CSCE-629 Analysis of Algorithms Network Routing Protocol Project Report

Dongwei Qi 230002618

Part1. Project Description

In graph algorithms, a MBP (Maximum Bandwidth Path) problem is defined as the problem of finding a path between two designated vertices in a weighted graph, maximizing the weight of the minimum-weight edge in the path.

To implement the theoretical knowledge into a real-world practical computer program, this project fulfills the data structures and algorithms listed below:

Random-generated weighted undirected graph
Max heap structure with subroutines for heapsort, insert and delete
UFS(Union Find Set) algorithm for generation of MST(Maximum Spanning Tree)
DFS(Depth First Search) algorithm

Modified Dijkstra's algorithm without heap structure Modified Dijkstra's algorithm using heap structure Modified Kruskal's algorithm using heapsort

Part2. Implementation Details

Experiment Environment

Software:	Visual Studio Code 1.39.2
Language:	Python 3.7.4 64-bit
System:	macOS Mojave 10.14.6
Processor:	1.4 GHz Intel Core i5
Memory:	8 GB 2133 MHz LPDDR3
Graphics:	Intel Iris Plus Graphics 645 1536 MB

Graph Generation

For graph generation, this project fulfills a graph class and returns a graph object, with subroutines for seeking all neighbors of a vertice, get weight between two vertices, get all edges, etc. To avoid using given libraries like networkx, the graph uses a dictionary as a storage to maintain all weighted edges. To make sure the graph is connected, the graph builds with a cycle first and gradually adds edges to it. In order to make sure the edges are generated randomly

enough, the graph will add edges for each vertex until it reaches a certain degree. The weight range of edges is set between 0~1k to make sure the weight is big enough to avoid repetition. When the degree of vertices set as 1000, it is equivalent in terms of building a graph where each vertex is adjacent to about 20% of the other vertices.

Max Heap

The project implemented a max heap structure as components of Dijkstra's algorithm and heapsort subroutine for Kruskal's algorithm.

In Dijkstra's algorithm, the max heap is used as a storage of fringe nodes for the updates of the current best bandwidth.

Kruskal's Algorithm uses heapsort to sort the weighted edges for the generation of the Maximum Spanning Tree.

Modified Dijkstra's Algorithm without using Heaps

```
1. For each v do
     status[v]=unseen
3. For each edge [src,w] do
4.
     status[w]=fringe
     dad[w]=src
5.
     width[w]=weight[src,w]
7. While there are fringes do:
     pick a fringe with the largest width
9.
     status[v]=intree
10.
      for each edge [v,w] do
        if(status[w]=unseen) then
11.
           status[w]=fringe
12.
           dad[w]=v
13.
           width[w]=min{width[v],weight[v,w]}
14.
15.
        elif (status[w]=fringe and width[w]< min\{width[v], weight[v,w]\})
16.
           dad[w]=v;
17.
          width[w] = min\{width[v], weight[v,w]\}
18. return width[dst]
```

Modified Dijkstra's algorithm without heap runs in O(n2) time. Pick the best fringe v runs in O(n) time. Traversing the neighbors of the vertex and then calculating the max capacity takes O(n) in Modified Dijkstra's algorithm without heap, while it takes $O(\log n)$ in Modified Dijkstra's algorithm using heap structure.

Modified Dijkstra's Algorithm using Heaps

For the Modified Dijkstra's Algorithm using Heaps, the difference is that step 8 is fulfilled using max heap structure, thus the time complexity is O(mlogn).

Modified Kruskal Algorithm using Heap

- 1. Sort the edges in non increasing order using heapsort
- 2. For each v do
- 3. dad[v]=v; rank[v]=0
- 4. For i=1 to m do
- 5. Let ei=[vi,wi];
- 6. r1=find(vi)
- 7. r2=find(wi)
- 8. if(r1!=r2):
- 9. ei is added to mst
- 10. Union(r1,r2)
- 11. return the s-t path in mst

Find(v)

- 1. while dad[v]!=v do:
- 2. dad[w]=Find(dad[w])
- 3. return dad[v]

Union(r1,r2)

- 1. if(rank[r1]>rank[r2])
- 2. dad[r2]=r1
- 3. elif(rank[r1]<rank[r2])
- 3. dad[r1]=r2;
- 4. elif(rank[r1]==rank[r2])
- 5. dad[r2]=r1
- 6. $\operatorname{rank}[r1]++$

This algorithm takes O(mlogn) time.

Theoretically, Dijkstra's algorithm without heap takes more time compared to Dijkstra's algorithm with heap and Kruskal's algorithm.

Part3. Experiment Results

Snapshot example:

```
[Running] /usr/local/bin/python3 "/Users/dong/hello/629Project/MainFunction.py"
src: 4315 dst: 117
In sparse graph:
Number of nodes 5000
Number of edges 17876
Average degree of the graph is 7.1504
max bandwidth: 573
The running time of Modified Dijkstra's algorithm without heap structure: 0.20407819747924805
max bandwidth: 573
The running time of Modified Dijkstra's algorithm using heap structure: 0.07362508773803711
max bandwidth: 573
The running time of Modified Kruskal's algorithm using heapsort: 0.40944600105285645

[Done] exited with code=0 in 0.811 seconds
```

For the testing of the project, 5 pairs of graphs are generated and each was test by 5 pairs of random source and destination vertice. All the testing records are maintained in the tables below.

For sparse graph:

Sparse	#vertices	#edges	avg_degree
G1	5000	17816	7.1264
G2	5000	17845	7.138
G3	5000	17857	7.1428
G4	5000	17849	7.1396
G5	5000	17884	7.1536

G1	src	dst	Al1	Al2	Al3
Round1	586	1229	0.56890273	0.278632879	0.39680505
Round2	294	49	0.28299809	0.347150087	0.36382699
Round3	1360	57	0.73659492	0.301295996	0.47113776
Round4	4272	3952	0.62801123	0.401356936	0.38699102
Round5	982	1411	0.64082789	0.380090237	0.39571905
avg_time			0.57146697	0.341705227	0.40289598

G2	src	dst	Al1	Al2	Al3
Round1	4188	276	0.24287391	0.079884052	0.37731886
Round2	3369	1102	0.26848578	0.135657072	0.34605122
Round3	3964	2137	0.67060399	0.343032122	0.36418509
Round4	3648	207	0.08128309	0.055934906	0.3414979

Round5	2716	4692	0.83962297	0.199316978	0.38832426
avg_time			0.42057395	0.162765026	0.36347547

G3	src	dst	Al1	Al2	Al3
Round1	3858	3156	0.11287093162536621	0.09406900405883789	0.42124104
Round2	1552	1118	0.23722600936889648	0.18684101104736328	0.39745998
Round3	4357	4987	1.5460140705108643	0.43166303634643555	0.40153503
Round4	2073	1519	0.1499619483947754	0.05182504653930664	0.39348602
Round5	2700	1479	1.3822247982025146	0.405647755	0.40700793
avg_time			0.42057395	0.197462559	0.38196207

G4	src	dst	Al1	Al2	Al3
Round1	1359	4277	0.588413	0.17408990859985352	0.3745811
Round2	4087	3989	0.1854243278503418	0.3823411464691162	0.40923214
Round3	2071	4654	1.1898810863494873	0.1254439353942871	0.37521791
Round4	4996	1997	0.8218021392822266	0.110689878	0.39970899
Round5	2027	1438	0.03284597396850586	0.024519920349121094	0.40258574
avg_time			0.588413	0.110689878	0.39226518

G5	src	dst	Al1	Al2	Al3
Round1	3583	937	0.13356304168701172	0.023155212	0.39332795
Round2	3836	3719	1.5884060859680176	0.4721949100494385	0.42104602
Round3	550	688	1.465602159500122	0.437347174	0.40068984
Round4	151	1225	0.78125072	0.469072104	0.42035413
Round5	4595	3727	0.5306100845336914	0.338190794	0.38414693
avg_time			0.78125072	0.316941321	0.40391297

For dense graph:

Sparse	#vertices	#edges	avg_degree
G1	5000	3088903	1235.5612
G2	5000	3088561	1235.4244
G3	5000	3089675	1235.87
G4	5000	3088798	1235.5192
G5	5000	3089416	1235.7664

G1	src	dst	Al1	Al2	Al3
Round1	2679	4865	4.68225288	1.40020895	112.589328
Round2	1969	4840	0.27909493	4.72043705	114.239219
Round3	3016	4714	0.47347307	5.334584	114.063201
Round4	2616	3364	2.20565915	3.78967237	111.678135
Round5	3136	67	1.65641284	4.38189888	112.544042
avg_time			1.85937858	3.92536025	113.022785

G2	src	dst	Al1	Al2	Al3
Round1	2192	2946	0.38618803	2.15917206	105.609204
Round2	2531	4657	4.79877901	5.18606997	113.792888
Round3	3823	324	2.8475101	4.47613001	119.668766
Round4	2466	4891	4.38554478	6.40479779	113.409705
Round5	3073	3854	0.23593497	5.01296473	112.117572
avg_time			2.53079138	4.64782691	112.919627

G3	src	dst	Al1	Al2	Al3
Round1	4785	3306	1.38714814	4.4269979	110.24452
Round2	3279	3863	1.85592985	3.44314122	117.79631
Round3	3034	4179	2.98675299	6.17442203	115.365446
Round4	3580	371	3.69705701	3.54680991	114.675608
Round5	1146	4397	3.13789296	5.21577215	118.461519
avg_time			2.61295619	4.56142864	115.308681

G4	src	dst	Al1	Al2	Al3
Round1	3749	2734	3.35522795	2.30962181	119.057939
Round2	661	4787	1.76219797	5.51570415	119.379579
Round3	625	1555	4.65791821	5.55546904	100.045111
Round4	4234	386	4.8010211	4.01666093	107.632783
Round5	4279	359	3.53140473	5.4268496	112.21418
avg_time			3.62155399	4.56486111	111.665919

G5	src	dst	Al1	Al2	Al3
Round1	4530	2399	2.02332902	2.30998588	115.010392
Round2	4866	2422	1.41840482	4.30468702	114.199901

Round3	4972	2384	0.24075913	5.92626619	100.031824
Round4	96	875	0.23407817	5.64327717	117.272001
Round5	4720	156	1.0872128	4.37782598	107.552492
avg_time			1.00075679	4.51240845	110.813322

Part4. Performance Analysis

avg_time(s)	Al1	Al2	Al3
Sparse Graph	0.556455717	0.2259128	0.38890233
Dense Graph	2.325087385	4.44237707	112.746067

Theoretically, these algorithms should run on faster on sparse graph than in dense graph. And the experiment results corresponds with that.

Analysis and Discussion

From the test data above, we can see that the running time for each algorithm differs from each other. While in the sparse graph, the contrast of running time is not that obvious. However, in the dense graph, although Kruskal's algorithm and Dijkstra's algorithm using heap have same time complexity, the traversing of the 2,500,000+ edges made it much slower than expected due to the density of the graph.

Based on different situations, the algorithms all have their own advantage. For example, Kruskal's algorithm enables generating an MST for once and then we can use it to search for any path in the future. Dijkstra's algorithm has better performance facing the condition when we only need to find one single path between source and destination vertices.

Further Improvements

In this project, the graph structure is completed using dictionary structure, which is better in search and operations compared with the adjacent matrix as it takes O(1) time for basic operations.

I think there's still some improvements can be done in using the max heap structure, more various subroutines should be implemented for more convenient operations.

Further Research

Professor Chen mentioned that we can use the 2-3 tree structure to improve the performance of sorting and searching for the best fringe node in Dijkstra's algorithm.

Also if we put Divide-and-Conquer thought into building the MST and execute certain operations like Prim's algorithm or other more efficient algorithms, we can greatly reduce the scale of the problem in the dense graphs and then lower the time complexity into linear time.

Project Source Code

Source code is pushed on https://github.com/tomatoJr/629project