THỐNG KÊ MÁY TÍNH & ỨNG DỤNG Bài 1 GIỚI THIỆU XÁC SUẤT

Vũ Quốc Hoàng (vqhoang@fit.hcmus.edu.vn) FIT-HCMUS, 2018

Nội dung

- Thí nghiệm ngẫu nhiên
- Biến cố
- Xác suất
- Mô hình xác suất đơn giản
- Kỹ thuật đếm
- Công thức hợp xác suất

cuu duong than cong . com

Thí nghiệm ngẫu nhiên

- Thí nghiệm ngẫu nhiên (random experiment) là quá trình:
 - không thể biết trước kết quả (outcome)
 - nhưng, có thể xác định trước tập các kết quả có thể
- Tập tất cả các kết quả có thể của một thí nghiệm được gọi là không gian mẫu (sample space), kí hiệu Ω
- Bước đầu tiên của việc khảo sát một thí nghiệm là xác định không gian mẫu:
 - Đúng
 - Đủ
 - Tiện lợi

Thí nghiệm ngẫu nhiên Ví dụ

- TN1: tung đồng xu
 - $\Omega = \{M \text{ Mặt ngửa, Mặt sấp}\} = \{N, S\} = \{\text{Head, Tail}\} = \{H, T\} = \{0, 1\}$
- TN2: học môn TKMT&UD
 - $\Omega = \{\text{Dậu}, \text{R\'ot}\} = \{\text{Pass}, \text{Fail}\} = \{1, 0\}$ and congilication
 - $\Omega = \{ <4.5, 4.5, \text{ Trung Binh, Khá, Giỏi} \}$ (học lực)
 - $\Omega = \{0, 0.5, 1, 1.5, ..., 9.5, 10\}$ (điểm)
- TN3: bổ thị môn TKMT&UD
 - $\Omega = \{R\acute{o}t\}$
- TN4: không nộp bài tập môn TKMT&UD
 - $\Omega = \{ \hat{D} \hat{q} u, \hat{R} \hat{\sigma} t \}$

Thí nghiệm ngẫu nhiên Ví dụ

- TN5: tung xúc xắc
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
- TN6: tung đồng xu 3 lần
 - $\Omega = \{HHH, HHT, ..., TTT\}$
- TN7: tung 3 đồng xu cùng lúc
 - $\Omega = \{HHH, HHT, ..., TTT\}$
 - $\Omega = \{\{H, H, H\}, \{T, H, H\}, ..., \{T, T, T\}\} = \{0, 1, 2, 3\}$ (số mặt sấp)
- TN8: tung xúc xắc 3 lần
 - $\Omega = \{(i, j, k): i, j, k \in \{1, 2, 3, 4, 5, 6\}\} = \{1, 2, 3, 4, 5, 6\}^3$

Thí nghiệm ngẫu nhiên Ví dụ

- TN9: tung đồng xu đến khi ra mặt sấp thì dừng
 - $\Omega = \{T, HT, HHT, HHHT, HHHHT, ...\}$
- TN10: đo nhiệt độ tại một địa điểm
 - $\Omega=\mathbb{R}=(-\infty,+\infty)$ cu(độ C) g than cong . com
 - $\Omega = [-273.15, +\infty)$ (độ C)
 - $\Omega = [-100, 3.6 \, \text{ti}]$ (độ C)
 - $\Omega = [0, 1]$ (độ Planck)
- TN11: đo chiều cao của một người
 - $\Omega = \mathbb{R} = (-\infty, +\infty)$ (mét)
 - $\Omega = \mathbb{R} = [0, +\infty)$ (mét)
 - $\Omega = \mathbb{R} = [0.55, 2.51]$ (mét)

Thí nghiệm ngẫu nhiên

- Không gian mẫu rời rạc (discrete):
 - Hữu hạn (finite): $|\Omega| = n < \infty$
 - Vô hạn đếm được (countable): có tương ứng 1-1 giữa Ω và $\mathbb{N} = \{1, 2, ...\}$
- ullet Không gian mẫu liên tục (continuous): khoảng con của ${\mathbb R}$
- Ví dụ:
 - Hữu hạn: TN1 đến TN8
 - Vô hạn đếm được: TN9
 - Liên tục: TN10, TN11 cuy duong than cong . com
 - Ở TN11, khi chiều cao được đo với độ chính xác đến cm thì sao?

Biến cố

- Nếu việc xảy ra hay không của một tình huống A được xác định hoàn toàn khi biết kết quả ω của một thí nghiệm T thì A được gọi là biến cố liên quan đến T
 - Nếu ω làm cho A xảy ra thì ω được gọi là kết quả thuận lợi cho A
 - Một biến cố được đặc trưng bởi tập các kết quả thuận lợi cho nó
- ullet Biến cố (event) là tập con của không gian mẫu Ω
 - $A = \{ \omega \in \Omega : \omega \text{ thuận lợi cho } A \}$
 - Với mỗi kết quả $\omega \in \Omega$ ta đồng nhất $\{\omega\}$ với ω , và gọi ω là biến cố sơ cấp
 - Ø được gọi là biến cố không thể
 - Ω được gọi là biến cố chắc chắn

Biến cố Ví dụ

- TN1: tung đồng xu, $\Omega = \{H, T\}$, chỉ có 4 biến cố liên quan:
 - Biến cố không thể: $\{\} = \emptyset$ (được cả hai mặt, không ra mặt nào, ...)
 - Biến cố sơ cấp "được mặt ngửa": {H}
 - Biến cố sơ cấp "được mặt sấp": {T}
 - Biến cố chắc chắn: {H, T} = Ω (được một trong hai mặt, được ít nhất một mặt, ...)
- TN2: học môn TKMT&UD
 - Ω = {Đậu, Rớt}: biến cố "đậu" : {Đậu}; "được điểm cao" không là biến cố liên quan
 - Ω = {<4.5, 4.5, Trung Bình, Khá, Giỏi}: biến cố "đậu" : {4.5, TB, Khá, Giỏi}; biến cố "được điểm cao" : {Giỏi}

Biến cố Ví dụ

- TN9: tung đồng xu đến khi ra mặt sấp thì dừng, Ω = {T, HT, HHT, HHHT, HHHT, ...}
 - Biến cố "tung không quá 5 lần": {T, HT, HHT, HHHT, HHHHT}
 - Biến cố "có hai lần sấp": Øduong than cong com
 - Biến cố "có một lần sấp": Ω
- TN10: đo nhiệt độ tại một địa điểm, $\Omega=\mathbb{R}=(-\infty,+\infty)$ (độ C)
 - Biến cố "nước có thể đóng băng": $(-\infty, 0)$
- TN11: đo chiều cao của một người, $\Omega=\mathbb{R}=[0,+\infty)$ (mét)
 - Biến cố "chơi bóng rổ tốt": $[1.8, +\infty)$

Biến cố

- "Lý thuyết biến cố" được hình thức hóa bằng "lý thuyết tập hợp". Xét thí nghiệm T với không gian mẫu Ω và các biến cố $A, B \subset \Omega$:
 - $A \subset B$: biến cố A kéo theo biến cố B; A xảy ra thì B xảy ra
 - A = B: biến cố A là biến cố B; A xảy ra khi và chỉ khi B xảy ra
 - Biến cố $A \setminus B$: biến cố A hiệu B; biến cố "A xảy ra nhưng B không xảy ra"
 - Biến cố $A^c = \Omega \backslash A$: biến cố đối của A; biến cố "A không xảy ra"
 - Biến cố $A \cup B$: biến cố A hợp B; biến cố "A xảy ra hoặc B xảy ra"
 - Biến cố $A \cap B$: biến cố A giao B; biến cố "A xảy ra và B xảy ra"
 - $A \cap B = \emptyset$: biến cố A và B rời nhau/xung khắc (disjoint/mutually exclusive); A và B không thể đồng thời xảy ra

Biến cố Ví dụ

- TN5: tung xúc xắc, $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Biến cố "được mặt chẵn": $A = \{2, 4, 6\}$
 - Biến cố sơ cấp "được mặt 1": $B = \{1\}$
 - Biến cố "được mặt khác 1": $C = B^c = \Omega \setminus \{1\} = \{2, 3, 4, 5, 6\}$
 - Biến cố "được mặt lẻ": $D = \{1, 3, 5\}$
 - Biến cố A kéo theo biến cố C vì $A \subseteq C$
 - Biến cố "không được mặt chẵn" và "được mặt lẻ" là như nhau vì $A^c=D$
 - Biến cố "được mặt lẻ nhưng không là 1": $D \setminus B = \{3, 5\}$
 - Biến cố "được mặt chẵn hoặc 1": $A \cup B = \{1, 2, 4, 6\}$
 - Biến cố "được mặt lẻ và khác 1": $D \cap C = \{3, 5\}$
 - Biến cố "được mặt chẵn" và "được mặt 1" là xung khắc vì $A \cap B = \emptyset$

Xác suất

- Xét thí nghiệm T với không gian mẫu Ω . Một hàm P gắn mỗi biến cố $A \subset \Omega$ với số thực P(A) được gọi là một độ đo xác suất (probability measure) trên Ω nếu P thỏa mãn 3 tiên đề:
 - TĐ1: Với mọi biến cố $A \subset \Omega$ ta có $0 \le P(A) \le 1$
 - TĐ2: $P(\Omega) = 1$
 - TĐ3: Với mọi dãy biến cố rời nhau $A_1, A_2, ...$ (nghĩa là $A_i \cap A_j = \emptyset, i \neq j$) ta có:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

tức là: $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$

• P(A) được gọi là xác suất (probability) của A và là số đo khả năng xảy ra của biến cố A khi không biết kết quả của thí nghiệm T

Xác suất Các cách diễn giải (cách hiểu)

- Xác suất là tỉ lệ (proportion):
 - Khi khả năng xảy ra của các kết quả là như nhau
 - Ví dụ: lớp có 20 nữ và 30 nam, gọi <mark>ngẫu nhiên</mark> một sinh viên trong lớp, xác suất để "nữ được gọi" là 0.4, chính là tỉ lệ nữ của lớp (20/(20 + 30))
- Xác suất là tần suất (relative frequence):
 - Trong n lần thực hiện lặp lại thí nghiệm T có m lần biến cố A xảy ra thì tần suất xảy ra A là $f_A=m/n$. Khi n đủ lớn thì $P(A)\approx f_A$
 - Ví dụ: gieo rất nhiều lần một đồng xu không đồng chất thì thấy khoảng 70% số lần là mặt ngửa, vậy xác suất được mặt ngửa là 0.7
- Xác suất là niềm tin (belief): The construction of th
 - P(A) là mức độ tin tưởng (của ai đó) việc A sẽ xảy ra khi không biết kết quả của T
 - Ví dụ: theo tôi, xác suất để Việt Nam vô địch World Cup là gần như 0

Xác suất Ví dụ

• Tung xúc xắc đồng chất, $\Omega = \{1, 2, 3, 4, 5, 6\}$:

$$\begin{cases} P(\{1\}) = P(\{2\}) = \dots = P(\{6\}) \\ P(\Omega) = P(\{1\}) + P(\{2\}) + \dots + P(\{6\}) \Rightarrow P(\{i\}) = \frac{1}{6}, i = 1...6 \\ P(\Omega) = 1 \text{ using than cong.} \end{cases}$$

• Biến cố "được mặt 1": $A = \{1\}$

$$P(A) = P(\{1\}) = \frac{1}{6}$$

• Biến cố "được mặt chẵn": $B = \{2, 4, 6\}$

$$P(B) = P(\{2\}) + P(\{4\}) + P(\{6\}) = \frac{3}{6}$$

Xác suất Ví dụ

• Tung xúc xắc không đồng chất với khả năng ra mặt i tỉ lệ với i, i = 1...6:

$$\begin{cases} P(\{i\}) = c \times i, i = 1..6, c \ge 0 \\ P(\Omega) = \sum_{i=1}^{6} P(\{i\}) = \sum_{i=1}^{6} ci = c \sum_{i=1}^{6} i \Rightarrow 21c = 1 \Rightarrow P(\{i\}) = \frac{1}{21}i \\ P(\Omega) = 1 \end{cases}$$

• Biến cố "được mặt 1": $A = \{1\}$

$$P(A) = P(\{1\}) = \frac{1}{21}$$

• Biến cố "được mặt chẵn": $B = \{2, 4, 6\}$

$$P(B) = P(\{2\}) + P(\{4\}) + P(\{6\}) = \frac{2}{21} + \frac{4}{21} + \frac{6}{21} = \frac{12}{21}$$

Xác suất Các tính chất

- $P(\emptyset) = 0$. Chứng minh: Vì $\Omega \cap \emptyset = \emptyset$ nên từ TĐ3 ta có: $P(\Omega) = P(\Omega \cup \emptyset) = P(\Omega) + P(\emptyset) \Longrightarrow P(\emptyset) = 0$
- $P(A^c) = 1 P(A)$
- Nếu $A \subset B$ thì $P(A) \leq P(B)$ và $P(B \setminus A) = P(B) P(A)$
- Nếu A, B rời nhau thì $P(A \cup B) = P(A) + P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n P(A_i)$
- $P(\bigcap_{i=1}^{n} A_i) \ge 1 \sum_{i=1}^{n} P(A_i^c)$

Mô hình xác suất đơn giản

- Khi không gian mẫu hữu hạn, $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$, độ đo xác suất được xác định bởi xác suất của các biến cố sơ cấp $p_i = P(\omega_i)$:
 - $p_i \ge 0, i = 1...n$
 - $\sum_{i=1}^{n} p_i = 1$
 - $P(A) = \sum_{\omega_i \in A} p_i$
- Khi không gian mẫu hữu hạn và các biến cố sơ cấp đồng khả năng, ta có mô hình xác suất đơn giản:

 - $p_i=\frac{1}{n}=\frac{1}{|\Omega|}$, $i=1..n_{\text{uu duong than cong}}$ com $P(A)=\frac{|A|}{|\Omega|}$, |A| là số phần tử của A (số kết quả thuận lợi cho biến cố A)
 - Đếm

Mô hình xác suất đơn giản Ví dụ

- Tung 3 đồng xu đồng chất:
 - $\Omega = \{HHH, HHT, ..., TTT\}, |\Omega| = 8$
 - Các biến cố sơ cấp đồng khả năng
 - Biến cố "được đúng 2 mặt ngửa": $A=\{HHT,HTH,THH\}$ $P(A)=\frac{|A|}{|\Omega|}=\frac{3}{8}$
- Tung 3 đồng xu đồng chất:
 - $\Omega = \{0 \text{ngửa}, 1 \text{ngửa}, 2 \text{ngửa}, 3 \text{ngửa}\}, |\Omega| = 4$
 - Biến cố "được đúng 2 mặt ngửa": $A=\{2-\text{ngửa}\}\ \text{là }P(A)=\frac{|A|}{|\Omega|}=\frac{1}{4}$
 - Lí luận sai: vì các biến cố sơ cấp không đồng khả năng nên không phải là mô hình xác suất đơn giản

Kỹ thuật đếm Qui tắc nhân (Multiplication Rule)

- Nếu một việc T được thực hiện bằng 2 bước độc lập A,B; có m cách thực hiện A và n cách thực hiện B thì có $m\times n$ cách thực hiện T
 - $T = A \times B = \{(x, y) : x \in A, y \in B\}$ thì $|T| = |A| \times |B|$
 - $|A_1 \times A_2 \times \cdots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$
 - $\bullet |A^k| = |A|^k$
- *Ví dụ*: tung xúc xắc 3 lần, $\Omega = \{(i,j,k): i,j,k \in \{1,2,3,4,5,6\}\} = \{1,2,3,4,5,6\}^3$
 - $|\Omega| = 6^3 = 216$
 - Biến cố "được tổng cộng 4 nút": $A = \{(1,1,2), (1,2,1), (2,1,1)\}$ $P(A) = \frac{|A|}{|\Omega|} = \frac{3}{216} = \frac{1}{72}$

Kỹ thuật đếm Qui tắc nhân

- Lấy mẫu có hoàn lại (sampling with replacement):
 - Từ tập A có n phần tử, chọn lần lượt k lần, mỗi lần một phần tử có hoàn lại. Số kết quả chọn, có kể đến thứ tự, là: n^k
- Ví dụ: Một hộp có 3 bi xanh và 2 bi đỏ. Bốc ngẫu nhiên 3 lần có hoàn lại.
 - $|\Omega| = 5^3$
 - Biến cố A: "Cả 3 lần bốc đều được bi đỏ" có xác suất:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{2^3}{5^3} = 0.064$$

Kỹ thuật đếm Hoán vị (Permutation)

- Lấy mẫu không hoàn lại (sampling without replacement):
 - Từ tập A có n phần tử, chọn ra lần lượt k phần tử không hoàn lại. Mỗi kết quả chọn, có kể đến thứ tự, được gọi là một chỉnh hợp chọn k của n phần tử
 - Số chỉnh hợp chọn chọn k của n phần tử là:

$$P_n^k = n(n-1) \dots (n-k+1) = \frac{n!}{(n-k)!}$$

- Một chỉnh hợp chọn n của n phần tử được gọi là một hoán vị của n phần tử
- Số hoán vị của n phần tử là: $P_n = n!$
- Ví dụ: Chọn ngẫu nhiên 3 người từ 10 người (trong đó có Bình) để trao giải nhất, nhì, ba.
 - $|\Omega|=P_{10}^3$, biến cố A: "Bình được giải nhất" có xác suất: $P(A)=\frac{|A|}{|\Omega|}=\frac{P_9^2}{P_{10}^3}=0.1$

Kỹ thuật đếm Tổ hợp (Combination)

- Tổ hợp (combination):
 - Từ tập A có n phần tử, chọn ra k phần tử không hoàn lại. Mỗi kết quả chọn, không kể thứ tự, được gọi là một tổ hợp chọn k của n phần tử
 - Số tổ hợp chọn k của n phần tử là:

$$C_n^k = \frac{n!}{k! (n-k)!}$$

- Ví dụ: tung đồng xu 10 lần, $\Omega = \{H, T\}^{10}$, $|\Omega| = 2^{10}$
 - Biến cố A: "được 3 lần ngửa"
 - Mỗi kết quả thuận lợi cho A sẽ có mặt ngửa trong 3 lần chọn từ 10 lần, như vậy: $|A|=C_{10}^3$
 - Xác suất của $A: P(A) = \frac{|A|}{|\Omega|} = \frac{C_{10}^3}{2^{10}} = 0.1172$

Kỹ thuật đếm Ví dụ

- Một lớp có 15 nam và 30 nữ. Chọn ra ngẫu nhiên 10 học sinh đi lao động. Tính xác suất có 3 nam được chọn.
 - Kết quả của thí nghiệm là một tổ hợp chọn 10 của 45 học sinh: $|\Omega| = C_{45}^{10}$
 - Do chọn ngẫu nhiên nên ta có mô hình xác suất đơn giản
 - Gọi A là biến cố có 3 nam được chọn. Kết quả thuận lợi cho A là lựa chọn gồm 3 nam và 7 nữ
 - Có C_{15}^3 cách chọn 3 nam từ 15 nam và C_{30}^7 cách chọn 7 nữ từ 30 nữ
 - Theo qui tắc nhân ta có số kết quả thuận lợi cho A là: $|A| = C_{15}^3 \times C_{30}^7$
 - Xác suất có 3 nam được chọn là:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_{15}^3 \times C_{30}^7}{C_{45}^{10}} = 0.2904$$

Công thức hợp xác suất

• Nếu $A_1, A_2, ..., A_n$ rời nhau (nghĩa là $A_i \cap A_j = \emptyset, i \neq j$) thì: $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $-P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$
- $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_j)$ A_k) $-\cdots+(-1)^{n+1}P(A_1\cap A_2\cap\cdots\cap A_n)$

Công thức hợp xác suất Ví dụ

 Một công ty kiểm tra chất lượng của 130 bóng đèn dựa trên 2 tiêu chí: kiểu dáng và độ sáng. Kết quả như sau:

Kiểu dáng

	9		
	uu duong t	Đạt	Không đạt
Độ sáng	Đạt	117	3
	Không đạt	8	2

- Chọn ngẫu nhiên 1 bóng đèn. Tính xác suất bóng đèn được chọn thỏa ít nhất một trong hai tiêu chí trên?
- Mô hình xác suất đơn giản, $|\Omega|=130$

https://fb.com/tailieudientucntt

Kiểu dáng

Công thức hợp xác suất Ví du

Độ	sá	ng
- •	- -	0

	Đạt	Không đạt
Đạt	117	3
Không đạt	8	2

- Đặt các biến cố:
 - A: "bóng đèn được chọn thỏa tiêu chí kiểu dáng"
 - B: "bóng đèn được chọn thỏa tiêu chí độ sáng"
- Ta có xác suất bóng đèn được chọn thỏa ít nhất một trong hai tiêu chí trên là:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{117 + 8}{130} + \frac{117 + 3}{130} - \frac{117}{130} = \frac{128}{130}$$

Cách khác:

$$P(A \cup B) = 1 - P((A \cup B)^c) = 1 - P(A^c \cap B^c) = 1 - \frac{2}{130} = \frac{128}{130}$$