Clase 18

Definición g un grupo es un por (G, \cdot) donde $G \neq \emptyset$ y $g \in G \times G \to G$ cumple $g \in G \times G \to G$

Además G es abeliano si a

Ejemplo:

$$\Delta$$
) (Z,+), (Q,+), (IR,+), (C,+)
(Q-{o'},·), (IR-{o'},·), (C-{o'},·)

$$Z_{n} = Z_{1/2} = \{ [0], [1], \infty, [n-1] \}$$

$$[a] + [b] = [a+b]$$
 $[a] \cdot [b] = [a.b]$
 $están bien$
 $definidas$

```
4) A.B grupos => AxB es grupo (prod. directo)
            (a,b).(c,d) = (g.c,b.d)
troposición à sec (G,.) un grupo à
  1) ee G es único.
  2) taeG, a es unco.
  3) (a^{-1})^{-1} = a
  4) (ab) = bai
   5) a... an no depende de parentésis (inducción)
Demostración: Ejercició.
troposicions (G.) un grupo, a, be G
                                     au=av
           au = av => u=v
                                     M = \Delta \cdot M = (aa)M
           ub = Vb => U=V
                                        = a (au) = a (av).
Notacións
1) (6,+) \rightarrow e=0, \bar{a}=-a, nx=x+...+x
2) (6, \cdot) \sim e=\Delta, \bar{a}=\bar{a}, \bar{x}=\bar{x}=\bar{x}
Definición = (G, ) grupo =
  1) El orden de G es IGI > oov
2) El orden do ocas == °
  2) El orden de acG es :
        1a1 = n = mín { me 2 / x = 1 }
     Si no existe m/x = 1 => 191=00
```

Grupo diedral & ¿Simetría? « lineo de simetría en el conte xto general a 15 ametría $Q = 12^2 / ||Q(x) - Q(y)|| = ||x - y||$ * traslociones X * rotaciones /

- * reflexiones V
- 11 deslizadas X

Simetrias en un polígono rea = isometrias
$$Q : 12 - 212$$

Primetrias $Q : 12 - 212$

Primetrias en $Q : 12 - 212$

reflexiones =
$$3$$

rotaciones = 3 , 2π , 9π , 0

En
$$P_n$$
 ~ rotaciones = n , $2\pi K$, $k \in \{0,..,n-1\}$

Polie	3000	de r	1 (000)	S				
n	împc	X 8			vértic			nerostok se cibem
n	Par	00	1/2	ejes	Uniend	véM.	Opvesti	25
			W2	ejes Opve	•	tos. me	ediOs (∞ \cd>s
D2	$V = \int$	Sime	trias d	e Pn	۲ ->	1D2n	(= 2V	
En (C,		Z/Z^{n}					.1
				(0,		= (0,1,	000, IL-	
			-1,0)	/ /(c	(1	,0)	Re	
\mathcal{D}_{2r}	\ = {	fo	C-> C			Pn, f	- Psame	tría {
(\mathcal{D}_2)	0,0) Co	mposici	ón de	fucio	nes		
		4,6	Je D	2n = 3	> foe	e I	2n	

Traposición: (Pzn,0) es un grupo con orden 2n, n,3 Demostración : * o asociativa v * ide D2n V, fo(id)=f=(id) of * Vamos prober 3 (*) $D_{2n} = \{id, r, r^2, \infty, r^3, \infty, r^5, r^5, \infty, r^5, r^5, \infty, r^5\}$ donde s rotación de 21/1/ PoC > C 2πPn ~ re D2n Z+> Z. e S = reflexión resp. al eje real S3C>C SEDZN Tenemos : r= roro...or = 9d, S= 50S = 9d $\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$ Trueba de (*) : Sea fe $D_{2n} \Rightarrow f(\Delta) = e^{\frac{2\pi i k}{n}} para olgún ke{0,...,n-1}$ $\Rightarrow \Gamma(\Delta) = e^{2\pi i k/n} = f(\Delta) \Rightarrow (\Gamma \circ f)(\Delta) = \Delta$

$$= \sum_{g} (r^{6}f)(1) = 1$$

$$= \sum_{g} (r^{6}f)(1) = 1$$

$$= \sum_{g} (r^{6}f)(1) = 1$$

$$= \sum_{g} (r^{6}f)(1) = 2\pi^{2}f(1) = 2\pi^{2}f$$

Sayoung $D_{2n} = \{\Delta_{1}r, r^{2}, \infty, r^{n-1}, S, rS, \infty, r^{n-1}\}$ se denomina el grupo diedral de orden 2n $VSV = \Gamma S$ $S\Gamma^{2} = \Gamma^{n-2}S \quad ooo \quad S^{2} = \Delta V$ 513= 1n-35 $D_{2n} = \begin{cases} r, s & r = sr^{-1} \\ r = s = 1, rs = sr^{-1} \end{cases}$ Beneratores relaciones Una presentación de Dan Termutaciones a Sea X + Ø, definimos => SX = { T = X -> X / T es biyección } permut action (Sx, o) es un grupo denominado el grupo simétrico de X.

En el caso $X = \{1, \infty, n\} \sim S_X := S_n$ se denomina el grupo simétrico de orden n.

Dado Te Sn se denotan :

$$\nabla = \left(\begin{array}{c} \Delta & 2 & 3 \dots & n \\ \nabla (n) & \nabla (2) & \dots & \nabla (n) \end{array} \right)$$

$$|S_n| = n|$$

$$|S_$$

$$1 \rightarrow 6 \rightarrow 1$$
 (16) $\Rightarrow T = (16)(253)$
 $2 \rightarrow 5 \rightarrow 3 \rightarrow 2$ (253) $\Rightarrow U$
 U
 U
 U
 U
 U

Obsolos ciclos disj. conmutan

Teorema: Took Je Sn se expresa como prod de ciclos disjuntos, esta descomposición es única salvo:

- 1) El orden de los cidos
- 2) reordenamientos de cidos

Subgrupos:

Querer construir grupos a partir de G

Définición: Sea (G,·) un grupo y H ⊆ G. Diremos que H es un subgrupo de G si s

Hes subgrupo (=> \text{XXYEH = XYEH}

		_1 -			11					1 4										
			057																	
	1)	7	3 4 G	0	, 1	2 4	≤ 0	_ (Con	10	ac	licio	ń							
	2)	Si	6	es	ر ا)ruf	O O	~> \-\ 1	{ <	24/	6	20	n S	'du	g r	PO	5(-	ไก้ง	ide	·s)
	3)	H	= 4	(1)	٠/ ٥	000/	1.,	(1 <	, 'L	20									
S	29	(G)	UN	91	rupa) <u>-</u>	=> c	۲	Ons	tru	ir	UN	91	φί))				
			icic														ነሲነን	05	00	G
	P																			
					=>		76	Ho	∤ €	25	SUL	20	rpi	d	26					
	ad))	A <	<u> </u>		de	rini	MO:	S &											
			</td <td>A)</td> <td>=</td> <td>•</td> <td></td> <td></td> <td>6</td> <td>25</td> <td>20</td> <td>69</td> <td>rup</td> <td>05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	A)	=	•			6	25	20	69	rup	05						
						H	(<u>S</u>)	G												
		~ ~	000			\						<u>~</u>			٨					
SE	2 00	Zne	าโกา	C		SUE	Sr	opi	ع ر	ene	910	00	pc		4					