绳密★启用前

2021年4月高等教育自学考试全国统一命题考试

离散数学

(课程代码 02324)

注意事项:

- 1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔, 书写部分必须使用黑色字迹签字笔。

第一部分 选择题

- 一、单项选择题: 本大题共 15 小题,每小题 1 分,共 15 分。在每小题列出的备选项中 只有一项是最符合题目要求的, 请将其选出。
- 1. 设P:他勤奋,Q:他成绩高,命题"只有他勤奋,他成绩才高"符号化为
- A. $P \vee Q$
- B. $Q \rightarrow P$
- C. $\neg P \lor \neg Q$
- D. $P \rightarrow 0$

- 2. 下列命题公式是矛盾式的为
 - A. $(P \to Q) \land (Q \to R) \to (P \to R)$ B. $(P \to Q) \to (\neg Q \to \neg P)$
 - C. $\neg (P \land Q) \lor (\neg P \land \neg Q)$
- D. $\neg (P \rightarrow Q) \land Q$
- 3. 下列式子中,不正确的是

 - A. $\exists x A(x) \to B \iff \forall x (A(x) \to B)$ B. $\exists x (A(x) \lor B(x)) \iff \exists x A(x) \lor \exists x B(x)$

 - C. $A \to \forall x B(x) \Leftrightarrow \exists x (A \to B(x))$ D. $\forall x (A(x) \land B(x)) \Leftrightarrow \forall x A(x) \land \forall x B(x)$
- 4. 设论域的元素为a和b,与谓词公式 $\forall x P(x)$ 等价的是
 - A. $P(a) \wedge P(b)$ B. $P(a) \vee P(b)$ C. $P(a) \rightarrow P(b)$ D. $P(b) \rightarrow P(a)$
- 5. 下列关系矩阵所对应的关系具有自反性的是
 - [0 0 1] 1 1 07 C. 1 0 1 D. 1 1 1 A. 0 0 1 0 1 0 1 0 0
- 6. 下列非负整数度序列可简单图化的是
 - A. (5,5,4,1,1)
- B. (3,3,2,2,1,1)
- C.(3,3,3,1)
- D. (4,3,2,1)
- 7. $S = \{a, b\}$ 的二元运算。定义为 $a \circ a = a$, $a \circ b = b$, $b \circ a = b$, $b \circ b = a$, 则 \circ 不满足
 - A. 交换律
- B. 幂等律
- C. 结合律
- D. 消去律

- 8. 设集合 $A = \{1,2,3\}$ 上的二元关系 $R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3)\}$,则R是A上的
 - A. 相容关系
- B. 筹价关系
- C. 偏序关系
- D. 拟序关系
- 9. 设R为实数集,下列关系中能构成函数的是
 - A. $\{(x,y)|x \in \mathbb{R} \land y \in \mathbb{R} \land (y^2 x = 0)\}$
 - B. $\{\langle x,y\rangle|x\in \mathbb{R} \land y\in \mathbb{R} \land (x^2+y=0)\}$
 - C. $\{\langle x,y\rangle|x\in \mathbb{R} \land y\in \mathbb{R} \land (y/x=1)\}$
 - D. $\{\langle x,y\rangle | x\in \mathbf{R} \land y\in \mathbf{R} \land (y\cdot x=1)\}$
- 10. 设R、S均为集合A上的二元关系,下列命题错误的是
 - A. 若R和S是反自反的,则 $R \cup S$ 也是反自反的
 - B. 若R和S是自反的,则RUS也是自反的
 - C. 若R和S是反对称的,则RUS也是反对称的
 - D. 若R和S是对称的,则 $R \cup S$ 也是对称的
- 11. 下列图为欧拉图的是

12. 下列图中不是哈密顿图的是

13. 下列选项中与题 13 图互为补图的是

- 14. 在下列代数系统(G,o)中, o是普通加法运算, 其中不是群的是
 - A. G为自然数集合

B. G为偶数集合

C. G为有理数集合

- D. G为整数集合
- 15. 如题 15 图所示的格中, 元c的补元是
 - A. a
- B. b
- C. d
- D. e

题 15 图

离散数学试题第2页(共4页)

第二部分 非选择题

- 二、填空题:本大题共10小题,每小题2分,共20分。
- 16. 任意两个不同大项的析取式的真值是____。
- 17. 设论域为整数集,命题∃x∀y(x*y=1)的真值为____。
- 18. 公式 $\forall x P(x) \rightarrow \neg \exists x Q(x)$ 对应的前束范式为_____。
- 19. 设代数系统(S,*)为独异点, $\forall a,b \in S$,均有逆元 $a^{-1},b^{-1} \in S$,且a*b也有逆元,则 a*b的逆元为_____。
- 20. 设无向树有 8 片树叶, 1 个度为 4 的分支点,其余的分支点的度为 3,则树的结点数为____。
- 21. 设G为连通平面图, 共8个顶点, 其平面表示中共有6个面, 则边数为____。
- 22. 有 9 个顶点的无向完全图 K9, 需要删除_____条边才能得到生成树。
- 23. 设集合 $A = \{1,2\}, B = \{2,3\}, 则A, B$ 的幂集的对称差 $\mathcal{P}(A) \oplus \mathcal{P}(B)$ 为
- 24. 设集合 $A = \{a, b, c\}$, A上的关系 $R = \{\langle a, b \rangle, \langle b, c \rangle\}$, $S = \{\langle b, b \rangle, \langle c, a \rangle\}$, 则复合关系(采用右复合) $R \circ S$ 为______。
- 25. 设集合 $A = \{1,2,3,4,5\}$, 集合 $B = \{a,b\}$, 从A到B的不同的满射的个数为____。
- 三、简答题:本大题共 7 小题, 第 26~30 小题, 每小题 6 分; 第 31~32 小题, 每小题 7 分, 共 44 分。
- 26. 用真值表法判定命题公式 $(P \leftrightarrow (P \land Q)) \lor R$ 是否为非重言式的可满足式。
- 27. 用等值演算法求命题公式 $(P \rightarrow Q) \land \neg R$ 的主析取范式。
- 28. 设 集 合 $A = \{1,2,3\}$ 上 的 二 元 关 系 $R = \{(1,1),(1,2),(1,3),(2,1),(3,2)\}$,写出自反闭包 r(R),对称闭包s(R)和传递闭包t(R)的集合表达式。
- 29. 利用 Kruskal 算法求题 29 图所示的连通带权图的最小生成树,请给出详细过程并画出最小生成树。

- 30. 设有向图G如题 30图所示,
 - (1) 写出图G的邻接矩阵;
 - (2) 计算图G中长度为 4 的通路数;
 - (3) 计算图G中长度小于或等于 4 的回路数。

- 31. 用二叉树表示算术表达式(3*a-2) / (b+c*d),并给出先序、中序和后序遍历序列。
- 32. 设A = {1,2,4,6,12}, ≼为整除关系,回答下列问题:
 - (1) 画出(A, ≼)的哈斯图;
 - (2) 求子集 $B = \{2,4,6\}$ 的极大元,极小元,最大元,最小元;
 - (3) 判断该偏序集是否为格。
- 四、证明题:本大题共3小题,每小题7分,共21分。
- 33. 在整数集**Z**上定义二元运算∘: $a \circ b = a + b 3$, $\forall a,b \in \mathbf{Z}$, 证明⟨**Z**,∘⟩构成交换群。
- 34. 用 CP 规则证明下面有效推理。

前提: $P \rightarrow (Q \rightarrow R)$, $S \rightarrow P$, Q

结论: $S \rightarrow R$

35. 设G是 $n(n \ge 2)$ 阶无向简单图,且G为自补图,证明n = 4k或n = 4k + 1,其中k为正整数。

更多自考真题请联系微信/QQ:28225803

绝密★启用前

2021年4月高等教育自学考试全国统一命题考试

离散数学试题答案及评分参考

(课程代码 02324)

- 一、单项选择题:本大题共 15 小题,每小题 1 分,共 15 分。
 - 1.B 2.D 3.C 4.A 5.D 6.B 7.B 8.A 9.B 10.C
 - 11.D 12.C 13.A 14.A 15.A
- 二、填空题:本大题共10小题,每小题2分,共20分。
 - 16. T
 - 17. F
 - 18. $\exists x \forall y (\neg P(x) \lor \neg Q(y))$ (或 $\exists x \forall y \neg (P(x) \land Q(y))$)或蕴涵式)
 - 19. $b^{-1} * a^{-1}$
 - 20. 13
 - 21. 12
 - 22. 28
 - 23. {{1}, {3}, {1,2}, {2,3}}
 - 24. $\{(a,b),(b,a)\}$
 - 25. 30
- 三、简答题:本大题共7小题,第26~30小题,每小题6分;第31~32小题,每小题7分,共44分。
 - 26. 解: $(P \leftrightarrow (P \land Q)) \lor R$ 的真值表如下

P Q R $P \land Q$ $P \leftrightarrow (P \land Q)$ $(P \leftrightarrow (P \land Q)) \lor R$ F F F T T F F T T T F T F T T F T T T T	
F F T T T F T F T T	(1分)
F T F T T	
	(1分)
F T T F T	
	(1分)
T F F F F	
T F T F T	(1分)
T T F T T	
T T T T T	(1分)

(1分)

由上表可知, 命题公式为非重言式的可满足式。

离散数学试题答案及评分参考第1页(共4页)

27. 解: $(P \rightarrow Q) \land \neg R$

$$\Leftrightarrow (\neg P \lor Q) \land \neg R \tag{2 } \mathcal{D})$$

$$\Leftrightarrow (\neg P \land \neg R) \lor (Q \land \neg R) \tag{2 }$$

$$\Leftrightarrow (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land \neg R) \lor (P \land Q \land \neg R) \tag{1 }$$

由此得原命题公式的主析取范式为

$$(P \land Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land \neg R)_{\circ} \tag{1 }$$

28. 解:

$$r(R) = R \cup I_A = R \cup \{\langle 2, 2 \rangle, \langle 3, 3 \rangle\}$$

$$= \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle\},$$

$$(2 \%)$$

$$s(R) = R \cup R^{-1} = R \cup \{\langle 2, 3 \rangle, \langle 3, 1 \rangle\}$$

$$= \{\langle 1,1\rangle, \langle 1,2\rangle, \langle 1,3\rangle, \langle 2,1\rangle, \langle 3,2\rangle, \langle 2,3\rangle, \langle 3,1\rangle\}, \tag{2}$$

$$t(R) = \, R \cup R^2 \cup R^3 \, = \, R \cup \{\langle 2,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle, \langle 3,3 \rangle\} = E_A$$

$$= \{\langle 1,1\rangle, \langle 1,2\rangle, \langle 1,3\rangle, \langle 2,1\rangle, \langle 2,2\rangle, \langle 2,3\rangle, \langle 3,1\rangle, \langle 3,2\rangle, \langle 3,3\rangle\}. \tag{2}$$

29. 解:利用 Kruskal 算法计算,按权值从小到大对边进行排列,

添加权值为
$$1$$
 的边(v_1, v_4); (1 分)

添加权值为 2 的边(
$$v_1, v_2$$
); (1 分)

添加权值为 2 的边(
$$v_2, v_5$$
); (1 分)

添加权值为 4 的边
$$(v_1, v_3)$$
; (1 分)

30. 解:

(1) 图 G 的邻接矩阵为

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \tag{1 5}$$

(2) 由于

离散数学试题答案及评分参考第2页(共4页)

$$\boldsymbol{M}^{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \tag{1 \%}$$

$$\boldsymbol{M}^{3} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 1 \end{bmatrix}, \tag{1.57}$$

$$\boldsymbol{M}^{4} = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 3 & 1 \end{bmatrix}, \tag{1.57}$$

由 M^4 可知,图G中长度为4的通路数为16条。 (1分)

(3) 由 M, M^2 , M^3 和 M^4 可知, G 中长度小于或等于 4 的回路数为 11。(1 分)

31. 解: 算术表达式(3*a-2)/(b+c*d)的二叉树如答 31 图所示:

先序遍历序列为/(
$$-(*3a)2$$
)($+b(*cd)$),即/ $-*3a2+b*cd$; (2 分) 自考押题 历年真题及答案q344647公众号顺通考试资料中序·遍历序列为($(3*a)-2$)/($b+(c*d)$),即 $3*a-2/b+c*d$; (2 分)

中序遍历序列为
$$((3*a)-2)/(b+(c*d))$$
, 即 $3*a-2/b+c*d$; (2分)

后序遍历序列为
$$((3a*)2-)(b(cd*)+)/$$
,即 $3a*2-bcd*+/$ 。 (2 分)

32. 解:

离散数学试题答案及评分参考第3页(共4页)

		(2)	子集 $B = \{2,4,6\}$ 的	勺极大元为4和6,	(1分)	
			极小元为2,		(1分)	
最大元不存在,					(1分)	
	最小元为 2。 (3) 该偏序集 $\langle A, \preccurlyeq \rangle$ 是格,因为 A 中每对元素都有最小上界和最为				(1分)	
					(1分)	
四、	证明	题:	本大题共3小题。	,每小题 7 分,共 21 分。		
	33.	33. 证明:				
		(1)	满足封闭性: ∀a	a, b ∈ Z , 有		
				$a \circ b = a + b - 3 \in \mathbf{Z};$	(1分)	
		(2)	满足结合律: ∀a	a, b, c ∈ Z ,有		
			($(a \circ b) \circ c = a + b + c - 6 = a \circ (b \circ c);$	(1分)	
		(3)	存在幺元 3: ∀a	∈ Z , 有		
			$a \circ$	$3 = a + 3 - 3 = a = 3 + a - 3 = 3 \circ a$;	(1分)	
		(4)	每个元素存在逆	$\vec{\pi}$: $\forall a \in \mathbf{Z}$, $a \circ (6-a) = (6-a) \circ a = 3$,		
			故a的逆元为6-	a;	(2分)	
		(5)	满足交换律: ∀a	a, b ∈ Z , 有		
				$a \circ b = a + b - 3 = b \circ a;$	(1分)	
	综上, (Z,o)构成交换群。			群。	(1分)	
	34.	证明	:			
		(1)	S	CP 规则(附加前提)	(1分)	
		(2)	$S \to P$	P 规则	(1分)	
		(3)	P	T (1) (2)	(1分)	
		(4)	$P \to (Q \to R)$	P 规则	(1分)	
		(5)	$Q \to R$	T (3) (4)	(1分)	
		(6)	Q	P 规则	(1分)	
		(7)	R	T (5) (6)	(1分)	
		由此得到推理是正确的。				
	35. 证明:由补图的定义可知,对于 n 阶图 G 有 $G \cup \overline{G} = K_n$,			(1分)		
				(2分)		
	另外,由于 G 为自补图, $G \cong \overline{G}$,二者的边数相同, $m = \overline{m}$,				(1分)	
	故 $m = \overline{m} = n(n-1)/4$,				(2分)	
	由于 n 和 $n-1$ 是连续自然数,二者互素,又因为 m 是整数,所以 n 被 4					
		n-1	被 4 整除,即 $n=$	4k 或 $n=4k+1$,其中 k 为正整数。	(1分)	

离散数学试题答案及评分参考第4页(共4页)