Math 104 Worksheet 8 UC Berkeley, Summer 2021 Monday, July 12

On Worksheet 8, we showed that in a metric space (X, d), if E is a compact set then every sequence in E has a convergent subsequence (whose limit lies in E). This worksheet guides a proof of the converse.

Lemma 1. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of E. If every sequence in E has a convergent subsequence whose limit is in E, then there exists $\varepsilon > 0$ such that for every $x \in E$, there exists $\alpha \in A$ such that $B_{\varepsilon}(x) \subseteq U_{\alpha}$.

Proof. (Contrapositive) Suppose that for any $\varepsilon > 0$, there exists $x \in E$ such that $B_{\varepsilon}(x) \not\subseteq U_{\alpha}$ for all $\alpha \in A$. Then for each $n \in \mathbb{N}$, there exists x_n such that $V_n := B_{1/n}(x_n) \not\subseteq U_{\alpha}$ for all $\alpha \in A$.

Claim: (x_n) does not have a convergent subsequence.

Exercise 1. Prove the claim by contradiction. (*Hint:* If (x_n) did have a convergent subsequence, then the limit x would be in U_{α} for some α . Since U_{α} is open, there is an open ball around x that fits inside U_{α} . Show that some V_n fits inside that ball.)

Lemma 2. If every sequence in E has a convergent subsequence whose limit is in E, then for any $\varepsilon > 0$ there exists a finite collection x_1, \ldots, x_n of points in E such that $E \subseteq \bigcup_{i=1}^n B_{\varepsilon}(x_i)$.

Proof. (Contrapositive) Suppose that for some $\varepsilon > 0$, E cannot be covered by finitely many open balls of radius ε .

Exercise 2. Construct (inductively) a sequence (x_n) in E such that $d(x_m, x_n) \geq \varepsilon$ for any $m \neq n$. Explain why this sequence has no convergent subsequence.

Theorem. E is compact if and only if every sequence in E has a convergent subsequence whose limit is in E.

Proof. (The forward direction has already been proven.) Suppose every sequence in E has a convergent subsequence whose limit is in E. Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of E. Exercise 3. Use Lemma 1 and Lemma 2 to show that $\{U_{\alpha}\}_{{\alpha}\in A}$ has a finite subcover.