| Lesson | Ob | iectiv | es |
|--------|----|--------|----|
|        |    | ,      |    |

- 1. Simplify a square root Perfect Square method
- 2. Simplify a square root Pairs and Spares method
- 3. Simplify square roots containing variables

| Α. | Simplify | a | Square | Root – | Perfect | Square | Method |
|----|----------|---|--------|--------|---------|--------|--------|
|----|----------|---|--------|--------|---------|--------|--------|

• Review of Perfect Squares

A **perfect square** is a number that has two factors.

To simplify square roots, it's really helpful if you know at least the first 15 perfect squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225

• Simplify a Square Root – Perfect Square Method

Radicand – the value or amount \_\_\_\_\_ the root Index – the \_\_\_\_ of root you are taking

index \( \frac{1}{\text{radicand}} \)

With a **square root**, the index of **2** is not written – it is omitted.

A square root is considered \_\_\_\_\_\_ if: the radicand contains \_\_\_\_\_ perfect square factors.

- **STEP 1.** Inside the square root, divide the radicand into two factors:
  - o the \_\_\_\_\_\_ perfect square that divides into the radicand
  - o its "\_\_\_\_\_\_" factor that goes with it
- **STEP 2.** Each of those factors gets its \_\_\_\_\_\_ square root, multiplied together.
- STEP 3. \_\_\_\_\_\_ the perfect square root into its whole number.
- **STEP 4.** Leave the "buddy" factor \_\_\_\_\_\_ the square root as the remaining reduced radicand.

- **EXAMPLE:** Simplify by factoring out the largest perfect square. [R.7.37]  $\sqrt{102}$ 
  - STEP 1. Inside the square root, divide the radicand into two factors:
    - o the largest perfect square that divides into the radicand
    - o its "buddy" factor that goes with it

To find the largest perfect square factor of 192, you need to:

- o Test the perfect squares by \_\_\_\_\_\_\_ 192 by each perfect square
- o No \_\_\_\_\_\_, no remainder
- You only need to test perfect squares to about \_\_\_\_\_-way to 192, or 96

| $\frac{192}{4} = 48$    | $\frac{192}{9} \approx 21.3$ | $\frac{192}{16} = 12$                       |  |  |  |  |  |
|-------------------------|------------------------------|---------------------------------------------|--|--|--|--|--|
| $\frac{192}{25} = 7.68$ | $\frac{192}{36} \approx 5.3$ | $\frac{192}{49} \approx 3.9$                |  |  |  |  |  |
| $\frac{192}{64} = 3$    | $\frac{192}{81} \approx 2.4$ | $\frac{192}{100}$ 100 is more than half-way |  |  |  |  |  |

• STEP 1.

Rewrite  $\sqrt{192}$  as  $\sqrt{64 \cdot 3}$ 

64 is the largest perfect square factor of 192

Its "buddy" factor is 3 because  $64 \cdot 3 = 192$ 

• STEP 2. Each of those factors gets its own square root, multiplied together.

$$\sqrt{192} = \sqrt{64} \cdot \sqrt{3}$$

• STEP 3. Simplify the perfect square root into its whole number.

$$\sqrt{192} = \underline{\phantom{0}} \cdot \sqrt{3}$$

• **STEP 4.** Leave the "buddy" factor inside the square root as the remaining reduced radicand.

**ANSWER:** 
$$\sqrt{192} =$$

You can easily verify that  $\sqrt{192} = 8\sqrt{3}$  on your calculator. Just verify the approximate decimal equivalents:

13.85640646 8\sqrt{3} 13.85640646

• **EXAMPLE:** Simplify.

 $\sqrt{448}$ 

[\*Angel 11.3.11]

448 has several perfect square factors, but we want the largest one.

| $\frac{448}{4} = 112$ | 4 is not the largest perfect square factor because the remaining factor,, still divides down by at least the perfect square |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $\frac{448}{16} = 28$ | 16 is not the largest perfect square factor because the remaining factor,, still divides down by the perfect square         |
| $\frac{448}{64} = 7$  | 64 is the largest perfect square factor because the remaining factor,, does divide down by any perfect squares.             |

• STEP 1.



• STEP 2. Each of those factors gets its own square root, multiplied together.

$$\sqrt{448} = \sqrt{64} \cdot \sqrt{7}$$

• STEP 3. Simplify the perfect square root into its whole number.

$$\sqrt{448} = \underline{\phantom{0}} \cdot \sqrt{7}$$

• **STEP 4.** Leave the "buddy" factor inside the square root as the remaining reduced radicand.

**ANSWER:** 
$$\sqrt{448} =$$

You can easily verify that  $\sqrt{448}=8\sqrt{7}$  on your calculator. Just verify the approximate decimal equivalents:



Caution: Don't be too over-reliant upon the calculator!

For example,  $\sqrt{448}$  also equals  $4\sqrt{28}$ ; however,  $4\sqrt{28}$  is not simplified because the radicand \_\_\_\_\_ still divides down by a perfect square, \_\_\_\_.

| . Simplify a Sq                                                            | uare Root – "Pairs and Spares" Method                                                                       |  |  |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| The challenge with the <b>Perfect Square</b> method is that sometimes it's |                                                                                                             |  |  |  |  |
| to determine t                                                             | he largest perfect square factor because the radicand is either large or                                    |  |  |  |  |
| otherwise unfa                                                             | amiliar, or it may not simplify at all.                                                                     |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
| An alternate, s                                                            | ometimes and more                                                                                           |  |  |  |  |
| method is calle                                                            | ed the "Pairs and Spares" method, which utilizes a technique involving a                                    |  |  |  |  |
| <b>factor tree</b> , or                                                    | the prime factorization.                                                                                    |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
| Prime Factor                                                               | prization – make a Factor Tree                                                                              |  |  |  |  |
|                                                                            | number: a whole number whose only factors are 1 and itself.                                                 |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
|                                                                            | number: a whole number that is <b>NOT prime</b> ; it is <b>composed</b>                                     |  |  |  |  |
| or prime facto                                                             | rs. It has additional factors besides 1 and itself.                                                         |  |  |  |  |
| Note that the i                                                            | number 1 is neither prime nor composite.                                                                    |  |  |  |  |
| Prime factoriz                                                             | ation: an arrangement of factors whose product is a given                                                   |  |  |  |  |
|                                                                            | . EVERY whole number (greater than 1) has a UNIQUE prime factorization.                                     |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
|                                                                            | : a systematic way to divide down a whole number                                                            |  |  |  |  |
| into its ι                                                                 | unique prime factors, or is <b>prime factorization</b> .                                                    |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
| STEP 1.                                                                    | "" the given number into 2 factors.                                                                         |  |  |  |  |
|                                                                            | <ul> <li>If there's more than one way to have 2 factors, then you can simply</li> </ul>                     |  |  |  |  |
| choose whichever you prefer – it doesn't matter.                           |                                                                                                             |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
| STEP 2.                                                                    | If either of the 2 factors is <b>prime</b> , then it.                                                       |  |  |  |  |
|                                                                            |                                                                                                             |  |  |  |  |
| STEP 3.                                                                    | If either of the 2 factors is <b>composite</b> , then <b>"branch-off"</b> of that number                    |  |  |  |  |
|                                                                            | into 2 factors as well.                                                                                     |  |  |  |  |
| STEP 4. (If needed) Continue the process until your factor tree has        |                                                                                                             |  |  |  |  |
| 31EP 4.                                                                    | (If needed) Continue the process until your factor tree has left but a collection of circled prime numbers. |  |  |  |  |
|                                                                            | left but a collection of circled prime numbers.                                                             |  |  |  |  |
| STEP 5.                                                                    | Write the prime factorization:                                                                              |  |  |  |  |
| J J.                                                                       | List all of the circled numbers together,                                                                   |  |  |  |  |
|                                                                            | <ul> <li>Separated with a multiplication sign in between each factor</li> </ul>                             |  |  |  |  |

• (EXAMPLE): Use a factor tree to find the prime factorization of 405.



ANSWER: The prime factorization of 405 is:

Simplify a Square Root – "Pairs and Spares" Method
STEP 1. Get the \_\_\_\_\_\_\_ of the radicand using a factor tree.
STEP 2. Write the PF as the updated radicand \_\_\_\_\_\_ the square root.
STEP 3A. Circle any \_\_\_\_\_\_ of identical factors; that is, a perfect square.
Each pair of identical factors inside the square root simplifies to a \_\_\_\_\_\_ the square root (to its LEFT).
Do this for each identified pair of identical factors.
STEP 3B. \_\_\_\_\_\_ any remaining unpaired factors still in the radicand (inside the square root) – these are \_\_\_\_\_\_.

**STEP 4.** \_\_\_\_\_\_ **together** either the *outside* factors or the *inside* factors, if needed.

- **EXAMPLE:** Simplify the expression.  $\sqrt{405}$  [\*Angel 11.3.19]
- **STEP 1.** From the example above, the **prime factorization** of 405 is  $3 \cdot 3 \cdot 3 \cdot 3 \cdot 5$
- **STEP 2.** Update the **radicand**:  $\sqrt{405} = \sqrt{3 \cdot 3 \cdot 3 \cdot 3 \cdot 5}$
- STEP 3. Circle pairs, Underline spares.  $\sqrt{3 \cdot 3 \cdot 3 \cdot 3 \cdot 5}$ Each pair simplifies to a single:  $-\sqrt{5}$
- STEP 4. Multiply *outside* factors :  $\sqrt{5}$  Multiply *inside* factors: (not needed)

**ANSWER:**  $\sqrt{405}$  simplifies to \_\_\_\_\_\_ 20.1246118 9.5 20.124611

|    | Simplify:      | Sauara   | Doot. | Containing   | Variables   | "Daire  | and C  | naroc" | Mathadl |
|----|----------------|----------|-------|--------------|-------------|---------|--------|--------|---------|
| C. | Sillibility of | a square | MOUL  | Containing ' | variabies ( | , Palls | allu 3 | pares  | Method) |

You can simplify expressions with variables by using the basic definition of an

For example, you could write out the factors of  $x^5$  as  $x \cdot x \cdot x \cdot x \cdot x$  and then circle pairs similar to how you do with constants.

**EXAMPLE:** Simplify by factoring. Assume that all expressions under radicals represent  $\sqrt{\chi^{17}}$ [\*Blitzer 10.3.39] nonnegative numbers.

#### STEP 1 and 2. Prime factorization, update radicand.

Rewrite  $x^{17}$  in the radicand using definition of exponent:

#### STEP 3. Circle pairs, underline spares.

Simplify to singles.

$$\sqrt{x^{17}} = \underline{\qquad} \cdot \sqrt{x^{17}}$$

Multiply outsides together.  $\sqrt{x^{17}} = \underline{\qquad} \cdot \sqrt{x}$ 

$$\sqrt{x}$$
 =  $\sqrt{x}$ 

#### **STEP 4.** Multiply spares together inside: (not needed)

 $\sqrt{x^{17}}$  simplifies to  $x^8\sqrt{x}$ **ANSWER:** 

Notice when the exponent is very LARGE, this can be rather

There's an easier way. Here's the previous problem again, earlier in the problem:

$$\sqrt{x^{17}} = \sqrt{\underline{x \cdot x} \cdot \underline{x \cdot x} \cdot \underline{x}}$$

How many **pairs** are there?

How many **spares** are there?

An exponent can always be written as the previous exponent and a . .

Examples:

$$\sqrt{x^{17}} = \sqrt{x^{16}} \cdot \sqrt{x}$$

$$\sqrt{x^{17}} = \sqrt{x^{16}} \cdot \sqrt{x}$$
 or  $\sqrt{x^{11}} = \sqrt{x^{10}} \cdot \sqrt{x}$  or  $\sqrt{x^7} = \sqrt{x^6} \cdot \sqrt{x}$ 

$$\sqrt{x^7} = \sqrt{x^6} \cdot \sqrt{x}$$

Pairs & Spares:

Sq. Rt. Is Exponent/2:

$$16 \div 2 = 8$$

$$10 \div 2 = 5$$

$$6 \div 2 = 3$$

Simplified

$$\sqrt{x^{17}} = x^8 \sqrt{x}$$

$$\sqrt{x^{11}} = x^5 \sqrt{x}$$

$$\sqrt{x^7} = x^3 \sqrt{x}$$

- Simplify square roots containing both variables and constants
- $\sqrt{180x^6v^{15}}$ **EXAMPLE:** Express in simplified form. [R.7.47] Assume that all variables represent positive real numbers.

#### CONSTANT

STEP 1. Prime Factorization. 180

STEP 2. Update radicand.

$$\sqrt{180} = \sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 5}$$

STEP 3. Circle pairs, underline spares.

$$\sqrt{180} = \sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot \underline{5}}$$

$$\sqrt{180} = \underline{\qquad \qquad \sqrt{5}}$$

$$\sqrt{180} = \underline{\qquad} \sqrt{\underline{5}}$$

STEP 4. Multiply outside factors:

$$\sqrt{180} = \underline{\hspace{1cm}} \sqrt{\underline{5}}$$

Multiply *inside* factors (not needed)

#### **VARIABLES**

Write as **separate square roots**:

$$\sqrt{x^6 y^{15}} = \sqrt{x^6} \cdot \sqrt{y^{15}}$$

Rewrite **odd** exponents as the previous even and a spare:  $=\sqrt{x^6}\cdot\sqrt{y^{14}}\sqrt{y^{14}}$ 

$$= \sqrt{x^6} \cdot \sqrt{y^{14}} \sqrt{\underline{y}}$$

Simplify even exponents by dividing by 2:

$$= x^3 \cdot y^7 \cdot \sqrt{\underline{y}}$$

#### **MERGE**

Merge together the answer portions from the constants and the variables.

CONSTANTS:

MERGED – FINAL ANSWER:

Sources Used:

- 1. Dillon, Kathy "Pairs and Spares" method Oakland High School, Murfreesboro, TN.
- 2. MyLab Math for Elementary and Intermediate Algebra for College Students, 4th Edition MEDIA UPDATE, Angel, Pearson Education Inc.
- 3. MyLab Math for Introductory & Intermediate Algebra for College Students, 4<sup>th</sup> Edition, Blitzer, Pearson Education Inc.
- 4. MyLab Math for College Algebra with Modeling and Visualization, 6<sup>th</sup> Edition, Rockswold, Pearson Education Inc.
- 5. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit