ONLY GOD 1402/ 2023

Neural Network & Deep Learning

Single-Layer Feedforward Networks for Classification

CSE & IT Department
School of ECE
Shiraz University

Mc-culloch Pitts Neuron as Logic Function

Mc-culloch Pitts (MP) Neuron

- The earliest artificial neuron
- Its activation is binary

$$y = f(y_in) = \begin{cases} 1 & \text{if } y_in \ge \theta \\ 0 & \text{if } y_in < \theta \end{cases}$$

- Each weight is excitatory (w > 0) or inhibitory (-p < 0)
- All excitatory weights into a neuron are equal
- The inhibition is absolute: any inhibitory input will prevent the neuron from firing $y_i = nw p < \theta$

MP Neuron as Logic Function

 By determining the weights and threshold, MP neuron can represent any logic function

Logic gate OR

s_1	s_2	t	y_in	y
1	1	1	2	1
1	0	1	1	1
0	1	1	1	1
0	0	0	0	0

Logic gate AND

s_1	s_2	t	y_in	y
1	1	1	2	1
1	0	0	1	0
0	1	0	1	0
0	0	0	0	0

Logic gate NOT

s_1	t	y_in	y
1	0	0	0
0	1	1	1

Network of MP Neurons

- One neuron can't do much on its own
- Usually, a network of many neurons is built while activation flows between neurons via synapses with different strengths
- A two-layer net of MP neurons can represent XOR logic function

s_1	s_2	t	y_in	y
1	1	0	0	0
1	0	1	1	1
0	1	1	1	1
0	0	0	0	0

SLFN as Classifier (Hebb Rule)

2-class NN Classifier

Using single-layer NN with one output neuron for two classes

$$y_{-}in = b + \sum_{i=1}^{n} x_{i}w_{i}$$

$$y = f(y_{-}in) = \begin{cases} 1 & \text{if } y_{-}in \ge 0 \\ -1 & \text{if } y_{-}in < 0 \end{cases}$$

Decision boundary: $b + \sum_{i=1}^{n} x_i w_i = 0$

Learning Classifier by Hebb Rule

Y

 w_i

 w_n

 X_i

Algorithm: Hebb learning rule for two-class pattern classification

1. Initialize all weights, bias and learning rate

$$w_i = 0 \ (i = 1, ..., n), \ b = 0, \ \alpha = 1$$

- 2. for all training patterns (p = 1, ..., P)
 - 2.1. Select p^{th} pattern

$$\langle \vec{s}, t \rangle = \langle \vec{s}(p), t(p) \rangle$$

2.2. Set activation to input and output units

$$x_i = s_i \quad (i = 1, ..., n), \quad y = t$$

2.3. Adjust weights and bias

$$w_i(new) = w_i(old) + \alpha x_i y \quad (i = 1, ..., n)$$

$$b(new) = b(old) + \alpha y$$

3. Stop

Note: order of presentation is not important

Ex. of Hebbian Classifier

Example: AND logic function

s_1	s_2	t
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Initials:
$$w_1 = 0$$
, $w_2 = 0$, $b = 0$, $\alpha = 1$

N	lo.	x_1	x_2	1	y	Δw_1	Δw_2	$\Delta \boldsymbol{b}$	w_1	w_2	b	$x_2 = -\frac{w_1}{w_2}x_1 -$	$\frac{b}{w_2}$
(1)	1	1	1	1	1	1	1	1	1	1	$x_2 = -x_1 - 1$	
(2)	1	-1	1	-1	-1	1	-1	0	2	0	$x_2 = 0$	
(3)	-1	1	1	-1	1	-1	-1	1	1	-1	$x_2 = -x_1 + 1$	
(.	4)	-1	-1	1	-1	1	1	-1	2	2	-2	$x_2 = -x_1 + 1$	

Limitations of Hebb Rule

Hebb rule has limitations

Example: 3-input AND

s_1	S_2	S_3	t
1	1	1	1
-1	1	1	-1
1	-1	1	-1
1	1	-1	-1

if
$$\vec{w} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\text{learning}} \vec{w} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -2 \end{bmatrix}$$
: can not classify patterns

$$\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -2 \end{bmatrix}$$
: can classify patterns

Discrete-neuron Perceptron (Perceptron Rule)

Discrete-neuron Perceptron

- Simplest and one of the earliest NN model proposed by Rosenblatt in 1958, 1962
- Used for pattern recognition
- Name is in use both for a particular artificial neuron model and for entire systems built from these neurons
- Heavily criticized by Minsky and Papert (1969)
 - Caused a recession in ANN-research that lasted for more than a decade
 - Until the advent of back-propagation learning for multi-layer networks (Rumelhart 1986) and recurrent networks (Hopfield 1982-85)

Discrete-neuron Perceptron

- A discrete-neuron single-layer feedforward network
 - Arrangement of one input layer of MP neurons feeding forward to one output layer of MP neurons
 - An input layer of n real-valued input nodes (not neurons)
 - An output layer of m neurons

- Each neuron has a real-valued threshold and n real-valued weights
- Computes a vector function $f: \mathbb{R}^n \longrightarrow \{-1,0,1\}^m$
- Performs classification of linearly separable patterns

Perceptron as Classifier

- Inputs: binary or bipolar
- θ : fixed
- Weights and bias: adjustable
- No sensitive to initial value of weights and bias

- Weights are updated only for patterns that do not produce correct value
- More training patterns produce the correct response, less learning occurs

Learning Classifier by Perceptron Rule

Algorithm: perceptron rule for two-class pattern classification

1. Initialize all weights and bias

$$w_i = 0 \ (i = 1, ..., n), \ b = 0 \ (for simplicity)$$

2. Set learning rate α , $(0 < \alpha \le 1)$

$$\alpha = 1$$
 (for simplicity)

- 3. While weights change do
 - 3.1. For all training patterns (p = 1, ..., P)
 - 3.1.1. Select the p^{th} pattern $\langle \vec{s}, t \rangle = \langle \vec{s}(p), t(p) \rangle$
 - 3.1.2. Set activation for input units

$$x_i = s_i \quad (i = 1, \dots, n)$$

Learning Classifier by Perceptron Rule

3.1.3. Compute response of output units

$$y_{in} = b + \sum_{i=1}^{n} x_{i} w_{i} \Rightarrow y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > \theta \\ 0 & \text{if } -\theta \leq y_{in} \leq \theta \\ -1 & \text{if } y_{in} < -\theta \end{cases}$$

3.1.4. if error occurred $(y \neq t)$

Update weights and bias

$$w_i(new) = w_i(old) + \alpha t x_i$$
, $b(new) = b(old) + \alpha t$

else

$$w_i(new) = w_i(old)$$
, $b(new) = b(old)$

4. Stop

Learning Classifier by Perceptron Rule

if
$$n = 2$$

$$w_{1}x_{1} + w_{2}x_{2} + b > \theta$$

$$\theta \ge w_{1}x_{1} + w_{2}x_{2} + b \ge -\theta$$

$$w_{1}x_{1} + w_{2}x_{2} + b < -\theta$$

positive region
undecided region
negitive region

$$w_1 = 1, w_2 = 1,$$

 $b = 0, \theta = 1$

Ex. of Perceptron as Classifier

Example: NAND logic function

s_1	s_2	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	1

a - 1
$\theta = 0$
$w_1 = 0$
$w_2 = 0$
b = 0

Separating line: $x_2 = -x_1 + 1$

Epoch 1:

x_1	x_2	1	y_in	y	t	Δw_1	Δw_2	$\Delta \boldsymbol{b}$	w_1	w_2	b
1	1	1	0	0	-1	-1	-1	-1	-1	-1	-1
1	-1	1	-1	-1	1	1	-1	1	0	-2	0
-1	1	1	-2	-1	1	-1	1	1	-1	-1	1
-1	-1	1	3	1	1	0	0	0	-1	-1	1

Epoch 2:

x_1	x_2	1	y_in	y	t	Δw_1	Δw_2	$\Delta \boldsymbol{b}$	w_1	w_2	b
1	1	1	-1	-1	-1	0	0	0	-1	-1	1
1	-1	1	1	1	1	0	0	0	-1	-1	1
-1	1	1	1	1	1	0	0	0	-1	-1	1
-1	-1	1	3	1	1	0	0	0	-1	-1	1

Capability of Perceptron Rule

Perceptron rule is more powerful than Hebb rule

Example: 3-input AND

S_1	S_2	S_3	t
1	1	1	1
-1	1	1	-1
1	-1	1	-1
1	1	-1	-1

if
$$\vec{w} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 after learning in 8 epochs $\vec{w} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ -4 \end{bmatrix}$: can classify patterns

ADALINE (Delta Rule)

ADALINE: ADAptive Linear NEuron

- Developed by Widrow and Hoff in 1960
- Uses bipolar representation for input and output units
- Weights and bias are adjustable

$$y = f(y_in) = y_in$$

- Trained using the delta rule: $\Delta w_i = \alpha (t y) x_i$
- After training, a threshold function ($\theta = 0$) is used as activation

 W_i

function
$$y = f(y_in) = \begin{cases} +1 & \text{if } y_in > 0 \\ 0 & \text{if } y_in = 0 \\ -1 & \text{if } y_in < 0 \end{cases}$$
, $y = sgn(y_in)$

Can model any linearly separable problem

Learning ADALINE by Delta Rule

Algorithm: training ADALINE for two-class pattern classification

- 1. Initialize weights and bias: w_i , b: small random values (i = 1, ..., n)
- 2. Set training rate α , $(0 < \alpha \le 1)$: too slow: $0.1 \le n\alpha \le 1$: not converge
- 3. While the largest weight change is greater than a tolerance do
 - 3.1. For all training patterns (p = 1, ..., P)
 - 3.1.1. Select the p^{th} pattern: $\langle \vec{s}, t \rangle = \langle \vec{s}(p), t(p) \rangle$
 - 3.1.2. Set activation for input units

$$x_i = s_i \quad (i = 1, ..., n)$$

3.1.3. Compute the activation of output unit

$$y_{in} = b + \sum_{i=1}^{n} x_{i} w_{i} \Rightarrow y = f(y_{in}) = y_{in}$$

3.1.4. Update the weights and bias

$$w_i(new) = w_i(old) + \alpha (t - y)x_i$$

$$b(new) = b(old) + \alpha (t - y)$$

Ex. of ADALINE

Example: AND logic function

s_1	s_2	t
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

$$\alpha = 0.2$$
, $w_1 = 0.1$, $w_2 = 0.3$, $b = 0.2$

x_1	x_2	1	t	y_in	Δw_1	Δw_2	$\Delta oldsymbol{b}$	w_1	w_2	b
1	1	1	1	0.60	0.08	0.08	0.08	0.18	0.38	0.28
1	-1	1	-1	0.08	-0.22	0.22	-0.22	-0.04	0.60	0.06
-1	1	1	-1	0.70	0.34	-0.34	-0.34	0.30	0.26	-0.28
-1	-1	1	-1	-0.84	0.03	0.03	-0.03	0.33	0.29	-0.31

Ex. of ADALINE

$$E = \sum_{p=1}^{4} (t(p) - y(p))^{2} = \sum_{p=1}^{4} (t(p) - y_{in}(p))^{2}$$

$$= (1 - (w_{1} + w_{2} + b))^{2} + (-1 - (w_{1} - w_{2} + b))^{2}$$

$$+ (-1 - (-w_{1} + w_{2} + b))^{2} + (-1 - (-w_{1} - w_{2} + b))^{2} \Rightarrow$$

$$E = 4(w_{1}^{2} + w_{2}^{2} + b^{2} + 1 - w_{1} - w_{2} + b)$$

$$\frac{\partial E}{\partial \overrightarrow{w}} = 0 \implies \begin{cases} \frac{\partial E}{\partial w_1} = 0 \rightarrow 2w_1 - 1 = 0 \rightarrow w_1 = \frac{1}{2} \\ \frac{\partial E}{\partial w_2} = 0 \rightarrow 2w_2 - 1 = 0 \rightarrow w_2 = \frac{1}{2} \\ \frac{\partial E}{\partial b} = 0 \rightarrow 2b + 1 = 0 \rightarrow b = -\frac{1}{2} \end{cases}$$

Separating line: $x_2 = -x_1 + 1$

Continuous-neuron Perceptron (Delta Rule)

Limitations of Discrete-neuron Percept

- Only Boolean-valued functions can be computed
- A simple learning algorithm for multi-layer discreteneuron perceptron is lacking
- The computational capabilities of single-layer discreteneuron perceptron is limited
- These disadvantages disappear when we consider multi-layer continuous-neuron perceptron

Continuous-neuron Perceptron

- A continuous-neuron perceptron with n inputs and m outputs computes:
 - A function $\mathcal{R}^n \to [-1,1]^m$, when the bipolar sigmoid activation function is used
 - A function $\mathbb{R}^n \longrightarrow \mathbb{R}^m$, when a linear activation function is used
- The learning rules are based on optimization techniques for error-functions (delta rule)
 - This requires a continuous and differentiable error function
- Can model any linearly separable problem

Continuous-neuron Perceptron

- Uses real-valued/binary/bipolar representation for input and output units
- Weights and bias are adjustable

Trained using the delta rule:

$$\Delta w_i = \alpha (t - y) f'(y_i n) x_i$$

Continuous-neuron Perceptron

Activation functions:

Binary sigmoid:
$$f(y_in) = \frac{1}{1+e^{-y_in}}$$

=> $f'(y_in) = f(y_in)(1-f(y_in))$
=> $f'(y_in) = y(1-y)$
 $\Delta w_i = \alpha (t-y) y (1-y) x_i$

Bipolar sigmoid:
$$f(y_in) = \frac{1 - e^{-y_in}}{1 + e^{-y_in}}$$

=> $f'(y_in) = \frac{1}{2}(1 + f(y_in))(1 - f(y_in))$
=> $f'(y_in) = \frac{1}{2}(1 + y)(1 - y)$

 $\Delta w_i = \alpha (t - y) (1 - y^2) x_i$

Learning Perceptron by Delta Rule

Algorithm: training Perceptron for two-class pattern classification

- 1. Initialize weights and bias: w_i , b: small random values (i = 1, ..., n)
- 2. Set training rate α , $(0 < \alpha \le 1)$:
- 3. While the largest weight change is greater than a tolerance do
 - 3.1. For all training patterns (p = 1, ..., P)
 - 3.1.1. Select the p^{th} pattern: $\langle \vec{s}, t \rangle = \langle \vec{s}(p), t(p) \rangle$
 - 3.1.2. Set activation for input units

$$x_i = s_i \quad (i = 1, ..., n)$$

3.1.3. Compute the activation of output unit

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i \Rightarrow y = f(y_{in})$$

3.1.4. Update the weights and bias

$$w_i(new) = w_i(old) + \alpha(t - y)y(1 - y)x_i$$

$$b(new) = b(old) + \alpha(t - y)y(1 - y)$$

Ex. of Perceptron

Example: AND logic function

s_1	s_2	t		
1	1	1		
1	-1	-1		
-1	1	-1		
-1	-1	-1		

Activation function of Y: bipolar sigmoid

$$\alpha = 0.2$$
, $w_1 = 0.1$, $w_2 = 0.3$, $b = 0.2$

x_1	x_2	1	t	y_in	У	Δw_1	Δw_2	$\Delta m{b}$	w_1	w_2	b
1	1	1	1	0.600	0.291	0.029	0.029	0.029	0.129	0.329	0.229
1	-1	1	-1	0.029	0.015	-0.003	0.003	-0.003	0.126	0.332	0.226
-1	1	1	-1	0.432	0.213	0.041	-0.041	-0.041	0.167	0.291	0.185
-1	-1	1	-1	-0.273	-0.136	-0.027	-0.027	0.027	0.140	0.264	0.212

NN Classifier (Review)

- NN classifiers learn decision boundaries from training data
- One can train networks by iteratively updating their weights
- Trained networks are expected to generalize, i.e. deal appropriately with input data they were not trained on
- Single neuron perceptron can classify the inputs into one of two classes
- In general, an m neuron perceptron can classify the inputs into 2^m classes
- Simple Perceptron can only cope with linearly separable problems
- The Perceptron learning rule will find weights for linearly separable problems in a finite number of epochs