MATH 2418: Linear Algebra

Assignment 7

Due March 9, 2016

Term Spring, 2016

Recommended Text Book Problems (do not turn in): [Sec 4.4: # 1, 7, 13, 17, 19, 21, 25]; [Sec 4.5: # 3, 5, 7, 9, 13, 17, 19];

- 1. (a) Prove that $\mathcal{B} = \{(0,1,0), (2,2,0), (3,3,3)\}$ is a basis for \mathbb{R}^3 .
 - (b) Write the coordinate vector of (5, -12, 3) with respect to basis \mathcal{B} of \mathbb{R}^3 .

Solution: (a) Suppose $x_1(0,1,0) + x_2(2,2,0) + x_3(3,3,3) = \mathbf{0}$ in \mathbb{R}^3 . Which gives the homogeneous linear system:

$$\begin{cases}
2x_2 + 3x_3 = 0 \\
x_1 + 2x_2 + 3x_3 = 0 \\
3x_3 = 0
\end{cases}$$
(1)

Consider the determinant of the coefficient matrix: $\begin{vmatrix} 0 & 2 & 3 \\ 1 & 2 & 3 \\ 0 & 0 & 3 \end{vmatrix} = (-1)(6-0) = -6 \neq 0.$ So the vectors in

 ${\cal B}$ are linearly independent.

Since $\begin{vmatrix} 0 & 2 & 3 \\ 1 & 2 & 3 \\ 0 & 0 & 3 \end{vmatrix} \neq 0$, the matrix equation $\begin{bmatrix} 0 & 2 & 3 \\ 1 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^3$. i.e. $x_1(0,1,0) + x_2(2,2,0) + x_3(3,3,3) = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^3$. Hence

 \mathcal{B} spans \mathbb{R}^3 . Therefore \mathcal{B} is a basis for \mathbb{R}^3

(b) Let $(5, -12, 3) = x_1(0, 1, 0) + x_2(2, 2, 0) + x_3(3, 3, 3)$

$$\begin{cases} 2x_2 + 3x_3 = 5\\ x_1 + 2x_2 + 3x_3 = -12\\ 3x_3 = 3 \end{cases}$$
 (2)

From the third equation $x_3 = 1$. From the first equation $2x_2 = 5 - 3x_3 = 5 - 3 = 2 \Rightarrow x_2 = 1$. From the second equation $x_1 = -12 - 2x_2 - 3x_3 = -12 - 2(1) - 3(1) = -17$ So (5, -12, 3) = (-17)(0, 1, 0) + 1(2, 2, 0) + 1(3, 3, 3).

1

Therefore
$$\begin{bmatrix} 5 \\ -12 \\ 3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -17 \\ 1 \\ 1 \end{bmatrix}$$

2. Let M_3^T be the vector space of all 3×3 symmetric matrices. Find a basis for M_3^T .

Solution: We know
$$M_3^T = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} : a_{ij} = a_{ji} \right\} = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \right\}.$$

Suppose $\epsilon_{ij}: 1 \leq i, j \leq 3$ be a 3×3 matrix with 1 as an entry in $(i,j)^{th}$ position and 0s elsewhere. Consider the following subset \mathcal{B} of M_3^T consisting of the following vectors:

$$\begin{split} \epsilon_{11} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \epsilon_{22} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \epsilon_{33} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ \epsilon_{12} + \epsilon_{21} &= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \epsilon_{13} + \epsilon_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \epsilon_{23} + \epsilon_{32} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}. \end{split}$$

Now any $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \in M_3^T$ can be written as:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{33} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + a_{13} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + a_{13} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + a_{23} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = a_{11}\epsilon_{11} + a_{22}\epsilon_{22} + a_{33}\epsilon_{33} + a_{12}(\epsilon_{12} + \epsilon_{21}) + a_{13}(\epsilon_{13} + \epsilon_{31}) + a_{23}(\epsilon_{23} + \epsilon_{32}).$$

Hence $\mathcal{B} = \{\epsilon_{11}, \ \epsilon_{22}, \ \epsilon_{33}, \ (\epsilon_{12} + \epsilon_{21}), \ (\epsilon_{13} + \epsilon_{31}), \ (\epsilon_{23} + \epsilon_{32})\}$ spans M_3^T .

Next, suppose $k_1\epsilon_{11} + k_2\epsilon_{22} + k_3\epsilon_{33} + k_4(\epsilon_{12} + \epsilon_{21}) + k_5(\epsilon_{13} + \epsilon_{31}) + k_6(\epsilon_{23} + \epsilon_{32}) = \mathbf{0}$ in M_3^T , for some scalars $k_1, k_2, k_3, k_4, k_5, k_6$. i.e.

$$\begin{aligned} k_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + k_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + k_4 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + k_5 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + k_6 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \\ \Rightarrow \begin{bmatrix} k_1 & k_4 & k_5 \\ k_4 & k_2 & k_6 \\ k_5 & k_6 & k_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow k_1 = k_2 = k_3 = k_4 = k_5 = k_6 = 0. \end{aligned}$$

Hence \mathcal{B} is linearly independent. So \mathcal{B} is a basis for M_3^T .

3. (a) Find a basis for the solution space of the given homogeneous linear system. State the dimension.

$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 = 0, \\ 5x_1 - x_2 + x_3 - x_4 = 0. \end{cases}$$

Solution: The augmented matrix is: $\begin{bmatrix} 3 & 1 & 1 & 1 \\ 5 & -1 & 1 & -1 & 0 \end{bmatrix} \Rightarrow [R_2 - 2R_1] \begin{bmatrix} 3 & 1 & 1 & 1 \\ -1 & -3 & -1 & -3 & 0 \end{bmatrix}$ $\Rightarrow [R_1 + 3R_2, (-1)R_2] \begin{bmatrix} 0 & -8 & -2 & -8 & 0 \\ 1 & 3 & 1 & 3 & 0 \end{bmatrix} \Rightarrow [R_1 \Leftrightarrow R_2] \begin{bmatrix} 1 & 3 & 1 & 3 & 0 \\ 0 & -8 & -2 & -8 & 0 \end{bmatrix} \Rightarrow [\frac{R_2}{-8}] \begin{bmatrix} 1 & 3 & 1 & 3 & 0 \\ 0 & 1 & \frac{1}{4} & 1 & 0 \end{bmatrix}.$

Here x_3 and x_4 are free variables. Let $x_3=r$ and $x_4=s$, then from the second row $x_2=\frac{-x_3}{4}-x_4=\frac{-r}{4}-s$, and from the first row $x_1=-3x_2-x_3-3x_4=\frac{3r}{4}+3s-r-3s=\frac{-r}{4}$. Hence the solution is:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{-r}{4} \\ -\frac{r}{4} - s \\ r \\ s \end{bmatrix} = r \begin{bmatrix} \frac{-1}{4} \\ \frac{-1}{4} \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$
 So the solution space is spanned by $\mathcal{B} = \left\{ \begin{bmatrix} \frac{-1}{4} \\ \frac{-1}{4} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\},$

which consists of two vectors not multiple of each other, so is linearly independent. So, \mathcal{B} is a basis for the solution space.

(b) Find a basis for the subspace $W = \{(a, b, c, d) : d = a + b, c = a - b\}$ of \mathbb{R}^4 . State the dimension.

Solution: Here $W = \{(a, b, c, d) : d = a + b, c = a - b\} = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : d = a + b, c = a - b \right\} = \left\{ \begin{bmatrix} a \\ b \\ a - b \\ a + b \end{bmatrix} \right\} = \left\{ \begin{bmatrix} a \\ b \\ a - b \\ a + b \end{bmatrix} \right\}$

$$\left\{ a \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \end{bmatrix} \right\}.$$

So W is spanned by $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\1 \end{bmatrix} \right\}$, a set of two vectors not multiple of each other, so is linearly

independent.

Hence \mathcal{B} is a basis of W.

4. (a) Let $\mathbf{v}_1 = (1, -1, 3)$, $\mathbf{v}_2 = (2, 2, 1)$. Find the standard basis vector of \mathbb{R}^3 that can be added to $\{\mathbf{v}_1, \mathbf{v}_2\}$ to produce a basis for \mathbb{R}^3 . Show all of your work to receive full credit.

Solution: We start with adding all 3 standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ and decide which one actually works

works.
$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 \\ 3 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow [R_2 + R_1, R_3 - 3R_1] \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 4 & 1 & 1 & 0 & 0 \\ 0 & -5 & -3 & 0 & 1 & 0 \end{bmatrix} \Rightarrow [R_2 + R_3] \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & -1 & -2 & 1 & 1 & 0 \\ 0 & -5 & -3 & 0 & 1 & 0 \end{bmatrix}$$
$$\Rightarrow [(-1)R_2, R_3 - 5R_2] \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 7 & -5 & -4 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{R_3}{7} \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & \frac{-5}{7} & \frac{-4}{7} & 0 \end{bmatrix}.$$

This tells us that whenever we solve the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{e}_1 + x_4\mathbf{e}_2 + x_5\mathbf{e}_3 = \mathbf{0}$ in \mathbb{R}^3 , the variables x_4 and x_5 will be free and so the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ will be linearly dependent. But, if we add only e_1 the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\}$ will be linearly independent. Since $\dim(\mathbb{R}^3) = 3$, any set of three linearly independent vectors forms a basis. So $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\}$ is a basis for \mathbb{R}^3 . Note that adding \mathbf{e}_2 or \mathbf{e}_3 also works in this case.

(b) Let $\mathbf{v}_1 = (0, 1, 1, 0)$, $\mathbf{v}_2 = (2, 2, 2, 0)$, $\mathbf{v}_3 = (0, 0, 0, 4)$, $\mathbf{v}_4 = (4, -3, -3, -3)$. Find a basis for the $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

Solution: We will reduce the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ down to a linearly independent subset, which will be a basis of $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

$$\begin{bmatrix} 0 & 2 & 0 & 4 \\ 1 & 2 & 0 & -3 \\ 1 & 2 & 0 & -3 \\ 0 & 0 & 4 & -3 \end{bmatrix} \Rightarrow [R_1 \Leftrightarrow R_2] \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & 2 & 0 & 4 \\ 1 & 2 & 0 & -3 \\ 0 & 0 & 4 & -3 \end{bmatrix} \Rightarrow [R_3 - R_1] \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & -3 \end{bmatrix} \Rightarrow [R_3 \Leftrightarrow R_4] \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 4 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{R_3}{4} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. So $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

- 5. True or False.
 - (a) **T** (\mathbf{F}) : The set $S = \{(1,1),(2,3),(3,4)\}$ is linearly independent.
 - (b) \mathbf{T} **F**: Every set consisting of 100 vectors that span \mathbb{R}^{100} is a basis for \mathbb{R}^{100} .
 - (c) (\mathbf{T}) **F**: The coordinate vector of $\mathbf{x} \in \mathbb{R}^n$ with respect to the standard basis of \mathbb{R}^n is \mathbf{x} .
 - (d) \mathbf{T} (\mathbf{F}) : If $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2 \cdots, \mathbf{v}_n\}$, then $\{\mathbf{v}_1, \mathbf{v}_2 \cdots, \mathbf{v}_n\}$ is a basis of V.
 - (e) \mathbf{T} **F**: There exists a basis of $M_{2\times 2}$ (the vector space of all 2×2 matrices) consisting of invertible matrices.

Reasons:

- (a) Set of 3 vectors in \mathbb{R}^2 can not be linearly independent.
- (b) Any set S of n vectors in \mathbb{R}^n is a basis of \mathbb{R}^n if S spans \mathbb{R}^n or S is linearly independent.
- (c) $\mathbf{x} = (x_1, x_2, \dots x_n) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$.
- (d) The vectors also need to be linearly independent. For example $\mathbb{R}^2 = \operatorname{Span}\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix},\begin{bmatrix}2\\0\end{bmatrix}\right\}$ but $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix},\begin{bmatrix}2\\0\end{bmatrix}\right\}$ is not linearly independent, so is not a basis for \mathbb{R}^2 .
- (e) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are four invertible, linearly independent 2×2 matrices, so form a basis for $M_{2\times 2}$.