ЛАБОРАТОРНАЯ РАБОТА 2

ФОРМУЛИРОВКА ЗАДАЧИ Реализовать собственный класс с перегруженными операторами для представления объекта из индивидуального задания.

ТРЕБОВАНИЯ К ПРОГРАММАМ

• демонстрация работы с созданным типом в интерактивном режиме.

ВСПОМОГАТЕЛЬНЫЕ ФРАГМЕНТЫ

• справка по сигнатурам перегружаемых операторов есть в интеренет и тут: https://github.com/posgen/OmsuMaterials/wiki/Operators-overloading.

ЗАДАНИЯ

2.1. Объект для реализации: комплексное число с действительной и мнимой частью.

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание комплексных чисел;
- *, *=, /, /= умножение и деление комплексных чисел;
- ==, != проверка на равенстно/неравенство комплексных чисел;
- ullet \sim получение комплексно сопряженного числа.

Методы:

- вычисление модуля комплексного числа;
- вычисление аргумента комплексного числа.
- **2.2. Объект для реализации**: натуральная дробь, включающая *целую* часть, *числитель* и *знаменатель*.

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание дробей;
- *****, *****= умножение дробей;
- ==, !=, >, >=, <, <= сравнение дробей;
- унарный минус получение дроби с противоположным знаком;
- operator double() преобразование в рациональную дробь.

Методы:

- представление натуральной дроби в текстовом виде.
- **2.3. Объект для реализации**: двумерный вектор на плоскости, определяемый двумя точками: $\{(x_1,y_1)\ (x_2,y_2)\}.$

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание. Как с другим вектором, так и со скаляром;
- *, *= умножение. Как на другой вектор (то есть скалярное произведение), так и на скаляр;
- ^ вычисление угла между векторами;
- унарный плюс и минус получение копии вектора и вектора с противоположными координатами, соответственно.

Методы:

- вычисление длины вектора;
- получение единичного вектора в исходном направлении.

2.4. Объект для реализации: угол на плоскости, включающий градусы, минуты и секунды. Градусы ограничены значениями от 0° до 359° , минуты – от 0' до 59', секунды – от 0'' до 59''.

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание углов (с учётом оборотов);
- \sim обратный угол до $359^{\rm o}$;
- ==, !=, >, >=, <, <= сравнение углов.

Преобразования к другим типам:

- к типу **bool** проверка, является ли угол нулевым: $0^{\circ}0'0''$;
- к типу **double** получение значения в радианах.
- **2.5. Объект для реализации**: матрица размером 4х4.

Перегружаемые операторы:

- **+**, **+=**, **-**, **-=**, *****, ***=** сложение, вычитание и умножение матриц;
- ullet \sim транспонирование матрицы;
- ==, !=, равенство/неравенство матриц.

Методы:

• вычисление детерминанта.

Преобразования к другим типам:

- к типу **int** вернуть количество элементов.
- **2.6. Объект для реализации**: интервал времени {сутки, часы, минуты, секунды}. Операции реализовать с учётом ограничений на составляющие времени (часы от 0 до 23, минуты и секунды от 0 до 59).

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание интервалов;
- *, *= определить возможность умножения на целое число. Если оно *положительное*, то удлиняем интервал в заданное количество раз, иначе сокращаем;
- \sim дополнение до ближайших суток. Если в объекте хранится значение $\{0; 22: 55: 00\}$, то при применение операции дополнения получаем интервал равный $\{1; 00: 00: 00\}$;
- ==, !=, , >, >=, <, <= сравнение интервалов.

Преобразования к другим типам:

- к типу **long** длина интервала в секундах;
- к типу **int** длина интервала в часах.

2.7. Объект для реализации: интервал даты — число {часов, дней, лет}. Часы ограничены интервалом от 0 до 23, дни — от 0 до 364 (примем за год — 365 дней).

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание интервалов;
- *, *= определить возможность умножения на целое число. Если оно *положительное*, то удлиняем интервал в заданное количество раз, иначе сокращаем;
- \sim дополнение до ближайшего года. Если в объекте хранится значение $\{16;180;5\}$, то при применение операции дополнения получаем новый интервал равный $\{0;0;6\}$;
- ==, !=, , >, >=, <, <= сравнение интервалов.

Преобразования к другим типам:

- к типу **long** длина интервала в часах;
- к типу double длина интервала в годах (год 365 дней).
- **2.8. Объект для реализации**: старорусское растояние: {верста, сажень, аршин, вершок}. 1 верста = 500 сажней, 1 сажень = 3 аршина, 1 аршин = 16 вершков, 1 вершок = 44,5 мм.

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание расстояний;
- \sim дополнение до версты. Если в объекте хранится значение $\{3;45;2;13\}$, то при применение операции дополнения получаем новое расстояние равное $\{4;0;0;0\}$;
- ==, !=, , >, >=, <, <= сравнение расстояний.

Преобразования к другим типам:

- к типу **double** длина в метрах.
- **2.9. Объект для реализации**: матрица размером 3х3.

Перегружаемые операторы:

- +, +=, -, -=, *, *= сложение, вычитание и умножение матриц;
- ullet \sim вычисление обратной матрицы;
- ==, !=, равенство/неравенство матриц.

Методы:

• вычисление детерминанта.

Преобразования к другим типам:

• к типу **int** – вернуть количество элементов.

2.10. Объект для реализации: трёхмерный вектор в пространстве, оперделяемый *радиус-вектором* и двумя углами – θ (зенитный угол) и ϕ (азимутальный угол).

Перегружаемые операторы:

- **+**, **+=** сложение векторов;
- *, *= изменение длины кратное скалярному множителю;
- ^ вычисление расстояния между вершинами векторов.

Методы:

- получение вершины вектора в виде набора координат $\{x;y;z\}$ (началом вектора считается точка $\{0;0;0\}$);
- получение единичного вектора в исходном направлении.
- **2.11. Объект для реализации**: матрица размером 5х5.

Перегружаемые операторы:

- +, +=, -, -=, *, *= сложение, вычитание и умножение матриц. Умножение как на другую матрицу, так и на скаляр;
- ullet \sim транспонирование матрицы;
- ==, !=, равенство/неравенство матриц.

Методы:

• вычисление детерминанта.

Преобразования к другим типам:

- к типу **int** вернуть количество элементов.
- **2.12.* Объект для реализации**: целочисленный тип, позволяющий хранить бесконечные целые значения.

Перегружаемые операторы:

- +, +=, -, -= сложение и вычитание;
- ==, !=, , >, >=, <, <= сравнение.

Методы:

• строковое представление числа.

Если захотите использовать другие операторы для различных действий – пожалуйста, только приветствуется.