Writing negative binary numbers in two's complement format and converting to denary

The following three examples show how we can write negative binary numbers in the two's complement format:

-128	64	32	16	8	4	2	1
1	0	0	1	0	0	1	1

By following our normal rules, each time a 1 appears in a column, the column value is added to the total. So, we can see that in denary this is: -128 + 16 + 2 + 1 = -109.

-128	64	32	16	8	4	2	1	
1	1	1	0	0	1	0	0	l

Similarly, in denary this number is -128 + 64 + 32 + 4 = -28.

-128	64	32	16	8	4	2	1
1	1	1	1	0	1	0	1

This number is equivalent to -128 + 64 + 32 + 16 + 4 + 1 = -11.

Note that a two's complement number with a 1-value in the -128 column must represent a negative binary number.

Converting negative denary numbers into binary numbers in two's complement format

Consider the number +67 in 8-bit (two's complement) binary format:

-128	64	32	16	8	4	2	1	
0	1	0	0	0	0	1	1	

Method 1

Now let's consider the number -67. One method of finding the binary equivalent to -67 is to simply put 1s in their correct places:

Method 2

However, looking at the two binary numbers above, there is another possible way to find the binary representation of a negative denary number:

first write the number as a positive binary value – in this case 67: 01000011 we then invert each binary value, which means swap the 1s and 0s around: 10111100 then add 1 to that number: 1 this gives us the binary for -67: 10111101

23

1 DATA REPRESENTATION

Example 2

Convert -79 into an 8-bit binary number using two's complement format.

Method 1

As it is a negative number, we need a 1-value in the -128 column.

-79 is the same as -128 + 49

We can make up 49 from 32 + 16 + 1; giving:

-128	64	32	16	8	4	2	1	
1	0	1	1	0	0	0	1]

Method 2

write 79 in binary:	01001111
invert the binary digits:	10110000
add 1 to the inverted number	1
thus giving -79:	10110001

-128	64	32	16	8	4	2	1	
1	0	1	1	0	0	0	1	

It is a good idea to practise both methods.

When applying two's complement, it isn't always necessary for a binary number to have 8 bits:

Example 3

The following 4-bit binary number represents denary number 6:

-8	4	2	1
0	1	1	0

Applying two's complement (1 0 0 1 + 1) would give:

_	-8	4	2	1	
	1	0	1	0	

in other words: -6

24

1.2 Text, sound and images

? Example 4

The following 12-bit binary number represents denary number 1676:

-2048	1024	512	256	128	64	32	16	8	4	2	1	
0	1	1	0	1	0	0	0	1	1	0	0	

Applying two's complement (1 0 0 1 0 1 1 1 0 0 1 1 + 1) would give:

-2048	1024	512	256	128	64	32	16	8	4	2	1
1	0	0	1	0	1	1	1	0	1	0	0

In other words: -1676

Activity 1.13

Convert the following negative denary numbers into binary numbers using the two's complement format:

a -18 **c** -47

d -63

e -88 **g** -100 **f** -92 **h** -1

i –16 i –127

Activity 1.14

b -31

Convert the following negative binary numbers (written in two's complement format) into negative denary numbers:

		-						
а	1	1	0	0	1	1	0	1
b	1	0	1	1	1	1	1	0
С	1	1	1	0	1	1	1	1
d	1	0	0	0	0	1	1	1
е	1	0	1	0	0	0	0	0
f	1	1	1	1	1	0	0	1
g	1	0	1	0	1	1	1	1
h	1	1	1	1	1	1	1	1
i	1	0	0	0	0	0	0	1
j	1	1	1	1	0	1	1	0

1.2 Text, sound and images

1.2.1 Character sets – ASCII code and Unicode

The **ASCII code** system (American Standard Code for Information Interchange) was set up in 1963 for use in communication systems and computer systems. A newer version of the code was published in 1986. The standard ASCII code **character set** consists of 7-bit codes (0 to 127 in denary or 00 to 7F in

25