矩阵理论试题精选(一)

1.

设 $V=\mathbb{R}[x]_{2016}$ 是次数小于 2016 的实多项式构成的实线性空间。设 $n\geq 0, f^{(n)}(x)$ 表示 $f(x)\in V$ 的 n 阶导数, $f^{(0)}(x)=f(x)$. 给定 V 的两个子空间 U,W 如下:

 $U=\{f(x)\in V\mid f^{(n)}(0)=0, n\leq 1949\}$ $W=\{g(x)\in V\mid g(x)=x^{1896}(x-1)^{60}h(x), orall h(x)\in V\}$ 则 V 的子空间 U+W 的维数 $\dim(U+W)$ 是多少?

设 σ 是 \mathbb{R}^2 上线性变换, $e_1=(1,0)',\ e_2=(0,1)',\ \sigma(e_1)=e_1,\ \sigma(e_1+e_2)=2e_1,\ 则 \sigma$ 关于基 $e_1+e_2,\ e_1-e_2$ 的矩阵是?

设

 $U=\{(x,y,z,w)'\in\mathbb{R}^4\mid x+y+z+w=0\}$ $W=\{(x,y,z,w)'\in\mathbb{R}^4\mid x-y+z-w=0\}$ 是通常欧式空间 \mathbb{R}^4 的两个子空间,设 I 是 \mathbb{R}^4 上的恒等变换。

- (1) 求 U 与 $U\cap W$ 的正交补 $(U\cap W)^{\perp}$ 的各一组标准正交基;
- (2) 试求出 \mathbb{R}^4 上的所有正交变换 σ 使得线性变换 $I-\sigma$ 的核 $\operatorname{Ker}(I-\sigma)=U$.

设给定矩阵 $A=\left(\begin{smallmatrix}2&0\\1&2\end{smallmatrix}\right)$, $B=\left(\begin{smallmatrix}-1&0\\2&-1\end{smallmatrix}\right)$, 矩阵空间 $\mathbb{R}^{2\times2}$ 上线性变换 T 为: T(X)=kX+AXB, $\forall X\in\mathbb{R}^{2\times2}$ 。 T 是可逆变换当且仅当参数 k 满足何条件?

设

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 1 & 1 \\ -1 & 1 & 1 & -1 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix}$$

- (1) 求矩阵 A 的一个满秩分解 LR,使得 L 的第一列为矩阵 A 的最后一列,并求出 A 的列空间 R(A) 的一组基;
- (2) 求 A 的左零化空间 N(A') 的一组基;
- (3) 设 b=(1,1,1,1)',求向量 b 在线性空间 R(A) 上的最佳近似
- (4) 设 σ 是线性空间 \mathbb{R}^4 上的正交投影变换,且满足 σ 的像空间 $\mathrm{Im}(\sigma)=R(A)$,求 σ 在标准基 e_1,e_2,e_3,e_4 下的矩阵。

证明变换 ${
m tr}:X\to {
m tr}(X)$ 是线性空间 $M_n(R)$ 到 R 的满足性质: $\sigma(XY)=\sigma(YX)$ 及 $\sigma(1)=n$ 的唯一线性变换.

设 V 是全体3阶实矩阵构成的实线性空间。设

$$U = \{A = (a_{ij}) \in V \mid a_{12} + a_{23} + a_{31} + a_{32} = 0\} \quad W = \{A \in V \mid A' - A = 0\}$$

则 $\dim(U \cap W)$ 为多少?

设 $U=\{(x,y,z,w)\mid x+y+z+w=0\}$, $W=\{(x,y,z,w)\mid x-y+z-w=0\}$ 是通常欧式空间 \mathbb{R}^4 的两个子空间

- (1) 求 $U \cap W$, U + W 的维数和各自的一组标准正交基;
- (2) 求 U 的一个2维子空间 U_0 使得其正交补空间 $U_0^\perp \subset W$;
- (3) 设 σ 是 \mathbb{R}^4 上的正交投影变换使得 $\operatorname{Ker}(\sigma)=U$,求 σ 在标准基下的矩阵

设有 $n(n \ge 2)$ 阶实对称矩阵

$$A = egin{pmatrix} 1 + a_n^2 & a_1 & 0 & \cdots & 0 & 0 & a_n \ a_1 & 1 + a_n^2 & a_2 & \cdots & 0 & 0 & 0 \ 0 & a_2 & 1 + a_2^2 & \cdots & 0 & 0 & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & a_{n-2} & 1 + a_{n-2}^2 & a_{n-1} \ a_n & 0 & 0 & \cdots & 0 & a_{n-1} & 1 + a_{n-1}^2 \end{pmatrix}$$

其中 $a_i (1 \leq i \leq n)$ 为实数。记 $x = (x_1, x_2, \dots, x_n)'$, $f(x) = f(x_1, x_2, \dots, x_n) = x' A x$.

- (1) 判断集合 $U=\{x\in\mathbb{R}^n\mid f(x)=0\}$ 是否为 \mathbb{R}^n 的子空间;如果是,求其维数;如果否,求其生成的子空间的维数;
- (2) 设存在 \mathbb{R}^n 的内积 (\cdot,\cdot) 使得对任意 $x\in\mathbb{R}^n$ 有 (x,x)=f(x),求 $a_i(1\leq i\leq n)$ 的值;并求向量 $\alpha=(1,0,\cdots,0)'$ 与 $\beta=(1,1,\cdots,1)'$ 在该內积下的长度与夹角

设 $V=M_n(\mathbb{C})$ 是全体n阶复矩阵构成的线性空间, $A,B\in V$,对任意 $X\in V$,定义 $\sigma(X)=AX-XB$ 。证明:A 与 B 没有公共特征值的充分必要条件是对任意n阶矩阵 $C\in V$,存在唯一的n阶矩阵 $X\in V$ 使得 $\sigma(X)=C$