Мера интегралы и мартингалы. Глава 9

Задача № 1

Пусть $f:X\to\mathbb{R}$ положительная простая функция вида: $f\left(x\right)=\sum_{n=1}^{m}\xi_{n}\cdot 1_{A_{n}}\left(x\right)\,\xi_{n}\geq0.$ $A_{n}\in\mathcal{A}$ не обязательно не пересекаются. Показать, что $I_{\mu}\left(f\right)=\sum_{n=1}^{m}\xi_{n}\cdot\mu\left(A_{n}\right).$

Доказательство:

- 1. Пусть $f: X \to \mathbb{R}$ положительная простая функция вида: $f(x) = \sum_{n=1}^m \xi_n \cdot 1_{A_n}(x) \ \xi_n \ge 0$. Где $A_n \in \mathcal{A}$ не обязательно не пересекаются
- 2. Пусть $f_n(x) := 1_{A_n}(x)$. Заметим, что $f_n(x) \in \mathcal{E}^+(\mathcal{A})$
- 3. Тогда из положительной гомогенности $I_{\mu}\left[\xi_{n}f_{n}\right]=\xi_{n}\mu\left(A_{n}\right)$
- 4. $I_{\mu}\left(f\right)=\sum_{n=1}^{m}\xi_{n}\cdot\mu\left(A_{n}\right)$ по индукции с базой аддитивности
- 5. Ч.Т.Д.

Задача № 2

Пусть (X, \mathcal{A}, μ) пространство с мерой и $A_1, ..., A_N \in \mathcal{A}$. Так что $\mu(A_n) < +\infty$, тогда $\mu\left(\bigcup_{n=1}^N A_n\right) \ge 1$ $\sum_{n=1}^{N}\mu\left(A_{n}\right)-\sum_{1\leq n< k\leq N}\mu\left(A_{n}\cap A_{k}\right)$ Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой и $A_1, ..., A_N \in \mathcal{A}$. Так что $\mu(A_n) < +\infty$
- 2. По формуле включений и исключений $\mu\left(\bigcup_{n=1}^{N}A_{n}\right)=\sum_{n=1}^{N}\mu\left(A_{n}\right)-\sum_{1\leq n< k\leq N}\mu\left(A_{n}\cap A_{k}\right)+\sum_{1\leq i< j< k\leq N}\mu\left(A_{i}\cap A_{j}\cap A_{k}\right)-...+\left(-1\right)^{n-1}\sum_{n=1}^{N}\mu\left(A_{n}\cap A_{n}\right)$
- 3. Заметим, что $\sum_{1\leq i< j< k\leq N}\mu\left(A_i\cap A_j\cap A_k\right)-...+\left(-1\right)^{n-1}\sum\mu\left(A_i\cap...\cap A_n\right)\geq 0$
- 4. Отсюда следует цель
- 5. Ч.Т.Д.

Задача № 3

Доказать свойства 9.8

• $\int 1_A d\mu = \mu(A) \ \forall A \in \mathcal{A}$

- 1. По определению $\int u d\mu := \sup \{I_{\mu}(f) : f \leq u, f \in \mathcal{E}^{+}(\mathcal{A})\}$
- 2. Супремум достигается при $f = u = 1_A$
- 3. Из 9.3 (i) $I_{\mu}(f) = \mu(A)$
- 4. Ч.Т.Д.

• $\int \alpha u d\mu = \alpha \int u d\mu$

Доказательство:

- 1. По определению $\int \alpha u d\mu := \sup \{I_{\mu}(\alpha u) : f \leq \alpha u, f \in \mathcal{E}^{+}(\mathcal{A})\}$
- 2. Из свойства 9.3 (ii) $\sup \{I_{\mu}(\alpha u): f \leq \alpha u, f \in \mathcal{E}^{+}(\mathcal{A})\} = \alpha \sup \{I_{\mu}(u): f \leq u, f \in \mathcal{E}^{+}(\mathcal{A})\}$
- 3. Поэтому $\int \alpha u d\mu = \alpha \int u d\mu$
- 4. Ч.Т.Д.
- $\int (u+v) d\mu = \int u d\mu + \int v d\mu$

Доказательство:

- 1. По определению $\int (u+v) d\mu := \sup \{I_{\mu}(r) : f \leq u+v : f \in \mathcal{E}^{+}(\mathcal{A})\}$
- 2. Выберем e+g=f такие что $e \le u$ и $g \le v$ и $e,g \in \mathcal{E}^+(\mathcal{A})$
- 3. Поскольку sup(A+B) = sup(A) + sup(B) то $sup\{I_{\mu}(f) : e+g = f \le u+v : e, g, f \in \mathcal{E}^{+}(\mathcal{A})\} = sup\{I_{\mu}(e) : e \le u : e \in \mathcal{E}^{+}(\mathcal{A})\} + sup\{I_{\mu}(g) : g \le v : g \in \mathcal{E}^{+}(\mathcal{A})\}$
- 4. Из (3) следует, что $\int (u+v) d\mu = \int u d\mu + \int v d\mu$
- 5. Ч.Т.Д
- $u \le v$ to $\int u d\mu \le \int v d\mu$

Доказательство:

- 1. Если $u \le v$, то v = u + (v u)
- 2. Из $\int (u+v) d\mu = \int u d\mu + \int v d\mu$ следует, что $\int v d\mu = \int u d\mu + \int (v-u) d\mu \ge \int u d\mu$
- 3. Ч.Т.Д.

Задача № 4

Найти пример, показывающий различие между возрастающей последовательностью функций и последовательностью возрастающих функций

Решение:

Задача № 5

Пусть (X, \mathcal{A}, μ) - пространство с мерой. Показать вариант Теоремы 9.6. Если $u_n \geq 0$ - И.Ф. такие, что для некоторого $u \; \exists K \in \mathbb{N} \; \forall x : u_{n+K}(x) \uparrow u(x)$ при $n \to \infty$. Тогда $u \geq 0$ измеримо и $\int u_n d\mu \uparrow \int u d\mu$ Доказательство:

1. Пусто

Задача № 6

• Пусть $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathcal{A})$. Тогда $\sum_{n=1}^\infty u_n$ - измерима. Доказать, что $\int\sum_{n=1}^\infty u_n d\mu=\sum_{n=1}^\infty \int u_n d\mu$ (Следствие 9.9)

Доказательство:

- 1. Пусть $s_M=u_1+...+u_M$. Заметим, что $s_M+u_{M+1}=s_{M+1}\geq s_M$, то есть, последовательность монотонно возрастает.
- 2. Из (1) следует, что по свойству 9.8 (iii) $\int s_{M+1} d\mu = \int (s_M + u_{M+1}) d\mu = \int s_M d\mu + \int u_{M+1} d\mu$. Тогда из (1) $\int s_{M+1} d\mu = \sum_{n=1}^{M+1} \int u_n d\mu$
- 3. Выполнив предельный переход, получим, что $\lim_{M \to \infty} \int s_{M+1} d\mu = \lim_{M \to \infty} \sum_{n=1}^{M+1} \int u_n d\mu = \sum_{n=1}^{\infty} \int u_n d\mu$
- 4. Поскольку s_M возрастает, то $\lim_{M \to \infty} \int s_{M+1} d\mu = \sup_{M \in \mathbb{N}} \int s_M d\mu$
- 5. Поскольку s_{∞} измерима, то по теореме Леви о монотонной сходимости $\sup_{M\in\mathbb{N}}\int s_M d\mu=\int \sup_{M\in\mathbb{N}}s_M d\mu$
- 6. Комбинируя равенство (3) и определения s_M имеем $\int \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int u_n d\mu$
- Доказать эквивалентность Теоремы Леви о монотонной сходимости следствию 9.9

Доказательство:

- 1. В одну сторону мы уже показали.
- 2. С другой стороны, предположим, что $s_n \uparrow s \ \forall n, s_n \geq 0$ так что $s_0 = 0$
- 3. Представим $s_n=s_n-s_{n-1}+s_{n-1}-s_{n-1}+\ldots+s_1-s_1+s_0$. Положим, что $u_n=s_n-s_{n-1}$. Тогда $u_n\geq 0$ и $s_n=\sum_{k=1}^n u_n$ и $s=\sum_{k=1}^\infty u_n$
- 4. Из следствия $9.9 \int \sum_{n=1}^{\infty} u_n d\mu = \int \sup_m \sum_{n=1}^m u_n d\mu = \int \sup_m d\mu$
- 5. Также верно и следующее $\int \sup_m \sum_{n=1}^m u_n d\mu = \sup_m \int \sum_{n=1}^m u_n d\mu = \sup_m \int s_m d\mu$
- 6. Из (4) и (5) видим, что $\int \sup_m s_m d\mu = \sup_m \int s_m d\mu$ а это в точности теорема 9.6 (Теорема Леви о монотонной сходимости)
- 7. Ч.Т.Д.

Задача № 7

Пусть (X, \mathcal{A}, μ) - измеримое пространство и $u \in \mathcal{M}^+(\mathcal{A})$. Показать, что $A \mapsto \int 1_A u d\mu \ A \in \mathcal{A}$ - мера.

- 1. Пусть (X, \mathcal{A}, μ) измеримое пространство и $u \in \mathcal{M}^+(\mathcal{A})$ Положим $A \mapsto \int 1_A u d\mu \ \forall A \in \mathcal{A}$
- 2. Пусть $A=\varnothing$. Тогда $1_A(\varnothing)=0$. Отсюда следует, что $\int 1_A(x)\,u(x)\,d\mu=\int 0u(x)\,d\mu=0$. Следовательно выполнено M_1

- 3. Пусть $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$. Поскольку (X,\mathcal{A},μ) И.П. следовательно \mathcal{A} сигма-алгебра. Откуда следует, что $\bigsqcup_{n\in\mathbb{N}}A_n=A\in\mathcal{A}$
- 4. Поскольку $1_A(x)$ мера, то $1_{\bigsqcup_{n\in\mathbb{N}}A_n}=1_A=\sum_{n\in\mathbb{N}}1_{A_n}$. Таким образом $\int 1_Aud\mu=\int\sum_{n\in\mathbb{N}}1_{A_n}ud\mu$
- 5. Из следствия 9.9 получим, что $\int \sum_{n\in\mathbb{N}} 1_{A_n} u d\mu = \sum_{n\in\mathbb{N}} \int 1_{A_n} u d\mu$
- 6. Таким образом $\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right)=\int 1_{\bigsqcup_{n\in\mathbb{N}}A_n}ud\mu=\int\sum_{n\in\mathbb{N}}1_{A_n}ud\mu=\sum_{n\in\mathbb{N}}\int 1_{A_n}ud\mu=\sum_{n\in\mathbb{N}}\mu\left(A_n\right).$ То есть выполнено M_2 . Поэтому отображение $A\mapsto\int 1_Aud\mu$ мера
- 7. Ч.Т.Д

Задача № 8

Показать, что каждая функция $u:\mathbb{N}\to\mathbb{R}$ на $(\mathbb{N},P\left(\mathbb{N}\right))$ - измерима Доказательство:

- 1. Поскольку $u^{-1}: \mathbb{R} \to \mathbb{N}$, а для $P(\mathbb{N})$ система множеств всех возможных подмножеств, то $\forall B \in \mathcal{B}(\mathbb{R}) \ u^{-1}(B) \in P(\mathbb{N})$. Это в точности определение измеримости.
- 2. Ч.Т.Д.

Задача № 9

Пусть (X, \mathcal{A}) - И.П. Пусть $(\mu_n)_{n \in \mathbb{N}}$ - последовательность мер. Пусть $\mu = \sum_{n \in \mathbb{N}} \mu_n$. Показать, что $\int u d\mu = \sum_{n \in \mathbb{N}} \int u d\mu_n \ \forall u \in \mathcal{M}^+(\mathcal{A})$.

- 1. Пусть (X, A)- И.П
- 2. Пусть $(\mu_n)_{n\in\mathbb{N}}$ последовательность мер
- 3. Пусть $\mu = \sum_{n \in \mathbb{N}} \mu_n$
- 4. Положим $u=1_A$. Тогда $\int u d\mu = \int 1_A d\mu$. Таким образом из (3) следует, что $\int 1_A d\mu = \int 1_A \left(d \sum_{n \in \mathbb{N}} \mu_n \right)$
- 5. По определению интеграла положительной функции $\int 1_A \left(d\sum_{n\in\mathbb{N}}\mu_n\right) = sup\left\{I_{\sum_{n\in\mathbb{N}}\mu_n}\left(f\right):f\leq 1_A,f\in\mathcal{E}^+\right\}$
 - (а) Заметим, что $1_A \in \mathcal{E}^+$ поэтому $f = 1_A$. Это в свою очередь дает равенство $\int 1_A \left(d \sum_{n \in \mathbb{N}} \mu_n \right) = \sum_{n \in \mathbb{N}} \mu_n (A) = \sum_{n \in \mathbb{N}} \int 1_A d\mu_n$
 - (b) Таким образом из (5.а) следует, что $\int 1_A d\mu = \sum_{n \in \mathbb{N}} \int 1_A d\mu_n$
- 6. Пусть $u \in \mathcal{E}^+$. Тогда $\int u d\mu = \int \sum_{k=1}^K y_k 1_{A_k} d\mu$ где $\forall k, y_k \in \mathbb{R}$
 - (a) Из аддитивности интеграла для положительных функций, по индукции доказывается $\int \sum_{k=1}^K y_k 1_{A_k} d\mu = \sum_{k=1}^K y_k \int 1_{A_k} d\mu$
 - (b) Воспользовавшись (6.a) получим $\sum_{k=1}^K y_k \int 1_{A_k} d\mu = \sum_{k=1}^K \sum_{n \in \mathbb{N}} y_k \int 1_{A_k} d\mu_n$
 - (c) Тогди по теореме Фубини-Тунелли $\sum_{k=1}^{K} \sum_{n \in \mathbb{N}} y_k \int 1_A d\mu_n = \sum_{n \in \mathbb{N}} \sum_{k=1}^{K} \int y_k 1_A d\mu_n$. Снова из аддитивности имеем $\sum_{n \in \mathbb{N}} \int \sum_{k=1}^{K} y_k 1_A d\mu_n = \sum_{n \in \mathbb{N}} \int u d\mu_n$

- 7. Пусть $u \in \mathcal{M}^+$. По Лемме Сомбрерро $u = \lim_{n \to \infty} f_n = \sup_{n \in \mathbb{N}} f_n$ где $f_n \leq f_{n-1} f_n \in \mathcal{E}^+ \ \forall n \in \mathbb{N}$
- 8. Из (7) $\int ud\mu = \int \underset{n\in\mathbb{N}}{supf_n}d\mu$. Тогда по теореме Леви о монотонной сходимости $\int \underset{n\in\mathbb{N}}{supf_n}d\mu = \underset{n\in\mathbb{N}}{sup}\int f_nd\mu$
- 9. Используя посылку (3) получаем, что $\sup_{n\in\mathbb{N}}\int f_n d\mu=\sup_{n\in\mathbb{N}}\int f_{nk}\left(d\sum_{k\in\mathbb{N}}\mu_k\right)=\sup_{n\in\mathbb{N}}\sum_{k\in\mathbb{N}}\int f_{nk} d\mu_k=\sup_{n\in\mathbb{N}}\sum_{k\in\mathbb{N}}\int f_{nk} d\mu_k$
- 10. Используя утверждение в задаче 4.7 (ii) получим $\sup_{n\in\mathbb{N}}\sup_{k\in\mathbb{N}}\int f_{nk}d\mu_k=\sup_{k\in\mathbb{N}}\sum_{k\in\mathbb{N}}\sup_{n\in\mathbb{N}}\int f_{nk}d\mu_k=\sum_{k\in\mathbb{N}}\sup_{n\in\mathbb{N}}\int f_{nk}d\mu_k$
- 11. Что в свою очередь по следствию 9.9 $\sum_{k\in\mathbb{N}}\sup_{n\in\mathbb{N}}\int f_nd\mu_k=\sum_{k\in\mathbb{N}}\int\sup_{n\in\mathbb{N}}f_nd\mu_k=\sum_{k\in\mathbb{N}}\int ud\mu_k$
- 12. Ч.Т.Д.

Задача № 10

Пусть (X, \mathcal{A}, μ) - И.П. Пусть $(u_n)_{n \in \mathbb{N}} \subset \mathcal{M}^+(\mathcal{A})$. Если $u_n \leq u \ \forall n \in \mathbb{N}$ и $u \in \mathcal{M}^+(\mathcal{A})$ так, что $\int u d\mu < \infty$, тогда $\limsup_{n \to \infty} \int u_n d\mu \leq \int \limsup_{n \to \infty} u_n d\mu$

- 1. Пусть (X, \mathcal{A}, μ) И.П.
- 2. Пусть $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+(\mathcal{A})$.
- 3. Положим $u_n \leq u \ \forall n \in \mathbb{N}$ и $u \in \mathcal{M}^+(\mathcal{A})$ так, что $\int u d\mu < \infty$
- 4. Докажем и воспользуемся тем фактом, что $\limsup_{n \to \infty} \sup_{k \ge n} \sup_{n \in \mathbb{N} k \ge n}$
 - (a) Пусть $u_k, k \in \mathbb{N}$ некоторая последовательность функций.
 - (b) Заметим, что $\sup_{k\geq n} u_k$ это некоторая подподследовательность u_{k_1}, u_{k_2}, \dots такая, что $\forall i, j \in \mathbb{N}, i < j \ u_{k_i} \geq u_{k_j}$. То есть эта подпоследовательность не возрастает.
 - (c) Тогда из условия не возрастания следует, что $u_{k_i} \ge u \ \forall i \in \mathbb{N}$, то есть это предел подпоследовательности.
- 5. Пусть $w_n=u-u_n$. $\forall n\in\mathbb{N}\ w_n\geq 0$. Тогда, поскольку $\limsup_{n\to\infty} \sup_{k\geq n} u_k\geq \liminf_{n\to\infty} u_k$. Тогда из монотонности $\int \limsup_{n\to\infty} \sup_{k\geq n} d\mu \geq \int \liminf_{n\to\infty} u_k d\mu$
- 6. Используя Лемму Фату получим, что $\int \lim_{n \to \infty} \inf_{k \ge n} fw_k d\mu = \lim_{n \to \infty} \inf_{k \ge n} \int u u_n d\mu = \int u d\mu \lim_{n \to \infty} \inf_{k \ge n} \int u_n d\mu.$
- 7. Правая же часть неравенства (6) $\int \lim_{n \to \infty} \inf_{k \ge n} u_k d\mu = \int \lim_{n \to \infty} \inf_{k \ge n} (u u_n) d\mu$. Воспользовавшись свойством $\lim_{n \to \infty} \inf_{k \ge n} (u u_n) = u \lim_{n \to \infty} \sup_{k \ge n} \sup_{k \ge n} u_k d\mu$ получим $\int \lim_{n \to \infty} \inf_{k \ge n} (u u_n) d\mu = \int u d\mu \int \lim_{n \to \infty} \sup_{k \ge n} u_n d\mu$

- 8. Комбинируя (5) (6) и (7) видим, что $\int u d\mu \lim_{n \to \infty} \inf_{k \ge n} \int u_n d\mu \ge \int u d\mu \int \lim_{n \to \infty} \sup_{k \ge n} d\mu$ что в свою очередь имлицирует $\lim_{n \to \infty} \inf_{k \ge n} \int u_n d\mu \le \int \lim_{n \to \infty} \sup_{k \ge n} u_n d\mu$
- 9. Ч.Т.Д.