Fizika 1

Zadaci za samostalan rad 7

7.1. Tri trkačice utrkuju se po stepenicama na vrh zgrade visine 400~m. Prva trkačica mase 55~kg stigne do vrha za 760~s, druga trkačica mase 53~kg za 660~s, dok je trećoj mase 57~kg potrebno 690~s. Izračunajte prosječnu snagu svake trkačice. Koja trkačica je "najjača", a koja "najslabija"?

Rješenje: $P_1 = 283,97 W$, $P_2 = 315,11 W$, $P_3 = 324,16 W$

7.2. Kolikom se maksimalnom brzinom izraženom u kilometrima na sat može gibati automobil mase 1400 kg i snage 45 kW po cesti na kojoj je koeficijent kinetičkog trenja 0,08? (Otpor zraka se zanemaruje.)

Rješenje: $v_{max} = 147,44 \ kmh^{-1}$

7.3. U trenutku kada dvostupanjska raketa mase 2 tone ima brzinu $700 ms^{-1}$ od nje se odijeli drugi stupanj rakete mase 600 kg pri čemu mu se brzina poveća na $900 ms^{-1}$. Kolika je brzina prvog stupnja rakete?

Rješenje: $v_1 = 614,29 \ ms^{-1}$

7.4. Ispaljena granata mase M ima kinetičku energiju 150 kJ. Iz nekog razloga granata se raspadne na dva dijela koji lete u istom smjeru: prvi, mase $m_1=\frac{2}{3}M$ i iznosa brzine $v_1=500~ms^{-1}$, i drugi, mase $m_2=\frac{1}{3}M$ i iznosa brzine $v_2=300~ms^{-1}$. Izračunajte masu granate M prije raspada.

Rješenje: $M = 1,598 \ kg$

7.5. Klizač mase 80 kg koji stoji na ledu odbacuje od sebe u horizontalnom smjeru predmet brzinom od 5 ms^{-1} i pomakne se za 1,8 m. Kolika je masa predmeta, ako je koeficijent kinetičkog trenja između leda i klizaljki 0,02?

Rješenje: $m = 13,45 \ kg$

7.6. Automobil mase 1500 kg koji se gibao brzinom 45 kmh^{-1} udario je u kamion mase 6 tona koji se u istom smjeru gibao brzinom 18 kmh^{-1} . U

trenutku sudara prestali su im raditi motori te su se nastavili zajedno gibati još 26 metara dok se nisu zaustavili. Koliki je bio iznos sile trenja tijekom zaustavljanja?

Rješenje: $F_{tr}=6093,75\ N$