Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Auction Algorithm (Algoritmo de Leilão)

Mecanismo de Leilão (Auction)

Um único fornecedor (leiloeiro) oferta produtos para vários consumidores Os consumidores começam a submeter ofertas crescentes para o bem ou serviço anunciado até que reste apenas um único consumidor

Mecanismo de Leilão (Auction)

Tipos de Leilão

- Inglês: Primeiro preço, lance aberto
- Primeiro preço, lance fechado
- Holandês: Primeiro preço, lance fechado (decrescente)
- Vickrey: Segundo preço, lance fechado

Propostas

Dimitri Bertsekas (MIT) e Castañon (1989)

Problemas de fluxo em redes

- Problema de Atribuição (principal)
- Problema de Transporte
- Caminho mínimo
- Fluxo em Redes

Solução ótima (sob cestas condições)

Como minimizar o custo de atribuição?

Como maximizar o benefício de atribuição?

Formulação geral

$$Minimizar z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i = 1, ..., n$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j = 1, ..., n$$

$$x_{ij} \ge 0$$
 $i = 1, ..., m; j = 1, ..., n$

Exemplo: como alocar policiais a regiões?

- Distância dos policiais para as regiões (d)
- Para o problema de minimização, basta considerar a própria distância no processo de busca de solução

	Região A	Região B	Região C
Policial 1	3	5	4
Policial 2	4	3	5
Policial 3	1	4	2

Problema de Atribuição de Maximização

Estratégia 1

$$a_{ij} = 1 / d_{ij}$$

	Região A	Região B	Região C
Policial 1	1/3 = 0,33	1/5 = 0,2	1/4 = 0,25
Policial 2	1/4 = 0,25	1/3 = 0,33	1/5 = 0,2
Policial 3	1/1 = 1,0	1/4 = 0,25	1/2 = 0,2

Estratégia 2

$$a_{ij} = -d_{ij}$$

Lógica do algoritmo

- Cada origem é vista como como pessoa i, e cada destino como o objeto j em um leilão
- Cada pessoa i possui um interesse a_{ij} por um objeto j, que inicialmente tem um preço p_i
- O valor real de um objeto j para uma pessoa i é

$$v_r = a_{ij} - p_j$$

Lógica do algoritmo

Benefício

(receita \$ com transporte de noivos)

R\$ 250.000 em 5 anos

Preço

R\$ 1.000.000,00

2

Preço

R\$ 30.000,00

Satisfação e condição de parada

 Uma pessoa estará satisfeita se ela sempre ficar alocada ao objeto que traga o maior valor real

$$v_r = max \{a_{ij} - p_j\} \mid j = \{1, 2, ... n\}$$

 Objetivo é otimizar as atribuições, considerando o custo/benefício de cada relação (pessoa → objeto)

Lances e aumento de preço

- A cada iteração as pessoas dão lances por objetos, ficando alocado a esses objetos.
- Os lances são baseados na diferença entre o primeiro e segundo objeto com maior valor real para uma pessoa

$$v_j = max \{a_{ij} - p_j\} \mid j = \{1, 2, ..., n\} \leftarrow Melhor objeto$$
 $w_j = max \{a_{ij} - p_j\} \mid j \neq j_i \leftarrow Segundo melhor objeto$
 $Y_i = v_i - w_i \leftarrow Lance$

Para cada Pessoa P não atribuída faça

<u>Identifique</u> o 1° melhor objeto e o 2° melhor objeto para P

Defina lance = 1ºMelhor Objeto (P) - 2º Melhor Objeto(P) + €

<u>Aumente</u> o preço do 1º Melhor Objeto em lance

Desfaça a atribuição de quem estava atribuído ao 1º Melhor Objeto

Atribua a pessoa P ao 1ºMelhor Objeto

Fim para

 $\varepsilon = constante$

Quando ε < 1/n, a solução é ótima.

Animação

Atribuição completa! Todos pessoas estão felizes!

Exemplo: maximizar o benefício de alocação

Pessoas devem ser alocadas aos objetos

	Objeto A	Objeto B	Objeto C
Pessoa 1	6	3	2
Pessoa 2	2	7	5
Pessoa 3	3	10	1

Preço inicial $P_{\Delta} = 0$ $P_{R} = 0$ $P_{C} = 0$ $\epsilon = 0.1$

 Inicialmente as pessoas 2 e 3 tem interesse pelo mesmo objeto

Artifício

Valores assumidos

Execução do algoritmo - Passo-a-Passo

Iteração	Alocação	Incremento y = v - w + ϵ	$\epsilon = 0,1$	Novo preço Pj = Pj + y	Desatribuição
#1					
#2					

	Objeto A	Objeto B	Objeto C
Pessoa 1	6	3	2
Pessoa 2	2	7	5
Pessoa 3	3	10	1

Execução do algoritmo – Passo-a-Passo

Iteração	Alocação	Incremento $y = v - w + \varepsilon$ $\varepsilon = 0,1$	Novo preço Pj = Pj + y	Desatribuição
#1	(1, A)	=(6-0)-(3-0) + 0,1 = 3,1	= 0 + 3,1 = 3,1	
	(2,B)	=(7-0)-(5-0) + 0,1 = 2,1	= 0 + 2,1 = 2,1	
	(3,B)	=(10-2,1)-(1-0) +0,1 = 7	= 2,1 + 7 = 9,1	(2,B)
#2	(2,C)	=(5-0)-(2-3,1)+0,1=6,2	=0+6,2=6,2	

Resultado da alocação

(Pessoa 1, Objeto A) = 6

(Pessoa 2, Objeto C) = 5

(Pessoa 3, Objeto B) = 10

Benefício final da alocação

$$6 + 5 + 10 = 21$$

Transformação no problema de atribuição

Transformação no problema de atribuição

Problema de Transporte

Problema de atribuição equivalente com pessoas similares

Exercício: resolver os seguinte problema de transporte (minimizar custos)

Demanda dos Destinos

d	-п

Oferta

	1	3
2	5	3
2	5	7

$$\epsilon = 0.2$$

1° Transformar em problema de atribuição

Demanda dos Destinos

	C	D1	D2	D3
A1				
A2				
B1				
B2				

Oferta

2° Transformar o problema de minimização em maximização

1° Transformar em problema de atribuição

Demanda dos Destinos

1 3 2 5 3 8 2 5 7

	C	D1	D2	D3
A1	5	3	3	3
A2	5	3	3	3
B1	5	7	7	7
B2	5	7	7	7

	С	D1	D2	D3
A1	-5	-3	-3	-3
A2	-5	-3	-3	-3
B1	-5	-7	-7	-7
B2	-5	-7	-7	-7

Oferta

2° Transformar o problema de minimização em maximização

3° Resolver o problema de atribuição (maximização)

Iteração	Alocação	Incremento y = v - w + &	Novo preço Pj = Pj + y	Desatribuição

$$\epsilon = 0,2$$

	C	D1	D2	D3
A1	-5	~	<u>ფ</u>	~
A2	-5	%	-3	~
B1	-5	-7	-7	-7
B2	-5	-7	-7	-7

Preço	
C = 0	
D1 = 0	
D2 = 0	
D3 = 0	

3° Resolver o problema de atribuição (maximização)

Iteração	Alocação	Incremento y = v - w + &	Novo preço Pj = Pj + y	Desatribuição
#1	A1, D1	(-3-0) - (-3-0) + 0.2 = 0.2	0,2	
#1	A2, D2	(-3-0) - (-3-0) + 0.2 = 0.2	0,2	
#1	B1, C	(-5-0) - (-7-0) + 0,2 = 2,2	2,2	
#1	B2, D3	(-7-0) - (-5 - 2,2) + 0,2 = 0,4	0,4	

$$\epsilon = 0.2$$

	С	D1	D2	D3
A1	-5	-3	-3	3
A2	-5	-3	-3	-3
B1	-5	-7	-7	-7
B2	-5	-7	-7	-7

Preço
C = 2,2
D1 = 0,2
D2 = 0,2
D3 = 0,4

4° Mostrar o resultado

$$(A,D) = 2 \times 3 = 6$$

$$(B,C) = 1 \times 5 = 5$$

$$(B,D) = 1 \times 7 = 7$$

Problema de transporte Custo final da alocação

$$6 + 5 + 7 = 18$$

Complexidade de Algoritmos

Problema de Atribuição

- Algoritmo Húngaro: $O(n^3)$
- Auction Algorithm: $O(\frac{\max aij}{\epsilon} n^2)$

Problema de Transportes

■ TransAuction: $O((M + N)^3 log (C min \{M,N\})),$ Onde $C = max \{|a_{ij}|| j \in A(i)\}.$

Referências

[1] D. P. Bertsekas. Auction algorithm for network flow problems: A tutorial introduction. 0(LIDSP- 2108):1–54, Maio 1992.

[2] D. P. Bertsekas, Castanon D.A. The Auction algorithm for the transformation problem 0(LIDSP- 2108):1–54, Fevereiro 1989.

