Stochastic system consideration for EDMD

Yuanchao Xu

October 19, 2024

1 Notation introduction

A list of all the notation and relevant definition:

1. (Autonomous) SDE in the dynamical system (Ω, μ) :

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

- 2. Φ^t : Transformation map/flow
- 3. m: Number of (i.i.d.) data points
- 4. $n, t = \frac{1}{n}$: sampling frequency and time step between two data snapshots
- 5. N: Dictionary size
- 6. $\Psi = \{\psi_i\}_{i=1}^N$: Dictionary or set of basis functions Each $\psi_i \in \mathcal{F} \coloneqq L^2(\Omega, \mu)$
- 7. \mathcal{P}_N : Projection onto the subspace $\mathcal{F}_N := \operatorname{span}\{\psi_1, \dots, \psi_N\} \subset \mathcal{F}$
- 8. $\mathcal{P}_{\mathcal{D}_N}$: Projection of \mathcal{D} onto \mathcal{F}_N using the inner product on \mathcal{D}
- 9. Data(i.i.d.) snapshots:

$$X = \begin{bmatrix} \begin{vmatrix} & & & | \\ x_1 & \cdots & x_m \\ | & & | \end{bmatrix}, \quad Y = \begin{bmatrix} \begin{vmatrix} & & & | \\ y_1 & \cdots & y_m \\ | & & | \end{bmatrix}$$

10. (Row) Vector of basis functions:

$$\Psi_N(x) \coloneqq [\psi_1(x), \dots, \psi_N(x)]$$

11. Matrices of dictionary $\{\psi_j\}_{j=1}^N$ evaluated on data $\{x_i,y_i\}_{i=1}^m$:

$$\Psi_X = \begin{bmatrix} & & \Psi_N(x_1) & & & \\ & & \vdots & & \\ & & \Psi_N(x_m) & & & \end{bmatrix} = \begin{bmatrix} \psi_1(x_1) & \cdots & \psi_N(x_1) \\ \vdots & \ddots & \vdots \\ \psi_1(x_m) & \cdots & \psi_N(x_m) \end{bmatrix}$$

12. Definition of Koopman operator in deterministic system:

$$\mathcal{K}f = f \circ \Phi$$

Definition of stochastic Koopman operator(semigroup):

$$\mathcal{K}^t f = \mathbb{E}[f \circ \Phi^t]$$

Remark: In the deterministic system, we can still use \mathcal{K}^t , Φ^t where t is the (fixed) time interval between two sampling snapshots.

13. Definition of Koopman generator:

$$\mathcal{L}f(x) := \lim_{t \to 0} \frac{\left[\mathcal{K}^t f(x)\right] - f(x)}{t}$$

$$= \lim_{t \to 0} \frac{\mathbb{E}[f \circ \Phi^t(x)] - f(x)}{t}$$
(1)

EDMD framework review

Let $f(x) = \Psi_N(x)a$. Then

$$\mathcal{K}f(x) = f(y) = \Psi_N(y)a = \Psi_N(x)Ka + r(x)$$

where r(x) is the residual. Notice that the span of $\{\psi_1, \ldots, \psi_N\}$ is not necessarily invariant under \mathcal{K} .

In the EDMD framework, given a dataset $\{(x_i, y_i)\}_{i=1}^M$, we want to minimize the residual over the finite data set:

$$J := \sum_{i=1}^{M} |r(x_i)|^2 = \sum_{i=1}^{M} |(\mathbf{\Psi}_N(y_i) - \mathbf{\Psi}_N(x_i)K) \mathbf{a}|^2,$$

so, this is equivalent to $\min_K \|\Psi_Y - \Psi_X K\|_F$ and the minimal K is

$$K = \Psi_X^{\dagger} \Psi_Y = (\Psi_X^T \Psi_X)^{\dagger} (\Psi_X^T \Psi_Y) = G^{\dagger} A$$

where † is the pseudoinverse and $G = \frac{1}{m} \Psi_X^T \Psi_X$, $A = \frac{1}{m} \Psi_X^T \Psi_Y$.

Remark. Regularization through truncated SVD or by adding a small perturbation is typically applied.

S-EDMD framework

First, we can expand the Koopman operator(semigroup) $\mathcal{K}(t)$ similar as in EDMD:

$$\mathcal{K}(t)f(x) = \mathbb{E}[f(y)]$$

$$= \Psi_N(x)K(t)\mathbf{a} + r(x)$$
(2)

Alternatively, we approximate the Koopman operator(semigroup) $\mathcal{K}(t)$ analogous to Taylor expansion using the definition of generator(1):

$$\mathcal{K}(t)f(x) = \mathbb{E}[f(y)]$$

$$= \mathbb{E}[\mathbf{\Psi}_N(y)]\mathbf{a}$$

$$= \left[\mathbf{\Psi}_N(x) + t \cdot \mathcal{L}\mathbf{\Psi}_N(x) + O(t^2)\right]\mathbf{a}$$
(3)

where $\mathcal{L}\Psi_N(x) = [\mathcal{L}\psi_1(x), \dots, \mathcal{L}\psi_N(x)]$ and

$$\mathcal{L}\psi_j(x) = b(x) \cdot \nabla \psi_j(x) + \frac{1}{2}\sigma^2(x) \colon \nabla^2 \psi_j(x) \tag{4}$$

Remark. We can get explicit higher order term $O(t^2)$ in (3) by applying Itô's formula recursively. See A for more details.

Remark. In order to obtain (4), we can use Itô's formula. From Itô's formula, we know that given $f \in C_b^2(\Omega)$ and $X_0 = x$,

$$df(X_t) = \left(b(X_t) \cdot \nabla f(X_t) + \frac{1}{2}\sigma^2(x) : \nabla^2 f(X_t)\right) dt + \sigma(X_t) \cdot \nabla f(X_t) dW_t$$

Taking expectation on its integral form, we have:

$$\mathbb{E}[f(X_t)|X_0 = x] - f(x) = \int_0^t \left(b(X_s) \cdot \nabla f(X_s) + \frac{1}{2}\sigma^2(X_s) \colon \nabla^2 f(X_s)\right) ds$$

Let $t \to 0$, we have

$$\frac{d}{dt}f = \mathcal{L}f(x) := \lim_{t \to 0} \frac{\mathbb{E}[f(X_t) - f(x)|X_0 = x]}{t}$$
$$= b(X_t) \cdot \nabla f(X_t) + \frac{1}{2}\sigma^2(x) \colon \nabla^2 f(X_t)$$

In our case, combning (3) and (2), we can minimize the following:

$$J := \sum_{i=1}^{m} |r(x_i)|^2 = \sum_{i=1}^{m} |[\Psi_N(x_i) + t \cdot \mathcal{L}\Psi_N(x_i) + O(t^2) - \Psi_N(x_i)K] \mathbf{a}|^2$$

which is equivalent to minimize

$$J = \min_{K} \|\Psi_X + t \cdot \mathcal{L}\Psi_X + O(t^2) - \Psi_X K\|_F^2$$
 (5)

and the minimal K(t) is

$$K(t) = \Psi_X^{\dagger} (\Psi_X + t \cdot \mathcal{L}\Psi_X + O(t^2))$$
(6)

where the generator (time differential) matrix approximation $[\mathcal{L}\Psi_X]_{ij} = \mathcal{L}\psi_j(x_i)$.

Remark. $O(t^2)$ in (7), (3) and (5) are different. They are scalar, vector and matrix respectively. For example, each element of $O(t^2)$ in (3) and (5) is a scalar $O(t^2)$ in (7).

Empirically, if t is very small, we update the Koopman matrix approximation in the following way with $O(t^2)$ omitted:

$$\widehat{K}(t) = \widehat{\Psi}_X^{\dagger}(\widehat{\Psi}_X + t \cdot \widehat{\mathcal{L}}\widehat{\Psi}_X)$$

Remark. For the case of trained basis by NN, we replace $\Psi_X + t \cdot \mathcal{L}\Psi_X + O(t^2)$ by Ψ_Y in (5),

Now, we will show that the computed $K_{N,n,m}$ by our S-EDMD method converges not only in large data m and large dictionary size N, but also in zero-limit of sampling time t = 1/n.

2 Convergence in the limit of large data

(1) i.i.d. data:

$$P\left(\|\widehat{K}_{N,n,m} - K_{N,n,m}\|_{F} > \epsilon\right)$$

$$= P\left(\|\widehat{\Psi}_{X}^{\dagger}(\widehat{\Psi}_{X} + t\widehat{\mathcal{L}}\widehat{\Psi}_{X}) - \Psi_{X}^{\dagger}\mathbb{E}[\Psi_{Y}]\|_{F} > \epsilon\right)$$

$$= P\left(\|t\widehat{\Psi}_{X}^{\dagger}\widehat{\mathcal{L}}\widehat{\Psi}_{X} - \Psi_{X}^{\dagger}(\Psi_{X} + t\mathcal{L}\Psi_{X} + O(t^{2}))\|_{F} > \epsilon\right)$$

$$= P\left(\|t\widehat{\Psi}_{X}^{\dagger}\widehat{\mathcal{L}}\widehat{\Psi}_{X} - t\Psi_{X}^{\dagger}\mathcal{L}\Psi_{X} + O(t^{2})\|_{F} > \epsilon\right)$$

$$\leq P\left(t\|\widehat{\Psi}_{X}^{\dagger}\widehat{\mathcal{L}}\widehat{\Psi}_{X} - \Psi_{X}^{\dagger}\mathcal{L}\Psi_{X}\|_{F} + O(t^{2}) > \epsilon\right)$$

$$= P\left(t\|\widehat{G}^{-1}\widehat{A} - G^{-1}A\|_{F} + O(t^{2}) > \epsilon\right)$$

where $G = \frac{1}{m} \Psi_X^* \Psi_X$ and $A = \frac{1}{m} \Psi_X^* \mathcal{L} \Psi_X$. (From Wiki)

A function $f: \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_n \to \mathbb{R}$ satisfies the bounded differences property if substituting the value of the *i*th coordinate x_i changes the value of f by at most c_i . More formally, if there are constants c_1, c_2, \ldots, c_n such that for all $i \in [n]$, and all $x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, \ldots, x_n \in \mathcal{X}_n$,

$$\sup_{x_i' \in \mathcal{X}_i} |f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i-1}, x_i', x_{i+1}, \dots, x_n)| \le c_i.$$

Lemma 1 (McDiarmid's Inequality). Let $f: \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_n \to \mathbb{R}$ satisfy the bounded differences property with bounds c_1, c_2, \ldots, c_n . Consider independent random variables X_1, X_2, \ldots, X_n where $X_i \in \mathcal{X}_i$ for all i. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|f(X_1, X_2, \dots, X_n) - \mathbb{E}[f(X_1, X_2, \dots, X_n)]| \ge \epsilon) \le 2 \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}\right).$$

Proof. Omitted.
$$\Box$$

Lemma 2 (Hoeffding's Inequality). Assume $X_i \in [a_i, b_i]$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left(\sum_{i=1}^n X_i - \mathbb{E}\left[\sum_{i=1}^n X_i\right] \ge \epsilon\right) \le e^{-\frac{2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}}$$

and

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right]\right| \ge \epsilon\right) \le 2e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}$$

Proof. The McDiarmid's Inequality(1) directly implies Hoeffding's inequality by taking $f(X_1, \ldots, X_n) = \sum_{i=1}^n X_i$.

Theorem 3. Let $|\psi_i(X_k)| \leq C \mathbb{P} - a.e.$ for all $1 \leq i \leq N$ and $1 \leq k \leq m$. Suppose $\|\mathcal{L}_{N,n,m}\| \leq L$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left(\left\|\widehat{G} - G\right\|_{F} \ge \epsilon\right) \le 2N^{2} \exp\left(-\frac{m\epsilon^{2}}{8N^{2}C^{4}}\right),$$

$$\mathbb{P}\left(\left\|\widehat{A} - A\right\|_{F} \ge \epsilon\right) \le 2N^{2} \exp\left(-\frac{m\epsilon^{2}}{8N^{2}C^{4}L^{2}}\right).$$

Proof. Define the random matrix $\eta(X) := \Psi(X)^T \Psi(X) \in \mathbb{R}^{N \times N}$, i.e., $\eta_{ij}(X) = \psi_i(X)\psi_j(X)$. Let $G = \mathbb{E}[\eta(X_1)], \hat{G} = \frac{1}{m} \sum_{k=1}^m \eta(X_k)$. Then,

$$\|\widehat{G} - G\|_F^2 = \sum_{i=1}^N \sum_{j=1}^N \left| \widehat{G}_{ij} - G_{ij} \right|^2$$

$$= \sum_{i=1}^N \sum_{j=1}^N \left| \frac{1}{m} \sum_{k=1}^m \eta_{ij}(X_k) - \mathbb{E}\left[\eta_{ij}(X_k)\right] \right|^2$$

where $\tilde{\eta}(X) := \eta(X) - \mathbb{E}[\eta(X_1)]$ and thus $|\tilde{\eta}_{ij}(X)| \leq 2C^2$ for all $1 \leq i, j \leq N$. Next, applying Hoeffding's inequality (2) and union bound, we have

$$\mathbb{P}\left(\left\|\widehat{G} - G\right\|_{F} \ge \epsilon\right) = \mathbb{P}\left(\left\|\widehat{G} - G\right\|_{F}^{2} \ge \epsilon^{2}\right)$$

$$\leq \mathbb{P}\left(\sum_{i=1}^{N} \sum_{j=1}^{N} \left|\frac{1}{m} \sum_{k=1}^{m} \widetilde{\eta}_{ij}(X_{k})\right|^{2} \ge \epsilon^{2}\right)$$

$$\leq N^{2} \mathbb{P}\left(\left|\frac{1}{m} \sum_{k=1}^{m} \widetilde{\eta}_{ij}(X_{k})\right|^{2} \ge \epsilon^{2}/N^{2}\right)$$

$$= N^{2} \mathbb{P}\left(\left|\frac{1}{m} \sum_{k=1}^{m} \widetilde{\eta}_{ij}(X_{k})\right| \ge \epsilon/N\right)$$

$$\leq 2N^{2} \exp\left(-\frac{2(m\epsilon/N)^{2}}{m(4C^{2})^{2}}\right)$$

$$= 2N^{2} \exp\left(-\frac{m\epsilon^{2}}{8N^{2}C^{4}}\right)$$

Similarly, define $\xi(X) := \Psi(X)^T \mathcal{L}_{N,n,m} \Psi(X)$. Since

$$|\psi_i(X)\mathcal{L}\psi_j(X)| \le C^2 \|\mathcal{L}_{N,n,m}\| \le C^2 L,$$

we have

$$\mathbb{P}\left(\|\widehat{A} - A\|_F \ge \epsilon\right) \le 2N^2 \exp\left(-\frac{m\epsilon^2}{8N^2C^4L^2}\right),\,$$

Lemma 4 (Philipp, Lemma C.5). Let $G, A \in \mathbb{R}^{N \times N}$ be such that G is invertible and $A \neq 0$. Let $\widehat{G}, \widehat{A} \in \mathbb{R}^{N \times N}$ be random matrices such that \widehat{G} is invertible a.s. Then for any sub-multiplicative matrix norm $\|\cdot\|$ on $\mathbb{R}^{N \times N}$ and any $\epsilon > 0$ we have

$$\mathbb{P}\left(\|G^{-1}A - \widehat{G}^{-1}\widehat{A}\| > \epsilon\right) \leq \mathbb{P}\left(\|A - \widehat{A}\| > \frac{\epsilon}{\tau}\|A\|\right) + \mathbb{P}\left(\|G - \widehat{G}\| > \frac{\epsilon}{\tau}\|G^{-1}\|^{-1}\right),$$

where $\tau = 2\|G^{-1}\|\|A\| + \epsilon$.

Theorem 5. Let $\epsilon > 0$. Define $\epsilon_t = (\epsilon - O(t^2))/t$. Then, with same conditions defined in Theorem 3 and Lemma 4, we have

$$P\left(\|\widehat{K}_{N,n,m} - K_{N,n,m}\|_F > \epsilon\right) \le 2N^2 \left[\exp\left(-\frac{m}{8}\left(\frac{\epsilon_t}{NC^2\tau\|G^{-1}\|}\right)^2\right) + \exp\left(-\frac{m}{8}\left(\frac{\epsilon_t\|A\|}{NC^2\tau L}\right)^2\right)\right]$$

Proof.

$$P\left(\|\widehat{K}_{N,n,m} - K_{N,n,m}\|_{F} > \epsilon\right) = P\left(t\|\widehat{G}^{-1}\widehat{A} - G^{-1}A\|_{F} + O(t^{2}) > \epsilon\right)$$

$$= P\left(\|\widehat{G}^{-1}\widehat{A} - G^{-1}A\|_{F} > \epsilon_{t}\right)$$

$$\leq \mathbb{P}\left(\|G - \widehat{G}\| > \frac{\epsilon_{t}}{\tau}\|G^{-1}\|^{-1}\right) + \mathbb{P}\left(\|A - \widehat{A}\| > \frac{\epsilon_{t}}{\tau}\|A\|\right)$$

$$\leq 2N^{2} \exp\left(-\frac{m(\frac{\epsilon_{t}}{\tau}\|G^{-1}\|^{-1})^{2}}{8N^{2}C^{4}}\right) + 2N^{2} \exp\left(-\frac{m(\frac{\epsilon_{t}}{\tau}\|A\|)^{2}}{8N^{2}C^{4}L^{2}}\right)$$

$$= 2N^{2} \left[\exp\left(-\frac{m}{8}\left(\frac{\epsilon_{t}\|G^{-1}\|^{-1}}{NC^{2}\tau}\right)^{2}\right) + \exp\left(-\frac{m}{8}\left(\frac{\epsilon_{t}\|A\|}{NC^{2}\tau L}\right)^{2}\right)\right]$$

3 Convergence in zero-limit of sampling time

Now we have Koopman matrix approximation at discrete time $K_{N,n}(1/n)$. We will use it to construct a sequence of generator approximant $\{A_{N,n}\}_{n\geq 1}$ and find its limit as $n\to\infty$, if the limit exists in some sense. Once we find the limit, we can create the continuous time N-dimensional Koopman semigroup.

First, for each N > 0, construct the following sequence of matrices:

$$A_{N,n} := \frac{K_{N,n} \left(\frac{1}{n}\right) - I}{\frac{1}{n}}$$

$$= \frac{\left[\Psi_X^{\dagger} \left(\Psi_X + \frac{1}{n} \cdot \mathcal{L}\Psi_X + O(\frac{1}{n^2})\right)\right] - I}{\frac{1}{n}}$$

$$= \frac{\left[I + \frac{1}{n}\Psi_X^{\dagger}\mathcal{L}\Psi_X + O(\frac{1}{n^2})\right] - I}{\frac{1}{n}}$$

$$= \Psi_X^{\dagger}\mathcal{L}\Psi_X + O(\frac{1}{n})$$
(Here the first term is not dependent of

(Here the first term is not dependent on n)

Next, choose $f = \Psi_N \mathbf{a} \in C_b^2(\Omega)$, we have

$$\begin{aligned} & & \| \lim_{n \to \infty} \mathbf{\Psi}_N A_{N,n} \mathbf{a} \| \\ & = \| \lim_{n \to \infty} \mathbf{\Psi}_N \left(\Psi_X^{\dagger} \mathcal{L} \Psi_X + O(\frac{1}{n}) \right) \mathbf{a} \| \\ & = \| \mathbf{\Psi}_N \left(\Psi_X^{\dagger} \mathcal{L} \Psi_X \right) \mathbf{a} + \lim_{n \to \infty} \mathbf{\Psi}_N O(\frac{1}{n}) \mathbf{a} \| \quad \text{(Here the } O(\frac{1}{n}) \text{ is a matrix)} \end{aligned}$$

Then,

$$\begin{split} & \| \lim_{n \to \infty} \mathbf{\Psi}_N O(\frac{1}{n}) \mathbf{a} \| \\ &= \| \lim_{n \to \infty} \left[\psi_1 \quad \cdots \quad \psi_N \right] \begin{bmatrix} O(\frac{1}{n}) & \cdots & O(\frac{1}{n}) \\ \vdots & \ddots & \vdots \\ O(\frac{1}{n}) & \cdots & O(\frac{1}{n}) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} \| \\ &= \| \lim_{n \to \infty} \left[\psi_1 \quad \cdots \quad \psi_N \right] \begin{bmatrix} a'_1 \\ \vdots \\ a'_N \end{bmatrix} \| \\ & (\text{where } a'_i = \sum_{j=1}^N [O(\frac{1}{n})]_{ij} a_j) \\ &= \| \lim_{n \to \infty} \sum_{i=1}^N \psi_i a'_i \| \\ &= \| \lim_{n \to \infty} \sum_{i=1}^N \psi_i \left(\sum_{j=1}^N [O(\frac{1}{n})]_{ij} a_j \right) \| \end{split}$$

$$\leq \|\lim_{n \to \infty} \sum_{i=1}^{N} \psi_i \left(\left(N \cdot O\left(\frac{1}{n}\right) \right) \sum_{j=1}^{N} a_j \right) \|$$

$$= \|\lim_{n \to \infty} \left(N \cdot O\left(\frac{1}{n}\right) \right) \sum_{i,j=1}^{N} \psi_i \left(\sum_{i,j=1}^{N} a_j \right) \| = 0$$

Therefore, for $f = \Psi_N \mathbf{a}$, we have

$$\lim_{n\to\infty}\mathbf{\Psi}_NA_{N,n}\mathbf{a}=\mathbf{\Psi}_NA_N\mathbf{a}$$

where $A_N = \Psi_X^{\dagger} \mathcal{L} \Psi_X$. In other words,

$$\lim_{n\to\infty} \mathcal{A}_{N,n} f = \mathcal{A}_N f$$

where $A_{N,n}$, A_N are the operators whose matrix representation are $A_{N,n}$, A_N respectively.

4 Convergence in large dictionary size N

In this section, we want to show that $\mathcal{P}_N \mathcal{A}|_{\mathcal{F}_N} = \mathcal{A}_N \to \mathcal{A}$ in strong operator topology as $N \to \infty$, under a similar mathematical framework established in gEDMD analysis paper . In addition, if we can assume the $\{\mathcal{K}_N(t)\}_{N\geq 1}, \mathcal{K}(t)$ is exponentially bounded for all $t\geq 0$, then we can use the Trotter-Kato Approximation theorem to obtain $\mathcal{P}_N \mathcal{K}(t)|_{\mathcal{F}_N} = \mathcal{K}_N(t) \to \mathcal{K}(t)$ in strong operator topology as $N\to\infty$, uniformly for t in a compact interval.

4.1 Convergence of A_N to A (in the L^2 norm)

We begin by considering the state space $(\Omega, \mathcal{B}, \mu)$, where the set of observables is given by $\mathcal{F} := L^2(\Omega, \mu)$. The domain of the operator \mathcal{A} is defined as:

$$\mathcal{D} := \{ f \in \mathcal{F} : \mathcal{A}f \in \mathcal{F} \}.$$

The operator \mathcal{A} is referred to as a *closed operator* if the graph of \mathcal{A} , defined by:

$$\{(f, Af) \in \mathcal{F} \times \mathcal{F} : f \in \mathcal{D}\},\$$

is a closed subspace of $\mathcal{F} \times \mathcal{F}$. In this context, if \mathcal{A} is closed, then \mathcal{D} becomes a Hilbert space equipped with the inner product:

$$\langle f, g \rangle_{\mathcal{D}} := \langle f, g \rangle_{\mathcal{F}} + \langle \mathcal{A}f, \mathcal{A}g \rangle_{\mathcal{F}}, \quad \forall f, g \in \mathcal{D},$$

and the corresponding norm:

$$||f||_{\mathcal{D}}^2 := \langle f, f \rangle_{\mathcal{D}}.$$

It follows directly from this structure that $||f||_{\mathcal{F}} \leq ||f||_{\mathcal{D}}$, and the operator $\mathcal{A}: \mathcal{D} \to \mathcal{F}$ is continuous with $||\mathcal{A}|| \leq 1$.

In practice, two common cases arise:

- 1. If \mathcal{A} is continuous on \mathcal{F} : In this scenario, the domain $\mathcal{D} = \mathcal{F}$, and the norms $\|\cdot\|_{\mathcal{D}}$ and $\|\cdot\|_{\mathcal{F}}$ are equivalent.
- 2. If \mathcal{A} is the infinitesimal generator of a strongly continuous semigroup: Here, \mathcal{D} is typically dense in \mathcal{F} .

An illustrative example occurs when \mathcal{D} is a weighted Sobolev space $H^k(X, \mu)$, containing all measurable functions $\psi: X \to \mathbb{R}$ with finite norm:

$$\|\psi\|_{H^k(X,\mu)} = \left(\sum_{|\alpha| \le k} \int_X |D^{\alpha}\psi|^2 d\mu\right)^{1/2},$$

where $D^{\alpha}\psi$ represents the weak derivative of order α . For instance, if \mathcal{A} is the generator of a stochastic process, then $\mathcal{D}=H^2(X,\mu)$. Conversely, if the system is deterministic, the domain is typically $\mathcal{D}=H^1(X,\mu)$.

Assumption 1. We assume the following:

- 1. The basis functions $\Psi = \{\psi_1, \dots, \psi_N\} \subset \mathcal{D}$ are linearly independent.
- 2. The functions $\{\psi_i, \mathcal{A}\psi_i\}_{i=1}^N$ are continuous μ -a.e..
- 3. The points $\{x_i\}_{i=1}^m \subset \Omega$ are i.i.d. samples from μ .

Assumption 2. Assumption 1 holds and

$$\lim_{N \to \infty} \|\mathcal{P}_N \phi - \phi\|_{\mathcal{F}} = 0, \quad \forall \phi \in \mathcal{F},$$

where \mathcal{P}_N is the projection of \mathcal{F} onto \mathcal{F}_N using the inner product on \mathcal{F} .

Assumption 3. Assumption 1 holds, A is a closed operator, and

$$\lim_{N \to \infty} \|\mathcal{P}_{\mathcal{D}_N} f - f\|_{\mathcal{D}} = 0, \quad \forall f \in \mathcal{D}.$$

Here, $\mathcal{P}_{\mathcal{D}_N}$ is the projection of \mathcal{D} onto \mathcal{F}_N using the inner product on \mathcal{D} .

Theorem 6. Let Ψ satisfy Assumption 2 and 3, then

$$\lim_{N\to\infty} \|\mathcal{A}_N \mathcal{P}_{\mathcal{D}_N} f - \mathcal{A} f\|_{\mathcal{F}} = 0, \quad \forall f \in \mathcal{D}.$$

Proof. By definition $A_N = \mathcal{P}_N A|_{\mathcal{F}_N}$, we obtain

$$\begin{split} \mathcal{A}_{N}\mathcal{P}_{\mathcal{D}_{N}} - \mathcal{A} &= (\mathcal{A}_{N} - \mathcal{A})\mathcal{P}_{\mathcal{D}_{N}} + \mathcal{A}\mathcal{P}_{\mathcal{D}_{N}} - \mathcal{A} \\ &= (\mathcal{P}_{N} - \operatorname{Id})\mathcal{A}\mathcal{P}_{\mathcal{D}_{N}} + \mathcal{A}(\mathcal{P}_{\mathcal{D}_{N}} - \operatorname{Id}) \\ &= (\mathcal{P}_{N} - \operatorname{Id})\mathcal{A} + (\mathcal{P}_{N} - \operatorname{Id})\mathcal{A}(\mathcal{P}_{\mathcal{D}_{N}} - \operatorname{Id}) + \mathcal{A}(\mathcal{P}_{\mathcal{D}_{N}} - \operatorname{Id}). \end{split}$$

Consider now $f \in \mathcal{D}$. By Assumptions 2, 3 and the fact that \mathcal{A} is continuous on its domain, we have

$$\|\mathcal{A}_N \mathcal{P}_{\mathcal{D}_N} f - \mathcal{A} f\|_{\mathcal{F}} \le \|(\mathcal{P}_N - \operatorname{Id}) \mathcal{A} f\|_{\mathcal{F}} + \|(\mathcal{P}_N - \operatorname{Id}) \mathcal{A}\| \|\mathcal{P}_{\mathcal{D}_N} f - f\|_{\mathcal{D}} + \|\mathcal{A}\| \|\mathcal{P}_{\mathcal{D}_N} f - f\|_{\mathcal{D}} \to 0.$$

4.2 Convergence of $K_N(t)$ to K(t) (in the L^2 norm)

Outline: make suitable assumptions (Koopman operators are exponentially bounded) and use Trotter-Kato Approximation theorem to show the convergence.

First Trotter-Kato Approximation Theorem.

(Trotter 1958, Kato 1959). Let $(T(t))_{t\geq 0}$ and $(T_n(t))_{t\geq 0}$, $n\in\mathbb{N}$, be strongly continuous semigroups on X with generators \mathcal{A} and \mathcal{A}_n , respectively, and assume that they satisfy the estimate

$$||T(t)||, ||T_n(t)|| \le Me^{wt}$$
 for all $t \ge 0, n \in \mathbb{N}$,

and some constants $M \geq 1$, $w \in \mathbb{R}$. Take \mathcal{D} to be a core for \mathcal{A} and consider the following assertions.

- (a) $\mathcal{D} \subset \mathcal{D}(\mathcal{A}_n)$ for all $n \in \mathbb{N}$ and $\mathcal{A}_n x \to \mathcal{A} x$ for all $x \in \mathcal{D}$.
- (b) For each $x \in \mathcal{D}$, there exists $x_n \in \mathcal{D}(\mathcal{A}_n)$ such that $x_n \to x$ and $\mathcal{A}_n x_n \to Ax$.
- (c) $R(\lambda, \mathcal{A}_n)x \to R(\lambda, \mathcal{A})x$ for all $x \in X$ and some/all $\lambda > w$.
- (d) $T_n(t)x \to T(t)x$ for all $x \in X$, uniformly for t in compact intervals.

Then the implications

$$(a) \implies (b) \iff (c) \iff (d)$$

hold, while (b) does not imply (a).

A "Taylor" expansion of stochastic Koopman operator

By applying Itô's formula to both $f(X_t)$ and $\mathcal{A}f(X_t)$, we can derive a "Taylor expansion" for $\mathbb{E}[f(X_t)]$ as in (3).

First, we apply Itô's formula to $f(X_t)$:

$$f(X_t) = f(x) + \int_0^t (\mathcal{A}f)(X_s) \, ds + \int_0^t f'(X_s) \, \sigma(X_s) \, dW_s.$$

Next, we treat $\mathcal{A}f$ as a function and apply Itô's formula to $\mathcal{A}f(X_s)$:

$$(\mathcal{A}f)(X_t) = (\mathcal{A}f)(x) + \int_0^t [\mathcal{A}(\mathcal{A}f)](X_s) \, ds + \int_0^t (\mathcal{A}f')(X_s) \, \sigma(X_s) \, dW_s.$$

Then, we substitute this expression for $\mathcal{A}f(X_t)$ back into the formula for $f(X_t)$:

$$f(X_t) = f(x) + \int_0^t (\mathcal{A}f)(X_s) \, ds + \int_0^t f'(X_s) \, \sigma(X_s) \, dW_s$$

= $f(x) + \int_0^t \left[(\mathcal{A}f)(x) + \int_0^s [\mathcal{A}(\mathcal{A}f)](X_u) \, du + \int_0^s (\mathcal{A}f')(X_u) \, \sigma(X_u) \, dW_u \right] ds$
+ $\int_0^t f'(X_s) \, \sigma(X_s) \, dW_s.$

After rearranging terms, we have:

$$f(X_t) = f(x) + (Af)(x) t + \int_0^t \int_0^s [A(Af)](X_u) \, du \, ds + \int_0^t \int_0^s (Af')(X_u) \, \sigma(X_u) \, dW_u \, ds + \int_0^t f'(X_s) \, \sigma(X_s) \, dW_s.$$

Taking expectations on both sides and noting that the stochastic integrals have zero mean (assuming appropriate integrability conditions), we get:

$$\mathbb{E}[f(X_t)] = f(x) + (\mathcal{A}f)(x) t + \int_0^t \int_0^s \mathbb{E}\left[\mathcal{A}(\mathcal{A}f)(X_u)\right] du \, ds.$$

The double integral term represents the accumulated effect of the higher-order derivatives of f over time. To understand its order, consider that if $\mathbb{E}\left[\mathcal{A}(\mathcal{A}f)(X_u)\right]$ is bounded by some constant M, then:

$$\left| \int_0^t \int_0^s \mathbb{E} \left[\mathcal{A}(\mathcal{A}f)(X_u) \right] du \, ds \right| \le M \int_0^t \int_0^s du \, ds = M \int_0^t s \, ds = M \frac{t^2}{2}.$$

This shows that the double integral is of order $O(t^2)$ when t is small. Therefore, for small t, the expected value simplifies to:

$$\mathbb{E}[f(X_t)] = f(x) + (\mathcal{A}f)(x)t + O(t^2). \tag{7}$$