Вероятность переобучения для плотных и разреженных сеток алгоритмов

Фрей Александр Ильич

Московский физико-технический институт (Государственный университет) Кафедра «Интеллектуальные Системы» (ВЦ РАН)

Научный руководитель: к.ф.-м.н. Воронцов Константин Вячеславович

20 октября 2010

Проблема переобучения: комбинаторный подход

- ullet $\mathbb{X}=(x_1\,\ldots\,x_L)$ генеральная выборка объектов, $x_i\in\mathcal{X}$;
- $\mathbb{Y}=(y_1 \ldots y_L)$ вектор классов объектов, $y_i \in \mathcal{Y}$;
- ullet $a:\mathcal{X} o\mathcal{Y}$ алгоритм классификации;
- ullet ошибка алгоритма: $a(x_i) \neq y_i$;
- ullet n(a,U) число ошибок алгоритма на подвыборке $U\subset \mathbb{X}$;
- $\nu(a,U) = \frac{n(a,U)}{|U|}$ частота ошибок;
- $X^{\ell} \subset \mathbb{X}$ обучающая выборка длины ℓ ;
- ullet $X^k=\mathbb{X}ackslash X^\ell$ контрольная выборка длины $k=L-\ell$;
- разность частоты ошибок на контроле и обучении:

$$\delta(a, X^{\ell}) = \nu(a, X^{k}) - \nu(a, X^{\ell});$$

- ullet $\mu\colon\{X^\ell\} o\mathbb{A}$ детерминированный метод обучения;
- вероятность переобучения:

$$Q_{\mu}(arepsilon) = \mathbf{P}\Big[\delta(\mu X^{\ell}, X^{\ell}) \geq arepsilon\Big],$$
 где $\mathbf{P} \stackrel{\mathit{def}}{=} rac{1}{C_{L}^{\ell}} \sum_{X^{\ell} \in [\mathbb{X}]^{\ell}}$

Проблема переобучения: выбор лучшего алгоритма

- ullet $\mu X = \operatorname*{argmin}_{a \in \mathbb{A}} \mathit{n}(a, X^{\ell})$ детерминированный МЭР;
- Вероятность переобучения:

$$Q_{\mu}(\varepsilon) = \mathbf{P}\left[\delta(\mu X^{\ell}, X^{\ell}) \geq \varepsilon\right] = \mathbf{P}\sum_{\mathbf{a} \in A} [\mu X^{\ell} = \mathbf{a}][\delta(\mathbf{a}, X^{\ell}) \geq \varepsilon].$$

• Рандомизированная минимизация эмпирического риска:

$$\mu(A,X,a)=rac{[a\in A(X)]}{|A(X)|},$$
 где $A(X)=\mathop{
m Argmin}_{a\in A}n(a,X);$

 Вероятность переобучения для рандомизированного метода обучения:

$$Q_{\mu}(\varepsilon, A) = \mathsf{E} \sum_{a \in A} \mu(A, X, a) [\delta(a, X) \ge \varepsilon]$$

Группа симметрий множества алгоритмов

Граф смежности двумерной унимодальной сетки:

- ullet S_L- группа всех перестановок объектов выборки,
- S_L действует множестве всех алгоритмов $2^{\mathbb{A}}$,
- Sym(A) = { $\pi \in S_L : \pi A = A$ } $\subset S_L$.
- ullet Орбита алгоритма a это $\{\pi a\colon \pi\in \mathrm{Sym}(A)\}\subset A$

Равный вклад алгоритмов одной орбиты

• Вероятность переобучения — сумма вкладов алгоритмов:

$$Q_{\mu}(arepsilon,A)=\sum_{a\in A}Q_{\mu}(arepsilon,a,A)$$
, где $Q_{\mu}(arepsilon,a,A)=\mathsf{E}\mu(A,X,a)[\delta(a,X^{\ell})\geqarepsilon];$

• Алгоритмы одной орбиты дают равный вклад:

$$Q_{\mu}(arepsilon, \mathsf{a}, \mathsf{A}) = Q_{\mu}(arepsilon, \pi \mathsf{a}, \mathsf{A}),$$
 где $\pi \in \mathrm{Sym}(\mathsf{A})$

- ullet Обозначим $\Omega(A)$ множество орбит $\mathrm{Sym}(A)$ на A;
- Вероятность переобучения с учетом структуры множества алгоритмов:

$$Q_{\mu}(arepsilon, A) = \sum_{\omega \in \Omega(A)} |\omega| \, \mathsf{E} \mu(A, X, a) \left[\delta(a_{\omega}, X^{\ell}) \geq arepsilon
ight].$$
 (1)

Равный вклад разбиений одной орбиты

ullet Вклад разбиения $X^\ell \in [\mathbb{X}]^\ell$ в вероятность переобучения РМЭР:

$$\phi(A, X, \varepsilon) = \frac{1}{|A(X)|} \sum_{a \in A(X)} [\delta(a, X) \ge \varepsilon];$$

$$Q_{\mu}(\varepsilon, A) = \frac{1}{C_L^{\ell}} \sum_{X^{\ell} \in [X]^{\ell}} \phi(A, X, \varepsilon);$$

• Разбиения одной орбиты дают равный вклад:

$$\phi(A,X,\varepsilon)=\phi(A,\pi X,\varepsilon),$$
 где $\pi\in \mathrm{Sym}(A)$;

- Обозначим $\Omega(\mathbb{X})$ множество орбит $\mathrm{Sym}(A)$ на $[\mathbb{X}]^\ell$;
- Вероятность переобучения с учетом структуры множества алгоритмов:

$$Q_{\mu}(\varepsilon, A) = \frac{1}{C_L^{\ell}} \sum_{\tau \in \Omega(\mathbb{X})} |\tau| \phi(A, X_{\tau}, \varepsilon).$$

Overfitting probability for fixed predictor

Teopeмa (Overfitting probability for fixed predictor)

$$Q_{\mu(f)}(arepsilon) = P\Big\{\delta_{\mu}(X^{\ell},X^{k}) \geq arepsilon\Big\} = H_{L}^{\ell,m}(s_{0}),$$

where
$$m=n(f,\mathbb{X}),$$
 $s_0=\frac{\ell}{L}(m-\varepsilon k),$ $H_L^{\ell,m}(s_0)=\sum\limits_{s=0}^{\lfloor z\rfloor}\frac{C_m^sC_{L-m}^{\ell-s}}{C_L^\ell}.$

Результаты, полученные для РМЭР

• Связка монотонных цепочек

• Фрей А. И., Точные оценки вероятности переобучения для симметричных семейств алгоритмов // Всеросс. конф. ММРО-14 — М.: МАКС Пресс, 2009. — С. 66–69.

• Шар алгоритмов и центральный слой шара

• Толстихин И.О., Точная оценка вероятности переобучения для одного специального семейства алгоритмов // Конференция «Ломоносов-2010».

• Полный слой и полный куб алгоритмов

 Frei A.I., Accurate Estimates of the Generalization Ability for Symmetric Sets of Predictors and Randomized Learning Algorithms // Pattern Recognition and Image Analysis.— 2010.—Vol. 20, No. 3.—Pp. 241-250.

• Монотонные и унимодальные сетки

• Фрей А.И., Вероятность переобучения плотных и разреженных семейств многомерных сеток алгоритмов // Международ. конф. ИОИ-8 — М.: МАКС Пресс, 2010. — С. 87–90.

Overfitting probability: predictors with random errors

• A_m^n — set of n predictors, with m errors for each one. Errors are not correlated.

Teopeмa (Overfitting probability for A_m^n)

Let μ — randomized ERM. Then

$$\mathbf{E}_{G}P_{\mathbb{F}}(\varepsilon,A_{m}^{n})=1-(1-P_{\mathbb{F}}(\varepsilon,a_{m}))^{n}$$

Отсутствие связности: случайные множества алгоритмов

- ullet Пронумеруем алгоритмы: $A=(a_1,\ldots,a_d)$
- S_L симметрическая группа порядка L;
 - S_L действует на объектах выборки;
 - S_L действует на векторах ошибок алгоритмов;
- $G = (S_L)^d$ свободное произведение S_L ;
 - ullet $g=(g_1,\ldots,g_d)\in G$ элемент группы G, $g_i\in S_L$;
 - G действует на векторе алгоритмов:

$$gA = (g_1(a_1), \ldots, g_d(a_d)).$$

ullet Вероятность переобучения несвязной перестановки A:

$$ar{Q}_{\mu}(arepsilon,A) = \mathsf{E}_{G} Q_{\mu}(arepsilon,gA),$$
 где $\mathsf{E}_{G} \stackrel{def}{=} rac{1}{(L!)^{d}} \sum_{g \in G}$

ullet $ar{Q}_{\mu}(arepsilon,A)$ зависит только от профиля расслоения A.

Проблема переобучения: случайный слой алгоритмов

• A_m^n — множество из n алгоритмов, допускающих по m ошибок. Ошибки расположены «случайным» образом.

Теорема (Вероятность переобучения для A_m^n)

Пусть μ — рандомизированный МЭР. Тогда

$$\boldsymbol{E}_{G}Q_{\mu}(\varepsilon,A_{m}^{n})=1-(1-Q_{\mu}(\varepsilon,a_{m}))^{n}$$

Continuous predictors set

Let us study behavior of the following predictors set:

- A_B Monotonic chains binding of h, length D,
- A_M Monotonic h-dim lattice,
- A_U Unimodal h-dim lattice.

Theorem (Overfitting probability A_B , A_M , and A_U .)

$$P_{\mathbb{F}}(\varepsilon, A_B) = \sum_{p=0}^{D} \sum_{S=p}^{hD} \sum_{F=0}^{h} \frac{|\omega_p| R_{D,h}^p(S, F)}{1+S} \frac{C_{L'}^{\ell'}}{C_L^{\ell}} H_{L'}^{\ell',m}(s_0),$$

$$P_{\mathbb{F}}(\varepsilon, A_M) = \sum_{\vec{\lambda} \in Y_*^{h,D}} \sum_{\vec{t} \geq \vec{\lambda}, \atop ||\vec{t}|| \leq D} \frac{|S_h \vec{\lambda}|}{T(\vec{t})} \frac{C_{L'}^{\ell'}}{C_L^{\ell}} H_{L'}^{\ell',m}(s_0),$$

$$P_{\mathbb{F}}(\varepsilon, A_U) = \sum_{\vec{\lambda} \in Y_*^{h,D}} \sum_{\substack{\vec{t} \geq \vec{\lambda}, \\ ||\vec{t}|| < D}} \sum_{\substack{t' \geq \vec{0}, \\ ||\vec{t}'|| < D}} \frac{|S_h \vec{\lambda}| \cdot 2^{n(\vec{\lambda})}}{T(\vec{t} + \vec{t'})} \frac{C_{L'}^{\ell'}}{C_L^{\ell}} H_{L'}^{\ell',m}(s_0),$$

where $H_{L'}^{\ell',m}(s_0)$ — hypergeometric distribution.

Сравнение сеток и связки монотонных цепочек

Рис.: Сравнение при разных arepsilon; D=5, m=5, L=50, $\ell=30$.

Рис.: Сравнение при разных D, в размерностях H=1(2), H=2(4) и H=3(6). $\varepsilon=0.04$, m=5, L=50, $\ell=30$.

Разреженная монотонная сетка

Рис.: Узлы сетки соответствуют алгоритмам, направление стрелок — возрастанию числа ошибок алгоритмов.

Рис.: Зависимость $Q_{\mu}(\varepsilon, \ddot{A}_{M})$ от разреженности монотонной сетки при $L=100,\,\ell=60,\,\varepsilon=0.04,\,D=12,\,m=5.$

Результаты и выводы

- Предложен теоретико-групповой подход для вывода формул вероятности переобучения;
- Получены теоретические результаты для несвязного множества алгоритмов;
- Предложено два семейства для аппроксимации сеток их подмножествами малой мощности:
 - Связки монотонных цепочек;
 - Разреженные сети алгоритмов;
- Экспериментально показано, что точность предложенных аппроксимаций падает с возрастанием размерности и разреженности.