DEFINITION: Let R be a ring, and $I \subseteq R$ an ideal of R.

- The **spectrum** of a ring R, denoted Spec(R), is the set of prime ideals of R.
- We set $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I \subseteq \mathfrak{p} \}$, the set of primes containing I.
- We set $D(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I \not\subseteq \mathfrak{p} \}$, the set of primes *not* containing I.
- More generally, for any subset $S \subseteq R$, we define V(S) and D(S) analogously.

DEFINITION/PROPOSITION: The collection $\{V(I) \mid I \text{ an ideal of } R\}$ is the collection of closed subsets of a topology on R, called the **Zariski topology**; equivalently, the open sets are D(I) for I an ideal of R.

DEFINITION: Let $\phi: R \to S$ be a ring homomorphism. Then the **induced map on Spec** corresponding to ϕ is the map $\phi^*: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ given by $\phi^*(\mathfrak{p}) := \phi^{-1}(\mathfrak{p})$.

LEMMA: Let \mathfrak{p} be a prime ideal. Let I_{λ} , J be ideals.

- (1) $\sum_{\lambda} I_{\lambda} \subseteq \mathfrak{p} \iff I_{\lambda} \subseteq \mathfrak{p}$ for all λ .
- (2) $\overrightarrow{IJ} \subseteq \mathfrak{p} \iff I \subseteq \mathfrak{p} \text{ or } J \subseteq \mathfrak{p}$
- (3) $I \cap J \subseteq \mathfrak{p} \iff I \subseteq \mathfrak{p} \text{ or } J \subseteq \mathfrak{p}$
- (4) $I \subseteq \mathfrak{p} \iff \sqrt{I} \subseteq \mathfrak{p}$
- (1) The spectrum of some reasonably small rings.
 - (a) Let $R = \mathbb{Z}$ be the ring of integers.
 - (i) What are the elements of $\operatorname{Spec}(R)$? Be careful not to forget (0)!
 - (ii) Draw a picture $\operatorname{Spec}(R)$ (with \cdots since you can't list everything) with a line going up from \mathfrak{p} to \mathfrak{q} if $\mathfrak{p} \subset \mathfrak{q}$.
 - (iii) Describe the sets V(I) and D(I) for any ideal I.
 - **(b)** Same questions for R=K a field.
 - (c) Same questions for the polynomial ring $R = \mathbb{C}[X]$.
 - **(d)** Same questions¹ for the power series ring R = K[X] for a field K.
- (2) More Spectra.
 - (a) Let $R = \mathbb{C}[X,Y]$ be a polynomial ring in two variables. Find some maximal ideals, the zero ideal, and some primes that are neither. Draw a picture like the ones from the previous problem to illustrate some containments between these.
 - **(b)** Let R be a ring and I be an ideal. Use the Second Isomorphism Theorem to give a natural bijection between $\operatorname{Spec}(R/I)$ and V(I).
 - (c) Let $R = \frac{\mathbb{C}[X,Y]}{(XY)}$. Let x = [X] and y = [Y].
 - (i) Use the definition of prime ideal to show that $\operatorname{Spec}(R) = V(x) \cup V(y)$.
 - (ii) Use the previous problem to completely describe V(x) and V(y).
 - (iii) Give a complete description/picture of Spec(R).

¹Spoiler: The only primes are (0) and (X). To prove it, show/recall that any nonzero series f can be written as $f = X^n u$ for some unit $u \in K[\![X]\!]$.

- (3) Let R be a ring.
 - (a) Show that for any subset S of R, V(S) = V(I) where I = (S).
 - **(b)** Translate the lemma to fill in the blanks:

$$V(I) _V(\sqrt{I}) \qquad D(I) _D(\sqrt{I}) \\ V(\sum_{\lambda} I_{\lambda}) _V(I_{\lambda}) \qquad D(\sum_{\lambda} I_{\lambda}) _D(I_{\lambda}) \\ V(f_{1}, ..., f_{n}) _V(f_{1}) _\cdots _V(f_{n}) \qquad D(f_{1}, ..., f_{n}) _D(f_{1}) _\cdots _D(f_{n}) \\ V(IJ) _V(I) _V(J) \qquad D(IJ) _D(J) \\ V(I \cap J) _V(I) _V(J) \qquad D(I \cap J) _D(J)$$

- **(c)** Use the above to verify that the Zariski topology indeed satisfies the axioms of a topology.
- (4) The induced map on Spec: Let $\phi: R \to S$ be a ring homomorphism.
 - (a) Show that for any prime ideal $\mathfrak{q} \subseteq S$, the ideal $\phi^*(\mathfrak{q}) = \phi^{-1}(\mathfrak{q})$ is a prime ideal of R.
 - (b) Show that for any ideal $I \in R$, we have

$$(\phi^*)^{-1}(V(I)) = V(IS)$$
 and $(\phi^*)^{-1}(D(I)) = D(IS)$.

- (c) Show that ϕ^* is continuous.
- (d) If $\phi: R \to R/I$ is quotient map, describe ϕ^* .
- (5) Properties of Spec(R).
 - (a) Show that for any ring R, the space Spec(R) is compact.
 - (b) Show that if Spec(R) is Hausdorff, then every prime of R is maximal.
 - (c) Show that $\operatorname{Spec}(R) \cong \operatorname{Spec}(R/\sqrt{0})$.
- (6) Let K be a field, and $R=\frac{K[X_1,X_2,\dots]}{(\{X_i-X_iX_j\mid 1\leq i\leq j\})}$. Show that $\mathfrak{m}=(x_1,x_2,\dots)$ is both maximal and minimal in $\operatorname{Spec}(R)$. Is $\{\mathfrak{m}\}$ closed? Is $\{\mathfrak{m}\}$ open?