CS3210
Parallel Computing

Changes from Monday in Green

Lab 5
Mon (4pm)
Tues (2pm)

Admin Updates

- Lab 4 submission due today 11.59pm
 - For ex6, just pick a data distribution you expect to do as well or better than the current distribution
- Assignment 1 part 1 grades released on LumiNUS
 - Weightage: 8% (grade reported in LumiNUS is out of 16)
 - Comments and grade breakdown in grading remarks
 - Bonus (for AVX) awarded separately
 - If you have questions about the grading, write in to Prof via email ASAP no changes accepted after 29 Oct (Thursday)

Admin Roadmap

- Please avoid using machines assigned to other lab pairs
 - You can use any FFA machines with the given MPI programs
 - Hint: take a look at ompi-top
- Today's lab
 - Part 1: Collective Communication
 - Part 2: Managing Communicators
 - Part 3: Cartesian Virtual Topology
- No lab submission this week just explore the programs

Part 1 Collective Communication

Three main types

- Synchronisation operations
- Data movement (distribution) operations
- Collective computation (data movement with reduction)
- Synchronisation operations: only barrier
 - Blocking variant: MPI_Barrier(MPI_Comm Comm)
 - Non-blocking variant: MPI_Ibarrier(MPI_Comm comm,
 MPI_Request *request)
 - Non-blocking variant enforces barrier semantics at following completion call (MPI_Test or MPI_Wait) with request

Part 1 Collective Communication

- Data movement and collective computation operations
 - Collective computation: data movement with reduction (with a binary, associative and commutative operation)

Part 2 Managing Communicators

- An MPI_Group denotes a set of processes
 - All processes in a group have an associated group rank
 - Can operate on groups with set operations: union, intersection, difference, inclusive/exclusive ranges (by rank)
- An MPI_Comm comprises an MPI_Group with an associated context
 - All processes in a communicator have an associated rank
 - Create a new communicator with MPI_Comm_create with an MPI_Group; duplicate with MPI_Comm_dup
 - Compare two communicators with MPI_Comm_compare

Part 3 Virtual Topologies

- A virtual topology is some programmer-defined mapping of MPI processes to a geometric space
 - As virtual implies, there is <u>no relation</u> between the virtual topology and the underlying hardware organisation (layout)
 - Purpose: facilitate structured data access and messagepassing communication for tasks exhibiting this topology
- Explicitly handled by programmer
 - OpenMPI supports Cartesian and graph virtual topologies
 - \triangleright Today: explore only n-dimensional Cartesian topologies

Part 3 Cartesian Virtual Topology

- Cartesian virtual topology
 - Create with MPI_Cart_create(MPI_Comm comm_old, int nDims, const int dims[], const int periods[], int reorder, MPI_Comm *comm_cart)
 - comm_cart is result communicator with topology information

Part 3 Cartesian Virtual Topology

- Cartesian virtual topology information
 - Process in Cartesian topology of some rank can retrieve its Cartesian coordinates with MPI_Cart_coords
- What do you think MPI_Cart_shift does?
 - \triangleright Difference between periodic (n-dimensional toroid) vs nonperiodic Cartesian topology (n-dimensional Cartesian mesh)
 - If periodic, returns ranks of source and destination processes when shifting along a specified dimension by some amount
 - If not periodic, shift may exceed bounds along a dimension and return MPI_PROC_NULL

CS3210
Parallel Computing

Thank you! Any questions?

Lab 5
Mon (4pm)
Tues (2pm)

bit.ly/cs3210-t01-qn