Cálculo para Ciências

Folha 7 outubro de 2021 ———

Exercício 1. Considere as sucessões de termo geral:

$$a_n = 1;$$
 $b_n = (-1)^n;$ $c_n = \frac{(-1)^n}{n^2};$ $d_n = n^2.$

Indique, justificando, as que são monótonas, as que são limitadas e as que são convergentes.

Exercício 2. Calcule os seguintes limites:

a)
$$\lim_{n} \frac{1+n^3}{n^2+2n-1}$$
; g) $\lim_{n} \left(1-\frac{3}{n+2}\right)^n$;

b)
$$\lim_{n} \left(\frac{n}{n+1}\right)^n$$
; h) $\lim_{n} \frac{\cos(n\pi) + \cos(2n\pi)}{n}$;

c)
$$\lim_{n} \frac{2^n + 3^n}{3^{n+1} + 4}$$
; i) $\lim_{n} \frac{(n+1)! - n!}{n!(n+2)}$;

d)
$$\lim_{n} \sqrt{n+5} - \sqrt{n}$$
; j) $\lim_{n} \sqrt{n^2 + 2n} - n$;

d)
$$\lim_{n} \sqrt{n+5} - \sqrt{n};$$
 j) $\lim_{n} \sqrt{n^2 + 2n} - n;$
e) $\lim_{n} \frac{n \cos n}{n^2 + 24};$ k) $\lim_{n} \frac{3^n + 4^n + 5^n}{5^n};$

f)
$$\lim_{n} \frac{\sqrt{n} - \operatorname{sen} n}{n+2}$$
; l) $\lim_{n} \left(\frac{n-1}{n+1}\right)^{n}$.

Exercício 3. Utilizando o teorema das sucessões enquadradas, calcule os seguintes limites:

a)
$$\lim_{n} \frac{n!}{n^n}$$
; c) $\lim_{n} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right)$;

b)
$$\lim_{n} \frac{10^{n}}{n!}$$
; d) $\lim_{n} \left(\frac{n}{\sqrt{n^{4}+1}} + \dots + \frac{n}{\sqrt{n^{4}+n}} \right)$.

Exercício 4. Indique, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- a) se $\{u_n: n \in \mathbb{N}\}$ é finito, então $(u_n)_n$ é convergente;
- b) se $\{u_n: n \in \mathbb{N}\} = \{0, 5\}$, então $(u_n)_n$ é divergente;
- c) se $(u_n)_n$ e $(v_n)_n$ são sucessões divergentes, então a sucessão $(u_n+v_n)_n$ é divergente;
- d) se $(u_n)_n$ e $(v_n+u_n)_n$ são sucessões convergentes, então a sucessão $(v_n)_n$ é convergente;

- e) sejam $(u_n)_n$ e $(v_n)_n$ sucessões reais. Se $\lim_n u_n v_n = 0$ então $\lim_n u_n = 0$ ou $\lim_n v_n = 0$;
- f) $\lim_n u_n = 0$ se e só se $\lim_n |u_n| = 0$;
- g) se $\lim_n |u_n| = 1$, então $\lim_n u_n = 1$;
- h) se $(u_n)_n$ é uma sucessão limitada, então $(u_n)_n$ é convergente;
- i) qualquer sucessão crescente de termos em]-1,1[é convergente;
- j) se $(u_n)_n$ é uma sucessão tal que, para todo o $n \in \mathbb{N}$, $u_{2n} \in]0,1[$ e $u_{2n-1} \in]1,2[$, então $(u_n)_n$ é divergente;
- k) se $(u_n)_n$ é uma sucessão decrescente de termos positivos, então $(u_n)_n$ é convergente.

Exercício 5. Em cada uma das alíneas seguintes, apresente um exemplo, ou justifique porque não existe:

- a) duas sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\lim_n u_n = 0$, $\lim_n v_n = +\infty$ e $\lim_n (u_n v_n) = 1$;
- b) duas sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\lim_n u_n = 0$, $\lim_n v_n = +\infty$ mas $\lim_n (u_n v_n)$ não exista;
- c) uma sucessão convergente e não monótona;
- d) uma sucessão não monótona e não limitada;
- e) uma sucessão crescente, convergente para zero;
- f) uma sucessão não majorada que admite uma subsucessão convergente;
- g) uma sucessão convergente para zero e com todos os termos em $\mathbb{R} \setminus [-1, 1]$.

Exercício 6. Mostre que cada uma das seguintes séries é convergente com soma igual ao valor indicado:

a)
$$\sum_{n=1}^{\infty} \frac{2}{3^{n-1}} = 3;$$

b)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n} = \frac{3}{2}.$$

Exercício 7. Estude a natureza das seguintes séries:

a)
$$\sum_{n\in\mathbb{N}} \cos\frac{1}{n}$$
;

b)
$$\sum_{n \in \mathbb{N}} \frac{1}{e^n};$$

c)
$$\sum_{n \in \mathbb{N}} \left(\frac{1}{e} + \frac{1}{n}\right)^n$$
;

$$d) \sum_{n=0}^{\infty} \frac{(-1)^n}{e^n};$$

$$e) \sum_{n \in \mathbb{N}} \frac{\sin^2 n}{n^2 + 1};$$

$$f) \sum_{n \in \mathbb{N}} \frac{2^n + 5^n}{3^n};$$

g)
$$\sum_{n \in \mathbb{N}} \frac{\sqrt{n}}{n^3 + 2n};$$

$$\mathrm{h}) \ \sum_{n \in \mathbb{N}} \ \frac{1}{n+5};$$

i)
$$\sum_{n \in \mathbb{N}} \frac{n \cos n}{n!}$$
;

j)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+2};$$

k)
$$\sum_{n \in \mathbb{N}} \frac{1}{n^{10} + 7}$$
;

$$1) \sum_{n \in \mathbb{N}} (-1)^n \frac{n}{1+n^3};$$

m)
$$\sum_{n \in \mathbb{N}} \frac{\left(1 - \frac{1}{n}\right)^n}{n};$$

$$n) \sum_{n \in \mathbb{N}} \left(1 - \frac{1}{n}\right)^{n^2};$$

o)
$$\sum_{n \in \mathbb{N}} \frac{2^n n!}{n^n};$$

q)
$$\sum_{n \in \mathbb{N}} \frac{\ln n}{n}$$
;

$$p) \sum_{n \in \mathbb{N}} \frac{1}{n!};$$

$$r) \sum_{n=2}^{\infty} \frac{1}{\ln^3 n}.$$

Exercício 8. Em cada uma das alíneas seguintes, apresente um exemplo, ou justifique porque não existe:

- a) duas sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\sum_{n\in\mathbb{N}}u_n$ seja divergente, $\sum_{n\in\mathbb{N}}v_n$ seja divergente e $\sum_{n\in\mathbb{N}}(u_n+v_n)$ seja convergente;
- b) duas sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\sum_{n\in\mathbb{N}}u_n$ seja convergente, $\sum_{n\in\mathbb{N}}v_n$ seja divergente e $\sum_{n\in\mathbb{N}}(u_n+v_n)$ seja convergente;
- c) uma sucessão $(u_n)_n$ tal que $\sum_{n\in\mathbb{N}}u_n^2$ seja convergente e $\sum_{n\in\mathbb{N}}u_n$ seja divergente;
- d) uma sucessão $(u_n)_n$ tal que $\sum_{n\in\mathbb{N}}u_n$ seja convergente e $\sum_{n\in\mathbb{N}}u_n^2$ seja divergente;
- e) uma série de termos negativos divergente;
- f) uma série alternada divergente;
- g) uma série alternada absolutamente convergente.

Exercício 9. Indique, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- a) se $(u_n)_n$ e $(v_n)_n$ são sucessões tais que $\forall n \in \mathbb{N}, \ u_n \leq v_n$ e $\sum_{n \in \mathbb{N}} v_n$ é convergente, então $\sum_{n \in \mathbb{N}} u_n$ é convergente;
- b) se $\forall n \in \mathbb{N}, \ u_n \leq v_n < 0$ e $\sum_{n \in \mathbb{N}} u_n$ é convergente, então $\sum_{n \in \mathbb{N}} v_n$ é convergente;
- c) se $(u_n)_n$ é uma sucessão de termos positivos então a série $\sum_{n\in\mathbb{N}} (1+u_n)$ é divergente;
- d) se $(u_n)_n$ é uma sucessão de termos positivos então a série $\sum_{n\in\mathbb{N}} \frac{1}{n^2+u_n}$ é convergente;
- e) se $(u_n)_n$ é uma sucessão de termos positivos tal que $\sum_{n\in\mathbb{N}}u_n$ é convergente, então a série $\sum_{n\in\mathbb{N}}\frac{u_n}{1+u_n}$ é também convergente.