[Total No. of CO's: 2] Seat No:		[Total No. of Pages: 1]		
Subjec	(An Autonome F.Y B. Tech (All B	eering and Management, Pune. ous Institution) tranches) (Term-II) 020 Pattern) & Differential Equations (UI		4)
[Time: 1 Hours] [Max. M		[Max. Mar	ırks-15]	
 Evaluate the n Understand ve Solve first ord 	ad use concept of definite integral & nultiple integrals using different teactor integration and its application er, first degree & higher order diffetial equations for simple engineering	chniques and apply it to solve enging solutions related to real life problems. erential equations.	ineering	problems.
CO ₃ a)	State Green's lemma and stoke's	theorem.	[2]	L1
<i>b)</i>	Evaluate $\int_C 2y dx + (1-x) dy$ who from $x = -1$ to $x = 2$.	ere c is portion of curve $y=1-x^3$	[2]	L2
c)	Evaluate $\iint_{S} \nabla \times \overline{F}$.ds where	$\bar{F} = (z)\bar{\iota} + (x)\bar{\jmath} + (y)\bar{k}$	[3]	L3
	where S is the surface of the para	aboloid $z=1-x^2-y^2, z\geq 0$		
	C	OR .		
d)	Evaluate $\oint_C y^3 dx - x^3 dy$ whe circle of radius 2 centered at the		[3]	L3

a) How do you Find complementary function of linear differential

L3

L4

[4]

[4]

Solve $(e^y + 2xy) dx + (xe^y + x^2) dy = 0$

equations with constant coefficients?

b) solve $d^3y/dx^3 - 2 d^2y/dx^2 - dy/dx + 2y = 0$

CO4 a)

b)