

Team 33: ASL Interpreter App Final Update

Ray Cook Jadepan Thedthong

Sponsor: Fardeen Mozumder TA: Swarnabha Roy

Project Overview

Ray Cook

Android Application/ Server Jadepan Thedthong

Machine Learning

Project Deliverables:

- Android application to provide user with access to translation
- Machine learning model that translates short video clips of ASL signs into English text
- Server to house ML model to store user data and offload processing from mobile device

Jetpack Compose

Android Application Subsystem OverviewRay Cook

- ASL lesson plan offers short lessons to teach commonly used phrases
- Profile page stores and pulls user data from server
- Translator utilizes camera and ML model on the server to provide quick translations

Android Application - Translator Flow ChartRay Cook

Android Application Subsystem Major Challenges and Solutions

Challenges

- Network upload using native Android functionality was difficult for transmitting video files
- Sharing data across multiple views causing synchronization issues
- Needed a unique workflow to record video, upload to server, run through model, retrieve translation from server, and display to user

Solutions

- Shifted to use Retrofit library which handled proper HTTP Request formatting for file uploads
- Created classes and passed them as parameters into views to allow data to be passed between them
- Used user's email as UID for videos and translations server-side to streamline the workflow

Android Application Subsystem Results

Items	Specification	Actual
Space Required on Disk	< 100MB	23.25MB
RAM Usage	< 200MB 157MB (Maximum)	
Time For Translation	<= 15 Seconds 9.87 Seconds (Average)	
ASL Lesson Plan	10 Lessons Accomplished	
User Data Storage	Server-based, cross-device	Accomplished

Machine Learning Subsystem Overview Jadepan Thedthong

- Key Objectives
 - Detect the keypoints of the signer
 - Translate (at word-level) ASL from the keypoint sequence to English

Machine Learning Subsystem Major Challenges and Solutions

Challenges

- Unorganized, small sample size per word in initial dataset (average of 20 samples per word for 2000 words)
- Low accuracy with the initial dataset
- Overfitting when trained on 100 samples per word
- Lost significant portion of the dataset when working on building a larger dataset (hardware failure)

Solutions

- Retrieve missing samples and organize them by word
- Focus on increasing the sample count per word in the dataset
 - Data augmentation to increase variety in the dataset
- Re-record and re-populate dataset to train model for deployment

Machine Learning Subsystem Results

Model Trained with 150 videos per word

Items	Specification	Actual
Accuracy	60%	22.44%
Word Count	50	50

Additional Data

Items	Value
Precision	20.18%
Recall	23.44%
F1 Score	18.26%

Machine Learning Subsystem Results

Model Trained with 500 videos per word

Items	Specification	Actual
Accuracy	60%	94.4%
Word Count	50	10

Additional Data

Items	Value
Precision	94.93%
Recall	94.40%
F1 Score	94.36%

Integrated System Results

Integrated System Results

Conclusions

- System has been fully integrated
- Experiencing difficulty creating a dataset large enough to properly train a gesture-based machine learning model
 - Led to reduction in scale to following requirements:
 - 60% Accuracy
 - Word-level translation
 - At least 50 word vocabulary
- Nearly all deliverables have met project goals:
 - Application has been fully developed
 - Has screens to inform user when errors has occurred to help troubleshoot
 - Fulfills requirements of having a small storage footprint and using minimal computational resources
 - Server has been prepared with proper PHP files acting as endpoints
 - Machine learning model is still not up to specification

