Please, provide only one single PDF file where the Python Cocle is given, the figures, the answers to the question are also provided. I do not accept several files. Please indicate the author names.

Send the PDF file to: emmanuel-Repinette 2 ceremade. dauphine-fr

We consider a stochastic basis (D/JE/KECO,TIP). The risk-free return is described by the log return instarbaneous return (TE) LECO,T), T>0, subjictis by hypothesis the stochastic process

solution to the following S.D.E:

dry = $a(b-n_t)dt + 8 dW_t$, (1) where a, b, 8 > 0 and W is a standard Brownian motion the initial value $n_0 \in [\frac{1}{100}, \frac{10}{100}]$ and the coefficients $a \in [\frac{1}{100}, \frac{20}{100}]$, $b \in [n_0; 2n_0]$, $8 \in [\frac{1}{100}, \frac{10}{100}]$ are chosen by yourself.

The rusk-free asset price is her given by the stochastic price process (SE) LE CO,T) solution to the SDE:

We suppose that the rusky and price is modeled by the shochastic process (St) (coi) whose discounded value (St) (coi) is solution to the SDE:

$$d\widetilde{s}_{t} = \Theta(t, \widetilde{s}_{t}) \widetilde{s}_{t} dB_{t}, (3)$$

where B is a Brownian Notion independent of W, So E [5,100] is chosen by yourself while or is the function given by

G'(t,x) = & (1+b(t)+g(x1) where:

- $d \in \left[\frac{5}{100}, \frac{20}{100}\right]$ is shown by yourself.

- 6, g are functions which are deflectiable with bounded derivatives.

- g∈ [0, ½] and g∈ [0, ½]

Rg gand g may depend on T is meeded.

Q1 Give the Euler scheme of (1) to deduce approximated trajectories of r. Provide He Bythen code and a graphic.

Q2. Deduce the trajectories of S°: Enler scheme, Python (ode and enflarations, see SDE (2)

03 Give the Euler scheme of (3) and deduce the trageclarues by ormulation (Python Code, graphic, employations).

Q4 Deduce the trajectories of S (...).

95 Recall the punciple to define and evaluate the price of a payoff gr; Fr measurable and integrable (here P=Q...).

Q6 Deduce the numerical computation of the following payoffs (are the Mythan Code, englanators.)

 $g_{\uparrow}^{1} = (K^{1} - S_{\uparrow})^{\dagger}$ where $K^{1} \in [\frac{1}{2}S_{0}, 2S_{0}]$ is chosen by yourself. $g_{\uparrow}^{2} = (K^{2} - \frac{1}{4})^{\dagger}$ such $K^{2} \in [S_{0}, 3S_{0}]$ is chosen by

your self.