19	A school science department keeps a sample of potassium chloride to use as a test source for Geiger-Müller tubes.	
	Potassium contains 0.012% of the unstable isotope potassium-40.	
	(a) Potassium-40 undergoes β ⁻ decay, producing a stable isotope of calcium.	
	Complete the nuclear equation for this decay.	
	$40\mathbf{I}Z \rightarrow \mathbf{C}_{2} + 0$	(2)
	$^{40}_{19}K \rightarrow Ca + \beta$	
	(b) A teacher makes some measurements using the potassium chloride test source to determine whether a Geiger-Müller tube is sufficiently efficient at detecting β radiation.	
	(i) The potassium chloride sample has a mass of 300 mg. Show that the number of nuclei of potassium-40 in the sample is about 3×10^{17} .	
	number of potassium nuclei in 1 g of potassium chloride = 8.1×10^{21}	(2)
		(-)
	(ii) Show that the activity of this sample is about 5 Bq.	
	half-life of potassium- $40 = 1.25 \times 10^9$ years	
		(3)
	(iii) With no sample in front of the Geiger-Müller tube, a count rate of 15 counts per minute is recorded. When the potassium chloride test sample is placed next to th Geiger-Müller tube 176 counts are recorded in a period of 10 minutes.A detector is considered efficient if it detects at least 7.5% of beta emissions from	
	the source.	
	Determine whether this Geiger-Müller tube can be considered efficient.	(3)
	(iv) Explain a possible reason why only a low proportion of the decays are detected.	(2)
		(2)
	(c) The science department also has a sample of strontium-90. This undergoes beta decay with a half-life of 29 years.	
	State why the half-life of potassium-40 makes the potassium chloride a more suitable	;
	material than strontium-90 for the test.	(1)
		· /
	(Total for Question $19 = 13$ max	rks)