УТВЕРЖДАЮ Зам. директора по УР

______ М.В. Пантелеенко

	«»20г.
	ИОННЫЕ МАТЕРИАЛЫ х вопросов и практических заданий)
Учебный предмет <u>Математическое модел</u> Специальность <u>2- 40 01 01 «Программн</u>	ирование ное обеспечение информационных технологий»
Форма получения образования	дневная
Курс	
Группа <u>ПЗТ-34, 35, 36</u>	
Преподаватель	(подпись) А.А. Кривичанина (инициалы, фамилия)
	Обсуждены на заседании цикловой комиссии общепрофессиональных и профилирующих предметов специальности 2-40 01 01 «Программное обеспечение информационных технологий» Протокол № от 20 _ г. Председатель комиссии
	Орехво В.Д.

Теоретические вопросы

- 1. Дать понятие модели. Охарактеризовать основные свойства модели, ее существенные признаки.
- **2.** Перечислить виды моделей. Сформулировать принципы моделирования. Описать виды, свойства, принципы построения модели
- **3.** Перечислить этапы компьютерного моделирования. Проанализировать этапы компьютерного моделирования.
- **4.** Раскрыть суть понятия «эксперимент». Охарактеризовать видь экспериментов.
- **5.** Изложить классификационные признаки моделей. Охарактеризовать область применения математического моделирования
- **6.** Раскрыть суть понятия «математическая» модель. Привести классификацию математических моделей.
- **7.** Осветить задачу линейного программирования, рассказать о формах ее записи, способах преобразования.
- **8.** Осветить понятие «целевая функция» и ее оптимизация. Рассказать о области решения системы неравенств.
- **9.** Дать характеристику оптимального и допустимого плана. Осветить задачу линейного программирования.
- **10.** Раскрыть суть понятия «опорная прямая». Описать алгоритм оптимизации целевой функции ЗЛП графическим способом.
 - 11. Охарактеризовать виды областей решений с геометрической точки зрения.
- **12.** Описать опорную прямую и градиент. Объяснить алгоритм оптимизации целевой функции графическим способом
- **13.** Раскрыть суть симплексного метода решения ЗЛП. Дать понятие базисных и свободных переменных, опорного плана.
- 14. Дать понятие симплексной таблицы, разрешающего элемента. Ответ обосновать примером.
 - 15. Описать алгоритм симплексного метода решения ЗЛП.
- **16.** Раскрыть понятие взаимно двойственной задачи, изложить правила составления двойственной задачи.
- **17.** Сформулировать теорему двойственности. Осветить методы решения двойственных задач.
 - 18. Дать экономическую интерпретацию пары двойственных задач.
 - 19. Охарактеризовать математическую модель транспортной задачи.
- 20. Описать транспортные задачи по критерию стоимости и по критерию времени.
- **21.** Рассказать о определении опорного плана методом «северо-западного» угла и методом «минимального элемента»
- 22. Охарактеризовать и описать метод решения транспортной задачи с нарушенным балансом.
 - 23. Изложить алгоритм решения транспортной задачи методом потенциалов.
 - 24. Дать понятие задачи целочисленного линейного программирования.
- 25. Раскрыть сущность динамического программирования. Изложить общие принципы решения задач динамического программирования.
- **26.** Описать метод Гомори решения задач целочисленного линейного программирования.

- 27. Изложить алгоритм решения метода ветвей и границ задач целочисленного линейного программирования.
- **28.** Осветить теорию графов. Высказать общее суждение о задаче «Кёнигсберские мосты». Описать способы задания графа.
- 29. Раскрыть сущность основных понятий теории графов: граф, вершина, ребро, вес ребра, дерево, остов, циклы в графе.
- **30.** Изложить способы представления графов: матрица смежности вершин, матрица смежности дуг ориентированного графа (орграфа), матрица смежности ребер неориентированного графа.
- **31.** Описать алгоритм построения остовного дерева минимального веса. Охарактеризовать алгоритмы Prim и Kruskal.
- **32.** Сформулировать задачу нахождения кратчайшего пути от заданного узла до всех остальных узлов в графе при помощи алгоритма Дейкстры. Изложить алгоритм.
- **33.** Сформулировать задачу нахождения кратчайших цепей между всеми парами узлов с использованием алгоритма Флойда. Изложить алгоритм.
- **34.** Раскрыть понятие об истоке графа, стоке графа, пропускной способности, потоке на сети, разрезе, пропускной способности разреза.
 - 35. Сформулировать математическую модель задачи о максимальном потоке.
- **36.** Раскрыть сущность понятий «сеть», «пропускная способность ребра», «поток по ребру», «разрез», «пропускная способность разреза».
- **37.** Сформулировать теорему Форда-Фалкерсона. Описать алгоритм Форда-Фалкерсона нахождения максимального потока в сети.
- **38.** Охарактеризовать потоки минимальной стоимости. Изложить алгоритм Басакера Гоуэна.
- **39.** Изложить решение задачи нахождения максимального потока в сети минимальной стоимости с использованием алгоритма Басакера –Гоуэна.
- **40.** Раскрыть суть задачи с пропускными способностями узлов и с множеством истоков и стоков.
- **41.** Раскрыть сущность сетевой модели, критического срока, свободного и полного резерва времени. Объяснить понятие «распределение ресурсов».
- **42.** Дать понятие сетевой модели, работы, события, пути, критического пути. Описать алгоритм построения сетевой модели.
- **43.** Охарактеризовать формулы расчета временных параметров сетевого графика. Описать алгоритм составления графика распределения трудовых ресурсов.
- **44.** Описать алгоритм решения задачи для оптимизации комплекса операций по ресурсам.
 - 45. Осветить принципы решения задач дискретного программирования.
- **46.** Изложить задачу коммивояжера. Описать постановку задачи коммивояжера. Математическая модель задачи коммивояжера. Платежная матрица.
- **47.** Описать основные понятия теории игр. Объяснить понятие «конфликтная ситуация», игра.
 - 48. Охарактеризовать классификацию игр, функцию выигрыша.
- **49.** Изложит понятие матричная игра, оптимальная стратегия. Верхняя чистая цена игры. Нижняя чистая цена игры.
- **50.** Описать понятие седловая точка матричной игры. Принцип максимина и минимакса.
- **51.** Раскрыть сущность матричной игры, описать исход игры, функцию выигрыша, седловую точку.

- **52.** Раскрыть сущность понятия «чистая стратегия игры». Дать понятие «парные матричные игры с нулевой суммой».
- **53.** Охарактеризовать понятие «Смешанные стратегии и их свойства», «цена игры».
 - 54. Описать алгоритм решения задач, которые сводятся к игровым моделям.
 - 55. Описать алгоритм решения матричной игры графическим методом.
- **56.** Описать алгоритм решения ЗЛП сводящейся к эквивалентной матричной игре.
 - 57. Раскрыть сущность решения игр с природой по различным критериям.
- **58.** Объяснить применение математических пакетов в моделировании: Maple, Mathcad, Matlab, Mathematika.
- **59.** Охарактеризовать решение задачи линейного программирования о использованием математического пакета Mathcad. На примере любой задачи.
- **60.** Описать применение информационных технологий в математическом моделировании.

Практические задания

Задача 1. Для производства двух видов изделий A и B используется токарное, фрезерное и шлифовальное оборудование. Нормы затрат времени для каждого из типов оборудования на одно изделие данного вида приведены в таблице. В ней же указан общий фонд времени каждого из типов оборудования, а также прибыль от реализации одного изделия.

Требуется: составить математическую модель, позволяющую найти план выпуска

	Затраты		
	време	ни на	Общий фонд
Тип	обработку		времени
оборудования	одного		оборудования
	изделия		(4)
	Α	В	
Фрезерное	4	23	92
Токарное	8	12	128
Шлифовальное	8	3	56
Прибыль	13	10	

изделий А и В, обеспечивающий максимальную прибыль от их реализации и решить задачу графическим методом.

Задача 2.

Для производства двух видов изделий А и В используется токарное, фрезерное и шлифовальное оборудование. Нормы затрат времени для каждого из типов оборудования на одно изделие данного вида приведены в таблице. В ней же указан общий фонд времени каждого из типов оборудования, а также прибыль от реализации одного изделия.

	Затраты		
	време	ни на	Общий фонд
Тип	обработку		времени
оборудования	одного		оборудования
	изделия		(ч)
	A	В	
Фрезерное	9	7	126
Токарное	4	8	112
Шлифовальное	5	10	100
Прибыль	20	25	

Требуется: составить математическую

модель, позволяющую найти план выпуска изделий А и В, обеспечивающий максимальную прибыль от их реализации и решить задачу графическим методом.

Задача 3. Имеются два проекта на строительство жилых домов. Расход стройматериалов, их запас и полезная площадь дома каждого проекта приведены в табл. *Требуется*:

составить математическую модель, позволяющую найти сколько домов первого и второго

проекта следует построить, чтобы полезная площадь была наибольшей.

	1	1 / / /			
Стройматериалы		Расход стройма один дом	териалов (м3) на	Запас	
	I проекта	II проекта	стройматериалов, м3		
	Кирпич силикатный	7	3	1365	
	Кирпич красный	6	3	1245	
	Пиломатериалы	1	2	650	
	Полезная площадь, м2	60	50		

Задача 4. Предприятие может выпускать три вида продукции: Π_1 , Π_2 , Π_3 , используя для продукции и цена единицы продукции каждого вида представлены в таблице.

Требуется: а) симплексным методом найти план выпуска продукции, обеспечивающей предприятию максимальный доход; б) вскрыть экономический смысл основных и

дополнительных переменных.

		Расход	Расход сырья на единицу продукции вида				
Вид сырья	Запас сы	рья Π_1	Π_2		Π_3		
C_1	400		2	5	1		
\mathbb{C}_2	100		3	4	3		
\mathbb{C}_3	200		4	1	6		
Цена единицы	продукции		50	30	20		

Задача 5. Предприятие может выпускать три вида продукции: Π_1 , Π_2 , Π_3 , используя для продукции и цена единицы продукции каждого вида представлены в таблице.

Требуется: а) симплексным методом найти план выпуска продукции, обеспечивающей предприятию максимальный доход; б) вскрыть экономический смысл основных и

дополнительных переменных.

Рид от грт п	Source of the d	Расход сы	Расход сырья на единицу продукции вида			
Вид сырья	Запас сырья	Π_1	Π_2	Π_3		
C_1	300	2	2	4		
\mathbb{C}_2	200	3	4	1		
C ₃	500	4	1	2		
Цена единицы і	продукции	40	20	30		

Задача 6. Предприятие может выпускать три вида продукции: Π_1 , Π_2 , Π_3 , используя для продукции и цена единицы продукции каждого вида представлены в таблице.

Требуется: а) симплексным методом найти план выпуска продукции, обеспечивающей предприятию максимальный доход; б) вскрыть экономический смысл основных и

дополнительных переменных.

Рин опри	Source or the d	Расход сы	Расход сырья на единицу продукции вида		
Вид сырья	Запас сырья	Π_1	Π_2	Π_3	
C_1	500	1	4	3	
\mathbb{C}_2	400	2	5	3	
$\overline{C_3}$	200	6	1	2	
Цена единицы	продукции	20	30	40	

Задача 7.

В пунктах A_1 , A_2 и A_3 имеется в наличии однородный груз, который должен быть доставлен потребителям B_1 , B_2 , B_3 и B_4 . потребность в грузе у которых различна. Известны стоимости c_{ij} перевозок единицы груза от i-го поставщика j-му потребителю.

Поставщики и		Потребители и потребность в грузе			
запас груза		B_1	B_2	B_3	B_4
		40	40	20	50
A_1	50	5	2	3	4
A_2	70	3	1	4	2
A3	30	5	2	3	5

Все данные представлены в таблице. Требуется спланировать перевозки, т. е. указать, сколько единиц груза должно быть отправлено от і-го поставщика ј-му потребителю, так, чтобы удовлетворить спрос потребителей и чтобы суммарные транспортные расходы были

минимальными. Решить задачу методом потенциалов. При построении начального плана перевозок воспользоваться правилом «северо-западного угла».

Задача 8. В пунктах A_1 , A_2 и A_3 имеется в наличии однородный груз, который должен быть доставлен потребителям B_1 , B_2 , B_3 и B_4 . потребность в грузе у которых различна. Известны стоимости сії перевозок единицы груза от і-го поставщика і-му потребителю. Все данные представлены в

Поставщики и		Потребители и потребность в грузе				
запас груза		B_1	B_2	B_3	B_4	
		50	80	30	90	
A_1	60	4	2	3	1	
A_2	120	6	3	5	2	
Аз	70	3	2	6	3	

таблице. Требуется спланировать перевозки, т. е. указать, сколько единиц груза должно быть отправлено от і-го поставщика і-му потребителю, так, чтобы удовлетворить спрос потребителей и чтобы суммарные транспортные расходы были минимальными.

Решить задачу методом потенциалов. При построении начального плана перевозок воспользоваться правилом «северо-западного угла».

Задача 9. В пунктах A_1 , A_2 и A_3 имеется в наличии однородный груз, который должен быть доставлен потребителям B_1 , B_2 , B_3 и B_4 . потребность в грузе у которых различна. Известны стоимости сії перевозок единицы груза от і-го поставщика і-му потребителю. Все данные представлены в

Поставі	цики и	и Потребители и потребность в гру			в грузе
запас груза		B_1	B_2	B_3	B_4
		30	60	50	50
A_1	40	1	4	2	3
A_2	40	5	3	6	4
Аз	110	1	5	5	3

таблице. Требуется спланировать перевозки, т. е. указать, сколько единиц груза должно быть отправлено от і-го поставщика і-му потребителю, так, чтобы удовлетворить спрос потребителей и чтобы суммарные транспортные расходы были минимальными.

Решить задачу методом потенциалов. При построении начального плана перевозок воспользоваться правилом «северо-западного угла».

Задача 10. В пунктах A_1 , A_2 и A_3 имеется в наличии однородный груз, который должен быть доставлен потребителям B_1 , B_2 , B_3 и B_4 . потребность в грузе у которых различна. Известны стоимости сії перевозок единицы груза от і-го поставщика ј-му потребителю. Все данные представлены таблице. Требуется

Постави	цики и	Потребители и потребность в грузе				
запас груза		B_1	B_2	B_3	B_4	
		50	80	100	40	
A_1	80	3	5	1	4	
A_2	90	1	3	2	3	
Аз	100	4	6	3	2	

спланировать перевозки, т. е. указать, сколько единиц груза должно быть отправлено от і-го поставщика ј-му потребителю, так, чтобы удовлетворить спрос потребителей и чтобы суммарные транспортные расходы были минимальными.

Решить задачу методом потенциалов. При построении начального плана перевозок воспользоваться правилом «северо-западного угла».

Задача 11. В пунктах A_1 , A_2 и A_3 имеется в наличии однородный груз, который должен быть доставлен потребителям B_1 , B_2 , B_3 и B_4 . потребность в грузе у которых различна. Известны стоимости сіј перевозок единицы груза от і-го поставщика ј-му потребителю. Все данные представлены В таблице. Требуется спланировать перевозки, т. е. указать, сколько единиц груза должно быть отправлено от і-го

Поставщики и		Потребители и потребность в грузе			
запас груза		B_1	B_2	B_3	B_4
		30	60	40	50
A_1	50	5	2	3	4
A_2	70	1	4	3	2
Аз	60	4	5	2	3

поставщика ј-му потребителю, так, чтобы удовлетворить спрос потребителей и чтобы суммарные транспортные расходы были минимальными.

Решить задачу методом потенциалов. При построении начального плана перевозок воспользоваться правилом «северо-западного угла».

Задача 12. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
2 & 1 & 2 & 4 & 5 \\
1 & 4 & 1 & 3 & 2 \\
3 & 0 & 1 & 0 & 2 \\
1 & 3 & 0 & 2 & 1
\end{pmatrix}$$

Задача 13. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
4 & 2 & 0 & 1 \\
5 & 2 & 1 & 3 \\
6 & 3 & 2 & 2 \\
2 & 7 & 4 & 5
\end{pmatrix}$$

Задача 14. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

Задача 15. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix} 4 & 2 & 0 & 1 \\ 3 & 5 & 1 & 2 \\ 4 & 0 & 3 & 6 \\ 2 & 5 & 1 & 1 \\ 9 & 4 & 0 & 8 \end{pmatrix}$$

Задача 16. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
6 & 7 & 1 & 1 & 1 \\
3 & 4 & 2 & 1 & 6 \\
2 & 0 & 3 & 1 & 4 \\
8 & 2 & 4 & 4 & 3 \\
0 & 1 & 2 & 0 & 2
\end{pmatrix}$$

Задача 17. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
1 & 1 & 2 & 4 \\
4 & 7 & 2 & 3 \\
2 & 1 & 1 & 2 \\
1 & 4 & 3 & 6 \\
1 & 3 & 0 & 5
\end{pmatrix}$$

Задача 18. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 1 & 2 \\ 2 & 4 & 3 & 4 \end{pmatrix}$$

Задача 19. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
2 & 4 & 5 & 4 \\
4 & 3 & 4 & 2 \\
3 & 7 & 6 & 5 \\
1 & 5 & 2 & 3
\end{pmatrix}$$

Задача 20. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

Задача 21. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
1 & 1 & 1 & 2 \\
4 & 1 & 3 & 3 \\
1 & 2 & 1 & 4 \\
1 & 2 & 3 & 5
\end{pmatrix}$$

Задача 22. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix} 4 & 3 & 3 & 4 \\ 2 & 1 & 5 & 3 \\ 0 & 5 & 5 & 1 \\ 1 & 6 & 6 & 3 \end{pmatrix}$$

Задача 23. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
4 & 2 & 3 & 11 \\
6 & 7 & 5 & 2 \\
3 & 2 & 1 & 9 \\
5 & 6 & 3 & 2
\end{pmatrix}$$

Задача 24. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
3 & 1 & 5 & 2 \\
2 & 3 & 1 & 8 \\
4 & 1 & 6 & 3 \\
1 & 3 & 0 & 1
\end{pmatrix}$$

Задача 25. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
1 & 4 & 10 & 12 \\
2 & 3 & 11 & 12 \\
1 & 6 & 2 & 2 \\
5 & 4 & 8 & 9
\end{pmatrix}$$

Задача 26. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
1 & 3 & 6 & 2 \\
2 & 1 & 3 & 2 \\
6 & 2 & 4 & 10 \\
4 & 1 & 0 & 7
\end{pmatrix}$$

Задача 27. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
5 & 1 & 4 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 0 \\
4 & 2 & 1 & 2
\end{pmatrix}$$

Задача 28. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
5 & 1 & 3 & 4 & 3 \\
3 & 2 & 1 & 2 & 2 \\
3 & 6 & 4 & 7 & 6
\end{pmatrix}$$

Задача 29. Решение матричной игры:

- 1 показать существование или отсутствие чистых оптимальных стратегий
- 2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
3 & 5 & 2 & 2 \\
8 & 1 & 7 & 9 \\
4 & 3 & 2 & 3 \\
4 & 4 & 0 & 1
\end{pmatrix}$$

Задача 30. Решение матричной игры:

1 показать существование или отсутствие чистых оптимальных стратегий

2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix} 5 & 1 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 0 \\ 4 & 2 & 1 & 2 \end{pmatrix}$$

Задача 31. Решение матричной игры: 1 показать существование или отсутствие чистых оптимальных стратегий

2 выполнить возможные упрощения платёжных матриц

$$\begin{pmatrix}
0 & 1 & 4 & 9 & 1 \\
1 & 0 & 1 & 4 & 1 \\
4 & 1 & 0 & 1 & 4 \\
9 & 4 & 1 & 3 & 9
\end{pmatrix}$$

Задача 32. Составить матрицу смежности для графа, представленного на рисунке ниже.

Задача 33. Составить матрицу смежности для графа, представленного на рисунке ниже.

Задача 34. Составить матрицу смежности для графа, представленного на рисунке ниже.

Задача 35. Составить матрицу инцидентности для графа, представленного на рисунке ниже.

Задача 36. Составить матрицу инцидентности для графа, представленного на рисунке ниже.

