Thermal Interaction & 3D Data Visualization

Justin Brennen YaDeau

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

5 December 2015

Overview

Thermal Interaction & 3D Data Visualization

What would thermal interaction & 3D data visualization look like?

Overview

La Thermal Interaction & 3D Data Visualization

https://goo.gl/yZr4BR

Overview

La Thermal Interaction & 3D Data Visualization

https://goo.gl/HXtvA3

Outline

Background

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Conclusions

Outline

Background
Virtual Reality
Augmented Reality
Spatial Augmented Reality
6DOF

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Conclusions

Virtual Reality

- Completely Virtual
- ► Oculus Rift

Top - http://goo.gl/nfUBv0 Bottom - http://goo.gl/t78Qvr

Background

LAugmented Reality

Augmented Reality

http://www.emergingedtech.com/2015/08/translate-language-text-on-the-fly-using-phone-google-translate-app/

-Background

Spatial Augmented Reality

Spatial Augmented Reality

http://peanutchuck.com/augmented-reality-sandbox/

6DOF

[Wikipedia(2015)]

Outline

Background

Thermal interaction with mobile devices
Interacting with Objects
Hardware
Thermal Detection
Object Tracking
Materials Tested
Applications

Using spatial augmented reality for 3D data visualization

Conclusions

Interacting with Objects

Interactions with Objects

[Kurz(2014)]

- Interactions leave thermal impressions on the object
- Using these impressions to interact with a device in a new way

Hardware

Hardware

[Kurz(2014)]

L Thermal Detection

Thermal Detection

- Assumes a controlled environment
- Object-only, hand-only, obstruction-by-hand, and touch-by-hand
- Using the OpenCV SimpleBlobDetector

Thermal Detection

OpenCV SimpleBlobDetector

$$t_1 = (1 - \frac{1}{16})t_{min} + \frac{1}{16}t_{max}$$
 $t_2 = (1 - \frac{3}{8})t_{min} + \frac{3}{8}t_{max}$

- ▶ t₁ and t₂ is the expected temperature range of the interaction
- ▶ With a fixed size range of 0.32cm² and 1.54cm²

[Kurz(2014)]

Object Tracking

Object Tracking

Materials Tested

Materials Tested

Different materials used during the evaluation: (0) paper on a plastic table-top, (1) ceramic, (2) rigid PVC, (3) foam plastic, (4) cardboard, (5) laminated fiber sheet, (6) glass, (7) thin plastic, (8) steel, (9) multi-layer board

[Kurz(2014)]

Applications

Some applications that use thermal imaging with mobile technology

- "Spray on" graphical user interfaces (GUI)
- Augmented floor plans

"Spray on" GUIs

- The screen displays a dial pad, but there is no dial pad on the surface
- Looking at the screen to interact with dial pad
- Devices without touch screens

[Thomas(2014)]

Augmented Floor Plans

- Similar interaction, different interface
- Using the areas on the map as buttons

[Thomas(2014)]

Outline

Background

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization Visualizing Data Applications Limitations

Conclusions

└Visualizing Data

Visualizing Data

- Representing data with images
- Examples: weather maps, pie and bar charts, etc
- The importance of visualizing data

Applications

Some applications that use spatial augmented reality for 3D data visualization

- Table-Top
- CAVE

Table-Top

- Physical object represents the 3D space
- ▶ The display is a 2D representation of the 3D space
- 6DOF trackers

[Thomas(2014)]

Table-Top

- Physical object represents the 3D space
- ▶ The display is a 2D representation of the 3D space
- 6DOF trackers

[Thomas(2014)]

Table-Top

- Physical object represents the 3D space
- ▶ The display is a 2D representation of the 3D space
- 6DOF trackers

[Thomas(2014)]

Table-Top

- Using a hand held pointing device a user can zoom in or out of the visualization
- Interactions happen inside the virtual volume

[Thomas(2014)]

Table-Top

- Using a hand held pointing device a user can zoom in or out of the visualization
- Interactions happen inside the virtual volume

[Thomas(2014)]

CAVE

- CAVE Cave Automatic Virtual Environment
- Larger area than the table-top method

[Thomas(2014)]

CAVE

- Similar interactions as the table-top method
- Increase in collaborators/viewers

[Thomas(2014)]

Limitations

Limitations

- Strength of the projectors
- Need for a controlled environment for projectors and 6DOF trackers
- Solution

Outline

Background

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Conclusions

Conclusions

- Utilizing both thermal interaction and 3D data visualization new applications are possible
- Examples: education and transportation

Bibliography I

D. Kurz.

Thermal touch: Thermography-enabled everywhere touch interfaces for mobile augmented reality applications. In Mixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on, pages 9-16, Sept 2014. doi: 10.1109/ISMAR.2014.6948403.

et al. Thomas.

Spatial augmented reality – A tool for 3D data visualization. In 3DVis (3DVis), 2014 IEEE VIS International Workshop on, pages 45-50, Nov 2014. doi: 10.1109/3DVis.2014.7160099.

Bibliography II

Wikipedia.

Six degrees of freedom — Wikipedia, The Free Encyclopedia, 2015.

URL

```
https://en.wikipedia.org/w/index.php?title=
Six_degrees_of_freedom&oldid=683426652.
https://en.wikipedia.org/w/index.php?title=
Six_degrees_of_freedom&oldid=683426652,
[Online;accessed1-November-2015].
```

Thanks!

Thank you for your time and attention!

Contact:

yadea003@morris.umn.edu

Any Questions?