数学

(1) 〔 数学 I·数学 A

I 注意事項

- 1 解答用紙に、正しく記入・マークされていない場合は、採点できないことがあ ります。特に、解答用紙の解答科目欄にマークされていない場合又は複数の科目 にマークされている場合は、0点となります。
- 2 出題科目、ページ及び選択方法は、下表のとおりです。

出	題	科	目	ページ	選	択	方	法
数	学	•	Ι	4~18	左の2科目	目のうちた	061科目	目を選択し,
数学	· I •	数点	≱ A	19~35	解答しなさい	7.		

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、いずれか2問を選択し、その問題番号の解答欄に解答し なさい。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 不正行為について
- ① 不正行為に対しては厳正に対処します。
- ② 不正行為に見えるような行為が見受けられた場合は、監督者がカードを用い て注意します。
- ③ 不正行為を行った場合は、その時点で受験を取りやめさせ退室させます。
- 7 試験終了後、問題冊子は持ち帰りなさい。

Ⅱ 解答上の注意

解答 トの注意は、裏表紙に記載してあります。この問題冊子を裏返して必ず読み なさい。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 アイウ に - 83 と答えたいとき

ア	• • 0 0 2 3 4 5 6 7 8 9
1	$\Theta \oplus 0 0 2 3 4 5 6 7 \bullet 9$
ゥ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

なお、同一の問題文中にアイウなどが2度以上現れる場合、原則として、2度目以降は、ア、イウのように細字で表記します。

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

例えば、
$$\frac{ xt}{ }$$
 に $-\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として答えなさい。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ と答えるところを、 $\frac{6}{8}$ のように答えてはいけません。

4 小数の形で解答する場合、指定された桁数の一つ下の桁を四捨五入して答えな さい。また、必要に応じて、指定された桁まで**②**にマークしなさい。

例えば, キ. クケ に 2.5 と答えたいときは, 2.50 として答えなさい。

5 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答え なさい。

例えば、 \Box $\sqrt{\Box$ \Box \Box $\sqrt{2}$ と答えるところを、 $2\sqrt{8}$ のように答えてはいけません。

 $\frac{3+2\sqrt{2}}{2}$ と答えるところを、 $\frac{6+4\sqrt{2}}{4}$ や $\frac{6+2\sqrt{8}}{4}$ のように答えてはいけません。

問題	選択方法
第1問	必答
第2問	必答
第3問	
第4問	いずれか2問を選択し、
	解答しなさい。
第5問	

数学 I ・数学 A (注) この科目には、選択問題があります。(19ページ参照。)

第1問 (必答問題) (配点 30)

[1] a を実数とする。x の関数

$$f(x) = (1+2a)(1-x)+(2-a)x$$

を考える。

$$f(x) = \left(-\boxed{7} a + \boxed{4}\right)x + 2a + 1$$

である。

(1) $0 \le x \le 1$ における f(x) の最小値は,

$$a \le \frac{1}{7}$$
のとき、 \dot{D} $a + \mathbf{I}$ であり、 $a > \frac{1}{7}$ のとき、 \dot{A} $a + \mathbf{D}$ である。

(2) $0 \le x \le 1$ において、常に $f(x) \ge \frac{2(a+2)}{3}$ となる a の値の範囲は、

$$\begin{array}{|c|c|c|}
\hline + \\
\hline 2
\end{array} \le a \le \begin{array}{|c|c|c|}
\hline \tau \\
\hline \hline 3
\end{array}$$
 \tag{c} \tag{5}

(数学 I・数学A第1問は次ページに続く。)

(1) A を有理数全体の集合、 B を無理数全体の集合とする。空集合を \varnothing と表
す。
次の(i)~(iv)が真の命題になるように, サー~ セーに当てはまる
ものを,下の $oldsymbol{0}$ 〜 $oldsymbol{5}$ のうちから一つずつ選べ。ただし,同じものを繰り返
し選んでもよい。
(i) A \forall {0} (ii) $\sqrt{28}$ \triangleright B
(iii) $A = \{0\}$ \nearrow A (iv) $\varnothing = A$ \biguplus B
0 ∈ 1) ∋ 2 ⊂ 3 ⊃ 4 ∩ 6 ∪
(2) 実数 x に対する条件 p, q, r を次のように定める。
(2) $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
p:x は無理数
$q: x + \sqrt{28}$ は有理数
$r:\sqrt{28}x$ は有理数
, , , , , , , , , , , , , , , , , , , ,
次の「ソー」,
つずつ選べ。ただし,同じものを繰り返し選んでもよい。
$p \bowtie q $
p は r であるための $oldsymbol{9}$ 。
② 必要十分条件である
① 必要条件であるが,十分条件でない

〔2〕 次の問いに答えよ。必要ならば、 $\sqrt{7}$ が無理数であることを用いてよい。

② 十分条件であるが、必要条件でない

③ 必要条件でも十分条件でもない

(数学 I・数学 A 第 1 間は次ページに続く。)

[3] a を 1以上の定数とし、x についての連立不等式

$$1 \le a \le \boxed{3}$$

である。

(下書き用紙)

数学I・数学Aの試験問題は次に続く。

第2問 (必答問題) (配点 30)

[1] \triangle ABC の辺の長さと角の大きさを測ったところ、AB = $7\sqrt{3}$ および \angle ACB = 60° であった。したがって、 \triangle ABC の外接円 O の半径は $\red{7}$ である。

外接円 Oの、点 Cを含む弧 AB上で点 Pを動かす。

- (1) 2 PA = 3 PB となるのは $\text{PA} = \boxed{ 1 }$ のときである。
- (3) $\sin \angle PBA$ の値が最大となるのは PA = 4 のときであり、このとき $\triangle PAB$ の面積は 2 である。 2 の数学 $\mathbf{I} \cdot \mathbf{M}$ の数学 \mathbf{A} 第2 間は次ページに続く。)

[2] 次の4つの散布図は、2003年から2012年までの120か月の東京の月別データをまとめたものである。それぞれ、1日の最高気温の月平均(以下、平均最高気温)、1日あたり平均降水量、平均湿度、最高気温25℃以上の日数の割合を横軸にとり、各世帯の1日あたりアイスクリーム平均購入額(以下、購入額)を縦軸としてある。

出典:総務省統計局(2013)『家計調査年報』,『過去の気象データ』(気象庁 Web ページ)などにより作成

次の ス , セ に当てはまるものを,下の**②~④**のうちから一つずつ選べ。ただし、解答の順序は問わない。

これらの散布図から読み取れることとして正しいものは, **ス**と**セ**である。

- 平均最高気温が高くなるほど購入額は増加する傾向がある。
- ① 1日あたり平均降水量が多くなるほど購入額は増加する傾向がある。
- ② 平均湿度が高くなるほど購入額の散らばりは小さくなる傾向がある。
- ③ 25 ℃以上の日数の割合が80%未満の月は、購入額が30円を超えていない。
- **4** この中で正の相関があるのは、平均湿度と購入額の間のみである。

(数学 I・数学 A 第 2 問は次ページに続く。)

- [3] 世界4都市(東京, O市, N市, M市)の2013年の365日の各日の最高気温のデータについて考える。
 - (1) 次のヒストグラムは、東京、N市、M市のデータをまとめたもので、 この3都市の箱ひげ図は下のa, b, cのいずれかである。

出典:『過去の気象データ』(気象庁 Web ページ)などにより作成

次の ソ に当てはまるものを、下の 0~6のうちから一つ選べ。

都市名と箱ひげ図の組合せとして正しいものは, ソ である。

- **◎** 東京一a, N市一b, M市一c
- ① 東京一a, N市一c, M市一b
- ② 東京一b, N市─a, M市一c
- ③ 東京一b, N市一c, M市一a
- **④** 東京一c, N市一a, M市一b
- **⑤** 東京一c, N市一b, M市−a

(数学 I・数学 A 第 2 問は次ページに続く。)

(2) 次の3つの散布図は、東京、O市、N市、M市の2013年の365日の各日の最高気温のデータをまとめたものである。それぞれ、O市、N市、M市の最高気温を縦軸にとり、東京の最高気温を横軸にとってある。

出典:『過去の気象データ』(気象庁 Web ページ) などにより作成

次の 夕 , チ に当てはまるものを,下の**②~④**のうちから一 つずつ選べ。ただし、解答の順序は問わない。

これらの散布図から読み取れることとして正しいものは, 夕 と である。

- \bigcirc 東京とN市、東京とM市の最高気温の間にはそれぞれ正の相関がある。
- ① 東京とN市の最高気温の間には正の相関、東京とM市の最高気温の間には負の相関がある。
- ② 東京とN市の最高気温の間には負の相関、東京とM市の最高気温の間には正の相関がある。
- ③ 東京と O 市の最高気温の間の相関の方が、東京と N 市の最高気温の間の相関より強い。
- ④ 東京とO市の最高気温の間の相関の方が、東京とN市の最高気温の間の相関より弱い。

(数学 I・数学 A 第 2 問は次ページに続く。)

(3) 次の「ツ」, 「テ」, 「ト」に当てはまるものを, 下の0~9の うちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。

N市では温度の単位として摂氏(°C)のほかに華氏(°F)も使われてい る。華氏($^{\circ}$ F)での温度は、摂氏($^{\circ}$ C)での温度を $\frac{9}{5}$ 倍し、32を加えると 得られる。例えば、摂氏 $10 \,^{\circ}$ C は、 $\frac{9}{5}$ 倍し $32 \,^{\circ}$ を加えることで華氏 $50 \,^{\circ}$ F となる。

したがって、N市の最高気温について、摂氏での分散をX、華氏での分 散をYとすると、 $\frac{Y}{V}$ は $\boxed{ }$ $\boxed{ }$ になる。

東京(摂氏)とN市(摂氏)の共分散をZ,東京(摂氏)とN市(華氏)の共 分散をWとすると、 $\frac{W}{7}$ は $\boxed{ }$ になる(ただし、共分散は2つの変量 のそれぞれの偏差の積の平均値)。

東京(摂氏)とN市(摂氏)の相関係数を U, 東京(摂氏)とN市(華氏)の 相関係数を V とすると, $\frac{V}{U}$ は $\boxed{$ ト になる。

$$\bigcirc 0 - \frac{81}{25}$$
 $\bigcirc 0 - \frac{9}{5}$ $\bigcirc 0 - 1$ $\bigcirc 0 - \frac{5}{9}$ $\bigcirc 0 - \frac{25}{81}$

$$0 - \frac{9}{5}$$

$$9 - \frac{5}{9}$$

$$\Theta - \frac{25}{81}$$

6
$$\frac{25}{81}$$
 6 $\frac{5}{9}$ **7** 1 **8** $\frac{9}{5}$ **9** $\frac{81}{25}$

6
$$\frac{5}{9}$$

$$8 \frac{9}{5}$$

9
$$\frac{81}{25}$$

(下書き用紙)

数学I・数学Aの試験問題は次に続く。

数学 I · 数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

赤球 4 個,青球 3 個,白球 5 個,合計 12 個の球がある。これら 12 個の球を袋の中に入れ,この袋から A さんがまず 1 個取り出し,その球をもとに戻さずに続いて B さんが 1 個取り出す。

- (1) A さんと B さんが取り出した 2 個の球のなかに、赤球か青球が少なくとも 1 個含まれている確率は フィ である。
- (2) A さんが赤球を取り出し、かつ B さんが白球を取り出す確率は カキ である。これより、A さんが取り出した球が赤球であったとき、B さんが取り出した球が白球である条件付き確率は ク である。

(数学 I・数学 A 第 3 問は次ページに続く。)

(3) A さんは 1 球取り出したのち、その色を見ずにポケットの中にしまった。B さんが取り出した球が白球であることがわかったとき、A さんが取り出した球も白球であった条件付き確率を求めたい。

A さんが赤球を取り出し、かつBさんが白球を取り出す確率は カキ であり、A さんが青球を取り出し、かつBさんが白球を取り出す確率は サ である。同様に、A さんが白球を取り出し、かつBさんが白球を取り出す確率を求めることができ、これらの事象は互いに排反であるから、B さんが白球を取り出す確率は セ である。

数学 I・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

(1) 不定方程式

$$92 x + 197 y = 1$$

をみたす整数x, y の組の中で, x の絶対値が最小のものは

$$x = \boxed{ \mathcal{P} \mathcal{T} }, \quad y = \boxed{ \dot{\mathcal{P}} \mathcal{I} }$$

である。不定方程式

$$92 x + 197 y = 10$$

をみたす整数x, y の組の中で, x の絶対値が最小のものは

である。

(数学 I・数学A第4問は次ページに続く。)

(2) 2 進法で $11011_{(2)}$ と表される数を 4 進法で表すと コサシ $_{(4)}$ である。

次の**②**~**⑤**の 6 進法の小数のうち、10 進法で表すと有限小数として表せるのは、 ス , セ , ソ である。ただし、解答の順序は問わない。

- **0** 0. 3₍₆₎
- $0.4_{(6)}$
- **2** 0. 33₍₆₎
- **3** 0. 43₍₆₎
- **4** 0.033₍₆₎
- **6** 0.043₍₆₎

数学 I・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 5 問 (選択問題) (配点 20)

四角形 ABCD において、AB=4、BC=2、DA=DC であり、4 つの頂点 A、B、C、D は同一円周上にある。対角線 AC と対角線 BD の交点を E、線分 AD を 2:3 の比に内分する点を E、直線 E と直線 E の交点を E とする。

次の \boxed{P} には、下の $\boxed{0}$ ~ $\boxed{0}$ のうちから当てはまるものを一つ選べ。

 \angle ABC の大きさが変化するとき四角形 ABCD の外接円の大きさも変化することに注意すると、 \angle ABC の大きさがいくらであっても、 \angle DAC と大きさが等しい角は、 \angle DCA と \angle DBC と \red である。

- **0** ∠ABD
- ① ∠ACB
- **②** ∠ADB

- **3** ∠BCG
- **4** ∠BEG

(数学 I・数学 A 第 5 間は次ページに続く。)

(1) 直線 AB が点 G を通る場合について考える。

このとき、 $\triangle AGD$ の辺 AG 上に点 B があるので、BG = **カ** である。 また、直線 AB と直線 DC が点 G で交わり、4 点 A,B,C,D は同一円周 上にあるので、DC = **キ** $\sqrt{$ **ク** である。

(2) 四角形 ABCD の外接円の直径が最小となる場合について考える。

このとき、四角形 ABCD の外接円の直径は ケ であり

また、直線 FE と直線 AB の交点を H とするとき、 $\frac{GC}{DG} = \frac{\Box}{\Box}$ の関係

に着目して AH を求めると、 AH = 2 である。