

ON A q -ANALOGUE OF THE p -ADIC GENERALIZED TWISTED L -FUNCTIONS AND p -ADIC q -INTEGRALS

LEE-CHAE JANG AND TAE-GYUN KIM

*Department of Mathematics and Computater Science
KonKuk University, Chungju 380-701, Korea
e-mail:leechae-jang@hanmail.net*

*Ju-Kong APT 103-Dong 1001-Ho
Young-Chang Ri 544-4, Hapcheon-Up Hapchon-Gun
Kyungshang Nam-Do, postal no. 678-802, S. Korea
e-mail:jany69@hanmail.net*

ABSTRACT. The purpose of this paper is to define generalized twisted q -Bernoulli numbers by using p -adic q -integrals. Furthermore, we construct a q -analogue of the p -adic generalized twisted L -functions which interpolate generalized twisted q -Bernoulli numbers. This is the generalization of Kim's h -extension of p -adic q - L -function which was constructed in [5] and is a partial answer for the open question which was remained in [3].

§1. INTRODUCTION

Let us denote $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sets of positive integer, integer, rational, real and complex numbers respectively. Let p be prime and $x \in \mathbb{Q}$. Then $x = p^{v(x)} \frac{m}{n}$, where $m, n, v = v(x) \in \mathbb{Z}$, m and n are not divisible by p . Let $|x|_p = p^{-v(x)}$ and $|0|_p = 0$. Then $|x|_p$ is valuation on \mathbb{Q} satisfying

$$|x + y|_p \leq \max\{|x|_p, |y|_p\}.$$

Completion of \mathbb{Q} with respect to $|\cdot|_p$ is denoted by \mathbb{Q}_p and called the field of p -adic rational numbers. \mathbb{C}_p is the completion of algebraic closure of \mathbb{Q}_p and $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ is called the ring of p -adic rational integers(see [1,2,10,12,16]).

1991 *Mathematics Subject Classification.* 11B68, 11S80.

Key words and phrases. p -adic integrals, p -adic twisted L -functions, q -Bernoulli numbers.

Let l be a fixed integer and let p be a fixed prime number. We set

$$\begin{aligned} X &= \varprojlim_N (\mathbb{Z}/lp^N\mathbb{Z}), \\ X^* &= \bigcup_{\substack{0 < a < lp \\ (a,p)=1}} (a + lp\mathbb{Z}_p), \\ a + lp^N\mathbb{Z}_p &= \{x \in X \mid x \equiv a \pmod{lp^N}\}, \end{aligned}$$

where $N \in \mathbb{N}$ and $a \in \mathbb{Z}$ lies in $0 \leq a < lp^N$, cf. [3, 7, 8, 9].

When one talks of q -extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or a p -adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, one normally assumes $|q| < 1$. If $q \in \mathbb{C}_p$, then we assume $|q - 1|_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log q)$ for each $x \in X$. We use the notation as $[x] = [x; q] = \frac{1-q^x}{1-q}$ for each $x \in X$. Hence $\lim_{q \rightarrow 1} [x] = x$, cf. [4, 16, 18, 19, 20]. For any positive integer N , we set

$$\mu_q(a + lp^N\mathbb{Z}_p) = \frac{q^a}{[lp^N]}, \text{ cf. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14],}$$

and this can be extended to a distribution on X . This distribution yields an integral for each nonnegative integer n (see [7]) :

$$\int_{\mathbb{Z}_p} [x]^n d\mu_q(x) = \int_X [x]^n d\mu_q(x) = \beta_n(q),$$

where $\beta_n(q)$ are the n -th Carlitz's q -Bernoulli number, cf. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In the paper [17], Koblitz constructed p -adic $q - L$ -function which interpolates Carlitz's q -Bernoulli number at non-positive integers and suggested two questions. One of these two questions was solved by Kim (see [7]). In fact, Kim constructed p -adic q -integral and proved that Carlitz's q -Bernoulli number can be represented as an p -adic q -integral by the q -analogue of the ordinary p -adic invariant measure. And also Kim is constructed a h -extension of p -adic $q - L$ -function which interpolates the h -extension of q -Bernoulli numbers at non-positive integers (see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). In [5, 12, 13], Kim constructed p -adic q - L -functions and he studied their properties . In [5], Kim introduced the h -extension of p -adic q - L -functions and investigated many interesting physical meaning. Also, In [15, 16], Koblitz defined p -adic twisted L -functions , and he constructed p -adic measures and integrations. And also Kim et al [3] constructed a q -analogue of the twisted Dirichlet's L -function which interpolated the twisted Carlitz's q -Bernoulli numbers, and they remained an open question in [3] as follows:

Find q -analogue of the p -adic twisted L -function which interpolates q -Bernoulli numbers $\beta_{m,w,\chi}^{(h)}(q)$, by means of a method provided by Kim, cf. [5].

In this paper, we will construct the "twisted" p -adic generalized $q - L$ -functions and generalized q -Bernoulli numbers to be a part of answer for the question which was remained by Kim et al in [3] by means of the same method provided by Kim in [5: p.98]. In section 2, we construct generalized twisted q -Bernoulli polynomials by using p -adic q -integrals by the same method of Kim, cf. [3, 5, 12, 13, 14, 20, 21, 22, 23]. We prove a formula between generalized twisted q -Bernoulli polynomials which is regarded as a generalization of Witt's formula for Carlitz's q -Bernoulli polynomials in [5, Eq (5.9)], [13] and [7, Theorem 2]. This means that the q -analogue of generalized twisted q -Bernoulli numbers

occur in the coefficients of some stirling type series. We also give construction of the distribution of the p -adic generalized twisted q -Bernoulli distribution. In section 3, we define the p -adic generalized twisted L -function and construct a q -analogue of the p -adic generalized twisted L -function which interpolate generalized twisted q -Bernoulli numbers on X . This result is related as a generalization of a q -analogue of the p -adic L -function which interpolate Carlitz's q -bernoulli numbers in [5, 11, 12, 13], of p -adic generalized L -function which interpolates the h -extension of q -Bernoulli numbers at non-positive integers in [5, 6, 7].

§2. GENERALIZED TWISTED q -BERNOULLI POLYNOMIALS

In this section, we give generalized twisted q -Bernoulli polynomials by using p -adic q -integrals on X . Let $UD(X)$ be the set of uniformly differentiable functions on X . For any $f \in UD(X)$, T. Kim defined a q -analogue of an integral with respect to an p -adic invariant measure in [5] which is called p -adic q -integral. The p -adic q -integral was defined as follows:

$$\begin{aligned} I_q(f) &= \int_X f(x) d\mu_q(x) \\ &= \lim_{N \rightarrow \infty} \frac{1}{[lp^N]} \sum_{0 \leq x < lp^N} f(x) q^x, \end{aligned} \tag{1}$$

cf. [4,5,6,7,8]. Note that

$$\begin{aligned} I_1(f) &= \lim_{q \rightarrow 1} I_q(f) = \int_X f(x) d\mu_1(x) \\ &= \lim_{N \rightarrow \infty} \frac{1}{lp^N} \sum_{0 \leq x < lp^N} f(x), \end{aligned} \tag{2}$$

and that

$$I_1(f_1) = I_1(f) + f'(x), \tag{3}$$

where $f_1(x) = f(x+1)$.

Let $T_p = \cup_{n \geq 1} C_{p^n} = \lim_{n \rightarrow \infty} \mathbb{Z}/p^n \mathbb{Z}$, where $C_{p^n} = \{\xi \in X \mid \xi^{p^n} = 1\}$ is the cyclic group of order p^n , see [9]. For $\xi \in T_p$, we denote by $\phi_\xi : \mathbb{Z}_p \rightarrow \mathbb{C}_p$ the locally constant function $x \mapsto \xi^x$. If we take $f(x) = \phi_\xi(x)e^{\xi tx}$, then we have that

$$\int_X e^{tx} \phi_\xi(x) d\mu_1(x) = \frac{t}{we^t - 1}, \tag{4}$$

cf. [5,8]. It is obvious from (3) that

$$\int_X e^{tx} \chi(x) \phi_\xi(x) d\mu_1(x) = \frac{\sum_{a=1}^l \chi(a) \phi_\xi(a) e^{at}}{\xi^l e^{lt} - 1}. \tag{5}$$

Now we define the analogue of Bernoulli numbers as follows:

$$\begin{aligned} e^{xt} \frac{t}{\xi e^t - 1} &= \sum_{n=0}^{\infty} B_{n,\xi}(x) \frac{t^n}{n!} \\ \frac{\sum_{a=1}^l \chi(a) \phi_\xi(a) e^{at}}{\xi^l e^{lt} - 1} &= \sum_{n=0}^{\infty} B_{n,\xi,\chi} \frac{t^n}{n!}, \end{aligned} \tag{6}$$

cf. [5,8]. By (4), (5) and (6), it is not difficult to see that

$$\int_X x^n \phi_\xi(x) d\mu_1(x) = B_{n,\xi} \quad (7)$$

and

$$\int_X \chi(x) x^n \phi_\xi(x) d\mu_1(x) = B_{n,\xi,\chi}. \quad (8)$$

From (7) and (8) we consider twisted q -Bernoulli numbers by using p -adic q -integral on \mathbb{Z}_p . For $\xi \in T_p$ and $h \in \mathbb{Z}$, we define twisted q -Bernoulli polynomials as

$$\beta_{m,\xi}^{(h)}(x, q) = \int_{\mathbb{Z}_p} q^{(h-1)y} \xi^y [x + y]^m d\mu_q(y). \quad (9)$$

Observe that

$$\lim_{q \rightarrow 1} \beta_{m,\xi}^{(h)}(x, q) = B_{m,\xi}(x).$$

When $x = 0$, we write $\beta_{m,\xi}^{(h)}(0, q) = \beta_{m,\xi}^{(h)}(q)$, which are called twisted q -Bernoulli numbers. It follows from (9) that

$$\beta_{m,\xi}^{(h)}(x, q) = \frac{1}{(1-q)^{m-1}} \sum_{k=0}^m \binom{m}{k} q^{xk} (-1)^k \frac{k+h}{1-q^{h+k}\xi}. \quad (10)$$

The Eq.(10) is equivalent to

$$\beta_{m,\xi}^{(h)}(q) = -m \sum_{n=0}^{\infty} [n]^{m-1} q^{hn} \xi^n - (q-1)(m+h) \sum_{n=0}^{\infty} [n]^m q^{hn} \xi^n. \quad (11)$$

From (9), we obtain the below distribution relation for the twisted q -Bernoulli polynomials as follows. In fact, the proof of Lemma 1 is similar to the proof of Lemma 2 with $\chi = 1$.

Lemma 1. *For $n \geq 1$, we have*

$$\beta_{n,\xi}^{(h)}(x, q) = d^{n-1} \sum_{a=0}^{d-1} \xi^a q^{ha} \beta_{n,\xi^d}^{(h)}\left(\frac{a}{d}, q^d\right).$$

For $\xi \in T_p$ and $h \in X$, we define generalized twisted q -Bernoulli polynomials as

$$\beta_{n,\xi,\chi}^{(h)}(x, q) = \int_X \chi(y) q^{(h-1)y} \xi^y [x + y]^n d\mu_q(y). \quad (12)$$

Observe that when $\chi = 1$,

$$\beta_{n,\xi,1}^{(h)}(x, q) = \int_X q^{(h-1)y} \xi^y [x + y]^n d\mu_q(y) = \beta_{n,\xi}^{(h)}(x, q) \quad (13)$$

and

$$\lim_{q \rightarrow 1} \beta_{n,\xi,\chi}^{(h)}(x, q) = \int_X \chi(y) \xi^y [x + y]^n d\mu_1(y) = B_{n,\xi,\chi}^{(h)}(x), \quad (14)$$

where $\beta_{n,\xi}^{(h)}(x, q)$ is a twisted q -Bernoulli polynomial and $B_{n,\xi,\chi}^{(h)}(x)$ is a generalized Bernoulli polynomial.

Lemma 2. For any $n \geq 1$, we have

$$\beta_{n,\xi,\chi}^{(h)}(x, q) = [l]^{n-1} \sum_{a=0}^{l-1} \chi(a) \xi^a q^{ha} \beta_{n,\xi^l,\chi^l}^{(h)}\left(\frac{a+x}{l}, q^l\right). \quad (15)$$

Proof. For each $n \in \mathbb{N}$, we have

$$\begin{aligned} \beta_{n,\xi,\chi}^{(h)}(x, q) &= \int_X \chi(y) q^{(h-1)y} \xi^y [x+y]^n d\mu_q(y) \\ &= \lim_{N \rightarrow \infty} \sum_{x_1=0}^{lp^N-1} \chi(x_1) \xi^{x_1} [x+x_1]^n \mu_q(x_1 + lp^N \mathbb{Z}_p) \\ &= \lim_{N \rightarrow \infty} \frac{1}{[lp^N]} \sum_{x_1=0}^{lp^N-1} \chi(x_1) \xi^{x_1} [x+x_1]^n q^{x_1} \\ &= [l]^{n-1} \sum_{a=0}^{l-1} \chi(a) q^{ha} \xi^a \lim_{N \rightarrow \infty} \frac{1}{[p^N : q^l]} \sum_{m=0}^{p^N-1} (q^l)^{(h-1)m} (\xi^l)^m \left[\frac{x+a}{l} + m : q^l \right]^n (q^l)^m \\ &= [l]^{n-1} \sum_{a=0}^{l-1} \chi(a) \xi^a q^{ha} \beta_{n,\xi^l,\chi^l}^{(h)}\left(\frac{a+x}{l}, q^l\right). \end{aligned}$$

We note that when $x = 0$, we have the distribution relation for the generalized twisted q -Bernoulli numbers as follows: for $n \geq 1$,

$$\beta_{n,\xi,\chi}^{(h)}(q) = \beta_{n,\xi,\chi}^{(h)}(0, q) = [l]^{n-1} \sum_{a=0}^{l-1} \chi(a) \xi^a q^{ha} \beta_{n,\xi^l}^{(h)}\left(\frac{a}{l}, q^l\right) \quad (16)$$

and that when $x = 0$ and $q = 1$, we have the distribution relation for the generalized twisted Bernoulli numbers as follows: for $n \geq 1$,

$$\beta_{n,\xi,\chi}^{(h)} = \beta_{n,\xi,\chi}^{(h)}(1) = l^{n-1} \sum_{a=0}^{l-1} \chi(a) \xi^a \beta_{n,\xi^l}^{(h)}\left(\frac{a}{l}\right) \quad (17)$$

and that when $x = 0$ and $\chi = 1$, we have the distribution relation for the twisted q -Bernoulli polynomials as follows : for $n \geq 1$,

$$\beta_{n,\xi}^{(h)}(0, q) = \beta_{n,\xi,1}^{(h)}(q) = [l]^{n-1} \sum_{a=0}^{l-1} \xi^a q^{ha} \beta_{n,\xi^l}^{(h)}\left(\frac{a}{l}, q^l\right). \quad (18)$$

Lemma 1 and Lemma 2 are important for the construction of the p -adic generalized twisted q -Bernoulli distribution as follows.

Theorem 3. Let $q \in \mathbb{C}_p$. For any positive integers N, n and l , let $\mu_{n,\xi}^{(h)}$ be defined by

$$\mu_{n,\xi}^{(h)}(a + lp^N \mathbb{Z}_p) = [lp^N]^{n-1} q^{ha} \xi^a \beta_{n,\xi^{lp^N}}\left(\frac{a}{lp^N}, q^{lp^N}\right).$$

Then $\mu_{n,\xi}^{(h)}$ extends uniquely to a distribution on X .

Proof. It suffices to show

$$\sum_{i=1}^{p-1} \mu_{n,\xi}^{(h)}(a + ip^N + p^{N+1} \mathbb{Z}_p) = \mu_{n,\xi}^{(h)}(a + p^N \mathbb{Z}_p).$$

Indeed, Lemma 1 and the definition of $\mu_{n,\xi}^{(h)}$ imply that

$$\begin{aligned} & \sum_{i=1}^{p-1} \mu_{n,\xi}^{(h)}(a + ip^N + p^{N+1} \mathbb{Z}_p) \\ &= \sum_{x=0}^{p-1} [p^{N+1}]^{n-1} q^{h(a+xp^N)} \xi^{a+xp^N} \beta_{n,\xi^{p^N+1}}^{(h)}\left(\frac{a+xp^N}{p^{N+1}}, q^{p^{N+1}}\right) \\ &= [p]^{n-1} q^{ha} \xi^a [p^N : q^p]^{n-1} \sum_{x=0}^{p-1} (q^{p^N})^{xh} (\xi^{p^N})^x \beta_{n,(\xi^{p^N})^p}^{(h)}\left(\frac{\frac{a}{p^N} + x}{p}, (q^{p^N})^p\right) \\ &= [p]^{n-1} q^{ha} \xi^a \beta_{n,\xi^{p^N}}^{(h)}\left(\frac{a}{p^N}, q^{p^N}\right) \\ &= \mu_{n,\xi}^{(h)}(a + p^N \mathbb{Z}_p). \end{aligned}$$

§3. A q -ANALOGUE OF THE p -ADIC TWISTED L -FUNCTIONS

Let $\alpha \in X^*, \alpha \neq 1, n \geq 1$. By the definition of $\mu_{n,\xi,\chi}^{(h)}$, we easily see :

$$\begin{aligned} \int_X \chi(x) d\mu_{n,\xi}^{(h)}(x) &= \beta_{n,\xi,\chi}^{(h)}(q) \\ \int_{pX} \chi(x) d\mu_{n,\xi}^{(h)}(x) &= [p]^{n-1} \chi(p) \beta_{n,\xi^p,\chi}^{(h)}(q^p) \\ \int_X \chi(x) d\mu_{n;q^{\frac{1}{\alpha}},\xi^{\frac{1}{\alpha}}}^{(h)}(\alpha x) &= \chi\left(\frac{1}{\alpha}\right) \beta_{n,\xi^{\frac{1}{\alpha}},\chi}^{(h)}(q^{\frac{1}{\alpha}}) \\ \int_{pX} \chi(x) d\mu_{n;q^{\frac{1}{\alpha}},\xi^{\frac{1}{\alpha}}}^{(h)}(\alpha x) &= [p; q^{\frac{1}{\alpha}}]^{n-1} \chi\left(\frac{p}{\alpha}\right) \beta_{n,\xi^{\frac{p}{\alpha}},\chi}^{(h)}(q^{\frac{p}{\alpha}}). \end{aligned} \tag{19}$$

For compact open set $U \subset X$, we define

$$\mu_{n;q,\alpha,\xi}^{(h)}(U) = \mu_{n;q,\xi}^{(h)}(U) - \alpha^{-1} [\alpha^{-1}; q]^{n-1} \mu_{n;q^{\frac{1}{\alpha}},\xi^{\frac{1}{\alpha}}}^{(h)}(U). \tag{20}$$

By the definition of $\mu_{n;q,\xi}^{(h)}$ and (19), we note that

$$\begin{aligned} \int_{X^*} \chi(x) d\mu_{n;q,\alpha,\xi}^{(h)}(x) &= \beta_{n,\xi,\chi}^{(h)}(q) - [p]^{n-1} \chi(p) \beta_{n,\xi^p,\chi}(q^p) \\ &\quad - \frac{1}{\alpha} [\frac{1}{\alpha}]^{n-1} \chi(\frac{1}{\alpha}) \beta_{n,\xi^{\frac{1}{\alpha}},\chi}^{(h)}(q^{\frac{1}{\alpha}}) \\ &\quad + \frac{1}{\alpha} [\frac{p}{\alpha}]^{n-1} \chi(\frac{p}{\alpha}) \beta_{n,\xi^{\frac{p}{\alpha}},\chi}^{(h)}(q^{\frac{p}{\alpha}}) \\ &= (1 - \chi^p)(1 - \frac{1}{\alpha} \chi^{\frac{1}{\alpha}}) \beta_{n,\xi,\chi}^{(h)}, \end{aligned} \tag{21}$$

where the operator $\chi^y = \chi^{y,n;q,\xi}$ on $f(q, \xi)$ defined by

$$\chi^y f(q, \xi) = [y]^{n-1} \chi(y) f(q^y, \xi^y), \quad \chi^x \chi^y = chi^{x,n;q^y,\xi^y} \circ \chi^{y,n;q,\xi}.$$

Let $x \in X$. We recall that $\{x\}_N$ denote the least nonnegative residue $(\bmod \ lp^N)$ and that if $[x]_N = x - \{x\}_N$, then $[x]_N \in lp^N \mathbb{Z}_p$. Now we can define in [5] as follows:

$$\mu_{Mazur,1,\alpha}^{(h)}(a + lp^N \mathbb{Z}_p) = (\frac{\frac{1}{\alpha} - 1}{h+1} + \frac{h}{\alpha} \cdot \frac{[a\alpha]_N}{lp^N}).$$

By the same method of Kim in [5], we easily see:

$$\begin{aligned} &\lim_{N \rightarrow \infty} \mu_{n;q,\alpha,\xi}^{(h)}(a + lp^N \mathbb{Z}_p) \\ &= \lim_{N \rightarrow \infty} [l]^{n-1} ((h+n)q^{(h+1)a} - hq^a) \xi^a (\frac{\frac{1}{\alpha} - 1}{h+1} + \frac{h}{\alpha} \cdot \frac{[a\alpha]_N}{lp^N}). \end{aligned} \tag{22}$$

Thus we have

$$\mu_{n;q,\alpha,\xi}^{(h)}(x) = [x]^{n-1} ((h+n)q^{(h+1)x} - hq^{xh}) \xi^x \mu_{Mazur,1,\alpha}^{(h)}(x). \tag{23}$$

Theorem 4. $\mu_{n;q,\alpha,\xi}^{(h)}$ are bounded \mathbb{C}_p -valued measure on X for all $n \geq 1$ and $\alpha \in X^*, \alpha \neq 1$.

Now we define $\langle x \rangle = \langle x; q \rangle = [x; q]/w(x)$, where $w(x)$ is the Teichmüller character. For $|q-1|_p < p^{-\frac{1}{p-1}}$, we note that $\langle x \rangle^{p^N} \equiv 1 (\bmod \ p^N)$. By (21) and (23), we have the following:

$$\begin{aligned} &\int_{X^*} \chi_n(x) d\mu_{n;q,\alpha,\xi}^{(h)}(x) \\ &= \int_{X^*} \chi_n(x) [x]^{n-1} ((h+n)q^{(h+1)x} - hq^{xh}) \xi^x \mu_{Mazur,1,\alpha}^{(h)}(x) \\ &= \int_{X^*} ((h+n)q^{(h+1)x} - hq^{xh}) \langle x \rangle^{n-1} \xi^x \chi_1(x) \mu_{Mazur,1,\alpha}^{(h)}(x) \end{aligned} \tag{24}$$

where $\chi_n(x) = \chi w^{-n}(x)$. By using (24), we can construct a q -analogue of p -adic generalized twisted L -function.

Definition 5. For fixed $\alpha \in X^*, \alpha \neq 1$, we define a h -extension of p -adic generalized twisted L -function as follows;

$$L_{p,q,\xi}^{(h)}(s, \chi) = \frac{1}{1-s} \int_{X^*} ((h+1-s)q^{(h+1)x} - hq^{hx})\xi^x < x >^{-s} \chi_1(x) d\mu_{Mazur,1,\alpha}^{(h)}(x), \quad (25)$$

for $s \in X$.

Theorem 6. For each $s \in \mathbb{Z}_p$ and $\alpha \in X^*, \alpha \neq 1$, we have

$$\begin{aligned} L_{p,q,\xi}^{(h)}(s, \chi) &= \frac{1-s+h}{1-s}(q-1) \sum_{n=1}^{\infty} \frac{q^{nh}\xi^n w^{s-1}(n)}{[n]^{s-1}} \chi(n) \left(\frac{\frac{1}{\alpha}-1}{h+1} + \frac{h}{\alpha} \cdot \frac{[n\alpha]_N}{lp^N} \right) \\ &\quad + \sum_{n=1}^{\infty} q^{hn}\xi^n [n]^{-s} w^{s-1}(n) \chi(n) \left(\frac{\frac{1}{\alpha}-1}{h+1} + \frac{h}{\alpha} \cdot \frac{[n\alpha]_N}{lp^N} \right). \end{aligned} \quad (26)$$

where $\sum_{n=1}^{\infty} {}^*$ means to sum over the rational integers prime to p in the give range.

Proof. For each $s \in \mathbb{Z}_p$ and $x \in X^*$, we have

$$\begin{aligned} (h+1-s)q^{(h+1)x} - hq^{hx} &= hq^{hx}(q^x - 1) + (1-s)q^x q^{hx} \\ &= (q-1)q^{hx}[x](h+1-s) + q^{hx}(1-s). \end{aligned}$$

Thus

$$\begin{aligned} &\frac{1}{1-s} \int_X^* ((h+1-s)q^{(h+1)x} - hq^{hx})\xi^x < x >^{-s} \chi_1(x) d\mu_{Mazur,1,\alpha}^{(h)}(x) \\ &= \frac{1}{1-s} \int_X^* [(q-1)q^{hx}[x](h+1-s) + q^{hx}(1-s)]\xi^x < x >^{-s} \chi_1(x) d\mu_{Mazur,1,\alpha}^{(h)}(x) \\ &= \frac{1-s+h}{1-s}(q-1) \sum_{n=1}^{\infty} \frac{q^{nh}\xi^n w^{s-1}(n)}{[n]^{s-1}} \chi(n) \left(\frac{\frac{1}{\alpha}-1}{h+1} + \frac{h}{\alpha} \cdot \frac{[n\alpha]_N}{lp^N} \right) \\ &\quad + \sum_{n=1}^{\infty} q^{hn}\xi^n [n]^{-s} w^{s-1}(n) \chi(n) \left(\frac{\frac{1}{\alpha}-1}{h+1} + \frac{h}{\alpha} \cdot \frac{[n\alpha]_N}{lp^N} \right) \end{aligned}$$

The equation (26) with $h = s - 1$ implies that

$$L_{p,q,\xi,\alpha}^{(s-1)}(s, \chi) = \sum_{n=1}^{\infty} q^{(s-1)n}\xi^n [n]^{-s} w^{s-1}(n) \chi(n) \left(\frac{\frac{1}{\alpha}-1}{s} + \frac{s-1}{\alpha} \cdot \frac{[n\alpha]_N}{lp^N} \right). \quad (27)$$

Finally for each positive integer m , we can construct a q -analogue of the p -adic twisted L -function which interpolate a generalized q -Bernoulli number.

Theorem 7. For each $m \in \mathbb{N}$ and $\alpha \in X^*, \alpha \neq 1$, we have

$$L_{p,q,\xi}^{(h)}(1-m, \chi) = -\frac{1}{m}(1-\chi_m^p)(1-\frac{1}{\alpha}\chi_m^{\frac{1}{\alpha}})w^{-m}\beta_{m,\xi,\chi}^{(h)}(q). \quad (28)$$

Proof. For each $s \in \mathbb{Z}_p$, by using (21), we have

$$\begin{aligned} & L_{p,q,\xi,\alpha}^{(h)}(s, \chi) \\ &= \frac{1}{1-s} \int_{X^*} ((h+1-s)q^{(h+1)x} - hq^{hx})\xi^x < x >^{-s} \chi_1(x) d\mu_{Mazur,1,\alpha}^{(h)}(x) \\ &= \frac{1}{1-s} \int_{X^*} \chi_{1-s}(x) d\mu_{1-s;q,\alpha,\xi}(x) \\ &= \frac{1}{1-s}(1-\chi_{1-s}^p)(1-\frac{1}{\alpha}\chi_{1-s}^{\frac{1}{\alpha}})\beta_{n,\xi,\chi}^{(h)}(q). \end{aligned}$$

Thus

$$\begin{aligned} & L_{p,q,\xi}^{(h)}(1-m, \chi) \\ &= \frac{1}{m}(1-\chi_m^p)(1-\frac{1}{\alpha}\chi_m^{\frac{1}{\alpha}})\beta_{n,\xi,\chi}^{(h)}(q). \end{aligned}$$

Remark. In [5], Kim constructed the h -extension of p -adic q - L -functions. And the question to inquire the existence of the twisted p -adic q - L -functions was remained in [3]. This is still open. By means of the method provided by Kim in [5], we constructed the twisted p -adic q - L -function to be a part of an answer for the question which was remained in [3].

REFERENCES

1. G. Bachmann, *Introduction to p -adic numbers and valuation theory*, Academic Press/ New York, 1964.
2. M. Cenkci, M. Can and V. Kurt, *p -adic interpolation functions and Kummer-type congruences for q -twisted and q -generalized twisted Euler numbers*, *Advan. Stud. Contemp. Math.* **9(2)** (2003), 203-216.
3. T. Kim, L.-C. Jang, S.-G. Rim, H.-K. Pak, *On the twisted q -zeta functions and q -Bernoulli polynomials*, *Far East J. Appl. Math.* **13(1)** (2003), 13-21.
4. T. Kim and S.H. Rim, *Generalized Carlitz's q -Bernoulli numbers in the p -adic number field*, *Adv. Studies Contemp. Math.* **2** (2000), 9-19.
5. T. Kim, *q -Volkenborn integration*, *Russian J. Math. Phys.* **9** (2002), 288-299.
6. T. Kim, *Barnes-Euler multiple zeta functions*, *Russian J. Math. Phys.* **10** (2003), 261-267.
7. T. Kim, *On a q -analogue of the p -adic log gamma functions and related integrals*, *J. Number Theory* **76** (1999), 320-329.
8. T. Kim, *p -adic q -integrals associated with Changhee-Barnes' q -Bernoulli polynomials*, *Integral Transforms and Special Functions* **15** (2004), 415-420.
9. T. Kim, *Non-Archimedean q -integrals associated with multiple Changhee q -Bernoulli polynomials*, *Russian J. Math. Phys.* **10** (2003), 91-98.
10. T. Kim, *Analytic continuation of multiple q -zeta functions and their values at negative integers*, *Russian J. Math. Phys.* **11** (2004), 71-76.

11. T. Kim, *q -Riemann zeta functions*, Int. J. Math. Math. Sci. **2004 no.12** (2004), 599-605.
12. T. Kim, *On p -adic q -L-functions and sums of powers*, Discrete Math. **252** (2002), 179-187.
13. T. Kim, *On explicit formulas of p -adic q -L-functions*, Kyushu J. Math. **48** (1994), 73-86.
14. T. Kim, *Sums of powers of consecutive q -integers*, Advan. Stud. Contemp. Math. **9 no. 1** (2004), 15-18.
15. N. Koblitz, *A new proof of certain formulas for p -adic L-functions*, Duke Math. J. **40** (1979), 455-468.
16. N. Koblitz, *p -adic numbers, p -adic analysis and Zeta functions*, Springer-Verlag, Berlin/Heidleberg, 1977.
17. N. Koblitz, *On Carlitz's q -Bernoulli numbers*, J. Number Theory **14** (1982), 332-339..
18. N. Koblitz, *p -adic numbers and their functions*, Springer-Verlag/ GTM 58, 1984.
19. A. M. Robert, *A course in p -adic analysis*, Springer-Verlag/ GTM 58, 2000.
20. W. H. Schikhof, *Ultrametric Calculus*, Cambridge Univ. Press, 1984.
21. K. Shiratani and S. Yamamoto, *On a p -adic interpolating function for the Euler number and its derivative*, Mem. Fac. Sci. Kyushu Univ. **39** (1985), 113-125.
22. Y. Simsek, *q -analogue of twisted l-series and q -twisted Euler numbers*, J. Number Theory **110** (2005), 267-278.
23. A. C. M. Van Rooji, *Non-Archimedean Functional Analysis*, Marcel Dekker, Pure and Applied Math. 51, 1978.
24. L. C. Washington, *Introduction to Cyclotomic fields*, Springer-Verlag/New York/Heidelberg Berlin, 1997.