Universidade Estadual de Campinas - Instituto de Computação (IC/Unicamp)

Disciplina Aprendizado de Máquina (MO444)

Professor: Jacques Wainer

Atividade 1, 26 de novembro de 2018

Aluno: Luiz Alberto Ferreira Gomes RA:007275

Questão 1: [0 points]

Faça o PCA dos dados (sem a última coluna). Se voce quiser que os dados transformados tenham 80% da variância original, quantas dimensões do PCA vc precisa manter?

Solução:

A Tabela 1 apresenta a saída parcial do comando summary(pca.output). A variável pca.output é a variável do script em R (ver Anexo I) que armazena o retorno da chamada da função prcomp que, por sua vez, calcula o PCA sobre os dados originais. Nessa tabela, a soma acumulada da variância (Cumulative Proportion) é maior do que 80% somente a partir do componente 13 (PCA13). Então, para se atingir a variância pedida no exercício serão necessárias 13 dimensões.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13
Standard deviation	7.1953	4.8073	3.5561	2.9219	2.8577	2.6019	2.3214	2.2474	1.8183	1.6883	1.6036	1.5417	1.4858
Proportion of Variance	0.3119	0.1392	0.0762	0.0514	0.0492	0.0408	0.0325	0.0304	0.0199	0.0172	0.0155	0.0143	0.0133
Cumulative Proportion	0.3119	0.4511	0.5273	0.5787	0.6279	0.6687	0.7012	0.7316	0.7515	0.7687	0.7842	0.7985	0.8118

Tabela 1: Saída do comando summary da linguagem R

Questão 2: [0 points]

Treine uma regressão logística no conjunto de treino dos dados originais e nos dados transformados. Qual a taxa de acerto no conjunto de teste nas 2 condições (sem e com PCA)?

Solução:

A taxa de acertos (ou acurácia) pode ser calculada a partir dos dados extraídos das tabelas de confusão, geradas pelo script em R (ver Anexo I), para as duas condições pedidas no exercício:

GLM com PCA:

		Prec	lição
		0	1
Real	0	TN = 73	FP = 52
	1	FN = 86	TP = 65

Tabela 2: Tabela de confusão.

Tabela 3: Tabela de confusão.

$$Acuracia = \frac{TN + TP}{TN + TP + FN + FP}$$

$$= \frac{115 + 61}{115 + 61 + 44 + 56}$$

$$= 0.6376$$
(1)
$$Acuracia = \frac{TN + TP}{TN + TP + FN + FP}$$

$$= \frac{73 + 65}{73 + 65 + 86 + 52}$$

$$= 0.5000$$

A taxa de acerto do GLM sem pca foi de **0.6376** (equação 1) e do GLM com pca foi **0.5000** (equação 2).

Universidade Estadual de Campinas - Instituto de Computação (IC/Unicamp)

Disciplina Aprendizado de Máquina (MO444)

Professor: Jacques Wainer

Atividade 1, 26 de novembro de 2018

Aluno: Luiz Alberto Ferreira Gomes RA:007275

Questão 3: [0 points]

Treine o LDA nos conjuntos de treino com e sem PCA e teste nos respectivos conjuntos de testes. Qual a acurácia nas 2 condições?

Solução: A taxa de acertos (ou acurácia) pode ser calculada a partir dos dados extraídos das tabelas de confusão, geradas pelo script em R (ver Anexo I), para as duas condições pedidas no exercício:

Tabela 4: Tabela de confusão.

Tabela 5: Tabela de confusão.

$$Acuracia = \frac{TN + TP}{TN + TP + FN + FP}$$

$$= \frac{127 + 69}{127 + 69 + 32 + 48}$$

$$= 0.7101$$
(3)

$$Acuracia = \frac{TN + TP}{TN + TP + FN + FP}$$

$$= \frac{73 + 65}{73 + 65 + 86 + 52}$$

$$= 0.5000$$
(4)

A taxa de acerto do LDA sem pca foi de 0.7101 (equação 3) e do LDA com pca foi 0.5000 (equação 4).

Questão 4: [0 points]

Qual a melhor combinação de classificador e PCA ou não?

Solução: A Figura 1, com as acurácias geradas pelo script em R (ver Anexo I), mostra que a melhor combinação de classificadores e PCA - responsável pela maior precisão - foi o LDA sem PCA.

Figura 1: Gráfico das acurácias dos classificadores.

Universidade Estadual de Campinas - Instituto de Computação (IC/Unicamp) Disciplina Aprendizado de Máquina (MO444)

Professor: Jacques Wainer Atividade 1, 26 de novembro de 2018 Aluno: Luiz Alberto Ferreira Gomes RA:007275

```
#
  Description:
#
         Atividade 1 da disciplina MO444
  Version: 1.0
#
#
  Author:
#
                 Luiz\ Alberto, gomes.luiz@gmail.com
#
#
  History:
#
    Sep 12th,
                 2016
                       atividade 1
                                      started
#
    Sep 13th,
                 2016
                       atividade 1
                                     updated
#
    Sep 14th,
                 2016
                       atividade 1
                                     updated
#
    Sep 17th,
                 2016
                        atividade 1
                                     conclued.
#
# To do:
#
# installs the required packages.
if (!require("MASS"))
  install.packages("MASS")
require (MASS)
# sets the working directory
setwd('/Workspace/doutorado/disciplinas/mo444b/atividades/1')
#_common_functions
CalculateAccuracy <- _function(confusion.matrix)_{
__#_Computes_the_accuracy_value_based_on_the_confusion_matrix
__#_Args:
__#__confusion.matrix:_the_confusion_matrix_with_the_values_of_predicting.
__#
__#_Returns:
__#__The_accuracy_value.
\_TN < -1 confusion matrix [1, 1]
\_FN < -1 confusion matrix [2, 1]
\_\_FP\_<-\_confusion.matrix[1,\_2]
\_\_TP\_<-\_confusion.matrix[2,\_2]
__accuracy <-_ (TP_+_TN) _ / _ (TN_+_FN_+_FP_+_TP)
__return(accuracy)
#
#_question_1
original.data_<-_read.csv(file ==_'./data/data1.csv', _header ==_TRUE, _sep ==_', ')
\#_the_original_data_minus_the_last_column.
pca.input \_ \_ < -\_original.data [\ , \_1:ncol(original.data) \_ - \_1]
```

```
Disciplina Aprendizado de Máquina (MO444)
Professor: Jacques Wainer
                                                      Aluno: Luiz Alberto Ferreira Gomes
Atividade 1, 26 de novembro de 2018
                                                                            RA:007275
  #_applies_the_pca_method_using_prcomp_function.
   pca.output <-_prcomp(pca.input, _scale. _=_T)
  #_prints_de_pca_output_for_analysis.
  summary (pca.output)
  #_generates_the_original_data_using_13_pca_components_(according_to_previous
  #_analysis).
   transformed.data <-- as.data.frame(pca.output$x[,:1:13] \%\%
   1:13 1:13
  \# \_restores \_the \_last \_to \_column \_to \_data \_transformed \_set.
   transformed.data$clase <-- original.data[, -167]
  #_question_2
  #_GLM_without_PCA
  #_defines_the_formula_for_all_classifiers.
   {\tt classifier.formula\_=\_clase\_\_f1\_+\_f2\_+\_f4\_+\_f5\_+\_f6\_+\_f7\_+\_f8\_+\_f9\_+\_f10\_+
   ____f11_+_f12_+_f13
  #_separates_the_data_set_in_train_and_test_data
   original.data.train <- original.data[1:200,]
   original.data.test <-_original.data[201:476,_]
  #_defines_preditive_column
   preditive.column_<-_original.data$clase[201:476]
  #_trains_the_glm_classifier.
  glm. fit ___<-_glm(classifier.formula,_data_=_original.data.train,
   ___binomial(link___"logit"))
  #_tests_predicties_with_data_test.
  glm.probs____<-_predict.glm(glm.fit,_original.data.test,_type_=_"response")
  glm.preditive = <-rep(0, row(original.data.test))
  glm. preditive [glm. probs. > 0.5] < -1
  #_prints_de_confusion_matrix
   print('Confusion_matrix_for_GLM_without_PCA')
   print(table(glm.preditive, preditive.column), auto = TRUE)
  # calculates an prints accuracy
   print('Accuracy_for_GLM_without_PCA')
   accuracy <- CalculateAccuracy(table(glm.preditive, preditive.column))
   print(accuracy)
```

Universidade Estadual de Campinas - Instituto de Computação (IC/Unicamp)

#

Universidade Estadual de Campinas - Instituto de Computação (IC/Unicamp) Disciplina Aprendizado de Máquina (MO444)

Professor: Jacques Wainer Atividade 1, 26 de novembro de 2018 Aluno: Luiz Alberto Ferreira Gomes RA:007275

```
# GLM with PCA
# reads train data from transformed data by pca.
transformed.data.train <- transformed.data[1:200, ]
\# trains the glm classifier.
glm. fit <- glm(classifier.formula, data = transformed.data.train,
      family = binomial(link = "logit"))
# tests predicties with data test.
glm.probs <- predict.glm(glm.fit , original.data.test , type = "response")</pre>
glm.preditive <- rep(0, nrow(original.data.test))</pre>
\mathbf{glm}. \, \mathbf{preditive} [\mathbf{glm}. \, \mathbf{probs} > 0.5] = 1
# prints de confusion matrix
print('Confusion_matrix_for_GLM_with_PCA')
print(table(glm.preditive, preditive.column), auto = TRUE)
# calculates an prints accuracy
print('Accuracy_for_GLM_with_PCA')
accuracy <- CalculateAccuracy(table(glm.preditive, preditive.column))
print(accuracy)
 question 3
# LDA without PCA
\# trains the lda classifier.
lda. fit <- lda (classifier. formula, data = original. data,
                subset = original.data.train$x)
# tests predicties with data test.
lda.preditive <- predict(lda.fit , original.data.test)</pre>
lda.class
                <- lda.preditive$class
# prints de confusion matrix
\verb|confusion.matrix| < - table(| da.class|, | preditive.column)|
print('Confusion_matrix_for_LDA_without_PCA')
print(confusion.matrix, auto = TRUE)
# calculates an prints accuracy
print('Accuracy_for_LDA_without_PCA')
accuracy <- CalculateAccuracy(confusion.matrix)</pre>
print(accuracy)
# LDA with PCA
```

Universidade Estadual de Campinas - Instituto de Computação (IC/Unicamp)
Disciplina Aprendizado de Máquina (MO444)
Professor: Jacques Wainer
Atividade 1, 26 de novembro de 2018
RA:007275