Exercises

- (5.1) Verify that the function $f(x) = -\frac{3}{4}x 1$ has a fixed point at $x^* = -\frac{4}{7}$.
- (5.2) Figure 5.10 shows a plot of the function f(x) = 1.5x(1-x).
 - (a) Use the plot to determine approximate values for all fixed points of f(x).
 - (b) Graphically iterate the seed $x_0 = 0.1$.
 - (c) Graphically iterate the seed $x_0 = 0.8$.
 - (d) What do you conclude about the stability of the fixed point near x = 0.35?
 - (e) What is the stability of the fixed point at r = 0?
 - (f) Use algebra to find the fixed points exactly.

Fig. 5.10 A plot of f(x) = 1.5x(1-x), the function for Exercise 5.2.

- (5.3) Consider the function shown in Fig. 5.11.
 - (a) Choose several initial conditions and graphically iterate.
 - (b) What do your results let you conclude about the stability of the three fixed points?

Fig. 5.11 The function for Exercise 5.3.

- (5.4) Figure 5.12 shows a plot of the function f(x) = 3.2x(1-x).
 - (a) Use the plot to determine approximate values for all fixed points of f(x).
 - (b) Graphically iterate the seed $x_0 = 0.1$.
 - (c) Graphically iterate the seed $x_0 = 0.8$.
 - (d) What does this let you conclude about the stability of the fixed point near x = 0.7?
 - (e) Use algebra to find the fixed point(s) exactly.

Fig. 5.12 A plot of f(x) = 3.2x(1-x), the function for Exercise 5.4.