

Agenda Introduksjon til Arduino Digitalkommunikasion for noobs

- Digitalkommunikasjon for n00bs (hvis ikke alle kan forklare forskjellen på TTL, CMOS og RS232 signalering)
- Introduksjon til Arduino IDE, hvordan finne frem
- Arduino «hello world» 2.0 (Blinkende LED av og på, «soft» med PWM)
 - Elektronikk 101
- Tolkning av rotary encoder (lage dimmer til LEDen)

Hva er Arduino?

Hardware

Utviklingsmiljø

Community

arduino.cc/forum arduino.cc/playground

Hardware

- Open Source Physical Computing
 - Moduler til ferdige produkter
 - Åpent design til prototyping av masseproduksjon
- AVR ATMega328p
 - 8 bit RISC 16 mHz (1-20mHz)
- Strøm, USB, kommunikasjon, «headers»
- AVR designet i Trondheim av 2 studenter og utviklet/produktifisert av Nordic VLSI så Atmel
 - (Alf og Vegars RISC prosessor ... AVR)

Shield – ferdigtenkte utvidelser

- Plugg inn ny funksjonalitet og repeterer pinnene
- Nødvendig analogteknikk vanligvis ferdig på kortet

Ethernet Shield

Wireless SD Shield

Motor Shield

og 282 andre... www.shieldlist.org

...og komponenter/sensorer

ICer

Breakout

Passive komponenter

Prosessoren, ATmega328p

- 32kb FLASH (2kb bootloader), 1kb EEPROM, 2kb RAM
 - Mer minne: EEPROM eller SD kort på I2C/SPI
- 32 pin, 23 I/O herav 6 PWM
- 2 SPI, 1 TWI (I2C) og 1 UART
- 8 ADC pinner på 10 bit (0-1023), 15 ksps
- 1 MIPS pr mHz
- 5V og 3.3V
 - 5V tåler 3.3V logikk

Kommunikasjon

- RS232 +/- 12v + DTR/DSR 9-25 pin
 - Krever MAX232 e.l. IC for å konvertere til TTL
- TTL 0/5v
- CMOS TTL for 0/3.3v
- TWI/I²C 2 ledere + strøm (Phillips)
- SPI 4 ledere + strøm (Motorola)
- 1-Wire 1 leder + jord (Dallas)

Seriell kommunikasjon

- USB er TTL COMx: på Pcen
 - Egen Atmega16U2 IC tar seg av USB
 (Som 368p men mangler ADC, I2C og RTC)
- DEBUGGING
 - Serial.print(x);
- I dybden:

http://en.wikibooks.org/wiki/Serial_Programming

Utviklingsmiljø

- Arduino 1.0
 - Basert på «Wiring»
 - C++, IDE og referanse HW design

Utviklingsmiljø

- http://arduino.cc/en/Main/Software
- Windows
 - Device Manager.inf fil i Arduino katalogen
- USB A-B kabel
- Extractc:\program files\arduino

Utviklingsmiljøet

- IDE med forenklet C++ basert på «Wiring»
- Et program kalles en «sketch» og har 2 hovedbestanddeler
 - void setup()
 - void loop()
- Ctrl+Shift+F slår opp hjelp
- Ctrl+R compile
- Ctrl+U upload

(reset først hvis den feiler)

Biblioteker – libraries

c:\program files\arduino-1.0\libraries\...

lib	funksjon
EEPROM	reading and writing to "permanent" storage
Ethernet	for connecting to the internet using the Arduino Ethernet Shield
Firmata	for communicating with applications on the computer using a standard serial protocol.
LiquidCrystal	for controlling liquid crystal displays (LCDs)
SD	for reading and writing SD cards
Servo	for controlling servo motors
SPI	for communicating with devices using the Serial Peripheral Interface (SPI) Bus
SoftwareSerial	for serial communication on any digital pins
Stepper	for controlling stepper motors
Wire	Two Wire Interface (TWI/I2C) for sending and receiving data over a net of devices or sensors.

Breadboard

Schematics/Kretsskjema

- Viser elektroniske kretser med standardiserte symboler
 - http://library.thinkquest.org/10784/circuit_symbols.htm

- Organiseres fra topp venstre, i samme sekvens som signalene går
- Eksemplene her er lagd i Film aller lånt på nett

Hello World - HW

Hello World - code

```
void setup() {
 pinMode(13, OUTPUT); // Initialize pin 13 as output
void loop() {
  diqitalWrite(13, HIGH); // set the LED on
 delay(1000);
                      // wait for a second
  diqitalWrite(13, LOW); // set the LED off
  delay(1000);
                          // wait for a second
```


Neste versjon

- Bryter
- «myk» av/på av LED

Hello World 2.1 – code init

Hello World 2.1 – softon/off

```
void ledSoftOn(byte pin) {
                                         // Soft-on function for LED
 for (int i = 1; i < 10000; i+=100) {
                                         // 10000 is trial an succed number, 100 sets speed from 0 to full
                                        // start with LED off
   digitalWrite(pin, LOW);
   delayMicroseconds(10000 - i);
   digitalWrite(pin, HIGH);
                                                                μS delay
   delayMicroseconds(i);
void ledSoftOff(byte pin) {
 for (int i = 1; i < 10000; i+=100) {
   digitalWrite(pin, HIGH);
   delayMicroseconds (10000 - i);
   digitalWrite(pin, LOW);
   delayMicroseconds(i);
```

Hello World 2.1 – body

```
boolean lastState = LOW;
                                  // a place to remember the last state
void loop() {
 int state = digitalRead(buttonPin);
                                 // read the current state of the button on buttonPin
 if (state == HIGH) {
                                 // if it's high, something's happening
   while (state == HIGH) {
                                 // while it's still pressed
     state = digitalRead(2);  // check state
                                  // and there it was released...
   ledSoftOn(ledPin);
                                // turn it on
     lastState = HIGH;
                         // and remember for next time
   else {
     ledSoftOff(ledPin);
                                 // turn it off
     lastState = LOW;
                                  // and remember
                                  // done processing the click
                                  // goto loop()
```


PWM

- Pulse-width modulation (PWM)
 - en pinne holdes høy i en %-andel av tid
- Eksempel LED
 - Dimmer
- HW (~) eller SW implementasjon

Hello World 2.1pwm - code

```
void nop() {
 countNops++;
                                      // Mmm... free goo.
void ledSoftOn(byte pin) {
                                     // Soft-on function for LED
 for (int i = 0 ; i <= 255; i++) {
                                      // 0-255 is zero to full duty cycle
   analoqWrite(pin,i);
                                      // Enable PWM with i/255 duty cycle
   unsigned long now = millis();
                                      // Kaeu?
   while ((millis() - now) < 5) {
                                      // Wait approx 5 ms before next iteration
                                      // Totally useless but could have been ...
     nop();
void ledSoftOff(byte pin) {
                                     // same as On just the other way
  for (int i = 0; i \Leftarrow 255; i++) {
   analogWrite(pin, 255 - i);
   unsigned long now = millis();
                                      // Kaeu?
   while ((millis() - now) < 5) {
                                      // Wait approx 5 ms before next iteration
                                      // Totally useless but could have been ...
     nop();
```


PWM – Free goo!

Mye brukte funksjoner

- pinMode(<pin>, INPUT|OUTPUT)
 - Default er INPUT
- digitalWrite() og digitalRead()
- analogWrite() og analogRead()
- delay() og millis()
- serial.Begin(9600);
 - serial.println(<val>);
 - (Ctrl+Shift+M gir Serial Monitor)

Bit-m

- bitRead(), bitWrite(), bit
- & (AND), | (OR), ^ (XO
- Tolke og sette flagg –
- Multiplexing
 - 74HC595 8-bit shift re
 - 74HC165N 8-bit shift re

Litt grunnleggende elektronikk

Elektronikk 101 – passive komponenter

- Motstand
- Dioder
- Kondensator
- Transistor
- Ohm
- Toleranse

Elektronikk 101 – motstand

- Fast
- Variabel
- PTC/NTC
- LDR

(Photoresistor)

Elektronikk 101 – Dioder

- P-N
- LED
- Zener

Elektronikk 101 – Kondensator

- Lagrer strøm, måles i F
 - Polariserte
 - Upolariserte

Elektronikk 10

- Forsterker strøm
 - BJT: NPN, PNP
 - Base, Collector, Emitter
 - (MOS)FET
 - Ofte brukt i
 høyeffekts logiske
 kretser raskt
 switchehastighet og
 høy effekt (A)

Elektronikk 101 – Ohm Ω V = voltage $R \times I$ P = power $R \times I^{2}$ $V \times I$ watts volts $\sqrt{P \times R}$ amps ohms

I = current

 $R \times I$ $R \times I^{2}$

A, osv. V, OSV.

R = resistance

 \mathbf{m} , $\mathbf{k}\Omega$, osv.

Ω – eksempel LED

$$resistance(R) = \frac{power supply voltage(V_s) - LED voltage drop(V_f)}{LED current(I)}$$

Elektronikk 101 - toleranse

- Vanlig toleranse er fra 1% til 10% eller mer
 - 5V regulator LM7805, 4% gir 4.8-5.2V
 - 220Ω motstand (Rød-Rød-Brun-Gull, 5%)
 - $209\Omega 231\Omega$

- Kjøp et bra multimeter mål!
- Les data-arkene! www.alldatasheet.com

Elektronikk 101 - motstand

- Komponenter må tåle effekten de utsettes for
- P, effekt (watt) på ting
 4.8^2 / 209 = 0.1102 (watt)
 5.2^2 / 231 = 0.1171 (watt)
 1/8W motstand = 0,125W
- Overdriv
- Husk det blir til varme!

Elektronikk 101 - spenningsdeler

- Meget anvendelig krets
 - Reduserer spenning til å passe applikasjoner
- 2 motstander i serie
 - Mål V mellom dem
 - V_{in} deles tilsvarende motstandene
 - Eks: $V_{in} = 5V + 10k\Omega + 10k\Omega$ gir $V_{out} = 2.5V$
- Et potensiometer er en spenningsdeler
 - Et trimpot kan brukes til å fintune en sensor
 - Den ene siden erstatter da en fast motstand

Digitalteknikk – pull up/down

 Brukes for å ha en kjent tilstand på pinner uten kontinuerlig input

Den magiske grå røyken

- Hvordan «drepe» en Arduino
 - Kortslutning
 - Drive elektromekanikk direkte
 - *Maks* 40mA på GPIO
- Har du flaks, er det bare den ene pinnen som ryker!

Neste øvelse: Rotary Encoder

Rotary Encoder – SW part 1

```
int brightness = 120; // how bright the LED is, start at half brightness
int fadeAmount = 10; // how many points to fade the LED by
unsigned long currentTime;
unsigned long loopTime;
const int pin A = 12; // pin 12
const int pin B = 11; // pin 11
unsigned char encoder A;
unsigned char encoder B;
unsigned char encoder A prev=0;
void setup() {
  pinMode(9, OUTPUT); // declare pin 9 to be an output:
  pinMode(pin A, INPUT);
  pinMode(pin B, INPUT);
  currentTime = millis();
  loopTime = currentTime;
```

Rotary Encoder – SW part 2

```
void loop() {
                     // get the current elapsed time
 currentTime = millis();
 if(currentTime >= (loopTime + 5)){      // 5ms since last check of encoder = 200Hz
   encoder B = digitalRead(pin B);
   if ((!encoder A) && (encoder A prev)) { // A has gone from high to low
                                 // B is high so clockwise
    if (encoder B) {
      // increase the brightness, dont go over 255
      if (brightness + fadeAmount <= 255) brightness += fadeAmount;
                                    // B is low so counter-clockwise
    else {
      // decrease the brightness, dont go below 0
      if (brightness - fadeAmount >= 0) brightness -= fadeAmount;
   analogWrite(9, brightness);  // set the brightness of pin 9:
   loopTime = currentTime;
                                  // Updates loopTime
```


Multitasking, tråder, osv...

- D'oh!
- FreeRTOS skal visstnok være OK
- Konseptet «State Machine» funker
 - Ressurs og særlig RAM-effektivt
 - FSM library

http://wiring.uniandes.edu.co/source/trunk/wiring/firmware/libraries/FSM/


```
#include <FiniteStateMachine.h>
#define DEBUG
boolean button1press = LOW; // HIGH when button-press is detected
unsigned long cDisplay; // count of calls to Display state
unsigned long cButtons; // ...
unsigned long cIncoming;
unsigned long cLong;
#ifdef DEBUG
unsigned long cDisplayLast; // Used to calculate frequenzy if DEBUG is #defined
unsigned long cButtonsLast; //...
unsigned long cIncomingLast;
unsigned long cLongLast;
#endif
```

```
// Initialize states
const byte NUMBER OF STATES = 4;
State Display = State(runUpdateDisplay); // State Display calls function runUpdateDisplay
                                      //...
State Buttons = State(runPollButtons);
State Incoming = State(runPollIncoming);
State LongInterval = State(runLongInterval);
FSM fsmDemo = FSM(Display);
                                      // Start FSM in runUpdateDisplay state
unsigned long now = 0;
                                     // Used to hold time of entry
unsigned long lastlong = 0;
                                   // last time run for the long cycle state
void setup() {
 Serial.begin(115200); // Don't waste time waiting for slow communications
 pinMode(2,INPUT);
                     // button connected to pin 2 with pull-down
 pinMode (11, OUTPUT); // LED connected to pin 11 with current limiting resistor
 now = micros();
                     // initialize variables used to keep track of time
 lastlong = now;
                     // ..
 lastshort = now;
```

```
unsigned long freq = 0; // counter to distribute non-timed states
void loop() {
 freq++;
 now = micros();
 if ((now-lastlonq) >= 1000000) {
   fsmDemo.transitionTo(LongInterval); // do the long interval
   lastlong = micros();
  else if ((now-lastshort) >= 100000) {     // do the short interval
   fsmDemo.transitionTo(Display);
   lastshort = micros();
  else if (freq % 4 == 0) {
                                            // empty the UART max every 1 in 4 iterations - long/short executions
   fsmDemo.transitionTo(Incoming);
 else {
   fsmDemo.transitionTo(Buttons); // Spend the most time looking for button presses
 };
 fsmDemo.update();
```

```
boolean ledState = LOW;
                                            // To keep track of LED state without having to read the pin
void runUpdateDisplay() {
                                            // Update display
  cDisplay++;
                                            // count number of calls
 if (button1press == HIGH) {
                                           // ...if button press was detected
    ledState = !ledState;
                                           // swap state
                                           // and write the new state to the led
    digitalWrite(11,ledState);
   button1press = LOW;
                                            // done processing this button press - prepare for the next
 };
boolean buttonlin = LOW;
                                            // To keep trak of when a button is in the pressed state
void runPollButtons() {
                                            // Polls the buttons
  cButtons++;
                                            // counting the number of calls
 if (buttonlin == HIGH) {
                                            // If the button tracking is in the pressed state
                                            // and the pin is low - it has been released - PS: Just lucky debounce due to the release is
    if (digitalRead(2) == LOW) {
     buttonlin = LOW;
                                            // it's not pressed anymore
     button1press = HIGH;
                                            // but a press has been detected
   };
                                            // button tracking is in depressed state
  else {
    if (digitalRead(2) == HIGH) {
                                            // but the pin is HIGH, soo....
     buttonlin = HIGH;
                                            // set the button tracking to pressed state
   };
  };
};
```

```
void runPollIncoming() {
                                             // booooring
  cIncoming++;
                                             // counting the number of calls
};
void runLongInterval() {
                                             // used to write to the serial line if debugging -
  cLonq++;
                                             // counting the number of calls
#ifdef DEBUG
                                             // #define DEBUG to print statistics to serial
  Serial.print(now);
                                             // show the timer variables
  Serial.print("-");
  Serial.print(lastlong);
  Serial.print("=");
  Serial.print(now-lastlong);
  Serial println();
  Serial.print("Calls to Display: "); // show the number of calls to the different states
  Serial.print(cDisplay);
  Serial.print(", Buttons: ");
  Serial.print(cButtons);
  Serial.print(", Incoming: ");
  Serial.print(cIncoming);
  Serial.print(", Long: ");
  Serial.print(cLong);
```

// remember the last number

cDisplayLast = cDisplay;

cButtonsLast = cButtons; cIncomingLast = cIncoming;

cLonqLast = cLonq;

#endif

};

Minne

- SRAM 1kb
 - SP peker på toppen av SRAM
 - Kall og ISR øker stacken = vokser nedover
 - Kan overskrive variabler ved rekursjon

Libraries

- Arduino IDE 1.0
 - #include <WProgram.h>

```
In file included from stateMachineDemo.cpp:1:
C:\Program Files (x86)\arduino-1.0\libraries\FSM/FiniteStateMachine.h:33:22: error: WProgram.h: No such file or directory
stateMachineDemo.cpp:2:24: error: Button.h: No such file or directory
```

– Må endres til #include <Arduino.h>

Debounce

Hjelp!

- arduino.cc/playground www.freeduino.org
- Kjekke butikker
 - Arduino: Arduino.cc, Robonor, Sparkfun, Adafruit, (AVRfreaks)
 - Elektronikk: Elfa, Jameco, Digikey, Mouser, Futurlec
- EDA software electronic design automation
 - Fritzing org/ Glimrende til dokumentasjon av prosjektet ditt - Arduino
 - Breadboard design
 - Schematic Capture
 - PCB layout
 - Virtual Breadboard http://www.virtualbreadboard.net
 - Breadboard design, simulation
 - Proteus VSM http://www.labcenter.com
 - Kommersielt produkt med SPICE simulator (analog simulator)
 - Simulerer hele kretsen laster koden og kjører realtime

Andre versjoner

- Pro Micro
- Fio
- Mega
- Pro Ethernet
- Pro 328
- Freeduino

HACK A DAY