

Estimation of Actuation Configuration for a Multi-Actuated Blimp

Final Presentation (Semester Thesis)

Students: Matthias Krebs

Simon Laube

Advisors:

Kostas Alexis

Markus Achtelik

Content

- Motivation
- System Overview
- Problem Formulation
 - Parameters
 - System Model
 - Input Pattern
 - Optimization
- Results
 - Simulation Results
 - Experimental Results
 - Ground Truth
- Conclusion & Outlook

Motivation

- **FANCY SLIDE**
- **Parameters**

System Overview

4 Actuation Units (AU)

Spherical Hull filled

System Overview

System Overview

Goals

Problem Formulation

Autonomous Systems Lab

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1}(\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

$$\mathbf{M}_b = \sum_{k=1}^{N} \left[\mathbf{C}_{b,m_k} \left(\mathbf{p}_{m_k}^{m_k,cog} \times \mathbf{F}_{m_k} \right) \right] - \underbrace{\left(\mathbf{p}_b^{cob,cog} \times (\mathbf{C}_{b,w} m \mathbf{g}_w) \right)}_{\mathbf{M}^{gravity}}$$

Neglect aerodynamic effects on rotation

Problem Formulation: Parameters

Problem Formulation: Parameters

Position is assumed to be on sphere

Radius and mass are fixed (they don't influence result)

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1} (\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

$$\mathbf{M}_b = \sum_{k=1}^{N} \left[\mathbf{C}_{b, m_k} \left(\mathbf{p}_{m_k}^{m_k, cog} \times \mathbf{F}_{m_k} \right) \right] - \underbrace{\left(\mathbf{p}_b^{cob, cog} \times (\mathbf{C}_{b, w} m \mathbf{g}_w) \right)}_{\mathbf{M}^{gravity}}$$

Assume perfect knowledge of actuator force (in steady state)

Problem Formulation: Optimization

Nonlinear Least Squares

$$S(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\mathbf{y}_i - \mathbf{f}(\mathbf{x}_i, \boldsymbol{\theta})\|^2$$

- Levenberg-Marquardt
 - Robust and fast gradient based minimization

$$(\mathbf{J}^{\mathsf{T}}\mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{\mathsf{T}}\mathbf{J}))\boldsymbol{\delta} = \mathbf{J}^{\mathsf{T}}[\mathbf{y} - \mathbf{f}(\boldsymbol{\theta})]$$

Problem Formulation: Input Pattern

- Inputs must be applicable and sufficiently excited
 - Apply sequence of forward/backward force patterns in varying directions for all actuation units
 - Steady state motor dynamics

Autonomous Systems Lab

Simulator

Results

- Simulation Results
 - Confidence Region
 - Convergence Region
 - Casestudies (no drag; 1AU; 5AU; COG offset;)
- Experimental Results
- Groundtruth with Leica

Simulation: Confidence Region

Zeige Konvergenz & Anzahl Iterationen mit LMA

Simulation: Casestudies

mean	AU4 x	AU4 y	J	cog
Default	6.18e-04	7.66e-04	6.12e-02	6.94e-05
No drag	-4.89e-04	1.38e-03	5.16e-02	1.81e-05
std	AU4 x	AU4 y	J	cog
std Default	AU4 x 3.65e-03	AU4 y 7.19e-03	J 3.00e-02	cog 1.35e-04
Default	3.65e-03	7.19e-03	3.00e-02	1.35e-04

Resnorm [rad/s2]	
6.73e-04	
6.88e-04	

32 simulations à 2000 raw datapoints

Problem Formulation: Input Pattern

Data Acquisition

(Preprocessing)

Results: Experiments

Simulation: Convergence Region

Initial Parameters can be about 1m or 120° apart of the true value

Results: "Ground Truth" (Leica)

- 3 AU's visible at once
- Use different views
- Fit data to get tetrahedral's edge length
 - Residual below 0.01m

Results: Compare Leica and Batch Solution

Compare tetrahedral edge length

Relative error of batch solution					
%	AU2	AU3	AU4		
AU1	1.68	0.86	2.76		
AU2		0.67	2.47		
AU3			3.78		

Discussion

Outlook

