# Non-parametric Statistics: Notes 5 Correlation

Gregory Matthews <sup>1</sup>

<sup>1</sup>Department of Mathematics and Statistics Loyola University Chicago

Fall 2014

# Outline

- When you think of correlation you are probably actually thinking of Pearson correlation.
- Pearson correlation measure the linear association between two variables.

$$\rho = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$



Figure: Pearson Correlation



Figure : Pearson Correlation: ho = 0.816 in each graph

plot(x,y)



```
#Calucalte the Pearson correlation coefficient using funct
(rho < -cor(x,y))
## [1] 0.2382
#Correlation test
#What are we testing here?
cor.test(x,y)
##
##
   Pearson's product-moment correlation
##
## data: x and y
## t = 1.041, df = 18, p-value = 0.3118
## alternative hypothesis: true correlation is not equal to
## 95 percent confidence interval:
## -0.2283 0.6158
```

## sample estimates:

```
#permutation test!
nsim<-1000
rhoVec<-rep(NA,nsim)
for (i in 1:nsim){
yPerm<-sample(y,length(y),replace=FALSE)
rhoVec[i]<-cor(x,yPerm)
}</pre>
```

```
hist(rhoVec,xlim=c(-1,1))
abline(v=rho,col="red",lwd=5)
```

# Histogram of rhoVec



```
#two sided p-value
sum(rhoVec>=abs(rho))/nsim+sum(rhoVec<=-abs(rho))/nsim</pre>
## [1] 0.301
cor.test(x,y)
##
   Pearson's product-moment correlation
##
##
## data: x and y
## t = 1.041, df = 18, p-value = 0.3118
## alternative hypothesis: true correlation is not equal to
## 95 percent confidence interval:
## -0.2283 0.6158
## sample estimates:
##
    cor
## 0.2382
```

- ► What if there is a relationship between two variables, but the relationship is not linear?
- ► For instance, what is the relationship is strictly monotonic?
- Let's take a look at that situation.



Χ

```
#If we look at the Pearson correlation we get:
cor(x,y)
## [1] 0.9059
#But in some sense these two variables are perfectly corre
#What if we computed correlation based on the ranks?
xR<-rank(x); yR<-rank(y)
cor(xR,yR)
## [1] 1
#This is Spearman correlations
cor(x,y,method="spearman")
## [1] 1
```

- Spearman correlation is Pearson correlation using ranks of the data.
- ► Spearman correlation measure the strength of the monotonic relationship between two variables.

$$\rho = \frac{\sum_{i=1}^{n} (R_{i}^{X} - \bar{R}^{X}])(R_{i}^{Y} - \bar{R}^{Y})}{\sqrt{\sum_{i=1}^{n} (R_{i}^{X} - \bar{R}^{X})^{2} \sum_{i=1}^{n} (R_{i}^{Y} - \bar{R}^{Y})^{2}}} = \frac{cov(R^{X}, R^{Y})}{\sigma_{R^{X}} \sigma_{R^{Y}}}$$

```
#Test the null hypothesis that the Spearman correlation is
#In other words there is no association between X and Y
cor.test(x,y,method="spearman")
##
    Spearman's rank correlation rho
##
##
## data: x and y
## S = 0, p-value = 0.01667
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 1
#This p-value of this test is equal to
2*(1/120)
## [1] 0.01667
```

```
library(gtools)
perms<-permutations(5,5)
corNull <-rep(NA, dim(perms)[1])
for (i in 1:dim(perms)[1]){
  corNull[i] <-cor(x,y[perms[i,]],method="spearman")</pre>
sort(corNull)
##
     [1] -1.0 -0.9 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8 -0.7 -0.7
##
    [15] -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 -0.5 -0.5
##
       -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3
        -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1
##
##
       -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
                                              0.1
                                                   0.1
    [71] 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3
##
##
    [85] 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5
    [99] 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7
##
   [113] 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1.0
##
```

## Two quick notes

- ▶ When there are ties, simply take the average of the ranks and proceed as usual.
- ► Careful using Spearman correlation (or any correlation). If observations are correlated, Spearman may result in incorrect results. Only use when observations are uncorrelated.

## Kendall's au

- First we need to talk about concordance and discordance.
- ► Two pairs of data (X<sub>i</sub>, Y<sub>i</sub>) and (X<sub>j</sub>, Y<sub>j</sub>) are condorance if X<sub>i</sub> < X<sub>j</sub> implies that Y<sub>i</sub> < Y<sub>j</sub>.
- ► Two pairs of data (X<sub>i</sub>, Y<sub>i</sub>) and (X<sub>j</sub>, Y<sub>j</sub>) are condorance if X<sub>i</sub> < X<sub>j</sub> implies that Y<sub>i</sub> > Y<sub>j</sub>.
- ► Concordance means that the changes in the X's and Y's are in the same direction.

## Kendall's au

- ▶ If pairs of observations are more likely to be concordant, then we say there is a positive relationship.
- ▶ If pairs of observations are more likely to be disconcordant, then we say there is a negative relationship.
- ▶ Based on the definition of concordance, we can also express concordance as  $(X_i X_i)(Y_i Y_i) > 0$ . (WHY?)
- ▶ And we can write  $\tau = 2P[(X_i X_j)(Y_i Y_j) > 0] 1$
- ▶  $P[(X_i X_j)(Y_i Y_j) > 0]$  is the probability of concordance. Then we rescale this number to range from -1 to 1 like the other measures of correlation.

## Kendall's au

▶ How do we estimate Kendall's  $\tau$  (assuming no ties.)

Define:

$$U_{ij} = \begin{cases} 1 : (X_i - X_j)(Y_i - Y_j) > 0 \\ 0 : (X_i - X_j)(Y_i - Y_j) < 0 \end{cases}$$

Then let:

$$V_i = \Sigma_{j=i+1}^n U_{ij}$$

 $V_i$  is the number of pairs that are concordant with the i-th pair for  $j \ge i + 1$  Then:

$$r_{\tau} = 2 \frac{\sum_{i=1}^{n-1} V_i}{\binom{n}{2}} - 1$$

```
#let's compute Kendall's Tau by hand (ONCE!)
(dat < -data.frame(x=c(1,2,3,4),y=c(2,4,3,1)))
## x y
## 1 1 2
## 2 2 4
## 3 3 3
## 4 4 1
\#Concordant\ pairs\ (1,2),(1,3)
\#Disconcordant\ pairs\ (1,4),(2,3),(2,4),(3,4)
#2*(numConcordPairs/TotalNumberOfPairs)-1
2*(2/6)-1
## [1] -0.3333
#Or just use the R function
cor(dat$x,dat$y,method="kendall")
```

[1] -0.3333

```
#Null hypothesis that there is no association
#Versus alternative that there is some association
cor.test(dat$x,dat$y,method="kendall")
##
## Kendall's rank correlation tau
##
## data: dat$x and dat$y
## T = 2, p-value = 0.75
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##
      tau
## -0.3333
```

# **Contigency Tables**

- ▶ When we compare two categorical variables to each other, we often us two way contingency tables.
- ▶ We say there are *R* levels of the first variable and *C* levels of the second variable, then we can create an *R* by *C* table.
- ► The elements of the contingency table are counts of the individuals who fall into both categories corresponding to a cell in the table.

# **Contigency Tables**

- What hypothesis are we interested in testing here? It depends!
- Consider two cases:
  - 1. All *n* individuals are selected at random and cross classified according to row and column characteristic.
  - 2. A fixed number  $n_i$  for i = 1, 2, ..., r are sampled and classified according to column characteristic.

- First define:  $p_{ij} = \frac{E[n_{ij}]}{n}$
- ► Case 1:  $H_0: p_{ij} = p_{i.}p_{.j}$  vs  $H_a: p_{ij} \neq p_{i.}p_{.j}$
- ► Case 2:  $H_0: p_{j|i} = p_{j|i'}$  vs  $H_a: p_{j|i} \neq p_{j|i'}$  where  $p_{j|i} = \frac{p_{ij}}{p_{i.}}$
- ► The null hypotheses in both Case 1 and Case 2 are equivalent EVEN THOUGH the sampling situations are different.

- ▶ How do we test these hypotheses?
- ► Use the following test statistic. (Why is this a good test statistic?)

Test Statistic:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - e_{ij})^2}{e_{ii}}$$

where 
$$e_{ij} = \frac{n_{i.} n_{.j}}{n}$$

- ▶ If all  $e_{ij} > 5$ , the  $\chi^2 \sim \chi^2_{df=(r-1)(c-1)}$
- ► However, when expected cell frequencies are small, the approximation may not be appropriate.
- ▶ This is especially true when many cells have no responses.
- ▶ What can we do in that situation? Permutation test!

```
#Table 5.4.2 in the book
dat<-data.frame(who=factor(c(rep("Physician-Prescribed",4)
table(dat)

## satisfaction
## who Not Somewhat Very
## Physician-Prescribed 2 2 0</pre>
```

## Self-Administered

```
(Xsq0bs<-chisq.test(table(dat))$statistic)
## Warning: Chi-squared approximation may be
incorrect
## X-squared
## 4.278</pre>
```

```
library(gtools)
perms<-combinations(7,4)
XsqPerms<-rep(NA,35)</pre>
for (i in 1:dim(perms)[1]){
  datTemp<-dat
  ind<-c(perms[i,],setdiff(c(1:7),perms[i,]) )</pre>
  datTemp$satisfaction<-datTemp$satisfaction[ind]
  XsqPerms[i] <-chisq.test(table(datTemp))$statistic</pre>
## Warning:
             Chi-squared approximation may be
incorrect
             Chi-squared approximation may be
## Warning:
```

```
XsqObs
## X-squared
      4.278
##
table(round(XsqPerms,2))
##
## 0.19 2.24 4.28 4.96 7
## 12 12 6 4 1
sum(XsqPerms>=XsqObs)/35
## [1] 0.3143
```

- ▶ Real quick. The special case of the permutation test for a 2 by 2 contingency table is called the Fisher's exact test.
- ▶ This is implemented in R using the function fisher.test
- Example follows:

## Agresti (1990, p. 61f; 2002, p. 91) Fisher's Tea Drinker
## A British woman claimed to be able to distinguish whether milk or
## tea was added to the cup first. To test, she was given 8 cups of
## tea, in four of which milk was added first. The null hypothesis
## is that there is no association between the true order of pouring
## and the woman's guess, the alternative that there is a positive
## association (that the odds ratio is greater than 1).

```
TeaTasting <-
matrix(c(3, 1, 1, 3),
      nrow = 2,
      dimnames = list(Guess = c("Milk", "Tea"),
                     Truth = c("Milk", "Tea")))
TeaTasting
##
        Truth
## Guess Milk Tea
## Milk 3 1
## Tea 1 3
```

```
#Why do we want one-sided here?
fisher.test(TeaTasting, alternative = "greater")
##
## Fisher's Exact Test for Count Data
##
## data: TeaTasting
## p-value = 0.2429
## alternative hypothesis: true odds ratio is greater than
## 95 percent confidence interval:
## 0.3136
             Tnf
## sample estimates:
## odds ratio
## 6.408
\#\# \Rightarrow p = 0.2429, association could not be established
```

#### McNemar's test

- ► McNemar's test is used for paired comparison studies when the responses are dichotomous.
- ▶ The classic example of this is to ask people which canidate they prefer before a political debate, and then ask them again after the debate.
- If there are two candidates (A and B) there are four possibilities: (A,A) (A,B) (B,A) (B,B).
- We are interested in testing the null hypothesis that the probability of A before is the same as the probability of A after.
- $ightharpoonup H_0: P_{AA} + P_{AB} = P_{AA} + P_{BA} = P_{AB} = P_{BA}$

## McNemar's test

- ▶ If we let  $n = X_{AB} + X_{BA}$  and  $P_{AB} = P_{BA}$ , then there is an equal chance of switching from A to B or B to A.
- In this way the distribution of  $X_{AB}|n \sim binomial$  with mean 0.5n and variance 0.25n. WHY?
- ▶ We can then use this to calculate a p-value.

```
## Agresti (1990), p. 350.
## Presidential Approval Ratings.
## Approval of the President's performance in office in two surveys,
## one month apart, for a random sample of 1600 voting-age Americans.
Performance <-
matrix(c(794, 86, 150, 570),
      nrow = 2,
      dimnames = list("1st Survey" = c("Approve", "Disapprove"),
                       "2nd Survey" = c("Approve", "Disapprove")))
Performance
##
               2nd Survey
## 1st Survey Approve Disapprove
    Approve
                   794
                               150
    Disapprove
##
                    86
                               570
```

```
(n<-Performance[1,2]+Performance[2,1])
## [1] 236
#calculate the p-value
2*(1-pbinom(Performance[1,2]-1,n,.5))
## [1] 3.716e-05
2*(pbinom(Performance[2,1],n,.5))
## [1] 3.716e-05
```

```
#approximate the p-value
T4<-((Performance[1,2]-0.5*n)/sqrt(0.25*n))^2
1-pchisq(T4,1)

## [1] 3.099e-05

mcnemar.test(Performance,correct=FALSE)

##
## McNemar's Chi-squared test
##
## data: Performance
## McNemar's chi-squared = 17.36, df = 1, p-value = 3.099e-05</pre>
```

```
##
## McNemar's Chi-squared test with continuity correction
## data: Performance
## McNemar's chi-squared = 16.82, df = 1, p-value = 4.115e-05
## => significant change (in fact, drop) in approval ratings
```