# Machine Learning Supervisé: Classification et Régression Logistique

Dr. EL BENANY Mohamed Mahmoud

January 25, 2025

# Introduction au Machine Learning Supervisé

- Objectif: prédire une \*\*étiquette\*\* (y) à partir des \*\*caractéristiques\*\* (X).
- La Classification consiste à attribuer des catégories discrètes  $(y \in \{0,1\})$ .
- La Régression Logistique est une méthode de classification utilisée pour prédire des probabilités.
- Étapes principales:
  - 1. Modélisation avec une fonction hypothèse.
  - 2. Définition d'une fonction coût.
  - 3. Optimisation via Gradient Descent.

# Fonction Hypothèse

La fonction hypothèse de la régression logistique est donnée par:

$$h_{ heta}(X) = rac{1}{1 + e^{- heta^T X}}$$

où:

- $ightharpoonup h_{\theta}(X)$  est la probabilité que y=1.
- ightharpoonup heta est le vecteur des paramètres du modèle.
- Exemple en Python:

```
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def hypothesis(theta, X):
    return sigmoid(np.dot(X, theta))
```

Le résultat est une probabilité  $(0 \le h_{\theta}(X) \le 1)$ .



### Fonction Coût

La fonction coût est définie comme:

$$J( heta) = -rac{1}{m} \sum_{i=1}^m \left[ y^{(i)} \log(h_ heta(X^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(X^{(i)})) 
ight]$$

- Cette fonction mesure l'erreur entre les prédictions  $h_{\theta}(X)$  et les valeurs réelles y.
- Exemple en Python:

▶ Minimiser  $J(\theta)$  permet d'optimiser le modèle.

# Gradient Descent

Les paramètres  $\theta$  sont mis à jour par:

$$\theta_j := \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

où:

- $ightharpoonup \alpha$ : taux d'apprentissage.
- $ightharpoonup \frac{\partial J(\theta)}{\partial \theta_i}$ : dérivée partielle de la fonction coût.
- ► Gradients pour la régression logistique:

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(X^{(i)}) - y^{(i)} \right) X_j^{(i)}$$

## Gradient Descent

Exemple en Python:

```
def gradient_descent(X, y, theta, learning_rate,
    iterations):
    m = len(y)
    for _ in range(iterations):
        H = hypothesis(theta, X)
        gradient = np.dot(X.T, (H - y)) / m
        theta -= learning_rate * gradient
    return theta
```

# Limite de Décision

- La limite de décision sépare les classes y = 0 et y = 1.
- ▶ Elle est définie par  $h_{\theta}(X) = 0.5$ , soit:

$$\theta^T X = 0$$

Exemple de visualisation en Python:

```
import matplotlib.pyplot as plt
2
def plot_decision_boundary(theta, X, y):
      x_boundary = np.linspace(X[:, 1].min(), X
         [:, 1].max(), 100)
      y_boundary = -(theta[0] + theta[1] *
5
         x_boundary) / theta[2]
      plt.scatter(X[:, 1], X[:, 2], c=y, cmap='
6
         viridis')
      plt.plot(x_boundary, y_boundary, 'r--')
      plt.xlabel('Feature 1')
8
      plt.ylabel('Feature 2')
      plt.show()
10
```

# Évaluation du Modèle

- Mesures clés:

  - 1. \*\*Précision\*\*:  $\frac{TP+TN}{Total}$ 2. \*\*Rappel\*\*:  $\frac{TP}{TP+FN}$
  - 3. \*\*F1-Score\*\*: Harmonic mean de la précision et du rappel.
- Exemple en Python:

```
1 from sklearn.metrics import
    classification_report
2
y_pred = (hypothesis(theta, X) >= 0.5).astype
    (int)
4 print(classification_report(y, y_pred))
```

## Résultats et Visualisation

- Coût diminue au fil des itérations.
- Limite de décision correctement définie.





#### A retenir

- La régression logistique est un puissant algorithme pour la classification binaire.
- Principaux éléments:
  - 1. Modélisation des probabilités.
  - 2. Optimisation via Gradient Descent.
  - 3. Évaluation rigoureuse pour assurer la qualité.
- Extensible à des cas multi-classes avec Softmax Regression.

# Matrice de Confusion

- Une matrice de confusion résume les performances d'un modèle de classification.
- Elle compare les prédictions du modèle aux valeurs réelles.

|          | Prédit Oui        | Prédit Non        |
|----------|-------------------|-------------------|
| Réel Oui | TP (Vrai Positif) | FN (Faux Négatif) |
| Réel Non | FP (Faux Positif) | TN (Vrai Négatif) |

# Les Principales Métriques

- **Exactitude (Accuracy)** :  $\frac{TP+TN}{P+N}$
- **Rappel (Recall)** :  $\frac{TP}{TP+FN}$
- **Précision (Precision)** :  $\frac{TP}{TP+FP}$
- ► **F1-Score** :  $\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

# Exemple : Données Équilibrées

#### Contexte:

▶ 50 malades (**Oui**) et 50 sains (**Non**).

|          | Prédit Oui | Prédit Non |
|----------|------------|------------|
| Réel Oui | 40 (TP)    | 10 (FN)    |
| Réel Non | 8 (FP)     | 42 (TN)    |

# Calcul des métriques :

- ► Accuracy = 82%, Recall = 80%
- ▶ Precision = 83%, F1-Score = 81%

# Exemple : Données Déséquilibrées

#### Contexte:

▶ 5 malades (**Oui**) et 95 sains (**Non**).

|          | Prédit Oui | Prédit Non |
|----------|------------|------------|
| Réel Oui | 4 (TP)     | 1 (FN)     |
| Réel Non | 10 (FP)    | 85 (TN)    |

## Calcul des métriques :

- ► Accuracy = 89%, Recall = 80%
- ▶ Precision = 29%, F1-Score = 42%

# Comparaison des Données

#### Tableau Comparatif:

| Données        | Accuracy | Recall | Precision | F1-Score |
|----------------|----------|--------|-----------|----------|
| Équilibrées    | 82%      | 80%    | 83%       | 81%      |
| Déséquilibrées | 89%      | 80%    | 29%       | 42%      |

#### Conclusion:

- **Données équilibrées** : Toutes les métriques sont fiables.
- Données déséquilibrées : Attention à l'accuracy, privilégier Recall et F1-Score.

# Qu'est-ce qu'une courbe ROC ?

- ROC signifie Receiver Operating Characteristic.
- ► Elle illustre la performance d'un modèle de classification binaire.
- Elle est tracée en comparant :
  - L'axe Y : Taux de Vrais Positifs (Sensitivity ou Recall).
  - L'axe X : **Taux de Faux Positifs** (*FP* rate).

**But** : Comparer les performances d'un modèle à différents seuils de classification.

# Taux de Vrais et Faux Positifs

### Formules importantes:

► Taux de Vrais Positifs (TPR) :

$$TPR = \frac{TP}{TP + FN}$$

► Taux de Faux Positifs (FPR) :

$$FPR = \frac{FP}{FP + TN}$$

#### Interprétation:

- ► TPR mesure la capacité du modèle à identifier correctement les vrais positifs.
- ► FPR mesure le taux d'erreurs où un négatif est mal classé comme positif.

# Exemple : Prédictions avec différents seuils

**Scénario :** Un modèle prédit des probabilités pour 10 échantillons (5 positifs, 5 négatifs).

| Seuil | TPR (Recall) | FPR |
|-------|--------------|-----|
| 0.9   | 20%          | 0%  |
| 0.7   | 60%          | 20% |
| 0.5   | 80%          | 40% |
| 0.3   | 100%         | 80% |

**Courbe ROC**: Tracer TPR (y) contre FPR (x) pour chaque seuil.

# Qu'est-ce que l'AUC ?

- ► AUC : Area Under the Curve (Aire sous la courbe ROC).
- Mesure la performance globale du modèle.

#### Interprétation :

- ightharpoonup AUC = 1: Modèle parfait.
- ► AUC = 0.5 : Modèle aléatoire (aucune capacité de discrimination).
- ▶ Plus l'AUC est proche de 1, meilleur est le modèle.

# Exemple : AUC pour un modèle

#### Données :

| Seuil | TPR (y) | FPR (x) |
|-------|---------|---------|
| 0.9   | 0.2     | 0.0     |
| 0.7   | 0.6     | 0.2     |
| 0.5   | 0.8     | 0.4     |
| 0.3   | 1.0     | 0.8     |

**AUC** = Aire des rectangles et triangles sous la courbe.

$$AUC = 0.2 \times 0.2 + 0.2 \times 0.4 + 0.1 \times 0.4 = 0.76$$

Conclusion : Le modèle est performant.

# Comparaison des Modèles avec AUC

#### Exemple: Deux modèles

► Modèle A : *AUC* = 0.90

► **Modèle B** : *AUC* = 0.75

### Interprétation:

- ▶ Le modèle A est meilleur pour discriminer les classes positives et négatives.
- Utiliser AUC pour choisir un modèle lors de l'entraînement.

### A retenir

- ► La courbe ROC est un outil puissant pour évaluer les performances des modèles de classification.
- ► L'AUC fournit une mesure globale pour comparer différents modèles.
- Attention aux déséquilibres dans les données : AUC peut ne pas suffire dans certains cas.

**Conseil :** Toujours considérer le contexte métier avant de choisir un modèle basé uniquement sur l'AUC.