

Predictive Models

Second practical project

Ivo Gonçalves igoncalves@novaims.unl.pt

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa

Objectives

 Given a regression dataset, explore Genetic Programming (GP) strategies that generate individuals with competitive generalization

 Find ways to properly balance between learning the training data and generalizing to unseen data

Task

 You are provided with a dataset and are allowed to use it as you wish

You can use any form of tree-based GP (e.g., standard, geometric semantic, etc)

 You can use methods from outside the GP area as long as the final individual is a GP individual

 In the end of the project, you are submitting a final individual to be evaluated on data that was withheld

Restrictions

 The final model must be a tree-based GP individual, defined by the same structure as provided in the baseline code

 You cannot change the targets (e.g., you cannot normalize the values)

Dataset

Real-world regression dataset

• 8 attributes

300 instances available to build your individuals

200 instances left out to evaluate the final individual

Delivery

• Send me an email until 2017-06-07 23:59, with the following:

- the proposed individual/model
- the source code
- a small report describing the experiments conducted

Evaluation

• 50%: generalization of the proposed individual

• 40%: ideas tested

• 10%: report

