Chapter 6: Digital Arithmetic: Operations & Circuits

Prof. Dr. Aloke Kumar Saha Professor Department of CSE University of Asia Pacific (UAP)

Chapter 6 Objectives

- Selected areas covered in this chapter.
 - Binary addition, subtraction, multiplication, division.
 - Differences between binary addition and OR addition.
 - Basic operation of a half adder circuit.
 - Basic operation of a full adder circuit.
 - Operation of a parallel adder circuit.
 - Operation of a parallel subtractor circuit.
 - Operation of a parallel adder/subtractor circuit.
 - Operation of a BCD adder circuit.
 - ALU integrated circuits for various logic and arithmetic operations on input data.

6-1 Binary Addition

- Binary numbers are added like decimal numbers.
 - In decimal, when numbers sum more than 9, a carry results.
 - In binary when numbers sum more than 1, a carry takes place.
- Addition is the basic arithmetic operation used by digital devices for subtraction, multiplication & division.

e

Four possible situations when addition one bit to another in any position of a binary number.

$$0+0=0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 10$$

For uniformity

$$0 + 0 = 00$$

$$0 + 1 = 01$$

$$1 + 0 = 01$$

$$1 + 1 = 10$$

6-2 Design of a Half Adder

- Construct a truth table...
 - 2 inputs (2 numbers to be added).
 - 2 outputs (sum and carry).

Augend Bit Input A	Added Bit Input B	Sum Bit Output S	Carry Bit Output C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- 6-2 Design of a Half Adder
- S=A`B+AB`=A ⊕ B
- C=AB
- Now Draw the Circuit.

6-3 Design of a Full Adder

- Construct a truth table...
 - 3 inputs (2 numbers to be added and carry in).
 - 2 outputs (sum and carry out).

Augend bit input	Addend bit input	Carry bit input	Sum bit output	Carry bit output
Α	В	C _{IN}	S	C _{OUT}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
				l

6-3 Design of a Full Adder

- Use algebraic methods or K-maps to simplify the resulting SOP form.
 - The result is the logic circuit shown here.

K-map for Cout:

	A'B'	AB`	AB	A`B
C`in	0	0	1	0
Cin	0	1	1	1

There are 3 pairs. So the result is Cout = AB + ACin + BCin

K-map for Sum:

	A'B'	AB`	AB	A`B
C`in		1		1
Cin	1		1	

- All are isolated 1.
- Sum=AB`C`+A`BC`+A`B`C+ABC

$$=C'(AB'+A'B)+C(A'B'+AB)$$

$$=C(A \oplus B)+C(A \oplus B)$$

=C`X+CX`; Let
$$X = A \oplus B$$

$$=C \oplus X$$

$$=C \oplus A \oplus B$$

$$= A \oplus B \oplus Cin$$

6-3 Design of a Full Adder

Upper Saddle River, New Jersey 07458 • All rights reserved

Block diagram of a Full Adder

Augend bit input	Addend bit input	Carry bit input	Sum bit output	Carry bit output
Α	В	C _{IN}	S	C _{OUT}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- C
- Suppose we want to add 2 four bit number like 1110+1011
- So we can follow the following procedure
 - 1 1 1 0 0 Carry
 - 1110
 - + 1011

1 1 0 0 1 Sum

C4 C3 C2 C1 C0 Carry

AUGEND A3 A2 A1 A0 A

ADDEND B3 B2 B1 B0 B

SUM S4 S3 S2 S1 S0 S

AUGEND A3 A2 A1 A0 ADDEND B3 B2 B1 B0

Generate sum bits, $S = A \oplus [B \oplus Cin]$

Generate carry bits, Cout = A•B + A•Cin + B•Cin

C

Block diagram of a 4-bit parallel adder circuit using full adders.

- The most common parallel adder is a 4 bit device.
 - 4 interconnected FAs, and look-ahead carry circuits.
 - 7483A, 74LS83A, 74LS283, and 74HC283 are all four-bit parallel-adder chips.

- The A and B lines each represent 4 bit numbers to be added.
 - $-C_0$ is the carry-in, C_4 is the carry-out, Σ is the sum.

Parallel adders may be cascaded together to add larger numbers, in this case two 8 bit numbers.

•

Subtraction in the 2's Complement System:

- Subtraction using the 2's-complement system actually involves the operation of addition.
 - The number subtracted (subtrahend) is negated.
 - The result is added to the minuend.
 - The answer represents the difference.
 - That is A B = A + (-B)

6-6 4-bit Parallel Subtractor

An adder can be used to perform subtraction by designing a way to take the 2's complement for subtraction—as shown.

4-bit Parallel adder/subtractor:

If Switch=0 then Adder

If Switch=1 then Subtractor

If S=0 then

First inputs are A3A2A1A0

Second inputs are B3B2B1B0 and C0=0

So this is addition

If S= then

First inputs are A3A2A1A0

Second inputs are B'3B'2B'1B'0 and C0=1

So this is Subtraction

6-7 4-bit Parallel Adder/Subtractor

•

What is BCD? Binary Coded Decimal

Decimal Number	BCD Code
0	0000
1	0001
2	0010
3	0011
4	<mark>0</mark> 100
5	<mark>0</mark> 101
6	<mark>0</mark> 110
7	<mark>0</mark> 111
8	1000
9	1001

BCD Addition:

- Example 1: 24+32=?
- 24=0010 0100+
- 32=0011 0010
- 56=0101 0110
- Example 2: 78+45=?
- 78=0111 1000+
- 45=0100 0101

0110 0110

1 0010 0011=123

BCD Addition:

- When the sum of each decimal digit is less than 9, the operation is the same as normal binary addition.
- When the sum of each decimal digit is greater than 9, a binary 6 is added.
 - This will always cause a carry.

6-8 BCD Adder

A3A2A1A0 + B3B2B1B0

S4S3S2S1S0

S4	S3	S2	S1	S0
0	0	1	1	1
0	1	0	0	0
0	1	0	0	1
0	1	0	1	0
0	1	0	1	1
0	1	1	0	0
0	1	1	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0

- Let us define X as a logic output that will be HIGH only when sum is greater than 9.
- If we examine the above table, we can see that X will be HIGH for following conditions:
- 1. When S4=1 OR
- 2. When S3=1 and (either S2 OR S1 OR both are 1)

$$S_{so}$$
, $X = S4 + S3.(S2 + S1)$

- 9
- A3A2A1A0
- 0 0 0 if X=0
- 0 1 1 0 if X=1
- A3=A0=0
- A2=A1=X

6-9 ALU Integrated Circuits

 ALUs can perform different arithmetic and logic functions as determined by a binary code on the function select inputs.

6-9 ALU Integrated Circuits

The 74LS382 (TTL) and HC382 (CMOS) is a typical device with 8 functions.

Function Table

S ₂	S1	S ₀	Operation	Comments
0	0	0	CLEAR	$F_3F_2F_1F_0 = 0000$
0	0	1	B minus A	7
0	1	0	A minus B	Needs C _N = 1
0	1	1	A plus B	Needs C _N = 0
1	0	0	A⊕B	Exclusive-OR
1	0	1	A + B	OR
1	1	0	AB	AND
1	1	1	PRESET	$F_3F_2F_1F_0 = 1111$

Notes: S inputs select operation.

OVR = 1 for signed-number overflow.

A = 4-bit input number

B = 4-bit input number

C_N = carry into LSB position

S = 3-bit operation select inputs

F = 4-bit output number

C_{N+4} = carry out of MSB position

OVR = overflow indicator

6-10 Expanding the ALU

 A single 74LS382 or 74HC382 operates on fourbit numbers. Two or more of these chips can be connected together to operate on larger numbers.

6-11 Model Question about this chapter

- 1. Draw the block diagram of 4 bit ALU chip (IC # 74382) and label the all inputs & outputs.
- 2. Describe 8(Eight) operations of the 4 bit ALU chip (IC # 74382) that perform by select inputs.
- 3. Design a BCD adder using IC # 7483 and basic gates if necessary. Briefly describe its operation.
- 4. What is BCD code? What is the problem in BCD addition? How can you overcome that?

6-11 Model Question about this chapter

- Write down the truth tables of half adder and full adder. Design half adder and full adder using Kmap or otherwise.
- 6. Briefly describe the operation of IC# 7483(4-bit parallel adder).
- 7. Design 4-bit Subtractor using IC # 7483(4-bit parallel adder).
- 8. Design a 4-bit parallel Adder/Subtractor using IC # 7483 and other logic gates if necessary. Briefly describe its operation.

6-11 Model Question about this chapter

- 9. Design 8-bit parallel Adder using IC # 7483(4-bit parallel adder).
- 10. Design 8-bit parallel Subtractor using IC # 7483(4-bit parallel adder).
- 11. Design 8 bit ALU chip using 4 bit ALU chips (IC # 74382) and label the all inputs & outputs.
- 12. Describe 8(Eight) operations of the 8 bit ALU chip that perform by select inputs.