

Projeto 01

Introdução ao Fortran

Jefter Santiago Mares n° USP:12559016

17 de setembro de 2022

Conteúdo

1	Tarefa 1	2
2	Tarefa 2	2
3	Tarefa 3	4
4	Tarefa 4	6
5	Tarefa 5	g
6	Tarefa 6	13
7	Tarefa 7	15
8	Tarefa 8	18
9	Tarefa 9	20

- A área do tórus é dada por: $A = (2\pi R)(2\pi r)$
- O volume do tórus é dado por: $V = (\pi r^2)(2\pi R)$

Onde R é o raio externo e r é o raio interno.

```
ļ
         Tarefa 01
         Calcula área e volume de um tórus a partir de raios dados.
         write(*,*) "Digite os valores dos raios (interno, externo):"
3
         read(*,*) ri, re
         pi = acos(-1e0)
5
6
         aArea = 4.e0 * pi ** 2 * re * ri
7
         aVolume = (pi * ri ** 2) * (2 * pi * re)
8
9
         write(*,*) "Area = ", aArea
10
         write(*,*) "Volume = ", aVolume
11
12
```

Resultados

```
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa1$ ./tarefa1.exe
Digite os valores dos raios (interno, externo):
3.1 3.4
Area = 416.102570
Volume = 644.958923

jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa1$ ./tarefa1.exe
Digite os valores dos raios (interno, externo):
2.3 33
Area = 2996.41187
Volume = 3445.87402
```

Tarefa 2

Explicação

Sejam $u=(x_1,y_1,z_1),\ v=(x_2,y_2,z_2)$ e $w=(x_3,y_3,z_3).$ Quero calcular a área lateral e volume do paralelepipedo formado pelos vetores u,v e $w=(x_3-x_2,y_3-y_2,z_3-z_2)$. Para o cálculo da área temos

$$A_L = 2 \cdot [\langle u, v \rangle + \langle u, w \rangle + \langle v, w \rangle]$$

$$A_L = 2 \cdot \left[(x_1 x_2 + y_1 y_2 + z_1 z_2) + (x_3 - x_2) \cdot (x_1 + x_2) + (y_3 - y_2) \cdot (y_1 + y_2) + (z_3 - z_2) \cdot (z_1 + z_2) \right]$$

Para o cálculo do volumes usamos o produto misto entre u, v e w, então $V = [u, v, w] = \langle u \wedge v, w \rangle$. O produto vetorial $u \wedge v$ é $(y_1z_2 - y_2z_1, x_2z_1 - x_1z_2, x_1y_2 - x_2y_1)$. Temos então o volume dado por

$$V = (x_3 - x_2)(y_1z_2 - y_2z_1) + (y_3 - y_2)(x_2z_1 - x_1z_2) + (z_3 - z_2)(x_1y_2 - x_2y_1)$$

Código

```
Tarefa 02
         Dados 3 vetores (u, v, w) calcula o volume do paralelepipedo das arestas
2
         definidas por u, v e w - v.
         dimension u(1:3), v(1:3), w(1:3)
         dimension aVec(1:3)
5
         write(*,*)"Digite as coordenadas de cada vetor"
6
         read(*,*) u(1), u(2), u(3)
         read(*,*) v(1), v(2), v(3)
         read(*,*) w(1), w(2), w(3)
9
         w(1) = w(1) - v(1)
10
         w(2) = w(2) - v(2)
         w(3) = w(3) - v(3)
13
         A = 2 (A1 + A2 + A3)
14
         aVec(1) = (u(2)*v(3)-v(2)*u(3))
15
         aVec(2) = (v(1)*u(3)-u(1)*v(3))
16
         aVec(3) = (u(1)*v(2)-v(1)*u(2))
17
         a1 = aVec(1)**2 + aVec(2)**2 + aVec(3)**2
19
         a1 = sqrt(a1)
20
21
         a2 = (u(2)*w(3) - u(1)*w(2))**2 + (u(3)*w(1) - u(1)*w(3))**2
22
              + (u(1)*w(2) - u(2)*w(1))**2
23
         a2 = sqrt(a2)
24
         a3 = (v(2)*w(3)-v(3)*w(2))**2 + (v(3)*w(1)-v(1)*w(3))**2
              + (v(1)*w(2) - v(2)*w(1))**2
         a3 = sqrt(a3)
28
29
         area = 2 * (a1 + a2 + a3)
30
         write(*,*) "Area do paralelepipedo: ", area
32
         volume = aVec(1) * w(1) + aVec(2) * w(2) + aVec(3) * w(3)
         write(*,*) "Volume do paralelepipedo: ", abs(volume)
   Resultados
   jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa2$ ./tarefa2.exe
```

```
Digite as coordenadas de cada vetor

1 0 0

0 1 0

0 1 1

Area do paralelepipedo: 6.00000000

Volume do paralelepipedo: 1.00000000

jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa2$ ./tarefa2.exe

Digite as coordenadas de cada vetor
```

```
2 3 1
2 2 1
0 1 3
Area do paralelepipedo: 42.1373100
Volume do paralelepipedo: 6.00000000
```

Foi definido como valor máximo de entrada N=100, ou seja, a maior quantidade possível de valores em um arquivo deve ser 100. O input M deverá ser de tal modo que $M \leq N$.

Os dados utilizados para testar o programa estão no arquivo input-tarefa3.dat e foram gerados utilizando a rotina abaixo, que gera o arquivo que contém os N números aleatórios, dos quais M deles serão ordenados. Essa rotina está implementada no arquivo ./tarefa3/gerar_numeros.f.

O programa principal faz a leitura do arquivo ./tarefa3/input-tarefa3.dat e ordena os M primeiros menores números, após isso escreve os M números ordenados no arquivo ./tarefa3/output-tarefa3.dat.

```
Tarefa 03
         parameter(N = 100)
2
         dimension rList(N)
3
          in = 10 ! unidade para arquivo de entrada.
          iout = 20 ! unidade para arquvio de saída
          open(unit=in, file="input-tarefa3.dat")
          open(unit=iout, file="output-tarefa3.dat")
8
9
         write(*,*) "Quantidade de números a serem ordenados (M 100):"
10
         read(*,*) M
11
12
         Lê o arquivo com os N números aleatórios
13
         do i = 1, N
             read(in, *, end=1) rList(i)
15
          end do
16
   1
        continue
17
```

Na sequência foi implementado a ordenação dos M menores números do vetor em ordem decrescente utilizando o algoritmo **bubble sort**.

```
Implementacao do algoritmo bubble sort
do i = 1, M
do j = N, 2, -1
if(rList(j) < rList(j-1)) then
tmp = rList(j)
rList(j) = rList(j-1)
rList(j-1) = tmp
end if
end do
end do</pre>
```

Após a ordenação os M primeiros menores números foi então escrito no arquivo ./tarefa3/outputtarefa3.dat

Resultados

Pode ser testado o programa mudando os valores no arquivo input-tarefa3.dat, rodando o programa no terminal e depois analisando o arquivo gerado output-tarefa3.dat, que conterá os M primeiros menores valores do arquivo original, em ordem.

Exemplo

```
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa3$ ./tarefa3.exe
Quantidade de números a serem ordenados (M
15
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa3$ cat output-tarefa3.dat
0.108032703
0.108789563
0.112783670
0.117679000
0.124440551
0.194475591
0.202756226
0.211118400
0.211621881
0.211978197
0.219443142
0.246241093
0.246837378
0.255061328
0.257259607
15 numeros.
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa3$ ./tarefa3.exe
Quantidade de números a serem ordenados (M 100):
10
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa3$ cat output-tarefa3.dat
0.108032703
0.108789563
0.112783670
0.117679000
```

```
0.124440551
0.194475591
0.202756226
0.211118400
0.211621881
0.211978197
10 numeros.
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa3$ ./tarefa3.exe
Quantidade de números a serem ordenados (M 100):
3
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa3$ cat output-tarefa3.dat
0.108032703
0.108789563
0.112783670
3 numeros.
```

Queremos cálcular a série

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

que pode ser escrita como a série de potências

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}$$

Primeiramente, fazemos alguns ajustes que facilitam a programação do cálculo da série, manipulando a equação temos

$$\cos x = 1 + \sum_{i=1}^{\infty} (-1)^i \cdot \frac{x^{2i}}{(2i)!}$$

onde i será a iteração do loop. Escrevemos também o termo (2i)! como i(i+1), que será multiplicado sempre pelo termo da iteração anterior, dessa forma todo o programa fica mais otimizado, com todo o cálculo da série sendo feito em um mesmo loop.

Teremos então, para o cálculo da série, o código abaixo:

```
Tarefa 4
         Implementação da série de potências
          cos(x) = (-1)^n * (x^2(2n))/(2n)!
         double precision eprecd
         double precision cossd
         double precision accd
         double precision tmpd
         double precision xd
9
          double precision axd
10
11
          eprecd = 1e-16
12
          accd = eprecd * 2
13
```

```
14
          eprec = 1e-5
15
         acc = eprec * 2
16
17
         ifat = 1
18
19
         coss = 1e0
20
         tmp = coss
         write(*,*) "Informe x em radianos:"
         read(*,*) xd
24
25
         x = xd
26
         ax = x**2
27
         i = 1
         do while (eprec <= acc)</pre>
             ifat = (i * (i + 1))
31
32
             tmp = tmp * (-1) * ax / ifat
33
             coss = coss + tmp
34
35
             acc = abs(tmp) - eprec
             i = i+2
38
          end do
39
40
         cossd = 1d0
41
         tmpd = cossd
42
43
         axd = xd**2
44
         ifat = 1
         i = 1
46
47
         do while (eprecd <= accd)</pre>
48
             ifat = (i * (i + 1))
49
50
             tmpd = tmpd * (-1) * axd / ifat
             cossd = cossd + tmpd
53
             accd = abs(tmpd) - eprecd
54
55
             i = i+2
56
         end do
57
         write(*,*) "========"
         write(*,*) "= Resultados
         write(*,*) "========"
61
62
```

```
write(*,*) "Precisão simples"
63
         write(*,*) "cos(x) = ", coss
         errs = abs(cos(x)) - abs(coss)
66
         write(*,*) "Erro: " , errs
67
68
         write(*,*) "----"
69
70
         write(*,*) "Precisão dupla"
         write(*,*) "cos(x) = ", cossd
73
         errd = abs(dcos(xd)) - abs(cossd)
74
         write(*,*) "Erro: " , errs
75
76
         end
77
```

Resultados

```
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa4$ ./tarefa4.exe
Informe x em radianos:
- 1
===========
   Resultados
_____
Precisão simples
cos(x) = 0.540302277
Erro: 0.00000000
Precisão dupla
cos(x) = 0.54030230586813965
Erro:
       0.00000000
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa4$ ./tarefa4.exe
Informe x em radianos:
3.14159265
_____
   Resultados
==========
Precisão simples
cos(x) = -0.999999881
Erro:
       1.19209290E-07
_____
Precisão dupla
Erro: 1.19209290E-07
```

Paridade de permutação

Seja σ uma permutação de n elementos, o par [i,j], onde 1 < i < j < n é chamado de inversão se i < j e $\sigma(i) > \sigma(j)$. Uma permutação é um mapa do tipo $\sigma : \mathbb{N} \to \mathbb{N}$. A paridade de uma permutação σ é dada por $(-1)^{\lambda}$, onde λ é o número de inversões em σ . Permutações pares ocorrem se λ é par. O sinal da paridade é representado por $P(\sigma)$.

Exemplo: cálculo de paridades

Para $n = 3 \Rightarrow n! = 6$, ou seja, o conjunto de permutações $S = \{123, 132, 213, 231, 312, 321\}$.

•
$$\sigma(\frac{1}{1},\frac{2}{2},\frac{3}{3}) \Rightarrow N = 0 \Rightarrow P(\sigma) = (-1)^N = (-1)^0 = 1$$

•
$$\sigma(\begin{smallmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{smallmatrix}) \Rightarrow (2,3) \Rightarrow N = 1 \Rightarrow P(\sigma) = -1$$

•
$$\sigma(\frac{1}{2},\frac{2}{1},\frac{3}{3}) \Rightarrow (1,2) \Rightarrow N=1 \Rightarrow P(\sigma)=-1$$

•
$$\sigma\left(\frac{1}{2},\frac{2}{3},\frac{3}{1}\right) \Rightarrow (1,3),(2,3) \Rightarrow N=2 \Rightarrow P(\sigma)=1$$

•
$$\sigma\left(\begin{smallmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{smallmatrix}\right) \Rightarrow (1, 2), (1, 3) \Rightarrow N = 2 \Rightarrow P(\sigma) = 1$$

•
$$\sigma(\frac{1}{3},\frac{2}{2},\frac{3}{1}) \Rightarrow (1,2),(1,3),(2,3) \Rightarrow N=3 \Rightarrow P(\sigma)=-1$$

Podemos então colocar as permutações de n em com suas respectivas paridades

Tabela 1: Permutações para n = 3 e suas paridades.

σ	$P(\sigma)$
1 2 3	1
1 3 2	-1
2 1 3	-1
2 3 1	1
3 1 2	1
3 2 1	-1

Solução

Para o caso de n+1, com n=3 temos 24 permutações, podemos escrever como $4\cdot 3!$, ou seja, 4 conjuntos de permutações a partir das permutações de 3. Então podemos escrever esses conjuntos levando em conta que o 4 vai ocupar uma posição diferente em cada grupo:

Note que, o número de linhas é 3! e de colunas são n+1. A ánalise das paridades pode ser feita apenas observando as colunas. O valor n+1 começa na coluna mais à direita, fazendo então as comparações que definem paridade vemos que para a primeira coluna todas paridades se mantém, então as paridades são as mesmas que para 3!. Para a segunda coluna vemos que em todas linhas temos que $\sigma(3) = 4 > \sigma(4)$, onde 3 e 4 são os indices (ou posição na coluna), então o número de

inversões será ímpar, pois a paridade será $(-1)^1$. Para o caso seguinte, de 2 temos que $\sigma(2) > \sigma(3)$ e $\sigma(2) > \sigma(4)$, pois 4 é maior que qualquer elemento (1, 2 ou 3) nas colunas seguintes. Então a paridade será $(-1)^2 = 1$.

Generalizando, seja j > 1 o indice da coluna, a nova paridade será dada por (-1). Segue a descrição do algoritmo em pseudo-código:

Algorithm 1 Gera (n+1) permutações e suas respectivas paridades.

```
\begin{split} & n_{Perm} \leftarrow \text{lista com } P = n! \text{ permuta} \tilde{\text{oes}} \text{ e suas paridades} \\ & \textbf{for } j \leftarrow n_{Cols} + 1 \text{ to } 1, \text{step} = -1 \text{ do} \\ & \textbf{if } j < nCol + 1 \text{ then} \\ & \textbf{for } i \leftarrow 1 \text{ to } n_{Linhas}, \text{step} = -1 \text{ do} \\ & \text{aux} = \text{n}_{\text{Perm}}(i,j) \\ & \text{n}_{\text{Perm}}(i,j) = \text{n}_{\text{Perm}}(i,j-1) \\ & \text{n}_{\text{Perm}}(i,j-1) = \text{aux} \\ & \text{n}_{\text{Perm}}(i,n_{\text{Col}}+1) = (-1) \cdot \text{n}_{\text{Perm}}(i,n_{\text{Col}}+1) \\ & \textbf{end for} \\ & \textbf{end if} \\ & \text{Armazena}(\text{aux}_{\text{Perm}}) \\ & \textbf{end for} \end{split}
```

Prova de corretude do algoritmo

No algoritmo, n_{Perm} é uma matriz de dimensões $n! \times (n+1)$, todas as linhas da coluna n possui inicialmente valores iguais à n e as linhas da coluna (n+1) as paridades de cada permutação.

- I) O loop externo itera até que $j \leftarrow 1$, ou seja, essa é a sua condição de parada.
- II) A condição $j < n_{\text{Col}} + 1$ garante que as colunas só vão começar a ser trocadas a partir da segunda iteração.
- III) O loop interno vai iterar até que $i \leftarrow n_{\text{Linhas}}$, então, por todas as linhas da matriz.
 - No loop interno é feita a troca de posições das colunas, ou seja, para $j=n_{\rm Col}$ teremos o seguinte loop

Como esse procedimento é feito para todas colunas (exceto a das paridades), no fim do loop teremos permutações de (n+1) com n! linhas. A paridade de cada permutação, ou seja, cada linha da matriz, é calculada por $(-1) \cdot n_{\text{Perm}}(j, n_{\text{Col}} + 1)$, a nova paridade é então um produto da antiga por (-1), como descrito acima na descrição matemática.

- IV) Quando o loop interno finaliza tem-se uma matriz com as permutações de n! com (n+1) na posição j. É então armazenado esse valor na num arquivo de saída.
- V) Com o fim do loop externo temos um arquivo de saída com (n+1)! permutações e suas devidas paridades.

Portanto, esse algoritmo computa as (n+1)! permutações e suas respectivas paridades. \square

Código em Fortran

Preparação dos dados

Primeiramente é feita a declaração das variaveis e realizada a leitura do arquivo input-tarefa3.dat, que contém as permutações para n=3 e suas respectivas paridades.

```
1 ! Lendo o arquivo 'input-tarefa3.dat'
2     parameter(nRow = 6, nCol = 4)
3     dimension iPerm(nRow,nCol), nAuxPerm(nCol, nRow)
4     dimension nPerm(nRow, nCol + 1)
5     dimension iauxPerm(nRow, nCol + 1)
6
7     open(unit=10, file="input-tarefa3.dat")
8     open(unit=20, file="output-tarefa3.dat")
9
10     read(in, *) nAuxPerm
11     iPerm = transpose(nAuxPerm)
```

Esse bloco de código gera a matriz com as n + 1 colunas além da coluna com as paridades.

```
Gera a matrix n! \times (n + 1)
12
          i = 1
13
          do while(i < nCol)</pre>
             do j = 1, nRow
15
               nPerm(j, nCol + 1) = iPerm(j, nCol)
16
               nPerm(j, nCol) = nCol
17
               nPerm(j, i) = iPerm(j, i)
18
            end do
19
          i = i + 1
20
          end do
21
```

Implementação do algoritmo (1) em Fortran

As linhas 31 à 33 não são equivalentes ao termo "Armazena (n_{Perm}) ", presente na descrição do algoritmo. Elas escrevem no arquivo output-tarefa5.dat.

```
Por fim escreve no arquivo 'output-tarefa5.dat'
21
         do j = nCol, 1, -1
22
            iauxPerm = nPerm
23
            do i = 1, nRow
24
               iaux = iauxPerm(i, j)
25
               iauxPerm(i, j) = iauxPerm(i, nCol)
26
               iauxPerm(i, nCol) = iaux
27
28
               iauxPerm(i, nCol + 1) = (-1)**(j + 2)*iauxPerm(i, nCol + 1)
29
            end do
30
            do k = 1, nRow
31
               write(20,*) (iauxPerm(k,ih), ih=1, nCol + 1)
32
            end do
33
         end do
34
         close(10)
35
```

36 close(20) 37 end

Resultados

A tabela abaixo é o resultado para o input de permutações da tabela 1.

i	σ	$P(\sigma)$
1	1 2 3 4	1
2	$2\ 1\ 3\ 4$	-1
3	$1\ 3\ 2\ 4$	-1
4	$2\ 3\ 1\ 4$	1
5	$3\ 1\ 2\ 4$	1
6	$3\ 2\ 1\ 4$	-1
7	$1\ 2\ 4\ 3$	-1
8	$2\ 1\ 4\ 3$	1
9	$1\ 3\ 4\ 2$	1
10	$2\ 3\ 4\ 1$	-1
11	$3\ 1\ 4\ 2$	-1
12	$3\ 2\ 4\ 1$	1
13	$1\ 4\ 2\ 3$	1
14	$2\ 4\ 1\ 3$	-1
15	$1\ 4\ 3\ 2$	-1
16	$2\ 4\ 3\ 1$	1
17	$3\ 4\ 1\ 2$	1
18	$3\ 4\ 2\ 1$	-1
19	$4\ 1\ 2\ 3$	-1
20	$4\ 2\ 1\ 3$	1
21	$4\ 1\ 3\ 2$	1
22	$4\ 2\ 3\ 1$	-1
23	$4\ 3\ 1\ 2$	-1
24	4 3 2 1	1

Foi gerado o código executável para os casos de n=3,4,5 e 6 e disponibilizados na pasta ./tarefa5/, os arquivos das permutações n=4,5 e 6 foram usados para o cálculo do determinante da tarefa 6.

Replicabilidade e generalização do código em Fortran

Para inputs diferentes de n=3, é necessário alterar o arquivo tarefa5.f. Esse código foi escrito pensando na implementação especifica de n=3, escrever um para um n qualquer envolveria um código com algumas especifidades maiores, por exemplo, como o fortran77 não possui alocação dinâmica de memória, seria necessário programar condições especificas para que o algoritmo não tentasse acessar indíces além do número de elementos que a matriz possui.

Então, para casos gerais, é necessário alterar a linha um do programa, alterar o número de linhas, n!, e o número de colunas n+1, além, é claro, de substituir o arquivo input-tarefa3.dat pelo arquivo com as permutações de n!.

Definição do determinante através de permutações

Seja a matriz quadrada $A = (a_{ij})$, de dimensões $n \times n$, podemos cálcular o seu determinante pela formúla

$$\det A = \sum_{\sigma \in S} P(\sigma) \cdot A_{1,\sigma_1} \cdot A_{2,\sigma_2} \cdot \dots \cdot A_{n,\sigma_n}$$

Onde σ é uma permutação em um conjunto S de permutações e $P(\sigma)$ é a paridade de cada permutação.

Exemplo de como construir o somatório

Seja n=3, sabemos que uma matriz A, $n\times n$, tem determinante igual à det $A=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}$. Mostramos a então que o determinante calculado pela definição é equivalente:

- $\sigma(1) = \{1, 2, 3\}, P(1) = 1$
- $\sigma(2) = \{1, 3, 2\}, P(2) = -1$
- $\sigma(3) = \{2, 1, 3\}, P(3) = -1$
- $\sigma(4) = \{2, 3, 1\}, P(4) = 1$
- $\sigma(5) = \{3, 1, 2\}, P(5) = 1$
- $\sigma(6) = \{3, 2, 1\}, P(6) = -1$

Os elementos de cada permutação vão servir para selecionar quais os indices dos elementos em cada iteração do somatório. Cada permutação σ define as posições dos elementos em A que devem ser multiplicados, fazendo o somatório temos

$$\det A = P(1) \cdot A_{1,1} A_{2,2} A_{3,3} + P(2) \cdot A_{1,1} A_{2,3} A_{3,2} + P(3) \cdot A_{1,2} A_{2,1} A_{3,3} + P(4) \cdot A_{1,2} A_{2,3} A_{3,1} + P(5) \cdot A_{1,3} A_{2,1} A_{3,2} + P(6) A_{1,3} A_{2,2} A_{3,1}$$

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}$$

Código implementado em Fortran

```
calcula determinante pela definição
parameter(nRow = 24, nCol = 5)
dimension nPerm(nRow, nCol), nAuxPerm(nCol, nRow)
parameter(nMatrix = 4)
dimension rMatrix(nMatrix, nMatrix)

open(10, file="permutacoes-n4.dat")
open(20, file="matriz-4x4.dat")

read(10, *) nAuxPerm
nPerm = transpose(nAuxPerm)
```

```
12
          read(20, *) rMatrix
13
          rMatrix = transpose(rMatrix)
14
15
          det = 0e0
16
          do i = 1, nRow
17
18
             signal = nPerm(i, nCol)
19
              aux = 1e0
              do j = 1, nCol - 1
21
                 aux = aux * rMatrix(j, nPerm(i, j))
22
23
             det = det + signal * aux
24
25
          end do
26
27
          write(*, *) "Determinante = ", det
          end
```

Resultados

Na pasta que contém o código tem também os arquivos de entrada para as matrizes às quais o cálculo do determinante é realizado e também as respectivas matrizes de permutações. Foram gerados 3 arquivos execútaveis, determinante-4x4.exe, =determinante-5x5.exe e determinante-6x6.exe, cada um realiza o calculo do determinante para matrizes de dimensões $4\times4,5\times5$ e 6×6 , respectivamente. Para se alterar a matriz basta modificar os arquivos matriz-4x4.dat, matriz-5x5.dat e matriz-6x6.dat, também presentes na pasta ./tarefa6/.

Abaixo alguns exemplos de uso dos programas:

```
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa6$ cat matriz-4x4.dat
3 2 1 2
4 4 1 2
3 0 2 7
2 1 4 4
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa6$ ./determinante-4x4.exe
Determinante =
                  -47.0000000
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa6$ cat matriz-5x5.dat
2 1 1 4 2
9 3 9 0 3
1 1 9 6 3
1 3 5 5 4
1 9 2 2 2
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa6$ ./determinante-5x5.exe
                  -4068.00000
Determinante =
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa6$ cat matriz-6x6.dat
1 2 3 4 50 6
11 2 3 14 5 2
3 29 3 4 15 6
4 1 13 4 5 6
```

```
9 4 32 4 59 6
2 0 -3 4 -1 46
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa6$ ./determinante-6x6.exe
Determinante = -61599620.0
```

O sistema linear do tipo AX = Y pode ser resolvido usando determinates usando a regra de Cramer, ou seja $X_i = \frac{\det A_i}{\det A}$, onde a matriz A_i tem a coluna i trocada pelo vetor Y. Usando o a definição de determinante explicada na tarefa anterior podemos escrever um programa para resolver um sistema desse tipo.

Segue abaixo a implementação do código para o cálculo da solução de um sistema linear para matriz de ordem 4×4 , com as matrizes A e Y dadas:

```
Cálcula as soluções de um sistema linear
          AX = Y com A e Y dados.
2
          parameter(nRow = 24, nCol = 5)
3
          parameter(nMatrix = 4)
5
          dimension nPerm(nRow, nCol), nAuxPerm(nCol, nRow)
          dimension rMatrix(nMatrix, nMatrix), auxMatrix(nMatrix, nMatrix)
          dimension Y(1:nMatrix)
10
          open(30, file='y.dat')
11
          read(30, *) Y
12
           print *, Y
13
          close(30)
14
15
          open(10, file="permutacoes-n4.dat")
16
          open(20, file="matriz-4x4.dat")
17
18
          read(10, *) nAuxPerm
19
          nPerm = transpose(nAuxPerm)
20
^{21}
          read(20, *) rMatrix
          rMatrix = transpose(rMatrix)
23
24
          detA = 0e0
25
          call det(nRow, nCol,nPerm, nMatrix, rMatrix, detA)
26
27
          write(*, *) "Matriz solução X: "
28
          do j = 1, nMatrix
             auxMatrix = rMatrix
30
             do i = 1, nMatrix
31
                auxMatrix(i, j) = Y(i)
32
             end do
33
34
            detXj = 0e0
35
```

```
call det(nRow,nCol,nPerm,nMatrix,auxMatrix,detXj)
write(*, *) detXj / detA

end do

close(10)
close(20)
end
```

A subrotina det é a implementação do cálculo do determinante pela definição feito na tarefa 6 adaptada para este programa.

```
subroutine det(nRow,nCol,nPerm,nMatrix,rMatrix, detx)
   dimension nPerm(nRow, nCol), nAuxPerm(nCol, nRow)
   dimension rMatrix(nMatrix, nMatrix)
3
   do i = 1, nRow
      signal = nPerm(i, nCol)
6
      aux = 1e0
7
      do j = 1, nCol - 1
         aux = aux * rMatrix(j, nPerm(i, j))
      end do
10
      detx = detx + signal * aux
11
   end do
12
   return
13
   end
14
```

Na pasta ./tarefa3/ consta 3 arquivos .exe, executáveis que podem ser usados para cálcular as soluções com matrizes $4 \times 4, 5 \times 5$, e 6×6 . Para testar basta rodar os arquivos e alterar os arquivos matriz-4x4.dat, matriz-5x5.dat e matriz-6x6.dat. Além de também alterar os inputs do arquivo y-4x4.dat, y-5x5.dat e y-6x6.dat.

Resultados

```
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ cat y-4x4.dat
4
3
13
1
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ cat matriz-4x4.dat
3 2 1 2
4 4 1 2
3 0 2 7
2 1 4 4
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ ./sistema4x4.exe
Matriz solução X:
    4.17021275
    -3.08510637
    -0.787234068
    -0.276595742
```

```
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ cat y-5x5.dat
5
3
9
1
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ cat matriz-5x5.dat
2 1 1 4 2
9 3 9 0 3
1 1 9 6 3
1 3 5 5 4
1 9 2 2 2
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ ./sistema5x5.exe
Matriz solução X:
  1.07964599
 0.469026536
 0.519174039
  2.59587026
 -4.26548672
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ cat y-6x6.dat
1
3
1
9
-1
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ cat matriz-6x6.dat
1 2 3 4 50 6
11 2 3 14 5 2
3 29 3 4 15 6
4 1 13 4 5 6
9 4 32 4 59 6
2 0 -3 4 -1 46
jefter66@muaddib~/Workspace/intro_fiscomp/projeto1/tarefa7$ ./sistema6x6.exe
Matriz solução X:
0.341461062
4.57333997E-02
 5.84237371E-03
-0.242816135
0.111934975
-1.26564093E-02
```

Breve explicação sobre Método de Monte Carlo

Podemos escrever a média de uma função f pelas expressões

$$\langle f \rangle = \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{N} \sum_{i} f(x_i)$$

onde o termo N é o número total de pontos calculados e x_i são pontos que residem extritamente no intervalo [a,b]. Podemos então escrever uma aproximação para integral como

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{N} \sum_{i} f(x_{i})$$

Implementação do Método de Monte Carlo para cálculo do volume da N-esfera

Vamos chegar em um formúla que foi implementada no código em Fortran.

Primeiramente para o caso básico de d=2, ou seja, o volume em 2D, que é equivalente à área do circulo, $A_c=\pi R^2$. Pelo método de Monte Carlo essa área pode ser calculada gerando N valores X_i aleatórios e contado N_i desses números que obedecem a regra $\sum_i^N X_i^2 \leq R^2$, ou seja, quantos pontos X_i estão dentro da área do circulo.

Para N muito grande a figura tende a ficar completamente preenchida e então a área do quadrado $A_q \approx N$ e a área do circulo $A_c \approx N_i$, fazendo a razão abaixo temos uma aproximação melhor para a área do circulo

$$\frac{N_i}{N} \approx \frac{A_c}{A_q} \Rightarrow A_c \approx A_q \left(\frac{N_i}{N}\right)$$

Já sabemos que a área do quadrado é dada por $A_q = (2R)^2$, queremos chegar a uma fórmula para o volume podemos então considerar $V_{cubo}(d) = (2R)^d, d \in \mathbb{N}$, volume do cubo. Generalizando a área do circulo para o volume temos $V(d) = V_{cubo}(d) \left(\frac{N_i}{N}\right)$, ou seja

$$V(d) = (2R)^d \left(\frac{N_i}{N}\right)$$

Essa formúla foi implementada no código abaixo e usada para calcular o volume da esfera em 2, 3 e 4 dimensões.

Código

```
Tarefa 8 - Cálculo do volume de uma N-Esfera
2
          write(*, *) "Informe a quantidade N de números aleatórios."
         read(*, *) n
5
         write(*, *) "Resultados"
6
          v2 = volume(n, 2)
          v3 = volume(n, 3)
          v4 = volume(n, 4)
9
10
         print *, "Para d = 2, Volume = ", v2
         print *, "Para d = 3, Volume = ", v3
12
         print *, "Para d = 4, Volume = ", v4
13
          end
14
15
         m - número de iteracoes
16
         function volume(n, id)
17
         ni = 1
         Para uma esfera de raio unitário
19
         r = 1
20
         do j = 1, n
21
             rtmp = 0e0
22
             raux = 0e0
23
             do i = 1, id
24
                call random_number(rtmp)
                raux = raux + rtmp ** 2
             end do
             raux = sqrt(raux)
28
             if(raux <= r) then
29
                ni = ni + 1
30
             end if
31
          end do
32
         ni = ni - 1
          V(d) = (2R)^d * (Ni)/N
34
          volume = (2 * r)**id * ((ni * 1e0)/ (n * 1e0))
35
          end
36
```

Resultados

Para fazer a comparação com o esperado, ou seja, o cálculo da expressão (1), foi feito o desvio padrão cada uma das 3 dimensões cálculadas. Na tabela abaixo consta os valores médios do volume nas três dimensões e seus respectivos desvios padrão. Foi utilizado o método um número N=1000 de vezes com intuito de cálcular o desvio padrão do método de Monte Carlo para o volume da n-esfera.

Comparando os valores médios encontrados com os cálculados pela expressão (1), que estão na tabela (4) é a aproximação é razoável, principalmente para ordens cada vez maiores de amostras para o método de Monte Carlo.

Tabela 2: Volume da esfera cálculada em 2,3 e 4 dimensões para diferentes ordens de grandezas.

Ordem	2 dimensões	3 dimensões	4 dimensões
10^{1}	2.79999995	4.00000000	6.40000010
10^{2}	3.31999993	4.15999985	4.63999987
10^{3}	3.16799998	4.21600008	4.96799994
10^{4}	3.15280008	4.15999985	4.86880016
10^{5}	3.13836002	4.18616009	4.93279982
10^{6}	3.14278412	4.18742418	4.93838406
10^{7}	3.14097643	4.18836260	4.93273115

Tabela 3: Volume médio da esfera cálculado para um número de amostras N=1000 e seu desvio padrão.

Ordem	2 dimensões	3 dimensões	4 dimensões
10^{1}	3.1 ± 0.5	4 ± 1	5 ± 2
10^{2}	3.1 ± 0.2	4.2 ± 0.4	4.9 ± 0.7
10^{3}	3.14 ± 0.05	4.19 ± 0.12	4.9 ± 0.2
10^{4}	3.14 ± 0.01	4.18 ± 0.04	4.93 ± 0.07
10^{5}	3.141 ± 0.005	4.18 ± 0.01	4.93 ± 0.02
10^{6}	3.141 ± 0.001	4.188 ± 0.004	4.934 ± 0.007
10^{7}	3.1415 ± 0.0005	4.188 ± 0.001	4.934 ± 0.002

O volume da n-esfera é definido como

$$V_d = \frac{\pi^{d/2}}{\Gamma(\frac{d}{2} + 1)} R^d \tag{1}$$

Foi feito um programa para executar o cálculo do volume da n-esfera em d dimensões, $d=2,\,3$, ..., 20. Os valores cálculados estão na tabela (4) abaixo.

Código

```
external gamma
         open(unit=10, file="dimensoes-esferas.dat")
2
         R = 1.0e0
         PI = acos(-1.0e0)
         do n = 2, 20
         V(d) = [^(d/2) / \Gamma(d/2 + 1)] * R^(d)
             Volume = (PI ** ((n * 1.0e0)/ 2) / gamma(n)) * R ** (n)
             write(10, *) Volume
9
         end do
10
11
         close(10)
12
          end
```

```
function gamma(n)
15
          aux = 1e0
16
          gamma = 1e0
17
18
          ! (d/2 + 1)
19
          x = (1.0e0 * n) / 2.0e0 + 1.0e0
20
^{21}
          do while(x \geq 0e0)
             call baseCases(x, aux)
             if(x > 1) then
^{24}
                 gamma = gamma * (x - 1)
25
             end if
26
             x = x - 1
27
             gamma = gamma * aux
28
          end do
          end
          subroutine baseCases(x, aux)
32
          if(x == 0e0) then
33
             aux = 1
34
          else if (x == 0.5e0) then
35
             aux = sqrt(acos(-1e0))
          end if
37
          return
          end
```

Com base nos valores dessa tabela foi construido o gráfico da variação de volume em função do aumento das dimensões.

A partir desses cálculos foi feito o gráfico abaixo e na sequência respondido algumas perguntas acerca da n-esfera.

Tabela 4: Volume da esfera para diferentes dimensões.

Dimensão	Volume
2	3.14159274
3	4.18879032
4	4.93480253
5	5.26378918
6	5.16771317
7	4.72476625
8	4.05871248
9	3.29850912
10	2.55016422
11	1.88410401
12	1.33526301
13	0.910628915
14	0.599264622
15	0.381443352
16	0.235330686
17	0.140981153
18	0.00821459070
19	0.00466216095
20	0.00258068983

Volume de uma esfera de raio unitário por número de dimensões

Questão A

Saber quantas vezes maior será o volume é equivalente a saber a razão entre a cubo e a esfera em n dimensões, como o volume do cubo em n dimensões é dado por $V_c = (2R)^d$ e vamos usar o volume da

esfera (1), então

$$\frac{V_e}{V_c} = \frac{\frac{\pi^{d/2}}{\Gamma(\frac{d}{2}+1)}R^d}{(2R)^d} = \frac{\pi^{d/2}R^d}{(2R)^d\Gamma(\frac{d}{2}+1)} = \left(\frac{\sqrt{\pi}}{2}\right)^d \frac{1}{\Gamma(\frac{d}{2}+1)}$$

ou seja, a diferença dos volumes não depende do raio, apenas da dimensão. Assim, para qualquer d, a razão do cubo e da esfera será de $\frac{V_e}{V_d} = \left(\frac{\sqrt{\pi}}{2}\right)^d \frac{1}{\Gamma(\frac{d}{2}+1)}$. No caso de $d \mapsto \infty$ temos que, como $\lim_{d \to +\infty} \Gamma(\frac{d}{2}+1) = +\infty$ e $\left(\frac{\sqrt{\pi}}{2}\right) < 1$, então

$$\lim_{d \to \infty} \left(\frac{\sqrt{\pi}}{2}\right)^d \frac{1}{\Gamma(\frac{d}{2} + 1)} = 0$$

Portanto, a razão $\frac{V_c}{V_e} \to \infty$, podemos dizer que para dimensões cada vez maiores, o tamanho do cubo será muito maior que o da esfera. Esse resultado pode ser melhor exemplicado através do gráfico abaixo:

Questão B

Sabemos que o número de particulas pode ser calculado pela relação $n=\frac{V_e}{V_e}$ Nessa hipótese temos que $[V_c]$ em μ^d e $[V_e]$ em d . Considerando o volume da célula como equivalente ao de um cubo em d dimensões, ou seja, $v_{\rm cel}=(2R)^d$ e o do átomo aproximado por uma esfera, $v_{\rm atom}=\frac{\pi^{d/2}}{\Gamma(\frac{d}{2}+1)}R^d$, sabemos que $n_p=\frac{V_{\rm cel}}{V_{\rm atom}}=$ número de partículas, ajustando para as unidades dadas, temos que

$$n_p = \frac{V_{\text{cel}}}{V_{\text{atom}}} \cdot \frac{1 \cdot \mu^d}{1 \cdot d} = \frac{V_{\text{cel}}}{V_{\text{atom}}} \cdot \frac{\left(1 \cdot 10^{-4}\right)^d}{\left(1 \cdot 10^{-10}\right)^d}$$

$$np = \frac{V_{\text{cel}}}{V_{\text{atom}}} 10^{4d} \tag{2}$$

Sabemos que o número de Avogadro na dimensão d=3 é tal que $n_p=6\cdot 10^{23},$ temos

$$n_p = 6 \cdot 10^{23} = \frac{V_{\text{cel}}}{V_{\text{atom}}} 10^{4 \cdot 3} = \frac{V_{\text{cel}}}{V_{\text{atom}}} 10^{12}$$

como os números não batem, precisamos fazemos um ajuste para que possamos generalizar a ordem de grandeza para o número de Avogadro em d dimensões. Para isso fazemos $\frac{10^{23}}{10^{12}}=10^{11}$. Então, em d dimensões, o número de Avogadro é da ordem de $10^{4d}\cdot 10^{11}=10^{4d+11}$.