Конспект по дискретной математике II семестр

Коченюк Анатолий

10 февраля 2021 г.

Глава 1

Дискретная теория вероятностей

1.1 Введение

Определение 1 (Вероятностное пространство).

 Ω – элементарные исходы, неделимые дальше.

р – дискретная плотность вероятности.

$$p:\Omega\to[0,1]\quad \textstyle\sum_{q\in\Omega}p(\omega)=1$$

Замечание. В случае дискретного вероятностного пространства $|\Omega|$ – не более, чем счётное.

Пример (Честная монета). $\Omega = \{0,1\}$ $p(0) = p(1) = \frac{1}{2}$

Пример (Нечестная монета). $\Omega = \{0,1\}$ p(1) = p, p(0) = q — различные числа. p+q=1

Ещё одно название – распределение Бернулли

Пример (Честная игральная кость). $\Omega = \{1, 2, 3, 4, 5, 6\}$ $p(\omega) = \frac{1}{6}$

Определение 2. Событие, случайное событие – $A\subseteq \Omega$

Замечание. Неправильное определение – то, что может произойти, а может не произойти.

Замечание. Для недискретного случая неверно, что <u>любое</u> подмножество Ω это событие

Определение 3. Вероятность события $P(A) = \sum_{\omega \in A} p(\omega)$

p берёт элементарные исходы. P, \mathbb{P} – вероятность события

Пример. Событие
$$E=\{2,4,6\}$$
 $P(E)=p(2)+p(4)+p(6)=\frac{3}{6}=\frac{1}{2}$ $O=\{1,3,5\}$

Замечание. Не существует вероятностного пространства с бесконечным числом равновероятных исходов

$$p(\omega) = 0$$
 $\sum = 0$

$$p(\omega) = a > 0$$
 $\sum = a \cdot (+\infty) = +\infty$

Пример. Событие $B(IG) = \{4, 5, 6\}$ $P(B) = \frac{1}{2}$

Определение 4 (Независимое событие). События A,B независимы, если $P(A\cap B)=P(A)\cdot P(B)$

Пример. $E \cap O = \emptyset$ $B \cap E = \{4,6\}$

$$P(E \cap O) = \emptyset \quad P(O) \cdot P(B) = \frac{1}{4} \neq 0$$

$$P(B) \cdot P(E) = \frac{1}{4} \neq \frac{1}{3} = P(B \cap E)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(\Omega)}$$

4 ГЛАВА 1. ДИСКРЕТНАЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Определение 5 (Условна вероятность). $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Замечание. Альтернативное определение независимости, не поддерживающее 0: $P(A \cap B) = A$

$$V = \{5, 6\}$$

$$P(V \cap E) = \frac{1}{6}$$

$$P(V) = \frac{1}{3}$$
 $P(E) = \frac{1}{2}$ $P(V) \cdot P(E) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} = P(V \cap E)$

Определение 6 (Произведение вероятностных пространств).

$$\Omega_1, p_1 \qquad \Omega_2, p_2$$

$$\Omega = \Omega_1 \times \Omega_2$$

$$p\left(\langle \omega_1, \omega_2 \rangle\right) = p_1\left(\omega_1\right) \cdot p_2(\omega_2)$$

Теорема 1. $\forall A_1 \subseteq \Omega_1$ и $\forall A_2 \subseteq \Omega_2$

$$A_1 imes \Omega_2$$
 и $\Omega_1 imes A_2$ – независимы

Доказательство. $P\left(A_1 \times \Omega_2 \cap \Omega_1 \cap A_2\right) = P\left(A_1 \times A_2\right) = \sum_{\substack{a \in A_1 \\ b \in A_2}} p\left(\langle a, b \rangle\right) =$

$$= \sum_{a \in A_1} \sum_{b \in A_2} p_1(a) \cdot p_2(b) = \sum_{a \in A_1} p_1(a) \left(\sum_{b \in A_2} p_2(b) \right) = P_1(A_1) \cdot P_2(A_2)$$

Определение 7. $A_1, A_2, ..., A_n$

- 1. Попарно независимые A_i и A_j независимы
- 2. Независимы в совокупности $\forall I\subseteq\{1,2,\ldots,n\}$ $P\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}P(A_i)$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$$

Пример. Кидаем две монеты $\Omega = \{00, 01, 10, 11\}$

 $A_1 = \{10,11\}$ $A_2 = \{01,11\}$ $A_3 = \{01,10\}$ – независимы попарно, но не в совокупности

Определение 8 (Формула полной вероятности). $\Omega=A_1\cup A_2\cup\ldots\cup A_n\quad i\neq j\implies A_i\cap A_j=\emptyset$

Совокупность таких А-шек называется полной системой событий.

Дано: вероятности $P(A_i)$ $P(B|A_i)$ Найти: P(B)

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

- формула полной вероятности

Найти: $P(A_i|B)$

 A_1 – болен, A_2 – здоров, B – положительный результат теста $P(A_2 | B)$

$$P(A_{j}|B) = \frac{P(A_{j} \cap B)}{P(B)} = \frac{P(B|A_{j}) \cdot P(A_{j})}{\sum_{i=1}^{n} P(B|A_{i}) \cdot P(A_{i})}$$

– формула Байеса

Рис. 1.1: В