TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P03A, 12 ago 2022

0

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

1 [25] O programa a seguir,

Prof. Nelson Luís Dias

```
#!/usr/bin/python3
from math import exp
def ff(x):
   return (x*t + x/(1.0 + exp(x)))
def trapezio(n,a,b,f):
  h = (b-a)/n
  Se = f(a) + f(b)
  Si = 0.0
   for k in range(1,n):
      xk = a + k*h
      Si += f(xk)
  return (Se + 2*Si)*h/2
nt = 100
dt = 1.0/nt
nx = 100000
Fold = 0.0
Fnew = 0.0
told = 0.0
t = 0.0
fou = open('intxt.out','wt')
fou.write('%8.4f %8.4f\n' % (t,Fnew))
for it in range(nt):
  Fold = Fnew
  told = t
  t = told + dt
  Fnew = trapezio(nx,0,t,ff)
   fou.write('%8.4f %8.4f\n' % (t,Fnew))
fou.close();
```

calcula e imprime uma tabela de valores (t, F(t)). Escreva a expressão analítica para F(t), em termos de uma integral.

$$F(t) = \int_{x=0}^{t} \left[xt + \frac{x}{1 + e^x} \right] dx \blacksquare$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^t \left[xt + \frac{x}{1 + \mathrm{e}^x} \right] \, \mathrm{d}x.$$

Sugestão: Use a regra de Leibnitz:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a(t)}^{b(t)} f(x,t) \, \mathrm{d}x = f(b,t) \frac{\mathrm{d}b}{\mathrm{d}t} - f(a,t) \frac{\mathrm{d}a}{\mathrm{d}t} + \int_{a(t)}^{b(t)} \frac{\partial f(x,t)}{\partial t} \mathrm{d}x.$$

$$a(t) = 0,$$

$$b(t) = t,$$

$$\frac{d}{dt} \int_0^t \left[xt + \frac{x}{1 + e^x} \right] dt = \left[t^2 + \frac{t}{1 + e^t} \right] \times 1 - 0 + \int_0^t x dx$$

$$= t^2 + \frac{t}{1 + e^t} + \frac{t^2}{2}$$

$$= \frac{3t^2}{2} + \frac{t}{1 + e^t} \blacksquare$$

 $\mathbf{3}$ [25] Se $f(x,y) = \cosh(x+y)$, calcule a derivada da função

$$F(s) = f(x(s), y(s))$$

ao longo da curva

$$x = s,$$

$$y = s^2,$$

em s = 1.

$$F(s) = f(x(s), y(s));$$

$$\frac{dF}{ds} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds};$$

$$\frac{\partial f}{\partial x} = \operatorname{senh}(x + y),$$

$$\frac{\partial f}{\partial y} = \operatorname{senh}(x + y),$$

$$\frac{dx}{ds} = 1,$$

$$\frac{dy}{ds} = 2s,$$

$$\frac{dF}{ds} = \operatorname{senh}(x + y) \left[\frac{dx}{ds} + \frac{dy}{ds} \right];$$

$$\frac{dF(1)}{ds} = \operatorname{senh}(x + y) \left[1 + 2s \right] \Big|_{s=1}$$

$$= 3 \operatorname{senh}(2) \blacksquare$$

calcule $\nabla \times v$.

$$\nabla \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + y^2 & y^2 + z^2 & z^2 + x^2 \end{vmatrix}$$

$$= \left[\frac{\partial (z^2 + x^2)}{\partial y} - \frac{\partial (y^2 + z^2)}{\partial z} \right] \mathbf{i} - \left[\frac{\partial (z^2 + x^2)}{\partial x} - \frac{\partial (x^2 + y^2)}{\partial z} \right] \mathbf{j} + \left[\frac{\partial (y^2 + z^2)}{\partial x} - \frac{\partial (x^2 + y^2)}{\partial y} \right] \mathbf{k}$$

$$= \left[-\frac{\partial (y^2 + z^2)}{\partial z} \right] \mathbf{i} - \left[\frac{\partial (z^2 + x^2)}{\partial x} \right] \mathbf{j} + \left[-\frac{\partial (x^2 + y^2)}{\partial y} \right] \mathbf{k}$$

$$= -2z\mathbf{i} - 2x\mathbf{j} - 2y\mathbf{k} \blacksquare$$