CN-Basic L29

IPv6 and IPSec

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.com https://www.youtube.com/rprustagi

Py6 Resources http://www.ipv6forum.org/dl/books/the_second_internet.pdf

- http://www.ipv6forum.org/dl/books/ipv6forall.pdf http://www.6deploy.eu/e-learning/english/
- http://highered.mcgraw-hill.com/sites/0073376221/ student_view0/chapter22/java_applets.html

IPv6 - Why New IP/Motivation

- More addresses needed
- Billion of new devices
 - May explode by 100 times
 - Pervasive computing (internet of devices, things)
- Billions of new users: India, China etc
- Ability to do end to IPSec
 - NAT not needed
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS
 - fixed-length 40 byte header
 - no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow" not well defined). next header: identify upper layer protocol for data

ver	pri	flow label		
payload len		next hdr	hop limit	
source address (128 bits)				
destination address (128 bits)				
data				

4

32 bits -

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
 - better header format
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions
 - allows for extension of protocols
- Security & Mobility support

IPv6 Addresses

- 128 bits address
 - 16 bytes = 32 hex digits
- Written in hexadecimal colon notation
 - preferred form x:x:x:x:x:x:x

Src: Frozen Computer Networking

IPv6 Address Types

- Unicast
 - aggregatable with prefixes of arbitrary length
- Multicast
 - No broadcast in IPv6
 - Broadcast considered one special case of Multicast
 - uses special link local all nodes multicast group
 - •FF02::1 Analogous to 224.0.0.1
 - •FF02::2 link local scope all routers
- Anycast
 - packets delivered to one member of group

IPv6 Address Allocation

- Unicast
 - Global Unicast (First 3 bits are 001)
 - Site-local unicast (deprecated) (0xFEC0)
 - Link-local unicast (0xFE80)
 - Unique local ((0xFC)
 - like 192.168.x.x, 172.16.x.x-172.31.x.x, 10.x.x.x
- Global Unicast
 - For one to one communication between hosts
 - global routing prefix
 - subnet identifier
 - interface identifier
 - similar to hostid in IPv4

IPv6 Address - Special Addresses

- The Unspecified Address
 - 0:0:0:0:0:0:0
 - can be written as ::
- The loopback address
 - 0:0:0:0:0:0:1
 - can be written as ::1
 - similar to 127.0.0.1 in IPv4

ICMPv6

Network layer in version 4

Network layer in version 6

- ICMPv6 is more complicated than ICMPv4
 - ARP and IGMP are combined into ICMPv6
 - More messages have been added
- ICMPv6 Message categories
 - Error Messages
 - Informational Messages
 - Neighbor Discovery Messages
 - ND (Neighbor Discovery) protocol
 - Group Membership messages
 - MLD (Multicast Listener Delivery) protocol CN-Basic-L29-IPv6-IPSec

ICMPv6 Messages

- Stateless Autoconfiguration
 - RFC 2462
 - allows a host to generate its own address
 - uses local information and router advertisement info
 - routers advertise the prefix identifying the subnets
 - host generates the interface id within the subnet
 - when router is absent
 - host generates link local address
 - permits communication on same link
 - applies only to hosts and not to routers
 - routers need to be configured by some other means

- Not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- Transition Strategies
 - Dual Stack
 - Tunneling
 - Address Translation

- Dual Stack
 - at network layer, both IPv4 and IPv6 present
 - DNS response determines which stack to use
 - response can IPv4 or IPv6 or both
 - If IPv6 is present, use IPv6
 - Else use IPv4
 - Two stacks co-exist indefinitely
 - Bundled with OS, no extra add on software/cost
 - Linux, Mac, Windows (including Windows XP)
 - No change in Datalink layer/Transport layer

- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers
 - similar to IP in IP tunnels
- There is no virtual connection setup
 - two end points need to be configured
- Intermedia IPv4 routers treat it as IPv4 packet

Tunneling

Α IPv4 tunnel В Ε F connecting IPv6 routers logical view: IPv6 IPv6 IPv6 IPv6 F В physical view: IPv6 IPv4 IPv6 IPv4

Tunneling

IPv4 tunnel Α В Ε F connecting IPv6 routers logical view: IPv6 IPv6 IPv6 IPv6 В F Α Ε physical view: IPv6 IPv6 IPv4 IPv6 IPv4 src:B flow: X flow: X src:B src: A src: A dest: E dest: E dest: F dest: F Flow: X Flow: X Src: A Src: A data data Dest: F Dest: F data data A-to-B: E-to-F: B-to-C: B-to-C: IPv6 IPv6 IPv6 inside IPv6 inside CN-Basic-L29-IPv6-IPSec IPv4 Ram P Rustagi/CSE/KSIT

16

- Address Translation (NAT64)
 - provides full functionality when talking to IPv6
 - Normal/degraded functionality when talking to IPv4
 - IPv6 address is changed to IPv4 and vice versa
 - If mapped address, then use last 32 bits
 - The value of IPv6 priority, flow is discarded
 - TOS bits in IPv4 are set to 0
 - Checksum for IPv4 is computed and added
 - no checksum in IPv6
 - IPv6 extension headers compatible to IPv4 options
 - converted appropriately
 - Other IPv4 fields computed and inserted

IPSec

- IPv4 designed in 1970
 - No security support initially
- IPSec: Most populare secure network layer protocol
 - Widely deployed in VPNs
 - Backward compatible with IPv4 and IPv6
 - Can work with existing routers (w/o replacing these)
- IPSec can be end to end
 - Established between two hosts
 - No intermediate routers need to run IPSec
 - Works with both IPv4 and IPv6

IPSec Transport Mode

- Two end to end hosts establish IPSec session
 - Thus, IPSec is connection oriented
- All TCP and UDP run on top of IPSec
 - Enoys the support of security services provided by IPSec
 - IPSec encrypts the transport pkt on sender side
 - Encapsulates the resulting payload in IP datagram
 - Sends the payload in IPv4 datagram on internet
 - Destination host decrypts the payload, and gives to application

IPSec Transport Mode

- IPSec services
 - Cryptographic agreement
 - 2 hosts agree on cypto algorithm and keys
 - Encryption of IP datagram payload
 - Only receiving host can decrypt
 - Data integrity
 - Enables receiver to verify that header and encrypte data has not been tempered with.
 - Origin authentication (src IP in pkt is verified)
 - receiver is assured of sender's IP address
- Basically provides blanket services between 2 hosts
 - Both TCP and UDP protocols

IPv6 Summary

- Anycast, unicast, multicast addresses
- Auto configuration
- Colon Hexadecimal notation
- Destination option
- Dual Stack
- Extension headers
- Link Local addresses
- IPv4 compatible addresses
- Address translation

IPv6 Address

- Exercise I
 - Given the address
 - 2001:0DB8:0000:CD30:0000:0000:0000:0000/60
 - which are correct representations
 - 2001:0DB8::CD30:0:0:0/60
 - 2001:0DB8:0:CD30::/60
 - 2001:0DB8:0:CD3/60
 - 2001:0DB8::CD30/60
 - 2001:0DB8::CD3/60

IPv6 Addresses

- Exercise 2
 - Expand the address 0:15::1:12:1213 to its original
- Answer
 - Align to the left side of double colon
 - Align to the right side of double colon
 - Fill the gaps with zeros

```
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx
0: 15: : 1: 12:1213
```

The original address is

0000:0015:0000:0000:0000:0001:0012:1213

Src: Forouzan Computer Networking 4th edition