Deep Learning

Exercise 10: Learn to Write like Shakespeare

Room: **BIN-1-B.01**

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, May 14, 2021

Outline

- Sequence Processing in PyTorch
- Learn to Write Like Shakespeare

Outline

- 1
- Sequence Processing in PyTorch
- Available Networks in PyTorch
- Text Data Processing
- Elman Network Implementation
- Back Propagation Through Time

Available Networks in PyTorch

Implementations for Recurrent Networks

- Full multi-layer recurrent networks
 - ightarrow torch.nn.RNN (Elman network), torch.nn.LSTM, torch.nn.GRU
 - ightarrow Parameters: input_size, hidden_size, num_layers, bidirectional
 - → Processes whole sequences, but less flexible
- Single recurrent cells (combines $\mathbf{W}^{^{(1)}}$ and $\mathbf{W}^{^{(r)}}$ for RNN):
 - → torch.nn.RNNCell, torch.nn.LSTMCell, torch.nn.GRUCell
 - → Sequence processing needs to be done by hand

We will manually implement our own Elman network!

Text Data Processing

Data Processing

- Our data is text, i.e., sequence of characters
- Characters are transformed to one-hot encodings

$$\rightarrow$$
 a \Rightarrow (1,0,0,...,0); b \Rightarrow (0,1,0,...,0); ...

- ullet Sequences of characters \Rightarrow input matrix $\mathbf{X} \in \mathbb{R}^{S imes D}$
- ullet Batch of sequences \Rightarrow input tensor $\mathcal{X} \in \mathbb{R}^{B imes S imes D}$
 - \rightarrow Same sequence length S per batch, can vary between batches

Target Vectors

- One target for each character in the sequence
 - → We want to predict the next character
- ullet Zero-padding if sequence is longer than current index n

Text Data Processing

Example Encoding

- Original data: abacac
- Encodings: $a \Rightarrow (1,0,0)$; $b \Rightarrow (0,1,0)$; $c \Rightarrow (0,0,1)$;
- Get data for given index n=4 for sequence length S=7
 - \rightarrow Training sample x = 00abac, target sample t = 0abaca

$$\rightarrow \text{ Encodings: } \mathbf{X} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{T} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Elman Network Implementation

Elman Network Details

- Weight matrices $\mathbf{W}^{^{(1)}} \in \mathbb{R}^{K \times D}$, $\mathbf{W}^{^{(r)}} \in \mathbb{R}^{K \times K}$, $\mathbf{W}^{^{(2)}} \in \mathbb{R}^{D \times K}$
- Activation function q
- Input $\mathcal{X} \in \mathbb{R}^{B \times S \times D}$, output $\mathcal{Z} \in \mathbb{R}^{B \times S \times D}$

Elman Network Processing for Given ${\mathcal X}$

- Initialize hidden activation $\mathbf{H} \in \mathbb{R}^{B \times K} = 0$
- Iterate through sequence $s = 1, \dots, S$:

$$\mathbf{A} \in \mathbb{R}^{B \times K} = \mathbf{W}^{(1)} \mathcal{X}_{:,s,:} + \mathbf{W}^{(r)} \mathbf{H}$$

 $\mathbf{H} \in \mathbb{R}^{B \times K} = g(\mathbf{A})$

$$\mathcal{Z}_{:.s.:} = \mathbf{W}^{^{(2)}} \mathbf{A}$$

Back Propagation Through Time

Categorical Cross-Entropy for BPTT

- ullet Compare $\mathcal{Z} \in X \in \mathbb{R}^{B imes S imes D}$ with target $\mathcal{T} \in \mathbb{R}^{B imes S imes D}$
- SoftMax $\mathcal{Y} \in X \in \mathbb{R}^{B \times S \times D}$ from $\mathcal{Z} \in X \in \mathbb{R}^{B \times S \times D}$ over D
- Categorical cross-entropy loss over time:

$$\mathcal{J}^{\text{CCE}} = -\frac{1}{B} \sum_{n=1}^{B} \frac{1}{S} \sum_{s=1}^{S} \sum_{o=1}^{O} t_o^{[n]\{s\}} \log y_o^{[n]\{s\}}$$

Particularities of warm and consequences

- SoftMax computed over second dimension
 - → Feature request submitted on PyTorch git
- We need SoftMax over **third** dimension $(D) \Rightarrow$ reorder matrices!

Outline

- 2
- Learn to Write Like Shakespeare
- Shakespeare Poem
- Data and Targets
- Elman Network Training
- Writing a Poem

Shakespeare Poem

The Sonnets

- Poem by Shakespeare
- Around 2400 lines of text

Learn Text Characteristics

- Train Elman network to predict next character
- Apply to produce text from seed texts

Example Strophe

From fairest creatures we desire increase, That thereby beauty's rose might never die, But as the riper should by time decease, His tender heir might bear his memory: But thou contracted to thine own bright eyes, Feed'st thy light's flame with self-substantial fuel, Making a famine where abundance lies, Thy self thy foe, to thy sweet self too cruel: Thou that art now the world's fresh ornament, And only herald to the gaudy spring. Within thine own bud buriest thy content, And tender churl mak'st waste in niggarding: Pity the world, or else this glutton be, To eat the world's due, by the grave and thee.

Training Text URL

http://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt

Data and Targets

Task 1: Data Characteristics

- Load the data from the text file
 - \rightarrow Decide how to handle newline \n characters
- Get the number of unique characters in the text (D)

Task 2: One-hot Encoding

- For each unique character, provide one-hot encoding vector
- Store in a dictionary: character ⇒ encoding vector

Data and Targets

Task 3: Sequence Coding

- ullet Implement a function that provides $\mathbf{X}^{^{[n]}}, \mathbf{T}^{^{[n]}}$ both $\in \mathbb{R}^{S imes D}$
 - \rightarrow Index n for our original data, variable sequence length S
 - \rightarrow Apply zero-padding as described

Calculation of Indexes for n and S

$$\mathbf{X}^{[n]} = \{ \operatorname{enc}(n - S + s - 1) | 1 \le s \le S \} \qquad \mathbf{T}^{[n]} = \{ \operatorname{enc}(n - S + s) | 1 \le s \le S \}$$

Test 1: Sequences

- Get inputs and targets for n=2 and S=5
- Check that the zero-padding in the beginning is correct
- Check that last entries are one-hot vectors.

Data and Targets

Task 4: Dataset and Data Loader

- Implement torch.utils.data.Dataset for our data
- ullet Constructor $_$ init $_$ (self, data, S) takes data and S
 - ightarrow Store current sequence length S as variable self.S
- ullet Index function <code>__getitem__(self, index)</code> returns $(\mathbf{X}^{^{[n]}}, \mathbf{T}^{^{[n]}})$ for n
- Length __len__(self) returns the number of sequences
- Instantiate torch.utils.data.DataLoader from dataset

Test 2: Data Sizes

- Iterate though all batches in the dataset
- ullet Check that batches ${\mathcal X}$ and ${\mathcal T}$ are in correct size
- Check that content of \mathcal{X} and \mathcal{T} is related

Elman Network Training

Task 5: Elman Network Implementation

- Implement Elman network:
 - \rightarrow First layer $\mathbf{W}^{(1)}$, recurrent layer $\mathbf{W}^{(r)}$ and second layer $\mathbf{W}^{(2)}$, PReLU
- ullet Instantiate fully-connected layers for given K and D
- Implement forward function sequentially on S, parallel on B
- Return logits \mathcal{Z} for input \mathcal{X}

Test 3: Network Output

- ullet Instantiate Elman network with arbitrary D and K
- ullet Generate artificial batch of samples ${\mathcal X}$
- Check that output \mathcal{T} is in desired shape

Elman Network Training

Task 6: Training Loop

- Instantiate Elman network with D from data and K = 1000
- ullet Use Adam optimizer with learning rate η
- Use categorical cross-entropy loss
 - → Make sure that SoftMax is executed over correct dimension
- Compute training loss over epoch
- Change dataset.S randomly after each batch to $S \in [5, 20]$
- Train for 10 epochs (or more)

Writing a Poem

Task 7: Text Encoding

- Implement function encode(text)
 - \rightarrow Turn text of length S into $\mathcal{X} \in \mathbb{R}^{1 \times S \times D}$

Task 8: Next Element Prediction

- Implement function predict(logits)
 - \rightarrow Take logit of **last** sequence item $\vec{y}^{\{S\}}$
 - → Option 1: Return character with the highest confidence
 - → Option 2: Sample character based on confidences

Writing a Poem

Task 9: Sequence Completion

- Take seed text to start from
- Iteratively add characters to current text
- Stop after 80 characters have been added (can be more)

Task 10: Text Production

- Define several seeds (e.g., "th", "moth", "lov")
- Complete sequence with option 1 (highest probability)
- Complete sequence with option 2 (sampled probability)
- Write results to console

Writing a Poem

Exemplary Outputs for Some Seeds

seed	best output	sampled output
th	the story of thee this strangely pass, and	thou is his diss and and meant the deach of
	scarcely grestst converted from the sta	beauty os my loves as end meas. form a
beau	beauty thou wilt take, thou best of deains	beauty shows the worst was thy humour doth
	the tillage of the truth'n of both, and t	and with heat, no, i that power ald are,
mothe	mother's glass hid err that thou shalt find	mother's would by ill believing thingsteration
	thus makes but cours morr worts and to hi	of hers buttone, cansed of self grow.
bloo	blood which youngly those that stell of good,	blooms have full as deeptate of youth in each
	or evil luck, of plagues, of deaves sh	st that i come so near, sweet to thee
q	quite, for i me deathroom thou wilt swift-foot	quity good a poor heam and men. yet this
	shale rone, nor east sure i heat a	might, and by and by clespest of my pime
wh	when i against my self with thee shall not be	when i (perhaps) compound so thou bear'st
	tomb ex then seems? thou the beauty	love to any whe hash on love to thy and