Devoir à la maison n° 04

À rendre le 12 octobre

- 1) Montrer le principe de récurrence descendante, qui s'énonce comme suit.
 - « Soit P un prédicat défini sur les entiers naturels, n_0 un entier naturel vérifiant
 - $-- P(n_0);$
 - $-- \forall k \in [1, n_0], P(k) \Rightarrow P(k-1).$

Alors, $\forall k \in \llbracket 0, n_0 \rrbracket, P(k)$. »

- 2) On introduit un nouveau schéma de récurrence. Soit P un prédicat défini sur les entiers naturels supérieurs à 2, vérifiant :
 - -- P(2);
 - $--\forall n \geqslant 2, \ P(n) \Rightarrow P(n-1);$
 - $-\forall n \geqslant 2, (P(2) \land P(n)) \Rightarrow P(2n).$

Montrer alors que $\forall n \geq 2, P(n)$.

On se propose maintenant de montrer l'inégalité arithmético-géométrique, qui relie les moyennes harmonique (à gauche dans (IAG)), arithmétique (à droite dans (IAG)) et géométrique (au centre dans (IAG)) d'un échantillon de nombres réels strictement positifs.

$$\forall n \geqslant 2, \forall (a_1, \dots, a_n) \in (\mathbb{R}_+^*)^n, \ \frac{n}{\sum_{i=1}^n \frac{1}{a_i}} \leqslant \sqrt[n]{\prod_{i=1}^n a_i} \leqslant \frac{1}{n} \sum_{i=1}^n a_i.$$
 (IAG)

Nous proposons pour cela de suivre une démonstration attibuée à Cauchy.

3) On note P le prédicat défini, pour tout entier naturel $n \ge 2$, par

$$P(n) = \langle \forall (a_1, \dots, a_n) \in (\mathbb{R}_+^*)^n, \ \sqrt[n]{\prod_{i=1}^n a_i} \leqslant \frac{1}{n} \sum_{i=1}^n a_i \rangle,$$

- a) Montrer P(2).
- **b)** Montrer que $\forall n \ge 2$, $P(n) \Rightarrow P(n-1)$.
- c) Montrer que $\forall n \geq 2$, $(P(2) \land P(n)) \Rightarrow P(2n)$.
- d) Conclure quant à la validité de l'inégalité arithmético-géométrique énoncée dans l'équation (IAG).
- 4) Montrer l'inégalité de concavité du logarithme : pour tout $n \ge 2$ et $x_1, \ldots, x_n \in \mathbb{R}_+^*$,

$$\ln\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \geqslant \frac{1}{n}\sum_{i=1}^{n}\ln(x_{i}).$$
— **FIN** —