Qlapoti and qt-Pegasis:

Simpler and faster ideal-to-isogeny translation

Setting:

"Effective primitive embedding"

- E elliptic curve
- $\operatorname{End}(E) \supseteq O$ quadratic order OR maximal quaternion order
- $I = O(N, \alpha)$ a (primitive, invertible) ideal of with $\operatorname{nrd}(I) = N$

Goal:

- Compute ϕ_I

Some preliminaries

$$\phi_I$$
 is defined by $\ker \phi_I = \{P \in E \mid \beta(P) = 0, \forall \beta \in I\}$
= $E[N] \cap \ker \alpha$

Some preliminaries

$$\phi_I$$
 is defined by $\ker \phi_I = \{P \in E \mid \beta(P) = 0, \forall \beta \in I\}$
= $E[N] \cap \ker \alpha$

We are free to replace ϕ_I by $\phi_{I'}$ where $I'=I\beta$

Some preliminaries

$$\phi_I$$
 is defined by $\ker \phi_I = \{P \in E \mid \beta(P) = 0, \forall \beta \in I\}$
$$= E[N] \cap \ker \alpha$$

We are free to replace ϕ_I by $\phi_{I'}$ where $I' = I\beta$

First idea:

- Assume N_I smooth Recover $\ker \phi_I$

$$I = \langle N, \alpha \rangle$$

"Recover $\ker \phi_I$ "

$$E \xrightarrow{\phi_I} E_I \qquad \alpha = \gamma \circ \phi_I$$

Idea: Project $E_I[N]$ onto $\ker \phi_I$

$$I = \langle N, \alpha \rangle$$

"Recover $\ker \phi_I$ "

Idea: Project $E_I[N]$ onto $\ker \phi_I$

$$\ker \phi_I = \{\widehat{\phi}_I(P) \mid P \in E_I[N]\}$$

$$= \{\widehat{\phi}_I(\widehat{\gamma}(P)) \mid P \in E[N]\}$$

$$= \{\widehat{\alpha}(P) \mid P \in E[N]\}$$

$$I = \langle N, \alpha \rangle$$

"Recover $\ker \phi_I$ "

Idea: Project $E_I[N]$ onto $\ker \phi_I$

$$\ker \phi_I = \{ \widehat{\phi}_I(P) \mid P \in E_I[N] \}$$

$$= \{ \widehat{\phi}_I(\widehat{\gamma}(P)) \mid P \in E[N] \}$$

$$= \{ \widehat{\alpha}(P) \mid P \in E[N] \}$$

"Often" enough to take a single point of order ${\cal N}$

$$I = \langle N, \alpha \rangle$$

I quaternion ideal: $/\!\!\!/$ KLPT $/\!\!\!/$

$$I = \langle N, \alpha \rangle$$

Requires $N > p^3$, creates many complications

Historically the main building block for generic ideal-to-isogeny translation, e.g. (old) SQIsign, Deuring for the people etc.

$$I = \langle N, \alpha \rangle$$

Requires $N > p^3$, creates many complications

Historically the main building block for generic ideal-to-isogeny translation, e.g. (old) SQlsign, Deuring for the people etc.

I quadratic ideal: No polynomial time algorithm in practice

$$I = \langle N, \alpha \rangle$$

Requires $N > p^3$, creates many complications

Historically the main building block for generic ideal-to-isogeny translation, e.g. (old) SQIsign, Deuring for the people etc.

I quadratic ideal: No polynomial time algorithm in practice

CSIDH: Only sample I smooth

SCALLOP and friends: Exponential time precomputation

New idea:

- Assume $I \sim J$ with $nrd(I) + nrd(J) = 2^e$
- Recover ker Φ

$$\Phi: \begin{array}{c} \phi_I \\ E \end{array} \longrightarrow \begin{array}{c} E_I \\ E_{\bar{I}} \end{array}$$

$$\ker \Phi = \{ (\widehat{\phi}_I(P), \widehat{\phi}_J(Q)) \mid P, Q \in E_I[2^e] \}$$

$$= \{ (\phi_I \circ \widehat{\phi}_I(P), \phi_I \circ \widehat{\phi}_J(Q)) \mid P, Q \in E[2^e] \}$$

$$= \{ ([N_I]P, \gamma(Q)) \mid P, Q \in E[2^e] \}$$

New idea:

- Assume $I \sim J$ with $\operatorname{nrd}(I) + \operatorname{nrd}(J) = 2^e$
- Recover ker Φ

New idea:

- Assume $I \sim J$ and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^e$

- Recover ker Φ

 $\ker \Phi = \{(\widehat{\phi_u}([N_I]P), \widehat{\phi_v}(\gamma(Q))) \mid P,Q \in E[2^e]\}$ Requires computing **random** isogenies of prescribed degree u,v

New idea:

- Assume $I \sim J$ and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^e$

- Recover ker Φ

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$

Step 1: Find the smallest $\beta_1,\beta_2\in I$ of coprime norm (so in particular, β_1,β_2 must be independent)

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$

Step 1: Find the smallest $\beta_1, \beta_2 \in I$ of coprime norm (so in particular, β_1, β_2 must be independent)

Step 2: Solve for u, v

```
Given I \subset \mathcal{O}_0 find \beta_1, \beta_2 \in I and u, v \in \mathbb{Z}_{\geq 0}, such that u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)
```

```
Step 1: Find the smallest \beta_1, \beta_2 \in I of coprime norm (so in particular, \beta_1, \beta_2 must be independent) Step 2: Solve for u, v
```

Expected to find $n(\beta_1)/n(I) \approx n(\beta_2)/n(I) \approx \sqrt{p}$, and solution is guaranteed when $2^e > n(\beta_1)n(\beta_2)/n(I)^2$

► Must be a few bits smaller than p

Often a bit larger :(

The current way of solving the norm equation fails with non-negligible probability

The current way of solving the norm equation fails with non-negligible probability

Leads to a complicated rerandomisation procedure to bring failure probability down to 2^{-60}

Still not negligible in security parameter leads to gap in security proof

The current way of solving the norm equation fails with non-negligible probability

Leads to a complicated rerandomisation procedure to bring failure probability down to 2^{-60}

Still not negligible in security parameter leads to gap in security proof

Random isogenies of degree u and v: QFESTA, done by computing an isogeny in dimension 2.

The current way of solving the norm equation fails with non-negligible probability

Leads to a complicated rerandomisation procedure to bring failure probability down to 2^{-60}

Still not negligible in security parameter leads to gap in security proof

Random isogenies of degree u and v: QFESTA, done by computing an isogeny in dimension 2.

So currently, translating an ideal to curve requires one $(2^e, 2^e)$ -isogeny and two $(2^f, 2^f)$ -isogenies $(f \approx e/2)$

Clapoti Issues - Quadratic ideals

Random isogenies of degree u and v: Can only be done in dimension 2, which even assumes u, v can be written as sums of squares

Clapoti Issues - Quadratic ideals

Random isogenies of degree u and v: Can only be done in dimension 2, which even assumes u, v can be written as sums of squares

Leads to embedding ϕ_I, ϕ_J in (diagonal) 2-dimensional isogenies, and the final isogeny must be computed in dimension 4

Clapoti Issues - Quadratic ideals

Random isogenies of degree u and v: Can only be done in dimension 2, which even assumes u, v can be written as sums of squares

Leads to embedding ϕ_I, ϕ_J in (diagonal) 2-dimensional isogenies, and the final isogeny must be computed in dimension 4

Failure probability so high, extra tricks must be used to make it work (see: PEGASIS)

Qlapoti:

Simple and Efficient Translation of Quaternion Ideals to Isogenies

Joint work with: Giacomo Borin, Maria Corte-Real Santos, Riccardo Invernizzi, Marzio Mula, Sina Schaeffler and Frederik Vercauteren

Jonathan Komada Eriksen, COSIC, KU Leuven

"Assume $I \sim J$ with $nrd(I) + nrd(J) = 2^{e_{\parallel}}$

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Given $I = \mathcal{O}_0(N, \alpha)$ find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Given
$$I=\mathcal{O}_0\langle N,\alpha\rangle$$
 find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Very easy algorithm that sort of works: Same as u, v method, but restrict u, v to be sums of squares

Failure probability goes from bad to worse...

Given
$$I = \mathcal{O}_0\langle N, \alpha \rangle$$
 find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

very eacy algorithm that sort of works: Same as u, v method, but restrict u, v to be sums of squares

Failure probability goes from bad to worse.

Given
$$I = \mathcal{O}_0\langle N, \alpha \rangle$$
 find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Key: Look for
$$\beta_k = (a_k + ib_k) \cdot N + \alpha$$
, for $k = 1,2$

Given
$$I=\mathcal{O}_0\langle N,\alpha\rangle$$
 find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for
$$\beta_k = (a_k + ib_k) \cdot N + \alpha$$
, for $k = 1,2$

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Given $I=\mathcal{O}_0\langle N,\alpha\rangle$ find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for $\beta_k = (a_k + ib_k) \cdot N + \alpha$, for k = 1,2

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Step 1: Find short A, B such that $2(a_{\alpha}A + b_{\alpha}B) \equiv 2^e - 2n(\alpha)/N \pmod{N}$

Given $I=\mathcal{O}_0\langle N,\alpha\rangle$ find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for
$$\beta_k = (a_k + ib_k) \cdot N + \alpha$$
, for $k = 1,2$

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Step 1: Find short A, B such that $2(a_{\alpha}A + b_{\alpha}B) \equiv 2^e - 2n(\alpha)/N \pmod{N}$

$$a_1^2 + b_1^2 + (A - a_1)^2 + (B - b_1)^2 = M$$

$$2^e - 2n(\alpha)/N - 2(a_{\alpha}A + b_{\alpha}B))$$

 Λ

Given $I=\mathcal{O}_0\langle N,\alpha\rangle$ find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for
$$\beta_k = (a_k + ib_k) \cdot N + \alpha$$
, for $k = 1,2$

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Step 1: Find short A, B such that $2(a_{\alpha}A + b_{\alpha}B) \equiv 2^e - 2n(\alpha)/N \pmod{N}$ $a_1^2 + b_1^2 + (A - a_1)^2 + (B - b_1)^2 = M$

Step 2: Use Cornacchia to solve

$$(2a_1 - A)^2 + (2b_1 - B)^2 = 2M - A^2 - B^2$$

$$\text{Given } I = \mathcal{O}_0 \langle N, \alpha \rangle \text{ find } \beta_1, \beta_2 \in I \text{ such that } n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$$

$$\text{Choose } n(\alpha)/N < 2^e \text{ (Not restrictive, expect to find } n(\alpha)/N \approx \sqrt{p})$$

Expect to find
$$A,B$$
 with $Approx Bpprox \sqrt{N}$

Expect to find A,B with $A\approx B\approx \sqrt{N}$ Step 1: Find short A,B such that $2(a_{\alpha}A+b_{\alpha}B)\equiv 2^e-2n(\alpha)/N\pmod{N}$

$$\frac{2^e - 2n(\alpha)/N - 2(a_{\alpha}A + b_{\alpha}B))}{N}$$

Step 2: Use Cornacchia to solve

$$(2a_1 - A)^2 + (2b_1 - B)^2 = 2M - A^2 - B^2$$

So all we need is $A^2+B^2\lesssim 2^e/N$, and we try new α until this is satisfied ^{13/24}

Failure probability for SQIsign parameters

NIST level	p	\boldsymbol{c}	e	upper bound on failure rate
I	$egin{array}{c c} 2^{248} \cdot 5 - 1 \ 2^{376} \cdot 65 - 1 \ 2^{500} \cdot 27 - 1 \end{array}$	$2185 \\ 38495 \\ 21484$	$246 \\ 374 \\ 498$	$2^{-197} \ 2^{-312} \ 2^{-438}$

Table 3. The final upper bound of the failure rate of Qlapoti applied to the SQlsign parameters.

Results in SageMath

NIST level	Previous work [5]	This work	Improvement	
I	0.415s	0.160s	x2.595	
III	$0.768 \mathrm{s}$	0.346s	x2.222	
V	$1.060 \mathrm{s}$	$0.467 \mathrm{s}$	x2.269	

Table 5. Timings comparing IdealTolsogeny using the technique currently used in SQlsign and the one presented in this work, given in wall-clock time. The final column represents the improvement factor.

Results in SageMath

Protocol	$\ Algorithm$	Previous work	This work	Improvement
SQIsign-LVLI	KeyGen Signing	0.489s $1.010s$	0.249s $0.522s$	x1.961 x1.935
PRISM-LVLI	KeyGen Signing	0.484s $0.593s$	0.252s $0.322s$	x1.929 x1.673
PRISM-LVL3	KeyGen Signing	0.915s $1.328s$	0.544s $0.808s$	x1.682 x1.644
PRISM-LVL5	KeyGen Signing	$1.436 \mathrm{s}$ $2.017 \mathrm{s}$	$0.758 \mathrm{s}$ $1.426 \mathrm{s}$	x1.894 x1.415

Table 6. Preliminary benchmarks in SageMath to measure the impact of Qlapoti on the signature schemes SQlsign and PRISM. The comparison with PRISM is with the implementation from [5], while the comparison with SQlsign uses a preliminary proof-of-concept implementation privately shared by the authors.

Results in C

Coming soon...

NIST level	Previous work [10]	This work		
Ι	$75, 5~{ m KiB}$	$33,5~{ m KiB}$		
III	$337~{ m KiB}$	$49, 2~{ m KiB}$		
\mathbf{V}	$347~{ m KiB}$	$64,6~{ m KiB}$		

Table 7. Heap usage by a reference/Release build of the SQIsign NIST2 implementation with and without Qlapoti. Average over 10 runs. Measures were taken with the sqisign_test_scheme_lvl[x] executable for level x.

qt-PEGASIS:

Applying Qlapoti to PEGASIS

Joint work with Riccardo Invernizzi and Frederik Vercauteren

Jonathan Komada Eriksen, COSIC, KU Leuven

Kani (twice!):
$$\Gamma: E \times E \times E \times E \to A \times E_{\bar{I}} \times E_I$$
 has
$$\deg \Gamma = \deg \Phi_{J_1,J_2} + \deg \Phi_{K_1,K_2} = N(J_1) + N(J_2) + N(K_1) + N(K_2)$$

Kani (twice!): $\Gamma: E \times E \times E \times E \to A \times E_{\bar{I}} \times E_{I}$ has $\deg \Gamma = \deg \Phi_{J_1,J_2} + \deg \Phi_{K_1,K_2} = N(J_1) + N(J_2) + N(K_1) + N(K_2)$

Given $I \subset R$ find $\beta_1, \beta_2, \delta_1, \delta_2 \in I$ such that $n(\beta_1) + n(\beta_2) + n(\delta_1) + n(\delta_2) = 2^e \cdot n(I)$

Qlapoti already solves this!

As in KLaPoTi:
$$R=\mathbb{Z}+\frac{1+j}{2}\mathbb{Z}, j^2=-p$$
 Then $O=R+iR, i^2=-1, ij=-ji=-p,$ is the "typical" quaternion order!

Qlapoti already solves this!

As in KLaPoTi:
$$R=\mathbb{Z}+\frac{1+j}{2}\mathbb{Z}, j^2=-p$$

Then

$$O=R+iR$$
, $i^2=-1$, $ij=-ji=-p$, is the "typical" quaternion order!

Qlapoti already solves this!

As in KLaPoTi:
$$R = \mathbb{Z} + \frac{1+j}{2}\mathbb{Z}, j^2 = -p$$

Then

$$O=R+iR$$
, $i^2=-1$, $ij=-ji=-p$, is the "typical" quaternion order!

Qlapoti: Find
$$\gamma_1 = \beta_1 + i\beta_2 \in I + iI$$
, $\gamma_2 = \delta_1 + \delta_2 \in I + iI$, such that $n(\gamma_1) + n(\gamma_2) = n(\beta_1) + n(\beta_2) + n(\delta_1) + n(\delta_2) = 2^e N \gtrsim pN$

Ideals of the form $I+iI\subseteq R+iR=O$ are not "generic" at all

lacktriangle Correspond to isogenies defined over \mathbb{F}_p

Ideals of the form $I + iI \subseteq R + iR = O$ are not "generic" at all

ullet Correspond to isogenies defined over \mathbb{F}_p

Can make an extremely fast Qlapoti variant for this: Let $I=R\langle N,\omega-\lambda\rangle$

$$\beta_k = b_k N + d_k (\omega - \lambda), k = 1,2$$

 $\delta_k = a_k N, k = 1,2$

Ideals of the form $I + iI \subseteq R + iR = O$ are not "generic" at all

ullet Correspond to isogenies defined over \mathbb{F}_p

Can make an extremely fast Qlapoti variant for this: Let $I=R\langle N,\omega-\lambda\rangle$

$$\beta_k = b_k N + d_k (\omega - \lambda), k = 1,2$$

 $\delta_k = a_k N, k = 1,2$

$$N(a_1^2 + a_2^2 + b_1^2 + b_2^2) + (n(\omega - \lambda)/N)(d_1^2 + d_2^2) + 2\lambda(b_1d_1 + b_2d_2) = 2^e$$

Ideals of the form $I + iI \subseteq R + iR = O$ are not "generic" at all

- Correspond to isogenies defined over \mathbb{F}_p

Can make an **extremely fast** Qlapoti variant for this: Let $I = R\langle N, \omega - \lambda \rangle$

Can fix $d_1 = 1$, and start with $d_2 = c$ where c is as large as possible. \frown

$$\beta_k = b_k N + d_k (\omega - \lambda), k = 1,2$$

 $\delta_k = a_k N, k = 1,2$

$$N(a_1^2 + a_2^2 + b_1^2 + b_2^2) + (n(\omega - \lambda)/N)(d_1^2 + d_2^2) + 2\lambda(b_1d_1 + b_2d_2) = 2^e$$

Ideals of the form $I + iI \subseteq R + iR = O$ are not "generic" at all

- Correspond to isogenies defined over \mathbb{F}_p

Can make an **extremely fast** Qlapoti variant for this: Let $I = R\langle N, \omega - \lambda \rangle$

Can fix $d_1 = 1$, and start with $d_2 = c$ where c is as large as possible.

$$\beta_k = b_k N + d_k (\omega - \lambda), k = 1,2$$

 $\delta_k = a_k N, k = 1,2$

$$N(a_1^2 + a_2^2 + b_1^2 + b_2^2) + (n(\omega - \lambda)/N)(d_1^2 + d_2^2) + 2\lambda(b_1d_1 + b_2d_2) = 2^e$$

Decrementing d_2 makes short solutions behave predictably! In practice, every c only costs 2 additions mod m to test

Results

Prime size (bits)	Prime	Variant	Time (s)			Rerand.	
			Step 1	Step 2	Step 3	Total	
508	$3 \cdot 11 \cdot 2^{503} - 1$	PEGASIS	0.097	0.48	0.96	1.53	0.17
		qt-P	0.014	0.0014	-	0.97	0
1008	$3\cdot 5\cdot 2^{1004}-1$	PEGASIS	0.21	1.16	2.84	4.21	0.07
		qt-P	0.023	0.0032	-	2.86	0
1554	$3^2 \cdot 2^{1551} - 1$	PEGASIS	1.19	2.85	6.49	10.5	1.53
		qt-P	0.043	0.0084	-	6.54	0
2031	$3 \cdot 17 \cdot 2^{2026} - 1$	PEGASIS	1.68	8.34	11.3	21.3	0.70
		qt-P	0.21	0.018	_	11.5	0
4089	$3^2 \cdot 7 \cdot 2^{4084} - 1$	PEGASIS	15.6	52.8	53.5	122	0.41
		qt-P	1.01	0.082	-	54.6	0

= qt-PEGASIS

Class group actions where essentially the whole cost at all security levels is a single 4-dimensional isogeny!