

Aosnon 2 Brisnoupe em coodingen auxionos Braxunundainouragem Vb. R3//R4= R1.R2 + R3.R4 R1 + R2 + R3 + R4 VTH = VAC + VTB Or RI, RZ Eivan DE DELPA => RZ V6 MM O O 06

70 N. R. B. S.
$$i_1 + i_2 = I$$
 $j_1 = \bar{I}(B+1)$
Noi $i_2 = -BI$ $j_1 = \bar{I}(B+1)$
Noi $i_2 = -BI$ $j_2 = \bar{I}(B+1)$

$$(1,3)$$
: $\frac{20}{3}$ $\pm .10^3$ $\pm 0.7.7$ $\pm 310^3.51.1 = 4$

$$\exists I = \frac{9.9}{173.10^3} A = I = \frac{9.9}{173mA} = 0.057mA$$

M reizouppia zou Kukhuiparos:

Eivar +

Ουσταστικά παρατηρούμε, ότι είναι ένα τουδύναμο κύκλωμα ενίσχυτη με διπολικό τραυζίστος ΒΙΤ στο οποίο εισέρχεται ρεύμα εντασης Ιναι ρέει ρεύμα εντασης 501 μαι 511.

$$(7.8) =) I = \frac{1}{R_3} + I \frac{R_2}{R_3} + 25IR_2 - \frac{11}{R_1} - 41R_2$$

$$=) I \left[1 - \frac{R_2}{R_3} - 25R_2 + \frac{1}{4} \frac{R_2}{R_2} \right] = \frac{1}{R_3} - \frac{11}{R_2}$$

$$= I - \frac{1}{R_3} - \frac{1}{R_2} - 25R_2 + \frac{1}{4} \frac{R_2}{R_2}$$

$$= I - \frac{1}{R_3} - 25R_2 + \frac{1}{R_2}$$

$$= I - \frac{1}{R_3} - \frac{1}{R_3} - \frac{1}{R_3}$$

$$= I - \frac{1}{R_3} - \frac{1}{R_3} - \frac{1}{R_3} - \frac{1}{R_3}$$

$$= I - \frac{1}{R_3} - \frac{1}{R_3}$$

$$= 3 V_{TH} = V_{AB} = V_{TA} + V_{AT} = 3 + 3 \cdot 10^{3} \cdot 10^{3} = 6 V$$

$$= V_{TA} + V_{AT} = \frac{6 \cdot 10^{3}}{2,17} = 222 \text{ K}_{C}$$

$$= V_{TA} + V_{AT} + V_{A$$

Ουσιασεικά βητείται νοι βρούμε το ισοδύναμο Τλενεπίη δεξια από τα Α,Β. Το κύκλωμα σ'αυτό το σημείο αποτεθείται από μια εξαρτημένη πιηρ και μια αυτίτος στα ση Αρα, για την εύρεση του ισοδύναμου Τητενεπίη προυθέτουμε στα Α,Β μια δική μας πηρ τάσης 1.

MN.T.K. GLOV IS CXRS+ CXRS = V5 (1) MN.T.K. STON II & VAS+ Bix Ro =0 =) VAB = - Bix Ro (2) Apa: VAB= -B VS Ro R5 Lix ligo Migo = - Bix Mix = Vs Ro+Rx =) iBp = -B RS+ RX NOB - B VS PO = RO JUNETINGS ?

Tédos, LOXIES O TOTOS LE = IS e VI -Apa 0 VBE = (n ic" =) VBE = VT (n ic" Is" = VOF - VT (n 1 mA =) VBC = 28,14 UT V

Sedra Smith ord. 355 ans. 8.4 Avenon 17 Form Ist to perina poperator tou ubinto than into man ISIZ ra prince soprepos rou Seizepeu zpauJiorop $\frac{1}{2} \frac{1}{1512} = \frac{A_{E1}}{A_{E2}} = \frac{(200 \, \text{cm})^2}{(0, 4 \, \text{pm})^2} = 250.000$ Apa : Is/1 = 250.000 To/2 \rightarrow Aπο τα οεθομένα εχουμε $i_{C1} = i_{C2} = 1$ V_{BE_1} V_{BE_2} V_{BE_2} V_{BE_3} $V_{$ $\frac{V_{BE1}}{V_{T}} - \frac{V_{BE2}}{V_{T}} = \frac{1}{250.000} = \frac{V_{BE1}}{V_{T}} - \frac{V_{BE2}}{V_{T}} = \frac{1}{250.000}$ =1 VBG; - VBG) = V7 ln (250.000) = -12,429. V7 Sedra Smith ord. 366 anc. 6.16 Amon 18 ic=1mA, VBE=0,TV, ig=10plA $= 3 \frac{1}{3} = \frac{1.10^{-3}}{9.7/9.025} A$ = Is = 6,81.10 A

Emindéou réxuers Re = Vc - (-2,5) => $R_{c} = \frac{-0.5 + 2.5}{0.495 \cdot 40^{-3}} = R_{c} = \frac{2}{0.495} K_{2}$ => Rc = 4,04 K2 NEB Nic=Ioe VT hai ic=a.ie $i_e = \frac{1}{\sqrt{15}} e^{\frac{1}{\sqrt{15}}} \Rightarrow \frac{\alpha \cdot i_e}{\sqrt{15}} = e^{\frac{1}{\sqrt{15}}}$ ⇒ VEB = V7 Pn \(\alpha\) \(\text{i}\) \(\text{EB} = 0,025 Pn\) \(\frac{101.0,5.10^3}{7,5.10^{15}}\) \\ => VEB = 0,507 V OHWS VB = 0 => VE = 0,507V TrupiJoune or javaderroupper eva pro repusiones orno evergo reproxis repetrer VC & VB + 0, 4V = Vc/max = VB+0,4 opus VB=0 = Vc/max=0,4V Onice Refmax = Velmax - (-25) = 0,4 + 2,5 =) Rymax = = = 5858 2

$$81 i_{c} = 0 i_{E} \implies i_{C} = 1,18.10^{-1} \text{ A}$$

$$= 1 i_{C} = 0,118 \text{ mA} \quad \text{var} \quad \text{V}_{C} = \text{RC} \cdot \text{i}_{C}$$

$$= 1 \sqrt{1}_{C} = 0,66 \text{ V}$$

$$1 \sqrt{1}_{BC} = 0,8 \text{ V}$$

$$1 \sqrt{1}_{BC} = 0,7 \text{ V}$$

$$1 \sqrt{1}_{BC} = 0,148 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,148 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,146 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,002 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,002 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = \text{Big} = 0,002 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = 0,002 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = 0,002 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,002 \text{ mA} \quad \text{var} \quad \text{i}_{C} = 0,002 \text{ mA}$$

$$1 \sqrt{1}_{BC} = 0,0$$

Ηλεκτρονική 1^η σειρά ασκήσεων

ΗΜΜΥ 40 Εξάμηνο

Ονοματεπώνυμο: Γιαννούλης Παναγιώτης

A.M.: 031 17 812

\triangleright ASKHSH 24:

1. Από την γραφική παράσταση του I_c συναρτήσει του V_{BE} μπορεί να παρατηρήσει κανείς ότι μέχρι περίπου τα 640mV η V_{BE} δεν είναι αρκετή για να πολώσει το τρανζίστορ οπότε το I_C είναι σχεδόν μηδενικό. Από τα 640mV και μετά όμως αυξάνεται εκθετικά σύμφωνα με την γνωστή σχέση:

$$I_{C} = I_{S} e^{\frac{V_{BE}}{V_{T}}}$$

2. Από τη γραφική παράσταση του I_C συναρτήσει της V_{CE} παρατηρούμε αρχικά μια απότομη αύξηση του ρεύματος. Στη συνέχεια το ρεύμα σχεδόν σταθεροποιείται έχοντας μια ελάχιστη θετική κλίση. Τέλος παρατηρούμε ότι το ρεύμα συλλέκτη αυξάνει τάξεις μεγέθους με την αύξηση του V_{BE} . Αυτή η συμπεριφορά είναι απόλυτα φυσιολογική αφού η σχέση των δύο είναι εκθετική.

Σχ. 1: Κύκλωμα σχεδιασμένο στο LTSpice

 $\Sigma \chi.2: \Gamma \rho \alpha \phi \iota \kappa \dot{\eta} \ \pi \alpha \rho \dot{\alpha} \sigma \tau \alpha \sigma \eta \ V_{\text{BE}}$ – I_{C}

 $\Sigma \chi.3: \Gamma \rho \alpha \phi$ ική παράσταση V_{CE} – $I_{\text{C}}~\mu \epsilon~V_{\text{BE}} = 0.6 V$

 $\Sigma \chi.4$: Γραφική παράσταση V_{CE} – $I_{\text{C}}~\mu\epsilon~V_{\text{BE}}=0.7V$

 $\Sigma \chi.5: \Gamma \rho \alpha \phi$ ική παράσταση V_{CE} – $I_{\text{C}}~\mu \epsilon~V_{\text{BE}} = 0.8 V$

\rightarrow ASKHSH 25:

- 1. Όσον αφορά το pnp τρανζίστορ τα αποτελέσματα ουσιαστικά ταυτίζονται με αυτά του npn. Από την γραφική παράσταση του I_c συναρτήσει του V_{BE} ότι μέχρι περίπου τα 640mV η V_{BE} δεν επαρκεί για να πολώσει το τρανζίστορ οπότε το I_C είναι σχεδόν μηδενικό. Από τα 640mV και μετά όμως αυξάνεται εκθετικά κατ' απόλυτη τιμή.
- 2. Τα συμπεράσματα είναι όμοια με αυτά της προηγούμενης άσκησης.

Σχ. 6: Κύκλωμα σχεδιασμένο στο LTSpice

 $Σχ.7: Γραφική παράσταση <math>V_{\text{EB}}$ – I_{C}

 $\Sigma \chi.8$: Γραφική παράσταση V_{CE} – $I_{\text{C}}~\mu\epsilon~V_{\text{EB}}=0.6V$

Σχ.9: Γραφική παράσταση V_{CE} – I_{C} με V_{EB} = 0.7V

 $\Sigma \chi.10$: Γραφική παράσταση V_{CE} – I_{C} με V_{EB} = 0.8V

ΑΣΚΗΣΗ 26: \

Σχ. 11: Κύκλωμα σχεδιασμένο στο LTSpice

```
--- Operating Point ---
V(n004):
                              voltage
V(n001):
               10
                              voltage
V(n005):
               4.51422e-016
                              voltage
V(n003):
               0.902845
                              voltage
V(n002):
               9.25587
                              voltage
V(n006):
               0.299025
                              voltage
V(vout):
               2.77676e-013
                              voltage
Ic(Q1):
               0.000148825
                              device_current
                              device_current
Ib (Q1):
               6.87068e-007
Ie(Q1):
                -0.000149512
                              device_current
I(Cc):
                4.51422e-018
                              device current
I(Cc2):
               -2.77676e-017 device_current
I(Ce):
               8.97074e-019
                              device current
               -2.77676e-017 device_current
I(R3):
               -0.000149512
                              device current
I(Re):
               -9.02845e-005 device current
I(R2):
               -0.000148825
I(Rc):
                              device current
I(R1):
               -9.09716e-005 device current
I(Rs):
               4.51422e-018
                              device current
I(Vcc):
               -0.000239797
                              device_current
               4.51422e-018
I(Vin):
                              device_current
```

Σχ. 12: Τιμές των ρευμάτων και τάσεων του κυκλώματος

Σχ. 13: Κυματομορφή της τελευταίας περιόδου του σήματος της τάσης Vout

ΑΣΚΗΣΗ 27:

Σχ. 14: Κύκλωμα σχεδιασμένο στο LTSpice

	Λύνοντας το σύστορια των εξισώσεων (11, (2):
	TIPOSUTIZETS
***	q. I
	ic1 = - NB1 - NB2 man ic2 = NB1 - NB2
	$\begin{array}{c} 1+e \\ (3) \end{array}$
	y Contracting of Starting of S
	Aparpointe Bara fiedn ottore exorpte e $\frac{V_{B_1}-V_{B_2}}{V_{B_1}-V_{B_2}}$ $\frac{V_{B_1}-V_{B_2}}{V_{B_1}-V_{B_2}} = \frac{V_{B_1}-V_{B_2}}{V_{B_1}-V_{B_2}}$ $\frac{V_{B_1}-V_{B_2}}{V_{B_1}-V_{B_2}} = \frac{V_{B_1}-V_{B_2}}{V_{B_1}-V_{B_2}}$
	· Tedinas ig - icz = I. tanh (2/T)
	Tupa fra les 0,991 Exoups ics = a.0,991
	(3) x.0,997 = -40,-40
	1+ e v+
	$= 1 \left(\frac{V_{B2} - V_{B1}}{1 + e^{-V_{T}}} \right) \cdot 0,99 = 1 = 1$
	= $V_{7} \ln \left(\frac{1}{0.99} - 1 \right) = V_{B_{2}} - V_{B_{1}}$
	-1 VB1 - VB2 = 114,88 mV
) 181 -185 = 11-1188 WA

 $\Sigma\chi.15$: Γραφική παράσταση V_{C2} - V_{C1} συναρτήσει της $\ V_{\text{B1}}$

aice a IEE
$val = \frac{a \cdot c_1}{1 + e^{\cdot v_1}} = \frac{a \cdot c_2}{1 + e^{\cdot v_1}} = \frac{v_1}{1 + e^{\cdot v_1}} = \frac{v_2}{v_1}$
1+ 6 1 (1+ 6)
Enions: 10 105 = 100 100 100 100 100 100 100 100 100 1
1 + e vr (1 + e vr) (1 + e vr)
 $\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Apa n Diagopa AI = ics+ ics - (icy+ ic6)
Eival ion HE?
$NI = \alpha^{2} I_{EE} \left(\frac{1}{1 \cdot e^{v_{1}}} \left \frac{1}{1 \cdot e^{v_{1}}} \right \left(\frac{1}{1 \cdot e^{v_{1}}} \right) \left(\frac{1}{1 \cdot e^{v_{1}}} \right) \left(\frac{1}{1 \cdot e^{v_{1}}} \right) \right \left(\frac{1}{1 \cdot e^{v_{1}}} \right)$
(11e " (1+e") (1+e")
1
$\frac{1+\sqrt{2}}{\sqrt{7}} = \frac{\sqrt{1+\sqrt{2}}}{\sqrt{7}} = \frac{\sqrt{2}-\sqrt{1}}{\sqrt{7}} = \frac{\sqrt{1-\sqrt{2}}}{\sqrt{7}}$
$= - \cdot \cdot \cdot = Q \cdot \frac{1}{1 + e^{\frac{1}{V_1}}} \left[1 + e^{\frac{1}{V_1}} \left[1 + e^{\frac{1}{V_1}} \right] \left[1 + e^{\frac{1}{V_1}} \right] \right]$
[1+e][1+e][1+e][+e]
12-1 N