MODERN ALGEBRA II SPRING 2013: SEVENTH PROBLEM SET

- 1. Let $E = \mathbb{Q}(\sqrt{5}, \sqrt{7})$ and let $\alpha = 2\sqrt{5} \sqrt{7} \in E$. Show that $[E : \mathbb{Q}] = 4$ and that $E = \mathbb{Q}(\alpha)$. What is $\operatorname{irr}(\alpha, \mathbb{Q}, x)$? Find two different bases for E as a \mathbb{Q} -vector space, reflecting the fact that $E = \mathbb{Q}(\sqrt{5}, \sqrt{7})$ and that $E = \mathbb{Q}(\alpha)$.
- 2. Assuming that x^4-2 is irreducible over \mathbb{Q} , show that $[\mathbb{Q}(i,\sqrt[4]{2}):\mathbb{Q}]=8$ and find an explicit basis for $\mathbb{Q}(i,\sqrt[4]{2})$ as a \mathbb{Q} -vector space. If $\alpha=i+\sqrt[4]{2}$, show by explicit computation that α is the root of a degree 8 polynomial in $\mathbb{Q}[x]$. (In fact, $\deg_{\mathbb{Q}}\alpha=8$, hence $\mathbb{Q}(i,\sqrt[4]{2})=\mathbb{Q}(\alpha)$, but this is somewhat messy for us to show at the moment.)
- 3. Let F be a field of characteristic not equal to 2. Suppose that E is a finite extension field of F and that [E:F]=2. Show that there exists an element $\alpha \in E$ such that $\alpha \notin F$, $\alpha^2=a \in F$, and $E=F(\alpha)$. In other words, E is of the form $F(\sqrt{a})$ for some $a \in F$ which is not a square in F.
- 4. Let F be a field, and suppose that F is a subring of an integral domain R. Thus R is a vector space over F. Suppose that R is a **finite dimensional** vector space over F. Show that R is a field. (Hint: if $r \in R$ and $r \neq 0$, the vectors $1, r, r^2, \ldots$ are not linearly independent. Write down a linear combination of these vectors which is equal to zero and factor out the largest power of r which divides it.)
- 5. Let E be a finite extension of a field F, and suppose that the degree [E:F]=t is a prime number. Show that E is a simple extension of F, and in fact that $E=F(\alpha)$ for every $\alpha\in E$ such that $\alpha\notin F$.
- 6. Let F be a field and let $E = F(\alpha)$ be a finite extension field of F such that $[E:F] = \deg_F \alpha$ is odd. Show that, if $\alpha \notin F$, then $\alpha^2 \notin F$, and in fact more generally that $F(\alpha^2) = F(\alpha)$. (Hint: $F(\alpha^2) \leq F(\alpha)$. What are the possibilities for $[F(\alpha):F(\alpha^2)]$, i.e. for $\operatorname{irr}(\alpha,F(\alpha^2),x)$?) Thus for example $\mathbb{Q}((\sqrt[3]{2})^2) = \mathbb{Q}(\sqrt[3]{2})$; this also follows from the problem above (or via direct computation).
- 7. Let F be a field and E an extension field of F. Suppose that $\alpha \in E$ and $\beta \in E$ are both algebraic over F, and that $\deg_F \alpha = n$, $\deg_F \beta = m$. Show that β is algebraic over $F(\alpha)$, and that $\deg_{F(\alpha)} \beta \leq m$. Conclude that $[F(\alpha, \beta) : F] \leq nm$, and hence that $\deg_F(\alpha + \beta) \leq nm$, and

- similarly $\deg_F(\alpha\beta) \leq nm$. Thus for example $\sqrt{3} + \sqrt[3]{5}$ is the root of some irreducible polynomial in $\mathbb{Q}[x]$ of degree at most 6.
- 8. Let F be a field and E an extension field of F. Suppose that $\alpha \in E$ and $\beta \in E$ are both algebraic over F, and that $\deg_F \alpha = n$, $\deg_F \beta = m$, with n and m relatively prime. Using the previous problem, show that the degree of $F(\alpha, \beta)$ over F is nm. Using this, compute the degree $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) : \mathbb{Q}]$.