Tópicos de Matemática Discreta

– Exame – Época Normal [1^a chamada] — — 10.jan'07 [2 horas] — —

- 1. Indique, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) Se o valor lógico da fórmula proposicional $(\neg p \Rightarrow q) \Leftrightarrow (\neg (p \land r) \Rightarrow q)$ é o de falsidade então a proposição p é verdadeira.
 - (b) Existe um conjunto A tal que $\mathcal{P}(A) \cup A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$
 - (c) Dada a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = -x^2 x + 6$, para todo o $x \in \mathbb{R}$, $g(\{-2,2,4\}) = \{-14,0,4\}$ e $g^{\leftarrow}(\mathbb{R}^-) =]-3,2[$.
 - (d) A função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^2|x|$, para todo o real x, é injectiva ou é sobrejectiva.
- 2. Construa uma prova para cada uma das seguintes afirmações:
 - (a) Se A, B e C são conjuntos tais que $A \subseteq C$ ou $B \subseteq C$ então $A \cap B \subseteq C$.
 - (b) Para todo o natural n > 4, $n^2 > 3n + 3$.
 - (c) $\exists_{k \in \mathbb{N}} \forall_{n \in \mathbb{N}} (n \ge k \Rightarrow n^2 > 3n + 3)$.
- 3. Considere o conjunto $A = \{1, 2, 3, 4, 5, 6\}$, as relações binárias $S = \{(1, 1), (2, 3), (4, 6), (6, 4)\}$ e $T = \{(1, 5), (2, 3), (3, 5), (5, 4)\}$ em A e a partição $\Pi = \{\{1, 2\}, \{3, 4\}, \{5\}, \{6\}\}\}$ de A.
 - (a) Determine o domínio e o contradomínio de $T \circ S$.
 - (b) Diga, justificando, se a relação S é reflexiva, se é simétrica, se é anti-simétrica e se é transitiva.
 - (c) Determine a menor relação de ordem parcial em A que contém T.
 - (d) Seja R a relação de equivalência associada a Π , definida em A. Indique três elementos $x, y \in z$ de A cujas classes de equivalência $[x]_R, [y]_R \in [z]_R$ sejam distintas.
- 4. Sejam $X = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{4, 5, 6, 7\} \in B = \{1, 2, 4, 7\}.$

- (a) Considere o c.p.o. (X, \leq) definido pelo diagrama de Hasse ao lado.
 - i. Indique, referindo a definição, os elementos minimais e maximais de X.
 - ii. Indique, referindo a definição, os majorantes e os minorantes de A e de B. Determine o supremo e ínfimo de A e de B.
- (b) O diagrama em cima representa um grafo G com X como conjunto dos vértices (i.e., $\mathcal{V}(G) = X$).
 - i. Indique um caminho simples que não seja caminho elementar de 1 para 3.
 - ii. O grafo G é uma árvore? Justifique a sua resposta.

Cotação:

 $1. \sim (1, 5+1, 5+1, 5+1, 5); \ 2. \sim (1, 5+2+1); \ 3. \sim (1, 5+2+1+1); \ 4. \sim (1+1, 5+1+0, 5)$