Name (Pinyin): Xu Hongty
Email (Prefix): Xuht|

Computer Architecture I Homework 6

2021 Spring April 22

Instructions:

Homework 6 covers the content of caches, please refer to the lecture slides. You can print it out, write on it and <u>scan</u> it into a pdf, or you can edit the PDF directly, just remember: you must create a <u>PDF</u> and upload to the <u>Gradescope</u>. Please assign the questions properly on Gradescope, otherwise you will lose 25% of points.

[30 points] Question Set 1. Direct Mapped Cache

In a 32-bit machine (word size is 32 bit), the clock frequency is 2GHz. We have a direct mapped cache with properties as follows:

- 1. Cache size is 32 Bytes;
- 2. Block size is 8 Bytes;
- 3. Cache hit time is 2 cycles;
- 4. Cache miss penalty is 100 cycles;

1-A. What is the width (in bits) of each field of following address bit assignment?

TAG: 27 bits	Set index:	Block offset: 3 bits
	2 017 G	7 0613

Please provide info about how you came to this result. (Answer 6pt + Analysis 4pt)

1–B. We will access the data of addresses as follows. Fill in the blanks. It is about T/I/O(tag/index/offset, write down the value in decimal), whether there is a hit. (each line worth 1 pt.)

Addresses (serially access)	T/I/O	Miss or Hit {"Miss", "Hit"}
0x0000004	0/0/4	Miss
0x0000005	0/0/5	Hit
0x00000068	3/1/0	Miss
0x000000c8	6/1/0	Miss
0x00000068	3/1/0	Miss
0x00000dd	6/3/5	/Ni s5
0x00000045	2/0/5	Miss
0x00000004	0/0/4	Miss
0x000000c8	6/1/0	Miss
0x0000004	0/0/4	Hit

1-C. Calculations. (Show progress, worth 50% pts)

From the table above, we know the missivate is
$$\frac{8}{10} = 80\%$$

1-C-ii: AMAT (ns): (3 pt.)

1-C-iii: AMAT if we don't have this cache (ns): (3 pt.)

[30 points] Question Set 2. Four-Way Set Associative Cache

From Q1 (32bit machine, clock frequency is 2GHz), we implemented a four-way set associative cache. The parameters are shown as follows:

- 1. Cache size is 32 B;
- 2. Block size is 8 Bytes;
- 3. Cache hit time is 2 cycles;
- 4. Cache miss penalty is 100 cycles;

2-A. What the width of each field of following address bit assignment:

TAG: 29 bits Set	ndex: 0 hitc	Block offset:
------------------	--------------	---------------

Give me the progress how you think about it. (Answer 6pt + Analysis 4pt)

black off set:
$$\log_2 8 = 3 \text{ bits}$$

set in dex: $\log_2 \frac{32}{8} \times 4 = 0 \text{ bits}$
 $\tan x = 32 - 3 - 0 = 29 \text{ bits}$

2–B. We will access the data of addresses as follows. Fill in the blanks. It is about T/I/O (tag/index/offset, write down the value in decimal), and whether there is a hit. Use LRU algorithm. (each line worth 1 pt.)

Addresses (serially access)	T/I/O	Miss or Hit {"Miss", "Hit"}
0x00000004	010/4	Miss
0x00000005	0/0/5	Hit
0x00000068	13/0/0	Miss
0x000000c8	25/0/0	Miss
0x00000068	13/0/0	Hit
0x00000dd	27/0/5	Miss
0x00000045	8/0/5	Miss
0x0000004	0/0/4	Miss
0x000000c8	25/0/0	Miss
0x0000004	0/0/4	Hit

2-C. Calculations.

2-C-ii. Calculate the AMAT in ns. (5 pt.)

[22 points] Question Set 3. Cache Friendly Programming

This C program is run on a processor with a direct–mapped data cache with a size of 1KiB and a block size of 16 bytes. Assume that your cache begins cold and no optimization. (32bit machine)

Assume no optimization and size of (int) == 4 and A = 0x4000.

3-A-i. Make use of what kind of locality (2 pt.)

3-A-ii. Calculate the miss rate. Show progress (10 pt.)

3-B. Calculate the miss rate.

Show your progress (10 pt.)

168

the second loop, each step += 256×4=1024 Byte

which is the same size as the cachesize.

So, each step will be map to the same cacheline

and since this is a direct-mapped cache, then each time mill miss.

So, the miss rate is 100%.

[18 points] Question Set 4. AMAT

4-A. Impact of increasing associativity with fixed blocks size and number of sets. Fill in with increase, decrease or unchange. (3 pt)

Hit time	increas e
Miss rate	de crease
Miss penalty	unchange

4–B. Suppose your L1\$ has a hit time of 2 cycles and a local miss rate of 20%. Your L2\$ has a hit time of 15 cycles and a global miss rate of 5%. Your main memory access needs 100 cycles.

4-B-i. Write down your local miss rate of L2\$. (5 pt)

local Li x local
$$L_1 = global$$

$$\Rightarrow \left(oral L_2 = \frac{5\%}{20\%} = 25\%\right)$$

4-B-ii. Write down the AMAT of the system. (5 pt)

4-B-iii. Suppose your newly added L3\$ has a hit time of 30 cycles and you want reduce your AMAT of the system to 8 cycle, what is the largest local miss rate? (5 pt)

$$AMA7 = 2 + 20\% \times (15 + 25\% \times (30 + 100 \times)) = 8$$

$$\Rightarrow \chi = \frac{3}{10} = 30\%$$

So, the largest local miss rate is 30%