PERANCANGAN MESIN GRINDER KOPI BERBASIS INTERNET OF THINGS

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

ELKY ARMEN DINATA PUTRA 6705174052

D3 TEKNIK TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Teknologi saat ini semakin berkembang pesat dan tingkat kebutuhan dalam bidang otomasi pun ikut meningkat seiring berkembangnya teknologi. Sistem control otomatis di program dan alat bantu kerja manusia kini menjadi kebutuhan yang diperlukan. Industri rumah tangga dan industri kecil banyak yang menggunakan mesin dan peralatan konvensional sehingga memiliki keterbatasan dari tenaga kerja manusia. Hal ini akan membuat produksi berjalan sangat lama, menggunakan peralatan yang bekerja otomatis dapat meningkatkan tingkat produksi barang dan juga memaksimalkan proses produksi pada bidang industri.

Pada industri kopi yang masih tergolong dalam industri kecil berskala rumahan sangatt membutuhkan perhatian khusus untuk meningkatkan pengolahan hasil-hasil pertanian seperti pada saat proses penyangraian, pendinginan dan penggilingan biji kopi. Proses penumbukan biji kopi masih kurang efektif dengan hasil kehalusan tumbukan yang kasar sehingga rasa kopi yang didapatkan tidak maksimal. Dengan adanya penelitian alat penggiling kopi diharapkan dapat meningkatkan kualitas produk kopi serta proses produksi lebih cepat dan efisien.

Perbedaan dari penelitian sebelumnya yaitu masih beroperasi secara manual dan hasil dari rancangan ditampilkan dalam LCD sehingga data produksi tidak dapat diolah dalam database untuk mengecek peningkatan produksi. Rancangan ini akan mengendalikan sistem penggiling kopi melalui aplikasi, dan proses penggilingan sesuai tingkat kehalusan yang diharapkan oleh pengguna.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Kopi Si Hitam Menguntungkan Budi	2011	Dalam buku ini penulis menjelaskan mengenai keuntungan budi daya dan
	Daya dan Pemasaran [1]		pemasaran kopi hitam di masyarakat Indonesia.
2.	Rancang Bangun Multifucer Tipe Disk	2012	Dalam penelitian ini penulis merancang sebuah multifucer tipe disk mill
	Mill Pada Berbagai Komoditi [2]		pada berbagai komoditi seperti pada mesin-mesin yang digunakan dalam
			pangan dan pertanian.
3.	Pedoman Budi Daya Tanaman Kopi [3]	2010	Dalam buku ini menjelaskan mengena pedoman budi daya tanaman kopi di
			Indonesia, seberapa berpengaruh komunitas budidaya kopi dan bagaimana
			pengolahan kopi yang baik dan benar
4.	Rancang Bangun Alat Pengiris	2013	Dalam penelitian ini penulis merancang sebuah alat pengiris bawah merah
	Bawang Merah Dengan Pengiris		dengan model pengirisan dalam bentuk vertical sehingga mempengaruhi
	Vertikal [4]		hasil pengirisan bawang tersebut. Perancangan ini juga menggunakan
			mikrokontroler sehingga efisien dan otomatis
5.	Rancang Bangun Alat Penggiling Biji	2013	Dalam penelitian ini penulis merancang alat penggiling biji kopi dengan
	Kopi Tipe Flat Burr Mill [5]		membuat mesin penggiling secara individu dimana di penelitian ini konsep
			penggilingannya dengan membuat grinder dalam posisi vertical.
			Perancangan ini masih dilakukan secara otomatis tanpa adanya monitoring

	dan controlling IoT.

Rancangan Sistem

Rancangan Sistem

Penjelasan Rancangan sistem

Dalam rancangan tersebut, bermula user mengakses aplikasi melalui gadget untuk memilih level kehalusan kopi yang diinginkan oleh user. Lalu dari aplikasi tersebut dikirimkan ke database firebase yang kemudian dibaca oleh mikrokontroler NodeMCU. Setelah data diterima. NodeMCU mengirimkan data ke servo untuk membuka katup pada tabung biji kopi yang kemudian ditaburkan ke dalam mesin grinder. Lalu sensor ultrasonik akan mendeteksi apakah biji kopi tersebut telah memenuhi isi pada mesin grinder atau tidak. Apabila sensor ultrasonik dapat mendeteksi jarak antar biji dengan sensor dengan jarak semakin sempit. Servo akan menutup kembali katupnya dan mesin grinder mulai menyala. Sensor ultrasonik mendeteksi biji kopi yang sudah turun menjadi butiran halus dengan data masukan berupa jarak semakin lebar sehingga aplikasi mengirim notifikasi bahwa penggilingan biji kopi telah selesai dilakukan. NodeMCU disini menggunakan catu daya dari power supply. Pada sensor suhu kita dapat memonitoring suhu pada grinder machine, ketika mesin tersebut mengalami overheat maka relay akan

otomatis menonaktifkan aliran arus listrik ke mesin tersebut. Pada kondisi ini juga terjadi saat user memulai penggilingan maka relay akan mengaktifkan aliran arus listrik ke mesin tersebut.

Komponen Hardware yang digunakan

1. NodeMCU

NodeMCU ESP8266 adalah firmware yang berbasis Open Source yang dikembangkan untuk chip Wi-Fi ESP8266. Perangkat ini dapat dimodifikasi atau dibangun sesuai dengan keinginan user. Papan NodeMCU terdiri dari Wi-Fi ESP8266. Chip Wi-Fi ini dikembangkan oleh Espressif Systems dengan protocol TCP/IP dengan harga terjangkau.

2. Power Supply

Power supply adalah daya mengambil AC dari stopkontak, mengubahnya menjadi DC yang tidak diatur, dan mengurangi tegangan menggunakan transformator daya *input*, biasanya menurunkannya ke tegangan yang dibutuhkan oleh beban. Untuk alasan keamanan, trafo juga memisahkan catu daya *output* dari *input* induk. Arus bolak-balik mengambil bentuk gelombang sinusoidal dengan tegangan bergantian dari positif ke negatif dari waktu ke waktu.

3. Grinder Machine

Mesin Giling Kopi adalah sebuah alat bantu yang memang didesain khusus untuk menghaluskan biji kopi setelah melalui proses dimasak, untuk kemudian bisa menjadi bubuk kopi yang siap dikonsumsi..

4. Sensor Ultrasonik

Sensor ultrasonik adalah sebuah instrumen yang sering digunakan untuk melakukan pengukuran jarak objek menggunakan gelombang ultrasonik. Pada sensor ultrasonik, umumnya terdiri dari dua macam hardware sensorik, hardware yang dimaksud adalah transducer yaitu perangkat yang berfungsi untuk menghasilkan dan mengirimkan gelombang ultrasonik, serta receiver yaitu perangkat yang digunakan untuk menerima pantulan gelombang ultrasonik yang dikirimkan transducer ke objek.Servo

Motor servo adalah sebuah perangkat atau aktuator putar (motor) yang dirancang dengan sistem kontrol umpan balik loop tertutup (servo), sehingga

dapat di set-up atau di atur untuk menentukan dan memastikan posisi sudut dari poros output motor. motor servo merupakan perangkat yang terdiri dari motor DC, serangkaian gear, rangkaian kontrol dan potensiometer.

5. Sensor Suhu LM35

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor

6. Relay

Relay adalah komponen elektronika pada sebuah mobil yang memiliki dua bagian elektromagnetik berupa kontak point dan kumparan. ... Relay memiliki fungsi sebagai saklar atau elektromagnetik switch yang mana dikendalikan oleh magnet listrik.

Software yang digunakan

1. Arduino IDE

Arduino IDE adalah software yang digunakan untuk memprogram di arduino, dimana kita dapat membuat,mengedit,dan memvalidasi kode program.

2. MIT App Invertor

App Invertor memungkinkan para pengembang untuk memprogram komputer menjadi sebuah perangkat lunak pada sistem operasi AndroidApp Invertor menggunakan graphical interface, seperti semacam user interface pada Scratch dan StarLogo TNG, yang memungkinkan pengembang untuk mendrag and drop subjek visual guna membentuk aplikasi yang diharapkan.

3. Firebase

Firebase merupakan sebuah *Backend as a Service* yang dirilis oleh google. Firebase pertama kali didirikan pada tahun 2011 dimana produk yang pertama dikembangkan adalah *realtime Database*. Berikut ini adalah gambar tampilan input database firebase.

Referensi

- [1] Anggara, A. dan S. Marini, "Kopi SI Hitam Menguntungkan Budi Daya dan Pemasaran," Cahaya Atma Pustaka, Yogyakarta, 2011.
- [2] Sembiring. D, , "Rancang Bangun Multifucer Tipe Disk Mill Pada Berbagai Komoditi," Fakultas Pertanian Universitas Sumatera Utara, Medan, 2012.
- [3] Tim Karya Tani Mandiri, "Pedoman Budi Daya Tanaman Kopi," Penerbit Nuansa Aulia, Bandung, 2010.
- [4] Widiantara, "Rancang Bangun Alat Pengiris Bwang Merah Dengan Pengiris Vertikal,"Universitas Diponegoro, Semarang, 2010..
- [5] Samuel Haposan Napitupulu, Saipul Bahri Daulay, Adian Rindang, "Rancang Bangun ALat Penggiling Biji Kopi Tipe Flat Burr Mill," Keteknikan Pertanian, 2013

Form Kesediaan Membimbing Proyek Akhir

PROYEK AKHIR SEMESTER GANJIL | GENAP* TA 2020/2021

Tanggal: 1 Oktober 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : TND

Nama : TRI NOPIANI DAMAYANTI, S.T., M.T.

CALON PEMBIMBING 2

Kode : THY

Nama: TITA HARYANTI, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM 6705174052

Nama : ELKY ARMEN DINATA PUTRA

Prodi / Peminatan : TT/_____(contoh: MI / SDV)

Calon Judul PA : PERANCANGAN MESIN GRINDER KOPI BERBASIS INTERNET OF THINGS

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

(TRI NOPIANI DAMAYANTI, S.T., M.T.)

Calon Pembimbing 2

(TITA HARYANTI, S.T., M.T.)

CATATAN:

- Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman & Template Desember 2013.rar"
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl. Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705174052

Nama : ELKY ARMEN DINATA PUTRA

Dosen Wali : AGD / AGUS GANDA PERMANA
Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	ВС
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	AB
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	С
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	AB
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	AB
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	AB
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	Α
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	ВС

Jumlah SKS	100	3.02

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	AB
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	В
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	AB
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	В
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	ВС
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	AB
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	ВС
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	В
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	С
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	ВС
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	ВС
4	LUH1A2	BAHASA INDONESIA	INDONESIAN	2	AB
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	В
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
5	DTH3B3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND TELECOMMUNICATION NETWORKS	3	С
5	DTH3C3	KEAMANAN JARINGAN	NETWORK SECURITY	3	ВС
5	DTH3F3	KOMUNIKASI NIRKABEL BROADBAND	BROADBAND WIRELESS COMMUNICATIONS	3	ВС
5	DTH3D3	TEKNIK SWITCHING BROADBAND	SWITCHING TECHNIQUES BROADBAND	3	В
6	DMH3A6	MAGANG	APPRENTICE	6	А
		Jumlah SKS		100	3.02

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2B3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	
3	VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	2	
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	E
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
6	DTH3G4	PROYEK AKHIR	FINAL PROJECT	4	Т
6	VTI3F4	PROYEK I	PROJECT I	4	
Jumlah SKS				18	

Mata Kuliah yang Diulang

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	Е
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	Е
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	Е
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	Е
	Jumlah SKS				

UU GKG	ı	PK: 2.93
03 SKS Belu	ım Lulus I	PK : 2.93
33 SKS Belu	ım Lulus I	PK : 2.89
1 SKS Belu	ım Lulus I	PK : 3.06
	3 SKS Belt 03 SKS Belt	3 SKS Belum Lulus I 03 SKS Belum Lulus I

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Oktober 2020 15:33:03 oleh ELKY ARMEN DINATA PUTRA