MATH 321 DAY 10 - CONSEQUENCES OF COMPLETENESS, PART 2

1. Claimed Homework Presentations

(1) Abbott Exercise 1.2.3

Exercise 1.2.5. (a) If $x \in (A \cap B)^c$ then $x \notin (A \cap B)$. But this implies $x \notin A$ or $x \notin B$. From this we know $x \in A^c$ or $x \in B^c$. Thus, $x \in A^c \cup B^c$ by the definition of union.

- (b) To show $A^c \cup B^c \subseteq (A \cap B)^c$, let $x \in A^c \cup B^c$ and show $x \in (A \cap B)^c$. So, if $x \in A^c \cup B^c$ then $x \in A^c$ or $x \in B^c$. From this, we know that $x \notin A$ or $x \notin B$, which implies $x \notin (A \cap B)$. This means $x \in (A \cap B)^c$, which is precisely what we wanted to show.
 - (c) In order to prove $(A \cup B)^c = A^c \cap B^c$ we have to show,

$$(A \cup B)^c \subseteq A^c \cap B^c \text{ and,}$$

$$(2) A^c \cap B^c \subseteq (A \cup B)^c.$$

To demonstrate part (1) take $x \in (A \cup B)^c$ and show that $x \in (A^c \cap B^c)$. So, if $x \in (A \cup B)^c$ then $x \notin (A \cup B)$. From this, we know that $x \notin A$ and $x \notin B$ which implies $x \in A^c$ and $x \in B^c$. This means $x \in (A^c \cap B^c)$.

Similarly, part (2) can be shown by taking $x \in (A^c \cap B^c)$ and showing that $x \in (A \cup B)^c$. So, if $x \in (A^c \cap B^c)$ then $x \in A^c$ and $x \in B^c$. From this, we know that $x \notin A$ and $x \notin B$ which implies $x \notin (A \cup B)$. This means $x \in (A \cup B)^c$. Since we have shown inclusion both ways, we conclude that $(A \cup B)^c = A^c \cap B^c$.

(2) Abbott Exercise 1.2.5

- (a) $|a-b| = |a+(-b)| \le |a| + |-b| = |a| + |b|$
- (b) With the triangle inequality: suppose WLOG that $a \ge b$. Then note that

$$|a| = |(a - b) + b| \le \Delta |a - b| + |b|$$

so that

$$|a - b| \ge |a| - |b| = ||a| - |b||$$

(c) (b) without the triangle inequality: ||a| - |b|| = |a - b| if $a, b \ge 0$. If $a \ge 0$ and b < 0, then

$$||a| - |b|| = |a - (-b)| = |a + b| \le |a - b|$$

by the fact that b is negative. The same argument works if $a < 0, b \ge 0$ since ||a| - |b|| = ||b| - |a||. If a < 0, b < 0, then

$$||a| - |b|| = |(-a) - (-b)| = |b - a| = |a - b|.$$

(3) Abbott Exercise 1.2.12

Base case: De Morgan's Law

Inductive step: Suppose that, whenever A_1, \ldots, A_{k-1} are sets, $(A_1 \cup \cdots \cup A_{k-1})^c = A_1^c \cap \cdots \cap A_{k-1}^c$. Then

$$(A_1 \cup \cdots \cup A_{k-1} \cup A_k)^c = (A_1 \cup \cdots \cup (A_{k-1} \cup A_k))^c$$

$$= A_1^c \cap \cdots \cap (A_{k-1} \cup A_k)^c \text{ by the induction assumption}$$

$$= A_1^c \cap \cdots \cap A_{k-1}^c \cap A_k^c \text{ by De Morgan's Laws.}$$

(4) Abbott Exercise 1.3.8

Suppose that $\sup A < \sup B$. Suppose for contradiction that no $b \in B$ is an upper bound for A. Then, for all $b \in B$, there exists an element $a \in A$ such that a > b. Since $\sup A > a$ for all $a \in A$, this tells us that, for all $b \in B$, $\sup A > b$ (and thus $\sup A$ is an upper bound for B). Therefore, by the definition of least upper bound, we must have that $\sup B \leq \sup A$, a contradiction.

(5) Abbott Exercise 1.3.9

Exercise 1.3.9. (a) Set $\epsilon = \sup B - \sup A > 0$. By Lemma 1.3.8, there exists an element $b \in B$ satisfying $\sup B - \epsilon < b$, which implies $\sup A < b$. Because $\sup A$ is an upper bound for A, then b is as well.

(b) Take
$$A = [0, 1]$$
 and $B = (0, 1)$.

- (a) True
- (b) False; take A = (0, 1). Then $\sup A = 1$ although a < 1 for all $a \in (0, 1)$.
- (c) Take A = (0, 1) and $B = \{1\}$. Then a < 1 for all $a \in A$, but $\sup A = 1 = \inf B$.
- (d) True. Since $\sup A \geq a$ for all $a \in A$ and $\sup B \geq b$ for all $b \in B$, it must be true that $\sup A + \sup B \geq a + b$ for all $a \in A$ and $b \in B$. So $\sup A + \sup B$ is an upper bound for A + B. Now, let $\epsilon > 0$. By Lemma 1.3.7, there exist elements $a \in A, b \in B$ satisfying $\sup A \frac{\epsilon}{2} < a$ and $\sup B \frac{\epsilon}{2} < b$. Then $(\sup A + \sup B) \epsilon < a + b$, and by Lemma 1.3.7 $\sup A + \sup B$ is the lub for A + B.
- (e) True. Set $\epsilon = \sup B \sup A \ge 0$. By Lemma 1.3.7, there exists an element $b \in B$ satisfying $\sup B \epsilon < b$, which implies $\sup A < b$. Because $\sup A$ is an upper bound for A, then b is as well.

2. Consequences of Completeness, Part 2

2.1. The existence of square roots.

• We saw that $\sqrt{2} \notin \mathbb{Q}$. How do we know that $\sqrt{2} \in \mathbb{R}$?

Conjecture 1. There exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.

Exercise 2. [slides] (Dis?) prove this.

Proof. Consider the set

$$T = \{t \in \mathbb{R} | t^2 < 2\}$$

and set $\alpha = \sup T$. We prove that $\alpha^2 = 2$ by ruling out the possibilities $\alpha^2 < 2$ and $\alpha^2 > 2$.

- We use both of the parts of the definition of $\sup T$.
- The strategy is to demonstrate that $\alpha^2 < 2$ violates the fact that α is an upper bound for T,
- and $\alpha^2 > 2$ violates that it's the least upper bound.

Assume for contradiction that $\alpha^2 < 2$. This should mean that we could find an element of T larger than α , giving us a contradiction. Let's try to show that $(\alpha + \frac{1}{n}) \in T$ for some n. This would contradict α being an upper bound for T.

We only have information about α^2 , not α , so let's try squaring $\alpha + \frac{1}{n}$:

$$(\alpha + \frac{1}{n})^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$
$$< \alpha^2 + \frac{2\alpha + 1}{n}$$

Exercise 3. We want to show that $(\alpha + \frac{1}{n})^2 < 2$ and thus that $\alpha + \frac{1}{n} \in T$. Remember we have freedom in our choice of n. How big do we need to make n so that $\alpha^2 + \frac{2\alpha + 1}{n} < 2$?

Proof. If we choose $n_0 \in \mathbb{N}$ large enough that

$$\frac{1}{n_0} < \frac{2 - \alpha^2}{2\alpha + 1},$$

then $(2\alpha + 1)/n_0 < 2 - \alpha^2$, and consequently that

$$\left(\alpha + \frac{1}{n_0}\right)^2 = \alpha^2 + \frac{2\alpha}{n_0} + \frac{1}{n_0^2}$$

$$< \alpha^2 + \frac{2\alpha + 1}{n_0}$$

$$< \alpha^2 + (2 - \alpha^2) = 2$$

and hence $\alpha + \frac{1}{n_0} \in T$, contradicting that $\alpha = \sup T$. Hence, $\alpha^2 < 2$.

Now suppose that $\alpha^2 > 2$. Then we try to show that $\alpha - \frac{1}{n}$ is an upper bound for T for some n. We want to show that

 $\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} > 2$

for an appropriate choice of n. The rest is left as an exercise.

- A small modification of this proof shows that $\sqrt{x} \in \mathbb{R}$ for any $x \geq 0$.
- Using the binomial formula for expanding $(\alpha + 1/n)^m$, we can show that $\sqrt[n]{x} \in \mathbb{R}$ for any $m \in \mathbb{N}$.