

Vishay Vitramon

HALOGEN FREE

GREEN (5-2008)

Surface Mount Multilayer Ceramic Chip Capacitor for Flex Sensitive Applications

FEATURES

- Open Mode Design (OMD) reduces risk of shorts or leakage in board flex applications
- Excellent reliability and thermal shock performance
- Efficient low-power consumption, ripple current capable to 1.2 A_{RMS} at 100 kHz
- High voltage breakdown compared to standard design
- 100 % voltage conditioning available up to 630 V_{DC} rating (process code "5H") Contact mlcc@vishay.com for higher voltages
- Polymer termination available for intensive board flex requirements
- Wet build process
- Reliable Noble Metal Electrode (NME) system
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

LINKS TO ADDITIONAL RESOURCES

APPLICATIONS

- Demanding boardflex applications
- Input filter capacitors
- · Output filter capacitors
- Snubber capacitors reduce MOSFET voltage spikes
- Filtering for switching power supplies
- For lighting and other AC applications please contact: mlcc@vishay.com

ELECTRICAL SPECIFICATIONS

COG (NPO)

GENERAL SPECIFICATION

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 10 pF to 47 nF Voltage Range: 50 V_{DC} to 3000 V_{DC}

Temperature Coefficient of Capacitance (TCC): 0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C

Dissipation Factor (DF):

0.1 % maximum at 1.0 V_{RMS} and 1 MHz for values ≤ 1000 pF 0.1 % maximum at 1.0 V_{BMS} and 1 kHz for values > 1000 pF

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 0 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E

Applied test voltages

≤ 200 V_{DC}-rated: 250 % of rated voltage 500 V_{DC}-rated: 200 % of rated voltage 630 V_{DC} / 1000 V_{DC}-rated: 150 % of rated voltage 1500 V_{DC} to 3000 V_{DC} -rated: 120 % of rated voltage

X7R

GENERAL SPECIFICATION

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 100 pF to 1.8 µF Voltage Range: 16 V_{DC} to 3000 V_{DC}

Temperature Coefficient of Capacitance (TCC): \pm 15 % from -55 °C to +125 °C, with 0 V_{DC} applied

Dissipation Factor (DF):

< 50 V ratings 3.5 % maximum at 1.0 V_{RMS} and 1 kHz \geq 50 V ratings 2.5 % maximum at 1.0 V_{RMS} and 1 kHz

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 1 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E

Applied test voltages

 \leq 250 V_{DC}-rated: 250 % of rated voltage 500 V_{DC}-rated: min. 150 % of rated voltage 630 V_{DC} / 1000 V_{DC}-rated: 150 % of rated voltage 1500 V_{DC} to 3000 V_{DC}-rated: 120 % of rated voltage

Revision: 30-Apr-2024 Document Number: 45198 For technical questions, contact: mlcc@vishay.com

Vishay Vitramon

QUICK REFERENCE	DATA			
DIEL FOTDIO	CASE	MAXIMUM VOLTAGE	CAPAC	ITANCE
DIELECTRIC	CASE	(V)	MINIMUM	MAXIMUM
	1206	1500	10 pF	4.7 nF
	1210	2000	10 pF	8.2 nF
	1808	3000	27 pF	8.2 nF
C0G (NP0)	1812	3000	27 pF	18 nF
	1825	1000	15 pF	33 nF
	2220	1000	270 pF	39 nF
	2225	1000	270 pF	47 nF
	0805	630	470 pF	220 nF
	1206	2000	270 pF	680 nF
	1210	2000	390 pF	1.0 μF
X7R	1808	3000	220 pF	18 nF
V/U	1812	3000	100 pF	1.2 μF
	1825	2000	5.6 nF	1.5 μF
	2220	3000	1.0 nF	1.8 μF
	2225	2000	5.6 nF	1.8 µF

Note

• Detail ratings see "Selection Chart"

ORDE	RING INFO	RMATION						
VJ1210	Y	474	J	Х	Α	Α	Т	# (2)
CASE CODE	DIELECTRIC	CAPACITANCE NOMINAL CODE	CAPACITANCE TOLERANCE	TERMINATION (4)	DC VOLTAGE RATING ⁽¹⁾	MARKING	PACKAGING	PROCESS CODE
0805 1206 1210 1808 1812 1825 2220 2225	A = C0G (NP0) Y = X7R	Expressed in picofarads (pF). The first two digits are significant, the third is a multiplier. An "R" indicates a decimal point. Examples 474 = 470 000 pF	F = ± 1 % G = ± 2 % J = ± 5 % K = ± 10 % M = ± 20 % Note COG (NP0): F, G, J, K X7R: J, K, M	X = Ni barrier 100 % tin plated matte finish E = AgPd ⁽³⁾ B = polymer 100 % tin plated matte finish ⁽⁵⁾	J = 16 V X = 25 V A = 50 V B = 100 V C = 200 V P = 250 V E = 500 V L = 630 V G = 1000 V R = 1500 V H = 3000 V	T = 7" reel P = 11 1/4 pap R = 11 1/4 plas: O = 7" re pap I = 11 1/4 flamed N "I" and "O"	I / paper tape / plastic tape !" / 13" reel / er tape !" / 13" reel / tic tape eel / flamed er tape " / 13" reel / paper tape lote " are used for tition size 0805	4X = OMD cap 5H = OMD cap 100 % voltage conditioning

Notes

- DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: <u>mlcc@vishay.com</u>
- (2) Process code with 2 digits has to be added
- (3) Termination code E" is for conductive epoxy assembly
- (4) Other termination options contact mlcc@vishay.com for availability
- (5) Polymer termination, code "B", only available in plastic tape "T" / "R"

ENVIRONMENTAL S	TATUS		
TERMINATION CODE	TERMINATION DESCRIPTION	RoHS COMPLIANT	VISHAY GREEN
X	Ni barrier 100 % tin plated matte finish	Yes	Yes
Е	AgPd	Yes	Yes
В	Polymer layer, 100 % tin plated matte finish	Yes	No

Vishay Vitramon

DIMENSIONS in inches (millimeters)

CASE CODE	STYLE	LENGTH	WIDTH	MAXIMUM THICKNESS		TION PAD P)
		(L)	(W)	(T)	MINIMUM	MAXIMUM
0805	VJ0805	0.079 ± 0.008 (2.00 ± 0.20)	0.049 ± 0.008 (1.25 ± 0.20)	0.057 (1.45)	0.010 (0.25)	0.030 (0.76)
1206	VJ1206	0.126 ± 0.010 (3.20 ± 0.25)	0.063 ± 0.010 (1.60 ± 0.25)	0.067 (1.70) (1)	0.010 (0.25)	0.030 (0.76)
1210	VJ1210	0.126 ± 0.010 (3.20 ± 0.25)	0.098 ± 0.010 (2.50 ± 0.25)	0.067 (1.70)	0.010 (0.25)	0.030 (0.76)
1808	VJ1808	0.180 ± 0.012 (4.57 ± 0.30)	0.080 ± 0.010 (2.03 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.035 (0.90)
1812	VJ1812	0.177 ± 0.012 (4.50 ± 0.30)	0.126 ± 0.008 (3.20 ± 0.20)	0.106 (2.70)	0.010 (0.25)	0.035 (0.90)
1825	VJ1825	0.177 ± 0.012 (4.50 ± 0.30)	0.252 ± 0.010 (6.40 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.035 (0.90)
2220	VJ2220	0.220 ± 0.010 (5.59 ± 0.25)	0.200 ± 0.010 (5.08 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.037 (0.95)
2225	VJ2225	0.220 ± 0.010 (5.59 ± 0.25)	0.250 ± 0.010 (6.35 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.037 (0.95)

Notes

Polymer (B-termination) have increased dimensions: length 0.006" (0.15 mm)

⁽¹⁾ Maximum thickness (T) = 0.067 (1.71) for VJ1206Y104*

VJ Open Mode Design Series

Vishay Vitramon

SELECTI	ON CHA	RT																							
DIELECTRIC													С	0G (N	P0)										
STYLE				١	/J12	06 ⁽¹⁾						V.	J1210								VJ18	308 ⁽¹⁾)		
CASE CODE				•	12								1210									308			
VOLTAGE (\	/\	50	100	200			1000	1500	50	100	200	500			1500	2000	50	100	200	500			1500	2000	2000
VOLTAGE (500 E		G			В		500 E		G		2000 F	_	В	200 C	500 E					
		Α	В	С	E	L	G	R	Α	В	С		L	G	R	F	Α	В	C	E	L	G	R	F	Н
CAP. CODE	CAP.						_						_												
100	10 pF 12 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_								
120			•	•		•	•		-	•	•	•		•	•										
150	15 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•									
180	18 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•									
220 270	22 pF	•	•	•	•	•			•	•	•	•		•	•	•			_	_		_	_	2	
	27 pF		•	•		•	•	•	-	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
330	33 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
390	39 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
470	47 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
560	56 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
680	68 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
820	82 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
101	100 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
121	120 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
151	150 pF	•	•	•	•	•			•	•	•	•				1	•	•	•	•	•	•	•	•	
181	180 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•	•	•	
221	220 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•	•	•	
271	270 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
331	330 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
391	390 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
471	470 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
561	560 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
681	680 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
821	820 pF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
102	1.0 nF	•	•	•	•	•			•	•	•	•					•	•	•	•	•	•			
122	1.2 nF	•	•	•					•	•	•	•					•	•	•	•					
152	1.5 nF	•	•	•					•	•	•						•	•	•	•					
182	1.8 nF	•	•	•					•	•	•						•	•	•						
222	2.2 nF	•	•	•					•	•	•						•	•	•						
272	2.7 nF	•	•						•	•	•						•	•	•						
332	3.3 nF	•	•						•	•	•						•	•	•						
392	3.9 nF	•			<u> </u>	<u> </u>			•	•	•		<u> </u>			<u> </u>	•	•	•						
472	4.7 nF	•				<u> </u>		<u> </u>	•	•	•		<u> </u>			<u> </u>	•	•	•						
562	5.6 nF					<u> </u>			•				<u> </u>			<u> </u>	•	•	•						
682	6.8 nF					<u> </u>			•				<u> </u>			<u> </u>	•	•							
822	8.2 nF				<u> </u>				•							1	•								
103	10 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
123	12 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
153	15 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
183	18 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
223	22 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
273	27 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
333	33 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
393	39 nF				<u> </u>	<u> </u>			<u> </u>		-		<u> </u>			<u> </u>				<u> </u>					
473	47 nF			<u> </u>	<u> </u>						<u> </u>					<u> </u>	<u> </u>			<u> </u>		-	1		
563	56 nF	Щ		<u> </u>							<u> </u>						_			<u> </u>		<u> </u>	<u> </u>		
683	68 nF	Щ		<u> </u>							<u> </u>						_			<u> </u>		<u> </u>	<u> </u>		
823	82 nF				ļ	<u> </u>			_		<u> </u>	<u> </u>	<u> </u>			ļ				<u> </u>		ļ			
104	100 nF																								

Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

SELECTION	ON CHART															
DIELECTRIC	,							С	0G (NP	0)						
STYLE					V	J1812	[1)		•	,			VJ18	325 ⁽¹⁾		
CASE CODE						1812								325		
VOLTAGE (V		50	100	200	500	630	1000	1500	2000	3000	50	100	200	500	630	1000
VOLTAGE CO		A	В	C	E	L	G	R	F	Н	A	В	С	E	L	G
CAP. CODE	CAP.				_	_		••	•					_	_	<u> </u>
100	10 pF															
120	12 pF															
150	15 pF														•	•
180	18 pF														•	•
220	22 pF														•	•
270	27 pF	•	•	•	•	•	•	•	•	•					•	•
330	33 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
390	39 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
470	47 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
560	56 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
680	68 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
820	82 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
101	100 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
121	120 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
151	150 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
181	180 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
221	220 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
271	270 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
331	330 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
391	390 pF	•	•	•	•	•	•	•	•		•	•	•	•	•	•
471	470 pF	•	•	•	•	•	•	•	•		•	•	•	•	•	•
561	560 pF	•	•	•	•	•	•	•	•		•	•	•	•	•	•
681	680 pF	•	•	•	•	•	•	•	•		•	•	•	•	•	•
821	820 pF	•	•	•	•	•	•				•	•	•	•	•	•
102	1.0 nF	•	•	•	•	•	•				•	•	•	•	•	•
122	1.2 nF	•	•	•	•	•	•				•	•	•	•	•	•
152	1.5 nF	•	•	•	•	•	•				•	•	•	•	•	•
182	1.8 nF	•	•	•	•	•	•				•	•	•	•	•	•
222	2.2 nF	•	•	•	•	•	•				•	•	•	•	•	•
272	2.7 nF	•	•	•	•						•	•	•	•		
332	3.3 nF	•	•	•	•						•	•	•	•		
392	3.9 nF	•	•	•	•						•	•	•	•		
472 562	4.7 nF	•	•	•							•	•	•	•		
	5.6 nF	•	•	•							•	•	•	•		
682 822	6.8 nF 8.2 nF	•	•	•							•	•	•	•		
103	8.2 nF 10 nF	•	•	•							•	•	•			
123	10 nF	•	•								•		•		-	
153	15 nF	•			1	1					•	•	•			1
183	18 nF	•			<u> </u>						•		•			
223	22 nF										•	•	•			
273	27 nF	1									•	•	-			
333	33 nF		1		 						•			 	<u> </u>	
393	39 nF	1	1		-									-	 	1
473	47 nF		1		 							 		 	<u> </u>	
563	56 nF			1		1						<u> </u>				
683	68 nF											<u> </u>				
823	82 nF	1										<u> </u>				
			i							1				<u> </u>		

Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

VJ Open Mode Design Series

Vishay Vitramon

SELECT	ION CHART												
DIELECTRI	С						COG	(NP0)					
STYLE				VJ22	220 (1)					VJ22	25 ⁽¹⁾		
CASE COD	E			22	220					22	225		
VOLTAGE (V _{DC})	50	100	200	500	630	1000	50	100	200	500	630	1000
VOLTAGE (Α	В	С	E	L	G	Α	В	С	Е	L	G
CAP. CODE	CAP.												
100	10 pF												
120	12 pF												
150	15 pF												
180	18 pF												
220	22 pF	-											
270	27 pF												
330 390	33 pF 39 pF												
470	47 pF												
560	56 pF	 						 					1
680	68 pF	t		<u> </u>		1			<u> </u>		<u> </u>	<u> </u>	1
820	82 pF												<u> </u>
101	100 pF	1											
121	120 pF												
151	150 pF												
181	180 pF												
221	220 pF												
271	270 pF	•	•	•	•	•	•	•	•	•	•	•	•
331	330 pF	•	•	•	•	•	•	•	•	•	•	•	•
391	390 pF	•	•	•	•	•	•	•	•	•	•	•	•
471 561	470 pF 560 pF	•	•	•	•	•	•	•	•	•	•	•	•
681	680 pF	•	•	•	•	•	•	•	•	•	•	•	
821	820 pF	•	•	•	•	•	•	•	•	•	•	•	•
102	1.0 nF	•	•	•	•	•	•	•	•	•	•	•	•
122	1.2 nF	•	•	•	•	•	•	•	•	•	•	•	•
152	1.5 nF	•	•	•	•	•	•	•	•	•	•	•	•
182	1.8 nF	•	•	•	•	•	•	•	•	•	•	•	•
222	2.2 nF	•	•	•	•	•	•	•	•	•	•	•	•
272	2.7 nF	•	•	•	•	•	•	•	•	•	•	•	•
332	3.3 nF	•	•	•	•	•	•	•	•	•	•	•	•
392	3.9 nF	•	•	•	•	•	•	•	•	•	•	•	•
472	4.7 nF	•	•	•	•	•	•	•	•	•	•	•	•
562	5.6 nF	•	•	•				•	•	•	•		
682	6.8 nF	•	•	•				•	•	•	•		
822	8.2 nF	•	•	•				•	•	•	•		
103 123	10 nF 12 nF	•	•	•		-		•	•	•	•		
153	15 nF	•	•					•	•	•			
183	18 nF	•	•					•	•	•			1
223	22 nF	•	•					•	•	•			
273	27 nF	•	•					•	•	•			1
333	33 nF	•						•	•	•			
393	39 nF	•						•	•				
473	47 nF							•					
563	56 nF												
683	68 nF												
823	82 nF												<u> </u>
104	100 nF												

Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

Vishay Vitramon

SELECTIO	N CHART	•																
DIELECTRIC										X7I	R							
STYLE					VJ080	5 ⁽¹⁾							VJ1	206 ⁽¹⁾				
CASE CODE					080	5							1	206				-
VOLTAGE (VDG	c)	16	25	50	100	200	500	630	16	25	50	100	200	500	630	1000	1500	2000
VOLTAGE CO		J	Х	Α	В	С	Е	L	J	Х	Α	В	С	E	L	G	R	F
CAP. CODE	CAP.																	
101	100 pF																	
121	120 pF																	
151	150 pF																	
181	180 pF																	
221	220 pF																	
271	270 pF								•	•	•	•	•	•	•	•	•	•
331	330 pF								•	•	•	•	•	•	•	•	•	•
391 471	390 pF				••		_	•	•	•	•	•	•	•	•	•	•	•
561	470 pF 560 pF	••	••	••	••	••	•		•	•	•	•		•	•	•	•	•
681	680 pF	••	••	••	••	••	•		•	•	•	•	•	•	•		•	•
821	820 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
102	1.0 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
122	1.2 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	
152	1.5 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	
182	1.8 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	
222	2.2 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•		
272	2.7 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•		
332	3.3 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•		
392	3.9 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•		
472	4.7 nF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•		
562	5.6 nF	••	••	••	••	•			•	•	•	•	•	•	•			
682	6.8 nF	••	••	••	••	•			•	•	•	•	•	•	•			<u> </u>
822	8.2 nF	••	••	••	••	•			•	•	•	•	•	•	•			
103	10 nF	••	••	••	••	•			•	•	•	•	•	•	•			<u> </u>
123 153	12 nF 15 nF	••	••	••	•	•			•	•	•	•	•	•	•			
183	18 nF	••	••	••	•	•			•	•	•	•	•	•	•			1
223	22 nF	••	••	••	•	•			•	•	•	•	•	•	•			
273	27 nF	•	•	•	•	_			•	•	•	•	•					1
333	33 nF	•	•	•	•				•	•	•	•	•					
393	39 nF	•	•	•	•				•	•	•	•	•					
473	47 nF	•	•	•	•				•	•	•	•	•					
563	56 nF	•	•	•					•	•	•	•	•					
683	68 nF	•	•	•					•	•	•	•	•					
823	82 nF	•	•	•					•	•	•	•	•					
104	100 nF	•	•	•					•	•	•	•	•					
124	120 nF	•	•						•	•	•	•						
154	150 nF	•	•						•	•	•	•						
184	180 nF	•							•	•	•	•						<u> </u>
224	220 nF	•						-	•	•	•							
274 334	270 nF 330 nF							-	•	•	•							
394	390 nF	1						-	•	•								
474	470 nF							-	•	•								
564	560 nF								•									
684	680 nF								•									
824	820 nF	1																
105	1.0 µF																	1
125	1.2 µF																	
155	1.5 µF																	
185	1.8 µF																	
225	2.2 µF																	

Notes

[•] Paper tape • Plastic tape

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

Vishay Vitramon

SELECTIO	N CHAR	T														
DIELECTRIC									X7R							
STYLE						VJ12	10 ⁽¹⁾						٧	J1808 ((1)	
CASE CODE						12	10							1808		
VOLTAGE (VD	nc)	16	25	50	100	200	500	630	1000	1500	2000	630	1000	1500	2000	3000
VOLTAGE CO		J	Х	Α	В	С	Е	L	G	R	F	L	G	R	F	Н
CAP. CODE	CAP.															
101	100 pF															
121	120 pF															
151	150 pF															
181	180 pF															
221	220 pF															•
271	270 pF															•
331	330 pF									_						•
391	390 pF								•	•	•		_		_	•
471 561	470 pF 560 pF										•	•	•	•	•	•
681	680 pF								•	•	•	•	•	•	•	•
821	820 pF	 			 	-		 	•	•	•	•	•	•	•	•
102	1.0 nF								•	•	•	•	•	•	•	•
122	1.2 nF								•	•	•	•	•	•	•	•
152	1.5 nF							1	•	•	•	•	•	•	•	•
182	1.8 nF								•	•	•	•	•	•	•	
222	2.2 nF								•	•	•	•	•	•	•	
272	2.7 nF								•	•	•	•	•	•	•	
332	3.3 nF								•	•	•	•	•	•	•	
392	3.9 nF								•	•		•	•	•		
472	4.7 nF								•	•		•	•	•		ļ
562	5.6 nF								•			•	•	•		ļ
682 822	6.8 nF 8.2 nF								•			•	•	•		
103	0.∠ IIF 10 nF	•	•	•	•	•	•	•	•			•	•			1
123	12 nF	•	•	•	•	•	•	•				•	•			
153	15 nF	•	•	•	•	•	•	•				•	•			
183	18 nF	•	•	•	•	•	•	•				•	•			1
223	22 nF	•	•	•	•	•	•	•								
273	27 nF	•	•	•	•	•	•	•								
333	33 nF	•	•	•	•	•	•	•								
393	39 nF	•	•	•	•	•	•	•								
473	47 nF	•	•	•	•	•										
563	56 nF	•	•	•	•	•										<u> </u>
683	68 nF	•	•	•	•	•			ļ							<u> </u>
823	82 nF	•	•	•	•	•		-	-						-	
104 124	100 nF 120 nF	•	•	•	•	•		-	-	-	-				-	
154	150 nF	•	•	•	•	•		1	 		 				1	
184	180 nF	•	•	•	•	-		<u> </u>	<u> </u>						<u> </u>	1
224	220 nF	•	•	•	•			1	1						1	<u> </u>
274	270 nF	•	•	•	•											1
334	330 nF	•	•	•	•				1							
394	390 nF	•	•	•	•											
474	470 nF	•	•	•	•											
564	560 nF	•	•	•												
684	680 nF	•	•	•												<u> </u>
824	820 nF	•	•													<u> </u>
105	1.0 µF	•														_
125	1.2 µF	 	-	-	-			-	-		-				-	
155 185	1.5 μF 1.8 μF	 			 			-	-				-		-	
225	2.2 μF	1			-			1	1			1	1		1	1
ددن	د.د µ۱	1			<u> </u>		<u> </u>	<u> </u>	<u> </u>			L	<u> </u>	<u> </u>	<u> </u>	

Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

Vishay Vitramon

SELECTIO	N CHAR	Т																
DIELECTRIC										X7R								
STYLE						VJ1	812 ⁽¹⁾							٧	J1825	(1)		
CASE CODE						18	812								1825			
VOLTAGE (V	oc)	50	100	200	250	500	630	1000	1500	2000	3000	100	200	500	630	1000	1500	2000
VOLTAGE CO	DDE	Α	В	С	Р	Е	L	G	R	F	Н	В	С	Е	L	G	R	F
CAP. CODE	CAP.																	
101	100 pF	•	•	•	•	•												
121	120 pF	•	•	•	•	•												
151	150 pF	•	•	•	•	•												
181	180 pF	•	•	•	•	•												
221 271	220 pF 270 pF	•	•	•	•	•	•											-
331	330 pF	•	•	•	•	•	•											
391	390 pF	•	•	•	•	•	•	•	•	•	•							
471	470 pF	•	•	•	•	•	•	•	•	•	•							
561	560 pF	•	•	•	•	•	•	•	•	•	•							
681	680 pF	•	•	•	•	•	•	•	•	•	•							
821	820 pF	•	•	•	•	•	•	•	•	•	•							
102	1.0 nF	•	•	•	•	•	•	•	•	•	•							
122	1.2 nF	•	•	•	•	•	•	•	•	•	•							
152	1.5 nF	•	•	•	•	•	•	•	•	•	•							
182 222	1.8 nF	•	•	•	•	•	•	•	•	•	•							
272	2.2 nF 2.7 nF	•	•	•	•	•	•	•	•	•	•							-
332	3.3 nF	•	•	•	•	•		•	•	•								
392	3.9 nF	•	•	•	•	•	•	•	•	•								
472	4.7 nF	•	•	•	•	•	•	•	•	•								
562	5.6 nF	•	•	•	•	•	•	•	•	•							•	•
682	6.8 nF	•	•	•	•	•	•	•	•	•							•	•
822	8.2 nF	•	•	•	•	•	•	•	•								•	•
103	10 nF	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•
123	12 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•
153	15 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•
183 203	18 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•
223	20 nF 22 nF	•	•	•	•	•		•				•	•	•	•	•	•	
273	27 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•
333	33 nF	•	•	•	•	•	•					•	•	•	•	•		
393	39 nF	•	•	•	•	•	•					•	•	•	•	•		<u> </u>
473	47 nF	•	•	•	•	•	•					•	•	•	•	•		
563	56 nF	•	•	•	•	•	•					•	•	•	•	•		
683	68 nF	•	•	•	•	•	•					•	•	•	•			
823	82 nF	•	•	•	•	•	•					•	•	•	•			
104	100 nF	•	•	•	•	•	•					•	•	•				
124 154	120 nF 150 nF	•	•	•	•	•						•	•	•				
184	180 nF	•	•	•	•	_		1				•	•	•				
224	220 nF	•	•	•	•							•	•	•				
274	270 nF	•	•	•	•							•	•					
334	330 nF	•	•	•	•							•	•					
394	390 nF	•	•	•								•	•					
474	470 nF	•	•									•	•					
564	560 nF	•	•									•	•					
684	680 nF	•	•				-	<u> </u>				•	•					<u> </u>
824	820 nF	•	•					-				•						
105 125	1.0 μF 1.2 μF	•	•					-				•						
155	1.2 μF 1.5 μF	•					-	-				•						
185	1.8 μF						 	1										\vdash
225	2.2 μF																	\vdash
	pı		!	!	!			1		l	l	-	!	!	!			

Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

Vishay Vitramon

SELECTIO	N CHAR	T															
DIELECTRIC									X	7R							
STYLE					٧	J2220	(1)						٧	J2225	(1)		
CASE CODE						2220								2225			
VOLTAGE (V	oc)	50	100	200	250	500	630	1000	2000	3000	100	200	500	630	1000	1500	2000
VOLTAGE CO	DE	Α	В	С	Р	Е	L	G	F	Н	В	С	Е	L	G	R	F
CAP. CODE	CAP.																
101	100 pF																
121	120 pF																
151	150 pF																
181	180 pF																
221	220 pF																<u> </u>
271	270 pF																-
331 391	330 pF 390 pF	1															
471	470 pF	1															
561	560 pF																
681	680 pF																
821	820 pF	1															†
102	1.0 nF									•							†
122	1.2 nF	1								•							
152	1.5 nF									•							
182	1.8 nF									•							
222	2.2 nF									•							
272	2.7 nF																
332	3.3 nF																
392	3.9 nF																
472	4.7 nF																
562	5.6 nF	<u> </u>							•							•	•
682	6.8 nF								•							•	•
822 103	8.2 nF 10 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
123	12 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
153	15 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
183	18 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
203	20 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
223	22 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
273	27 nF	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
333	33 nF	•	•	•	•	•	•	•			•	•	•	•	•	•	•
393	39 nF	•	•	•	•	•	•	•			•	•	•	•	•	•	•
473	47 nF	•	•	•	•	•	•	•			•	•	•	•	•	•	•
563	56 nF	•	•	•	•	•	•	•			•	•	•	•	•		
683	68 nF	•	•	•	•	•	•	•			•	•	•	•	•		
823	82 nF	•	•	•	•	•	•	•			•	•	•	•	•		<u> </u>
104	100 nF	•	•	•	•	•	•				•	•	•	•	•		-
124 154	120 nF 150 nF	•	•	•	•	•	•		1		•	•	•		1		-
184	180 nF	•	•	•	•	•	•				•	•	•		-		
224	220 nF	•	•	•	•	•	•				•						
274	270 nF	•	•	•	•			 			•	•	•		 		
334	330 nF	•	•	•	•				1		•	•	•				†
394	390 nF	•	•	•	•						•	•					
474	470 nF	•	•	•	•				1		•	•					
564	560 nF	•	•	•	•						•	•					
684	680 nF	•	•	•	•						•	•					
824	820 nF	•	•								•	•					
105	1.0 µF	•	•								•	•					
125	1.2 µF	•	•								•	•					
155	1.5 µF	•	•								•						
185	1.8 µF	•									•						<u> </u>
225	2.2 µF																

Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034

Vishay Vitramon

Vishay Vitramon

Vishay Vitramon

Cracking due to board flexure is a common failure mode for MLCC's. Using an open mode design reduces the risk of a short circuit by increasing the margin between the terminal and the electrodes. d2 > d1, therefore the same size crack does not cause a short in the open mode design.

VJ Open Mode Design Series

Vishay Vitramon

BOARDFLEX SENSITIVE APPLICATIONS - SOLUTION

A predominant failure mode in multilayer ceramic chip capacitors is cracking caused by board flexure. Cracks can then create a path for current to pass from one electrode through the dielectric to an opposing electrode or from the terminations at one end of the MLCC through the dielectric to an opposing electrode. This may subsequently result in capacitance loss, leakage - low Insulation Resistance (IR) - and / or more seriously, high current shorts. A short circuit condition in the surface mounted capacitors can cause further failures of downstream components. Vishay's Open Mode Design Capacitors (VJ OMD - Cap. series) reduce the risk of these destructive conditions through MLCC designs that prevent board flexure cracks reaching the opposing electrode.

VJ OMD - Cap. MLCCs reduce the risk of early field failures associated with board flex cracks. However, it is important to note that even in the open mode designs the presence of flexure related cracks can cause capacitance loss leading to localized stresses on the parts. eventually, depending on the application environment, including such factors and high voltage pulse frequency and thermal cycling this may lead to internal breakdown of the component.

POLYMER TERMINATION

Polymer termination provides additional protection against board flexure damage by absorbing greater mechanical and thermal stresses. Components can be packaged, transported, stored and handled the same standard terminated product. Wave and reflow soldering of MLCC does not require modification to equipment and / or process. Polymer termination greatly reduces the risk of mechanical cracking however it does not completely eliminate.

STANDARD TERMINATION	OMD CAP PLUS POLYMER TERMINATION
Exposed Electrodes = Electrical Short	No Exposed Electrodes = No Electrical Short

STANDARD PACKAGING QUANTITIES (1)(2)(3)					
CASE CODE	TAPE SIZE	7" REEL QUANTITIES		11 1/4" AND 13" REEL QUANTITIES	
		PAPER TAPE PACKAGING CODE "C" / "O"	PLASTIC TAPE PACKAGING CODE "T"	PAPER TAPE PACKAGING CODE "P" / "I"	PLASTIC TAPE PACKAGING CODE "R"
0805 ⁽⁴⁾⁽⁵⁾	8 mm	3000	3000	10 000	10 000
1206 ⁽⁴⁾	8 mm	n/a	2500 / 3000	n/a	9000 / 10 000
1210 ⁽⁴⁾	8 mm	n/a	2000 / 2500 / 3000	n/a	9000 / 10 000
1808 ⁽⁴⁾	12 mm	n/a	2000	n/a	10 000
1812 ⁽⁴⁾	12 mm	n/a	1000	n/a	4000
1825	12 mm	n/a	500	n/a	4000
2220	12 mm	n/a	1000	n/a	n/a
2225	12 mm	n/a	500	n/a	n/a

Notes

- (1) Vishay Vitramon uses embossed plastic, and punch paper carrier tapes. Paper tape is not available for case sizes ≥ 1206 or for component thickness > 0.035" (0.89 mm)
- (2) Reference: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- (3) n/a = not available
- (4) Packaging code "C" / "O", "P / I" and lower quantities can depend from product thickness
- (5) Polymer termination, code "B", only available in plastic tape "T" / "R"

STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 °C to 40 °C ambient temperature and ≤ 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

Precautions:

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.

Vishay Vitramon

Solder Pad Dimensions for Vishay Surface-Mount Multilayer Ceramic Chip Capacitors

Notes

⁽¹⁾ For safety capacitors and voltages above 3000 V, corner rounding (R) of 0.5 mm is recommended to suppress arcing

⁽²⁾ Add a 1 mm slot in PCB between pads to allow cleaning and coating under MLCC

⁽³⁾ For VJ HiFREQ Series, this dimension is 0.6 mm

⁽⁴⁾ For safety capacitors, the A dimension should be 5.80 mm

VISHAY.

Guidelines for MLCC Solder Pads and PCBs

www.vishay.com

Vishay Vitramon

PRINTED CIRCUIT BOARD PCB DESIGN CONSIDERATIONS FOR HIGH VOLTAGE SURFACE-MOUNT MLCCS

Special assembly process and design considerations should be employed for today's high voltage rating MLCCs. As case sizes remain the same and voltage ratings increase, MLCC manufacturers must design, evaluate, and qualify their capacitors using methods that reduce the occurrence of corona discharge and arcover events. To meet similar capability in high voltage applications, users should employ similar cautionary design and assembly methods.

MLCC PAD LAYOUT

A capacitor's arcover inception point can degrade due to factors such as the MLCC termination, PCB pad design, PCB cleanliness, solder flux residue, surface contamination / deposits and environmental conditions. PCB pads and their design affect the air gap distance between the opposing polarities of the MLCC termination. For voltage rating greater than 1500 V_{DC} add a corner radius to the inward facing edge of the MLCC pads and as large a gap as possible between the pads. Too small of a pad gap distance will reduce the capacitor's own arcover inception voltage level. Refer to the Figure and Table Figure 1.0, MLCC Pad Layout and Table 1.0, Vishay MLCC Solder Pad Dimensions for the recommended MLCC solder pad dimensions.

SLOT OR TRENCH BETWEEN PADS

PCB assembly can deposit dust, trap solder balls, or flux residue underneath the capacitors. These contaminants will reduce conductive clearances and the arcover inception level. Assembly methods must include a final PCB cleaning process. A slot or trench can be cut into the PCB in between the pads to allow cleaners to penetrate underneath the MLCC. The slot will also allow conformal or epoxy coatings to flow underneath the MLCC and build an insulative barrier between pads. Refer to Figure 1.0 MLCC Pad Layout for slot reference location.

COATING PRINTED CIRCUIT BOARD

Coating a printed circuit board with materials such as acrylic, silicone and urethane resins provide a protective dielectric barrier that is non-conductive and will enhance the resistance to arcing. Various processes exist which include dipping, brushing, and spaying. Optimal performance will come from coating the MLCC on all sides, top and bottom. The PCB slot in between the pads should extend slightly beyond the width of the MLCC. Refer to Figure 1.0 MLCC Pad Layout for slot reference location.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.