

Aprendizagem de Máquina

Alceu S. Britto

Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR)

Ensembles e Combinação de Classificadores

Filosofia

O objetivo da combinação de classificadores é:

Buscar uma classificação mais precisa pagando o preço de uma maior complexidade.

 Ao invés de buscar o melhor conjunto de características e o melhor classificador, buscamos agora o melhor conjunto de classificadores e então o melhor método de combinação.

Motivação

• Suponha que temos um conjunto de dados Z rotulado e diversos classificadores $(D_1, D_2, ...)$ com um bom desempenho em Z.

 Podemos pegar um único classificador como solução, correndo o risco de tomar uma má decisão para o problema.

Motivação

 Exemplo: suponha que executamos um classificador 1-NN para 4 subconjuntos diferentes de características, obtendo como consequência 4 classificadores com erro zero no conjunto de treinamento.

Motivação

- Apesar destes classificadores terem todos o mesmo desempenho sobre o conjunto de treinamento
 - eles podem ter diferentes desempenhos na generalização!!!

 Ao invés de pegar somente um classificador, uma opção mais segura seria usá-los todos e fazer a média de suas

saída.

Motivação

- Mas este conjunto de classificadores pode não ser melhor do que o melhor classificador individual!
- Mas diminuirá ou eliminará o risco de escolhermos um classificador individual inadequado!

Ensembles (Comitês)

- Bagging (Breiman, 1996) or Bootstrapped Aggregation
 - Gera ensemble de classificadores homogêneos treinados a partir de amostragem randômica com repetições.
 - Qualquer instância tem a mesma probabilidade de aparecer em um novo bag (amostra de dados de treinamento).
 - Principais características
 - escolhe-se o estimador de base
 - define-se a quantidade de estimadores
 - pode-se definir o tamanho dos bags
 - classificadores treinados em paralelo.

Ensembles (Comitês)

- Boosting (R.E. Schapire, et al., 1997)
 - Gera ensemble de classificadores homogêneos treinados a partir de amostragem randômica (com repetições) em dados ponderados
 - Instância difíceis têm maior probabilidade de aparecer em um novo bag (amostra de dados com pesos)
 - Principais características:
 - · escolhe-se o estimador de base
 - definir-se a quantidade de estimadores.
 - treinamento acontece de forma sequencial.

Ensembles (Comitês)

- Random Subspace (T.K. Ho, 1998)
 - Features são amostradas randomicamente.
 - -Principais Características
 - escolhe-se o estimador de base
 - define-se a % de features a ser randomicamente selecionada

para o treinamento dos membros do ensemble.

Ensembles (Comitês)

- Floresta Aleatória (Random Forest)
 - Cria uma combinação (ensemble) de árvores de decisão, na maioria dos casos treinados com o método bagging e definindo o melhor atributo para cada nó a partir de um subconjunto de atributos também definido aleatoriamente.

Ensembles (Comitês)

- XGBoost (Extreme Gradient Boosting)
 - Cria um ensemble) de árvores.
 - Utiliza medida de similarity como forma de calcular ganho de informação.
 - Descida do gradiente é utilizada para definir a importância de cada membro do ensemble.
 - Função objetivo considera a soma de uma função de perda avaliada sobre a base de treinamento e uma função de regularização que penaliza árvores complexas (prioriza-se árvores simples). Na equação f, é a predição da j, árvore.

Ensembles (Comitês)

- Ensembles heterogêneos
 - Diferente das abordagens homogêneas que buscam diversidade via manipulação dos dados de treinamento, aqui a diversidade é explorada por meio da combinação de diferentes conceitos.

Por exemplo: combinação de estimadores baseados em KNN, Decision T

Tipos de Saídas de Classificadores

- As maneiras possíveis de combinar as saídas de L classificadores em um ensemble, depende da informação obtida dos membros individuais.
- Podemos distinguir três (3) tipos de saídas de classificadores:
 - Tipo 1: Nível Abstrato: Cada classificador produz um rótulo
 - Tipo 2: Nível de Rank: Cada classificador produz uma lista ordenada de alternativas de acordo com a plausibilidade.
 - Tipo 3: Nível de Medidas: Cada classificador produz um vetor de c dimensões onde cada valor representa o suporte para o vetor.

Tipos de Saídas de Classificadores

Voto da Maioria (Majority Vote)

Estratégias de Combinação

- Assumimos um vetor d-dimensional de características, x.
- Assumimos que existem c classes possíveis rotuladas w₁ a w_c organizado como um conjunto de rótulos.
- Assumimos um conjunto de k classificadores $D_1...D_k$ onde cada classificador D_i produz na saída [$P_{Di}(w_1|x), P_{Di}(w_2|x), ..., P_{Di}(w_j|x)$], onde $P_{Di}(w_j|x)$ representa o suporte para que hipótese de que o vetor x seja da classe w_j .

Estratégias de Combinação

Votação da Maioria

 Regra de decisão simples, onde somente os rótulos atribuídos pelo classificador são levados em conta e aquele que tiver mais votos é o vencedor.

$$\hat{\omega} = \max_{i \in [1,k]} count \left[\underset{\omega \in \Omega}{\operatorname{arg\,max}} P_{D_i}(\omega \mid x) \right]$$

 onde i indica o índice do classificador e P_{Di} indica o nível de confiança fornecido na saída do classificador D_i

Max

 Regra de decisão simples, onde a classe com o nível de confiança mais elevado é a vencedora, pouco importando o classificador.

$$\hat{\omega} = \underset{\substack{i \in [1,k] \\ \omega \in \Omega}}{\operatorname{arg\,max}} P_{D_i}(\omega \mid x)$$

Soma

- A regra da soma é baseada no somatório dos níveis de confiança fornecidos pelos classificadores.
- Os níveis de confiança são somados para cada classe e a classe cuja soma resultante for a mais elevada, é declarada vencedora.

$$\hat{\omega} = \underset{\omega \in \Omega}{\operatorname{arg\,max}} \sum_{i=1}^{k} P_{D_i}(\omega \mid x)$$

Soma Ponderada

- Ao invés de utilizar somente a regra da soma, é possível adicionar pesos às saídas dos classificadores, dando mais podes aos classificadores mais competentes.
- Neste caso, o nível de confiança de cada classificador é multiplicado por k pesos w_i, e os pesos são específicos para cada classificador.

$$\hat{\omega} = \underset{\omega \in \Omega}{\operatorname{arg\,max}} \sum_{i=1}^{k} w_i P_{D_i}(\omega \mid x)$$

Produto

- A regra do produto é baseada na multiplicação dos níveis de confiança fornecidos pelos classificadores.
- Os níveis de confiança são multiplicados, para cada classe, e a classe cujo produto resultante for o mais elevado, é declarada vencedora.

$$\hat{\omega} = \underset{\omega \in \Omega}{\operatorname{arg\,max}} \prod_{i=1}^{k} P_{D_i}(\omega \mid x)$$

Produto Ponderado

- Segue a mesma ideia da soma ponderada.
- Neste caso, o nível de confiança de cada classificador é elevado à k pesos w_i, e os pesos são específicos para cada classificador.

$$\hat{\omega} = \underset{\omega \in \Omega}{\operatorname{arg\,max}} \prod_{i=1}^{k} \left[P_{D_i}(\omega \mid x) \right]^{w_i}$$

Exemplo

Exemplo

Exemplo

