Примерни задачи по Диференциални уравнения и приложения

Задача 1. Колко решения има задачата

а)
$$\begin{cases} y' = x^3 + y^3 \\ y(3) = 3 \end{cases}$$

б) $\begin{cases} y'^2 - 2xyy' = x^2y^2 + 1 \\ y(2) = 1 \end{cases}$

в) $\begin{cases} y'^2 - xyy' + x^2 + y = 0 \\ y(1) = 2 \end{cases}$

г) $\begin{cases} y' = x + \operatorname{tg}(xy) \\ y(1) = \pi/2 \end{cases}$

д) $\begin{cases} y'' + x^2y' + 5xy = 2 \\ y(2) = 1 \end{cases}$

е) $\begin{cases} \begin{vmatrix} \dot{x} = x - y \\ \dot{y} = x^2 - y^2 \\ x(0) = 3; \ y(0) = 3 \end{cases}$

Задача 2. Колко са решенията на уравнението

a)
$$y' = xy^2 + 4$$
 6) $y' = 2y^2 - 5x$

B)
$$y'' = 2xy' + 3y + x$$
 r) $y''' = xy'' + (x+1)y$

които удовлетворяват условията y(1) = 2 и y'(1) = 3.

Задача 3. Колко решения на системата

a)
$$\begin{cases} \dot{x} = 2xy + 1 \\ \dot{y} = x^2 + 4y^2 \end{cases}$$
 6) $\begin{cases} \dot{x} = x + y - z + 1 \\ \dot{y} = x - y + z + 2 \\ \dot{z} = x + y + z + 3 \end{cases}$

удовлетворяват условията x(1) = 0 и y(1) = 2

Задача 4. Колко решения на уравнението

a)
$$y' = x^2 + y^2$$
 6) $y' + 2x = 0$

(ача 4. Колко решения на уравнения **a)**
$$y' = x^2 + y^2$$
 b) $y' + 2x = 0$ **c)** $y'' + y = 0$ **d)** $y'' - 2 = 0$ **e)** Влетворяват условията $y(0) = 0$ и $y(0)$ и y

удовлетворяват условията y(0) = 0 и $y(\pi) = 0$.

Задача 5. Кой е интегриращия множител за:

- **а)** уравнението с разделящи се променливи dy + f(x)g(y)dx = 0 ?
- **б)** линейното уравнение dy + [a(x)y + b(x)]dx = 0 ?

Проверете, че полученото уравнение след умножаване с интегриращия множител произлиза от пълен диференциал.

Задача 6. За уравнението

$$(*) \quad y' + y^2 + x^2 = 2xy + 5$$

намерете частно решение $y_1(x)$ от вида ax + b. Уравнение от какъв тип за z(x) се получава след полагане $y(x) = z(x) + y_1(x)$ в (*)?

Задача 7. Дадена е задачата на Коши

$$\begin{cases} y' = 2y + x^2 \\ y(0) = 2 \end{cases}$$

а) Сведете задачата до интегрално уравнение и образувайте редицата $y_n(x)$, n=0,1,2,...от последователни приближения за решението на задачата;

1

- **б)** Пресметнете първите три последователни приближения y_0, y_1 и y_2 ;
- в) За всяко естествено n, намерете константа C(n), такава че

$$|y_n(x) - y_{n-1}(x)| \le C(n)|x|^n, \quad x \in (-\infty, +\infty);$$

г) Докажете че редицата $y_n(x)$, n=0,1,2,..., е равномерно сходяща в интервала $(-\infty,+\infty)$.

Задача 8. За кои от следните задачи на Коши може да се приложи теоремата за съществуване и единственост (Теоремата на Пикар) в правоъгълника $\Pi = \{|x| < 1, \ |y| < 2\}$?

За задачите, за които може да се приложи теоремата, определете интервал, в който е дефинирано решението.

Задача 9. Докажете, че решението на задачата на Коши

а)
$$\begin{cases} y' = xy^2 - x^3 \\ y(0) = 1 \end{cases}$$
 б) $\begin{cases} y' = y^2 - x^2 \\ y(0) = 0 \end{cases}$ е четна функция.

Задача 10. Определете особените и обикновените точки на уравнението

a)
$$xy' = y + 4x^2$$

6)
$$xy' = -y + 6x^2$$

Какво е поведението на решенията около x=0? Има ли решения на уравнението, дефинирани за $x\in (-\infty, +\infty)$?

Задача 11. Определете особените точки на уравнението

a)
$$2yy' = xy'^2 + x$$
 6) $y'^2 + xy = y^2 + xy'$

Има ли особени решения на уравнението?

Задача 12. Като използвате (само!) теоремата за единственост на решението на задача на Коши за линейни уравнения, докажете, че всяко решение на уравнението

$$y'' + y = 0$$

може да се представи като линейна комбинация на функциите $\sin x$ и $\cos x$.

Задача 13. Като използвате теоремата за съществуване и единственост на решението на задача на Коши за линейни уравнения, докажете за уравнението y'' + xy = 0, че:

- а) множеството от всички решения на уравнението образува линейно пространство;
- б) всеки три решения на уравнението са линейно зависими;
- в) съществува двойка линейно независими решения на уравнението.

Задача 14. Функциите $y_1(x)$ и $y_2(x)$ са две решения на уравнението $y'' + x^2y + 2y = 0$, а W(x) е тяхната детерминанта на Вронски. Като използвате (само!) теоремата за

съществуване и единственост на решението на задача на Коши за линейни уравнения, докажете, че:

- а) Ако W(0) = 1, то $W(x) \neq 0$ за всяко $x \in (-\infty, +\infty)$;
- б) Ако W(0) = 1, то функциите $y_1(x)$ и $y_2(x)$ са линейно независими;
- в) Ако W(0) = 0, то W(x) = 0 за всяко $x \in (-\infty, +\infty)$.

Задача 15. Възможно ли е да се допират графиките на две различни решения на уравнението $y'' - xy' + x^2y = 1$? Защо?

Задача 16. Нека f(x) е непродължимото решение на задачата на Коши

$$\begin{cases} y'' = x^2y + 1\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$

- а) Какъв е дефиниционния интервал на f(x)?
- б) Каква е най-малката стойност на f(x)? Защо?

Задача 17. Дадени са функциите $f_1(x)$, $f_2(x)$ и $f_3(x) \in C^1([0,4])$. Възможно ли е да са линейно зависими в интервала [0,4], ако:

a)
$$f_1(1) = 0$$
, $f_1(2) > 0$, $f'_1(2) = 0$; $f_2(1) > 0$, $f'_2(2) > 0$; $f_3(1) > 0$, $f'_3(2) < 0$;

6)
$$f_1(1) = 0$$
, $f_2(1) = f_3(1) > 0$; $f_1(2) = f_2(2) > 0$, $f_3(2) = 0$; $f_1(3) = f_3(3) > 0$, $f_2(3) = 0$.

Задача 18. На чертежа са изобразени графиките на три непрекъснати в интервала [a,b] функции $f_1(x)$, $f_2(x)$ и $f_3(x)$. Линейно зависими ли са функциите $f_1(x)$, $f_2(x)$ и $f_3(x)$ в интервала [a,b]? Защо?

Задача 19. Пресметнете детерминантата на Вронски на двойката функции $y_1(x) = 2 - 3x^2$ и $y_2(x) = 2x^3 + 1$. Могат ли $y_1(x)$ и $y_2(x)$ да са решения в интервала (-1,1) на едно и също линейно уравнение

$$y'' + a(x)y' + b(x)y = 0$$

с непрекъснати коефициенти $a(x), b(x) \in C(-1,1)$? Защо?

Задача 20. При какви стойности на реалния параметър k уравнението

$$y'' + ky = \sin \pi x$$

няма нито едно периодично решение?

Задача 21. Дадено е уравнението

$$y'' + ay' + 4y = 0$$

където a е реалния параметър.

- а) При какви стойности на a всички решения на уравнението са ограничени за $x \in$ $(-\infty, +\infty)$?
- б) При какви стойности на a всички решения на уравнението клонят към 0 при $x \to -\infty$?
- в) При какви стойности на а уравнението има поне две периодични решения?

Задача 22. Дадено е уравнението

$$(x-1)y'' + (x-2)y' - y = 0, x > 1.$$

- а) Намерете две частни решения на уравнението от вида $y_1(x) = e^{ax}$ и $y_2(x) = bx + c, b \neq 0$.
- б) Покажете, че намерените частни решения $y_1(x)$ и $y_2(x)$ са линейно независими в интервала $(1, +\infty)$.
- в) Намерете общото решение на уравнението.

Задача 23. Възможно ли е периодична функция да е решение на уравнението в интервала $x \in (-\infty, +\infty)$? Защо?

a)
$$y' = xy^2 - x$$

$$6) y'' + 2xy = 2x$$

a)
$$y' = xy^2 - x$$
 6) $y'' + 2xy = 2x$ B) $y'' + xy' = -x$ r) $y'' + 4y = x$

r)
$$y'' + 4y = 3$$

Задача 24. Нека x(t), y(t) са решение на системата

а)
$$\begin{cases} \dot{x} = x + 2y + e^t \\ \dot{y} = 4x + 3y \end{cases}$$
 б) $\begin{cases} \dot{x} = \frac{2}{t}x + \frac{8}{t}y \\ \dot{y} = \frac{2}{t}x + \frac{2}{t}y \end{cases}$ в интервала $t \in (0, +\infty)$.

Изведете линейно диференциално уравнение, което се удовлетворява от функцията x(t). Намерете общото решение на системата.

Задача 25. Приложете теоремата за съществуване и единственост в цилиндъра G = $\{(t,x,y)\in\mathbb{R}^3:\ |t|\leq 2,\ x^2+y^2\leq 1\}$, за да намерите интервал, в който съществува решение на задачата на Коши

$$\begin{cases} \dot{x} = x + 3y \\ \dot{y} = 2x^2 + y \\ x(0) = 0, \quad y(0) = 0 \end{cases}$$

Задача 26. Дадена е задачата на Коши

$$\begin{cases} \dot{x} = 1 - y \\ \dot{y} = x + t \\ x(0) = 0, \ y(0) = 1 \end{cases}$$

- а) Сведете задачата до система от две интегрални уравнения и образувайте редиците $x_n(t)$ и $y_n(t)$, n=0,1,2,..., от последователни приближения по метода на Пикар за решението на задачата.
- б) Пресметнете първите три последователни приближения $(x_0, y_0; x_1, y_1 \text{ и } x_2, y_2)$.
- в) За всяко естествено n, намерете константа C(n), такава че

$$|x_n(t) - x_{n-1}(t)| \le C(n)|t|^n$$
, $t \in (-\infty, +\infty)$;

$$|y_n(t) - y_{n-1}(t)| \le C(n)|t|^n$$
, $t \in (-\infty, +\infty)$.

г) Докажете че редиците $x_n(t)$ и $y_n(x)$, n = 0, 1, 2, ..., са равномерно сходящи в интервала $(-\infty, +\infty)$.

Задача 27. Векторните функциите $\mathbf{x}_1(t)=(x_1^1(t),x_1^2(t))$ и $\mathbf{x}_2(t)=(x_2^1(t),x_2^2(t))$ са две решения на системата

$$\begin{pmatrix} \dot{x^1} \\ \dot{x^2} \end{pmatrix} = \begin{pmatrix} t & t+2 \\ 3t & 4 \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \end{pmatrix},$$

а W(t) е детерминанта на Вронски на $\mathbf{x}_1(t)$ и $\mathbf{x}_2(t)$. Като използвате (само!) теоремата за съществуване и единственост на решението на задача на Коши за линейна система, докажете, че:

- а) ако W(0) = 1, то $W(x) \neq 0$ за всяко $t \in (-\infty, +\infty)$;
- **б)** ако W(0) = 1, то $x_1(t)$ и $x_1(t)$ са линейно независими;
- в) ако W(0) = 0, то W(x) = 0 за всяко $t \in (-\infty, +\infty)$.

Задача 28. Нека функциите x(t) и y(t) удовлетворяват системата

$$\begin{cases} \dot{x} = xy \\ \dot{y} = x^2 \end{cases}$$

- а) Покажете, че $\left[x(t)\right]^2-\left[y(t)\right]^2$ не зависи от t.
- б) Определете равновесните точки на системата. Начертайте фазов портрет. Кои равновесни точки са устойчиви?

Задача 29. При какви стойности на реалния параметър α системата

$$\begin{cases} \dot{x} = y + \sin t \\ \dot{y} = -x + \alpha \cos t \end{cases}$$

има поне едно периодично решение?

Задача 30. На чертежа са изобразени няколко фазови криви и всички равновесни точки A, B, C, D и E на системата

$$\begin{cases} \dot{x} = f(x, y) \\ \dot{y} = g(x, y) \end{cases}$$

където $f(x,y) \in C^1(\mathbb{R}^2)$ и $g(x,y) \in C^1(\mathbb{R}^2)$. За кои от равновесните точки можем със сигурност да твърдим че са неустойчиви? Кои от равновесните точки е възможно да са устойчиви?

Задача 31. Интегрални криви на кое уравнение са начертани на графиките 1, 2, 3 и 4 от Фиг. 1?

a)
$$y' = y$$

$$\mathbf{6)} \quad y' = x + y$$

B)
$$y' = -1 - y$$

$$\mathbf{g}$$
) $y' = 2x$

e)
$$y' = 9 - y^2$$

Задача 32. Фазови криви на коя ситема са начертани на графиките 1, 2, 3 и 4 от Фиг. 2?

a)
$$\begin{cases} \dot{x} = x + y + 2 \\ \dot{y} = x - y \end{cases}$$

$$\mathbf{6}) \quad \left\{ \begin{array}{l} \dot{x} = xy\\ \dot{y} = \sin x \end{array} \right.$$

$$\mathbf{B}) \quad \left\{ \begin{array}{l} \dot{x} = 5x + y \\ \dot{y} = x + 5y \end{array} \right.$$

a)
$$\begin{cases} \dot{x} = x + y + 2 \\ \dot{y} = x - y \end{cases}$$
6)
$$\begin{cases} \dot{x} = xy \\ \dot{y} = \sin x \end{cases}$$
8)
$$\begin{cases} \dot{x} = 5x + y \\ \dot{y} = x + 5y \end{cases}$$
r)
$$\begin{cases} \dot{x} = x + y \\ \dot{y} = x + 2 \end{cases}$$
d)
$$\begin{cases} \dot{x} = 3x - xy \\ \dot{y} = -2y + xy \end{cases}$$
e)
$$\begin{cases} \dot{x} = x - y \\ \dot{y} = 4x + y \end{cases}$$

д)
$$\begin{cases} \dot{x} = 3x - xy \\ \dot{y} = -2y + xy \end{cases}$$

$$\mathbf{e)} \quad \left\{ \begin{array}{l} \dot{x} = x - y \\ \dot{y} = 4x + y \end{array} \right.$$