1) es compacto y (X, τ_2) es Hausdorff, entonces se tiene que id es un homeomorfismo. Esto implica que,

$$id^{-1}: (X, \tau_2) \to (X, \tau_1)$$

es continua, es decir, para todo $U \in \tau_1$, se tiene que $U = \mathrm{id}^{-1}(U) \in \tau_2$, por lo que $\tau_1 \subseteq \tau_2$, y por tanto $\tau_1 = \tau_2$.

c)

Ayudantía 2

Solución P1: Como estamos trabajando en L^p , entonces la norma $\|\cdot\|_p$ está bien definido.

a) Probemos que es acotada. Por definición,

$$||S(x)||_{p} = \left(\sum_{i=1}^{\infty} |S(x)_{i}|^{p}\right)^{1/p}$$
$$= \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{1/p}$$
$$= ||x||_{p}$$

Por lo tanto, para todo $x \in L^p$ se tiene que $||S(x)||_p \le ||x||_p$, por lo que S es acotado. Determinemos su norma. Sabemos que,

$$||S|| = \sup_{||x||_p = 1} ||S(x)||_p$$

Entonces es evidente que ||S|| = 1.

b) Probemos que es acotada. Notemos que,

$$||T(x)||_{p} = \left(\sum_{i=1}^{\infty} |T(x)_{i}|^{p}\right)^{1/p}$$

$$= \left(\sum_{i=2}^{\infty} |x_{i}|^{p}\right)^{1/p}$$

$$\leq \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{1/p} = ||x||_{p}$$

Por lo tanto T es acotado. Determinemos su norma. Notemos que,

$$||T|| = \sup_{\|x\|_p = 1} ||T(x)||_p \le \sup_{\|x\|_p = 1} ||x_p|| = 1$$

Por otro lado, podemos tomar $x \in L^p$ tal que,

$$x = (0, 1, 0, 0, \cdots)$$

Es decir, que solo un índice sea 1. Por lo que $||x||_p = 1$ y entonces,

$$1 = ||T(x)||_p \le ||T|| \le 1$$

Finalmente ||T|| = 1.

c) Demostremos que TS = I. Sea $x = (x_1, x_2, \cdot) \in L^p$, entonces,

$$(TS)(x) = T(0, x_1, x_2, \cdots) = (x_1, x_2, \cdots) = x$$

Es decir, (TS)(x) = x para todo $x \in L^p$. Ahora, se puede ver que $ST \neq I$, puesto que si tomamos $x = (x_1, x_2, \cdots)$ con primer elemento no nulo, ocurre que,

$$(ST)(x) = S(x_2, x_3, \dots) = (0, x_2, x_3, \dots) \neq x$$

Solución P2:

Solución P4:

a) Observemos que,

$$p(\vec{0}) = p(0 \cdot \vec{x}) = 0p(\vec{x}) = 0$$

donde $\vec{0}$ es el vector nulo de X (solo representaremos que es un vector solo en este caso, seguiremos denotandolo sin la flecha), y que,

$$0 = p(0) = p(x - x) \le p(x) + |-1|p(x) = 2p(x)$$

Es decir, $0 \le p(x)$ para todo $x \in X$.

Observación: p es una norma si p(x) = 0 implica que x = 0.

b)

Solución P5: Lo que nos dice el problema, es que para todo $x \neq 0$, se tiene que,

$$\sup_{\gamma \in \Gamma} p_{\gamma}(x) \in (0, \infty)$$

Luego definimos,

$$p: X \to \mathbb{R}$$
$$p(x) := \sup_{\gamma \in \Gamma} p_{\gamma}(x)$$

Demostremos que p es norma.

i) Si x=0, claramente p(x)=0. Supongamos que p(x)=0, entonces necesariamente x=0, ya que por hipótesis si $x\neq 0$, entonces $p(x)\neq 0$. Luego,

$$x = 0 \Leftrightarrow p(x) = 0$$

ii) Sea λ escalar, entonces,

$$\begin{split} p(\lambda x) &= \sup_{\gamma \in \Gamma} p_{\gamma}(\lambda x) \\ &= \sup_{\gamma \in \Gamma} |\lambda| p_{\gamma}(x) \\ &= |\lambda| \sup_{\gamma \in \Gamma} p_{\gamma}(\lambda x) = |\lambda| p(x) \end{split}$$

para todo $x \in X$.

iii) Sean $x, y \in X$, entonces,

$$\begin{split} p(x+y) &= \sup_{\gamma \in \Gamma} p_{\gamma}(x+y) \\ &\leq \sup_{\gamma \in \Gamma} (p_{\gamma}(x) + p_{\gamma}(y)) \\ &\leq \sup_{\gamma \in \Gamma} p_{\gamma}(x) + \sup_{\gamma \in \Gamma} p_{\gamma}(y) \\ &= p(x) + p(y) \end{split}$$

Por lo tanto p es una norma sobre X.

Ayudantía 3

Solución P3 (revisar):

a) Definamos la codimensión de un espacio vectorial finito.

Definición: Sea V espacio vectorial y sea $W \subseteq V$ subespacio, entonces,

$$\operatorname{codim} W = \dim V - \dim W$$

Sea $f: X \to \mathbb{R}$ lineal no nulo y consideremos el subespacio ker f de X. Entonces queremos encontrar la codimensión. Sabemos que,

$$\dim \ker f + \dim f(X) = \dim X$$

Ahora, notemos que $f(X) \subseteq \mathbb{R}$ es un espacio de \mathbb{R} , por lo que,

$$\dim f(X) \le \dim \mathbb{R} = 1$$

Dado que f no es nulo, necesariamente dim f(X) = 1. Finalmente,

$$\operatorname{codim} \ker f = \dim X - \dim \ker f = \dim f(X) = 1$$

Veamos que significa esto. Si X es de dimensión n, entonces ker f es de dimensión n-1, por lo que todo número $x \in X$ se puede escribir de la siguientes forma:

$$x = y + \lambda x_0$$

donde $y \in \ker f$ y $f(x_0) \neq 0$ con escalar λ .

b) Sean $f, g: X \to \mathbb{R}$ funciones lineales no nulos. Supongamos que $f = \lambda g$ con $\lambda \neq 0$ escalar (si $\lambda = 0$, entonces f = 0 siendo imposible), entonces,

$$\ker f = \{x \in X : f(x) = 0\} = \{x \in X : \lambda g(x) = 0\}$$
$$= \{x \in X : g(x) = 0\}$$
$$= \ker g$$

Supongamos ahora que $\ker f = \ker g$. Sabemos existe un subespacio de X de dimensión 1, en particular,

$$\ker f \oplus \langle x_0 \rangle = X = \ker g \oplus \langle x_0 \rangle$$

Sea $x \in X$, entonces $x = y + \lambda x_0$ donde $y \in \ker f = \ker g$, λ es escalar y $f(x_0), g(x_0)$ no se anula. Notemos que si $f(x_0), g(x_0) \in \mathbb{R}$, entonces existe $k \in \mathbb{R}$ no nulo tal que.

$$kg(x_0) = f(x_0)$$

Luego tenemos que,

$$f(x) = f(y + \lambda x_0)$$

= $\lambda f(x_0) = \lambda k g(x_0)$
= $k g(y + \lambda x_0) = k g(x)$

Por lo tanto, f = kg, como queriamos demostrar.

c) Consideremos γ el mapa que toma f y lo manda a $\gamma(f) = f^{-1}(1)$ con f lineal no nulo. Observemos que f no es nulo, entonces existe $x \in X$ tal que $f(x) = \lambda$ on λ no nulo, luego,

$$ff\left(\frac{x}{\lambda}\right) = 1$$

Es decir, $f^{-1}(1)$ no es vacío para todo f lineal no nulo.

Consideremos f, g lineales no nulos tales que,

$$\gamma(f) = \gamma(g) \Leftrightarrow f^{-1}(1) = g^{-1}(1)$$

Sea $x \in X$ tal que $f(x) = \lambda$ con λ no nulo, entonces,

$$f(x) = \lambda \Leftrightarrow f\left(\frac{x}{\lambda}\right) = 1$$
$$\Leftrightarrow g\left(\frac{x}{\lambda}\right) = 1$$
$$\Leftrightarrow g(x) = \lambda$$

Supongamos que $x \in X$ es tal que f(x) = 0, sea $y \in X$ tal que f(y) = 1, entonces

$$f(x) = 0 \Leftrightarrow f(x+y) = 1$$
$$\Leftrightarrow g(x+y) = 1$$
$$\Leftrightarrow g(x) = 0$$

Es decir, f(x) = g(x) = 0. Finalmente para todo $x \in X$ se tiene que f = g.

Ayudantía 4

Solución P1: Consideremos $W := \operatorname{span}(Y \cup \{z\})$.

Afirmación: Todo elemento $w \in W$ se puede escribir de forma única como,

$$w = y + \lambda z$$

 $donde \ y \in Y \ y \ \lambda \ escalar \ son \ únicos.$

Demostración: Debemos probar que existen tales $y \in Y$ y λ escalar y que son únicos. Claramente existe esa representación puesto que por definición W es la combinación lineal de elemento de Y combinado con z, luego todo elemento se expresa de la forma,

$$w = y + \lambda z$$

Probemos que son únicos. Sean $y_1, y_2 \in Y$ y λ_1, λ_2 escalares tales que,

$$w = y_1 + \lambda z = y_2 + \lambda_2 z$$

Entonces,

$$(y_1 - y_2) = (\lambda_2 - \lambda_1)z$$

Si $\lambda_1 \neq \lambda_2$, entonces $z \in Y$ siendo una contradicción, por tanto $\lambda_1 = \lambda_2$ y luego $y_1 = y_2$. \blacksquare Definimos la función,

$$f_0: W \to \mathbb{R}$$

 $w = y + \lambda z \mapsto \lambda d(y, z)$

Que está bien definida por la afirmación anterior. Probemos que es lineal acotada.

Linealidad: Sean $w_1 = y_1 + \lambda_1 z, w_2 = y_2 + \lambda_2 z \in W$ y sean λ, μ escalares, luego,

$$f_0(\lambda w_1 + \mu w_2) = f_0(\lambda y_1 + \lambda \lambda_1 z + \mu y_2 + \mu \lambda_2 z)$$

$$= f_0(\underbrace{(\lambda y_1 + \mu y_2)}_{=y_0} + \underbrace{(\lambda \lambda_1 + \mu \lambda_2)}_{=\lambda_0} z) = \lambda_0 d(y_0, z)$$

terminar

Falta ver que es acotada y su norma es 1

Solución P2:

a) Si X^* es separable, entonces existe $W \subseteq X^*$ tal que $\overline{W} = X^*$, donde W es una subcolección numerable de funciones $f: X \to \mathbb{R}$ lineales acotadas.

Solución P3:

Ayudantía 6

Solución P1: Recordemos el siguiente resultado.

Teorema: En un espacio vectorial de dimensión finita todas las normas son equivalentes.

Sea $T: X \to Y$ operador lineal, sea $\|\cdot\|_X$, $\|\cdot\|_Y$ la norma de X y de Y respectivament. Definimos la norma $\|x\|^* = \|x\|_X + \|Tx\|_Y$.

Afirmación: $||x||^*$ es una norma bien definida en X.

Demostraicón: Debemos probar los axiomas de norma.

i) Tenemos la siguiente cadena de implicancias,

$$||x||^* = 0 \Leftrightarrow ||x||_X + ||Tx||_Y = 0$$
$$\Leftrightarrow ||x||_X = 0 \text{ y } ||Tx||_Y = 0$$
$$\Leftrightarrow x = 0$$

ii) Sea λ escalar, luego,

$$\|\lambda x\|^* = \|\lambda x\|_X + \|T(\lambda x)\|_Y$$

$$= |\lambda| \|x\|_X + |\lambda| \|Tx\|_Y$$

$$= |\lambda| (\|x\|_X + \|Tx\|_Y)$$

$$= |\lambda| \|x\|^*$$

iii) Sean $x, y \in X$, entonces,

$$||x + y||^* = ||x + y||_X + ||T(x + y)||_Y$$

$$\leq ||x||_X + ||y||_X + ||Tx||_Y + ||Ty||_Y$$

$$= ||x||^* + ||y||^*$$

Luego $\|\cdot\|^*$ es una norma en X. Por el teorema anterior $\|\cdot\|^*$ y $\|\cdot\|_X$ son equivalentes, por lo que existe $C \in \mathbb{R}$ tal que,

$$||x||^* \le C||x||_X \Rightarrow ||Tx||_Y \le C||x||_X - ||x||_X \le C||x||_X$$

Lo que implica que $||T|| \le C$ y por tanto T es continua.

Ayudantía 10

Problema 1:

Ayudantía 13

Problema 1: