2022-2023 MP2I

27. Déterminant, corrigé

Exercice 4.

1) On pose
$$A_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$
.

Supposons $n \geq 3$. On remarque alors que l'on peut effectuer les opérations éléments $L_3 \leftarrow L_3 - L_1$ et $C_3 \leftarrow C_3 - C_1$ (qui ne changent pas le déterminant). On a alors :

$$\det(A_n) = \det\begin{pmatrix} A' & 0\\ 0 & A_{n-2} \end{pmatrix},$$

où $A' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et où les 0 sont des blocs de 2 lignes (pour le haut à droite) et de 2 colonnes (pour le bas à gauche). On en déduit que $\det(A_n) = -\det(A_{n-2})$. Par récurrence directe, on en déduit que pour tout $k \in \mathbb{N}$:

$$\begin{cases} \det(A_{2k+2}) = (-1)^k \det(A_2) \\ \det(A_{2k+1}) = (-1)^k \det(A_1) \end{cases}$$

On a $\det(A_1) = 0$ et $\det(A_2) = -1$. On en déduit que pour $k \in \mathbb{N}^*$, $A_{2k} = (-1)^k$ et $\det(A_{2k+1}) = 0$.

2) On pose
$$B_n = \begin{pmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & 2 \end{pmatrix}$$
.

Supposons $n \geq 3$. On va raisonner de la même manière qu'au 1) en développant le déterminant par rapport à la première colonne. Quand on choisit le premier coefficient, on obtient un terme en $2 \times \det(B_{n-1})$ et pour le second, on obtient $-1 \times 1 \times \det(B_{n-2})$. En effet, après avoir choisi le 1 de la première colonne, le coefficient de la seconde colonne choisi doit obligatoirement être le 1 de la première ligne, sinon on devra prendre un 0 de la première ligne ce qui annulera le produit. Si on pose $u_n = \det(B_n)$, on a alors :

$$\forall n \geq 3, \ u_n = 2u_{n-1} - u_{n-2}.$$

On calcule alors $u_1=2$ et $u_2=3$. On remarque alors que l'on peut étendre cette suite en n=0 en prenant $u_0=1$. Pour trouver la forme de u_n , il faut trouver les racines de $X^2-2X+1=(X-1)^2$. On en déduit qu'il existe $\lambda, \mu \in \mathbb{R}$ tels que $\forall n \in \mathbb{N}, \ u_n=\lambda n+\mu$.

A l'aide des conditions initiales, on en déduit que $\det(B_n) = n + 1$.

3) Posons
$$C_n = \begin{pmatrix} 3 & 1 & 0 & \dots & 0 \\ 2 & 3 & 1 & \ddots & \vdots \\ 0 & 2 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 2 & 3 \end{pmatrix}$$
. En développant de la même manière que pour B_n , si on

pose $v_n = \det(C_n)$, on a:

$$\forall n \ge 3, \ v_n = 3v_{n-1} - 2v_n.$$

On a $v_1=3$ et $v_2=7$. On peut étendre la suite v_n en posant $v_0=1$ (cette nouvelle suite vérifie la même relation de récurrence). Le polynôme caractéristique associé à cette équation est $X^2-3X+2=(X-1)(X-2)$. On en déduit qu'il existe $\lambda,\mu\in\mathbb{R}$ tels que $\forall n\in\mathbb{N},\ v_n=\lambda+\mu 2^n$.

À l'aide des conditions initiales, on trouve alors que $\det(C_n) = 2^{n+1} - 1$.

Exercice 6.

1) On va utiliser des opérations élémentaires. En développant les carrés, et en soustrayant la première ligne à toutes les autres, on obtient que le déterminant étudié est égal au déterminant :

$$\begin{vmatrix} a^2 & b^2 & c^2 & d^2 \\ 2a+1 & 2b+1 & 2c+1 & 2d+1 \\ 4a+4 & 4b+4 & 4c+4 & 4d+4 \\ 6a+9 & 6b+9 & 6c+9 & 6d+9 \end{vmatrix}.$$

On peut ensuite soustraire aux lignes 3 et 4 respectivement 2 fois la ligne 2 et 3 fois la ligne 2. On obtient alors que le déterminant recherché est égal à :

$$\begin{vmatrix} a^2 & b^2 & c^2 & d^2 \\ 2a+1 & 2b+1 & 2c+1 & 2d+1 \\ 2 & 2 & 2 & 2 \\ 6 & 6 & 6 & 6 \end{vmatrix}.$$

Les deux dernières lignes sont liées donc le déterminant est nul.

2) On procède de la même façon en simplifiant d'abord les cubes dans les lignes 2 à 4 en utilisant la première ligne, puis les carrés dans les lignes 3 et 4 en utilisant L_2 et enfin les termes de degré 1 dans L_4 en utilisant L_3 . On est donc ramené au calcul de :

$$\begin{vmatrix} a^3 & b^3 & c^3 & d^3 \\ 3a^2 + 3a + 1 & 3b^2 + 3b + 1 & 3c^2 + 3c + 1 & 3d^2 + 3d + 1 \\ 6a + 6 & 6b + 6 & 6c + 6 & 6d + 6 \\ 6 & 6 & 6 & 6 \end{vmatrix}$$

En peut alors remonter en utilisant la dernière ligne pour simplifier les coefficients constants de L_2 et L_3 et ensuite utiliser L_3 pour simplifier les termes de degré 1 de L_2 . On est donc ramené au calcul de :

$$\begin{vmatrix} a^3 & b^3 & c^3 & d^3 \\ 3a^2 & 3b^2 & 3c^2 & 3d^2 \\ 6a & 6b & 6c & 6d \\ 6 & 6 & 6 & 6 \end{vmatrix}$$

Il reste alors à factoriser $3 \times 6 \times 6$ sur les colonnes et on a fait apparaître un déterminant de Vandermonde. Pour s'y ramener, il suffit de prendre la transposée et d'échanger ensuite les colonnes 1 et 4 et 2 et 3 (deux transpositions donc on ne modifie pas le déterminant). On en déduit que le déterminant recherché vaut :

$$4 \times 27 \times (d-a)(d-b)(d-c)(c-b)(c-a)(b-a)$$
.

Exercice 7. On remarque que l'on a presque un déterminant de Vandermonde! Pour calculer ce déterminant, on va donc artificiellement faire apparaître un déterminant de Vandermonde avec une

2

colonne de « cubes » et une nouvelle variable x. On va donc calculer le déterminant de :

$$P(X) = \det \begin{pmatrix} 1 & a & a^2 & a^3 & a^4 \\ 1 & b & b^2 & b^3 & b^4 \\ 1 & c & c^2 & c^3 & c^4 \\ 1 & d & d^2 & d^3 & d^4 \\ 1 & X & X^2 & X^3 & X^4 \end{pmatrix}.$$

On a alors P(X) = (X - d)(X - c)(X - b)(X - a)(d - c)(d - b)(d - a)(c - b)(c - a)(b - a) d'après la formule habituelle. Pour revenir à notre déterminant de départ, on remarque que si on développe le déterminant P(x) par rapport à la dernière ligne, le déterminant de départ apparait comme l'opposé du coefficient de X^3 dans ce polynôme. Il ne reste donc plus qu'à calculer le coefficient en X^3 de (X - d)(X - c)(X - b)(X - a) qui est -(a + b + c + d). On en déduit que le déterminant recherché vaut donc (a + b + c + d)(d - c)(d - b)(d - a)(c - b)(c - a)(b - a).

Exercice 8. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB = BA.

On a alors $A^2 + B^2 = (A + iB)(A - iB)$. Si on pose C = A + iB, puisque A et B sont réelles, on a $\overline{C} = A - iB$. On a donc :

$$\det(A^2 + B^2) = \det(C\overline{C}).$$

On en déduit que $\det(A^2 + B^2) = \det(C) \det(\overline{C})$. Si on montre que $\det(\overline{C}) = \overline{\det C}$, on aura alors que l'expression que l'on considère est un module et est donc positive.

Or, on a:

$$\det(\overline{C}) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{k=1}^n \overline{c_{k,\sigma(k)}}$$
$$= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{k=1}^n c_{k,\sigma(k)}$$
$$= \overline{\det(C)}.$$

En effet, le conjugué d'un produit est égal au produit des conjugués et une somme de conjugués est égal au conjugué de la somme. On a donc bien le résultat voulu.

Exercice 9. Soit $n \geq 2$ et $A \in \mathcal{M}_n(\mathbb{K})$.

On a $A \cdot {}^t\mathrm{Com}(A) = \det(A)I_n$. En évaluant le déterminant de cette relation, on obtient alors $\det(A) \cdot \det({}^t\mathrm{Com}(A)) = (\det(A))^n$ (attention à ne pas oublier que $\det(A)I_n$ est la matrice avec $\det(A)$ sur chacun des termes de la diagonale!). Or, on a $\det({}^t\mathrm{Com}(A)) = \det(\mathrm{Com}(A))$. On en déduit que si A est inversible, alors $\det(\mathrm{Com}(A)) = (\det(A))^{n-1}$.

Supposons à présent que A ne soit pas inversible. Par l'absurde, supposons que Com(A) soit inversible. Alors, ${}^tCom(A)$ serait également inversible. Or, on a $A \cdot {}^tCom(A) = 0$. En multipliant par l'inverse de ${}^tCom(A)$ à droite, on trouve alors que A = 0. Ceci entraine que Com(A) = 0 ce qui contredit le fait que Com(A) soit inversible!

On en déduit que si A n'est pas inversible, alors Com(A) non plus. On a donc bien encore $det(Com(A)) = 0 = ((det(A))^{n-1}$.

Exercice.

- 1) On a $A \cdot {}^{t}Com(A) = det(A)I_n$.
- 2) Supposons rg(A) = n. A est alors inversible et on a :

$$Com(A) = \det(A)^{t}(A^{-1}).$$

On en déduit que $\operatorname{Com}(A)$ est inversible (car $\det(A) \neq 0$ et ${}^t(A^{-1})$ est de rang n. Ceci entraine que $\operatorname{rg}(\operatorname{Com}(A)) = n$.

- 3) Supposons rg(A) = n 1.
 - a) A est de rang n-1, ce qui implique que ses vecteurs colonnes forment un espace vectoriel de dimension n-1. Il existe donc un des vecteurs colonnes C_j qui s'écrit comme une combinaison linéaire des autres colonnes. On peut donc effectuer des opérations élémentaires pour remplir la colonne C_j de 0 (ce qui ne change pas le rang de la matrice, ni les coefficients des autres colonnes). En considérant à présent les vecteurs lignes, qui forment aussi un espace vectoriel de dimension n-1 (toujours car A est de rang n-1), il existe une ligne L_i qui s'écrit comme une combinaison linéaire des autres lignes. On peut donc placer des 0 dans cette ligne à l'aide d'opérations élémentaires, ce qui ne change pas le rang.

Considérons alors le cofacteur d'indice (i,j). La matrice dont on calcule le déterminant est la matrice de taille $n-1 \times n-1$ dont les coefficients sont les coefficients de A que l'on n'a pas annulés avec les opérations précédentes. On en déduit que cette famille de vecteurs, que ce soit sur les lignes ou les colonnes, est de rang n-1 (car elle est de même rang que le rang de A). On en déduit alors que le cofacteur d'indice (i,j) est non nul (car une matrice de taille $n-1 \times n-1$ de rang n-1 est inversible et donc de déterminant non nul). Ceci entraine que la comatrice de A est non nulle.

b) Notons a et b les applications linéaires canoniquement associées à A et à ${}^tCom(A)$. Remarquons que rg(a) = n - 1 par hypothèse et que rg(b) = rg(Com(A)) (en effet, une matrice et sa transposée ont le même rang).

On a de plus, puisque $\det(A) = 0$ d'après la première question que $a \circ b = 0$. On en déduit que $\operatorname{Im}(b) \subset \ker(a)$. Or, d'après le théorème du rang, la dimension de $\ker(a)$ est égale à 1. Ceci entraine que $\operatorname{rg}(b) \leq 1$.

Puisque d'après la question précédente, la comatrice de A est non nulle, ceci implique que rg(b) > 0. On en déduit que rg(b) = 1, ce qui entraine que la comatrice de A est de rang 1.

4) Supposons $\operatorname{rg}(A) \leq n-2$. Soient $i, j \in [1, n]$.

Supposons par l'absurde que $\det(A_{i,j}) \neq 0$. Ceci signifie que $A_{i,j}$ est de rang n-1. Ainsi, les vecteurs $C_1, \ldots, C_{j-1}, C_{j+1}, \ldots, C_n$ auxquels on a supprimé la ligne i forment une famille libre. On peut donc leur rajouter leur ligne i, ce qui ne change pas la liberté de la famille. On en déduit que A contient alors n-1 colonnes libres, ce qui entraine $\operatorname{rg}(A) \geq n-1$: absurde!

On en déduit que tous les cofacteurs sont nuls, ce qui entraine que Com(A) = 0.

Exercice 10.

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ les matrices définies par $a_{i,j} = \frac{i^{j-1}}{(j-1)!}$ et $b_{i,j} = \frac{j^{n-i}}{(n-i)!}$.

1) On a
$$A = \begin{pmatrix} 1 & \frac{1}{1!} & \frac{1}{2!} & \dots & \frac{1}{(n-1)!} \\ 1 & \frac{2}{1!} & \frac{2^2}{2!} & \dots & \frac{2^{n-1}}{(n-1)!} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \frac{n}{1!} & \frac{n^2}{2!} & \dots & \frac{n^{n-1}}{(n-1)!} \end{pmatrix}$$

On peut alors utiliser la linéarité du déterminant par rapport à ses colonnes pour sortir les facto-

rielles. On a donc:

$$\det(A) = \frac{1}{\prod_{k=1}^{n-1} k!} \times \begin{vmatrix} 1 & 1 & \dots & 1\\ 1 & 2 & \dots & 2^{n-1}\\ \vdots & \vdots & & \vdots\\ 1 & n & \dots & n^{n-1} \end{vmatrix}.$$

On peut alors utiliser la formule pour le déterminant de Vandermonde ce qui nous donne :

$$\det(A) = \frac{1}{\prod_{k=1}^{n-1} k!} \prod_{1 \le i \le j \le n} (j-i).$$

Or, si on regarde les différents termes du produit, on voit que quand i vaut 1, j varie entre 2 et n donc on fait apparaître un (n-1)!. Quand i vaut 2, j varie entre 3 et n donc on fait apparaître un (n-2)!. On en déduit en décomposant le produit que :

$$\prod_{1 \le i < j \le n} (j - i) = \prod_{k=2}^{n-1} k!.$$

Après simplification, on a donc det(A) = 1.

2) On a cette fois
$$B = \begin{pmatrix} \frac{1}{(n-1)!} & \frac{2^{n-1}}{(n-1)!} & \frac{3^{n-1}}{(n-1)!} & \cdots & \frac{(n-1)^{n-1}}{(n-1)!} \\ \frac{1}{(n-2)!} & \frac{2^{n-2}}{(n-2)!} & \frac{3^{n-2}}{(n-2)!} & \cdots & \frac{(n-1)^{n-2}}{(n-2)!} \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{2!} & \frac{2}{2!} & \frac{3}{2!} & \cdots & \frac{n-1}{2!} \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

On peut alors utiliser la linéarité du déterminant par rapport à ses lignes pour sortir les factorielles. On a donc :

$$\det(B) = \frac{1}{\prod_{k=1}^{n-1} k!} \times \begin{vmatrix} 1 & 2^{n-1} & \dots & (n-1)^{n-1} \\ 1 & 2^{n-2} & \dots & (n-1)^{n-2} \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \dots & (n-1) \\ 1 & 1 & \dots & 1 \end{vmatrix}.$$

Pour faire apparaître un déterminant de Vandermonde, il faut commencer par échanger la ligne 1 avec la ligne n, puis la ligne 2 avec la ligne n-1, la ligne 3 avec la ligne n-2, etc. et ensuite prendre la transposée (ce qui ne change pas le déterminant). On va séparer les cas n pair et n impair pour déterminer la signature de cette permutation.

- Si n est pair, on a alors $\sigma = (1 \ n)(2 \ n-1)\dots(\frac{n}{2} \ \frac{n}{2} + 1)$. On a donc $\frac{n}{2}$ transpositions ce qui implique que la signature de cette permutation est $(-1)^{\frac{n}{2}}$.
- Si n est impair, on a alors $\sigma = (1 \ n)(2 \ n-1)\dots(\frac{n-1}{2} \ \frac{n+3}{2})$ (en effet, la ligne $\frac{n+1}{2}$ n'est permutée avec aucune ligne car elle est déjà dans la bonne position, on pourra regarder le cas n=3 ou n=5 pour se convaincre de ceci). On a donc $\frac{n-1}{2}$ transpositions donc la signature de cette permutation est $(-1)^{\frac{n-1}{2}}$.

Si on regroupe ces deux expressions, on trouve que la signature de cette permutation est $(-1)^{\lfloor (n/2) \rfloor}$. Puisque l'on retrouve alors le même déterminant que dans la première question, on en déduit que :

$$\det(B) = (-1)^{\lfloor (n/2) \rfloor}.$$

3) On a:

$$(AB)_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

$$= \sum_{k=1}^{n} \frac{i^{k-1}}{(k-1)!} \cdot \frac{j^{n-k}}{(n-k)!}$$

$$= \sum_{p=0}^{n-1} \frac{i^p}{p!} \cdot \frac{j^{n-1-p}}{(n-1-p)!} \quad \text{(on pose } p = k-1\text{)}$$

$$= \frac{1}{(n-1)!} \sum_{p=0}^{n-1} \binom{n-1}{p} i^p j^{n-1-p}$$

$$= \frac{1}{(n-1)!} (i+j)^{n-1}.$$

4) On a donc M = (n-1)!AB. On a donc :

$$\det(M) = ((n-1)!)^n \det(A) \det(B)
= (-1)^{\lfloor (n/2) \rfloor} ((n-1)!)^n.$$

Exercice 11. Soit φ l'application de $\mathbb{R}_n[X]$ dans lui-même définie par $\varphi(P) = P(2X)$. On va déterminer la matrice de φ dans la base canonique de $\mathbb{R}_n[X]$. Cette matrice est diagonale car on a pour tout $p \in [0, n]$, $\varphi(X^p) = 2^p X^p$.

Le déterminant de φ est donc égal au produit des coefficients diagonaux. On a donc :

$$\det(\varphi) = \prod_{p=0}^{n} 2^{p}$$
$$= 2^{\sum_{p=0}^{n} p}$$
$$= 2^{\frac{n(n+1)}{2}}.$$

Exercice 12. Soit E le \mathbb{R} -espace vectoriel de fonctions engendré par $x \mapsto e^x \cos(x)$ et $x \mapsto e^x \sin(x)$.

E est alors un espace vectoriel de dimension 2 (les fonctions $f_1: x \mapsto e^x \cos(x)$ et $f_2: x \mapsto e^x \sin(x)$ sont libres, il suffit par exemple d'évaluer la relation $\lambda f_1 + \mu f_2$ en x = 0 pour obtenir $\lambda = 0$, ce qui entraine ensuite $\mu = 0$). La dérivation est bien définie de E dans E puisque $f'_1 = f_1 - f_2$ et $f'_2 = f_1 + f_2$. Puisque D est linéaire, elle est donc bien définie de E dans E.

On peut donc écrire $mat(D, (f_1, f_2)) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Le déterminant de cette matrice vaut 2 (et c'est le même dans n'importe quelle base puisque le déterminant est invariant par changement de base).

Exercice 13. Soit φ de $\mathcal{M}_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})$ défini par $\varphi(M) = {}^tM$. Pour calculer le déterminant de φ , on va écrire sa matrice dans une base de $\mathcal{M}_n(\mathbb{K})$ bien choisie. Plutôt que de choisir la base canonique, on va choisir une base de $\mathcal{M}_n(\mathbb{K})$ de matrices symétriques et antisymétriques. Ainsi, la matrice de φ s'écrira facilement (elle sera diagonale) et calculer son déterminant sera alors facile.

On va donc prendre comme base de $\mathcal{M}_n(\mathbb{K})$ les $E_{1,1}, E_{2,2}, \ldots, E_{n,n}$ puis les $E_{i,j} + E_{j,i}$ et $E_{i,j} - E_{j,i}$ pour $i \neq j$. Alors, les matrices symétriques s'envoient sur elles-mêmes par φ et les antisymétriques sur leurs opposées. Ceci implique que dans cette base, φ s'écrit avec des 1 sur la diagonale et des -1, avec autant de -1 que la dimension de l'espace vectoriel des matrices antisymétriques. On en déduit que :

$$\det(\varphi) = (-1)^{\frac{n(n-1)}{2}}.$$

Exercice 14. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si $\det(A) \neq 0$, alors le résultat est vrai (on prend la suite constante égale à A).

Supposons alors $\det(A) = 0$. Posons pour $x \in \mathbb{K}$, $P(x) = \det(A - xI_n)$. On remarque alors que P est un polynôme en x de degré n (et son coefficient dominant vaut $(-1)^n$. En effet, quand on calcule ce déterminant, le seul terme faisant apparaître un x^n est quand on multiplie tous les termes diagonaux entre eux, et qu'ensuite dans chaque parenthèse, on multiplie les x entre eux.

On en déduit que P admet au plus n racines dans \mathbb{K} (comptées avec multiplicité) et qu'il admet 0 comme racine. Puisque P admet un nombre fini de racines, il existe $\varepsilon > 0$ tel que si $|x| \le \varepsilon$ et $x \ne 0$, alors $P(x) \ne 0$ (on prend $\varepsilon = \min \frac{|\lambda_j|}{2}$ où le minimum est pris sur les racines non nulles λ_j de P).

Ceci signifie que si l'on prend $N \in \mathbb{N}^*$ tel que $\frac{1}{N} \leq \varepsilon$, alors, pour tout $m \geq N$, $A - \frac{1}{m}I_n$ est inversible. De plus, cette matrice tend vers A quand m tend vers l'infini. On a bien montré que A est limite d'une suite de matrices inversibles.

Exercice 15. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$. Il existe donc $P \in GL_n(\mathbb{C})$ tel que $P^{-1}AP = B$, autrement dit telle que AP = PB. En écrivant alors P = U + IV où l'on place dans U les coefficients réels de P et dans V les imaginaires, on obtient deux matrices U et V réelles telles que AU = UB et AV = VB.

On a alors pour tout $x \in \mathbb{R}$, A(U+xV)=(U+xV)B. Posons alors $Q(x)=\det(U+xV)$. Q est alors un polynôme en x (puisque l'on ne fait que des produits et des sommes quand on calcule un déterminant). Or, ce polynôme vérifie $Q(i) \neq 0$ (car la matrice P est inversible donc son déterminant est non nul) donc le polynôme Q n'est pas identiquement nul. Il existe donc $\lambda \in \mathbb{R}$ tel que $Q(\lambda) \neq 0$, ce qui implique que $\det(U+\lambda V) \neq 0$ et est donc inversible. Les matrices A et B sont donc semblables dans $\mathcal{M}_n(\mathbb{R})$.