

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005655

International filing date: 22 March 2005 (22.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/558,550
Filing date: 02 April 2004 (02.04.2004)

Date of receipt at the International Bureau: 07 April 2005 (07.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

22.3.2005

PA 1281561

THE UNITED STATES OF AMERICA**TO ALL TO WHOM THESE PRESENTS SHALL COME:****UNITED STATES DEPARTMENT OF COMMERCE****United States Patent and Trademark Office****February 09, 2005**

**THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.**

APPLICATION NUMBER: 60/558,550**FILING DATE: April 02, 2004**

**By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS**

P. R. GRANT**Certifying Officer**

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

INVENTOR(S)

Given Name (first and middle [if any])	Family Name or Surname	Residence (City and either State or Foreign Country).	
Kaneo NOZAWA		Fukushima	Japan
Katsutoshi MORINAKA		Fukushima	Japan

Additional inventors are being named on the _____ separately numbered sheet(s) attached hereto.

TITLE OF THE INVENTION (500 characters max)

CORRESPONDENCE ADDRESS

Direct all correspondence to the address for SUGHRUE MION, PLLC filed under the Customer Number listed below:

WASHINGTON OFFICE

23373

CUSTOMER NUMBER

ENCLOSED APPLICATION PARTS (*check all that apply*)

Specification in	JAPANESE	<i>Number of Pages</i>	<u>8</u>	<input type="checkbox"/> CD(s), Number	<u> </u>
<input type="checkbox"/> Drawing(s)	<i>Number of Sheets</i>	<u> </u>	<input type="checkbox"/> Other (specify)	<u> </u>	
<input type="checkbox"/> Application Data Sheet. See 37 CFR 1.76					

METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT

- Applicant claims small entity status. See 37 CFR 1.27.

A check or money order is enclosed to cover the Provisional filing fees. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to **Deposit Account No. 19-4880**. Please also credit any overpayments to said Deposit Account.

The USPTO is hereby authorized to charge the Provisional filing fees to our **Deposit Account No. 19-4880**. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to **Deposit Account No. 19-4880**. Please also credit any overpayments to said Deposit Account.

**FILING FEE
AMOUNT (\$)**

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

- No.
 Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,

SIGNATURE Bruce E. Kramer

DATE April 2, 2004

TYPED or PRINTED NAME Bruce E. Kramer

REGISTRATION NO. 33,725

TELEPHONE NO. (202) 293-7060

DOCKET NO. P80828

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

【書類名】明細書

【発明の名称】イソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法

【技術分野】

【0001】

本発明は、種々の機能性ポリマー材料の製造に有用なイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法に関する。

【背景技術】

【0002】

イソシアネート基を有する（メタ）アクリル酸エステル誘導体は、種々の機能性ポリマーを製造する際に用いられる有用な化合物である。

従来、このようなイソシアネート基を有する（メタ）アクリル酸エステル誘導体を製造する方法としては、（メタ）アクリル酸とアミノアルコールのエステルの塩とホスゲンとを反応させる方法、あるいはイソプロペニルオキサゾリンとホスゲンとを反応させる方法が一般的であった。しかしながら、このような方法では、副反応として（メタ）アクリロイル基の二重結合への付加反応が生じることや、二重結合を有したまま反応等を行うため重合によるロスが発生するなどの問題点があった。

【0003】

また、他の方法として、イソシアネート基を有する3-クロロプロピオン酸エステル誘導体を脱塩化水素して、イソシアネート基を有する（メタ）アクリル酸エステル誘導体を製造する方法が提案されている（特許文献1参照）。

【0004】

しかしながら、特許文献1には、3-クロロプロピオン酸イソシアナトエチルエステルを、弱塩基性の3級アミンであるキノリンを用いて脱塩化水素することにより、アクリロイルオキシエチルイソシアネートを製造する例が示されているだけである。そして、この特許文献1に示されている方法では、アクリロイルオキシエチルイソシアネートとキノリンの沸点の差が小さいため、減圧蒸留による分離が困難であった。また、脱塩化水素が高温（160°C）で行われていることから、精製したアクリロイルエチルイソシアネートの重合反応を抑制するため、大量の重合防止剤を添加する必要があった。以上の点から、特許文献1に記載の方法も、工業的に満足のいく方法ではなかった。

【0005】

さらに、従来の方法では、生成物中に加水分解性塩素が多く残留するといった問題点も有していた。

【特許文献1】米国特許2,821,544号公報

【発明の開示】

【発明が解決しようとする課題】

【0006】

本発明の課題は、工業的に有利で温和な条件で、イソシアネート基を有する3-クロロプロピオン酸エステル誘導体を脱塩化水素して、加水分解性塩素の残留量が少ないイソシアネート基を有する（メタ）アクリル酸エステルを高収率で製造する方法を提供することにある。

【課題を解決するための手段】

【0007】

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の塩基性窒素化合物を用いて、イソシアネート基を有する3-クロロプロピオン酸エステル誘導体を脱塩化水素することにより、上記課題を解決することができることを見出し、本発明を完成をするに至った。

【0008】

すなわち本発明は、以下の事項に関する。

〔1〕下記一般式（1）で表されるイソシアネート基を有する3-クロロプロピオン酸エステル誘導体を、3級窒素を有する塩基性窒素化合物の存在下で脱塩化水素することに

より、下記一般式（2）で表されるイソシアネート基を有する（メタ）アクリル酸エステル誘導体を製造する方法であつて、

該塩基性窒素化合物の3級窒素が、芳香環以外の置換基を少なくとも1つ有することを特徴とするイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0009】

（式中、R¹は、水素原子またはメチル基を示し、R²は、炭素数1～10の分岐していくてもよいアルキレン基、または、炭素数3～6のシクロアルキレン基の前後に炭素数0から3のアルキレン基を有する炭化水素基を示す。）

【2】前記塩基性窒素化合物の沸点が、生成物の（メタ）アクリル酸エステル誘導体の沸点よりも低いことを特徴とする【1】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0010】

【3】前記塩基性窒素化合物がトリアルキルアミンであることを特徴とする【1】または【2】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0011】

【4】前記塩基性窒素化合物が反応溶媒に溶解しない化合物であることを特徴とする【1】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【5】前記反応溶媒に溶解しない塩基性窒素化合物が、3級窒素を有するイオン交換樹脂であることを特徴とする【4】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0012】

【6】前記脱塩化水素が40～120℃の温度で行われることを特徴とする【1】～【5】のいずれかに記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0013】

【7】前記脱塩化水素後に、残留している塩基性窒素化合物を蒸留により除去することを特徴とする【1】～【6】のいずれかに記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0014】

【8】前記R²が、炭素数1～10の分岐していくてもよいアルキレン基であることを特徴とする【1】～【7】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0015】

【9】前記R²が、-CH₂-CH₂-または-CH₂-CH₂-CH₂-であることを特徴とする【8】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0016】

【10】単蒸留により生成物を単離したときの加水分解性塩素の濃度が300ppm以下であることを特徴とする【1】～【9】のいずれかに記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体の製造方法。

【0017】

【11】【1】～【10】のいずれかに記載の製造方法により得られたことを特徴とするイソシアネート基を有する（メタ）アクリル酸エステル誘導体。

【12】加水分解性塩素の濃度が300ppm以下であることを特徴とする【11】に記載のイソシアネート基を有する（メタ）アクリル酸エステル誘導体。

【発明の効果】

【0018】

本発明によれば、工業的に有利で温かみのある条件で、イソシアネート基を有する3-クロロプロピオニ酸エステル誘導体を脱塩化水素して、加水分解性塩素の残留量が少ないイソシアネート基を有する(メタ)アクリル酸エステル誘導体を、高収率で製造することができる。

【0019】

また、本発明の製造方法で得られるイソシアネート基を有する(メタ)アクリル酸エステル誘導体は、ビニル重合性二重結合とイソシアネート基を同一分子内に有することから、他の不飽和化合物、例えば、メチルメタクリレート、メチルアクリレートなどの(メタ)アクリレート類またはスチレン類などと共に重合させることにより、イソシアネート基を有する機能性ポリマー材料を製造すること、あるいはヒドロキシル基、アミノ基、カルボキシル基のような活性水素を有するモノマー、オリゴマーまたはポリマーと、イソシアネート基とを反応させて不飽和結合を導入し、紫外線、電子線、熱などにより硬化する材料を製造することができる。

【0020】

したがって、上記のような材料を用いたレジスト、粘着剤、フィルムなどとして、電子材料、歯科材料、医療分野、塗料または各種接着剤などの様々な用途に有用である。

【発明を実施するための最良の形態】

【0021】

以下、本発明に係るイソシアネート基を有する(メタ)アクリル酸エステル誘導体の製造方法について詳細に説明する。なお、本明細書において、「(メタ)アクリル」とは、アクリルまたはメタクリルを意味し、「(メタ)アクリロ」とは、アクリロまたはメタクリロを意味する。

【0022】

本発明に係るイソシアネート基を有する(メタ)アクリル酸エステル誘導体の製造方法は、下記一般式(1)で表わされる、イソシアネート基を有する3-クロロプロピオニ酸エステル誘導体を、特定の塩基性窒素化合物の存在下で脱塩化水素する方法である。

本発明に係る製造方法により得られる、イソシアネート基を有する(メタ)アクリル酸エステル誘導体は、式(2)で表される化合物である。

式(1)および(2)中、R¹は、水素原子またはメチル基を示し、R²は、炭素数1~10の分岐していくてもよいアルキレン基、または、炭素数3~6のシクロアルキレン基の前後に炭素数0から3のアルキレン基を有する炭化水素基を示す。

【0023】

上記R²は、好ましくは炭素数1~10の分岐していくてもよいアルキレン基であり、より好ましくは-CH₂-CH₂- (エチレン基)、-CH₂-CH₂-CH₂- (プロピレン基)であり、特に好ましくは-CH₂-CH₂- (エチレン基)である。

【0024】

上記式(2)で表わされる、イソシアネート基を有する3-クロロプロピオニ酸エステル誘導体の製造方法としては、従来公知の方法によって得ることができ、特に限定されないが、通常、3-クロロプロピオニ酸クロライド誘導体とアミノアルコール塩酸塩とを反応させて得られる、下記一般式(3)で表わされる3-クロロプロピオニ酸アミノエステル誘導体の塩と、ホスゲンなどのジハロゲノカーボネートとを反応させることにより得られる。

式(3)中、R¹およびR²は、式(1)および(2)中のR¹およびR²と同義である。また、式(3)中に示したプロトン酸は、特に限定されないが、後の反応で塩化水素が発生することを考慮すれば、塩酸塩としておくことが好ましい。

【0025】

式(3)において、R¹が水素であり、R²がエチレン基である3-クロロプロピオニ酸

(2-アミノエチル)エステル塩酸塩の製造方法を例示すれば、下記式(4)で表わされる3-クロロプロピオン酸クロライドと2-アミノエタノールの塩酸塩とを反応させることにより得られる。

その他の3-クロロプロピオン酸アミノエチルエステル誘導体も同様の方法で製造可能である。また、式(3)の3-クロロプロピオン酸アミノエチルエステル誘導体は、(メタ)アクリル酸アミノエステルの塩に塩化水素を付加することによっても得られるが、原料中に二重結合を含まない化合物を用いて製造する方法が、重合反応が生じるおそれがないことから、工業的に好ましい。

【0026】

脱塩化水素は、通常、塩基性化合物を共存させることにより行われる。このような塩基性化合物としては、一般的に塩基性の窒素を有する化合物が用いられるが、該窒素上に水素原子が残っていると、原料および目的物のイソシアネート基と反応するため、収率が低下することや窒素原子の塩基性が消失することがある。

【0027】

したがって、本発明の製造方法においては、3級窒素を有する塩基性窒素化合物が用いられる。また、脱塩化水素を効率的に行うには、窒素原子に芳香環が直接結合したキノリンなどの弱塩基性化合物では不充分であり、ある程度の塩基性の強さが必要である。すなわち、本発明で用いられる3級窒素を有する塩基性窒素化合物は、該3級窒素原子が、芳香環以外の置換基、たとえばアルキル基を少なくとも1つ有している化合物であることが好ましく、該3級窒素に置換されている芳香環は1つ以下であることが望ましい。

【0028】

上記のような塩基性窒素化合物としては、たとえば、種々のトリアルキルアミン、窒素に結合した2つまたは3つのアルキル基が互いに結合して環状構造を形成している化合物(環の中に、酸素、硫黄、他の窒素原子などを有していてもよい)、窒素原子の置換基の1つが芳香環であるアミン(例えば、N,N-ジアルキルアニリン、N,N-ジアルキルアミノピリジン等)などが挙げられる。

【0029】

具体的には、トリメチルアミン、トリエチルアミン、トリプロピルアミン、ジメチルエチルアミン、ジメチルイソプロピルアミン、ジエチルメチルアミン、ジメチルブチルアミン、ジメチルヘキシルアミン、ジイソプロピルエチルアミン、ジメチルシクロヘキシルアミン、テトラメチルジアミノメタン、ジメチルベンジルアミン、テトラメチルエチレンジアミン、テトラメチル-1,4-ジアミノブタン、テトラメチル-1,3-ジアミノブタン、テトラメチル-1,6-ジアミノヘキサン、ペンタメチルジエチレントリアミン、1-メチルピペリジン、1-エチルピペリジン、N,N-ジメチルピペラジン、N-メチルモルフォリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノエン(DBN)、2,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、N,N-ジメチルアニリン、N,N-ジエチルアニリン、三級窒素を有するイオン交換樹脂などが挙げられる。

【0030】

これらの中では、トリメチルアミン、トリエチルアミン、トリプロピルアミン、テトラメチルエチレンジアミンが好ましい。また、上記塩基性窒素化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。

【0031】

脱塩化水素して得られたイソシアネート基を有する(メタ)アクリル酸エステル誘導体を含む生成物中に、塩基性窒素化合物が残留していると、該(メタ)アクリル酸エステル誘導体の重合反応が進行する原因となり得ることから、蒸留により分離精製することが好ましい。

【0032】

したがって、本発明で用いられる塩基性窒素化合物は、生成物の(メタ)アクリル酸エ

ステル誘導体よりも低い沸点を有することが、高い精度で分離する上で必要であり、好ましくは、生成物と塩基性窒素化合物の沸点の差が20℃以上、より好ましくは30℃以上であることが望ましい。たとえば、生成物がアクリロイルオキシエチルイソシアネート（沸点；200℃）の場合は、180℃よりも低い沸点の塩基性窒素化合物が好ましく、メタアクリロイルオキシエチルイソシアネート（沸点；211℃）の場合は、190℃よりも低い沸点の塩基性窒素化合物が好ましい。

【0033】

また、塩基性窒素化合物を分離するためには、塩基性窒素化合物が、反応に使用する溶媒に溶解しないものでもよい。このような塩基性窒素化合物としては、高分子の塩基性窒素化合物からなるイオン交換樹脂が挙げられる。

【0034】

上記塩基性窒素化合物は、イソシアネート基を有する3-クロロプロピオン酸エステル誘導体に対して1.0～10当量用いることが好ましい。イソシアネート化の際発生する塩化水素が、イソシアネート基を有する3-クロロプロピオン酸エステル誘導体に含まれていることから、窒素のモル数として1.0当量より多く必要であるが、多すぎると経済的ではない。

【0035】

本発明の製造方法における脱塩化水素は、上記塩基性窒素化合物の存在下、ある程度の温度に保つことによりなされる。反応温度は、高温であると生成物のイソシアネート基を有する（メタ）アクリル酸エステル誘導体が重合するおそれがあるので、40～120℃、好ましくは40～100℃であることが望ましい。

【0036】

反応時間は、反応温度、塩基性窒素化合物の塩基性の強さなどにより異なるが、通常、10分～40時間程度、好ましくは30分～30時間である。

反応には、イソシアネート基と反応しない溶媒、たとえば、トルエン、キシレン等の炭化水素；酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類；塩化メチレン等の塩素系溶剤などの非プロトン性溶媒を用いることができる。溶媒についても生成物より沸点が低いものが好ましい。

【0037】

脱塩化水素後は、生成した塩酸塩を除去してもよい。除去方法としては、ろ過が一般的である。反応に溶媒を用いると、生成した塩酸塩を除去する際に、作業性、取り扱い性などの面で有利である。また、水に対する溶解度が低い溶媒中で反応を行った場合は、生成した塩酸塩を水で抽出してもよい。その場合、目的物の分解を減少させる目的で、過剰の塩基性窒素化合物を中和した後に抽出を行うことが好ましい。

【0038】

脱塩化水素後、必要に応じて塩酸塩を除去し、過剰の塩基性窒素化合物を分離した後、さらにイソシアネート基を有する（メタ）アクリル酸エステル誘導体を、蒸留、結晶化、抽出、カラム処理などの方法、好ましくは蒸留により単離する。

【0039】

イソシアネート基を有する（メタ）アクリル酸エステル誘導体を単離するための蒸留の操作および装置は特に限定されないが、精留、還流装置があるものが好ましい。また、薄膜蒸留装置を使用することもできる。蒸留の温度は、不要な熱履歴を回避するために低い方が好ましく、通常釜内温度で120℃以下で実施される。蒸留時、生成物の重合を防止する目的として、系内に不活性ガスで薄められた酸素や一酸化窒素を供給してもよい。

【0040】

上記のようにして単離することにより、加水分解性塩素の含有量が300ppm以下のイソシアネート基を有する（メタ）アクリル酸エステル誘導体が高収率で得られる。

【実施例】

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は、これら実施例に何ら限定されることはない。

【0041】

本実施例において、加水分解性塩素の測定は以下のようにして行った。まず、容量100mLの三角フラスコにメチルアルコール35mL、水15mLおよび試料5gをとり、還流冷却器を取り付けて30分間加熱還流させた後、室温まで冷却した。次いで、得られた溶液について、N/100硝酸銀溶液を用いて電位差滴定を行い、加水分解性塩素の濃度を求めた。

【0042】**《合成例1》3-クロロプロピオン酸クロライドの合成**

温度計、冷却管、ガス供給管、搅拌装置を取り付けた四口フラスコにアクリル酸50g、ジメチルホルムアミド1gを入れ、70℃に加熱し、ホスゲン100gを10時間かけて供給した。供給終了後、過剰のホスゲンを除去した後、減圧下蒸留した(60℃/3kPa)。初留分5gを別にし、3-クロロプロピオン酸クロライドを主留分として50gを得た(収率80%)。

【0043】**《合成例2》3-クロロプロピオン酸(2-イソシアナトエチル)エステルの合成**

温度計、冷却管、ガス供給管、搅拌装置を取り付けた四口フラスコにトルエン250mL、エタノールアミン25g(0.41mol)を入れ、90℃に加熱し、塩化水素ガスを約20g供給した。次いで、3-クロロプロピオン酸クロライド59g(0.46mol)を90分かけて滴下し、90℃で1時間加熱する。その後、ホスゲン80g(0.81mol)を4時間かけて供給した。次いで、溶存ホスゲンおよびトルエンを除去した後、蒸留(105~110℃/0.7kPa)を行い、3-クロロプロピオン酸(2-イソシアナトエチル)エステル59g(0.33mol)を得た(収率81%)。

【0044】**<実施例1>**

トルエン250mL、3-クロロプロピオン酸(2-イソシアナトエチル)エステル59g、トリエチルアミン(沸点；89.4℃)50g(0.49mol)を三口フラスコに入れ、50℃で6時間加熱搅拌した後、室温に冷却し、生成した塩酸塩をろ過した。次いで、過剰のトリエチルアミンおよびトルエンを留去した後、蒸留(62~67℃/0.7kPa)してアクリロイルオキシエチルイソシアネート(沸点；200℃)41g(0.29mol)を得た(収率87%)。この時の加水分解性塩素は170ppmだった。

【0045】**<実施例2>**

トルエン250mL、3-クロロプロピオン酸(2-イソシアナトエチル)エステル60g(0.34mol)、トリプロピルアミン(沸点；156.5℃)70g(0.49mol)を三口フラスコに入れ、50℃で6時間加熱搅拌した後、室温に冷却し、生成した塩酸塩をろ過した。過剰のトリプロピルアミンおよびトルエンを留去した後、蒸留(62~67℃/0.7kPa)してアクリロイルオキシエチルイソシアネート(沸点；200℃)39g(0.28mol)を得た(収率82%)。この時の加水分解性塩素は200ppmだった。

【0046】**<実施例3>**

トルエン250mL、3-クロロプロピオン酸(2-イソシアナトエチル)エステル60g(0.34mol)、テトラメチルエチレンジアミン(沸点；158~160℃)28.5g(0.49mol)を三口フラスコに入れ、50℃で6時間加熱搅拌した後、室温に冷却し、生成した塩酸塩をろ過した。過剰のテトラメチルエチレンジアミンおよびトルエンを留去した後、蒸留(62~67℃/0.7kPa)してアクリロイルオキシエチルイソシアネート(沸点；200℃)41g(0.29mol)を得た(収率86%)。この時の加水分解性塩素は230ppmだった。

【0047】**<実施例4>**

トルエン 500 mL、3-クロロプロピオン酸(2-イソシアナトエチル)エステル 60 g (0.34 mol)、乾燥した強塩基性イオン交換樹脂 200 g を三口フラスコに入れ、50℃で6時間加熱攪拌した後、室温に冷却し、イオン交換樹脂をろ過した。トルエンを留去した後、蒸留 (62~67℃/0.7 kPa) してアクリロイルオキシエチルイソシアネート (沸点；200℃) 41 g (0.29 mol)を得た (収率 86%)。この時の加水分解性塩素は 270 ppm だった。

【0048】

<実施例5>

トルエン 250 mL、3-クロロ-2-メチルプロピオン酸 (2-イソシアナトエチル) エステル 66 g (0.34 mol)、トリエチルアミン (沸点；89.4℃) 50 g (0.49 mol) を三口フラスコに入れ、75℃で30 hr 加熱攪拌した後、室温に冷却し、生成した塩酸塩をろ過した。過剰のトリエチルアミンおよびトルエンを留去した後、蒸留 (75~78℃/0.7 kPa) してメタクリロイルオキシエチルイソシアネート (沸点；211℃) 37 g (0.24 mol)を得た (収率 70%)。この時の加水分解性塩素は 220 ppm であった。

【0049】

<実施例6>

トルエン 250 mL、3-クロロプロピオン酸 (3-イソシアナトプロピル) エステル 66 g (0.34 mol)、トリエチルアミン (沸点；89.4℃) 50 g (0.49 mol) を三口フラスコに入れ、50℃で6時間加熱攪拌した後、室温に冷却し、生成した塩酸塩をろ過した。過剰のトリエチルアミンおよびトルエンを留去した後、蒸留 (72~75℃/0.7 kPa) してアクリロイルオキシプロピルイソシアネート (沸点；230℃) 35 g (0.23 mol)を得た (収率 66%)。この時の加水分解性塩素は 250 ppm だった。

【0050】

<比較例1>

トルエン 250 mL、3-クロロプロピオン酸(2-イソシアナトエチル)エステル 60 g (0.34 mol)、キノリン (沸点；237.7℃) 63 g (0.49 mol) を三口フラスコに入れ、50℃で6時間加熱攪拌した。ガスクロマトグラフィーで分析したところ、アクリロイルオキシエチルイソシアネートの生成は認められなかった。

【0051】

<比較例2>

トルエン 250 mL、3-クロロプロピオン酸(2-イソシアナトエチル)エステル 60 g (0.34 mol)、ピリジン (沸点；115~116℃) 38.8 g (0.49 mol) を三口フラスコに入れ、50℃で6時間加熱攪拌した。ガスクロマトグラフィーで分析したところ、アクリロイルオキシエチルイソシアネートの生成は認められなかった。

<比較例3>

米国特許 2,821,544 号公報に記載されている実施例 1 と同様の条件で、以下の操作を行った。3-クロロプロピオン酸(2-イソシアナトエチル)エステル 60 g (0.34 mol)、キノリン (沸点；237.7℃) 63 g (0.49 mol) を三口フラスコに入れ、160℃で1時間加熱攪拌した。ガスクロマトグラフィーで分析したところ、3-クロロプロピオン酸(2-イソシアナトエチル)エステルは消失し、アクリロイルオキシエチルイソシアネートの生成が認められた。反応液は粘性のある黒褐色のほぼ均一の液体であった。そのまま真空中蒸留したところ留分が 10 g 得られ、粘調な液体が残った。留分をガスクロマトグラフィーで分析したところ、得られた留分は、アクリロイルオキシエチルイソシアネートとキノリンの混合物であり (比率約 5:4)、アクリロイルオキシエチルイソシアネートは得られなかった。

【0052】

<比較例4>

3-クロロ-2-メチルプロピオン酸 (2-イソシアナトエチル) エステル 66 g (0

2004-089363

3.4 mol)、キノリン(沸点; 237.7°C) 63 g (0.49 mol) を三口フラスコに入れ、160°Cで1時間加熱攪拌した。ガスクロマトグラフィーで分析したところ、3-クロロ-2-メチルプロピオン酸(2-イソシアナトエチル)エステルは減少し、メタクリロイルオキシエチルイソシアネートの生成が認められた。反応液は粘性のある黒褐色のほぼ均一の液体であった。そのまま真空下蒸留したところ留分が18 g 得られ、粘調な液体が残った。留分をガスクロマトグラフィーで分析したところ、得られた留分は、メタクリロイルオキシエチルイソシアネートとキノリンの混合物であり(比率約5:6)、純度の良いメタクリロイルオキシエチルイソシアネートは得られなかった。