Higher reciprocity law

William Sean H (10120026)

Advisor: Aleams Barra, S.Si., M.Si., Ph.D

Examiner: Prof. Dr. Muchtadi Intan Detiena, S.Si, M.Si

21 December 2023

Outline of talk

- History
- 2 Background Theory
- 3 Cyclotomic reciprocity
- 4 Analytic application

2/39

Table of Contents

- 1 History
- 2 Background Theory
- 3 Cyclotomic reciprocity
- 4 Analytic application

William Sean H History 21 December 2023 3 / 39

Fermat

Fermat :
$$p \neq 2$$
,

$$p = x^2 + y^2 \iff p = 4n + 1$$

William Sean H History 21 December 2023 4 / 39

Fermat

Fermat :
$$p \neq 2$$
,

$$p = x^2 + y^2 \iff p = 4n + 1$$

Similarly, $p \neq 2$,

$$p = x^2 + 2y^2 \iff p = 8n + 1 \text{ or } p = 8n + 3$$

4/39

William Sean H History 21 December 2023

Reduction modulo p

For $a \in \mathbb{Z}$, classify a with its remainder on p

5/39

William Sean H History 21 December 2023

Reduction modulo p

For $a \in \mathbb{Z}$, classify a with its remainder on p

Define
$$\bar{a}+\bar{b}=\overline{(a+b)}$$
 and $\bar{a}\bar{b}=\overline{(ab)}$

William Sean H History 21 December 2023 5 / 39

Quadratic residues

lf

$$p = ax^2 + bxy + cy^2$$

then

$$\bar{a}x^2 + \bar{b}xy + \bar{c}y^2$$

has a non-trivial solution modulo p

6/39

Quadratic residues

lf

$$p = ax^2 + bxy + cy^2$$

then

$$\bar{a}x^2 + \bar{b}xy + \bar{c}y^2$$

has a non-trivial solution modulo p

$$p=x^2+y^2 o x^2+\bar{1}$$
 has a solution modulo $p o x^2+\bar{1} \equiv (x+\bar{t})(x+\bar{s})$ mod p

6/39

William Sean H History 21 December 2023

Gaussian integers

$$p = x^2 + y^2 = (x + iy)(x - iy)$$

For $x, y \in \mathbb{Z}$

William Sean H History 21 December 2023 7 / 39

Gaussian integers

$$p = x^2 + y^2 = (x + iy)(x - iy)$$

For $x, y \in \mathbb{Z}$

p is not a prime in $\mathbb{Z}(i)$

William Sean H History 21 December 2023 7/39

Table of Contents

- History
- 2 Background Theory
- Cyclotomic reciprocity
- 4 Analytic application

8/39

William Sean H Background Theory 21 December 2023

Algebraic extension

 $\mathbb{Q}(i)$ is an extension over \mathbb{Q} with degree 2

Algebraic extension

 $\mathbb{Q}(i)$ is an extension over \mathbb{Q} with degree 2

Pick $f(x) \in \mathbb{Q}[x]$ and some roots $\alpha_1, ..., \alpha_n$

Algebraic extension

 $\mathbb{Q}(i)$ is an extension over \mathbb{Q} with degree 2

Pick $f(x) \in \mathbb{Q}[x]$ and some roots $\alpha_1, ..., \alpha_n$

We call $\mathbb{Q}(\alpha_1,...,\alpha_n)$ as the field \mathbb{Q} 'adjoined' by the numbers $\alpha_1,...,\alpha_n$

Number Fields and Galois group

A finite degree extension K of $\ensuremath{\mathbb{Q}}$ is called a number field

Number Fields and Galois group

A finite degree extension K of \mathbb{Q} is called a number field

The automorphisms of K, denoted by $Gal(K/\mathbb{Q})$, form a finite group under composition

Number Fields and Galois group

A finite degree extension K of \mathbb{Q} is called a number field

The automorphisms of K, denoted by $Gal(K/\mathbb{Q})$, form a finite group under composition

K is normal if $|\operatorname{Gal}(K/\mathbb{Q})| = [K : \mathbb{Q}]$

Algebraic integers

Denote $\mathfrak{O}_{\mathcal{K}}$ as the algebraic integers in K

Algebraic integers

Denote $\mathfrak{O}_{\mathcal{K}}$ as the algebraic integers in K

The set $\mathfrak{O}_{\mathcal{K}}$ form a ring

11/39

For $\alpha \in \mathfrak{O}_K$, the principal ideal generated by a is the set of multiples of a in \mathfrak{O}_K

For $\alpha \in \mathfrak{O}_K$, the principal ideal generated by a is the set of multiples of a in \mathfrak{O}_K

For ideals A and B, $A + B = \{a + b | a \in A, b \in B\}$

For $\alpha \in \mathfrak{O}_K$, the principal ideal generated by a is the set of multiples of a in \mathfrak{O}_K

For ideals A and B, $A + B = \{a + b | a \in A, b \in B\}$

Every ideal in \mathfrak{O}_k is finitely generated.

For $\alpha \in \mathfrak{O}_K$, the principal ideal generated by a is the set of multiples of a in \mathfrak{O}_K

For ideals A and B, $A + B = \{a + b | a \in A, b \in B\}$

Every ideal in \mathfrak{O}_k is finitely generated.

For the product, define $a\mathfrak{O}_K b\mathfrak{O}_K = ab\mathfrak{O}_K$ and continue it distributively

For $\alpha \in \mathfrak{O}_K$, the principal ideal generated by a is the set of multiples of a in \mathfrak{O}_K

For ideals A and B, $A + B = \{a + b | a \in A, b \in B\}$

Every ideal in \mathfrak{O}_k is finitely generated.

For the product, define $a\mathfrak{O}_K b\mathfrak{O}_K = ab\mathfrak{O}_K$ and continue it distributively

For example, $(a\mathbb{Z} + b\mathbb{Z})(c\mathbb{Z} + d\mathbb{Z}) = ac\mathbb{Z} + bc\mathbb{Z} + ad\mathbb{Z} + bd\mathbb{Z}$

12/39

William Sean H Background Theory 21 December 2023

For $\alpha \in \mathfrak{O}_K$, the principal ideal generated by a is the set of multiples of a in \mathfrak{O}_K

For ideals A and B, $A + B = \{a + b | a \in A, b \in B\}$

Every ideal in \mathfrak{O}_k is finitely generated.

For the product, define $a\mathfrak{O}_K b\mathfrak{O}_K = ab\mathfrak{O}_K$ and continue it distributively

For example,
$$(a\mathbb{Z} + b\mathbb{Z})(c\mathbb{Z} + d\mathbb{Z}) = ac\mathbb{Z} + bc\mathbb{Z} + ad\mathbb{Z} + bd\mathbb{Z}$$

For 2 ideals A and B in
$$\mathfrak{O}_K$$
, $|\mathfrak{O}_K/AB| = |\mathfrak{O}_K/A||\mathfrak{O}_K/B|$

Prime ideals

 $p\in\mathbb{N}$ is prime if and only if $p\mathbb{Z}$ is maximal

Prime ideals

 $p \in \mathbb{N}$ is prime if and only if $p\mathbb{Z}$ is maximal

So in an algebraic number field K, we can think of the primes as the maximal ideals in the ring \mathfrak{O}_K

Unique factorization

Adding 2 ideals and multiplying 2 ideals gives another ideal, and $a_1\mathbb{Z}...a_m\mathbb{Z}=(a_1...a_m)\mathbb{Z}$

Unique factorization

Adding 2 ideals and multiplying 2 ideals gives another ideal, and $a_1\mathbb{Z}...a_m\mathbb{Z}=(a_1...a_m)\mathbb{Z}$

We can generalize integer factorization into ideal factorization

Unique factorization

Adding 2 ideals and multiplying 2 ideals gives another ideal, and $a_1\mathbb{Z}...a_m\mathbb{Z}=(a_1...a_m)\mathbb{Z}$

We can generalize integer factorization into ideal factorization

Every ideal in a number field has unique factorization from prime ideals

Quadratic reciprocity law

$$p = x^2 + y^2$$
 or $p = x^2 + 2y^2 \iff x^2 + 1$ or $x^2 + 2$ has a solution modulo p

Quadratic reciprocity law

$$p = x^2 + y^2$$
 or $p = x^2 + 2y^2 \iff x^2 + 1$ or $x^2 + 2$ has a solution modulo p

For prime $p \neq 2$

$$x^2 + \overline{1} \equiv (x + \overline{t})(x + \overline{s}) \mod p \iff p \equiv 1 \mod 4$$

15/39

Background Theory

Quadratic reciprocity law

Gauss's theorem says that the solvability of

$$x^2 + bx + c$$

modulo p only depends on p modulo $D = b^2 - 4c$

Nonquadratic example

$$x^3 - 3x + 1$$

Nonquadratic example

$$x^3 - 3x + 1$$

For $p \neq 3$, $x^3 - 3x + 1$ has a solution modulo $p \iff \bar{p} \equiv \bar{1}, -\bar{1} \mod 9$

17 / 39

William Sean H Background Theory

Nonquadratic example

$$x^3 - 3x + 1$$

For $p \neq 3$, $x^3 - 3x + 1$ has a solution modulo $p \iff \bar{p} \equiv \bar{1}, -\bar{1} \mod 9$

For any f, can we determine its factorization modulo p?

17 / 39

Background Theory

Splitting of primes

For a prime $p \in \mathbb{Z}$, consider $p\mathfrak{O}_K$

Splitting of primes

For a prime $p \in \mathbb{Z}$, consider $p\mathfrak{O}_K$

What is its prime ideal factorization?

Splitting of polynomial

Let $f(x) \in \mathbb{Z}[x]$ be irreducible with a root α . Consider the extension $K = \mathbb{Q}(\alpha)$

William Sean H Background Theory 21 December 2023 19 / 39

Splitting of polynomial

Let $f(x) \in \mathbb{Z}[x]$ be irreducible with a root α . Consider the extension $K = \mathbb{Q}(\alpha)$

Then for all but a finite set of primes $p \in \mathbb{Z}$, the factorization of f(x) modulo p is equivalent to the ideal factorization of $p\mathfrak{O}_K$

William Sean H Background Theory 21 December 2023 19 / 39

Action of the Galois group

Let K be a normal number field For a prime $p \in \mathbb{Z}$, Suppose \mathfrak{P} is a prime ideal factor of $p\mathfrak{O}_K$

Action of the Galois group

Let K be a normal number field For a prime $p \in \mathbb{Z}$, Suppose \mathfrak{P} is a prime ideal factor of $p\mathfrak{D}_K$

Then, the action of $Gal(K/\mathbb{Q})$ on \mathfrak{P} determines the factorization of $p\mathfrak{D}_K$

Table of Contents

- History
- 2 Background Theory
- 3 Cyclotomic reciprocity
- 4 Analytic application

$$-3+9x^2-6x^4+x^6$$
 is the minimal polynomial of $2\sin(\frac{2\pi}{9})$

William Sean H Cyclotomic Reciprocity 21 December 2023 22 / 39

$$-3+9x^2-6x^4+x^6$$
 is the minimal polynomial of $2\sin(\frac{2\pi}{9})$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{36}})$ with discriminant 2^63^9

William Sean H

22 / 39

$$-3+9x^2-6x^4+x^6$$
 is the minimal polynomial of $2\sin(\frac{2\pi}{9})$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{36}})$ with discriminant 2^63^9

Let
$$\omega = e^{\frac{2\pi i}{36}}$$

 $2\sin(\frac{2\pi}{9}) = -i(e^{\frac{2\pi i}{9}} - e^{\frac{2\pi i}{9}}) = -\omega^9(\omega^4 - \omega^{-4})$

William Sean H

$$-3+9x^2-6x^4+x^6$$
 is the minimal polynomial of $2\sin(\frac{2\pi}{9})$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{36}})$ with discriminant 2^63^9

Let
$$\omega = e^{\frac{2\pi i}{36}}$$

 $2\sin(\frac{2\pi}{9}) = -i(e^{\frac{2\pi i}{9}} - e^{\frac{2\pi i}{9}}) = -\omega^9(\omega^4 - \omega^{-4})$

Let
$$g(x)=-x^9(x^4-x^{-4})$$
 and H be the set $\bar k\in(\mathbb{Z}/36\mathbb{Z})^{\times}$ such that $g(\omega^k)=g(\omega)$

$$-3+9x^2-6x^4+x^6$$
 is the minimal polynomial of $2\sin(\frac{2\pi}{9})$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{36}})$ with discriminant 2^63^9

Let
$$\omega = e^{\frac{2\pi i}{36}}$$

 $2\sin(\frac{2\pi}{9}) = -i(e^{\frac{2\pi i}{9}} - e^{\frac{2\pi i}{9}}) = -\omega^9(\omega^4 - \omega^{-4})$

Let
$$g(x)=-x^9(x^4-x^{-4})$$
 and H be the set $\bar k\in(\mathbb{Z}/36\mathbb{Z})^{\times}$ such that $g(\omega^k)=g(\omega)$

$$\mathsf{H} = \{\overline{1}, -\overline{1}\}$$

For $p \nmid 2^6 3^9$, the factorization of $f(x) = -3 + 9x^2 - 6x^4 + x^6$ modulo p only depends on the order of pH in $(\mathbb{Z}/36\mathbb{Z})^{\times}/H$

Example

23 / 39

For $p \nmid 2^6 3^9$, the factorization of $f(x) = -3 + 9x^2 - 6x^4 + x^6$ modulo p only depends on the order of pH in $(\mathbb{Z}/36\mathbb{Z})^{\times}/H$

Example

$$f(x) \equiv x^6 + 35x^4 + 9x^2 + 38 \mod (41)$$

23 / 39

William Sean H Cyclotomic Reciprocity 21 December 2023

For $p \nmid 2^6 3^9$, the factorization of $f(x) = -3 + 9x^2 - 6x^4 + x^6$ modulo p only depends on the order of pH in $(\mathbb{Z}/36\mathbb{Z})^{\times}/H$

Example

$$f(x) \equiv x^6 + 35x^4 + 9x^2 + 38 \mod (41)$$

 $f(x) \equiv (x+4)(x+16)(x+17)(x+20)(x+21)(x+33) \mod (37)$

23 / 39

William Sean H Cyclotomic Reciprocity

For $p \nmid 2^6 3^9$, the factorization of $f(x) = -3 + 9x^2 - 6x^4 + x^6$ modulo p only depends on the order of pH in $(\mathbb{Z}/36\mathbb{Z})^{\times}/H$

Example

$$f(x) \equiv x^6 + 35x^4 + 9x^2 + 38 \mod (41)$$

$$f(x) \equiv (x+4)(x+16)(x+17)(x+20)(x+21)(x+33) \mod (37)$$

$$f(x) \equiv x^6 + x^4 + 2x^2 + 4 \mod (7)$$

23 / 39

William Sean H Cyclotomic Reciprocity 21 December 2023

For $p \nmid 2^6 3^9$, the factorization of $f(x) = -3 + 9x^2 - 6x^4 + x^6$ modulo p only depends on the order of pH in $(\mathbb{Z}/36\mathbb{Z})^{\times}/H$

Example

$$f(x) \equiv x^6 + 35x^4 + 9x^2 + 38 \mod (41)$$

$$f(x) \equiv (x+4)(x+16)(x+17)(x+20)(x+21)(x+33) \mod (37)$$

$$f(x) \equiv x^6 + x^4 + 2x^2 + 4 \mod (7)$$

$$f(x) \equiv (x^3 + 10x + 9)(x^3 + 10x + 4) \mod (13)$$

4□ > 4ⓓ > 4≧ > 4≧ > ½ > 9<</p>

23 / 39

For $p \nmid 2^6 3^9$, the factorization of $f(x) = -3 + 9x^2 - 6x^4 + x^6$ modulo p only depends on the order of pH in $(\mathbb{Z}/36\mathbb{Z})^{\times}/H$

Example

$$f(x) \equiv x^6 + 35x^4 + 9x^2 + 38 \mod (41)$$

$$f(x) \equiv (x+4)(x+16)(x+17)(x+20)(x+21)(x+33) \mod (37)$$

$$f(x) \equiv x^6 + x^4 + 2x^2 + 4 \mod (7)$$

$$f(x) \equiv (x^3 + 10x + 9)(x^3 + 10x + 4) \mod (13)$$

$$f(x) \equiv (x^2 + 72)(x^2 + 38)(x^2 + 11) \mod (127)$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

$$-123818949 + 15071670x - 729405x^2 + 17550x^3 - 210x^4 + x^5$$
 is the minimal polynomial of $\alpha = 6\cos(\frac{6\pi}{25}) + 6\cos(\frac{17\pi}{25}) + 42$

William Sean H Cyclotomic Reciprocity 21 December 2023 24 / 39

 $-123818949+15071670x-729405x^2+17550x^3-210x^4+x^5$ is the minimal polynomial of $\alpha=6\cos(\frac{6\pi}{25})+6\cos(\frac{17\pi}{25})+42$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{25}})$ with discriminant $3^{20}5^87^2$

24 / 39

William Sean H Cyclotomic Reciprocity 21 December 2023

 $-123818949+15071670x-729405x^2+17550x^3-210x^4+x^5$ is the minimal polynomial of $\alpha=6\cos(\frac{6\pi}{25})+6\cos(\frac{17\pi}{25})+42$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{25}})$ with discriminant $3^{20}5^87^2$

Let
$$\omega = e^{\frac{2\pi i}{25}}$$
 $\alpha = 3(e^{\frac{6\pi i}{25}} + e^{\frac{-6\pi i}{25}} + e^{\frac{17\pi i}{25}} + e^{\frac{-17\pi i}{25}}) + 42 = 3(\omega^6 + \omega^{-6} + \omega^{17} + \omega^{-17}) + 42$

24 / 39

William Sean H Cyclotomic Reciprocity 21 December 2023

 $-123818949+15071670x-729405x^2+17550x^3-210x^4+x^5$ is the minimal polynomial of $\alpha=6\cos(\frac{6\pi}{25})+6\cos(\frac{17\pi}{25})+42$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{25}})$ with discriminant $3^{20}5^87^2$

Let
$$\omega = e^{\frac{2\pi i}{25}}$$

 $\alpha = 3(e^{\frac{6\pi i}{25}} + e^{\frac{-6\pi i}{25}} + e^{\frac{17\pi i}{25}} + e^{\frac{-17\pi i}{25}}) + 42 = 3(\omega^6 + \omega^{-6} + \omega^{17} + \omega^{-17}) + 42$

Let
$$g(x) = 3(x^6 + x^{-6} + x^{17} + x^{-17}) + 42$$
 and define H as before

William Sean H

 $-123818949+15071670x-729405x^2+17550x^3-210x^4+x^5$ is the minimal polynomial of $\alpha=6\cos(\frac{6\pi}{25})+6\cos(\frac{17\pi}{25})+42$

It is contained in $\mathbb{Q}(e^{\frac{2\pi i}{25}})$ with discriminant $3^{20}5^87^2$

Let
$$\omega = e^{\frac{2\pi i}{25}}$$

 $\alpha = 3(e^{\frac{6\pi i}{25}} + e^{\frac{-6\pi i}{25}} + e^{\frac{17\pi i}{25}} + e^{\frac{-17\pi i}{25}}) + 42 = 3(\omega^6 + \omega^{-6} + \omega^{17} + \omega^{-17}) + 42$

Let
$$g(x) = 3(x^6 + x^{-6} + x^{17} + x^{-17}) + 42$$
 and define H as before

$$\mathsf{H} = \{\overline{1}, -\overline{1}, \overline{7}, -\overline{7}\}$$

William Sean H Cyclotomic Reciprocity 21 December 2023 24/39

So for $p \nmid 3^{20}5^87^2$, the factorization of $f(x) = -123818949 + 15071670x - 729405x^2 + 17550x^3 - 210x^4 + x^5$ only depends on the order of pH in the quotient group $(\mathbb{Z}/25\mathbb{Z})^\times/H$

Example

So for $p \nmid 3^{20}5^87^2$, the factorization of $f(x) = -123818949 + 15071670x - 729405x^2 + 17550x^3 - 210x^4 + x^5$ only depends on the order of pH in the quotient group $(\mathbb{Z}/25\mathbb{Z})^\times/H$

Example

$$f(x) \equiv 10 + 9x + 5x^{2} + 5x^{3} + 10x^{4} + x^{5} \mod (11)$$

$$f(x) \equiv (10 + x)(14 + x)(15 + x)(22 + x)(30 + x) \mod (43)$$

$$f(x) \equiv (6 + x)(68 + x)(82 + x)(109 + x)(121 + x) \mod (149)$$

$$f(x) \equiv 6 + 3x + 12x^{2} + 11x^{4} + x^{5} \mod (13)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

A prime p is unramified if the factorization of $p\mathfrak{O}_K$ has no repeated prime factor

A prime p is unramified if the factorization of $p\mathfrak{O}_K$ has no repeated prime factor

For K normal, p unramified, and $\mathfrak{P}\mid p\mathfrak{O}_K$, associate \mathfrak{P} with the Frobenius element $\sigma_{\mathfrak{P}}\in \mathsf{Gal}(K/\mathbb{Q})$

A prime p is unramified if the factorization of $p\mathfrak{O}_K$ has no repeated prime factor

For K normal, p unramified, and $\mathfrak{P}\mid p\mathfrak{D}_K$, associate \mathfrak{P} with the Frobenius element $\sigma_{\mathfrak{P}}\in \mathrm{Gal}(K/\mathbb{Q})$

For
$$f(x) = (x - a_1)...(x - a_n)$$
, let $C = \{(a_i, a_j) | n \ge i > j \ge 1\}$
$$\mathsf{disc}(f) = \prod_{(a_i, a_j) \in C} (a_i - a_j)^2$$

A prime p is unramified if the factorization of $p\mathfrak{O}_K$ has no repeated prime factor

For K normal, p unramified, and $\mathfrak{P}\mid p\mathfrak{O}_K$, associate \mathfrak{P} with the Frobenius element $\sigma_{\mathfrak{P}}\in \mathrm{Gal}(K/\mathbb{Q})$

For
$$f(x) = (x - a_1)...(x - a_n)$$
, let $C = \{(a_i, a_j) | n \ge i > j \ge 1\}$
$$\mathsf{disc}(f) = \prod_{(a_i, a_j) \in C} (a_i - a_j)^2$$

If $f(x) \in \mathbb{Z}[x]$ irreducible, then $\operatorname{disc}(f) \in \mathbb{Z} - \{0\}$ Primes $p \nmid \operatorname{disc}(f)$ is unramified in $\mathfrak{O}_{\mathbb{Q}(\alpha)}$

26/39

William Sean H Cyclotomic Reciprocity 21 December 2023

Suppose p is unramified, $\mathfrak{P} \mid p\mathfrak{D}_K$, and $\sigma \in \mathsf{Gal}(K/\mathbb{Q})$ is the frobenius element of \mathfrak{P}

William Sean H Cyclotomic Reciprocity 21 December 2023 27/39

Suppose p is unramified, $\mathfrak{P} \mid p\mathfrak{O}_K$, and $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ is the frobenius element of \mathfrak{P}

Then, $\operatorname{Stab}_{\operatorname{Gal}(K/\mathbb{Q})}(\mathfrak{P}) = \langle \sigma \rangle$, $p\mathfrak{O}_K = \sigma_1(\mathfrak{P})...\sigma_m(\mathfrak{P})$ with $\sigma_1, ..., \sigma_m$ the representatives of the left cosets of $\langle \sigma \rangle$, and $|\mathfrak{O}_K/\sigma_i(\mathfrak{P})| = p^{\operatorname{ord}(\sigma)}$

Suppose p is unramified, $\mathfrak{P} \mid p\mathfrak{O}_K$, and $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ is the frobenius element of \mathfrak{P}

Then, $\operatorname{Stab}_{\operatorname{Gal}(K/\mathbb{Q})}(\mathfrak{P}) = \langle \sigma \rangle$, $p\mathfrak{O}_K = \sigma_1(\mathfrak{P})...\sigma_m(\mathfrak{P})$ with $\sigma_1,...,\sigma_m$ the representatives of the left cosets of $\langle \sigma \rangle$, and $|\mathfrak{O}_K/\sigma_i(\mathfrak{P})| = p^{\operatorname{ord}(\sigma)}$

Suppose $K = \mathbb{Q}(\alpha)$ with α an algebraic integer and minimal polynomial f(x), $p \nmid \operatorname{disc}(f)$

Suppose p is unramified, $\mathfrak{P} \mid p\mathfrak{O}_K$, and $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ is the frobenius element of \mathfrak{P}

Then, $\operatorname{Stab}_{\operatorname{Gal}(K/\mathbb{Q})}(\mathfrak{P}) = \langle \sigma \rangle$, $p\mathfrak{O}_K = \sigma_1(\mathfrak{P})...\sigma_m(\mathfrak{P})$ with $\sigma_1,...,\sigma_m$ the representatives of the left cosets of $\langle \sigma \rangle$, and $|\mathfrak{O}_K/\sigma_i(\mathfrak{P})| = p^{\operatorname{ord}(\sigma)}$

Suppose $K = \mathbb{Q}(\alpha)$ with α an algebraic integer and minimal polynomial f(x), $p \nmid \mathrm{disc}(f)$

If $f(x) \equiv f_1(x)...f_m(x) \mod p$ with each $f_i(x)$ irreducible in $(\mathbb{Z}/p\mathbb{Z})[x]$

27 / 39

William Sean H Cyclotomic Reciprocity 21 December 2023

Suppose p is unramified, $\mathfrak{P} \mid p\mathfrak{O}_K$, and $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ is the frobenius element of \mathfrak{P}

Then, $\operatorname{Stab}_{\operatorname{Gal}(K/\mathbb{Q})}(\mathfrak{P}) = \langle \sigma \rangle$, $p\mathfrak{O}_K = \sigma_1(\mathfrak{P})...\sigma_m(\mathfrak{P})$ with $\sigma_1,...,\sigma_m$ the representatives of the left cosets of $\langle \sigma \rangle$, and $|\mathfrak{O}_K/\sigma_i(\mathfrak{P})| = p^{\operatorname{ord}(\sigma)}$

Suppose $K = \mathbb{Q}(\alpha)$ with α an algebraic integer and minimal polynomial f(x), $p \nmid \mathrm{disc}(f)$

If $f(x) \equiv f_1(x)...f_m(x) \mod p$ with each $f_i(x)$ irreducible in $(\mathbb{Z}/p\mathbb{Z})[x]$

Then $p\mathfrak{O}_K = \langle p, f_1(\alpha) \rangle ... \langle p, f_m(\alpha) \rangle$, $f_i(x) \not\equiv f_j(x) \mod p$ for $i \neq j$, and $\mathfrak{O}_K / \sigma_i(\mathfrak{P}) \cong (\mathbb{Z}/p\mathbb{Z}[x]) / \langle \overline{f_i(x)} \rangle$

4□ > 4□ > 4 = > 4 = > = 90

Frobenius element of a cyclotomic extension

For every
$$\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$$
, label $\sigma_{\bar{k}} \in \operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/\mathbb{Q})$ as the automorphism $\sigma_{\bar{k}}(e^{\frac{2\pi i}{n}}) = e^{\frac{2k\pi i}{n}}$

William Sean H Cyclotomic Reciprocity 21 December 2023 28 / 39

Frobenius element of a cyclotomic extension

For every $\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, label $\sigma_{\bar{k}} \in \operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/\mathbb{Q})$ as the automorphism $\sigma_{\bar{k}}(e^{\frac{2\pi i}{n}}) = e^{\frac{2k\pi i}{n}}$

If $K=\mathbb{Q}(e^{\frac{2\pi i}{n}})$ for $n\in\mathbb{N}$, then the Frobenius element of p for $p\nmid n$ is the automorphism $\sigma_{\bar{p}}$

Frobenius element of a cyclotomic extension

For every $\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, label $\sigma_{\bar{k}} \in \operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/\mathbb{Q})$ as the automorphism $\sigma_{\bar{k}}(e^{\frac{2\pi i}{n}}) = e^{\frac{2k\pi i}{n}}$

If $K=\mathbb{Q}(e^{\frac{2\pi i}{n}})$ for $n\in\mathbb{N}$, then the Frobenius element of p for $p\nmid n$ is the automorphism $\sigma_{\bar{p}}$

The Frobenius element of p in $K' \subseteq K$ is then the Automorphism of K' obtained from $\sigma_{\bar{p}}$

28 / 39

Theorem

Let f(x) be a monic integer irreducible polynomial with α as a root.

Suppose $\alpha \in \mathbb{Q}(e^{\frac{2\pi i}{n}})$

Theorem

Let f(x) be a monic integer irreducible polynomial with α as a root.

Suppose
$$\alpha \in \mathbb{Q}(e^{\frac{2\pi i}{n}})$$

Denote H as the subgroup defined by $\{\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times} | \sigma_{\bar{k}}(\alpha) = \alpha\}$

29 / 39

Theorem

Let f(x) be a monic integer irreducible polynomial with α as a root. Suppose $\alpha \in \mathbb{Q}(e^{\frac{2\pi i}{n}})$

Denote H as the subgroup defined by $\{\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times} | \sigma_{\bar{k}}(\alpha) = \alpha\}$ Suppose for a prime $p \nmid \operatorname{disc}(f)$, $f(x) \equiv f_1(x)...f_r(x) \mod p$ where each $f_i(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ is irreducible

Theorem

Let f(x) be a monic integer irreducible polynomial with α as a root. Suppose $\alpha \in \mathbb{Q}(e^{\frac{2\pi i}{n}})$

Denote H as the subgroup defined by $\{\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times} | \sigma_{\bar{k}}(\alpha) = \alpha\}$ Suppose for a prime $p \nmid \operatorname{disc}(f)$, $f(x) \equiv f_1(x)...f_r(x) \mod p$ where each $f_i(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ is irreducible

Then, f(x) has no repeated irreducible factors in $(\mathbb{Z}/p\mathbb{Z})[x]$, and for every i, $\deg(f_i(x)) = \operatorname{ord}(\bar{p}H)$ with $\bar{p}H \in (\mathbb{Z}/n\mathbb{Z})^{\times}/H$

Theorem

Let f(x) be a monic integer irreducible polynomial with α as a root. Suppose $\alpha \in \mathbb{Q}(e^{\frac{2\pi i}{n}})$

Denote H as the subgroup defined by $\{\bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times} | \sigma_{\bar{k}}(\alpha) = \alpha\}$ Suppose for a prime $p \nmid \operatorname{disc}(f)$, $f(x) \equiv f_1(x)...f_r(x) \mod p$ where each $f_i(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ is irreducible

Then, f(x) has no repeated irreducible factors in $(\mathbb{Z}/p\mathbb{Z})[x]$, and for every i, $\deg(f_i(x)) = \operatorname{ord}(\bar{p}H)$ with $\bar{p}H \in (\mathbb{Z}/n\mathbb{Z})^{\times}/H$

f(x) has a solution mod p for $p \nmid disc(f)$ if and only if $\bar{p} \in H$, and if $\bar{p} \in H$ The number of solutions to f(x) mod p is deg(f(x))

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

$$\sqrt{n} \in \mathbb{Q}(e^{\frac{2\pi i}{4n}})$$
 for nonzero integers n

30 / 39

$$\sqrt{n} \in \mathbb{Q}(e^{\frac{2\pi i}{4n}})$$
 for nonzero integers n disc $(x^2 - n) = 4n$

30 / 39

$$\sqrt{n} \in \mathbb{Q}(e^{\frac{2\pi i}{4n}})$$
 for nonzero integers n disc $(x^2 - n) = 4n$

Let
$$\left(\frac{a}{p}\right)$$
 be the Legendre symbol

30 / 39

$$\sqrt{n} \in \mathbb{Q}(e^{\frac{2\pi i}{4n}})$$
 for nonzero integers n disc $(x^2 - n) = 4n$

Let $\left(\frac{a}{p}\right)$ be the Legendre symbol

Then
$$p \equiv q \mod 4n \rightarrow \left(\frac{n}{p}\right) = \left(\frac{n}{q}\right)$$

30 / 39

$$\sqrt{n} \in \mathbb{Q}(e^{\frac{2\pi i}{4n}})$$
 for nonzero integers n disc $(x^2 - n) = 4n$

Let $\left(\frac{a}{p}\right)$ be the Legendre symbol

Then
$$p \equiv q \mod 4n \rightarrow \left(\frac{n}{p}\right) = \left(\frac{n}{q}\right)$$

If n > 0, then the complex conjugation fixes \sqrt{n}

William Sean H

$$\sqrt{n} \in \mathbb{Q}(e^{\frac{2\pi i}{4n}})$$
 for nonzero integers n disc $(x^2 - n) = 4n$

Let $\left(\frac{a}{p}\right)$ be the Legendre symbol

Then
$$p \equiv q \mod 4n \rightarrow \left(\frac{n}{p}\right) = \left(\frac{n}{q}\right)$$

If n > 0, then the complex conjugation fixes \sqrt{n}

From here,
$$p \equiv -q \mod 4n \to \left(\frac{n}{p}\right) = \left(\frac{n}{q}\right)$$

William Sean H

The abelian reciprocity law

If K is the splitting field of f(x) and $\operatorname{Gal}(K/\mathbb{Q})$ abelian

31/39

The abelian reciprocity law

If K is the splitting field of f(x) and $Gal(K/\mathbb{Q})$ abelian

The Kronecker-Weber theorem says $K \subseteq \mathbb{Q}(e^{\frac{2\pi i}{n}})$ for some $n \in \mathbb{N}$

31 / 39

Table of Contents

- History
- 2 Background Theory
- 3 Cyclotomic reciprocity
- 4 Analytic application

For
$$s>1$$
, let $\zeta(s)=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+...=\sum_{n=1}^{\infty}\frac{1}{n^s}$

For
$$s>1$$
, let $\zeta(s)=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+...=\sum_{n=1}^\infty\frac{1}{n^s}$

We have $n = |\mathbb{Z}/n\mathbb{Z}|$ and all ideals of \mathbb{Z} is just the set $\{\mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}, ...\}$

For
$$s>1$$
, let $\zeta(s)=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+...=\sum_{n=1}^{\infty}\frac{1}{n^s}$

We have $n = |\mathbb{Z}/n\mathbb{Z}|$ and all ideals of \mathbb{Z} is just the set $\{\mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}, ...\}$ For a number field K, let S be the set of ideals in \mathfrak{O}_K . For an ideal I, let $N(I) = |\mathfrak{O}_K/I|$. The Dedekind Zeta function of K is defined as

$$\zeta_{K}(s) = \sum_{I \in S} \frac{1}{N(I)^{s}}$$

For
$$s > 1$$
, let $\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + ... = \sum_{n=1}^{\infty} \frac{1}{n^s}$

We have $n=|\mathbb{Z}/n\mathbb{Z}|$ and all ideals of \mathbb{Z} is just the set $\{\mathbb{Z},2\mathbb{Z},3\mathbb{Z},...\}$

For a number field K, let S be the set of ideals in \mathfrak{O}_K . For an ideal I, let $N(I) = |\mathfrak{O}_K/I|$. The Dedekind Zeta function of K is defined as

$$\zeta_{\mathcal{K}}(s) = \sum_{I \in \mathcal{S}} \frac{1}{N(I)^s}$$

The series converges for s > 1

33 / 39

For
$$s>1$$
, let $\zeta(s)=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+...=\sum_{n=1}^{\infty}\frac{1}{n^s}$

We have $n = |\mathbb{Z}/n\mathbb{Z}|$ and all ideals of \mathbb{Z} is just the set $\{\mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}, ...\}$

For a number field K, let S be the set of ideals in \mathfrak{O}_K . For an ideal I, let $N(I) = |\mathfrak{O}_K/I|$. The Dedekind Zeta function of K is defined as

$$\zeta_{\mathcal{K}}(s) = \sum_{I \in \mathcal{S}} \frac{1}{N(I)^s}$$

The series converges for s > 1

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{p} \; prime} \left(rac{1}{1 - rac{1}{N(\mathfrak{p})^s}}
ight)$$

33 / 39

William Sean H

Singularities and density problems

$$\zeta_{\mathcal{K}}(1) = \infty$$

Singularities and density problems

$$\zeta_{\mathcal{K}}(1) = \infty$$

Let $P \subseteq \mathbb{N}$ the set of primes such that f(x) has a solution modulo p

34 / 39

Singularities and density problems

$$\zeta_{\mathcal{K}}(1) = \infty$$

Let $P \subseteq \mathbb{N}$ the set of primes such that f(x) has a solution modulo p

$$\sum_{p\in P}\frac{1}{p}=\infty$$

A similar problem

$$\beta(s) = \frac{1}{1^s} - \frac{1}{3^s} + \frac{1}{5^s} + \dots$$

A similar problem

$$\beta(s) = \frac{1}{1^s} - \frac{1}{3^s} + \frac{1}{5^s} + \dots$$

$$\beta(s) = \prod_{\substack{p \text{ prime} \\ p = 4n+1}} \left(\frac{1}{1 - \frac{1}{p^s}}\right) \prod_{\substack{p \text{ prime} \\ p = 4n+3}} \left(\frac{1}{1 + \frac{1}{p^s}}\right)$$

35/39

A similar problem

$$\beta(s) = \frac{1}{1^s} - \frac{1}{3^s} + \frac{1}{5^s} + \dots$$

$$\beta(s) = \prod_{\substack{p \text{ prime} \\ p = 4n+1}} \left(\frac{1}{1 - \frac{1}{p^s}}\right) \prod_{\substack{p \text{ prime} \\ p = 4n+3}} \left(\frac{1}{1 + \frac{1}{p^s}}\right)$$

$$\sum_{\substack{p \text{ prime} \\ p = 4n+1}} \frac{1}{p} = \sum_{\substack{p \text{ prime} \\ p = 4n+3}} \frac{1}{p} = \infty$$

35/39

Dirichlet's theorem in arithmetic progression

Let
$$gcd(a, b) = 1$$
 for $a, b \in \mathbb{N}$

Dirichlet's theorem in arithmetic progression

Let
$$gcd(a, b) = 1$$
 for $a, b \in \mathbb{N}$

Let S denote the set of primes p such that $p \equiv b \mod a$

Dirichlet's theorem in arithmetic progression

Let gcd(a, b) = 1 for $a, b \in \mathbb{N}$

Let S denote the set of primes p such that $p \equiv b \mod a$

$$\sum_{p \in S} \frac{1}{p} = \infty$$

36 / 39

Let $\hat{\chi}$ be an irreducible character of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ over \mathbb{C}

Let $\hat{\chi}$ be an irreducible character of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ over \mathbb{C}

Then we can define the Dirichlet characters χ as follows :

Let $\hat{\chi}$ be an irreducible character of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ over \mathbb{C}

Then we can define the Dirichlet characters χ as follows :

If $\gcd(m,n)=1$, $\chi(m)=\hat{\chi}(\bar{m})$ with \bar{m} being the reduction of m modulo n and $\chi(m)=0$ whenever $\gcd(m,n)\neq 1$

Let $\hat{\chi}$ be an irreducible character of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ over \mathbb{C}

Then we can define the Dirichlet characters χ as follows :

If $\gcd(m,n)=1$, $\chi(m)=\hat{\chi}(\bar{m})$ with \bar{m} being the reduction of m modulo n and $\chi(m)=0$ whenever $\gcd(m,n)\neq 1$

Then define the series

$$L(s,\chi) = \sum_{k=1}^{\infty} \frac{\chi(k)}{k^s}$$

37 / 39

Let $\hat{\chi}$ be an irreducible character of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ over \mathbb{C}

Then we can define the Dirichlet characters χ as follows :

If $\gcd(m,n)=1$, $\chi(m)=\hat{\chi}(\bar{m})$ with \bar{m} being the reduction of m modulo n and $\chi(m)=0$ whenever $\gcd(m,n)\neq 1$

Then define the series

$$L(s,\chi) = \sum_{k=1}^{\infty} \frac{\chi(k)}{k^s}$$

The series has an Euler product

$$L(s,\chi) = \prod_{p \ prime} \left(\frac{1}{1 - \frac{\chi(p)}{p^s}} \right)$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

37 / 39

$$log(L(s,\chi)) = \left(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p, \ \bar{p}=g} \left(\frac{\chi(g)}{p^s}\right)\right) + r_{\chi}(s)$$

$$\begin{array}{l} \log(\mathit{L}(s,\chi)) = \big(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p,\ \bar{p} = g} \big(\frac{\chi(g)}{p^{s}} \big) \big) + \mathit{r}_{\chi}(s) \\ \text{Where } \lim_{s \to 1^{+}} \mathit{r}_{\chi}(s) \text{ converges} \end{array}$$

$$log(L(s,\chi)) = \left(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p, \ \bar{p}=g} \left(\frac{\chi(g)}{p^s}\right)\right) + r_{\chi}(s)$$

Where $\lim_{s \to 1^+} r_{\chi}(s)$ converges

The orthogonality relations implies $\forall g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$log(L(s,\chi)) = \left(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p, \ \bar{p}=g} \left(\frac{\chi(g)}{p^s}\right)\right) + r_{\chi}(s)$$

Where $\lim_{s \to 1^+} r_{\chi}(s)$ converges

The orthogonality relations implies $\forall g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$\sum_{p, \ \bar{p}=g} \left(\frac{1}{p^s}\right) = \frac{1}{|(\mathbb{Z}/n\mathbb{Z})^{\times}|} \left(\sum_{\chi} \chi(g^{-1}) \log(L(s,\chi))\right) + t_g(s)$$

$$log(L(s,\chi)) = \left(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p, \ \bar{p}=g} \left(\frac{\chi(g)}{p^s}\right)\right) + r_{\chi}(s)$$

Where $\lim_{s \to 1^+} r_{\chi}(s)$ converges

The orthogonality relations implies $\forall g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$\sum_{p,\ \bar{p}=g} \left(\frac{1}{p^s}\right) = \frac{1}{|(\mathbb{Z}/n\mathbb{Z})^{\times}|} \left(\sum_{\chi} \chi(g^{-1}) log(L(s,\chi))\right) + t_g(s)$$

Where $\lim_{s\to 1^+} t_g(s)$ converges

$$log(L(s,\chi)) = \left(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p, \ \bar{p}=g} \left(\frac{\chi(g)}{p^s}\right)\right) + r_{\chi}(s)$$

Where $\lim_{s \to 1^+} r_{\chi}(s)$ converges

The orthogonality relations implies $\forall g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$\sum_{p,\ \bar{p}=g} \left(\frac{1}{p^s}\right) = \frac{1}{|(\mathbb{Z}/n\mathbb{Z})^{\times}|} \left(\sum_{\chi} \chi(g^{-1}) log(L(s,\chi))\right) + t_g(s)$$

Where $\lim_{s\to 1^+} t_g(s)$ converges

It's easily shown that for non trivial characters χ $\lim_{s \to 1^+} L(s,\chi)$ converges

$$log(L(s,\chi)) = \left(\sum_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \sum_{p, \ \bar{p}=g} \left(\frac{\chi(g)}{p^s}\right)\right) + r_{\chi}(s)$$

Where $\lim_{s \to 1^+} r_{\chi}(s)$ converges

The orthogonality relations implies $\forall g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$\sum_{p,\ \bar{p}=g} \left(\frac{1}{p^s}\right) = \frac{1}{|(\mathbb{Z}/n\mathbb{Z})^{\times}|} \left(\sum_{\chi} \chi(g^{-1}) log(L(s,\chi))\right) + t_g(s)$$

Where $\lim_{s\to 1^+} t_g(s)$ converges

It's easily shown that for non trivial characters $\chi \lim_{s \to 1^+} L(s,\chi)$ converges

For the trivial character
$$\chi_1$$
 $\lim_{s \to 1^+} (s-1) L(s,\chi_1) = \frac{|(\mathbb{Z}/n\mathbb{Z})^\times|}{n}$

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 夕 Q O

38 / 39

Decomposition of the Zeta function

The cyclotomic reciprocity law implies that for $K \subseteq \mathbb{Q}(e^{\frac{2\pi i}{n}})$, $H \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ associated with $\operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/K)$, and Dirichlet characters χ over $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Decompositon of the Zeta function

The cyclotomic reciprocity law implies that for $K \subseteq \mathbb{Q}(e^{\frac{2\pi i}{n}})$, $H \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ associated with $\operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/K)$, and Dirichlet characters χ over $(\mathbb{Z}/n\mathbb{Z})^{\times}$

$$\zeta_{K}(s) = \prod_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \mid n}} \left(\frac{1}{1 - \frac{1}{N(\mathfrak{p})^{s}}} \right) \prod_{\substack{\mathcal{X} \\ H \subseteq \ker(\chi)}} L(s, \chi)$$

Decompositon of the Zeta function

The cyclotomic reciprocity law implies that for $K \subseteq \mathbb{Q}(e^{\frac{2\pi i}{n}})$, $H \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ associated with $\operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/K)$, and Dirichlet characters χ over $(\mathbb{Z}/n\mathbb{Z})^{\times}$

$$\zeta_{\mathcal{K}}(s) = \prod_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \mid n}} \left(\frac{1}{1 - \frac{1}{N(\mathfrak{p})^s}}\right) \prod_{\substack{\chi \\ H \subseteq \ker(\chi)}} L(s, \chi)$$

 $(s-1)\zeta_K(s)$ near 1 is equivalent to the behaviour of $(s-1)\big(\prod_{\chi,\ H\subseteq\ker(\chi)}L(s,\chi)\big)$

Decompositon of the Zeta function

The cyclotomic reciprocity law implies that for $K \subseteq \mathbb{Q}(e^{\frac{2\pi i}{n}})$, $H \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ associated with $\operatorname{Gal}(\mathbb{Q}(e^{\frac{2\pi i}{n}})/K)$, and Dirichlet characters χ over $(\mathbb{Z}/n\mathbb{Z})^{\times}$

$$\zeta_{\mathcal{K}}(s) = \prod_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \mid n}} \left(\frac{1}{1 - \frac{1}{N(\mathfrak{p})^s}} \right) \prod_{\substack{\chi \\ H \subseteq \ker(\chi)}} L(s, \chi)$$

 $(s-1)\zeta_K(s)$ near 1 is equivalent to the behaviour of $(s-1)\big(\prod_{\chi,\ H\subseteq\ker(\chi)}L(s,\chi)\big)$

The simple pole of the Dedekind Zeta function at s=1 implies Dirichlet's theorem

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

39 / 39