CS 383: Machine Learning

Prof Adam Poliak
Fall 2024
09/24/2024
Lecture 08

Announcements

HW02 is due tonight night

HW03 is due next Tuesday night

- Reading quiz: Thursday
 - Duame 9.3 (2 pages)

Proposed updated schedule

Midterm 1 was Thursday October 3rd

3 lectures this week

lecture on Wednesday 10/02 but no lecture on Thursday 10/03 (was supposed to be midterm 1)

No lecture Wednesday 10/09

HW02 decision trees due tonight, HW03 polynomial regression due next Tuesday 10/01, HW04 naive Bayes due Tuesday 10/08 (it'll be a shorter assignment)

Midterm 1 on Thursday 10/10

Outline

Normal equations solution

Regularization

Cost Function

 $h_w(x)$ (assume $w_0=0$ for this example)

Cost Function

Outline

Normal equations solution

Regularization

Assumptions of linear regression

Explanatory (independent) and response (dependent) variables have a linear relationship

Instances are independent of each other

Residuals have a normal distribution with mean 0

The variance of the residuals is the same for an X (independent variable) - Homoscedacity

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

5 examples predicting Apple stock from Samsung stock

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

5 revised examples predicting Apple stock from Samsung stock

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

5 revised examples predicting Apple stock from Samsung stock

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

5 revised examples predicting Apple stock from Samsung stock

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

1000 examples predicting Apple stock from Samsung stock

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

Residuals and feature are uncorrelated

Proof: https://statproofbook.github.io/P/slr-rescorr.html

https://chatgpt.com/share/66f2e089-95a0-8011-a567-

7e75bd93261c

Distribution of residuals is normal, with mean 0

https://chatgpt.com/share/66f2e089-95a0-8011-a567-

7e75bd93261c

Predicting (red line)
Apple price from
Samsung price where
variables are
uncorrelated

https://chatgpt.com/share/66f2e089-95a0-8011-a567-7e75bd93261c

Distribution of residuals is not normal when response and predictor variable are uncorrelated

Normal Equation

$$J(\vec{w}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{p} (w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_p x_{i,p} - y_i)^2$$

$$J(\overrightarrow{w}) = \frac{1}{2} (\overrightarrow{w}X - y)^2$$

Normal Equation

$$J(\vec{w}) = \frac{1}{2} \sum_{i}^{n} (w_0 + w_1 x_i - y_i)^2$$

Now we have more than 1 feature:

$$J(\vec{w}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{p} (w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_p x_{i,p} - y_i)^2$$

How many partial derivatives do we need to compute?

Linear Algebra Review

Transpose

• A^T swap all columns and rows

$$(Ax)^T = \\ = x^T A^T$$

Pros and Cons

Gradient Descent

- Requires multiple iterations
- Need to choose η
- Works well when n is large
- Can support online learning

Normal Equation

- Non-iterative
- No need to choose η
- Slow if p is large
 - Matrix inversion is $O(p^3)$

22

iteration: 2, cost: 0.350001

iteration: 12, cost: 0.138047

iteration: 40, cost: 0.014064

iteration: 100, cost: 0.000105

Outline

Normal equations solution

Regularization

Generalization Error

Example: price vs. size (i.e. of a house or car)

Generalization Error

Example: price vs. size (i.e. of a house or car)

underfitting (high bias)

correct fit

overfitting (high variance)

Generalization Error

Structural error:

Hypothesis space cannot model true relationship

- -More data doesn't help
- -Need a more flexible model

Estimation (approximation) error:

Hypothesis space *can* model true relationship, BUT hard to identify correct model due to large hypothesis space, small *n*, or noise Reduce hypothesis space

overfitting (high variance)

Regularization

What if ...

- we have a limited # of training examples (n < p), or
- we want to automatically control the complexity of the learned hypothesis?

Regularization

What if ...

- we have a limited # of training examples (n < p), or
- we want to automatically control the complexity of the learned hypothesis?

Idea: penalize large values of w_i

Why prefer small weights?

Regularization

What if ...

- we have a limited # of training examples (n < p), or
- we want to automatically control the complexity of the learned hypothesis?

Idea: penalize large values of w_i

Why prefer small weights?

- if large weights, small change in feature can result in large change in prediction
- prevent giving too much weight to any one feature
- might prefer zero weight for useless features

Common Regularizers

$$||\vec{w}||_0 = \sum_{j: w_j \neq 0} 1$$

$$||\vec{w}||_1 = \sum_{j=1}^p |w_j|$$

$$||\vec{w}||_2 = \sqrt{\sum_{j=1}^p w_j^2}$$

 L_0 norm

 L_1 norm

 L_2 norm

- Number of non-zero entries
- Minimizing L_0 norm is NP hard
- Sum of magnitude of weights
- Not differentiable

- Sum of squared weights
- Differentiable