CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 13

The DEPT Experiment

Interpreting ¹³C NMR spectra:

- Very useful to know which signals belong to quaternary carbons, CH, CH2, and CH3
- J-modulated spin-echo experiment and refocused INEPT are useful but don't provide all the necessary information
- The DEPT experiment (Distorsionless Enhancement by Polarization Transfer) is now one of the most important techniques available for interpreting 1D ¹³C NMR spectra

Pulse Sequence

¹H channel:

$$90_{x'}^{\circ} - \tau - 180_{x'}^{\circ} - \tau - \Theta_{y'} - \tau - BB$$
 decoupling ¹³C channel: $90_{x'}^{\circ} - \tau - 180^{\circ} - \tau - FID$ (t_2)

- τ is 1/2JCH with JCH = 140 Hz
- is chosen to be $\Theta = 45^{\circ}$, $\Theta = 90^{\circ}$, $\Theta = 135^{\circ}$
- Vector diagrams are not adequate to explain the effect of this pulse and to understand this pulse sequence.
- The following curves explain the effect of Θ on the intensities of signals

Figure 8-23. DEPT experiment. Curves calculated from Equation (8-6) for the intensities of CH, CH₂ and CH₃ signals as functions of the pulse angle $\Theta_{v'}$; CH $\cdots \cdots$, CH₂: ————, CH₃: ————.

- CH sub-spectrum: $\Theta 2 = 90^{\circ}$ or DEPT (90)
- CH2 sub-spectrum: DEPT(45) DEPT(135)
- CH3 sub-spectrum: DEPT(45) + DEPT(135) 0.707DEPT(90)
- To compare absolute intensities the DEPT(90) must be collected with twice as many scans as for the other two DEPT experiments

Practically, it is sufficient to carry out two experiments, DEPT(90) and DEPT(135)

Figure 8-24.

DEPT(135) spectrum of the neuraminic acid derivative 1, recorded using the pulse sequence given in the text, with $\Theta_{y'}=135^\circ$. The signals of the five CH groups, identified with the help of the DEPT(90) spectrum ($\Theta_{y'}=90^\circ$), are marked by arrows. The other three positive signals arise from CH₃ groups, and the two negative signals from CH₂ groups.

(Experimental conditions:

20 mg of the compound in 0.5 ml D_2O ; 5 mm sample tube; 32 K data points; 300 FIDs; $\tau = 3.57$ ms; total time approx. 20 min.)

Table 8-2.Partial assignment of the ¹³C NMR signals of **1** from the results of the DEPT experiment.

δ	CH ₃	CH ₂	CH	С	Assignment
23.2	×				CH ₃ (Ac)
40.31		×			C-3
52.12	×				•
52.83			×		C-5
54.65	×				
64.50		\times			C-9
67.51			×		
69.18			×		
70.98			×		
71.67			×		
100.32				×	C-2
171.50a)				×	
175.93a)				×	

a) Values from the complete spectrum (Fig. 8-12 A).