Section 11.4 The Hyperbola

A **hyperbola** is the collection of all points in the plane the difference of whose distances from two fixed points, called the **foci**, is a constant.

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

$$d(F_1, P) - d(F_2, P) = \pm 2a$$

Equation of a Hyperbola Center at (0, 0) Transverse Axis along the x-Axis

An equation of the hyperbola with center at (0, 0), foci at (-c, 0) and (c, 0), and vertices at (-a, 0) and (a, 0) is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, where $b^2 = c^2 - a^2$

The transverse axis is the x-axis.

Finding and Graphing an Equation of a Hyperbola

Finding an equation of the hyperbola with center at the origin, one focus at (3, 0), and one vertex at (-2, 0). Graph the equation.

Distance from center to focus is c = 3Distance from center to vertex is a = 2.

$$b^{2} = c^{2} - a^{2} = 9 - 4 = 5$$

$$(-3, \frac{5}{2})$$

$$V_{1} = (-2, 0)$$

$$F_{1} = (-3, 0)$$

$$(-3, -\frac{5}{2})$$

$$(3, \frac{5}{2})$$

$$F_{2} = (3, 0)$$

$$(-3, -\frac{5}{2})$$

$$(3, -\frac{5}{2})$$

$$(3, -\frac{5}{2})$$

COMMENT To graph the hyperbola $\frac{x^2}{4} - \frac{y^2}{5} = 1$ discussed in Example 1, we need to graph the two functions $Y_1 = \sqrt{5}\sqrt{\frac{x^2}{4} - 1}$ and $Y_2 = -\sqrt{5}\sqrt{\frac{x^2}{4} - 1}$. Do this and compare what you see with Figure 34.

Analyzing the Equation of a Hyperbola

Analyze the equation:

$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$

$$a^2 = 16$$
 and $b^2 = 4$.

$$c^2 = a^2 + b^2 = 16 + 4 = 20$$

Center: (0,0)

Vertices: (-4,0),(4,0)

Foci: $(\pm 2\sqrt{5},0)$

Equation of a Hyperbola; Center at (0, 0); Transverse Axis along the y-Axis

An equation of the hyperbola with center at (0,0), foci at (0,-c) and (0,c), and vertices at (0,-a) and (0,a) is

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
, where $b^2 = c^2 - a^2$

The transverse axis is the *y*-axis.

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Analyzing the Equation of a Hyperbola

Analyze the equation:
$$y^2 - 4x^2 = 4$$
 $\frac{y^2}{4} - x^2 = 1$ $a^2 = 4, b^2 = 1$ $c^2 = a^2 + b^2 = 5$

Center: (0,0)

Vertices: (0,-2),(0,2)

Foci: $(0,\pm\sqrt{5})$

Finding an Equation of a Hyperbola

Find an equation of the hyperbola having one vertex at (0, 2) and foci at (0, -3) and (0, 3). Graph the equation.

Looking at the points given we see that the center is at (0,0) and the transverse axis is along the y-axis.

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \quad c = 3, a = 2$$

$$b^2 = c^2 - a^2 = 9 - 4 = 5$$

$$\frac{y}{5} = (0, 3)$$

$$V_2 = (0, 2)$$

$$V_2 = (0, 2)$$

$$V_1 = (0, -2)$$

$$V_2 = (0, -2)$$

$$V_1 = (0, -2)$$

$$V_2 = (0, 3)$$

$$V_2 = (0, 3)$$

$$V_3 = (0, 3)$$

$$V_4 = (0, -2)$$

$$V_5 = (0, 3)$$

$$V_7 = (0, -2)$$

$$V_8 = (0, 3)$$

$$V_9 = (0, 3)$$

$$V_9 = (0, 3)$$

$$V_9 = (0, 3)$$

2 Find the Asymptotes of a Hyperbola

Asymptotes of a Hyperbola

The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has the two oblique asymptotes

$$y = \frac{b}{a}x$$
 and $y = -\frac{b}{a}x$

ishing as Prentice Hall.

Asymptotes of a Hyperbola

The hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ has the two oblique asymptotes

$$y = \frac{a}{b}x$$
 and $y = -\frac{a}{b}x$

Analyzing the Equation of a Hyperbola

Analyze the equation: $\frac{y^2}{4} - x^2 = 1$

$$\frac{y^2}{4} - x^2 = 1$$

Since the y^2 term is positive, the transverse axis is along the y-axis.

$$a^2 = 4, b^2 = 1$$

$$c^2 = a^2 + b^2 = 5$$

Center: (0,0)

Vertices: (0,-2),(0,2)

Foci: $(0,\pm\sqrt{5})$

asymptotes are the lines $y = \frac{a}{b}x = 2x$ and $y = -\frac{a}{b}x = -2x$.

Analyzing the Equation of a Hyperbola

Analyze the equation: $9x^2 - 4y^2 = 36$

$$9x^2 - 4y^2 = 36$$

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

$$a^2 = 4, b^2 = 9$$

$$c^2 = a^2 + b^2 = 13$$

Center:
$$(0,0)$$

Vertices:
$$(-2,0),(2,0)$$

Foci:
$$(\pm\sqrt{13},0)$$

Asymptotes:

$$y = \frac{b}{a}x = \frac{3}{2}x$$
 and $y = -\frac{b}{a}x = -\frac{3}{2}x$

3 Analyze Hyperbolas with Center at (h, k)

HYPERBOLAS WITH CENTER AT (h, k) AND TRANSVERSE AXIS PARALLEL TO A COORDINATE AXIS

Center	Transverse Axis	Foci	Vertices	Equation	Asymptotes
(h, k)	Parallel to the x-axis	$(h \pm c, k)$	$(h \pm a, k)$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1, b^2 = c^2 - a^2$	$y-k=\pm\frac{b}{a}(x-h)$
(h, k)	Parallel to the y-axis	$(h, k \pm c)$	$(h, k \pm a)$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1, b^2 = c^2 - a^2$	$y-k=\pm\frac{a}{b}(x-h)$

Finding an Equation of a Hyperbola, Center Not at the Origin

Find an equation for the hyperbola with center at (1, -2), one focus at (4, -2), and one vertex at (3, -2). Graph the equation by hand.

Center, focus and vertex are on y = -2 so tranvserse axis is parallel to x-axis.

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 (h,k) = (1,-2)$$

Distance from center to a focus is c = 3Distance from center to a vertex is a = 2

$$b^2 = c^2 - a^2 = 9 - 4 = 5.$$

$$\frac{(x-1)^2}{4} - \frac{(y+2)^2}{5} = 1$$

Analyzing the Equation of a Hyperbola

Analyze the equation: $-x^2 + 4y^2 - 2x - 16y + 11 = 0$ $-(x^2 + 2x) + 4(y^2 - 4y) = -11$ $-(x^2 + 2x + 1) + 4(y^2 - 4y + 4) = -11 - 1 + 16$ Transverse $-(x+1)^2 + 4(y-2)^2 = 4$ $(y-2)^2 - \frac{(x+1)^2}{4} = 1$ $\frac{F_2 = (-1, 2+\sqrt{5})}{5} | v_2 = (-1, 3)$ $a^2 = 1$ and $b^2 = 4$, so $c^2 = a^2 + b^2 = 5$ (-3, 2)Center: (-1,2)Vertices: $(-1, 2 \pm 1) = (-1, 1), (-1, 3)$ $F_1 = (-1, 2 - \sqrt{5})$ $V_1 = (-1, 1)$ Foci: $(-1, 2 \pm \sqrt{5})$

Look at Figure 48. Suppose that three microphones are located at points O_1 , O_2 , and O_3 (the foci of the two hyperbolas). In addition, suppose that a gun is fired at S and the microphone at O_1 records the gun shot 1 second after the microphone at O_2 . Because sound travels at about 1100 feet per second, we conclude that the microphone at O_1 is 1100 feet farther from the gunshot than O_2 . We can model this situation by saying that S lies on the same branch of a hyperbola with foci at O_1 and O_2 . (Do you see why? The difference of the distances from S to O_1 and from S to O_2 is the constant 1100.) If the third microphone at O_3 records the gunshot 2 seconds after O_1 , then S will lie on a branch of a second hyperbola with foci at O_1 and O_3 . In this case, the constant difference will be 2200. The intersection of the two hyperbolas will identify the location of S.

Lightning Strikes

Because the distance between the two people is 1 mile (5280 feet) and each person is at a focus of the hyperbola, we have

$$c = \frac{5280}{c}$$

$$c = \frac{5280}{2} = 2640$$
North
$$\frac{x^2}{550^2} - \frac{y^2}{6,667,100} = 1$$

$$\frac{y^2}{6,667,100} = -22.04 \ B = (-2640, 0) \ (-a, 0)$$

$$y^2 = 146,942,884$$

$$y = 12,122$$

$$| (x, y) |$$

$$| (a, 0) | A = (2640, 0)$$

$$| (a, 0) | A = (2640, 0)$$

The lightning strike occurred 12,122 feet north of the person standing at point A.