QF600-G1-2-Asset Pricing

Session 8

Behavioural Finance

Assume Barberis, Huang, and Santos economy where investor receives utility from consumption as well as recent financial gain or loss. Use these parameters:

$$\delta = 0.99$$
, $\gamma = 1$, $\lambda = 2$

Consumption growth has lognormal distribution:

$$\ln \tilde{g} = 0.02 + 0.02\tilde{\epsilon}$$

where ϵ is standard normal random variable. Simulate probability distribution for consumption growth with (at least) 10⁴ random draws from standard normal distribution.

With these parameters, risk-free rate is around 3% per year:

$$R_f = \frac{e^{0.0198}}{0.99} = 1.0303$$

$$R_f = \frac{e^{0.0198}}{0.99} = 1.0303$$

Define x as one plus dividend yield for market portfolio:

$$x = 1 + \frac{PD}{DP} = 1 + \frac{D}{P}$$

 $R = P + \frac{PD}{P} = 1 + \frac{D}{P}$

and define error term:

$$e(x) = 0.99b_0E[v(x\tilde{g})] + 0.99x - 1$$

where utility from recent financial gain or loss is given by:

$$v(R) = R - 1.0303$$
 for $R \ge 1.0303$
 $v(R) = 2(R - 1.0303)$ for $R < 1.0303$

Solve for e(x) = 0 to find equilibrium value of x, using bisection search:

- 1. Set $x_{-} = 1$ and $x_{+} = 1.1$, and use simulated distribution of consumption growth to confirm that $e(x_{-}) < 0$ and $e(x_+) > 0 \Rightarrow$ solution must lie between x_- and x_+
- 2. Set $x_0 = 0.5*(x_- + x_+)$ and use simulated distribution of consumption growth to calculate $e(x_0)$
- 3. If $|e(x_0)| < 10^{-5}$, then you have converged to solution
- 4. Otherwise if $e(x_0) < 0$, then solution lies between x_0 and $x_+ \Rightarrow$ repeat from step 2 with $x_- = x_0$
- 5. Otherwise if $e(x_0) > 0$, then solution lies between x_- and $x_0 \Rightarrow$ repeat from step 2 with $x_+ = x_0$

Repeat for b_0 in range from 0 to 10, in increments of 0.1 (or less).

• Calculate price-dividend ratio for market portfolio:

$$\frac{P}{D} = \frac{1}{x - 1}$$

Plot price-dividend ratio (on vertical axis) vs b_0 .

 $R_{m} = k e^{\mu + \frac{1}{2}\sigma^{2}}$ $E(\tilde{R}_{m}) = E(x\tilde{g}) = xe^{0.0202} \qquad \text{fulling of } X$ is bo.

Calculate expected market return:

$$E\left(\widetilde{R}_m\right) = E\left(x\widetilde{g}\right) = xe^{0.0202}$$

Plot equity premium (on vertical axis) vs b₀.

 Briefly explain main characteristics of v(·) (which is utility function to measure utility from recent financial gain or loss), as well as economic significance of b_0 and λ .

Please submit all relevant results (including graphs and discussion of economic significance) as an Adobe PDF file to Homework 6 before end of Sunday, 5 Nov 2023.

