ADVANCED TOPICS IN MICROECONOMETRICS: MATCHING MODELS AND THEIR APPLICATIONS

Alfred Galichon (NYU and ScPo)

Spring 2018 Lecture 10. Matching models 1

IMPORTANT ANNOUCEMENT REGARDING NEXT LECTURES

- ► April 2, 2018: no class (holiday)
- ► April 9, 16, 23, 2018: classes cancelled and replaced
- ► April 30, 2018: regular schedule
- ► May 7, 2018: exam 10:15am-12:15noon

LEARNING OBJECTIVES: LECTURE 10

- ► Matching with unobserved heterogeneities
- ► Estimation of matching models

- ► [CS] Choo and Siow (2006). "Who Marries Whom and Why," *Journal of Political Economy*.
- ► [CSW] Chiappori, Salanié, and Weiss (2017). "Partner Choice and the Marital College Premium," AER.
- ► [GS] Galichon and Salanié (2015). "Cupid's Invisible Hand: Social Surplus and Identification in Matching Models," Preprint.
- ▶ [DG] Dupuy and Galichon (2014). "Personality traits and the marriage market," *Journal of Political Economy*.
- ► [COQ2] Chiappori, Oreffice and Quintana-Domeque (2016). "Bidimensional Matching with Heterogeneous Preferences in the Marriage Market," Preprint.
- ► [L] Low (2016). "Pricing the Biological Clock: Reproductive Capital on the US Marriage Market," Preprint.
- ► [HHA] Hitsch, Hortacsu, and Ariely (2010). "Matching and Sorting in Online Dating," *American Economic Review*.

Section 1

THEORY

MOTIVATION

- ► In the footsteps of Becker, empirical studies on the marriage market had long been focused on one-dimensional models and positive assortative matching (PAM).
- ► However, it is desirable to move beyond PAM:
 - ► PAM is always loosely true, never precisely
 - there are often many observed characteristics, and it is not always the case that the sorting can be captured by a single-dimensional model
 - PAM is a theoretical prediction stemming from assumptions of supermodularity of the surplus function which do not necessarly hold
 - ► optimal transport provide tools to study multidimensional models
- ► However, any model of matching based on optimal transport will not be exploitable because it will generate far too strong predictions, namely that some matchings will never hold. This is rather counterfactual: in the data, one observes virtually any combination of type.
- ▶ Hence, need to regularize the matching model, and we shall do so by introducing unobserved heterogeneity. The model so obtained will be exploitable for estimation and identification purposes. The first such model (with transfers) is the model by Choo and Siow (2006). We shall see a generalization of this model by G and Salanié (2015).

A LOOK AT OUR DATA

- ▶ Our data are Choo and Siow's original data. Choo and Siow wanted to study the impact of the legalization of abortion by the Roe vs. Wade decision by the supreme court on the "value of marriage". Roe vs. Wade decreased the role of marriage in covering out-of-the-wedlocks pregnancies ("shotgun weddings").
- ► The decision did, however, not make a change uniformly in the United States as a number of states had already legalized abortion (reform states). Choo and Siow thus offer a diffs-in-diffs approach in order to compute the change in the value of marriage.
- ▶ Choo and Siow's data are thus made of the marriages between men and women in reformed states (R) vs nonreformed states (NR), in 1972 and in 1982. One should expect to see a higher drop in marriage value in NR states.

- ▶ The reference for this lecture is [CS] and [GS]. Consider a heterosexual marriage matching market. The set of types (observable characteristics) is \mathcal{X} for men, and \mathcal{Y} for women. There are $n_{\mathcal{X}}$ men of type x, and $m_{\mathcal{Y}}$ women of type y.
- Assume that if a man $i \in \mathcal{I}$ of type x_i and a woman $j \in \mathcal{J}$ of type y_j match, they get respective utilities

$$\alpha_{x_i y_j} + w_{ij} + \varepsilon_{i y_j}$$

$$\gamma_{x_i y_j} - w_{ij} + \eta_{x_i j}$$

where w_{ij} is the transfer from i to j. If they remain single i and j get respectively ε_{i0} and η_{0j} .

► The random utility vectors (ε_y) and (η_x) are drawn from probability distributions \mathbf{P}_x and \mathbf{Q}_y , respectively. In the sequel we shall work with a finite number of agents of each type, and then we'll investigate the limit of these results.

▶ The matching surplus between i and j is therefore

$$\tilde{\Phi}_{ij} = \Phi_{x_i y_j} + \varepsilon_{i y_j} + \eta_{x_i j}$$

where $\Phi_{xy} = \alpha_{xy} + \gamma_{xy}$. The value of optimal matching is thus, under its dual form,

$$\begin{aligned} \min_{u_i, v_j} & \sum_{i \in \mathcal{I}} u_i + \sum_{j \in \mathcal{J}} v_j \\ s.t. & u_i + v_j \ge \Phi_{x_i y_j} + \varepsilon_{i y_j} + \eta_{x_i j} \\ & u_i \ge \varepsilon_{i0} \\ & v_j \ge \eta_{j0} \end{aligned}$$

- ▶ Written like this, the lp has $|\mathcal{I}| + |\mathcal{J}|$ variables and $|\mathcal{I}| \times |\mathcal{J}| + |\mathcal{I}| + |\mathcal{J}|$ constraints. Assuming that there are K individuals per type for each type, this is $K(|\mathcal{X}| + |\mathcal{Y}|)$ variables and $K^2(|\mathcal{X}| \times |\mathcal{Y}|) + K(|\mathcal{X}| + |\mathcal{Y}|)$ constraints.
- ► The number of constraints is **quadratic** with respect to *K*. Fortunately, economic reasoning will help us reduce this complexity.

A PROPERTY OF EQUILIBRIUM

LEMMA

Consider the set \mathcal{I}_{xy} of men of type x matched to women of type y at equilibrium. If \mathcal{I}_{xy} is nonempty, then $u_i - \varepsilon_{iy}$ is a constant across \mathcal{I}_{xy} .

PROOF.

For $i \in \mathcal{I}$ such that $x_i = x$,

$$u_{i} = \max_{j \in \mathcal{J}} \left\{ \tilde{\Phi}_{ij} - v_{j}, \varepsilon_{i0} \right\}$$
$$= \max_{y \in \mathcal{Y}} \left\{ U_{xy} + \varepsilon_{iy}, \varepsilon_{i0} \right\}$$

where $U_{xy} = \max_{j:y_j=y} \left\{ \Phi_{xy} + \eta_{x_ij} - v_j \right\}$, thus $u_i \geq U_{xy} + \varepsilon_{iy}$ with equality on \mathcal{I}_{xy} . With similar notations, $v_j \geq V_{xy} + \eta_{xj}$ with equality on \mathcal{J}_{xy} . As a result, if \mathcal{I}_{xy} is nonempty, then $U_{xy} + V_{xy} = \Phi_{xy}$ and $\forall i \in \mathcal{I}_{xy}$, $u_i = U_{xy} + \varepsilon_{iy}$.

A SIMPLIFICATION

- ▶ In the sequel, we shall see that *adding* an auxiliary variable to the previous Ip will lead to *decreasing* the computational complexity of the problem.
- ▶ Observe that the first set of constraints is reexpressed by saying that, for every $x \in \mathcal{X}$, $y \in \mathcal{Y}$,

$$\min_{i:x_i=x} \left\{ u_i - \varepsilon_{iy} \right\} + \min_{j:y_j=y} \left\{ v_j - \eta_{xj} \right\} \ge \Phi_{xy}.$$

▶ Hence, letting $U_{xy} = \min_{i:x_i=x} \{u_i - \varepsilon_{iy}\}$ and $V_{xy} = \min_{j:y_j=y} \{v_j - \eta_{xj}\}$, a solution of the previous lp should satisfy

$$u_i = \max_{v \in \mathcal{V}} \left\{ U_{xy} + \varepsilon_{iy}, \varepsilon_{i0} \right\} \text{ and } v_j = \max_{x \in \mathcal{X}} \left\{ V_{xy} + \varepsilon_{xj}, \varepsilon_{0j} \right\}.$$

A SIMPLIFICATION (CTD)

► The problem rewrites as

$$\begin{aligned} \min_{u_{i},v_{j},U_{xy},V_{xy}} & \sum_{i\in\mathcal{I}} u_{i} + \sum_{j\in\mathcal{J}} v_{j} \\ s.t. & U_{xy} + V_{xy} \geq \Phi_{xy} \quad [\mu_{xy} \geq 0] \\ & u_{i} \geq U_{x_{i}y} + \varepsilon_{iy_{j}} \quad [\mu_{iy}] \\ & v_{j} \geq V_{xy_{j}} + \eta_{x_{i}j} \quad [\mu_{xi}] \\ & u_{i} \geq \varepsilon_{i0} \quad [\mu_{i0}] \\ & v_{j} \geq \eta_{j0} \quad [\mu_{0x}] \end{aligned} \tag{1}$$

- ▶ This problem has $K(|\mathcal{X}| + |\mathcal{Y}|) + |\mathcal{X}| \times |\mathcal{Y}|$ variables and $(|\mathcal{X}| \times |\mathcal{Y}|) + K(2|\mathcal{X}| \times |\mathcal{Y}| + |\mathcal{X}| + |\mathcal{Y}|)$ constraints.
- \blacktriangleright The number of constraint is now **linear** with respect to K.

Consequences

- ► Lagrange multipliers:
 - ▶ The Lagrange multiplier μ_{xy} is interpreted as the number of matchings between types x and y.
 - ▶ The Lagrange multiplier μ_{iy} $(y \in \mathcal{Y}_0)$ is interpreted as a 0-1 indicator that man i chooses a type y
 - ▶ The Lagrange multiplier μ_{xj} ($x \in \mathcal{X}_0$) is interpreted as a 0-1 indicator that woman j chooses a type x
- ▶ Utilities:
 - i solves a discrete choice problem $u_i = \max_{y \in \mathcal{Y}} \{U_{xy} + \varepsilon_{iy}, \varepsilon_{i0}\}$
 - ightharpoonup j solve a discrete choice problem $v_j = \max_{x \in \mathcal{X}} \left\{ V_{xy} + \eta_{xj}, \eta_{0j} \right\}$.
- ▶ U_{xy} and V_{xy} are related by $U_{xy} + V_{xy} \ge \Phi_{xy}$ with equality if $\mu_{xy} > 0$.

ASSUMPTIONS

- ► [GS] look at the limit of previous markets when the number of market participants gets large, holding fixed the frequency of each types.
- ▶ In the large population limit n_x and m_y are now interpreted as the mass distribution of respective types x and y.
- ▶ We shall from now on assume that \mathbf{P}_x and \mathbf{Q}_y , the distributions of random utility vectors (ε_y) and (η_x) , have a density with full support. This will ensure that G, G^* , H and H^* are continuously differentiable.

LARGE POPULATION LIMIT

▶ Under these assumptions, Problem (1) becomes

$$\min_{U,V} G(U) + H(V)$$
s.t. $U_{xy} + V_{xy} \ge \Phi_{xy} [\mu_{xy}]$

where

$$G\left(U\right) = \sum_{x \in \mathcal{X}} n_{x} \mathbb{E}_{\mathbf{P}} \left[\max_{y \in \mathcal{Y}} \left\{ U_{xy} + \varepsilon_{iy}, \varepsilon_{i0} \right\} \right]$$
$$H\left(V\right) = \sum_{y \in \mathcal{Y}} m_{y} \mathbb{E}_{\mathbf{Q}} \left[\max_{x \in \mathcal{X}} \left\{ V_{xy} + \eta_{xj}, \eta_{0j} \right\} \right]$$

By first order conditions,

$$\frac{\partial G\left(U\right)}{\partial U_{xy}} = \mu_{xy} = \frac{\partial H\left(V\right)}{\partial V_{xy}}.$$

and $\mu_{xy} > 0$ for every $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.

SOCIAL PLANNER'S PROBLEM

▶ The primal problem corresponding to (1) is

$$\max_{\mu_{xy} \geq 0} \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} \mu_{xy} \Phi_{xy} - \mathcal{E}\left(\mu\right)$$

where

$$\mathcal{E}\left(\mu\right) = G^*\left(\mu\right) + H^*\left(\mu\right)$$

- ▶ Recall $G^*(\mu) = \max \left\{ \sum_{xy} \mu_{xy} U_{xy} G(U) \right\}$ is the Legendre transform of G, and similarly for H^* .
- \blacktriangleright By first order conditions, we get the identification formula of Φ

$$\Phi_{xy} = \frac{\partial G^*(\mu)}{\partial \mu_{xy}} + \frac{\partial H^*(\mu)}{\partial \mu_{xy}}.$$

CHOO AND SIOW'S TU-LOGIT MODEL

► In Choo and Siow's model [CS], the heterogeneities in tastes are Gubmel, this

$$\mathcal{E}\left(\mu\right) = 2\sum_{\substack{\mathbf{x} \in \mathcal{X} \\ \mathbf{y} \in \mathcal{Y}}} \mu_{\mathbf{x}\mathbf{y}} \log \mu_{\mathbf{x}\mathbf{y}} + \sum_{\mathbf{x} \in \mathcal{X}} \mu_{\mathbf{x}\mathbf{0}} \log \mu_{\mathbf{x}\mathbf{0}} + \sum_{\mathbf{y} \in \mathcal{Y}} \mu_{\mathbf{0}\mathbf{y}} \log \mu_{\mathbf{0}\mathbf{y}}.$$

Note that $\mathcal{E}(\mu) < \infty$ if and only if $\mu \in \mathcal{M}(n, m)$.

- ▶ We call this model the *TU-logit* model. Tomorrow, we shall see how to generalize this to *ITU-logit* models, including *NTU-logit*.
- By first order conditions above, Choo-Siow's TU-logit model implies the following matching function:

$$\mu_{xy} = \mathit{M}_{xy}\left(\mu_{x0}, \mu_{0y}\right) := \sqrt{\mu_{x0}} \sqrt{\mu_{0y}} \exp\left(\frac{\Phi_{xy}}{2}\right).$$

IDENTIFICATION IN THE TU-LOGIT MODEL

As a result, $\partial \mathcal{E}\left(\mu\right)/\partial \mu_{xy}=2\log\mu_{xy}-\log\mu_{x0}-\log\mu_{0y}$, which implies that Φ_{xy} is estimated by *Choo and Siow's identification formula*

$$\hat{\Phi}_{xy} = \log \frac{\hat{\mu}_{xy}^2}{\hat{\mu}_{x0}\hat{\mu}_{0y}}.$$

▶ Consistent with our previous remarks, only the joint surplus $\Phi_{xy} = \alpha_{xy} + \gamma_{xy}$ is identified. However, if the transfers \hat{w}_{xy} are observed too (e.g. wages in labour market), then $U_{xy} = \alpha_{xy} + w_{xy}$ and $V_{xy} = \gamma_{xy} - w_{xy}$, so that α and γ are separately identified by

$$\left\{ \begin{array}{l} \hat{\alpha}_{xy} = \log \frac{\hat{\mu}_{xy}}{\hat{\mu}_{x0}} - \hat{w}_{xy} \\ \hat{\gamma}_{xy} = \log \frac{\hat{\mu}_{xy}}{\hat{\mu}_{0y}} + \hat{w}_{xy} \end{array} \right.$$

SOLVING EQUILIBRIUM IN THE TU-LOGIT MODEL

▶ Write down the equilibrium equations in the TU-logit model:

$$\begin{cases} \sum_{y \in \mathcal{Y}} \sqrt{\mu_{x0}} \sqrt{\mu_{0y}} \exp\left(\frac{\Phi_{xy}}{2}\right) + \mu_{x0} = n_x \\ \sum_{x \in \mathcal{X}} \sqrt{\mu_{x0}} \sqrt{\mu_{0y}} \exp\left(\frac{\Phi_{xy}}{2}\right) + \mu_{0y} = m_y \end{cases}$$

► Setting $a_x = \sqrt{\mu_{x0}}$, $b_y = \sqrt{\mu_{0y}}$, and $K_{xy} = \exp{(\Phi_{xy}/2)}$, this rewrites as

$$\begin{cases} \sum_{y \in \mathcal{Y}} K_{xy} a_x b_y + a_x^2 = n_x \\ \sum_{x \in \mathcal{X}} K_{xy} a_x b_y + b_y^2 = m_y \end{cases}$$

SOLVING EQUILIBRIUM IN THE TU-LOGIT MODEL (CTD)

▶ Hence, the IPFP consists in iteratively solving quadratic equations, i.e.

$$\begin{cases} a_x^{2t+1} = \sqrt{n_x + \left(\sum_{y \in \mathcal{Y}} b_y^{2t} K_{xy}/2\right)^2} - \sum_{y \in \mathcal{Y}} b_y^{2t} K_{xy}/2 \\ b_y^{2t+2} = \sqrt{m_y + \left(\sum_{x \in \mathcal{X}} a_x^{2t+1} K_{xy}/2\right)^2} - \sum_{x \in \mathcal{X}} a_x^{2t+1} K_{xy}/2 \end{cases}$$

► This is implemented by:

TU-LOGIT MODEL: DUAL PROBLEM

► Cf [GS]. The dual problem is given by

$$\min_{u,v} \left\{ \begin{array}{c} \sum_{x} n_{x} u_{x} + \sum_{y} m_{y} v_{y} \\ + 2 \sum_{xy} \sqrt{n_{x} m_{y}} \exp\left(\frac{\Phi_{xy} - u_{x} - v_{y}}{2}\right) \\ + \sum_{x} n_{x} \exp\left(-u_{x}\right) + \sum_{y} m_{y} \exp\left(-v_{y}\right) \end{array} \right\}$$

- ► Remarks:
 - This problem is an unconstrained convex optimization problem, so this formulation will be quite useful.
 - If (u, v) is solution, $u_x = -\log \mu_{0|x} = -\log (\mu_{x0}/n_x)$ and $v_y = -\log (\mu_{0|y})$.
 - Note that the IPFP algorithm just seen interprets as (blockwise)
 coordinate descent in the dual problem.

LIMIT WITHOUT HETEROGENEITY

- Now assume that the scaling factor (=standard deviation) of the Gumbel is σ . Instead of ε_y and η_x , these heterogeneities are $\sigma\varepsilon_y$ and $\sigma\eta_x$. As a result, the entropy is now $\sigma\mathcal{E}\left(\mu\right)$ instead of $\mathcal{E}\left(\mu\right)$.
- ► The expression of the social welfare is now

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(\mathbf{n},\mathbf{m})} \sum_{\substack{\mathbf{x} \in \mathcal{X} \\ \mathbf{y} \in \mathcal{Y}}} \mu_{\mathbf{x}\mathbf{y}} \Phi_{\mathbf{x}\mathbf{y}} - \sigma \mathcal{E}\left(\boldsymbol{\mu}\right)$$

which tends to the usual optimal assignment problem when $\sigma \to 0$ (no heterogeneity). Tends to random matching solution when $\sigma \to +\infty$.

PARAMETRIC ESTIMATION OF THE TU-LOGIT MODEL

• Assume Φ_{xy} is parameterized as

$$\Phi_{xy}^{\lambda} = \sum_{k} \lambda_k \phi_{xy}^k$$

so that the welfare function can be written

$$\begin{split} W\left(\lambda\right) &= \max_{\mu \in \mathcal{M}(n,m)} \left\{ \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} \mu_{xy} \Phi_{xy}^{\lambda} - \sigma \mathcal{E}\left(\mu\right) \right\} \\ &= \min_{u,v} \left\{ \begin{array}{l} \sum_{x} n_{x} u_{x} + \sum_{y} m_{y} v_{y} + 2 \sum_{xy} \sqrt{n_{x} m_{y}} \exp\left(\frac{\Phi_{xy}^{\lambda} - u_{x} - v_{y}}{2}\right) \\ + \sum_{x} n_{x} \exp\left(-u_{x}\right) + \sum_{y} m_{y} \exp\left(-v_{y}\right) \end{array} \right\} \end{split}$$

► As a result,

$$\frac{\partial W}{\partial \lambda_k} = \sum_{\substack{\mathbf{x} \in \mathcal{X} \\ \mathbf{x} \in \mathcal{X}}} \mu_{\mathbf{x}\mathbf{y}}^{\lambda} \phi_{\mathbf{x}\mathbf{y}}^{k}$$

where μ^{λ} is the optimal μ given λ .

ESTIMATION (CTD)

- ► We will pick the parameter λ such that $\sum_{xy} \mu_{xy}^{\lambda} \phi_{xy}^{k} = \sum_{xy} \hat{\mu}_{xy} \phi_{xy}^{k}$ for each k.
- ► For this, do

$$\min_{\lambda} \left\{ W(\lambda) - \sum_{xy} \hat{\mu}_{xy} \Phi_{xy}^{\lambda} \right\}$$

which reexpresses using the dual expression as

$$\min_{u,v,\lambda} \left\{ \begin{array}{l} \sum_{x} n_{x}u_{x} + \sum_{y} m_{y}v_{y} + 2\sum_{xy} \sqrt{n_{x}m_{y}} \exp\left(\frac{\Phi_{xy}^{\lambda} - u_{x} - v_{y}}{2}\right) \\ + \sum_{x} n_{x} \exp\left(-u_{x}\right) + \sum_{y} m_{y} \exp\left(-v_{y}\right) - \sum_{xy} \hat{\mu}_{xy} \Phi_{xy}^{\lambda} \end{array} \right\}.$$

GEOMETRIC INTERPRETATION: THE COVARIOGRAM

- ► The set of vectors C^{λ} where $C_k^{\lambda} = \sum_{xy} \mu_{xy}^{\lambda} \phi_{xy}^{k}$ is a convex and compact set called *covariogram*. Its boundaries correspond to solutions of the Monge-Kantorovich problem without regularization; the point 0 corresponds to the independent coupling $(\|\Phi\|/\sigma \to 0)$.
- Note that increasing λ^k will increase the weight of ϕ^k in the optimization problem, and thus will increase the corresponding moment C_{ι}^{λ} .
- ▶ We look for λ such that the predicted covariances C_k^{λ} equates the observed covariances $\hat{C}_k = \sum_{xy} \hat{\mu}_{xy} \phi_{xy}^k$, which is computed from our sample by

$$\hat{C}_k = \frac{1}{n} \sum_{i=1}^n \phi_{x_i y_i}^k.$$

FIGURE

Section 2

CODING

A TOY MATCHING MODEL FOR BENCHMARK

- ▶ In 'benchmark.R', we compare a number of different methods to perform equilibrium computation in a TU-logit model.
- ► Take a toy example where *x*=age of man, and *y*=age of woman. There are 25 categories of age in the studied population, between 16 and 40, and the surplus is

$$\Phi\left(x,y\right) = -\left|x-y\right|$$

and the heterogeneities are iid Gumbel.

▶ n_x and m_y are taken from Choo and Siow's ACS data stored in the subdirectory '/ChooSiowData'.

NUMERICAL BENCHMARK

- ► In this course, we have discussed a number of techniques to compute equilibrium:
 - ► Gradient descent
 - ► Newton descent
 - ► Jacobi iteration (IPFP)
 - ► Linear programming (after discretization of heterogeneity)
- ▶ We will now design them, implement them and benchmark them.

EQUILIBRIUM AS AN OPTIMIZATION PROBLEM

► Recall dual version

$$\min_{(U_{vv})} \left\{ G\left(U\right) + H\left(\Phi - U\right) \right\} \tag{2}$$

where

$$G(U) = \sum_{x \in \mathcal{X}} n_x \log \left(1 + \sum_{y \in \mathcal{Y}} \exp(U_{xy}) \right)$$

$$H(V) = \sum_{y \in \mathcal{Y}} m_y \log \left(1 + \sum_{x \in \mathcal{X}} \exp(V_{xy}) \right)$$

▶ This is a convex optimization problem in dimension $|\mathcal{X}| \times |\mathcal{Y}|$.

GRADIENT DESCENT: GENERALITIES

► To solve the optimization problem

$$\min W(U)$$

where U is convex, gradient descent consists in

$$U_{t+1} = U_t - \epsilon_t \nabla W (U_t)$$

for $\epsilon_t > 0$ small enough.

► Intuition: with enough smoothness

$$W\left(U_{t+1}\right) = W\left(U_{t}\right) + \left\langle \nabla W\left(U_{t}\right), U_{t+1} - U_{t}\right\rangle + O\left(\left\|U_{t+1} - U_{t}\right\|^{2}\right)$$

$$= W\left(U_{t}\right) - \epsilon_{t} \left\|\nabla W\left(U_{t}\right)\right\|^{2} + O\left(\epsilon_{t}^{2}\right).$$

► More on this soon (Keith).

GRADIENT DESCENT: TU-LOGIT MODEL

▶ If $W(U) = G(U) + H(\Phi - U)$, then

$$\nabla W(U) = \nabla G(U) - \nabla H(\Phi - U)$$

which interprets as the *market imbalance* (supply minus demand for *xy* matches).

► Here, with logit heterogeneities,

$$\frac{\partial W\left(U\right)}{\partial U_{xy}} = \frac{n_{x} \exp\left(U_{xy}\right)}{1 + \sum_{y \in \mathcal{Y}} \exp\left(U_{xy}\right)} - \frac{m_{y} \exp\left(\Phi_{xy} - U_{xy}\right)}{1 + \sum_{x \in \mathcal{X}} \exp\left(\Phi_{xy} - U_{xy}\right)}.$$

► See implementation in 'benchmark.R'.

► Newton descent consists in doing

$$U_{t+1} = U_t - \epsilon_t \left(D^2 W \left(U_t \right) \right)^{-1} \nabla W \left(U_t \right)$$

for $\epsilon_t > 0$ small enough.

▶ Intuition: when $\epsilon_t \to 0$, (U_t) tends to the solution of ODE

$$\frac{dU_{t}}{dt} = -\epsilon_{t} \left(D^{2}W\left(U_{t}\right) \right)^{-1} \nabla W\left(U_{t}\right)$$

that is

$$\frac{d}{dt}\nabla W\left(U_{t}\right) = -\epsilon_{t}\nabla W\left(U_{t}\right)$$

which has solution

$$\nabla W\left(U_{t}\right) = \nabla W\left(U_{0}\right) \exp\left(-\int_{0}^{t} \epsilon_{s} ds\right)$$
,

hence $\|\nabla W(U_t)\| \to 0$ as $t \to +\infty$.

NEWTON DESCENT: TU-LOGIT MODEL

▶ When $W(U) = G(U) + H(\Phi - U)$, then

$$D^{2}W(U) = D^{2}G(U) + D^{2}H(\Phi - U)$$

which is called the *market curvature* in the hedonic equilibrium literature.

► Here, with logit heterogeneities,

$$\frac{\partial^{2} G(U)}{\partial U_{xy} \partial U_{xy}} = \mu_{xy} - \frac{\mu_{xy}^{2}}{n_{x}}$$

$$\frac{\partial^{2} G(U)}{\partial U_{xy} \partial U_{xy'}} = -\frac{\mu_{xy} \mu_{xy'}}{n_{x}} \text{ for } y \neq y'$$

where $\mu_{xy} = \partial G(U) / \partial U_{xy}$; while $\partial^2 G(U) / \partial U_{xy} \partial U_{x'y'} = 0$ for $x \neq x'$.

► Similar formulas hold for D^2H .

NODAL METHODS

► In Choo-Siow's TU-logit model, one has

$$\mu_{xy} = \sqrt{\mu_{x0}\mu_{0y}} \exp\left(\frac{\Phi_{xy}}{2}\right)$$

which allowed us to reformulate equilibrium as a problem over variables μ_{x0} and μ_{0v} .

▶ Set $a_x = -\log \mu_{x0}$ and $b_y = -\log \mu_{0y}$. Then one can view the problem as a *nodal problem*

$$\min \sum_{x \in \mathcal{X}} n_x a_x + \sum_{y \in \mathcal{Y}} m_y b_y + E(a, b)$$
 (3)

where
$$E(a, b) = 2\sum_{xy} e^{\frac{\Phi_{xy} - a_x - b_y}{2}} + \sum_{x} e^{-a_x} + \sum_{y} e^{-b_y}$$
.

- ▶ The problem has become an optimization problem in dimension $|\mathcal{X}| + |\mathcal{Y}|$.
 - ▶ Huge dimensionality reduction: from $|\mathcal{X}| \times |\mathcal{Y}|$ to $|\mathcal{X}| + |\mathcal{Y}|$, BUT
 - ► Nodal methods apply only in the logit case, while the previous methods (edge methods) work for any heterogeneity.

NODAL METHODS (CTD)

- ▶ We will solve for the equilibrium (μ_{x0}, μ_{0y}) using:
 - ► Gradient descent on problem (3)
 - ► Newton descent on problem (3)
 - ► IPFP

GRADIENT DESCENT, NODAL VERSION

If
$$F(a,b) = \sum_{x \in \mathcal{X}} n_x a_x + \sum_{y \in \mathcal{Y}} m_y b_y + E(a,b)$$
, then
$$\frac{\partial F}{\partial a_x} = n_x - \sum_{y \in \mathcal{Y}} e^{\frac{\Phi_{xy} - a_x - b_y}{2}} - e^{-a_x}$$
$$\frac{\partial F}{\partial b_y} = m_y - \sum_{x \in \mathcal{X}} e^{\frac{\Phi_{xy} - a_x - b_y}{2}} - e^{-b_y}$$

which interprets as another market imbalance measure.

In gradient descent, a_x and b_y adjust proportionally to market imbalance.

NEWTON DESCENT, NODAL VERSION

If
$$F(a,b) = \sum_{x \in \mathcal{X}} n_x a_x + \sum_{y \in \mathcal{Y}} m_y b_y + E(a,b)$$
, then
$$\frac{\partial^2 F}{\partial a_x \partial a_{x'}} = 1_{\{x=x'\}} \left\{ \frac{1}{2} \sum_{y \in \mathcal{Y}} e^{\frac{\Phi_{xy} - a_x - b_y}{2}} + e^{-a_x} \right\}$$
$$\frac{\partial^2 F}{\partial b_y \partial b_{y'}} = 1_{\{y=y'\}} \left\{ \frac{1}{2} \sum_{y \in \mathcal{X}} e^{\frac{\Phi_{xy} - a_x - b_y}{2}} + e^{-b_y} \right\}$$

 $\frac{\partial^2 F}{\partial a_v \partial b_v} = \frac{1}{2} e^{\frac{\Phi_{xy} - a_x - b_y}{2}}$

▶ Recall that setting $a_x = \sqrt{\mu_{x0}}$ and $b_y = \sqrt{\mu_{0y}}$ one can employ the following iterative scheme

$$\begin{cases} a_x^{2t+1} = \sqrt{n_x + \left(\sum_{y \in \mathcal{Y}} b_y^{2t} K_{xy}/2\right)^2} - \sum_{y \in \mathcal{Y}} b_y^{2t} K_{xy}/2 \\ b_y^{2t+2} = \sqrt{m_y + \left(\sum_{x \in \mathcal{X}} a_x^{2t+1} K_{xy}/2\right)^2} - \sum_{x \in \mathcal{X}} a_x^{2t+1} K_{xy}/2 \end{cases}$$

▶ The algorithm converges for any starting point a^0 .

LINEAR PROGRAMMING

 \blacktriangleright Recall that the matching surplus between i and j is therefore

$$\tilde{\Phi}_{ij} = \Phi_{x_i y_j} + \varepsilon_{i y_j} + \eta_{x_i j}$$

where $\Phi_{xy} = \alpha_{xy} + \gamma_{xy}$. The value of optimal matching is thus, under its dual form,

$$\min_{u_i, v_j} \sum_{i \in \mathcal{I}} u_i + \sum_{j \in \mathcal{J}} v_j$$
s.t. $u_i + v_j \ge \Phi_{x_i y_j} + \varepsilon_{i y_j} + \eta_{x_i j}$

$$u_i \ge \varepsilon_{i0}$$

$$v_i \ge \eta_{i0}$$

- ▶ Here, ε_{iy_i} and η_{x_ij} are i.i.d. draws from standard Gumbel distributions.
- ► This way of doing things is not competitive, but interesting to keep in mind.

BENCHMARK

- ▶ In 'benchmark.R', e compute equilibrium in the toy model, for five of the algorithms we described:
 - ► Edge gradient descent
 - ► Edge Newton descent
 - Nodal gradient descent
 - ► Nodal Newton descent
 - ► IPFP
 - ► Linear programming
- ► The algorithms are implemented in R. Gradient descent is done via the package nloptr; Newton descent via nleqslv; linear programming via Gurobi. Benchmark is done via the microbenchmark package.

BENCHMARK: RESULTS

Algorithm	Time taken (microsec.)	Nb of iterations
edge-gradient	38,457	71
edge-newton	1,184,230	28
nodal-gradient	5,837	39
nodal-newton	5,194	52
ipfp	837	41

BENCHMARK: COMMENTS

- ► The IPFP is a clear winner. In spite of the fact that R is not good with loops, it beats the next most efficient procedure by a factor 5.
- edge-newton is penalized by large matrix inversions. However, it converges in a remarkably low number of iterations. Could be sped up if matrix inversion is done efficiently.

THE EFFECT OF ROE VS. WADE ON THE VALUE OF MARRIAGE

- ► We revisit Choo and Siow's question: what is the effect of Roe vs. Wade on the value of marriage?
- ► We compute Choo and Siow's diff-in-diffs using TraME (https://github.com/TraME-Project). See 'choosiow_usingTraME'. More precisely, compute 70r-70n-(80r-80n).