Rappel de cours

Definition 1. Soit I un intervalle de \mathbb{R} , (U_n) une suite de fonctions définies sur I et f une fonction définie sur I. On dit que (u_n) converge **simplement** vers f sur I si pour tout $x \in I$, la suite $(U_n(x))$ converge vers f(x).

Definition 2. Soit I un intervalle de \mathbb{R} , (U_n) une suite de fonctions définies sur I et f une fonction définie sur I. On dit que (u_n) converge **uniformément** vers f sur I si

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall x \in I, \forall n > n_0, |(U_n(x)) - f(x)| < \epsilon$$

Definition 3. On dit que la série de fonctions $\sum_{n\geq 0} U_n(x)$ converge **normalement** sur I si la série $\sum_{n\geq 0} ||U_n(x)||_{\infty}$ est convergente.

Exercice 1

Montrons que la fonction $f_n(x) = \frac{ne^{-x} + x^2}{n+x}$ converge simplement pour $x \in [0,1]$.

$$\lim_{n \to \infty} \frac{ne^{-x} + x^2}{n + x} = \lim_{n \to \infty} \frac{ne^{-x} + 1}{n + 1} = \lim_{n \to \infty} \frac{ne^{-x}}{n} = e^{-x}$$

La fonction $f_n(x)$ converge simplement vers $f(x) = e^{-x}$. Montrons maintenant que $f_n(x)$ converge uniformément. Il faut que $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq n_{\epsilon} \implies \sup_{x \in [0,1]} |f_n(x) - f(x)| < \epsilon$). Calculons

$$|f_n(x) - f(x)| = \left| \frac{ne^{-x} + x^2}{n+x} - e^{-x} \right| = \left| \frac{ne^{-x} + x^2 - (n+x)e^{-x}}{n+x} \right| = \left| \frac{x^2 - xe^{-x}}{n+x} \right| < \frac{2}{n}$$

car $n+x\geq n$ et $|x^2-xe^{-x}|<2$ comme $x^2\in[0,1]$ et $xe^{-x}\in[0,\frac{1}{e}]$. Prenons $\sup_{x\in[0,1]}|f_n(x)-f(x)|=\frac{2}{n}$, donc n_ϵ existe et doit être supérieur à $\frac{2}{\epsilon}$.

Exercice 2

Exercice 2.1

Montrons que la fonction $f_n(x) = \ln\left(x + \frac{1}{n}\right)$ converge simplement pour $x \in]0, +\infty]$.

$$\lim_{n \to \infty} \ln\left(x + \frac{1}{n}\right) = \ln\left(x + 0\right) = \ln(x)$$

La fonction $f_n(x)$ converge simplement vers $f(x) = \ln(x)$. Montrons maintenant que $f_n(x)$ converge uniformément sur $[a, +\infty]$. Il faut que $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq n_{\epsilon} \implies \sup_{x \in [a, +\infty]} |f_n(x) - f(x)| < \epsilon$. Calculons

$$|f_n(x) - f(x)| = \left| \ln\left(x + \frac{1}{n}\right) - \ln(x) \right| = \left| \ln\left(\frac{x + \frac{1}{n}}{x}\right) \right| = \left| \ln\left(1 + \frac{1}{nx}\right) \right| \le \ln\left(1 + \frac{1}{na}\right)$$

 $\operatorname{car} \frac{1}{na} \ge \frac{1}{nx} \text{ pour } x \in [a, +\infty].$

Prenons $\sup_{x \in [a,+\infty]} |f_n(x) - f(x)| = \ln\left(1 + \frac{1}{na}\right)$, donc n_{ϵ} existe et doit être tel que $\ln\left(1 + \frac{1}{n_{\epsilon}a}\right) < \epsilon$.

Exercice 2.2

Non, car pour x proche de 0, il n'existe pas de borne supérieure pour $|f_n(x) - f(x)| = \left| \ln \left(1 + \frac{1}{nx} \right) \right|$. QED