Assignment 1

Exercise 1

Part 1

Task

Draw the structure of the project's packages and classes. You have to: (i) decide the level of abstraction you want to use in this depiction, (ii) use natural language to explain your decision, and (iii) describe what you understood from this depiction of the system

Diagram of the project's packages and classes

Figure 1: pacman-project-structure

Why was this level of abstraction used?

Description of the system based on the diagram above

Part 2

Task

Draw a call graph, starting from what you deem the most prominent entry point. You have to: (i) decide how many levels you want to have in the call graph, (ii) use natural language to explain your decision, and (iii) explain what you have understood from this call graph about the dynamic behavior of the system. Hint: this project may have several entry points; those contained in an example or test folder/class are hardly the most prominent ones

Call graph diagram

Figure 2: pacman-project-structure

Why was this level of abstraction used?

Description of the dynamic behaviour of the system based on the diagram above

The call graph above shows the methods called to create a PacMan character and its 2D map.

As seen in the diagram, the Main function first calls launch. As the name suggests, the method "launches" the game in its initial setup. The makeGame() method is a crucial component to make a new level(level design and map boundaries) in the game.

At the same time, we step into creating a single Player game inside the created level. This in turn call the createPacMan() method creates new PacMan character.

Exercise 2 - A Checkers Game - Design

Part 1

Task

Following the Responsibility Driven Design, start from the game's requirements and rules and derive classes, responsibilities, and collaborations (use CRC cards). Describe each step you make and store the final cards in your answers

CRC Cards

Description of the steps which lead to these CRC cards

Initially, we identified the different classes by going through the requirements of the game and by looking at the rules that we should implement. We separated classes that we knew would turn out to be essential from classes which we were uncertain of whether we should implement them. We then, added responsibilities to each class as we thought would be adequate. We stumbled upon the problem, that our "Board" class had too many responsibilities. So, to avoid a confusing

Figure 3: checkers crc cards

project structure, we tried to divide the responsibilities onto as many classes as was logical. Lastly, we identified the collaborators of the subclasses and added arrows to facilitate getting a quick and easy overview of the class structure of our project just by getting a glance at the CRC cards. This would help with the further implementation of our classes into the actual code itself.

Part 2

Task

Following the Responsibility Driven Design, describe the main classes you designed to be your project in terms of responsibilities and collaborations

Description of the main classes

Part 3

Task

Why do you consider the other classes as less important? Following the Responsibility Driven De- sign, reflect if some of those non-main classes have similar/little responsibility and could be changed, merged, or removed

Part 4

Task

Draw the class diagram of the aforementioned main elements of your game (do not forget to use elements such as parametrized classes or association constrains, if necessary)

Class diagram

Part 5

Task

Draw the sequence diagram to describe how the main elements of your game interact (consider asynchrony and constraints, if necessary)

Sequence diagram