Лабораторная работа № 3

Динамические модели управления запасами. Задача с разрывами цен

Цель работы: приобретение практических навыков в составлении и реализации математических моделей управления оборотными средствами предприятия.

Задание 3.1

- 1. Определить оптимальную стратегию управления запасами и соответствующие дневные затраты, если известно, что дефицит не допускается, а время выполнения заказа от момента его размещения до реальной поставки равно τ дням.
- 2. Определить оптимальную стратегию управления запасами в предположении, что время выполнения заказа от момента его размещения до реальной поставки равно нулю.

 $\it 3adaчa~3.1.1.$ Заданы интенсивность спроса λ , фиксированная стоимость размещения заказа $\it K$, стоимость хранения $\it h$, время выполнения заказа от момента его размещения до реальной поставки равно $\it \tau$.

Таблица 3.1. Исходные данные для задачи 3.1.1

No	Стоимость	Стоимость	Интенсивность	Время
Π/Π	размещения	хранения h	спроса λ	выполнения
	заказа K	единицы запаса	(ед. в день)	заказа $ au$
1	100	0,05	30	21
2	50	0,01	30	14
3	100	0,04	40	7
4	200	0,05	20	10
5	120	0,02	42	12
6	150	0,025	25	14
7	75	0,01	36	15
8	80	0,05	15	21
9	40	0,04	75	18
10	110	0,03	80	7

 $\it 3adaчa~3.1.2.$ Ресторан заказывает мясной фарш в начале каждой недели для удовлетворения недельного спроса в $\it \lambda$ фунтов. Фиксированная стоимость размещения заказа равна $\it K$ долларов. Стоимость замораживания и хранения одного фунта фарша обходится ресторану примерно в $\it h$ доллара в день. Время выполнения заказа от момента его размещения до реальной поставки равно $\it \tau$ дням. Требуется

- определить недельные затраты ресторана, связанные с существующей стратегией создания запаса;
- определить оптимальную стратегию управления запасами в предположении, что время выполнения заказа от момента его размещения до реальной поставки равно нулю.
- вычислить разность между текущими недельными затратами ресторана и теми, которые определяются оптимальной стратегией управления запасами.

 $N_{\underline{0}}$ Стоимость Интенсивность Стоимость Время спроса λ Π/Π размещения хранения hвыполнения заказа Kединицы запаса (ед. в неделю) заказа au11 10 0.05 300 12 5 300 0.01 1 400 13 10 0,04 2 14 20 200 0.05 1 15 420 2 12 0.02 15 0,025 250 16 1 17 7,5 0,01 360 1 2 18 8 0.05 150 19 4,0 0,04 750 1 20 11 0.03 80

Таблица 3.2. Исходные данные для задачи 3.1.2

Задача 3.1.3. Магазин прессует и складывает в поддоны пустые картонные упаковочные коробки для их последующей переработки. За день штабелируется n поддонов. Стоимость хранения одного поддона на заднем дворе магазина составляет h доллара в день. Компания, которая перевозит поддоны в перерабатывающий центр, устанавливает оплату в K долларов за аренду своего погрузочного оборудования плюс m долларов за перевозку

каждого поддона. Изобразите графически изменение количества поддонов с течением времени и разработайте оптимальную стратегию доставки поддонов в перерабатывающий центр.

Таблица 3.3. Исходные данные для задачи 3.1.3

No	Стоимость	Стоимость	Интенсивность	Стоимость
Π/Π	аренды	хранения одного	складирования λ	перевозки
	оборудования K	поддона h	(поддонов в	одного поддона
			день)	
21	115	0,5	3	3
22	150	0,1	8	4
23	100	0,4	4	2
24	140	0,5	12	5
25	120	0,2	4	2
26	150	0,25	5	6
27	75	0,1	6	3
28	80	0,5	5	4
29	40	0,4	7	6
30	110	0,3	8	7

Задание 3.2

Задача 3.2.1. Продукция используется с интенсивностью λ единиц в день. Стоимость хранения единицы продукции равна h доллара в день, стоимость размещения заказа составляет K долларов. Предположим, что дефицит продукции не допускается, стоимость закупки равна m_1 долларов за единицу продукции, если объем закупки не превышает q единиц, и m_2 долларов в противном случае. Определите оптимальную стратегию управления запасами при условии, что срок выполнения заказа равен τ день.

Таблица 3.4. Исходные данные для задачи 3.2.1

No	Стои-	Стои-	Интенсив	Стои-	Стоимость	Объем	Время
Π/Π	мость	мость	ность	мость	закупки	закупки q	выполне-
	размеще-	хранения	спроса	закупки	co	для	ния
	ния	h	λ	без	скидкой	получе-	заказа
	заказа <i>К</i>	единицы	(ед. в	скидки	m_2	кин	au
		запаса	день)	m_{I}		скидки	
1	100	0,05	30	9	8.5	500	21
2	50	0,01	30	12	10	450	14
3	100	0,04	40	11	10.5	350	7
4	200	0,05	20	10.5	9	1000	10

5	120	0,02	42	15	12	650	12
6	150	0,025	25	7.5	7	250	14
7	75	0,01	36	8	7.5	380	15
8	80	0,05	15	11	10	400	21
9	40	0,04	75	9.5	9	250	18
10	110	0,03	80	14	12	800	7

 $\it Sadaчa~3.2.2.$ Комплектующие продаются по m долларов за единицу, но предлагается $\it p\%$ скидка при покупке партии от $\it q$ единиц и выше. Компания в день использует $\it \lambda$ единиц комплектующих. Стоимость размещения заказа равна $\it K$ долларов, стоимость хранения единицы товара составляет $\it h$ долларов в день. Следует ли компании воспользоваться скидкой? Определите пределы изменения скидки на цену комплектующих в процентах (предлагаемую за партию от $\it q$ единиц и выше), при которых компания не получит никакой финансовой выгоды.

Таблица 3.5. Исходные данные для задачи 3.2.2

$N_{\underline{0}}$	Стои-	Стои-	Интенсив	Стои-	Величина	Объем	Время
Π/Π	мость	мость	ность	мость	скидки	закупки q	выполне-
	размеще-	хранения	спроса λ	закупки	p%	для	кин
	кин	h	(ед. в	без		получе-	заказа
	заказа	единицы	день)	скидки		ния	au
	K	запаса		m		скидки	
11	100	0,5	30	9	8	500	21
12	50	0,1	30	12	10	450	14
13	100	0,4	40	11	10	350	7
14	200	0,5	20	10.5	10	1000	10
15	120	0,2	42	15	12	650	12
16	150	0,25	25	7.5	7	250	14
17	75	0,1	36	8	10	380	15
18	80	0,5	15	11	15	400	21
19	40	0,4	75	9.5	10	250	18
20	110	0,3	80	14	15	800	7

 $3a\partial aua$ 3.2.3. Отель использует внешнюю прачечную для стирки полотенец. За день в отеле накапливается λ грязных полотенец. Прачечная забирает эти полотенца и заменяет их чистыми через постоянные промежутки

времени. Стоимость однократной доставки полотенец в прачечную и обратно равна K долларов. Стирка одного полотенца обходится в $\$m_I$, но она может быть снижена до $\$m_2$ доллара, если отель поставляет в прачечную по меньшей мере q единиц полотенец. Стоимость хранения в отеле грязного и. чистого полотенец равна $\$h_I$ и $\$h_2$ соответственно. Как часто следует отелю пользоваться службой доставки полотенец? Следует ли отелю воспользоваться скидкой? (Π одсказка. В этой задаче имеется два типа складируемых предметов. Если количество грязных полотенец возрастает, то количество чистых уменьшается с равной интенсивностью).

Таблица 3.6. Исходные данные для задачи 3.2.3

$N_{\underline{0}}$	Стои-	Стоимость		Интен-	Стои-	Стоимость	Объем	Время
Π/Π	мость	хранения		сивность	мость	стирки	заказа <i>q</i>	выполне-
	размеще-	ОДН	ЮГО	накопле-	стирки	co	для	кин
	кин	поло	генца	ния λ	без	скидкой	получе-	заказа $ au$
	заказа <i>К</i>			(ед. в	скидки	m_2	кин	
		h1	h2	день)	m_{I}		скидки	
21	100	0,05	0,07	30	9	8.5	500	1
22	50	0,01	0,02	30	12	10	450	1
23	100	0,04	0,05	40	11	10.5	350	1
24	200	0,05	0,06	20	10.5	9	1000	1
25	120	0,02	0,03	42	15	12	650	1
26	150	0,03	0,05	25	7.5	7	250	1
27	75	0,01	0,03	36	8	7.5	380	1
28	80	0,05	0,07	15	11	10	400	1
29	40	0,04	0,05	75	9.5	9	250	1
30	110	0,03	0,05	80	14	12	800	1