QF620 Stochastic Modelling in Finance Assignment 1/4

Due Date: 29-Oct-2018

- 1. Let W_t denote a standard Brownian motion. Calculate the following probabilities:
 - (a) $\mathbb{P}(W_2 < 0|W_1 > 0)$
 - (b) $\mathbb{P}(W_1 \times W_2 < 0)$
 - (c) $\mathbb{P}(W_1 < 0 \cap W_2 < 0)$
- 2. Let W_t denote a standard Brownian motion. Evaluate the following expectation

$$\mathbb{E}[|W_{t+\Delta t} - W_t|],$$

where $|\cdot|$ denote absolute value.

3. Let W_t denote a standard Brownian motion. Let s < t, determine the variance

$$V[(W_t - W_s)^2].$$

- 4. Let W_t denote a Brownian motion. Derive the stochastic differential equation for dX_t and group the drift and diffusion coefficients together for the following stochastic processes:
 - (a) $X_t = W_t^2$
 - (b) $X_t = t + e^{W_t}$
 - (c) $X_t = W_t^3 3tW_t$
 - (d) $X_t = e^{t+W_t}$
 - (e) $X_t = e^{\frac{t}{2}} \sin(W_t)$
 - (f) $X_t = e^{W_t \frac{t}{2}}$
- 5. Consider 2 stochastic processes Y_t and Z_t , following the dynamics

$$\begin{cases} dY_t = b(t)Y_t dW_t \\ dZ_t = A(t)dt + B(t)dW_t. \end{cases}$$

Define a new stochastic process X_t as $X_t = Y_t Z_t$, write down the stochastic differential equation for dX_t .

1

- 6. Let W_t and $\tilde{W_t}$ denote two independent Brownian motions, derive the SDE for the stochastic variable $Y_t = \frac{W_t}{\tilde{W_t}}$.
- 7. Consider an interest rate model following the stochastic differential equation:

$$dr_t = \theta dt + \sigma dW_t,$$

where θ and σ are both constants. Determine

(a)
$$\mathbb{E}\left[\int_0^T r_t \ dt\right] \qquad V\left[\int_0^T r_t \ dt\right]$$