Application No.: 10/565,405 Docket No.: HO-CGGV.P0006US Response to Non-Final Action dated 2/18/2010

AMENDMENTS TO THE CLAIMS

(Currently Amended) Method of determining the velocity v and anellipticity η parameters for processing seismic traces obtained from seismic receivers in a common midpoint
(CMP) gather including an anelliptic (Normal Move Out) NMO correction, comprising:

a preliminary step to define a plurality of nodes (dtn, τ_0) in a CMP gather of a series of seismic traces, at least a portion of said traces corresponding to signals reflected by geological interfaces of a subsurface zone, the said nodes being indicative of parameters dtn and τ_0 , wherein dtn represent representing the NMO correction for the maximum offset and τ_0 represent the zero offset travel time in hyperbolic coordinates, the said preliminary step being followed by

for each node (dtn, τ_0) defined in the preliminary step, the following steps:

for performing static NMO correction of traces in the CMP gather as a function of the values of the said parameters dtn, τ_0 at the node considered, and

for calculating the semblance function associated with the said NMO correction for the node considered; and

for each picked time t_0 , a step including determination of determining the maximum semblance node (dtn (t_0) , τ_0 (t_0)),

a step to convert the dtn (t_0) and τ_0 (t_0) parameters so as to obtain the velocity V (t_0) and an ellepticity an ellipticity η (t_0) laws

and a step of processing the seismic traces in view of the <u>obtained</u> velocity $V(t_0)$ and <u>anellepticity</u> anellipticity $\eta(t_0)$ laws, the output of said processing used to represent the seismic traces in one or more images of at least a portion of the geological interfaces of said subsurface <u>zone</u>.

2. (Original) Method according to claim 1, wherein the nodes are defined during the preliminary step in an analysis volume (dtn, τ_0 , t_0) determined by minimum and maximum values respectively [dtn_{min}, dtn_{max}] [τ_{0min} , τ_{0max}] and [t_{0min} , t_{0max}] of the dtn, τ_0 , t_0 parameters.

Response to Non-Final Action dated 2/18/2010

3. (Original) Method according to claim 2, wherein, during the preliminary step, a corridor [dtn_{min} (t₀), dtn_{max} (t₀)], [τ_{0min} (t₀), τ_{0max} (t₀)] for changing dtn and τ_{0} parameters is delimited inside the analysis volume as a function of plausible velocity V and anellipticity η values, the nodes (dtn, τ_{0}) defined for applying the NMO correction being then located along the corridor thus delimited.

- 4. (Previously Presented) Method according to claim 1, further comprising, for each node (dtn, τ_0), a stacking step of the corrected seismic traces, following the semblance function calculation step.
- 5. (Original) Method according to claim 4, wherein the stacking of corrected traces is done using only near offset traces.
- 6. (Previously Presented) Method according to claim 4, further comprising for each picked time, and following the step for determining the maximum semblance node, a step of checking that values dtn and τ_0 of the maximum semblance node correspond to a stacking extreme value for the same values dtn and τ_0 .
- 7. (Previously Presented) Method according to claim 1, further comprising a step of selecting and adjusting the pickings obtained, following the step implemented for determining the maximum semblance node (dtn (t_0) , τ_0 (t_0)) for each picked time t_0 , before the conversion step.
- 8. (Original) Method according to claim 7, wherein the said step of selecting and adjusting the pickings comprises a step of only retaining pickings dtn and τ_0 for which time to the highest semblance pickings is greater than a predefined value.
- 9. (Original) Method according to claim 8, wherein the said step of selecting and adjusting the pickings also comprises a step for adjusting the retained pickings dtn and τ_0 by parabolic interpolations using values about the said picked values.

Response to Non-Final Action dated 2/18/2010

10. (Original) Method according to claim 9, wherein the said step of selecting and adjusting pickings also comprises a step of eliminating retained and adjusted pickings dtn and τ_0 when it is impossible to calculate the Dix interval velocities between the picking considered and higher semblance pickings.

- 11. (Previously Presented) Method according to claim 1, wherein the processing applied to seismic traces is an NMO correction process implementing a static correction $CORR_{NMO}$.
- 12. (Original) Method according to claim 11, wherein, during the preliminary step, the NMO corrections $CORR_{NMO}$ are calculated for all nodes (dtn, τ_0) including in the analysis volume and all offsets of processed seismic traces.
- 13. (Original) Method according to claim 12, wherein the NMO correction carried out for each node (dtn, τ_0), consists of applying NMO corrections CORR_{NMO} calculated during the preliminary step.
- 14. (Previously Presented) Method according to claim 11, wherein for a given (dtn, τ_0) pair, the static NMO correction CORR_{NMO} of a seismic trace with offset x is carried out according to the following equation:

$$CORR_{NMO}(x) = -\tau_0 + \sqrt{\tau_0^2 + \frac{dtn(dtn + 2\tau_0)}{x_{max}^2}}x^2$$

in which X_{max} represents the maximum offset in the CMP gather.

- 15. (Withdrawn) Method according to claim 1, wherein the processing applied to seismic traces is a PSTM migration using a static NMO correction CORR_{PSTM}.
- (Withdrawn) Method according to claim 15, wherein, during the preliminary step, the NMO corrections $CORR_{PSTM}$ are calculated for all nodes (dtn and τ_0) included in the analysis volume and all migration offsets inside the migration aperture.

Response to Non-Final Action dated 2/18/2010

17. (Withdrawn): Method according to claim 16, wherein the NMO correction step carried out for each node (dtn and τ_0) comprises, for each offset class, application of the said NMO corrections CORR_{PSTM}, calculated during the preliminary step on all midpoints inside the migration aperture.

- 18. (Withdrawn) Method according to claim 17, wherein the NMO correction step carried out for each node (dtn and τ_0) comprises, for each offset class, the stack of the corrected midpoints following application of the said NMO corrections CORR_{PSTM}.
- (Withdrawn) Method according to claim 15, wherein, for a given pair (dtn and τ_0), the static NMO correction CORR_{PSTM} is carried out according to the following equation:

$$CORR_{PSTM}(x) = -\tau_0 + \sqrt{\frac{\tau_0^2}{4} + \frac{dtn(dtn + 2\tau_0)(x - x + h)^2}{x_{max}^2}} + \sqrt{\frac{\tau_0^2}{4}} + \frac{dtn(dtn + 2\tau_0)(x - x + h)^2}{x_{max}^2}$$

where:

x_m represents the coordinates of the midpoints,

 $x-x_m$ represents the migration aperture PSTM,

h is the half source – receiver offset,

 x_{max} is the maximum offset and aperture of the migration.

20. (Previously Presented) Method according to claim 14, wherein, during the final conversion step, the parameters dtn (t_0) and (τ_0) are converted to the velocity law v (t_0) according to the following equation:

$$V = \frac{x_{\text{max}}}{\sqrt{dtn(dtn + 2\tau_0)\frac{t_0}{\tau_0}}}$$

21. (Currently Amended): Method according to claim 14, wherein, during the final conversion step, the parameter τ_0 (t_0) is converted to the anellepticity anellipticity η (t_0) law according to

$$\eta = \frac{1}{8} \left(\frac{t_0}{\tau_0} - 1 \right)$$

Response to Non-Final Action dated 2/18/2010

22. (Currently Amended) Method according to claim 20, wherein parameter dtn is defined with respect to the velocity v and anellepticity anellipticity η according to the following equation:

$$dtn = \frac{8\eta}{1 + 8\eta} t_0 + \sqrt{\left(\frac{t_0}{1 + 8\eta}\right)^2 + \frac{x_{\text{max}}^2}{(1 + 8\eta)V^2}}$$

23. (Currently Amended) Method according to claim 21, wherein parameter τ_0 is defined according to an ellepticity an ellipticity η according to the following equation:

$$\tau_0 = \frac{t_0}{1 + 8\eta}$$

- 24. (Withdrawn) Method of characterizing a velocity field for processing seismic data using a gather of seismic traces at common midpoint, wherein, for each travel time t_0 for a zero offset, a set of parameters dtn and t_0 is defined, representing the NMO correction for maximum offset, and the zero offset travel time respectively, in hyperbolic coordinates.
- 25. (Original) Method according to claim 2, further comprising, for each node (dtn, τ_0), a stacking step of the corrected seismic traces, following the semblance function calculation step.
- 26. (Original) Method according to claim 25, wherein the stacking of corrected traces is done using only near offset traces.
- 27. (Original) Method according to claim 25, further comprising for each picked time, and following the step for determining the maximum semblance node, a step of checking that values dtn and τ_0 of the maximum semblance node correspond to a stacking extreme value for the same values dtn and τ_0 .
- 28. (Original) Method according to claim 2, further comprising a step of selecting and adjusting the pickings obtained, following the step implemented for determining the maximum semblance node (dtn (t_0) , τ_0 (t_0)) for each picked time t_0 , before the conversion step.

Response to Non-Final Action dated 2/18/2010

Original) Method according to claim 28, wherein the said step of selecting and adjusting the pickings comprises a step of only retaining pickings dtn and τ_0 for which time to the highest semblance pickings is greater than a predefined value.

- 30. (Original) Method according to claim 29, wherein the said step of selecting and adjusting the pickings also comprises a step for adjusting the retained pickings dtn and τ_0 , by parabolic interpolations using values about the said picked values.
- 31. (Original) Method according to claim 30, wherein the said step of selecting and adjusting pickings also comprises a step of eliminating retained and adjusted pickings dtn and τ_0 when it is impossible to calculate the Dix interval velocities between the picking considered and higher semblance pickings.
- 32. (Original) Method according to claim 2, wherein the processing applied to seismic traces is an NMO correction process implementing a static correction $CORR_{NMO}$.
- 33. (Original) Method according to claim 32, wherein, during the preliminary step, the NMO corrections $CORR_{NMO}$ are calculated for all nodes (dtn, τ_0) including in the analysis volume and all offsets of processed seismic traces.
- 34. (Original) Method according to claim 32, wherein the NMO correction carried out for each node (dtn, τ_{0}) consists of applying NMO corrections CORR_{NMO}. calculated during the preliminary step.
- 35. (Original) Method according to claim 32, wherein for a given (dtn, τ_0) pair, the static NMO correction CORR_{NMO} of a seismic trace with offset x is carried out according to the following equation:

$$CORR_{NMO}(x) = -\tau_0 + \sqrt{\tau_0^2 + \frac{dtn(dtn + 2\tau_0)}{x_{max}^2}}x^2$$

in which X_{max} represents the maximum offset in the CMP gather.

36. (Withdrawn) Method according to claim 2, wherein the processing applied to seismic traces is a PSTM migration using a static NMO correction CORR_{PSTM}.

Response to Non-Final Action dated 2/18/2010

37. (Withdrawn) Method according to claim 36, wherein, during the preliminary step, the NMO corrections $CORR_{PSTM}$ are calculated for all nodes (dtn and τ_0) included in the analysis volume and all migration offsets inside the migration aperture.

- 38. (Withdrawn) Method according to claim 37, wherein the NMO correction step carried out for each node (dtn and τ_0) comprises, for each offset class, application of the said NMO corrections CORR_{PSTM}, calculated during the preliminary step on all midpoints inside the migration aperture.
- 39. (Withdrawn) Method according to claim 38, wherein the NMO correction step carried out for each node (dtn and τ_0) comprises, for each offset class, the stack of the corrected midpoints following application of the said NMO corrections CORR_{PSTM}.
- 40. (Previously Presented) Method according to claim 2, wherein the processing applied to seismic traces is a PSTM migration using a static NMO correction CORR_{PSTM}, and wherein, for a given pair (dtn and τ_0), the static NMO correction CORR_{PSTM} is carried out according to the following equation:

$$CORR_{PSTM}(x) = -\tau_0 + \sqrt{\frac{\tau_0^2}{4} + \frac{dtn(dtn + 2\tau_0)(x - x + h)^2}{x_{max}^2}} + \sqrt{\frac{\tau_0^2}{4}} + \frac{dtn(dtn + 2\tau_0)(x - x + h)^2}{x_{max}^2}$$

where:

x_m represents the coordinates of the midpoints,

 $x-x_m$ represents the migration aperture PSTM,

h is the half source – receiver offset,

 x_{max} is the maximum offset and aperture of the migration.

41. (Original) Method according to claim 35, wherein, during the final conversion step, the parameters dtn (t_0) and (τ_0) are converted to the velocity law v (t_0) according to the following equation:

$$V = \frac{x_{\text{max}}}{\sqrt{dtn(dtn + 2\tau_0)\frac{t_0}{\tau_0}}}$$

Response to Non-Final Action dated 2/18/2010

42. (Currently Amended) Method according to claim 35, wherein, during the final conversion step, the parameter τ_0 (t_0) is converted to the anellepticity anellipticity η (t_0) law according to

$$\eta = \frac{1}{8} \left(\frac{t_0}{\tau_0} - 1 \right)$$

43. (Currently Amended) Method according to claim 41, wherein parameter dtn is defined with respect to the velocity v and anellepticity anellipticity η according to the following equation:

$$dtn = \frac{8\eta}{1 + 8\eta} t_0 + \sqrt{\left(\frac{t_0}{1 + 8\eta}\right)^2 + \frac{x_{\text{max}}^2}{(1 + 8\eta)V^2}}$$

44. (Currently Amended) Method according to claim 42, wherein parameter τ_0 is defined according to an ellepticity an ellipticity η according to the following equation:

$$\tau_0 = \frac{t_0}{1 + 8\eta}$$

- 45. (Original): Method according to claim 3, further comprising, for each node (dtn, τ_0), a stacking step of the corrected seismic traces, following the semblance function calculation step.
- 46. (Original) Method according to claim 45, wherein the stacking of corrected traces is done using only near offset traces.
- 47. (Original) Method according to claim 45, further comprising for each picked time, and following the step for determining the maximum semblance node, a step of checking that values dtn and τ_0 ; of the maximum semblance node correspond to a stacking extreme value for the same values dtn and τ_0 .
- 48. (Original) Method according to claim 3, further comprising a step of selecting and adjusting the pickings obtained, following the step implemented for determining the maximum semblance node (dtn (t_0) , τ_0 (t_0)) for each picked time t_0 , before the conversion step.

Response to Non-Final Action dated 2/18/2010

49. (Original) Method according to claim 48, wherein the said step of selecting and adjusting the pickings comprises a step of only retaining pickings dtn and τ_0 for which time to the highest semblance pickings is greater than a predefined value.

- 50. (Original) Method according to claim 49, wherein the said step of selecting and adjusting the pickings also comprises a step for adjusting the retained pickings dtn and τ_0 by parabolic interpolations using values about the said picked values.
- 51. (Original) Method according to claim 50, wherein the said step of selecting and adjusting pickings also comprises a step of eliminating retained and adjusted pickings dtn and τ_0 when it is impossible to calculate the Dix interval velocities between the picking considered and higher semblance pickings.