

Goal: predict outcome of particle collisions → scattering amplitude.

Goal: predict outcome of particle collisions → scattering amplitude.

Problem: impossible to compute.

background to the detection of W^+W^- pairs in their nonleptonic decays. The cross sections for the elementary $2 \rightarrow 4$ processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is

Parke and Taylor, An amplitude for n gluon scattering (1986):

$$|\mathcal{M}_n(--+++\ldots)|^2 = c_n(g,N) [(1\cdot 2)^4 \sum_{P} \frac{1}{(1\cdot 2)(2\cdot 3)(3\cdot 4)\ldots(n\cdot 1)} + \mathcal{O}(N^{-2}) + \mathcal{O}(g^2)]$$

Parke and Taylor, An amplitude for n gluon scattering (1986):

$$|\mathcal{M}_n(--+++\ldots)|^2 = c_n(g,N) [(1\cdot 2)^4 \sum_P \frac{1}{(1\cdot 2)(2\cdot 3)(3\cdot 4)\ldots(n\cdot 1)} + \mathcal{O}(N^{-2}) + \mathcal{O}(g^2)]$$

Arkani-Hamed and Trnka, *The Amplituhedron* (2013): amplitudes in $\mathcal{N}=4$ super Yang-Mills are "volumes" of geometric objects!

The projective simplex is

$$\Delta_n := \mathsf{conv}\{e_0, \ldots, e_n\} \subset \mathbb{P}^n.$$

The *Grassmannian* parameterizes k-spaces in \mathbb{R}^n , and is a projective variety via

$$\operatorname{\mathsf{Gr}}(k,n) o \mathbb{P}(\wedge^k \mathbb{R}^n)$$
 $\operatorname{\mathsf{span}}(v_1,\,\ldots,\,v_k) \mapsto v_1 \wedge \ldots \wedge v_k.$

The positive Grassmannian is

$$\operatorname{Gr}_{\geq 0}(k,n) := \Delta_{\binom{n}{k}-1} \cap \operatorname{Gr}(k,n).$$

Let Z be a $(k+m) \times n$ matrix with positive maximal minors.

$$\wedge^k Z: Gr(k,n) \longrightarrow Gr(k,k+m)$$

 $\operatorname{span}(v_1,\ldots,v_k) \mapsto \operatorname{span}(Zv_1,\ldots,\wedge Zv_k).$

The amplituhedron $A_{k,m,n}(Z)$ is the image of $Gr_{\geq 0}(k,n)$.

Let Z be a $(k+m) \times n$ matrix with positive maximal minors.

$$\wedge^k Z: Gr(k,n) \longrightarrow Gr(k,k+m)$$

 $\operatorname{span}(v_1,\ldots,v_k) \mapsto \operatorname{span}(Zv_1,\ldots,\wedge Zv_k).$

The amplituhedron $A_{k,m,n}(Z)$ is the image of $Gr_{>0}(k,n)$.

Example (k = 1)

The image is a *cyclic polytope*.

Some cyclic polytopes in \mathbb{P}^3 :

 $\operatorname{Gr}_{\geq 0}(k,n)$: linear (simplex) \cap nonlinear (Grassmannian). What about $\mathcal{A}_{k,m,n}$??

 $\operatorname{Gr}_{\geq 0}(k,n)$: linear (simplex) \cap nonlinear (Grassmannian). What about $\mathcal{A}_{k,m,n}$??

The *twistor coordinates* wrt Z on $\operatorname{Gr}(k,k+2)$ are

$$\langle ij \rangle := \det[Z_i Z_j Y^T], \qquad [Y] \in \mathsf{Gr}(k, k+2).$$

The twistor coordinates wrt Z on Gr(k, k+2) are

$$\langle ij \rangle := \det[Z_i Z_j Y^T], \qquad [Y] \in \mathsf{Gr}(k, k+2).$$

On Gr(2,4), we have

$$\langle 12 \rangle = (z_{1i}z_{2j} - z_{2i}z_{1j})p_{34} - (z_{1i}z_{3j} - z_{3i}z_{1j})p_{24} + (z_{2i}z_{3j} - z_{3i}z_{2j})p_{14} + \dots$$

The twistor coordinates wrt Z on Gr(k, k+2) are

$$\langle ij \rangle := \det[Z_i Z_j Y^T], \qquad [Y] \in \mathsf{Gr}(k, k+2).$$

On Gr(2,4), we have

$$\langle 12 \rangle = (z_{1i}z_{2j} - z_{2i}z_{1j})p_{34} - (z_{1i}z_{3j} - z_{3i}z_{1j})p_{24} + (z_{2i}z_{3j} - z_{3i}z_{2j})p_{14} + \dots$$

This vanishes on lines [Y] meeting the line $\overline{Z_1Z_2}$ in \mathbb{P}^3 .

Theorem (Ranestad-Sinn-Telen 24)

The algebraic boundary of the m=2 amplituhedron is given by $\langle 12 \rangle, \ldots, \langle n-1 \, n \rangle, \langle 1n \rangle = 0.$

Theorem (Even-Zohar-Lakrec-Tessler 25)

The algebraic boundary of the m=4 amplituhedron is given by $\langle i\,i+1\,j\,j+1\rangle=0,$ for $1\leq i< j\leq n.$

The exterior cyclic polytope of Z is

$$C_{k,m,n}(Z):=\operatorname{conv}(Z_{i_1}\wedge\ldots\wedge Z_{i_k}\ :\ \{i_1,\ldots,i_k\}\subset [n])$$
 in $\mathbb{P}(\wedge^k\mathbb{R}^{k+m}).$

The exterior cyclic polytope of Z is

$$C_{k,m,n}(Z) := \operatorname{conv}(Z_{i_1} \wedge \ldots \wedge Z_{i_k} : \{i_1,\ldots,i_k\} \subset [n])$$
 in $\mathbb{P}(\wedge^k \mathbb{R}^{k+m})$.

Example (The polytope $C_{2,1,4}(Z)$) In $(\mathbb{P}^2)^*$, we have

$$Z_1 \wedge Z_2$$
 $Z_2 \wedge Z_3$ $Z_3 \wedge Z_4$ $Z_3 \wedge Z_4$

The exterior cyclic polytope of Z is

$$C_{k,m,n}(Z) := \operatorname{conv}(Z_{i_1} \wedge \ldots \wedge Z_{i_k} \ : \ \{i_1,\ldots,i_k\} \subset [n])$$
 in $\mathbb{P}(\wedge^k \mathbb{R}^{k+m})$.

Example (The polytope $C_{2,1,4}(Z)$)

In $(\mathbb{P}^2)^*$, we have

$$Z_1 \wedge Z_2$$
 $Z_2 \wedge Z_3$
 $Z_1 \wedge Z_4$
 $Z_2 \wedge Z_4$
 $Z_2 \wedge Z_4$

Theorem (Mazzucchelli-P)

The polytope $C_{k,m,n}(Z)$ is the convex hull of $A_{k,m,n}(Z)$.

The polytope $C_{2,1,4}(Z)$ looks like

[Karp–Williams 17] The amplituhedron $\mathcal{A}_{2,1,4}(Z)$ looks like

Not convex!

The polytope $C_{2,1,4}(Z)$ looks like

[Karp–Williams 17] The amplituhedron $\mathcal{A}_{2,1,4}(Z)$ looks like

Not convex!

Theorem (Mazzucchelli-P)

The amplituhedron $A_{2,2,n}(Z)$ equals $C_{2,2,n}(Z) \cap Gr(2,4)$.

Fix real numbers 0 < a < b < c < d < e < f and consider

$$Z = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & e & f \\ a^2 & b^2 & c^2 & d^2 & e^2 & f^2 \\ a^3 & b^3 & c^3 & d^3 & e^3 & f^3 \end{pmatrix}.$$

Then $C_{2,2,6}(Z)$ is the convex hull in \mathbb{P}^5 of the 15 columns of $\wedge^2 Z$:

$$\begin{pmatrix} a-b & a-c & a-d & a-e & \cdots & d-f & e-f \\ a^2-b^2 & a^2-c^2 & a^2-d^2 & a^2-e^2 & \cdots & d^2-f^2 & e^2-f^2 \\ a^3-b^3 & a^3-c^3 & a^3-d^3 & a^3-e^3 & \cdots & d^3-f^3 & e^3-f^3 \\ a^2b-ab^2 & a^2c-ac^2 & a^2d-ad^2 & a^2e-ae^2 & \cdots & d^2f-df^2 & e^2f-ef^2 \\ a^3b-ab^3 & a^3c-ac^3 & a^3d-ad^3 & a^3e-ae^3 & \cdots & d^3f-df^3 & e^3f-ef^3 \\ a^3b^2-a^2b^3 & a^3c^2-a^2c^3 & a^3d^2-a^2d^3 & a^3e^2-a^2e^3 & \cdots & d^3f^2-d^2f^3 & e^3f^2-e^2f^3 \end{pmatrix}.$$

Fix real numbers 0 < a < b < c < d < e < f and consider

$$Z = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & e & f \\ a^2 & b^2 & c^2 & d^2 & e^2 & f^2 \\ a^3 & b^3 & c^3 & d^3 & e^3 & f^3 \end{pmatrix}.$$

Then $C_{2,2,6}(Z)$ is the convex hull in \mathbb{P}^5 of the 15 columns of $\wedge^2 Z$:

$$\begin{pmatrix} a-b & a-c & a-d & a-e & \cdots & d-f & e-f \\ a^2-b^2 & a^2-c^2 & a^2-d^2 & a^2-e^2 & \cdots & d^2-f^2 & e^2-f^2 \\ a^3-b^3 & a^3-c^3 & a^3-d^3 & a^3-e^3 & \cdots & d^3-f^3 & e^3-f^3 \\ a^2b-ab^2 & a^2c-ac^2 & a^2d-ad^2 & a^2e-ae^2 & \cdots & d^2f-df^2 & e^2f-ef^2 \\ a^3b-ab^3 & a^3c-ac^3 & a^3d-ad^3 & a^3e-ae^3 & \cdots & d^3f-df^3 & e^3f-ef^3 \\ a^3b^2-a^2b^3 & a^3c^2-a^2c^3 & a^3d^2-a^2d^3 & a^3e^2-a^2e^3 & \cdots & d^3f^2-d^2f^3 & e^3f^2-e^2f^3 \end{pmatrix}.$$

Substituting (1,3,4,7,8,9), it has f-vector (15,75,143,111,30). Among the 30 facets, there are 15 4-simplices, six double pyramids over pentagons, three cyclic polytopes C(4,6), and three with f-vector (9,26,30,13).

Identify vectors $Z_i \wedge Z_j$ with edges ij of a complete graph. There are 30 facets, with four types of supporting hyperplanes:

Identify vectors $Z_i \wedge Z_j$ with edges ij of a complete graph. There are 30 facets, with four types of supporting hyperplanes:

For (1,3,4,7,8,f), three facets for f < 45/7 are

$$\{12, 23, 34, 45, 56\}, \{12, 23, 34, 56, 16\}, \{12, 16, 34, 45, 56\}.$$

and for f > 45/7 change to

$$\{12, 16, 23, 34, 45\}, \{12, 16, 23, 45, 56\} \{16, 23, 34, 45, 56\}.$$

Combinatorics changes as Z varies over positive matrices!

Of the $\binom{15}{6}$ minors of $\wedge^2 Z$, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Of the $\binom{15}{6}$ minors of $\wedge^2 Z$, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Sign of each minor is fixed by $a < \ldots < f$ except for

$$[12, 23, 34, 45, 56, 16] =$$

$$(a-c)(a-d)(a-e)(b-d)(b-e)(b-f)(d-f)(c-e)(c-f)$$

$$\cdot (abd-abe-acd+acf+ade-adf+bce-bcf-bde+bef+cdf-cef).$$

Theorem (Mazzucchelli-P)

The combinatorial type of $C_{2,2,n}(Z)$ is constant for positive $4 \times n$ matrices Z outside the closed locus where the polynomial $\det[Z_1 \wedge Z_2 \ldots Z_5 \wedge Z_6 \ Z_6 \wedge Z_1]$ or one of its permutations is zero.

In Plücker coordinates on $Z \in Gr(4, n)$:

 $p_{1234}p_{1356}p_{2456} - p_{1235}p_{1346}p_{2456} + p_{1235}p_{1246}p_{3456}$.

Theorem (Mazzucchelli-P)

The combinatorial type of $C_{2,2,n}(Z)$ is constant for positive $4 \times n$ matrices Z outside the closed locus where the polynomial $\det[Z_1 \wedge Z_2 \dots Z_5 \wedge Z_6 \ Z_6 \wedge Z_1]$ or one of its permutations is zero.

In Plücker coordinates on $Z \in Gr(4, n)$:

$$p_{1234}p_{1356}p_{2456} - p_{1235}p_{1346}p_{2456} + p_{1235}p_{1246}p_{3456}$$
.

For k = m = 2, small f-vectors include:

$$n=5$$
 : 10 35 55 40 12 1
 $n=6$: 15 75 143 111 30 1
 $n=7$: 21 147 328 282 82 1
 $n=8$: 28 266 664 616 192 1
 $n=9$: 36 450 1217 1191 390 1

What is a dual amplituhedron?

Andrew Hodges, *Eliminating spurious poles from gauge-theoretic amplitudes* (2009):

$$A(1^{-2} - 3^{-4} + 5^{+}) = \frac{[45]^{4}}{[12][23][34][45][51]} = \frac{\langle 12 \rangle^{4} \langle 23 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \int_{P_{5}} (W.Z_{2})^{-4} DW.$$

Here P_5 is the dual of

$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$

$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$

$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$

$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$

Observation: $S^* = \text{conv}(S)^*$. Very big!

$$S^* := \{ l \in (\mathbb{R}^n)^* : l(x) \ge -1 \ \forall x \in S \} .$$

Observation: $S^* = \text{conv}(S)^*$. Very big! The *extendable dual amplituhedron* is

$$\mathcal{A}_{k,m,n}^* := Gr(m,k+m) \cap \operatorname{conv}(\mathcal{A}_{k,m,n})^* = Gr(m,k+m) \cap C_{k,m,n}^*.$$

Define

$$W_i := Z_{i-m+1} \wedge Z_{i-m+2} \wedge \cdots \wedge Z_i \wedge \cdots \wedge Z_{i+k-1}, \qquad i \in [n].$$

The twist map is

$$au: \operatorname{Mat}_{>0}(k+m,n) o \operatorname{Mat}_{>0}(k+m,n) \,,$$

$$Z \mapsto W \,,$$

where W has columns W_1, \ldots, W_n . [Marsh–Scott 13]

Example

$$[Z_1 \ldots Z_6] \mapsto [Z_6 \wedge Z_1 \wedge Z_2 \quad Z_1 \wedge Z_2 \wedge Z_3 \quad \ldots \quad Z_5 \wedge Z_6 \wedge Z_1].$$

Define

$$W_i := Z_{i-m+1} \wedge Z_{i-m+2} \wedge \cdots \wedge Z_i \wedge \cdots \wedge Z_{i+k-1}, \qquad i \in [n].$$

The twist map is

$$au: \operatorname{Mat}_{>0}(k+m,n) \to \operatorname{Mat}_{>0}(k+m,n),$$

$$Z \mapsto W,$$

where W has columns W_1, \ldots, W_n . [Marsh–Scott 13]

Example

$$[Z_1 \ldots Z_6] \mapsto [Z_6 \wedge Z_1 \wedge Z_2 \quad Z_1 \wedge Z_2 \wedge Z_3 \quad \ldots \quad Z_5 \wedge Z_6 \wedge Z_1].$$

Theorem (Mazzucchelli-P)

There is an equality

$$A_{2,2,n}(Z)^* = A_{2,2,n}(W).$$

 $\mathcal{A}_{2,2,n}(Z)^*$ is an amplituhedron for another particle configuration!

For $C_{2,2,6}(Z)$ there are four types of supporting hyperplanes:

The first three come from Schubert divisors, which consist of

ightharpoonup lines meeting (12) in \mathbb{P}^3

For $C_{2,2,6}(Z)$ there are four types of supporting hyperplanes:

The first three come from Schubert divisors, which consist of

- ▶ lines meeting (12) in \mathbb{P}^3 ← defining equation $\langle 12 \rangle = 0$
- ▶ lines meeting $(123) \cap (156)$ in \mathbb{P}^3
- ▶ lines meeting $(123) \cap (456)$ in \mathbb{P}^3

Theorem (Mazzucchelli-P)

The supporting Schubert hyperplanes of $C_{2,2,n}(Z)$ are exactly the $\binom{n}{2}$ hyperplanes consisting of lines meeting $(i-1\ i\ i+1)\cap (j-1\ j\ j+1)$ for $1\le i< j\le n$. Furthermore, they intersect transversally in $\operatorname{Gr}(2,4)$ for every $Z\in\operatorname{Mat}_{>0}(4,n)$.

The Schubert exterior cyclic polytope $\widetilde{C}_{k,m,n}(Z)$ is obtained from $C_{k,m,n}(Z)$ by deleting all facet inequalities whose supporting hyperplanes are not Schubert divisors.

Proposition (Mazzucchelli-P)

There is an equality

$$\widetilde{C}_{2,2,n}(Z) = C_{2,2,n}(W)^*.$$

Example

The f-vector of $C_{2,2,6}$ is

The f-vector of $\widetilde{C}_{2,2,6}$ is

The wedge power matroid

The wedge power matroid $W_{k,m,n}$ is the matroid of the point configuration $Z_{i_1} \wedge \ldots \wedge Z_{i_k}$, for Z generic*.

The wedge power matroid

The wedge power matroid $W_{k,m,n}$ is the matroid of the point configuration $Z_{i_1} \wedge \ldots \wedge Z_{i_k}$, for Z generic*.

Example

We have

$$aZ_2 + bZ_3 + cZ_4 = Z_1 \implies aZ_1 \wedge Z_2 + bZ_1 \wedge Z_3 + cZ_1 \wedge Z_4 = Z_1 \wedge Z_1 = 0.$$

Non-bases are $\{12, 13, 14\}, \{12, 23, 24\}, \{13, 23, 34\}, \{14, 24, 34\}.$

The wedge power matroid

The wedge power matroid $W_{k,m,n}$ is the matroid of the point configuration $Z_{i_1} \wedge \ldots \wedge Z_{i_k}$, for Z generic*.

Example

We have

$$aZ_2 + bZ_3 + cZ_4 = Z_1 \implies aZ_1 \wedge Z_2 + bZ_1 \wedge Z_3 + cZ_1 \wedge Z_4 = Z_1 \wedge Z_1 = 0.$$

Non-bases are $\{12,13,14\},\{12,23,24\},\{13,23,34\},\{14,24,34\}.$

Remark

The matroid $W_{k,1,k+1}$ is the matroid of the braid arrangement.

Of the $\binom{15}{6}$ minors of $\wedge^2 Z$, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Of the $\binom{15}{6}$ minors of $\wedge^2 Z$, 1660 are zero and 3345 are nonzero.

Symmetry classes of minors:

Sign of each minor is fixed by $a < \ldots < f$ except for

$$\begin{split} [12,23,34,45,56,16] = \\ (a-c)(a-d)(a-e)(b-d)(b-e)(b-f)(d-f)(c-e)(c-f) \\ \cdot (abd-abe-acd+acf+ade-adf+bce-bcf-bde+bef+cdf-cef) \,. \end{split}$$

The wedge power matroid $W_{k,m,n}$

The case m=1:

Matroid of discriminantal arrangement of n general points in \mathbb{P}^k [Manin–Schechtman 89]

The case k=2:

- ▶ Dual of Kalai's hyperconnectivity matroid $\mathcal{H}_{n-m-2}(n)$ [Kalai 85, Brakensiek–Dhar–Gao–Gopi–Larson 24]
- ▶ $\mathcal{H}_d(n)$ is the algebraic matroid of $n \times n$ skew-symmetric matrices of rank at most d [Ruiz–Santos 23]

The case k=2 and n=m+4:

- ▶ Graphical characterization of bases of $\mathcal{H}_2(n)$ [Bernstein 17]
- $ightharpoonup \mathcal{H}_2(n)$ is the algebraic matroid of $\mathsf{Gr}(2,n)$

Upshot: describing bases of $W_{k,m,n}$ and faces of $C_{k,m,n}(Z)$ is hard!

Andrew Hodges, *Eliminating spurious poles from gauge-theoretic amplitudes* (2009):

$$A(1^{-}2^{-}3^{-}4^{+}5^{+}) = \frac{[45]^{4}}{[12][23][34][45][51]} = \frac{\langle 12 \rangle^{4} \langle 23 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \int_{P_{5}} (W.Z_{2})^{-4} DW.$$

What is a dual amplituhedron?