

La Pelota Rellena

Alonso Montagut Angie Sandoval Alexandra Peña

Propuesta de investigación Retos para físicos

Introducción

¿Cómo cambia la altura del rebote de una pelota de ping-pong al rellenarla de líquido?

Estudiar el coeficiente de restitución y la altura máxima de rebote de una pelota de ping-pong cuando está llena de líquido.

Objetivos

Objetivo 1

Encontrar el coeficiente de restitución elástico del sistema pelota-líquido y compararlo cuando la cantidad de liquido varía.

Objetivo 2

Determinar la relación entre la cantidad de líquido dentro de la pelota y la altura máxima alcanzada.

Objetivo 3

Determinar si hay una relación entre la viscosidad del líquido y la altura máxima alcanzada.

Marco teórico

Coeficiente de restitución

$$\epsilon = \frac{v_f}{v_i}$$

Velocidad

se reduce en función del coeficiente de restitución tras el impacto

$$v_{n+1} = \epsilon v_n$$

Altura

Dado que la altura del rebote depende del cuadrado de la velocidad, la relación entre alturas es:

$$h_{n+1} = \epsilon^2 h_n$$

Fuente:

Metodología

Materiales:

- Pelotas de ping-pong
- Agua
- Aceite de girasol
- Cámara

Montaje experimental:

Dejar caer la pelota, utilizar Tracker para encontrar el primer máximo de la altura.

Resultados

Resultados

Conclusiones

1

El coeficiente de restitución disminuye de forma no lineal a medida que se reduce el volumen de líquido, mostrando una caída especialmente pronunciada entre 30% y 45% de llenado.

2

Pelotas vacías o completamente llenas rebotan más, ya que el líquido no fluye libremente y se reduce la disipación.

3

Líquidos más viscosos (como aceite) disipan menos energía que los menos viscosos (como agua), dando mayor rebote.