SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Electronics Academic Year: 2022 Duration: 3 hours

Engineering Date: 10.01.2023

Time: 10:30 am to 01:30 pm

Subject: Power Electronics (Semester V)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	Describe the two-transistor analogy of the silicon controlled rectifier (SCR) with	[05]
	a neat sketch or diagram.	
	OR	
	i. Draw the structure, symbol & V-I characteristics of TRIAC (no explanation).	[03]
	ii. What is use of free-wheeling diode in single phase controlled converters?	[02]
Q1 (b)	i. Describe the R-C firing circuit for thyristor with a neat sketch or diagram.	[05]
	ii. What are the different methods of turning on thyristors.	
		[05]
Q2 (a)	i. Explain Class A commutation circuit for thyristor with neat sketch or diagram.	[06]
	ii. Discuss any one type of protection method for thyristors.	[04]
	OR	50.53
	i. Explain construction & structure of IGBT with neat ketch or diagram.	[05]
00 (1)	ii. Systematically compare DIAC & TRIAC on any five points.	[05]
Q2 (b)	Explain the operation of a controlled half-wave rectifier with resistive (R) load.	[05]
Q3 (a)	i. Sketch neat circuit diagram of a full-wave fully controlled rectifier in a bridge	[02]
	configuration with R-L load (no explanation or description required).	
	ii. Sketch neat circuit diagram of a full-wave half controlled rectifier in a bridge	[03]
	configuration with R-L load (no explanation or description required).	
	OR	50.53
00.4	Explain the Class E commutation circuit for thyristor with a neat sketch.	[05]
Q3 (b)	i. With neat sketch or diagram explain principle of series inverters.	[05]
	ii. With neat sketch or diagram explain principle of parallel inverters.	[05]
	OR	[05]
	i. Write a short note on PWM inverters.	[05]
04 (a)	ii. Explain voltage source inverter with resistive load.	[05]
Q4 (a)	i. What is basic principle of step-up DC to DC converter?	[04]
	ii. What is basic principle of step-down DC to DC converter? OR	[04]
	UN	

******* 1 *******

	i. Explain voltage commutated DC to DC converter with neat sketch or diagram. ii. Explain load commutated DC to DC converter with neat sketch or diagram.	[04] [04]
Q4 (b)	Describe the operation of 4 quadrant chopper with neat sketch or diagram.	[07]
Q5 (a)	 Solve any two. i. For a type-A chopper dc source voltage =230V, load resistance =10Ω. Take a voltage drop of 2V across chopper when it is on. For a duty cycle of 0.4, calculate: Average and rms values of output voltage and Chopper efficiency ii. Describe Class B chopper with neat sketch or diagram. iii. Derive the condition for average voltage and rms voltage for half controlled rectifier circuit 	[05] [05] [05] [05]
Q5 (b)	Describe the operation of a single phase mid-point step down cycloconverter with a neat sketch or diagram.	[05]

******* 2 *******

******** 3 *******