# **CLUSTERING**

### **CLUSTERING ALGORITHMS**

K-means and its variants

Hierarchical clustering

Density-based clustering

### HIERARCHICAL CLUSTERING

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits





#### STRENGTHS OF HIERARCHICAL CLUSTERING

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies
  - Example: biological science



#### HIERARCHICAL CLUSTERING

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

### HIERARCHICAL CLUSTERING



### HOW TO DEFINE INTER-CLUSTER DISTANCE



|  | M | IN |
|--|---|----|
|--|---|----|

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

|            | <b>p1</b> | p2 | р3 | р4 | <b>p</b> 5 | <u>.</u> . |
|------------|-----------|----|----|----|------------|------------|
| <b>p1</b>  |           |    |    |    |            |            |
| <b>p2</b>  |           |    |    |    |            |            |
| р3         |           |    |    |    |            |            |
| <b>p4</b>  |           |    |    |    |            |            |
| <b>p</b> 5 |           |    |    |    |            |            |
|            |           |    |    |    |            |            |



- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

|           | p1 | <b>p2</b> | р3 | p4 | <b>p</b> 5 | <u> </u> |
|-----------|----|-----------|----|----|------------|----------|
| <b>p1</b> |    |           |    |    |            |          |
| <b>p2</b> |    |           |    |    |            |          |
| р3        |    |           |    |    |            |          |
| <b>p4</b> |    |           |    |    |            | _        |
| <b>p5</b> |    |           |    |    |            | _        |
|           |    |           |    |    |            |          |



- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

|                 | <b>p</b> 1 | p2 | рЗ | p4 | <b>p</b> 5 | <u>.</u> . |
|-----------------|------------|----|----|----|------------|------------|
| p1              |            |    |    |    |            |            |
| p2              |            |    |    |    |            |            |
| p2<br>p3        |            |    |    |    |            |            |
|                 |            |    |    |    |            |            |
| <u>р4</u><br>р5 |            |    |    |    |            |            |
| _               |            |    |    |    |            |            |



|  | M | IN |
|--|---|----|
|--|---|----|

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

|           | <b>p1</b> | <b>p2</b> | рЗ | p4 | р5 | <u> </u> |
|-----------|-----------|-----------|----|----|----|----------|
| <b>p1</b> |           |           |    |    |    |          |
| p2        |           |           |    |    |    |          |
| p2<br>p3  |           |           |    |    |    |          |
|           |           |           |    |    |    |          |
| p4<br>p5  |           |           |    |    |    |          |
|           |           |           |    |    |    |          |



| <ul><li>MIN</li></ul> |
|-----------------------|
|-----------------------|

- MAX
- Group Average
- Distance Between Centroids (centroid: average of all points in that cluster)

Other methods driven by an objective function

Ward's Method uses squared error



#### MIN OR SINGLE LINK

- Proximity of two clusters is based on the two closest points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph
- Example:



#### **Distance Matrix:**

|    | p1   | p2   | р3   | p4   | p5   | p6   |
|----|------|------|------|------|------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28 | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00 |

### HIERARCHICAL CLUSTERING: MIN



**Nested Clusters** 

#### **Dendrogram**

## PROS AND CONS

|          | Min                                  | Max                              | Group Average                    |
|----------|--------------------------------------|----------------------------------|----------------------------------|
| Strength | Can handle non-<br>elliptical shapes | Less susceptible to noise        | Less susceptible to noise        |
|          |                                      |                                  |                                  |
| Weakness | Sensitive to noise                   | Tends to break large clusters    | Biased towards globular clusters |
|          |                                      | Biased towards globular clusters |                                  |

### HIERARCHICAL CLUSTERING: COMPARISON









#### HIERARCHICAL CLUSTERING: TIME AND SPACE REQUIREMENTS

- $O(N^2)$  space since it uses the proximity matrix.
  - N is the number of points.
- $O(N^3)$  time in many cases:
  - There are N steps and at each step the size, N², proximity matrix must be updated and searched
  - Complexity can be reduced to  $O(N^2 \log(N))$  time with some cleverness

#### **Distance Matrix:**

|    |      | - 30 |      |      |      | 22   |
|----|------|------|------|------|------|------|
|    | p1   | p2   | p3   | p4   | p5   | p6   |
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34 | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14 | 0.25 |
| p3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28 | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29 | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00 |

#### HIERARCHICAL CLUSTERING: PROBLEMS AND LIMITATIONS

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
  - Sensitivity to noise
  - Difficulty handling clusters of different sizes and non-globular shapes
  - Breaking large clusters

### **CLUSTERING ALGORITHMS**

K-means and its variants

Hierarchical clustering

Density-based clustering

### DENSITY BASED CLUSTERING

 Clusters are regions of high density that are separated from one another by regions on low density.



### DENSITY-BASED ALGORITHM: DBSCAN

- DBSCAN: Density-based spatial clustering of applications with noise
- Density = number of points within a specified radius  $\varepsilon$
- A point is a core point if it has at least a specified number of points (MinPts) within Eps
  - These are points that are at the interior of a cluster
  - Counts the point itself
- A border point is not a core point, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point

## DBSCAN: CORE, BORDER, AND NOISE POINTS



## DBSCAN: CORE, BORDER AND NOISE POINTS



**Original Points** 

Point types: core, border and noise

**Eps = 10, MinPts = 4** 

#### **DBSCAN ALGORITHM**

• Form clusters using core points, and assign border points to one of its neighboring clusters

- I: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points within a distance  $\varepsilon$  of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points

### WHEN DBSCAN WORKS WELL



**Original Points** 



Clusters (dark blue points indicate noise)

- Can handle clusters of different shapes and sizes
- Resistant to noise

## WHEN DBSCAN DOES NOT WORK WELL



**Original Points** 

### WHEN DBSCAN DOES NOT WORK WELL



**Original Points** 

- Varying densities
- High-dimensional data



(MinPts=4, Eps=9.92).



(MinPts=4, Eps=9.75)

#### DBSCAN: DETERMINING $\varepsilon$ AND MINPTS

- Idea is that for points in a cluster, their k<sup>th</sup> nearest neighbors are at close distance
- Noise points have the k<sup>th</sup> nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor



Would the graph be from the distance matrix?

- Distance matrix hierachiracal clustering
- 2. (proximity matrix)
- 3. The graph: density-based clustering

#### **CLUSTER VALIDITY**

- For supervised classification we have a variety of measures to evaluate how good our model is
  - Accuracy, precision, recall (confusing matrix)
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
  - In practice the clusters we find are defined by the clustering algorithm
- Then why do we want to evaluate them?
  - To avoid finding patterns in noise
  - To compare clustering algorithms
  - To compare two sets of clusters
  - To compare two clusters

### CLUSTERS FOUND IN RANDOM DATA



#### MEASURES OF CLUSTER VALIDITY

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following two types.
  - Supervised: Used to measure the extent to which cluster labels match externally supplied class labels.
    - Entropy
    - Often called external indices because they use information external to the data
  - Unsupervised: Used to measure the goodness of a clustering structure without respect to external information.
    - Sum of Squared Error (SSE)
    - Often called internal indices because they only use information in the data
- You can use supervised or unsupervised measures to compare clusters or clusterings

#### UNSUPERVISED MEASURES: COHESION AND SEPARATION

- Cluster Cohesion: Measures how closely related are objects in a cluster
  - Example: SSE
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
  - Cohesion is measured by the within cluster sum of squares (SSE)
  - Separation is measured by the between cluster sum of squares

Where  $|C_i|$  is the size of cluster i

$$SSE = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

$$SSB = \sum_{i} |C_i| (m - m_i)^2$$

#### UNSUPERVISED MEASURES: COHESION AND SEPARATION



- Example: SSE
  - SSB + SSE = constant

**K=1 cluster:** 
$$SSE = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$
  
 $SSB = 4 \times (3-3)^2 = 0$   
 $Total = 10 + 0 = 10$ 

**K=2 clusters:** 
$$SSE = (1 - 1.5)^2 + (2 - 1.5)^2 + (4 - 4.5)^2 + (5 - 4.5)^2 = 1$$
  
 $SSB = 2 \times (3 - 1.5)^2 + 2 \times (4.5 - 3)^2 = 9$   
 $Total = 1 + 9 = 10$ 

#### UNSUPERVISED MEASURES: COHESION AND SEPARATION

- A proximity graph-based approach can also be used for cohesion and separation.
  - Cluster cohesion is the sum of the weight of all links within a cluster.
  - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.



#### UNSUPERVISED MEASURES: SILHOUETTE COEFFICIENT

- Silhouette coefficient combines ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
  - Calculate a = average distance of i to the points in its cluster
  - Calculate  $b = \min$  (average distance of i to points in another cluster) -min
  - The silhouette coefficient for a point is then given by

$$s = (b - a) / \max(a,b)$$

- Value can vary between I and I
- Typically ranges between 0 and 1.
- The closer to I the better.



Can calculate the average silhouette coefficient for a cluster or a clustering