

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

1 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 |

(43) Internationales Veröffentlichungsdatum 25. März 2004 (25.03.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/024932 A2

- (51) Internationale Patentklassifikation⁷: C12P 13/04, 13/12
- (21) Internationales Aktenzeichen: PCT/EP2003/009452
- (22) Internationales Anmeldedatum:

26. August 2003 (26.08.2003)

(25) Einreichungssprache:

فسروا

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 102 39 073.8 26. August 2002 (26.08.2002) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KRÖGER, Burkhard [DE/DE]; Im Waldhof 1, 67117 Limburgerhof (DE). ZELDER, Oskar [DE/DE]; Franz-Stützel-Str. 8, 67346 Speyer (DE). KLOPPROGGE, Corinna [DE/DE]; Rastatter Str. 10, 68239 Mannheim (DE). SCHRÖDER, Hartwig [DE/DE]; Benzstr. 4, 69226 Nussloch (DE). HÄFNER, Stefan [DE/DE]; Luitpoldstr. 11, 67063 Ludwigshafen (DE).
- (74) Anwalt: KINZEBACH, Werner; Reitstötter, Kinzebach & Partner (GbR), Sternwartstr. 4, 81679 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR ZYMOTIC PRODUCTION OF FINE CHEMICALS (META) CONTAINING SULPHUR
- (54) Bezeichnung: VERFAHREN ZUR FERMENTATIVEN HERSTELLUNG SCHWEFELHALTIGER FEINCHEMIKALIEN (META)

- (57) Abstract: The invention relates to methods for the zymotic production of fine chemicals, especially L-methionine, containing sulphur using bacteria, wherein a nucleotide sequence coding for a methionine-synthase (methA)-gene is expressed.
- (57) Zusammenfassung: Die Erfindung betrifft Verfahren zur fermentativen Herstellung von schwefelhaltigen Feinchemikalien, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen eine für ein Methionin-Synthase (methA)-Gen kodierende Nukleotidsequenz exprimiert wird.

KZ, LC, LK, LR, LS. LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,

PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 2004/024932 PCT/EP2003/009452

VERFAHREN ZUR FERMENTATIVEN HERSTELLUNG SCHWEFELHALTIGER FEINCHEMIKALIEN (META)

Beschreibung

5

10

15

30

35

Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von schwefelhaltigen Feinchemikalien, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen eine für ein Homoserin-O-Acetyl-Transferase (metA)-Gen kodierende Nukleotidsequenz exprimiert wird.

Stand der Technik

Schwefelhaltige Feinchemikalien, wie zum Beispiel Methionin, Homocystein, S-Adenosyl-Methionin, Glutathion, Cystein, Biotin, Thiamin, Liponsäure werden über natürliche Stoffwechselprozesse in Zellen hergestellt und werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-, Kosmetik- und pharmazeutischen Industrie. Diese Substanzen, die zusammen als "schwefelhaltige Feinchemikalien" bezeichnet werden, umfassen organische Säuren, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Vitamine und Cofaktoren. Ihre Produktion erfolgt am zweckmäßigsten im Großmaßstab mittels Anzucht von Bakterien, die entwickelt wurden, um große Mengen der jeweils gewünschten Substanz zu produzieren und sezemieren. Für diesen Zweck besonders geeignete Organismen sind coryneforme Bakterien, gram-positive nicht-pathogene Bakterien.

Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen, wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien, wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zum Produkt, beispielsweise durch lonenaustauschchromatographie, oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Über Stammselektion sind eine Reihe von Mutantenstämmen entwickelt worden, die ein Sortiment wünschenswerter Verbindungen aus der Reihe der schwefelhaltigen Feinchemikalien produzieren. Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen hinsichtlich der Produktion eines bestimmten Moleküls werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Dies ist jedoch ein zeitaufwendiges und schwieriges Verfahren. Auf diese Weise erhält man z.B. Stämme, die resistent gegen Antimetabolite, wie z. B. die Methionin-Analoga α-Methyl-Methionin, Ethionin, Norleucin, N-Acetylnorleucin, S-Trifluoromethylhomocystein, 2-Amino-5-heprenoitsäure, Seleno-Methionin, Methioninsulfoximin,

Methoxin, 1-Aminocyclopentan-Carboxylsäure oder auxotroph für regulatorisch bedeutsame Metabolite sind und schwefelhaltige Feinchemikalien, wie z. B. L-Methionin, produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

Kurze Beschreibung der Erfindung

10

15

25

5

Der Erfindung lag die Aufgabe zugrunde, ein neues Verfahren zur verbesserten fermentativen Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, bereitzustellen.

Gelöst wird obige Aufgabe durch Bereitstellung eines Verfahrens zur fermentativen Herstellung einer schwefelhaltigen Feinchemikalie, umfassend die Expression einer heterologen Nukleotidsequenz, welche für ein Protein mit metA-Aktivität kodiert, in einem coryneformen Bakterium.

Ein erster Gegenstand der Erfindung ist Verfahren zur fermentativen Herstellung wenigstens einer schwefelhaltigen Feinchemikalie, welches folgende Schritte umfasst:

- 20 a) Fermentation einer die gewünschte schwefelhaltige Feinchemikalie produzierenden coryneformen Bakterienkultur, wobei in den coryneformen Bakterien zumindest eine heterologe Nukleotidsequenz exprimiert wird, welche für ein Protein mit Homoserin-O-Acetyl-Transferase (metA) –Aktivität kodiert;
 - b) Anreicherung der schwefelhaltigen Feinchemikalie im Medium oder in den Zellen der Bakterien, und
 - Isolieren der schwefelhaltigen Feinchemikalie, welche vorzugsweise L-Methionin umfasst.

Vorzugsweise besitzt obige heterologe metA-kodierende Nukleotidsequenz zur metA30 kodierenden Sequenz aus Corynebacterium glutamicum ATCC 13032 eine Sequenzhomologievon weniger als 100% und vorzugsweise von mehr als 70% aufweist. Die metA-kodierende Sequenz ist vorzugsweise aus einem der folgenden Organismen von Liste I abgeleitet:

20

Liste I

Corynebacterium diphteriae	ATCC 14779
Mycobacterium leprae	ATCC 43910
Mycobacterium tuberculosis CDC1551	ATCC 25584
Chlorobium tepidum	ATCC 49652
Pseudomonas aeruginosa	ATCC 17933
Caulobacter crescentus	ATCC 19089
Neisseria gonorrhoeae	ATCC 53420
Neisseria meningitidis	ATCC 53414
Pseudomonas fluorescens	ATCC 13525
Burkholderia cepacia	ATCC 25416
Nitrosomonas europaea	ATCC 19718
Haemophilus influenzae	ATCC 51907
Halobacterium sp NRC1	ATCC 33170
Thermus thermophilus	ATCC 27634
Deinococcus radiodurans	ATCC 13939
Saccharomyces cerevisiae	ATCC 10751
Schizosaccharomyces pombe	ATCC 24969
Xylella fastidiosa	ATCC 35881
Emericella nidulans	ATCC 36104
	ATCC 35173
Mesorhizobium loti	ATCC 11550
Acremonium crysogenum	ATCC 47054
Pseudomonas putida	ATCC 35556
Staphylococcus aureus	A100 33330

ATCC: American Type Culture Collection, Rockville, MD, USA

- Die erfindungsgemäß eingesetzte metA-kodierende Sequenz umfasst vorzügsweise eine kodierende Sequenz gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43 und 45 oder eine dazu homologe Nukleotidsequenz, welche für ein Protein mit metA-Aktivität kodiert.
- Die erfindungsgemäß eingesetzte metA-kodierende Sequenz kodiert außerdem vorzugsweise für ein Protein mit metA-Aktivität, wobei das Protein eine Aminosäuresequenz gemäß SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 und 46 oder eine dazu homologe Aminosäuresequenz, welche für ein Protein mit metA-Aktivität steht, umfasst.

Die kodierende metA-Sequenz ist vorzugsweise eine in coryneformen Bakterien replizierbare oder eine stabil in das Chromosom intregrierte DNA oder eine RNA.

Gemäß einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren durchgeführt, indem man

WO 2004/024932

5

30

35

m)

4

a) einen mit einem Plasmidvektor transformierten Bakterienstamm einsetzt der wenigstens eine Kopie der kodierenden metA-Sequenz unter der Kontrolle regulativer Sequenzen trägt, oder

einen Stamm einsetzt, in dem die kodierende metA-Sequenz in das Chromosom des Bakteriums integriert wurde

Es ist weiterhin bevorzugt, die kodierende metA-Sequenz für die Fermentation zu überexprimieren.

Außerdem kann es wünschenswert sein, Bakterien zu fermentieren, in denen zusätzlich wenigs-10 tens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie verstärkt ist; und / oder

in denen wenigstens ein Stoffwechselweg zumindest teilweise ausgeschaltet sind, der die Bildung der gewünschten schwefelhaltigen Feinchemikalie verringert.

Außerdem kann es wünschenswert sein, Bakterien zu fermentieren, in denen zusätzlich wenigs-15 tens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie durch Stoffwechselmetabolite in seiner Aktivität nicht in unerwünschter Weise beeinflusst wird.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden deshalb 20 coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter

- a) dem für eine Aspartatkinase kodierenden Gen lysC,
- dem für eine Aspartat-Semialdehyd-Dehydrogenase kodierenden Gen asd b)
- 25 dem für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierenden Gen gap, c)
 - d) dem für die 3-Phosphoglycerat Kinase kodierenden Gen pgk,
 - e) dem für die Pyruvat Carboxylase kodierenden Gen pyc,
 - dem für die Triosephosphat Isomerase kodierenden Gen tpi, f)
 - dem für die Methionin Synthase kodierenden Gen metH, g)
 - h) dem für die Cystathionin-gamma-Synthase kodierenden Gen metB,
 - i) dem für die Cystathionin-gamma-Lyase kodierenden Gen metC,
 - j) dem für die Serin-Hydroxymethyltransferase kodierenden Gen glyA,
 - k) dem für die O-Acetylhomoserin-Sulfhydrylase kodierenden Gen metY,
 - l) dem für die Methylen-Tetrahydrofolat-Reduktase kodierenden Gen, metF
 - dem für die Phosphoserin-Aminotransferase kodierenden Gen serC
 - n) dem für die Phosphoserin-Phosphatase kodierenden Gen serB.

PCT/EP2003/009452

5

WO 2004/024932

15

20

30

- o) dem f
 ür die Serine Acetyl-Transferase kodierenden Gen cysE,
- p) dem für die Homoserin-Dehydrogenase kodierenden Gen hom, überexprimiert ist.
- Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene ausgewählt unter Genen der oben genannten Gruppe a) bis p) mutiert ist, so dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch Stoffwechselmetabolite in ihrer Aktivität beeinflusst werden und dass insbesondere die erfindungsgemäße Produktion der Feinchemikalie nicht beeinträchtigt wird.

Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter

- q) dem für die Homoserine-Kinase kodierenden Gen thrB,
- r) dem für die Threonin Dehydratase kodierenden Gen ilvA,
- s) dem für die Threonin Synthase kodierenden Gen thrC
- t) dem für die Meso-Diaminopimelat D-Dehydrogenase kodierenden Gen ddh
- u) dem für die Phosphoenolpyruvat-Carboxykinase kodierenden Gen pck,
- v) dem für die Glucose-6-Phosphat-6-Isomerase kodierenden Gen pgi,
- w) dem für die Pyruvat-Oxidase kodierenden Gen poxB,
- x) dem für die Dihydrodipicolinat Synthase kodiernden Gen dapA,
- y) dem für die Dihydrodipicolinat Reduktase kodiernden Gen dapB; oder
- z) dem für die Diaminopicolinat Decarboxylase kodiernden Gen lysA

abschwächt ist, insbesondere durch Verringerung der Expressionsrate des korrespondierenden Gens.

Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene der obigen Gruppen q) bis z) mutiert ist, so dass die enzymatische Aktivität des korrespondierenden Proteins teilweise oder vollständig verringert wird.

Vorzugsweise werden in dem erfindungsgemäßen Verfahren Mikroorganismen der Art Corynebacterium glutamicum eingesetzt.

35 Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung eines L-Methioninhaltigen Tierfuttermittel-Additivs aus Fermentationsbrühen, welches folgende Schritte umfasst

- Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
- b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe;
- c) Entfernung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
- d) Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.

Gegenstand der Erfindung sind ebenfalls die erstmalig aus obigen Mikroorganismen isolierten kodierenden metA-Sequenzen, die davon kodierten Homoserin-O-Acetyl-Transferase sowie die funktionalen Homologen dieser Polynukleotide bzw. Proteine.

Detaillierte Beschreibung der Erfindung

15 a) Allgemeine Begriffe

Als Proteine mit der Aktivität der Homoserin-O-Acetyl-Transferase auch metA (EC 2.3.1.31) genannt, werden solche Proteine beschrieben, die in der Lage sind Homoserin und Acetyl-Co-EnzymA zu O-Acetyl-Homoserin umzusetzen. Der Fachmann unterscheidet die Aktivivät der Homoserin-O-Acetyl-Transferase von der Homoserin-O-Succinyl-Transferase, die in der Literatur aber auch metA genannt wird. In dem letztgenannten Enzym dient Succinyl-Coenzym A und nicht Acetyl- Coenzym A als Substrat der Reaktion. Der Fachmann kann die enzymatische Aktivivtät von Homoserin-O-Acetyl-Transferase durch Enzymtests nachweisen, Vorschriften dafür können sein: Park SD. Lee JY. Kim Y. Kim JH. Lee HS. Molecules & Cells. 8(3):286-94, 1998.

Im Rahmen der vorliegenden Erfindung umfasst der Begriff "schwefelhaltige Feinchemikalie" jegliche chemische Verbindung, die wenigstens ein Schwefelatom kovalent gebunden enthält und durch ein erfindungsgemäßes Fermentationsverfahrens zugänglich ist. Nichtlimitierende

Beispiele dafür sind Methionin, Homocystein, S-Adenosyl-Methionin, insbesondere Methio-

nin,und S-Adenosyl-Methionin.

Im Rahmen der vorliegenden Erfindung umfassen die Begriffe "L-Methionin", "Methionin", Homocystein und S-Adenosylmethionin auch die korrespondierenden Salze, wie z. B. Methionin-Hydrochlorid oder Methionin-Sulfat.

30

20

25

"Polynukleotide" bezeichnet im allgemeinen Polyribonukleotide (RNA) und Polydeoxyribonukleotide (DNA), wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Unter "Polypeptiden" versteht man erfindungsgemäß Peptide oder Proteine, die zwei oder mehr 5 über Peptidbindungen verbundene Aminosäuren enthalten.

Der Begriff "Stoffwechselmetabolit" bezeichnet chemische Verbindungen, die im Stoffwechsel von Organismen als Zwischen- oder auch Endprodukte vorkommen und die neben ihrer Eigenschaft als chemische Bausteine auch modulierende Wirkung auf Enzyme und ihre katalytische Aktivität haben können. Dabei ist aus der Literatur bekannt, dass solche Stoffwechselmetabolite sowohl hemmend als auch stimulierend auf die Aktvität von Enzymen wirken können (Biochemistry, Stryer, Lubert, 1995 W. H. Freeman & Company, New York, New York.). In der Literatur ist auch beschrieben, dass es möglich ist durch Maßnahmen wie Mutation der genomischen DNA durch UV-Strahlung, ionisierender Strahlung oder mutagene Substanzen und nachfolgender Selektion auf bestimmte Phänotypen in Organismen solche Enzyme zu produzieren, in denen die Beeinflussung durch Stoffwechselmetabolite verändert wurde (Sahm H. Eggeling L. de Graaf AA. Biological Chemistry 381(9-10):899-910, 2000; Eikmanns BJ. Eggeling L. Sahm H. Antonie van Leeuwenhoek. 64:145-63, 1993-94). Diese veränderten Eigenschaften können auch 20 durch gezielte Maßnahmen erreicht werden. Dabei ist dem Fachmann bekannt, dass in Genen für Enzyme bestimmte Nukleotide der für das Protein kodierenden DNA gezielt verändert werden können, so dass das aus der exprimierten DNA-Sequenz resultierende Protein bestimmte neue Eigenschaften aufweist, so zum Beispiel, dass die modulierende Wirkung von Stoffwechselmetaboliten gegenüber dem nicht veränderten Protein verändert ist

Die Begriffe "exprimieren" bzw. "Verstärkung" oder "Überexpression" beschreiben im Kontext der Erfindung die Produktion bzw. Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden. Dazu kann man beispielsweise ein Gen in einen Organismus einbringen, ein vorhandenes Gen durch ein anderes Gen ersetzen, die Kopienzahl des Gens bzw. der Gene erhöhen, einen starken Promotor verwenden oder ein Gen verwenden, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und man kann gegebenenfalls diese Maßnahmen kombinieren.

Erfindungsgemäße metA-Proteine b)

10

15

30

35

Erfindungsgemäß mit umfasst sind ebenfalls "funktionale Äquivalente" der konkret offenbarten

10

15

20

25

30

metA-Enzyme aus Organismen obiger Liste I.

"Funktionale Äquivalente" oder Analoga der konkret offenbarten Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, wie z.B. Substratspezifität, besitzen.

Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere Mutanten, welche in wenigstens einer der oben genannten Sequenzpositionen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten biologische Aktivitäten besitzen. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substitutionen, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden.

"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln.

"Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen oder Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologische Funktion aufweisen.

"Funktionale Äquivalente" sind außerdem Fusionsproteine, welche ein der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funktionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitiernde Beispiele für derartige heterologe Sequenzen sind z.B. Signalpeptide, Enzyme, Immunoglobuline, Oberflächenantigene, Rezeptoren oder Rezeptorliganden.

Erfindungsgemäß mit umfasste "funktionale Äquivalente" sind Homologe zu den konkret offenbarten Proteinen. Diese besitzen wenigstens 20%, oder etwa 30%, 40%, 50 %, vorzugsweise wenigstens etwa 60 %, 65%, 70%, oder 75% ins besondere wenigsten 85 %, wie z.B. 90%, 95% oder 99%, Homologie zu einer der konkret offenbarten Sequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sci. (USA) 85(8), 1988, 2444-2448.

- Homologe der erfindungsgemäßen Proteine oder Polypeptide können durch Mutagenese erzeugt werden, z.B. durch Punktmutation oder Verkürzung des Proteins. Der Begriff "Homolog", wie er hier verwendet wird, betrifft eine variante Form des Proteins, die als Agonist oder Antagonist der Protein-Aktivität wirkt.
- Homologe des erfindungsgemäßen Proteine können durch Screening kombinatorischer Banken 10 von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Protein-Varianten durch kombinatorische Mutagenese auf Nukleinsäureebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die 15 chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen codieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fach-20 mann bekannt (Z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 11:477).
- Zusätzlich können Banken von Fragmenten des Protein-Codons verwendet werden, um eine variegierte Population von Protein-Fragmenten zum Screening und zur anschließenden Selektion von Homologen eines erfindungsgemäßen Proteins zu erzeugen. Bei einer Ausführungsform kann eine Bank von kodierenden Sequenzfragmenten durch Behandeln eines doppelsträngigen PCR-Fragmentes einer kodierenden Sequenz mit einer Nuklease unter Bedingungen, unter denen ein Nicking nur etwa einmal pro Molekül erfolgt, Denaturieren der doppelsträngigen DNA, Renaturieren der DNA unter Bildung doppelsträngiger DNA, die Sense-/Antisense-Paare von verschiedenen genickten Produkten umfassen kann, Entfernen einzelsträngiger Abschnitte aus neu gebildeten Duplices durch Behandlung mit S1-Nuclease und Ligieren der resultierenden Fragmentbank in einen Expressionsvektor erzeugt werden. Durch dieses Verfahren kann eine Expressionsbank hergeleitet werden, die N-terminale, C-terminale und interne Fragmente mit verschiedenen Größen des erfidungsgemäßen Proteins kodiert.

10

15

35

Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von DNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Diese Techniken lassen sich an das schnelle Screening der Genbanken anpassen, die durch kombinatorische Mutagenese erfindungsgemäßer Homologer erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der gewünschten Aktivität die Isolation des Vektors, der das Gen codiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331

c) <u>Erfindungsgemäße Polynukleotide</u>

Gegenstand der Erfindung sind ebenso Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), kodierend für eines der obigen metA-Enzyme und deren funktionalen Äquivalenten, welche z.B. auch unter Verwendung künstlicher Nukleotidanaloga zugänglich sind.

Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Polypeptide bzw. Proteine oder biologisch aktive Abschnitte davon kodieren, sowie Nukleinsäurefragmente, die z.B., zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung
oder Amplifizierung von erfindungsgemäßer kodierenden Nukleinsäuren verwendet werden können.

Die erfindungsgemäßen Nukleinsäuremoleküle können zudem untranslatierte Sequenzen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten

Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techni-

10

25

30

35

ken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.

Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequenzen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon.

Die erfindungsgemäß Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primern, die zur Identifizierung und/oder Klonierung von homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nukleinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.

Weitere erfindungsgemäße Nukleinsäuresequenzen sind abgeleitet von SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43 oder 45 und unterscheiden sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für Polypeptide mit dem gewünschten Eigenschaftsprofil. Dies können Polynukleotide sein, die zu obigen Sequenzen in mindestens etwa 50%, 55%, 60%, 65%, 70%, 80% oder 90%, vorzugsweise in mindestens etwa 95%, 96%, 97%, 98% oder 99% der Sequenzpositionen identisch sind.

Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotidsubstutionen (d.h. die betreffende Aminosäure wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.

Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den konkret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Polymorphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz eines Gens.

Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide lassen sich bei Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Eine weitere Möglichkeit bietet die Transformation geeigneter Mikroorganismen mit erfindungsgemäßen Polynukleotiden oder Vektoren, die Vermehrung der Mikroorganismen und damit der Polynukleotide und deren anschließende Isolierung. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden.

10

15

20

25

30

35

5

Unter der Eigenschaft, an Polynukleotide "hybridisieren" zu können, versteht man die Fähigkeit eines Poly- oder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70-100%, vorzugsweise zu 90-100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northern- oder Southern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligonukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedingungen versteht man beispielsweise in der Northern-Blot-Technik die Verwendung einer 50 – 70 °C, vorzugsweise 60 – 65 °C warmen Waschlösung, beispielsweise 0,1x SSC-Puffer mit 0,1% SDS (20x SSC: 3M NaCl, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie oben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebunden. Die Einstellung stringenter Bedingungen ist dem Fachmann bekannt und ist z:B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.

d) Isolierung der kodierenden metA-Gene

Die für das Enzym Homoserin-O-Acetyl-Transferase codierenden metA-Gene aus den Organismen obiger Liste I sind in an sich bekannter Weise isolierbar.

Zur Isolierung der metA-Gene oder auch anderer Gene der Organismen aus obiger Liste I wird zunächst eine Genbank dieses Organsimus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern ausführlich beschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von

Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell50, 495-508 (198)) in λ -Vektoren angelegt wurde.

Zur Herstellung einer Genbank von Organismen der Liste I in E. coli können Cosmide, wie der Cosmidvektor SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164), aber auch Plasmide, wie pBR322 (BoliVal; Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268), verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei Sanger et al. (proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen, wie z. B. dem von Staden (Nucleic Acids Research 14,217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods ofBiochemical Analysis 39, 74-97 (1998)), untersucht werden.

Die für die metA-Gene kodierenden DNA-Sequenzen von Organismen gemäß obiger Liste I wurde gefunden. Insbesondere wurden DNA-Sequenzen gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43 und 45 gefunden. Weiterhin wurden aus diesen vorliegenden DNA-Sequenzen mit den oben beschriebenen Methoden die Aminosäuresequenzen der entsprechenden Proteine abgeleitet. Durch SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 und 46 sind die sich ergebenden Aminosäuresequenzen der metA-Genprodukte dargestellt.

Kodierende DNA-Sequenzen, die sich aus den Sequenzen gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43 und 45 durch die Degeneration des genetischen Kodes ergeben, sind ebenfalls Gegenstand der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit diesen Sequenzen oder davon abgeleiteten Sequenzteilen hybridisieren, Gegenstand der Erfindung.

20

25

20

25

30

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide für Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Ox- ford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Weiterhin ist bekannt, dass Änderungen am N- und/oder C- Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren k\u00f6nnen. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Biontechnology 6: 1321-1325 (1988)) und in bekannten
 Lehrb\u00fcchem der Genetik und Molekularbiologie.

Aminosäuresequenzen, die sich in entsprechender Weise aus den SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 und 46 ergeben, sind ebenfalls Bestandteil der Erfindung.

e) <u>Erfindungsgemäß verwendete Wirtszellen</u>

Weitere Gegenstände der Erfindung betreffen als Wirtszelle dienende Mikroorgansismen, insbesondere coryneforme Bakterien, die einen Vektor, insbesondere Pendelvektor oder Plasmidvektor, der wenigstens ein metA-Gen gerfindungsgemäßer Definition trägt, enthalten oder in denen ein erfindungsgemäßes metA-Gen exprimiert bzw. verstärkt ist.

Diese Mikroorganismen können schwefelhaltige Feinchemikalien, insbesondere L-Methionin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Vorzugsweise sind dies coryneforme Bakterien, insbesondere der Gattung Corynebacterium. Aus der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

35 Als Beispiele für geeignete Stämme coryneformer Bakterien sind solche der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), wie

10

15

20

25

30

35

Corynebacterium glutamicum ATCC 13032,
Corynebacterium acetoglutamicum ATCC 15806,
Corynebacterium acetoacidophilum ATCC 13870,
Corynebacterium thermoaminogenes FERM BP-1539,
Corynebacterium melassecola ATCC 17965

oder
der Gattung Brevibacterium, wie
Brevibacterium flavum ATCC 14067
Brevibacterium lactofermentum ATCC 13869 und
Brevibacterium divaricatum ATCC 14020 zu nennen;
oder davon abgeleitete Stämme, wie
Corynebacterium glutamicum KFCC10065
Corynebacterium glutamicum ATCC21608

welche ebenfalls die gewünschte Feinchemikalie oder deren Vorstufe(n) produzieren. Mit der Abkürzung KFCC ist die Korean Federation of Culture Collection gemeint, mit der Abkürzung ATCC die American type strain culture collection, mit der Abkürzung FERM BP die Sammlung des National institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan bezeichnet.

f) <u>Durchführung der erfindungsgemäßen Fermentation</u>

Erfindungsgemäß wurde festgestellt, dass coryneforme Bakterien nach Überexpression eines metA-Gens aus Organismen der Liste I in vorteilhafter Weise schwefelhaltige Feinchemikalien, insbesondere L-Methionin, produzieren.

Zur Erzielung einer Überexpression kann der Fachmann unterschiedliche Maßnahmen einzeln oder in Kombination ergreifen. So kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Methionin-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der mRNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können ent-

15

20

25

30

35

weder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Biontechnology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0472869, im US Patent 4,601,893, bei Schwarzer und Pühler (Biotechnology 9, 84-87 (1991), bei Remscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58,.191-195 (1998)), bei Makrides (Microbiological Reviews 60: 512-538 (1996) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Gegenstand der Erfindung sind deshalb auch Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Polypeptid kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte. Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Aktivrieungssequenzen sowie Enhancer und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürli-

che Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

5

10

15

Beispiele für brauchbare Promotoren sind: die Promotoren, ddh, amy, lysC, dapA, lysA aus Corynebacterium glutamicum, aber auch gram-positiven Promotoren SPO2 wie sie in Bacillus Subtilis and Its Closest Relatives, Sonenshein, Abraham L.,Hoch, James A., Losick, Richard; ASM Press, District of Columbia, Washington und Patek M. Eikmanns BJ. Patek J. Sahm H. Microbiology. 142 1297-309, 1996 beschrieben sind, oder aber auch cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Bevorzugt ist auch die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduztierbarer Promotoren, wie der P_rP_r-Promotor. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das 20 Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.

Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder emiedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA

30

35

verbessert wird.

25

Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors, einer geeigneten Shine-Dalgarnow-Sequenz mit einer metA-Nukleotidsequenz sowie einem geeigneten Terminationssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in Current Protocols in Molecular Biology, 1993, John Wiley & Sons, Incorporated, New York New York, PCR Methods, Gelfand, David H., Innis, Michael A., Sninsky, John J. 1999, Academic Press, Incorporated, California, San Diego, ., PCR Cloning Protocols, Methods in Molecular Biology Ser., Vol. 192, 2nd ed., Humana Press, New

Jersey, Totowa. T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.

Zur Verstärkung wurden erfindungsgemäße metA-Gene beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren, wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren, wie z. B. pCLiK5MCS, oder solche, die auf pCG4 (US-A 4,489,160) oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)) oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/ Technology 1,784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145,69-73 (1994)), Bernard et al., Journal ofMolecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510—4516) oder pBGS8 (Spratt et al., 1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Transformation in den gewünschten Stamm von C. glutamicum überführt.

Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Biotechnology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123,343-347 (1994)) beschrieben.

- 5 Enzyme können durch Mutationen in den korrespondierenden Genen derart in ihrer Aktivität beeinflußt werden, dass es zu einer teilweisen oder vollständigen Verringerung der Reaktionsgeschwindigkeit der enzymatischen Reaktion kommt. Beispiele für solche Mutationen sind dem Fachmann bekannt (Motoyama H. Yano H. Terasaki Y. Anazawa H. Applied & Environmental Microbiology. 67:3064-70, 2001, Eikmanns BJ. Eggeling L. Sahm H. Antonie van Leeuwenhoek.
- 10 64:145-63, 1993-94.)

15

20

25

Zusätzlich kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, neben einer Expression bzw. Verstärkung eines erfindungsgemäßen metA-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, des Cystein-Stoffwechselwegs, der Aspartatsemialdehyd-Synthese, der Glykolyse, der Anaplerotik, des Pentose-Phosphat-Stoffwechsels, des Zitronensäure-Zyklus oder des Aminosäure-Exports zu verstärken.

So kann für die Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, eines oder mehrere der folgenden Gene verstärkt sein:

- das für eine Aspartatkinase kodierende Gen lysC (EP 1 108 790 A2; DNA-SEQ NO. 281),
- -das für eine Aspartat-Semialdehyd Dehydrogenase kodierende Gen asd (EP 1 108 790 A2; DNA-SEQ NO. 282),
- das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
 - das für die Methionin Synthase kodierende Gen metH (EP 1 108 790 A2),
 - das für die Cystahionin-gamma-Synthase kodierende Gen metB (EP 1 108 790 A2; DNA-SEQ NO. 3491),
- das für die Cystahionin-gamma-Lyase kodierende Gen metC (EP 1 108 790 A2; DNA-SEQ NO.
 3061),

20

35

- das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (EP 1 108 790 A2; DNA-SEQ NO. 1110),
- das für die O-Acetylhomoserin-Sulfhydrylase kodierende Gen metY (EP 1 108 790 A2; DNA-SEQ NO. 726),
- das für die Methylentetrahydrofolat-Reduktase kodierende Gen metF (EP 1 108 790 A2; DNA-SEQ NO. 2379),
 - das für die Phosphoserin-Aminotransferase kodierende Gen serC (EP 1 108 790 A2; DNA-SEQ NO. 928)
- eines für die Phosphoserin-Phosphatase kodierende Gen serB (EP 1 108 790 A2; DNA-SEQ
 NO. 334, DNA-SEQ NO. 467, DNA-SEQ NO. 2767)
 - das für die Serine Acetyl-Transferase kodierende Gen cysE (EP 1 108 790 A2; DNA-SEQ NO. 2818)
 - das für eine Homoserin-Dehydrogenase kodierende Gen hom (EP 1 108 790 A2; DNA-SEQ NO. 1306)

So kann für die Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, in coryneformen Bakterien, vorteilhaft sein, gleichzeitig wenigstens eines der nachfolgenden Gene zu mutieren, so dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch einen Stoffwechselmetaboliten in ihrer Aktivität beeinflusst werden:

- das für eine Aspartatkinase kodierende Gen lysC (EP 1 108 790 A2; DNA-SEQ NO. 281),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Methionin Synthase kodierende Gen metH (EP 1 108 790 A2),
 - das für die Cystahionin-gamma-Synthase kodierende Gen metB (EP 1 108 790 A2; DNA-SEQ NO. 3491),
 - das für die Cystahionin-gamma-Lyase kodierende Gen metC (EP 1 108 790 A2; DNA-SEQ NO. 3061),
- das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (EP 1 108 790 A2; DNA-SEQ
 NO. 1110),
 - das für die O-Acetylhomoserin-Sulfhydrylase kodierende Gen metY (EP 1 108 790 A2; DNA-SEQ NO. 726).
 - das für die Methylentetrahydrofolat-Reduktase kodierende Gen metF (EP 1 108 790 A2; DNA-SEQ NO. 2379),
 - das für die Phosphoserin-Aminotransferase kodierende Gen serC (EP 1 108 790 A2; DNA-

SEQ NO. 928)

5

35

- eines für die Phosphoserin-Phosphatase kodierende Gen serB (EP 1 108 790 A2; DNA-SEQ NO. 334, DNA-SEQ NO. 467, DNA-SEQ NO. 2767)
- das für die Serine Acetyl-Transferase kodierende Gen cysE (EP 1 108 790 A2; DNA-SEQ NO. 2818)
- das für eine Homoserin-Dehydrogenase kodierende Gen hom (EP 1 108 790 A2; DNA-SEQ NO. 1306)
- Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere LMethionin, vorteilhaft sein, zusätzlich zur Expression bzw. Verstärkung eines der erfindungsgemäßen metA-Gene eines oder mehrere der folgenden Gene abzuschwächen, insbesondere deren Expression zu verringern, oder auszuschalten:
 - das für die Homoserine-Kinase kodierende Gen thrB (EP 1 108 790 A2; DNA-SEQ NO. 3453)
- das für die Threonin Dehydratase kodierende Gen ilvA (EP 1 108 790 A2; DNA-SEQ NO.
 2328)
 - das für die Threonin Synthase kodierende Gen thrC (EP 1 108 790 A2; DNA-SEQ NO. 3486)
 - das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (EP 1 108 790 A2; DNA-SEQ NO. 3494)
- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (EP 1 108 790 A2; DNA-SEQ NO. 3157)
 - das für die Glucose-6-Phosphat-6-Isomerase kodierende Gen pgi (EP 1 108 790 A2; DNA-SEQ NO. 950)
 - das für die Pyruvat-Oxidase kodierende Gen poxB (EP 1 108 790 A2; DNA-SEQ NO. 2873)
- das für die Dihydrodipicolinat Synthase kodiemde Gen dapA (EP 1 108 790 A2; DNA-SEQ NO.
 3476)
 - das für die Dihydrodipicolinat Reduktase kodiernde Gen dapB (EP 1 108 790 A2; DNA-SEQ NO. 3477)
- das für die Diaminopicolinat Decarboxylase kodiernde Gen lysA (EP 1 108 790 A2; DNA-SEQ
 NO. 3451)

Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Expression bzw. Verstärkung eines der erfindungsgemäßen metA-Gene in Coryneformen Bakterien gleichzeitig wenigstens eines der folgenden Gene so zu mutieren, dass die enzymatische Aktivität des korrespondierenden Proteins teilweise oder vollständig verringert wird:

30

35

- das für die Homoserine-Kinase kodierende Gen thrB (EP 1 108 790 A2; DNA-SEQ NO. 3453)
- das für die Threonin Dehydratase kodierende Gen ilvA (EP 1 108 790 A2; DNA-SEQ NO. 2328)
- 5 das für die Threonin Synthase kodierende Gen thrC (EP 1 108 790 A2; DNA-SEQ NO. 3486)
 - das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (EP 1 108 790 A2;
 DNA-SEQ NO. 3494)
 - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (EP 1 108 790 A2; DNA-SEQ NO. 3157)
- das für die Glucose-6-Phosphat-6-Isomerase kodierende Gen pgi (EP 1 108 790 A2; DNA-SEQ NO. 950)
 - das für die Pyruvat-Oxidase kodierende Gen poxB (EP 1 108 790 A2; DNA-SEQ NO. 2873)
 - das für die Dihydrodipicolinat Synthase kodiemde Gen dapA(EP 1 108 790 A2; DNA-SEQ NO. 3476)
- das für die Dihydrodipicolinat Reduktase kodiernde Gen dapB (EP 1 108 790 A2; DNA-SEQ
 NO. 3477)
 - das für die Diaminopicolinat Decarboxylase kodiernde Gen lysA (EP 1 108 790 A2; DNA-SEQ NO. 3451)
- Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, neben der Expression bzw. Verstärkung eines erfindungsgemäßen metA-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch- Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zur Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.

Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind

PCT/EP2003/009452

5

10

15

20

25

30

35

im Handbuch "Manual of Methods für General Bacteriology" der American Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

Diese erfindungsgemäß einsetzbaren Medien umfassen gewöhnlich eine oder mehrerenKohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z. B. Sojaöl. Sonnenblumenöl. Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure oder Linolsäure, Alkohole wie z. B. Glycerin, Methanol oder Ethanol und organische Säuren wie z. B. Essigsäure oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak-Gas oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder Ammoniumnitrat, Nitrate, Hamstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen

Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten.

10

15

20

25

30

Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

Die erfindungsgemäß eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietem beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht läßt sich während der Anzucht durch Zugabe von basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummitte,I wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z. B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere L-Methionin enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

10

15

20

25

30

35

Vorteilhaft ist außerdem auch, wenn die Fermentation zumindest am Ende, insbesondere jedoch über mindestens 30% der Fermentationsdauer zuckerlimitiert gefahren wird. Das heißt, dass während dieser Zeit die Konzentration an verwertbarem Zucker im Fermentationsmedium auf ≥ 0 bis 3 g/l gehalten, beziehungsweise abgesenkt wird.

Die Fermentationsbrühe wird anschließend weiterverarbeitet. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden.

Anschließend kann die Fermentationsbrühe mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann anschließend durch Gefriertrocknung, Sprühtrocknung, Sprühtrocknung, Sprühtrocknung, und seine Verfahren aufgearbeitet werden.

Es ist aber auch möglich die schwefelhaltigen Feinchemikalien, insbesonder L-Methionin, weiter aufzureinigen. Hierzu wird die produkthaltige Brühe nach dem Abtrennen der Biomasse einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Produkt oder die Verunreinigungen ganz oder teilweise auf dem Chromatographieharz zurückgehalten werden. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl der geeigneten Chromatographieharze und ihrer wirksamsten Anwendung bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.

Die Identität und Reinheit der isolierten Verbindung(en) kann durch Techniken des Standes der Technik bestimmt werden. Diese umfassen Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, NIRS, Enzymtest oder mikrobiologische Tests. Diese Analyseverfahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry

mistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.

Die Erfindung wird nun anhand der folgenden nicht-limitierenden Beispiele und unter Bezugnahme auf beiliegende Figuren näher beschrieben. Dabei zeigt

5

Figur 1 die Plasmidkarte zu Plasmid pClysC;

Figur 2 die Plasmidkarte zu Plasmid pClSlysCthr311ile;

Figur 3 die Plasmidkarte zu Plasmid pC_metA_Cd.

Restriktionsschnittstellen mit der entsprechenden Positionsangabe in Klammern sind in den Plasmidkarten angegeben. Wesentliche Sequenzabschnitte sind fettgedruckt beschrieben. KanR steht für Kanamycin-Restistenzgen; ask steht für Aspartatkinasegen.

Beispiel 1: Konstruktion von pCLiK5MCS

15

Zunächst wurden Ampicillinresistenz und Replikationsursprung des Vektors pBR322 mit den Oligonukleotiden p1.3 (SEQ ID NO:47) und p2.3 (SEQ ID NO:48) mit Hilfe der Polymerase-Kettenreaktion (PCR) amplifiziert.

20

p1.3 (SEQ ID NO:47)

5'-CCCGGGATCCGCTAGCGGCGCCGGCCGGCCCGGTGTGAAATACCGCACAG-3'

p2.3 (SEQ ID NO:48)

5'-TCTAGACTCGAGCGGCCGGCCGGCCTTTAAATTGAAGACGAAAGGGCCTCG-3'

25

30

35

Neben den zu pBR322 komplementären Sequenzen, enthält das Oligonukleotid p1.3 (SEQ ID NO:47) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Smal, BamHI, Nhel und AscI und das Oligonukleotid p2.3 (SEQ ID NO:48) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Xbal, Xhol, NotI und Dral. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 2,1 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Die stumpfen Enden des DNA-Fragmentes wurden mit dem Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers miteinander ligiert und der Ligationsan-

satz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Ampicillin (50µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

5

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK1.

10

15

Ausgehend vom Plasmid pWLT1 (Liebl et al., 1992) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden neo1 (SEQ ID NO:49) und neo2 (SEQ ID NO:50) eine Kanamycin-Resistenzcassette amplifiziert.

neo1 (SEQ ID NO:49):

5'-GAGATCTAGACCCGGGGATCCGCTAGCGGGCTGCTAAAGGAAGCGGA-3'

neo2 (SEQ ID NO:50):

5'-GAGAGGCGCCGCTAGCGTGGGCGAAGAACTCCAGCA-3'

25

30

35

20

Neben den zu pWLT1 komplementären Sequenzen, enthält das Oligonukleotid neo1 in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Xbal, Smal, BamHl, Nhel und das Oligonukleotid neo2 (SEQ ID NO:50) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Ascl und Nhel. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 1,3 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit den Restriktionsendonukleasen Xbal und Ascl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran emeut mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Der Vektor pCLiK1 wurde ebenfalls mit den Restriktionsendonukleasen Xbal und Ascl geschnitten und mit alkalischer Phosphatase (Roche Diagnostics, Mannheim) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 2,1kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit

dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Ampicillin (50µg/ml) und Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK2.

15

20

10

5

Der Vektor pCLiK2 wurde mit der Restriktionsendonuklease Dral (New England Biolabs, Beverly, USA) geschnitten. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde ein ca. 2,3 kb großes Vektorfragment mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers religiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben (1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20μg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK3.

25

Ausgehend vom Plasmid pWLQ2 (Liebl et al., 1992) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden cg1 ((SEQ ID NO:51) und cg2 (SEQ ID NO:52) der Replikationsursprung pHM1519 amplifiziert.

30

cg1 (SEQ ID NO:51):

5'-GAGAGGGCGGCCGCGCAAAGTCCCGCTTCGTGAA-3'

cg2 (SEQ ID NO:52):

5'-GAGAGGGCGGCCGCTCAAGTCGGTCAAGCCACGC-3'

35

Neben den zu pWLQ2 komplementären Sequenzen, enthalten die Oligonukleotide cg1 (SEQ ID

NO:51) und cg2 (SEQ ID NO:52) Schnittstellen für die Restriktionsendonuklease Notl. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 2,7 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit der Restriktionsendonuklease Notl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Der Vektor pCLiK3 wurde ebenfalls mit der Restriktionsendonuklease Notl geschnitten und mit alkalischer Phosphatase (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 2,3kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

20

15

5

10

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5.

25

30

35

Für die Erweiterung von pCLik5 um eine "multiple cloning site" (MCS) wurden die beide synthetischen, weitestgehend komplementären Oligonukleotide HS445 ((SEQ ID NO:53) und HS446 (SEQ ID NO:54), die Schnittstellen für die Restriktionsendonukleasen Swal, Xhol, Aatl, Apal, Asp718, Miul, Ndel, Spel, EcoRV, Sall, Clal, BamHI, Xbal und Smal enthalten, durch gemeinsames erhitzen auf 95°C und langsames abkühlen zu einem doppelsträngigen DNA-Fragment vereinigt.

HS445 (SEQ ID NO:53):

HS446 (SEQ ID NO:54):

TGTCGACGATATCCCTAGGTCCGAACTAGTCATATGACGCGTGGTACCGGGCCCGACGTC AGGCCTCTCGAGATTTAAAT-3'

5

10

Der Vektor pCLiK5 wurde mit den Restriktionsendonuklease Xhol und BamHI (New England Biolabs, Beverly, USA) geschnitten und mit alkalischer Phosphatase (I (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 5,0 kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem synthetischen Doppelsträngigen DNA-Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

20

15

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5MCS.

Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

Das entstandene Plasmid pCLiK5MCS ist als SEQ ID NO: 57 aufgeführt.

Beispiel 2: Konstruktion von pCLiK5MCS integrativ sacB

30

25

Ausgehend vom Plasmid pK19mob (Schäfer et al., Gene 145,69-73(1994)) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden BK1732 und BK1733 das Bacillus subtilis sacB Gen (kodierend für Levan Sucrase) amplifiziert.

35

BK1732 (SEQ ID NO:55): 5'-GAGAGCGGCCGCCGATCCTTTTTAACCCATCAC-3'

10

15

20

25

30

35

BK1733 (SEQ ID NO:56): 5'-AGGAGCGCCGCCATCGGCATTTTCTTTTGCG-3'

Neben den zu pEK19mobsac komplementären Sequenzen, enthalten die Oligonukleotide BK1732 und BK1733 Schnittstellen für die Restriktionsendonuklease Notl. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 1,9 kb wurde mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit der Restriktionsendonuklease Notl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

Der Vektor pCLiK5MCS (hergestellt gemäß Beispiel 1) wurde ebenfalls mit der Restriktionsendonuklease Notl geschnitten und mit alkalischer Phosphatase (I (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde ein ungefähr 2,4 kb großes Vektorfragment mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5MCS integrativ sacB.

Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

Das entstandene Plasmid pCLiK5MCS integrativ sacB ist als SEQ ID NO: 58 aufgeführt.

15

20

25

30

35

Weitere Vektoren die zur erfindungsgemäßen Expression oder Überproduktion von metA-Genen geeignet sind, können in analoger Weise herstellt werden.

5 Beispiel 3: Isolierung des lysC Gens aus dem C. glutamicum Stamm LU1479

Im ersten Schritt der Stammkonstruktion soll ein allelischer Austausch des IysC Wildtypgens, kodierend für das Enzym Aspartatkinase, in C. glutamicum ATCC13032, im folgenden LU1479 genannt, durchgeführt werden. Dabei soll im LysC Gen ein Nukleotidaustausch durchgeführt werden, so dass im resultierenden Protein die Aminosäure Thr an der Position 311 durch die Aminosäure Ile ausgetauscht ist.

Ausgehend von der chromosomalen DNA aus LU1479 als Template für eine PCR Reaktion wurde mit den Oligonukleotidprimern SEQ ID NO:59 und SEQ ID NO:60 lysC mit Hilfe des Pfu-Turbo PCR Systems (Stratagene USA) nach Angaben des Herstellers amplifiziert. Chromosomale DNA aus C. glutamicum ATCC 13032 wurde nach Tauch et al. (1995) Plasmid 33:168-179 oder Eikmanns et al. (1994) Microbiology 140:1817-1828 präpariert. Das amplifizierte Fragment wird an seinem 5'-Ende von einem Sall Restriktionsschnitt und an seinem 3'-Ende von einem Mlul Restriktionsschnitt flankiert. Vor der Klonierung wurde das amplifizierte Fragment durch diese beiden Restriktionsenzyme verdaut und mit GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) aufgereinigt.

SEQ ID NO:59
5'-GAGAGAGAGACGCGTCCCAGTGGCTGAGACGCATC -3'

SEQ ID NO:60 5'-CTCTCTGTCGACGAATTCAATCTTACGGCCTG-3'

Das erhaltenen Polynukleotid wurde über die Sall und Mlul Restriktionsschnitte in pCLIK5 MCS integrativ SacB (im folgenden pCIS genannt; SEQ ID NO: 58 aus Beispiel 2) kloniert und in E.coli XL-1 blue transformiert. Eine Selektion auf Plasmid-tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml)-haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht. Das Plasmid wurden isoliert und durch Sequenzierung die erwartete Nukleotidsequenz bestätigt. Die Präparation der Plasmid-DNA wurde nach Methoden und mit Materialien der Firma Quiagen durchgeführt. Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzier-

reaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet. Das erhaltene Plasmid pCIS lysC ist als SEQ ID NO:61 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 1 dargestellt.

5 Die Sequenz SEQ ID NO:61 umfasst die folgenden wesentlichen Teilbereiche:

LOCUS pCIS\lysC 5860 bp DNA circular FEATURES Location/Qualifiers

CDS¹⁾ 155..1420

/vntifkey="4"

10 /label=lysC

CDS complement²⁾(3935..5356)

/vntifkey="4"

/label=sacB\(Bacillus\subtilis)

promoter complement(5357..5819)

15 /vntifkey="30"

/label=Promotor\sacB

C_region complement(3913..3934)

/vntifkey="2"

/label=sacB\downstreambereich

20 CDS 1974..2765

/vntifkey="4"

/label=Kan\R

CDS complement(3032..3892)

/vntifkey="4"

25 /label=Ori\-EC\(pMB)

Beispiel 4: Mutagenese des lysC Gens aus C. glutamicum

Die gerichtete Mutagenese des lysC Gens aus C. glutamicum (Beispiel 3) wurde mit dem QuickChange Kit (Fa. Stratagene/USA) nach Angaben des Herstellers durchgeführt. Die Mutagenese wurde im Plasmid pCIS lysC, SEQ ID NO:61 durchgeführt. Für den Austausch von thr311 nach 311ile mit Hilfe der Quickchange Methode (Stratagene) wurden folgende Oligonukleotidprimer synthetisiert

35

SEQ ID NO:62

5'-CGGCACCACCGACATCATCTTCACCTGCCCTCGTTCCG -3'

¹⁾ kodierende Sequenz

²⁾ auf Komplementärstrang

SEQ ID NO:63

5'-CGGAACGAGGCAGGTGAAGATGATGTCGGTGGTGCCG --3'

Der Einsatz dieser Oligonukleotidprimer in der Quickchange Reaktion führt in dem lysC Gen zu einem Austausch des Nukleotids in Position 932 (von C nach T) (vgl. SEQ ID NO:64) und im korrespondierenden Enzym zu einem Aminosäuresubstitution in Position 311 (Thr→Ile) (vgl. SEQ ID NO:65). Der resultierende Aminosäureaustausch Thr311Ile im lysC Gen wurde nach Transformation in E.coli XL1-blue und Plasmidpräparation durch Sequenzierung bestätigt. Das Plasmid erhielt die Bezeichnung pCIS lysC thr311ile und ist als SEQ ID NO:66 aufgeführt. Die entsprechende Plasmidkarte ist in Figür 2 dargestellt.

Die Sequenz SEQ ID NO:66 umfasst die folgenden wesentlichen Teilbereiche:

15

LOCUS pCIS\lysC\thr311ile 5860 bp DNA circular **FEATURES** Location/Qualifiers CDS¹⁾ 155..1420 /vntifkey="4" 20 /label=lysC complement²⁾(3935..5356) **CDS** /vntifkey="4" /label=sacB\(Bacillus\subtilis) promoter complement(5357..5819) 25 /vntifkey="30" /label=Promotor\sacB C_region complement(3913..3934) /vntifkey="2" /label=sacB\downstreambereich 30 CDS 1974..2765 /vntifkey="4" /label=Kan\R complement(3032..3892) CDS /vntifkey="4" 35 /label=Ori\-EC\(pMB)

¹⁾ kodierende Sequenz

²⁾ auf Komplementärstrang

10

15

20

25

Das Plasmid pCIS lysC thr311ile wurde in C. glutamicum LU1479 mittels Elektroporation wie bei Liebl, et al. (1989) FEMS Microbiology Letters 53:299-303 beschrieben, transformiert. Modifikationen des Protokolls sind in DE-A-10046870 beschrieben. Die chromosomale Anordnung des lysC-Lokus einzelner Transformanten wurde mit Standardmethoden durch Southernblot und Hybridisierung, wie in Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben, überprüft. Dadurch wurde sichergestellt, dass es sich bei den Transformanten um solche handelt, die das transformierte Plasmid durch homologe Rekombination am lysC-Lokus integriert haben. Nach Wachstum solcher Kolonien über Nacht in Medien, die kein Antibiotikum enthielten, wurden die Zellen auf ein Saccharose-CM-Agarmedium (10% Saccharose) ausplattiert und bei 30°C für 24 Stunden inkubiert.

35

Da das im Vektor pClS lysC thr311ile enthaltende sacB Gen Saccharose in ein toxisches Produkt umwandelt, können nur solche Kolonien anwachsen, die das sacB Gen durch einen zweiten homologen Rekombinationsschritt zwischen dem Wildtyp lysC Gen und dem mutierten Gen lysC thr311ile deletiert haben. Während der homologen Rekombination kann entweder das Wildtyp Gen oder das mutierte Gen zusammen mit dem sacB Gen deletiert werden. Wenn das sacB Gen zusammen mit dem Wildtyp Gen entfernt wird, resultiert eine mutierte Transformante.

Anwachsende Kolonien wurden gepickt, und auf eine Kanamycin-sensitiven Phänotyp hin untersucht. Klone mit deletiertem SacB Gen müssen gleichzeitg Kanamycin-sensitives Wachstumsverhalten zeigen. Solche Kan-sensitiven Klone wurde im einem Schüttelkolben auf ihre Lysin-Produktivität hin untersucht (siehe Beispiel 6). Zum Vergleich wurde der nichtbehandelte Stamm LU1479 angezogen. Klone mit einer gegenüber der Kontrolle erhöhten Lysin-Produktion wurden selektiert, chromosomale DNA wurde gewonnen und der entsprechende Bereich des lysC Gens wurde durch eine PCR-Reaktion amplifiziert und sequenziert. Ein solcher Klon mit der Eigenschaft erhöhter Lysin-Synthese und nachgewiesener Mutation in lysC an der Stelle 932 wurde mit LU1479 lysC 311ile bezeichnet).

Beispiel 5: Herstellung Ethionin-resistenter C. glutamicum Stämme

30 Im zweiten Schritt der Stammkonstruktion wurde der erhaltene Stamm LU1479 lysC 311ile (Beispiel 4) behandelt, um eine Ethionin-Resistenz (Kase, H. Nakayama K.Agr. Biol. Chem. 39 153-106 1975 L-methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum) zu induzieren: Eine Übernachtkultur in BHI-Medium (Difco) wurde in Citratpuffer (50mM pH 5,5) gewaschen und bei 30°C für 20 min mit N-Methyl-nitrosoguanidin (10mg/ml in 50mM Citrat pH5,5) behandelt. Nach der Behandlung mit dem chemischen Mutagen N-Methyl-

nitrosoguanidin wurden die Zellen gewaschen (Citratpuffer 50mM pH 5,5) und auf ein Medium plattiert, das aus folgenden Komponenten, berechnet auf 500ml, zusammengesetzt war: 10g (NH₄)₂SO₄, 0.5g KH₂PO₄, 0.5g K₂HPO₄, 0.125g MgSO₄·7H₂O, 21g MOPS, 50mg CaCl₂, 15mg Proteokatechuat, 0,5mg Biotin, 1mg Thiamin, 5g/l D,L-Ethionin (Sigma Chemicals Deutschland), pH 7,0. Außerdem enthielt das Medium 0.5ml einer Spurensalzlösung aus: 10g/l FeSO₄·7H₂O, 1g/l MnSO₄*H₂O, 0.1g/l ZnSO₄*7H₂O, 0.02g/l CuSO₄, 0.002g/l NiCl₂*6H₂O, Alle Salze wurden in 0,1M HCl gelöst. Das fertig zusammengestellte Medium wurde sterilfiltriert und nach Zugabe von 40ml steriler 50% Glucoselösung, mit flüssigem sterilem Agar in einer Endkonzentration von 1,5% Agar versetzt und in Kulturschalen ausgegossen.

10

5

Auf Platten mit dem beschriebenen Medium wurden mutagenisierte Zellen aufgebracht und 3-7 Tage bei 30°C inkubiert. Erhaltene Klone wurden isoliert, mindestens einmal auf dem Selektionsmedium vereinzelt und dann auf ihre Methionin-Produktivität in einem Schüttelkolben in Medium II untersucht (siehe Beispiel 6

15

Beispiel 6: Herstellung von Methionin mit dem Stamm LU1479 lysC 311ile ET-16.

Die in Beispiel 5 hergestellten Stämme wurden auf einer Agar-Platte mit CM-Medium für 2 Tag bei 30°C angezogen.

20 CM-Agar:

10,0 g/l D-Glucose, 2,5 g/l NaCl, 2,0 g/l Harnstoff, 10,0 g/l Bacto Pepton (Difco), 5,0 g/l Yeast Extract (Difco), 5,0 g/l Beef Extract (Difco), 22,0 g/l Agar (Difco), autoklaviert (20 min., 121°C)

Anschließend wurden die Zellen von der Platte abgekratzt und in Saline resuspendiert. Für die Hauptkultur wurden 10 ml Medium II und 0,5 g autoklaviertes CaCO₃ (Riedel de Haen) in einem 100 ml Erlenmeyerkolben mit der Zellsuspension bis zu einer OD600nm von 1,5 beimpft und für 72h auf einem Orbitalschüttler mit 200 Upm bei 30°C inkubiert.

30 Medium II:

40g/l	Saccharose
60g/l	Melasse (auf 100% Zuckergehalt berechnet)
10g/l	(NH ₄)₂SO ₄
0.4g/l	MgSO ₄ *7H ₂ O
0.6g/l	KH₂PO₄

0.3mg/l

Thiamin*HCI

1mg/l

Biotin (aus einer 1 mg/ml steril filtrierten Stammlösung die mit NH₄OH auf pH

8,0 eingestellt wurde)

2mg/l

FeSO₄

5 2mg/l

15

25

MnSO₄

mit NH₄OH auf pH 7,8 eingestellt, autoklaviert (121°C, 20 min). Zusätzlich wird Vitamin B12 (Hydroxycobalamin Sigma Chemicals) aus einer Stammlösung (200 μg/ml, steril filtriert) bis zu einer Endkonzentration von 100 μg/l zugegeben

10 Gebildetes Methionin, sowie andere Aminosäuren in der Kulturbrühe wurde mit Hilfe der Aminosäuresäure-Bestimmungsmethode von Agilent auf einer Agilent 1100 Series LC System HPLC. Eine Derivatisierung vor der Säulentrennung mit Ortho-Phthalaldehyd erlaubte die Quantifizierung der gebildeten Aminosäuren. Die Auftrennung des Aminosäuregemisch fand auf einer Hypersil AA-Säule (Agilent) statt.

Solche Klone wurden isoliert, deren Methionin-Produktivität mindestens doppelt so hoch war, wie die des Ausgangsstamm LU1479 lysC 311ile. Ein solcher Klon wurde für die weiteren Versuche eingesetzt und bekam die Bezeichnung LU1479 lysC 311ile ET-16.

20 Beispiel 7: Klonierung von metA aus Corynebacterium diphtheriae und Klonierung in das Plasmid pC metA_Cd

Chromosomale DNA von *Corynebacterium diphtheriae* wurde von der American Type Strain Culture Collection (ATCC, Atlanta-USA) mit der Bestellnummer 700971D aus dem Stamm ATCC 700971 bezogen.

Mit den Oligonukleotidprimer SEQ ID NO: 67 und SEQ ID NO:68, der chromosomalen DNA aus C. diphtheriae als Template und Pfu Turbo Polymerase (Fa. Stratagene) wurde mit Hilfe der Polymerase-Kettenreaktion (PCR) nach Standardmethoden wie Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press ein DNA Fragment von ca. 1,4 kb amplifiziert, welches das metA Gen inklusive eines nichtkodierenden 5'-Bereiches (Promotorregion) enthält. Das amplifizierte Fragment ist an seinem 5'-Ende von einer Xhol-Restriktionsschnittstelle und am 3'-Ende von einer Ndel-Restriktionsschnittstelle flankiert, welche über die Oligonukleotidprimer eingeführt wurden.

5'-GAGACTCGAGGTTGGCTGGTCATCATAGG -3' und SEQ ID NO:68

5'-GAAGAGAGCATATGTCAGCGCTCTAGTTTGGTTC -3'

5

10

15

20

35

Das erhaltene DNA Fragment wurde mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Im Anschluß daran wurde es mit den Restriktionsenzymen Xhol und Ndel (Roche Diagnostics, Mannheim) gespalten und gelelektrophoretisch aufgetrennt. Anschließend wurde das ca. 1,4 kb große DNA Fragment mit GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) aus der Agarose aufgereinigt.

Der Vektor pClik5MCS SEQ ID NO: 57, im folgenden pC genannt, wurde mit den Restriktionsenzymen Xhol und Ndel (Roche Diagnostics, Mannheim) geschnitten und ein ca. 5 kb großes Fragment nach elektrophoretischer Auftrennung mit GFX™PCR, DNA and Gel Band Purification Kit isoliert.

Das Vektorfragment wurde zusammen mit dem PCR-Fragment mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

- Die Präparation der Plasmid DNA wurde nach Methoden und mit Materialien der Fa. Quiagen durchgeführt. Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.
- Das entstandene Plasmid pC metA_Cd (Corynebacterium diphtheriae) ist als SEQ ID NO:69 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 3 dargestellt.

LOCUS pC_metA_Cd 6472 bp DNA circular FEATURES Location/Qualifiers CDS 313..1416

/vntifkey="4"

		/label=metA\Corynebacterium\diphtheriae
	CDS	18382629
		/vntifkey="4"
		/label=Kan\R
5	CDS	49106031
		/vntifkey="4"
		/label=Rep\Protein
	CDS	39024576
		/vntifkey="4"
10		/label=ORF\1
	CDS	complement(28963756)
		/vntifkey="4"
		/label=Ori\-EC\(pMB)

15 Beispiel 8: Transformation des Stammes LU1479 lysC 311ile ET-16 mit dem Plasmid pC metA_Cd

Der Stamm LU1479 lysC 311ile ET-16 wurde mit dem Plasmid pC metA_Cd nach der beschriebenen Methode (Liebl, et al. (1989) FEMS Microbiology Letters 53:299-303) transformiert. Die Transformationsmischung wurde auf CM-Platten plattiert, die zusätzlich 20mg/l Kanamycin enthielten, um eine Selektion auf Plasmid-haltige Zellen zu erreichen. Erhaltene Kan-resistente Klone wurden gepickt und vereinzelt. Die Methionin-Produktivität der Klone wurde in einem Schüttelkolbenversuch (s. Beispiel 6) untersucht. Der Stamm LU1479 lysC 311ile ET-16 pC metA_Cd produzierte im Vergleich zu LU1479 lysC 311ile ET-16 signifikant mehr Methionin.

<u>Patentansprüche</u>

10

- Verfahren zur fermentativen Herstellung wenigstens einer schwefelhaltigen
 Feinchemikalie, welches folgende Schritte umfasst:
 - a) Fermentation einer die gewünschte schwefelhaltige Feinchemikalie produzierenden coryneformen Bakterienkultur, wobei in den coryneformen Bakterien zumindest eine heterologe Nukleotidsequenz exprimiert wird, welche für ein Protein mit Homoserin-O-Acetyl-Transferase (metA)—Aktivität kodiert;
 - b) Anreicherung der schwefelhaltigen Feinchemikalie im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der schwefelhaltigen Feinchemikalie.
- 15 2. Verfahren nach Anspruch 1, wobei die schwefelhaltige Feinchemikalie L-Methionin umfasst.
 - 3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die heterologe metAkodierende Nukleotidsequenz zur metA-kodierenden Sequenz aus Corynebacterium glutamicum ATCC 13032 eine Sequenzhomologie vom weniger als 100% aufweist.
 - 4. Verfahren nach Anspruch 3, wobei die metA-kodierende Sequenz aus einem der folgenden Organismen abgeleitet ist:

Corynebacterium diphteriae	ATCC 14779
Mycobacterium leprae	ATCC 43910
Mycobacterium tuberculosis CDC1551	ATCC 25584
Chlorobium tepidum	ATCC 49652
Pseudomonas aeruginosa	ATCC 17933
Caulobacter crescentus	ATCC 19089
Neisseria gonorrhoeae	ATCC 53420
Neisseria meningitidis	ATCC 53414
Pseudomonas fluorescens	ATCC 13525
Burkholderia cepacia	ATCC 25416
Nitrosomonas europaea	ATCC 19718
Haemophilus influenzae	ATCC 51907
Halobacterium sp NRC1	ATCC 33170
Thermus thermophilus	ATCC 27634
Deinococcus radiodurans	ATCC 13939
Saccharomyces cerevisiae	ATCC 10751
Schizosaccharomyces pombe	ATCC 24969
Xylella fastidiosa	ATCC 35881
Emericella nidulans	ATCC 36104
Mesorhizobium loti	ATCC 35173
Acremonium crysogenum	ATCC 11550

WO 2004/024932

5

20

Pseudomonas putida	A100 47054
Staphylococcus aureus	ATCC 35556

- 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die metA-kodierende Sequenz eine kodierende Sequenz gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, und 45 oder eine dazu homologe Nukleotidsequenz, welche für ein Protein mit metA-Aktivität kodiert, umfasst.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die metA-kodierende Sequenz für ein Protein mit metA-Aktivität kodiert, wobei das Protein eine Aminosäuresequenz gemäß SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44,und 46 oder eine dazu homologe Aminosäuresequenz, welche für ein Protein mit metA-Aktivität steht, umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die kodierende metA Sequenz eine in coryneformen Bakterien replizierbare oder eine stabil in das Chromosom intregrierte DNA oder eine RNA ist.
 - 8. Verfahren gemäß Anspruch 7, wobei man
 - a) einen mit einem Plasmidvektor transformierten Bakterienstamm einsetzt der wenigstens eine Kopie der kodierenden metA-Sequenz unter der Kontrolle regulativer Sequenzen trägt, oder
 - einen Stamm einsetzt, in dem die kodierende metA-Sequenz in das Chromosom des Bakteriums integriert wurde
 - 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die kodierende metA-Sequenz überexprimiert wird.
- 10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man Bakterien fermentiert, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie verstärkt ist oder derart mutiert ist, dass es durch Stoffwechselmetabolite nicht in seiner Aktivität beeinflusst wird.

30

35

- 11. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man Bakterien fermentiert, in denen wenigstens ein Stoffwechselweg zumindest teilweise ausgeschaltet ist, der die Bildung der gewünschten schwefelhaltigen Feinchemikalie verringert.
- 5 12. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - a) dem für eine Aspartatkinase kodierenden Gen lysC,
 - b) dem für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierenden Gen gap,
- 10 c) dem für die 3-Phosphoglycerat Kinase kodierenden Gen pgk.
 - d) dem für die Pyruvat Carboxylase kodierenden Gen pyc.
 - e) dem für die Triosephosphat Isomerase kodierenden Gen tpi,
 - f) dem für die Methylentetrahydrofolat Reduktase kodierenden Gen metF,
 - g) dem für die Cystahionin-gamma-Synthase kodierenden Gen metB,
- 15 h) dem für die Cystahionin-gamma-Lyase kodierenden Gen metC,
 - i) dem für die Serin-Hydroxymethyltransferase kodierenden Gen glyA,
 - j) dem für die O-Acetylhomoserin-Sulfhydrylase kodierenden Gen metY,
 - k) dem für die Vitamin B12 abhängige Methionin-Synthase kodierenden Gen metH,
 - l) dem für die Phosphoserin-Aminotransferase kodierenden gen serC,
 - m) dem serB Gen, das f
 ür die Phosphoserin-Phosphatase kodiert.
 - n) dem cysE Gen, das für die Serine Acetyl-Transferase kodiert, und
 - o) dem hom Gen, das eine Homoserin-Dehydrogenase kodjert.

überexprimiert oder so mutiert ist, dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch Stoffwechselmetabolite in ihrer Aktivität beeinflusst werden.

- 13. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man coryneformen Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - a) dem für die Homoserine-Kinase kodierenden Gen thrB,
 - b) dem für die Threonin Dehydratase kodierenden Gen ilvA,
 - c) dem für die Threonin Synthase kodierenden Gen thrC
 - d) dem für die Meso-Diaminopimelat D-Dehydrogenase kodierenden Gen ddh
 - e) dem für die Phosphoenolpyruvat-Carboxykinase kodierenden Gen pck.
 - f) dem für die Glucose-6-Phosphat-6-Isomerase kodierenden Gen pgi.
 - g) dem für die Pyruvat-Oxidase kodierenden Gen poxB,
 - h) dem für die Dihydrodipicolinat Synthase kodiernden Gen dapA.

i) dem für die Dihydrodipicolinat Reduktase kodiernden Gen dapB; oder

- j) dem für die Diaminopicolinat Decarboxylase kodiernden Gen
- durch Veränderung der Expressionsrate oder durch Einführung einer gezielten Mutation abschwächt ist.
 - 14. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, wobei man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
- 10 15. Verfahren zur Herstellung eines L-Methionin haltigen Tierfuttermittel-Additivs aus Fermentationsbrühen, welches folgende Schritte umfasst
 - a) Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
 - b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe;
 - c) Entfernung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
 - d) Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.
- 20 16. Verfahren gemäß Anspruch 15, wobei man Mikroorganismen gemäß der Definition in einem der Ansprüche 1 bis 14 einsetzt.

This Page Blank (uspto)

Fig. 1

This Page Blank (uspto)

Fig. 2

This Page Blank (uspto)

Fig. 3

This Page Blank (uspto)

SEQUENZPROTOKOLL

<110> BASF Aktiengesellschaft														
<120> MetA														
<130> M/43127														
<140>														
<141>														
<160> 58														
<210> 1 <211> 1104 <212> DNA <213> Corynebacterium diphteriae														
<220> <221> CDS														
<222> (1)(1101) <223> RDI00386														
<400> 1														
atg ctc acc acc aca ggg acg ctc acg cac caa aaa atc gga gac ttt Met Leu Thr Thr Thr Gly Thr Leu Thr His Gln Lys Ile Gly Asp Phe 1 5 10 15	48													
tac acc gaa gcc gga gcg acg ctt cac gac gta acc atc gcc tac caa Tyr Thr Glu Ala Gly Ala Thr Leu His Asp Val Thr Ile Ala Tyr Gln 20 25 30	96													
gca tgg ggc cac tac acc ggc acc aat ctc atc gtt ctc gaa cat gcc Ala Trp Gly His Tyr Thr Gly Thr Asn Leu Ile Val Leu Glu His Ala 35 40 45	144													
ctg acc ggc gac tct aac gct att tca tgg tgg gac gga ctg att ggc Leu Thr Gly Asp Ser Asn Ala Ile Ser Trp Trp Asp Gly Leu Ile Gly 50 55 60	192													
cct ggc aaa gca ctc gac acc aac cgc tac tgc atc cta tgc acc aac Pro Gly Lys Ala Leu Asp Thr Asn Arg Tyr Cys Ile Leu Cys Thr Asn 65 70 75 80	240													
gtg ctc gga gga tgc aaa gga tcc acc gga ccg agc agt cca cac cca Val Leu Gly Gly Cys Lys Gly Ser Thr Gly Pro Ser Ser Pro His Pro 85 90 95	288													
gac gga aaa cca tgg gga tcc aga ttt cca gcc ctt tca atc cgt gac Asp Gly Lys Pro Trp Gly Ser Arg Phe Pro Ala Leu Ser Ile Arg Asp 100 105 110	336													
ctt gtc aat gcc gaa aaa caa ctt ttc gac cac ctc ggc atc aat aaa Leu Val Asn Ala Glu Lys Gln Leu Phe Asp His Leu Gly Ile Asn Lys 115 120 125	384													
att cac gca atc atc ggc gga tcc atg gga ggc gca cgc acc ctc gaa Ile His Ala Ile Ile Gly Gly Ser Met Gly Gly Ala Arg Thr Leu Glu 130 135 140	432													
tgg gct gca ctc cac cca cac atg atg acg act gga ttc gtc ata gca Trp Ala Ala Leu His Pro His Met Met Thr Thr Gly Phe Val Ile Ala	480													

145	150	1	155	160
gtc tca gca cgc Val Ser Ala Arg	gca agc gct t Ala Ser Ala T 165	gg caa atc g Trp Gln Ile G 170	gt att caa act go Sly Ile Gln Thr A I	ca caa 528 la Gln 75
	Glu Leu Asp P		ac ggc ggc gat to Asn Gly Gly Asp T 190	
agc ggt cac gca Ser Gly His Ala 195	Pro Trp Glu G	ga atc gcc g Bly Ile Ala A 100	cc gct cgc cgg at la Ala Arg Arg I 205	cc gcc 624 le Ala
			ac gaa cga ttc g sp Glu Arg Phe G 220	
		ro Leu Gly P	cc ttc cga gat co ro Phe Arg Asp Pi 35	
caa cgt ttt gcg Gln Arg Phe Ala	gtc acg agc to Val Thr Ser T 245	ac ctc caa c yr Leu Gln H 250	ac caa ggc atc as is Gln Gly Ile Ly 2!	aa ctc 768 7s Leu 55
gct caa cga ttc Ala Gln Arg Phe 260	gat gca ggt ag Asp Ala Gly So	gt tac gtc g er Tyr Val V 265	tg ctt acc gaa go al Leu Thr Glu A 270	cc ctc 816 la Leu
aat cgt cat gac Asn Arg His Asp 275	Ile Gly Arg G	gc cga ggc g ly Arg Gly G 80	ga ctc aac aaa go ly Leu Asn Lys A 285	cc ctc 864 la Leu
agc gca atc aca Ser Ala Ile Thr 290	gtc ccc atc at Val Pro Ile Me 295	tg att gct g et Ile Ala G	gc gtt gat acc ga ly Val Asp Thr As 300	at att 912 sp Ile
ctc tac ccc tat Leu Tyr Pro Tyr 305	cac cag caa ga His Gln Gln Gl 310	lu His Leu S	ca cga aat cta g er Arg Asn Leu G 15	gc aac 960 Ly Asn 320
cta ctc gct atg Leu Leu Ala Met	gca aaa atc ag Ala Lys Ile Se 325	gc tca cca g er Ser Pro V 330	ta ggc cac gac g al Gly His Asp A 3	et ttc 1008 la Phe 35
ctc aca gaa ttc Leu Thr Glu Phe 340	cga caa atg ga Arg Gln Met Gl	ag cga atc c lu Arg Ile L 345	ta aga cat ttc a eu Arg His Phe M 350	tg gag 1056 et Glu
		er Phe Arg T	cc aaa cta gag c hr Lys Leu Glu A 365	
tga				1104

<210> 2

<211> 367

<212> PRT

<213> Corynebacterium diphteriae

PCT/EP2003/009452

WO 2004/024932 3/92 Met Leu Thr Thr Thr Gly Thr Leu Thr His Gln Lys Ile Gly Asp Phe Tyr Thr Glu Ala Gly Ala Thr Leu His Asp Val Thr Ile Ala Tyr Gln Ala Trp Gly His Tyr Thr Gly Thr Asn Leu Ile Val Leu Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ile Ser Trp Trp Asp Gly Leu Ile Gly 55 Pro Gly Lys Ala Leu Asp Thr Asn Arg Tyr Cys Ile Leu Cys Thr Asn Val Leu Gly Gly Cys Lys Gly Ser Thr Gly Pro Ser Ser Pro His Pro 105

Asp Gly Lys Pro Trp Gly Ser Arg Phe Pro Ala Leu Ser Ile Arg Asp

Leu Val Asn Ala Glu Lys Gln Leu Phe Asp His Leu Gly Ile Asn Lys

Ile His Ala Ile Ile Gly Gly Ser Met Gly Gly Ala Arg Thr Leu Glu 130

Trp Ala Ala Leu His Pro His Met Met Thr Thr Gly Phe Val Ile Ala 155

Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Thr Ala Gln

Ile Ser Ala Ile Glu Leu Asp Pro His Trp Asn Gly Gly Asp Tyr Tyr 185

Ser Gly His Ala Pro Trp Glu Gly Ile Ala Ala Arg Arg Ile Ala

His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg Phe Gly Thr

Ser Ala Gln His Gly Glu Asn Pro Leu Gly Pro Phe Arg Asp Pro His 225

Gln Arg Phe Ala Val Thr Ser Tyr Leu Gln His Gln Gly Ile Lys Leu

Ala Gln Arg Phe Asp Ala Gly Ser Tyr Val Val Leu Thr Glu Ala Leu

Asn Arg His Asp Ile Gly Arg Gly Arg Gly Leu Asn Lys Ala Leu

Ser Ala Ile Thr Val Pro Ile Met Ile Ala Gly Val Asp Thr Asp Ile 290

Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn Leu Gly Asn 305

Leu Leu Ala Met Ala Lys Ile Ser Ser Pro Val Gly His Asp Ala Phe 330 325

<210> 3

480

Leu Thr Glu Phe Arg Gln Met Glu Arg Ile Leu Arg His Phe Met Glu 340 345 350

Leu Ser Glu Gly Ile Asp Asp Ser Phe Arg Thr Lys Leu Glu Arg
355 360 365

<211> 1149 <212> DNA <213> Mycobacterium leprae <220> <221> CDS <222> (1)..(1146) <223> RML02951 <220> <221> unsure <222> 224 .. 224 <223> All occurrences of n indicate any nucleotide atg aca atc tcc aag gtc cct acc cag aag ctg ccg gcc gaa ggc gag 48 Met Thr Ile Ser Lys Val Pro Thr Gln Lys Leu Pro Ala Glu Gly Glu 10 gtc ggc ttg gtc gac atc ggc tca ctt acc acc gaa agc ggt gcc gtc 96 Val Gly Leu Val Asp Ile Gly Ser Leu Thr Thr Glu Ser Gly Ala Val 20 atc gac gat gtc tgc atc gcc gtt cag cgc tgg ggg gaa ttg tcg ccc 144 Ile Asp Asp Val Cys Ile Ala Val Gln Arg Trp Gly Glu Leu Ser Pro acg cga gac aac gta gtg atg gta ctg cat gca ctc acc ggt gac tcg 192 Thr Arg Asp Asn Val Val Met Val Leu His Ala Leu Thr Gly Asp Ser 50 55 cac atc acc ggg ccc gcc gga ccg gga cat cnc aca ccc ggc tgg tgg 240 His Ile Thr Gly Pro Ala Gly Pro Gly His Xaa Thr Pro Gly Trp Trp .70 gac tgg ata gct gga ccg ggt gca cca atc gac acc aac cgc tgg tgc 288 Asp Trp Ile Ala Gly Pro Gly Ala Pro Ile Asp Thr Asn Arg Trp Cys gcg ata gcc acc aac gtg ctg ggc ggt tgc cgt ggc tcc acc ggc cct 336 Ala Ile Ala Thr Asn Val Leu Gly Gly Cys Arg Gly Ser Thr Gly Pro 100 agt tog ott goo ogo gao gga aag oot tgg ggt toa aga ttt oog otg 384 Ser Ser Leu Ala Arg Asp Gly Lys Pro Trp Gly Ser Arg Phe Pro Leu ata tet ata ege gae eag gta gag gea gat ate get gea etg gee gee 432 Ile Ser Ile Arg Asp Gln Val Glu Ala Asp Ile Ala Ala Leu Ala Ala 130 135

atg gga att aca aag gtt gcc gcc gtc gtt gga gga tct atg ggc ggg

Met Gly Ile Thr Lys Val Ala Ala Val Val Gly Gly Ser Met Gly Gly

145	150	155	160
gcg cgt gca ctg gaa Ala Arg Ala Leu Glu 165	Trp Ile Ile Gly	cac ccg gac caa g His Pro Asp Gln V 170	tc cgg gcc 528 al Arg Ala 175
ggg ctg ttg ctg gcg Gly Leu Leu Leu Ala 180	gtc ggt gtg cgc Val Gly Val Arg 185	Ala Thr Ala Asp G	ag atc ggc 576 ln Ile Gly 90
acc caa acc acc caa Thr Gln Thr Thr Gln 195	atc gca gcc atc Ile Ala Ala Ile 200	aag aca gac ccg a Lys Thr Asp Pro A 205	ac tgg caa 624 sn Trp Gln
ggc ggt gac tac tac Gly Gly Asp Tyr Tyr 210	gag aca ggg agg Glu Thr Gly Arg 215	gca cca gag aac g Ala Pro Glu Asn G 220	gc ttg aca 672 ly Leu Thr
att gcc cgc cgc ttc Ile Ala Arg Arg Phe 225	gcc cac ctg acc Ala His Leu Thr 230	tac cgc agc gag g Tyr Arg Ser Glu V 235	tc gag ctc 720 al Glu Leu 240
gac acc cgg ttt gcc Asp Thr Arg Phe Ala 245	Asn Asn Asn Gln	Gly Asn Glu Asp P 250	ro Ala Thr 255
ggc ggg cgt tac gca Gly Gly Arg Tyr Ala 260	Val Gln Ser Tyr 265	Leu Glu His Gln G 2	ly Asp Lys 70
cta ttg gcc cgc ttt Leu Leu Ala Arg Phe 275	Asp Ala Gly Ser 280	Tyr Val Val Leu T 285	hr Glu Thr
ctg aac agc cac gac	gtt ggc cgg ggc	cgc gga ggg atc g	gt aca gcg 912
Leu Asn Ser His Asp 290	295	300	
ctg cgc ggg tgc ccg Leu Arg Gly Cys Pro 305	gta ccg gtg gtg Val Pro Val Val 310	gtg ggt ggc att a Val Gly Gly Ile T 315	acc tcg gat 960 Thr Ser Asp 320
cgg ctc tac cca ctg Arg Leu Tyr Pro Leu 325	Arg Leu Gln Gln	gag ctg gcc gag a Glu Leu Ala Glu M 330	atg ctg ccg 1008 det Leu Pro 335
ggc tgc acc ggg ctg Gly Cys Thr Gly Leu 340	cag gtt gta gac Gln Val Val Asp 345	Ser Thr Tyr Gly F	eac gac ggc 1056 His Asp Gly 150
ttc ctg gtg gaa tcc Phe Leu Val Glu Ser 355	gag gcc gtc ggc Glu Ala Val Gly 360	aaa ttg atc cgt o Lys Leu Ile Arg (365	caa acc ctc 1104 Gln Thr Leu
gaa ttg gcc gac gtg Glu Leu Ala Asp Val 370	ggt tcc aag gaa Gly Ser Lys Glu 375	gac gcg tgt tcg (Asp Ala Cys Ser (380	caa 1146 Sln
tga			1149

<211> 382	<	2	1	1	>	3	82	2
-----------	---	---	---	---	---	---	----	---

<212> PRT

<213> Mycobacterium leprae

<220:

<221> unsure

<222> 75 .. 75

<223> All occurrences of Xaa indicate any amino acid

<400> 4

Met Thr Ile Ser Lys Val Pro Thr Gln Lys Leu Pro Ala Glu Glu Glu 1 5 10 15

Val Gly Leu Val Asp Ile Gly Ser Leu Thr Thr Glu Ser Gly Ala Val

Ile Asp Asp Val Cys Ile Ala Val Gln Arg Trp Gly Glu Leu Ser Pro
35 40 45

Thr Arg Asp Asn Val Val Met Val Leu His Ala Leu Thr Gly Asp Ser
50 55 60

His Ile Thr Gly Pro Ala Gly Pro Gly His Xaa Thr Pro Gly Trp Trp 65 70 75 80

Asp Trp Ile Ala Gly Pro Gly Ala Pro Ile Asp Thr Asn Arg Trp Cys
85 90 95

Ala Ile Ala Thr Asn Val Leu Gly Gly Cys Arg Gly Ser Thr Gly Pro 100 105 110

Ser Ser Leu Ala Arg Asp Gly Lys Pro Trp Gly Ser Arg Phe Pro Leu 115 120 125

Ile Ser Ile Arg Asp Gln Val Glu Ala Asp Ile Ala Ala Leu Ala Ala 130 135 140

Met Gly Ile Thr Lys Val Ala Ala Val Val Gly Gly Ser Met Gly Gly 145 150 155 160

Ala Arg Ala Leu Glu Trp Ile Ile Gly His Pro Asp Gln Val Arg Ala 165 170 175

Gly Leu Leu Ala Val Gly Val Arg Ala Thr Ala Asp Gln Ile Gly 180 185 190

Thr Gln Thr Thr Gln Ile Ala Ala Ile Lys Thr Asp Pro Asn Trp Gln
195 200 205

Gly Gly Asp Tyr Tyr Glu Thr Gly Arg Ala Pro Glu Asn Gly Leu Thr 210 215 220

Ile Ala Arg Arg Phe Ala His Leu Thr Tyr Arg Ser Glu Val Glu Leu 225 230 235 240

Asp Thr Arg Phe Ala Asn Asn Asn Gln Gly Asn Glu Asp Pro Ala Thr 245 250 255

Gly Gly Arg Tyr Ala Val Gln Ser Tyr Leu Glu His Gln Gly Asp Lys 260 265 270

Leu Leu Ala Arg Phe Asp Ala Gly Ser Tyr Val Val Leu Thr Glu Thr 275 280 285

WO 2004/024932 7/92

Leu Asn Ser His Asp Val Gly Arg Gly Arg Gly Gly Ile Gly Thr Ala Leu Arg Gly Cys Pro Val Pro Val Val Val Gly Gly Ile Thr Ser Asp Arg Leu Tyr Pro Leu Arg Leu Gln Gln Glu Leu Ala Glu Met Leu Pro 325 330 Gly Cys Thr Gly Leu Gln Val Val Asp Ser Thr Tyr Gly His Asp Gly Phe Leu Val Glu Ser Glu Ala Val Gly Lys Leu Ile Arg Gln Thr Leu Glu Leu Ala Asp Val Gly Ser Lys Glu Asp Ala Cys Ser Gln 370 <210> 5 <211> 1140 <212> DNA <213> Mycobacterium tuberculosis <220> <221> CDS <222> (1)..(1137) <223> RMTB03565 <400> 5 atg acg atc tee gat gta eee acc eag acg etg eec gee gaa gge gaa Met Thr Ile Ser Asp Val Pro Thr Gln Thr Leu Pro Ala Glu Gly Glu 1 atc ggc ctg ata gac gtc ggc tcg ctg caa ctg gaa agc ggg gcg gtg 96 Ile Gly Leu Ile Asp Val Gly Ser Leu Gln Leu Glu Ser Gly Ala Val 20 ate gae gat gte tgt ate gee gtg caa ege tgg gge aaa ttg teg eee 144 Ile Asp Asp Val Cys Ile Ala Val Gln Arg Trp Gly Lys Leu Ser Pro 35 gca cgg gac aac gtg gtg gtc ttg cac gcg ctc acc ggc gac tcg 192 Ala Arg Asp Asn Val Val Val Leu His Ala Leu Thr Gly Asp Ser 50 cac atc act gga ccc ggc cgc cac ccc acc ccc ggc tgg tgg His Ile Thr Gly Pro Ala Gly Pro Gly His Pro Thr Pro Gly Trp Trp 65 gac ggg gtg gcc ggg ccg agt gcg ccg att gac acc acc cgc tgg tgc 288 Asp Gly Val Ala Gly Pro Ser Ala Pro Ile Asp Thr Thr Arg Trp Cys 85 95 gcg gta gct acc aat gtg ctc ggc ggc tgc cgc ggc tcc acc ggg ccc Ala Val Ala Thr Asn Val Leu Gly Gly Cys Arg Gly Ser Thr Gly Pro 110 100 105 age teg ett gee ege gae gga aag eet tgg gge tea aga tit eeg etg - 384 Ser Ser Leu Ala Arg Asp Gly Lys Pro Trp Gly Ser Arg Phe Pro Leu

120

		Ile			cag Gln		Gln									432
					gtc Val 150	Ala										480
					tgg Trp											528
					gtc Val											576
					atc Ile											624
agc Ser	ggc Gly 210	gac Asp	tac Tyr	cac His	gag Glu	acg Thr 215	Gly 999	agg Arg	gca Ala	cca Pro	gac Asp 220	gcc Ala	GJA aaa	ctg Leu	cga Arg	672
					gcg Ala 230											720
					aac Asn											768
					gtg Val											816
ctg Leu	tta Leu	tcc Ser 275	cgg Arg	ttc Phe	gac Asp	gcc Ala	ggc Gly 280	agc Ser	tac Tyr	gtg Val	att Ile	ctc Leu 285	acc Thr	gag Glu	gcg Ala	864
ctc Leu	aac Asn 290	agc Ser	cac His	gac Asp	gtc Val	ggc Gly 295	cgc Arg	ggc Gly	cgc Arg	ggc Gly	300 Gly 333	gtc Val	tcc Ser	gcg Ala	gct Ala	912
ctg Leu 305	cgc Arg	gcc Ala	tgc Cys	ccg Pro	gtg Val 310	ccg Pro	gtg Val	gtg Val	gtg Val	ggc Gly 315	ggc Gly	atc Ile	acc Thr	tcc Ser	gac Asp 320	960
cgg Arg	ctc Leu	tac Tyr	ccg Pro	ctg Leu 325	cgc Arg	ctg Leu	cag Gln	cag Gln	gag Glu 330	ctg Leu	gcc Ala	gac Asp	ctg Leu	ctg Leu 335	ccg Pro	1008
ggc Gly	tgc Cys	Ala	999 Gly 340	ctg Leu	cga Arg	gtc Val	gtc Val	gag Glu 345	tcg Ser	gtc Val	tac Tyr	gga Gly	cac His 350	gac Asp	ggc	1056
ttc Phe	Leu	gtg Val 355	gaa Glu	acc Thr	gag Glu	gcc Ala	gtg Val 360	ggc Gly	gaa Glu	ttg Leu	atc Ile	cgc Arg 365	cag Gln	aca Thr	ctg Leu	1104

WO 2004/024932

9/92

gga ttg gct gat cgt gaa ggc gcg tgt cgg cgg tga Gly Leu Ala Asp Arg Glu Gly Ala Cys Arg Arg 370 375 1140

<210> 6 <211> 379 <212> PRT <213> Mycobacterium tuberculosis

Ile Gly Leu Ile Asp Val Gly Ser Leu Gln Leu Glu Ser Gly Ala Val 20 25 30

Ile Asp Asp Val Cys Ile Ala Val Gln Arg Trp Gly Lys Leu Ser Pro 35 40 45

Ala Arg Asp Asn Val Val Val Leu His Ala Leu Thr Gly Asp Ser 50 60

His Ile Thr Gly Pro Ala Gly Pro Gly His Pro Thr Pro Gly Trp Trp 65 70 75 80

Asp Gly Val Ala Gly Pro Ser Ala Pro Ile Asp Thr Thr Arg Trp Cys 85 90 95

Ala Val Ala Thr Asn Val Leu Gly Gly Cys Arg Gly Ser Thr Gly Pro 100 105 110

Ser Ser Leu Ala Arg Asp Gly Lys Pro Trp Gly Ser Arg Phe Pro Leu 115 120 125

Ile Ser Ile Arg Asp Gln Val Gln Ala Asp Val Ala Ala Leu Ala Ala 130 140

Leu Gly Ile Thr Glu Val Ala Ala Val Val Gly Gly Ser Met Gly Gly 145 150 155 160

Ala Arg Ala Leu Glu Trp Val Val Gly Tyr Pro Asp Arg Val Arg Ala 165 170 175

Gly Leu Leu Ala Val Gly Ala Arg Ala Thr Ala Asp Gln Ile Gly 180 185 190

Thr Gln Thr Thr Gln Ile Ala Ala Ile Lys Ala Asp Pro Asp Trp Gln
195 200 205

Ser Gly Asp Tyr His Glu Thr Gly Arg Ala Pro Asp Ala Gly Leu Arg 210 215 220

Leu Ala Arg Arg Phe Ala His Leu Thr Tyr Arg Gly Glu Ile Glu Leu 225 230 235 240

Asp Thr Arg Phe Ala Asn His Asn Gln Gly Asn Glu Asp Pro Thr Ala 245 250 255

Gly Gly Arg Tyr Ala Val Gln Ser Tyr Leu Glu His Gln Gly Asp Lys 260 265 270

Leu Leu Ser Arg Phe Asp Ala Gly Ser Tyr Val Ile Leu Thr Glu Ala

WO 2004/024932

115

10/92

285 275 280 Leu Asn Ser His Asp Val Gly Arg Gly Arg Gly Gly Val Ser Ala Ala 295 Leu Arg Ala Cys Pro Val Pro Val Val Val Gly Gly Ile Thr Ser Asp 315 320 310 Arg Leu Tyr Pro Leu Arg Leu Gln Gln Glu Leu Ala Asp Leu Leu Pro Gly Cys Ala Gly Leu Arg Val Val Glu Ser Val Tyr Gly His Asp Gly 345 340 Phe Leu Val Glu Thr Glu Ala Val Gly Glu Leu Ile Arg Gln Thr Leu Gly Leu Ala Asp Arg Glu Gly Ala Cys Arg Arg 375 <210> 7 <211> 972 <212> DNA <213> Chlorobium tepidum <220> <221> CDS <222> (1)..(969) <223> RCL01447 <400> 7 gtg agg gtc gct tac cgt acc tgg ggt acg cta aac gca gag aaa agc 48 Val Arg Val Ala Tyr Arg Thr Trp Gly Thr Leu Asn Ala Glu Lys Ser 5 aac gtg att ctg gtc tgc cac gcg ctg acc ggc aac gcc gac gcc gac 96 Asn Val Ile Leu Val Cys His Ala Leu Thr Gly Asn Ala Asp Ala Asp 20 age tgg tgg tge ggc atg tte ggt gag gga egg geg tte gae gag aet 144 Ser Trp Trp Cys Gly Met Phe Gly Glu Gly Arg Ala Phe Asp Glu Thr 35 cgg gac ttc atc gta tgc agc aac gtg ctt gga agc tgc tac gga acg 192 Arg Asp Phe Ile Val Cys Ser Asn Val Leu Gly Ser Cys Tyr Gly Thr 50 acc ggg ccg atg tcg gtg aat ccg ctg agt ggc agg cac tac ggt ccc 240 Thr Gly Pro Met Ser Val Asn Pro Leu Ser Gly Arg His Tyr Gly Pro 70 65 gat ttt ccg cgc att acc att cgc gac atg gtg aat gtt cag cga tta Asp Phe Pro Arg Ile Thr Ile Arg Asp Met Val Asn Val Gln Arg Leu 95 85 ttg ctt cgt tcg ctc ggc atc gac cgg atc cgg ctc atc gtt ggt gca 336 Leu Leu Arg Ser Leu Gly Ile Asp Arg Ile Arg Leu Ile Val Gly Ala 105 100 tcg ctt ggc ggg atg cag gtg ctc gaa tgg ggc gca atg tat ccc gaa Ser Leu Gly Gly Met Gln Val Leu Glu Trp Gly Ala Met Tyr Pro Glu

Att goc ggg gcg ctg atg ccg atg ggc gtg tt cg ggt cgt cat tcg gcg sqc																		
Try Cys Ile Ala Gin Ser Giu Ala Gin Arg Gin Ala Ile Ala Ala Asp 160 gcg gag tgg caa gat ggc tgg tat gat ccg gag gtg cag cac cac cac aaa Ala Giu Trp Gin Asp Gly Trp Tyr Asp 170 gga ctt gcc gcc gcc gcg atg atg atg gcg atg tgc atc cac cac cac aaa 175 gga ctt gcc gcc gcc gcg atg atg atg gcg atg tgc acc tac cgc tgc ttc 180 gag act ala Ala Ala Arg Met Met Ala Met Cys Thr Tyr Arg Cys Phe 180 gag act ac cac cac cac cac cac cac cac acg cac cac		atg Met	Ala	GJA aaa	gcg Ala	ctg Leu	atg Met	Pro	atg Met	ggc Gly	gtt Val	tcg Ser	Gly	cgt Arg	cat His	tcg Ser	gcg Ala	432
Ala Glu Trp Gln Asp Gly Trp Tyr Asp Pro Glu Val Gln Pro Arg Lys 175 gga ctt gcc gcc gcg gat gat gtgc att tect cac gcc tgc ttc Gly Leu Ala Ala Ala Arg Met Met Ala Met Cys Thr Tyr Arg Cys Phe 180 gag aac tac cag caa cgc ttt ggc cgc aag cag cag cgg gag gac ggc ttg Glu Asn Tyr Gln Gln Arg Phe Gly Arg Lys Gln Arg Glu Asp Gly Leu 205 ttc gaa gcc gaa agc tac gtg cgt cac cag ggc gac aag ctg gtt ggg Phe Glu Ala Glu Ser Tyr Val Arg His Gln Gly Asp Lys Leu Val Gly 220 cgc ttt gat gca aac acc tat atc acg ctc acc ag ggc gac aag ctg gtt ggg Phe Asp Ala Asn Thr Tyr Ile Thr Leu Thr Arg Ala Met Asp Met 225 cac gac ctc ggg cgc gga cgc gac tcc tac gaa gcg gcg ctc gga gac atg Arg Arg Asp Ser Tyr Glu Ala Ala Leu Gly Ala 245 ctg aag atg ccg gtc gag att ctc tcc atc gac gac gcg gtc ctc atc and ala Leu Gly Ala 225 ctg aag atg ccg gtc gag att ctc tcc atc gac gac gcg gtc ctc tat Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr 260 ccc agg cag gag cag gag gaa ctt ccc tcc atc gac tcc gac gac gtc ttat Leu Lys Met Pro Val Glu Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 280 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac gac gac gtc ttt ctt atc gac leu Pro Arg Gln Glu Glu Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 280 acc gag acc gtc agc gac gat gat gtc tat agc cac gad gac gtc ttt ctt atc gac leu Leu Phe Leu Asp Glu Pro Tyr Gly His Asp 300 gtt gac aat tga 972 gtt gac aat tga		Trp	tgc Cys	atc Ile	gcg Ala	cag Gln	Ser	gag Glu	gcg Ala	cag Gln	cgg Arg	Gln	gct Ala	atc Ile	gcc Ala	gcc Ala	Asp	480
Gly Leu Ala Ala Ala Arg Met Met Ala Met Cys Thr Tyr Arg Cys Phe 180 gag ac tac cag caa cgc ttt gcc aag cag cgc gag gag ggc ttg Glu Asn Tyr Gln Gln Arg Phe Gly Arg Lys Gln Arg Glu Asp Gly Leu 205 ttc gaa gcc gaa agc tac gtg cgt cac cag ggc gac aag ctg gtt ggg 672 Phe Glu Ala Glu Ser Tyr Val Arg His Gln Gly Asp Lys Leu Val Gly 210 cgc ttt gat gca aac acc tat atc acg ctc acc aga gcg atg gac atg Arg Phe Asp Ala Asn Thr Tyr Ile Thr Leu Thr Arg Ala Met Asp Met 240 cac gac ctc ggg cgc gga cgc gac tcc tac gaa gcg gcg ctc gga gcg Arg Gli Arg Arg Ala Asp Ser Tyr Glu Ala Ala Leu Gly Ala 255 ctg aag atg ccg gt gag att ctc tac atc gac tcg agc gtg ctc tat Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr 270 ccc agg cag gag cag gag gaa ctt gcc cgc ctc atc acc aga gcg gtg ctc tat Leu Lys Met Pro Val Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 270 ccc agg cag gag cag gag gaa ctt gcc cgc ctc atc cgc gcc ctc atc cgc acc acc acc acc acc acc aga gcg cgc ctc acc acc acc acc acc acc acc acc ac		gcg Ala	gag Glu	tgg Trp	caa Gln	Asp	ggc Gly	tgg Trp	tat Tyr	gat Asp	Pro	gag Glu	gtg Val	cag Gln	cca Pro	Arg	aaa Lys	528
Glu Asn Tyr Gln Gln Arg Phe Gly Arg Lys Gln Arg Glu Asp Gly Leu 200 ttc gaa gcc gaa agc tac gtg cgt cac cag ggc gac aag ctg gtt ggg 672 Phe Glu Ala Glu Ser Tyr Val Arg His Gln Gly Asp Lys Leu Val Gly 210 cgc ttt gat gca aac acc acc tat at acc acg ctc acc aga gcg atg gac atg gac atg Arg Phe Asp Ala Asn Thr 230 cac gac ctc ggg cgc gga cgc gac tcc tac tac acg ctc acc aga gcg atg gac atg 240 cac gac ctc ggg cgc gga cgc gac tcc tac tac acg ctc acc aga gcg acg ctc gga gcg His Asp Leu Gly Arg Gly Arg Asp Ser Tyr Glu Ala Ala Leu Gly Ala 255 ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac tcg gag atg 255 ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac gtg ctc tat Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr 260 ccc agg cag gag cag gag gaa ctt gcc cgc ctc att ccg ggc tca cgc 270 ccc agg cag gag cag gag gaa ctt gcc cgc ctc att ccg ggc tca cgc 270 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac 280 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac 280 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac 280 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac 912 cac gag acc gtc agc cgc atg gtc tgc gag ttc aag agg cag ttg ata 310 acc gag acc gtc aat tga gcc atc gac tca aga agg cag ttg ata 310 gtt gac aat tga	•	gga Gly	ctt Leu	gcc Ala	Ala	gcg Ala	cgg Arg	atg Met	atg Met	Ala	atg Met	tgc Cys	acc Thr	tac Tyr	Arg	tgc Cys	ttc Phe	576
Phe Glu Ala Glu Ser Tyr Val Arg His Gln Gly Asp Lys Leu Val Gly Cgc ttt gat gca aac acc tat atc acg ctc acc aga gcg atg gac atg Arg Phe Asp Ala Asn Thr 230 Cac gac ctc ggg cgc gga cgc gac tcc tac gaa gcg gcg ctc gga gcg His Asp Leu Gly Arg Gly Arg Asp Ser Tyr Glu Ala Ala Leu Gly Ala Ctg aag atg ccg gtc gag att ctc tac gac tcg gac tcc gga gcg Ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac gtc gly Ala Ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac gtg ctc tat Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr Ccc agg cag gag cag gag gaa ctt gcc cgc ctc att ccc ggc tca cgc Pro Arg Gln Glu Gln Glu Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg Ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac Leu Leu Phe Leu Asp Glu Pro Tyr Gly His Asp Ala Phe Leu Ile Asp 290 acc gag acc gtc agc cgc atg gtc tgc gag ttc gag ttc atg gag ttc aag agg cag ttg ata Thr Glu Thr Val Ser Arg Met Val Cys Glu Phe Lys Arg Gln Leu Ile 310 gtt gac aat tga T20 Arg Asp Leu Thr Leu Thr Arg Ala Met Asp Met Asp Met 2255 Ala Met Asp Met Asp Met 240 720 720 720 720 721 722 723 724 725 726 727 728 728 729 720 720 720 720 720 720 720		gag Glu	aac Asn	Tyr	cag Gln	caa Gln	cgc Arg	ttt Phe	Gly	cgc Arg	aag Lys	cag Gln	cgc Arg	Glu	gac Asp	ggc Gly	ttg Leu	624
Arg Phe Asp Ala Asn Thr 230 Tr Ile Thr Leu Thr Arg Ala Met Asp Met 240 Cac gac ctc ggg cgc gga cgc gac tcc tac gaa gcg gcg ctc gga gcg His Asp Leu Gly Arg Gly Arg Asp Ser Tyr Glu Ala Ala Leu Gly Ala 255 Ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac gtg ctc tat 255 Ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac gtg ctc tat 255 Ccc agg cag gag cag gag gaa ctt gcc cgc ctc att ccc gac Asp Val Leu Tyr 270 Ccc agg cag gag cag gag gaa ctt gcc cgc ctc att ccc ggc tca cgc Pro Arg Gln Glu Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 285 Ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac Pro Arg 290 acc gag acc gtc agc cgc atg gtc tgc gag ttc aag agg cag ttg ata 310 acc gag acc gtc agc cgc atg gtc tgc gag ttc aag agg cag ttg ata 310 gtt gac aat tga		ttc Phe	Glu	gcc Ala	gaa Glu	agc Ser	tac Tyr	Val	cgt Arg	cac His	cag Gln	ggc	Asp	aag Lys	ctg Leu	gtt Val	GJÀ aaa	672
His Asp Leu Gly Arg Gly Arg Asp Ser Tyr Glu Ala Ala Leu Gly Ala 255 ctg aag atg ccg gtc gag att ctc tcc atc gac tcg gac gtg ctc tat Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr 260 ccc agg cag gag cag gag gaa ctt gcc cgc ctc att ccc ggc tca cgc Pro Arg Gln Glu Gln Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 280 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac Pro Tyr Gly His Asp Ala Phe Leu Ile Asp 290 acc gag acc gtc agc cgc atg gtc tgc gag ttc aag agg cag ttg ata 960 Thr Glu Thr Val Ser Arg Met Val Cys Glu Phe Lys Arg Gln Leu Ile 305 gtt gac aat tga		Arg	ttt Phe	gat Asp	gca Ala	aac Asn	Thr	tat Tyr	atc Ile	acg Thr	ctc Leu	Thr	aga Arg	gcg Ala	atg Met	gac Asp	Met	720
Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr 260		cac His	gac Asp	ctc Leu	gly aaa	Arg	gga Gly	cgc Arg	gac Asp	tcc Ser	Tyr	gaa Glu	gcg Ala	gcg Ala	ctc Leu	Gly	gcg Ala	768
Pro Arg Gln Glu Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 275 ctg ctt ttc ctt gac gaa ccc tat ggc cac gac gcc ttt ctt atc gac Leu Leu Phe Leu Asp Glu Pro Tyr Gly His Asp Ala Phe Leu Ile Asp 290 acc gag acc gtc agc cgc atg gtc tgc gag ttc aag agg cag ttg ata Thr Glu Thr Val Ser Arg Met Val Cys Glu Phe Lys Arg Gln Leu Ile 305 gtt gac aat tga 912 960 972		ctg Leu	aag Lys	atg Met	Pro	gtc Val	gag Glu	att Ile	ctc Leu	Ser	atc Ile	gac Asp	tcg Ser	gac Asp	Val	ctc Leu	tat Tyr	816
Leu Leu Phe Leu Asp Glu Pro Tyr Gly His Asp Ala Phe Leu Ile Asp 290 295 300 acc gag acc gtc agc cgc atg gtc tgc gag ttc aag agg cag ttg ata Thr Glu Thr Val Ser Arg Met Val Cys Glu Phe Lys Arg Gln Leu Ile 305 310 315 320 gtt gac aat tga		ccc Pro	agg Arg	Gln	gag Glu	cag Gln	gag Glu	gaa Glu	Leu	gcc Ala	cgc Arg	ctc Leu	att Ile	Pro	ggc Gly	tca Ser	cgc Arg	864
Thr Glu Thr Val Ser Arg Met Val Cys Glu Phe Lys Arg Gln Leu Ile 305 310 315 320 gtt gac aat tga		ctg Leu	Leu	ttc Phe	ctt Leu	gac Asp	gaa Glu	Pro	tat Tyr	ggc	cac His	gac Asp	Ala	ttt Phe	ctt Leu	atc Ile	gac Asp	912
300 300 000 000		Thr	gag Glu	acc Thr	gtc Val	agc Ser	Arg	atg Met	gtc Val	tgc Cys	gag Glu	Phe	aag Lys	agg Arg	cag Gln	ttg Leu	Ile	960
					tga													972

<210> 8

<211> 323

<212> PRT

<213> Chlorobium tepidum

<400> 8

Val Arg Val Ala Tyr Arg Thr Trp Gly Thr Leu Asn Ala Glu Lys Ser

Asn Val Ile Leu Val Cys His Ala Leu Thr Gly Asn Ala Asp Ala Asp Ser Trp Trp Cys Gly Met Phe Gly Glu Gly Arg Ala Phe Asp Glu Thr Arg Asp Phe Ile Val Cys Ser Asn Val Leu Gly Ser Cys Tyr Gly Thr Thr Gly Pro Met Ser Val Asn Pro Leu Ser Gly Arg His Tyr Gly Pro Asp Phe Pro Arg Ile Thr Ile Arg Asp Met Val Asn Val Gln Arg Leu Leu Leu Arg Ser Leu Gly Ile Asp Arg Ile Arg Leu Ile Val Gly Ala 105 Ser Leu Gly Gly Met Gln Val Leu Glu Trp Gly Ala Met Tyr Pro Glu Met Ala Gly Ala Leu Met Pro Met Gly Val Ser Gly Arg His Ser Ala 135 Trp Cys Ile Ala Gln Ser Glu Ala Gln Arg Gln Ala Ile Ala Ala Asp Ala Glu Trp Gln Asp Gly Trp Tyr Asp Pro Glu Val Gln Pro Arg Lys 170 Gly Leu Ala Ala Ala Arg Met Met Ala Met Cys Thr Tyr Arg Cys Phe Glu Asn Tyr Gln Gln Arg Phe Gly Arg Lys Gln Arg Glu Asp Gly Leu Phe Glu Ala Glu Ser Tyr Val Arg His Gln Gly Asp Lys Leu Val Gly 210 Arg Phe Asp Ala Asn Thr Tyr Ile Thr Leu Thr Arg Ala Met Asp Met 235 His Asp Leu Gly Arg Gly Arg Asp Ser Tyr Glu Ala Ala Leu Gly Ala Leu Lys Met Pro Val Glu Ile Leu Ser Ile Asp Ser Asp Val Leu Tyr 265 Pro Arg Gln Glu Glu Glu Leu Ala Arg Leu Ile Pro Gly Ser Arg 275 Leu Leu Phe Leu Asp Glu Pro Tyr Gly His Asp Ala Phe Leu Ile Asp Thr Glu Thr Val Ser Arg Met Val Cys Glu Phe Lys Arg Gln Leu Ile 310

Val Asp Asn

WO 2004/024932 13/92

<211> 1149 <212> DNA <213> Caulobacter crescentus														
<220> <221> CDS <222> (1)(1146) <223> RCO00727														
<pre><400> 9 atg gct gcg ctc gat ccg atc acg ccc gcc ggc ggg gga acc tgg cgg Met Ala Ala Leu Asp Pro Ile Thr Pro Ala Gly Gly Gly Thr Trp Arg 1</pre>	48													
ttt cct gcg aat gaa cct ctg cgg ctg gac tcc gga ggc gtc atc gaa Phe Pro Ala Asn Glu Pro Leu Arg Leu Asp Ser Gly Gly Val Ile Glu 20 25 30	96													
ggt ctg gaa atc gcc tac cag acc tac ggc cag ctg aac gcg gac aag Gly Leu Glu Ile Ala Tyr Gln Thr Tyr Gly Gln Leu Asn Ala Asp Lys 35 40 45	144													
tcc aac gcc gtc ctg atc tgc cac gcc ctg acg ggc gac cag cat gtg Ser Asn Ala Val Leu Ile Cys His Ala Leu Thr Gly Asp Gln His Val 50 55 60	192													
gcc tcg ccc cac ccc acc acc ggc aag ccc ggc tgg tgg caa cgc ctt Ala Ser Pro His Pro Thr Thr Gly Lys Pro Gly Trp Trp Gln Arg Leu 65 70 75 80	240													
gtt ggt ccc ggt aag ccg ctg gat ccc gcg cgg cac ttc atc atc tgc Val Gly Pro Gly Lys Pro Leu Asp Pro Ala Arg His Phe Ile Ile Cys 85 90 95	288													
tcg aac gtg atc ggc tgc atg ggc tcg acg ggc ccg gcc tcg atc Ser Asn Val Ile Gly Gly Cys Met Gly Ser Thr Gly Pro Ala Ser Ile 100 105 110	336													
aat ccg gcc acg ggc aag acc tat ggc ctg tcg ttc cca gtc atc acc Asn Pro Ala Thr Gly Lys Thr Tyr Gly Leu Ser Phe Pro Val Ile Thr 115 120 125	384													
atc gcc gat atg gtg cgg gcc cag gcc atg ctg gtc tct gcg ctc ggg Ile Ala Asp Met Val Arg Ala Gln Ala Met Leu Val Ser Ala Leu Gly 130 135 140	432													
gtc gag acc ctg ttc gcc gtc gtc ggc ggc tcg atg ggc ggc atg cag Val Glu Thr Leu Phe Ala Val Val Gly Gly Ser Met Gly Gly Met Gln 145 150 155 160	480													
gtc cag caa tgg gcc gtg gac tat ccc gag cgg atg ttc agc gcc gtg Val Gln Gln Trp Ala Val Asp Tyr Pro Glu Arg Met Phe Ser Ala Val 165 170 175	528													
gtg ctg gcc tcg gcc tcg cgc cac tcg gcc cag aac atc gcg ttc cac Val Leu Ala Ser Ala Ser Arg His Ser Ala Gln Asn Ile Ala Phe His 180 185 190	576													
gag gtg ggc cgc cag gcg atc atg gcc gat ccc gac tgg cgc ggc ggc Glu Val Gly Arg Gln Ala Ile Met Ala Asp Pro Asp Trp Arg Gly Gly 195 200 205	624													
gcc tat gcc gag cac ggc gtg cgg ccc gag aag ggc ctg gcc gtg gcg	672													

Ala	Tyr 210	Ala	Glu	His	Gly	Val 215	Arg	Pro	Glu	Lys	Gly 220	Leu	Ala	Val	Ala	
					atc Ile 230											720
					cta Leu											768
					gag Glu											816
					gcc Ala											864
					gcc Ala											912
ttc Phe 305	acc Thr	cga Arg	gcg Ala	cgg Arg	aat Asn 310	gtg Val	cgc Arg	ttc Phe	tgc Cys	gtg Val 315	ctg Leu	agc Ser	ttc Phe	tcc Ser	agc Ser 320	960
gac Asp	tgg Trp	ctc Leu	tat Tyr	ccg Pro 325	acc Thr	gcc Ala	gag Glu	aac Asn	cgc Arg 330	cac His	ctg Leu	gtc Val	cgc Arg	gcc Ala 335	ctg Leu	1008
acc Thr	gcc Ala	gcc Ala	999 Gly 340	gcc Ala	cgc Arg	gcg Ala	gcc Ala	ttc Phe 345	gcc Ala	gag Glu	atc Ile	gag Glu	agc Ser 350	gac Asp	aag Lys	1056
ggc Gly	cat His	gac Asp 355	gcc Ala	ttc Phe	ctg Leu	ctg Leu	gac Asp 360	gag Glu	ccg Pro	gtg Val	atg Met	gac Asp 365	gcc Ala	gcg Ala	ctg Leu	1104
gaa Glu	ggc Gly 370	ttc Phe	ctg Leu	gcc Ala	tcg Ser	gcc Ala 375	gaa Glu	cgc Arg	gat Asp	cgg Arg	380 GJA 333	ctg Leu	gtt Val			1146
tga				•	•											1149

<210> 10

<211> 382

<212> PRT

<213> Caulobacter crescentus

<400> 10

Met Ala Ala Leu Asp Pro Ile Thr Pro Ala Gly Gly Gly Thr Trp Arg

1 5 10 15

Phe Pro Ala Asn Glu Pro Leu Arg Leu Asp Ser Gly Gly Val Ile Glu 20 25 30

Gly Leu Glu Ile Ala Tyr Gln Thr Tyr Gly Gln Leu Asn Ala Asp Lys
35 40 45

Ser Asn Ala Val Leu Ile Cys His Ala Leu Thr Gly Asp Gln His Val 50 55 60

Ala 65	ser	Pro	His	Pro	Thr 70	Thr	Gly	Lys	Pro	Gly 75	Trp	Trp	Gln	Arg	Leu 80
Val	Gly	Pro	Gly	Lys 85	Pro	Leu	Asp	Pro	Ala 90	Arg	His	Phe	Ile	Ile 95	Cys
Ser	Asn	Val	Ile 100	Gly	Gly	аұЭ	Met	Gly 105	Ser	Thr	Gly	Pro	Ala 110	Ser	Ile
Asn	Pro	Ala 115	Thr	Gly	ГÀе	Thr	Tyr 120	Gly	Leu	Ser	Phe	Pro 125	Val	Ile	Thr
Ile	Ala 130	Asp	Met	Val	Arg	Ala 135	Gln	Ala	Met	Leu	Val 140	Ser	Ala	Leu	Gly
Val 145	Glu	Thr	Leu	Phe	Ala 150	Val	Val	Gly	Gly	Ser 155	Met	Gly	Gly	Met	Gln 160
Val	Gln	Gln	Trp	Ala 165	Val	Asp	Tyr	Pro	Glu 170	Arg	Met	Phe	Ser	Ala 175	Val
Val	Leu	Ala	Ser 180	Ala	Ser	Arg	aiH	Ser 185	Ala	Gln	Asn	Ile	Ala 190	Phe	His
Glu	Val	Gly 195	Arg	Gln	Ala	Ile _.	Met 200	Ala	Asp	Pro	Asp	Trp 205	Arg	Gly	Gly
	210					215	Arg				220				
225					230		Tyr			235					240
Lys	Phe	Gly	Arg	Glu 245	Leu	Gln	Arg	Asp	Gly 250	Leu	Ser	Trp	Gly	Phe 255	Asp
	_		260				Tyr	265					270		
Val	Asp	Arg 275	Phe	Asp	Ala	Asn	Ser 280	Tyr	Leu	Tyr	Ile	Thr 285	Arg	Ala	Met
Asp	Tyr 290	Phe	Asp	Ile	Ala	Ala 295	Ser	His	Gly	Gly	Val 300	Leu	Ala	Lys	Ala
Phe 305	Thr	Arg	Ala	Arg	Asn 310	Val	Arg	Phe	Cys	Val 315	Leu	Ser	Phe	Ser	Ser 320
Asp	Trp	Leu	Tyr	Pro 325	Thr	Ala	Glu	Asn	Arg 330	His	Leu	Val	Arg	Ala 335	Leu
Thr	Ala	Ala	Gly 340	Ala	Arg	Ala	Ala	Phe 345	Ala	Glu	Ile	Glu	Ser 350	Asp	Lys
Gly	His	Asp 355	Ala	Phe	Leu	Leu	Asp 360	Glu	Pro	Val	Met	Asp 365	Ala	Ala	Leu
Glu	Gly 370	Phe	Leu	Ala	Ser	Ala 375	Glu	Arg	Asp	Arg	Gly 380	Leu	Val	•	

<211> 1140

16/92

<21	2> D 3> N	NA	eria	gon	orrh	oeae										
<22 <22 <22	<220> <221> CDS <222> (1)(1137) <223> RNG00132															
atg		caa			Ser			att Ile								48
								aac Asn 25								96
								gag Glu								144
								tcg Ser								192
								acg Thr								240
ggt Gly	ccc Pro	gga Gly	aaa Lys	ccg Pro 85	att Ile	gat Asp	acg Thr	gaa Glu	cgt Arg 90	ttt Phe	ttc Phe	gtg Val	gtc Val	999 95	ttg Leu	288
aac Asn	aat Asn	ctg Leu	ggc Gly 100	ggc	tgc Cys	gac Asp	ggc Gly	agc Ser 105	agc Ser	gly ggg	cct Pro	ttg Leu	tcg Ser 110	atc Ile	aat Asn	336
cct Pro	gaa Glu	acg Thr 115	ggc	agg Arg	gaa Glu	tac Tyr	ggc Gly 120	gcg Ala	gat Asp	ttt Phe	ccg Pro	atg Met 125	gtt Val	acg Thr	gtg Val	384
aag Lys	gac Asp 130	tgg Trp	gta Val	aaa Lys	tca Ser	caa Gln 135	gcc Ala	gcg Ala	ctt Leu	gcc Ala	gat Asp 140	tat Tyr	ctc Leu	ggc Gly	atc Ile	432
gaa Glu 145	caa Gln	tgg Trp	gcg Ala	gcg Ala	gtt Val 150	gtc Val	ggc Gly	gly	agc Ser	ttg Leu 155	ggc	ggc	atg Met	cag Gln	gct Ala 160	480
ttg Leu	cag Gln	tgg Trp	gcg Ala	att Ile 165	tcc Ser	tat Tyr	ccc Pro	gaa Glu	cgt Arg 170	gtg Val	cgc Arg	cac His	gcc Ala	ttg Leu 175	gtg Val	528
att Ile	gcg Ala	tct Ser	gcg Ala 180	ccg Pro	aaa Lys	ctg Leu	tcc Ser	gcg Ala 185	caa Gln	aat Asn	atc Ile	gcg Ala	ttt Phe 190	aat Asn	gat Asp	576
gta Val	gca Ala	cgt Arg 195	cag Gln	gcg Ala	att Ile	ttg Leu	acc Thr 200	gac Asp	ccc Pro	gat Asp	ttc Phe	aat Asn 205	gaa Glu	gga Gly	cat His	624
tac	cgc	agc	cac	aac	acc	gtt	ccc	gcg	cgc	ggt	ttg	cgg	att	gcc	cgt	672

		210					215						Arg				
	atg Met 225	atg Met	gga Gly	cac His	att Ile	acg Thr 230	tat Tyr	ctt Leu	gcc Ala	gaa Glu	gac Asp 235	ggt Gly	ttg Leu	ggc Gly	aaa Lys	aaa Lys 240	720
	ttc Phe	gga Gly	cgc Arg	gat Asp	ttg Leu 245	cgt Arg	tcc Ser	aac Asn	ggc Gly	tat Tyr 250	caa Gln	tac Tyr	ggc Gly	tat Tyr	agc Ser 255	gtt Val	768
	gaa Glu	ttt Phe	gaa Glu	gta Val 260	gaa Glu	tcc Ser	tat Tyr	ctc Leu	cgc Arg 265	tat Tyr	caa Gln	ggc Gly	gac Asp	aaa Lys 270	ttc Phe	gtc Val	816
	Gly 999	cgg Arg	ttt Phe 275	gat Asp	gct Ala	aat Asn	aca Thr	tat Tyr 280	ttg Leu	ctg Leu	atg Met	acc Thr	aaa Lys 285	gct Ala	ttg Leu	gac Asp	864
l	tat Tyr	ttc Phe 290	gat Asp	ccg Pro	gcg Ala	gcg Ala	gat Asp 295	ttc Phe	ggc Gly	aac Asn	agc Ser	ctg Leu 300	acc Thr	cgc Arg	gcc Ala	gtg Val	912
	cag Gln 305	gat Asp	gtg Val	cag Gln	gca Ala	aaa Lys 310	ttc Phe	ttt Phe	gtc Val	gcc Ala	agc Ser 315		agc Ser	acc Thr	gac Asp	tgg Trp 320	960
	cgt Arg	ttc Phe	gcg Ala	ccc Pro	gaa Glu 325	cgt Arg	tcg Ser	cac His	gaa Glu	ctg Leu 330	gto Val	aag Lys	gca Ala	ctg Leu	att Ile 335	gec Ala	1008
	gcc Ala	caa Gln	aaa Lys	tcc Ser	Val	cag Gln	tat Tyr	atc Ile	gaa Glu 345	val	aag Lys	tco Sei	gca Ala	cac His	_	g cac y His	1056
	gat Asp	gcc Ala	ttt Phe	Leu	atg Met	gaa Glu	gac Asp	gaa Glu 360	i Ala	tat Tyr	ate Met	g cgo	g Ala 36!	_	a acg	g gct r Ala	1104
)	tat Tyr	atg Met	Ası	aat Asn	gtt Val	gac Asp	aag Lys 375	ABI	tgc Cys	cga Arg	tta J Le	a tga	a a				1140
			_														

<210> 12

<211> 379

<212> PRT

<213> Neisseria gonorrhoeae

WO 2004/024932

<400> 12

Met Ser Gln Asn Thr Ser Val Gly Ile Val Thr Pro Gln Lys Ile Pro 10

Phe Glu Met Pro Leu Val Leu Glu Asn Gly Lys Thr Leu Pro Arg Phe

Asp Leu Met Ile Glu Thr Tyr Gly Glu Leu Asn Ala Glu Lys Asn Asn

Ala Val Leu Ile Cys His Ala Leu Ser Gly Asn His His Val Ala Gly 60 50

Arg 65		Ser	Ala	Glu	Asp 70		Tyr	Thr	Gly	Trp 75	Trp	Asp	Asn	Met	Val 80
Gly	Pro	Gly	Lys	Pro 85		Asp	Thr	Glu	Arg 90	Phe	Phe	Val	Val	Gly 95	Leu
Asn	Asn	Leu	Gly 100	Gly	Cys	Asp	Gly	Ser 105	Ser	Gly	Pro	Leu	Ser 110	Ile	Asn
Pro	Glu	Thr 115	Gly	Arg	Glu	Tyr	Gly 120	Ala	Asp	Phe	Pro	Met 125	Val	Thr	Val
Lys	Asp 130	Trp	Val	Lys	Ser	Gln 135	Ala	Ala	Leu	Ala	Asp 140	Tyr	Leu	Gly	Ile
Glu 145	Gln	Trp	Ala	Ala	Val 150	Val	Gly	Gly	Ser	Leu 155	Gly	Gly	Met	Gln	Ala 160
Leu	Gln	Trp	Ala	Ile 165	Ser	Tyr	Pro	Glu	Arg 170	Val	Arg	His	Ala	Leu 175	Val
Ile	Ala	Ser	Ala 180	Pro	Lys	Leu	Ser	Ala 185	Gln	Asn	Ile	Ala	Phe 190	Asn	Asp
Val	Ala	Arg 195	Gln	Ala	Ile	Leu	Thr 200	Asp	Pro	Asp	Phe	Asn 205	Glu	Gly	His
Tyr	Arg 210	Ser	His	Asn	Thr	Val 215	Pro	Ala	Arg	Gly	Leu 220	Arg	Ile	Ala	Arg
Met 225	Met	Gly	His	Ile	Thr 230	Tyr	Leu	Ala	Glu	Asp 235	Gly	Leu	Gly	Lys	Lys 240
	_		Asp	245					250					255	
			Val 260					265					270		
_		275	Asp				280					285	•		
_	290	_	Pro	•		295					300				
Gln 305	Asp	Val	Gln	Ala	Lys 310	Phe	Phe	Val	Ala	Ser 315	Phe	Ser	Thr	Asp	Trp 320
Arg	Phe	Ala	Pro	Glu 325	Arg	Ser	His	Glu	Leu 330	Val	Lys	Ala	Leu	Ile 335	Ala
Ala	Gln	Lys	Ser 340	Val	Gln	Tyr	Ile	Glu 345	Val	Lys	Ser	Ala	His 350	Gly	His
Asp	Ala	Phe 355	Leu	Met	Glu	Asp	Glu 360	Ala	Tyr	Met	Arg	Ala 365	Val	Thr	Ala
Tyr	Met 370	Asn	Asn	Val	-	Lys 375	qaA	Cys	Arg	Leu					

WO 2004/024932

PCT/EP2003/009452

<212> DNA <213> Neisseria meningitidis ser. A	
<220> <221> CDS <222> (1)(1137). <223> RNM00815	
<pre><400> 13 atg agt caa aat gcc tcg gtg ggc att gta acg ccc caa aaa att ccg 48 Met Ser Gln Asn Ala Ser Val Gly Ile Val Thr Pro Gln Lys Ile Pro 1 15</pre>	
ttt gaa atg ccg ctg gtt ttg gaa aac ggt aaa act ttg ccg cgt ttc 96 Phe Glu Met Pro Leu Val Leu Glu Asn Gly Lys Thr Leu Pro Arg Phe 20 25 30	
gat ctg atg att gaa acc tac ggc gag ctg aat gcc gaa aaa aat aat 144 Asp Leu Met Ile Glu Thr Tyr Gly Glu Leu Asn Ala Glu Lys Asn Asn 40 45	
gcg gtt tta atc tgt cat gcg ctg tca ggc aac cat cat gtt gcg ggc 192 Ala Val Leu Ile Cys His Ala Leu Ser Gly Asn His His Val Ala Gly 50 55 60	
agg cat tcg gcg gag gat aaa tat acg ggc tgg tgg gac aat atg gta 240 Arg His Ser Ala Glu Asp Lys Tyr Thr Gly Trp Trp Asp Asn Met Val 65 70 75 80	
gga ccc ggc aaa ccg att gat aca gaa cgt ttt ttc gtg gtc ggt ttg 288 Gly Pro Gly Lys Pro Ile Asp Thr Glu Arg Phe Phe Val Val Gly Leu 85 90 95	
aac aat ctg ggc ggc tgc gac ggc agc agc gga cct ttg tcg atc aat 33 Asn Asn Leu Gly Gly Cys Asp Gly Ser Ser Gly Pro Leu Ser Ile Asn 110	
cct gaa acg ggc agg gaa tac ggc gcg gat ttt ccg gtg gct acg gog Pro Glu Thr Gly Arg Glu Tyr Gly Ala Asp Phe Pro Val Val Thr Val 125	
aag gac tgg gta aaa tcc caa gcc gcg ctt acc gat tat ctc ggs do Lys Asp Trp Val Lys Ser Gln Ala Ala Leu Thr Asp Tyr Leu Gly Ile 130 135	
ggg caa tgg gcg gcg gtt gtc ggc ggc agc ttg ggc ggt atg tag gg Gly Gln Trp Ala Ala Val Val Gly Gly Ser Leu Gly Gly Met Gln Ala 150 150 155	80
ttg cag tgg acg att tcc tat ccc gag cgc gtg cgc cat gcc cta gos Leu Gln Trp Thr Ile Ser Tyr Pro Glu Arg Val Arg His Ala Leu Val 175	28
att gcg tcc gcg ccg aaa ctg tcc acg caa aat atc gcg ttc adc gas Ile Ala Ser Ala Pro Lys Leu Ser Thr Gln Asn Ile Ala Phe Asn Asp 180 185 190	576
gta gca cgt cag gcg att ttg acc gat ccc gat ttc aac gaa gga out Val Ala Arg Gln Ala Ile Leu Thr Asp Pro Asp Phe Asn Glu Gly His 205	524
tac cgc agc cgc aac acc gtt ccc gct cgg ggc ttg cgg att gcc cgc Tyr Arg Ser Arg Asn Thr Val Pro Ala Arg Gly Leu Arg Ile Ala Arg	672

PCT/EP2003/009452

210	215	220
210	213	220

ato Met 225	: Met	: Gly	g cad Y His	e ato	230	Туз	ctt Lev	geo Ala	gaa Glu	gac Asp 235	Gly	ttg Leu	Gly	aaa Lys	aaa Lys 240	720
tto Phe	gga Gly	cgo Arg	gat g Asp	ttg Lev 245	ı Arg	tco Ser	aac Asn	ggc Gly	tat Tyr 250	Gln	tac Tyr	ggc Gly	tat Tyr	ggc Gly 255	gtt Val	768
gaa Glu	ttt Phe	gaa Glu	gta Val 260	Glu	tcc Ser	tat Tyr	ctg Leu	cgc Arg 265	Tyr	caa Gln	Gly	gat Asp	aaa Lys 270	ttc Phe	gtc Val	816
GJA aaa	cgg Arg	Phe 275	Asp	gcc Ala	aac Asn	acc Thr	tat Tyr 280	ttg Leu	ctg Leu	atg Met	acc Thr	aag Lys 285	gct Ala	ttg Leu	gac Asp	864
Tyr	Phe 290	Asp	Pro	Ala	Ala	gat Asp 295	Phe	Gly	Asn	Ser	Leu 300	Thr	Arg	Ala	Val	912
Cag Gln 305	gat Asp	gtt Val	cag Gln	gca Ala	aaa Lys 310	ttc Phe	ttt Phe	gtc Val	gcc Ala	agc Ser 315	ttc Phe	agc Ser	acc Thr	gat Asp	tgg Trp 320	960
cgt Arg	tt <i>c</i> Phe	gcg Ala	ccc Pro	gaa Glu 325	cgt Arg	tcg Ser	cac His	gaa Glu	ctg Leu 330	gtc Val	aag Lys	gcc Ala	ctg Leu	att Ile 335	gcc Ala	1008
gcc Ala	caa Gln	aaa Lys	tcc Ser 340	gtg Val	cag Gln	tat Tyr	atc Ile	gaa Glu 345	gtc Val	aaa Lys	tcc Ser	gca Ala	cac His 350	gly ggg	cac His	1056
gat Asp	Ala	ttt Phe 355	tta Leu	atg Met	ġaa Glu	gac Asp	gaa Glu 360	gcc Ala	tat Tyr	atg Met	cgt Arg	gcg Ala 365	gtc Val	gcc Ala	gcc Ala	1104
tat Tyr	atg Met 370	aac Asn	aac Asn	gtt Val	Tyr	aag Lys 375	gaa Glu	tgt Cys	cag Gln	caa Gln	tga					1140

<210> 14

<211> 379

<212> PRT

<213> Neisseria meningitidis ser. A

<400> 14

Met Ser Gln Asn Ala Ser Val Gly Ile Val Thr Pro Gln Lys Ile Pro 1 5 10 15

Phe Glu Met Pro Leu Val Leu Glu Asn Gly Lys Thr Leu Pro Arg Phe 20 25 30

Asp Leu Met Ile Glu Thr Tyr Gly Glu Leu Asn Ala Glu Lys Asn Asn 35 40 45

Ala Val Leu Ile Cys His Ala Leu Ser Gly Asn His His Val Ala Gly 50 55 60

Arg His Ser Ala Glu Asp Lys Tyr Thr Gly Trp Trp Asp Asn Met Val 65 70 75 80

WO 2004/024932

Gly Pro Gly Lys Pro Ile Asp Thr Glu Arg Phe Phe Val Val Gly Leu Asn Asn Leu Gly Gly Cys Asp Gly Ser Ser Gly Pro Leu Ser Ile Asn Pro Glu Thr Gly Arg Glu Tyr Gly Ala Asp Phe Pro Val Val Thr Val Lys Asp Trp Val Lys Ser Gln Ala Ala Leu Thr Asp Tyr Leu Gly Ile Gly Gln Trp Ala Ala Val Val Gly Gly Ser Leu Gly Gly Met Gln Ala 155 150 Leu Gln Trp Thr Ile Ser Tyr Pro Glu Arg Val Arg His Ala Leu Val Ile Ala Ser Ala Pro Lys Leu Ser Thr Gln Asn Ile Ala Phe Asn Asp 185 Val Ala Arg Gln Ala Ile Leu Thr Asp Pro Asp Phe Asn Glu Gly His Tyr Arg Ser Arg Asn Thr Val Pro Ala Arg Gly Leu Arg Ile Ala Arg 215 210 Met Met Gly His Ile Thr Tyr Leu Ala Glu Asp Gly Leu Gly Lys 230 Phe Gly Arg Asp Leu Arg Ser Asn Gly Tyr Gln Tyr Gly Tyr Gly Val 245 Glu Phe Glu Val Glu Ser Tyr Leu Arg Tyr Gln Gly Asp Lys Phe Val Gly Arg Phe Asp Ala Asn Thr Tyr Leu Leu Met Thr Lys Ala Leu Asp Tyr Phe Asp Pro Ala Ala Asp Phe Gly Asn Ser Leu Thr Arg Ala Val 295 Gln Asp Val Gln Ala Lys Phe Phe Val Ala Ser Phe Ser Thr Asp Trp 310 Arg Phe Ala Pro Glu Arg Ser His Glu Leu Val Lys Ala Leu Ile Ala Ala Gln Lys Ser Val Gln Tyr Ile Glu Val Lys Ser Ala His Gly His

345

Asp Ala Phe Leu Met Glu Asp Glu Ala Tyr Met Arg Ala Val Ala Ala 360

Tyr Met Asn Asn Val Tyr Lys Glu Cys Gln Gln 375 370

<210> 15

<211> 1140

<212> DNA

<213> Pseudomonas fluorescens

<22	0> 1> Cl 2> (: 3> Ri	1)		7)												
atq	0> 1! cca Pro	act	gcc Ala	ttt Phe 5	Pro	ccc	gat Asp	tct Ser	gtt Val 10	ggt Gly	ctg Leu	gtg Val	acg Thr	ccg Pro 15	caa Gln	48
acg Thr	gcg Ala	cac His	ttc Phe 20	agc Ser	gaa Glu	ccg Pro	ctg Leu	gcc Ala 25	ctg Leu	gcc Ala	tgc Cys	ggc	cgt Arg 30	tcg Ser	ctg Leu	96
gcc Ala	gat Asp	tat Tyr 35	gac Asp	ctg Leu	atc Ile	tac Tyr	gaa Glu 40	acc Thr	tac Tyr	ggc	acg Thr	ctg Leu 45	aac Asn	gcg Ala	caa Gln	144
gcg Ala	agc Ser 50	aac Asn	gcc Ala	gtg Val	ctg Leu	atc Ile 55	tgc Cys	cac His	gcc Ala	ttg Leu	tcc Ser 60	ggc Gly	cac His	cac His	cat His	192
gct Ala 65	gcg Ala	ggt Gly	tat Tyr	cac His	agc Ser 70	gtc Val	gac Asp	gac Asp	cgc Arg	aag Lys 75	ccc Pro	ggt Gly	tgg Trp	tgg Trp	gac Asp 80	240
agc Ser	tgc Cys	atc Ile	ggc Gly	ccc Pro 85	ggc Gly	aaa Lys	ccg Pro	atc Ile	gac Asp 90	acc Thr	aac Asn	aag Lys	ttc Phe	ttc Phe 95	gtg Val	288
gtc Val	agc Ser	ctg Leu	aac Asn 100	aac Asn	ctc Leu	ggc Gly	ggt Gly	tgc Cys 105	aat Asn	ggt Gly	tct Ser	acc Thr	ggc Gly 110	ccg Pro	agc Ser	336
agc Ser	ctc Leu	aat Asn 115	ccg Pro	gaa Glu	acc Thr	Gly	aag Lys 120	ccg Pro	ttc Phe	ggc Gly	gcc Ala	gac Asp 125	ttc Phe	ccg Pro	gtg Val	384
ctg Leu	acc Thr 130	gtg Val	gaa Glu	gac Asp	tgg Trp	gtg Val 135	cac His	agc Ser	cag Gln	gca Ala	cgc Arg 140	ctg Leu	gcc Ala	gac Asp	ctg Leu	432
ctc Leu 145	ggc Gly	atc Ile	ggc Gly	cagʻ Gln	tgg Trp 150	gcg Ala	gcg Ala	gtg Val	atc Ile	ggc Gly 155	ggc	agc Ser	ctg Leu	Gly	ggc 160	480
atg Met	cag Gln	gcg Ala	ctg Leu	caa Gln 165	tgg Trp	acc Thr	atc Ile	acc Thr	tat Tyr 170	ccg Pro	gat Asp	cgc Arg	gtt Val	cgc Arg 175	cac His	528
tgc Cys	ctg Leu	gcc Ala	atc Ile 180	gcc Ala	tcg Ser	gcc Ala	ccc Pro	aag Lys 185	ctg Leu	tcg Ser	gcg Ala	cag Gln	aac Asn 190	atc Ile	gcc Ala	576
ttc Phe	aac Asn	gaa Glu 195	gtg Val	gcg Ala	cgc Arg	cag Gln	gcg Ala 200	atc Ile	ctc Leu	act Thr	gac Asp	ccg Pro 205	gaa Glu	ttc Phe	cac His	624
ggc Gly	ggc Gly 210	tcg Ser	ttc Phe	cag Gln	Glu	cac His 215	ggc Gly	gtg Val	atc Ile	ccc Pro	aag Lys 220	cgc Arg	ggc Gly	ctg Leu	atg Met	672

WO 2004/024932 PCT/EP2003/009452

23/92

ctg Leu 225	gcg Ala	cgg Arg	atg Met	gtg Val	999 Gly 230	cac His	atc Ile	acc Thr	tac Tyr	ctg Leu 235	tcc Ser	gac Asp	gac Asp	tcc Ser	atg Met 240	720
ggt Gly	gag Glu	aaa Lys	ttc Phe	ggc Gly 245	cgt Arg	ggc Gly	ctg Leu	aag Lys	agc Ser 250	gaa Glu	aag Lys	ctc Leu	aac Asn	tac Tyr 255	gac Asp	768
Phe	His	Ser	gtc Val 260	Glu	Phe	Gln	Val	Glu 265	Ser	Tyr	Leu	Arg	Tyr 270	Gln	Gly	816
Glu	Glu	Phe 275	tcc Ser	Gly	Arg [°]	Phe	Asp 280	Ala	Asn	Thr	Tyr	Leu 285	Leu	Met	Thr	864
Lys	Ala 290	Leu	gac Asp	Tyr	Phe	Asp 295	Pro	Ala	Ala	Asn	Phe 300	Asn	Asp	Asn	Leu	912
Ala 305	Lys	Thr	ttc Phe	Glu	Gly 310	Ala	Lys	Ala	Lys	Phe 315	Сув	Val	Met	Ser	Phe 320	960
Thr	Thr	Asp	tgg Trp	Arg 325	Phe	Ser	Pro	Ala	Arg 330	Ser	Arg	Glu	Leu	Val 335	Asp	1008
Ala	Leu	Met	gcg Ala 340	Ala	Arg	Lys	Asp	Val 345	Ser	Tyr	Leu	Glu	11e 350	Asp	Ala	1056
Pro	Gln	Gly 355	cac His	Asp	Ala	Phe	Leu 360	Ile	Pro	Ile	Pro	ege Arg 365	tac Tyr	ttg Leu	cag Gln	1104
gcg Ala	ttc Phe 370	ggc	aat Asn	tac Tyr	atg Met	aac Asn 375	cgc Arg	att Ile	acg Thr	ttg Leu	tga					1140

<210> 16

<211> 379

<212> PRT

<213> Pseudomonas fluorescens

<400> 16

Met Pro Ala Ala Phe Pro Pro Asp Ser Val Gly Leu Val Thr Pro Gln
1 5 10 15

Thr Ala His Phe Ser Glu Pro Leu Ala Leu Ala Cys Gly Arg Ser Leu

Ala Asp Tyr Asp Leu Ile Tyr Glu Thr Tyr Gly Thr Leu Asn Ala Gln

Ala Ser Asn Ala Val Leu Ile Cys His Ala Leu Ser Gly His His His 50 55 60

Ala Ala Gly Tyr His Ser Val Asp Asp Arg Lys Pro Gly Trp Trp Asp 65 70 75 80

Ser Cys Ile Gly Pro Gly Lys Pro Ile Asp Thr Asn Lys Phe Phe Val

PCT/EP2003/009452

24/92

365

90 Val Ser Leu Asn Asn Leu Gly Gly Cys Asn Gly Ser Thr Gly Pro Ser 105 Ser Leu Asn Pro Glu Thr Gly Lys Pro Phe Gly Ala Asp Phe Pro Val Leu Thr Val Glu Asp Trp Val His Ser Gln Ala Arg Leu Ala Asp Leu 135 Leu Gly Ile Gly Gln Trp Ala Ala Val Ile Gly Gly Ser Leu Gly Gly Met Gln Ala Leu Gln Trp Thr Ile Thr Tyr Pro Asp Arg Val Arg His 170 Cys Leu Ala Ile Ala Ser Ala Pro Lys Leu Ser Ala Gln Asn Ile Ala Phe Asn Glu Val Ala Arg Gln Ala Ile Leu Thr Asp Pro Glu Phe His Gly Gly Ser Phe Gln Glu His Gly Val Ile Pro Lys Arg Gly Leu Met 210 Leu Ala Arg Met Val Gly His Ile Thr Tyr Leu Ser Asp Asp Ser Met 235 Gly Glu Lys Phe Gly Arg Gly Leu Lys Ser Glu Lys Leu Asn Tyr Asp Phe His Ser Val Glu Phe Gln Val Glu Ser Tyr Leu Arg Tyr Gln Gly Glu Glu Phe Ser Gly Arg Phe Asp Ala Asn Thr Tyr Leu Leu Met Thr Lys Ala Leu Asp Tyr Phe Asp Pro Ala Ala Asn Phe Asn Asp Asn Leu Ala Lys Thr Phe Glu Gly Ala Lys Ala Lys Phe Cys Val Met Ser Phe Thr Thr Asp Trp Arg Phe Ser Pro Ala Arg Ser Arg Glu Leu Val Asp 325 Ala Leu Met Ala Ala Arg Lys Asp Val Ser Tyr Leu Glu Ile Asp Ala 345 340 Pro Gln Gly His Asp Ala Phe Leu Ile Pro Ile Pro Arg Tyr Leu Gln

360

Ala Phe Gly Asn Tyr Met Asn Arg Ile Thr Leu

<210> 17

<211> 1140

<212> DNA

<213> Pseudomonas aeruginosa

PCT/EP2003/009452 WO 2004/024932 25/92

<221> CDS <222> (1)..(1137) <223> RPA04460

\ZZ.	3 / K.	FAUT	400													
atg	0> 1° ccc Pro	aca	gtc Val	ttc Phe 5	ccc Pro	gac Asp	gac Asp	tcc Ser	gtc Val 10	ggt Gly	ctg Leu	gtc Val	tcc Ser	ccc Pro 15	cag Gln	48
										acc Thr						96
gcc Ala	gag Glu	tac Tyr 35	gac Asp	ctg Leu	gtg Val	atc Ile	gaa Glu 40	acc Thr	tac Tyr	ggc	gag Glu	ctg Leu 45	aat Asn	gcc Ala	acg Thr	144
cag Gln	agc Ser 50	aac Asn	gcg Ala	gtg Val	ctg Leu	atc Ile 55	tgc Cys	cac His	gcc Ala	ctc Leu	tcc Ser 60	Gly	cac His	cac His	cac His	192
gcc Ala 65	gcc Ala	ggc Gly	tac Tyr	cac His	agc Ser 70	gtc Val	gac Asp	gag Glu	cgc Arg	aag Lys 75	ccg Pro	Gly	tgg Trp	tgg Trp	gac Asp 80	240
agc Ser	tgc Cys	atc Ile	ggt Gly	ccg Pro 85	ggc	aag Lys	ccg Pro	atc Ile	gac Asp 90	acc Thr	cgc Arg	aag Lys	ttc Phe	ttc Phe 95	gtc Val	288
										gga Gly						336
agc Ser	atc Ile	aat Asn 115	ccg Pro	gcg Ala	acc Thr	Gly	aag Lys 120	gtc Val	tac Tyr	ggc	gcg Ala	gac Asp 125	ttc Phe	ccg Pro	atg Met	384
										gcg Ala						432
ctc Leu 145	ggc Gly	atc Ile	cgc Arg	cag Gln	tgg Trp 150	gcc Ala	gcg Ala	gtg Val	gtc Val	ggc Gly 155	ggc	agc Ser	ctc Leu	ggc Gly	ggc Gly 160	480
atg Met	cag Gln	gcg Ala	ctg Leu	caa Gln 165	tgg Trp	acc Thr	atc Ile	agc Ser	tat Tyr 170	ccc Pro	gag Glu	cgc Arg	gtc Val	cgt Arg 175	cac His	528
tgc Cys	ctg Leu	tgc Cys	atc Ile 180	gcc Ala	agc Ser	gcg Ala	ccg Pro	aag Lys 185	ctg Leu	tcg Ser	gcg Ala	cag Gln	aac Asn 190	atc Ile	gcc Ala	576
ttc Phe	aac Asn	gaa Glu 195	gtc Val	gcc Ala	cgg Arg	cag Gln	gcg Ala 200	att Ile	ctt Leu	tcc Ser	gac Asp	cct Pro 205	gag Glu	ttc Phe	ctc Leu	624
ggc Gly	ggc Gly 210	tac Tyr	ttc Phe	cag Gln	gag Glu	cag Gln 215	ggc Gly	gtg Val	att Ile	ccc Pro	aag Lys 220	ege Arg	Gly	ctc Leu	aag Lys	672 ·
ctg Leu	gcg Ala	cgg Arg	atg Met	gtc Val	ggc Gly	cat His	atc Ile	acc Thr	tac Tyr	ctg Leu	tcc Ser	gac .Asp	gac Asp	gcc Ala	atg Met	720

225	230	235	240
Gly Ala Lys Phe G		g acc gag aag ctc aac s Thr Glu Lys Leu Asr 250	
		g agt tac ctg cgc tac u Ser Tyr Leu Arg Tyr 5 270	Gln Gly
		c aat acc tac ctg ctg a Asn Thr Tyr Leu Leu 285	
		c gcc gcc cac ggc gac a Ala Ala His Gly Asp 300	
		g gac ttc tgc ctg atg a Asp Phe Cys Leu Met 315	
Thr Thr Asp Trp A		c cgc tcg cgg gaa atc a Arg Ser Arg Glu Ile 330	
		c agc tac ctg gag atc l Ser Tyr Leu Glu Ile 5 350	Asp Ala
		g ccg atc ccc cgg tac t Pro Ile Pro Arg Tyr 365	
gcc ttc agc ggt ta Ala Phe Ser Gly Ty 370			1140
<210> 18 <211> 379 <212> PRT <213> Pseudomonas	aeruginosa	•	
<400> 18 Met Pro Thr Val Ph	e Pro Asp Asp Se	r Val Gly Leu Val Ser	Pro Gln
1	5	10	15
Thr Leu His Phe As	n Giu Pro Leu Gli . 29	ı Leu Thr Ser Gly Lys 5 30	
Ala Glu Tyr Asp Le 35	u Val Ile Glu Th 40	r Tyr Gly Glu Leu Asr 45	Ala Thr
Gln Ser Asn Ala Va 50	l Leu Ile Cys His 55	s Ala Leu Ser Gly His 60	His His
Ala Ala Gly Tyr Hi 65	s Ser Val Asp Gli 70	ı Arg Lys Pro Gly Trp 75	Trp Asp 80
Ser Cys Ile Gly Pr	_	e Asp Thr Arg Lys Phe 90	Phe Val 95

									2.	1192					
Val	Ala	Leu	Asn 100	Asn	Leu	Gly	Gly	Cys 105	Asn	Gly	Ser	Ser	Gly 110	Pro	Ala
Ser	Ile	Asn 115	Pro	Ala	Thr	Gly	Lys 120	Val	Tyr	Gly	Ala	Asp 125	Phe	Pro	Met
Val	Thr 130	Val	Glu	Asp	Trp	Val 135	His	Ser	Gln	Ala	Arg 140	Leu	Ala	Asp	Arg
Leu 145	Gly	Ile	Arg	Gln	Trp 150	Ala	Ala	Val	Val	Gly 155	Gly	Ser	Leu	Gly	Gly 160
Met	Gln	Ala	Leu	Gln 165	Trp	Thr	Ile	Ser	Tyr 170	Pro	Glu	Arg	Val	Arg 175	His
Cys	Leu	Сув	Ile 180	Ala	Ser	Ala	Pro	Lys 185	Leu	Ser	Ala	Gln	Asn 190	Ile	Ala
Phe	Asn	Glu 195	Val	Ala	Arg	Gln	Ala 200	Ile	Leu	Ser	Asp	Pro 205	Glu	Phe	Leu
Gly	Gly 210	Tyr	Phe	Gln	Glu	Gln 215	Gly	Val	Ile	Pro	Lys 220	Arg	Gly	Leu	Lys
Leu 225	Ala	Arg	Met	Val	Gly 230	His	Ile	Thr	Tyr	Leu 235	Ser	Asp	qaA	Ala	Met 240
Gly	Ala	Lys	Phe	Gly 245	Arg	Val	Leu	Lys	Thr 250	Glu	ГÀв	Leu	Asn	Tyr 255	Asp
Leu	His	Ser	Val 260	Glu	Phe	Gln	Val	Glu 265	Ser	Tyr	Leu	Arg	Tyr 270	Gln	Gly
Glu	Glu	Phe 275	Ser	Thr	Arg	Phe	Asp 280	Ala	Asn	Thr	Tyr	Leu 285	Leu	Met	Thr
Lys	Ala 290	Leu	Asp	Tyr	Phe	Asp 295	Pro	Ala	Ala	Ala	His 300	Gly	Asp	Asp	Leu
Val 305	Arg	Thr	Leu	Glu	Gly 310	Val	Glu	Ala	Asp	Phe 315	Сув	Leu	Met	Ser	Phe 320
Thr	Thr	Asp	Trp	Arg 325	Phe	Ser	Pro	Ala	Arg 330	Ser	Arg	Glu	Ile	Val 335	Asp
Ala	Leu	Ile	Ala 340	Ala	Lys	Lys	Asn	Val 345	Ser	Tyr	Leu	Glu	Ile 350	Asp	Ala
Pro	Gln	Gly 355	His	Asp	Ala	Phe	Leu 360	Met	Pro	Ile	Pro	Arg 365	Tyr	Leu	Gln
Ala	Phe 370	Ser	Gly	Tyr	Met	Asn 375	Arg	Ile	Ser	Val					

<210> 19

<211> 1146

<212> DNA

<213> Burkholderia cepacia

<220>

<221> CDS

<222> (1)..(1143)

<223> RBU12675

4٢	00> 1	9											
ato	g gaa : Glu	tc	g ato						Lys				48
ccg	g ctg		g ttg Lev 20	Gln				ctc	gcc			ctg	96
			tac Tyr				Ala				gcg		144
		His	geg Ala										192
	Asn		agg Arg										240
			gac Asp										288
			ttc Phe 100										336
			tac Tyr										384
			cag Gln										432
			atg Met										480
			tat Tyr										528
			ctg Leu 180										576
			ctg Leu										624
			aag Lys		Lys								672
			tat Tyr	Leu									720

tcg Ser	ctg Leu	cgg Arg	cgc Arg	gcg Ala 245	gaa Glu	ggc Gly	gcg Ala	ctg Leu	gac Asp 250	gcg Ala	tac Tyr	aac Asn	ttc Phe	aac Asn 255	ttc Phe	768
gac Asp	gtg Val	gag Glu	ttc Phe 260	gag Glu	gtg Val	gag Glu	tcg Ser	tac Tyr 265	ctg Leu	cgc Arg	tac Tyr	cag Gln	ggc Gly 270	gac Asp	aag Lys	816
ttc Phe	gcc Ala	gac Asp 275	tac Tyr	ttc Phe	gac Asp	gcg Ala	aat Asn 280	acg Thr	tat Tyr	ctg Leu	ctg Leu	atc Ile 285	acc Thr	cgc Arg	gcg Ala	864
ctc Leu	gac Asp 290	tac Tyr	ttc Phe	gat Asp	ccg Pro	gcc Ala 295	aag Lys	gcc Ala	ttc Phe	gcc Ala	ggc ggc	gac Asp	ctg Leu	acg Thr	gcc Ala	912
gcg Ala 305	gtc Val	gcg Ala	cac His	acc Thr	acg Thr 310	gcg Ala	aaa Lys	tat Tyr	ctg Leu	atc Ile 315	gcc Ala	agc Ser	ttc Phe	acg Thr	acc Thr 320	960
gac Asp	tgg Trp	cgc Arg	ttc Phe	gcg Ala 325	ccg Pro	gcc Ala	cgc Arg	tcg Ser	cgt Arg 330	gaa Glu	ctg Leu	gtg Val	aag Lys	gcg Ala 335	ctg Leu	1008
ctc Leu	gat Asp	cac His	aag Lys 340	cgc Arg	acg Thr	gtc Val	acc Thr	tac Tyr 345	gcg Ala	gaa Glu	atc Ile	gac Asp	gcg Ala 350	ccg Pro	cac His	1056
ggc Gly	cac His	gac Asp 355	gcc Ala	ttc Phe	ctg Leu	ctc Leu	gac Asp 360	gac Asp	gcg Ala	cgc Arg	tat Tyr	cac His 365	aac Asn	ctg Leu	atg Met	1104
cgc Arg	gct Ala 370	tac Tyr	tac Tyr	gaa Glu	cgt Arg	att Ile 375	gcg Ala	aac Asn	gag Glu	gtg Val	aac Asn 380	gca Ala	tga			1146

<210> 20

<211> 381

<212> PRT

<213> Burkholderia cepacia

<400> 20

Met Glu Ser Ile Gly Ile Val Ala Pro Gln Lys Met His Phe Thr Glu

Pro Leu Pro Leu Gln Asn Gly Ser Ser Leu Ala Gly Tyr Asp Leu Met 30

Val Glu Thr Tyr Gly Thr Leu Asn Ala Ala Arg Ser Asn Ala Val Leu

Val Cys His Ala Leu Asn Ala Ser His His Val Ala Gly Val Tyr Ala

Asp Asn Pro Arg Asp Ile Gly Trp Trp Asp Asn Met Val Gly Pro Gly 65

Lys Pro Leu Asp Thr Asp Lys Phe Phe Val Ile Gly Val Asn Asn Leu

Gly Ser Cys Phe Gly Ser Thr G.y Pro Met Ser Ile Asp Pro Ser Thr 100 105

Gly	Asn	Pro 115	_	Gly	Ala	Thr	Phe 120	Pro	Val	Val	Thr	Val 125	Glu	Asp	Trp
Val	Asn 130	Ala	Gln	Ala	Arg	Val 135		Asp	Gln	Phe	Gly 140	Ile	Thr	Arg	Phe
Ala 145	Ala	Val	Met	Gly	Gly 150		Leu	Gly	Gly	Met 155	Gln	Ala	Leu	Ala	Trp 160
Ser	Met	Met	Tyr	Pro 165	Glu	Arg	Val	Ala	His 170	Cys	Ile	Val	Val	Ala 175	Ser
Thr	Pro	Lys	Leu 180	Ser	Ala	Gln	Asn	Ile 185	Ala	Phe	Asn	Glu	Val 190	Ala	Arg
Ser	Ala	Ile 195		Ser	Asp	Pro	Asp 200	Phe	His	Gly	Gly	Asn 205	Tyr	Tyr	Ala
His	Asn 210	Val	Lys	Pro	Lys	Arg 215	Gly	Leu	Arg	Val	Ala 220	Arg	Met	Ile	Gly
His 225	Ile	Thr	Туг	Leu	Ser 230	Asp	Asp	Asp	Met	Ala 235	Glu	Lys	Phe	Gly	Arg 240
Ser	Leu	Arg	Arg	Ala 245	Glu	Gly	Ala	Leu	Asp 250	Ala	Tyr	Asn	Phe	Asn 255	Phe
Asp	Val	Glu	Phe 260	Glu	Val	Glu	Ser	Tyr 265	Leu	Arg	Tyr	Gln	Gly 270	Asp	Lys
Phe	Ala	Asp 275	Tyr	Phe	Asp	Ala	Asn 280	Thr	Tyr	Leu	Leu	Ile 285	Thr	Arg	Ala
Leu	Asp 290	Tyr	Phe	qaA	Pro	Ala 295	Lys	Ala	Phe	Ala	Gly 300	Asp	Leu	Thr	Ala
Ala 305	Val	Ala	His	Thr	Thr 310	Ala	Lys	Tyr	Leu	Ile 315	Ala	Ser	Phe	Thr	Thr 320
Asp	Trp	Arg	Phe	Ala 325	Pro	Ala	Arg	Ser	Arg 330	Glu	Leu	Val	Lys	Ala 335	Leu
Leu	Asp	His	Lys 340	Arg '	Thr	Val	Thr	Tyr 345	Ala	Glu	Ile	Asp	Ala 350	Pro	His
Gly	His	Asp 355	Ala	Phe	Leu	Leu	Asp 360	Asp	Ala	Arg	Tyr	His 365	Asn	Leu	Met
Arg	Ala 370	Tyr	Tyr	Glu	Arg	Ile 375	Ala	Asn	Glu	Val	Asn 380	Ala			

<210> 21 <211> 1134

<212> DNA

<213> Nitrosomonas europaea

<220>

<221> CDS

<222> (1)..(1131)

<223> RNE02005

<400> 21 atg tcc aca Met Ser Thr 1	caa gat tot Gln Asp Ser 5	gat tcg Asp Ser	atc ggG Ile Gly	Y TIE VAI	tcg gca Ser Ala	cga cgc Arg Arg 15	48
gcc cat ttc Ala His Phe	gac acc ccc Asp Thr Pro	ctc agc Leu Ser	ctg aaa Leu Lys 25	a agc gga s Ser Gly	gct gta Ala Val 30	ctg gac Leu Asp	96
Ser Tyr Glu 35	ctc gtc tat Leu Val Tyr	Glu Thr	Tyr G13	y Giu Leu	45	web wid	144
Ser Asn Ala 50	gtg ctg ato Val Leu Ile	55 Cys H1s	ATA Let	60	Well UIP	HIS VOI	192
Ala Gly Val 65	tat gca gat Tyr Ala Asp 70	Asn Pro	TAR WEI	75	IID IID	80	240
Met Ile Gly	ccg ggc aaa Pro Gly Lys 85	Pro Val	Asp Th	0 Arg Lys	PHE PHE	95	288
Gly Ile Asn	aat ctc ggg Asn Leu Gly 100	GIA CAS	105	y Ser Imi	110	110 001	336
Ile Asn Asp 115		Lys Arg 120	Phe GI	у Рго Авр	125	Dea var	432
Thr Thr Ala	gac tgg gca Asp Trp Ala	Lys Thr 135	Tyr va	140	Ala Asp	GIN THE	480
Ser Ile Asp 145	tgt ttt gc Cys Phe Al	A Ala Val	Ile GI	155	ned Gil	160	528
Ser Ala Met	caa ctg gc Gln Leu Al 165	a Leu Asp	Ala Pr 17	o Giu Arg	Agr Mr	175	576
Ile Val Val	gca gca tc Ala Ala Se 180	r Ala Arg	Leu Tr 185	T ALE GII	190)	624
Asn Asp Val		n Ala Ile 200	: Leu Tr	nr Asp Pi	205	the way	672
Gly Asp Tyr 210	tat tcc ca Tyr Ser Hi	s Gly Thr 215	His Pi	ro Arg Arg 22)	Arg neu	
Ala Arg Met 225	g ctt ggc ca Leu Gly Hi 23	s Ile Thr O	Tyr Le	eu Ser Asj 235	p Asp Se	240	720
agc aaa tto Ser Lys Pho	e ggc cgt ga e Gly Arg Gl	g tta cgt u Leu Arg	aac gg Asn G	gc tcg ct ly Ser Le	t gct tto u Ala Pho	c aat tat e Asn Tyr	768

				245					250					255		
gat Asp	gtg Val	gaa Glu	ttc Phe 260	cag Gln	atc Ile	gaa Glu	tcc Ser	tat Tyr 265	ctg Leu	cac His	cat His	cag Gln	ggc Gly 270	gac Asp	aaa Lys	816
ttt Phe	gcc Ala	gac Asp 275	ctg Leu	ttc Phe	gac Asp	gca Ala	aac Asn 280	act Thr	tat Tyr	ctg Leu	ctg Leu	atg Met 285	acg Thr	aag Lys	gcg Ala	864
ctc Leu	gat Asp 290	tat Tyr	ttc Phe	gat Asp	ccg Pro	gcc Ala 295	cag Gln	gat Asp	tac Tyr	gat Asp	ggc Gly 300	aac Asn	ctg Leu	agt Ser	gca Ala	912
gcc Ala 305	ttt Phe	gcc Ala	cgt Arg	gca Ala	caa Gln 310	gcg Ala	gat Asp	ttt Phe	ctg Leu	gta Val 315	ctt Leu	tcc Ser	ttt Phe	act Thr	tcc Ser 320	960
gac Asp	tgg Trp	cgt Arg	ttt Phe	tcc Ser 325	ccg Pro	gag Glu	cgt Arg	tcg Ser	cgc Arg 330	gat Asp	atc Ile	gtc Val	aag Lys	gca Ala 335	ctg Leu	1008
ctc Leu	gac Asp	aac Asn	aaa Lys 340	ctg Leu	aat Asn	gtc Val	agt Ser	tat Tyr 345	gcg Ala	gaa Glu	att Ile	ccc Pro	tcc Ser 350	tcg Ser	tac Tyr	1056
gga Gly	cat His	gat Asp 355	tcc Ser	ttt Phe	ctc Leu	atg Met	cag Gln 360	gac Asp	gac Asp	tac Tyr	tat Tyr	cac His 365	cag Gln	ttg Leu	ata Ile	1104
cgt Arg	gct Ala 370	tac Tyr	atg Met	aac Asn	aat Asn	atc Ile 375	gct Ala	ctc Leu	tag			-				1134
<213)> 22 l> 37 2> PF 3> Ni	77 RT	somor	as e	europ	oaea										
<400 Met 1)> 22 Ser	Thr	Gln	Asp 5 _,	Ser	Asp	Ser	Ile	Gly 10	Ile	Val	Ser	Ala	Arg 15	Arg	
Ala	His	Phe	Asp 20	Thr	Pro	Leu	Ser	Leu 25	Lys	Ser	Gly	Ala	Val 30	Leu	Asp	
Ser	Tyr	Glu 35	Leu	Val	Tyr	Glu	Thr 40	Tyr	Gly	Glu	Leu	Asn 45	Ala	Asp	Arg	
Ser	Asn 50	Ala	Val	Leu	Ile	Сув 55	His	Ala	Leu	Ser	Gly 60	Asn	His	His	Val	
Ala 65	Gly	Val	Tyr	Ala	Asp 70	Asn	Pro	Lys	Asn	Thr 75	Gly	Trp	Trp	Asn	Asn 80	
	·	_		85					90	Arg				95		
Gly	Ile	Asn	Asn 100	Leu	Gly	Gly	Сув	His 105	Gly	Ser	Thr	Gly	Pro 110	Ile	Ser	
Ile	Asn	Asp	Lys	Thr	Gly	Lys	Arg	Phe	Gly	Pro	Asp	Phe	Pro	Leu	Val	

WO 2004/024932 PCT/EP2003/009452

33/92

125 115 120

Thr Thr Ala Asp Trp Ala Lys Thr Tyr Val Arg Phe Ala Asp Gln Phe 140 135

Ser Ile Asp Cys Phe Ala Ala Val Ile Gly Gly Ser Leu Gly Gly Met

Ser Ala Met Gln Leu Ala Leu Asp Ala Pro Glu Arg Val Arg His Ala 170 165

Ile Val Val Ala Ala Ser Ala Arg Leu Thr Ala Gln Asn Ile Ala Phe 185

Asn Asp Val Ala Arg Gln Ala Ile Leu Thr Asp Pro Asp Phe His Asp

Gly Asp Tyr Tyr Ser His Gly Thr His Pro Arg Arg Gly Leu Arg Leu

Ala Arg Met Leu Gly His Ile Thr Tyr Leu Ser Asp Asp Ser Met Ala 225

Ser Lys Phe Gly Arg Glu Leu Arg Asn Gly Ser Leu Ala Phe Asn Tyr

Asp Val Glu Phe Gln Ile Glu Ser Tyr Leu His His Gln Gly Asp Lys

Phe Ala Asp Leu Phe Asp Ala Asn Thr Tyr Leu Leu Met Thr Lys Ala 280

Leu Asp Tyr Phe Asp Pro Ala Gln Asp Tyr Asp Gly Asn Leu Ser Ala 290

Ala Phe Ala Arg Ala Gln Ala Asp Phe Leu Val Leu Ser Phe Thr Ser 315

Asp Trp Arg Phe Ser Pro Glu Arg Ser Arg Asp Ile Val Lys Ala Leu

Leu Asp Asn Lys Leu Asn Val Ser Tyr Ala Glu Ile Pro Ser Ser Tyr

Gly His Asp Ser Phe Leu Met Gln Asp Asp Tyr Tyr His Gln Leu Ile

Arg Ala Tyr Met Asn Asn Ile Ala Leu 375 370

<210> 23

<211> 1077

<212> DNA

<213> Haemophilus influenzae

<220>

<221> CDS

<222> (1)..(1074)

<223> RHI02681

<400> 23

Met 1		Val	Gln	Asr 5		l Val	l Leu	Phe	Asp 10	Thr	Gln	Pro	Leu	Thr 15	Leu	
				Lys			cat His									96
			Asn				aat Asn 40	Asn								144
							tat Tyr									192
tgg Trp 65	cag Gln	aat Asn	ttt Phe	atg Met	gga Gly 70	gca Ala	ggt Gly	tta Leu	gca Ala	ttg Leu 75	gat Asp	acg Thr	gat Asp	cgt Arg	tat Tyr 80	240
							tta Leu									288
Pro	Ser	Ser	Ile 100	Asn	Pro	Gln	acg Thr	Gly 105	Lys	Pro	Tyr	Gly	Ser 110	Gln	Phe	336
Pro	Asn	Ile 115	Val	Val	Gln	Asp	att Ile 120	Val	Lys	Val	Gln	Lys 125	Ala	Leu	Leu	384
Asp	His 130	Leu	Gly	Ile	Ser	His 135	tta Leu	Lys	Ala	Ile	Ile 140	Gly	Gly	Ser	Phe	432
Gly 145	Gly	Met	Gln	Ala	Asn 150	Gln	tgg Trp	Ala	Ile	Asp 155	Tyr	Pro	Asp	Phe	Met 160	480
Asp	Asn	Ile	Val	Asn 165	Leu	Сув	tca Ser	Ser	Ile 170	Tyr	Phe	Ser	Ala	Glu 175	Ala	528
Ile	Gly	Phe	Asn 180	His	Val	Met	cgt Arg	Gln 185	Ala	Val	Ile	Asn	Asp 190	Pro	Asn	576
Phe	Asn	Gly 195	Gly	Asp	Tyr	Tyr	gag Glu 200	Gly	Thr	Pro	Pro	Asp 205	Gln	Gly	Leu	624
tct Ser	att Ile 210	Āla	cgt Arg	atg Met	cta Leu	ggt Gly 215	atg Met	ctg Leu	act Thr	tac Tyr	cgc Arg 220	acc Thr	gat Asp	tta Leu	caa Gln	672
ctt Leu 225	gcg Ala	aaa Lys	gcc Ala	ttt Phe	g1y 230	cgt Arg	gcc Ala	aca Thr	aaa Lys	tca Ser 235	gat Asp	ggc	agc Ser	ttt Phe	tgg Trp 240	720
ggc Gly	gat Asp	tac Tyr	Phe	caa Gln 245	gtg Val	gaa Glu	tcc Ser	Tyr	ctt Leu 250	tct Ser	tac Tyr	caa Gln	ggc Gly	aaa Lys 255	aaa Lys	768

PCT/EP2003/009452

35/92

ttc Phe	tta Leu	gaa Glu	cgt Arg 260	ttt Phe	gat Asp	gcc Ala	aat Asn	agt Ser 265	tat Tyr	ttg Leu	cat His	ttg Leu	tta Leu 270	cgt Arg	gcg Ala	816
ttg Leu	gat Asp	atg Met 275	tat Tyr	gat Asp	cca Pro	agt Ser	ttg Leu 280	Gly aaa	tat Tyr	gac Asp	aat Asn	gtt Val 285	aaa Lys	gag Glu	gca Ala	864
tta Leu	tca Ser 290	cgt Arg	att Ile	aaa Lys	gca Ala	cgc Arg 295	tat Tyr	acg Thr	ttg Leu	gtt Val	tct Ser 300	gtg Val	aca Thr	acg Thr	gat Asp	912
caa Gln 305	ctt Leu	ttt Phe	aaa Lys	ccc Pro	att Ile 310	gat Asp	ctt Leu	tat Tyr	aaa Lys	agt Ser 315	aaa Lys	cag Gln	ctt Leu	tta Leu	gag Glu 320	960
caa Gln	agt Ser	gga Gly	gtc Val	gat Asp 325	cta Leu	cat His	ttt Phe	tat Tyr	gaa Glu 330	ttc Phe	cca Pro	tca Ser	gat Asp	tac Tyr 335	gga Gly	1008
cac His	gat Asp	gcg Ala	ttt Phe 340	tta Leu	gtg Val	gat Asp	tat Tyr	gat Asp 345	cag Gln	ttt Phe	gaa Glu	aaa Lys	cga Arg 350	att Ile	cga Arg	1056
		ttg Leu 355			aat Asn	taa										1077
)> 24															
	2> PF	T S	hilu	Is in	ıflue	enzae	•									
<213 <213	2> PF 3> Ha 0> 24	RT Lemop			nflue Val			Phe	Asp 10	Thr	Gln	Pro	Leu	Thr 15	Leu	
<212 <213 <400 Met	2> PH 3> Ha 3> 24 Ser	RT lemop l Val	Gln	Asn 5		Val	Leu		10					15		
<212 <213 <400 Met 1 Met	2> PP 3> Ha 3> 24 Ser Leu	RT Memor Val Gly	Gln Gly 20	Asn 5 Lys	Val	Val Ser	Leu His	Ile 25	10 Asn	Val	Ala	Tyr	Gln 30	15 Thr	Tyr	
<212 <213 <400 Met 1 Met	2> PF 3> Ha 3> 24 5er Leu	RT Memor Val Gly Leu 35	Gln Gly 20 Asn	Asn 5 Lys Ala	Val Leu Glu	Val Ser Lys	Leu His Asn 40	Ile 25 Asn	10 Asn Ala	Val Val	Ala Leu	Tyr Ile 45	Gln 30 Cys	15 Thr His	Tyr	
<212 <213 <400 Met 1 Met Gly	2> PH 3> Ha 3> E 3> E 50> 24 Ser Leu Thr Thr 50	Taemor Val Gly Leu 35	Gln Gly 20 Asn Asp	Asn 5 Lys Ala Ala	Val Leu Glu Glu	Val Ser Lys Pro 55	Leu His Asn 40	Ile 25 Asn Phe	10 Asn Ala Asp	Val Val Asp	Ala Leu Gly 60	Tyr Ile 45 Arg	Gln 30 Cys Asp	Thr His	Tyr Ala	
<212 <213 <400 Met 1 Met Gly Leu	2> PH 3> Ha 3> E 3> E 3> 24 Ser Leu Thr 50	CT Temor Val Gly Leu 35 Gly	Gln Gly 20 Asn Asp	Asn 5 Lys Ala Ala Met	Val Leu Glu Glu Gly 70	Val Ser Lys Pro 55	Leu His Asn 40 Tyr	Ile 25 Asn Phe Leu	10 Asn Ala Asp	Val Val Asp Leu 75	Ala Leu Gly 60 Asp	Tyr Ile 45 Arg	Gln 30 Cys Asp	Thr His Gly	Tyr Ala Trp Tyr 80 Gly	
<212 <213 <400 Met 1 Met Gly Leu Trp 65 Phe	2> PH 3> Ha 3> E 3> Ha 3> 24 Ser Leu Thr Thr 50 Gln	CT Nemor Val Gly Leu 35 Gly Asn	Gln Gly 20 Asn Asp Phe	Asn 5 Lys Ala Ala Met Ser 85	Val Leu Glu Glu Gly 70 Asn	Val Ser Lys Pro 55 Ala	Leu His Asn 40 Tyr Gly	Ile 25 Asn Phe Leu Gly	Asn Ala Asp Ala Gly 90	Val Val Asp Leu 75	Ala Leu Gly 60 Asp	Tyr Ile 45 Arg Thr	Gln 30 Cys Asp Asp	Thr His Gly Arg	Tyr Ala Trp Tyr 80 Gly	
<212 <213 <400 Met 1 Met Gly Leu Trp 65 Phe	Phe Ser	CT Lemor Val Gly Leu 35 Gly Asn Ile	Gln Gly 20 Asn Asp Phe Ser Ile 100	Asn 5 Lys Ala Ala Met Ser 85 Asn	Val Leu Glu Glu Gly 70 Asn	Val Ser Lys Pro 55 Ala Val	Leu His Asn 40 Tyr Gly Leu Thr	Ile 25 Asn Phe Leu Gly Gly 105	Asn Ala Asp Ala Gly 90 Lys	Val Val Asp Leu 75 Cys	Ala Leu Gly 60 Asp Lys	Tyr Ile 45 Arg Thr Gly	Gln 30 Cys Asp Thr	Thr His Gly Arg Thr 95	Tyr Ala Trp Tyr 80 Gly	

Gly Gly Met Gln Ala Asn Gln Trp Ala Ile Asp Tyr Pro Asp Phe Met

PCT/EP2003/009452

36/92

160 145 150 155 Asp Asn Ile Val Asn Leu Cys Ser Ser Ile Tyr Phe Ser Ala Glu Ala 170 165 Ile Gly Phe Asn His Val Met Arg Gln Ala Val Ile Asn Asp Pro Asn 185 Phe Asn Gly Gly Asp Tyr Tyr Glu Gly Thr Pro Pro Asp Gln Gly Leu Ser Ile Ala Arg Met Leu Gly Met Leu Thr Tyr Arg Thr Asp Leu Gln Leu Ala Lys Ala Phe Gly Arg Ala Thr Lys Ser Asp Gly Ser Phe Trp Gly Asp Tyr Phe Gln Val Glu Ser Tyr Leu Ser Tyr Gln Gly Lys Lys Phe Leu Glu Arg Phe Asp Ala Asn Ser Tyr Leu His Leu Leu Arg Ala Leu Asp Met Tyr Asp Pro Ser Leu Gly Tyr Asp Asn Val Lys Glu Ala Leu Ser Arg Ile Lys Ala Arg Tyr Thr Leu Val Ser Val Thr Thr Asp 295 Gln Leu Phe Lys Pro Ile Asp Leu Tyr Lys Ser Lys Gln Leu Leu Glu Gln Ser Gly Val Asp Leu His Phe Tyr Glu Phe Pro Ser Asp Tyr Gly 330 His Asp Ala Phe Leu Val Asp Tyr Asp Gln Phe Glu Lys Arg Ile Arg 345 Asp Gly Leu Ala Gly Asn 355 <210> 25 <211> 1296 <212> DNA <213> Halobacterium sp <220> <221> CDS <222> (1)..(1293) <223> ETX_HALN1 <400> 25 atg ggc cac gat cac gga ctc cac acc aac agt gta cac gcc ggc cag Met Gly His Asp His Gly Leu His Thr Asn Ser Val His Ala Gly Gln 10 cgc gtc gac ccg gcc acg ggc gct cgc gcg ccg cca ctc tac cag acc 96 Arg Val Asp Pro Ala Thr Gly Ala Arg Ala Pro Pro Leu Tyr Gln Thr 20 acg teg tac gee tte gag gae age gee gat gee gee gge cag tte gee

Thr Ser Tyr Ala Phe Glu Asp Ser Ala Asp Ala Ala Gly Gln Phe Ala

		35					40					45				
ctt Leu	gag Glu 50	cgg Arg	gac Asp	ggc Gly	tac Tyr	atc Ile 55	tac Tyr	tcg Ser	cgg Arg	ctg Leu	atg Met 60	aac Asn	ccc Pro	acc Thr	gtg Val	192
gag Glu 65	acc Thr	ctc Leu	cag Gln	gac Asp	cgc Arg 70	ctc Leu	gcc Ala	gcc Ala	ctc Leu	gaa Glu 75	ggc	ggc Gly	gtc Val	ggc Gly	gcg Ala 80	240
gtc Val	gcc Ala	acc Thr	gcg Ala	tcc Ser 85	gga Gly	atg Met	gcc Ala	gcc Ala	ctg Leu 90	gac Asp	ctc Leu	gcg Ala	acg Thr	ttc Phe 95	ctg Leu	288
ctg Leu	gca Ala	ege Arg	gcc Ala 100	ggc	gac Asp	tcc Ser	gtc Val	gtc Val 105	gcc Ala	gcc Ala	agc Ser	gac Asp	ctc Leu 110	tac Tyr	ggc	336
ggc Gly	acc Thr	gtg Val 115	acg Thr	tac Tyr	ctc Leu	acg Thr	cac His 120	agc Ser	gcc Ala	cag Gln	cgc Arg	cgc Arg 125	ggc	gtc Val	gac Asp	384
acg Thr	acg Thr 130	ttc Phe	gtg Val	gac Asp	gtc Val	ctc Leu 135	gac Asp	tac Tyr	gac Asp	gcc Ala	tac Tyr 140	gcc Ala	gac Asp	gcc Ala	atc Ile	432
Asp 145	Ala	Asp	Thr	Ala	Tyr 150	Val	Leu	Val	GIu	155	Val	ggc	ABII	PLO	160	480
ctg Leu	atc Ile	acg Thr	ccc Pro	gac Asp 165	ctc Leu	gaa Glu	cgc Arg	atc Ile	gcc Ala 170	A ap	atc Ile	gcc Ala	cac His	gac Asp 175	aac Asn	528
ggc Gly	gtt Val	ccc Pro	ctg Leu 180	ctg Leu	gtg Val	gac Asp	aac Asn	acg Thr 185	ttc Phe	gcg Ala	acc Thr	ccc Pro	gcg Ala 190	nen	gca Ala	576
acc Thr	ccg Pro	atc Ile 195	gac Asp	cac His	ggt Gly	gcc Ala	gac Asp 200	atc Ile	gtc Val	tgg Trp	cac His	tcc Ser 205	acc Thr	acc Thr	Lys aaa	624
tgg Trp	atc Ile 210	cac His	ggt Gly	gcc Ala	ggc Gly	acc Thr 215	acc Thr	gtc Val	Gly	ggc	gcg Ala 220	neu	gto Val	gac Asp	gcc Ala	672
Gly 225	Ser	Phe	Asp	Trp	Asp 230	Ala	His	Ala	Ala	235	5 TYI	PIC	GI	1 116	gcc Ala 240	720
cag Gln	gaa Glu	aac Asn	ccc Pro	gcc Ala 245	tac Tyr	cac His	ggc	gtg Val	Thr 250	Pne	e acc	gat Asp	cgo Arg	Pho 25	e Gly e aga	768
gac Asp	gcc Ala	gcg Ala	ttc Phe 260	Thr	tac Tyr	gcc Ala	gca Ala	ato Ile 265	Ala	c cgc	g Gl ₃	g cto y Lev	27	3 AS	t ctg p Leu	816
ggc Gly	aac Asn	cag Gln 275	Gln	tcg Ser	ccg Pro	ttc Phe	gac Asp 280	Ala	tgg Tr	g cag Gli	g aco	c cto r Lei 28	I GI	g aa n Ly	g ctc s Leu	864
gaa	acg	cto	ccg	ctg	cgc	atg	caa	caa	cad	tg:	c cg	g aad	gc	c ca	g ctc	912

PCT/EP2003/009452

									_							
Glu	290	Leu	Pro	Lev	Arg	Met 295		Glr	A His	Cys	Arg 300		Ala	Gln	Leu	
	Ala	gaa Glu				Asp					Ser					960
		ctg Leu			His					Asn						1008
		ggc							Phe							1056
		gcc Ala 355														1104
		gtc Val														1152
		cag Gln														1200
		atg Met														1248
		gac Asp														1293
tag											•					1296
<213 <213	0> 26 l> 43 2> PI 3> Ha	31	.cter	ium	вp											
	> 26			,		_			_	_						
Met 1	Gly	His	Asp	His 5	GīÀ	Leu	His	Thr	Asn 10	ser	vaı	His	Ala	15 G1y	GIn	
Arg	Va1	Asp	Pro 20	Ala	Thr	Gly	Ala	Arg 25	Ala	Pro	Pro	Leu	Tyr 30	Gln	Thr	
Thr	Ser	Tyr 35	Ala	Phe	Glu	qaA	Ser 40	Ala	Asp	Ala	Ala	Gly 45	Gln	Phe	Ala	
Leu	Glu 50	Arg	Asp	Gly	Туг	Ile 55	Tyr	Ser	Arg	Leu	Met 60	Asn	Pro	Thr	Val	
Glu 65	Thr	Leu	Gln	Asp	Arg 70	Leu	Ala	Ala	Leu	Glu 75	Gly	Gly	Val	Gly	Ala 80	
Val	Ala	Thr .	Ala	Ser 85	Gly i	Met	Ala	Ala	Leu 90	Asp	Leu	Ala	Thr	Phe 95	Leu	

Leu Ala Arg Ala Gly Asp Ser Val Val Ala Ala Ser Asp Leu Tyr Gly

39/92

110 105 100 Gly Thr Val Thr Tyr Leu Thr His Ser Ala Gln Arg Arg Gly Val Asp Thr Thr Phe Val Asp Val Leu Asp Tyr Asp Ala Tyr Ala Asp Ala Ile Asp Ala Asp Thr Ala Tyr Val Leu Val Glu Thr Val Gly Asn Pro Ser Leu Ile Thr Pro Asp Leu Glu Arg Ile Ala Asp Ile Ala His Asp Asn Gly Val Pro Leu Leu Val Asp Asn Thr Phe Ala Thr Pro Ala Leu Ala Thr Pro Ile Asp His Gly Ala Asp Ile Val Trp His Ser Thr Thr Lys Trp Ile His Gly Ala Gly Thr Thr Val Gly Gly Ala Leu Val Asp Ala 215 Gly Ser Phe Asp Trp Asp Ala His Ala Ala Asp Tyr Pro Glu Ile Ala Gln Glu Asn Pro Ala Tyr His Gly Val Thr Phe Thr Asp Arg Phe Gly 250 245 Asp Ala Ala Phe Thr Tyr Ala Ala Ile Ala Arg Gly Leu Arg Asp Leu Gly Asn Gln Gln Ser Pro Phe Asp Ala Trp Gln Thr Leu Gln Lys Leu Glu Thr Leu Pro Leu Arg Met Gln Gln His Cys Arg Asn Ala Gln Leu 295 Val Ala Glu His Leu Arg Asp His Pro Asn Val Ser Trp Val Asn Tyr 315 Pro Gly Leu Ala Asp His Asp Thr His Asp Asn Ala Thr Thr Tyr Leu 330 Asp Ser Gly Tyr Gly Gly Met Leu Thr Phe Gly Val Glu Asp Gly Tyr 340 Glu Ala Ala Gln Ser Val Thr Glu Glu Thr Thr Leu Ala Ser Leu Leu 360 Ala Asn Val Gly Asp Ala Lys Thr Leu Val Ile His Pro Ala Ser Thr 370 Thr His Gln Gln Leu Thr Pro Glu Ala Gln Arg Ala Gly Gly Val Arg 395 Pro Glu Met Val Arg Val Ser Val Gly Ile Glu Asp Pro Ala Asp Ile Val Ala Asp Leu Glu Thr Ala Ile Glu Ala Ala Val Gly Ser Ala 430 425

<21 <21	.0> 2 .1> 1 .2> E .3> T	143 NA	mus t	her	noph	ilus										
<22	0> 1> C 2> (3> R	(1)		ŀ0)												
atg	Ser	gag			cto Lev					Glu						48
				Arg	tcc Ser				Ile							96
			Leu		ccc Pro			Glu					Glu			144
		Leu			gtg Val											192
tcc Ser 65	cgc Arg	agg Arg	cgg Arg	gat Asp	aac Asn 70	gcc Ala	gtc Val	ctc Leu	gtc Val	ttc Phe 75	cac His	gcc Ala	ctc Leu	acg Thr	80 GJÅ aaa	240
					Gly 333											288
					gcc Ala											336
					atc Ile											384
					àgc Ser											432
gac Asp 145	ccc Pro	cac His	acg Thr	ggc	cgc Arg 150	ccc Pro	tac Tyr	ely aaa	agg Arg	gac Asp 155	ttc Phe	cct Pro	ccc Pro	ctt Leu	acc Thr 160	480
atc [le	egc Arg	gac Asp	ctg Leu	gcc Ala 165	cgg Arg	gcc Ala	cag Gln	gcg Ala	agg Arg 170	ctt Leu	ctg Leu	gac Asp	cat His	ctg Leu 175	gly aaa	528
gtg /al	gag Glu	aag Lys	gcc Ala 180	atc Ile	gtc Val	atc Ile	gly 999	999 Gly 185	agc Ser	ctc Leu	GJA aaa	Gly 999	atg Met 190	gtg Val	gcc Ala	576
					atg Met	Tyr										624

ctg Leu	gcg Ala 210	gcc Ala	ccc Pro	gca Ala	cgg Arg	cac His 215	ggc Gly	ccc Pro	tgg Trp	gcc Ala	cgg Arg 220	gcc Ala	ttc Phe	aac Asn	cac His	672
ctc Leu 225	tcc Ser	egc Arg	cag Gln	gcc Ala	atc Ile 230	ctc Leu	caa Gln	gac Asp	ccc Pro	gag Glu 235	tac Tyr	cag Gln	aag Lys	ggc Gly	aac Asn 240	720
cct Pro	gcc Ala	ccc Pro	aag Lys	ggc Gly 245	atg Met	gcc Ala	ctc Leu	gcc Ala	cgg Arg 250	gga Gly	atc Ile	gcc Ala	atg Met	atg Met 255	agc Ser	768
tac Tyr	cgg Arg	gcc Ala	ccc Pro 260	gag Glu	ggg Gly	ttt Phe	gag Glu	gcc Ala 265	cgc Arg	tgg Trp	ggc Gly	gcg Ala	gag Glu 270	ccc Pro	gag Glu	816
ctc Leu	gly ggg	gaa Glu 275	Ile	cac His	ctg Leu	gac Asp	tac Tyr 280	cag Gln	GJÀ 333	gag Glu	aag Lys	ttc Phe 285	ctc Leu	cgg Arg	cgc Arg	864
ttc Phe	cac His 290	gcc Ala	gag Glu	agc Ser	tac Tyr	ctc Leu 295	gtc Val	ctc Leu	tcc Ser	cgg Arg	gcc Ala 300	atg Met	gac Asp	aac Asn	cac His	912
gac Asp 305	gtg Val	ggc	cgg Arg	ggc Gly	cgg Arg 310	ggc Gly	Gly 999	gtg Val	gag Glu	gag Glu 315	gcc Ala	ctg Leu	aag Lys	cgc Arg	ctc Leu 320	960
agg Arg	gcc Ala	atc Ile	ccc Pro	tcc Ser 325	ctc Leu	ttc Phe	gtg Val	ggc	att Ile 330	gac Asp	acc Thr	gac Asp	ctc Leu	ctc Leu 335	tac Tyr	1008
ccc Pro	gcc Ala	tgg Trp	gag Glu 340	gtg Val	agg Arg	cag Gln	gcg Ala	gcc Ala 345	aag Lys	gcg Ala	gcg Ala	ejå aaa	gcc Ala 350	cgc A rg	tac Tyr	1056
cgg Arg	gag Glu	atc Ile 355	aaa Lys	agc Ser	ccc Pro	cac His	360 GJA BBB	cac His	gac Asp	gcc Ala	ttc Phe	ctc Leu 365	ata Ile	gag Glu	acc Thr	1104
gac Asp	cag Gln 370	gtg Val	gag Glu	gag Glu	atc Ile	ctg Leu 375	gac Asp	gcc Ala	ttc Phe	ctc Leu	ccg Pro 380	tag				1143

<210> 28

<211> 380

<212> PRT

<213> Thermus thermophilus

WO 2004/024932

<400> 28

Met Ser Glu Ile Ala Leu Glu Ala Trp Gly Glu His Glu Ala Leu Leu 1 5 10 15

Leu Lys Pro Pro Arg Ser Pro Leu Ser Ile Pro Pro Pro Lys Pro Arg 20 25 30

Thr Ala Val Leu Phe Pro Arg Arg Glu Gly Phe Tyr Thr Glu Leu Gly 35 40 45

Gly Tyr Leu Pro Glu Val Arg Leu Arg Phe Glu Thr Tyr Gly Thr Leu 50 55 60

Se:		g Ar	g Ar	g Ası	Ası 70		a Va	l Leı	ı Val	Phe 75		Ala	Leu	Thr	Gl ;
Se	r Ala	a Hi	s Le	u Ala 85		Th	г ту	r Asp	90		Thr	Phe	Arg	Ser 95	Le
Sei	r Pro) Le	u Gli 100	u Glr	n Ala	Phe	e Gly	/ Arg		Gly	Trp	Trp	Asp 110	Ser	Le
Va]	l Gly	Pro 11:		/ Arg	Ile	Let	120		Ala	Leu	Tyr	Tyr 125	Val	Val	Se
Ala	Asn 130		s Lev	ı Gly	Ser	Суя 135	_	Gly	Ser	Thr	Gly 140	Pro	Leu	Ser	Let
Asp 145		His	s Thr	Gly	Arg 150	Pro	туг	Gly	Arg	Asp 155	Phe	Pro	Pro	Leu	Th:
Ile	Arg	Asp	Leu	Ala 165	Arg	Ala	Gln	Ala	Arg 170	Leu	Leu	Asp	His	Leu 175	Gl
Val	Glu	Lys	180	Ile	Val	Ile	Gly	Gly 185	Ser	Leu	Gly	Gly	Met 190	Val	Ala
Leu	Glu	Phe 195		Leu	Met	Tyr	Pro 200	Glu	Arg	Val	Lys	Lуs 205	Leu	Val	Va]
Leu	Ala 210	Ala	Pro	Ala	Arg	His 215	Gly	Pro	Trp	Ala.	Arg 220	Ala	Phe	Asn	His
Leu 225		Arg	Gln	Ala	Ile 230	Leu	Gln	Asp	Pro	Glu 235	Tyr	Gln	Lys	Gly	Asr 240
Pro	Ala	Pro	Lys	Gly 245	Met	Ala	Leu	Ala	Arg 250	Gly	Ile	Ala	Met	Met 255	Ser
Tyr	Arg	Ala	Pro 260	Glu	Gly	Phe	Glu	Ala 265	Arg	Trp	Gly	Ala	Glu 270	Pro	Glu
Leu	Gly	Glu 275	Ile	His	Leu	Asp	Tyr 280	Gln	Gly	Glu	Lys	Phe 285	Leu	Arg	Arg
Phe	His 290	Ala	Glu	Ser .		Leu 295	Val	Leu	Ser	Arg	Ala 300	Met	Asp	Asn	His
Asp 305	Val	Gly	Arg	Gly	Arg 310	Gly	Gly	Val	Glu	Glu 315	Ala	Leu	Lys	Arg	Leu 320
Arg	Ala	Ile	Pro	Ser 325	Leu	Phe	Val	Gly	11e 330	Asp	Thr	Asp	Leu	Leu 335	Tyr
Pro	Ala	Trp	Glu 340	Val	Arg	Gln	Ala	Ala 345	ГÀв	Ala	Ala	Gly	Ala 350	Arg	Тут
Arg	Glu	Ile 355	Lys	Ser	Pro 1	His	Gly 360	His	ysb	Ala	Phe	Leu 365	Ile	Glu	Thr
Asp	Gln 370	Val	Glu	Glu :		Leu 375	Asp	Ala	Phe		Pro				

	2> DI 3> De		COCCI	us r	adio	dura	ns									
<222	L> CI 2> (:	DS 1) DR01:	-	2)												
ata	o> 29 acc Thr	acc	gtg Val	ctc Leu 5	gcg Ala	ggc Gly	cac His	gcc Ala	tct Ser 10	gcc Ala	ctg Leu	ctg Leu	ctg Leu	acc Thr 15	gaa Glu	48
gaa Glu	ccc Pro	gac Asp	tgt Cys 20	tcg Ser	ggg Gly	ccg Pro	cag Gln	acg Thr 25	gtc Val	gtt Val	ctc Leu	ttc Phe	cgg Arg 30	cgt Arg	gag Glu	96
ccg Pro	ctg Leu	ctg Leu 35	ctc Leu	gac Asp	tgc Cys	gga Gly	cgg Arg 40	gcg Ala	ctg Leu	agc Ser	gac Asp	gtg Val 45	cgg Arg	gtg Val	gcc Ala	144
ttt Phe	cac His 50	acc Thr	tac Tyr	ggc	acg Thr	ccg Pro 55	cgc Arg	gcc Ala	gac Asp	gcc Ala	acg Thr 60	ctg Leu	gtg Val	ctg Leu	cac His	192
gcc Ala 65	ctg Leu	acc Thr	ggc Gly	gac Asp	agc Ser 70	gcg Ala	gtg Val	cac His	gag Glu	tgg Trp 75	tgg Trp	ccc Pro	gac Asp	ttt Phe	ctg Leu 80	240
ggc	gcg Ala	ggc ggc	cgg Arg	cca Pro 85	ctg Leu	gac Asp	ccg Pro	gca Ala	gac Asp 90	gac Asp	tac Tyr	gtg Val	gtg Val	tgc Cys 95	gcc Ala	288
aac Asn	gtc Val	ctc Leu	ggc Gly 100	gly	tgc Cys	gcc Ala	ggc	acg Thr 105	acg Thr	agc Ser	gcc Ala	gct Ala	gaa Glu 110	ctc Leu	gcc Ala	336
gcc Ala	acc Thr	tgt Cys 115	tcc Ser	gga Gly	ccg Pro	gtg Val	ccg Pro 120	ctc Leu	agc Ser	ctg Leu	cgc Arg	gac Asp 125	atg Met	gcc Ala	egg Arg	384
gtg Val	130 GJA 333	egc Arg	gcc Ala	ctg Leu	ctg Leu	gat Asp 135	tct Ser	ctc Leu	ggc ggc	gtg Val	cga Arg 140	cgg Arg	gtg Val	cgg	gtc Val	432
atc Ile 145	Gly ggc	gcg	agc Ser	atg Met	ggc Gly 150	61Å 888	atg Met	ctc Leu	gcc Ala	tac Tyr 155	gcc Ala	tgg Trp	ctg Leu	ctg Leu	gag Glu 160	480
tgc Cys	ccc Pro	gac Asp	ctg Leu	gtg Val 165	gaa Glu	aag Lys	gcc Ala	gtg Val	att Ile 170	ata Ile	gga Gly	gcc	ccg Pro	gcg Ala 175	Arg	528
cac His	tcg Ser	ccc Pro	tgg Trp 180	gct Ala	att Ile	gga Gly	ctg Leu	aac Asn 185	acg Thr	gcg Ala	gcc Ala	cgc Arg	agc Ser 190	Ala	att Ile	576
gcc Ala	ctc Leu	gct Ala 195	ccc Pro	ggc	ggc Gly	gag Glu	500 GJA 333	ctg Leu	aag Lys	gtg Val	gcg Ala	cgc Arg 205	Gln	att Ile	gcc Ala	624
atg Met	ctc Leu	agt Ser	tac Tyr	cgc Arg	agc Ser	ccc Pro	gaa Glu	agc Ser	cta Leu	agc Ser	cgc Arg	acg Thr	cag Gln	gcg Ala	gjy aaa	672

WO 2004/024932

PCT/EP2003/009452

210	215	220
210	415	220

	Arg														caa Gln 240	720
ggc	gaa Glu	aaa Lys	ctc Leu	gcc Ala 245	gcc	cgc Arg	ttc Phe	gac Asp	gag Glu 250	cag Gln	acc Thr	tac Tyr	tgc Cys	gcc Ala 255	ctc Leu	768
acc Thr	tgg Trp	gcg Ala	atg Met 260	gac Asp	gcc Ala	ttt Phe	cag Gln	ccg Pro 265	agc Ser	agc Ser	gcc Ala	gac Asp	ctc Leu 270	aaa Lys	gcg Ala	816
										tcc Ser						864
ccc Pro	gcc Ala 290	gcc Ala	gag Glu	gtc Val	cgc Arg	gcc Ala 295	tgc Cys	gcc Ala	gcc Ala	gag Glu	ctt Leu 300	ccc Pro	cac His	gcc Ala	gac Asp	912
tac Tyr 305	tgg Trp	gaa Glu	ctg Leu	ggc	agc Ser 310	att Ile	cac His	ggc	cac His	gac Asp 315	gec Ala	ttt Phe	ttg Leu	atg Met	gac Asp 320	960
										ttt Phe						1002
tga																1005

44/92

<210> 30

<211> 334

<212> PRT

<213> Deinococcus radiodurans

<400> 30

Val Thr Ala Val Leu Ala Gly His Ala Ser Ala Leu Leu Leu Thr Glu

1 5 10 15

Glu Pro Asp Cys Ser Gly Pro Gln Thr Val Val Leu Phe Arg Arg Glu 20 25 30

Pro Leu Leu Asp Cys Gly Arg Ala Leu Ser Asp Val Arg Val Ala

Phe His Thr Tyr Gly Thr Pro Arg Ala Asp Ala Thr Leu Val Leu His 50 55 60

Ala Leu Thr Gly Asp Ser Ala Val His Glu Trp Trp Pro Asp Phe Leu 65 70 75 80

Gly Ala Gly Arg Pro Leu Asp Pro Ala Asp Asp Tyr Val Val Cys Ala 85 90 95

Asn Val Leu Gly Gly Cys Ala Gly Thr Thr Ser Ala Ala Glu Leu Ala 100 105 110

Ala Thr Cys Ser Gly Pro Val Pro Leu Ser Leu Arg Asp Met Ala Arg 115 120 125

PCT/EP2003/009452

WO 2004/024932

45/92 Val Gly Arg Ala Leu Leu Asp Ser Leu Gly Val Arg Arg Val Arg Val Ile Gly Ala Ser Met Gly Gly Met Leu Ala Tyr Ala Trp Leu Leu Glu Cys Pro Asp Leu Val Glu Lys Ala Val Ile Ile Gly Ala Pro Ala Arg 165 His Ser Pro Trp Ala Ile Gly Leu Asn Thr Ala Ala Arg Ser Ala Ile

Ala Leu Ala Pro Gly Gly Glu Gly Leu Lys Val Ala Arg Gln Ile Ala

200

Met Leu Ser Tyr Arg Ser Pro Glu Ser Leu Ser Arg Thr Gln Ala Gly 215

Gln Arg Val Pro Gly Val Pro Ala Val Thr Ser Tyr Leu His Tyr Gln 230 235

Gly Glu Lys Leu Ala Ala Arg Phe Asp Glu Gln Thr Tyr Cys Ala Leu 250

Thr Trp Ala Met Asp Ala Phe Gln Pro Ser Ser Ala Asp Leu Lys Ala 265

Val Arg Ala Pro Val Leu Val Val Gly Ile Ser Ser Asp Leu Leu Tyr 280

Pro Ala Ala Glu Val Arg Ala Cys Ala Ala Glu Leu Pro His Ala Asp 295

Tyr Trp Glu Leu Gly Ser Ile His Gly His Asp Ala Phe Leu Met Asp 315 310

Pro Gln Asp Leu Pro Glu Arg Val Gly Ala Phe Leu Arg Ser 330 325

<210> 31

<211> 1461

<212> DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (1)..(1458)

<223> RSC08123

<400> 31

atg tog cat act tta aaa tog aaa acg ctc caa gag ctg gac att gag Met Ser His Thr Leu Lys Ser Lys Thr Leu Gln Glu Leu Asp Ile Glu

gag att aag gaa act aac cca ttg ctc aaa cta gtt caa ggg cag agg Glu Ile Lys Glu Thr Asn Pro Leu Leu Lys Leu Val Gln Gly Gln Arg 20

att gtt caa gtt ccg gaa cta gtg ctt gag tct ggc gtg gtc ata aat Ile Val Gln Val Pro Glu Leu Val Leu Glu Ser Gly Val Val Ile Asn 35

aat Asn	tto Phe 50	Pro	att o Ile	gct Ala	tat Tyr	aag Lys 55	Thr	tgg Trp	ggt Gly	aca Thr	ctg Leu 60	Asn	gaa Glu	gct Ala	ggt Gly	192
gat Asp 65	Asn	gtt Val	ctg Lev	gta (Va)	att Ile 70	Cys	cat His	gcc Ala	ttg Leu	act Thr 75	Gly	tcc Ser	gca Ala	gat Asp	gtt Val 80	240
gct Ala	gac Asp	tgg Trp	tgg Trp	ggc Gly 85	cct Pro	ctt Leu	ctg Leu	ggt	aac Asn 90	Asp	tta Leu	gca Ala	ttc Phe	gac Asp 95	cca Pro	288
tca Ser	agg Arg	ttt Phe	ttt Phe 100	Ile	ata Ile	tgt Cys	tta Leu	aac Asn 105	tct Ser	atg Met	ggc Gly	tct Ser	cca Pro 110	tat Tyr	Gly aaa	336
tct Ser	ttt Phe	tcg Ser 115	cca Pro	tta Leu	acg Thr	ata Ile	aat Asn 120	gag Glu	gag Glu	acg Thr	ggc	gtt Val 125	aga Arg	tat Tyr	gga Gly	384
					tgt Cys											432
att Ile 145	gtt Val	ctg Leu	gat Asp	tct Ser	ctg Leu 150	gga Gly	gta Val	aag Lys	tca Ser	ata Ile 155	gcc Ala	tgt Cys	gtt Val	att Ile	ggt Gly 160	480
ggc Gly	tct Ser	atg Met	Gly 999	999 Gly 165	atg Met	ctg Leu	agt Ser	ttg Leu	gaa Glu 170	tgg Trp	gct Ala	gcc Ala	atg Met	tat Tyr 175	ggt Gly	528
aag Lys																576
tct Ser	Ala					Trp										624
tca Ser	_	_	_	_	_	_				_						672
gtg Val 225	gcc Ala	gga Gly	cta Leu	tcg Ser	gct Ala 230	gca Ala	cgt Arg	atg Met	tct Ser	gca Ala 235	ttg Leu	ttg Leu	acg Thr	tac Tyr	agg Arg 240	720
aca a	aga Arg	aac Asn	agt Ser	ttc Phe 245	gag Glu	aac Asn	aaa Lys	Phe	tcc Ser 250	aga Arg	aga Arg	tct Ser	cct Pro	tca Ser 255	ata Ile	768
gca (Ala (caa (Gln (Gln	caa Gln 260	aaa Lys	gct Ala	caa Gln	Arg	gag Glu 265	gag Glu	aca Thr	cgc Arg	Lys	cca Pro 270	tct Ser	act Thr	816
gtc a Val s	Ser (gaa 31u 275	cac His	tcc Ser	cta Leu	Gln :	atc (Ile 1 280	cac His .	aat Asn	gat Asp	GJÀ aaa	tat Tyr 285	aaa Lys	aca Thr	aaa Lys	864
gcc a Ala s	agc a Ser 7	ct (gcc Ala	atc : Ile :	Ala (ggc a Gly : 295	att ([le &	tct (Ser (gly 999	Gln	aaa Lys 300	ggt Gly	caa Gln	agc Ser	gtg Val	912

PCT/EP2003/009452

47/92

gtg Val 305	tcc Ser	acc Thr	gca Ala	tct Ser	tct Ser 310	tcg Ser	gat Asp	tca Ser	ttg Leu	aat Asn 315	tct Ser	tca Ser	aca Thr	tcg Ser	atg Met 320	960
act Thr	tcg Ser	gta Val	agt Ser	tct Ser 325	gta Val	acg Thr	ggt Gly	gaa Glu	gtg Val 330	aag Lys	gac Asp	ata Ile	aag Lys	cct Pro 335	gcg Ala	1008
cag Gln	acg Thr	tat Tyr	ttt Phe 340	tct Ser	gca Ala	caa Gln	agt Ser	tac Tyr 345	ttg Leu	agg Arg	tac Tyr	cag Gln	ggc Gly 350	aca Thr	aag Lys	1056
ttc Phe	atc Ile	aat Asn 355	agg Arg	ttc Phe	gac Asp	gcc Ala	aat Asn 360	tgt Cys	tac Tyr	att Ile	gcc Ala	atc Ile 365	aca Thr	cgt Arg	aaa Lys	1104
ctg Leu	gat Asp 370	acg Thr	cac His	gat Asp	ttg Leu	gca Ala 375	aga Arg	gac Asp	aga Arg	gta Val	gat Asp 380	gac Asp	atc Ile	act Thr	gag Glu	1152
gtc Val 385	ctt Leu	tct Ser	acc Thr	atc Ile	caa Gln 390	caa Gln	cca Pro	tcc Ser	ctg Leu	atc Ile 395	atc Ile	ggt Gly	atc Ile	caa Gln	tct Ser 400	1200
Asp	Gly	Leu	Phe	Thr 405	Tyr	Ser	Glu	Gln	Glu 410	Phe	Leu	Ala	Glu	cac His 415	Ile	1248
Pro	Lys	Ser	Gln 420	Leu	Glu	Lys	Ile	Glu 425	Ser	Pro	Glu	Gly	His 430	gat Asp	Ala	1296
Phe	Leu	Leu 435	Glu	Phe	Lys	Leu	Ile 440	Asn	Lys	Leu	Ile	Val 445	Gln	ttt Phe	Leu	1344
Lys	Thr 450	Asn	Cys	Lys	Ala	11e 455	Thr	Aap	Ala	Ala	Pro 460	Arg	Ala		Gly	1392
ggt Gly 465	gac Asp	gtt Val	ggt Gly	aac Asn	gat Asp 470	gaa Glu	acg Thr	aag Lys	acg Thr	tct Ser 475	gtc Val	ttt Phe	Gly	gag Glu	gcc Ala 480	1440
		gtt Val				tag										1461

<210> 32

<211> 486

<212> PRT

<213> Saccharomyces cerevisiae

<400> 32

Met Ser His Thr Leu Lys Ser Lys Thr Leu Gln Glu Leu Asp Ile Glu
1 5 10 15

Glu Ile Lys Glu Thr Asn Pro Leu Leu Lys Leu Val Gln Gly Gln Arg
20 25 30

Ile Val Gln Val Pro Glu Leu Val Leu Glu Ser Gly Val Val Ile Asn .

PCT/EP2003/009452

48/92

35 40 45 Asn Phe Pro Ile Ala Tyr Lys Thr Trp Gly Thr Leu Asn Glu Ala Gly Asp Asn Val Leu Val Ile Cys His Ala Leu Thr Gly Ser Ala Asp Val Ala Asp Trp Trp Gly Pro Leu Leu Gly Asn Asp Leu Ala Phe Asp Pro 90 Ser Arg Phe Phe Ile Ile Cys Leu Asn Ser Met Gly Ser Pro Tyr Gly 105 Ser Phe Ser Pro Leu Thr Ile Asn Glu Glu Thr Gly Val Arg Tyr Gly Pro Glu Phe Pro Leu Cys Thr Val Arg Asp Val Arg Ala His Arg 135 130 Ile Val Leu Asp Ser Leu Gly Val Lys Ser Ile Ala Cys Val Ile Gly 150 155 Gly Ser Met Gly Gly Met Leu Ser Leu Glu Trp Ala Ala Met Tyr Gly Lys Glu Tyr Val Lys Asn Met Val Ala Leu Ala Thr Ser Ala Arg His 185 Ser Ala Trp Cys Ile Ser Trp Ser Glu Ala Gln Arg Gln Ser Ile Tyr Ser Asp Pro Asn Tyr Leu Asp Gly Tyr Tyr Pro Val Glu Glu Gln Pro 215 Val Ala Gly Leu Ser Ala Ala Arg Met Ser Ala Leu Leu Thr Tyr Arg Thr Arg Asn Ser Phe Glu Asn Lys Phe Ser Arg Arg Ser Pro Ser Ile 250 Ala Gln Gln Lys Ala Gln Arg Glu Glu Thr Arg Lys Pro Ser Thr 260 Val Ser Glu His Ser Leu Gln Ile His Asn Asp Gly Tyr Lys Thr Lys Ala Ser Thr Ala Ile Ala Gly Ile Ser Gly Gln Lys Gly Gln Ser Val 290 Val Ser Thr Ala Ser Ser Ser Asp Ser Leu Asn Ser Ser Thr Ser Met Thr Ser Val Ser Ser Val Thr Gly Glu Val Lys Asp Ile Lys Pro Ala 325 Gln Thr Tyr Phe Ser Ala Gln Ser Tyr Leu Arg Tyr Gln Gly Thr Lys 345 Phe Ile Asn Arg Phe Asp Ala Asn Cys Tyr Ile Ala Ile Thr Arg Lys

Leu Asp Thr His Asp Leu Ala Arg Asp Arg Val Asp Asp Ile Thr Glu

375

PCT/EP2003/009452

Val	Leu	Ser	Thr	Ile	Gln	Gln	Pro	Ser	Leu	Ile	Ile	Gly	Ile	Gln	Ser
385					390					395		_			400

380

Asp Gly Leu Phe Thr Tyr Ser Glu Glu Phe Leu Ala Glu His Ile 405 410 415

Pro Lys Ser Gln Leu Glu Lys Ile Glu Ser Pro Glu Gly His Asp Ala
420 425 430

Phe Leu Leu Glu Phe Lys Leu Ile Asn Lys Leu Ile Val Gln Phe Leu 435 440 445

Lys Thr Asn Cys Lys Ala Ile Thr Asp Ala Ala Pro Arg Ala Trp Gly
450 460

Gly Asp Val Gly Asn Asp Glu Thr Lys Thr Ser Val Phe Gly Glu Ala 465 470 475 480

Glu Glu Val Thr Asn Trp 485

<210> 33

<211> 1470

370

<212> DNA

<213> Schizosaccharomyces pombe

<220>

<221> CDS

<222> (1)..(1467)

<223> RSO01936

<400> 33

atg gaa tot caa tot cog att gaa toa att gto tit act gac too tgt 48
Met Glu Ser Gln Ser Pro Ile Glu Ser Ile Val Phe Thr Asp Ser Cys
1 5 10 15

cat ccg tct cag caa gaa aat aaa ttt gtt cag ctt att tca gat caa 96 His Pro Ser Gln Gln Glu Asn Lys Phe Val Gln Leu Ile Ser Asp Gln 20 25 30

aaa att gca att gtt ccc aaa ttt acg ttg gag tgt ggc gac atc ctt 144
Lys Ile Ala Ile Val Pro Lys Phe Thr Leu Glu Cys Gly Asp Ile Leu
35 40 45

tac gat gtt ccc gtt gcc ttc aag act tgg ggt act ttg aat aaa gaa 192
Tyr Asp Val Pro Val Ala Phe Lys Thr Trp Gly Thr Leu Asn Lys Glu
50 55 60

gga aac aat tgt ctt ctt tgt cat gct tta agt ggt tct gct gat 240 Gly Asn Asn Cys Leu Leu Cys His Ala Leu Ser Gly Ser Ala Asp 65 70 75 80

gct gga gat tgg tgg ggt cct tta ctc ggt cct ggt cgt gcg ttt gat 288
Ala Gly Asp Trp Trp Gly Pro Leu Leu Gly Pro Gly Arg Ala Phe Asp
85 90 95

cca tca cat ttc ttt atc gta tgc ctt aat tct ctt ggt agc cca tac 336 pro Ser His Phe Phe Ile Val Cys Leu Asn Ser Leu Gly Ser Pro Tyr 100 105 110

gga Gly	agc Ser	gcc Ala 115	Ser	ect Pro	gtt Val	aca l Thi	tgg Trp 120	Asn	gct Ala	gag Glu	act Thr	cat His 125	agt Ser	gtt Val	tat Tyr	384
gly 999	cca Pro 130	Glu	ttt Phe	cct Pro	tta Lei	a gca a Ala 135	Thr	ata Ile	cgt Arg	gat Asp	gat Asp 140	gta Val	aac Asn	atc Ile	cat His	432
						, Leu								gca Ala		480
ggt Gly	ggc	tcc Ser	atg Met	ggt Gly 165	Gly	atg Met	ctg Leu	Val	ttg Leu 170	gag Glu	tgg Trp	gca Ala	ttt Phe	gat Asp 175	aag Lys	528
gaa Glu	ttt Phe	gtg Val	cga Arg 180	tca Ser	att Ile	gtt Val	ccc Pro	att Ile 185	tct Ser	acc Thr	tct Ser	ctt Leu	cgt Arg 190	cat His	tcc Ser	576
gcg Ala	tgg Trp	tgc Cys 195	att Ile	agc Ser	tgg Trp	tct Ser	gaa Glu 200	gcg Ala	caa Gln	cgc Arg	cag Gln	agt Ser 205	ata Ile	tat Tyr	tct Ser	624
gac Asp	cct Pro 210	aag Lys	ttt Phe	aat Asn	gat Asp	gga Gly 215	tac Tyr	tac Tyr	ggc Gly	ata Ile	gac Asp 220	gat Asp	cag Gln	cct Pro	gta Val	672
agt Ser 225	ggc Gly	ctt Leu	gga Gly	gct Ala	gct Ala 230	cgt Arg	atg Met	tct Ser	gcc Ala	ttg Leu 235	ttg Leu	aca Thr	tat Tyr	cgc Arg	tcc Ser 240	720
aaa Lys	tgt Cys	tct Ser	ttc Phe	gaa Glu 245	cgt Arg	cgc Arg	ttt Phe	gcc Ala	cgt Arg 250	act Thr	gtt Val	cct Pro	gat Asp	gcg Ala 255	tct Ser	768
cgt Arg	cac His	ccc Pro	tat Tyr 260	cca Pro	gat Asp	cgt Arg	tta Leu	ecc Pro 265	act Thr	cct Pro	ctc Leu	acg Thr	ccc Pro 270	agt Ser	aat Asn	816
gca Ala	cat His	tgg Trp 275	gtc Val	gtt Val	cac His	aac Asn	gaa Glu 280	gga Gly	aac Asn	cgt Arg	aat Asn	cgc Arg 285	cgt Arg	gaa Glu	cga Arg	864
cct Pro	tgt Cys 290	cga Arg	tcc Ser	aat Asn	gga Gly	tca Ser 295	tca Ser	cct Pro	act Thr	tct Ser	gaa Glu 300	agt Ser	gct Ala	tta Leu	aat Asn	912
tcc Ser 305	ccc Pro	gcc Ala	tct Ser	tct Ser	gtc Val 310	tcg Ser	tct Ser	tta Leu	cct Pro	tct Ser 315	tta Leu	ggt Gly	gcc Ala	tct Ser	cag Gln 320	960
act Thr	aca Thr	gac Asp	agt Ser	tct Ser 325	tcc Ser	ctt Leu	aac Asn	cag Gln	agt Ser 330	tcg Ser	tta Leu	tta Leu	aga Arg	cgt Arg 335	cct Pro	1008
gct Ala	aat Asn	act Thr	tac Tyr 340	ttc Phe	tct Ser	gcg Ala	Gln	tcg Ser 345	tat Tyr	tta Leu	cgt Arg	tac Tyr	caa Gln 350	gcg Ala	aag Lys	1056
aag Lys	Phe	gta Val 355	agt Ser	ege Arg	ttt Phe	gat Asp	gct Ala 360	aat Asn	tgt Cys	tac Tyr	att Ile	tcg Ser 365	att Ile	act Thr	aaa Lys	1104

115

PCT/EP2003/009452

										1/92						
		Asp	acc Thr				Thr									1152
			atg Met			Leu										1200
gaa Glu	agc Ser	gat Asp	ggt Gly	ctt Leu 405	Phe	aca Thr	ttt Phe	gac Asp	gaa Glu 410	caa Gln	gtt Val	gaa Glu	att Ile	gcc Ala 415	aaa Lys	1248
			aat Asn 420													1296
			ttg Leu													1344
			gaa Glu													1392
			gat Asp													1440
gga Gly	gaa Glu	atg Met	gaa Glu	gac Asp 485	ata Ile	acc Thr	tcc Ser	tgg Trp	taa							1470
<210 <211 <212 <213	> 48 > PR	9 T	sacc	harc	myce	es po	ombe									
<400 Met 1			Gln	Ser 5	Pro	Ile	Glu	Ser	Ile 10	Val	Phe	Thr	Asp	Ser 15	Сув	
His	Pro	Ser	Gln 20	Gln	Glu	Asn	Lys	Phe 25	Val	Gln	Leu	Ile	Ser 30	Asp	Gln	

His Pro Ser Gln Gln Glu Asn Lys Phe Val Gln Leu Ile Ser Asp Gln 20

Lys Ile Ala Ile Val Pro Lys Phe Thr Leu Glu Cys Gly Asp Ile Leu Tyr Asp Val Pro Val Ala Phe Lys Thr Trp Gly Thr Leu Asn Lys Glu 50

Gly Asn Asn Cys Leu Leu Leu Cys His Ala Leu Ser Gly Ser Ala Asp 65

Ala Gly Asp Trp Trp Gly Pro Leu Leu Gly Pro Gly Arg Ala Phe Asp 90

Pro Ser His Phe Phe Ile Val Cys Leu Asn Ser Leu Gly Ser Pro Tyr 100

Gly Ser Ala Ser Pro Val Thr Trp Asn Ala Glu Thr His Ser Val Tyr

120

Gly	Pro 130		u Ph	e Pro	o Lev	1 Ala 13!		r Il	e Arg	J Asp	Asp 140		Asn	Ile	His
Lys 145		ıIl	e Le	u Gl	150		u Gly	y Va	l Lys	Gln 155		Ala	Met	Ala	Val 160
Gly	Gly	/ Se	r Me	169	y Gly	Met	t Lei	ı Va	l Leu 170		Trp	Ala	Phe	Asp 175	Lys
Glu	Phe	· Vai	180		: Ile	· Val	Pro	189		Thr	Ser	Leu	Arg 190	His	Ser
Ala	Trp	Cys 195		e Sei	Trp	Ser	Glu 200		a Gln	Arg	Gln	Ser 205	Ile	Tyr	Ser
Asp	Pro 210		Phe	e Asn	Asp	Gly 215	_	Туз	Gly	Ile	Asp 220	Asp	Gln	Pro	Val
Ser 225	Gly	Lev	Gly	Ala	Ala 230	Arg	Met	Ser	: Ala	Leu 235	Leu	Thr	Tyr	Arg	Ser 240
Lys	Сув	Ser	Phe	Glu 245	Arg	Arg	Phe	Ala	Arg 250	Thr	Val	Pro	Asp	Ala 255	Ser
			260		qaA			265					270		
		275			His		280					285			_
	290				Gly	295					300				
305					Val 310					315		_			320
				325	Ser				330					335	
			340		Ser			345					350		-
_		355			Phe		360		-			365			-
	370				Asp	375					380				
385				_	390					395				_	400
Glu	Ser	Asp	Gly	Leu 405	Phe	Thr	Phe	Asp	Glu 410	Gln	Val	Glu	Ile	Ala 415	Lys
			420		Thr			425					430	_	
Asp (Phe 435	Leu	Leu	Glu :		Thr 440	Gln	Val	Asn	Ser	His 445	Ile	Gln	Lys
Phe (31n : 150	ГÀЗ	Glu	His		lle 155	Asp	Ile	Met		Gln 460	Thr	Asn	Ser	Phe

Glu Arg Leu Asp Ser Gln Val Asn Asp Thr Asn Arg Glu Ser Val Phe 475 470 465 Gly Glu Met Glu Asp Ile Thr Ser Trp 485 <210> 35 <211> 1113 <212> DNA <213> Xylella almond <220> <221> CDS <222> (1)..(1110) <223> RXFX01562 <400> 35 atg acc gaa ttt atc cct ccg ggc agc cta ttc cat gcg ctc tcc tct 48 Met Thr Glu Phe Ile Pro Pro Gly Ser Leu Phe His Ala Leu Ser Ser cca ttt gcg atg aag cgt ggc gga caa ctc cac cac gcc cgc atc gct 96 Pro Phe Ala Met Lys Arg Gly Gly Gln Leu His His Ala Arg Ile Ala tac gaa aca tgg ggc cgc ctc aat gcc agc gcc acc aat gcc att ctg 144 Tyr Glu Thr Trp Gly Arg Leu Asn Ala Ser Ala Thr Asn Ala Ile Leu atc atg cct ggc tta tca ccc aat gca cat gcc gca cac cat gac agc 192 Ile Met Pro Gly Leu Ser Pro Asn Ala His Ala Ala His His Asp Ser aat gct gag cca ggc tgg tgg gag tca atg cta ggt cca ggc aaa ccc 240 Asn Ala Glu Pro Gly Trp Trp Glu Ser Met Leu Gly Pro Gly Lys Pro 65 atc gac aca gac cgt tgg ttc gtg atc tgt gtc aac tca ctt ggt agc 288 Ile Asp Thr Asp Arg Trp Phe Val Ile Cys Val Asn Ser Leu Gly Ser tgc aaa gga tcg act ggc cct gca tcg tac aac ccc atc acg cag gcc 336 Cys Lys Gly Ser Thr Gly Pro Ala Ser Tyr Asn Pro Ile Thr Gln Ala 105 100 atg tat cgt ttg gac ttt cca gca ctg tca atc gaa gac ggg gcc aac 384 Met Tyr Arg Leu Asp Phe Pro Ala Leu Ser Ile Glu Asp Gly Ala Asn 120 115 tcc gca att gaa gtg gta cat gca ctg ggc atc aag caa ctt gcc agc 432 Ser Ala Ile Glu Val Val His Ala Leu Gly Ile Lys Gln Leu Ala Ser 135 130 ctg atc ggc aat tca atg ggc ggc atg acg gca ctg gcc atc ctg ctg 480 Leu Ile Gly Asn Ser Met Gly Gly Met Thr Ala Leu Ala Ile Leu Leu 145 tta cat cca gat ata gcc cgc agc cac atc aac atc tca ggc agc gcg Leu His Pro Asp Ile Ala Arg Ser His Ile Asn Ile Ser Gly Ser Ala

170

165

caç Glr	g gca n Ala	tta Leu	ccg Pro 180	Phe	tcc Ser	atc Ile	gcc Ala	att Ile 185	Arg	tcg Ser	cta Leu	caa Gln	cgc Arg 190	gag Glu	gcg Ala	576
ato Ile	e cgc Arg	ctg Leu 195	gac Asp	Pro	cat His	tgg Trp	agg Arg 200	cag Gln	gga Gly	gac	tac Tyr	gac Asp 205	gac Asp	acc Thr	cac His	624
tac Tyr	ccg Pro 210	Glu	tcg Ser	ggg ggg	cta Leu	cgc Arg 215	atc Ile	gca Ala	cgc Arg	aaa Lys	ctt Leu 220	ggg Gly	gtg Val	atc Ile	acc Thr	672
tac Tyr 225	Arg	tcc Ser	gcg Ala	ctg Leu	gaa Glu 230	tgg Trp	gac Asp	GJA aaa	cgt Arg	ttt Phe 235	ggc	cgg Arg	gta Val	cgc Arg	ttg Leu 240	720
							aca Thr									768
gaa Glu	aac Asn	tac Tyr	ttg Leu 260	gaa Glu	agc Ser	cat His	gca Ala	cac His 265	ege Arg	ttc Phe	gtg Val	cac His	acc Thr 270	ttc Phe	gac Asp	816
cca Pro	aac Asn	tgc Cys 275	tac Tyr	ctg Leu	tac Tyr	ctg Leu	agc Ser 280	cgc Arg	tcc Ser	atg Met	gac Asp	tgg Trp 285	ttc Phe	gac Asp	gtg Val	864
gcc Ala	gag Glu 290	tac Tyr	gcc Ala	aat Asn	Gly	gac Asp 295	att Ile	ctt Leu	gcc Ala	gly ggg	ctg Leu 300	gcc Ala	agg Arg	atc Ile	cga Arg	912
atc Ile 305	caa Gln	cgc Arg	gca Ala	ctc Leu	gcc Ala 310	atc Ile	ggt Gly	agc Ser	cat His	acc Thr 315	gac Asp	atc Ile	ctc Leu	ttt Phe	cca Pro 320	960
			Gln				gcc Ala	Glu								1008
His	Ala	Thr	Phe 340	Leu	Gly	Leu		Ser 345	Pro	Gln	Gly	His	Asp 350	Ala	Phe	1056
ctt Leu	gtg Val	gat Asp 355	atc Ile	gca Ala	aga Arg	Phe	ggc 360	cct Pro	cca Pro	gtg Val	aag Lys	gaa Glu 365	ttt Phe	ctg Leu	gac Asp	1104
gaa Glu		tga														1113

<210> 36

<211> 370

<212> PRT

<213> Xylella almond

<400> 36

Met Thr Glu Phe Ile Pro Pro Gly Ser Leu Phe His Ala Leu Ser Ser 1 5 10 15

Pro Phe Ala Met Lys Arg Gly Gly Gln Leu His His Ala Arg Ile Ala

20

PCT/EP2003/009452 55/92 25 30 Tyr Glu Thr Trp Gly Arg Leu Asn Ala Ser Ala Thr Asn Ala Ile Leu

Ile Met Pro Gly Leu Ser Pro Asn Ala His Ala His His Asp Ser Asn Ala Glu Pro Gly Trp Trp Glu Ser Met Leu Gly Pro Gly Lys Pro Ile Asp Thr Asp Arg Trp Phe Val Ile Cys Val Asn Ser Leu Gly Ser

Cys Lys Gly Ser Thr Gly Pro Ala Ser Tyr Asn Pro Ile Thr Gln Ala

Met Tyr Arg Leu Asp Phe Pro Ala Leu Ser Ile Glu Asp Gly Ala Asn

Ser Ala Ile Glu Val Val His Ala Leu Gly Ile Lys Gln Leu Ala Ser 135 130

Leu Ile Gly Asn Ser Met Gly Gly Met Thr Ala Leu Ala Ile Leu Leu

Leu His Pro Asp Ile Ala Arg Ser His Ile Asn Ile Ser Gly Ser Ala

Gln Ala Leu Pro Phe Ser Ile Ala Ile Arg Ser Leu Gln Arg Glu Ala

Ile Arg Leu Asp Pro His Trp Arg Gln Gly Asp Tyr Asp Asp Thr His

Tyr Pro Glu Ser Gly Leu Arg Ile Ala Arg Lys Leu Gly Val Ile Thr

Tyr Arg Ser Ala Leu Glu Trp Asp Gly Arg Phe Gly Arg Val Arg Leu

Asp Ser Asp Gln Thr Asn Asp Thr Pro Phe Gly Leu Glu Phe Gln Ile

Glu Asn Tyr Leu Glu Ser His Ala His Arg Phe Val His Thr Phe Asp 265 260

Pro Asn Cys Tyr Leu Tyr Leu Ser Arg Ser Met Asp Trp Phe Asp Val 280

Ala Glu Tyr Ala Asn Gly Asp Ile Leu Ala Gly Leu Ala Arg Ile Arg 290

Ile Gln Arg Ala Leu Ala Ile Gly Ser His Thr Asp Ile Leu Phe Pro 315

Ile Gln Gln Gln Gln Ile Ala Glu Gly Leu Arg Arg Gly Gly Thr 325

His Ala Thr Phe Leu Gly Leu Asp Ser Pro Gln Gly His Asp Ala Phe

Leu Val Asp Ile Ala Arg Phe Gly Pro Pro Val Lys Glu Phe Leu Asp

PCT/EP2003/009452

355 360 365

Glu Leu 370

<210> 37 <211> 1113

<212> DNA

<213> Xylella oleander

<220>

<221> CDS

<222> (1)..(1110)

<223> RXFY01729

<400> 37

atg acc gaa ttt atc cct ccg ggc agc cta ttc cat gcg ctc tcc tct

Met Thr Glu Phe Ile Pro Pro Gly Ser Leu Phe His Ala Leu Ser Ser

1 5 10 15

cca ttt gcg atg aag cgt ggc gga caa ctc cac cac gcc cgc atc gct 96
Pro Phe Ala Met Lys Arg Gly Gly Gln Leu His His Ala Arg Ile Ala

tac gaa aca tgg ggc cgc ctc aat gcc agc gcc acc aat gcc att ctg 144
Tyr Glu Thr Trp Gly Arg Leu Asn Ala Ser Ala Thr Asn Ala Ile Leu
35 40 45

atc atg cct ggc tta tca ccc aat gca cat gcc gca cac cat gac agc 192

Ile Met Pro Gly Leu Ser Pro Asn Ala His Ala Ala His His Asp Ser

50 55 60

aat gct gag cca ggc tgg tgg gag tca atg cta ggt cca ggc aaa ccc 240 Asn Ala Glu Pro Gly Trp Trp Glu Ser Met Leu Gly Pro Gly Lys Pro 65 70 75 80

atc gac aca gac cgt tgg ttc gtg atc tgt gtc aac tca ctt ggt agc 288

Ile Asp Thr Asp Arg Trp Phe Val Ile Cys Val Asn Ser Leu Gly Ser

85 90 95

tgc aaa gga tcg act ggc cct gca tcg tac aac ccc atc acg cag gcc 336 Cys Lys Gly Ser Thr Gly Pro Ala Ser Tyr Asn Pro Ile Thr Gln Ala 100 105 110

atg tat cgt ttg gac ttt cca gca ctg tca atc gaa gac ggg gcc aac 384 Met Tyr Arg Leu Asp Phe Pro Ala Leu Ser Ile Glu Asp Gly Ala Asn

gcc gca att gaa gtg gta cat gca ctg ggc atc aag caa ctt gcc agc 432 Ala Ala Ile Glu Val Val His Ala Leu Gly Ile Lys Gln Leu Ala Ser 130 135 140

ctg atc ggc aat tca atg ggg ggc atg acg aca ctg gcc atc ctg ctg
Leu Ile Gly Asn Ser Met Gly Gly Met Thr Thr Leu Ala Ile Leu Leu
145 150 155 160

tta cat cca gat att gcc cgc agc cac atc aac atc tca ggc agc gcg 528 Leu His Pro Asp Ile Ala Arg Ser His Ile Asn Ile Ser Gly Ser Ala 165 170 175

cag gca tta ccg ttt tcc atc gcc att cgc tcg cta caa cgc gag gcg 576 Gln Ala Leu Pro Phe Ser Ile Ala Ile Arg Ser Leu Gln Arg Glu Ala

PCT/EP2003/009452

57/92

	180	185		190	
atc cgc ctg Ile Arg Leu 195	gac ccc cat Asp Pro His	tgg aag cag Trp Lys Gln 200	gga gac tac gac Gly Asp Tyr Asp 205	gac acc cac Asp Thr His	624
tac ccg gaa Tyr Pro Glu 210	tcg ggg cta Ser Gly Leu	cgc atc gca Arg Ile Ala 215	cgc aaa ctc ggg Arg Lys Leu Gly 220	gtg atc acc Val Ile Thr	672
tac cgc tcc Tyr Arg Ser 225	gcg ctg gaa Ala Leu Glu 230	Trp Asp Gly	cgt ttt ggc cgg Arg Phe Gly Arg 235	gta cgc ttg Val Arg Leu 240	720
gat tcg gac Asp Ser Asp	caa acc aac Gln Thr Asn 245	gac aca cca Asp Thr Pro	ttc gga ctg gaa Phe Gly Leu Glu 250	ttc caa att Phe Gln Ile 255	768
gaa aac tac Glu Asn Tyr	ttg gaa agc Leu Glu Ser 260	cat gca cac His Ala His 265	cgc ttc gtg cac Arg Phe Val His	acc ttc gac Thr Phe Asp 270	816
Pro Asn Cys 275	Tyr Leu Tyr	Leu Ser Arg 280	tcc atg gac tgg Ser Met Asp Trp 285	Phe Asp Val	864
Ala Glu Tyr 290	Ala Asn Gly	Asp Ile Leu 295	gcc ggg ctg gcc Ala Gly Leu Ala 300	arg lie arg	912
Ile Gln Arg 305	Ala Leu Ala 310	Ile Gly Ser	cat acc gac atc His Thr Asp Ile 315	Leu Phe Pro 320	960
Ile Gln Gln	Gln Gln Gln 325	Ile Ala Glu	ggg cta cgc cgt Gly Leu Arg Arg 330	335	1008
His Ala Thr	Phe Leu Gly 340	Leu Asp Ser 345	ccg cag gga cat Pro Gln Gly His	350	1056
ctt gtg gat Leu Val Asp 355	atc gca gga Ile Ala Gly	ttt ggc cct Phe Gly Pro 360	cca gtg aag gaa Pro Val Lys Glu 365	Pue ren Gra	1104
gaa ctg tga Glu Leu 370					1113
<210> 38 <211> 370 <212> PRT <213> Xylel	la oleander				•
<400> 38 Met Thr Glu 1	Phe Ile Pro 5	Pro Gly Ser	Leu Phe His Ala	Leu Ser Ser 15	
Pro Phe Ala	Met Lys Arg 20	Gly Gly Gln 25	Leu His His Ala	Arg Ile Ala 30	

PCT/EP2003/009452

58/92

Tyr Glu Thr Trp Gly Arg Leu Asn Ala Ser Ala Thr Asn Ala Ile Leu 35 40 45

Ile Met Pro Gly Leu Ser Pro Asn Ala His Ala His His Asp Ser
50 55 60

Asn Ala Glu Pro Gly Trp Trp Glu Ser Met Leu Gly Pro Gly Lys Pro 65 70 75 80

Ile Asp Thr Asp Arg Trp Phe Val Ile Cys Val Asn Ser Leu Gly Ser 85 90 95

Cys Lys Gly Ser Thr Gly Pro Ala Ser Tyr Asn Pro Ile Thr Gln Ala 100 105 110

Met Tyr Arg Leu Asp Phe Pro Ala Leu Ser Ile Glu Asp Gly Ala Asn 115 120 125

Ala Ala Ile Glu Val Val His Ala Leu Gly Ile Lys Gln Leu Ala Ser 130 135 140

Leu Ile Gly Asn Ser Met Gly Gly Met Thr Thr Leu Ala Ile Leu Leu 145 150 155 160

Leu His Pro Asp Ile Ala Arg Ser His Ile Asn Ile Ser Gly Ser Ala 165 170 175

Gln Ala Leu Pro Phe Ser Ile Ala Ile Arg Ser Leu Gln Arg Glu Ala 180 185 190

Ile Arg Leu Asp Pro His Trp Lys Gln Gly Asp Tyr Asp Asp Thr His
195 200 205

Tyr Pro Glu Ser Gly Leu Arg Ile Ala Arg Lys Leu Gly Val Ile Thr 210 215 220

Tyr Arg Ser Ala Leu Glu Trp Asp Gly Arg Phe Gly Arg Val Arg Leu 225 230 235 240

Asp Ser Asp Gln Thr Asn Asp Thr Pro Phe Gly Leu Glu Phe Gln Ile 245 250 255

Glu Asn Tyr Leu Glu Ser His Ala His Arg Phe Val His Thr Phe Asp 260 265 270

Pro Asn Cys Tyr Leu Tyr Leu Ser Arg Ser Met Asp Trp Phe Asp Val 275 280 285

Ala Glu Tyr Ala Asn Gly Asp Ile Leu Ala Gly Leu Ala Arg Ile Arg 290 295 300

Ile Gln Arg Ala Leu Ala Ile Gly Ser His Thr Asp Ile Leu Phe Pro 305 310 315 320

Ile Gln Gln Gln Gln Ile Ala Glu Gly Leu Arg Arg Gly Gly Thr 325 330 335

His Ala Thr Phe Leu Gly Leu Asp Ser Pro Gln Gly His Asp Ala Phe 340 345 350

Leu Val Asp Ile Ala Gly Phe Gly Pro Pro Val Lys Glu Phe Leu Gly 355 360 365

48

96

WO 2004/024932 59/92

Glu Leu

370 <210> 39 <211> 1578 <212> DNA <213> Emericella nidulans <220> <221> CDS <222> (1)..(1575) <223> REN00010 <400> 39 atg agt ccg ctg aac ggc gtc gct cgt tcc ttt ccg cgg ccc ttc cag Met Ser Pro Leu Asn Gly Val Ala Arg Ser Phe Pro Arg Pro Phe Gln gec gtg acc agg egg eet tit ega gtt gte eag eeg gee ate gee tgt Ala Val Thr Arg Arg Pro Phe Arg Val Val Gln Pro Ala Ile Ala Cys 20

25 ceg tee aac age egg teg ttt aac cat tet ega tea tta ega tea aeg Pro Ser Asn Ser Arg Ser Phe Asn His Ser Arg Ser Leu Arg Ser Thr 40

10

ggg tot cag too coe get coa toe coa ege gae toe teg aat eee geg 192 Gly Ser Gln Ser Pro Ala Pro Ser Pro Arg Asp Ser Ser Asn Pro Ala 50

ctg tee tte cet tge etc gae gee cag gag gee aag tee get ett ett Leu Ser Phe Pro Cys Leu Asp Ala Gln Glu Ala Lys Ser Ala Leu Leu 70 65

tec geg ega tet ett ggt tea gge eet gaa eee tee tat aee gee gge 288 Ser Ala Arg Ser Leu Gly Ser Gly Pro Glu Pro Ser Tyr Thr Ala Gly 90

cac cac gaa cga ttc cat tcc gac gaa ccg ctg ctc ctt gat tgg ggc 336 His His Glu Arg Phe His Ser Asp Glu Pro Leu Leu Asp Trp Gly 100 105

ggt ttg ctt cca gaa ttt gat atc gca tat gag aca tgg ggc cag ctg 384 Gly Leu Leu Pro Glu Phe Asp Ile Ala Tyr Glu Thr Trp Gly Gln Leu 120 115

aac gag aag aag gat aat gtc att ctg ctg cat acc ggt ctg tct gca 432 Asn Glu Lys Lys Asp Asn Val Ile Leu Leu His Thr Gly Leu Ser Ala 130

tet age cat geg cae age ace gaa geg aac eeg aag eee gge tgg tgg Ser Ser His Ala His Ser Thr Glu Ala Asn Pro Lys Pro Gly Trp Trp 160 145

gag aaa ttc ata ggt cct ggg aag acg cta gat acg gac aag tac ttt 528 Glu Lys Phe Ile Gly Pro Gly Lys Thr Leu Asp Thr Asp Lys Tyr Phe 175 165

gtg atc tgc acc aat gtc ctt gga ggg tgc tac ggt agc acg ggg ccc Val Ile Cys Thr Asn Val Leu Gly Gly Cys Tyr Gly Ser Thr Gly Pro 185 180

			l As					Lys				acg Thr 205				624
atc Ile	ctg Lev 210	Thi	ati	gaa e Gli	a gat u Asj	t atg Met 215	: Val	g ega Arg	gcg JAla	g cag a Glr	tto Phe 220	ege Arg	ctt Leu	ttg Leu	gac Asp	672
	Leu					Lev					Gly	tcc Ser				720
					a Ala					Phe		gag Glu				768
				Ile					Arg			ccg Pro				816
												gat Asp 285				864
Ala	Arg 290	Gly	Phe	Tyr	Tyr	Авр 295	Ser	Ile	Pro	Pro	His 300	tca Ser	Gly	Met	Lys	912
Leu 305	Ala	Arg	Glu	Ile	Ala 310	Thr	Val	Thr	Tyr	Arg 315	Ser	gga Gly	Pro	Glu	Trp 320	960
Glu	Lys	Arg	Phe	Gly 325	Arg	Lys	Arg	Ala	Asp 330	Pro	Ser	aaa Lys	Gln	Pro 335	Ala	1008
Leu	Сув	Pro	Asp 340	Phe	Leu	Ile	Glu	Thr 345	Tyr	Leu	Asp	cac His	Ala 350	Gly	Glu	1056
Lys	Phe	Cys 355	Leu	Glu	Tyr	Asp	Ala 360	Asn	Ser	Leu	Leu	tac Tyr 365	Ile	Ser	Lys	1104
Ala												ctc Leu				1152
aag Lys 385																1200
gtc Val																1248
gag Glu		Pro					Ser .					Ala				1296
gag : Glu :	Thr (Asn .										1344

PCT/EP2003/009452

61/92

				ctg Leu								ttc Phe	1392	
				cgc Arg 470									1440	
				cat His									1488	
		_		ctc Leu		_	_	_	_	_	 	 _	1536	
				gtc Val	Gly						tag		1578	_
-210	~ 40													

<210> 40

<211> 525

<212> PRT

<213> Emericella nidulans

<400> 40

Met Ser Pro Leu Asn Gly Val Ala Arg Ser Phe Pro Arg Pro Phe Gln
1 5 10 15

Ala Val Thr Arg Arg Pro Phe Arg Val Val Gln Pro Ala Ile Ala Cys 20 25 30

Pro Ser Asn Ser Arg Ser Phe Asn His Ser Arg Ser Leu Arg Ser Thr
35 40 45

Gly Ser Gln Ser Pro Ala Pro Ser Pro Arg Asp Ser Ser Asn Pro Ala 50 55 60

Leu Ser Phe Pro Cys Leu Asp Ala Gln Glu Ala Lys Ser Ala Leu Leu 65 70 75 80

Ser Ala Arg Ser Leu Gly Ser Gly Pro Glu Pro Ser Tyr Thr Ala Gly 85 90 95

His His Glu Arg Phe His Ser Asp Glu Pro Leu Leu Leu Asp Trp Gly
100 105 110

Gly Leu Pro Glu Phe Asp Ile Ala Tyr Glu Thr Trp Gly Gln Leu 115 120 125

Asn Glu Lys Lys Asp Asn Val Ile Leu Leu His Thr Gly Leu Ser Ala 130 135 140

Ser Ser His Ala His Ser Thr Glu Ala Asn Pro Lys Pro Gly Trp Trp 145 150 155 160

Glu Lys Phe Ile Gly Pro Gly Lys Thr Leu Asp Thr Asp Lys Tyr Phe 165 170 175

Val Ile Cys Thr Asn Val Leu Gly Gly Cys Tyr Gly Ser Thr Gly Pro 180 185 190

515

									•	02/72					
Ser	Thi	Va:	_	Pro	o Se	r As	p G1	_	s Ly:	з Туз	c Ala	Thr 205	_	Phe	Pro
Ile	Lev 210		r Ile	e Glu	ı Ası	р Ме 21		l Ar	g Ala	a Glr	220	_	Leu	Leu	Asp
His 225		Gly	y Val	Arg	230		u Ty:	r Ala	a Sei	r Val 235	_	Ser	Ser	Met	Gly 240
Gly	Met	Glr	ı Ser	Lev 245		a Ala	a Gly	γ V al	l Lev 250		Pro	Glu	Arg	Val 255	Gly
Lys	Ile	· Val	Ser 260		e Ser	Gly	у Сув	265	_	g Ser	His	Pro	Tyr 270	Ser	Ile
Ala	Met	Arg 275	His	Thr	Gln	Arg	280		. Leu	Met	Met	Asp 285	Pro	Asn	Trp
Ala	Arg 290	-	Phe	Tyr	Tyr	Asp 295		Ile	Pro	Pro	His 300	Ser	Gly	Met	Lys
Leu 305	Ala	Arg	Glu	Ile	Ala 310		· Val	Thr	Tyr	Arg 315	Ser	Gly	Pro	Glu	Trp 320
Glu	Lys	Arg	Phe	Gly 325	Arg	Lys	Arg	Ala	Asp 330		Ser	Lys	Gln	Pro 335	Ala
Leu	Сув	Pro	Asp 340	Phe	Leu	Ile	Glu	Thr 345	_	Leu	Asp	His	Ala 350	Gly	Glu
Lys	Phe	Cys 355	Leu	Glu	Tyr	Asp	Ala 360		Ser	Leu	Leu	Tyr 365	Ile	Ser	Lys
Ala	Met 370	Asp	Leu	Phe	qaA	Leu 375	_	Leu	Thr	Gln	Gln 380	Leu	Ala	Thr	Lys
Lys 385	Gln	Arg	Ala	Glu	Ala 390	Gln	Ala	Lys	Ile	Ser 395	Ser	Gly	Thr	Asn	Thr 400
Val	naA	Asp	Ala	Ser 405	Cys	Ser	Leu	Thr	Leu 410	Pro	Glu	Gln	Pro	Tyr 415	Gln
Glu	Gln	Pro	Ser 420	Ala	Ser	Thr	Ser	Ala 425	Glu	Gln	Ser	Ala	Ser 430	Ala	Ser
Glu	Thr	Gly 435	Ser	Ala	Pro	Asn	Asp 440	Leu	Val	Ala	Gly	Leu 445	Ala	Pro	Leu
_	Asp 450	His	Gln	Val		Val 455	Ile	Gly	Val	Ala	Ser 460	Asp	Ile	Leu	Phe
Pro 465	Ala	Trp	Gln		Arg 470	Glu	Ile	Ala	Glu	Thr 475	Leu	Ile	Gln	Ala	Gly 480
Asn	Lys	Thr		Glu 485	His	Ile	Glu	Leu	Gly 490	Asn	Asp	Val	Ser	Leu 495	Phe
Gly :	His	Asp	Thr 500	Phe :	Leu 1	Leu	-	Val 505	Arg	Thr	Ser	Glu	Ala 510	Gln	Phe
Ala		Ser 515	Val :	Leu ¹	Val (_	Ser	His	Ile	Ile		Gln 525			

520

525

<210> 41 <211> 1170 <212> DNA <213> Mesorhizobium loti	
<220> <221> CDS <222> (1)(1167) <223> NP_104621	
<pre><400> 41 atg gcc gct ctg cgc gca gga aag acc aac a Met Ala Ala Leu Arg Ala Gly Lys Thr Asn A 1</pre>	aac gag gcc gac cag ccg 48 Asn Glu Ala Asp Gln Pro 15
tcg agc ccg gtg ttg cgc ttc ggg gcg gac a Ser Ser Pro Val Leu Arg Phe Gly Ala Asp I 20 25	
gcc ggc acg ctt ttg tcg ccg ttc cag atc g Ala Gly Thr Leu Leu Ser Pro Phe Gln Ile A 35 40	
acg ctg aac gat gcc cgc tcc aat gcc atc c Thr Leu Asn Asp Ala Arg Ser Asn Ala Ile I 50 55	
acc ggc gac cag cat gtc gcc aac acc aat c Thr Gly Asp Gln His Val Ala Asn Thr Asn P 65 70	
gga tgg tgg gaa gtg ctg atc ggc ccc ggc a Gly Trp Trp Glu Val Leu Ile Gly Pro Gly A 85 90	
cgt ttc ttc gtc atc tgc tcc aac gtc atc g Arg Phe Phe Val Ile Cys Ser Asn Val Ile G 100 105	
acc ggc ccg gcc tcg acc aac ccc gcc acc g Thr Gly Pro Ala Ser Thr Asn Pro Ala Thr G 115 120	·
gac ctg ccg gtc atc acc atc cgc gat atg g Asp Leu Pro Val Ile Thr Ile Arg Asp Met V 130	
ctg atc gat cat ttc ggc atc gag aaa ctg t Leu Ile Asp His Phe Gly Ile Glu Lys Leu P 145 150 1	
tcg atg ggc gga atg cag gtg ctg gaa tgg g Ser Met Gly Gly Met Gln Val Leu Glu Trp A 165 170	
cgc gtc ttt tcg gca ctg ccg atc gcc acc g Arg Val Phe Ser Ala Leu Pro Ile Ala Thr G 180 185	
cag aac atc gcc ttc cac gag gtc ggc cgg c Gln Asn Ile Ala Phe His Glu Val Gly Arg G	

195

PCT/EP2003/009452

205

64/92

200

Pro	g gad o Asj 210	o Tr	g cae	gge Gly	gg ggg	aaa Y Lys 215	Tyr	tto Phe	gaa Glu	a aac a Asn	ggc Gly 220	Lys	cgc Arg	ccg Pro	gaa Glu	672
aaq Ly: 22!	s Gly	c ctg / Lev	g gcg ı Ala	g gta a Val	a gcg L Ala 230	g cgc A Arg	atg Met	gcc Ala	gcc Ala	cac His 235	Ile	acc Thr	tat Tyr	ctg Leu	tcg Ser 240	720
gaa Glu	a gco a Ala	gco Ala	c.ctg Lev	cac His 245	Arg	aaa Lys	ttc Phe	ggc	cgc Arg 250	Asn	ctg Leu	cag Gln	gat Asp	cgc Arg 255	gag Glu	768
				Gly		gac Asp										816
cgc Arg	cac His	caa Gln 275	Gly	atg Met	acc Thr	ttc Phe	gtc Val 280	gac Asp	cgc Arg	ttc Phe	gac Asp	gcc Ala 285	aat Asn	tcc Ser	tat Tyr	864
ctc Leu	tac Tyr 290	Met	acg Thr	cgg Arg	tcg Ser	atg Met 295	gac Asp	tat Tyr	ttc Phe	gac Asp	ctc Leu 300	gcc Ala	gcc Ala	gat Asp	cat His	912
						gcc Ala										960
ctg Leu	gtg Val	tcc Ser	ttc Phe	acc Thr 325	tcg Ser	gat Asp	tgg Trp	ttg Leu	ttt Phe 330	ccg Pro	acc Thr	gaa Glu	gag Glu	agc Ser 335	cgc Arg	1008
						aac Asn	Ala									1056
						ggc Gly										1104
gaa Glu	ctg Leu 370	ttc Phe	gcc Ala	gcc Ala	Įle	aac (Asn (375	ggc Gly	ttc Phe	atc Ile	Gly	tcc Ser 380	gcg Ala	gcg Ala	cgg Arg	gcg Ala	1152
	Gly 999				tga											1170
<210)> 42	2														

<210> 42

<211> 389

<212> PRT

<213> Mesorhizobium loti

<400> 42

Met Ala Ala Leu Arg Ala Gly Lys Thr Asn Asn Glu Ala Asp Gln Pro 1 5 10 15

Ser Ser Pro Val Leu Arg Phe Gly Ala Asp Lys Pro Leu Lys Leu Asp 20 25 30

PCT/EP2003/009452

65/92

Ala Gly Thr Leu Leu Ser Pro Phe Gln Ile Ala Tyr Gln Thr Tyr Gly 40 Thr Leu Asn Asp Ala Arg Ser Asn Ala Ile Leu Val Cys His Ala Leu 55 Thr Gly Asp Gln His Val Ala Asn Thr Asn Pro Val Thr Gly Lys Pro Gly Trp Trp Glu Val Leu Ile Gly Pro Gly Arg Ile Ile Asp Thr Asn Arg Phe Phe Val Ile Cys Ser Asn Val Ile Gly Gly Cys Leu Gly Ser Thr Gly Pro Ala Ser Thr Asn Pro Ala Thr Gly Lys Pro Tyr Gly Leu 120 Asp Leu Pro Val Ile Thr Ile Arg Asp Met Val Arg Ala Gln Gln Met 130 Leu Ile Asp His Phe Gly Ile Glu Lys Leu Phe Cys Val Leu Gly Gly Ser Met Gly Gly Met Gln Val Leu Glu Trp Ala Ser Ser Tyr Pro Glu Arg Val Phe Ser Ala Leu Pro Ile Ala Thr Gly Ala Arg His Ser Ser Gln Asn Ile Ala Phe His Glu Val Gly Arg Gln Ala Val Met Ala Asp Pro Asp Trp His Gly Gly Lys Tyr Phe Glu Asn Gly Lys Arg Pro Glu 215 Lys Gly Leu Ala Val Ala Arg Met Ala Ala His Ile Thr Tyr Leu Ser 225 Glu Ala Ala Leu His Arg Lys Phe Gly Arg Asn Leu Gln Asp Arg Glu Ala Leu Thr Phe Gly Phe Asp Ala Asp Phe Gln Ile Glu Ser Tyr Leu Arg His Gln Gly Met Thr Phe Val Asp Arg Phe Asp Ala Asn Ser Tyr 280 Leu Tyr Met Thr Arg Ser Met Asp Tyr Phe Asp Leu Ala Ala Asp His 290 Gly Gly Arg Leu Ala Asp Ala Phe Ala Gly Thr Lys Thr Arg Phe Cys 315 310 305 Leu Val Ser Phe Thr Ser Asp Trp Leu Phe Pro Thr Glu Glu Ser Arg 325 Ser Ile Val His Ala Leu Asn Ala Ala Gly Ala Ser Val Ser Phe Val 345 Glu Ile Glu Thr Asp Arg Gly His Asp Ala Phe Leu Leu Asp Glu Pro 365

576

Glu Leu Phe Ala Ala Ile Asn Gly Phe Ile Gly Ser Ala Ala Arg Ala 370 375 380

Arg Gly Leu Ser Ala 385

<210> 43 <211> 1155 <212> DNA <213> acremon	ium crysog	enum			
<220> <221> CDS <222> (1)(1 <223> P39058	152)				
<400> 43 tgt cgc ctc a Cys Arg Leu A	ga tcg cca rg Ser Pro 5	atc gct tcg Ile Ala Ser	agg ctt cgc Arg Leu Arg 10	tag atg ccc Xaa Met Pro 15	aag 48 Lys
aca tag cca g Thr Xaa Pro G			Trp Asn Leu		
gcg atg tac c Ala Met Tyr P 35					
ggg ata act g Gly Ile Thr A 50					
tca cct cgt g Ser Pro Arg G 65					
cct ctc gct a Pro Leu Ala T					
gga gtg ctg ga Gly Val Leu A 10					
cgt acg ggg co Arg Thr Gly Pr 115					
ttc atc gcc ag Phe Ile Ala An 130					
tag tcg gcg ca Xaa Ser Ala Hi 145					
ttg gtc ccg ag Leu Val Pro Se					

gtc aga gcg gct ggt gcg cag ctt ggt tcg aga cac aga ggc agt gca

67/92

									67	/92						
Val	Arg	Ala	Ala 180	Gly	Ala	Gln	Leu	Gly 185	Ser	Arg	His	Arg	Gly 190	Ser	Ala	
tct Ser	atg Met	atg Met 195	acc Thr	cca Pro	agt Ser	acc Thr	tgg Trp 200	acg Thr	gjå aaa	agt Ser	acg Thr	acg Thr 205	tag Xaa	acg Thr	acc Thr	624
agc Ser	ctg Leu 210	tcc Ser	G1 y 999	Gly	tcg Ser	aaa Lys 215	cag Gln	cgc Arg	gca Ala	aga Arg	ttg Leu 220	cga Arg	atc Ile	tca Ser	cgt Arg	672
aca Thr 225	aga Arg	gca Ala	aac Asn	ctg Leu	cga Arg 230	tgg Trp	acg Thr	agc Ser	gct Ala	tcc Ser 235	ata Ile	tgg Trp	ctc Leu	cag Gln	gag Glu 240	720
tcc Ser	aag Lys	ccg Pro	gcc Ala	gga Gly 245	ata Ile	tca Ser	gca Ala	gcc Ala	agg Arg 250	atg Met	cga Arg	aga Arg	agg Arg	aaa Lys 255	tca Ser	768
acg Thr	gca Ala	cag Gln	aca Thr 260	gcg Ala	gca Ala	aca Thr	gcc Ala	acc Thr 265	gtg Val	ctg Leu	gcc Ala	agc Ser	cca Pro 270	ttg Leu	aag Lys	816
ccg Pro	tat Tyr	ctt Leu 275	cct Pro	atc Ile	tcc Ser	ggt Gly	acc Thr 280	agg Arg	ccc Pro	aga Arg	agt Ser	ttg Leu 285	ccg Pro	cga Arg	gct Ala	864
tcg Ser	acg Thr 290	cca Pro	act Thr	gct Ala	aca Thr	tcg Ser 295	cca Pro	tga Xaa	cac His	tca Ser	agt Ser 300	tcg Ser	aca Thr	ccc Pro	acg Thr	912
aca Thr 305	tca Ser	gca Ala	gag Glu	gcc Ala	999 Gly 310	cag Gln	gat Asp	caa Gln	tcc Ser	cgg Arg 315	agg Arg	ctc Leu	tgg Trp	caa Gln	tga Xaa 320	960
tta Leu	cac His	aac Asn	cag Gln	cgt Arg 325	tga Xaa	tca Ser	ttt Phe	gcg Ala	cca Pro 330	ggt Gly	cag Gln	acg Thr	gtc Val	tgt Cys 335	act Thr	1008
cgt Arg	ttg Leu	acg Thr	agc Ser 340	acg Thr	ttg Leu	aga Arg	tgg Trp	ggc Gly 345	gca Ala	gta Val	tcc Ser	caa Gln	aca Thr 350	gtc Val	gtc Val	1056
ttt Phe	gcg Ala	tgg Trp 355	tgg Trp	aca Thr	cga Arg	atg Met	agg Arg 360	gtc Val	atg Met	act Thr	tct Ser	ttg Leu 365	Xaa	tgg Trp	aag Lys	1104
cgg Arg	aca Thr 370	agg Arg	tta Leu	atg Met	atg Met	ccg Pro 375	tca Ser	gag Glu	gat Asp	tcc Ser	tcg Ser 380	Ile	agt Ser	cat His	taa Xaa	1152
tgt																1155
<21	0> 44 l> 31 2> Pl	84														

<213> acremonium crysogenum

<220>

<221> unsure

<222> 13 .. 13

<223> All occurrences of Xaa indicate any amino acid


```
<220>
 <221> unsure
 <222> 18 .. 18
 <223> All occurrences of Xaa indicate any amino acid
 <220>
 <221> unsure
 <222> 45 .. 45
 <223> All occurrences of Xaa indicate any amino acid
 <220>
 <221> unsure
 <222> 59 .. 59
 <223> All occurrences of Xaa indicate any amino acid
 <220>
 <221> unsure
 <222> 89 .. 89
 <223> All occurrences of Xaa indicate any amino acid
 <220>
 <221> unsure
 <222> 137 .. 137
 <223> All occurrences of Xaa indicate any amino acid
 <220>
 <221> unsure
 <222> 145 .. 145
 <223> All occurrences of Xaa indicate any amino acid
<220>
<221> unsure
<222> 206 .. 206
<223> All occurrences of Xaa indicate any amino acid
<220>
<221> unsure
<222> 297 .. 297
<223> All occurrences of Xaa indicate any amino acid
<220>
<221> unsure
<222> 320 .. 320
<223> All occurrences of Xaa indicate any amino acid
<220>
<221> unsure
<222> 326 .. 326
<223> All occurrences of Xaa indicate any amino acid
<220>
<221> unsure
<222> 366 .. 366
<223> All occurrences of Xaa indicate any amino acid
<220>
<221> unsure
<222> 384 .. 384
<223> All occurrences of Xaa indicate any amino acid
<400> 44
Cys Arg Leu Arg Ser Pro Ile Ala Ser Arg Leu Arg Xaa Met Pro Lys
```


10 1 Thr Xaa Pro Glu Tyr Arg Ser Ser His Trp Asn Leu Ala Ser Ser Phe Ala Met Tyr Pro Trp His Thr Asn Arg Gly Val Ala Xaa Met Ser Gln Gly Ile Thr Ala Ser Ser Ser Ala Thr Pro Xaa Arg Ala Ala Pro Met Ser Pro Arg Gly Gly Pro His Cys Leu Ala Lys Ala Gly Leu Ser Ile Pro Leu Ala Thr Ser Ser Ser Ala Xaa Ile Ile Ser Gly Ala Pro Leu Gly Val Leu Asp His Val His Arg Thr Pro Met Gln Lys Ala Ser Ala Arg Thr Gly Pro Ser Phe Leu Ala Arg Arg Phe Glu Met Met Phe Val Phe Ile Ala Arg Cys Ser Thr Gly Xaa Ala Ser Gly Lys Leu Leu Pro Xaa Ser Ala His Pro Trp Val Glu Cys Thr Leu Trp Asn Gly Pro Ser Leu Val Pro Ser Thr Cys Glu Arg Leu Cys Pro Ser Arg His His Ala Val Arg Ala Ala Gly Ala Gln Leu Gly Ser Arg His Arg Gly Ser Ala Ser Met Met Thr Pro Ser Thr Trp Thr Gly Ser Thr Thr Xaa Thr Thr Ser Leu Ser Gly Gly Ser Lys Gln Arg Ala Arg Leu Arg Ile Ser Arg Thr Arg Ala Asn Leu Arg Trp Thr Ser Ala Ser Ile Trp Leu Gln Glu Ser Lys Pro Ala Gly Ile Ser Ala Ala Arg Met Arg Arg Arg Lys Ser Thr Ala Gln Thr Ala Ala Thr Ala Thr Val Leu Ala Ser Pro Leu Lys Pro Tyr Leu Pro Ile Ser Gly Thr Arg Pro Arg Ser Leu Pro Arg Ala 280 Ser Thr Pro Thr Ala Thr Ser Pro Xaa His Ser Ser Ser Thr Pro Thr 300 295 Thr Ser Ala Glu Ala Gly Gln Asp Gln Ser Arg Arg Leu Trp Gln Xaa 305 Leu His Asn Gln Arg Xaa Ser Phe Ala Pro Gly Gln Thr Val Cys Thr Arg Leu Thr Ser Thr Leu Arg Trp Gly Ala Val Ser Gln Thr Val Val

<210> 45

70/92

340

345

350

Phe Ala Trp Trp Thr Arg Met Arg Val Met Thr Ser Leu Xaa Trp Lys 355 360 365

Arg Thr Arg Leu Met Met Pro Ser Glu Asp Ser Ser Ile Ser His Xaa 370 375 380

<21 <21	0> 4 1> 1 2> D 3> P	.077 NA	lomor	as p	outid	la					
<22	0> 1> C 2> (3> A	1)		4)							
atg	Ser	act			ccc						48
				qaA	gaa Glu						96
					gtc Val						144
					ctg Leu						192
					gcc Ala 70						240
					gga Gly						288
					ctc Leu						336
_	_			_	acc Thr				 _	_	384
					tgg Trp						432
					tgg Trp 150						480

71/92

									•	.,,_						
atg Met	cag Gln	gcg Ala	ctg Leu	caa Gln 165	tgg Trp	acg Thr	atg Met	acc Thr	tac Tyr 170	ccc Pro	gag Glu	cgc Arg	gta Val	cgc Arg 175	cac His	528
tgc Cys	gtc Val	gac Asp	att Ile 180	gcc Ala	tcg Ser	gcc Ala	ccc Pro	aag Lys 185	ctg Leu	tcg Ser	gcg Ala	cag Gln	aac Asn 190	atc Ile	gcc Ala	576
ttc Phe	aac Asn	gag Glu 195	gtg Val	gcg Ala	cgt Arg	cag Gln	gcc Ala 200	att Ile	ctt Leu	acc Thr	gac Asp	cct Pro 205	gag Glu	tac Tyr	cgc Arg	624
aga Arg	ggc Gly 210	tcg Ser	ttt Phe	cca Pro	gga Gly	cca Pro 215	ggt Gly	gtg Val	atc Ile	ccc Pro	aag Lys 220	cgc Arg	ggc	ctg Leu	atg Met	672
ctg Leu 225	gca Ala	cgg Arg	atg Met	gtc Val	ggc Gly 230	cac His	att Ile	acc Thr	tat Tyr	ctg Leu 235	tcc Ser	gat Asp	gat Asp	tcg Ser	atg Met 240	720
ggt Gly	gaa Glu	aaa Lys	ttc Phe	ggc Gly 245	cga Arg	gag Glu	ctg Leu	aaa Lys	gcg Ala 250	aca Thr	agc Ser	tca Ser	act Thr	acg Thr 255	act Thr	768
tcc Ser	aca Thr	gcg Ala	tcg Ser 260	agt Ser	tcc Ser	agg Arg	tcg Ser	aaa Lys 265	gct Ala	acc Thr	tgc Cys	gct Ala	atc Ile 270	agg Arg	gcg Ala	816
agg Arg	agt Ser	ttt Phe 275	ccg Pro	gcc Ala	gtt Val	tcg Ser	acg Thr 280	cca Pro	aca Thr	cct Pro	acc Thr	ttg Leu 285	atg Met	acc Thr	aag Lys	864
gca Ala	ctg Leu 290	gac Asp	tat Tyr	ttc Phe	gac Asp	ccg Pro 295	gcc Ala	gcc Ala	acg Thr	cac His	ggt Gly 300	ggt Gly	gat Asp	ctg Leu	gcc Ala	912
gcc Ala 305	acc Thr	ctg Leu	gcc Ala	cac His	gtc Val 310	acg Thr	gcg Ala	gac Asp	tac Tyr	tgc Cys 315	atc Ile	tgt Cys	cgt Arg	tca Ser	cca Pro 320	960
ccg Pro	act Thr	gcg Ala	ctt Leu	ctc Leu 325	tcc Ser	ggc Gly	ccg Pro	ttc Phe	gcg Ala 330	cga Arg	gat Asp	cgt Arg	cga Arg	ege Arg 335	Ala	1008
gat Asp	ggc Gly	cgc Arg	gcg Ala 340	caa Gln	gaa Glu	cgt Arg	ctg Leu	cta Leu 345	cct Pro	gga Gly	gat Asp	cga Arg	ttc Phe 350	Ala	cta Leu	1056
cgg Arg	gca Ala	cga Arg 355	tgc Cys	att Ile	tcc Ser	tga										1077

<210> 46

<211> 358

<212> PRT

<213> Pseudomonas putida

<400> 46

Met Ser Thr Val Phe Pro Glu Asp Ser Val Gly Leu Val Val Arg Gln

Thr Ser Arg Phe Asp Glu Pro Leu Ala Leu Ala Cys Gly Arg Ser Leu

20 25 Ala Ser Tyr Glu Leu Val Tyr Glu Thr Tyr Gly Thr Leu Asn Ala Ser Ala Ser Asn Ala Val Leu Ile Cys His Ala Leu Ser Gly His His His Ala Ala Gly Tyr His Ala Ala Thr Asp Arg Lys Pro Gly Trp Trp Asp Ser Cys Ile Gly Pro Gly Lys Pro Ile Asp Thr Asn Arg Phe Phe Val Val Ser Leu Asn Asn Leu Gly Gly Cys Asn Gly Ser Thr Gly Pro Ser 100 Ser Val Asn Pro Ala Thr Gly Lys Pro Tyr Gly Ala Glu Phe Pro Val Leu Thr Val Glu Asp Trp Val His Ser Gln Ala Arg Leu Ala Asp Arg Leu Gly Ile Gln Gln Trp Ala Ala Ile Val Gly Gly Ser Leu Gly Gly Met Gln Ala Leu Gln Trp Thr Met Thr Tyr Pro Glu Arg Val Arg His Cys Val Asp Ile Ala Ser Ala Pro Lys Leu Ser Ala Gln Asn Ile Ala Phe Asn Glu Val Ala Arg Gln Ala Ile Leu Thr Asp Pro Glu Tyr Arg Arg Gly Ser Phe Pro Gly Pro Gly Val Ile Pro Lys Arg Gly Leu Met Leu Ala Arg Met Val Gly His Ile Thr Tyr Leu Ser Asp Asp Ser Met Gly Glu Lys Phe Gly Arg Glu Leu Lys Ala Thr Ser Ser Thr Thr Thr Ser Thr Ala Ser Ser Ser Arg Ser Lys Ala Thr Cys Ala Ile Arg Ala Arg Ser Phe Pro Ala Val Ser Thr Pro Thr Pro Thr Leu Met Thr Lys Ala Leu Asp Tyr Phe Asp Pro Ala Ala Thr His Gly Gly Asp Leu Ala 295 Ala Thr Leu Ala His Val Thr Ala Asp Tyr Cys Ile Cys Arg Ser Pro Pro Thr Ala Leu Leu Ser Gly Pro Phe Ala Arg Asp Arg Arg Ala 330 Asp Gly Arg Ala Gln Glu Arg Leu Pro Gly Asp Arg Phe Ala Leu

345

Arg Ala Arg Cys Ile Ser

340

PCT/EP2003/009452

73/92

355

<210> 47 <211> 52 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:PCR primer cccgggatcc gctagcggcg cgccggccgg cccggtgtga aataccgcac ag 52 <210> 48 <211> 53 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz: PCR primer tctagactcg agcggccgcg gccggccttt aaattgaaga cgaaagggcc tcg 53 <210> 49 <211> 47 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:PCR primer <400> 49 47 gagatetaga ceeggggate egetageggg etgetaaagg aagegga <210> 50 <211> 38 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:PCR primer gagaggcgcg ccgctagcgt gggcgaagaa ctccagca 38 <210> 51 <211> 34 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:PCR primer <400> 51 gagaggggg ccgcgcaaag tcccgcttcg tgaa 34


```
<210> 52
 <211> 34
 <212> DNA
 <213> Künstliche Sequenz
 <223> Beschreibung der künstlichen Sequenz:PCR primer
 <400> 52
 gagagggcgg ccgctcaagt cggtcaagcc acgc
                                                                    34
 <210> 53
 <211> 140
 <212> DNA
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz:PCR primer
<400> 53
tegaatttaa atetegagag geetgaegte gggeeeggta ecaegegtea tatgaetagt 60
teggaeetag ggatategte gacategatg etettetgeg ttaattaaca attgggatee 120
tctagacccg ggatttaaat
<210> 54
<211> 140
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:PCR primer
<400> 54
gatcatttaa atcccgggtc tagaggatcc caattgttaa ttaacgcaga agagcatcga 60
tgtcgacgat atccctaggt ccgaactagt catatgacgc gtggtaccgg gcccgacgtc 120
aggcctctcg agatttaaat
<210> 55
<211> 33
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:PCR primer
<400> 55
                                                                    33
gagageggee geegateett tttaaceeat cac
<210> 56
<211> 32
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:PCR primer
<400> 56
aggageggee gecateggea ttttetttg eg
                                                                    32
```



```
WO 2004/024932
                                       75/92
 <210> 57
 <211> 5091
 <212> DNA
 <213> Künstliche Sequenz
 <220>
<223> Beschreibung der künstlichen Sequenz:Plasmid
<400> 57
gccgcgactg ccttcgcgaa gccttgcccc gcggaaattt cctccaccga gttcgtgcac 60
acceptatge caagettett teaccetaaa ttegagagat tggattetta cegtggaaat 120
tettegeaaa aategteece tgategeect tgegaegttg gegteggtge egetggttge 180
gettggettg accgaettga teageggeeg etegatttaa atetegagag geetgaegte 240
gggcccggta ccacgcgtca tatgactagt tcggacctag ggatatcgtc gacatcgatg 300
ctcttctgcg ttaattaaca attgggatcc tctagacccg ggatttaaat cgctagcggg 360
ctgctaaagg aagcggaaca cgtagaaagc cagtccgcag aaacggtgct gaccccggat 420
gaatgtcagc tactgggcta tctggacaag ggaaaacgca agcgcaaaga gaaagcaggt 480
agettgeagt gggettaeat ggegataget agaetgggeg gttttatgga cageaagega 540
accggaattg ccagctgggg cgccctctgg taaggttggg aagccctgca aagtaaactg 600
gatggettte ttgeegeeaa ggatetgatg gegeagggga teaagatetg atcaagagae 660
aggatgagga tcgtttcgca tgattgaaca agatggattg cacgcaggtt ctccggccgc 720
ttgggtggag aggetatteg getatgaetg ggcacaacag acaategget getetgatge 780
egeegtgtte eggetgteag egeaggggeg eeeggttett titgteaaga eegacetgte 840
cggtgccctg aatgaactgc aggacgaggc agcgcggcta tcgtggctgg ccacgacggg 900
egtteettge geagetgtge tegacgttgt eactgaageg ggaagggact ggetgetatt 960
gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg agaaagtatc 1020
catcatggct gatgcaatgc ggcggctgca tacgcttgat ccggctacct gcccattcga 1080
ccaccaagcg aaacatcgca tcgagcgagc acgtactcgg atggaagccg gtcttgtcga 1140
tcaggatgat ctggacgaag agcatcaggg gctcgcgcca gccgaactgt tcgccaggct 1200
caaggegege atgeeegaeg gegaggatet egtegtgaee catggegatg eetgettgee 1260
gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc ggctgggtgt 1320
ggcggaccgc tatcaggaca tagcgttggc tacccgtgat attgctgaag agcttggcgg 1380
cgaatgggct gaccgcttcc tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat 1440
cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt cgaaatgacc 1500
gaccaagega egeceaacet gecateaega gatttegatt ecaeegeege ettetatgaa 1560
aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca gcgcggggat 1620
ctcatgctgg agttcttcgc ccacgctagc ggcgcgccgg ccggcccggt gtgaaatacc 1680
gcacagatgc gtaaggagaa aataccgcat caggcgctct tccgcttcct cgctcactga 1740
ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat 1800
acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca 1860
aaaggccagg aacegtaaaa aggccgcgtt gctggcgttt ttecataggc tccgccccc 1920
tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 1980
```

aagataccag gegttteece ctggaagete cetegtgege teteetgtte egaecetgee 2040 gettacegga tacetgteeg cettteteee ttegggaage gtggegettt etcatagete 2100 acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 2160 acccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc 2220 ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 2280 gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 2340 gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 2400 ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 2460

gattacgcgc agaaaaaaag gatctcaaga agatcctttg atctttcta cggggtctga 2520 cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 2580 cttcacctag atccttttaa aggccggccg cggccgcgca aagtcccgct tcgtgaaaat 2640 tttcgtgccg cgtgattttc cgccaaaaac tttaacgaac gttcgttata atggtgtcat 2700 gacetteacg acgaagtact aaaattggee egaateatea getatggate tetetgatgt 2760

cgcgctggag tccgacgcgc tcgatgctgc cgtcgattta aaaacggtga tcggattttt 2820 ccgagetete gatacgacgg acgegecage ateacgagae tgggecagtg ccgcgagega 2880 cctagaaact ctcgtggcgg atcttgagga gctggctgac gagctgcgtg ctcggccagc 2940

gccaggagga cgcacagtag tggaggatgc aatcagttgc gcctactgcg gtggcctgat 3000 tecteccegg cetgaccege gaggaeggeg egeaaaatat tgeteagatg egtgtegtge 3060 cgcagccagc cgcgagcgcg ccaacaacg ccacgccgag gagctggagg cggctaggtc 3120 gcaaatggcg ctggaagtgc gtcccccgag cgaaattttg gccatggtcg tcacagagct 3180

PCT/EP2003/009452

76/92

```
ggaageggea gegagaatta tegegategt ggeggtgeee geaggeatga caaacategt 3240
aaatgccgcg tttcgtgtgc cgtggccgcc caggacgtgt cagcgccgcc accacctgca 3300
ccgaatcggc agcagcgtcg cgcgtcgaaa aagcgcacag gcggcaagaa gcgataagct 3360
gcacgaatac ctgaaaaatg ttgaacgccc cgtgagcggt aactcacagg gcgtcggcta 3420
acccccagte caaacctggg agaaagcget caaaaatgac tetageggat teaegagaca 3480
ttgacacacc ggcctggaaa ttttccgctg atctgttcga cacccatccc gagctcgcgc 3540
tgcgatcacg tggctggacg agcgaagacc gccgcgaatt cctcgctcac ctgggcagag 3600
aaaatttcca gggcagcaag acccgcgact tcgccagcgc ttggatcaaa gacccggaca 3660
cggagaaaca cagccgaagt tataccgagt tggttcaaaa tcgcttgccc ggtgccagta 3720
tgttgctctg acgcacgcgc agcacgcagc cgtgcttgtc ctggacattg atgtgccgag 3780
ccaccaggec ggegggaaaa tegageaegt aaacceegag gtetaegega ttttggageg 3840
ctgggcacgc ctggaaaaag cgccagcttg gatcggcgtg aatccactga gcgggaaatg 3900
ccageteate tggeteattg atceggtgta tgeegeagea ggeatgagea geeegaatat 3960
gcgcctgctg gctgcaacga ccgaggaaat gacccgcgtt ttcggcgctg accaggcttt 4020
ttcacatagg ctgagccgtg gccactgcac tctccgacga tcccagccgt accgctggca 4080
tgcccagcac aatcgcgtgg atcgcctagc tgatcttatg gaggttgctc gcatgatctc 4140
aggcacagaa aaacctaaaa aacgctatga gcaggagttt tctagcggac gggcacgtat 4200
cgaagcggca agaaaagcca ctgcggaagc aaaagcactt gccacgcttg aagcaagcct 4260
gccgagcgcc gctgaagcgt ctggagagct gatcgacggc gtccgtgtcc tctggactgc 4320
tccagggcgt gccgcccgtg atgagacggc ttttcgccac gctttgactg tgggatacca 4380
gttaaaagcg gctggtgagc gcctaaaaga caccaagggt catcgagcct acgagcgtgc 4440
ctacaccgtc gctcaggcgg tcggaggagg ccgtgagcct gatctgccgc cggactgtga 4500
ccgccagacg gattggccgc gacgtgtgcg cggctacgtc gctaaaggcc agccagtcgt 4560
ccctgctcgt cagacagaga cgcagagcca gccgaggcga aaagctctgg ccactatggg 4620
aagacgtggc ggtaaaaagg ccgcagaacg ctggaaagac ccaaacagtg agtacgcccg 4680
agcacagcga gaaaaactag ctaagtccag tcaacgacaa gctaggaaag ctaaaggaaa 4740
tcgcttgacc attgcaggtt ggtttatgac tgttgaggga gagactggct cgtggccgac 4800
aatcaatgaa gctatgtctg aatttagcgt gtcacgtcag accgtgaata gagcacttaa 4860
ggtctgcggg cattgaactt ccacgaggac gccgaaagct tcccagtaaa tgtgccatct 4920
cgtaggcaga aaacggttcc cccgtagggt ctctctcttg gcctcctttc taggtcgggc 4980
tgattgctct tgaagctctc taggggggct cacaccatag gcagataacg ttccccaccg 5040
gctcgcctcg taagcgcaca aggactgctc ccaaagatct tcaaagccac t
```

```
<210> 58 <211> 4323
```

<220>

<400> 58

```
teteteageg tatggttgte geetgagetg tagttgeett categatgaa etgetgtaca 60
ttttgatacg tttttccgtc accgtcaaag attgatttat aatcctctac accgttgatg 120
ttcaaagagc tgtctgatgc tgatacgtta acttgtgcag ttgtcagtgt ttgtttgccg 180
taatgtttac cggagaaatc agtgtagaat aaacggattt ttccgtcaga tgtaaatgtg 240
gctgaacctg accattcttg tgtttggtct tttaggatag aatcatttgc atcgaatttg 300
tegetgtett taaagaegeg geeagegttt tteeagetgt caatagaagt ttegeegact 360
ttttgataga acatgtaaat cgatgtgtca tccgcatttt taggatctcc ggctaatgca 420
aagacgatgt ggtagccgtg atagtttgcg acagtgccgt cagcgttttg taatggccag 480
ctgtcccaaa cgtccaggcc ttttgcagaa gagatatttt taattgtgga cgaatcaaat 540
tcagaaactt gatatttttc atttttttgc tgttcaggga tttgcagcat atcatggcgt 600
gtaatatggg aaatgeegta tgttteetta tatggetttt ggttegttte tttegeaaac 660
gcttgagttg cgcctcctgc cagcagtgcg gtagtaaagg ttaatactgt tgcttgtttt 720
gcaaactttt tgatgttcat cgttcatgtc tcctttttta tgtactgtgt tagcggtctg 780
cttcttccag ccctcctgtt tgaagatggc aagttagtta cgcacaataa aaaaagacct 840
aaaatatgta aggggtgacg ccaaagtata cactttgccc tttacacatt ttaggtcttg 900
cctgctttat cagtaacaaa cccgcgcgat ttacttttcg acctcattct attagactct 960
cgtttggatt gcaactggtc tattttcctc ttttgtttga tagaaaatca taaaaggatt 1020
tgcagactac gggcctaaag aactaaaaaa tctatctgtt tcttttcatt ctctgtattt 1080
tttatagttt ctgttgcatg ggcataaagt tgccttttta atcacaattc agaaaatatc 1140
```

<212> DNA

<213> Künstliche Sequenz

<223> Beschreibung der künstlichen Sequenz:Plasmid

PCT/EP2003/009452

77/92

ataatatete attteaetaa ataatagtga acggeaggta tatgtgatgg gttaaaaagg 1200 atcggcggcc gctcgattta aatctcgaga ggcctgacgt cgggcccggt accacgcgtc 1260 atatgactag ttcggaccta gggatatcgt cgacatcgat gctcttctgc gttaattaac 1320 aattqqqatc ctctagaccc gggatttaaa tcgctagcgg gctgctaaag gaagcggaac 1380 acgtagaaag ccagtccgca gaaacggtgc tgaccccgga tgaatgtcag ctactgggct 1440 atctggacaa gggaaaacgc aagcgcaaag agaaagcagg tagcttgcag tgggcttaca 1500 tggcgatage tagactggge ggttttatgg acagcaageg aaceggaatt gecagetggg 1560 gcgccctctg gtaaggttgg gaagccctgc aaagtaaact ggatggcttt cttgccgcca 1620 aggatetgat ggegeagggg atcaagatet gateaagaga caggatgagg atcgtttege 1680 atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc 1740 ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 1800 gcgcaggggc gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg 1860 caggacgagg cagcgcgct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 1920 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 1980 gatoteotyt catotoacot tyctootyco yayaaaytat coatcatyyo tyatycaaty 2040 cggcggctgc atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc 2100 atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 2160 gagcatcagg ggetegegee ageegaactg ttegecagge teaaggegeg catgecegae 2220 ggcgaggate tegtegtgae ecatggegat geetgettge egaatateat ggtggaaaat 2280 ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 2340 atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc 2400 ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt 2460 gacgagttct tctgagcggg actctggggt tcgaaatgac cgaccaagcg acgcccaacc 2520 tgccatcacg agatttcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg 2580 ttttccggga cgccggctgg atgatectec agegcgggga tetcatgctg gagttettcg 2640 cccacgctag cggcgccg gccggcccgg tgtgaaatac cgcacagatg cgtaaggaga 2700 aaataccgca tcaggegete tteegettee tegeteactg actegetgeg cteggtegtt 2760 cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca 2820 ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa 2880 aaggeegegt tgetggegtt tttecatagg eteegeeece etgaegagea teacaaaaat 2940 cgacgeteaa gteagaggtg gegaaaceeg acaggaetat aaagataeea ggegttteee 3000 cctggaaget ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc 3060 geetttetee ettegggaag egtggegett teteataget caegetgtag gtateteagt 3120 teggtgtagg tegttegete caagetggge tgtgtgcaeg aacceeegt teageeegae 3180 cyctycycet tatecygtaa ctateytett gaytecaace cygtaayaca cyaettatey 3240 ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca 3300 qaqttcttga agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc 3360 gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa 3420 accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa 3480 ggateteaag aagateettt gatettttet aeggggtetg aegeteagtg gaacgaaaac 3540 tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta 3600 aaggccggcc gcggccgcca tcggcatttt cttttgcgtt tttatttgtt aactgttaat 3660 tgtccttgtt caaggatget gtetttgaca acagatgttt tettgeettt gatgttcage 3720 aggaageteg gegeaaacgt tgattgtttg tetgegtaga atectetgtt tgtcatatag 3780 cttgtaatca cgacattgtt tcctttcgct tgaggtacag cgaagtgtga gtaagtaaag 3840 gttacatcgt taggatcaag atccattttt aacacaaggc cagttttgtt cagcggcttg 3900 tatgggccag ttaaagaatt agaaacataa ccaagcatgt aaatatcgtt agacgtaatg 3960 ccgtcaatcg tcatttttga tccgcgggag tcagtgaaca ggtaccattt gccgttcatt 4020 ttaaagacgt tcgcgcgttc aatttcatct gttactgtgt tagatgcaat cagcggtttc 4080 atcacttttt tcagtgtgta atcatcgttt agctcaatca taccgagagc gccgtttgct 4140 aactcagccg tgcgtttttt atcgctttgc agaagttttt gactttcttg acggaagaat 4200 gatgtgcttt tgccatagta tgctttgtta aataaagatt cttcgccttg gtagccatct 4260 teagtteeag tgtttgette aaatactaag tatttgtgge etttatette taegtagtga 4320 4323 gga

```
<210> 59
```

<211> 35

<212> DNA

<213> Künstliche Sequenz

<400> 59 gagagaga cgcgtcccag tggctgagac gcatc	35
<210> 60 <211> 34 <212> DNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz:PCR Primer	
<400> 60 ctctctctgt cgacgaattc aatcttacgg cctg	34
<210> 61 <211> 5860 <212> DNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz:Plasmid	
<400> 61 cccggtacca cgcgtcccag tggctgagac gcatccgcta aagccccagg aaccctgtgc	60
agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt	120
aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg	180
cggttcctcg cttgagagtg Cggaacgcat tagaaacgtc gctgaacgga tcgttgccac	240
caagaaggct ggaaatgatg tcgtggttgt ctgctccgca atgggagaca ccacggatga	300
acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct	360
cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg	420
cgcagaagcc caatctttca cgggctctca ggctggtgtg ctcaccaccg agcgccacgg	480
aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa	540
gatctgcatt gttgctggtt tccagggtgt taataaagaa acccgcgatg tcaccacgtt	600
gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt	660
gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa	720
tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc	780
caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt	840
acgetegtet tatagtaatg atceeggeae tttgattgee ggetetatgg aggatattee	900
tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt	960
tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc	1020
agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga	1080

catcacette acetgeeete gtteegaegg eegeegege atggagatet tgaagaaget

PCT/EP2003/009452

tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 1380 cgaagacgaa gccgtcgttt atgcaggcac cggacgctaa agttttaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcacc 1500 cttttggaag agcgcaattt cccagctgac actgttcgtt tctttgcttc cccacgttcc 1560 gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcetetaga ecegggattt aaategetag egggetgeta aaggaagegg aacaegtaga 1680 aagecagtee geagaaaegg tgetgaeeee ggatgaatgt cagetaetgg getatetgga 1740 caagggaaaa cgcaagcgca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 gatggcgcag gggatcaaga tctgatcaag agacaggatg aggatcgttt cgcatgattg 1980 aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100 ggcgcccggt tctttttgtc aagaccgacc tgtccggtgc cctgaatgaa ctgcaggacg 2160 aggcagegeg getategtgg etggeeaega egggegttee ttgegeaget gtgetegaeg 2220 ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg caggatctcc 2280 tgtcatctca ccttgctcct gccgagaaag tatccatcat ggctgatgca atgcggcggc 2340 tgcatacget tgateegget acetgeeeat tegaceacea agegaaacat egeategage 2400 gagcacgtac teggatggaa geeggtettg tegateagga tgatetggae gaagageate 2460 aggggetege gecageegaa etgttegeea ggeteaagge gegeatgeee gaeggegagg 2520 atctcgtcgt gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct 2580 tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgctatcag gacatagcgt 2640 tggctacccg tgatattgct gaagagcttg gcggcgaatg ggctgaccgc ttcctcgtgc 2700 tttacggtat cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt 2760 tettetgage gggaetetgg ggttegaaat gacegaecaa gegaegeeca acetgecate 2820 acgagatttc gattccaccg ccgccttcta tgaaaggttg ggcttcggaa tcgttttccg 2880 ggacgccggc tggatgatcc tccagcgcgg ggatctcatg ctggagttct tcgcccacgc 2940 tagoggogog coggooggoo cggtgtgaaa tacogcacag atgogtaagg agaaaataco 3000

gcatcaggc	g ctcttccgc	t teetegetea	ctgactcgct	gegeteggte	gttcggctgc	3060
ggcgagcggt	atcagctca	c tcaaaggcgg	, taatacggtt	atccacagaa	tcaggggata	3120
acgcaggaaa	a gaacatgtg	a gcaaaaggco	agcaaaaggo	caggaaccgt	aaaaaggccg	3180
cgttgctggd	gtttttcca	t aggeteegee	: cccctgacga	gcatcacaaa	aatcgacgct	3240
caagtcagag	g gtggcgaaa	c ccgacaggac	: tataaagata	ccaggcgttt	cccctggaa	3300
gctccctcgt	gegeteteet	t gttccgaccc	tgccgcttac	cggatacctg	teegeettte	3360
tecetteggg	, aagcgtgg c g	g ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	3420
aggtcgttcg	ctccaagct	g ggctgtgtgc	acgaacccc	cgttcagccc	gaccgctgcg	3480
ccttatccgg	taactatcgt	: cttgagtcca	acccggtaag	acacgactta	tegecaetgg	3540
cagcagccac	tggtaacagg	, attagcagag	cgaggtatgt	aggeggtget	acagagttct	3600
tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgegetetge	3660
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	3720
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	3780
aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	3840
aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaaggccg	3900
gccgcggccg	ccatcggcat	tttcttttgc	gtttttattt	gttaactgtt	aattgtcctt	3960
gttcaaggat	gctgtctttg	acaacagatg	ttttcttgcc	tttgatgttc	agcaggaagc	4020
tcggcgcaaa	cgttgattgt	ttgtctgcgt	agaatcctct	gtttgtcata	tagcttgtaa	4080
tcacgacatt	gtttcctttc	gcttgaggta	cagcgaagtg	tgagtaagta	aaggttacat	4140
cgttaggatc	aagatccatt	tttaacacaa	ggccagtttt	gttcagcggc	ttgtatgggc	4200
cagttaaaga	attagaaaca	taaccaagca	tgtaaatatc	gttagacgta	atgccgtcaa	4260
tcgtcatttt	tgatccgcgg	gagtcagtga	acaggtacca	tttgccgttc	attttaaaga	4320
cgttcgcgcg	ttcaatttca	tctgttactg	tgttagatgc	aatcagcggt	ttcatcactt	4380
ttttcagtgt	gtaatcatcg	tttagctcaa	tcataccgag	agegeegttt	gctaactcag	4440
ccgtgcgttt	tttatcgctt	tgcagaagtt	tttgactttc	ttgacggaag	aatgatgtgc	4500
ttttgccata	gtatgctttg	ttaaataaag	attcttcgcc	ttggtagcca	tcttcagttc	4560
cagtgtttgc	ttcaaatact	aagtatttgt	ggcctttatc	ttctacgtag	tgaggatete	4620
tcagcgtatg	gttgtcgcct	gagctgtagt	tgccttcatc	gatgaactgc	tgtacatttt	4680
gatacgtttt	tccgtcaccg	tcaaagattg	atttataatc	ctctacaccg	ttgatgttca	4740
aagagctgtc	tgatgctgat	acgttaactt	gtgcagttgt	cagtgtttgt	ttgccgtaat	4800
gtttaccgga	gaaatcagtg	tagaataaac	ggatttttcc	gtcagatgta	aatgtggctg	4860
aacctgacca	ttcttgtgtt	tggtctttta	ggatagaatc	atttgcatcg	aatttgtcgc	4920

81/92

tgtctttaaa gacgcggcca gcgtttttcc agctgtcaat agaagtttcg ccgacttttt 4	980
gatagaacat gtaaatcgat gtgtcatccg catttttagg atctccggct aatgcaaaga 5	040
cgatgtggta gccgtgatag tttgcgacag tgccgtcagc gttttgtaat ggccagctgt 5	100
cccaaacgtc caggcctttt gcagaagaga tattttaat tgtggacgaa tcaaattcag 5	5160
aaacttgata tttttcattt ttttgctgtt cagggatttg cagcatatca tggcgtgtaa 5	5220
tatgggaaat gccgtatgtt tccttatatg gcttttggtt cgtttctttc gcaaacgctt 5	5280
gagttgcgcc tcctgccagc agtgcggtag taaaggttaa tactgttgct tgttttgcaa	5340
actttttgat gttcatcgtt catgtctcct tttttatgta ctgtgttagc ggtctgcttc	5400
ttccagccct cctgtttgaa gatggcaagt tagttacgca caataaaaaa agacctaaaa	5460
tatgtaaggg gtgacgccaa agtatacact ttgcccttta cacattttag gtcttgcctg	5520
ctttatcagt aacaaacccg cgcgatttac ttttcgacct cattctatta gactctcgtt	5580
tggattgcaa ctggtctatt ttcctctttt gtttgataga aaatcataaa aggatttgca	5640
gactacgggc ctaaagaact aaaaaatcta tctgtttctt ttcattctct gtattttta	5700
tagtttctgt tgcatgggca taaagttgcc tttttaatca caattcagaa aatatcataa	5760
tatctcattt cactaaataa tagtgaacgg caggtatatg tgatgggtta aaaaggatcg	5820
geggeegete gatttaaate tegagaggee tgaegteggg	5860
<210> 62 <211> 38 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz: PCR Primer	
<400> 62 cggcaccacc gacatcatct tcacctgccc tcgttccg	38
<210> 63 <211> 38 <212> DNA <213> Künstliche Sequenz <220>	
<223> Beschreibung der künstlichen Sequenz:PCR Primer	
<400> 63 cggaacgagg gcaggtgaag atgatgtcgg tggtgccg	38

<210> 64

<211> 1266

<212> DNA

<213> LysC Mutante

<220>

<	22	1	>	CDS
<	22	2	>	(1)

<22 <22	2>	(1).	. (12	266)								
	gcc								tcg Ser			48
									gcc Ala			96
									gga Gly			144
									gtt Val 60			192
									att Ile			240
									gcc Ala			288
									cac His			336
									gca Ala			384
									aat Asn 140			432
				Leu					acc Thr			480
									att Ile			528
									cct Pro			576
						Glu			ctt Leu			624
Ser					Leu				gct Ala 220			672
gtg Val									gat Asp			720

PCT/EP2003/009452

83/92

									0.	3/92						
225					230					235					240	
att Ile	gcc Ala	gjà aac	tct Ser	atg Met 245	Glu	gat Asp	att Ile	cct Pro	gtg Val 250	gaa Glu	gaa Glu	gca Ala	gtc Val	ctt Leu 255	acc Thr	768
ggt Gly	gt <i>c</i> Val	gca Ala	acc Thr 260	gac Asp	aag Lys	tcc Ser	gaa Glu	gcc Ala 265	aaa Lys	gta Val	acc Thr	gtt Val	ctg Leu 270	ggt Gly	att Ile	816
tcc Ser	gat Asp	aag Lys 275	cca Pro	ggc	gag Glu	gct Ala	gcg Ala 280	aag Lys	gtt Val	ttc Phe	cgt Arg	gcg Ala 285	ttg Leu	gct Ala	gat Asp	864
gca Ala	gaa Glu 290	atc Ile	aac Asn	att Ile	gac Asp	atg Met 295	gtt Val	ctg Leu	cag Gln	aac Asn	gtc Val 300	tct Ser	tct Ser	gta Val	gaa Glu	912
gac Asp 305	ggc Gly	acc Thr	acc Thr	gac Asp	atc Ile 310	atc Ile	ttc Phe	acc Thr	tgc Cys	cct Pro 315	cgt Arg	tcc Ser	gac Asp	ggc	cgc Arg 320	960
cgc Arg	gcg Ala	atg Met	gag Glu	atc Ile 325	ttg Leu	aag Lys	aag Lys	ctt Leu	cag Gln 330	gtt Val	cag Gln	ggc	aac Asn	tgg Trp 335	acc Thr	1008
aat Asn	gtg Val	ctt Leu	tac Tyr 340	gac Asp	gac Asp	cag Gln	gtc Val	ggc Gly 345	aaa Lys	gtc Val	tcc Ser	ctc Leu	gtg Val 350	ggt Gly	gct Ala	1056
ggc	atg Met	aag Lys 355	tct Ser	cac His	cca Pro	ggt Gly	gtt Val 360	acc Thr	gca Ala	gag Glu	ttc Phe	atg Met 365	gaa Glu	gct Ala	ctg Leu	1104
cgc Arg	gat Asp 370	gtc Val	aac Asn	gtg Val	aac Asn	atc Ile 375	gaa Glu	ttg Leu	att Ile	tcc Ser	acc Thr 380	tct Ser	gag Glu	att Ile	cgt Arg	1152
att Ile 385	tcc Ser	gtg Val	ctg Leu	atc Ile	cgt Arg 390	gaa Glu	gat Asp	gat Asp	ctg Leu	gat Asp 395	gct Ala	gct Ala	gca Ala	cgt Arg	gca Ala 400	1200
ttg Leu	cat His	gag Glu	cag Gln	ttc Phe 405	cag Gln	ctg Leu	ggc ggc	ggc	gaa Glu 410	gac Asp	gaa Glu	gcc Ala	gtc Val	gtt Val 415	tat Tyr	1248
gca Ala					taa											1266
<210 <211 <212 <213	> 4 > F	5 21 RT ysC	Muta	nte												
<400	> 6	5														
Val :	Ala	Leu		Val	Gln	Lys	Tyr	Gly	Gly	Ser	Ser	Leu	Glu	Ser 15	Ala	

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala

10

PCT/EP2003/009452

84/92

30

270

20 25

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp 40 Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu 75 Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr 85 Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg 105 100 Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly 120 115 Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 135 130 Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala 150 145 Leu Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val 170 165 Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 185 180 Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly 195 200 Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 220 210 215 Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 240 225 Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr 250 245

Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile

PCT/EP2003/009452

85/92

Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285

Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 . 295 300

Asp Gly Thr Thr Asp Ile Ile Phe Thr Cys Pro Arg Ser Asp Gly Arg 305 310 315 320

Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335

Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350

Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365

Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380

Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400

Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415

Ala Gly Thr Gly Arg 420

<210> 66

<211> 5860

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:Plasmid

<400> 66

cccggtacca cgcgtcccag tggctgagac gcatccgcta aagcccagg aaccctgtgc 60
agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt 120
aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg 180
cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac 240
caagaaggct ggaaatgatg tcgtggttgt ctgctccgca atgggagaca ccacggatga 300
acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct 360
cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg 420

cgcagaagcc caatctttca cgggctctca ggctggtgtg ctcaccaccg agcgccacgg 480 aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa 540 gatetgeatt gttgetggtt tecagggtgt taataaagaa accegegatg teaccaegtt 600 gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt 660 gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa 720 tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc 780 caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt 840 acgetegtet tatagtaatg atceeggeae tttgattgee ggetetatgg aggatattee 900 tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt 960 tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc 1020 agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga 1080 catcatette acetgeeete gtteegaegg eegeegege atggagatet tgaagaaget 1140 tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 1380 cgaagacgaa gccgtcgttt atgcaggcac cggacgctaa agttttaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcacc 1500 cttttggaag agegeaattt eccagetgae aetgttegtt tetttgette eccaegttee 1560 gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcctctaga cccgggattt aaatcgctag cgggctgcta aaggaagcgg aacacgtaga 1680 aagccagtcc gcagaaacgg tgctgacccc ggatgaatgt cagctactgg gctatctgga 1740 caagggaaaa cgcaagcgca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 gatggcgcag gggatcaaga tetgatcaag agacaggatg aggategttt egcatgattg 1980 aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100 ggcgcccggt tetttttgtc aagaccgacc tgtccggtgc cctgaatgaa ctgcaggacg 2160 aggeagegeg getategtgg etggeeaega egggegttee ttgegeaget gtgetegaeg 2220 ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg caggatetec 2280 tgtcatctca ccttgctcct gccgagaaag tatccatcat ggctgatgca atgcggcggc 2340

tgcatacgct	tgatccggc	t acctgcccat	tegaccacca	agcgaaacat	cgcatcgagc	2400
gagcacgtac	tcggatgga	a gccggtcttg	, tcgatcagga	tgatctggac	gaagagcatc	2460
aggggctcgc	gccagccgaa	a ctgttcgcca	ggctcaaggc	gegeatgeee	gacggcgagg	2520
atctcgtcgt	gacccatggo	gatgcctgct	tgccgaatat	catggtggaa	aatggccgct	2580
tttctggatt	catcgactgt	ggccggctgg	gtgtggcgga	ccgctatcag	gacatagcgt	2640
tggctacccg	tgatattgct	gaagagcttg	gcggcgaatg	ggctgaccgc	ttectegtge	2700
tttacggtat	cgccgctccc	gattegeage	gcatcgcctt	ctatcgcctt	cttgacgagt	2760
tcttctgagc	gggactctgg	ggttcgaaat	gaccgaccaa	gcgacgccca	acctgccatc	2820
acgagatttc	gattccaccg	cegeetteta	tgaaaggttg	ggcttcggaa	tegtttteeg	2880
ggacgccggc	tggatgatcc	tecagegegg	ggatctcatg	ctggagttct	tegeceaege	2940
tagcggcgcg	ccggccggcc	cggtgtgaaa	taccgcacag	atgcgtaagg	agaaaatacc	3000
gcatcaggcg	ctcttccgct	tcctcgctca	ctgactcgct	gegeteggte	gttcggctgc	3060
ggcgagcggt	atcageteae	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	3120
acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	3180
cgttgctggc	gtttttccat	aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	3240
caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	3300
gctccctcgt	gegeteteet	gttccgaccc	tgccgcttac	cggatacctg	teegeettte	3360
tecetteggg	aagcgtggcg	ctttctcata	gctcacgctg	taggtatete	agttcggtgt	3420
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	3480
ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	3540
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	3600
tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	3660
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	3720
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	3780
aagaagatcc	tttgatettt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	3840
aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaaggccg	3900
gccgcggccg	ccatcggcat	tttcttttgc	gtttttattt	gttaactgtt	aattgtcctt	3960
gttcaaggat	gctgtctttg	acaacagatg	ttttcttgcc	tttgatgttc	agcaggaagc	4020
tcggcgcaaa	cgttgattgt	ttgtctgcgt	agaatcctct	gtttgtcata	tagcttgtaa	4080
tcacgacatt	gtttcctttc	gcttgaggta	cagcgaagtg	tgagtaagta	aaggttacat	4140
cgttaggatc	aagatccatt	tttaacacaa	ggccagtttt	gttcagcggc	ttgtatgggc	4200

PCT/EP2003/009452

			00/92			
cagttaaaga	attagaaaca	taaccaagca	tgtaaatatc	gttagacgta	atgccgtcaa	4260
tcgtcatttt	tgatccgcgg	gagtcagtga	acaggtacca	tttgccgttc	attttaaaga	4320
cgttcgcgcg	ttcaatttca	tctgttactg	tgttagatgc	aatcagcggt	ttcatcactt	4380
ttttcagtgt	gtaatcatcg	tttagctcaa	tcataccgag	agcgccgttt	gctaactcag	4440
ccgtgcgttt	tttatcgctt	tgcagaagtt	tttgactttc	ttgacggaag	aatgatgtgc	4500
ttttgccata	gtatgctttg	ttaaataaag	attcttcgcc	ttggtagcca	tcttcagttc	4560
cagtgtttgc	ttcaaatact	aagtatttgt	ggcctttatc	ttctacgtag	tgaggatctc	4620
tcagcgtatg	gttgtcgcct	gagctgtagt	tgccttcatc	gatgaactgc	tgtacatttt	4680
gatacgtttt	teegteaceg	tcaaagattg	atttataatc	ctctacaccg	ttgatgttca	4740
aagagctgtc	tgatgctgat	acgttaactt	gtgcagttgt	cagtgtttgt	ttgccgtaat	4800
gtttaccgga	gaaatcagtg	tagaataaac	ggatttttcc	gtcagatgta	aatgtggctg	4860
aacctgacca	ttcttgtgtt	tggtctttta	ggatagaatc	atttgcatcg	aatttgtcgc	4920
tgtctttaaa	gacgcggcca	gcgtttttcc	agctgtcaat	agaagtttcg	ccgactttt	4980
gatagaacat	gtaaatcgat	gtgtcatccg	catttttagg	atctccggct	aatgcaaaga	5040
cgatgtggta	gccgtgatag	tttgcgacag	tgccgtcagc	gttttgtaat	ggccagctgt	5100
cccaaacgtc	caggcctttt	gcagaagaga	tatttttaat	tgtggacgaa	tcaaattcag	5160
aaacttgata	tttttcattt	ttttgctgtt	cagggatttg	cagcatatca	tggcgtgtaa	5220
tatgggaaat	gccgtatgtt	tccttatatg	gcttttggtt	cgtttctttc	gcaaacgctt	5280
gagttgcgcc	teetgecage	agtgcggtag	taaaggttaa	tactgttgct	tgttttgcaa	5340
actttttgat	gttcatcgtt	catgtctcct	tttttatgta	ctgtgttagc	ggtctgcttc	5400
ttccagccct	cctgtttgaa	gatggcaagt	tagttacgca	caataaaaaa	agacctaaaa	5460
tatgtaaggg	gtgacgccaa	agtatacact	ttgcccttta	cacattttag	gtcttgcctg	5520
ctttatcagt	aacaaacccg	cgcgatttac	ttttcgacct	cattctatta	gactctcgtt	5580
tggattgcaa	ctggtctatt	tteetetttt	gtttgataga	aaatcataaa	aggatttgca	5640
gactacgggc	ctaaagaact	aaaaaatcta	tctgtttctt	ttcattctct	gtatttttta	5700
tagtttctgt	tgcatgggca	taaagttgcc	tttttaatca	caattcagaa	aatatcataa	5760
tatctcattt	cactaaataa	tagtgaacgg	caggtatatg	tgatgggtta	aaaaggatcg	5820
gcggccgctc	gatttaaatc	tcgagaggcc	tgacgtcggg			5860

<210> 67

<211> 29

<212> DNA

<213> Künstliche Sequenz

W O 2004/024/02		89/92			
<223> Beschreibung d	er künstlich	en Sequenz:	PCR primer		
<400> 67 gagactcgag gttggctgg	t catcatagg				29
<210> 68 <211> 34 <212> DNA <213> Künstliche Seq	ienz				
<220> <223> Beschreibung de	er künstlich	en Sequenz:	PCR primer		
<400> 68 gaagagagca tatgtcagco	g ctctagtttg	gttc			34
<210> 69 <211> 6472 <212> DNA <213> Künstliche Sequ	enz	·			
<220> <223> Beschreibung de	r künstlich	en Sequenz:	Plasmid	ı	
<400> 69 tcgaggttgg ctggtcatca	taggaatcaa	cctggccact	ttatggtggg	caccaccgtc	60
gcaaacaaca tatcttgcag	caggcgtgtc	gattctttcc	gccatcattg	tttggtttct	120
teceggegea caccegetat	ggaatcgccg	tegeattget	tcacgcaaac	aacagtccac	180
cggtagacgt cgacaagccc	ccaaacgatc	aagccaccct	caaacggcgg	aatttagcca	240
acaacaatag actagacaga	gctgtccatg	tagcatgaac	tcgattatca	actgccacga	300
gaggtcgggg tcatgctcac	caccacaggg	acgctcacgc	accaaaaaat	cggagacttt	360
tacaccgaag ccggagcgac	gcttcacgac	gtaaccatcg	cctaccaagc	atggggccac	420
tacaccggca ccaatctcat	cgttctcgaa	catgccctga	ccggcgactc	taacgctatt	480
tcatggtggg acggactgat	tggccctggc	aaagcactcg	acaccaaccg	ctactgcatc	540
ctatgcacca acgtgctcgg	aggatgcaaa	ggatccaccg	gaccgagcag	tccacaccca	600
gacggaaaac catggggatc	cagatttcca	gccctttcaa	tccgtgacct	tgtcaatgcc	660
gaaaaacaac ttttcgacca	cctcggcatc	aataaaattc	acgcaatcat	cggcggatcc	720
atgggaggeg cacgcaccct	cgaatgggct	gcactccacc	cacacatgat	gacgactgga	780
ttcgtcatag cagtctcagc	acgcgcaagc	gcttggcaaa	tcggtattca	aactgcacaa	840
atcagcgcca tagaactcga	ccccactgg	aacggcggcg	attactacag	cggtcacgca	900
.ccatgggaag gaatcgccgc	cgctcgccgg	atcgcccacc	tcacctatcg	cggcgaacta	960
gaaatagacg aacgattcgg	cacttccgca	caacacggtg	aaaacccact	cggccccttc	1020
cgagatccac atcaacgttt	tgcggtcacg	agctacctcc	aacaccaagg	catcaaactc	1080

gctcaacgat	tcgatgcagg	, tagttacgtc	gtgcttaccg	aagccctcaa	tcgtcatgac	1140
atcggacgcg	gccgaggcgg	, actcaacaaa	gccctcagcg	caatcacagt	ccccatcatg	1200
attgctggcg	ttgataccga	tattctctac	ccctatcacc	agcaagaaca	cctatcacga	1260
aatctaggca	acctactcgo	tatggcaaaa	atcagctcac	cagtaggcca	cgacgctttc	1320
ctcacagaat	tccgacaaat	ggagcgaatc	ctaagacatt	tcatggagct	ttcggaagga	1380
atcgacgatt	ccttccgaac	caaactagag	cgctgacata	tgactagttc	ggacctaggg	1440
atatcgtcga	catcgatgct	cttctgcgtt	aattaacaat	tgggateete	tagacccggg	1500
atttaaatcg	ctagcgggct	gctaaaggaa	gcggaacacg	tagaaagcca	gtccgcagaa	1560
acggtgctga	ccccggatga	atgtcagcta	ctgggctatc	tggacaaggg	aaaacgcaag	1620
cgcaaagaga	aagcaggtag	cttgcagtgg	gcttacatgg	cgatagctag	actgggcggt	1680
tttatggaca	gcaagcgaac	cggaattgcc	agctggggcg	ccctctggta	aggttgggaa	1740
gccctgcaaa	gtaaactgga	tggctttctt	gccgccaagg	atctgatggc	gcaggggatc	1800
aagatctgat	caagagacag	gatgaggatc	gtttcgcatg	attgaacaag	atggattgca	1860
cgcaggttct	ceggeegett	gggtggagag	gctattcggc	tatgactggg	cacaacagac	1920
aatcggctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	caggggcgcc	cggttctttt	1980
tgtcaagacc	gacctgtccg	gtgccctgaa	tgaactgcag	gacgaggcag	cgcggctatc	2040
gtggctggcc	acgacgggcg	ttccttgcgc	agctgtgctc	gacgttgtca	ctgaagcggg	2100
aagggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	ctcctgtcat	ctcaccttgc	2160
tcctgccgag	aaagtatcca	tcatggctga	tgcaatgcgg	cggctgcata	cgcttgatcc	2220
ggctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	gagcgagcac	gtactcggat	2280
ggaagccggt	cttgtcgatc	aggatgatct	ggacgaagag	catcaggggc	tcgcgccagc	2340
cgaactgttc	gccaggctca	aggegegeat	gcccgacggc	gaggateteg	tcgtgaccca	2400
tggcgatgcc	tgcttgccgà	atatcatggt	ggaaaatggc	cgcttttctg	gattcatcga	2460
ctgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	gcgttggcta	cccgtgatat	2520
tgctgaagag	cttggcggcg	aatgggctga	ccgcttcctc	gtgctttacg	gtatcgccgc	2580
tcccgattcg	cagcgcatcg	ccttctatcg	ccttcttgac	gagttettet	gagcgggact	2640
ctggggttcg	aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	2700
accgccgcct	tctatgaaag	gttgggcttc	ggaatcgttt	tccgggacgc	cggctggatg	2760
atcctccagc	gcggggatct	catgctggag	ttcttcgccc	acgctagcgg	cgcgccggcc	2820
ggeceggtgt	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcatca	ggcgctcttc	2880
cgcttcctcg	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	2940
tcactcaaag	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	3000

PCT/EP2003/009452

WO 2004/024932

PCT/EP2003/009452

gcttgcccgg tgccagtatg ttgctctgac gcacgcgcag cacgcagccg tgcttgtcct	4920
ggacattgat gtgccgagcc accaggccgg cgggaaaatc gagcacgtaa accccgaggt	4980
ctacgegatt ttggageget gggeaegeet ggaaaaageg eeagettgga teggegtgaa	5040
tccactgage gggaaatgee ageteatetg geteattgat eeggtgtatg eegeageagg	5100
catgagcage eegaatatge geetgetgge tgeaaegaee gaggaaatga eeegegtttt	5160
cggcgctgac caggcttttt cacataggct gagccgtggc cactgcactc tccgacgatc	5220
ccagccgtac cgctggcatg cccagcacaa tcgcgtggat cgcctagctg atcttatgga	5280
ggttgctcgc atgatctcag gcacagaaaa acctaaaaaa cgctatgagc aggagttttc	5340
tageggaegg geaegtateg aageggeaag aaaageeaet geggaageaa aageaettge	5400
cacgettgaa geaageetge egagegeege tgaagegtet ggagagetga tegaeggegt	5460
ccgtgtcctc tggactgctc cagggcgtgc cgcccgtgat gagacggctt ttcgccacgc	5520
tttgactgtg ggataccagt taaaagcggc tggtgagcgc ctaaaagaca ccaagggtca	5580
tegageetae gagegtgeet acacegtege teaggeggte ggaggaggee gtgageetga	5640
tetgeegeeg gaetgtgaee geeagaegga ttggeegega egtgtgegeg getaegtege	5700
taaaggccag ccagtcgtcc ctgctcgtca gacagagacg cagagccagc cgaggcgaaa	5760
agctetggee actatgggaa gacgtggegg taaaaaggee geagaaeget ggaaagaeee	5820
aaacagtgag tacgcccgag cacagcgaga aaaactagct aagtccagtc aacgacaagc	5880
taggaaagct aaaggaaatc gcttgaccat tgcaggttgg tttatgactg ttgagggaga	5940
gactggctcg tggccgacaa tcaatgaagc tatgtctgaa tttagcgtgt cacgtcagac	6000
cgtgaataga gcacttaagg tctgcgggca ttgaacttcc acgaggacgc cgaaagcttc	6060
ccagtaaatg tgccatctcg taggcagaaa acggttcccc cgtagggtct ctctcttggc	6120
ctcctttcta ggtcgggctg attgctcttg aagctctcta ggggggctca caccataggc	6180
agataacgtt ccccaccggc tcgcctcgta agcgcacaag gactgctccc aaagatcttc	6240
aaagccactg ccgcgactgc cttcgcgaag ccttgccccg cggaaatttc ctccaccgag	6300
ttcgtgcaca cccctatgcc aagcttcttt caccctaaat tcgagagatt ggattcttac	6360
cgtggaaatt cttcgcaaaa atcgtcccct gatcgccctt gcgacgttgg cgtcggtgcc	6420
gctggttgcg cttggcttga ccgacttgat cagcggccgc tcgatttaaa tc	6472

92/92

INTERM TIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12P13/04 C12P13/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages			
	the relevant passages	Relevant to claim No		
x	WO 02 10206 A (DEGUSSA) 7 February 2002 (2002-02-07) siehe insbesondere Ansprüche 15 und 19 the whole document	1–16		
(WO 02 18613 A (DEGUSSA) 7 March 2002 (2002-03-07) siehe insbesonder S. 10 und Anspruch 10 the whole document	1-16		
	-/			
Further	documents are listed in the continuation of box C. X Patent family members an			

X Further documents are listed in the continuation of box C. * Special categories of standards	X Patent family members are listed in annex.
Special categories of cited documents :	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	involve an inventive step when the document is taken alone "Y" document of particular relevances the children in the staken alone
 "O" document referring to an oral disclosure, use, exhibition or other means 	document is combined with one or more attention the
P document published prior to the international filling date but later than the priority date claimed	in the art.
	"&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
11 February 2004	02/03/2004
lame and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Authorized officer
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Douschan, K

INTERNATIONAL SEARCH REPORT

la ional Application No 03/09452

		03/09452	
:(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages		
	PARK S-D ET AL: "ISOLATION AND ANALYSIS OF META, A METHIONINE BIOSYNTHETIC GENE ENCODING HOMOSERINE ACETYLTRANSFERASE IN CORYNEBACTERIUM GLUTAMICUM" MOLECULAR AND CELLS, KOREAN SOCIETY FOR MOLECULAR SOCIETY, KR, vol. 8, no. 3, 30 June 1998 (1998-06-30), pages 286-294, XP001002218	1-16	
	the whole document		
x	HWANG BYUNG-JOON ET AL: "Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis" JOURNAL OF BACTERIOLOGY, vol. 184, no. 5, March 2002 (2002-03), pages 1277-1286, XP002269798 ISSN: 0021-9193 the whole document	1-16	Elvi-
		·	١
			1
	•		
	·		

INTERMITIONAL SEARCH REPORT

tion on patent family members

1	_	
	ional	Application No
	POT/EP	03/09452

Detect 1					101/11 03/09452	
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0210206	A	07-02-2002	DE AU WO EP US	10109686 8763101 0210206 1307477 2002049305	A A2 A2	21-02-2002 13-02-2002 07-02-2002 07-05-2003 25-04-2002
WO 0218613	A	07-03-2002	DE AU WO EP US	10109690 8966601 0218613 1313871 2002110878	A Al Al	14-03-2002 13-03-2002 07-03-2002 28-05-2003 15-08-2002

This Page Blank (uspto)