

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar

Engenharia Informática 2014/2015

Projeto de Redes – Request for Proposal

St. John's Preparatory School

Trabalho realizado por:

Dário Mendes Nº 17337

Ricardo Cruz Nº 17808

Índice

Índice		2
1. Su	mário executivo	4
1.1.	Ambito do Projecto	4
1.2.	Objectivos do Projecto	4
1.2	2.1. Locais a Abranger	4
1.2	2.2. Objectivos	5
1.2	2.3. Pressupostos e exclusões	5
2. Ca	racterização da infraestrutura	5
2.1.	Descrição dos serviços disponibilizados	5
2.2.	Identificação dos principais recursos	6
2.3.	Diagrama lógico e físico da rede	7
2.4.	Nomes e endereçamento	11
2.5.	Avaliação do estado da rede quanto à:	11
2.5	5.1. Disponibilidade	11
2.5	5.2. Utilização	12
2.5	5.3. Capacidade (portas, largura de banda)	12
3. De	finição de requisitos	13
3.1.	Caracterização Geral	13
3.2.	Caracterização Específica	14
3.3.	Expansibilidade e Condicionantes	15
4. Ar	quitectura da solução	16
4.1.	Estrutura da organização	16
		18
4.2.	Redes Locais	25
4.3.	Critérios de Gestão de Redes e Serviços	26
5. Dir	mensionamento e planeamento	26
5.1.	Redes Locais	26
5.2.	Rede de Comunicações	28
6. Pro	ojecto e Pré-Selecção de Soluções	28
6.1.	Especificações de Componentes da Infra-estrutura de Redes Locais	28

1. Sumário executivo

1.1.Ambito do Projecto

Este projeto tem como objetivo a remodelação da estrutura da rede da Escola St. John's Preparatory School. O desenvolvimento desta remodelação será efetuado tendo em conta os requisitos pedidos no enunciado. Sempre que possível serão reaproveitados equipamentos já presentes na rede atual da escola de modo a minimizar custos. No entanto também serão migrados/adicionados equipamentos que se averiguem necessários ao bom funcionamento da Rede.

1.2. Objectivos do Projecto

1.2.1.Locais a Abranger

Como já foi referido anteriormente este projeto baseia-se na remodelação de uma Rede pertencente a uma escola. Como tal, vários edifícios serão abrangidos sendo que alguns edifícios possuirão mais do que um piso. Na tabela seguinte estão explícitos os Edifícios e respetivos Pisos a abranger neste projeto.

	Edifícios	Pisos
	Studzinski Library	Studzinski Library MDF (Network Core)
		Bookstore IDF
	Br. Benjamin Hall	2nd Floor IDF
	•	Phone Closet
	Alumni Hall	Kaneb Auditorium IDF
	Ryken Hall	Ryken IDF
	Maintenece Barn	Maintenence IDF
	Xavier Hall	Xavier Basement IDF
	Advier Hair	Xavier 3rd Floor IDF
		Basement IDF
	Admin Building	2nd Floor IDF
		3rd Floor IDF
	Memorial Cafeteria	Cafeteria IDF
	Memorial Gymnasium	Gymnasium IDF
	Griffin Hall	Griffin IDF
Total	10	15

Tabela 1 - Locais a abranger

1.2.2.Objectivos

Na realização deste projeto tem-se como objetivos a remodelação da rede da Escola St. John's Preparatory School de modo a torna-la mais robusta e cumprir todos os requisitos propostos. Como tal optar-se-á pela estruturação da rede numa hierarquia de camadas (Acesso, Distribuição e Core) sendo que cada camada desempenhará a sua função específica. Consequentemente à implementação desta hierarquia, a rede irá beneficiar de aumentos quanto à escalabilidade, redundância, facilidade de gestão, segurança e desempenho dos equipamentos e da própria rede em si.

1.2.3.Pressupostos e exclusões

Parte-se do princípio de que a rede remodelada deverá utilizar apenas a cabelagem existente, entre Edifícios, tendo em conta que em cada ligação Edificio-Edificio existem pelo menos três pares de fibra. No entanto, dentro dos Edifícios podem ser adicionados mais cabos e equipamentos consoante as necessidades deste projeto.

2. Caracterização da infraestrutura

2.1. Descrição dos serviços disponibilizados

A rede atual encontra-se a suportar os seguintes serviços

- VOIP
- iSCSI
- DHCP
- RTP
- RDP
- Redes Wireless
- Sistema de Controlo de Portas
- Sistema de Controlo do HVAC (Heat Ventilating and Air Conditioning)
- Sistema de Controlo de Alarmes
- Sistema de Controlo de Luzes
- Sistema de Pagamento por Cartões de Crédito
- ESX (VMWare)
- MPIO (Microsoft Multipath I/O)

2.2.Identificação dos principais recursos

Edifícios	Pisos	Equipamentos	Quantidade
Studzinski Library	Studzinski MDF	HP ProCurve 5308xl	2
,		HP ProCurve 2650	4
		HP Procurve 1810G	2
		Wired network jack	Aprox. 400
Br. Benjamin Hall	Bookstore IDF	HP ProCurve 2650	1
		Wired network jack	46
	2nd Floor IDF	HP ProCurve 5308xl	1
		HP ProCurve 5304xl	1
		HP ProCurve 2610-PoE	1
		Fiber patch box	1
		Wired network jacks	Aprox. 300
	Phone Closet	HP ProCurve 2524	1
		Wired network jacks	Aprox. 8
Alumni Hall	Kaneb Auditorium IDF	HP ProCurve 2524	1
		Network jack	Aprox. 5
Ryken Hall	Ryken IDF	HP ProCurve 2610-PoE	1
		HP ProCurve 2524	1
		Network jack	Aprox. 30
Maintenance Barn	Maintenance IDF	HP ProCurve 2524	1
		Network jack	2
Xavier Hall	Basement IDF 3rd Floor IDF	HP ProCurve 5308xl	1
		HP ProCurve 2650	4
		HP ProCurve 2626-PoE	1
		HP ProCurve 2620G-PoE	1
		Network jack	Aprox. 250
		HP ProCurve 5308xl	1
		ProCurve 2650	6
		HP ProCurve 2626-PoE	1
		HP ProCurve 2610-PoE	1
		Network jack	30
Admin Building	Basement IDF	HP ProCurve 5304xl	1
		Network jack	Aprox. 30
	2nd Floor IDF	HP ProCurve 2524	1
		Network jack	Aprox. 30
	3rd Floor IDF	HP ProCurve 2524	1
		Network jack	Aprox. 30
Memorial Cafeteria	Cafeteria IDF	HP ProCurve 2650	1
NA		Network jack	Aprox. 40
Memorial Gymnasium	Gymnasium IDF	HP ProCurve 2524	1
		NetGear FS726TP PoE	1
C.:W. H. II	Cuitti IDE	Network jack	Aprox. 30
Griffin Hall	Griffin IDF	HP ProCurve 2524	1
	Tahela 2 – Recursos exi	Network jack	Aprox. 5

Tabela 2 – Recursos existentes na rede atual.

2.3. Diagrama lógico e físico da rede

Figura 1 - Diagrama Lógico da Rede Atual

Figura 2 - Diagrama Fisico da Rede - Geral

Figura 3 – Diagrama Físico da Rede – Studzinski Library

Figura 4 – Diagrama Físico da Rede – Br. Benjamin Hall

Figura 6 – Diagrama Físico da Rede – Alumni Hall

Figura 5 - Diagrama Físico da Rede - Ryken Hall

Figura 7 – Diagrama Fisico da Rede – Maintenance Barn

Figura 8 - Diagrama Físico da Rede - Xavier Hall

Figura 10 - Diagrama Físico da Rede - Admin Building

Figura 9 - Diagrama da Físico da Rede - Cafeteria

Figura 11 – Diagrama Físico da Rede – Gymnasium

Figura 12 – Diagrama Físico da Rede – Griffin

2.4. Nomes e endereçamento

De momento existem 11 VLANs configuradas na rede. Os grupos das VLAN são baseados nos serviços e classes das máquinas.

VLAN Nº	Nome	Descrição	Prefixo	Default Gateway
VLAN 1	Core Network	Para switches, servidores, e outros dispositivos que necessitam de acesso não filtrado à rede (card swipes, 11ainéis de alarmes, etc).	10.0.0.0 /23	10.0.0.1
VLAN 2	Admin Network	As únicas máquinas ligadas a esta VLAN são as que estão nos edifícios Admin e Admissions Office in Benjamin Hall.	10.1.1.0 /24	10.1.1.1
VLAN 3	Secure Wireless	Para todos os clientes wireless da rede segura de Wifi.	10.6.0.0 /16	10.6.0.1
VLAN 4	Academic Network	Trata-se da maior rede no campus. Quase todas as estações de trabalho se encontram nesta VLAN.	10.3.0.0 /16	10.3.0.1
VLAN 5	Core Wireless	Onde se encontra o controlador wireless Bluesocket e todos os access points. Esta rede não possui dispositivos de utilizadores.	10.4.0.0 /16	10.0.0.42
VLAN 6	Guest Wireless	Esta VLAN serve para todos os clientes ligados à rede wireless Guest.	10.5.0.0 /24	10.5.0.42
VLAN 7	Phone VLAN	Rede para o tráfego VoIP.	10.7.0.0 /24	10.7.0.1
VLAN 8	Video VLAN	Rede para o tráfego de vídeo vigilância.	10.8.0.0 /24	10.8.0.1
VLAN 12	iscsi vlan	VLAN primária do iSCSI.	10.11.1.0 /24	10.11.1.1
VLAN 13	2nd iSCSI VLAN	VLAN secundária do iSCSI.	10.11.2.0 /24	N/A

Tabela 3 – VLANs existentes na rede

2.5. Avaliação do estado da rede quanto à:

2.5.1.Disponibilidade

Esta rede não possui redundância apesar de ter preparação para tal. Sendo assim, na eventualidade de existir alguma falha nalgum aparelho ou cabo, poderão surgir problemas de conectividade entre dispositivos. O que perturba o bom funcionamento da rede.

2.5.2.Utilização

A rede wireless suporta até 250 clientes wireless.

Na rede com fios encontram-se os seguintes dispositivos clientes:

- Aproximadamente 350 Workstations;
- Aproximadamente 200 Portáteis eventualmente ligados por cabo;
- Aproximadamente 75 telefones VoIP;
- 15 Câmaras;
- 10 Portas eletrónicas (uma em cada edifício);
- 10 Controladores HVAC (um em cada edifício);
- 10 ou mais Alarmes (um ou mais por edifício);

2.5.3. Capacidade (portas, largura de banda)

Número de portas:

Número de Jacks
400
354
5
30
2
280
90
40
30
5
250
1486

Tabela 4 – Capacidade da rede, numero total de portas.

A largura de banda da rede suporta:

- Ligações de 1Gbps:
 - o entre cada IDF (fibra);
 - para servidores (cobre);
- Ligações de 100Mbps (cobre):
 - o para outros switches MDF;
 - o para dispositivos finais;

3. Definição de requisitos

3.1. Caracterização Geral

3.1.1. Requisitos Impostos

- Redundância no core;
- Ligações redundantes entre cada edifício;
- Aumento da largura de banda no core (>1GigE);
- Aumento da largura de banda nos dispositivos finais (1GigE);
- Suporte de iSCSI entre edifícios, de maneira a separar fisicamente o servidor de backup do servidor principal;
- Utilização de controlos de QoS para permitir a expansão de capacidades VoIP;
- Suporte de streaming e distribuição de vídeo pela LAN;
- Regras mais rigorosas no acesso inter-VLAN;
- Apresentação de um AUP (acceptable uses policy);
- Apenas serão consideradas redes organizadas em: core, distribuição e acesso;
- Apresentar o dimensionamento das componentes activas e passivas.
- É obrigatório o uso de VLANs. Para além da VLAN de gestão, nenhuma das outras deve estar presente em mais do que 50 % dos switches de acesso;
- Uso de redundância ao nível da camada física entre os equipamentos activos (routers, switches, firewalls).
- Existência de uma rede gestão que permita aos gestores dessa rede (e a apenas esses) gerir remotamente os equipamentos activos da rede.

3.1.2. Serviços de comunicação de Dados

Ao recolher e efetuar a análise dos requisitos impostos. Conclui-se que é necessário aumentar a largura de banda para 1Gbps para cada endpoint, bem como a largura de banda do core, superior a 1Gbps. A rede wireless terá apenas suporte ao standard 802.11n de maneira a fornecer a maior largura de banda possível aos dispositivos wireless.

3.2. Caracterização Específica

3.2.1. Aspectos de Segurança

Medidas que proporcionam o aumento da segurança:

- Uso de VLANs;
- Implementação de firewalls, de maneira a reduzir o risco de ataque a partir do tráfego exterior;
- Uso de autenticação de utilizadores;
- Uso dos mecanismos de segurança na camada de acesso:
 - Port Security;
 - o DHCP Snooping;
 - o IP Source Guard;
 - o Dynamic ARP Inspection;
 - ARP Rate Limiting Control;
 - Storm Control;
 - Spanning Tree BPDU Filter and Guard;
- Ter em conta a e posicionamento e protecção, a nível físico, dos dispositivos da rede.

3.2.2. Aspectos de Gestão e Manutenção

De maneira possibilitar a gestão, cada um dos equipamentos deve possuir uma VLAN com acesso permitido apenas a gestores da rede. Será utilizado o SNMP em todas as camadas hierárquicas para facilitar o monitoramento e gerenciamento da rede.

3.2.3. Aspectos de Disponibilidade

- Aumento da largura de banda para os dispositivos nos endpoints
- Aumento da largura de banda no Core (>1 GigE);
- Estabelecer redundância na camada Core;
- Estabelecer redundância entre os edifícios;

3.3. Expansibilidade e Condicionantes

3.3.1. Perspectivas de Evolução

Derivado do crescente número de dispositivos conectados à rede da escola, cada vez mais as suas operações dependem de uma rede funcional.

Portanto nos próximos 24 meses pretende-se:

- Remover cerca 200 workstations da LAN, mantendo cerca de 150;
- Adicionar 1400 clientes wireless;
- Aumentar o número de vídeo câmeras IP, de maneira a melhorar a cobertura de videovigilância;
- Transitar para uma WLAN 802.11n, com o intuito de fornecer a maior largura de banda possível para os dispositivos sem fio;
- Aumentar o número de access points do tipo 802.11n para cerca de 100.
- Efetuar a divisão de servidores e aparelhos entre os edifícios Studzinski MDF e Xavier IDF de maneira a proporcionar redundância e protecção.

Entre os 24 meses e os 36 pretende-se migrar do IPv4 para uma rede interna IPv6.

3.3.2. Condicionantes e Riscos

Ao efetuar a transição para uma rede que utiliza o apenas o standard WLAN 802.11n, podem surgir problemas. Pois os dispositivos compatíveis com a norma n podem não detectar a presença dos dispositivos com a norma a/b/g.

4. Arquitectura da solução

4.1. Estrutura da organização

4.1.1. Modelo Funcional

Edifícios	Pisos	Serviços
Studzinski Library	Studzinski Library MDF (Network Core)	Dados, Voz, Servers, HVAC, Gestão, Portas, Luzes, Wifi, Alarme, Video
	Bookstore IDF	Dados, Wifi, Portas, Luzes, HVAC, Alarme , Video
Br. Benjamin Hall	2nd Floor IDF	Dados, Voz, Wifi, HVAC, Luzes, Alarme, Video
	Phone Closet	Dados, Voz, Wifi, HVAC, Luzes, Video
Alumni Hall	Kaneb Auditorium IDF	Dados, Wifi, HVAC, Luzes, Alarme, Portas, Video
Ryken Hall	Ryken IDF	Dados, Voz, Wifi, Luzes, HVAC, Alarme, Portas, Video
Maintenece Barn	Maintenence IDF	Dados, Wifi, Gestão, Luzes HVAC, Alarme, Portas, Video
Varior Hall	Xavier Basement IDF	Dados, Voz, Wifi, Gestão, Luzes, Alarme, Portas, Video
Xavier Hall	Xavier 3rd Floor IDF	Dados, Voz, Wifi, HVAC, Luzes, Alarme, Video
	Basement IDF	Dados, Wifi, Portas, Video
Admin Building	2nd Floor IDF	Dados, Wifi, Video, Alarme, HVAC
	3rd Floor IDF	Dados, Wifi, Video, Alarme, HVAC
Memorial Cafeteria	Cafeteria IDF	Dados, Wifi, Video, Alarme, HVAC, Luzes, Portas
Memorial Gymnasium	Gymnasium IDF	Dados, Wifi, Video, Alarme, Portas
Griffin Hall	Griffin IDF	Dados, Wifi, Video, Alarme, Portas

Tabela 5 - Tabela de Serviços Disponibilizados.

4.1.2. Aplicações e suas necessidades

	Necessidades			
Aplicações	Largura de Banda	Delay	Jitter	Perda de Pacotes
VoIP	87.2 Kbps	< 150ms	< 5ms	< 1%
iSCSI	1 Gbps	< 800ms	N/A	N/A
DHCP	N/A	< 1000ms	N/A	N/A
RTP	Depende da Resolução	< 150ms	< 5ms	< 1%
RDP	110 Kbps	< 300ms	< 10ms	< 1%
SNMP	N/A	< 1000ms	N/A	N/A
Sistema de Controlo de Portas	N/A	< 3000ms	N/A	N/A
Sistema de Controlo de HVAC	N/A	< 3000ms	N/A	N/A
Sistema de Controlo de Alarmes		< 1000ms	N/A	N/A
Sistema de Controlo de Luzes		< 500ms	N/A	N/A
Sistema de Pagamento por Cartões de Crédito	N/A	N/A	N/A	N/A

Tabela 6 - Tabela Aplicações e suas Necessidades.

4.1.3. Caracterização de Fluxos e tráfego na organização

A tabela seguinte classifica os diversos serviços quanto à sua arquitetura (Servidor – Cliente, Cliente - Servidor), ao seu fluxo (Interior – Exterior, Exterior - Interior) e ao seu Quality of Service (Gold, Silver, Bronze).

Serviço	Arquitetura	Fluxo	QoS
VoIP	Cliente - Servidor	Interior - Interior	Gold
iSCSI	Cliente – Servidor	Interior – Interior	Gold
RTP	Cliente – Servidor	Interior – Interior	Gold
RDP	Servidor – Cliente	Interior/Exterior – Interior	Silver
SNMP	Cliente – Servidor	Interior – Interior	Bronze
Sistema de Controlo de HVAC	Servidor	Interior – Interior	Bronze
Sistema de Controlo de Alarmes	Servidor	Interior – Interior/Exterior	Bronze
Sistema de Controlo de Luzes	Servidor	Interior – Interior	Bronze
Sistema de Pagamento por Cartões de Crédito	Cliente – Servidor	Interior – Exterior Exterior - Interior	Silver

Tabela 7 - Tabela Caracterização de fluxos de tráfego na organização

4.1.4. Arquitectura Lógica da Rede Local

Figura 13 - Diagrama Lógico da Rede Local – Parte 1

Figura 14 - Diagrama Lógico da Rede Local – Parte 1

Studzinski Library

- Vlan 10 (Dados) 10.0.0.0 /27
- Vlan 11 (Voz) 10.0.1.0/27
- o Vlan 12 (Servidores) 10.0.2.0 /28
- Vlan 13 (Video) 10.0.3.0 /27
- Vlan 14 (Serviços) 10.0.4.0 /27
- o Vlan 15 (Wifi) 10.0.5.0 /25
- Vlan 16 (Wifi-Guest) 10.0.6.0 /26
- Vlan 99 (Gestão) 10.0.99.0 /28

Br. Benjamin Hall

- Vlan 10 (Dados) 10.1.0.0 /27
- o Vlan 11 (Voz) 10.1.1.0/27
- o Vlan 13 (Video) 10.1.3.0 /27
- Vlan 14 (Serviços) 10.1.4.0 /27
- Vlan 15 (Wifi) 10.1.5.0 /25
- Vlan 16 (Wifi-Guest) 10.1.6.0 /26
- Vlan 99 (Gestão) 10.1.99.0 /28

• Maintenance Barn

- Vlan 10 (Dados) 10.2.0.0 /27
- o Vlan 13 (Video) 10.2.3.0 /27
- Vlan 14 (Serviços) 10.2.4.0 /27
- Vlan 15 (Wifi) 10.2.5.0 /25
- o Vlan 16 (Wifi-Guest) 10.2.6.0 /26
- Vlan 99 (Gestão) 10.2.99.0 /28

• Ryken Center for the Arts

- o Vlan 10 (Dados) 10.3.0.0 /27
- Vlan 11 (Voz) 10.3.1.0/27
- Vlan 13 (Video) 10.3.3.0 /27
- Vlan 14 (Serviços) 10.3.4.0 /27
- o Vlan 15 (Wifi) 10.3.5.0 /25
- Vlan 16 (Wifi-Guest) 10.3.6.0 /26
- Vlan 99 (Gestão) 10.3.99.0 /28

Alumni Hall

- Vlan 10 (Dados) 10.4.0.0 /27
- Vlan 13 (Video) 10.4.3.0 /27
- Vlan 14 (Serviços) 10.4.4.0 /27
- o Vlan 15 (Wifi) 10.4.5.0 /25
- Vlan 16 (Wifi-Guest) 10.4.6.0 /26
- Vlan 99 (Gestão) 10.4.99.0 /28

Administration Building

- Vlan 10 (Dados) 10.5.0.0 /27
- o Vlan 11 (Voz) 10.5.1.0/27
- o Vlan 13 (Video) 10.5.3.0 /27
- Vlan 14 (Serviços) 10.5.4.0 /27
- Vlan 15 (Wifi) 10.5.5.0 /25
- Vlan 16 (Wifi-Guest) 10.5.6.0 /26
- Vlan 17 (Administration) 10.5.7.0 /27
- Vlan 99 (Gestão) 10.5.99.0 /28

Xavier Hall

- Vlan 10 (Dados) 10.6.0.0 /27
- o Vlan 11 (Voz) 10.6.1.0/27
- o Vlan 12 (Servidores) 10.6.2.0 /28
- o Vlan 13 (Video) 10.6.3.0 /27
- Vlan 14 (Serviços) 10.6.4.0 /27
- o Vlan 15 (Wifi) 10.6.5.0 /25
- o Vlan 16 (Wifi-Guest) 10.6.6.0 /26
- o Vlan 99 (Gestão) 10.6.99.0 /28

• Memorial Cafeteria

- Vlan 10 (Dados) 10.7.0.0 /27
- Vlan 13 (Video) 10.7.3.0 /27
- Vlan 14 (Serviços) 10.7.4.0 /27
- Vlan 15 (Wifi) 10.7.5.0 /25
- Vlan 16 (Wifi-Guest) 10.7.6.0 /26
- Vlan 99 (Gestão) 10.7.99.0 /28

• Memorial Gymnasium

- Vlan 10 (Dados) 10.8.0.0 /27
- Vlan 13 (Video) 10.8.3.0 /27
- Vlan 14 (Serviços) 10.8.4.0 /27
- Vlan 15 (Wifi) 10.8.5.0 /25
- Vlan 16 (Wifi-Guest) 10.8.6.0 /26
- Vlan 99 (Gestão) 10.8.99.0 /28

Griffin Hall

- Vlan 10 (Dados) 10.9.0.0 /27
- Vlan 13 (Video) 10.9.3.0 /27
- Vlan 14 (Serviços) 10.9.4.0 /27
- o Vlan 15 (Wifi) 10.9.5.0 /25
- Vlan 16 (Wifi-Guest) 10.9.6.0 /26
- Vlan 99 (Gestão) 10.9.99.0 /28

4.1.5. Arquitectura Fisica da Rede Local

4.1.6. Arquitectura de Segurança

Serão instaladas duas Firewalls. Uma na ligação entre o Core e os Servidores e outra na ligação entre o Core e a Distribuição.

Figura 16 - Arquitetura de Segurança (Core-Servers-Campus)

Ipt Instituto Politécnico

Projeto de Redes – Trabalho Prático Nº1

4.1.7. Arquitecturas Protocolares nas Redes Locais

Protocolos e mecanismos implementados nas diversas camadas:

Camada Core

- OSPF Protocolo de routing baseado no algoritmo Shortest Path First.
- iSCSI é um protocolo de transporte que transporta comandos SCSI entre um computador anfitrião e um dispositivo de destino.
- SNMP gestão de dispositivos.

Camada Distribuição

- OSPF (descrição já explicita).
- MSTP atribui uma spanning tree para cada grupo VLAN, e bloqueia todos os caminhos possíveis dentro da spanning tree, à exceção de um.
- LACP agrega várias conexões em paralelo, porporcionando redundância e aumentando o throughput.
- S HSRP protocolo de redundância para o estabelecimento de um gateway padrão tolerante a falhas.
- VLAN's dividem uma rede local (física) em mais de uma rede (virtual), criando domínios de broadcast separados.
- SNMP (descrição já explicita).
- DHCP configuração dinâmica de terminais.

• Camada de Acesso

- MSTP (descrição já explicita).
- LACP (descrição já explicita).
- DHCP (descrição já explicita).
- Port Security este mecanismo limita o número de dispositivos que podem aceder a uma só porta.
- O DHCP Snooping garante a integridade IP num *switch Layer* 2. Faz com que hosts só possam utilizar os endereços IP que lhes estão associados e apenas servidores DHCP autorizados podem ser acedidos.
- IPSource Guard permite bloquear o tráfego de rede indesejado a partir de endereços IP que não foram atribuídos pelo servidor DHCP confiável.
- O Dynamic ARP Inspection verifica protocolo de endereço (ARP) assegurando que apenas os *request* e *response* válidos sejam transmitidos. Este mecanismo previne ARP *spoofing attacks*.
- ARP Rate limiting Limita os pacotes ARP que podem ser transmitidos por porta.
- Storm Control torna a rede mais robusta quando o número de pacotes de broadcast, multicast ou unicast criam excesso de tráfego numa determinada porta.
- Spanning Tree BPDU Filter and Guard As portas de acesso n\u00e3o recebem nem enviam BPDU's (Bridge Protocol Data Unit).
- VLAN's (descrição já explicita).
- SNMP (descrição já explicita).

4.1.8. Princípios orientadores na concretização da LAN

4.1.8.1. Cablagem dos locais

Neste aspeto este projeto respeitará a cablagem previamente existente na rede do Campus sendo que:

- Intraedifícios;
 - o Serão utilizados cabos de Cobre categoria 5 e 5e;
- Interedifícios;
 - Serão utilizados cabos de fibra ótica multimodo de 62.5 micron;

4.1.8.2. Tecnologias de Comunicação

Serão utilizadas as seguintes tecnologias de comunicação

- **Ethernet** Meio físico para permitir a comunicação de vários dispositivos quer seja com o meio interior ou exterior
- **Wi-fi** Meio Wireless para permitir a comunicação de vários dispositivos tanto no meio interior como no exterior
- **VOIP** Tecnologia de Comunicação que permite que um ou mais utilizadores comuniquem entre si através de voz, pela rede

4.1.8.3. Equipamentos

Equipamento	Quantidade por Camada			Quantidade
Equipamento	Core	Distribuição	Acesso	Total
Fiber Patch Box	2	0	0	1
Switches	4	13	31	48
Access Points	0	0	100	100
IP Phones	0	0	75	75
Firewall	3	0	0	3
Wireless Controllers	2	0	0	3

Tabela 8 - Equipamentos

4.2. Redes Locais

4.2.1. Core

O core da rede encontra-se subdividido entre os três edifícios principais, Studzinski Library, Xavier Hall e Br. Benjamin Hall. Esta camada apresenta um mecanismo de filtração de fluxos através de uma firewall presente entre o Core e o Exterior. Seguidamente apresentamos uma tabela com a composição da camada core em cada um dos edifícios.

Edifícios	Equipamento	Quantidade
Studzinski Library		2
Xavier Hall	Cisco Catalyst 3850	1
Br. Benjamin Hall		1

Tabela 9 - Equipamento do Core

4.2.2. Redes do Centro de Dados

Esta rede é composta por todos os servidores do Campus sejam eles de que tipo forem e está ligada diretamente a uma firwall que por sua vez está ligada ao Core de modo a filtrar possíveis Acessos indesejados aos servidores.

4.2.3. Redes de distribuição

Esta Camada funciona como a interface entre a Camada de Acesso e Core. Aqui são implementados mecanismos de seguranças, tanto de Layer 2 (LACP e MSTP) como de Layer 3 (OSPF e HSRP). É também nesta camada que se gere o fluxo de dados e se distribui o mesmo para os seus respetivos destinos. Nos edifícios que não possuem necessidade de PoE os Endpoints apresentam-se diretamente ligados aos Switches desta camada.

4.2.4. Redes de acesso

Na Camada e Rede de Acesso é onde se encontram todos os Endpoints e onde se implementam mecanismos de segurança Layer 2 de modo a que não seja permitido trafego a hosts ilegítimos.

4.3. Critérios de Gestão de Redes e Serviços

Para um bom funcionamento da rede, deve-se ter em conta vários aspetos como:

- Facilidade de gestão;
- Gestão de Falhas;
- Gestão de Desempenho;
- Garantia de Qualidade de serviço;
- Garantia de Segurança na gestão;

5. Dimensionamento e planeamento

5.1. Redes Locais

5.1.1. Plano de Endereçamento e Virtualização

5.1.1.1. Plano de Endereçamento das Redes Locais

Identificação de Edifícios

Na seguinte tabela encontram-se expostos os Edifícios presentes na Rede e seus respetivos ID's

ID	Edifício		
0	Studzinski Library		
1	Br. Benjamin Hall		
2	Maintenance Barn		
3	Ryken Center for the Arts		
4	Alumni Hall		
5	Administration Building		
6	Xavier Hall		
7	Memorial Gymnasium		
8	Memorial Cafeteria		
9	Griffin Hall		

Tabela 10 - identificação de edifícios

As ligações lógicas dos edifícios serão implementadas de acordo com a seguinte tabela:

Edifício A	Edificio B	VLAN	Prefixo Rede
0	1	100	10.255.255.0/30
0	2	101	10.255.255.4/30
0	3	200	10.255.255.8/30
0	5	300	10.255.255.12/30
0	6	400	10.255.255.16
0	7	401	10.255.255.20/30
1	2	102	10.255.255.24/30
1	3	103	10.255.255.28/30
1	4	104	10.255.255.32/30
2	5	301	10.255.255.36/30
3	4	105	10.255.255.40/30
6	7	403	10.255.255.44/30
6	8	402	10.255.255.48/30
6	9	404	10.255.255.52/30
7	9	406	10.255.255.56/30
8	9	405	10.255.255.60/30

Tabela 11 - Ligações lógicas de cada edifício

VLAN	Utilização	Prefixo da Rede (X = Id edifício)	Edifícios
10	Dados	10.X.0.0/27	Todos
11	Voz	10.X.1.0/27	0, 1, 3, 5, 6
12	Servidores	10.X.2.0/28	0, 6
13	Vídeo	10.X.3.0/27	Todos
14	Serviços	10.X.4.0/27	Todos
15	Wifi	10.X.5.0/25	Todos
16	Wifi-Guest	10.X.6.0/26	Todos
17	Administration	10.X.7.0/27	7
99	Gestão	10.X.99.0/28	Todos

Tabela 12 - localização de serviços

5.2. Rede de Comunicações

5.2.1. Disponibilidade, Desempenho e Disaster Recovery

A topologia proposta possui redundância em cada ponto da rede, pois entre cada edifício existem pelo menos duas ligações. A rede possui vários caminhos para o mesmo destino.

Para o disaster recovery ambos os servidores master e backup estão em sincronia. Na eventualidade de ocorrer alguma falha, o servidor de backup atua como master.

6. Projecto e Pré-Selecção de Soluções

6.1. Especificações de Componentes da Infra-estrutura de Redes Locais

6.1.1. Equipamento Passivo

Tipos de cabos utilizados:

- UTP Cat5 com 100MHz de largura de banda;
- UTP Cat5e com 100MHz de largura de banda;
- Fibra multimodo 62.5 micron 10Gbps;

6.1.2. Equipamento Activo

Tipo	Marca	Modelo	Nº de Portas
Switch	Cisco	Catalyst 3580	48
Switch	Cisco	Catalyst 2960-X	48
Access Point	Cisco	Aironet 3700	N/A
Firewall	Cisco	ASA with FirePOWER	N/A
Wireless Controller	Cisco	8540 Wireless Controller	N/A

Tabela 13 - Equipamento activo