CARROS Y MOTOS

Diagrama de fuerzas.

FgN Fuerza normal gravitacional.

FgP Fuerza paralela gravitacional.

FN Fuerza normal de los neumáticos.

Ft Fuerza por el torque.

Te Torque producido por el motor.

Fr Fuerza de fricción.

Fd Fuerza de arrastre.

Algunas consideraciones,

1. La fuerza gravitacional normal y la fuerza normal del auto, se equilibran.

$$F_{N} = F_{Nr} + F_{Nr} = mg \cos\theta$$

2. La fuerza aplicada a las llantas es el torque entre el radio de las ruedas.

$$F_{\tau} = \frac{T_{w}}{r_{w}}$$

3. La fuerza de fricción se opone al rodamiento de las ruedas.

$$F_R = \mu_r F_N = \mu_r mg \cos\theta$$

4. La fuerza aerodinámica se opone al movimiento del auto.

$$F_{Total} = \frac{T_w}{r_w} - \mu_r mg \cos\theta - mg \sin\theta - \frac{1}{2}C_D \rho v^2 A$$

Fuerza del Torque Fuerza de Fricción

Peso paralelo a la rampa.

Fuerza de arrastre.

$$a = \frac{T_w}{r_w m} - \mu_r g \cos\theta - g \sin\theta - \frac{1}{2} \frac{C_D \rho v^2 A}{m}$$

Considerando que F=m*a, se divide todo entre la masa del automóvil para encontrar la aceleración del mismo.

El torque generado por el motor es diferente al aplicado en la llanta.

TORQUE DEL MOTOR

No siempre aumenta cuando las revoluciones por minuto aumentan.

ENGRANAJES

Ruedas

Motor

Engranajes

Aumentan el torque y disminuyen su rpm

Más velocidad.

Menos velocidad.

TORQUE DE LAS LLANTAS

$$T_w = T_e g_k G$$

$$a = \frac{T_w}{r_w m} - \mu_r g \cos\theta - g \sin\theta - \frac{1}{2} \frac{C_D \rho v^2 A}{m}$$

$$a = \frac{T_e g_k G}{r_w m} - \mu_r g \cos\theta - g \sin\theta - \frac{1}{2} \frac{C_D \rho v^2 A}{m}$$

VELOCIDAD DEL CARRO

Relación entre rotación del motor y velocidad angular de la llanta

$$\omega_{w} = \frac{2\pi\Omega_{e}}{60g_{k}G}$$

"60" Para convertir de rpm a segundos

Velocidad del carro

$$v = r_{w} \omega_{w} = \frac{r_{w} 2\pi \Omega_{e}}{60g_{k}G}$$

Radio de las llantas Velocidad angular de las llantas

ANOTACIONES

- **1.** Cuanto mayor sea la relación de transmisión, mayor será la aceleración y menor será la velocidad del automóvil para unas rpm dadas.
- 2. Aumentar la relación de transmisión final aumenta la aceleración para todas las marchas, pero también disminuye la velocidad del automóvil para una rpm dada para todos los engranajes.

CAMBIO DE MARCHAS

- La velocidad del carro es una función de la tasa de rotación del motor y la relación de transmisión.
- Hay un límite sobre qué tan rápido puede un motor rotar.
- Un carro no puede exceder el valor rpm de línea roja.

$$\Omega_e(new) = \Omega_e(old) \frac{g_k(new)}{g_k(old)}$$

Table 8-1. Porsche Boxster S Gear Ratios

Gear	Gear Ratio	
First	3.82	
Second	2.20	
Third	1.52	
Fourth	1.22	
Fifth	1.02	
Sixth	0.84	

ARRASTRE Y FRICCIÓN

ARRASTRE AERODINÁMICO

El arrastre actúa en la dirección opuesta al vector de velocidad.

ÁREA FRONTAL

$$A = 0.85 * width * height$$

Menos área frontal = Menor coeficiente de arrastre

Nota: Se multiplica por un factor entre 0 y 1 para tener en cuenta la pendiente que existe en el área frontal.

$$F_D = \frac{1}{2}C_D \rho v^2 A$$

CD = coeficiente de arrastre p = densidad del aire v = velocidad del carro A = área frontal

FRICCIÓN

Es una fuerza de contacto causado por la deformación del objeto y la superficie sobre la que está rodando.

ACELERACIÓN Y VELOCIDAD

EJEMPLO PARA EL PORSCHE BOXSTER S

$$T_e = 220 \qquad \qquad \Omega_e \le 1000$$

$$T_e = 0.025\Omega_e + 195 \ 1000 < \Omega_e < 4600$$

$$T_e = -0.032\Omega_e + 457.2$$
 $\Omega_e \ge 4600$

$$T_e = b\Omega_e + d$$

VELOCIDAD MÁXIMA

$$a = \frac{60g_k^2G^2bv}{2\pi mr_{ee}^2} + \frac{g_kGd}{mr_{ee}} - \frac{1}{2}\frac{C_D\rho v^2A}{m} - \mu_r g \cos\theta - g \sin\theta$$

$$a = \frac{dv}{dt} = c_1 v^2 + c_2 v + c_3$$

Donde,

$$c_1 = -\frac{1}{2} \frac{C_D \rho A}{m}$$

$$c_2 = \frac{60g_k^2 G^2 b}{2\pi m r_{\perp}^2}$$

$$c_3 = \frac{g_k Gd}{mr_w} - \mu_r g \cos\theta - g \sin\theta$$

Cuando las rpm son máximas se alcanza la Vmax

$$v_{\text{max}} = \frac{-c_2 \pm \sqrt{c_2^2 - 4c_1c_3}}{2c_1}$$

$$v_{\text{max}} = \frac{2\pi \, r_{w} \Omega_{\text{redline}}}{60 \, g_{k} G}$$

A es el área frontal del carro. d es la pendiente de la curva del torque. b es el punto de corte.

FRENADO

Un carro se puede ralentizar de 2 maneras:

1. El motor se ralentizará por sí mismo.

$$T_{eb} = \mu_{eb} \, rac{\Omega_e}{60}$$
 \Box_{eb} = coeficiente de frenado del motor

2. Si los frenos son aplicados, una pastilla de freno y un disco generan un torque que ralentiza las llantas. Está actua en la dirección opuesta a la que la llanta está rotando.

$$a_b = -\frac{v_0^2}{2x}$$

x = distancia de frenado

SIMULADOR

TRACCIÓN DE RUEDAS

Motor delantero Caja reductora Aumento el la altura Tracción en las cuatro ruedas

FUERZA DE TRACCIÓN

Es la fuerza máxima que se puede aplicar a el neumático para que ruede sin deslizar por el suelo.

$$F_T = \mu_k F_N = \mu_k mg \cos\theta$$

$$\mu_k mg = m \frac{v^2}{r}$$

$$F_T = \frac{T_w}{r_w} = \frac{T_e g_k G}{r_w}$$

$$a_{total} = \sqrt{a_{straightline}^2 + \left(\frac{v^2}{r}\right)^2}$$

Un auto que está acelerando en una curva tiene una mayor probabilidad de patinar que un automóvil que viaja a una velocidad constante alrededor de la misma curva.

CONDUCIENDO SOBRE CURVAS

BAJAS VELOCIDADES

$$r_c = \frac{l}{\sin \delta}$$

$$\omega_t = \frac{v}{r_c}$$

$$\omega_t = \frac{v \sin \delta}{l}$$

ALTAS VELOCIDADES

$$F_{lateral} = \frac{mv^2}{r_c} - \mu_k mg \cos \theta$$

CHOQUES DE AUTOS

$$v_1' = \frac{m_1 - em_2}{m_1 + m_2} v_1 + \frac{(1+e)m_2}{m_1 + m_2} v_2$$

$$v_2' = \frac{(1+e)m_1}{m_1 + m_2}v_1 + \frac{m_2 - em_1}{m_1 + m_2}v_2$$

$$v_1' = v_2' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

MOTOS

DAR VUELTA

En bajas velocidades, el giro actúa de forma similiar al carro.

En altas velocidades, ocurre el efecto de **precesión giroscópica**. Para contrarrestar este efecto, se usa la técnica de **contradirección**.

Referencia

Palmer, G. (2005). Physics for game programmers (Vol. 2560). Berkeley: Apress.