

Pandas Basis

```
In [1]: # import necessary package
   import pandas as pd
   import numpy as np
```

Out[2]:

	coverage	grades	name	year
Cochic	25	4	Jack	2012
Pima	94	20	Annie	2012
Santa Cruz	57	15	Bob	2013
Maricopa	62	7	Jake	2014
Yuma	70	24	Jasper	2014

1. Show the first three rows and last two rows.

In [3]: df.head(3)

Out[3]:

	coverage	grades	name	year
Cochic	25	4	Jack	2012
Pima	94	20	Annie	2012
Santa Cruz	57	15	Bob	2013

In [4]: df.tail(2)

Out[4]:

	coverage	grades	name	year
Maricopa	62	7	Jake	2014
Yuma	70	24	Jasper	2014

2. Generate a new dataframe including county, year and reports from above datafram (county and reports can be NaN)

Out[6]:

0 NaN 2012 NaN 1 NaN 2012 NaN 2 NaN 2013 NaN 3 NaN 2014 NaN		county	year	reports
2 NaN 2013 NaN	0	NaN	2012	NaN
	1	NaN	2012	NaN
3 NaN 2014 NaN	2	NaN	2013	NaN
	3	NaN	2014	NaN
4 NaN 2014 NaN	4	NaN	2014	NaN

3. Add a new column attribute called "New", which is NaN.

```
In [7]: dfreordered['New'] = pd.Series([])
    dfreordered
```

Out[7]:

	county	year	reports	New
0	NaN	2012	NaN	NaN
1	NaN	2012	NaN	NaN
2	NaN	2013	NaN	NaN
3	NaN	2014	NaN	NaN
4	NaN	2014	NaN	NaN

4. Delete the column "New".

```
In [8]: # hint: use del dfreordered['desired column']
    del dfreordered['New']
    dfreordered
```

Out[8]:

	county	year	reports
0	NaN	2012	NaN
1	NaN	2012	NaN
2	NaN	2013	NaN
3	NaN	2014	NaN
4	NaN	2014	NaN

5. Show the index and columns name.

```
In [9]: df.index
Out[9]: Index(['Cochic', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma'], dtype='object')
```

In [10]: df.columns
Out[10]: Index(['coverage', 'grades', 'name', 'year'], dtype='object')

6. Use df.iloc to select the first row

```
In [11]: df.iloc[0]

Out[11]: coverage 25
grades 4
name Jack
year 2012
Name: Cochic, dtype: object

In [12]: df.loc['Cochic']

Out[12]: coverage 25
grades 4
name Jack
year 2012
Name: Cochic, dtype: object
```

7. Slice the column of "coverage" and "grades".

In [14]: df[['coverage', 'grades']]

Out[14]:

	coverage	grades
Cochic	25	4
Pima	94	20
Santa Cruz	57	15
Maricopa	62	7
Yuma	70	24

8. select subtable of column name and year, row of Pima and Yuma

In [15]: df[['name','year']].loc[['Pima', 'Yuma']]

Out[15]:

	name	year
Pima	Annie	2012
Yuma	Jasper	2014

9. Use df.iloc to select the first two columns

In [16]: df.iloc[:, :2]

Out[16]:

	coverage	grades
Cochic	25	4
Pima	94	20
Santa Cruz	57	15
Maricopa	62	7
Yuma	70	24

10. Select by condition where grades greater than 10

In [17]: df[df['grades']>10]

Out[17]:

	coverage	grades	name	year
Pima	94	20	Annie	2012
Santa Cruz	57	15	Bob	2013
Yuma	70	24	Jasper	2014

11. Drop Rows of Cochic and Pima

In [18]: df.drop(['Cochic','Pima'])

Out[18]:

	coverage	grades	name	year
Santa Cruz	57	15	Bob	2013
Maricopa	62	7	Jake	2014
Yuma	70	24	Jasper	2014

12. Use df.drop to drop the column grades.

In [19]: df.drop('grades', axis =1)

Out[19]:

	coverage	name	year
Cochic	25	Jack	2012
Pima	94	Annie	2012
Santa Cruz	57	Bob	2013
Maricopa	62	Jake	2014
Yuma	70	Jasper	2014

13. Use decribe function to show some statistics of column "coverage".

Pandas Fast Visualization

Read the following reading materials:

 $\underline{https://pandas.pydata.org/pandas-docs/stable/visualization.html}$