Shady Haddad

Applied Statistics Formula Sheet 2

Def 3.9)

A random variable *Y* is said to have a *negative binomial probability distribution* if and only if

$$p(y) = {y-1 \choose r-1} p^r q^{y-r}, \qquad y = r, r+1, r+2, ..., 0 \le p \le 1.$$

Theorem 3.9

If Y is a random variable with a negative binomial distribution,

$$\mu = E(Y) = \frac{r}{p} \text{ and } \sigma^2 = V(Y) = \frac{r(1-p)}{p^2}$$

Def 3.10)

A random variable Y is said to have a hypergeometric probability distribution if and only if

$$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}}$$

Where *y* is an integer 0, 1, 2, ..., *n*, subject to the restrictions $y \le r$ and $n - y \le N - r$.

Theorem 3.10

If Y is a random variable with a hypergeometric distribution,

$$\mu = E(Y) = \frac{nr}{N}$$
 and $\sigma^2 = V(Y) = n(\frac{r}{N})(\frac{N-r}{N})(\frac{N-r}{N-1})$

Def 3.11)

A random variable *Y* is said to have a *Poisson probability distribution* if and only if

$$p(y) = \frac{x^y}{y!} e^{-x}, \quad y = 0, 1, 2, ..., x > 0$$

Theorem 3.14

Let Y be a random variable with mean μ and finite variance σ^2 . Then, for any constant k > 0,

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2} \text{ or } P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Def 4.1)

Let Y denote any random variable. The distribution function of Y, denoted by F(y), is such that $F(y) = P(Y \le y)$ for $-\infty < y < \infty$.

Def 4.3)

Let F(y) be the distribution function for a continuous random variable Y. Then f(y), given by

$$f(y) = \frac{dF(y)}{dy} = F^{1}(y)$$

Wherever the derivative exists, is called the *probability density function* for the random variable *Y*.

Def 4.5)

The expected value of a continuous random variable Y is

$$E(Y) = \int_{-\infty}^{\infty} y f(y) \ dy,$$

Provided that the integral exists.

Theorem 4.4

Let g(Y) be a function of Y; then expected value of g(Y) is given by $E[g(Y)] = \int_{-\infty}^{\infty} g(y) f(y) dy,$

provided that the integral exists.

Def 4.6)

If $\theta_1 < \theta_2$, a random variable Y is said to have a continuous uniform probability distribution on the interval (θ_1, θ_2) if and only if the density function of Y is

$$f(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \le y \le \theta_2\\ 0, & elsewhere \end{cases}$$

Def 4.8) (We didn't do normal probability distribution but I included it anyways).

A random variable Y is said to have a normal probability distribution if and only if, for $\sigma > 0$ and $-\infty < \mu < \infty$, the density function of Y is

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(y-\mu)^2/(2\sigma^2)}$$

Theorem 4.7

If Y is a normally distributed random variable with parameters μ and σ , then $E(Y)=\mu \ \ \text{and} \ \ V(Y)=\sigma^2.$

Def 4.9)

A random variable Y is said to have a gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ if and only if the density function of Y is

$$f(y) = \begin{cases} \frac{y^{\alpha - 1}e^{\frac{-y}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}, & 0 \le y < \infty, \\ 0, & elsewhere \end{cases}$$

Where

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} \, e^{-y} dy.$$

Theorem 4.8

has a gamma distribution with parameters α and β , then

$$\mu = E(Y) = \alpha\beta$$
 and $\sigma^2 = V(Y) = \alpha\beta^2$

Def 4.10)

Let v be a positive integer. A random variable Y is said to have a *chi-square* distribution with v degrees of freedom if and only if Y is a gamma-distributed random variable with parameters $\alpha = \frac{v}{2}$ and $\beta = 2$.

Def 4.11)

A random variable Y is said to have an exponential distribution with parameter $\beta > 0$ if and only if the density function of Y is

$$f(y) = \begin{cases} \frac{1}{\beta} e^{-y/\beta}, & 0 \le y < \infty \\ 0, & elsewhere. \end{cases}$$

Theorem 4.10

is an exponential random variable with parameter β , then

$$\mu = E(Y) = \beta$$
 and $\sigma^2 = V(Y) = \beta^2$

Def 4.12) (We did not do this lesson but included it anyways)

A random variable Y is said to have a beta probability distribution with parameters $\alpha < 0$ and $\beta > 0$ if and only if the density function of Y is

$$f(y) = \begin{cases} \frac{y^{\alpha - 1}(1 - y)^{\beta - 1}}{\beta(\alpha, \beta)}, & 0 \le y \le 1\\ 0, & elsewhere \end{cases}$$

Where

$$B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

<u>Theorem 4.13</u>)

Tchebysheff's Theorem Let Y be a random variable with finite mean μ and variance σ^2 . Then, for any k > 0,

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2} \text{ or } P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Def 5.1)

Let Y_1 and Y_2 be discrete random variables. The *joint* (or bivariate) *probability* function for Y_1 and Y_2 is given by

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2), \quad -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

Def 5.2)

For any random variables Y_1 and Y_2 , the joint (bivariate) distribution function $F(y_1,y_2)$ is

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2), \quad -\infty < y_1 < \infty, -\infty < y_2 < \infty.$$

Def 5.3)

Let Y_1 and Y_2 be continuous random variables with joint distribution function $F(y_1, y_2)$. If there exists a nonnegative function $f(y_1, y_2)$, such that

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1,$$

For all $-\infty < y_1 < \infty, -\infty < y_2 < \infty$, then Y_1 and Y_2 are said to be *jointly* continuous random variables. The function $f(y_1, y_2)$ is called the *joint probability* density function.

Def 5.5)

If Y_1 and Y_2 are jointly discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then the conditional discrete probability function of Y_1 given Y_2 is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)},$$

Def 5.6)

If Y_1 and Y_2 are jointly continuous random variables with join density function $f(y_1, y_2)$, then the conditional distribution function of Y_1 given $Y_2 = y_2$ is

$$F(y_1|y_2) = P(Y_1 \le y_1|Y_2 = y_2).$$

Def 5.7)

Let Y_1 and Y_2 be jointly continuous random variables with joint density $f(y_1,y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$, respectively. For any y_2 such that $f_2(y_2) > 0$, the conditional density of Y_1 given $Y_2 = y_2$ is given by

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

And, for any y_1 such that $f_1(y_1) > 0$, the conditional density of Y_2 given $Y_1 = y_1$ is given by

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_1(y_1)}.$$

Def 5.8)

Let Y_1 have distribution function (F_1) (Y_1), Y_2 have distribution function $F_2(y_2)$, and Y_1 and Y_2 have joint distribution function F (Y_1 , Y_2). Then Y_1 and Y_2 are said to be independent if and only if

$$F(y_1, Y_2) = F_1(Y_1)F_2(Y_2)$$

for every pair of real numbers (Y_1, Y_2) .

If Y_1 and Y_2 are not independent, they are said to be dependent.