Etapa Ensino Fundamental Anos Finais

Matemática

Situações-problema envolvendo volume de prismas e cilindros

9º ANO Aula 23 – 4º Bimestre

 Volume de prismas e cilindros.

Objetivos

- Calcular o volume de prismas e cilindros;
- Resolver situações-problema envolvendo volume de prismas e cilindros.

Mostre-me

Sabe essa?

(Enem 2017) Uma rede hoteleira dispõe de cabanas simples na ilha de Gotland, na Suécia, conforme Figura 1. A estrutura de sustentação de cada uma dessas cabanas está representada na Figura 2. A ideia é permitir ao hóspede uma estada livre de tecnologia, mas conectada com a natureza.

A forma geométrica da superfície cujas arestas estão representadas na Figura 2 é:

- A) tetraedro;
- B) pirâmide retangular;
- C) tronco de pirâmide retangular;
- D) prisma quadrangular reto;
- E) prisma triangular reto.

Figura 1

Figura 2

Para começar Correção

Sabe essa?

 $[\dots]$

A forma geométrica da superfície cujas arestas estão representadas na Figura 2 é:

- A) tetraedro;
- B) pirâmide retangular;
- C) tronco de pirâmide retangular;
- D) prisma quadrangular reto;
- E) prisma triangular reto.

Figura 1

ste n 315 fev 2013 (adaptado)

Como a figura 2 possui faces opostas paralelas e iguais e base triangular, sua representação é dada por um prisma triangular reto.

Foco no conteúdo

Unidades de Medida de Volume							
Nome	Quilômetro cúbico	Hectômetro cúbico	Decâmetro cúbico	Metro cúbico	Decímetro cúbico	Centímetro cúbico	Milímetro cúbico
Símbolo	km³	hm³	dam³	m^3	dm³	cm³	mm³
	0,000 000 001	0,000 001	0,001	1	1 000	1 000 000	1 000 000 000

Foco no conteúdo

Para calcular o volume de prismas e cilindros retos, utilizam-se fórmulas específicas, que variam de acordo com a forma do sólido. Vejamos as fórmulas para ambos:

 Volume do prisma: Um prisma é um sólido tridimensional que possui duas bases poligonais paralelas idênticas e faces laterais retangulares (ou quadradas).

Volume do prisma = área da base x altura

 Volume do cilindro: Um cilindro é um sólido tridimensional que possui duas bases circulares paralelas e uma superfície lateral curva.

Volume do cilindro = área da base x altura

Volume dos prismas: $V_p = A_b \cdot h$

Volume do cilindro: $V_c = \pi r^2 h$

Atividade 1

(UFPR) – Ao se colocar 192 litros de água em um reservatório, cujo interior tem a forma de um cubo com uma das faces na horizontal, o nível da água sobe 30 cm. Qual é a capacidade desse reservatório?

- a) 512 litros
- b) 640 litros
- c) 768 litros
- d) 576 litros
- e) 384 litros

Na prática Correção

Atividade 1

(UFPR) - Ao se colocar 192 litros de água em um reservatório, cujo interior tem a forma de um cubo com uma das faces na horizontal, o nível da água sobe 30 cm. Qual é a capacidade desse reservatório?

Como 1 dm³ corresponde a 1 litro, vamos trabalhar com as dimensões em dm:

$$x \cdot x \cdot 3 = 192 \qquad x = \sqrt{64}$$

a) 512 litros
$$3x^2 = 192$$

b) 640 litros
c) 768 litros
$$x^2 = \frac{192}{3}$$

d) 576 litros
e) 384 litros
$$x^2 = 64$$

$$2 \times 2 = 102$$

$$x = 192 \qquad x = 8 \, dm$$

$$=\frac{192}{}$$
 $C=8\cdot 8\cdot 8$

$$C = 512 dm^3$$

$$C = 512 \ litros$$

Atividade 2

(UFSC) – Um cilindro reto tem 63π cm³ de volume. Sabendo que o raio da base mede 3 cm, determine, em centímetros, a sua altura.

Na prática Correção

Atividade 2

(UFSC) – Um cilindro reto tem 63π cm³ de volume. Sabendo que o raio da base mede 3 cm, determine, em centímetros, a sua altura. $V = \pi \cdot r^2 \cdot h$

$$63\pi = \pi \cdot 3^2 \cdot h$$

$$63\pi = 9\pi h$$

$$h = \frac{63\pi}{9\pi}$$

$$h = 7 cm$$

Todo mundo escreve

Dois engenheiros estão discutindo o projeto de uma caixa d'água para um prédio. O projeto feito pelos engenheiros prevê a construção de uma caixa d'água conforme a imagem a seguir:

O prédio possui 80 apartamentos com um consumo diário médio de 500 litros de água por apartamento e, além disso, 20% do total da capacidade da caixa d'água não podem ser utilizados por questões de segurança. O projeto da caixa d'água atenderá às expectativas dos engenheiros quanto ao consumo médio diário do edifício? Justifique.

Aplicando Correção

[...] O prédio possui 80 apartamentos com um consumo diário médio de 500 litros de água por apartamento e, além disso, 20% do total da capacidade da caixa d'água não pode ser utilizado por questões de segurança. O projeto da caixa d'água atenderá às expectativas dos engenheiros quanto ao consumo médio diário do edifício? Justifique.

Inicialmente será preciso calcular em litros a capacidade máxima da caixa d'água que, por ter um formato de um prisma retangular, tem seu volume dado por $V=6\cdot 3\cdot 5=90~\text{m}^3$ ou 90 mil litros.

Como 20% da capacidade da caixa d'água não pode ser utilizada por questões de segurança, só poderão ser utilizados 80% de 90 mil litros: $80\% de 90 000 = \frac{80}{100} \cdot 90 000 = 72 000 litros$.

O consumo diário dos apartamentos corresponde a: $500 \times 80 = 40\,000$ litros. Portanto, o projeto atenderá às expectativas, pois a capacidade da caixa d'água é de 90 mil litros, podendo ser utilizados 72 mil litros e o consumo médio diário é de 40 mil litros.

O que aprendemos hoje?

- Calcular o volume de prismas e cilindros;
- Resolver situações-problema envolvendo o volume de prismas e cilindros.

Tarefa SP

Localizador: 101931

- 1. Professor, para visualizar a tarefa da aula, acesse com seu login: tarefas.cmsp.educacao.sp.gov.br
- 2. Clique em "Atividades" e, em seguida, em "Modelos".
- 3. Em "Buscar por", selecione a opção "Localizador".
- 4. Copie o localizador acima e cole no campo de busca.
- 5. Clique em "Procurar".

Videotutorial: http://tarefasp.educacao.sp.gov.br/

Referências

LEMOV, Doug. **Aula nota 10 2.0**: 62 técnicas para melhorar a gestão da sala de aula. Porto Alegre: Penso, 2018.

PARANÁ (ESTADO). Secretaria da Educação. Material de Apoio ao Professor. Paraná, 2022.

SÃO PAULO (ESTADO). Secretaria da Educação. Currículo Paulista do Ensino Fundamental. São Paulo, 2019.

Lista de imagens e vídeos

Slides 5 e 6 – https://pixabay.com/pt/vectors/homem-professor-professor-professor-%c3%b3culos-6719392/.

Slides 3 e 4 - Enem - Exame Nacional do Ensino Médio

Demais imagens produzidas pelo autor.