Inéquations et tableaux de signes

Résolution d'une inéquation du deuxième degré

Une inéquation du deuxième degré est une inéquation dont la forme développée contient des termes en x^2 , des termes en x et des nombres.

Méthode

Pour résoudre une inéquation du deuxième degré :

- **1.** On passe les termes à gauche du = afin d'avoir 0 à droite.
- 2. On <u>factorise</u> l'expression de gauche.
- 3. On fait un tableau de signes.
- **4.** On lit les solutions sur la dernière ligne du tableau.

Tableau de signes

Résolution de l'inéquation (2x-2)(4x+16)>0.

Méthode

• **1. On étudie le signe** de 2x-2 en fonction de x et celui de 4x+16 en fonction de x. Pour cela, on cherche les valeurs de x pour lesquelles ces expressions sont positives.

$$2x-2>0$$
 $4x+16>0$ $2x>2$ $4x>-16$ $x>1$ $x>-4$

Donc 2x-2>0 lorsque x>1 et 4x+16>0 lorsque x>-4.

Rappel : < se lit "plus petit que" et > se lit "plus grand que".

Remarque : on pourrait aussi chercher les valeurs de x pour lesquelles ces expressions sont négatives.

• **2. On dessine** un tableau comme ci-dessous en faisant apparaître les valeurs pour lesquelles les expressions 2x-2 et 4x+16 sont égales à zéro (-4 et 1).

valeurs de x	-00 -	4	+∞
signe de 2 x - 2			
signe de 4 x + 16			
signe de (2x-2)(4x+16)			

• **3. On complète les premières lignes** en inscrivant des "-" si l'expression est négative pour les valeurs de x qui figurent au-dessus, des "+" le cas échéant, et un zéro sur la barre verticale correspondant à la valeur qui annule l'expression. Nous avons besoin des résultats de l'étape 1.

Х	- 00	- 4		1	+∞
signe de 2 x - 2				0	+
signe de 4 x + 16		Φ	+		+
signe de (2x-2)(4x+16)					

• **4. On remplit la dernière ligne** en effectuant sur chaque colonne le <u>produit</u> des signes des deux expressions en respectant les <u>règles des signes pour un produit</u>.

Х	- 00	- 4		1	+∞
signe de 2 x - 2				0	+
signe de 4 x + 16		Φ	+		+
signe de (2x-2)(4x+16)	+	Φ	_	Φ	+

• **5. On lit les solutions** en regardant la première et la dernière ligne du tableau.

On cherchait les solutions de (2x-2)(4x+16)>0.

(2x-2)(4x+16)>0 (+) lorsque x est strictement plus petit que -4 et lorsque x est strictement plus grand que 1.

Les solutions sont donc :

$$S =]-\infty; -4[\cup]1; +\infty[$$

On souhaite résoudre l'inéquation (18-6x)(x+7) > 0.

Le cas des quotients

Les tableaux de signes permettent aussi de résoudre des inéquations dans lesquelles apparaissent un quotient, par exemple $\frac{3x-9}{x+5} \le 0$.

On utilise la même méthode que pour les produits, mais à l'étape 4, on place une double barre sur la dernière ligne pour les valeurs de x pour lesquelles il y a une division par zéro. Comme une <u>division par zéro</u> est impossible, il faudra retirer ces valeurs de l'ensemble des solutions.

Exemple

х	- 00	- 5		3	+∞
signe de 3 x - 9	_			Φ	+
signe de x +5		Φ	+		+
signe du quotient	+			Φ	+

Et avec encore plus de lignes!

Dernier exemple avec la résolution de l'inéquation $\frac{(-2x-2)(2x-10)}{-9x-81} \ge 0$ On utilise toujours la même méthode.

$$\begin{array}{lll}
-2x-2>0 & 2x-10>0 & -9x-81>0 \\
-2x>2 & 2x>10 & -9x>81 \\
\hline
-\frac{2x}{-2} < \frac{2}{-2} & \frac{2x}{2} > \frac{10}{2} & \frac{-9x}{-9} < \frac{81}{-9} \\
x<-1 & x>5 & x<-9
\end{array}$$

Х		9 -	1 5	- + ×
- 2 x - 2	+	+ () —	_
2 x - 10	_	_	- (+
- 9 x - 81	+) —	_	_
(-2x-2)(2x-10) -9x-81		+ () — (+

$S = \left[-9; -1 \right] \cup \left[5; +\infty \right]$

Exercice 1

Ouelles sont les solutions de l'inéquation $(x-2)(x+4) \ge 0$?

Exercice 2

Quelles sont les solutions de l'inéquation $(x+4)(5-x)(-x+6) \ge 0$?

Exercice 3

Quelles sont les solutions de l'inéquation $\frac{1}{x} > 2$? **Exercice 4**

Exercice 4

Quelles sont les solutions de l'inéquation $\frac{(x-1)(x-5)}{16-8x} \ge 0$?

Exercice 5

on
$$\frac{x^2-7}{x} \ge 0$$
?

Quelles sont les solutions de l'inéquation $\frac{x^2-7}{x} \ge 0$? **Exercice 6**

Quelles sont les solutions de l'inéquation $(x-7)(x+1)+(x-7)(x-1) \ge 0$?

Exercice 7

Quelles sont les solutions de l'inéquation $(x+2)^2 - (x+2)(2x+9) \ge 0$?

Exercice 8

Quelles sont les solutions de l'inéquation $\frac{1}{x^2 + x} \ge 0$?

Exercice 9

Quelles sont les solutions de l'inéquation $(3x-2)^2 + 2(3x-2) \le x^2$?

Exercice 10

Quelles sont les solutions de l'inéquation $\frac{x^2 + 4x + 4}{x^2 - 9} \le 0$?