Classical Mechanics TFY 4345 – Exercise 8

1. Principal moments of inertia of a triangular slab. [Exam Aug. 2019]

(a) Compute the center-of-mass (COM) for the planar triangle in the figure right, assuming it to be of uniform two-dimensional mass density ρ .

- (b) Compute the inertia tensor with respect to the origin for the same triangle.
- (c) [Optional] If the origin is shifted in the COM, the inertia tensor becomes (this can be shown by using the Steiner's parallel axis theorem)

$$I^{COM} = \frac{M}{18} \begin{pmatrix} b^2 & \frac{1}{2}ab & 0\\ \frac{1}{2}ab & a^2 & 0\\ 0 & 0 & a^2 + b^2 \end{pmatrix} = \begin{pmatrix} I_{xx} & I_{xy} & 0\\ I_{yx} & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{pmatrix}$$

where $I_{xy}=I_{yx}$ and $I_{zz}=I_{xx}+I_{yy}$ in the general (latter) form. Define next

$$A = \frac{1}{2} (I_{xx} + I_{yy})$$

$$B = \sqrt{\frac{1}{4} (I_{xx} - I_{yy})^2 + I_{xy}^2}$$

$$\vartheta = \tan^{-1} \left(\frac{2I_{xy}}{I_{xx} - I_{yy}}\right)$$

Derive the principal moments of inertia and principal axes of inertia by using the general form of the inertia tensor and these new variables.

Hint: The last equations comprises an inter-relationship that can be described by a right triangle.

2. Precession of a frisbee. [Exam Aug. 2016]

- a) Consider an axial-symmetric body with moments of inertia: $I_1=I_2\neq I_3$. The angular momentum in the laboratory frame is $\bar{L}=L\hat{e}_z$. Derive the equations of motion for the body, using the Euler equations and the angles θ , ψ , φ . Define here also the components of $\bar{\omega}$. [see lecture notes, we derived this already!]
- b) Find the expression for the Euler angles θ , ψ , φ as a function of time.
- c) For a Frisbee $I_1=I_2$ and $I_3=2I_1$. The precession (wobble) of the frisbee is given by $\dot{\varphi}$. Show that the precession of the frisbee is twice as fast as the rotation frequency of the frisbee, assuming that the angle θ is small ($i.e.\cos(\theta)\approx 1$).

3. Precession of a heavy spinning top. [See the lecture notes, course book]

The shifted total energy is a constant of motion and has the expression

$$E' = \frac{1}{2}I_1\dot{\theta^2} + V(\theta)$$

where the potential is

$$V(\theta) = \frac{(p_{\phi} - p_{\psi} \cos \theta)^2}{2I_1 \sin^2 \theta} + Mgh \cos \theta.$$

Consider the shape of the effective potential for the equilibrium precession inclination angle θ_0 . What is the condition in this case? The following change of variables will become handy for the result:

$$\beta = p_{\phi} - p_{\psi} cos \theta_0$$

You will encounter a quadratic equation for β . Correspondingly, show that for the equilibrium precession inclination angle θ 0 the following must hold true:

$$\omega_3 \ge \frac{2}{I_3} \sqrt{MghI_1 \cos \theta_0}$$

What can you say about the corresponding precession angular velocity ϕ_0 ?