DEA (Data Envelopment Analysis)

1.Introduction

2.What's DEA

3.Example/Practice of DEA

4.Conclusion

01 Introduction

MCDM (다기준 의사결정)

• MCDM: Multi Criteria Decision Making

- ✓ 다기준 의사결정 MCDM If not a Roman Numeral, then What? In 1979
- ✓ 속성:

정량적 요소와 정성적 요소가 혼재

상이한 scale의 혼재로 단일 지수로 통합하기 어려움

요소간 상대적 중요성 평가가 어려움

복수의 목표, 대안, 속성의 동시 고려가 어려움

✓ 접근 방법 :

Scoring 모형 -> 자료의 문제를 scaleless하거나 점수 scale로 통일하여 해결

AHP -> 비교가능성을 가정하고 intransitivity(비이행성)을 허용

Fuzzy -> 비교가능성과 intransitivity를 허용하지 않는 접근

ANP -> 속성간 inter independence를 가정

Definition

DEA: Data Envelopment Analysis

- ✓ 자료 포락 분석
- ✓ 1978년 처음으로 제안 -> OR/M (Operations Research/Management)에 널리 활용됨
- ✓ 선형계획법을 기반으로 DMU 사이의 상대적인 효율성을 비교하는 기법
- ✓ 상대적 효율성, 성능 측정 및 벤치마킹, 비모수적 접근하는 기법
- ✔ DMU라는 의사결정 단위에 투입 및 산출을 적용 후 개별 DMU별로 떨어진 거리 계산
- ✓ 자원 배분을 최적화 하고 생산을 최대화 하는 것

•특징 :

✔ '과제 중심적 접근' 과 '중요한 과제에 초점'을 맞추어 모든 비교 대상의 성과를 과학적,정량적으로 도출하며, 나아가 개선해야 할 부분과 개선의 가능성, best practice와 benchmark 대상 등을 제시

(위에서의 비교 대상이란, DMU : 프로젝트, R&D 과제, 기관, 지점, 관리자의 업적 등 Business Operations나 Business Process) (DMU : Deicsion Maker Units)

- ✓ Market Price가 없는 경우에 상대적 효율성을 측정하기 위해 고안됨
- ✓ Input,outpu간에 어떤 사전적 함수관계에 대한 가정이 없더라도 modeling할 수 있는 장점

Definition

• DEA 방식

- ✓ 비교 대상인 의사결정단위를 결정 -> 각 의사결정단위의 투입물과 산출물을 추계하여 DEA 분석 진행
- ✔ 산출 요소별 가중치를 곱해 더한 가중 합계를 투입 요소별 가중치를 곱해 더한 가중 합계로 나눠줌
- ✓ 위의 연산의 결과물이 DEA 기법에 따른 효율성

✓ 목표 : optimizing

input : 효율을 올리기 위한 식에서 분모를 선형이 되려면 1이 되야함

output : 모든 k개의 상대적 효율성은 1보다 작거나 같아야함

02 What's DEA DEA의 장점

• 장점

- ✓ 다른 성격의 여러 투입과 산출 요소를 함께 고려한 분석
- ✓ 객관적 요소의 통합
- ✓ 비효율적 DMU의 약점 부분 및 실적 개선 가능 목표 제시
- ✓ Star player와 best practice 도출
- ✓ 비효율적 DMU의 benchmark 대상 제시
- ✔ 투입과 산출사이의 정해진 함수관계를 설정하지 않고 다수의 투입물과 다수의 산출물을 내생적으로 조절
- ✓ 투입과 산출에 대한 가중치를 사전에 정할 필요가 없음
- ✓ 효율성 값이 간단한 measure로 제시, 상대적 비효율성의 원인이 되는 투입물과 산출물을 확인 가능

Techniques

•Objective function of DMU's efficiency θ_i (CCR Model)

DMU's known as M outputs y_1^j y_2^j ,...., y_m^j are multiplied by their respective weights u_1^j u_2^j ,...., u_m^j and divided by the N inputs x_1^j x_2^j ,...., x_m^j multiplied by their respective weights v_1^j v_2^j ,...., v_m^j

$$\max \quad heta_j = rac{\sum\limits_{m=1}^M y_m^j u_m^j}{\sum\limits_{n=1}^N x_n^j v_n^j}$$
 efficiency $heta_i$

•Constraint of DMU's efficiency θ_i

No DMU_k k=1,...,K, efficiency scores exceeds one

$$rac{\sum\limits_{m=1}^{M}y_{m}^{k}u_{m}^{j}}{\sum\limits_{n=1}^{N}x_{n}^{k}v_{n}^{j}}\leq 1$$

Variables

Notations	Description				
E_k	The efficiency ratio of DMU k				
	k=1,2,,K where K is the total number of DMUs being evaluated				
u_j	A coefficient for output j – A measure of the relative decrease in efficiency with each unit reduction of output value				
	j=1,2,,M where M is the total number of output types being considered				
v_i	A coefficient for input $i-$ A measure of the relative increase in efficiency with each unit reduction of input value				
	i=1,2,,N where N is the total number of input types being considered				
O_{jk}	The number of observed units of output j generated by DMU k				
I_{jk}	The number of observed units of input i used by DMU k				

$$k=1,\ldots,K,$$

Techniques

- •Objective function of DMU_k's efficiency θ_i , for k=1,...,K
 - ✓ Change the objective function to more simple one

$$\max \sum_{m=1}^M y_m^j u_m^j$$

- •Constraint of DMU_k's efficiency θ_j , for k=1,...,K
 - ✓ Change the constraint to more simple one

1.
$$\sum_{n=1}^{N} x_n^j v_n^j = 1$$

2.
$$\sum_{m=1}^{M} y_m^j u_m^j < = \sum_{n=1}^{N} x_n^j v_n^j$$

This new Objective and Constraints are same effect with over ones

Techniques

•Objective function 및 Constraints Linear form

Techniques

Criteria

- ✓ Return to scale
 - CCR: constant returns to scale
 - BCC : variable returns to scale(increasing, constant, decreasing)
- ✓ Objectives
 - Input-oriented : Minimize inputs at the given level of outputs (input 지향)
 - Output-oriented : Maximize outputs at the given level of inputs (output 지향)

Techniques

DEA의 초기 모형 : CCR모형, BCC모형

> DEA models

Input-oriented Input-oriented Input-oriented CCR model BCC model Output-oriented Output-oriented **Output-oriented**

CCR model

CCR

BCC

BCC model

Focus on Datamining 11

체인호텔의 상대적 효율성 측정

•현 상황

최근 고정비용 상승에 따른 생산성의 하락을 경험 중 -> 투입 대비 산출의 효과가 크지 않음. 호텔 건립 당시 초기 투자비용은 차지하고라도 매출이 제한적인 상황에서 인건비 상승으로 인해 수익성이 악화 됨 -> 이를 해결하고자 DEA를 수행

•호텔의 상대적 효율성 측정의 중요성

많은 호텔들이 고정자산투자 증가에 따른 영업위험과 타인자본 부담에 따른 재무 위험이 증가 -> 호텔의 수익성과 재무건전성 악화시킴, 객실과 더불어 F&B 등 각종 부대사업장의 매출 역시 침체 중 -> 차별적인 경쟁력이나 코스트를 획기적으로 절감해야 수익성이 생김

이를 위해 코스트의 구조를 파악, 다른 호텔과의 비교를 통해 비용을 어떻게 줄일지 결정 -> 다른 호텔과의 비교는 기본적으로 부분적인 생산성 정도를 이용한 평가를 수행

생산성 정도를 사용해 비교를 진행시 1:1값을 기준으로 한 성과 지표는 각 평가단위를 단순 비교함으로써 잘못을 범하기 쉬움 -> DEA는 비교대상그룹에서 benchmark를 제시, benchmark 대비 각 비교대상의 효율성을 제시

체인호텔의 상대적 효율성 측정

- What is input, output?
 - ✓ Input:

종업원수, 유형자산, 객실 수, 부대사업장크기

✓ Output :

매출, 객실 점유율, RevPar, 영업이익

- ✓ DEA는 다수의 input,output의 산출을 한 번에 고려해 효율성을 측정
- ✓ 효율성을 분해해 기술효율성, 순수기술효율성, 규모효율성 측정 가능
- ✓ DEA의 초기 모형: CCR모형, BCC모형

체인호텔의 상대적 효율성 측정

What's CCR:

- ✔ CCR모형의 기본 가정 : 생산함수가 규모수익불변(Constant Return to Scale : CRS) -> 규모에 따라 산출되는 수익이 일정 비율로 증가 -> 규모에 따라 증가하므로 무한확장가능성이 있음
- ✓ 일정 비율의 수익률

- Input 방향의 CCR포락모형

Min
$$h_0 = \theta - \epsilon (\sum_{i=1}^m S_i^- + \sum_{\gamma=1}^s S_\gamma^+)$$
 〈식 1〉

Where.

 S_i^- : 투입의 여유변수

 S_{γ}^{+} : 투입의 여유변수

 λ_i : 투입의 여유변수

ε : non-Archimedean 상수

체인호텔의 상대적 효율성 측정

What's BCC:

- ✔ BCC모형의 기본 가정 : 규모수익가변(Variable Return to Scale : VRS) -> CCR모형의 무한확장가능성을 배제하기 위해 새로운 제약식 $\sum_{j=1}^{n} \lambda_{j} = 1$ 을 추가 -> 단순 선형 효율성 모델이 아닌 Efficient frontier(효율적 투자선)를 가지게 됨 즉, 볼록한 프론티어(경계)를 가짐
- ✓ 변수 축적에 대한 반환

- Input 방향의 CCR포락모형 Min
$$h_0=\theta-\epsilon(\sum_{i=1}^mS_i^-+\sum_{\gamma=1}^sS_\gamma^+)$$
 〈식 2〉

subject to
$$\begin{array}{ll} \theta x_{i0} \; -S_i^- \; - \; \sum_{j=1}^n x_{ij} \lambda_j \; = 0 \\ \\ \sum_{j=1}^n y_{\gamma j} \lambda_j \; - \; S_i^- \; = \; y_{\gamma 0} \\ \\ \sum_{j=1}^n \lambda_j \; = \; 1 \\ \\ S_i^-, \; S_\gamma^+, \; \; \lambda_j \; \; \geq \; 0 \end{array}$$

체인호텔의 상대적 효율성 측정

•위 식의 산출물

- ✓ 기술 효율성 -> 기술적 효율성 = 규모 효율성 * 순수기술 효율성
- ✓ 규모 효율성 = 기술 효율성 / 순수기술 효율성 -> 얼마나 작은 규모 측면에서 효율적으로 투입-산 출 활동을 하는가를 측정하기 위함
- ✔ 규모 효율성 = 1 -> 기술 효율성 = 순수기술 효율성 -> 규모 비효율성이 나타나지 않음

기술적 효율성 $(\frac{HE}{HG})$ = 순수기술적 효율성 $(\frac{HE}{HG})$ imes 규모의 효율성 $(\frac{HE}{HF})$

규모의 효율성 $(\frac{HE}{HF})$ = 기술적 효율성 $(\frac{HE}{HG})$ / 순수기술적 효율성 $(\frac{HE}{HG})$

-> 기울기가 1보다 큰지 작은지에 따라 달라짐

〈그림 1〉 규모의 효율성

*윤지환, 최규완(2008), 회계정보를 이용한 호텔기업의 효율성분석, 관광학연구 참조

Input-Oriented CCR Model Example

Tourist hotel

	Output	Input	
DMUs	Number of guests	Labor-hours (100 hr)	Operational cost (thousand dollar)
DMU1	500	70	120
DMU2	500	50	150
DMU3	500	130	70
DMU4	500	70	70
DMU5	500	100	90
DMU6	500	120	50

DMU1~6들의 효율성 계산하기

Input-Oriented CCR Model Example

Efficient frontier plot

Efficient frontier -> 효율적 투자선 그리기 Input 값들을 사용하여 그림

Input-Oriented CCR Model Example

•LP form으로 변형 후 최적화

DMU 1)
$$\max E_1 = 500 u_1$$

 $s.t.$ $500u_1 - 70v_1 - 120v_2 \le 0$
 $500u_1 - 50v_1 - 150v_2 \le 0$
 $500u_1 - 130v_1 - 70v_2 \le 0$
 $500u_1 - 70v_1 - 70v_2 \le 0$
 $500u_1 - 100v_1 - 90v_2 \le 0$
 $500u_1 - 120v_1 - 50v_2 \le 0$
 $70v_1 + 120v_2 = 1$
 $u_1, v_1, v_2 \ge 0$

DMU 1 ~ 6 들의 효율성을 각각 최적화

→input, output들을 weight를 곱한 후 최적화 진행

DMU 2)
:
DMU 6)

Input-Oriented CCR Model Example

Optimized efficiency result

> Results

DMU	Efficiency (E)	Efficiency Reference Set	u_1	ν_{i}	V_2	
DMU1	0.8750	DMU2 (0.4375) DMU4 (0.5625)	0.0018	0.0100	0.0025	
DMU2	1		0.0020	0.0114	0.0029	아자에비이 마음이 교 (4 2) 이른 치저히
DMU3	0.8033	DMU4 (0.3115) DMU6 (0.6885)	0.0016	0.0033	0.0082	앞 장에서의 LP form의 E_n (n=1,2,,6)를 최적화
DMU4	1		0.0020	0.0114	0.0029	-> input, output 값들을 활용하여
DMU5	0.7539	DMU4 (0.8923) DMU6 (0.1077)	0.0015	0.0031	0.0077	/ Input, output is e e e o a a
DMU6	1		0.0020	0.0041	0.0102	

DMUs corresponding to the binding constraints (shadow price)

Input-Oriented CCR Model Example

- Interpretation of Result
- ➤ Improvement How to make DMU1 efficient (1/2)
 - Arithmetic calculation
 - ✓ Benchmark any efficient DMU
 - ✓ Reduce each input → increase efficiency ratings by 0.125
 - Reduce labor-hours by 12.5(=0.125÷0.01)
 - Reduce operational cost by 50(=0.125÷0.0025)
 - ✓ Benchmark HCU(Hypothetical Composite Unit)1

	Referen				
	DMU2 (0.4375)	DMU4 (0.5625)	HCU1	DMU1	Excess Inputs Used
Labor-hours	0.4375×50 +	0.5625×70 =	61.25	70	8.75 (=70-61.25 =70×0.125)
Operational cost	0.4375×150 +	0.5625×70 =	105	120	15 (=120-105 =120×0.125)

Input-Oriented CCR Model Example

- Interpretation of Result
- ➤ Improvement How to make DMU1 efficient (2/2)
 - Graphical representation

Correspondence between MCDM and DEA

- MCDM과 EDA의 연관 관계

MCDM에서의 의사 결정 = DEA에서의 DMUs MCDM에서의 Positive criteria = DEA에서의 Outputs MCDM에서의 Negative criteria = DEA에서의 Inputs MCDM에서의 Priority = DEA에서의 efficiency score

Input-Oriented CCR Model Example

• 은행 지점의 성과평가 사례

Branch	Personal	Number of
	transactions	staff
	('000s)	
Croydon	125	18
Dorking	44	16
Redhill	80	17
Reigate	23	11

- 이 자료로 어떻게 성과를 평가할 수 있을까? -> 상대적 비율

Ratio

Branch Personal transactions per staff member -----(-000s) Croydon 6.94 Dorking 2.75 Redhill 4.71 Reigate 2.09

간단하지만, DEA 핵심 아이디어의 전부

100%의 효율성 - Best? 40%의 효율성 - Not good? 68%의 효율성 - Good? 30%의 효율성 - Not good?

04 Conclusion

Advantages of DEA for MCDM

• DEA의 장점

- ✓ Data-oriented endogenous weighting method
- ✓ Allowing each DMU to choose the **optimal weights of variables** which maximize its efficiency
- ✓ **Usefulness under the context of uncertainty** about, and **lack of consensus** on an appropriate weighting scheme

•느낀점

- ✔ 1979년에 발간된 방법론이지만 현대까지도 유용하게 사용되고 성능이 좋다는 것이 놀랍다.
- ✔이 보다 더 최근에 발간되고 나온 아이디어 및 방법론은 어떤 것이 있는지 궁금해졌다.

Q & A The strict of the stric