A "gentle" introduction to Computational Number Theory

CNT@SSHS #002 05/01/2019 (Wed) 4411 윤창기

Contents

- Computational Complexity and Input size
- -Toy problem: Determinant of an integer matrix
 - Chinese Remainder Theorem over $\mathbb{Z}/p\mathbb{Z}$
- -Hold up.
 - Is $\mathbb{Z}/p\mathbb{Z}$ the "fundamental basis" for CRT? : Rings and Ideals

Complexity & Input Size

T(n) = O(f(n)).

What the heck is "n"????

Complexity

Problem.

Sort the n integers in the input in non-decreasing order.

Complexity

Problem.

Sort the n integers in the input in non-decreasing order.

Complexity.

Time Complexity : $O(n \lg n)$

Space Complexity : O(n)

What is "n"???: # of integers in the input!!

Sorting algorithm has *a linearithmic complexity* for *n*.

Com..plex..ity..?

Problem.

Sort the 2^n integers in the input in non-decreasing order.

Complexity.

Time Complexity : $O(2^n \lg 2^n) = O(n2^n)$

Space Complexity : $O(2^n)$

Sorting algorithm has *an exponential complexity* for *n*??? Now, what is the meaning of "n"??

A "trivial" premise

The "scale of complexity" should be determined with the "amount of input".

$$T_{\text{sort}}(\#) = O(\#lg\#)$$

Discrete Logarithm Problem

Problem.

Given a, p and g (a primitive root of p), acquire the minimal $k \ge 0$ satisfies $g^k \equiv a \pmod{p}$.

Complexity.

With Baby - step Giant - step,

Time Complexity : $O(\sqrt{p})$.

Space Complexity : $O(\sqrt{p})$.

Discrete logarithm can be found in sublinear complexity?

Discrete Logarithm Problem

Problem.

Given a, p and g (a primitive root of p), acquire the minimal $k \ge 0$ satisfies $g^k \equiv a \pmod{p}$.

Complexity.

With Baby - step Giant - step,

Time Complexity : $O(\sqrt{p})$.

Space Complexity : $O(\sqrt{p})$.

Discrete logarithm can be found in *sublinear complexity?*

Scale of BsGs

The "scale of complexity" should be determined with the "amount of input".

Amount of input : $O(\lg p)$

Complexity : $O(\sqrt{p} = 2^{\frac{\lg p}{2}})$

Input length

Input length := "Minimal # of bits to represent the input".

The algorithm works in **polynomial complexity**, if there exists a const. c s.t. $T(n) = O(n^c)$.

• A firm definition of time complexity

Our PoV

• We only focus on the "polynomiality" of an algorithm, not the exact complexity.

• If an algorithm on n integers works in $O((n \log p)^c)$ time, everything is good:)

TMI: P vs NP

- P: Set of **decision problems**, solvable in polytime with a deterministic turing machine
 - Decision problem: Yes / No Question
 - Examples:
 - Given a, b, and c the integers, is a + b = c?
 - Given p an integer, is p prime?
- NP: Set of decision problems, solvable in polytime with a nondeterministic turing machine
 - Equivalent to the "polytime checkable" decision problems

TMI: P vs NP

- NP: Set of decision problems, solvable in polytime with a nondeterministic turing machine
 - Equivalent to the "polytime verifiable" decision problems (Professor Solvable problems)
- Examples:
 - Is there a Hamiltonian cycle in a given graph, whose length is smaller than X? *TSP

Other interesting Complexity Classes

• BPP (Bounded-error, Probabilistic, Polynomial)

Set of decision problems, can be guessed in guaranteed accuracy greater than $\frac{1}{2}$. The probability of "failure" is in both decision problems about **Yes** and **No**.

Ex: Primality testing (Miller - Rabin)

- In fact, Miller Rabin is an RP algorithm.
- RP is a set of probs. **exact** in "No"; MR never mistakes prime for composite.

cf) Primality testing is P! (Agrawal, 2002)

Other interesting Complexity Classes

• co-NP

Set of decision problems which is easily verifiable for "answer no"

Unsolved: NP = co-NP?

Invitation to CNT

Solving a simple problem.

Wait, is it really "simple"?

Task

Given a $n \times n$ integer matrix A. Evaluate $\det A$.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

$$\det A = \sum_{\sigma} \operatorname{sgn}(\sigma) \cdot a_{1\sigma_1} a_{2\sigma_2} \cdots a_{n\sigma_n}$$

Adding n! terms is too expensive.

Simplifying the task

• Determinant is invariant to the row-blending. (equiareal transform)

$$\det\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \det\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$

• Determinant of an upper-diagonal matrix

$$\det\begin{pmatrix} u_{11} & \cdots & u_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & u_{nn} \end{pmatrix} = u_{11}u_{22}\cdots u_{nn}$$

• Removing the lower triangle part by row-blending (Gaussian elim.) : $O(n^3)$. poly!

Gaussian elimination

$$\cdot \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 \\ 0 & \frac{7}{2} \end{pmatrix}.$$

- Rational Numbers???????????????
 - The determinant will eventually be an integer (Guaranteed by the expanded formula).
 - But the denominator can grow up too large to handle during the rational operations.

Gaussian elimination

- Rational Numbers?????????????????
- Big Prime method
 - $\frac{1}{a} \rightarrow a^* \pmod{P}$!
 - All the intermediate values are confined in [0, P), and they are all integers.
 - Then, how large the prime *P* should be?

Gaussian elimination

- Then, how large the prime *P* should be?
- The method should give the 'exact' determinant.
- The limit for the magnitude of determinant is:

$$M = \sum_{\sigma} |X|^n = n! X^n.$$

- Considering the negative range, $P \ge 2M$.
 - $\log P = \Omega(n \log n + n \log X)$, which is way too big.
 - The modular computation is not that expensive, but it is hard to find that big prime.

Chinese Remainder Theorem

• For n pairwise-coprime integers m_1, m_2, \cdots, m_n , given n congruence equations

$$x \equiv a_1(m_1)$$

$$x \equiv a_2(m_2)$$

$$\vdots$$

$$x \equiv a_n(m_n)$$

• There exists a unique integer *A* modulo m, satisfies:

$$x \equiv A (m_1 m_2 \cdots m_n)$$

Chinese Remainder Theorem

- So it is enough to choose K primes, to make the product of them exceed 2M.
- Since $p_1p_2\cdots p_K>2^K$, no more than $\log 2M=O(n\log nX)$ primes are needed.
- Knowing $p_K \sim K \log K$ from $\pi(x) \sim \frac{x}{\log x}$, we can find K primes in near $O(K^2 \log^2 K)$ time, even with our worst method.

· Case closed! CRT made it.

Conclusion

- 1. Precompute K primes naively.
- 2. For each primes, obtain the modular-determinant by applying Gaussian Elimination.
- 3. Merge the mods by CRT.
- 4. Let *D* be the total modular (product of the primes).
 - 1. If $Ans > \frac{D}{2}$, return Ans D.
 - 2. Else, return Ans.

Reviewing CRT

Is CRT just a "local trick" for integers?

Isomorphic structures

- Two structures S_1, S_2 are 'isomorphic' if there is a bijection $\hat{\phi}: S_1 \to S_2$, if all algebraic laws in S_1 is conserved in the language of S_2 , even after being carried by $\hat{\phi}$.
- So, isomorphic structures are exactly "indistinguishable", which implies they are truly "identical".
- The same things are **really** the same.

CRT as an isomorphism

• For n pairwise-coprime integers m_1, m_2, \cdots, m_n , with $M := m_1 m_2 \cdots m_n$, the following isomorphicity holds:

$$\mathbb{Z}/M\mathbb{Z} \approx (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_n\mathbb{Z})$$

$$\hat{\phi}: A \mapsto (a_1, a_2, \cdots a_n)$$

Investigating 'Coprimity'

• Let us consider the two coprime number *a*, *b*. The CRT – relation becomes

$$\mathbb{Z}/ab\mathbb{Z} \approx \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$$
.

- Clearly, $ab\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$, and $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$.
 - Each of them is equivalent to gcd(a, b) = 1.

- Two 'substructure's are coprime if and only if their 'sum' is the whole!
 - What is the 'substructure'?
 - At first, what is the 'whole structure'??

The 'whole structure': Ring

- The structure $(R, +, \times)$ is a **ring** when the following are satisfied:
 - (R, +) is an abelian. (associative, identity, inverse, commutativity)
 - (R,\times) is a monoid. (associative, identity)

• \mathbb{Z} , $8\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$ are all rings.

The 'substructure': Ideal

- For a ring R, $I \subset R$ is called an ideal of R, when all the algebraic law of R works in I as well (in restricted version) and I 'absorbs' R by (left) multiplication.
 - $(I, +_R)$ is an abelian. (associative, identity, inverse, commutativity)
 - (I, \times_R) is a monoid. (associative, identity)
 - For all $r \in R$ and $x \in I$, $rx \in I$.
 - Note that *I* can't be empty, since *I* should include the identity.
- $8\mathbb{Z}$ is an ideal of $2\mathbb{Z}$, $2\mathbb{Z}$ is an ideal of \mathbb{Z} .
- Is $\mathbb{Z}[i]$ an ideal of \mathbb{C} ?

CRT as an isomorphism

• Let a, b be ideals of R. a, b are **coprime** if a + b = R.

• For coprime ideal a, $b \subset R$, the following CRT - law holds:

$$R/a \cap b \approx R/a \times R/b$$
.

• The detailed proof will be written on the board.

Adding 'factorization' to the Ring

From Rings to Fields

Not gentle anymore

Polynomial factorization

- For a ring R, the **polynomial ring** R[x] is a ring as well.
- For $\mathbb{Z}[x]$, the polynomial $x^2 1 = (x 1)(x + 1)$ is uniquely factorized.
- But for $\mathbb{Z}_8[x]$, $x^2 1 = (x 1)(x + 1) = (x 3)(x + 3)$. The factorization is not uniquely determined.

- So we add some 'RESTRICTION' to the rings to make them well behaved.
 - We should define the 'prime' first the fundamental elements of factorization.

Integral Domain

- A ring *R* is an *integral domain* if $ab = 0 \Rightarrow a = 0 \lor b = 0$ is guaranteed for all *a*, *b*.
- \mathbb{Z} is an integral domain, but $\mathbb{Z}/8\mathbb{Z}$ is not since $2 \times 4 = 0$.

'Prime' Ideal?

• An integer p is prime if $x \mid p \Rightarrow x = 1 \lor x = p$.

• An ideal $I \subset R$ is a prime ideal if $I \subset J \Rightarrow J = I \lor J = R$..?

'Prime' Ideal and 'Maximal' Ideal

• An integer p is prime if $p \mid ab \Rightarrow p \mid a \lor p \mid b$.

- An ideal $I \subset R$ is a prime ideal if $ab \in I \Rightarrow a \in I \lor b \in I$.
 - I is a prime ideal if R/I is an integral domain.
 - If pR is a prime ideal, p is called prime element of R.
- An ideal $I \subset R$ is called maximal ideal if $I \subset J \Rightarrow J = I \lor J = R$.

Necessity of the rigid definition of prime: a counterexample

- Let $R = \mathbb{Z}[x]$, and a prime ideal I = (x).
- $I \subset J = (\{x, 2\})$, but J is neither I nor R. So I is not a maximal ideal.
- cf) In $\mathbb{Z}[\sqrt{-5}]$, 3 is an irreducible number, but not a prime: $9 = 3^2 = (2 + \sqrt{-5})(2 \sqrt{-5})$.
- If we have both 'primality' and 'maximality', the unique factorization will be achieved!

PID: An overkill

- A ring R is a principle ideal domain if every ideal of R is principle; For all ideal $I \subset R$, there exists $a \in R$ such that I = aR.
- In PID, every prime ideal is maximal.
- All PID elements accept unique factorization into prime elements.

UFD: The desired

• A ring *R* is a **unique factorization domain** if every element has a unique factorization into its prime element.

- Every PID is UFD.
- Every UFD is not PID:
 - $\mathbb{Z}[x]$ and an ideal (p, x).
 - $\mathbb{K}[x,y]$ and an ideal (x,y).

FIELDS!

- A ring R is a field if $(R \{0\}, \times)$ is an abelian.
- \mathbb{R} , \mathbb{Q} , \mathbb{Z}_p are fields.
- Z is not a field; 2 doesn't have multiplicative inverse.
- Fields are simple: there is no proper nontrivial ideal of a field.

Domains sorted with the order of restrictions

Rings

Integral Domains

Unique Factorization Domains U

Principle Ideal Domains P

⟨Algebraic facts⟩

- $\mathbb{U}[x]$ is also UFD.
- P is a UFD.
- $\mathbb{K}[x]$ is a PID.

Fields K

Krull dimension: Classifying the factorization

- Krull dimension of a commutative ring is defined as the maximal length of its prime ideal tower.
- $0 \subset (p) \subset (p,x) \subset \mathbb{Z}[x]$, so Krull dimension of $\mathbb{Z}[x]$ is 2.
- Fields have Krull dimension 0.
- Rings with the same Krull dimension has similar factorization scheme, which will be discussed later.
 - $\mathbb{K}[x,y]$ is similar to $\mathbb{Z}[x]$?

Field Extension

Blackboard discussion..