INSTITUTO POLITÉCNICO NACIONAL Centro de Innovación y Desarrollo Tecnológico en Cómputo

Sistema de aprendizaje no supervisado para la detección y automatización de tareas repetitivas en el entorno de una computadora

Presenta:

Ing.Ricardo González Tello

Directores:

Dr. José Félix Sérrano Talamantes

Dr. Mauricio Olguín Carbajal

Contenido

Introducción

Trabajos relacionados

Marco teórico

Desarrollo

Experimentos y resultados

Conclusiones

Referencias

Introducción

Justificación

Año	2010	2012	2014
Población Total	113.4 M	117.4 M	118.3 M
Población con Discapacidad	5.6 M	7.7 M	7.1 M
Porcentaje de Discapacidad	5.0%	6.6%	6.0%

Tabla: Población con discapacidad en México, según distintas fuentes [9, 8]

Mover o usar sus brazos o manos – 33.0%

► Enfermedad: 47.8%

► Edad Avanzada: 29.2%

► Accidente: 14.1%

► Nacimiento: 6.1%

▶ Violencia: 0.5%

▶ Otra causa: 2.3%

Planteamiento del problema

La población de Personas con Movilidad Reducida(PRM) va en aumento en México y con el uso de la computadora como algo imprescindible en la actualidad, la discapacidad de estas personas puede representar un obstáculo en su desarrollo laboral.

Hipótesis

El ser humano es un ser de costumbres, por lo que hay tareas repetitivas que son automatizables, por tal, el uso del software a desarrollar permitirá al usuario de la PC agilizar este tipo de tareas, ayudando con un manejo más ágil del equipo.

Propuesta de trabajo

- Interacción con todos los programas de un usuario
- Facilidad de uso
- Automatizar las acciones de un usuario

Figura: Ejemplo del árbol ideal generado al pasar 20 días de uso en una PC.

Objetivo general

Diseñar y desarrollar un software que defina a partir de un periodo de tiempo determinado el conjunto de acciones con mayor incidencia de uso por un usuario realizadas en una computadora por un usuario, para su uso posterior.

Objetivos específicos

- Desarrollar un sistema para la captura de acciones, tanto del ratón como del teclado.
- Crear e implementar un árbol para resolver el problema.
- Obtener una muestra de las acciones realizadas con el teclado y el ratón por un usuario en una computadora.
- Diseñar y desarrollar el algoritmo para la determinación de tareas repetitivas.

Antecedentes

Opciones de accesibilidad de Microsoft Windows [4]

- Lupa.
- Narrador.
- Teclado en pantalla.
- Contraste alto.
- Reconocimiento de voz.

Silla de ruedas VAHM3 [7]

Trabajos relacionados

Nombre del autor o	interacción con to-	Metodología em-	Automatizar	Múltiples
del proyecto (Año)	dos los programas	pleada	acciones	tareas
	del usuario			objetivo
Microsoft	Solo de Microsoft	Patentado	Si	Si
Cortana[1](2014)				
Archivo por	Solo el Sistema Oper-	Scripts	Si	Si
lotes[10](1960)	ativo			
Puloverfls Macro	Si	Scripts	Si	Si
Creator[2](2013)				
UIPath[5](2005)	Si	Robotic Process Au-	Si	Si
		tomation		
Propuesta	Si	Grafo	Si	Si

Tabla: Tabla de requisitos y análisis comparativo

Aprendizaje máquina (Machine learning)

Figura: Clasificación del aprendizaje máquina [6, 3].

Grafo dirigido

Figura: Ejemplo de un grafo dirigido.

Tipos de datos

Figura: Clasificación de tipos de datos.

Introducción

Figura: Ejemplo del algoritmo con una máquina de Turing multicinta.

Introducción

Figura: Ejemplo del algoritmo con un grafo dirigido.

Vector de características

[Tiempo,	Dispositivo,	Acción,	Colocación]
	Keyboard	Pressed	Key
	Mouse	Release	Button
		Scrolled	Direction
		Moved	Coordinates(X,Y)

Muestra de acciones capturadas

0.06, Mouse, Moved, 1028, 324 0.48, Mouse, Scrolled, Down 0.0, Keyboard, Pressed, Key. enter

Funcionamiento

Figura: Diagrama de funcionamiento.

Desarrollo

Figura: Diagrama de flujo parte 1.

Desarrollo

Figura: Diagrama de flujo parte 2.

Desarrollo

Figura: Diagrama de flujo parte 3.

Interfaz Grafica

Figura: Ventana principal con el asistente y una lista de tareas guardadas.

Interfaz Grafica

Figura: Ventana mostrando una tarea encontrada.

Experimentos

No. de Sujeto	Tiempo de Uso (Hr:Min)	Número de Nodos	Repeticiones
1	166:23	1,494,792	46,036
2	490:24	1,333,016	116,001
3	1060:48	1,448,016	378,541
4	148:23	972,828	56,606

Tabla: Información de los datos recabados.

Condiciones:

- ▶ 70 incidencias en el nodo
- ▶ 5 repeticiones de la secuencia
- ► No **empezar** con *Release*
- ▶ No **terminar** con *Pressed*

Resultados

No. de	Secuencias	Secuencias	Porcentaje de
Sujeto	Aceptables	Totales	Precisión
1	189	525	36.00 %
2	165	487	33.88 %
3	151	467	32.33 %
4	56	180	31.11 %

Tabla: Tabla de resultados con secuencias de una longitud mínima de 1 acción.

No. de	Secuencias	Secuencias	Porcentaje de
Sujeto	Aceptables	Totales	Precisión
1	179	410	43.65 %
2	170	377	45.09 %
3	154	346	44.50 %
4	52	119	43.69 %

Tabla: Tabla de resultados con secuencias de una longitud mínima de 2 acciones.

Resultados

Es la palabra "el"

Keyboard, Pressed, e Keyboard, Release, e Keyboard, Pressed, I Keyboard, Release, I La tarea es utilizada en el software Blender para girar el objeto en el eje Y
Keyboard,Pressed,G
Keyboard,Release,G
Keyboard,Pressed,Y
Keyboard,Release,Y

En Windows es utilizada esta combinación de teclas para cambiar entre las ventanas abiertas. Keyboard,Pressed,alt_l Keyboard,Pressed,tab Keyboard,Release,tab Keyboard,Release,alt_l

Discusión

Creador de macros	Software desarrollado
Hay que indicar manualmente cuando empieza y termina la acción deseada	Se monitorea cada acción realizada por el usuario.
El usuario graba manualmente la tarea que desea automatizar	Se muestra al usuario las ac- ciones que realiza con mayor frecuencia para que él decida cual guardar
El usuario requiere conocimiento del software para crear tareas complejas	El usuario no requiere editar las tareas

Tabla: Análisis comparativo del software con un generador de macros.

└ Discusión

Discusión

Robotic Process Automation	Software desarrollado
Hay que indicar manualmente cuando empieza y termina la acción deseada.	Se monitorea cada acción realizada por el usuario.
Por medio de técnicas de reconocimiento de imágenes y monitoreo a los dispositivos de E/S, se determina la acción realizada y el momento de ejecución.	Por medio del análisis en tiempo ejecución de un grafo dirigido se obtienen las tareas realizadas.
Se automatiza un proceso en específico.	Se automatiza la tarea que más realice el usuario.

Tabla: Análisis comparativo de la propuesta con Robotic Process Automation.

Conclusiones

- Se implementó un sistema de captura para el teclado y ratón, con el cual se obtuvo la información de 4 sujetos en el plazo de 3 meses para realizar las pruebas mencionadas.
- Se diseñó un algoritmo de aprendizaje no supervisado que no tiene un tiempo de finalización determinado, el aprendizaje es continuo, durante la ejecución obtiene secuencias de acciones realizadas por un usuario, sin datos de ejemplo. Los resultados experimentales demuestran que el software desarrollado es capaz de proporcionar tareas útiles para la automatización de las mismas, independientemente del software que este usando la persona, de forma que en una lista pseudo—infinita de datos ordenados por momento de aparición, es posible encontrar secuencias de información coherente para un usuario.

Conclusiones

- Se planteó la búsqueda de sistemas similares en la cual no se logró el éxito esperado, dejando como sistemas similares a los creadores de macros y RPA, por lo que no se encontraron los elementos necesarios para realizar un análisis comparativo de resultados.
- ► En la hipótesis propuesta se menciona que los humanos son seres de costumbres por lo que el software propuesto debe de reconocer esos hábitos, pero considerando que en las secuencias obtenidas solo hay registro de teclas y botones del teclado y ratón respectivamente, lo cual implica que los movimientos con el ratón no son tan mecánicos como se esperaba.

Trabajos futuros

- Mejora a la interfaz usuario-maquina
- ► Mejora al reconocimiento de tareas
- Mejora a la ejecución de tareas
- Exploración en otras areas

Productos de la investigación

- González Tello; R., Chan Alejandre; E. A., Serrano Talamantes; J. F.,& Carbajal, Olguín; M. (2016, May). COMPUTACIÓN INTELIGENTE: UN ESTUDIO COMPARATIVO DE METAHEURÍSTICAS. Boletín UPIITA No. 66. Retrieved from http://www.boletin.upiita.ipn.mx/index.php/ciencia/762-cyt-numero-66/1519-computacion-inteligente-un-estudio-comparativo-de-metaheuristicas
- Chan Alejandre, E. A., Rivera Zárate, I., Olguín Carbajal, M., & González Tello, R. (2017, Sep). Electronic impact system for a football player's helmet. In 17th International Congress on Computer Science (p. 8). México: Centro de Investigacón en Computación.
- Chan Alejandre, E. A., Rivera Zárate, I., Olguín Carbajal, M., & González Tello, R. (2017, Sep). SISTEMA MEDIDOR ELECTRÓNICO DE IMPACTOS PARA CASCO DE FUTBOL AMERICANO POR MEDIO DE ACELEROMETROS. In XVIII Simposium Internacional: "Aportaciones de la universidades a la docencia, la investigación, la tecnología y el desarrollo" (p. 5). México: Escuela Superior de Ingeniería Química e Industrias Extractivas.

Referencias

¿Qué es Cortana?, 2017.

Accedido 2017-06-07. Rodolfo U. Batista.

Pulover's Macro Creator - The Complete Automation Tool. Accedido 2017-05-18.

Christopher M Bishop.

Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer, 2011.

Daniel Hubbell

Making progress on accessibility with the Windows 10 Anniversary Update — Microsoft Accessibility Blog, 2016.

Accedido 2017-06-07.

Daniel Dines and Marius Tirca.

UIPath, 2014.

Accedido 2018-11-26.

Richard O Duda, Peter E Hart, and David G Stork.

Pattern Classification (Pt.1). Wiley-Interscience, 2000.

Régis Grasse, Yann Morère, and Alain Pruski.

Assisted Navigation for Persons with Reduced Mobility: Path Recognition Through Particle Filtering (Condensation Algorithm).

Journal of Intelligent & Robotic Systems, 60(1):19-57, oct 2010.

INEGI.

La discapacidad en México , datos al 2014.

Technical report, INEGI, 2014.

Vivian Milosavljevic and Diane Alméras.

INFORME REGIONAL SOBRE LA MEDICIÓN DE LA DISCAPACIDAD.

Technical report, Organización de las Naciones Unidas, Santiago, 2014.

Abraham Silberschatz.

Sistemas operativos.

Addison Wesley Longman de México, S.A. de C.V., Mexico, quinta edi edition, 1999.

Gracias