MA4 1 Exercise

Wang Yue from CS Elite Class

November 3, 2020

Exercise 4.2

15. Let $f(x) = (x-3)^{-2}$. Show that there is no value of c in (1,4) such that f(4) - f(1) = f'(c)(4-1). Why does this not contradict the Mean Value Theorem?

$$f'(x) = \frac{-2}{(x-3)^3}, x \in (-\infty, 3) \cup (3, \infty)$$

when 1 < x < 3, $f'(x) > \frac{1}{4}$ when 3 < x < 4, f'(x) < -2 $\therefore \frac{f(4) - f(1)}{4 - 1} = \frac{1 - \frac{1}{4}}{3} = \frac{1}{4}$ \therefore when 1 < x < 4, there is no value of c in (1, 4) such that f(4) - f(1) = 1f'(c)(4-1).

This does not contradict the Mean Value Theorem because f(x) is not continuous at [1,4].

18.
$$x^3 + e^x = 0$$

Let $f(x) = x^3 + e^x$, and obviously

$$f'(x) = 3x^2 + e^x$$

- $f(-1) = -1 + \frac{1}{e} < 0, f(1) = 1 + e > 0, f(-1)f(1) < 0$
- \therefore there exists at least one real root of f(x) = 0 as $x \in (-1,1)$

Suppose there exists two real roots x_1, x_2 of f(x) = 0.

- f(x) is continuous and differentiable on (x_1, x_2) , $f(x_1) = f(x_2)$
- $\therefore \exists \xi \in (x_1, x_2)$, such that

$$f'(\xi) = e^{\xi} + 3\xi^2 = 0$$

- $e^x > 0, x^2 > 0$
- $\therefore f'(\xi) > 0$, which contradicts $\exists \xi \in (x_1, x_2), f'(\xi) = 0$.
- \therefore there is exactly one real root of the equation $x^3 + e^x = 0$

27. Show that $\sqrt{1+x} < 1 + \frac{1}{2}x$ if x > 0.

Proof. Let $f(x) = \sqrt{1+x}$, and obviously

$$f'(x) = \frac{1}{2\sqrt{1+x}} < \frac{1}{2}$$

By the Lagrange Mean Value Theorem on $(0,1), \exists \xi \in (0,x)$ such that

$$\sqrt{1+x} - \sqrt{1+0} = f'(\xi)(x-0)$$

 $\exists \xi \in (0, x)$, such that

$$\sqrt{1+x} - 1 = f'(\xi)x < \frac{1}{2}x$$

$$\therefore \sqrt{1+x} < 1 + \frac{1}{2}x \text{ if } x > 0$$

30. If f'(x) = c for all x, use Corollary 7 to show that f(x) = cx + d for some constant d.

Proof. Let g(x) = cx, so obviously

$$g'(x) = c = f'(x)$$

So by the Corollary 7, $\forall x \in R$, f(x) = g(x) + d where d is a constant. It is equivalent to f(x) = cx + d for some constant d.

36. A number a is called a fixed point of a function f if f(a) = a. Prove that if $f'(x) \neq 1$ for all real numbers x, then f has at most one fixed point.

Proof. We will prove it by contradiction. Suppose that $\exists a, b \in R$ such that

$$f(a) = a, f(b) = b$$

By the Lagrange Mean Value Theorem, $\exists \xi \in (a, b)$ such that

$$f(b) - f(a) = b - a = f'(\xi)(b - a)$$

 $\therefore \exists \xi \in (a,b)$ such that $f(\xi)=1,$ which contradict the hypothesis that $\forall x,f'(x) \neq 1$

 $\therefore f$ has at most one fixed point.