

Sedimentation velocity v_f

1. Get r_w by assuming viscous sedimentation

$$v_f = \frac{2}{9} \frac{\beta g r^2 \Delta \rho}{\eta}$$

 r_w is the value of particle radius for which $v_f = w^*$

$$\Rightarrow r_w^2 + 1.26\lambda r_w - \frac{9}{2}\frac{\eta w^*}{g\Delta\rho} = 0$$

$$\Rightarrow r_w = \frac{1}{2} \left(-1.26\lambda + \sqrt{(1.26\lambda)^2 + 18\frac{\eta w^*}{g\Delta\rho}} \right)$$

- 2. From $r = r_w/\sigma$ to $r = r_w$
 - (a) Find

$$C_d N_{Re}^2 = \frac{32 \rho_a g r^3 \Delta \rho}{3\eta^2}$$

- (b) Find $x = \ln \left(C_d N_{R_e}^2 \right)$
- (c) Find y from the fit $y = 0.8x 0.01x^2$
- (d) Find Reynolds number N_{Re} from $x = \ln N_{Re} \Rightarrow N_{Re} = e^x$
- 3. If $N_{Re} \le 1000$:
 - Find sedimentation velocity v_f from Reynolds number

$$N_{Re} = \frac{2r\rho_a v_f}{\eta}$$

$$\Rightarrow v_f = \frac{N_{Re}\eta}{2r\rho_a}$$

4. If $N_{Re} > 1000$:

$$v_f = \beta \sqrt{\frac{8gr\Delta\rho}{3C_d\rho_a}}$$