PAT-NO:

JP404357879A

DOCUMENT-IDENTIFIER:

JP 04357879 A

TITLE:

NONVOLATILE SEMICONDUCTOR MEMORY

PUBN-DATE:

December 10, 1992

INVENTOR-INFORMATION:

NAME

YOSHIMI, MASANORI YAMAUCHI, YOSHIMITSU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SHARP CORP

N/A

APPL-NO:

JP03132722

APPL-DATE:

June 4, 1991

INT-CL (IPC): H01L029/788, H01L029/792, H01L021/318,

H01L027/115

US-CL-CURRENT: 257/315, 257/324

ABSTRACT:

PURPOSE: To make thicknesses of insulating films of edges of a floating gate and a control gate uniform and to prevent a decrease in a breakdown voltage of an interlayer insulating film.

CONSTITUTION: An interlayer insulating film 10 between a part including a floating gate 6 and a control gate 8 and a select gate 9 covering it, is formed of an ONO film. A memory 1 having high breakdown voltage and high reliability can be realized.

COPYRIGHT: (C) 1992, JPO& Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-357879

(43)公開日 平成4年(1992)12月10日

(51) Int.CI.5 H 0 1 L		識別記号	庁内整理番号	FI	技術表示箇所
		V	8518-4M 8225-4M 8831-4M		29/78 371 27/10 434 R 請求項の数1(全3頁) 最終頁に続く
(21)出顧番号		特顧平3-132722		(71)出願人	000005049 シヤープ株式会社
(22)出願日		平成3年(1991)6	月4日	(72)発明者	大阪府大阪市阿倍野区長池町22番22号 吉見 正徳 大阪市阿倍野区長池町22番22号 シヤープ 株式会社内
				(72)発明者	山内 祥光 大阪市阿倍野区長池町22番22号 シヤープ 株式会社内
				(74)代理人	弁理士 野河 信太郎

(54) 【発明の名称】 不揮発性半導体メモリ

(57)【要約】 (修正有)

【目的】 フローティングゲート及びコントロールゲートのエッヂ部分の絶縁膜厚を均一化し、層間絶縁膜の耐圧低下を防止する。

【構成】 フローティングゲート6とコントロールゲート8を含む部分と、これを覆うセレクトゲート9との間の層間絶縁膜10をONO膜とした。

【効果】 高耐圧、高信頼性のメモリを実現できる。

1

【特許請求の範囲】

【請求項1】 ソース・ドレインを有する半導体基板上 に、フローティングゲート及びコントロールゲートが順 次配設され、これらフローティングゲート及びコントロ ールゲートを含む下部ゲート部と、この下部ゲート部を **覆うセレクトゲートとの間の層間絶縁膜をONO膜とし** た不揮発性半導体メモリ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、高集積化に適したフ 10 ラッシュE² PROMの不揮発性半導体メモリに関する ものである。

[0002]

【従来の技術】従来この種メモリとしては、図2に示す ものがある。図2において、ソース(21)、ドレイン (22) を有するSi基板(23)上に第1絶縁膜(2 4) を介してフローティングゲート (25) が配設さ れ、さらに第2絶縁膜(26)を介してコントロールゲ ート (27) が配設され、さらに、第3絶縁膜 (28) (30)が構成されている。

【0003】また、フローティングゲート(25)とセ レクトゲート (29) 間の層間絶縁膜 (31) やコント ロールゲート (27) とセレクトゲート (29) 間の層 間絶縁膜(第3絶縁膜)(28)には熱酸化膜を使用し ている。

[0004]

【発明が解決しようとする課題】しかし、従来の熱酸化 膜により形成されたメモリは、フローティングゲート (25) 及びコントロールゲート(27)のエッジ部分 30 (32)での酸化膜厚が均一にならない(図3参照)た め、ここに電界集中が起こり、層間絶縁膜の耐圧低下を まねく。また、熱酸化膜質改善には、1000°C以上 の高温酸化が必要となり、高集積化メモリーには適さな 11.

[0005]

【課題を解決するための手段及び作用】この発明は、ソ ース・ドレインを有する半導体基板上に、フローティン グゲート及びコントロールゲートが順次配設され、これ らフローティングゲート及びコントロールゲートを含む 40 下部ゲート部と、この下部ゲート部を覆うセレクトゲー トとの間の層間絶縁膜をONO膜とした不揮発性半導体 メモリである。

【0006】すなわち、この発明は、フローティングゲ ートとコントロールゲートを熱酸化後、SINデポ、熱 酸化を行いONO膜を形成することで、フローティング ゲートとコントロールゲートを含む部分とセレクトゲー トとの層間絶縁膜を形成してこれを同時にセレクトゲー ト絶縁膜とすることで、簡単に高信頼性の絶縁膜を有す るメモリを提供するものである。

[0007]

【実施例】以下実施例について説明する。なお、この発 明はこれによって限定を受けるものではない。図1にお いて、メモリセル(1)は、ソース(2)、ドレイン (3) を有するS1基板(4)上に第1絶縁膜(5)を 介してフローティングゲート(6)が配設され、さらに 第2絶縁膜(7)を介してコントロールゲート(8)が 配設され、さらにコントロールゲート(8)、フローテ ィングゲート(6)を含む部分と、これらを覆うセレク トゲート (9) 間の第3絶縁膜 (10) としてONO膜 が配設されてなる。このONO膜(10)はセレクトゲ ート絶縁膜としても機能するものであり、下層のSiO 2膜(11)、中層のSiN膜(12)、上層のSiO2 膜(13)からなる。

2

【0008】以下製造方法について簡単に説明する。フ ローティングゲート(6)とコントロールゲート(8) をエッチングした後、セレクトゲート層の酸化膜を除去 した後、熱酸化を行う。この際、コントロールゲート (8) 上に120人の熱酸化膜(11)を形成する。次 を介してセレクトゲート (29) が配設されてメモリ 20 に、SiN膜 (12) をCVD法で200 4 厚に積層 し、その後、SiN膜(12)上を熱酸化して20~3 0人の熱酸化膜(13)を形成する。続いて、セレクト ゲート(9)をパターン形成する。

> 【0009】このように本実施例では、コントロールゲ ート(8)とフローティングゲート(6)を含む部分と これを覆うセレクトゲート(9)との間の層間絶縁膜 (10)をONO膜としたのでこの膜厚を均一にできる とともに、ビットライン上をフローティングゲートパタ ーンで完全に覆う構造としヒットライン上のSI基板 (4)の掘れを防止できる。

[0010]

【発明の効果】以上のようにこの発明によれば、コント ロールゲートとフローティングゲートを含む部分と、こ れを覆うセレクトゲートとの間の層間絶縁膜をONO膜 としたので、層間絶縁膜としての膜厚を均一にできるの で、高宿頼性のメモリを実現できる。

【図面の簡単な説明】

【図1】この発明の一実施例を示す構成説明図である。

【図2】従来例を示す構成説明図である。

【図3】従来例を示す要部構成説明図である。

【符号の説明】

- メモリ 1.
- 2. ソース
- 3. ドレイン
- Si基板 4.
- フローティングゲート 6.
- コントロールゲート 7.
- セレクトゲート 9.
- 10. ONO膜

50

8/23/05, EAST Version: 2.0.1.4

フロントページの続き

H01L 27/115

技術表示箇所