மொநட்டுவை பல்கலைக்கழக பொறியியற் பீட தமிழ் மாணவர்கள் நடாத்தும் க.பொ.த உயர்தர மாணவர்களுக்கான 7

முன்னோடிப் பரீட்சை - 2016

Jல்தேர்வு விடைத்தாள் / M C Q Answer Sheet

இரசாபனவியல்

<u>പ</u>ിത_ക

02

பாடமும் பாட எண்ணும் Subject and Subject No

(5) (m) (7) (21)

(5)

4

0

(11)

(5)

4

(1) (2) (3)

(01)

(2) Θ (41)

4

(m)

(1) (2) (3)

(31)

(42)

(5)

4

000

(32)

(5)

4

(m)

0

(22)

(5)

(m)

(2)

0

(12)

(5)

(m)

(2)

0

(05)

(0)

0

(43)

(5)

4

(m)

 Θ

(33)

(5)

4

(7)

0

(23)

(5)

(m)

(2)

0

(13)

(5)

4

(m)

 \odot

(03)

(5)

(5)

4

(5)

4

 \odot

0

(34)

(5)

4

(m)

(7)

(24)

(5)

4

(%)

 Θ

(14)

(5)

4

(2)

0

8

0

(42)

(5)

(m)

(2)

 Θ

(35)

(5)

4

(m)

(7)

(25)

(5)

(m)

(2)

0

(12)

(5)

4

(m)

(2)

(02)

(2)

(46)

(5)

4

(m)

(2)

(36)

(5)

(m)

(7)

0

(26)

(5)

<u>4</u>

 \odot

0

(16)

(5)

(m)

(2)

 Θ

(90)

(7)

 Θ

(47)

(5)

4

(m)

 \odot

(37)

(5)

4

(m)

(2)

(27)

(5)

4

(m)

(2)

(17)

(2)

4

0

 \odot

(07)

(2)

0

(48)

4

(m)

(2)

 Θ

(38)

(5)

4

(m)

0

(28)

(5)

4

(2)

0

(18)

(5)

(m)

(2)

0

(80)

 Θ

(60)

(20)

(5)

(m)

4

(33)

(1) (2)

(40)

(m)

000

(5)

(m)

(5) 4

(2) Θ

(30) (1) (2)

(62)

(5)

4

(5) 4

(m) (2)

0

(19)

(20)

(5)

0

(10)

4 (m)

(m) (2) (2)

OIAS BSc.(Hons), Spl.in Chem

S.Sathiyanathan BSc, Dip.in Edu

AMILS 2018

Examination Committee E-Tamils 2018 Mora

பகுதி ${f A}$ - அமைப்புக்கட்டுரை அனைத்து வினாக்களிற்கும் விடை அளிக்குக.

)1. (a	ı) பின்வருவனவற்றை அடைப்புக்குள் குறிம் ஒழுங்குபடுத்துக.	ப்பிடப்பட்டுள்ள	இயல்புகள்	அதிகரிக்கும்	வரிசைக்கேற்ப
	i. H, Si, C, Br (மின்னெதிர்த்தன்மை)				
	Si		C	<br< td=""><td></td></br<>	
	ii. Li, B, Cl, F (இலத்திரன் நாட்டசக்தி)				
	B < Li		. F	<cl< td=""><td></td></cl<>	
	iii. SCl ₂ , SF ₂ , SF ₄ , SF ₆ (பிணைப்பு நீளம்)				
	SF_2 $<$ SF_4		SF ₆	<scl<sub>2</scl<sub>	
	iv. K ₂ CO ₃ , MgCO ₃ , (NH ₄) ₂ CO ₃ , CaCO ₃ (பிர	ரிகை வெப்பம்)			
	$(NH_4)_2CO_3$ < $MgCO_3$	< CaO	CO ₃	$<$ K_2CO_3	3
	v. NO ₂ -, SO ₂ , SO ₃ , CO ₂ (பிணைப்புகோணம்))			
	NO_2 $< SO_2$)3	< CO ₂	
	vi. NH ₂ -, OH-, CH ₃ O-, HCO ₃ - (மூல இயல்பு				
	HCO ₃ < OH		Н ₃ О ⁻	< NH ₂	(6x2=12)
	P – i. மூலகங்கள் P, Q, X, Y ஐ இனங்காண்க.	லக்கநு QX ₂ Q Y X ₁ - X ₂ - Y	Y₂P இன் ≗	அடிப்படைக் கட்	டமைப்பு கீழே
	$P. \rightarrow F$, $Q \rightarrow .H$, $X \rightarrow .N$, $Y \rightarrow O$				
	ii. இம்மூலக்கூறுக்கு மிகவும் ஏற்றுக்கொள்ளக				
	Ң :Q: :F-N-N-О: +				
	iii. மேற்கூறிய மூலக்கூறிற்குரிய பரிவுக் க நிலைகளை காரணங்களுடன் குறிப்பிடுக.	கட்டமைப்புகளை	வரைந்து,	கட்டமைப்புகளின <u>்</u>	
	H :Ω: F-N-¼-Ω: ←→ :)	H :Ö: F-N-N=Ö	←→:F-!	4 - Ö: Λ = ἦ - Ö: Λ	
	I,II என்பன உறுதிகூடியன, சம உறுதி III உறுதிகுறைவானது ஏற்றப்பிரிகை அ IV மிகவும் உறுதி குறைந்தது. ஏற்றப்பி அதிக மின்னெதிரான F அணுவில்	உடையன. அதிகம் ரிக்கை அதிகம்	+ F =	μ':ὄ:¯ Ņ-Ŋ-Ŏ:¯	(4x5=20) (3x3=9)
	iv. கீழே அட்டவணையில் தரப்பட்டுள்ள	X1. X2 அணக்க	ടബിൽ		
	1. அணுவைச் சூழவுள்ள இலத்திரன்				
	2. அணுவைச் சூழவுள்ள வடிவம்.	, ,			
	3. அணுவின் கலப்பாக்கம்.				
	4. அணுவைச் சூழவுள்ள பிணைப்ப குறிப்பிடுக	புக்கோணத்தின்	அண்ண ளவா	ர பெறுமானம்	என்பவற்றைக்

	X ₁	X_2
இலத்திரன் சோடிக்கேத்திரகணிதம்	நான்முகி	தளமுக்கோணம்.
வடிவம்	முக்கோண கூம்பகம்	தளமுக்கோணம்.
கலப்பாக்கம்	sp ³	sp ²
பிணைப்புக்கோணம்	1070	1200

	$X_2>X_1$ ஒட்சியேற்ற நிலை X_1 ஐ விட X_2 இல் அதிகம். X_1 ஆனது ${ m sp}^3$ கலப்புநிலை X_2 ஆனது ${ m sp}^2$ கலப்புநிலை $/$ (${ m s}$ இயல்பு X_1 ஐ விட X_2 இல் அதிகம்.)	
	அடைப்பினுள் தரப்பட்டுள்ள சாலகவகை சொற்பதங்களை பயன்படுத்தி தரப்பட்டுள்ள த்தங்களில் உள்ள சாலக வகையினை குறிப்பிடுக.	
•	ன்சாலகம், முனைவில் மூலக்கூற்று சாலகம், உலோகசாலகம், ஓரின அணுச்சாலகம், முனைவு கூற்று சாலகம், பல்லின அணுச்சாலகம்)	
1. (CsCl _(s)	
2. 8	சிலிக்கன் $[\mathrm{Si}_{(\mathrm{s})}]$ ஓரின அணுச்சாலகம்	
3. 9	உலர்பனிக்கட்டி	
4. (Cu	
	சாய்சதுர கந்தகம் . முனைவில் மூலக்கூற்று சாலகம்.	2=10)
ii. £Cy	தரப்பட்டள்ள காபன்சேர்வைகளை கருதுக.	
СППО	ல்டிகைட்டு ($ m H_2CO$), போமிக்கமிலம் ($ m H_2CO_2$), ஒட்சாலிக்கமிலம் ($ m H_2C_2O_4$)	
1.	இவற்றினை கொதிநிலை, அமில இயல்பின் ஏறுவரிசை ஒழுங்கில் தருக. கொதிநிலை போமல்டிகைட் . போமிக்கமிலம் . ஒட்சாலிக்கமிலம	
	அமில இயல்பு பேரமல்டிகைட்டு .< போமிக்கமிலம் .< ஓட்சாவிக்கமிலம்	(4)
2.	இச்சேர்வைகளில் காணப்படும் மூலக்கூற்றிடை கவர்ச்சிவிசை வகைகள் யாவற்றையும் குறிப்பி(டுக.
	போமல்டிகைட்டு இருமுனைவு இருமுனைவு கவர்ச்சி, London கலைவு விசை	
	போமிக்கமிலம் ஐதுசன் பிணைப்பு, London கலைவு விசை	
	ஒட்சாலிக்கமிலம் ஐதரசன் பிணைப்பு, London கலைவு விசை (6x2	2=12)
என்பவர தாக்கம நீருடன்	றும் s தொகுப்பு மூலகம் ஒன்றை தனித்தனியே NaOH நீர்க்கரைசல், HCl நீர்க்கரை ந்நினுள் இடும்போது Y எனும் வாயு வெளியேறியது. X உம் Y உம் சந்று உயர் வெப்பநிலைய மடைந்து Z எனும் காரத்தன்மை உடைய வெண்சேர்வையை விளைவாக்கியது. சேர்வை Z ஆஎ தாக்கமடைந்து வாயு Y ஐ உருவாக்கியது. X இன் குரோமேற் உப்பு அசந்நிக்கமிலத்த	பில் னது
	தில்லை. ஐதான HNO_3 இல் கரைந்து கரைசல் W ஐ விளைவிக்ககூடியது. ம் X ஐ இனங்காண்க.	
	யம் (Ba)	(5)
.W	, Z என்பவற்றின் இரசாயன சூத்திரங்களை தருக. BaCr ₂ O ₇ , Y – H ₂ , Z - BaH ₂ .	
 iii. சேர்சை		(b)

இரசாயன சமன்பாட்ல . 2BaCrO 4.+. 2HNO	_ப்பிற்கு ஐதான HNO₃ சேர்க்கும் போது நடைபெற்ற தாக்கத்திற்கான சமப்படுத்திய நடயும் அவதானத்தையும் குறிப்பிடுக. ₃ → BaCr₂O₁ + Ba(NO₃)₂ +H₂O (10) ரைந்து செம்மஞ்சள் நிறக்கரைசல் பெறப்படும்.				
	(2)				
v. X ஐ NaOH நீர்க்க	ரைசல், HCl நீர்க்கரைசல் இல் தனித்தனியே இடும் போது அக்கரைசல்களின் pH				
இல் ஏற்படும் மாற்றங்	பகளை எதிர்வு கூறுக.				
$NaOH_{(aq)}$ கூடும் \ldots					
HCl _(aq) கூடும்	(4)				
குறிப்பிடுக.	பேற்று உப்பு மருத்துவ பயன்பாட்டில் முக்கியத்துவமானது. அதன் பயன்பாட்டை 'வயிற்றுப்பகுதி) ஐ கதிர்ப்படம் எடுத்தல். (2)				
(b) A Ozz. ÷z.; E oz.	ர பெயரிடப்பட்ட சோதனை குழாய்களில் பின்வரும் சேர்வைகள் அடங்கியுள்ளன.				
•	, , , , , , , , , , , , , , , , , , , ,				
-	முறையில் தரப்படவில்லை.				
H ₂ SO ₄ , AgNO ₃ , CuSo					
மேற்குறிப்பிட்ட சேர்ை	யகளை இனங்காண செய்யப்பட்ட சோதனைகள், அவதானங்கள் கீழே				
அட்டவணையில் தரப்ப	ட்டுள்ளது.				
சேர்வை	சோதனையும் அவதானமும்				
A	$\mathrm{KI}_{(\mathrm{aq})}$ சேர்க்கும் போது வெண்ணிற வீழ்படிவு பெறப்பட்டது.				
В	Na ₂ S ₂ O _{3(aq)} உடன் வெண்ணிற வீழ்படிவு உருவாகிறது. சிறிது நேரத்தில்				
	கறுப்பு நிறமாக மாறியது.				
С	PCl ₅ உடன் வெண்புகையை உருவாக்கியது.				
D	ஐதான HCl உடன் கபிலவாயுவை வெளியேற்றுகிறது.				
Е	நீர் சேர்க்க ஜெலாற்றின் போன்ற வெண்வீழ்படிவையும் துர்நாற்ற மணமுள்ள வாயுவும் தோன்றும்.				
	ரயான சேர்வைகளை இனம் காண்க.				
A CuSO ₄	_				
$D \dots Ba(NO_2)_2 \dots$	E Al₂S₃ (5x5=25)				
" .					
•	றரயான ஒவ்வொரு சேர்வைகளினதும் சோதனைகளிற்கான தாக்கத்தின் சமன்செய்த				
சமனபாடுகளை தருக	s. வீழ்படிவுகள் உருவாக்கப்படின் $$ எனும் குறியீட்டை பாவிக்கவும்.				
A 2CuSO _{4(aq)}	$+4KI_{(aq)} \rightarrow 2CuI \downarrow +I_2 + 2K_2SO_4$				
$\begin{array}{ccc} B & & Na_2S_2O_{3(aq)} \\ & & Ag_2S_2O_3 \rightarrow \end{array}$	$ \begin{array}{c} \text{Na}_2\text{S2}\text{O}_{3(aq)} + 2\text{Ag}\text{NO}_{3(aq)} \to \text{Ag}\text{S2}\text{O}_3 \downarrow + 2\text{Na}\text{NO}_3 \\ \text{Ag}_2\text{S2}\text{O}_3 \to \text{Ag}_2\text{S} + \text{SO}_3/\left(\text{Ag}_2\text{S2}\text{O}_3 + \text{H}_2\text{O} \to \text{Ag}_2\text{S} + \text{H}_2\text{SO}_4\right) \end{array} $				
C	$SO_4 \rightarrow SO_2Cl_2 + 2POCl_3 + 2HCl$				
	$_{0}+2HCl_{(ag)}\rightarrow BaCl_{2}+NO+NO_{2}+H_{2}O$				
E Al2S3(s) + 6I	$H_2O \rightarrow 2Al(OH)_3 \downarrow + 3H_2S$ (6x5=30) (3x2=6)				

03. (a) நியம கலமல் மின்வாயையும் நியம குளோரின் மின்வாயையும் கொண்டுருவாக்கப்பட்ட மின் இரசாயனக் கலமொன்றின் அமைப்பு கீழே தரப்பட்டுள்ளது. (அம்புக்குறி காட்டும் திசையில் இலத்திரன் பாய்ச்சல் நடைபெறுகின்றது.)

உப்புப்பாலம் கலத்தின் அடிப்படையில் கீழே தரப்பட்டுள்ள வினாக்களுக்கு விடை தருக. i. A - E ஐ இனங்காண்க. பொருத்தமான இடங்களில் பௌதீகநிலை, செறிவு, அமுக்கம் என்பவற்றைத் தருக. A – Hg(). B- Hg₂Cl_{2(s)}/ (கலமல்) C- Pt கம்பி $D - Cl^{-}(aq, 1moldm^{-3})$ E- $Cl_{2(g, 1atm)}$ (5x6=30) ii. இரு அரைக்கலங்களையும் இணைப்பதற்கு முன்னர் மின்வாய்களில் நிலவிய மின்வாய் சமநிலைகளைத் தருக. iii. கலத்தாக்கத்தைத் தருக. $2Hg_{(1)} + Cl_{2(g)} \rightarrow Hg_2Cl_{2(s)}$(6) iv. கலத்தின் நியமக் கலக்குறியீட்டைத்தருக. $Hg_{(1)}/Hg_2Cl_{2(s)}//Cl_{(aq,1moldm}^{-3})/Cl_{2(g)}/Pt_{(s)}$(6) m v. கலத்தாக்கத்திற்குரிய கிப்ஸின் சக்திமாற்றம் $m \Delta G^{ heta}$ ஆனது பின்வரும் சமன்பாடு மூலம் தரப்படலாம். $\Lambda G^{\theta} = -nFE^{\theta}$ ஈடுசெய்த கலத்தாக்கத்தில் சம்பந்தப்படும் இங்கு என்பது இலத்திரன்களின் மூல் எண்ணிக்கையாகும். (ஒட்சியேற்றி, தாழ்த்திகளிடையே பரிமாற்றப்பட்ட இலத்திரன்களின் மூல் எண்ணிக்கை) F –பாடே மாறிலி ($F = 96500 \text{ Cmol}^{-1}$) E^{θ} –கலத்தின் மின்னியக்க விசையாகும். இக்கலத்தாக்கத்துடன் சம்பந்தப்பட்ட சுயாதீன சக்திமாற்றம் -212.3kJmol⁻¹ எனின் கலத்தின் நியம மின்னியக்கவிசையைக் கணிக்க. $\Delta G = -nEE^{\theta}$. -212.3×10³ Jmol⁻¹(3) $-2 \times 96500 cmol^{-1}$(3)

	vi.	நியம குளோரின் மின்வாயின் மின்னியக்க விசை $E^{\theta}_{\mathrm{Cl}_{2(\varrho)}/\mathrm{Cl}_{(aq)}} = +1.36\mathrm{V}$ எனின் நியம கலமல் மின்வாயின்
		மின்னியக்க விசையைக் கணிக்க.
		$\mathbf{E}^{\theta}_{\text{cell}} = \mathbf{E}^{\theta}_{\text{cathode}} - \mathbf{E}^{\theta}_{\text{Anode}} \tag{3}$
		$1.1V = 1.36V - E^{\theta}Hg_{2}Cl_{2(s)}/Hg_{(l)}$ $\therefore E^{\theta}Hg_{2}Cl_{2(s)}/Hg_{(l)} = 0.26V$ (3)
		13 Hg2Cl2(s)/Hg(i) = 0:20 v
(b)		நீரின் அவத்தை வரைபடம் கீழே தரப்பட்டுள்ளது.
		அமுக்கம் (atm)
		↑
		$C \qquad A$
		x
		1
		B Z
		$D \nearrow D $ (10)
		வெப்பநிலை (K)
	i.	நீரின் அவதிவெப்பநிலை என்பதனால் யாது விளங்குகிறீர்.
		நீராவியை . திரவமாக்குவதற்கு . பிரயோகிக்க . வேண்டிய . ஆகக்கூடிய . வெப்பநிலை . ஆகும்
		(5)
	ii.	நீரின் திண்மநிலை, திரவநிலை, ஆவிநிலைகளுக்குரிய பிரதேசங்களை முறையே X,Y,Z என மேலே தரப்பட்ட அவத்தை வரைபடத்தில் குறித்துக்காட்டுக.
		துப்பட்ட அவதுவது வணிபடத்துல் குநுத்துவள்ட்டும்.
	iii.	நீரின் மூன்று பௌதீக நிலைகளும் ஒருங்கே சமநிலையில் காணப்படுவதற்கான வெப்பநிலை,
		அமுக்கம் என்பவற்றைக் குறிப்பிடுக.
		வெப்பநிலை 273.16 K
		அமுக்கம் <u>0,006 atm</u> (8)
	1V.	மேலே நீர் குறிப்பிட்ட அமுக்கத்தை விட குறைந்த அமுக்கப்பெறுமதியில் பனிக்கட்டியின் வெப்பநிலை உயர்த்தப்படுமெனின் அதன் பௌதீகநிலையில் ஏற்படும் மாற்றத்தைக் குறிப்பிடுக.
		திண்மம் ஆவியாகும்.
		(5)
	V.	கோடுகள் BC, BA என்பன 1 atm அமுக்க நிலையை இடைவெட்டும் சந்தர்ப்பத்தின் போதான
		வெப்பநிலைகளை முறையே குறிப்பிடுக.
		BC 273.15K
		BA 373.15K (8)
		(O)

- 04. (a) $A,\,B,\,C,\,D,\,E$ என்பன $C_{10}H_{14}O$ எனும் மூலக்கூற்று சூத்திரத்திற்கமைவான ஐந்து, பென்சீனின் ஒரு பிரதியீட்டு சேர்வைகளாகும். D,E என்பன நீரற்ற $ZnCl_2$, செறிந்த HCl உடன் உடனடி கலங்கலை தரும் அதேவேளை A, B, C என்பன மிக மந்தமாக கலங்கலை தருகின்றது. B, D என்பன மாத்திரம் திண்ம சமபகுதிய தோற்றப்பாட்டினை வெளிக்காட்டுகின்றன. B ஐ நீரகற்றிவரும் விளைவிற்கு Br₂/CCl₄ ஐ சேர்த்து பின் எதனோல்/KOH ஐ பயன்படுத்தி ஐதரோ அலசன் அகற்றலுக்கு உட்படுத்தும் போது பெறப்படும் விளைவு F ஆனது $NH_3/AgNO_3$ உடன் வெண்வீழ்படிவை கொடுத்தது. $A,\,C$ என்பன PCC / CH_2Cl_2 உடன் ஒட்சியேற்றப்படுகையில் முறையே G,H ஐ விளைவுகளாக தருகின்றன. G ஆனது கார ஊடகத்தில் தன் ஒடுங்கலிற்கு உட்படும் எனிலும் H அவ்வாறு தன் ஒடுங்கல் அடைவதில்லை.
 - A, B, C, D, E, F, G, H ஆகிய சேர்வைகளின் கட்டமைப்புகளை கீழே உள்ள பெட்டிகளில் வரைக.

ii. G ஆனது ஐதான NaOH ஊடகத்தில் தன் ஒடுங்கல் அடைந்து உருவாகும் விளைவின் கட்டமைப்பை CH₂CH₂-(O) (7)

 $\frac{\text{HgSO}_4/\text{dil.H}_2\text{SO}_4}$ ு விளைவு P 2,4-DNPH ு விளைவு Qiii. ${
m F}$ உடன் மேற்கொள்ளப்பட்ட தாக்கத்தொடரில் உருவாகும் விளைவு ${
m Q}$ இன் கட்டமைப்பை கீழே வரைக. NO_2

இந்நிரலில்
எதனையும்
எழுதுதல்
ஆகாது.

- iv. E இல் நீரகற்றலை மேற்கொண்டு உருவாகும் விளைவு,

 - b. உமது விடைக்கான காரணத்தை தருக? இரட்டை பிணைப்பு உள்ள C அணுவில் ஒரே மாதிரியான கூட்டங்கள் இரண்டு காணப்படல்
- (b) i. 1 தொடக்கம் 5 வரையான தாக்கங்கள் ஒவ்வொன்றிலும் உள்ள தாக்கியும் சோதனைப்பொருளும் கீழே உள்ள அட்டவணையில் தரப்பட்டுள்ளன. ஒவ்வொரு தாக்கத்திற்குரிய வகைகளையும் [கருநாட்டகூட்டல் (A_N), மின்நாட்டகூட்டல் (A_E), கருநாட்ட பிரதியீடு (S_N), மின்நாட்ட பிரதியீடு (S_E), நீக்கல் (E)] மற்றும் பிரதான விளைபொருளையும் உரிய பெட்டிகளில் எழுதுக.

	தாக்கி	சோதனைப்பொருள்	தாக்க வகை	பிரதான விளைபொருள்
1	CH ₂ I	$H - C \equiv C^- Na^+$	Sn	$CH_2 - C \equiv C - H$
2	$\begin{matrix} O \\ \parallel \\ CH_3-C-CH_3 \end{matrix}$	HCN / KCN	$\mathbf{A}_{\mathbf{N}}$	OH CH3 - C - CH3 CN
3	(CH ₃) ₂ CHCHBrCH ₃	C ₂ H ₅ OH / KOH	E	CH_3 $C = C$ CH_3
4	O'Na ⁺	CH₃COCl	Sn	O-C-Cl
5	CN	FeCl ₃ / Cl ₂	SE	9 z
6		Br ₂ / CCl ₄	AE	⊖ _{Br}

(6x2=12) (6x3=18)

ii. வினா b(i) இல் தாக்கம் (6) இற்கான பொறிமுறையை கீழே எழுதுக.

Answers				
05) a)	i)	$\Box H^{\Box} \Box \Box \Box H^{\Box}_f \qquad \Box \Box \Box H^{\Box}_f$	- 06 -	
		விளைவுகள் தாக்கிகள்	- 03 -	
		$\square \square 111kJmol^{\square} \square (\square)\square 3 \square \square 75kJmol^{\square} \square \square 242kJmol^{\square} \square$		
		$\square206kJmol^{\square}$	- 02+01 -	
	••		0.6	
	ii)		- 06 -	
		விளைவுகள் தாக் கிகள் $\square 198 k Jmol^{\square} \square 181 k Jmol^{\square} \square 3 \square 186 k Jmol^{\square} \square 189 k Jmol^{\square}$	- 03 -	
		$\square 216kJmol^{\square 1}$	- 02+01 -	
	iii)	தாக்கம் நடைபெறுவதற்கு		
		$\Box G \Box O$	- 02 -	
			- 06 -	
		$\Box H^{\Box}\Box T.\Box S^{\Box}\Box O$	- 03 -	
		$T \Box \frac{\Box H^{\Box}}{\Box S^{\Box}}$		
		17	02	
		$T \Box \frac{206 \Box 10^3 \textit{Jmol}^{\Box 1}}{216 \textit{Jmol}^{\Box 1} \textit{K}^{\Box 1}}$	- 02 -	
		$T \square 953.7K$	- 02+01 -	
	iv)	இங்கு பயன்படுத்தப்பட்ட $\Box H, \Box S$ என்பன நியம நிபந்தனைகளுக்குரி	ியவையாக இருத்தல். - 10 -	
b)	i)	$1) \qquad P_{\mathit{NH}_{3(g)}} \ \Box \ P_{\mathit{HCl}_{(g)}} \ \Box \frac{8 \Box 10^4 \mathit{Nm}^{\Box 2}}{2}$	- 02 -	
		$\Box 4\Box 10^4 Nm^{\Box 2}$	- 02+01 -	
		$\mathit{Kp} \ \Box \ P_{\mathit{NH}_{3(g)}} \ \Box \ P_{\mathit{HCl}_{(g)}}$	- 02 -	
		$\Box \boxed{4}\Box 10^4 Nm^{\Box 2} \boxed{^2}$		
		$\Box 1.6\Box 10^9 N^2 m^{\Box 4}$	- 02+01 -	

	பிரிகையடைந் த $\ nNH_4Cl_{(s)} \ \square \ nNH_{3(g)}$	- 01 -
	$PV \square nRT$	- 02 -
	$n \square rac{PV}{RT}$	
2.	$ \frac{4 \square 10^4 Nm^{\square 2} \square 4.157 \square 10^{\square 3} m^3}{8.314 \operatorname{Jmol}^{\square 1} K^{\square 1} \square 300 K} $	- 03 -
	$\Box rac{0.4}{6} mol$	- 02+01 -
	\square எடுக் கவேண் டிய $\mathit{nNH}_4\mathit{Cl} \ \square \ \dfrac{0.4}{6}\mathit{mol}$	
	$W_{NH_4Cl} \Box \frac{0.4}{6} mol \Box 53.5 gmol^{\Box l}$	- 03 -
	$\Box 3.57g$	- 02+01 -
	$P_{N\!H_{3(g)}} \ \Box \ P_{H_4S_{(g)}} \ \Box \ rac{6 \Box 10^4 Nm^{\Box 2}}{2}$	- 02 -
	$\square 3 \square 10^4 Nm^{\square 2}$	- 02+01 -
	$\mathit{Kp} \ \Box \ P_{\mathit{NH}_{3(g)}} \ \Box P_{\mathit{H}_2S_{(g)}}$	- 02 -
	ii) 1. $\square \boxed{3} \square 10^4 Nm^{\square 2} \stackrel{?}{\square}$	
	$\Box 9\Box 10^8 N^2 m^{\Box 4}$	- 02+01 -
	பிரிகையடைந் த $\mathit{nNH}_4\mathit{HS}_{(\mathrm{s})} \sqcup \mathit{nH}_2\mathit{S}_{(g)}$	- 01 -
	$PV \ \square \ nRT$	- 02 -
	$n \square rac{PV}{RT}$	02
	2. $\Box \frac{3\Box 10^{4} Nm^{\Box 2} \Box 4.157\Box 10^{\Box 3} m^{3}}{8.314 \mathrm{Jmol}^{\Box 1} K^{\Box 1} \Box 300 K}$	- 03 -
	$\square 0.05 mol$	- 02+01 -
	$nHH_4Cl \square 0.05mol$	
	$W_{{ extit{NH}_4 extit{HS}}} oxdot 0.05 mol oxdot 51 gmol^{oxdot}$	- 03 -
	$\Box 2.55g$	- 02+01 -

iii) 1.	$NH_{4Cl} \xrightarrow{\longleftarrow} NH_{3(g)} \square HCl_{(g)} P_1 P_1$	- 05 -	
	$NH_4HS_{(s)} \xrightarrow{\longrightarrow} NH_{3(g)} \square H_2S_{(g)}$ $P_2 \qquad P_2$	- 05 -	
	சமநிலை 1 இல் $\mathit{Kp}_1 \square P_1 \square P_2 P_1$		
	சமநிலை 2 இல் $\mathit{Kp}_2 \square P_1 \square P_2 P_2$		
	$P_1 \square rac{\mathit{K} p_1}{P_1 \square P_2}$	- 03 -	
	$P_2 \ \Box rac{\mathit{K} p_2}{P_1 \ \Box \ P_2}$	- 03 -	
	$P_1 \square P_2 \square \square Kp_1 \square Kp_2$	- 03 -	
	$P_1 \square P_2 \ \square \ \sqrt{Kp_1 \square Kp_2}$		
	$\Box \sqrt{16\Box 10^8 N^2 m^{\Box 4}} \Box 9\Box 10^8 N^2 m^{\Box 4}$	- 02+01 -	
	$N\!H_3$ இன் பகுதியமுக்கம் $\Box5\Box10^4N\!m^{\Box 2}$	- 02+01 -	
2.	$P_2 \ \Box rac{\mathit{Kp}_2}{\mathit{P}_1 \ \Box \ \mathit{P}_2}$	- 03 -	
	$\square \frac{9 \square 10^8 N^2 m^{\square 4}}{5 \square 10^4 N m^{\square 2}}$	- 03 -	
	$\Box 1.8 \Box 10^4 Nm^{\Box 2}$	- 02+01 -	
	பிரிகையடைந் த $\mathit{nNH}_4\mathit{HS} \ \square \ \mathit{nH}_2\mathit{S}$		- 01 -
	$nH_2S \square \frac{1.8\square 10^4 Nm^5}{8.314 Jmc}$	$\frac{12 \Box 4.157 \Box 10^{\Box 3} m^3}{24 \Box 1 K^{\Box 1} \Box 300 K}$	- 03 -
	$\Box 0.03mol$		- 02+01 -
	பிரிகையடைந் த $\mathit{nNH}_4\mathit{HS} \ \square \ 0$	$.03mol \square 51gmol^{\square 1}$	- 03 -
	□1.5	53 <i>g</i>	- 02+01 -
	\Box பிரிகையடையாது காணப்படும் $W_{_{N\!H_{_4}H}}$	$_{S}$ \square 2.55 \square 0.53 g	
		$\Box 1.02g$	- 02+01 -
			50

06. a)

 $=10+\log 3$

=10.4771

25

- 02 -

06. b)

1) i)
$$K_D = \frac{[NH_3]_{\tilde{\mathfrak{g}}\tilde{\mathfrak{g}}}}{[NH_3]_{\mathcal{A}}}$$

- 05 -

ii)
$$NH_{3(aq)} \square HCl_{(aq)} \square NH_4Cl_{(aq)}$$

- 02 -

நீர்ப்படை

தேவைப்பட்ட
$$nHCl \square 1moldm^{\square 3} \square \frac{6}{1000}dm^3$$
 - 01 -

 $\Box 6\Box 10^{\Box 3} mol$ - 02+01 -

$$\Box \ nNH_3: nHCl \ \Box 1:1$$
 - 01 -

$$\square \ \textit{nNH}_3 \ \square \ 6 \ \square 10^{\square 3} \textit{mol} \qquad \qquad -02 + 01 \ -$$

சேதனப்படை A

தேவைப் பட் ட
$$\ nHCl \ \Box \ 0.5 mold m^{\Box 3} \ \Box \frac{5}{1000} \ dm^3$$
 - 01 -

 $\square 2.5 \square 10^{\square 3} mol$

$$\square \ \textit{nNH}_3 \ \square \ 2.5 \square 10^{\square 3} \textit{mol} \qquad \qquad -02 + 01 \ -$$

$$\square \ \, K_{\scriptscriptstyle D} \ \square \frac{[\mathrm{NH}_3]_{\mathrm{ph}}}{[\mathrm{NH}_3]_{\scriptscriptstyle \mathcal{A}}}$$

$$\frac{6 \Box 10^{\Box 3} mol / 25 \Box 10^{\Box 3} dm^{3}}{2.5 \Box 10^{\Box 3} mol / 25 \Box 10^{\Box 3} dm^{3}} - 03+01 - 03+$$

$$K_D \square 2.4$$
 - 05 -

iii) மெதையில் செம்மஞ்சள்

செம்மஞ்சளிலிருந்து சிவப்பாக மாறும். - 02 -

or

மெதையில் சிவப்பு

மஞ்சளிலிருந்து சிவப்பாக மாறும்.

[^]2) i) <u>சேதனப்படை</u>

தேவைப் படும்
$$nHCl \square 0.5moldm^{\square} \square 12.5 \square 10^{\square} dm^3$$
 – 03 – $\square 6.25 \square 10^{\square} mol$ – 02+01– $\square nNH_3: nHCl \square 1:1$ – 01 –

$$\square \ nNH_3 \square 6.25 \square 10^{\square 3} mol \qquad -02+01-$$

$$\Box K_D \Box \frac{[\mathrm{NH}_3]_{\tilde{\mathfrak{M}}}}{[\mathrm{NH}_3]_{\tilde{\mathcal{A}}}} - 01 -$$

$$2.4 \square \frac{x \ moldm^{\square 3}}{6.25 \square 10^{\square 3} \ mol/25 \square 10^{\square 3} \ dm^{3}} - 03 -$$

$$x \square 0.6 moldm^{\square 3}$$

$$\square$$
 சுயாதீன $\[NH_3\]_{\bar{\mathfrak{g}}\bar{\mathfrak{g}}}\] \square \, 0.6 moldm^{\square 3}$ - $02+01$ -

ii) மொத்த
$$nNH_3$$
 $\square 3moldm^{\square 3}$ $\square 50$ $\square 10^{\square 3}$ dm^3 -03 - $02+01$ -

$$\square$$
 சிக்கலினுள் உள்ள nNH_3 \square y என்க.

$$y \square 0.15 \square \bigcirc 0.6 moldm^{\square 3} \square 100 \square 10^{\square 3} dm^{3} \square 6.25 \square 10^{\square 3} mol \square 8 \bigcirc$$

$$\square 0.15 \square [0.06 \square 0.05]$$

$$y \Box 0.04mol.$$
 - 02+01 -

$$\square$$
 சிக்கல் $\mathbb{C}u(NH_3)_4$ $\square \frac{0.04mol}{100\,\square 10^{\square 3}\,dm^3}$ $\square \frac{1}{4}$ - 03 -

$$\square \ 0.1 moldm^{\square 3} \qquad \qquad -02+01 \ -$$

iii)
$$Kc \square \frac{\mathbb{C}u(NH_3)_4\mathbb{C}_{(aq)}^2}{\mathbb{C}u_{(aq)}^2\mathbb{C}NH_{3(aq)}} \stackrel{4}{\mathbb{C}}$$
 - 05 -

$$1\square 10^{12} mol^{\square 4} dm^{12} \square \frac{0.1 moldm^{\square}}{x \ moldm^{\square 3} \square (0.6 moldm^{\square 3})^4} - 02 -$$

$$x \square \frac{1 \square 10^{\square 13}}{0.1296} moldm^{\square 3}$$

$$\Box 7.716 \Box 10^{\Box 13} moldm^{\Box 3}$$
 - 02+01 -

c) i) எதனோல் < பீனோல்

- 05 -

ii)
$$CH_3CH_2OH \square H_2O \Longrightarrow CH_3CH_2O^{\square} \square H_3O^{\square}$$

 $C_6H_5OH \square H_2O \Longrightarrow C_6H_5O^{\square} \square H_3O^{\square}$

எதனோல் சார்பாக எதொக்சைட்டு அயனின் உறுதியைக் காட்டிலும் பீனோல் சார்பாக பீனொக்சைட்டு அயனின் உறுதி அதிகமானதால், மேற்படி எதனோலை விட பீனோலின் சமநிலைக்கான சமநிலைப்புள்ளி அதிகளவு வலதுபுறம் நகர்ந்து காணப்படும். - 10 -

பீனொக்சைட் அயன் அதன் எதிர் ஏற்றத்தை பரிவுறுவதன் மூலம் ஓரிடப்பாடற்று பென்சீன் வளையத்திற்குப் பரப்பி இருக்கும். இவ்வாறு ஏற்றத்தைப் பரப்புதல் எதொக்சைட்டு அயனில் நடைபெறமாட்டாது.

iii) 1) பீனோலில் ஒட்சிசன் அணுவின் தனிச்சோடி இலத்திரன்கள் பென்சீன் வளையத்துடன் ஓரிடப்பாடந்று காணப்படுவதனால் C-O பிணைப்பு பகுதி இரட்டைப் பிணைப்பு உடையதாகவும் அதனால் பிணைப்பு குறுகியதாகவும் உறுதியாகவும் காணப்படும். - 10 -

2) பீனைல் கற்றயன் உறுதியற்றது. . . கருநாட்ட பிரதியீட்டு தாக்கங்களில் ஈடுபடாது. - 05 -

08) a) i) $A \square Co(NO_3)$ -10- $B \square MnCl_2$ ii) $P \square CoS$ $Q \square CrO_2Cl_2$ $R \square CrO_4^{2\square}$ $S \square MnO_4^{\square}$ **-**5□4=20 iii) Сэпъюм (2) $8Al \square 5OH^{\square \square} \square 3NO_3^{\square} \square 2H_2O \square \square 8AlO_2^{\square} \square 3NH_3$ சோதனை (5) $Cr_2O_7^{2\square}\square 6H^{\square}\square 4Cl^{\square}\square \square 2CrO_2Cl_2\square 3H_2O$ சோதனை (8) $2Mn^{2\square}$ \square $5PbO_2$ \square $4H^{\square}$ \square \square $2MnO_4^{\square}$ \square $5Pb^{2\square}$ \square $2H_2O$ *-* 7□3=21 *-*Or (வேறுவிதமாக பொருத்தமான சமன்பாடுகள்) - 10 b) i) Cl ii) -1, 0, +1, +3, +5, +7iii) $+1 - Cl_2O$ $+3 - Cl_2O_3$ $+5 - Cl_2O_5$ *-* 10□2=20 *-*+7 - Cl₂O₇ - 09 iv) Cl₂O₄, Cl₂O₆, Cl₂O₅ v) $2ClO_2 + 2NaOH \square NaClO_3 + NaClO_2 + H_2O$ -10c) 1) $Fe_{(s)} \square 2H_2SO_4 \square \square FeSO_{4(aq)} \square 2H_{2(g)}$ $Ni_{(s)} \square 2H_2SO_4 \square \square NiSO_{4(aa)} \square 2H_{2(g)}$ $Sn_{(s)} \square 2H_2SO_4 \square \square SnSO_{4(aa)} \square 2H_{2(g)}$ $Fe_{(aa)}^{2\square} \square 2OH^{\square} \square \square Fe(OH)_{2(s)}$ $Ni_{(qq)}^{2\square} \square 2OH^{\square} \square \square \text{Ni}(OH)_{2(s)}$ $Sn_{(aa)}^{2\square} \square 2NaOH \square \square Na_2SnO_2 \square 2H^{\square}$ $Cr_2O_7^{2\square} \square 14H^{\square} \square 6Fe^{2\square} \square \square \square 2Cr^{3\square} \square 6Fe^{3\square} \square 7H_2O$ $Cr_2O_7^{2\square} \square 14H^{\square} \square 3Sn^{2\square} \square \square \square 2Cr^{3\square} \square 3Sn^{4\square} \square 7H_2O$ -18- $2HgCl_2 \square Sn^{2\square} \square \square \square Hg_2Cl_{2(s)} \square Sn^{4\square} \square 2Cl^{\square}$ Or (வேறுவிதமாக பொருத்தமான சமன்பாடுகள்) ii) Hg_2Cl_2 இன் மூலத்திணிவு $\square\,200\,\square\,2\,\square\,35.5\,\square\,2$ $\square 471 gmol^1$ -02 + 01 - $\Box \ Hg_2Cl_2 \ \Box \frac{0.471g}{471gmol^{\Box 1}}$ -02+01- $\Box 1\Box 10^{\Box 3} mol$

$nHg_2Cl_2: nSn^{2\square} \square 1:1$	- 01-
\square $nSn^{2\square} \square 1\square 10^{\square 3} mol$	- 02+01-
$\mathit{Sn}^{\scriptscriptstyle 2\square}, \mathit{Fe}^{\scriptscriptstyle 2\square}$ உடன் தாக்கமடையத் தேவைப்பட்ட $\square \mathit{K}_{\scriptscriptstyle 2}\mathit{Cr}_{\scriptscriptstyle 2}\mathit{O}_{\scriptscriptstyle 7} \ \square \ 0.05 \mathit{moldm}^{^{\square}}$ [$\Box 40 \Box W^{\Box 3} dm^3$
$\Box 2 \Box 10^{\Box 3} mol$	- 02+01-
\square $25cm^3$ இனுள் உள்ள $\mathit{nSn}^{2\square} \square 1 \square 10^{\square}\mathit{mol}$	
$\square \ nSn^{2\square}: nCr_2O_7^{2\square} \square 3:1$	- 01-
\square $Sn^{2\square}$ உடன் தாக்கிய $\mathit{Cr}_2O_7^{2\square} \ \square \ {1\over 3} \ \square 10^{\square} \mathit{mol}$	- 02+01-
\square $Fe^{2\square}$ உடன் தாக்கிய $nK_2Cr_2O_7$ \square 2 \square $1/3$ \square 10 \square mol	
$\Box \frac{5}{3}\Box 10^{\Box 3}mol$	- 02+01-
$nK_2Cr_2O_7: nFe^{2\square} \square 1:6$	- 01-
$\square \ nFe^{2\square} \square \frac{5}{3} \square 6 \square 10^{\square 3} mol$	
$\Box 1\Box 10^{\Box 2} mol$	- 02+01-
\square $500cm^3$ இனுள் இருந்த $nFe^{2\square}$ $\square \frac{1\square 10^{\square 2}mol}{25cm^3}\square 500cm^3$	
$\square 0.2 mol$	- 02+01-
\square கலப்புலோகத் தில் காணப்பட்ட $nFe \ \square \ 0.2mol$	
$\square \ \textit{WFe} \ \square \ 0.2 \textit{mol} \ \square 56 \textit{gmol}^{\square}$	
$\Box 11.2g$	- 02+01-
\square Fe இன் திணிவு சதவீதம் $\square rac{11.2g}{20g}\square 100$	
□ 56%	- 02+01-
	Max = 150

09.	a)		
1.	i)	மூலப்பொருள் - பிறைன் கரைசல் / செறிந்த NaCl	-02-
		பக்கவிளைபொருட்கள் - H2, Cl2	-04-
	ii)	அனோட் :- $\ 2Cl_{(aq)}^{\scriptscriptstyle \square} \ \square \ \ Cl_{2(g)} \ \square 2e$	
		கதோட் :- $2H_2O_{(l)}\square2e\square\squareH_{2(g)}\square2OH_{(aq)}^\square$	-04-
	iii)	அனோட் - Ti	-02-
		${ m Ti}$ ஆனது ${ m Cl}_2$ உடன் உயர்வெப்பநிலையிலேயே தாக்கமடையும்.	
		∴ மின்பகுப்பின் போது தாக்கமடையும்.	-01-
		கதோட் - Ni	-02-
		Ni ஆனது H2 உடன் தாக்கமடைவதில்லை.	
		கதோட்டறையில் உருவாகும் NaOH உடனும் தாக்கமடைவதில்லை.	-02-
	iv)	தனக்கு குறுக்கே நேரயன்களை மட்டும் உட்புகவிடுவதன் மூலம் தூய NaOH உ வழிவகுத்தல்	_ருவாவதற்கு
		கதோட்டறையும் அனோட்டறையும் பிரிப்பதன் மூலம் OH^\square அயன்களும் Cl_2 உம் தா	க்கி
		$\mathrm{OCl}^{^{\square}}, \mathrm{C10}_3^{^{\square}}$ உருவாகுவது தடைசெய்யப்படும். Cl_2 இந்கும் H_2 இந்கும் ஆன தாக்கத்தை தடைசெய்யும்.	- 06-
	v)	$H_2 \square Cl_2 \square \square \square 2HCl$	
		$CaCO_3 \square \square \square CaO \square CO_2$	
		$CaO \square 3C \square \stackrel{ ext{definition}}{ ext{definition}} \stackrel{ ext{definition}}{ ext{definition}} CaC_2 \square CO$	
		$CaC_2 \square 2H_2O \square \square Ca(OH)_2 \square C_2H_2$	
		$C_2H_2 \square HCl \square \square CH \square CH_2$	
		Ċl	
		$CH \square CH_2 \square \stackrel{TiCl_1}{\square} \square \qquad \begin{bmatrix} \square CH \square CH_2 \square \\ C1 \end{bmatrix} $	
		C1 $C1$ In	-0602=12-

2.	i)	மூலப்பொருட்கள் - CO ₂ , NH ₃	- 04 -				
		சுண்ணாம்புக்கல்லை வெப்பப்படுத்தி $ m CO_2$ பெறப்படும்.	- 01 -				
		ஏபர் முறை மூலம் NH_3 பெறப்படும்.	-01-				
	ii)	$2NH_{3(g)} \square CO_{2(g)} \square \stackrel{180 \square 210^{0}}{150} \square NH_{2} \square COONH_{4}$	-01+02-				
		NH_2 \square $COONH_4$ \square தொழற்படும் பிரிகையாக்கிகளினூடாக செலுத்தப்படும் \square $CO(NH_2)_2$ \square H_2O	-01+01-				
		யூரியாக் கரைசல் 🗆 ஆவியாக்கூல் மூலம் 🔲 யூரியா பளிங் கு					
		and product and angular	-01+01-				
	iii)	உயர் நைதரசன் சதவீதம் இருத்தல்.					
		மண் அமிலத்தன்மை அடையாது.					
		நீருடன் தாக்கி $\mathrm{CO}_2,\mathrm{NH}_3$ ஆக பிரிகையுறுவதால் நிலத்தடி நீரை மாசாக்கம்	செய்யாது.				
		பயன்படுத்தும் உபகரணங்கள் அரிப்படையாது.	- 02 -				
		(ஏதாவது 2)					
b)	i)	SO_2, SO_3, NO_2, NO	- 08 -				
	ii)	எரிமலை வெடிப்பு					
		உயிர்சுவட்டு எரிபொருட்களின் தகனம்					
		உலோக சல்பைட்டுகளில் இருந்து உலோகப்பிரித்தெடுப்பு					
		சேதனப்பதார்த்தங்களின் உயிரியல் பிரிந்தழிவு					
		மின்னல் செயற்பாடு					
		எஞ்சின்களின் அகத்தகன வெளியேற்றுகை	- 08 -				
		(ஏதாவது 4)					
1							

iii)	$SO_{2(g)} \square H_2O_{(l)} \Longrightarrow H_2SO_{3(aq)}$		
	$H_2SO_{3(aq)} \square H_2O_{(l)} \Longrightarrow HSO_{3(aq)}^\square$	$\Box H_3 O^\Box_{(aq)}$	
	$HSO_{3(aq)}^{\square} \square H_2O_{(l)} \Longrightarrow SO_{3(aq)}^{2\square} \square H_2O_{(l)}$	$I_3O_{(aq)}^\square$	
	$SO_{3(g)} \square H_2O_{(l)} \square \square \square H_2SO_{4(aq)}$		
	$2SO_{2(g)} \square 2H_2O_{(l)} \square O_{2(g)} \square \square \square 2N$	$O_{2(g)}$	
	$H_2SO_{4(aq)} \square 2H_2O_{(l)} \square \square SO_{4(aq)}^{2\square} \square$	$\Box2H_3O^{\Box}_{(aq)}$	
	$2NO_{2(g)} \square O_{2(g)} \square \square \square 2NO_{2(g)}$		
	$4NO_{2(g)} \square 2H_2O_{(l)} \square O_{2(g)} \square \square 4H_2O_{(l)}$	$INO_{3(\mathrm{ag})}$	
	$HNO_{3(aq)} \square \square\!\!\square H^{\square}_{(aq)} \square NO^{\square}_{3(aq)}$		- 09 □2 =18-
iv)	குறைந்தளவு அமில நிலைமைகளின் கீ	į.	7, —
Ź	$CaCO_3.MgCO_{3(s)} \square 2H_{(aq)}^{\square} \square \square CO_{3(s)}$	$Ca_{(aq)}^{2\square} \square Mg_{(aq)}^{2\square} \square 2HCO_{3(aq)}^{\square}$	- 05 -
	அதிகளவு அமில நிலைமைககளின் கீழ்		
	$CaCO_3.MgCO_{3(s)} \square 4H^{\square}_{(aq)} \square \square \square C$	$a_{(aq)}^{2\square} \square Mg_{(aq)}^{2\square} \square 2CO_{2(g)} \square 2H_2O_{(l)}$	- 05 -
v)	தாவரங்களைச் சேதப்படுத்தும்.		
	நீர்நிலைகளில் உள்ள மீன்களை இறக்க	ந் செய்கின்றன.	
	உலோக அரிப்பு ஏற்படல்.		
	சுண்ணாம்புக் கல்லால் ஆன கட்டுமானா	ப்கள் சேதமடைகின்றன.	
	நீரின் வன்மை அதிகரிக்கின்றது.		- 06 -
		(எவையேனும் 3)	
-::\	No. 1 to No. 2		
V1)	$NO_{2(g)} \square \stackrel{h}{\square} \square NO \square O$	- (1)	
	$NO_{(g)} \square O_{3(g)} \square \square NO_{2(g)} \square O_{2(g)}$	\Box (1)	
	$O_{2(g)} \square \square 2O_{(g)}^{lack}$	\Box (2)	
	$NO_{2(g)} \square O_{(g)}^{\bullet} \square \square NO_{(g)}^{\bullet} \square O_{2(g)}$	$\square(3)$	
	$(1)\square 2\square(2)\square(3)\square 2$		
	$\square \square 2O_{3(g)} \Longrightarrow 3O_{2(g)}$		- 05 □2 = 10 -

(c) i)	CF ₂ =CF ₂ , HOOC - COOH, 2-Methylbuta-1, 3-diene, CH=CH ₂ , HO-CH ₂ CH ₂ -OH
-------	---	--

ii) HOOC O COOH, HO-CH2CH2-OH, HCHO, O-OH

- 09 □3 **=**27**-**

iii)
$$\bigcirc$$
-CH=CH₂

- 03 -

மீள்வரும் அலகு
$$-CH-CH_2-$$

-03-

iv) 2-Methylbuta-1,3-diene இல் காணப்படும் Cis சமபகுதிய கட்டமைப்பால் கூடுதலான குறுக்கு மறுக்காகன சுருளிக்கட்டமைப்பு இருத்தல் - 03 -

v) மீள்வரும் அலகு

-03-

பயன்பாடு :- ஆடைகள் தயாரிப்பு

Fiber Glass தயாரிப்பு

ஒலி நாடாக்களின் தயாரிப்பு

உறுதியான நார்கள் தயாரிப்பு

-01-

(ஏதாவது ஒன்று)

10.	a)							
	i)	X_1 -	FeSO ₄	Y_1 -	CuSO	4		
	ii)					$K_4[Fe(CN)_6]$		
		X_4 -	$\operatorname{Fe_2}(\operatorname{SO_4})_3$		X_5 -	$\operatorname{Fe_4[Fe(CN)_6]_3}$		
						CuI or Cu ₂ I ₂		
		Y ₄ -	[CuCl ₄]SO	4	Z -	BaSO ₄		<i>-</i> 10□4=40 <i>-</i>
	(iii	<i>Y</i> □	$F_{\mathcal{O}}(CN)^{4\square}$	□ herae	rvanido	ferrate(II) ion.		- 05 -
)	-	_			cuprate(II) ior		- 05 -
		<i>1</i> ₄ ⊔	$CuCl_4$		moriao	cuprate(11) for	1.	03
	iv)	a) 2	$Fe_{\epsilon}^{2\Box} \Box H_{2}O_{2}$	$\square 2H^\square$. [□	$Fe_{(aa)}^{3\Box} \Box 2H_2O_{(l)}$		
			(4) = -	(4)		(4)	$[0,1]_{(s)} \square 2K_2SO_{4(aa)}$	
			(-4)	•	(4)		- (-)	-03□5=15-
		0) 2	Or	(1)	u 212	$(s) \square 2\Pi_2 3O_4(aq) \square$	$\exists 2(s)$	03=3 13
		(0)						
		(8	ഖற്വഖിதமான	பொருத்த	மான சட	மனபாடுகள்)		
	v)	கரைச	லின் குறித்த	ക് തവണതെ	வ எடுத்த	தல்		
		ஐதான	т HCl(aq) Сеј	ரத்து H₂S(g) இൈ	ன செலுத்தல்		
		உருவ	ாகும் வீழ்படில	வை வடித்த	பு உலர்பூ	த்தி நிறுப்பதன் டூ	ழலம் CuS இன் தி	ത്തിവെத் துணியலாம்.
		இதன்	மூலம் CuSO	4 இன் செற	ദിതഖத് ട്ല	துணியலாம்		
		வடிதிர	வத்திற்கு செ	றிந்த HNO)₃ சேர்த்	து வெப்பப்படுத்த	நல்	
		மிகை	NH4C1/NH4	OH சேர்த்	தல்			
		உருவ வெப்ப		•	–	மாறாத்திணிவு வத் துணிதல்	பெறப்படும்வரை	உயர்வெப்பநிலைக்கு
		இதன்	மூலம் FeSO4	இன் செறி	ിവെத் ള	துணியலாம்.		- 15 -
								80

		- 25 -					
(b)	1.	$x \square 2, \ y \square 0$			-10-		
	2.	Rate $\Box k = A_{(g)} = B_{(g)}$					
		$3.2 \square 10^{\square 4} moldm^{\square} s^{\square 1} \square k(4.2 \square 10^{\square 4} moldm^{\square})^2 (2.8 \square 10^{\square 3} moldm^{\square})^0 \qquad \square(1)$					
		$R \square k(2.1\square 10^{\square 4} moldm^{\square 3})^2 (2.8\square 10^{\square 3} moldm^{\square 3})^0$		$\square(2)$	- 10 -		
		$(2)/(1) \square R \square \square 2.1 \square^{2} \square 3.2 \square 10^{\square 4} moldm^{\square 5} s^{\square 1}$			- 05 -		
		$\Box 8\Box 10^{\Box 5} moldm^{\Box 3} s^{\Box 1}$			-04+01 -		
	3.	$Rate \square k \square A_{(g)} \square^2$					
		$3.2\square 10^{\square 4} moldm^{\square 3} s^{\square 1} \square k (4.2\square 10^{\square 4} moldm^{\square 3})^2$	\Box (1)				
		$1.28\square 10^{\square 3} moldm^{\square 3} s^{\square 1} \square k(C)^{2}$	□(2)		- 10 -		
		$\binom{(2)}{(1)} \Box C^2 \Box \frac{1.28}{0.32} (4.2)^2 \Box 10^{\Box 8} mol^2 dm^{\Box 6}$			- 05 -		
		$C^2 \square 70.56 \square 10^{\square 8} mol^2 dm^{\square 6}$					
		$C \square 8.4 \square 10^{\square 4} moldm^{\square 3}$			- 04+01 -		
	4.	பரிசோதனை 1 இல்					
		$R \square k[A_{(g)}]^2 [B_{(g)}]^0$					
		$k \square \frac{3.2 \square 10^{\square 4} moldm^{\square 3} s^{\square 1}}{(4.2 \square 10^{\square 4} moldm^{\square 3})^2 \square (2.8 \square 10^{\square 3} moldm^{\square 3})^0}$			- 05 -		
		$k \square 0.1814 \square 10^4 mol^{\square 1} dm^3 s^{\square 1}$					
		$\Box 1.814\Box 10^{3} mol^{\Box 1} dm^{3} s^{\Box 1}$			- 04+01 -		
	5.	ஊக்கியைப் பிரயோகித்தல்					
		வெப்பநிலையை மாற்றுதல்			- 10 -		
					80		