

Statistical Network Analysis WiSe 2022/2023

Prof. Dr. Ingo Scholtes Chair of Informatics XV University of Würzburg

Exercise Sheet 04

Published: November 23, 2022 Due: December 1, 2022 Total points: 10

1. Molloy-Reed model

(a) Given a random microstate generated based on the configuration model with degree distribution P(k), consider a random node v and follow a random edge to a neighbor of w of v. What is the probability that node w has degree k?

1P

(b) Using the expression obtained above compute the expected degree of the neighbors a random node v. What do we see when we calculate the difference between the expected degree of a random node and the expected degree of a random neighbor of such a node?

2P

(c) Often rather than the degree of a node at the end of an edge we are interested in the number of edges attached to the node *other* than the one we arrived through. This number is called the *excess degree* of a node and will play an important role in the coming lectures. What is the probability that the node at which you arrive has *excess degree* k?

2P

2. Friendship Paradox and Generating Functions

(a) Consider a random network with a given log-normal degree distribution with parameters μ and σ . Use the Molloy-Reed model to generate microstates from this statistical ensemble and calculate the difference between the mean degree $\langle k \rangle$ and the mean neighbour degree $\langle k_n \rangle$. How does a change of parameters μ and σ influence $\langle k_n \rangle$ compared to $\langle k \rangle$?

2P

(b) Consider a number sequence $\{a_k\}_{k=0}^{\infty}$. We call a power series

3P

$$F_0(x) := \sum_{k=0}^{\infty} a_k x^k$$

a generating function of the sequence $\{a_k\}_{k=0}^{\infty}$. Consider the sequence $\{b_k\}_{k=0}^{\infty}$ with

$$\{b_k\}_{k=0}^{\infty} := \{a_0, 0, a_2, 0, a_4, 0, a_6, \ldots\}$$

Specify a function $F_1(x)$ that generates $\{b_k\}_{k=0}^{\infty}$, where F_1 is an expression in terms of $F_0(x)$. Hint: Consider the sequence generated by $F_0(-x)$.