A survey on the interpretation and application of the terms 'trait' and 'functional trait' among ecologists

Samantha Dawson, **Brad Duthie**, Manuela Gonzalez-Suarez, Mari Jönsson, Carlos Pérez Carmona, Filipe Chichorro de Carvalho, Max Mallen-Cooper, Yolanda Melero, Helen Moor, and John Simaika

University of Stirling

Use of 'trait' and 'functional trait' in the ecology literature

Use of 'functional trait' at ESA 2019

Search for 'functional traits' in ESA 2019 abstracts:

► Talks: 28

▶ Posters: 13

► Symposia: 2

Evaluate the scope and merits of a trait-based framework for conservation in the Anthropocene that can be broadly applied across taxa.

- 1. In what conservation contexts could functional traits provide more insights than species identities?
- 2. How can functional traits be used when investigating ecosystems functions and services to maximise human and ecosystem wellbeing?
- 3. How can recent advances in community ecology, grounded in plant functional traits, be more broadly applied to non-plants to inform conservation goals?

European Congress of Conservation Biology 2018 Workshop

Summary of ECCB 2018 discussion group:

 Over 25 participants researching across multiple taxa and biomes

Summary of ECCB 2018 discussion group:

- Over 25 participants researching across multiple taxa and biomes
- No clear consensus on what constitutes a 'trait' or 'functional trait'

Summary of ECCB 2018 discussion group:

- Over 25 participants researching across multiple taxa and biomes
- No clear consensus on what constitutes a 'trait' or 'functional trait'
- Terms appeared to be used differently by different researchers

Survey on trait terminology use and interpretation

Hypothesis: Researcher use of 'trait' and 'functional trait' depends on taxa and biome of study, and experience

Developed a 16 question survey

Survey on trait terminology use and interpretation

Hypothesis: Researcher use of 'trait' and 'functional trait' depends on taxa and biome of study, and experience

- Developed a 16 question survey
- Advertised on social media and email lists (e.g., ECOLOG-L, evoldir)

Survey on trait terminology use and interpretation

Hypothesis: Researcher use of 'trait' and 'functional trait' depends on taxa and biome of study, and experience

- Developed a 16 question survey
- Advertised on social media and email lists (e.g., ECOLOG-L, evoldir)
- Received 486 responses

Which of the following terms describe your research?

With which of the following taxa do you (mainly) work?

In which biomes do you (mainly) work?

How long have you been working with trait-based approaches?

If you use fieldwork to obtain your data, what continent do you primarily work on?

The following are acceptable categories of biological "trait" measurements (check all that apply)

- ☐ Behavioural (e.g., activity time)
- ☐ Cultural (e.g., bird song dialect)
- ☐ Genetic (e.g., locus heterozygosity)
- \square Geographic (e.g., population density)
- ☐ Morphological (e.g., organism size)
- ☐ Phenological (e.g., fruiting duration)
- ☐ Physiological (e.g., respiration rate)

A biological "trait" can be defined at the following scales (check all that apply)

\square Biochemical
□ Cellular
$\hfill\Box$ Organ system (within individual: e.g. multiple leaves from a single plant individual)
\square Individual
$\hfill\Box$ Clonal line (within individual: e.g. some fungi or clonal plants with identical genotypes)
□ Group
\square Population
\square Community

¹Rao, CR. 1982. Theor. Popul. Biol. 21: 24-43.

²Lepš et al. 2006. *Preslia* **78**:481-501.

In the same way that community ecologists might look at functional trait diversity among species across sites, we looked at survey answer diversity among respondents across different groups.

Considered each respondent a species

¹Rao, CR. 1982. Theor. Popul. Biol. 21: 24-43.

²Lepš et al. 2006. *Preslia* **78**:481-501.

- Considered each respondent a species
- ► Took the respondent's answer to a question about traits as their 'functional traits'

¹Rao, CR. 1982. Theor. Popul. Biol. 21: 24-43.

²Lepš et al. 2006. *Preslia* **78**:481-501.

- Considered each respondent a species
- Took the respondent's answer to a question about traits as their 'functional traits'
- Computed the pairwise functional trait distances between respondents

¹Rao, CR. 1982. Theor. Popul. Biol. 21: 24-43.

²Lepš et al. 2006. *Preslia* **78**:481-501.

- Considered each respondent a species
- ► Took the respondent's answer to a question about traits as their 'functional traits'
- Computed the pairwise functional trait distances between respondents
- ▶ Computed α and γ functional trait diversity^{1,2} across scales (i.e., within and among groups)

¹Rao, CR. 1982. Theor. Popul. Biol. **21**: 24-43.

²Lepš et al. 2006. *Preslia* **78**:481-501.

In the same way that community ecologists might look at functional trait diversity among species across sites, we looked at survey answer diversity among respondents across different groups.

- Considered each respondent a species
- ► Took the respondent's answer to a question about traits as their 'functional traits'
- Computed the pairwise functional trait distances between respondents
- ▶ Computed α and γ functional trait diversity^{1,2} across scales (i.e., within and among groups)

Next figure is a principal coordinate analysis.

¹Rao, CR. 1982. Theor. Popul. Biol. **21**: 24-43.

²Lepš et al. 2006. *Preslia* **78**:481-501.

The PCoA on research taxa used

The PCoA on research biome used

The PCoA on research experience with functional traits

No evidence that terms are used differently among groups

- ► Taxa of focus √
- ▶ Biome of focus √
- Experience with trait-based approaches √

No evidence that terms are used differently among groups

- ► Taxa of focus √
- ▶ Biome of focus √
- ► Experience with trait-based approaches ✓
- Sub-discipline(s) of the researcher
- Continent of field work focus
- Age of the researcher
- Gender of the researcher

- Behavioural Ecology (66)
- Community Ecology (263)
- Computational Biology (37)
- Conservation Science (166)
- Ecosystem Ecology (173)
- Evolutionary Biology (85)
- Evolutionary Ecology (120)
- Evolutionary Ecology (120)
- Landscape Ecology (110)
- Macroecology (5)
- Modelling (115)
- Molecular Biology (42)
 - Physiology (60)
 - ► Population Ecology (133)
 - Population Genetics (52)
 - Quantitative Genetics (26)
 - Taxonomy (29)
 - ► Theory (59)

The following are not examples of functional traits

A biological "trait" must be defined independently from its relation to the environment

A biological "trait" must be heritable

Definition of "trait" is flexible depending on study organism

¹Provided a definition is clearly stated and motivated by knowledge about the organism

Acknowledgements (general conclusions to follow)

Conclusions: agreements and disagreements about traits

Agreement	Disagreement
Individual measurements are traits (e.g., leaf size, body mass)	Unrelated to researcher sub-discipline, taxa of study, biome of study, or experience with using traits
Larger scale patterns are not traits (e.g., conservation status, habitat fragmentaiton)	Must be independent from relation to the environment
Terminology is, at least sometimes, dependent upon on study organism	Must be heritable

- Are survey results reflected in the literature?
- Reviewed articles with 'trait*' in title, abstract, or key words

- Are survey results reflected in the literature?
- Reviewed articles with 'trait*' in title, abstract, or key words
- Articles from 2018 in selected ecology journals
- 760 total articles reviewed (in progress)
- Articles randomly assigned to co-authors

Ecology

J. of Ecol.

Am. Nat.

Ecography

Func. Ecol.

Glob. Ecol. Biogeogr.

Oecologia

Oikos

Ecol. Lett.

J. Anim. Ecol.

J. Appl. Ecol.

Total papers reviewed: 318

▶ 22 provide a definition of 'trait', 'functional trait', or both

¹Violle, C et al. 2007. *Oikos*, **116**: 882-892.

Total papers reviewed: 318

- ▶ 22 provide a definition of 'trait', 'functional trait', or both
- ▶ 9 cite Voille et al. (2007)¹ for definitions (below)

Trait: [A]ny morphological, physiological or phenological feature measurable at the individual level, from the cell to the whole-organism level, without reference to the environment or any other level of organization.

Functional trait: Any trait which impacts fitness indirectly via its effects on growth, reproduction and survival.

¹Violle, C et al. 2007. Oikos, 116: 882-892.

A biological trait must fulfil at least some of the following conditions to be considered a functional trait (check all that apply)

\square Affect organism fitness
☐ Affect ecosystem processes
\square Correlate with vital rates
\square Relate to resource acquisition
\square Affect population growth rate(s)
□ Define important niche dimensions
□ Relate to natural categories (i.e., excluding unambiguously human-designated categories such as provenance or conservation status)
\square None of the above

A biological "trait" must fulfil at least some of the following conditions to be considered a functional trait

Taxa for trait based research

Biomes for trait based research

Continents for trait based research

