Transmission lines and cables

$$\oint_S \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_o} \int_V \rho \ dV$$

$$\oint_S \vec{B} \cdot d\vec{S} = 0$$

$$\oint_L \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \int_S \vec{B} \cdot d\vec{S}$$

$$\frac{1}{\mu_o} \oint_L \vec{B} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{S} + \epsilon_o \frac{\partial}{\partial t} \int_S \vec{E} \cdot d\vec{S}$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_o}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\frac{1}{\mu_o} \vec{\nabla} \times \vec{B} = \vec{J} + \epsilon_o \frac{\partial \vec{E}}{\partial t}$$

$$\oint_S \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_o} \int_V \rho \ dV$$

$$\oint_S \vec{B} \cdot d\vec{S} = 0$$

$$\oint_L \vec{E} \cdot d\vec{l} = 0$$

$$\frac{1}{\mu_o} \oint_L \vec{B} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{S}$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_o}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = 0$$

$$\frac{1}{\mu_o} \vec{\nabla} \times \vec{B} = \vec{J}$$

Potential V is given as:

$$\nabla \cdot (\nabla V) = -\frac{\rho}{\epsilon_o}$$

Potential V is given as:

$$\nabla \cdot (\nabla V) = -\frac{\rho}{\epsilon_o}$$

For charge free region:

$$\nabla \cdot (\nabla V) = 0$$

Laplace equation

Two wire line under static (dc) conditions

Static conditions

 ρ : line charge density

Infinite length lossless transmission line is considered.

No \vec{E} and \vec{B} in z direction.

Two dimensional Laplace equation

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

Two dimensional Laplace equation

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

d << D : proximity effects neglected.

Hence *charge density* is uniform along the periphery of the conductor.

 \vec{E} as a function of distance from a conductor

$$|\vec{E}| = \frac{\rho}{2\pi r \epsilon_o}$$

 \vec{B} as a function of distance from a conductor

$$|\vec{B}| = \frac{\mu_o I}{2\pi r}$$

 \vec{E} on \vec{B} fields

Time varying fields

- TEM is only one of the valid patterns. Other patterns may exist.
- Frequency f tends to 0, then (dimensions of the line) << $\frac{\delta}{\lambda}$
- In such cases, TEM is the "dominant mode".

* TEM: transverse electromagnetic

Consider a system:

 \mathcal{T} : radius of the conductors

$$-\frac{\partial i(z,t)}{\partial z} = \left(\frac{\pi \,\epsilon_o}{\log_e \frac{D}{r}}\right) \, \frac{\partial v(z,t)}{\partial t}$$

r: radius of the conductors

$$-\frac{\partial i(z,t)}{\partial z} = \left(\frac{\pi \,\epsilon_o}{1 \, \text{or}} \, D\right) \, \frac{\partial v(z,t)}{\partial t} \quad \Longrightarrow \quad -\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \, \frac{\partial v(z,t)}{\partial t}$$

 \mathcal{C}' : capacitance per unit length of the line.

r: radius of the conductors

$$-\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \frac{\partial v(z,t)}{\partial t}$$

$$-\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \, \frac{\partial v(z,t)}{\partial t}$$

 \mathcal{T} : radius of the conductors

$$-\frac{\partial v(z,t)}{\partial z} = \left(\frac{\mu_o}{\pi} \log_e \frac{D}{r}\right) \frac{\partial i(z,t)}{\partial t}$$

r: radius of the conductors

$$-\frac{\partial v(z,t)}{\partial z} = \left(\frac{\mu_o}{\pi} \log_e \frac{D}{r}\right) \frac{\partial i(z,t)}{\partial t} \implies -\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t}$$

 \mathcal{L}' : inductance per unit length of the line.

r: radius of the conductors

$$-\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t}$$

$$-\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t}$$

Similarly, the lossy effects can also be accommodated as

 \mathcal{R}' : series resistance per unit length of the line.

 \mathcal{G}' : leakage conductance per unit length of the line.

Telegrapher Equations

$$\begin{split} -\frac{\partial v(z,t)}{\partial z} &= \mathcal{L}' \frac{\partial i(z,t)}{\partial t} + \mathcal{R}' i(z,t) \\ -\frac{\partial i(z,t)}{\partial z} &= \mathcal{C}' \frac{\partial v(z,t)}{\partial t} + \mathcal{G}' v(z,t) \end{split}$$

Telegrapher Equations

$$\begin{split} -\frac{\partial v(z,t)}{\partial z} &= \mathcal{L}' \frac{\partial i(z,t)}{\partial t} + \mathcal{R}' i(z,t) \\ -\frac{\partial i(z,t)}{\partial z} &= \mathcal{C}' \frac{\partial v(z,t)}{\partial t} + \mathcal{G}' v(z,t) \end{split}$$

Above equations do not have closed form solution, except for special cases.

Fields within the conductor (Skin effect)

Assume $\vec{J} = \sigma \, \vec{E}$ within the conductors.

$$\vec{J}_z(r) = \frac{k \vec{I}}{2 \pi a} \frac{J_o(k r)}{J_1(k a)}$$

where,

$$k = \sqrt{-j\,\omega\,\mu\,\sigma}$$

 J_o and J_1 are Bessel functions of order zero and one respectively.

Fields on the surface of conductor (Skin effect)

$$\vec{E}_z(a) = \frac{\vec{J}_z(a)}{\sigma}$$

where,

 $ec{E}_z(a)$ (voltage per unit length) on the surface

 $ec{J_z}(a)$ can be written in terms of $ec{I}$.

Fields on the surface of conductor (Skin effect)

$$\vec{E}_z(a) = \frac{\vec{J}_z(a)}{\sigma}$$

where,

 $ec{E}_z(a)$ (voltage per unit length) on the surface

 $ec{J}_z(a)$ can be written in terms of $ec{I}$.

Impedance per unit length \mathcal{Z}_i is called internal impedance.

$$\mathcal{Z}_i = \frac{\vec{J}_z(a)}{\sigma \, \vec{I}}$$

\vec{E} distribution

Lossless line

Lossy line

Fields within the conductor (Skin effect)

The internal impedance for low frequencies

$$\mathcal{Z}_{\text{int}} = \frac{1}{\sigma \pi a^2} + j \omega \frac{\mu_{\text{int}}}{8 \pi}$$

Note: $\mathcal{Z}_{\mathrm{int}}$ is internal impedance per unit length of the line.

Telegrapher Equations

Special case: $\mathcal{R}' = \mathcal{G}' = 0$.

$$-\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t}$$

$$-\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \frac{\partial v(z,t)}{\partial t}$$

Telegrapher Equations

The general solution is

$$v(z,t) = f_1 \left(t - \frac{z}{v_p} \right) + f_2 \left(t + \frac{z}{v_p} \right)$$
$$i(z,t) = \frac{1}{Z_c} \left[f_1 \left(t - \frac{z}{v_p} \right) - f_2 \left(t + \frac{z}{v_p} \right) \right]$$

Telegrapher Equations

The general solution is

$$v(z,t) = f_1 \left(t - \frac{z}{v_p} \right) + f_2 \left(t + \frac{z}{v_p} \right)$$
$$i(z,t) = \frac{1}{Z_c} \left[f_1 \left(t - \frac{z}{v_p} \right) - f_2 \left(t + \frac{z}{v_p} \right) \right]$$

where,

 $Z_c = \sqrt{rac{\mathcal{L}'}{\mathcal{C}'}}$: characteristic impedance of the line,

 $v_p = \frac{1}{\sqrt{\mathcal{L}'.\,\mathcal{C}'}}$: speed of propagation.

Telegrapher Equations

The general solution is

$$v(z,t) = f_1 \left(t - \frac{z}{v_p} \right) + f_2 \left(t + \frac{z}{v_p} \right)$$
$$i(z,t) = \frac{1}{Z_c} \left[f_1 \left(t - \frac{z}{v_p} \right) - f_2 \left(t + \frac{z}{v_p} \right) \right]$$

where,

 $Z_c = \sqrt{\frac{\mathcal{L}'}{\mathcal{C}'}}$: characteristic impedance of the line,

 $v_p = \frac{1}{\sqrt{\mathcal{L}'.\,\mathcal{C}'}}$: speed of propagation.

Boundary conditions are applied to eliminate f_1 and f_2 .

$$-\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t} + \mathcal{R}' i(z,t)$$

$$-\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \frac{\partial v(z,t)}{\partial t} + \mathcal{G}' \, v(z,t)$$

In sinusoidal steady state conditions, $\frac{\partial}{\partial t}$ is replaced by $j\,\omega$.

$$-\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t} + \mathcal{R}' i(z,t)$$
$$-\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \frac{\partial v(z,t)}{\partial t} + \mathcal{G}' v(z,t)$$

In sinusoidal steady state conditions, $\dfrac{\partial}{\partial t}$ is replaced by $j\,\omega$.

$$-rac{d\,ar{V}(j\,\omega)}{dz}=\mathcal{Z}(j\,\omega)\,ar{I}(j\,\omega)$$
 , $-rac{d\,ar{I}(j\,\omega)}{dz}=\mathcal{Y}(j\,\omega)\,ar{V}(j\,\omega)$

$$-\frac{\partial v(z,t)}{\partial z} = \mathcal{L}' \frac{\partial i(z,t)}{\partial t} + \mathcal{R}' i(z,t)$$
$$-\frac{\partial i(z,t)}{\partial z} = \mathcal{C}' \frac{\partial v(z,t)}{\partial t} + \mathcal{G}' v(z,t)$$

In sinusoidal steady state conditions, $\dfrac{\partial}{\partial t}$ is replaced by $j\,\omega$.

$$-rac{d\,ar{V}(j\,\omega)}{dz}=\mathcal{Z}(j\,\omega)\,ar{I}(j\,\omega)$$
 , $-rac{d\,ar{I}(j\,\omega)}{dz}=\mathcal{Y}(j\,\omega)\,ar{V}(j\,\omega)$

where,

$$\mathcal{Z}(j\,\omega) = \mathcal{R}' + j\,\omega\,\mathcal{L}'$$
 and $\mathcal{Y}(j\,\omega) = \mathcal{G}' + j\,\omega\,\mathcal{C}'$.

$$-rac{d\,ar{V}(j\,\omega)}{dz}=\mathcal{Z}(j\,\omega)\,ar{I}(j\,\omega)$$
 , $-rac{d\,ar{I}(j\,\omega)}{dz}=\mathcal{Y}(j\,\omega)\,ar{V}(j\,\omega)$

$$-\frac{d\,\bar{V}(j\,\omega)}{dz}=\mathcal{Z}(j\,\omega)\,\bar{I}(j\,\omega)\quad ,\quad -\frac{d\,\bar{I}(j\,\omega)}{dz}=\mathcal{Y}(j\,\omega)\,\bar{V}(j\,\omega)$$

General solution for voltage and current phasors at a distance **z** from **sending end** of the line is given as:

$$\bar{V}_z = A e^{-\gamma z} + B e^{\gamma z}$$
 $\bar{I}_z = \frac{1}{Z_c} (A e^{-\gamma z} - B e^{\gamma z})$

$$-rac{d\,ar{V}(j\,\omega)}{dz}=\mathcal{Z}(j\,\omega)\,ar{I}(j\,\omega)$$
 , $-rac{d\,ar{I}(j\,\omega)}{dz}=\mathcal{Y}(j\,\omega)\,ar{V}(j\,\omega)$

General solution for voltage and current phasors at a distance **z** from **sending end** of the line is given as:

$$\bar{V}_z = A e^{-\gamma z} + B e^{\gamma z}$$

$$\bar{I}_z = \frac{1}{Z_c} \left(A e^{-\gamma z} - B e^{\gamma z} \right)$$

where,

$$\gamma = \sqrt{\mathcal{Z}(j\,\omega).\mathcal{Y}(j\,\omega)}$$

$$Z_c = \sqrt{rac{\mathcal{Z}(j\,\omega)}{\mathcal{Y}(j\,\omega)}}$$

Propagation constant

Characteristic impedance of the line.

$$\bar{V}_z = A e^{-\gamma z} + B e^{\gamma z}$$
 $\bar{I}_z = \frac{1}{Z_c} (A e^{-\gamma z} - B e^{\gamma z})$

Applying boundary conditions to eliminate A and B.

$$\bar{V}_z = A e^{-\gamma z} + B e^{\gamma z}$$
 $\bar{I}_z = \frac{1}{Z_c} (A e^{-\gamma z} - B e^{\gamma z})$

Applying boundary conditions to eliminate A and B.

Following relations are obtained:

$$\bar{V}_k = \cosh(\gamma l).\bar{V}_m + Z_c \sinh(\gamma l).\bar{I}_m$$
$$\bar{I}_k = \frac{1}{Z_c} \sinh(\gamma l).\bar{V}_m + \cosh(\gamma l).\bar{I}_m$$

'k' and 'm' subscripts refer to sending and receiving end variables.

Above equations can be used to synthesize an equivalent PI circuit:

Above equations can be used to synthesize an equivalent PI circuit:

$$Z_{se} = Z_c \sinh(\gamma l) = \frac{Z \sinh(\gamma l)}{\gamma l}$$

$$Z = (\mathcal{R}' + j \,\omega \,\mathcal{L}').l$$

Above equations can be used to synthesize an equivalent PI circuit :

$$Z_{se} = Z_c \sinh(\gamma l) = \frac{Z \sinh(\gamma l)}{\gamma l}$$

$$Z = (\mathcal{R}' + j\,\omega\,\mathcal{L}').l$$

$$\frac{Y_{sh}}{2} = \frac{1}{Z_c} \tanh\left(\frac{\gamma l}{2}\right) = \frac{Y}{2} \frac{\tanh\left(\frac{\gamma l}{2}\right)}{\left(\frac{\gamma l}{2}\right)}$$

$$Y = (\mathcal{G}' + j \,\omega \,\mathcal{C}').l$$

Consider a system

$$v_s = \frac{230000\sqrt{2}}{\sqrt{3}}\cos(2\pi 60t) \text{ V. } \text{L'} = 1.5 \text{ mH/mi},$$

$$C' = 0.02 \ \mu F/mi$$
, $d = 100 \ mi$, $R = 10 \ \Omega$.

Source: Sauer P. W. And M. A. Pai (1998), *Power System Dynamics ad Stability*, Upper Saddle River, NJ, Prentice Hall.

Summary of transmission lines concept:

Distributed parameter line model (travelling wave model)

$$\begin{split} -\frac{\partial v(z,t)}{\partial z} &= \mathcal{L}' \frac{\partial i(z,t)}{\partial t} + \mathcal{R}' i(z,t) \\ -\frac{\partial i(z,t)}{\partial z} &= \mathcal{C}' \frac{\partial v(z,t)}{\partial t} + \mathcal{G}' v(z,t) \end{split}$$

Summary of transmission lines concept:

Lumped parameter line model (sinusoidal steady-state model)

$$-\frac{d\,\bar{V}(j\,\omega)}{dz}=\mathcal{Z}(j\,\omega)\,\bar{I}(j\,\omega)\;\text{,}\;\;-\frac{d\,\bar{I}(j\,\omega)}{dz}=\mathcal{Y}(j\,\omega)\,\bar{V}(j\,\omega)$$

where,

$$\mathcal{Z}(j\,\omega) = \mathcal{R}' + j\,\omega\,\mathcal{L}' \qquad \mathcal{Y}(j\,\omega) = \mathcal{G}' + j\,\omega\,\mathcal{C}'.$$

Above equations can be used to synthesize an equivalent PI circuit :

$$Z_{se} = Z_c \sinh(\gamma l) = \frac{Z \sinh(\gamma l)}{\gamma l}$$

$$Z = (\mathcal{R}' + j\,\omega\,\mathcal{L}').l$$

$$\frac{Y_{sh}}{2} = \frac{1}{Z_c} \tanh\left(\frac{\gamma l}{2}\right) = \frac{Y}{2} \frac{\tanh\left(\frac{\gamma l}{2}\right)}{\left(\frac{\gamma l}{2}\right)}$$

$$Y = (\mathcal{G}' + j \,\omega \,\mathcal{C}').l$$

Polyphase transmission system

Bundled conductors

Courtesy: Prof. Sanjay Dambhare, College of Engineering Pune, India.

Bundled conductors

Characteristic	1 conductor 6.35 cm diam.	2 conductors 4.5 cm diam.	3 conductors 3.66 cm diam.	4 conductors 3.18 cm diam.	
Characteristic	0	0 0	0 0	0 0	
Max. Gradient kV(rms)/cm			0	0 0	
Center phase Outer phase	16.14 15.22	15.80 14.68	14.87 13.72	14.07 12.89	
Av Gradient (V(rms)/cm				1.4	
Center phase	16.14	14.38	13.06	12.26	
Outer phase	15.22	13.37	12.05	11.23	
Audible Noise dB over 0.0002 µBar, 30.5 m from outer phase in					
neavy rain Corona loss in	63.8	57.5	51.7	48.8	
neavy rain kW/3¢ mile	187.5	111.5	76.3	58.3	

Source: Walter Weeks, Transmission and Distribution of Electrical Energy, Harper and Row, 1981.

Consider a three-phase transmission system

$$-\frac{d}{dz}\begin{bmatrix}V_1\\V_2\\V_3\\V_5\\V_6\\V_7\\V_8\end{bmatrix} = \begin{bmatrix}Z_{11} & Z_{12} & Z_{13} & Z_{14} & Z_{15} & Z_{16} & Z_{17} & Z_{18}\\Z_{21} & Z_{22} & Z_{23} & Z_{24} & Z_{25} & Z_{26} & Z_{27} & Z_{28}\\Z_{31} & Z_{32} & Z_{33} & Z_{34} & Z_{35} & Z_{36} & Z_{37} & Z_{38}\\Z_{41} & Z_{42} & Z_{43} & Z_{44} & Z_{45} & Z_{46} & Z_{47} & Z_{48}\\Z_{51} & Z_{52} & Z_{53} & Z_{54} & Z_{55} & Z_{56} & Z_{57} & Z_{58}\\Z_{61} & Z_{62} & Z_{63} & Z_{64} & Z_{65} & Z_{66} & Z_{67} & Z_{68}\\Z_{71} & Z_{72} & Z_{73} & Z_{74} & Z_{75} & Z_{76} & Z_{77} & Z_{78}\\Z_{81} & Z_{82} & Z_{73} & Z_{84} & Z_{85} & Z_{86} & Z_{87} & Z_{88}\end{bmatrix} \cdot \begin{bmatrix}I_1\\I_2\\I_3\\I_4\\I_5\\I_6\\I_7\\I_8\end{bmatrix}$$

$$-\frac{d}{dz}\begin{bmatrix}V_1\\V_2\\V_3\\V_5\\V_6\end{bmatrix} = \begin{bmatrix}Z_{11} & Z_{12} & Z_{13} & Z_{14} & Z_{15} & Z_{16} & Z_{17} & Z_{18}\\Z_{21} & Z_{22} & Z_{23} & Z_{24} & Z_{25} & Z_{26} & Z_{27} & Z_{28}\\Z_{31} & Z_{32} & Z_{33} & Z_{34} & Z_{35} & Z_{36} & Z_{37} & Z_{38}\\Z_{41} & Z_{42} & Z_{43} & Z_{44} & Z_{45} & Z_{46} & Z_{47} & Z_{48}\\Z_{51} & Z_{52} & Z_{53} & Z_{54} & Z_{55} & Z_{56} & Z_{57} & Z_{58}\\V_6 & & Z_{61} & Z_{62} & Z_{63} & Z_{64} & Z_{65} & Z_{66} & Z_{67} & Z_{68}\\V_7\\V_8\end{bmatrix} = \begin{bmatrix}Z_{71} & Z_{72} & Z_{73} & Z_{74} & Z_{75} & Z_{76} & Z_{77} & Z_{78}\\Z_{81} & Z_{82} & Z_{73} & Z_{84} & Z_{85} & Z_{86} & Z_{87} & Z_{88}\end{bmatrix} = \begin{bmatrix}I_1\\I_2\\I_3\\I_4\\I_5\\I_6\end{bmatrix}$$

$$-rac{d}{dz}egin{pmatrix} oldsymbol{V}_p \ oldsymbol{V}_g \end{pmatrix} = egin{pmatrix} oldsymbol{Z}_{pp} & oldsymbol{Z}_{pg} \ oldsymbol{Z}_{gp} & oldsymbol{Z}_{gg} \end{pmatrix} egin{pmatrix} oldsymbol{I}_p \ oldsymbol{I}_g \end{pmatrix}$$

$$-rac{d}{dz}egin{pmatrix} m{V}_p \ m{V}_g \end{pmatrix} = egin{pmatrix} m{Z}_{pp} & m{Z}_{pg} \ m{Z}_{gp} & m{Z}_{gg} \end{pmatrix} egin{pmatrix} m{I}_p \ m{I}_g \end{pmatrix}$$

Conditions imposed on the above system are,

$$=$$
 $V_g = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$

$$-rac{d}{dz}egin{pmatrix} m{V}_p \ m{V}_g \end{pmatrix} = egin{pmatrix} m{Z}_{pp} & m{Z}_{pg} \ m{Z}_{gp} & m{Z}_{gg} \end{pmatrix} egin{pmatrix} m{I}_p \ m{I}_g \end{pmatrix}$$

Conditions imposed on the above system are,

$$V_g = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$

$$I_a = I_1 + I_2$$
 $I_b = I_3 + I_4$ $I_c = I_5 + I_6$

$$I_b = I_3 + I_4$$

$$I_c = I_5 + I_6$$

$$-rac{d}{dz}egin{pmatrix} m{V}_p \ m{V}_g \end{pmatrix} = egin{pmatrix} m{Z}_{pp} & m{Z}_{pg} \ m{Z}_{gp} & m{Z}_{gg} \end{pmatrix} egin{pmatrix} m{I}_p \ m{I}_g \end{pmatrix}$$

Conditions imposed on the above system are,

$$V_g = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$

$$I_a = I_1 + I_2$$
 $I_b = I_3 + I_4$ $I_c = I_5 + I_6$

$$V - V_1 - V_2$$

$$I_b = I_3 + I_4$$

$$V_a = V_1 = V_2$$
 $V_b = V_3 = V_4$ $V_c = V_5 = V_6$

$$I_c = I_5 + I_6$$

$$V_c = V_5 = V_6$$

$$-\frac{d}{dz} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} Z'_{11} & Z'_{12} & Z'_{13} \\ Z'_{21} & Z'_{22} & Z'_{23} \\ Z'_{31} & Z'_{32} & Z'_{33} \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$

Shunt Effects

$$-\frac{d}{dz}\begin{bmatrix}I_1\\I_2\\I_3\\I_4\\I_5\\I_6\\I_7\\I_8\end{bmatrix} = \begin{bmatrix}Y_{11} & Y_{12} & Y_{13} & Y_{14} & Y_{15} & Y_{16} & Y_{17} & Y_{18}\\Y_{21} & Y_{22} & Y_{23} & Y_{24} & Y_{25} & Y_{26} & Y_{27} & Y_{28}\\Y_{31} & Y_{32} & Y_{33} & Y_{34} & Y_{35} & Y_{36} & Y_{37} & Y_{38}\\Y_{41} & Y_{42} & Y_{43} & Y_{44} & Y_{45} & Y_{46} & Y_{47} & Y_{48}\\Y_{51} & Y_{52} & Y_{53} & Y_{54} & Y_{55} & Y_{56} & Y_{57} & Y_{58}\\Y_{61} & Y_{62} & Y_{63} & Y_{64} & Y_{65} & Y_{66} & Y_{67} & Y_{68}\\Y_{71} & Y_{72} & Y_{73} & Y_{74} & Y_{75} & Y_{76} & Y_{77} & Y_{78}\\Y_{81} & Y_{82} & Y_{73} & Y_{84} & Y_{85} & Y_{86} & Y_{87} & Y_{88}\end{bmatrix}\begin{bmatrix}V_1\\V_2\\V_3\\V_4\\V_5\\V_5\\V_6\\V_7\\V_8\end{bmatrix}$$

Shunt Effects

$$-\frac{d}{dz} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} Y'_{aa} & Y'_{ab} & Y'_{ac} \\ Y'_{ba} & Y'_{bb} & Y'_{bc} \\ Y'_{ca} & Y'_{cb} & Y'_{cc} \end{bmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}$$

Transposition of lines

Courtesy: Prof. Sanjay Dambhare, College of Engineering Pune, India.

Formulae for lumped parameter line model

$$\gamma = \sqrt{\mathcal{Z}(j\,\omega).\mathcal{Y}(j\,\omega)}$$

$$Z_c = \sqrt{\frac{\mathcal{Z}(j\,\omega)}{\mathcal{Y}(j\,\omega)}}$$

where,

$$\mathcal{Z}(j\,\omega) = \mathcal{R}' + j\,\omega\,\mathcal{L}'$$

$$\mathcal{Y}(j\,\omega) = \mathcal{G}' + j\,\omega\,\mathcal{C}'$$

$$\gamma = \alpha + j \beta$$

Table 6.1 Typical overhead transmission line parameters

Nominal Voltage	230 kV	345 kV	500 kV	765 kV	1,100 kV
$R (\Omega/\text{km})$ $x_L = \omega L (\Omega/\text{km})$ $b_C = \omega C (\mu \text{s/km})$	0.050	0.037	0.028	0.012	0.005
	0.488	0.367	0.325	0.329	0.292
	3.371	4.518	5.200	4.978	5.544
α (nepers/km)	0.000067	0.000066	0.000057	0.000025	0.000012
β (rad/km)	0.00128	0.00129	0.00130	0.00128	0.00127
$Z_C(\Omega)$	380	285	250	257	230
SIL (MW)	140	420	1000	2280	5260
Charging MVA/km = $V_0^2 b_C$	0.18	0.54	1.30	2.92	6.71

- Notes: 1. Rated frequency is assumed to be 60 Hz.
 - 2. Bundled conductors used for all lines listed, except for the 230 kV line.
 - 3. R, x_L , and b_C are per-phase values.
 - 4. SIL and charging MVA are three-phase values.

Source: Prabha Kundur, Power System Stability and Control, TMH, 1982.

Table 6.2 Typical cable parameters

Nominal Voltage	115 kV	115 kV	230 kV	230 kV	500 kV
Cable Type	PILC	PIPE	PILC	PIPE	PILC
R (Ω/km)	0.0590	0.0379	0.0277	0.0434	0.0128
x_L =ω L (Ω/km)	0.3026	0.1312	0.3388	0.2052	0.2454
b_C =ω C (μs/km)	230.4	160.8	245.6	298.8	96.5
α (nepers/km)	0.00081	0.000656	0.000372	0.000824	0.000127
β (rad/km)	0.00839	0.00464	0.00913	0.00787	0.00487
$Z_C(\Omega)$	36.2	28.5	37.1	26.2	50.4
SIL (MW)	365	464	1426	2019	4960
Charging MVA/km = $V_0^2 b_C$	3.05	2.13	13.0	15.8	24.1

For lossless lines $\mathcal{R}' = \mathcal{G}' = 0$.

$$\gamma = j\omega\,\sqrt{\mathcal{L}'\,\mathcal{C}'} = j\,eta$$
 , $Z_c = \sqrt{rac{\mathcal{L}'}{\mathcal{C}'}}$

For lossless lines $\mathcal{R}' = \mathcal{G}' = 0$.

$$\gamma = j\omega\,\sqrt{\mathcal{L}'\,\mathcal{C}'} = j\,eta$$
 , $Z_c = \sqrt{rac{\mathcal{L}'}{\mathcal{C}'}}$

$$\bar{V}_k = \cos(\beta l).\bar{V}_m + j Z_c \sin(\beta l).\bar{I}_m$$

$$\bar{I}_k = j \frac{1}{Z_c} \sin(\beta l) \cdot \bar{V}_m + \cos(\beta l) \cdot \bar{I}_m$$

Substituting $\theta = \beta l$

Substituting $\theta=\beta\,l$ (electrical length of the line.)

$$\bar{V}_k = \cos(\theta).\bar{V}_m + j Z_c \sin(\theta).\bar{I}_m$$
$$\bar{I}_k = j \frac{1}{Z_c} \sin(\theta).\bar{V}_m + \cos(\theta).\bar{I}_m$$

1) Purely resistive loading at receiving end

Thevenin equivalent at receiving end:

$$\bar{V}_{th} = \frac{V_k}{\cos(\theta)}$$

Open circuit voltage at receiving end

$$Z_{th} = \frac{\bar{V}_m}{\bar{I}_m}|_{\bar{V}_k=0} = j Z_c \tan(\theta)$$

Thevenin impedance seen from receiving end

1) Purely resistive loading at receiving end

Thevenin equivalent at receiving end:

$$\bar{V}_{th} = \frac{V_k}{\cos(\theta)}$$

Open circuit voltage at receiving end

$$Z_{th} = \frac{\bar{V}_m}{\bar{I}_m}|_{\bar{V}_k=0} = j Z_c \tan(\theta)$$

Thevenin impedance seen from receiving end