INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA – SUBSEQUENTE

Semestre: 2024-2 Turma: 18802 – T1 Carga horária: 80 horas

INSTITUTO FEDERAL

Prof.: Joabel Moia (joabel.moia@ifsc.edu.br)

Horário de Atendimento: Terça-Feira, 15h30min às 17h30min

1. Objetivos

A Unidade Curricular de Eletrônica Analógica I reúne os conceitos necessários para que o aluno possa compreender o funcionamento, projetar e aplicar componentes semicondutores básicos, dentre eles diodos, diodos zener, leds, transistores bipolares de junção, etc. Circuitos analógicos envolvendo estes componentes, como, por exemplo, reguladores de tensão e fontes de alimentação lineares.

2. Competências e Habilidades

Ao término da disciplina, o estudante deve <u>identificar e caracterizar</u> os principais componentes e sistemas eletrônicos analógicos e <u>implementar</u> circuitos eletrônicos analógicos de baixa complexidade.

Dentre as habilidades esperadas do aluno, tem-se:

- <u>Conhecer</u> e <u>caracterizar</u> as propriedades e aplicações dos principais componentes eletrônicos analógicos;
- <u>Conhecer</u> e <u>identificar</u> estruturas eletrônicas básicas e suas aplicações.
- <u>Identificar</u> as especificações básicas dos principais componentes eletrônicos em catálogos, folhas de dados e manuais escritos em português e inglês.
- Realizar a interpretação funcional de circuitos eletrônicos analógicos de baixa complexidade.
- <u>Interpretar</u> manuais e catálogos de equipamentos eletrônicos.
- <u>Interpretar</u> folhas de dados de componentes eletrônicos.
- <u>Utilizar</u> ferramentas e instrumentos de medição necessários para realizar montagem, teste e instalação de equipamentos eletrônicos de baixa complexidade.
- <u>Implementar</u> projetos de circuitos eletrônicos de baixa complexidade em placas de circuito impresso.
- <u>Efetuar</u> rotinas de teste e correção de defeitos em circuitos eletrônicos de baixa complexidade.

3. Bases Tecnológicas

- Estruturas eletrônicas fundamentais: conceitos básicos, aplicações nos sistemas eletrônicos, principais características, simulação e demonstração em computador.
- Componentes básicos: catálogos e principais características.
- A estrutura atômica da matéria.
- Materiais semicondutores: silício e germânio.
- Dopagem tipo P e tipo N em materiais semicondutores.
- A junção PN e sua polarização direta e reversa.
- O diodo de junção PN.
- Fontes lineares de tensão: conceito, tipos, estrutura e etapas.
- Circuitos retificadores.
- Diodos retificadores, pontes, diodos zener e LEDs: funcionamento básico; especificações; tipos; aplicações; equivalência; folha de dados.

- Filtro Capacitivo.
- O transistor bipolar de junção NPN e PNP.
- Regulação de tensão: circuito baseado em diodo zener e transistor; circuito baseado em reguladores integrados.
- Variação de tensão: circuito baseado em transistor série (regulador série); circuito baseado em reguladores integrados.
- Circuitos de proteção contra sobrecorrente e curto-circuito baseados em transistores.
 Ferramentas de trabalho em eletrônica: ferro de solda, sugador de solda, alicates, pinça, suportes e matriz de contatos.
- Soldagem de componentes eletrônicos de montagem convencional.
- Medidas, instrumentos básicos e testes de componentes: multímetro, fontes e geradores.
 Concepção, desenvolvimento e implementação de uma fonte de alimentação regulável, ajustável e com proteção contra curto-circuito e sobrecorrente.

4. Ementa

A ementa da disciplina está apresentada junto ao cronograma de atividades no item 9. Da mesma forma, a ementa, competências, conhecimentos, habilidades e atitudes podem ser encontrados no plano de ensino geral desta disciplina.

5. Avaliação

A avaliação da disciplina de Eletrônica Analógica I consistirá em duas provas teóricas, e do projeto da disciplina (relatório técnico, construção e testes de protótipo).

A média final da disciplina será calculada por:

MF = MP.0.60 + PJ.0.40

Onde:

MP: média das avaliações, todas com o mesmo peso;

PJ: nota do projeto;

Será considerado APTO (aprovado) o aluno que obtiver o conjunto das competências da disciplina e média final igual ou superior a 60% (nota 6,0) no conjunto dos instrumentos de avaliação (conforme a expressão acima) e frequência igual ou superior a 75%.

Serão oferecidas recuperações para as avaliações específicas, visando a recuperação do desempenho na referida competência, em horários a serem agendados na ocasião, em comum acordo entre os alunos e o docente.

O aluno que não atingir nota suficiente nas avaliações teóricas terá direito a uma recuperação de cada avaliação realizada ou uma recuperação final envolvendo toda a ementa da unidade curricular, desde que possua frequência suficiente. A nota da recuperação ou a média das notas das recuperações das avaliações substituirá a média final da avaliação teórica.

Não serão oferecidas recuperações formais para o projeto semestral desenvolvido na unidade curricular. A recuperação consiste em entregar em prazo hábil as tarefas realizadas pelo aluno, conforme cronograma de atividades. **Casos isolados** serão discutidos entre aluno e professor e agendados horários em comum acordo entre ambos para uma possível recuperação. Portanto, **recomenda-se fortemente** que o aluno desenvolva o trabalho ao longo do semestre e não deixe para fazer tudo ao final do mesmo.

6. Práticas pedagógicas

Aulas expositivas; implementação de um projeto; palestras; apresentação de seminário.

As atividades relacionadas à implementação do projeto da Fonte de Tensão Linear oportunizará aos alunos o desenvolvimento de diversas habilidades/competências, como: manipulação de equipamentos de medição (multímetro, osciloscópio, etc); utilização de softwares de simulação e produção de placas de circuito impresso; montagens em matrizes de contato e placas de circuito impresso; aplicação de métodos de testes de equipamentos; produção de documentação técnica de um equipamento; produção de uma apresentação pública.

7. Considerações gerais

No final do semestre, as equipes irão apresentar seus projetos e em caráter não obrigatório, poderão entregar a documentação do projeto na forma de relatório final.

O relatório final deverá conter: Introdução, Fundamentação Teórica, Materiais e Métodos, Resultados, Conclusão e Referências Bibliográficas.

Na **introdução**, deverá constar o objetivo do trabalho e a função do circuito. O funcionamento do circuito deve ser detalhado na parte de **fundamentação teórica**. **Materiais e métodos** é destinado a explicar quais passos foram utilizados para realizar o trabalho, explicando cada etapa. Nos **resultados** deverá ser mostrado o resulado obtidos pela aplicação dos métodos empregados. A **conclusão** encerra o artigo, verificando se os resultados demonstram que os objetivos pretendidos na introdução foram atingidos. As **referências bibliográficas** devem ser todas citadas no texto.

A utilização de recursos como Internet, relatórios de turmas anteriores, livros, revistas, dentre outros, é incentivada, desde que respeitadas as normas de referências bibliográficas a fim de **evitar plágio**. Caso seja constatada a ocorrência de plágio, o trabalho receberá **nota zero**.

8. Bibliografia

- [1] BOGART JR, Theodore F. Dispositivos e Circuitos Eletrônicos. Pearson Makron Books. 3ª ed, São Paulo, 2001.
- [2] LALOND, David E.; Ross, John A. Princípios de Dispositivos e Circuitos Eletrônicos volume 2. Makron Books. São Paulo, 1999.
- [3] MALVINO, A. P. Eletrônica. Vol.1 4ª ed. São Paulo: MacGraw-Hill, 2006.
- [4] MARQUES, A.E.B., LOURENÇO, A.C. e CRUZ, E.C.A. Dispositivos Semicondutores: diodos e transistores. 9ª ed São Paulo, Érica, 2004.
- [5] MARKUS, O. Ensino Modular: Sistemas Analógicos Circuitos com diodos e transistores. 8ª. ed. São Paulo: Érica, 2008.
- [6] SEDRA, A. S. e SMITH, K. C. Microeletrônica. 4^a. ed. São Paulo: Pearson, 2000.
- [7] BOYLESTAD, R. L. e NASHELSKY, L. Dispositivos Eletrônicos e Teoria de Circuitos. 8ª. ed. São Paulo: Prentice Hall do Brasil, 2004.
- [8] BRAGA, N. C. Fontes de Alimentação. 1ª. ed. São Paulo: Saber, 2005.
- [9] http://www.newtoncbraga.com.br/

9. Cronograma de Atividades

A seguir está apresentado o cronograma de atividades previsto para o semestre letivo 2024/2. Salienta-se que este cronograma pode sofrer alterações no decorrer do desenvolvimento das atividades.

Cronograma de atividades 2024/2 — Eletrônica Analógica I				
Mês	Dia	Dia semana	Local	Parte/capítulo Aula/Assunto
Setembro	24	Terça-Feira		SNCT 2024 (Semana Nacional de Ciência e Tecnologia)
Outubro -	01	Terça-Feira	SMM1	Apresentação da disciplina;
				Apresentação Projeto Semestral;
				Conceito chave aberta e chave fechada.
		т г.	LD2	Introdução ao diodo de junção;
		Terça-Feira		Polarização de diodo de junção; Exemplos de circuitos com diodos e método de análise de circuito com diodos.
				Retificador de Meia Onda;
		Terça-Feira		Retificador Onda Completa em Ponte.
	22		LD2	Retificador Onda Completa em Ponte;
		Terça-Feira		Aula Prática: Introdução ao Osciloscópio.
	29	Terça-Feira	LD2	Exercício com retificadores;
				Capacitores e processo de filtragem.
Novembro	05	Terça-Feira	LD2	Retificador de onda completa com tap central;
				Diodo Emissor de Luz (LED).
	06	Quarta-Feira	SMM3	Alimentação CA (F+N+T);
				Proteção primária e chaveamento.
	12	Terça-Feira	LD2	Aula prática: Estudo Comparativo das estruturas Retificadoras.
	13	Quarta-Feira	SMM3	Primeira Avaliação
	19	Terça-Feira	LD2	Regulação com diodo zener.
	26	Terça-Feira	LD2	Exercícios e aula prática experimental com Diodo Zener.
Dezembro	03	Terça-Feira	LD2	Introdução ao Transistor Bipolar de Junção.
	10	Terça-Feira	LD2	Transistor Bipolar de Junção.
				Regulação de tensão com Transistor Bipolar de Junção.
т .	17	Terça-Feira	LD2	Regulação de tensão com Transistor Bipolar de Junção. Regulação com CI dedicado.
Janeiro	28	Terça-Feira	LD2	Revisão. Exemplo de um projeto de uma fonte linear.
Fevereiro	04	Terça-Feira	LD2	Desenvolvimento Projeto Semestral.
	05	Quarta-Feira	SMM3	Segunda Avaliação
	11	Terça-Feira	LD2	Desenvolvimento Projeto Semestral.
	18	Terça-Feira	LD2	Desenvolvimento Projeto Semestral.
	25	Terca-Feira	LD2	Finalização Projeto Semestral. Apresentação Projeto Semestral. Recuperação
	26	Quarta-Feira	SMM3	, ,
Março	04	Terça-Feira		Feriado: Carnaval
	08	Sábado		Final do semestre letivo 2024/2