Review:

1. Buck – Boost:
$$\frac{DV_{DC}}{1-D}$$

$$\therefore \ \, \mathsf{I}_0 = \ \, \frac{\mathsf{1} - \mathsf{D}}{\mathsf{D}} \mathsf{I}_{\mathsf{s}}$$

2. Cuk' Converter : $\frac{DV_{DC}}{1-D}$

$$\therefore \ \, \mathsf{I}_0 = \ \, \frac{1-\mathsf{D}}{\mathsf{D}} \mathsf{I}_{\mathsf{s}}$$

$$I_{2}DT = I_{s}(1-D)T$$

$$Av. I_{2} = I_{0}$$

$$\therefore I_{0}DT = I_{s}(1-D)T$$

$$\Rightarrow I_{s} = \frac{I_{s}(1-D)}{I_{s}(1-D)}$$

Problem 1:

 $r_a \approx 0$, Total 'L' in circuit = 50 mH.

Switching frequency = 500 Hz and d = 0.5

Av. current drawn by the motor = 10A.

Assume that i is continuous.

Determine I_{max} and I_{min}.

Sol:

 $E_b = V_{DC} * D = 100V$

200 =
$$L\left(\frac{di}{dt}\right)_1 + E_b = 0 < t < DT ---(1)$$

$$-E_b = L\left(\frac{di}{dt}\right)_D DT < t < T ---(2)$$

$$\left(\frac{di}{dt}\right)_{L} - \left(\frac{di}{dt}\right)_{D} = \frac{200}{L} = 4000 \text{ A/s}$$

$$\therefore L \frac{di}{dt} = 100$$

$$-L\frac{di}{dt} = 100$$

$$\therefore \left(\frac{di}{dt}\right)_{I} = -\left(\frac{di}{dt}\right)_{D} = 2000 \text{ A/s}$$

$$I_{ava} = 20 A$$

$$\therefore$$
 $I_{min} = 19A \& I_{max} = 21A$

Problem 2:

$$F_s = 20 \text{ kHz}, D = 0.5$$

Calculate power transferred from 100V source to 300V source.

Assume that the circuit has attained a steady state.

Sol:

When 'S' is ON

$$L\frac{di}{dt} = 100V \quad 0 < t < DT$$

 $L\frac{di}{dt}$ = -200V when 'S' if OFF and 'i' is finite.

i, is DISCONTINUOUS.

$$\therefore I_{peak} = \frac{100}{L} * 25 * 10^{-6} = 25A$$

Let ' β ' be the instant 'I' becomes zero. 'V' across it during this period = -200V

$$\therefore 25 = \frac{200}{L} * t_2$$

∴
$$t_2$$
 = 12.5 µsec.

Energy transferred to 300V source in one cycle

= the area shaded as shown in the fig. ^{25A}

$$= V * \frac{1}{2} * I_{peak} * t_2 = 0.047J$$

.: Power transferred

$$= 20 * 10^3 * E = 938W$$

Problem 3.

Switching frequency = 10kHz'i' is just continuous. $T_{ON} = ? \& i_P = ?$

Sol:

$$T = \frac{1}{10 * 10^3} = 100 \,\mu$$
 sec.

Peak 'i' =
$$i_P = \frac{100}{100 * 10^{-6}} * DT$$

$$= \frac{500}{100 * 10^{-6}} (T - DT)$$

$$\therefore$$
 DT = 5(100 * 10⁻⁶ - DT)

$$\therefore$$
 DT = t_{ON} = 83.3 µsec

$$\therefore I_{P} = \frac{100 * 83.3 * 10^{-6}}{100 * 10^{-6}} = 83.3A$$

Problem 4.

$$F_s = 1 \text{ kHz}, D = 0.2$$

$$L = 20 \text{ mH}, I_{av} = 5A$$

What is the peak to peak current ripple flowing through the load?

Sol:

$$L\frac{di}{dt} = 60 - 12 = 48$$

$$DT = 0.2 \text{ msec}$$

$$\therefore di = \frac{60 - 12}{20 * 10^{-3}} * 0.20 * 10^{-3}$$
$$= 0.48A$$

Problem5:

Peak to peak ripple in current flowing through L_1 and L_2 is 1A & Peak to peak voltage ripple in V_{C1} is 10V and that in V_{C2} = 1V and F_s = 25kHz. Neglect internal resistance of L_1 and L_2 .

Sol:

$$V_0 = V_{DC} \frac{D}{(1-D)}$$

$$\therefore$$
 D = 0.75

(i/p and o/p are current sources)

T = 40
$$\mu$$
sec. \therefore T_{ON} = 30 μ sec and T_{OFF} = 10 μ sec.

Avg. load current = Avg. current through $L_2 = 10A$

$$V_{C1} = ?$$
 avg. $V_{L1} = 0$

$$(V_{C1} - V_{DC}) = 50 * \frac{30}{10}$$

$$\therefore$$
 $V_{C1} = 200V$

 C_1 is being charged by i_{L1} for 10 µsec (t_{OFF})

& discharged by current (i_{12}) for 30 μ sec.

Neglect ripple.

$$I_{L1} * 10 = I_{L2} * 30$$
 (where $I_{L2} = 10A$)

$$\therefore I_{11} = 30A$$

Ripple in $i_{11} = 1A$

$$\therefore \ L\frac{di}{dt} = V_{DC} \Rightarrow \frac{50}{L_1} = \frac{1}{30 \ \mu sec.} \qquad \therefore \ L_1 = 1.5 \ mH$$

Similarly, ripple in $i_{12} = 1A$.

$$\therefore \frac{V_{c1} - V_0}{L_2} = \frac{di}{dt}$$

dt = 30 μ sec, V_{C1} = 200V, V_0 = 150V, di = 1A.

∴
$$L_2 = 1.5 \text{ mH}$$
.

$$C_1 = ? \& C_2 = ?$$
 C_2 charges when $i_{L2} > I_0$
i.e. from $\frac{DT}{2}$ to $\left(\frac{1+D}{2}\right)T$

$$\Delta q_2 = \frac{1}{2} * 0.5 * 20*10^{-6} = 5 \mu C$$

$$\therefore C_2 = \frac{\Delta q}{\Lambda V} = 5 \mu F$$

Similarly, C₁ is discharged by an average

current of 10A for 30 µsec.

$$\therefore \Delta V \text{ for } V_{C1} = 10V$$

$$\therefore C = \frac{10 * 30}{10 \text{ V}} = 30 \,\mu\text{F}$$

