

APARNA B. S

Department of Science and Humanities

PES UNIVERSITY ONLINE

Class Content

- Monotonic sequences
- Examples on Monotonic sequences
- · Bounded above sequence
- Bounded below sequence
- Bounded sequence
- Examples on Bounded sequence
- · Note on Unbounded sequence

PES UNIVERSITY ONLINE

Bounded above Sequence

Bounded above Sequence

Bounded above Sequence

Bounded above Sequence

DEFINITION (Bounded above sequence)

A sequence $\{a_n\}$ is said to be bounded above if \exists a real number K such that $a_n \leq K \quad \forall n \in \mathbb{N}$.

PES UNIVERSITY ONLINE

Bounded above Sequence

Bounded above Sequence

DEFINITION (Bounded above sequence)

A sequence
$$\{a_n\}$$
 is said to be bounded above if \exists a real number K such that $a_n \leq K \quad \forall n \in \mathbb{N}$.

Every term of the sequence is less than or equal to a real number K.

PES UNIVERSITY ONLINE

Bounded above Sequence

Bounded above Sequence

DEFINITION (Bounded above sequence)

A sequence $\{a_n\}$ is said to be bounded above if \exists a real number K such that $a_n \leq K \quad \forall n \in \mathbb{N}$.

Every term of the sequence is less than or equal to a real number K.

K is called the Upper bound of the sequence a_n .

PES UNIVERSITY ONLINE

Bounded above Sequence

Bounded above Sequence

DEFINITION (Bounded above sequence)

A sequence $\{a_n\}$ is said to be bounded above if \exists a real number K such that $a_n \leq K \quad \forall n \in \mathbb{N}$.

Every term of the sequence is less than or equal to a real number K.

K is called the Upper bound of the sequence a_n .

There can be more than one upper bound for a given sequence.

PES UNIVERSITY ONLINE

Bounded below sequence

DEFINITION (Bounded below sequence)

A sequence $\{a_n\}$ is said to be bounded below if

 \exists a real number k such that $a_n \geq k \quad \forall n \in \mathbb{N}$.

Every term of the sequence is greater than or equal to a real number k.

PES UNIVERSITY ONLINE

Bounded below sequence

DEFINITION (Bounded below sequence)

A sequence $\{a_n\}$ is said to be bounded below if \exists a real number k such that $a_n > k \quad \forall n \in \mathbb{N}$.

Every term of the sequence is greater than or equal to a real number k.

k is called the lower bound of the sequence a_n .

PES UNIVERSITY ONLINE

Bounded below sequence

DEFINITION (Bounded below sequence)

A sequence $\{a_n\}$ is said to be bounded below if

 \exists a real number k such that $a_n \geq k \quad \forall n \in \mathbb{N}$.

Every term of the sequence is greater than or equal to a real number k.

k is called the lower bound of the sequence a_n .

There can be more than one lower bound for a given sequence.

PES UNIVERSITY ONLINE

Bounded below sequence

DEFINITION (Bounded below sequence)

A sequence $\{a_n\}$ is said to be bounded below if

 \exists a real number k such that $a_n \geq k \quad \forall n \in \mathbb{N}$.

Every term of the sequence is greater than or equal to a real number k.

k is called the lower bound of the sequence a_n .

There can be more than one lower bound for a given sequence.

PES UNIVERSITY ON LINE

Bounded Sequence

DEFINITION

Bounded Sequence A sequence is said to be bounded if it is both bounded above and bounded below.

- 1. The sequence $\{a_n\}$ defined by $a_n = \frac{1}{n}$, $\forall n \in \mathbb{N}$, since, the sequence is bounded below by 0 and bounded above by 1 i.e every term of the sequence a_n is such that $0 \le a_n \le 1$.
- 2.The sequence $\{a_n\}$ defined by $a_n = n, \ \forall n \in \mathbb{N}$, is bounded below by 1 and is not bounded above since \exists no K such that every term of the sequence is $\leq K$.

PES UNIVERSITY ONLINE

Bounded Sequence

DEFINITION

Bounded Sequence A sequence is said to be bounded if it is both bounded above and bounded below.

- 1. The sequence $\{a_n\}$ defined by $a_n = \frac{1}{n}$, $\forall n \in \mathbb{N}$, since, the sequence is bounded below by 0 and bounded above by 1 i.e every term of the sequence a_n is such that $0 \le a_n \le 1$.
- 2.The sequence $\{a_n\}$ defined by $a_n = n, \ \forall n \in \mathbb{N}$, is bounded below by 1 and is not bounded above since \exists no K such that every term of the sequence is $\leq K$.

PES UNIVERSITY ONLINE

Bounded Sequence

DEFINITION

Bounded Sequence A sequence is said to be bounded if it is both bounded above and bounded below.

- 1. The sequence $\{a_n\}$ defined by $a_n = \frac{1}{n}$, $\forall n \in \mathbb{N}$, since, the sequence is bounded below by 0 and bounded above by 1 i.e every term of the sequence a_n is such that $0 \le a_n \le 1$.
- 2.The sequence $\{a_n\}$ defined by $a_n = n, \ \forall n \in \mathbb{N}$, is bounded below by 1 and is not bounded above since \exists no K such that every term of the sequence is $\leq K$.

PES UNIVERSITY ONLINE

Bounded Sequence

DEFINITION

Bounded Sequence A sequence is said to be bounded if it is both bounded above and bounded below.

- 1. The sequence $\{a_n\}$ defined by $a_n = \frac{1}{n}$, $\forall n \in \mathbb{N}$, since, the sequence is bounded below by 0 and bounded above by 1 i.e every term of the sequence a_n is such that $0 \le a_n \le 1$.
- 2.The sequence $\{a_n\}$ defined by $a_n = n, \ \forall n \in \mathbb{N}$, is bounded below by 1 and is not bounded above since \exists no K such that every term of the sequence is $\leq K$.

PES UNIVERSITY ON CINE

Examples

3. The sequence $\{y_n\}$ defined by $y_n = (-1)^n$ is both bounded below and above.

PES UNIVERSITY ONLINE

- 3. The sequence $\{y_n\}$ defined by $y_n = (-1)^n$ is both bounded below and above.
- 4. Every constant sequence is bounded.

PES UNIVERSITY ONLINE

- 3. The sequence $\{y_n\}$ defined by $y_n = (-1)^n$ is both bounded below and above.
- 4. Every constant sequence is bounded.
- 5. The sequence $\{(-n)\}$ is bounded above by -1 and is not bounded below. Since there is no real number k such that $a_n \geq k, \ \forall n \in \mathbb{N}$.

PES UNIVERSITY ON LINE

- 3. The sequence $\{y_n\}$ defined by $y_n = (-1)^n$ is both bounded below and above.
- 4. Every constant sequence is bounded.
- 5. The sequence $\{(-n)\}$ is bounded above by -1 and is not bounded below. Since there is no real number k such that $a_n \geq k, \ \forall n \in \mathbb{N}$.

PES UNIVERSITY ON LINE

Note on Ubounded Sequence

DEFINITION

A sequence $\{a_n\}$ is said to be unbounded if it is either unbounded below or unbounded above.

REMARK

The above definition asserts that there is neither a 'K' nor a 'K', such that $a_n \nleq K$ or $k \nleq a_n$.

PES UNIVERSITY ON LINE

Note on Ubounded Sequence

DEFINITION

A sequence $\{a_n\}$ is said to be unbounded if it is either unbounded below or unbounded above.

REMARK

The above definition asserts that there is neither a 'K' nor a 'K', such that $a_n \nleq K$ or $k \nleq a_n$.

PES UNIVERSITY ON LINE

Note on Ubounded Sequence

DEFINITION

A sequence $\{a_n\}$ is said to be unbounded if it is either unbounded below or unbounded above.

REMARK

The above definition asserts that there is neither a 'K' nor a 'K', such that $a_n \nleq K$ or $k \nleq a_n$.

PES UNIVERSITY ONLINE

Note on Ubounded Sequence

DEFINITION

A sequence $\{a_n\}$ is said to be unbounded if it is either unbounded below or unbounded above.

REMARK

The above definition asserts that there is neither a 'K' nor a 'k', such that $a_n \nleq K$ or $k \nleq a_n$.

PES UNIVERSITY ONLINE

Monotonic Sequences

Monotonic Increasing and Decreasing sequence :

1. A sequence $\{a_n\}$ is said to be

Monotonically increasing if $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}$.

PES UNIVERSITY ONLINE

Monotonic Sequences

Monotonic Increasing and Decreasing sequence :

- 1. A sequence $\{a_n\}$ is said to be Monotonically increasing if $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}$.
- 2. A sequence $\{a_n\}$ is said to be

PES UNIVERSITY ONLINE

Monotonic Sequences

Monotonic Increasing and Decreasing sequence :

- 1. A sequence $\{a_n\}$ is said to be Monotonically increasing if $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}$.
- 2. A sequence $\{a_n\}$ is said to be

PES UNIVERSITY ONLINE

Monotonic Sequences

Monotonic Increasing and Decreasing sequence :

- 1. A sequence $\{a_n\}$ is said to be Monotonically increasing if $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}$.
- 2. A sequence $\{a_n\}$ is said to be Monotonically decreasing if $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$.

PES UNIVERSITY ONLINE

Examples on Monotonic Sequences

Example: Prove that the following sequence, whose n^{th} term is given, is monotonic.

Find out whether it is decreasing or increasing.

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$$
Solution:

$$a_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

$$a_{n+1} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}}$$

$$a_{n+1} - a_n = \frac{1}{2^{n+1}} > 0, \ \forall n \in \mathbb{N}.$$

PES UNIVERSITY ONLINE

Examples on Monotonic Sequences

Example: Prove that the following sequence, whose n^{th} term is given, is monotonic.

Find out whether it is decreasing or increasing.

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$$
Solution:

$$a_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

$$a_{n+1} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}}$$

$$a_{n+1} - a_n = \frac{1}{2^{n+1}} > 0, \ \forall n \in \mathbb{N}.$$

PES UNIVERSITY ONLINE

Examples on Monotonic Sequences

Example: Prove that the following sequence, whose n^{th} term is given, is monotonic.

Find out whether it is decreasing or increasing.

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$$
Solution:

$$a_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

$$a_{n+1} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}}$$

$$a_{n+1} - a_n = \frac{1}{2^{n+1}} > 0, \ \forall n \in \mathbb{N}.$$

Examples on Monotonic Sequences

Example: Prove that the following sequence, whose n^{th} term is given, is monotonic.

Find out whether it is decreasing or increasing.

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$$
Solution:

Solution:
$$2^4$$

$$a_{n} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}}$$

$$a_{n+1} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} + \frac{1}{2^{n+1}}$$

$$a_{n+1} - a_{n} = \frac{1}{2^{n+1}} > 0, \ \forall n \in \mathbb{N}.$$

PES UNIVERSITY ONLINE

Subsequence (Statement Only)

(Subsequence). Let $\{a_n\}$ be a given sequence.

If n_k is a strictly increasing sequence of natural numbers i.e $n_1 < n_2 < n_3 \cdots$, then a_{n_k} is called a subsequence of $\{a_n\}$.

- \blacktriangleright $\{a_{2n}\}$. $\{a_{2n-1}\}$, $\{a_{n^2}\}$ are all subsequences of $\{a_n\}$.
- ▶ $\{2, 3, 6, \dots\}$, $\{1, 3, 5, \dots\}$, $\{1, 4, 9, 16, \dots\}$ are all subsequences of the sequence $\{n\}$.
- Every sequence is a subsequence of itself.

PES UNIVERSITY ONLINE

Subsequence (Statement Only)

(Subsequence). Let $\{a_n\}$ be a given sequence.

If n_k is a strictly increasing sequence of natural numbers i.e $n_1 < n_2 < n_3 \cdots$, then a_{n_k} is called a subsequence of $\{a_n\}$.

- \blacktriangleright $\{a_{2n}\}$. $\{a_{2n-1}\}$, $\{a_{n^2}\}$ are all subsequences of $\{a_n\}$.
- ▶ $\{2, 3, 6, \dots\}$, $\{1, 3, 5, \dots\}$, $\{1, 4, 9, 16, \dots\}$ are all subsequences of the sequence $\{n\}$.
- Every sequence is a subsequence of itself.

PES UNIVERSITY ONLINE

Subsequence (Statement Only)

(Subsequence). Let $\{a_n\}$ be a given sequence.

If n_k is a strictly increasing sequence of natural numbers i.e $n_1 < n_2 < n_3 \cdots$, then a_{n_k} is called a subsequence of $\{a_n\}$.

- \blacktriangleright $\{a_{2n}\}$. $\{a_{2n-1}\}$, $\{a_{n^2}\}$ are all subsequences of $\{a_n\}$.
- ▶ $\{2, 3, 6, \dots\}$, $\{1, 3, 5, \dots\}$, $\{1, 4, 9, 16, \dots\}$ are all subsequences of the sequence $\{n\}$.
- Every sequence is a subsequence of itself.

FNGINFFRING MATHEMATICS-I

Subsequence (Statement Only)

(Subsequence). Let $\{a_n\}$ be a given sequence.

If n_k is a strictly increasing sequence of natural numbers i.e $n_1 < n_2 < n_3 \cdots$ then a_{n_k} is called a subsequence of $\{a_n\}$.

- \triangleright $\{a_{2n}\}$. $\{a_{2n-1}\}$, $\{a_{n^2}\}$ are all subsequences of $\{a_n\}$.
- \blacktriangleright {2, 3, 6, ···}, {1, 3, 5, ···}, {1, 4, 9, 16, ···} are all subsequences of the sequence $\{n\}$.
- Every sequence is a subsequence of itself.

PES UNIVERSITY ONLINE

Cauchy Sequence (Statement Only)

(Cauchy Sequence)

A sequence $\{a_n\}$ is said to be a Cauchy sequence if given $\epsilon > 0$,

however small, \exists a positive integer M

(depending on the choice of ϵ)

such that $|a_p - a_q| < \epsilon \ \forall \ p, q \ge M$.

PES UNIVERSITY ONLINE

Cauchy Sequence (Statement Only)

(Cauchy Sequence)

A sequence $\{a_n\}$ is said to be a Cauchy sequence if given $\epsilon > 0$,

however small, \exists a positive integer M

(depending on the choice of ϵ)

such that $|a_p - a_q| < \epsilon \ \forall \ p, q \ge M$.

PES UNIVERSITY ONLINE

Cauchy Sequence (Statement Only)

(Cauchy Sequence)

A sequence $\{a_n\}$ is said to be a Cauchy sequence if given $\epsilon > 0$,

however small, \exists a positive integer M

(depending on the choice of ϵ)

such that $|a_p - a_q| < \epsilon \ \forall \ p, q \ge M$.

PES UNIVERSITY ONLINE

Cauchy Sequence (Statement Only)

(Cauchy Sequence)

A sequence $\{a_n\}$ is said to be a Cauchy sequence if given $\epsilon > 0$,

however small, \exists a positive integer M

(depending on the choice of ϵ)

such that $|a_p - a_q| < \epsilon \ \forall \ p, q \ge M$.

Problems .

Discuss the boundedness of the sequences whose not berm is as given:

 $1. \quad a_n = 3$

Every timite sequence is bounded Range of the sequence { an} is {3} } is a finite set. Hence Bounded.

2. $a_n = (-1)^n . 5 = 55$; n is even $(-5)^n . 5 = 55$; n is odd

Range of sequence zanz is {-5,5} its a finite set. Hence Bounded.


```
3. an = nth Prime
    a_1 = 2, a_2 = 3, a_3 = 6, ...
  Every prime > 2 + n

i, zan z is bounded below by '2'

zanz is unbounded above
  {an} is not bounded
   \begin{cases} 2^2, 2^2, 3^2, 4^2 \dots 00 \end{cases} Not bounded
       an >1 => { 2an } bounded below by '1' unbounded above
```


Prove that sequences whose nth terms are given are monotonic, find Out whether they are increasing on decreasing? Replace n by n+1 $\frac{1}{n+2}+\frac{1}{n+3}+$ $= -\frac{1}{2n(2n+1)} + n < 0 < an > = \frac{2}{2}an^{2} is$ $= -\frac{1}{2n(2n+1)} + n < 0 < an > = \frac{2}{2}an^{2} is$ $= \frac{1}{2n(2n+1)} + \frac{1}{2n(2n+1)$

Consider
$$a_n = 3n+7 = 3n+7 = 4(n+2)$$

$$a_{n+1} = \frac{3n+10}{4(n+3)}$$
 $a_{n+1} - a_n = \frac{3n+10}{4(n+3)}$

$$\left(\frac{3n+10}{4(n+3)}\right)-\left(\frac{3n+7}{4(n+2)}\right)$$

$$=\frac{-1}{4(n+3)(n+2)}<0$$

$$a_{m} = \frac{n}{n^{2}+1} = a_{n+1} = \frac{n+1}{(n+1)^{2}+1}$$
 $a_{n+1} - a_{n} = \frac{-n^{2}-n+1}{(n^{2}+1)(n^{2}+1)} < 0 + n$
 $a_{n+1} < a_{n} : \sum_{n=1}^{\infty} a_{n} \le m$ monotonic decreasing

 $a_{m} = \frac{n}{n^{2}+1} > 0 + n$
 $a_{n} > a_{n} > a$

THANK YOU

aparnabs@pes.edu

Aparna B. SDepartment of Science and Humanities