

Mémoire de fin d'études Master 2 EQUADE

Année universitaire 2012-2013

LA VALEUR DE LA FORET POUR LA POPULATION LOCALE: UNE APPLICATION DE LA METHODE D'EXPERIMENTATION DES CHOIX

Présenté par: Sidi DOUMBOUYA Sous la direction de: Nathalie HAVET (GATE, Université Lyon2) & Jens ABILDTRUP (Chercheur INRA – LEF)

Plan

PARTIE I

Présentation du LEF (Laboratoire d'économie Forestière)

- UMR AgroParisTech INRA
- La Recherche au LEF
- Les projets scientifiques du LEF 2013 2017
- Equipe du LEF

PARTIE II

La valeur des espaces verts : une application de Choice Experiment

- Introduction
- Les facteurs déterminants des choix résidentiels des ménages
- Méthodologie
- Expérimentation des choix
- Enquête et données
- Modèles économiques et économétriques
- Résultats et discussions
- Conclusion

La recherche au LEF et les projets 2013-2017

Trois (3) domaines de recherche **Approche spatiale** Economie de la multifonctionnalité Risque, incertitude, changement climatique Modélisation du secteur forestier français **Observatoire Economique** du LEF **Projet 1**: Offre, demande, et instruments politiques pour la valorisation des

services écosystémiques fournis par les forêts

Projet 2: Production jointe de services écosystémiques et conséquences pour la gestion forestière et les politiques publiques

Projet 3: Risque, incertitude, changement climatique, et production durable de services écosystémiques

Projet 4: Développement du modèle FFSM

L'équipe du LEF et ses partenaires

L'Equipe du LEF 2013

➤ Equipe scientifique (17 chercheurs y compris le Directeur Monsieur Serge GARCIA) ; 5 doctorants et une Equipe technique (2 secrétaires et 1 informaticien)

Les partenaires du LEF

- Collaborateurs locaux: Université de Lorraine, les institutions forestières publiques et privées régionales, et la Région de Lorraine
- ➤ Niveau national : Autres unités et institutions de recherche (CNRS, CIRAD, Universités,...), institutions publiques (Ministère en charge de l'agriculture et de l'environnement, ONF, IGN, etc.)
- ➤ Niveau international: intégration dans plus réseaux (L'Union internationale de l'organisation de recherche forestière UFRO; l'Institut européen des forêts EFI, etc.)

Partie 2 - la valeur de la forêt et autres espaces vert pour la population locale : une étude pilote de la méthode de Choice Experiment

1. Introduction

- ➤ Objectif: estimation des déterminants de la valeur d'une forêt et autres espaces verts pour la population locale → le CAP
- Valeurs de la forêt?

2- Les facteurs déterminants des choix résidentiels des ménages

- ☐ Des études empiriques [Des Rosiers et al., 2005; Kestens, 2004; Mayo (1973), Friedman (1975) et Pallakowski (1975), etc.]
- ☐ Principe de maximisation d'utilité pour les ménages
 - ➤ Les facteurs subjectifs caractéristiques socioéconomiques spécifiques à chaque ménage
 - Les facteurs objectifs caractéristiques physiques de l'environnement résidentiel (logement, aménités, accessibilités, ...)
- ☐ Le rôle important des aménités
 - Quelle importance des aménités pour les ménages lors de leurs choix résidentiels ?
 - Quelle satisfaction ces derniers en retirent-ils ?

3- Méthodologie

Deux (2) grande familles de méthodes

Les variantes de la Modélisation des choix:

- 1. Expérimentation des choix (***)
- 2. Classement contingent
- 3. Notation contingent
- 4. Comparaison par paires

Les étapes de la modélisation des choix

Selon Hanley al. 2001

- choix des attributs
- définition des niveaux

Phase 1

Phase 2

- choix du plan d'expérience
- construction des choix

- Mesure des préférences
- Procédure d'estimation

Phase 3

Tableau des attributs et leurs niveaux

Attributs	Nive	eaux	
	1.	actuelle	
Distance à une forêt ?	2.	2km de plus	Evt. linear
	3.	4km de plus	
	1.	actuelle	
Distance à un parc/jardin ?	2.	500m de plus	Evt. linear
	3.	1000m de plus	
Vue sur un espace vert ?	1.	Non	dummy
	2.	Oui	
	1.	-10%	
Taille du logement (m²)	2.	Taille actuelle	Evt. linear
	3.	+10%	
	1.	-15%	
Prix du logement /loyer	2.	-10%	Evt. linear
	3.	-5%	
	4.	actuel	
	5.	+5%	
	6.	+10%	

Choix du plan d'expérience et Construction des ensembles de choix

Utilisation de la théorie statistique, le processus factoriel

- ightharpoonup Le plan factoriel complet $ightharpoonup 3^3 \times 2^1 \times 6^1 = 324$ combinaisons
- > Selon Alpizar et al., 2001, un plan factoriel complet n'est, en général, pas très docile dans une expérience de choix
- Kuhfeld, 2000 un processus factoriel « partiel »
- \triangleright une autre alternative \Longrightarrow l'utilisation d'un design factoriel effet principal: Maximisation du déterminant de la matrice Ω
- ➤ Le critère de *D Optimaux* ou la soi-disant *D efficiency* (Voir Johnson et al., 2006): utilisation d'un logiciel de conception

$$D - efficiency = \left[|\Omega|^{1/K} \right]^{-1}$$

$$D - error = \left(\det \Omega^{-1} \right)^{\frac{1}{K}}$$
 (1)

Exemple de choix typique proposé aux enquêtés

SAS efficient design \longrightarrow 12 ensembles de choix

- Utilisation de conception « bloquée » Louviere (1988a)
- > quatre "blocs" × trois ensembles de choix

Attributs	Logement actuel	Alternative 1	Alternative 2
Distance à une forêt	Distance actuelle	2km de plus	Distance actuelle
Distance à un parc/jardin	Distance actuelle	500m de plus	1000m de plus
Vue sur espace vert	Vue actuelle	Pas de vue	Vue
Taille de l'habitation	Taille actuelle	10% de plus	10% de plus
Loyer ou prix du logement	Loyer ou prix actuel	15% de moins	5% de plus
Je préfère (Cochez une seule case svp!)			

Enquêtes et description des données

- Un échantillon aléatoire simple, enquête face-à-face
- ➤ La durée moyenne 15 à 25 minutes
- > Dix (10) endroits différents sur Nancy
- ➤ Quatre (4) catégories d'informations: l'utilisation des espaces verts; des questions sur les caractéristiques du logement actuel; des questions hypothétiques; des questions sur les socio-économiques des ménages.

Bilan du sondage

Participants	Taux de réponse	Taux de refus	Complets	Incomplets
300	73,66%	26,33%	60,33%	13,33%

Échantillon final = 181 individus ---> 181×3=543 Observations

Quelques comparaisons de chiffres

	Femmes	Hommes	Propriétaires	Locataires
Enquête LEF	53,03%	46,57%	47,57%	52,25%
INSEE 2007 / 2010	53%	47%	58,49%	41,50%

Modèle Economique

- Maximisation d'une fonction d'utilité
- > Théorie de la valeur (Lancaster, 1966)
- Modèle d'utilité aléatoire (McFadden, 1974)

La fonction d'utilité à 2 composantes:

$$U_{in} = V_{in}(y_n - P_i, Z_i C_n; \beta) + \varepsilon_{in} \quad i = 1, 2, 3, I; \quad n = 1, 2, 3, N$$
 (2)

Où Y_n est revenu du ménage n; Pi est le prix payé pour que l'option de choix demeure i,

 Z_i = Vecteur des caractéristiques observées des logements

 C_n est un vecteur de caractéristiques individuelles (i) observées et β est un vecteur de paramètres.

 $\boldsymbol{\varepsilon_i}$, une perturbation aléatoire avec une distribution de probabilité spécifique Ainsi:

$$P_n\{i\} = P\{V_{in}(y_n - P_i, Z_i, C_n, \beta) + \varepsilon_{in} \ge V_{jn}(y_n - P_j, Z_j, C_n, \beta) + \varepsilon_{jn}\}$$
(3)

Modèles économétriques et applications

Le problème de la modélisation des choix —— La gestion de $\mathbf{\epsilon}_{\mathbf{i}}$

Si Y_n = variable aléatoire indiquant le choix de l'individu (\mathbf{n}), McFadden (1973) montre que si (et seulement si) les $\mathbf{\varepsilon}_j$ = *iid* selon une distribution à la valeur extrême de *type I* (**Gumbel**), avec $\mathbf{F}(\mathbf{\varepsilon}_j)$ =[exp(-e^{-ej})] alors la probabilité dans l'équation (3) peut s'écrire de la manière suivante :

$$Prob_n(Y_n = i) = \frac{exp(\mu V_{in})}{\sum_{i=1}^{J} exp(\mu V_{jn})}$$
(4)

Estimation par MV

$$Log L = \sum_{i=1}^{n} \sum_{j=1}^{J} y_{ij} log \left[\frac{exp(\mu V_{ij})}{\sum_{i=1}^{J} exp(V_{ij})} \right]$$
(5)

Modèles économétriques et applications (2)

- Une formulation du modèle logit conditionnel —— hypothèses
 - les caractéristiques de choix varient selon les choix
 - les paramètres sont constants
 - caractéristiques sociales et économiques sont constantes
 - Pas d'interaction attributs et caractéristiques socioéconomiques
 - La fonction d'utilité indirecte conditionnelle linéaire:

$$V_{in} = \beta_0 + \beta_y (Y_n - P_i) + \beta_1 Z_1 + \beta_2 Z_2 + \dots + \beta_n Z_n$$
 (6)

coefficient d'un attribut Zi

$$CAP = b_y^{-1} log \left\{ \frac{\sum_{i} exp(v_i^1)}{\sum_{i} exp(v_i^0)} \right\} \quad (7) \qquad MCAP = \frac{-b_c}{b_y} \quad (8)$$

Consentement à payer

Coefficient de l'attribut monétaire

Valeur d'un changement marginal

Résultats et discussions

➤ Logiciel *NLOGIT 4.0* — Quelques statistiques

	Descriptive Statistics for Alternative 1							
	Descriptive Statistics for Alternative 1							
Utility Fur	nction Co	efficient	All 543	.0 obs.	138.0 ob	servs. that chose		
1								
Name	Value	Variable	Mean	Std.Dev.	Mean	Std.Dev.		
DISFOR	0604	DISFOR	1.374	1.519	1.406	1.498		
DISPARC	3435	DISPARC	.222	.249	.214	.248		
TAILLE	2.7601	TAILLE	1.028	.082	1.028	.082		
VUE	.7594	VUE	.564	.496	.594	.493		
PRIX	-7.1722	PRIX	.958	.088	.932	.081		
A_1	7307	ONE	1.000	.000	1.000	.000		
1_PRO1	6783		.475	.500	.391	.490		
PROPRIO								

	Descriptive Statistics for Alternative 2						
Utility Fu	Utility Function Coefficient			All 543.0 obs.		servs. that chose	
2							
Name	Value	Variable	Mean	Std.Dev.	Mean	Std.Dev.	
DISFOR	0604	DISFOR	1.639	1.594	1.533	1.697	
DISPARC	3435	DISPARC	.580	.407	.611	.409	
TAILLE	2.7601	TAILLE	1.051	.076	1.057	.064	
VUE	.7594	VUE	.667	.472	.756	.432	
PRIX	-7.1722	PRIX	.977	.060	.956	.072	
A_2	8199	ONE	1.000	.000	1.000	.000	
2_PRO2	-1.3895	PROPRIO	.475	.500	.233	.425	

Descriptive Statistics for Alternative 3							
Utility Function Coefficient		All 543.0 obs.		315.0 ob	servs. that chose		
3							
Name	Value	Variable	Mean	Std.Dev.	Mean	Std.Dev.	
DISFOR	0604	DISFOR	.000	.000	.000	.000	
DISPARC	3435	DISPARC	.000	.000	.000	.000	
TAILLE	2.7601	TAILLE	1.000	.000	1.000	.000	
VUE	.7594	VUE	.646	.479	.717	.451	
PRIX	-7.1722	PRIX	1.000	.000	1.000	.000	

Equation estimée:

$$U_{in} = \beta_1 * DISFOR_{i,n} + \beta_2 * DISPARC_{i,n} + \beta_3 * VUE_{i,n} + \beta_4 * TAILLE_{i,n} + \beta_5 * PRIX_{i,n} + e_{i,n}$$
(9)

Résultats du modèle logit conditionnel

Discrete choice	Discrete choice (multinomial logit) model Maximum Likelihood Estimates					
Dependent va	riable = Choice	N	Number of observation = 543			
Log likelihood	function= -488	.4912 AIC=1	821, BIC=1.86	88, HQIC=1.839		
Variable	Coefficient	Standard Erro	r β/St Er.	P [Z >z]		
DISFOR	06982	.05058	-1.380	.1675		
DISPARC	58503	.21380	-2.736	.0062		
VUE	.81593	.13538	6.027	.0000		
TAILLE	3.21807	1.10668	2.908	.0036		
PRIX	-7.75631	1.01268	-7.659	.0000		
CST	1.13409	.14378	7.887	.0000		

Attention! À la propriété IIA (Luce, 1959)

Test d'Hausman – McFadden (1984), Test de validité de la propriété IIA

Hypothèses

H_0 : $\hat{\beta_1}$ convergent et efficace; $\hat{\beta_2}$ convergent mais moins précis $\hat{\beta_1}$ non convergent; $\hat{\beta_2}$ convergent

Statistique du test

$$H = (\widehat{\beta}_2 - \widehat{\beta}_1)' \left[\left(V(\widehat{\beta}_2) - V(\widehat{\beta}_1) \right)^{-1} \left(\widehat{\beta}_2 - \widehat{\beta}_1 \right) \rightarrow \chi^2(k) sous H_0$$

1^{er} Cas: Alternative 1→ exclu

Hausman	Hausman test for IIA. Excluded choices are 1						
ChiSqrd [5	ChiSqrd [5] = 22.5113 Pr(C > c) = .000418 N= 543, skip 138 bad obs.						
Log likelih	ood function=	206.900 AIC=1.	046 BIC=1	.095 HQIC=1.065			
Variable	Coefficient	Standard Error	β/St Er.	P [Z >z]			
DISFOR	42823	.06804	-6.293	.0000			
DISPARC	-1.86447	.29786	-6.259	.0000			
VUE	.86931	.20140	4.316	.0000			
TAILLE	8.62979	2.47476	3.487	.0005			
PRIX	-4.76836	2.03468	-2.344	.0191			

H₀ → Rejetée Validité IIA rejetée

2^{ème} Cas: Alternative 2 → exclu

ChiSqrd [5	Hausman test for IIA. Excluded choices are 2 ChiSqrd [5] = 8.6946, Pr(C > c) = .121885 N= 543, skipped 90 bad obs. Log likelihood function=-282.680 AIC=1.270 BIC=1.315 HQIC=1.288					
Variable	Coefficient	Standard Error	β/St Er.	P [Z >z]		
DISFOR	32321	.08802	-3.672	.0002		
DISPARC	70788	.56570	-1.251	.2108		
VUE	.69532	.18120	3.837	.0001		
TAILLE	1.10285	1.25709	.877	.3803		
PRIX	-5.31406	1.33636	-3.977	.0001		

H₀ → Non rejetée Validité IIA n'est pas rejetée

Modèle Logit Mixte ou logit à paramètres aléatoires

McFadden et Train (2000)

> paramètres β spécifiques entre individus — Hétérogénéité des préférences

Fonction de distribution de $\beta \longrightarrow f(\beta_n/\overline{\beta},\omega,\sigma)$ Telle que: $\beta_n = \overline{\beta} + C'_n\omega + \sigma u_n$

$$P_{n}(j|\overline{\beta},\omega,\sigma) = \int P_{n}(j|\beta)f(\beta_{n}|\overline{\beta},\omega,\sigma)d\beta = \int \frac{\exp(\mu\beta_{n}X_{n,i})}{\sum_{i=1}^{J}\exp(\mu\beta_{n}X_{n,i})}f(\beta_{n}|\overline{\beta},\omega,\sigma)d\beta$$
 (10)

Random Parameters Logit Model Replications for simulated probs. = 100					. = 100
Dependent variable= Choice Number of obs. =543 skipped 0 bad obs					bad obs.
Log likeliho	od function = -	488.4912 McFadde	en P <mark>seudo R-s</mark> e	quared = .:	2193438
AIC=1.756	BIC= 1.84 χ (11ddl) = 261.6976 Pi	rob [ChiSqd >	value] = .	0000000
Variable	Coefficient	Standard Erro	or β/St Er.	P[Z >	>z]
		Random parameters	s in utility fund	ctions	
DISFOR	11796	.0934	-1.263	.2066	
DISPARC	-1.55470	.4760	-3.266	.0011	(***)
VUE	1.14595	.2543	4.506	.0000	(***)
TAILLE	2.91512	1.5764	1.849	.0644	(*)
PRIX	-10.5188	1.7130	-6.140	.0000	(***)
	N	onrandom paramete	rs in utility fur	ctions	
CST	1.39786	.2072	6.748	.0000	(***)
	Derived	l standard deviations	of parameter	distribution	ons
ωβ1	.33615	.1291	2.604	.0092	(***)
ωβ2	2.76876	.5884	4.705	.0000	(***)
ωβ3	1.36436	.3909	3.489	.0005	(***)
ωβ4	5.27058	2.8688	1.837	.0662	(*)
ωβ5	9.15313	2.7947	3.275	.0011	(***)

Estimation des effets de bien-être par simulation

Random Para Dependent va	ce Numbe	r of obs. =54	ulated probs. = 200 43 skipped 0 bad obs.	
Log likelihoo		-		R-squared=.2154482 qd>value]= .0000000
Variable	Coefficient			P[Z >z]
DISFOR	13636	.08433	-1.617	.1059
DISPARC	-1.45490	.42145	-3.452	.0006
VUE	1.07221	.22651	4.733	.0000
TAILLE	.03020	.01432	2.109	.0349
	Nonran	dom parameters in	utility funct	ions
PRIX	11044	.01677	-6.585	.0000
Partprop	.02776	.02129	1.304	.1923
CST	1.21081	.17550	6.899	.0000
	Derive	d standard deviatio	nsofparam	neter distributions
ωβ1	.35723	.11795	3.029	.0025
ωβ2	2.47263	.51048	4.844	.0000
ωβ3	1.06116	.36809	2.883	.0039
ωβ4	.03992	.03838	1.040	.2983

Calcul du Consentement à payer marginaux – CAPm (Willingness To Pay)

Variable	CAPm propriétaires $CAPm_p = -rac{eta i}{eta_5}$	CAPm Locataires $CAPm_{l} = -\frac{\beta_{l}}{\beta_{5} + \beta_{6}}$
DISFOR	-2,24	-1,65
DISPARC	-13,18	-17,60
VUE	9,72	12,97
TAILLE	0,27	0,37

CAPm ≠ de la mesure du Bien-être surplus compensé

$$CS = \frac{-1}{\beta_{prix}}(V_N - V_C)$$

CONCLUSION

- Possibilité d'agrandir l'échelle de notre analyse
- Tous les coefficients ont les signes attendus et significatifs à 10% sauf la distance à la forêt
- > CAPm propriétaires > CAPm locataires
- Nécessité de réaliser des analyses conjointe
- le succès de l'expérimentation des choix dépend du design
- > Attention à la forme fonctionnelle de la fonction d'utilité

MERCI DE VOTRE ATTENTION