Math 21-236, Mathematical Studies Analysis II, Spring 2012 Assignment 5

The due date for this assignment is Monday April 2.

Given n closed continuous oriented curves $\gamma_1, \ldots, \gamma_N$, the family $\Gamma := \{\gamma_1, \ldots, \gamma_N\}$ is called a *cycle*. The *range* of Γ is given by the union of the ranges of $\gamma_1, \ldots, \gamma_N$. Given a point $\mathbf{x} \in \mathbb{R}^2$ not contained in the range of Γ , we define the *winding number* of Γ around \mathbf{x} to be the integer

$$\operatorname{ind}_{\Gamma}\left(\mathbf{x}\right) := \sum_{k=1}^{n} \operatorname{ind}_{\boldsymbol{\gamma}_{k}}\left(\mathbf{x}\right).$$

- 1. On the definition of absolute continuity. Let $f:[a,b]\to\mathbb{R}$.
 - (a) Prove that f belongs to AC([a,b]) if and only if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$\left| \sum_{k=1}^{\ell} \left(f\left(b_{k}\right) - f\left(a_{k}\right) \right) \right| \leq \varepsilon$$

for every finite number of nonoverlapping intervals (a_k, b_k) , $k = 1, \ldots, \ell$, with $[a_k, b_k] \subseteq [a, b]$ and

$$\sum_{k=1}^{\ell} (b_k - a_k) \le \delta.$$

(b) Assume that for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\left| \sum_{k=1}^{\ell} \left(f\left(b_{k}\right) - f\left(a_{k}\right) \right) \right| \leq \varepsilon$$

for every finite number of intervals (a_k, b_k) , $k = 1, \dots, \ell$, with $[a_k, b_k] \subseteq [a, b]$ and

$$\sum_{k=1}^{\ell} (b_k - a_k) \le \delta.$$

Prove that f is Lipschitz.

2. Let $U \subseteq \mathbb{R}^2$ be an open set and let $K \subset U$ be a compact set. Construct a cycle Γ with range contained in $U \setminus K$ such that

$$\operatorname{ind}_{\Gamma}(\mathbf{x}) = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x} \in K, \\ 0 & \text{if } \mathbf{x} \in \mathbb{R}^2 \setminus U. \end{array} \right.$$

3. Determine if following sets are simply connected:¹

¹If they are simply connected, you need to prove it rigorously: constructing the homotopy and/or using theorems proved in class, while if they are not, again you need to prove it rigorously.

- (a) $\mathbb{R}^2 \setminus ([1, \infty) \times [-1, 1]),$
- (b) $\mathbb{R}^3 \setminus \{(0,0,0)\},$
- (c) \mathbb{R}^3 \line.
- 4. Solve the differential equation

$$y' = -\frac{2\ln(xy) + 1}{\frac{x}{y}}.$$