ECE 447 Fall 2025

Lessons 29 Probability

SCHEDULE AND ADMIN

- Schedule.
- Admin

Schedule and Admin

- Lab 4. Graded. Submit any regrade requests via Gradescope.
- HW5. Graded. Submit any regrade requests via Gradescope.
- Lab 5. PDF due 6 Nov (Lsn 32) to Gradescope.
- HW6. Due 4 Nov (Lsn 31) to Gradescope.

REVIEW

Schedule and Admin

• A binary FSK signal uses carrier frequencies f_A and f_B . The baseband signal uses full-width polar signaling. Estimate the transmitted bandwidth of the FSK signal using Carson's Rule.

WHY PROBABILITY IN DIGITAL COMMUNICATIONS?

Schedule and Admin

What did you learn in Math 356 and ECE 346?

Review

PROBABILITY TERMS & CONCEPT

- Experiment, outcomes, events
- Sample space *S*, elements, complement
- Union ∫, intersection ∩

Schedule and Admin

- Disjoint or mutually exclusive
- Conditional probability, e.g., P(B|A)
- Bayes' rule $P(A|B) = \frac{P(A)P(B|A)}{P(A)}$

В

PROBABILITY TERMS & CONCEPTS (CONT'D)

- Independent: iff $P(A \cap B) = P(A)P(B)$ (NOT the same a mutually exclusive)
- Bernoulli trials

Review

- $P(k \text{ successes in } n \text{ trials}) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$
- p is the probability of success of a single trial
- Example: BSC w/ $P_e = 10^{-3}$. What is the probability that a nibble of a byte is incorrect?

- Example: Repetition codes; see Example 7.9 in textbook
- Total Probability Theorem: $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$
- Prior and posterior probabilities, $P(A_i)$ and $P(A_i|B)$
 - Find posterior probability through combination of Bayes' rule and Total Probability Theorem
 - $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$

RANDOM VARIABLES

- Maps events to real numbers
- Notation

Schedule and Admin

- $P_x(x_i)$: x is RV, x_i is value RV takes; "Probability of $x = x_i$ "
- Can have multiple RVs or joint probabilities
 - $P_{xy}(x_i, y_i)$: "Probability that $x = x_i$ and $y = y_i$ "
 - If x and y are independent, $P_{xy}(x_i, y_i) = P_x(x_i)P_y(y_i)$
- Conditional probabilities
 - Probability of $x = x_i$ given $y = y_i \rightarrow P_{x|y}(x_i|y_i)$
- Marginal probabilities
 - $P_{\mathbf{y}}(y_j) = \sum_i P_{\mathbf{x}\mathbf{y}}(x_i, y_j) = \sum_i P_{\mathbf{x}|\mathbf{y}}(x_i|y_j)P_{\mathbf{y}}(y_j)$
 - $P_{\mathbf{x}}(x_i) = \sum_j P_{\mathbf{x}\mathbf{y}}(x_i, y_j)$

EXAMPLE: BINARY SYMMETRIC CHANNEL (BSC)

x is the transmitter. The probability of transmitting a 1 is Q. The probability of a bit error due to the channel is P_e . Find the probability of receiving a 1 or 0 at the receiver y.

CDF AND PDF

- CDF: $F_{\mathbf{x}}(x) = P(\mathbf{x} \leq x)$
 - $F_{\mathbf{x}}(\mathbf{x}) \geq 0$
 - $F_{\mathbf{x}}(\infty) = 1$
 - $F_{\mathbf{x}}(-\infty) = 0$
 - $F_{x}(x_1) \leq F_{x}(x_2)$ for $x_1 \leq x_2$
- PDF: $p_{x}(x) = \frac{dF_{x}(x)}{dx}$
 - $\int_{-\infty}^{\infty} p_{\mathbf{x}}(x) dx = 1$
 - $P(x_1 < x \le x_2) = \int_{x_1}^{x_2} p_x(x) dx$

GAUSSIAN RV

Schedule and Admin

$$p_{\rm X}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-m)^2/(2\sigma^2)}$$

• Cover this more in depth next time...

