

五、 光学设计

安徽创谱仪器科技有限公司根据客户的技术指标要求,已完成光学系统核算和优化,最终的光学设计方案如下。

5.1 设计要求

表 5.束线指标要求

序号	项目	验收指标	内部指标		
			主线	支线	
1	光谱范围	5~200 nm	1.2~50 nm	40~200 nm	
		6~250 eV	25~1000 eV	6~31 eV	
2	波长重复精度	0.01 nm @ 13.5 nm	机构重复性按 1/2000 波长重复性设计		
3	分辨本领	1000 @ 13.5 nm	1000 @ 13.5 nm	全波段 >800	
			全波段 >800		
4	光谱纯度	≥ 90%	滤片	气体滤波	
5	新建反射率计	φ1m, 1×10⁻⁵ Pa			
6	光子通量	,	8×10 ¹⁰ @ 120 eV	3×10 ¹⁰ @ 14 eV	
	(photons/s)	/	3×10 ⁹ @ 200 eV, 500 eV	5×10 ¹⁰ @ 25 eV	

5.2 光源特性

5.2.1 NSRL 机器参数

 $E = 0.8 \; GeV \quad I = 300 \; mA$ $\epsilon x = 38 nm.rad \quad \epsilon y = 1.9 nm.rad$

表 6.第四块弯铁(B4)15°角处束流参数

Length	1.7m			
В	1.23T			
ρ	2.16451m			
θ	45°			
15°偏角处束流参数				
β_x	0.923 m			
$eta_{\mathcal{Y}}$	7.686 m			

α_{x}	1.378
α_y	-2.100
γ_x	3.142 (1/m)
γ_y	0.703 (1/m)
η_x	0.279 m
η_x'	-0.475
σ_{χ}	0.229mm
σ_x'	0.412 mrad
σ_y	0.121mm
σ_y'	0.0366mrad

5.2.2 光源性能

在弯铁光源中,由于圆周运动的电子在水平方向的辐射是均匀的,因而可以用单位水平毫弧度内每秒的光谱通量(phs/s/mrad.300mA.0.1%bw)得到光通量与能量之间的关系,称为通量谱,可写成下面的形式:

$$\frac{dF_B}{d\theta} = 2.457 \times 10^{13} E \left[GeV \right] I \left[A \right] y \int_{y}^{\infty} K_{5/3} \left(y' \right) dy'$$

下图给出了系统在不同水平接收角的情况下的光子通量。

利用 shadow 软件追迹弯铁发出的光的光斑大小,如下图所示,光斑尺寸 0.542×0.285mm² (FWHM)。

下图为不同能量情况下垂直发散角,在低能量处的垂直发散角较大,而到 100eV 以上,其垂直接收角基本不变。

5.3 光束线总体布置

光束线分主线和支线设计,按光谱范围,其中:

主线:针对短波段,覆盖波长 1.2-50nm,对应能量范围 25-1000eV,采用自聚焦平面光栅 单色器 (SF-VLS-PGM);

支线:针对长波段,覆盖波长 40-200nm,对应能量范围 6-31eV,采用 C-T 型光栅单色器设计,用气体滤波抑制高次谐波。

光束线单色器采用光栅公称线密度参数及能量范围分布如下:

表 7.光束线能量范围

	光栅线密度(l/mm)	能量范围(eV)	波长范围 (nm)
主线	300	25-150	8.2~50
	1400	100-1000	1.24-12.4
支线	300	6-12	200-103
	600	11-31	112-40

表 8.光束线验收指标

A CONTRACT MAIN.					
序号	项目	验收指标	内部指标		
			主线	支线	
1	光谱范围	5 – 200 nm	1.2 - 8 - 50 nm $40 - 100 - 200 r$		
		6 - 250 eV	25 –1000 eV	6 - 12 - 31 eV	
2	波长重复精度	0.01 nm	机构重复性按 1/2000 波长重复性设计		
	@ 13.5 nm	0.01 11111			
3	分辨本领	1000 @ 13.5 nm	1000 @ 13.5nm	全波段>800	
			全波段>800		
4	光谱纯度	≥ 90%	滤片 气体滤波		
5	新建反射率计	φ1 米,1×10 ⁻⁵ Pa			
6	光子通量	/	8×10 ¹⁰ @ 120eV	3×10 ¹⁰ @ 14eV	
	(photons/s)	/	3×10 ⁹ @ 200eV, 500eV	5×10 ¹⁰ @ 25eV	

下图为束线的总体布局图,从弯铁发出的光,每条分支线分别利用其中 5mrad 的水平发散角,两条分支线的中心夹角 25mrad。

5.4 主线物理设计

5.4.1 光学系统设计

光学系统示意图见下图。前置镜接收角为 4.5mrad(水平)×1.4mard (竖直)。从光源发出的光以 3°入射竖直安装的距离光源 6000 mm 的前置聚焦镜 M1,将光在系统竖直方向以 2:1 聚焦

在入射狭缝 S1 上,在水平方向聚焦在出射实验站处。所有光学元件表面镀 Au。

从入射狭缝出射的光入射单色器内的平面镜,其反射光打在 300 l/mm 或 1400l/mm 中心线密度的变间距光栅(VLS-PG)中心,出射光聚焦在出射狭缝上。25-150eV 使用 300 l/mm 中心线密度,100-1000eV 使用 1400 l/mm 中心线密度。后置镜球面镜或柱面镜,将出射狭缝光斑聚焦到实验站处。光束线整体长度约为 18.5 m。

图 16.主线光路布置图

5.4.2 变线距参数

自聚焦光栅单色器中,分光光学元件为变线距光栅,变间距平面光栅中从光栅中心到坐标w处刻线总数可以表示为:

$$N = N_0 \left(1 + a_1 w + a_2 w^2 + a_3 w^3 + \cdots \right)$$

w的方向定义为逆着光路的方向, no 是展开系数。

对于 1400l/mm 光栅,覆盖 100~1000eV。59.37 eV 处光栅包含角 2K=160°,600eV 处光栅包含角 2K=173.787°,且在 200eV 处消除慧差,计算得到:

$$a_1 = -8.245 \times 10^{-4} \text{mm}^{-1}, a_2 = 3.002 \times 10^{-7} \text{mm}^{-2};$$

300 l/mm 光栅,覆盖 25~150eV。25eV 处光栅包含角 2K=160°, 150eV 处光栅包含角 2K=171.88°,且在 90 eV (13.6 nm) 处消除光栅慧差,计算得到:

$$a_1 = -1.426 \times 10^{-3} \text{ mm}^{-1}, a_2 = 2.712 \times 10^{-7} \text{mm}^{-2};$$

5.4.3 光学系统参数

平面镜的掠入射角 $\theta = (180^{\circ} - (\alpha - \beta))/2$,根据光栅方程求出不同能量时候的入射角 α 、出射角 β 以及平面镜的掠入射角 θ 和光栅接收角 ϕ (光栅按 180mm 计算)。如下图所示,如果考虑将平面镜和光栅转至水平位置,平面镜的转动范围为 10.0° ,光栅转动范围为 12.5° 。整个系统

垂直接收角主要限制因素为光栅尺寸,在低能段由于光栅入射角相对较小,则垂直接收角相对较大,而在高能段系统的垂直接收角较小。

图 17.光栅的入射角、衍射角以及平面镜的掠入射角

图 18.不同能量对应的垂直接收角

5.4.4 光学系统分辨率

在光栅单色器中光谱展宽的来源于像差、入射狭缝、出射狭缝、元件面型误差、衍射极限等。根据系统设置,前置系统收光缩放聚焦后,理论上在入射狭缝处的光斑为 120μm, 考虑到超环面镜像差的因素,实际的光斑尺寸会比理论值大,如下图所示,追迹结果显示光斑尺寸接近 200μm (FWHM)。

图 19.入射狭缝处光斑大小

由于光学系统不同光子能量的缩放比不同,则相同开口的入射狭缝在不同能量处对应的出射狭缝宽度会不相同。

光栅的面型误差: σG=0.2"

平面镜的面形误差: σM=0.2"

由于两块光栅的缩放比不同,对于 300l/mm 光栅,入射狭缝宽度设置为 100μm,对于 1400l/mm 光栅,入射狭缝宽度可以设置为 150μm。

从下图可以看出入射狭缝开口宽度对光谱分辨率影响最大。可以通过减小入射狭缝的开口尺寸来提高系统的能量分辨本领。

图 20.300l/mm-各项因素对分辨率的影响

图 21.1400l/mm-各种因素对分辨率的影响

下图给出了两块光栅的光谱分辨率,理论上可以到 1000eV,同时由于狭缝处的光斑较大,可以适当的通过增加狭缝开口大小而提高光通量。

图 22.光栅单色器的分辨本领

通过 SHADOW 软件可以对系统进行光学追迹,如下图所示:

图 24.13.5±0.011nm, Res.P=1200@300l/mm

5.4.5 光学系统效率

光学系统的效率,主要由前置镜,平面镜,后置镜的反射率,光栅的衍射效率,狭缝的通过率决定,下面给出光学元件的效率、系统的几何效率以及最终的总效率。

5.4.5.1 反射镜反射率

前置镜和后置镜的掠入射角为 3°, 镀膜厚度设为 40 nm, 反射率由 XOP 软件计算给出, 下图给出了使用 Au 镀层在全波段的效率对比, 其中对不同偏振态的反射率变化不大, 后续计算按照无偏振考虑。

图 25.光学元件反射率(镀层厚度 40nm,表面粗糙度 0.5nm)

5.4.5.2 平面镜反射率

平面镜掠入射角在扫描过程中不断的变化,两块光栅相同能量时平面镜的掠入射角不同,通过 XOP 软件计算平面镜的反射率。

图 26.平面镜反射率

5.4.5.3 光栅衍射效率

分别计算闪耀光栅和矩形光栅效率以及不同衍射级次的效率,闪耀光栅效率明显高于矩形槽光栅。但矩形槽光栅高次谐波抑制效果较好,用户希望选择矩形槽光栅。

图 27.300l/mm-不同槽型光栅效率

图 28.300l/mm-不同衍射级次效率

图 29.1400l/mm-不同槽型光栅效率

图 30.1400l/mm-不同衍射级次效率

5.4.5.4 几何效率

系统几何效率主要由两部分组成,一部分是尺寸维度,另一维度是角度维度,由于光栅的尺寸有限,而不同能量处光栅的入射角不同,因此会导致垂直接收角发生变化,则对应不同能量情况时的接受效率会有所不同。

图 31.不同能量下的接收效率

前置镜收光聚焦到入射狭缝,由于像差的存在,导致狭缝光斑偏大,如下图所示。通过追 迹模拟的手段分别获得不同狭缝开口大小的情况下,入射狭缝的透光效率。

图 32.入射狭缝处光斑

图 33.入射狭缝透过率

5.4.5.5 系统总效率及光通量

将各光学元件的效率和几何效率相乘得到光束线总效率,下图给出的是各个能量点的传输 效率,在低能段较高,但是在高能段,由于光学元件反射率低,同时几何传输效率也低,导致 传输效率很低,可以适当的根据需求来调节入射狭缝的尺寸大小。

图 34.系统传输效率

将总效率与光源光子通量相乘,同时考虑各个能量点的分辨率,得到系统的光通量,对于 300l/mm 光栅,理论上最高通量接近 10^{12} phs/s@120eV @300mA,对于 1400l/mm 光栅,理论上最高通量为 2×10^{11} phs/s@130eV @300mA 左右。设计需求值是 8×10^{10} phs/s@ 120 eV, 3×10^9 @ 200 eV,各有 1 个量子左右的余量。

图 35.光束线的输出光通量

5.4.6 离轴转动参数

变包含角光栅单色器一般采用平面镜离轴转动来改变包含角。

图 36.离轴转动模型

见图 36,建立以平面光栅中心为坐标原点 O, 出射光为 x 轴, 垂直方向为 y 轴的坐标系。为了保证平面镜(PM)反射光轴经过 O 点, PM 需离轴转动,设转动中心为 M(XM,YM),转动中心与平面镜垂直距离为 RM,也就是离轴转动半径。最终得到离轴转动参数为:

YH=31mm, XM=0mm, RM=31.1mm, YM=-15.6mm

下图给出了各个能量点中心光线偏离光栅中心尺寸 Wg, 基本可以控制在 20μm 以内, 对系统性能影响较小, 可以忽略。

下图出了各个能量点在平面镜上的光斑尺寸,由于光栅尺寸固定,光栅充当了光阑的作用,假定光栅有用长度为 180mm,则对与 1400l/mm 光栅对应的平面镜上的光斑尺寸约为 92mm。对与 300l/mm 光栅对应的平面镜上的光斑尺寸约为 136mm。

计算得到平面镜有效长度 391.7mm,实际平面镜长度为 400mm,由于平面镜端面距离光栅中心较近,工程设计时需要重点考虑防碰撞的设计。

图 38.平面镜安装尺寸示意图

5.4.7 光斑大小

追迹模拟不同位置的光斑大小,确认光学元件参数。

图 41.后置镜 112×6.8mm²

下图给样品点处的光斑大小追迹情况模拟,从图中可以看出,聚焦光斑尺寸约为 0.18×1.25mm²,满足用户指标要求。

图 42.实验站光斑(FWHM:0.18×1.25mm²)

谱学线站距离计量线站的距离为 1.4 米, 后续的发散角为 2.0×2.0mrad²,如下图所示:

图 43.实验站处光斑大小 2.0×2.0mrad2

则相应的实验站光斑如下图所示,光斑接近 1.52×1.88mm²

图 44.谱学实验站处的光斑大小

5.4.8 光学元件

表 9.光学元件参数表

	前置聚焦镜 M1	后置聚焦镜 M2	平面镜	300 l/mm 光栅	1400l/mm 光栅
面型	超环面	柱面镜	平面	平面	平面
元件尺寸(l×w×h) 有效尺寸(l×w)	550×50×50 530×30	150×40×30 140×20	400×50×50 380×40	185× 40 × 25 175×30	185× 40 × 25 175×30
面型参数(mm)	R = 155280 $\rho = 184.72$	ρ= 89.7	/	/	/
线密度				$n_0 = 300 \text{ l/mm}$ $a_1 = -1.426 \times 10^{-3}$ mm^{-1} $a_2 = 2.712 \times 10^{-7}$ mm^{-2}	$n_0 = 1400 \text{ l/mm}$ $a_1 = -8.245 \times 10^{-4}$ mm ⁻¹ $a_2 = 3.0020 \times 10^{-7}$ mm ⁻²
光 栅 类 型 (blaze/laminar)				Laminar	Laminar
闪耀角				c/d=0.6, h=35nm	c/d=0.65, h=8nm
弧矢/子午面型误 差 (arcsec RMS)	1"/0.2"	1"/0.2"	1"/0.2"	0.2"	0.2"
镀膜	Au	Au	Au	Au	Au
覆盖能量范围	25~1000 eV	25~ 1000 eV	25~1000 eV	25~150 eV	100~1000eV
入射角	87°	87°	80°-90°	82.455°-86.944°	86.071°-88.78°