02/01/22		Happy	new	year!		
1	E _θ (L	(e , s(x)))	=	∫ L(θ, δ(x))) tcx10) 9x	= R (0, 8(x))
	E _ω (Γ	(0, d) (x)) =	J L(0, d)) π(Θι×) δ	= ρ(π, d(x)
Ø	Midterm	1				
3	HW#2	solution :	w+100	cted		

† Hierarchical Bayes

• A hierarchical model is simply a special case of Bayesian model.

$$\underbrace{x \sim f(x \mid \underline{\theta})}_{\text{sampling model}}, \quad \underbrace{\underline{\theta} \sim \pi_1(\theta \mid \theta_1)}_{\text{stage 1 prior}}, \dots, \quad \underbrace{\underline{\theta}_n \sim \pi_{n+1}(\theta_n)}_{\text{stage } n+1 \text{ prior}}.$$

$$x \sim f(x \mid \theta), \theta \sim \pi(\theta),$$

for the prior

$$\pi(\theta) = \int_{\Theta_1 \times \ldots \times \Theta_n} \pi_1(\theta \mid \theta_1) \pi_2(\theta_1 \mid \theta_2) \ldots \pi_{n+1}(\theta_n) d\theta_1 \ldots d\theta_n.$$

** Most of time θ is of the primary interest, less interest for hyperparameters, $\theta_1, \ldots, \theta_n$.

•
$$f(x_1,...,x_p \mid \mu, x_s) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{1}{\pi} f(x_1 \mid \theta_1, \sigma_s) \cdot \pi^{\sigma}(\theta_1 \mid \mu, x_s) d\theta_1 \cdots d\theta_p$$

- · Unknown parameters:
 - () Random : θ,..., Θρ , μ, τ2
 - The specify their values.
- 1) joint posterror distr.

· T21 (M | Mo, KC2) Tez (22 (a, b)

$$=\frac{P}{\Pi}\frac{1}{\sqrt{2\pi r^2}}\exp\left(-\frac{(\kappa r-\theta r)^2}{2\sigma^2}\right)\cdot\frac{P}{\Pi}\frac{1}{\sqrt{2\pi r^2}}\exp\left(-\frac{(\theta r-\mu)^2}{2r^2}\right)$$

$$\times \frac{1}{\sqrt{2\pi \kappa^{2}}} \exp\left(-\frac{(\mu - \mu_{0})^{2}}{2\kappa \tau^{2}}\right) \cdot \left(\tau^{2}\right)^{-\alpha - 1} \exp\left(-\frac{\tau^{2}}{b}\right)$$

$$\underbrace{\text{ex1}} \qquad \pi \left(\text{ } \text{ } \text{ } \text{ } \text{ } \theta_{1}, \dots, \theta_{P}, \text{ } \text{ } \tau^{2}, \text{ } \textbf{ } \right) \quad } \quad \text{exp} \left(- \frac{P}{74} \frac{\left(\theta_{1} - \mu_{1}\right)^{2}}{2\mathcal{C}^{2}} - \frac{\left(\mu - \mu_{0}\right)^{2}}{2\mathcal{K}\mathcal{C}^{2}} \right)$$

$$\Rightarrow \quad \mu \mid \theta_1, \dots, \theta_p, \, \mathcal{C}^2, \, \times \quad \sim \quad \mathcal{V} \left(\left(\frac{p}{\mathcal{C}^2} + \frac{1}{K\mathcal{C}^2} \right)^{-1} \left(\frac{\xi \theta_i}{\mathcal{C}^2} + \frac{\mu \sigma}{K\mathcal{C}^2} \right) \right)$$

$$\left(\begin{array}{c} \frac{\mathcal{L}_2}{b} + \frac{\kappa \mathcal{L}_3}{1} \end{array}\right)_{-1}$$

 BJ Result 7, p180 Supposing all densities below exist and are nonzero, we have

$$\pi(\theta \mid \mathbf{x}) = \int_{\Theta_1 \times ... \times \Theta_n} \pi(\theta, \theta_1, ..., \theta_n \mid \mathbf{x}) d\theta_1 ... d\theta_n.$$

- ** Implication? Recall the posterior of θ is of main interest. Our strategy is
- ** Find the joint posterior of $\theta, \theta_1, \ldots, \theta_n$.
- ** Then integrate out $\theta_1, \ldots, \theta_n$ to obtain the marginal posterior of θ .
- ** Analytically impossible most of time, so numerically evaluate using posterior simulation.
- ** See CR Chapter 10 for more on Empirical Bayes and Hierarchical Bayes.

• A simple example of *Hierarchical Bayes* with two levels:

JB 4.5.2 (contd) Recall that we have $X_i \mid \theta_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2)$ with known σ^2 , i = 1, ..., p and $\theta_i \stackrel{iid}{\sim} N(\mu, \tau^2)$, where hyperparameters $(\mu, \tau^2) \in \Theta_2 = \mathbb{R} \times \mathbb{R}^+$ are unknown.

- ** Sampling model: $X_i \mid \theta_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2)$.
- ** The first-level prior: $\theta_i \stackrel{iid}{\sim} \pi(\theta) = N(\mu, \tau^2)$
- ** The second-level prior $\pi_2(\mu, \tau^2)$:

$$\pi_2(\mu, \tau^2) = \pi_{21}(\mu \mid \tau^2) \ \pi_{22}(\tau^2).$$

- $\star\star$ π_2 is called a *hyperprior*.
- ** The parameters of π_2 are called *hyperparameters*.

JB 4.5.2 (contd)

- Let $\pi_2(\mu, \tau^2) = N(\mu_0, \kappa \tau^2) IG(a_{\overline{\tau}}, b_{\tau})$. Now we need to specify values of μ_0 , κ , a_{τ} and b_{τ} .
- ** May use subjective beliefs to choose the values.

- ** "mean true ability" is near $\underline{100}$ with a "standard error" of ± 20
- ** "variance of true abilities", τ^2 is about 200 with "standard error" of \pm 100.

$$E(x_5) = \frac{p_5}{(0-1)^5} = 500$$

† Comments on Hierarchical Bayes

- A full Bayesian approach using hierarchical priors
- A hierarchical Bayesian model compares very favorably with empirical Bayes analysis in practical and theoretical senses.
- A hierarchical modeling of the prior information decomposes the prior distribution into several conditional levels of distributions.
- According to the Bayesian paradigm, uncertainty at any of these levels is incorporated into additional prior distributions.
- The hierarchical model improves the robustness of the resulting Bayes estimator: while still incorporating prior information, the estimators are also well performing from a frequentist point of view.

- † Conjugate Priors (Sec 3.3)
 - **Example 3.2.6** Let $x \sim N(\theta, 1)$. For Case 2, we considered the prior, $\theta \sim \text{Cauchy}(0, 1)$. In the case, $\pi(\theta \mid x)$ and m(x) are not easily calculable.
 - **Def 3.3.1:** A family \mathcal{F} of probability distributions on Θ is said to be *conjugate* (or closed under sampling) for a likelihood function $f(x \mid \theta)$ if, for every $\pi \in \mathcal{F}$, the posterior distribution $\pi(\theta \mid x)$ also belong to \mathcal{F} .
 - The main motivation for using conjugate priors is their tractability
 - Also, when limited prior input is available, they are easy to specify since only the determination of a few parameters are needed.

- † Examples: Conjugate Priors
- e.g1 Assume $x \mid \theta \sim N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \tau^2)$.

$$\Rightarrow \; \theta \mid \mathbf{x} \sim \mathsf{N} \left(\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2} \right)^{-1} \left(\frac{\mathbf{x}}{\sigma^2} + \frac{\mu}{\tau^2} \right), \left(\frac{1}{\sigma^2} + \frac{1}{\tau^2} \right)^{-1} \right).$$

- ** Normal priors are a conjugate family for normal sampling distributions.
- e.g2 Assume $X \mid \theta \sim \text{Bin}(n, \theta)$ and $\theta \sim \text{Be}(\alpha, \beta)$.

$$\Rightarrow \theta \mid x \sim \text{Be}(\alpha + x, \beta + n - x).$$

** Beta priors are a conjugate family for binomial sampling distributions.

- † Comments on conjugate priors
 - Sometimes called objective because the sampling model entirely determines the class of priors.
 - Can be a reasonable approximation to the true prior
 - Updating parameters provides an easy way of seeing the effect of prior and sample information
 - \Rightarrow easily calculate $\pi(\theta \mid x)$ (computationally convenient)
 - <u>However</u>, possibly limited modeling capacity since it is not justified for its proper fitting of the available prior information (so, sometimes resulting in unappealing conclusions)

- † Extension: The class of finite mixtures of natural conjugate priors (CR 3.4)
 - Recall: One disadvantage of conjugate priors limiting modeling capacity, but a big advantage – computational convenience.
 - One possible extension to overcome the disadvantage while keeping the advantage is using a mixture model.
 - Mixtures can be used as a basis to approximate any prior distribution.
 - **Example 3.4.1** When a coin is spun on its edge, instead of being thrown in the air, the proportion of *heads* is rarely close to 1/2, but is rather 1/3 and 2/3 because of irregularities in the edge that causes the game to favor one side or the other.

$$\int_{0}^{1} \pi_{2}(0) d0 = \int_{0}^{1} \frac{1}{2} \underbrace{Be(10, 20)}_{0} + \frac{1}{2} \underbrace{Be(20, 10)}_{0} d0$$

$$= \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$$

• **Example 3.4.1** (contd): When spinning, n times, a given coin on its edge, we observe the number of heads, $x \sim \text{Be}(n, p)$. The prior distribution on p is then likely to be bimodal.

Let's consider three different priors.

**
$$\pi_1$$
: Be(1,1)

** π_2 : a mixture prior distribution, $1/2$ Be(10,20) + $1/2$ Be(20,10)

** π_2 : a mixture prior distribution, $1/2$ Be(10,20) + $1/2$ Be(20,10)

** π_3 : previous experiments with the same coin have already hinted at a bias toward *head* and they lead to the following alternative, 0.5Be(10, 20) + 0.2Be(15, 15) + 0.3Be(20, 10).

9 ~ 0.5 Be(10,20) + 0.2 Be(15,15) + 0.3 Be(20,10)

$$\begin{cases} \delta = 1 & \Rightarrow & \theta \wedge \text{Be}(10, 20) \\ \delta = 2 & \Rightarrow & \theta \wedge \text{Be}(15, 15) \\ \delta = 3 & \Rightarrow & \theta \wedge \text{Be}(20, 10) \end{cases}$$

 \clubsuit Densities of Be(10, 20) (black), Be(15, 15) (red), and Be(20, 10) (green).

 \clubsuit The mixture w_1 Be(10, 20) + w_2 Be(15, 15) + w_3 Be(20, 10) with different weights.

• Example 3.4.1 (contd): Three prior distributions

gure 3.4.1. Three prior distributions for a spinning-coin experiment.

• **Example 3.4.1** (contd): Suppose x = 3 for n = 10 is observed.

The corresponding posterior distributions are

**
$$\pi_1$$
: Be(4,8) $= 3$, $= 3$

**
$$\pi_2$$
: 0.84Be(13, 27) + 0.16Be(23, 17)

**
$$\pi_3$$
: 0.77Be(13, 27) + 0.16Be(18, 22) + 0.07Be(23, 17).

3.4.2. Posterior distributions for the spinning model for 10 observations.

Be (&, B)

• **Example 3.4.1** (contd): Suppose $x = \underline{14}$ for $n = \underline{60}$ is observed.

The corresponding posterior distributions are

** π_1 : Be(15, 37)

** π_2 : 0.997Be(24, 56) + 0.003Be(34, 46)

** π_3 : 0.95Be(24, 56) + 0.047Be(29, 51) + 0.003Be(34, 46).

Figure 3.4.3. Posterior distributions for 50 observations.

- Use a mixture of priors and find the posterior distribution
 - $\star\star$ Consider the set of mixtures of N distributions,

$$\pi(\theta) = \sum_{i=1}^{N} w_i \pi(\theta \mid \mu_i),$$

where μ_i is hyperparameters.

** Then the posterior distribution is a mixture

$$\pi(\theta \mid x) = \sum_{i=1}^{N} w_i'(x) \pi(\theta \mid \mu_i, x),$$

with

$$w'_{i}(x) = \frac{w_{i}m(x \mid \mu_{i})}{m(x)} = \frac{w_{i}m(x \mid \mu_{i})}{\sum_{i=1}^{N} w_{i}m(x \mid \mu_{i})}.$$

- Finite mixtures of natural conjugate priors.
 - ** See **Lemma 3.4.2** for the case where the prior is the natural conjugate family of an exponential family.
 - $\star\star$ Mixture models approximate bimodal or more complicated subjective prior distributions (\Rightarrow flexibility); see Theorem 3.4.3.
 - ** Also, they preserve much of the calculational simplicity of natural conjugate priors.
 - In general, mixture models can be useful when the population of sampling units consists of a number of subpopulations within each of which a relatively simple model applies.

- Finite mixtures of natural conjugate priors (contd)
 - ** Possible extensions.
 - ** unknown number of mixture components (random N)
 - ** random mixture weights (random w_i).
 - e.g. $(w_1, \ldots, w_N) \mid N \sim \text{Dir}(\alpha_1, \ldots, \alpha_N)$.

- † Noninformative Prior Distributions (CR 3.5 & JB 3.3)
 - When no (or minimal) prior information is available, we may use noninformative prior distributions:
 - ** Priors which contain "no" information about θ (roughly favor no possible values of θ over others!)
 - ** A mathematical expression of the state of ignorance about a parameter in a statistical model
 - Noninformative priors cannot be expected to represent exactly total ignorance about the problem at hand. A choice of noninformative priors affects the posterior inference.
 - Noninformative priors: Laplace priors, invariant priors, Jeffreys priors, reference priors...

- † Laplace's Priors (uniform priors or flat priors)
 - The principles of insufficient reason: Assign the equiprobability to elementary events
 - When Θ is a finite set, consisting of n elements, the obvious noninformative prior is to give each element of Θ probability 1/n.

JB Sec 3.3.1 in testing between two simple hypotheses, the prior gives probability $\frac{1}{2}$ to each of the hypothesis.

• Improper priors: a prior probability distribution which has infinite mass (i.e., $\int_{\Theta} \pi(\theta) d\theta = \infty$)

JB Ex4, p82 Suppose the parameter of interest is a normal mean θ , so $\Theta = (-\infty, \infty)$. It seems reasonable that a natural noninformative prior gives equal weight to all possible values of θ , uniform density on \mathbb{R} . Thus, $\pi(\theta) = c > 0$. Since a choice of the value of c is not important, typical $\pi(\theta) = 1$.

- ** Observe π has infinite mass!
- ** The posterior distribution $\pi(\theta \mid x)$ can be given by Bayes formula when the pseudo marginal distribution $\int_{\Theta} f(x \mid \theta)\pi(\theta)d\theta < \infty$ for every x in the support of $f(x \mid \theta)$.
- ** Since $\pi(\theta \mid x)$ is proper, $\rho(\pi(\theta \mid x), a)$ is finite and so we can find a Bayes action! $\rho(\pi, a) \times$

$$\theta \in \mathbb{R}$$

$$\eta = e^{\theta} \in \mathbb{R}$$

$$\pi_{\eta}(\eta) = e \cdot \frac{1}{\eta}$$

$$\theta = \log \eta$$

- Invariance under Reparameterization
 - ** Consider a reparameterization $\eta = g(\theta)$, where $g(\cdot)$ is monotone over the domain of θ .
 - ****** Find the induced prior for η

$$\pi_{\eta}(\eta) = \pi_{\theta}(g^{-1}(\eta))|dg^{-1}(\eta)/d\theta|.$$

- ** A more intrinsic and more acceptable notion of noninformative priors should satisfy *invariance under reparameterization*.
- i.e., $\pi_{\eta}(\eta)$ is also a flat prior for η .

- JB Ex4, p82 (contd) Consider $\eta = \exp(\theta)$ by a one-to-one transformation.
 - ** It is reasonable to assume that $\pi^*(\eta)$ is also a noninformative prior for η .
 - ** We can find

$$\pi(\theta) = 1 \quad \Rightarrow \quad \pi^*(\eta) = \left| \frac{d}{d\eta} g^{-1}(\eta) \right| = \eta^{-1}.$$

Observe $\pi^*(\eta) = \eta^{-1}$ is not constant. \Rightarrow Not invariant under reparameterization.

** Do Ex 3.5.1 for more example.

† Invariant Priors

- priors invariant under transformation of x. Ex 3.5.2 (location parameter) and Ex 3.5.3 (scale parameter)
 - ** (intuition) Consider $x \sim N(\theta, \sigma^2)$, σ^2 fixed. Assume instead of observing x, we observe y = x + c with a constant $c \in \mathbb{R}$. Defining $\eta = \theta + c$, the problems of (x, θ) and (y, η) are identical so θ and η should have the same noninofrmative prior.
- For a location parameter θ , $\pi(\theta) = c$
- For a scale parameter σ , $\pi(\sigma) = c/\sigma$

- † Fisher Information (CB p338 or 203 Textbook §8.8)
 - (Def: Fisher Information in a Random Variable) Let X be a random variable whose distribution depends on a parameter θ that takes values in an open interval Θ of the real line. Let the pf or pdf of X be $f(x \mid \theta)$. Assume that the set of x such that $f(x \mid \theta) > 0$ is the same for all θ and that $\log(f(x \mid \theta))$ is twice differentiable as a function of θ . The Fisher information $I(\theta)$ in the random variable X is defined as

$$I(\theta) = \mathsf{E}_{\theta} \left[\left(\frac{\partial \log f(x \mid \theta)}{\partial \theta} \right)^2 \right].$$