Test 2

Parvesh Adi Lachman November 2023

1 Problem 1

Claim: Let G = (W, E) be a (simple, undirected) graph with $|W| \ge 5$. Then there are two distinct subsets of nodes $U, V \subseteq W$ with |U| = |V| = 2 such that $\sum_{x \in U} deg(x) = \sum_{x \in V} deg(x)$.

Proof: We will prove this claim using the Pigeonhole Principle.

- Let the pigeons (A) be the set of all subsets of W with exactly two elements.
- Let the pigeonholes (B) be the set of all possible sums of degrees of nodes in subsets of W with exactly two elements. Thus, $B := \{0, 1, 2, ..., 2|W|-1\}$
- Let $f: A \to B$ be defined by $f(T) := \sum_{x \in T} deg(x)$. Note that f is a well defined function:
 - (1) for any pigeon $T \in A$, $f(T) = \sum_{x \in T} deg(x)$ is computable because T is a finite set and deg(x) is defined for all $x \in W$.
 - (2) for any pigeon $T \in A$, if $f(T_1) = b$ and $f(T_2) = c$ then b = c because $f(T_1) = \sum_{x \in T_1} deg(x)$ and $f(T_2) = \sum_{x \in T_2} deg(x)$, and since T_1 and T_2 are subsets of W, $\sum_{x \in T_1} deg(x) = \sum_{x \in T_2} deg(x)$.
 - (3) for any pigeon $T \in A$, $f(T) = \sum_{x \in T} deg(x)$ is within the codomain B because T is a subset of W and deg(x) is defined for all $x \in W$.

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
\implies	$ A = { W (W -1) \choose 2}$, where $ W \ge 5$	Because $A = { W \choose 2}$
\Longrightarrow	$ B = 2 W - 1$, where $ W \ge 5$	Because $B = \{0, 1, 2,, 2 W - 1\}$
\Longrightarrow	A > B	Since $\binom{ W (W -1)}{2} > 2 W - 1$
\Longrightarrow	$\exists a_1 a_2 \in A : [(a_1 \neq a_2) \land (f(a_1) = f(a_2))]$	By the Pigeonhole Principle
\Longrightarrow	$\exists U, V \subseteq W : [(U \neq V) \land (U = V = 2) \land (\sum_{x \in U} deg(x) = \sum_{x \in V} deg(x))]$	By def of A and f

2 Problem 2

Recall the following definitons from lecture about a function $g:A\to B$:

one to one: $\forall n, m \in A : (n \neq m) \implies (g(n) \neq g(m))$

onto: $\forall b \in B : \exists a \in A : g(a) = b$

Claim: Let $f: \mathbb{N} \to \mathbb{Z}$ be defined by $f(n) := \sum_{v \in K_n} deg(v)$, where K_n is the complete graph on n nodes.

- (a) For all $x \in S$, we want to show that if P(x) is true then Q(x) is also true.
 - (b) $\neg Q(x) \implies \neg P(x)$.
- (c) To prove $P(x) \implies Q(x)$ by contrapositive we assume $\neg Q(x)$ and use that to show $\neg P(x)$.
 - (d) $\forall n, m \in \mathbb{N} : (n \neq m) \implies (f(n) \neq f(m))$
- (e) **Proof:** We want to show $\forall n, m \in \mathbb{N} : (n \neq x) \implies (f(n) \neq f(m))$. To prove this statement, we want to show that for any $n, m \in \mathbb{N}$, if $n \neq m$ then $f(n) \neq f(m)$. We will prove the equivalent contrapositive, that is, $\exists n, m \in \mathbb{N} : f(n) = f(m) \implies n = m$. To do this we will assume f(n) = f(m) and use that to show n = m.

	Mathematical Reasoning	Reason this Statement is True (From the Approved List)
\Rightarrow	f(n) = f(m)	Given
\Rightarrow	$\sum_{v \in K_n} \deg(v) = \sum_{v \in K_m} \deg(v)$	By the definition of f
\Rightarrow	n(n-1) = m(m-1)	By the definition of K_n and K_m , WLOG $\sum_{v \in K_n} deg(v) = 2 E $, where $ E = \frac{n(n-1)}{2}$, thus by algebra $\sum_{v \in K_n} deg(v) = E $
\Longrightarrow	$n^2 - n = m^2 - m$	By algebra
\Rightarrow	$n^2 - n - m^2 + m = 0$	By algebra
\Longrightarrow	(n-m)(n+m-1) = 0	Since $n^2-n-m^2+m=(n-m)(n+m-1)$ (By algebra)
\Longrightarrow	n - m = 0	Since $n, m \in \mathbb{N}, n + m - 1 \neq 0$
\Longrightarrow	n = m	By algebra

Thus, we have shown that for any $n, m \in \mathbb{N}$, if f(n) = f(m) then n = m. \square

(f) **Counter Example:** To prove f is not onto, we want to show the negation of the definition of onto. That is, we want to show that $\exists b \in \mathbb{Z} : \forall a \in \mathbb{N} : f(a) \neq b$. Consider $b = 0, b \in \mathbb{Z}$. In a complete graph K_n , there exists no $f(a) = \sum_{v \in K_a} deg(v)$. Meaning there is no $a \in \mathbb{N}$ that a maps to $b \in \mathbb{Z}$. Thus f is not onto.

3 Problem 3

Consider the following sequence of numbers similar to (But not the same as) the Sharp numbers.

$$d_1 = 2$$

 $d_2 = 4$
 $d_n = d_{n-1} + 2 \cdot d_{n-2}$, for $n > 3$

Claim: For all $n \ge 1$, $d_n = 2^n$

Step 0: For all $n \ge 1$, we want to show that $d_n = 2^n$.

Step 1: For any $n \ge 1$, let P(n) be the property that $d_n = 2^n$. We want to show $\forall n \ge 1 : P(n)$.

Step 2: As base cases consider when

n=1. We will show that P(1) is true: that is, that $d_1=2^1$. Fortunately,

left hand side $= d_1 = 2 = 2^1 = \text{right hand side}$

n=2. We will show that P(2) is true: that is, that $d_2=2^2$. Fortunately,

left hand side = $d_2 = 4 = 2^2 = \text{right hand side}$

Step 3: Let $k \geq 2$. For the induction hypothesis, suppose that P(1), ..., P(k) are true, or equivalently, that for all $1 \leq k' \leq k : P(k')$. That is, suppose that

$$\forall 1 \le k' \le k : d_{k'} = 2^{k'}$$

Step 4: Now we prove that P(k+1) is true, using our induction assumptions that P(1), ..., P(k+1) are true. That is, we prove that

$$d_{k+1} = 2^{k+1}$$

Step 5: The proof that P(k+1) is true (given that P(1),...,P(k) are true) is as follows:

Left hand side of P(k) = d_{k+1} = $d_k + 2 \cdot d_{k-1}$ By def of sequence = $2^k + 2 \cdot 2^{k-1}$ By IH since $1 \le k-1 \le k$ = $2^k + 2^k$ By algebra = 2^{k+1} By algebra = 2^{k+1} By algebra = Right hand side of P(k+1) **Step 6:** The steps above have shown that for any $k \geq 2$, if P(1), ..., P(k) are true, then P(k+1) is also true. Combined with the base cases which show that P(1) and P(2) are true, we have shown that for all $n \geq 1$, P(n) is true, as desired.