Machine Learning Summary

Maximilian Pfundstein 2018-12-28

Contents

1	Teri	
	1.1	Bagging
	1.2	Bias-Variance-Trade-Off
	1.3	Curse of Dimensionality
	1.4	Degrees of Freedom
	1.5	Generative vs Discriminative
	1.6	Kernel Trick
	1.7	Mean Squared Error (MSE)
	1.8	Misclassification Rate
	1.9	No Free Lunch Theorem
	1.10	Ordinary Least Squares Regression (OLS)
		Parametric and Non-Parametric Models
	1.12	Types of Learning
		1.12.1 Active Learning
		1.12.2 Reinforcement Learning
		1.12.3 Semi-supervised
		1.12.4 Supervised Learning
		1.12.5 Unsupervised Learning
	1.13	Under- and Overfitting
2	Use	ful Code Snippets 4
	2.1	Confusion Matrix and Misclassification Rate
	2.2	Custom Error Function
	2.3	Feature Plot
	2.4	Histogram
	2.5	Importing Data
		2.5.1 Splitting Data
		2.5.2 .csv
		2.5.3 .xls and .xlsx
	2.6	RMarkdown Template
		2.6.1 Header
		2.6.2 Setup
		2.6.3 Source Code as Appendix
_		
3	Mod	
	3.1	Bayesian Classification
	3.2	Boosting
		3.2.1 AdaBoost
		3.2.2 Forward Stagewise Additive Modeling
		3.2.3 Gradient Boosting
	3.3	Elastic Net
	3.4	Generalized Additive Model (GAM)
		3.4.1 Useful GAM Plots
		3.4.2 Penalty Factor, Deviance, Degress of Freedom
		3.4.3 Residuals

	3.5	Generalized Linear Model (GLM)	10
	3.6	K-Nearest Neighbour (KNN)	10
	3.7	Lasso	10
		3.7.1 Cross-Validation	11
	3.8	Least Absolute Deviation Regression	11
	3.9	Linear Regression	11
		Logistic Regression	11
		Naive Bayes	
			11
		Nearest Shrunken Centroid Classification (NSCC)	11
	3.13	Neural Networks (NN)	12
		3.13.1 Backpropagation Implementation	12
		3.13.2 Implementation	12
		3.13.3 Library	12
		3.13.4 Regularization	12
	3.14	Partial Least Squares Regression (PLS)	12
	3.15	Quadratic Discriminant Analysis	12
		Ridge Regression	12
		StepAIC (AIC)	13
		Support Vector Machines (SVM)	13
		Trees	13
	5.19	3.19.1 Optimal Tree	13
		1	
		3.19.2 Plot Deviance	14
		3.19.3 Prune a tree and print it	14
		3.19.4 Regression Tree with Deviance	14
		3.19.5 Pruned tree with residuals	14
		3.19.6 Random Forest	15
4	Feat	ture Reduction	15
	4.1	Independent Component Analysis (ICA)	1 1
	4.1		15
	4.2	Linear Discriminant Analysis (LDA)	16
		Linear Discriminant Analysis (LDA)	16
		Linear Discriminant Analysis (LDA)	16 16
	4.2	Linear Discriminant Analysis (LDA)	16 16 16
	4.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation	16 16 16 16
	4.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation	16 16 16 16 16 17
	4.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation	16 16 16 16
5	4.24.34.4	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis	16 16 16 16 16 17
5	4.2 4.3 4.4 Mis	Linear Discriminant Analysis (LDA) 4.2.1 Implementation	16 16 16 16 16 17 17
5	4.2 4.3 4.4 Mis 5.1	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis	16 16 16 16 17 17 17
5	4.2 4.3 4.4 Mis	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping	16 16 16 16 17 17 17 17
5	4.2 4.3 4.4 Mis 5.1	Linear Discriminant Analysis (LDA) 4.2.1 Implementation . 4.2.2 Library . Principal Component Analysis (PCA) 4.3.1 Trace Plots . 4.3.2 Kernel PCA . Regularized Discriminant Analysis . cellaneous Benjamin-Hochberg Algorithm . Bootstrapping . 5.2.1 Non-Parametric Bootstrap with Confidence Bands	16 16 16 16 17 17 17 17 18 18
5	4.2 4.3 4.4 Mis 5.1	Linear Discriminant Analysis (LDA) 4.2.1 Implementation . 4.2.2 Library . Principal Component Analysis (PCA) 4.3.1 Trace Plots . 4.3.2 Kernel PCA . Regularized Discriminant Analysis . cellaneous Benjamin-Hochberg Algorithm . Bootstrapping . 5.2.1 Non-Parametric Bootstrap with Confidence Bands . 5.2.2 Parametric Bootstrap with Confidence Bands .	16 16 16 16 17 17 17 17 18 18 19
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Prediction Bands	16 16 16 16 17 17 17 17 18 18 19 20
5	4.2 4.3 4.4 Mis 5.1	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation	16 16 16 16 17 17 17 17 18 18 19 20 21
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot	16 16 16 16 16 17 17 17 17 18 18 19 20 21 21
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold	16 16 16 16 16 17 17 17 17 18 18 19 20 21 21 21
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation	16 16 16 16 16 17 17 17 17 18 18 19 20 21 21 21 23
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold	166 166 166 167 177 177 187 188 199 201 211 212 233 233
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation	16 16 16 16 16 17 17 17 17 18 18 19 20 21 21 21 23
5	4.2 4.3 4.4 Mis 5.1 5.2	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation 5.3.4 Two-Fold	166 166 166 167 177 177 187 188 199 201 211 212 233 233
5	4.2 4.3 4.4 Mis 5.1 5.2 5.3	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation 5.3.4 Two-Fold EM-Algorithm	16 16 16 16 16 17 17 17 18 18 19 20 21 21 23 23 23
5	4.2 4.3 4.4 Mis- 5.1 5.2 5.3 5.4 5.5 5.6	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation 5.3.4 Two-Fold EM-Algorithm Holdout-Principle K-Means Algorithm	16 16 16 16 16 17 17 17 17 18 18 19 20 21 21 23 23 26 26
5	4.2 4.3 4.4 Mis- 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation 5.3.4 Two-Fold EM-Algorithm Holdout-Principle K-Means Algorithm Kernel Density Estimation	16 16 16 16 16 17 17 17 17 18 18 19 20 21 21 23 23 26 26 26
5	4.2 4.3 4.4 Mis- 5.1 5.2 5.3 5.4 5.5 5.6	Linear Discriminant Analysis (LDA) 4.2.1 Implementation 4.2.2 Library Principal Component Analysis (PCA) 4.3.1 Trace Plots 4.3.2 Kernel PCA Regularized Discriminant Analysis cellaneous Benjamin-Hochberg Algorithm Bootstrapping 5.2.1 Non-Parametric Bootstrap with Confidence Bands 5.2.2 Parametric Bootstrap with Confidence Bands 5.2.3 Parametric Bootstrap with Prediction Bands Cross-Validation 5.3.1 Cross Validation Plot 5.3.2 K-Fold 5.3.3 Nested Cross Validation 5.3.4 Two-Fold EM-Algorithm Holdout-Principle K-Means Algorithm	166 166 166 167 177 177 188 189 201 211 212 23 23 26 26

	5.8.2 Moving Windows Classification	2
5.9	Loss-Matrix	2
5.10	Probability Model and Log-Likelihood	28
5.11	ROC-Curve	28
	5.11.1 Calculate ROC	28
	5.11.2 Print ROC	29
5.12	Splines	29

- 1 Terms
- 1.1 Bagging
- 1.2 Bias-Variance-Trade-Off
- 1.3 Curse of Dimensionality
- 1.4 Degrees of Freedom
- 1.5 Generative vs Discriminative
- 1.6 Kernel Trick
- 1.7 Mean Squared Error (MSE)
- 1.8 Misclassification Rate
- 1.9 No Free Lunch Theorem
- 1.10 Ordinary Least Squares Regression (OLS)
- 1.11 Parametric and Non-Parametric Models
- 1.12 Types of Learning
- 1.12.1 Active Learning
- 1.12.2 Reinforcement Learning
- 1.12.3 Semi-supervised
- 1.12.4 Supervised Learning
- 1.12.5 Unsupervised Learning
- 1.13 Under- and Overfitting

2 Useful Code Snippets

2.1 Confusion Matrix and Misclassification Rate

```
confusion_matrix_train = as.matrix(table(spambase_predict_train, train$Spam))
error_rate =
    1 - sum(diag(confusion_matrix_train)/sum(confusion_matrix_train))
print(error_rate)
```

2.2 Custom Error Function

Gam and Tree

2.3 Feature Plot

```
ggplot(statedata, aes(x = MET, y = EX)) + geom_point() + geom_smooth()
ggplot(adb_errors) +
 geom_line(aes(x = n, y = error_rate_training,
                colour = "AdaBoost Training"), linetype = "dashed") +
  geom_point(aes(x = n, y = error_rate_training), colour = "orange") +
  geom_line(aes(x = n, y = error_rate_validation,
                colour = "AdaBoost Validation")) +
  geom_point(aes(x = n, y = error_rate_validation), colour = "red") +
  geom_line(aes(x = n, y = error_rate_training,
               colour = "Random Forest Training"),
            data = rf_errors, linetype = "dashed") +
  geom_point(aes(x = n, y = error_rate_training),
             colour = "blue", data = rf_errors) +
  geom_line(aes(x = n, y = error_rate_validation,
               colour = "Random Forest Validation"), data = rf_errors) +
  geom_point(aes(x = n, y = error_rate_validation),
            colour = "steelblue2", data = rf_errors) +
  labs(title = "Random Forest and AdaBoost", y = "Error Rate",
      x = "Number of Forests", color = "Legend") +
  scale_color_manual(values = c("orange", "red", "blue", "steelblue2"))
```

2.4 Histogram

2.5 Importing Data

2.5.1 Splitting Data

```
data(spam)
n = dim(spam)[1]
set.seed(12345)
id = sample(1:n, floor(n*0.4))
train_spam = spam[id,]
id1 = setdiff(1:n, id)
set.seed(12345)
id2 = sample(id1, floor(n*0.3))
val_spam = spam[id2,]
```

```
id3 = setdiff(id1,id2)
test_spam = spam[id3,]
```

2.5.2 .csv

```
emails = read.csv2("data.csv", fileEncoding = "ISO-8859-1", sep = ";")
emails$Conference = as.factor(emails$Conference)

stations = read.csv("stations.csv", encoding = "UTF-8")
temps = read.csv("temps50k.csv", encoding = "UTF-8")
st = merge(stations, temps, by="station_number")
```

2.5.3 .xls and .xlsx

```
creditscoring = read_excel("creditscoring.xls")
creditscoring$good_bad = as.factor(creditscoring$good_bad)
```

2.6 RMarkdown Template

2.6.1 Header

```
author: "Maximilian Pfundstein"
date: "2018-12-28"
output:
   pdf_document:
    toc: true
    toc_depth: 3
    number_sections: true
html_document:
   df_print: paged
   toc_float: true
   number_sections: true
```

2.6.2 Setup

```
{r setup, include = FALSE}
knitr::opts_chunk$set(echo = FALSE, cache = TRUE, include = TRUE, eval = FALSE)
```

2.6.3 Source Code as Appendix

```
{r, ref.label=knitr::all_labels(), echo = TRUE, eval = FALSE, results = 'show'}
```

3 Models

3.1 Bayesian Classification

3.2 Boosting

3.2.1 AdaBoost

3.2.2 Forward Stagewise Additive Modeling

3.2.3 Gradient Boosting

3.3 Elastic Net

```
# Elastic Net
# Predictor Variables. The -1 removes the intercept component
x_test = as.matrix(train_emails[, -ncol(train_emails)])
x_val = as.matrix(val_emails[, -ncol(val_emails)])
# Outcome variable
y_test = train_emails$Conference
y_val = val_emails$Conference
model_elastic_net = cv.glmnet(x = x_test, y = y_test, alpha = 0.5,
                              family = "binomial")
# Support vector machine with "vanilladot" kernel.
# Vanilladot means "Linear Kernel Function"
# set scale = FALSE to prevent "variable(s) `' constant. Cannot scale data.""
model_svm = ksvm(x = x_test, y = y_test, kernel = "vanilladot", scale = FALSE)
# Predictions
pred_val_elastic = predict(model_elastic_net, newx = x_val, type = "class")
pred_val_svm = predict(model_svm, x_val, type = "response")
matrix_elastic = table(y_val, t(pred_val_elastic))
matrix_svm = table(y_val, pred_val_svm)
kable(matrix_elastic)
kable(matrix_svm)
summary(model_elastic_net)
plot(model_elastic_net)
```

3.4 Generalized Additive Model (GAM)

Somehow uses cross validation.

Probabilistic Model:

$$Model \sim \mathcal{N}(\beta_{year} * X_{Year} + S_{week} * X_{week} + \alpha, \sigma^2)$$

 $\label{local_N} $$ Model \sim \mathcal{N}(\beta + \alpha_{year} * X_{year} + S_{week} * X_{week} + \alpha_{2}) $$$

3.4.1 Useful GAM Plots

```
time = influanza$Time
observed = influanza$Mortality
predicted = gam_model$fitted.values
mortality_values = data.frame(time, observed, predicted)
ggplot(mortality_values) +
 geom_line(aes(x = time, y = observed,
                colour = "Observed Mortality")) +
  geom_line(aes(x = time, y = predicted,
                colour = "Predicted Mortality")) +
  labs(title = "Observed vs Predicted Mortality", y = "Mortality",
      x = "Time", color = "Legend") +
  scale_color_manual(values = c("blue", "orange"))
ggplot() +
  geom_line(aes(x=influanza$Week,y=influanza$Mortality,
                         colour=as.factor(influanza$Year))) +
 labs(x='Week', y='Mortality', colour='Year',
       title='Mortality by Week and by Year')
```

3.4.2 Penalty Factor, Deviance, Degress of Freedom

```
fitted_gam_with_penalties = rbind(fitted_gam_with_penalties,
        data.frame(list(penalty = penalty,
                        deviance = gam model$deviance,
                        df = sum(influence(gam model)))))
}
## Deviance VS Penalty
ggplot(fitted_gam_with_penalties) +
  geom_line(aes(x = fitted_gam_with_penalties$penalty,
                y = fitted_gam_with_penalties$deviance,
                colour = "Deviance/Penalty")) +
 labs(title = "Deviance VS Penalty", y = "Deviance",
       x = "Penalty", color = "Legend") +
  scale_color_manual(values = c("blue", "orange"))
## Penalty Factors vs Degrees of Freedom
ggplot(fitted_gam_with_penalties) +
  geom_line(aes(x = fitted_gam_with_penalties$deviance,
                y = fitted_gam_with_penalties$df,
                colour = "Degrees of Freedom/Deviance")) +
  labs(title = "Deviance VS Degrees of Freedom", y = "Degrees of Freedom",
       x = "Deviance/DF", color = "Legend") +
  scale color manual(values = c("blue", "orange"))
## Create Models for High and Low penalties
gam_model_low_pen = gam(formula = Mortality ~ Year + s(Week,
                  k=length(unique(influanza$Week)), sp = 0.1),
                  family = gaussian(), data = influanza, method="GCV.Cp")
gam_model_high_pen =
  gam(formula = Mortality ~ Year + s(Week, k=length(unique(influanza$Week)),
                                     sp = 20),
                  family = gaussian(), data = influanza, method="GCV.Cp")
high_low_df = data.frame()
high_low_df = rbind(high_low_df,
                    list(mortality = influanza$Mortality,
                          mortality low = fitted(gam model low pen),
                          mortality high = fitted(gam model high pen),
                          date = influanza$Time))
ggplot(high_low_df) +
  geom_line(aes(x = date, y = mortality, colour = "Mortality")) +
  geom_line(aes(x = date, y = mortality_low, colour = "Mortality (Low: 0.1)")) +
  geom_line(aes(x = date, y = mortality_high, colour = "Mortality (High: 20)")) +
  labs(title = "Mortalities vs Time", y = "Mortality",
       x = "Time", color = "Legend") +
  scale_color_manual(values = c("blue", "orange", "violet"))
## Observed vs Predicted Mortality
ggplot(mortality_values) +
  geom_line(aes(x = time, y = observed,
                colour = "Observed Mortality")) +
  geom_line(aes(x = time, y = predicted,
```

```
colour = "Predicted Mortality")) +
labs(title = "Observed vs Predicted Mortality", y = "Mortality",
    x = "Time", color = "Legend") +
scale_color_manual(values = c("blue", "orange"))
```

3.4.3 Residuals

```
gam_model$residuals
```

Family parameter mgcv

3.5 Generalized Linear Model (GLM)

- Response Poisson distributed
- Canonical Link (log) is used for regression
- probabilistic expression for the fitted model

3.6 K-Nearest Neighbour (KNN)

3.7 Lasso

Ridge Regression has the problem, that even with high $\lambda's$ the coefficients will never be zero, this would only be the case for $\lim_{\lambda\to\infty}$. This time the *Shrinkage Penalty* is

$$\lambda \sum_{j} |\beta_{j}|$$

Due to the fact that high $\lambda's$ can set the coefficients to zero, LASSO perform a *Variable Selection*. This is what can bee seen in the plot, with increasing $\ln(\lambda)$ more and more variables are set to 0.

3.7.1 Cross-Validation

3.8 Least Absolute Deviation Regression

3.9 Linear Regression

```
model = lm(formula = c_formula, data = tecator_data)
```

3.10 Logistic Regression

- Equation of decision boundary
- Plot classified data and decision boundary
- GLM
- Custom Classification

3.11 Naive Bayes

```
naiveBayesModel = naiveBayes(good_bad ~ ., data = train)
```

3.12 Nearest Shrunken Centroid Classification (NSCC)

```
# 10 Most contributing features
kable(colnames(emails)[as.numeric(genes[1:10, 1])])
# Confusion Matrix
rownames(val_emails) = 1:nrow(val_emails)
x_val = t(val_emails[,-ncol(val_emails)])
y_val = val_emails[[ncol(val_emails)]]
\#mydata\ val = list(x=x\ val\ , y=as.factor(y\ val),
# geneid = as.character(1:nrow(x val)),
               genenames = rownames(x_val))
pred_train = pamr.predict(nsc_model, newx = x_train, threshold = 2.5)
pred_val = pamr.predict(nsc_model, newx = x_val, threshold = 2.5)
matrix_train = table(train_emails$Conference, pred_train)
matrix_val = table(val_emails$Conference, pred_val)
kable(matrix_train)
kable(matrix_val)
error_train_nsc = 1 - sum(diag(matrix_train)/sum(matrix_train))
error_val_scn = 1 - sum(diag(matrix_val)/sum(matrix_val))
print(paste("Error Train:", error_train_nsc))
print(paste("Error Validation:", error_val_scn))
```

3.13 Neural Networks (NN)

Limitations and Types

3.13.1 Backpropagation Implementation

3.13.2 Implementation

Naive Bayes that uses nonparametric density estimation method Hint: density() function does not have predict() function but it evaluates predictions on a given grid. To make prediction for a vector of new values, you may call density() several times and specify one prediction point at a time, i.e. interval [a,b]=[x(i),x(i)].

- **3.13.3** Library
- 3.13.4 Regularization
- 3.14 Partial Least Squares Regression (PLS)
- 3.15 Quadratic Discriminant Analysis

3.16 Ridge Regression

 λ , also called the *Shrinkage Parameter*, penalizes the coefficients to decrease the number of coefficients to prevent overfitting. This is due to the fact that the *Shrinkage Penalty*

```
\lambda \sum_{i} \beta_{j}^{2}
```

is added to the term of calculating the estimates $\hat{\beta}^R$. If $\lambda = 0$ we're back to least squares estimates.

3.17 StepAIC (AIC)

```
model = lm(formula = c_formula, data = tecator_data)
model.stepAIC = stepAIC(model, direction = c("both"), trace = FALSE)
summary(model.stepAIC)
```

3.18 Support Vector Machines (SVM)

```
# Our three models depending on
model_svm_05 =
   ksvm(type ~ ., train_spam, kernel = "rbfdot",
        kpar = list(sigma = 0.05), C = 0.5)

model_svm_05_prediction = predict(model_svm_05, newdata = val_spam)

cm_svm_05 = table(val_spam$type, model_svm_05_prediction)

error_svm_05 = 1 - sum(diag(cm_svm_05)/sum(cm_svm_05))
```

3.19 Trees

```
decisionTree_deviance = tree(good_bad ~ ., data = train, split = "deviance")
decisionTree_gini = tree(good_bad ~ ., data = train, split = "gini")

prediction_deviance_train =
    predict(decisionTree_deviance, newdata = train, type = "class")

prediction_deviance_test =
    predict(decisionTree_deviance, newdata = test, type = "class")

summary(decisionTree_deviance)
summary(decisionTree_gini)
```

3.19.1 Optimal Tree

```
trainScore = rep(0, 15)
testScore = rep(0, 15)

for(i in 2:15) {
    prunedTree = prune.tree(decisionTree_deviance, best = i)
    pred = predict(prunedTree, newdata = valid, type = "tree")
    trainScore[i] = deviance(prunedTree)
    testScore[i] = deviance(pred)
}

## Add one as we trim the first index
optimalTreeIdx = which.min(testScore[-1]) + 1
optimalTreeScore = min(testScore[-1])

print(optimalTreeIdx)
print(optimalTreeScore)
```

3.19.2 Plot Deviance

```
plot(2:15, trainScore[2:15], type = "b", col = "orange", ylim = c(250,650),
    main = "Tree Depth vs Training/Test Score", ylab = "Deviance",
    xlab = "Number of Leaves")
points(2:15, testScore[2:15], type = "b", col = "blue")
legend("topright", legend = c("Train (orange)", "Test (blue)"))
```

3.19.3 Prune a tree and print it

```
optimalTree = prune.tree(decisionTree_deviance, best = optimalTreeIdx)
plot(optimalTree)
text(optimalTree, pretty = 1)
title("Optimal Tree")
```

3.19.4 Regression Tree with Deviance

3.19.5 Pruned tree with residuals

```
# Let's create the pruned the with best set to 3 and get it's prediction
pruned_tree = prune.tree(reg_tree, best = 3)
```

```
pruned_tree_prediction = predict(pruned_tree, newdata = statedata, type = "vector")
# We create a data.frame to save our values to make it easier to plot the data
pruned_tree_plot_dataframe =
  data.frame(statedata$MET, statedata$EX, pruned_tree_prediction,
             pruned_tree_prediction-statedata$EX)
names(pruned_tree_plot_dataframe) = c("met", "orignal_ex", "predicted_ex", "residual")
# Lets first plot the pruned tree
plot(pruned tree)
text(pruned_tree, pretty = 1)
title("Optimal Tree with best = 3")
# Lets create a plot with the real and predictes values and highlight the
# residuals
ggplot(pruned_tree_plot_dataframe) +
  geom_point(aes(x = pruned_tree_plot_dataframe$met,
                 y = pruned_tree_plot_dataframe$orignal_ex),
             color = "black") +
  geom_point(aes(x = pruned_tree_plot_dataframe$met,
                 y = pruned_tree_plot_dataframe$predicted_ex),
             color = "darkblue") +
  geom_segment(mapping=aes(x=pruned_tree_plot_dataframe$met,
                           y=pruned_tree_plot_dataframe$orignal_ex,
                           xend=pruned_tree_plot_dataframe$met,
                           yend=pruned_tree_plot_dataframe$predicted_ex),
               color = "red", linetype = "dotted") +
  labs(title = "Original Data, Fitted Data and Residuals", y = "EX",
      x = "MET", color = "Legend")
```

3.19.6 Random Forest

```
c_randomForest =
    randomForest(formula = c_formula, data = train_spambase, ntree = i)
```

Decision, Blackboost, CART

4 Feature Reduction

4.1 Independent Component Analysis (ICA)

4.2 Linear Discriminant Analysis (LDA)

lda() in package mass

4.2.1 Implementation

4.2.2 Library

4.3 Principal Component Analysis (PCA)

```
# Copy to not modify the original dataset
nir_spectra_copy = nir_spectra
nir_spectra_copy$Viscosity = c()
# PCA
res = prcomp(nir_spectra_copy)
# Eigenvalues
lambda = res$sdev^2
# Proportion of variation
kable(head(sprintf("%2.3f",lambda/sum(lambda)*100)), caption = "Variance for each Feature")
# Plot
screeplot(res, main = "Variances for each Feature")
# PC1 vs PC2
ggplot(as.data.frame(res$x)) +
  geom_point(aes(x = res$x[,1],
                 y = res$x[,2]),
             color = "orange") +
    labs(title = "PC1 vs. PC2", y = "PC2",
       x = "PC1", color = "Legend")
```

4.3.1 Trace Plots

```
U = res$rotation
plot(U[,1], main = "Traceplot, PC1")
plot(U[,2], main = "Traceplot, PC2")
```

4.3.2 Kernel PCA

kpca in kernlab

4.4 Regularized Discriminant Analysis

5 Miscellaneous

5.1 Benjamin-Hochberg Algorithm

```
# Orignal Data Set: emails
# HO: Feature has effect on Conference
# Ha: Feature has no effect on Conference
# 1) Calculate p-values
# 2) Assign ranks and sort
# 3) BH Critical Value
# 4) Find critical value and select all p < score
q_value = 0.05
## 1)
feature_names = c()
p_values = c()
# For each data point calculate the p_value
for (i in 1:(ncol(emails)-1)) {
  colname = colnames(emails)[i]
  c_formula = paste(sep = "", colname, " ~ Conference")
  p_value = t.test(as.formula(c_formula), data = emails,
                   alternative="two.sided")
  feature_names = c(feature_names, colname)
  p_values = c(p_values, p_value$p.value)
## 2)
# Sorting
bh_entries = data.frame(feature_names, p_values)
bh_entries = bh_entries[order(bh_entries$p_values, decreasing = FALSE),]
rownames(bh_entries) = NULL
## 3)
# Define the function for the CV-Score
getCV_BH = function(i, m, Q) {
  return(i/m*Q)
```

5.2 Bootstrapping

5.2.1 Non-Parametric Bootstrap with Confidence Bands

```
# We take the function given from the slides and adjust to the tree
# computing bootstrap samples
f_non_p_bootstrap = function(data, ind) {
  # First take the subsample
 data1 = data[ind,]
  # Now create a tree with the same hyperparameters from that subsample
  tree_model = tree(EX ~ MET, data = data1,
                    control = tree.control(nrow(data),minsize = 8))
 tree_model_pruned = prune.tree(tree_model, best = 3)
  # Use that model to predict on the real data
 prediction = predict(tree_model_pruned, newdata = data)
 return(prediction)
# Lets create the Bootstrap (again taken from slides)
res = boot(statedata, f_non_p_bootstrap, R = 1000)
# Confidence Bands using envelope
ci_non_p_bootstrap = envelope(res)
ci_non_p_bootstrap_df = as.data.frame(t(ci_non_p_bootstrap$point))
names(ci_non_p_bootstrap_df) = c("upper_bound", "lower_bound")
pruned_tree_plot_dataframe =
 data.frame(pruned_tree_plot_dataframe, ci_non_p_bootstrap_df)
# Plot the data
ggplot(pruned_tree_plot_dataframe) +
```

5.2.2 Parametric Bootstrap with Confidence Bands

```
# Again we take the sample from the slides and adjust it to our needs
# 1) Compute value mle
# 2) Write function ran.gen that depends on data and mle and which generates
# new data
# 3) Write function statistic that depend on data which will be generated by
# ran.gen and should return the estimator
## 1)
mle = pruned_tree
## 2)
rng = function(data, mle) {
 data1 = data.frame(EX=data$EX, MET=data$MET)
 n = length(data$EX)
  #generate new Price
  # summary needed to access the residuals
 data1$EX = rnorm(n, predict(mle, newdata=data1), sd(summary(mle)$residuals))
 return(data1)
}
## 3) f_non_p_bootstrap + distribution N
f_p_bootstrap = function(data) {
  # The index is not needed any more as we don't take a sub-sample
  # Now create a tree with the same hyperparameters from that subsample
  tree_model = tree(EX ~ MET, data = data,
                    control = tree.control(nrow(data), minsize = 8))
  tree_model_pruned = prune.tree(tree_model, best = 3)
  # Use that model to predict on the real data
  prediction = predict(tree_model_pruned, newdata = data)
 return(prediction)
# Bootstrap
res2 = boot(statedata,
            statistic = f_p_bootstrap, R=1000, mle=mle,
            ran.gen=rng, sim="parametric")
```

```
# Confidence Bands using envolope
ci_p_bootstrap = envelope(res2)
ci_p_bootstrap_df = as.data.frame(t(ci_p_bootstrap$point))
names(ci p bootstrap df) = c("upper bound", "lower bound")
pruned_tree_plot_dataframe_p =
  data.frame(pruned_tree_plot_dataframe, ci_p_bootstrap_df)
# Plot the data
ggplot(pruned_tree_plot_dataframe_p) +
  geom_point(aes(x = pruned_tree_plot_dataframe_p$met,
                 y = pruned_tree_plot_dataframe_p$orignal_ex),
             color = "black") +
  geom_ribbon(aes(x = pruned_tree_plot_dataframe_p$met,
                  ymin = ci_p_bootstrap_df$lower_bound,
                  ymax = ci_p_bootstrap_df$upper_bound),
              alpha = 0.4, fill = "orange", color = "orange3") +
   labs(title = "Confidence Bands (parametric)", y = "EX",
      x = "MET", color = "Legend")
```

5.2.3 Parametric Bootstrap with Prediction Bands

```
# Prediction Bands
# from slides
f_p_bootstrap_pb = function(data) {
  # The index is not needed any more as we don't take a sub-sample
  # Now create a tree with the same hyperparameters from that subsample
  tree_model = tree(EX ~ MET, data = data,
                    control = tree.control(nrow(data), minsize = 8))
  tree_model_pruned = prune.tree(tree_model, best = 3)
  # Use that model to predict on the real data
  prediction = predict(tree_model_pruned, newdata = data)
  # Add the rnrom to the prediction
  prediction normal = rnorm(nrow(data), prediction, sd(summary(mle)$residual))
 return(prediction_normal)
}
# Bootstrap
res3 = boot(statedata, statistic = f_p_bootstrap_pb,
            R=1000, mle=mle, ran.gen=rng, sim="parametric")
# Confidence Bands using envolope
pb_p_bootstrap = envelope(res3)
pb_p_bootstrap_df = as.data.frame(t(pb_p_bootstrap$point))
names(pb_p_bootstrap_df) = c("upper_bound", "lower_bound")
pruned_tree_plot_dataframe_p_pb =
data.frame(pruned_tree_plot_dataframe, pb_p_bootstrap_df)
```

5.3 Cross-Validation

5.3.1 Cross Validation Plot

5.3.2 K-Fold

```
c_cross_validation = function(k = 5, Y, X) {
  if (!is.numeric(X) && ncol(X) == 0) {
   y_hat = mean(Y)
   return(mean((y_hat-Y)^2))
 Y = as.matrix(Y)
 X = as.matrix(X)
 X = cbind(1, X)
  # Create a list of 5 matrices with the appropriate
  # size (these will hold the subsets)
  X_subsets = list()
  Y_subsets = list()
  # We fill the list entries with the subsets
  for (i in 1:k) {
   percentage_marker = nrow(X)/k
   start = floor(percentage_marker*(i-1)+1)
   end = floor(percentage marker*i)
   X_subsets[[i]] = X[start:end,]
   Y_subsets[[i]] = Y[start:end]
  # Now we take one matrix at a time for training and
  # everything else as the testing
  scores = 0
  for (i in 1:k) {
   ## Initial
   X_train = matrix(0, ncol = ncol(X))
   Y_train = c()
```

```
# Get validation and training data
   current_subset_X = X_subsets[-i]
   current_subset_Y = Y_subsets[-i]
   for (j in 1:(length(X_subsets)-1)) {
      X_train = rbind(X_train, current_subset_X[[j]])
      Y_train = c(Y_train, current_subset_Y[[j]])
   }
    # Because of R
   X_{train} = X_{train}[-1,]
    # Model
   betas =
      as.matrix((solve(t(X_train) %*% X_train)) %*% t(X_train) %*% Y_train)
   ## Select the training data and transform them to
    # one matrix X_test and one vector Y_test
   X_val = X_subsets[[i]]
   Y_val = Y_subsets[[i]]
   ## Now we get our y_hat and y_real. y_real is
    # only used to clarify the meaning
   y_hat = as.vector(X_val %*% betas)
   y_real = Y_val
   ## Get MSE and add to the scores list
   scores = c(scores, mean((y_hat - y_real)^2))
  # Return the mean of our scores
  scores = scores[-1]
  return(mean(scores))
c_best_subset_selection = function(Y, X) {
  # Shuffle X and Y via indexes
  ids = sample(x = 1:nrow(X), nrow(X))
 X = X[ids,]
 Y = Y[ids]
  # Get all combinations
  comb_matrix = matrix(0, ncol = ncol(X))
  for (i in c(1:(2^(ncol(X))-1))) {
   comb_matrix =
      rbind(comb_matrix, tail(rev(as.numeric(intToBits(i))), ncol(X)))
  }
 results = c()
  # Do cross validation for each feature set
  for (j in 1:nrow(comb_matrix)) {
   comb = as.logical(comb_matrix[j,])
```

```
feature_select = X[,comb]
   res = c_cross_validation(5, Y, feature_select)
    results = c(results, res)
  }
  models = matrix(results, ncol = 1)
  models = cbind(models, comb_matrix)
  # Add column with the sum of the features for plotting
  feature sum = c()
  for (k in 1:nrow(comb matrix)) {
   row_sum = sum(comb_matrix[k,])
   feature_sum = c(feature_sum, row_sum)
  }
  models = as.data.frame(cbind(feature sum, models))
  colnames(models)[1:2] = c("Sum", "Score")
  print(ggplot(models, aes(x = Sum, y = Score, colour = factor(feature_sum))) +
    geom_point())
   stat_summary(fun.y = min, colour = "red", geom = "point", size = 5)
  return(models[min(models[,2]) == models[,2],])
}
```

5.3.3 Nested Cross Validation

5.3.4 Two-Fold

5.4 EM-Algorithm

Let's have a look at the mathematical equations and how we can derive our formulas for the matrix multiplication from that. Formulas without a source are either taken from the lecture slides or derived by previous formulas.

The first step is to calculate Z. We will divide that in first calculating Bx which contains $Bernoulli(x|\mu_k)$ and afterwards calculating p(x) which we can use to calculate Z. The formulas (left side) will be assigned to a letter which you will find in the source code.

Bernoulli(
$$x|\mu_k$$
) = $B_x = \prod_i \mu_{k_i}^{x_i} (1 - \mu_{k_i})^{1 - x_i}$

$$Bernoulli(x|\mu_k) = B_x = \frac{i}{\mu_{k_i}} (1 - \mu_{k_i})^{1-x_i}$$

For using matrix multiplication we need to get rid of the product and the exponents, so we use ln on both sides:

$$\ln(B) = \sum \ln(\mu_{k_i}^{x_i}) x_i + \sum \ln(1 - \mu_{x_i}) (1 - x_i)$$

 $\ln(B) = \sum_{x_i} (\mu_{x_i}_{k_i}) x_i + \sum_{x_i} (1 - x_i)$

Now let's get rid of the ln on the left side:

$$B_x = e^{\sum \ln(\mu_{k_i}^{x_i})x_i + \sum \ln(1 - \mu_{x_i})(1 - x_i)}$$

 $B_x = e^{\sum \{x_i\}_{k_i}\}} x_i + \sum \{x_i\}\} (1 - x_i)$

This craves to be put into a neat matrix multiplication. Okay, let's look for p(x).

$$p(x) = P_x = \sum_k \pi_k Bernoulli(x|\mu_k) = \sum_k \pi_k B$$

 $p(x) = P_x = \sum_k \pi_k \pi(x) = \sum_k \pi_k \pi_k B$

We will use P(x) later to calculate the likelihood L but for now let's calculate Z:

$$P(z_{nk}|x_n, \mu, \pi) = Z = \frac{\pi_k p(x_n|\mu_k)}{\sum_k p(x_n|\mu_k)}$$

 $P(z_{nk}|x_n,\mu,pi) = Z = \frac{p(x_n|\mu_k)}{\sum_{k=1}^{k} p(x_n|\mu_k)}$

The likelihood L is given by the following equation which can be found in Pattern Recognition on page 433 equation 9.14.

$$\ln p(X|\pi, \mu, \Sigma) = L = \sum_{n=1}^{N} \ln \{ \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) \}$$

As we already have the value inside the curly braces (P(x)) it's basically just the sum of the logarithms over n

For calculating π we use the following.

$$\pi_k^{ML} = pi = \frac{\sum_k p(z_{nk|x_n|\mu|\pi})}{N}$$

 $\pi_{k}^{ML} = pi = \frac{\sum_{nk|x_n|\mu|pi}}{N}$

And finally we use the following for calculating μ . Note that the nominator of π and the denominator of μ are the same.

$$\mu_k^{ML} = mu = \frac{\pi_k p(z_{nk|x_n|\mu|\pi})}{\sum_k \pi_k p(z_{nk|x_n|\mu|\pi})}$$

 $\label{eq:local_mu_k} \mbox{$\mathbb{K}^{ML} = mu = \frac{\pi_{k}^{n} \ p(z_{nk|x_n|\mu_k)}}{\sum_{k} p(z_{nk|x_n|\mu_k)}} \$

Voila we're done, now the coding is actually just a few lines of code, you'll find it in the appendix.

```
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x = matrix(nrow=N, ncol=D) # training data
true_pi = vector(length = 3) # true mixing coefficients
true_mu = matrix(nrow=3, ncol=D) # true conditional distributions

true_pi=c(1/3, 1/3, 1/3)
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)

# Producing the training data
for(n in 1:N) {
    k = sample(1:3,1,prob=true_pi)
```

```
for(d in 1:D) {
   x[n,d] = rbinom(1,1,true_mu[k,d])
 }
}
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true mu[3,], type="o", col="green")
kable(true_pi, caption = "true_pi")
kable(true_mu, caption = "true_mu")
\# K = 3
set.seed(1234567890)
K = 3 # number of guessed components
z = matrix(nrow=N, ncol=K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow=K, ncol=D) # conditional distributions
llik = vector(length = max_it) # log likelihood of the EM iterations
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
 mu[k,] = runif(D, 0.49, 0.51)
}
for(it in 1:max it) {
 # E-step: Computation of the fractional component assignments
 Bx = \exp(x \% * \log(t(mu)) + (1-x) \% * \log(t(1-mu)))
 Px = Bx * rep(pi, nrow(Bx))
 Z = Px / rowSums(Px)
 #Log likelihood computation.
 L = sum(log(rowSums(Px)))
 llik[it] = L
 # Stop if the lok likelihood has not changed significantly
 if (it > 1 && abs(llik[it-1] - llik[it]) < min_change) break</pre>
 #M-step: ML parameter estimation from the data and fractional component assignments
 pi = colSums(Z) / N
 mu = (t(Z) \% * \% x) / colSums(Z)
kable(pi, caption = "pi")
kable(mu, caption = "mu")
kable(it, caption = "Number of Iterations")
kable(llik[it], caption = "Ln-Likelihood")
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
points(mu[3,], type="o", col="green")
```

```
plot(llik[1:it], type="o")
```

5.5 Holdout-Principle

5.6 K-Means Algorithm

5.7 Kernel Density Estimation

Epanechnikov kernel Exam 2015 2.3

5.8 Kernel Methods

```
cl = makeCluster(detectCores())
min_distance = function(a, b, ringSize) {
  boundOne = parSapply(cl, b, FUN = function(x) abs(a - x))
  boundTwo = parSapply(cl, b, FUN = function(x) abs(a - ringSize - x))
  boundThree = parSapply(cl, b, FUN = function(x) abs(a + ringSize - x))
 return(pmin(boundOne, boundTwo, boundThree))
}
## Kernels
## The definition for the Guassian Kernel is taken from the slides, page 6.
kernel_gauss_distance = function(pointA, pointB, smoothing) {
  # Use distHaversine() as a help
  m = cbind(pointB$longitude, pointB$latitude)
  u = distHaversine(m, c(pointA$longitude, pointA$latitude))
  u = u / smoothing
  return(exp(-(u^2)))
kernel_gauss_day = function(dayA, dayB, smoothing) {
  dayA_in_days = as.numeric(strftime(as.Date(dayA$date), '%j'))
  dayB_in_days = as.numeric(strftime(as.Date(dayB$date), '%j'))
  u = min_distance(dayA_in_days, dayB_in_days, 365)
  u = u / smoothing
  return(exp(-(u^2)))
}
kernel_gauss_hour = function (hourA, hourB, smoothing) {
  hourA_in_h = parSapply(cl, hourA$time, FUN = function(x)
    as.numeric(difftime(strptime(x, format = "%H:%M:%S"),
                        strptime("00:00:00", format = "%H:%M:%S"))))
```

```
hourB_in_h = parSapply(cl, hourB$time, FUN = function(x)
    as.numeric(difftime(strptime(x, format = "%H:%M:%S"),
                        strptime("00:00:00", format = "%H:%M:%S"))))
 u = min_distance(hourA_in_h, hourB_in_h, 24)
 u = u / smoothing
 return(exp(-(u^2)))
# Students' code here
pred_temp_sum = predict_weather(latitude, longitude, date)
plot_data_frame =
 data.frame(as.POSIXct(paste(date ,pred_temp_sum$times),
                        format = "%Y-%m-%d %H:%M"), pred_temp_sum[2:3])
colnames(plot_data_frame) = c("hour", "predWithSum", "predWithProd")
ggplot(plot_data_frame) +
  geom_line(aes(x = hour, y = predWithSum, group = 1,
               colour = "Kernel Regression (Sum)")) +
  geom_point(aes(x = hour, y = predWithSum), colour = "orange") +
  geom_line(aes(x = hour, y = predWithProd, group = 1,
               colour = "Kernel Regression (Prod)")) +
  geom_point(aes(x = hour, y = predWithProd), colour = "blue") +
  labs(title = "Temperature Prediction with Kernel Regression (Sum and Prod)",
       y = "Temperature", x = "Hour of the Day", color = "Legend") +
  scale_color_manual(values = c("blue", "orange"))
```

5.8.1 Histogram Classification

5.8.2 Moving Windows Classification

5.9 Loss-Matrix

5.10 Probability Model and Log-Likelihood

From the engineers

5.11 ROC-Curve

5.11.1 Calculate ROC

```
# prediction optimal tree
prediction_optimalTree_test_p =
  predict(optimalTree, newdata = test, type = "vector")
# prediction naive bayes
prediction_bayes_test_p =
  predict(naiveBayesModel, newdata = test, type = "raw")
pi = seq(from = 0.00, to = 1.0, by = 0.05)
fprs_tree = c()
tprs_tree = c()
fprs bayes = c()
tprs_bayes = c()
for (i in pi) {
  current_tree_pi_confusion =
    table(test$good_bad, factor(prediction_optimalTree_test_p[,2] > i,
                                lev=c(TRUE, FALSE)))
  current_bayes_pi_confusion =
    table(test$good_bad, factor(prediction_bayes_test_p[,2] > i,
                                lev=c(TRUE, FALSE)))
  \# FPR = FP / N-
  # TPR = TP / N+
  fprs_tree = c(fprs_tree, current_tree_pi_confusion[1,1]/
                 sum(current_tree_pi_confusion[1,]))
  tprs_tree = c(tprs_tree, current_tree_pi_confusion[2,1]/
                  sum(current_tree_pi_confusion[2,]))
  fprs_bayes = c(fprs_bayes, current_bayes_pi_confusion[1,1]/
                   sum(current_bayes_pi_confusion[1,]))
  tprs_bayes = c(tprs_bayes, current_bayes_pi_confusion[2,1]/
                   sum(current_bayes_pi_confusion[2,]))
}
roc_values = data.frame(fprs_tree, tprs_tree, fprs_bayes, tprs_bayes)
```

5.11.2 Print ROC

5.12 Splines

Some sample code using GAM.

```
gam_model_additive = gam(formula =
                         Mortality ~ s(Year, k=length(unique(influanza$Year))) +
                         s(Week, k=length(unique(influanza$Week))) +
                         s(Influenza, k=length(unique(influanza$Influenza))),
                         family = gaussian(), data = influanza, method="GCV.Cp")
summary(gam_model_additive)
plot(gam_model_additive)
time = influanza$Time
observed = influanza$Mortality
predicted = fitted(gam_model_additive)
mortality_values = data.frame(time, observed, predicted)
ggplot(mortality_values) +
  geom_line(aes(x = time, y = observed,
                colour = "Observed Mortality")) +
 geom_line(aes(x = time, y = predicted,
               colour = "Predicted Mortality")) +
 labs(title = "Observed vs Predicted Mortality", y = "Mortality",
      x = "Time", color = "Legend") +
  scale_color_manual(values = c("blue", "orange"))
```