

Université de Nantes – UFR des Sciences et Techniques Département de Mathématiques

Master 2 professionel

Séries Temporelles F. Lavancier

Ex 1. Indices descriptify d'ordre deux

On considère une série chronologique (x_1, \dots, x_n) de longueur n et on note $\hat{\rho}_n^x(h)$ la suite des auto-corrélations empiriques

1) Si $x_j = aj + b$ pour $j \in \{1, \dots, n\}$ où a et b sont des constante et $a \neq 0$, montrer que la suite (x_j) n'est pas stationnaire et que :

$$\lim_{n \to \infty} \hat{\rho}_n(h) = 1$$

2) Si $y_j = a\cos(\omega j)$ pour $j \in \{1, \dots, n\}$ où a et ω sont des constante avec $a \neq 0$, $\omega \neq 0$ et $\omega \in]-\pi, \pi[$, montrer que la suite (y_j) n'est pas stationnaire et que :

$$\lim_{n \to \infty} \hat{\rho}_n(h) = \cos(\omega h)$$

Indication:

$$\sum_{i=1}^{n} \cos((j+l)\theta) = \cos\left(\left(\frac{n+1}{2} + l\right)\theta\right) \frac{\sin(n\theta/2)}{\sin(\theta/2)}$$

- 3) Soit (ϵ_n) un bruit blanc centré et de variance 1. Calculer l'espérance des covariances empiriques $\hat{\sigma}_n(h)$ pour les séries $z_j = j + \epsilon_j$ pour $j \in \{1, \dots, n\}$ (modèle additif) et $w_j = j\epsilon_j$ pour $j \in \{1, \dots, n\}$ (modèle multiplicatif).
 - 4) Commentez les résultats obtenus dans cet exercice.

Ex 2. Stationarité

Soit $(\epsilon_n)_{n\in\mathbb{Z}}$ un bruit blanc fort (suite iid) de variance σ^2 . Etudier la stationarité des processus suivants :

- 1. $X_n = a + b\epsilon_n + c\epsilon_{n-1}$ avec a, b, c des réels non nuls.
- 2. $X_n = \epsilon_n \epsilon_{n-1}$
- 3. $X_n = \epsilon_n \cos(\omega n) + \epsilon_{n-1} \sin(\omega n)$ avec $\omega \neq 0$.

Ex 3. Stationarité

Soit $(\epsilon_n)_{n\in\mathbb{Z}}$ un bruit blanc fort (suite iid) de variance σ^2 . Soit

$$X_n = an + b + \epsilon_n$$

- 1) A quelle condition le processus (X_n) est-il stationnaire?
- 2) Etudier la stationarité de $Y_n = X_n X_{n-1}$.

Ex 4. La somme de deux processus stationnaires est-elle nécessairement un processus stationnaire?

La somme de deux processus non stationnaires est-elle nécessairement un processus non stationnaire?

La somme d'un processus stationnaire et d'un processus non stationnaire est-elle nécessairement un processus non stationnaire ?

Ex 5.

Soit $(\epsilon_n)_{n\in\mathbb{Z}}$ un bruit blanc fort (suite iid) de variance σ^2 . Soit

$$X_n = \epsilon_n - \theta \epsilon_{n-1}$$

où $|\theta| \leq 1$.

- 1) Calculer l'autocorrélogramme de (X_n) .
- 2) Soit la fonction $\Psi : \mathbb{Z} \mapsto \mathbb{R}$ suivante :

$$\Psi(h) = \begin{cases} 1 & \text{si } h = 0\\ \rho & \text{si } h \in \{-1, 1\}\\ 0 & \text{sinon.} \end{cases}$$

- (a) Lorsque $|\rho| \le 1/2$, préciser un processus stationniare dont Ψ est l'autocorrélogramme.
- (b) Lorsque $|\rho| > 1/2$, montrer que Ψ n'est pas définie positive et donc ne peut représenter un autocorrélogramme.

Ex 6. Etude de quelques filtres classiques

1) Montrer que le filtre

$$Hx(n) = \frac{1}{12} \left(\frac{x_{n-6}}{2} + x_{n-5} + \dots + x_{n+5} + \frac{x_{n+6}}{2} \right)$$

annule toute série de période 12, de moyenne nulle sur sa période. Montrer qu'il laisse invariant toute tendance linéaire.

- 2) Montrer (par récurrence) que le filtre $(1 B)^d$, où d est un entier positif, réduit à une constante toute tendance polynomiale de degré inférieur ou égal à d.
- 3) Montrer que le filtre $(1 B^s)$, où s est un entier positif, annule toute tendance linéaire et toute saisonalité d'ordre s.
- 4) Soit $X_n = an + b + S_n + Y_n$ où a et b sont des constantes réelles non nulles et où S_n est une série périodique de période 12, de moyenne nulle sur sa période. Y_n est un résidu stationnaire centré. Quels filtres peut-on appliquer à X_n pour
 - Estimer la tendance
 - Estimer la saisonalité S_n
 - Estimer la partie stationnaire Y_n
 - Eliminer la tendance et la saisonalité pour ne garder qu'une série stationnaire? (en vue d'une prévision par exemple).
- 5) Soit les filtres A = (1 B)H et $F = 1 B^{12}$. Calculer le pouvoir de réduction de variance de A, i.e. le rapport $V(A\epsilon_n)/V(\epsilon_n)$ lorsque (ϵ_n) est un bruit blanc de variance σ^2 . Comparer avec le pouvoir de réduction de variance de F.

Ex 7.

Soit les filtres moyennes mobiles suivants :

$$M_3 = \frac{1}{3}B^2(I + F + F^2)$$

$$M_4 = 2M_3 - (M_3M_3)$$

- 1) Montrer que M_4 laisse invariantes les tendances linéaires.
- 2) M_4 annule-t-il les séries périodiques de période 3, de moyenne nulle sur leur période?
- 3) Calculer le pouvoir de réduction de variance de M_4 , i.e. le rapport $V(M_4\epsilon_n)/V(\epsilon_n)$ lorsque (ϵ_n) est un bruit blanc de variance σ^2 .

Université de Nantes – UFR des Sciences et Techniques Département de Mathématiques

Master 2 professionel

Séries Temporelles F. Lavancier

Processus ARMA. Processus L^2

Ex 8.

Soit $(\epsilon_n)_n$ un bruit blanc de variance σ^2 . Soit (X_n) le processus suivant la réprésentation

$$X_n = \frac{1}{2}X_{n-1} - \frac{1}{4}X_{n-2} + \epsilon_n.$$

- 1) Montrer qu'il existe X_n stationnaire et que la représentation précédente est canonique.
- 2) Montrer que les termes d'autocovariance $\sigma(h)$ de X_n vérifient l'équation de récurrence suivante

$$\sigma(h) = \frac{1}{2}\sigma(h-1) - \frac{1}{4}\sigma(h-2).$$

- 3) Exprimer $\sigma(1)$ et $\sigma(2)$ en fonction de $\sigma(0)$.
- 4) Résoudre l'équation de récurrence et exprimer $\sigma(h)$ en fonction de $\sigma(0)$.
- 5) Calculer $\sigma(0)$ en fonction de σ^2 .

Ex 9.

Soit $(\epsilon_n)_n$ une suite de i.i.d. suivant une $\mathcal{N}(0,1)$ et soit le processus MA(1) suivant :

$$X_n = \epsilon_n - \theta \epsilon_{n-1}$$

où $\theta \neq 0$ et $|\theta| < 1$.

On considère le processus (Y_n) suivant :

$$Y_n = \begin{cases} 1 & \text{si } X_n > 0 \\ 0 & \text{si } X_n \le 0. \end{cases}$$

- 1) Quelle est la loi des variables aléatoires Y_n ?
- 2) Quelle est la loi jointe du vecteur (X_n, X_{n-1}) ?
- 3) Montrer que le processus (Y_n) est stationnaire et donner sa fonction de covariance. <u>Indication</u>: On admettra que

$$cov(Y_n, Y_{n-1}) = K = \frac{1}{\pi} arctan \left[\left(\frac{1 + \theta^2 - \theta}{1 + \theta^2 + \theta} \right)^{1/2} \right] - \frac{1}{4}$$

4) On peut déduire de ce qui précède (cf cours) que (Y_n) admet une représentation du type :

$$Y_n = \mu + \eta_n - \alpha \eta_{n-1},$$

où μ est une constante et (η_n) est un bruit blanc de variance σ^2 . Préciser μ et proposer une méthode pour calculer α et σ^2 .

5) Ayant observé (Y_n) , peut-on retrouver une estimation de θ ?

Ex 10.

Soit $(\epsilon_n)_n$ une suite de i.i.d. suivant une $\mathcal{N}(0,\sigma^2)$ et soit le processus AR(1) suivant :

$$X_n = \theta X_{n-1} + \epsilon_n,\tag{1}$$

où $\theta \neq 0$ et $|\theta| < 1$.

- 1) Calculer $E(X_n)$ et $Var(X_n)$.
- 2) Calculer la fonction d'autocovariance et d'autocorrélation de (X_n) .
- 3) Calculer la fonction d'autocorrélation partielle de (X_n) .
- 4) On observe (X_1, \ldots, X_n) . On suppose pour simplifier que $X_1 = \epsilon_1$, la relation (1) n'étant valable qu'à partir de n = 2. Estimer θ et σ^2 par la méthode du maximum de vraisemblance.

<u>Indication</u>: Ecrire la vraisemblance de (X_1, \ldots, X_n) à l'aide de celle de $(\epsilon_1, \ldots, \epsilon_n)$

Ex 11. Soit $(\epsilon_n)_n$ un bruit blanc de variance 1. Soit (X_n) le processus suivant la réprésentation

$$X_n = 4X_{n-1} - 4X_{n-2} + \epsilon_n.$$

- 1) Existe-t-il une solution stationnaire à l'équation précédente? La représentation est-elle canonique?
- 2) Déterminer la représentation canonique de (X_n) en notant (η_n) le bruit blanc associé. Calculer $Var(\eta_n)$.
- 3) Quelle est l'écriture moyenne mobile infinie du processus (X_n) ? En déduire $E(X_n)$ et $Var(X_n)$.
- 4) Calculer l'autocorrélation (simple) de (X_n) . Calculer explicitement $\rho(h)$ pour $h \in \{0, 1, 2, 3, 4\}$.
 - 5) Calculer l'autocorrélation partielle de (X_n) .
 - 6) Soit le processus (Y_n) suivant :

$$Y_n = \frac{3}{4}Y_{n-1} + \frac{1}{4}X_{n-1} + \xi_n,$$

où (ξ_n) est un bruit blanc de variance 1, non corrélé avec (η_n) . Soit le processus (ω_n) défini par

$$\omega_n = \left(1 - \frac{3}{4}L\right)\left(1 - \frac{1}{2}L\right)^2 Y_n.$$

- (a) Calculer $E(\omega_n)$ et $Var(\omega_n)$.
- (b) Calculer l'autocorrélation simple ρ_{ω} de (ω_n) .
- (c) En déduire que (ω_n) est solution de l'équation

$$\omega_n = \nu_n + \theta_1 \nu_{n-1} + \theta_2 \nu_{n-2}$$

où (ν_n) est un bruit blanc.

(d) En déduire que (Y_n) est un processus ARMA dont on précisera les ordres. <u>Indication</u>: Pour $0 < \rho < 1$, on a

$$\sum_{i=0}^{\infty} i\rho^i = \frac{\rho}{(1-\rho)^2}, \qquad \sum_{i=0}^{\infty} i^2 \rho^i = \frac{\rho(\rho+1)}{(1-\rho)^3}.$$

Ex 12. On considère le processus (Y_n) défini par $Y_n = 2Y_{n-1} + u_n$ où (u_n) est un bruit blanc centré de variance 5/18.

On suppose que l'observation de Y_n est entachée d'une erreur et qu'on observe $X_n = Y_n + \eta_n$ où (η_n) est un bruit blanc centré, de variance 1/6, non corrélé avec (u_n) .

- 1) Montrer que le processus $\omega_n = u_n + \eta_n 2\eta_{n-1}$ est un processus moyenne mobile.
- 2) En déduire que (X_n) est un processus ARMA dont on précisera les ordres.
- 3) Donner la représentation canonique de (X_n) .
- 4) En déduire une représentation du type :

$$X_n = -\sum_{i=1}^{\infty} \pi_i X_{n-i} + \epsilon_n,$$

avec $\sum_{i=1}^{\infty} |\pi_i| < \infty$ et (ϵ_n) l'innovation de (X_n) . Quelle est l'utilité d'une telle représentation?

5) Donner la variance de (ϵ_n) .

Ex 13. Prévision

Soit $(\epsilon_n)_n$ un bruit blanc de variance σ^2 . Soit (X_n) le processus suivant la représentation

$$X_n = X_{n-1} + \epsilon_n - \theta \epsilon_{n-1},$$

où $0 < \theta < 1$.

On suppose que (ϵ_n) est orthogonal au passé de (X_n) i.e. $E(\epsilon_n X_j) = 0, \forall j \leq n-1$.

- 1) Existe-t-il une solution stationnaire à la représentation précédente?
- 2) On note \hat{X}_{n+1} la prévision linéaire optimale de X_{n+1} sachant le passé X_n, X_{n-1}, \dots Montrer que $X_{n+1} - \hat{X}_{n+1} = \epsilon_{n+1}$
 - 3) Montrer que \hat{X}_{n+1} correspond à un lissage simple exponentiel.
 - 4) Monter que $\forall h \geq 1, \hat{X}_{n+h} = \hat{X}_{n+1}$.
 - 5) Exprimer l'erreur de prévision en fonction de l'innovation et en déduire sa variance.

Ex 14. Prévision

Soit $(\epsilon_n)_n$ un bruit blanc de variance σ^2 . Soit (X_n) le processus suivant la représentation

$$X_n = \epsilon_n - \theta \epsilon_{n-1}$$
.

- 1) On suppose $|\theta| < 1$. Donner la prévision linéaire optimale \hat{X}_{n+1} de X_{n+1} sachant le passé X_n, X_{n-1}, \ldots en fonction de X_n, X_{n-1}, \ldots et préciser la variance de l'erreur de prévision.
- 2) On suppose que $\theta = 1$. Donner l'expression de \hat{X}_{n+1} en fonction de X_n, X_{n-1}, \dots et préciser la variance de l'erreur de prévision.