

IFSP – SÃO JOÃO DA BOA VISTA CIÊNCIA DA COMPUTAÇÃO

Sistemas Operacionais

SEMANA 14

Prof.: Ederson Borges

Tópicos

- Entrada e Saída
 - Hardware de entrada/saída
 - Software de entrada/saída
 - Atividades

- Hardware de Entrada e Saída
 - Arquitetura de um computador convencional

- Hardware de Entrada e Saída
 - Arquitetura de um computador convencional
 - Dispositivos de entrada e saída
 - Também chamados de Periféricos
 - Permitem a interação do computador com o usuário
 - Entrada
 - » Mouse, teclado, joystick
 - Saída
 - » Tela gráfica, impressora, caixa de som
 - Entrada e Saída
 - » Disco rígido, Placas de Rede, Bluetooth

- Hardware de Entrada e Saída
 - Componentes de um dispositivo
 - Conceitualmente a entrada de dados envolve:
 - Sensor: captação de dados e transformação em sinais elétricos analógicos
 - Conversor analógico-digital: conversão do sinal analógico para uma informação digital (sequência de bits)
 - Toda informação digital é disponibilizada para o computador através de um buffer
 - O processador acessa o buffer através de um controlador de entrada

- Hardware de Entrada e Saída
 - Componentes de um dispositivo
 - A saída de dados faz um processo contrário:
 - O processador envia dados a um controlador de saída
 - Os dados são armazenados em um buffer
 - Os bits no buffer são convertidos em sinal elétrico analógico
 - » Conversor digital-analógico
 - Sinal é aplicado sobre um atuador
 - » Exemplo:
 - Cabeça de impressão
 - Motor de passos
 - Alto-falante...

- Hardware de Entrada e Saída
 - Componentes de um dispositivo
 - Periféricos de entrada/saída
 - Leitura do disco rígido é uma rotina de entrada de dados para o processador
 - Ativar o motor que gira o disco e posiciona sobre o local de leitura é um processo de saída

- Hardware de Entrada e Saída
 - Componentes de um dispositivo
 - Exemplo de placa de áudio

8

- Hardware de Entrada e Saída
 - Componentes Complexos
 - Possuem um processador ou microcontrolador interno
 - Firmware
 - » Software embarcado no componente que é independente do Sistema Operacional
 - » Criado pelo fabricante do periférico
 - » Contém APENAS instruções necessárias para operar ações específicas do periférico

- Hardware de Entrada e Saída
 - Acesso aos dados
 - Barramentos
 - Padrão Von Neumann
 - Antigamente se resumiam a ligações de fios
 - Atualmente s\(\tilde{a}\) estruturas de hardware complexas com circuitos espec\(\tilde{f}\)icos
 - » Auxiliam no controle do periférico
 - » Diferentes velocidades e troca de dados

- Hardware de Entrada e Saída
 - Acesso aos dados
 - Atualmente em desktops temos dois controladores de hardware
 - North bridge
 - South bridge
 - Fazem parte do chipset da placa mãe

- Hardware de Entrada e Saída
 - Acesso aos dados
 - North bridge
 - Conectado ao processador
 - Acesso a memória RAM e dispositivos de alta velocidade
 - » AGP
 - » PCI-Express
 - South bridge
 - Barramentos e portas de baixa e média velocidade
 - » Interfaces seriais e paralelas
 - » Barramentos dedicados PCI, USB e SATA
 - Comunicação com o processador pela North bridge

Entrada e Saída

Hardware de Entrada e Saída

Figura 19.3: Arquitetura típica de um PC atual.

- Hardware de Entrada e Saída
 - Velocidade de transferência de Dados

Dispositivo	velocidade
Teclado	10 B/s
Mouse ótico	100 B/s
Interface infravermelho (IrDA-SIR)	14 KB/s
Interface paralela padrão	125 KB/s
Interface de áudio digital S/PDIF	384 KB/s
Interface de rede Fast Ethernet	11.6 MB/s
Pendrive ou disco USB 2.0	60 MB/s
Interface de rede Gigabit Ethernet	116 MB/s
Disco rígido SATA 2	300 MB/s
Interface gráfica high-end	4.2 GB/s

- Hardware de Entrada e Saída
 - Interface de acesso
 - Para o SO é a parte mais relevante dos periféricos
 - Como fazer para enviar/receber dados do periférico
 - Acesso por um conjunto de registradores através do barramento
 - Portas de entrada/saída

- Hardware de Entrada e Saída
 - Portas de entrada/saída
 - Portas de entrada (data-in ports)
 - Portas de saída (data-out ports)
 - Portas de status (status ports)
 - Portas de controle (control ports)

- Hardware de Entrada e Saída
 - Portas de entrada/saída
 - Portas de entrada (data-in ports)
 - Utilizadas para o processador receber dados
 - Periféricos disponibilizam esses dados
 - » Escrita pelo dispositivo
 - » Leitura pelo processador

- Hardware de Entrada e Saída
 - Portas de entrada/saída
 - Portas de saída (data-out ports)
 - Utilizadas pelo processador enviar dados
 - Periféricos utilizam esses dados
 - » Escrita pelo processador
 - » Leitura pelo dispositivo

- Hardware de Entrada e Saída
 - Portas de entrada/saída
 - Portas de status (status ports)
 - Utilizadas pelo processador consultar estado
 - Também utilizada para verificar se operação solicitada ocorreu sem erro
 - » Escrita pelo dispositivo
 - » Leitura pelo processador

- Hardware de Entrada e Saída
 - Portas de entrada/saída
 - Portas de controle (control ports)
 - Processador envia comandos ao dispositivo
 - Modificação de parâmetros de configuração
 - » Escrita pelo processador
 - » Leitura pelo dispositivo

- Hardware de Entrada e Saída
 - Portas de entrada/saída

Figura 19.4: Portas de interface de um dispositivo de entrada/saída.

- Hardware de Entrada e Saída
 - Endereçamento de portas
 - Forma de acesso de um dispositivo varia de acordo com a arquitetura do computador
 - Alguns sistemas utilizam o conceito de entrada/saída mapeada em portas
 - Port-mapped I/O
 - Existem instruções específicas no processador para operações de entrada/saída
 - » Intel:
 - "IN reg port" -> ler porta "port" e armazenar em "reg"
 - "OUT reg port" -> escrever na porta "port" valor de "reg"

- Hardware de Entrada e Saída
 - Endereçamento de portas
 - Uso de espaço de endereços de entrada/saída independente de memória principal
 - E/S 001Fh é diferente do endereço de memória 001Fh

Dispositivo	Endereços das portas	
teclado e mouse PS/2	0060h e 0064h	
barramento IDE primário	0170h a 0177h	
barramento IDE secundário	01F0h a 01F7h	
relógio de tempo real	0070h e 0071h	
interface serial COM1	02F8h a 02FFh	
interface serial COM2	03F8h a 03FFh	
interface paralela LPT1	0378h a 037Fh	

- Hardware de Entrada e Saída
 - Interrupções
 - Acessos de processador -> controlador é conveniente utilizando as portas
 - Quando iniciadas pelo processador
 - Inviável quando é o caminho contrário
 - Controlador -> processador
 - Processador pode demorar muito tempo para ler as portas de um dispositivo que queira comunicar

- Hardware de Entrada e Saída
 - Interrupções
 - Irq
 - Interrupt Request
 - Já vimos isso nas primeiras aulas
 - Existe uma Requisição de Interrupção por parte do controlador de dispositivo

- Hardware de Entrada e Saída
 - Interrupções
 - Irq

Dispositivo	Interrupção
teclado	1
interface serial COM2	3
interface serial COM1	4
interface paralela LPT1	7
relógio de tempo real	8
mouse PS/2	12
barramento ATA primário	14
barramento ATA secundário	15

- Hardware de Entrada e Saída
 - Interrupções
 - Ao receber a requisição
 - Processador suspende o fluxo de instruções
 - Desvia a execução para endereço pré-definido
 - » Rotina de tratamento de interrupção (interrupt handler)
 - Trata a requisição de interrupção
 - » Executa as ações para acessar o controlador e tratar o evento
 - Finalizado o tratamento o processador volta ao ponto onde havia parado

- Hardware de Entrada e Saída
 - Interrupções

Figura 19.6: Roteiro típico de um tratamento de interrupção

- Hardware de Entrada e Saída
 - Interrupções
 - Além das requisições existem as exceções
 - Eventos com instruções inválidas
 - Divisão por zero
 - Erros de software

- Hardware de Entrada e Saída
 - Interrupções
 - Atualmente, uma IRq não é transmitida direto ao processador
 - Controlador de interrupções programável (PIC)
 - » Está no chipset do computador
 - Linhas de interrupção são conectadas ao PIC
 - PIC é conectado ao processador

- Software de Entrada e Saída
 - A versão 4.3 do kernel do Linux possui 60% de código de *drivers* para interação com os dispositivos de entrada/saída
 - São 20 milhões de linhas no total
 - 12 milhões são para dispositivos de entrada/saída
 - São diversos dispositivos com diferentes comportamentos

- Software de Entrada e Saída
 - Arquitetura de software de entrada/saída
 - Existem diferentes formas de arquitetura
 - Interação direta com o hardware
 - » Acesso às portas de entrada/saída, interrupções e operações de acesso direto a memória
 - Interfaces abstratas
 - Interfaces genéricas
 - » Essas duas últimas disponíveis às aplicações

- Software de Entrada e Saída
 - Arquitetura de software de entrada/saída

Figura 20.1: Estrutura em camadas do software de entrada/saída.

- Software de Entrada e Saída
 - Arquitetura de software de entrada/saída
 - Existem diferentes camadas no núcleo do SO
 - 1ª CAMADA: Drivers
 - » Códigos que interagem diretamente com o controlador
 - » Exemplo: cada placa de rede possui seu próprio driver
 - 2ª CAMADA: Acima dos drivers
 - » Generic Device Interface
 - » Visão genérica de dispositivos com mesmo fim
 - » Generaliza o acesso ao dispositivo, independente de fabricante/driver
 - 3ª CAMADA:
 - » Abstrações complexas
 - Sistemas de arquivos, protocolos de rede
 - TOPO:
 - » Chamadas de sistema

- Software de Entrada e Saída
 - Classes de dispositivos
 - Dispositivos são agrupados em classes ou famílias
 - Facilitam para a construção de aplicações (também facilita para o núcleo do SO)
 - Exemplos:
 - » Discos rígidos, SSDs, DVD-ROMS tem um propósito único
 - Armazenar dados
 - » Ethernet e Wifi: possuem características distintas, mas o propósito é o mesmo, comunicação via rede

- Software de Entrada e Saída
 - Drivers de dispositivos
 - Componente do sistema operacional responsável por interagir com um controlador de dispositivo
 - Cada dispositivo possui seu próprio driver
 - O que possui o *driver*?
 - Conjunto de instruções (funções) ativadas pelo núcleo do sistema operacional

- Software de Entrada e Saída
 - Drivers de dispositivos
 - Tipos de funções
 - Funções de entrada/saída
 - » Transferência de dados
 - Funções de gerência
 - » Gestão do dispositivo e do driver.
 - » Coordena inicio e fim do driver e do dispositivo
 - » Configura o dispositivo
 - » Tratamento de erros
 - Funções de tratamento de eventos
 - » IRq

- Software de Entrada e Saída
 - Drivers de dispositivos
 - Um driver também mantém estruturas de dados sobre o dispositivo e das operações em andamento
 - Executam dentro do núcleo do SO
 - Modo privilegiado
 - Pode apresentar problemas de segurança

- Software de Entrada e Saída
 - Estratégias de interação
 - Cada *driver* deve interagir com seu dispositivo
 - Comunicação é feita pelo conjunto de portas de seu controlador
 - Existem 3 formas de interação
 - Controlada por programa
 - Controlada por eventos
 - Acesso direto à memória

- Software de Entrada e Saída
 - Controlado por programa
 - Também conhecida como varredura
 - PIO programmed I/O
 - Polling
 - Driver irá solicitar uma operação ao controlador
 - Utiliza portas control e data-out (data-in)
 - Aguarda a conclusão da operação solicitada
 - » Monitora os bits da porta de status

- Software de Entrada e Saída
 - Controlado por programa
 - Interação entre processador e controlador

Figura 20.3: Entrada/saída controlada por programa.

- Software de Entrada e Saída
 - Controlado por eventos
 - Forma eficiente de interação
 - Faz requisição da operação
 - Suspende o fluxo de execução
 - Processador pode executar outras tarefas
 - Ao finalizar a operação é feita a Requisição de Interrupção

- Software de Entrada e Saída
 - Controlado por eventos

Figura 20.4: Entrada/saída controlada por eventos (interrupções).

- Software de Entrada e Saída
 - Acesso direto à memória
 - Dispositivos periféricos são, normalmente, mais lentos que o processador
 - Utilizar o processador para intermediar ações com dispositivos de entrada/saída pode não ser o mais eficiente método de tratamento das operações
 - Carregar dado no registrador do processador que já está em memória e só depois enviar para o dispositivo
 - Computadores atuais oferece o acesso direto à memória

- Software de Entrada e Saída
 - Acesso direto à memória
 - Transferência direta entre a memória principal e o controlador de entrada/saída

Figura 20.5: Funcionamento do acesso direto à memória.

- Atividades
 - Quais os componentes que normalmente estão presentes em dispositivos de entrada/saída para comunicação?
 - Cite exemplos de dispositivos:
 - Apenas entrada
 - Apenas saída
 - Entrada/Saída
 - Explique de modo simplificado como funciona a estratégia de interação controlada por programa.