

Decoding RSA and Caesar Code

By Asier Las Hayas, Lucia Del Rio, Shaman Alonso and Laura Calvo

THE CODE

299,109,179 179,275,275,179,102,197,179 324,127

The formula used to code the message is:

 $C \equiv M^e \mod(pq)$

- > e is the key used to code the message and equal to 13
- > p is equal to 17
- > q is equal to 23

CONCEPTS TO BE STUDIED

- 1 RSA encryption
- 2 Congruence modulo m
- Inverse of a modulo n and Fermat's little theorem
- 4 Caesar cipher
- 5 The exercise

Introduction to RSA

- Developed by Ron Rivest, Adi Shamir, Leonard Adleman in 1979
- > Used for secure data transmission, and it's based on the difficulty of factoring the product of two large prime numbers.
- > One of the most widely used public key encryption algorithms

RSA Decryption Process

Step 5: Find $d \equiv e^{-1} \mod \emptyset(n)$ Then, we will find the value of d.

Step 6: Cipher text C≡Me mod n
By this process, we will encrypt the message.

Step 7: Plain text M≡C^d mod n

By this process, we will decrypt the message.

CONGRUENCE MODULO M

Definition:

a, $b \in Z$ are congruent modulo m if a - b is a multiple of m and $k \in Z$ such that: $a-b=k\cdot m$ or $a=b+k\cdot m$

Example: $a \equiv b \mod m$

a=23, b=17 23 - 17 = 6 = $2 \cdot 3 \rightarrow 23 \equiv 17 \mod 3$ (23 and 17 are congruent modulo 3)

FERMAT'S LITTLE THEORY

p is a prime number and a is any integer coprime with p

$$a^p \equiv a \pmod{p} \Leftrightarrow a^{p-1} \equiv 1 \pmod{p}$$

FERMAT'S LITTLE THEORY & ITS RELATION WITH EULER'S THEOREM

Euler's theorem is a generalisation of Fermat's theory:

> a coprime to n

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

 \triangleright Euler's totient function: $\varphi(n)\in Z$ from 1 to n and coprime with n

If n is prime $\rightarrow \phi(n)=n-1$

Corollary of Euler's theorem:

$$M \equiv C \pmod{(n)} \Rightarrow a^M \equiv a^C \pmod{n}$$

$$M \equiv C (mod\phi(n)) \rightarrow M=C+k\phi(n)$$
$$a^{M} \equiv a^{C+\phi(n)k} \equiv [a^{\phi(n)}]^{k} \cdot a^{C} \equiv 1^{k} \cdot a^{C} \equiv a^{C} (mod n)$$

This allow us to reduce modular exponentiation with large exponents to exponents smaller than n

EULER'S THEOREM USED IN CRYPTOGRAPHY

INTRODUCTION TO CAESAR CIPHER

- Named after Julius Caesar, who used this code with a shift of 3.
- > One of the simplest and most known encryption techniques.
- > Often incorporated as part of a more complex schemes.

CAESAR DECRYPTION PROCESS

1 Step 1: Identify the Shift Value

First, we need to identify the number of places each letter of the message was shifted.

Step 2: Decoding the Caesar Encrypted Message

Next, we replace each letter with the letter that comes a certain number of places before it in the alphabet.

Step 3: Decrypting the Message

Finally, we have to determine the correct shift value and decrypt the message completely.

The exercise

Algorithm

- 1. Select large prime numbers p, q
- 2. Find $n = p \cdot q$
- 3. Eulers totient function $\Phi(n) = (p-1) \cdot (q-1)$
- 4. Select e such that gcd (e, $\Phi(n)$) = 1
- 5. Find $d \equiv e^{-1} \mod \Phi(n)$
- 6. Decipher M ≡ C^d mod n
- 7. Caesar decipher

The exercise

Algorithm	Problem
1.Select p, q	p = 17, q = 23
2. Find n = p · q	n = 17 · 23 = 391
3. $\Phi(n) = (p-1) \cdot (q-1)$	Φ(n) = 16 · 22 = 352
4. Select e such that $gcd(e, \Phi(n)) = 1$	e = 13 and gcd(13, 352) = 1
5. Find $d \equiv e^{-1} \mod \Phi(n)$	d ≡ 13 ⁻¹ mod 352

How do we find d?

Bézout theorem

$$a,b \in Z^+$$
 $p,q \in Z$ $ap + bq = 1$

$$ap + bq = 1$$

$$352 = 13 \cdot 27 + 1$$

 $352 - 13 \cdot 27 = 1$
 $352 \cdot 1 + 13 \cdot (-27) = 1$

$$gcd(13, 352) = 1$$
 d·e = 1 (mod Φ(n))

$$352 \equiv 0 \pmod{352}$$

$$13 \cdot (-27) \equiv 13 \cdot (-27) \pmod{352}$$

$$352 + 13 \cdot (-27) \pmod{352} \equiv 13 \cdot (-27) \pmod{352} \equiv 1$$

$$13 \cdot (-27) \equiv 1 \pmod{352}$$

$$e \cdot d \equiv 1$$

$$d = -27 \equiv 325 \pmod{352}$$

$$d = 325 \pmod{352}$$

Example

6. Decipher text M ≡ C^d mod n

7. Caesar decipher

How do we obtain M?

Using Fast Modular Exponentiation

C = 299

 $M \equiv 299^{325} \mod 391$

For the text to make sense, we must substract 3 from the result M≡(p+3) mod 26

We can create an algorithm in python or make use of mathematica to speed up the process

Fast Modular Exponentiation

299³²⁵ mod 391

325₁₀: 101000101₂

 $299^{325} = 299^{256+128+4+1} =$

 $299^{256} \cdot 299^{128} \cdot 299^4 \cdot 299^1$

299² 299² mod 391 = 253 299⁴ (299²)² 253² mod 391 = 276

299⁸ $(299^4)^2$ $276^2 \mod 391 = 322$

299¹⁶ $(299^8)^2$ $322^2 \mod 391 = 69$

299³² $(299^{16})^2$ $69^2 \mod 391 = 69$

299⁶⁴ (299³²)² ...

299¹²⁸ (299⁶⁴)² ...

299²⁵⁶ (299¹²⁸)²

mod 391 = 23

```
def code():
   p = 17
   q = 23
   e = 13
                                  Variables
   n = p * q
   phi = (p - 1) * (q - 1)
   s=str(input("insert the code given between spaces, to
separate words write . between spaces: "))
   num_str=s.split()
   d=inverse(e,phi)
   for num in num_str:
       if num == ".":
           print(" ", end="")
                                               Decodification
       else:
                                               process
            numin=int(num)
            an=desencription(numin, d, n)
            v="abcdefghijklmnopqrstuvwxyz"
            s=an-4
            index=ind(s)
            print(v[index], end="")
```

Subprograms

```
def inverse(e,m):
    d = pow(e, -1, m)
    return d
def desencription(c,d,n):
    m = pow(c,d,n)
    return m
def ind(num):
    if num < 0:
        return num + 26
    else:
        return num
```

MATHEMATICA

THE MESSAGE

"THE ESSENCE OF"