Last time: Unitary Shimura variety example

E quadratic imaginary field, (V,H) Hermitian space of signature (p,q). pos.df. neg.dof.

View $V_R = V \otimes R$ as $E \otimes R \cong C$ - module. Let X := \(\frac{1}{2} \) decompositions $V_R = W_0 \oplus W_1$ \(\frac{3}{2} \)

Real pts. of GU(V) act on X. Write E = Q[N-0) and define symplectic form y: VXV -> Q by

(x,y) -> To E/Q - H(x,y) so that GU(V) & GSp(V). Given WOOW, & X before new complex stevehore

h: C > End (VR), Z >> { z., on W.

Such a cesteiots to $R: \mathbb{C}^{\times} \to \mathrm{GU}(V_{\mathbb{R}})$ and satisfies $\psi(h(i)x,y)$ is pos. or neg. dof. symm. bilin. form

=> h lies on Siegel space defined by (V, 4). This realizes X = Hom (\$, GU(VR)) as GU(VR)-conj. class,

and (GU(Vp), X) is Shimea datum.

Peop: Fix 0_E - stable lattice $L \subseteq V \subseteq L$. $\lambda(L,L) \subseteq Z$. Assume $K \subseteq GU(\hat{V})$ stabilizes $\hat{L} \subseteq \hat{V}$.

Define Mk: Sch => Set, S >> {isom. classes of (A,i, \lambda, [y]) s.t. ... }:

- . A -> 5 abelian schene
- $i: O_{\mathsf{E}} \to \mathsf{End}(\mathsf{A})$
- . (Fix ses geom, pt. for every cons. component.) [η] = $k \cdot \eta \in Ison_{\mathcal{L}}(\widehat{T}A_{s}, \widehat{L})$ is k-orbit stable under [S = Spec R => char. ply. has cools. in R] Tiet (S,s) and the following are satisfied:
- (1) Signature (p.q) condition: every & EO E acts on Lie (A) (vec. bundle/5) W characteristic poly. (x-x) P(x-x) 2. We can view this as living over E instead of just S (OE rather than Os).

[NB: S = Spec C => this is equiv. to Lie (A) = Cp+2 s.t. a = (~ ~ ~ ~ ~ ~ ~ ~ ~ ~)]

- (2) WEOE = A A AV W.
- (3) η: ÎA35 → Î is OE-linear. and identifies Weil pairing ÎA5 × ÎA5 → Ž(1) Y λ: Î×Î→ Ž for some $\hat{z} \cong \hat{z}(1)$ (which may depend on $\eta \in [\eta]$).

K suff. small => Mk cepresentable by quasi-pcg. E-schene M Mk(C) ≈ Shk(GU(V), X). Penack: Common to have something like $k = kec(GU(\hat{L}) \rightarrow GU(\hat{L}/N))$ for $N \ge 3$. ff: First constant Shk (GU(V), X) → Mk(C). Given [hig] & GU(V) \ X × GU(V)/k from A = VR/gl W/ complex stevetice determined by R. This has OE-action. As in Siegel case we can use similitude v: GU(V) → Om to get v(g) E/Af = Q×Z×. v(g) = cat(g) & Y cat(g) ∈ Q×, Z ∈ Z×. Define Z-valued symplectic from $\frac{1}{\cot(g)} \gamma : gL \times gL \rightarrow Z$. This troines (±) a polarization on A. Level steveture is $\eta: \hat{T}A \cong g\hat{L} \xrightarrow{g^{-1}} \hat{L}.$ For cepcesentability, exploit $GU(V) \subseteq GSp(V)$. Assume $k = kec(GU(\hat{L}) \to G_{\bullet}(\hat{L}/N))$. Set $k' := kec(GSp(\hat{L}) \rightarrow GL(\hat{L}/N)) \Rightarrow k = k' \cap GU(\hat{L})$. We already have modificate M_k , parametrizing polarized ab. schenes M level-K'-stevetice on $\widehat{T}A$. Look at universal $A \to M_{K'}$. [This is just standard K' Hilbert schene stuff.]

End $(A): Sch_{M_{K'}} \to Sch_{M_{K'}}$. $T \mapsto End(A_T)$ is represented by $M_{K'}$ -schene. $End(A) \to M_{K'}$. Pullback of A to End (A) has universal endomorphism $f \in End(A)$. Write $O_E \cong \mathbb{Z}[x]/(p(x))$. Define $M_{k'} \subseteq End(A) \to M_{k'}$, the cloper subschence defined by p(f) = 0. Over \widetilde{M}_{K} , the pullback $A \to \widetilde{M}_{K}$, comes by $G_{E} \to Ead(A)$, $x \mapsto f$.

Cut more to account for more conditions.