Cours de Physique : Grandeurs, Unités, Analyse dimensionnelle

A. Arciniegas N. Wilkie-Chancellier

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Les unités de mesure : le SI

Depuis 2019, toutes les unités du SI sont définies à partir de sept constantes de la nature :

Constante	Symbole	Valeur numérique	Unité
fréquence de la transition hyperfine du césium	$\Delta \nu_{Cs}$	9 192 631 770	Hz
vitesse de la lumière dans le vide	С	299 792 458	m.s ⁻¹
charge élémentaire	е	1,602 176 634 x 10 ⁻¹⁹	С
constante d'Avogadro	NA	6,022 140 76 x 10 ²³	mol-1
constante de Boltzmann	k	1,380 649 x 10 ⁻²³	J.K ⁻¹
constante de Planck	h	6,626 070 15 x 10 ⁻³⁴	J.s
efficacité lumineuse	K _{cd}	683	lm.W ⁻¹

Constantes du SI d'après le BIPM

Le Système international d'unités, le SI, est le système d'unités selon lequel :

• la fréquence $\Delta \nu_{Cs}$ en Hz,

Le Système international d'unités, le SI, est le système d'unités selon lequel :

- la fréquence $\Delta \nu_{Cs}$ en Hz,
- la *vitesse* c en m.s⁻¹,

Le Système international d'unités, le SI, est le système d'unités selon lequel :

- la fréquence $\Delta \nu_{Cs}$ en Hz,
- la vitesse c en m.s⁻¹,
- la charge élémentaire e en C,

Le Système international d'unités, le SI, est le système d'unités selon lequel :

- la fréquence $\Delta \nu_{Cs}$ en Hz,
- la vitesse c en m.s⁻¹,
- la charge élémentaire e en C,
- etc,

Le Système international d'unités, le SI, est le système d'unités selon lequel :

- la fréquence $\Delta \nu_{Cs}$ en Hz,
- la vitesse c en m.s⁻¹,
- la charge élémentaire e en C,
- etc,

où les unités hertz (Hz), joule (J), coulomb (C) et watt (W), sont reliées aux unités seconde (s), mètre (m), kilogramme (kg), ampère (A), selon les relations :

- $Hz = s^{-1}$
- $J = kg.m^2.s^{-2}$
- C = A.s
- W = $kg.m^2.s^{-3}$

Nous y reviendrons...

Les unités de base du SI

Pour la mécanique on s'intéressera aux grandeurs et unités suivantes :

Grandeur de base		Unité de base	
Nom	Symbole caractéristique	Nom	Symbole
temps	t	seconde	S
longueur	<i>l, x, r,</i> etc.	mètre	m
masse	m	kilogramme	kg

Pour en savoir plus: https://www.bipm.org/fr/measurement-units/

Les préfixes

Préfixes utilisés couramment :

Facteur	Nom	Symbole
10 ¹²	téra	T
10 ⁹	giga	G
10 ⁶	méga	M
10 ³	kilo	k
10 ²	hecto	h
10 ¹	déca	da
10^{-1}	déci	d
10^{-2}	centi	С
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р
10^{-15}	femto	f

Pour en savoir plus : https://www.bipm.org/fr/measurement-units/

Puissances de 10: https://www.youtube.com/watch?v=0fKBhvDjuy0

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario, Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

¹Cela ne agrantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

$$D_m = \frac{masse}{temps}$$

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

$$D_m = rac{masse}{volume} rac{volume}{temps}$$

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

$$D_m = \frac{\textit{masse}}{\textit{volume}} \frac{\textit{surface} \times \textit{distance}}{\textit{temps}}$$

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

$$D_{m}=
horac{S.I}{t}=
ho Sv$$
 avec v la vitesse d'écoulement

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

Analyse dimensionnelle:

$$[D_m] = [\rho] \frac{[S].[I]}{[t]}$$

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

Analyse dimensionnelle:

$$[D_m] = \frac{M}{L^3} \frac{L^2.L}{T}$$

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

Analyse dimensionnelle:

$$[D_m]=rac{M}{T}$$
 , l'unité s'exprime en kg.s $^{ ext{-}1}$

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario, Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

Application numérique :

On considère un tuyau cylindrique de section circulaire de rayon a = 5400 μ m dans lequel circule de l'eau à une vitesse de v_{eau} = 0,008 dm.s⁻¹.

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario, Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

Application numérique :

```
\begin{split} &\text{a} = 5400~\mu\text{m} = 5.4.10^3.10^6~\text{m} = 5.4.10^3~\text{m}~;\\ &\text{S} = \pi\text{a}^2 \approx 9.2.10^5~\text{m}^2~;\\ &\text{v}_{\text{eau}} = 0.008~\text{dm.s}^{-1} = 8.10^4~\text{m.s}^{-1}~;\\ &\text{si le liquide c'est de l'eau}: \rho_{\text{eau}} = 1000~\text{kg.m}^{-3}~; \end{split}
```

 $D_m = \rho S V = 7.4.10^{-5} \text{ kg.s}^{-1} = 74.10^{-6} \text{ kg.s}^{-1}$;

¹Cela ne garantit pas que l'équation soit juste.

L'analyse dimensionnelle consiste à vérifier l'homogénéité dimensionnelle des expressions algébriques que l'on établit ¹.

Exemple: Problème du débit massique

Mario. Source: Nintendo

Le débit massique dans une conduite est défini par la quantité de liquide qui passe à travers la section du tuyau pendant un certain temps.

Et si le liquide c'était de l'huile?

¹Cela ne garantit pas que l'équation soit juste.

Exercices d'application