Feuille de travaux pratiques - Python #8

Emeline LUIRARD

Dans ce TP, nous nous intéressons aux processus de Poisson. Les exercices à traiter en priorité sont indiqués en rouge.

1 Simulations de processus de Poisson

Le processus de Poisson modélise les dates de réalisation de nombreux phénomènes :

- dates d'arrivées d'appels dans un serveur téléphonique
- dates d'émission de particules radiocatives d'une molécule
- dates d'arrivées de clients dans une file d'attente.

Definition 1.1. Un processus de comptage $(N_t)_{t\geq 0}$ est un processus de Poisson d'intensité $\lambda \in \mathbb{R}_+^*$ si $N_0 = 0$ et

- $\forall 0 < t_1 < \cdots < t_n$, les variables $N_{t_1}, N_{t_2-t_1}, \cdots, N_{t_n-t_{n-1}}$ dont indépendantes,
- $\forall 0 < t_1 < t_2$ et h > 0, $N_{t_2+h} N_{t_1} + h$ a même loi que $N_{t_2} N_{t_1}$,

$$- \forall h > 0, \ \mathbb{P}(N_h = k) = \begin{cases} 1 - \lambda h + o(h) & \text{si } k = 0\\ \lambda h + o(h) & \text{si } k = 1\\ o(h) & \text{si } k \ge 2. \end{cases}$$

Notons $T_0 = 0 < T_1 < \cdots < T_n$ les dates de réalisation, alors $N_t := \sum_{n=1}^{+\infty} \mathbb{1}_{T_n \le t}$ est le nombre d'évènements réalisés jusqu'au temps t.

Proposition 1.1. Si N est un processus de Poisson, alors pour tout $t \geq 0$, $N_t \sim \mathcal{P}(\lambda t)$. Pour $n \geq 1$, $T_n - T_{n-1} \sim \mathcal{E}(\lambda)$.

Un tel processus se représente facilement à partir de la donnée d'une suite $(S_n)_{n\in\mathbb{N}}$ de v.a. i.i.d. de loi exponentielle de paramètre λ . En effet, si on pose $T_n:=S_1+\ldots+S_n$, on vérifie que le processus $(N_t)_{t\geq 0}$ défini par

$$N_t := \sum_{n=1}^{+\infty} \mathbb{1}_{T_n \le t},$$

est un processus de Poisson d'intensité λ .

Exercice 1. Montrer que la variable T_n suit une loi $\Gamma(n,\lambda)$ et illustrer cette identité en superposant un histogramme empirique à la densité cible.

Proposition 1.2 (Loi conditionnelle des temps de saut). Sachant que $N_t = k$ (avec $k \ge 1$), la loi du k-uplet (T_1, \ldots, T_k) coincide avec celle d'un k-échantillon ordonné de v.a. i.i.d. de loi uniforme sur [0, t].

Exercice 2. Simulation de trajectoires.

- 1. Simuler et afficher une trajectoire d'un processus de Poisson simple d'intensité $\lambda=1/5$ jusqu'à son 20ième saut.
- 2. Simuler une trajectoire de processus de Poisson d'intensité $\lambda = 1/5$ jusqu'à l'instant t = 20 (a) à l'aide d'une boucle while,
 - (b) à l'aide de la proposition 1.2.

Comparer ces deux méthodes en générant mille trajectoires avec chaque méthode et mesurer le temps de calcul.

- 3. Illustrer le fait que N_t suit la loi de Poisson de paramètre λt .
- 4. Reprendre la question précédente en effectuant un test du χ^2 d'adéquation.

Pour tout $t \in \mathbb{R}_+$, on a l'encadrement $T_{N_t} \leq t < T_{N_t+1}$. On définit des variables aléatoires réelles positives U_t et V_t par

$$U_t := t - T_{N_t}, \qquad V_t := T_{N_t+1} - t,$$

de sorte que U_t mesure la durée entre le temps courant et le temps du dernier saut, et V_t mesure la durée entre le temps courant et l'instant du prochain saut. Alors,

Proposition 1.3. Pour tout $t \geq 0$, les variables aléatoires U_t et V_t sont indépendantes. La loi de U_t est celle de $S_1 \wedge t$ et celle de V_t est égale à celle de $S_1 \sim \mathcal{E}(\lambda)$.

Exercice 3. Paradoxe de l'inspection ou paradoxe de l'autobus

- 1. Montrer que l'espérance de la longueur de l'intervalle $[T_{N_t}, T_{N_t+1}]$ est égale à $\lambda^{-1}(2 e^{-\lambda t})$, et tend donc rapidement vers $2/\lambda$ lorsque t tend vers l'infini.
- 2. Quelle est l'espérance des temps d'inter-sauts S_k ? Commenter.

2 Comportement asymptotique et estimation

En écrivant N_t comme la somme de ses accroissements (indépendants), on peut établir les comportements asymptotiques suivants pour les trajectoires d'un processus de Poisson.

Proposition 2.1. Lorsque t tend vers l'infini, on a les convergences suivantes :

$$\frac{N_t}{t} \xrightarrow{p.s.} \lambda, \qquad \sqrt{\frac{t}{\lambda}} \left(\frac{N_t}{t} - \lambda \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

Exercice 4. Estimation de l'intensité quand on observe le processus jusqu'à un temps t.

- 1. A l'aide d'un générateur aléatoire de votre choix, choisir une intensité $\lambda > 0$ au hasard.
- 2. Génèrer alors une trajectoire d'un processus de Poisson d'intensité λ et proposer un estimateur $\hat{\lambda}_t$ de cette intensité.
- 3. Proposer un intervalle de confiance I_t pour λ de niveau de confiance 95%.
- 4. Représenter sur un même graphique l'évolution temporelle de l'estimateur $\hat{\lambda}_t$ et de l'intervalle de confiance I_t .

L'intensité du processus peut aussi être estimée à partir de l'observation des temps de sauts du processus. En effet, la loi des grands nombres et le théorème limite central appliqués à $T_n = S_1 + \ldots + S_n$ donnent

$$\frac{T_n}{n} \xrightarrow{p.s.} \frac{1}{\lambda}, \qquad \sqrt{n} \left(\lambda \frac{T_n}{n} - 1 \right) \stackrel{\mathcal{L}}{\Longrightarrow} \mathcal{N}(0, 1).$$

Exercice 5. Estimation de l'intensité quand on observe le processus jusqu'à son n-ième saut.

- 1. À l'aide d'un générateur aléatoire de votre choix, choisir une intensité $\lambda > 0$ au hasard.
- 2. Génèrer alors une trajectoire d'un processus de Poisson d'intensité λ jusqu'à son n-ième saut et proposer un estimateur $\widehat{\lambda}_n$ de cette intensité.
- 3. Proposer un intervalle de confiance I_n pour λ de niveau de confiance 95%.
- 4. Représenter sur un même graphique l'évolution temporelle de l'estimateur λ_n et de l'intervalle de confiance I_n .

3 Quelques compléments

3.1 Décomposition

Proposition 3.1 (Décomposition d'un processus de Poisson). Soit $(N_t)_{t\geq 0}$ un processus de Poissson simple de paramètre λ . On construit les processus deux processus $(N_t^1)_{t\geq 0}$ et $(N_t^2)_{t\geq 0}$ de la façon suivante : à chaque saut (indépendamment des autres) du processus de base $(N_t)_{t\geq 0}$, on choisit de faire sauter $(N_t^1)_{t\geq 0}$ avec probabilité p ou $(N_t^2)_{t\geq 0}$ avec probabilité 1-p. Alors les processus $(N_t^1)_{t\geq 0}$ et $(N_t^2)_{t\geq 0}$ sont deux processus de Poisson simples indépendants d'intensité respectives $p\lambda$ et $(1-p)\lambda$.

Exercice 6. Écrire une fonction qui trace une trajectoire du processus de base $(N_t)_{t\geq 0}$ et en déduit les trajectoires des sous-processus $(N_t^1)_{t\geq 0}$ et $(N_t^2)_{t\geq 0}$.

3.2 Processus de Poisson composé

Definition 3.1. Soient $(S_n)_{n\in\mathbb{N}}$ une suite de v.a. i.i.d. de loi exponentielle de paramètre λ et $(Y_n)_{n\geq 0}$ une suite de v.a. i.i.d. de loi ν , indépendante de la suite $(S_n)_{n\geq 0}$. On pose $T_n:=S_1+\ldots+S_n$. On appelle **processus de Poisson composé d'intensité** $\lambda>0$ et de loi de saut ν le processus $(X_t)_{t>0}$ issu de zéro défini par

$$X_t := \sum_{n \ge 0} Y_n \mathbb{1}_{T_n \le t}.$$

N.B. Le processus de Poisson simple est un processus de Poisson composé où la loi des sauts est la mesure de Dirac δ_1 .

Exercice 7. Simuler une trajectoire de processus de Poisson composé d'intensité 1 et de loi de saut $\mathcal{N}(0,1)$.

Proposition 3.2 (Loi d'une somme aléatoire). Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de v.a. i.i.d. de fonction caractéristique ϕ et soit N une v.a. à valeurs dans \mathbb{N} , de fonction génératrice G, indépendante de la suite $(Y_n)_{n\in\mathbb{N}}$. Alors, la somme aléatoire (avec convention qu'une somme vide est nulle)

$$S = \sum_{n=1}^{N} Y_n$$

admet pour fonction caractéristique $\phi_S(u) = G(\phi(u))$.

Corollaire 3.1. Soit $(X_t)_{t\geq 0}$ un processus de Poisson composé d'intensité λ et de loi de saut ν de moyenne m et de variance $\sigma^2<+\infty$. Alors, pour tout $t\geq 0$:

$$\mathbb{E}[X_t] = \mathbb{E}[N_t]\mathbb{E}[Y_1] = m\lambda t, \qquad var(X_t) = \mathbb{E}[N_t]var(Y_1) + var(N_t)\mathbb{E}[Y_1]^2 = \lambda t\sigma^2 + \lambda tm^2.$$

Exercice 8. Illustrer le corollaire en considérant différentes lois de saut.