数值分析理论作业

学号: 231501025, 姓名: 张树威

问题 1. §4.T34

给出计算积分

$$\int_{-1}^{1} f(x)(1+x^2) dx$$

的两点插值求积公式, 使它的代数精确度为 3, 并导出求积公式的离散误差.

先计算 [-1,1] 上, 关于权函数 $W(x)=1+x^2$ 的直交多项式. 由于要求代数精确度为 3, 只需要计算 2 次直交多项式. 利用递推公式

$$\begin{cases} p_{k+1} = (x - \alpha_k) p_k(x) - \beta_k p_{k-1}(x) \\ p_0(x) = 1, p_{-1} = 0 \\ \alpha_k = \frac{(x p_k(x), p_k(x))}{(p_k(x), p_k(x))} \\ \beta_k = \begin{cases} 0, & k = 0 \\ \frac{(p_k(x), p_k(x))}{(p_{k-1}(x), p_{k-1}(x))}, & k \ge 1 \\ k = 0, 1, 2 \end{cases}$$

得到 $p_2(x)=x^2-\frac{2}{5}$, 将其零点 $x_1=-\frac{\sqrt{10}}{5}, x_2=\frac{\sqrt{10}}{5}$ 作为求积节点,得到 Gauss 型求积公式 $I_1(f)=A_1f(x_1)+A_2f(x_2),$

其中

$$A_1 = \int_{-1}^{1} \frac{x - x_2}{x_1 - x_2} W(x) dx = \frac{4}{3}$$
$$A_2 = \int_{-1}^{1} \frac{x - x_1}{x_2 - x_1} W(x) dx = \frac{4}{3}$$

则求积公式 $I_1(f) = \frac{4}{3} \left[f\left(-\frac{\sqrt{10}}{5}\right) + f\left(\frac{\sqrt{10}}{5}\right) \right]$,其离散误差为

$$E_1(f) = C_1 f^{(4)}(\xi), \quad \xi \in (-1, 1)$$

由于 C_1 对所有的 f 都成立, 故对 x^4 也成立, 有

$$E_1(x^4) = \int_{-1}^1 x^4 W(x) dx - I_1(x^4) = \frac{136}{525} = 24C_1,$$

得到 $C_1 = \frac{17}{1575}$, 即离散误差为 $E_1(f) = \frac{17}{1575} f^{(4)}(\xi), \xi \in (-1,1)$.

问题 2. §4.T35

求 Gauss 型求积公式

$$\int_0^1 f(x) \ln x dx \approx A_1 f(x_1) + A_2 f(x_2)$$

的系数 A_1, A_2 以及节点 x_1, x_2 , 并导出离散误差.

可以求得 [0,1] 上关于权函数 $W(x) = \ln x$ 的直交多项式为

$$p_0(x) = 1$$

$$p_1(x) = x - \frac{1}{4}$$

$$p_2(x) = x^2 - \frac{5}{7}x + \frac{17}{252}$$

$$p_2(x) = 0$$
 的两个根为 $x_1 = \frac{15 - \sqrt{106}}{42}, x_2 = \frac{15 + \sqrt{106}}{42},$ 于是

$$A_1 = \int_0^1 \frac{x - x_2}{x_1 - x_2} \ln x dx = -\frac{7 + 2\sqrt{106}}{2\sqrt{106}}$$
$$A_2 = \int_0^1 \frac{x - x_1}{x_2 - x_1} \ln x dx = \frac{7 - 2\sqrt{106}}{2\sqrt{106}}$$

所以求积公式为

$$\int_0^1 f(x) \ln x dx \approx -\frac{7 + 2\sqrt{106}}{2\sqrt{106}} f\left(\frac{15 - \sqrt{106}}{42}\right) + \frac{7 - 2\sqrt{106}}{2\sqrt{106}} f\left(\frac{15 + \sqrt{106}}{42}\right)$$

其离散误差为 $E_1(f) = C_1 f^{(4)}(\xi), \xi \in (0,1), \, \text{代 } f(x) = x^4, \, \text{得到}$:

$$E_1(x^4) = \int_0^1 x^4 \ln x dx - I_1(x^4) = 24C_1$$

于是
$$C_1 = \frac{647}{5443200}$$
, 离散误差为 $E_1(f) = \frac{647}{5443200} f^{(4)}(\xi), \xi \in (0,1)$.

问题 3. §4.T37

应用三点 Gauss-Legendre 求积公式计算积分 $\int_0^1 \frac{\sin x}{1+x} dx$.

作 $x = \frac{t+1}{2}$, 利用 Gauss-Legendre 求积公式:

$$\int_0^1 \frac{\sin x}{1+x} dx = \int_{-1}^1 \frac{\sin \frac{t+1}{2}}{t+3} dt \approx \frac{1}{9} \left[5 \frac{\sin \frac{-\sqrt{\frac{3}{5}}+1}{2}}{-\sqrt{\frac{3}{5}}+3} + \frac{8\sin 1/2}{3} + 5 \frac{\sin \frac{\sqrt{\frac{3}{5}}+1}{2}}{\sqrt{\frac{3}{5}}+3} \right] \approx 0.28425$$

而 $\int_0^1 \frac{\sin x}{1+x} dx \approx 0.284227$, 所以用 Gauss-Legendre 求积公式得到的积分值绝对误差小于 10^{-4} .

问题 4

作适当变换,应用 Gauss-Chebyshev 求积公式计算积分的

$$I = \int_1^3 x\sqrt{4x - x^2 - 3} \mathrm{d}x$$

准确值.

作变换 x=t+2,于是 $I=\int_{-1}^{1}(t+2)\sqrt{1-t^2}\mathrm{d}t=\int_{-1}^{1}\frac{(t+2)(1-t^2)}{\sqrt{1-t^2}}\mathrm{d}t$,令 $f(t)=(t+2)(1-t^2)$,要想得到准确值,需要代数精确度达到 3,因此需要应用两点以上的 Gauss-Chebyshev 求积公式,选择两点的 Gauss-Chebyshev 求积公式:

$$I = \frac{\pi}{2} \left[f\left(\cos\frac{\pi}{4}\right) + f\left(\cos\frac{3\pi}{4}\right) \right]$$
$$= \frac{\pi}{2} \left[\left(\frac{\sqrt{2}}{2} + 2\right) \frac{1}{2} + \left(-\frac{\sqrt{2}}{2} + 2\right) \frac{1}{2} \right]$$
$$= \pi$$

经计算是该积分的精确值.