МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра системи штучного інтелекту

Лабораторна робота 2

з дисципліни "Дискретна математика"

Виконав:

студент групи КН-109 Гладун Ярослав **Викладач:** Мельникова Н. І. Тема: Моделювання основних операцій для числових множин

Мета: Ознайомитись на практиці із основними поняттями теорії множин, навчитись будувати діаграми Ейлера-Венна операцій над множинами, використовувати закони алгебри множин, освоїти принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.

Теоретичні відомості: Множина – це сукупність об'єктів, які називають елементами. Кажуть, що множина А є підмножиною множини S (цей факт позначають А S, де – знак нестрогого включення), якщо кожен її елемент автоматично є елементом множини S. Досить часто при цьому кажуть, що множина A міститься в множині S. Якщо A S i S A, то A називають власною (строгою, істинною) підмножиною S (позначають А S, де – знак строгого включення). Дві множини A та S називаються рівними, якщо вони складаються з однакових елементів. У цьому випадку пишуть A=S. Якщо розглядувані множини є підмножинами деякої множини, то її називають універсумом або універсальною множиною і позначають літерою U (зауважимо, що універсальна множина існує не у всіх випадках). Множини як об'єкти можуть бути елементами інших множин, Множину, елементами якої є множини, інколи називають сімейством. Множину, елементами якої є всі підмножини множини А і тільки вони (включно з порожньою множиною та самою множиною А), називають булеаном або множиною-степенем множини А і позначають Р(А). Потужністю скінченної множини А називають число її елементів, позначають |А|. Множина, яка не має жодного елемента, називається порожньою і позначається ∅.

Варіант 2 (завдання)

- 1. Для скінченних множин $A = \{1,2,3,4,5,6,7\}$, $B = \{4,5,6,7,8,9,10\}$, $C = \{1,3,5,7,9\}$ та універсума $U = \{1,2,3,4,5,6,7,8,9,10\}$ знайти множину, яку задано за допомогою операцій: а) $A \cup \overline{B \cap C}$; б) $(A \setminus C) \Delta B$. Розв'язати, використовуючи комп'ютерне подання множин.
- На множинах задачі 1 побудувати булеан множини (B∆C) ∩ A.
 Знайти його потужність.
- 3. Нехай маємо множини: N множина натуральних чисел, Z множина цілих чисел, Q множина раціональних чисел, R множина дійсних чисел; A, B, C будь-які множини. Перевірити які твердження є вірними (в останній задачі у випадку невірного твердження достатньо навести контрприклад, якщо твердження вірне навести доведення):
- a) $\emptyset \cap \{\emptyset\} = \emptyset$; 6) $Q \in R$;
- B) $N \cap Z = Z$; Γ) $R \setminus N \subset R \setminus Q$;
- д) якщо $A \setminus C \subset B \setminus C$, то $A \subset B$.
 - Логічним методом довести тотожність:

$$(A \cap B) \setminus (A \cap C) = (A \cap B) \setminus C$$

Зобразити на діаграмі Ейлера-Венна множину:

$$((A \setminus B) (\Delta C \setminus B)) \cup B$$
.

 Множину зображено на діаграмі. Записати її за допомогою операцій.

- 7. Спростити вигляд множини, яка задана за допомогою операцій, застосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу): $(A \setminus B) \cup (A \cap B \cap C)$.
- Скільки існує натуральних чисел, що менші за 1000, які не діляться ні на 3, ні на 5, ні на 7?

Варіант 2 (розв'язок)

1. U = 1111111111, A = 1111111000, B = 0001111111, C = 1010101010

a)
$$A \cup \overline{B \cap C} = A \cup \overline{B} \cup \overline{C}$$

 $\overline{B} = 1110000000$
 $\overline{C} = 0101010101$
 $A \cup \overline{B} = 11111111000$
 $A \cup \overline{B} \cup \overline{C} = 1111111101$

6)
$$(A \ C)\Delta B$$

 $A \ C = 0101010000$
 $(A \ C)\Delta B = 0100101111$

- 2. $(B\Delta C) \cap A$
 - 1) $\overline{B} = \{1, 2, 3\}$
 - 2) $\overline{B}\Delta C = \{2, 5, 7, 9\}$
 - 3) $(\overline{B}\Delta C) \cap A = \{2, 5, 7\}$ p = 3; $2^p = 8$;
- 3. a) $\varnothing \cap \{\varnothing\} = \varnothing \cap \varnothing = \varnothing$
 - б) $Q \subseteq R \Leftrightarrow \forall q \in R : q \in Q$

Нехай

$$\exists q \in Q : q \not \in R : q = m/n, \ m \in Z, \ n \in N \Rightarrow q = q_0, q_1 q_2 ... q_k, \ q_0 \in N, \ q_1, q_2 \in \{0, 1... a_k, q_0 \in R \Rightarrow Q \subset R\}$$

$$\mathbf{B})\ N\cap Z=Z$$

$$\exists m \in Z : m \in N, \forall n \in N : n \in Z \Rightarrow N \cap Z = N \neq Z$$

- г) false
- д) false

4.
$$(A \cap B) \setminus (A \cap C) = (A \cap B) \setminus C$$

$$(A \cap C)^c \cap (A \cap B) = C^c \cap A \cap B$$

$$((A \cap A^c) \cup (A \cap C^c)) \cap B = (\emptyset \cup (A \cap C^c)) \cap B = C^c \cap A \cap B = C^c \cap A \cap B$$

5.


```
6. (D/A/B/C) \cup ((A \cap B)/D) \cup (D/A) \cup (C \cup D \cup A)

7. (A \setminus B) \cup (A \cap B \cap C)

(A \cap B) \cup (A \cap B \cap C)

(A \cup A) \cap (A \cup B) \cap (A \cup C) \cap (B \cup A) \cap (B \cup B) \cap (B \cup C)

A \cap (B \cup C)

8. A = \{1, 2...1000\} |A| = 1000

X = \{3, 6...999\}

Y = \{5, 10...1000\}

Z = \{7, 14...994\}

A/X = \{1, 2, 4...1000\}, |A/X| = 667

A/X/Y = \{1, 2, 4, 7...998\}, |A/X/Y| = 600

A/X/Y/Z = \{1, 2, 4, 8...998\}, |A/X/Y/Z| = 457
```

Висновок: Отже, на цій лабораторній роботі я ознайомився на практиці із основними поняттями теорії множин, навчився будувати діаграми Ейлера-Венна операцій над множинами, використовувати закони алгебри множин, освоїв принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.