Pole 1

Pole

Konečná pole existují pouze pro případ p^n prvků, kde p je prvočíslo a $n \in \mathbb{N}$ (např. existuje pole $\mathbb{F}_4 \to 4 = 2^2$, ale neexistuje konečné pole o šesti prvcích). V případě n=1 se sčítá a násobí $mod\,p$. Je-li n>1 je tomu jinak.

1. Příklad Nejjednodušší pole \mathbb{F}_2

$$p=2, n=1$$
 prvky: $0, 1$

Aditivní tabulka – sčítáme modulo 2

+	0	1
0	0	1
1	1	0

Multiplikativní tabulka – násobíme modulo 2 (viz Obrázek 1)

×	0	1
0	0	0
1	0	1

Obrázek 1: Pole \mathbb{F}_2

2. Příklad Pole \mathbb{F}_3

p = 3, n = 1 prvky: 0, 1, 2

 $Aditivn \acute{\imath}\ tabulka$ – sčítáme modulo 3

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Multiplikativní tabulka – násobíme modulo 3 (viz Obrázek 2)

·1		000.00	000	0 000,00
	×	0	1	2
	0	0	0	0
	1	0	1	2
	2	0	2	1

Obrázek 2: Pole \mathbb{F}_3

2 Pole

3. Příklad Pole \mathbb{F}_5

p = 5, n = 1 prvky: 0, 1, 2, 3, 4

Aditivní tabulka – sčítáme modulo 5

2100000000					•	
+	0	1	2	3	4	
0	0	1	2 3 4 0	3	4	
1	1	2	3	4	0	
2	2	3	4	0	1	
3	3	4	0	1	2	
4	4	0	1	2	3	

Multiplikativní tabulka – násobíme modulo 5

$\begin{array}{r} \times \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Úloha o 36-ti důstojnících: Máme seřadit 36 důstojníků z šesti různých pluků a šesti různých hodností do čtverce tak, aby v jedné řadě ani v jednom sloupci nestáli 2 důstojnící ze stejného pluku nebo stejné hodnosti.

5. Situace pro n>1: Prvky pole \mathbb{F}_{p^n} vyjádříme jako polynomy v neurčité "x" s koeficienty 0, 1, $\dots, p-1$ a stupně nejvýše n-1. Sčítání provedeme tak, že tyto polynomy sčítáme modulo p v každém stupni.

Pro násobení nejdříve vybereme tzv. **redukční polynom**, což je polynom stupně n (s koeficienty 0, $1, \ldots, p-1$), který není součinem polynomů stupňů nižších (tzn. je nerozložitelný). Dva prvky \mathbb{F}_{p^n} nyní vynásobíme a odečítáme $x^i P_{red}$ (pro vhodné i) tak dlouho, až je výsledek stupně nejvýše n-1 (násobíme " $modulo P_{red}$ ").

6. Příklad Pole \mathbb{F}_4 (viz Obrázek 3)

$$p = 2, n = 2$$
 prvky: $\begin{array}{c|cccc} 0 & 1 & 2 & 3 \\ \hline 0 & 1 & x & x+1 \end{array}$

+	0	1	2	3
0	0	1	2	3
1	1	$\frac{1}{0}$	3	2
2 3	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	3	0	1
3	3	2	1	0

Vybereme redukční polynom z polynomů: x^2 , $x^2 + 1$, $x^2 + x$, $x^2 + x + 1$

$$x \cdot x = x^2$$

$$x \cdot (x+1) = x^2 + x$$

$$(x+1) \cdot (x+1) = x^2 + \underbrace{2x}_{0} + 1 = x^2 + 1 \implies P_{red} = x^2 + x + 1$$

Obrázek 3: Pole \mathbb{F}_4

×	0	1	2	3
0	0	0	0	0
1	0	1	2	3
$\frac{1}{2}$	0	$\frac{1}{2}$	3	1
3	0	3	1	2

Pole 3

- $\begin{array}{lll} 2 \cdot 2 : & x \cdot x = x^2, & x^2 (x^2 + x + 1) = x + 1 \to 3 \\ 2 \cdot 3 : & x \cdot (x + 1) = x^2 + x, & (x^2 + x) (x^2 + x + 1) = 1 \to 1 \\ 3 \cdot 3 : & (x + 1) \cdot (x + 1) = x^2 + 1, & (x^2 + 1) (x^2 + x + 1) = x \to 2 \end{array}$

Pokud nalezneme více redukčních polynomů, libovolně si jeden zvolíme. Tento jev vede k izomorfismu polí se stejným počtem prvků. Např. můžeme vytvořit aditivní a multiplikativní tabulku pole \mathbb{F}_8 dvěma způsoby (má 2 redukční polynomy), tyto tabulky budou na první pohled odlišné, ovšem jsou izomorfní.

- 8. Definice Pole \mathbb{F} a \mathbb{G} jsou izomorfní $\Leftrightarrow \exists$ zobrazení $f: \mathbb{F} \to \mathbb{G}$ takové, že:

 - 2. f(x+y) = f(x) + f(y),
 - 3. $f(x \cdot y) = f(x) \cdot f(y)$.
- 9. Poznámka Izomorfní pole jsou "stejná", jen mohou mít různě pojmenované prvky (např. 3 v F je 7 v G).

Děkujeme Lence Zavíralové za pečlivé vysázení poznámek z přednášky. Tento text zatím neprošel výraznějšími úpravami, proto přivítáme jakékoli upozornění na případné nepřesnosti. Připomínky adresujte na hoderova@fme.vutbr.cz