

CS450: Numerical Analysis

Howard Hao Yang

Assistant Professor, ZJU-UIUC Institute

22/09/2023

Approximation Errors

- Last lecture: we want to evaluate $\sin(\frac{\pi}{8})$, but the requirement is without using a computer/calculator
 - We have to opt for approximations
 - Using $\sin\left(\frac{\pi}{8}\right) \approx \frac{\pi}{8} \approx \frac{3.14}{8} = 0.3927$, we have an approximated solution
 - Two types of errors:
 - \circ Truncation error, caused by approximating $\sin(x)$ by x
 - \circ Rounding error, caused by approximating π by 3.14
 - There could be other errors, making things complicated... we want something more unified...

Approximation and Errors

- Forward and backward error
 - Suppose we want to compute y = f(x), where $f: R \to R$, but obtain approximate value \hat{y}
 - Forward error: $\Delta y = \hat{y} y$
 - Backward error: $\Delta x = \hat{x} x$, where $f(\hat{x}) = \hat{y}$

Approximation and Errors

- Forward and backward error
 - Suppose we want to compute $\sin(\frac{\pi}{8})$, and the system produces $\sin(\frac{\pi}{8}) \approx \frac{\pi}{8} \approx \frac{3.14}{8} = 0.3927$
 - What is the forward error?: $\Delta y = \hat{y} y =$
 - What is the backward error?: $\Delta x = \hat{x} x =$
 - o Is backward error unique?
 - o Why we need backward error?

Approximation and Errors

- Forward and backward error
 - What is forward error?
 - The computational error of an algorithm
 - Essentially, this is what we really want for an algorithm, but usually hard to obtain...
 - What is backward error?
 - Backward error enables us to measure computational error with respect to data propagation error

- Absolute condition number
 - The absolute condition number is a property of the problem, measuring its sensitivity to perturbations in input
 - How much a small change in the input leads to changes in the output
 - Formally, defined by the ratio of absolute errors at output and input

$$\kappa_{abs}(f) = \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|\Delta f\|}{\|\Delta x\|}$$

- Exercise
 - Absolute condition number, defined by the ratio of absolute errors at output and input

$$\kappa_{abs}(f) = \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|\Delta f\|}{\|\Delta x\|}$$

Calculate the absolute condition number of

$$\circ f(x) = |x| \text{ at } x = 0$$

$$\circ f(x) = e^x \text{ at } x = 1$$

What do we observe?

- Exercise
 - Absolute condition number, defined by the ratio of absolute errors at output and input

$$\kappa_{abs}(f) = \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|\Delta f\|}{\|\Delta x\|}$$

• If f is differentiable at x, the absolute condition number is essentially the derivative at that point

$$\kappa_{abs}(f) = \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|\Delta f\|}{\|\Delta x\|} = \frac{df}{dx}$$

- Relative condition number
 - Formally, defined by the ratio of relative errors at output and input

$$\kappa_{rel}(f) = \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|\Delta f/f(x)\|}{\|\Delta x/x\|} = \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|\frac{f(x + \Delta x) - f(x)}{f(x)}\|}{\|\frac{\Delta x}{x}\|}$$

$$= \lim_{\delta \to 0} \max_{\|\Delta x\| < \delta} \frac{\|f(x + \Delta x) - f(x)\|}{\|\Delta x\|} \frac{\|x\|}{\|f(x)\|} = \frac{|x \cdot f'(x)|}{|f(x)|} = \frac{|x| \cdot \kappa_{abs}(f)}{|f(x)|}$$

- Exercise
 - Relative condition number, defined by the ratio of relative errors at output and input

$$\kappa_{rel}(f) = \frac{|x \cdot f'(x)|}{|f(x)|}$$

Calculate the absolute condition number of

$$\circ f(x) = \sqrt{x} \text{ at } x = 2$$

$$\circ f(x) = e^x \text{ at } x = 1$$

- Interpretation
 - (Relative) condition number

$$\kappa(f) = \frac{|x \cdot f'(x)|}{|f(x)|}$$

- Condition number indicates how much the system will be amplifying the errors in the input: suppose we are to evaluate $f(x) = \tan(x)$ for x near $\frac{\pi}{2}$
- Suppose $x_1 = \frac{\pi}{2} 0.001$ and $x_2 = \frac{\pi}{2} 0.002$, $|x_1 x_2| = 0.001$ but $|f(x_1) f(x_2)| = 500$
- What is the condition number?

- Interpretation
 - (Relative) condition number

$$\kappa(f) = \frac{|x \cdot f'(x)|}{|f(x)|}$$

Linking the forward and backward error

forward_error =
$$\kappa(f) \times \text{backward_error}$$

- Condition number indicates how much the system will be amplifying the errors in the input
- Forward error may not be easy to obtain, but condition number and backward errors are accessible

- Example
 - Evaluate the value of $\sqrt{2}$
 - Algorithm: make guess on t such that $t^2 \le 2$ until reaching some desire precision
 - Equivalently, it means evaluating $f(x) = \sqrt{x}$ at x = 2
 - To start with, we approximate $\sqrt{2}$ by t = 1.4
 - Forward error: $\sqrt{2} 1.4 = ?$
 - o Backward error: $2 (1.4)^2 = ?$
 - o Condition number: $\kappa(f) = \frac{|x \cdot f'(x)|}{|f(x)|} = ?$

- Example
 - Evaluate the value of $\sqrt{2}$
 - Algorithm: make guess on t such that $t^2 \le 2$ until reaching some desire precision
 - Equivalently, it means evaluating $f(x) = \sqrt{x}$ at x = 2
 - Next, we approximate $\sqrt{2}$ by t = 1.41
 - Forward error: $\sqrt{2} 1.41 = ?$
 - Backward error: $2 (1.41)^2 = ?$
 - o Condition number: $\kappa(f) = \frac{|x \cdot f'(x)|}{|f(x)|} = ?$

- Remark
 - (Relative) condition number

$$\kappa(f) = \frac{|x \cdot f'(x)|}{|f(x)|}$$

- Depends on the function f itself, not on anything else
- By applying an algorithm, we evaluate f(x) by $\hat{f}(x) = \hat{y}$
- Using backward error analysis, we assume $\hat{f}(x) = f(\hat{x})$ for some \hat{x} that is close to x, i.e., our approximated solution to the original problem is the exact solution to a "nearby" point

- Remark
 - Condition number provides a sense about errors due to round-off, which might result in useless/unreliable results
 - If condition number is 1, then 1% input error → 1% output error
 - If condition number is 1000, then 0.1% input error \rightarrow 100 amplification in output
- Conditioning tells only half the story...
 - Even if a problem is well conditioned, does it mean that we are bound to evaluate it well?

- Example
 - To evaluate $a_n = 2^{-n}$, use the following recursion

$$a_0 = 1$$
, $a_1 = 1/2$

$$a_{n+1} = \frac{5}{2}a_n - a_{n-1}$$

- This algorithm works on the paper
- What if there is a very small perturbation in a_0 ? Say $a_0 = 1 + 2 \times 10^{-16}$

- Example
 - To evaluate $a_n = 2^{-n}$, use the following recursion

$$a_0 = 1 + 2 \times 10^{-16}, a_1 = 1/2$$

$$\circ \ a_{n+1} = \frac{5}{2}a_n - a_{n-1}$$

A piece of code in Matlab

```
delta = 2e-16;

A(1) = 1+delta;
A(2) = 1/2;

N = 100;

for i = 2:N
        A(i+1) = 5/2*A(i) - A(i-1);
end
```

51	52	53	54	55	56	57	58	59	60	61	62	63	64
-0.0833	-0.1667	-0.3333	-0.6667	-1.3333	-2.6667	-5.3333	-10.6667	-21.3333	-42.6667	-85.3333	-170.6667	-341.3333	-682.6667

- Characterization
 - Algorithm is stable if result produced is relatively insensitive to perturbations during computation
 - Stability of algorithms is analogous to conditioning of problems: Small changes in the initial data produce correspondingly small changes in the final results
 - Accuracy: closedness of computed solution to true solution of the problem
 - Applying stable algorithm to well-conditioned problem yields accurate solution

- Characterizing stability
 - Suppose that $E_0 > 0$ denotes an error introduced at some stage in the calculation and E_n represents the magnitude of the error after n subsequent operations
 - o If $E_n \approx CnE_0$, where C is a constant independent of n, then the growth of error is linear;
 - o If $E_n \approx C^n E_0$, for some C > 1, then the growth of error is called exponential
 - Linear growth of error is usually unavoidable, and when E_0 and C are small, the results are generally acceptable
 - Exponential growth of error should be avoided because the terms \mathcal{C}^n becomes large for even relatively small values of n

- Example
 - To evaluate $a_n = 2^{-n}$, use the following recursion

$$a_0 = 1$$
, $a_1 = 1/2$

$$a_{n+1} = \frac{5}{2}a_n - a_{n-1}$$

- What would be the growth of error?
- Step 1: check that for any constants c_1 and c_2 , $a_n = c_1 \cdot \left(\frac{1}{2}\right)^n + c_2 \cdot 2^n$ is a solution to the above recursion

- Example
 - To evaluate $a_n = 2^{-n}$, use the following recursion

$$a_0 = 1$$
, $a_1 = 1/2$

$$a_{n+1} = \frac{5}{2}a_n - a_{n-1}$$

■ Step 2: check that for any constants c_1 and c_2 , $a_n = c_1 \cdot \left(\frac{1}{2}\right)^n + c_2 \cdot 2^n$ is a solution to the above recursion; and if $a_0 = 1$, $a_1 = 1/2$, then $c_1 = 1$ and $c_2 = 0$

- Example
 - To evaluate $a_n = 2^{-n}$, use the following recursion

$$a_0 = 1$$
, $a_1 = 1/2$

$$a_{n+1} = \frac{5}{2}a_n - a_{n-1}$$

• Step 3: check that for any constants c_1 and c_2 , $a_n = c_1 \cdot \left(\frac{1}{2}\right)^n + c_2 \cdot 2^n$ is a solution to the above recursion; and if $a_0 = 1 + \delta$, $a_1 = 1/2$, then $c_1 = ?$ and $c_2 = ?$

- Example
 - To evaluate $a_n = 2^{-n}$, use the following recursion

$$a_0 = 1$$
, $a_1 = 1/2$

$$a_{n+1} = \frac{5}{2}a_n - a_{n-1}$$

• Step 4: if $a_0 = 1 + \delta$, $a_1 = 1/2$, then $c_1 = ?$ and $c_2 = ?$; what is the growth of error?

Learning Objectives

- Forward error and backward error
- Conditioning number of a problem
- Algorithm stability