

Ø1100

</>

010

001 0110

План

- Что такое алгоритмы поиска?
- Сферы применения алгоритмов поиска
- Какие есть популярные алгоритмы поиска?
- Линейный поиск
- Бинарный поиск
- Интерполяционный поиск
- Поиск с использованием хэш-таблиц
- Сравнение алгоритмов

Что такое алгоритмы поиска?

При разработке программ часто возникает необходимость в поиске определенных элементов в массивах или других структурах данных. Для эффективного и быстрого поиска используются алгоритмы поиска.

Иногда для упрощения поиска используется сортировка - упорядочивание элементов по определенному правилу. Она помогает найти нужные данные быстрее и сделать программы более эффективными.

Сферы применения алгоритмов поиска

Поисковые системы: Алгоритмы поиска используются для поиска вебстраниц, документов, изображений и другого контента в поисковых системах, таких как Google, Яндекс и Bing.

Базы данных: Алгоритмы поиска применяются для нахождения записей, информации или значений в базах данных. Это может быть полнотекстовый поиск, поиск по ключу или поиск по определенным критериям.

Анализ данных: Алгоритмы поиска используются для нахождения особенностей, закономерностей или схожих элементов в больших объемах данных. Это может включать поиск аномалий, кластеризацию или поиск паттернов.

Сферы применения алгоритмов поиска

Информационные системы: Алгоритмы поиска применяются для нахождения и извлечения информации из информационных систем, таких как электронные библиотеки, базы знаний или системы учета.

Мобильные приложения: Алгоритмы поиска используются в мобильных приложениях для поиска контактов, местоположений, продуктов или другой информации внутри приложения.

Робототехника: Алгоритмы поиска применяются в робототехнике для нахождения пути, объектов или сбора информации с помощью датчиков.

Игры: Алгоритмы поиска используются в компьютерных играх для принятия решений и определения оптимальных стратегий, поиска пути, нахождения противников и других игровых элементов.

Какие есть популярные алгоритмы поиска?

- Линейный поиск
- Бинарный поиск
- Интерполяционный поиск
- Поиск с использованием хэш-таблиц

Линейный поиск

Линейный поиск - алгоритм проверяет каждый элемент в наборе данных пока не найдет нужный элемент или не дойдет до конца. Он начинает с первого элемента и сравнивает его с нужным значением. Если значения совпадают, поиск завершается.

Start

Бинарный поиск

Бинарный поиск - алгоритм поиска, который применяется к отсортированным данным. Суть его в делении массива пополам и сравнении нужного значения с элементом в середине. Если значение равно серединному элементу, поиск завершается. Если значение меньше серединного элемента, поиск продолжается в левой половине массива. Если значение больше серединного элемента, поиск продолжается в правой половине.

9 9 12 13 17 19 21 24 32 36 44 45 54 55 63 66 70

Интерполяционный поиск

Интерполяционный поиск - алгоритм поиска, который основан на интерполяции значений для нахождения более точного приближения нужного элемента. Интерполяционный поиск использует формулу для вычисления приближенного расположения искомого элемента в наборе данных. Он предполагает, что значения в наборе данных равномерно распределены.

Поиск с использованием хэш-таблиц

Поиск с использованием хеш-таблицы алгоритм, который использует хеш-функцию для быстрого поиска элементов. Хештаблица представляет собой структуру данных, которая состоит из пар "ключзначение". Хеш-функция преобразует ключ в уникальный хеш-код, который используется в качестве индекса для доступа к значению. При поиске элемента хеш-таблица вычисляет хеш-код для ключа и быстро находит соответствующее значение.

Пример хэш-таблицы

Сравнение алгоритмов. Линейный поиск

Преимущества: Простота реализации, работает для неотсортированных данных.

Недостатки: Медленный для больших объемов данных.

Сравнение алгоритмов. Бинарный поиск

Преимущества: Быстрый для отсортированных данных.

Недостатки: Требует предварительной сортировки данных.

Сравнение алгоритмов. Интерполяционный поиск

Преимущества: Еще быстрее для равномерно распределенных данных.

Недостатки: Неэффективен для неравномерно распределенных данных.

Сравнение алгоритмов. Поиск с использованием хэштаблицы

Преимущества: Очень быстрый для доступа по ключу.

Недостатки: Требует дополнительной памяти для хранения хеш-таблицы.

Временная сложность

Алгоритм поиска	Временная сложность в среднем случае	Временная сложность в худшем случае	Пространственная сложность
Линейный поиск	O(n)	O(n)	O(1)
Бинарный поиск	O(log n)	O(log n)	O(1)
Интерполяционный поиск	O(log log n)	O(n)	O(1)
Поиск в хэш- таблице	O(1)	O(n)	O(n)