REGULATION BY POST-TRANSLATIONAL MODIFICATION

Dr. Zhiyi Wei SUSTC

Post-translational modification

Addition of chemical groups

- Phosphorylation
- Methylation
- Acetylation
- Nitrosylation
- Hydroxylation

• . . .

Amino acid specificity in modification

Methylation

Regulation by methylation

- A common modification of proteins in eukaryotic nuclei
 - Histone
 - Heterogeneous nuclear ribonucleoprotein (hnRNP)
 - Arginine methylation
- Methyltransferase ("writer")
 - Using S-adenosylmethionine as the methyl donor
- Demethylase ("eraser")
- Effects by methylation on Lys/Arg
 - No changes on the overall charge
 - Altering the steric interactions the group can make
 - Eliminating possible hydrogen-bond donors
- Methylation on Lys/Arg creating a new and highly specific protein binding site and altering the protein-protein interaction

Methyl-lysine readers

N-acetylation

Acetyltransferases

- Using an acetyl group from acetyl-CoA
- Amino terminus of protein backbone can be modified by sequence specific N-acetyltransferases
- Lysine sidechain of histone can be modified by other specific acetyltransferases

Deacetylase

Regulation by N-acetylation

- Histone methylation may induce either an active or an inactive state of chromatin
 - Depending on the position and the nature of the methyl group
- Histone acetylation is always associated with an active state of chromatin
 - Promoted by chromatin-remodeling enzymes recruited to the DNA by proteins containing bromodomains that specifically recognize acetylated lysines
- Unlike methylation, acetylation changes the charge on Lys
- Similar with methylation, acetylation on Lys creating a unique chemical group for protein-protein interaction

Acetyl-lysine readers

Histone is highly modified by methylation and acetylation

Histone modification and epigenetics

Cell Signaling Technology

Epigenetics Regulation & Associated Product Offerings

Addition of complex molecules

- Proteins can be modified by other large biomolecules
- By glycan
 - Glycosylation
- By lipid (lipidation)
 - Myristoylation
 - Palmitoylation
 - Prenylation
 - •
- By nucleotide
 - ADP-ribosylation
 - ...

Glycosylation

Glycosylation

- Attaching carbohydrate chains (oligosaccharides) to asparagine, serine and threonine residues on protein surfaces
- The most complex and diverse post-translational modification
- N-linked (Asn) or Olinked (Ser/Thr) types

Regulation by glycosylation

- Functions for sugars attached to proteins
 - Providing recognition sites that tag glycoproteins for recognition by other proteins
 - Shielding large areas of the protein surface, therefore providing protection from proteases and nonspecific protein—protein interactions
 - In some cases, oligosaccharides increase the solubility of nascent glycoproteins and prevent their aggregation

- Protecting vulnerable regions of the molecule from proteolysis
- Providing binding sites for bacteria, thereby protecting the mucosal surface from infection

IgA protects mucosal surfaces from pathogens

Oligosaccharide processing in cell

- Almost all secreted and membrane-associated proteins of eukaryotic cells are glycosylated
- Oligosaccharide processing on newly synthesized glycoprotein

Diverse and complex structures of oligosaccharides on glycoproteins

The structure of Glc3Man9GlcNac2

Lipid modification (lipidation)

- Protein targeting by lipid modification
 - Covalent attachment of lipids targets proteins to membranes and other proteins

Four types of lipid modifications

- Classification of lipid modification according to the identity of the attached lipid
 - Myristoylation
 - Palmitoylation
 - Prenylation

Lipid Modifications		Signals	Enzymes
Prenylation	Farnesylation	—CaaX	Farnesyltransferase Geranylgeranyltransferase I
	Geranylgeranylation s Cys	—CC or —CXC (Rab proteins only)	Geranylgeranyltransferase II
N-myristoylation	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MGxxS—	N-myristoyltransferase
Palmitoylation	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Poorly defined	Palmitoylatransferase

- The modification by a glycosylphosphatidylinositol (GPI) anchor
 - Attached to the C-terminus of a protein

GPI anchoring

- A way for protein of glycoprotein transport by vesicle (ER-Golgi)
- GPI modification is reversible
- PLC cleavage is a releasing mechanism

The protein is connected through an amide linkage to a phosphoethanolamine molecule (E-P) that is attached to a core tetrasaccharide composed of three mannose sugars (M) and a single glucosamine sugar (G). The tetrasaccharide is in turn attached to phosphatidylinositol (I)

GTPase and lipid modification

- Some GTPases are reversibly associated with internal membranes of the cell via lipid modification
- Rab GTPases
 - A large family of small GTPases, regulating membrane traffic
 - vesicle formation, movement, tethering, and membrane fusion
 - Directing transport vesicles between the membrane-bounded compartments of the cell

BIO446 Protein Structure and Function

