On retrouve les résultats obtenus dans la première partie du problème dans le cas $\lambda = \text{constante}$.

11.8.4 LES NOTES (sur 40)

Candidats: 167 copies; candidates: 73 copies

	0	1 à 5	6 à 10	11 à 15
Candidats:	17	60	47	27
Candidates:	20	27	12	5
	16 à 20	21 à 25	26 à 30	31 à 40
Candidats:	12	3	1	0
Candidates:	6	3	0	0

II.9 TEXTE DE L'EPREUVE DE PROBABILITES ET STATISTIQUES

INTRODUCTION

1º Soit $(\Omega$, \mathcal{A}) un espace mesurable et T un sous-ensemble de la droite réelle \mathbf{R} ; on appelle fonction aléatoire réelle (en abrégé f.a.r.), construite sur $(\Omega$, \mathcal{A}) et T, toute application X de $T \times \Omega$ dans la droite réelle achevée $\overline{\mathbf{R}}(=[-\infty , +\infty])$, telle que, pour tout t de T l'application X_t définie par

$$(\forall \omega \in \Omega) \quad X_t(\omega) = X(t, \omega)$$

soit mesurable de (Ω, \mathcal{H}) dans $(\overline{\mathbf{R}}, \overline{\mathcal{B}})$ (où $\overline{\mathcal{B}}$ désigne la tribu borélienne de $\overline{\mathbf{R}}$).

2º Soit P une probabilité sur (Ω, \mathcal{A}) ; une f.a.r. X construite sur (Ω, \mathcal{A}) et T est dite du second ordre relativement à P si et seulement si

$$(\forall t \in T)$$
 $\int_{\Omega} (X_t)^2 dP < \infty$

S'il n'y a pas d'ambiguïté sur P, on pourra :

- dire plus brièvement que « X est du second ordre »;
- noter, pour toute variable aléatoire réelle (v.a.r.) Y définie sur $(\Omega$, A), et intégrable par rapport à P $E(Y) = \int Y dP$;
- noter m l'application de T dans R définie par

 $(\forall t \in T)$ $m(t) = E(X_t)$, et l'appeler moyenne de la f.a.r. X;

- dire que X est centré si $\forall t \in T$ m(t) = 0;
- noter K l'application de T \times T dans **R** qui, à tout couple (s, t), associe la covariance des v.a.r. X_s et X_t et l'appeler covariance de la f.a.r. X_t ;
- commettre l'abus de langage consistant à confondre l'espace des v.a.r. de carré intégrable et celui de leurs classes d'équivalence pour l'égalité P presque sûre (on le notera $L^2(P)$).
- 3º On rappelle qu'un noyau symétrique de type positif sur un sousensemble T de ${\bf R}$ est une application n de T imes T dans ${\bf R}$ telle que
 - (i) $(\forall (s, t) \in T \times T)$ n(s, t) = n(t, s)
- (ii) pour toute fonction réelle a sur T nulle sauf sur un ensemble fini de points on a

$$\sum_{(s, t) \in T \times T} a(s) \ a(t) \ n(s, t) \geq 0.$$

T

Soit P une probabilité sur $(\Omega\,,\, \pounds)$ et X une f.a.r. du second ordre construite sur $(\Omega\,,\, \pounds)$ et T.

- 1º Vérifier que K (s, t) est un noyau symétrique de type positif.
- 2º Pour toute fonction réelle a nulle sauf sur un ensemble fini de points de T, $\sum_{t \in T} a(t) X_t$ est une v.a.r. de carré intégrable; l'ensemble

de ces variables forme un espace vectoriel $L\left(X,\,T\right)$. On appelle espace engendré par X, pour la loi P, la fermeture $H_P\left(X,\,T\right)$ de $L\left(X,\,T\right)$ dans $L^2(P)$ [s'il n'y a pas de risque de confusion on notera cet espace H_P]. On appelle f.a. gaussienne une f.a.r. du second ordre telle que $L\left(X,\,T\right)$ soit formé de variables de Laplace-Gauss (toujours pour la loi P). Vérifier que H_P est formé aussi de variables de Laplace-Gauss. Cet espace s'appelle l'espace gaussien engendré par X.

3º On suppose que : $\forall t \in T$ m(t) = 0

a. Montrer que l'application $J: H_P \longrightarrow \mathbf{R}^T$ définie par $J(Z)(t) = E[Z|X_t]$ est injective;

b. Soit \mathcal{H} (K, T) [en abrégé \mathcal{H} (K)] l'image de H_P par J. Montrer qu'on peut munir \mathcal{H} (K) d'une structure d'espace de Hilbert telle que J soit un isomorphisme de H_P sur \mathcal{H} (K) [application linéaire, inversible, préservant la norme]. On notera $< f, g > \mathcal{H}$ (K) le produit scalaire de deux éléments f et g de \mathcal{H} (K);

c. Soit K (s, .) la fonction définie sur T par $t \rightsquigarrow K(s, t)$ montrer que la famille $[K(s, .)]_{s \in T}$ engendre $\mathcal{H}(K)$, et que,

$$\forall h \in \mathcal{H}(K)$$
 $h(t) = \langle h, K(t, .) \rangle_{\mathcal{H}(K)}$.

En déduire en particulier que deux f.a.r. centrées construites sur le même ensemble d'indice T et ayant même covariance déterminent par l'intermédiaire de J le même espace de Hilbert.

4º Cette question consiste à démontrer la proposition suivante :

À tout noyau K symétrique de type positif sur T on peut associer un espace unique $\mathcal{H}(K,T) \subset \mathbf{R}^T$ vérifiant les propriétés suivantes :

- (i) $\mathcal{H}(K, T)$ est un espace de Hilbert engendré par $[K(t, .)]_{t \in T}$
- (ii) $\forall h \in \mathcal{H}(K,T)$ $h(t) = \langle h, K(t,.) \rangle_{\mathcal{H}(K)}$

Un tel espace s'appelle l'espace autoreproduisant associé à K.

On pourra admettre cette proposition ou la démontrer en considérant l'espace vectoriel \mathcal{H}_0 engendré par $[K(t, .)]_{t\in T}$ et en vérifiant que si a et b sont non nulles sur un ensemble fini de points les fonctions

$$f = \sum_{s \in T} a(s) K(s, .)$$
 et $g = \sum_{t \in T} b(t) K(t, .)$ sont telles que

 $\sum_{s \in T} a(s) \ g(s) = \sum_{t \in T} b(t) \ f(t).$ En déduire qu'on peut munir \mathcal{H}_{o}

d'un produit scalaire qui permet de définir $\mathcal{H}\left(K,\,T\right)$ par complétion.

5º Exemples.

a. Soit $T = \{1, 2, ..., n\}$. Décrire \mathcal{H} (K) et donner une expression du produit scalaire correspondant;

b. soit T = [a, b], σ donné $\neq 0$ et $K(s, t) = \sigma^2$ inf (s, t).

Montrer que $\mathcal{H}(K)$ est égal à $\left\{ f \in \mathbf{R}^T; \exists f^* : \int_a^b [f^*(u)]^2 du < \infty \text{ et } \forall t, f(t) = f(a) + \int_a^t f^*(u) du \right\}$ muni du produit scalaire $\langle f, g \rangle_{\mathcal{H}(K)} = \int_a^b f^*(u) g^*(u) du$.

II

Soit (Ω, \mathcal{A}, P) un espace de probabilité. On rappelle que deux mesures R et S sur \mathcal{A} sont étrangères si $\exists A \in \mathcal{A} : R(A) = 0 = S(\mathbf{G}A)$. Soit \mathcal{B} une sous-tribu de \mathcal{A} et Z un élément de $L^1(\Omega, \mathcal{A}, P)$, on notera $E_P^{\mathcal{B}}(Z)$ l'espérance conditionnelle de Z par rapport à \mathcal{B} pour la probabilité P.

Soit X une f.a.r. gaussienne centrée construite sur (Ω, \mathcal{A}) et \mathbf{R}_+ , et P une probabilité sur \mathcal{A} , on notera K la covariance de X pour P et H_P l'espace gaussien engendré par X dans $L^2(\Omega, \mathcal{A}, P)$.

On suppose que $\mathcal A$ est la tribu engendrée par $\left[\begin{array}{cc} \mathbf X_t\end{array}\right]_{t\in \mathbf R_+}$.

1º Soit $Y \in H_P$, Q_Y la mesure de densité $\exp\left[Y - \frac{1}{2} E_P(Y^2)\right]$ par rapport à P; vérifier que Q_Y est une probabilité sur Ω telle que la f.a.r. X définie sur (Ω, \mathcal{A}) et R_+ soit gaussienne pour Q_Y . Trouver sa moyenne m_Y et sa covariance K_Y . Soit $[Z_n]_{n \in \mathbb{N}}$ une suite dans L(X, T); vérifier que si $[Z_n]_{n \in \mathbb{N}}$ est une suite de Cauchy dans $L^2(\Omega, \mathcal{A}, P)$ elle l'est aussi dans $L^2(\Omega, \mathcal{A}, Q_Y)$ et réciproquement. Comparer les limites.

2º Soient sur (Ω, \mathcal{A}) deux probabilités R et S absolument continues par rapport à une probabilité μ (on remarquera que R et S sont absolument continues par rapport à $\frac{R+S}{2}$), soient $\frac{dR}{d\mu}$ et $\frac{dS}{d\mu}$ les densités correspondantes.

a. Montrer que $\int \sqrt{\frac{dR}{d\mu}} \frac{dS}{d\mu} d\mu$ ne dépend pas de μ ; on

notera cette quantité $\int \sqrt{dRdS}$;

b. Montrer que R et S sont étrangères si et seulement si

$$\int \sqrt{dRdS} = 0;$$

c. Soit ${\mathcal B}$ une sous-tribu de ${\mathcal A}$; ${\mathcal R}_{{\mathcal B}}$, ${\mathcal S}_{{\mathcal B}}$ et ${\mathcal U}_{{\mathcal B}}$ les restrictions

de R, S et
$$\mu$$
 à \mathcal{B} . Exprimer $\frac{dR_{\mathcal{B}}}{d\mu_{\mathcal{B}}}$ et $\frac{dS_{\mathcal{B}}}{d\mu_{\mathcal{B}}}$ comme des espé-

rances conditionnelles par rapport à B. Montrer que

$$\int \sqrt{dR_{\mathcal{B}} dS_{\mathcal{B}}} \quad \geqslant \int \sqrt{dR dS}$$

[on rappelle l'inégalité de Jensen : soit Y concave sur un domaine convexe Ω de \mathbb{R}^n , soit (X_1,\ldots,X_n) un vecteur aléatoire; pour toute sous-tribu \mathcal{B} de \mathcal{A}

$$E^{\mathcal{B}} Y(X_1, \ldots, X_n) \leq Y(E^{\mathcal{B}} X_1, \ldots, E^{\mathcal{B}} X_n)$$
.

3º Soit Q une deuxième probabilité sur (Ω, \mathcal{A}) telle que X soit gaussienne pour Q de même covariance que pour P, de moyenne

$$m_{\mathbf{Q}}(t) = \int \mathbf{X}_t \, d\mathbf{Q} \text{ et d'espace gaussien } \mathbf{H}_{\mathbf{Q}} \,.$$
 Soit $\mathbf{Z} \in \mathbf{L}(\mathbf{X}, \, \mathbf{T})$.

a. Soit B la sous-tribu de A engendrée par Z : calculer

$$\int \sqrt{dP_{\mathcal{B}}dQ_{\mathcal{B}}};$$

b. Vérifier que si P et Q ne sont pas étrangères, il existe une constante C telle que :

$$\forall Z \in L(X, T) \mid \int Z dQ \mid \leq C ||Z||_2$$
;

en déduire que P et Q sont soit étrangères, soit équivalentes. Vérifier que si P et Q sont équivalentes : $m_{\mathbf{Q}} \in \mathcal{H}(\mathbf{K})$, calculer dans ce cas d Q

4º On suppose qu'il existe un système orthonormal de fonctions a_i dans $\mathcal{H}(K)$ tel que $m = \sum_{i=1}^r \theta_i a_i$, où $\theta_i \in \mathbb{R} \quad \forall i \in [1, \ldots, r]$.

Trouver l'estimateur du maximum de vraisemblance de θ_t .

III

Soit X une f.a.r. du second ordre construite sur (Ω, \mathcal{A}) et T, de moyenne m et de covariance K pour une probabilité P. On suppose que $X(t, \omega) = m(t) + Y(t, \omega)$ de sorte que la loi P_m de X est complètement déterminée par m et par la loi P_0 de Y. On suppose qu'il existe r fonctions

$$a_i(t)$$
 dans \mathcal{H} (K) telles que $m = \sum_{i=1}^r \theta_i a_i$ ($\theta_i \in \mathbf{R} \ \forall i$) de sorte que

m décrit le sous-espace M de $\mathcal{B}(K)$ engendré par la famille $[a_i]_{i=1,\ldots,r}$. On suppose connus P_0 et la famille a_i et on désire estimer une fonction f de m au moyen de X (f est à valeur dans $\overline{\mathbf{R}}$). Soit $(\Omega, \mathcal{H}, P_m \quad m \in M)$ le modèle statistique correspondant. On supposera que $H_{P_m}(X, T) = H_{P_0}(X, T) \quad \forall m$ (on le notera H(X)), on notera J l'isomorphisme défini en I, 3^o , a.

On dit que U est un Estimateur Linéaire Sans Biais de f(m) [en abrégé ELSB] si $U \in H(X)$ et $E_m(U) = \int U dP_m = f(m) \quad \forall \ m \in M$.

On vérifiera que : $\forall U \in H(X)$ la variance de U ne dépend pas de m et on la notera var U.

On dit que U* est un Estimateur Linéaire Sans Biais de Variance Minimum [ELSBVM] de f(m) si var U* \leq var U pour tout U ELSB de f(m).

1º a. Vérifier que
$$\forall \ V \in H(X) \quad E_m\left(V\right) = < m \ , \ J(V) > \mathcal{H}\left(K\right)$$

- b. En déduire une condition nécessaire et suffisante pour que f soit linéairement estimable sans biais.
- c. Soit f linéairement estimable sans biais, montrer qu'il existe un unique ELSBVM \hat{f} de f. Exprimer \hat{f} au moyen de l'isomorphisme f et de l'opérateur de projection f de f (f) sur f.

2º Soit p un entier $p \ge r$. Soit $T = \{0, 1, ..., p\}$. On désigne par A la matrice $\{A_{ij} = \langle a_i, a_j \rangle_{\mathcal{B}(K)}\}$ et par a le vecteur de coordonnées a_i (i = 1, ..., r). On suppose K et A inversibles.

a. Vérifier que θ_i est linéairement estimable sans biais;

b. Si A est la matrice identité trouver $\hat{\theta}_i$ ELSBVM de θ_i ;

c. Trouver $\widehat{\theta}_i$ dans le cas général (soit B une matrice telle que B B^t = A⁻¹, on pourra poser α = B α ; B^t désigne la matrice transposée de B).

3º On se replace dans les conditions de II, 4º; trouver un ELSBVM de θ_t .

IV

Soit $(\Omega, \mathcal{A}, P_{\theta}, \theta \in \Theta \subset R)$ un modèle statistique et μ une probabilité dominant P_{θ} pour tout θ de Θ , soit $p_{\theta} = \frac{d P_{\theta}}{d \mu}$, on suppose $p_{\theta} \in L^{2}(\mu)$. On dit que f est estimable sans biais s'il existe $U \in L^{2}(\mu)$ tel que $f(\theta) = E_{\theta}(U) = \int U dP_{\theta} \quad \forall \ \theta \in \Theta$. U^{*} est dit μ -efficace si $\|U^{*}\|_{L^{2}(\mu)} \leq \|U\|_{L^{2}(\mu)}$ $\forall U$ estimateur sans biais de f.

1º Soit $R(\theta_1, \theta_2) = \langle p_{\theta_1}, p_{\theta_2} \rangle_{L^2(\mu)}$. Vérifier que R est un noyau symétrique de type positif, décrire $\mathcal{H}(R)$. Soit $L^2(p_{\theta}, \theta \in \Theta)$ le sous-espace engendré par $[p_{\theta}]_{\theta \in \Theta}$ dans $L^2(\mu)$.

On notera encore J l'isomorphisme de L² $(p_{\theta}, \theta \in \Theta)$ sur \mathcal{H} (R).

2º Donner une condition nécessaire et suffisante pour que f soit estimable sans biais. Trouver un estimateur sans biais μ -efficace de f.

3º Si $\mu=P_{\theta_0}$, que peut-on dire d'un estimateur P_{θ_0} efficace pour tout θ_0 . Vérifier que si $\mu=P_{\theta_0}$, $1\in\mathcal{H}$ (R) et J(1)=1.

4º On se place dans les conditions de II, 4º;

soit
$$\theta^0 = (\theta_1^0, \dots, \theta_r^0)$$
 fixé et $\mu = P_{\theta^0}$.

(de façon générale on notera θ_i la coordonnée d'ordre i du vecteur θ). Calculer $R(\theta^1, \theta^2)$ et $\frac{\partial}{\partial u_i} R(u, v) [\theta^0, \theta]$ (dérivée de R prise au point (θ^0, θ)). Vérifier que

$$\frac{\partial}{\partial u_i} R(u, v) [\theta^o, \theta] = \langle \frac{\partial p_\theta}{\partial \theta_i} (\theta^o), p_\theta \rangle_{L^2(\mu)}.$$

En déduire un estimateur sans biais de variance minimum de θ_i .

Quand on observe un phénomène et qu'on veut estimer une fonction f on ne connaît généralement pas tout le passé de ce phénomène, il est intéressant de comparer l'estimation qu'on peut faire connaissant le passé de -n à 0 à celle qu'on pourrait faire si on le connaissait depuis $-\infty$.

Si K un noyau symétrique de type positif sur \mathbb{Z} , $\mathcal{H}(K)$ l'espace autoreproduisant associé. Pour tout $n \in \mathbb{N}$, soit $T_n = \{-n, \ldots, -1, 0\}$, soit K_n la restriction de K à T_n et soit $f \in \bigcap_{n \in \mathbb{N}} \mathcal{H}(K_n, T_n)$.

a. Soit H un espace de Hilbert, $\left[\, \mathbf{H}_n \, \right]_{n \in \mathbb{N}}$ une suite de sous-espaces fermés de H tels que

$$\forall n \in \mathbb{N} \quad \mathbf{H}_n \subset \mathbf{H}_{n+1} \quad \text{et} \quad \overline{\bigcup_{n \in \mathbb{N}} \mathbf{H}_n} = \mathbf{H} \; ;$$

Soit $[Z_n]_{n \in \mathbb{N}}$ une suite d'éléments de H tels que $\forall m \leq n \ P^{H_m}(Z_n) = Z_m$ (P^{H_m} désigne le projecteur de H sur H_m).

Montrer que si $\lim_{n\to\infty} \|Z_n\|^2 < \infty$, il existe $Z\in H$ tel que $\|Z_n - Z\|_{\longrightarrow \infty} 0 \text{ et } Z_n = P^{\operatorname{H}_n}(Z) \ \forall \ n \ .$

b. Soit H_n le sous-espace fermé de \mathcal{H} (K) engendré par $[\,K\,(\,t\,,\,.\,)\,]_{\,t\,\in\,T_n}\ .$

Montrer qu'il existe une suite $\left[f^{(n)}\right]_{n\in\mathbb{N}}$, telle que $\forall\;n\in\mathbb{N}\;\;f^{(n)}\in\mathcal{H}_n\;,\;\;\forall\;t\in\mathcal{T}_n\;\;f^{(n)}\left(t\right)=f\left(t\right)\;\;\mathrm{et}\;\;f^{(m)}=\mathcal{P}^{\mathcal{H}_m}\left[f^{(n)}\right];$ en déduire que $f\in\mathcal{H}(\mathbb{K})$ si et seulement si $\lim_{n\to\infty}\|f\|_{\mathcal{H}(\mathbb{K}_n,\;\mathcal{T}_n)}<\infty$.

c. Soit f estimable linéairement sans biais sur Z et \widehat{f} un ELSBVM de f. Soit $\widehat{f_n}$ un ELSBVM de f obtenu en ne considérant X que sur T_n , vérifier que $\widehat{f_n} \underset{n \to \infty}{\longrightarrow} \widehat{f}$ dans $\mathcal{H}(K)$.