Multi-Label Fake News Detection with NLP using OBSINFOX [2] dataset

Victoire Ahverre

victoire.ahyerre@ensae.fr code realised with Etienne Selles

1 1 Introduction

- 2 The proliferation of fake news has emerged as a critical challenge in the digital age. While the
- automatic detection of fake news has been the focus of much research, existing models often reduce
- 4 the task to a binary classification problem, labeling news articles as either "fake" or "not fake." This
- 5 simplification overlooks the inherent complexity of fake news, which can involve elements such as
- 6 factual inaccuracies, stylistic exaggeration or omission of sources.
- 7 The problem adressed in this work is the following: Can fake news be more effectively detected
- 8 when modeled as part of a multi-label learning task rather than a standalone binary label? Most
- 9 traditional approaches fail to account for the diversity of cues that characterize fake news. Fake news
- 10 is rarely defined by falsity alone; it often exhibits subjective language, unverified information, and
- 11 rhetorical devices like insinuation or offbeat titles.
- 12 To explore this question, we base cles annotated by eight experts across 11 complementary binary
- 13 labels. These labels account both for factual and stylistic dimensions, including Fake News, False
- Information, Opinion, Subjective, and others. By jointly learning these labels, we hypothesize that
- the model can better distinguish fake news from legitimate information.

16 2 State of the Art

17 2.1 Fake News Datasets

- 18 The automatic detection of fake news has been extensively explored in recent years, often framed as
- 19 a binary classification problem. Several benchmark datasets such as LIAR [7] have been used to train
- 20 models that classify news articles as fake or real. However, these datasets largely ignore style and
- 21 context, instead providing labels such as true, half-true, or false. Moreover, they are limited to the
- English language, restricting their applicability to french fake news.
- 23 To address these limitations, Icard et al. introduced OBSINFOX in 2024 [2], a French-language
- 24 dataset composed of 100 news articles from 17 websites flagged as unreliable by fact-checking
- 25 sources such as Conspiracy Watch and NewsGuard. Each article is annotated with 11 binary labels
- 26 capturing both factual aspects (e.g., False Information, Sources Cited) and stylistic dimensions (e.g.,
- 27 Exaggeration, Offbeat Title, Subjective).
- 28 The dataset was annotated by eight raters, enabling detailed analysis of inter-annotator agreement and
- 29 label correlation. Notably, the authors found strong associations between the Fake News label and
- others such as Exaggeration, and False Information, which supports the use of a multi-label learning
- framework for improved detection performance.

32 2.2 Models

- 33 Many existing approaches for the detection of fake news have been presented using traditional
- machine learning models ([1], [5], [6]). BERT-based deep learning approach (FakeBERT, [3] are also
- 35 emerging.
- 36 In the context of French NLP, a prominent model is CamemBERT [4], a RoBERTa-based transformer
- 37 pretrained on the OSCAR corpus—a large, multilingual web crawl filtered for quality. CamemBERT
- has demonstrated state-of-the-art results across a variety of French-language tasks.
- 39 Thanks to its contextual embeddings and strong transfer capabilities, CamemBERT is well suited
- 40 for low-resource classification tasks, including those requiring multi-label or multi-task learning. Its
- 41 architecture allows it to capture dependencies among labels, such as those in OBSINFOX.

3 Data

- 43 The dataset used in this project is based on the metadata provided in the OBSINFOX corpus [2],
- 44 which contains URLs and annotations for 100 French news articles from 17 sources flagged as
- 45 unreliable.

46 3.1 Label analysis

- To better understand the distribution of labels across the dataset, we computed the mean annotation
- score for each label. Labels and their signification are reported in Table 1.

Label	Signification	
Fake News	The article describes at least a false or exaggerated fact.	
Places, Dates, People	The article mentions at least one place, date, or person.	
Facts	The article reports at least one fact, i.e., a state of affairs or event, which	
	may be true or false.	
Opinions	The article expresses at least one opinion.	
Subjective	The article contains more opinions than facts.	
Reported Information	The information is reported by another person or source and is not	
	directly endorsed.	
Sources Cited	The article cites at least one source for at least one fact.	
False Information	The article contains at least one false fact.	
Insinuation	The article suggests a certain reading of a fact, without saying so explic-	
	itly.	
Exaggeration	The article describes a real fact with exaggeration.	
Offbeat Title	The article has a misleading headline not accurately reflecting the con-	
	tent.	

Table 1: Labels and their signification

- 49 To investigate relationships between labels, we computed the Pearson correlation matrix over the
- mean label scores. As seen in Figure 1, Fake News shows strong positive correlations with Subjective,
- Insinuation, Exaggeration, and False Information, supporting the multi-label hypothesis that these
- 52 auxiliary signals are predictive of misinformation. It also presented a small negative correlation with
- 53 Sources Cited.

Figure 1: Correlation matrix between annotated labels.

As shown in Figure 2, elements such as *Reported Information* and *Offbeat title* are less frequently present across articles, while *Facts* and *Places, Dates, People* appear almost every time. Inter-annotator agreement is generally higher for more concrete labels (e.g., *Places, Dates, People, Offbeat title*) and lower for more subjective ones (e.g., *Fake News, Insinuation*).

Figure 2: Left: Average annotation scores per label. Right: Inter-annotator agreement per label.

3.2 Data collection : articles' texts

- Since the article texts themselves are not included in the dataset, we implemented a web scraping pipeline using requests and BeautifulSoup to extract the raw content from the URLs. In total,
 - we successfully retrieved the full text for 92 articles. The last 8 articles were left out of our study.

62 3.3 Data preprocessing

- 63 Each article in the dataset is annotated across 11 labels, including both factual (False Information,
- 64 Sources Cited) and stylistic (Exaggeration, Subjective, Offbeat Title) cues. Annotations were provided
- by 8 raters. We computed the mean score for each label across annotators to create soft-label targets
- in the range [0, 1]. The labels were kept soft during the training. The ground truth of the label, used
- to calculate the accuracy, is considered to be the binarized value of the label using a threshold of 0.5.
- The final dataset consists of 92 articles, each annotated with 11 mean-label values and ready for input
- 69 into a multi-label classification model.

70 4 Model

71 4.1 Architecture and Method

- 72 We used the camembert-base model as a feature extractor with pretrained weights and trained its
- 73 classifier only (last layer). We used the BCEWithLogitsLoss loss function, which is well suited for
- 74 multi-label learning.
- 75 The classifier is fine-tuned using the annotated OBSINFOX dataset. During training, we keep the soft
- 176 label values (averaged across 8 annotators) in the [0, 1] range as targets, while during evaluation, we
- binarize predictions using a threshold of 0.5.

78 4.2 Preprocessing and Tokenization

- 79 Articles are tokenized using the CamemBERT tokenizer. We split the dataset into training and testing
- subsets (80/20 ratio).

81 4.3 Training Procedure

- We train the model for 30 epochs using a batch size of 16 and a learning rate of 5×10^{-5} . Optimization
- 83 is performed using AdamW. During each epoch, we compute the average training loss to monitor
- 84 convergence.

85 4.4 Labels subsets

- We also experimented with different sets of target labels to compare single-label, subset multi-label, and full multi-label configurations:
- Training on Fake News only (baseline).
- Training on Fake News, Opinions, Subjective, Sources Cited to focus on labels most relevant to detect misinformation according to the article [2].
- Training on all 11 available labels to exploit the full richness of the annotation scheme.

92 4.5 Evaluation

- 93 At test time, we evaluate the model using per-label accuracy, computed by thresholding the sigmoid
- outputs at 0.5 and comparing them to the binarized ground truth. We also compute the test loss over
- 95 the entire dataset and visualize the training loss over epochs to ensure proper convergence.

96 5 Results

5.1 Single-label Classification: Fake News Only

- 98 In the first experiment, we trained the model to predict only the Fake News label. The model achieved
- an accuracy of **78.95**% on this label, with a test loss of 0.5480. This baseline demonstrates the
- capacity of CamemBERT to capture patterns indicative of misinformation in French news content.

5.2 Multi-label Classification with 4 Labels

- We then extended the task to a multi-label setup with four key indicators: *Fake News, Opinions, Subjective*, and *Sources Cited*. The hypothesis was that incorporating these complementary dimensions
- would help the model better contextualize the fake news prediction.
- The model achieved higher accuracy on the Fake News label (84.21%) and also performed well
- on Opinions (89,47%), Subjective (84,21%), and Sources Cited (68,42%), suggesting that jointly
- learning these dimensions improves predictive power.

108 5.3 Full Multi-label Classification (11 Labels)

- Finally, we trained the model on all 11 labels simultaneously. This configuration yielded strong
- overall results: Fake News, Opinions, Subjective, and Reported Information all reached the same
- accuracy of 84.21%. Other labels such as Facts (94.74%), Exaggeration (89.47%), and Offbeat Title
- 112 (89.47%) were also highly predictable, while *Places*, *Dates*, *People* reached perfect classification
- 113 (100%).
- The only relatively lower-performing labels were *Sources Cited* (68.42%) and *Instinuation* (73.68%).
- 115 Interestingly, several labels (e.g., Fake News, Opinions, Subjective) yielded identical accuracy scores
- across different setups. This could be due to label correlation. These labels might consistently
- 117 co-occur in the dataset, leading to similar decision boundaries during training.

118 5.4 Discussion

- The results are summarized in Table 2. The results demonstrate a clear benefit to incorporating
- additional, related labels during training. While the single-label model predicting only "Fake News"
- achieved a respectable accuracy of 78.95%, this performance improved to 84.21% when training
- jointly on three related labels (Opinions, Subjective, Sources Cited). This trend continued in the full
- multi-label setup, where all 11 labels were used: although the "Fake News" accuracy remained at
- 84.21%, the test loss dropped significantly from 0.5642 to 0.4911, suggesting a more confident and
- 125 calibrated model.
- 128 This indicates that multi-task learning helps the model learn more generalizable and robust features
- by leveraging correlations between labels. Training with additional labels likely acts as a regularizer,
- reducing overfitting on the Fake News task alone and improving overall model generalization.
- Overall, the results support the idea that a multi-label learning approach improves performance on
- the primary task (Fake News detection) and yields more nuanced predictions for related linguistic or
- 131 stylistic attributes.

Label Configuration	Test Loss	Fake News Accuracy
Only Fake News	0.5480	0.7895
Fake News + 3 Related Labels	0.5642	0.8421
All 11 Labels	0.4911	0.8421

Table 2: Test loss and Fake News accuracy across different label configurations.

2 6 Conclusion

- In this study, we explored fake news detection in French using a multi-label formulation based on
- 134 CamemBERT. By gradually incorporating additional labels related to factuality, subjectivity, and
- stylistic cues, we demonstrated that the model not only maintained high accuracy on the primary Fake
- 136 News label but also gained predictive power on complementary dimensions. Our findings suggest
- that misinformation is best approached as a multi-faceted phenomenon, and that multi-label learning
- provides a more robust and explainable framework than single-label classification. Our study remains
- limited due to the small size of the dataset but proved the interest of the OBSINFOX dataset.

References

- [1] Saad S Ahmed H, Traore I. Detection of online fake news using n-gram analysis and machine learning techniques. *International conference on intelligent, secure, and dependable systems in distributed and cloud environments*, 2017.
- Thomas Icard, Richard Dufour, and Yannick Esteve. Obsinfox: A french multi-label dataset for analyzing stylistic and factual cues in fake news. *Proceedings of the 14th Language Resources and Evaluation Conference (LREC)*, 2024.
- 147 [3] Goswami A. Narang P. Kaliyar, R.K. Proceedings of the twelfth acm international conference on web search and data mining. *Multimed Tools Appl*, 2021.
- [4] Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary,
 Eric Villemonte de la Clergerie, Djamé Seddah, and Benoît Sagot. Camembert: A tasty french
 language model. Proceedings of the 58th Annual Meeting of the Association for Computational
 Linguistics (ACL), 2020.
- 153 [5] Vigneswara Ilavarasan P Reema A, Kar AK. Detection of spammers in twitter marketing: a hybrid approach using social media analytics and bio inspired computing. *Information Systems* 155 *Frontiers*, 2018.
- [6] Liu H Shu K, Wang S. Beyond news contents: The role of social context for fake news detection.
 Proceedings of the twelfth ACM international conference on web search and data mining, 2019.
- William Yang Wang. "Liar, Liar Pants on Fire": A new benchmark dataset for fake news detection.
 In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
 (ACL), 2017.