Data Management for Data Science

Lecture 15: Bayesian Methods

Prof. Asoc. Endri Raço

Today – Bayesian Methods

Motivation and Introduction

Bayes Theorem

Bayesian inference

Motivation

 Statistical inference: Drawing conclusions based on data that is subject to random variation (observational errors and sampling variation)

So far we saw the "frequentists" point of view.

 Bayesian inference provides a different way to draw conclusions from data.

Basic Idea

• Leverage **prior information** and update prior information with new data to create a **posterior probability distribution**.

- Three steps:
 - Form prior (a probability model)
 - Condition on observed data (new data from your sample)
 - Evaluate the posterior distribution

Basic Idea

- "The central feature of Bayesian inference [is] the direct quantification of uncertainty" (Gelman et al. 2014, 4).
- Less emphasis on p-value hypothesis testing. More emphasis on the confidence and probability intervals.
- Many researchers actually interpret 'frequentist' confidence intervals *as if* they were Bayesian probability intervals.

Uncertainty in Freq. and Bayesian Approaches

- Both involve the **estimation of unknown quantities** of interest
- The estimates they produce have different interpretations.

• Frequentist: 95% Confidence interval: Repeated samples will contain the true parameter within the interval 95% of the time.

• Bayesian: 95% Probability (credible) interval: There is a 95% probability that the unknown parameter is actually in the interval.

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (sometimes write as {+r, ¬r})
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Discrete random variables have distributions

P(T)		
T	Р	
warm	0.5	
cold	0.5	

D/D

- (· ·)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

P(W)

- A discrete distribution is a TABLE of probabilities of values
- The probability of a state (lower case) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

Must have:

$$\forall x P(x) \ge 0$$
 $\sum_{x} P(x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment:

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

– How many assignments if n variables with domain sizes d?

Must ol	bey:
---------------------------	------

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P	T	7	W)
1	(<u> </u>	,	<i>v v</i>	,

Т	V	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- For all but the smallest distributions, impractical to write out or estimate
 - Instead, we make additional assumptions about the distribution

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	V	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = ???$$

Conditional Probabilities

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

	$\int I$	P(W T)	= hot)
		W	Р	
		sun	0.8	
7		rain	0.2	
	F	P(W T)	= cold	!)

W	Р
sun	0.4
rain	0.6

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \qquad P(x,y) = P(x|y)P(y)$$

Example:

$$P(W)$$
W P
sun 0.8
rain 0.2

P(D|W)

P((D	, V	V)
	-		-

D	W	Ρ
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Let's us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many practical systems (e.g. ASR, MT)

Bayes' Theorem

Before we get to inference: Bayes' *Theorem* is a result in conditional probability, stating that for two events A and B...

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \text{ and } B]}{\mathbb{P}[B]} = \mathbb{P}[B|A] \frac{\mathbb{P}[A]}{\mathbb{P}[B]}.$$

In this example;

•
$$\mathbb{P}[A|B] = \frac{1/10}{3/10} = 1/3$$

•
$$\mathbb{P}[B|A] = \frac{1/10}{5/10} = 1/5$$

• And
$$1/3 = 1/5 \times \frac{5/10}{3/10} (\checkmark)$$

In words: the conditional probability of A given B is the conditional probability of B given A scaled by the *relative* probability of A compared to B.

Bayes' Theorem

Why does it matter? If 1% of a population have cancer, for a screening test with 80% sensitivity and 95% specificity;

$$\mathbb{P}[\text{Test +ve}|\text{Cancer}] = 80\% \\
\frac{\mathbb{P}[\text{Test +ve}]}{\mathbb{P}[\text{Cancer}]} = 5.75 \\
\mathbb{P}[\text{Cancer}|\text{Test +ve}] \approx 14\%$$

... i.e. most positive results are actually false alarms

Mixing up $\mathbb{P}[A|B]$ with $\mathbb{P}[B|A]$ is the *Prosecutor's Fallacy*; a small probability of evidence given innocence need NOT mean a small probability of innocence given evidence.

Bayesian Approach

How to update knowledge, as data is obtained? We use;

- **Prior distribution:** what you know about parameter β , excluding the information in the data denoted $\pi(\beta)$
- **Likelihood:** based on modeling assumptions, how [relatively] likely the data Y are *if* the truth is β denoted $f(Y|\beta)$

So how to get a **posterior distribution**: stating what we know about β , combining the prior with the data – denoted $p(\beta|\mathbf{Y})$? Bayes Theorem used for inference tells us to multiply;

$$p(\boldsymbol{\beta}|\mathbf{Y}) \propto f(\mathbf{Y}|\boldsymbol{\beta}) \times \pi(\boldsymbol{\beta})$$

Posterior \propto Likelihood \times Prior.

... and that's it! (essentially!)

- No replications e.g. no replicate plane searches
- Given modeling assumptions & prior, process is automatic
- ullet Keep adding data, and updating knowledge, as data becomes available... knowledge will concentrate around true eta

Bayesian Learning

- Or equivalently: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$
- For uniform priors, this reduces to maximum likelihood estimation!

$$P(\theta) \propto 1$$
 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)$

Where do priors come from?

Priors come from all data *external* to the current study, i.e. everything else.

'Boiling down' what subjectmatter experts know/think is known as *eliciting* a prior. It's not easy (see right) but here are some simple tips;

- Discuss parameters experts understand e.g. code variables so intercept is mean outcome in people with average covariates, not with age=height=IQ=0
- Avoid leading questions (just as in survey design)
- The 'language' of probability is unfamiliar; help users express their uncertainty

When don't prior matter (much)?

When the data provide a lot more information than the prior, this happens; (recall the stained glass color-scheme)

These priors (& many more) are dominated by the likelihood, and they give very similar posteriors — i.e. everyone agrees. (Phew!)

When don't prior matter (much)?

Back to having very informative data - now zoomed in;

The likelihood alone (yellow) gives the classic 95% confidence interval. But, to a good approximation, it goes from 2.5% to 97.5% points of Bayesian posterior (red) – a 95% credible interval.

- With large samples*, sane frequentist confidence intervals and sane Bayesian credible intervals are essentially identical
- With large samples*, it's actually *okay* to give Bayesian interpretations to 95% CIs, i.e. to say we have \approx 95% posterior belief that the true β lies within that range

^{*} and some regularity conditions

Summary

Bayesian statistics:

- Is useful in many settings, and you should know about it
- Is often not very different in practice from frequentist statistics; it is often helpful to think about analyses from both Bayesian and non-Bayesian points of view
- Is not reserved for hard-core mathematicians, or computer scientists, or philosophers. If you find it helpful, use it.