Quantum Speedups for Computing Expectation Values and Partition Functions

Yassine Hamoudi

UC Berkeley

APS March Meeting 2023

Invited talk (Breiman Lecture) at NeurIPS 2021

Do we know how to estimate the mean?

Gábor Lugosi

ICREA, Pompeu Fabra University, BSE

"Despite its long history, the subject has attracted a flurry of renewed activity. Motivated by applications in machine learning and data science, the problem has been viewed from new angles both from statistical and computational points of view."

Scenarios in quantum computing

Expectation value of an observable

$$\langle \psi | O | \psi \rangle$$

Mean of a quantum probability oracle

$$|0\rangle \mapsto \sum_{\omega} \sqrt{p_{\omega}} |\omega\rangle |X(\omega)\rangle$$

Shadow tomography

$$|\psi\rangle^{\otimes k} \to 01101... \to \{\langle \psi | O_i | \psi\rangle\}_i$$

Partition function of a Hamiltonian

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H})$$

Minimize the use of sample data

Can we do better than measuring repeated copies of $|\psi\rangle$?

The case of projectors

Repeated measurements

$$\sim 1/\epsilon^2 \times \$$$

(standard quantum limit)

Quantum Phase estimation

$$\sim 1/\epsilon \times \$$$

(Heisenberg limit)

The case of projectors

Encode $||\Pi|\psi\rangle||$ into the rotation angle of $R=\mathrm{Ref}_{\psi}\mathrm{Ref}_{\Pi}$

 \rightarrow Phase estimation on R

The case of general observables

$$O = \sum_{i} \lambda_{i} \Pi_{i}$$

Can estimate $\langle \psi | O | \psi \rangle$ in time

$$\sim |O|/\epsilon \times \$$$

Can we do better?

Classical Mean estimation

If second moment exists, the error scales with the variance:

$$\sigma^2 = \langle \psi | O^2 | \psi \rangle - \langle \psi | O | \psi \rangle^2$$

Repeated measurements

Quantum Phase estimation

$$\sim (\sigma/\epsilon)^2 \times \$$$
 Incomparable

$$\sim ||O||/\epsilon \times$$
\$

(Chebyshev inequality)

Penalized by outliers in the spectrum of O

Outliers

$$\langle \psi | O | \psi \rangle = \sum_{i} \lambda_{i} \cdot ||\Pi_{i}|\psi\rangle||^{2}$$

Truncated expectation

Spectrum(O_{truncate}):

$$\langle \psi | O | \psi \rangle = \langle \psi | O_{\text{truncate}} | \psi \rangle \pm \epsilon/2$$

Optimal quantum estimator

Step 1: identify outliers by quantile estimation (amplitude amplification)

Step 2: estimate $\langle \psi | O_{\mathrm{truncate}} | \psi \rangle$ (phase estimation)

Balance the cost of each step to

$$\sim \sigma/\epsilon \times \$$$

Full quadratic speedup over classical concentration inequalities

Multivariate estimator

Estimator for d observables $\langle \psi | O_1 | \psi \rangle, ..., \langle \psi | O_d | \psi \rangle$

Classical estimators

At most log(d) overhead

Quantum estimators

d overhead?

(reuse same samples for all estimates)

No "parallel" phase estimation?

Multivariate estimator

Estimator for d observables $\langle \psi | O_1 | \psi \rangle, ..., \langle \psi | O_d | \psi \rangle$

Average along a direction $u \in \mathbb{R}^d$

Commuting observables

Non-commuting observables

$$u \mapsto u_1 \cdot \langle \psi | O_1 | \psi \rangle + \dots + u_d \cdot \langle \psi | O_d | \psi \rangle$$

$$u \mapsto \langle \psi | e^{-iu_1O_1}...e^{-iu_dO_d} | \psi \rangle$$

Quantum gradient estimation

(variant of Phase estimation)

Toesn't scale with variance

Multivariate estimator

Estimator for d observables $\langle \psi | O_1 | \psi \rangle, ..., \langle \psi | O_d | \psi \rangle$

Classical estimators

At most log(1/d) overhead

Quantum estimators

 \sqrt{d} overhead

(reuse same samples for all estimates)

Limited speedup in high-dimension

Partition functions

$$H: \Omega \rightarrow \{0,1,\ldots,n\}$$

Partition function:
$$Z(\beta) = Tr(e^{-\beta H})$$

Naive estimator

$$Z(\beta) = |\Omega| \cdot \langle \pi_0 | e^{-\beta H} | \pi_0 \rangle$$

Slowly-evolving estimators

$$Z(\beta_{k+1}) = Z(\beta_k) \cdot \langle \pi_{\beta_k} | e^{-(\beta_{k+1} - \beta_k)H} | \pi_{\beta_k} \rangle$$

Exponentially smaller variance

Example: Potts model

H(coloring) = #monochromatic edges

Classical estimators

$$\sim \frac{(\text{#vertices})^2}{\epsilon^2}$$

Quantum estimators

$$\sim \frac{(\text{#vertices})^{5/4}}{\epsilon}$$

Szegedy quantum walk

- + Quantum simulated annealing
- + Unbiased quantum estimators

Future directions

Quantum estimators with new features (robustness, differential privacy, ...)

• Optimal variance-scaling (non-commuting observables, shadow tomography, ...)

• Full quadratic speedup for estimating (classical) partition functions

Further readings

Classical estimators

- Lugosi. https://slideslive.com/38969196/do-we-know-how-to-estimate-the-mean. NeurlPS, 2021.
- Lugosi, Mendelson. "Mean Estimation and Regression Under Heavy-Tailed Distributions: A Survey". FoCM, 2019.

Univariate quantum estimators

- H. "Quantum Sub-Gaussian Mean Estimator". ESA, 2021.
- Knill, Ortiz, Somma. "Optimal quantum measurements of expectation values of observables". PRA, 2007.
- Kothari, O'Donnell. "Mean Estimation when You Have the Source Code; Or, Quantum Monte Carlo Methods". SODA, 2023.
- Rall. "Quantum algorithms for estimating physical quantities using block encodings". PRA, 2021.

Multivariate quantum estimators

- Cornelissen, H., Jerbi. "Near-Optimal Quantum Algorithms for Multivariate Mean Estimation". STOC, 2022.
- Huggins et al. "Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values". PRL, 2022.

Partition function estimators

- Cornelissen, H. "A Sublinear-Time Quantum Algorithm for Approximating Partition Functions". SODA, 2023.
- Harrow, Wei. "Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions". SODA, 2020.
- Montanaro. "Quantum Speedup of Monte Carlo Methods". Proc. R. Soc. A, 2015.