```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [4]: data = pd.read_csv("Salary_Data_31f066cc745250401d28bfebe00bad27.csv")
 data

Out[4]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

In [5]: data.head(10)

Out[5]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0

```
In [6]: x = np.array(data["YearsExperience"]).reshape(-1,1)
Out[6]: array([[ 1.1],
                [ 1.3],
                [ 1.5],
                [ 2. ],
                [ 2.2],
                [ 2.9],
                [ 3. ],
                [ 3.2],
                [ 3.2],
                [ 3.7],
                [ 3.9],
                [ 4. ],
                [ 4. ],
                [ 4.1],
                [4.5],
                [ 4.9],
                [ 5.1],
                [5.3],
                [ 5.9],
                [ 6. ],
                [ 6.8],
                [ 7.1],
                [ 7.9],
                [ 8.2],
                [ 8.7],
```

[9.], [9.5], [9.6], [10.3], [10.5]])

```
In [7]: | y = data["Salary"]
         У
Out[7]: 0
                 39343.0
                 46205.0
         1
         2
                 37731.0
                 43525.0
         3
         4
                 39891.0
         5
                 56642.0
         6
                 60150.0
         7
                 54445.0
         8
                 64445.0
                 57189.0
         9
         10
                 63218.0
         11
                 55794.0
         12
                 56957.0
         13
                 57081.0
         14
                 61111.0
                 67938.0
         15
         16
                 66029.0
         17
                 83088.0
         18
                 81363.0
         19
                 93940.0
         20
                 91738.0
         21
                 98273.0
         22
                101302.0
         23
                113812.0
         24
                109431.0
         25
                105582.0
         26
                116969.0
         27
                112635.0
         28
                122391.0
         29
                121872.0
         Name: Salary, dtype: float64
In [8]:
         plt.scatter(x,y)
         plt.xlabel("Experience")
         plt.ylabel("Salary")
         plt.show()
            120000
            100000
          Salary
             80000
             60000
             40000
                                           6
                                                             10
                                       Experience
```

```
In [9]: # Data splitting
         X_train, X_test, y_train, y_test = train_test_split(x,y,test_size = 0.3)
         print(len(X_train))
         print(len(X_test))
         21
         9
In [10]: |model = LinearRegression()
         model.fit(X_train,y_train)
Out[10]: LinearRegression()
In [11]: | i = model.predict([[4]])
         print(i)
         [62694.36226424]
In [12]: # Evaluate the model
         acc = model.score(X_test,y_test)
         print(acc)
         0.9421236678648653
In [ ]:
```