

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer:

0 202 538

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 86106209.9

(51) Int. Cl. 4: A 23 K 1/16

(22) Anmeldetag: 06.05.86

C 07 D 333/38, C 07 D 333/68
C 07 D 333/78, C 07 D 333/80

(30) Priorität: 17.05.85 DE 3517706
16.08.85 DE 3529247

(72) Erfinder: Hallenbach, Werner, Dr.
Kleiststrasse 10
D-4018 Langenfeld(DE)

(43) Veröffentlichungstag der Anmeldung:
26.11.86 Patentblatt 86/48

(72) Erfinder: Lindel, Hans, Dr.
Carl-Duisberg-Strasse 321
D-5090 Leverkusen(DE)

(64) Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI NL SE

(72) Erfinder: Berschauer, Friedrich, Dr.
Claudiusweg 9
D-5600 Wuppertal 1(DE)

(71) Anmelder: BAYER AG
Konzernverwaltung RP Patentabteilung
D-5090 Leverkusen 1 Bayerwerk(DE)

(72) Erfinder: Scheer, Martin, Dr.
Herberts-Katernberg 7
D-5600 Wuppertal 1(DE)

(54) Leistungsfördernde Mittel.

(72) Erfinder: de Jong, Anno, Dr.
Stockmannsmühle 46
D-5600 Wuppertal 1(DE)

(67) Die vorliegende Erfindung betrifft leistungsfördernde
Mittel für Tiere, die durch einen Gehalt an Thiénylharnstoffen
oder -isoarbstoffen der Formel I

Ia

Ib

R³ für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht, gekenn-
zeichnet sind.

06162094

0202538

- 1 -

5 BAYER AKTIENGESELLSCHAFT 5090 Leverkusen, Bayerwerk
Konzernverwaltung RP
Patentabteilung Rt/cm/c
II

10

Leistungsfördernde Mittel

15

Die vorliegende Erfindung betrifft die Verwendung von teilweise bekannten Thienylharnstoffen und -isoharnstoffen als leistungsfördernde Mittel bei Tieren.

20

Thienylharnstoffe sind bereits bekannt geworden. Sie finden Verwendung als Herbizide und Pflanzenwachstumsregulatoren (vgl. DE-OS 2 040 579, 2 122 636, 2 627 935, 3 305 866, EP-OS 4 931).

25

Es ist jedoch nichts über ihren Einsatz als leistungsfördernde Mittel bei Tieren bekannt geworden.

1. Es wurde gefunden, daß Thienylharnstoffe und -isoharnstoffe der Formel I

30

I

35

in welcher

Le A 23 725-Ausland

5 A für die Rest Ia und Ib steht

10

15 R¹ für Wasserstoff, Halogen, Nitro, CN, Alkoxy, Alkylthio, Halogenalkoxy, Halogenalkylthio, Alkoxyalkyl, gegebenenfalls substituierte Reste aus der Gruppe Alkyl, Acyl, Aroyl, Aryl steht,

20 R² für Wasserstoff, Halogen, Nitro, CN, Alkoxy, Alkylthio, Halogenalkoxy, Halogenalkylthio, Alkoxyalkyl, gegebenenfalls substituierte Reste aus der Gruppe Acyl, Aroyl, Alkyl, Aryl steht,

25 R¹ und R² gemeinsam mit den angrenzenden C-Atomen für einen gegebenenfalls substituierten gesättigten oder ungesättigten carbocyclischen oder heterocyclischen Ring stehen, der gegebenenfalls eine Carbonylfunktion tragen kann,

30 R³ für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht.

R⁴ für Wasserstoff oder Alkyl steht,

35

5 R⁵ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls
substituiertes Aryl oder Heteroaryl steht,

10 R⁶ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls
substituiertes Aryl oder Heteroaryl steht,

15 R⁷ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls
substituiertes Aryl steht,

20 R⁸ für Wasserstoff oder Alkyl oder Cycloalkyl
steht,

25 R⁹ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, gegebenenfalls substituiertes Aryl
steht,

30 R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht,

hervorragende leistungsfördernde Wirkung bei Tieren
besitzen. Thienylharnstoffe und -isocharnstoffe der
Formel I sind z.T. bekannt.

30

Thienylharnstoffe der Formel II

35

II

5 in welcher

A für den Rest Ia steht

15 R¹ für Wasserstoff, Halogen, Nitro, CN, Alkoxy,
 Alkylthio, Halogenalkoxy, Halogenalkylthio,
 Alkoxyalkyl, gegebenenfalls substituierte Reste
 aus der Gruppe Acyl, Aroyl, Aryl steht,

20 R² für Wasserstoff, Halogen, Nitro, CN, Alkoxy,
 Alkylthio, Halogenalkoxy, Halogenalkylthio,
 Alkoxyalkyl, gegebenenfalls substituierte Reste
 aus der Gruppe Acyl, Aroyl, Alkyl, Aryl steht,

25 R¹ und R² gemeinsam mit den angrenzenden C-Atomen für
 einen gegebenenfalls substituierten gesättigten
 oder ungesättigten carbocyclischen Ring stehen,
 der gegebenenfalls eine Carbonylfunktion tragen
 kann,

30 R³ für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht,

R⁴ für Wasserstoff oder Alkyl steht,

35

5 R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl steht,

10 R⁶ für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl oder Heteroaryl steht,

15 R⁷ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl oder Heteroaryl steht,

20 R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

25 R⁹ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl steht,

R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht,

25 können z.B. hergestellt werden, indem man Thienyl-isocyanate der Formel III

30 III

in welcher

35 R¹, R² und R³ die oben angegebene Bedeutung haben.

5 mit Aminen der Formel IV

IV

10 in welcher
 R⁵ und R⁶ die oben angegebene Bedeutung haben,
 umgesetzt.

15 2. Es wurden die neuen Thienylisocyanate der Formel III
 gefunden.

in welcher

25 R¹ für Wasserstoff, Halogen, Nitro, CN, Alkoxy,
 Alkylthio, Halogenalkoxy, Halogenalkylthio,
 Alkoxyalkyl, gegebenenfalls substituierte Reste
 aus der Gruppe Alkyl, Acyl, Aroyl, Aryl steht,

30 R² für Wasserstoff, Halogen, Nitro, CN, Alkoxy,
 Alkylthio, Halogenalkoxy, Halogenalkylthio,
 Alkoxyalkyl, gegebenenfalls substituierte Reste
 aus der Gruppe Alkyl, Acyl, Aroyl, Aryl
 steht,

35

5 R¹ und R² gemeinsam mit den angr nz nden C-Atomen für einen gegebenenfalls substituierten gesättigten oder ungesättigten carbocyclischen Ring stehen, der gegebenenfalls eine Carbonylfunktion tragen kann,

10

R³ für die Reste COOR⁷, CONR⁸R⁹, COR¹⁰ steht,

15

R⁷ für Wasserstoff, gegebenenfalls substituiertes Methyl, Cycloalkyl, C₂₋₄-Alkenyl, gegebenenfalls substituiertes Aryl steht,

R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

20

R⁹ für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht,

25

R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht,

mit Ausnahme von 3-Methoxycarbonyl-thien-2-yl-isocyanat.

30

3. Es wurde ferner gefunden, daß man die neuen Thienyl-isocyanate der Formel III gemäß 2 (oben) herstellen kann, indem man Thienylamine der Formel V

35

V

5

in welcher

R¹, R², R³ die in 2 (oben) angegebene Bedeutung haben,

10

mit Phosgen umsetzt.

4. Es wurden ferner die neuen Thienylharnstoffe und -isocharnstoffe der Formel VI gefunden

15

VI

in welcher

20

n für 3, 4, 5 oder 6 steht,

A für die Reste Ia und Ib steht

25

30

R³ für den Fall, daß n für 3, 5, 6 steht, für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht und für den Fall, daß n für 4 steht, für die Reste COOCH₃, COO(C₂₋₄-Alkenyl), CONR⁸R⁹, COR¹⁰ steht,

35

5 R⁴ für Wasserstoff oder Alkyl steht,

10 R⁵ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls
substituiertes Aryl oder Heteroaryl steht,

15 R⁶ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls
substituiertes Aryl oder Heteroaryl steht,

20 R⁷ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls
substituiertes Aryl steht,

25 R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

30 R⁹ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, gegebenenfalls substituiertes Aryl
steht,

35 R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht.

5. Es wurde ferner gefunden, daß man die Thienylharnstoffe oder -isoharnstoffe der Formel VI erhält,

VI

5 in welcher

n für 3, 4, 5 oder 6 steht,

A für die Reste Ia und Ib steht

10

Ia

15

Ib

20

R³ für den Fall, daß n für 3,5,6 steht, für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht und für den Fall, daß n für 4 steht, für die Reste COOCH₃, COO(C₂₋₄-Alkenyl), CONR⁸R⁹, COR¹⁰ steht,

25

R⁴ für Wasserstoff oder Alkyl steht,

30

R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl oder Heteroaryl steht,

35

R⁶ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl oder Heteroaryl steht,

35

R⁷ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl steht,

R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

5 R⁹ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, gegebenenfalls substituiertes Aryl
steht,

10 R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht,

a) wenn man für den Fall, daß A für den Rest Ia steht und R⁵ für Wasserstoff steht, Thienylamine der Formel VII

15

VII

20

in welcher
n, R³ und R⁴ die oben angegebene Bedeutung haben

25

mit Isocyanaten der Formel VIII

VIII

in welcher

30

R⁶ die oben angegebene Bedeutung hat,

umgesetzt, oder

35

5 b) wenn man für den Fall, daß A für den Rest Ia steht und R⁴ für Wasserstoff steht, Thienyl-isocyanate der Formel IX

10

IX

in welcher

15

n und R³ die oben angegebene Bedeutung haben,

mit Aminen der Formel IV

IV

20

in welcher

25

R⁵ und R⁶ die oben angegebene Bedeutung haben,

umsetzt, oder

c) wenn man für den Fall, daß A für den Rest Ib steht, Thienylamine der Formel VII

30

VII

in welcher

35

5 n, R³ und R⁴ die oben angegeben Bedeutung haben,

10 mit Imidokohlensäureesterhalogeniden der
Formel X

in welcher

15 R⁵ und R⁶ die oben angegebene Bedeutung haben
und

Hal für Halogen steht,

20 umsetzt.

Es war völlig überraschend, daß die Thienylharnstoffe der
Formel I leistungsfördernde Eigenschaften bei Tieren auf-
weisen. Es gab aus dem Stand der Technik keinerlei Hinweis
25 auf diese neue Verwendung der teilweise bekannten Thienyl-
harnstoffe der Formel I.

Bevorzugt sind Thienylharnstoffe der Formel I in welcher

30 A für die Reste Ia oder Ib steht,

35 R¹ für Wasserstoff, Halogen, Nitro, CN, C₁₋₄-Alkoxy,
C₁₋₄-Alkylthio, gegebenenfalls substituiertes C₁₋₆-
Acyl, gegebenenfalls substituiertes Aroyl, insbe-

5 sond r Benzoyl, für gegebenenfalls durch Halogen,
C₁₋₄-Alkoxy, C₁₋₄-Alkylthio, Aryl, insbesondere
Phenyl, Aryloxy, insbesondere Phenoxy, Arylthio,
insbesondere Phenylthio, Amino, C₁₋₄-Alkylamino,
Di-C₁₋₄-alkylamino, Arylamino, insbesondere Phenyl-
10 amino substituiertes C₁₋₆-Alkyl sowie für Phenyl
steht, wobei die Phenylreste gegebenenfalls einen
oder mehrere der folgenden Substituenten tragen:
Halogen, C₁₋₄-Alkyl, CN, C₁₋₄-Alkoxy, C₁₋₄-Alkylthio,
15 Phenyl, Phenoxy, Phenylthio, Amino, C₁₋₄-Alkyl-
amino, Di-C₁₋₄- alkylamino, C₁₋₄-Alkoxyalkyl,
C₁₋₄-Halogenalkyl, C₁₋₄-Halogenalkoxy, C₁₋₄-Ha-
logenalkylthio, Methylendioxy oder Ethylendioxy, die
gegebenenfalls halogensubstituiert sind, Acyl.

20 R² für die bei R¹ aufgeführten Reste steht,

R¹ und R² gemeinsam mit den angrenzenden beiden C-Atomen
für gesättigte oder ungesättigte carbocyclische Reste
mit 5-8 Ringgliedern stehen, die gegebenenfalls durch
25 OH, C₁₋₄-Alkyl, Halogen, Nitro, CN, C₁₋₄-Alkoxy,
C₁₋₄-Alkylthio, Phenyl, Phenoxy, Phenylthio, Amino,
C₁₋₄-Alkylamino, C₁₋₄-Dialkylamino, C₁₋₄-Halogenal-
kyl, C₁₋₄-Halogenalkoxy, C₁₋₄-Halogenalkylthio,
30 C₁₋₄-Alkoxyalkyl substituiert sind und einer der
Ringglieder, die nicht an den Thiophenring gebunden
sind, eine Carbonylfunktion (C = O) tragen kann; für
den Fall, daß R¹ und R² mit den angrenzenden C-Atomen
einen heterocyclischen Ring bilden, hat dieser 5 -
6 Ringglieder und trägt O, S oder N als Heteroatome.
35

5 R³ für die Rest CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht,

R⁴ für Wasserstoff oder C₁₋₄-Alkyl steht,

10 R⁵ für Wasserstoff, für gegebenenfalls durch Halogen,
C₁₋₄-Alkoxy, C₁₋₄-Alkylthio, Aryl, insbesondere
Phenyl, Aryloxy, insbesondere Phenoxy, Arylthio,
insbesondere Phenylthio, Amino, C₁₋₄-Alkylamino,
Di-C₁₋₄-alkylamino substituiertes C₁₋₆-Alkyl,
C₃₋₈-Cycloalkyl, C₂₋₆-Alkenyl ferner für Phenyl
15 oder Naphthyl steht, wobei die Phenylreste ge-
gebenenfalls einen oder mehrere der folgenden
Substituenten tragen: Halogen, C₁₋₄-Alkyl, CN,
C₁₋₄-Alkoxy, C₁₋₄-Alkylthio, Phenyl, Phenoxy,
Phenylthio, Amino, C₁₋₄-Alkylamino, Di-C₁₋₄-al-
20 kylamino, C₁₋₄-Alkoxyalkyl, C₁₋₄-Halogenalkyl,
C₁₋₄-Halogenalkoxy, C₁₋₄-Halogenalkylthio, Methy-
lendioxy oder Ethylendioxy, die gegebenenfalls
halogensubstituiert sind, sowie für Thienyl steht,
das gegebenenfalls ein- oder mehrfach durch
25 C₁₋₄-Alkyl, CN, Halogen, C₁₋₄-Alkoxycarbonyl
substituiert ist.

R⁶, R⁷ und R⁹ für die bei R⁵ angeführten Reste stehen,

30 R⁸ für Wasserstoff oder C₁₋₄-Alkyl, C₃₋₈-Cycloalkyl
steht,

35 R¹⁰ für die bei R⁵ angeführten Reste, mit Ausnahme von
Wasserstoff steht.

Besonders bevorzugt sind Verbindungen der Formel I, in
welcher

5 A für die Reste Ia und Ib steht.

10 R¹ für Wasserstoff, C₁₋₆-Alkyl, das gegebenenfalls durch Fluor, Chlor oder Brom substituiert ist, Phenyl, das gegebenenfalls durch C₁₋₄-Alkyl, Halogen, C₁₋₄-Halogenalkyl, insbesondere Trifluormethyl, C₁₋₄-Hologenalkoxy, insbesondere Trifluormethoxy substituiert ist, für Nitro, Acyl, insbesondere Acetyl, steht.

15 R² für die bei R¹ angegebenen Reste steht,

20 R¹ und R² gemeinsam mit den angrenzenden C-Atomen für einen gesättigten 5-8-gliedrigen carbocyclischen Ring stehen, der gegebenenfalls durch C₁₋₄-Alkyl substituiert ist und gegebenenfalls an den Ringgliedern, die nicht an den Thiophenring gebunden sind, eine Carbonylfunktion trägt, sowie gemeinsam mit den angrenzenden C-Atomen für einen annellierte Benzolring stehen, der gegebenenfalls durch Halogen, insbesondere Chlor, Nitro, C₁₋₄-Alkyl substituiert ist.

25 R³ für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht,

30 R⁴ und R⁶ für Wasserstoff stehen,

35 R⁵ für Wasserstoff, C₁₋₆-Alkyl, C₁₋₄-Alkylthio-C₁₋₄-alkyl, Cycloalkyl mit bis zu 8 C-Atomen, C₂₋₄-Alkenyl, Phenyl, das gegebenenfalls durch C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy, Halogen, insbesondere

5 Chlor, Nitro, substituiert ist, Naphthyl, Thietyl,
das gegebenenfalls durch CN, C₁₋₄-Alkyl, C₁₋₄-
Alkoxy carbonyl substituiert ist, steht,

10 R⁷ für Wasserstoff, C₁₋₄-Alkyl, insbesondere Methyl,
Ethyl, n-, t-Butyl, C₂₋₄-Alkenyl, insbesondere Allyl,
sowie für Phenyl steht,

R⁸ für Wasserstoff, C₁₋₄-Alkyl steht,

15 R⁹ für Wasserstoff, C₁₋₄-Alkyl, insbesondere Methyl,
Ethyl steht,

R¹⁰ für C₁₋₄-Alkyl, insbesondere Methyl, Phenyl steht.

20 Insbesondere seien Verbindungen der Formel I genannt, in
welcher

A für den Rest der Formel Ia steht,

25 R¹ für Wasserstoff, C₁₋₅-Alkyl, insbesondere Methyl,
Ethyl, Isopropyl, t-Butyl, n-Pentyl, Acetyl, Phenyl,
Nitro steht,

30 R² für die bei R¹ angeführten Reste steht,

35 R¹ und R² gemeinsam für einen an den Thiophenring ankon-
densierten Cyclopantan-, Cyclohexan-, Cycloheptan-,
Cyclooctan-, Cyclohexanon- oder Benzolring stehen,
die gegebenenfalls durch C₁₋₄-Alkyl, insbesondere

5 Methyl, Halogen, insbesondere Chlor, Nitro substituiert sein können, stehen,

R³ für die Reste CN, CONR⁸R⁹, COOR⁷, COR¹⁰ steht,

10 R⁴ und R⁶ für Wasserstoff stehen,

15 R⁵ für Wasserstoff, C₁₋₆-Alkyl, Cycloalkyl mit bis zu 6 C-Atomen, Phenyl, das gegebenenfalls durch Halogen, insbesondere Chlor, Nitro, Methyl, Methoxy, Trifluormethyl substituiert ist, steht,

R⁷ für Wasserstoff, C₁₋₄-Alkyl, insbesondere Methyl, Ethyl, n-, t-Butyl, C₂₋₄-Alkenyl insbesondere Allyl, sowie für Phenyl steht,

20

R⁸ für Wasserstoff steht,

R⁹ für Wasserstoff oder Methyl steht,

25 R¹⁰ für Methyl oder Phenyl steht.

30

35

5 Im einzelnen seien neben den in den Beispielen genannten die folgenden Verbindungen genannt:

			$A = -NH-CO-NHR^6$	
10	R^1	R^2	R^3	R^6
15	H		3-CO2Et	-CH3
20	H		3-CO2Et	
25	H		3-CO2Et	
30	H		3-CO2Et	-CH3
35	H		3-CO2Et	

0202538

	R^1	R^2	R^3	R^6
5				
10	H		3-CO2Et	-
15	H		3-CO2Et	sec-Butyl
20	H		3-CO2Et	tert.-Butyl
25	-CH3	-Et	3-CO2Et	
30	-CH3	-Et	3-CO2Et	-
35	$\leftarrow CH_2 \rightarrow_3$		CONH2	CH3
	$\leftarrow CH_2 \rightarrow_3$		CONH2	1-Propyl
	$\leftarrow CH_2 \rightarrow_3$		CONH2	n-Butyl
	$\leftarrow CH_2 \rightarrow_3$		CONH2	Cyclohexyl
	$\leftarrow CH_2 \rightarrow_3$		CONH2	Phenyl
	$\leftarrow CH_2 \rightarrow_3$		CONH2	4-Chlorphenyl
	$\leftarrow CH_2 \rightarrow_4$		CONHC2H5	CH3
	$\leftarrow CH_2 \rightarrow_4$		CONHC2H5	1-Propyl
	$\leftarrow CH_2-S-CH_2CH_2\rightarrow$		CONH2	CH3
	$\leftarrow CH_2-O-CH_2CH_2\rightarrow$		CONH2	CH3
	$\leftarrow CH_2-NH-CH_2CH_2\rightarrow$		COOC2H5	CH3

5

 $\text{A} = -\text{NH}-\text{CO}-\text{NR}^5\text{R}^6$

	R^1	R^2	R^3	R^5	R^6
10	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	COOCH_3	CH_3	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	COOCH_3	CH_3	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	COOCH_3	C_2H_5	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CONH_2	CH_3	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CONH_2	CH_3	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CONH_2	C_2H_5	C_2H_5	
15	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CN	CH_3	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CN	CH_3	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CN	C_2H_5	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	COOCH_3	CH_3	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	COOCH_3	CH_3	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	COOCH_3	C_2H_5	C_2H_5	
20	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	COOCH_3	CH_3	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	COOCH_3	C_2H_5	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	CONH_2	CH_3	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	CONH_2	CH_3	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	CONH_2	C_2H_5	C_2H_5	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	CN	CH_3	CH_3	
25	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	CN	C_2H_5	CH_3	
	$\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	CN	C_2H_5	C_2H_5	

R^1	R^2	R^3	R^6 ($\text{R}^5 = \text{H}$)
--------------	--------------	--------------	--

30	H	$-\text{CH}_3$	3- CO_2Et	
	H	$-\text{CH}_3$	3- CO_2Et	$-\text{CH}_3$
35	H	$-\text{CH}_3$	3- CO_2Et	
	H	$-\text{CH}_3$	3- CO_2Et	

5 R ¹	R ²	R ³	R ⁶
10	H		3-C-NH ₂ -CH ₃
15	H		3-C-NH ₂ -
20 H	-Et	3-CO ₂ Et	-CH ₃
	-Et	3-CO ₂ Et	
25 H	-Et	3-CO ₂ Et	
	-Et	3-CO ₂ Et	
30 H	-Et	3-CO ₂ Et	tert.-Butyl
	-Et	3-CO ₂ Et	(R ⁵) (R ⁶)
35 -Et	-CH ₃	3-CO ₂ Et	-CH ₃ , -CH ₃

5	R ¹	R ²	R ³	R ⁶
	CH ₃	H	COOC ₂ H ₅	CH ₃
	CH ₃	H	COOC ₂ H ₅	i-Propyl
10	CH ₃	H	COOC ₂ H ₅	i-Butyl
	CH ₃	H	COOC ₂ H ₅	Cyclopentyl
	CH ₃	H	COOC ₂ H ₅	Cyclohexyl
	CH ₃	H	COOC ₂ H ₅	Phenyl
	CH ₃	H	COOC ₂ H ₅	4-Methoxyphenyl
15	H	n-C ₅ H ₁₁	COOC ₂ H ₅	CH ₃
	H	n-C ₅ H ₁₁	COOC ₂ H ₅	i-Propyl
	H	n-C ₅ H ₁₁	COOC ₂ H ₅	i-Butyl
	H	n-C ₅ H ₁₁	COOC ₂ H ₅	Cyclopentyl
	H	n-C ₅ H ₁₁	COOC ₂ H ₅	Cyclohexyl
20	H	n-C ₅ H ₁₁	COOC ₂ H ₅	Phenyl
	H	n-C ₅ H ₁₁	COOC ₂ H ₅	4-Chlorphenyl
	H	n-C ₅ H ₁₁	COOC ₂ H ₅	4-Methoxyphenyl
	H	Phenyl	3-COOOC ₂ H ₅	Cyclopropyl

25 O-R⁵
 |
 A = -NH-C=NR⁶

30	R ¹	R ²	R ³	R ⁵	R ⁶
	-CH ₃	-CH ₃	3-CO ₂ Et	-Et	-CH ₃
35	-H	-	3-CO ₂ Et	-Et	-CH ₃
	-H	-H	3-CO ₂ Et	-Me	-

5 Di Thiénylharnstoffe der Formel I sind teilweise bekannt.
Sie lassen sich analog zu bekannten Verfahren herstellen
(DE-OS 2 122 636, 2 627 935).

10 Die Thiénylverbindungen der Formel II, in welcher der Rest A für den Harnstoffrest der Formel Ia in 2-Stellung des Thiénylrings steht, lassen sich besonders vorteilhaft herstellen, indem man Thiényl-2-isocyanat der Formel III mit den Aminen der Formel IV umsetzt (vgl. Verfahren 2 oben).

15 Verwendet man 2-Isocyanato-3-cyano-4,5-tetramethylen-thiophen und Methylamin, lässt sich der Reaktionsverlauf durch folgendes Reaktionsschema darstellen:

20

25

Als Verbindungen der Formel III werden bevorzugt diejenigen eingesetzt, die in den Substituenten R^1 , R^2 und R^3 die bei den Verbindungen der Formel I genannten bevorzugten Bedeutungen besitzen. Die Verbindungen der Formel III sind neu. Ihre Herstellung erfolgt nach dem unter 4 angegebenen Verfahren, das weiter unten näher erläutert wird.

Im einzelnen seien neben den in den Beispielen genannten die folgenden Verbindungen der Formel III genannt:

35

Le A 23 725

5 2-Isocyanato-3-cyano-thiophen
2-Isocyanat -3-carbethoxy-5-isobutyl-thiophen
2-Isocyanato-3-cyano-4,5-trimethylen-thiophen
2-Isocyanato-3-methoxycarbonyl-4,5-trimethylen-thiophen
2-Isocyanato-3-ethoxycarbonyl-4,5-trimethylen-thiophen
10 2-Isocyanato-3-t-butoxycarbonyl-4,5-trimethylen-thiophen
2-Isocyanato-3-cyano-4,5-pentamethylen-thiophen
2-Isocyanato-3-methoxycarbonyl-4,5-pentamethylen-thiophen
2-Isocyanato-3-ethoxycarbonyl-4,5-pentamethylen-thiophen
2-Isocyanato-3-t-butoxycarbonyl-4,5-pentamethylen-thiophen
15 2-Isocyanato-3-carbethoxy-5-phenyl-thiophen
2-Isocyanato-3-carbethoxy-4-methyl-5-phenyl-thiophen

Als Verbindungen der Formel IV werden bevorzugt diejenigen eingesetzt, die in den Substituenten R⁵ und R⁶ die bei 20 den Verbindungen der Formel I genannten bevorzugten Bedeutungen haben. Die Verbindungen der Formel IV sind bekannte Verbindungen der organischen Chemie.

Im einzelnen seien folgende Verbindungen der Formel IV 25 genannt:

Ammoniak, Methylamin, Dimethylamin, Ethylamin, Diethylamin, n-Propylamin, Di-n-propylamin, Isopropylamin, Di-isopropylamin, n-Butylamin, i-Butylamin, sec-Butylamin, t-Butylamin, Cyclopentylamin, Cyclohexylamin, Anilin, 30 2-Chloranilin, 3-Chloranilin, 4-Chloranilin, 2-Nitroanilin, 3- Nitroanilin, 4-Nitroanilin, 2-Methylanilin, 3-Methylanilin, 4-Methylanilin, 2-Methoxyanilin, 3-Methoxyanilin, 4-Methoxyanilin, 2-Trifluormethylanilin, 35 3-Trifluormethylanilin, 4-Trifluormethylanilin.

5 Zur Herstellung der Thienylharnstoff der Formel II werden die Thienylisocyanate der Formel III und die Amine der Formel IV in etwa äquimolaren Mengen umgesetzt. Ein Überschuß der einen oder der anderen Komponente bringt keine wesentlichen Vorteile.

10

Die Umsetzung kann mit oder ohne Verdünnungsmittel erfolgen. Als Verdünnungsmittel seien genannt:

15 Alle inerten organischen Lösungsmittel. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol,
20 ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester, wie Essigsäure-methylester und -ethylester, ferner Nitri-
25 le, wie z.B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril, darüber hinaus Amide, wie z.B. Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon, sowie Dimethylsulfoxid, Tetramethylensulfon und Hexamethylphosphorsäuretriamid.

30

Zur Beschleunigung des Reaktionsverlaufs können Katalysatoren zugesetzt werden. Als solche sind geeignet: z.B. tertiäre Amine wie Pyridin, 4-Dimethylaminopyridin, Triethylamin, Triethylendiamin, Trimethylen-tetrahydro-
35 pyridimidin; ferner Zinn-II- und Zinn-IV-Verbindungen

5

wie Zinn-II-octoat oder Zinn-IV-chlorid. - Die als Reaktionsbeschleuniger genannten tertiären Amine, z.B. Pyridin, können auch als Lösungsmittel verwendet werden.

10 Die Reaktionstemperaturen können in einem größeren Temperaturbereich variiert werden. Im allgemeinen arbeitet man zwischen 0°C und 120°C, vorzugsweise zwischen 20° und 70°C.

15 Normalerweise arbeitet man unter Normaldruck, jedoch kann es zweckmäßig sein, z.B. beim Einsatz niedrig siedender Amine, in geschlossenen Gefäßen unter Druck zu arbeiten.

Bei der Durchführung des erfindungsgemäßen Verfahrens
20 setzt man die Ausgangsstoffe im allgemeinen in stöchiometrischen Verhältnissen ein, günstig ist jedoch ein geringer Überschuß des Amins. Die Katalysatoren werden vorzugsweise in Mengen von 0,01 bis 0,1 Mol pro Mol der Reaktionskomponenten angewandt, jedoch sind auch größere
25 Mengen, z.B. der tertiären Amine, anwendbar.

Die Reaktionsprodukte werden isoliert, indem man aus den entsprechenden Lösungsmitteln direkt ausfallende Produkte filtriert oder indem man das Lösungsmittel abdestilliert.
30

Wie bereits erwähnt sind die Thienylisocyanate der Formel III neu. Bevorzugt sind Thienylisocyanate der Formel III, die in den Substituenten R¹-R³, die bei den Verbindungen der Formel I für die Substituenten R¹-R³ angegebenen be-
35

5 vorzugten Bedeutungen haben. Bevorzugte Verbindungen der Formel III sind im einzelnen die im Verfahren 2 angegebenen Verbindungen.

Thienylisocyanate der Formel III lassen sich durch Umsetzung der entsprechenden Thienylamine der Formel V mit Phosgen herstellen. Verwendet man 2-Amino-3-acetyl-4,5-tetramethylen-thiophen und Phosgen, läßt sich der Reaktionsablauf durch folgendes Reaktionsschema darstellen:

15

Als Thienylamine der Formel V werden bevorzugt diejenigen eingesetzt, die in den Substituenten R¹-R³ die bei den Verbindungen der Formel I angegebenen bevorzugten Bedeutungen haben. Die Verbindungen der Formel V sind bekannt oder lassen sich analog zu bekannten Verfahren herstellen (K. Gewald et al. Chem. Ber. 98 (1965), S. 3571, Chem. Ber. 99 (1966), S. 94, EP-OS 4 931).

Im einzelnen seien folgende Verbindungen der Formel V genannt:

- 2-Amino-3-cyano-4,5-trimethylen-thiophen
- 30 2-Amino-3-methoxycarbonyl-4,5-trimethylen-thiophen
- 2-Amino-3-ethoxycarbonyl-4,5-trimethylen-thiophen
- 2-Amino-3-t-butoxy-carbonyl-4,5-trimethylen-thiophen
- 2-Amino-3-cyano-4,5-tetramethylen-thiophen
- 2-Amino-3-methoxycarbonyl-4,5-tetramethylen-thiophen

35

5 2-Amino-3-ethoxycarbonyl-4,5-tetramethylen-thiophen
2-Amino-3-t-butoxycarbonyl-4,5-tetramethylen-thiophen
2-Amino-3-cyano-4,5-pentamethylen-thiophen
2-Amino-3-methoxycarbonyl-4,5-pentamethylen-thiophen
2-Amino-3-ethoxycarbonyl-4,5-pentamethylen-thiophen
10 2-Amino-3-t-butoxycarbonyl-4,5-pentamethylen-thiophen
2-Amino-3-carbethoxy-4-methyl-5-phenyl-thiophen
2-Amino-3-carbethoxy-4-methyl-5-ethyl-thiophen
2-Amino-3-carbethoxy-5-n-butyl-thiophen
2-Amino-3-carbethoxy-5-isobutyl-thiophen
15 2-Amino-3-carbethoxy-4-ethyl-5-methyl-thiophen
2-Amino-3-carbethoxy-5-phenyl-thiophen
2-Amino-3-carbethoxy-5-ethylthiophen
2-Amino-3-carbethoxy-5-isopropylthiophen

20 Die Umsetzung der Amine der Formel V mit Phosgen kann mit oder ohne Verdünnungsmittel erfolgen.

Als Verdünnungsmittel seien genannt: inerte organische Lösungsmittel, insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenechlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol, o-Dichlorbenzol.

30 Die Umsetzung erfolgt bei -20 bis +180°C, bevorzugt bei -10 bis +100°C. Es kann bei Normaldruck oder bei erhöhtem Druck gearbeitet werden.

5 Die Ausgangsstoff werden in äquimolaren Mengen eingesetzt, bevorzugt ist ein Überschuß an Phosgen von 2-3 Mol pro Mol Amin der Formel V.

Die Reaktion wird ohne oder in Gegenwart von Säurebindemitteln durchgeführt. Säurebindemittel sind bevorzugt z.B. tertiäre Amine wie Pyridin, Dimethylanilin.

Die Amine der Formel V werden zu einer Lösung von Phosgen zugegeben und gegebenenfalls unter weiterem Einleiten von 15 Phosgen umgesetzt. Die Umsetzung kann auch ohne Lösungsmittel durchgeführt werden.

Wie bereits erwähnt, sind die Thienylharnstoffe der Formel VI neu.

20

Bevorzugt sind Thienylharnstoffe der Formel VI, in der die Reste R³ und A die bei den Verbindungen der Formel I angegebenen bevorzugten Bedeutungen haben. Im einzelnen seien die weiter vorne aufgeführten Thienylharnstoffe genannt.

25

Thienylharnstoffe der Formel VI, in welcher A für den Rest Ia steht und R⁴ für Wasserstoff steht, lassen sich nach dem weiter oben beschriebenen Verfahren aus den entsprechenden Thienylisocyanaten und den entsprechenden Aminen 30 herstellen. Einzelheiten dieses Verfahrens sind bereits weiter oben angegeben.

Thienylharnstoffe der Formel VI, in welcher A für den Rest Ia steht und R⁵ für Wasserstoff steht, lassen sich aus den 35

5 entspr chenden Thienylaminen der Formel VII durch Umsetzung mit Isocyanaten der Formel VIII herstellen. Verwendet man 2-Methylamino-3-methoxycarbonyl-4,5-trimethylenthiophen und Phenylisocyanat, läßt sich der Reaktionsablauf durch das folgende Reaktionsschema wiedergeben:

10

15

Die als Ausgangsprodukte zu verwendenden Thienylamine der Formel VII sind bekannt oder lassen sich analog zu bekannten Verfahren herstellen (K. Gewald Chem. Ber. 98 (1965), S. 3571, Chem. Ber. 99 (1966), S. 94, EP-OS 4 931, G. Coppola et.al. J. Heterocycl. Chem. 1982, S. 717).

Es werden bevorzugt die Thienylamine der Formel VII eingesetzt, die in den Substituenten R³ und R⁴ die bei den Verbindungen der Formel I angegebenen bevorzugten Bedeutungen haben.

Im einzelnen seien die auf Seite 28 und 29 aufgeführten Verbindungen der Formel VII genannt.

35

5 Die als Ausgangsprodukt zu verwendenden Isocyanat sind bekannt. Als Beispiele seien im einzelnen genannt: Methylisocyanat, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, Iso-butyl-, tert.-Butyl- und Phenylisocyanat, 3-Chlorphenyl-isocyanat, 4-Chlorphenylisocyanat, 2,6-Dichlorphenyliso-
10 cyanat.

Die erfindungsgemäße Umsetzung zwischen den Thienylaminen und den Isocyanaten führt man vorzugsweise in Gegenwart eines Verdünnungsmittels durch. Als solche eignen sich
15 alle inerten organischen Lösungsmittel. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform,
20 Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylmethylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester,
25 wie Essigsäure-methylester und -ethylester, ferner Nitriole, wie z.B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril, darüber hinaus Amide, wie z.B. Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon, sowie Dimethylsulfoxid, Tetramethylensulfon und Hexame-
30 thylphosphorsäuretriamid.

Zur Beschleunigung des Reaktionsverlaufs können Katalysatoren zugesetzt werden. Als solche sind geeignet: z.B. tertiäre Amine wie Pyridin, 4-Dimethylaminopyridin,
35

5 Triethylamin, Triethylendiamin, Trimethylen-tetrahydro-pyrimidin; ferner Zinn-II- und Zinn-IV-Verbindungen wie Zinn-II-octoat oder Zinn-IV-chlorid. - Die als Reaktionsbeschleuniger genannten tertiären Amine, z.B. Pyridin, können auch als Lösungsmittel verwendet werden.

10

Die Reaktionstemperaturen können in einem größeren Temperaturbereich variiert werden. Im allgemeinen arbeitet man zwischen 0°C und 120°C, vorzugsweise zwischen 20° und 70°C.

15

Normalerweise arbeitet man unter Normaldruck, jedoch kann es zweckmäßig sein, z.B. beim Einsatz niedrig siedender Isocyanate, in geschlossenen Gefäßen unter Druck zu arbeiten.

20

Bei der Durchführung des erfindungsgemäßigen Verfahrens setzt man die Ausgangsstoffe im allgemeinen in stöchiometrischen Verhältnissen ein, günstig ist jedoch ein geringer Überschuß des Isocyanats. Die Katalysatoren werden 25 vorzugsweise in Mengen von 0,01 bis 0,1 Mol pro Mol der Reaktionskomponenten angewandt, jedoch sind auch größere Mengen, z.B. der tertiären Amine, anwendbar.

30

Die Reaktionsprodukte werden isoliert, indem man aus den entsprechenden Lösungsmitteln direkt ausfallende Produkte filtriert oder indem man das Lösungsmittel abdestilliert.

35

Thienylisocharnstoffe der Formel VI, in welcher A für den Rest Ib steht, lassen sich aus den entsprechenden Thienylaminen der Formel VII durch Umsetzung mit den entsprechenden Imidokohlensäureesterhalogeniden der Formel X her-

⁵ stellen. Verwendet man 2-Ethylamino-3-benzoyl-4,5-hexamethylenthiophen und N-Phenyl-imidokohlensäureestherchlorid, lässt sich der Reaktionsablauf durch das folgende Reaktionsschema wiedergeben:

10

15

20

Es werden bevorzugt die weiter oben als bevorzugt angegebenen Thienylamine eingesetzt.

25 Imidokohlensäureesterhalogenide sind bekannt.

In Formel X haben R⁵ und R⁶ bevorzugt die weiter oben angegebenen bevorzugten Bedeutungen.

30 Halogen steht insbesondere für Chlor.

Im einzelnen seien folgende Imidokohlensäureesterhalogenide genannt: N-Methylimidokohlensäureethylesterchlorid, N-Ethyl-imidokohlensäureethylesterchlorid, N-Propyl-imido-35 kohlensäureestermethylesterchlorid, N-Phenylimidokohlensäureethylesterchlorid.

5 Die Umsetzung erfolgt gegebenenfalls in Gegenwart von Säureakzeptoren, Katalysatoren und Verdünnungsmitteln.

Die Verbindungen der Formel VII und X werden bevorzugt äquimolar eingesetzt. Ein Überschuß der einen oder anderen
10 Komponente bringt keinen wesentlichen Vorteil.

Als Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage. Hierzu gehören insbesondere aliphatische und aromatische, gegebenenfalls halogenierte
15 Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, ferner Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Di-
20 glykoldimethylether, Tetrahydrofuran und Dioxan, weiterhin Ketone, wie Aceton, Methylethyl-, Methylisopropyl- und Methylisobutylketon, außerdem Ester, wie Essigsäure-methylester und -ethylester, ferner Nitrile, wie z.B. Acetonitril und Propionitril, Benzonitril, Glutarsäuredinitril,
25 darüber hinaus Amide, wie z.B. Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon, sowie Dimethylsulfoxid, Tetramethylensulfon und Hexamethylphosphorsäuretriamid.

Als Säureakzeptoren können alle üblichen Säurebindemittel
30 verwendet werden. Hierzu gehören vorzugsweise Alkalicarbonate, -hydroxide oder -alkoholate, wie Natrium- oder Kaliumcarbonat, Natrium- und Kaliumhydroxid, Natrium- und Kaliummethylat bzw. -ethylat, ferner aliphatische, aromatische oder heterocyclische Amine, beispielsweise Trime-
35

5 thylamin, Triethylamin, Tributylamin, Dimethylanilin,
Dimethylbenzylamin, Pyridin und 4-Dimethylaminopyridin.

Als Katalysatoren können Verbindungen verwendet werden,
welche gewöhnlich bei Reaktionen in Zweiphasensystemen aus
10 Wasser und mit Wasser nicht mischbaren organischen Lö-
sungsmitteln zum Phasentransfer von Reaktanden dienen
(Phasentransferkatalysatoren). Als solche sind vor allem
Tetraalkyl- und Trialkylaralkyl-ammoniumsalze mit vor-
zugsweise 1 bis 10, insbesondere 1 bis 8 Kohlenstoffen je
15 Alkylgruppe, vorzugsweise Phenyl als Arylbestandteil der
Aralkylgruppe und vorzugsweise 1 bis 4, insbesondere 1
oder 2 Kohlenstoffatomen im Alkylteil der Aralkylgruppen
bevorzugt. Hierbei kommen vor allem die Halogenide, wie
Chloride, Bromide und Iodide, vorzugsweise die Chloride
20 und Bromide in Frage. Beispielhaft seien Tetrabutylammo-
niumbromid, Benzyl-triethylammoniumchlorid und Methyltri-
octylammoniumchlorid genannt.

Die Reaktionstemperatur wird zwischen etwa 0°C und 130°C,
25 vorzugsweise zwischen etwa 20°C und 60°C gehalten. Das
Verfahren wird vorzugsweise bei Normaldruck durchgeführt.
Die Aufarbeitung erfolgt in üblicher Weise.

Die Wirkstoffe werden als Leistungsförderer bei Tieren zur
30 Förderung und Beschleunigung des Wachstums, der Milch- und
Wollproduktion, sowie zur Verbesserung der Futterverwer-
tung, der Fleischqualität und zur Verschiebung des

5 Fleisch-Fett-Verhältnisses zugunsten von Fleisch eingesetzt. Die Wirkstoffe werden bei Nutz-, Zucht-, Zier- und Hobbytieren verwendet.

Zu den Nutz- und Zuchttieren zählen Säugetiere wie z.B.

10 Rinder, Schweine, Pferde, Schafe, Ziegen, Kaninchen, Hasen, Damwild, Pelztiere wie Nerze, Chinchilla, Geflügel wie z.B. Hühner, Puten, Gänse, Enten, Tauben, Fische wie z.B. Karpfen, Forellen, Lachse, Aale, Schleien, Hechte, Reptilien wie z.B. Schlangen und Krokodile.

15

Zu den Zier- und Hobbytieren zählen Säugetiere wie Hunde und Katzen, Vögel wie Papageien, Kanarienvögel, Fische wie Zier- und Aquarienfische z.B. Goldfische.

20 Die Wirkstoffe werden unabhängig vom Geschlecht der Tiere während allen Wachstums- und Leistungsphasen der Tiere eingesetzt. Bevorzugt werden die Wirkstoffe während der intensiven Wachstums- und Leistungsphase eingesetzt. Die intensive Wachstums- und Leistungsphase dauert je nach Tierart von einem Monat bis zu 10 Jahren.

Die Menge der Wirkstoffe, die den Tieren zur Erreichung des gewünschten Effektes verabreicht wird, kann wegen der günstigen Eigenschaften der Wirkstoffe weitgehend variiert 30 werden. Sie liegt vorzugsweise bei etwa 0,001 bis 50 mg/kg insbesondere 0,01 bis 5 mg/kg Körpergewicht pro Tag. Die passende Menge des Wirkstoffs sowie die passende Dauer der Verabreichung hängen insbesondere von der Art, dem Alter, dem Geschlecht, dem Gesundheitszustand und der Art der 35 Haltung und Fütterung der Tiere ab und sind durch jeden Fachmann leicht zu ermitteln.

5 Die Wirkstoffe werden den Tieren nach den üblichen Methoden verabreicht. Die Art der Verabreichung hängt insbesondere von der Art, dem Verhalten und dem Gesundheitszustand der Tiere ab.

10 Die Wirkstoffe können einmalig verabreicht werden. Die Wirkstoffe können aber auch während der ganzen oder während eines Teils der Wachstumsphase temporär oder kontinuierlich verabreicht werden. Bei kontinuierlicher Verabreichung kann die Anwendung ein- oder mehrmals täglich

15 in regelmäßigen oder unregelmäßigen Abständen erfolgen.

Die Verabreichung erfolgt oral oder parenteral in dafür geeigneten Formulierungen oder in reiner Form. Orale Formulierungen sind Pulver, Tabletten, Granulate, Drenche,

20 Boli sowie Futtermittel, Prämixe für Futtermittel, Formulierungen zur Verabreichung über Trinkwasser.

Die oralen Formulierungen enthalten den Wirkstoff in Konzentrationen von 0,01 ppm - 100 %, bevorzugt von 0,01 ppm

25 - 1 %.

Parenterale Formulierungen sind Injektionen in Form von Lösungen, Emulsionen und Suspensionen, sowie Implantate.

30 Die Wirkstoffe können in den Formulierungen allein oder in Mischung mit anderen Wirkstoffen, Mineralsalzen, Spurenelementen, Vitaminen, Eiweißstoffen, Farbstoffen, Fetten oder Geschmacksstoffen vorliegen.

5 Die Konzentration der Wirkstoff im Futter beträgt normalerweise etwa 0,01-500 ppm, bevorzugt 0,1-50 ppm.

Die Wirkstoffe können als solche oder in Form von Prämixen oder Futterkonzentraten dem Futter zugesetzt werden.

10

Beispiel für die Zusammensetzung eines Kükenaufzuchtfutters, das erfindungsgemäßen Wirkstoff enthält:

15 200 g Weizen, 340 g Mais, 361 g Sojaschrot, 60 g Rinderfettalg, 15 g Dicalciumphosphat, 10 g Calciumcarbonat, 4 g jodiertes Kochsalz, 7,5 g Vitamin-Mineral-Mischung und 2,5 g Wirkstoff-Prämix ergeben nach sorgfältigem Mischen 1 kg Futter.

20 In einem kg Futtermischung sind enthalten:

600 I.E. Vitamin A, 100 I.E. Vitamin D₃, 10 mg Vitamin E, 1 mg Vitamin K₃, 3 mg Riboflavin, 2 mg Pyridoxin, 20 mcg Vitamin B₁₂, 5 mg Calciumpantothenat, 30 mg Nikotinsäure, 200 mg Cholinchlorid, 200 mg Mn SO₄ x H₂O, 25 140 mg Zn SO₄ x 7 H₂O, 100 mg Fe SO₄ x 7 H₂O und 20 mg Cu SO₄ x 5 H₂O.

2,5 g Wirkstoff-Prämix enthalten z.B. 10 mg Wirkstoff, 1 g DL-Methionin, Rest Sojabohnenmehl.

30

35

5 Beispiel für die Zusammensetzung eines Schweineaufzucht-futters, das erfindungsgemäßen Wirkstoff enthält:

630 g Futtergetreideschrot (zusammengesetzt aus 200 g Mais, 150 g Gerste-, 150 g Hafer- und 130 g Weizenschrot),
10 80 g Fischmehl, 60 g Sojaschrot, 60 g Tapiokamehl, 38 g Bierhefe, 50 g Vitamin-Mineral-Mischung für Schweine, 30 g Leinkuchenmehl, 30 g Maiskleberfutter, 10 g Sojaöl, 10 g Zuckerrohrmelasse und 2 g Wirkstoff-Prämix (Zusammensetzung z.B. wie beim Kükenfutter) ergeben nach sorgfältigem Mischen 1 kg Futter.

Die angegebenen Futtergemische sind zur Aufzucht und Mast von vorzugsweise Küken bzw. Schweinen abgestimmt, sie können jedoch in gleicher oder ähnlicher Zusammensetzung
20 auch zur Fütterung anderer Tiere verwendet werden.

25

30

35

5 Beispiel A

Ratten-Fütterungsversuch

Weibliche Laborratten 90-110 g schwer vom Typ SPF Wistar
10 (Züchtung Hagemann) werden ad lib mit Standard Ratten-
futter, das mit der gewünschten Menge Wirkstoff versetzt
ist, gefüttert. Jeder Versuchsansatz wird mit Futter der
identischen Charge durchgeführt, so daß Unterschiede in
der Zusammensetzung des Futters die Vergleichbarkeit der
15 Ergebnisse nicht beeinträchtigen können.

Die Ratten erhalten Wasser ad lib.

Jeweils 12 Ratten bilden eine Versuchsgruppe und werden
20 mit Futter, das mit der gewünschten Menge Wirkstoff
versetzt ist gefüttert. Eine Kontrollgruppe erhält Futter
ohne Wirkstoff. Das durchschnittliche Körpergewicht sowie
die Streuung in den Körpergewichten der Ratten ist in
jeder Versuchsgruppe gleich, so daß eine Vergleichbarkeit
25 der Versuchsgruppen untereinander gewährleistet ist.

Während des 13-tägigen Versuchs werden Gewichtszunahme und
Futterverbrauch bestimmt.

30 Es werden die aus der Tabelle ersichtlichen Ergebnisse
erhalten:

35

Le A 23 725

5 Tabelle: Ratten-Fütterungsversuch

<u>Wirkstoff</u>	<u>Dosis 25 ppm</u>	<u>Gewichtszunahme</u>
Kontrolle, ohne Wirkstoff		100
10		111
15		112
20		114 (<u>10ppm</u>)
25		112
30		111
35		113

5 Wirkstoff Dosis 25 ppm

Gewichtszunahme

35

5 Herstellungsbeispiele

Beispiel 1

Herstellung von

10

15

4,5 g (0,023 mol) 2-Amino-tetrahydrobenzothiophen-3-carbonsäureamid (hergestellt nach K. Gewald, Chem. Ber. 99, 94 (1966)) und 1,4 g (0,024mol) Methylisocyanat wurden in 100 ml trockenem Chloroform 24 h unter Rückfluß erhitzt.

20

Dann wurde die Chloroformphase dreimal mit je 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft. Das anfallende Rohprodukt wurde aus Ethanol umkristallisiert.

Ausbeute: 5,5 g (95 %), Schmp. 202°C (Zers.)

25

EA Ber. C 52,2 Gef. C 52,2

H 6,0 H 5,9

N 16,6 N 16,6

Beispiel 2

30

Herstellung von

35

5 5,3 g (0,03 mol) 2-Amino-3-cyano-tetrahydr benzothi ph n
 (hergestellt nach K. Gewald, Chem. Ber. 99, 94 (1966)) und
 5,1 g (0,033 mol) 4-Chlorphenylisocyanat wurden in 100 ml
 trockenem Pyridin 10 Stunden bei 70°C gerührt. Das ausge-
 fallene Rohprodukt wurde abgesaugt, mit verdünnter Salz-
 10 säure und mit Wasser gewaschen und aus Ethanol umkri-
 stallisiert.

Ausbeute: 7,1 g (72 %); Fp. > 250°C.

EA Ber. C 57,9 Gef. C 58,0

15	H 4,3	H 4,2
	N 12,7	N 12,7
	C1 10,7	C1 10,7

Beispiel 3

20 N-Isopropyl-N'-2(3-cyan-4-tert.-butyl-thienyl)harnstoff

Zu einer Lösung von 2,1 g (35,6 mmol) Isopropylamin in
 50 ml trockenem Toluol wurden 4 g (19,4 mmol) 2-Isocyana-
 to-4-tert.-butyl-3-cyan-thiophen, gelöst in 50 ml trocke-
 25 nem Toluol, zugetropft. Es wurde eine Stunde bei Raum-
 temperatur gerührt. Zur Aufarbeitung wurde die Lösung in
 1 l 2,5 N-Salzsäure eingerührt, die organische Phase ab-
 getrennt und mit 100 ml NaHCO₃-Lösung gewaschen. Der nach
 Abdampfen des Toluols im Vakuum verbleibende Rückstand
 30 wurde aus Toluol/Petrolether umkristallisiert.

Ausbeute: 1,88 g (36,5 % der Theorie),

Schmelzpunkt: 183-184°C.

5 Beispiel 4N-Isopropyl-N'-(2-carbomethoxy-thien-3-yl)harnstoff

Zu einer Lösung von 2,2 g (37 mmol) Isopropylamin in 50 ml
10 trockenem Toluol wurde eine Lösung von 6,4 g (35 mmol)
2-Carbomethoxy-3-isocyanato-thiophen (Esso Research and
Engineering Company, BE 767244-Q) in 50 ml trockenem
Toluol bei 0°C langsam zugetropft. Das Produkt fiel als
weißer Feststoff aus. Es wurde noch 2 Stunden bei Raumtem-
15 peratur gerührt, dann abgesaugt und im Vakuum getrocknet.
Ausbeute: 6,8 g (80,3 % der Theorie),
Schmelzpunkt: 119°C.

20

25

30

35

Le A 23 725

5 Nach den Verfahren der Beispiele 1-4 wurden folgende Verbindungen erhalten:

Bsp.Nr.	R^1	R^2	R^3	R^6	Fp.[C]
15	5	H	H	3-CO ₂ E _t	158
20	6	H	H	3-CO ₂ E _t	-CH ₃ 128
	7	H	H	3-CO ₂ E _t	136
25	8	H	H	3-CO ₂ E _t	126
	9	-CH ₃	-CH ₃	3-CO ₂ E _t	-CH ₃ 128 (Z.)
30	10	-CH ₃	-CH ₃	3-CO ₂ E _t	-n-Butyl 78
	11	-CH ₃	-CH ₃	3-CO ₂ E _t	135
35	12	-CH ₃	-CH ₃	3-CO ₂ E _t	156

5 Bsp.Nr.	R ¹	R ²	R ³	R ⁶	Fp.[C]
13	H	H	3-CO ₂ Et	-CH(CH ₃) ₂	98
10 14		H	3-CO ₂ Et	-CH ₃	131
15		H	3-CO ₂ Et		112-4
15					
16		H	3-CO ₂ Et	-CH(CH ₃) ₂	142
17	H		3-CO ₂ Et	-CH ₃	145
20					
18	H		3-CO ₂ Et	n-Butyl	122,5
25					
19	-CH ₃	-CH ₃	3-C(=O)-O-C ₄ H ₉ -t	-CH ₃	159
20	H		3-C(=O)-NH ₂	-CH ₃	> 250
30					
21	H		3-C(=O)-NH ₂		> 250
35					
22	H		3-C(=O)-NH ₂	-CH(CH ₃) ₂	> 250

5 Bsp.Nr.	R ¹	R ²	R ³	R ⁶	Fp.[C]	
23	H		3-CO ₂ Et	-CH(CH ₃) ₂	155	
10						
24	tert.Butyl	H	3-CN	H	229	
15						
25	H	i-Propyl	3-CO ₂ Et	-CH(CH ₃) ₂	91	
26	tert.Butyl	H	3-CN		212,5	
20	27	H		3-CO ₂ Et	H	126,5
28		-C ₂ H ₅	-CH ₃	3-CO ₂ Et	-CH ₃	121-2
25	29	H	i-Propyl	3-CO ₂ Et		98-99
30	30	H	H	2-CO ₂ Me		133
31		H	H	2-CO ₂ Me	H	221
32		H	H	2-CO ₂ Me	-CH ₃	139
35						

⁵ Bsp.Nr.	R ¹	R ²	R ³	R ⁶	Fp.[C]	
33	H		3-CO ₂ Et		139-141	
10						
34	-Et	-CH ₃	3-CO ₂ Et		154	
15						
35	-Et	-CH ₃	3-CO ₂ Et		132-3	
36	-Et	-CH ₃	3-CO ₂ Et		139-140	
37	-Et	-CH ₃	3-CO ₂ Et	n-Butyl	72	
20						
38	-CH ₃			-CH ₃	222	
25						
39	-CH ₃				215	
30	40	-CH ₃				221
41	-CH ₃			-n-Butyl	217	
35						
42	-CH ₃				>250	

⁵	Bsp.Nr.	R ¹	R ²	R ³	R ⁶	Fp.[C]
10	43	H	H	2-CO ₂ Me		135
	44	H	H	3-CN		225
15	45	H	H	2-CO ₂ Me	n-Butyl	72
	46	-CH ₃		3-CO ₂ Et	-CH ₃	135
20	47	-CH ₃		3-CO ₂ Et	n-Butyl	119
	48	-CH ₃		3-CO ₂ Et		113
25	49	-CH ₃		3-CO ₂ Et		125
	50	-(CH ₂) ₄ -		3-COOH		174
30						

Weiter werden analog zu den Beispielen 1 - 4 Verbindungen der folgenden Formel erhalten:

<u>6</u>	<u>Bsp.Nr.</u>	<u>n</u>	<u>X</u>	<u>R</u>	<u>Fp. [°C]</u>
	51	3	COOC ₂ H ₅	CH ₃	165
	52	3	COOC ₂ H ₅	i-Propyl	145
	53	3	COOC ₂ H ₅	3-Chlorphenyl	165
10	54	3	CN	-CH ₃	205
	55	3	CN	4-Chlorphenyl	>270
	56	4	COOCH ₃	CH ₃	167
	57	4	COOCH ₃	i-Propyl	165
	58	4	COOCH ₃	n-Butyl	130
15	59	4	COOCH ₃	Phenyl	176
	60	4	COOC ₄ H ₉ t	CH ₃	150
	61	4	COCH ₃	CH ₃	193
	62	4	COC ₆ H ₅	Phenyl	112
	64	4	CONH ₂	i-Propyl	115
20	65	4	CONH ₂	n-Butyl	173
	66	4	CONH ₂	Cyclohexyl	185
	67	4	CONH ₂	Phenyl	200
	68	4	CONH ₂	3-Chlorphenyl	204
	69	4	CONH ₂	4-Chlorphenyl	221
25	70	4	CONHCH ₃	CH ₃	177
	71	4	CN	CH ₃	209
	72	4	CN	i-Propyl	217
	73	4	CN	n-Butyl	>260
	74	4	CN	Cyclohexyl	225
30	75	4	CN	Phenyl	235
	77	4	CN	2,6-Dichlorphenyl	>250
	78	5	COOC ₂ H ₅	CH ₃	148
	79	5	COOC ₂ H ₅	i-Propyl	113

<u>Bsp. Nr.</u>	<u>n</u>	<u>X</u>	<u>R</u>	<u>Fp. [°C]</u>
80	5	COOC ₂ H ₅	3-Chlorphenyl	98
81	5	CN	CH ₃	227
82	5	CN	4-Chlorphenyl	>250
83	5	CONH ₂	CH ₃	>230

weiterhin wurden hergestellt:

<u>Bsp. Nr.</u>	<u>Formel</u>	<u>Fp. [°C]</u>
-----------------	---------------	-----------------

5 Bsp.Nr.FormelFp. [°C]

10 88

180 (Z.)

15

89

198

20

90

>250

25

30

35

Weiterhin wurden hergestellt

A = NH - CONH₂

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp °C
91		H	i-Propyl	CO ₂ Et	t-Butyl	113-114
92		H	i-Propyl	CO ₂ Et	Phenyl	121
93		H	i-Propyl	CO ₂ Et	2-Butyl	122
94		H	Ethyl	CO ₂ Et	i-Prop	104
95		H	Ethyl	CO ₂ Et	2-Butyl	109
96		H	Ethyl	CO ₂ Et	Phenyl	91
97		H	i-Propyl	CO ₂ Et	CH ₃	84-86
98		i-Propyl	H	CONH ₂	i-Prop	>250
99		H	Ethyl	CO ₂ Et	p-Tolyl	97
100		H	Ethyl	CO ₂ Et	t-Butyl	146
101		Ethyl	CH ₃	CO ₂ Et	p-C ₁ -Phenyl	164
102		Ethyl	CH ₃	CO ₂ Et	m-C ₁ -Phenyl	166
103		Ethyl	CH ₃	CO ₂ Et	p-OCH ₃ -Phenyl	154
104		Ethyl	CH ₃	CO ₂ Et	p-Tolyl	182
105		Ethyl	CH ₃	CO ₂ Et	p-CF ₃ -Phenyl	177

Bsp. Nr.	R ₁	R ₂	R ₃	R ⁶	Fp °C
106	Ethyl	CH ₃	CO ₂ Et	t-Butyl	169
107	Ethyl	CH ₃	CO ₂ Et	o-Tolyl	131
108	Ethyl	CH ₃	CO ₂ Et	o-OCH ₃ -Phenyl	117
109	Ethyl	CH ₃	CO ₂ Et	2-Butyl	139
110	CH ₃	Ethyl	CO ₂ Et	o-C1-Phenyl	97
111	CH ₃	Ethyl	CO ₂ Et	m-C1-Phenyl	81
112	CH ₃	Ethyl	CO ₂ Et	p-C1-Phenyl	103
113	CH ₃	Ethyl	CO ₂ Et	p-OCH ₃ -Phenyl	86
114	CH ₃	Ethyl	CO ₂ Et	p-Tolyl	89
115	CH ₃	Ethyl	CO ₂ Et	p-CF ₃ -Phenyl	97
116	CH ₃	Ethyl	CO ₂ Et	i-Propyl	82
117	CH ₃	Ethyl	CO ₂ Et	Cyclohexyl	81
118	H	EH ₂	CO ₂ Et	t-Butyl	152
119	CH ₃	Ethyl	CO ₂ Et	Phenyl	108
120	CH ₃	Ethyl	CO ₂ Et	o-Tolyl	106
121	CH ₃	Ethyl	CO ₂ Et	o-OCH ₃ -Phenyl	81
122	CH ₃	Ethyl	CO ₂ Et	2-Butyl	81
123	H	CH ₃	CO ₂ Et	o-C1-Phenyl	141
124	H	CH ₃	CO ₂ Et	m-C1-Phenyl	155
125	H	CH ₃	CO ₂ Et	p-C1-Phenyl	166

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp °C
126	H	CH ₃	CO ₂ Et	p-OCH ₃ -Phenyl	151	
127	H	CH ₃	CO ₂ Et	p-Tolyl	153	
128	H	CH ₃	CO ₂ Et	m-CF ₃ -Phenyl	156	
129	H	CH ₃	CO ₂ Et	i-Propyl	112	
130	H	CH ₃	CO ₂ Et	Cyclohexyl	122	
131	H	CH ₃	CO ₂ Et	t-Butyl	140	
132	H	CH ₃	CO ₂ Et	Phenyl	132	
133	H	CH ₃	CO ₂ Et	o-OCH ₃ -Phenyl	112	
134	H	CH ₃	CO ₂ Et	o-Tolyl	155	
135	H	CH ₃	CO ₂ Et	2-Butyl	118	
136	H	CH ₃	CO ₂ CH ₃		202	
137	H	CH ₃	CO ₂ Et	CH ₃	81	
138	H	Ethyl	CO ₂ Et	Cyclohexyl	101	
139	H	Ethyl	CO ₂ Et	o-Cl-Phenyl	108	
140	H	Ethyl	CO ₂ Et	m-CF ₃ -Phenyl	85	
141	H	Ethyl	CO ₂ Et	o-Tolyl	147	

Le A 23 725

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp °C
142	H	Ethyl	CO ₂ Et	o-OCH ₃ -Phenyl	106	
143	H	Ethyl	CO ₂ Et	m-C1-Phenyl	103	
144	H	Ethyl	CO ₂ Et	p-C1-Phenyl	108	
145	H	CH ₃	CO ₂ Et	CH ₃	98	
146	Ethyl	CH ₃	CO ₂ -i-Propyl	t-Butyl	183	
147	Ethyl	CH ₃	CO ₂ -i-Propyl	i-Butyl	122	
148	Ethyl	CH ₃	CO ₂ -i-Propyl	i-Propyl	175	
149	Ethyl	CH ₃	CO ₂ -i-Propyl	CH ₃	130	
150	H	H	CO ₂ Et	o-C1-Phenyl	137	
151	H	H	CO ₂ Et	p-C1-Phenyl	171	
152	H	H	CO ₂ Et	m-CF ₃ -Phenyl	147	
153	H	H	CO ₂ Et	3,5-C1 ₂ -Phenyl	189	
154	H	H	CO ₂ Et	3,4-C1 ₂ -Phenyl	219	
155	H	H	CO ₂ Et	p-Toly	145	
156	H	H	CO ₂ Et	p-OCH ₃ -Phenyl	148	
157	H	H	CO ₂ Et	p-NO ₂ -Phenyl	240	
158	H	H	CO ₂ Et	n-Butyl	79	
159	H	H	CO ₂ Et	t-Butyl	176	
160	H	H	CO ₂ Et	pF-Phenyl	165	

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp°C
161	H	H	CO ₂ Et	Cyclohexyl	137	
162	Ethyl	CH ₃	CO ₂ Et	CH ₂ CH ₂ -S-CH ₃	81	
163	H	H	CO ₂ Et	o-OCH ₃ -Phenyl	114	
164	H	i-Propyl	CO ₂ Et	o-C ₁ -Phenyl	112	
165	H	i-Propyl	CO ₂ Et	m-C ₁ -Phenyl	88	
166	H	i-Propyl	CO ₂ Et	p-C ₁ -Phenyl	135	
167	H	i-Propyl	CO ₂ Et	p-OCH ₃ -Phenyl	106	
168	H	i-Propyl	CO ₂ Et	p-Tolyl	108	
169	H	i-Propyl	CO ₂ Et	m-CF ₃ -Phenyl	122	
170	H	i-Propyl	CO ₂ Et	o-Tolyl	144	
171	H	i-Propyl	CO ₂ Et	o-OCH ₃ -Phenyl	111	
172	i-Propyl	H	CONH ₂	CH ₃	195	
173	i-Propyl	H	CONH ₂	Phenyl	>250	
174	i-Propyl	H	CONH ₂	Cyclohexyl	208	
175	H	H	CO ₂ Et	2,4-Dimethylphenyl	176	
176	H	H	CO ₂ Et	o-Tolyl	142	
177	H	H	CO ₂ Et	3,5-Dimethoxyphenyl	157	
178	H	H	CO ₂ Et	3,4-Dimethylphenyl	151	
179	H	H	CO ₂ Et	3,4-Methylenedioxyphenyl	162	

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp °C
180		H	H	CO ₂ Et	m-Tolyl	137
181		H	H	CO ₂ Et	2,6-Dimethylphenyl	109
182		H	H	CO ₂ Et	2-OCH ₃ -4-CH ₃ -Phenyl	132
183		H	H	CO ₂ Et	m-OCH ₃ -Phenyl	143
184		H	H	CO ₂ Et	2,5-Dimethoxyphenyl	117
185		H	H	CO ₂ Et	2,3-Dimethylphenyl	176
186		H	H	CO ₂ Et	3,5-Dimethylphenyl	177
187		H	H	CO ₂ Et	3,4-Dimethoxyphenyl	165
188		H	CH ₃	COOH	i-Propyl	181
189		H	CH ₃	COOH	o-Tolyl	232
190		H	Ethyl	CO ₂ Et	CH ₃	112
191		CH ₃	H	CO ₂ Et	i-Propyl	121
192		CH ₃	H	CO ₂ Et	s-Butyl	92
193		CH ₃	H	CO ₂ Et	2-Butyl	87
194		CH ₃	H	CO ₂ Et	t-Butyl	137
195		CH ₃	H	CO ₂ Et	Cyclopentyl	113
196		CH ₃	H	CO ₂ Et	Cyclohexyl	163
197		CH ₃	H	CO ₂ Et	Phenyl	147
198		CH ₃	H	CO ₂ Et	p-OCH ₃ -Phenyl	108

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp °C
199		CH ₃	H	CO ₂ Et	o-OCH ₃ -Phenyl	94
200		H	n-Pentyl	CO ₂ Et	i-Propyl	61
201		H	n-Pentyl	CO ₂ Et	s-Butyl	61
202		H	n-Pentyl	CO ₂ Et	2-Butyl	61
203		H	n-Pentyl	CO ₂ Et	t-Butyl	101
204		H	n-Pentyl	CO ₂ Et	Cyclohexyl	73
205		H	n-Pentyl	CO ₂ Et	Phenyl	61
206		H	n-Pentyl	CO ₂ Et	Cyclopentyl	74
207		H	n-Pentyl	CO ₂ Et	p-OCH ₃ -Phenyl	97
208		H	n-Pentyl	CO ₂ Et	o-OCH ₃ -Phenyl	61
209		H	n-Pentyl	CO ₂ Et	A = NHCONCH ₃ -Phenyl	49
210		H	n-Pentyl	CO ₂ Et	o-Tolyl	80
211		H	n-Pentyl	CO ₂ Et	m-Tolyl	65
212		H	n-Pentyl	CO ₂ Et	p-Tolyl	93
213		H	n-Pentyl	CO ₂ Et	2,3-Dimethylphenyl	99
214		H	n-Pentyl	CO ₂ Et	2-i-Propylphenyl	73
215		H	n-Pentyl	CO ₂ Et	2,4,5-Trimethylphenyl	98

Weit rhin wurden hergestellt

Bsp.	Nr.	R ¹	R ²	R ³	R ⁶	Fp °C
216		CO ₂ CH ₃	H	C ₂ H ₅	CH ₃	160
217		CO ₂ CH ₃	H	C ₂ H ₅	i-Propyl	166
218		CO ₂ CH ₃	H	C ₂ H ₅	n-Butyl	120

5

Herstellung der AusgangsprodukteBeispiel Ia

10 2-Isocyanato-3-carboethoxythiophen

Zu 338 ml 20 %iger Phosgenlösung in Toluol (0,68 mol) wurde bei -10°C eine Lösung von 78 g (0,46 mol) 2-Amino-3-carboethoxythiophen in 700 ml Toluol zugetropft. Nach be-
 15 endetem Zutropfen ließ man innerhalb einer Stunde auf Raumtemperatur kommen und erwärme dann langsam während einer Stunde bis zum Sieden. Die nun dunkelbraune Lösung wurde noch 2 Stunden unter Rückfluß gekocht, danach das überschüssige Phosgen durch Einleiten eines trockenen
 20 Stickstoffs ausgetrieben. Anschließend wurde das Toluol im Vakuum abdestilliert mit dem Rückstand an der Ölpumpe destilliert.

Siedepunkt: 95°C bei 6 Pa

Ausbeute: 61,8 g, 69 % der Theorie

25 Ausgangssubstanzen:

K. Gewald, Chem. Ber. 98, 3571-3577 (1965)

K. Gewald, E. Schinke und H. Böttcher, Chem. Ber. 99, 94-100 (1966).

30 Analog erhielt man die Thienylisocyanate der Formel III

Analog wurden erhalten:

35

Ib

Schmp.: 38°C

Le A 23 725

5 Ic		Sdp.: 120°C (1 Pa)
10 Id		Sdp.: 101°C (30 Pa)
15 Ie		Schmp.: 90-93°C
20 If		Schmp.: 62-63°C
25		Sdp.: 160°C (30 Pa), IR 2200, 1690 cm ⁻¹ im Kugelrohr destil- liert
30 Ih		Sdp.: 142-147°C (5 Pa) IR: 2250, 1690 cm ⁻¹

5 Beispiel IIIa

2-Amino-3-t-butyloxycarbonyl-4,5-dimethylthiophen

Ansatz: 100 g (0,71 mol) Cyanessigsäure tert.-
10 butylester

51,2 g (0,71 mol) Butanon

23,9 g (0,75 mol) Schwefel

71 ml Morpholin

140 ml Ethanol p.A

15

Das Keton wurde in Ethanol gelöst, dann wurden Morpholin und Schwefel zugegeben.

Zu der gelben Suspension wurde Cyanessigsäure-tert.-butyl-
20 ester zugetropft. Anschließend wurde 3 h auf 60°C erwärmt. Nach Abkühlung wurde das Gemisch auf 1 l Wasser gegossen, 750 ml Ether zugesetzt, die organische Phase abgetrennt, die wäßrige Phase mit 200 ml Ether extrahiert. Die vereinigten Extrakte wurden mit 2 x 200 ml NaOH (5 %ig),
25 200 ml Wasser, 2 x 200 ml 5 %iger H₂SO₄, 200 ml Wasser und 200 ml NaHCO₃ gewaschen, mit Na₂SO₄ getrocknet. Nach Verdampfen des Lösungsmittels im Vakuum verblieben 133,8 g

Impfkristalle wurden zum Rohprodukt gegeben, wobei der
30 Kolbeninhalt erstarrte.

Ausbeute: 50 g = 31 % der Theorie

Fp: 82-85°C

35

Le A 23 725

5 Analog erhält man die Amin thiophene der Formel

10

	Bsp.Nr.	R ¹	R ²	R ³	Physik.Daten
15	IIb	C ₂ H ₅	CH ₃	COOC ₂ H ₅	Fp 44°C
	IIc	H	i-Propyl	COOC ₂ H ₅	101°C (5 Pascal)
	IId	H	i-Butyl	COOC ₂ H ₅	
	IIe	H	n-Pentyl	COOC ₂ H ₅	152°C (50 Pascal)
20	IIf	CH ₃	C ₂ H ₅	COOC ₂ H ₅	148°C (250 Pascal)

	Bsp.Nr.	R ¹	R ²	R ³	Fp. [°C]
25	IIg	$\leftarrow\text{CH}_2\rightarrow_3$		COO ₂ CH ₅	90
	IIh	$\leftarrow\text{CH}_2\rightarrow_3$		CN	149
	IIIi	$\leftarrow\text{CH}_2\rightarrow_4$		COOCH ₃	112
	IIIj	$\leftarrow\text{CH}_2\rightarrow_4$		CN	143
30	IIIk	$\leftarrow\text{CH}_2\rightarrow_4$		CONH ₂	185
	IIIl	$\leftarrow\text{CH}_2\rightarrow_5$		COOC ₂ H ₅	105
	IIIm	$\leftarrow\text{CH}_2\rightarrow_5$		CN	121
	IIIn	$\leftarrow\text{CH}_2\rightarrow_5$		CONH ₂	170

35

Le A 23 725

5 Patentansprüche

1. Verwendung von Thienylharnstoffen oder -isocharnstoffen der Formel I

10

15

in welcher

20

A für die Reste Ia und Ib steht

25

30

R¹ für Wasserstoff, Halogen, Nitro, CN, Alkoxy, Alkylthio, Halogenalkoxy, Halogenalkylthio, Alkoxyalkyl, gegebenenfalls substituierte Reste aus der Gruppe Alkyl, Acyl, Aroyl, Aryl steht,

35

R² für Wasserstoff, Halogen, Nitro, CN, Alkoxy, Alkylthio, Halogenalkoxy, Halogenalkylthio, Alkoxyalkyl, gegebenenfalls substituierte Reste aus der Gruppe Acyl, Aroyl, Alkyl, Aryl steht,

5 R¹ und R² gemeinsam mit den angrenzenden C-Atomen für
 einen gegebenenfalls substituierten gesättigten
 oder ungesättigten carbocyclischen oder hetero-
 cylischen Ring stehen, der gegebenenfalls eine
 Carbonylfunktion tragen kann,

10 R³ für die Reste CN, COOR⁷, CONRR⁹, COR¹⁰ steht,

15 R⁴ für Wasserstoff oder Alkyl steht,

20 R⁵ für Wasserstoff, gegebenenfalls substituiertes
 Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls sub-
 tituiertes Aryl oder Heteroaryl steht,

25 R⁶ für Wasserstoff, gegebenenfalls substituiertes
 Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls sub-
 tituiertes Aryl oder Heteroaryl steht,

30 R⁷ für Wasserstoff, gegebenenfalls substituiertes
 Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls sub-
 tituiertes Aryl steht,

35 R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

30 R⁹ für Wasserstoff, gegebenenfalls substituiertes
 Alkyl, gegebenenfalls substituiertes Aryl
 steht,

35 R¹⁰ für gegebenenfalls substituiertes Alkyl, gege-
 benenfalls substituiertes Aryl steht,

 als leistungsfördernde Mittel für Tiere.

5 2. Thienylisocyanate der Formel III

10

III

in welcher

15 R¹ für Wasserstoff, Halogen, Nitro, CN, Alkoxy,
Alkylthio, Halogenalkoxy, Halogenalkylthio,
Alkoxyalkyl, gegebenenfalls substituierte Reste
aus der Gruppe Alkyl, Acyl, Aroyl, Aryl steht,

20

R² für Wasserstoff, Halogen, Nitro, CN, Alkoxy,
Alkylthio, Halogenalkoxy, Halogenalkylthio,
Alkoxyalkyl, gegebenenfalls substituierte Reste
aus der Gruppe Acyl, Aroyl, Alkyl, Aryl steht,

25

R¹ und R² gemeinsam mit den angrenzenden C-Atomen für
einen gegebenenfalls substituierten gesättigten
oder ungesättigten carbocyclischen Ring stehen,
der gegebenenfalls eine Carbonylfunktion tragen
kann,

30

R³ für die Reste COOR⁷, CONR⁸R⁹, COR¹⁰ steht,

35

R⁷ für Wasserstoff, gegebenenfalls substituiertes
Methyl, Cycloalkyl, C₂₋₄-Alkenyl, gegebenen-
falls substituiertes Aryl steht,

5 R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

10 R⁹ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, gegebenenfalls substituiertes Aryl
steht,

15 R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Aryl steht mit Ausnahme
von 3-Methoxycarbonyl-thien-2-yl-isocyanat.

15 3. Verfahren zur Herstellung der Thienylisocyanate der
Formel III gemäß Anspruch 2, dadurch gekennzeichnet,
daß man Thienylamine der Formel V

20

25

in welcher
R¹, R², R³ die in Anspruch 2 angegebene Bedeutung
besitzen,

30 mit Phosgen umsetzt.

35

5 4. Thiarylharnstoffe oder -isocharnstoffe der Formel VI

10 in welcher

n für 3, 4, 5 oder 6 steht,

A für die Reste Ia und Ib steht

15

20 R^3 für den Fall, daß n für 3, 5, 6 steht, für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht und für den Fall, daß n für 4 steht, für die Reste COOCH₃, COO(C₂₋₄-Alkenyl), CONR⁸R⁹, COR¹⁰ steht,

25 R^4 für Wasserstoff oder Alkyl steht,

30

R^5 für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl steht,

35

5 R⁶ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl,
gegebenenfalls substituiertes Aryl steht,

10 R⁷ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls sub-
stituiertes Aryl steht,

R⁸ für Wasserstoff Alkyl oder Cycloalkyl steht,

15 R⁹ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, gegebenenfalls substituiertes Aryl
steht,

20 R¹⁰ für gegebenenfalls substituiertes Alkyl, gege-
benenfalls substituiertes Aryl steht.

5. Verfahren zur Herstellung der Thienylharnstoffe oder
-isoharnstoffe der Formel VI

25

30

in welcher

n für 3, 4, oder 6 steht,

35

5 A für die Reste Ia und Ib steht

15 R³ für den Fall, daß n für 4, 5, 6 steht, für die Reste CN, COOR⁷, CONR⁸R⁹, COR¹⁰ steht und für den Fall, daß n für 4 steht, für die Reste COOCH₃, COO(C₂₋₄-Alkenyl), CONR⁸R⁹, COR¹⁰ steht,

20 R⁴ für Wasserstoff oder Alkyl steht,

25 R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl oder Heteroaryl steht,

30 R⁶ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl oder Heteroaryl steht,

35 R⁷ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, gegebenenfalls substituiertes Aryl steht,

35

5 R⁸ für Wasserstoff, Alkyl oder Cycloalkyl steht,

10 R⁹ für Wasserstoff, gegebenenfalls substituiertes
Alkyl, gegebenenfalls substituiertes Aryl
steht,

15 R¹⁰ für gegebenenfalls substituiertes Alkyl, gegebe-
nenfalls substituiertes Aryl steht,
dadurch gekennzeichnet,
a) daß man für den Fall, daß A für den Rest Ia steht
und R⁵ für Wasserstoff steht, Thienylamine der
Formel VII .

VI

in welcher

25 n, R^3 und R^4 die oben angegebene Bedeutung haben.

mit Isocyanaten der Formel VIII

30 OCN - B⁶ VIII

in welcher

35 R⁶ die oben angegebene Bedeutung hat,
umgesetzt, oder

5 b) daß man für den Fall, daß A für den Rest Ia steht und R⁴ für Wasserstoff steht, Thienyl-isocyanate der Formel IX

10

IX

in welcher

15

n und R³ die oben angegebene Bedeutung haben,

mit Aminen der Formel IV

20

IV

in welcher

R⁵ und R⁶ die oben angegebene Bedeutung haben,

25

umsetzt, oder

c) daß man für den Fall, daß A für den Rest Ib steht, Thienylamine der Formel VII

30

VII

in welcher

35

n, R³ und R⁴ die oben angegebene Bedeutung haben,

5

mit Imidokohlensäureesterhalogeniden d r
Formel X

10

in welcher

R^5 und R^6 die oben angegebene Bedeutung haben
und

5

Hal für Halogen steht,

umsetzt.

0 6. Mittel zur Leistungsförderung von Tieren gekenn-
zeichnet durch einen Gehalt an Thienylharnstoffen
oder -isoharnstoffen der Formel I gemäß Anspruch 1.

5 7. Tierfutter, Trinkwasser für Tiere, Zusätze für Tier-
futter und Trinkwasser für Tiere gekennzeichnet durch
einen Gehalt an Thienylharnstoffen oder -isoharnstof-
fen der Formel I gemäß Anspruch 1.

8. Verwendung von Thienylharnstoffen oder -isoharnstof-
fen der Formel I gemäß Anspruch 1 zur Leistungsför-
derung von Tieren.

9. Verfahren zur Herstellung von Mitteln zur Leistungs-
förderung von Tieren, dadurch gekennzeichnet, daß man
Thienylharnstoffe oder -isoharnstoffe der Formel I

0202538

- 78 -

5 gemäß Anspruch 1 mit Streck- und/oder Verdünnungsmitteln vermischt.

10. Verfahren zur Herstellung von Tierfutter, Trinkwasser für Tiere oder Zusätze für Tierfutter und Trinkwasser
10 für Tiere, dadurch gekennzeichnet, daß man Thienyl-harnstoffe oder -isoharnstoffe der Formel I gemäß Anspruch 1 mit Futtermitteln oder Trinkwasser und gegebenenfalls weiteren Hilfstoffen vermischt.

15

20

25

30

35

Le A 23 725

Europäisch s
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

0202538

Nummer der Anmeldung

EP 86 10 6209

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
Y	DE-A-2 645 613 (AMERICAN CYANAMID) * Ansprüche * ---	1,4-7	A 23 K 1/16 C 07 D 333/38 C 07 D 333/68 C 07 D 333/78 C 07 D 333/80
Y	US-A-3 989 505 (L.G. NICKELL) * Ansprüche * ---	1,4,7	
Y	DE-A-2 510 936 (CHEVRON) * Ansprüche * ---	1,6	
A	DE-A-2 648 248 (AMERICAN CYANAMID) * Ansprüche * ---	1,4-7	
A	AT-B- 311 994 (DR. F. SAUTER) * Ansprüche * ---	1,4	
A	CHEMICAL ABSTRACTS, Band 91, Nr. 1, 2. Juli 1979, Seite 97, Nr. 814x, Columbus, Ohio, US; & BR - A - 78 02 533 (AMERICAN CYANAMID CO.) 19.12.1978 * Zusammenfassung *	1,4-7	RECHERCHIERTE SACHGEBIETE (Int. Cl. 4) A 23 K 1/00 C 07 D 333/00

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt

Recherchenort DEN HAAG	Abschlußdatum der Recherche 25-08-1986	Prüfer CHOULY J.
----------------------------------	--	----------------------------

KATEGORIE DER GENANNTEN DOKUMENTE

- X : von besonderer Bedeutung allein betrachtet
- Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
- A : technologischer Hintergrund
- O : nichtschriftliche Offenbarung
- P : Zwischenliteratur
- T : der Erfindung zugrunde liegende Theorien oder Grundsätze

E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist

D : in der Anmeldung angeführtes Dokument

L : aus andern Gründen angeführtes Dokument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument