Sheaves on subanalytic sites セミナーノート

2022年4月1日

目次

0	Preface	1
1	Subanalytic set	1
1.1	Semi-analytic set	1
2	Sheaves on Sites	1
2.1	Definition of Sites	1

0 Preface

このノートでは、R. Prelli, Sheaves on Subanalytic Site [4] を参考にして、Subanalytic sites や、その上の層についてまとめる。また、必要に応じて、Kashiwara-Schapira[1]、[3] を参照する。

1 Subanalytic set

この節では、subanalytic set について述べる.

1.1 Semi-analytic set

2 Sheaves on Sites

この節では、Kashiwara-Schapira、Ind-sheaves [2] も合わせて参照して、景 (site) 上の層について述べる.

2.1 Definition of Sites

層は、位相空間 X の開集合の圏 $\operatorname{Op}(X)$ に対して定められる。景 (site) とは、任意の圏に対して抽象的な被覆によって位相を入れたもので、これにより、層の概念を拡張できる。

以降, 考える圏は, U-small であり, 有限の積とファイバー積が存在するものとする. このような圏 C では, 射 $V \to U$ の圏 C_U も有限の積とファイバー積が存在する.

また, C が終対象 (terminal object) を持てば,

C が有限の積とファイバー積を持つ \iff C が有限の射影極限を持つ

が成り立つ. さらに、このとき、終対象をTとして、

$$X \times Y = X \times_T Y \quad (\forall X, Y \in \mathcal{C})$$

である.

記号 射 $V \to U$ と $S \subset \mathrm{Ob}(C_U)$ に対して,

$$V \times_U S := \{V \times_U W \to V \mid W \in S\} \subset \mathrm{Ob}(C_V)$$

と定める.

注意 位相空間 X とし, $C = \mathrm{Ob}(X)$ とする. このとき, $V, W \in \mathcal{C}_U$ に対して,

$$V \times_U W = V \cap W$$

である.

定義 2.1.1 $S_1, S_2 \subset \mathrm{Ob}(C_U)$ に対して, S_1 が S_2 の細分 (refinement) とは, 任意の $V \to U \in S_1$ に対して, ある $V' \to U \in S_2$ が存在して, $V \to V' \to U$ と分解できることを言う. また, これを $S_1 \preceq S_2$ と書く.

定義 **2.1.2** \mathcal{C} 上の Grothendieck 位相とは, $\mathrm{Ob}(\mathcal{C}_U)$ の部分集合の族 $\{\mathrm{Cov}(U)\}_{U\in\mathcal{C}}$ で, 次の公理を満たすもの を言う:

- (GT1) $\{id_U: U \to U\} \in Cov(U)$ である.
- (GT2) $S_1, S_2 \subset \mathcal{C}_U$ とする. $S_1 \in Cov(U)$ かつ $S_1 \leq S_2$ ならば, $S_2 \in Cov(U)$ である.
- (GT3) $S \in Cov(U)$ ならば、任意の $V \to U$ に対して、 $V \times_U S \in Cov(V)$ である.
- (GT4) $S_1, S_2 \subset Ob(\mathcal{C}_U)$ が、 $S_1 \in Cov(U)$ および $V \times_U S_2 \in Cov(V)$ $(\forall V \in S_1)$ を満たせば、 $S_2 \in Cov(U)$ である.

 $S \in \text{Cov}(U)$ を U の被覆 (covering) という. 景 X とは、圏 \mathcal{C}_X で、有限の積とファイバー積が定義され、Grothendieck 位相が定められているものを言う.

 C_X に終対象が存在する場合は、 C_X を X と書くことにする.

定義 2.1.3 *X,Y* を景とする.

- (i) 関手 $f^t: \mathcal{C}_Y \to \mathcal{C}_X$ が連続 (continuous) とは、次の 2 条件が満たされることを言う.
 - (1) ファイバー積と可換である, i.e. 任意の射 $V \to U$, $W \to U$ に対して, $f^t(V \times_U W) \xrightarrow{\sim} f^t(V) \times_{f^t(U)} f^t(W)$ である.
 - (2) 任意の $V \in \mathcal{C}_Y$, $S \in \text{Cov}(V)$ に対し, $f^t(S) \in \text{Cov}(f^t(V))$ である. ただし, $f^t(S) \coloneqq \{f^t(W) \to f^t(V) \mid W \in S\}$ とする.
- (ii) 景の間の射 $f: X \to Y$ とは、連続な関手 $f^t: \mathcal{C}_Y \to \mathcal{C}_X$ である.
- **例 2.1.4** (i) 位相空間 X に対して, X の開集合に包含射で順序を付けた圏を $\mathrm{Op}(X)$ とする. $U \in \mathrm{Op}(X)$ に対して, $\mathrm{Op}(X)_U = \mathrm{Op}(U)$ である. 通常の被覆で Grothedieck 位相を入れた景を, X と書く (終対象は $X \in \mathrm{Op}(X)$).
- (ii) $f:X\to Y$ を位相空間の間の連続写像とする. 関手 $f^t:\operatorname{Op}(Y)\to\operatorname{Op}(X)$ を $V\mapsto f^{-1}(V)$ として、 景の間の射も $f:X\to Y$ と書ける. つまり、位相空間を景とすると、連続写像が景の間の関手となる $(f^{-1}(V\cap W)=f^{-1}(V)\cap f^{-1}(W))$.
- (iii) X を位相空間とする. $\operatorname{Op}(X)$ には、次のような位相も入る. $S \subset \operatorname{Op}(U)$ は、U の被覆で、有限部分被覆を持つとする. このような被覆の集合は、Grothendieck 位相となる. この景を X_f と書く.
- (iv) X を局所コンパクトな位相空間とする. X_{lf} を, $\operatorname{Op}(X)$ に次のような位相を入れた景とする: $S \subset \operatorname{Op}(X)$ が X_{lf} での被覆であるとは, X の任意のコンパクト集合 K に対して, ある $S_0 \in S$ で, $K \cap (\cup_{V \in S_0} V) = K \cap U$ となるものが存在する. このとき, 自然な射 $U_{lf} \to U_{X_{lf}}$ が存在するが, 一般には同型でない事に注意する.

定義 2.1.5 *X* を景とする.

(i) F が X 上の k 加群の前層 (presheaf) とは, $\mathcal{C}_X^{\mathrm{op}} \to \mathrm{Mod}(k)$

参考文献

- [1] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds. No. 292 in Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1990.
- [2] Masaki Kashiwara and Pierre Schapira. *Ind-sheaves*. No. 271 in Astérisque. Société mathématique de France, 2001.
- [3] Masaki Kashiwara and Pierre Schapira. *Category and Sheaves*. No. 332 in Die Grundlehren der mathematischen Wissenschaften. Springer, 2006.
- [4] Luca Prelli. Sheaves on subanalytic sites. No. 120 in Rendiconti del Seminario Matematico della Università di Padova. 2008.