Capstone Project

The Battle of Neighborhoods - Week 2

Applied Data Science Capstone by IBM / Coursera

Stephenas Ali 2019

Table of Contents

Introduction: Business Problem	
Data	
Sample of Wikipedia List of Neighborhoods in Miami data	
Sample of Foursquare API data for List of Venues	
Sample of Foursquare API data for List of Coffee Shops	
Methodology	
Results	
Discussion & Recommendations	12
Conclusion	

Introduction: Business Problem

In this project we will try to find an optimal location for a coffee shop. Specifically, this report will be targeted to stakeholders interested in opening an **coffee shop** near to **Downtown Miami**, in Florida.

Since there are lots of cafes in Downtown Miami, we will try to detect **the most** suitable location, in or around the surrounding neighborhoods, where the business can thrive. We are also particularly interested in areas with popular venues or businesses to attract potential customers.

We will use our data science skills to evaluate a few of the most promising neighborhoods based on this criteria. Advantages of each area will then be clearly expressed so that best possible final location can be chosen by stakeholders.

Data

Based on definition of our problem, factors that will influence our decision are:

- the distance of neighborhood from the Downtown area
- number of coffee shops in the neighborhood
- number of possible supporting business areas and popular venues in the neighborhood, if any.

This information will be key in developing our analytical model and will be sufficient to obtain our solution. To gather this information the following data sources will be used:

- A Wikipedia entry with a list of neighborhoods in Miami. The web page consists of the neighborhoods and also their geographical coordinate data. This data will be scrapped, formatted and cleaned to be utilized in our analysis. https://en.wikipedia.org/wiki/List_of_neighborhoods_in_Miami
- To investigate the competitive environment in each neighborhood, such as existing coffee shops and other businesses or general places of interest. This data will be retrieved using the **Foursquare API.** Foursquare claims to be the most trusted, independent location data and technology platform for businesses.

Sample of Wikipedia List of Neighborhoods in Miami data

	Neighborhood	Population2010	Population/Km ²	Latitude	Longitude
0	Brickell	31759	14541	25.758	-80.193
1	Downtown	71,000 (13,635 CBD only)	10613	25.774	-80.193
2	Little Havana	76163	8423	25.773	-80.215
3	Lummus Park	3027	3680	25.777	-80.201
4	Overtown	6736	3405	25.787	-80.201
5	Park West	4655	3635	25.785	-80.193
6	The Roads	7327	4899	25.756	-80.207

Sample of Foursquare API data for List of Venues

name	location.neighborhood	location.lng	location.lat	location.address
Echo Brickell	Brickell	-80.192405	25.758121	1451 Brickell Ave
St. Jude's Catholic Church	Brickell	-80.192876	25.757828	1501 Brickell Ave
1450 Brickell Ave	Brickell	-80.192926	25.758584	1450 Brickell Ave
Google Miami	Brickell	-80.193154	25.758211	NaN
City National Bank	Brickell	-80.192805	25.758583	1450 Brickell Ave
Fortune House Hotel	Brickell	-80.190957	25.759420	185 SE 14th Ter
JOE & THE JUICE	Brickell	-80.192415	25.758066	1451 Brickell Avenue
Haitian Consulate	Brickell	-80.198373	25.761573	NaN

Sample of Foursquare API data for List of Coffee Shops

name	location.lng	location.lat	location.neighborhood	location.address
Mercon Coffee	-80.193590	25.757370	Brickell	1541 Brickell Ave
Finca's Coffee	-80.190529	25.761971	Brickell	1200 Brickell Bay Dr
Allegro Coffee Company	-80.190724	25.772535	Downtown	299 Se 3rd St
Eternity Coffee Roasters	-80.190179	25.772994	Downtown	117 SE 2nd Ave
Bistro Coffee	-80.193687	25.773989	Downtown	2 W Flagler St
Ever Coffee	-80.190945	25.774293	Downtown	145 E Flagler St
Coffee To Go	-80.190680	25.769225	Downtown	444 Brickell Ave
Q Coffee Club	-80.189000	25.774260	Downtown	1 SE 3rd Ave
Panini Coffee Bar	-80.188576	25.774416	Downtown	16 NE 3rd Ave
Parliament Coffee	-80.195711	25.777711	Downtown	200 NW 1st Ave
Starbucks	-80.189060	25.773300	Downtown	110 SE 3rd Ave

Methodology

In first step we established our understanding of the business problem. Secondly, we collected and cleaned the required data, inclusive of location information for neighborhoods, coffee shops, and other general venues of interest that would provide customers. During the data cleaning process we also narrowed the list of available neighborhoods to only those within 2.5km of Downtown Miami. This was done using the haversine formula, which is used to determine the great-circle distance between two points on a sphere given their longitude and latitude values.

The third step, will be our analysis of the data acquired. Some basic exploratory statistics will be calculated to get acquainted with the data, such as number of coffee shops found, the average number of coffee shops per neighborhood etc. Then, all the information collected will be sketched onto a heatmap to provide a visual perspective of the data. We would be able to see all of the selected neighborhoods, all venues of interests, and all coffee shops.

As we continue our analysis process, we would then further refine the information by categorizing the data of the neighborhoods by using the average number of coffee shops. The categories would cover those above average, below average, or those with no coffee shops at all within an initial 500 meter radius. This process would be iterated by eliminating neighborhoods with coffee shops above the average, and then by selecting neighborhoods with no coffee shops at all and increasing the scan radius. Folium maps would again be used to visualize the data.

Once a neighborhood is selected, in the final step of the analysis we would seek to pinpoint the most promising location in this preferred neighborhood for the coffee shop by identifying the area with the most dense venues. To accomplish this, we would use the k-means clustering, machine learning algorithm to find the largest groups of areas with potential customers.

Results

The following is a list of exploratory statistics found on the area.

• Total number of places of interests: 350

Total number of coffee shops: 16

• Percentage of coffee shops to general places of interests: 4.57%

• Average number of coffee shops per neighborhood: 2.286

The following dataset lists the selected neighborhoods with a count of venues and coffee shops found per area

Neighborhood	Population2010	Population/Km ²	Latitude	Longitude	Venue_Count	Coffee_Shop_Count
Brickell	31759	14541	25.758	-80.193	50.0	2.0
Downtown	71,000 (13,635 CBD only)	10613	25.774	-80.193	50.0	12.0
Little Havana	76163	8423	25.773	-80.215	50.0	1.0
Lummus Park	3027	3680	25.777	-80.201	50.0	0.0
Overtown	6736	3405	25.787	-80.201	50.0	0.0
Park West	4655	3635	25.785	-80.193	50.0	1.0
The Roads	7327	4899	25.756	-80.207	50.0	0.0

The information when charted on the Folium map looks as follows, with markers representing neighborhoods, red dots representing coffee shops and blue dots representing venues of interest:

Next, the neighborhoods were categorized according to the average number of coffee shops. The column **Category** was added and given a color encoding to be easily visible on the map.

	Neighborhood	Latitude	Longitude	Category
0	Brickell	25.758	-80.193	yellow
1	Downtown	25.774	-80.193	red
2	Little Havana	25.773	-80.215	yellow
3	Lummus Park	25.777	-80.201	gray
4	Overtown	25.787	-80.201	gray
5	Park West	25.785	-80.193	yellow
6	The Roads	25.756	-80.207	gray

The resultant map looks as follows:

With this visualization we can clearly see that 3 areas have no coffee shops at all within the initial 500 meter radius.

The process was then repeated, the neighborhoods categorized in gray were focused on and the others were removed.

The radius distance was increased from 500 meters to 1.25km, and the data was recategorized. The dataset now looked as follows:

ı	Neighborhood	Latitude	Longitude	Category
	Lummus Park	25.777	-80.201	red
	Overtown	25.787	-80.201	yellow
	The Roads	25.756	-80.207	gray

The re-plotted map looked as follows:

As we can see within the new range only one neighborhood still has no coffee shops listed. This neighborhood was identified as *The Roads* and will be used specifically in further analysis. K-means clustering was performed to determine where had the best cluster of venues of interest to establish the business. A cluster of 3 was applied on the venues dataset and a simple scatter plot was created.

To get a better perspective, each cluster point was taken and plotted onto the map and categorized to produce the following:

Category	Venues	Centroid	Longitude	Latitude	
yellow	16	Centroid 1	-80.204135	25.753058	0
red	48	Centroid 2	-80.208083	25.755396	1
yellow	12	Centroid 3	-80.204231	25.757696	2

As we can see, the location at Centroid 2 seems to be the most popular location, densely populated with business and potential customers.

A final dataset was created to confirm the listed venues and locations. The following is a sample of the data:

location.address	location.lat	location.lng	location.neighborhood	name
2525 SW 3rd Ave, unit Cu2	25.755430	-80.207555	The Roads	Bocas Grill Brickell
2498 SW 3rd Ave	25.756415	-80.207406	The Roads	Dr. Idalia Lastra, D.M.D.
2525 SW 3rd Ave	25.755683	-80.207425	The Roads	Nordica Condo
2525 SW 3rd Ave	25.755627	-80.207822	The Roads	Nordica Apartments
NaN	25.755930	-80.206997	The Roads	Kiki's mind
2525 SW 3rd Ave	25.755074	-80.207552	The Roads	Pool @ Nordica Condominium
NaN	25.755758	-80.208011	The Roads	Roads Pediatrics
NaN	25.756279	-80.207183	The Roads	Saint Sophia
2525 SW 3rd Ave	25.755590	-80.207900	The Roads	Dr Cordero, Perez-Silva Pediatrics
NaN	25.754230	-80.207594	The Roads	Beth David Congregation
SW 3rd Ave & SW Oak St	25.755489	-80.206770	The Roads	Taqueria Villanueva - SW 3rd

Discussion & Recommendations

The analysis and results surfaced that the neighborhood which would be most recommended to establish a new coffee shop would be The Roads. There are no current coffee shops there within a 1.25km radius and there is a dense population of businesses for potential customers.

One key observation to be pointed out would be the accuracy and comprehensiveness of the data available particularly with the Foursquare API. Note that not all coffee shops may have been listed and note that not all businesses may be listed accurately. Also there are limitations to the the amount of data that the API is able to return at a time, therefore it was noticed that the randomized information could skew results.

Conclusion

Purpose of this project was to aid stakeholders in narrowing down the search for optimal location for a new coffee shop in the vicinity of Downtown Miami. We identified prospective neighborhoods, and then identified existing coffee shop distributions and supporting businesses using Foursquare data.

Clustering analysis of those locations was then evaluated to determine the most viable option for a new coffee shop.

The recommended solution satisfied low competition from other coffee shops, with supporting business establishments around whilst also being close to Downtown Miami.