THEORETICAL COMPUTER SCIENCE TUTORING (6)

Maurizio Fiusco

Consider the following decision problem: given an undirected graph G = (V, E) and an integer k, decide whether G has a vertex cover of at most k nodes or contains an independent set of at least k nodes.

After formalizing the problem using the triple $\langle I, S, \pi \rangle$, answer the following questions (in the order deemed appropriate), providing justification for each response.

- Is the problem in P?
- Is the problem in NP?
- Is the problem in coNP?

Let's review Vertex Cover

- $I_{VC} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{VC}(G,k) = \{V' \subseteq V\}$
- $\pi_{VC}(G, k, S_{VC}(G, k)) = \exists V' \in S_{VC}(G, k) : [|V'| \le k \land \forall \{u, v\} \in E \ u \in V' \land v \in V']$

Let's review Vertex Cover

- $I_{VC} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{VC}(G,k) = \{V' \subseteq V\}$
- $\pi_{VC}(G, k, S_{VC}(G, k)) = \exists V' \in S_{VC}(G, k) : [|V'| \le k \land \forall \{u, v\} \in E \ u \in V' \land v \in V']$

Let's review Independent Set

- $I_{IS} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{IS}(G,k) = \{V^{\prime\prime} \subseteq V\}$
- $\pi_{IS}(G, k, S_{IS}(G, k)) = \exists V'' \in S_{IS}(G, k) : [|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E]$

Let's review Independent Set

- $I_{IS} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{IS}(G,k) = \{V^{\prime\prime} \subseteq V\}$
- $\pi_{IS}(G, k, S_{IS}(G, k)) = \exists V'' \in S_{IS}(G, k) : [|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E]$

Consider the following decision problem: given an undirected graph G = (V, E) and an integer k, decide whether G has a vertex cover of at most k nodes or contains an independent set of at least k nodes.

- $I_{exam} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{exam}(G, k) = \{(V', V''): V', V'' \subseteq V\}$
- $\pi_{exam}(G, k, S_{exam}(G, k)) = \exists (V', V'') \in S_{exam}(G, k) : [(|V'| \le k \land \forall u, v) \in E \ u \in V' \land v \in V') \lor (|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E)$

A certificate is a pair (V', V''), verifying whether it satisfies the predicate requires polynomial time.

- $I_{exam} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{exam}(G, k) = \{(V', V''): V', V'' \subseteq V\}$
- $\pi_{exam}(G, k, S_{exam}(G, k)) = \exists (V', V'') \in S_{exam}(G, k) : [(|V'| \le k \land \forall u, v) \in E \ u \in V' \land v \in V') \lor (|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E)]$

Let's reduce from Independet Set

- $I_{IS} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{IS}(G,k) = \{V' \subseteq V\}$
- $\pi_{IS}(G, k, S_{IS}(G, k)) = \exists V' \in S_{IS}(G, k) : [|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E]$

IS on complete graphs

The Maximum Independent Set on a complete graph consists of a single vertex

VC on complete graphs

The minimum vertex cover on a complete graph with k nodes is of k-1 nodes

Instance of IS

Instance of our problem **VC V IS**

Instance of IS

$$I_{IS} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$$

Instance of VC V IS

$$I_{ex} = \{ \langle G_{ex} = (V_{ex}, E_{ex}), k+1 \rangle : G_{ex} \text{ is an undirected graph } \land k \in \mathbb{N} \}$$

 G_{ex} is obtained by adding a clique of $k+3$ nodes to G

* G_{ex} doesn't have a VC of at most k+1 vertices \Longrightarrow X V IS

If G has an IS of at least k vertices, G_{ex} has an IS of at least k+1 vertices, I_{ex} is a "yes" instance of $VC \lor IS$

If G doesn't have an IS of at least k vertices, G_{ex} doesn't have an IS of at least k+1 vertices (and *), I_{ex} is a "no" instance of $VC \lor IS$

Consider the following decision problem: given an undirected graph G = (V, E) and an integer k, decide whether G has a vertex cover of at most k nodes and contains an independent set of at least k nodes.

After formalizing the problem using the triple $\langle I, S, \pi \rangle$, answer the following questions (in the order deemed appropriate), providing justification for each response.

- Is the problem in P?
- Is the problem in NP?
- Is the problem in coNP?

Consider the following decision problem: given an undirected graph G = (V, E) and an integer k, decide whether G has a vertex cover of at most k nodes and contains an independent set of at least k nodes.

- $I_{exam} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{exam}(G, k) = \{(V', V''): V', V'' \subseteq V\}$
- $\pi_{exam}(G, k, S_{exam}(G, k)) = \exists (V', V'') \in S_{exam}(G, k) : [(|V'| \le k \land \forall u, v) \in E \ u \in V' \land v \in V') \land (|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E)]$

A certificate is a pair (V', V''), verifying whether it satisfies the predicate requires polynomial time.

- $I_{exam} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{exam}(G, k) = \{(V', V''): V', V'' \subseteq V\}$
- $\pi_{exam}(G, k, S_{exam}(G, k)) = \exists (V', V'') \in S_{exam}(G, k) : [(|V'| \le k \land \forall u, v) \in E \ u \in V' \land v \in V') \land (|V''| \ge k \land \forall u, v \in V'' \{u, v\} \notin E)]$

Let's reduce from Vertex Cover

- $I_{VC} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$
- $S_{VC}(G,k) = \{V' \subseteq V\}$
- $\pi_{VC}(G, k, S_{VC}(G, k)) = \exists V' \in S_{VC}(G, k) : [|V'| \le k \land \forall \{u, v\} \in E \ u \in V' \land v \in V']$

Instance of **VC**

Instance of our problem **VC** \wedge **IS**

Instance of VC

$$I_{IS} = \{ \langle G = (V, E), k \rangle : G \text{ is an undirected graph } \land k \in \mathbb{N} \}$$

Instance of VC \land IS

$$I_{exam} = \{\langle G_{exam} = (V_{exam}, E), k \rangle : G_{exam} \text{ is an undirected graph } \land k \in \mathbb{N}\}$$

 $V_{exam} = V \cup \{v_1, v_2, \dots, v_k\}$

 G_{exam} has an **IS** of at least k vertices

If G has a VC of at most k vertices, G_{exam} has a VC of at most k vertices, having an IS of k nodes, I_{exam} is a "yes" instance of $VC \land IS$

If G doesn't have a VC of at most k vertices, G_{exam} doesn't have a VC of at most k vertices, I_{exam} is a "no" instance of $VC \land IS$

Genome Assembly

Genome Assembly

Overlap graph:

Nodes = reads Edges = overlaps

