EXTREME HEAT

Latino Policy & Politics Institute UCLA Climate & Health Dashboard

San Mateo County

County Statistics

Factors Influencing Exposure to Extreme Heat

Median Age Latino: 33 NL white: 48

♀≡ **Noncitizen Population** Latino: 23%

NL white: 6%

Limited English Proficiency

Latino: 28% NL white: 4%

Households Latino: 58% NL white: 34%

Rate Latino: 10% NL white: 5% **Median Income**

(Household) Latino: \$99k NL white: \$166k

Benefits

Latino: 10% NL white: 2%

Insecurity Latino: 21% NL white: 11%

Latino: 9% NL white: 2%

Fair/Poor **Health Status**

Latino: 12% NL white: 6%

Life Expectancy

Latino: 86 yrs NL white: 83 yrs

NL white = Non-Latino white

Neighborhood Statistics Extreme Heat Days

Brisbane

Extreme Heat Days

Zero Days Below County Avg. Above County Avg.

Extreme Heat Days (≥ 90°F), 2018-2022

Latino Neighborhoods and Exposure toods

Extreme heat days are defined as days where the temperature is at or above 90°F. Exposure to extreme heat poses significant health risks.

Annual Number of Extreme Heat Days (2018-2022)

At 90°F, the risk of heat-related illnesses and conditions increases significantly.

Latino neighborhoods

NL white neighborhoods

8 days

9 days

average days ≥ 90°F annually

Longest Period of Consecutive Extreme Heat **Days (2022)**

The Federal Emergency **Management Agency** defines a period of extreme heat in most of the U.S. as a period of 2 to 3 days above 90°F.

Latino neighborhoods

NL white neighborhoods

6 days

5 days

consecutive days ≥ 90°F annually

Projected Number of Extreme Heat Days by Mid-Century (2035–2064)

Looking forward, Latino neighborhoods are projected to experience a greater number of extreme heat days.

Latino neighborhoods

NL white neighborhoods

35 days

31 days

expected days ≥ 90°F annually

Colma
South San Francisco
San Bruno
Pacifica
Foster Gity Belmont San Garlos Woodstde Pertola Valley County Average: 5 days
State Average: 51 days
(C) OpenStreetMap contributors (C) CARTO

Neighborhood Statistics (cont.)

Barriers and Facilitators To Preventing Heat Exposure

Tree Canopy

Tree canopy is land shaded by trees. Less tree canopy (fewer trees) = **Increased** exposure to extreme heat

% of Land with Tree Canopy

7%

30% **NL** white

Latino neighborhoods

neighborhoods

Impervious Surfaces

Impervious surfaces are water-resistant surfaces such as concrete, asphalt, and

More impervious surfaces (like paved roads) = Increased exposure to extreme

% of Land with Impervious Surfaces

25%

71%

Latino

NL white neighborhoods neighborhoods

Older Housing Units

Older housing units are homes built before 1970 that often have poor insulation and inefficient HVAC systems. More older homes = Increased exposure

to extreme heat

% of Older Housing Units

67%

Latino neighborhoods

58% **NL** white neighborhoods

Vulnerable Groups

Age

Children and older adults are at higher risk for heat-related illnesses.

26% 10% ages 0-18 ages 65+ Latino neighborhoods

Heat-related

indicator of a

neighborhood's

vulnerability to extreme temperatures

strategies.

emergency room visits

and the effectiveness

of its heat mitigation

serve as a critical

21% 22% ages 0-18 ages 65+ NL white neighborhoods

Workers in Heat-Exposed Industries

Industries with the highest exposure to extreme heat include agriculture, construction, waste management, and warehousing. Jobs in these sectors carry increased risks of heat-related illnesses such as heat stroke, dehydration, chronic heat stress, and even premature death.

% of Workers in Heat-Exposed Industries

32%

Latino neighborhoods

12% NL white neighborhoods

Health

Extreme heat poses serious health risks, especially for people with conditions like heart disease, asthma, diabetes, and obesity. These individuals are more vulnerable because heat places extra stress on the body, worsening symptoms and increasing the risk of medical emergencies.

% of Adults (18+) with Pre-Existing Conditions

10% Latino

NL white

neighborhoods neighborhoods

Diabetes

31% Latino

22% NL white neighborhoods neighborhoods

Obesity

Heat-Related Emergency Department Visits

Latino neighborhoods

per 10,000 people

NL white neighborhoods

Emergency Department Visits (per 10,000 people)

10

Latino **NL** white neighborhoods neighborhoods

Heart Attacks

26

Latino NL white neighborhoods neighborhoods

Asthma Attacks

Disadvantaged Communities

The CA Environmental Protection Agency defines disadvantaged communities based on their environmental pollution burden and population characteristics. Under Senate Bill 535, revenue from CA's Cap-and-Trade Program is partly directed toward these communities through the CA Climate Investments program to reduce pollution, enhance climate resilience, and improve health and economic well-being.

% of Disadvantaged Communities

25%

Latino

NL white neighborhoods neighborhoods

0%