CS4102 Algorithms

Nate Brunelle

Spring 201

Warm up

Given any 5 points on the unit square, show there's always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart

Today's Keywords

- Karatsuba
- Guess and check Method
- Induction

CLRS Readings

Chapter 4

Homeworks

- Hw1 due 11pm Friday, February 2
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer

Karatsuba T(n) = 8n

 $\log_2 n$

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Karatsuba

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$T(n) = 8n \frac{(^{3}/_{2})^{\log_{2} n+1} - 1}{^{3}/_{2} - 1}$$

Math, math, and more math...(on board, see lecture supplemental)

$$T(n) = 24(n^{\log_2 3}) - 16n = \Theta(n^{\log_2 3})$$

 $\approx \Theta(n^{1.585})$

Recurrence Solving Techniques

"Cookbook"

Substitution

Induction (review)

Goal: $\forall k, P(k)$ holds

Base cases: P(1) holds

Hypothesis: $\forall n \leq n_0, P(n) \text{ holds}$

Inductive step: $P(n_0) \Rightarrow P(n_0 + 1)$

Guess and Check Intuition

- To Prove: T(n) = O(g(n))
- Consider: $g_*(n) = O(g(n))$
- Goal: show $\exists n_0$ s.t. $\forall n > n_0$, $T(n) < g_*(n)$
- Technique: Induction
 - Base cases:
 - show $T(1) < g_*(1), T(2) < g_*(2), ...$ for a small number of cases
 - Hypothesis:
 - $\forall n \leq n_0, T(n) < g_*(n)$
 - Inductive step:
 - $T(n_0 + 1) < g_*(n_0 + 1)$

Karatsuba Guess and Check (Loose)

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Goal:
$$T(n) < 3000 n^{1.6} = O(n^{1.6})$$

Base cases:
$$T(1) = 8 < 3000$$

$$T(2) = 3(8) + 16 = 40 < 3000 \cdot 2^{1.6}$$

... up to some small k

Hypothesis:
$$\forall n < n_0 \ T(n) < 3000 n^{1.6}$$

Inductive step:
$$T(n_0 + 1) < 3000(n_0 + 1)^{1.6}$$

Mergesort Guess and Check

$$T(n) = 2T(\frac{n}{2}) + n$$

Goal:
$$T(n) < 2n \log n = O(n \log n)$$

Base cases:
$$T(1) = 0$$

$$T(2) = 2 < 4 \log 2$$

... up to some small k

Hypothesis:
$$\forall n < n_0 \ T(n) < n \log n$$

Inductive step:
$$T(n_0 + 1) < 2(n_0 + 1) \log(n_0 + 1)$$

Karatsuba Guess and Check

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
Goal:
$$T(n) < n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis: $\forall n < n_0 \ T(n) < n^{\log_2 3} - 16n$

Inductive step: $T(n_0 + 1) < (n_0 + 1)^{\log_2 3} - 16(n_0 + 1)$

What if we leave out the -16n?

Goal:
$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
$$T(n) < n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:
$$\forall n < n_0 \ T(n) < n^{\log_2 3} - 16n$$

Inductive step:
$$T(n_0 + 1) < (n_0 + 1)^{\log_2 3} - 16(n_0 + 1)$$

What we wanted: $T(n_0+1) < (n_0+1)^{\log_2 3}$ Induction failed! What we got: $T(n_0+1) < (n_0+1)^{\log_2 3} + 8(n_0+1)$

Recurrence Solving Techniques

Guess/Check

"Cookbook"

Substitution

Observation

- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$-T(n) = D(n) + \sum T(s) + C(n)$$

Many D&C recurrences are of form:

$$-T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

General

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right)$$

3 Cases

Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

Proof of Case 1

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right),$$
$$f(n) = O\left(n^{\log_b a - \varepsilon}\right) \Rightarrow f(n) \le c \cdot n^{\log_b n - \varepsilon}$$

Insert math here...

Conclusion: $T(n) = O(n^{\log_b a})$

Master Theorem Example 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Case 2

$$\Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

Tree method

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Master Theorem Example 2

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Case 1

$$\Theta(n^{\log_2 4}) = \Theta(n^2)$$

Tree method

Master Theorem Example 3

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Case 1

$$\Theta(n^{\log_2 3}) \approx \Theta(n^{1.5})$$

Karatsuba

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Case 3

$$\Theta(n^3)$$

Tree method

Recurrence Solving Techniques

"Cookbook"

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example: $T(n) = 2T(\sqrt{n}) + \log_2 n$

Tree method

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example: $T(n) = 2T(\sqrt{n}) + \log_2 n$ Let $n = 2^m$, i.e. $m = \log_2 n$

$$T(2^m) = 2T(2^{\frac{m}{2}}) + m$$
 Rewrite in terms of exponent!

Let
$$S(m) = 2S\left(\frac{m}{2}\right) + m$$
 Case 2!

Let
$$S(m) = \Theta(m \log m)$$
 Substitute Back

Let
$$T(n) = \Theta(\log n \log \log n)$$