Risk-Evaluation: Breast Cancer Royston-Altman

Jose Tamez

2023-05-11

Contents

1	Eva	luation of RISK survival models
	1.1	The libraries
	1.2	Breast Cancer Royston-Altman data
	1.3	Cox Modeling
	1.4	Cox Model Performance
	1.5	Performance on the external data set
	1.6	Logistic Model
	1.7	Logistic Model Performance
	1.8	Logistic Model Poisson Calibration
	1.9	Comparing the COX and Logistic Models on the Independent Data

1 Evaluation of RISK survival models

This document highlights the use of

- RRPlot(),
- CoxRiskCalibration(), and
- CalibrationProbPoissonRisk(),

Loading required package: Hmisc

for the evaluation (RRPlot), and calibration of cox models (CoxRiskCalibration) or logistic models (CalibrationProbPoissonRisk) of survival data.

Furthermore, it can be used to evaluate any Risk index that reruns the probability of a future event on external data-set.

This document will use the survival::rotterdam, and survival::gbsg data-sets to train and predict the risk of cancer recurrence after surgery. Both Cox and Logistic models will be trained and evaluated.

Here are some sample plots returned by the evaluated functions:

1.1 The libraries

```
library(survival)
library(FRESA.CAD)

## Loading required package: Rcpp

## Loading required package: stringr

## Loading required package: miscTools
```

```
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
       format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
#source("~/GitHub/FRESA.CAD/R/RRPlot.R")
#source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)</pre>
pander::panderOptions('digits', 3)
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.2 Breast Cancer Royston-Altman data

1.2.1 data(gbsg, package="survival") and data(rotterdam, package="survival")

```
gbsgdata <- gbsg
rownames(gbsgdata) <- gbsgdata$pid</pre>
gbsgdata$pid <- NULL</pre>
odata <-rotterdam
rownames(odata) <- odata$pid
odata$pid <- NULL
odata$rfstime <- odata$rtime
odata$status <- odata$recur
odata$rtime <- NULL
odata$recur <- NULL
odata <- odata[,colnames(odata) %in% colnames(gbsgdata)]</pre>
odata$size <- 10*(odata$size=="<=20") +
  35*(odata\$size=="20-50") +
  60*(odata$size==">50")
data <- as.data.frame(model.matrix(Surv(rfstime,status)~.*.,odata))</pre>
data$`(Intercept)` <- NULL</pre>
dataBrestCancerTrain <- cbind(time=odata[rownames(data), "rfstime"], status=odata[rownames(data), "status"]</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),":","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain)," ","")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),"\\.","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),"-","_")</pre>
```

```
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),">","_")
dataBrestCancerTrain$time <- dataBrestCancerTrain$time/365 ## To years

pander::pander(table(odata[rownames(data),"status"]),caption="rotterdam")</pre>
```

Table 1: rotterdam

0	1
1464	1518

1.2.2 data(gbsg, package="survival") data conditioning

```
gbsgdata <- gbsgdata[,colnames(odata)]
data <- as.data.frame(model.matrix(Surv(rfstime,status)~.*.,gbsgdata))

data$`(Intercept)` <- NULL

dataBrestCancerTest <- cbind(time=gbsgdata[rownames(data),"rfstime"],status=gbsgdata[rownames(data),"st

colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),":","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"","")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"\\.","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"\\.","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"-","_")
dataBrestCancerTest$time <- dataBrestCancerTest$time/365

pander::pander(table(odata[rownames(data),"status"]), caption="gbsg")</pre>
```

Table 2: gbsg

0	1
499	183

1.3 Cox Modeling

```
ml <- BSWiMS.model(Surv(time,status)~.,data=dataBrestCancerTrain,loops=1,NumberofRepeats = 5)</pre>
```

```
sm <- summary(ml)
pander::pander(sm$coefficients)</pre>
```

Table 3: Table continues below

	Estimate	lower	$_{ m HR}$	upper	u.Accuracy	r.Accuracy
age_nodes	0.000716	1.001	1.001	1.001	0.626	0.600
${f size_grade}$	0.005649	1.005	1.006	1.006	0.598	0.623
\mathbf{nodes}	0.086582	1.082	1.090	1.099	0.637	0.642
${f size}$	0.006888	1.005	1.007	1.009	0.595	0.641
${\bf size_nodes}$	-0.000378	1.000	1.000	1.000	0.624	0.643

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
age_size	-0.000149	1.000	1.000	1.000	0.567	0.627
${f grade}$	0.204934	1.146	1.227	1.314	0.565	0.637
age	-0.003113	0.996	0.997	0.998	0.513	0.628
${\it grade_nodes}$	-0.013784	0.981	0.986	0.992	0.635	0.645

Table 4: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI
age_nodes	0.632	0.630	0.601	0.634	0.03040	0.4594
\mathbf{size} grade	0.632	0.599	0.626	0.634	0.01868	0.3914
\mathbf{nodes}	0.643	0.640	0.643	0.644	0.00745	0.0564
${f size}$	0.643	0.595	0.642	0.644	0.01447	0.3587
${f size_nodes}$	0.643	0.629	0.644	0.644	0.00346	0.3430
$\mathbf{age}\mathbf{_size}$	0.632	0.568	0.630	0.634	0.00635	0.1935
${f grade}$	0.643	0.561	0.638	0.644	0.00926	0.2069
age	0.643	0.513	0.628	0.644	0.00416	0.0917
${\bf grade_nodes}$	0.643	0.639	0.646	0.644	0.00207	-0.0910

	z.IDI	z.NRI	Delta.AUC	Frequency
age_nodes	12.81	14.37	0.033056	1
${f size_grade}$	9.82	11.29	0.007947	1
nodes	8.33	1.66	0.000148	1
\mathbf{size}	8.05	9.97	0.001322	1
${f size_nodes}$	7.25	9.57	-0.000377	1
$\mathbf{age}\mathbf{_size}$	5.95	5.36	0.004078	1
${f grade}$	5.88	6.31	0.005344	1
age	5.27	2.51	0.015465	1
${f grade_nodes}$	5.03	-2.55	-0.002609	1

1.4 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.4.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years timeinterval <- 5 # Five years</pre>

```
h0 <- sum(dataBrestCancerTrain$status & dataBrestCancerTrain$time <= timeinterval)
h0 <- h0/sum((dataBrestCancerTrain$time > timeinterval) | (dataBrestCancerTrain$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 6: Initial Parameters

h0	timeinterval
0.429	5

Cumulative vs. Observed: Train: Breast Cancer

Decision Curve Analysis: Train: Breast Cancer

Relative Risk: Train: Breast Cancer

ROC: Train: Breast Cancer

Time vs. Events: Train: Breast Cancer

Kaplan-Meier: Train: Breast Cancer

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

1.4.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints),caption="Threshold values")

Table 7: Threshold values

	@:0.9	@:0.8	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.459	0.389	0.320	0.214	0.18549	0.500
$\mathbf{R}\mathbf{R}$	1.690	1.713	1.799	2.376	1.00000	1.725
\mathbf{SEN}	0.299	0.462	0.644	0.965	1.00000	0.246
\mathbf{SPE}	0.900	0.798	0.646	0.125	0.00137	0.931
\mathbf{BACC}	0.599	0.630	0.645	0.545	0.50068	0.589

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 8: O/E Ratio

O/E	Low	Upper	p.value
1.13	1.07	1.19	4.66e-06

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 9: O/E Mean

mean	50%	2.5%	97.5%
1.16	1.16	1.15	1.17

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 10: O/Acum Mean

mean	50%	2.5%	97.5%
1.35	1.35	1.35	1.35

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.676	0.677	0.664	0.69

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 12: ROC AUC

est	lower	upper
0.694	0.675	0.713

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 13: Sensitivity

est	lower	upper
0.299	0.276	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 14: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 15: Probability Thresholds

90%	80%
0.459	0.389

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 16: Risk Ratio

est	lower	upper
1.69	1.59	1.8

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 17: Logrank test Chisq = 465.079317 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1985	816	1144	93.9	385.7
class=1	396	248	177	28.0	31.8
class=2	601	454	197	336.3	391.3

1.4.3 Cox Calibration

h0	Gain	DeltaTime
0.698	1.35	6.97

1.4.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Cal. Train: Breast Cancer

Decision Curve Analysis: Cal. Train: Breast Cancer

Relative Risk: Cal. Train: Breast Cancer

ROC: Cal. Train: Breast Cancer

Time vs. Events: Cal. Train: Breast Cancer

Kaplan-Meier: Cal. Train: Breast Cancer

1.4.5 Calibrated Train Performance

601

High Risk >= 0.632

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 19: Threshold values

	@:0.9	@:0.8	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.632	0.551	0.466	0.324	0.28381	0.500
$\mathbf{R}\mathbf{R}$	1.690	1.713	1.799	2.376	1.00000	1.758
\mathbf{SEN}	0.299	0.462	0.644	0.965	1.00000	0.580
\mathbf{SPE}	0.900	0.798	0.646	0.125	0.00137	0.706
\mathbf{BACC}	0.599	0.630	0.645	0.545	0.50068	0.643

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 20: O/E Ratio

O/E	Low	Upper	p.value
0.998	0.949	1.05	0.959

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 21: O/E Mean

mean	50%	2.5%	97.5%
1	1	0.996	1.01

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 22: O/Acum Mean

mean	50%	2.5%	97.5%
1.01	1.01	1.01	1.01

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.676	0.676	0.662	0.691

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 24: ROC AUC

est	lower	upper
0.694	0.675	0.713

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 25: Sensitivity

est	lower	upper
0.299	0.276	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 26: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 27: Probability Thresholds

90%	80%
0.632	0.551

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 28: Risk Ratio

est	lower	upper
1.69	1.59	1.8

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 29: Logrank test Chisq = 465.079317 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1985	816	1144	93.9	385.7
class=1	396	248	177	28.0	31.8
class=2	601	454	197	336.3	391.3

1.5 Performance on the external data set

index <- predict(ml,dataBrestCancerTest)</pre>

pp <- predictionStats_binary(cbind(dataBrestCancerTest\$status,index),plotname="Breast Cancer")</pre>

Breast Cancer

Cumulative vs. Observed: Test: Breast Cancer

Decision Curve Analysis: Test: Breast Cancer

Relative Risk: Test: Breast Cancer

Time vs. Events: Test: Breast Cancer

Kaplan-Meier: Test: Breast Cancer

par(op)

1.5.1 External Data Report

pander::pander(t(rrCoxTestAnalysis\$keyPoints),caption="Threshold values")

Table 30: Threshold values

	@:0.63	@:0.55	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.631	0.552	0.583	0.337	0.2710	0.500
$\mathbf{R}\mathbf{R}$	1.799	1.643	1.758	3.279	26.3824	1.594
\mathbf{SEN}	0.331	0.452	0.418	0.977	1.0000	0.552
\mathbf{SPE}	0.873	0.757	0.809	0.111	0.0155	0.654
\mathbf{BACC}	0.602	0.604	0.613	0.544	0.5078	0.603

pander::pander(t(rrCoxTestAnalysis\$0ERatio\$estimate),caption="0/E Ratio")

Table 31: O/E Ratio

O/E	Low	Upper	p.value
1.33	1.19	1.49	1.74e-06

pander::pander(rrCoxTestAnalysis\$c.index,caption="C. Index")

• C Index: 0.664

Dxy: 0.328S.D.: 0.0311

• n: 686

• missing: θ

• uncensored: 299

Relevant Pairs: 266144
 Concordant: 176737
 Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.664	0.665	0.635	0.694

pander::pander(t(rrCoxTestAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 33: ROC AUC

est	lower	upper
0.66	0.619	0.7

pander::pander((rrCoxTestAnalysis\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 34: Sensitivity

est	lower	upper
0.328	0.275	0.384

pander::pander((rrCoxTestAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 35: Specificity

est	lower	upper
0.873	0.836	0.905

pander::pander(t(rrCoxTestAnalysis\$thr_atP),caption="Probability Thresholds")

Table 36: Probability Thresholds

90%	80%
0.632	0.551

pander::pander(t(rrCoxTestAnalysis\$RR_atP),caption="Risk Ratio")

Table 37: Risk Ratio

est	lower	upper
1.79	1.53	2.09

pander::pander(rrCoxTestAnalysis\$surdif,caption="Logrank test")

Table 38: Logrank test Chisq = 81.471750 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	457	164	221.4	14.888	58.181
class=1	82	37	33.2	0.438	0.494
class=2	147	98	44.4	64.710	77.254

1.5.2 Calibrating the index on the test data

h0	Gain	DeltaTime
0.535	0.925	4.87

Cumulative vs. Observed: Cal. Test: Breast Cancer

Decision Curve Analysis: Cal. Test: Breast Cancer

Relative Risk: Cal. Test: Breast Cancer

ROC: Cal. Test: Breast Cancer

Time vs. Events: Cal. Test: Breast Cancer

Kaplan-Meier: Cal. Test: Breast Cancer

1.5.3 After Calibration Report

pander::pander(t(rrAnalysis\$keyPoints),caption="Threshold values")

Table 40: Threshold values

	@:0.9	@:0.8	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.584	0.484	0.489	0.270	0.2152	0.499
$\mathbf{R}\mathbf{R}$	1.741	1.721	1.758	3.279	26.3824	1.738
\mathbf{SEN}	0.268	0.421	0.418	0.977	1.0000	0.398
\mathbf{SPE}	0.899	0.798	0.809	0.111	0.0155	0.819
\mathbf{BACC}	0.583	0.610	0.613	0.544	0.5078	0.609

pander::pander(t(rrAnalysis\$OERatio\$estimate),caption="0/E Ratio")

Table 41: O/E Ratio

O/E	Low	Upper	p.value
1.23	1.09	1.37	0.00061

pander::pander(rrAnalysis\$c.index,caption="C. Index")

• C Index: 0.664

• **Dxy**: 0.328

• **S.D.**: 0.0311

• n: 686

• missing: θ

• uncensored: 299

Relevant Pairs: 266144
 Concordant: 176737
 Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.664	0.664	0.633	0.692

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 43: ROC AUC

est	lower	upper
0.66	0.619	0.7

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 44: Sensitivity

est	lower	upper
0.264	0.215	0.318

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 45: Specificity

est	lower	upper
0.899	0.865	0.927

pander::pander(t(rrAnalysis\$thr_atP),caption="Probability Thresholds")

Table 46: Probability Thresholds

90%	80%
0.585	0.484

pander::pander(t(rrAnalysis\$RR_atP),caption="Risk Ratio")

Table 47: Risk Ratio

est	lower	upper
1.74	1.48	2.05

pander::pander(rrAnalysis\$surdif,caption="Logrank test")

Table 48: Logrank test Chisq = 80.835092 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	482	173	232.4	15.20	69.5
class=1	86	47	32.0	7.02	7.9
class=2	118	79	34.6	57.14	65.4

1.6 Logistic Model

Here we train a logistic model on the same data set

```
## Only label subjects that present event withing five years

dataBrestCancerR <- subset(dataBrestCancerTrain, time>=5 | status==1)

dataBrestCancerR$status <- dataBrestCancerR$status * (dataBrestCancerR$time < 5)

dataBrestCancerR$time <- NULL

#ml <- BSWiMS.model(status~1, data=dataBrestCancerR, loops=20, NumberofRepeats = 5)

mlog <- BSWiMS.model(status~1, data=dataBrestCancerR, loops=1, NumberofRepeats = 5)</pre>
```

sm <- summary(mlog)
pander::pander(sm\$coefficients)</pre>

Table 49: Table continues below

	Estimate	lower	OR	upper	u.Accuracy	r.Accuracy
size_nodes	1.05e-03	1.001	1.001	1.001	0.669	0.571
nodes	4.33e-02	1.040	1.044	1.048	0.676	0.634
${\it grade_nodes}$	1.50e-02	1.014	1.015	1.016	0.682	0.637
age_nodes	1.06e-03	1.001	1.001	1.001	0.678	0.653
${f size_grade}$	1.75e-03	1.001	1.002	1.002	0.632	0.682
age_size	8.73e-05	1.000	1.000	1.000	0.608	0.682
grade	2.27e-01	1.168	1.254	1.347	0.571	0.683
age_meno	-6.04e-03	0.992	0.994	0.996	0.571	0.676
age_pgr	-5.42e-06	1.000	1.000	1.000	0.571	0.686
age_grade	-1.65e-03	0.997	0.998	0.999	0.574	0.690
${ m meno_grade}$	1.02e-01	1.045	1.107	1.173	0.571	0.683
${f nodes_hormon}$	-1.38e-02	0.979	0.986	0.994	0.587	0.688
${f size}$	3.94e-03	1.002	1.004	1.006	0.611	0.693
${ m meno_pgr}$	3.19e-04	1.000	1.000	1.001	0.571	0.687

	Estimate	lower	OR	upper	u.Accuracy	r.Accuracy
pgr	-1.07e-04	1.000	1.000	1.000	0.571	0.689
$meno_nodes$	-2.60e-02	0.955	0.974	0.994	0.640	0.686
${f grade_pgr}$	-3.51e-05	1.000	1.000	1.000	0.571	0.669
$meno_size$	2.34e-03	1.000	1.002	1.004	0.604	0.691

Table 50: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI
size_nodes	0.668	0.627	0.500	0.628	0.11233
${f nodes}$	0.690	0.639	0.621	0.662	0.07110
${f grade_nodes}$	0.686	0.649	0.624	0.655	0.06580
${f age_nodes}$	0.686	0.642	0.621	0.657	0.03346
${f size_grade}$	0.686	0.626	0.646	0.655	0.01787
$\mathbf{age}\mathbf{_size}$	0.686	0.577	0.649	0.657	0.01534
${f grade}$	0.690	0.500	0.653	0.662	0.01340
age_meno	0.686	0.500	0.645	0.657	0.00782
${f age_pgr}$	0.686	0.500	0.656	0.657	0.00512
${f age_grade}$	0.690	0.507	0.661	0.662	0.00454
${f meno_grade}$	0.686	0.500	0.652	0.657	0.00425
${f nodes_hormon}$	0.686	0.526	0.658	0.655	0.00280
${f size}$	0.690	0.618	0.663	0.662	0.00507
${f meno_pgr}$	0.686	0.500	0.657	0.657	0.00316
\mathbf{pgr}	0.686	0.500	0.659	0.655	0.00257
${f meno_nodes}$	0.686	0.595	0.656	0.657	0.00264
${f grade_pgr}$	0.668	0.500	0.627	0.628	0.00241
${f meno_size}$	0.690	0.578	0.663	0.662	0.00185

	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
size_nodes	0.63654	17.86	18.870	0.128490	1
\mathbf{nodes}	0.57106	14.13	16.179	0.040494	1
${f grade_nodes}$	0.54866	13.66	15.650	0.031087	1
${f age_nodes}$	0.21312	9.39	5.710	0.035896	1
${f size_grade}$	0.29411	6.74	7.728	0.008648	1
$\mathbf{age}\mathbf{_size}$	0.29152	6.41	7.652	0.007600	1
${f grade}$	0.19036	6.20	4.983	0.008461	1
age_meno	0.08057	4.76	2.337	0.012065	1
${f age_pgr}$	0.00745	4.11	0.194	0.000417	1
${f age_grade}$	0.11372	3.60	2.960	0.000315	1
${f meno_grade}$	0.20428	3.47	5.343	0.004441	1
${f nodes_hormon}$	0.45522	3.44	12.150	-0.002853	1
${f size}$	0.21050	3.42	5.600	-0.001075	1
${f meno_pgr}$	0.05977	3.35	1.558	-0.000429	1
$\operatorname{\mathbf{pgr}}$	0.19759	2.64	5.745	-0.004123	1
${f meno_nodes}$	-0.06329	2.59	-1.645	0.000631	1
${f grade_pgr}$	0.17471	2.55	5.058	0.001252	1
meno_size	0.10227	2.43	2.662	-0.001378	1

1.7 Logistic Model Performance

Cumulative vs. Observed: Logistic Train: Breast Cancer

Decision Curve Analysis: Logistic Train: Breast Cancer

Relative Risk: Logistic Train: Breast Cancer

ROC: Logistic Train: Breast Cancer

Time vs. Events: Logistic Train: Breast Cancer

Kaplan-Meier: Logistic Train: Breast Cancer

0

par(op)

1.7.1 Training Report

High Risk >= 0.542

pander::pander(t(rrAnalysisTrain\$keyPoints),caption="Threshold values")

Table 52: Threshold values

	@:0.9	@:0.8	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.542	0.431	0.394	0.255	0.130969	0.500
$\mathbf{R}\mathbf{R}$	1.765	1.739	1.799	2.213	1.000000	1.773
\mathbf{SEN}	0.327	0.470	0.566	0.962	1.000000	0.374
\mathbf{SPE}	0.900	0.799	0.731	0.125	0.000683	0.874
\mathbf{BACC}	0.613	0.635	0.648	0.543	0.500342	0.624

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 53: O/E Ratio

O/E	Low	Upper	p.value
0.957	0.91	1.01	0.0901

pander::pander(rrAnalysisTrain\$c.index,caption="C. Index")

• C Index: 0.68

• **Dxy**: 0.36

• **S.D.**: 0.014

• n: 2982

• missing: θ

• uncensored: 1518

Relevant Pairs: 6184528Concordant: 4206582

• Uncertain: 2703838

• cstatCI:

mean.C Index	median	lower	upper
0.68	0.68	0.666	0.695

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 55: ROC AUC

est	lower	upper
0.695	0.677	0.714

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 56: Sensitivity

est	lower	upper
0.327	0.303	0.351

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 57: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 58: Probability Thresholds

90%	80%
0.542	0.431

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 59: Risk Ratio

est	lower	upper
1.77	1.66	1.88

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 60: Logrank test Chisq = 543.347175 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1975	804	1145	101.5	418.9
class=1	364	218	169	14.1	15.9
class=2	643	496	204	418.2	490.7

1.7.2 Results on the validation set using Logistic model

Cumulative vs. Observed: Logistic Test: Breast Cancer

Decision Curve Analysis: Logistic Test: Breast Cancer

Relative Risk: Logistic Test: Breast Cancer

ROC: Logistic Test: Breast Cancer

Time vs. Events: Logistic Test: Breast Cancer

Kaplan-Meier: Logistic Test: Breast Cancer

par(op)

1.7.3 Validation Report

pander::pander(t(rrAnalysis\$keyPoints),caption="Threshold values")

Table 61: Threshold values

	@:0.54	@:0.43	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.542	0.431	0.439	0.306	0.2306	0.500
$\mathbf{R}\mathbf{R}$	1.792	1.702	1.756	2.678	21.9530	1.732
\mathbf{SEN}	0.395	0.595	0.579	0.950	1.0000	0.448
\mathbf{SPE}	0.832	0.638	0.669	0.181	0.0129	0.780
\mathbf{BACC}	0.613	0.617	0.624	0.565	0.5065	0.614

pander::pander(t(rrAnalysis\$OERatio\$estimate),caption="0/E Ratio")

Table 62: O/E Ratio

O/E	Low	Upper	p.value
1.13	1	1.26	0.0428

pander::pander(rrAnalysis\$c.index,caption="C. Index")

• C Index: 0.669

Dxy: 0.338S.D.: 0.0309

• n: 686

• missing: θ

• uncensored: 299

Relevant Pairs: 266144Concordant: 178115

• Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.669	0.67	0.639	0.699

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 64: ROC AUC

est	lower	upper
0.669	0.628	0.709

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 65: Sensitivity

est	lower	upper
0.395	0.339	0.453

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 66: Specificity

est	lower	upper
0.832	0.791	0.868

pander::pander(t(rrAnalysis\$thr_atP),caption="Probability Thresholds")

Table 67: Probability Thresholds

90%	80%
0.542	0.431

pander::pander(t(rrAnalysis\$RR_atP),caption="Risk Ratio")

Table 68: Risk Ratio

est	lower	upper
1.8	1.54	2.11

pander::pander(rrAnalysis\$surdif,caption="Logrank test")

Table 69: Logrank test Chisq = 92.507991 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	369	121	181.7	20.2997	52.3868
class=1	134	60	61.7	0.0479	0.0604
class=2	183	118	55.5	70.2342	88.0195

1.8 Logistic Model Poisson Calibration

riskdata <- cbind(dataBrestCancerTrain\$status,predict(mlog,dataBrestCancerTrain,type="prob"),dataBrestC
calprob <- CalibrationProbPoissonRisk(riskdata)
pander::pander(c(h0=calprob\$h0,</pre>

Gain=calprob\$hazardGain,
 DeltaTime=calprob\$timeInterval),
caption="Logistic Calibration Parameters")

h0	Gain	DeltaTime
0.676	1.31	7.14

Cumulative vs. Observed: Cal. Logistic Train: Breast Cancer

Decision Curve Analysis: Cal. Logistic Train: Breast Cancer

Relative Risk: Cal. Logistic Train: Breast Cancer

ROC: Cal. Logistic Train: Breast Cancer

Time vs. Events: Cal. Logistic Train: Breast Cancer

Kaplan-Meier: Cal. Logistic Train: Breast Cancer

Low Risk < 0.521	1975	1268	399	23	0
0.521 <= Risk < 0.639	364	160	47	2	0
High Risk $>= 0.639$	643	143	37	1	0

par(op)

1.8.1 Report of the calibrated logistic: training

pander::pander(t(rrAnalysisTrain\$keyPoints),caption="Threshold values")

Table 71: Threshold values

	@:0.9	@:0.8	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.639	0.521	0.480	0.319	0.167426	0.500
$\mathbf{R}\mathbf{R}$	1.765	1.739	1.799	2.213	1.000000	1.759
\mathbf{SEN}	0.327	0.470	0.566	0.962	1.000000	0.507
\mathbf{SPE}	0.900	0.799	0.731	0.125	0.000683	0.774
\mathbf{BACC}	0.613	0.635	0.648	0.543	0.500342	0.641

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 72: O/E Ratio

O/E	Low	Upper	p.value
1.02	0.974	1.08	0.343

pander::pander(rrAnalysisTrain\$c.index,caption="C. Index")

• C Index: 0.68

• **Dxy**: 0.36

• **S.D.**: 0.014

• n: 2982

• missing: θ

• uncensored: 1518

• Relevant Pairs: 6184528

Concordant: 4206590Uncertain: 2703838

• cstatCI:

mean.C Index	median	lower	upper
0.68	0.68	0.666	0.693

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 74: ROC AUC

est	lower	upper
0.695	0.677	0.714

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 75: Sensitivity

est	lower	upper
0.327	0.303	0.351

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 76: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 77: Probability Thresholds

90%	80%
0.639	0.521

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 78: Risk Ratio

est	lower	upper
1.77	1.66	1.88

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 79: Logrank test Chisq = 543.347175 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1975	804	1145	101.5	418.9
class=1	364	218	169	14.1	15.9
class=2	643	496	204	418.2	490.7

Cumulative vs. Observed: Cal. Logistic Test: Breast Cancer

Decision Curve Analysis: Cal. Logistic Test: Breast Cancer

Relative Risk: Cal. Logistic Test: Breast Cancer

ROC: Cal. Logistic Test: Breast Cancer

Time vs. Events: Cal. Logistic Test: Breast Cancer

Kaplan-Meier: Cal. Logistic Test: Breast Cancer

par(op)

1.8.2 Report of the calibrated validation

pander::pander(t(rrAnalysisTestLogistic\$keyPoints),caption="Threshold values")

Table 80: Threshold values

	@:0.64	@:0.52	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.639	0.521	0.529	0.379	0.2897	0.500
$\mathbf{R}\mathbf{R}$	1.792	1.702	1.756	2.678	21.9530	1.703
\mathbf{SEN}	0.395	0.595	0.579	0.950	1.0000	0.642
\mathbf{SPE}	0.832	0.638	0.669	0.181	0.0129	0.587
\mathbf{BACC}	0.613	0.617	0.624	0.565	0.5065	0.614

pander::pander(t(rrAnalysisTestLogistic\$OERatio\$estimate),caption="0/E Ratio")

Table 81: O/E Ratio

O/E	Low	Upper	p.value
1.22	1.08	1.36	0.00101

pander::pander(rrAnalysisTestLogistic\$c.index,caption="C. Index")

• C Index: 0.669

Dxy: 0.338S.D.: 0.0309

• n: 686

• missing: θ

• uncensored: 299

• Uncertain: 203702

Relevant Pairs: 266144Concordant: 178115

• cstatCI:

mean.C Index	median	lower	upper
0.669	0.67	0.64	0.698

pander::pander(t(rrAnalysisTestLogistic\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 83: ROC AUC

est	lower	upper
0.669	0.628	0.709

pander::pander((rrAnalysisTestLogistic\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 84: Sensitivity

est	lower	upper
0.395	0.339	0.453

pander::pander((rrAnalysisTestLogistic\$ROCAnalysis\$specificity), caption="Specificity")

Table 85: Specificity

est	lower	upper
0.832	0.791	0.868

pander::pander(t(rrAnalysisTestLogistic\$thr_atP), caption="Probability Thresholds")

Table 86: Probability Thresholds

90%	80%
0.639	0.521

pander::pander(t(rrAnalysisTestLogistic\$RR_atP),caption="Risk Ratio")

Table 87: Risk Ratio

est	lower	upper
1.8	1.54	2.11

pander::pander(rrAnalysisTestLogistic\$surdif,caption="Logrank test")

Table 88: Logrank test Chisq = 92.507991 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	369	121	181.7	20.2997	52.3868
class=1	134	60	61.7	0.0479	0.0604
class=2	183	118	55.5	70.2342	88.0195

1.9 Comparing the COX and Logistic Models on the Independent Data

pander::pander(t(rrCoxTestAnalysis\$0Acum95ci))

mean	50%	2.5%	97.5%
0.841	0.841	0.84	0.842

pander::pander(t(rrAnalysisTestLogistic\$OAcum95ci))

mean	50%	2.5%	97.5%
0.791	0.791	0.791	0.792

pander::pander(t(rrCoxTestAnalysis\$0E95ci))

mean	50%	2.5%	97.5%
1.11	1.11	1.08	1.14

pander::pander(t(rrAnalysisTestLogistic\$0E95ci))

mean	50%	2.5%	97.5%
0.989	0.989	0.961	1.02

```
maxobs <- sum(dataBrestCancerTest$status)</pre>
par(mfrow=c(1,2),cex=0.75)
plot(rrCoxTestAnalysis$CumulativeOvs[,1:2],type="l",lty=1,
     main="Cumulative Probability",
     xlab="Observed",
     vlab="Cumulative Probability",
     ylim=c(0,maxobs),
     xlim=c(0,maxobs))
lines(rrAnalysisTestLogistic$CumulativeOvs[,1:2],lty=2,col="red")
lines(x=c(0,maxobs),y=c(0,maxobs),lty=3,col="gray")
legend("topleft",legend = c("Cox","Logistic","Ideal"),
       col=c("black","red","gray"),
       lty=c(1,2,3),
       cex=0.75
)
plot(rrCoxTestAnalysis$CumulativeOvs$Observed,
     rrCoxTestAnalysis$CumulativeOvs$Cumulative-
       rrCoxTestAnalysis$CumulativeOvs$Observed,
     main="Cumulative Risk Difference",
     xlab="Observed",
     vlab="Cumulative Risk - Observed",
     type="1",
     lty=1)
lines(rrAnalysisTestLogistic$CumulativeOvs$Observed,
     rrAnalysisTestLogistic$CumulativeOvs$Cumulative-
       rrAnalysisTestLogistic$CumulativeOvs$Observed,
     1ty=2,
     col="red")
legend("topleft",legend = c("Cox","Logistic"),
       col=c("black","red"),
       lty=c(1,2),
       cex=0.75
```

Cumulative Probability

Cumulative Risk Difference


```
plot(rrCoxTestAnalysis$0EData[,2:3],type="1",lty=1,
     main="Expected over Time",
     xlab="Observed",
     ylab="Expected",
     ylim=c(0,maxobs),
     xlim=c(0,maxobs))
lines(rrAnalysisTestLogistic$0EData[,2:3],lty=2,col="red")
lines(x=c(0,maxobs),y=c(0,maxobs),lty=3,col="gray")
legend("topleft",legend = c("Cox","Logistic","Ideal"),
       col=c("black","red","gray"),
       lty=c(1,2,3),
       cex=0.75
)
plot(rrCoxTestAnalysis$0EData$0bserved,
     rrCoxTestAnalysis$OEData$Expected-
       rrCoxTestAnalysis$0EData$0bserved,
     main="Expected vs Observed Difference",
     xlab="Observed",
     vlab="Cumulative - Observed",
     type="1",
     lty=1)
lines(rrAnalysisTestLogistic$0EData$0bserved,
     rrAnalysisTestLogistic$OEData$Expected-
       {\tt rrAnalysisTestLogistic\$0EData\$0bserved,}
     lty=2,col="red")
legend("bottomleft",legend = c("Cox","Logistic"),
       col=c("black","red"),
       lty=c(1,2),
       cex=0.75
)
```

