1 nalen

 $A\subseteq A$ או $A\subseteq B$ כיוון אחד: נניח

 $A\subseteq B$:(i) מקרה

. $A \cup B = B$ במקרה זה, לפי טענה באמצע עמי 14 בספר,

 $(A \cup B) \times (A \cup B) = B \times B$ לכן

. $A \times A \subseteq B \times B$ מעד שני, כאשר $A \subseteq B$, מהגדרת כפל קבוצות מקתבל מהידי , $A \subseteq B$

 $A \times A \cup (B \times B) = B \times B$ לכן, שוב לפי אותה טענה באמצע עמי 14 בספר,

. היבלנו ששני האגפים שווים ל- $B \times B$ ולכן הם שווים זה לזה.

מקרה (ii) בהחלפה בין A,B בכל מקום. $B\subseteq A:$ (ii) מקרה A,B:

,אינו מתקיים $B\subseteq A$ או $A\subseteq B$ אינו מתקיים מינון שני: נניח שהתנאי

A -כלומר B אינה חלקית ל- B וגם (י) אינה חלקית ל- A

 $b \notin A$, $b \in B$ וקיים $a \notin B$, $a \in A$ משמע קיים

 $(a,b)
otin (A imes A) \cup (B imes B)$ אך , $(a,b) \in (A \cup B) imes (A \cup B)$ מהגדרת כפל קבוצות,

 $(A \cup B) \times (A \cup B) \neq (A \times A) \cup (B \times B)$ לכן

2 noien

- $I_A\subseteq S$ א. לכן $R\subseteq S$ נתון $I_A\subseteq R$ א. לכן $R\subseteq R$ א. לכן R
- $R \subseteq S$ -ו אינו רפלקסיבי, ו- $R = \{(1,1), (2,2)\}$, רפלקסיבי, ו- $S = I_A$ אינו רפלקסיבי, ו-
- $R\subseteq S$ אינו סימטרי, ומתקיים $S=\{(1,2)\}$ הוא סימטרי, ומתקיים $R=\varnothing$
- $R\subseteq S$ הוא סימטרי, ו- $S=\{(1,2)\,,\,(2,1)\}$ אינו סימטרי, ו- $R=\{(1,2)\}$ הוא סימטרי, ו- .ד.
- ה. לא נכון, למשל $S=\{(1,2)\,,\,(2,1)\}$ הוא אנטי-סימטרי, $R=\{(1,2)\,,\,(2,1)\}$ אינו אנטי-סימטרי, ה. לא נכון, למשל $R=\{(1,2)\}$ אוויש. רבוגמא וויש. אוני אפשר גם לקחת $R=\emptyset$ אוני אפשר גם לקחת לקחת מתקיים
 - . נוכיח ש- R אנטי-סימטרי ויהי $R\subseteq S$ ווכיח ש- R אנטי-סימטרי.

x = y אז $(y,x) \in R$ וגם $(x,y) \in R$ אז עלינו להראות שאם

 $(y,x)\in S$, $(x,y)\in S$ נובע $(y,x)\in R$, $(x,y)\in R$ מההנחה $R\subseteq S$ פכיוון ש- $R\subseteq S$. R=y אנטי-סימטרי, לכן ש- R=y

- $S = \{(1,2)\}$, $R = \emptyset$: דוגמא נגדית אונגדית ז.
- K^{-1} היחס הנתון בסעיף זה. נחשב את היחס הנתון בסעיף זה. נחשב את

לפי שאלה 2.6ג סעיף 3 (עמי 36 בספר),

$$K^{-1} = ((R^{-1} \cap S) \cup (S^{-1} \cap R))^{-1} = (R^{-1} \cap S)^{-1} \cup ((S^{-1} \cap R))^{-1}$$

לפי סעיף ג 2 באותה שאלה, יחד עם סעיף א שם,

$$= (R \cap S^{-1}) \cup (S \cap R^{-1})$$

ולפי חילופיות החיתוך וחילופיות האיחוד

$$= (R^{-1} \cap S) \cup (S^{-1} \cap R) = K$$

(וי סימטרי יחס סימטרי), $K=K^{-1}$ הראינו

- R = S ט. נבון. נובע ממשפט 2.12 בעמי 50 בספר, כאשר
- . אינו אבל $R^2=\varnothing$ הוא סימטרי $R=\{(1,2)\}$ הוא סימטרי אבל אנ**כון.** דוגמא נגדית:

3 nalen

. $(n,n)\in R$ כלומר ללא שארית, כלומר n , $n\in {\mathbb N}-\{0\}$ א. ארית, כלומר R

 $(1,2) \notin R$ אך אך (2,1) $\in R$ אינו סימטרי: למשל R

מכיון ש- R אינו סימטרי, הוא אינו יחס שקילות.

m -ם מתחלק ב- n וגם n מתחלק ב- n מתחלק ב- n הוא אנטי-סימטרי: לכל n

אז m=m מתחלק ב- m אז מתחלק ב- m מתחלק ב- m אז אפשר להוכיח אנטי-סימטרי). n=m אנטי-סימטרי

שימו לב שמתוך כך ש- R אנטי-סימטרי לא נובע שהוא אינו סימטרי!

ראו דוגמאות בעניין זה בשאלון רב-ברירה בנושא יחסים, באתר הקורס.

. עבור a טבעי חיובי כלשהו $m=n\cdot a$ משמע , n - מתחלק מתחלק אם m שבור a

אם n מתחלק ב- k משמע $n=k\cdot b$ אם n מתחלק ב-

k-ביחד נקבל , $m=k\cdot b\cdot a$ מתחלק ב-

 $R \cup R^{-1}$ הסגור הסימטרי של R הוא

 $R\subseteq R\cup R^{-1}$, כעת, הקודם ראינו ש- R רפלקסיבי, כלומר $I_A\subseteq R$

.). ממיין זה...). רבלקטיבי (ובקיצור: לפי שאלה 2א בממיין זה...). לכן גם $I_A \subseteq R \cup R^{-1}$ כלומר גם $R \cup R^{-1}$ כלומר גם

. סימטרי לפי שאלה 2.23 בעמי 50 בספר הלימוד $R \cup R^{-1}$

 $1 \neq 2$ אינו אנטי-סימטרי, כי (1,2) וגם (2,1) שייכים אליו, ו- $R \cup R^{-1}$

,($(3,1) \in R$ (כי $(1,3) \in R \cup R^{-1}$, $(2,1) \in R \cup R^{-1}$), (כי $(3,1) \in R \cup R^{-1}$

. $(2.3) \notin R \cup R^{-1}$ אד

ג. מהגדרת S ומתכונות ידועות של כפל במספרים ממשיים, $(x,y) \in S$ אם"ם $(x,y) \in S$ אם"ם אותו סימן (שניהם חיוביים או שניהם שליליים). נחלק אפוא את הממשיים השונים מאפס לשתי מחלקות: החיוביים והשליליים. כאמור, $(x,y) \in S$ אם"ם אטיכים לאותה מחלקה של החלוקה הנ"ל.

S בעמ' 61 בעמ' 61 בספר, S הוא יחס שקילות, המתאים לחלוקה זו פלעת, לפי משפט 2.19 בעמ' 10 בספר, S הוא יחס שקילות, המתאים לחלוקה זו פלעת הוא רפלקסיבי , סימטרי וטרנזיטיבי.

שימו לב שלא בדקנו את 3 התכונות המאפיינות יחס שקילות, אלא הוכחנו שזהו יחס שקילות ע"י כך שמצאנו את החלוקה המתאימה, והראינו שמתקיימים תנאי משפט 2.19. זוהי דרך לגיטימית לגמרי.

. $1 \neq 2$ ו- $(2,1) \in S$, $(1,2) \in S$ לבסוף, S אינו אנטי-סימטרי כי

4 22162

 $A = \{1,2\}$ מעל $R = \{(1,2)\}$ א. לא נכון. דוגמא: היחס

. רק זוג סדור אחד. R = t(R), לכן (מדועי), לכן R

. N מעל קבוצת מעל מעל $R = \{(1,2), (2,3)\}$ יהי יהי דוגמא: יהי לא נכון.

אינו ריק ואינו טרנזיטיבי. R

, (מדועי:) $t(R) = \{(1,2), (2,3), (1,3)\}$ והוא מכיל רק 3 זוגות סדורים.

5 ກລາຍກ

. $R = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{pmatrix}$ ויהי $A = \{1,2,3\}$ הטענה אינה נכונה. דוגמא נגדית : תהי

. $\big\{\{1,2\}\,,\,\{3\}\big\}\,:A$ של הבאה הבאה מהחלוקה המתקבל השקילות השקילות - זהו יחס השקילות R

.
$$R * = \begin{pmatrix} 1 & 2 & 3 & 1 & 3 & 2 & 3 \\ 1 & 2 & 3 & 3 & 1 & 3 & 2 \end{pmatrix}$$
 ממנו נקבל

יחס זה אינו יחס שקילות כי הוא אינו טרנזיטיבי (הראו זאת!).

איתי הראבן