MATH 207: Homework #8

Jesse Farmer

24 November 2003

1. Show that $\mathbb{Q}(\sqrt{2})$ is a field.

Let $a + b\sqrt{2}$, $c + d\sqrt{2}$ be arbitrary elements of $\mathbb{Q}(\sqrt{2})$. We see that $(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + b\sqrt{2})(c + d\sqrt{2})$ $(2bd) + (ad + bc)\sqrt{2}$, so we can treat $\mathbb{Q}(\sqrt{2})$ as the set of all ordered pairs of real numbers with addition and multiplication defined as (a,b) + (c,d) = (a+b,b+d) and (a,b)(c,d) = (ac+2bd,ad+bc).

Since addition is coordinate-wise all the additive properties of \mathbb{R} are inherited, so $(\mathbb{Q})\sqrt{2}$, +) is an Abelian group. We only need look at multiplication and distributivity.

- Multiplication:
 - Associativity (a,b)((c,d)(e,f)) = (a,b)(ce+2df,cf+de) = (ace+2adf+2bcf+2bde,acf+ade+de)bce + 2bdf) = (ac + 2bd, ad + bc)(e, f) = ((a, b)(c, d))(e, f)
 - Identity (a,b)(1,0) = (1a+2(b0),0a+1b) = (a,b)
 - $(a,b)\left(\frac{a}{a-2b^2},\frac{-b}{a-2b^2}\right) = \left(\frac{a^2}{a-2b^2} + 2\frac{-b^2}{a-2b^2}, \frac{-ab}{a-2b^2} + \frac{ab}{a-2b^2}\right) = \left(\frac{a-2b^2}{a-2b^2}, \frac{ab-ab}{a-2b^2}\right) = (1,0)$

$$(a,b)((c,d)+(e,f)) = (a,b)(c+e,d+f) = (ac+ae+2bd+2bf,ad+af+bc+be) = (ac+ae+2bd,ad+bc) + (ae+2bf,af+be) = (a,b)(c,d) + (a,b)(e,f)$$

Therefore $\mathbb{Q}(\sqrt{2})$ is a field.

• Distributivity

2. Show that any non-empty set with the discrete metric is a metric space.

Let (X, ρ) be a set with the metric

$$\rho(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

- Positive definite: For any $x, y \in X$ we have either $\rho(x, y) = 1$ or $\rho(x, y) = 0$. Clearly this is always non-negative. Moreover, from the definition we get that $\rho(x, y) = 0$ if and only if x = y directly.
- Symmetric: As the equality relation is symmetric, so is the discrete metric on any set.

1

• Triangle inequality:

We need to guarantee that for any $x, y, s \in X$ we have $\rho(x, y) \le \rho(x, s) + \rho(s, y)$. In this inequality, the left-hand side can be either 0 or 1 and the right-hand side can be one of 0,1, or 2. The only

combination where this statement is violated is when $\rho(x,y) = 1$ and $\rho(x,s) + \rho(s,y) = 0$, so we need to show this case is impossible.

If $\rho(x,s) + \rho(s,y) = 0$ then $\rho(x,s) = 0$ and $\rho(s,y) = 0$. But this implies that x = s = y by positive definite. Hence, $\rho(x,y) = 0$. Therefore the triangle inequality holds in every case.

3. Show that (\mathbb{R}^n, ρ_p) is a metric space.

We define the metric as

$$\rho_p(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{\frac{1}{p}}$$

where $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$.

- <u>Positive definite</u>: Note that each term in the sum is positive. As this is the case, we cannot have a non-negative distance. If $\rho_p(x,y) = 0$ then $\sum_{k=1}^n |x_k y_k|^p = 0$, but since each individual term in the sum is positive every term must be zero for this to occur, i.e., $|x_k y_k|^p = 0$ for all k. Clearly, then, $|x_k y_k| = 0$ for all k. That $x_k = y_k$ for all k follows directly from the properties of the absolute value on \mathbb{R}^1 and therefore, if $\rho_p(x,y) = 0$ then x = y. The converse is even more obvious.
- Symmetric: This follows directly from the properties of the absolute value in \mathbb{R}^1 .
- Triangle inequality:

Save for the statement that for $a,b \ge 0$ we have $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ if $\frac{1}{p} + \frac{1}{q} = 1$, I understand the proof in Kolmogorov and Fomin. Since this is more-or-less the crux of the Hölder Inequality it would be rather cheap of me to just copy it here.

- 4. Show that (\mathbb{C}^n, ρ_p) is a metric space.
- 5. Show that $(\mathbb{R}^n, \rho_{\infty})$ is a metric space.
 - Positive definite: This trivially follows from the same property in \mathbb{R} .
 - Symmetric: This trivially follow from the same property in \mathbb{R} .
 - Triangle inequality:

It suffices to show that $\rho(a,b) \leq \rho(a) + \rho(b)$. If j is the index at which $\max_{1 \leq k \leq n} |x_k - y_k|$ is attained, then clearly $\max_{1 \leq k \leq n} |x_k + y_k| = |x_j + y_j| \leq |x_j| + |y_j| = \max_{1 \leq k \leq n} |x_k| + \max_{1 \leq k \leq n} |y_k|$ by this very property in \mathbb{R} .

6. Show that the unit circles in $l_2^p(\mathbb{R})$ cover the entire space between p=1 and $p=\infty$.

The function, $f(p) = x^p + y^p$, which describes the unit circle in l_2^p is continuous and thus by the Intermediate Value Theorem takes on every value from its minimum (p = 1) to its maximum $(p = \infty)$. Moreover, since the derivative is always positive it takes on each value once if we restrict x, y to be "non-corner" points.

7. Show that the open ball is an open set.

Let (X, ρ) be a metric space, $x \in X$ be arbitrary, and $B_{\varepsilon}(x)$ be an open neighborhood around x. If $y \in B_{\varepsilon}(x)$ then $\rho(x, y) < \varepsilon$. Hence, there is some r > 0 such that $\rho(x, y) = \varepsilon - r$.

Then, for all points $z \in X$ such that $\rho(y,z) < h$ we have $\rho(x,z) \le \rho(x,y) + \rho(y,z) < r - h + h = r$. Therefore $s \in B_{\varepsilon}(x)$, i.e., $B_{\varepsilon}(x)$ is open.

2

8. Show that a subset of a metric space is closed if and only if it contains all its accumulation points.

Let (X, ρ) be a metric space and $S \subseteq X$. If S is closed then S^c is open. Assume for contradiction that $x_0 \in S^c$ is an accumulation point for S. Every neighborhood around x_0 has a point in S, but because S^c is open some of these neighborhoods will also be contained in S^c , a contradiction.

Conversely, if *S* is not closed then S^c is not open. That is, there exists some $x_0 \in S^c$ such that for any $\varepsilon > 0$ $B_{\varepsilon}(x_0) \nsubseteq S^c$. So there is some $x \in S$ such that $x \in B_{\varepsilon}(x_0)$ for all $\varepsilon > 0$ and x_0 is an accumulation point of *S* not in *S*.

Therefore a subset of a metric space is closed if and only if it contains all its accumulation points.

- 9. Find the following under the standard metric in \mathbb{R} :
 - (a) $\partial \mathbb{Q} = \mathbb{R}$
 - (b) $\partial(\mathbb{R}\backslash\mathbb{Q}) = \mathbb{R}$
 - (c) $\partial([0,1]) = \{0,1\}$
- 10. Show the following:
 - (a) $\partial A = \bar{A} \backslash \mathring{A}$

Recall that $x \in \partial A$ if and only if every neighborhood around x intersects both A and A^c .

First we show that $\partial A \subseteq \bar{A} \setminus \mathring{A}$. If $x \in \partial A$ and $x \in \mathring{A}$ then there is a neighborhood around x which is contained in A, a contradiction since every neighborhood around x must also intersect the complement of A. If $x \in \partial A$ and $x \notin \bar{A}$ then there is some closed set B which contains A that does not contain x. Thus $x \in X \setminus B \subseteq X \setminus A$ is open, and so there exists a neighborhood around x completely contained in both $X \setminus B$ and $X \setminus A$. This is a contradiction since every neighborhood must intersect A.

If $x \notin A$ then every interval intersects the complement of A and if $x \in \overline{A}$ every interval intersects A itself. Therefore if both of these conditions hold $x \in \partial A$.

Therefore $\partial A = \bar{A} \backslash \mathring{A}$.

(b)
$$\mathring{A} = X \setminus (\overline{X \setminus A})$$

First we show that $\mathring{A} \subseteq X \setminus (\overline{X \setminus A})$. Let $x \in \mathring{A}$. That $x \in X$ is trivial. As $x \in \mathring{A}$, there exists some open set $B \subseteq A$ such that $x \in B$. We then have $x \notin X \setminus B$ and $X \setminus A \subseteq X \setminus B$. But $X \setminus B$ is a closed set which contains $X \setminus A$, so $x \notin \overline{X \setminus A}$

Second, we show that $\mathring{A} \supseteq X \setminus (\overline{X \setminus A})$. If $x \in (\overline{X \setminus A})$ then there is closed set $x \notin B \supseteq X \setminus A$, but this means that $x \in B \setminus X \supseteq A$ and that $B \setminus X$ is open. Therefore $x \in \mathring{A}$ as it is in an open set contained in A.

Therefore $\mathring{A} = X \setminus (\overline{X \setminus A})$.

(c)
$$\bar{A} = X \setminus (X \setminus A)^o$$

First we show that $\bar{A} \subseteq X \setminus (X \setminus A)^o$. Let $x \in \bar{A}$. That $x \in X$ is trivial. Assume for contradiction that $x \in (X \setminus A)^o$, then there is some open set $x \in B \subseteq X \setminus A$. We then have that $x \notin X \setminus B$ and $X \setminus B \supseteq A$ is closed. Hence, $C = \bar{A} \cap (X \setminus B)$ is closed and $x \notin C$. Moreover, $A \subseteq C$. This is a contradiction since C is a closed set which contains A and, as $x \in \bar{A}$, it must be in every such set.

Second we show that $\bar{A} \supseteq X \setminus (X \setminus A)^o$. If $x \notin (X \setminus A)^o$ then x is not in any open set in $X \setminus A$. But if a closed set contains A then its complement is one of these sets, and thus contains x. Therefore $x \in \bar{A}$.

Therefore $\bar{A} = X \setminus (X \setminus A)^o$.

11. (a) Show that \mathring{A} is the set of all interior points of A.

If $x \in A$ then there is an open set $S \subseteq A$ such that $x \in S$. But since S is open there must be an open neighborhood around x, i.e., x is an interior point of S. This same neighborhood, however, is contained in A, so x is also an interior point of A.

Conversely, if x is an interior point of A then there is some open neighborhood around x contained in A. Since an open neighborhood is also an open set and this neighborhood is contained in A, it is also in \mathring{A} by definition of the interior.

Therefore $x \in A$ if and only if x is an interior point of A. That is, A is the set of all interior points of A

(b) Show that \bar{A} is union of A and the set of all accumulation points of A.

We will denote the set of all accumulation points of A as A'.

First we show that $\bar{A} \subseteq A \cup A'$. If $x \notin A \cap A'$ then there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \cap A = \emptyset$. But as $B_{\varepsilon}(x)$ is open, $B_{\varepsilon}^{c}(x)$ is closed and does not contain x. Moreover, $A \subseteq B_{\varepsilon}^{c}(x)$ since they are disjoint. It is clearly impossible for x to then be in the intersection of all closed sets that contain A as $x \notin B_{\varepsilon}^{c}(x)$.

Now we show $A \cup A' \subseteq \bar{A}$. If $x \in A$ then x is certainly in any set, closed or open, which contains A. Thus $x \in \bar{A}$. Let $x \in A'$ and assume for contradiction that $x \notin \bar{A}$. Then there exists a a closed set $B \supseteq A$ with $x \notin B$ which implies $x \notin A$. x is an accumulation point for A and so is also an accumulation point for any superset, including B. As B is closed it contains all its accumulation points, specifically it contains x, a contradiction.

Therefore \bar{A} is union of A and the set of all accumulation points of A.