DM nº1 (non noté)

Pour le vendredi 8 Novembre 2024

Exercice 1 - Étude d'une suite

Pour tout entier $n \geq 3$, on considère l'équation $x = n \ln x$ sur $]0, +\infty[$.

1. Soit f_n la fonction définie pour tout réel $x \in]0, +\infty[$ par

$$f_n(x) = x - n \ln x$$

- (a) Dresser le tableau de variations complet de f_n sur son ensemble de définition.
- (b) Montrer que l'équation $f_n(x) = 0$ admet exactement deux solutions sur $]0, +\infty[$. On rappelle que $e \simeq 2, 72$.

On note u_n la plus petite des deux solutions de l'équation $f_n(x) = 0$ sur $]0, +\infty[$.

- 2. Montrer que pour tout entier $n \geq 3$ on a $1 \leq u_n \leq n$.
- 3. Pour tout entier $n \geq 3$, montrer que $f_{n+1}(u_n) \leq 0$.
- 4. En déduire que la suite $(u_n)_{n\geq 3}$ est décroissante.
- 5. En déduire que $(u_n)_{n\geq 3}$ converge vers une limite finie ℓ et que $\ell\geq 1$.
- 6. Montrer que $\ell=1$. On pourra raisonner par l'absurde.

Exercice 2 - Étude d'une somme

Pour tout $n \in \mathbb{N}^*$, on pose :

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}, \quad u_n = 2\sqrt{n} - S_n \quad \text{et} \quad v_n = 2\sqrt{n+1} - S_n$$

- 1. En remarquant que $\forall k \in [1, n], \frac{1}{\sqrt{k}} \geq \frac{1}{\sqrt{n}}$, montrer que pour tout $n \in \mathbb{N}^*$, $S_n \geq \sqrt{n}$. En déduire la limite de (S_n) lorsque n tend vers $+\infty$.
- 2. Montrer que pour tous réels $(a,b) \in (\mathbb{R}_+)^2$, on a :

$$\sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

- 3. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est croissante et que $(v_n)_{n\in\mathbb{N}^*}$ est décroissante.
- 4. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \leq v_n$.
- 5. En déduire que (u_n) est majorée et que (v_n) est minorée. Que peu-on en déduire pour les suites (u_n) et (v_n) ?
- 6. Montrer que $\lim_{n\to+\infty} (u_n-v_n)=0$. Que peut on en déduire sur les limites de (u_n) et (v_n) ?
- 7. Calculer $\lim_{n\to+\infty} \frac{S_n}{n}$ et $\lim_{n\to+\infty} \frac{S_n}{\sqrt{n}}$
- 8. En déduire la valeur de $\lim_{n\to+\infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n+k}}$.

Indication: commencer par montrer que $S_{2n} - S_n = \sum_{k=1}^n \frac{1}{\sqrt{n+k}}$