SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR
ROLL No: Total number of pages:[2] Total number of questions:06
B.Tech. CHE 3 rd Sem.
Chemical Process calculations (RP)
Subject Code:BTCH-302A 301
Paper ID: M/18 Time allowed: 3 Hrs [2011 batch orwards] Max Marks: 60 Important Instructions:
All questions are compulsory
Assume any missing data
Additional instructions, if any
PART A (2×10)
Q. 1. Short-Answer Questions: All COs
(a) What is dimensional homogeneity?
(b) What is SO ₂ free basis?
(c) Give the vanderwaal's equation and explain the terms. (d)How we select the basis?
(e)How many pound moles of Na ₂ CO ₃ are there in 100 lb?
(f) If 2 kg of benzene is oxidized with oxygen, how many kilograms of O2 is required?
(g) Define "Standard heat of formation".
(h) Define theoretical flame temperature.
(i) Calculate value of R in F.P.S. system. (j) Define Hess law.
PART B (8×5)
2. A container holds 1.704 lb of HNO ₃ /lb of H ₂ O and has specific gravity of CO1
1.382 at 20°C. compute
a) Weight percent of HNO ₃
b) Pounds HNO ₃ per cubic foot of solution
c) Molarity of solution.
OR
A solution contain 35% salt by weight in water. The solution density is 1.2 CO
g/cm ³ . Express the composition as:
a) Kilogram salt per kilogram of water.
b) Pounds of salt per cubic foot of solution.
3. Antimony is produced by heating stibnite with scrap iron and molten CO
antimony is drawn from the bottom.
$Sb_2S_2 + 3Fe \longrightarrow 2Sb + 3FeS$
Suppose that 0.600 kg of stibnite and 0.25 kg iron are heated to give 0.2 kg of
antimony. Determine
a) The limiting reactant.

b) The percentage excess reactant. c) The degree of completion. d) Yield. The Burning of lime stone, CaCO₃— CaO+CO₂ goes only 70% complete in a certain kiln. CO2 a) What is the composition (mass %) of the solids withdrawn from the kiln? b) How many kilograms of CO2 produced per kilogram of limestone fed. Assume pure limestone. Q. 4. Air at 60°C and 745 mm Hg having a percent humidity of 10 is supplied to a CO3 drier at the rate of 1000m³/hour. Water is evaporated in the drier at a rate of 20 kg/hr. The air leaves the drier at 35°C and 742 mm Hg. Calculate : (a) Percent humidity of the air while leaving the drier. (b) Volumetric flow rate of wet air leaving the drier. Given: Vapor pressure of water at 60° C = 150 mm Hg at $35^{\circ}C = 42 \text{ mm Hg}$. OR If 100 g of Na₂SO₄ is dissolved in 200 g of water and solution is cooled until CO3 100 of Na₂SO₄.10 H₂O Crystallizes out, find (a) The composition of remaining solution. (b) The grams of crystals recovered per 100 g of initial solution. It is required to make 5000 kg per hour fresh acid (H₂SO₄ 55%,HNO₃ 25%, Q. 5. CO₄ H₂O 20%), by using spent acid(H₂SO₄ 35%,HNO₃ 25%, H₂O 30%), conc H₂SO₄ 98.5%, and conc. HNO₃ 75%. Find the amount required of various streams. OR A cellulose solution contains 5.2% cellulose by weight. How many kilograms CO₄ of 1.2% solution are required to dilute 100 kg of the 5.2% solution to 4.2%. Statement A gas containing 20% CO and 80% N2 is burnt with 100% excess air, both CO₅ Q. 6. air and gas initially being at 25°C. A flame temperature of 942°C is attained during combustion. Calculate the enthalapy of the products. Given mean molar heat capacities between 25°C and 942°C as: CO2-11.74, O2-7.90 and N2-7.45 cal/gm mol K. OR Calculate the theoretical flame temperature of a gas containing 22% CO and CO₅ remaining N2 when burnt with 100% excess air. Both gas and air are initially at 25°C. The standard heat of combustion of CO(g) at 25°C and 1 atm pressure is 67.64 Kcal/gm mole. The mean molal heat capacities in cal/gm mole °K with in temperature range involved are as CO2 -11.82,02 -7.9 and N_2 -7.5.