Normalization of Relations

Normalization:

 The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations

Normal form:

 Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form

- 2NF, 3NF, BCNF □based on keys and FDs of a relation schema
- Practical Use of Normal Forms:Normalization is carried out in practice so that the resulting designs are of high quality and meet the desirable properties

A superkey of a relation schema R = {A1, A2,, An} is a set of attributes S subset-of R with the property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S]

Candidate Keys:

Example:Super key

Emp_SSN	Emp_Number	Emp_Name
123456789	226	Steve
999999321	227	Ajeet
888997212	228	Chaitanya
777778888	229	Robert

- {Emp_SSN}
- {Emp_Number}
- {Emp_SSN, Emp_Number}
- {Emp_SSN, Emp_Name}
- {Emp_SSN, Emp_Number, Emp_Name}
- {Emp_Number, Emp_Name}

Example:candidate key

a candidate key is a minimal super key with no redundant attributes

- {Emp_SSN}
- {Emp_Number}

A Primary key is selected from a set of candidate keys. This is done by database admin or database designer. We can say that either {Emp_SSN} Or {Emp_Number} can be chosen as a primary key

<Student>

Student_ID	Student_Enroll	Student_Name	Student_Email
S02	4545	Dave	ddd@gmail.com
S34	4541	Jack	jjj@gmail.com
S22	4555	Mark	mmm@gmail.com

The following are the super keys for the above table -

```
{Student_Enroll}
{Student_Email}
{Student_ID, Student_Enroll}
{Studet_ID, Student_Name}
{Student_ID, Student_Email}
{Student_ID, Student_Email}
{Student_Name, Student_Enroll}
{Student_ID, Student_Enroll, Student_Name}
{Student_ID, Student_Enroll, Student_Name}
{Student_ID, Student_Enroll, Student_Email}
{Student_ID, Student_Enroll, Student_Name, Student_Email}
```

The following would be the candidate key from the above -

```
{Student_ID}
{Student_Enroll}
{Student_Email}
```

3.2 First Normal Form 1NF

A relation scheme R is in first normal form (1NF) if the values in dom (A) are atomic for every attribute A in R.

Disallows

- composite attributes
- Set-valued attributes
- nested relations; a cell of an individual tuple is a complex relation

(a)

DEPARTMENT

(b)

DEPARTMENT

(c)

DEPARTMENT

Dname	Dnumber	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

EMP PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya, AliciaJ.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
		20	15.0
888665555	Borg, James E.	20	NULL

(c) EMP PROJ1

Ssn Ename

EMP_PROJ2

San	Pnumber	Hours
3811	Pnumber	Hours

Figure 10.9

Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ relation with a nested relation attribute PROJS. (b) Example extension of the EMP_PROJ relation showing nested relations within each tuple. (c) Decomposition of EMP_PROJ into relations EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

Second Normal Form

A relation scheme R is in second normal form (2NF)
with respect to a set of FDs F if it is in 1NF and every
nonprime attribute is fully dependent on every key of R.

.. .

Student(IDSt, StudentName, IDProf, ProfessorName, Grade)

- 1. The attribute ProfessorName is functionally dependent on attribute IDProf (IDProf --> ProfessorName)
- 2. The attribute StudentName is functionally dependent on IDSt (IDSt --> StudentName)
- 3. The attribute Grade is fully functional dependent on IDSt and IDProf (IDSt, IDProf --> Grade)

Students

	IDSt LastName IDProf Prof Grade					
ШSt	LastName	IDProf	Prof	Grade		
1	Mueller	3	Schmid	5		
2	Meier	2	Borner	4		
3	Tobler	1	Bernasconi	6		

Startsituation

Result after normalisation Professors

ID LastName 1 Mueller 2 Meier 3 Tobler

IDProf	Professor
1	Bernasconi
2	Borner
3	Schmid

Grades

IDStIDProf	Grade	
1	3	5
2	2	4
3	1	6

90×234

 $B \rightarrow F$ is an example of non-fully functional dependency of a key

- A relation schema R is in third normal form (3NF) if whenever a FD X → A holds in R, then either:
 - (a) X is a superkey of R, or
 - (b) A is a prime attribute of R

SO no non-prime attribute A in R is transitively dependent on the primary key

Example

Key: { SID }

SID→Building

Building →Fee

Building →Mgr

SID	Building	Fee	Manager
100	Fenn	300	Mr. T
300	ΔΠ	400	Ali
200	Holiday Inn	400	Tyson

BCNF (Boyce-Codd Normal Form)

- A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X -> A holds in R, then X is a superkey of R
- Each normal form is strictly stronger than the previous one
 - Every 2NF relation is in 1NF
 - Every 3NF relation is in 2NF
 - Every BCNF relation is in 3NF
- There exist relations that are in 3NF but not in BCNF
- The goal is to have each relation in BCNF (or 3NF)

Consider the following relationship: R (A,B,C,D)

and following dependencies:

A -> BCD

BC -> AD

D -> B

Above relationship is already in 3rd NF. Keys are A and BC.

Hence, in the functional dependency, A -> BCD, A is the super key. in second relation, BC -> AD, BC is also a key. but in, D -> B, D is not a key.

Hence we can break our relationship R into two relationships R1 and R2.

Breaking, table into two tables, one with A, D and C while the other with D and B.