

(17 Solved problems and 00 Home assignments)

Evaluation of Volume by double integrals:

Consider a surface z = f(x, y). (i)

Let the orthogonal projection on xy-plane of its portion S' be the area S given by $\phi(x,y)=0$. (ii)

Now (ii) represents a cylinder with generators parallel to z-axis and guiding curve given by (ii). Let V be the volume of this cylinder between S and S'.

Divide S into elementary rectangles of area $\delta x \delta y$ by drawing lines parallel to x and y-axes. With each of these rectangles as base, erect a prism having its length parallel to OZ.

... Volume of this **prism** between S and the given surface z = f(x, y) is $(z \delta x \delta y)$.

Hence, the **volume of the solid cylinder** on S as base, bounded by the given surface with generators parallel to the z-axis

$$V = \underset{\delta y \to 0}{\text{Lt}} \sum_{\delta x \to 0} \sum z \, \delta x \, \delta y = \iint z dx dy = \iint f(x, y) dx dy,$$

where the integration is carried over the area S.

Remarks: While using polar co-ordinates, divide S into elements of area $r \delta\theta \delta r$.

:. By replacing dxdy by $rd\theta dr$, we get the required volume = $\iint zrd\theta dr$.

Q.No.1.: Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.

Sol.: The required volume = $\iint z dx dy = \iint (4 - y) dx dy$,

where the integration is carried over the area of circle $x^2 + y^2 = 4$.

Let us suppose strip is parallel to x-axis, then to cover the whole circle, x varies from $-\sqrt{4-y^2}$ to $\sqrt{4-y^2}$ and y varies from -2 to 2.

$$\therefore \text{ Required volume} = \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} (4-y) dx dy = 2 \int_{-2}^{2} \left(\int_{0}^{\sqrt{4-y^2}} (4-y) dx \right) dy$$

$$=2\int_{-2}^{2} (4-y)[x]_{0}^{\sqrt{(4-y^{2})}} dy = 2\int_{-2}^{2} (4-y)\sqrt{(4-y^{2})} dy$$

$$=2\int_{-2}^{2} 4(4-y^2) dy - 2\int_{-2}^{2} y\sqrt{(4-y^2)} dy$$

$$= 8 \int_{-2}^{2} \sqrt{4 - y^2} dy - 0.$$
 The second term vanishes as the integrand is an odd function.

Put $y = 2\sin\theta$ so that $dy = 2\cos\theta d\theta$.

And as y varies from -2 to 2, θ varies $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.

$$\therefore \text{ Required volume } = 8 \int_{-\pi/2}^{\pi/2} 2\cos\theta.2\cos\theta d\theta = 32 \int_{-\pi/2}^{\pi/2} \cos^2\theta d\theta = 64 \int_{0}^{\pi/2} \cos^2\theta d\theta$$

$$=64\times\frac{1}{2}\times\frac{\pi}{2}=16\pi$$
. Cubic units. Ans.

Q.No.2.: Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0.

Sol.: The required volume $V = \iint z dx dy = \iint \frac{x^2 + y^2}{a} dx dy$,

over the circle $x^2 + y^2 = 2ay$.

To change cartesian co-ordinates (x, y) to polar co-ordinates (r, θ) , we have put $x = r\cos\theta$, $y = r\sin\theta$ and

$$\mathbf{J} = \frac{\partial(\mathbf{x}, \mathbf{y})}{\partial(\mathbf{r}, \boldsymbol{\theta})} = \begin{vmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{r}} & \frac{\partial \mathbf{x}}{\partial \boldsymbol{\theta}} \\ \frac{\partial \mathbf{y}}{\partial \mathbf{r}} & \frac{\partial \mathbf{y}}{\partial \boldsymbol{\theta}} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r.$$

Then $\iint\limits_{R_{xy}} f(x,y) dx dy = \iint\limits_{R_{r\theta}'} f(r\cos\theta, r\sin\theta) r \, dr \, d\theta \, .$

 $\therefore \text{ Paraboloid } x^2 + y^2 = az \Rightarrow z = \frac{r^2}{a} \text{ and the polar equation of the circle is } r = 2a\sin\theta.$

To cover the circle, r varies from 0 to $2a\sin\theta$ and θ varies from 0 to π .

$$\therefore \text{ Required volume } = \iint \frac{x^2 + y^2}{a} dx dy = \int_0^\pi \int_0^{2a \sin \theta} \frac{r^2}{a} dx dr = \frac{1}{a} \int_0^\pi \int_0^{2a \sin \theta} r^3 dr d\theta$$

$$= \frac{1}{a} \int_{0}^{\pi} \left(\left| \frac{r^4}{4} \right|_{0}^{2a \sin \theta} \right) d\theta = 4a^3 \int_{0}^{\pi} \sin^4 \theta d\theta = 4a^3 \cdot 2 \int_{0}^{\pi/2} \sin^4 \theta d\theta$$

$$=8a^3 \times \left(\frac{3\times1}{4\times2} \times \frac{\pi}{2}\right) = \frac{3\pi a^3}{2}$$
. Cubic units Ans.

Q.No.3.: Find the volume bounded by the xy-plane, the paraboloid $2z = x^2 + x^2$ the cylinder $x^2 + y^2 = 4$.

Sol.: Required volume is found by integrating $z = \frac{x^2 + y^2}{2}$ over $x^2 + y^2 = 4$.

i. e.
$$V = \iint z dx dy = \iint_{x^2 + y^2 \le 4} \frac{x^2 + y^2}{2} dx dy$$

To change cartesian co-ordinates (x, y) to polar co-ordinates (r, θ) , we have put $x = r\cos\theta$, $y = r\sin\theta$ and

$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r.$$

Then $\iint\limits_{R_{xy}} f(x,y) dxdy = \iint\limits_{R_{r\theta}'} f(r\cos\theta, r\sin\theta) r dr d\theta.$ Paraboloid $2z = x^2 + y^2 \Rightarrow z = \frac{x^2 + y^2}{2} = \frac{r^2}{2}$ and

Paraboloid
$$2z = x^2 + y^2 \Rightarrow z = \frac{x^2 + y^2}{2} = \frac{r^2}{2}$$
 and

cylinder
$$x^2 + y^2 = 4 \Rightarrow r^2 = 4$$
, $\therefore r = 2, -2$ (Rejected) $\therefore r = 2$

To cover full circle, r varies from 0 to 2 and θ varies from 0 to 2π

$$V = \int_{0}^{2\pi} \left(\int_{0}^{2} \frac{r^{2}}{2} r dr \right) d\theta \Rightarrow \frac{1}{2} \int_{0}^{2\pi} \left(\int_{0}^{2} r^{3} dr \right) d\theta = \frac{1}{2} \int_{0}^{2\pi} \left| \frac{r^{4}}{4} \right|_{0}^{2} d\theta = \frac{1}{2} \int_{0}^{2\pi} 4 d\theta$$

$$=2\int_{0}^{2\pi} d\theta = 2\times 2\pi = 4\pi$$
. Cubic units. Ans.

Q.No.4.: Find the volume enclosed by the cylinders $x^2 + y^2 = 2ax$ and $z^2 = 2ax$.

Sol.: The required volume =
$$2\iint z dx dy = 2\iint \sqrt{2ax} dx dy$$

To change cartesian co-ordinates (x, y) to polar co-ordinates (r, θ) ,

To change cartesian co-ordinates
$$(x, y)$$
 to polar co-ordinates (r, θ) , we have put $x = r\cos\theta$, $y = r\sin\theta$ and
$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r(\cos^2\theta + \sin^2\theta) = r$$
.

Then
$$\iint_{R_{xy}} f(x, y) dxdy = \iint_{R'_{r\theta}} f(r\cos\theta, r\sin\theta) r dr d\theta$$
.

Now $x^2 + y^2 = 2ax \Rightarrow r^2 = 2ar\cos\theta \Rightarrow r[r - 2a\cos\theta] = 0$.

Then
$$\iint_{R_{xy}} f(x, y) dxdy = \iint_{R'_{r\theta}} f(r\cos\theta, r\sin\theta) dr d\theta.$$

Now
$$x^2 + y^2 = 2ax \Rightarrow r^2 = 2ar \cos \theta \Rightarrow r[r - 2a \cos \theta] = 0$$
.

So r varies from 0 to $2a\cos\theta$ and θ varies from 0 to π .

∴ Required volume = 2
$$\iint \sqrt{2ax} dxdy = 2 \iint_{0}^{\pi} \int_{0}^{2a\cos\theta} \sqrt{2ar\cos\theta} rdrd\theta$$

$$=4\int_{0}^{\pi/2}\int_{0}^{(2a\cos\theta)}\sqrt{2a\cos\theta}r^{3/2}drd\theta =4\int_{0}^{\pi/2}\int_{0}^{2a\cos\theta}r^{3/2}dr d\theta$$

$$=4\int_{0}^{\pi/2} \sqrt{2 \arccos \theta} \left[\frac{r^{5/2}}{\frac{5}{2}} \right]_{0}^{2a\cos \theta} d\theta = 4\int_{0}^{\pi/2} \sqrt{2 \arccos \theta} \frac{2}{5} \left[(2a)^{5/2} \cos^{5/2} \theta \right] d\theta$$

$$= \frac{2^6}{5} a^3 \int_{0}^{\pi/2} \cos^3 \theta d\theta = \frac{64a^3}{5} \cdot \frac{2}{3 \times 1} = \frac{128}{15} a^3$$
. Cubic units. Ans.

Q.No.5.: Find the volume of the cylinder $x^2 + y^2 - 2ax = 0$, intercepted between the paraboloid $x^2 + y^2 = 2az$ and the xy-plane.

Sol.: The required volume
$$=\iint z dx dy = \iint \frac{x^2 + y^2}{2a} dx dy$$

To change cartesian co-ordinates (x, y) to polar co-ordinates (r, θ) ,

we have put $x = r\cos\theta$, $y = r\sin\theta$ and

$$J = \frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r(\cos^2\theta + \sin^2\theta) = r.$$

Then $\iint_{R_{xy}} f(x, y) dxdy = \iint_{R'_{r\theta}} f(r\cos\theta, r\sin\theta) r dr d\theta$.

Since
$$x^2 + y^2 = 2ax \Rightarrow r^2 = 2ar \cos \theta \Rightarrow r[r - 2a \cos \theta] = 0$$

To cover the circle r varies from 0 to $2a\cos\theta$ and θ varies from 0 to π .

$$\therefore \text{ Required volume } = \int_{0}^{\pi} \int_{0}^{2a\cos\theta} \frac{r^2}{2a} r \, dr d\theta = \frac{1}{2a} \int_{0}^{\pi} \left| \frac{r^4}{4} \right|_{0}^{2a\cos\theta} d\theta = \frac{1}{2a} \times \frac{16a^4 \pi}{4} \int_{0}^{\pi} \cos^4\theta d\theta$$

$$=2a^3\times2\int_0^{\pi/2}\cos^4\theta d\theta=4a^3\times\frac{3}{4\times2}\times\frac{\pi}{2}=\frac{3\pi a^3}{4}$$
. Cubic units. Ans.

Q.No.6.: Find the volume of the region bounded by $z = x^2 + y^2$, z = 0, x = -a, x = a, and y = -a, y = a.

Sol.: Required volume =
$$\iint z dx dy = \iint_{-a}^{a} \int_{-a}^{a} (x^2 + y^2) dx dy = \int_{-a}^{a} \left| x^2 y + \frac{y^3}{3} \right|_{-a}^{a} dx$$

$$= \int_{-a}^{a} \left(x^{2}a + \frac{a^{3}}{3} + x^{2}a + \frac{a^{3}}{3} \right) dx = 2 \int_{-a}^{a} \left(x^{2}a + \frac{a^{3}}{3} \right) dx$$

$$= 2\left|\frac{x^3}{3}a + \frac{a^3}{3}x\right|_{-a}^{a} = \frac{2}{3}\left(a^4 + a^4 + a^4 + a^4\right) = \frac{8}{3}a^4$$
. Cubic units. Ans.

Q.No.7. Find the volume V of a solid bounded by the spherical surface

$$x^{2} + y^{2} + z^{2} = 4a^{2}$$
 and the cylinder $x^{2} + y^{2} - 2ay = 0$.

Sol.:
$$V = \iint_{R} z dx dy$$
.

R is a region defined by $x^2 + y^2 - 2ay = 0$.

Putting
$$z = \sqrt{4a^2 - (x^2 + y^2)}$$

$$V = \iint\limits_{R} \sqrt{4a^2 - \left(x^2 + y^2\right)} dx dy.$$

Putting $x = r\cos\theta$, $y = r\sin\theta$.

$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = r$$

$$V = 2 \int\limits_{0}^{\pi} \int\limits_{0}^{2a \sin \theta} \sqrt{4 a^{2} - \left(r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta\right)} r dr d\theta = 4 \int\limits_{0}^{\pi/2} \int\limits_{0}^{2a \sin \theta} \sqrt{4 a^{2} - r^{2}} r dr d\theta$$

$$V = 2\int_{0}^{\pi} \int_{0}^{\pi} \sqrt{4a^{2} - (r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta)} r dr d\theta = 4\int_{0}^{\pi} \int_{0}^{\pi} \sqrt{4a^{2} - r^{2}} r dr d\theta$$
Putting $4a^{2} - r^{2} = t^{2} \Rightarrow -2r dr = 2t dt$

$$V = 4\int_{0}^{\pi/2} \int_{2a}^{2a\cos\theta} t(-t dt) d\theta = 4\int_{0}^{\pi/2} \left[\frac{-t^{3}}{3} \right]_{2a}^{2a\cos\theta} d\theta = 4\int_{0}^{\pi/2} \frac{(2a)^{3}}{3} \left[1 - \cos^{3}\theta \right] d\theta$$

$$= 4 \times \frac{8a^{3}}{3} \int_{0}^{\pi/2} d\theta - 4 \times \frac{8a^{3}}{3} \int_{0}^{\pi/2} \cos^{2}\theta \cdot \cos\theta d\theta = 4\left[\frac{8a^{3}}{3} \left(\frac{\pi}{2} \right) - \frac{8a^{3}}{3} \int_{0}^{\pi/2} \left[1 - \sin^{2}\theta \right] \cos\theta d\theta \right]$$

$$= 4 \times \frac{8a^3}{3} \int_{0}^{\pi/2} d\theta - 4 \times \frac{8a^3}{3} \int_{0}^{\pi/2} \cos^2\theta \cdot \cos\theta d\theta = 4 \left[\frac{8a^3}{3} \left(\frac{\pi}{2} \right) - \frac{8a^3}{3} \int_{0}^{\pi/2} \left[1 - \sin^2\theta \right] \cos\theta d\theta \right]$$

$$= 4 \left[\frac{8a^3}{3} \cdot \frac{\pi}{2} - \frac{8a^3}{3} \int_{0}^{\pi/2} \cos\theta d\theta + \frac{8a^3}{3} \int_{0}^{\pi/2} \sin^2\theta \cos\theta d\theta \right]$$

$$=4\left[\frac{8a^{3}}{3}\cdot\frac{\pi}{2}-\frac{8a^{3}}{3}+\frac{8a^{3}}{3}\left[\frac{\sin^{3}\theta}{3}\right]_{0}^{\pi/2}\right]=4\times\frac{8a^{3}}{3}\left[\frac{\pi}{2}-1+\frac{1}{3}\right]$$

$$=4 \times \frac{8a^3}{3} \left[\frac{\pi}{2} - \frac{2}{3} \right] = \frac{16a^3}{3} \left[\frac{4}{3} \right]$$
. Ans.

Q.No.8.: Find, by double integration, the volume of the ellipsoid $\frac{x^2}{z^2} + \frac{y^2}{z^2} + \frac{z^2}{z^2} = 1$.

Sol.: The volume of the required ellipsoid is equal to 8 times the volume of ellipsoid in any one octant (say XOY).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \Rightarrow z = c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$$

For plane XOY:
$$z = 0$$
, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \implies y = b\sqrt{1 - \frac{x^2}{a^2}}$.

Required volume =
$$8 \int_{0}^{a} y dx \int_{0}^{b\sqrt{1-x^{\frac{2}{a^{2}}}}} z dy dx = 8 \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{x^{2}}}} c\sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} dy dx$$

Putting
$$\sqrt{1-\frac{x^2}{a^2}} = t$$

$$V = 8 \int_{0}^{a} \left(\int_{0}^{bt} c \sqrt{t^{2} - \frac{y^{2}}{b^{2}}} dy \right) dx = 8 \int_{0}^{a} \left(\int_{0}^{bt} \frac{c}{b} \sqrt{(bt)^{2} - y^{2}} dy \right) dx$$

$$= \frac{8c}{b} \left[\frac{y}{2} \sqrt{(bt)^2 - y^2} + \frac{(bt)^2}{2} \sin^{-1} \frac{y}{bt} \right]_0^{bt} dx = \frac{8c}{b} \int_0^a \left[\frac{(bt)^2}{2} \times \frac{\pi}{2} \right] dx = \frac{dc}{b} \times \frac{b^2}{2} \times \frac{\pi}{2} \int_0^a t^2 dx$$

$$= \frac{8bc}{4} \times \pi \int_{0}^{a} \left(1 - \frac{x^{2}}{a^{2}} \right) dx = 2\pi bc \int_{0}^{a} dx - \frac{2\pi bc}{a^{2}} \int_{0}^{a} x^{2} dx = 2\pi bc \left[x \right]_{0}^{a} - \frac{2\pi bc}{a^{2}} \left[\frac{x^{3}}{3} \right]_{0}^{a}$$

$$=2\pi abc - \frac{2\pi abc}{3} = \frac{4}{3}\pi abc$$
 Cubic units.

Q.No.9.: Find, by double integration, the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Sol.: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ is the given equation of tetrahedron.

$$\Rightarrow z = c \left(1 - \frac{x}{a} - \frac{y}{b} \right)$$

For plane XOY:
$$z = 0$$
, $\frac{x}{a} + \frac{y}{b} = 1$

Volume =
$$\int_{0}^{a} \int_{0}^{b(1-\frac{x}{a})} z dy dx = \int_{0}^{a} \left(\int_{0}^{b\left(1-\frac{x}{a}\right)} c\left(1-\frac{x}{a}-\frac{y}{b}\right) dy \right) dx$$

$$= \int_{0}^{a} \left[c \left(b - \frac{xb}{a} \right) - \frac{cx}{a} \left(b - \frac{xb}{a} \right) - \frac{c}{2b} b^{2} \left(1 - \frac{x}{a} \right)^{2} \right] dx$$

$$=bc\big[x\big]_0^b-\frac{bc}{2a}\Big[x^2\Big]_0^a-\frac{bc}{2a}\Big[x^2\Big]_0^a+\frac{bc}{3a^2}\Big[x^3\Big]_0^a+\left[-\left(\frac{bc}{2}\big[x\big]_0^a-\frac{bc}{2\times3a^2}\Big[x^3\Big]_0^a-\frac{bc}{2a}\Big[x^2\Big]_0^a\right)\right]$$

$$= abc - \frac{abc}{2} - \frac{abc}{2} + \frac{abc}{3} \mp \left(\frac{abc}{2} + \frac{abc}{2 \times 3} - \frac{abc}{2}\right)$$

$$= abc - \frac{abc}{2} - \frac{abc}{2} + \frac{abc}{3} - \frac{abc}{2} - \frac{abc}{2 \times 3} + \frac{abc}{2}$$

$$= abc - \frac{abc}{2} - \frac{abc}{2} + \frac{abc}{3} - \frac{abc}{2} - \frac{abc}{6} + \frac{abc}{2} = \frac{abc}{6}.$$
 Cubic units.

Sol.:
$$z = \sqrt{a^2 - x^2}$$
, $y = \sqrt{a^2 - x^2}$

Q.No.10.: Find the volume common to the cylinders
$$x^2 + y^2 = a^2$$
 and $x^2 + z^2 = a^2$.

Sol.: $z = \sqrt{a^2 - x^2}$, $y = \sqrt{a^2 - x^2}$.

Required volume $= 8 \iint z dy dx = 8 \iint_0^a \int_0^{\sqrt{a^2 - x^2}} \sqrt{a^2 - x^2} dx dy$

$$=8\int_{0}^{a} \sqrt{a^{2}-x^{2}} \left[y\right]_{a}^{\sqrt{a^{2}-x^{2}}} dx = 8\int_{0}^{a} \left(a^{2}-x^{2}\right) dx = 8a^{2} \left[x\right]_{0}^{a} - \frac{8}{3} \left[x^{3}\right]_{0}^{a}$$

$$=8a^3 - \frac{8a^3}{3} = \frac{16}{3}a^3$$
. Cubic units

Q.No.11.: Find, by double integration, the volume common to the sphere

$$x^{2} + y^{2} + z^{2} = a^{2}$$
 and the cylinder $x^{2} + y^{2} = ay$.

Sol.: The required volume is the part of the sphere $x^2 + y^2 + z^2 = a^2$ lying within the cylinder $z = a^2 - y^2 - x^2$. On the account of symmetry of the sphere, half of it lies above the plane XOY and half below it.

 $\therefore \text{ Required volume } = 2 \int \int z dy dx,$

where $z = \sqrt{(a^2 - y^2 - x^2)}$, and the region of integration is the area inside the circle

On the account of symmetry, the volume above the two parts of circle $x^2 + y^2 = ay$ in the first and the second quadrants are equal.

Total volume required = $2 \times 2 \int \int_{R} \sqrt{(a^2 - y^2 - x^2)} dy dx$

where R is half of the circle $x^2 + y^2 = ay$ lying in the first quadrant.

Changing to polar coordinates by putting $x = r \cos \theta$, $y = r \sin \theta$ so that $x^2 + y^2 = r^2$.

Equation of the circle $x^2 + y^2 = ay$ becomes

$$r^2 = ar \sin \theta \Rightarrow r = a \sin \theta$$

Thus the region of integration is bounded by r = 0, $r = a \sin \theta$ and $\theta = 0$, $\theta = \frac{\pi}{2}$.

∴ Required volume
$$V = 4 \int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \sqrt{a^2 - r^2} r dr d\theta$$

$$\therefore \text{ Required volume } V = 4 \int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \sqrt{a^2 - r^2} r \, dr d\theta$$

$$\text{Now put } a^2 - r^2 = t^2 \Rightarrow r dr = -t$$

$$V = 4 \int_{0}^{\pi/2} \int_{a}^{a \cos \theta} t^{2/2} (-t) dt d\theta = 4 \int_{0}^{\pi/2} \int_{a}^{a \cos \theta} t^2 dt d\theta = -\frac{4}{3} \int_{0}^{\pi/2} \left[t^3 \right]_{a}^{a \cos \theta} d\theta$$

$$= -\frac{4}{3} \int_{0}^{\pi/2} \left(a^3 \cos^3 \theta - a^3 \right) d\theta = -\frac{4}{3} \left[a^3 \times \frac{2.1}{3.1} - a^3 \times \frac{\pi}{2} \right] = \frac{2}{9} a^3 \left[3\pi - 4 \right]. \text{ Cubic units}$$

$$\mathbf{Q.No.12.: Find, by double integration, the volume common to the sphere}$$

Q.No.12.: Find, by double integration, the volume common to the sphere

$$x^2 + y^2 + z^2 = a^2$$
 and the cylinder $x^2 + y^2 = ax$.

Sol.: The required volume is the part of the sphere $x^2 + y^2 + z^2 = a^2$ lying within the cylinder $z = a^2 - y^2 - x^2$. On the account of symmetry of the sphere, half of it lies above the plane XOY and half below it.

 \therefore Required volume = $2 \int \int z dy dx$,

where $z = \sqrt{(a^2 - y^2 + x^2)}$, and the region of integration is the area inside the circle $x^2 + y^2 = ax.$

On the account of symmetry, the volume above the two parts of circle $x^2 + y^2 = ay$ in the first and the second quadrants are equal.

Total volume required = $2 \times 2 \int \int_{R} \sqrt{(a^2 - y^2 - x^2)} dy dx$

where R is half of the circle $x^2 + y^2 = ax$ lying in the first quadrant.

Changing to polar coordinates by putting $x = r \cos \theta$, $y = r \sin \theta$ so that $x^2 + y^2 = r^2$.

Equation of the circle $x^2 + y^2 = ax$ becomes

$$r^2 = ar \cos \theta \Rightarrow r = a \cos \theta$$

Thus the region of integration is bounded by $r = 0, r = a \cos \theta$ and $\theta = 0, \theta = \frac{\pi}{2}$.

∴ Required volume
$$V = 4 \int_{0}^{\pi/2} \int_{0}^{a\cos\theta} \sqrt{a^2 - r^2} r dr d\theta$$

$$V = \frac{4}{-2} \int_{0}^{\pi/2} \int_{a}^{a\cos\theta} \sqrt{a^2 - r^2} (-2r) dr d\theta = -2 \int_{0}^{\pi/2} \left[\frac{\left(a^2 - r^2\right)}{3/2} \right]_{a}^{a\cos\theta} d\theta$$

$$= -\frac{4}{3} \int_{0}^{\pi/2} \left(a^3 \sin^3 \theta - a^3 \right) d\theta = -\frac{4}{3} \left[a^3 \times \frac{2.1}{3.1} - a^3 \times \frac{\pi}{2} \right] = \frac{2}{9} a^3 [3\pi - 4]. \text{ Cubic units}$$

Q.No.13.: Find, by double integration, the volume bounded by the cylinder $x^2 + y^2 = 4$

Sol.:
$$z = \sqrt{x^2 + y^2 - 1}$$
, $y = \sqrt{4 - x^2}$

and the hyperboloid
$$x^2 + y^2 - z^2 = 1$$
.
Sol.: $z = \sqrt{x^2 + y^2 - 1}$, $y = \sqrt{4 - x^2}$
Volume $= 2\int_{R} z dy dx = 2\int_{0}^{2} \int_{0}^{\sqrt{4 - x^2}} \sqrt{x^2 + y^2 - 1} dy dx$
Putting $r \cos \theta = x$, $r \sin \theta = y$ and $|J| = r$

$$x^2 + y^2 = r^2$$

Also
$$x^2 + y^2 = 4 \Rightarrow r^2 = 4 \Rightarrow r = 2$$
.

$$V = 2 \int_{0}^{2\pi} \int_{1}^{2} \sqrt{r^2 - 1} r dr d\theta.$$

Putting $r^2 - 1 = t^2 \Rightarrow 2rdr = 2tdt$.

$$V = 2 \int\limits_{0}^{2\pi} \int\limits_{0}^{\sqrt{3}} t^2 dt d\theta \Rightarrow \int\limits_{0}^{\pi} \left[\frac{t^3}{3} \right]_{0}^{\sqrt{3}} d\theta = 2 \int\limits_{0}^{2\pi} \sqrt{3} d\theta = 4 \sqrt{3} \pi \text{. Cubic units.}$$

Q.No.14.: Find, by double integration, the volume under the plane z = x + y and above the area cut from the first quadrant by the ellipse $4x^2 + 9y^2 = 36$.

Sol.: Given
$$z = x + y$$
, $4x^2 + 9y^2 = 36$.

Required volume
$$=\int \int_{R} z dy dx = \int_{0}^{3} \left[\sqrt{\frac{36-4x^{2}}{9}} (x+y) dy \right] dx$$

$$= \int_{0}^{3} \left[x \frac{\sqrt{36-4x^{2}}}{3} + \frac{1}{2} \frac{(36-4x^{2})}{9} \right] dx = \frac{1}{3} \int_{0}^{3} x \sqrt{36-4x^{2}} dx + \frac{1}{18} \int_{0}^{3} (36-4x^{2}) dx$$
If III

For I, putting $36-4x^{2}=t^{2}$, $-8xdx=2tdt \Rightarrow xdx=-\frac{t}{4}dt$

$$V = -\frac{1}{3} \int_{6}^{0} \frac{t^{2}}{4} dt + 2 \left[x \right]_{0}^{3} - \frac{4}{18} \times \frac{1}{3} \left[x^{3} \right]_{0}^{3} = \frac{1}{3} \int_{0}^{6} \frac{t^{2}}{4} dt + 6 - \frac{4}{18} \times \frac{1}{3} [27]$$

$$= \frac{1}{12} \times \frac{1}{3} \times 6 \times 6 \times 6 + 6 - \frac{4}{18} \times \frac{1}{3} \times 3 \times 3 \times 3 = 6 + 6 - 2 = 10.$$
 Cubic units

Q.No.15.: Find, by double integration, the volume bounded by the plane $z = 0$, surface $z = x^{2} + y^{2} + 2$ and the cylinder $x^{2} + y^{2} = 4$

Sol.: Given $z = x^{2} + y^{2} + 2$, $x^{2} + y^{2} = 4$

Q.No.15.: Find, by double integration, the volume bounded by the plane z = 0, surface

Sol.: Given
$$z = x^2 + y^2 + 2$$
, $x^2 + y^2 = 4$

Volume of required region = $4 \int_{R}^{\infty} z dy dx$

$$V = 4 \int_{0}^{2} \left[\int_{0}^{\sqrt{4-x^{2}}} \left[x^{2} + y^{2} + 2 \right] dy \right] dx = 4 \int_{0}^{2} \left[x^{2} \left[y \right]_{0}^{\sqrt{4-x^{2}}} + \frac{1}{3} \left[y^{3} \right]_{0}^{\sqrt{4-x^{2}}} + 2 \left[y \right]_{0}^{\sqrt{4-x^{2}}} \right] dx$$

$$= 4 \int_{0}^{2} \left[x^{2} \sqrt{4-x^{2}} + \frac{1}{3} (4-x^{2})^{3/2} + 2\sqrt{4-x^{2}} \right] dx$$

$$I \qquad III \qquad III$$

Putting $x = 2\sin\theta$, $dx = 2\cos\theta d\theta$

$$= 4 \int_{0}^{\pi/2} 4 \sin^{2}\theta \sqrt{4 - 4 \sin^{2}\theta} 2 \cos d\theta + \frac{4}{3} \int_{0}^{\pi/2} (4 - 4 \sin^{2}\theta)^{3/2} 2 \cos \theta + 2 \times 4 \int_{0}^{2} \sqrt{4 - x^{2}}$$

$$= 4 \int_{0}^{\pi/2} 16 \sin^{2}\theta \cos^{2}\theta d\theta + \frac{4}{3} \int_{0}^{\pi/2} 8 \cos^{3}\theta . 2 \cos \theta d\theta + 8 \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]$$

$$= 64 \int_{0}^{\pi/2} \sin^{2}\theta \cos^{2}\theta d\theta + \frac{32}{3} \times 2 \int_{0}^{\pi/2} \cos^{4}\theta + 8 \left[2 \times \frac{\pi}{2} \right]$$

$$=64\times\frac{1.1}{4.2}\times\frac{\pi}{2}+\frac{64}{3}\times\frac{3.1}{4.2}\times\frac{\pi}{2}+8\pi=4\pi+4\pi+8\pi=16\pi$$
. Cubic units

Q.No.16.: Find, by double integration, the volume bounded by the cylinder $x^2 + y^2 = 1$ and the plane x+y+z=3.

Sol.: Given $x + y + z = 3 \Rightarrow z = 3 - x - y$

$$x^2 - y^2 = 1 \Rightarrow y = \sqrt{1 - x^2}$$

Volume =
$$4 \iint_{R} z dy dx = 4 \int_{0}^{1} \int_{0}^{R/\sqrt{1-x^{2}}} 3 - x - y dy dx$$

$$=4\int_{0}^{1} 3[y]_{0}^{\sqrt{1-x^{2}}} - x[y]_{0}^{\sqrt{1-x^{2}}} - \frac{1}{2}[y^{2}]_{0}^{\sqrt{1-x^{2}}} dx = 4\int_{0}^{1} 3\sqrt{1-x^{2}} - x\sqrt{1-x^{2}} - \frac{1}{2}(1-x^{2})dx$$
For II $1-x^{2}=t^{2} \Rightarrow -2xdx = 2tdt \Rightarrow xdx = 4dt$

For II, $1 - x^2 = t^2 \Rightarrow -2xdx = 2tdt \Rightarrow xdx = -tdt$

$$V = 4.3 \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x \right]_0^1 - 4 \int_0^0 t^2 dt - \frac{4}{2} \left[x - \frac{1}{3} x^3 \right]_0^1$$

$$=4.3\left[\frac{1}{2}\times\frac{\pi}{2}\right]+4\left[\frac{t^3}{3}\right]^0-\frac{4}{2}\left[1-\frac{1}{3}\right]=4.3\times\frac{\pi}{4}-\frac{4}{3}-\frac{4}{3}=4.\frac{3\pi}{4}-\frac{2.4}{3}=3\pi-\frac{8}{3}$$
 Cubic units

Q.No.17.: A rectangular prism is formed by the planes whose equations are ay = bx, y = 0and x = a. Find, by double integration, the volume of this prism between the plane z = 0 and the surface z = c + xy.

Sol.: Volume =
$$4 \iint_{R} z dy dx$$

$$V = \int_{0}^{a} \int_{0}^{\frac{b}{a}x} (c + xy) dy dx = \int_{0}^{a} \left(c[y]_{0}^{\frac{bx}{a}} + \frac{x}{2} [y^{2}]_{0}^{\frac{bx}{a}} \right) dx = \int_{0}^{a} \left(\frac{bcx}{a} + \frac{b^{2}x^{3}}{2a^{2}} \right) dx$$

$$= \frac{bc}{a} \times \frac{1}{2} \left[x^{2} \right]_{0}^{a} + \frac{b^{2}}{2a^{2}} \times \frac{1}{4} \left[x^{4} \right]_{0}^{a} = \frac{bc}{2a} \times a^{2} + \frac{b^{2}}{8a^{2}} \times a^{4}$$

$$=\frac{abc}{2} + \frac{a^2b^2}{8} = \frac{ab}{8}(4c + ab)$$
. Cubic units

Q.No.18.: Find, by double integration, the volume of the sphere $x^2 + y^2 + z^2 = 9$.

Sol.: Required volume will be equal to 8 times the volume of XOY, z = 0

$$z = \sqrt{9 - x^2 - y^2}$$

Volume =
$$8 \int_{R}^{3} \int_{R}^{\sqrt{9-x^2}} \sqrt{9-x^2-y^2} \, dy dx$$

Put $x = r \cos \theta$, $y = r \sin \theta$ and |J| = r

$$x^2 + y^2 = r^2$$

Volume =
$$8 \int_{0}^{\pi/2} \int_{0}^{3} \sqrt{9 - r^2} r dr d\theta$$

Put
$$9 - r^2 = t^2 \Rightarrow -2rdr = 2tdt \Rightarrow rdr = -tdt$$

$$V = 8 \int_{0}^{\pi/2} \int_{3}^{0} -t^{2} dt d\theta = 8 \int_{0}^{\pi/2} \int_{0}^{3} t^{2} dt d\theta = \frac{8}{3} \int_{0}^{\pi/2} \left[t^{3}\right]_{0}^{3} d\theta = 8 \int_{0}^{\pi/2} \int_{0}^{3} t^{2} dt d\theta$$

$$= \frac{8}{3} \int_{0}^{\pi/2} \left[t^{3} \right]_{0}^{3} d\theta = \frac{8}{3} \times 3^{3} \times \frac{\pi}{2} = 36\pi$$
. Cubic units

*** *** *** ***

*** *** ***

Home Assignments