UNIVASF – Geometria Analítica – Prof. João Alves – Lista 2.4 (v. 27/05/2025)

Todas as respostas devem ser justificadas com cálculos e/ou argumentos lógicos.

Questão 1 (peso 0,8, uniformemente distribuído entre os itens).

- (a) O que é um base de \mathbb{V}^1 ?
- (b) O que é um base de \mathbb{V}^2 ?
- (c) O que é um base de \mathbb{V}^3 ?

Questão 2 (peso 2,0, uniformemente distribuído entre os itens). Avalie se é possível escrever \vec{w} como combinação linear de \vec{u} e \vec{v} . Se for possível, determine os coeficientes dessa combinação linear.

- (a) $\vec{u} = (2, 1, 0), \vec{v} = (1, 2, 2), \vec{w} = (3, 0, 1).$
- (b) $\vec{u} = (3, -4, -2), \vec{v} = (3, -1, -4), \vec{w} = (-6, 5, 6).$

Questão 3 (peso 4,2, uniformemente distribuído entre os itens). Considere os vetores $\vec{u}=(1,-3,4), \vec{v}=(-5,4,-3), \vec{w}=(-3,5,-2)$ num sistema de coordenadas ortogonal com orientação positiva. Calcule:

- (a) $\|\vec{u}\|$.
- (b) $\|\vec{v}\|$.
- (c) $\vec{u} \cdot \vec{v}$.
- (d) $\operatorname{proj}_{\vec{n}} \vec{v}$.

- (e) $\vec{u} \wedge \vec{v}$.
- (f) $\cos \arg(\vec{u}, \vec{v})$.
- (g) $[\vec{u}, \vec{v}, \vec{w}]$.
- (h) $[\vec{u}, \vec{v} \vec{w}, 2\vec{w}].$
- (i) A área de um paralelogramo $[\![A,B,C,D]\!]$ tal que $\vec{u}=\overrightarrow{AB}$ e $\vec{v}=\overrightarrow{AC}$.
- (j) O volume de um tetraedro $[\![A,B,C,D]\!]$ tal que $\vec{u}=\overrightarrow{AB},\,\vec{v}=\overrightarrow{AC}$ e $\vec{w}=\overrightarrow{AD}$. Responda:
 - (k) Os vetores \vec{u} e \vec{v} são paralelos?

- (1) Os vetores \vec{u} , \vec{v} , \vec{w} são coplanares?
- (m) \vec{w} pode ser escrito como combinação linear de \vec{u} e \vec{v} ?

Questão 4 (peso 1,0). Escreva um sistema de equações paramétricas para a reta r que passa pelo ponto A=(-8,2,2) na direção do vetor $\vec{u}=(0,-4,-2)$. Esta reta tem equações na forma simétrica? Se sim, mostre-as.

Questão 5 (peso 2,0). Seja π o plano que passa pelos pontos A=(5,-8,2), B=(-9,4,6) e C=(3,-7,-1).

- (a) (peso 1,5) Dê equações nas formas vetorial, paramétrica e geral para o plano $\pi.$
- (b) (peso 0,5) Verifique se o vetor (-3, 3, 3) é paralelo ao plano π .

UNIVASF, COLEGIADO DE ENG. DE PRODUÇÃO | E-MAIL: JOAO.ALVESJ@UNIVASF.EDU.BR