Задачи из билетов по курсу «Схемотехника ЭУ» за 2020 г.

- 1. На вход резисторного каскада усиления через разделительный конденсатор Ср поступает идеальный прямоугольный импульс длительностью $T_{\rm u}$ =100 мкс. Определить емкость конденсатора $C_{\rm p}$, если после него спад вершины импульса составил Δ =5%. Входное сопротивление каскада $R_{\rm вx}$ = 10 кОм. (Билет № 1) Ответ: $C_{\rm p}$ = 200 нФ или 0,2 мкФ
- 2. На вход резисторного каскада усиления через разделительный конденсатор C_p поступает идеальный прямоугольный импульс длительностью T_u =100 мкС. Определить нижнюю граничную частоту $F_{\text{н гр}}$ усиления каскада, если на выходе каскада спад вершины импульса составил Δ =5%. (Билет № 2 Ответ: $F_{\text{н гр}}$ =79,6 Γ ц ≈ 80 Γ ц
- 3. В резисторном каскаде усиления на полевом транзисторе с помощью индуктивной ВЧ коррекции необходимо получить оптимальную форму переходной характеристики. Рассчитайте индуктивность катушки, если резистор в цепи стока транзистора R_c =3,3 кОм, а суммарная емкость выходной цепи C_o =100 пФ.

(Билет № 3) Ответ: L_к=272,2 мкГн

4. В каскаде на полевом транзисторе с p-n переходом и схемой автосмещения $E_{\pi}=18$ B, ток стока Ic=1 мA, резистор в цепи стока Rc=7 кОм, резистор в цепи истока Ru=5 кОм. Затвор соединен с землей резистором Rs=100 кОм. Найти напряжение между стоком и истоком Ucи и напряжение смещения на затворе Usu.

(Билет № 4) Ответ: Uси=6 В Uзи=-5 В.

- 5. На вход резисторного каскада усиления поступает идеальный прямоугольный импульс длительностью Tu=150 мкс. Определить время установления t_{ycr} фронта импульса на выходе резисторного каскада усиления, если верхняя граничная частота усилительного каскада по его AЧХ $f_{B rp}=350$ кГц. (Билет N_{2} 5) Ответ: $t_{ycr}=1$ мкс
- 6. Рассчитать отнесенное к входу напряжение собственных шумов усилителя, имеющего K_{m} =10, если источник сигнала создает на входе усилителя напряжение шумов $U_{\text{m вx}}$ =3 мкВ.

(Билет № 6) Ответ: U_{ш вх ус}=9 мкВ.

7. В резисторном каскаде усиления на БП транзисторе с ОЭ смещение $U_{69\ o}$ =0,7 В задается фиксированным током базы через резистор R_6 =315 кОм от источника питания каскада E_n =+9 В. Коэффициент передачи тока базы β =50, резистор в цепи коллектора R_κ =3 кОм, резистор в цепи эмиттера R_3 =2 кОм зашунтирован конденсатором C_{6n} =50 мкФ. Найти $R_{\text{вх}\sim}$ каскада без ООС и $R_{\text{вх}\sim oc}$ каскада при C_{6n} =0 пФ.

(Билет № 7) Ответ: $R_{\text{вх~}} = 1250 \,\text{Om}$; $R_{\text{вх~}oc} = 101,25 \,\text{кOm}$.

- 8. Определить напряжение источника питания Еп в каскаде на полевом транзисторе с p-n переходом и схемой автосмещения, если ток стока Ic=1 мA, напряжение между стоком и истоком Ucu=6 B, резистор в цепи стока Rc=4 кОм, резистор в цепи истока Ru=2 кОм. Показать рабочую точку на проходной характеристике. (Билет № 8) Ответ: Eп=+12 B.
- 9. Нарисовать схему ФНЧ 1-го порядка на ОУ с параллельной ООС по напряжению и определить его элементы, если устройство должно иметь входное сопротивление $R_{\text{вx}}$ = 1 кОм, частоту среза $f_{\text{сp}}$ =15 к Γ ц и усиление в полосе пропускания $K_{\text{о ос}}$ = -5. (Билет № 9) Ответ: R_2 = 5 кОм; $C_{\text{ф}}$ =2,12 н Φ .
- 10. Определить входное сопротивление усилителя с последовательной ООС по напряжению, выполненном на ОУ с входным сопротивлением $R_{\rm вx}$ =300 кОм и собственным дифференциальным коэффициентом усиления $K_{\rm o}$ =2x10⁴, если сопротивление резисторов обратной связи $R_{\rm l}$ =1 кОм, $R_{\rm 2}$ =99 кОм. Найти коэффициент усиления по напряжению $K_{\rm u~oc}$ этого усилителя. (Билет № 10) Ответ: $R_{\rm b}$ =60 МОм; $K_{\rm u~oc}$ =100.
- 11. В резисторном каскаде усиления на БП транзисторе с ОЭ смещение $U_{69 \text{ o}}$ =0,7 В задается фиксированным током базы через резистор R_6 =215 кОм от источника питания каскада E_{Π} =+5В. Коэффициент передачи тока базы β =100. Резистор в коллекторной цепи R_{κ} =2 кОм. Найти токи I_6 , I_{κ} , I_9 , и напряжение $U_{\kappa 9}$. (Билет № 11) Ответ: I_6 =20 мкА; I_{κ} =2 мА; I_9 =2,020 мА; $U_{\kappa 9}$ =1 В.
- 12. Рассчитайте навесные элементы усилителя на операционном усилителе (ОУ) с параллельной ООС по напряжению, имеющего входное сопротивлением $R_{\text{вх ос}}=5$ кОм, для обеспечения коэффициента передачи $K_{\text{u oc}}=-20$. Принять , что собственный дифференциальный коэффициент усиления ОУ $K_{\text{o}}=10^{5}$. Привести схему усилителя напряжения на ОУ. (Билет № 12) Ответ: R1=5 кОм; R2=100 кОм.
- (Dullet № 12) Other: R1=3 ROM; R2-100 ROM.
- 13. Рассчитайте навесные элементы неинвертирующего усилителя на ОУ с последовательной ООС по напряжению для обеспечения коэффициента передачи K_{oc} =50. Привести принципиальную электрическую схему устройства с ООС. Рассчитать $R_{\rm Bx\ oc}$ усилителя, если без ООС $R_{\rm Bx\ oy}$ = 100 кОм и собственный дифференциальный коэффициент усиления ОУ K_o = 10^5 . (Билет № 13) Ответ: $R_{\rm Bx\ oc}$ =200 МОм.
- 14. Рассчитать коэффициент шума усилителя, согласованного на входе, если температура $T=292~\rm K$, шумовая полоса усилителя $\Pi_{\rm m}=1~\rm M\Gamma$ ц, коэффициент усиления усилителя по мощности $K_p=10^6$ и мощность собственных шумов усилителя на выходе $P_{\rm m\ yc}=0,036~\rm mkBt$. (Билет $N_{\rm m}=14$) Ответ: $K_{\rm m}=10$.
- 15. В резисторном каскаде усиления на полевом транзисторе с помощью индуктивной ВЧ коррекции необходимо $f_{\text{в гр}}$ увеличить в 1,7 раза. Рассчитайте

необходимую индуктивность катушки, если сопротивление резистора в цепи стока R_c =3,3 кОм, а суммарная выходная емкость C_o =100 пФ.

(Билет № 15) Ответ: L_{κ} =451 мкГ

- 16. Нарисовать схему неинвертирующего ФНЧ звена 1-го порядка на основе ОУ с ООС и рассчитать его навесные элементы, если известно, что на частоте среза f_{cp} =15 к Γ ц коэффициент линейных частотных искажений M=3 д Γ в. Принять коэффициент усиления ФНЧ Γ в на нулевой частоте. (Билет Γ в 16) Ответ: Γ 1= Γ 1 к Γ 0 к Γ 0 к Γ 0 при Γ 1 н Γ 1 н Γ 1 ветом.
- 17. Рассчитать коэффициент усиления усилителя по мощности в области средних частот, если коэффициент усиления по напряжению $K_{u cp}$ =10, входное сопротивление усилителя R_{Bx} =10 кОм, а сопротивление нагрузки R_{H} =100 Ом. (Билет № 17) Ответ: K_{p} =10⁴ или K_{p} =40 дБ.
- 18. Усилитель усиливает сигнал с 2 мВ до 5 В с искажениями 10%. С помощью ООС уменьшают искажения до 1%. Какое напряжение следует подать на вход усилителя с ООС, чтобы получить на выходе те же 5 В? (Билет № 18) Ответ: $U_{\text{вх}}$ =20 мВ для усилителя с ООС.
- 19. Определить Y-параметры П-образной схемы из трех резисторов R1=10 Ом, R2=20 Ом, R3=20 Ом. Входное напряжение подается на выводы R1, а выходное снимается с выводов R3. Резистор R2 подключен между верхними выводами резисторов R1 и R3, нижние выводы которых соединены с "землей". (Билет № 19) Ответ: Y_{11} =0,5 См, Y_{21} =-0,05 См, Y_{12} =-0,05 См, Y_{22} =0,1 См.
- 20. Дифференциальный каскад на биполярных транзисторах запитан от двух источников напряжения $E_{\pi 1,2}=\pm 12~B$. Величина коллекторных резисторов $R_{\kappa 1,2}=4~\kappa O$ м, а резистор $R_o=5,65~\kappa O$ м, соединяющий эмиттеры транзисторов с «- » источника $E_{\pi 2}$, обеспечивает величину смещения $U_{69~o}=0,7~B$. Найти напряжения $U_{\kappa 1,2}$ на коллекторах транзисторов относительно «земли». (Билет $N \Omega = 20$) Ответ: $I_s=2~\kappa A$, $U_{\kappa 1,2}=4~B$.
- 21. В каскаде на биполярном транзисторе n-p-n структуры, включенного по схеме с ОЭ применена схема эмиттерного смещения. База соединена с общим проводом резистором R_6 =10 кОм. Резистор в цепи коллектора R_{κ} =2 кОм, резистор в цепи эмиттера R_9 =4,3 кОм. $E_{\pi 1}$ =+9 B, $E_{\pi 2}$ =-9B. Смещение в рабочей точке U_{69} $_{0}$ =0,7 B. Определить ток эмиттера I_9 и напряжение U_{κ} относительно «земли». (Билет № 21) Ответ: I_9 ≈1,93 мА, U_{κ} ≈5,14 В.
- 22. Найти амплитуду напряжения на выходе усилителя $U_{m \, \text{вых}}$, если на его входном сопротивлении $R_{\text{вх}}$ =5 кОм действует мощность $P_{\text{вх}}$ =10^-8 Вт, а коэффициент усиления усилителя по напряжению K_{u} =46 дБ. (Билет № 22) Ответ: $U_{m \, \text{вых}}$ =1,99 В \approx 2 В.

23. В резисторном каскаде усиления на биполярном транзисторе в схеме с ОЭ крутизна транзистора на средних частотах S_o =30 мA/B. Резистор в цепи коллектора R_κ =5,1 кОм. Определить коэффициент усиления по напряжению, если к выходу каскада через разделительный конденсатор C_p =50 мкФ подключена нагрузка $R_{\rm H}$ =3,3 кОм.

Ответ: $K_u = 60$.

24. В резисторном каскаде усиления на БП транзисторе с ОЭ смещение $U_{69\ o}$ =0,7 В задается фиксированным током базы через резистор R_6 =315 кОм от источника питания каскада E_n =+9 В. Коэффициент передачи тока базы β =50. Резистор в цепи коллектора R_{κ} =3 кОм. Резистор в цепи эмиттера R_9 =2 кОм зашунтирован конденсатором C_{6n} =50 мкФ. Найти коэффициент усиления $K_{u^{\sim}}$ каскада без ООС и $K_{u\ oc^{\sim}}$ при C_{6n} =0 пФ.

(Билет № 24) Ответ: $K_{u \sim} = 120$; $K_{u \circ c \sim} = 1,48$.

(Билет № 23)

- 25. Определить форму и скорость изменения напряжения на выходе интегратора на ОУ, если на инвертирующий вход через резистор R=5 кОм подан скачок напряжения U₀=+10 В. Номинал конденсатора в цепи обратной связи C=1 мкФ. (Билет № 25) Ответ: $\frac{dU}{dt} = -2 \times 10^3$ В/с
- 26. Операционный усилитель (ОУ) имеет дифференциальный коэффициент усиления по напряжению K_o = 10^5 . Каким станет коэффициент усиления при реализации на основе ОУ усилителя с параллельной отрицательной обратной связью (ООС) по напряжению с коэффициентом передачи цепи ОС β_{oc} =0,01? Привести схему такого усилителя напряжения с ООС. (Билет № 26) Ответ: K_{ooc} =100
- 27. Неинвертирующий усилитель напряжения на ОУ с резисторами в цепи обратной связи R1=10 кОм и R2=190 кОм имеет произведение дифференциального коэффициента усиления ОУ K_0 без ООС на его полосу пропускания $f_{0 \text{ гр}}$, равное $2x10^6$. Определить полосу пропускания $f_{0 \text{ гр}}$ ос усилителя с ООС. (Билет № 27) Ответ: $f_{0 \text{ гр}}$ ос= 100 кГц.
- 29. Определить минимальное значение коэффициента передачи тока базы β , чтобы транзистор в резисторном каскаде усиления с ОЭ и при смещении фиксированным током базы через резистор $R_6=120$ кОм работал в режиме насыщения. При этом напряжение $U_{\kappa_3}=0,2$ В при смещении $U_{69 \text{ o}}=0,8$ В. Резистор в цепи коллектора $R_{\kappa}=2,4$ кОм, напряжение источника питания $E_{\pi}=+9$ В.

(Билет № 29) Ответ: β=53,7.

- 30. Определите постоянное напряжение на выходе резисторного каскада усиления на биполярном транзисторе с ОЭ, если поступающее на его базу через резистор R_6 =430 кОм напряжение изменит своё значение с 0 В до 5 В. При этом коэффициент передачи тока базы β =120, смещение $U_{69 o}$ =0,7 В, резистор в цепи коллектора R_{κ} =4 кОм, напряжение источника питания E_{π} =+5 В. (Билет № 30) Ответ: U_{κ} = +0,2 В, режим насыщения.
- 31. Рассчитать величину спада Δ в % вершины идеального прямоугольного импульса длительностью T_u =20 мкс на входе резисторного каскада усиления, если импульс поступает на его вход с генератора через разделительный конденсатор емкостью C_p =39 н Φ , а входное сопротивление каскада усиления $R_{\text{вx}}$ =6,4 кОм.

(Билет №) Ответ: Δ=8%

32. На вход резисторного каскада усиления поступает прямоугольный импульс длительностью T_u =150 мкс. Определить спад Δ в % вершины импульса на выходе резисторного каскада усиления, если нижняя граничная частота усилителя по его АЧХ $F_{\text{н гр}}$ =100 Γ ц.

(Билет №) Ответ: Δ=9,4%.

33. Вычислить динамический диапазон D_{yc} усилителя в децибелах (дБ), если его коэффициент усиления по напряжению K_u =1000. На сопротивлении нагрузки R_H =6 Ом выделяется мощность P_{HoM} =6 Вт, а отнесенное к входу суммарное напряжение шумов $U_{III BX}$ =6 мкВ.

(Билет №) Ответ: D_{yc} =60 дБ.

- 34.Определить КПД транзисторного усилителя, если мощность, выделяемая в нагрузке $P_{\text{вых}}$ =0,125 Вт, мощность рассеяния на транзисторах $P_{\text{т}}$ =0,06 Вт, мощность тепловых потерь в резисторах базового делителя $P_{\text{д}}$ =0,02 Вт. (Билет №) Ответ: η =94%.
- 35. Определить порядок звена ФНЧ, если, начиная от частоты среза f_{cp} =10 кГц до частоты задерживания f_{s} =100 кгц, значение модуля коэффициента передачи уменьшилось в 1000 раз.

(Билет №) Ответ: 3-й порядок, поскольку наклон АЧХ 60дБ/дек

36. Чему равен коэффициент шума усилителя в дБ, если на его выходе суммарная мощность шумов $P_{\Sigma \text{ш.вых}}=4\cdot10^{\wedge}-10$ Вт, а мощность шумов от источника сигнала $P_{\text{и.ш.вых}}=10^{\wedge}-10$ Вт? Дайте определение коэффициента шума.

(Билет №) Ответ: K_{II} =6 дБ.

37.Найти коэффициент гармоник K_r в процентах, если на выходе усилителя амплитуда напряжения первой гармоники U_{m1} =10 B, а амплитуды напряжений высших гармоник U_{m2} =1 B, U_{m3} =0,5 B и U_{m4} =0,2 B.

(Билет №) Ответ: $K_r = 11,3\%$