1 Supplementary Material

2 [1] "

Figure 1: Comparisons of estimated model fits and raw data from joint models of trait effects on budburst phenological cues for 37 species of woody deciduous plants. Four functional traits – a. height, b. SLA, c. seed mass, and d. LNC – were modelled individually, with the calculated trait value being used to jointly model species responses to standardized chilling, forcing, and photoperiod cues. Model posteriors are shown in black, with the thicker line depicting the 66% interval and the thinner black line the 97% interval. Overall species level model posterior distributions were well aligned with the raw data, shown in red, and the species level means from the raw data, denoted as a purple stars.

Table 1: Data sources

traitname	unitname	no.obs	no.spp	databas		reference
Height	m	26.00	8	bien	10_bien	TOTOTOTION
Height	m	2.00	$\frac{3}{2}$	bien	12_bien	
Seed mass	mg	3.00	3	bien	12_bien	
LNC	mg/g	287.00	12	try	130_try	Craine et al. (2009)
		27.00	19	bien	130_try 14_bien	Crame et al. (2009)
Height LNC	m mg/g	44.00	2			Wilson et al. (2000)
	mg/g		$\frac{2}{2}$	try	154_try	Wilson et al. (2000)
SLA	mm2 mg-1	44.00		try	154_try	Wilson et al. (2000)
Height	m	2.00	1	try	156_try	Bond-Lamberty et al. (2002)
Seed mass	mg	4.00	2	bien	17_bien	
Height	m	18.00	16	bien	18_bien	117 (2012)
LNC	mg/g	7.00	4	try	180_try	Wenxuan et al. (2012)
LNC	mg/g	7.00	3	try	181_try	Yahan et al. (2011)
Height	m	275.00	3	try	186_{-} try	unpub.
SLA	mm2 mg-1	204.00	3	try	186_try	unpub.
Seed mass	mg	250.00	37	bien	19_{bien}	
Seed mass	mg	12.00	12	bien	$2_{\rm bien}$	
Height	m	90.00	19	bien	20_{-} bien	
Height	m	28.00	19	try	$20_{-}\mathrm{try}$	Wright et al. (2004)
LNC	mg/g	65.00	32	try	$20_{-}\mathrm{try}$	Wright et al. (2004)
SLA	mm2 mg-1	93.00	33	try	$20_{-}\mathrm{try}$	Wright et al. (2004)
Height	m	10.00	10	bien	21_{-} bien	
Height	m	21.00	14	bien	22 _bien	
Height	m	2.00	2	try	236_{try}	Prentice et al. (2011)
LNC	mg/g	3.00	2	try	236_{-} try	Prentice et al. (2011)
SLA	mm2 mg-1	2.00	2	try	236_{try}	Prentice et al. (2011)
Height	m	47036.00	19	bien	24 _bien	, ,
$\stackrel{\circ}{\mathrm{LNC}}$	mg/g	120.00	20	try	240 _try	Vergutz et al. 2012
Height	m	5.00	5	bien	25 _bien	
$\widetilde{\operatorname{SLA}}$	mm2 mg-1	102.00	18	try	25_{-} try	Kleyer et al. (2008)
Height	m	21.00	21	try	251_try	Schweingruber & Landolt (2005)
Height	m	8.00	5	bien	$26_{ m bien}$	(/
Height	m	35.00	2	try	275_{try}	unpub.
$\widetilde{\operatorname{SLA}}$	mm2 mg-1	83.00	2	try	275_try	unpub.
Height	m	5.00	5	try	28_try	Moles et al. (2004)
LNC	mg/g	24.00	8	try	286_try	Atkin et al. (2015)
SLA	mm2 mg-1	40.00	11	try	286_try	Atkin et al. (2015)
Height	m	18.00	1	bien	3_bien	(2013)
LNC	mg/g	72.00	22	try	342_try	Maire et al. (2015)
SLA	mm2 mg-1	86.00	23	try	342_try	Maire et al. (2015)
LNC	mg/g	2.00	1	try	37_try	Cornelissen et al. (2003)
SLA	mm2 mg-1	615.00	14	try	37_try	Cornelissen et al. (2003)
LNC	mg/g	3216.00	37	try	412_try	unpub.
SLA	mm2 mg-1	6307.00	37	try	412_try	unpub.
LNC	mg/g	6.00	2	try	443_try	Wang et al. 2017
SLA	$m_{\rm S/S}$ mm2 mg-1	6.00	$\frac{2}{2}$	try	443_try	Wang et al. 2017 Wang et al. 2017
Height	m	120.00	1	bien	5_{bien}	wang et al. 2017
SLA	mm2 mg-1	20.00	$\overset{1}{2}$	try	50_try	Shipley et al. (2002)
Height	m	1.00	1	try	50_try 54_try	Cavender-Bares et al. (2006)
SLA	mm2 mg-1	42.00	$\overset{1}{2}$			Cavender-Bares et al. (2006)
SLA SLA	_			try	54_try	* /
	mm2 mg-1	1.00	1	try	65_try	unpub.
Height	m	20.00	1	bien	7_bien	Diagraph of (2004)
Height	m	11.00	10	tr ŷ	86_try	Diaz et al. (2004)
SLA	mm2 mg-1	11.00	10	try	86_try	Diaz et al. (2004)
Seed mass	mg	12.00	7	bien	9_bien	

Figure 2: Comparisons of estimated cue responses of a species with an trait value associated with acquisitive growth strategies, shown in green, or conservative growth strategies, shown in purple. Associations between seed mass and forcing, chilling, and photoperiod are depicted on panels a to c and associations between LNC and each cue in panel d to f. The green points represent the budburst data for Populus tremula, a relatively small seeded species, while the green points are budburst data of the large seeded species, Aesculus hippocastanum. Dark bands represent the 50% credible interval for the posterior cue estimates for the full model. Opaque bands represent the 50% credible interval for the posterior cue estimates with a trait effect of zero. The negative value of the seed mass model's slope for each cue produces a more negative effect on the day of budburst when seed mass is included in the model. This suggests that trees that produce large seeds advance their budburst dates at a higher rate to increasing cues (a-c). The effect of seed mass however, is relatively small compared to that observed from other traits. Estimates of the cue responses in our LNC model were all positive and produced more positive slopes in the full model. This indicates that high SLA values are less responsive in their budburst to increasing forcing, chilling, and photoperiod values (d to f). The greater effect of slopes on taller trees and high SLA species is a artifact of the trait value itself being larger and not a reflection on the magnitidue of the response.

Table 2: Height model estimates

Table 2. Height model estimates							
	mean	sd	2.5%	50%	97.5%	Rhat	
mu_grand	12.62	1.83	8.95	12.63	16.21	1.00	
muPhenoSp	32.13	2.69	26.94	32.12	37.43	1.00	
muForceSp	-10.81	2.81	-16.34	-10.77	-5.33	1.00	
muChillSp	-4.42	4.05	-12.71	-4.35	3.34	1.00	
muPhotoSp	1.44	2.23	-2.98	1.44	5.77	1.00	
${\bf beta Traitx Force}$	0.18	0.19	-0.21	0.18	0.56	1.00	
betaTraitxChill	-0.51	0.28	-1.04	-0.52	0.06	1.00	
betaTraitxPhoto	-0.30	0.16	-0.62	-0.30	0.02	1.00	
$sigma_sp$	5.91	0.76	4.61	5.84	7.58	1.00	
$sigma_study$	7.51	1.20	5.49	7.38	10.24	1.00	
$sigma_traity$	5.39	0.02	5.36	5.39	5.43	1.00	
sigmaPhenoSp	15.17	2.07	11.23	15.11	19.42	1.00	
sigmaForceSp	4.95	1.18	2.99	4.84	7.56	1.00	
sigmaChillSp	8.63	2.19	5.25	8.33	13.72	1.00	
sigmaPhotoSp	3.45	0.93	1.87	3.36	5.51	1.00	
$sigmapheno_y$	14.22	0.25	13.74	14.22	14.72	1.00	

Table 3: SLA model estimates

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	16.54	1.57	13.51	16.53	19.54	1.01
muPhenoSp	31.39	2.51	26.51	31.35	36.45	1.00
$\operatorname{muForceSp}$	-10.95	2.67	-16.44	-10.89	-5.87	1.01
muChillSp	-16.49	4.62	-26.03	-16.33	-7.86	1.01
muPhotoSp	0.97	2.56	-4.29	1.02	5.74	1.02
${\bf beta Traitx Force}$	0.15	0.15	-0.13	0.15	0.45	1.01
beta Traitx Chill	0.34	0.25	-0.12	0.33	0.84	1.01
beta Traitx Photo	-0.19	0.14	-0.47	-0.19	0.10	1.02
$sigma_sp$	7.78	0.97	6.12	7.70	9.89	1.00
$sigma_study$	3.27	0.96	1.82	3.12	5.49	1.00
$sigma_traity$	6.17	0.05	6.07	6.16	6.26	1.00
sigmaPhenoSp	13.96	2.10	10.03	13.91	18.20	1.00
sigmaForceSp	4.91	1.13	3.07	4.79	7.43	1.00
sigmaChillSp	10.48	2.29	6.60	10.28	15.35	1.00
sigmaPhotoSp	3.72	0.89	2.24	3.64	5.75	1.00
sigmapheno_y	14.21	0.26	13.71	14.21	14.72	1.00

Table 4: Log10 Seed mass model estimates

	- 0						
	mean	sd	2.5%	50%	97.5%	Rhat	
mu_grand	1.84	0.48	0.90	1.84	2.77	1.00	
muPhenoSp	31.43	2.70	26.33	31.40	36.84	1.00	
$\operatorname{muForceSp}$	-8.04	1.57	-11.19	-8.03	-4.98	1.00	
$\operatorname{muChillSp}$	-9.36	2.79	-15.05	-9.28	-4.02	1.00	
$\operatorname{muPhotoSp}$	-1.44	1.27	-3.90	-1.47	1.06	1.00	
betaTraitxForce	-0.29	0.67	-1.58	-0.29	1.03	1.00	
betaTraitxChill	-1.08	1.09	-3.20	-1.09	1.07	1.00	
betaTraitxPhoto	-0.59	0.58	-1.74	-0.59	0.54	1.00	
$sigma_sp$	1.62	0.19	1.30	1.60	2.03	1.00	
$sigma_study$	0.97	0.10	0.77	0.97	1.16	1.00	
$sigma_traity$	0.25	0.01	0.23	0.25	0.27	1.00	
sigmaPhenoSp	14.93	2.29	10.62	14.89	19.61	1.00	
sigmaForceSp	4.92	0.99	3.18	4.85	7.06	1.00	
sigmaChillSp	10.65	2.53	6.44	10.37	16.20	1.00	
sigmaPhotoSp	3.76	0.91	2.23	3.67	5.80	1.00	
$sigmapheno_y$	14.16	0.25	13.69	14.15	14.64	1.00	

Table 5: LNC model estimates

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	22.61	1.38	19.92	22.63	25.28	1.00
muPhenoSp	31.22	2.51	26.34	31.21	36.19	1.00
$\operatorname{muForceSp}$	-19.15	5.50	-29.37	-19.30	-8.19	1.01
muChillSp	-26.34	7.03	-39.66	-26.44	-12.16	1.00
muPhotoSp	-9.77	5.16	-20.14	-9.68	0.10	1.00
betaTraitxForce	0.47	0.24	-0.01	0.48	0.92	1.01
beta Traitx Chill	0.69	0.30	0.09	0.70	1.26	1.00
beta Traitx Photo	0.32	0.21	-0.09	0.32	0.75	1.00
$sigma_sp$	5.11	0.62	4.04	5.06	6.46	1.00
$sigma_study$	3.56	0.97	2.06	3.42	5.74	1.00
$sigma_traity$	5.13	0.06	5.02	5.13	5.25	1.00
sigmaPhenoSp	14.10	1.99	10.46	13.99	18.27	1.00
sigmaForceSp	4.54	1.06	2.72	4.44	6.87	1.00
sigmaChillSp	8.88	1.99	5.71	8.62	13.52	1.00
sigmaPhotoSp	3.83	0.88	2.35	3.74	5.81	1.00
sigmapheno_y	14.22	0.25	13.74	14.21	14.70	1.00