

FRTB: Standardised Approach

Tom Mills

FinPricing

http://www.finpricing.com

Summary

- FRTB Definition
- FRTB vs Basel 2.5
- FRTB Main Features
- FRTB Approaches
- FRTB Standardised Approach (SA)
- FRTB SA: Sensitivity Based Risk Charge
- FRTB SA: Default Risk Charge
- FRTB SA: Residual Risk Add-on

FRTB definition

- The Fundamental Review of the Trading Book (FRTB) is a new Basel committee framework for the next generation market risk.
- FRTB is inspired by the undercapitalisation of trading book exposures witnessed during the financial crisis.
- It aims to address shortcoming of the current Basel 2.5 market risk capital framework.

FRTB vs Basel 2.5

- Standardised Approach
 - FRTB
 - Sensitivity based risk charge + Default risk charge + Residual risk add-on
 - Rasel 2.5
 - Standardised capital charge
- Internal Model Approach
 - **♦** FRTB
 - Expected shortfall + Default risk charge + Non-modellable risk factors
 - Basel 2.5
 - VaR + Stress VaR + Incremental Risk Charge (IRC)

FRTB Main Features

- Clear definition of the boundary between the trading book and the banking book
- An overhaul of the internal model approach (IMA) to focus on tail risk
- An overhaul of the standardized approach (sa) to make it more risk sensitive and explicitly capture default risk and other residual risks
- Inclusion of liquidity horizons explicitly for different asset classes.

FRTB approaches

- Standardized approach (SA): a regulator-set approach
 - Sensitivity-based risk charge (SBRC)
 - Default risk charge (DRC-SA)
 - Residual add-on (RAD)
- Internal model approach (IMA): a bank's own approach
 - Expected shortfall (ES)
 - Default risk charge (DRC-IMA)
 - Non-modellable risk factors (NMRF)

This presentation focuses on standardized approach

FRTB Standardized Approach

- 3 risk measures: Delta, Vega and Curvature
- 7 risk classes
 - General interest rate risk (GII)
 - Credit spread risk
 - Credit spread risk: non-correlated securitisation
 - Credit spread risk: correlated securitisation
 - **Equity risk**
 - Commodity risk
 - Foreign exchange risk
- Sensitivity based risk charge should be calculated separately for each risk class and each risk measure.

FRTB Standardized Approach (cont'd)

- Reporting hierarchy: portfolio, desk, bank
- Total risk charge

Total = sensitivity-based risk charge + default risk charge + residual add-on

For example

An equity desk has equity risk and interest rate risk only, the total risk charge is given by

Total = equity Delta risk charge + equity Vega risk charge

- + equity Curvature risk charge + general interest rate Delta risk charge
- + default risk charge + residual add-on

FRTB SA: Sensitivity Based Risk Charge

- Required sensitivities
 - Delta: the first order derivative with respect to underlying price
 - Vega: the first order derivative with respect to implied volatility
 - Curvature: equivalent to the sum of all high-order derivatives with respect to underlying price
- Sensitivity notes
 - Delta: all trading products have Deltas.
 - Vega and Curvature: only non-linear products (e.g., options) have Vega and Curvature.

FRTB SA: Sensitivity Based Risk Charge (cont'd)

- Sensitivity calculation
 - Clearly define all Delta and Curvature calculation but not Vega.
 - Interest rate deltas are computed based on yield rates (or zero coupon rates) rather than liquid instrument quotes (e.g., swap rates, futures).
 - Curvature is a new measurement that is equal to shocked value change minus Delta.
- Bucket and risk factor
 - Sensitivities should be divided into buckets and risk factors within each risk measure and each risk class.
 - Risk weight: a risk weight is defined for each risk factor.
 - Risk correlation: correlations are specified between risk factors and between buckets.

FRTB SA: Sensitivity Based Risk Charge (cont'd)

- Calculation
 - Sum all sensitivities belonging to the same risk factor and then multiply by the risk weight \rightarrow risk charge W_iS_i per risk factor
 - Within one bucket, two risk factor charges can be added as

$$K_b = \sqrt{(W_i S_i)^2 + (W_j S_j)^2 + \rho_{ij} W_i S_i)(W_i S_i)}$$

- Within each class and each measure, two bucket charges can be added as a correlated sum
 - For example, an equity Delta risk charge has two buckets only, the Delta risk charge is given by

$$DeltaRiskCharge = \sqrt{K_b^2 + K_c^2 + \gamma_{bc} K_b^2 K_c^2}$$

FRTB SA: Default Risk Charge

- Scope
 - Debt instruments
 - Equity products
 - Securitisation products
- Calculation procedure
 - Determine jump-to-default (JTD) loss amount
 - Offset the JTD amounts of long and short exposures with respect to the same obligor
 - Discount the net short exposures by a hedge benefit ratio
 - Apply default risk weights to exposures to arrive at the DRC

FRTB SA: Residual Add-on

- The following trade types bearing residual risk
 - Traded in incomplete markets
 - Gap risk: such as path dependent options (barrier, Asian, digital, Bermudan, etc.)
 - Correlation risk: such as multiple underlying options (basket, best, spread, basis, quote, etc.)
 - Behavioural risk: such as mortgage
- Calculation
 - RAD = notional * factor (1% or 0.1%)

You can find more online presentations at http://www.finpricing.com/paperList.html