Table 2.3 Important Laplace Transform Pairs	F(s)
f(t)	$\frac{1}{s}$
Step function, $u(t)$	
	$\frac{1}{s+a}$
e ^{-at}	
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
	$\frac{s}{s^2+\omega^2}$
cos ωt .	
	$\frac{n!}{e^{n+1}}$
t"	
$f^{(k)}(t) = \frac{d^k f(t)}{dt^k}$	$s^k F(s) - s^{k-1} f(0^-) - s^{k-2} f'(0^-)$
dt ^x	$-\ldots - f^{(k-1)}(0^-)$
	$\frac{F(s)}{s} + \frac{1}{s} \int_{-\infty}^{0} f(t) dt$
$\int_{0}^{t} f(t) dt -$	$\frac{-s}{s} + \frac{1}{s} \int_{-\infty}^{\infty} f(t) dt$
Impulse function $\delta(t)$	1
$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
& Sili Wi	$(s+a)^2+\omega^2$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
1 212	$s + \alpha$
$\frac{1}{\omega}[(\alpha-a)^2+\omega^2]^{1/2}e^{-at}\sin(\omega t+\phi),$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$
$\phi = \tan^{-1} \frac{\omega}{\alpha - a}$	7
	, ·
$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t,\zeta<1$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$\sqrt{1-\zeta^2}$	1
$\frac{1}{a^2+\omega^2}+\frac{1}{\omega\sqrt{a^2+\omega^2}}e^{-at}\sin(\omega t-\phi),$	$s[(s+a)^2+\omega^2]$
$\phi = \tan^{-1} \frac{\omega}{-a}$. 2
$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1-\zeta^2} t + \phi),$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$
· · · · · · · · · · · · · · · · · · ·	$s(s^n + 2\zeta\omega_n s + \omega_n)$
$\phi = \cos^{-1}\zeta, \zeta < 1$	$s + \alpha$
$\frac{\alpha}{a^2+\omega^2}+\frac{1}{\omega}\left[\frac{(\alpha-a)^2+\omega^2}{a^2+\omega^2}\right]^{1/2}e^{-at}\sin(\omega t+\phi).$	$\frac{s+\alpha}{s[(s+a)^2+\omega^2]}$
	S[(0 · m) · m]
$\phi = \tan^{-1} \frac{\omega}{\alpha - a} - \tan^{-1} \frac{\omega}{-a}$	