

Tarea 3

16 de abril de 2025

 $1^{\underline{0}}$ semestre 2025 - Profesores P. Bahamondes - D. Bustamante - P. Barceló

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 25 de abril a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución, junto con un zip, conteniendo el archivo tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas (salvo que utilice su cupón #problemaexcepcional).
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Pregunta 1

En teoría de conjuntos definimos inductivamente sobre \mathbb{N} las operaciones sum y mult tal que (i) sum(m,n) si y sólo si m+n y (ii) mult(m,n) si y sólo si $m\cdot n$.

```
1. \ sum(m,0) = m \\ 2. \ sum(m,\delta(n)) = \delta(sum(m,n)) \\ 2. \ mult(m,0) = 0 \\ 2. \ mult(m,\delta(n)) = sum(m,mult(m,n))
```

De la misma forma defina el operador pot tal que pot(m,n) si y sólo si m^n . Además, utilizando las definiciones demuestre detalladamente por inducción (sobre a y b) que $m^a \cdot m^b = m^{a+b}$, es decir, que mult(pot(m,a),pot(m,b)) = pot(m,sum(a,b)). Puede asumir que la suma y multiplicación son conmutativas y asociativas.

Solución

Sea pot el siguiente operador sobre \mathbb{N} .

```
1. pot(m,0) = 1
```

2.
$$pot(m, \delta(n)) = mult(m, pot(m, n))$$

Por demostrar por inducción simple que mult(pot(m, a), pot(m, b)) = pot(m, sum(a, b)).

CB: Si a = b = 0, por demostrar que mult(pot(m, 0), pot(m, 0)) = pot(m, sum(0, 0)). Por los casos base de las definiciones se debe demostrar que mult(1, 1) = pot(m, 0) que es a su vez equivalente a demostrar mult(1, 1) = 1.

```
Luego, mult(1,1) = mult(1,\delta(0)) = sum(1,mult(1,0)) = sum(1,0) = 1.
```

HI: Suponga que mult(pot(m, a), pot(m, b)) = pot(m, sum(a, b)), para $a, b, n \in \mathbb{N}$.

TI: Por demostrar que $mult(pot(m, \delta(a)), pot(m, b)) = pot(m, sum(\delta(a), b))$. Ya que la suma y multiplicación son conmutativas, el caso $\delta(b)$ es análogo. Desarrollando se obtiene

```
mult(pot(m, \delta(a)), pot(m, b)) = mult(mult(m, pot(m, a)), pot(m, b)) por def

= mult(m, mult(pot(m, a), pot(m, b))) por asociatividad

= mult(m, pot(m, sum(a, b))) por HI

= pot(m, \delta(sum(a, b))) por conmutatividad

= pot(m, sum(b, \delta(a))) por conmutatividad

= pot(m, sum(\delta(a), b))) por conmutatividad
```

lo que concluye la demostración.

Pauta (6 pts.)

- (i) 2 pts. por la definición.
- (ii) 1 pts. por **CB**.
- (iii) 1 pts. por \mathbf{HI} .
- (iv) 2 pts. por TI.

Pregunta 2

1. Sea P un conjunto de variables proposicionales. Considere la relación \leq definida por:

$$\varphi \leq \psi \Leftrightarrow \forall \sigma : P \to \{0,1\} \ (\sigma(\varphi) \leq \sigma(\psi))$$

Determine (y demuestre) si la relación \leq es:

- Refleja
- Antisimétrica
- Transitiva
- Conexa
- 2. Se define la relación binaria \pitchfork como la siguiente relación binaria sobre $\mathcal{L}(P)$: $\varphi \pitchfork \psi \Leftrightarrow$ no existe $\alpha \in \mathcal{L}(P)$ tal que $\{\alpha, \varphi\} \models \psi$. Demuestre que la relación \pitchfork es irrefleja.

Solución

- 1. Para toda fórmula $\varphi \in \mathcal{L}(P)$ se tiene que para toda valuación $\sigma : P \to \{0,1\}$ se cumple trivialmente que $\sigma(\varphi) = \sigma(\varphi)$, luego por extensión que $\sigma(\varphi) \leq \sigma(\varphi)$, con lo que $\varphi \preceq \varphi$. Luego, por definición, la relación \preceq es refleja.
 - Por contraejemplo, sea $p \in P$ y consideremos las fórmulas $\varphi = p$ y $\psi = p \land p$ en $\mathcal{L}(P)$. notemos que son distintas pero equivalentes. Como son equivalentes, por el mismo argumento anterior se tiene que $\varphi \preceq \psi$ y $\psi \preceq \varphi$, pero $\varphi \neq \psi$.
 - Sean tres fórmulas φ , ψ y θ en $\mathcal{L}(P)$ tales que $\varphi \preceq \psi$ y $\psi \preceq \theta$ y sea $\sigma : P \to \{0, 1\}$ una valuación sobre P. Luego, como $\varphi \preceq \psi$, se tiene que $\sigma(\varphi) \leq \sigma(\psi)$, y como $\psi \preceq \theta$, se tiene que $\sigma(\psi) \leq \sigma(\theta)$. Por transitividad de \leq , se tiene que $\sigma(\varphi) \leq \sigma(\theta)$. Finalmente, como σ es arbitrario, lo anterior se cumple para toda valuación, por lo que $\varphi \preceq \theta$, con lo que \preceq sí es transitiva.
 - Por contraejemplo, sea $p \in P$, $\varphi = p$ y $\psi = \neg p$. Luego notemos que para σ_1 : $P \to \{0,1\}$ tal que $\sigma_1(p) = 1$, se tiene que $\sigma_1(\psi) = 0 \le 1 = \sigma_1(\varphi)$, y para $\sigma_2 : P \to \{0,1\}$ tal que $\sigma_2(p) = 0$, se tiene que $\sigma_2(\varphi) = 0 \le 1 = \sigma_2(\psi)$. Luego, no es cierto que $\varphi \preceq \psi$ ni que $\psi \preceq \varphi$, por lo que \preceq no es una relación conexa.
- 2. El resultado es inmediato de notar que se puede tomar $\alpha = \varphi$ (o cualquier fórmula equivalente). En ese caso, trivialmente se tiene que $\{\varphi, \varphi\} = \{\varphi\} \models \varphi$, pues para toda valuación que satisface al conjunto $\{\varphi\}$, por definición debe satisfacer a φ , con lo que tal fórmula existe y por lo tanto no es cierto que $\varphi \pitchfork \varphi$. Como φ es arbitrario, \Uparrow es una relación irrefleja.

Pauta (6 pts.)

- 1 punto por cada ítem correctamente demostrado. 0 puntos en caso de que no determine correctamente la propiedad o no esté correctamente demostrado.
- 2 puntos por una demostración correcta.