1. Mealy model example

- a. Design a circuit for checking binary coded decimal (BCD)
 - i. BCD uses a 4-bit number to represent a single decimal digit
 - ii. Circuit will take in 4 bits, indicate whether BCD is valid, then take in another 4 bits
 - iii. First bit taken in is least significant, last bit is most significant
 - 1. This means newest numbers get placed on left side in our diagram below
 - iv. Circuit outputs 0 if the BCD is valid (binary number formed is between 0 and 9) and 1 otherwise
- b. State transition diagram
 - i. As noted previously, biggest difference for Mealy model diagrams is on the outputs
 - 1. States no longer have outputs on them since output can differ with input
 - 2. Instead, place output together with relevant input on the transition arrow
 - ii. Diagram below
 - 1. Left branch means 0 input
 - 2. Right branch means 1 input

2. Minimizing a Mealy model

- a. Apply the Partitioning Minimization Procedure to reduce the number of states in the Mealy model
- b. Since this is a Mealy model, states do not have output values
 - i. The k-successors for a state are the output value created by the combination of the state and the possible inputs
- c. Except for state i, for this example we will refer to the states simply by their bit patterns
- d. $P_1 = (i, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111)$
- e. $P_2 = (i, 0, 1, 00, 01, 10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. The first block all have k-successors of 0/1, 1/1
 - ii. The second block all have 0/0, 1/0
 - iii. The last block all have 0/0, 1/1
 - iv. Don't have a fourth block based on the other possible k-successor combination, 0/1, 1/0
 - 3. No states that have that combination

- f. $P_3 = (i, 0, 1) (00, 01) (10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. The first block all have k-successors in the first block of P2
 - ii. (00, 01) have 0-successors in (001, 001), and 1-sucessors in (100, 010, 110, 101, 011, 111)
 - iii. (10, 11) have both of their k-successors in (100, 010, 110, 101, 011, 111)
 - iv. (000, 001) have the single state, i, as their k-successor
 - 1. We can presume that that block will never split
 - 2. Ignore it until the end of the procedure
 - v. Similarly, (100, 010, 110, 101, 011, 111) all have a single state, i, as their k-successor
 - 1. That block will never split either
- g. $P_4 = (i) (0, 1) (00, 01) (10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. (i, 0, 1) of P_3 must split
 - 1. i leads to (i, 0, 1) for both of its k-successors
 - 2. 0 and 1 both lead to (00, 01) for its 0-successor and (10, 11) for its 1-successor
- h. $P_5 = (i) (0, 1) (00, 01) (10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. All elements in each block of P₅ lead to identical blocks of P₄
- i. Therefore, P₅ is our final partition, and we will use it to make the state diagram below

3. Implementing the FSM

- a. We let * stand for either a 0 or 1 at a given position
- b. \sim (00*) = (100, 010, 110, 101, 011, 111) in our notation
 - i. Call it so because these states are not (~) 00*
- c. State transition diagram and state table below

Present State	Next	State	Output			
Present State	x = 0	x = 1	x = 0	x =1		
i	*	*	1	1		
*	0*	1*	1	1		
0*	00*	~(00*)	1	1		
1*	~(00*)	~(00*)	1	1		
00*	i	i	0	0		
~(00*)	i	i	0	1		

State table

- 4. Optimal assignment of binary codes
 - a. Will need $[\log_2 6] = 3$ flip flops to represent 6 states
 - b. Can assign binary codes for states randomly, works just fine
 - i. However, careful assignment reduces the combinational logic
 - c. Rule of thumb for state binary code assignments
 - i. Try to assign adjacent (Hamming distance of 1) code words to a state and the state that follows it
 - ii. If two present states have the same next state, assign those present states adjacent code words
 - iii. Creating a K-map helps immensely with this process
 - iv. Initial state i will always be all 0s
 - d. Assign using the rules above
 - i. Place i at 000, will always do this
 - ii. Place * next to i at 010 since * is the successor to i
 - iii. Place 0* and 1* adjacent to * at 110 and 011 respectively
 - iv. 00* needs to be adjacent to i and 0*, which leaves 100 as the only place
 - v. Would like \sim (00*) to be adjacent to 0*, 1*, and i, but that isn't possible
 - 1. These are rules of thumb, not fixed laws
 - vi. Can place \sim (00*) at 001 to be adjacent to i and 1*, though
 - e. Note that there may potentially be more than one valid code assignment that minimizes distance

Dinan	Cada	AB								
Binary Code		00	01	11	10					
C	0	i	*	0*	00*					
L	1	~(00*)	1*							

- f. Make state transition table from the above with assigned binary codes
 - i. Be careful when assigning values!
 - ii. Table states don't line up neatly in order as they did in previous examples

Dungant State	Binary	Pres	ent S	tate	Input	Ne	xt St	Output	
Present State	Code	Α	В	С	X	A'	B'	C'	Z
i	000	0	0	0	0	0	1	0	1
i	000	0	0	0	1	0	1	0	1
~(00*)	001	0	0	1	1 0		0	0	0
~(00*)	001	0	0 0 1		1	0 0		0	1
*	010	0	1	0	0	1	1	0	1
*	010	0	1	0	1	0	1	1	1
1*	011	0	1	1	0	0	0	1	1
1*	011	0	1	1	1	0	0	1	1
00*	100	1	0	0	0	0	0	0	0
00*	100	1	0	0	1	0	0	0	0
	101	1	0	1	0	d	d	а	d
	101	1	0	1	1	d	d	а	d
0*	110	1	1	0	0	1	0	0	1
0*	110	1	1	0	1	0	0	1	1
	111 1		1	1	0	d	d	d	d
	111	1 1 1		1	d	d	d	d	

- g. Create K-maps for each flip flop based on input and present state in table above
 - i. Be careful when entering values from the binary code table!
 - ii. Some states are missing and are don't cares, like 101

A'	' AB					B'	AB					C'	AB				
		00	01	11	10			00	01	11	10			00	01	11	10
	00	0	(1)	1	0		00	1	1	0	0		00	0	0	0	0
Cor	01	0) 0	0	0	Cx	01	1	1/	0	0	6	01	0	1	y	0
Cx	11	0	0	d	d	U.A.	11	0	0	d	d	Cx	11	0	X 1	K	d
	10	0	0	d	d		10	0	0	d	d		10	0	$\sqrt{1}$	g)	d
$A' = B\overline{Cx}$							$B' = \overline{AC}$!	C'	= B	x +	ВС	

- h. Use derivations from the K-maps to design initial combinational circuit
- i. Create a K-Map based on flip-flops to determine the output combinational circuit
 - i. Since this is a Mealy model, we also use the input
 - ii. Don't cares are in same position as K-maps above

