南山人壽:理賠客戶再購與商品推薦

指導業師 陳仕龍

指導老師 石百達、張智星

工管系大四 財金所碩一 財金系大四 生醫電資所碩一 胡茂為為為為

研究方向

- 1. 何謂理賠客戶再購
- 2. 理賠客戶再購預測模型
- 3. 理赔客户商品推薦模型
- 4. 家庭關係與再購

本次專案完成的目標並著重於第一個研究方向

再購定義

- 資料基本分析
 - 理賠檔、再購檔資料說明
 - ○關鍵發現
- 理賠後再購定義詳細說明
 - 理賠檔資料篩選
 - 再購檔資料篩選
 - 再購定義篩選

資料基本分析

資料表分析-理賠檔

- 客戶ID相關欄位(與人有關)
 - INJURED_RK
 - INSURED_RK
 - POLICY_HOLDER_RK
 - MATURITY_BENEFICIARY_RK
 - DEATH_BENEFICIARY_RK

- 客戶理賠資訊欄位(與事件有關)
 - Claim_RK
 - Policy_RK
 - BundleSubtype2
 - illness_code
 - illness_desc
 - DiagnosisCode_DESC
 - claim_settle_dt
 - REIMBURSED_YR_TW

資料表分析-再購檔

- 客戶ID相關欄位(與人有關)
 - INSURED_RK
 - POLICY_HOLDER_RK
 - MATURITY_BENEFICIARY_RK
 - o DEATH_BENEFICIARY_RK

- 客戶再購資訊欄位(與產品有關)
 - o RRKER_CD
 - Policy_RK
 - payment_period
 - AFYP_NT
 - SHORT_NAME
 - EFFECTIVE_DT

資料表分析-重要資訊

- 理賠檔重要資訊
 - 受理理賠期間為2014/12/31至2017/12/31
 - 一位客戶可以具有多次理賠紀錄
 - 一位客戶可能在一天中有多筆理賠紀錄
 - 在理賠檔中的客戶為INSURED_RK(被保險人)
- 再購檔重要資訊
 - 保險再購期間為2016/12/31至2018/12/31
 - 一個客戶可以有多筆再購紀錄
 - 一位客戶可以在一天中有多筆再購紀錄
 - 在再購檔中的客戶為INSURED_RK(被保險人)與POLICY_HOLDER_RK(要保人)

理賠後再購定義詳細說明

再購定義(一)

- 理賠檔資料篩選準則
- 1. 挑選於2017/1/1至2017/12/31間有發生理賠事件的顧客
- 2. 若一個人有多筆理賠紀錄,則挑選理賠時間最晚發生者
- 3. 若仍有多筆理賠紀錄時,則挑選具有最高理賠金額者
- 4. 若理賠金額依然相同,則挑選第一筆被觀察之理賠事件

再購定義(二)

- 再購檔資料篩選準則
- 1. 挑選於2018/1/1至2018/12/31發生再購行為的客戶
- 2. 若有一位客戶具有多比再購紀錄,則挑選時間最早的再購紀錄
- 3. 若最早的在購紀錄有多筆,則以最早觀察到的在購紀錄為準

再購定義(三)

- 再購檔與理賠檔連接準則
 - 理賠檔中的INSURED_RK與再購檔中的INUSURED_RK相同 (被對被)
 - 理賠檔中的INSURED_RK與再購檔中的POLICY_HOLDER_RK相同 (被對要)

再購定義(四)

定義篩選結果

■ 2017發生理賠總人數: 95,408

2017理賠後再購人數: 10,097

再購預測模型

- 模型簡介 Random Forest, SVM, NN
- 階段一:模型預測結果
- 階段二:模型預測結果與目標調整並修正
- 階段三:模型預測結果與目標調整並修正

模型簡介 — Random Forest, SVM, NN

Random Forest – 隨機森林模型

特點:

- -利用隨機抽取sample跟feature建構許多決策樹
- -離散跟連續型資料都可以使用
- -結果可視化程度高

SVM - 支持向量機

特點:

- -將資料投影至高維度
- -非線性投影方式(kernel)有多種選擇
- -可在高維度空間處理原始空間無法 處理的問題

NN - 深度學習模型

特點:

- -利用多個非線性回歸方程式捕捉資料特性
- -善於解決多維度的資料
- -可藉由梯度下降的方式找出解答

應用在再購模型優勢:

- -客戶資料為多維度(70維)資料
- -目標為分類問題

模型階段一

資料型態與目標

- 訓練目標:根據客戶理賠資訊,預測客戶未來是否有再購行為,並以追求高整體預測率(total accuracy)為目標
- 預測任務:為二元分類問題,預測未來是否有再購行為發生
 - 若預測值為1: 未來有再購需求
 - 若預測值為0: 未來無再購需求
- 解釋因子:客戶理賠檔資訊欄位、客戶屬性檔資訊欄位
 - 數值型態資料: 進行Z-Normalization
 - 多類別型態資料:轉換成Dummy Variable

模型預測結果

	Random Forest	sv	M	NN
kernel		linear kernel	rbf kernel	
Training set Accuracy	90.33%	89.66%	90.26%	90.27%
Testing set Accuracy	89.85%	89.67%	89.76%	89.36%
Recall Rate	6.32%	10.52%	8.56%	22.2%

(註· Pacall rata - 档刑實際抓到再購入數 / 镁太再購的编入數)

模型階段二

階段二 目標調整與修正

調整後訓練目標:

提高成功預測再購需求用戶的(Recall rate)

比追求高整體預測率(Total accuracy)更為重要。

(註: Recall rate = 模型實際抓到再購人數 / 樣本再購的總人數)

修正:

- 1. bootstrap:樣本資料的比例嚴重失衡,不再購的資料較多,可能影響到模型預測的結果
- 2. 進行理賠檔欄位、客戶屬性檔欄位分類,並分成三種資料進行模型訓練:
- Behavior data, ex: 過去持有保單紀錄、VIP等級
- Personal data, ex: 年齡、性別、理賠原因
- Oringinal data (behavior data + personal data + 未能分類的欄位)

bootstap sampling,不再購:再購 = 1 : 1

Random Forest & Decision Tree 預測結果

	Behavioral	Personal	All data
Random Forest Testing set Accuracy	65.87%	58.22%	67.43%
Decision tree Testing set Accuracy	64.90%	56.31%	64.29%
Random Forest Recall Rate	69.60%	58.89%	64.96%
Decision tree Recall Rate	60.31%	59.47%	62.28%

bootstap sampling,不再購:再購 = 2:1

SVC 預測結果

[linear kernel]	all	personal	behavioral
accuracy	82.10%	89.42%	89.30%
recall rate	34.37%	0.00%	39.97%

[rbf kernel]	all	personal	behavioral
accuracy	86.16%	84.73%	89.37%
recall rate	34.35%	0.19%	34.92%

Neural Network 實驗設置

- 利用bootstrap調整label 0與 1的資料比例,並且從label 0的資料抽取十份降低整體bias
- Model setting:三層NN, CE loss, Adam, ReLU, Ir = 0.01, epoch = 30(但是會train10份資料)
- testing樣本為19082筆資料(佔總資料20%),其中 label=1的資料為2033筆

Neural Network 預測結果

	Behav	ioral + Pe	rsonal	Behavioral Persor		Personal	nal		
不再購:再購	1:1	1.5:1	2:1	1:1	1.5:1	2:1	1:1	1.5:1	2:1
Predict number	7800	4674	2053	9998	4075	2214	9591	2441	0
Total acc	59%	76%	86%	54%	78%	85%	54%	81%	89%
Recall rate	74%	53%	33%	78%	46%	34%	61%	19%	0%

階段二 結論

● Behavior data 對再購預測的影響較 Personal data 大非常多。

(Behavior data預測的Recall Rate較好)

Total accuracy 與 Recall rate存在 trade-off的情形

- Neural Network :
- 1. All data train 的 model較有價值 (dimension較多)
- 2. 當資料比例在1:1至1:1.5時,效果最佳

模型階段三

6/25 第三階段目標修正與調整

目標:整體預測率 total accuracy & 成功預測到再購需求用戶的比率 recall rate

修正:

- 1. 再購資料重新定義並抓取(原本為2017理賠並於2018再購)
- 2. 呈現 ROC curve or DET curve
- 3. 模型 k-fold Cross Validation

6/25 階段三-再購定義調整(一)

再購定義調整:

- 1. 若一位客戶有多筆理賠紀錄,則選擇最早的理賠紀錄
- 2. 若理賠時間相同,則選擇理賠金額最大者作為紀錄
- 3. 再購檔的資訊更改為包含2017年與2018年的所有再購紀錄
- 4. 其餘規則皆與最原始定義相同

6/25 階段三-再購定義調整(二)

6/25 階段三-再購定義調整(三)

● 定義調整後變化

	原始定義	新定義
再購人數	10,097人	13,465人
無再購人數	85, 311人	81,943人

6/25 階段三-再購定義調整(四)

6/25 階段三-模型調整

模型調整:

- 1. 利用K-fold做多次的testing,解決單次testing可能導致的bias
- 2. 利用Bootstrap算平均結果,增加模型可信度
- 3. 採用ROC curve,比較整體模型優劣

bootstap sampling,不再購:再購 = 1:1

Random Forest 預測結果

	Behavioral	Personal	All data
Random Forest Accuracy	74.23%	58.95%	73.77%
Random Forest Recall Rate	71.84%	59.33%	44.49%

註: bootstap sampling比例:不再購 : 再購 = 2 : 1

SVC 預測結果

[linear kernel]	all	personal	behavioral	
accuracy	0. 7989	0.8588	0. 7989	
recall rate	0. 5328	0.0000	0. 5328	

[rbf kernel]	all	personal	behavioral
accuracy	0. 8272	0.8551	0.8207
recall rate	0. 5110	0.0162	0. 4997

藍線: linear kernel

橘線: rbf kernel

SVC ROC curve

NN 結果

	Behavi	oral + Pe	rsonal		Behavioral			Personal	
不再購 : 再購	1:1	1.5:1	2:1	1:1	1.5:1	2:1	1:1	1.5:1	2:1
Total acc	61%	71%	81%	68%	80%	82%	55%	79%	84%
Recall rate	77%	60%	50%	70%	55%	50%	64%	21%	6%

NN 結果

All_data

Personal_data

Behavior_data

NN 結果

比較結果:

1. 使用全部data效果最好

1. 單用Behavior幾乎可以貢獻全部

1. 相較於階段二,Recall rate提升很多

階段三 結論

- 1. 再購定義時間間隔調整使得Recall rate顯著增加
- 2. 從三個模型的ROC curve可以看到 behavior data幾乎可以跟 All data(註一)表現一樣
- 3. 在Neural Network模型的實驗中,調整Bootstrap的比例:

Boostrap比例(註二)越高 🕤	Accuracy越高	Û	Recall Rate越低	Ţ
--------------------	------------	---	---------------	---

註一: All data為personal data +beahavioral data + 不能區分類別的資訊

結果分析與建議

- 本次專案結果分析
- 建議與延伸

本次專案結果分析

- bootstrap sampling 調整再購與不再購的樣本比例後,能更準確捕獲再購者的特徵
- Behavior data 對再購預測的影響較 Personal data 大,應著重探討該行為(Behavior)類別資料
- Total accuracy 與 Recall Rate 存在 trade-off
 (precision rate = 模型實際抓到再購入數 / 樣本再購的總人數)
 - 從Random Forest和Decision Tree可發現:

客戶年收入、客戶年齡、客戶戶齡和理賠金額對再購與否的預測有較大的影響

報告總結論

- 1. Behavior data可以有效的代表整份資料,未來在訓練模型時可以減少大量運算時間
- 2. 藉由調整再購定義(時間區隔調整),可以使Recall rate有效提升
- 3. Recall rate在最終階段的各模型都大於60%,代表利用這些模型可以抓出6成以上的潛在客戶
- 4. ROC curve底下的面積都大於60%,代表模型效力遠比隨機來的好

未來方向

- 1. 類別資料除了one-hot分類,可以嘗試其他分類方式
- 2. 可以增加K-fold與bootstrap的次數,提供更穩定且較無偏差的模型
- 3. 再購資料定義的細項調整,驗證哪些部分也會影響Recall rate