研究内容の紹介(20分)

東京理科大学理学研究科 小林 穂乃香

山口大学面接 於2022年9月5日

擬リーマン多様体とは

g : M 上の対称 (0,2) テンソル場 $X, Y \in TM$

(M,g): リーマン多様体

$$g:M$$
上のリーマン計量 i. e. $g(X,X)\geq 0$ for all X , and \cdots 正定値 $g(X,X)=0 \Leftrightarrow X=0$

(M,g): 擬リーマン多様体

$$g: M$$
上の擬リーマン計量 i. e. $g(X,Y)=0$ for all $Y \in TM$ … 非退化 $\Rightarrow X=0$

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$
 $\begin{cases} s = 0: \, \mathcal{V} - \mathbb{V} \sim \mathbb{V} & \text{s.} \\ s = 1: \, \mathcal{U} - \mathbb{V} \sim \mathbb{V} & \text{s.} \end{cases}$ $\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^s x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$ $s : \mathbf{h}$ 数

擬リーマン多様体とは

1905 特殊相対性理論(A. Einstein)

この世界を, 空間 3 次元と時間 1 次元の"時空"として考える

正定値とは限らない計量を持つ多様体を導入

1908 ミンコフスキー幾何学(H. Minkowski)

特殊相対性理論を幾何学として再構成時空は4次元の空間として記述される

1915-1916 一般相対性理論(A. Einstein)

重力を時空の曲がりとして捉える, リーマン幾何学を応用

擬リーマン幾何学

これまでの研究の概要

 $(\tilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 $(M,\langle ,\rangle): ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part I · · · 擬双曲的ガウス写像による分類

● B-scroll または complex circle の擬双曲的ガウス写像

Part II \cdots generalizations of B-scroll in \tilde{M}_s^m

- generalized umbilical hypersurface in $ilde{M}_1^{n+1}$ · · · 次元一般化
- ullet generalized umbilical hypersurface in $ilde{M}_2^{n+1}$ \cdots 指数及び次元一般化
- generalized B-scroll in \mathbb{S}_2^5 or \mathbb{H}_2^5 ··· 指数及び余次元一般化

Part I

擬双曲的ガウス写像による分類

擬双曲的ガウス写像による分類 … 研究背景

部分多様体の平均曲率 H と部分多様体の type number の関係

- 1970 年代 ・ $\Delta H = \lambda H$ となるリーマン部分多様体の type number
 - ・null 2-type かつ H: const なローレンツ曲面の完全分類
- 1980 年代 ・部分多様体のガウス写像の type number
 - 2007年 ・球面にはめ込まれた部分多様体の球面的ガウス写像

 $\mathbf{x}: M \hookrightarrow \mathbb{S}^m$: 等長はめ込み

 $(e_1^p,\ldots,e_n^p):M$ の向きと適合する T_pM の正規直交フレーム

ガウス写像 v $\stackrel{\text{def}}{\Leftrightarrow}$ $v := e_1^p \wedge \cdots \wedge e_n^p$ 球面的ガウス写像 \tilde{v} $\stackrel{\text{def}}{\Leftrightarrow}$ $\tilde{v} := \mathbf{x}(p) \wedge e_1^p \wedge \cdots \wedge e_n^p$

・・・ 修士課程における結果

擬双曲的ガウス写像による分類

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}_1^3$ (または \mathbb{H}_1^3): 向きづけられたローレンツ超曲面

形作用素が対角化不可能 かつ H,K が一定

 M_1^2 は B-scroll または complex circle どちらかの開部分

	M_1^2		$ ilde{ u}$	K	Н
	(Main Result 1) $S^1_{\mathbb{C}}(\kappa)$	$\kappa = -1$	1-type	0	0
in \mathbb{H}_1^3	complex circle	<i>κ</i> ≠ −1	∞-type	0	≠ 0
	(Main Result 2) $\mathcal{B}(k_2)$	$k_2 = \pm 1$	∞-type	0	≠ 0
	B-scroll	<i>k</i> ₂ ≠ ±1	null 2-type	≠ 0	≠ 0
in \mathbb{S}^3_1	(B–C–D 2017) $\mathcal{B}(k_2)$ B-scroll		null 2-type	≠ 0	≠ 0

擬双曲的ガウス写像による分類 ··· B-scroll

擬双曲的ガウス写像による分類 ··· B-scroll

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C) : γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = \frac{k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = \frac{k_2(s)C(s) + \varepsilon\gamma(s).} \end{cases}$$

Definition

M を,次のようにパラメータづけされたローレンツ曲面とする:

$$\mathbf{x}: M \hookrightarrow \mathbb{S}^3_1 \text{ or } \mathbb{H}^3_1 \stackrel{\text{def}}{\Leftrightarrow} \mathbf{x}(s,t) := \gamma(s) + tB(s)$$

このとき,

$$M: \gamma \perp \mathcal{O} \text{ B-scroll} \stackrel{\mathrm{def}}{\Leftrightarrow} k_2: \mathrm{const}$$

Part II

generalizations of B-scroll in \tilde{M}_2^m

generalizations of B-scroll in $ilde{M}_s^m$ \cdots 次元一般化

 \tilde{M}_{1}^{n+1} : ローレンツ多様体, $\dim \tilde{M} = n+1$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面, $\dim M = n$

A : M_1^n の形作用素, 対角化不可能

Definition

 M_1^n : generalized umbilical hypersurface $\stackrel{\mathrm{def}}{\Leftrightarrow}$ A が 0 でない唯一の

実固有値を持つ

大田子田子

A の最小多項式が $P(x)=(x-a)^2$ のとき, M_1^n を degree 2 の generalized umbilical hypersurface という $(a \in \mathbb{R} : \mathsf{const})$.

generalizations of B-scroll in $ilde{M}^m_s$ \cdots 次元一般化

Cartan frame (E. Cartan) : \mathbb{E}^3_1 における null 曲線に沿う Frenet 型フレーム

一般次元ローレンツ多様体に拡張

general Frenet frame (K. L. Duggal–A. Bejancu)

よりシンプルな形に再構成

natural Frenet frame (D. H. Jin)

特殊なパラメータをとることでさらにシンプルに

Cartan frame (A. Ferrández–A. Giménez–P. Lucas)

• これらは構成の際に screen vercor bundle などの概念が必要

一方,H. Kobayashi–N. Koike による構成方法は

- general Frenet frame を経由せず構成
- 高度な概念必要なし
- γのパラメータに条件なし

generalizations of B-scroll in $ilde{M}_{s}^{m}$ \cdots 指数及び次元一般化

• s=1 のとき $\gamma: \tilde{M}_1^n$ の null 曲線, $A:=\dot{\gamma}$.

$$abla_{\dot{\gamma}}A$$
: space like $C:=\frac{1}{k_1}
abla_{\dot{\gamma}}A$ \longrightarrow $abla_{\dot{\gamma}}C=k_2A+k_1B$ \longrightarrow $abla_{\dot{\gamma}}B=k_2C+\tilde{Z}$ \cdots $B: \text{null s.t. } \langle A,B\rangle=-1$ $\tilde{Z}: \text{ spacelike}$

• s=2 のとき $\gamma: \tilde{M}_2^n$ の null 曲線, $A:=\dot{\gamma}$.

${f generalizations}$ of B-scroll in $ilde{M}_{s}^{m}$ \cdots 指数及び次元一般化

Cartan frame (E. Cartan): \mathbb{E}^3_1 における null 曲線に沿う Frenet 型フレーム

一般次元ローレンツ多様体 M" に拡張

general Frenet frame (K. L. Duggal-A. Bejancu)

よりシンプルな形に再構成

natural Frenet frame (D. H. Jin)

指数2に拡張

natural Frenet frame with index 2 (K. L. Duggal–A. Bejancu–D. H. Jin)

別証明

 $\begin{cases} \nabla_{\dot{\gamma}}A : \text{non-null} \ \mathcal{O}$ とき,Cartan frame (H. Kobayashi) $\\ \nabla_{\dot{\gamma}}A : \text{null} \ \mathcal{O}$ とき,bi-null Cartan frame (M. Sakaki–A. Uçum–K. İlarslan)

Main Result 4 (H. Kobayashi)

degree 2 の generalized umbilical hypersurface in \mathbb{S}_2^{n+1} or \mathbb{H}_2^{n+1} の具体例を 構成

generalizations of B-scroll in $ilde{M}^m$ い 指数及び余次元一般化

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

※ M は 2 次元非退化ローレンツ線織面 H: M の平均曲率ベクトル場

*A_H: M*の *H*方向の形作用素

 $M: \mathbf{x}(s,t) = \gamma(s) + tB(s)$

def

 A_H の最小多項式が $(x-a^2)^2 \Rightarrow M$: generalized B-scroll $(a \in \mathbb{R} : const)$

 A_H の最小多項式が $(x - k_2^2)^2 \leftarrow M$: generalized B-scroll

$\gamma \subset \mathbb{E}_1^m$ に沿う Cartan frame field

$$\begin{array}{c} A \\ B \\ C \\ Z_1 \\ \vdots \\ Z_m \end{array} \left(\begin{array}{ccc} 0 & -1 \\ -1 & 0 \\ & & 1 \\ & & \ddots \\ & & & 1 \end{array} \right) \quad \text{and} \quad \begin{cases} \dot{A} = k_1 C \\ \dot{C} = \frac{k_2 A}{2} + k_1 B \\ \dot{B} = \frac{k_2 C}{2} + Z_1 \\ \dot{Z}_1 = k_3 A + k_4 Z_2 \\ \dot{Z}_2 = -k_4 Z_1 + k_5 Z_3 \\ \vdots \end{array}$$

generalizations of B-scroll in $ilde{M}^m$ \cdots 指数及び余次元一般化

(2)

 $\text{null} \Rightarrow \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} A$: spacelike

 $\gamma: \tilde{M}_2^5$ の null 曲線, $A:=\dot{\gamma}$.

timelike Type (i) (H. K)
$$\begin{array}{c} \nabla_{\dot{\gamma}}A & \\ \end{array}$$

$$= \text{spacelike } C := \frac{1}{k_1}\nabla_{\dot{\gamma}}A \\ \nabla_{\dot{\gamma}}C = k_2A + k_1B \\ \nabla_{\dot{\gamma}}B = k_2C + \tilde{Z}_1 \end{array}$$

$$\begin{array}{c} \nabla_{\dot{\gamma}}B = k_2C + \tilde{Z}_1 \\ \end{array}$$

$$\begin{array}{c} \nabla_{\dot{\gamma}}B = k_2C + \tilde{Z}_1 \\ \end{array}$$

$$\begin{array}{c} A \\ C \\ Z_1 \\ Z_2 \end{array} \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ \varepsilon_C \\ \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} \qquad (1)$$

$$\begin{array}{c} A \\ C \\ C \\ \dot{Z}_1 \\ \dot{Z}_2 \end{pmatrix} \qquad (2)$$

$$\begin{array}{c} \dot{A} = k_1C \\ \dot{C} = k_2A + \varepsilon_Ck_1B \\ \dot{B} = \varepsilon_Ck_2C + k_3Z_1 + \varepsilon\gamma \\ \dot{Z}_1 = \varepsilon_1k_3A + k_4Z_2 \\ \dot{Z}_2 = \varepsilon_Ck_4Z_1 \end{array}$$

non-null Type (i) (H. K) Type (ii) (H. K) Type (ii) (H. Kobayashi)

[M.Sakaki (2012)] \mathbb{E}_2^n "bi-null Cartan curve"

Type (ii) (H. Kobayashi)

$$\stackrel{A}{B} \begin{pmatrix}
0 & -1 \\
-1 & 0 \\
1 \\
0 & -1 \\
-1 & 0
\end{pmatrix}$$
(3)
$$\begin{pmatrix}
\dot{A} = k_1 C \\
\dot{C} = k_2 A + k_1 B \\
\dot{B} = k_2 C + Z_1 + \varepsilon \gamma \\
\dot{Z}_1 = h Z_1 \\
\dot{Z}_2 = -A - h Z_2$$

Main Result 5 (H. Kobayashi)

 γ : \mathbb{S}_{2}^{5} or \mathbb{H}_{2}^{5} の null 曲線

 (A, B, C, Z_1, Z_2) : γ に沿う \mathbb{S}_2^5 or \mathbb{H}_2^5 の Cartan frame field s.t. k_2 : const

M が次の条件を満たすとする:

$$M: \gamma$$
 と γ に沿う Frenet 型フレーム場から構成される null scroll $M: 2$ 次元非退化ローレンツ線織面

$$\Rightarrow M \bowtie \mathbf{x}(s,t) = \gamma(s) + tB(s)$$
 によりパラメータづけされる.

さらに, A_H の最小多項式 P(x) は

(i)
$$Z_1$$
: non-null $\Rightarrow P(x) = (x - (\varepsilon_C k_2^2 + \varepsilon_1 k_3^2))^2$,

(ii)
$$Z_1$$
: null $\Rightarrow P(x) = (x - k_2^2)^2$.

つまり、 \mathbb{S}_2^5 または \mathbb{H}_2^5 における generalized B-scroll は (i). (ii) のどちらかである.