DSCI 310: Historical Horse Population in Canada

Tiffany Timbers & Jordan Bourak

Aim

This project explores the historical population of horses in Canada between 1906 and 1972 for each province.

Data

Horse population data were sourced from the Government of Canada's Open Data website (Government of Canada, 2017a and Government of Canada, 2017b).

Methods

The R programming language (R Core Team, 2019) and the following R packages were used to perform the analysis: knitr (Xie 2014), tidyverse (Wickham 2017), and Quarto (Allaire et al 2022). Note: this report is adapted from Timbers (2020).

Results

Figure @ref(fig:horsepop): Horse populations for all provinces in Canada from 1906 - 1972.

We can see from @ref(fig:horsepop) that Ontario, Saskatchewan and Alberta have had the highest horse populations in Canada. All provinces have had a decline in horse populations since 1940. This is likely due to the rebound of the Canadian automotive industry after the Great Depression and the Second World War. An interesting follow-up visualisation would be car sales per year for each Province over the time period visualised above to further support this hypothesis.

Suppose we were interested in looking in more closely at the province with the highest spread (in terms of standard deviation) of horse populations. We present the standard deviations in Table (ref?)(tab:horse-sd).

Table (ref?)(tab:horse-sd). Standard deviation of historical (1906-1972) horse populations for each Canadian province.

The R programming language (R Core Team 2019) and the following R packages were used to perform the analysis: knitr (Xie 2014), tidyverse (Wickham 2017), and Quarto (Allaire et al. 2022).

knitr::kable(horses_sd_table, caption = "Standard deviation of historical horse populations for each Canadian province.") %>% kableExtra::kable_styling(latex_options = c("striped", "scale_down")) %>% kableExtra::footnote(general = "Source: Government of Canada's Open Data website.", number = "Data retrieved from Government of Canada's Open Data portal.")

Note that we define standard deviation (of a sample) as

$$s = \sqrt{\frac{\sum_{i=1}^{N}(x_i - \overline{x})^2}{N-1}}$$

Additionally, note that in Table (ref?)(tab:horse-sd) we consider the sample standard deviation of the number of horses during the same time span as Figure @ref(fig:horsepop).

Historical number of horses in Saskatchewan

fig.width=6, fig.height=4}

Figure @ref(fig:largestsd): Horse populations for the province with the largest standard deviation. Horse population data were sourced from the Government of Canada's Open Data website (Government of Canada 2017a, 2017b).

{#fig:largestsd

In Figure @ref(fig:largestsd) we zoom in and look at the province of Saskatchewan, which had the largest spread of values in terms of standard deviation.

References

Allaire, J. J., Charles Teague, Carlos Scheidegger, Yihui Xie, and Christophe Dervieux. 2022. "Quarto." https://doi.org/10.5281/zenodo.5960048.

Government of Canada. 2017a. "Horses, Number on Farms at June 1 and at December 1." Open Government - Open Data. https://open.canada.ca/data/en/dataset/a3ecf553-8ec4-4551-a0fe-8df1472c6cf7.

——. 2017b. "Horses, Number on Farms at June 1, Farm Value Per Head and Total Farm Value." Open Government - Open Data. https://open.canada.ca/data/en/dataset/e175ef9c-98f0-49b3-8131-ca0e3895a0cb.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

- Wickham, Hadley. 2017. Tidyverse: Easily Install and Load the 'Tidyverse'. https://CRAN. R-project.org/package=tidyverse.
- Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.