МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине "Информационные системы и Базы Данных"

> выполнил: Студент группы Р33311 Птицын Максим Евгеньевич Преподаватель Николаев Владимир Вячеславович

Содержание

1	Описание предметной области.	3
2	Инфологическая модель.	3
3	Даталогическая модель.	3
4	Минимальное множество функциональных зависимостей.	4
5	Нормализация. 5.1 Первая нормальная форма. 5.2 Вторая нормальная форма. 5.3 Третья нормальная форма. 5.4 BCNF.	4
6	Денормализация.	5
7	Заключение.	Ę

1 Описание предметной области.

В сопровождении Элли и Малкольма, Грант обощел главное здание. Следом за ними шел мальчик. Грант любил детей. А как их можно не любить, когда они так непосредственно, так страстно интересуются динозаврами. Гранту приходилось видеть, как в музеях дети стояли с открытыми ртами, взирая на огромные скелеты, уходящие под самый потолок. Он часто спрашивал себя, поче- му вымершие ящеры производят такое сильное впечатление на детей. Но потом он понял, что дети любят динозавров потому, что эти гигантские создания воплощают в себе управляемую силу неограниченной власти. Динозавры символизируют родителей, которых дети обожают, но боятся. Дети любят динозавров точно так же, как они любят своих родителей.

2 Инфологическая модель.

3 Даталогическая модель.

4 Минимальное множество функциональных зависимостей.

- 1. actions
 - \bullet action_id -> name
- 2. feels
 - \bullet feel_id -> name
- 3. actor_categories
 - category_id -> name
- 4. actors
 - \bullet actor id -> name
 - $\bullet \ \, actor_id \mathrel{->} sex$
 - actor id -> category
- 5. actor_category_history
 - history id -> actor
 - history id -> category
 - history_id -> start_date
 - history id -> end date
- 6. events
 - $\bullet \ \operatorname{event_id} \ \text{--} > \operatorname{actor}$
 - \bullet event id -> action
 - event_id -> timestamp_from
 - \bullet event id -> timestamp to
- 7. expressions
 - \bullet expression_id -> who
 - \bullet expression id -> to whom
 - \bullet expression id -> feel

5 Нормализация.

5.1 Первая нормальная форма.

На пересечении столбца и строки всегда одно значение – условие нормализации выполняется.

5.2 Вторая нормальная форма.

Из-за того, что для каждой сущности первичный ключ состоит только из одного атрибута, для каждого атрибута реализована полная функциональная зависимость – условие нормализации выполняется.

5.3 Третья нормальная форма.

Имя категории в actor_categories зависит от category_id, это создает транзитивную зависимость между actor_id и name в actor_categories через category. Чтобы привести его к 3NF, нужно удалить столбец category из actors и использовать только связи в actor_category history.

После преобразования в 3NF функциональные зависимости остаются прежними, за исключением того, что в actors больше нет зависимости actor id -> category

5.4 BCNF.

Для BCNF, для каждой нетривиальной функциональной зависимости $X \to Y$, X должно быть потенциальным ключом. Все отношения уже соответствуют BCNF, так как все левые части функциональных зависимостей являются ключами.

6 Денормализация.

Включение имени действия в events: Если часто требуется получать события вместе с именем действия, можно добавить поле name из таблицы actions в таблицу events. Включение имени чувства в expressions: Если часто требуется получать выражения вместе с именем чувства, можно добавить поле name из таблицы feels в таблицу expressions. Включение имени категории в actors: Если часто требуется получать категорию вместе с эктором, можно добавить поле name из таблицы actor_categories в таблицу actors. Эти денормализации могут улучшить производительность некоторых запросов, но могут также увеличить сложность обслуживания базы данных из-за дублирования данных. Нужно внимательно рассмотреть потребности приложения перед принятием решения о денормализации.

7 Заключение.

В результате проведенной работы мы определили функциональные зависимости, привели схему базы данных к 3NF и BCNF. Мы также рассмотрели возможные денормализации для оптимизации запросов. Теперь схема готова для эффективного использования в приложении, с учетом требований к целостности данных и производительности.