Equivalences Between Equivalences as Swaps of Swaps

by Sven Nilsen, 2020

In this paper I show that equivalences between equivalences means the same as swaps of swaps.

When a function is applied to an equivalence of equivalences:

$$f((a \sim= b) \sim= (c \sim= d))$$

 $f(a \sim= b) \sim= f(c \sim= d)$
 $(f(a) \sim= f(b)) \sim= (f(c) \sim= f(d))$

To find out what this means, one can use a simpler example:

$$f((x \sim = x) \sim = (y \sim = y))$$

One can visualize this as the usual swap, but instead of just drawing objects, I include the self-arrows:

Now, replace `x $\sim=$ x` with `a $\sim=$ b` and `y $\sim=$ y` with `c $\sim=$ d` (think about swaps as objects):

