修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性 —低階数・低次元の場合—

氏名: 奥田 堯子

本修士論文では、小林俊行氏による次の \mathfrak{h} 射影の有界性に対する予想1 を、G の実階数やH の次元が低い場合に証明した (\mathfrak{h} 射影の定義や記号は後述する).

予想 1 (by T. Kobayashi)

 $Y(\mathbf{R} X)$ は $\mathfrak{h} \cap \mathfrak{p}$ で有界である $\iff [X_1, X_2] \neq 0$ であるか $X_1 = 0$ である.

ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に沿った $X\in\mathfrak{p}$ の分解とする.

この論文の基本設定は以下の通りである.

記号と定義

- G を非コンパクト実半単純 Lie 群, H を G の Cartan 対合 Θ に対する非コンパクトな実 半単純部分 Lie 群とする.
- $\mathfrak{g} := \operatorname{Lie} G$, $\mathfrak{h} := \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta := d\Theta$ による Cartan 分解とする.
- e_G を G の単位元とし、 $o_K := e_G K \in G/K$ とする.
- B(-,-)を \mathfrak{g} の Killing 形式とし、 $\mathfrak{h}^{\perp} \cap \mathfrak{p} := \{W \in \mathfrak{p} \mid B(Y,W) = 0, \forall Y \in \mathfrak{h} \cap \mathfrak{p}\}$ とする.

本修士論文の主題である $X \in \mathfrak{p}$ の \mathfrak{h} 射影 $Y(X) \in \mathfrak{h} \cap \mathfrak{p}$ は, 次の定理 2 により $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義される.

定理 2 [Kob89, Lemma 6.1]

 π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z \cdot o_K \in G/K$ は上への微分同相である.

図示すると Y(X) を,「 $e^X \cdot o_K$ から $e^{\mathfrak{h} \cap \mathfrak{p}} \cdot o_K$ に下ろした垂線の足」であり, $Y(\mathbf{R} X)$ が有界であるか否かという問いは,幾何的には「 $e^{tX} \cdot o_K$ から $e^{\mathfrak{h} \cap \mathfrak{p}} \cdot o_K$ に下ろした垂線の足の $t \in \mathbf{R}$ での和集合が有界であるか」という問に対応する.

予想 1 の大本は、実簡約 Lie 群 G とその閉部分群 H に対する G の正則表現 $L^2(G/H)$ について Plancherel 測度の台を求めることを目標とした [Ber88] にある.

[Ber88] の内容を不正確ながらまとめると次の通りである; G/H が eH を中心とする radial function r に対して「 \mathbf{R}^d と同じ増大度」を持つとき,G/H のランクが d であると言い,G の既約ユニタリ表現 V が $L^2(G/H)$ の既約分解に出現する必要条件は,非自明な G-絡作用素 $\alpha\colon (C_c(G/H))^\infty\to V$ が存在し, α の「双対」を $\beta\colon V^\infty\to C(G/H)^\infty$ とすると,任意の $v\in V^\infty$, d'>d に対して $\int_{G/H}\left|\beta(v)(x)(1+r(x))^{-d/2}\right|^2dx<\infty$ なることである.

ここで G が G=KAH という Cartan 分解を持つときに,G/H がランク $d:=\dim A$ となる可能性がある条件の 1 つを $X\in\mathfrak{a}$ に対する \mathfrak{h} 射影 $Y(\mathbf{R}|X)$ の有界性として定式化することがで

きる. これが本修士論文の背景である.*1

以下では (G, H) がどのような場合に、どのような証明方法でを示したかを具体的に述べる.

G が実階数 1 の場合の予想 1 の証明方針は $G=SU(1,2),\ H=SO(1,1)$ の場合の証明がトイモデルとなっている.

 $G=SU(1,2),\ H=SO(1,1)$ の場合の証明は背理法による。具体的には次のとおりである;例えば $X\in\mathfrak{p}\setminus\mathfrak{h}$ に対して $Y(\mathbf{R}\,X)$ が非有界,より具体的に Y(tX)=s(t)Y, $s(t)\to\infty$, $t\to\infty$ のとき, $G/K\simeq\{(z_1,z_2)\in\mathbf{C}^2\mid |z_1|^2+|z_2|^2<1\}$ であることを用いて $e^{Y(tX)}e^{Z(tX)}\cdot o_K$ を計算すると,任意の $\varepsilon>0$ に対して,ある t_ε が存在して $e^{Y(t_\varepsilon X)}e^{Z(t_\varepsilon X)}\cdot o_K$ と o_K を結ぶ測地線が $e^{Y(t_\varepsilon X)}\cdot o_K$ と o_K を結ぶ測地線が o_K でなす角が ε 未満となる.これは X と $\mathfrak{h}\setminus\{0\}$ のなす角度 が非零であることに矛盾し,予想 1 と同値な X=00 $X\in\mathfrak{p}\setminus\mathfrak{h}\iff Y(\mathbf{R}\,X)$ が有界」であることが言える.

これを踏まえてGが実階数1の場合の証明には次の一般論を用いた.

定義 3 [Ebe72a, Definition 1.3]

M が完備かつ非正曲率をもつ 1-連結 Riemann 多様体であるとき,M を Hadamard 多様体といい,Hadamard 多様体 M が visibility manifold であるとは, $\forall p \in M, \forall \varepsilon > 0$ に対し,ある $r(p,\varepsilon)>0$ が存在して,測地線 $\gamma\colon [t_0,t_1]\to X$ が $d_M(p,\gamma(t))\geq r(p,\varepsilon)$, $\forall t\in [t_0,t_1]$ ならば, $\angle_p(\gamma(t_0),\gamma(t_1))\leq \varepsilon$ であることである.

M が visibility manifold であるとは,幾何的に見れば *2

定理 4 [BH99, p. 296, 9.33 Theorem], originally [Ebe72b, Theorem 4.1]

 $\exists C \subset M \text{ s.t. } M = \bigcup \{f(C) \mid f \in \text{Isom}(M)\}$ なる Hadamard 多様体 M に対し、次は同値である.

- (i) M は visibility manifold である.
- (ii) 全測地的な部分 Riemann 多様体 $M' \subset M$ で \mathbf{R}^2 と等長同型なものが存在しない.

ここで Riemann 対称空間は Hadamard 多様体であり、定理 4 の (ii) は G の実階数が 1 以下であることと同値である。 したがって G の実階数が 1 の場合 G/K は visibility manifold であり、 $G=SU(1,2),\ H=SO(1,1)$ の場合の証明と全く同様にして背理法により予想 1 が示される。

G が実階数 1 の Lie 群の積である場合も,成分ごとに見れば G の実階数が 1 の場合と同様である.*3

 $^{^{*1}}$ 「」部分は 正確に定式化する予定です & もうすこしちゃんと [$\mathbf{Ber88}$] を復習します. 2022/01/10

^{*2} 図をつけようと思っています. 2022/01/10

 $^{^{*3}}$ 今から示します. 2022/01/10

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999
- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), Vol. 95, pp. 492–510, 1972
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, pp. 151–70, 1972
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490-1, 1997, pp. 37-54