

Übung 07: Sequenzielle Logik

Einführung in die Rechnerarchitektur

Michael Morandell

School of Computation, Information and Technology Technische Universität München

2. - 8. Dezember 2024

Mitschriften & Infos

Montags:

https://zulip.in.tum.de/#narrow/stream/2668-ERA-Tutorium---Mo-1000-4

Donnerstags:

https://zulip.in.tum.de/#narrow/stream/2657-ERA-Tutorium—Do-1200-2

Website: https://home.in.tum.de/ momi/era/

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Inhaltsübersicht

- Quiz
- Wiederholung
- Tutorblatt
 - Wellenformen
 - Program Counter
 - ☐ Linear-Rückgekoppeltes-Schieberegister

Zitat der Woche

"Also ich finds auch nach dreißig, fünf- nach sechzig Jahren in denen ich diese blöde Vorlesung hier halte, ich finde es immer noch so geil"

- Prof. Dr. Robert Wille (geboren 11.11.1982)

Quelle: Lecture: November 19. 2024 (tum.live)

Sequentielle Schaltungen

- kombinatorische Schaltungen: zustandsfrei, Ausgänge nur abhängig von Eingängen. → z.B.: HA letzte Woche. Addierer. XOR. . . .
- **sequentielle** Schaltungen: zustandsbehaftet, Ausgänge wirken über Rückkopplung auf Schaltung ein! (Zyklus im Graphen)

 → z.B.: Zähler. Speicher. Statusautomaten.
- sequentielle Schaltungen ermöglichen es erst, komplexe Dinge wie Prozessoren zu bauen!

RS-Latch

R	S	Q(t+1)	¬Q(t+1)	Verhalten
0	0	Q(t)	¬Q(t)	Speichern
1	0	0	1	Rücksetzen
0	1	1	0	Setzen
1	1	?	?	?

Latches

NOR-SR-Latch

- pegelgesteuert
- Set, Reset
- werbotener" Zustand $(1,1) \implies Q = \neg Q = 0$

S	R	Q
0	0	Q_{prev}
0	1	0
1	0	1
1	1	0

NAND-SR-Latch

- pegelgesteuert
- $\neg S, \neg R$
- "verbotener" Zustand

$$(0,0) \implies Q = \neg Q = 1$$

S	R	Q
0	0	1
0	1	1
1	0	0
1	1	Q_{prev}

Latches und Flipflops

D-Latch

- pulsgesteuert
- transparent, wenn Schreibsignal aktiv ist
- Bei E=0 bleibt Zustand gespeichert, sonst wird D übernommen.

D-Flipflop

- taktflankengesteuert
- Bei fallender Flanke bleibt Zustand gespeichert, bei steigender Flanke wird D übernommen.

ALU

- Arithmetic Logic Unit zur Berechnung von arithmetischen und logischen Basisoperationen
- n-Bit-ALU mit:
 - zwei n-Bit-Operanden a, b, Eingangscarry c
 - m-Bit select-Eingang, der auswählt, welche Funktion ausgeführt wird
 - ☐ (n+1)-Bit-Ausgang

Floating-Point-Zahlen

■ Fließkommazahlen der Form $(-1)^{sign} \cdot 1.mantissa \cdot 2^{exp-bias}$

sign	exponent	mantissa
1	1000 0010	110 0000 0000 0000 0000
1 bit	8 bit	23 bit

- Bei 32-Bit-Floats: 1 Bit Vorzeichen, 8 Bit Exponent, 23 Bit Mantisse, Bias 127
- implizite 1 vor der Mantisse wird nicht mitgespeichert
- Sonderfälle ± 0 , $\pm \infty$, NaN: nicht relevant für HA
- Visualisierung: Float Toy

Floating-Point-Zahlen: Beispiel

sign	exponent	mantissa
$\lceil 1 \rceil$	1000 0010	110 0000 0000 0000 0000
1 bit	8 bit	23 bit

- 1. Vorzeichen: $(1)_2 \rightarrow (-1)$
- **2**. Exponent: $(1000\ 0010)_2 = 130$, 130 bias = 130 127 = 3
- 3. Mantisse: $(1.110\ 0000\ 0000\ 0000\ 0000)_2 = 1.75$

$$n = (-1) \cdot 1.75 \cdot 2^3 = -14$$

Fragen?

Bis zum nächsten Mal;)

Folien inspiriert von Niklas Ladurner und Prof. Dr. Robert Wille