Weekend movie trip

September 28, 2020

1 Weekend movie trip

1.0.1 1. INDUSTRY

Movies industry is assigned.

1.0.2 2. DATA SETS

2.1. SOURCE: The dataset is from Grouplens in this link.

DESCRIPTION: The four datasets containing related to movies, user rating, tags and imdb ratings will be combined. The following attributes from the datasets will be used for analysis.

Attribute	Datatype
movieId	int64
userId	int64
rating	float64
tag	object

1.0.3 3. IDEAS

- **3.1.** To suggest movies for users using tags and ratings with k-means clustering.
- **3.2.** To suggest movies for users using tags and ratings with DBSCAN clustering.

1.0.4 4. LOADING THE DATASETS

Load the libraries

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import the csv files of dataset

```
[2]: movies_data=pd.read_csv("movies.csv")
movies_data.head()
```

```
[2]:
        movieId
                                                 title \
     0
                                     Toy Story (1995)
               1
               2
                                        Jumanji (1995)
     1
     2
               3
                              Grumpier Old Men (1995)
               4
                            Waiting to Exhale (1995)
     3
                  Father of the Bride Part II (1995)
     4
               5
                                                genres
        Adventure | Animation | Children | Comedy | Fantasy
     0
                          Adventure | Children | Fantasy
     1
     2
                                        Comedy | Romance
     3
                                 Comedy | Drama | Romance
     4
                                                Comedy
[3]: links_data=pd.read_csv("links.csv")
     links_data.head()
[3]:
        movieId imdbId
                            tmdbId
     0
                  114709
                            862.0
               1
     1
               2 113497
                           8844.0
     2
               3 113228
                          15602.0
     3
               4 114885
                          31357.0
     4
                  113041
                          11862.0
[4]: rating_data=pd.read_csv("ratings.csv")
     rating_data.head()
[4]:
        userId
                movieId
                          rating
                                   timestamp
     0
              1
                       1
                              4.0
                                   964982703
     1
             1
                       3
                              4.0
                                   964981247
     2
              1
                       6
                              4.0
                                   964982224
     3
              1
                      47
                              5.0
                                   964983815
     4
              1
                      50
                              5.0
                                   964982931
[5]: tags_data=pd.read_csv("tags.csv")
     tags_data.head()
[5]:
                movieId
        userId
                                              timestamp
                                        tag
     0
             2
                   60756
                                     funny
                                             1445714994
             2
     1
                   60756
                          Highly quotable
                                             1445714996
     2
              2
                              will ferrell
                                             1445714992
                   60756
     3
              2
                   89774
                              Boxing story
                                             1445715207
              2
                   89774
                                       AMM
                                             1445715200
```

1.0.5 5. DATA PREPARATION

5.1 DATA CLEANING

Shape of all the data

```
[6]: print("Movies: "+str(movies_data.shape))
     print("Links: "+str(links_data.shape))
     print("Ratings: "+str(rating_data.shape))
     print("Tags: "+str(tags_data.shape))
    Movies: (9742, 3)
    Links: (9742, 3)
    Ratings: (100836, 4)
    Tags: (3683, 4)
    Drop the NaN rows
[7]: movies_data=movies_data.dropna()
     movies_data.head()
[7]:
        movieId
                                                title \
                                    Toy Story (1995)
              2
     1
                                      Jumanji (1995)
     2
              3
                             Grumpier Old Men (1995)
              4
     3
                            Waiting to Exhale (1995)
     4
                Father of the Bride Part II (1995)
                                              genres
     0
        Adventure | Animation | Children | Comedy | Fantasy
                          Adventure | Children | Fantasy
     1
     2
                                      Comedy | Romance
     3
                                Comedy | Drama | Romance
                                              Comedy
[8]: links_data=links_data.dropna()
     links_data.head()
[8]:
        movieId imdbId
                           tmdbId
     0
              1 114709
                           862.0
     1
              2 113497
                           8844.0
     2
              3 113228
                         15602.0
              4 114885
     3
                         31357.0
     4
              5 113041 11862.0
[9]: rating_data=rating_data.dropna()
     rating_data.head()
[9]:
        userId movieId rating timestamp
     0
             1
                      1
                             4.0
                                  964982703
     1
             1
                      3
                             4.0 964981247
     2
             1
                      6
                             4.0 964982224
```

```
3 1 47 5.0 964983815
4 1 50 5.0 964982931
```

```
[10]: tags_data=tags_data.dropna() tags_data.head()
```

```
[10]:
         userId movieId
                                      tag
                                            timestamp
      0
              2
                   60756
                                    funny 1445714994
              2
                   60756 Highly quotable 1445714996
      1
      2
              2
                   60756
                             will ferrell 1445714992
              2
      3
                   89774
                             Boxing story 1445715207
              2
      4
                   89774
                                      MMA 1445715200
```

Shape of all the data

```
[11]: print("Movies: "+str(movies_data.shape))
    print("Links: "+str(links_data.shape))
    print("Ratings: "+str(rating_data.shape))
    print("Tags: "+str(tags_data.shape))
```

Movies: (9742, 3) Links: (9734, 3) Ratings: (100836, 4) Tags: (3683, 4)

Rating distribution

```
[12]: plt.figure(figsize=(30,14))
   g = sns.countplot(x=rating_data['rating'], data=rating_data)
   g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
   g.set_title('Number of ratings vs users');
```


Tags by each user

```
[13]: plt.figure(figsize=(30,14))
   g = sns.countplot(x=tags_data['userId'], data=tags_data)
   g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
   g.set_title('Number of tags vs users');
```


5.2 FORMATTING

Combining the tag word from tag table for each user and movie

```
[26]:
        userId movieId rating timestamp tag
             1
                      1
                            4.0 964982703
     1
             1
                      3
                            4.0 964981247
     2
             1
                            4.0 964982224
                      6
             1
                     47
                            5.0 964983815
```

4 1 50 5.0 964982931

Dropping the rows with no tags

```
[27]: rating_data['tag'].replace('', np.nan, inplace=True)
rating_data=rating_data.dropna()
rating_data.head()
```

```
userId movieId rating
[27]:
                                      timestamp
                                                             tag
                      60756
                                5.0 1445714980
      241
                 2
                                                    will ferrell
                 2
      250
                      89774
                                5.0 1445715189
                                                       Tom Hardy
      254
                 2
                     106782
                                5.0 1445714966 Martin Scorsese
                      48516
                 7
      1019
                                1.0 1169687318
                                                    way too long
                                4.0 1462138790
      1808
                18
                        431
                                                           mafia
```

Reset the index and drop the old index column

```
[28]: rating_data=rating_data.reset_index()
    del rating_data['timestamp']
    rating_data.head()
```

```
[28]:
         index
                userId movieId rating
                                                        tag
           241
                      2
                           60756
                                      5.0
                                              will ferrell
      1
           250
                      2
                           89774
                                      5.0
                                                 Tom Hardy
      2
           254
                      2
                          106782
                                      5.0 Martin Scorsese
                      7
      3
          1019
                           48516
                                      1.0
                                              way too long
          1808
                     18
                             431
                                      4.0
                                                     mafia
```

Printing the dimension of the dataset

```
[29]: del rating_data['index'] rating_data.shape
```

[29]: (1635, 4)

Attributes and datatypes of the dataset

```
[30]: for column in rating_data.columns: print(column, " is ", rating_data[column].dtype.name)
```

```
userId is int64
movieId is int64
rating is float64
tag is object
```

5.3 VISUALIZATION

Barplot for ratings

```
[31]: plt.figure(figsize=(20,10))
g = sns.countplot(x=rating_data['rating'], data=rating_data)
g.set_xticklabels(g.get_xticklabels(), rotation=60, ha="right");
g.set_title('Rating vs Count');
```


Barplot for user vs number of ratings

```
[32]: plt.figure(figsize=(20,10))
    g = sns.countplot(x=rating_data['userId'], data=rating_data)
    g.set_xticklabels(g.get_xticklabels(), rotation=60, ha="right");
    g.set_title('User vs Number Ratings');
```


Deleting PlayerLinernumber to release memory

```
[33]: del tags_data
```

5.4 FEATURE ENGINEERING

Rearranging columns

```
[34]: column_names = ["movieId", "userId", "tag", "rating"]

rating_data = rating_data.reindex(columns=column_names)

rating_data.head()
```

```
[34]:
         movieId userId
                                      tag rating
      0
           60756
                       2
                             will ferrell
                                               5.0
           89774
                       2
                                Tom Hardy
                                               5.0
      1
      2
                       2 Martin Scorsese
                                              5.0
          106782
      3
           48516
                       7
                             way too long
                                               1.0
      4
             431
                      18
                                    mafia
                                              4.0
```

Encoding the tag column using label encoder

```
[35]: from sklearn.preprocessing import LabelEncoder

lb_make = LabelEncoder()
rating_data['tag_encode'] = lb_make.fit_transform(rating_data['tag'])
rating_data.head()
```

```
[35]:
         movieId userId
                                      tag rating tag_encode
      0
           60756
                       2
                             will ferrell
                                               5.0
                                                           774
                                               5.0
           89774
                       2
                                Tom Hardy
      1
                                                           268
      2
          106782
                       2 Martin Scorsese
                                               5.0
                                                           141
           48516
                                               1.0
                                                           762
                       7
                             way too long
             431
                      18
                                    mafia
                                               4.0
                                                           498
```

Rearranging the columns

```
[36]: del rating_data['tag']
    column_names = ["movieId", "userId", "rating", "tag_encode"]
    rating_data = rating_data.reindex(columns=column_names)
    rating_data.head()
```

```
[36]:
         movieId userId rating tag_encode
           60756
      0
                        2
                              5.0
                                           774
      1
           89774
                        2
                              5.0
                                           268
      2
          106782
                        2
                              5.0
                                           141
      3
           48516
                        7
                              1.0
                                           762
      4
             431
                       18
                              4.0
                                           498
```

Normalizing the rating for each user from 0 to 5

```
[37]: user_data=rating_data.userId.unique()
      list1 = ∏
      list2 =[]
      for i in user data:
          user_bar=rating_data.groupby(['userId']).get_group(i)
          min_val= user_bar.rating.min()
          max_val= user_bar.rating.max()
          OldRange = (max_val - min_val)
          NewRange = (5 - 0)
          if min_val != max_val:
              for j in range(len(rating_data)):
                  if (rating_data['userId'].values[j] == user_bar['userId'].
       \rightarrowunique()[0]):
                          rating_data['rating'].values[j]= (((rating_data['rating'].
       →values[j] - min_val) * NewRange) / OldRange) + 0
      rating_data
```

```
[37]:
            movieId userId
                               rating tag_encode
      0
              60756
                          2 5.000000
                                              774
      1
              89774
                          2 5.000000
                                              268
      2
                          2 5.000000
             106782
                                              141
              48516
                          7 1.000000
      3
                                              762
      4
                431
                         18 2.500000
                                              498
                        606 0.000000
      1630
               5694
                                                6
               6107
                        606 3.333333
                                              295
      1631
      1632
               7382
                        606 5.000000
                                              423
      1633
               3265
                        610 5.000000
                                              453
      1634
                        610 5.000000
             168248
                                               95
```

Drop data values less than 3.5 rating

[1635 rows x 4 columns]

```
[67]: ratings_data = rating_data[rating_data['rating'] >= 3.5]
ratings_data = ratings_data.reset_index()
del ratings_data['index']
```

5.5 CLUSTERING

5.5.1 To cluster the movies based on tags and rating.

Find the best k from Elbow method

```
[74]: from sklearn.preprocessing import MinMaxScaler
      from sklearn.cluster import KMeans
      import matplotlib.pyplot as plt
      X = ratings_data.values[:,1:4]
      X = np.nan_to_num(X)
      mms = MinMaxScaler()
      mms.fit(X)
      data_transformed = mms.transform(X)
      Sum_of_squared_distances = []
      K = range(1,30)
      kmeans_kwargs = {
         "init": "random",
         "n_init": 10,
         "max_iter": 300,
         "random_state": 42,
      for k in K:
          km = KMeans(n_clusters=k, **kmeans_kwargs)
          km = km.fit(data_transformed)
          Sum_of_squared_distances.append(km.inertia_)
      plt.plot(K, Sum_of_squared_distances, 'bx-')
      plt.xlabel('k')
      plt.ylabel('Sum_of_squared_distances')
      plt.title('Elbow Method For Optimal k')
      plt.show()
```


Find the best k from Silhoutte

```
[75]: from sklearn.cluster import KMeans
      from sklearn.preprocessing import StandardScaler
      from sklearn.metrics import silhouette_score
      kmeans_kwargs = {
         "init": "random",
         "n_init": 10,
         "max iter": 300,
         "random_state": 42,
      X = ratings_data.values[:,1:4]
      X = np.nan_to_num(X)
      scaler = StandardScaler()
      scaled_features = scaler.fit_transform(X)
      \# A list holds the silhouette coefficients for each k
      silhouette_coefficients = []
      # Notice you start at 2 clusters for silhouette coefficient
      for k in range(2, 30):
          kmeans = KMeans(n_clusters=k, **kmeans_kwargs)
          kmeans.fit(scaled_features)
          score = silhouette_score(scaled_features, kmeans.labels_)
          silhouette_coefficients.append(score)
      plt.plot(range(2, 30), silhouette_coefficients)
```

```
plt.xticks(range(2, 30))
plt.xlabel("Number of Clusters")
plt.ylabel("Silhouette Coefficient")
plt.show()
```


Preprocessing

```
import random
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets.samples_generator import make_blobs
%matplotlib inline
from sklearn.preprocessing import StandardScaler
Clus_dataSet = StandardScaler().fit_transform(X)
Clus_dataSet
```

Performing k-means

```
[77]: clusterNum =10
k_means = KMeans(init = "k-means++", n_clusters = clusterNum, n_init = 50)
k_means.fit(X)
labels = k_means.labels_
print(labels)
```

 $[2\ 5\ 5\ 5\ 2\ 2\ 2\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 2\ 2\ 2\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 2\ 2\ 2\ 2\ 2$ 2 5 2 2 6 6 6 4 6 6 3 7 4 6 6 6 6 1 7 6 4 6 6 4 4 3 3 6 6 4 3 1 3 3 3 3 1 3 1 3 3 0 3 3 1 3 0 3 3 4 3 3 1 3 4 1 4 3 1 1 3 3 1 9 3 3 3 9 4 3 1 9 9 1 7 7 7 3 9 1 7 9 0 9 4 3 1 7 7 0 4 7 7 3 7 7 0 1 7 0 3 7 0 7 4 3 7 1 7 4 7 7 1 7 7 4 7 0 7 4 4 7 9 3 7 7 9 7 7 4 7 7 7 7 0 4 1 4 0 0 3 1 7 4 0 3 3 7 $9\; 9\; 4\; 0\; 1\; 3\; 7\; 4\; 1\; 4\; 1\; 1\; 7\; 9\; 1\; 1\; 1\; 9\; 4\; 0\; 3\; 0\; 7\; 7\; 7\; 1\; 7\; 1\; 1\; 7\; 0\; 3\; 4\; 4\; 1\; 4\; 7$ 7 9 7 7 4 4 9 3 9 0 4 1 9 3 3 4 9 1 1 4 0 1 1 1 3 1 1 9 7 1 7 1 1 0 4 7 1 $1 \; 9 \; 1 \; 9 \; 4 \; 3 \; 4 \; 3 \; 1 \; 0 \; 0 \; 7 \; 3 \; 7 \; 7 \; 1 \; 4 \; 9 \; 0 \; 4 \; 9 \; 9 \; 7 \; 0 \; 7 \; 7 \; 3 \; 0 \; 1 \; 3 \; 7 \; 3 \; 3 \; 7 \; 1$ 7 4 0 1 4 9 4 4 3 3 4 4 1 3 7 7 0 7 4 1 7 3 4 9 4 7 7 3 7 0 4 0 7 0 9 4 7 4 7 7 9 9 3 4 3 7 7 4 9 0 4 1 9 4 7 7 9 1 0 0 3 7 7 7 0 3 1 1 0 0 4 9 0 0 3 9 9 3 0 7 0 0 1 7 4 0 7 9 3 7 1 1 0 1 7 0 9 7 7 3 3 0 1 4 4 0 3 3 0 3 3 3 7 4 1 3 9 0 3 0 9 1 9 7 3 4 0 7 7 9 7 7 0 4 0 9 9 0 0 3 0 0 3 0 4 3 4 9 4 0 9 1 0 9 4 9 1 0 7 0 1 4 7 7 3 0 1 7 7 3 4 4 9 3 9 9 3 9 3 9 7 1 9 0 0 4 1 1 7 0 3 4 0 9 9 7 7 3 9 1 0 7 1 3 9 3 4 4 0 4 3 1 0 7 0 0 4 0 3 0 4 3 4 0 4 1 9 1 4 1 7 7 9 9 3 7 3 9 1 4 4 0 1 7 4 0 9 4 0 0 9 1 0 9 3 4 3 9 0 $3\ 3\ 7\ 4\ 3\ 7\ 4\ 0\ 9\ 0\ 9\ 3\ 9\ 3\ 4\ 4\ 7\ 9\ 7\ 9\ 0\ 7\ 7\ 4\ 9\ 9\ 3\ 1\ 7\ 4\ 4\ 0\ 7\ 3\ 1\ 0\ 4$ 3 4 9 4 7 0 4 4 7 3 9 7 7 9 4 4 3 9 4 0 7 4 4 9 4 4 0 7 7 3 9 7 1 3 9 9 1 $9\ 1\ 7\ 9\ 7\ 0\ 9\ 7\ 4\ 9\ 0\ 1\ 3\ 4\ 3\ 4\ 9\ 0\ 4\ 7\ 7\ 7\ 3\ 0\ 7\ 0\ 9\ 0\ 4\ 0\ 3\ 9\ 7\ 7\ 4\ 7\ 3$ 4 3 9 1 3 3 7 0 4 9 7 7 9 7 9 0 0 7 7 0 3 9 4 7 0 7 0 7 4 4 9 9 7 0 4 3 4 $0\ 4\ 9\ 7\ 0\ 7\ 4\ 9\ 7\ 7\ 4\ 0\ 4\ 0\ 1\ 4\ 3\ 7\ 3\ 9\ 7\ 4\ 7\ 3\ 1\ 4\ 9\ 9\ 9\ 9\ 9\ 3\ 7\ 4\ 0\ 7\ 0$ $9\; 9\; 9\; 4\; 0\; 4\; 4\; 1\; 4\; 7\; 7\; 3\; 7\; 0\; 0\; 1\; 9\; 7\; 1\; 3\; 0\; 4\; 3\; 9\; 3\; 9\; 4\; 4\; 3\; 1\; 7\; 0\; 0\; 0\; 9\; 9\; 7$ $0\ 7\ 4\ 7\ 9\ 4\ 0\ 9\ 7\ 3\ 4\ 0\ 9\ 0\ 4\ 4\ 1\ 0\ 9\ 7\ 0\ 9\ 0\ 9\ 3\ 4\ 9\ 7\ 7\ 9\ 4\ 9\ 7\ 7\ 4\ 7\ 4$ $7\ 1\ 4\ 7\ 7\ 7\ 3\ 1\ 1\ 1\ 3\ 9\ 0\ 9\ 4\ 3\ 3\ 3\ 9\ 3\ 7\ 0\ 4\ 3\ 4\ 3\ 0\ 9\ 3\ 3\ 9\ 9\ 3\ 4\ 0\ 3$ 3 0 3 0 1 7 8 9 9 8 9 8 7 8 8 8 4 1 1 8 4 8 9 8 4 8 0 8 8 8 8 8 0 8 8 9 8 8 8 4 0 8 8 8 0 8 8 8 0 9 9 8 8 8 8 8 8 9 9 0 8 9 4 4 8 8 8 8 8 8 8 0 0 7]

Clustered column added to the data

```
[78]: ratings_data["Clus_km"] = labels
ratings_data.head(5)
```

```
[78]:
         movieId userId rating tag_encode Clus_km
      0
           60756
                        2
                              5.00
                                            774
                                                        2
      1
           89774
                        2
                              5.00
                                            268
                                                        5
                                                        5
      2
          106782
                        2
                              5.00
                                            141
                                                        5
      3
             1221
                              5.00
                       18
                                            136
                                                        2
      4
             5995
                       18
                              3.75
                                            725
```

View the centroids

[79]: ratings_data.groupby('Clus_km').mean()

```
[79]:
                    movieId
                                 userId
                                           rating tag_encode
      Clus_km
      0
                                                   470.244444
               10464.185185
                             479.748148
                                         4.048560
      1
                6613.020202
                            468.616162
                                         4.313272
                                                   197.282828
      2
               59928.512195
                              90.219512
                                         4.417683
                                                   686.585366
      3
               12524.934307
                             461.941606
                                         4.166869
                                                   711.708029
      4
                9858.293333 470.326667
                                         4.140741
                                                   329.366667
      5
               55843.400000
                              80.142857
                                         4.403571
                                                   240.257143
      6
               32844.187500
                            293.250000
                                         4.664062
                                                   523.312500
      7
                7678.373563 473.609195
                                         4.190613
                                                    73.051724
      8
               48138.384615
                             565.923077
                                         4.629630
                                                   716.076923
      9
               14456.977778 479.570370
                                         4.091049
                                                   587.725926
```

Clustered data

```
[80]: area = np.pi * ( X[:, 1])**2
plt.scatter(X[:, 0], X[:, 2], s=area, c=labels.astype(np.float), alpha=0.5)
plt.xlabel('User ID', fontsize=18)
plt.ylabel('Tag', fontsize=16)
plt.show()
```


Plotting 3D

```
[81]: from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(1, figsize=(8, 6))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()

ax.set_xlabel('Tag')
ax.set_ylabel('User ID')
ax.set_zlabel('Rating')

ax.scatter(X[:, 0], X[:, 2], X[:, 1], c= labels.astype(np.float))
```

[81]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0x7f5374123250>

Finding movie for movieId using movie dataset

```
[82]: # new column for movie name
      ratings_data['Movie'] = ''
      # assigning title for each row with respect to the movieId
      for i in range(len(ratings_data)):
              movie_id=ratings_data['movieId'].values[i]
              for j in range(len(movies_data)):
                  if (movies_data['movieId'].values[j] == movie_id):
                      movie= movies_data['title'].values[j]
                      ratings data['Movie'].values[i] = movie
      ratings_data.head()
[82]:
         movieId userId rating tag_encode Clus_km \
                       2
           60756
                            5.00
                                         774
      1
           89774
                       2
                            5.00
                                         268
                                                    5
      2
          106782
                       2
                            5.00
                                         141
                                                    5
      3
                            5.00
                                                    5
           1221
                      18
                                         136
                                                    2
            5995
                      18
                            3.75
                                         725
                                   Movie
      0
                    Step Brothers (2008)
                          Warrior (2011)
      1
       Wolf of Wall Street, The (2013)
      3
          Godfather: Part II, The (1974)
      4
                     Pianist, The (2002)
     Printing the movies suggestion
[90]: user_data=ratings_data.userId.unique()
      for i in user_data:
          user_bar=ratings_data.groupby(['userId']).get_group(i)
          print("UserID: "+str(user_bar.userId.unique())+"Cluster: "+str(user_bar.
       →Clus_km.unique()))
          for j in range(len(user_bar.Clus_km.unique())):
              clu=user_bar.Clus_km.unique()[j]
              movies_bar=ratings_data.groupby(['Clus_km']).get_group(clu)
              print(str(movies_bar.Movie.values[:3]))
     UserID: [2]Cluster: [2 5]
     ['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
     ['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
      'Godfather: Part II, The (1974)']
     UserID: [18]Cluster: [5 2]
     ['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
      'Godfather: Part II, The (1974)']
     ['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
```

UserID: [49]Cluster: [2]

```
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [62]Cluster: [5 2]
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
 'Godfather: Part II, The (1974)']
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [63]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [76]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [103]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [106]Cluster: [5]
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
'Godfather: Part II, The (1974)']
UserID: [112]Cluster: [5]
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
 'Godfather: Part II, The (1974)']
UserID: [119]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [125]Cluster: [2 6 5]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)'
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
 'Godfather: Part II, The (1974)']
UserID: [132]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [138]Cluster: [6]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
UserID: [161]Cluster: [5]
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
 'Godfather: Part II, The (1974)']
UserID: [166]Cluster: [5]
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
 'Godfather: Part II, The (1974)']
UserID: [167]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [177]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [184]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [193]Cluster: [2]
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [205]Cluster: [5]
['Warrior (2011)' 'Wolf of Wall Street, The (2013)'
 'Godfather: Part II, The (1974)']
UserID: [226]Cluster: [2]
```

```
['Step Brothers (2008)' 'Pianist, The (2002)' 'Lucky Number Slevin (2006)']
UserID: [256]Cluster: [6]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
UserID: [289]Cluster: [6]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
UserID: [291]Cluster: [6]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
UserID: [300]Cluster: [4]
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
UserID: [305]Cluster: [6 3 7 4]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
['Elite Squad (Tropa de Elite) (2007)'
 "There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
UserID: [318]Cluster: [6]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
UserID: [319]Cluster: [1]
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
UserID: [327]Cluster: [7 6 4]
['Elite Squad (Tropa de Elite) (2007)'
"There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
UserID: [336]Cluster: [6 4 3]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
UserID: [356]Cluster: [6 4]
['Going Places (Valseuses, Les) (1974)' 'Forbidden Kingdom, The (2008)'
 'The DUFF (2015)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
UserID: [357] Cluster: [3 1]
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
UserID: [419]Cluster: [3]
```

```
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
UserID: [424]Cluster: [3 1 0 4 9]
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
UserID: [435]Cluster: [4 3]
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
UserID: [439]Cluster: [1]
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
UserID: [462]Cluster: [9]
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
UserID: [474]Cluster: [9 1 7 3 0 4]
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
['Elite Squad (Tropa de Elite) (2007)'
"There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
UserID: [477]Cluster: [3 1 9 0 4 7]
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
['Elite Squad (Tropa de Elite) (2007)'
"There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
UserID: [506]Cluster: [3]
['28 Days Later (2002)' 'Wedding Crashers (2005)' 'Lord of War (2005)']
UserID: [509]Cluster: [0]
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
UserID: [513]Cluster: [1]
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
```

```
UserID: [520]Cluster: [7]
['Elite Squad (Tropa de Elite) (2007)'
"There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
UserID: [533]Cluster: [8]
['Forrest Gump (1994)' 'Catch Me If You Can (2002)' 'Bank Job, The (2008)']
UserID: [537] Cluster: [9 8 7 4 1]
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
['Forrest Gump (1994)' 'Catch Me If You Can (2002)' 'Bank Job, The (2008)']
['Elite Squad (Tropa de Elite) (2007)'
 "There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
['Lion King, The (1994)' 'Jezebel (1938)' 'Kids (1995)']
UserID: [567]Cluster: [8 9 4 0]
['Forrest Gump (1994)' 'Catch Me If You Can (2002)' 'Bank Job, The (2008)']
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
UserID: [573] Cluster: [8 9 4]
['Forrest Gump (1994)' 'Catch Me If You Can (2002)' 'Bank Job, The (2008)']
['Inglourious Basterds (2009)' 'Babadook, The (2014)'
 'Who Killed Chea Vichea? (2010)']
['Lost in Translation (2003)' 'Tucker & Dale vs Evil (2010)'
 'Anchorman: The Legend of Ron Burgundy (2004)']
UserID: [599]Cluster: [8]
['Forrest Gump (1994)' 'Catch Me If You Can (2002)' 'Bank Job, The (2008)']
UserID: [606]Cluster: [0]
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
UserID: [610]Cluster: [0 7]
["One Flew Over the Cuckoo's Nest (1975)" 'Good Will Hunting (1997)'
 'Usual Suspects, The (1995)']
['Elite Squad (Tropa de Elite) (2007)'
 "There's Something About Mary (1998)" 'Sense and Sensibility (1995)']
```