

Lecture 13: Graphical Models & Bayesian Inference Networks

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

Spring 2021 April 30, 2021

Lecture Outline

- Graphical Models
- Bayesian Inference in Graphical Models
- Forward-Backward Methods of Inference
- Advanced Methods
- Summary

Reading List

- Bishop, Chapters 8 and 11
- Murphy, Chapters 19-24
- Theodiridis, Chapter 15

Bayes' Theorem

- Basic Axioms of probability
 - Probability of event A, $P(A) \in [0,1]$
 - $P(A) = 1 \Leftrightarrow A \text{ is certain}$
 - P(AUB) = P(A or B) = P(A) + P(B) P(AB)
 - Bayes' theorem

•
$$P(AB) = P(A | B)P(B) = P(B | A)P(A)$$

$$^{\bullet}P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- Interested in A
- Begin with a *priori* probability P(A) for our belief about A
- Observe B
- Bayes' theorem provides the revised belief about A, that is, the posterior probability P(A/B)

Causality and Inference

- Likelihood of A: The quantity P(B|A), as a function of varying A for a fixed B
- posterior ∝ prior × likelihood

$$\Rightarrow P(A/B) \propto P(A) \cdot P(B/A)$$

We are inferring A given data B

Graphical representation of the cause-effect process

A causes B (A is the cause and B is the effect)

- Why Graphical Structures?
 - o Provide a representation for the joint distribution of a set of variables in terms of conditional and prior probabilities
 - Orientation of the arrows represent influence (causation)
 - Corresponding conditional probabilities are obtained from data or elicited from an expert

Bayesian Inference as Operations on a Graph

- Probabilistic (Bayesian) Inference
 - When data is observed, inferencing is required
 - Involves calculating marginal probabilities of causes conditioned on the observed data using Bayes' theorem
 - Diagrammatically equivalent to reversing one or more of the arrows

"From the observed effect *B* to the inferred cause *A*"

$$P(AB) = P(B) \cdot P(A/B)$$

• Example 1

$$P(A \mid B = b) = \frac{P(B = b \mid A)P(A)}{P(B = b)}$$

BN provide a means to infer the distributions of unobserved variables based on observed ones

Tail-to-Tail Dependency

Example 2 (a)

"tail-to-tail" dependency

- Naïve Bayes
- iid observations
- prediction (sufficient statistics)

 $P(ABC) = P(A)P(B \mid A)P(C \mid A)$

When A is not observed, B & C are dependent. When A is observed, B &C are conditionally independent!

"Factorization of Joint Distribution", suppose

o Know
$$P(A)$$
, $P(B|A)$ and $P(C|A)$

o Observed
$$B = b$$

o Calculate
$$P(C/B = b)$$

 $B \perp C \mid A$

"B is independent of C given A" whv?

$$P(B,C) = \sum_{A} P(B \mid A)P(C \mid A)P(A) \neq P(B)P(C)$$

$$P(B,C \mid A) = \frac{P(A,B,C)}{P(A)} = P(B \mid A)P(C \mid A)$$

1. Calculate
$$P(ABC)$$

2. Compute
$$P(B) = \sum_{A} \sum_{C} P(A, B, C) \Rightarrow \text{can get } P(B = b)$$

3. Compute
$$P(B,C) = \sum_{A} P(A,B,C) \Rightarrow \text{can get } P(C,B=b)$$

4. Calculate $P(C \mid B=b) = \frac{P(C,B=b)}{P(B=b)}$

4. Calculate
$$P(C \mid B = b) = \frac{P(C, B = b)}{P(B = b)}$$

$$P(A,B,C) = rac{P(A,B)P(A,C)}{P(A)}$$
separator

Exploiting Dependency Structure

• Problem:

Need to compute A/B/C entries to compute P(A,B,C)

- If
$$|A| = |B| = |C| = 10$$
 \rightarrow need 1000 entries

- Alternate way: Exploit the graph structure
 - 1. Calculate $P(A \mid B = b) = \frac{P(B = b \mid A)P(A)}{P(B = b)}$ using Bayes' rule, where $P(B = b) = \sum_{A} P(B = b \mid A)P(A) \rightarrow \text{arc reversal or inferencing}$

2. Find
$$P(C | B = b) = \sum_{A} P(C, A | B = b)$$

= $\sum_{A} P(C | A, B = b) P(A | B = b)$
= $\sum_{A} P(C | A) P(A | B = b)$

• Advantage: Need to store only 100 entries when |A| = |B| = |C| = 10

Head-to-Tail Dependency

• Example 2 (b)

"head-to-tail" dependency

- Markov Chains
- HMMs

$$P(ABC) = P(B)P(A|B)P(C|A)$$

$$Also, P(ABC) = \frac{P(AB)P(CA)}{P(A)}$$

{AB}, {CA} "cliques"
A "separator"
P(AB), P(CA) are "clique potentials"
P(A) "separator potential"

When *A* is not observed, *B* & *C* are dependent. When A is observed, B &C are conditionally independent!

$$B \perp C \mid A$$

"*B* is independent of *C* given *A*" why?

$$P(B,C) = P(B) \sum_{A} P(A \mid B) P(C \mid A) \neq P(B) P(C)$$

$$P(B,C \mid A) = \frac{P(A,B,C)}{P(A)} = \frac{P(A \mid B)P(B)P(C \mid A)}{P(A)} = P(B \mid A)P(C \mid A)$$

Head-to-Head Dependency

• Example 2 (c)

$$P(ABC) = P(B)P(C)P(A|B,C)$$

C

When *A* is not observed, *B* & *C* are **independent**!! When *A* is observed, *B* & *C* are **conditionally dependent**!!

$$|B \perp C| \varnothing$$

"*B* is independent of *C* given no evidence" why?

$$P(B,C) = \sum_{A} P(B)P(C)P(A | B,C) = P(B)P(C)$$

They are not independent given A

$$P(B,C \mid A) = \frac{P(A,B,C)}{P(A)} = \frac{P(B)P(C)P(A \mid B,C)}{P(A)}$$

When *A* is not observed, *A* blocks the path from *B* to *C*. However, when *A* is observed, it unblocks the path from *B* to $C \Rightarrow they become$ dependent

D-Separation

- D (dependency)-separation: ideas extend to general directed graphs and subsets of nodes.
 - To check conditional independence of $B \perp C \mid A$ for subsets of nodes A, B and C. Consider all possible paths from any node in B to any node in C. Any such path is blocked if it includes a node such that either
 - O The arrows on the path are either *tail-to-tail* or *head-to-tail* at the node, and the node is in the set *A (observed)*, or
 - The arrows meet *head-to-head* at the node, and *neither the node*, *nor* any of its descendents are in the set A (i.e., observed).
 - If all paths are blocked, then *B* is d-separated from *C* by *A*.

B & C are not d-separated because F is not observed (tail-to-tail) and descendent of head-to-head node E, i.e., A is observed.

B & C are d-separated because F is observed (tail-to-tail) and head-to-head nodeE or its descendents are not observed.

Historical Perspective - 1

- Formalization of ideas
 - Graphical structures . . . A historical perspective from a communication perspective
 - Sewall Wright (1921) . . . Developed "path analysis" as a means to study statistical relationships in biological data
 - 1960's . . . Statisticians use graphs to describe restrictions in loglinear statistical models
 - Gallagher (1963) . . . Error correcting codes as probabilistic graphs
 - Viterbi algorithm (Forney, 1973)

Historical Perspective - 2

- AI literature
 - Taxonomic hierarchies (Woods, 1975)
 - Medical diagnosis (Spiegelharter, 1990)
 - Exact algorithms for computing the joint probability distribution (Lauritzen and Spiegelharter, 1988; Pearl, 1986)
 - Learning parameters in graph-based log-linear models (Hinton and Sejnowski, 1986)
 - Bayesian networks (belief networks, causal networks or inference diagrams)
 - o Approximate algorithm based on Monte Carlo methods
 - o Helmholtz machines
 - o Variational techniques

See books by Frey and M.I. Jordan Also, Bishop's book and the book by Koller and Freidman

Similar to GMM we discussed earlier

Factor Graphs & Markov Random Fields

- Factor graphs
 - Suppose $P(\underline{u}, s, \underline{v}, \underline{y}) = P(\underline{u})P(s|\underline{u})P(\underline{v}|s,\underline{u})P(\underline{y}|\underline{v})$ Show Bi-partite graph

$$\{\underline{u},s\}\perp\underline{y}\,|\,\underline{v}$$

All paths that pass from \underline{u} and s to \underline{y} pass through \underline{v}

Markov random fields (MRF).... Undirected graphs

Markov chains in higher dimensions

Hammersley-Clifford Theorem

- Properties of MRF
 - Undirected graph with nodes corresponding to variables
 - $P(z_i \mid \mathbf{z} \setminus z_i) = P(z_i \mid n_i)$ z_i variable

 n_i neighbors of variable z_i

 $z = \text{set of all variables (e.g., } z = \{\underline{u}, s, \underline{v}, y\}$

- Local Markov Property
- Clique-based Factorization
- Global Markov Property (D-separation)

"Given its neighbors, each variable is independent of all other variables"

- Joint Distribution is given by Hammersley-Clifford Theorem (1971)

$$P(z)$$
 = product of clique potentials

- o Clique is a fully connected sub-graph that cannot remain fully connected if more variables are included
- o Cliques in the graphs

Cliques in the graphs
$$C_{1} = \{\underline{u}, s, \underline{v}\} \quad C_{2} = \{\underline{v}, \underline{y}\} \quad \psi_{j}(C_{j}) = \exp\{-\sum_{j=1}^{NC} E_{j}(C_{j})\} \quad E_{j}(C_{j}) = energy function$$

$$E_{j}(C_{j}) = \exp\{-\sum_{j=1}^{NC} E_{j}(C_{j})\} \quad E_{j}(C_{j}) = energy function$$

NC = Number of cliques

Typical mod el of
$$\psi_{j}(C_{j})$$

$$\psi_{j}(C_{j}) = \exp(\{-E_{j}(C_{j})\})$$

$$E_{j}(C_{j}) = energy function$$

 α = Normalization Constant

Factor Graph Example

For the channel coding example

$$-P(\underline{u}, s, \underline{v}, \underline{y}) = \alpha \psi_1(\underline{u}, s, \underline{v}) \psi_2(\underline{v}, \underline{y})$$
when $\alpha = \frac{1}{P(\underline{v})}$ cliques
$$\psi_1 = P(\underline{u}, s, \underline{v}) \text{ and}$$

$$\psi_2 = P(\underline{v}, \underline{y})$$

we obtain the joint distribution

Joint distribution = product of clique potentials/Product of separator potentials

Ising Model: Image-denoising

Observed noisy image described by an array of binary pixel values

$$y_i \in \{-1, +1\}, i = 1, 2, ..., p$$

Variation: $p(y_i/x_i)$ Gaussian

Original (hidden) image has binary pixel values

$$x_i \in \{-1, +1\}, i = 1, 2, ..., p$$

• Joint distribution $p(\underline{x}, \underline{y})$ is the *Boltzmann* distribution

$$p(\underline{x}, y) = \alpha \exp\{-E(\underline{x}, y)\}$$

$$E(\underline{x},\underline{y}) = \sum_{i=1}^{p} h_{i}x_{i} - \sum_{i=1}^{p} \sum_{j \in n_{i}} \beta_{ij}x_{i}x_{j} - \sum_{i=1}^{p} \eta_{i}x_{i}y_{i}$$
to bias towards want energy to be small when x_{i} and x_{j} have same sign when x_{i} and y_{i} have same sign

MAP estimate via mean field (variational approximation)

$$q(\underline{x}) = \prod_{i=1}^{p} q_i(x_i, \mu_i); \mu_i = \text{mean value of pixel } i$$

$$\log q_i(x_i) = E_{-q_i} \{ \log(p(\underline{x}, \underline{y})) + cons \tan t$$

Mean Field Method

• Keep all pixels $j\neq i$ at their mean values

$$\log q_i(x_i) = E_{q_{-i}}[\log p(\underline{x}, \underline{y})] = x_i \left(\sum_{j \in n_i} \beta_{ij} \mu_j - h_i + \eta_i y_i \right) + cons \tan t$$

$$\therefore q_i(x_i) \propto \exp(x_i \left[\left(\sum_{j \in n_i} \beta_{ij} \mu_j - h_i \right) + \eta_i y_i \right])$$

$$\Rightarrow q_i(x_i = 1) \propto \exp(a_i); q_i(x_i = -1) \propto \exp(-a_i); a_i = \left(\sum_{j \in n_i} \beta_{ij} \mu_j - h_i\right) + \eta_i y_i$$

• Update μ_i and iterate until convergence

$$\mu_i = q_i(x_i = 1) - q_i(x_i = -1) = \frac{e^{a_i} - e^{-a_i}}{e^{a_i} + e^{-a_i}} = \tanh(a_i)$$

• It is usually good to *low pass filter* the updates $(\lambda \le 0.5)$

$$\mu_i^{t+1} = \lambda \mu_i^t + (1 - \lambda) \tanh(a_i^t)$$

Iteration 1 Iteration 3 Iteration 15

Directed Acyclic Graphs

- Bayesian Networks
 - Represented in terms of directed acyclic graphs

$$z = [z_1 \ z_2 \cdot \dots \cdot z_N]$$

$$P(z_k | a_k) \quad a_k = \text{parents of } z_k = pa(z_k)$$

$$P(z) = \prod_{k=1}^N P(z_k | pa(z_k)) = \prod_{k=1}^N P(z_k | a_k)$$

Chain Rule for Bayesian Networks

Example 1

- Topological order: $(z_1 \ z_2 \ z_3 \cdots z_{13})$

$$P(z) = P(z_1).P(z_2 | z_1).P(z_3).P(z_4 | z_1, z_2).P(z_5 | z_2, z_3).$$

$$P(z_6).P(z_7 | z_3).P(z_8 | z_4, z_5).P(z_9 | z_5, z_6).P(z_{10}).$$

$$P(z_{11} | z_8).P(z_{12} | z_8, z_9).P(z_{13} | z_9, z_{10})$$

Markov Blanket

• Example 2:

Markov Blanket of a node E is denoted by ∂E . ∂E = its parents, its children, and its children's other parents.

 ${A,B}$ = Parents of E ${D,F}$ =its children's other parents

$$P(E \mid \partial E, C, I) = P(E \mid \partial E)$$
$$\partial E = \{A, B, D, F, G, H\}$$

= Children of $E = \{G,H\}$

d(E) = Descendents of E

$$P(A,B,C,D,E,F,G,H,I) = P(A)P(B)(C)P(D|A)P(E|A,B)P(F|B,C)$$
$$P(G|D,E)P(H|E,F)P(I|C,F)$$

For an undirected graph (Markov Random Field), Markov Blanket of a node is the set of its neighboring nodes

Topological Ordering

- Can arrange nodes in topological order
 - o For each node x all of its parents pa(x) precede it in the ordering
- Topological orders are not unique
 - o Order 1: {*A*,*B*,*C*,*D*,*E*,*F*,*G*,*H*,*I*}
 - o Order 2: {*B,A,E,D,G,C,F,I,H*}

Constructing Topological Ordering

- Algorithms for finding topological ordering
 - Algorithm 1:
 - Start with the graph and an empty list
 - Successively delete from the graph any node which does not have any parents, and add it to the end of the list
 - Stop when no node has parent nodes
 - Algorithm 2:
 - Start with the graph and an empty list
 - Successively delete from the graph nodes which have no children and add them to the beginning of the list
 - Stop when no node has child node

Inference via Variable Elimination

Consider the out-tree structure

$$P(a,b,c,d,e,f,g)$$

$$= P(a)P(b \mid a)P(c \mid a)P(d \mid b)P(e \mid b)P(f \mid c)P(g \mid c)$$

- Suppose you observe *e* and *f*
- Want to compute P(d|e,f)

$$P(d \mid e, f) = \sum_{a,b,c,g} P(d,a,b,c,g \mid e, f) \longrightarrow$$

$$= \sum_{b} P(d \mid b) \sum_{a} P(b \mid a,e) \sum_{c} P(a \mid c) \sum_{g} P(c,g \mid f)$$

$$= \sum_{b} P(d \mid b) \sum_{a} P(b \mid a,e) \sum_{c} P(a \mid c) P(c \mid f)$$

- Ordered summation: c, a, b
- What if the graph is a general directed acyclic graph (DAG)?

Too much computation by

brute force

Variable Elimination for DAGs

• Consider the Directed Acyclic Graph (DAG). Want to find the marginal probability P(g)

- Steps involve sums and products
 - Compute the product $P(a,b,d) = P(a)P(b)P(d \mid a,b)$
 - Sum over b to get $P(a,d) = \sum_{b} P(a,b,d)$
 - Multiply P(a,d) by $P(c \mid a)$ to get $P(a,c,d) = P(c \mid a)P(a,d)$
 - Sum P(a,c,d) over a to get $P(c,d) = \sum_{a} P(a,c,d)$

g

- Multiply P(c,d) by $P(e \mid c,d)$ to obtain $P(c,d,e) = P(e \mid c,d)P(c,d)$
- Sum over c and d to get $P(e) = \sum_{c} \sum_{d} P(c, d, e)$
- Multiply P(e) by P(g | e) to get P(e, g)
- Sum P(e, g) over e to get $P(g) = \sum P(e, g)$
- Complexity is exponential in the size of factors and optimal ordering of computations is NP-hard
- Is there a formal (and nicer) way to do inference in Bayesian networks? For trees, there is a nice *sum-product algorithm* as in HMMs. For general DAGs, *Junction tree algorithm*.

Sum-Product Algorithm using Factor Graphs

• Trees: single undirected path between each pair of nodes

Joint probability distribution as a product of factors

$$p(\underline{x}) = \prod_{s} f_s(\underline{x}_s); s = \text{factor}; \underline{x}_s = \text{subset of variables in factor } s$$

Factor graphs are bi-partite graphs

Also, $p(\underline{x}) = \prod_{s \in ne(x)} F_s(x, \underline{X}_s); \underline{X}_s = \text{set of } \underline{\text{all}} \text{ variables in the subtree connected to } \underline{x} \text{ via } \underline{s}$

Example:
$$p(\underline{x}) = f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$$

For
$$x_1: p(\underline{x}) = F_a(x_1, \underbrace{x_2, x_3, x_4}_{X_a})$$

$$= f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$$

For
$$x_2: p(\underline{x}) = \underbrace{f_a(x_1, x_2)}_{F_a(x_2, X_a)} \underbrace{f_b(x_2, x_3)}_{F_b(x_2, X_b)} \underbrace{f_c(x_2, x_4)}_{F_c(x_2, X_c)};$$

$$X_a = x_1, X_b = x_3, X_c = x_4$$

 $so, |ne(x_i)| = number of terms involving x_i in p(\underline{x})$

Message Passing between Variables and Factors: Example

• Factors → Variables Messages (SUM)

messages sent by a factor node to a variable node involves multiplying all the incoming messages (except variable node x) with the factor <u>and</u> summing over all the variables except x

$$\mu_{f_a \to x_1}(x_1) = \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \to f_a}(x_2); \mu_{f_a \to x_2}(x_2) = \sum_{x_1} f_a(x_1, x_2) \mu_{x_1 \to f_a}(x_1)$$

$$\mu_{f_b \to x_2}(x_2) = \sum_{x_3} f_b(x_2, x_3) \mu_{x_3 \to f_b}(x_3); \mu_{f_b \to x_3}(x_3) = \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \to f_b}(x_2)$$

$$\mu_{f_c \to x_2}(x_2) = \sum_{x_3} f_c(x_2, x_4) \mu_{x_4 \to f_c}(x_4); \mu_{f_c \to x_4}(x_4) = \sum_{x_2} f_c(x_2, x_4) \mu_{x_2 \to f_c}(x_2)$$

• Variables → Factors Messages (PRODUCT)

Message sent by a variable node to a factor node is the product of all the incoming messages along all of the other links (factors)

$$\mu_{x_1 \to f_a}(x_1) = 1; \mu_{x_3 \to f_b}(x_3) = 1; \mu_{x_4 \to f_c}(x_3) = 1$$

$$\mu_{x_2 \to f_a}(x_2) = \mu_{f_b \to x_2}(x_2) \mu_{f_c \to x_2}(x_2);$$

$$\mu_{x_2 \to f_b}(x_2) = \mu_{f_a \to x_2}(x_2) \mu_{f_c \to x_2}(x_2);$$

$$\mu_{x_2 \to f_c}(x_2) = \mu_{f_a \to x_2}(x_2) \mu_{f_b \to x_2}(x_2)$$

Message Passing between Factors and Variables

- Use the node for which you want to compute marginal probability as the root
- Factors → Variable Messages

Marginal probability of a variable x

$$p(x) = \prod_{s \in ne(x)} \sum_{\underline{X}_s} F_s(x, \underline{X}_s) = \prod_{s \in ne(x)} \mu_{f_s \to x}(x)$$

Recursively,

$$F_s(x,\underline{X}_s) = f_s(\underbrace{x,x_1,...,x_M}_{\underline{X}_s})G_1(x_1,\underline{X}_{s1})...G_M(x_M,\underline{X}_{sM})$$

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \underbrace{\sum_{x_m} G_m(x_m, \underline{X}_{sm})}_{\mu_{x_m \to f_s}(x_m)}$$

$$= \sum_{x_1} ... \sum_{x_M} f_s(x, x_1, ..., x_M) \prod_{m \in ne(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

If factor s is a leaf node with only variable x,

set
$$\mu_{f_s \to x}(x) = f_s(x)$$

Messages passed along a link are always a function of the variable it is connected to

Message Passing between Variables and Factors

• Variables→ Factors Messages

$$\mu_{x_m \to f_s}(x_m) = \sum_{\underline{X}_{sM}} G(x_M, \underline{X}_{sM})$$

$$= \sum_{\underline{X}_{sM}} \prod_{l \in ne(x_m) \setminus f_s} F_l(x_m, \underline{X}_{ml})$$

$$= \prod_{l \in ne(x_m) \setminus f_s} \sum_{\underline{X}_{ml}} F_l(x_m, \underline{X}_{ml})$$

$$= \prod_{l \in ne(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

If x_m is a leaf node, $\mu_{x_m \to f_s}(x_m) = 1$

- Message sent by a variable node to a factor node is the product of all the incoming messages *along all of the other links* (factors)
- On the other hand, messages sent by a factor node to a variable node involves multiplying all the incoming messages (except variable node *x*) with the factor <u>and</u> summing over all the variables except *x*

Computing All Marginal Probabilities

- Select an arbitrary node as the root and propagate messages from the leaves to the root as in the sum-product algorithm for a single root node
- Send messages from the root all the way back to the leaves
- Now calculate the marginal probability at each variable and factor node via

$$p(x) = \prod_{s \in ne(x)} \mu_{f_s \to x}(x); \ p(\underline{x}_s) = f_s(\underline{x}_s) \prod_{x_i \in f_s} \mu_{x_i \to f_s}$$

• Can eliminate messages from variable nodes to factors via

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \left(\prod_{l \in ne(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m) \right)$$

- MAP problem is called the Max-sum algorithm (Viterbi for Trees)
- For DAGs and MRFs, multiple paths may exist. If you use sum-product the usual way, it is called *Loopy Belief Propagation* and it works OK!

General DAGs

- Constructing the Inference Engine:
 - Consider an artificial medical diagnosis problem

$$P(ABCDEFGH) = P(A)P(B)P(C)P(E \mid A)P(D \mid A, B)P(F \mid C)$$
$$P(G \mid E, D)P(H \mid D, F)$$

Inference Problem in DAGs

- Typically, we are interested in computing the marginal distributions conditioned on some observation of one or more variables
- Example: what is the probability of Heart disease Given that the patient is a smoker, is Breathless and has chest pain?

$$P(D = T \mid A = G = H = T)$$
 $T \Rightarrow TRUE$

How to compute inference probabilities efficiently?

Key Steps in Inference for DAGs

- Key steps in exact Bayesian inference
 - 1. Add undirected edges to all co-parents which are not currently joined (a process called *marrying parents*)
 - 2. Drop all directions in the graph obtained from stage 1. The result is the so-called *moral graph*.
 - 3. Triangulate the *moral graph*, that is, add sufficient additional undirected links between nodes such that *there* are no cycles (i.e., closed paths) of length 4 or more distinct nodes without a short-cut.
 - 4. Identify the *cliques* of this triangulated graph
 - 5. Join the cliques together to form the *junction tree*
 - 6. Perform inference on the junction tree (*message* passing)

Marrying Parents

• <u>Step 1</u>: Marrying parents

Obtaining the Moral Graph

■ <u>Step 2</u>: Moral graph

Triangulating the Moral Graph

Step 3: Triangulate the moral graph It is already triangulated.

Original graph for Asia Problem

Example where triangulation is needed:

Moral graph

Triangulated Graph for the Asia Problem

$$P(ASTLBEXD) = P(A)P(S)P(T \mid A)P(L \mid S)P(B \mid S)$$
$$P(E \mid LT)P(X \mid E)P(D \mid B, E)$$

Triangulated graph

Cliques of the Triangulated Graph

Step 4: Cliques of the triangulated graph
 Clique: a fully connected (complete) maximal subgraph

Medical Diagnosis Problem:

 C_1 : ABD

C₂: ADE

C₃: DEG

C₄: DFH

C₅: CF

Asia Problem:

 C_1 : AT

C₂: TLE

C₃: BLE

C₄: SBL

C₅: DBE

 C_6 : XE

Constructing the Junction Tree

Step 5: Make the junction tree

Key property: **running intersection property** \Rightarrow If a variable x is contained in two cliques, then it is contained in every clique on the path connecting the two cliques.

The edge joining two cliques is called a **separator**.

Joint Distribution in terms of Cliques and Separators

$$\underline{KEY}: P(ABCDEFGH) = \frac{\prod_{i=1}^{3} P(C_i)}{\prod_{i=2}^{5} P(S_i)}$$
 "Marginal representation"
$$P(APD) P(ADE) P(DEC) P(DEH) P(CE)$$

$$=\frac{P(ABD)P(ADE)P(DEG)P(DFH)P(CF)}{P(AD)P(DE)P(D)P(F)}$$

Recall that

$$P(ABCDEFGH) = P(A)P(B)P(C)P(D \mid AB)P(E \mid A)P(F \mid C)$$
$$P(G \mid DE)P(H \mid DF)$$

Note that

$$P(C_1) = P(ABD) = P(D \mid AB)P(A)P(B)$$

 $P(C_2) = P(ADE) = P(E \mid AD)P(AD) = P(E \mid A) \cdot P(S_2)$
 $P(C_3) = P(G \mid DE) \cdot P(DE) = P(G \mid DE).P(S_3)$

Joint Distribution in terms of Clique Potentials

$$P(C_4) = P(H \mid FD) \cdot P(S_4) \cdot P(S_5)$$

$$P(C_5) = P(C \mid F) \cdot P(F) = P(F \mid C) \cdot P(C)$$

So, marginal representation does indeed provide the joint distribution. In fact,

Separator
$$S_i = C_i \cap \{C_1 \cup C_2 \cup \cup C_{i-1}\}$$

Let
$$R_i = C_i \setminus S_i \Rightarrow C_i - S_i$$

$$S_3 = \{DEG\} \cap \{\{ABD\} \cup \{ADE\}\}\}$$
$$= \{DEG\} \cap \{ABDE\} = DE$$
$$R_3 = G$$

$$P(ABCDEFGH) = P(C_1) \prod_{i=2}^{5} P(C_i \mid S_i)$$

$$= P(C_1) \prod_{i=2}^{5} P(R_i \mid S_i) = \prod_{i=1}^{5} P(R_i \mid S_i); S_1 = \phi$$

$$= P(ABD) P(E \mid AD) P(G \mid DE) P(HF \mid D) P(C \mid F)$$

$$= \prod_{i=1}^{5} \psi(C_i)$$

This is called a potential representation of joint distribution

Non-uniqueness of Junction Trees

Junction tree is not unique:

$$=\prod_{i=1}^5 \psi(C_i)$$

$$= P(A)P(B)P(D \mid AB) \frac{P(C)P(F \mid C)}{P(F)} P(E \mid A)P(G \mid DE)P(H \mid DF)P(F)$$

 $= P(A)P(B)P(D|AB)\frac{P(C)P(F|C)}{P(F)}P(E|A)P(G|DE)P(H|DF)P(F)$ Note that ψ can be any function of cliques with a suitable normalization at the end

Example:
$$\overline{\psi}(C_i) = \psi(C_i) \sum_{R_i} \psi(C_i) = P(R_i \mid S_i) P(S_i) = P(R_i, S_i)$$

$$P(R_i \mid S_i) = \frac{P(R_i, S_i)}{P(S_i)} = \frac{\overline{\psi}(C_i)}{\sum_{R_i} \overline{\psi}(C_i)} \Rightarrow \text{can work with } \overline{\psi}(C_i) \text{ directly}$$

Junction Tree for the Asia Problem

One junction tree for the Asia Problem:

Triangulated graph

Cliques, Separators & Potentials

$$P(ASTLBEXD) = P(A)P(S)P(T \mid A)P(L \mid S)P(B \mid S)$$

$$P(E \mid LT)P(X \mid E)P(D \mid BE)$$

Chain Rule

$$\frac{P(AT)P(TLE)P(BLE)P(SBL)P(DBE)P(XE)}{P(T)P(LE)P(BL)P(BE)P(E)}$$

$$= P(AT)P(LE \mid T)P(B \mid LE)P(S \mid BL)$$

Clique Potentials/ Factors

$$P(D \mid BE)P(X \mid E)$$

$$=\prod_{i=1}^6 \psi(C_i)$$

Although it looks strange, it does work!!!

 Step 6: Inference on the junction tree: sum-product algorithm on cliques

for each node in the junction tree, store

clique,
$$R_i (= C_i \setminus S_i)$$
, S_i and $\psi(clique)$

Other Methods for Inference

- Bayesian Inference
 - The junction tree approach becomes intractable for dense graphs
 - Alternate Approaches
 - Probabilistic logic sampling on
 - » DAGs
 - » Junction tree
 - Gibbs sampling
 - Botzmann Machines
 - » Gibbs sampling
 - » Mean Field Approximation
 - Lagrangian Relaxation (Variational approximation)
 - Expectation Propagation
- Learning BN Parameters and Structure from Data

- It is a Markov Chain Monte Carlo method (recall particle filter)
 - Updates one variable at a time
 - Samples from a conditional distribution of a variable when other variables are fixed
 - Ideally suited for Bayesian networks
- Suppose you want to sample from a distribution of p variables $p(x_1, x_2, ..., x_p)$
 - Initialize $\{x_i^0\}_{i=1}^p$
 - For t = 1, 2, ..., T

Sample
$$x_1^{(t+1)} \sim p(x_1 | x_2^t, x_3^t, ..., x_p^t)$$

Sample
$$x_2^{(t+1)} \sim p(x_2 \mid x_1^{(t+1)}, x_3^t, ..., x_p^t)$$

•••••

Sample
$$x_i^{(t+1)} \sim p(x_i \mid x_1^{(t+1)}, ..., x_{i-1}^{(t+1)}, x_{i+1}^{(t)}, ..., x_p^t)$$

• • • • • • • •

Sample
$$x_p^{(t+1)} \sim p(x_p \mid x_1^{(t+1)}, x_2^{(t+1)},, x_{p-1}^{(t+1)})$$

- Need a burn-in period
- Subsample to minimize correlations

Summary

- Graphical Models
- Bayesian Inference in Graphical Models
- Forward-Backwards Methods of Inference
- Simulation-based Methods