수치해석 Project 3

Due: 6.7. 15:00 (Friday)

(1) Let us consider a problem

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

The exact solution is $X = \begin{bmatrix} 3 & 5 & 6 & 6 & 5 & 3 \end{bmatrix}^t$ for AX = b.

- a) Solve the above system by the Jacobi method
- b) by the Gauss-Seidel method
- c) by the SOR method with the relaxation parameter $\omega = 1.4$

The stopping criterion is $\|\boldsymbol{X_n} - \boldsymbol{X_{n-1}}\|_{\infty} < 10^{-4}$ and $X_0 = [0\ 0\ 0\ 0\ 0]^t$.

Show the results as in the following table form for each problem

n	$\left\ X_{n} - X ight\ _{\infty}$	$\left\ \boldsymbol{X_n} - \boldsymbol{X} \right\ _{\infty} / \left\ \boldsymbol{X_{n-1}} - \boldsymbol{X} \right\ _{\infty}$
1		
2		

(2) Solve the ordinary differential equation

$$y' = -y^2$$
, $y(0) = 1$ on $[0, 1]$.

The exact solution is $y(t) = \frac{1}{t+1}$

a) by the (forward) Euler method with $h=0.05\ 0.1$

$$y_{n+1} = y_n + h f(t_n, y_n)$$

b) by the mid-point $% \left(1\right) =0.05$ method with h=0.05 0.1

$$z = y_n + \frac{h}{2} f(t_n, y_n)$$

$$y_{n+1} = y_n + h \ f(t_{n+1/2}, z)$$

For (a) and (b)

- ** Draw the graphs of numerical solutions in one frame.
- ** Draw the graphs of errors in one frame.