Prove the following propositions. Format your proof so each step of the proof is on its own line; each line should still be a complete sentence. Below, I have entered a nonsensical proof as a model.

Proposition 1. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.

Proof.

Let $a, b, c \in \mathbb{Z}$.

Suppose $a^2 + b^2 = c^2$ and it's not the case that a or b is even.

Therefore, a and b are both odd.

So a = 2x + 1 and b = 2y + 1 for some integers x and y.

Either c is even or odd.

Case 1: c is even.

Then c = 2z for some integer z.

The expression $a^2 + b^2 = c^2$ becomes $(2x + 1)^2 + (2y + 1)^2 = 4z^2$.

Expanding the expression yields $4x^2 + 4x + 1 + 4y^2 + 4y + 1 = 4z^2$.

Factoring yields $4(x^2 + y^2 + x + y) + 2 = 4z^2$.

Simplifying the expression shows 4k + 2 = 4j where k and j are the integers $x^2 + y^2 + x + y$ and $4z^2$ respectfully.

Observe that $2 = 4(k - j) \implies 2 = 4l$ where l is the integer k - j, thus 4|2.

We have arrived at contradiction.

Case 2: c is odd.

Then c = 2z + 1 for some integer x.

The expression $a^2 + b^2 = c^2$ becomes $(2x+1)^2 + (2y+1)^2 = (2z+1)^2$.

Expanded and factored yields $2(2x^2 + 2x + 2y^2 + 2y + 1) = 2(2z^2 + 2z) + 1$

Simplifying the expression shows that 2k = 2j + 1 for integers k and j.

Therefore, an even number equals an odd number.

We have arrived at contradiction.

Proposition 2. Suppose $x, y \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

```
Proof.

Let x, y \in \mathbb{Z}.

Suppose x and y do not have the same parity.

Then x is even and y odd without loss of generality.

So x = 2a and y = 2b + 1 for some integers a and b.

The expression x + y becomes 2a + 2b + 1 = 2(a + b) + 1.

Therefore x + y = 2m + 1 where m is the integer a + b.

So, x + y is odd.
```

Proposition 3. If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).

```
Proof.

Let a,b\in\mathbb{Z} and n\in\mathbb{N}.

Suppose a\equiv b \pmod{n}.

Then n|(a-b).

Then nx=a-b for some integer x.

So a=nx+b.

Lemma: Let \alpha,\beta\in\mathbb{N},\,x\in\mathbb{Z}. If \alpha and \beta are coprime, then \gcd(\alpha x+\beta,\alpha)=1.

Suppose \gcd(\alpha x+\beta,\alpha)\neq 1.

Then \gcd(\alpha+\beta,\alpha)>1.

So, \alpha x+\beta and \alpha share some common divisor d.

It follows that d|\alpha x+\beta and d|\alpha.

Expanded, this is dm_1=\alpha x+\beta and dm_2=\alpha.

Substituting \alpha, dm_1=\alpha x+\beta \implies dm_1=dm_2x+\beta.
```

Isolation β , we get $\beta = dm_1 - dm_2x \implies \beta = d(m_1 - m_2x)$.

Thus, $dm_3 = \beta$ where m_3 is the integer $m_1 - m_2 x$.

So, $d|\beta$.

Because $d|\beta$ and $d|\alpha$ for some d>0, β and α cannot be coprime.

Case 1: gcd(a, n) = 1

Case 2: $gcd(a, n) \neq 1$

Then we can invoke the lemma established above.

Because $gcd(nx + b, n) \neq 1$, n and b are not coprime.

So there is some d_1 that $d_1|n$ and $d_1|b$.

Additionally, because $gcd(a, n) \neq 1$, there is some d_2 that $d_2|a$ and $d_2|n$.