Problemas de Enzimologia

Série 4

- 1. Adicionou-se uma quantidade constante de enzima a uma série de meios de 10 mL com diferentes concentrações de substrato. As velocidades iniciais, representadas na tabela abaixo, são determinadas medindo o número de moles, ou micromoles, de substrato consumido (ou produto produzido) por minuto. Responda às seguintes perguntas sem recorrer a métodos de representação gráfica:
- a) Qual o valor de V_{max} para esta concentração de enzima?
- b) Qual o valor de $K_{\rm m}$ para este enzima?
- c) Mostre se a reacção segue ou não uma cinética Michaeliana.
- d) Qual a concentração de enzima livre para $[A]=5.0\times10^{-3}$?
- e) Quais as velocidades iniciais para valores de [A] iguais a 1.0×10^{-6} e 1.0×10^{-1} M?
- f) Calcule a quantidade total de produto produzida durante os primeiros 5 min de reacção para [A]=2.0×10⁻³ M. Poderia fazer-se o mesmo cálculo para [A]=2.0×10⁻⁶ M?
- g) Suponha que a concentração de enzima em cada mistura era aumentada 4 vezes, qual seria o valor de $K_{\rm m}$? E o de $V_{\rm max}$? Qual seria o valor de v para $[A] = 2.0 \times 10^{-6} \, {\rm M}$?

[A] (M)	v (μmol/min)
5.0×10^{-2}	0.25
5.0×10^{-3}	0.25
5.0×10^{-4}	0.25
5.0×10^{-5}	0.20
5.0×10^{-6}	0.071
5.0×10 ⁻⁷	0.0096

- 2. O $K_{\rm m}$ de um certo enzima é 1.0×10^{-5} M, sendo o comportamento do sistema Michaeliano. Para uma concentração de substrato de 0.10 M, a velocidade inicial de reacção é de 37 μ mol·min⁻¹ para uma determinada concentração de enzima. No entanto, a mesma velocidade de reacção de 37 μ mol·min⁻¹ é observada quando a concentração de substrato é de 0.010 M.
- a) Usando a equação de Michaelis-Menten, mostre porque é que a velocidade de reacção não é afectada por uma redução de uma ordem de grandeza na concentração de substrato.
- b) Calcule v como fracção de $V_{\rm max}$ para concentrações de substrato de 0.20 $K_{\rm m}$, 0.50 $K_{\rm m}$, 1.0 $K_{\rm m}$, 2.0 $K_{\rm m}$, 4.0 $K_{\rm m}$, 10.0 $K_{\rm m}$
- c) A partir dos resultados da alínea anterior, esboce um gráfico de $v/V_{\rm max}$ em função de [A]/ $K_{\rm m}$. Qual será o melhor intervalo de valores de [A] para estudar a dependência de v com [A] ou determinar o valor de $K_{\rm m}$

- 3. Pretende-se desenhar um ensaio enzimático de forma a ser pouco sensível a pequenas variações na concentração de substrato. Qual deverá ser o valor de $[A]/K_m$ para que uma variação de 10% na concentração de substrato resulte numa variação de v inferior a 1%?
- 4. A anidrase carbónica do eritrócito (M.M. 30000) tem um dos mais altos "turnovers" (k_{cat}) que se conhece. A reacção que cataliza é a hidratação reversível do CO_2 :

$$H_2O + CO_2 \iff H_2CO_3$$
,

que é um passo muito importante no transporte do CO_2 dos tecidos para o pulmão. Se $10.0 \,\mu g$ de anidrase carbónica pura catalisarem a hidratação de $0.30 \,g$ de $CO_2 \,em \,1$ minuto a 37 °C e à velocidade máxima $V_{\rm max}$, qual será o $k_{\rm cat}$ da anidrase carbónica (em unidades de min⁻¹)?

- 5. Um enzima michaeliano apresenta os seguintes parâmetros cinéticos: k_1 =5.0x10 7 M $^{-1}$ s $^{-1}$, k_1 =2.0x10 4 s $^{-1}$, k_2 =4.0x10 2 s $^{-1}$. Calcule o $K_{\rm m}$ (segundo o modelo de Briggs-Haldane) e o $K_{\rm s}$ para esta reacção. Pode considerar-se que há manutenção de um estado de pré-equilíbrio entre enzima, subtrato e complexo enzima-substrato?
- 6. Num estudo cinético da enzima fumarase de coração de porco, determinaram-se parâmetros para a reacção directa $K_{\rm m}=1.7~{\rm mM}$ e $V_{\rm max}=0.25~{\rm mMs}^{-1}$. Para a reacção inversa determinaram-se os parâmetros $K_{\rm m}=3.8~{\rm mM}$ e $V_{\rm max}=0.11~{\rm mMs}^{-1}$. Numa amostra de fumarase de proveniência diferente, os parâmetros determinados foram $K_{\rm m}=1.6~{\rm mM}$ e $V_{\rm max}=0.024~{\rm mMs}^{-1}$ para a reacção directa e $K_{\rm m}=1.2~{\rm mM}$ e $V_{\rm max}=0.012~{\rm mMs}^{-1}$ para a reacção inversa. Comente estes resultados.
- 7. Um estudo de velocidades iniciais de catálise de uma esterase para uma mistura racémica de substratos mostraram que o enantiómero L era o substrato verdadeiro, consumido totalmente para dar produto, enquanto o enantiómero D podia ser recuperado intacto no final da reacção. Com base nestes resultados, a cinética da reacção foi analisada, assumindo que o enantiómero D não tinha qualquer efeito sobre o enzima, e estimou-se um $K_{\rm m}$ de 2 mM para o enantiómero L. Estudos posteriores mostraram que o enantiómero D tem efeito sobre a reacção, actuando como inbidor competitivo, com um $K_{\rm ic}$ igual ao $K_{\rm m}$. Em face desta última conclusão, qual deveria ser o valor correcto para o $K_{\rm m}$ inicialmente estimado?
- 8. Para uma reacção sujeita a inibição pelo produto, a equação da curva de progressão é dada por

$$k_{cat}[E]_0 t = (1 - K_{mA}/K_{mP})([A]_0 - [A]) + K_{mA}(1 + [A]_0/K_{mP})\ln([A]_0/[A])$$

- a) Verifique que a forma diferenciada desta equação corresponde à equação da inibição pelo produto.
- b) Escreva as expressões para $K_{\rm m}^{app}$ e $V_{\rm max}^{app}$ e verifique em que condições podem estes valores ser negativos.