DM545/DM871 Linear and Integer Programming

Lecture 13 Network Flows, Cntd

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks

	X _e 1	X_{e_2}	 x_{ij}	 X_{e_m}		
	C_{e_1}	C _{e2}	 Cij	 C_{e_m}		
1	1				=	b_1
2					=	b_2
:	:	100			=	:
i	-1		 1		=	b_i
:	:	100			=	:
j			 -1		=	b_j
:	:	100			=	:
n					=	b_n
e_1	1				≤ ≤	u_1
e_2	 	1			\leq	U_2
:	:	19.			< <	:
(i,j)			1		\leq	u _{ij}
:	:	14.			≤ ≤	:
e_m				1	\leq	u_m

3

Outline

1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks

Shortest Path - Dual LP

$$z = \min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = 1$$

$$\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = 0$$

$$\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = -1$$

$$x_{ij} \geq 0$$

$$\forall i \in V \setminus \{s, t\}$$

$$(\pi_i)$$

$$(\pi_t)$$

Dual problem:

$$g^{LP} = \max \pi_s - \pi_t$$
 $\pi_i - \pi_j \le c_{ij}$ $\forall ij \in A$

Hence, the shortest path can be found by potential values π_i on nodes such that $\pi_s = z, \pi_t = 0$ and $\pi_i - \pi_i \le c_{ii}$ for $ij \in A$

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max x_{ts}$$

$$\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = 0 \qquad \forall i \in V \qquad (\pi_i)$$

$$x_{ij} \le u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \ge 0 \qquad \forall ij \in A$$

Dual problem:

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0 \qquad \forall ij \in A$$

	X _e 1	X_{e_2}	 x_{ij}	 X_{e_m}		
	C_{e_1}	C _{e2}	 Cij	 C_{e_m}		
1	1				=	b_1
2	¦ .				=	b_2
:	:	100			=	:
i	-1		 1		=	b_i
:	:	100			=	:
j			 -1		=	b_j
:		100			=	:
n	<u>.</u>		 	 		b_n
e_1	1				\leq	u_1
e_2	 	1			\leq	U_2
:		100			<	:
(i,j)	 		1		≤ ≤	u _{ij}
:	. :	1.			<	:
e_m	 			1	≤ ≤	u_m

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ii} \ge 0$$

$$\forall ij \in A$$

$$(3)$$

$$(4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s = 0, \pi_t = 1$
- Cut *C*: on left =1 on right =0. Where is the transition?

• Vars
$$w$$
 identify the cut $\rightsquigarrow \pi_j - \pi_i + w_{ij} \ge 0 \rightsquigarrow w_{ij} = 1$

$$w_{ij} = \begin{cases} 1 & \text{if } ij \in C \\ 0 & \text{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ii \in A} u_{ij} w_{ij}$

• Complementary slackness:
$$w_{ij} = 1 \implies x_{ij} = u_{ij}$$

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

•

Max Flow Algorithms

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

Min Cost Flow - Dual LP

$$\min \sum_{i:j \in A} c_{ij} x_{ij}$$

$$\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = b_{i} \qquad \forall i \in V \qquad (\pi_{i})$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij}$$

$$-c_{ij} + \pi_i - \pi_j \le w_{ij}$$

$$w_{ij} \ge 0$$

$$\forall ij \in E$$

$$(2)$$

$$\forall ij \in A$$

$$(3)$$

	X_{e_1}	X_{e_2}	 x_{ij}	 X_{e_m}		
	C_{e_1}	C_{e_2}	 c_{ij}	 C_{e_m}		
1	1		 · · · ·	 	=	b_1
2	· ·				=	b_2
:	:	$\{\gamma_{i,j}\}$			=	:
i	-1		 1		=	b_i
:	:	100			=	÷
j			 -1		=	b_j
:	:	16.			=	:
n	<u> </u>		 	 		b_n
e_1	1				\leq	u_1
<i>e</i> ₂	 	1			\leq	u_2
:	:	16.			≤ ≤	:
(i,j)	l I		1		\leq	u_{ij}
:	 :	19.			≤ ≤	:
e_m	 -			1	\leq	u_m

- When is the set of feasible solutions x, π, w optimal?
- define reduced costs $\bar{c}_{ij} = c_{ij} \pi_i + \pi_j$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ii} \geq 0$ (from 2)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions:

each primal variable
$$\times$$
 the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
• $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$.

$$x_e > 0$$
 then $-c_e = w_e = \max\{0, -c_e\}$,
 $x_e > 0 \implies -\bar{c}_e > 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$

each dual variable \times the corresponding primal slack must be equal 0, ie, $w_e(x_e - u_e) = 0$;

•
$$w_e > 0$$
 then $x_e = u_e$

$$-ar{c}_e>0 \implies x_e=u_e$$
 or equivalently $ar{c}_e<0 \implies x_e=u_e$

Hence:

$$ar{c}_e > 0$$
 then $x_e = 0$
 $ar{c}_e < 0$ then $x_e = u_e \neq \infty$

Min Cost Flow Algorithms

The conditions derived can be used to define a solution approach for the minimum cost flow problem.

Directed cycle ≡ circuit

Note that if a set of potentials $\pi_i, i \in V$ are given, and the cost of a circuit wrt. the reduced costs for the edges $(\bar{c}_{ij} = c_{ij} + \pi_j - \pi_i)$ are calculated, the cost remains the same as the original costs because the potentials are "telescoped" to 0.

Theorem (Optimality conditions)

Let x be feasible flow in N(V, A, I, u, b) then x is min cost flow in N iff N(x) contains no directed cycle of negative cost.

Note that a (directed) circuit with negative cost in N(x) corresponds to a negative cost cycle in N, if costs are added for forward edges and subtracted for backward edges.

- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 mM)$, $M = \max |b(v)|$

Outline

1. Duality in Network Flow Problems

2. Network Simplex

3. Final Remarks

Min Cost Flow

- A is not full-rank: adding all rows \rightsquigarrow null vector, i.e., the rows of A are not linearly indep.
- Since we assume that total supply equal total demand, i.e., $\sum_{i \in V} b_i = 0$ then $\operatorname{rank}[A] = \operatorname{rank}[A \ b]$.
- Hence, one of the equations can be canceled.

- assume network N is connected
- cycle: here, a set of arcs forming a closed path (i.e., a path in which the first and the last node of the path coincide) when ignoring their orientation
- spanning tree: here, a tree that reaches every node (it coincides with the classical notion of spanning tree if one disregards arc orientation).

Theorem (Spanning Trees)

For an undirected graph D' = (N, A'), the following are equivalent:

- (a) G' = (N, E) is a tree (acyclic and connected);
- (b) G' = (N, E) is acyclic and has n 1 arcs; and
- (c) G' = (N, E) is connected and has n 1 arcs.

Since we know that the matrix A is not full-rank, a basis of A consists of only n-1 linearly independent columns of A. These columns correspond to a collection of arcs of the flow network.

Theorem

Given a connected flow network, letting A be its incidence matrix, a submatrix B of size $(n-1)\times(n-1)$ is a basis of A if and only if the arcs associated with the columns of B form a spanning tree.

Proof:

if columns from A correspond to a spanning tree \implies they are lin. indep., B is upper triangular if a subset of columns of A are a basis \implies they are n-1 and acyclic

Hence, all basic feasible solutions explored by the simplex algorithm are spanning trees of the flow network.

As for any LP, also in min-cost flow problems there are feasible, infeasible and degenerate bases. (feasible if $\mathbf{x}_B = A_B^{-1} \mathbf{b} \ge 0$).

Example

Example

Example

- solve $Bx_B = b$ in value of variables to check feasibility; easy because of structure or because done by updates.
- solve $\pi^T B = \mathbf{c}_B^T$ in π (dual potential variables to derive reduced costs); easy because of structure of B.
- calculate $\bar{c}_{ij} = c_{ij} + \pi_i \pi_i$

$$\begin{array}{l} \pi_1-\pi_4=12\\ \pi_2-\pi_4=10\\ \pi_3-\pi_2=13\\ \pi_3-\pi_5=7\\ \pi_4-\pi_6=8\\ \pi_5-\pi_7=9\\ \pi_5-\pi_8=13\\ \pi_3=0\\ \end{array}$$

$$\begin{array}{l} \pi_3=0\\ \pi_3=0\\ \pi_3=0\\ \end{array}$$
 and
$$\begin{array}{l} \pi_3=0\\ \pi_3=0\\ \pi_3=0\\ \end{array}$$
 and
$$\begin{array}{l} \pi_3=0\\ \pi_3=0\\ \pi_3=0\\ \end{array}$$
 and
$$\begin{array}{l} \pi_3-\pi_5=7\\ \pi_5=-7\\ \end{array}$$
 and
$$\begin{array}{l} \pi_5-\pi_8=13\\ \pi_8=-20\\ \pi_5=-7\\ \end{array}$$
 and
$$\begin{array}{l} \pi_5-\pi_8=13\\ \pi_9=-13\\ \pi_2=-13\\ \end{array}$$
 and
$$\begin{array}{l} \pi_2-\pi_1=13\\ \pi_2=-13\\ \end{array}$$
 and
$$\begin{array}{l} \pi_2-\pi_1=13\\ \pi_2=-13\\ \end{array}$$
 and
$$\begin{array}{l} \pi_2-\pi_1=13\\ \pi_2=-13\\ \end{array}$$
 and
$$\begin{array}{l} \pi_4-\pi_6=8\\ \pi_6=-31\\ \pi_4=-23\\ \end{array}$$
 and
$$\begin{array}{l} \pi_4-\pi_6=8\\ \pi_6=-31\\ \pi_4=-23\\ \end{array}$$
 and
$$\begin{array}{l} \pi_1-\pi_1=11\\ \end{array}$$

$$\begin{array}{l} 412=c_{12}-\pi_1+\pi_2=12-(-11)+(-13)=10\\ 425=c_{25}-\pi_2+\pi_5=9-(-13)+(-7)=15\\ 445=c_{45}-\pi_4+\pi_7=6-(-23)+(-16)=13\\ 447=c_{47}-\pi_4+\pi_7=6-(-23)+(-16)=13\\ 467=c_{67}-\pi_6+\pi_7=7-(-31)+(-16)=22\\ 487=c_{87}-\pi_8+\pi_7=3-(-20)+(-16)=7\\ \end{array}$$

$$\begin{array}{l} 41=0-\pi_1=(-11)=11\\ 42=0-\pi_1=(-11)=11\\ 42=0-\pi_1=(-(-11))=11\\ 42=0-\pi_2=(-(-13)=13) \end{array}$$

How much can we increase the flow θ through (54)? Until (32) reaches zero

- It can be proved that, because the basis corresponds to a tree, the equations can always be solved by simple substitution.
- The order of substitution can always be found by "walking around the tree".
- Efficient implementations further reduce the cost of determining π by updating it as they walk around the tree, rather than computing it anew at each iteration.
- When the network simplex steps are to be carried out by a computer, it is not so obvious how
- A few concise and clever data structures are used to represent the basis tree in a way that allows the walk around the tree and finding the circuit induced by the entering arc efficiently.
- The data structures can themselves be efficiently updated as the tree changes from iteration to iteration.

Outline

1. Duality in Network Flow Problems

2. Network Simple>

3. Final Remarks

MatØk - Operationsanalyse

https://mitsdu.dk/da/mit_studie/kandidat/matematik-oekonomi_kandidat/uddannelsens-opbygning/forslag_til_studieprogrammer

- Microeconometrics (10 ECTS, efterår)
- DM872 Matematisk optimering i praksis (5 ECTS, efterår)
- DM878 Visualisering (5 ECTS, efterår)
- MM856 Grafteori (10 ECTS, efterår)
- DM870 Data mining and machine learning (10 ECTS, forår)
- DM887 Reinforcement learning (10 ECTS, forår)
- Al505+ IAAl501 Optimering (7.5 + 2.5 ECTS, forår)
- 30 ECTS valgfag
- 30 ECTS kandidatspeciale

Bachelor and Master projects

- Ideas for student projects: https://imada.sdu.dk/u/march/Blog/references/2022/04/20/projects.html
- But you can also come with your ideas