

Fundamentos de Matemática

Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Argumentos e Exercícios de Revisão

[01] (Exercício proposto pela professora Anne Michelle Dysman Gomes) Em cada item abaixo são dadas premissas sobre um conjunto A. Forme um argumento válido acrescentando como conclusão tudo o que você puder concluir sobre o conjunto A a partir das premissas dadas. Justifique sua conclusão.

(a) Premissas:

- 1) $A \subset \mathbb{N}$;
- 2) se 5 é elemento de A, então todos os naturais múltiplos de 5 também são;
- 3) se 10 é elemento de A, então 20 não é elemento de A;
- 4) se $3 \in A$, então $5 \in A$;
- 5) se $20 \notin A$, então $3 \in A$.

(b) Premissas:

- 1) $A \subset \mathbb{Z}$;
- 2) se existe $x \in A$ tal que x > 4, então $13 \in A$;
- 3) para todo x inteiro, se x é impar, então $x \notin A$;
- 4) $-5 \in A$ se, e somente se, existe $x \in A$ tal que x < -4.

(c) Premissas:

- 1) $A \subset \mathbb{N}$;
- 2) para todo $x \in A, x > 10$;
- 3) se existe $x \in A$ tal que x > 20, então $5 \in A$;
- 4) para todo $x \in A$ temos que $(x \notin \text{impar} \Leftrightarrow x > 25)$.

(d) Premissas:

- 1) $A \subset \mathbb{N}$;
- $2) \ 1/2 \in A \Leftrightarrow 10 \in A;$
- 3) para todo $x \in \mathbb{N}$, se $x \notin \text{impar}$, então $x \notin A$;
- 4) $12 \notin A \Rightarrow 8 \in A$;
- 5) para todo $n \in \mathbb{N}$, se $2n \in A$ então $2n + 2 \in A$.

(e) Premissas:

- 1) $A \subset \mathbb{Z}$;
- $2) A \neq \emptyset;$
- 3) para todo $x \in \mathbb{Z}$, temos que $x \in A \Leftrightarrow x + 3 \in A$;
- 4) se $5 \in A$, então, para todo $x \in \mathbb{Z}$, temos que: $x > 20 \Rightarrow x \notin A$;
- 5) $0 \in A \Leftrightarrow 1 \in A$.

[02] Considere a seguinte proposição (n representa um número inteiro):

Se n pode ser escrito como a soma de dois números inteiros ímpares, então n é par.

- (a) A proposição é verdadeira ou falsa? Apresente uma demonstração caso a proposição seja verdadeira e um contraexemplo caso ela seja falsa.
- (b) Escreva a recíproca da sentença. A recíproca é verdadeira ou falsa? Apresente uma demonstração caso a proposição seja verdadeira e um contraexemplo caso ela seja falsa.
- (c) Escreva a contrapositiva da sentença. A contrapositiva é verdadeira ou falsa? Apresente uma demonstração caso a contrapositiva seja verdadeira e um contraexemplo caso ela seja falsa.
- [03] Diz-se que uma função $f: D \to C$ é limitada se ela satisfaz a seguinte condição: existe $M \in \mathbb{R}$ tal que para todo $x \in D$, tem-se $|f(x)| \leq M$.
 - (a) Dê um exemplo de uma função $f \colon D \to C$ limitada. Justifique o porquê de sua função ser limitada.
 - (b) Quando uma função $f: D \to C$ não é limitada?
 - (c) Dê um exemplo de uma função $f \colon D \to C$ não limitada. Justifique o porquê de sua função não ser limitada.
 - (d) Seja $f: D \to C$ uma função que satisfaz a seguinte condição: existem $A, B \in \mathbb{R}$ tal que para todo $x \in D$, tem-se $A \leq f(x) \leq B$. Podemos concluir que f é uma função limitada? Justifique sua resposta!
- [04] Diz-se que um subconjunto X de \mathbb{R} é *aberto* se ele satisfaz a seguinte condição: para todo ponto $p \in X$, existe $\epsilon > 0$ tal que $|p \epsilon, p + \epsilon| \subseteq X$.
 - (a) Dê um exemplo de um subconjunto aberto de \mathbb{R} . Justifique o porquê de seu subconjunto ser aberto.
 - (b) Quando um subconjunto X de \mathbb{R} $n\tilde{a}o$ \acute{e} aberto?
 - (c) Dê um exemplo de um subconjunto de \mathbb{R} que não é aberto. Justifique o porquê de seu subconjunto não ser aberto.
 - (d) O subconjunto vazio \varnothing de \mathbb{R} é um subconjunto aberto? Justifique sua resposta!
- [05] Diz que uma função $f: \mathbb{R} \to \mathbb{R}$ é par se ela satisfaz a seguinte condição: para todo $x \in \mathbb{R}$, f(-x) = f(x). Diz que uma função $f: \mathbb{R} \to \mathbb{R}$ é impar se ela satisfaz a seguinte condição: para todo $x \in \mathbb{R}$, f(-x) = -f(x).
 - (a) Dê um exemplo de uma função $f: \mathbb{R} \to \mathbb{R}$ par. Justifique o porquê de sua função ser par.
 - (b) Dê um exemplo de uma função $f \colon \mathbb{R} \to \mathbb{R}$ ímpar. Justifique o porquê de sua função ser ímpar.
 - (c) Quando uma função $f: \mathbb{R} \to \mathbb{R}$ não é par?
 - (d) Quando uma função $f: \mathbb{R} \to \mathbb{R}$ não é impar?
 - (e) Dê um exemplo de uma função $f \colon \mathbb{R} \to \mathbb{R}$ que não é par. Justifique o porquê de sua função não ser par.
 - (f) Dê um exemplo de uma função $f: \mathbb{R} \to \mathbb{R}$ que não é impar. Justifique o porquê de sua função não ser impar.

- (g) Mostre que a função g(x) = (f(x) + f(-x))/2 é par. Mostre que a função h(x) = (f(x) f(-x))/2 é impar. Conclua que toda função $f: \mathbb{R} \to \mathbb{R}$ pode ser escrita como a soma de uma função par com uma função impar.
- (h) Existe uma função $f: \mathbb{R} \to \mathbb{R}$ que seja par e ímpar ao mesmo tempo? Justifique sua resposta.
- [06] Diz-se que um subconjunto de vetores $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ de \mathbb{R}^n é linearmente independente (LI) se ele satisfaz a seguinte condição: se $\alpha_1 \cdot \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0}$, então $\alpha_1 = \cdots = \alpha_k = 0$. Um subconjunto de vetores $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ de \mathbb{R}^n que não é linearmente independente é denominado linearmente dependente (LD).
 - (a) Dê um exemplo de um subconjunto de vetores $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ de \mathbb{R}^n que é LI. Justifique o porquê de seu subconjunto de vetores ser LI.
 - (b) Quando um subconjunto de vetores $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ de \mathbb{R}^n não é LI?
 - (c) Dê um exemplo de um subconjunto de vetores $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ de \mathbb{R}^n que não é LI. Justifique o porquê de seu subconjunto de vetores não ser LI.
 - (d) Verdadeira ou falsa? Quaisquer que sejam os vetores $\mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$, o subconjunto de vetores $\{\mathbf{0}, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ de \mathbb{R}^n não é LI. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
- [07] A média aritmética dos números $x_1, \ldots, x_n \in \mathbb{R}$ é definida por

$$m_A = \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i.$$

Verdadeira ou falsa? Existe um índice i tal que $x_i \geq m_A$. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.

- [08] Escreva a negação de cada uma das sentenças abaixo.
 - (a) Para todo $x \in \mathbb{R}$, $y \in \mathbb{R}$ e $z \in \mathbb{R}$, se x < y e z < 0, então zx > zy.
 - (b) Para todo inteiro n, existe x > n tal que $x^2 > n^2$
 - (c) Para todo $x \in \mathbb{R}$, tem-se $x < x + \epsilon$ para todo $\epsilon > 0$.
 - (d) Para todo $\epsilon > 0$, existe um inteiro N tal que $1/n < \epsilon$ para todo $n \ge N$.
- [09] Considere as duas sentenças (note que a ordem dos quantificadores de uma sentença está trocada com relação à outra):

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid x = y^3$$
 e $\exists y \in \mathbb{R} \mid \forall x \in \mathbb{R}, x = y^3$

Essas sentenças são verdadeiras ou falsas? Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.

[10] Considere a sentença abaixo $(x, y \in z \text{ representam números reais})$:

$$\forall x, ((\exists y \mid (x^3 = y^2)) \lor (\forall z, (z^2 < 0 \Rightarrow x^3 \neq z^2)).$$

- (a) Escreva a negação da sentença.
- (b) A sentença é verdadeira ou falsa? Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.

- [11] Verdadeira ou falsa? Não existem números naturais a e b tais que $a^2 b^2 = 10$. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
- [12] Dois quadrados brancos foram excluídos dos cantos opostos de um tabuleiro de xadrez um oito por oito. Prove que o tabuleiro que sobrou não pode ser coberto por dominós (retângulos que consistem em dois quadrados adjacentes de cores opostas).

- [13] Mostre que se há n ($n \ge 2$) pessoas em uma festa, então há pelo menos duas pessoas que têm o mesmo número de amigos na festa.
- [14] Verdadeira ou falsa? Se $n \in \mathbb{N}$, então $n^2 79n + 1601$ é um número primo. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.

Respostas dos Exercícios

Atenção: as respostas apresentadas aqui não possuem justificativas. Você deve escrevê-las!

- [08] (a) Existem $x \in \mathbb{R}$, $y \in \mathbb{R}$ e $z \in \mathbb{R}$, tais que x < y, z < 0 e $zx \le zy$.
 - (b) Existe inteiro n tal que, para todo x > n, tem-se $x^2 \le n^2$.
 - (c) Note que a sentença "para todo $x \in \mathbb{R}$, tem-se $x < x + \epsilon$ para todo $\epsilon > 0$ " pode ser escrita da seguinte maneira: "para todo $x \in \mathbb{R}$ e para todo $\epsilon > 0$, tem-se $x < x + \epsilon$ ". Assim, sua negação é "existe $x \in \mathbb{R}$ tal que existe $\epsilon > 0$ tal que $x \ge x + \epsilon$ " ou, mais simplesmente, "existem $x \in \mathbb{R}$ e $\epsilon > 0$ tais que $x \ge x + \epsilon$ ". Outra maneira de se escrever a negação: "existe $x \in \mathbb{R}$ tal que $x \ge x + \epsilon$ para algum $\epsilon > 0$ ".
 - (d) Existe $\epsilon > 0$ tal que, para todo inteiro N, tem-se $1/n \ge \epsilon$ para algum $n \ge N$.
- [10] (a) $\exists x, ((\forall y \mid (x^3 \neq y^2)) \land (\exists z, (z^2 < 0 \lor x^3 = z^2)).$
 - (b) A sentença é verdadeira. De fato, todo $x \in \mathbb{R}$ satisfaz o predicado $(\forall z, (z^2 < 0 \Rightarrow x^3 \neq z^2))$, uma vez que, para todo $x \in \mathbb{R}$, a sentença $(\forall z, (z^2 < 0 \Rightarrow x^3 \neq z^2)$ é verdadeira por vacuidade (não existe número real z que satisfaça a hipótese $z^2 < 0$ da sentença $z^2 < 0 \Rightarrow x^3 \neq z^2$). Portanto, todo $x \in \mathbb{R}$ satisfaz o predicado $((\exists y \mid (x^3 = y^2)) \lor (\forall z, (z^2 < 0 \Rightarrow x^3 \neq z^2))$ e, sendo assim, a sentença é verdadeira.
- [11] Dica: $a^2 b^2 = (a b)(a + b)$ e os divisores de 10 são -10, -5, -2, -1, +1, +2, +5 e +10.
- [12] Faça a demonstração por absurdo contando o número de quadrados brancos e pretos.
- [13] As possibilidades para o número de amigos são $0, 1, 2, \ldots, n-1$ (isto é, n possibilidades distintas). Suponha, por absurdo, que existam n ($n \ge 2$) pessoas em uma mesma festa onde nenhum par de pessoas possui o mesmo número de amigos, isto é, todas as pessoas têm um número diferente de amigos na festa. Como há n pessoas e n possibilidades distintas para o número de amigos, segue que uma pessoa P_1 deve ter 0 amigo, uma pessoa P_2 deve ter 1 amigo, uma pessoa P_3 deve ter amigos, etc. A pessoal P_n tem então n-1 amigos, isto é, ela é amigo de todos na festa. Mas isto contradiz o fato da pessoa P_1 ter 0 amigo.
- [14] A sentença é falsa. n=80 é um contraexemplo, pois $n=80 \in \mathbb{N}$ e $n^2-79\,n+1601=(80)^2-79\,(80)+1601=1681=(41)\,(41)$.

Texto composto em LaTeX2e, HJB, 11/01/2014.