

Virtualization Concepts

Basic Data Engineering

Taught by Pichaya Tandayya

OS Facts

- Generally, applications need to run inside an OS.
- Only one OS can run on a physical server at a time.

What's Virtualization?

- A technology that simulates hardware functionalities and creates multiple VMs on a physical server.
- Virtualization allows Virtual Machines (VMs) that reside on the same physical server to run independent OSs.
- This way, multiple OSs can concurrently run on the same physical server.

What's Virtualization?

The essence of virtualization is to separate software from hardware by converting "physical" devices into "logical" folders or files.

Virtualization Benefits

Virtualization Benefits

- Separating the OS from the hardware
 - Users no longer forced to upgrade OS to run on latest hardware
- Device support is part of the platform
 - Write one device driver rather than N
 - Better for system reliability/availability
 - Faster to get new hardware deployed
- Enables "Virtual Appliances"
 - Applications encapsulated with their OS
 - Easy configuration and management

Recovery Overhead ค่าโสหุ้ยในการกู้คืน

เปรียบเทียบการกู้คืนระบบใน Physical Machine กับ การใช้ live migration ของ Virtual Machine

โมเดลฮาร์ดแวร์ดั้งเดิม

- Application ต่าง ๆ เข้าถึง ฮาร์ดแวร์ (memory, i/o) ผ่าน system calls ไปยังระบบปฏิบัติการโดย ชุดคำสั่งพิเศษ
- ข้อดี
 - สามารถแยกการออกแบบและพัฒนาระบบปฏิบัติการ และฮาร์ดแวร์ออกจากกัน ได้ โดยมีข้อตกลงตาม ISA
 - สามารถ upgrade ฮาร์ดแวร์และซอฟต์แวร์ได้ โดยไม่ต้องแจ้ง หรือไม่กระทบ Application programs
- ข้อเสีย
 - Application ที่คอมไพล์บน ISA รูปแบบหนึ่งจะ ไม่สามารถรันบน ISA อีกรป แบบหนึ่งได้
 - Applications ที่คอมไพล์ สำหรับ Mac ใช้การเรียน system call แตกต่างจาก windows.
 - ISA ต้องสนับสนุน ซอฟต์แวร์รุ่นเก่า
 - เป็นข้อจำกัดที่ส่งผลต่อการพัฒนาความสามารถให้เพิ่มขึ้นไปจากเดิม
 - ซอฟต์แวร์พัฒนาแยกจากฮาร์ดแวร์ ซึ่งอาจไม่ optimized สำหรับฮาร์ดแวร์นั้น ๆ

15A

พื้นฐาน Virtual Machine Basics

- กระบวนการ Virtualization เกี่ยวข้องกับ:
 - Mapping of virtual resources (registers และ memory) เข้ากับ ทรัพยากรฮาร์ดแวร์ของเครื่องจริง
 - ใช้ชุดคำสั่งของเครื่องจริง ทำกิจกรรมที่ระบุมาในชุดคำสั่งของเครื่องเสมือน

Containers vs. Virtual Machines

5 Abstraction Levels of Virtualization

Application level JVM / .NET CLR / Panot Library (user-level API) level WINE/ WABI/ LxRun / Visual MainWin / vCUDA Operating system level Jail / Virtual Environment / Ensim's VPS / FVM Hardware abstraction layer (HAL) level VMware / Virtual PC / Denali / Xen / L4 / Plex 86 / User mode Linux / Cooperative Linux Instruction set architecture (ISA) level Bochs / Crusoe / QEMU / BIRD / Dynamo

Containers/Dockers

Virtualization at Operating System (OS) Level

- เป็น abstraction layer ระหว่าง ระบบปฏิบัติการแบบดั้งเดิม และ user applications ซึ่งมักเรียกว่า containers
- virtualization นี้สร้าง isolated containers บน single physical server
- ทุก user application แชร์ kernel เดียวกัน ผ่าน guest OS ซึ่งอาจแตกต่าง กันได้ในแต่ละพื้นที่ของผู้ใช้ (container) เช่น อาจมี Linux ได้หลาย distributions ภายใต้ kernel เดียวกัน
- containers ทำตัวเหมือนเซิร์ฟเวอร์/เครื่องจริง

Virtualization at Operating System (OS) Level

• ข้อดี

- ใช้เวลาในการ startup/shutdown น้อย, ใช้ทรัพยากรของระบบน้อย มี scalability สูง
- ทุก OS-level VM บน physical machine เดียวกัน แชร์ OS kernel เดียวกัน

• ข้อบกพร่องและข้อจำกัด

- ทุก VM ใน operating system level ต้องมี guest OS ประเภทเดียวกัน
- Poor application flexibility and isolation

Scalability

- Vertical scaling scale up server
 - CPUs, Memory, etc.
- Horizontal scaling clustered servers

Cloud Computing Evolution

Cloud computing 2.0

Cloud computing 1.0

Software-defined, integration

OpenStack VMware AWS

Cloud-based infrastructure
Standardization and automation of resource
services

Cloud computing 3.0

Cloud native, app redesign

Docker CoreOS

Cloud Foundry

Cloud-native applications

Agile application development and

lifecycle management

IBM

Technology Roadmap to Cloud

Complex Infrastructure Sprawl

- IT assets & datacenters kept growing
- Desperate system tools
- Inconsistent processes
- Soaring IT & energy costs

Physical Consolidation

- Consolidate IT assets
 & datacenters
- Standardize and centralize management
- Streamline processes with ITIL best practices
- Energy saving Phase out inefficient HW

Virtualization

- Virtualize infrastructure
 increased system
 utilization
- Unify virtual & physical mgmt
- Promote resource sharing across organization
- Energy saving maximize effective use

Cloud

- Service oriented architecture infrastructure
- Rapid provisioning of IT resources, massive scaling
- Dynamic service mgmt
- Energy saving via auto workload distribution

Enterprise virtualization to cloud maturity model

Source: http://westconsolutions.com/content/vendors/f5-networks/virtualization-and-cloud-computing-solutions

Virtualization for Datacenter Automation to serve millions of clients, simultaneously

- Server Consolidation in Virtualized Datacenter
- Virtual Storage Provisioning and Deprovisioning
- Cloud Operating Systems for Virtual Datacenters
- Trust Management in virtualized Datacenters

5 คุณลักษณะของ Cloud Computing

On-Demand Self-Service

• เพิ่มลดทรัพยากรได้ด้วยตนเอง

Broad network access

• เข้าใช้งานได้จากทุกที่ ทุกอุปกรณ์ ทุก

Resource pooling

• รวมทรัพยากรไว้ที่เดียวกัน แชร์กันได้ ตามแต่ใครใช้มากใช้น้อย

Rapid elasticity

• ยืดขยายได้ตามต้องการอย่างรวดเร็ว

Measured service

• วัดการใช้งานได้อย่างละเอียด เพื่อการ จ่ายตามที่ใช้

Running Database in a Container

Cloud Store: Storage Options

Storage Should I Use?

Which Database should I use?

data access

In-memory and Key-value store

Session store

Personalization

Adtech

Caching

Gaming

Leaderboard

Social chat or

news feed

Nonrelational

Relational

In Memory

Build a Scalable Data Analytics Pipeline on the Cloud

- Capture
- Process
- Store
- Analyze
- Use

Data Science on the Cloud

- DataEngineering
- Data Analysis
- Model
 Development
- ML Engineering
- Insights Activation

