TTIC 31170: Robot Learning and Estimation

Spring 2019

Matthew Walter TTI-Chicago

Lecture 10: Markov Decision Processes

Planning agent

Classic planning

Assumption: Agent gets to observe the state

- Given: $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma, T \rangle$
 - S: set of states (finite)
 - A: set of actions (finite)

-
$$\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \{0, 1, 2, \dots, T\} \rightarrow [0, 1]$$

-
$$\mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \{0, 1, 2, \dots, T\} \rightarrow \mathbb{R}$$

- $\gamma \in (0,1]$: discount factor
- T: planning horizon

• Goal: Find *policy* $\pi: \mathcal{S} \times \{0, 1, 2, \dots, T\} \to \mathcal{A}$ that maximizes expected sum of rewards

$$\pi^* = \arg\max_{\pi} E_{s^T} \left[\sum_{t=0}^{T} \gamma^t \mathcal{R}_t(s_t, a_t, s_{t+1}) | \pi \right]$$

- Given: $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma, T \rangle$
 - S: set of states (finite)
 - \mathcal{A} : set of actions (finite)
 - $\mathcal{T}_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$

- $\gamma \in (0,1]$: discount factor
- T: planning horizon
- Goal: Find *policy* $\pi: \mathcal{S} \times \{0, 1, 2, \dots, T\} \to \mathcal{A}$ that maximizes expected sum of rewards

$$\pi^* = \arg\max_{\pi} E_{s^T} \left[\sum_{t=0}^{T} \gamma^t \mathcal{R}_t(s_t, a_t, s_{t+1}) | \pi \right]$$

- Given: $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma, T \rangle$
 - S: set of states (finite)
 - \mathcal{A} : set of actions (finite)
 - $\mathcal{T}_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$

- $\gamma \in (0,1]$: discount factor
- T: planning horizon
- Goa expe

The policy is time-invariant in the infinite horizon case

 π

MDP: Objectives

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma, T \rangle$$

- Find a policy: $\pi: \mathcal{S} \times \{0, 1, 2, \dots, T\} \rightarrow \mathcal{A}$
- that optimizes
 - minimizes (un)discounted expected cost to reach goal
 - maximizes (un)discounted expected reward
- given a finite/infinite/indefinite horizon
- assuming fully observable

Lifetime reward

- Optimal policy maximizes expected reward for time horizon
- Finite horizon:
 - Rewards accumulate for fixed period
 - \$100k + \$100k + \$100k = \$300k
- Infinite horizon:
 - Reward accumulates forever
 - \$100k + \$100k + = infinity
- Discounting:
 - Future rewards are worth less
 - $\$100k + \gamma \$100k + \gamma^2 \$100k + \dots = finite$

Time horizon

- Greedy (myopic): T = 1
 - Only concerned with immediate reward
 - Easy to find solutions (polynomial time)
- Finite horizon: $1 < T < \infty$
 - Policy changes with time (different time horizons)
 - Harder to find optimal solution than infinite horizon case
- Infinite horizon: $T=\infty$
 - Policy doesn't change with time
 - Discount factor is critical ($\gamma < 1$ required in most cases)

Discounted rewards

The return is the total discounted reward from time t

$$R_T = \mathcal{R}_0 + \gamma \mathcal{R}_1 + \gamma^2 \mathcal{R}_2 + \dots \gamma^T \mathcal{R}_T$$
$$= \sum_{k=0}^T \gamma^k \mathcal{R}_k$$

- The discount $\gamma \in (0,1]$ is the present value of future rewards
- The value of receiving reward \mathcal{R} after k+1 time steps is $\gamma^k \mathcal{R}$
- This values immediate reward over delayed reward
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation

Why discount rewards?

- $\gamma < 1$ guarantees that optimal policy exists for infinite horizon case
- Exception: Undiscounted reward is ok if all sequences terminate
- Mathematically convenient (e.g., finite sum with infinite horizon)
- Avoids infinite returns in cyclic Markov processes
- Future may be uncertain
- For financial rewards, immediate rewards may earn more interest

Value function

- The value function $V_T^\pi(s)$ gives the long-term value of state s when executing policy π
- The state-value function* $V_T^\pi(s)$ is the expected return starting from state s and executing policy π

$$R_T^{\pi}(s) = \sum_{t=0}^{T} \gamma^t \mathcal{R}_t$$
$$V_T^{\pi}(s) = E_{s^T} \left[R_T^{\pi}(s) \right]$$

Example: Grid world

- Environment discretized into a set of cells
- Certain cells are unreachable (e.g., walls)
- State transitions are stochastic
- Big rewards come at goal

Solving MDPs

- MDP solver seeks an optimal policy $\pi^* : \mathcal{S} \times \{0, \dots, T\} \to \mathcal{A}$
 - Policy π gives an action for each (state, time)

- Optimal policy maximizes expected sum of rewards
- Contrast: If deterministic, we just need an optimal action sequence

• $V_T^{\pi}(s)$ is the accumulated lifetime (T) reward resulting from starting in state s and executing policy π :

• $V_T^{\pi}(s)$ is the accumulated lifetime (T) reward resulting from starting in state s and executing policy π :

$$\pi_1(s) = \arg \max_{a} \sum_{s'} P(s'|s, a) \mathcal{R}(s, a, s')$$

$$V_1(s) = \max_{a} \sum_{s'} P(s'|s, a) \mathcal{R}(s, a, s')$$

$$\pi^* = \arg\max_{\pi} E_{s^T} \left[\sum_{t=0}^{T} \gamma^t \mathcal{R}_t(s_t, a_t, s_{t+1}) | \pi \right]$$

 In the discounted, infinite horizon case, value function tends to equilibrium

$$V_{\infty}^{\pi}(s) = \sum_{s'} P(s'|s, \pi_t(s)) \left(\mathcal{R}_t(s, \pi_t(s), s') + \gamma V_{\infty}^{\pi}(s') \right)$$

Invariance known as the *Bellman equation*

 In the discounted, infinite horizon case, value function tends to equilibrium

$$V_{\infty}^{\pi}(s) = \sum_{s'} P\left(s'|s, \pi_t(s)\right) \left(\mathcal{R}_t(s, \pi_t(s), s') + \gamma V_{\infty}^{\pi}(s')\right)$$

Invariance known as the Bellman equation

Assumption: fixed-point convergence for finite horizon case

$$V^{\pi}(s) = \sum_{s'} P(s'|s, \pi_t(s)) (\mathcal{R}_t(s, \pi_t(s), s') + \gamma V^{\pi}(s'))$$

Bellman equation in matrix form

The Bellman equation can be expressed as a matrix operation

$$\begin{bmatrix} V^{\pi}(1) \\ \vdots \\ V^{\pi}(n) \end{bmatrix} = \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \cdots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} R(1) \\ \vdots \\ R(n) \end{bmatrix} + \gamma \begin{bmatrix} V^{\pi}(1) \\ \vdots \\ V^{\pi}(n) \end{bmatrix} \end{pmatrix}$$

Bellman equation in matrix form

The Bellman equation can be expressed as a matrix operation

$$\begin{bmatrix} V^{\pi}(1) \\ \vdots \\ V^{\pi}(n) \end{bmatrix} = \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \cdots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} R(1) \\ \vdots \\ R(n) \end{bmatrix} + \gamma \begin{bmatrix} V^{\pi}(1) \\ \vdots \\ V^{\pi}(n) \end{bmatrix} \end{pmatrix}$$

• For small MDPs, the function can be solved directly ($\mathcal{O}(n^3)$)

$$\mathbb{V} = \mathbb{P}(\mathbb{R} + \gamma \mathbb{V})$$
$$(\mathbb{I} - \gamma \mathbb{P}) \mathbb{V} = \mathbb{P} \mathbb{R}$$
$$\mathbb{V} = (\mathbb{I} - \gamma \mathbb{P})^{-1} \mathbb{P} \mathbb{R}$$

Policy for given value function

A value function V(s) defines the corresponding policy

$$\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{arg max}} \sum_{s'} P(s'|s, a) \left(\mathcal{R}(s, a, s') + \gamma V(s') \right)$$

Policy for given value function

A value function V(s) defines the corresponding policy

$$\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{arg max}} \sum_{s'} P(s'|s, a) \left(\mathcal{R}(s, a, s') + \gamma V(s') \right)$$
$$= \underset{a \in \mathcal{A}}{\operatorname{arg max}} Q(s, a)$$

$$Q(s,a) = \sum_{s'} P(s'|s,a) \left(\mathcal{R}(s,a,s') + \gamma V(s') \right)$$
 Action-value function $V(s) = \max_{a \in \mathcal{A}} Q(s,a)$ State-value function

Optimal value function

The optimal value function is the maximum value function over all policies

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

 The optimal action-value function is the maximum action-value function over all policies

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

- The optimal value function specifies the best possible performance of the MDP
- An MDP is "solved" when we know the optimal value function

Optimal policy

Define a partial ordering over policies

$$\pi \ge \pi'$$
 if $V^{\pi}(s) \ge V^{\pi'}(s) \ \forall s$

- For any Markov Decision Process
 - There exists an optimal policy π^* that is better than or equal to all other policies $\pi^* \geq \pi \ \forall \pi$
 - All optimal policies achieve the optimal value function $V^{\pi^*}(s) = V^*(s) \; \forall s$
 - All optimal policies achieve the optimal action-value function $Q^{\pi^*}(s,a) = Q^*(s,a) \ \forall s$

Value function to optimal policy

For a given state $s_t = s$, suppose that we knew the optimal value function for all other states

- 1. Consider all actions available at $s_t = s$
- 2. Select action a_i with greatest lifetime reward:

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{arg max}} \sum_{s'} P(s'|s, a) \left(\mathcal{R}_t(s, a, s') + \gamma V^*(s') \right)$$

Value function to optimal policy

For a given state $s_t = s$, suppose that we knew the optimal value function for all other states

- 1. Consider all actions available at $s_t = s$
- 2. Select action a_i with greatest lifetime reward:

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{arg max}} \sum_{s'} P(s'|s, a) \left(\mathcal{R}_t(s, a, s') + \gamma V^*(s') \right)$$

Determine optimal policy by finding optimal value function

Action-value function to optimal policy

• One can find the optimal policy by maximizing over $Q^*(s,a)$

$$\pi^*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} Q^*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- Every MDP has a deterministic optimal policy
- Knowing $Q^*(s,a)$ directly gives us the optimal policy

Solving MDPs

- Optimal Control: Given an MDP
 - Given an MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma, T \rangle$
 - Find the optimal policy π^*

- Exact methods:
 - Value iteration
 - Policy iteration
 - Q-learning
 - Sarsa

Value iteration

- Algorithm:
 - Initialize value function: $V_0^*(s) = 0$ for all s
 - For i = 1, 2, ..., T:
 - For all states $s \in \mathcal{S}$:

value update Bellman update/backup

$$V_{i+1}^{*}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(\mathcal{R}(s, a, s') + \gamma V_{i}^{*}(s') \right)$$
$$\pi_{i+1}^{*}(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(\mathcal{R}(s, a, s') + \gamma V_{i}^{*}(s') \right)$$

- $V_i^*(s)$: Expected sum of rewards accumulated when starting from state s and acting optimally for horizon of i steps
- $\pi_i^*(s)$: optimal action when in state s and acting for i steps

noise = 0.2, γ = 0.9

One iteration

noise = 0.2, γ = 0.9

Two iterations

0.00	0.00	0.72 →	1.00	
0.00		0.00	-1.00	
0.00	0.00	0.00	0.00	

noise = 0.2, γ = 0.9

Three iterations

0.00	0.52 →	0.78 →	1.00		
0.00		† 0.43	-1.00		
0.00	0.00	0.00	0.00		

noise = 0.2, γ = 0.9

Four iterations

noise = 0.2, γ = 0.9

Four iterations

noise = 0.2, γ = 0.9

100 iterations

Value iteration: Example

noise = 0.2, γ = 0.9

1,000 iterations

Value iteration: Example

noise = 0.2, γ = 0.9

1,000 iterations

Convergence of value iteration

• Theorem: Value iteration converges. At convergence, we have found the *optimal value function* $V^*(s)$ for the discounted infinite horizon problem that satisfies the Bellman equation:

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) \left(\mathcal{R}(s, a, s') + \gamma V^*(s') \right)$$

- Now we know how to act for infinite horizon w/ discounted reward
 - Run value iteration till convergence
 - Resulting value function yields optimal policy:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} P(s'|s, a) \left(\mathcal{R}(s, a, s') + \gamma V^*(s') \right)$$

Convergence of value iteration

In practice, terminate when values are "close enough"

$$||V_{i+1}(s) - V_i(s)|| < \epsilon$$

where
$$||U|| = \max_{s} |U(s)|$$

Theorem:

$$||V_{i+1}(s) - V_i(s)|| < \epsilon \Rightarrow ||V_{i+1}(s) - V^*(s)|| < \frac{2\epsilon\gamma}{1-\gamma}$$

Value iteration converges in polynomial time

noise = 0.0, γ = 0.1

0.00→	0.00	0.01	0.01→	0.10 ↓
0.00		0.10 ↓	0.10→	1.00 ↓
0.00		1.00		10.00
0.00	0.01→	↑ 0.10	0.10→	† 1.00
-10.00	-10.00	-10.00	-10.00	-10.00

noise = 0.5, γ = 0.1

0.00	0.00	0.00	0.00	0.03
↑ 0.00		0.05 ↓	0.03→	0.51 ↓
↑ 0.00		1.00		10.00
↑ 0.00	† 0.01	↑ 0.05	† 0.01	↑ 0.51
-10.00	-10.00	-10.00	-10.00	-10.00

noise = 0.0, γ = 0.1

0.00→	0.00	0.01	0.01→	0.10
0.00		0.10 ↓	0.10→	1.00 ↓
0.00		1.00		10.00
0.00→	0.01→	↑ 0.10	0.10→	↑ 1.00
-10.00	-10.00	-10.00	-10.00	-10.00

noise = 0.0, γ = 0.99

9.41→	9.51→	9.61→	9.70→	9.80 ↓
9.32 ↓		9.70→	9.80→	9.90 ↓
9.41 ↓		1.00		10.00
9.51→	9.61→	9.70→	9.80→	↑ 9.90
-10.00	-10.00	-10.00	-10.00	-10.00

noise = 0.5, γ = 0.99

8.67→	8.93→	9.11→	9.30→	9.42 ↓
↑ 8.49		↑ 9.09	9.42→	9.68 ↓
↑ 8.33		1.00		10.00
↑ 7.13	↑ 5.04	↑ 3.15	↑ 5.68	↑ 8.45
-10.00	-10.00	-10.00	-10.00	-10.00

Solving MDPs

- Optimal Control: Given an MDP
 - Given an MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma, T \rangle$
 - Find the optimal policy π^*

- Exact methods:
 - Value iteration
 - Policy iteration
 - Q-learning
 - Sarsa

Policy improvement

• Suppose that we have determined the value function $V^{\pi}(s)$ for an arbitrary (deterministic) policy π

Consider the corresponding action-value function

$$Q(s, a) = \sum_{s'} P(s'|s, a) (\mathcal{R}(s, a, s') + \gamma V^{\pi}(s'))$$

- Is it better to take $a \neq \pi(s)$ and subsequently follow π ?
- Let π and π' be deterministic policies s.t.

$$Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) \ \forall s \ \Rightarrow \ V^{\pi'}(s) \ge V^{\pi}(s)$$

Policy improvement

More generally consider the greedy policy

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{arg max}} \ Q^{\pi}(s, a)$$
$$= \underset{a \in \mathcal{A}}{\operatorname{arg max}} \ \sum_{s'} P(s'|s, a) (\mathcal{R}(s, a, s') + \gamma V^{\pi}(s'))$$

•
$$V^{\pi'}(s) = V^{\pi}(s) \ \forall s \ \Rightarrow \ V^{\pi'} = V^{\pi} = V^* \ \text{and} \ \pi' = \pi = \pi^*$$

Gives rise to iterative procedure

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*$$

Policy iteration

- Step 1: Policy evaluation: Calculate (non-optimal) utilities for some fixed policy until convergence
- Step 2: Policy improvement: Update policy using one step lookahead with resulting converged (but not optimal) utilities as future values
- Repeat steps until policy converges
- Still optimal
- May converge faster than value iteration

Policy iteration

```
POLICY-EVALUATION(\mathcal{S}, \pi, R, T, \gamma, \epsilon)
      t \leftarrow 0
      for each state s \in \mathcal{S}
 3
              do V_0[s] \leftarrow 0
       repeat
                  change \leftarrow 0
 6
                  t \leftarrow t + 1
                  for each state s \in \mathcal{S}
                        do V_t[s] \leftarrow (\sum_{s'} T(s, \pi[s], s') [R(s, \pi[s], s') + \gamma \cdot V_{t-1}(s')])
 8
 9
                             change \leftarrow change + V_t[s] - V_{t-1}[s]
10
          until change < \epsilon
11
       return V_t
```

Policy iteration

```
POLICY-ITERATION(\mathcal{S}, \mathcal{A}, R, T, \gamma, \epsilon)
       for each state s \in \mathcal{S}
               do i \leftarrow rand(0, |\mathcal{A}|)
  3
                   \pi[s] \leftarrow a_i
      t \leftarrow 0
      V_0 \leftarrow \text{POLICY-EVALUATION}(\mathcal{S}, \pi, R, T, \gamma, \epsilon)
       repeat
                    change \leftarrow 0
  8
                    t \leftarrow t + 1
  9
                    for each state s \in \mathcal{S}
                           do \pi_t[s] \leftarrow max_a (\sum_{s'} T(s, a, s') [R(s, a, s') + \gamma \cdot V_{t-1}(s')])
10
                    V_t \leftarrow \text{Policy-Evaluation}(\mathcal{S}, \pi, R, T, \gamma, \epsilon)
11
12
                    for each state s \in \mathcal{S}
13
                           do change \leftarrow change + V_t[s] - V_{t-1}[s]
14
           until change < \epsilon
```