Упражнение 9

Атанас Груев

29.10.2019

1 Кратка теория

В предишното упражнение разгледахме понятието *рекурентна редица*, която се задава по следния начин:

$$\begin{cases} a_1, a_2, \dots, a_k \text{ - известни членове на редицата } \{a_n\}_{n=1}^{\infty} \\ a_n = f\left(a_{n-1}, a_{n-2}, \dots, a_{n-k}\right) \ \forall \, n > k \ (f \in k\text{-местна функция}) \end{cases}$$

Тук продължаваме да се занимаваме с изследването на рекурентни редици - интересуваме се основно от два типа задачи:

- 1. Дадена е рекурентна редица $\{a_n\}_{n=1}^{\infty}$ да се определи дали е сходяща и ако е, да се намери нейната граница.
- 2. Дадена е рекурентна редица $\{a_n\}_{n=1}^{\infty}$ с $a_1 = \alpha \in \mathbb{R}$, за която първият член (евентуално първите членове) е параметър. Целта е в зависимост от допустимите стойности на α да изследваме редицата за сходимост.

В предишното упражнение, последната разписана задача се явява изчерпателно и доста пълно изследване на рекурентната редица, зададена с:

$$a_1 = \alpha, \ a_{n+1} = \frac{3a_n^2 + a_n + 6}{a_n + 9} \quad (\alpha \neq -9)$$

Силно съветвам да се прегледа, тъй като там подробно е приложена методиката за решаване на горния тип задачи. Накратко, тя се състои от следните етапи:

I) Първи етап - допускаме, че редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща. Тогава нека $a_n \xrightarrow[n \to \infty]{} l$ за някое число $l \in \mathbb{R}$. Но тогава и $a_{n+1} \xrightarrow[n \to \infty]{} l$. Извършваме граничен преход:

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} f\left(a_{n-1}, \dots, a_{n-k}\right)$$

Граничният преход е за равенството, което се явява рекурентна връзка. По-този начин получаваме уравнение на l. Решаването му дава възможните стойности за потенциална граница на редицата.

II) Втори етап - образуваме израза $a_{n+1} - a_n$. Съобразете, че знакът на този израз ни помага да установим дали редицата е монотонно намаляваща или монотонно растяща. Този знак обикновено зависи от един или няколко едночлена на a_n .

III) Трети етап - търсим кои стойности на a_n биха нулирали едночлените, на които сме разложили горния израз. Нека това са числата η_1, \ldots, η_m . Образуваме условия от вида:

$$(*) \quad a_{n+1} - \eta_1 = f(a_{n-1}, \dots, a_{n-k}) - \eta_1 = \dots$$

$$(**) \quad a_{n+1} - \eta_2 = f(a_{n-1}, \dots, a_{n-k}) - \eta_2 = \dots$$

$$\vdots$$

$$(* \dots *) \quad a_{n+1} - \eta_m = f(a_{n-1}, \dots, a_{n-k}) - \eta_m = \dots$$

В някакъв смисъл тези условия служат за установяване на ограниченост - с тяхна помощ по индукция доказваме, че всеки член на редицата от известно място нататък е по-голям или по-малък от числото η_i за някое $i \in \{1, \ldots, m\}$.

<u>Забележка</u> - η_i не са числата a_n , избрани да нулират израза $a_{n+1} - a_n$. Не отъждествявайте η_i с a_n за фиксирана стойност на a_n - в условията a_n може да приема произволни стойности и ние доказваме, че те са ограничени отгоре или отдолу.

IV) Четвърти етап - ако $a_1 = \alpha$, разграфяваме реалната права със стойностите, които нулират $a_{n+1} - a_n$ и условията $(*), \dots, (* \dots *)$. Започваме да изследваме за параметъра α съобразно получените интервали. Това е направено подробно в предишното упражнение - разгледайте внимателно как се подхожда във всеки отделен случай.

2 Задачи

Задачи - Параграф 3 от Ръководството (Рекурентни редици) съдържа хубави примери за рекурентно зададени редици, за които $a_1 = \alpha$. Решаваните по време на упражнения задачи са взети предимно от Ръководството. Подходящи задачи ще намерите и в Сборника на Проданов, Хаджииванов, Чобанов (Параграф 17 - Сходимост на итерационно редици). Тук са решени няколко примера от Кудрявцев (за упражнение - зад. 164, зад. 224, зад. 231).

• Сборник (ПХЧ) - зад. 90 - да се изследва за сходимост редицата. Ако е сходяща, зависи ли нейната граница от стойността на α ?

$$a_1 = \alpha$$
, $a_{n+1} = \frac{a_n^2}{a_n^2 + 1}$

I) Допускаме, че редицата е сходяща с граница l. Правим граничен преход в рекурентната връзка:

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{a_n^2}{a_n^2 + 1} \Longrightarrow l = \frac{l^2}{l^2 + 1}$$

Решаваме уравнението относно l и получаваме корен l = 0.

II) Съставяме израза $a_{n+1} - a_n$ и го преобразуваме:

$$a_{n+1} - a_n = \frac{a_n^2}{a_n^2 + 1} - a_n = \frac{a_n^2 - a_n^3 - a_n}{a_n^2 + 1} = \frac{-a_n \left(a_n^2 - a_n + 1\right)}{a_n^2 + 1}$$

Знакът на $a_{n+1}-a_n$ зависи единствено от знака на a_n , защото $\left(a_n^2-a_n+1\right)$ и $\left(a_n^2+1\right)$ са винаги положителни изрази.

- III) Нямаме условия безмислено е да пишем $a_{n+1} 0$, защото рекурентната връзка е точно това.
- IV) Изследваме за $\alpha > 0, \ \alpha = 0$ и $\alpha < 0$.
 - $\alpha > 0$. Togaba:

$$a_2 = \frac{\alpha^2}{\alpha^2 + 1} > 0$$

С индукция по $n \geq 2$ се доказва, че $a_n > 0$. Ако допуснем, че $a_k > 0$ за някое $k \in \mathbb{N}$, то за a_{k+1} е в сила:

$$a_{k+1} = \frac{a_k^2}{a_k^2 + 1} > 0$$

Следователно $a_n > 0$ за всяко $n \geq 2$. Тогава изразът $a_{n+1} - a_n$ приема отрицателен знак (не забравяме минуса), т.е. редицата е монотонно намаляваща. Оттук и от факта, че всичко членове са строго положителни следва, че границата l = 0 се достига.

- $\alpha=0$. Тогава $a_2=0$ и с индукция по $n\geq 2$ доказваме, че $a_n=0$ за всяко $n\geq 2$. Индукцията извършете самостоятелно. Очевидно в този случай редицата е сходяща с граница l=0.
- $\alpha < 0$. Отново проверяваме, че:

$$a_2 = a_2 = \frac{\alpha^2}{\alpha^2 + 1} > 0$$

С индукция по $n \geq 2$ доказваме, че $a_n > 0$ за всяко $n \geq 2$. Процедира се точно както в първия случай за $\alpha > 0$. След като извършите индукция, съобразете, че отново поради $a_n > 0$ за всяко $n \geq 2$ е вярно, че $a_{n+1} - a_n < 0$, т.е. редицата е монотонно намаляваща и ограничена отдолу. Единствената възможност е тя да е сходяща с граница l = 0.

<u>Решение:</u> Редицата е сходяща с граница $a_n \xrightarrow[n \to \infty]{} 0$, която не зависи от α .

• Кудрявцев - зад. 164, подточка 4) - да се изследва за сходимост редицата с рекурентна връзка:

$$a_{n+1} = \frac{4}{3}a_n - a_n^2$$

и първи член: а) $a_1 = \frac{1}{6}$; б) $a_1 = \frac{1}{2}$; в) $a_1 = \frac{7}{6}$.

Тук имаме конкретни стойности за a_1 , но въпреки това можем да изследаме за параметър α , приемащ произволни стойности. Така бихме решили и трите случая наведнъж.

I) При допускане, че $a_n \xrightarrow[n \to \infty]{} l$, правим граничен преход:

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(\frac{4}{3} a_n - a_n^2 \right) \Longrightarrow l = \frac{4}{3} l - l^2$$

Решаваме и получаваме две възможности - l=0 или $l=\frac{1}{3}.$

II) Образуваме $a_{n+1} - a_n$:

$$a_{n+1} - a_n = \frac{4}{3}a_n - a_n^2 - a_n = \frac{1}{3}a_n - a_n^2 = a_n\left(\frac{1}{3} - a_n\right)$$

Стойността на този израз зависи и от двата едночлена - a_n и $(\frac{1}{3} - a_n)$.

III) Добавяме следното условие:

(*)
$$a_{n+1} - \frac{1}{3} = \frac{4}{3}a_n - a_n^2 - \frac{1}{3} = \frac{4a_n - 3a_n^2 - 1}{3} = \frac{-(a_n - 1)(3a_n - 1)}{3}$$

IV) Разграфяваме реалната права със стойностите $0, \frac{1}{3}$ и 1:

а) $a_1 = \frac{1}{6}$, т.е. $a_1 \in (0, \frac{1}{3})$. От условие (*) следва:

$$a_2 - \frac{1}{3} = \frac{-\left(\frac{1}{6} - 1\right)\left(3 \cdot \frac{1}{6} - 1\right)}{3} < 0 \Rightarrow a_2 < \frac{1}{3}$$

Допускаме, че за някое $k \in \mathbb{N}$ е в сила $a_k < \frac{1}{3}$. Тогава за a_{k+1} е изпълнено:

$$a_{k+1} - \frac{1}{3} = \frac{-(a_k - 1)(3a_k - 1)}{3} < 0 \Rightarrow a_{k+1} < \frac{1}{3}$$

С индукция доказахме, че $a_n < \frac{1}{3}$ за всяко $n \geq 2$. Самостоятелно съобразете и докажете с индукция, че $a_n > 0$ за всяко $n \geq 2$ (в този случай, разбира се). Получаваме, че $0 < a_n < \frac{1}{3}$ за всяко $n \geq 2$. Обратно в израза $a_{n+1} - a_n$, неговият знак е положителен, т.е. редицата е монотонно растяща. Това в комбинация с ограничеността отгоре ни дава сходимост и граница $l = \frac{1}{3}$.

б) $a_1 = \frac{1}{2}$, т.е. $a_1 \in (\frac{1}{3}, 1)$. отново прилагаме условие (*):

$$a_2 - \frac{1}{3} = \frac{-\left(\frac{1}{2} - 1\right)\left(3 \cdot \frac{1}{2} - 1\right)}{3} > 0 \Rightarrow a_2 > \frac{1}{3}$$

Очевидно $a_2 < 1$. С индукция по $n \ge 2$ доказваме, че $1 > a_n > \frac{1}{3}$ за всяко $n \ge 2$. Ако допуснем, че $1 > a_k > \frac{1}{3}$, то веднага от (*) получаваме:

$$a_{k+1} - \frac{1}{3} = \frac{-(a_k - 1)(3a_k - 1)}{3} > 0 \Rightarrow a_{k+1} > \frac{1}{3}$$
 и $a_{k+1} < 1$

В израза $a_{n+1}-a_n$ имаме отрицателен знак - редицата е монотонно намаляваща. Да заключим, че поради ограниченост и монотнност е сходяща с граница $l=\frac{1}{3}$.

в) $a_1 = \frac{7}{6}$, т.е сега $a_1 > 1$. От (*) имаме:

$$a_2 - \frac{1}{3} = \frac{-\left(\frac{7}{6} - 1\right)\left(3 \cdot \frac{7}{6} - 1\right)}{3} < 0 \Rightarrow 0 < a_2 < \frac{1}{3}$$

Докажете с индукция, че за всяко $n \geq 2$ е изпълнено $0 < a_n < \frac{1}{3}$. (За частта $0 < a_2$ може да ползвате, че $\frac{4}{3} > \frac{7}{6} \Rightarrow \frac{4}{3} \cdot \frac{7}{6} > \left(\frac{7}{6}\right)^2$). Като имаме това, в израза $a_{n+1} - a_n$ установяваме, че знакът е положителен и редицата е растяща. Отново, както в първия случай, следва сходимост с граница $l = \frac{1}{3}$.

<u>Решение:</u> Редицата $\left\{\frac{4}{3}a_n - a_n^2\right\}$ е сходяща за горните стойности на a_1 и $a_n \xrightarrow[n \to \infty]{} \frac{1}{3}$.

• Кудрявцев - зад. 221 - да се изследва за сходимост редицата:

$$a_1 = \alpha > 0, \ a_{n+1} = \frac{1}{3} \left(2a_n + \frac{125}{a_n^2} \right)$$

I) Допускаме, че $\{a_n\}$ е сходяща с граница l. Извършваме граничен преход:

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{3} \left(2a_n + \frac{125}{a_n^2} \right) \Longrightarrow l = \frac{1}{3} \left(2l + \frac{125}{l^2} \right)$$

Решение на уравнението е l = 5.

II) Образуваме $a_{n+1} - a_n$:

$$a_{n+1} - a_n = \frac{1}{3} \left(2a_n + \frac{125}{a_n^2} \right) - a_n = \frac{(5 - a_n) \left(25 + 5a_n + a_n^2 \right)}{3a_n^2}$$

Знакът зависи от едночлена $(5 - a_n)$.

III) Образуваме още едно условие:

$$(*)a_{n+1} - 5 = \frac{1}{3} \left(2a_n + \frac{125}{a_n^2} \right) - 5 = \frac{2a_n^3 - 15a_n^2 + 125}{3a_n^2} = \frac{(a_n - 5)^2 (2a_n + 5)}{3a_n^2}$$

IV) Нанасяме съответните нулиращи стойности върху реалната права.

Числото 0 е отбелязано по различен начин - знаем, че $\alpha>0$ и затова трябва да изследваме само стойности вдясно по реалната права. Имаме три случая:

• $\alpha > 5$. Тогава имаме:

$$a_2 - 5 = \frac{(\alpha - 5)^2 (2\alpha + 5)}{3\alpha^2} > 0 \Rightarrow a_2 > 5$$

С индукция доказваме, че за всяко $n \geq 2$ е изпълнено $a_n > 5$. В израза $a_{n+1} - a_n$ имаме отрицателен знак - редицата е монотонно намаляваща. Да заключим, че е налице сходимост и граница l = 5.

• $\alpha = 5$. С индукция доказваме, че $a_n = 5$ за всяко $n \ge 2$. Отново се вижда, че редицата е сходяща и границата е l = 5.

5

• $0 < \alpha < 5$. Следователно:

$$a_2 - 5 = \frac{(\alpha - 5)^2 (2\alpha + 5)}{3\alpha^2} > 0 \Rightarrow a_2 > 5$$

Оттук - аналогично на първия случай. Получаваме сходимост с граница l=5

<u>Решение:</u> Редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща и $a_n \xrightarrow[n \to \infty]{} 5$.