CIS 352

Types

Jim Royer

March 22, 2019

"Well-typed programs cannot go wrong."

— Robin Milner

References

- !!!! Slides for: Language Semantics and Implementation Lectures 13 & 16, by Richard Mayr and Colin Stirling, School of Informatics, University of Edinburgh, 2013.

 http://www.inf.ed.ac.uk/teaching/courses/lsi/13Lsi13-14-nup.pdf
- Introduction to the semantics of programming languages: A simple functional language, by Matthew Hennessy, Trinity College Dublin, University of Dublin, 2014–2015. https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/LectureNotes/Notes14%20copy.pdf
- Lecture Notes on Semantics of Programming Languages by Andrew Pitts, Computer Laboratory, University of Cambridge, 1997-2002.

 http://www.inf.ed.ac.uk/teaching/courses/lsi/sempl.pdf.
- ► Type Inference by Michael Clarkson, Computer Science Dept., Cornell University, 2016. http://www.cs.cornell.edu/courses/cs3110/2016fa/1/17-inference/notes.html
- ► Polymorphic Type Inference by Tony Field, Department of Computing, Imperial College London, 2012. http://wp.doc.ic.ac.uk/ajf/type-inference

A type-system for LFP⁺, 1

LFP⁺ Types

```
	au ::= int integers

| bool
| loc | locations

| cmd | cmmands

| 	au 	o 	au' functions
```

Definition

- (a) An LFP⁺-expression e is $closed \iff fv(e) = \emptyset$.
- (b) Suppose e is closed. Then $\vdash e : \tau$ is a *type judgment* that asserts e can be assigned type τ . (At the moment the " \vdash " is just decoration.)

Goal: We want $e:\tau$ to entail that e is "an expression with all the properties demanded by τ ."

A type-system for LFP⁺, 2

Goal: We want $e: \tau$ to entail that e is "an expression with all the properties demanded by τ ."

Example

If $\vdash e_0 : \tau_1 \to \tau_2$ and $\vdash e_1 : \tau_1$, then $(e_0 \ e_1)$'s value should be of type τ_2 .

- ► The typable LFP⁺-expressions should be well-behaved. (*Details later.*)
- ▶ Junk LFP⁺-expressions (e.g., skip + 3) should be untypable.
- ► However, some funky, but non-junky LFP⁺-expressions will also be untypable. (*This provides employment opportunities for type-theorists.*)

A type-system for LFP⁺, 3

Example type judgments we want

```
\vdash 3+!\ell: \mathbf{int}
\vdash \lambda x.x: \mathbf{int} \to \mathbf{int}
\vdash \lambda x.x: \mathbf{cmd} \to \mathbf{cmd}
\vdash \lambda x.(x:=0): \mathbf{loc} \to \mathbf{cmd}
\vdash \lambda x.\lambda y.(x:=y): \mathbf{loc} \to \mathbf{int} \to \mathbf{cmd}
\vdash (\lambda x.\lambda y.(x:=y)) \ \ell: \mathbf{int} \to \mathbf{cmd}
\vdash \mathbf{rec} \ f.(\lambda x. \ \mathbf{if} \ x=0 \ \mathbf{then} \ 1 \ \mathbf{else} \ x*f(x-1)): \mathbf{int} \to \mathbf{int}
```

How to assign types?

► Rules!

(In this course, what else would you expect?)

- We have to handle open expressions, i.e., expressions with free variables.
- ▶ Where do the free variables get their types?
- ► *Type context* = a dictionary of variables and their types.
- ► *E.g.*, $\Gamma = x$: int, f: bool \rightarrow int
- General type judgments
 - $\Gamma \vdash e : \tau \equiv \text{under context } \Gamma, e \text{ can be assigned type } \tau$
- ► Rule format:

name: $\frac{\cdots \textit{premises}\cdots}{\Gamma \vdash e:\tau} \; (\text{side condition})$

LFP⁺ typing rules, 1

LFP⁺ typing rules, 2

:-var:
$$\frac{\Gamma, \ x : \tau \vdash e' : \tau'}{\Gamma, \ x : \tau \vdash x : \tau}$$
:-fn:
$$\frac{\Gamma, \ x : \tau \vdash e' : \tau'}{\Gamma \vdash \lambda x . e' : \tau \rightarrow \tau'}$$
:-app:
$$\frac{\Gamma \vdash e_1 : \tau \rightarrow \tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash (e_1 \ e_2) : \tau'}$$
:-rec:
$$\frac{\Gamma, \ x : \tau \vdash e : \tau}{\Gamma \vdash \text{rec} \ x . e : \tau}$$

Notes

- $ightharpoonup \vdash e: \tau \equiv \emptyset \vdash e: \tau.$

Sample Derivations

```
x: int, y: int\vdash 3: int var: \overline{x: int, y: int} \vdash y: int
x: int, y: int\vdash (3 * y): int
x: int, y: int \vdash x: int
                                            x: int, y: int \vdash (x + (3 * y)): int
                                                           int: x: int, y: int \vdash 3: int  var:  x: int, y: int \vdash y: int  x: int, y: int \vdash (3 * y): int
x: int, y: int \vdash x: int
                       fn: \frac{x: \text{int, } y: \text{int} \vdash (x + (3*y)): \text{int}}{x: \text{int} \vdash \lambda y.(x + (3*y)): \text{int} \rightarrow \text{int}}\vdash \lambda x.\lambda y.(x + (3*y)): \text{int} \rightarrow \text{int} \rightarrow \text{int}
```

Class Exercise

Derive each of:

```
\vdash 3+!\ell: \mathbf{int}
\vdash \lambda x.x: \mathbf{int} \to \mathbf{int}
\vdash \lambda x.x: \mathbf{cmd} \to \mathbf{cmd}
\vdash \lambda x.(x:=0): \mathbf{loc} \to \mathbf{cmd}
\vdash \lambda x.\lambda y.(x:=y): \mathbf{loc} \to \mathbf{int} \to \mathbf{cmd}
\vdash (\lambda x.\lambda y.(x:=y)) \ \ell: \mathbf{int} \to \mathbf{cmd}
\vdash \mathbf{rec} \ f.(\lambda x. \ \mathbf{if} \ x=0 \ \mathbf{then} \ 1 \ \mathbf{else} \ x*f(x-1)): \mathbf{int} \to \mathbf{int}
```

Properties of the type system

Proposition

- a Declaration lemma Suppose: $\Gamma \vdash e : \tau$. Then: $fv(e) \subseteq \text{dom}(\Gamma)$.
- **b** Weakening **Suppose:** $\Gamma \vdash e : \tau$ and $x \notin \text{dom}(\Gamma)$. **Then:** $\Gamma, x : \sigma \vdash e : \tau$.
- **c** *Strengthening* **Suppose:** $\Gamma, x : \sigma \vdash e : \tau$ and $x \notin fv(e)$. **Then:** $\Gamma \vdash e : \tau$.
- **d** *Substitution typing lemma* **Suppose:** Γ , x : $\sigma \vdash e$: τ and $\Gamma \vdash e'$: σ . **Then:** $\Gamma \vdash e[e'/x]$: τ .
- **e** Contraction **Suppose:** Γ , $x : \sigma$, $y : \sigma \vdash e : \tau$. **Then:** Γ , $x : \sigma \vdash e[x/y] : \tau$.

Subject Reduction

Subject Reduction \equiv a type- τ expression evaluates to a type- τ value

Call-by-name subject reduction

Suppose: $\vdash e : \tau$ and $\langle e, s \rangle \Downarrow_{\mathsf{N}} \langle v, s' \rangle$. **Then:** $\vdash v : \tau$.

Call-by-value subject reduction

Suppose: $\vdash e : \tau$ and $\langle e, s \rangle \Downarrow_{\mathsf{V}} \langle v, s' \rangle$. **Then:** $\vdash v : \tau$.

Side-effect-free-ness for call-by-name LFP⁺ expressions

Theorem

If \vdash $e : \tau$ *where* $\tau \neq \mathbf{cmd}$ *and* $\langle e, s \rangle \downarrow_{\mathbb{N}} \langle v, s' \rangle$, *then* s = s'.

The proof is a tricky structural induction.

The call-by-value version of the theorem is *false*. E.g.,

$$\langle (\lambda x.0) \ (\ell := 1), \{ \ell \mapsto 0 \} \rangle \bigvee_{\mathbf{V}} \langle 0, \{ \ell \mapsto 1 \} \rangle.$$

Type checking and type inference

Type checking

Q: Given Γ, e and τ , how do we verify Γ \vdash e : τ ?

A: Use the typing rules.

Type inference

Q: Given Γ and e, how do we figure out a τ such that $\Gamma \vdash e : \tau$?

*A*₁: Use the draw-the-owl technique.

 A_2 : Gather and solve type constraints.

Fig 1. Draw two circles

Fig 2. Draw the rest of the damn Owl

Inferring $\lambda x.(+5 x)$: int \rightarrow int

Example lifted from http://www.cs.cornell.edu/courses/cs3110/2016fa/1/17-inference/lec.pdf.

Subexpression Prelimary Type a. $\lambda x.(((+)5)x)$ R b. x S c. (((+)5)x) T d. ((+)5) U e. (+) int \rightarrow int \rightarrow int f. 5 int g. x V

Constraints

1.
$$S = V$$
 (b & g)

2.
$$R = S \to T$$
 (a, b, & c)

3.
$$U = V \rightarrow T$$
 (c, d, & g)

4.
$$int \rightarrow int \rightarrow int = int \rightarrow U$$
 (d, e, & f)

Inferring $\lambda x.(+5 x)$: int \rightarrow int

Subexpression Prelimary Type a. $\lambda x.(((+)5)x)$ R b. x S c. (((+)5)x) T d. ((+)5) U e. (+) int \rightarrow int \rightarrow int f. 5 int g. x V

Constraints

- 1. S = V (b & g)
- $2. R = S \rightarrow T$
- 3. $U = V \rightarrow T$
- 4. $int \rightarrow int \rightarrow int = int \rightarrow U$

(c, d, & g) (d, e, & f)

(a, b, & c)

Solving the Constraints: Step 1

Use S = V to eliminate S by [V/S].

$$R = \frac{V}{V} \rightarrow T$$

$$U = V \rightarrow T$$

$$\text{int} \rightarrow \text{int} \rightarrow \text{int} \rightarrow U$$

Inferring $\lambda x.(+5 x): int \rightarrow int$

Subexpression $\lambda x.(((+) 5) x)$

c.
$$(((+)5)x)$$
 T
d. $((+)5)$ U

b.

$$(+)$$
 int \rightarrow int \rightarrow int

Constraints

$$1. S = V$$

$$2. R = S \to T$$

3.
$$U = V \rightarrow T$$

4.
$$int \rightarrow int \rightarrow int = int \rightarrow U$$
 (d, e, & f)

(b & g)

(a, b, & c)

(c, d, & g)

Solving the Constraints: Step 2

Use
$$U = V \rightarrow T$$
 to eliminate U by $[(V \rightarrow T)/U]$.

$$R = V \rightarrow T$$

$$int \rightarrow int \rightarrow int = int \rightarrow V \rightarrow T$$
.

Infering $\lambda x.(+5 x): int \rightarrow int$

Subexpression **Prelimary Type**

a.
$$\lambda x.(((+)5)x)$$

$$(((+) 5) x))$$

d.
$$((+)5)$$
 U

b.

$$(+)$$
 $(+)$ $int \rightarrow int \rightarrow int$

g.
$$x V$$

Constraints

$$1. S = V$$

$$2. R = S \to T$$

3.
$$U = V \rightarrow T$$

4.
$$int \rightarrow int \rightarrow int = int \rightarrow U$$

(b & g)

Solving the Constraints: Step 3

Use $int \rightarrow int \rightarrow int = int \rightarrow V \rightarrow T$ to eliminate V and T.

I.e., [int /V] and [int /T].

$$R = int \rightarrow int$$

Gathering type constraints for a definition

▶ Initially do variable substitutions on the expression to make sure bound variable names are distinct. E.g.,

let
$$x = 15$$
 in (let $x = (+x 3)$ in $(*2 x)$)

 \sim

let $x = 15$ in (let $y = (+x 3)$ in $(*2 y)$)

- Assign a preliminary type to every subexpression.
 - If the subexpression is a constant (e.g., 5) or a primitive function (e.g., +), use it's preassigned type.
 - Otherwise, use a fresh type variable.
- Use the "shape" of the expressions to generate constraints.
 - E.g., for $((\lambda x.e) 5)$ with 5 : int, we obtain x's type = int.

Types

- Initially do variable substitutions on the expression to make sure bound variable let x = 15 in (let x = (+x3) in (+2x))
 - let x = 15 in (let y = (+ x 3) in (* 2 y))
- Assign a proliminary type to every subsymposium If the subexpression is a constant (e.e., 5) or a primitive function (e.e., +), use it's Otherwise, use a fresh type variable.
- Use the "shape" of the expressions to generate constraints. E.e., for ((\(\lambda x.e.\)) 5) with 5; int. we obtain x's type = int.

names are distinct. Fig.

Infer:

• \vdash *apply* : $(a \rightarrow b) \rightarrow a \rightarrow b$ where *apply* = $\lambda f.\lambda x.(f x)$.

-Gathering type constraints for a definition

- $apply: (a \rightarrow b) \rightarrow a \rightarrow b, g: int \rightarrow int \vdash (apply g 5): int$
- $apply: (a \rightarrow b) \rightarrow a \rightarrow b$, $not: bool \rightarrow bool \vdash (apply not tt): bool$

These are worked out in Clarkson's notes.

Collection more formally

$$D$$
: variables \rightarrow types $D(x) = \text{type var of arg } x$ U : expressions \rightarrow types $U(e) = \text{type var assigned to exp } e$

- At a variable use x: U(x) = D(x).
- ▶ At a function application $(e_1 e_2)$: $U(e_1) = U(e_2) \rightarrow U(e_1 e_2)$.
- At an anon. function $\lambda x.e$: $U(\lambda x.e) = D(x) \rightarrow U(e)$.
- Etc.
- Unioned with constraints collected at each subexpression.

Exercise: Try this on $\lambda x.\lambda y.x$.

CIS 352 Types

Solving constraints

- ▶ A set of constraints is really a set of equations.
- ▶ The solution of these equations yields the type of the main expression.
- ▶ To to this we use a variation of Robinson's *unification algorithm*
 - Work done at SU in the mid-1960s.

More on this next time.

Field's set-up

```
-- Expressions
data Expr = Number Int
          | Boolean Bool
          | Id String
          | Prim String
          | Cond Expr Expr Expr
          | App Expr Expr
          | Fun String Expr -- User defined functions
          deriving (Eq. Ord, Show)
                            -- Types
data Type = TInt
          I TBool
          | TFun Type Type
          | TErr
          | TVar String -- Type variables
          deriving (Eq, Ord, Show)
```

```
-Field's set-up
type TypeTable = [(String, Type)]
type TEnv = TypeTable
-- A sample type-environment
te = [("x",TInt), ("v",TInt), ("f",TFun TInt TInt)]
-- Built-in function types...
primTypes :: TypeTable
primTypes
   = [ ("+". TFun TInt (TFun TInt TInt))
     , (">", TFun TInt (TFun TInt TBool)),
     , ("==", TFun TInt (TFun TInt TBool)),
     , ("not", TFun TBool TBool)
```

-- Expressions

| Fun String Expr -- User defined functions deriving (Eq. Ord, Show)

data Expr = Number Int | Boolean Bool | Id String | Prim String | Cond Expr Expr Expr | App Expr Expr

data Type - Tint

| TFun Type Type | TErr | TVar String -- Type variables deriving (Eq. Ord, Show)

Types

The easy case: Monomorphic types

Suppose our programs are missing

- user defined functions, i.e. no Fun-expressions, and
- type variables.

The we can use the follows rules (from Field):

- 1. Constants: (numbers and booleans): trivial.
- 2. Identifiers: look up the type in the type environment
 - a table of identifiers and their types
- 3. Primitives: they have preassigned types, primTypes
- 4. Conditionals: The test expression is Boolean and the two branches must identical types. If not, assign the type TErr. (*)
- 5. Applications: The function should have type TFun t t' and the argument should have type t, in which case the result has type t'; o/w TErr.

Monomorphic type inference: Example from Field

- 1. Constants: (numbers and booleans): trivial.
- 2. Identifiers: look up the type in the *type environment*
- 3. Primitives: they have preassigned types, primTypes
- 4. Conditionals: The test expression is Boolean and the two branches must identical types. If not, assign the type TErr. (★)
- 5. Applications: The function should have type TFun t t' and the argument should have type t, in which case the result has type t'; o/w TErr.

	Subexpression	Inferred type	Comment
1	Number 1	TInt	By rule 1
2	Id "x"	TInt	By rule 2
3	Id "y"	TInt	By rule 2
4	Prim "+"	TFun TInt (TFun TInt TInt)	By rule 3
5	App (Prim "+") (Id "y")	TFun TInt TInt	See *
6	App (App (Prim "+") (Id "y")) (Number 1)	TInt	See **

Type Variables

With type variables, checking if two types are "the same" is more involved.

Example

Suppose that for e = (Cond tst thenExp elseExp), we infer

- ▶ thenExp has type (TFun TInt (TVar "a"))
- elseExp has type (TFun (TVar "b") TBool)

These types are not identical, but they are unifiable by requiring

```
"a" \mapsto TBool "b" \mapsto TInt
```

The (successful) result of a unification is a unifying type substitution.

```
type TypeTable = [(String, Type)]
type Sub = TypeTable
tsub :: Sub
tsub = [("a",TBool),("b",TInt)]
```

IMPORTANT: A unification can fail.

The Martelli-Montanari Unification Algorithm, I

- The algorithm operates on
 - A list of pairs of types $[(t_1, t'_1), \dots, (t_n, t'_n)]$ to unify, and
 - a type substitution, s, which records prior committments.
- ▶ Initially, [(t, t')] is the list of pairs and s = [].
- ➤ The algorithm either returns the final version of *s* (*the unifying substitution*) or else reports failure.

The Martelli-Montanari Unification Algorithm, II

A step of the algorithm where

Case: $t_1 = t'_1 = TInt$.

```
• the list of pairs = ((t_1, t'_1) : tps)
```

• the type subst. = s

```
Then continue with
      the list of pairs = tps
      the type subst. = s.
Case: t_1 = (\text{TFun } t_a t_b) \text{ and } t'_1 = (\text{TFun } t'_a t'_b)
Then continue with
      the list of pairs = (t_a, t'_a) : (t_b, t'_b) : tps
      the type subst. = s
Case: t_1 = (\text{TVar } v) and t'_1 = (\text{TVar } v') with v = v'.
Then continue with
      the list of pairs = tps
      the type subst. = s
```

More...

The Martelli-Montanari Unification Algorithm, III

Case: One of t_1 or t_1' is of the form (TVar v) and the other is some type t' where $t' \neq (\text{TVar } v)$. Then

- the type subst. = (v, t') : s.
- \blacktriangleright the *tps* list is updated with the substitution [(v, t')] applied to each pair in the list.
 - This can fail because of an *occurs-check*.
 - More on this in a moment.

Case: Otherwise. Then report failure.

The Algorithm

Initially, tps = [(t, t')] and s = []. Keep applying the step-algorithm until tps = [], in which case return s = the unifying substition, unless you failed along the way.

An example from Field

Suppose

```
(TBool, TBool),  (\text{TFun (TVar "a") (TVar "b"), TVar "c"),}   (\text{TInt, TVar "a")} ]  Then a "a" \mapsto TInt substitution on (tail tps) yields  tps = [(\text{TBool, TBool}), \\ (\text{TFun TInt (TVar "b"), TVar "c"),} \\ (\text{TInt, TInt)}]
```

tps = [(TVar "a", TInt),

Which is the new *tps*.

Important point: Occurs check

```
Before we attempt a substitution [(v,t)],
    we check if the type variable v occurs in t;
       if it does, unification FAILS!!!
Why? Because otherwise we may have an infinite type (a no-no).
Example
The only solution to
      a \equiv \text{Int.} \rightarrow a
is the infinite type
       \operatorname{Int} \to \ldots
```

Unification examples from Field

t	t'	unify t t'
TFun (TVar "a") TInt	TVar "b"	Just [("b",TFun (TVar "a") TInt)]
TFun TBool TBool	TFun TBool TBool	Just []
TFun (TVar "a") TInt	TFun TBool TInt	Just [("a",TBool)]
TBool	TFun TInt TBool	Nothing
TFun (TVar "a") TInt	TFun TBool (TVar "b")	<pre>Just [("b",TInt),("a",TBool)]</pre>
TFun (TVar "a") (TVar "a")	TVar "a"	Nothing