Содержание

1	Дифф. геом. кривых	2
	Теорема о неявной функции	2
	Свойства пределов	3
	Гладка кривая, регулярная кривая	4
Φ	-ма Тейлора	6
	Длина кривой	6
	Т. о длине кривой	6
2	Репер Френе	9
3	Вектор кривизны	13
4	Формула Френе	15
5	Вычисление кривизны кручения	16
	5.1 Дополнение 1: плоскости, связ. с кривыми	18
	5.2 Дополнение 2: натур. ур-я кривой	20

Дифф. геометрия кривых (в \mathbb{R}^3) и поверхностей (в \mathbb{R}^3) 2019-09-09

1 Дифф. геом. кривых

Опр

 $f:[a,b] \to \mathbb{R}^3$ - вектор-функция. Образ f называется кривой, а f - параметризация этой кривой.

Способы задания кривых:

- 1. Параметрический $f:[a,b] \to \mathbb{R}^3$
- 2. Явное задание кривой $\begin{cases} y=y(x) \\ z=z(x) \end{cases}$ (особенно хорошо на плоскости y=f(x))
- 3. Неявное задание кривой (на плоскости) F(x,y) = 0

Пример

Окружность:
$$x^2 + y^2 - 1 = 0$$
 $y = \pm \sqrt{1 - x^2}$ явное задание рис 3

Теорема (о неявной функции)

$$F(x,y)=0$$

$$F$$
 - дифф $(\exists \frac{\partial F}{\partial x}$ и $\frac{\partial F}{\partial y}$ - непр в окр (x_0,y_0) , $F(x_0,y_0)=0$ Если $\frac{\partial F}{\partial y}(x_0,y_0)\neq 0 \to \exists f \ \exists \mathcal{E}>0: (x_0-\mathcal{E},x_0+\mathcal{E})\to \mathbb{R}$ $F(x,f(x))=0$

Напоминание

$$\frac{dF}{dx}\Big|_{(x_0,y_0)} = \lim_{x \to x_0} \frac{F(x,y_0) - F(x_0,y_0)}{x - x_0}$$

$$y = f(x) \rightarrow \begin{cases} x = t \\ y = f(t) \end{cases}$$
 $f(t) = (x(t), y(t), z(t))$

Как задавать вектор-функцию? $f:[a,b] \to \mathbb{R}^3$ - вектор-функция, тогда

$$\lim_{t\to t_0} f(t) = (x_0,y_0,z_0)$$
 $\forall \mathcal{E}>0 \; \exists \delta>0 : \text{если } \rho(t,t_0)<\delta, \text{ то } \rho(f(t),(x_0,y_0))<\mathcal{E} \; (\rho(t,t_0)=|t-t_0|,\,f(t)=\sqrt{(x(t)-x_0)^2+(y(t)-y_0)^2+(z(t)-z_0)^2})$

Теорема (свойства пределов)

$$\lim_{t \to t_0} (f(t) \pm g(t)) = \lim_{t \to t_0} f(t) \pm \lim_{t \to t_0} g(t)$$

$$\lim_{t \to t_0} (f(t) \cdot g(t)) = (\lim_{t \to t_0} f(t), \lim_{t \to t_0} g(t)) - \text{скалярное умножение}$$

$$\lim_{t \to t_0} (f(x) \times g(t)) = \lim_{t \to t_0} f(x) \times \lim_{t \to t_0} g(t)$$

Док-во

$$\lim_{t \to t_0} f(t) = (\lim_{t \to t_0} x(t), \lim_{t \to t_0} y(t), \lim_{t \to t_0} z(0))$$

$$f(t) = (x(t), y(t), z(t))$$

Пусть
$$\mathcal{E} > 0$$
, выбереме $\delta : |x(t) - x_0| < \frac{\mathcal{E}}{3}$

если
$$|t-t_0| < \delta \Rightarrow \begin{vmatrix} |y(t)-y_0| < \frac{\mathcal{E}}{3} \\ |z(t)-z_0| < \frac{\mathcal{E}}{3} \end{vmatrix} \Rightarrow \sqrt{(x(t)-x_0)^2 + (y(t)-y_0)^2 + (z(t)-z_0)^2} < \epsilon$$

Опр

$$f'(t_0) = \lim_{t \to t_0} \frac{\overline{f}(t) - \overline{f}(t_0)}{t - t_0}$$

Теорема (свойства)

1.
$$(f(t) \pm g(t))' = f'(t) \pm y'(t)$$

2.
$$(cf(t))' = cf'(t)$$

3.
$$(f(t); q(t))' = (f'(t); q(t)) + (f(t); q'(t))$$

4.
$$(f(t) \times g(t))' = f'(t) \times g(t) + f(t) \times g'(t)$$

5.
$$(f(t), g(t), h(t))' = (f', g, h) + (f, g', h) + (f, g, h')$$

Доказывается через
$$f'(t) = (x'(t), y'(t), z'(t))$$

$$f(t) = (x(t), y(t), z(t))$$

Докажем ВП:
$$(f(t) \times g(t))'|_{t=t_0} = \lim_{t \to t_0} \frac{f(t) \times g(t) - f(t_0) \times g(t_0)}{t - t_0} =$$

$$= \lim_{t \to t_0} \frac{f(x) \times g(x) - f(t_0) \times g(t_0) + f(t_0) \times g(t) - f(t_0) \times g(t_0)}{t - t_0}$$

$$= \lim_{t \to t_0} \frac{(f(t) - f(t_0)) \times g(t)}{t - t_0} + \lim_{t \to t_0} \frac{f(t_0 \times (g(t) - g(t_0)))}{t - t_0} =$$

$$= f'(t_0) \times g(t_0) + f(t_0) \times g'(t_0)$$

Пример

Контрпример

Т. Лагранжа - неверна рис 4

$$\begin{split} &\int_{b}^{a} \overrightarrow{f}(t)dt = (\int_{a}^{b} x(t)d(t), \int_{a}^{b} y(t)dt, \int_{a}^{b} z(t)dt) \\ \overrightarrow{F}'(t) &= \overrightarrow{f}(t) \\ \overrightarrow{F}(b) - \overrightarrow{F}(a) &= \int_{a}^{b} \overrightarrow{f}(t)dt \\ F(t) &= (X(t), Y(t), Z(t)) \\ f(t) &= (X'(t), Y'(t), Z'(t)) = (x(t), y(t), z(t)) \\ &\int_{a}^{b} f(t)dt &= (\int_{a}^{b} x(t)dt, \ldots) = (X(b) - X(a), \ldots \end{split}$$

Опр

Гладкая кривая - образ вектороднозначнойя функция

Опр

Кривая называется регулярной, если существует производная и $f'(t) \neq \overrightarrow{0}$

Опр

Кривая называется бирегулярной, если существует вторая производная и f''(t) $/\!\!| f'(t)$

Опр

Параметризации $\overrightarrow{f}(t)\overrightarrow{g}(t)$ $(f:[a,b]\to\mathbb{R}^3,\ g:[c,d]\to\mathbb{R}^3)$ эквивалентны, если \exists биекция $\tau:[a,b]\to[c,d]:\tau(a)=c,\ \tau(b)=d,\ f(t)=g(\tau(t))$

Опр

Параметризации $\overrightarrow{f}(t)$ и $\overrightarrow{g}(t)$ эквивалентны

$$f: [a, b] \to \mathbb{R}^3$$

 $q: [c, d] \to \mathbb{R}^3$

Если \exists биекция $\tau:[a,b] \rightarrow [c,d]$

$$\tau(a) = c; \quad \tau(b) = d:$$

$$f(t) = g(\tau(t))$$
 (au возрастает и гладкая)

Лемма

Эквив параметризаций - эквививалентны

Док-во

Докажем, что экв. параметризации - отношение эквивалентность:

1. (рефл.)
$$\tau = id$$

2. (симм.)
$$f(t) = g(\tau(t)), g(t) = f(\tau(t))$$

3. (тран.)
$$f(t) = g(b(t)), g(t) = h(\tau(t)), f(t) = h(\tau(b(t)))$$

Лемма

$$\overrightarrow{f}(t)$$
 - вектор-функция/ регуляр.

$$|\overrightarrow{f}(t)| = 1 \rightarrow f'(t) \perp f(t)$$

$$(f(t); f(t)) = 1$$

 $0 = (f(t), f(t))' = 2(f'(t), f(t))$
 $f(t) \neq 0$
 $f'(t) \neq 0 \rightarrow f'(t) \perp f(t)$

2019-09-16

Теорема (Ф-ма Тейлора)

$$\overrightarrow{t} = \overrightarrow{t_0} + \overrightarrow{f'}(t_0)(t - t_0) + \frac{\overrightarrow{f''}(t_0)}{2!}(t - t_0)^2 + \dots$$

$$+ \frac{\overrightarrow{f^{(n)}}(t_0)}{n!}(t - t_0)^n + o(t - t_0)^n$$

$$\overrightarrow{g}(t) = o(t - t_0)^n, \text{ если}$$

$$\lim_{t \to t_0} \frac{\overrightarrow{g}(t)}{(t - t_0)^n} = \overrightarrow{0}$$

a)
$$\sup \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

6) $\lim_{\substack{\max \\ i=1..n}} |t_i - t_{i-1}| \to 0$

6)
$$\lim_{\substack{i=1...n\\i=1...n}} (t_i - t_{i-1}) \to 0$$
 ...

-длина кривой

y_{TB}

Оба определения эквивалентны

Теорема

$$S$$
 - длина кривой $\Rightarrow S = \int_a^b |\overrightarrow{f'}(t)| dt$

Опр

Кривая называется спрямляемой, если её длина конечна

Замечание

Если $|\overrightarrow{f'}(t)|$ - интер. \rightarrow кривая спрямляемая

Пример

$$y = \sin\frac{1}{x} \quad (0, 1]$$

рисунок 2

$$y = \begin{cases} \sqrt{x} \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

рисунок 3

Док-во
$$\triangle_i t = t_i - t_{i-1}, \, \tau_i \in [t_{i-1}, t_i], \, \triangle_i f = f(t_i) - f(t_{i-1})$$

$$\left| \int_{a}^{b} |f'(t)| dt - \sum_{i=1}^{n} (f(t_{i}) - f(t_{i-1})) \right| \leq \left| \int_{a}^{b} |f'(t)| dt - \sum_{i=1}^{n} |f'(\tau_{i})| \triangle_{i} t \right| +$$

$$+ \left| \sum_{i=1}^{n} |f'(\tau_{i})| \triangle t_{i} \right| - \sum_{i=1}^{n} |f(t_{i}) - f(t_{i-1})| = I + II$$

$$II \leqslant \sum_{i=1}^{n} ||f'(\tau_i)| \triangle t_i - |f(t_i) - f(t_{i-1})|| = \sum_{i=1}^{n} ||f'(\tau_i)| - |f'(\sigma_i)|| \triangle_i t$$

$$f'(t)$$
 - непр на $[a,b] \Rightarrow$ равномерно непр. на $[a,b]$ (т. Кантора)

$$\forall \mathcal{E} > 0 \quad \exists \delta > 0, \text{ если } |\tau_i - \sigma_i| < \delta \Rightarrow |f'(\tau_i) - |f'(\sigma_i)|| < \mathcal{E}$$

$$||f'(\tau_i)| - |f'(\sigma_i)|| < \mathcal{E}$$
, если $|\sigma_i - \tau_i| < \delta$

$$II \leqslant \sum_{i=1}^{n} \mathcal{E} \triangle_{i} t = \mathcal{E}(b-a) \underset{\mathcal{E} \to 0}{\longrightarrow} 0$$

$$||f'(\tau_i)| - |f(t_i) - f(t_{i-1})|| \le ||f'(\tau_i)| - ||f(t_i)|| - |f(t_{i-1})||$$

$$|f(t_i)| - |f(t_{i-1})| = |f(\sigma_i)| \triangle_i t$$

Опр

Параметризация $f:[a,b] \to \mathbb{R}^3$ называется натуральной, если |f'(t)|=1

Теорема

Натуральная параметризация ∃ и ед.

Лемма

Пусть $f:[a,b]\to\mathbb{R}^3,\ \tau:[c,d]\to[a,b]$ - монотонная биекция $(\tau'>0),$ тогда $f\circ\tau:[c,d]\to\mathbb{R}^3$

Длина кривой (f) не зависит от перепараметризации $(f \circ \tau)$

Док-во

$$\int_a^b |f'(t)|dt \stackrel{?}{=} \int_c^d |(f \circ \tau)(s)|ds$$

$$\int_c^d |(f \circ \tau)(s)|ds = \int_c^d |f'(\tau(s)) \cdot \tau'(s)|ds = \int_c^d |f'(\tau(s))| \cdot \tau'(s)ds = \int_a^b |f'(t)|dt$$

$$t = \tau(s)$$

Док-во (Т)

Существование

Хотим подобрать
$$\tau : |f'(\tau(s))| = 1$$

$$\sigma(t) = \int_{a}^{t} |f'(s)| ds$$

$$\sigma:[a,b]\to[0,S]$$

$$S$$
 - длина кривой

$$\sigma$$
 - возрастающая и дифф. $(\sigma'(t) = |f'(t)|)$

$$\sigma$$
 - биекция $\Rightarrow \tau = \sigma^{-1}$

$$\int_0^t |(f \circ t)'(s)| ds = \int_0^t |f'(\tau(s))| \cdot t'(s) ds =$$

$$\int_0^t |f'(\tau(s))| \cdot t'(s) ds = \int_0^t |f'(\tau(s))| \cdot t'(s) ds =$$

$$= \int_0^t |f'(\tau(s))| \frac{ds}{\sigma'(\tau(s))} = \int_0^t \frac{|f'(\tau(s))|}{|f'(\tau(s))|} ds = t$$

Единственность

$$f(t)$$
 и $g(t)$ - нат. параметризации

$$f,g:[0,s]\to\mathbb{R}^3$$

$$f-q$$

$$\int_0^s |(f \circ g)(t)| dt = \int_0^s |f'(t) - g'(t)| dt \leqslant \int_0^s ||f'(t)| - |g'(t)|| dt = 0$$

Примеры

1.
$$y = y(x)$$

$$\begin{cases} x = t \\ y = y(t) \end{cases}$$

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 1 \\ y'(t) \end{pmatrix}$$

$$s = \int_{a}^{b} \sqrt{1 + y^{2}(x)} dx$$

2.

$$\begin{cases} y = y(t) \\ z = z(t) \end{cases}$$

$$s = \int_{a}^{b} \sqrt{x^{2}(t) + y^{2}(t) + z^{2}(t)} dt$$
3. $r = r(\varphi)$

$$\begin{cases} x = r(\varphi) \cos \varphi \\ y = r(\varphi) \sin \varphi \end{cases}$$

$$\begin{cases} x' = r'(\varphi) \cos \varphi - r(\varphi) \sin \varphi \\ y' = r'(\varphi) \sin \varphi + r(\varphi) \cos \varphi \end{cases}$$

$$| \begin{pmatrix} x' \\ y' \end{pmatrix} | = \sqrt{x'^{2} + y'^{2}} = \sqrt{r'^{2} \cos' 2\varphi + r^{2} \sin^{2} \varphi}$$

$$= \sqrt{r'^{2} + r^{2}}$$

$$S = \int_{\varphi_{0}}^{\varphi_{1}} \sqrt{r'^{2}(\varphi) + r^{2}(\varphi)} d\varphi$$

2 Репер Френе

Опр

$$\overrightarrow{v}=rac{f'(t)}{|f'(t)|}$$
 $\overrightarrow{v}=f'(t)$ - если парам. натуральн. v - касательный вектор

Опр Прямая, содерж в \overrightarrow{v} наз. касательной к $\overrightarrow{f}(t)$ в точке t_0

$$\overrightarrow{f(t_0)} + \overrightarrow{f}'(t_0) \cdot (t - t_0) = \overrightarrow{g}(t)$$
 $\overrightarrow{g}(t)$ - ур-е касат. прямой Нормальная плоскость $f'(t_0) \cdot (\overrightarrow{h} - \overrightarrow{f}(t_0)) = 0$

Теорема

 δ - расстояние от f(t) до касат. прямой

$$\Rightarrow \lim_{t \to t_0} \frac{\delta}{|f(t) - f(t_0)|} = 0$$

Касательная прямая единств. с таким свойством

2019-09-23

Напоминание

$$\left|\sum \left|f(t_i) - f(t_{i-1})\right|\right| - \sum \left|\left|f(t_i) - f(t_{i-1})\right| - \left|f'(\tau_i)\Delta t_i\right|\right| \leqslant$$

$$\leqslant \sum \left|\int_{t_{i-1}}^{t_i} \left|f'(t)\right| dt - \int_{t_{i-1}}^{t_i} \left|f'(\tau_i)\right| dt\right| =$$

$$\sum \int_{t_{i-1}}^{t_i} \left|f'(t) - f'(t_i)\right| dt < \sum \mathcal{E}\Delta_i t = \mathcal{E}(b-a)$$

$$\forall \mathcal{E} > 0 \quad \exists \delta > 0 \text{ если } f_i - f_{i-1} < \delta$$

$$\Rightarrow \left|f'(t) - f'(\tau_i)\right| < \mathcal{E}$$

Лемма

$$\begin{split} \overrightarrow{b} &= \Pi \mathbf{p}_a b + b \frac{1}{a} \\ \overrightarrow{\Pi} \overrightarrow{\mathbf{p}_a b} &= \frac{(a,b)}{\left|a\right|^2} \overrightarrow{a} \\ \left|b \frac{1}{a}\right| &= \frac{\left|\overrightarrow{a} \times \overrightarrow{b}\right|}{\left|a\right|} \end{split}$$

Док-во

$$h=rac{S}{|a|}$$

$$rac{(\overrightarrow{a} imes\overrightarrow{b}) imes\overrightarrow{a}}{|a|^2}=brac{1}{a}$$
 $(a,b,a imes b)$ - прав. тройка $(a imes b,a,b)$ - прав. тройка

Теорема

$$\lim_{t_1 \to t_0} \frac{\delta}{|f(t_1) - f(t_0)|} = 0$$

$$\overrightarrow{f'}(t_0) \Rightarrow \text{ по лемме}$$

$$\delta = \frac{|f'(t_0) \times (f(t_1) - f(t_0))|}{|f'(t_0)|}$$

$$\lim_{t_1 \to t_0} \frac{\delta}{f(t_1) - f(t_0)} = \lim_{t_1 \to t_0} \frac{|f'(t_0) \times \overrightarrow{a}(t_1)|}{|f'(t_0)| \cdot |a(t_1)|}$$

$$\lim_{t_1 \to t_0} \frac{\left| f'(t_0) \times \frac{f(t_1) - f(t_0)}{t_1 - t_0} \right|}{\left| f'(t_0) \cdot \left| \frac{f(t_1) - f(t_0)}{t_1 - t_0} \right| \right|} = \frac{f'(t_0) \times f'(t_0)}{\left| f'(t_0) \right|^2} = 0$$

⇔ очев

3 Вектор кривизны

Опр

$$g(\varphi(t))=g(s)=f(t)$$
 $s=\varphi(t)$ $\overrightarrow{f'}(t)=(g(\varphi_it_i))'=\overrightarrow{g'}\cdot \varphi'(t)$ $\overrightarrow{v}(t_0)=\dfrac{f'(t_0)}{|f'(t_0)|}$ $\overrightarrow{n}:|n|=1;$ $\overrightarrow{n}\perp\overrightarrow{v}$ $n\in < f',f''> \overrightarrow{n}$ и \overrightarrow{f}'' в одной полуплоскости $f'(t)$ $\overrightarrow{v}'(t)\perp\overrightarrow{v}(t)$ $\overrightarrow{v}'(t)=k\cdot\overrightarrow{n}$ $|n|=1$ $k(t)$ - кривизна кривой $k(t)\geqslant 0$ в точке t \overrightarrow{n} - вектор главной нормали \overrightarrow{v} - касат. вект

 y_{TB}

$$f(t)$$
 - натуральная парам.

$$|f'(t)| = 1 \Rightarrow v = f'(t)$$

 $f''(t) = k \overrightarrow{n}$

$$\overrightarrow{n} = \frac{f''(t)}{|f''(t)|}$$

$$k = |f''(t)|$$

рисунок 5 (центростр. ускорение)

f(t) - любая параметризация, g(s) - натур. парам.

$$f(t) = g(\varphi(t)) \qquad s = \varphi(t) \text{ - нат. парам}$$

$$s = \int_a^t (f'(\tau))d\tau$$

$$= \varphi(t)$$

$$f'(t) = g'(s) \cdot \varphi'(t)$$

$$f''(t) = (g'(\varphi(t)))' \cdot \varphi'(t) + g'(s) \cdot \varphi''(t) =$$

$$= g''(s) \cdot \varphi'^2(t) + g'(s)\varphi''(t)$$

$$\downarrow_{\overrightarrow{v}}$$

$$\parallel g'(s) = v$$

Теорема

Плоск. на вект f'(t) и f''(t) не зависит от параметризации

Опр

Эта плоскость (на вект. \overrightarrow{v} и \overrightarrow{n}) наз. соприкасающейся плоск.

4 Формула Френе

Опр

$$\overrightarrow{b}=\overrightarrow{v} imes\overrightarrow{n}$$
 - вектор бинормали $(\overrightarrow{v},\overrightarrow{n},\overrightarrow{b})$ - базис Френе

Трехвекторник Френе или ренер Френе

Теорема

$$extbf{æ} = 0 \Leftrightarrow ext{ Кривая плоская}$$

Кривая плоская \Leftrightarrow она лежит в плоск $< v, n > \Leftrightarrow$ \Leftrightarrow нормаль к < v, n > постоянна $\Leftrightarrow b = const \Leftrightarrow b' = 0 \Leftrightarrow æ = 0$

$$n' = (\overrightarrow{b} \times v)' = b' \times v + b \times v' = -\varpi \ n \times v + k \cdot b \times n = 0$$

$$\varpi \cdot \overrightarrow{b} - k \overrightarrow{v}$$

$$v' = kn$$

$$n' = -kv + \varpi b$$

$$b' = -\varpi n$$

$$\boxed{\begin{array}{c|c} v & n & b \\ \hline v' & 0 & k & 0 \\ \hline n' & -k & 0 & \varpi \\ \hline b' & 0 & -\varpi & 0 \\ \end{array}}$$

5 Вычисление кривизны кручения

Теорема

$$k = \frac{|f'(t) \times f''(t)|}{|t'(t)|^3}$$

$$g(s)$$
 - нат. парам $f(t)=g(\varphi(t))$ $s=\varphi(t)$ $\varphi(t)=\int_a^t |f'(\tau)|\,d au$ $g'(s)=\overrightarrow{v}$ $g''(s)=k\overrightarrow{n}$ $\varphi'(t)=|f'(t)|$ $f''(t)=g''(s)\cdot \varphi^2(t)+g'(s)\cdot \varphi''(t)=k\cdot \overrightarrow{n}\cdot |f'(t)|^2+v\cdot \varphi''(t)$ $f''(t)\times f'(t)=k\,|f'(t)|^2\cdot \overrightarrow{n}\times f'(t)+0=$ $v'(t)=|f'(t)|\overrightarrow{v}$ $k\cdot \overrightarrow{n}\times \overrightarrow{v}\,|f'(t)|^3$ $|f''(t)\times f'(t)|=k\,|f'(t)|^3$ $k=\frac{|f''(t)\times f'(t)|}{|f'(t)|^3}$

2019-09-30 Вычисление кручения

Напоминание

$$(\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c}) = (\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c} + \alpha \overrightarrow{a})$$

$$k = \frac{|f' \times f''|}{|f'|^3}$$

Док-во

$$g(s)$$
 - нат. парам.
$$g'(s) = \overrightarrow{v} \qquad |\overrightarrow{v}| = 1$$

$$g''(s) = v' = k \overrightarrow{n}$$

$$g'''(s) = kn' = k(-k\overrightarrow{v} + \cancel{x}\overrightarrow{b}) = -k^2\overrightarrow{v} + \cancel{x}\cancel{b}$$

$$(g', g'', g''') = (\overrightarrow{v}; k\overrightarrow{n}; -k^2\overrightarrow{v} + \cancel{x}\cancel{b}) = (v; kn; \cancel{x}\cancel{b}) = \cancel{x}\cancel{b}$$

$$\cancel{x} = \frac{(g', g'', g''')}{k^2}$$
 в нат парам.

$$f(t) - \text{парам } (\forall)$$

$$S = \psi(t) = \int_a^t |f'(\tau)| \, d\tau \qquad g(s) - \text{нат. парам}$$

$$\psi'(t) = |f'(t)|$$

$$g(S) = g(\psi(t)) = f(t)$$

$$f'(t) = g'(\psi(t)) \cdot \psi'(t) = g'(s) \cdot |f'(t)|$$

$$f''(t) = g''(\psi(t))(\psi(t))^2 + g'(\psi(t))\psi''(t) = g''(s) \cdot |f'(t)|^2 + g'(s) \cdot \psi''(t)$$

$$f'''(t) = g'''(\psi(t))(\psi'(t))^3 + g''(\psi(t)) \cdot 3\psi'(t)\psi''(t) + g'(\psi(t)) \cdot \psi'''(t)$$

$$(f', f'', f''') = (\overrightarrow{f'}(s) \cdot |f'(t)|; \ \overrightarrow{g}''(s) |f'(t)|^2, g'''(s) \cdot |f'(t)|^3) =$$

$$= (g', g'', g''') \cdot |f'(t)|^6$$

$$\mathfrak{X} = \frac{(g', g'', g''')}{k^2} = \frac{(f', f'', f''')}{|f'(t)|^6} \cdot \frac{|f'(t)|^6}{|f' \times f''|^2} = \frac{(f', f'', f''')}{|f' \times f''|^2}$$

Пример

$$\begin{cases} x = t \\ y = f(t) \end{cases}$$

$$y = f(x) \quad \overrightarrow{f} = (x; f(x); 0) \quad \overrightarrow{f}'(1; f'(x); 0) \quad f''(0; f''(x); 0)$$

$$f''' = (0; f'''(x); 0)$$

$$k = \frac{|f''(x)|}{(1 + f'^{2}(x))^{\frac{3}{2}}}$$

$$f' \times f'' = (0; 0; f''(x))$$

$$\alpha = 0$$

5.1 Дополнение 1: плоскости, связ. с кривыми

Опр

Соприкас плоскость : $\langle \overrightarrow{v}, \overrightarrow{u} \rangle$

Нормальная плоскость кривой : < n, b >

Спрямляющая плоскость : < v, b >

Теорема

$$\overrightarrow{f}(t) = (f_1(t); f_2(t); f_3(t))$$
 ур-е нормали плоск.

$$\overrightarrow{v} \parallel f'(t) = (f_1', f_2', f_3') \quad f_1'(t_0) \cdot (x - f_1(t_0)) + f_2'(t_0) \cdot (y - f_2(t_0)) + f_3'(t_0) \cdot (z - f_3(t_0)) = 0$$

$$f' \times f'' \parallel b$$

так как л.н.

$$(f_1',f_2',f_3')\times(f_1'',f_2'',f_3'')=(f_2'f_3''-f_3'f_2'';f_3'f_1''-f_1'f_3'';f_1'f_2''-f_2'f_1'')$$

Соприкас плоск.

$$\begin{vmatrix} f_1'(t_0) & f_2'(t_0) & f_3'(t_0) \\ f_1''(t_0 & f_2''(t_0) & f_3''(t_0) \\ x - f_1(t_0) & y - f_2(t_0) & z - f_3(t_0) \end{vmatrix} = 0$$

$$(f'(t_0) \times f''(t_0)) \times f'(t_0) \parallel \overrightarrow{n}$$

Ур-е спрям. плоск - УПР

Теорема

 δ - расст. от f(t) до соприкас. плоскости

Если плоскость явл. соприкас., то

$$\lim_{t \to t_0} \frac{\delta}{|f(t) - f(t_0)|^2} = 0$$

Плоскость с таким соотношением ед.

Док-во Условия достигаются за счет подходящей системы координат

a)
$$f(t_0) = (0, 0, 0)$$

b)
$$OX \parallel \overrightarrow{v}(t_0)$$

c)
$$OY \parallel \overrightarrow{n}(t_0)$$

- $d) \quad t_0 = 0$
- e) t нат. параметр

б, в
$$\Rightarrow OZ \parallel \overrightarrow{b}(t_0)$$

$$f(t) = (f_1(t); f_2(t); f_3(t)) \Rightarrow \delta = |f_3(t)s|$$

Соприкас z=0

$$\overrightarrow{v} \parallel f' = (f'_1, f'_2, f'_3) \parallel OX \Rightarrow f'_2(0) = 0, \quad f'_3(0) = 0 \quad f'_1(0) \neq 0$$

$$\overrightarrow{n} \parallel f'' = (f''_1, f''_2, f''_3) \parallel OY \Rightarrow f''_1(0) = 0; \quad f''_3(0) = 0$$
Хотим
$$\lim_{t \to 0} \frac{|f_3(t)|}{|f(t)|^2} = 0$$

$$\lim_{t \to t_0} \frac{f_3(t)}{f_1(t)^2 + f_2(t)^2 + f_3(t)^2} = \lim_{t \to 0} \frac{f_3'(t)}{2f_1(t)f_1'(t) + 2f_2(t)f_2'(t) + 2f_3(t)f_3'(t)}$$

$$= \frac{1}{2} \lim_{t \to 0} \frac{f_3''(t)}{f_1'^2(t) + f_1(t)f_1''(t) + f_2(t)f_2''(t) + f_3'^2(t) + f_3(t)f_3''(t)}$$

Все кроме первого слагаемого в знаменателе стремятся к 0, числитель тоже стремится к 0. Замечание. Можно было разложить f_1, f_2, f_3 по Тейлору. Можно зачеркнуть пункт д(e)) и $f_1''(0) = 0$

5.2 Дополнение 2: натур. ур-я кривой

Теорема

$$g_1(s)$$
 и $g_2(s)$ - нат. парам. двух кривых

$$k_1(s)$$
 — $k_2(s)$ — кривизны и кручения $\mathbf{æ}_1(s)$ — $\mathbf{æ}_2(s)$

Если
$$k_1(s)=k_2(s)$$
 $\approx_1(s)=pprox_2(s)$ \Rightarrow кривые наклад. при движении пр-ва

$$v_1(s), n_1(s), b_1(s)$$
 - базис Френе I кривой

$$v_2(s), n_2(s), b_2(s)$$
 - базис Френе II кривой

5 ВЫЧИСЛЕНИЕ КРИВИЗНЫ КРУЧЕНИЯ

Считаем
$$v_1(s_0) = v_2(s_0)$$
 $n_1(s_0) = n_2(s_0)$ $b_1(s_0) = b_2(s_0)$

В данной точке базисы кривой одинаковы, а дальше возможно не совпадают. Почему не может?

$$h(s) = \overrightarrow{v}_1(s) \overrightarrow{v}_2(s) + \overrightarrow{n}_1(s) \overrightarrow{n}_2(s) + \overrightarrow{b}_1(s) \overrightarrow{b}_2(s) \quad h(s_0) = 3$$
$$h'(s) = v'_1 v_2 + v_1 v'_2 + n'_1 n_2 + n_1 n'_2 + b'_1 b_2 + b_1 b'_2 =$$

По формуле Френе

$$= \underline{\underline{k_1 n_1 v_2}} + \underline{\underline{k_2 v_1 n_2}} + (\underline{-k_1 v_1} + \underline{w_1 b_1}) n_2 + \underline{\underline{n_1 (-k_2 v_2}} + \underline{w_2 b_2}) - \underline{w_1 n_1 b_2} - \underline{w_2 b_1 n_2} = 0$$

$$\Rightarrow h(s_0) \equiv 3$$

$$\Rightarrow v_1 \equiv v_2 \quad n_1 \equiv n_2 \quad b_1 \equiv b_2$$