# 洲沙大学实验报告

课程名称: <u>电路与电子技术实验 II</u>

实验名称: 触发器

指导老师: 张伟

同组学生:

专业: 电子信息工程

姓名: \_\_\_\_\_\_ 学号:

日期: 2024年5月13日

# 1 实验目的

1. 掌握集成触发器的功能测试方法。

2. 熟悉触发器的触发方式及触发特点。

3. 了解集成触发器的应用。

# 2 实验内容

- 1. 测试 74LS74 和 74LS107 的逻辑功能。
- 2. D→T'、JK→T'、D→JK 的转换实验。
- 3. 用 JK 触发器设计一个单发脉冲发生器。

# 3 实验原理

3.1 74 与 107 芯片简介

74LS74 D 触发器

SN5474...J PACKAGE
SN54LS74A, SN54S74...J OR W PACKAGE
SN7474...N PACKAGE
SN74LS74A, SN74S74...D OR N PACKAGE
(TOP VIEW)

(a) 74LS74 引脚示意图

#### **FUNCTION TABLE**

|     | INPUT | OUTP | UTS |                  |                  |
|-----|-------|------|-----|------------------|------------------|
| PRE | CLR   | CLK  | D   | α                | ā                |
| L   | Н     | ×    | X   | Н                | L                |
| н   | L     | ×    | X   | L                | н                |
| Ł   | L     | ×    | X   | нt               | Ht               |
| н   | н     | †    | Н   | н                | L                |
| н   | н     | †    | L   | L                | н                |
| н   | н     | L    | Х   | Q <sub>0</sub> . | $\overline{a}_0$ |

(b) 74LS74 功能表

SN54107, SN54LS107A . . . J PACKAGE SN74107 . . . N PACKAGE SN74LS107A . . . D OR N PACKAGE (TOP VIEW)



(a) 74LS107 引脚示意图

'LS107A FUNCTION TABLE

| INPUTS |     |    |   | OUT        | UTS              |
|--------|-----|----|---|------------|------------------|
| CLR    | CLK | J  | К | α          | ā                |
| L      | ×   | Х  | X | L          | H                |
| н      | 4   | L  | L | $\sigma_0$ | $\bar{a}_0$      |
| Н      | 4   | Н  | L | н          | Ļ                |
| н      | 1   | L  | H | L          | Н                |
| H-     | 4   | H. | Н | TOGGLE     |                  |
| н      | Н   | X  | × | ₫0         | $\overline{a}_0$ |

(b) 74LS107 功能表

# 3.2 芯片测试要求

- 1. 测试直接复位端和置位端的功能。
- 2. 测试逻辑功能,要求在不同输入状态和初始状态。
- 3. 体会边沿触发的特点。

# 4 实验过程与结果

# 4.1 测试 74LS74 双 D 触发器和 74LS107 双 JK 触发器的逻辑功能

#### 4.1.1 74LS74 双 D 触发器

**CLR 置零功能** 连接芯片,按照 74LS74 的引脚连接方式,接线如下: 其中输出端 Q 接示波器,输入使用实验箱中的触控 LED 控制。

| Inputs                                      |   |   |   | Outputs |         |
|---------------------------------------------|---|---|---|---------|---------|
| $\overline{PRE}$ $\overline{CLR}$ $CLK$ $D$ |   |   |   |         | $ar{Q}$ |
| Н                                           | L | X | X | L       | Η       |



图 3: 74LS74 置零功能示意

PRE 置 1 功能  $\overline{PRE}$ ,  $\overline{CLR}$  输入电平更换,其他输入保持不变,观察输出变化。

| Inputs                                      |   |   |   |   | tputs   |
|---------------------------------------------|---|---|---|---|---------|
| $\overline{PRE}$ $\overline{CLR}$ $CLK$ $D$ |   |   |   |   | $ar{Q}$ |
| L                                           | Н | X | X | L | Н       |



图 4: 74LS74 置 1 功能示意

• 可见芯片的置 0 和置 1 功能正常,且在任何时候均可以进行操作芯片,不必等待时钟信号触发。

功能测试 D 触发器的功能测试如下:

|                  | Inputs           |          |   |   |           |
|------------------|------------------|----------|---|---|-----------|
| $\overline{PRE}$ | $\overline{CLR}$ | CLK      | D | Q | $\bar{Q}$ |
| Н                | Н                | <b>↑</b> | Н | Н | L         |
| Н                | Н                | <b>†</b> | L | L | Н         |



图 5: 74LS74 D 触发器功能测试

• 芯片的置 0 和置 1 功能正常, 随着芯片上升沿的触发, 输出状态发生改变。

#### 4.1.2 74LS107 JK 触发器

**CLR 置零功能** 连接芯片,按照 74LS74 的引脚连接方式,接线如下:其中输出端 Q 接示波器,输入使用实验箱中的触控 LED 控制。

| Inputs                         |   |   |   | Outputs |           |
|--------------------------------|---|---|---|---------|-----------|
| $\overline{CLR}$ $CLK$ $J$ $K$ |   |   |   |         | $\bar{Q}$ |
| L                              | X | X | X | L       | Н         |



图 6: 74LS74 置零功能示意

• 可见芯片的置 0 功能正常,且在任何时候均可以进行操作芯片,不必等待时钟信号触发。

功能测试 JK 触发器的功能测试如下:

| Inputs           |          |   |   | Outputs |           |  |
|------------------|----------|---|---|---------|-----------|--|
| $\overline{CLR}$ | CLK      | J | K | Q       | $\bar{Q}$ |  |
| Н                | <b>+</b> | L | L | $Q_0$   | $ar{Q}_0$ |  |
| Н                | <b>+</b> | Н | L | Н       | L         |  |
| Н                | <b>+</b> | L | Н | L       | Н         |  |
| Н                | <b>+</b> | Н | Н | Tog     | ggle      |  |



图 7: 74LS107 功能 2、3



图 8: 74LS107 J = 1, K = 1 JK 触发器翻转测试

• 芯片的置 0 和置 1 功能正常, 且由芯片下降沿触发。

# 4.2 芯片功能转换

# 4.2.1 D 触发器转 T' 触发器

将电路图连接如下图:



图 9: D 触发器->T' 触发器,示波器仿真结果

其中仿真结果为下,可以发现每个上升沿,电平都会反转,符合预期。



图 10: D 触发器->T' 触发器,示波器仿真结果

实际电路搭建后,示波器结果如下:



图 11: D 触发器->T' 触发器,示波器结果

• 该 T' 触发器将输入波形进行二分,频率变为原来的一半。

• 由 D 触发器的上升沿进行触发。

#### 4.2.2 JK 触发器转 T' 触发器

将电路图连接如下图:



图 12: JK 触发器->T' 触发器,示波器仿真结果



图 13: JK 触发器->T' 触发器,示波器仿真结果

实际电路搭建后,示波器结果如下:



图 14: JK 触发器->T' 触发器,示波器结果

- 该 T' 触发器将输入波形进行二分, 频率变为原来的一半。
- 由 JK 触发器的下降沿进行触发。

## 4.2.3 D 接 JK 触发器

对于 JK 触发器而言:

$$Q_{n+1} = J\bar{Q}_n + \bar{K}Q_n \tag{1}$$

对于 D 触发器而言:

$$Q_{n+1} = D$$

$$= J\bar{Q}_n + \bar{K}Q_n$$
(2)
(3)

所以连接电路图如下,三个开关分别代表 J、K、CLK:



图 15: D 触发器->JK 触发器电路图

验证 JK 触发器功能

## J=1, K=0 此时 Q 出高电平



图 16: D 触发器->JK 触发器仿真结果



图 17: D 触发器->JK 触发器实际结果

# J=0, K=1 此时 Q 出低电平



图 18: D 触发器->JK 触发器仿真结果



图 19: D 触发器->JK 触发器实际结果

J=1, K=1 调整好 J、K 输入电平后, 开关 3 由低电平变为高电平, 可以看到电平反转



图 20: D 触发器->JK 触发器仿真结果



图 21: D 触发器->JK 触发器实际结果

• 由 D 触发器接 JK 触发器,可以看到 JK 触发器的功能正常。

• 由 D 触发器接 JK 触发器,为上升沿触发。

## 4.3 双 JK 触发器接成单脉冲发生器

电路图连接如下:



图 22: D 触发器->JK 触发器实际结果

该电路的作用是: 当 JK1 接收到一个下降沿以后,使得 JK2 产生一个脉冲时间为 CLK 单周期时长的单脉冲。

系列脉冲接 1Hz, 手动控制控制信号, 得到静态结果如下:



图 23: 单脉冲电路时序图

Q2 保持低电平输出;如果手动控制有下降沿信号输入,输出单脉冲信号。 手动控制时的时序图如下:



图 24: 单脉冲电路时序图

手动控制下实际结果为 (CLK 接 1024Hz 方波信号):



图 25: 单脉冲电路实际结果: CLK 与 Q2 信号

CLK 与手动控制信号均接 1024kHz, 得到结果如下:



图 26: 两个信号均接 1024Hz 方波信号

- 由双 JK 触发器接成单脉冲发生器,由手动输入下降沿信号触发产生 Q1 的单脉冲信号,Q1 的 高电平延续到下一个时钟周期的下降沿。
- 由双 JK 触发器接成单脉冲发生器,由手动输入下降沿信号触发,在一段时间后, Q2 产生的长度为一个时钟脉冲周期的单脉冲信号。
- 若两个输入信号一致,最后产生占空比为 1/3 并且周期为原来 1/3 的方波信号。
- Q2 的输出信号相比 Q1 推迟一个时钟周期。