TRABAJO PRACTICO Nº 6

MAQUINAS DE TURING

1) Para cada uno de los siguientes lenguajes sobre el alfabeto $A = \{a, b, c, d, e\}$, diseñe y defina formalmente en MTSolution una Máquina de Turing que los reconozca:

b)
$$L_2 = \{ a^{i+2} b^j c^{2i} d^j / i, j \ge 0 \}$$

c) $L_3 = \{ b^{2r} a^{n+1} b^n d^j e^{r+1} / n, r \ge 0 \text{ y } j > r \}$
d) $L_4 = \{ a^{n+1} b^n d^n e^k / n \ge 0 \text{ y } k > n \}$

$$d$$
) $L_4 - \{a \quad b \quad d \quad e \mid n \geq b \quad y \quad k \geq n\}$

a) $L_1 = \{ a^n b^k d^{2n} e^{n+1} / k, n \ge 1 \}$

$$e) \; L_5 = \{ \; a^{2n} \; d^{s+1} \; b^k \; e^n \, / \, s \geq 0 \; y \; n, \, k \geq 0 \; y \; k \neq n \; \; \}$$

$$f) \; L_6 = \{ \; a^{p+1} \; d^{2n} \; b^n \; e^{2k+1} \; \; / \; \; p, \, k \geq 0 \; y \; n > p \; \}$$

$$g) \; L_7 = \{ \; a^n \; b^{2k+1} \; d^{p+1} \; c^k \; / \; \; p, \; k \geq 0 \; \; y \; \; n > p \} \; \; \cup \; \{ \; a^n \; b^{2k+1} \; e^{2n} \; / \; n, \; k > 0 \; \}$$

2) Dada la siguiente Máquina de Turing $MT = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}, \{a, b, c, d\}, \{X, 1, a, b, c, d, B\}, \delta_1, e_0, B, \{e_6\} >$

δ_1	C_1	C_2	C_1		C_2		Nuevo estado
			Nuevo Símb.	Mov.	Nuevo Símb.	Mov.	
e_0	a	В	a	N	X	D	e_1
	b	В	b	N	X	D	e_2
	В	В	В	N	В	N	e_6
e_1	a	В	a	D	1	D	e_1
	b	В	b	N	В	N	e_2
	c	В	c	N	В	I	e_3
e_2	b	В	b	D	1	D	e_2
	c	В	c	N	В	I	e_3
e_3	c	1	c	D	1	I	e_3
	d	X	d	N	X	D	e_4
e ₄	d	1	d	D	1	N	e ₅
	В	В	В	N	В	N	e_6
e ₅	d	1	d	D	1	D	e_4
e_6	-	-	-	-	-	-	-

a) Determine si las siguientes cadenas pertenecen o no al lenguaje aceptado por la Máquina de

Turing MT: i) abccddd; ii) abcdd; iii) aaccdddd; iv) bbbcccddddd; v) aabcccdd.

b) Determine el lenguaje aceptado por la Máquina de Turing MT.

3) Determine qué función calcula la siguiente Máquina de Turing MT

MT=
$$\{e_0, e_1, e_2, e_3, e_4, e_5, e_6\}, \{1, X\}, \{1, X, Z, B\}, \delta, B, \{e_6\} > donde la función de transición de estados es$$

$$\delta: E \times C_1 \times C_2 \rightarrow E \times (C_1 \times \{D, I, N\}) \times (C_2 \times \{D, I, N\})$$

δ	C_1	C_2	C_1		C_2		Nuevo estado
			Nuevo Símb.	Mov.	Nuevo Símb.	Mov.	
e_0	1	В	1	N	В	N	e_1
e_1	1	В	Z	D	В	N	e_2
	X	В	X	D	В	N	e_6
e_2	1	В	1	D	В	N	e_2
	X	В	X	D	В	N	e_3
e_3	1	В	1	D	1	D	e ₄
e_4	1	В	1	D	1	D	e_4
	В	В	В	I	В	N	e_5
e_5	1	В	1	I	В	N	e_5
	X	В	X	I	В	N	e_5
	Z	В	Z	D	В	N	e_1
e_6	-	-	-	-	-	-	-

4) Diseñe en MTSolution una Máquina de Turing que calcule:

a)
$$\sum_{1 \le i \le n} (n+i)$$
 n codificado en unario

b)
$$\lceil (x * y) / 2 \rceil$$
 para x, y > 0 codificados en unario

c) x mod y para x, y > 0 codificados en unario

d) la parte entera superior del promedio de n números mayores que cero codificados en unario.

Usar como separador de números unarios en la cinta de entrada el símbolo 0.

Ejemplo Cinta de entrada 111110111010 (números 5, 3 y 1)

Cinta resultado 111 (cálculo $\lceil (5+3+1)/3 \rceil = 3$)