- Análise de Algoritmos
- Pode-se determinar se um algoritmo é o mais eficiente utilizando duas abordagens:
 - Análise Empírica: comparação entre os programas;
 - Análise Matemática: estudo das propriedades dos algoritmos;

- Análise de Algoritmos
- Análise empírica:
 - Avalia o custo de um algoritmo já implementado e em execução;
 - Logo, é analisado o programa!
 - Considera custos não aparentes;
 - Utilizado para comparar computadores e linguagens;
 - Resultado pode ser injusto.

- Análise de Algoritmos
- Análise matemática:
 - Permite um estudo formal do algoritmo;
 - Considera somente os custos dominantes do algoritmo;
 - A medição do tempo (custo) é feita de maneira independente do hardware ou da linguagem de programação utilizada;
 - Permite compreender o comportamento de um algoritmo à medida que a instância do problema (conjunto de dados de entrada n) cresce.

INTRODUÇÃO

Complexidade

- Considere 5 algoritmos A1, A2, A3, A4 e A5 para resolver um mesmo problema, de complexidades diferentes. (Vamos partir do pressuposto que cada operação leva 1 milissegundo para ser efetuada).
- T(n) é a complexidade, ou seja, o número de operações que o algoritmo efetua para n entradas.

/—	n	A1 T(n) = n	A2 T(n) = nlogn	A3 T(n) = n²	A4 T(n) = n ³	A5 T(n) = 2 ⁿ
	16	0,016s	0,064s	0,256s	4s	1m4s
	32	0,032s	0,16s	1s	33s	46 dias
	512	0,512s	9s	4m22s	1 dia 13 h	10 ¹³⁷ séculos

- Complexidade
- Análise do impacto de um aumento de velocidade sobre alguns algoritmos:
- Algoritmo linear: o tempo de execução é proporcional ao tamanho da entrada. Um problema com tamanho máximo x_1 é resolvido em um computador em um tempo t. Neste caso, um computador dez vezes mais rápido resolverá no mesmo tempo o correspondente a $10x_1$.

- Complexidade
- Análise do impacto de um aumento de velocidade sobre alguns algoritmos:
- Algoritmo quadrático: o tempo de execução corresponde a n^2 para o tamanho da entrada n. Um determinado problema chamado x_3 pode ser resolvido em um tempo t, ou seja, $x_3^2 = t$. Considerando o computador 10 vezes mais rápido, isto é, um tempo de 10t, o tamanho do problema resolvido (y) será:
- $y^2 = 10t : y^2 = 10(x_3)^2 : y = x_3\sqrt{10} : y \approx 3.16x_3$

- Complexidade
- Análise do impacto de um aumento de velocidade sobre alguns algoritmos:
- Algoritmo exponencial: o tempo de execução consiste em 2^n para o tamanho da entrada n. Um determinado problema chamado x_5 pode ser resolvido em um tempo t, ou seja, $2^{x_5} = t$. O computador dez vezes mais rápido terá o volume estabelecido por (y):
- $2^{x_5} = t \ e \ 2^y = 10t \ \therefore \ 2^y = 10.2^{x_5} \ \therefore \ y = log_2 10 + x_5 \ \therefore \ y \cong x_5 + 3.3$

INTRODUÇÃO

Complexidade

Quais são os valores de tamanho máximo para $n^3 e 3^n$, considerando os exemplos anteriores ?

