Анализ

Галкина

05.09.2022

Оглавление

1	Ряд	<mark>ты</mark>
	1.1	Числовые ряды
		1.1.1 Базовые определения и теоремы
2		1.1.2 Знакопостоянные ряды
	1.2	Знакопеременные ряды
		1.2.1 Свойства абсолютно сходящихся рядов
	1.3	Действия над абсолютно сходящимися рядами 14
	1.4	Перестановки условно-сходящихся рядов
	1.5	Равномерная сходимсоть функциональных рядов 1
		1.5.1 Свойства равномерно сходящихся ф. п
	1.6	Функциональные ряды
		1.6.1 Свойства равномерно сходящихся рядов
	1.7	Степенные ряды
		1.7.1 Базовые определения
		1.7.2 Формулы для вычисления радиуса сходимости 2
		1.7.3 Ряды Тейлора 2
		1.7.4 Использование степенных рядов
2	Hec	собственный интеграл
	2.1	Основные определения
		2.1.1 Критерии сходимости несобственного интеграла 2
		2.1.2 Признаки сравнения в предельной форме

OГЛAВЛEНUЕ

Глава 1

Ряды

В данном разделе мы будем изучать следующие объекты:

- Числовые ряды
- Функциональные ряды (в т.ч. степенные, ряды Фурье)

1.1 Числовые ряды

1.1.1 Базовые определения и теоремы

Определение 1 Ряд - сумма счетного числа слагаемых:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$$

Определение 2 Частичная сумма S_n - сумма первых n слагаемых

Определение 3 Сумма ряда - предел последовательности частичных сумм

$$S = \lim_{n \to \infty} S_n$$

Если предел существует и конечен, то ряд сходится. Если предел бесконечен, ряд расходится. Заметим, что, согласно теоремам о

Определение 4 Остаток ряда - разность между частичной суммой ряда и самим рядом:

$$R_k = S - S_k = \sum_{n=k}^{\infty} a_k$$

Пример. Геометрический ряд $a+aq+aq^2+\dots$ По школьной формуле $S_n=\frac{1-q^n}{1-q}.$ Имеем случаи:

1.
$$|q| < 1$$
: $S = \frac{a}{1-q}$

2.
$$|q| > 0$$
: $S = \infty$

3.
$$q = 1$$
: $S = \infty$

Итак, ряд сходится, только если |q| > 1.

Следующие теоремы устанавливаются для любых рядов:

Теорема 1 (необходимое условие сходимости ряда) Если ряд сходится, то предел общего члена равен 0. Равносильная формулировка: если $\lim_{n\to\infty} a_n \neq 0$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. По условию, существует число S - предел частичных сумм ряда. Тогда $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (S_n - S_{n-1}) = S - S = 0$. \square

Пример. $\sum_{n=1}^{\infty} \sin nx$, $x \neq \pi k$, $k \in \mathbb{Z}$. Зафиксируем x. Допустим, что $\lim_{\substack{n \to \infty \text{ряд расходится.}}} \sin nx = 0$. Но это противоречит тому, что $\sin^2 + \cos^2 = 1$. Значит,

Пример. Гармонический ряд расходится, т.к. расходится последовательность частичных сумм: $S_{2^n}>1+\frac{1}{2}+2\cdot\frac{1}{4}\ldots=1+\frac{n}{2}$

Теорема 2 (критерий Коши сходимости ряда)

Pяд $\sum_{n=1}^{\infty} a_n$ сходится тоггда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N \ \forall p \in \mathbb{N} : |a_{n+1} + \ldots + a_{n+p}| < \varepsilon$$

Доказательство. По определению, ряд сходится, когда существует предел частичных сумм. Применим к ним критерий Коши, получим условие: $|S_{n+p} - S_n| < \varepsilon$. Но $S_{n+p} - S_n \equiv a_{n+1} + ... + a_{n+p}$. \square

Теорема 3 (критерий сходимости через остаток)

- 1. Если ряд сходится, то сходится любой из его остатков.
- 2. Если хотя бы один остаток сходится, то ряд тоже сходится.

Доказательство. 1. По условию, существует сумма ряда S. Зафиксируем номер $N \in \mathbb{N}$ и рассмотрим остаток $R_N = \sum_{k=N+1}^{\infty} a_k$, а также последовательность σ частичных сумм ряда-остатка R_N : $\sigma_n = a_{N+1} + ... + a_{N+n} = a_{N+n} + ...$

$$\sum\limits_{k=N+1}^{N+n} a_k$$
. Рассмотрим её предел: $\lim\limits_{n\to\infty} \sigma_n = \lim\limits_{n\to\infty} (S_{n+N} - S_N) = S - S_N = R_N$. Значит, остаток сходится.
2. По условию, существует такой номер n_0 , что остаток R_{n_0} сходится.

2. По условию, существует такой номер n_0 , что остаток R_{n_0} сходится. Тогда существует предел частичных сумм σ_n этого остатка: $\lim_{n\to\infty} \sigma_n = \sigma$, $\sigma_n = a_{n_0} + \ldots + a_{n_0+n}$. Пусть $n_0 + n = m$, тогда $\lim_{n\to\infty} S_m = \lim_{n\to\infty} (S_{n_0} + \sigma_{m-n_0}) = S_{n_0} + \sigma$, то есть основный ряд сходится. \square

1.1.2 Знакопостоянные ряды

Исследуем подробнее знакопостоянные ряды. Ряд называется знакопостоянным, если, начиная с некоторого номера, все его члены имеют одинаковый знак (конечное число членов в начале не влияет на сходимость). Следующие теоремы устанавливаются для положительных рядов, для отрицательных рядов применимы эти же рассуждения, стот лишь поменять знак.

Теорема 4 (критерий сходимости для неотрицательных рядов) Ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху.

Доказательство. \Rightarrow . По условию, существует предел $\lim_{n\to\infty} S_n = S \in \mathbb{R}$. Значит, последовательных частичных сумм ограниченна сверху. \Leftarrow . По условию, ограниченная неубывающая последовательность $\{S_n\}$ ограничена сверху, значит, по теореме Вейрштрасса у неё есть предел S. \square

Следующее важное утверждение о положительных рядах - признак сравнения. Он позволяет делать выводы о сходимости ряда, сравнивая его с известными рядами: геометрической прогрессией, обобщенным гармоническим рядом (то есть с произвольным показателем степени).

Теорема 5 (признак сравнения в оценочной форме) Пусть даны последовательности $0 \le a_n \le b_n \ \forall n \in \mathbb{N}$. Тогда из сходимости ряда с общим членом b_n следует сходимость ряда с общим членом a_n (из расходимости ряда с общим членом a_n следует расходимость ряда с общим членом b_n).

Доказательство. Докажем исходя из критерия сходимости. Пусть A_n, B_n - частичные суммы рядов с членами a_n, b_n . Так как ряд B сходится, то существует верхний предел M для его частичных сумм. Так как члены

ряда A меньше членов ряда B, то $A_n \leqslant B_n \leqslant M$, откуда по транзитиавности неравенств $A_n \leqslant M$, значит, у A_n есть предел. \square

Пример. Рассмотрим $p < 1, n^p < 1, \frac{1}{n^p} > \frac{1}{n}$. Так как гармонический ряд расходится, то $\sum_{n=1}^{\infty} \frac{1}{n^p}$ расходится.

Пример. Найти сумму. $\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2} + \sqrt{2}} + ..., a_{n+1} =$ $\sqrt{2-b_n},\ b_{n+1}=\sqrt{2+b_n}.$ Заметим, что $b_1=2\cos\frac{\pi}{4},\ b_2=\cos\frac{\pi}{8}.$ Дальше эта формула выводится по индукции. $b_n=2\cos\frac{\pi}{2^{n+1}}.\ a_n=\sqrt{2-b_{n-1}}=$ $\sqrt{2-2\cos\frac{\pi}{2^n}}=2\sin\frac{\pi}{2^{n+1}}$ Ита, $a_n\leqslant 2\cdot\frac{\pi}{2^{n+1}}=\frac{\pi}{2^n}$

Теорема 6 (Признак сравнения в предельной форме)

Пусть даны неотрицательные ряды $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$. Пусть $k = \lim_{n \to \infty} \frac{a_n}{b_n}$. Тогда если

- 1. $k = const \ (k \neq 0)$: ряды сходятся или расходятся одновременно. 1.1. k = 1: ряды эквивалентны.
- 2. k = 0: ecnu B cxodumcs, mo u A cxodumcs.
- 3. $k = \infty$: если A сходится, то и В сходится.

Доказательство.

1. Запишем определение предела $\lim_{n\to\infty}\frac{a_n}{b_n}=k$ для $\varepsilon=\frac{k}{2}>0$:

$$\exists N(\varepsilon) \ \forall n > N : \frac{k}{2} < \frac{a_n}{b_n} < \frac{3k}{2}$$

- откуда $a_n < \frac{3k}{2}b_n$. Значит, если ряд B сходится, то и ряд A сходится. 2. Пусть $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$. Для $\varepsilon = 1$ $\exists N \ \forall n > N : \frac{a_n}{b_n} < 1$, значит $a_n < b_n$ и сходимость рядов следует из признака сравнения в оценочной форме.
- 3. Переворачивая предел в п.2, получаем все аналогично. \square

Пример. Исследуем на сходимость ряд $\sum_{n=1}^{\infty} (\frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}})$. Имеем $S_n =$ $1 - \frac{1}{(n+1)^{\alpha}}$. При $\alpha > 0$ S_n сходится к 1, при $\alpha < 0$ ряд расходится.

Теорема 7 (третий признак сравнения)

Пусть даны ряды $A = \sum_{n=1}^{\infty} a_n$ и $B = \sum_{n=1}^{\infty} b_n$, причем $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$. Тогда если В сходится, то и А сходится.

Доказательство. Перемножив положительные неравенства $\frac{a_{k+1}}{a_k} \leqslant \frac{b_{k+1}}{b_k}$, получим $\frac{a_n}{a_1} \leqslant \frac{b_n}{b_1}$, откуда $a_n \leqslant b_n \cdot const$. Из признака сравнения в оценочной форме получаем, что ряд A сходится, если сходится ряд B. \square

Переходим к более тонким признакам сходимости ряда. Алгоритм вырисовывается следующий: сначала даламберим, потом кошируем. Если не помогает, пробуем признак Раабе, но все вопросы снимает гауссирование.

Теорема 8 (признак Даламебра в оценочной форме)

Пусть дан ряд с общим членом a_n . Тогда

- 1. Если $\frac{a_{n+1}}{a_n} \leqslant q < 1$, то ряд сходится; 2. Если $\frac{a_{n+1}}{a_n} \geqslant q < 1$, то ряд расходится.

Доказательство. 1. Ряд с общим членом $b_n = q^n, \ q \in (0,1),$ сходится. По условию, $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$, значит, ряд сходится по 3-му признаку сравне-

2. Ряд с общим членом $b_n = 1$ расходится. По условию, $\frac{a_{n+1}}{a_n} \geqslant \frac{b_{n+1}}{b_n}$, значит, ряд расходится по 3-му признаку сравнения. \square

Теорема 9 (признак Даламбера в предельной форме)

Пусть дан ряд с общим членом a_n . Тогда

- 1. $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = q < 1$, mo psd cxodumcs; 2. $\underline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = r > 1$, mo psd pacxodumcs.

Доказательство. 1. Пусть верхний предел равен q < 1. Возьмем arepsilon = $\frac{1-q}{2}$. Тогда $\exists n_0 \in \mathbb{N} \ \forall n > n_0: \frac{a_{n+1}}{a_n} \leqslant q + \varepsilon = q_1 < 1$. Тогда по признаку Даламебра в оценочной форме ряд сходится.

2. Так как для некоторой подпоследовательности $\frac{a_{n+1}}{a_n} > 1$, то не выполняется необходимый признак, следовательно, ряд расходится. \square

Замечание. Если предел равен 1, то r = q = 1.

Замечание. В отличие от признака Коши, в п.2 нельзя заменить нижний предел на верхний.

Замечание. Если все-таки получилась единица, то ряд может как сходиться, так и расходиться. Но если предел подходит к единице сверху, то ряд расходится (в силу невыполнения необходимого признака).

Теорема 10 (признак Коши в оценочной форме)

Пусть дан ряд с общим членом a_n .

Если $\sqrt[n]{a_n} \leqslant q < 1$, то ряд сходится.

Если $\sqrt[n]{a_n} \geqslant 1$, то ряд расходится.

Доказательство. Сравним с геометрической прогрессией.

- 1. $a_n \leqslant q^n, \ q < 1$, значит ряд сходится по признаку сравнения.
- 2. $a_n > 1$, значит ряд расходится по необходимому признаку. \square

Теорема 11 (признак Коши в предельной форме) Пусть дан ряд с общим членом a_n и $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q$. Тогда:

- 1. Если q < 1, то ряд сходится.
- 2. Если q > 1, то ряд расходится.

Доказательство. Аналогично признаку Даламбера.

1. Рассмотрим предел $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q < 1$. Возьмем $\varepsilon = \frac{1-q}{2}$. Тогда

$$\exists n_0 \ \forall n > n_0 : \sqrt[n]{a_n} = q + \varepsilon = \frac{q+1}{2} < 1$$

Тогда ряд сходится по признаку Коши в оценочной форме.

2. Рассмотрим предел $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q < 1$. Выделим подпоследовательность a_{n_k} , на которой достигается этот верхний предел. Возьмем $\varepsilon=q-1$. Тогда

$$\exists k_0 \ \forall k > k_0 : \sqrt[n_k]{a_{n_k}} > 1$$

Значит, $a_{n_k} > 1$, и ряд расходится по необходимому условию. \square

Пример. $\sum_{n=1}^{\infty} \left(\frac{2+(-1)^n}{5+(-1)^{n+1}}\right)^n$. Кошируя это ряд, взяв наибольшую подпоследовательность, получим предел $\frac{3}{4}$, значит, ряд сходится. Можно ещё просто посчитать две подпоследовательности.

Пример. $\sum_{n=1}^{\infty} \left(\frac{1+\cos n}{2+\cos n}\right)^{2n-\ln n}$. Оценим это рядом $b_n = \left(\frac{1+n}{2+n}\right)^{2n-\ln n}$. В итоге получится, что ряд сходится.

Теорема 12 (признак Раабе в оценочной форме)

Пусть дан знакопостоянный ряд с общим членом $a_n > 0$. Тогда:

- 1. Если $\frac{a_{n+1}}{a_n} \geqslant 1 \frac{1}{n}$, то ряд расходится. 2. Если $\exists \alpha > 1 : \frac{a_{n+1}}{a_n} \leqslant 1 \frac{\alpha}{n}$ тогда ряд сходится.

Доказательство. 1. Пусть $\frac{a_{n+1}}{a_n} \geqslant \frac{n-1}{n}$. Введем ряд с общим членом $b_n = \frac{1}{n-1}$. $\frac{a_{n+1}}{a_n} \geqslant \frac{b_{n+1}}{b_n}$, и так как ряд b_n расходится, то ряд a_n расходится по третьему признаку сравнения.

2. Пусть $\beta \in (1, \alpha)$, тогда $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ сходится. Далее, $\frac{b_{n+1}}{b_n} = (\frac{n}{n+1})^{\beta} =$ $(1+\frac{1}{n})^{-\beta}=1+\frac{\beta}{n}+O(\frac{1}{n^2})$. Затем, $-\frac{\beta}{n}>-\frac{\alpha}{n}\implies 1-\frac{\beta}{n}>1-\frac{\alpha}{n}$. Так как $O(\frac{1}{n^2})$ - бесконечно малая более высокого порядка, чем $\frac{\alpha}{n}$ и $\frac{\beta}{n}$, то $\exists n_0 \in \mathbb{N} \ \forall n > n_0 : 1 - \frac{\alpha}{n} < 1 - \frac{\beta}{n} + O(\frac{1}{n^2})$. Правая часть равна $\frac{b_{n+1}}{b_n}$. По условию, $\frac{a_{n+1}}{a_n} \leqslant 1 - \frac{\alpha}{n}$. Из этих двух условий по свойству транзитивности неравенств получаем оценку $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$, откуда следует сходимость ряда.

Теорема 13 (Признак Раабе в предельной форме)

Пусть дан ряд с общим членом a_n $u\lim_{n\to\infty}n(1-\frac{a_{n+1}}{a_n})=R.$ Тогда:

- 1. R < 1 ряд расходится
- 2. R > 1 ряд сходится.

Доказательство. 1. Пусть $\varepsilon = 1 - R$

Замечание. $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1) = \lim_{n\to\infty} n(1-\frac{a_{n+1}}{a_n}).$

Теорема 14 (признак Куммера)

Даны две последовательности a_n и c_n . Тогда:

- 1. Если $\exists \alpha > 0 \exists n_0 \in \mathbb{N} \ \forall n > n_0 : C_n C_{n+1} \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha$ ряд сходится.
- 2. Если ряд $\sum_{n=1}^{\infty} \frac{1}{C_n}$ расходится и $C_n C_{n+1} \frac{a_{n+1}}{a_n} \leqslant 0$, то ряд расходится.

Доказательство. Пж убейте меня бля я больше не могу 🗆

Следствие 1. Признак Даламбера при $C_n \equiv 1$

Следствие 2. Признак Раабе. Возьмем $C_n = n-1$. Имеем 1. $n-1-n \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha \implies 1 - \frac{1}{n} - \frac{a_{n+1}}{a_n} \geqslant \frac{\alpha}{n} \implies \frac{a_{n+1}}{a_n} \leqslant 1 - \frac{1+\alpha}{n}$. Подставляя в пункт

Теорема 15 (признак Бертрана/следствие из признака Куммера)

1.
$$C_n = (n-2)\ln(n-1)$$
. $\frac{a_{n+1}}{a_n} \geqslant_1 -\frac{1}{n} - \frac{1}{n\ln n}$ - ряд сходится 2.

Доказательство. \square

Теорема 16 (признак Гаусса)

Пусть дан положительный ряд. Пусть его можно представить в виде

$$\frac{a_{n+1}}{a_n} = D - \frac{r}{n} + \frac{\theta_n}{n^{1+\alpha}}$$

Тогда:

- 1. Если D > 1 ряд расходится
- 2. Если D < 1 ряд cxodumcs
- 3. Если $D=1,\ R\leqslant 1$ ряд расходится
- 4. Если D = 1, R > 1 ряд сходится.

Доказательство. 🗆

Теорема 17 (интегральный признак)

Пусть ряд знакопостоянен. Ряд $\sum_{n=1}^{\infty} a_n$ и интеграл $\int_{1}^{\infty} f(x) dx$ сходятся и расходятся одновременно, причем $f(n) = a_n$, функция определена, непрерывна, неотрицательна и невозрастающая на $[1,\infty)$. Оценка погрешности:

Доказательство. $\forall x \geqslant 1 \; \exists k \in \mathbb{N} : k \leqslant x \leqslant k+1$. По условию невозрастания имеем $f(k) \geqslant f(x) > f(k+1)$. $a_{k+1} < f(x) \leqslant a_k, \; a_{k+1} \; \Box \; \mathbf{Пример}$. Исследуем $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Взятием интеграла получаем условия сходимости:

$$\Big\{$$
сходится при $p>1$ расходится при $p\leqslant 1$

Признак Дирихле Пусть общий член ряда имеет вид a_nb_n . Тогда если:

1ю a_n монотонна и её предел равен нулю

2. Предел частичных сумм b_n ограничен

Доказазтельство. по критерию Коши. Фиксируем положительный ε . По условию, предел ряда A равен нулю, тогда для $\frac{\varepsilon}{6B}>0, \ \exists n_0=n_0(\varepsilon)\in \mathbb{N} \forall n>n_0: |a_n|<\frac{\varepsilon}{6B}$

Пример. $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n}$. По признаку Дирихле ряд сходится, так как частичные суммы синуса арифметической прогрессии сходятся.

Теорема 18 (признак Абеля)

Пусть общий член ряда имеет вид $a_n b_n$. Тогда если

- 1. Последовательность a_n монотонна и ограниченна
- 2. Последовательность b_n сходится.

Доказательство. Докажем по критерию Коши. Зафиксируем $\varepsilon > 0$. Так как сходится ряд b_n , то по критерию Коши для $\frac{\varepsilon}{3M} > 0$ найдется такой номер, начиная с которого модуль суммы р членов ряда b_n меньше, чем эта штука. Из неравенства Абеля получим $\Big|\sum_{k=n+1}^{n+p} a_k b_k \leqslant \frac{\varepsilon}{3M}\Big|$

□ Упражнение. Доказать признак Абеля, используя признак Дирихле.

Пример. $\sum_{n=2}^{\infty} (\sin n\alpha \cos \frac{\pi}{n}) / \ln \ln n$. Косинус монотонный и ограниченный, а все остальное сходится по Дирихле. Значит,ряд сходится по Абелю.

1.2 Знакопеременные ряды

Сформулируем признаки Коши и Даламбера для знакопеременных рядов. Доказательство чекаем в Фихтенгольце.

Теорема 19 (признак Даламбера)

Пусть a_n - общий член знакопеременного ряда. Пусть $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = q$. Получаем классическую абсолютную сходимость.

Доказательство. ПОЛНОСТЬЮ следует из признака Даламбера для знакопостоянных рядов. Единственно, что здесь нового - то, что при абсолютной расходимости в признаке Даламбера будет и условная расходимость, поскольку не выполняется необходимое условие сходимости ряда. Для некоторого эпсилон... $\left|\frac{|a_{n+1}|}{|a_n|}\right| - q| < \varepsilon$

Теорема 20 (признак Коши) Все аналогично. Из абсолютной расходимости следует расходимость.

Доказательство. Признак сравнения для знакопеременных рядов не работает. Приведем контрпример: $a_n = \frac{(-1)^{n+1}}{n}$, $b_n = a_n + \frac{1}{(n+1)\ln(n+1)}$. Предел отношения таких рядов равен 1, то есть они эквивалентны, но вот первый сходится, а второй - расходится (см. общий пример с степенями и логарифмами).

1.2.1 Свойства абсолютно сходящихся рядов

. Лемма. Если рядсходится абсолютно, то модуль его суммы не превосходит суммы его модулей.

Теорема 21 ()

Пусть дан ряд с общим членом a_n , и он сходится абсолютно. Обозначим его сумму, частичную сумму, сумму модулей и частичную сумму модулей как $S, S_n, \overline{S}, \overline{S_n}$. Тогда, если переставить слагаемые, новый ряд a_n^* сходится абсолютно.

Доказательство. Ещё один ворох обозначений: $\overline{S_n^*}, S_n^*$. Длялюбого эпсилон найдется номер такой, что $|\overline{S_n} - \overline{S}| < \frac{\varepsilon}{2}$. Из леммы следует, что $|S - S_n| < \frac{\varepsilon}{2}$. Перейдем к переставленному ряду. Выберем в нем номер, чтобы такая частичная сумма содержала все слагаемые, входящие в $S_{n(\varepsilon)}$. Взяв любое число m большее этого номера, $|S_m^* - S_{n(\varepsilon)}| < |\overline{S}| < \frac{\varepsilon}{2}$. В эту сумму ои все вошли. Остались толкьо те, которые $??? |S_m^* - S| = |S_m^* - S_{n(\varepsilon)}| + |S_{n(\varepsilon)}| - |S| \le 2 \cdot \frac{\varepsilon}{2}$. Мы доказали сходимость ряда. Абсолютная сходимость следует из таких же рассуждений для ряда с модулем.

1.3 Действия над абсолютно сходящимися рядами

Теорема 22 Если ряд сходится абсолютно, то ряд, умноженный на константу, сходится абсо лютно.

Доказательство. Зафиксируем ε . Найдем такой номер, что ряд из модулей меньше чем $\frac{\varepsilon}{|c|}$. И в общем эта штука сходится. \square

Теорема 23 Сумма абсолютно сходящихся рядов абсолютно сходится.

Доказательство. Сумма модулей больше модуля суммы. \square

Теорема 24 (О произведении абсолютносходящихся рядов) Сумма всевозможных произведений a_ib_j сходится абсолютно, и сумма ряда равна произведению сумм.

Доказательство. Введем две переменные с модулями. Введем новые обозначения, как в прошлой теореме. Пользуясь этой же теоремой, мы можем доказать абсолютную сходимость для хотя бы одного из упорядочиваний. Представим себе бесконечную матрицу $|a_ib_j|$. Будем рассматривать последовательность частичных сумм в угловых минорах. Для них имеем формулу $S_{n^2} = S'_n \cdot S''_n$. По условию,в правой части есть оба предела, а значит и слева тоже есть. И ещё, $S_{n^2} \leqslant S_m \leqslant S_{(n+1)^2}$. Ну кароч....че то мдэ, тут дофига текста. \square

Определение 5 (произведение рядов по Коши)

Пусть $S_a \cdot S_b = S_c$. имеемследующее произведение:

$$c_1 = a_1 b_1$$

$$c_2 = a_1 b_2 + a_2 b_1$$

$$c_3 = a_1b_3 + a_2b_2 + a_3b_3$$

То есть суммируем по диагональкам той бесконечной матрицы.

Пример 1.
$$a_n = \frac{1}{n(n+1)} = 1$$
, $b_n = \frac{n}{2^n}$. Тогда $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{n+1-k}{k(k+1)-2^{n+1-k}}$.

Пример 2. Произведение расходящихся рядов $a_n = 1, 5^n, b_n = 1 - 1, 5^n$ в смысле Коши - сходится, так как $c_n = 0, 75^n$.

Заметим, что условной сходимости недостаточно! Так, для $a_n = b_n = (-1)^{n-1}/\sqrt{n}$ ничего не выйдет. Смиритесь. Ребят а че вы с пары то свалили. Чувствую себя лохом, и от этого неуютненько.

1.4 Перестановки условно-сходящихся рядов

Теорема 25 Лемма о сходимости. Ряд a_n сходится условно. Рассмотрим отдельно подпоследовательности из положительных и отрицательных членов. Тогда их суммы $+\infty$, $-\infty$ соответственно.

Доказательство.

Теорема 26 (Римана)

Если рядсходится услвоно, то для любого действительного числа найдется такая перестановка ряда, при которой ряд сходится к этому числу.

Доказательство. По предыдущей лемме, ряд из положительных членов расходится, значит, найдется частичная сумма, большая чем искомое число. Дальше найдем такую частичну сумм из отрицатльных членов, чтобы, прибавв её к прошлому этапу, получили снова меньше чем число. И так далее. □

1.5 Равномерная сходимсоть функциональных рядов

Теорема 27 (критерий Коши равномерной сходимости) $f_n(x) \rightrightarrows f(x)$ на множестве $X \Leftrightarrow \forall \varepsilon > 0 \exists n_0(\varepsilon) \in \mathbb{N} \forall n > n_0 \forall p \in \mathbb{N} \forall x \in X : |f_{n+p}(x) - f_n(x)| < \varepsilon$

Доказательство. 1. Зафиксируем $\varepsilon > 0$. По условию, $f_n(x) \rightrightarrows f$ на X. Тогда для $\frac{\varepsilon}{2} > 0$

Следствие (метод граничной точки). Если $f_n(x) \in [a,b)$ и $f_n(x) \to f(x) \ \forall x \in_9 a,b,\ f_n(a)$ расходится. Тогда $f_n(x)$ не сходится равномерно к f(x) на (a,b).

Доказательство. Допустим, что сходимсоть равномерная. Тогда че топроисходит

Пример. $f_n(x) = n^{x+1}e^{-nx}, \ x > 0.$

1.5.1 Свойства равномерно сходящихся ф. п.

1. Линейные комбинации сходятся с соответствующим линейным комбинациям пределов.

- 2. Умножение на ограниченную на X функцию: $(gf_n) \rightrightarrows (gf)$
- 3. На любом подмножестве X функция равномерно сходится.
- 4. Если $\forall x \in x : f_n(x) \to f(x)$ и $E \subset X$ конечное множество, то на E функция сходится равномерно.
- 5. Функция, равномерно сходящаяся на двух множествах, равномерно сходится на их объединении.

Доказательство.

1.6 Функциональные ряды.

Определение 6 Область $X \subset D$ сходимости ряда $\sum_{n=1}^{\infty} a_n(x)$ - область, лежащая в области определения всех функций ряда и для каждого x на ней ряд сходится.

Пример. $\sum_{n=1}^{\infty} \frac{8^n}{n} (\sin x)^{3n}$. Область сходимости - $|\sin x| < \frac{1}{2}$.

Определение 7 Pяд $\sum_{n=1}^{\infty} a_n(x)$ cходится равномерно κ S(x) на X, если $S_n \rightrightarrows S$ на X $(S_n$ - частичная сумма ряда).

Пример. Исследуем на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{x(2n-1)}{((n-1)^2+x^2)(n^2+x^2)}, x \in [1,\infty)$. Здесь предел частичных сумм можно найти по определению: $S_n(x) = \sum_{n=1}^{\infty} a_k = x(\frac{1}{x^2} - \frac{1}{n^2+x^2})$. При фиксированном $x \in D$: $\lim_{n \to \infty} S_n(x) = \frac{1}{x}$, $S(x) = \frac{1}{x}$. Проверим, что остаток равномерно стремится к нулю (тогда это верно и для суммы): $R_n(x) = S(x) - S_n(x) = \frac{x}{n^2+x^2} \leqslant \frac{x}{2nx} = \frac{1}{2n} \to 0, \ n \to \infty$ (по методу оценки остатка). Итак, ряд сходится равномерно к своей сумме. **Пример.** Исследуем на равномерную сходимость $\sum_{n=1}^{\infty} \frac{x^2(2n-1)}{((n-1)^2+x^2)(n^2+x^2)}, x \in [1,\infty)$. Имеем $S_n(x) = 1 - \frac{x^2}{n^2+x^2}, \ S(x) = 1$

Теорема 28 (необходимое условие равномерной сходимости ф.р) Ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X. Тогда $a_n \rightrightarrows 0$ на X.

Доказательство. По условию, $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 \forall x \in X : |S_n(x) - S(x)| < \frac{\varepsilon}{2} \square$

Теорема 29 (критерий Коши равномерной сходимости функционального ряда)

 $\sum_{n=1}^{\infty} a_n(x) \ pавномерно \ cxoдumcя \ ha \ X \ \kappa \ S(x) \ morдa \ u \ moлько \ morдa, \ когда \ nocnedoвательность частичных сумм равномерно cxoдumcя: <math>\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |\sum_{k=n+1}^{n+p} a_k(x)| < \varepsilon$

Доказательство. Прсото применим определение Коши сходимости. \square **Пример.** Докажем, что у ряда $\sum_{n=1}^{\infty} \frac{\sqrt{x}}{n^2 x^2 + \sqrt{n}}, \ x \in (0,1)$ нет равномерной сходимости. Возьмем $x = \frac{1}{2n}; \ a_k(x) \geqslant \frac{1}{4n}.$ Поэтому для $\varepsilon \geqslant \frac{1}{4}$ по критерию Коши ряд расходится.

Теорема 30 (метод граничной точки)

пусть дан ряд $\sum_{n=1}^{\infty} a_n(x)$, его члены непрерывны на отрезке [a,b] и ряд сходится на интервале (a,b), но расходится на конце интервала. Тогда равномерной сходимости нет.

Доказательство. Повторяет доказательство для последовательностей.

Пример. $\sum_{n=1}^{\infty} \frac{1}{n^x}$, $x \in (1,2)$. Ряд сходится на интрвале как обобщенный гармонический ряд. При x=1 ряд расходится, значит, равномерной сходимости нет.

Теорема 31 (признак Вейерштрасса равномерной сходимости ф.р./мажарантный Пусть дан ряд с общим членом $a_n(x)$ и мы можем оценить $|a_n(x)| \leq a_n$ (то есть мажорирующим рядом, не зависящим от x), причем $\sum_{n=1}^{\infty} a_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на том множестве, на котором верна оценка.

Доказательство. Испоьзуем критерий Коши: фиксируем некоторое $\varepsilon > 0$. Ряд a_n сходится, значит, по критерию коши $\forall \varepsilon > 0 \; \exists n_0(\varepsilon) \in \mathbb{N} \; \forall n > n_0 \forall p \in \mathbb{N} : \sum_{k=n+1}^{n+p} a_k < \varepsilon$. Из пункта 1 имеем $\forall x \in X \forall n \in \mathbb{N} : |a_n(x)| \leqslant a_k$.

Тогда $|\sum_{k=n+1}^{n+p} a_k(x)| \leqslant \sum_{k=n+1}^{n+p} |a_k(x)| \leqslant \sum_{k=n+1}^{n+p} a_k < \varepsilon$. Тогда по критерию

Коши для функционального ряда следует равномерная сходимость. \square

Пример. Исследуем на равномерную сходимость $\sum_{n=1}^{\infty} \frac{arcctg(nx)}{n}, \ x \in (\varepsilon, \infty), \ \varepsilon >$

0. Подставив ноль, по методу граничной точки нет равномерной сходимости.

Пример. Исследуем сходимость $\sum_{n=1}^{\infty} e^{-n^5 x^2} \sin nx$ на прямой. Спойлер: сходится равномерно. Сделаем оценку: $|a_n(x)| \leqslant e^{-n^5 x^2} n|x|$. Функция симметрична при замене $x \mapsto -x$, значит, будем оценивать на положительном луче, откинув модуль. Оценим максимумом, вычислив производную и решив уравнение. Имеем $x = \frac{1}{\sqrt{2n^5}}$. Подставляем: $f_n(x) \leqslant$ $f(\frac{1}{\sqrt{2n^5}}) = \frac{1}{\sqrt{2en^{\frac{3}{2}}}} = a_n$. Значит, $|a_n(x)| \le |f_n(x)| \le a_n \ \forall x \in \mathbb{R}$. Итак, сходимость равномерная.

Теорема 32 (признак Дирихле равномерной сходимости функционального ряда)

Дан ряд
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 и

- 1. $\forall x \in X : \{a_n(x)\}$ монотонна по n;
- 2. $\exists M = const \ \forall x \in X \forall n \in N : |B_n(x)| \leqslant M$, где $B_n(x)$ частичные суммы ряда b_n .

Тогда ряд сходится равномерно на X

Доказательство. Фиксируем $\varepsilon > 0$. Так как $a_n \rightrightarrows 0$ на X, то для $\frac{\varepsilon}{6R} > 0$

Пример. $\sum_{n=1}^{\infty} \sin nx/n$. Исследовать на равномерную сходимость на интервалах $(\varepsilon, 2\pi - \varepsilon)$, $(0, 2\pi)$. Ну, раз говорят что уже было. То не пишем. На втором интервале нет равномерной сходимости по краевому критерию.

Теорема 33 (признак Абеля равномерной сходимости ф.р.)

Дан ряд
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 $u \ \forall x \in X$:

- 1. $|a_n(x)| \leqslant M = const$ для всех n;
- 2. $\{a_n(x)\}$ мнонотонна;
- 3. $\sum\limits_{n=1}^{\infty}b_{n}(x)$ равномерно сходится на X; Тогда исходный ряд равномерно сходится на X.

Доказательство. По определению Коши. Фиксируем $\varepsilon > 0$. Так как ряд из b_n сходится равномерно, то по критерию Коши для $\frac{\varepsilon}{3M}>0$ $\exists n_0(\varepsilon)\ \forall n>$

$$n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |\sum_{k=n+1}^{n+p} b_k(x)| < \frac{\varepsilon}{3M}$$
. Тогда по неравенству Абеля

$$|\sum_{k=n+1}^{n+p}b_k(x)a_k(x)|\leqslant \frac{\varepsilon}{3M}(|a_{n+1}|+2|a_{n+p}(x)|)<\frac{\varepsilon}{3M}3M=\varepsilon.$$
 Тогда по критерию Коши этот ряд сходится равномерно на X . \square

Пример. Исследуем на равномерную сходимсоть ряд $\sum_{n=1}^{\infty} \frac{\cos nx \sin x a r c t g n x}{\sqrt{n^2 + x^2}}$.

Алгоритм:

- 1. Арктангенс монотонен и ограничен.
- 2. Все остальное сходится по Дирихле.

1.6.1Свойства равномерно сходящихся рядов

Теорема 34 (о непрерывности суммы равномерно сходящегося ряда)

Дан ряд
$$\sum_{n=1}^{\infty} a_n(x)$$
, причем

- 1. Все функции непрерывны намножестве 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X;

Tогда S(x) непрерывна на X.

Доказательство. По условию, сумма из $a_n(x)$ сходится равномерно на X к S(x), то есть $S_n(x) \rightrightarrows S(x)$ на $X, S_n(x)$ непрерывна как сумма. Тогда по теореме о непрерывности предела равномерно сходящейся последовательсноти, составленной из непрерывных функций, S(x) непрерывна. Другая формулировка:

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} a_n(x)$$

можно поменять сумму и предел. \square

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = f(x)$$
 - непрерывна на $(0, 2\pi)$

Теорема 35 (об интегрировании равномерно сходящегося ряда)

дан ряд
$$\sum_{n=1}^{\infty} a_n(x)$$
, причем

- 1. все функции непрерывны на отрезке [a, b];
- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на [a,b] к s(x);

тогда в $\forall x, x_0 \in [a,b]$: $\int\limits_{x_0}^x \left(\sum\limits_{n=1}^\infty a_n(t)\right) dt$ можно менять интеграл uсумму.

Доказательство. Докажем, что $\int\limits_{x_0}^x S(t)dt = \sum\limits_{n=1}^\infty \int\limits_{x_0}^x a_n(t)dt$. По предыдущей теореме S(t) непрерывна на [a,b], значит,интегрируема на нем по Риману. Обозначим $\sigma_n(x) = \sum_{k=1}^n \int_{x_0}^x a_k(t) dt$ и докажем, что $\sigma_n(x) \Longrightarrow \int_{x_0}^x S(t) dt$. Зафиксируем $\varepsilon>0$. По условию, $S_n(t)$ равномерно сходится на [a,b] для $\frac{\varepsilon}{b-a}>0$. $\exists n_0(\varepsilon)\ \forall n>n_0\ \forall x\in[a,b]: |S_n(t)-S(t)|<\frac{\varepsilon}{b-a}$. Тогда $|\sigma_n(x) - \int_{x}^{x} S(t)dt| = !!!!!!!!!!!!!! \square$

Теорема 36 (о дифференцировании равномерно сходящегося ряда) дан ряд $\sum_{n=1}^{\infty} a_n(x)$, причем 1. Производные всех функций непрерывны на отрезке [a,b];

- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится на [a,b] к s(x) (даже не нужна непрерывность);
- 3. Ряд из производных сходится равномерно на $[a,b] \kappa S(x)$; тогда в ряде можно менять производную и сумму.

Доказательство. Используем предыдущую теорему. Тогда $\int\limits_{x_0}^x \left(\sum\limits_{n=1}^\infty a_n'(t)\right) dt =$ $\sum_{n=1}^{\infty} \int_{x_0}^{x} a'_n(t) dt$. Получаем, что в равенсте $\int_{x_0}^{x} S(t) dt = \sum_{n=1}^{\infty} (a_n(x) - a_n(x_0))$ справа стоит число (в силу непрерывности функции), ряд из $a_n(x_0)$ сходится по условию, следовательно, ряд из $a_n(x)$ сходится. Теперь покажем равномерную сходимость. Для этого покажем, что остаток ряда из производных $r_n(x)$ равномерно стремится к нулю. Действительно, если ряд удовлетворяет теоереме об интегрировании, то и его остатки тоже. Зафиксируем $\varepsilon > 0$. По условию, остаток обычного ряда стремится к нулю: $R_n(x) \to 0$. тогда для $\frac{\varepsilon}{2} > 0 \; \exists n_1(\varepsilon) \; \forall n > n_1$: $|R_n(x_0)| < \frac{\varepsilon}{2}$. Также остаток ряда из производных равномерно стремится к нулю, тогда для $\frac{\varepsilon}{2(b-a)} > 0$ $\exists n_2(\varepsilon) \ \forall n > n_2 \ \forall x \in [a,b] : |r_n(x)| < \frac{\varepsilon}{2(b-a)}$. Тогда из звездочки следует !!!!!!!!!???????

1.7 Степенные ряды

1.7.1 Базовые определения

Определение 8 $\mathit{Степенной ряд- ряд вида} \sum_{n=0}^{\infty} C_n (x-x_0)^n$

Числа C_n - коэффициенты степенного ряда, x_0 - число. Итак, степенной ряд - обобщение понятия многочлена. Область сходимости степенного ряда непуста, так как так лежит как минимум x_0 (в этом случае сумма ряда равна C_0). Сделав замену $t=x-x_0$, сведем любой степенной ряд к виду $\sum_{n=0}^{\infty} C_n t^n$.

Теорема 37 (лемма Абеля)

Если ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_0 и $|x|<|x_0|$, то ряд сходится сходится и в x, причем абсолютно.

Доказательство. По условию ряд сходится, значит, $c_n x^n \to 0$. Тогда существует константа M, большая чем все члены ряда. Тогда $|c_n x^n| = \left|c_n x_0^n \left(\frac{x}{x_0}\right)^n\right| \leqslant M \cdot \left|\frac{x}{x_0}\right|^n$. Ряд $\sum_{n=0}^\infty Mq^n$ сходится \Rightarrow ряд из модулей сходится, т.е. ряд сходится абсолютно. \square

Теорема 38 Пусть D - область сходимости ряда $\sum_{n=0}^{\infty} c_n x^n$, $R = \sup_{x \in D} |x|$. Тогда $(-R,R) \subset D \subset [-R,R]$.

Доказательство. По лемме Абеля, второе включение очевидно: $\forall x \in D: |x| \leqslant R \implies D \subset [-R,R]$. Пусть $x \in (-R,R)$. Тогда $|x| < R = R_1$. Тогда для него найдется $x_0 \in D: |x_0| > |x|$. Значит, ряд в точке x_0 сходится, и значит сходится в x. Значит, интервал лежит в области сходимости. \square

1.7.2 Формулы для вычисления радиуса сходимости

Пусть $\sum\limits_{n=0}^{\infty}c_nx^n=\sum\limits_{n=0}^{\infty}a_n$. По признаку Даламбера $\lim\limits_{n\to\infty}\frac{|a_{n+1}(x)|}{|a_n(x)|}=|x|\cdot\lim\limits_{n\to\infty}\frac{|c_{n+1}|}{|c_n|}<1$, то ряд сходится. Итак, если предел существует, то

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$$

Аналогично, из признака Коши получим формулу Коши-Адамара:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$$

В общем случае алгоритм такой:

- 1. Найти радиус сходимости.
- 2. Выписываем интервал сходимости $(x_0 R, x_0 + R)$.
- 3. Исследуем на сходимость концы интервала.

Пример. Найдем область сходимости $\sum_{n=0}^{\infty} \frac{(x-6)^n}{(n+2)3^n}$. Применим признак Даламбера: $R = \lim_{n \to \infty} \frac{(n+3)3^{n+1}}{(n+2)3^n} = 3$. Интервал сходимости: (6-3,6+3). В точке x=9 ряд расходится (т.к. гармонический), в точке x=3 - условная сходимость (по признаку Лейбница).

Пример. Найдем область сходимости $\sum_{n=0}^{\infty} \frac{n^2}{(n+1)^2} \cdot \frac{x^{2n}}{2^n}$. Заметим, что у этого ряда коэффициенты чередуются с нулем (лакунарный ряд). Используем два способа:

- 1. По формуле Коши-Адамара возьмем четные номера, так как на них доставляется супремум предела последовательности: $R=\frac{1}{\lim\limits_{n\to\infty}\left(\frac{n}{n+1}\right)^{\frac{1}{n}}\cdot\left(\frac{1}{2^{\frac{1}{2}}}\right)}=$
- $\sqrt{2}$. Интервал сходимости $(-\sqrt{2}, \sqrt{2})$, на концах расходится.
- 2. Исследуем как функциональный ряд по признаку Даламбера. $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} =$

 $\frac{x^2}{2}\lim_{n\to\infty}\left(\frac{n^2+2n+1}{n^2+2n}\right)^2=\frac{x^2}{2}$. Значит, ряд сходится, если $\frac{x^2}{2}<1$, откуда мы получаем тот же интервал сходимости.

Теорема 39 (о равномерной сходимости степенного ряда) Степенной ряд сходится равномерно на любом отрезке, лежащем внутри интрвала сходимости.

Доказательство. Для простоты рассмотрим ряд с центром в нуле. Пусть ряд сходится на (-R,R). Возьмем $[a,b] \subset (-R,R)$. Обозначим d=max(|a|,|b|). Тогда ряд $\sum_{n=0}^{\infty} c_n d^n$ сходится, значит, его мы можем использовать для оценки сверху рядов на отрезке: $|c_n x^n| \leq |c_n d^n|$, значит, по признаку Вейерштрасса ряд сходится на [a,b]. \square

Теорема 40 (о непреывной сумме степенного ряда) Сумма степенного ряда непрерывна в любой точке из интервала сходимости.

Доказательство. Пусть $\sum_{n=0}^{\infty} c_n x^n$ сходится на (-R,R) к f(x). Степенные функции непрерывны на интервале (и вообще на всей прямой); по предыдущей теореме, на любом отрезке, лежащем в интервале, ряд равномерно сходится. Значит, по теореме о непрерывности суммы равномерно сходящегося ряда, сумма непрерывна на отрезке. Так как этот отрезок произволен, то сумма непрерывна на интервале. \square

Теорема 41 (об интегрировании и дифференцировании степенного ря- ∂a)

Пусть дан ряд $\sum_{n=0}^{\infty} c_n(x-x_0)^n = f(x)$, R - радиус сходимости. Тогда у функции f(x) существуют производные любого порядка внутри интервала:

$$f' = \sum_{n=0}^{\infty} nc_n (x - x_0)^{n-1}$$

Интегрирование тоже почленное. Причем при дифференцировании и интегрировании радиус сходимости не меняется.

Доказательство. Следует из соотвествующих теорем для функциональных рядов. Последнее утверждение следует из формулы Коши-Адамара.

Пример. Вычислить сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$. Задания типа таких можно делать, используя свойства степенных рядов. Пусть $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$. Радиус сходимости $x \in [-1,1)$. Возьмем производную: $f'(x) = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$. А вот теперь проинтегрируем: $\int_0^x \frac{dt}{1-t} = f(x) - f(0)$; $f(x) = -\ln(1-x) + f(0)$. Значит, сумма искомого ряда равна $f(\frac{1}{2}) = 2$. Цель этих телодвижений привести к виду геометричсекой прогрессии, которую легко посчитать.

1.7.3 Ряды Тейлора

Определение 9 Пусть в некоторой окрестности $U(x_0)$ существуют производные всех порядков у функции. Тогда для функции y = f(x) в точке x_0 существует ряд Тейлора:

$$f(x_0) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Если $x_0 = 0$, то ряд называется рядом Маклорена.

Теорема 42 Если функция представляется в виде степенного ряда, то он совпадает с её рядом Тейлора. $f(x) = \sum_{n=1}^{\infty} c_n (x - x_0)^n$.

Доказательство. Пусть $(x_0 - R, x_0 + R)$ - интервал сходимости ряда. Из разложения функции в ряд имеем $f(x_0) = c_0$. Беря производную, получаем, что $f'(x_0) = c_1$. Дифференцируя дальше, получаем, что $c_n = \frac{f^{(n)}(x_0)}{n!}$. \square

Если по произвольной функции составить ряд Тейлора, то совсем не обязательно, что он сойдется к этой функции. Сейчас поясним:

Пример. Рассмотрим

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Очевидно (по индукции), что производная порядка $f^{(n)}(x) = e^{-\frac{1}{x^2}} \cdot p\left(\frac{1}{x}\right)$, где p(t) - многочлен. Посчитаем производнуюв нуле; первая производная в нуле - ноль. По индукции получаем, что все остальные производные тоже равны нулю. Значит, ряд Маклорена тождественно равен нулю, и сходится не к исходной функции, а к тождественно нулевой.

Теорема 43 (достаточное условие сходимости ряда Тейлора) Пусть $\exists h > 0$, $\exists M = const$ такие, что $\forall x \in \mathbb{N} \ \forall x \in (x_0 - h, x_0 + h) : |f^{(n)}(x)| \leq M$. Тогда на всей h-окрестности точки x_0 функция равна своему ряду Тейлора, причем он сходится равномерно на данном интервале.

Доказательство. Разложим функцию f(x) в ряд Тейлора и запишем остаток в форме Лагранжа: $r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, \xi \in (x_0,x)$ (лежит между ними). Остаток по модуля меньше, чем $M \cdot \frac{h^{n+1}}{(n+1)!}$ - значит, он равномерно сходится к нулю. Поэтому и сам ряд сходится равномерно на $(x_0 - h, x_0 + h)$. \square

Ряды Маклорена для основных функций

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \dots, \ x \in \mathbb{R}$$

2.
$$sh(x) = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots, \ x \in \mathbb{R}$$

3.
$$\operatorname{ch}(x) = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + \dots, \ x \in \mathbb{R}$$

4.
$$\sin(x) = x - \frac{x^3}{3!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \ x \in \mathbb{R}$$

5.
$$\cos(x) = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \ x \in \mathbb{R}$$

6.
$$\ln(1+x) = 1 - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^n}{n} + \dots, \ x \in (-1,1]$$

7.
$$\ln(1-x) = x \in [-1,1)$$

8. $\ln \frac{1+x}{1-x} = 2 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$ - в этой формуле функция примнимает все положительные значения, поэтому она круче.

9.
$$(1+x)^{\alpha} = 1 + \alpha x + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + \dots$$

10.
$$arctg(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots, x \in [-1, 1]$$

11.
$$arcsin(x) = x + \sum_{n=1}^{\infty} \frac{(2n-1)!! \cdot x^{2n+1}}{n! * 82^n (2n+1)}, \ x \in (-1,1)$$

(Для логарифма) покажем, что остаток ряда стремится к нулю.

1. $x \in [0,1]: r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$. Подставим $\xi = x_0 + \theta(x-x_0), \ \theta = \theta(x,n)$. При этом имем оценку $0 \leqslant x \leqslant 1 \leqslant 1 + \theta x$. Получим $|r_n(x)| = \frac{1}{n+1} \cdot \left(\frac{x}{1+\theta x}\right)^{n+1} \leqslant \frac{1}{n+1}$. Значит, остаток равномерно сходится к 0 на [0,1]. Чтобы доказать равномерную сходимость на (-1,0), запишем остаток в форме Коши. Получим $|r_n(x)| = \left(\frac{1-\theta}{1+\theta x}\right)^n \cdot \frac{|x|^{n+1}}{1+\theta x}$. Первая дробь меньше 1, вторую оценим как $\frac{|x|^{n+1}}{1-|x|}$, что при фиксированном x стремится к нулю. Значит, мы можем писать разложение для логарифма!

Пример.
$$\sum\limits_{n=0}^{\infty} rac{2^n}{n!} = e^2$$

Ряд $(1+x)^{\alpha}$. Найдем радиус сходимости: $R = \lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = \left| \frac{n+1}{\alpha-n} \right| = 1$. Запишем остаток в форме Коши: $(1+x)^{\alpha} = 1+\alpha x+...+\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n+r_n$, $r_n(x) = \frac{f^{(n+1)}(\theta x)}{n!}(1-\theta)^n x^{n+1}$. Если остаток стремится к нулю, то и ряд сходится к данной функции. Пусть $r_n = A_n \cdot B_n \cdot C_n$, где $B_n(x) = (1+\theta x)^{\alpha-1}$, $C_n(x) = \left(\frac{1-\theta}{1+\theta x}\right)^n$, $A_n = \frac{\alpha(\alpha-1)...(\alpha-n)}{n!}x^{n+1}$. $A_n \to 0$ по признаку Даламбера, $|B_n(x)| \leq max\{(1-|x|)^{\alpha-1}, (1+|x|)^{\alpha-1}\}$, $C_n(x) < 1$, значит, остаток стремится к нулю, и ряд сходится к функции.

Задача. Доказать, что в x=1 ряд сходится при $\alpha>-1$, расходится при $\alpha\leqslant-1$. В точке x=-1 сходится абсолютно при $\alpha\geqslant0$, расходится при $\alpha<0$

Выражения для арксинуса и арктангенса получаются интегрированием

разложния их производных.

Рассмотрим сходимость арксинуса на концах!!!!!!!!!!!!!!!!!

1.7.4 Использование степенных рядов

Разложение функции в ряд - мощнейшая тема. Иногда вфизике и других прикладных областях делают так:

Пример. Возьмем интеграл \int **Пример**. Решм диффур y'' = 2xy' + 4y

Глава 2

Несобственный интеграл

2.1 Основные определения

Определение 10 Пусть функция f интегрируема на отрезке [a,b] для b > a. Тогда несобственный интеграл первого рода (c одной особой точкой) - предел

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

Если таковой предел существует, то интеграл сходится; если предел равен бесконечности или не существует, то интеграл расходится. Аналогично определяется и интеграл с нижним пределом $-\infty$.

Пример.
$$\int\limits_0^1 \ln x dx = \lim_{\varepsilon \to +0} \left(\int\limits_\varepsilon^1 \ln x dx \right) = \lim_{\varepsilon \to +0} \left(x \ln x \Big|_\varepsilon^1 - \int\limits_\varepsilon^1 dx \right) = \lim_{\varepsilon \to +0} \frac{-\varepsilon^2}{1/\varepsilon} - 1 = -1$$
 - интеграл сходится.

Рассмотрим случай конечного числа особых точек.

2.1.1 Критерии сходимости несобственного интеграла

Теорема 44 (критерий Коши) Пусть $\forall b \geqslant a$ функция интегрируема на [a,b]. Тогда $\int_a^\infty f(x)dx$ сходится $\Leftrightarrow \forall \varepsilon > 0$ $\exists b_0(\varepsilon) > 0 \ \forall b_1,b_2 > b_0:$ $\left| \int_{b_1}^{b_2} f(x)dx \right| < \varepsilon$

Доказательство. По условию, существует предел $\lim_{b\to +\infty} F(b) = A \in \mathbb{R}$, где $F(b) = \int_a^b f(x) dx$. Зафиксируем $\varepsilon > 0$. Тогда из существования предела следует для $\frac{\varepsilon}{2}$: $\exists b_o(\varepsilon) > a : |F(b) - A| < \frac{\varepsilon}{2}$. Пусть $b_1 > b_0$, $b_2 > b_0$.

Тогда $|F(b_2) - F(b_1)| = |F(b_2) - A| + |F(b_1) - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Достаточность. Докажем существование предела $\lim_{b \to \infty} F(b)$ из определения предела по Гейне. Пусть $b_n \to \infty$, тогда $\forall b_0 > a \; \exists n_0(\varepsilon) \in \mathbb{N} \; \forall n > n_0$ Покажем, что предел не зависит от выбора последовательности b_n . Выберем другую последовательность b_n^* . Обозначим предел $\lim_{n \to \infty} F(b_n^*) = B$. Составим последовательность $b_1, b_1^*, b_2, b_2^*, \dots \to \infty$. Тогда предел F от этой последовательности обозначим как C. Так как пределы подпоследовательностей сходятся к пределу последовательности, то A = B = C. Значит, выполняется условие определения предела по Гейне, значит, интеграл сходится. \square

Пример. $\int_1^\infty \frac{\sin x}{x^\alpha} dx$ сходится при $\alpha > 0$, расходится при $\alpha \leqslant 0$. Докажем это.

1.
$$\alpha > 0$$
. Поехали: $\forall \varepsilon > o \; \exists b_0(\varepsilon) > 1 \; \forall b_1 > b_0, b_2 > b_0 : \left| \int_{b_1}^{b_2} \frac{\sin x}{x^{\alpha}} dx \right| < \varepsilon$. Доказываем: $\left| \int_{b_1}^{b_2} \frac{\sin x}{x^{\alpha}} dx \right| = \left| \int_{b_1}^{b_2} \frac{1}{x^{\alpha}} d\cos x \right| = \left| \frac{\cos x}{x^{\alpha}} \right|_{b_1}^{b_2} - \int_{b_1}^{b_2} \cos x d(\frac{1}{x^{\alpha}}) \leqslant \ldots \leqslant \frac{4}{b_0^{\alpha}}$. Значит, $b_0 > (\frac{4}{\varepsilon})^{\frac{1}{\alpha}}$.

2. $\alpha \leqslant 0$. Синус теперь принимает разные знаки. Пусть $b_k = 2\pi k$. Тогда по критерию Коши интеграл расходится.

Теорема 45 (критерий сходимости через остаток) Пусть $\int_a^{\infty} = \int_a^b + \int_b^{\infty}$, (b > 0).

- 1. Если интеграл сходится, то и любой из его остатков сходится.
- 2. Если хотя бы один из остатков сходится, то интеграл сходится.

Доказательство. 🗆

Теорема 46 (критерий сходимости несобственного интеграла от несобственной функции)

Пусть $\forall b > a$ функция интегрируема на [a,b] и неотрицательная . Тогда $\int_a^\infty f(x) dx$ сходится \Leftrightarrow первообразная F(b) < M ограниченна.

Доказательство. F(b) неубывает и имеет конечный предел. Значит, интеграл сходится. Обратно, пусть существует конечный предел $\lim_{b\to\infty} F(b)$, то F(b) ограниченна в некоторой окрестности. \square

2.1.2 Признаки сравнения в предельной форме

Теорема 47 (признак сравнения)

Пусть f(x) > g(x) > 0 начиная с некоторого x > a, и для любого b > a функции интегрируемы на [a,b]. Тогда

- 1. Если $\int f(x)$ сходится, то и $\int g(x)$ сходится.
- 2. Если $\int g(x)$ расходится, то и $\int f(x)$ расходится.

Доказательство. По свойству определенного интеграла (транзитивность числовых неравенств), $F(b) \leq M$. Тогда по критерию 3 интеграл сходится. 2. Погодите, это реально? \square

Теорема 48 (второй признак сравнения)

 $Ecnu_{g(x)} = k, \ \infty \neq k \neq 0, \ mo \ ux \ uнтегралы \ cxodsmcs \ unu \ pacxodsmcs \ odнospeмeнно.$

Доказательство. \square