Shakib Irslan High School Physics Department Name:

PHYSICS EXTRA SHEET 3 LINEAR MOMENTUM

Academic Year: 2023-2024
Date:
Class and Section: 12 LS

Exercise 1:

The position-time equation of a particle (M), of mass m = 0.5kg, moving in the frame reference system (0; \vec{i}) is: $x = 2t^2 - 4t + 1$ [SI]

- 1- Determine, at the instant t, the expressions of the velocity, acceleration and the linear momentum of (M).
- **2-** Calculate the net external force acting on (S).

Exercise 2:

The position vector of a particle (P) of mass m = 2kg and moving in the space reference system $(0; \vec{t}; \vec{j})$ is:

$$\vec{r} = (5\sqrt{3}t)\vec{i} + (-5t^2 + 5t)\vec{j} [SI]$$

Neglect air resistance and take $g = 10 \text{m/s}^2$.

- **1-** Determine the equation of the trajectory described by (P). Deduce its shape.
- **2-** Determine, at an instant t, the:
 - **2.1-** Velocity of (P),
 - **2.2-** acceleration of (P),
 - **2.3-** linear momentum of (P).
- 3- Show that $\sum \vec{F}_{ext} = m\vec{a} = \frac{d\vec{P}}{dt}$.
- **4-** Determine the instant t₁ when (P) reaches its highest point A of its trajectory.
- **5-** Calculate the range of (P).

Exercise 3:

Two particles (S_1) and (S_2) of respective masses $m_1 = 2kg$ and $m_2 = 3kg$ move towards each other with respective velocities of magnitudes $V_1 = 6m/s$ and $V_2 = 4m/s$ as shown in the adjacent document.

- **1-** Write the velocity vectors \vec{V}_1 and \vec{V}_2 of (S_1) and (S_2) respectively.
- **2-** Determine the linear momenta \vec{P}_1 and \vec{P}_2 of (S_1) and (S_2) respectively. Deduce the linear momentum \vec{P}_S of the system $[(S_1); (S_2)]$.
- **3-** Specify whether the center of mass of the system $[(S_1); (S_2)]$ moves. Justify.

Exercise 4:

In an inertial frame of reference $(0; \vec{i}; \vec{j})$, the coordinates and masses of two particles (S_1) and (S_2) are given as a function of time t as follows:

$$(S_1) \begin{vmatrix} x_1 = 2t^2 + 5 \\ y_1 = t - 1 \\ m_1 = 1kg \end{vmatrix}$$
 $(S_2) \begin{vmatrix} x_2 = 2t + 4 \\ y_2 = t^2 + t \\ m_2 = 2kg \end{vmatrix}$ (S_1)

Denote by G the center of mass of the system $(S) = [(S_1); (S_2)].$

- 1- Determine \vec{P}_1 and \vec{P}_2 the respective linear momenta of (S_1) and (S_2) at any instant t.
- **2-** Calculate \vec{P}_S the linear momentum of the system (S) at any instant t.
- **3-** Determine \vec{r}_G the position vector of (S) at any instant t.
- **4-** Calculate \vec{P}_G the linear momentum of G at any instant t. Draw out a conclusion.
- 5- Determine \vec{a}_1 and \vec{a}_2 the respective acceleration vectors of (S_1) and (S_2) at any time t. Deduce \vec{F}_1 and \vec{F}_2 the net forces acting on (S_1) and (S_2) respectively.
- **6-** Verify that $\sum \vec{F}_{ext/(s)} = \frac{d\vec{P}}{dt}$.
- **7-** Specify whether the system (S) is isolated or not.

Exercise 5:

A solid (S), considered as a particle of mass m = 0.5kg, can slide on an inclined plane making an angle $\alpha = 30^{\circ}$ with respect to the horizontal. At the instant $t_0 = 0s$, (S) is launched from point O with a velocity

 $\vec{V}_0 = V_0 \vec{i}$ along a line Ox of greatest slope. Thus, (S) moves along the axis Ox of unit vector \vec{i} as shown in document 1.

At an instant, the position of (S) relative to O is given by its abscissa xand the algebraic value of its velocity is $V = \frac{dx}{dt}$.

The force of friction \vec{f} between the inclined plane and (S) opposes its motion and is assumed constant of magnitude f.

Take $g = 10 \text{m/s}^2$. Document 2 represents the variation of the algebraic value of the linear momentum P of (S) as a function of time.

- 1- Referring to document 2, determine the value of V_0 .
- 2- Show that P = -4t + 5 (SI); then, deduce the expression of V as a function of time.
- **3-** Name and represent the external forces acting on (S).
- **4-** Show that the resultant of these forces may be written as:

$$\sum \vec{F}_{ext} = (-mg \sin \alpha - f)\vec{i}$$

- **5-** Deduce the value of f.
- **6-** Determine the distance OB knowing that (S) stops at point B.

Exercise 6:

A vessel at rest at the origin of an xy coordinate system explodes into three pieces. Just after the explosion, one piece, of mass m, moves with velocity $(-30m/s)\vec{t}$ and a second piece, also of mass m, moves with velocity $(-30m/s)\vec{j}$. The third piece has mass 3m.

Just after the explosion, what are the (a) magnitude and (b) direction of the velocity of the third piece?

Exercise 7:

A rifle (R), of mass $m_1 = 4kg$, and initially at rest fires a bullet (B), of mass $m_2 = 5g$, with a velocity of $V_2 = 500$ m/s. What is the velocity V_1 acquired by the rifle?

Exercise 8:

A solid (A), of mass $m_1 = 0.4$ kg and moving along a horizontal plane with a constant velocity $\vec{V}_1 = V_1 \vec{i}$ $(V_1 = 5m/s)$, enters in an elastic head-on collision with a solid (B) of mass $m_2 = 0.6$ kg and initially at rest. Neglect all frictional forces.

1- Show, just after collision, that the expressions of the respective velocities of (A) and (B) are given by: $V_1^{'} = \frac{m_1 - m_2}{m_1 + m_2} V_1 \text{ and } V_2^{'} = \frac{2m_1}{m_1 + m_2} V_1$

$$V_1' = \frac{m_1 - m_2}{m_1 + m_2} V_1$$
 and $V_2' = \frac{2m_1}{m_1 + m_2} V_1$

- **2-** Calculate the numerical values of V_1' and V_2' .
- 3- The duration of collision is $\Delta t = 0.02s$; we can consider that $\frac{\Delta \vec{P}}{\Delta t} \approx \frac{d\vec{P}}{dt}$.
 - **3.1-** Determine during Δt :
 - **3.1.1-** the variations $\Delta \vec{P}_A$ and $\Delta \vec{P}_B$ in the linear momentums of (A) and (B) respectively;
 - **3.1.2-** the forces $\vec{F}_{A/B}$ exerted by (A) on (B) and $\vec{F}_{B/A}$ exerted by (B) on (A).
 - **3.2-** Deduce that the principle of interaction is verified.

Exercise 9:

Two blocks (S₁) and (S₂), of respective masses $m_1 = 2$ kg and $m_2 = 3$ kg, are placed on a frictionless horizontal surface. A light spring is attached to (S₂), and the blocks are pushed together with the spring between them. A cord initially holding the blocks together is burned; after that happens, (S₂) moves to the right with a velocity $\vec{V}_2 = 4\vec{\iota}$ (m/s). The x-axis is taken as a reference level for gravitational potential energy.

- **1-** Determine the velocity \vec{V}_1 of (S_1) .
- **2-** Find the system's original elastic potential energy.
- **3-** Is the original energy in the spring or in the cord? Explain.

Exercise 10:

A block (A) of mass $m_A = 1.6$ kg and moving with a velocity $\vec{V}_A = 5\vec{\imath}$ (m/s) enters in a head-on collision with another block (B) of mass $m_B = 2.4$ kg and moving with a velocity $\vec{V}_B = -2\vec{\imath}$ (m/s). After collision, the velocity of block (A) is $\vec{V}_A' = -3.4\vec{\imath}$ (m/s).

- 1- Determine the velocity \vec{V}'_B of block (B) after collision.
- **2-** Specify whether the collision between block (A) and block (B) is elastic or not.
- **3-** Determine the force $\vec{F}_{A/B}$ exerted by block (A) on block (B) during collision knowing that it lasts for 100ms.

Exercise 11:

At the instant $t_0 = 0s$, a solid (S), considered as a particle of mass m = 500g, is launched from point O with an initial velocity vector \vec{V}_0 of magnitude $V_0 = 8m/s$ and making an angle $\alpha = 30^\circ$ with the horizontal as shown in the document below.

Neglect air resistance and take $g = 10 \text{m/s}^2$.

- **1-** Determine, at the instant $t_0 = 0$ s, the algebraic value of the horizontal and vertical components P_{0x} and P_{0y} of the initial linear momentum \vec{P}_0 of (S).
- 2- Apply Newton's second law to show that the expression of the linear momentum of (S) at an instant t is:

$$\vec{P} = 2\sqrt{3}\vec{i} + (-5t + 2)\vec{j}$$
 (SI)

- **3-** Deduce the parametric equations x(t) and y(t) of (S) in the space reference system $(0; \vec{t}; \vec{j})$.
- **4-** Determine the range and the maximum height reached by (S).

Exercise 12:

The aim of this exercise is to study the collision between two bodies and to verify the principle of interaction. To do this, we use a horizontal air table that is equipped with a launcher and two pucks (A) and (B) of respective masses $m_A = 150g$ and $m_B = 250g$.

Puck (A), moving with a velocity $\vec{V}_A = V_A \vec{\imath}$, enters in a head-on collision with puck (B) moving with a velocity $\vec{V}_B = V_B \vec{\imath}$.

Just after collision, pucks (A) and (B) move with the respective velocities $\vec{V}_A' = V_A'\vec{\imath}$ and $\vec{V}_B = V_B'\vec{\imath}$. The document below shows, in real dimensions, a part of the dot-prints, that register the positions of the centers of mass of pucks (A) and (B), obtained when the time interval separating two successive dots is $\tau = 20$ ms.

Part I: collision between (A) and (B)

- 1- Show, using the above dot-prints, that the velocities \vec{V}_A , \vec{V}_B , \vec{V}_A and \vec{V}_B are constant and calculate their algebraic values V_A , V_B , V_A and V_B .
- 2- Calculate the linear momenta \vec{P} and \vec{P}' of the system [(A); (B)] before and after collision respectively,
- **3-** Compare \vec{P} and \vec{P}' . Conclude.

4-

- **4.1-** Name the external forces acting on the system [(A); (B)].
- **4.2-** What is the value of the resultant of these forces?
- **4.3-** This result agrees with the conclusion of part 3. Why?
- 5- Specify the nature of the collision between (A) and (B).

Part II: interaction between (A) and (B)

The collision between (A) and (B) lasts for $\Delta t = 100$ ms.

- **1-** Determine, during collision, the average force $\vec{F}_{A/B}$ exerted by (A) on (B) and the average force $\vec{F}_{B/A}$ exerted by (B) on (A).
- **2-** Show that the principle of interaction is verified.

Exercise 13:

A block (B), of mass m = 1.5kg and center of inertia G, is placed on a horizontal rough plane. At the instant $t_0 = 0$ s, (B) is launched from point O with a horizontal velocity $\vec{V}_0 = V_0 \vec{\imath}$. Thus, (B) moves along the axis Ox of unit vector $\vec{\imath}$ as shown in document 1.

At an instant, the position of (B) relative to O is given by its abscissa x and the algebraic value of its velocity is $v = \frac{dx}{dt}$.

The force of friction \vec{f} between the plane and (B) opposes its motion and is assumed constant of magnitude f.

The graph of document 2 shows the variation of the algebraic value of the linear momentum P of (B) as a function of time.

- **1-** Determine V_0 .
- **2-** Name and represent the external forces acting on (B).
- **3-** Apply Newton's 2^{nd} law to determine f.
- **4-** Apply the work-kinetic energy theorem to determine the distance OM knowing that (B) stops at point M.

Exercise 1:

Part	Answer key
	$V = \frac{dx}{dt} = x' = 4t - 4 \Longrightarrow \vec{V} = V\vec{\iota} = (4t - 4)\vec{\iota}.$
	$a = \frac{\vec{dV}}{dt} = V' = 4m/s^2 \implies \vec{a} = a\vec{i} = 4\vec{i}.$
	$P = mV = 2t - 2 \Longrightarrow \vec{P} = V\vec{\iota} = (2t - 2)\vec{\iota}.$
2	$\sum F_{ext} = ma = 2N \Rightarrow \sum \vec{F}_{ext} = 2\vec{\imath} \text{ or } \sum F_{ext} = \frac{dP}{dt} = 2 \Rightarrow \sum \vec{F}_{ext} = 2\vec{\imath}.$

Exercise 2:

Part	Answer key
1	The parametric equations of motion of (P) are: $\begin{cases} x = 5\sqrt{3}t \dots (1) \\ y = -5t^2 + 5t \dots (2) \end{cases}$
	From (1): $t = \frac{x}{5\sqrt{3}}$. Replace in (2): $y = -5\left(\frac{x}{5\sqrt{3}}\right)^2 + 5\left(\frac{x}{5\sqrt{3}}\right) = -\frac{1}{15}x^2 + \frac{1}{\sqrt{3}}x$ (Parabolic).
	$\vec{V} = \frac{d\vec{r}}{dt} = \vec{r}' = 5\sqrt{3}\vec{i} + (-10t + 5)\vec{j}.$
	$\vec{a} = \frac{d\vec{V}}{dt} = \vec{V}' = -10\vec{J}.$
2.3	$\vec{P} = m\vec{V} = 10\sqrt{3}\vec{i} + (-20t + 10)\vec{j}.$
3	The only force acting on a projectile is its weight $(\vec{W} = m\vec{g})$.
	$\sum \vec{F}_{ext} = m\vec{g} = 2 \times (-10\vec{j}) = -20\vec{j}, m\vec{a} = 2 \times (-10\vec{j}) = -20\vec{j} \text{ and } \frac{d\vec{P}}{dt} = -20\vec{j}.$
4	$V_y = 0 \Longrightarrow -10t_1 + 5 = 0 \Longrightarrow t_1 = 0.5s.$
5	$y = 0 \Longrightarrow -\frac{1}{15}x^2 + \frac{1}{\sqrt{3}}x = 0 \Longrightarrow x\left(-\frac{1}{15}x + \frac{1}{\sqrt{3}}\right) = 0.$
	$x = 0$ (launching position) and $-\frac{1}{15}x + \frac{1}{\sqrt{3}} = 0 \Rightarrow x = 5\sqrt{3}m$.

Exercise 3:

	21141 4154 44	
Part	Answer key	
1	$\vec{V}_1 = 6\vec{\imath} \text{ and } \vec{V}_2 = -4\vec{\imath}.$	
2	$\vec{P}_1 = m_1 \vec{V}_1 = 12\vec{i}$ and $\vec{P}_2 = m_2 \vec{V}_2 = -12\vec{i}$. Then, $\vec{P}_S = \vec{P}_1 + \vec{P}_2 = \vec{0}$.	
3	$\vec{P}_S = \vec{P}_G = M\vec{V}_G = \vec{0} \Longrightarrow \vec{V}_G = \vec{0}$ (G at rest).	

Exercise 4:

Part	Answer key
1	$ \vec{r}_1 = x_1\vec{\iota} + y_1\vec{\jmath} = (2t^2 + 5)\vec{\iota} + (t - 1)\vec{\jmath} [m].$ $ \vec{r}_2 = x_2\vec{\iota} + y_2\vec{\jmath} = (2t + 4)\vec{\iota} + (t^2 + t)\vec{\jmath} [m].$
	$ \vec{V}_1 = \frac{d\vec{r}_1}{dt} = \vec{r}_1' = 4t\vec{i} + \vec{j} [m/s].$ $ \vec{V}_2 = \frac{d\vec{r}_2}{dt} = \vec{r}_2' = 2\vec{i} + (2t+1)\vec{j} [m/s].$
	$\vec{P}_1 = m_1 \vec{V}_1 = 4t\vec{i} + \vec{j} [kgm/s].$ $\vec{P}_2 = m_2 \vec{V}_2 = 4\vec{i} + (4t+2)\vec{j} [kgm/s].$
2	$\vec{P}_S = \vec{P}_1 + \vec{P}_2 = (4t+4)\vec{i} + (4t+3)\vec{j} [kgm/s].$
3	$X_G = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = \frac{(1)(2t^2 + 5) + (2)(2t + 4)}{3} = \frac{2t^2 + 4t + 13}{3} [m].$
	$Y_G = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2} = \frac{(1)(t-1) + (2)(t^2 + t)}{3} = \frac{2t^2 + 3t - 1}{3} [m].$
	$\vec{r}_G = X_G \vec{i} + Y_G \vec{j} = \left(\frac{2t^2 + 4t + 13}{3}\right) \vec{i} + \left(\frac{2t^2 + 3t - 1}{3}\right) \vec{j} [m].$
4	$\vec{V}_G = \frac{d\vec{r}_G}{dt} = \vec{r}_G' = \left(\frac{4t+4}{3}\right)\vec{t} + \left(\frac{4t+3}{3}\right)\vec{j} \left[m/s\right].$
	$\vec{P}_G = (m_1 + m_2)\vec{V}_G = (4t + 4)\vec{i} + (4t + 3)\vec{j} [kgm/s]$. Therefore, $\vec{P}_S = \vec{P}_G$.
5	$ \vec{q}_{\star} = \frac{d\vec{V}_{1}}{\vec{V}_{\star}} = \vec{V}_{\star}' = 4\vec{i} [m/s^{2}]$ $ \vec{F}_{1} = m_{1} \vec{a}_{1} = 4\vec{i} [N].$
	$\vec{a}_{2} = \frac{d\vec{V}_{2}}{dt} = \vec{V}_{2}' = 2\vec{j} [m/s^{2}].$ $\vec{F}_{2} = m_{2}\vec{a}_{2} = 4\vec{j} [N].$
6	$\sum \vec{F}_{ext/(S)} = \vec{F}_1 + \vec{F}_2 = 4\vec{i} + 4\vec{j} [N] \text{ and } \frac{d\vec{P}}{dt} = 4\vec{i} + 4\vec{j} [N].$
7	The system (S) is not isolated since $\sum \vec{F}_{ext/(S)} \neq \vec{0}$.

Exercise 5:

Part	Answer key
1	$V_0 = \frac{P_0}{m} = \frac{5}{0.5} = 10 m/s.$
2	The general equation of a straight line: $P = kt + P_0$.
	$k = slope = \frac{\Delta P}{\Delta t} = \frac{0-5}{1.25-0} = -4kgm/s^2$ and $P_0 = 5kgm/s$ at $t_0 = 0$ s.
	Therefore, $P = -4t + 5$.
	$V = \frac{P}{m} = \frac{-4t+5}{0.5} = -8t + 10.$
3	Name and represent.
4	$\sum \vec{F}_{ext} = \vec{W} + \vec{N} + \vec{f} = \vec{W}_x + \vec{W}_y + \vec{N} + \vec{f} \text{ with } \vec{W}_y + \vec{N} = \vec{0}.$
	Then, $\sum \vec{F}_{ext} = -mg \sin \alpha \vec{i} - f \vec{i} = (-mg \sin \alpha - f) \vec{i}$.
5	By applying Newton's 2^{nd} law: $\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt}$.
	Projection along x-axis: $-mg \sin \alpha - f = \frac{dP}{dt}$.
	$-0.5 \times 10 \times \sin 30^{\circ} - f = -4 \Longrightarrow f = 1.5N.$
6	$x = \int V dt = -4t^2 + 10t + x_0$ with $x_0 = 0m$.
	$x = -4(1.25)^2 + 10(1.25) = 6.25m.$

Exercise 6:

Part	Answer key
	During Explosion, the vessel is isolated.
	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \Longrightarrow \vec{P} = constant.$
	Law of conservation of linear momentum: $\vec{P}_b = \vec{P}_a$.
	$ \vec{P} = \vec{P}_1 + \vec{P}_2 + \vec{P}_3.$
	$M\vec{V} = m_1\vec{V}_1 + m_2\vec{V}_2 + m_3\vec{V}_3$ with $m_1 = m_2 = m$ and $m_3 = 3m$.
	$\vec{0} = m\vec{V}_1 + m\vec{V}_2 + 3m\vec{V}_3 \Longrightarrow \vec{0} = -30\vec{i} - 30\vec{j} + 3\vec{V}_3 \Longrightarrow \vec{V}_3 = 10\vec{i} + 10\vec{j} \ [m/s].$
	$ V_3 = \vec{V}_3 = \sqrt{V_{3x}^2 + V_{3y}^2} = \sqrt{10^2 + 10^2} = 10\sqrt{2}m/s.$
	$\tan \alpha = \frac{v_{3y}}{v_{3x}} = \frac{10}{10} = 1 \implies \alpha = 45^{\circ}.$

Exercise 7:

Part	Answer key
	During firing, the system [(R); (B)] is isolated.
	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \Longrightarrow \vec{P} = constant.$
	Law of conservation of linear momentum: $\vec{P}_b = \vec{P}_a$.
	$\vec{P} = \vec{P}_1 + \vec{P}_2$.
	$M\vec{V} = m_1\vec{V_1} + m_2\vec{V_2}.$
	$ec{0}=m_1ec{V}_1+m_2ec{V}_2.$
	$m_1V_1 + m_2V_2 = 0 \Longrightarrow V_1 = -\frac{m_2}{m_1}V_2 = -\frac{5 \times 10^{-3}}{4} \times 500 = -0.625 m/s.$

Exercise 8:

Exercis	se a:
Part	Answer key
1	During collision, the system [(A); (B)] is isolated.
	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \Longrightarrow \vec{P} = constant.$
	Principle of conservation of linear momentum: $\vec{P}_i = \vec{P}_f \implies m_1 \vec{V}_1 + m_2 \vec{V}_2 = m_1 \vec{V}_1' + m_2 \vec{V}_2'$.
	The collision is head on; then, the above expression can be written in its algebraic form:
	$m_1V_1 + m_2V_2 = m_1V_1' + m_2V_2'$ with $V_2 = 0$.
	$m_1(V_1 - V_1') = m_2 V_2' \dots (1).$
	The collision is elastic; then, the kinetic energy is conserved: $K.E_i = K.E_f$.
	$\left \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 \right = \frac{1}{2} m_1 V_1^{'2} + \frac{1}{2} m_2 V_2^{'2} \Longrightarrow m_1 \left(V_1^2 - V_1^{'2} \right) = m_2 V_2^{'2}.$
	$m_1(V_1 + V_1')(V_1 - V_1') = m_2 V_2'^2 \dots (2).$
	Divide (2) by (1): $V_1 + V_1' = V_2' \dots (3)$.
	Replace (3) in (1): $m_1(V_1 - V_1) = m_2(V_1 + V_1) \Longrightarrow V_1 = \frac{m_1 - m_2}{m_1 + m_2} V_1 \dots (4)$.
	Replace (4) in (3):
	$V_2' = V_1 + \frac{m_1 - m_2}{m_1 + m_2} V_1 = \left(1 + \frac{m_1 - m_2}{m_1 + m_2}\right) V_1 = \left(\frac{m_1 + m_2 + m_1 - m_2}{m_1 + m_2}\right) V_1 = \frac{2m_1}{m_1 + m_2} V_1.$
2	$V_1 = \frac{0.4 - 0.6}{0.4 + 0.6} \times 5 = -1m/s.$
	$V_2 = \frac{2 \times 0.4}{0.4 + 0.6} \times 5 = 4m/s.$
3.1.1	$\Delta \vec{P}_A = \vec{P}_1' - \vec{P}_1 = m_1 (\vec{V}_1' - \vec{V}_1) = 0.4 \times (-\vec{t} - 5\vec{t}) = -2.4\vec{t} [kgm/s].$
	$\Delta \vec{P}_B = \vec{P}_2' - \vec{P}_2 = m_2(\vec{V}_2' - \vec{V}_2) = 0.6 \times (4\vec{\imath} - \vec{0}) = 2.4\vec{\imath} [kgm/s].$ By applying Newton's 2 nd law on (A):
3.1.2	By applying Newton's 2 nd law on (A):
	$\sum \vec{F}_{ext/A} = \frac{d\vec{P}_A}{dt} \Longrightarrow \vec{W}_A + \vec{N}_A + \vec{F}_{B/A} = \frac{\Delta \vec{P}_A}{\Delta t} \text{ with } \vec{N}_A + \vec{W}_A = \vec{0}.$
	$ec{F}_{B/A} = rac{-2.4 ec{i}}{0.2} = -12 ec{i}$.
	By applying Newton's 2 nd law on (B):
	$\sum \vec{F}_{ext/B} = \frac{d\vec{P}_B}{dt} \Longrightarrow \vec{W}_B + \vec{N}_B + \vec{F}_{A/B} = \frac{\Delta \vec{P}_B}{\Delta t} \text{ with } \vec{N}_B + \vec{W}_B = \vec{0}.$
	$ec{F}_{A/B} = rac{2.4 ec{t}}{0.2} = 12 ec{t}.$
3.2	$\vec{F}_{A/B} = -\vec{F}_{B/A}.$

Exercise 9:

Part	Answer key
1	The system is isolated, then $\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \implies \vec{P} = constant$.
	Principle of conservation of linear momentum: $\vec{P}_i = \vec{P}_f$.
	$\vec{0} = m_1 \vec{V}_1 + m_2 \vec{V}_2 \Longrightarrow \vec{V}_1 = -\frac{m_2 \vec{V}_2}{m_1} = -\frac{(3)(4\vec{1})}{2} = -6\vec{1} \text{ (m/s)}.$
2	The non-conservative force (friction) is neglected; then, the mechanical energy is conserved.
	$ME_i = ME_f$.
	$KE_i + GPE_i + EPE_i = KE_f + GPE_f + EPE_f.$
	$0 + 0 + EPE_i = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2 + 0 + 0.$
	$EPE_i = \frac{1}{2} \times 2 \times 6^2 + \frac{1}{2} \times 3 \times 4^2 = 60J.$
3	The original energy is in the spring.
	A force had to be exerted over a displacement to compress the spring, transferring energy into it by
	work.
	The cord exerts force, but over no displacement.

Exercise 10:

Part	Answer key
1	During collision, the system [(A); (B)] is isolated.
	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \Longrightarrow \vec{P} = constant.$
	Principle of conservation of linear momentum: $\vec{P}_{bc} = \vec{P}_{ac}$.
	$m_A ec{V}_A + m_B ec{V}_B = m_A ec{V}_A' + m_B ec{V}_B'.$
	$(1.6)(5\vec{i}) + (2.4)(-2\vec{i}) = (1.6)(-3.4\vec{i}) + 2.4\vec{V}_B' \implies \vec{V}_B' = 3.6\vec{i} \ (m/s).$
2	$KE_{bc} = \frac{1}{2}m_A V_A^2 + \frac{1}{2}m_B V_B^2 = \frac{1}{2} \times 1.6 \times 5^2 + \frac{1}{2} \times 2.4 \times 2^2 = 24.8J.$
	$KE_{ac} = \frac{1}{2}m_A V_A^{'2} + \frac{1}{2}m_B V_B^{'2} = \frac{1}{2} \times 1.6 \times 3.4^2 + \frac{1}{2} \times 2.4 \times 3.6^2 = 24.8J.$
	$KE_{bc} = KE_{ac} \Longrightarrow$ The kinetic energy of the energy [(A); (B)] is conserved.
	Therefore, the collision is elastic.
3	Isolate (B): $\sum \vec{F}_{ext/B} = \frac{d\vec{P}_B}{dt} \Longrightarrow m_B \vec{g} + \vec{N}_B + \vec{F}_{A/B} = \frac{d\vec{P}_B}{dt}$.
	$m_B \vec{g} + \vec{N}_B = \vec{0}$ and $\frac{d\vec{P}_B}{dt} = \frac{\Delta \vec{P}_B}{\Delta t}$.
	$ec{F}_{A/B} = rac{\Delta ec{P}_B}{\Delta t} = rac{m_B ec{V}_B' - m_B ec{V}_B}{\Delta t} = rac{m_B (ec{V}_B' - ec{V}_B)}{\Delta t}.$
	$\vec{F}_{A/B} = \frac{2.4(3.6\vec{i}+2\vec{i})}{0.1} = 134.4\vec{i} \ (N).$

Exercise 11:

Exercise	t 11.
Part	Answer key
1	$P_{0x} = mV_{0x} = mV_0 \cos \alpha = 0.5 \times 8 \times \cos 30^\circ = 2\sqrt{3}kgm/s.$
	$P_{0y} = mV_{0y} = mV_0 \sin \alpha = 0.5 \times 8 \times \sin 30^\circ = 2kgm/s.$
2	The only force acting on (S) is weight $\overrightarrow{W} = m\overrightarrow{g} = -mg\overrightarrow{j}$.
	Apply Newton's 2^{nd} law: $\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} \Longrightarrow -mg\vec{j} = \frac{dP_x}{dt}\vec{i} + \frac{dP_y}{dt}\vec{j}$.
	$\frac{dP_x}{dt} = 0 \Longrightarrow P_x = constant = P_{0x} = 2\sqrt{3}kgm/s.$
	$\frac{dP_y}{dt} = -mg \Longrightarrow P_y = -mgt + P_{0y} = -5t + 2 (SI).$
	Therefore, $\vec{P} = P_x \vec{i} + P_y \vec{j} = 2\sqrt{3}\vec{i} + (-5t + 2)\vec{j}$ (SI).
3	$V_{x} = \frac{P_{x}}{m} = \frac{2\sqrt{3}}{0.5} = 4\sqrt{3}m/s.$
	$V_y = \frac{P_y}{m} = \frac{-5t+2}{0.5} = -10t + 4 (SI).$
	$x = \int V_x dt = 4\sqrt{3}t + x_0 = 4\sqrt{3}t$ (SI) with $x_0 = 0$.
	$y = \int V_y dt = -\frac{10t^2}{2} + 4t + y_0 = -5t^2 + 4t$ (SI) with $y_0 = 0$.
4	$V_y = 0 \Longrightarrow -10t + 4 = 0 \Longrightarrow t = \frac{4}{10} = 0.4s.$
	$y_m = -5 \times 0.4^2 + 4 \times 0.4 = 0.8m$.
	$y = 0 \Longrightarrow -5t^2 + 4t = 0 \Longrightarrow t(-5t + 4) = 0.$
	$t = 0s$ (launching point) and $-5t + 4 = 0 \Rightarrow t = \frac{4}{5} = 0.8s$.
	$x = 4\sqrt{3}(0.8) = 3.2\sqrt{3}m = 5.54m.$

Exercise 12:

Exercise	e 12:
Part	Answer key
I.1	The distances covered by the pucks before and after the collision during successive and equal
	intervals of time (τ) are equal.
	Since \vec{V}_A , \vec{V}_B , \vec{V}_A' and \vec{V}_B' are collinear or held by the same axis $(0; \vec{t})$ then these velocities are constant.
	$V_A = \frac{A_0 A_5}{5\tau} = \frac{20 \times 10^{-2}}{5 \times 20 \times 10^{-3}} = 2m/s, V_B = -\frac{B_0 B_5}{5\tau} = -\frac{10 \times 10^{-2}}{5 \times 20 \times 10^{-3}} = -1m/s.$
	00 000000
	$V_A^{'} = -\frac{A_0^{'}A_5^{'}}{5\tau} = -\frac{17.5 \times 10^{-2}}{5 \times 20 \times 10^{-3}} = -1.75 m/s, V_B^{'} = \frac{B_0^{'}B_5^{'}}{5\tau} = \frac{12.5 \times 10^{-2}}{5 \times 20 \times 10^{-3}} = 1.25 m/s.$
I.2	$\vec{P} = m_A \vec{V}_A + m_B \vec{V}_B = (0.15)(2\vec{i}) + (0.25)(-1\vec{i}) = 0.05\vec{i} (kgm/s).$
	$\vec{P}' = m_A \vec{V}_A' + m_B \vec{V}_B' = (0.15)(-1.75\vec{\imath}) + (0.25)(1.25\vec{\imath}) = 0.05\vec{\imath} \ (kgm/s).$ $\vec{P} = \vec{P}' = 0.05\vec{\imath} \implies \vec{P} = constant.$
I.3	$ec{P} = ec{P}' = 0.05 ec{\imath} \Longrightarrow ec{P} = constant.$
	The linear momentum of the system [(A); (B)] is conserved.
I.4.1	The external forces acting of the system [(A); (B)] are:
	\overrightarrow{W}_A and \overrightarrow{W}_B : Weights of (A) and (B) respectively.
	\vec{N}_A and \vec{N}_B : Normal reaction of support forces acting on (A) and (B) respectively.
I.4.2	$\sum \vec{F}_{ext} = \vec{W}_A + \vec{N}_A + \vec{W}_B + \vec{N}_B = \vec{0}.$ $\Delta \vec{P} = \vec{P}' - \vec{P} = \vec{0} \text{ and } \sum \vec{F}_{ext} = \vec{0}.$
I.4.3	$\Delta \vec{P} = \vec{P}' - \vec{P} = \vec{0}$ and $\sum \vec{F}_{ext} = \vec{0}$.
	$\sum ec{F}_{ext} = rac{\Delta ec{P}}{\Delta t} = ec{0}$.
I.5	$KE = \frac{1}{2}m_A V_A^2 + \frac{1}{2}m_B V_B^2 = \frac{1}{2}(0.15)(2)^2 + \frac{1}{2}(0.25)(1)^2 = 0.425J.$
	$KE' = \frac{1}{2}m_A V_A^{'2} + \frac{1}{2}m_B V_B^{'2} = \frac{1}{2}(0.15)(1.75)^2 + \frac{1}{2}(0.25)(1.25)^2 = 0.425J.$
	$KE = KE' \implies$ the kinetic energy is conserved and the collision is elastic.
II.1	Isolate (A):
	$\sum_{i} \vec{F}_{ext/A} = \vec{N}_A + \vec{W}_A + \vec{F}_{B/A} = \frac{\Delta \vec{P}_A}{\Delta t} \text{ with } \vec{N}_A + \vec{W}_A = \vec{0}.$
	$\vec{F}_{B/A} = \frac{m_A \vec{V}_A' - m_A \vec{V}_A}{\Lambda t} = \frac{m_A (\vec{V}_A' - \vec{V}_A)}{\Lambda t} = \frac{(0.15)(-1.75\vec{\imath} - 2\vec{\imath})}{100 \times 10^{-3}} = -5.625\vec{\imath} (N).$
	Isolate (B): $ \Delta t \qquad \Delta t \qquad 100 \times 10^{-3} $
	$\sum \vec{F}_{ext/B} = \vec{N}_B + \vec{W}_B + \vec{F}_{A/B} = \frac{\Delta \vec{P}_B}{\Delta t} \text{ with } \vec{N}_B + \vec{W}_B = \vec{0}.$
	$\vec{F}_{A/B} = \frac{m_B \vec{V}_B' - m_B \vec{V}_B}{\Delta t} = \frac{m_B (\vec{V}_B' - \vec{V}_B)}{\Delta t} = \frac{(0.25)(1.25\vec{i} + 1\vec{i})}{100 \times 10^{-3}} = 5.625\vec{i} (N).$
II.2	$\vec{F}_{A/B} = -\vec{F}_{B/A} \Longrightarrow$ The principle of interaction is verified.

Exercise 13:

Part	Answer key	
1	$V_0 = \frac{P_0}{m} = \frac{12}{1.5} = 8m/s.$	
2	The external forces acting on (B) are weight $m\vec{g}$, normal	\rightarrow
	reaction of a support \vec{N} and friction \vec{f} .	\overline{N}
3	$\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} \Longrightarrow m\vec{g} + \vec{N} + \vec{f} = \frac{d\vec{P}}{dt}.$ Projection along x-axis: $-f = \frac{dP}{dt} \Longrightarrow f = -\frac{dP}{dt}.$ But P is linear, then $\frac{dP}{dt} = \frac{\Delta P}{\Delta t} = \frac{0-12}{4-0} = -3kgm/s^2.$	\vec{f} G (B)
	Projection along x-axis: $-f = \frac{dP}{dt} \Longrightarrow f = -\frac{dP}{dt}$.	
	But P is linear, then $\frac{dP}{dt} = \frac{\Delta P}{\Delta t} = \frac{0-12}{4-0} = -3kgm/s^2$.	$m ec{g} lacksquare$
	Therefore, $f = 3N$.	
4	$\Delta KE = \sum W_{ext} \implies KE_M - ME_O = W_{m\vec{g}} + W_{\vec{N}} + W_{\vec{f}}.$	
	$\Delta KE = \sum W_{ext} \implies KE_M - ME_O = W_{m\vec{g}} + W_{\vec{N}} + W_{\vec{f}}.$ $0 - \frac{1}{2}mV_0^2 = 0 + 0 - f \times OM \implies -\frac{1}{2}(1.5)(8)^2 = -3 \times OM \implies OM = 16m.$	