2ieme Bac SGC

Série N°5 : Limites des Suites

StMAth

Exercice 1:

Soit (u_n) la suite définie par : $u_0 = 2$ et pour tout entier naturel n , $u_{n+1} = \frac{-1 + 2u_n}{n}$

On pose: pour tout entier naturel *n*, $v_n = \frac{1}{-1+u}$

- **1.** Calculer u_1 , u_2 et v_0
- **2.** On utilisant une démonstration par récurrence, montrer que : $(\forall n \in \mathbb{N})$; $1 \le u_n \le 2$
- **3.** Montrer que (u_n) est une suite décroissante
- **4.** Montrer que la suite (v_n) est une suite arithmétique, déterminer sa raison et son premier terme v_0
- **5.** Calculer l'expression de v_n puis de u_n en fonction de n
- **6.** Calculer les sommes $S = v_1 + \cdots + v_{10}$ et $S_n = v_0 + v_1 + \cdots + v_n$ en fonction de n

Exercice 2:

Soit (u_n) la suite définie par : $u_0 = \frac{1}{2}$ et pour tout entier naturel n , $u_{n+1} = \frac{u_n}{3-2u}$

- **1.** a) Montrer que : $(\forall n \in \mathbb{N})$; $0 < u_n < 1$
 - b) Etudier les variations de la suite (u_n)
- 2. On pose: pour tout entier naturel *n*, $v_n = \frac{u_n}{u_n-1}$
 - **a.** Montrer que la suite (v_n) est une suite géométrique, déterminer sa raison et son premier terme v_0
 - **b.** Calculer l'expression de v_n puis de u_n en fonction de n
 - **c.** Calculer les sommes $S=v_1+\cdots+v_{10}$ et $S_n=v_0+v_1+\cdots+v_n$ en fonction de n

Exercice 3:

1. Soit f la fonction définie sur \mathbb{R}^* par: $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$

Dresser le tableau de variation de f.

2. On considère la suite (an) définie par:

$$u_0 = \frac{3}{2}$$
 et $\forall n \in \mathbb{N}$; $u_{n+1} = f(u_n)$

- **a.** Calculer u_1 et u_2 (donner les résultats sous forme de fractions irréductibles, puis sous forme décimales arrondies à 10^{-2} près).
- **b.** Démontrer, par récurrence, que pour tout $n \in \mathbb{N}$, on a: $\sqrt{2} \le u_{n+1} \le u_n \le \frac{3}{2}$ Démontrer que, pour tout $n \in \mathbb{N} : u_{n+1} - \sqrt{2} \le \frac{1}{2} (u_n - \sqrt{2})$.
- **c.** En déduire, par récurrence, que pour tout entier n, $0 < u_n \sqrt{2} \le \left(\frac{1}{2}\right)^n \left(u_0 \sqrt{2}\right)$.
- **d.** En déduire la limite de la suite (u_n) .

Exercice 4:

On considère la suite (u_n) définie par $u_0=2$ et, pour tout entier n , $u_{n+1}=\sqrt{10u_n}$.

On note f la fonction définie par $f(x) = \sqrt{10x}$

- **1.** Tracer l'allure de la courbe représentative de la fonction f et construire sur l'axe des abscisses les premiers termes u_0 ; u_1 ; u_2 ; \cdots de la suite (u_n) . Quelles conjectures peut-on faire ?
- **2.** Démontrer que la suite (u_n) est croissante, positive et majorée par 10.
- **3.** En déduire que (u_n) converge vers une limite ℓ . Déterminer cette limite ℓ

Exercice 5:

 $\operatorname{Soit}(u_n)$ la suite définie par $u_0=2$ et $u_{n+1}=\frac{1}{3}u_n+5$.

- **1.** Calculer u_1 et u_2 Tracer les droites d'équations $y = \frac{1}{3}x + 5$ et y = x. Construire sur ce graphique les premières termes u_0 ; u_1 ; u_2 ; \cdots de la suite. Quelles conjectures peut-on faire ?
- **2.** Soit (v_n) la suite définie par $v_n = u_n + h$. Déterminer le réel h pour que la suite (v_n) soit géométrique de raison $\frac{1}{3}$.
- **3.** Exprimer alors v_n , puis u_n , en fonction de n . En déduire la limite de $\left(u_n\right)$.

Exercice 6:

On considère la fonction f définie sur l'intervalle $[0; +\infty[$ par : $f(x) = 5 - \frac{4}{x+2}$

On admettra que f est dérivable sur $[0;+\infty[$.

- **1.** Démontrer que f est croissante sur $[0; +\infty[$.
- **2.** tracer dans un repère orthonormé la courbe (C) représentative de f ainsi que la droite (D) d'équation y=x .
- 3. Résoudre l'équation f(x) = x sur l'intervalle $[0; +\infty[$. On note α la solution. On donnera la valeur exacte de α puis on en donnera une valeur approchée à 10^{-2} près.
- **4.** On considère la suite (u_n) définie par $u_0=1$ et, pour tout entier naturel n , $u_{n+1}=f\left(u_n\right)$.
 - a) Tracer la courbe (C) et la droite (D) sur l'intervalle [0;8]. Puis, placer les points M_0 , M_1 et M_2 d'ordonnée nulle et d'abscisses respectives u_0 ; u_1 et u_2 .

Quelles conjectures peut-on faire sur le sens de variation et la convergence de la suite (u_n) ?

- **b)** Démontrer, par récurrence, que, pour tout entier naturel n, $0 \le u_n \le u_{n+1} \le \alpha$ Où α est le réel défini dans la question
- **c)** Peut-on affirmer que la suite (u_n) est convergente ? On justifiera la réponse.
- **5.** Pour tout entier naturel n, on définit la suite (S_n) par : $S_n = \sum_{k=0}^n u_k$
 - a) Calculer S_0 , S_1 et S_2 . Donner une valeur approchée des résultats à $10^{-2}\,$ près.
 - **b)** Montrer que la suite (S_n) diverge vers $+\infty$