MATEMÁTICA DISCRETA

Variaciones, Permutaciones y Combinaciones (Parte II)

Definición

Sea X un conjunto formado por n objetos distintos y $r \le n$ un número natural. Una r-combinación (o combinación de n elementos tomados de r en r) de X es una colección de r objetos distintos elegidos entre los n objetos de X (sin importar el orden).

Observación: Dos *r*-combinaciones son distintas si difieren en alguno de sus elementos.

Ejemplo: Si $X = \{a, b, c, d\}$, entonces

- Las 1-combinaciones son: a, b, c, d.
- Las 2-combinaciones son: ab, ac, ad, bc, bd, cd.
- Las 3-combinaciones son: abc, abd, acd, bcd.
- La única 4-combinación es: abcd.

Determina el número de 3-combinaciones del conjunto $X = \{a,b,c,d,e,f\}$.

- n = |X| = 6 y r = 3.
- Hay V(6,3) formas de obtener una 3-permutación de X. Debido a que no nos importa el orden, debemos considerar iguales las $P_3 = V(3,3)$ formas de reordenar cada una de las 3-permutaciones.
- El resultado es $\frac{V(6,3)}{V(3,3)} = \frac{6 \cdot 5 \cdot 4}{6} = 20$.

Teorema

Sea X un conjunto de cardinalidad n. El número de combinaciones de n elementos tomados de r en r (número de r-combinaciones) del conjunto X es

$$C(n,r) = \frac{V(n,r)}{V(r,r)} = \frac{n!}{r!(n-r)!}$$

- El número C(n,r) se denomina número combinatorio o binomial y se representa con el símbolo $\binom{n}{r}$.
- Propiedades de los números binomiales

• Simetría:
$$\binom{n}{r} = \binom{n}{n-r}$$
.

• Adición:
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

A un concurso se presentan 15 personas. ¿De cuántas formas se puede repartir un único premio, el cual pueden compartir hasta un máximo de 3 personas (el premio también puede quedar desierto).

Solución:

- Para cada $r \in \{0,1,2,3\}$, premiar a r personas consiste en seleccionar un subconjunto de r personas entre las 15 personas participantes.
- Por tanto, para cada $r \in \{0,1,2,3\}$, la selección se puede realizar de $\binom{15}{r}$ maneras distintas.
- Entonces, la solución es $\binom{15}{0} + \binom{15}{1} + \binom{15}{2} + \binom{15}{3} = 576$.

¿Cuántas secuencias hay de longitud 6, formadas con los dígitos $0, \ldots, 9$, donde todos los dígitos son diferentes excepto el dígito 5 que se repite tres veces?

Solución:

- ¿De cuántas formas diferentes se pueden colocar los tres cincos? R/C(6,3) = 20.
- Una vez colocados los tres "5", ¿de cuántas formas diferentes se pueden elegir y colocar los tres dígitos restantes? R/V(9,3) = 504.
- Por lo tanto, en total hay $C(6,3) \cdot V(9,3) = 20 \cdot 504 = 10080$ secuencias diferentes.

Definición

Sea X un conjunto formado por n objetos distintos. Una rcombinación con repetición (o combinación con repetición de n elementos tomados de r en r) de X es una colección de r objetos no
necesariamente distintos elegidos entre los n objetos de X (sin importar el orden).

Ejemplo: Si $X = \{a, b, c\}$, entonces

- Las 1-combinaciones con repetición son: a, b, c.
- Las 2-combinaciones con repetición son: aa, ab, ac, bb, bc, cc.
- Ejemplos de 3-combinaciones con repetición: aaa, aab, abc.
- Ejemplos de 4-combinaciones con repetición: *aaaa*, *abcd*, *abbb*.

Pedro decide ir al bar a pedir tres bocadillos. Al llegar, observa que hay cuatro tipos diferentes de bocadillos. ¿De cuántas formas diferentes puede hacer el pedido?

Solución:

- Supongamos que los bocadillos son del tipo a, b, c y d.
- Pedido $aac \longrightarrow \text{esquema } xx||x|$
- Pedido $abd \longrightarrow \text{esquema } x|x||x$
- Pedido $ccc \longrightarrow \text{esquema } ||xxx||$
- Cada esquema tiene n-1+r=4-1+3 símbolos, de los cuales r=3 son "x" y n-1=4-1 son barras.
- Entonces, debemos contar de cuántas formas se pueden elegir las r posiciones de las x entre las n-1+r posiciones posibles. Esto es C(n-1+r,r)=20.

Teorema

Sea X un conjunto de cardinalidad n. El número de combinaciones con repetición de n elementos tomados de r en r (número de r-combinaciones con repetición) del conjunto X es

$$CR(n,r) = C(n-1+r,r).$$

Corolario

Sea $r \in \mathbb{N}$. El número de soluciones enteras no negativas de la ecuación $x_1 + x_2 + \cdots + x_n = r$ es CR(n,r).

De cuántas formas diferentes se pueden repartir 30 lápices iguales entre 12 niños si

- (a) pueden haber niños que se queden sin lápices.
- (b) no pueden haber niños que se queden sin lápices.

Solución:

Para $i \in \{1, ..., 12\}$, sea x_i el número de lápices que recibe el niño i. Se desea obtener el número de soluciones enteras no negativas de la ecuación $x_1 + ... + x_{12} = 30$.

- (a) Observa que $x_i \ge 0$ para todo $i \in \{1, ..., 12\}$. La solución es CR(12,30) = C(12-1+30,30) formas diferentes.
- (b) Observa que $x_i \ge 1$ para todo $i \in \{1, \dots, 12\}$. Sea $y_i = x_i 1$. Entonces $y_i \ge 0$ para todo $i \in \{1, \dots, 12\}$ y además

$$x_1 + \ldots + x_{12} = 30$$
 \leftrightarrow $y_1 + \ldots + y_{12} = 18$

La solución es CR(12,18) = C(12-1+18,18) formas diferentes.