Tsinghua-Berkeley Shenzhen Institute INFERENCE AND INFORMATION Fall 2017

Problem Set 3

Notations: H_0 and H_1 are the certain hypotheses in hypothesis testing. H is the "value" of hypothesis (as a random variable), and \hat{H} is our estimation about H.

3.1. Let y be a continuous random variable distributed over the closed interval [0,1]. Under the null hypothesis H_0 , y is uniform:

$$p_{y|H}(y|H_0) = \begin{cases} 1, & 0 \le y \le 1\\ 0, & \text{o.w.} \end{cases}$$

Under the alternative hypothesis H_1 , the conditional pdf of y is as follows:

$$p_{\mathsf{y}|\mathsf{H}}(y|H_1) = \begin{cases} 2y, & 0 \le y \le 1\\ 0, & \text{o.w.} \end{cases}$$

The a-priori probability that y is uniformly distributed is p.

- (a) Find the decision rule that minimizes the expected error.
- (b) Find the closed form expression for the operating characteristic of the LRT, i.e., $P_{\rm D} \triangleq \mathbb{P}(\hat{\mathsf{H}} = H_1 | \mathsf{H} = H_1)$ as a function of $P_{\rm F} \triangleq \mathbb{P}(\hat{\mathsf{H}} = H_1 | \mathsf{H} = H_0)$ for the likelihood ratio test.
- (c) Suppose we require that $P_{\rm D}$ is at least $(1+\varepsilon)P_{\rm F}$, where $\epsilon > 0$ is a fixed constant.
 - i. Find $P_{\rm D}^{\rm max}(\varepsilon)$, the maximal value of P_D that is achievable under this constraint.
 - ii. Find the range of values of ε that lead to non-trivial performance, i.e. $P_{\rm D}^{\rm max}(\varepsilon)>0$.
 - iii. When using the decision rule from part a, what values of p guarantee that $P_{\rm D} \geq (1 + \varepsilon) P_{\rm F}$?
- 3.2. A 3-dimensional random vector $\underline{\mathbf{y}}$ is observed, and we know that one of the three hypotheses is true:

$$H_1: \quad \underline{\mathbf{y}} = \underline{m}_1 + \underline{\mathbf{w}}$$

$$H_2: \quad \underline{\mathbf{y}} = \underline{m}_2 + \underline{\mathbf{w}}$$

$$H_3: \quad \underline{\mathbf{y}} = \underline{m}_3 + \underline{\mathbf{w}},$$

where

$$\underline{\mathbf{y}} = \left[\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{array} \right], \quad \underline{m}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \quad \underline{m}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \quad \underline{m}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right],$$

and w is a zero-mean Gaussian vector with covariance matrix $\sigma^2 I$.

(a) Let

$$\underline{\pi}(\underline{y}) = \begin{bmatrix} \mathbb{P}(\mathsf{H} = H_1 | \underline{y} = \underline{y}) \\ \mathbb{P}(\mathsf{H} = H_2 | \underline{y} = \underline{y}) \\ \mathbb{P}(\mathsf{H} = H_3 | \underline{y} = \underline{y}) \end{bmatrix} = \begin{bmatrix} \pi_1(\underline{y}) \\ \pi_2(\underline{y}) \\ \pi_3(\underline{y}) \end{bmatrix},$$

and suppose that the Bayes costs are

$$C_{11} = C_{22} = C_{33} = 0$$
, $C_{12} = C_{21} = 1$, $C_{13} = C_{31} = C_{23} = C_{32} = 2$.

- i. Specify the optimum decision rule in terms of $\pi_1(y), \pi_2(y)$ and $\pi_3(y)$.
- ii. Recalling that $\pi_1 + \pi_2 + \pi_3 = 1$, express this rule completely in terms of π_1 and π_2 , and sketch the decision regions in the (π_1, π_2) plane.
- (b) Suppose that the three hypotheses are equally likely a priori and that the Bayes costs are

$$C_{ij} = 1 - \delta_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}$$

Show that the optimum decision rule can be specified in terms of the pair of sufficient statistics

$$\ell_2(\underline{\mathbf{y}}) = \mathbf{y}_2 - \mathbf{y}_1,$$

$$\ell_3(\mathsf{y}) = \mathsf{y}_3 - \mathsf{y}_1.$$

Hint: To begin, see if you can specify the optimum decision rules in terms of

$$L_i(\underline{\mathbf{y}}) = \frac{p_{\underline{\mathbf{y}}|\mathbf{H}}(\underline{y}|H_i)}{p_{\underline{\mathbf{y}}|\mathbf{H}}(\underline{y}|H_1)}, \text{ for } i = 2, 3.$$

3.3. A binary random variable x with prior $p_x(\cdot)$ takes values in $\{-1,1\}$. It is observed via n separate sensors; y_i denotes the observation at sensor i. The y_1, \dots, y_n are conditionally independent given x, i.e.,

$$p_{\mathsf{y}_1,\cdots,\mathsf{y}_n|\mathsf{x}}(y_1,\cdots,y_n|x) = \prod_{i=1}^n p_{\mathsf{y}_i|\mathsf{x}}(y_i|x).$$

A local decision $\hat{x}_i(y_i) \in \{-1,1\}$ about the value of x is made at each sensor.

- (a) In this part of the problem, each sensor sends its local decision to a fusion center. The fusion center combines the local decisions from all sensors to produce a global decision $\hat{x}(\hat{x}_1,\dots,\hat{x}_n)$. Consider the special case in which:
 - $P_{\mathsf{x}}(1) = P_{\mathsf{x}}(-1) = 1/2;$
 - $y_i = x + w_i$, where w_1, \dots, w_n are independent and each uniformly distributed over the interval [-2, 2];
 - the local decision rule is a simple thresholding of the observation, i.e.,

$$y_i \underset{\hat{x}_i(y_i)=-1}{\overset{\hat{x}_i(y_i)=1}{\geq}} 0.$$

Determine the minimum probability of error decision $\hat{x}(\cdot,\ldots,\cdot)$, at the fusion center.

In the remainder of the problem, there is no fusion center. The prior $P_{\mathsf{x}}(\cdot)$, observation model $p_{\mathsf{y}_i|\mathsf{x}}(\cdot|x), i=1,2$, and local decision rules \hat{x}_i , are no longer restricted as in part a . However, we limit our attention to the two-sensor case (n=2).

Consider local decisions $\hat{x}_i(y_i)$, i=1,2, that minimize the expected cost, where the cost is defined for the two local rules jointly. Specifically, $C(\hat{x}_1, \hat{x}_2, x)$ is the cost of deciding \hat{x}_1 at sensor 1 and deciding \hat{x}_2 at sensor 2 when the true value of x is x. The cost C strictly increases with the number of errors made by the two sensors but is not necessarily symmetric.

(b) First, assume $\hat{x}_2(\cdot)$ is given. Show that the choice $\hat{x}_1^*(\cdot)$ for $\hat{x}_1(\cdot)$ that minimizes the expected (joint) cost is a likelihood ratio test of the form

$$\frac{p_{y_1|x}(y_1|1)}{p_{y_1|x}(y_1|-1)} \underset{\hat{x}_1(y_1)=-1}{\overset{\hat{x}_1(y_1)=1}{\geq}} \gamma_1.$$

where γ_1 is a threshold that depends on the rule $\hat{x}_2(\cdot)$. Determine the threshold γ_1 .

- (c) Assuming, instead, that $\hat{x}_1(\cdot)$ is given, determine the choice $\hat{x}_2^*(\cdot)$ for $\hat{x}_2(\cdot)$ that minimizes the expected joint cost.
- (d) Consider a joint cost function $C(\hat{x}_1, \hat{x}_2, x)$ such that the cost is: 0 if both sensors making correct decisions; 1 if exactly one sensor makes a mistake; and L if both sensors make an error. Determine the value of L such that the optimal local decision rules at the two sensors are decoupled, i.e., the optimal threshold γ_1 does not depend on $\hat{x}_2^*(\cdot)$, and vice versa.