(Toric) Geometry in Sage

Very long time ago

polytope.py (by William Stein) - basic interface to Polymake.

Polymake: not terribly difficult to build, but took half the time and half the size of the whole Sage to do it - no question about making Polymake a standard package.

Long time ago

lattice_polytope.py (by A.N.) with the original goal to use PALP conveniently and interactively on single polytopes.

PALP is small and easy to build, was included right away.

Used via files/system calls.

```
%time
simplex = LatticePolytope([(1,0), (0,1), (-1,-1)])
simplex
   \Delta_0^2
   CPU time: 0.04 s, Wall time: 0.07 s
%time
simplex.poly x("p")
          Points of P
               0
         1
                    -1
                           0
         0
               1
                    -1
                           0
   CPU time: 0.01 s, Wall time: 0.02 s
%time
simplex.points()
```

```
CPU time: 0.00 s, Wall time: 0.00 s
```

simplex.nef_x("-N -P -p")

M:10 3 N:4 3 codim=2 #part=1

P:0 V:2 Osec Ocpu

simplex.nef_partitions()

[Nef-partition $\{0,1\} \sqcup \{2\}$]

simplex.plot3d()

Sleeping... Make Interactive


```
simplex.polar().plot3d()
```

Sleeping... Make Interactive

Still long time ago

polyhedra.py (by Marshal Hampton) - file-based (?) interface to cdd Allows working with generic polyhedra, i.e. non-integer points, unbounded. Rewritten by Volker Braun. Rewrite is now gone.

A few years ago

Cones for toric geometry - not special cases of polyhedra.

Toric lattices, fans, fan morphisms. Written and cross-reviewed by Volker Braun and A.N. Most "polyhedral operations" use library interface to PPL (by Volker Braun).

```
N = ToricLattice(2)
    \overline{N}
M = N.dual()
    M
M.dual()
    \overline{N}
M.plot()
sigma0 = Cone([(1/2,0), (0,2)], lattice=N)
sigma0
    \sigma^2
sigma0.rays()
    ((1, 0)_N, (0, 1)_N)_N
sigma0.plot()
```



```
sigma1 = Cone([(0,1), (-1, -1)])
sigma2 = Cone([(-1,-1), (1, 0)])
Sigma = Fan([sigma0, sigma1, sigma2])
Sigma
```

 Σ^2

Sigma.rays()

$$((0, 1)_N, (1, 0)_N, (-1, -1)_N)_N$$

Sigma.cone_lattice().plot()

Sigma.plot()

Sigma.plot(mode="generators")

/home/novoselt/sage-5.12.beta5/local/lib/python2.7/site-packages/sag\
e/geometry/toric_plotter.py:634: DeprecationWarning: use the option
'base_ring' instead of 'field'
See http://trac.sagemath.org/11634 for details.
 result += Polyhedron(vertices=vertices, field=RDF).render_solid(

Sigma == FaceFan(simplex)

False

Sigma.is_equivalent(FaceFan(simplex))

True

Sigma.is_isomorphic(FaceFan(simplex))

True

Sigma.isomorphism(FaceFan(simplex))

$$\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight): \Sigma^2
ightarrow \Sigma^2$$

Sigma.is_equivalent(NormalFan(simplex.polar()))

True

fm = FanMorphism(2*identity_matrix(2), Fan([sigma0]), Sigma)
fm

$$\left(egin{array}{cc} 2 & 0 \ 0 & 2 \end{array}
ight): \Sigma^2
ightarrow \Sigma^2$$

NormalFan(lattice_polytope.octahedron(3)).plot(mode="generators")

Sleeping... Make Interactive


```
for i in sorted(toric_plotter.options().items()):
    print i
    ('font_size', 14)
    ('generator_color', 'blue')
    ('generator_thickness', None)
    ('generator zorder', -3)
    ('label_color', 'black')
('label_zorder', -1)
    ('lattice filter', None)
    ('mode', 'round')
    ('point_color', 'black')
    ('point_size', None)
    ('point_zorder', -2)
    ('radius', None)
    ('ray_color', 'purple')
('ray_label', 'u')
    ('ray thickness', 3)
    ('ray_zorder', -4)
```

```
('show_generators', True)
('show_lattice', None)
('show_rays', True)
('show_walls', True)
('wall_alpha', 0.4)
('wall_color', 'rainbow')
('wall_label', '\\sigma')
('wall_zorder', -5)
('xmax', None)
('xmin', None)
('ymax', None)
('ymin', None)
('zmax', None)
('zmax', None)
```

toric_plotter.options(wall_alpha=1)

Sigma.plot()

toric_plotter.reset_options()

Recent additions by Volker Braun

New rewrite of generic polyhedra allowing different backends: currently PPL and cddlib.

Triangulations (with and without optional package TOPCOM).

Integral points.

ppl lattice polytope.py - not as featurefull as LatticePolytope but much faster.

Future (this week?..)

Clean up LatticePolytope code to make backend change possible.

Unify its interface with Cone and Fan, including plotting.

Toric Geometry

```
\begin{array}{c} {\sf P2} = {\sf ToricVariety(Sigma)} \\ {\sf P2} \\ \hline & \mathbb{X}_{\Sigma^2} \end{array}
```

P2.plot()

P2.coordinate_ring()

$$\mathbf{Q}[z_0,z_1,z_2]$$

Default ring is \mathbb{Q} , assumed ring is \mathbb{C} , arbitrary one should work in principle.

P2.inject_variables()

Defining z0, z1, z2

$P2.subscheme(z0 + z1^2)$

Traceback (click to the left of this block for traceback)

....

ValueError: $z1^2 + z0$ is not homogeneous on 2-d toric variety covered by 3 affine patches!

P2.subscheme(z0 + z1)

Closed subscheme of \mathbb{X}_{Σ^2} defined by z_0+z_1

P2.subscheme([z0, z1, z2]).dimension()

-1

```
A2 = AffineToricVariety(sigma0)
f = A2.hom(fm, P2)
   Scheme morphism:
     From: 2-d affine toric variety
            2-d toric variety covered by 3 affine patches
     Defn: Defined by sending Rational polyhedral fan in 2-d lat
f.as polynomial map()
   Scheme morphism:
     From: 2-d affine toric variety
            2-d toric variety covered by 3 affine patches
     Defn: Defined on coordinates by sending [z0 : z1] to
            [z1^2 : z0^2 : 1]
for factor in reversed(f.factor()):
   factor.as polynomial map()
   Scheme morphism:
     From: 2-d affine toric variety
            2-d affine toric variety
     To:
     Defn: Defined on coordinates by sending [z0 : z1] to
            [z0^2 : z1^2]
   Scheme morphism:
     From: 2-d affine toric variety
            2-d toric variety covered by 3 affine patches
     Defn: Defined on coordinates by sending [z0 : z1] to
            [z1 : z0 : 1]
   Scheme morphism:
     From: 2-d toric variety covered by 3 affine patches
            2-d toric variety covered by 3 affine patches
     Defn: Defined on coordinates by sending [z0 : z1 : z2] to
            [z0 : z1 : z2]
print P2
   2-d toric variety covered by 3 affine patches
P2 = CPRFanoToricVariety(Delta_polar=simplex)
print P2
   2-d CPR-Fano toric variety covered by 3 affine patches
P2.plot()
```


P2.fan().rays().column_matrix()

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

simplex.vertices()

$$\left(egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & -1 \end{array}
ight)$$

AH = P2.anticanonical_hypersurface()
AH

Closed subscheme of \mathbb{P}_{Δ^2} defined by $a_0z_0^3+a_1z_1^3+a_6z_0z_1z_2+a_2z_2^3$

simplex.polar().point(6)

(0, 0)

AH.ambient_space() is P2

False

AH.ambient_space().coordinate_ring()

```
{
m Frac}({f Q}[a_0,a_1,a_2,a_6])[z_0,z_1,z_2]
```

P2.anticanonical_hypersurface(monomial_points="all")

Closed subscheme of \mathbb{P}_{Δ^2} defined by $a_0z_0^3 + a_9z_0^2z_1 + a_7z_0z_1^2 + a_1z_1^3 + a_8z_0^2$

P2P = CPRFanoToricVariety(Delta=simplex, coordinate_points="all")
P2P.plot(generator_color="red", wall_alpha=0.2, ray_thickness=1,
generator thickness=5)

P2P.anticanonical_hypersurface(monomial_points="all")

D = 1/2*P2P.divisor(prod(P2P.gens()))
D

$$rac{1}{2}\,{
m V}(z_0) + rac{1}{2}\,{
m V}(z_1) + rac{1}{2}\,{
m V}(z_2) + rac{1}{2}\,{
m V}(z_3) + rac{1}{2}\,{
m V}(z_4) + rac{1}{2}\,{
m V}(z_5) + rac{1}{2}\,{
m V}(z_7) +$$

D.is_Cartier()

False

D.is QQ Weil()

True

D.cohomology_class()

$$\left[rac{3}{2}\,z_2 + z_3 + rac{1}{2}\,z_4 + z_5 + rac{1}{2}\,z_8
ight]$$

P = D.polyhedron()

A 2-dimensional polyhedron in QQ^2 defined as the convex hull

P.plot()

P2.Stanley_Reisner_ideal()

$$(z_0z_1z_2){f Q}[z_0,z_1,z_2]$$

R = P2.coordinate_ring()
prod(R.ideal([f for f, m in e.factor()]) for e in
P2.Stanley_Reisner_ideal().gens())

$$(z_2,z_1,z_0){f Q}[z_0,z_1,z_2]$$

PlxP1 = toric_varieties.PlxP1()

```
P1xP1.Stanley_Reisner_ideal()
    (st, xy)\mathbf{Q}[s, t, x, y]
R = P1xP1.coordinate ring()
prod(R.ideal([f for f, m in e.factor()]) for e in
PlxP1.Stanley_Reisner_ideal().gens())
    (ty,tx,sy,sx)\mathbf{Q}[s,t,x,y]
P1xP1.fan().primitive collections()
    [frozenset([0, 1]),frozenset([2, 3])]
P2P.Stanley_Reisner_ideal()
    (z_0z_2, z_1z_2, z_2z_4, z_2z_7, z_2z_8, z_2z_9, z_0z_3, z_1z_3, z_3z_5, z_3z_7, z_3z_8, z_3z_9, z_0z_4, z_4z_5)
raise RuntimeError("You are out of your RAM!")
R = P2P.coordinate ring()
prod(R.ideal([f for f, m in e.factor()]) for e in
P2P.Stanley_Reisner_ideal().gens())
    Traceback (click to the left of this block for traceback)
   RuntimeError: You are out of your RAM!
```