BGGN-213: FOUNDATIONS OF BIOINFORMATICS

The find-a-gene project assignment amudla@ucsd.edu
Anusorn Mudla (A53074020)

[Q1]

Name: STAT1 (Signal Transducer and Activator of Transcription 1)

Accession: NP_009330.1 Species: Homo Sapiens

[Q2]

Method: TBLASTN2.9.0+

Database: Expressed sequence tags (est) Organism: Mustela furo (taxis:9669)

BLAST * tblastn Translated BLAST: tblastn blastn blastp blastx tblastn tblastx TBLASTN search translated nucleotide databases using a protein query. more... Enter Query Sequence Enter accession number(s), gi(s), or FASTA sequence(s) 😣 Query subrange 😡 NP_009330.1 From То Or, upload file Choose File no file selected Job Title NP 009330:signal transducer and activator... Enter a descriptive title for your BLAST search @ Align two or more sequences (Choose Search Set Database Expressed sequence tags (est) Organism exclude + Mustela furo (taxid:9669) Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown 🔞 Exclude ☐ Models (XM/XP) ☐ Uncultured/environmental sample sequences Limit to Sequences from type material You Tube Create custom database Entrez Query Enter an Entrez query to limit search @ Search database Expressed sequence tags (est) using Tblastn (search translated nucleotide databases using a protein query) BLAST Show results in a new window

Sequences producing significant alignments:

Select: All None Selected:0 Alignments O Total Query Score Score Cover value Ident ☐ Ferret_003_D03 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence 679 679 56% 0.0 81.78% GD181285.1 616 616 50% 0.0 80.93% GD184919.1 Ferret_015_J19 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence 279 279 45% 3e-87 44.96% GD184235.1 ☐ Ferret_013_K21 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence 276 276 39% 3e-86 47.65% GD183067.1 ☐ Ferret_010_E11 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence 188 219 20% 3e-53 59.57% GD184746.1 Ferret 015 C03 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence ☐ Ferret_004_H24 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence 45.4 45.4 9% 2e-05 43.06% GD181745.1

Alignments

■Download ∨ GenBank Graphics

Ferret_003_D03 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence Sequence ID: GD181285.1 Length: 1280 Number of Matches: 1

Score		Expect	Metho	od	Identities	Positives	Gaps	Frame
679 bits(1	752)	0.0		positional matrix adjust.	362/428(85%)	379/428(88%)	7/428(1%)	+2
uery 8	17			EDPIQMSMIIYSCLKEER EDP+QMSMII +CLKEER				
bjct 2	:			EDPVQMSMIICNCLKEER				
uery 1	.47			IEHEIKSLEDLQDEYDFK IEHEIK+LEDLODEYDFK				
bjct 1	.82			IEHEIKTLEDLÕDEYDFK				
uery 2	07			KIIELLNVTELTQNALIN KIIELLNVTELTQ ALIN				
bjct 3	62	DNKRK	EVVL	KIIELLNVTELTQKALIN	DELVEWKQRQQS	ACIGGPPNACLI	QLQNWFTIV	541
uery 2	67			qlkkleeleqkYTYEHDP QLKKLEELEQKYTYEHDP				
bjct 5	42			<u> ÕLKKLEELE ÕKYTYEHDP</u>				
uery 3	27			KTGVQFTVKLRLLVKLQE KTGVQFTVKLRLLVKLQE				
bjct 7	22	THPQR	PLVL	KTGVQFTVKLRLLVKLQE	LNYNLKVKVLFD	KDVNERNTVKGE	RKFNILGTH	901
uery 3	87			TNGSLAAEFRHLQLKEQK TNGSLAAEFRHLQLKEQK				446
bjct 9	02	TKVMN	MEES	TNGSLAAEFRHLQLKEQK	NAGTRTNEGPLI	VTEELSLLSFET	TCSSLVW	1075
uery 4	47		SLPV	VVISNVSQLPSGWASI ++ LP GWASI		LSFFLTPPCARW + F PP	WAQLSEVLSW + L E SW	
bjct 1	076	SL-TS	ERPL	GPFGDLQGRPLPRGWASI	LVETIVGTNPEI	VLLF-NPPGDEG	SALGET-SW	1246
uery 5	05	QFSSV FSS		512				
bjct 1	247	SFSSS		1270				

>GD181285.1:2-1270 Ferret 003 D03 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence

AAGCGTAATCTTCAGGATAATTTTCAGGAAGACCCAGTACAGATGTCTATGATCATCTGTAACTGTCTGA AGGAAGAAAGGAGGATCCTGGAAAATGCTCAGAGATTCAATCAGGCGCAGTCGGGGAGTATCCAGAGCAC CGTGATGTTAGACAAACAGAAGGAGCTGGACAGCAAAGTCAGAAATGTGAAGGATAAGGTTATGTGTATA GAGCATGAAATAAAGACCTTAGAAGATTTACAAGACGAGTATGACTTCAAGTGCAAAACCTTGCAGAACA GAGAGCATGAAACCAATGGCGTGGCAAAGAATGATCAGAAACAAGAACAGTTGTTAATCCAGAAGATGTA TTTAATGCTCGACAATAAGAGAAAGGAAGTAGTTCTCAAAATAATAGAGTTGTTGAATGTCACGGAACTT ACCCAGAAAGCCCTCATCAATGATGAGCTGGTGGAATGGAAGCAGAGACAACAGAGCGCCTGCATCGGGG GGCCCCCAACGCTTGTCTTGATCAGCTGCAGAACTGGTTCACCATAGTTGCGGAGAGTCTGCAGCAGGT GCGTCAGCAGCTGAAAAAGCTCGAGGAGCTGGAACAGAAATACACCTATGAACACGACCCTATCACAAAA AACAAACAAGGCCTGTGGGACCGCACCTTCAGCCTTTTCCAGCAGCTCATTCAGAGCTCATTTGTGGTGG AAAGACAGCCTTGCATGCCAACTCATCCTCAGAGGCCGCTGGTCTTGAAGACCGGGGTCCAGTTCACCGT GAAGTTGAGACTGCTGGTGAAATTGCAAGAGCTGAATTATAATTTGAAAGTCAAAGTCTTATTTGATAAA TGAACATGGAGGAGTCCACNAATGGGAGTCTGGCGGCGGAGTTCCGGCACCTGCAACTGAAAGAACAGAA AAATGCTGGCACCAGAACTAACGAGGGCCCTCTCATCGTTACTGAGGAGCTTTCACTCCTCAGTTTTGAG GCCGCCCACTTCCGAGAGGTTGGGCCTCCATCCTGGTGGAAACCATCGTGGGAACAAACCCCGAAATTGT $\verb|CCTTCTTTTAACCCCCCTGGTGACGAAGGTTCAGCTCTTGGAGAGACTAGCTGGAGTTTTTCTTCTA| \\$ CACAAAAGG

[Q3]

Method: Use EMBOSS Transeq to translate DNA sequence from [Q2]. Below are the 6 ORF results.

>EMBOSS_001_1

KRNLQNNYQEDPVQMSMIICNCLKEERRILENAQRFNQAQSGSIQSTVMLDKQKELDSKV RNVKDRVMCIEHEIKTLEDLQDEVDFKCKTLQNREHETNGVAKNDQKQEQLLIQKMYLHL DNKRKEVVLKIIELLNVTELTQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIV AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP THPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDKDVNERNTVKGFRKFNILGTH TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELSLLSFETTCSSLVWSL TSERPLGPFGDLQGRPLPRGWASILVETIVGTNPEIVLLFNPPGDEGSALGETSWSFSSS HKR

EMBOSS 001 2

SUIFRIIRKTQYRCL*SSVTV*RKKGGSWKMLRDSIRRSRGVSRAP*C*TNRRSWTAKS
EM*RIBLCV*SMK*RP*KIYKTSMTSSAKPCKTESMKFMAWQRMIRNKNSC*SRRCI*CS
TIRERK*FS*K*S*C*MSRNLPRKPSSMKSWWNGSRONRAPASGGPTLVLISCRTGSP*L
RRVCSRCVSS*KSSRSWNRNTPMNTTLSQKTNKACGTAPSAFSSSSFRAHLWWKDSLACQ
LLLRGRWS*RPGSSSP*S*DCW*NCKS*II*KSKSYLIKM*MRGIQ*KDSGSSTFWART
K**TWRSYMGVWRRSSGCTO**NNRKMLAPELTRALSSLLRSFHSSVLRPPVPAWFGH*
PQNDLSARLGISKAAHFREVGPPSWWKPSWEQTPKLSFFLTPLVTKVQLLERLAGVFLH

>EMBOSS_001_3

A*SSG*FSGRPSTDVYDHL*LSEGRKEDPGKCSEIQSGAVGEYPEHRDVRQTEGAGQQQQ KCEG*GYVYRA*NKDLRRFTRRV*LQVQNLABQRA*NQWRGKE*SETRTVVNFEDVFNAR Q*EKGSSSQNNRVVECHGTYPESPHQ**AGGMEAETTERLHRGAPQRLS*SAAELVHHSC GESAAGASAAEKARGAGTEIHL*TRFYHKKQTRPVGPHLQFFPAHSELICGGKTALHAN SSSEAAGLEDRGFVHREVETAGEIARAEL*FESQSLI**RCE*EEYSKRIQEVQHFGHAH ESDEHGGVHXWESGGGVPAPATERTEKCWHQN*RGPSHRY*GAFTPQF*DHLFQPGLVID LRTTSRPVWGSPRPPTSERLGLHPGGNHRGNKPRNCPSF*PPW*RRFSSWRD*LEFFFFT QKX

>EMBOSS 001 4

PFV*RKKTPASLSKS*TFVTRGVKKKDNFGVCSHDGFHQDGGPTSRKWAALEIPKRAERS F*GQ*PNQAGTGGLKTEF*KLLSNDERALVSSGASIFLFFQLQVPELRRQTPIXGLLHVH HFRVRAQNVELPESFYCIPLIHIFIK*DFDFGIIIQLLQFHQQSQLHGELDFGLQDQRPL RMSWHARLSFHHK*ALNELLEKAEGAVPQALFVFCDRVVFTGVFLFGLLELFGLLTHLLQ TLRNYGEPVLQLIKTSVGGPPDAGALLSLLPFHQLIIDEGFLGKFRDIQQLYYFENYFLS LIVEH*IHLLD*QLFLFILILCHAIGFMLSVLQGFALEVILVL*IF*GLYFMLYTHNLIL HISDFAVQLLLFV*HHGALDTPRLRLIESLSIFQDPPFFLQTVTDDHRHLYWVFLKIILK ITL

>EMBOSS 001 5

FCVKKKNSS*SLQELNLRHQGG*KEGQFRGLFPRWFPPGWRPNLSEVGGLGDPQTGREVV LRSMTKPGWNRWSQN*GVKAPQ*R*EGPR*FWCQHFSVLSVAGAGTPPDDSHXWTPPCSS LSCACPKC*TS*ILLLYSSISHLYQIRL*LSNYNSALAISPAVSTSR*TGPRSSRPASE BELACKAVFPPQMSSE*AAGKG*RCGPTGLVCFL**GRVHRCISVPAPRAFSAADAPAAD SPQLW*TSSAADQDKRWGAPRCRRSVVSASIPPAHH**GLSG*VP*HSTTLLF*ELLPFS YCRALNTSSGLTTVLVSDHSLPRHWFHALCSARFCT*SHTRLVNLLRSLFHALYT*PYPS HF*LCCPAPSVCLTSRCSGYSPTAPD*ISEHFPGSSFLPSDSYR*S*TSVLGLPENYPED YAX

>EMBOSS_001_6

LLCEEKLQLVSPRAEPSSPGGLKRRTISGFVPTMVSTRMEAQPLGSGRPWRSPNGPRGR SEVNDQTRLEQVVSKLRSESSSVTMRGPSLVLVPAFFCSFSCRCRNSAARLPXVDSSMFI TFVCVPKMLNFLNPFTVFLSFTSLSKKTLTFKL*FSSCNFTSSLNFTVNNTPVFKTSGL* G*VGMQGCLSTTNEL*MSCWKRLKVRSHRPCLFFVIGSCS*VYFCSSSSSFFSC*RTCCR LSATMVNQFCS*SRQALGGPPMQALCCLCFHSTSSSLMRAFWVSSVTFNNSIILRTTSFL LLSSIKYIFWINNCSCF*SFFATPLVSCSLFCKVLHLKSYSSCKSSKVFISCSIHTTLSF TFLTLLSSSFCLSNITVLWILPDCA*LNL*AFSRILLSSFRQLQMIIDICTGSS*KLS*R LBY

Chosen Sequence: The first ORF because it has the longest amino acid before a stop codon.

>Ferret STAT1 (sequence taken from EMBOSS Transeq)
KRNLQDNFQEDPVQMSMIICNCLKEERRILENAQRFNQAQSGSIQSTVMLDKQKELDSKV
RNVKDKVMCIEHEIKTLEDLQDEYDFKCKTLQNREHETNGVAKNDQKQEQLLIQKMYLML
DNKRKEVVLKIIELLNVTELTQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIV
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
THPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDKDVNERNTVKGFRKFNILGTH
TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELSLLSFETTCSSLVWSL
TSERPLGPFGDLQGRPLPRGWASILVETIVGTNPEIVLLFNPPGDEGSALGETSWSFSSS

Name: Ferret STAT1

Organism: Mustela putorius furo

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Laurasiatheria; Carnivora; Caniformia;

Mustelidae; Mustelinae; Mustela.

[Q4]: BLASTP search

The top result is to a STAT1 protein from Mustela putorius furo.

■ Alignments

■Download ∨ GenBank Graphics

Ferret_003_D03 Ferret library from spleen, liver, and thymus Mustela putorius furo cDNA, mRNA sequence Sequence ID: GD181285.1 Length: 1280 Number of Matches: 1

Score	Expect Method	Identities	Positives	Gaps	Frame
679 bits(1752) 0.0 Compositional matrix adjust.	362/428(85%)	379/428(88%)	7/428(1%)	+2
Query 87	KRNLQDNFQEDPIQMSMIIYSCLKEE				
Sbjct 2	KRNLQDNFQEDP+QMSMII +CLKEE: KRNLQDNFQEDPVQMSMIICNCLKEE:				
Query 147	RNVKDKVMCIEHEIKSLEDLQDEYDF				
Sbjct 182	RNVKDKVMCIEHEIK+LEDLQDEYDF RNVKDKVMCIEHEIKTLEDLQDEYDF				
Query 207	DNKRKEVVHKIIELLNVTELTQNALI				
Sbjct 362	DNKRKEVV KIIELLNVTELTQ ALI DNKRKEVVLKIIELLNVTELTQKALI				
Query 267	AESLQQVRqqlkkleeleqkYTYEHD				326
Sbjct 542	AESLQQVRQQLKKLEELEQKYTYEHD AESLQQVRQQLKKLEELEQKYTYEHD				721
Query 327	THPQRPLVLKTGVQFTVKLRLLVKLQ				
Sbjct 722	THPQRPLVLKTGVQFTVKLRLLVKLQ THPQRPLVLKTGVQFTVKLRLLVKLQ				
Query 387	TKVMNMEESTNGSLAAEFRHLQLKEQ				446
Sbjct 902	TKVMNMEESTNGSLAAEFRHLQLKEQ TKVMNMEESTNGSLAAEFRHLQLKEQ				107
Query 447	DLETTSLPVVVISNVSQLPSGWAS				
Sbjct 107	L T+ P+ ++ LP GWAS: SL-TSERPLGPFGDLQGRPLPRGWAS:			+ L E SW SALGET-SW	
Query 505	QFSSVTKR 512				
Sbjct 124	FSS KR SFSSSHKR 1270				

■Download ∨ GenPept Graphics

unnamed protein product [Gulo gulo]

Sequence ID: VCW91131.1 Length: 750 Number of Matches: 1

Score		Expect	Method	Identities	Positives	Gaps
731 bits	(1886)	0.0	Compositional matrix adjust.	376/428(88%)	385/428(89%)	7/428(1%)
Query	1		FQEDPVQMSMIICNCLKEERRI FOEDP+OMSMIICNCLKEERRI			
Sbjct	87		FQEDP+QMSMIICNCLKEERRI			
Query	61		MCIEHEIKTLEDLQDEYDFKCK MCIEHEIKTLEDLODEYDFKCK			
Sbjct	147		MCIEHEIKTLEDLQDEIDFKCK			
Query	121		VLKIIELLNVTELTQKALINDE VLKIIELLNVTELTOKALINDE			
Sbjct	207		VLKIIELLNVTELTQKALINDE			
uery	181		RQQLKKLEELEQKYTYEHDPIT ROOLKKLEELEOKYTYEHDPIT			
Sbjct	267		RQQLKKLEELEQKYTYEHDPIT			
Query	241		VLKTGVQFTVKLRLLVKLQELN VLKTGVQFTVKLRLLVKLQELN			
Sbjct	327		VLKTGVQFTVKLRLLVKLQELN			
uery	301		ESTNGSLAAEFRHLQLKEQKNA ESTNGSLAAEFRHLOLKEOKNA			LVW 358
Sbjct	387		ESTNGSLAAEFRHLQLKEQKNA ESTNGSLAAEFRHLQLKEQKNA			
Query	359		PLGPFGDLQGRPLPRGWASILV P+ ++ LP GWASIL	ETIVGTNPEIVLLF		-SW 415 SW
bjct	447		PVVVISNVSQLPSGWASILW			
uery	416	SFSSSHK FSS K				
bjct	505	QFSSVTK				

[Q5] Relabel sequences for alignment

>Ferret STAT1

KRNLQDNFQEDPVQMSMIICNCLKEERRILENAQRFNQAQSGSIQSTVMLDKQKELDSKVRNVKDKVMCIEHEIKTLEDLQDE YDFKCKTLQNREHETNGVAKNDQKQEQLLIQKMYLMLDNKRKEVVLKIIELLNVTELTQKALINDELVEWKQRQQSACIGGPP NACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVL KTGVQFTVKLRLLVKLQELNYNLKVKVLFDKDVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTR TNEGPLIVTEELSLLSFETTCSSLVWSLTSERPLGPFGDLQGRPLPRGWASILVETIVGTNPEIVLLFNPPGDEGSALGETSW SFSSSHKR

>Human_STAT1 |NP_009330.1 signal transducer and activator of transcription 1-alpha/beta isoform alpha [Homo sapiens]

KRNLQDNFQEDPIQMSMIIYSCLKEERKILENAQRFNQAQSGNIQSTVMLDKQK
ELDSKVRNVKDKVMCIEHEIKSLEDLQDEYDFKCKTLQNREHETNGVAKSDQKQEQLLLKKMYLMLDNKR
KEVVHKIIELLNVTELTQNALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKL
EELEQKYTYEHDPITKNKQVLWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVK
LQELNYNLKVKVLFDKDVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTN
EGPLIVTEELHSLSFETQLCQPGLVIDLETTSLPVVVISNVSQLPSGWASILWYNMLVAEPRNLSFFLTP
PCARWAQLSEVLSWQFSSVTKR

>Sea_otter |XP_022354714.1:87-512| signal transducer and activator of transcription 1-alpha/beta isoform X1 [Enhydra lutris kenyoni]

KRNLQDNFQEDPIQMSMIICNCLKEERRILENAQRFNQAQSGSIQNTVMLDKQKELDSKVRNVKDKVMCI EHEIKTLEDLQDEYDFKCKTLQNREHETNGVAKNDQKQEQLLIQKMYLMLDNKRKEVVLKIIELLNVTEL TQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITK NKQGLWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDK DVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFE TQLCQPGLVIDLETTSLPIVVISNVSQLPSGWASILWYNMLVTEPRNLSFFLNPPCARWSQLSEVLSWQF SSVTKR

>Cat |XP_006935505.1:87-512 signal transducer and activator of transcription 1-alpha/beta [Felis catus]

KRNLQDNFQEDPIQMSMIIYNCLKEERKILENAQRFNQAQSGNIQSTVMLDKQKELDSKVRNVKDKVMCI EHEIKTLEDLQDEYDFKCKTLQNREHETNGVAKNDQKQEQMLIKKMYLMLDSKRKEVVHKIIELLNITEL TQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITK NKQGLWDRTFNLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDK DVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFE TQLCQPGLVIDLETTSLPIVVISNVSQLPSGWASILWYNMLVTEPRNLSFFLNPPCARWSQLSEVLSWQF SSVTKR

>Polar_bear |XP_008685758.1:146-571 PREDICTED: signal transducer and activator of transcription 1-alpha/beta [Ursus maritimus]

KRNLQDNFQEDPIQMSMIICNCLKEERKILENAQRFNQAQSGNIQSTVMLDKQKELDSKVRNVKDKVMCI EHEIKTLEDLQDEYDFKCKTLQNREHEANGVAKNDQKQEQMLIQKMYLMLDNKRKEVVHKIIELLNVTEL TQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITK NKQGLWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDK DVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFE TQLCQPGLVIDLETTSLPVVVISNVSQLPSGWASILWYNMLVTEPRNLSFFLNPPCARWSQLSEVLSWQF SSVTKR

>Finless_porpoise |XP_024589435.1:87-512 signal transducer and activator of transcription 1-alpha/beta [Neophocaena asiaeorientalis asiaeorientalis]

KRNLQDNFQEDPIQMSMIICNCLKEERKILENAQRFNQAQAGNIQSTVMLDKQQELDSRVRNVKDKVMCI EHEIKTLEDLQDEYDFKCKTLQNREHETNGVAKNDQKQEQMLLQKMYLMLDNKRKEVVHKIIELLNVTEL TQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITK NKQALWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDK DVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGARTNEGPLIVTEELHSLSFE TQLCQPGLVIDLETASLPIVVISNVSQLPSGWASILWYNMLVAEPRNLSFFLNPPCARWSQLSEVLSWQF SSVTKR

>Beluga_whale |XP_022422976.1:87-512 signal transducer and activator of transcription 1-alpha/beta isoform X1 [Delphinapterus leucas]

KRNLQDNFQEDPIQMSMIICNCLKEERKILENAQRFNQAQAGNIQSTVMLDKQQELDSRVRNVKDKVMCI EHEIKTLEDLQDEYDFKCKTLQNREHETNGVAKNDQKQEQMLLQKMYLMLDNKRKEVVHKIIELLNATEL TQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITK NKQALWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDK DVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGARTNEGPLIVTEELHSLSFE TQLCQPGLVIDLETASLPIVVISNVSQLPSGWASILWYNMLVAEPRNLSFFLNPPCARWSQLSEVLSWQF SSVTKR

>Horse |XP_001499419.2:87-512 signal transducer and activator of transcription 1-alpha/beta [Equus caballus]

KRNLQDNFQEDPIQMSMIICSCLKEERKILENAQRFNQAQSGNIQSTVMLDKQKELDSRVRNVKDKVMCI EQEIKTLEDLQDEYDFKCKTSQNREHEANGVAKNDQKQEQMLLQKMYLMLDNKRKEVVHKIIELLNVTEL TQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKLEELEQKYTYEHDPITK NKQGLWDRTFSLFQQLIQNSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDK DVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFE TQLCQPGLVIDLETTSLPVVVISNVSQLPSGWASILWYNMLVAEPRNLSFFLNPPCARWSQLSEVLSWQF SSVTKR

>African_bush_elephant |XP_010600974.1 signal transducer and activator of transcription 1-alpha/beta [Loxodonta africana]

KRNLQDNFQEDPILMSMIICNCLKEERKILENAQRFNQAQSGNIQSTVMLDKQK
ELDSKVRNVKDKVMCIEHEIKTLEDLQDEYDFKCKTLQNREHETSGAAKNEQKEEQMLLQKMYLMLDNKR
KEVVHKIIELLNVTELTQNALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIVAESLQQARQQLKKL
EELEQKYTYEHDPITKNKQVLWDRTFTLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVK
LQELNYNLTVKVLFDKDVNERNTVKGFRKFNILGTHKKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTN
EGPLIVTEELHSFSFETQLCQPGLVIDLETTSLPVVVISNVSQLPSGWASILWYNMLVAEPRNLSFFLNP
PCAQWAQLSEVLSWQFSSVTKR

>Bovine |XP_005202627.2 signal transducer and activator of transcription 1-alpha/beta isoform X1 [Bos taurus]

KRNLQDNFQEDPIQMSMIICNCLKEERKILDHAQRISQAQSGNIQSTVMLDKQK
ELDSKVRNVKDKVMSIEHEIKTLEDLQDEYDFKCKTLQNREHETNGVAKNDQKQEQLLLQKMYLMLDNKR
KEVVLKIIELLNATELTQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIVAESLQQVRQQLKKL
EELEQKYTYEHDPITKNKQALWDRTFSLFQQLIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVK
LQELNYNLKVKVLFDKDVNERNTVKGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGARTN
EGPLIVTEELHSLSFETQLCQPGLVIDLETTSLPVVVISNVSQLPSGWASILWYNMLVAEPRNLSFFLNP
PCARWSQLSEVLSWQFSSVTKR

Alignment:

Obtained using MUSCLE (version 3.8) at EBI: (see the next page). The sequence is trimmed to yield similar length.

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar bear

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar bear

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar bear

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar_bear

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar bear

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar_bear

DNKRKEVVLKIIELLNVTELTQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVHKIIELLNVTELTQNALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVHKIIELLNVTELTQNALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVLKIIELLNATELTQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVHKIIELLNVTELTQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVHKIIELLNATELTQKALINDELVEWKRRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVHKIIELLNVTELTQKALINDELVEWKRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVLKIIELLNVTELTQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIV
DSKRKEVVHKIIELLNITELTQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIV
DNKRKEVVHKIIELLNVTELTQKALINDELVEWKQRQQSACIGGPPNACLDQLQNWFTIV

AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQARQQLKKLEELEQKYTYEHDPITKNKQVLWDRTFTLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQVLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQALWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQALWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQALWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP
AESLQQVRQQLKKLEELEQKYTYEHDPITKNKQGLWDRTFSLFQQLIQSSFVVERQPCMP

TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELSLLSFETT-C-SSLVW KKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSFSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGARTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGARTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGARTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVI TKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVI

.********************************

Ferret_STAT1
African_bush_elephant
Human_STAT1
Bovine
Finless_porpoise
Beluga_whale
Horse
Sea_otter
Cat
Polar_bear

Ferret STAT1 SFSSSHKR African_bush_elephant QFSSVTKR Human STAT1 QFSSVTKR Bovine QFSSVTKR Finless_porpoise **QFSSVTKR** Beluga_whale QFSSVTKR Horse QFSSVTKR Sea_otter QFSSVTKR Cat QFSSVTKR Polar bear QFSSVTKR

[Q6] Phylogeny Tree: Use MUSCLE "simple phylogeny" from EBI (Tool>Phylogeny>Simple Phylogeny)

Ferret_STAT1 0.10353
Sea_otter 0.00336
Cat 0.0123
Polar_bear 0.00319
Horse 0.01298
African_bush_elephant 0.02749
Human_STAT1 0.01476
Bovine 0.01772
Finless_porpoise 0.00044
Beluga_whale 0.00191

[Q7] Heatmap

[Q8] BLAST the consensus sequence from the alignment using blast.pdb function.

ID	Technique	Resolution	Source	E-value	Identity
1YVL	X-Ray Diffraction	3.0	Homo sapiens	0.00e+00	96.714
1BF5	X-Ray Diffraction	2.9	Homo sapiens	0.00e+00	96.817
3CWG	X-Ray Diffraction	3.05	Mus musculus	2.66e-141	53.827

[**Q**9]

Ferret_STAT1 is 88% similar to human STAT1 and the consensus sequence is 96.7% similar to the molecule shown below. The molecule is a homodimer of STAT1 which can bind to GAS sequence on the DNA. STAT1 homodimer is formed in response to interferon gamma activation.

[Q10]: ChEMBL Search

ChEMBL identifies 4 different targets: CHEMBL6101, CHEMBL1667670, CHEMBL5045, CHEMBL3885638. The first three target is single protein from three different species, while the last target is a protein complex.

CHEMBL6101 shows that there are 754 associated bioactivities to STAT1 protein and 62 associated assays. There are 688 associated compounds. There are 28 ligand efficiency data for targeting this protein. Among 11 inhibitor compounds, none of them has made it to the Phase I clinical trial.

From the binding assays document, a publication shows that thioaryl naphthylmethanone oxime ether can be used an anticancer agent by inhibiting EFG-induced STAT1. DOI: 10.1021/jm500873e