Problem 1. 棒球數據

(Time Limit: 1 seconds)

問題描述:

CPBL 已熱血開打,投手數據中,WHIP(每局被上壘率)是每位投手的「安打加四壞除以投球局數」,也就是除了失誤外,投手「平均每局讓打者上壘數」,相較於傳統的防禦率,WHIP 值更能顯現出投手對打者的壓制能力。WHIP 值低,代表投手的穩定度高,很少製造對手上壘的危機。

WHIP=(被安打數+投出四壞球)/總投球局數。

打者數據中,OPS(整體攻擊指數)是每位打者的「上壘率(OBP)與長打率(SLG)的總和」。在這個數據裡,一位球員的上壘與長打能力被加在一起衡量,代表這個球員的攻擊能力。

OPS=上壘率(OBP)+長打率(SLG)

上壘率(OBP)=(安打(H)+四壞球保送(BB)+被觸身球次數(HBP))/(打數(AB)+四壞球保送(BB)+高飛犧牲打(SF)+被觸身球次數(HBP))

長打率(SLG)=壘打數(TB)/打數(AB)

請幫忙算出整隊的戰力。

輸入說明

共有 10 行,第 1 行為投手的數據,分別是被安打數、投出四壞球、總投球局數;皆用空白隔開。

接著 9 行為 1 到 9 棒打者的數據,分別是安打數、四壞球保送、被觸身球次數、打數、高飛犧牲打、壘打數;皆用空白隔開。

所有的數值都是正整數且不會超過1000。

打數一定不為 0。

輸出說明:

請依序輸出投手的 WHIP[四捨五入小數點第 2 位]與 1 到 9 棒打者的 OPS[四捨五入小數點第 3 位]。

Sample1 Input:	Sample1 Output:
171 33 138	1.48
126 24 5 375 4 209	0.937
115 51 8 363 4 210	0.987

56 23 2 164 2 88	0.961
109 40 2 391 5 173	0.787
156 65 9 411 8 283	1.155
135 53 9 401 9 260	1.066
59 30 6 205 3 107	0.911
108 33 11 371 6 166	0.808
110 31 11 378 3 203	0.896

Problem 2. 接案子

(Time Limit: 1 seconds)

問題描述:

喪禮在多數國家場面印象中都是比較憂傷沉重的,而有一種抬棺材起舞文化,這是源 自迦納的一個喪葬儀式。

我們知道跳舞已經是很耗費體力的事情,再加上要抬棺材跳舞更加消耗體力,現在假設殯儀公司內 n 個護柩舞者,一開始體力前 6 名的舞者先跳,在其中 1 人到達體力極限後 (體力值歸 0),從剩餘的 n-6 的舞者中,體力最好的人接手,依此類推。

請問在棺材舞一定要 6 個人抬的前提下,1 點體力值表示可以撐 5 分鐘,公司接案子最多只能接多少分鐘的案子。

輸入說明

第1行輸入1個正整數 $n(6 \le n \le 20)$,表示公司內共有多少的護柩舞者。接下來會有n行輸入:

每一行的共有 2 個正整數 $m(1 \le m \le 20)$ 與 $s(1 \le s \le 10)$,m 表示舞者的代號,s 表示該 a 名舞者的體力值。

輸出說明:

公司接案子最多只能接多少分鐘的案子。後面會有個換行符號。

Sample1 Input:	Sample1 Output:
7	25
1 5	
2 9	
3 10	
4 3	
5 3	
6 6	
7 6	

Problem 3. 逃出絕境

(Time Limit: 1 seconds)

問題描述:

頑皮的維尼在森林裡挖了一個大坑想惡作劇,但維尼本想帶著他的快樂的小夥伴們前往森林,想引導小夥伴們掉下去,結果自己不小心掉入自己挖的坑裡;假設現在維尼挖了 \mathbb{H} 公尺深的坑洞,每個小時他可以往上爬 \mathbb{U} 公尺,接著會花半小時休息,但休息時因土質鬆軟,會下滑 \mathbb{D} 公尺,而維尼的疲勞因子有 \mathbb{F} %,是指每爬一次爬的里程會減少 \mathbb{F} % * \mathbb{U} 公尺,請問維尼要幾個小時才能爬出來。爬出洞時的那一次花費不到 \mathbb{L} 1 小時我們算一小時。

例如:掉入6公尺深的陷阱裡,每小時可爬3公尺,休息時會滑落1公尺,疲勞因子有 10%,以下表格為每次爬的路程。

爬升次數	起始高度	爬的距離	上升距離	滑落後距離
1	0	3	3	2
2	2	2.7	4.7	3.7
3	3.7	2.4	6.1	

由表格可得知爬升3次與休息2次,共花費4小時爬出。

※計算的數值皆取四捨五入小數點1位。

輸入說明

第1行輸入1個正整數 n(1≤n≤10),表示共有多少組的資料。

接下來會有 n 行輸入:

每一行包括 H(山洞的高度)、U(爬行的距離)、D(下滑的距離)、F(疲勞因子),分別用一個空白隔開。 $(H \setminus U \setminus D \setminus F \cap f)$ $1 \sim 100$ 之間)。

輸出說明:

輸出會為每組資料呈現維尼將花費多少小時爬出坑洞,輸出時,每一行輸出對應一筆輸入資料,並以換行做區隔。如果維尼無法爬出洞,輸出 0。

Sample1 Input:	Sample1 Output:
4	4
6 3 1 10	7
15 6 3 5	0
20 2 1 50	2.5
10 6 1 1	

Problem 4. 疫情調查

(Time Limit: 1 seconds)

問題描述:

假設現今有一₩病毒正在各地傳播,中央流行疫情指揮中心目前已知一名確診者為某 大學學生,為了有效控制疫情,指揮中心將針對該病例進行疫調。

現已知確診學生所修的課程,假設指揮中心的具感染風險民眾追蹤管理機制如下:

- 1. 居家隔離: 與確診學生修同門課的學生。
- 2. 自主健康管理:與因為確診學生而必須居家隔離的同學修同門課的學生。

現在我們將確診學生編號為 (), 請幫忙找出有哪些學生需要居家隔離, 有哪些學生需要自主健康管理。

輸入說明

第1行輸入1個正整數 $n(1 \le n \le 10)$, n表示確診學生有幾修的課。

接下來會有 n 行輸入:

每一行的第一個正整數 $m(1 \le m \le 50)$ 表示該堂課出席的人數,接者會有 m 個正整數是學生的名單(皆用數字代替, $0 \sim 49$)。

每個數字都以空白間隔。

輸出說明:

第一行輸出需要居家隔離的學生名單;第二行輸出需要自主健康管理的學生名單。 每個數字都以空白間隔並由小至大排序。

如沒有居家隔離或自主健康管理輸出 None。

Sample1 Input:	Sample1 Output:					
4	1 3 4 5 6 9 10 11 15 49					
10 9 6 5 4 0 10 15 3 1 11	2					
5 1 2 3 4 5						
3 12 13 7						
2 49 0						
Sample2 Input:	Sample2 Output:					
4	1 2 3 4 5 6 10 11 15					
10 2 6 5 4 0 10 15 3 1 11	None					
5 16 17 18 19 20						

Problem 5. 還能撐多久

(Time Limit: 1 seconds)

問題描述:

阿湯哥在台灣開了一家餐廳,目前餐廳現有 k 美金。已知餐廳去年 12 月的營收為 T 新臺幣,花費的成本為 C 新臺幣,阿湯哥判斷因為疫情,之後每月營收會比上月營收少 L%,而成本的花費每月增加 S%,假設去年美金匯率為 35.2,之後每月降低 D。如果照阿湯哥的判斷,計算餐廳經過幾個月後,餐廳現有資金會有多少美金。

假設:T=1,000、C=500、D=0.2、L=24、S=10,餐廳本來擁有資金500美金,經過3個月為:

經過(月)	營收(新台幣)	成本(新台幣)	淨利(新台幣)	擁有資金(美金)
1	760	550	210	506
2	577	605	-28	505. 20
3	438	665	-227	498. 64

因此,經過3個月後,餐廳現有資金會有498.64美金。

輸入說明

第1行輸入1個正整數 $n(1 \le n \le 10)$,表示共有多少組的資料。

每組資料為 4 個正整數 $T(1 \le T \le 10,000) \cdot C(1 \le C \le 10,000) \cdot D(0 \le D \le 1) \cdot M(1 \le M \le 20) \cdot K(1 \le K \le 20,000) \cdot L(0 \le L \le 100) \cdot S(0 \le S \le 100) \circ$

T與C分別表示去年12月的營收與成本。D表示每月降低的美金匯率。M表示經過幾個月。K表示餐廳本來擁有資金(美金)。L表示每月營收會比上月營收少L%。S表示成本的花費每月增加S%。

輸出說明:

輸出假設狀況一直維持上列所述,計算餐廳經過幾個月後,資金剩多少。

如剩餘資金≦0 顯示 Bankruptcy。

新臺幣計算結果皆無條件捨去小數點。

美金計算結果皆無條件捨去至小數點第2位。

Sample1 Input:	Sample1 Output:
4	1457.14
30000 10000 0.2 1 1000 10 10	1338.45
10000 5000 0.3 2 1234 20 5	458.82
1000 500 0.2 5 500 30 10	Bankruptcy
1000 500 1 20 700 50 5	

Problem 6. 能力分配

(Time Limit: 1 seconds)

問題描述:

夏教官根據士兵的能力推薦適合加入的兵團。士兵的能力分別以1代表結訓成績好, 2代表結訓成績不好,3代表勤快,4代表不勤快;而結訓成績好但不勤快,適合加入憲兵 團;結訓成績好又勤快,適合加入調查兵團;結訓成績不好但勤快,適合加入駐紮兵團;結 訓成績不好又不勤快,就只能前往開墾荒地!請幫助夏教官推薦士兵們適合加入的兵團。

輸入說明

第 1 行會有一個正整數 n(1~20)代表士兵的數量,接下來會有 n 筆姓名(字串長度不超過 20)及 2 種能力;都以空白隔開。

輸出說明:

輸出格式為士兵姓名與分配兵團。

請依序輸出適合加入憲兵團(Military Police)、調查兵團(Survey)、當駐紮兵團(Garrison),開墾荒地(Farmer)的結果。如同兵團依名字英文 A~Z 排序。

Sample1 Input:	Sample1 Output:
6	Chiretofu Military Police
Chiretofu 1 4	Kafen Military Police
Levi 1 3	Levi Survey
Hannes 2 3	Mikasa Survey
Kafen 1 4	Hannes Garrison
Jack 2 4	Jack Farmer
Mikasa 1 3	

Problem 7. 逮捕

(Time Limit: 1 seconds)

問題描述:

小馮開車準備運貨從 A 點到港口,唐唐市有多個可能警察攔截點,今晚已知只佈置了一個攔截點,小馮為了快速完成此業務,準備走 A 點到港口的最短路徑,請問小馮被攔截逮捕的機率有多少呢?

假設從 A 點到港口共有 5 條最短路徑,攔截點放置於 B 點,其中有 2 條會通過 B 點,也就是說小馮被逮捕的機率為 2/5=0.4。

輸入說明

輸入分為兩部份,第一部份只有一行,此行中有四個用逗號分隔開的介於 1 到 99 的數字,第一個數字 N 代表唐唐市中可能警察攔截點的數目。第二個數字與第三個數字分別表示 A 節點與港口 P。第四個數字則是攔截點放置的 B 點。

第二部份是鄰接矩陣,總共列數剛好有 \mathbb{N} 個列,每一列中有 \mathbb{N} 個由空隔分開的 \mathbb{N} 0 或 \mathbb{N} 。第 \mathbb{N} 可中的第 \mathbb{N} 個 \mathbb{N} 0 或 \mathbb{N} 1 代表由點 \mathbb{N} 的連線是否存在 (\mathbb{N} 0 表示不存在, \mathbb{N} 表示存在)。

沒有自我迴圈連線表示第 i 列中的第 i 個元素值為 0 。連線沒有方向性,因此鄰接矩陣為對稱矩陣。

輸出說明:

輸出小馮遭遇攔截點被逮捕的機率,四捨五入小數第三位。

Sa	Sample1 Input:							
9,	. 1 ,	, 5 ,	, 2					
0	1	0	1	0	0	0	0	0
1	0	1	0	1	0	0	0	0
0	1	0	0	0	1	0	0	0
1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	0	1	0
0	0	1	0	1	0	0	0	1
0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	1	0	1
0	0	0	0	0	1	0	1	0

Sa	Sample2 Input:								Sample2 Output:
9,	, 1,	6,	. 2						0.667
0	1	0	1	0	0	0	0	0	
1	0	1	0	1	0	0	0	0	
0	1	0	0	0	1	0	0	0	
1	0	0	0	1	0	1	0	0	
0	1	0	1	0	1	0	1	0	
0	0	1	0	1	0	0	0	1	
0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	1	0	1	
0	0	0	0	0	1	0	1	0	

Problem 8. 播放清單

(Time Limit: 1 seconds)

問題描述:

假設一播放清單系統,它是一佇列(Queue)的結構,其操作概念如下:

(1) 使用者預先加入了一些影片加入播放清單裡 ,最多 10 部,排列方式如圖一所示。

圖一.播放清單

(2) 播放系統根據使用者指令,執行動作。如下表。

指令	動作
PLAY	播放清單中最前面 (Front 位置)的影片。此時播放清單佇列中的
	數量會減 1 ,(即原本的數量-1),因一片正在進行播放。
LOOP	重複播放目前的播放的影片, 播放清單不做任何搬移動作。
STOP	正在播放的影片停止,將該影片放至播放清單的最後面(End 位
	置)。此時播放清單佇列中的數量會加 1 ,(即原本的數量+1)。

此外,系統指令有以下條件需求:

- (1) 連續觸發的指令(即連續兩次或兩次以上觸發的指令為相同的指令),僅執行第一次,其他則忽略。
- (2) LOOP 觸發條件為,上一個觸發的指令,必須為 PLAY ,否則忽略。
- (3) PLAY 觸發條件為,目前沒有影片正在進行播放,方可動作,否則忽略。

請實作一程式,實現此播放清單系統,接收指令代碼,對播放清單進行操作,最後顯示目前佇列的狀態。

輸入說明

第一行,為一個數列,有 10 個連續的整數,從 0 到 9 用空白隔開,用以表示播放清單佇列中從 Front 到 End 的 10 部影片。

第二行開始為一系列的指令,如輸入指令為「0」表示程式結束。

輸出說明:

輸出經過一系列指令後,播放清單序列的狀態。

Sample1 Input:	Sample1 Output:
0 1 2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9 0
PLAY	
STOP	
STOP	
PLAY	
LOOP	
0	
Sample2 Input:	Sample2 Output:
4 5 6 7 8 9 0 1 2 3	6 7 8 9 0 1 2 3 4
PLAY	
PLAY	
STOP	
PLAY	
LOOP	
PLAY	
LOOP	
0	

Problem 9. 神秘的密室

(Time Limit: 1 seconds)

問題描述:

拉拉在一叢林裡發現一古代墓穴,拉拉透過破解石壁的神祕符號,從機關內取得了一張古墓地圖,拉拉猜想古墓內應該還藏有密室,並預設密室只可能藏在古墓中無法正常走到的可探索區域中,請設計一個程式,當給與古墓地圖陣列, 0 代表可探索區域, 1 代表牆壁,正常的移動由起點開始,每次移動僅能往上下左右 4 個方向移動一格,給予正常探索的起點位置,請判斷這個古墓中是否存在密室(無法正常走到的可探索區域)。

輸入說明

首先會先輸入兩個以空白分隔的正整數 $M(1 \le M \le 10)$, $N(1 \le N \le 10)$ 代表地圖的大小,換行號連續輸入 M 行,每行 N 個以空白間隔的整數代表地圖的內容 (由 0 和 1 组成),最後再輸出起點的座標 (m,n)(m 為從 $0 \sim (M-1)$ 的整數, n 為從 $0 \sim (N-1)$ 的整數))

輸出說明:

如果發現可能存在寶物的位置請輸出 true , 否則請輸出 false.

Sample1 Input:	Sample1 Output:
3 3	true
0 0 1	
0 0 1	
1 1 0	
0 0	
Sample2 Input:	Sample2 Output:
4 4	false
0 0 1 0	
0 1 0 0	
0 0 1 0	
1 0 0 0	
3 2	