Future Intern as Data Analysis

Task 2

Task: Calculate summary statistics (Mean, Mode ,Median And Standard Deviation for a dataset

Solution:

Step:

1. Import packages and display train dataset and test dataset

2. Check data type of train dataset and test dataset

```
/ [ ] #check data type
      train_data.dtypes
   → PassengerId
      Survived
                     int64
      Pclass
                    int64
                    object
      Sex
                    object
                   float64
      Age
      SibSp
                    int64
                     int64
      Parch
      Ticket
                    object
      Fare
                   float64
      Cabin
                    object
      Embarked
      dtype: object
   [ ] #check data type
        test_data.dtypes
   → PassengerId
                    int64
       Pclass
        Name
                     object
       Sex
                     object
                   float64
        SibSp
                      int64
       Parch
        Ticket
                     object
        Cabin
                     obiect
        Embarked
                      object
        dtype: object
```

3. Identify categorical and numerical columns

```
/ [ ]
       #identify categorical column
        categorical_column = train_data.select_dtypes(include=['object','category']).columns.tolist()
       #identify numerical column
       numerical_column = train_data.select_dtypes(include=['int64','float64']).columns.tolist()
  [ ] #identify categorical column
       categorical_column = test_data.select_dtypes(include=['object','category']).columns.tolist()
        #identify numerical column
       numerical_column = test_data.select_dtypes(include=['int64','float64']).columns.tolist()
  [ ] print("categorical column:")
       print(categorical_column)
        print("numerical column:")
       print(numerical column)

→ categorical column:
       ['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked']
       numerical column:
       ['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
```

4. Select columns where we perform staticstics

```
[ ] column_used=['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
     selected_column= train_data.loc[:, column_used]
[ ] selected_column.head()
<del>∑</del>₹
        PassengerId Survived Pclass Age SibSp Parch
                                                                   0
                            0
                                    3 22.0
                                                       0 7.2500
     1
                  2
                                    1 38.0
                                                       0 71.2833
                                    3 26.0
                                                       0 7.9250
     3
                                    1 35.0
                                                       0 53.1000
                                                       0 8.0500
     4
                                    3 35.0
```

5. Check Mean for each column

```
[ ] column_means = selected_column.mean()
     print("mean for each column:" ,column_means)
→ mean for each column: PassengerId
                                       446.000000
    Survived
                  0.383838
    Pclass
                   2.308642
                  29.699118
    Age
    SibSp
                   0.523008
    Parch
                   0.381594
    Fare
                   32.204208
    dtype: float64
[ ] #mode
```

6. Check Mode for each column

```
[ ] #mode
   column_modes = selected_column.mode()
   print("mode for each column:" ,column_modes)

→ mode for each column:
                        PassengerId Survived Pclass Age SibSp Parch Fare
                     0.0
                            3.0 24.0 0.0 0.0 8.05
               1
                                           NaN NaN
               3
   2
                     NaN
                          NaN NaN NaN
                                           NaN
                                                 NaN
   3
               4
                     NaN
                            NaN
                                 NaN
                                      NaN
                                            NaN
                                                 NaN
   4
               5
                     NaN
                            NaN
                                 NaN
                                      NaN
                                            NaN
                                                 NaN
   886
              887
                     NaN
                           NaN
                                 NaN NaN
                                           NaN
                                                 NaN
              888
                                            NaN
   887
                     NaN
                            NaN NaN NaN
                                                 NaN
                                                 NaN
              889
                            NaN
                                 NaN
                                      NaN
              890
                     NaN
                           NaN NaN
                                            NaN
   889
                                      NaN
                                                 NaN
   890
             891
                     NaN
                          NaN NaN NaN NaN NaN
   [891 rows x 7 columns]
```

7. Check Median for each column

```
′ [] #median
      column_median = selected_column.median()
      print("median for each column:" ,column_median)

→ median for each column: PassengerId 446.0000

     Survived 0.0000
                   3.0000
     Pclass
                28.0000
     Age
     SibSp
                  0.0000
     Parch
                   0.0000
     Fare
                  14.4542
     dtype: float64
```

8. Check Mean for each column

```
    column_std_deviation = selected_column.std()
    print("std_deviation for each column:" ,column_std_deviation)

    std_deviation for each column: PassengerId 257.353842
    Survived 0.486592
    Pclass 0.836071
    Age 14.526497
    SibSp 1.102743
    Parch 0.806057
    Fare 49.693429
    dtype: float64
```

9. Check the statistics for each numeric column

[]		for statisticed_column.desc		numeric col	umn all toga	ther\		
₹		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

10. Check stats data

' [] #now we take origional dataset andcheck for more stats data train_data.head()

3	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s