Particle spectrograph

Wave operator and propagator

${\mathfrak l}_1^{\#2}$	0	0	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2(r_1\!+\!r_5)(t_1\!+\!t_3))}$	$\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	$\frac{6k^{2}(r_{1}+r_{5})+t_{1}+4t_{3}}{(1+2k^{2})^{2}(3t_{1}t_{3}+2k^{2}(r_{1}+r_{5})(t_{1}+t_{3}))}$	0	$-\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2(r_1+r_5)(t_1+t_3)}$	$\sqrt{2} (t_1 - 2t_3) $ $(1 + 2 k^2) (3t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
${\tau_1^{\#1}}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_0^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-t_1$

Quadratic (free) Lagrangian density $ \frac{1}{3}t_1 \; \omega_{\kappa \alpha}^{\; \alpha'} \; \omega_{\kappa \alpha}^{\; \kappa'} + \frac{2}{3}t_3 \; \omega_{\alpha}^{\; \alpha'} \; \omega_{\kappa \alpha}^{\; \kappa'} - t_1 \; \omega_{\kappa \lambda}^{\; \kappa'} \; \omega_{\kappa \lambda}^{\; \kappa'} + f^{\alpha \beta} \; \tau_{\alpha \beta} + \omega^{\alpha \beta} = \omega^{\alpha \beta} + \sigma^{\alpha \beta} + \sigma^{\alpha \beta} = \omega^{\alpha \beta} + \sigma^{\alpha $

_			
$\omega_{2^{-}}^{\#1} _{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_2^{\#1}_{+lphaeta}f_2^{\#1}_{+lphaeta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
·	$\omega_2^{\#1} + ^{lphaeta}$	$f_{2}^{#1} \dagger^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
${\tau_0^\#}_+^1$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1} +$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger

auge generators	Multiplicities	1	1	3	3	3	2	16
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2\bar{l}k\sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 \mathbb{I} k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 $\bar{l}k$ $\sigma_{2+}^{\#1}\alpha\beta$ == 0 5	Total constraints:

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1}^{ extstyle extstyle 2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}\dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 \left(r_1 + r_5 \right) + t_1 + 4 t_3 \right)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)
$\omega_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}i\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

Massive and massless spectra

	Massive particle					
?	Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))} > 0$				
	Polarisations:	3				
	Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$				
	Spin:	1				
	Parity:	Odd				

Massive particle						
Pole residue:	$-\frac{1}{r_1} > 0$					
Polarisations:	5					
Square mass:	$-\frac{t_1}{2r_1} > 0$					
Spin:	2					
Parity:	Odd					

(No massless particle

Unitarity conditions