

Unit - II 2.3 Mesh Analysis

Dr.Santhosh.T.K.

Progress Through Quality Education

Tool chest

Syllabus

UNIT – II 14 Periods

DC Circuit Analysis: Voltage source and current sources, ideal and practical, Kirchhoff's laws and applications to network solutions using mesh analysis, - Simplifications of networks using series- parallel, Star/Delta transformation, DC circuits-Current-voltage relations of electric network by mathematical equations to analyse the network (Superposition theorem, Thevenin's theorem, Maximum Power Transfer theorem), Transient analysis of R-L, R-C and R-L-C Circuits.

AC Steady-state Analysis: AC waveform definitions - Form factor - Peak factor - study of R-L - R-C -RLC series circuit - R-L-C parallel circuit - phasor representation in polar and rectangular form - concept of impedance - admittance - active - reactive - apparent and complex power - power factor, Resonance in R-L-C circuits - 3 phase balanced AC Circuits

Progress Through Quality Education

• A resistance R is connected in series with a parallel circuit comprising two resistor 12 Ω and 8 Ω respectively. The total power dissipated in the circuit is 70 W. When the applied voltage is 22 volts. Calculate the value of R.

Practice Problem

 Determine the effective resistance of the series-parallel combination shown in the figure. Also, find the current, voltage and power dissipated in each of the resistor in the given circuit.

Progress Through Quality Education

Practice Problem

Find the load current in the given circuit (Use KVL). KVL \Rightarrow loops \Rightarrow loo

Progress Through Quality Education

Mesh/Loop Analysis

- Loop analysis is developed by applying KVL around loops in the circuit
- Loop (mesh) analysis results in a system of linear equations which must be solved for unknown currents

Progress Through Quality Education

7

Summing Circuit

• The output voltage V of this circuit is proportional to the sum of the two input voltages V_1 and V_2

- 1. Identify mesh (loops).
- 2. Assign a current to each mesh.
- Apply KVL around each loop to get an equation in terms of the loop currents.
- 4. Solve the resulting system of linear equations for the mesh/loop currents.

Progress Through Quality Education

ç

- 1. Identify mesh (loops).
- 2. Assign a current to each mesh.
- Apply KVL around each loop to get an equation in terms of the loop currents.
- 4. Solve the resulting system of linear equations for the mesh/loop currents.

Progress Through Quality Education

-11

2. Assigning Mesh Currents

- 1. Identify mesh (loops).
- 2. Assign a current to each mesh.
- 3. Apply KVL around each loop to get an equation in terms of the loop currents.
- Solve the resulting system of linear equations for the mesh/loop currents.

Progress Through Quality Education

13

Voltages from Mesh Currents

$$+$$
 R
 I_1

$$V_R = I_1 R$$

$$+$$
 V_R I_2 R I_2

$$V_R = (I_1 - I_2) R \rightarrow \text{mesh} 1$$
 $V_R = (I_2 - I_1) R \leftarrow \text{mesh} 2$

3. KVL Around Mesh 1

Progress Through Quality Education

15

3. KVL Around Mesh 2

Progress Through Quality Education

16

- 1. Identify mesh (loops).
- 2. Assign a current to each mesh.
- Apply KVL around each loop to get an equation in terms of the loop currents.
- 4. Solve the resulting system of linear equations for the mesh/loop currents.

Progress Through Quality Education

12

Matrix Notation

 The two equations can be combined into a single matrix/vector equation

$$I_1 2k\Omega - I_2 1k\Omega = V_1$$
$$-I_1 1k\Omega + I_2 2k\Omega = -V_2$$

$$\begin{bmatrix} 1k\Omega + 1k\Omega & \bigcirc 1k\Omega \\ \bigcirc 1k\Omega & 1k\Omega + 1k\Omega \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ -V_2 \end{bmatrix}$$

4. Solving the Equations

Let: $V_1 = 7V$ and $V_2 = 4V$ Results:

$$I_1 = 3.33 \text{ mA}$$

 $I_2 = -0.33 \text{ mA}$

Finally

$$V_{out} = (I_1 - I_2) \text{ 1k}\Omega = 3.66\text{V}$$

Practice Problem

Determine the power dissipation in the 4Ω resistor of the given network.

Progress Through Quality Education

21

Summary