

Theoretische Informatik

Logik

- Definition (Variablen, Aussageformen, Prädikat)
 - » Aussageformen (Prädikate) in den Variablen x, y, ... auf den Grundmengen M_x , M_y ... sind sprachliche Gebilde, die nach Ersetzung der Variablen x, y, ... durch Elemente aus M_x , M_y ... in Aussagen übergehen.
 - » Eine Aussageform ist weder wahr noch falsch, hat also keinen Wahrheitswert.
 - » Alle Vorkommnisse einer Variable (x,y,...) in einem Kontext werden durch den selben Wert (M_x , M_y , ...) aus der Grundmenge ersetzt.
 - » Prädikate werden als P(x, y, ...) geschrieben.
- Beispiel
 - » x ist eine gerade Zahl

- Beispiel 1 (Prädikat hat eine Variable)
 - » istGerade(x) bedeutet
 - » Prädikat: "istGerade"
 - » x: Variabel
 - » Zu verstehen wie "eine Maschine", die entscheidet, ob x gerade ist oder nicht
 - » D.h. Steckt man eine 2 rein, so liefert "die Maschine" das Prädikat "wahr"

- Beispiel 2 (Prädikat hat zwei Variablen)
 - » istKleinerAls(x, y) bedeutet
 - » Prädikat: "istKleinerAls"
 - » x, y: Variabel
 - » D.h. Steckt man ein 2 und 3 rein, so liefert die das Prädikat "wahr"
- Bemerkung: Prädikat istKleinerAls(x, y) hat die Stelligkeit 2

- Prädikate können mittels Junktoren UND, ODER, NICHT, IMPLIKATION, ÄQUIVALENZ kombiniert werden
- Beispiel:
 - » $istPrimzahl(x) \land istGrößerAls(10, x)$ P_1 und P_2

Prädikatenlogik

Definition Quantoren

Der Allquantor ($\forall x$) und der Existenzquantor ($\exists x$) sind zwei weitere Operatoren der Logik.

- ▶ Die Aussage $\forall x : P(x)$ ist genau dann wahr, wenn
 - **1.** M_X nicht leer ist und
 - 2. wenn für alle Elemente $e \in M_X$ gilt:durch Ersetzen von x durch e in P(x) wird P(e) eine wahre Aussage.
- ▶ Die Aussage $\exists x : P(x)$ ist genau dann wahr, wenn M_x ein Element e enthält, so dass P(e) eine wahre Aussage ist.
- ▶ \forall und \exists binden stärker als die anderen logischen Operatoren: Z. B. wird $\forall x : P(x) \land q$ als $(\forall x : P(x)) \land q$ geklammert.

Prädikatenlogik

Beispiele Quantoren

- 1. $\forall x \in \mathbb{N} : x \text{ ist eine positive Zahl}$
- $x ∈ \mathbb{N} : 2x$ ist eine gerade Zahl«
- 3 »∃ $x \in \mathbb{N} : x^2 = 4$ «

- Beispiele Quantoren
 - » Es gilt für $x \in \mathbb{N}$ $\land (x < 2 \lor x > 4)$: $A(x) \leftrightarrow x^2 < 2^x$ (Beweis möglich mit vollständiger Induktion)
 - » Folgende Aussagen:

»
$$\forall x \in \mathbb{N}$$
: $x^2 < 2^x$ ist falsch

»
$$\exists x \in \mathbb{N}$$
: $x^2 < 2^x$ ist wahr

»
$$\forall x \in \mathbb{N}: x > 4 \rightarrow x^2 < 2^x$$
 ist wahr

Prädikatenlogik

Beispiele: Folgende Aussagen:

»
$$\forall x \in \mathbb{N}$$
: x > 3 → x^2 > 9 ist wahr

» Sogar die Rückrichtung gilt

$$\forall x \in \mathbb{N}: \quad x^2 > 9 \rightarrow x > 3$$
 ist wahr

» Und somit gilt auch

$$\forall x \in \mathbb{N}: \ x > 3 \leftrightarrow x^2 > 9$$
 ist wahr

»
$$\forall x \in \mathbb{R}$$
: x > 3 → x^2 > 9 ist wahr

» doch

$$\forall x \in \mathbb{R}: \quad x^2 > 9 \rightarrow x > 3$$
 ist falsch

» Wieder richtig:

$$\forall x \in \mathbb{R}: \quad x^2 > 9 \quad \leftrightarrow (x > 3 \quad \forall \ x < -3)$$
 ist wahr

- Beispiele für Prädikatenlogik
 - » $\forall x : (Katze(x) \rightarrow Säugetier(x))$
 - » Übersetzt: Alle Katzen sind Säugetiere
 - » Bemerkung: Es kann auch Säugetiere geben, die keine Katzen sind, aber es gibt keine Katzen, die keine Säugetiere sind

- Beispiele für Prädikatenlogik
 - » ∀x : (Katze(x) ^ Säugetier(x))
 - » Übersetzt: Alles ist eine Katze und ein Säugetier

- Beispiele für Prädikatenlogik
 - » ∃x : (Katze(x) ^ Säugetier(x))
 - » Übersetzt: Es existiert etwas, was eine Katze und ein Säugetier ist

Prädikatenlogik

Satz: Prädikatenlogische Gesetze

a)
$$\neg(\forall x : P(x)) = \exists x : \neg P(x)$$

b)
$$\neg(\exists x : P(x)) = \forall x : \neg P(x)$$

- Zu a) Die Verneinung der Aussage "Alles ist grün"
 lässt sich formulieren als "Es gibt etwas, das nicht grün ist"
- Zu b) Wenn die Aussage "Es gibt etwas, das grün ist." verneint wird, so sind "Es gilt
 - » nicht ein Ding ist grün oder
 - » Alles ist nicht grün

- Beispiel "Gesunde Informatiker"
 - » Modellieren Sie folgende Aussagen in der Prädikatenlogik:
 - » A »Jeder, der Sport treibt, ist gesund«
 - » B »Wer krank ist, treibt keinen Sport«
 - » C »Es gibt gesunde Informatiker, die sportlich nicht aktiv sind«
 - » Aussagenformen (Prädikate sind):

- » Die Behauptungen sind nun: $\forall x : sport(x) \rightarrow \neg krank(x)$
 - $\exists \forall x: krank(x) \rightarrow \neg sport(x)$
 - \Box $\exists x : info(x) \land \neg krank(x) \land \neg sport(x)$

Prädikatenlogik – Übung

- Modellieren Sie folgende Aussagen in der Prädikatenlogik:
 - » 1. Wer im Urlaub ist, arbeitet nicht.
 - » 2. Jeder, der arbeitet, macht Fehler.
 - » 3. Wer im Urlaub arbeitet, macht sicher einen Fehler

- ToDo
 - » Spezifizieren die notwendigen Prädikate
 - » Formalisiere die drei Behauptungen in der Prädikatenlogik

Prädikatenlogik – Beispiel "Die Simpsons"

Lisa weiß aus der Schule:

- 1) Die Großeltern sind die Eltern der Eltern.
- 2) Eine Tante ist eine Schwester der Eltern.
- 3) Eine Schwester hat die gleichen Eltern und ist weiblich
- 4) Es gibt keine Person ohne Mutter.

Lisa überlegt wer in ihrer Familie ihre Tante ist:

- 5) Homer ist Elternteil und männlich
- 6) Marge ist Elternteil und weiblich
- 7) IngridG ist Elternteil von Marge und weiblich
- 8) IngridG ist Elternteil von PattyB. PattyB ist weiblich

Können wir ihr in der Aussagenlogik helfen?

Prädikatenlogik – Beispiel "Die Simpsons"

Definition atomarer Aussagen

"Homer ist männlich" ✓

"Homer ist Vater von Lisa" ✓

"Eine Schwester ist weiblich" ?

Welches Subjekt/Objekt ist gemeint?

Wie kann es angegeben werden?

Aussagenlogik ist nicht mächtig genug um diese Aussagen auszudrücken

Simpsons.

Logik

Prädikatenlogik – Beispiel "Die Simpsons"

Prädikate, Relationen

E(x,y): x ist Elternteil von y

M (x): x ist männlich

P(x): x ist Person

S (x,y): x ist Schwester von y

T(x,y): x ist Tante von y

W (x): x ist weiblich

Ge (x,y): x ist Großelter von y

V (x,y): x ist Vater von y

M(x,y); x ist Mutter von y

Konstanten (Fakten)

Lisa - die Person Lisa

Homer - die Person Homer

Marge - die Person Marge

IngridG - die Person IngridG

PattyB - die Person PattyB

-) Die Großeltern sind die Eltern der Eltern.
- 2) Eine Tante ist eine Schwester der Eltern.
- Eine Schwester hat die gleichen Eltern und ist weiblich
- 4) Es gibt keine Person ohne Mutter.

Prädikatenlogik – Beispiel "Die Simpsons"

B1)
$$\forall x,y [\exists z [E(x,z) \land E(z,y)] \rightarrow Ge(x,y)]$$

B2)
$$\forall x,y [\exists z [E(z,y) \land S(x,z)] \rightarrow T(x,y)]$$

B3)
$$\forall x,y [\exists z [E(z,y) \land E(z,x)] \land W(x) \rightarrow S(x,y)]$$

B4)
$$\neg \exists x [P(x) \land \forall y [\neg M(y,x)])]$$

- B5) E(Homer, Lisa) ∧ M(Homer)
- B6) E(Marge, Lisa) ∧ W(Marge)
- B7) E(IngridG, Marge) ∧ W (IngridG)
- B8) E(IngridG, PattyB) ∧ W (PattyB)

Prädikatenlogik – Beispiel "Die Simpsons"

- Umgang mit Prädiktaten / Formeln
 - » Wertetabelle?
 - »Nein
 - » Bool'sche Algebra
 - » Nein
 - » Prädikaten-Kalkül
 - »Ja, Nachfolger des Aussagen-Kalküls