

Contents

	Acronyms	page ix	
	Notation	xii	
		_	
1	Introduction	1	
	1.1 History of OWC	1	
	1.2 Advantages of OWC	3	
	1.3 Application areas	4	
	1.4 Li-Fi	5	
	1.4.1 Modulation	5	
	1.4.2 Multiple access	6	
	1.4.3 Uplink	7	
	1.4.4 The attocell	8	
	1.4.5 Cellular network	9	
	1.5 Challenges for OWC	9	
	1.6 Summary	11	
2	Optical wireless communication	12	
	2.1 Introduction	12	
	2.2 System setup	13	
	2.3 Communication scenarios	14	
	2.3.1 Line-of-sight communication	15	
	2.3.2 Non-line-of-sight communication	15	
	2.4 Optical front-ends	16	
	2.4.1 Transmitter	16	
	2.4.2 Receiver	18	
	2.5 Optical wireless channel	20	
	2.5.1 Channel model	21	
	2.5.2 Path loss	21	
	2.5.3 Delay spread and coherence bandwidth	26	
	2.5.4 Channel equalization	27	
	2.6 Cellular network: a case study in an aircraft cabin	29	
	2.6.1 Ray-tracing for signal and interference modeling	31	
		¥	

¥İ	Contents	
	2.6.2 Cabin setup: propagation paths, cellular configuration, and	
	wavelength reuse	-
	2.6.3 Cabin geometry and materials	
	2.6.4 Access points	- 1
	2.6.5 Photobiological safety	2
	2.6.6 Estimation of line-of-sight path loss and shadowing	- 1
	2.6.7 Estimation of non-line-of-sight path loss and shadowing	-
	2.6.8 Signal-to-interference ratio maps	, d
	2.7 Summary	-
3	Front-end non-linearity	
	3.1 Introduction	
	3.2 Generalized non-linear transfer function	1.5
	3.3 Pre-distortion	1
	3.4 Non-linear distortion of Gaussian signals	
	3.4.1 Analysis of generalized non-linear distortion	
	3.4.2 Analysis of double-sided signal clipping distortion	
	3.5 Summary	
4	Digital modulation schemes	
	4.1 Introduction	
	4.2 Optical signals	
	4.3 Single-carrier modulation	
	4.3.1 Pulse position modulation: M-PPM	
	4.3.2 Pulse amplitude modulation: M-PAM	
	4.3.3 BER performance with pre-distortion in AWGN	
	4.4 Multi-carrier modulation	
	4.4.1 Optical OFDM with M-QAM: DCO-OFDM and ACO-OFDM	
	4.4.2 BER performance with generalized non-linear distortion in AWGN	
	4.4.3 BER performance with pre-distortion in AWGN	
	4.5 Summary	
5	Spectral efficiency and information rate	- 5
	5.1 Introduction	-
	5.2 Constraints on the information rate in OWC	
	5.2.1 Link impairments	
	5.2.2 On the maximization of information rate	1
	5.3 Modulation schemes in the flat fading channel with AWGN	1
	5.3.1 Biasing optimization of Gaussian signals	19
	5.3.2 Maximum spectral efficiency without an average optical power	
	constraint	10
	5.3.3 Spectral efficiency with an average optical power constraint	10

	Contents	Ý
	5.4 Information rate of OFDM-based modulation with non-linear distortion 5.4.1 Biasing optimization of Gaussian signals	110
		111
	5.4.2 Maximum information rate without an average optical power constraint	113
	5.4.3 Information rate with an average optical power constraint	112
	5.5 Modulation schemes in the dispersive channel with AWGN	120
	5.5.1 Biasing optimization of Gaussian signals	121
	5.5.2 DC-bias penalty	123
	5.5.3 Equalizer penalty	124
	5.5.4 Maximum spectral efficiency without an average optical power	
	constraint	125
	5.6 Summary	127
6	MIMO transmission	130
	6.1 Introduction	130
	6.2 System model	131
	6.3 MIMO techniques	133
	6.3.1 Repetition coding	133
	6.3.2 Spatial multiplexing	135
	6.3.3 Spatial modulation	136
	6.3.4 Computational complexity	138
	6.4 BER performance	139
	6.4.1 Varying the separation of transmitters	139
	6.4.2 Varying the position of receivers	143
	6.4.3 Power imbalance between transmitters	140
	6.4.4 Link blockage	143
	6.5 Summary	150
7	Throughput of cellular OWC networks	151
	7.1 Introduction	151
	7.2 System throughput using static resource partitioning	150
	7.2.1 Signal-to-interference-and-noise ratio modeling	153
	7.2.2 Adaptive modulation and coding	150
	7.2.3 System throughput of optical OFDM in an aircraft cabin	157
	7.3 Interference coordination in optical cells using busy burst signaling	160
	7.3.1 System model	161
	7.3.2 Interference coordination in optical cells	163
	7.3.3 Busy burst principle	164
	7.3.4 Contention avoidance among neighboring cells	163
	7.3.5 User scheduling and fair reservation mechanism	168
	7.3.6 Link adaptation	169

vii	Contents	
	7.3.7 System throughput with busy burst signaling 7.3.8 System throughput with busy burst signaling and fair reservation	170
	mechanism 7.4 Summary	178 181
	7.4 Squinay	
	References	183
	Index	197

Balancing theoretical analysis and practical advice, this book describes all the underlying principles required to build high performance indoor optical wireless communication (OWC) systems based on visible and infrared light, alongside essential techniques for optimising systems by maximising throughput, reducing hardware complexity and measuring performance effectively. It provides a comprehensive analysis of information rate-, spectral- and power-efficiencies for single and multi-carrier transmission schemes, and a novel analysis of non-linear signal distortion, enabling the use of off-the-shelf LED technology. Other topics covered include cellular network throughput and coverage, static resource partitioning and dynamic interference-aware scheduling, realistic light propagation modelling, OFDM, optical MIMO transmission and nonlinearity modelling. Covering practical techniques for building indoor optical wireless cellular networks supporting multiple users and guidelines for 5G cellular system studies, in addition to physical layer issues, this is an indispensable resource for academic researchers, professional engineers and graduate students working in optical communications.

- Demonstrates the key principles that enable LEDs to transmit wireless data at very high speeds, and delivers design guidelines for building and optimising such OWC systems
- Delivers a framework for optimising multi-carrier signals, taking into consideration the properties of practical off-the-shelf front-end components which maximises the throughput of OWC links
- Explains realistic and comprehensive channel modelling in a cellular OWC network in an aircraft cabin via Monte Carlo ray-tracing, providing a realistic assessment of system performance in a practical multi-user communication set-up
- Evaluates the analysis and performance of a novel low-complexity MIMO transmission scheme, spatial modulation, which reduces hardware complexity and improves transmission rates