

FATIGUE OF SHIPS AND OFFSHORE STRUCTURES

Source: https://www.explorermagazin.de/amstar/amaut_e.htm

Source: https://metallurgyandmaterials.wordpress.com/2015/12/25/liberty-ship-failures/

Nandar Hlaing, Pablo G. Morato Philippe Rigo

https://github.com/Nandarhline

Repository: Fatigue_Lecture

Fatigue assessment - Levels of complexity

- ☐ Wohler (SN test)
 - fixed amplitude
 - experimental, numerical

Fatigue assessment - Levels of complexity

☐ Short-term fatigue assessment

- variable amplitude
- experimental, numerical
- time domain (rainflow counting)
- frequency domain (RAO + Wave spectrum)

Time-domain stress history

Figure 1. Stress history for superimposed stillwater and wave-induced loads (schematical).

Rainflow counting

Rainflow Cycle Counting

Rotate time history plot 90 degrees clockwise

Rainflow Cycles by Path		
Path	Cycles	Stress Range
A-B	0.5	3
B-C	0.5	4
C-D	0.5	8
D-G	0.5	9
E-F	1.0	4
G-H	0.5	8
H-I	0.5	6

http://www.maths.lth.se/matstat/wafo/

Fatigue assessment - Levels of complexity

- ☐ Long-term fatigue assessment
 - variable amplitude
 - experimental, (numerical)
 - time domain (rainflow counting, load cases + probabilities)
 - frequency domain (RAO + Wave spectrum + probabilities)
- ☐ Can we do it more easily?
 - simplified fatigue assessment

To understand the simplified fatigue assessment

$$D = \frac{n_t q^m}{K} \Gamma \left(1 + \frac{m}{h} \right)$$

D = long-term fatigue damage

n_t = total number of stress cycles for the design lifetime

K, m = SN curve parameters

q, h = Weibull scale and shape parameters

Probability distributions

Discrete

Continuous

Deterministic approach

$$L=2 m$$

$$E = 210 GPa$$

$$F = 40 kN$$

$$\delta = \frac{FL}{EA}$$

$$\delta = 1.9 mm$$

Probabilistic approach

$$A = wh$$
 $h = 10 mm$

$$w \sim N[\mu = 20 \ mm, CoV = 15\%]$$

$$CoV = \frac{\sigma}{\mu}, \quad \sigma = 3mm$$

What is a normal (Gaussian) distribution?

68.2% of the samples are with 1 standard deviation of the mean.

95.4% of the samples are with 2 standard deviation of the mean.

99.7% of the samples are with 3 standard deviation of the mean.

Carl Friedrich
Gauss discovered the normal distribution in 1809.

Probability density function (pdf)

$$h = 10 mm$$

$$w = 20 mm$$

$$w \sim N[\mu = 20 \text{ mm, } CoV = 15\%]$$

Mean μ_w

$$\mu_w = \int_{-\infty}^{+\infty} \mathbf{w} \, p_w(w) dw$$

Variance σ_w^2

$p_w(w) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{w-\mu}{\sigma})^2}$

Probability (P) - 18 < W < 20

$$\sigma_w^2 = \int_{-\infty}^{+\infty} (\mathbf{w} - \boldsymbol{\mu})^2 p_w(w) dw$$

$$P = \int_{18}^{20} p_w(w) dw$$

Probability density function (pdf)

Cumulative distribution function (cdf)

$$h = 10 mm$$

$$w = 20 mm$$

$$w \sim N[\mu = 20 \ mm, CoV = 15\%]$$

Probability (P) - 18 < W < 20

$$P = \int_{18}^{20} p_w(w) dw$$

$$P = P_W(20) - P_W(18)$$

Probability density function (pdf)

Cumulative distribution function (cdf)

$$h = 10 mm$$

$$w = 20 mm$$

$$w \sim N[\mu = 20 \ mm, CoV = 15\%]$$

Exceedance probability function

$$P_w(W \ge w_0) = 1 - P_w(W \le w_0)$$

$$\delta = \frac{FL}{EA}$$

$$L = 2 m$$

$$E = 210 GPa$$

$$F = 40 kN$$

$$w \sim N[\mu = 20 \text{ mm, } CoV = 15\%]$$

$$CoV = \frac{\sigma}{\mu}$$

$$\sigma = 3mm$$

$$h \sim N[\mu = 10 \ mm, CoV = 10\%]$$
 $\sigma_h = 1 \ mm$

Correlation: $\rho = 0$

Correlation: $\rho = 0.7$

Random process

Ergodic (wide-sense stationary) – Sea state

 A random sea surface is just a sum of several regular periodic waves with different wave frequencies/wavelengths.

Autocorrelation / autocovariance

(b) ACF of broadband noise

(c) ACF of narrow-band noise

Continuous signal:

$$R_{ff}(au) = \int_{-\infty}^{\infty} f(t+ au) \overline{f(t)} \, \mathrm{d}t = \int_{-\infty}^{\infty} f(t) \overline{f(t- au)} \, \mathrm{d}t$$

Discrete signal:

$$R_{yy}(\ell) = \sum_{n \in Z} y(n) \, \overline{y(n-\ell)}$$

The Fourier transform of the autocorrelation function gives a wave spectrum, i.e. the distribution of wave energy over various frequencies.

Example: Bretschneider Spectrum

$$S(\omega) = \frac{5}{16} \frac{w_m^4}{\omega^5} H_{1/3}^2 e^{-5\omega_m^4/4\omega^4}$$

Sea state (SS)	Peak period $T_m(s)$	Significant wave height $H_{1/3}\left(m ight)$
2	6.3	0.3
3	7.5	0.9
4	8.8	1.9
5	9.7	3.3
6	12.4	5.0

https://ocw.mit.edu/courses/mechanical-engineering/2-017j-design-of-electromechanical-robotic-systems-fall-2009/assignments/MIT2_017JF09_p04.pdf

21

Response spectrum

$$RAO = \frac{y_0 Re[e^{i\omega t}]}{x_0 Re[e^{i\omega t}]}$$

RAOs

Short-term structural response

Long-term structural response

$$p(S) = \int \int \int \int S_{\Lambda}(\omega, \emptyset, V) p(\overline{H}, T_m) p(\emptyset) p(V) d\emptyset dV dT d\overline{H}$$

Probability sea state

Probability heading angle

Probability speed

Weibull distribution

Probability density function

$$p(S) = \frac{h}{q} \left(\frac{S}{q}\right)^{h-1} e^{-\left(\frac{S}{q}\right)^{h}}$$

Exceedance probability

$$p(S > S_0) = e^{-\left(\frac{S_0}{q}\right)^h}$$

Long-term structural response

Weibull distribution(q,h)

Probability density function

$$p(S) = \frac{h}{q} \left(\frac{S}{q}\right)^{h-1} e^{-\left(\frac{S}{q}\right)^{h}}$$

Exceedance probability

$$p(S > S_0) = e^{-\left(\frac{S_0}{q}\right)^h}$$

Example: Long-term structural response at the mudline of the NREL 5-MW offshore wind turbine

Wind turbine: Monopile-supported NREL 5MW

Location: Ijmuiden site (Dutch North Sea)

Variable	Description
Wind speed (V_w)	$V_{w} \sim \text{Weibull}$
	(scale = 10.49, shape = 2.08)
Wind direction (θ_{wind})	$P(\theta_{wind}, \theta_{wave} V_w)$
Turbulence intensity (I)	IEC-3 ($I_{15 \text{ m/s}} = 0.14$)
Significant wave height (H_s)	$P(H_s, T_p V_w)$
Peak period (T_p)	$P(H_s, T_p V_w)$
Wave direction (θ_{wave})	$P(heta_{ ext{wind}}, heta_{ ext{wave}} \ V_{ ext{w}})$
Rotational speed (ω)	$f(V_w)$
Yaw error (θ_{yaw})	$\theta_{yaw} \in [-10,10]$

Wave spectrum + RAO

Response spectrum

Probabilities Short-term response

S-N curve Long-term response

Fatigue damage

*Assumption: The long-term stress range is represented by a Weibull distribution.

Fatigue damage

Long-term stress range – Damage (1)

$$(1) N = K \cdot S^{-m}$$

$$(2) D = \sum_{S} \frac{n_i}{N_i}$$

If S is infinitesimal, then (2) becomes:

(3)
$$D = \int_{0}^{\infty} \frac{n_t p(S) dS}{N(S)}$$
 Combining (1) and (3): (4) $D = \frac{n_t}{K} \int_{0}^{\infty} S^m p(S) dS$

The stress range is represented by a Weibull distribution:

(5)
$$p(S,q,h) = \frac{h}{q} \left(\frac{S}{q}\right)^{h-1} e^{-\left(\frac{S}{q}\right)^h}$$

*Where q and h are the scale and shape parameters respectively

Long-term stress range – Damage (2)

Replacing f(S) in (4) from (5):

(6)
$$D = \frac{n_t}{K} \int_0^\infty \mathbf{S}^m \frac{\mathbf{h}}{\mathbf{q}} \left(\frac{\mathbf{S}}{\mathbf{q}}\right)^{\mathbf{h}-1} e^{-\left(\frac{\mathbf{S}}{\mathbf{q}}\right)^{\mathbf{h}}} dS \qquad (8) D = \frac{n_t}{K} \int_0^\infty q^m x^{m/h} dx e^{-x}$$

Introducing a new variable 'x':

(7)
$$x = \left(\frac{S}{q}\right)^{h}$$

$$\begin{cases}
dx = \frac{h}{q} \left(\frac{S}{q}\right)^{h-1} dS \\
S = x^{1/h} q
\end{cases}$$

$$S^{m} = x^{m/h} q^{m}$$

Combining (6) and (7):

(8)
$$D = \frac{n_t}{K} \int_{0}^{\infty} q^m x^{m/h} dx e^{-x}$$

(8)
$$D = \frac{n_t q^m}{K} \int_0^\infty x^{m/h} e^{-x} dx$$

*Gamma function:

$$(9) \Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} dx$$

Long-term stress range – Damage (3)

Combining (6) and (7):

(8)
$$D = \frac{n_t}{K} \int_{0}^{\infty} q^m x^{m/h} dx e^{-x}$$

(8)
$$D = \frac{n_t q^m}{K} \int_{0}^{\infty} x^{m/h} e^{-x} dx$$

*Gamma function:

$$(9) \Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} dx$$

A **closed-form equation** is obtained for the fatigue damage:

$$(10) D = \frac{n_t q^m}{K} \Gamma \left(1 + \frac{m}{h} \right)$$

*Assumption: The long-term stress range is represented by a Weibull distribution.

Fatigue damage **D**?

*Assumption: The long-term stress range is represented by a Weibull distribution.

Fatigue damage

$$D = 0.7$$

Closed-form equation - fatigue damage:

$$(10) D = \frac{n_t q^m}{K} \Gamma \left(1 + \frac{m}{h} \right)$$

Exceedance probability – 'Weibull'

(11)
$$p_{exc}(S_0) = exp\left(-\frac{S_0}{q}\right)^n = \frac{1}{n_0}$$

NB: if $p_{exc}(30 \text{ MPa}) = 0.01$, 1 out of 100 stress cycles will exceed 30 MPa.

Rearranging (11):

(11)
$$q = \frac{S_0}{[ln(n_0)]^{1/h}}$$

Replacing 'q' from (11) into (10):

(12)
$$D = \frac{n_t S_0^m}{K \left[\ln(n_0) \right]^{m/h}} \Gamma \left(1 + \frac{m}{h} \right)$$

Scale parameter:

(11)
$$q = \frac{S_0}{[ln(n_0)]^{1/h}}$$

Exceedance probability – 'Weibull'

$$(13) p_{exc} = exp\left(-\frac{S}{q}\right)^h = \frac{1}{n}$$

Re-arranging (13):

$$(14) S = q [ln(n)]^{1/h}$$

Replacing 'q' from (11) into (13):

$$(15) S = S_0 \cdot \left[\frac{ln(n)}{\ln(n_0)} \right]^{1/h}$$

To understand the simplified fatigue assessment

$$D = \frac{n_t q^m}{K} \Gamma \left(1 + \frac{m}{h} \right) = \frac{n_t S_0^m}{K \left[\ln(n_0) \right]^{m/h}} \Gamma \left(1 + \frac{m}{h} \right)$$

D = long-term fatigue damage

n_t = total number of stress cycles for the design lifetime

K, m = SN curve parameters

q, h = Weibull scale and shape parameters

 S_0 = Stress range at the reference probability of exceedance of 0.01 in Mpa

 n_0 = number of cycles corresponding to the reference probability of exceedance of 0.01,

i.e.,
$$n_0 = 100$$

Damage contribution – Stress Range

Damage contribution – Prob. of exceedance

EMship+

Uncertainties involved in the fatigue assessment

- Uncertainty of SN test. $log K \sim Normal(mean = 12.164 + 2std, cov = 0.2)$
- Uncertainty of Miner's rule $\Delta \sim Lognormal(mean = 1, cov = 0.3)$
- Uncertainties of RAO, environmental models $q \sim Normal(mean = 9, cov = 0.2)$

Probabilistic fatigue assessment:
$$D = \frac{n_t q^m}{K} \Gamma \left(1 + \frac{m}{h} \right)$$

Perform the sensitivity analysis of the fatigue failure probability with respect to the varying uncertainty degrees of the stress scale parameter.

$$m = 3$$

 $n_t = 8.5 \cdot 10^7$
 $logK \sim Normal(mean = 12.164 + 2std, cov = 0.2)$
 $\Delta \sim Lognormal(mean = 1, cov = 0.3)$
 $q \sim Normal(mean = 9, cov = [0.1, 0.15, 0.2, 0.25, 0.3])$
 $h = 0.9$

Probabilistic fatigue assessment:
$$D = \frac{n_t q^m}{K} \Gamma \left(1 + \frac{m}{h} \right)$$

$$P_f = P(D > \Delta)$$

