

	Die Streif*		
Aufgabennummer: A_153			
Technologieeinsatz:	möglich ⊠	erforderlich	

Jedes Jahr findet auf der Kitzbüheler *Streif* das weltberühmte *Hahnenkammrennen* statt. Die Veranstalter dieses Rennens veröffentlichten folgende Daten über eine Trainingsfahrt für den Abfahrtslauf:

Zeit in Sekunden	Name des Streckenpunkts	Meereshöhe in Metern	zurückgelegter Weg in Metern
0,0	Start	1 665	0
8,5	Mausefalle	1 605	160
39,3	Gschöss	1 386	853
49,2	Alte Schneise	1 331	1 292
63,2	Seidlalm	1 244	1 609
118,1	Zielschuss	922	2906
131,6	Ziel	805	3312

- a) Beschreiben Sie, was mit dem Quotienten $\frac{1292 \text{ m} 853 \text{ m}}{49,2 \text{ s} 39,3 \text{ s}}$ in diesem Sachzusammenhang berechnet wird.
- b) Berechnen Sie für diese Trainingsfahrt den Neigungswinkel, der der mittleren Steigung entspricht.
- c) Die Geschwindigkeit einer anderen Trainingsfahrt in Abhängigkeit von der Zeit kann für einen Abschnitt durch folgende Funktion näherungsweise beschrieben werden:

$$v(t) = -0.045 \cdot t^2 + 6.594 \cdot t - 204.571$$
 mit $60 \le t \le 90$

t ... Zeit in Sekunden (s)

v(t) ... Geschwindigkeit zum Zeitpunkt t in Metern pro Sekunde (m/s)

- Bestimmen Sie denjenigen Zeitpunkt, zu dem die Geschwindigkeit in diesem Abschnitt maximal ist.
- Stellen Sie eine Formel auf, mit der der Weg, der in diesem Abschnitt zurückgelegt wird, berechnet werden kann.
- d) Der in einem Abschnitt zurückgelegte Weg s ist eine Funktion der Zeit t.
 - Beschreiben Sie, wie man ausgehend von dieser Weg-Zeit-Funktion die Momentangeschwindigkeit zu jedem beliebigen Zeitpunkt dieses Abschnitts ermitteln kann.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

^{*} ehemalige Klausuraufgabe

Die Streif

Möglicher Lösungsweg

a) Mit diesem Quotienten wird die mittlere Geschwindigkeit im Abschnitt von Gschöss bis Alte Schneise berechnet.

b) Zwischen der Gesamtstrecke $\Delta s = 3312$ m, dem dabei überwundenen Höhenunterschied $\Delta h = 860$ m und dem Neigungswinkel α besteht folgender Zusammenhang:

$$\sin(\alpha) = \frac{860}{3312}$$

Daraus wird der Neigungswinkel $\alpha \approx 15,05^{\circ}$ berechnet.

c)
$$v'(t) = \frac{dv}{dt} = 0$$

-0.09 · t + 6.594 = 0
 $t \approx 73.27$

Nach 73,27 Sekunden ist die Geschwindigkeit maximal.

Formel für den zurückgelegten Weg: $s = \int_{60}^{90} v(t) dt$

d) Die Weg-Zeit-Funktion muss nach der Zeit differenziert werden, um die Funktion der Geschwindigkeit in Abhängigkeit von der Zeit zu erhalten. Durch Einsetzen eines bestimmten Zeitpunktes *t* erhält man die Momentangeschwindigkeit zu diesem Zeitpunkt.

Lösungsschlüssel

- a) 1 × C: für die richtige Beschreibung
- b) 1 x B: für die richtige Berechnung des Neigungswinkels
- c) 1 x B: für das richtige Bestimmen des Zeitpunktes mit maximaler Geschwindigkeit
 - 1 × A: für das richtige Aufstellen der Formel
- d) 1 x C: für die richtige Beschreibung zur Ermittlung der Momentangeschwindigkeit