Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 1 "Ряды Фурье"

по дисциплине Частотные методы

Выполнил: студент гр. R3242

Мареев П. А.

Преподаватель: Перегудин Алексей Алексеевич

Содержание

1	За д	ание :	1. Вещественные функции.	3				
	1.1	Квадј	ратная волна.	4				
		1.1.1	График функции	4				
		1.1.2	Формулы для вычисления коэффициентов ряда Фурье.	4				
		1.1.3	Программа для вычисления коэффициентов ряда Фурье.	7				
		1.1.4	Сравнение графиков при разных значениях	10				
		1.1.5	Проверка равенства Парсеваля	16				
	1.2	Четна	ая периодическая функция	18				
		1.2.1	График функции	18				
		1.2.2	Формулы для вычисления коэффициентов ряда Фурье.	18				
		1.2.3	Программа для вычисления коэффициентов ряда Фурье.	19				
		1.2.4	Сравнение графиков при разных значениях	20				
		1.2.5	Проверка равенства Парсеваля	26				
	1.3	Нечет	гная периодическая функция.	28				
		1.3.1	График функции	28				
		1.3.2	Формулы для вычисления коэффициентов ряда Фурье.	28				
		1.3.3	Программа для вычисления коэффициентов ряда Фурье.	29				
		1.3.4	Сравнение графиков при разных значениях	30				
		1.3.5	Проверка равенства Парсеваля	36				
	1.4							
		из пря	ямых линий, и которая не является ни четной, ни нечетной.	38				
		1.4.1	График функции	38				
		1.4.2	Формулы для вычисления коэффициентов ряда Фурье.	38				
		1.4.3	Программа для вычисления коэффициентов ряда Фурье.	39				
		1.4.4	Сравнение графиков при разных значениях	40				
		1.4.5	Проверка равенства Парсеваля	46				
	1.5	Выво,	ды	48				
2	Зад		2. Комплексная функция.	49				
	2.1		метрический график исходной функции $f(t)$	50				
	2.2		ждение коэффициентов ряда Фурье	50				
	2.3		раммное вычисление коэффициентов ряда Фурье	62				
	2.4	_	роение параметрических графиков	62				
	2.5	-	роение графиков вещественной и мнимой частей	65				
	2.6	Прове	ерка равенства Парсеваля	71				
	2.7	Выво,	ды	73				
3	Вы	волы і	по пабораторной работе	74				

Вступление

Ряды Фурье являются одним из ключевых инструментов математического анализа, широко применяемым в различных областях науки и техники. Они позволяют представлять сложные периодические функции в виде суммы простых гармонических колебаний, что значительно упрощает их анализ и обработку. Ряды Фурье находят применение в обработке сигналов, теории колебаний, квантовой механике, акустике и многих других дисциплинах.

В данной лабораторной работе мы познакомимся с основами разложения функций в ряды Фурье, изучим их свойства и научимся применять их для анализа периодических сигналов. Работа состоит из нескольких заданий, в которых рассматриваются как вещественные, так и комплекснозначные функции. В первом задании мы исследуем различные типы периодических функций, такие как квадратная волна, чётные и нечётные функции, а также функции, не обладающие симметрией. Для каждой из этих функций мы построим частичные суммы рядов Фурье и проанализируем их сходимость к исходной функции.

Во втором задании мы перейдём к изучению комплекснозначных функций и построим параметрические графики на комплексной плоскости. Мы также проверим выполнение равенства Парсеваля, которое является аналогом теоремы Пифагора в векторных пространствах со скалярным произведением.

В ходе выполнения работы мы не только изучим теоретические основы рядов Фурье, но и получим практические навыки их применения, что будет полезно для дальнейшего изучения математики и её приложений.

1 Задание 1. Вещественные функции.

Перед выполнением заданий требуется придумать числа $a,\,b,\,t_0,\,t_1,\,t_2$ такие, что $a,\,b>0$ и $t_2>t_1>t_0>0.$

Пусть $a=3,\,b=4;\,t_0=2\pi,\,t_1=3\pi,\,t_2=4\pi.$ Рассмотрим теперь следующие функции $f:\mathbb{R}\to\mathbb{R}.$

Для каждой из функций f(t) рассмотрим частичные суммы Фурье F_N и G_N вида

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos\left(\omega_n t\right) + b_n \sin\left(\omega_n t\right) \right) , \qquad (1)$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\omega_n t} , \qquad (2)$$

где $\omega_n = 2\pi n/T$.

Дополнительно приведем формулы с помощью которых определяется любой коэффициент приведенных рядов для функции f(t).

$$a_n = \frac{2}{T} \int_h^{h+T} f(t) \cos(\omega_n t) dt$$
$$b_n = \frac{2}{T} \int_h^{h+T} f(t) \sin(\omega_n t) dt,$$
$$c_n = \frac{1}{T} \int_h^{h+T} f(t) e^{-i\omega_n t} dt$$

где h,h+T – начало и конец отрезка соответственно.

Займемся теперь долгожданной работой с функциями.

1.1 Квадратная волна.

Квадратной волной называется периодическая функция с периодом $T=t_2-t_0$ такая, что

$$f(t) = \begin{cases} a, \ t \in [t_0, t_1), \\ b, \ t \in [t_1, t_2) \end{cases}$$

Тогда в данном случае

$$T = 4\pi - 2\pi = 2\pi$$

$$f(t) = \begin{cases} 3, \ t \in [2\pi, 3\pi), \\ 4, \ t \in [3\pi, 4\pi) \end{cases}$$

1.1.1 График функции.

Рис. 1. График предложенной функции

1.1.2 Формулы для вычисления коэффициентов ряда Фурье.

Заметим, что поскольку $T=2\pi$, то $\omega_n=2\pi n/(2\pi)=n$. Преобразуем формулы (1) и (2) с учетом сделанного замечания.

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt)) ,$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int} .$$

Перейдем непосредственно к вычислению коэффициентов ряда Фурье. Заметим, что в точке 3π функция f(t) имеет разрыв первого рода. Следовательно, поскольку функция разрывна в данной точке, то каждый коэффициент Фурье следует записать в виде суммы двух интегралов. Найдем коэффициент a_0 .

$$a_0 = \frac{2}{2\pi} \int_{2\pi}^{3\pi} 3dt + \frac{2}{2\pi} \int_{3\pi}^{4\pi} 4dt = \frac{3}{\pi} \int_{2\pi}^{3\pi} dt + \frac{4}{\pi} \int_{3\pi}^{4\pi} dt =$$
$$= \frac{1}{\pi} (9\pi - 6\pi + 16\pi - 12\pi) = 7$$

Вычислим теперь интеграл, определяющий коэффициент a_n .

$$a_n = \frac{2}{2\pi} \int_{2\pi}^{3\pi} 3\cos(nt)dt + \frac{2}{2\pi} \int_{3\pi}^{4\pi} 4\cos(nt)dt = \frac{3}{\pi} \int_{2\pi}^{3\pi} \cos(nt)dt + \frac{4}{\pi} \int_{3\pi}^{4\pi} \cos(nt)dt = \frac{3}{\pi} \int_{2\pi}^{3\pi} \cos(nt$$

Вспомним, что

$$\int_{0}^{\pi} \cos(nt)dt = 0.$$

Тогда результат непосредственного интегрирования равен 0.

$$= \frac{3}{\pi} \frac{\sin(nt)}{n} \bigg|_{2\pi}^{3\pi} + \frac{4}{\pi} \frac{\sin(nt)}{n} \bigg|_{3\pi}^{4\pi} = 0.$$

Посчитаем теперь интеграл, определяющий коэффициент b_n .

$$b_n = \frac{2}{2\pi} \int_{2\pi}^{3\pi} 3\sin(nt)dt + \frac{2}{2\pi} \int_{3\pi}^{4\pi} 4\sin(nt)dt = \frac{3}{\pi} \int_{2\pi}^{3\pi} \sin(nt)dt + \frac{4}{\pi} \int_{3\pi}^{4\pi} \sin(nt)dt =$$

$$= -\frac{3}{\pi} \cdot \frac{\cos(nt)}{n} \Big|_{2\pi}^{3\pi} - \frac{4}{\pi} \cdot \frac{\cos(nt)}{n} \Big|_{3\pi}^{4\pi} =$$

$$= -\frac{1}{\pi} \cdot \left(\frac{3\cos(3\pi n) - 3\cos(2\pi n)}{n} + \frac{4\cos(4\pi n) - 4\cos(3\pi n)}{n} \right) =$$

$$= -\frac{1}{\pi} \left(\frac{2\cos(3\pi n) - 3}{n} + \frac{4 - 4\cos(3\pi n)}{n} \right) \equiv$$

Вспомним, что

$$\cos(\pi n) = (-1)^n$$

К тому же

$$\cos(3\pi n) = \cos(2\pi n + \pi n) = \cos(\pi n)$$

Запишем результат вычисления

Запишем итоговое выражение для первой рассматриваемой частичной сум-

$$F_N(t) = \frac{7}{2} + \sum_{n=1}^N \left(0 \cdot \cos\left(nt\right) + \left(\frac{1 \cdot (-1)^n - 1}{\pi n}\right) \cdot \sin\left(nt\right) \right) =$$
$$= \frac{7}{2} + \sum_{n=1}^N \left(\left(\frac{1 \cdot (-1)^n - 1}{\pi n}\right) \cdot \sin\left(nt\right) \right).$$

Рассмотрим вторую частичную сумму и посчитаем коэффициенты, определяющие ее.

$$c_n = \frac{1}{2\pi} \int_{2\pi}^{3\pi} 3e^{-int}dt + \frac{1}{2\pi} \int_{3\pi}^{4\pi} 4e^{-int}dt =$$

$$= \frac{3}{2\pi} \int_{2\pi}^{3\pi} e^{-int}dt + \frac{4}{2\pi} \int_{3\pi}^{4\pi} e^{-int}dt = -\frac{3}{2\pi} \cdot \frac{e^{-int}}{in} \Big|_{2\pi}^{3\pi} - \frac{4}{2\pi} \cdot \frac{e^{-int}}{in} \Big|_{3\pi}^{4\pi} =$$

$$= -\frac{1}{2i\pi n} \cdot \left(3e^{-3i\pi n} - 3e^{-2i\pi n} + 4e^{-4i\pi n} - 4e^{-3i\pi n}\right) =$$

$$= -\frac{4e^{-4i\pi n} - e^{-3i\pi n} - 3e^{-2i\pi n}}{2i\pi n} = \frac{e^{-3i\pi n} + 3e^{-2i\pi n} - 4e^{-4i\pi n}}{2i\pi n}, \qquad n \neq 0$$

Отдельно вычислим коэффициент c_0 .

$$c_0 = \frac{1}{2\pi} \int_{2\pi}^{3\pi} 3e^{-i \cdot 0 \cdot t} dt + \frac{1}{2\pi} \int_{3\pi}^{4\pi} 4e^{-i \cdot 0 \cdot t} dt = \frac{3}{2\pi} \int_{2\pi}^{3\pi} dt + \frac{2}{\pi} \int_{3\pi}^{4\pi} dt =$$
$$= \frac{3}{2\pi} \cdot (3\pi - 2\pi) + \frac{2}{\pi} \cdot (4\pi - 3\pi) = \frac{9}{2} - 3 + 8 - 6 = \frac{9}{2} - 1 = \frac{7}{2}$$

Запишем теперь выражение для второй рассматриваемой частичной суммы

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int} = \sum_{n=-N}^{N} \left(\frac{e^{-3i\pi n} + 3e^{-2i\pi n} - 4e^{-4i\pi n}}{2i\pi n} \right) \cdot e^{int}. \qquad \boxed{n \neq 0}$$

1.1.3 Программа для вычисления коэффициентов ряда Фурье.

Используем всемирно известный язык программирования Python для программного вычисления коэффициентов рядов Фурье (a_n, b_n) и c_n для произвольного N. Приведем программу, выполняющую численное интегрирование, выбрав для этого метод Симпнсона, который обеспечивает достаточно высокую точность.

Используем при расчете функции, отвечающие за вычисление каждого из коэффициентов ряда Фурье. В качестве аргументов будем передавать функцию $f,\,N$ – количество членов ряда, которые требуется вычислить, T – период функции, l – левую границу отрезка интегрирования и r – правую границу отрезка интегрирования.

Коэффициент	a_n	b_n	c_n
Ссылка	ссылка	ссылка	ссылка

Таблица 1. Ссылки на функции, используемые для вычисления коэффициентов

Перед использованием программы вручную найдем коэффициенты для квадратной волны при N=2, а после представим имеющиеся коэффициенты в виде таблицы.

Рассмотрим коэффициенты a_n . Заметим, что коэффициент a_0 уже был получен ранее. Вычислим теперь a_1 и a_2 .

• n = 1

$$a_1 = \frac{3}{\pi} \frac{\sin(t)}{1} \Big|_{2\pi}^{3\pi} + \frac{4}{\pi} \frac{\sin(t)}{1} \Big|_{3\pi}^{4\pi} =$$

$$= \frac{3}{\pi} \cdot (\sin(3\pi) - \sin(2\pi)) + \frac{4}{\pi} \cdot (\sin(4\pi) - \sin(3\pi)) = \frac{3}{\pi} \cdot 0 + \frac{4}{\pi} \cdot 0 = 0.$$

• n = 2

$$a_2 = \frac{3}{\pi} \frac{\sin(2t)}{2} \Big|_{2\pi}^{3\pi} + \frac{4}{\pi} \frac{\sin(2t)}{2} \Big|_{3\pi}^{4\pi} =$$

$$= \frac{3}{\pi} \cdot \left(\frac{\sin(6\pi)}{2} - \frac{\sin(4\pi)}{2}\right) + \frac{4}{\pi} \cdot \left(\frac{\sin(8\pi)}{2} - \frac{\sin(6\pi)}{2}\right) = \frac{3}{\pi} \cdot 0 + \frac{4}{\pi} \cdot 0 = 0.$$

Теперь рассмотрим коэффициенты b_n . Поступим с ними аналогичным образом.

• n = 0

$$b_0 = \frac{2}{2\pi} \int_{2\pi}^{3\pi} 3\sin(0 \cdot t)dt + \frac{2}{2\pi} \int_{3\pi}^{4\pi} 4\sin(0 \cdot t)dt = \frac{2}{2\pi} \cdot 0 + \frac{2}{2\pi} \cdot 0 = 0.$$

• n = 1

$$b_1 = \frac{1 \cdot (-1)^1 - 1}{\pi \cdot 1} = \frac{-1 - 1}{\pi} = -\frac{2}{\pi}.$$

• n = 2

$$b_2 = \frac{1 \cdot (-1)^2 - 1}{\pi \cdot 2} = \frac{1 - 1}{\pi} = 0.$$

Рассмотрим коэффициенты c_n . Заметим, что коэффициент c_0 уже был получен ранее.

•
$$n = -2$$

$$c_{-2} = \frac{e^{-3i\pi \cdot (-2)} + 3e^{-2i\pi \cdot (-2)} - 4e^{-4i\pi \cdot (-2)}}{2i\pi \cdot (-2)} = -\frac{e^{6i\pi} + 3e^{4i\pi} - 4e^{8i\pi}}{4i\pi} =$$

$$= -\frac{\cos(6\pi) + i\sin(6\pi) + 3 \cdot (\cos(4\pi) + i\sin(4\pi)) - 4 \cdot (\cos(8\pi) + i\sin(8\pi))}{4i\pi} =$$

$$= -\frac{1 + 3 - 4}{4i\pi} = 0.$$

•
$$n = -1$$

$$c_{-1} = \frac{e^{-3i\pi \cdot (-1)} + 3e^{-2i\pi \cdot (-1)} - 4e^{-4i\pi \cdot (-1)}}{2i\pi \cdot (-1)} = -\frac{e^{3i\pi} + 3e^{2i\pi} - 4e^{4i\pi}}{2i\pi} =$$

$$= -\frac{\cos(3\pi) + i\sin(3\pi) + 3\cdot (\cos(2\pi) + i\sin(2\pi)) - 4\cdot (\cos(4\pi) + i\sin(4\pi))}{2i\pi} =$$

$$= -\frac{-1 + 3 - 4}{2i\pi} = \frac{1}{i\pi}.$$

•
$$n = 1$$

$$c_{1} = \frac{e^{-3i\pi \cdot 1} + 3e^{-2i\pi \cdot 1} - 4e^{-4i\pi \cdot 1}}{2i\pi \cdot 1} = \frac{e^{-3i\pi} + 3e^{-2i\pi} - 4e^{-4i\pi}}{2i\pi} = \frac{\cos(-3\pi) + i\sin(-3\pi) + 3\cdot(\cos(-2\pi) + i\sin(-2\pi))}{2i\pi} + \frac{-4\cdot(\cos(-4\pi) + i\sin(-4\pi))}{2i\pi} = \frac{-1 + 3 - 4}{2i\pi} = -\frac{1}{i\pi}.$$

•
$$n = 2$$

$$c_{2} = \frac{e^{-3i\pi \cdot 2} + 3e^{-2i\pi \cdot 2} - 4e^{-4i\pi \cdot 2}}{2i\pi \cdot 2} = \frac{e^{-6i\pi} + 3e^{-4i\pi} - 4e^{-8i\pi}}{4i\pi} =$$

$$= \frac{\cos(-6\pi) + i\sin(-6\pi) + 3\cdot(\cos(-4\pi) + i\sin(-4\pi))}{4i\pi} + \frac{-4\cdot(\cos(-8\pi) + i\sin(-8\pi))}{4i\pi} = \frac{1+3-4}{4i\pi} = 0.$$

Заметим, что для коэффициентов c_n действительно выполнено равенство

$$c_n = \overline{c}_{-n}. (3)$$

Коэффициент		a_1	a_2	b_0	b_1	b_2
Аналитическое вычисление	7	0	0	0	$-\frac{2}{\pi}$	0
Программное вычисление	7	≈ 0	≈ 0	0	$-0,636 \approx -\frac{2}{\pi}$	≈ 0

Tаблица 2. Cравнительная таблица для коэффициентов a_n и b_n

Коэффициент	c_{-2}	c_{-1}	c_0	c_1	c_2
Аналитическое вычисление	0	$\frac{1}{i\pi}$	$\frac{7}{2}$	$-\frac{1}{i\pi}$	0
Программное вычисление	≈ 0	$0.318i \approx \frac{1}{i\pi}$	3,5	$-0.318i \approx -\frac{1}{i\pi}$	0

Таблица 3. Сравнительная таблица для коэффициентов c_n

Таким образом, на основании приведенных результатов, можно отметить, что значения коэффициентов, вычисленные программным путем, почти совпадают с величинами, полученным аналитическим способом.

1.1.4 Сравнение графиков при разных значениях.

Представим результаты проделанной работы в виде графиков. Выберем пять различных значений N и построим графики $F_N(t)$ и $G_N(t)$. Пусть

$$N = \{2, 5, 13, 25, 50\}$$

Отметим, что в программе, используемой для построения графиков, параметры l и r выступают в качестве левого и правого концов отрезка, на котором выполняется разложение функции.

Приведем графики для исходной функции и частичных сумм при различных N, а затем сравним их.

 $Puc.\ 2.\ \Gamma paфики\ для\ квадратной волны\ npu\ N=2$

Puc. 3. Графики для квадратной волны при N=5

 $Puc.\ 4.\ \Gamma paфики\ для\ квадратной волны\ npu\ N=13$

 $Puc.\ 5.\ \Gamma paфики\ для\ \kappa вадратной\ волны\ npu\ N=25$

 $Puc.\ 6.\ \Gamma paфики\ для\ квадратной волны\ npu\ N=50$

На рисунке 2, при N=2 частичные суммы уже обрисовывают очертания рассматриваемой функции. С увеличением точности, при N=5 на рисунке 3 и N=13 на рисунке 4 частичные суммы начинают детальнее представлять исследуемую функцию. При N=25 на рисунке 5 можно говорить об уточнении значений функции в большем количестве точек, чем в предыдущих случаях. На рисунке 6, при N=50 частичные суммы довольно точно представляют рассматриваемую функцию.

Понятно, что существенное увеличение точности можно заметить при переходе от N=2 к N=5. В остальных же случаях наблюдается оптимальное соотношение между подробностью приближения и количеством членов рядов.

Отметим, что совпадение графиков частичных сумм, объясняется выражением (3), которое справедливо при разложении в ряд вещественных функций. К тому же, «выбросы» в окрестности точек разрыва можно объяснить эффектом Γ иббса.

1.1.5 Проверка равенства Парсеваля.

Запишем равенство Парсеваля, которое справедливо в случае разложения функции по ортонормированному базису.

$$||f||^2 = \sum_{n = -\infty}^{\infty} |\hat{c}_n|^2, \tag{4}$$

где

$$||f||^2 = \int_{-\pi}^{\pi} (f(t))^2 dt$$

$$\hat{c}_n = \int_{-\pi}^{\pi} f(t) \left(\frac{e^{-int}}{\sqrt{2\pi}} \right) dt$$

Для проверки выберем наибольшее количество членов ряда – N=50. Тогда выражение 4 примет следующий вид.

$$||f||^2 = \sum_{n=-50}^{50} |\hat{c}_n|^2$$

На основании <u>лекционного материала</u> преобразуем равенства для двух частичных сумм. Запишем полученное равенство Парсеваля для частичной

суммы F_N .

$$||f||^2 = \frac{T}{2} \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right)$$

Запишем то же равенство для частичной суммы G_N .

$$||f||^2 = T \sum_{n=-50}^{50} |c_n|^2 = 2\pi \sum_{n=-50}^{50} |c_n|^2$$

Проверим выполнение равенств при помощи программы на языке программирования Python.

Приведем квадрат нормы рассматриваемой функции, вычисленный программным путем.

$$||f||^2 = 78.53981633974483$$

Приведем также значения правых частей равенства при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{397} (a_n^2 + b_n^2) \right) = 78.52722572977291$$
$$2\pi \sum_{n=-397}^{397} |c_n|^2 = 78.5272257297729$$

Отметим, что при N=50 равенство Парсеваля выполняется с точностью до десятых.

Заметим интересное свойство, выберем дополнительно случай, когда N=397 и запишем величины правых частей.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = 78.53982214395285$$
$$2\pi \sum_{n=-50}^{50} |c_n|^2 = 78.53982214395285$$

В этом случае равенство Парсеваля выполняется с точностью до десятитысячных. При дальнейшем увеличении количества слагаемых будет наблюдаться превосходство правых частей равенства по величине по сравнению с квадратом нормы функции.

Таким образом, можно сказать, что равенство Парсеваля для функции квадратной волны выполняется с разной степенью точности, которая определяется количеством членов рядов.

1.2 Четная периодическая функция.

Выберем для данного пункта следующую функцию

$$f(t) = 2 (\cos(t))^3 + \frac{1}{2} \cos(5t)$$

1.2.1 График функции.

Рис. 7. График предложенной функции

1.2.2 Формулы для вычисления коэффициентов ряда Фурье.

Заметим, что предложенная для рассмотрения функция имеет период $T=2\pi$, что объясняется тригонометрическими свойствами ее составляющих. Тогда $\omega_n=2\pi n/(2\pi)=n$. Преобразуем выражения, обозначенные формулами (1) и (2), записав частичные суммы с учетом сделанного замечания. Будем раскладывать функцию в ряд на естественном промежутке – $[-\pi,\pi]$.

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt)) ,$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int} .$$

Запишем формулы, определяющие коэффициенты ряда Фурье, а затем вычислим их с помощью программы.

$$a_{n} = \frac{2}{T} \int_{h}^{h+T} f(t) \cos(\omega_{n}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} \left(2 (\cos(t))^{3} + \frac{1}{2} \cos(5t) \right) \cos(nt) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(2 (\cos(t))^{3} + \frac{1}{2} \cos(5t) \right) \cos(nt) dt$$

$$b_{n} = \frac{2}{T} \int_{h}^{h+T} f(t) \sin(\omega_{n}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} \left(2 (\cos(t))^{3} + \frac{1}{2} \cos(5t) \right) \sin(nt) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(2 (\cos(t))^{3} + \frac{1}{2} \cos(5t) \right) \sin(nt) dt$$

$$c_{n} = \frac{1}{T} \int_{h}^{h+T} f(t) e^{-i\omega_{n}t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(2 (\cos(t))^{3} + \frac{1}{2} \cos(5t) \right) e^{-int} dt$$

1.2.3 Программа для вычисления коэффициентов ряда Фурье.

Используем тот же метод интегрирования и те же функции, которые вычисляют значения коэффициентов a_n,b_n и c_n , что и предыдущем пункте. Выберем промежуток интегрирования – $[-\pi,\pi]$, совпадающий с отрезком, на котором выполняется разложение функции. В программе для нахождения появится лишь небольшое изменение: из-за отсутствия точек разрыва исчезнет разбиение на несколько интегралов. Приведем полученные значения коэффициентов в виде таблиц.

Коэффициент	a_0	a_1	a_2	b_0	b_1	b_2
Программное вычисление	≈ 0	1,5	≈ 0	0	≈ 0	≈ 0

Tаблица 4. Коэффициенты a_n и b_n , найденные при помощи программы

Коэффициент	c_{-2}	c_{-1}	c_0	c_1	c_2
Программное вычисление	≈ 0	0,75	≈ 0	0,75	≈ 0

Tаблица 5. Коэффициенты c_n , найденные при помощи программы

Заметим, что вне зависимости от номера n коэффициенты b_n равны 0. Этот факт косвенно подтверждает правильность расчетов: при разложении четной периодической функции в ряд, нечетная функция $\sin(nt)$ не будет присутствовать в разложении.

Кроме того, можно выяснить с помощью программы, что $a_n=0$ при n>5. Приведем значения коэффициентов a_3 и a_5 .

$$a_3 = \frac{1}{2}$$
$$a_5 = \frac{1}{2}$$

Таким образом, удается полностью записать разложение функции в ряд Φ урье.

$$f(t) = \frac{3}{2}\cos(t) + \frac{1}{2}\cos(3t) + \frac{1}{2}\cos(5t)$$

1.2.4 Сравнение графиков при разных значениях.

Графически представим результаты выполненной работы. Выберем те же значения N, что и для функции квадратной волны и построим графики частичных сумм $F_N(t)$ и $G_N(t)$, а после проанализируем их. Графики построим при помощи программы, используемой в предыдущем пункте.

 $Puc.\ 8.\ \Gamma paфики\ для\ четной\ периодической\ функции\ npu\ N=2$

 $Puc.\ 9.\ \Gamma paфики\ для\ четной\ периодической\ функции\ npu\ N=5$

 $Puc.\ 10.\ \Gamma paфики для четной периодической функции при <math display="inline">N=13$

 $Puc.\ 11.\ \Gamma paфики для четной периодической функции при <math display="inline">N=25$

Puc. 12. Графики для четной периодической функции при N=50

На рисунке 8 при N=2 частичные суммы довольно плохо передают очертания рассматриваемой функции. При N=5 на рисунке 9 график функции полностью совпадает с графиками частичных сумм. На рисунках $10,\ 11,\ 12$ при N=13, N=25 и N=50 соответственно наблюдается ситуация, аналогичная случаю N=5.

Уже на рисунке 9 функция достоверно приближена графиком частичных сумм, поэтому при дальнейшем росте количества членов ряда только увеличится время и сложность вычислений при построении графиков. Их точность же при этом практически не изменится.

Таким образом, для качественного приближения рассматриваемой функции частичными суммами оптимально выбрать N=5.

1.2.5 Проверка равенства Парсеваля.

Запишем равенства, которые требуется проверить программным путем при N=50.

$$||f||^2 = \frac{T}{2} \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right)$$
$$||f||^2 = T \sum_{n=-50}^{50} |c_n|^2 = 2\pi \sum_{n=-50}^{50} |c_n|^2$$

Запишем найденный квадрат нормы рассматриваемой функции.

$$||f||^2 = 8.639379797371936$$

Зафиксируем значения правых частей равенства при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = 8.639379797371944$$
$$2\pi \sum_{n=-50}^{50} |c_n|^2 = 8.639379797371944$$

В данном случае расхождение между значениями квадрата нормы функции и правыми частями равенства появляется лишь в 14 знаке после запятой. Таким образом, равенство Парсеваля для четной периодической функции выполняется с высокой точностью.

Отметим, что уже при N=5 значения правых частей равенства принимают те же значения, что и при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{5} (a_n^2 + b_n^2) \right) = 8.639379797371944$$
$$2\pi \sum_{n=-5}^{5} |c_n|^2 = 8.639379797371944$$

Это согласуется с наблюдением, сделанным на основании графиков: при N=5 частичные суммы довольно точно приближают рассматриваемую функцию. Следовательно, уже N=5 равенство Парсеваля выполняется с высокой точностью.

1.3 Нечетная периодическая функция.

Для этого пункта возьмем следующую функцию

$$f(t) = (\sin(t))^3 + \frac{1}{4}\sin(2t)$$

1.3.1 График функции.

Рис. 13. График предложенной функции

1.3.2 Формулы для вычисления коэффициентов ряда Фурье.

Выбранная для рассмотрения функция имеет период $T=2\pi$ в силу свойств соответствующих периодичностей ее составляющих. Тогда $\omega_n=2\pi n/(2\pi)=n$. Запишем выражения, обозначенные формулами (1) и (2), изменив частичные суммы на основании данного наблюдения.

Будем раскладывать функцию в ряд на привычном промежутке – $[-\pi,\pi]$.

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt)) ,$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int} .$$

Приведем формулы, которые позволяют вычислить коэффициенты ряда Фурье, а затем найдем их с помощью программы.

$$a_{n} = \frac{2}{T} \int_{h}^{h+T} f(t) \cos(\omega_{n}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} \left((\sin(t))^{3} + \frac{1}{4} \sin(2t) \right) \cos(nt) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left((\sin(t))^{3} + \frac{1}{4} \sin(2t) \right) \cos(nt) dt$$

$$b_{n} = \frac{2}{T} \int_{h}^{h+T} f(t) \sin(\omega_{n}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} \left((\sin(t))^{3} + \frac{1}{4} \sin(2t) \right) \sin(nt) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left((\sin(t))^{3} + \frac{1}{4} \sin(2t) \right) \sin(nt) dt$$

$$c_{n} = \frac{1}{T} \int_{h}^{h+T} f(t) e^{-i\omega_{n}t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left((\sin(t))^{3} + \frac{1}{4} \sin(2t) \right) e^{-int} dt$$

1.3.3 Программа для вычисления коэффициентов ряда Фурье.

Используем тот же метод интегрирования и те же функции, которые вычисляют значения коэффициентов a_n,b_n и c_n , что и данном пункте. Возьмем промежуток интегрирования – $[-\pi,\pi]$, который совпадает с отрезком, где выполняется разложение функции. Представим вычисленные при помощи программы значения коэффициентов в виде таблиц.

Коэффициент	a_0	a_1	a_2	b_0	b_1	b_2
Программное вычисление	≈ 0	≈ 0	≈ 0	0	0,75	$0,\!25$

Tаблица 6. Коэффициенты a_n и b_n , найденные при помощи программы

Коэффициент	c_{-2}	c_{-1}	c_0	c_1	c_2
Программное вычисление	-0,125i	-0,375i	0	0,375i	0,125i

Tаблица 7. Коэффициенты c_n , найденные при помощи программы

Заметим, что при любом номере n коэффициенты a_n равны 0. Данное наблюдение опосредованно подтверждает правильность расчетов: при разложении нечетной периодической функции в ряд, четная функция $\cos(nt)$ отсутствует в разложении.

К тому же, есть возможность с помощью программы выяснить, что $b_n=0$ при n>3. Приведем значение коэффициента b_3 .

$$b_3 = -\frac{1}{4}$$

Таким образом, можно полностью записать разложение функции в ряд Φ урье.

$$f(t) = \frac{3}{4}\sin(t) + \frac{1}{4}\sin(2t) - \frac{1}{4}\sin(3t)$$

1.3.4 Сравнение графиков при разных значениях.

Построим графики рассматриваемой функции и частичных сумм, чтобы наглядно представить имеющиеся результаты. Выберем те же 5 значений N, воспользуемся той же программой, что и в предыдущих пунктах. Построим графики, а затем проанализируем их.

Puc. 14. Графики для нечетной периодической функции при N=2

 $Puc.\ 15.\ \Gamma$ рафики для нечетной периодической функции при N=5

-1.0

-6

 $Puc.\ 16.\ \Gamma paфики\ для\ нечетной\ периодической\ функции\ npu\ N=13$

Ó

ż

-2

 $Puc.\ 17.\ \Gamma paфики\ для\ нечетной\ периодической\ функции\ npu\ N=25$

-1.0

-6

 $Puc.\ 18.\ \Gamma$ рафики для нечетной периодической функции при N=50

Ó

ż

-2

На рисунке 14 при N=2 частичные суммы совсем не точно представляют рассматриваемую функции. На рисунке 15 при N=5 графики функции и частичных сумм совпадают и выглядят совершенно одинаково. При N=13, N=25 и N=50 на рисунках 16, 17 и 18 соответственно точность приближения функции частичными суммами остается такой же, как и при N=5.

Следовательно, N=5 является оптимальным количеством членов ряда, обеспечивающим качественное приближение и приемлемое использование вычислительных ресурсов.

1.3.5 Проверка равенства Парсеваля.

При N=50 проверим с помощью программы следующие равенства.

$$||f||^2 = \frac{T}{2} \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right)$$
$$||f||^2 = T \sum_{n=-50}^{50} |c_n|^2 = 2\pi \sum_{n=-50}^{50} |c_n|^2$$

Отметим значение вычисленного квадрата нормы рассматриваемой функции.

$$||f||^2 = 2.159844949342984$$

Запишем значения правых частей равенства при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = 2.159844949342975$$
$$2\pi \sum_{n=-50}^{50} |c_n|^2 = 2.159844949342975$$

Заметим, что при N=50 квадрат нормы функции и правые части равенства отличаются по величине лишь в 14 знаке после запятой. Следовательно, для нечетной периодической функции равенство Парсеваля выполняется с высокой точностью.

Подчеркнем, что уже при N=5 величины правых частей равенства

принимают те же значения, что и при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{5} (a_n^2 + b_n^2) \right) = 2.159844949342975$$
$$2\pi \sum_{n=-5}^{5} |c_n|^2 = 2.159844949342975$$

Указанное замечание согласуется с выводами, которые можно сделать на основании графиков: графики функции и частичных сумм становятся практически неотличимы при N=5.

Следовательно, равенство Парсеваля выполняется с высокой точностью даже при N=5.

1.4 Периодическая функция, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной.

В этот раз используем следующую функцию

$$f(t) = \cos^2(2t) + (\sin(3t))^3$$

1.4.1 График функции.

Рис. 19. График предложенной функции

1.4.2 Формулы для вычисления коэффициентов ряда Фурье.

Предложенная к рассмотрению функция имеет период $T=2\pi$, который обуславливается свойствами периодичности ее составляющих. Следовательно, $\omega_n=2\pi n/(2\pi)=n$. Приведем выражения, обозначенные формулами (1) и (2), преобразовав частичные суммы с учетом сделанной ремарки.

Будем раскладывать функцию в ряд на стандартном промежутке – $[-\pi,\pi]$.

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt)) ,$$

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{int} .$$

Представим формулы, используемые для нахождения коэффициентов ряда Фурье, а после определим их программным путем.

$$a_{n} = \frac{2}{T} \int_{h}^{h+T} f(t) \cos(\omega_{n}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} \left(\cos^{2}(2t) + (\sin(3t))^{3}\right) \cos(nt) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\cos^{2}(2t) + (\sin(3t))^{3}\right) \cos(nt) dt$$

$$b_{n} = \frac{2}{T} \int_{h}^{h+T} f(t) \sin(\omega_{n}t) dt = \frac{2}{2\pi} \int_{-\pi}^{\pi} \left(\cos^{2}(2t) + (\sin(3t))^{3}\right) \sin(nt) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\cos^{2}(2t) + (\sin(3t))^{3}\right) \sin(nt) dt$$

$$c_{n} = \frac{1}{T} \int_{h}^{h+T} f(t) e^{-i\omega_{n}t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\cos^{2}(2t) + (\sin(3t))^{3}\right) e^{-int} dt$$

1.4.3 Программа для вычисления коэффициентов ряда Фурье.

Метод интегрирования и функции, которые вычисляют значения коэффициентов a_n,b_n и c_n , идентичны тем, что были применены в данном пункте. Выберем промежуток интегрирования – $[-\pi,\pi]$, соответствующий отрезку, на котором выполняется разложение функции. Представим вычисленные при помощи программы значения коэффициентов в виде таблиц.

Коэффициент	a_0	a_1	a_2	b_0	b_1	b_2
Программное вычисление	1	≈ 0	≈ 0	0	≈ 0	≈ 0

Tаблица 8. Коэффициенты a_n и b_n , найденные при помощи программы

Коэффициент	c_{-2}	c_{-1}	c_0	c_1	c_2
Программное вычисление	≈ 0	≈ 0	0,5	≈ 0	≈ 0

Tаблица 9. Коэффициенты c_n , найденные при помощи программы

При помощи программы найдем еще несколько коэффициентов ряда Фурье.

$$a_4 = \frac{1}{2}$$

$$b_3 = \frac{3}{4}$$

$$b_9 = -\frac{1}{4}$$

Отметим, что для любого другого номера n коэффициенты a_n и b_n равны 0.

Таким образом, удается осуществить конечное разложение функции в ряд Фурье.

$$f(t) = \frac{1}{2} + \frac{1}{2}\cos(4t) + \frac{3}{4}\sin(3t) - \frac{1}{4}\sin(9t)$$

1.4.4 Сравнение графиков при разных значениях.

Приведем графическую интерпретацию частичных сумм и рассматриваемой функции, чтобы отчетливо продемонстрировать полученные результаты. Используем те же 5 значений N, ту же программу, что и в предыдущих пунктах. Построим графики, а затем сравним их.

 $Puc.\ 20.\ \Gamma paфики периодической функции, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной при <math>N=2$

 $Puc.\ 21.\ \Gamma paфики периодической функции, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной при <math>N=5$

 $Puc.\ 22.\ \Gamma paфики периодической функции, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной при <math>N=13$

 $Puc.\ 23.\ \Gamma paфики периодической функции, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной при <math>N=25$

 $Puc.\ 24.\ \Gamma paфики периодической функции, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной при <math>N=50$

На рисунке 20 при N=2 частичные суммы не дают практически никакого представления о рассматриваемой функции. Горизонтальная прямая, которая представляет частичные суммы при таком количестве членов рядов совсем не точно представляет очертания рассматриваемой функции. На рисунке 21 при N=5 графики частичных сумм чуть лучше представляют рассматриваемую функцию, однако о хотя бы приемлемой точности еще нельзя говорить.

Ситуация становится значительно лучше на рисунке 22 при N=13. Здесь графики частичных сумм и рассматриваемой функции совпадают и выглядят практически одинаково. При N=25 и N=50 на рисунках 23 и 24 точность приближения функции частичными суммами не изменятся, она такая же как и при N=13. Однако построение графиков при N=25 и N=50 требует больше вычислительных ресурсов при обеспечении такой же точности, как и в случае N=13.

Таким образом, N=13 является эталонным значением количества членов ряда, обеспечивающим достоверное приближение и рациональное использование вычислительных ресурсов.

1.4.5 Проверка равенства Парсеваля.

Запишем равенства, которые необходимо проверить с помощью программны при N=50.

$$||f||^2 = \frac{T}{2} \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right)$$
$$||f||^2 = T \sum_{n=-50}^{50} |c_n|^2 = 2\pi \sum_{n=-50}^{50} |c_n|^2$$

Запишем вычисленный квадрат нормы рассматриваемой функции.

$$||f||^2 = 4.319689898685962$$

Приведем значения правых частей равенства при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{50} (a_n^2 + b_n^2) \right) = 4.319689898685969$$
$$2\pi \sum_{n=-50}^{50} |c_n|^2 = 4.319689898685969$$

Заметим, что при N=50 величины квадрата нормы функции и правых частей равенства различаются лишь в 14 знаке после запятой. Значит, равенство Парсеваля для периодической функции, график которой состоит не только из прямых линий, и которая не является ни четной, ни нечетной выполняется с высокой точностью.

Укажем, что уже при N=13 значения правых частей равенства принимают те же значения, что и при N=50.

$$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{13} (a_n^2 + b_n^2) \right) = 8.639379797371944$$
$$2\pi \sum_{n=-13}^{13} |c_n|^2 = 8.639379797371944$$

Это наблюдение согласуется с предложенными графиками: при N=13 частичные суммы довольно точно представляют рассматриваемую функцию.

Таким образом, уже N=13 равенство Парсеваля выполняется с высокой точностью.

1.5 Выводы.

Сделаем выводы на основании первого задания этой лабораторной работы:

- 1. Ряды Фурье эффективно аппроксимируют периодические функции, включая разрывные (например, квадратную волну), демонстрируя сходимость с увеличением числа членов ряда N. Однако в точках разрыва наблюдается эффект Γ иббса.
- 2. Четные функции разлагаются только по косинусам $(b_n = 0)$, а нечетные только по синусам $(a_n = 0)$, что подтверждается аналитическими и программными вычислениями коэффициентов.
- 3. Для функций без четной/нечетной симметрии ряд Фурье содержит как косинусы, так и синусы, а также комплексные экспоненты, что отражает их асимметричную природу.
- 4. Равенство Парсеваля выполняется с высокой точностью даже при умеренных значениях N, подтверждая ортогональность базисных функций и корректность разложения.
- 5. Численные методы (например, метод Симпсона) обеспечивают точное вычисление коэффициентов Фурье, что подтверждается совпадением аналитических и программных результатов.
- 6. Оптимальное количество членов ряда N зависит от сложности функции: для гладких функций достаточно малых N, а для разрывных требуется больше членов для минимизации ошибок.
- 7. Комплексная форма ряда Фурье эквивалентна вещественной, что демонстрируется совпадением графиков частичных сумм $F_N(t)$ и $G_N(t)$.
- 8. Коэффициенты c_n комплексного ряда удовлетворяют свойству $c_n = \overline{c_{-n}}$, что связано с вещественностью исходной функции.
- 9. Ряды Фурье позволяют эффективно анализировать сложные периодические сигналы, представляя их в виде суммы простых гармонических компонент, что упрощает их обработку и интерпретацию в различных приложениях, таких как обработка сигналов и акустика.
- 10. Разложение в ряд Фурье демонстрирует, что любая периодическая функция может быть представлена как суперпозиция синусов и косинусов (или комплексных экспонент), что подчеркивает универсальность и мощь этого математического инструмента для анализа периодических процессов.

2 Задание 2. Комплексная функция.

Зададимся числами $R,\,T>0$ и рассмотрим комплекснозначную функцию $f:\mathbb{R}\to\mathbb{C}$ с периодом T такую, что ее вещественная часть имеет следующий вид:

$$Re(f(t)) = \begin{cases} R, & t \in \left[-\frac{T}{8}, \frac{T}{8} \right) \\ 2R - 8Rt/T, & t \in \left[\frac{T}{8}, \frac{3T}{8} \right) \\ -R, & t \in \left[\frac{3T}{8}, \frac{5T}{8} \right) \\ -6R + 8Rt/T, & t \in \left[\frac{5T}{8}, \frac{7T}{8} \right) \end{cases}.$$

И ее мнимая часть представима следующими соотношениями:

$$\operatorname{Im}(f(t)) = \begin{cases} 8Rt/T, & t \in \left[-\frac{T}{8}, \frac{T}{8}\right) \\ R, & t \in \left[\frac{T}{8}, \frac{3T}{8}\right) \\ 4R - 8Rt/T, & t \in \left[\frac{3T}{8}, \frac{5T}{8}\right) \\ -R, & t \in \left[\frac{5T}{8}, \frac{7T}{8}\right) \end{cases}$$

Пусть R = 2, T = 4, тогда получим следующее:

$$\operatorname{Re}(f(t)) = \begin{cases} 2, & t \in \left[-\frac{1}{2}, \frac{1}{2}\right) \\ 4 - 4t, & t \in \left[\frac{1}{2}, \frac{3}{2}\right) \\ -2, & t \in \left[\frac{3}{2}, \frac{5}{2}\right) \\ -12 + 4t, & t \in \left[\frac{5}{2}, \frac{7}{2}\right) \end{cases} \quad \operatorname{Im}(f(t)) = \begin{cases} 4t, & t \in \left[-\frac{1}{2}, \frac{1}{2}\right) \\ 2, & t \in \left[\frac{1}{2}, \frac{3}{2}\right) \\ 8 - 4t, & t \in \left[\frac{3}{2}, \frac{5}{2}\right) \\ -2, & t \in \left[\frac{5}{2}, \frac{7}{2}\right) \end{cases}$$

Для предложенной функции f(t) рассмотрим частичные суммы ряда Фурье.

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\omega_n t},$$

где $\omega_n = 2\pi \frac{n}{T}$.

2.1 Параметрический график исходной функции f(t).

Приведем параметрический график рассматриваемой функции.

Рис. 25. График предложенной функции

2.2 Нахождение коэффициентов ряда Фурье.

Займемся поиском коэффициентов ряда Фурье. Если период T=4, то $\omega_n=2\pi n/4=\frac{\pi n}{2}$. Учтем это и преобразуем выражение для частичной суммы.

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\frac{\pi n}{2}t},$$

Приведем формулу для вычисления коэффициента c_n для произвольного n.

$$c_n = \frac{1}{T} \int_{h}^{h+T} f(t)e^{-i\omega_n t} dt = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi n}{2}t} dt$$

Найдем значения коэффициентов c_n для $n=\overline{(-N,N)}$ при N=2 вручную.

Вычислим значение коэффициента c_0 .

$$c_{0} = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi \cdot 0}{2}t}dt = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)dt =$$

$$= \frac{1}{4} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)dt + \int_{\frac{1}{2}}^{\frac{3}{2}} f(t)dt + \int_{\frac{5}{2}}^{\frac{5}{2}} f(t)dt + \int_{\frac{5}{2}}^{\frac{7}{2}} f(t)dt \right) =$$

$$= \frac{1}{4} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} (2+4it)dt + \int_{\frac{1}{2}}^{\frac{3}{2}} (4-4t+2i)dt \right) +$$

$$+ \frac{1}{4} \left(\int_{\frac{3}{2}}^{\frac{5}{2}} (-2+(8-4t)i)dt + \int_{\frac{5}{2}}^{\frac{7}{2}} (-12+4t-2i)dt \right) =$$

Найдем отдельно значение каждого из интегралов.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} (2+4it)dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} 2dt + 4i \int_{-\frac{1}{2}}^{\frac{1}{2}} tdt = 2t \Big|_{-0,5}^{0,5} + 2it^2 \Big|_{-0,5}^{0,5} =$$

$$= 1 + \frac{1}{2}i - (-1) - \frac{1}{2}i = 2$$

$$\int_{\frac{3}{2}}^{\frac{3}{2}} (4 - 4t + 2i)dt = (4t - 2t^2 + 2it) \Big|_{0,5}^{1,5} = 6 - 4, 5 + 3i - 2 + 0, 5 - i = 2i$$

$$\int_{\frac{3}{2}}^{\frac{5}{2}} (-2 + (8 - 4t)i)dt = (-2t + 8it - 2it^2) \Big|_{1,5}^{2,5} =$$

$$= -5 + 20i - 12, 5i + 3 - 12i + 4, 5i = -2$$

$$\int_{\frac{5}{2}}^{\frac{7}{2}} (-12 + 4t - 2i)dt = (-12t + 2t^2 - 2it) \Big|_{2,5}^{3,5} =$$

$$= -42 + 24, 5 - 7i + 30 - 12, 5 + 5i = -2i$$

Вычислим значение исходного выражения.

$$\boxed{\equiv} \frac{1}{4} (2 + 2i - 2 - 2i) = 0$$

Аналогично вычислим другие коэффициенты.

$$c_{1} = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi \cdot 1}{2}t}dt =$$

$$= \frac{1}{4} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{-i\frac{\pi}{2}t}dt + \int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{-i\frac{\pi}{2}t}dt + \int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi}{2}t}dt + \int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi}{2}t}dt \right) =$$

Определим значение каждого интеграла в отдельности.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{-i\frac{\pi}{2}t}dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} (2+4it)e^{-i\frac{\pi}{2}t}dt =$$

$$= \begin{vmatrix} u = 2 + 4it \Rightarrow du = 4idt \\ dv = e^{-i\frac{\pi}{2}t}dt \Rightarrow v = \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} \end{vmatrix} = (2+4it) \cdot \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} - 4i \int \frac{2ie^{-i\frac{\pi}{2}t}}{\pi}dt =$$

$$= \frac{2i(4it+2)}{\pi e^{\frac{i\pi t}{2}}} + \int \frac{8}{\pi e^{\frac{i\pi t}{2}}}dt =$$

$$= \frac{2i(4it+2)}{\pi e^{\frac{i\pi t}{2}}} + \frac{16i}{\pi^2 e^{\frac{i\pi t}{2}}}$$

$$\left(\frac{2i(4it+2)}{\pi e^{\frac{i\pi t}{2}}} + \frac{16i}{\pi^2 e^{\frac{i\pi t}{2}}}\right) \Big|_{-\frac{1}{2}}^{\frac{1}{2}} = \frac{16\sqrt{2}}{\pi^2} \approx 2,29264$$

$$\int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{i\frac{-\pi}{2}t}dt = \int_{\frac{1}{2}}^{\frac{3}{2}} (4-4t+2i)e^{-i\frac{\pi}{2}t}dt =$$

$$= \begin{vmatrix} u = 4-4t+2i \Rightarrow du = -4dt \\ dv = e^{-i\frac{\pi}{2}t}dt \Rightarrow v = \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} \end{vmatrix} = (4-4t+2i) \cdot \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} + 4\int \frac{2ie^{-i\frac{\pi}{2}t}}{\pi}dt =$$

$$= \frac{2i\left(-4t+2i+4\right)}{\pi e^{\frac{i\pi t}{2}}} + \int \frac{8i}{\pi e^{\frac{i\pi t}{2}}}dt =$$

$$= \frac{2i\left(-4t+2i+4\right)}{\pi e^{\frac{i\pi t}{2}}} - \frac{16}{\pi^2 e^{\frac{i\pi t}{2}}}$$

$$\left(\frac{2i\left(-4t+2i+4\right)}{\pi e^{\frac{i\pi t}{2}}} - \frac{16}{\pi^2 e^{\frac{i\pi t}{2}}}\right)^{\frac{3}{2}} = \frac{16\sqrt{2}}{\pi^2} \approx 2,29264$$

$$\int_{\frac{3}{2}}^{\frac{5}{2}} f(t)e^{-i\frac{\pi}{2}t}dt = \int_{\frac{3}{2}}^{\frac{5}{2}} (-2+(8-4t)i)e^{-i\frac{\pi}{2}t}dt =$$

$$= \begin{vmatrix} x = \frac{i\pi t}{2} \Rightarrow t = -\frac{2ix}{\pi} \\ dt = -\frac{2i}{\pi}dx \end{vmatrix} = -\int \frac{2i\left(i\left(\frac{8ix}{\pi} + 8\right) - 2\right)}{\pi e^x}dx =$$

$$= -\frac{2i}{\pi}\int \left(-\frac{8x}{\pi e^x} + \frac{8i}{e^x} - \frac{2}{e^x}\right)dx =$$

$$= \begin{vmatrix} u = x \Rightarrow du = dx \\ dv = \frac{dx}{e^x} = -\frac{1}{e^x}dx \end{vmatrix} = -\frac{2i}{\pi}\left(-\frac{8}{\pi} \cdot \left(-\frac{x+1}{e^x}\right) - \frac{8i}{e^x} + \frac{2}{e^x}\right) =$$

$$= -\frac{4\left(4ix + (i+4)\pi + 4i\right)}{\pi^2 e^x} = -\frac{4\left(2\pi t + (-i-4)\pi - 4i\right)}{\pi^2 e^{\frac{i\pi t}{2}}}$$

$$\left(-\frac{4\left(2\pi t + (-i-4)\pi - 4i\right)}{\pi^2 e^{\frac{i\pi t}{2}}}\right) \begin{vmatrix} \frac{5}{2} \\ \frac{1}{2} = \frac{16\sqrt{2}}{\pi^2} \approx 2,29264$$

$$\int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi}{2}t}dt = \int_{\frac{5}{2}}^{\frac{7}{2}} (-12+4t-2i)e^{-i\frac{\pi}{2}t}dt =$$

$$= \begin{vmatrix} u = -12+4t-2i \Rightarrow du = 4dt \\ dv = e^{-i\frac{\pi}{2}t}dt \Rightarrow v = \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} \end{vmatrix} = (-12+4t-2i) \cdot \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} - 4\int \frac{2ie^{-i\frac{\pi}{2}t}}{\pi} =$$

$$= \frac{2i(4t-2i-12)}{\pi e^{\frac{i\pi t}{2}}} - \int \frac{8i}{\pi e^{\frac{i\pi t}{2}}}dt =$$

$$= \frac{2i(4t-2i-12)}{\pi e^{\frac{i\pi t}{2}}} - \frac{16}{\pi^2 e^{\frac{i\pi t}{2}}}$$

$$\left(\frac{2i(4t-2i-12)}{\pi e^{\frac{i\pi t}{2}}} - \frac{16}{\pi^2 e^{\frac{i\pi t}{2}}}\right)\Big|_{\frac{5}{2}}^{\frac{7}{2}} = \frac{16\sqrt{2}}{\pi^2} \approx 2,29264$$

Найдем значение исходного выражения.

$$= \frac{1}{4} \left(\frac{16\sqrt{2}}{\pi^2} + \frac{16\sqrt{2}}{\pi^2} + \frac{16\sqrt{2}}{\pi^2} + \frac{16\sqrt{2}}{\pi^2} + \frac{16\sqrt{2}}{\pi^2} \right) = \frac{16\sqrt{2}}{\pi^2} \approx 2,29264$$

Продолжим процесс поиска коэффициентов.

$$c_{2} = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi \cdot 2}{2}t}dt =$$

$$= \frac{1}{4} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{-i\pi t}dt + \int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{-i\pi t}dt + \int_{\frac{3}{2}}^{\frac{7}{2}} f(t)e^{-i\pi t}dt + \int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{-i\pi t}dt \right) =$$

Найдем значение каждого интеграла в отдельности.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{-i\pi t}dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} (2+4it)e^{-i\pi t}dt =$$

$$= \begin{vmatrix} u = 2+4it \Rightarrow du = 4idt \\ dv = e^{-i\pi t}dt \Rightarrow v = \frac{ie^{-i\pi t}}{\pi} \end{vmatrix} = (2+4it) \cdot \frac{ie^{-i\pi t}}{\pi} - 4i \int \frac{ie^{-i\pi t}}{\pi}dt =$$

$$= \frac{i(4it+2)}{\pi e^{i\pi t}} + \int \frac{4}{\pi e^{i\pi t}}dt =$$

$$= \frac{i(4it+2)}{\pi e^{i\pi t}} + \frac{4i}{\pi^2 e^{i\pi t}}$$

$$\left(\frac{i(4it+2)}{\pi e^{i\pi t}} + \frac{4i}{\pi^2 e^{i\pi t}}\right) \Big|_{-\frac{1}{2}}^{\frac{3}{2}} = \frac{4\pi + 8}{\pi^2} \approx 2,08381$$

$$\int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{-i\pi t}dt = \int_{\frac{1}{2}}^{\frac{3}{2}} (4-4t+2i)e^{-i\pi t}dt =$$

$$= \left| u = 4-4t+2i \Rightarrow du = -4dt \\ dv = e^{-i\pi t}dt \Rightarrow v = \frac{ie^{-i\pi t}}{\pi} \right| = (4-4t+2i) \cdot \frac{ie^{-i\pi t}}{\pi} + 4\int \frac{ie^{-i\pi t}}{\pi}dt =$$

$$= \frac{i(-4t+2i+4)}{\pi e^{i\pi t}} + \int \frac{4i}{\pi e^{i\pi t}}dt =$$

$$= \frac{i(-4t+2i+4)}{\pi e^{i\pi t}} - \frac{4}{\pi^2 e^{i\pi t}}$$

$$\left(\frac{i(-4t+2i+4)}{\pi e^{i\pi t}} - \frac{4}{\pi^2 e^{i\pi t}}\right) \Big|_{-\frac{1}{2}}^{\frac{3}{2}} = -\frac{4i\pi + 8i}{\pi^2} \approx -2,08381i$$

$$= \begin{vmatrix} x = i\pi t \Rightarrow t = -\frac{ix}{\pi} \\ dt = -\frac{i}{\pi} dx \end{vmatrix} = -\int \frac{i\left(i\left(\frac{4ix}{\pi} + 8\right) - 2\right)}{\pi e^x} dx =$$

$$= -\frac{i}{\pi} \int \left(-\frac{4x}{\pi e^x} + \frac{8i}{e^x} - \frac{2}{e^x}\right) dx =$$

$$= \begin{vmatrix} u = x \Rightarrow du = dx \\ dv = \frac{dx}{e^x} = -\frac{1}{e^x} dx \end{vmatrix} = -\frac{i}{\pi} \left(-\frac{4}{\pi} \cdot \left(-\frac{x+1}{e^x}\right) - \frac{8i}{e^x} + \frac{2}{e^x}\right) =$$

$$= -\frac{2(2ix + (i+4)\pi + 2i)}{\pi^2 e^x} = -\frac{2(2\pi t + (-i-4)\pi - 2i)}{\pi^2 e^{i\pi t}}$$

$$\left(-\frac{2(2\pi t + (-i-4)\pi - 2i)}{\pi^2 e^{i\pi t}}\right) \Big|_{\frac{3}{2}}^{\frac{5}{2}} = -\frac{4\pi + 8}{\pi^2} \approx -2,08381$$

$$\int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{-i\pi t} dt = \int_{\frac{5}{2}}^{\frac{7}{2}} (-12 + 4t - 2i)e^{-i\pi t} dt =$$

$$= \left| u = -12 + 4t - 2i \Rightarrow du = 4dt \\ dv = e^{-i\pi t} dt \Rightarrow v = \frac{ie^{-i\pi t}}{\pi} \right| = (-12 + 4t - 2i) \cdot \frac{ie^{-i\pi t}}{\pi} - 4 \int \frac{ie^{-i\pi t}}{\pi} =$$

$$= \frac{i(4t - 2i - 12)}{\pi e^{i\pi t}} - \int \frac{4i}{\pi e^{i\pi t}} dt =$$

$$= \frac{i(4t - 2i - 12)}{\pi e^{i\pi t}} + \frac{4}{\pi^2 e^{i\pi t}} =$$

$$\left(\frac{i(4t - 2i - 12)}{\pi e^{i\pi t}} + \frac{4}{\pi^2 e^{i\pi t}}\right) \Big|_{\frac{5}{2}}^{\frac{7}{2}} = \frac{4i\pi + 8i}{\pi^2} \approx 2.08381i$$

 $\int_{0}^{\frac{\pi}{2}} f(t)e^{-i\pi t}dt = \int_{0}^{\frac{\pi}{2}} (-2 + (8 - 4t)i)e^{-i\pi t}dt = 0$

Вычислим значение исходного выражения.

$$\boxed{=} \frac{1}{4} \left(\frac{4\pi + 8}{\pi^2} - \frac{4i\pi + 8i}{\pi^2} - \frac{4\pi + 8}{\pi^2} + \frac{4i\pi + 8i}{\pi^2} \right) = 0$$

Отыщем остальные коэффициенты.

$$c_{-1} = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi \cdot (-1)}{2}t} dt =$$

$$= \frac{1}{4} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{i\frac{\pi}{2}t} dt + \int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{i\frac{\pi}{2}t} dt + \int_{\frac{3}{2}}^{\frac{5}{2}} f(t)e^{i\frac{\pi}{2}t} dt + \int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{i\frac{\pi}{2}t} dt \right) =$$

Вычислим каждый интеграл в отдельности.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{i\frac{\pi}{2}t}dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} (2+4it)e^{i\frac{\pi}{2}t}dt =$$

$$= \begin{vmatrix} u = 2+4it \Rightarrow du = 4idt \\ dv = e^{i\frac{\pi}{2}t}dt \Rightarrow v = -\frac{2ie^{i\frac{\pi}{2}t}}{\pi} \end{vmatrix} = -(2+4it) \cdot \frac{2ie^{i\frac{\pi}{2}t}}{\pi} - 4i \int \frac{2ie^{i\frac{\pi}{2}t}}{\pi}dt =$$

$$= -\frac{4ie^{i\frac{\pi}{2}t}}{\pi} + \frac{8te^{i\frac{\pi}{2}t}}{\pi} - \int \frac{8e^{i\frac{\pi}{2}t}}{\pi}dt =$$

$$= -\frac{4ie^{i\frac{\pi}{2}t}}{\pi} + \frac{8te^{i\frac{\pi}{2}t}}{\pi} - \frac{16ie^{i\frac{\pi}{2}t}}{\pi} - \frac{16ie^{i\frac{\pi}{2}t}}{\pi^2}$$

$$\left(-\frac{4ie^{i\frac{\pi}{2}t}}{\pi} + \frac{8te^{i\frac{\pi}{2}t}}{\pi} - \frac{16ie^{i\frac{\pi}{2}t}}{\pi^2} \right) \Big|_{-\frac{1}{2}}^{\frac{1}{2}} = \frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} \approx 1,30863$$

$$\int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{i\frac{\pi}{2}t}dt = \int_{\frac{1}{2}}^{\frac{3}{2}} (4 - 4t + 2i)e^{i\frac{\pi}{2}t}dt =$$

$$= \begin{vmatrix} u = 4 - 4t + 2i \Rightarrow du = -4dt \\ dv = e^{i\frac{\pi}{2}t}dt \Rightarrow v = -\frac{2ie^{i\frac{\pi}{2}t}}{\pi} \end{vmatrix} = -(4 - 4t + 2i) \cdot \frac{2ie^{i\frac{\pi}{2}t}}{\pi} - 4 \int \frac{2ie^{i\frac{\pi}{2}t}}{\pi}dt =$$

$$= -\frac{2i(-4t + 2i + 4)e^{\frac{i\pi}{2}t}}{\pi} - \int \frac{8ie^{\frac{i\pi t}{2}}}{\pi}dt =$$

$$= -\frac{2i(-4t + 2i + 4)e^{\frac{i\pi t}{2}}}{\pi} + \frac{16e^{\frac{i\pi t}{2}t}}{\pi^2}$$

$$\left(-\frac{2i(-4t + 2i + 4)e^{\frac{i\pi}{2}t}}{\pi} + \frac{16e^{\frac{i\pi t}{2}t}}{\pi^2}\right)\Big|_{\frac{1}{2}}^{\frac{3}{2}} = -\frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} \approx -1,30863$$

$$\int_{\frac{3}{2}}^{\frac{5}{2}} f(t)e^{i\frac{\pi}{2}t}dt = \int_{\frac{3}{2}}^{\frac{5}{2}} (-2 + (8 - 4t)i)e^{i\frac{\pi}{2}t}dt =$$

$$= \left| u = -2 + 8i - 4it \Rightarrow du = -4idt \\ dv = e^{i\frac{\pi}{2}t}dt \Rightarrow v = -\frac{2ie^{i\frac{\pi}{2}t}}{\pi} \right| = -(-2 + 8i - 4it) \cdot \frac{2ie^{i\frac{\pi}{2}t}}{\pi} + \int \frac{8e^{i\frac{\pi}{2}t}}{\pi}dt =$$

$$= -\frac{2i(-4it + 8i - 2)e^{i\frac{\pi}{2}t}}{\pi} + \int \frac{8e^{i\frac{\pi}{2}t}}{\pi}dt =$$

$$= -\frac{2i(-4it + 8i - 2)e^{i\frac{\pi}{2}t}}{\pi} - \frac{16ie^{i\frac{\pi}{2}t}}{\pi^2}$$

$$\left(-\frac{2i(-4it + 8i - 2)e^{i\frac{\pi}{2}t}}{\pi} - \frac{16ie^{i\frac{\pi}{2}t}}{\pi^2}\right)\Big|_{\frac{5}{2}}^{\frac{5}{2}} = \frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} \approx 1,30863$$

$$\begin{split} \int\limits_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{i\frac{\pi}{2}t}dt &= \int\limits_{\frac{5}{2}}^{\frac{7}{2}} (-12+4t-2i)e^{i\frac{\pi}{2}t}dt = \\ &= \left| u = -12+4t-2i \Rightarrow du = 4dt \right| \\ dv &= e^{i\frac{\pi}{2}t}dt \Rightarrow v = -\frac{2ie^{i\frac{\pi}{2}t}}{\pi} \right| = -(-12+4t-2i) \cdot \frac{2ie^{i\frac{\pi}{2}t}}{\pi} + \int \frac{8ie^{i\frac{\pi}{2}t}}{\pi}dt = \\ &= -\frac{2i\left(4t-2i-12\right)e^{i\frac{\pi}{2}t}}{\pi} + \int \frac{8ie^{i\frac{\pi}{2}t}}{\pi}dt = \\ &= -\frac{2i\left(4t-2i-12\right)e^{i\frac{\pi}{2}t}}{\pi} + \frac{16e^{i\frac{\pi}{2}t}}{\pi^2} \\ \left(-\frac{2i\left(4t-2i-12\right)e^{i\frac{\pi}{2}t}}{\pi} + \frac{16e^{i\frac{\pi}{2}t}}{\pi^2} \right) \right|_{\frac{5}{2}}^{\frac{7}{2}} = -\frac{8\sqrt{2}\pi-16\sqrt{2}}{\pi^2} \approx -1,30863 \end{split}$$

Теперь посчитаем значение исходного выражения.

$$= \frac{1}{4} \left(\frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} - \frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} + \frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} - \frac{8\sqrt{2}\pi - 16\sqrt{2}}{\pi^2} \right) = 0$$

Найдем следующий коэффициент.

$$c_{-2} = \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{7}{2}} f(t)e^{-i\frac{\pi \cdot (-2)}{2}t}dt =$$

$$= \frac{1}{4} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{i\pi t}dt + \int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{i\pi t}dt + \int_{\frac{3}{2}}^{\frac{7}{2}} f(t)e^{i\pi t}dt + \int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{i\pi t}dt \right) =$$

Найдем значение каждого интеграла в отдельности.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)e^{i\pi t}dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} (2+4it)e^{i\pi t}dt =$$

$$= \begin{vmatrix} u = 2+4it \Rightarrow du = 4idt \\ dv = e^{i\pi t}dt \Rightarrow v = -\frac{ie^{i\pi t}}{\pi} \end{vmatrix} = -(2+4it) \cdot \frac{ie^{i\pi t}}{\pi} - 4\int \frac{e^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(4it+2)e^{i\pi t}}{\pi} - \int \frac{4e^{i\pi t}}{\pi} =$$

$$= -\frac{i(4it+2)e^{i\pi t}}{\pi} + \frac{4ie^{i\pi t}}{\pi^2}$$

$$\left(-\frac{i(4it+2)e^{i\pi t}}{\pi} + \frac{4ie^{i\pi t}}{\pi^2} \right) \Big|_{-\frac{1}{2}}^{\frac{3}{2}} = \frac{4\pi - 8}{\pi^2} \approx 0,46267$$

$$\int_{\frac{1}{2}}^{\frac{3}{2}} f(t)e^{i\pi t}dt = \int_{\frac{1}{2}}^{\frac{3}{2}} (4-4t+2i)e^{i\pi t}dt =$$

$$= \left| u = 4-4t+2i \Rightarrow du = -4dt \\ dv = e^{i\pi t}dt \Rightarrow v = -\frac{ie^{i\pi t}}{\pi} \right| = -(4-4t+2i) \cdot \frac{ie^{i\pi t}}{\pi} - 4\int \frac{ie^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(-4t+2i+4)e^{i\pi t}}{\pi} - \int \frac{4ie^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(-4t+2i+4)e^{i\pi t}}{\pi} - \frac{4e^{i\pi t}}{\pi^2} =$$

$$\left(-\frac{i(-4t+2i+4)e^{i\pi t}}{\pi} - \frac{4e^{i\pi t}}{\pi^2} \right) \Big|_{-\frac{1}{2}}^{\frac{3}{2}} = -\frac{4i\pi - 8i}{\pi^2} \approx -0,46267i$$

$$\int_{\frac{3}{2}}^{\frac{5}{2}} f(t)e^{i\pi t}dt = \int_{\frac{3}{2}}^{\frac{5}{2}} (-2 + (8 - 4t)i)e^{i\pi t}dt =$$

$$= \begin{vmatrix} u = -2 + 8i - 4it \Rightarrow du = -4idt \\ dv = e^{i\pi t}dt \Rightarrow v = -\frac{ie^{i\pi t}}{\pi} \end{vmatrix} = -(-2 + 8i - 4it) \cdot \frac{ie^{i\pi t}}{\pi} + 4 \int \frac{e^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(-4it + 8i - 2)e^{i\pi t}}{\pi} + \int \frac{4e^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(-4it + 8i - 2)e^{i\pi t}}{\pi} - \frac{4ie^{i\pi t}}{\pi^2} =$$

$$\left(-\frac{i(-4it + 8i - 2)e^{i\pi t}}{\pi} - \frac{4ie^{i\pi t}}{\pi^2} \right) \Big|_{\frac{3}{2}}^{\frac{5}{2}} = -\frac{4\pi - 8}{\pi^2} \approx -0,46267$$

$$\int_{\frac{5}{2}}^{\frac{7}{2}} f(t)e^{i\pi t}dt = \int_{\frac{5}{2}}^{\frac{7}{2}} (-12 + 4t - 2i)e^{i\pi t}dt =$$

$$\int_{\frac{5}{2}} f(t)e^{-t}dt = \int_{\frac{5}{2}} (-12+4t-2i)e^{-t}dt =$$

$$= \begin{vmatrix} u = -12+4t-2i \Rightarrow du = 4dt \\ dv = e^{i\pi t}dt \Rightarrow v = -\frac{ie^{i\pi t}}{\pi} \end{vmatrix} = -(-12+4t-2i) \cdot \frac{ie^{i\pi t}}{\pi} + 4\int \frac{ie^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(4t-2i-12)e^{i\pi t}}{\pi} + \int \frac{4ie^{i\pi t}}{\pi}dt =$$

$$= -\frac{i(4t-2i-12)e^{i\pi t}}{\pi} + \frac{4e^{i\pi t}}{\pi^2} =$$

$$\left(-\frac{i(4t-2i-12)e^{i\pi t}}{\pi} + \frac{4e^{i\pi t}}{\pi^2} \right) \Big|_{\frac{5}{2}}^{\frac{7}{2}} = \frac{4i\pi - 8i}{\pi^2} \approx 0,46267i$$

Вычислим значение исходного выражения.

$$\boxed{\equiv} \frac{1}{4} \left(\frac{4\pi - 8}{\pi^2} - \frac{4i\pi - 8i}{\pi^2} - \frac{4\pi - 8}{\pi^2} + \frac{4i\pi - 8i}{\pi^2} \right) = 0$$

Отметим, что в случае комплексной функции исчезает симметрия коэффициентов. То есть, равенство (3), вообще говоря, неверно

$$c_n \neq \overline{c}_{-n}$$
.

2.3 Программное вычисление коэффициентов ряда Фурье.

Реализуем при помощи языка программирования Руthon численное интегрирование — метод Симпсона для комплексных функций. Кроме того, воспользуемся функцией для вычисления коэффициентов ряда Фурье. Затем приведем аналитические и программные коэффициенты в виде таблицы, а после сравним их.

	Аналитическое нахождение	Программное вычисление
c_{-2}	0	$\approx 0 + 0i$
c_{-1}	0	$\approx 0 + 0i$
c_0	0	0
c_1	$\frac{16\sqrt{2}}{\pi^2} \approx 2.29264$	$\approx 2.2924 + 0i$
c_2	0	$\approx 0 + 0i$

Tаблица 10. Cравнительная таблица для коэффициентов c_n

Следовательно, на основании таблицы, можно утверждать, что значения коэффициентов, вычисленные программным путем, практически неотличимы от величин, найденных аналитическим способом.

2.4 Построение параметрических графиков.

Всю графическую работу и проверку равенства Парсеваля выполним при помощи этой программы. Построим параметрические графики частичных сумм ряда $G_N(t)$ при N=1,2,3,10. Затем сравним их между собой, а также с графиком исходной функции.

Puc. 26. Графики исходной функции и частичной суммы комплексной функции при N=1

Puc. 27. Графики исходной функции и частичной суммы комплексной функции при N=2

Рис. 28. Графики исходной функции и частичной суммы комплексной функции при N=3

 $Puc.\ 29.\ \Gamma paфики исходной функции и частичной суммы комплексной функции при <math display="inline">N=10$

На рисунках 26 при N=1 график исходной функции и частичной суммы практически не совпадают. При N=2 на рисунке 27 наблюдается аналогичная ситуация: частичные суммы почти не отличаются от случая N=2 и плохо приближают рассматриваемую функцию.

Однако на рисунке 28 при N=3 приближение исходной функции частичными суммами выполняется лучше: они точнее описывают поведение функции. При N=10 на рисунке 29 графики исходной функции и частичных сумм почти неотличимы.

2.5 Построение графиков вещественной и мнимой частей.

Построим графики $\text{Re}(G_N(t))$ и $\text{Im}(G_N(t))$ при N=1,2,3,10. Затем Сравним их с соответствующими графиками Re(f(t)) и Im(f(t))

 $Puc.\ 30.\ \Gamma$ рафики вещественной и мнимой частей рассматриваемой функции f(t)

Puc. 31. Графики вещественной и мнимой частей рассматриваемой функции f(t) и $G_N(t)$ при N=1

Puc. 32. Графики вещественной и мнимой частей рассматриваемой функции f(t) и $G_N(t)$ при N=2

Puc. 33. Графики вещественной и мнимой частей рассматриваемой функции f(t) и $G_N(t)$ при N=3

Puc. 34. Графики вещественной и мнимой частей рассматриваемой функции f(t) и $G_N(t)$ при N=10

На рисунке 30 представлены графики вещественной и мнимой частей исходной функции. На рисунке 31 при N=1 графики вещественной и мнимой частей частичной сумм лишь слегка напоминают очертания рассматриваемой функции. При N=2 на рисунке 32 отличия в точности приближения функции по сравнению с предыдущим случаем почти незаметны.

Уже при N=3 на рисунке 33 графики почти совпадают: частичная сумма довольно точно приближает исходную функцию. На рисунке 34 при N=10 графики частичной суммы и рассматриваемой функции практически полностью совпадают.

2.6 Проверка равенства Парсеваля.

Запишем равенство, которое требуется проверить в случае комплексной функции.

$$||f||^2 = T \sum_{n=-N}^{N} |c_n|^2,$$

где

$$\int_{a}^{b} f(t) \cdot \overline{f(t)} dt$$

Выберем наибольшее из рассмотренных N-10 и проверим программным путем выполнение равенства Парсеваля, которое имеет следующий вид.

$$||f||^2 = 4\sum_{n=-10}^{10} |c_n|^2$$

Приведем вычисленный квадрат нормы исходной функции.

Запишем значение правой части равенства при N=10.

$$4\sum_{n=-10}^{10} |c_n|^2 = 21.30950006644546$$

Отметим, что при N=10 значения квадрата нормы функции и правой части равенства отличаются уже в втором знаке после запятой. То есть,

равенство Парсеваля для комплексной функции выполняется с точностью до сотых.

Рассмотрим дополнительно N=100 и представим значение правой части равенства.

$$4\sum_{n=-100}^{100} |c_n|^2 = 21.312797643556557$$

Видно, что и в этом случае равенство выполняется только с точностью до сотых.

Рассмотрим еще и N=496 и запишем значение правой части равенства.

$$4\sum_{n=-496}^{496} |c_n|^2 = 21.321671072008492$$

В данном случае равенство также выполняется с точностью до сотых. При дальнейшем увеличении количества слагаемых будет наблюдаться превосходство правых частей равенства по значению по сравнению с квадратом нормы функции.

Таким образом, равенство Парсеваля выполняется для комплексной функции с точностью до сотых.

2.7 Выводы.

- 1. Комплекснозначная функция с кусочно-линейными вещественной и мнимой частями успешно аппроксимируется частичными суммами ряда Φ урье при увеличении числа гармоник N.
- 2. Аналитическое и программное вычисление коэффициентов Фурье c_n демонстрирует согласованность результатов, подтверждая корректность методов их вычисления.
- 3. При N=10 частичные суммы ряда Фурье практически совпадают с исходной функцией, что говорит о качественном приближении исследуемой функции.
- 4. В общем случае для комплексных функций отсутствует симметрия коэффициентов c_n и c_{-n} , характерная для вещественных функций.
- 5. Проверка равенства Парсеваля показала его выполнение с точностью до сотых, однако полного совпадения не достигнуто, что может быть связано с погрешностями численных методов.
- 6. Графики частичных сумм при N=3 уже достаточно точно приближают исходную функцию, что подчеркивает эффективность ряда Фурье для аппроксимации.
- 7. Различия в проверке равенства Парсеваля при N=496 указывает на влияние дискретизации и конечности числа гармоник, что подчеркивает важность выбора оптимального N для собладения баланса между точностью и вычислительной сложностью.
- 8. Использование метода Симпсона для численного интегрирования комплексных функций обеспечивает высокую точность вычисления коэффициентов c_n , что подтверждается совпадением аналитических и программных результатов.
- 9. Увеличение N улучшает визуальное соответствие графиков, но не устраняет различий в равенстве Парсеваля.
- 10. Лабораторная работа подтверждает, что ряды Фурье являются мощным инструментом для анализа периодических комплекснозначных сигналов, несмотря на особенности их спектрального представления.

3 Выводы по лабораторной работе.

Сформулируем общие выводы, которые можно сделать после выполнения лабораторной работы:

- 1. Ряды Фурье эффективно аппроксимируют как вещественные, так и комплекснозначные периодические функции, демонстрируя улучшение точности с увеличением числа гармоник N.
- 2. Для вещественных функций коэффициенты Фурье обладают симметрией $(c_n = \overline{c_{-n}})$, что упрощает анализ и вычисления, тогда как для комплексных функций эта симметрия отсутствует.
- 3. Ряды Фурье для четных и нечетных функций содержат только функции $\cos(nt)$ и только функции $\sin(nt)$ соответственно, что подтверждается тождественно нулевыми значениями коэффициентов b_n или a_n соответственно.
- 4. Эффект Гиббса наблюдается в окрестностях точек разрыва функций (например, квадратной волны), что говорит об отсутствии равномерной сходимости.
- 5. Метод Симпсона для численного интегрирования обеспечивает высокую точность вычисления коэффициентов Фурье, что подтверждается совпадением аналитических и программных результатов.
- 6. Равенство Парсеваля выполняется с высокой точностью для гладких функций, но для разрывных функций или комплексных сигналов наблюдаются незначительные отклонения, связанные с конечностью числа гармоник.
- 7. Частичные суммы рядов Фурье часто практически полностью совпадают с исходной функцией, что подтверждает сходимость метода.
- 8. Для функций смешанного типа (нечетных, нечетных) требуется большее количество гармоник для достижения точности, чем для симметричных функций.
- 9. Параметрические графики комплекснозначных функций отражают взаимосвязь вещественной и мнимой частей, что упрощает анализ их поведения.
- 10. Лабораторная работа подтверждает универсальность рядов Фурье для анализа периодических сигналов, включая их применение в обработке данных, акустике и других областях.

Приложение

```
1 from math import *
2
  def simpson_integral(f, a, b, n):
3
      if n % 2 != 0:
          n += 1 # Делаем n четным, как требует метод
      h = (b - a) / n
6
      integral = f(a) + f(b)
      for i in range(1, n):
          x = a + i * h
9
          if i % 2 == 0:
               integral += 2 * f(x)
               integral += 4 * f(x)
      integral *= h / 3
      return integral
16
17 # Ввод данных
18 user_function = input("Введите функцию f(t): ")
19 a = float(input("Введите нижний предел интегрирования a: "))
20 b = float(input("Введите верхний предел интегрирования b: "))
21 # n = int(input("Введите количество разбиений n: "))
22 n = 1000 # Заранее выбранное оптимальное количество интервалов
24 # Определение функции
25 def f(t):
      return eval(user_function)
28 # Вычисление интеграла
29 result = simpson_integral(f, a, b, n)
30 print(f"Приближенное значение интеграла: {result}")
```

Листинг 1. Функция, реализующая численное интегрирование

```
import numpy as np

def coefficient_a(f, N, T, 1, r):
    result = [] # Массив с вычисленными коэффициентами
for n in range(N):
    fourier_cos = lambda t: f(t) * np.cos(((2*np.pi*n)/T) * t)
    result.append(2/T * simpson_integral(fourier_cos, 1, r, 1000))

return result
```

Листинг 2. Функция для определения коэффициентов a_n

```
import numpy as np

def coefficient_b(f, N, T, 1, r):
    result = [] # Массив с вычисленными коэффициентами
for n in range(N):
    fourier_sin = lambda t: f(t) * np.sin(((2*np.pi*n)/T) * t)
    result.append(2/T * simpson_integral(nfourier_sin, 1, r, 1000))
return result
```

Листинг 3. Функция для определения коэффициентов b_n

```
import numpy as np

def coefficient_c(f, N, T, l, r):
    result = [] # Массив с вычисленными коэффициентами
for n in range(-N, N+1, 1):
    fourier_exp = lambda t: f(t) * np.exp(-1j * ((2*np.pi*n)/T)
    * t)
    result.append(1/T * simpson_integral(fourier_exp, l, r, 1000))
    return result
```

Листинг 4. Функция для определения коэффициентов c_n

Листинг 5. Функция для вычисления коэффициентов c_n для комплексной функции

```
1 import numpy as np
2 from Integral_count import *
  def f(t):
      return 3
7 def g(t):
8
      return 4
9
11 a_n_p_1 = coefficient_a(f, 2, 2*np.pi, 2*np.pi, 3*np.pi)
a_n_p_2 = coefficient_a(g, 2, 2*np.pi, 3*np.pi, 4*np.pi)
_{13} print("Значение коэффициента a_0: " + str(a_n_p_1[0] + a_n_p_2[0]))
_{14} print("3Hayenue коэффициента a_1: " + str(a_n_p_1[1] + a_n_p_2[1]))
_{15} print("Значение коэффициента a_2: " + str(a_n_p_1[2] + a_n_p_2[2]))
  print("======="")
17
18
b_n_p_1 = coefficient_b(f, 2, 2*np.pi, 2*np.pi, 3*np.pi)
b_n_p_2 = coefficient_b(g, 2, 2*np.pi, 3*np.pi, 4*np.pi)
21 print("3начение коэффициента b_0: " + str(b_n_p_1[0] + b_n_p_2[0]))
  print("Значение коэффициента b_1: " + str(b_n_p_1[1] + b_n_p_2[1]))
23 print("3начение коэффициента b_2: " + str(b_n_p_1[2] + b_n_p_2[2]))
24
25 print("========="")
27 c_n_p_1 = coefficient_c(f, 2, 2*np.pi, 2*np.pi, 3*np.pi)
c_n_p_2 = c_{p_1} = c_{p_2} = c_{p_3} = c_{p_4}
29 print("Значение коэффициента c_{-2}: " + str(c_{-p_1}[-1] + c_{-p_2}
      [-1]))
30 print("Значение коэффициента c_{-1}: " + str(c_{-1}-1[-2] + c_{-1}-2
  print("Значение коэффициента c_0: " + str(c_n_p_1[-3] + c_n_p_2
_{32} print("Значение коэффициента c_1: " + str(c_n_p_1[-4] + c_n_p_2
33 print("Значение коэффициента c_2: " + str(c_n_p_1[-5] + c_n_p_2
      [-5]))
```

Листинг 6. Программа для нахождения некоторых коэффициентов рядов для квадратной волны

```
1 from coefficient_count import *
2 import numpy as np
3 import matplotlib.pyplot as plt
5 def square_wave(t):
      if (t//np.pi) \% 2 == 0:
6
           return 3
8
       else:
           return 4
9
  def even(t):
      return 2*np.cos(t)**3 + 1/2*np.cos(5*t)
12
13
  def odd(t):
14
      return np.sin(t)**3 + 1/4*np.<math>sin(2*t)
16
  def even not odd(t):
17
      return np.cos(2*t)**2 + (np.sin(3*t))**3
18
19
  def F_N(f, t, N, T, 1, r):
20
21
       a_n = coefficient_a(f, N, 2*np.pi, l, r)
       b_n = coefficient_b(f, N, 2*np.pi, 1, r)
22
      result = a_n[0] / 2
23
      for n in range (1, N + 1):
24
           result += a_n[n] * np.cos((2*np.pi*n)/T * t) + b_n[n] * np.
      sin((2*np.pi*n)/T * t)
      return result
26
27
28
  def G_N(f, t, N, T, 1, r):
29
       c_n = coefficient_c(f, N, 2 * np.pi, 1, r)
30
       result = 0 + 0j
31
      for n in range(-N, N+1, 1):
           result += c_n[n + N] * np.exp(1j * (2*np.pi*n)/T * t)
33
      return result
35
36
37 N = 50
38 \text{ xvals} = \text{np.linspace}(-2*\text{np.pi}, 2*\text{np.pi}, 1000)
39 yvals = list(map(square_wave, xvals))
40 F_Nvals = [F_N(square_wave, t, N, 2 * np.pi, 2 * np.pi, 4 * np.pi)
      for t in xvals]
41 G_Nvals = [G_N(square_wave, t, N, 2 * np.pi, 2 * np.pi, 4 * np.pi)
      for t in xvals]
42
43
44 for i in range(1, len(yvals)):
       if abs(yvals[i] - yvals[i-1]) == 1:
           yvals[i] = np.nan
46
47
```

```
48 p1 = plt.figure(1)
49 plt.plot(xvals, yvals, label='Исходная функция', color='red')
50 plt.plot(xvals, F_Nvals, label=r', Γραφικ \; F_N(t) $', color='green'
51 plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
      fancybox=True, shadow=True, ncol=5)
52 plt.title(fr"$График \; квадратной \; волны \; и \; F_N(t) \; при
      plt.grid()
54
55 p2 = plt.figure(2)
56 plt.plot(xvals, yvals, label='Исходная функция', color='red')
57 plt.plot(xvals, G_Nvals, label=r'$Γραφμκ \; G_N(t)$', color='blue')
  plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
            fancybox=True, shadow=True, ncol=5)
  plt.title(fr"$График \; квадратной \; волны \; и \; G_N(t) \; при
      \; N = \{N\} $")
61 plt.grid()
63 plt.show()
```

Листинг 7. Программа для построения графиков $F_N(t)$ и $G_N(t)$ для квадратной волны

```
def squared_wave(t):
2
       if (t//np.pi) % 2 == 0:
           return 9
3
       else:
          return 16
  def even_squared(t):
8
      return (2*np.cos(t)**3 + 1/2*np.cos(5*t))**2
9
  def odd_squared(t):
      return (np.sin(t)**3 + 1/4*np.sin(2*t))**2
  def even_not_odd_squared(t):
13
      return (np.cos(2*t)**2 + (np.sin(3*t))**3)**2
14
  def parseval_check_FN(f, N, T, 1, r):
       a_n = coefficient_a(f, N, T, 1, r)
       b_n = coefficient_b(f, N, T, 1, r)
18
      result = a_n[0]**2 / 2
19
      for n in range (1, N + 1):
20
21
           result += a_n[n]**2 + b_n[n]**2
      return np.pi*result
22
23
24
25
  def parseval_check_GN(f, N, T, 1, r):
       c_n = coefficient_c(f, N, T, 1, r)
26
      result = 0
27
      for n in range(len(c_n)):
28
           result += abs(c_n[n])**2
29
       return 2*np.pi*result
30
31
_{32} N = 50
33 function_norm = simpson_integral(squared_wave, -np.pi, np.pi, 1000)
34 print("Квадрат нормы функции" + str(function_norm))
  print("Правая часть равенства для F_N" + str(parseval_check_FN(
       square_wave, N, 2*np.pi, 2*np.pi, 4*np.pi)))
36 print("Правая часть равенства для G_N" + str(parseval_check_GN(
      square_wave, N, 2*np.pi, 2*np.pi, 4*np.pi)))
```

Листинг 8. Программа для проверки равенства Парсеваля

```
def complex_simpson_integral(f, a, b, n):
2
      Вычисляет интеграл функции f на интервале [a, b] с использовани
3
      ем метода Симпсона.
      Параметры:
      f : - подынтегральная функция (может возвращать комплексные чис
      ла)
      а : - нижний предел интегрирования
      b : - верхний предел интегрирования
8
      n : - количество разбиений (четное число)
9
      Возвращает:
      результат интегрирования
12
      if n % 2 != 0:
14
          n += 1 # Делаем n четным
16
      h = (b - a) / n
      x = np.linspace(a, b, n + 1)
18
19
      # Разделяем функцию на действительную и мнимую части
20
      real_part = [np.real(f(xi)) for xi in x]
21
      imag_part = [np.imag(f(xi)) for xi in x]
23
      # Вычисляем интегралы для каждой части
      integral_real = h / 3 * (real_part[0] + real_part[-1] +
25
                                4 * sum(real_part[1:-1:2]) +
26
                                2 * sum(real_part[2:-1:2]))
27
28
      integral_imag = h / 3 * (imag_part[0] + imag_part[-1] +
                                4 * sum(imag_part[1:-1:2]) +
30
                                2 * sum(imag_part[2:-1:2]))
      return integral_real + 1j * integral_imag
```

Листинг 9. Реализация метода Симпсона для численного интегрирования комплексных функций

```
1 import numpy as np
2 import matplotlib.pyplot as plt
  from Complex_integration import complex_simpson_integral
5
6
  def parseval_check(N):
7
8
      c_n = complex_coefficient_c(N)
       result = 0
9
      for n in range(len(c_n)):
           result += (abs(c_n[n]))**2
      return 4*result
13
  def complex_function(t):
14
      R = 2
      T = 4
16
       real_part = 0
18
       img_part = 0
19
      if -T/8 <= t < T/8:
20
21
           real_part = R
           img_part = 8 * R * t / T
22
       elif T/8 \le t \le 3*T/8:
23
           real_part = 2 * R - 8 * R * t / T
24
           img_part = R
       elif 3*T/8 \le t \le 5*T/8:
26
           real_part = -R
27
           img_part = 4 * R - 8 * R * t / T
28
       elif 5*T/8 \le t < 7*T/8:
29
           real_part = -6 * R + 8 * R * t / T
30
           img_part = -R
      return real_part + 1j * img_part
  def complex_function_norm(t):
34
      R = 2
35
      T = 4
36
       if -T/8 \le t \le T/8:
38
           return (4 + 16*t**2)
39
       elif T/8 \le t \le 3*T/8:
40
           return (16*t**2 - 32*t + 20)
41
       elif 3*T/8 <= t < 5*T/8:
42
           return ((8 - 4*t)**2 + 4)
43
       elif 5*T/8 \le t \le 7*T/8:
           return (16*t**2 - 96*t + 148)
46
47
49
```

```
def complex_coefficient_c(N):
      result = []
                   # Массив с вычисленными коэффициентами
      for n in range (-N, N + 1, 1):
           func = lambda t: complex_function(t) * np.exp(-1; * np.pi*(
      n/2) * t)
           c_coefficient = (complex_simpson_integral(func, -0.5, 0.5,
      500)
             + complex_simpson_integral(func, 0.5, 1.5, 500)
56
             + complex_simpson_integral(func, 1.5, 2.5, 500)
             + complex_simpson_integral(func, 2.5, 3.5, 500))
58
          result.append(c_coefficient/4)
59
      return result
61
  def G_N(t, N):
      c_n = complex_coefficient_c(N)
64
65
      result = 0 + 0j
      for n in range(-N, N+1, 1):
          result += c_n[n + N] * np.exp(1j * (np.pi*n)/2 * t)
67
      return result
68
69
_{71} N = 2
72 \text{ xvals} = \text{np.linspace}(-0.5, 3.5, 1000)[0:-1]
73 f_real_vals = [complex_function(t).real for t in xvals]
74 f_imag_vals = [complex_function(t).imag for t in xvals]
75 G_N_real_vals = [G_N(t, N).real for t in xvals]
76 G_N_imag_vals = [G_N(t, N).imag for t in xvals]
78 plt.plot(f_real_vals, f_imag_vals, label='Исходная функция', color=
      'orange')
79 plt.plot(G_N_real_vals, G_N_imag_vals, label=r'$График \; G_N(t)$',
       color='green')
80 plt.grid()
  plt.title(fr'$Параметрический \; график \; f\,(t) \; и \; G_N(t) \;
       \piри \; N = {N}$', pad=25)
82 plt.xlabel(r'$\operatorname{Re}(f(t))$')
  plt.ylabel(r'$\operatorname{Im}(f(t))$')
  plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.10),
              fancybox=True, shadow=True, ncol=5)
85
  plt.show()
87
89
90
  function_norm = (simpson_integral(complex_function_norm, -0.5, 0.5,
92
       1000)
                 + simpson_integral(complex_function_norm, 0.5, 1.5,
93
      1000)
```

```
+ simpson_integral(complex_function_norm, 1.5, 2.5, 1000)

+ simpson_integral(complex_function_norm, 2.5, 3.5, 1000))

N=10

print("Квадрат нормы функции " + str(function_norm))

print(simpson_integral(complex_function_norm, -0.5, 3.5, 1000))

print("Правая часть равенства для G_N " + str(parseval_check(N)))
```

Листинг 10. Программа, используемая для выполнения задания, посвященного комплексным функциям