WYZNACZANIE STAŁEJ RYDBERGA I STAŁEJ PLANCKA Z WIDMA LINIOWEGO WODORU

Opis układu pomiarowego

Celem ćwiczenia jest wyznaczenie stałej Rydberga i stałej Plancka w oparciu o badanie widm wzbudzonego wodoru. Źródłami światła w tym ćwiczeniu są gazy świecące (hel i wodór) w rurkach Geislera. Atomy badanych gazów są wzbudzane wyładowaniami elektrycznymi w objętości. Wzbudzenie atomów uzyskuje się poprzez przyłożenie do elektrod rurek Geislera wysokiego napięcia z induktora Ruhmkorffa.

Uwaga: W czasie pracy induktora nie wolno dotykać przewodów połączonych z jego wtórnym uzwojeniem.

Widmo promieniowania badanego gazu zawartego w rurce pada na szczelinę wejściową monochromatora Hilgera. Monochromatorem nazywamy przyrząd, umożliwiający wybranie wąskiego zakresu $\Delta\lambda$ długości fal ze złożonego widma promieniowania. W związku z tym w okularze monochromatora nie obserwuje się jednocześnie całego widma, tylko jego poszczególne fragmenty. Wybór fragmentu widma, który chcemy obserwować, dokonywany jest za pomocą śruby z podziałką. Przekręcając ją możemy zobaczyć w okularze całe badane widmo leżące w obszarze widzialnym.

Aby wykonać analizę widmową świecącego wodoru należy dokładnie wyznaczyć długości fal poszczególnych linii. W tym celu dla stosowanego monochromatora należy wyznaczyć krzywą aparaturową, zwaną krzywą dyspersji, używając pierwiastka o znanym widmie. W ćwiczeniu jako gaz służący do wyskalowania monochromatora stosowany jest hel posiadający kilka prążków z zakresu widzialnego (tabela 1). Krzywa dyspersji jest zależnością rzeczywistej długości fali od odczytanego z aparatury położenia linii. Obie te wielkości nie są sobie równe z powodu nieidealności ustawienia i wyskalowania pryzmatu pomiarowego.

Fizyka jądra, atomu i ciała stałego

Przeprowadzenie pomiarów

Aparaturę do pracy przygotowuje tylko wykładowca!

A) Wykreślenie krzywej dyspersji

- 1. Zaznajomić się z przeznaczeniem i działaniem poszczególnych części układu pomiarowego.
- 2. Ustawić naprzeciwko szczeliny wejściowej monochromatora rurkę Geislera z helem i włączyć induktor Ruhmkorffa. Gaz w rurce powinien się zaświecić.
- 3. Zaznajomić się z układem linii widmowych i ich intensywnością patrząc w okular monochromatora i obracając śrubę. Ustawić rurkę tak, aby w polu okularu otrzymać najjaśniejszy obraz linii. Ustawić ostrość obrazu widocznego w okularze za pomocą odpowiednich pokręteł.
- 4. Nastawić śrubę monochromatora w skrajnym położeniu długofalowym tzn. na 700 nm.
- 5. Przekręcając bardzo wolno śrubę w kierunku krótkofalowym aż do 410 nm, ustawiać takie położenia, aby naprzeciwko ostrza widocznego w okularze znajdowały się najintensywniejsze linie widma helu. Położenie S tych linii odczytywane z podziałki na śrubie zapisać w tabeli pomiarów.
- 6. Powtórzyć czynności z punktu 5 przy kręceniu śruby w kierunku przeciwnym tzn. od krótkofalowego do długofalowego zakresu widma. Wyniki pomiarów wpisać do tabeli pomiarów.
- 7. Wyłączyć induktor Ruhmkorffa.

B) Wyznaczenie długości fali w widmie wodoru

- 1. Ustawić rurkę Geislera napełnioną wodorem naprzeciwko szczeliny monochromatora i włączyć induktor Ruhmkorffa.
- 2. Wstępnie obejrzeć kolejność i intensywność czterech linii widmowych wodoru atomowego:

```
H_{\alpha} czerwona odpowiadająca przejściu 3 \to 2
H_{\beta} niebieska odpowiadająca przejściu 4 \to 2
H_{\gamma} fioletowa odpowiadająca przejściu 5 \to 2
H_{\delta} fioletowa odpowiadająca przejściu 6 \to 2
```

w okularze monochromatora podczas przekręcania śruby. Ustawić ostrość obrazu za pomocą odpowiednich pokręteł.

Uwaga: Obserwowane widmo wodoru jest bardzo bogate w prążki. W przeważającej większości jest to jednak widmo cząsteczki wodoru H_2 , a nie atomu H, którego dotyczy teoria Bohra. Linie atomowe łatwo można jednak rozpoznać po tym, że są wyraźnie wizualnie ostrzejsze.

- 3. Zmierzyć położenie linii widmowych atomu wodoru z serii Balmera. Odczytywać wyniki pomiarów dwukrotnie przy obracaniu śruby w obu kierunkach: od długofalowego do krótkofalowego zakresu widma i z powrotem. Oszacować maksymalną niepewność odczytu położenia linii widmowych na śrubie ΔS popełnianą przy pomiarze położenia każdego z prążków. Wyniki zapisać w tabeli pomiarów.
- 4. Wyłączyć induktor Ruhmkorffa.

Opracowanie wyników pomiarów

- 1. Wyliczyć wartości średnie położeń prążków *S* z pomiarów dokonanych dla poszczególnych linii widma helu i wodoru.
- 2. Wykonać wykres krzywej dyspersji czyli zależność wartości tablicowych długości fali λ widma helu od wartości położeń linii widmowych helu ustalonych w eksperymencie \overline{S} .
- 3. Na podstawie krzywej dyspersji wyznaczyć graficznie długości fal λ_{α} , λ_{β} , λ_{γ} dla linii widmowych H_{α} , H_{β} , H_{γ} widma atomu wodoru.
- 4. W oparciu o wzór $\frac{1}{\lambda} = R_H \cdot \left[\frac{1}{2^2} \frac{1}{n^2} \right]$ wyznaczyć stałą Rydberga R_H dla każdej linii widma atomu wodoru. Jako wynikową wartość stałej R_H przyjąć średnią arytmetyczną z powyższych trzech rezultatów.
- 5. Uzyskaną w punkcie 4 wartość stałej Rydberga R_H podstawić do zależności $h = 3\sqrt{\frac{m_e \cdot e^4}{8 \cdot \varepsilon_o^2 \cdot c \cdot R_H}}$
 - w celu wyznaczenia wartości stałej Plancka. Pozostałe stałe występujące we wzorze m_e , e, ϵ_o , i c przyjąć z tablic stałych fizycznych.
- 6. Z uwagi na precyzyjne wyznaczenie położenia wybranych linii spektralnych można przyjąć, że niepewność względna oszacowania długości fali widma jest równa niepewności względnej oszacowania położenia prążków widmowych, czyli $u_r(\lambda) = u_r(S)$.
- 7. Jako niepewność złożoną względną wyznaczenia stałej Rydberga należy przyjąć największą spośród trzech wartości niepewności względnych długości fali: $u_{c,r}(R_H) = \frac{u_c(R_H)}{R_H} = \frac{u(\lambda)}{\lambda}$.
 - Obliczyć niepewność złożoną bezwzględną stałej $u(R_H) = R_H \cdot u_{c,r}(R_H)$.
- 8. Zgodnie z prawem przenoszenia niepewności niepewność złożona względna wyznaczenia stałej Plancka h może być wyznaczona z zależności: $u_{c,r}(h) = \frac{1}{3} \cdot u_{c,r}(R_H)$. Obliczyć niepewność złożoną bezwzględną stałej $h: u(h) = h \cdot u_{c,r}(h)$
- 9. Wyznaczyć zgodnie z zależnością $U(x) = k \cdot u(x)$ niepewność rozszerzoną dla stałej Rydberga i stałej Plancka przyjmując do obliczeń współczynnik rozszerzenia k=2. Sprawdzić zgodność uzyskanych wartości stałych z wartościami tabelarycznymi.

Zestawić wyniki, przeanalizować uzyskane rezultaty, wyciągnąć wnioski. Stwierdzić czy cel ćwiczenia:

- wyznaczenie stałej Plancka;
- wyznaczenie stałej Rydberga; został osiągnięty.

ĆWICZENIE 31

Fizyka jądra, atomu i ciała stałe								ciała stałego
Grupa	tyczne wielko	ści wyznacza	anych lub ok	reślanych:				
3.2 Należy potwier	dzić na stano	wisku wartos	ści parametro	ów i ich niepe	wności.			
3.3 Pomiary i uwa	gi do ich wyko	nania.						
Wyniki pomiarów widma liniowego He służące do wykreślenia krzywej dyspersji								
Nr linii	1	2	3	4	5	6	7	8
Teoretyczna długość fali He λ[nm]	667,8	587,6	504,8	501,6	492,2	471,3	447,1	438,8
Barwa	czerwony	żółty	zielony	zielony	zielony	niebieski	fioletowy	fioletowy
Intensywność	silny	silny	słaby	silny	średni	słaby	silny	słaby
S (od siebie) niepewność		•						
S (do siebie) niepewność								
W YNIKI POMIARĆ	OW WIDMA LIN	IIOWEGO H	[NM] SŁUŻ	ĄCE DO WYZ	ZNACZENIA D	ŁUGOŚCI FAL	_I	
Barwa	cz		niebieski			fioletowy		
S (od siebie)								
niepewność								
S (do siebie)								
niepewność								

3.4 Data i podpis osoby prowadzącej.....