

Johan MARCONOT, David HELY (LCIS)
Gisela SCHACH (Linksium)

Lille, 8 September 2021

Technology Transfer from the Lab

- Security from hardware to software, attack and countermeasure
- Solution, tool and methods for the industry needs => EDA4Sec

60 220
RESEARCHERS PEER-REVIEWED
ARTICLES

13 700
COLLABORATIVE CONFERENCE
PROJECTS PAPERS

- Accelerating innovation from public research
- Funding for emerging technologies from the labs
- Facilitating transfer to industry
- Creating deeptech startups in the Alpes

Agenda

- 1. Hardware security issues in IC conception
- 2. Focus on fault attack evaluation
- 3. EDA4Sec: a software tool providing probabilistic analysis and automated countermeasures early in the design flow

Growing Concern in Industry

63%

of companies have been targeted in 2019 by hackers through hardware or silicon-level vulnerability

70%

are unsatisfied of the silicon-level security offered by their hardware vendors

^{*}Investigation carried out by Forrester, interviews were conducted with decision makers for 307 companies. https://www.delltechnologies.com/en-us/endpoint-security/index.htm#scroll=off&overlay=/en-us/collaterals/unauth/analyst-reports/solutions/dell-bios-security-the-next-frontier-for-endpoint-protection.pdf
FIC 2021, Lille, 8 september 2021

Hardware Attacks

- ➤ Over hundred methods to compromise IC security through physical vulnerability are reported today
 - ➤ Mainly due to lack of security integration during the IC design flow

Side channel attack

Leaked secret data through power, timing or EM analysis (even photon or heat dissipation)

Fault injection attack

Provoke errors in systems' security protocol or critical functions (often exploitable faulty result or behavior)

Security Challenge for Conventional EDA tools

- Functional and parametric verification, performance optimization
 - > Provided by conventional tools (Mentor, Synopsys, Defacto)

- Security characterization against real-world vulnerabilities
 - Fault injection sensibility? Side channel leakage?

Security Challenge for Conventional EDA tools

- Functional and parametric verification, performance optimization
 - ➤ Provide by classic tools (Mentor, Synopsys, Defacto)

*Electronic Design Automation

Avoid costly ad-hoc integration security

Agenda

- 1. Hardware security issues in IC conception
- 2. Focus on fault attacks evaluation
- 3. EDA4Sec: a software tool providing probabilistic analysis and automated countermeasures early in the design flow

- ➤One fault, at the right moment onto a critical signal can break IC security
 - > Several means : laser, clock glitch, power glitch, EM...

- ➤ One fault, at the right moment onto a critical signal can break IC security

 ➤ Several means: laser, clock glitch, power glitch, EM...
- Fault injection impacting
 an output value

 0 → 1

 Propagation to the register (flip flop)

➤ Modify the status of critical register used in security protocol: authentication, right access management, ciphering...

- ➤One fault, at the right moment onto a critical signal can break IC security
 - > Several means: laser, clock glitch, power glitch, EM...

- ➤ Modify the status of critical register used in security protocol: authentication, right access management, ciphering...
- > Can be undetected during algorithm execution

- ➤ One fault, at the right moment onto a critical signal can break IC security
 - > Several means : laser, clock glitch, power glitch, EM...

Which registers are manipulating critical data?

cal register used t, ciphering...

How to detect the errors due to fault injection?

- ➤ One fault, at the right moment onto a critical signal can break IC security
 - > Several means : laser, clock glitch, power glitch, EM...

Which registers are manipulating critical data?

cal register used
t, ciphering...
g algorithm exec

How to detect the errors due to fault injection?

- ➤ Simulator tool evaluate the random fault scenario impacts
 - ➤ As a current practice in EDA software
 - ➤ Identify and observe the fault effects

Sig0 : 00110<mark>1</mark>01

Sig1: 10<mark>1</mark>01110

Fault list establishment

- Fault condition (input signal, fault type)
- Impacted outputs

- ➤ Simulator tool evaluate the random fault scenario impacts
 - ➤ As a current practice in EDA software
 - ➤ Identify and observe the fault effects

Sig0 : 00110<mark>1</mark>01

Sig1 : 10<mark>1</mark>01110

Fault list establishment

- Fault condition (input signal, fault type)
- Impacted outputs

Challenge

- Very time consuming for large design
- Lack of sensitivity metrics to characterize the faults

- ➤ Simulator tool evaluate impacts of random fault scenario
 - ➤ As a current practice in EDA software
 - ➤ Identify and observe the fault effects

Sig0 : 00110<mark>1</mark>01

Sig1 : 10<mark>1</mark>01110

Fault list establishment

- Fault condition (input signal, fault type)
- Impacted outputs

Challenge

- Very time consuming for large design
- Lack of sensitivity metrics to characterize the faults

- > Formal engine can verify fault propagation
 - ➤ Initially used to property design verification

Optimized fault evaluation

- Exhaustive and correct fault list.
- Still face the same challenge for sensitivity

- ➤ Simulator tool evaluate impacts of random fault scenario
 - ➤ As a current practice in EDA software
 - ➤ Identify and observe the fault effects

Sig0 : 00110101

Sig1: 10101110

- > Formal engine can verify fault propagation
 - ➤ Initially used to property design verification

Fault perimeter exhaustively evaluated by formal engine

Sig0: 00000 Sig1: 00001

••••

SigX : 11111

Verified faults

sig13:10101 Sig21:11011

Fault simulator

Fault list establishment

- Fault condition (input signal, fault type)
- Impacted outputs

Challenge

But which logic part is sensitive to fault injection?

uation

orrect fault list e challenge for sensitivity

Agenda

- 1. Security issues in IC conception
- 2. Focus on fault injections (analysis)
- 3. EDA4SEC: a software tool providing probabilistic analysis and automated countermeasures early in the design flow

RESPECTING
THE DESIGN
FLOW
REQUIREMENTS

- Offers structural analysis to identify potential hardware security vulnerabilities
- Positions IC on a sensitivity score
- Runs at various abstraction levels from RTL to gate levels
- Compatible with common EDA design tools

> A software plugin to analyze IC sensitivity to fault injection and localize its vulnerabilities

> EDA4Sec focuses on structural metrics provided by EDA tools to analyze the design

EDA conventional tools: Synopsys, Mentor, Defacto

EDA4Sec

> EDA4Sec performs the evaluation on the whole IC design (100 % of the circuit)

> EDA4Sec integrates the recent fault attack model to compute security metrics

> EDA4Sec performs sensitivity evaluation faced to laser fault injection and clock glitching...

2 – Localization and Sensitivity of the Vulnerable Parts of the IC Design

> EDA4Sec provides a full security report and graphic charts to the designer

2 – Localization and sensitivity of the vulnerable part of the IC design

> EDA4Sec provides full security report and graphic interface to the designers

2 – Localization and sensitivity of the vulnerable part of the IC design

Designer can visualize the sensitivity metrics of any specific register and decides if he wants to improves its security

3 - Automated Countermeasure Insertion

- > EDA4Sec provides support to integrate an efficient error detection scheme
 - For instance, an approach with parity checksum to this design

3 – Automated Countermeasure Insertion

- > EDA4Sec provides support to integrate an efficient error detection scheme
 - In this design, the challenge is to find the right combination of register bit parity

Independent register groups ????

3 - Automated Countermeasure Insertion

➤ EDA4Sec identifies the adequate register groups

Benefits of EDA4Sec

> EDA4sec brings benefits to designers who want to integrate security

	Fault simulator	Formal verification engine	Global EDA4sec analysis
Exhaustivity		++	++
Vulnerability identification	+/-	+/-	++
Calculation time			++
Risk evaluation			++
Countermeasure support			++
Easy integration into the design flow	++		++

Next steps

We are looking for industrial partners ...

- >Security evaluation of your IC design
- **≻**Compatibility test of your EDA tools
- >Comparing methods to evaluate security
- >Software available for technology transfer

Next steps

We are looking for industrial partners ...

- >Security evaluation of your IC design
- **≻**Compatibility test of your EDA tools
- >Comparing methods to evaluate security
- >Software available for technology transfer

We are moving forward to deployment of testing platform and new attack models...

Contact us

David Hély

Assistant professor

+33 (0)6 78 40 74 90

David.hely@lcis.Grenob
le-inp.fr

Johan Marconot

Research Engineer

+33 (0)7 55 68 84 41

Johan.marconot@lcis.G

renoble-inp.fr

Gisela SCHACH

Innovation project

manager

+33 (0)6 33 63 44 99

Gisela.Schach@linksium.fr

Slides annexes

Fenêtre de résultats – mode avancé

	Results Fault Attacks Vu	ineradiuties Advanced	
Global Security Score	All Flip Flops	Logic Cones	Critical Paths
Logic Cones Edges	Logic Cones Intersections	Intersecting Cones Percentage	
Group-Independant Flip Flops	Full-Independant Flip Flops	Analyse vulnerabilities for a group of flipflops	GUI for a flipflop
Get summary	Select a Flip Flop	Save all results	Switch to basic mode

FIC 2021, Lille, 8 september 2021

Fenêtre de résultats – cônes logiques

FIC 2021, Lille, 8 september 2021

Fenêtre de résultats – chemin critique

40