Measure Theory Axler Notes

Lance Remigio

August 14, 2025

Contents

1	Section 2A		
		Basics/Definitions	
	1.2	Good Properties of Outer Measure	
	1.3	Outer Measure of Closed Bounded Interval	
	1.4	Outer Measure is Not Additive	
2	Section 2B		
		Nonexistence of Extension of Length to All Subsets of \mathbb{R}	
		σ -Algebra	
	2.3	Borel Subsets of \mathbb{R}	
	2.4	Measurable Functions	
3	Section 2C		
	3.1	Definition of Measures	
	3.2	Properties of Measures	

1 Section 2A

1.1 Basics/Definitions

Definition (Length of Open Interval; $\ell(I)$). The length $\ell(I)$ of an open interval I is defined by

$$\ell(I) = \begin{cases} b-a & \text{if } I = (a,b) \text{ for some } a,b \in \mathbb{R} \text{ with } a < b \\ 0 & \text{if } I = \emptyset \\ \infty & \text{if } I = (-\infty,a) \text{ or } I = (a,\infty) \text{ for some } a \in \mathbb{R} \\ \infty & \text{if } I = (-\infty,\infty) \end{cases}$$

Definition (Outer Measure; |A|). The outer measure |A| of a set $A \subseteq \mathbb{R}$ is defined by

$$|A|=\inf\Big\{\sum_{k=1}^\infty\ell(I_k):I_1,I_2,\dots \text{ are open intervals such that }A\subset\bigcup_{k=1}^\infty I_k\Big\}.$$

1.2 Good Properties of Outer Measure

Proposition (Countable Sets Have Outer Measure 0). Every countable subset of \mathbb{R} has outer measure 0.

Proposition (Outer Measure Preserves Order). Suppose A and B are subsets of \mathbb{R} with $A \subset B$. Then $|A| \leq |B|$.

Proof.

Definition (Translation; t + A). If $t \in \mathbb{R}$ and $A \subset \mathbb{R}$, then the **translation** t + A is defined by $t + A = \{t + a : a \in A\}.$

Proposition (Outer Measure is Translation Invariant). Suppose $t \in \mathbb{R}$ and $A \subset \mathbb{R}$. Then |t + A| = |A|.

Proposition (Countable Subaddivity of Outer Measure). Suppose A_1, A_2, \ldots is a sequence of subsets of \mathbb{R} . Then

$$\Big|\bigcup_{k=1}^{\infty} A_k\Big| \le \sum_{k=1}^{\infty} |A_k|.$$

Proof.

Definition (Open Cover). Suppose $A \subseteq \mathbb{R}$.

- A collection $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ of open subsets of \mathbb{R} is called an **open cover** of A if A is contained in the union of all the sets in $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$.
- An open $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ of A is said to have a **finite subcover** if A is contained in the union of some finite list of sets in $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$.

Proposition (Heine-Borel Theorem). Every open cover of a closed bounded subset of \mathbb{R} has a finite subcover.

1.3 Outer Measure of Closed Bounded Interval

Proposition (Outer Measure of a Closed Interval). Suppose $a, b \in \mathbb{R}$, with a < b. Then |[a, b]| = b - a.

Proposition (Nontrivial Intervals are Uncountable). Every interval in \mathbb{R} that contains at least two distinct elements is uncountable.

1.4 Outer Measure is Not Additive

Proposition (Nonadditivity of Outer Measure). There exist disjoint subsets A and B of \mathbb{R} such that

$$|A \cup B| \neq |A| + |B|.$$

2 Section 2B

2.1 Nonexistence of Extension of Length to All Subsets of \mathbb{R}

Proposition (Nonexistence of Extension of Length to All Subsets of \mathbb{R}). There does not exist a function

 $2.2 \quad \sigma$ -Algebra $2 \quad SECTION \ 2B$

 μ with all the following properties:

- (a) μ is a function from the set of subsets of \mathbb{R} to $[0,\infty]$,
- (b) $\mu(I) = \ell(I)$ for every open interval I of \mathbb{R} ,
- (c) $\mu\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{\infty} \mu(A_{k})$ for every disjoint sequence A_{1}, A_{2}, \ldots of subsets of \mathbb{R} ,
- (d) $\mu(t+A) = \mu(A)$ for every $A \subseteq \mathbb{R}$ and every $t \in \mathbb{R}$.

2.2 σ -Algebra

Definition (σ -Algebra). Suppose X is a set and S is a set of subsets of X. Then S is called a σ -algebra on X if the following three conditions are satisfied:

- $\emptyset \in \mathcal{S}$;
- if $E \in S$, then $X \setminus E \in S$;
- if E_1, E_2, \ldots is a sequence of elements of S, then $\bigcup_{k=1}^{\infty} E_k \in S$.

Proposition (σ -algebras are Closed Under Countable Intersection). Suppose S is a σ -algebra on a set X. Then

- (a) $X \in \mathcal{S}$;
- (b) if $D, E \in \mathcal{S}$, then $D \cup E \in \mathcal{S}$ and $D \cap E \in \mathcal{S}$ and $D \setminus E \in \mathcal{S}$;
- (c) if E_1, E_2, \ldots is a sequence of elements of \mathcal{S} , then $\bigcap_{k=1}^{\infty} E_k \in \mathcal{S}$.

Definition (Measureable Space; Measurable Set). • A measurable space is an ordered pair (X, S) where X is a set and S is a σ -algebra on X.

• An element of S is called an S-measurable set, or just a measurable set if S is clear from the context.

2.3 Borel Subsets of \mathbb{R}

Proposition (Smallest σ -algebra containing a collection of subsets). Suppose X is a set and \mathcal{A} is a set of subsets of X. Then the intersection of all σ -algebra on X that contain \mathcal{A} is a σ -algebra on X.

Definition (Borel Set). The smallest σ -algebra on \mathbb{R} containing all open susbets of \mathbb{R} is called the collection of **Borel subsets of** \mathbb{R} . An element of this σ -algebra is called a **Borel set**.

Definition (Inverse Image; $f^{-1}(A)$). If $f: X \to Y$ is a function and $A \subset Y$, then the set $f^{-1}(A)$ is defined by

$$f^{-1}(A) = \{ x \in X : f(x) \in A \}.$$

Proposition (Algebra of Inverse Images). Suppose $f: X \to Y$ is a function. Then

- (a) $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ for every $A \subset Y$;
- (b) $f^{-1}(\bigcup_{A\in\mathcal{A}} A) = \bigcup_{A\in\mathcal{A}} f^{-1}(A)$ for every \mathcal{A} of subsets of Y;
- (c) $f^{-1}(\bigcup_{A\in\mathcal{A}}A)=\bigcap_{A\in\mathcal{A}}f^{-1}(A)$ for every \mathcal{A} of subsets of Y.

Proposition (Inverse Image of a Composition). Suppose $f: X \to Y$ and $g: Y \to W$ are functions. Then

$$(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A)) \ \forall A \subset W.$$

2.4 Measurable Functions

Proposition (Condition for Measurable Function). Suppose (X, \mathcal{S}) is a measurable space and $f: X \to \mathbb{R}$ is a function such that

$$f^{-1}((a,\infty)) \in \mathcal{S} \ \forall a \in \mathbb{R}.$$

Then f is an S-measurable function.

Definition (Borel Measurable Function). Suppose $X \subset \mathbb{R}$. A function $f: X \to \mathbb{R}$ is called **Borel measurable** if $f^{-1}(B)$ is a Borel set for every $B \subset \mathbb{R}$.

Proposition (Every Continuous Function is Borel Measurable). Every continuous real-valued function defined on a Borel subset of \mathbb{R} is a Borel measurable function.

Definition (Increasing Function). Suppose $X \subset \mathbb{R}$ and $f: X \to \mathbb{R}$ is a function.

- f is called **increasing** if $f(x) \le f(y)$ for all $x, y \in X$ with x < y.
- f is called **strictly increasing** if f(x) < f(y) for all $x, y \in X$ with x < y.

Proposition (Every Increasing Function is Borel Measurable). Every increasing function defined on a Borel subset of \mathbb{R} is a Borel measurable function.

Proposition (Composition of Measurable Functions). Suppose (X, \mathcal{S}) is a measurable space and $f: X \to \mathbb{R}$ is an \mathcal{S} -measurable function. Suppose g is a real-valued Borel measurable function defined on a subset of \mathbb{R} that includes the range of f. Then $g \circ f: X \to \mathbb{R}$ is an \mathcal{S} -measurable function.

Proposition (Algebraic Operations with Measurable Functions). Suppose (X, \mathcal{S}) is a measurable space and $f, g: X \to \mathbb{R}$ are \mathcal{S} -measurable. Then

- (a) f + g, f g, and fg are S-measurable functions;
- (b) if $g(x) \neq 0$ for all $x \in X$, then $\frac{f}{g}$ is an S-measurable function.

Proposition (Limit of S-measurable Functions). Suppose (X, S) is a measurable space and f_1, f_2, \ldots is a sequence of S-measurable functions from X to \mathbb{R} . Suppose $\lim_{k\to\infty} f_k(x)$ exists for each $x\in X$.

Define $f: X \to \mathbb{R}$ by

$$f(x) = \lim_{k \to \infty} f_k(x).$$

Then f is an S-measurable function.

Definition (Borel Subsets). A subset of $[-\infty, \infty]$ is called a **Borel set** if its intersection with \mathbb{R} is a Borel set.

Definition (Measurable Function). Suppose (X, \mathcal{S}) is a measurable space. A function $f: X \to [-\infty, \infty]$ is called \mathcal{S} -measurable if $f^{-1}(B) \in \mathcal{S}$ for every Borel set $B \subset [-\infty, \infty]$.

Proposition (Condition for Measurable Function). Suppose (X, \mathcal{S}) is a measurable space and $f: X \to [-\infty, \infty]$ is a function such that

$$f^{-1}((a,\infty]) \in \mathcal{S} \ \forall a \in \mathbb{R}.$$

Then f is an S-measurable function.

Proposition (Infimum and Supremum of a Sequence of S-measurable Functions). Suppose (X, S) is a measurable space and f_1, f_2, \ldots is a sequence of S-measurable functions from X to $[-\infty, \infty]$. Define $g, h: X \to [-\infty, \infty]$ by

$$g(x) = \inf_{k \in \mathbb{Z}^+} f_k(x)$$
 and $h(x) = \sup_{k \in \mathbb{Z}^+} f_k(x)$.

Then g and h are S-measurable functions.

3 Section 2C

- 3.1 Definition of Measures
- 3.2 Properties of Measures