**REPORT** 

# 임베디드 실습 및 실험(002) 3주차 실험 결과보고서 10조



| 전기컴퓨터공학부 | 201824446  | 김윤재 |
|----------|------------|-----|
| 정보컴퓨터공학부 | 202055558  | 송세연 |
| 정보컴퓨터공학부 | 2020555889 | 임연후 |
| 바이오소재과학과 | 201845626  | 최이한 |

2022.09.20

#### ◆ 실험 목표

조이스틱 입력을 통한 LED 제어

| 입력(조이스틱) |               | 출력(LED)               |
|----------|---------------|-----------------------|
| DOWN     | $\rightarrow$ | LED1, LED2 <b>on</b>  |
| LEFT     | $\rightarrow$ | LED3, LED4 <b>off</b> |
| RIGHT    | $\rightarrow$ | LED1, LED2 <b>off</b> |
| UP       | $\rightarrow$ | LED3, LED4 <b>on</b>  |

### ◆ 실험 과정

1. 주어진 STM32F107VCT6\_schematic.pdf 자료를 참고하여 입출력 장치가 연결된 포트 번호와 핀번호를 찾는다.



그림 1 LED 회로도

그림 2 조이스틱 회로도

| 입력(조이스틱) | 포트&핀 번호 | 출력(LED)                | 포트&핀 번호 |
|----------|---------|------------------------|---------|
| DOWN     | PC2     | LED1, LED2 <b>on</b>   | PD2     |
| LEFT     | PC3     | LED3, LED4 <b>off</b>  | PD3     |
| RIGHT    | PC4     | LED1, LED2 <b>of f</b> | PD4     |
| UP       | PC5     | LED3, LED4 <b>on</b>   | PD7     |

2. 이후 stm32\_Datasheet.pdf 파일을 참고하여 RCC 및 IO 포트로 사용될 포트 C, 포트 D의 base address 값을 구한다.

RCC의 base address : 0x4002 1000

Port C의 base address: 0x4001 1000

Port D의 base address : 0x4001 1400

| /      | ⊨tnernet        | UX4002 8000 - UX4002 9FFF |
|--------|-----------------|---------------------------|
| /      | Reserved        | 0x4002 3400 - 0x4002 7FFF |
| /      | CRC             | 0x4002 3000 - 0x4002 33FF |
| /      | Reserved        | 0x4002 2400 - 0x4002 2FFF |
| / AHB  | Flash interface | 0x4002 2000 - 0x4002 23FF |
| /      | Reserved        | 0x4002 1400 - 0x4002 1FFF |
| /      | RCC             | 0x4002 1000 - 0x4002 13FF |
|        | Reserved        | 0x4002 0800 - 0x4002 0FFF |
|        | DMA2            | 0x4002 0400 - 0x4002 07FF |
|        | DMA1            | 0x4002 0000 - 0x4002 03FF |
| /      | Reserved        | 0x4001 3C00 - 0x4001 FFFF |
| /      | USART1          | 0x4001 3800 - 0x4001 3BFF |
| /      | Reserved        | 0x4001 3400 - 0x4001 37FF |
|        | SPI1            | 0x4001 3000 - 0x4001 33FF |
|        | TIM1            | 0x4001 2C00 - 0x4001 2FFF |
|        | ADC2            | 0x4001 2800 - 0x4001 2BFF |
| /      | ADC1            | 0x4001 2400 - 0x4001 27FF |
| / APB2 | Reserved        | 0x4001 1C00 - 0x4001 23FF |
| AI DZ  | Port E          | 0x4001 1800 - 0x4001 1BFF |
|        | Port D          | 0x4001 1400 - 0x4001 17FF |
|        | Port C          | 0x4001 1000 - 0x4001 13FF |
|        | Port B          | 0x4001 0C00 - 0x4001 0FFF |
|        | Port A          | 0x4001 0800 - 0x4001 0BFF |
|        | EXTI            | 0x4001 0400 - 0x4001 07FF |
|        | AFIO            | 0x4001 0000 - 0x4001 3FFF |
|        | Reserved        | 0x4000 7800 - 0x4000 FFFF |

그림 3 RCC, Port C, Port D의 base address

3. RCC를 사용하여 사용하고자 하는 GPIO(포트&핀)에 clock을 인가한다.

#### 7.3.7 APB2 peripheral clock enable register (RCC\_APB2ENR)

Address: 0x18

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2 domain is on going. In this case, wait states are inserted until the access to APB2 peripheral

s finished.

Note:

When the peripheral clock is not active, the peripheral register values may not be readable

by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Low-, medium-, high- and XL-density reset and clock control (RCC)

RM0008

| Reserved   |              |            |            |            |            |            |            |            |            |            | TIM10<br>EN | TIM9<br>EN |            | ı    |            |
|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------|------------|
|            |              |            |            |            |            |            |            |            |            | rw         | rw          | rw         |            |      |            |
| 15         | 14           | 13         | 12         | 11         | 10         | 9          | 8          | 7          | 6          | 5          | 4           | 3          | 2          | 1    | 0          |
| ADC3<br>EN | USART<br>1EN | TIM8<br>EN | SPI1<br>EN | TIM1<br>EN | ADC2<br>EN | ADC1<br>EN | IOPG<br>EN | IOPF<br>EN | IOPE<br>EN | IOPD<br>EN | IOPC<br>EN  | IOPB<br>EN | IOPA<br>EN | Res. | AFIO<br>EN |
| rw         | rw           | rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw          | rw         | rw         |      | rw         |

그림 4 RCC 레지스터의 사용방법

C, D 포트이므로 4, 5번째 비트를 1로 설정해줌으로써 clock을 인가해준다.

0000 0000 0000 0000 0000 0000 0001 0000⇒C포트

0000 0000 0000 0000 0000 0000 0010 0000⇒D포트

\*(RCC<sup>Q</sup>| base address+offset)=0x40021000+0x18=0x30

4. 사용하려는 GPIO Port, Pin input/output을 설정한다.(=Port Configuration)

사용하려는 포트의 핀번호가 모두 0~7 범위 내에 있으므로 CRL 레지스터를 사용한다.

#### 9.2.1 Port configuration register low (GPIOx\_CRL) (x=A..G)

Address offset: 0x00 Reset value: 0x4444 4444

| 31        | 30 | 29         | 28      | 27        | 26     | 25         | 24      | 23        | 22     | 21         | 20     | 19        | 18     | 17         | 16     |
|-----------|----|------------|---------|-----------|--------|------------|---------|-----------|--------|------------|--------|-----------|--------|------------|--------|
| CNF7[1:0] |    | MODE7[1:0] |         | CNF6[1:0] |        | MODE6[1:0] |         | CNF5[1:0] |        | MODE5[1:0] |        | CNF4[1:0] |        | MODE4[1:0] |        |
| rw        | rw | rw         | rw      | rw        | rw     | rw         | rw      | rw        | rw     | rw         | rw     | rw        | rw     | rw         | rw     |
| 15        | 14 | 13         | 12      | 11        | 10     | 9          | 8       | 7         | 6      | 5          | 4      | 3         | 2      | 1          | 0      |
| CNF3[1:0] |    | MODE       | E3[1:0] | CNF       | 2[1:0] | MODE       | [2[1:0] | CNF       | 1[1:0] | MODE       | 1[1:0] | CNF       | 0[1:0] | MODE       | 0[1:0] |
| rw        | rw | rw         | rw      | rw        | rw     | rw         | rw      | rw        | rw     | rw         | rw     | rw        | rw     | rw         | rw     |

Bits 31:30, 27:26,  $\ \ \text{CNFy[1:0]:} \ \ \text{Port x configuration bits (y= 0 .. 7)}$ 

23:22, 19:18, 15:14, 11:10, 7:6, 3:2 These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table on page 161. In input mode (MODE[1:0]=00):

00: Analog mode 01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull 01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 0 .. 7) 21:20, 17:16, 13:12, 9:8, 5:4, 1:0 These bits are written by software to configuration These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table on page 161.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz

#### 그림 5 CRL 레지스터의 사용 방법

레퍼런스에 나와있는 대로, 입력포트인 C포트에 대해, 사용할 핀 번호 위치에서 Mode는 00, CNF는 10(조이스틱 입력은 pull-up 방식을 쓰므로)을 넣어준다.

출력포트인 D포트에 대해, 마찬가지로 사용할 핀 번호 위치에서 Mode는 가장 빠른 주파 수를 가지는 11, CNF는 표준 출력인 00을 넣어준다.

 $0000\ 0000\ 1000\ 1000\ 1000\ 1000\ 0000\ 0000 \Rightarrow 0x00888800$ 

 $0011\ 0000\ 0000\ 0011\ 0011\ 0011\ 0000\ 0000 \Rightarrow 0x30033300$ 

\*(C포트의 base address+offset)=0x4001100+0x00=0x00888800

\*(D포트의 base address+offset)=0x4001100+0x00=0x30033300

- 5. GPIO의 Input(IDR), output(BSRR&BRR)을 통해 입출력 장치를 제어한다.
- Input

#### 9.2.3 Port input data register (GPIOx\_IDR) (x=A..G)

Address offset: 0x08h Reset value: 0x0000 XXXX

|                                   | 31       | 30    | 29    | 28    | 27    | 26    | 25   | 24   | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|-----------------------------------|----------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|
|                                   | Reserved |       |       |       |       |       |      |      |      |      |      |      |      |      |      |      |
| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 |          |       |       |       |       |       |      |      |      |      | 2    | 1    | 0    |      |      |      |
|                                   | IDR15    | IDR14 | IDR13 | IDR12 | IDR11 | IDR10 | IDR9 | IDR8 | IDR7 | IDR6 | IDR5 | IDR4 | IDR3 | IDR2 | IDR1 | IDR0 |
|                                   | r        | r     | r     | r     | r     | r     | r    | r    | r    | r    | r    | r    | r    | r    | r    | r    |

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

#### 그림 6 IDR 레지스터의 사용 방법

조이스틱 입력은 Pull-up 방식이기 때문에, 입력이 들어오지 않을 때엔 비트 값이 1이었다가 입력이 들어올 때 해당 핀 번호에 해당하는 비트 값이 0이 된다.

이 점에 유의하여 if문 코드를 짜면 특정 핀번호에 입력이 들어올 때를 다음과 같이 처리할 수 있다.

 If (!(\*GPIOC\_IDR & BIT\_5))
 //5번 핀, 즉 조이스틱 up 입력이 들어왔을 때

 GPIOC\_IDR은 C포트의 IDR 레지스터 주소, BIT\_5는 0x20(=0b100000)

♦ Pull-up 방식인 이유 : 조이스틱의 회로도를 보면



그림 7 조이스틱의 회로도

VCC→저항→스위치→GND의 구조로 Pull-up 방식임을 확인할 수 있다.

- Output

핀에 value를 set할 BSRR과 reset할 BRR 레지스터를 사용한다.

#### 9.2.5 Port bit set/reset register (GPIOx\_BSRR) (x=A..G)

Address offset: 0x10
Reset value: 0x0000 0000

|   | 31         | 30         | 29         | 28         | 27         | 26         | 25       | 24       | 23       | 22       | 21       | 20  | 19  | 18  | 17  | 16       |
|---|------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|-----|-----|-----|-----|----------|
|   | BR15       | BR14       | BR13       | BR12       | BR11       | BR10       | BR9      | BR8      | BR7      | BR6      | BR5      | BR4 | BR3 | BR2 | BR1 | BR0      |
|   | w          | w          | w          | w          | w          | w          | w        | w        | w        | w        | w        | w   | w   | w   | w   | w        |
|   |            |            |            |            |            |            |          |          |          |          |          |     |     |     |     |          |
|   | 15         | 14         | 13         | 12         | 11         | 10         | 9        | 8        | 7        | 6        | 5        | 4   | 3   | 2   | 1   | 0        |
| [ | 15<br>BS15 | 14<br>BS14 | 13<br>BS13 | 12<br>BS12 | 11<br>BS11 | 10<br>BS10 | 9<br>BS9 | 8<br>BS8 | 7<br>BS7 | 6<br>BS6 | 5<br>BS5 | BS4 | BS3 | BS2 | BS1 | 0<br>BS0 |

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x Set bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Set the corresponding ODRx bit

#### 그림 8 BSRR 레지스터의 사용 방법

#### 9.2.6 Port bit reset register (GPIOx\_BRR) (x=A..G)

Address offset: 0x14
Reset value: 0x0000 0000

| 31       | 30   | 29   | 28   | 27   | 26   | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|----------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Reserved |      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |
| 15       | 14   | 13   | 12   | 11   | 10   | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| BR15     | BR14 | BR13 | BR12 | BR11 | BR10 | BR9 | BR8 | BR7 | BR6 | BR5 | BR4 | BR3 | BR2 | BR1 | BR0 |
| w        | w    | w    | w    | w    | w    | w   | w   | w   | w   | w   | w   | w   | w   | w   | w   |

Bits 31:16 Reserved

Bits 15:0 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

#### 그림 9 BRR 레지스터의 사용 방법

특정 핀의 value를 set/reset하고자 할 때 해당 핀 번호 위치의 bit 값을 1로 설정해주면 된다.

\*GPIOD\_BSRR |= 0x90; //4번, 7번 핀 set

\*GPIOD\_BRR |= 0xc; //2번, 3번 핀 reset

GPIOD\_BSRR, GPIOD\_BRR은 D포트의 BSRR, BRR 레지스터의 주소

◆ 혹시 모를 오작동을 피하기 위해 코드가 실행되기 전 모든 output 핀의 value를 reset해준다.

\*GPIOD\_BRR |= (BIT\_2|BIT\_3|BIT\_4|BIT\_7);

## ◆ 실험 결과



그림 10 조이스틱을 위로 눌러 LED 3, 4가 켜진 모습

정상적으로 동작하였다.