

HiPerRF™ Power MOSFETs F-Class: MegaHertz Switching

N-Channel Enhancement Mode

Avalanche Rated, Low Q_g , Low Intrinsic R_g
High dV/dt , Low t_{rr}

IXFH 28N50F $V_{DSS} = 500V$
IXFT 28N50F $I_{D25} = 28A$
 $R_{DS(on)} = 190m\Omega$

 $t_{rr} \leq 250 \text{ ns}$

TO-247 AD (IXFH)

TO-268 (IXFT) Case Style

G = Gate,
S = Source,
TAB = Drain

Symbol	Test Conditions	Maximum Ratings		
V_{DSS}	$T_J = 25^\circ\text{C}$ to 150°C	500	V	
V_{DGR}	$T_J = 25^\circ\text{C}$ to 150°C ; $R_{GS} = 1 \text{ M}\Omega$	500	V	
V_{GS}	Continuous	± 20	V	
V_{GSM}	Transient	± 30	V	
I_{D25}	$T_C = 25^\circ\text{C}$	28	A	
I_{DM}	$T_C = 25^\circ\text{C}$, pulse width limited by T_{JM}	112	A	
I_{AR}	$T_C = 25^\circ\text{C}$	28	A	
E_{AR}	$T_C = 25^\circ\text{C}$	35	mJ	
E_{AS}	$T_C = 25^\circ\text{C}$	1.5	J	
dv/dt	$I_S \leq I_{DM}$, $di/dt \leq 100 \text{ A}/\mu\text{s}$, $V_{DD} \leq V_{DSS}$ $T_J \leq 150^\circ\text{C}$, $R_G = 2 \Omega$	10	V/ns	
P_D	$T_C = 25^\circ\text{C}$	315	W	
T_J		-55 ... +150	$^\circ\text{C}$	
T_{JM}		150	$^\circ\text{C}$	
T_{stg}		-55 ... +150	$^\circ\text{C}$	
T_L	1.6 mm (0.063 in.) from case for 10 s	300	$^\circ\text{C}$	
M_d	Mounting torque	TO-247	1.13/10 Nm/lb.in.	
Weight		TO-247 TO-268	6 g 4 g	

Symbol	Test Conditions	Characteristic Values			
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.	max.
V_{DSS}	$V_{GS} = 0 \text{ V}$, $I_D = 1 \text{ mA}$	500			V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 4 \text{ mA}$	2.0		4.0	V
I_{GSS}	$V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0$			$\pm 100 \text{ nA}$	
I_{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 \text{ V}$			50 μA 1.5 mA	
$R_{DS(on)}$	$V_{GS} = 10 \text{ V}$, $I_D = 0.5 I_{D25}$ Note 1			190 $\text{m}\Omega$	

Features

- RF capable MOSFETs
- Double metal process for low gate resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance - easy to drive and to protect
- Fast intrinsic rectifier

Applications

- DC-DC converters
- Switched-mode and resonant-mode power supplies, >500kHz switching
- DC choppers
- 13.5 MHz industrial applications
- Pulse generation
- Laser drivers
- RF amplifiers

Advantages

- Space savings
- High power density

Symbol	Test Conditions	Characteristic Values			
		(T _J = 25°C, unless otherwise specified)	min.	typ.	max.
g_{fs}	$V_{DS} = 10 \text{ V}$; $I_D = 0.5 \text{ } I_{D25}$	Note 1	12	18	S
C_{iss}	$V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$		3000	pF	
C_{oss}			500	pF	
C_{rss}			130	pF	
$t_{d(on)}$	$V_{GS} = 10 \text{ V}$, $V_{DS} = 0.5 \text{ } V_{DSS}$, $I_D = 0.5 \text{ } I_{D25}$		15	ns	
t_r			13	ns	
$t_{d(off)}$			41	ns	
t_f			8	ns	
$Q_{g(on)}$	$V_{GS} = 10 \text{ V}$, $V_{DS} = 0.5 \text{ } V_{DSS}$, $I_D = 0.5 \text{ } I_{D25}$		95	nC	
Q_{gs}			20	nC	
Q_{gd}			38	nC	
R_{thJC}				0.39	K/W
R_{thCK}	(TO-247)		0.25		K/W

Source-Drain Diode

Characteristic Values

($T_1 = 25^\circ\text{C}$, unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.
I_s	$V_{GS} = 0 \text{ V}$		28	A
I_{SM}	Repetitive; pulse width limited by T_{JM}		112	A
V_{SD}	$I_F = I_s, V_{GS} = 0 \text{ V}$, Note 1		1.5	V
t_{rr}	$I_F = I_s, -di/dt = 100 \text{ A}/\mu\text{s}, V_R = 100 \text{ V}$		250	ns
Q_{RM}		1.0		μC
I_{RM}		12		A

Note: 1. Pulse test, $t \leq 300 \mu\text{s}$, duty cycle $d \leq 2 \%$

Min Recommended Footprint

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b ₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
C	4	8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.9	5.1	.193	.201
A_1	2.7	2.9	.106	.114
A_2	.02	.25	.001	.010
b	1.15	1.45	.045	.057
b_2	1.9	2.1	.75	.83
C	.4	.65	.016	.026
D	13.80	14.00	.543	.551
E	15.85	16.05	.624	.632
E_1	13.3	13.6	.524	.535
e	5.45 BSC		.215 BSC	
H	18.70	19.10	.736	.752
L	2.40	2.70	.094	.106
L1	1.20	1.40	.047	.055
L2	1.00	1.15	.039	.045
L3	0.25 BSC		.010 BSC	
L4	3.80	4.10	.150	.161

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by one or more of the following U.S. patents:

4,835,592	4,881,106	5,017,508
4,850,072	4,931,844	5,034,790

5,049,961	5,187,117	5,486,715	6,306,728B1
5,063,307	5,237,481	5,381,025	