Machine Learning Regression

Al Summer School

University of Tehran

Prices of houses

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
i i	:	÷

- Given data like this, how can we **learn** to **predict** the prices of other houses, **as a function** of the size of their living areas?
- A pair $(x^{(i)}, y^{(i)})$ is called a **training example**, and the dataset that we'll be using to learn—a list of n training examples $\{(x^{(i)}, y^{(i)}); i=1, \ldots, n\}$ —is called a **training set**.
- We used superscript "(i)" in the notation for regression to denote an index into the data set. In other section, we usually use **subscript**.

A. Dehaqani, UT

Linear Regression

We approximate y as a linear function of
 x:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- To perform supervised learning, we must decide how we're going to represent functions/hypotheses h in a computer.
- The θ_i's are the parameters (also called weights) parameterizing the space of linear functions mapping from X to Y
- Letting $x_0 = 1$ (this is the **intercept** term), so that the (the new **convention**)

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \theta^T x_i$$

$$h: \mathcal{X} \mapsto \mathcal{Y}$$

How do we pick, or learn, the parameters θ

- One reasonable method seems to be to make h(x) close to y, at least for the training examples we have.
- We will define a function that measures, for each value of the θ 's, how close the $h(x^{(i)})$'s are to the corresponding $y^{(i)}$'s.
- We define the **cost function** (the ordinary least squares): $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) y^{(i)})^{2}.$
- We want to choose θ so as to minimize $J(\theta)$.

Gradient descent algorithm to find θ

• We update all values of θ_j , $j=0,\ldots,d$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- With some "initial guess" for θ , and that repeatedly changes θ to make $J(\theta)$ smaller, until hopefully we converge to a value of θ that minimizes $J(\theta)$.
- α is called the learning rate.
- This is a very natural algorithm that repeatedly takes a step in the direction of steepest decrease of J

Gradient descent

Partial derivative term

For the case of if we have only one training example

(x, y) (neglect the sum in the definition of J) $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{d} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

For a single training example, this gives the update rule:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$
 least mean squares (LMS update rule or Widrow-

least mean squares (LMS) **Hoff** learning rule.

Widrow-Hoff learning rule.

- The magnitude of the update is **proportional** to the error term $(y^{(i)} h(x^{(i)}))$;
 - If we are encountering a training example on which our prediction **nearly matches** the actual value of y⁽ⁱ⁾, then we find that **there is little need to change the**parameters;
 - In contrast, a **larger change** to the parameters will be made if our prediction $h(x^{(i)})$ has **a large error** (i.e., if it is very far from $y^{(i)}$).

- Batch gradient descent
 - Looks at every example in the entire training set on every step, and is called.

Repeat until convergence {
$$\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} - h_\theta(x^{(i)})\right) x_j^{(i)}, \text{(for every } j)}$$
 }

Vector notation:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$$

Solution II: stochastic gradient descent

To update the parameters according to the **gradient of the error** with respect to that single training example only.

```
Loop {
for \ i = 1 \ to \ n, \{ \\ \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}, \quad \text{(for every } j) \\ \} \\ \theta := \theta + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x^{(i)}
```

- Often, stochastic gradient descent gets θ "close" to the minimum much faster than batch gradient descent.
- When training set is large, stochastic gradient descent is often preferred over batch gradient descent

Exmaple

- J is a convex quadratic function.
- The ellipses shown above are the **contours** of a quadratic function. $\theta_0 = 71.27, \ \theta_1 = 0.1345.$

 Also shown is the trajectory taken by gradient descent, which was initialized at (48,30).

The normal equations

- Performing the minimization explicitly and without resorting to an iterative algorithm.
- Define the design matrix X to be the n-by-d matrix that contains the training examples' input values in its rows
- Also, let \vec{y} be the n-dimensional vector containing all the target values from the training set

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(n)})^T - \end{bmatrix}$$

$$ec{y} = \left[egin{array}{c} y^{(1)} \ y^{(2)} \ dots \ y^{(n)} \end{array}
ight]$$

The normal equations

since
$$h_{\theta}(x^{(i)}) = (x^{(i)})^T \theta$$
,

$$X\theta - \vec{y} = \begin{bmatrix} (x^{(1)})^T \theta \\ \vdots \\ (x^{(n)})^T \theta \end{bmatrix} - \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} = \begin{bmatrix} h_{\theta}(x^{(1)}) - y^{(1)} \\ \vdots \\ h_{\theta}(x^{(n)}) - y^{(n)} \end{bmatrix}$$

$$\frac{1}{2}(X\theta - \vec{y})^T(X\theta - \vec{y}) = \frac{1}{2}\sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)})^2 = J(\theta)$$

To minimize J, let's find its derivatives with respect to θ .

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left((X\theta)^T X \theta - (X\theta)^T \vec{y} - \vec{y}^T (X\theta) + \vec{y}^T \vec{y} \right)$$

$$a^T b = b^T a$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - \vec{y}^T (X\theta) - \vec{y}^T (X\theta) \right)$$

$$\nabla_{x} b^T x = b$$

$$\nabla_{x} b^T x = b$$

$$\nabla_{x} x^T A x = 2Ax$$

$$= \frac{1}{2} \left(2X^T X \theta - 2X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

A. Dehaqani, UI

The normal equations

• We set its derivatives to zero, and obtain the normal equations:

$$X^T X \theta = X^T \vec{y}$$

• The value of θ that minimizes $J(\theta)$ is given in **closed** form by the equation $X\theta = \vec{y}$

$$\theta = (X^T X)^{-1} X^T \vec{y}$$

A. Dehaqani, UT

Probabilistic interpretation

- Why linear regression, and the least-squares cost function J, be a reasonable choice?
- Consider following statistical model

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

- Where ε⁽ⁱ⁾ is an error term that captures either unmodeled effects or random noise.
- $\epsilon^{(i)}$ are **distributed IID** (independently and identically distributed) according to a Gaussian distribution

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right).$$
$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

Maximum likelihood

• The likelihood function:

$$L(\theta) = L(\theta; X, \vec{y}) = p(\vec{y}|X; \theta)$$

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} | x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

• The principal of maximum likelihood says that we should choose θ so as to make the data as high probability as possible. I.e., we should choose θ to maximize $L(\theta)$

Maximize the log likelihood

$$\ell(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= n \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^{T} x^{(i)})^{2}$$

• Maximizing $\ell(\theta)$ gives the same answer as minimizing

$$\frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^T x^{(i)})^2,$$

Our final choice of θ did not depend on what was σ^2

Locally weighted linear regression

Original linear regression

1. Fit
$$\theta$$
 to minimize $\sum_{i} (y^{(i)} - \theta^T x^{(i)})^2$.

- 2. Output $\theta^T x$.
- Locally weighted linear regression algorithm

1. Fit
$$\theta$$
 to minimize $\sum_i w^{(i)} (y^{(i)} - \theta^T x^{(i)})^2$

- 2. Output $\theta^T x$.
- w⁽ⁱ⁾'s are non-negative valued weights.
 - If $w^{(i)}$ is small, then the $(y^{(i)} \theta^T x^{(i)})^2$ error term will be pretty much ignored in the fit.
- A fairly standard choice for the weights is

$$w^{(i)} = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

Non-parametric method $w^{(i)} = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$

$$w^{(i)} = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

- Note that the weights **depend on the particular point x** at which we're trying to evaluate x.
- θ is chosen giving a much higher "weight" to the (errors on) training examples close to the query point x.
 - x could be the **position of the center of the peak** in the Bell-shaped function for defining the weights.
 - Note that the weights depend on the particular point x at which we're trying to evaluate x
- τ is called the **bandwidth parameter**. If x is vector-valued, τ is matrix Σ .
- $w^{(i)} = \exp(-(x^{(i)} x)^T \Sigma^{-1} (x^{(i)} x)/2)$ It is **non-parametric** algorithm:
 - We need to keep the entire training set around. The model does not learn a fixed set of parameters as is done in ordinary linear regression
 - Parameters θ are computed individually for each query point

Example; non-linear relationship between X and Y

21

A. Dehagani, UT

Classification and logistic regression

- Let's now talk about the classification problem.
 - This is just like the regression problem, except that the **values y** we now want to predict take on only a **small number** of **discrete values**.
- For now, we focus on the binary classification problem in which y can take on only two values, 0 and 1.
 - In most cases the binary classifier will also generalize to the multiple-class case
- y⁽ⁱ⁾ is called the **label for the training** example.
- Logistic regression:
 - We could approach the classification problem ignoring the fact that
 y is discrete-valued

A. Dehaqani, UT

Logistic function or the sigmoid function.

- It also doesn't make sense for $h_{\theta}(x)$ to take values larger than 1 or smaller than 0 when we know that $y \in \{0,1\}$;
- We will choose:

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$
 $g(z) = \frac{1}{1 + e^{-z}}$

$$g(z) = \frac{1}{1 + e^{-z}}$$

g(z), and Herror h(x), is always bounded $\underset{\mathcal{O}}{\overset{0.6}{\sim}}$ and 1.

keeping the convention of letting $x_0 = 1$, so that:

$$\theta^T x = \theta_0 + \sum_{j=1}^d \theta_j x_j$$

Useful property of the derivative of the sigmoid function,

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

$$= \frac{1}{(1 + e^{-z})} \cdot \left(1 - \frac{1}{(1 + e^{-z})}\right)$$

$$= g(z)(1 - g(z))$$

- Other functions that smoothly increase from 0 to 1 can also be used
- The choice of the logistic function is a **fairly natural** one: (GLMs, and generative learning algorithms)

Fitting θ for logistic regression?

 Setting of probabilistic assumptions, and then fit the parameters via maximum likelihood.

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$
 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

This can be written more compactly as

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

 IID assumption on training examples, then write down the likelihood of the parameters as

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

Maximizing the log likelihood

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{n} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

We can use gradient ascent (Written in vectorial notation)

 $= (y - h_{\theta}(x)) x_i$

$$\theta := \theta + \alpha \nabla_{\theta} \ell(\theta)$$

 Start by working with just one training example (x, y), and take derivatives

$$\frac{\partial}{\partial \theta_{j}} \ell(\theta) = \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) \frac{\partial}{\partial \theta_{j}} g(\theta^{T}x)$$

$$g'(z) = g(z)(1 - g(z))$$

$$= \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) g(\theta^{T}x)(1 - g(\theta^{T}x)) \frac{\partial}{\partial \theta_{j}} \theta^{T}x$$

$$= \left(y(1 - g(\theta^{T}x)) - (1 - y)g(\theta^{T}x) \right) x_{j}$$

A. Dehaqani, UT

Stochastic gradient ascent rule and perceptron learning

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

- It is similar to LMS update rule; but this is not the same algorithm, because $h_{\theta}(x^{(i)})$ is now defined as a non-linear function of $\theta^{T}x^{(i)}$
- There is a **deeper reason** on ending up with the same update rule for a rather different algorithm and learning problem. (GLM models)
- Digression: The perceptron learning algorithm
 - Modifying the logistic regression method to "force" it to output values that are either 0 or 1 or exactly.

$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Using this modified definition of g, and if we use the same update rule,
 then we have the perceptron learning algorithm.

Newton's algorithm for maximizing $\ell(\theta)$

- Newton's method to find a value of θ so that $f(\theta) = 0$.
- Approximating the function f via a **linear function** that is tangent to f at the current guess θ , $\theta := \theta \frac{f(\theta)}{f'(\theta)}$

• The maxima of ℓ correspond to points where its first derivative $\ell'(\theta)$ is zero. So, by letting $f(\theta) = \ell'(\theta)$, we can use the same algorithm to maximize ℓ , and we obtain update rule:

$$\theta := \theta - \frac{\ell'(\theta)}{\ell''(\theta)}$$

Newton-Raphson method

Vector valued method in multidimensional space

$$\theta := \theta - H^{-1} \nabla_{\theta} \ell(\theta)$$

- $\nabla_{\theta}\ell(\theta)$ is, as usual, the **vector of partial derivatives** of $\ell(\theta)$ with respect to the θ i's;
- H is an d-by-d matrix (actually, d+1-by-d+1, assuming that we include the intercept term) called the **Hessian**,

$$H_{ij} = \frac{\partial^2 \ell(\theta)}{\partial \theta_i \partial \theta_j}.$$

- It is **faster than gradient descent**; however one step is more **expensive**. Since it requires finding and **inverting an d-by-d Hessian**
- Fisher scoring: Newton's method is applied to maximize the logistic regression

A. Dehaqani, UT