Linear Regression (Simple Linear Case)

Terms

- Y: response/ dependent variable (DV)
 - Variable of interest
- X : predictor/ covariate/ explanatory/ independent variable (IV)
 - Variable used to fit the model for our interest Y

Review: ANOVA Models

- A continuous response Y
- One or more categorical explanatory variables X
- Errors assumed to be Normal, $N(0,\sigma^2)$
- Interested in differences of expected values (mean) of response variables between groups

Linear Regression Model

- Continuous response
- One or more explanatory variables; categorical or continuous predictors
- Errors assumed to be Normal, iid N(0, σ^2)

- Example of regression questions:
 - Does advertising expenditures affect corporate sales?
 - Does the number of hours studied predict course performance?

Exploratory analysis

Scatter plot (Y vs. X) -> examples on the next page

- The population correlation coefficient ρ (rho)
 measures the <u>strength</u> (absolute value) and <u>direction</u>
 (sign) of the association between the variables
- ✓ Correlation is always between -1 and +1 (no unit; standardized measure)
- ✓ Pearson correlation is sensitive to outliers
- ✓ Spearman correlation is robust to outliers

Examples of scatter plots and Correlations

Examples of Relationships

: positive or negative association/linear or quadratic association etc.

Linear Regression

- Objective 1: To quantify the linear relationship between an explanatory variable (X) and response variable (Y) and test whether or not it is significant
- Objective 2: to predict the average response for subjects with a given value of the explanatory variable.
- Not necessarily a causal relationship
- This is parametric approach and what are assumptions?

Assumptions on Linear Regression

- 1. Linear relationship between X and Y
- 2. Conditionally Normal distribution of Y at each given X=x
- Homoscedasticity (equal variance assumption on Y at each give X=x)
- 4. Conditional independence: for given X=x, Y's are independent each other

Common Linear Models

- Simple linear regression
- Multiple linear regression
- Regression through the origin
- Polynomial regression
- Weighted linear regression
- Linear regression with transformation
- ANOVA model
- ANCOVA model

Least Squares

- Determine the "best" line
- Line as close as possible to the data points in the vertical (Y) direction
- Least Squares Estimator: Use the line that minimizes the sum of the squares of the vertical distances of the data points from the line
- True (unknown): $Y = \beta_0 + \beta_1 X + \text{ERROR}$
- Regression (estimated) equation: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$
- Interpretation: On average, Y is predicted to have an increase (or decrease) of $\widehat{\beta}_1$ when X increases by 1 unit.

R output

- Use **Im()** in R to run linear regression
- F-statistics and p-value
- T- statistics and confidence intervals
- If there is significiant linear relationship between Y and X, we can check the direction and magnitude through estimated coefficient
- Able to get the information:
 - Significance of the model (F-test)
 - Significance of individual predictor (t-test)
 - Write down regression equation $(\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1}X)$
 - How much of variation explained by model: R^2

R output

##

```
\hat{y} = -5.99 + 1.97X
```

On average, cirrhosis is predicted to have an increase 1.97, with one unit increase on alcohol

```
## Call:
  lm(formula = cirrhosis ~ alcohol, data = drinking)
##
   Residuals:
##
##
       Min
                1Q Median
                                        Max
## -8.5635 -2.3508 0.1415 2.6149
                                                       t-test on
##
                                                       individual term
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -5.9958 2.0977 -2.858 0.0134 *
## alcohol
                             0.2012 9.829 2.2e-07
              1.9779
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
1
##
## Residual standard error: 4.17 on 13 degrees of freedom
## Multiple R-squared: 0.8814, Adjusted R-squared: 0.8723
## F-statistic: 96.61 on 1 and 13 DF, p-value: 2.197e-07
 H0: all \beta's are zero vs. Ha: at least one \beta nonzero
    (Model is not useful)
                            (Model is useful)
 NOTE- we do not test intercept. β's in null hypothesis do not include
 intercept term
```

Model Hypothesis Test (F-test in simple linear regression)

Null Hypothesis:

- ✓ Conceptually: The simple linear regression model does **not** fit the data better than the baseline model.
- ✓ Conceptually: There is no linear relationship between x and y
- ✓ Statistically: $\beta_1 = 0$

Alternative Hypothesis:

- ✓ Conceptually: The simple linear regression model does fit the data better than the baseline model.
- ✓ Conceptually: There is some linear relationship between x and y
- ✓ Statistically: $\beta_1 \neq 0$

Goodness-of-fit

- Goodness-of-fit of a statistical model describes how well it fits a set of observations
- R^2 can be a measure
- Model significance and goodness-of-fit
 - Insignificant model can have good fit (large R^2)
 - Significant model can have lack of fit (small R^2)
- In general, we need a "good fit model" for prediction purpose
- Small \mathbb{R}^2 but significant model can be still useful
 - E.g., tobacco use vs. lung cancer

Residuals

- Residuals: $Y \hat{Y}$
- Able to check Normality assumption through residuals
- Plot against predictors or fitted value to see trends to check homoscedasticity assumption
- Check suspicious outliers

Diagnostics plots

Diagnostic plots; When model assumptions are valid

Residual vs. Fitted values

- Distributed within (0, 1.5) band on sqrt(standardized residuals)
 - Default plot in R
- Distributed within (-2,+2) band on standardized residuals
 - Manual generation in R (see class code)
- Check normality assumption
- No pattern found
 - check homogeneity and linear assumptions

Normal QQ plot

- almost Straight line
 - checks normality of errors
- Rigorous Normality test (shapiro test) can be applied to residuals but, in practice, generally check diagnostics plots
- Others like cook'sD; not for assumption but for data

Influence Diagnostics

- Leverage / Outlier
- Cook's distances influence of individual data points on the fitting cooks.distance()
- DFFITS influence of individual data points on the predicted values
- DFBETAS influence of individual data points on the parameter estimates

Caution

Be aware of Extrapolation

- Correlation does not imply Causation
 - Strong correlations do not correspond to a causal relationship (change in X causes change in Y)

Example 1: Cirrhosis and Alcohol

Data set:

- Data from 15 countries
- Cirrhosis deaths per 100,000 people
- Annual alcohol consumption (in litres per person per year)

Example 1: Linear trend?

- Considering cirrhosis deaths as a function of alcohol consumption
- Create a scatter plot of the data
- Linear trend reasonable?
- Any indications of problems with the data?

Example 1: Linear trend?

Exercise 1: Linear regression

- Fit linear regression model with cirrhosis deaths as response
- Comment on quality of model
- Comment on any problems noticed in diagnostics
- Relationship between alcohol consumption and cirrhosis related death rate?

R output

```
\hat{y} = -5.99 + 1.97X
```

```
##
## Call:
   lm(formula = cirrhosis ~ alcohol, data = drinking)
##
   Residuals:
##
##
       Min
                 1Q Median
                                         Max
## -8.5635 -2.3508 0.1415 2.6149
                                                         t-tset on
##
                                                         individual term
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -5.9958 2.0977 -2.858 0.0134 *
## alcohol
                             0.2012 9.829 2.2e-07
               1.9779
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
1
##
## Residual standard error: 4.17 on 13 degrees of freedom
## Multiple R-squared: 0.8814, Adjusted R-squared: 0.8723
## F-statistic: 96.61 on 1 and 13 DF, p-value: 2.197e-07
H0: all \beta's are zero vs. Ha: at least one \beta nonzero
   (Model is not useful)
                            (Model is useful)
NOTE- we do not test intercept. \beta's in null do not include intercept term
```

Exercise 1: Undue influence

- Points too influential based on Cook's distance?
- Remove points with Cook's distance greater than 1 and refit the model
- How do the results change?
- Any remaining problems with the model?

Exercise 1: Undue influence

Obs1= France

Red line: estimated regression line

with France

Blue line: estimated regression line

without France

Example 2: crime data

- Using crime.csv
- We want to check if there is a relationship between crime numbers and rate of poverty.

head	(crin	ne)		1						1
##	sid	state	crime	murder	pctmetro	pctwhite	pcths	ро	verty	single
## 1	1	ak	761	9.0	41.8	75.2	86.6		9.1	14.3
## 2	2	al	780	11.6	67.4	73.5	66.9		17.4	11.5
## 3	3	ar	593	10.2	44.7	82.9	66.3		20.0	10.7
## 4	4	az	715	8.6	84.7	88.6	78.7		15.4	12.1
## 5	5	ca	1078	13.1	96.7	79.3	76.2		18.2	12.5
## 6	6	СО	567	5.8	81.8	92.5	84.4		9.9	12.1
				J						

Example 2: crime data

```
lm.crime <- lm(crime ~ poverty, data=crime)</pre>
summary(lm.crime)
Call:
Im(formula = crime ~ poverty, data = crime)
Residuals:
 Min 1Q Median 3Q Max
-794.16 -257.78 -22.91 165.50 1713.93
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) -86.20 176.99 -0.487 0.628403
poverty 49.03 11.83 4.145 0.000134 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 383.4 on 49 degrees of freedom
Multiple R-squared: 0.2596, Adjusted R-squared: 0.2445
F-statistic: 17.18 on 1 and 49 DF, p-value: 0.0001342
```

Example 2: crime data

Simulation study:

What happens if assumption is violated?

- SimData.csv (simulated data in R)
- Y1=1.5+3*x1+e
- Y2=1.5+3*x1+e*
- Y3=1.5+3*x1+e²
- Y4=1.5+3*X1^2+e
 - e: normal error
 - e*: log-normal error (highly right skewed)
 - e': heterogeneous errors proportional to X1
- Which assumption is violated at Y2-Y4?
- How diagnostic plot looks like?

Simulation study:

