

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 3703028 A1

⑯ Int. Cl. 4:

H01J 37/28

H 01 J 37/12

H 01 J 37/244

H 01 J 37/153

H 01 J 37/147

// H01L 21/66

⑯ Anmelder:

Siemens AG, 1000 Berlin und 8000 München, DE

⑯ Aktenzeichen: P 37 03 028.0

⑯ Anmeldetag: 2. 2. 87

⑯ Offenlegungstag: 1. 9. 88

⑯ Erfinder:

Rose, Harald, Prof. Dr.; Zach, Joachim, Dipl.-Phys.,
6100 Darmstadt, DE

DE 3703028 A1

⑯ Rastermikroskop

In allen Bereichen der Entwicklung und Fertigung mikro- und optoelektronischer Bauelemente besteht ein steigender Bedarf an hochauflösenden abbildenden Systemen, die eine prozeßnahe Inspektion der mit Hilfe moderner Lithografieverfahren erzeugten Submikrometerstrukturen ermöglichen. Konventionelle Rasterelektronenmikroskope erreichen eine Auflösung von wenigen Nanometern nur bei hohen Beschleunigungsspannungen oberhalb etwa 20 kV, wo Resiststrukturen und Schaltungen geschädigt und nicht- oder schlechtleitende Proben aufgeladen werden. Das erfundungsgemäße Niederspannungs-Rasterelektronenmikroskop (Elektronenendenergie $E_{PE} \approx 0,2$ bis 5 keV) besteht im wesentlichen aus einer Feldemissionsquelle (Q), einer Kondensorlinse (KL), einem Linsensystem (KO) mit mindestens vier 8- oder 12-Polelementen (KE_1 bis KE_4) zur Korrektur der sphärischen und chromatischen Aberrationen des abbildenden Linsensystems (OL), einem im Strahlengang unmittelbar hinter dem Korrektor (KO) angeordneten zweistufigen Ablenkelement (AE) und einer Immersionslinse (OL) mit Mittelelektrode (KS_1) als Objektivlinse. Der Detektor (DT) zum Nachweis der Sekundärelektronen (SE) ist innerhalb der Immersionslinse (OL) angeordnet, deren mittlere und probenseitige Elektrode (KS_1 bzw. KS_2) jeweils kegelstumpfförmig ausgebildet sind. Die probenseitige Elektrode der Immersionslinse (OL) besteht aus einer ringförmigen Blende (RB), in deren Zentralbohrung ein Hohlzylinder (HZ) angeordnet ist. ...

DE 3703028 A1

Patentansprüche

1. Rastermikroskop mit einem Strahlerzeuger (*Q*), einem ersten Linsensystem (*KL*) zur Bündelung eines primären Teilchenstrahls (*PE*), einem zweiten Linsensystem (*OL*) zur Fokussierung des Teilchenstrahls (*PE*) auf eine Probe (*PR*), einem Ablenkelement (*AE*) zur Positionierung des Teilchenstrahls (*PE*) auf der Probe (*PR*) und einem Detektorsystem (*DT*) zum Nachweis der auf der Probe (*PR*) ausgelösten sekundären oder rückgestreuten Teilchen (*SE, RE*), dadurch gekennzeichnet, daß das zweite Linsensystem eine Immersionslinse (*OL*) mit Mittelelektrode (*KE₁*) als Objektivlinse aufweist und daß das Detektorsystem (*DT*) innerhalb der Immersionslinse (*OL*) angeordnet ist.
2. Rastermikroskop nach Anspruch 1, dadurch gekennzeichnet, daß die quellenseitige Elektrode (*RB, HZ*) der Immersionslinse (*OL*) auf einem ersten positiven Potential (*U_s*) liegt und daß die Mittelelektrode (*KS₁*) der Immersionslinse (*OL*) mit einem höheren zweiten positiven Potential (*U_m*) beaufschlagt ist.
3. Rastermikroskop nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die quellenseitige Elektrode (*HZ, RB*) der Immersionslinse (*OL*) auf dem Potential (*U_s*) einer teilchenbeschleunigenden Elektrode (*A*) des Rastermikroskops liegt.
4. Rastermikroskop nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die probenseitige Elektrode (*KS₂*) der Immersionslinse (*OL*) und die Probe (*PR*) auf dem gleichen Potential liegen.
5. Rastermikroskop nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mittelelektrode (*KS₁*) und die probenseitige Elektrode (*KS₂*) der Immersionslinse jeweils kegelstumpfförmig ausgebildet sind.
6. Rastermikroskop nach Anspruch 5, dadurch gekennzeichnet, daß die Mantelfläche der Mittelelektrode (*KS₁*) und der probenseitigen Elektrode (*KS₂*) der Immersionslinse (*OL*) jeweils einen Winkel zwischen 30 und 70 Grad mit der Strahlachse (*OA*) des Rastermikroskops einschließt.
7. Rastermikroskop nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die quellenseitige Elektrode (*RB, HZ*) der Immersionslinse (*OL*), einen konzentrisch zur Strahlachse (*OA*) angeordneten ringförmigen Teil (*RB*) und einen in dessen Bohrung angeordneten, sich in Richtung der Probe (*PR*) erstreckenden Hohlzylinder (*HZ*) aufweist.
8. Rastermikroskop nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Detektorsystem (*DT*) ringförmig ausgebildet und zwischen der quellenseitigen Elektrode (*HZ, RB*) und der Mittellektrode (*KS₁*) der Immersionslinse (*OL*) konzentrisch zur Strahlachse (*OA*) angeordnet ist.
9. Rastermikroskop nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß dem zweiten Linsensystem (*OL*) ein im Strahlengang oberhalb der Immersionslinse (*OL*) angeordnetes, aus mindestens vier Acht- oder Zwölfpolelementen (*KE₁* bis *KE₄*) bestehendes weiteres Linsensystem (*KO*) zur Korrektur der Farb- und Öffnungsfehler des zweiten Linsensystems vorgelagert ist.
10. Rastermikroskop nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das weitere Linsensystem (*KO*) aus fünf Acht- oder Zwölfpolelementen besteht.

- 5 11. Rastermikroskop nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Ablenkelement (*AE*) im Strahlengang zwischen dem weiteren Linsensystem (*KO*) und dem zweiten Linsensystem (*OL*) angeordnet ist.
- 10 12. Rastermikroskop nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Ablenkelement (*AE*) in die quellenseitige Elektrode (*RB, HZ*) der Immersionslinse (*OL*) integriert ist.
- 15 13. Rastermikroskop nach einem der Ansprüche 1 bis 12, gekennzeichnet durch ein zweistufiges Ablenkelement (*AE₁, AE₂*).
- 20 14. Rastermikroskop nach Anspruch 13, dadurch gekennzeichnet, daß der Hohlzylinder (*HZ*) der quellenseitigen Elektrode isoliert angeordnet und in einer Ebene senkrecht zur Strahlachse (*OA*) unterteilt ist und daß der obere und untere Teil des Hohlzylinders (*HZ₁, HZ₂*) jeweils aus vier oder acht Segmenten (*S₁* bis *S₄*) besteht.
- 25 15. Rastermikroskop nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das erste Linsensystem mindestens eine magnetische Linse (*KL*) aufweist.

Beschreibung

Die Erfindung betrifft ein Rastermikroskop nach dem Oberbegriff des Patentanspruchs 1.

Die elektrischen Eigenschaften moderner integrierter mikro- und optoelektronischer Bauelemente wird wesentlich von den geometrischen Abmessungen ihrer Teilsysteme beeinflußt. Die Einhaltung enger Maßtoleranzen ist deshalb insbesondere dann eine unverzichtbare Voraussetzung für die Herstellung funktionsfähiger Bauelemente mit gleichbleibenden physikalisch-elektrischen Eigenschaften, wenn sich die geometrischen Abmessungen der mit Hilfe moderner Lithographieverfahren erzeugten Strukturen im Mikrometer- und Submikrometerbereich bewegen.

In allen Bereichen der Entwicklung und Fertigung integrierter mikro- und optoelektronischer Bauelemente besteht deshalb ein steigender Bedarf an hochauflösenden abbildenden Systemen, die eine prozeßnahe Inspektion der erzeugten Strukturen und deren exakte Vermessung ermöglichen. Als für diese Zwecke besonders geeignet haben sich Rasterelektronenmikroskope herausgestellt, mit denen man Mikro- und Submikrometerstrukturen visuell beurteilen, Fehler und Abweichungen von Sollmustern feststellen und topographische Daten wie Längen, Breiten, Höhen oder Neigungswinkel erfassen und auswerten kann. Bei allen Untersuchungen der Bauelemente im Rasterelektronenmikroskop ist hierbei sicherzustellen, daß Veränderungen des Substrats, wie sie beispielsweise durch Kontaminationen oder Strahlenschäden auftreten können, vermieden werden.

Konventionelle Rasterelektronenmikroskope erreichen eine Auflösung von wenigen Nanometern nur bei hohen Beschleunigungsspannungen oberhalb etwa 20 kV, wo Resiststrukturen und Schaltungen durch die hochenergetischen Elektronen geschädigt und nicht- oder schlechtleitende Oberflächenbereiche der untersuchten Proben aufgeladen werden. Die in der Rasterelektronenmikroskopie übliche Metallisierung der Probe zur Unterdrückung der die Auflösung und die Abbildungsgüte beeinträchtigenden Aufladungen ist für die Untersuchung mikro- und optoelektronischer Bauelemente nicht geeignet, da deren Funktion durch eine auf-

gebrachte Metallschicht gestört oder in unzulässiger Weise verändert würde.

Der Erfahrung liegt die Aufgabe zugrunde ein Rastermikroskop, insbesondere ein Rasterelektronenmikroskop der eingangs genannten Art anzugeben, mit dem hochauflösende Untersuchungen bei niedrigen Strahlenergien durchführbar sind. Diese Aufgabe wird erfundungsgemäß durch ein Rastermikroskop nach Patentanspruch 1 gelöst.

Der mit der Erfahrung erzielbare Vorteil besteht insbesondere darin, daß Teilchensonden mit kleinem Querschnitt auch bei niedrigen Primärenergien erzeugt werden können. Außerdem sind hochauflösende und nahezu aufladungsfreie Untersuchungen nicht- oder schlechtleitender Proben gewährleistet.

Die Ansprüche 2 bis 15 sind auf bevorzugte Ausgestaltungen und Weiterbildungen der Erfahrung gerichtet, die nachfolgend anhand der Zeichnungen näher erläutert wird.

Hierbei zeigt

Fig. 1 den schematischen Aufbau eines erfundungsgemäß Rasterelektronenmikroskopes,

Fig. 2 ein Achtpolelement des Linsensystems zur Korrektur der sphärischen und chromatischen Aberrationen der Objektivlinse des Rasterelektronenmikroskops nach Fig. 1,

Fig. 3a und 3b die Objektivlinse des Rasterelektronenmikroskops mit integriertem Ablenkelement.

Das in Fig. 1 schematisch dargestellte Rasterelektronenmikroskop besteht im wesentlichen aus einem Elektronenstrahlerzeuger, vorzugsweise einer Feldemissionsquelle Q , einer Kondensorlinse KL zur Fokussierung der von der Kathode K emittierten und in Richtung der Anode A beschleunigten Primärelektronen PE in ein auf der Strahlachse OA liegendes Zwischenbild ZP der Elektronenquelle, einem Linsensystem (Korrektor) mit mindestens vier Acht- oder Zwölfpolelementen KE_1 bis KE_4 zur Korrektur der sphärischen und chromatischen Aberrationen der abbildenden Linse, einem im Strahlengang unmittelbar hinter dem Korrektor KO angeordneten zweistufigen Ablenkelement AE mit jeweils zwei über nicht dargestellte Signalgeneratoren angesteuerten zylinder- oder plattenförmigen Strukturen AE_1 und AE_2 und einer elektrostatischen Objektivlinse OL zur verkleinerten Abbildung des Zwischenbildes ZP der Quelle auf die unmittelbar unterhalb der Objektivlinse OL auf einer Halterung angeordneten Probe PR . Als Objektivlinse OL ist eine Immersionslinse mit Mittelelektrode KS_1 vorgesehen, deren auf dem Anodenpotential U_s liegende quellenseitige Elektrode eine ringförmige Blende RB mit einem konzentrisch zur Strahlachse OA angeordneten und sich in Richtung der Probe PR erstreckenden Hohlzylinder HZ aufweist. Erfundungsgemäß sind die als Steuerelektrode wirkende, mit einem variablen positiven Potential U_m ($U_m > U_s$) beaufschlagte Mittelelektrode KS_1 und die auf dem Potential der Probe PR liegende probenseitige Elektrode KS_2 der Immersionslinse OL kegelstumpfförmig ausgebildet und konzentrisch zur Strahlachse OA angeordnet. Um die Probe PR auch in geneigtem Zustand untersuchen und abbilden zu können, schließen die Seitenflächen der sich in Richtung der Probe PR verjüngenden Elektroden KS_1 bzw. KS_2 vorzugsweise einen Winkel α zwischen etwa 30 und 70 Grad mit der Strahlachse OA ein.

Der Detektor DT zum Nachweis der auf der Probe PR von den Primärelektronen PE ausgelösten Sekundärelektronen SE ist in dem gezeigten Ausführungsbeispiel innerhalb der Immersionslinse OL im Raumbe-

reich zwischen der quellenseitigen und der mittleren Elektrode RB/HZ bzw. KS_1 konzentrisch zur Strahlachse OA angeordnet. Er besteht vorzugsweise aus einem ringförmigen elektronensensitiven Teil, der in der Zentralbohrung des Hohlzylinders HZ der quellenseitigen Elektrode der Immersionslinse OL isoliert gehalten ist. Zur Erzielung verschiedener Kontraste ist es zweckmäßig, den Detektor in mehrere Segmente zu unterteilen und die in den einzelnen Segmenten erzeugten Signale in der gewünschten Weise zu kombinieren (z. B. Differenzbildung der in zwei Halbringdetektoren erzeugten Signale oder Unterdrückung eines der Signale). Da der Hohlzylinder HZ auf einem etwas niedrigeren positiven Potential U_s als die Mittelelektrode KE_1 der Immersionslinse OL liegt ($U_m > U_s$), werden insbesondere die unter kleinen Winkeln zur Strahlachse OA laufenden Sekundärelektronen SE in Richtung des Detektors DT abgelenkt und nachgewiesen. Der Hohlzylinder HZ dient außerdem der Abschirmung des primären Elektronenstrahls von der am Detektor DT anliegenden Hochspannung von beispielsweise +10 kV zur Nachbeschleunigung der Sekundärelektronen SE . Als Detektoren DT kommen insbesondere die beispielsweise aus der Veröffentlichung von W. K. Hofkar, Philips Technische Rundschau Nr. 12, 1966, Seite 323 bis 337 bekannten Halbleiterdetektoren in Betracht, deren teilchensenitive Bereiche gegebenenfalls segmentiert aufgebaut und als Metall-Halbleiter- oder p-n-Übergang ausgebildet sind. Selbstverständlich kann man auch Szintillatoren-Lichtleiterkombinationen oder Channel-Plates als Sekundärelektronendetektoren verwenden. Ringförmige Detektoren besitzen gegenüber anderen Detektorkonfigurationen allerdings den Vorteil, daß man nahezu alle der im rotationssymmetrischen elektrischen Feld der Immersionslinse OL von der Probe PR abgesaugten Sekundärelektronen SE erfassen und nachweisen kann.

Das als Korrektor bezeichnete und aus mindestens 4 Acht- oder Zwölfpolelementen KE_1 bis KE_4 bestehende Linsensystem KO ist aus den Veröffentlichungen von H. Rose "Elektronenoptische Aplanate", Optik 34, Heft 3, 1971 Seite 285 bis 311 (siehe insbesondere Seite 308 Fig. 9) und H. Koops "Aberration Correction in Electron Microscopy" 9th International Congress on Electron Microscopy, Toronto 1978, Vol 3, Seite 185 bis 196 (siehe insbesondere Seite 191, Fig. 4) bekannt. Dieses im Strahlengang unmittelbar oberhalb des zweistufigen Ablenkelementes AE angeordnete Linsensystem KO dient der Korrektur der Öffnungs- und Farbfehler der Immersionslinse OL . Eines der Achtpolelemente KE_i ($i=1 \dots 4$) des Korrektors KO ist schematisch in Fig. 2 dargestellt. Es besteht aus acht auf dem Anodenpotential U_s liegenden inneren Polschuhen PI , die durch einen zylinderförmigen Isolator IS von den auf Erdpotential liegenden und mit jeweils einer Erregerspule SP umgebenen äußeren Polschuhen PA getrennt sind. Mit jedem dieser Elemente KE_i werden magnetische Quadrupol- und Oktupolfelder zur Korrektur der Öffnungsfehler der Objektivlinse OL erzeugt. Zur Korrektur ihres Farbfehlers werden elektrische Quadrupolfelder verwendet, die man mit Hilfe eines an den Innenelektroden PI anliegenden Zusatzpotentials in den mittleren Elementen KE_2 und KE_3 des Korrektors KO aufbaut.

Auf das quellenseitige Ablenkelement AE_1 kann verzichtet werden, wenn man innerhalb des probenseitigen Korrektorelementes KE_4 zusätzlich noch elektrische Dipolfelder zur Vorablenkung des Primärelektronenstrahles PE erzeugt.

Vier Acht- oder Zwölfpolelemente KE_1 bis KE_4 rei-

chen zur Korrektur der Öffnungs- und Farbfehler der Immersionslinse OL aus. Die Verwendung von fünf Elementen bietet allerdings zusätzlich die Möglichkeit, auch außeraxiale Fehler der Objektivlinse zu korrigieren. Diese Abbildungsfehler sind in einem erfundungsgemäßen Rasterelektronenmikroskop mit einem zweistufigen Ablenklement AE allerdings vernachlässigbar klein, so daß man auf ein fünftes Korrektorelement i. A. verzichten kann. Da die Öffnungsfehler dritter Ordnung mit den Achtpolelementen KE_1 bis KE_4 korrigierbar sind, begrenzen die mit dem Abstand zwischen dem Korrektor KO und der Objektivlinse OL anwachsenden Öffnungsfehler fünfter Ordnung die Auflösung. Deren Einfluß kann man durch Verwendung zwölfpoliger Elemente im Korrektor KO erheblich reduzieren, ohne die Korrekturen niedrigerer Ordnung zu beeinträchtigen.

Zur weiteren Reduktion des mit dem Abstand zwischen dem Korrektor KO und der Immersionslinse OL anwachsenden Öffnungsfehler fünfter Ordnung wird das zweistufige Ablenklement AE , wie in den Fig. 3a und 3b schematisch dargestellt, erfundungsgemäß in die quellenseitige Elektrode der Immersionslinse OL integriert, indem man den Hohlzylinder HZ isoliert von der ringförmigen Blende RB anordnet, ihn in einer Ebene senkrecht zur Strahlachse OA teilt und den oberen und unteren Zylinderteil HZ_1 bzw. HZ_2 jeweils wieder in vier oder acht Sektoren $S1$ bis $S4$ untergliedert (siehe Fig. 3b). Diese auf dem Anodenpotential U_s liegenden Segmente $S1$ bis $S4$ werden zur Positionierung des Primärelektronenstrahles PE auf der Probe PR bzw. zu dessen zeilenförmiger Ablenkung mit geeigneten Zusatzpotentialen U_x bzw. U_y (Ablenkung in x - bzw. y -Richtung) beaufschlagt. Ein weiterer Vorteil der Integration des Ablenklements in die Immersionslinse OL besteht darin, daß größere Ablenkinkel eingestellt (kleinerer Abstand Ablenklement – Linsenfeld) und damit größere Oberflächenbereiche der Probe PR abgetastet werden können. Da der Primärelektronenstrahl PE in zweistufigen Ablenklementen auch bei großen Ablenkwinkeln um den sogenannten komafreien Punkt der Objektivlinse OL gekippt wird, werden die bei einstufigen Ablenklementen auftretenden außeraxialen Aberrationen (außeraxialer Linsendurchtritt des Strahls) vermieden.

Es ist bekannt, daß sich der Ladungszustand eines von einem Elektronenstrahl abgetasteten Oberflächenbereichs ändert, wenn die den Ladeprozess bestimmende Größe s (s =Ausbeute emittierter Elektronen = mittlere Zahl der pro auftreffenden Primärelektron ausgelöste Sekundär- und Rückstreuerelektronen) von eins abweicht. Aufladungsfreie Untersuchungen nicht- oder schlechtleitender Proben in einem Rasterelektronenmikroskop sind deshalb nur dann möglich, wenn die Energie E_{PE} der Primärelektronen mit der vom Probenmaterial abhängigen Neutralpunktenergie E_{NP} übereinstimmt ($E_{PE} \approx E_{NP} \Rightarrow s(E_{PE}) \approx 1$).

Da die Neutralpunktenergie E_{NP} mit wenigen Ausnahmen im Energiebereich zwischen etwa 0,5 und 4 keV liegt, müssen konventionelle Rasterelektronenmikroskope mit niedrigen Beschleunigungsspannungen betrieben werden. Unter solchen Betriebsbedingungen wird allerdings der kleinste auf der Probe erreichbare Sondendurchmesser im wesentlichen durch den Fokussierung entgegenwirkenden Boersch-Effekt und den axialen Farbfehler der abbildenden Linse begrenzt. So wächst infolge der auf dem gesamten Strahlengang zwischen Quelle und Probe wirkenden Coulomb-Abstoßung zwischen den Elektronen deren räumlicher Ab-

stand und damit der Sondendurchmesser (lateraler Boersch-Effekt). Außerdem führt die Wechselwirkung zwischen den Elektronen in Bereichen hoher Stromdichten, also insbesondere im Elektronenstrahlerzeuger Q und den Strahlüberkreuzungspunkten (z. B. ZP in Fig. 1) zu einer Verbreiterung der Energieverteilung der Primärelektronen PE , was indirekt über den Farbfehler der Objektivlinse ebenfalls zu einer Vergrößerung des Sondendurchmessers führt. Für den die Auflösung bestimmten Sondendurchmesser d auf der Probe gilt hierbei die bekannte Beziehung

$$d = (d_0^2 + d_F^2)^{1/2}$$

wobei d_0 den um die Coulomb-Abstoßung der Elektronen zwischen Strahlerzeuger und Probe (Einfluß des lateralen Boersch-Effektes) erweiterten geometrisch-optischen Sondendurchmesser und d_F den Durchmesser des durch den Farbfehler der abbildenden Linse erzeugten Farbfehlerscheibchens bezeichnet. Die Größe d_F wiederum ist über die Beziehung

$$d_F = 2 C_F \cdot \alpha \cdot \Delta U/U$$

definiert, wobei C_F die Farbfehlerkonstante der abbildenden Linse, α die Strahlapertur, eU die Primärenergie (U =Beschleunigungsspannung, e =Elementarladung) und $e\Delta U$ die Breite der Energieverteilung der Elektronen bezeichnet. Eine weitere Verbesserung der Auflösung des Rasterelektronenmikroskops nach Fig. 1 kann daher insbesondere durch eine Reduktion des lateralen und energetischen Boersch-Effektes im Strahlerzeuger und in der elektronenoptischen Säule erreicht werden. Da der Einfluß des lateralen Boersch-Effektes mit wachsender kinetischer Energie eU abnimmt (Verkürzung der Laufzeit der Elektronen zwischen Quelle und Probe), die Breite der Energieverteilung $e\Delta U$ der Primärelektronen infolge des energetischen Boersch-Effektes aber deutlich zunimmt, sollten die Elektronen den ersten Strahlüberkreuzungspunkt (Quellen-cross over) mit niedriger Energie durchlaufen (kleine relative Energiebreite $e \cdot \Delta U/eU$), um sie anschließend auf hohe Energien zu beschleunigen und erst kurz vor dem Erreichen der Probe auf die gewünschte niedrige Endenergie abzubremsen. Um den nachteiligen Einfluß des Boersch-Effektes auf den Sondendurchmesser in einem erfundungsgemäßen Rasterelektronenmikroskop nach Fig. 1 für Elektronenenergien von 0,2–5 keV zu minimieren, können die Elektroden des Strahlerzeugers K_A und der Objektivlinse OL beispielsweise mit folgenden Potentialen beaufschlagt werden:

Elektronenstrahlerzeuger Q
Kathode K $U_0 = -0,2$ bis -5 kV
Anode A $U_s = +10$ bis $+30$ kV

Immersionslinse	$U_{HZ} = U_{RB} = U_s$
quellenseitige Elektrode	
HZ, RB	
Mittelelektrode KS_1	$U_{KS_1} = 1,1 U_s$ bis $2,5 U_s$
probenseitige Elektrode KS_2	$U_{KS_2} = 0$ V

Probe PR $U_{PR} = 0$ V

Die Erfindung ist selbstverständlich nicht auf die in den Figuren dargestellten Ausführungsbeispiele beschränkt. So kann das Rasterelektronenmikroskop mit weiteren, im Strahlengang oberhalb des Korrektors KO

angeordneten Kondensorlinsen und einem Strahlauftastsystem für stroboskopische Potentialkontrastaufnahmen ausgestattet sein. Es ist auch keineswegs notwendig die Elektrode KS_2 der Immersionslinse OL und die Probe PR auf das gleiche Potential zu legen. Die Primärelektronen können selbstverständlich auch erst außerhalb des Strahlerzeugers Q auf hohe kinetische Energien beschleunigt werden. In diesem Fall liegen der Korrektor KO und die quellenseitige Elektrode HZ, RB der Immersionslinse vorzugsweise auf dem Potential 10 der die Primärelektronen beschleunigenden Elektrodenanordnung.

Zum Nachweis der Rückstreu elektronen RE kann das Rasterelektronenmikroskop noch mit einem zweiten Detektor DR ausgestattet sein, den man, wie in Fig. 1 15 dargestellt, beispielsweise seitlich oberhalb der Probe PR anordnet. Dieser Detektor kann aber auch anstelle des Sekundärelektronendetektors DT innerhalb der Immersionslinse angeordnet werden.

Anstelle der Feldemissionsquelle Q kann man selbstverständlich auch andere strahlerzeugende Systeme verwenden. Als Primär- und Sekundärteilchen kommen beispielsweise auch Ionen und andere geladene Teilchen in Betracht.

Wird in einem erfindungsgemäßen Rastermikroskop 25 ein einstufiges Ablenkelement zur Positionierung des Primärstrahls verwendet, so sollte das die Aberrationen der Immersionslinse korrigierende Linsensystem (KO) aus fünf Acht- oder Zwölfpolelementen bestehen (Korrektur der durch den außeraxialen Linsendurchtritt bedingten Aberrationen).

Anstelle der elektrischen Ablenkelemente können selbstverständlich auch ein- oder zweistufige magnetische Ablenkelemente verwendet werden.

35

40

45

50

55

60

65

3703028

1/3

FIG 1

87 P 8006 DE

14

3703028

2/3

FIG 2

3703028

3/3

FIG 3a

FIG 3b

