

Problem 06 Sources of Variation

E326 – Lean Manufacturing & Six Sigma

SCHOOL OF ENGINEERING

E326 Lean Manufacturing and Six Sigma Topic Tree

DMAIC

- Verify the influence or Significant Factor (X's)
 - Data analysis with proper tools
 - Analyze sources of variations
 - Prioritize opportunities to improve

Objectives of Analyse phase:

- To stratify and analyse the opportunity to identify a specific problem and define an easily understood problem statement
- To identify and validate the root causes that assure the elimination of "real" root causes and thus the problem the team is focused on
- To determine true sources of variation and potential failure modes that lead to customer dissatisfaction

Analyze Phase in Lean Six Sigma

- The Analyze phase aims to identify critical factors of a 'good' product or service, and the root causes of 'defects'.
- It has less of a logical flow, but functions more as a toolbox of tools and techniques. The following questions are answered in Analyze phase in sequence:
 - 1) Q: How does the process actually work?
 - A: Analyze the process;
 - 2) Q: What does the existing process knowledge say?
 - A: Develop theories and ideas (potential root causes)
 - 3) Q: What does the data say?
 - A: Analyze the data
 - 4) Q: How does the root cause affect the process output? A: Verify root causes and understand cause and effect.

Sources of Variation (SOV)

- Sources of variation are categorized into families of related causes and quantified to reveal the largest causes.
- Typical categories are -
 - 1) <u>Positional variation</u>: often called within-part variation and refers to variation of a characteristic on the same product;
 - Cyclical variation: covers part-to-part variation;
 - 3) <u>Temporal variation</u>: occurs as change over time

Example: Study of the variation of metal hardness:

Positional variation: Collection of hardness data at different

locations on the part.

<u>Cyclical variation</u>: Average hardness on consecutive parts to

detect any pattern

Temporal variation: Average of hardness of parts selected from

production on several days

Tools to Analyze

- Graphical Tools
 - Fishbone Diagram
 - Marginal Plot
 - Scatter Plot
 - Histogram
 - Dot Plot
 - Box Plot
 - Multi-Vari Charts
 - ...
- Regression Analysis
- ANOVA (One-way ANOVA & Balanced ANOVA)
 - Main Effects Plots (ANOVA)
 - Interaction Plots (ANOVA)

Note: Minitab helps us with various plots and analysis for problem solving.

Analysis of Variance (ANOVA)

- Analysis of variance (ANOVA) is a hypothesis testing method used to evaluate how two or more levels of one or more factors affect the mean of a response. It does this by comparing the variances "within" groups and variances "between" groups.
 - One-way ANOVA performs a comparison of the means of a number of replications of the experiments performed where <u>a single input factor is</u> <u>varied at different settings or levels</u>.
 - Balanced ANOVA compares the response means with <u>multiple key-process-input-variables (KPIVS) and interactions.</u>

ANOVA Assumptions:

- 1) Each sample is an independent, random sample -
- Independent. The selection of any sample is not dependent on any other sample being selected or not selected
- Random. All members of the population have an equal chance of being selected.
- 2) The measurement within each group are normally distributed and have equal variances -
- This only applies to the within group variation, not between group variation.
- The variances for each group are equal (or the differences between the variances are not significant)

ANOVA – Test Procedures

- 1. State the problem on-hand
- 2. State the Null hypothesis (as in Hypothesis Testing)
- 3. Do the model assumptions hold? (Not the focus of today's problem)
 - Normality Test
 - Test for Equal Variances
 - Independent sample?
 - random sample?
- 4. Construct the ANOVA Table
 - Manual calculation (Not the focus of today's problem)
 - Statistical program like Minitab
- 5. Interpret the output of analysis
- 6. Translate the conclusion into practical terms

t-test or 1-way ANOVA?

- Testing for two means
 - 2-sample t-test
 - Paired t-test

$$H_0$$
: $\mu_1 = \mu_2$

- Testing for three or more means
 - 1-way ANOVA
 - Balanced ANOVA

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_i$

H_a: at least one is different from the others

Recall - Boxplot

- Boxplots, or box-and-whisker diagrams, give a quick look at the distribution of a set of data.
- They allows easy comparison of multiple data sets.

Recall – Boxplot - example

Minitab : Graph > Box plot

Multi-Vari Charts

- The Multi-Vari chart is used to display ANOVA data for up to 4 factors. It is commonly used as a preliminary analysis of the data to assess the means for each factor level. Each factor should have at least 2 distinct levels.
- View the data to see if there are any visible trends or interactions by creating a Multi-Vari chart.
- To provide directions and inputs for improvement activities
- A way of presenting analysis of variance (ANOVA)
 data in a graphical form, providing a visual alternative
 to ANOVA.
- It is a useful graphical tool for identifying sources of variations.

P06 Suggested Solution

Today's Problem

Simple Box Plot

Box Plot With Groups – "Region"

Box Plot With Groups – "Month"

Box Plot With Groups – "Room Type"

Multi-Vari Chart

Minitab->Stat>Quality Tools -> Multi-Vari Chart

Response: Electricity

Factor 1: 'Room Type'

Factor 2: Region

Factor 3: Month

Multi-Vari Chart for Electricity by Room Type - Month

- Consumption is highest for "December", follow by "August", then "April". (Green line)
- Consumption is highest for "Hougang". (Red lines)
- Consumption is highest for "HDB 4rm". (Blue lines)

Multi-Vari Chart

Minitab->Stat>Quality Tools -> Multi-Vari Chart

Response: Electricity

Factor 1: Region

Factor 2: Month

Factor 3: 'Room Type'

- Consumption is highest for "December", follow by "August", then "April". (Green lines)
- No observable trend for "Region". (Blue lines)
- Consumption is highest for "HDB 4rm". (Green line)

Multi-Vari Chart

Minitab->Stat>Quality Tools -> Multi-Vari Chart

Response: Electricity

Factor 1: Month

Factor 2: 'Room Type'

Factor 3: Region

- No observable trend for "Month". (Blue lines)
- Consumption is highest for "Hougang". (Green line)
- Consumption is highest for "HDB 4rm". (Red lines)

Setting up Hypothesis testing for ANOVA

- ANOVA allows us to compare the means of k independent populations in a single test, to determine if there are any significant differences among the means.
- Null hypothesis,

H₀: Population means are all equal

Alternative hypothesis,

H₁: At least one mean is different or Not all population means are equal

ANOVA uses the F test statistic:

$$F = \frac{MS(Tr)}{MSE}$$
 which follows F distribution with

(k-1) numerator degrees of freedom, and

(n-k) denominator degrees of freedom

One-way ANOVA - "Region"

One-way ANOVA: Electricity versus Region

Minitab-> Stat-> ANOVA -> One Way

Method

Null hypothesis All means are equal Alternative hypothesis At least one mean is different Significance level $\alpha=0.05$

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

Region 3 Bishan, Hougang, Woodlands

Analysis of Variance

 Source
 DF
 Adj
 SS
 Adj
 MS
 F-Value
 P-Value

 Region
 2
 4594
 2297
 0.82
 0.448

 Error
 33
 92158
 2793

 Total
 35
 96752

Model Summary

S R-sq R-sq(adj) R-sq(pred) 52.8456 4.75% 0.00% 0.00%

Means

Region N Mean StDev 95% CI Bishan 12 321.4 53.9 (290.3, 352.4) Hougang 12 345.3 58.5 (314.3, 376.4) Woodlands 12 321.3 45.3 (290.3, 352.4)

Pooled StDev = 52.8456

H₀: All means are equal

H₁: At least one mean is different

P-value = 0.448>0.05. **Accept** Null hypothesis

Thus, "Region" <u>IS NOT</u> a significant factor contributing to the Electricity Consumption

Numeric interpretation that shows differences in consumption

One-way ANOVA – "Month"

One-way ANOVA: Electricity versus Month

Minitab-> Stat-> ANOVA -> One Way

Method

Null hypothesis All means are equal

Alternative hypothesis At least one mean is different

Significance level $\alpha = 0.05$

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

Month 3 April, August, December

Analysis of Variance

 Source
 DF
 Adj
 SS
 Adj
 MS
 F-Value
 P-Value

 Month
 2
 14192
 7096
 2.84
 0.073

 Error
 33
 82559
 2502

Total 35 96752

Model Summary

S R-sq R-sq(adj) R-sq(pred) 50.0180 14.67% 9.50% 0.00%

Means

Month N Mean StDev 95% CI April 12 303.3 36.6 (273.9, 332.6) August 12 333.4 54.8 (304.0, 362.8)

December 12 351.4 56.3 (322.0, 380.8)

Pooled StDev = 50.0180

H₀: All means are equal

H₁: At least one mean is different

P-value = 0.073>0.05. **Accept** Null hypothesis

Thus, "Month" **IS NOT** a significant factor contributing to the Electricity Consumption

Numeric interpretation that shows differences in consumption

One-way ANOVA – "Room Type"

One-way ANOVA: Electricity versus Room Type

Minitab-> Stat-> ANOVA -> One Way

Method

Alternative hypothesis At least one mean is different

Significance level $\alpha = 0.05$

Equal variances were assumed for the analysis.

Factor Information

Factor Levels Values

Room Type 2 HDB 3rm, HDB 4rm

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value Room Type 1 35183 35183 19.43 0.000 Error 34 61569 1811

Total 35 96752

Model Summary

S R-sq R-sq(adj) R-sq(pred) 42.5541 36.36% 34.49% 28.66%

Means

Room Type N Mean StDev 95% CI HDB 3rm 18 298.08 19.65 (277.69, 318.46) HDB 4rm 18 360.6 56.9 (340.2, 381.0)

Pooled StDev = 42.5541

H₀: All means are equal

H₁: At least one mean is different

P-value = 0.000<0.05. **Reject** Null hypothesis

Thus, "Room Type" **IS** a significant factor contributing to the Electricity Consumption

Numeric interpretation that shows differences in consumption

Residual Plot – "Region"

Residual Plot - "Month"

Residual Plot – "Room Type"

Interval Plot – "Region"

Interval Plot – "Month"

Interval Plot – "Room Type"

Balanced ANOVA

Minitab-> Stat-> ANOVA -> Balanced ANOVA

ANOVA: Electricity versus Region, Month, Room Type

Factor Type Levels Values
Region fixed 3 Bishan, Hougang, Woodlands
Month fixed 3 April, August, December
Room Type fixed 2 HDB 3rm, HDB 4rm

ROOM Type Tixed 2 HDB 31M, HDB 41

Analysis of Variance for Electricity

Source	DF	SS	MS	F	P	
Region	2	4594	2297	1.47	0.256	./
Month	2	14192	7096	4.54	0.025	Z
Room Type	1	35183	35183	22.51	0.000	
Region*Month	4	2483	621	0.40	0.808	
Region*Room Type	2	1481	741	0.47	0.630	
Month*Room Type	2	8105	4053	2.59	0.102	
Region*Month*Room Type	4	2583	646	0.41	0.797	
Error	18	28129	1563			
Total	35	96752				

S = 39.5314 R-Sq = 70.93% R-Sq(adj) = 43.47%

- Balanced ANOVA indicates that 2 main effects: "Month" and "Room Type" are significant.
- If P>0.05 for any of the factors, it indicates that the factor is not significant.
- P value for all interaction effects > 0.05, hence insignificant.

Balanced ANOVA

- Analyses all 3 factors <u>at the same time</u>
- Includes the interactions among the factors
- Takes into account the blocking effect (blocking out the effects of different factors) into the analysis
- Is more sensitive in identifying the significant factors compared with One-way ANOVA.

Residual Plot – Balanced ANOVA

Main Effects Plot (ANOVA)

Minitab-> Stat-> ANOVA -> Main Effects Plot

- The differences between the response mean of each factor level (individual points) and the grand mean (horizontal line) indicate the effects.
- Main effect "Room Type" has the steepest gradient, hence is the most significant effect.

Interaction Plot (ANOVA)

Minitab-> Stat-> ANOVA ->Interaction Plot

- Interaction Plot creates a single interaction plot for two factors, or a matrix of interaction plots for three to nine factors.
- Among all Interaction effects, "Month*Room Type" exhibited the most non-parallel lines. To ascertain whether this interaction effect is a significant one, we have to refer to P-value in Balance ANOVA (p-value < 0.05, then significant).

Summary of Findings

- Various plots and One-way ANOVA show that the "Room Type" is the sources of variations, i.e., factors significantly affecting the "Electricity Consumption / kWh" in the Open Electricity Market (OEM).
- Based on the Balanced ANOVA, 2 factors, "Month" and "Room Type", significantly affecting the "Electricity Consumption / kWh" in the Open Electricity Market (OEM).
- You can proceed to the next Phase of the Six Sigma project to take actions to "Improve" on the 3 factors identified in today's "Analyze" phase to improve the "Electricity Consumption / kWh" in the Open Electricity Market (OEM).
- Compared with One-way ANOVA, Balanced ANOVA analyses all factors and their interactions at the same time. It is more sensitive in identifying the significant factors compared with One-way ANOVA.

Learning Objectives

 Recognize the Lean Six Sigma Analyze Phase

- Apply tools used in Analyze Phase
 - Multi-Vari Charts
 - One-way ANOVA, Balanced-ANOVA
- Identify Possible Sources of Variation

Overview of E326 Lean Manufacturing and Six Sigma

