Homework 11 Honors Analysis I

Homework 11

ALECK ZHAO

December 1, 2017

Chapter 11: The Space of Continuous Functions

- 1. For each n, let Q_n be the set of all polygonal functions that have nodes at k/n, $k = 0, \dots, n$., and that take on only rational values at those points. Check that Q_n is a countable set, and hence that the union of the Q_n 's is a countable dense set in C[0,1].
- 7. If p is a polynomial and $\varepsilon > 0$, prove that there is a polynomial q with rational coefficients such that $||p-q||_{\infty} < \varepsilon$ on [0,1].
- 9. Let \mathcal{P}_n denote the set of polynomials of degree at most n, considered as a subset of C[a,b]. Clearly \mathcal{P}_n is a subspace of C[a,b] of dimension n+1. Also, \mathcal{P}_n is closed in C[a,b]. How do you know that \mathcal{P} , the union of all of the P_n , is not all of C[a,b]? That is, why are there necessarily non-polynomial elements in C[a,b]?
- 12. Let p_n be a polynomial of degree m_n , and suppose that $p_n \Rightarrow f$ on [a, b], where f is not a polynomial. Show that $m_n \to \infty$.
- 14. Let $f \in C[a, b]$ be continuously differentiable, and let $\varepsilon > 0$. Show that there is a polynomial p such that $||f p||_{\infty} < \varepsilon$ and $||f' p'||_{\infty} < \varepsilon$. Conclude that $C^{(1)}[a, b]$ is separable.
- 27. Let T be a trig polynomial. Prove:
 - (a) If T is an odd function, then T can be written using only cosines.
 - (b) If T is an even function, then T can be written using only sines.