MAT02010 - Tópicos Avançados em Estatística II

Entre estudos observacionais e experimentos

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

- Um estudo aleatorizado com base em uma covariável.
 - $\pi_i = \Pr(Z_i = 1)$ é diferente para cada indivíduo; π_i depende do estrato (de uma característica) do indivíduo.

```
# Sexo
sexo \leftarrow c(rep(0, 200000), rep(1, 200000))
sexo <- factor(sexo, labels = c("Mulheres", "Homens"))</pre>
# Tdade
idade \leftarrow c(rep(c(0, 1), each = 100000),
            rep(c(0, 1), each = 100000))
idade <- factor(idade, labels = c("Jovens", "Idosos"))</pre>
# Estrato
df <- data.frame(sexo, idade)</pre>
df$estrato <- ifelse(df$sexo == "Homens" &
                         df$idade == "Idosos", 1,
                       ifelse(df$sexo == "Mulheres" &
                                 df$idade == "Idosos", 2,
                              ifelse(df$sexo == "Homens" &
                                        df$idade == "Jovens", 3
```

```
# Desfecho
df$desfecho <- 0
df$desfecho[df$estrato == 1][1:40000] <- 1
df$desfecho[df$estrato == 2][1:30000] <- 1
df$desfecho[df$estrato == 3][1:20000] <- 1
df$desfecho[df$estrato == 4][1:10000] <- 1
df$desfecho <- factor(df$desfecho, labels = c("Vivo", "Morto"
# Grupo de tratamento
df$grupo <- ifelse(df$idade == "Idosos",
                   rbinom(n = 100000, size = 1, prob = 0.8),
                   rbinom(n = 100000, size = 1, prob = 0.2))
df$grupo <- factor(df$grupo, labels = c("Contr<u>ole", "Tratado"</u>
df$desfecho <- relevel(df$desfecho, ref = "Morto")</pre>
```

df\$estrato <- factor(df\$estrato, labels = paste("Estrato", 1</pre>

df\$grupo <- relevel(df\$grupo, ref = "Tratado")</pre>

```
# Tabela 5.1
tab_5.1 <- table(df$grupo, df$desfecho, df$estrato,
                dnn = c("Grupo", "Desfecho", "Estrato"))
tab 5.1
## , , Estrato = Estrato 1
##
##
            Desfecho
## Grupo Morto Vivo
##
    Tratado 31884 47982
## Controle 8116 12018
##
## . . Estrato = Estrato 2
##
##
            Desfecho
             Morto Vivo
  Grupo
```

```
Tratado 23889 55977
##
## Controle 6111 14023
##
## , , Estrato = Estrato 3
##
##
           Desfecho
## Grupo Morto Vivo
    Tratado 3948 15944
##
## Controle 16052 64056
##
## . . Estrato = Estrato 4
##
##
           Desfecho
## Grupo Morto Vivo
##
    Tratado 2000 17892
## Controle 8000 72108
```

```
library(dplyr)
library(knitr)
library(kableExtra)
tab.df <- as.data.frame(matrix(
  ftable(
    addmargins(tab 5.1, margin = 2),
    row.vars = c(3, 1)),
  ncol = 3, byrow = F)
names(tab.df) <- c("Morto", "Vivo", "Total")</pre>
tab.df$Taxa.Mortalidade <- round(
  100 * tab.df$Morto/tab.df$Total, 1)
kable(tab.df, "latex", col.names = c("Morto", "Vivo", "Tota
```

Morto	Vivo	Total	Taxa de Mortalidade (%)
31.884	47.982	79.866	39,9
8.116	12.018	20.134	40,3
23.889	55.977	79.866	29,9
6.111	14.023	20.134	30,4
3.948	15.944	19.892	19,8
16.052	64.056	80.108	20,0
2.000	17.892	19.892	10,1
8.000	72.108	80.108	10,0

- Paradoxo de Simpson.
- O ajuste direto.
- ► Testando a hipótese nula de Fisher de nunhum efeito de tratamento (o teste de Mantel-Haenszel).
- $\blacktriangleright \pi_i$ importa?
 - ► Sim e não!

Combinando estratos com mesmo π_i

Combinando estratos com mesmo π_i

Pares combinados

O escore de propensão

Quando é suficiente ajustar para as covariáveis observadas?

Quando é suficiente ajustar para as covariáveis observadas?

Um experimento com um dos problemas de um estudo observacional

Table 5.1. A small simulated example, with randomized treatment assignment inside each of four strata, and with no treatment effect

e	ach of four strata	, and with no trea	tment effect				
Stratum 1: Older men							
Group	Dead	Alive	Total	Morality rate (%)			
Treated	31,868	47,960	79,828	39.9			
Control	8,132	12,040	20,172	40.3			
		Stratum 2: Olde	r women				
Group	Dead	Alive	Total	Morality rate (%)			
Treated	23,983	55,796	79,779	30.1			
Control	6,017	14,204	20,221	29.8			
		Stratum 3: Your	nger men				
Group	Dead	Alive	Total	Morality rate (%)			
Treated	3,993	16,028	20,021	19.9			
Control	16,007	63,972	79,979	20.0			
		Stratum 3: Young	er women				
Group	Dead	Alive	Total	Morality rate (%)			
Treated	2,021	17,777	19,798	10.2			
Control	7,979	72,223	80,202	9.9			

Um experimento com um dos problemas de um estudo observacional

- Do que trata o experimento?
- O que sabemos sobre o efeito causal?
- Como os indivíduos foram alocados aos grupos de tratamento?
- Qual a relação, ou qual a diferença deste estudo para um experimento completamente aleatorizado?
- Qual o papel das covariáveis aqui?
- O que é um estrato?
- Quais as conclusões que chegamos (para cada estrato)?

Um experimento com um dos problemas de um estudo observacional

O problema!

Table 5.2. The four strata from Table 5.1 collapsed, leading to the false impression of a treatment effect

Merged table								
Group	Dead	Alive	Total	Morality rate (%)				
Treated Control	61,865 38,135	137,561 162,439	199,426 200,574	31.0 19.0				

O Paradoxo de Simpson

- Como podemos caracterizar o paradoxo de Simpson?
- Há algum paradoxo de fato?
- Qual o lembrete irritante (importante) de Simpson?

Ajuste direto: um método para estimar os efeitos médios do tratamento

Estimativa ajustada:

$$(39,9-40,3)/4+(30,1-29,8)/4+(19,9-20,0)/4+(10,2-9,9)/4=0,025.$$

- ▶ O que entendemos por ajuste direto?
- ▶ Qual a relação desta abordagem com respeito à estimativa de $\bar{\delta}$ em um experimento completamente aleatorizado?

Um único teste de hipóteses combinando resultados estrato-específicos

- ► Neste estudo, é possível testar a hipótese nula de Fisher de nenhum efeito de tratamento?
- Se sim, de que forma isto é feito?
- Se sim, qual a diferença de realizar tal teste e um teste exato de Fisher na Tabela 5.2?

É importante conhecer as probabilidades de atribuição de tratamento?

- ▶ É importante conhecer as probabilidades de atribuição de tratamento?
- Qual o atributo importante deste experimento para que possamos concluir adequadamente?

O que aprendemos com esse experimento aleatorizado peculiar?

- Como nos referimos a este tipo de estudo?
- ▶ O que buscaremos, em termos de delineamento/métodos, em estudos observacionais para concluirmos a respeito de associações causais?
- Qual a crítica central em um estudo observacional?

Avisos

Avisos

- Próxima semana (09/10): Tabagismo e câncer de pulmão.
 Para casa: Ler o restante do Capítulo 5 do livro "The Book of Why"
- Para casa: Ler o restante do Capítulo 5 do livro "The Book of Why" do Judea Pearl.
- ▶ Atividade de avaliação (09/10): a condução da discussão deste capítulo será realizada pelos estudantes da turma.

Por hoje é só!

