Team11 Report

b07901098 張惇宥 b07901010 范詠為

1. 架構設計

a. Block Diagram

i. data flow logic

處理哪筆資料要進入哪個 multipiler,和還有哪筆資料要去更新 X_W 的邏輯。這部分當時在設計時沒有經過仔細考慮,造成後續一些資源浪費,這部分在優化部分會說明。

ii. truncator & saturator

負責做 truncation 和 saturation,基本上是一些 mux 判斷有沒有 overf low。主要有三個地方,分別是每次乘法的輸出、加最後一項後和乘以最後的 1/a 後。

iii. early stop logic

優化時加入的邏輯,我們記了前一個 x_r 的值($prev_x_r$),在更新 x_r 後如果沒變動,就記住相等,當16個 x_r 都相等時,就表示之後會維持穩定,即可提前輸出。這部分在優化部分也會說明。

iv. mem logic

用當前更新後的 counter 去給 matrix memory 位址,我們將 request 一直拉成1,因為每個 cycle 都要跟其拿資料。(但這部分因為 memory 50% idle 的特性會造成一些浪費,在優化部分會討論)

v. counter

主要有三個 counter, col_cnt_r 紀錄現在執行到的 column、iter_cnt_r 紀錄做了幾個 iteration、mat_cnt_r 紀錄做到第幾個 matrix。

b. FSM

i. S IDLE

在 i_module_en 還未拉高前的 state。

ii. S INIT

初始化 $x_r[0]$ ~ $x_r[15]$,先將 b0~b15 放入 x_r ,再花十六個 cycle 分別 讀取 1/a 並與 $x_r[i]$ 相乘。

iii. S_CALC_FIRST1 & S_CALC_FIRST2

初始化完後,開始算第一個 iteration,因為這個 iteration 較為特別, 一定要獨立做,且我們只使用8個 multipliers,因此分兩個 state 做。詳 見 d. 部分。

iv. S ADDB

每做一個 iteration,會有一個 cycle 用來更新 x_r ,也就是將每個 x_r [i] 加上 bi,因為我們最後改成沒有記 b_r 的版本,b0~b15 這邊要讀進來。

v. S CALC NEW

這部分使用一個 multiplier 更新一個 x_r 的值,將之乘以從 matrix mem ory 讀出來的 1/a,另外七個 multipliers 將其他在 S_cALC_tERMS 因為只有八個成法器而沒做完的剩下七個減乘做完,使用的是 buffer 住的 a。

vi. S CALC TERMS

基本上與 S_CALC_NEW 互相來回。這個 state 平行用八個 multipliers 乘上從 matrix memory 讀出來的 a 的 row,因 data 存放的特性,用上這條 row 的 a 算的乘法可以平行。然而因為只有八個乘法器,剩下七個要減乘的運算要把 a buffer 住,並等下一個 cycle 也就是進入 S_CALC_NEW 時算。

vii. S FINISH

當 iter_cnt_r 為16時,表示已經做完一個 Ax=b,這時會從 S_CALC_NEW 跳回 S_INIT 用下一個矩陣重新初始化,而當做完最後一個 Ax=b 後,即進入 S_FINISH,並拉高 o_prod_done,待 i_module_en 拉下來時回到 S_IDL E,並拉低 o_prod_done。

c. Scheduling & Allocation - S INIT

$$\chi_{1}^{\circ} = \frac{1}{\alpha_{11}} \times b_{1}$$

$$\chi_{2}^{\circ} = \frac{1}{\alpha_{22}} \times b_{2}$$

$$\chi_{3}^{\circ} = \frac{1}{\alpha_{23}} \times b_{3}$$

$$\chi_{4}^{\circ} = \frac{1}{\alpha_{44}} \times b_{4}$$

以4x4矩陣為例,初始化先將 b1~4 讀進 x_r ,接著花四次讀入 1/aii 後與 x_r r[i] 相乘,每次運算只使用一個乘法器。

d. Scheduling & Allocation - S_CALC_FIRST1, 2

$$\frac{\chi_{1}}{a_{11}} = \frac{1}{a_{11}} \times \left(-a_{12} \times \chi_{2}^{\circ} - a_{13} \times \chi_{3}^{\circ} - a_{14} \times \chi_{4}^{\circ} + b_{1} \right) \\
-a_{13} \times \chi_{3}^{\circ} - a_{14} \times \chi_{4}^{\circ} + b_{1}) \\
-a_{23} \times \chi_{3}^{\circ} - a_{24} \times \chi_{4}^{\circ} + b_{2})$$

$$\frac{\chi_{2}}{a_{32}} = \frac{1}{a_{33}} \times \left(-a_{31} \times \chi_{1}^{\circ} - a_{32} \times \chi_{2}^{\circ} - a_{34} \times \chi_{4}^{\circ} + b_{3} \right) S_{CALC-FIRST2}$$

$$\frac{\chi_{4}}{a_{44}} = \frac{1}{a_{44}} \times \left(-a_{44} \times \chi_{1}^{\circ} - a_{42} \times \chi_{2}^{\circ} - a_{43} \times \chi_{3}^{\circ} + b_{4} \right)$$

以4x4矩陣為例,我們如果只用兩個乘法器,就必須如圖,當越減越多項時要分兩次才能完成。同理16x16矩陣,用八個乘法器也是如此。

e. Scheduling & Allocation - S_ADDB

以4x4矩陣為例,因為 bl~4 可以一次讀進來,我們用四個加法器一次加完。同理16x16矩陣,用十六加法器也是如此,但會顯得有點浪費,這部分優化部分會探討。

f. Scheduling & Allocation - S_CALC_NEW, TERMS

$$\chi_{1}^{1} = \frac{1}{|a_{11}|} \times (-a_{12} \times \chi_{2}^{0} - a_{13} \times \chi_{3}^{0} - a_{14} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{2}^{1} = \frac{1}{|a_{11}|} \times (-a_{21} \times \chi_{1}^{0} - a_{13} \times \chi_{3}^{0} - a_{24} \times \chi_{4}^{0} + b_{2})$$

$$\chi_{3}^{1} = \frac{1}{|a_{33}|} \times (-a_{31} \times \chi_{1}^{0} - a_{32} \times \chi_{2}^{0} - a_{34} \times \chi_{4}^{0} + b_{3})$$

$$\chi_{4}^{1} = \frac{1}{|a_{44}|} \times (-a_{41} \times \chi_{1}^{0} - a_{42} \times \chi_{2}^{0} - a_{43} \times \chi_{3}^{0} + b_{4})$$

$$\chi_{2}^{2} = \frac{1}{|a_{11}|} \times (-a_{21} \times \chi_{1}^{0} - a_{12} \times \chi_{2}^{0} - a_{13} \times \chi_{3}^{0} + a_{14} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{2}^{2} = \frac{1}{|a_{44}|} \times (-a_{21} \times \chi_{1}^{0} - a_{32} \times \chi_{2}^{0} - a_{43} \times \chi_{3}^{0} + b_{4})$$

$$\chi_{4}^{2} = \frac{1}{|a_{44}|} \times (-a_{41} \times \chi_{1}^{0} - a_{42} \times \chi_{2}^{0} - a_{43} \times \chi_{3}^{0} + a_{14} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{4}^{2} = \frac{1}{|a_{44}|} \times (-a_{41} \times \chi_{1}^{0} - a_{42} \times \chi_{2}^{0} - a_{43} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{2}^{3} = \frac{1}{|a_{44}|} \times (-a_{41} \times \chi_{1}^{0} - a_{42} \times \chi_{2}^{0} - a_{43} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{3}^{3} = \frac{1}{|a_{44}|} \times (-a_{41} \times \chi_{1}^{0} - a_{42} \times \chi_{2}^{0} - a_{43} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{3}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{3}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{3}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{1})$$

$$\chi_{3}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{2})$$

$$\chi_{4}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{2})$$

$$\chi_{4}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + b_{2})$$

$$\chi_{4}^{3} = \frac{1}{|a_{44}|} \times (-a_{44} \times \chi_{1}^{0} - a_{44} \times \chi_{2}^{0} - a_{44} \times \chi_{3}^{0} + a_{44} \times \chi_{4}^{0} + a_{44} \times \chi_{4}^{0$$

以4x4矩陣,共三次 iteration 為例,每次的操作如上圖所示,如 FSM 部分所述,橘色部分更新最終 $x_r[i]$ 值,其他乘法器拿來做上一個 cycle 沒做完的 buffer 住 a 的乘法。而藍色部分則是用全部的乘法器做運算,並 buffer 住剩下的 a 待下次橘色部分時算。有一個需要注意的地方是,因為像是在上圖中第8個 cycle,算完後要進入 S_ADDB ,這時 x4 會被更新,導致在進入10時用的 x4 會不是原本的,而且當之後reset 完 x4 後,原本 x4 有加上的 b4 會被歸零。基於上述兩個原因,在16x 16 下,我們多記了 x15 和 b15。

2. 硬體優化方法

a. parallel processing

最初的想法是,不用平行運算的話,雖然只使用一個乘法器和減法器,但時間會被拉很長,要差不多256個 cycle 才做得完。但因為 data 在 matrix 擺放位置的關係,沒辦法在同一個 $x_r[i]$ 內用內積的維度做平行,所以最後選擇在不同 $x_r[i]$ 間做平行如上面 scheduling & allocation 的圖所示。但最原本使用了15個乘法器而非八個。

b. break boundaries between iterations

接著因為下三角要等 x_r 更新後的值才能算,平行只能平行在上三角,但這樣一來乘法器的 utilization rate 會降低,因為會慢慢的越用越少。因此我們就想到 說可以將不同 iteration 之間的邊界打破,這樣除了第一個 iteration 之外,剩下的就可以都用滿乘法器。

c. dump output right after computation finish

在輸出的時候,為了節省時間,我們不是將全部運算算完然後一次用16個 cycle 輸出16筆,而是在某 x_r[i] 更新完16次後馬上輸出,這部分可以省下 16*matrix_num 左右的 cycle 數,儘管並不多。

d. folding (16x to 8x, increase utilization rate)

但即使將不同 iteration 並在一起,即 b. 部分的方式,因為不想讓一個 cyc le 內的 critical 是兩個乘法運算,乘以 1/a 這一步勢必要分開來算,也就是多花一個 cycle,造成會有一個 cycle 用滿乘法器沒錯,但另一個 cycle 只用一個乘法器,這樣乘法器的 utilization rate 仍舊只有 50% 左右,於是我們使用 folding 的技巧,cycle 數不變的條件下同時將乘法器變為原來的一半,也就是八個,而將沒算完的另外七個運算 buffer 到下一個 cycle 跟乘以 1/a 的這個操作一起算,這樣乘法器的 utilization rate 就可以提升至近 100%。代價是花了一些 buffer 的面積(半條a的大小),但因為新架構我們同時拿掉了原本有存的 b_r ,改成用讀的方式,這部分反而 register 數也變小。但可惜的是在合成時發現總面積與十六個乘法器的初版差不多,推測原因是 data flow logic 太複雜,這部分也寫在後面的 unfinished optimization part。

e. early stop

因為此演算法收斂速度快,所以我們如果發現前後兩個iteration如果數值都相同的話,就可以停止運算,不一定要做到l6個iterations,代價是一條 pre v_x_r ,但是是完全值得的,因為收斂的速度足夠快。

實際結果:

我們可以發現到,在一般的matrix之中大概會有26%的進步,在sparse martix的進步更加明顯,高達40%,但是如果發生overflow就不會有甚麼進步。

testbench	with early sto	without early stop	improvement
tb0	12648ns	17122ns	26%
tb1	19858ns	33189ns	40%
tb2	8523ns	8625ns	1%
tb3	24891ns	33291ns	25%
tb4	2474ns	3201ns	23%

- f. other unfinished optimization thought
 - i. pipeline between multiplier / subtractor and saturator

因為這次combination的比例很高,而且現在是一個cycle之中就做乘,saturate和減,如果可以做成pipeline架構,能提高throughput,讓AT值的成績更好。(因為如果是用parallel,即便我們能讓timing進步一倍,但面積也一樣增加一倍,所以整體來看效果似乎不顯著)

ii. input register

因為本次的input有lns的delay,因此如果加上input registers可以節省這lns,而且在合成以及apr時的critical path也發生在input2reg,因此如果加上之後會有可預期的效果。

iii. use only 4x and buffer data to reduce the impact of 50% memory idle i ssue

因為這次final的memory有50%的機率才能讀的到,因此理論上應該要增加每一筆的資料運算的cycle,以減少因為memory造成之idle的比例來克服這個問題,所以說我們有想說如果只開四個乘法器,這樣就能讓每筆data運算的cycle提高到四個,減少random產生的影響。

iv. clock gating

因為在我們的架構底下,combinational circuit的比例遠大於sequential,所以clock的效果不明顯,還可能因為fanout導致timing問題,而且增加判斷的邏輯電路,因此最後不採用clock gating。

v. reuse subtractor for replacing adder array

因為一個加法可以視為減負的一個數,因此如果有把b存在reg當中,就可以在initial結束之後,逐步地將b改成它的2's complement,如此一來就可以讓減法器reuse,不需要多開加法器。

vi. simplify data flow logic

我們在第二個版版本之中,雖然乘法器的數量由16個減到8個,然而面積卻沒有顯著的下降,原因有可能是出在我們的控制器有點複雜,可能可以思考要如何簡化控制器。

3. nLint report with 0 errors

4. Coverage result

5. Congestion map

6. Prime time power report (Gate-level)

7. Layout

8. Performance 表格

Physical category			
Design Stage	Description	Value	
Gate-level Simulation	Cycle time for Gate-level Simulati on (ex. 10ns)	9. 5ns	
P&R	Number of DRC violation (ex: 0) (Verify -> Verify Geometry)	0	
	Number of LVS violation (ex: 0) (Verify -> Verify Connectivity)	0	
	Core area (um²)	709214	
	Die area (um²)	738150	
Post-layout Simulation	Cycle time for Post-layout Simulat ion (ex. 10ns)	9. 5ns	