Dynamic Modeling of Cell-Free Biochemical Networks using Effective Kinetic Models

Joseph A. Wayman, Adithya Sagar and Jeffrey D. Varner*

School of Chemical and Biomolecular Engineering Cornell University, Ithaca NY 14853

Running Title: Effective models of metabolism

To be submitted: Processes

*Corresponding author:

Jeffrey D. Varner,

Associate Professor, School of Chemical and Biomolecular Engineering,

244 Olin Hall, Cornell University, Ithaca NY, 14853

Email: jdv27@cornell.edu

Phone: (607) 255 - 4258

Fax: (607) 255 - 9166

Abstract

Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genomescale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cellfree operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data. While only an initial proof-of-concept, the framework presented here could be an important first step toward genome-scale cell-free kinetic modeling of the biosynthetic capacity of industrially important organisms.

Keywords: Cell-free metabolism, Mathematical modeling

Introduction

21

Mathematical modeling has long contributed to our understanding of metabolism. Decades before the genomics revolution, mechanistically, structured metabolic models arose from the desire to predict microbial phenotypes resulting from changes in intracellular or extracellular states [1]. The single cell E. coli models of Shuler and coworkers pioneered the construction of large-scale, dynamic metabolic models that incorporated multiple, requlated catabolic and anabolic pathways constrained by experimentally determined kinetic parameters [2]. Shuler and coworkers generated many single cell kinetic models, including single cell models of eukaryotes [3, 4], minimal cell architectures [5], as well as DNA sequence based whole-cell models of E. coli [6]. Conversely, highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift, viewing cells as growth-optimizing strategists [7]. Cybernetic models have been highly successful at predicting metabolic choice behavior, e.g., diauxie behavior [8], steady-state multiplicity [9], as well as the cellular response to metabolic engineering modifications [10]. Unfortunately, traditional, fully structured cybernetic models also suffer from an identifiability chal-15 lenge, as both the kinetic parameters and an abstracted model of cellular objectives must 16 be estimated simultaneously. Recent cybernetic formulations from Ramkrishna and col-17 leagues have successfully treated this identifiability challenge through elementary mode 18 reduction, though the techniques replace detailed biological mechanism with an optimization heuristic [11, 12]. 20

In the post genomics world, large-scale stoichiometric reconstructions of microbial metabolism popularized by static, constraint-based modeling techniques such as flux balance analysis (FBA) have become standard tools [13]. Since the first genome-scale stoichiometric model of *E. coli*, developed by Edwards and Palsson [14], well over 100 organisms, including industrially important prokaryotes such as *E. coli* [15] or *B. subtilis* [16], are now available [17]. Stoichiometric models rely on a pseudo-steady-state assump-

tion to reduce unidentifiable genome-scale kinetic models to an underdetermined linear algebraic system, which can be solved efficiently even for large systems. Traditionally, stoichiometric models have also neglected explicit descriptions of metabolic regulation and control mechanisms, instead opting to describe the choice of pathways by prescrib-30 ing an objective function on metabolism. Interestingly, similar to early cybernetic mod-31 els, the most common metabolic objective function has been the optimization of biomass 32 formation [18], although other metabolic objectives have also been estimated [19]. Re-33 cent advances in constraint-based modeling have overcome the early shortcomings of 34 the platform, including capturing metabolic regulation and control [20]. Thus, modern 35 constraint-based approaches have proven extremely useful in the discovery of metabolic engineering strategies and represent the state of the art in metabolic modeling [21, 22]. 37 However, genome-scale kinetic models of industrial important organisms such as *E. coli* 38 have yet to be constructed.

Cell-free systems offer many advantages for the study, manipulation and modeling of 40 metabolism compared to in vivo processes. Central amongst these advantages is direct 41 access to metabolites and the microbial biosynthetic machinery without the interference of a cell wall. This allows us to control as well as interrogate the chemical environment while the biosynthetic machinery is operating, potentially at a fine time resolution. Second, cell-free systems also allow us to study biological processes without the complications associated with cell growth. Cell-free protein synthesis (CFPS) systems are arguably the most prominent examples of cell-free systems used today [23]. However, CFPS is not new; CFPS in crude E. coli extracts has been used since the 1960s to explore fundamentally important biological mechanisms [24, 25]. Today, cell-free systems are used in a variety of applications ranging from therapeutic protein production [26] to synthetic biology [27]. Interestingly, many of the challenges confronting genome-scale kinetic mod-51 eling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to
obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds
several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important
organisms, such as *E. coli* or *B. subtilis*, if a simple, tractable framework for integrating
allosteric regulation with enzyme kinetics can be formulated.

In this study, we present an effective biochemical network modeling framework for 59 building dynamic cell-free metabolic models. The key innovation of our approach is the 60 seamless integration of simple effective rules encoding complex regulation with traditional 61 kinetic pathway modeling. This integration allows the description of complex regulatory interactions, such as time-dependent allosteric regulation of enzyme activity, in the ab-63 sence of specific mechanistic information. The regulatory rules are easy to understand, 64 easy to formulate and do not rely on overarching theoretical abstractions or restrictive assumptions. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. In particular, we tested whether our effective modeling ap-67 proach could describe classically expected enzyme kinetic behavior, and second whether we could simultaneously estimate kinetic parameters and regulatory connectivity, in the absence of specific mechanistic knowledge, from synthetic experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but had different allosteric regulatory connectivity. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into net-75 work models, these rules captured classical regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered 77 here, that we could simultaneously estimate kinetic parameters and allosteric connectiv-

- 79 ity from synthetic data. While only an initial proof-of-concept, the framework presented
- 80 here could be an important first step toward genome-scale cell-free kinetic modeling of
- 81 the biosynthetic capacity of industrially important organisms.

32 Results

97

98

99

100

101

102

103

104

105

106

Formulation and properties of effective cell-free metabolic models. We developed 83 two proof-of-concept metabolic networks to investigate the features of our effective bio-84 chemical network modeling approach (Fig. 1). In both examples, substrate S was con-85 verted to the end products P1 and P2 through a series of enzymatically catalyzed reactions, including a branch point at hypothetical metabolite M₂. Several of these reactions 87 involved cofactor dependence (AH or A), and various allosteric regulatory mechanisms modified the activity of pathway enzymes. Network A included feedback inhibition of the initial pathway enzyme (E_1) by pathway end products P_1 and P_2 (Fig. 1A). On the other hand, network B involved feedback inhibition of E_1 by P_2 and E_6 by P_1 (Fig. 1B). In both networks, branch point enzymes E_3 and E_6 were subject to feed-forward activation by reduced cofactor AH. Lastly, it is known experimentally that cell-free systems have a finite operational lifespan. Loss of biosynthetic capability could be a function of many factors, 94 e.g., cofactor or metabolite limitations. We modeled the loss of biosynthetic capability as 95 a non-specific first-order decay of enzyme activity. 96

Allosteric regulation of enzyme activity was modeled by combining individual regulatory contributions to the activity of pathway enzymes into a control coefficient using an integration rule (Fig. 2). This strategy is similar in spirit to the Constrained Fuzzy Logic (cFL) approach of Lauffenburger and coworkers which has been used to effectively model signal transduction pathways important in human health [28]. In our formulation, Hill-like transfer functions $0 \le f(\mathcal{Z}) \le 1$ were used to calculate the influence of factor abundance upon target enzyme activity. In this context, factors can be individual metabolite levels or some function, e.g., the product of metabolite levels. However, more generally, factors can also correspond to non-modeled influences, categorial variables or other abstract quantities. In the current study, we simply let $\mathcal Z$ correspond to the abundance of individual metabolites, however in general this can be a complex function of both modeled and

unmodeled factors. When an enzyme was potentially sensitive to more than one regulatory input, logical integration rules were used to select which regulatory transfer function influenced enzyme activity at any given time. Thus, our test networks involved important features such as cofactor recycling, enzyme activity and metabolite dynamics, as well as multiple overlapping allosteric regulatory mechanisms.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

127

128

129

130

131

132

The rule-based regulatory strategy approximated the behavior of classical allosteric activation and inhibition mechanisms (Fig. 3). We considered the enzyme catalyzed conversion of substrate S to a product P, where the overall reaction rate was modeled as the product of a Michaelis-Menten term and an effective allosteric control variable reflecting the particular regulatory interaction. We first explored feed-forward substrate activation of enzyme activity (for both positive and negative cooperativity). Consistent with classical data, the rule-based strategy predicted a sigmoidal relationship between substrate abundance and reaction rate as a function of the cooperativity parameter (Fig. 3A). For cooperativity parameters less than unity, increased substrate abundance decreased the maximum reaction rate. This was consistent with the idea that substrate binding decreased at regulatory sites, which negatively impacted substrate binding at the active site. On the other hand, as the cooperativity parameter increased past unity, the rate of conversion of substrate S to product P by enzyme E approached a step function. In the presence of an inhibitor, the rule-based strategy predicted non-competitive like behavior as a function of the cooperativity parameter (Fig. 3B). When the control gain parameter, κ_{ij} in Eqn. (10), was greater than unity, the inhibitory force was directly proportional to the cooperativity parameter, η in Eqn. (10). Thus, as the cooperativity parameter increased, the maximum reaction rate decreased (Fig. 3B). Interestingly, our rule-based approach was unable to directly simulate competitive inhibition of enzyme activity. Taken together, the rule-based strategy captured classical regulatory patterns for both enzyme activation and inhibition. Thus, we are able to model complex kinetic phenomena such as ultrasensitivity, despite an effective description of reaction kinetics.

End product yield was controlled by feedback inhibition, while product selectivity was 135 controlled by branch point enzyme inhibition (Fig. 4). A critical test of our modeling 136 approach was to simulate networks with known behavior. If we cannot reproduce the ex-137 pected behavior of simple networks, then our effective modeling strategy, and particularly 138 the rule-based approximation of allosteric regulation, will not be feasible for genome-scale 139 cell-free problems. We considered two cases, control ON/OFF, for each network config-140 uration. Each of these cases had identical kinetic parameters and initial conditions; the 141 only differences between the cases were the allosteric regulation rules and the control 142 parameters associated with these rules. As expected, end product accumulation was 143 larger for network A when the control was OFF (no feedback inhibition of E_1 by P_1 and 144 P₂), as compared to the ON case (Fig. 4A). We found this behavior was robust to the 145 choice of underlying kinetic parameters, as we observed that same qualitative response 146 across an ensemble of 100 randomized parameter sets, for fixed control parameters. The 147 control ON/OFF response of network B was more subtle. In the OFF case, the behav-148 ior was qualitatively similar to network A. However, for the ON case, flux was diverted 149 away from P_2 formation by feedback inhibition of E_6 activity at the M_2 branch point by P_1 (Fig. 4B). Lower E_6 activity at the M_2 branch point allowed more flux toward P_1 formation, 151 hence the yield of P1 also increased (Fig. 4C). Again, the control ON/OFF behavior of 152 network B was robust to changes in kinetic parameters, as the same qualitative trend was 153 conserved across an ensemble of 100 randomized parameters, for fixed control param-154 eters. Taken together, these simulations suggested that the rule-based allosteric control 155 concept could robustly capture expected feedback behavior for networks with uncertain 156 kinetic parameters. 157

Estimating parameters and effective allosteric regulatory structures. A critical challenge for any dynamic model is the estimation of kinetic parameters. For metabolic pro-

cesses, there is also the added challenge of identifying the regulation and control structures that manage metabolism. Of course, these issues are not independent; any descrip-161 tion of enzyme activity regulation will be a function of system state, which in turn depends 162 upon the kinetic parameters. For cell free systems, regulated gene expression has been 163 removed, however, enzyme activity regulation is still operational. We explored this linkage 164 by estimating model parameters from synthetic data using both network structures. We 165 generated synthetic measurements of the substrate S, intermediate M₅ and end product 166 P₁ approximately every 20 min using network A. This data set is similar to published cell 167 free studies both in terms of network coverage, and sampling frequency [23]. We then 168 generated an ensemble of model parameter estimates by minimizing the difference be-169 tween model simulations and the synthetic data using particle swarm optimization (PSO), 170 starting from random initial parameter guesses. The estimation of kinetic parameters 171 was sensitive to the choice of regulatory structure (Fig. 5). PSO identified an ensem-172 ble of parameters that bracketed the mean of the synthetic measurements in less than 173 1000 iterations when the control structure was correct (Fig. 5A and B). However, with 174 control mismatch (network B simulated with network A parameters), model simulations 175 were not consistent with the synthetic data (Fig. 5C and D). Taken together, these results suggested that we could perhaps simultaneously estimate both parameters and network control architectures, as incorrect control structures would be manifest as poor model fits. We modified our particle swarm identification strategy to simultaneously search over 179 both kinetic parameters and putative control structures. In addition to our initial networks, 180 we constructed three additional presumptive network models, each with the same enzy-181 matic connectivity but different allosteric regulation of the pathway enzymes (Fig. 6). We 182 then initialized a population of particles, each with one of the five potential regulatory pro-183 grams and randomized kinetic parameters. Thus, we generated an initial population of

particles that had both different kinetic parameters as well as different control structures.

We biased the distribution of the particle population according to our a prior belief of the correct regulatory program. To this end, we considered three different priors, a uniform 187 distribution where each putative regulatory structure represented 20% of the population 188 and two mixed distributions that were either positively or negatively biased towards the 189 correct structure (network A). In both the positively biased and uniform cases the PSO 190 clearly differentiated between the true or closely related structures and those that were 191 materially different (Fig. 7). As expected, the positively biased population (40% of the 192 initial particle population seeded with network A) gave the best results, where the correct 193 structure was preferentially identified (Fig. 7A). On the other hand, when given a uniform 194 distribution, the PSO approach identified a combination of network A and network C as 195 the most likely control structures (Fig. 7B). Network A and C differ by the regulatory con-196 nection between the end product P_2 and enzyme E_1 ; in network A, end product P_2 was 197 assumed to inhibit E_1 , while in network C, end product P_2 activated E_1 . Lastly, when the 198 initial population was biased towards incorrect structures (initial population seeded with 199 90% incorrect structures), the particle swarm *misidentified* the correct allosteric structure 200 (Fig. 7C). Interestingly, while each particle swarm identified parameter sets that minimized 201 the simulation error, the estimated parameter values were not necessarily similar to the 202 true parameters. The angle between the estimated and true parameters was not consis-203 tently small across the swarms (identical parameters would give an angle of zero). This suggested that our particle swarm approach identified a sloppy ensemble, i.e., parame-205 ter estimates that were individually incorrect but collectively exhibited the correct model 206 behavior. 207

We calculated control program output and scaled metabolic flux for the positively, uniformly and negatively biased particle swarms (Fig. 8). Network A and network C models from the positively (Fig. 8A) and uniformly (Fig. 8B) biased particle swarms showed similar operational patterns, despite differences in kinetic parameters and control structures.

208

209

While models from the negatively biased population had error values similar to the correct structures in the previous swarms, they have different flux and control profiles (Fig. 8C). 213 In all cases, regardless of network configuration or parameter values, the rate of enzyme decay was small compared to the other fluxes, and all networks had qualitatively similar 215 trends for E_3 and E_6 control. Moreover, consistent with the correct model structure, pro-216 duction of end product P₁ was the preferred branch for all model configurations. However, 217 there was variability in P2 production flux across the population of models, especially for 218 the uniform swarm when compared with the other cases. High P₁ branch flux resulted 219 in end product inhibition of E_1 in both network A and network C, however in network D 220 and E, high P_1 flux induced E_1 activation. These trends were manifested in different flux 221 profiles, where the negatively biased population appeared more uniform across the pop-222 ulation compared with the other swarms, and had higher E_1 specific activity. Interestingly, 223 the behavior of network A and network C highlighted an artifact of our integration rule; 224 both a positive or negative feedback connection from P_2 to E_1 were ignored because 225 the P_1 inhibition of E_1 dominated. Thus, while theoretically distinct, network A and net-226 work C appeared operationally to the PSO algorithm to be the same network. On the 227 other hand, networks B, D and E showed distinct behavior that was not consistent with the true network. These architectures exhibited either limited inhibition (network B) or activation (network D and E) of E_1 activity, resulting in significantly different metabolic flux profiles. However, the PSO was able to find low error parameter solutions, despite 231 the mismatch in the control structures (error values similar, but not better than the best 232 network A and network C estimates). Taken together, these results suggested that a 233 uniform sampling approach could potentially yield an unbiassed estimate of both kinetic 234 parameters and control structures. However, the negatively biased particle swarm results 235 illustrated a potential shortcoming of the approach, namely convergence to a local error 236 minimum despite a significantly incorrect control structure. This suggested that estimated 237

- model structures will need to be further evaluated, for example by generating falsifiable
- experimental designs which could distinguish between low error solutions.

Discussion

241

242

243

244

245

246

247

250

253

254

255

256

257

258

259

260

261

262

263

264

In this study, we presented an effective kinetic modeling strategy to dynamically simulate cell-free biochemical networks. Our proposed strategy integrated traditional kinetic modeling with an effective rules based approach to dynamically describe metabolic regulation and control. We tested this approach by developing kinetic models of hypothetical cell-free metabolic networks. In particular, we tested whether our effective modeling approach could describe classically expected behavior, and second whether we could simultaneously estimate kinetic parameters and regulatory connectivity, in the absence of specific mechanistic knowledge, from synthetic experimental data. Toward these questions, we explored five hypothetical cell-free networks. In each network, a substrate S was converted to the end products P₁ and P₂ through a series of enzymatically catalyzed reactions, including a branch point at a hypothetical metabolite M₂. Each network also included the same cofactors and cofactor recycle architecture. However, while all five networks shared the same enzymatic connectivity, each had different allosteric regulatory connectivity. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, could capture complex allosteric patterns such as ultrasensitivity, or non-competitive inhibition in the absence of specific mechanistic information. Moreover, when integrated into network models, these rules captured classical regulatory patterns such as product-induced feedback inhibition. Lastly, we simultaneously estimated kinetic parameters and discriminated between competing regulatory structures, using synthetic data in combination with a modified particle swarm approach. If we considered all putative regulatory architectures to be equally likely, we were able to estimate a sloppy ensemble of models with the correct architecture and kinetic parameters.

The proposed modeling strategy shares features with other popular techniques, but also has several key differences. At its core, our effective modeling approach is similar to regulatory constraint-based methods, and to the cybernetic modeling paradigm devel-

oped by Ramkrishna and colleagues. Covert, Palsson and coworkers drastically improved the predictability of constraint-based approaches by integrating Boolean rules into the calculation of metabolic fluxes [29]. If the regulated intracellular flux problem is coupled with 268 time-dependent extracellular balances, these models can predict complex behavior such as diauxie growth or the switch between aerobic and anaerobic metabolism. Another im-270 portant feature of this approach is that it scales with biological complexity. For example, Covert et al. showed that a genome-scale model of E. coli augmented with a Boolean 272 rule layer, correctly predicted approximately 80% of the outcomes of a high-throughput 273 growth phenotyping experiment in E. coli. Further, they showed that they could learn new 274 biology by iteratively refining the model and its associated rules [30]. However, while regu-275 lated flux balance analysis is a powerful technique, it does not easily allow the calculation 276 of time-resolved metabolite abundance. Additionally, the Boolean rules which populate 277 the regulatory layer are limited to ON/OFF decisions; for qualitative predictions of gene 278 expression this is a reasonable limitation. However, Boolean rules will likely be less ef-279 fective at capturing dynamic allosteric regulation in a cell-free metabolic system. On the 280 other hand, the strength of cybernetic models is the integration of optimal metabolic control heuristics with traditional kinetic pathway modeling. Cybernetic models are highly 282 predictive; they have successfully predicted mutant behavior from limited wild-type data 283 [10, 31, 32], steady-state multiplicity [9], strain specific metabolic function [12] and have been used in bioprocess control applications [33]. However, cybernetic control heuristics 285 are not mechanistic, instead they are the output of an optimal decision with respect to a 286 set of hypothetical physiological objectives. Thus, they are abstractions which are difficult to translate into a specific biological mechanism. Our approach addresses the shortcom-288 ings of both regulatory constraint-based models and cybernetic models. First, similar to 289 cybernetic models, the core of our approach is a kinetic model. Thus, we are able to di-290 rectly calculate the time evolution of metabolism, for example the dynamic abundance of

267

269

271

281

287

network metabolites. Second, similar to regulatory flux balance analysis, our control laws describe specific mechanistic motifs, such as activation or inhibition of enzyme activity. However, our rules are continuous, thus they potentially allow a finer grained description of metabolic regulation and control mechanisms. Lastly, we can naturally incorporate unmodeled factors and categorical factors or combinations thereof into our control law formulations. Though requiring a more complex description of cellular metabolism, our approach may even be extended to simulate cell-based systems by incorporating the same control laws into transcription factor activation and gene expression regulation.

293

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

312

313

314

315

316

There are several critical questions that should be explored following this proof-ofconcept study. It is unclear how parameter identification will scale to genome-scale networks, and second it is unclear how we will identify allosteric connectivity at a genomescale. The enzymatic connectivity for genome-scale cell-free networks can easily be established by stripping away the growth and cell wall machinery from whole cell genome reconstructions. Then metabolic fluxes can be transformed into kinetic expressions using heuristics such multiple saturation kinetics, which are then modified by our rule-based control variables. This leaves a large number of unknown kinetic constants that must be estimated from time-resolved metabolite measurements. Ensemble modeling is a well-established approach for parameter identification in large-scale deterministic models. Liao and coworkers developed a method that generates an ensemble of kinetic models that all approach the same steady-state, one determined by fluxomics measurements [34]. The best subpopulation of candidate models are selected based on their agreement with further measurements of genetically perturbed systems. Our work relies on heuristic search optimization to identify kinetic models consistent with steady-state and dynamic time-series measurements of cellular species [35–40]. Instead of estimating a single yet highly uncertain parameter set, both approaches estimate an ensemble of parameter sets whose model behavior recapitulates experimental measurements. Here, we showed that particle swarm optimization quickly identified an ensemble of model parameters, at least for proof-of-concept metabolic networks using synthetic data. This suggested that we can expect reasonable model predictions, despite only partial parameter knowledge, as network size grows if we have properly designed experiments. Brown and Sethna showed in a model of signal transduction that good predictions were possible despite only order of magnitude estimates of parameter values [41]. Sethna and coworkers later showed that model performance is often controlled by only a few parameter combinations, a characteristic seemingly universal to multi-parameter models referred to as sloppiness [42]. We have also demonstrated *sloppy* behavior in a wide variety of signal transduction processes [35-40]. Thus, given our previous experience with models containing hundreds of unknown parameters, we expect parameter estimation to be a manageable challenge. On the other hand, a critical challenge will be the estimation of allosteric connectivity at a genome scale. The regulation of glycolytic enzymes, such as phosphofructokinase I, has been studied for many years [43, 44]. The allosteric regulation of metabolic enzymes can also be established from organism specific databases, such as EcoCyc [45], or more general allosteric databases, such as the AlloSteric Database [46]. However, for those enzymes that have not been well studied, we will need to infer allosteric interactions from experimental data. In general, the reverse engineering of regulatory network structure from data is a very difficult problem. Recently, Sauer and colleagues have developed a systematic, model-based approach for the identification of allosteric regulation in vivo [47]. They tested the effects of many putative allosteric protein-metabolite interactions on the performance of a kinetic model of glycolysis against dynamic metabolomic and fluxomic measurements. A method similar to this may be easily applied to cell-free systems in order to identify relevant in vitro allosteric interactions. Because omics measurements of cell-free environments are easy to obtain, identification of large-scale allosteric control structures may be possible. Also, there are many different approaches from the reverse

320

321

322

323

324

325

326

327

328

329

330

331

332

333

335

337

338

339

340

341

engineering of gene regulatory networks that perhaps could be adopted to this problem, however this remains an open question. Lastly, the choice of max/min integration rules 345 or the particular form of the transfer functions could be generalized to include other rule types and functions. Theoretically, an integration rule is a function whose domain is a set 347 of transfer function inputs, and whose range is $v \in [0,1]$. Thus, integration rules other 348 than max/min could be used, such as the mean or the product, assuming the range of the 349 transfer functions is always $f \in [0,1]$. Alternative integration rules such as the mean might 350 have different properties which could influence model identification or performance. For 351 example, a mean integration rule would be differentiable, which allows derivative-based 352 optimization approaches to be used. The particular form of the transfer function could 353 also be explored. We choose a Hill-like function because of its prominence in the sys-354 tems and synthetic biology community. However, the only mathematical requirement for a 355 transfer function is that it map a non-negative continuous or categorical variable into the 356 range $f \in [0, 1]$. Thus, many types of transfer functions are possible. 357

Materials and Methods

Formulation and solution of the model equations. We used ordinary differential equations (ODEs) to model the time evolution of metabolite (x_i) and scaled enzyme abundance (ϵ_i) in hypothetical cell-free metabolic networks:

$$\frac{dx_i}{dt} = \sum_{j=1}^{\mathcal{R}} \sigma_{ij} r_j(\mathbf{x}, \epsilon, \mathbf{k}) \qquad i = 1, 2, \dots, \mathcal{M}$$
 (1)

$$\frac{d\epsilon_i}{dt} = -\lambda_i \epsilon_i \qquad i = 1, 2, \dots, \mathcal{E}$$
 (2)

where \mathcal{R} denotes the number of reactions, \mathcal{M} denotes the number of metabolites and 362 \mathcal{E} denotes the number of enzymes in the model. The quantity $r_i(\mathbf{x}, \epsilon, \mathbf{k})$ denotes the 363 rate of reaction j. Typically, reaction j is a non-linear function of metabolite and enzyme 364 abundance, as well as unknown kinetic parameters \mathbf{k} ($\mathcal{K} \times 1$). The quantity σ_{ij} denotes 365 the stoichiometric coefficient for species i in reaction j. If $\sigma_{ij} > 0$, metabolite i is produced 366 by reaction j. Conversely, if $\sigma_{ij} < 0$, metabolite i is consumed by reaction j, while $\sigma_{ij} = 0$ 367 indicates metabolite i is not connected with reaction j. Lastly, λ_i denotes the scaled 368 enzyme degradation constant. The system material balances were subject to the initial 369 conditions $\mathbf{x}(t_o) = \mathbf{x}_o$ and $\epsilon(t_o) = 1$ (initially we have 100% cell-free enzyme abundance). 370 Each reaction rate was written as the product of two terms, a kinetic term (\bar{r}_i) and a 371 regulatory term (v_i) :

$$r_{j}\left(\mathbf{x},\epsilon,\mathbf{k}\right) = \bar{r}_{j}v_{j} \tag{3}$$

We used multiple saturation kinetics to model the reaction term \bar{r}_{j} :

$$\bar{r}_j = k_j^{max} \epsilon_i \left(\prod_{s \in m_j^-} \frac{x_s}{K_{js} + x_s} \right) \tag{4}$$

where k_j^{max} denotes the maximum rate for reaction $j,\ \epsilon_i$ denotes the scaled enzyme ac-

tivity which catalyzes reaction j, and K_{js} denotes the saturation constant for species s in reaction j. The product in Eqn. (4) was carried out over the set of *reactants* for reaction j (denoted as m_j^-).

The allosteric regulation term v_j depended upon the combination of factors which influenced the activity of enzyme i. For each enzyme, we used a rule-based approach to select from competing control factors (Fig. 2). If an enzyme was activated by m metabolites, we modeled this activation as:

$$v_j = \max\left(f_{1j}\left(\mathcal{Z}\right), \dots, f_{mj}\left(\mathcal{Z}\right)\right) \tag{5}$$

where $0 \le f_{ij}(\mathcal{Z}) \le 1$ was a regulatory transfer function that calculated the influence of metabolite i on the activity of enzyme j. Conversely, if enzyme activity was inhibited by a m metabolites, we modeling this inhibition as:

$$v_{j} = 1 - \max\left(f_{1j}\left(\mathcal{Z}\right), \dots, f_{mj}\left(\mathcal{Z}\right)\right) \tag{6}$$

Lastly, if an enzyme had both m activating and n inhibitory factors, we modeled the regulatory term as:

$$v_j = \min\left(u_j, d_j\right) \tag{7}$$

387 where:

$$u_{j} = \max_{j^{+}} \left(f_{1j} \left(\mathcal{Z} \right), \dots, f_{mj} \left(\mathcal{Z} \right) \right) \tag{8}$$

$$d_{j} = 1 - \max_{j^{-}} \left(f_{1j} \left(\mathcal{Z} \right), \dots, f_{nj} \left(\mathcal{Z} \right) \right)$$
 (9)

The quantities j^+ and j^- denoted the sets of activating and inhibitory factors for enzyme j.

If an enzyme had no allosteric factors, we set $v_j=1$. There are many possible functional

forms for $0 \le f_{ij}(\mathcal{Z}) \le 1$. However, in this study, each individual transfer function took the form:

$$f_i(\mathbf{x}) = \frac{\kappa_{ij}^{\eta} \mathcal{Z}_j^{\eta}}{1 + \kappa_{ij}^{\eta} \mathcal{Z}_j^{\eta}} \tag{10}$$

where \mathcal{Z}_j denotes the abundance of the j factor (e.g., metabolite abundance), and κ_{ij} 392 and η are control parameters. The κ_{ij} parameter represents a species gain parameter, 393 while η is a cooperativity parameter (similar to a Hill coefficient). In the case $\eta > 1$, the 394 allosteric interaction displays positive cooperativity. For $\eta < 1$, the interaction is negatively 395 cooperative. Finally, if $\eta=1$, the interaction displays no cooperativity. The effect of 396 different values of η on reaction rate can be seen in Figure 3. The model equations were 397 encoded using the Octave programming language and solved using the LSODE routine 398 in Octave (v 3.8.1; www.octave.org). In some cases, metabolic fluxes (or other quantities) 399 were scaled according to: 400

$$\hat{r}_{j}(t=\tau) = \left(\frac{r_{j} - \min \mathbf{r}}{\max \mathbf{r} - \min \mathbf{r}}\right)\Big|_{t=\tau}$$
(11)

where $0 \le \hat{r}_j \, (t=\tau) \le 1$ denotes the scaled value for flux j evaluated at time τ . We have used this scaling in a variety of other contexts [40, 48].

Estimation of model parameters and structures from synthetic experimental data.

Model parameters were estimated by minimizing the difference between simulations and synthetic experimental data (squared residual):

$$\min_{\mathbf{k}} \sum_{\tau=1}^{\mathcal{T}} \sum_{j=1}^{\mathcal{S}} \left(\frac{\hat{x}_j(\tau) - x_j(\tau, \mathbf{k})}{\omega_j(\tau)} \right)^2$$
 (12)

where $\hat{x}_j(\tau)$ denotes the measured value of species j at time τ , $x_j(\tau, \mathbf{k})$ denotes the simulated value for species j at time τ , and $\omega_j(\tau)$ denotes the experimental measurement variance for species j at time τ . The outer summation is respect to time, while the in-

ner summation is with respect to state. We approximated a realistic model identification scenario, assuming noisy experimental data, limited sampling resolution (approximately 20 minutes per sample) and a limited number of measurable metabolites. We assumed a constant coefficient of variation of 10% for the synthetic data set.

We minimized the model residual using particle swarm optimization (PSO) [49]. PSO uses a *swarming* metaheuristic to explore parameter spaces. A strength of PSO is its ability to find the global minimum, even in the presence of potentially many local minima, by communicating the local error landscape experienced by each particle collectively to the swarm. Thus, PSO acts both as a local and a global search algorithm. For each iteration, particles in the swarm compute their local error by evaluating the model equations using their specific parameter vector realization. From each of these local points, a globally best error is identified. Both the local and global error are then used to update the parameter estimates of each particle using the rules:

$$\Delta_i = \theta_1 \Delta_i + \theta_2 \mathbf{r}_1 \left(\mathcal{L}_i - \mathbf{k}_i \right) + \theta_3 \mathbf{r}_2 \left(\mathcal{G} - \mathbf{k}_i \right)$$
 (13)

$$\mathbf{k}_i = \mathbf{k}_i + \mathbf{\Delta}_i \tag{14}$$

where $\Delta_{\bf i}$ denotes the perturbation to the vector of parameters ${\bf k_i}$ for particle i. $(\theta_1,\theta_2,\theta_3)$ are adjustable parameters, ${\cal L}_i$ denotes the best local solution found by particle i. and ${\cal G}$ denotes the best solution found over the entire population of particles. The quantities r_1 and r_2 denote uniform random vectors with the same dimension as the number of unknown model parameters (${\cal K} \times 1$). In this study, we used $(\theta_1,\theta_2,\theta_3)=(1.0,0.05564,0.02886)$. The quality of parameter estimates was measured using two criteria, goodness of fit (model residual) and angle between the estimated parameter vector ${\bf k}_j$ and the true parameter set ${\bf k}_j$ set ${\bf k}_j^*$:

$$\alpha_j = \cos^{-1}\left(\frac{\mathbf{k}_j \cdot \mathbf{k}^*}{\|\mathbf{k}_j\| \|\mathbf{k}^*\|}\right) \tag{15}$$

If the candidate parameter set \mathbf{k}_j were perfect, the residual between the model and synthetic data and the angle between \mathbf{k}_j and the true parameter set \mathbf{k}^* would be equal to zero.

We modified our PSO implementation to simultaneously search over kinetic parame-433 ters and putative model control structures. In the combined case, each particle potentially 434 carried a different model realization in addition to a different kinetic parameter vector. We 435 kept the update rules the same (along with the update parameters). Thus, each parti-436 cle competed on the basis of goodness of fit, which allowed different model structures 437 to contribute to the overall behavior of the swarm. We considered five possible model 438 structures (A through E), where network A was the correct formulation (used to generate 439 the synthetic data). We considered a population of 100 particles, where each particle in the swarm was assigned a model structure, and a random parameter vector. The PSO algorithm, model equations, and the objective function were encoded and solved in the 442 Octave programming language (v 3.8.1; www.octave.org).

444 Acknowledgements

This study was supported by an award from the National Science Foundation (MCB #1411715) and the Army Research Office (ARO #59155-LS).

References

- Fredrickson AG (1976) Formulation of structured growth models. Biotechnol Bioeng
 18: 1481-6.
- Domach MM, Leung SK, Cahn RE, Cocks GG, Shuler ML (1984) Computer model
 for glucose-limited growth of a single cell of escherichia coli b/r-a. Biotechnol Bioeng
 26: 203-16.
- 3. Steinmeyer D, Shuler M (1989) Structured model for Saccharomyces cerevisiae.

 Chem Eng Sci 44: 2017 2030.
- 4. Wu P, Ray NG, Shuler ML (1992) A single-cell model for cho cells. Ann N Y Acad Sci 665: 152-87.
- 5. Castellanos M, Wilson DB, Shuler ML (2004) A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A 101: 6681-6.
- 6. Atlas JC, Nikolaev EV, Browning ST, Shuler ML (2008) Incorporating genome-wide dna sequence information into a dynamic whole-cell model of escherichia coli: application to dna replication. IET Syst Biol 2: 369-82.
- 7. Dhurjati P, Ramkrishna D, Flickinger MC, Tsao GT (1985) A cybernetic view of microbial growth: modeling of cells as optimal strategists. Biotechnol Bioeng 27: 1-9.
- 8. Kompala DS, Ramkrishna D, Jansen NB, Tsao GT (1986) Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models. Biotechnol Bioeng 28: 1044-55.
- 9. Kim JI, Song HS, Sunkara SR, Lali A, Ramkrishna D (2012) Exacting predictions by
 cybernetic model confirmed experimentally: steady state multiplicity in the chemostat.
 Biotechnol Prog 28: 1160-6.
- 10. Varner J, Ramkrishna D (1999) Metabolic engineering from a cybernetic perspective:
 aspartate family of amino acids. Metab Eng 1: 88-116.
- 11. Song HS, Morgan JA, Ramkrishna D (2009) Systematic development of hybrid cy-

- bernetic models: application to recombinant yeast co-consuming glucose and xylose. 473
- Biotechnol Bioeng 103: 984-1002. 474

- 12. Song HS, Ramkrishna D (2011) Cybernetic models based on lumped elementary modes accurately predict strain-specific metabolic function. Biotechnol Bioeng 108: 476 127-40.
- 13. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-478 phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10: 479 291-305. 480
- 14. Edwards JS, Palsson BO (2000) The escherichia coli mg1655 in silico metabolic 481 genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S 482 A 97: 5528-33. 483
- 15. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al. (2007) A genome-484 scale metabolic reconstruction for escherichia coli k-12 mg1655 that accounts for 485 1260 orfs and thermodynamic information. Mol Syst Biol 3: 121. 486
- 16. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale re-487 construction of metabolic network in bacillus subtilis based on high-throughput phe-488 notyping and gene essentiality data. J Biol Chem 282: 28791-9. 489
- 17. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7: 129-43. 491
- 18. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli k-12 undergoes adaptive 492 evolution to achieve in silico predicted optimal growth. Nature 420: 186-9. 493
- 19. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions 494 for predicting intracellular fluxes in escherichia coli. Mol Syst Biol 3: 119. 495
- 20. Hyduke DR, Lewis NE, Palsson BØ (2013) Analysis of omics data with genome-scale 496 models of metabolism. Mol Biosyst 9: 167-74. 497
- 21. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale

- metabolic network reconstructions of escherichia coli. Mol Syst Biol 9: 661.
- ⁵⁰⁰ 22. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical opti-⁵⁰¹ mization applications in metabolic networks. Metab Eng 14: 672-86.
- ⁵⁰² 23. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cellfree metabolic platform for protein production and synthetic biology. Mol Syst Biol 4: ⁵⁰⁴ 220.
- ⁵⁰⁵ 24. MATTHAEI JH, NIRENBERG MW (1961) Characteristics and stabilization of dnaase-⁵⁰⁶ sensitive protein synthesis in e. coli extracts. Proc Natl Acad Sci U S A 47: 1580-8.
- 25. NIRENBERG MW, MATTHAEI JH (1961) The dependence of cell-free protein synthesis in e. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47: 1588-602.
- 26. Lu Y, Welsh JP, Swartz JR (2014) Production and stabilization of the trimeric influenza
 hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc
 Natl Acad Sci U S A 111: 125-30.
- 27. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell.
 Metab Eng 14: 261-9.
- 28. Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA (2011) Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol 7: e1001099.
- ⁵¹⁹ 29. Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213: 73-88.
- 30. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating highthroughput and computational data elucidates bacterial networks. Nature 429: 92-6.
- 31. Varner JD (2000) Large-scale prediction of phenotype: concept. Biotechnol Bioeng
 69: 664-78.

- 32. Song HS, Ramkrishna D (2012) Prediction of dynamic behavior of mutant strains from limited wild-type data. Metab Eng 14: 69-80.
- 33. Gadkar KG, Doyle FJ 3rd, Crowley TJ, Varner JD (2003) Cybernetic model predictive control of a continuous bioreactor with cell recycle. Biotechnol Prog 19: 1487-97.
- 34. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95: 5606-17.
- 35. Luan D, Zai M, Varner JD (2007) Computationally derived points of fragility of a human
 cascade are consistent with current therapeutic strategies. PLoS Comput Biol 3:
 e142.
- 36. Song SO, Varner J (2009) Modeling and analysis of the molecular basis of pain in sensory neurons. PLoS One 4: e6758.
- Tasseff R, Nayak S, Salim S, Kaushik P, Rizvi N, et al. (2010) Analysis of the molecular
 networks in androgen dependent and independent prostate cancer revealed fragile
 and robust subsystems. PLoS One 5: e8864.
- 38. Tasseff R, Nayak S, Song SO, Yen A, Varner JD (2011) Modeling and analysis
 of retinoic acid induced differentiation of uncommitted precursor cells. Integr Biol
 (Camb) 3: 578-91.
- ⁵⁴² 39. Nayak S, Siddiqui JK, Varner JD (2011) Modelling and analysis of an ensemble of eukaryotic translation initiation models. IET Syst Biol 5: 2.
- 40. Lequieu J, Chakrabarti A, Nayak S, Varner JD (2011) Computational modeling and
 analysis of insulin induced eukaryotic translation initiation. PLoS Comput Biol 7:
 e1002263.
- 41. Brown KS, Sethna JP (2003) Statistical mechanical approaches to models with many
 poorly known parameters. Phys Rev E Stat Nonlin Soft Matter Phys 68: 021904.
- 42. Machta BB, Chachra R, Transtrum MK, Sethna JP (2013) Parameter space compression underlies emergent theories and predictive models. Science 342: 604-7.

- 43. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W.H. Freeman.
- 44. Peskov K, Goryanin I, Demin O (2008) Kinetic model of phosphofructokinase-1 from
 escherichia coli. J Bioinform Comput Biol 6: 843-67.
- 45. Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, et al. (2013)
 Ecocyc: fusing model organism databases with systems biology. Nucleic Acids Res
 41: D605-12.
- 46. Huang Z, Mou L, Shen Q, Lu S, Li C, et al. (2014) Asd v2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42: D510-6.
- 47. Link H, Kochanowski K, Sauer U (2013) Systematic identification of allosteric protein metabolite interactions that control enzyme activity in vivo. Nat Biotechnol 31: 357 61.
- 48. Song SO, Chakrabarti A, Varner JD (2010) Ensembles of signal transduction models using pareto optimal ensemble techniques (poets). Biotechnol J 5: 768-80.
- 49. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the
 International Conference on Neural Networks. pp. 1942 1948.

Fig. 1: Proof-of-concept cell-free metabolic networks considered in this study. Substrate S is converted to products P_1 and P_2 through a series of chemical conversions catalyzed by enzyme(s) E_j . The activity of the pathway enzymes is subject to both positive and negative allosteric regulation.

Fig. 2: Schematic of rule-based allosteric enzyme activity control laws. Traditional enzyme kinetic expressions, e.g., Michaelis—Menten or multiple saturation kinetics, are multiplied by an enzyme activity control variable $0 \le v_j \le 1$. Control variables are functions of many possible regulatory factors encoded by arbitrary functions of the form $0 \le f_j(\mathcal{Z}) \le 1$. At each simulation time step, the v_j variables are calculated by evaluating integration rules such as the max or min of the set of factors f_1, \ldots influencing the activity of enzyme E_j .

Fig. 3: Kinetics of simple transformations in the presence of activation and inhibition. **A**:The conversion of substrate S to product P by enzyme E was activated by S. For a fixed control gain parameter $\kappa_{control}$, the reaction rate approached a step for increasing cooperativity control parameter η . **B**:The conversion of substrate S to product P by enzyme E with inhibitor I. For a fixed control gain parameter $\kappa_{control}$, the reaction rate approximated non-competitive inhibition for increasing cooperativity control parameter η .

Fig. 4: ON/OFF control simulations for Network A and Network B for an ensemble of 100 kinetic parameter sets versus time. For each case, simulations were conducted using kinetic and initial conditions generated randomly from a hypothetical true parameter set. The gray area represents \pm one standard deviation surrounding the mean. Control parameters were fixed during the ensemble calculations. **A**: End product P₁ abundance versus time for Network A. The abundance of P₁ decreased with end product inhibition of E_1 activity (Control-ON) versus the no inhibition case (Control-OFF). **B**: End product P₂ abundance versus time for Network B. Inhibition of branch point E_6 by end product P₁ decreased P₂ abundance (Control-ON) versus the no inhibition case (Control-OFF). **C**: End product P₁ abundance versus time for Network A. Inhibition of branch point E_6 by end product P₁ abundance (Control-ON) versus the no inhibition case (Control-OFF).

Fig. 5: Parameter estimation from synthetic data for the same and mismatched allosteric control logic using particle swarm optimization (PSO). Synthetic experimental data was generated from a hypothetical parameter set using Network A, where substrate S, end product P_1 and intermediate M_5 were sampled approximately every 20 minutes. For cases **A,B** 20 particles were initialized with randomized parameters and allowed to search for 300 iterations. **A,B**: PSO estimated an ensemble of 20 parameters sets consistent with the synthetic experimental data assuming the correct enzymatic and control connectivity starting from randomized initial parameters. **C,D**: In the presence of control mismatch (Network B control policy simulated with Network A kinetic parameters) the ensemble of models did not describe the synthetic data. The synthetic data plotted here was unperturbed by noise. However, we assumed a coefficient of variation of 10% for the synthetic data during parameter estimation.

Fig. 6: Schematic of the alternative allosteric control programs used in the structural particle swarm computation. Each network had the same enzymatic connectivity, initial conditions and kinetic parameters, but alternative feedback control structures for the first enzyme in the pathway.

Fig. 7: Combined control and kinetic parameter search using modified particle swarm optimization (PSO). A population of 100 particles was initialized with randomized kinetic parameters and one of five possible control configurations (Network A - E). Simulation error was minimized for a synthetic data set (S, end product P_1 and intermediate M_5 sampled approximately every 20 min) generated using Network A. **A**: Simulation error versus parameter set angle for 100 particles biased toward the correct regulatory program (A,B,C,D,E) = (40%, 10%, 20%, 20% and 10%). **B**: Simulation error versus parameter set angle for 100 uniformly distributed particles (A,B,C,D,E) = (20%, 20%, 20%, 20% and 20%). **C**: Simulation error versus parameter set angle for 100 negatively biased particles (A,B,C,D,E) = (10%, 40%, 10%, 20% and 20%). Network A (the correct structure) was preferentially identified for positively and uniform biased particle distributions, but misidentified in the presence of a large incorrect bias.

Fig. 8: Metabolic flux and control variables as a function of network type and particle index at t=100 min. The control variables governing E_1, E_3 and E_6 activity and the scaled metabolic flux were calculated for the positively (top), uniformly (middle) and negatively (bottom) biased particle swarms (N = 100). Blue denotes a low value, while red denotes a high value for the respective quantity being plotted. The particles from each swarm were sorted based upon simulation error (low to high error). A: Model performance for the positively biased particle swarm as a function of particle index. B: Model performance for the uniformly biased particle swarm as a function of particle index. C: Model performance for the negatively biased particle swarm as a function of particle index. Models with significant control mismatch showed distinct control and flux patterns versus those models with the correct or closely related control policies. In particular, models with the correct control policy showed stronger inhibition of E_1 activity, leading to decreased flux from $S \rightarrow P_1$. Conversely, models with significant mismatch had increased E_1 activity, leading to an altered flux distribution. This is especially apparent in the negatively biased particle swarm.