

ENSURING SUCCESS OF ADAPTIVE CONTROL RESEARCH THROUGH PROJECT LIFECYCLE RISK MITIGATION

Kate M. Pavlock Lead Operations Engineer – Research F18 NASA - Dryden Flight Research Center Edwards AFB, California kate.pavlock@nasa.gov

Purpose of Presentation

Varied risk mitigations throughout a project lifecycle can support aggressive yet successful flight test

Outline

- Project background
- Research interface architecture
- Risk mitigations
- General flight test approach
- Model Reference Adaptive Controller (MRAC)
- Lessons Learned
- Conclusion

Background

Can adaptive control systems help in adverse conditions?

- Full-Scale Advanced Systems Testbed (FAST)
 - Relate adaptive control complexity to pilot performance

Research Interface Architecture FAST modifications

701E = baseline flight control computers (FCCs)

RFCS = Research Flight Control System

ARTS = Aircraft Research Test System

*simplified figure 5

Research Interface Architecture NASA experimental modes

RFCS Primary:

RFCS replicated F-18 production control laws sent to the 701E

RFCS/ARTS:

RFCS & ARTS IV commands sent to the 701E

ARTS Primary:

ARTS IV commands replace RFCS commands to the 701E

Experiment Selection

Dial-A-Gain (DAG)

Experimental Mode	DAG
RFCS Primary	0
RFCS/ARTS Mode	1-13
ARTS Primary	14 – 26

Choose-A-Test (CAT)

Experiment Category	CAT	
No Failures	0	
Simulated Failures:	1-4	
(control surfaces/throttles)	5-8	
	9	
On-board Excitation System (OBES) RFCS	10-13	
Frequency sweeps/doublets	14-15	
On-board Excitation System (OBES) ARTS	16-18	
Doublets (low-high)		

Risk Mitigation

- Primary techniques used:
 - design
 - detailed documentation
 - simulation

Risk Mitigation – Design 3-state control transfer

- Disengaged:
 - 701E in control; no RFCS
- Arm:
 - RFCS replication laws generate
- Engaged:
 - control handed to RFCS

Reduce single-point failures

Digital Display Indicator (DDI)

Risk Mitigation – Design RFCS

- "Class B" envelope ensure within load limits
- Automatic disengage limits bound the envelope

Eliminate unnecessary risk

Risk Mitigation – Design ARTS

- NASA Dryden developed ARTS IV "floating limiter"
 - auto disengagement tool

Risk Mitigation – Design Pilot-Vehicle Interface (PVI)

Hard to view & decipher

Consider iterative checkouts to confirm or improve human factor characteristics throughout project development

Risk Mitigation – Documentation test card design

Consider incorporating cadence metric to assess test readiness

F-18#8	53-FAST		FLT#:	DATE:	
Flight Block: RFCS Primary					Verify Card:
_	Condition 6 5,000 FEET			L	
1	.58M±0.02 M	DAG 0	CAT9		Control Room
		Right Stab	Failure		Checks
A.	_	& Level (FC6) - ENTER 'C-B-B'			
	2. DDI-	- ENTER 'A '(Arm		DI Entry	Systems
		,	Verify DAG	and CAT	Systems
	3. Engag 4. Initiat	•			Controls
В.	1. Gentl 2. Doub 3. Freq 4. Pitch 5. Bank 6. Half-	cs & Loads le Maneuvering blets (3-axes) Sweeps (3-axes) Capture +10 deg Captures: ±30 deg stick 360 Rolls Wind-up Turns	Record Pilot Cor	nments	
C.	Disengaį	ge			

Risk Mitigation – Simulation

Include control room personnel, as appropriate

Helps bridge flight expectations (anticipated dialogue, cross-verification time)

Test beyond the test point!

Unanticipated human-algorithm interactions found in flight during test-point setup

Flight Test Approach

RFCS Primary

Research laws matched simulation predictions

RFCS/ARTS & ARTS Primary

Proper RFCS-ARTS communication

No excessive induced time delays

ARTS Primary

Nonlinear Dynamic Inversion (NDI)

Closed-loop; non-adaptive

Model Reference Adaptive Controller (MRAC)

Model Reference Adaptive Controller Goals

- Appropriate complexity
 - 3 modes complexity modes available
 - handling qualities assessment
- 2. Pilot interaction with adaptive controller
 - ability to freeze adaptation
 - handling qualities assessment

Model Reference Adaptive Controller flight test results

- Increased adaptive controller complexity:
 - adversely impacted pilot performance
 - yet improved dynamics similar to un-failed aircraft

Piloted, full-scale flight testing validates predictions & identifies unexpected tendencies

Lessons Learned

- Design-out unnecessary risk to prevent excessive mitigation management during flight
- Consider iterative checkouts to confirm or improve human factor characteristics
- Consider the total flight test profile to uncover unanticipated humanalgorithm interactions
- 4. Consider test card cadence as a metric to assess test readiness
- 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use

Conclusion

Date	Test Type
Mar – April 2010	RFCS Primary – ground test + 3 flights
July – Aug 2010	RFCS/ARTS – ground test + 1 flights
Aug 2010	ARTS Primary - 1 flight
Sept - Oct 2010	NDI – ground test + 5 flights
Dec 2010 – Jan 2011	MRAC – ground test + 11 flights

Varied risk mitigations throughout a project lifecycle *can* support aggressive yet successful flight test