

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Ricerca Operativa II

a.a. 2021/2022

Introduzione all'insegnamento

Fabrizio Marinelli

fabrizio.marinelli@staff.univpm.it tel. 071 - 2204823

Coordinate del corso: docente

Fabrizio Marinelli

DII, Dipartimento di Ingegneria dell'Informazione

Via Brecce Bianche, Ancona

Tel. 071-2204823

e-mail fabrizio.marinelli@staff.univpm.it

web: www.dii.univpm.it/fabrizio.marinelli

Pagina web dell'insegnamento

accessibile dalla pagina web del docente, oppure alla sezione e-learning di UNIVPM

https://learn.univpm.it

Coordinate del corso: obiettivi e prerequisiti

Obiettivi formativi:

Acquisizione di competenze teoriche, modellistiche e metodologiche per la formulazione e soluzione di problemi di ottimizzazione discreta e programmazione lineare intera.

Prerequisiti:

- Elementi di algebra lineare
- Elementi di programmazione lineare e teoria della dualità
- Concetti elementari di coding e di combinatoria

Coordinate del corso: the big picture

Prerequisiti

Vettori e sommatorie: La variabile \mathbf{x} è di solito un vettore. la notazione con indici permette di scrivere le espressioni lineari in modo sintetico:

$$x_1 + x_2 + x_3 + x_4 + x_5 = \sum_{i=1}^{5} x_i$$

Programmazione matematica

Concetti elementari di coding

Coordinate del corso: orari

Orario delle lezioni

```
mercoledì 14.30 - 16.30 (streaming su TEAMS) giovedì 14.30 - 16.30 - 17.30 (aula 140/3)
```

ricevimento

contattare il docente via e-mail per concordare un appuntamento per via telematica

(fabrizio.marinelli@staff.univpm.it)

Coordinate del corso: testi

Carlo Vercellis,

Ottimizzazione. Teoria, metodi, applicazioni

Mc Graw-Hill, 2008

Coordinate del corso: testi di approfondimento

Coordinate del corso: materiale integrativo

• Slide, eserciziario e appunti sono disponibili alla pagina e-learning dell'insegnamento

```
https://learn.univpm.it
www.dii.univpm.it/fabrizio.marinelli
```

- Il materiale presentato a lezione sarà reso disponibile durante il corso, se necessario in una versione parziale.
- La versione completa sarà disponibile dopo la lezione o dopo il modulo di lezioni.
- Nella pagina e-learning dell'insegnamento c'è anche un link alla collezione completa delle slide <u>non aggiornate</u> dell'edizione 2020/2021

Coordinate del corso: modalità di esame

prova scritta

```
1ª parte: 7 domande a risposta chiusa

Quanto fa 2 + 2?

[ ] 5, secondo i Radiohead

[ ] 3

[ ] nessuna delle altre risposte

(da -7 a 14 punti)
```

2ª parte: uno o più esercizi

Problema 1: nonna Papera va al mercato...

Problema 2: Clarabella prepara una torta...

≥ 16 punti

prova orale

- discussione dello scritto e degli argomenti svolti a lezione
- accesso alla prova orale con voto dello scritto ≥ 18

Metodo di valutazione dell'apprendimento

La valutazione del livello di apprendimento prevede una prova scritta e una prova orale. La prova scritta, della durata di 2 ore, è articolata in una prima parte con domande a risposta chiusa e una seconda parte con uno o più esercizi di modellazione matematica e/o di soluzione di problemi di ottimizzazione discreta mediante le tecniche presentate nel corso. La prova scritta non prevede la possibilità di utilizzare testi o appunti.

Alla prova orale accede chi ha ottenuto una valutazione dello scritto di almeno 18 punti. La prova orale consiste nella discussione dello scritto e nella soluzione di uno o più quesiti volti a verificare le capacità logiche deduttive e l'apprendimento degli argomenti del corso.

Criteri di valutazione dell'apprendimento

Viene valutata la capacità di sintetizzare ed esporre con chiarezza e rigore logico idee, concetti e risultati teorici dell'ottimizzazione discreta.

Viene inoltre valutata la capacità di impostare e risolvere autonomamente i problemi decisionali utilizzando in modo corretto e pertinente metodologie, modelli e strumenti propri della programmazione matematica e dell'ottimizzazione discreta.

Criteri di misurazione dell'apprendimento

La conoscenza dei concetti e dei risultati teorici è misurata analiticamente con un punteggio assegnato alla prima parte della prova scritta compreso tra -7 e 14.

La capacità di impostare e risolvere problemi decisionali con strumenti propri della programmazione matematica e dell'ottimizzazione discreta è misurata analiticamente con un punteggio assegnato alla seconda parte della prova scritta compreso tra 0 e 14.

La capacità di sintesi, di rigore logico e di esposizione chiara è misurata analiticamente con un punteggio assegnato alla prova orale compreso tra 0 e 30.

Criteri di attribuzione del voto finale

Il voto finale è pari alla semisomma dei punteggi assegnati alle due parti della prova scritta e alla prova orale.

La votazione massima, pari a trenta punti con lode, è assegnata agli studenti che complessivamente dimostrino completa padronanza degli strumenti teorici e metodologici propri dell'ottimizzazione discreta e piena autonomia e rigore logico nell'impostare e risolvere i problemi posti.

La votazione minima, pari a diciotto, è assegnata agli studenti che dimostrino di riuscire a risolvere i problemi che gli vengono posti e sufficiente conoscenza degli strumenti teorici e metodologici propri dell'ottimizzazione discreta.

la matematica in una slide

Matematica discreta e combinatoria

• La combinatoria riguarda il <u>conteggio</u> della cardinalità di un <u>insieme finito</u> di oggetti che hanno una data proprietà.

Domanda classica:

"in quanti modi diversi posso fare una certa cosa?"

Matematica discreta e combinatoria: esempio

7 lanci di una moneta

Quanti sono i possibili esiti?

7 lanci di una moneta

Quanti sono i possibili esiti con esattamente 3 croci?

7 lanci di una moneta

Quanti sono i possibili risultati con almeno 3 croci?

Altre domande interessanti:

• Una partizione di un numero intero positivo n è un modo di scrivere n come somma di interi positivi. Qual è il numero p(n) di possibili partizioni di un numero interno positivo n (senza tener conto dell'ordine degli addendi)?

In quanti modi un poligono convesso può essere diviso in triangoli?

Combinatoria: strumenti fondamentali

Insieme delle parti

$$2^n$$

Permutazioni

$$n! = \prod_{k=1}^{n} k$$

Combinazioni

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Altri esempi:

- Occorre costituire un gruppo di lavoro di 5 persone scegliendo fra 12 candidati. Quanti possibili gruppi si possono formare?
- Una CPU processa un task alla volta. In quanti modi possibili si possono sequenziare 7 task?
- 15 prodotti distinti sono soggetti a controllo di qualità. Quanti sono i possibili esiti del test, cioè quanti sono i possibili insiemi che superano il test?

matematica discreta e problemi di conteggio

Disporre le tessere del domino (senza sovrapporle) in modo da coprire tutte le caselle

Disporre le tessere del domino (senza sovrapporle) in modo da coprire tutte le caselle

• Una possibile strategia *operativa*...: posiziona una tessera dopo l'altra con il criterio *top-left* provando **ogni volta entrambi** gli orientamenti (orizzontale e verticale) e esegui backtracking.

Quanti tentativi occorre fare?

Possiamo farci un'idea contando il numero delle possibili configurazioni su una griglia standard (non «mutilata»)

ecc...

Quanti tentativi occorre fare?

siccome servono esattamente 18 tessere e ognuna può essere orientata orizzontalmente o verticalmente, le possibili configurazioni (e quindi il numero di tentativi) è $< 2^{18} \approx 262.000$

Effettivamente, una stima migliore è 10.000 e può essere calcolata con la seguente formula

Il numero esatto di soluzioni in un griglia di lato n è

$$T_{m \times n} = \prod_{j=1}^{\left[\frac{m}{2}\right]} \prod_{k=1}^{\left[\frac{n}{2}\right]} \left(4\cos^2\left(\frac{\pi j}{m+1}\right) + 4\cos^2\left(\frac{\pi k}{n+1}\right)\right)$$
 Kasteleyn, 1961

Questo numero è sempre intero!!

$$T_{6\times6} =$$

 $6.49395920743493 \times 4.80193773580484 \times 3.44504186791263$

 \times 4.80193773580484 \times 3.10991626417474 \times 1.75302039628253

 \times 3.44504186791263 \times 1.75302039628253 \times 0.39612452839032

= 6728

E se la griglia è 16×16 ?

Il numero di configurazioni è nell'ordine di 10³¹

Un computer che verifica un **miliardo** di configurazioni al **secondo** impiega circa 315 milioni di miliardi di anni

Sei disposto ad aspettare?

Il ruolo delle dimostrazioni matematiche

 Torniamo al problema della griglia «mutilata»

• ... e trasformiamo la griglia in una scacchiera

1° tentativo

- Cosa hanno in comune tutti i precedenti tentativi falliti?
- Ogni tessera copre esattamente una casa bianca e una nera;
- Le case rimosse sono entrambe nere...

Giocando con le scacchiere

Una volta rimosse le case gialle

[Problema] è possibile *coprire* la griglia «mutilata» con le tessere del domino?

[Problema] la risposta è la stessa per ogni possibile scelta delle case gialle (una bianca e una nera)?

Giocando con le scacchiere

- griglia 10 × 10
- **2**5 tessere 4 × 1

[Problema] Determinare una copertura completa della griglia utilizzando 25 tessere (che possono essere ruotate di 90°) oppure dimostrare che ciò non è possibile

Indagini statistiche riportano che in media gli uomini eterosessuali hanno avuto più partners delle donne eterosessuali

 Australian survey (20.000 persone, 5 anni): uomini 3.9 partners, donne 1.9 partners $R = \frac{3.9}{1.9} = 2.05$

R = 1.74

- Chicago University survey (2500 persone): gli uomini hanno il 74% in più di partners rispetto alle donne, vedi "The soul of social organization of sexuality: sexual practices in the US"
- ABC news survey (1500 persone):
 gli uomini hanno 20 partners e le donne 6.
 ABC news afferma di avere un margine di errore del 2.5%

$$R = \frac{20}{6} = 3.33$$

[Problema] chi ha ragione?

Matematica discreta e combinatoria

- L'insieme delle possibili soluzioni di problemi *real-life* è spesso generato combinatorialmente (...il numero di possibili percorsi, il numero di possibili abbinamenti...)
- Tali insiemi sono interessanti (...cioè problematici) anche dal punto di vista computazionale perché di solito sono soggetti a esplosione combinatoria, ossia crescono con progressione geometrica

... scaldiamo i muscoli (1)

[Problema] Ipotizzando solo movimenti verso l'alto e verso destra, quanti sono i percorsi alternativi per raggiungere B da A? Qual è una formula generale?

... scaldiamo i muscoli (2)

Sia data la seguente equazione in *n* variabili:

$$x_1 + x_2 + \dots + x_n = r$$

[Problema] Quante sono le possibili soluzioni intere non negative (cioè le soluzioni con $x_i \in \mathbb{N}$)?

... scaldiamo i muscoli (3)

Mi sto preparando per un viaggio. Vorrei portare con me n oggetti ma il loro peso complessivo supera il limite massimo del bagaglio che è pari a b Kg.

[Problema] Assumendo che ogni oggetto sia descritto da un peso w e da un valore p (affettivo, funzionale, economico...), quali oggetti metto nel bagaglio se ne voglio massimizzare il valore complessivo?

Definire un metodo per risolvere i seguenti casi

[caso 1]

$$b = 153$$

Þ	1	2	3	7	10	15	16	17	19	21	22	23	25	27	28	30	31	33	34	36	38	39	41	42	43	45	47
\boldsymbol{w}	2	4	6	7	9	10	12	13	14	16	17	19	20	22	23	24	25	28	29	30	32	33	35	36	37	38	39

																							75
\overline{w}	40	41	42	43	44	46	47	48	49	50	51	53	54	55	57	58	59	60	62	63	64	65	67

[caso 2]

$$b = 22180$$

Þ	668	537	237	206	1329	1422	200	1447	1462	1369	737	866	263	184	596	906	1021
\boldsymbol{w}	679	1048	1174	1079	1094	745	1094	1448	731	81	904	544	947	388	1050	922	1216
p	290	1053	318	936	615	1415	928	1430	193	139	977	41	598	992	1331	722	271
w	1476	1172	1069	1057	403	1300	1350	493	1381	380	528	1424	735	189	1102	861	1252
p	1457	376	855	586	22	1424	395	223	533	1078	21	169	414	753	950	741	
w	847	1102	795	660	584	1105	434	1130	1151	1300	328	196	207	1047	420	1090	