

Técnicas Digitales II

ADC / DAC

ADC / DAC

- Conversor Analógico Digital
 Transforma cantidades
 analógicas (fenómenos del
 "mundo real") a lenguaje digital
 para guardado, transmitido o
 utilizado en algún procesamiento,
 sistema de control, etc.
- Conversor Digital Analógico
 Usado para transformar datos
 transmitidos ,guardados o el
 resultado de un procesamiento
 digital a el "mundo real".

La señal es muestreada en el S/H

Muestreo y Retención

- Actualmente la mayoría de los ADC poseen un SH, pero en ADC viejos no es tan común.
- Asumiendo que se esta midiendo una señal AC, la señal debe permanecer constante durante la etapa de conversión.
- Se asume como máximo 1LSB de variación y teniendo una señal cuya amplitud es $q(2^N/2)$ donde q=1LSB

$$v(t)=q(2^N/2)sen(2\pi f t)$$

derivamos

$$dv/dt = q 2\pi f(2^{N}/2)\cos(2\pi f t)$$
 $dv/dt|_{max} = q 2\pi f(2^{N}/2)$

despejamos f y tomamos dv igual a q

$$f = 1/(dt|_{max}\pi 2^N)$$

Ejemplo: ADC de 12 bits con un tiempo de conv de 8us

$$f_{max} = 9.7 \text{ Hz}$$
 $f_C = 1/T_C = 1/(8uS + 2uS) = 100 \text{ kSPS}$

Muestreo y Retención

Reloj Sincronizador Salida Entrada ADC Analógica -N Muestreo Muestreo Retención

Codificación

• El método de codificación mas utilizado para representar los datos digitales en ADC o en DAC es el binario directo.

Numero₁₀ =
$$\underbrace{a_{N-1} 2^{N-1}}_{MSB} + a_{N-2} 2^{N-2} + \dots + a_1 2^1 + \underbrace{a_0 2^0}_{LSB}$$

Ejemplo:
$$1011_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 8 + 0 + 2 + 1 = 11_{10}$$

- Permite tener todos los valores posibles entre 0 a 2^N-1
- Otra codificación utilizada es la fraccional (valor entero dividido por 2^N).

Numero₁₀ =
$$\underbrace{a_{N-1} 2^{-1}}_{MSB} + a_{N-2} 2^{-2} + ... + a_1 2^{-(N-1)} + \underbrace{a_0 2^{-N}}_{LSB}$$

$$Ejemplo: 0,1011_2 = (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) + (1 \times 2^{-4}) = 0,5 + 0 + 0,125 + 0,0625 = 0,6875_{10} + 0,0625_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10} + 0,062_{10}$$

ADC/DAC Unipolar

- La entrada de un ADC o la salida del DAC es siempre positiva
- Para un convertidor de 4 bits, se tendrá 16 niveles posibles. desde 0000 a 1111
- Se observa que el valor representado será 0 a FS LSB, es decir, no será la escala completa.
- Esto es una convención adoptada generalmente tanto para DAC como ADC

##	Escala	+10FS	Bin
15	+15/16 FS (+FS - 1 LSB)	9,375	1111
14	+14/16 FS	8,750	1110
13	+13/16 FS	8,125	1101
2	+2/16 FS	1,250	0010
1	+1/16 FS (1 LSB)	0,625	0001
0	0	0,000	0000

ADC/DAC Unipolar

Funciones de transferencias para un DAC y un ADC de 3 bits

ADC/DAC Bipolar

- Cuando es necesario representar vaores positivos y negativos, son varias las opciones.
- Las representaciones en offset binario, complemento a dos son las mas populares
- Las representaciones en complemento a uno y magnitud y signo tienen el problema de poseer dos 0 lo que dificulta las operaciones aritméticas

##	Escala	+10FS	OBin	C ²	C¹	S+M
+7	+7/8 (+FS-1LSB)	4,375	1111	0111	0111	0111
+6	+3/4 FS	3.750	1110	0110	0110	0110
+5	+5/8 FS	4,375	1101	0101	0101	0101
0	0	0,000	1000	0000	*0000	*1000
-5	+5/8 FS	-3,125	0011	1011	1010	1101
-6	+3/4 FS	-3,750	0010	1010	1001	1110
-7	-7/8 (-FS+ 1LSB)	-4,375	0001	1001	1000	1111
-8	-FS	5,000	0000	1000		

Normalmente no utilizado

ADC/DAC Bipolar

Funciones de transferencias para un DAC y un ADC de 3 bits

- El teorema de muestreo o
 - Teorema de muestreo de Nyquist-Shannon.
 - Teorema de muestreo de Whittaker-Nyquist-Kotelnikov-Shannon.
 - Teorema de Nyquist.
- Teorema fundamental de la teoría de la información.
- Conjeturado por Harry Nyquist de Bell Telephone Laboratories en 1924 y 1928.
- Demostrado por Claude E. Shannon en 1949.

- Demuestra que una señal periódica continua en banda base, puede ser reconstruida sin perdida de información a partir de sus muestras.
- Esto es posible si:
 - La señal está limitada en banda.
 - El muestreo se realiza a una tasa superior al doble del ancho de banda.
- La Señal entonces, queda perfectamente representada por las muestras que de ella fueron tomadas.

$$x(t) = \frac{1}{\pi} \sum_{i=-\infty}^{\infty} x \left(\frac{n}{2B} \right) \frac{\sin(\pi(2Bt-n))}{\pi(2Bt-n)}$$

Reconstrucción de una señal a frecuencia critica ($f_s = 2f_a$)

Toma de muestra y su señal de interpolación (sinc) asociada

Frecuencia fs=2fa (critica)

Frecuencia fs=1,5fa

Frecuencia fs=3fa

Filtro de Aliasing

Filtro de Aliasing

- El filtro de anti aliasing se coloca antes de realizar el muestreo.
- Elimina los componentes de la señal con frecuencia superior a 0,5 fs
- O lo que es lo mismo, solo pasan aquellas que se encuentren dentro del Ancho de Nyquist.
- Cualquier señal o ruido fuera del Ancho de Nyquist y que logre pasar el filtro se redireccionará a la primera zona de Nyquist generando Aliasing o solapamiento.

Filtro de anti Aliasing

- A mayor frecuencia de muestreo, mayor costo del conversor y menor complejidad del filtro
- DR indica Stopband Attenuation o la atenuación mínima deseada en la banda de paso.

Filtro de anti Aliasing

Consideraciones de Diseño

- En general el proceso de diseño de un filtro antialiasing comienza con una tasa de muestreo 2,5 a 4 fa
- Si es complejo su diseño se sube la tasa de muestreo.
- Un factor que baja los requerimientos del filtro, son la poca amplitud en señales con frecuencias del rango fs-fa

Bibliografía

The Data Conversion Handbook 2005, ISBN 0-7506-7841-0. Also published as Analog-Digital Conversion, Analog Devices, Inc. 2004, ISBN 0-916550-27-3

Capítulos 2 y 3.

¿ Preguntas ?