

Függvény- és hatványsorok

Matematika G2 – Valós analízis Utoljára frissítve: 2025. március 22.

7.1. Elméleti Áttekintő

Definíció 7.1: Függvénysor

Legyen $f_n:I\subset\mathbb{R}\to\mathbb{R}$ függvénysorozat. Képezzük az alábbi függvénysorozatot:

$$s_1(x) := f_1(x),$$

 $s_2(x) := f_1(x) + f_2(x),$
 \vdots
 $s_j(x) := \sum_{i=1}^{j} f_i(x)$
 \vdots

Az így előálló (s_n) függvénysorozatot az (f_n) függvénysorozatból képzett függvénysornak hívjuk és $\sum f_n$ -nel jelöljük.

Definíció 7.2: Függvénysor pontbeli konvergenciája

A $\sum f_n$ függvénysor konvergens az $x_0 \in I$ pontban, ha az (s_n) függvénysorozat konvergens az x_0 pontban.

Definíció 7.3: Függvénysor konvergenciahalmaza

A $\sum f_n$ függvénysor konvergens a $H \subset I$ halmazon, ha az (s_n) függvénysorozat konvergens a H-n.

Definíció 7.4: Függvénysor egyenletes konvergenciája

A $\sum f_n$ függvénysor egyenletesen konvergens az $E \subset H$ halmazon, ha az (s_n) függvénysorozat egyenletesen konvergens az E-n.

Definíció 7.5: Függvénysor összegfüggvénye

A $\sum f_n$ függvénysorozat összegfüggvénye az $s(x) := \lim_{n \to \infty} s_n(x)$ függvény, ahol $x \in H$.

Definíció 7.6: Abszolút konvergencia

A $\sum f_n$ függvénysor abszolút konvergens, ha a $\sum |f_n|$ függvénysor konvergens.

Tétel 7.1: Cauchy-féle konvergencia kritérium egyenletes konvergenciára

A $\sum f_n$ akkor és csak akkor egyenletesen konvergens az $E \subset H$ halmazon, ha $\forall \varepsilon > 0$ esetén $\exists N(\varepsilon)$ úgy, hogy ha $n; m > N(\varepsilon)$, akkor $\forall x \in E$ esetén $|s_n(x) - s_m(x)| < \varepsilon$.

Tétel 7.2: Weierstrass-tétel függvénysorok egyenletes konvergenciájára

Legyen $f_n:I\subset\mathbb{R}\to\mathbb{R}$ függvénysorozat és $\sum f_n$ a belőle képzett függvénysor, továbbá $\sum a_n$ olyan konvergens numerikus sor, melyre $\forall x\in I$ esetén $|f_n(x)|\leq a_n\ \forall n\in\mathbb{N}$ -re $n>n_0\in\mathbb{N}$ esetén.

Ekkor a $\sum f_n$ függvénysor egyenletesen konvergens.

Definíció 7.7: Hatványsor

Legyen $f_n(x) := a_n (x - x_0)^n$. A belőle képzett

$$\sum f_n(x) = \sum a_n (x - x_0)^n$$

függvénysort hatványsornak nevezzük, ahol a_n a hatványsor n-edik együtthatója, x_0 pedig a sorfejtés centruma.

Definíció 7.8: Hatványsor konvergenciasugara

A $\sum a_n (x - x_0)^n$ hatványsor konvergenciasugara:

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \in \mathbb{R}_b.$$

Tétel 7.3: Cauchy-Hadamard-tétel

Legyen r a $\sum a_n x^n$ hatványsor konvergenciasugara. Ha ...

- 1. r = 0, akkor a hatványsor csak az $x_0 = 0$ pontban konvergens,
- 2. $r = \infty$, akkor a hatványsor $\forall x \in \mathbb{R}$ esetén konvergens,
- 3. $0 < r < \infty$, akkor a hatványsor konvergens, ha |x| < r és divergens, ha |x| > r.

Tétel 7.4: Tagonkénti integrálhatóság

Legyenek a $\sum f_n$ függvénysor tagjai integrálhatóak az [a;b] zárt intervallumon. Tegyük fel, hogy a sor egyenletesen konvergens az [a;b]-n és összegfüggvénye folytonos. Ekkor

$$\int_{a}^{b} f(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Nem korlátos intervallum esetén nem igaz az állítás.

Tétel 7.5: Tagonkénti differenciálhatóság

Legyenek az f_n függvénysorozat tagjai differenciálhatóak a J intervallumon, f'_n függvények folytonosak a J-n, valamint a $\sum f'_n$ és a $\sum f_n$ függvénysorok egyenletesen konvergensek a J-n. Ekkor

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x).$$

7.2. Feladatok

1. Vizsgálja meg a következő függvénysorok konvergenciatartományát, értelmezési tartományát és adja meg az összegfüggvényüket!

a)
$$\sum_{n=1}^{\infty} \sqrt[n]{x}$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{x-1}{x+1}\right)^n$$
 c) $\sum_{n=0}^{\infty} \sin^{2n} x$

$$c) \sum_{n=0}^{\infty} \sin^{2n} x$$

2. Határozza meg az alábbi függvénysorok értelmezési tartományát, konvergenciátartományát és hogy a konvergenciatartományon belül abszolút konvergensek-e!

a)
$$\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$$

c)
$$\sum_{n=1}^{\infty} (-1)^n n^{-x}$$

b)
$$\sum_{n=1}^{\infty} \frac{\left(\left|\frac{z-i-1}{3}\right|\right)^n}{z}$$

d)
$$\sum_{n=1}^{\infty} \frac{\cos(3x^3 + (\pi/3)nx^2)}{3^n + x^4n^4}$$

3. El lehet-e végezni a következő függvénysor tagonkénti integrálását?

$$\int_{0}^{2} \sum_{n=1}^{\infty} \frac{x^{n}}{e^{nx}} dx \stackrel{?}{=} \sum_{n=1}^{\infty} \int_{0}^{2} \frac{x^{n}}{e^{nx}} dx$$

4. El lehet-e végezni a következő függvénysor tagonkénti deriválását?

$$\sum_{n=1}^{\infty} \frac{\arctan(x/n)}{n^2}$$

5. Határozza meg az alábbi hatványsorok konvergenciatartományát!

a)
$$\sum_{n=1}^{\infty} n(x-2)^n$$

d)
$$\sum_{n=1}^{\infty} \left(4 - \frac{1}{n}\right)^n x^n$$

$$b) \sum_{n=2}^{\infty} \frac{x^n}{2^n(n-1)}$$

e)
$$\sum_{n=1}^{\infty} \left(\frac{4n(-1)^n + n + 2}{2n} \right)^n x^n$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{3}$$

6. Határozza meg az alábbi komplex hatványsorok konvergenciatartományát!

a)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2!)} z^n$$

b)
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$

c)
$$\sum_{n=1}^{\infty} (n+1)(n+2)x^n$$