# **Time and Work - Shortcuts and Tricks**

## Trick

Basically there are two techniques to solve the Time and Work problems:-



#### 1.Fraction Method

Eg: A can do a job in 10 days it menas that A can do job 1/10 per day.

You need to understand one simple concept - If A can do a job in 10 day then in one day A can do 1/10th of job.

So with the help of this we can solve the problem by fraction method.

**Example1**. A can do a job in 6 days and B can do the same job in 8 days. In how much time they can do the job together.

Solution - 1/6 + 1/8 = 7/24.

## 2. Efficiency Method

Eg: A can do a job in 10 days so we can also write this dividing 100 by 10 days=100/10=10%

i.e the efficiency of A of doing work per day is 10%.

Best trick used in exams is by finding the efficiency of workers in percent. If A can do a job in 2 days then he can do 50% in a day.

# **SHORTCUT**

| Number of days                | Work that can be | Efficiency in |
|-------------------------------|------------------|---------------|
| required to complete the work | done per day     | Percent       |
|                               |                  |               |
| n                             | 1/n              | 100/n         |
| 1                             | 1/1              | 100%          |
| 2                             | 1/2              | 50%           |
| 3                             | 1/3              | 33.33%        |
| 4                             | 1/4              | 25%           |
| 5                             | 1/5              | 20%           |
| 6                             | 1/6              | 16.66%        |
| 7 X                           | 1/7              | 14.28%        |
| 8                             | 1/8              | 12.5%         |
| 9                             | 1/9              | 11.11%        |
| 10                            | 1/10             | 10%           |
| 11                            | 1/11             | 9.09%         |

## Now Solving few examples regarding this short technique.

**Q1.** - A take 2 days to complete a job and B takes 4 days to complete the same job. In how much time they will complete the job together?

**Solution -** A's efficiency = 50%, B's efficiency = 25%. If they work together they can do 75% of the job in a day. To complete the job they need 1.33 days or 4/3 days.

**Q2.**- A tank can be filled in 20 minutes. There is a leakage which can empty it in 60 minutes. In how many minutes tank can be filled?

#### **Solution -**

#### Method 1

- $\Rightarrow$  Efficiency of filling pipe = 20 minutes = 1/3 hour = 300%
- ⇒ Efficiency of leakage = 60 minutes = 100%

We need to deduct efficiency of leakage so final efficiency is 200%. We are taking 100% = 1 Hour as base so answer is 30 minutes.

#### Method 2

- $\Rightarrow$  Efficiency of filling pipe = 100/20 = 5%
- ⇒ Efficiency of leakage pipe = 100/60 = 1.66%
- ⇒ Net filling efficiency = 3.33%

So tank can be filled in = 100/3.33% = 30 minutes

**Q3.**A and B together can complete a task in 20 days. B and C together can complete the same task in 30 days. A and C together can complete the same task in 30 days. What is the respective ratio of the number of days taken by A when completing the same task alone to the number of days taken by C when completing the same task alone?

#### **Solution -**

- $\Rightarrow$  Efficiency of A and B = 1/20 per day = 5% per day -----(i)
- $\Rightarrow$  Efficiency of B and C = 1/30 per day = 3.33% per day-----(ii)
- $\Rightarrow$  Efficiency of C and A = 1/30 per day = 3.33% per day-----(iii)

Taking equation 2 and 3 together

- $\Rightarrow$  B + C = 3.33% and C + A = 3.33%
- $\Rightarrow$  C and 3.33% will be removed. Hence A = B
- $\Rightarrow$  Efficiency of A = B = 5%/2 = 2.5% = 1/40
- $\Rightarrow$  Efficiency of C = 3.33% 2.5% = 0.833% = 1/120

- $\Rightarrow$  A can do the job in 40 days and C can do the job in 120 days he they work alone.
- ⇒ Ratio of number of days in which A and C can complete the job 1:3.

# **Time And Distance Concepts**

# **CONCEPTS**

1) THERE IS A RELATIONSHIP BETWEEN SPEED, DISTANCE AND TIME:

SPEED = DISTANCE / TIME

 $DISTANCE = SPEED^* TIME$ 

2) AVERAGE SPEED = 2XY / X + Y

WHERE X KM/HR IS A SPEED FOR CERTAIN DISTANCE AND Y KM/HR IS A SPEED AT FOR SAME DISTANCE COVERED.

**NOTE:** REMEMBER THAT AVERAGE SPEED IS NOT JUST AN AVERAGE OF TWO SPEEDS I.E. X+Y/2. IT IS EQUAL TO 2XY / X+Y

3) ALWAYS REMEMBER THAT DURING SOLVING QUESTIONS UNITS MUST BE SAME. UNITS CAN BE KM/HR, M/SEC ETC.

**Note:** Conversion of km/ hr to m/ sec and m/ sec to km/ hr

X KM/HR = (X\*5/18) M/SEC I.E. U JUST NEED TO MULTIPLY 5/18

SIMILARLY, X M/SEC = (X\*18/5) KM/HR

- 4) As we know, Speed = Distance/ Time. Now, if in Questions Distance is constant then speed will be inversely proportional to time i.e. if speed increases, time taken will decrease and vice versa.
  - . Q1: A man covers a distance of 600m in 2min 30sec. What will be the speed in km/hr?

**Solution:** Speed = Distance / Time

⇒ Distance covered = 600m, Time taken = 2min 30sec = 150sec

Therefore, Speed= 600 / 150 = 4 m/sec

 $\Rightarrow$  4m/sec = (4\*18/5) km/hr = 14.4 km/hr.

**Q2**: A boy travelling from his home to school at 25 km/hr and came back at 4 km/hr. If whole journey took 5 hours 48 min. Find the distance of home and school.

**Solution**: In this question, distance for both speed is constant.

- $\Rightarrow$  Average speed = (2xy/x+y) km/hr, where x and y are speeds
- $\Rightarrow$  Average speed = (2\*25\*4)/25+4=200/29 km/hr

Time = 5hours 48min= 29/5 hours

Now, Distance travelled = Average speed \* Time

 $\Rightarrow$  Distance Travelled = (200/29)\*(29/5) = 40 km

Therefore distance of school from home = 40/2 = 20km

# **Average Tricks and Practice Questions**

Average =Total of data/No.of data

And Total of data= Average\* No.of data

## Sample examples

Q1. The average age of 20 girls of a class is equal to 14 yrs. When the age of the class teacher is included the average becomes 15 yrs. Find the age of the class teacher.

**Solution:** Total ages of 20 girls =  $14 \times 20 = 280$  yrs.

Total ages when class teacher is included =  $15 \times 21 = 315$  yrs.

 $\therefore$  Age of class teacher = 315 - 280 = 35 yrs.

#### Direct formula:

Age of new entrant = New average + No. of old members  $\times$  increase in average

$$= 15 + 20 (15 - 14) = 35 \text{ yrs.}$$

Q2. The average weight of 4 men is increased by 3 kg when one of them who weighs 120 kg is replaced by another man. What is the weight of the new man?

**Solution:** Quicker approach: If the average is increased by 3 kg, then the sum of weighs increases by  $3 \times 4 = 12$  kg.

And this increase in weight is due to the extra weight included due to the inclusion of new person.

 $\therefore$  Weight of new person = 120 + 12 = 132 kg.

#### Direct formula:

Weight of new person = weight of removed person + No. of persons  $\times$  increase in average =  $120 + 12 \times 3 = 132$  kg.

Q3.T he average of 11 results is 50. If the average of first six results is 49 and that of last six is 52, find the sixth result.

Solution: The total of 11 results =  $11 \times 50 = 550$ 

The total of first 6 results =  $6 \times 49 = 294$ 

The total of last 6 results =  $6 \times 52 = 312$ 

The 6th result is common to both;

Therefore, Sixth result = 294 + 312 - 550 = 56

#### Direct formula:

 $6^{th} result = 50 + 6\{(52 - 50) + (49 - 50)\} = 50 + 6(2 - 1) = 56$ 

Q4. A batsman in his 17th innings makes a score of 85, and thereby increases his average by 3. What is his average after 17 innings?

Solution: Let the average after  $16^{th}$  innings be x, then 16x + 85= 17 (x +3) = Total score after  $17^{th}$  innings.

$$X = 85 - 51 = 34$$

∴ Average after 17<sup>th</sup> innings = x + 3 = 34 + 3 = 37

## Direct formula:

Average after 16 innings =  $85 - 3 \times 17 = 34$ 

Average after 17 innings = 85 - 3(17 - 1) = 37