강의계획서

출력일시 : 2021-08-10 13:48:57

1. 교과목 정보

개설연도-학기	2021년	2학기	개설학과	산업인공지능학				
교과목번호-분반번호	8884007	01	교과목명		산업 컴퓨터비전 실제			
이수구분	전공심화		학점/시수		3-2-2			
강의시간/강의실	수 10 ,11 ,12 ,13 [901-A601]							
수업방식	병행							
강의언어		담당교수		황영배(전임교원)				
전화	043-261-3641	E-mail						
강의정원		학과전화		043-249-1460				
선수과목			수강대상		석사(전학년)			
공 학인 증 관련정보	인증영역		이론시수		실습시수		설계시수	

2. 교과목 개요

강의개요	본 과목에서는 실제 산업현장에서 사용이 가능한 컴퓨터 비전 기술에 대해서 배우며, 파이썬 프로그래밍을 통해 학습한다. OpenCV 라이브러리를 이용해서 영상을 열고, 필터링 하고, 기하학적, 측광학적 처리에 대해서 배운다. 객체 검출과 인식과 같은 영상 인식에 대해서도 학습한다.						
학습목표	- 파이썬을 이용해서 영상을 열고 필터 및 윤곽선 등의 특징 추출이 가능함 - 객체 검출에 대한 실행이 가능함 - 다양한 검출기와 기술자에 대한 수행이 가능함 - 다중 뷰 기하학에 대한 이해가 가능함.						
문제해결방법	- 실험실습을 통해 실제 산업현장에서 사용되는 컴퓨터비전 기술들을 적용해 볼 예정						
	강의	토의/토론	실험/실습	현장학습	개별/팀별 발표	기타	
수업진행방법	40%	0%	40%	0%	20%	0%	
	상세정보 강의 : 40%, 실험/실습: 40%, 개별/팀별발표 20%로 진행될 예정 수업방식 : 대면/비대면 병행						
	중간고사	기말고사	출석	퀴즈	과제	기타	
평가방법	0%	40%	20%	0%	40%	0%	
	상세정보 기말프로젝트 40%, 과제 40%, 출석 20%						
프로그램 학습성과 의 평가	학습성과는 실습을 통한 과제 제출과 기말프로젝트를 통해 산업 컴퓨터비전에 대한 이해도와 실용적 구현 능력을 평가함.						
교재 및 참고문헌	1. 주교재: Opencv 3 Computer Vision with Python Cookbook, Spizhevoy, Alexey / Rybnikov, Aleksandr, Packt Publishing, 2018 2. 부교재: OpenCV-Python으로 배우는 영상 처리 및 응용, 정성환, 배종욱, 생능출판, 2018 3. 주교재: 산업 컴퓨터비전 실제, 황영배, , 2020						
핵심역량과 연계성							

3. 주별 강의계획

주차	수업내용	교재범위 및 과제물	비고
1	강의소개		
2	입출력과 GUI		
3	히스토그램 및 필터링		
4	주파수 기반 영상처리		
5	윤곽선 추출		
6	영상 분할		

강의계획서

출력일시: 2021-08-10 13:48:57

7	영상 코너 추출	
8	중간고사	
9	불변 특징 및 기술자 추출	
10	두 영상간 대응점 탐색	
11	옵티컬 플로우, 파노라마 이미징	
12	카메라 보정	
13	스테레오 카메라 보정	
14	객체 검출기	
15	기말고사	
16		
17		
18		
19		
20		
21		
22		

4. 장애학생을 위한 학습 및 평가지원 사항

학습지원: 강의 파일 제공, 대필 도우미 및 속기 지원 허락, 강의 녹음 허락, 과제 제출 기간 연장 (시각, 손사용 불편 학생), 보조기구 사용 가능 등 평가지원: 영어교과 듣기 시험 대체(청각강애학생), 강애종류 및 정도에 따라 시험 시간 1.5배 ~ 1.7배 연장, 별도 시험장소 및 시험지 제공, 필요한 경우 학습기자재 사용을 허용

5. 수강에 특별히 참고하여야 할 사항

※ python으로 실습을 진행할 예정이기 때문에 python 언어를 다룰수 있어야 함. ※ 산업인공지능학과(계약학과) 재학생만 신청이 가능합니다.

6. 강의평가 결과

미평가