Comparative ecology of sexual and asexual parasitoid wasps

Cyril Matthey-Doret

Supervised by Casper Van Der Kooi Directed by Tanja Schwander

Background

- In general, few species reproduce asexually
- Hypotheses predict asexual and sexual species to differ in host range and geographical distribution.
- Never tested on a large scale analysis
- Many asexual species in certain clades of haplodiploid arthropods

Haplodiploid arthropods

- Occurs in many insect species
- Offspring can develop without egg fertilization (parthenogenetically)

The study

 Gather data on different ecological variables for species in Chalcidoidea.

 Compare those variables between parthenogenetic and sexual species.

Why Chalcidoidea?

- Many (240) parthenogenetic species
- Well studied, many species relevant for biocontrol.
- Great database available!

- Manual dataset
- Gathered by hand in literature
- Few species
- Comparison sex vs asex between the most closely related species.

- Automated dataset
- All data from the same database
- Many species
- Comparing asex vs sex in each genera

Data overview

Species used for comparisons:

Manual dataset:

- In total: 133 species (50 asexual, 83 sexual)
- Reparted into 32 pairs.

Automated dataset:

- In total: 8357 species (136 asexual, 8221 sexual) from 66 genera in 11 families.
- No pairs, using genera instead.

Variables studied

- Do asexuals tend to have more host species?
 - Successful asexuals are often generalist.
 - → Number of host species
- Do asexuals tend to occupy larger regions than sexuals?
 - → Number of countries/states
- Geographical distribution in more detail using latitude.

- Max distance from equator.
- Min distance from equator
- Latitude range

Statistical analysis

Using generalized linear mixed models:

- Manual: y ~ mode + (1| genus / pair)
- Automated: y ~ mode + (1| genus)

Using permutations approach to reduce poor distribution fitting bias.

Results

Manual dataset: values per pair

Automated dataset: values per genus

Automated dataset: Publication bias

- Poorly studied species have unknown reproductive mode and were considered sexual
- Sexual species will have fewer known hosts and countries
- Results are consistent when excluding poorly studied species (more than 10 publications)

Arrow of causality

 Does the broad niche evolve after transition to asexuality?

 Or are sexuals with broad ecologies and distributions more likely to give rise to asexuals?

Arrow of causality

Combining manual and automated datasets

 Comparing number of host species and countries between sister species and outgroups in each genera

Causality: Results

 Sexual species from which asexual sister species diverged already had a large niche

Results: summary

- Asexuals have wider niches:
 - More host species than sexuals
 - Sampled in more countries
- Their geographical distributions can expand more towards poles.
- Asexuals arise from already widely distributed sexual species.

Thank you!

Questions?

Supplementary slides

Manual dataset: flowchart

Manual dataset: Data

Species used for comparisons:

Manual dataset:

- In total: 133 species (50 asexual, 83 sexual)
- Reparted into 32 pairs.

Family	Genus	Asex	Sex	Total
Aphelinidae	Aphelinus	2	9	11
	Aphytis	20	35	55
	Encarsia	7	8	15
	Eretmocerus	2	3	5
Torymidae	Megastigmus	7	11	18
	Torymus	1	2	3
Trichogrammatidae	Megaphragma	1	1	2
	Trichogramma	10	12	22
	Trichogrammatoidea	0	2	2

Automated dataset: flowchart

 Only genera with at least one known parthenogen were used.

Automated dataset: Data

Automated dataset:

- In total: 8357 species (136 asexual, 8221 sexual) from 66 genera in 11 families.
- No pairs, using genera instead.

Family	Asexual	Sexual	Total
Aphelinidae	46	1006	1052
Chalcididae	1	304	305
Encyrtidae	22	1314	1336
Eulophidae	22	2148	2170
Eupelmidae	1	481	482
Eurytomidae	3	879	882
Leucospidae	1	117	118
Mymaridae	12	528	540
Pteromalidae	6	680	686
Torymidae	8	517	525
Trichogrammatidae	14	247	261

GLMM with permutation approach

Automated dataset: Publication bias

- Species with unknown reproductive mode considered sexual
- Some variables strongly correlate with number of publications (ref)

Automated dataset: Publication bias

- Removing species with low number of publications
- Trade off: bias vs power

