

Large Language Models

Current domain adaptation technics and their challenges

In context-learning and challenges

Anatomy of RAG

Augment

Retrieve

Generate

Fine-tuning and its challenges

What is fine tuning?

Fine-tuning refers to **customizing a pre-trained LLM** with additional training on a specific task or new dataset for enhanced performance and accuracy

Why fine tune?

Better performance

Developers hope that by fine tuning models with their own data and instructions, they'll get better results for their tasks

Cheaper or faster models

You may want to fine tune a smaller model for a specific task, instead of using an expensive general-purpose model

Differentiation

Most people won't train a foundation model; fine tuning with proprietary data provides a competitive advantage

Recap of current domain adaptation technics

FSL

Few Shot learning

RAG

Retrieval Augmented Generation

Fine-tuning

Fine-tuning

Research | UC Berkeley's RAFT Retrieval Augmented Fine Tuning

Understanding RAFT with an Exam Analogy

RAFT: Inference

Bodyboarding is a water sport in which the surfer rides a bodyboard on the crest, face, and curl of a wave which is carrying the surfer towards the shore. Bodyboarding is also referred to as

Boogieboarding due to the invention of the "Boogie Board" by Tom Morey in 1971. The average bodyboard consists of a short, rectangular piece of hydrodynamic foam. Bodyboarders typically use swim fins for additional propulsion and control while riding a

breaking wave.

WIKIPEDIA Bat (/kal'roptore/). [a] With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29-34 millimetres

The second largest order of mammals after rodents, bats comprise about 20% of all classified mammal species worldwide, with over 1,400 species. These were traditionally divided into two suborders: the largely fruit-eating megabats, and the

Microbat

The RAFT-trained LLM synthesizes the answer from relevant documents Mesopic vision

RAFT: Chain-of-thought ++

Oracle Context

Its skull was long and narrow, and its face had an upturnedsnout.[6]Based on its skull dimensions, it may have had a wingspan of approximately 50 cm (20 in) and a bodymass of 60 g (2.1 oz). The proportions are equivalent to a smaller megabat or larger microbat ofmodern chiropteran fauna.[7] Taxonomy and etymology DescriptionIts braincase was 14.5–14.8 mm (0.57–0.58 in) wide and 13.4–14.8 mm (0.53–0.58 in) high.[8]Some researchers believe that D. draculae would have preyed on megafauna,[9] while others believe that they would have preyed on Caviomorpha.[10] Other potential prey items that would have been available to D.

Question

What was the estimated wingspan of D. draculae?

CoT Answer

To answer the question, we need to identify the estimated wingspan of D. draculae.

The context provided gives us the necessary information to determine this.

First, we look for the part of the context that directly mentions the wingspan of D. draculae.

We find it in the sentence: ##begin_quote## Based on its skull dimensions, it may have had a wingspan of approximately 50 cm (20 in) and a body mass of 60 g (2.1 oz). ##end_quote##.

This sentence explicitly mentions the estimated wingspan of D. draculae as approximately 50 cm (20 in).

Therefore, based on the context provided, we can conclude that the estimated wingspan of D. draculae is approximately 50 cm (20 in).

<ANSWER>: 50 cm (20 in)

RAFT improves RAG performance for all specialized domains

	PubMed	HotpotQA	HuggingFace	Torch Hub	TensorFlow Hub
GPT-3.5 + RAG	71.60	41.5	29.08	60.21	65.59
LLaMA2-7B	56.5	0.54	0.22	0	0
LLaMA2-7B + RAG	58.8	0.03	26.43	08.60	43.06
DSF	59.7	6.38	61.06	84.94	86.56
DSF + RAG	71.6	4.41	42.59	82.80	60.29
RAFT (LLaMA2-7B)	73.30	35.28	74.00	84.95	86.86

RAFT Dataset generation

Fine-tuning dataset

Fine-tuning using Azure Al Studio

Conclusion

Metrics

	Base Llama 2 7B Chat	Fine-tuned Llama 2 7B
Similarity To Llama 3 70B	2.73	4.76 (1.7 x)
Groundedness	2.74	3.16 (1.15 x)

Inferencing Costs

Llama 2 7B Fine Tuned

paygo-finetuned-model-inference-hosting:

\$3.09 per hour

paygo-finetuned-model-inference-output-tokens:

\$0.00067 per 1000 tokens

paygo-finetuned-model-inference-input-tokens:

\$0.00052 per 1000 tokens

Llama 3 70B

paygo-inference-output-tokens:

\$0.01134 per 1000 tokens

paygo-inference-input-tokens:

\$0.00378 per 1000 tokens

100x Cheaper for inference costs

Cost

Dataset generation

Model: Llama 3 70B Data points 18K Tokens_in 10M Tokens_out 3.7M

Total ~ \$80

Fine tuning

Duration 1.5 hours Cost \$35/hour

Total ~ \$50

paygo-inference-output-tokens: \$0.01134 per 1000 tokens

paygo-inference-input-tokens: \$0.00378 per 1000 tokens

Key Insights

Which fine-tuning learning rate?

We fine-tuned a Llama 2 7B completion model

Throughput and Load balancing – Data gen

MaaS

Convenient
Pay as You Go
No infra to manage

70 tokens / s

MaaP

Standard_NC96ads_A100_v4 4x Nvidia A100

140 tok/s/VM in average (35 tok/s/GPU x 4)

Requires managing provisioning and teardown

Shard

Shard the dataset across multiple load balanced endpoints

Increase tok/s

LiteLLM

https://www.litellm.ai/

Load balancing on:

2 MaaP NC96ads_A100_v4 + 1 MaaS endpoint

=> 350 tok/s in average

Cedric Vidal

Principal Al Advocate

Microsoft

aka.ms/cvidal

aka.ms/raft-build24

Q&A

