An Introduction to Geometric Modeling using Polygonal Meshes

Joaquim Madeira

April 2024

Overview

- Motivation
- Polygonal meshes
- Exact vs. Approximate representation
- Geometrical and topological information
- Valid vs. non-valid models
- The Euler formula
- Computational representation

COMPUTER GRAPHICS & GEOMETRIC MODELING

CG is not alone...

- Core areas:
 - CG, IP, CV and HCI
- Satellite areas:
 - Geometric Modeling
 - Data and Information Visualization
- What is common?
 - CG, IP: image file formats, color models, ...
 - CG, CV : 3D model representations, ...
 - □ IP, CV : noise removal, filters, ...

CG is not alone...

Geometric Modeling

CV: 3D scanning

CG: 2D and 3D models

HCI: interaction techniques

Visualization

HCI: interaction techniques

GeoM: 2D and 3D models

CG : rendering

Example – Medical Imaging

- Processing pipeline
 - Noise removal
 - Segmentation
 - Generating 2D / 3D models
 - Data visualization
 - User interaction
 - ...

[www.mevislab.de]

CG Main Tasks

Modeling

- Construct individual models / objects
- Assemble them into a 2D or 3D scene

Animation

- Static vs. dynamic scenes
- Movement and / or deformation

Rendering

- Generate final images
- Where is the observer?
- How is he / she looking at the scene?

Geometric Modeling

 A geometric model describes the shape of an (real or virtual) object

- How ?
 - Different mathematical representations?
 - Data structures ?
 - Possible operations ?
 - Compactness? Robustness? Efficiency?
 - Interpolation vs Approximation ?
 - ...

Geometric Modeling

- What for ?
 - Distinguish between inside, outside and border of a model
 - Compute properties
 - Centroid
 - Area / Volume
 - **...**
 - Detect interferences / collisions
 - Compute light reflections and / or transparencies
 - **...**

CAD / CAM

[Wikipedia]

Data Visualization

[Wikipedia]

CAD – Simulation and Visualization

[Wikipedia]

Virtual / Augmented reality

Medical Data Processing

Mesh

- Other application areas
 - Computer games
 - Geographical information systems (GIS)
 - Engineering analysis
 - 3D printing / Rapid prototyping
 - Medical solid modeling

...

3D models – Shape

- Define from scratch using VRML / X3D, OpenGL, VTK, ...
 - Tedious; requires skill
- Obtain from CAD files or model databases
 - Convert to compatible formats
 - Use of existing models in manufacturing applications
- Create using a 3D digitizer or a 3D scanner
 - □ 3D digitizer : stylus
 - 3D scanner: tracker, cameras and laser

3D modeling tools

- Spatial Corp.'s ACIS; 3D modeling engine
 - http://www.spatial.com
- Siemens's Parasolid; 3D modeling engine
 - http://www.plm.automation.siemens.com
- Dassault Systemes's CATIA; CAD / CAM / CAE
 - http://www.3ds.com
- PTC's Pro/ENGINEER; 3D feature modeling
 - http://www.ptc.com
- SolidWorks; 3D feature modeling
 - http://www.solidworks.com

3D modeling tools

- Autodesk's 3ds max and Maya
 - http://www.autodesk.com
- Blender: Free open-source 3D content-creation suite
 - http://www.blender.org
- Rhino: Uninhibited free-form 3D modeling
 - http://www.rhino3d.com
- Trimble SketchUp: Intuitive 3D modeler
 - http://www.sketchup.com
- POV-Ray: Persistence of Vision Ray-Tracer
 - http://www.povray.org

POLYGONAL MESHES

Geometric Modeling

- Main areas
 - Curve and surface modeling

- Computer-Aided Geometric Design (CAGD)
- Solid Modeling
- Volume Modeling
- Simplest models
 - Curves : Polygonal lines
 - Surfaces: Polygonal meshes

Polylines

- Questions :
 - Open or closed polylines ?
 - Exact representation ? When ?
 - Approximate representation ?

- A "good" approximation usually needs a larger number of points
 - Level of detail (LOD)
- Typical application
 - Representing contours in processed images, after locating dominant points

Polylines

Contours segmented from CT images
Contour description is point by point

Too many points!

Solution: Dominant Point Detection

Contour detail

Dominant points

Polyline

- Surface is defined as a collection of neighboring faces (e.g., triangles)
 - Geometry + Topology (i.e., connectivity)
 - Vertices, edges, faces
- Euler formula for closed surfaces
 - V + F E = 2
- Exact vs approximate representations
 - Polyhedral models
 - Curved surfaces
 - Terrain models
 - Complex surfaces / models

[Wikipedia]

- Collection of neighboring vertices, edges and polygons
 - Usually triangles !!
- Vertex
 - Shared by, at least, 2 edges
- Edge
 - Connects 2 vertices
 - Shared by 2 polygons, if the surface is closed
- Polygon
 - Sequence of, at least, 3 vertices

- Homogeneous ?
- Adaptive ?
- Easy to render
- Usually triangles!
- Pyramid
 - How many entities?
 - Check Euler formula!

Complex topology

Complex geometry

[Seidel and Belyaev, 2006]

- What / How to store?
 - Memory or file?
 - List of vertices Topology ?
 - List of triangles Neighbors?
 - Lists of vertices, edges and triangles Efficiency?
 - Winged-edge or half-edge data structure
- Common operations
 - Smoothing
 - Decimation
- Toolboxes / Libraries
 - CGAL
 - OpenMesh

- The surface (i.e., the model) is defined as a set of adjacent faces (e.g., triangles)
- Which geometric information should be stored?
 - Vertex coordinates
- Which topological information (i.e., connectivity) should be stored?
 - How are edges and faces arranged?
 - How to identify neighboring / incident /adjacent entities ?
 - Efficiency!
- Which additional properties should be stored?
 - Normal vector to each face / vertex
 - Texture coordinates
- How to check the validity of a model?
 - 2-manifolds
 - Euler Formulae

Some basic operations

- Find the vertices defining an edge
- Find the edges incident in a vertex
- Find all polygons sharing
 - A vertex
 - An edge
- Identify mesh errors. I.e., the lack of
 - A vertex / an edge / a face
- Rendering a mesh

- Supported by most applications
- Various file formats
- Triangle meshes are the most common !!
 - Planar faces
 - Algorithm simplicity
 - Numerical robustness
 - Efficient rendering

- Exact vs. approximate rep. When ?
 - Polyhedral models
 - Curved surfaces
 - Terrain models
 - More complex models / surfaces
- A "good" approximation might require a large number of faces
 - Levels-of-Detail (LODs)

Polyhedral models

- The same polyhedral model might be represented by different polygonal meshes!!
 - Useful for shading / rendering
- Degrees of freedom
 - Number of mesh vertices
 - Distribution of mesh vertices
 - Arrangement of edges / polygons
- Example
 - Represent a cube using different polygonal meshes

Curved surfaces

- Representing the shape of a curved surface is an approximation process
- There is no "unique" model!!
- Degrees of freedom
 - Number of mesh vertices
 - Distribution of mesh vertices
 - Arrangement of edges / polygons

How many triangles should be used?

[CMU, 2000]

How many vertices should be used?

[Dyer et al.]

Mesh decimation

90% reduction

[Seidel and Belyaev, 2006]

Mesh smoothing

[Seidel and Belyaev, 2006]

GEOMETRY + TOPOLOGY

Representing model surfaces

- Geometrical information
 - Vertex coordinates
- Topological or connectivity information
 - Abstract definition of vertices, edges and faces
 - Incidence and adjacency information
- Properties
 - Normal vectors ("Normal Maps")
 - Texture coordinates

[Wikipedia]

Vertex

- Regular ?
- Singular ?

Edge

- 2 vertices
- Border edge : just 1 incident face
- Regular edge : 2 incident faces
- Singular edge: 3 or more incident faces

Loop

Ordered edge sequence

Face

- Limited by a set of disjoint edge sequences
- Outer border
- Possible inner borders ("holes")

Shell

Set of connected faces

Examples ?

Valid vs. non-valid models

[Foley et al.]

Valid vs. non-valid models

- 2-Manifold Model
 - Any point has a "disk" neighborhood
 - No singular vertices !!
 - No singular edges!!
- Non-Manifold Model
 - Dangling Edges / Faces
 - Touching Faces
 - **...**
 - Non-valid / non-manufacturable models !!
- Examples?

Euler Formula

- Allows checking the consistency of the topological information!!
- V + F E = 2
- When to apply?
 - Model has a closed, orientable surface!
 - Each face is limited by a single edge loop!
 - No through-holes!
 - Nor cavities!
- Examples
 - Tetrahedron
 - Different mesh representations of a cube

Euler-Poincaré Formula

- Generalization !!
- V + F E (L F) 2 (S G) = 0
- L Number of loops
- S Number of shells
- G Genus : number of "handles"
- When to apply ?
 - Through-holes
 - Cavities
- Example ?

ICG - 2023 / 2024

47

Consistency checking

- Check if
 - All polygons have closed borders
 - All edges are used at least once
 - Every vertex belongs at least to
 - 2 edges
 - 1 polygon

...

COMPUTATIONAL REPRESENTATION

Computational representation

- Memory or file ?
- Vertices list
 - Topological information ??
- Polygons list / Detached triangles
 - How to identify neighbors ??
- Vertices, edges and polygons lists
 - Efficiency?
- Winged-edge or half-edge data structures

Detached / Isolated Polygons List

- Each polygon is represented by the ordered list of its vertices coordinates
 - CCW

Inefficient !!

- Memory space : multiple vertex representation
- Lack of information about shared vertices / edges
- Cumbersome detection !!
- Rendering : edges are drawn twice !!

Example ?

Vertices List

- Vertices list / array
 - Store just once the coordinates of each vertex!
 - Easy to edit / modify one vertex
- Each polygon is described by its vertices sequence
 - Pointer / index
 - Usage : storing in a file
- Inefficient !!
 - Hard to detect which polygons share a given edge !!
 - Rendering : edges are drawn twice !!
- Example ?

Indexed Face Set

- VRML or MCGL or ...
- Array 3D vertex coordinates
 - One index for each vertex
- Convex n-sided polygons defined by n indices
- Example
 - □ [0,1,2,-1,2,1,3,4,-1]

OBJ File Format

Vertices list

```
v 10 15 20
v 23 34 56
```

Faces list

```
f 1 2 3
f 2 3 4
```

Additional information

- Normal vectors
- Texture coordinates
- **...**

- How to store incidence and adjacency information?
- How to answer basic queries fast ?
 - Which are the end vertices of a given edge?
 - Which are the adjacent polygons of a given edge ?
 - Which are the incident edges in a given edge?
 - Which are the incident edges in a given vertex?
 - Which are the neighboring vertices of a given vertex ?
 - **...**
- Efficiency
 - Time ?
 - Space ?

Adjacent Vertices List

Vertex-Vertex Meshes (VV)

Vertex List

v0	0,0,0	v1 v5 v4 v3 v9
v1	1,0,0	v2 v6 v5 v0 v9
v2	1,1,0	v3 v7 v6 v1 v9
v3	0,1,0	v2 v6 v7 v4 v9
٧4	0,0,1	v5 v0 v3 v7 v8
v5	1,0,1	v6 v1 v0 v4 v8
v6	1,1,1	v7 v2 v1 v5 v8
v7	0,1,1	v4 v3 v2 v6 v8
v8	.5,.5,0	v5 v6 v7 v8
v9	.5,.5,1	v0 v1 v2 v3

[Wikipedia]

Vertices List + Faces List

Face-Vertex Meshes

[Wikipedia]