Problem #3.3

Second Shot

Data is not ordinal so a restricted alternative is not necessary.

Statistics	Value	p-value	Conclusion
X^2	0.2727	0.6015	Do not reject H_0 , there is evidence that the
			first and second shot are independent
G^2	2.8060	0.2459	Do not reject H_0 , there is evidence that the
			first and second shot are independent

Problem #3.9(a)

Table 1: Standardized Pearson Residuals

	Drugs	No Drugs
Schizophrenia	7.87	-7.87
Affective disorder	1.60	-1.60
Neurosis	-2.39	2.39
Personality disorder	-4.84	4.84
Special systems	-5.14	5.14

The Pearson residuals are quite large which indicates that there is a lack of fit. This is likely due to the different proportion of those who received drugs. For Schizophrenia and Affective disorder, there are more people who are assigned drugs than those who are not assigned drugs. Where as with Neurosis, Personality disorder and Special systems, there are more people who are not assigned drugs than those who are as-

signed drugs. This explains why the first two rows have standardized residuals with signs (+, -) and the last three rows have standardized residuals with signs (-, +).

Problem #3.12

Gamma, γ : 0.3873

95% CI: (0.3156, 0.4591)

Gamma is 0.3873 which indicates that when attitudes disagree (i.e. counts that are not on the diagonal), the proportion of concordant attitudes towards abortions (\uparrow school = \uparrow approval) is larger than the proportion of discordant attitudes. This means that there is greater approval of abortion when there is more schooling.

Problem #3.15

		Norn	nalization		Name	95% CI
		Yes	No	Α	Woolf (Wald)	$(0.000,\infty)$
Group	Treatment	7	8	В	Cornfield Exact	$(0.000, \infty)$
	Control	0	15	С	Profile Likelihood	$(5.118,\infty)$

Having a cell with a value of 0 makes analysis difficult.

Problem #3.31

For a 2 ×2 table, consider
$$H_0: \pi_{11} = \theta^2$$
, $\pi_{12} = \pi_{21} = \theta(1 - \theta)$, $\pi_{22} = (1 - \theta)^2$.

Problem #3.31(a)

Show that the marginal distributions are identical and that independence holds.

$$\begin{array}{|c|c|c|c|c|}\hline \pi_{11} & \pi_{12} & \pi_{1+} \\\hline \pi_{21} & \pi_{22} & \pi_{2+} & \stackrel{H_0}{=} & \boxed{\theta^2 & \theta(1-\theta) \\\hline \theta(1-\theta) & (1-\theta)^2 & 1-\theta \\\hline \pi_{+1} & \pi_{+2} & \theta & 1-\theta \\\hline \hline \pi_{+1} & \pi_{+2} & \theta & 1-\theta \\\hline \hline \pi_{+1} & \pi_{+2} & \theta & 1-\theta \\\hline \hline \pi_{+2} & \pi_{+2} & = 1-\theta \\\hline \theta^2 & \pi_{11} & \pi_{1+}\pi_{+1} & = \theta \cdot \theta = \theta^2 \\\hline \theta(1-\theta) & = \pi_{12} & \pi_{1+}\pi_{+2} & = \theta \cdot (1-\theta) \\\hline \theta(1-\theta) & = \pi_{21} & \pi_{2+}\pi_{+1} & = (1-\theta) \cdot \theta \\\hline (1-\theta)^2 & = \pi_{22} & \pi_{2+}\pi_{+2} & = (1-\theta) \cdot (1-\theta) & = (1-\theta)^2 \\\hline \end{array}$$
 independence holds

Problem #3.31(b)

$$f \propto \pi_{11}^{n_{11}} \pi_{12}^{n_{12}} \pi_{21}^{n_{21}} \pi_{22}^{n_{22}}$$

$$\stackrel{H_0}{=} (\theta^2)^{n_{11}} \cdot (\theta(1-\theta))^{n_{12}+n_{21}} \cdot ((1-\theta)^2)^{n_{22}}$$

$$L = n_{11} \log \left[\theta^2\right] + (n_{12}+n_{21}) \log \left[\theta(1-\theta)\right] + n_{22} \log \left[(1-\theta)^2\right]$$

$$\frac{\partial L}{\partial \theta} = \frac{2n_{11}}{\theta} + \frac{n_{12}+n_{21}}{\theta} - \frac{n_{12}+n_{21}}{(1-\theta)} - \frac{2n_{22}}{(1-\theta)}$$

$$= \frac{2n_{11}+n_{12}+n_{21}}{\theta} - \frac{2n_{22}+n_{12}+n_{21}}{1-\theta} \stackrel{\text{set}}{=} 0$$

$$\implies \hat{\theta} = \frac{2n_{11}+n_{12}+n_{21}}{2(n_{11}+n_{12}+n_{21}+n_{22})} \qquad \qquad \begin{array}{c} n = n_{11}+n_{12}+n_{21}+n_{22}\\ n_{11}+n_{12}=n_{11}+n_{12}\\ n_{11}=n_{11}+n_{12}\\ n_{11}=n_{12}+n_{12}\\ n_{12}=n_{12$$

Problem #3.31(c)

Calculate the expected frequencies:

$$\hat{\mu}_{11} = n \cdot \hat{\pi}_{11} = n \cdot \hat{\theta}^{2}$$

$$\hat{\mu}_{12} = n \cdot \hat{\pi}_{12} = n \cdot \hat{\theta}(1 - \hat{\theta})$$

$$\hat{\mu}_{21} = n \cdot \hat{\pi}_{21} = n \cdot \hat{\theta}(1 - \hat{\theta})$$

$$\hat{\mu}_{22} = n \cdot \hat{\pi}_{22} = n \cdot (1 - \hat{\theta})^{2}$$

Using the expected frequencies obtain Pearson's $X^2 = \sum \frac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}}$ and compare to a χ^2 distribution with df = 2 ($df = \dim(H_0 \cup H_1) - \dim(H_0) = 3 - 1 = 2$). Note that when testing independence for a 2×2 table df = 1.

Problem #3.31(c)

H_0	X^2	df	p-value	Conclusion
indep.	0.27274	1	0.6015	Do not reject H_0 , there is evidence that the first
				and second shot are independent
iid	0.27274	2	0.8725	Do not reject H_0 , there is evidence that the first
				and second shot are iid

It is plausible that the free throws are independent and identically distributed.