Calcolo Numerico - A.A. 2013/14 Appello 10 gennaio 2014

Esercizio 1 Si considerino la matrice A ed il vettore $\mathbf b$ seguenti:

$$A = \begin{bmatrix} 1 & 8 & 0 \\ 0 & 1 & 4 \\ 500 & -1.5 & -0.002 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 9 \\ 5 \\ 498.498 \end{bmatrix}$$

Punto 1.1

Risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ con il metodo di Gauss-Seidel ponendo la tolleranza del test d'arresto tol=1.e-8, il numero massimo di iterazioni nmax=10 e $\mathbf{x}_0 = \mathbf{0}$. Rappresentare graficamente la norma del residuo al variare delle iterazioni.

Il metodo è giunto a convergenza in 10 iterazioni?

Senza lanciare ulteriormente il codice, ma solo analizzando la storia di convergenza del metodo, Gauss-Seidel convergerà alla soluzione del sistema aumentando nmax? Giustificare la risposta.

Punto 1.2

Risolvere il sistema $A\mathbf{x} = \mathbf{b}$ con uno dei metodi iterativi visti durante le esercitazioni, tra quelli che possono essere applicati alla matrice in questione.

Riportare la soluzione ottenuta (ponendo toll=1.e-8, x0=0 e nmax opportuno), il numero di iterazioni effettuate e la stima dell'errore $\|\mathbf{x} - \mathbf{x}_{ex}\|$ senza conoscere la soluzione esatta \mathbf{x}_{ex} e supponendo di commettere errori sui dati dell'ordine della precisione di macchina.

Esercizio 2 Si consideri il seguente schema per l'approssimazione numerica di un'equazione differenziale ordinaria del primo ordine:

$$u_{n+1} = u_n + \frac{h}{6}(K_1 + 4K_2 + K_3)$$
, per $n \ge 0$, essendo
 $K_1 = f(t_n, u_n)$, $K_2 = f(t_n + \frac{h}{2}, u_n + \frac{h}{2}K_1)$, $K_3 = f(t_{n+1}, u_n + h(2K_2 - K_1))$ (1)

implementato nella function ode_100114.m.

Punto 2.1. Il metodo (1) è un metodo multistep? Giustificare la risposta. È un metodo esplicito o implicito?

Punto 2.2. Determinare numericamente l'ordine di accuratezza del metodo (1) risolvendo il problema di Cauchy

$$\begin{cases} y'(t) = \frac{3t^2}{t^2 + 1}y^2(t) & t \in (0, 1] \\ y(0) = 1/3 \end{cases}$$
 (2)

e sapendo che la soluzione esatta è $y(t) = -\frac{1}{3(x - arctan(x) - 1)}$.

Figure 1: La regione di assoluta stabilità del metodo (1) è la parte di piano interna alla curva chiusa

Punto 2.3

In Figura 1 è rappresentata la regione di assoluta stabilità del metodo (1). Sfruttando la definizione di regione di assoluta stabilità e partendo da questa figura, determinare in maniera approssimativa (con due cifre decimali) il valore $h_0 > 0$ tale che il metodo dato risulti assolutamente stabile per ogni $0 < h < h_0$ quando viene applicato al problema di Cauchy lineare modello $y'(t) = \lambda y(t)$, per $t \in (0, 100]$, con y(0) = 1 e $\lambda = -2 + i$.

Quindi verificare quanto trovato su carta, calcolando la soluzione numerica con alcuni valori di h maggiori e minori di h_0 .

Esercizio 3 Il braccio di un robot si muove nello spazio tridimensionale e, negli istanti temporali t_i , deve passare per i punti dello spazio $\mathbf{P}_i(t_i)$ di coordinate $(x_i(t_i), y_i(t_i), z_i(t_i))$ come riportato nella seguente tabella:

t_i	0	1	2	3	4	5	6	7	8	9	10	11
$\overline{x_i}$	0	1	3.5	6	9	8	5	3	1	-1.5	-1	0
y_i	1	-1	0	1	2	5	6	8	5.5	-1.5 5 3.2	3	1
z_i	1.6	2	3	4	5	6	6.5	5.4	4.3	3.2	2.1	1.6

Una traiettoria interpolante i valori dati è una curva nello spazio ed è il luogo geometrico dei punti $\mathbf{P}(t) = (x(t), y(t), z(t))$ le cui coordinate x = x(t), y = y(t) e z = z(t) sono funzioni che interpolano i dati (t_i, x_i) , (t_i, y_i) e (t_i, z_i) , rispettivamente.

Facendo riferimento alle tecniche di interpolazione viste durante il corso, scrivere un m-file in cui si costruiscono due diverse traiettorie per il robot (interpolanti i dati assegnati) che siano almeno di classe C^2 e le si rappresenti graficamente nello spazio 3D con il comando plot3(x,y,z). In base ai risultati ottenuti, dire quale delle traiettorie ottenute è da preferirsi.