Lecture 8

Today's topics:
- trigonometry (part I)

Tutorial 5.30 - trig Read 1.3 Examples 1.36-1.37 En. 1.31-1.3.4 1.3.10, 1.3.11*

Angles

arbitrary arises raducally.

- · Full circle has 360° = 211 radians
- · We use radians in calculus.
- * At Tradian, S=r (definition of rad)
- . It follows, that s=10

· Full circle, s=2TTr (circumference) -> 0=2TT radians.

Converting Degrees en Radians.

2th radians = 360 degrees

(T = 180° useful)

= 1 radion = $\frac{360}{2\pi}$ degrees

Fg/ 3TT radians = $3\pi \left(\frac{360}{2\pi}\right)$ degrees = 540°

 $\frac{Eg}{45}$ °. = $\frac{2\pi}{360}$ 45 rad = $\frac{\pi}{4}$ rad

Angle conventions.

In only plane, measure from positive x-axis.

rotate counter-dockerise for 0 > 0.

Definition of sine and cosine functions.

Take unit circle

Eg/
$$cos(o)=1$$
, $sin(o)=0$.
 $cos(\frac{3\pi}{2})=0$, $sin(\frac{3\pi}{2})=-1$

Properties

Symmetry:
$$Sin(-0) = -sin O$$
 (odd)
 $Cos(-0) = cosO$. (even)

Periodicity:
$$sin(\Theta+2n\pi)=sin\Theta$$
, $n\in\mathbb{Z}$
 $cos(\Theta+2n\pi)=cos\Theta$, $n\in\mathbb{Z}$. $(p=2\pi)$.

(valid for
$$0 \le 0 \le \frac{\pi}{2}$$
)
$$\sin(0) = \frac{9}{6}$$

$$Cos(0) = \frac{\alpha}{h}$$

$$tan(0) = \frac{y}{sc} = \frac{sin 0}{asso}$$

Special Angles

$$\sin(\frac{\pi}{3}) = \frac{\sqrt{2}}{2}$$

$$\sin(\frac{\pi}{3}) = \frac{1}{2}$$

$$\cos(\frac{\pi}{3}) = \frac{1}{2}$$

$$\cos(\frac{\pi}{3}) = \frac{1}{2}$$

Angles outside of [0, 7].

LOS > 0.

Use mnemorie.

only

ton>0

Eg! Find
$$\sin\left(\frac{8\pi}{3}\right)$$
, $\cos\left(\frac{8\pi}{3}\right)$

Construct triangle (special angle)

$$a = \cos \frac{1}{3} = \frac{1}{2}$$
 $b = \sin \frac{1}{3} = \frac{1}{2}$
 $\Rightarrow x = -\frac{1}{2} = \sin \left(\frac{8\pi}{3}\right)$
 $y = \frac{1}{2} = \sin \left(\frac{8\pi}{3}\right)$

Graphs of trig functions

$$y = cos(x)$$

$$0 = R, \quad E = L - (1).$$

$$2\pi - periodic, even$$

$$y = \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$D = \left\{ x \in \mathbb{R} : x \neq \frac{\ln(1)\pi}{2}, n \in \mathbb{Z} \right\}$$

$$E = \left(-\infty, \infty \right) = \mathbb{R}.$$

M-periodic, odd

Pythag:
$$\begin{bmatrix} sch^2\theta + cos^2\theta = 1 \end{bmatrix}$$
.

 $(sin \theta)$
 $(sin \theta)$