Analisi e Simulazione di Sistemi Dinamici

15/02/2005

Risposte	4	1	4	3	4	1	2	1	4	5
Domande	1	2	3	4	5	6	7	8	9	10

N. matricola

Scrivere il numero della risposta sopra alla corrispondente domanda.

(voti: $2,0,-1, \min=10$)

Analizzare il sistema dinamico S:

$$\begin{cases} x_1(t+1) &= -\frac{1}{3}x_1(t) \\ x_2(t+1) &= 2x_1(t) - x_2(t) + x_3(t) + \frac{1}{2}u(t) \\ x_3(t+1) &= \frac{1}{2}x_1(t) - x_3(t) + u(t) \\ y(t) &= x_1(t) + 2x_2(t) + x_3(t) \end{cases}$$

D1. Il sistema \mathcal{S} è

1) in decomposizione canonica di osservabilità; 2) in forma canonica di raggiungibilità; 3) una realizzazione minimale; 4) non in decomposizione canonica; 5) in decomposizione canonica di raggiungibilità;

D2. Il guadagno in continua del sistema \mathcal{S} è

1) $K_B = 3/2$; 2) $K_B = -3/2$; 3) $K_B = 0$; 4) $K_B = 4$;

D3. La Funzione di Trasferimento che rappresenta il sistema \mathcal{S}

1) ha ordine infinito; 2) ha ordine tre; 3) ha ordine uno; 4) ha ordine due;

D4. La risposta forzata del sistema S all'ingresso $u(t) = 2 \cdot 1(t)$

1) converge a y=0; 2) converge a y=3; 3) diverge; 4) converge a y=8;

D5. Il sistema \mathcal{S} è

1) convergente; 2) marginalmente stabile; 3) asintoticamente stabile; 4) instabile;

D6. Il sottospazio non osservabile del sistema ${\mathcal S}$ ha dimensione

1) zero; 2) due; 3) uno; 4) tre;

D7. Il sistema \mathcal{S} è

1) BIBO stabile; 2) esternamente instabile;

D8. Il sistema $\mathcal S$ è espresso in rappresentazione

1) tempo discreto, lineare, tempo-invariante; 2) tempo continuo, non-lineare, tempo-invariante; 3) tempo continuo, lineare, autonomo; 4) tempo discreto, non-lineare, non-autonomo;

D9. Il sottospazio di raggiungibilità del sistema ${\mathcal S}$ ha dimensione

1) zero; 2) uno; 3) tre; 4) due;

D10. I modi naturali del sistema \mathcal{S} sono

1)
$$\{e^{-3t}, e^{-t}, te^{-t}\};$$
 2) $\{e^{-1/3t}, e^{-t}, te^{-t}\};$ 3) $\{(-1/3)^t, (-1)^t\};$ 4) $\{1, 3^t, (-1)^t\};$ 5) $\{(-1/3)^t, (-1)^t, t(-1)^t\};$

D11. (voto:10, min=5) Si tracci il diagr. di Bode (asintotico e reale) di $G(s) = \frac{(s^2 - 9)}{s(s+1)(10s+1)}$

D12. (voto:8) Si consideri il seguente sistema dinamico a tempo-continuo

$$\begin{cases} \dot{x}_1 = x_1(1 - 2x_1) \\ 2\dot{x}_2 = x_3 - 2x_2 \\ \dot{x}_3 = 2x_1 - 8x_2^3 \end{cases}$$

a) Determinare gli stati di equilibrio del sistema:

b) Discutere la stabilità degli stati di equilibrio del sistema:

Analisi e Simulazione di Sistemi Dinamici

15/02/2005

Risposte	3	1	2	1	1	1	3	2	3	3
Domande	1	2	3	4	5	6	7	8	9	10

N. matricola

Scrivere il numero della risposta sopra alla corrispondente domanda.

(voti: $2,0,-1, \min=10$)

Analizzare il sistema dinamico S:

$$\begin{cases} x_1(t+1) &= -\frac{1}{2}x_1(t) + 2x_2(t) + \frac{1}{3}x_3(t) + u(t) \\ x_2(t+1) &= -x_2(t) + u(t) \\ x_3(t+1) &= x_2(t) - x_3(t) + \frac{1}{2}u(t) \\ y(t) &= \frac{1}{2}x_2(t) + x_3(t) \end{cases}$$

D1. La risposta forzata del sistema S all'ingresso $u(t) = 4 \cdot 1(t)$

1) converge a y=0; 2) converge a y=8; 3) diverge; 4) converge a y=3;

 $\mathbf{D2}$. I modi naturali del sistema \mathcal{S} sono

D2. I modi naturali del sistema
$$S$$
 sono 1) $\{(-1/2)^t, (-1)^t, t(-1)^t\}; 2$) $\{e^{-2t}, e^{-t}, te^{-t}\}; 3$) $\{(-1/2)^t, (-1)^t\}; 4$) $\{1, 2^t, (-1)^t\}; 5$) $\{e^{-1/2t}, e^{-t}, te^{-t}\};$

D3. Il sistema \mathcal{S} è

1) in decomposizione canonica di osservabilità; 2) non in decomposizione canonica; 3) una realizzazione minimale; 4) in decomposizione canonica di raggiungibilità; 5) in forma canonica di raggiungibilità;

D4. Il sistema \mathcal{S} è espresso in rappresentazione

1) tempo discreto, lineare, tempo-invariante; 2) tempo continuo, non-lineare, tempo-invariante; 3) tempo continuo, lineare, autonomo; 4) tempo discreto, non-lineare, non-autonomo;

D5. Il guadagno in continua del sistema \mathcal{S} è

1)
$$K_B = 3/4$$
; 2) $K_B = 0$; 3) $K_B = 2$; 4) $K_B = -3/4$;

D6. Il sottospazio non osservabile del sistema $\mathcal S$ ha dimensione

1) uno; 2) zero; 3) due; 4) tre;

D7. La Funzione di Trasferimento che rappresenta il sistema \mathcal{S}

1) ha ordine uno; 2) ha ordine infinito; 3) ha ordine due; 4) ha ordine tre;

D8. Il sistema S è

1) BIBO stabile; 2) esternamente instabile;

D9. Il sottospazio di raggiungibilità del sistema \mathcal{S} ha dimensione

1) zero; 2) uno; 3) tre; 4) due;

D10. Il sistema \mathcal{S} è

1) asintoticamente stabile; 2) marginalmente stabile; 3) instabile; 4) convergente;

D11. (voto:10, min=5) Si tracci il diagr. di Bode (asintotico e reale) di $G(s) = \frac{s}{(5s+1)^2(s^2-1)}$

D12. (voto:8) Si consideri il seguente sistema dinamico a tempo-continuo

$$\begin{cases} \dot{x}_1 &= -x_1 + x_3 \\ 2\dot{x}_2 &= x_2(x_2 - 1) \\ \dot{x}_3 &= -x_1^3 + x_2 \end{cases}$$

a) Determinare gli stati di equilibrio del sistema:

b) Discutere la stabilità degli stati di equilibrio del sistema: