Proiectarea Algoritmilor

Algoritmi pentru jocuri Minimax, α - β

Bibliografie

Giumale – Introducere in Analiza Algoritmilor cap
7.6

 http://www.dwheeler.com/chessopenings/#Sicilian%20Defense

 http://mouserunner.com/MozllaTicTacToe/Mozilla Tic Tac Toe.htm

Problema

Analizăm posibilitățile și evaluăm fiecare mutare în funcție de consecințe.

Analizăm posibilitățile și evaluăm fiecare mutare în funcție de consecințe.

Ne dăm seama "instinctiv" că avem o singură opțiune pentru a nu pierde partida și mutăm în consecință!

http://www.dwheeler.com/chess-openings/#Sicilian%20Defense

Apărarea siciliană!

Varianta Najdorf

Când avem foarte multe posibilități la dispoziție încercăm să folosim poziții (pattern-uri) cunoscute.

Varianta Dragon

Cam 35 de mutări posibile

- Evaluăm amenințările:
 - Căutăm mutări care să minimizeze pierderile;
 - Căutăm mutări care să maximizeze câștigul.
- Alegem mutările ce ni se "par" cele mai bune pe moment:
 - Explorăm în adâncime graful mutărilor;
 - Numărul de niveluri = minim dintre:
 - Terminarea jocului;
 - Obținerea unui avantaj consistent fără pericol aparent de a-l pierde;
 - Nivelul maxim al capacității noastre de calcul.

Abordări posibile pentru calculator

- Şabloane pentru poziții standard.
- Căutare în spațiul de poziții.
- Utilizare euristici pentru evaluarea poziției curente.
- Ne vom concentra asupra căutărilor.

Metoda minimax

- •2 jucători: Max si Min care mută pe rând (Max muta primul).
 - Max urmărește să-și maximizeze câștigul.
 - Min urmărește să-și minimizeze pierderea.
- •Se construiește un arbore ŞI-SAU (AND-OR):
 - Nivelele impare \rightarrow mutările jucătorului Max.
 - Nivelele pare \rightarrow mutările jucătorului Min.
 - Frunzele desemneaza castigul/pierderea lui Max.
 - Arcele reprezinta mutarile propriu-zise.

Exemplu (I)

MAX (Firefox) trebuie să mute:

Exemplu (III)

http://mouserunner.com/MozllaTicTacToe/Mozilla_Tic_Tac_Toe.htm

Functionare Minimax

- 1) Se generează întregul arbore;
- 2) Se evaluează frunzele și li se asociază valori;
- 3) Se propagă rezultatele dinspre frunze spre rădăcină astfel:
 - Nivelul MIN alege cea mai mică valoare dintre cele ale copiilor.
 - Nivelul MAX alege cea mai mare valoare dintre cele ale copiilor.

Aplicarea Minimax poate fi văzută ca Arbori Și-Sau (AND-OR)

Alt exemplu (I)

Probleme

- Dimensiunea (ramificarea) arborelui pentru "X și 0" este
 9!
- Pentru Şah fiecare nod are în medie 35 copii!
- Pentru Go ramificarea este de cca. 150 250!
- Complexitatea arborelui:
 - pentru Şah 10¹²³ noduri;
 - pentru Go 10³⁶⁰ noduri.
- Limitări: → Nu putem să construim întregul arbore
 → Nu putem ajunge de fiecare dată la stările finale pentru a le putea evalua.

Optimizări minimax

• Limitarea adâncimii căutării

- Trebuie să construim o funcție euristică care să estimeze șansele de câștig pentru o poziție dată.
 - Ex. pentru şah:
 - Regină:10p; Turn: 5p; Cal, nebun: 3p; Pion: 1p;
 - Ex: Funcție de evaluare a poziției = suma pieselor proprii suma pieselor adversarului.
- Oprirea căutării:
 - Limitare statică: după un număr maxim de nivele/interval de timp.
 - Limitare dinamică: când profitul obținut din continuarea căutării devine foarte mic (scade sub o valoare fixata).
- Se estimează valoarea funcției de evaluare la nivelul respectiv.
- Apoi propagăm valorile conform principiului enunțat anterior.

Exemplu și contraexemplu

Eval: 36-37=-1

Funcția nu ține cont de poziție – albul are o poziție net superioară dar funcția de evaluare o ignoră Eval: 36-34=2

Dacă căutarea se oprește la acest nivel atunci aparent albul iese în câștig material ignorându-se faptul că la mutarea următoare se pierde dama Eval: 26-34=-8

Dacă căutarea se oprește la acest nivel aparent albul iese in dezavantaj deoarece a pierdut dama

Exemplu funcție euristică X și O

- F = numărul de linii/coloane/diagonale posibil câștigătoare pentru MAX –numărul de linii/coloane/diagonale posibil câștigătoare pentru MIN.
- Dacă MAX poate să mute și să câștige atunci $F = +\infty$; dacă MIN poate să mute și să câștige $F = -\infty$.

Exemplu funcție euristică X și 0

Minimax – funcții de evaluare

- Funcția euristică trebuie să cuantifice "poziția"
 - Chiar în dauna avantajului material.
- Trebuie să ia în calcul potențialele amenințări!

Algoritm MINIMAX

- MINIMAX_limitat (n, nivel_limita)
 - Pentru fiecare n' ∈ succs(n) // pentru toate mutările
 - Fie m = mutarea corespunzătoare arcului (n,n')
 - VAL(m) = W(n', nivel_limita, 1) // determin valoarea mutării
 - Întoarce m a.î. VAL(m) = max {VAL(x) | x ∈ mutări(n)}
- W(n, limita, nivel)
 - Dacă n este frunză întoarce cost(n)
 - Dacă nivel ≥ limita întoarce euristică(n)
 - Dacă jucătorul MAX este la mutare întoarce
 - max {W(n', limita, nivel + 1) | n' ∈ succs(n)}
 - Dacă jucătorul MIN este la mutare întoarce
 - min {W(n', limita, nivel + 1) | n' ∈ succs(n)}

Caz special - Minimax 3 jucatori

Jucătorii vor alege pe rând valoarea care le maximizează câștigul propriu

Caz special - Minimax 3 jucatori (2)

Jucătorii vor alege pe rând valoarea care le maximizează câștigul propriu

Caz special (2) – Minimax Probabilistic

- La unele jocuri, mutările sunt guvernate de șansă.
- Ex: Jocul de Table mulțimea mutărilor este limitată de:
 - starea curentă a jocului;
 - combinația zarurilor in starea curentă.
- Arborele MINIMAX este completat cu noduri suplimentare (noduri şansă) plasate intre nodurile MIN/MAX (MIN – şansă – MAX si MAX – şansă – MIN).
- Valorile se calculează ca sumă ponderată intre probabilitatea nodului si evaluarea acestuia (prin cost sau euristică).

Tăiere α - β

• Încercăm să limităm spațiul de căutare prin eliminarea variantelor ce nu au cum să fie alese.

• Idee:

 Dacă V₂₁<V₁ toată ramura
 V₂ poate fi Ignorată.

Tăiere α - β

- α = max dintre valorile găsite pentru un nod MAX
- β = min dintre valorile găsite pentru un nod MIN
- Tăiem o ramură dacă:
 - am găsit un nod pe nivelul MAX cu valoare β <= oricare din valorile α calculate anterior;
 - am găsit un nod pe nivelul MIN cu valoare $\alpha >=$ oricare din valorile β calculate anterior.
- Teorema α - β . Fie J un nod din arborele MINIMAX explorat. Daca $\alpha(J) \geq \beta(J)$, atunci explorarea nodului J nu este necesară.

Algoritm α - β

- α - β (n, limită)
 - w = eval_max(n, $-\infty$, ∞ , 0, limită)
 - *întoarce* m ∈ mutări(n) a.i. VAL(m) = w
- eval_max(n, α , β , nivel, limită)
 - Dacă (tip(n) == terminal) // am ajuns la frunză
 - *întoarce* cost(n)
 - Dacă (nivel ≥ limita) întoarce euristică(n) // sunt limitat
 - a = -∞ // valoarea curenta a nodului de tip max
 - pentru fiecare (n' ∈ succs(n)) {
 - a = max(a, eval min(n', max(α ,a), β , nivel+1, limită); // propag
 - if $(a \ge \beta)$ break; }
 - întoarce a
- similar eval_min

Alt exemplu (II)

Alt exemplu (III)

a = max(a, eval_min(n', max(α ,a), β , nivel+1, limită); // propag if (a $\geq \beta$) break; }

Alt exemplu (IV)


```
eval_min(n, \alpha, \beta, nivel, limită)

Dacă (tip(n) == terminal) // am ajuns la frunză

întoarce cost(n)

Dacă (nivel \geq limita) întoarce euristică(n) // sunt limitat

b = \infty // valoarea curenta a nodului de tip min

pentru fiecare (n' \in succs(n)) {

b = min(b, eval_max(n', \alpha, min(\beta,b), nivel+1, limită); // propag

if (b \leq \alpha) break; }

întoarce b
```


Alt exemplu (V)


```
eval_min(n, \alpha, \beta, nivel, limită)

Dacă (tip(n) == terminal) // am ajuns la frunză

întoarce cost(n)

Dacă (nivel \geq limita) întoarce euristică(n) // sunt limitat

b = \infty // valoarea curenta a nodului de tip min

pentru fiecare (n' \in succs(n)) {

b = min(b, eval_max(n', \alpha, min(\beta,b), nivel+1, limită); // propag

if (b \leq \alpha) break; }

întoarce b
```


Alt exemplu (VI)

Alt exemplu (VII)

Alt exemplu (VIII)


```
eval_min(n, \alpha, \beta, nivel, limită)

Dacă (tip(n) == terminal) // am ajuns la frunză

întoarce cost(n)

Dacă (nivel \geq limita) întoarce euristică(n) // sunt limitat

b = \infty // valoarea curenta a nodului de tip min

pentru fiecare (n' \in succs(n)) {

b = min(b, eval_max(n', \alpha, min(\beta,b), nivel+1, limită); // propag

if (b \leq \alpha) break; }

întoarce b
```


Alt exemplu (IX)

Alt exemplu (X)

Observații α - β

- Reduce complexitatea minimax în cazul ideal de la
 - Număr ramificărinumăr_nivele la Număr ramificărinumăr_nivele/2
- Contează foarte mult ordinea în care analizăm mutările!
 - Sortarea mutărilor după un criteriu dat nu este costisitoare comparativ cu costul exponențial al algoritmului.
- Se folosesc euristici pentru a alege mutările examinate mai întâi:
 - ex: la şah se aleg întâi mutările in care se iau piese;
 - sau se aleg mai întâi mutările cu scor bun in parcurgeri precedente;
 - sau se aleg mutările care au mai generat tăieri.

Observații MINIMAX și α - β

- Algoritmi de căutare în adâncime.
- Pot cauza probleme când avem un timp limită.
- > soluție posibilă IDDFS (căutare în adâncime mărind iterativ adâncimea maximă până la care căutăm).

Concluzii

- Algoritmi cu complexitate foarte mare.
- Soluții euristice pentru limitarea complexității.
- Recomandabil să se combine cu alte strategii baze de date cu poziții, pattern-matching.

- function alphabeta(node, depth, α, β)
 - (* θ represents previous player best choice doesn't want it if α would worsen it *)
 - if depth = 0 "or" node is a terminal node
 - return the heuristic value of node
 - foreach child of node
 - $\alpha := \max(\alpha, -alphabeta(child, depth-1, -\beta, -\alpha))$
 - (* use symmetry, -6 becomes subsequently pruned α *)
 - if β≤α
 - break (* Beta cut-off *)
 - return α
- alphabeta(origin, depth, -infinity, +infinity)

