- 1. Let $D: \mathbb{C}[x] \to \mathbb{C}[x]$ be the function sending a polynomial to its first derivative, that is, $D: f(x) \mapsto f'(x)$.
 - (a) Show that D is a linear transformation.
 - (b) Find im D and ker D.
 - (c) Is D injective, surjective or bijective. Justify your answer.
 - (d) Show that $\mathbb{C}[x]$ is an infinite dimensional vector space over \mathbb{C} .
 - (e) Does Question 5 on Problem Sheet 6 admit the same answer for infinite dimensional vector spaces?
- 2. Let $\mathbb{C}[x]_{\leq 4}$ be the \mathbb{C} -vector space of polynomials in x with complex coefficients and degree less than or equal to 4. Let $D: \mathbb{C}[x]_{\leq 4} \to \mathbb{C}[x]_{\leq 4}$ be the linear transformation defined by the usual derivative of polynomials.
 - (a) Write the matrix of D in the canonical basis

$$\mathcal{E} = \{e_0 = 1, e_1 = x, e_2 = x^2, e_3 = x^3, e_4 = x^4\}.$$

- (b) Find a basis of $\mathbb{C}[x]_{\leq 4}$ consisting of polynomials of degree 4 and write the matrix of D in this basis.
- (c) Write the basis change matrix from \mathcal{E} to the basis found in part ??.
- (d) Write the matrix of D with respect to the basis \mathcal{B} .
- (e) Is D left or right invertible? In the affirmative case write the matrix of a left (or right) inverse to D (with respect to a basis of your choice).
- (f) Repeat ?? re-defining $D: \mathbb{C}[x]_{\leq 4} \to \mathbb{C}[x]_{\leq 3}$.
- 3. Let $V = M_{3\times 3}(\mathbb{C})$ be the space of 3×3 complex matrices with the usual structure of vector space over \mathbb{C} . The canonical basis of V is

$$\mathcal{E} = \{E_{ij}\}_{i,j \in \{1,2,3\}}$$

where E_{ij} is the complex matrix that has 1 in position (i, j) and 0 everywhere else. Consider the map $\operatorname{tr}: V \to \mathbb{C}$ defined by $\operatorname{tr}(A) = a_{11} + a_{22} + a_{33}$ for $A = (a_{ij}) \in V$.

- (a) Show that tr is a linear transformation.
- (b) Write the matrix of tr in the canonical bases of V and \mathbb{C} .
- (c) For two matrices $A, B \in M_{3\times 3}(\mathbb{C})$ set

$$[A, B] = AB - BA.$$

Compute the dimension of the subspace of V spanned by the matrices $\{[E_{ij}, E_{k\ell}] \mid i, j, k, \ell \in \{1, 2, 3\}\}$. (Hint: Consider $[E_{ii} - E_{jj}, E_{ij}]$ for $i \neq j$, $[E_{12}, E_{21}]$, and $[E_{23}, E_{32}]$)

(d) Compute the dimension of the subspace of V spanned by the matrices $\{AB-BA\mid A,B\in V\}.$