Type Soundness in an Intensional Dependent Type Theory with Type-in-Type and Recursion

February 6, 2021

1 Examples

```
 \begin{array}{ll} \text{logical unsoundness:} \\ \text{fun } f: (x.x) \,.\, x: \star. f\, x & : \varPi x: \star. x \end{array}
```

some constructs

while logically unsound the language is extremely expressive. The following calculus of Constructions constructs are expressible,

```
a_{1} =_{A} a_{2} := \lambda A : \star .\lambda a_{1} : A.\lambda a_{2} : A.\Pi C : (A \to \star) .C \ a_{1} \to C \ a_{2}
Unit := \Pi A : \star .A \to A
tt := \lambda A : \star .\lambda a : A.a
\bot := \Pi x : \star .x
\neg A := \Pi A : \star .A \to \bot
\text{church nats:}
\mathbb{N}_{c} := \Pi A : \star .(A \to A) \to A \to A
0_{c} := \lambda A : \star .\lambda s : (A \to A).\lambda z : A.z
1_{c} := \lambda A : \star .\lambda s : (A \to A).\lambda z : A.s \ z
2_{c} := \lambda A : \star .\lambda s : (A \to A).\lambda z : A.s \ (sz)
...

since there is type in type, a kind of large elimination is possible \lambda n : \mathbb{N}_{c}.n \star (\lambda - .U) \perp
\tanh s \neg 1_{c} =_{\mathbb{N}_{c}} 0_{c} \text{ is provable (in a non trivial way):}
\lambda pr : (\Pi C : (\mathbb{N}_{c} \to \star) .C \ 1_{c} \to C \ 0_{c}) .pr \ (\lambda n : \mathbb{N}_{c}.n \star (\lambda - .U) \perp) \ tt \qquad : \neg 1_{c} =_{\mathbb{N}_{c}} 0_{c}
```

2 Properties

2.1 Contexts

2.1.1 Sub-Contexts are well formed

The following rules are admissible:

$$\frac{\Gamma, \Gamma' \vdash}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \Rrightarrow M' : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \equiv M' : \sigma}{\Gamma \vdash}$$

by mutual induction on the derivations.

2.1.2 Context weakening

For any derivation of $\Gamma \vdash \sigma : \star$, the following rules are admissible:

$$\begin{split} \frac{\Gamma, \Gamma' \vdash}{\Gamma, x : \sigma, \Gamma' \vdash} \\ \frac{\Gamma, \Gamma' \vdash M : \tau}{\Gamma, x : \sigma, \Gamma' \vdash M : \tau} \\ \frac{\Gamma, \Gamma' \vdash M \Rrightarrow M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \Rrightarrow M' : \sigma} \\ \frac{\Gamma, \Gamma' \vdash M \Rrightarrow M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \Rrightarrow_* M' : \sigma} \\ \frac{\Gamma, \Gamma' \vdash M \Rrightarrow_* M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \Rrightarrow_* M' : \tau} \\ \frac{\Gamma, \Gamma' \vdash M \equiv M' : \tau}{\Gamma, x : \sigma, \Gamma' \vdash M \equiv M' : \tau} \end{split}$$

by mutual induction on the derivations.

2.1.3 \Rightarrow is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M \Rrightarrow M : \sigma} \Rrightarrow \text{-refl}$$

by induction

2.1.4 \equiv is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M \equiv M : \sigma} \equiv \text{-refl}$$

by $\Rightarrow *-refl$

2.1.5 Context substitution

For any derivation of $\Gamma \vdash N : \tau$ the following rules are admissible:

$$\begin{split} \frac{\Gamma, x : \tau, \Gamma' \vdash}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] : \sigma \left[x \coloneqq N\right]} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \Rightarrow M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rightarrow M' \left[x \coloneqq N\right] : \sigma \left[x \coloneqq N\right]} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \Rightarrow_* M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rightarrow_* M' \left[x \coloneqq N\right] : \sigma} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \Rightarrow_* M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rightarrow_* M' \left[x \coloneqq N\right] : \sigma} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \equiv M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \equiv M' \left[x \coloneqq N\right] : \sigma \left[x \coloneqq N\right]} \end{split}$$

by mutual induction on the derivations. Specifically, at every usage of x from the var rule in the original derivation, replace the usage of the var rule with the derivation of $\Gamma \vdash N : \tau$ weakened to the context of $\Gamma, \Gamma'[x \coloneqq N] \vdash N : \tau$, and apply \Rrightarrow -refl or \equiv -refl when needed.

2.2 Computation

2.2.1 \Rightarrow preserves type of source

The following rules are admissible:

$$\frac{\Gamma \vdash N \Rrightarrow N' : \tau}{\Gamma \vdash N : \tau}$$

by induction

$2.2.2 \Rightarrow \text{substitution}$

The following rule is admissible:

$$\frac{\Gamma, x : \sigma, \Gamma' \vdash M \Rrightarrow M' : \tau \quad \Gamma \vdash N \Rrightarrow N' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N \right] \vdash M \left[x \coloneqq N \right] \Rrightarrow M' \left[x \coloneqq N' \right] : \tau \left[x \coloneqq N \right]}$$

by induction on the \Rightarrow derivations

$2.2.3 \Rightarrow \text{is confluent}$

if $\Gamma \vdash M \Rightarrow N : \sigma$ and $\Gamma \vdash M \Rightarrow N' : \sigma$ then there exists P such that $\Gamma \vdash N \Rightarrow P : \sigma$ and $\Gamma \vdash N' \Rightarrow P : \sigma$ by standard techniques

$2.3 \Rightarrow_*$

2.3.1 \Rightarrow_* is transitive

The following rule is admissible:

$$\frac{\Gamma \vdash M \Rrightarrow_* M' : \sigma \quad \Gamma \vdash M' \Rrightarrow_* M'' : \sigma}{\Gamma \vdash M \Rrightarrow_* M' : \sigma} \Rrightarrow *-\text{trans}$$

by induction

$2.3.2 \Rightarrow \text{preserves type in source}$

$$\frac{\Gamma \vdash N \Rrightarrow N' : \tau}{\Gamma \vdash N' : \tau}$$

By induction on the \Rightarrow derivation with the help of the substitution lemma.

- ∏-⇒
 - $-M'[x := N', f := (\operatorname{\mathsf{fun}} f : (x.\tau) . x : \sigma.M')] : \tau[x := N]$ by the substitution lemma used on the inductive hypotheses
- all other cases are trivial

2.3.3 \Rightarrow_* preserves type

The following rule is admissible:

$$\frac{\Gamma \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash M : \sigma}$$

by induction

$$\frac{\Gamma \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash M' : \sigma}$$

by induction

2.3.4 \Rightarrow_* is confluent

if $\Gamma \vdash M \Rightarrow_* N : \sigma$ and $\Gamma \vdash M \Rightarrow_* N' : \sigma$ then there exists P such that $\Gamma \vdash N \Rightarrow_* P : \sigma$ and $\Gamma \vdash N' \Rightarrow_* P : \sigma$

Follows from \Rightarrow *-trans and the confluence of \Rightarrow using standard techniques

$2.3.5 \equiv is symmetric$

The following rule is admissible:

$$\frac{\Gamma \vdash M \equiv N : \sigma}{\Gamma \vdash N \equiv M : \sigma} \equiv \text{-sym}$$

trivial

$2.3.6 \equiv \text{is transitive}$

$$\frac{\Gamma \vdash M \equiv N : \sigma \qquad \Gamma \vdash N \equiv P : \sigma}{\Gamma \vdash M \equiv P : \sigma} \equiv \text{-trans}$$

by the confluence of \Rightarrow_*

$2.3.7 \equiv preserves type$

The following rules are admissible:

$$\frac{\Gamma \vdash M \equiv M' : \sigma}{\Gamma \vdash M : \sigma}$$

$$\frac{\Gamma \vdash M \equiv M' : \sigma}{\Gamma \vdash M' : \sigma}$$

by the def of \Rightarrow_*

2.3.8 Regularity

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \sigma : \star}$$

by induction with ≡-preservation for the Conv case

2.3.9 \rightsquigarrow implies \Rightarrow

For any derivations of $\Gamma \vdash M : \sigma, M \leadsto M'$

$$\Gamma \vdash M \Rrightarrow M' : \sigma$$

by induction on \leadsto

$2.3.10 \rightarrow \text{preserves type}$

For any derivations of $\Gamma \vdash M : \sigma, M \leadsto M'$,

$$\Gamma \vdash M' : \sigma$$

since \rightsquigarrow implies \Rightarrow and \Rightarrow preserves types

2.4 Type constructors

2.4.1 Type constructors are stable

- if $\Gamma \vdash * \Rightarrow M : \sigma$ then M is *
- if $\Gamma \vdash * \Rightarrow_* M : \sigma$ then M is *
- if $\Gamma \vdash \Pi x : \sigma \cdot \tau \Rightarrow M : \sigma$ then M is $\Pi x : \sigma' \cdot \tau'$ for some σ', τ'
- if $\Gamma \vdash \Pi x : \sigma.\tau \Rightarrow_* M : \sigma$ then M is $\Pi x : \sigma'.\tau'$ for some σ',τ'

by induction on the respective relations

2.4.2 Type constructors definitionaly unique

There is no derivation of $\Gamma \vdash * \equiv \Pi x : \sigma.\tau : \sigma'$ for any $\Gamma, \sigma, \tau, \sigma'$ from \equiv -Def and constructor stability

2.5 Canonical forms

If $\Diamond \vdash v : \sigma$ then

- if σ is \star then v is \star or $\Pi x : \sigma . \tau$
- if σ is $\Pi x : \sigma' . \tau$ for some σ' , τ then v is fun $f : (x.\tau') . x : \sigma'' . P'$ for some τ' , σ'' , P'

By induction on the typing derivation

- Conv,
 - if σ is \star then eventually, it was typed with type-in-type, or Π -F. it could not have been typed by Π -I since constructors are definitionaly unique
 - if σ is $\Pi x:\sigma'.\tau$ then eventually, it was typed with Π -I. it could not have been typed by type-in-type, or Π -F since constructors are definitionally unique
- type-in-type, $\Diamond \vdash v : \sigma \text{ is } \Diamond \vdash \star : \star$
- Π -F, $\Diamond \vdash v : \sigma$ is $\Diamond \vdash \Pi x : \sigma . \tau : \star$
- Π -I, $\Diamond \vdash v : \sigma$ is $\Diamond \vdash \text{fun } f : (x.\tau) . x : \sigma.M : \Pi x : \sigma.\tau$
- $\bullet\,$ no other typing rules are applicable

2.6 Progress

 $\Diamond \vdash M : \sigma$ implies that M is a value or there exists N such that $M \leadsto N$. By direct induction on the typing derivation with the help of the canonical forms lemma

Explicitly:

- M is typed by the conversion rule, then by **induction**, M is a value or there exists N such that $M \rightsquigarrow N$
- M cannot be typed by the variable rule in the empty context
- M is typed by type-in-type. M is \star , a value
- M is typed by Π -F. M is $\Pi x : \sigma.\tau$, a value
- M is typed by Π -I. M is fun $f:(x.\tau).x:\sigma.M'$, a value
- M is typed by Π -E. M is PN then exist some σ, τ for $\Diamond \vdash P : \Pi x : \sigma.\tau$ and $\Diamond \vdash N : \sigma$. By **induction** (on the P branch of the derivation) P is a value or there exists P' such that $P \leadsto P'$. By **induction** (on the N branch of the derivation) N is a value or there exists N' such that $N \leadsto N'$
 - if P is a value then by **canonical forms**, P is f is f : f
 - * if N is a value then the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')$ $N \leadsto P'[x:=N,f:=\operatorname{fun} f:(x.\tau).x:\sigma.M]$
 - * otherwise there exists N' such that $N \leadsto N'$, and the one step reduction is $(\operatorname{fun} f: (x.\tau) . x: \sigma.P') \ N \leadsto (\operatorname{fun} f: (x.\tau) . x: \sigma.P') \ N'$
 - otherwise, there exists P' such that $P \leadsto P'$ and the one step reduction is $P\,N \leadsto P'\,N$

2.7 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause result in a computation to "get stuck". Either a final value will be reached or further reductions can be taken. This follows by iterating the progress and preservation lemmas.

3 Non-Properties

- decidable type checking
- normalization/logical soundness

Definitional Equality does not preserve type constructors on the nose

```
If \Gamma \vdash \sigma \equiv \sigma' : \star then if \sigma is \Pi x : \sigma'' . \tau for some \sigma'', \tau then \sigma' is \Pi x : \sigma''' . \tau' for some \sigma''', \tau' counter example \vdash \Pi x : \star . \star \equiv (\lambda x : \star . x)(\Pi x : \star . \star) : \star this implies the additional work in the Canonical forms lemma
```

4 differences from implementation

differences from Agda development

- in both presentations standard properties of variables binding and substitution are assumed
- In Agda the parallel reduction relation does not track the original typing judgment. This should not matter for the proof of confluence.
- only proved the function part of the canonical forms lemma (all that is needed for the proof)

differences from prototype

- bidirectional, type annotations are not always needed on functions
- toplevel recursion in addition to function recursion
- type annotations are not relevant for definitional equality

References

[1] Luca Cardelli. A Polymorphic [lambda]-calculus with Type: Type. Technical Report, DEC SRC, 130 Lytton Avenue, Palo Alto, CA 94301. May. SRC Research Report, 1986.