Recitation 4

Recap of SVMs and Complementary Slackness

Vishakh

CDS

February 16, 2022

Announcement

- HW 2 is due tonight + HW 3 will be out
- Grading of HW 1 is done and scores will be out tonight
- Selected solutions (Brightspace) + Regrade requests (Gradescope)

Agenda

- Recap: Hyperplanes to SVMs
- Hard-margin vs Soft-margin SVMs
- Preview to Complementary Slackness + Kernelization

Component of v_1, v_2 in the direction w

Level Surfaces of $f(v) = w^T v$ with $||w||_2 = 1$

5/32

Vishakh (CDS) Recitation 4 February 16, 2022

Sides of the Hyperplane $w^T v = 15$

Signed Distance from x_1, x_2 to Hyperplane $w^T v = 20$

7/32

Vishakh (CDS) Recitation 4 February 16, 2022

Linearly Separable

Definition

We say (x_i, y_i) for i = 1, ..., n are *linearly separable* if there is a $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$ such that $y_i(w^Tx_i + a) > 0$ for all $i, y = \pm 1$. The set $\{v \in \mathbb{R}^d \mid w^Tv + a = 0\}$ is called a *separating hyperplane*.

Linearly Separable Data

Many Separating Hyperplanes Exist

Vishakh (CDS)

Maximum Margin Separating Hyperplane

Maximizing the Margin

We can rewrite this in a more standard form:

Let's fix the norm $||w||_2$ to 1/M to obtain:

maximize
$$\frac{1}{\|w\|_2}$$

subject to $y_i(w^Tx_i + b) \ge 1$ for all i

It's equivalent to solving the minimization problem

minimize
$$\frac{1}{2} ||w||_2^2$$

subject to $y_i(w^T x_i + b) \ge 1$ for all i

Soft Margin SVM (unlabeled points have $\xi_i = 0$)

Soft Margin SVM

Introduce slack variables:

minimize
$$\frac{1}{2} \|w\|_2^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
 subject to
$$y_i (w^T x_i + b) \ge 1 - \xi_i \quad \text{for all } i$$

$$\xi_i \ge 0 \quad \text{for all } i$$

- If $\xi_i = 0 \ \forall i$, it's reduced to hard SVM.
- If $\xi_i > 0$, we have misclassified an example i.e. it is on the wrong side of the hyperplane
- C controls the penalty for each misclassfication.

Soft Margin SVM (unlabeled points have $\xi_i = 0$)

- If your data is linearly separable, which SVM (hard margin or soft margin) would you use?
- Consider the optimization problem:

```
minimize<sub>w,a,\xi</sub> \frac{C}{n} \sum_{i=1}^{n} \xi_i subject to y_i(w^T x_i + a) \ge 1 - \xi_i for all i \xi_i \ge 0 for all i. \|w\|_2^2 \le r^2
```


Optimize Over Cases Where Margin Is At Least 1/r

Overfitting: Tight Margin With No Misclassifications

17/32

Vishakh (CDS) Recitation 4 February 16, 2022

Training Error But Large Margin

SVM Lagrange Multipliers

Primal

minimize
$$\frac{1}{2}||w||^2 + \frac{C}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \le 0 \quad \text{for } i = 1, \dots, n$$
$$(1 - y_i [w^T x_i + b]) - \xi_i \le 0 \quad \text{for } i = 1, \dots, n$$

Vishakh (CDS) Recitation 4 February 16, 2022 19/32

SVM Lagrange Multipliers

Primal

minimize
$$\frac{1}{2}||w||^2 + \frac{C}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leq 0 \quad \text{for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leq 0 \quad \text{for } i = 1, \dots, n$$

Subgradient Descent (HW 3)

20 / 32

SVM Lagrange Multipliers

Dual

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) + \sum_{i=1}^{n} \lambda_i \left(-\xi_i \right)$$

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leq 0$
α_i	$(1-y_i [w^T x_i + b]) - \xi_i \leq 0$

- By Slater's conditions, we have strong duality (Convex Optimization + Affine Constraints + Feasibility)
- We can draw some insights from complementary slackness.
 - If x^* is primal optimal and λ^* is dual optimal, $f_0(x^*) = g(\lambda^*)$
 - $f_0(x^*) = g(\lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$
 - Each term in sum $\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*})$ must actually be 0.
 - That is $\lambda_i > 0 \implies f_i(x^*) = 0$ and $f_i(x^*) < 0 \implies \lambda_i = 0$

22 / 32

Vishakh (CDS) Recitation 4

• We found the SVM dual problem can be written as::

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

(First order conditions on the Lagrangian)

Vishakh (CDS)

• We found the SVM dual problem can be written as::

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Given solution α^* to the dual problem, primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
 - α_i^*, y_i is scalar, so the optimum solution is in the span of the input examples

• We found the SVM dual problem can be written as::

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Given solution α^* to the dual problem, primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
- We also know that $\alpha_i^* \in [0, \frac{c}{n}]$, which is the 'weight' associated with each example. So C controls max weight on each example.

4 D > 4 A > 4 B > 4 B > B = 4 Q Q

Support Vectors and The Margin

- Recall "slack variable" $\xi^* = max(0, 1 y_i f^*(x_i))$ is the hinge loss on (x_i, y_i) .
- Suppose $\xi^* = 0$,
- Then $y_i(f^*(x_i)) \ge 1$
 - ullet "on the margin" (=1) or
 - ullet "on the good side" (>1)

Complementary Slackness Conditions

Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leq 0$
α_i	$((1-y_if(x_i))-\xi_i)\leq 0$

• By strong duality, we must have complementary slackness. Each of $\sum_{i=1}^{m} \lambda_i^* f_i(x^*)$ must be 0:

$$\alpha_i^*(1 - y_i f^*(x_i) - \xi_i^*) = 0$$

$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

• Recall first order condition $\nabla_{\xi_i} L = 0$ gave us $\lambda_i^* = \frac{c}{n} - \alpha_i^*$

27 / 32

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness:

$$\alpha_i^* (1 - y_i f^*(x_i) - \xi_i^*) = 0$$
$$\left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

- if $y_i f^*(x_i) > 1$, then you're on the right side of the margin i.e slack $\xi_i^* = 0$ and we get $\alpha_i^* = 0$
- if $y_i f^*(x_i) < 1$, then a misclassification has occurred and slack $\xi_i^* > 0$, so $\alpha_i^* = \frac{c}{n}$

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness:

$$\alpha_i^* (1 - y_i f^*(x_i) - \xi_i^*) = 0$$
$$\left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

- We also know that $\alpha_i^* \in [0, \frac{c}{n}]$
- if $\alpha_i^* = 0$, then $\xi_i^* = 0$, which implies no loss, so $y_i f^*(x_i) \ge 1$
- if $\alpha_i^* \in (0, \frac{c}{n})$, then $\xi_i^* = 0$, which implies $1 y_i f^*(x_i) = 0$

Vishakh (CDS)

Support Vectors

ullet If $lpha_i^*$ is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

with $\alpha_i^* \in \left[0, \frac{c}{n}\right]$ as the 'weight' associated with that example

- In the case where $\alpha_i^* = 0$, there is no dependence on those example x_i
- The x_i 's corresponding to $\alpha_i^* > 0$ are called **support vectors.**
- Few margin errors or "on the margin" examples ⇒ sparsity in input examples.

Complementary Slackness Results: Summary

$$\alpha_{i}^{*} = 0 \implies y_{i}f^{*}(x_{i}) \geq 1$$

$$\alpha_{i}^{*} \in \left(0, \frac{c}{n}\right) \implies y_{i}f^{*}(x_{i}) = 1$$

$$\alpha_{i}^{*} = \frac{c}{n} \implies y_{i}f^{*}(x_{i}) \leq 1$$

$$y_{i}f^{*}(x_{i}) < 1 \implies \alpha_{i}^{*} = \frac{c}{n}$$

$$y_{i}f^{*}(x_{i}) = 1 \implies \alpha_{i}^{*} \in \left[0, \frac{c}{n}\right]$$

$$y_{i}f^{*}(x_{i}) > 1 \implies \alpha_{i}^{*} = 0$$

Dual Problem: Dependence on x through inner products

SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Note that all dependence on inputs x_i and x_j is through their inner product: $\langle x_j, x_i \rangle = x_i^T x_i$.
- We can replace $x_i^T x_i$ by any other inner product...
- This is a "kernelized" objective function.

