Portail René Descartes, Aix-Marseille Université

Analyse 1, Fiche d'exercices 4

Année 2022-23, semestre 2

1 Continuité sur un intervalle - théorème des valeurs intermédiaires

Exercice 1.1 (Fonction continue sur un intervalle) _

Soit f une application continue d'un intervalle $I \subset \mathbb{R}$ dans \mathbb{R} .

- 1. On suppose que f ne s'annule pas sur I. Montrer que f garde un signe constant sur I.
- 2. On suppose que $f(x) \in \mathbb{Z}$, pour tout $x \in \mathbb{R}$. Montrer que f est constante.

Exercice 1.2 (Fonction continue sur un intervalle - 2)

Soit une fonction continue sur [0,1] et à valeurs dans [0,1]. Montrer que l'équation f(x) = x admet au moins une solution.

Exercice 1.3 (Fonction polynôme) _

- 1. Montrer que toute fonction polynôme de $\mathbb R$ dans $\mathbb R$, de degré impair, s'annule en au moins un point.
- 2. Montrer que le polynôme $x^{30} + 14x^{17} 7x^5 7$ admet au moins une racine dans l'intervalle]0,1[.

Exercice 1.4 (Fonction réciproque)

Soit f l'application de $[-1, \infty[$ dans \mathbb{R} définie par

$$f(x) = \frac{1}{\sqrt{x^2 + 2x + 2}}$$
, pour tout $x \ge -1$.

Montrer que f est bijective de $[-1, \infty[$ dans]0, 1] et donner une formule explicite pour sa fonction réciproque.

Exercice 1.5 (Course à pieds) ____

1. Soit $f:[a;b] \longrightarrow \mathbb{R}$ une fonction continue telle que f(a)=f(b). Montrer que la fonction

$$g(t) = f\left(t + \frac{b-a}{2}\right) - f(t)$$

s'annule en au moins un point de l'intervalle $[a; \frac{a+b}{2}]$.

2. Application : une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 minutes pendant lequel elle parcourt exactement 2 km.

Exercice 1.6

Soit f une fonction continue de \mathbb{R}_+ dans \mathbb{R}_+ . On suppose que $\lim_{x\to+\infty} f(x) = 0$. Montrer que f admet un maximum (c'est à dire qu'il existe $a \in \mathbb{R}_+$ tel que pour tout $x \in \mathbb{R}_+$, $f(x) \leq f(a)$).

Exercice 1.7

Soit f et g deux fonctions de [0,1] dans \mathbb{R} , continues et telles que f(0)=g(1)=0 et g(0)=f(1)=1. Montrer que :

$$\forall \lambda \in \mathbb{R}_+, \ \exists x \in [0,1], \ f(x) = \lambda g(x).$$

Exercice 1.8 (Fonction croissante sur un intervalle)

Soit $a, b \in \mathbb{R}$, a < b et I =]a, b[. Soit f une application strictement croissante de I dans \mathbb{R} . On pose $A = \{f(x), x \in I\}$, $\alpha = \inf A$ et $\beta = \sup A$. (Si A est non minorée, on pose $\inf A = -\infty$. Si A est non majorée, on pose $\sup A = +\infty$.)

- 1. Montrer que $\lim_{x\to a} f(x) = \alpha$ (on pourra distinguer les cas $\alpha \in \mathbb{R}$ et $\alpha = -\infty$). Montrer que $\lim_{x\to b} f(x) = \beta$.
- 2. Soit $c \in I$. Montrer que f admet une limite à droite en c, notée $f_d(c)$, et une limite à gauche en c, notée $f_g(c)$. Montrer que $f_g(c) \leq f(c) \leq f_d(c)$.
- 3. On suppose que $f_d(c) = f_g(c)$ pour tout $c \in I$ (avec f_d et f_g définies à la question précédente). Montrer que f est continue et que f est bijective de [a, b[dans $]\alpha, \beta[$.

Exercice 1.9 (Toute fonction continue injective sur un intervalle est monotone)

Soient $a, b \in \mathbb{R}$, a < b, et soit $f : [a, b] \to \mathbb{R}$ continue et injective. Montrer que f est monotone. [Indication : utiliser le théorème des valeurs intermédiaires.]

Exercice 1.10 (min et max)

1. Montrer que, pour tout $x, y \in \mathbb{R}$,

$$\max\{x,y\} = \frac{1}{2}(x+y+|x-y|)$$
, et $\min\{x,y\} = \frac{1}{2}(x+y-|x-y|)$.

2. Soient f et g deux applications de \mathbb{R} dans \mathbb{R} . On définit les applications $f \top g$ et $f \perp g$ de \mathbb{R} dans \mathbb{R} par :

$$(f \top g)(x) = \max\{f(x), g(x)\}, \quad (f \bot g)(x) = \min\{f(x), g(x)\}, \text{ pour } x \in \mathbb{R}.$$

Soit $a \in \mathbb{R}$. On suppose que f et g sont continues en a. Montrer que $f \top g$ et $f \bot g$ sont continues en a.

Exercice 1.11 (Point fixe)

Soit f une fonction continue de [0,1] dans [0,1] et vérifiant

$$\forall x_1, x_2 \in [0, 1], |x_1 - x_2| \le |f(x_1) - f(x_2)|.$$

- 1. Montrer que f est injective.
- 2. Montrer que $\{f(0), f(1)\} = \{0, 1\}.$
- 3. Montrer que f est surjective.
- 4. Montrer que f admet un point fixe.

2 Exercices supplémentaires

Exercice 2.1 (Continuité uniforme)

On dit qu'une fonction f définie sur un intervalle I de $\mathbb R$ et à valeurs dans $\mathbb R$ est uniformément continue sur I si

$$\forall \epsilon > 0, \exists \eta > 0, \forall x, y \in I, (|x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon)$$

- 1. Montrer que $|\sqrt{x} \sqrt{y}| \le \sqrt{|x y|}$, pour tout $x, y \in \mathbb{R}_+$. En déduire que l'application $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}_+ .
- 2. Montrer que si $f: I \to \mathbb{R}$ est uniformément continue sur I, alors f est continue sur I.
- 3. Montrer que l'application $x \mapsto \frac{1}{x}$ n'est pas uniformément continue sur]0,1].

Exercice 2.2 (Convexité)

Soit f une application de $\mathbb R$ dans $\mathbb R.$ On suppose que f est convexe, c'est à dire que

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

pour tout $t \in [0,1]$ et pour tout $x, y \in \mathbb{R}$.

On pose $\alpha = f(1) - f(0)$, $\beta = f(0) - f(-1)$ et $\gamma = \max\{|\alpha|, |\beta|\}$.

1. Soit $x \in]0,1[$. Montrer que

$$\beta x \le f(x) - f(0) \le \alpha x .$$

Indication: utiliser le fait que x = t1 + (1-t)0, avec t = x, et 0 = tx + (1-t)(-1), avec $t = \frac{1}{1+x}$.

2. Soit $x \in]-1,1[$. Montrer que

$$|f(x) - f(0)| \le \gamma |x| .$$

En déduire que f est continue en 0.

3. Montrer que f est continue en tout point de \mathbb{R} .

Exercice 2.3 (Lemme de la corde universelle de Paul Lévy)

Soit f une application continue de [0,1] dans \mathbb{R} telle que f(0)=f(1). Soit $n\in\mathbb{N}^*$. Pour $x\in[0,1-\frac{1}{n}]$, on pose

$$g(x) = f(x + \frac{1}{n}) - f(x) .$$

- 1. Montrer que $\sum_{k=0}^{n-1} g(\frac{k}{n}) = 0$.
- 2. Montrer qu'il existe $x_0, x_1 \in [0, 1 \frac{1}{n}]$ tel que $g(x_0) \leq 0$ et $g(x_1) \geq 0$.
- 3. Monter qu'il existe $x \in [0, 1 \frac{1}{n}]$ tel que $f(x + \frac{1}{n}) = f(x)$.

3 Problème : étude d'une fonction

On considère la fonction f définie par

$$f(x) = \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right|$$

- 1. Déterminer le domaine de définition \mathcal{D}_f de f, et montrer que f est continue sur \mathcal{D}_f .
- 2. Montrer que f est impaire sur \mathcal{D}_f , et que pour tout $x \in \mathcal{D}_f \setminus \{0\}$, on a f(1/x) = f(x).
- 3. Montrer que

$$\lim_{x \to +\infty} f(x) = 0 , \qquad \lim_{x \to -\infty} f(x) = 0 .$$

4. Montrer que

$$\lim_{x \to 0} \frac{f(x)}{x} = -1 , \qquad \lim_{x \to \infty} x f(x) = \lim_{x \to -\infty} x f(x) = -1 .$$

5. Montrer que

$$\lim_{x \to -1} f(x) = +\infty , \qquad \lim_{x \to 1} f(x) = -\infty .$$

- 6. Sans calculer la dérivée, montrer que f est strictement décroissante sur [-1,1] (on pourra utiliser la monotonie stricte de la fonction ln). En déduire que f est strictement croissante sur $]-\infty,-1[$ et $]1,+\infty[$.
- 7. En utilisant tous les résultats des questions précédentes, donner une représentation du graphe de f.
- 8. On note φ la restriction de f à l'intervalle] -1,1[. Montrer que φ est une bijection de] -1,1[dans \mathbb{R} .
- 9. Montrer que pour tout $a \in \mathbb{R}^*$, l'équation f(x) = a possède exactement deux solutions dans \mathbb{R} .
- 10. On considère l'application $\varphi^{-1} \circ f$, de \mathcal{D}_f dans] -1,1[. Donner les expressions de $\varphi^{-1} \circ f(x)$ selon que x appartient ou non à] -1,1[.
- 11. Montrer que $\varphi^{-1} \circ f$ est prolongeable par continuité en x = -1 et en x = 1.