Unconstrained Minimization Algorithm

- (1) Initialize x^0 , set k := 0.
- (2) **while** stopping condition is not satisfied at x^k
 - (a) Find x^{k+1} such that $f(x^{k+1}) < f(x^k)$.
 - (b) k := k + 1

endwhile

Output: $x^* = x^k$, a local minimum of f(x).

- How to find x^{k+1} in Step 2(a) of the algorithm?
- Which *stopping condition* can be used?
- Does the algorithm converge? If yes, how fast does it converge?
- Does the convergence and its speed depend on x^0 ?

Unconstrained Minimization Algorithm

- (1) Initialize x^0 and ϵ , set k := 0.
- (2) while $\|g(x^k)\| > \epsilon$
 - (a) Find \mathbf{x}^{k+1} such that $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$.
 - (b) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

How to find x^{k+1} in Step 2(a)?

- Find a descent direction \mathbf{d}^k for f at \mathbf{x}^k
- Take a step $\alpha^k(>0)$ along d^k such that
 - $f(x^{k+1}) < f(x^k)$
 - $x^{k+1} = x^k + \alpha^k d^k$

Unconstrained Minimization Algorithm

- (1) Initialize \mathbf{x}^0 and ϵ , set k := 0.
- (2) while $\|g(x^k)\| > \epsilon$
 - (a) Find a descent direction d^k for f at x^k
 - (b) Find $\alpha^k (> 0)$ along \mathbf{d}^k such that $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

• How to determine α^k in Step 2(b)?

Step Length Determination

• Exact Line Search: Given a descent direction d^k , determine α^k by solving the optimization problem:

$$\alpha^k = \arg\min_{\alpha>0} \phi(\alpha) \stackrel{\Delta}{=} f(\mathbf{x}^k + \alpha \mathbf{d}^k)$$

- Inexact Line Search:
 - Choice of α^k is crucial

• Small decrease in function values relative to the step length

Armijo-Goldstein Conditions: Choose α^k such that

$$\phi_2(\alpha^k) \le f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) \le \phi_1(\alpha^k)$$

Wolfe's condition ensures sufficient rate of decrease of function value in the given direction

Choose α^k such that

$$\phi'(\alpha^k) \ge c_2 \phi'(0), \quad c_2 \in (c_1, 1)$$
 Wolfe's Condition