PHYS 674 Condensed Matter Final Exam

Due: Thursday, December 7, 12:00pm

Problem 1

Consider an O(n) model with a "cubic symmetry breaking term" g, by which I mean the following model:

$$H = \int d^{d}r \left[\frac{t}{2} |\vec{M}|^{2} + u |\vec{M}|^{4} + g \sum_{\alpha=1}^{n} M_{\alpha}^{4} + \frac{c}{2} |\nabla M|^{2} \right]$$
 (1.1)

- (a) Derive the RG recursion relations for this model to one loop order.
- (b) Find the fixed points
- (c) Identify the fixed point that controls the transition.
- (d) Calculate the critical exponents α , β , and ν to $O(\epsilon = 4 d)$

Hint: Your answers to parts (b), (c), and (d) could be qualitatively different for different values of n.

Problem 3

Suppose we apply a magnetic field to an X-Y model, this amounts to adding a symmetry breaking term

$$\Delta H = -\vec{h} \cdot \sum_{i} \vec{S}_{i} \tag{3.1}$$

to the standard X-Y Hamiltonian.

- (a) Write the continuum version of this model, ignoring irrelevant terms.
- (b) Show that the model includes a term

$$\Delta H = -\int d^d r \cos(\theta(\vec{r})) \tag{3.2}$$

- (c) Expand the cosine to all orders in θ , and represent each term by a (schematic) Feynman graph.
- (d) Derive RG recursion relations for a_n , the coefficient of θ^n in the above expansion to <u>linear</u> order in the a_n . Show that, for the correct choice of χ_{θ} , the rescaling exponent for θ , the entire series can be resummed to give a $-h(l)\cos\left(\theta'(\vec{r'})\right)$, with a renormalized h(l); and thereby derive the recursion relation for h(l) to this order.
- (e) Derive the recursion relation for K(l) to this order, using the above choice of χ_{θ} .
- (f) Show that, for d > 2, $h(l \to \infty) \to \infty$ (at least, as far as this perturbative calculation can tell). What does this imply about the $|\vec{q}| \ll \Lambda$ limit of the fluctuations $\langle |\theta(q)|^2 \rangle$?
- (g) Show that, in d = 2, there is a phase transition at some critical temperature T_c in this model, in the sense that qualitatively different scaling behaviors apply for $T < T_c$ and $T > T_c$. Calculate T_c in terms of K.
- (h) Calculate $\langle \cos \theta(r) \rangle$ in a d=2 $L \times L$ square system, taking h=0.