Predictive Modeling

K Arnold

A Whimsical Take on Al

slides

An Ethics of Artificial Intelligence Curriculum for Middle School Students

Bingo Activity

- In *cohorts* (groups of 4 or 5)...
- Teams -> your cohort's channel -> Files tab -> "Prediction Bingo Activity"

Predictive Modeling

- A powerful tool to turn data into action.
- It works because God made the universe predictable (and successful prediction rewarding)
- Need for wisdom: It can be used for great good and great harm

Power of Predictive Modeling

- Medicine: wearable monitor for seizures or falls, detect malaria from blood smears, find effective drug regimens from medical records
- Drug Discovery: predict the efficacy of a synthesis plan for a drug
- Precision Agriculture: predict effect of micro-climate on plant growth
- Urban Planning: forecast resource needs, extreme weather risks, ...
- **Government**: classify feedback from constituents
- Retail: predict items in a grocery order
- Recommendation systems: Amazon, Netflix, YouTube, ...
- **User interfaces**: gesture typing, autocomplete / autocorrect

and so much more...

The universe is surprisingly predictable

- God created the world with actionable structure
 - We gradually learn how to perceive that structure and act within it.
 - The better our perceptions align with how the universe is structured,
 the better our actions
 - We can discover that structure by learning to be less surprised by what we see (= predicting our perceptions)
- Perceptions are thus both accurate and fallable.

Predictive modeling technology: Need for wisdom

- Potential for great good
- But also great harm:
 - Lack of **fairness** in facial recognition, sentencing, lending, job applicant scoring, ...
 - Lack of transparency in how "Big Data" systems make conclusions
 - Lack of privacy as data is increasingly collected and aggregated
 - o Amplification of extreme positions in social media, YouTube, etc.
 - Oversimplification of human experience
 - Hidden human labor
 - Illusion of objectivity
 - o ..!

Stating and refining the question

Six types of questions

- 1. Descriptive: summarize a characteristic of a set of data
- 2. **Exploratory:** analyze to see if there are patterns, trends, or relationships between variables (hypothesis generating)
- 3. **Inferential:** analyze patterns, trends, or relationships in representative data from a population
- 4. Predictive: make predictions for individuals or groups of individuals
- 5. **Causal:** whether changing one factor will change another factor, on average, in a population
- 6. Mechanistic: explore "how" as opposed to whether

Leek, Jeffery T., and Roger D. Peng. "What is the question?." Science 347.6228 (2015): 1314-1315.

1. **Descriptive:** severity of viral illnesses in a set of data collected from a group of individuals

- 1. **Descriptive:** severity of viral illnesses in a set of data collected from a group of individuals
- 2. **Exploratory:** examine relationships between a range of dietary factors and viral illnesses

- 1. **Descriptive:** severity of viral illnesses in a set of data collected from a group of individuals
- 2. **Exploratory:** examine relationships between a range of dietary factors and viral illnesses
- 3. **Inferential:** examine whether any relationship between dietary factors and viral illnesses found in the sample hold for the population at large

- 1. **Descriptive:** severity of viral illnesses in a set of data collected from a group of individuals
- 2. **Exploratory:** examine relationships between a range of dietary factors and viral illnesses
- 3. **Inferential:** examine whether any relationship between dietary factors and viral illnesses found in the sample hold for the population at large
- 4. **Predictive:** given a person's demographics and diet, predict the severity of illness

- 1. **Descriptive:** severity of viral illnesses in a set of data collected from a group of individuals
- 2. **Exploratory:** examine relationships between a range of dietary factors and viral illnesses
- 3. **Inferential:** examine whether any relationship between dietary factors and viral illnesses found in the sample hold for the population at large
- 4. **Predictive:** given a person's demographics and diet, predict the severity of illness
- 5. **Causal:** whether people who were randomly assigned to eat a diet high in fresh fruits and vegetables or one that was low in fresh fruits and vegetables contract more severe viral illnesses

- 1. **Descriptive:** severity of viral illnesses in a set of data collected from a group of individuals
- 2. **Exploratory:** examine relationships between a range of dietary factors and viral illnesses
- 3. **Inferential:** examine whether any relationship between dietary factors and viral illnesses found in the sample hold for the population at large
- 4. **Predictive:** given a person's demographics and diet, predict the severity of illness
- 5. **Causal:** whether people who were randomly assigned to eat a diet high in fresh fruits and vegetables or one that was low in fresh fruits and vegetables contract more severe viral illnesses
- 6. **Mechanistic:** how a diet high in fresh fruits and vegetables leads to a reduction in the severity of viral illnesses

Our focus: Prediction

- Why are we doing this?
 - Predictions enable decision-making
 - trying to predict helps us understand.
- What are we doing?
 - Predict something unknown from something known. Specifically: complete-the-table model
 - Mostly we'll assume independent observations (e.g., generalize across people)
 - Sometimes we'll forecast (e.g., predict how a time series will continue)
- How: We'll look at...
 - methods that consider similar examples (Nearest Neighbors)
 - methods that look at overall trends (linear/logistic regression)
 - more advanced methods, time permitting

Example: Home Sale Prices

From Ames, Iowa home sales, 2006-2010. (De Cock, 2011)

Lot_Area	Total_Bsmt_SF	Gr_Liv_Area	Garage_Cars	Sale_Price
31770	1080	1656	2	215000
11622	882	896	1	105000
14267	1329	1329	1	172000
11160	2110	2110	2	244000
13830	928	1629	2	189900

(2930 total rows)

- Y: response variable (aka outcome, dependent variable): Sale_Price
- X: features (aka predictors, covariates, etc.): everything else

Note: X is much easier to measure than Y