CS 4602

Introduction to Machine Learning

Convolutional Neural Network

Instructor: Po-Chih Kuo

CS4602

Roadmap

- Introduction and Basic Concepts
- Regression
- Bayesian Classifiers
- Decision Trees
- Linear Classifier
- Neural Networks
- Deep learning
- Convolutional Neural Networks
- Recurrent Neural Networks, Transformer, Reinforcement Learning...
- Clustering
- Dimensionality reduction
- Model Selection and Evaluation

CS4602

How does the brain interpret images?

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT

Visual Cortex

- Hubel & Wiesel 1962
- Simple cells detect local features
- Complex cells "pool" the outputs of simple cells

Convolutional Neural Network (CNN)

- Fully-connected neural network needs a large amount of parameters.
- CNNs are a special type of neural network whose hidden units are only connected to local receptive field
 - The number of parameters needed by CNNs is much smaller.

Example: 200x200 image

d: its parameters

fully connected: 100 hidden units => 4,000,000 parameters CNN: 5x5 kernel, 100 filters => 2,500 parameters

Learning a pattern

- Some patterns are much smaller than the whole image
- Can represent a small region with fewer parameters

Same pattern appears in different places

A moving detector

Detecting Motifs in Images

 Swipe "templates" over the image to detect motifs

Detecting Motifs in Images

Shift invariance

How can we have similar outputs from the model?

To combine outputs in a common pool!

Overall Architecture

- Multiple stages: Normalization → Convolution → Non-Linearity → Pooling
 - Normalization: average removal, variance normalization...
 - Convolution: dimension expansion, projection on basis...
 - Non-Linearity: Rectification (ReLU), tanh...
 - Pooling: Max, average...

Dot

product

Convolution

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

3

-1

6 x 6 image

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1			1		_
1	0	0	0	1	0
0	0	0	0	1	0

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 1

stride=1

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image (3 channels)

Padding

Conv 3x3 with stride=1, padding=1

0	0	0	0	0	0
0	1	5	3	9	0
0	4	4	3	5	0
0	6	4	2	6	0
0	6	5	2	1	0
0	0	0	0	0	0

14	24	33	24
27	41	32	25
33	34	32	26
26	32	27	16

4 x 4 image

4 x 4 image

Implementation as Matrix Multiplication. Note that the convolution operation essentially performs dot products between the filters and local regions of the input. A common implementation pattern of the CONV layer is to take advantage of this fact and formulate the forward pass of a convolutional layer as one big matrix multiply as follows:

https://cs231n.github.io/convolutional-networks/

Convolution v.s. Fully Connected

Fully-connected

1	0	0	0	0	1
0	~	0	0	1	0
0	0	~	1	0	0
1	0	0	0	1	0
0	~	0	0	1	0
0	0	1	0	1	0

Nonlinear Activations

- Why activation? Nonlinearity
 - Sigmoid
 - tanh
 - ReLU family

Non-Linearity

Pooling

- Common pooling operations:
 - Max pooling: reports the maximum output within a rectangular neighborhood.
 - Average pooling: reports the average output of a rectangular neighborhood (possibly weighted by the distance from the central pixel).

Pooling Example (Summing or averaging)

1	0	0	0	0	1
0	1	0	0	~	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0

Convolved feature

Pooled feature

Fewer parameters to characterize the image

First CNNs [LeCun et al. 89]

- Trained with Backpropagation
- USPS Zipcode digits: 7300 training, 2000 test
- Convolution with stride. No separate pooling

AlexNet (NIPS 2012)

Inception v3 (CVPR 2016)

224×224×3 224×224×64

112×112×128

56×56×256

7×7×512

1×1×4096

1×1×1000

convolution+ReLU

max pooling
fully connected+ReLU
softmax

VGG-16 (ICLR 2015)

ResNet50 (CVPR 2015)

Densenet121 (CVPR 2017)

AlexNet (2012)

- AlexNet achieves on ILSVRC 2012 competition 15.3% Top-5 error rate compare to 26.2% achieved by the second best entry.
- AlexNet has 8 layers without counting pooling layers.
- AlexNet trained on two GTX 580 GPUs for five to six days

AlexNet (2012)

Total (label and softmax not included)

Memory: 2.24 million Weights: 62.37 million

(Figure from Dr. Mohamed Loey)

AlexNet (2012)

- ReLU
- Norm layers
- Data augmentation
- Dropout 0.5
- Batch size is 128
- SGD Momentum 0.9
- Learning rate 1e-2

Deep CNN in AlphaGO

(Silver et al, 2016)

Policy network:

- Input: 19x19, 48 input channels
- Layer 1: 5x5 kernel, 192 filters
- Layer 2 to 12: 3x3 kernel, 192 filters
- Layer 13: 1x1 kernel, 1 filter Value network has similar architecture to policy network

How to backpropagate with convolution?

Padding (p)= 1
$$L(\cdot)$$
 = Loss function.
Stride (s)= 1

Ref: https://www.brilliantcode.net/1670/convolutional-neural-networks-4-backpropagation-in-kernels-of-cnns/?cli_action=1604504837.339

Ref: https://www.brilliantcode.net/1670/convolutional-neural-networks-4-backpropagation-in-kernels-of-cnns/?cli_action=1604504837.339

 $z_{42} = x_{31}w_{11} + x_{32}w_{12} + 0w_{21} + 0w_{22}$

 $z_{43} = x_{32}w_{11} + x_{33}w_{12} + 0w_{21} + 0w_{22}$

 $z_{44} = x_{33}w_{11} + 0w_{12} + 0w_{21} + 0w_{22}$

$$egin{array}{lll} z_{11} &= 0w_{11} + 0w_{12} + 0w_{21} + x_{11}w_{22} \ z_{12} &= 0w_{11} + 0w_{12} + x_{11}w_{21} + x_{12}w_{22} \ z_{13} &= 0w_{11} + 0w_{12} + x_{12}w_{21} + x_{13}w_{22} \ z_{14} &= 0w_{11} + 0w_{12} + x_{13}w_{21} + 0w_{22} \ &z_{21} &= 0w_{11} + x_{11}w_{12} + 0w_{21} + x_{21}w_{22} \ z_{22} &= x_{11}w_{11} + x_{12}w_{12} + x_{21}w_{21} + x_{22}w_{22} \ z_{23} &= x_{12}w_{11} + x_{13}w_{12} + x_{22}w_{21} + x_{23}w_{22} \ z_{24} &= x_{13}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{31} &= 0w_{11} + x_{21}w_{12} + 0w_{21} + x_{31}w_{22} \ z_{32} &= x_{21}w_{11} + x_{22}w_{12} + x_{31}w_{21} + x_{32}w_{22} \ z_{33} &= x_{22}w_{11} + x_{23}w_{12} + x_{32}w_{21} + x_{33}w_{22} \ z_{34} &= x_{23}w_{11} + 0w_{12} + x_{33}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{33}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{33}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{33}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{33}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + x_{23}w_{12} + 0w_{12} + 0w_{12} + 0w_{12} \ &z_{34} &= x_{23}w_{11} + 0w_{12} + 0w_{12} + 0w_{12} \ &z_{34} &= x_{23}w_{12} + 0w_{12} + 0w_$$

$$egin{array}{lll} z_{41} &= 0w_{11} + x_{31}w_{12} + 0w_{21} + 0w_{22} \ z_{42} &= x_{31}w_{11} + x_{32}w_{12} + 0w_{21} + 0w_{22} \ z_{43} &= x_{32}w_{11} + x_{33}w_{12} + 0w_{21} + 0w_{22} \ z_{44} &= x_{33}w_{11} + 0w_{12} + 0w_{21} + 0w_{22} \end{array}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial w}$$

$$\begin{split} \frac{\partial L}{\partial w_{11}} &= \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial w_{11}} + \frac{\partial L}{\partial z_{23}} \frac{\partial z_{23}}{\partial w_{11}} + \frac{\partial L}{\partial z_{24}} \frac{\partial z_{24}}{\partial w_{11}} \\ &+ \frac{\partial L}{\partial z_{32}} \frac{\partial z_{32}}{\partial w_{11}} + \frac{\partial L}{\partial z_{33}} \frac{\partial z_{33}}{\partial w_{11}} + \frac{\partial L}{\partial z_{34}} \frac{\partial z_{34}}{\partial w_{11}} \\ &+ \frac{\partial L}{\partial z_{42}} \frac{\partial z_{42}}{\partial w_{11}} + \frac{\partial L}{\partial z_{43}} \frac{\partial z_{43}}{\partial w_{11}} + \frac{\partial L}{\partial z_{44}} \frac{\partial z_{44}}{\partial w_{11}} \\ &= \frac{\partial L}{\partial z_{22}} x_{11} + \frac{\partial L}{\partial z_{23}} x_{12} + \frac{\partial L}{\partial z_{24}} x_{13} \\ &+ \frac{\partial L}{\partial z_{32}} x_{21} + \frac{\partial L}{\partial z_{33}} x_{22} + \frac{\partial L}{\partial z_{34}} x_{23} \\ &+ \frac{\partial L}{\partial z_{42}} x_{31} + \frac{\partial L}{\partial z_{43}} x_{32} + \frac{\partial L}{\partial z_{44}} x_{33} \end{split}$$

$$\begin{split} \frac{\partial L}{\partial w_{11}} &= \frac{\partial L}{\partial z_{22}} x_{11} + \frac{\partial L}{\partial z_{23}} x_{12} + \frac{\partial L}{\partial z_{24}} x_{13} \\ &+ \frac{\partial L}{\partial z_{32}} x_{12} + \frac{\partial L}{\partial z_{33}} x_{22} + \frac{\partial L}{\partial z_{34}} x_{23} \\ &+ \frac{\partial L}{\partial z_{42}} x_{31} + \frac{\partial L}{\partial z_{43}} x_{32} + \frac{\partial L}{\partial z_{44}} x_{33} \\ \frac{\partial L}{\partial w_{12}} &= \frac{\partial L}{\partial z_{21}} x_{11} + \frac{\partial L}{\partial z_{22}} x_{12} + \frac{\partial L}{\partial z_{23}} x_{13} + \\ &+ \frac{\partial L}{\partial z_{31}} x_{21} + \frac{\partial L}{\partial z_{32}} x_{22} + \frac{\partial L}{\partial z_{33}} x_{23} \\ &+ \frac{\partial L}{\partial z_{41}} x_{31} + \frac{\partial L}{\partial z_{42}} x_{32} + \frac{\partial L}{\partial z_{43}} x_{33} \\ \frac{\partial L}{\partial w_{21}} &= \frac{\partial L}{\partial z_{12}} x_{11} + \frac{\partial L}{\partial z_{23}} x_{12} + \frac{\partial L}{\partial z_{24}} x_{13} \\ &+ \frac{\partial L}{\partial z_{22}} x_{21} + \frac{\partial L}{\partial z_{23}} x_{22} + \frac{\partial L}{\partial z_{24}} x_{23} \\ &+ \frac{\partial L}{\partial z_{32}} x_{31} + \frac{\partial L}{\partial z_{33}} x_{32} + \frac{\partial L}{\partial z_{34}} x_{33} \\ \frac{\partial L}{\partial w_{22}} &= \frac{\partial L}{\partial z_{11}} x_{11} + \frac{\partial L}{\partial z_{21}} x_{12} + \frac{\partial L}{\partial z_{23}} x_{13} \\ &+ \frac{\partial L}{\partial z_{21}} x_{21} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{21} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{23}} x_{33} + \frac{\partial L}{\partial z_{23}} x_{33} \\ &+ \frac{\partial L}{\partial z_{23}} x_{31} + \frac{\partial L}{\partial z_{23}} x_{32} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{23}} x_{31} + \frac{\partial L}{\partial z_{23}} x_{32} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{23}} x_{23} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{23}} x_{23} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{23}} x_{23} + \frac{\partial L}{\partial z_{23}} x_{23} \\ &+ \frac{\partial L}{\partial z_{23}} x_{23} + \frac{\partial L}{\partial z_{23}} x_{23$$

$$egin{aligned} z_{11} &= 0w_{11} + 0w_{12} + 0w_{21} + x_{11}w_{22} \ z_{12} &= 0w_{11} + 0w_{12} + x_{11}w_{21} + x_{12}w_{22} \ z_{13} &= 0w_{11} + 0w_{12} + x_{12}w_{21} + x_{13}w_{22} \ z_{14} &= 0w_{11} + 0w_{12} + x_{13}w_{21} + 0w_{22} \ \end{aligned} \ egin{aligned} z_{21} &= 0w_{11} + x_{11}w_{12} + x_{13}w_{21} + x_{21}w_{22} \ z_{22} &= x_{11}w_{11} + x_{12}w_{12} + x_{21}w_{21} + x_{22}w_{22} \ z_{23} &= x_{12}w_{11} + x_{13}w_{12} + x_{22}w_{21} + x_{23}w_{22} \ z_{24} &= x_{13}w_{11} + 0w_{12} + x_{23}w_{21} + 0w_{22} \end{aligned}$$

 $\frac{\partial L}{\partial x_{11}}$

$$egin{aligned} z_{31} &= 0w_{11} + x_{21}w_{12} + 0w_{21} + x_{31}w_{22} \ z_{32} &= x_{21}w_{11} + x_{22}w_{12} + x_{31}w_{21} + x_{32}w_{22} \ z_{33} &= x_{22}w_{11} + x_{23}w_{12} + x_{32}w_{21} + x_{33}w_{22} \ z_{34} &= x_{23}w_{11} + 0w_{12} + x_{33}w_{21} + 0w_{22} \ \ z_{41} &= 0w_{11} + x_{31}w_{12} + 0w_{21} + 0w_{22} \ z_{42} &= x_{31}w_{11} + x_{32}w_{12} + 0w_{21} + 0w_{22} \ z_{43} &= x_{32}w_{11} + x_{33}w_{12} + 0w_{21} + 0w_{22} \ \ z_{44} &= x_{33}w_{11} + 0w_{12} + 0w_{21} + 0w_{22} \end{aligned}$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

$$\frac{\partial L}{\partial x_{11}} = \frac{\partial L}{\partial z_{11}} \frac{\partial z_{11}}{\partial x_{11}} + \frac{\partial L}{\partial z_{12}} \frac{\partial z_{12}}{\partial x_{11}} + \frac{\partial L}{\partial z_{21}} \frac{\partial z_{21}}{\partial x_{11}} + \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial x_{11}}
= \frac{\partial L}{\partial z_{11}} w_{22} + \frac{\partial L}{\partial z_{12}} w_{21} + \frac{\partial L}{\partial z_{21}} w_{12} + \frac{\partial L}{\partial z_{22}} w_{11}$$

$$\frac{\partial L}{\partial x_{22}} = \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial x_{22}} + \frac{\partial L}{\partial z_{23}} \frac{\partial z_{23}}{\partial x_{22}} + \frac{\partial L}{\partial z_{32}} \frac{\partial z_{32}}{\partial x_{22}} + \frac{\partial L}{\partial z_{33}} \frac{\partial z_{33}}{\partial x_{22}}$$

$$= \frac{\partial L}{\partial z_{22}} w_{22} + \frac{\partial L}{\partial z_{23}} w_{21} + \frac{\partial L}{\partial z_{32}} w_{12} + \frac{\partial L}{\partial z_{33}} w_{11}$$

:

$$\frac{\partial L}{\partial w} = \frac{\frac{\partial L}{\partial z_{22}} x_{11} + \frac{\partial L}{\partial z_{23}} x_{12} + \frac{\partial L}{\partial z_{24}} x_{13}}{\frac{\partial L}{\partial z_{33}} x_{12} + \frac{\partial L}{\partial z_{33}} x_{22} + \frac{\partial L}{\partial z_{34}} x_{23}}{\frac{\partial L}{\partial z_{31}} x_{21} + \frac{\partial L}{\partial z_{32}} x_{22} + \frac{\partial L}{\partial z_{33}} x_{22} + \frac{\partial L}{\partial z_{34}} x_{33}}{\frac{\partial L}{\partial z_{41}} x_{31} + \frac{\partial L}{\partial z_{42}} x_{31} + \frac{\partial L}{\partial z_{43}} x_{32} + \frac{\partial L}{\partial z_{44}} x_{33}} + \frac{\partial L}{\partial z_{41}} x_{31} + \frac{\partial L}{\partial z_{42}} x_{32} + \frac{\partial L}{\partial z_{43}} x_{33}$$

$$= \frac{\partial L}{\partial z_{12}} x_{11} + \frac{\partial L}{\partial z_{13}} x_{12} + \frac{\partial L}{\partial z_{14}} x_{13} + \frac{\partial L}{\partial z_{41}} x_{31} + \frac{\partial L}{\partial z_{12}} x_{12} + \frac{\partial L}{\partial z_{13}} x_{13} + \frac{\partial L}{\partial z_{22}} x_{21} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{24}} x_{23} + \frac{\partial L}{\partial z_{21}} x_{21} + \frac{\partial L}{\partial z_{22}} x_{22} + \frac{\partial L}{\partial z_{23}} x_{23} + \frac{\partial L}{\partial z_{23}} x_{23} + \frac{\partial L}{\partial z_{23}} x_{32} + \frac{\partial L}{\partial z_{23}} x_{32} + \frac{\partial L}{\partial z_{23}} x_{32} + \frac{\partial L}{\partial z_{23}} x_{33} + \frac{\partial L}{\partial z_{23}} x_{32} + \frac{\partial L}{\partial z_{23}} x_{33} +$$

$$\frac{\partial L}{\partial x} = \begin{bmatrix} \frac{\partial L}{\partial z_{11}} w_{22} + \frac{\partial L}{\partial z_{12}} w_{21} + & \frac{\partial L}{\partial z_{12}} w_{22} + \frac{\partial L}{\partial z_{13}} w_{21} + & \frac{\partial L}{\partial z_{13}} w_{22} + \frac{\partial L}{\partial z_{14}} w_{21} + \\ \frac{\partial L}{\partial z_{21}} w_{12} + \frac{\partial L}{\partial z_{22}} w_{11} & \frac{\partial L}{\partial z_{22}} w_{12} + \frac{\partial L}{\partial z_{23}} w_{11} & \frac{\partial L}{\partial z_{23}} w_{12} + \frac{\partial L}{\partial z_{24}} w_{11} \end{bmatrix}$$

$$\frac{\partial L}{\partial z_{21}} w_{22} + \frac{\partial L}{\partial z_{22}} w_{21} + & \frac{\partial L}{\partial z_{22}} w_{22} + \frac{\partial L}{\partial z_{23}} w_{21} + & \frac{\partial L}{\partial z_{23}} w_{22} + \frac{\partial L}{\partial z_{23}} w_{21} + & \frac{\partial L}{\partial z_{23}} w_{12} + \frac{\partial L}{\partial z_{33}} w_{11} & \frac{\partial L}{\partial z_{33}} w_{12} + \frac{\partial L}{\partial z_{34}} w_{11} \end{bmatrix}$$

$$\frac{\partial L}{\partial z_{31}} w_{22} + \frac{\partial L}{\partial z_{32}} w_{21} + & \frac{\partial L}{\partial z_{32}} w_{22} + \frac{\partial L}{\partial z_{33}} w_{21} + & \frac{\partial L}{\partial z_{33}} w_{22} + \frac{\partial L}{\partial z_{34}} w_{21} + \\ \frac{\partial L}{\partial z_{34}} w_{12} + \frac{\partial L}{\partial z_{42}} w_{11} & \frac{\partial L}{\partial z_{42}} w_{12} + \frac{\partial L}{\partial z_{43}} w_{11} & \frac{\partial L}{\partial z_{43}} w_{12} + \frac{\partial L}{\partial z_{44}} w_{11} \end{bmatrix}$$

How about Pooling layers?

Pooling kernel size= (3×3) , Stride (s)=1, $L(\cdot)=Loss$ function.

CNNs are good for

- Signals that comes to you in the form of (multidimensional) arrays.
- Signals that have strong local correlations
- Signals where features can appear anywhere
- Signals in which objects are invariant to translations.
- 1D CNNs: sequential signals, text
 - Text, music, audio, speech, time series.
- 2D CNNs: images, time-frequency representations (speech and audio)
 - Object detection, localization, recognition
- 3D CNNs: video, volumetric images, tomography images
 - Video recognition / understanding
 - Biomedical image analysis

Model Visualization

http://cs.stanford.edu/people/karpathy/convnetjs/

Questions?

How to confuse your ConvNets?

