

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
10/552,601	10/05/2005	Chung Kuang Chin	Terablaze 4	6402
47386 7590 RYAN, MASON & LEWIS, LLP 1300 POST ROAD			EXAMINER	
			HO, CHUONG T	
SUITE 205 FAIRFIELD, CT 06824		ART UNIT	PAPER NUMBER	
			2476	
			MAIL DATE	DELIVERY MODE

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/552,601 CHIN ET AL. Office Action Summary Examiner Art Unit CHUONG T. HO 2476 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 16 June 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-13 and 18-24 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-13.18-24 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Imformation Disclosure Statement(s) (PTC/G5/08)
Paper No(s)/Mail Date ______.

Attachment(s)

Interview Summary (PTO-413)
Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Application/Control Number: 10/552,601 Page 2

Art Unit: 2476

DETAILED ACTION

The amendment filed 03/09/09 have been entered and made of record.

- Applicant's arguments with respect to claims 1-8, 9-13, 18-24 have been considered but are moot in view of the new ground(s) of rejection.
- 3. Claims 1-8, 9-13, 18-24 are pending.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 1, 4, 7-8, 18, 21, 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over Muller et al. (Patent No: 6,021,132) in view of Sindhu et al. (Patent No.: 7,116,660 B2).

Regarding to claim 1, Muller '132 disclose a method for storing (figure 3A, col. 8, lines37-39, stored therein packets) in a shared memory (col. 8, lines 37-39, shared memory) in a packet switch (figure 2, switching fabric), said shared memory comprising

Art Unit: 2476

two or more buffers (figure 3A, shared memory comprises buffer #1, buffer #2, buffer #3), said method comprising the step of:

storing in said shared memory, wherein said shared memory comprises two or more buffers (see figure 3A, banks = buffer #1, buffer #2, buffer #3) (col. 8, lines 37-42, Referring now to FIG. 3A, a logical view of shared memory 230 is depicted having stored therein packet data in a number of buffers. In this example, the shared memory 230 is segmented into a number of buffers (pages) of programmable size. All the buffers may have the same size, or alternatively, individual buffer sizes may vary) (col. 7, lines 7, a portion of the received packets may be buffered temporary) in contiguous banks (see figure 3A, banks = buffer #1, buffer #2, buffer #3) of a first buffer (figure 3A, shared memory 230).

Muller '132 disclose all the subject matter of the claim invention above with the exception of disclosing each of said one or more buffers comprising a plurality of banks.

Sindlhu '660, the same or similar fields of endeavor, disclose storing in said shared memory (figure 9, shared memory), wherein said shared memory comprises two or more buffers (figure 9, M (0), M (1), M (2), M(3) M(4) M(5) M(6) M(7)), at least a portion of packet in contiguous banks (figure 9, banks 902) of a first buffer (M (0) of said two or more buffer (M (0), M (1), M (2)... M(7)), wherein each of said banks (figure 9, banks 902) comprises portions, wherein each of said two or more buffers (figure 9, M

Art Unit: 2476

(0), M (1), M (2), M(3) M(4) M(5) M(6) M(7)) comprises a portion from each of said plurality of banks figure 9, banks 902), and wherein each of said buffers identifies an address of a location in each of said banks (col. 14, lines 30-35, each memory bank has a unique 3 bit physical band number, or PBN, that is equal to the number of the slot in which the bank is plugged)..

Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the data buffer 104 includes two or more memory banks, the data packet is divided among the memory banks as taught by Sindlhu '660' in the shared memory of Muller '132. The data buffer 104 includes two or more memory banks, the data packet is divided among the memory banks can be implemented / modified the shared memory of Muller '132 by using the shared memory (figure 3A) to perform. The motivation for using the data buffer 104 includes two or more memory banks, the data packet is divided among the memory banks as taught by Sindhu'347 into the shared memory of Muller '132 being that it allows the memory to be read and written conveniently (Sindhy, col. 4, line 9).

Regarding to claim 4, Muller et al. discloses wherein at least a portion (col. 7, line 7, portions of packet #1) (portions of packet #2) of each of two or more packets are stored in one of said buffers (figure 3A, 350, buffer #1 stored portions of packet #1) (figure 3A, 360, buffer #1 stored portion of packet #2) (figure 3A, 351, buffer #2 stored portions of packet #1) (figure 3A, 361, buffer #2 stored portions of packet #2).

Art Unit: 2476

Regarding to claim 7, Muller et al. discloses wherein said shared memory exchanges packets between ports (between input ports and output ports) in said packet switch (col. 7, lines 12-15, After a forwarding decision is received for a particular packet, the input 206 transfers ownership of the one or more buffers corresponding to the packet to the appropriate output port 206. The transfer of ownership includes the input port 206 notifying the shared memory manager 220 of the number of output ports 206 that should transmit the packet and the input port 206 forwarding the appropriate pointers to those output ports 206).

Regarding to claim 8, Muller '132 packets are stored in contiguous banks (col. 8, lines 43-44, buffers comprise number of memory lines) of at least one of said two or more buffers (figure 3A, buffer #1, buffer #2, buffer #3); however, Muller et al. are silent to disclosing wherein said sequential data units of said packet are stored in contiguous banks of at least one of said one or more buffers.

Sindlhu '660 disclose wherein said sequential data units of said packet are stored in at least one of said one or more buffers (col. 22, lines 40-45, Let the cells generated by a given stream be numbered I, I+1, I+2,etc. As was described above, cells are written to sequentially increasing bank number I mod b) (Abstract, the distributed memory includes two or more memory banks, Each memory bank is used for storing uniform portions of a data packet received from source and linking information of a data packet to allow for the extraction of the uniform portions of a data packet from distributed location in memory in proper order).

Art Unit: 2476

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate wherein said sequential data units of said packet are stored in at least one of said one or more buffers taught by Sindlhu '660 into the system of Muller '132 in order to allow the memory to be read and written conveniently (Sindhy, col. 4, line 9).

Regarding to claim 18, Muller '132 disclose a shared memory for storing a packet (col. 8, lines 38-39, shared memory 230 is depicted having stored therein packet data in a number of buffers), comprising:

• Two or more buffer (figure 9, ,(see figure 3A, shared memory includes buffer #1, buffer #2, buffer #3) (col. 8, lines 37-42, Referring now to FIG. 3A, a logical view of <u>shared memory</u> 230 is depicted having stored therein packet data in a number of buffers. In this example, the <u>shared memory</u> 230 is segmented into a number of buffers (pages) of programmable size. All the buffers may have the same size, or alternatively, individual buffer sizes may vary) (col. 7, lines 7, a portion of the received packets may be buffered temporary) in contiguous banks (see figure 3A, banks = buffer #1, buffer #2, buffer #3) of a first buffer (figure 3A, shared memory 230).

Art Unit: 2476

However, Muller '132 are silent to disclosing each of said buffers comprising a plurality of banks, wherein at least a portion of said packet is stored in contiguous banks of a first bufferr of said two or more buffers.

Sindlhu '660, the same or similar fields of endeavor, disclose storing in said shared memory (figure 9, shared memory), wherein said shared memory comprises two or more buffers (figure 9, M (0), M (1), M (2), M(3) M(4) M(5) M(6) M(7)), at least a portion of packet in contiguous banks (figure 9, banks 902) of a first buffer (M (0) of said two or more buffer (M (0), M (1), M (2)... M(7)), wherein each of said banks (figure 9, banks 902) comprises portions, wherein each of said two or more buffers (figure 9, M (0), M (1), M (2), M(3) M(4) M(5) M(6) M(7)) comprises a portion from each of said plurality of banks figure 9, banks 902), and wherein each of said buffers identifies an address of a location in each of said banks (col. 14, lines 30-35, each memory bank has a unique 3 bit physical band number, or PBN, that is equal to the number of the slot in which the bank is plugged)..

Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the data buffer 104 includes two or more memory banks, the data packet is divided among the memory banks as taught by Sindlhu '660' in the shared memory of Muller '132. The data buffer 104 includes two or more memory banks, the data packet is divided among the memory banks can be implemented / modified the shared memory of Muller '132 by using the shared memory (figure 3A) to perform. The motivation for using the data buffer 104 includes two or more memory banks, the data packet is divided among the memory banks as taught by Sindhu'347

Art Unit: 2476

into the shared memory of Muller '132 being that it allows the memory to be read and written conveniently (Sindhy, col. 4, line 9).

Regarding to claim 21, claim 21 is rejected the same reasons of claim 4 above.

Regarding to claim 23, claim 23 is rejected the same reasons of claim 7 above.

 Claims 2, 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 – Sindhu '660) in view of Benson et al. (Patent No.: 6,151,321).

Regarding to claim 2, the combined system (Muller '132 – Sindhu '660) disclose wherein said packet (packet #1) comprises a plurality of portions (portions of packet #1), and further comprising the step of storing an portion of said packet in contiguous banks of buffer (figure 3A, shared memory 230).

However, the combined system (Muller '132 – Sindhu '660) are silent to disclosing said data unit stored in said last bank of said first buffer is not a last data unit of said packet.

Benson '321, as the same or similar fields of endeavor, discloses the received shared memory pool mechanism 120 includes a first received shared memory pool 136

Art Unit: 2476

and second received shared memory pool 138. Each receive shared memory pool has receive local buffers 122 (see col. 5, lines 40-42) (col. 5, line 48-49, two or more pools allows for the advantage of multiple bank typically built into memory device); comprising:

The step of storing an additional portion (the rest of the cell of the packet) of said packet in a second buffer (the second card buffer) if one of said portions (the cell of the packet) is stored in said first buffer (the first card buffer) and said portions stored in said first buffer (the first card buffer) is not a last portion of said packet (figure 7B, place enough data in the first card buffer to fill the host buffer, place the rest of the cell into the second card buffer).

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate storing an additional portion of said packet in a second buffer if one of said data units is stored in said first buffer and said data unit stored in said first buffer is not a last unit of said packet taught by Benson '321 into the combined system (Muller '132 – Sindhu '660) in order to desire to utilize a dynamic packet memory management scheme to facilitate sharing of a common packet memory among all input / output ports for packet buffering (see Muller et al. col. 2, lines 16-17).

Regarding to claim 19, claim 19 is rejected the same reasons of claim 2 above.

Art Unit: 2476

 Claims 3, 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 – Sindhu '660) in view of Kamaraj et al. (Patent No.: 6,501,757)

Regarding to claim 3, the combined system (Muller '132 – Sindhu '660) disclose one or more buffer in shared memory; two or more buffer comprising a plurality of banks (col. 8, line 43, the buffers may be further subdivided into a number of memory lines); however, Muller '132 are silent to disclosing wherein each of said one or more buffers comprises one or more group and each of said groups comprises a plurality of banks.

Kamaraj '757 disclose wherein each of said two or more buffers comprises one or more group and each of said groups comprises a bank (col. 7, lines 41-42, said cell buffer being housed in a shared cell buffer pool "buffer" organized as a bank of a plurality of groups.

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate wherein each of said one or more buffers comprises one or more group and each of said groups comprises a bank taught by Kamarau '757 into the combined system (Muller '132 – Sindhu '660) in order to provide efficient implementation of internal queue while also allowing configurability of speeds (Kamaraj, col. 6, lines 52-53).

Regarding to claim 20, claim 20 is rejected the same reasons of claim 3 above.

Art Unit: 2476

 Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 – Sindhu '660) in view of Beshai (Pub. No.: 2004/0184448).

Regarding to claim 5, Muller '132 disclose each of said data port corresponding to one or more of said plurality of banks "buffers" (col. 8, lines 43-44, the buffers may be subdivided into a number of memory lines "banks") (col. 15, lines 1-2, a shared pool of packet memory and provides for efficient allocating of per port buffering that is proportional to the amount of traffic through a given port); however, Muller et al. are silent to disclosing the step of cyclically accessing one or more data ports.

Beshai '448 discloses the step of cyclically accessing one or more data ports (page 1 paragraph [0005] the output rotor cyclically connects each transmit memory to each output port "data ports").

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the step of cyclically accessing one or more data ports taught by Beshai '448 into the combined system (Muller '132 – Sindhu '660) in order to desire to utilize dynamic packet memory management scheme to facilitate sharing of a common packet memory among all input / output ports for packet buffering (Muller, col. 2, lines 16-18).

 Claims 6, 22 are rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 – Sindhu '660) in view of Lavelle et al. (Patent No.: US 6.812.929).

Art Unit: 2476

Regarding to claim 6, Muller '132 disclose allocating buffer in response to a buffer request (col. 10, lines 50-53, FIG. 5 is a flow diagram illustrating <u>buffer</u> <u>allocation</u> processing according to one embodiment of the present invention. At step 505, the next free buffer pointer is produced by the pointer generator 440. In one embodiment, the pointer generator 440 attempts to keep one or more pointers available to allow immediate servicing of buffer requests).

However, Muller '132 are silent to disclosing wherein said banks are divided into a first set of banks and a second set of banks, and a buffer that comprises one or more banks from said first set and a buffer that comprises one or more banks from said second set.

Lavelle '929 disclose wherein said banks are divided into a first set of banks and a second set of banks, and a buffer that comprises one or more banks from said first set and a buffer that comprises one or more banks from said second set (col. 14, lines 59-62, a frame buffer, wherein the frame buffer includes a first set of one or more banks, a second set of one or more memory banks).

Thus, one would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate wherein said banks are divided into a first set of banks and a second set of banks, and a buffer that comprises one or more banks from said first set and a buffer that comprises one or more banks from said second set taught by Lavelle '929 into the combined system (Muller '132 – Sindhu '660) in order to improve the efficiency of accesses to the frame buffer so that rendering accesses may be performed more quickly (Lavelle, col. 2, lines 53-54).

Regarding to claim 22, claim 22 is rejected the same reasons of claim 6 above.

 Claim 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 – Sindhu '660) in view Manning et al. (Patent Number: 6,088,736).

Regarding to claim 24, Muller '132 disclose a method for managing a share memory (figure 2, figure 3, shared memory 230, col. 8, lines 37-38, the shared memory 230 is depicted having stored therein packet data in a number of buffers), said shared memory comprising one or more buffers (figure 3A, buffer #1, buffer #2, buffer #3), said method comprising the step of:

Maintaining a buffer usage count (see abstract, buffer usage count) for at least one of said buffers (Abstract, a shared memory manager for a packet forwarding device includes a pointer memory having stored therein information regarding buffer usage (e.g., usage counts) for each of a number of buffers in a shared memory) (col. 7, lines 25-27, The shared memory manager 220 then updates its internal counts used for tracking the number of buffer owners and returns the buffer to the free pool if appropriate (e.g., the buffer is no longer in any output queues)) (col. 9, lines 35-37, The buffer tracking unit 329 additionally includes a pointer random access memory (PRAM) 320. The PRAM 320 may be an on or off-chip pointer table that stores usage counts for buffers of the shared memory 230);

Art Unit: 2476

a counter for monitoring a buffer usage count (Abstract, Usage count) provides an indication of the input (write) over all packets in said at least one of said buffers of the number of output ports (two output ports) toward which each of said packet is destined (col. 12, lines 30-31, the other two output ports 206 complete transmission of the buffer and so notify the buffer tracking unit 329 Write "SUM" = 0010b) (col. 12, lines 27-30, The buffer tracking unit 329 processes the input port's 0010b notification which indicates there are 3 buffer owners. Read: 1110b Modify: 1110b + 0011b + 0001b = 0010b Write: 0010b The other two output ports 206 complete transmission of 0010b the buffer and so notify the buffer tracking unit 329);

wherein said at least one of said buffers contains two or more packets (see abstract, buffers for temporary buffering the packets).

However, Muller '132 are silent to disclosing a sum over all packet in said at least one of said buffer.

Manning '736, as the same or similar fields of endeavor, disclose buffer usage count (col. 13, lines 15-25, tracking cells received at the upstream based upon observed buffer usage (buffer usage count)) (col. 13, lines 40-45, buffer usage data); comprising:

buffer provides an indication of the sum (col. 6, lines 20-35, total number of cells) over all packets in said at least one of said buffers of the number of output ports toward which each of said packets is destined, wherein said at least one of said buffers contains two or more packets (col. 6, lines 25-35, Buffer_counter 32 means sum of number of packets in the buffer) (col. 13, lines 15-25, tracking cells received at the upstream based upon observed buffer usage (buffer usage count)).

Art Unit: 2476

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to apply the teaching of Manning '736 into the combined system (Muller '132 – Sindhu '660), since Manning '736 recited the motivation in the col. 1, lines 10-12, which is a joint flow control mechanism in a distributed switching architecture.

 Claims 9, 13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Muller et al. (Patent Number: 6,021,132) in view of Manning et al. (Patent Number: 6,088,736).

Regarding to claim 9, Muller '132 disclose a method for managing a share memory (figure 2, figure 3, shared memory 230, col. 8, lines 37-38, the shared memory 230 is depicted having stored therein packet data in a number of buffers), said shared memory comprising one or more buffers (figure 3A, buffer #1, buffer #2, buffer #3), said method comprising the step of:

Maintaining a buffer usage count (see abstract, buffer usage count) for at least one of said buffers (Abstract, a shared memory manager for a packet forwarding device includes a pointer memory having stored therein information regarding buffer usage (e.g., usage counts) for each of a number of buffers in a shared memory) (col. 7, lines 25-27, The shared memory manager 220 then updates its internal counts used for tracking the number of buffer owners and returns the buffer to the free pool if appropriate (e.g., the buffer is no longer in any output queues)) (col. 9, lines 35-37, The buffer tracking unit 329 additionally includes a pointer random access memory (PRAM)

Art Unit: 2476

320. The PRAM 320 may be an on or off-chip pointer table that stores usage <u>counts</u> for buffers of the shared memory 230);

a counter for monitoring a buffer usage count (Abstract, Usage count) provides an indication of the input (write) over all packets in said at least one of said buffers of the number of output ports (two output ports) toward which each of said packet is destined (col. 12, lines 30-31, the other two output ports 206 complete transmission of the buffer and so notify the buffer tracking unit 329 Write "SUM" = 0010b) (col. 12, lines 27-30, The buffer tracking unit 329 processes the input port's 0010b notification which indicates there are 3 buffer owners. Read: 1110b Modify: 1110b + 0011b + 0001b = 0010b Write: 0010b The other two output ports 206 complete transmission of 0010b the buffer and so notify the buffer tracking unit 329);

wherein said at least one of said buffers contains two or more packets (see abstract, buffers for temporary buffering the packets); and

wherein at least one of said two or more packets is destined for more than one output port (col. 1, lines 60-65, packet buffer for temporary storing packet data until it can be forwarded (destined) to the appropriate output ports)

However, Muller '132 are silent to disclosing a sum over all packet in said at least one of said buffer.

Manning '736, as the same or similar fields of endeavor, disclose buffer usage count (col. 13, lines 15-25, tracking cells received at the upstream based upon observed buffer usage (buffer usage count)) (col. 13, lines 40-45, buffer usage data); comprising:

Art Unit: 2476

buffer provides an indication of the sum (col. 6, lines 20-35, total number of cells) over all packets in said at least one of said buffers of the number of output ports toward which each of said packets is destined, wherein said at least one of said buffers contains two or more packets (col. 6, lines 25-35, Buffer_counter 32 means sum of number of packets in the buffer) (col. 13, lines 15-25, tracking cells received at the upstream based upon observed buffer usage (buffer usage count)).

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to apply a sum over all packet in said at least one of said buffer of Manning '736 into the shared memory (includes buffer 1, buffer 2, buffer 3..etc.) of Muller '132; A sum over all packet in said at least one of said buffer can be implemented into the shared memory (includes buffer 1, buffer 2, buffer 3..etc.) of Muller '132. The motivation for using a sum over all packet in said at least one of said buffer taught by Manning '736 into the shared memory (includes buffer 1, buffer 2, buffer 3..etc.) of Muller '132 which is a flow control mechanism in a distributed switching architecture (see Manning '736, col. 1, lines 10-12).

Regarding to claim 13, Muller '132 disclose the step of determining whether a buffer is free based on said buffer usage count (Abstract, a shared memory manager for a packet forwarding device includes a pointer memory having stored therein information regarding buffer usage (e.g., <u>usage counts</u>) for each of a number of buffers in a shared

Art Unit: 2476

memory. An encoder is coupled to the pointer memory for generating an output which indicates a set of buffers that contains a <u>free buffer</u>. The shared memory manager further includes a pointer generator that is coupled to the encoder for locating a <u>free buffer</u> in the set of buffers. The pointer generator is further configured to produce a pointer to the <u>free buffer</u> based upon the output of the encoder and the <u>free buffer's</u> location within the set of buffers) (col. 15, lines 66-67, col. 16, lines 1-3, wherein the step of dynamically allocating one or more buffers in a shared memory by determining one or more <u>free buffer</u> pointers further includes the step of updating a <u>usage count</u> corresponding to each of the one or more <u>free buffer</u> pointers).

 Claim 10 is rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 - Manning '736) in view of Nation et al. (Patent No.: US 7,301,906).

Regarding to claim 10, Muller '132 disclose said buffer usage count by one to indicate that a packet destined for one output port is stored in said buffer (Abstract, a shared memory manager for a packet forwarding device includes a pointer memory having stored therein information regarding buffer usage (e.g., <u>usage counts</u>) for each of a number of buffers in a shared memory. An encoder is coupled to the pointer memory for generating an output which indicates a set of buffers that contains a <u>free buffer</u>. The shared memory manager further includes a pointer generator that is coupled to the encoder for locating a <u>free buffer</u> in the set of buffers. The pointer

Art Unit: 2476

generator is further configured to produce a pointer to the <u>free buffer</u> based upon the output of the encoder and the <u>free buffer's</u> location within the set of buffers) (col. 15, lines 66-67, col. 16, lines 1-3, wherein the step of dynamically allocating one or more buffers in a shared memory by determining one or more <u>free buffer</u> pointers further includes the step of updating a <u>usage count</u> corresponding to each of the one or more <u>free buffer</u> pointers, wherein the step of updating a <u>usage count corresponding to the free buffer</u> pointer comprises the step of setting the <u>usage count</u> to a predetermined value to accommodate a potential race condition in <u>usage count</u> processing.).

However, the combined system (Muller '132 - Manning '736) are silent to disclosing the step of incrementing said buffer usage count by one to indicate that a packet destined for one output port is stored in said buffer.

Nation '906' disclose the step of incrementing said buffer usage count by one to indicate that a packet destined for one output port is stored in said buffer (col. 10, lines 10-18, If the received packet is stored in buffer memory dedicated to the specific port, element 208 may therefore represent processing to <u>increment</u> a counter representing usage of preallocated, dedicated storage per port. If the received packet is stored in shared buffer memory, element 208 may therefore represent processing to <u>increment</u> a counter representing usage of shared storage per port and also <u>decrementing</u> a second counter representing available shared storage. Conversely, element 212 represents processing to <u>increment or decrement</u> appropriate counters indicating

Art Unit: 2476

freeing of a previously allocated buffer either allocated as dedicated memory associated with the port or allocated from shared memory for temporary use by a particular port).

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate step of incrementing said buffer usage count by one to indicate that a packet destined for one output port is stored in said buffer taught by Nation '906 into the combined system (Muller '132 - Manning '736) in order to improve architecture in flow control and buffer memory management for high-speed serial communication devices to maintain high performance while reducing buffer memory requirements (Nation '906, col. 3, lines 46-47).

 Claim 11 is rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 - Manning '736) in view of Davis (Pub. No.: US 2007/0208876).

Regarding to claim 11, Muller '132 discloses the step of decrementing (col. 12, lines 5-6, decremented) said buffer usage count (abstract, usage count) by one (col. 12, field count values) when a data unit is read from said buffer (col. 12, lines 7-20, the count field will accurately reflect the current number of output ports for the buffer pointer whether or not the count field was previously decremented by one or more output ports 206 as illustrated in <u>Table 1</u>, below. <u>Table 1</u> illustrates the count field's value after each of the actions in the first column. An input port 206 requests a buffer pointer from the buffer 0000b tracking unit 329. A buffer pointer is provided to the input port 206. 1111b

Art Unit: 2476

The forwarding decision indicates the packet including the 1111b buffer is to be forwarded to three output ports 206. The input port notifies the buffer tracking unit 329 of 1111b number of owners of the buffer and forwards the buffer pointer to each of the three output ports 206. One output port 206 completes transmission of the buffer 1111b and notifies the buffer tracking unit 329 that it no longer holds a copy of the buffer pointer. The buffer tracking unit 329 processes the output port's 1110b notification prior to the input port's notification. Read: 1111b Modify: 1111b - 0001b = 1110b Write: 1110b The buffer tracking unit 329 processes the input port's 0010b notification which indicates there are 3 buffer owners. Read: 1110b Modify: 1110b + 0011b + 0001b = 0010b Write: 0010b).

However, the combined system (Muller '132 - Manning '736) are silent to disclosing said data unit is the last data unit of a packet.

Davis '876 discloses the step of updating said buffer usage count (the usage buffer) by one when a data unit is read from said buffer and said data unit is the last data unit of a packet (end of the packet) (page 8 paragraph [0093] Buffer are allocated using a free buffer list......when a buffer is fall, or an end of packet is detected, the header queues corresponding to that packet are updated, as is information in the usage buffer...when the header queue is updated, the buffer entry in the usage buffer is updated with information from an FID RAM)

Thus, one would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the step of updating said buffer usage count by one when a data unit is read from said buffer and said data unit is the last data unit of a

Art Unit: 2476

packet taught by Davis '876 into the combined system (Muller '132 - Manning '736) in order to perform network monitoring without the use of additional probes (Davis '876, page 1 [0005]).

13. Claim 12 is rejected under 35 U.S.C. 103(a) as being unpatentable over the combined system (Muller '132 - Manning '736) in view of Miller et al. (Patent No.: US 6,247,058)

Regarding to claim 12, Muller '132 disclose said buffer usage count (See abstract, Usage count); however, the combined system (Muller '132 - Manning '736) are silent to disclosing wherein said usage count indicate a number of destination port for a packet to perform a multicasting operation.

Miller '058 disclose wherein said usage count indicate a number of output port for a packet to perform a multicasting operation (col. 7, lines 43-45, When a broadcast or multicast packet is received, it is assigned a time stamp and stored in broadcast packet output buffer 98 along with a <u>counter</u> indicating the number of ports to which the packet is broadcast).

Thus, it would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate wherein said usage count indicate a number of output port for a packet to perform a multicasting operation taught by Miller '058 into the combined system (Muller '132 - Manning '736) in order to support a variety of packet management function (Miller '058, col. 1, line 10). The combined system would have been enable to handle additional traffic (Miller '058, col. 4, line 27).

Art Unit: 2476

14. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to CHUONG T. HO whose telephone number is (571)272-3133. The examiner can normally be reached on 8:00 am to 4:00 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Sheikh Ayaz can be reached on (571) 272-3795. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/552,601 Page 24

Art Unit: 2476

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Chuong. T. Ho./ Examiner, Art Unit 2476 /Ayaz R. Sheikh/ Supervisory Patent Examiner, Art Unit 2476