Portable Impedance Tomography System

Mid-Term Status

Ashton Johnson

CPE621 Advanced Embedded Systems Electrical and Computer Engineering The University of Alabama in Huntsville

Scenario

Analog Section

Analog Front End

R. Harder, A. Diedrich, J. S. Whitfield, M. S. Buchowski, J. B. Pietsch, and F. J. Baudenbacher, "Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 4, pp. 912–919, Aug. 2016.

Analog Front End

U. Pliquett and A. Barthel, "Interfacing the AD5933 for bio-impedance measurements with front ends providing galvanostatic or potentiostatic excitation," J. Phys.: Conf. Ser., vol. 407, no. 1, p. 012019, 2012.

Analog Front End

F. Seoane, J. Ferreira, J. J. Sanchéz, and R. Bragós, "An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications," Physiol. Meas., vol. 29, no. 6, p. S267, 2008.

Top View

Bottom View

PCBA 3D View

Top View

Bottom View

Milestones

Hardware

```
    ☑Platform Selection (19 SEP)
    Cypress PsoC BLE Module
    Digilent Zybo (Xilinx Zynq-7000 SoC)
    ☑Schematic Design & Layout Complete (26 SEP)
    DRC Checks Competed
    DFM Checks Completed
    ☐PCB Ordered (None Specified)(18 OCT)
    ☐PCB Assembly Complete (10 OCT) (13 NOV)
    ☐PCB Checkout Complete (24 OCT)(20 NOV)
```

Milestones

Software

Driver Development AD5933 Analog Mux Application State Machine (30 OCT) Device Targeted Code BLE I/F (6 NOV) UART Debug I/F (6 NOV) Android Application Code (20 NOV)

Device System States

Software Development

AD5933 Driver (ad5933/ad5933.h)

```
uint8 t
             ad5933 Init (ad5933 deviceConfig *config)
             ad5933 PerformFrequencySweep (ad5933 deviceConfig *config, uint32 t startFreq, uint32 t incrementFreq, uint16 t
uint8 t
numOfIncrements, uint16 t *realArray, uint16 t *imagArray)
             ad5933 ConvertFreq (ad5933 deviceConfig *config, uint32 t desiredFreq, uint8 t *freqMsb, uint8 t *freqMid, uint8 t
uint8 t
*freqLsb)
uint8 t
             ad5933 SetStartFreq (ad5933 deviceConfig *config, uint32 t desiredFreq)
             ad5933 SetIncrFreq (ad5933 deviceConfig *config, uint32 t desiredFreq)
uint8 t
             ad5933 SetIncrCount (ad5933 deviceConfig *config, uint16 t incrNum)
uint8 t
uint8 t
             ad5933 SetSettleTime (ad5933 deviceConfig *config, uint16 t cycles, uint8 t factor)
             ad5933 GetStatus (ad5933 deviceConfig *config, uint8 t *result)
uint8 t
             ad9533 WaitForValidTemp (ad5933 deviceConfig *config)
uint8 t
             ad9533 WaitForValidImpedance (ad5933 deviceConfig *config)
uint8 t
             ad9533 WaitForSweepComplete (ad5933 deviceConfig *config)
uint8 t
             ad5933 ReadRealResult (ad5933 deviceConfig *config, int16 t *real)
uint8 t
             ad5933 ReadImagResult (ad5933 deviceConfig *config, int16 t *imag)
uint8 t
             ad5933 InitWithStartFreq (ad5933 deviceConfig *config)
uint8 t
             ad5933 StartSweep (ad5933 deviceConfig *config)
uint8 t
uint8 t
             ad5933 IncrementFreq (ad5933 deviceConfig *config)
uint8 t
             ad5933 RepeatFreg (ad5933 deviceConfig *config)
             ad5933 MeasureTemp (ad5933 deviceConfig *config)
uint8 t
             ad5933 PowerDown (ad5933 deviceConfig *config)
uint8 t
             ad5933 Standby (ad5933 deviceConfig *config)
uint8 t
uint8 t
             ad5933 Stop (ad5933 deviceConfig *config)
uint8 t
             ad5933 SetPGAx1 (ad5933 deviceConfig *config)
             ad5933 SetPGAx5 (ad5933 deviceConfig *config)
uint8 t
             ad5933 SetVoutRange (ad5933 deviceConfig *config, uint8 t range)
uint8 t
```

Software Development

Analog Mux Driver (amux/hal/gpio_hal.h)

```
uint32_t Amux_Init(const Gpio_deviceConfig *config, uint8_t selection)
uint32_t Amux_SetTx(const Gpio_deviceConfig *config, uint8_t selection)
uint32_t Amux_SetRx(const Gpio_deviceConfig *config, uint8_t selection)
```

HAL Required Functions

```
(amux/hal/gpio_hal.h)
```

```
uint32_t Gpio_Init(const Gpio_deviceConfig *config);
uint32_t Gpio_Write(const Gpio_ConfigType *config, uint8_t value, uint8_t mask)
```

(ad5933/hal/iic_hal.h)

```
void Iic_Init (const Iic_ConfigType *config)
uint8_t Iic_RxByte (const Iic_ConfigType *config, const uint8_t addr, const uint8_t reg, uint8_t *rxValue)
uint8_t Iic_TxByte (const Iic_ConfigType *config, const uint8_t addr, const uint8_t reg, const uint8_t txValue)
uint32_t Gpio_Write(const Gpio_ConfigType *config, uint8_t value, uint8_t mask)
```

Hal functions must implemented for each target