Bio-Inspired Artificial Intelligence - EMATM0029 Exercises - Molecular Computing & Micro/Nanorobots

TED talks

Watch a couple of the following videos related to Molecular Computing, reflect on the potential and limitations of the approaches described:

https://youtu.be/WhGG__boRxU?list=PLPwd130aGbndtCwvT1hUieedttfKEbMmXhttps://youtu.be/nKZ-GjSaqgo?list=PLPwd130aGbndtCwvT1hUieedttfKEbMmXhttps://youtu.be/dySwrhMQdX4?list=PLPwd130aGbndtCwvT1hUieedttfKEbMmXhttps://youtu.be/tBvd70SDGgQ?list=PLPwd130aGbndtCwvT1hUieedttfKEbMmX

Function Computation

Given the chemical species X_1 , X_2 , Y (fluorescent red), and N (fluorescent green), what reaction networks (there can be more than one) give you the following functions.

1) $f(x_1)$: parity of x_1 - initial state: { x_1X_1 , 1N }

2) f(
$$x_1,x_2$$
): $x_1 > x_2$? - initial state:{ $x_1X_1, x_2X_2, 1N$ }

3)
$$f(x_1,x_2) = x_1 + x_2$$
 - initial state: { x_1X_1, x_2X_2 }

4)
$$f(x_1) = 2x_1$$
 - initial state: { x_1X_1 }

$$\begin{array}{c} \chi_1 + \chi \rightarrow \chi \\ \chi_1 + \chi \rightarrow \chi \end{array}$$

Tic-tac-toe

A player sequentially selects squares 4,9,2 by adding probes i4, i9, and i2 to the wells respectively. What sequence of actions is made by the MAYA automaton? Draw the final board.

Optional: Make your own DNA Origami

- Download and install cadnano from cadnano.org. Build a DNA origami that looks like a triangle. A tutorial on how to use the software can be found here: https://youtu.be/IcrdQYN7yn8
- Go to Nanodoc.org and play the game for the first 6 levels (currently fixing website check next week).