folha 11 -

5. Relações binárias

- 5.1. Para cada uma das relações seguintes indique o domínio e imagem.
 - (a) $S \notin \text{a relação de } A = \{0, 1, 2, 3, 4, 5\} \text{ para } B = \{1, 2, 3\} \text{ dada por } S = \{(0, 1), (1, 1), (2, 2), (3, 2), (4, 3)\}.$
 - (b) R é a relação em \mathbb{R} dada por $R = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$.
 - (c) | é a relação "divide" em $\{2,3,4,6,9,10,12,20\}$ definida por $a \mid b \leftrightarrow (\exists_{n \in \mathbb{N}} b = na)$.
- **5.2.** Seja $A = \{2, 4, 6, 8, 10\}$. Considere as seguintes relações em A:

$$R = \{(2,2), (2,4), (2,6), (10,8)\}, \qquad S = \{(10,2), (10,8)\}, \qquad T = \{(6,2), (6,4), (8,10)\}.$$

Determine

- (a) R^{-1}

- (b) $R^{-1} \cup S^{-1}$

- (d) $T^{-1} \cap S$ (g) $S^{-1} \circ S$ (j) $T^{-1} \circ S^{-1}$ (e) $S \circ T$ (h) $(S \circ T)^{-1}$ (k) $(R \circ S) \circ S$ (k) $(R \circ S) \circ T$
- (c) $T \setminus S^{-1}$

- (f) $R \circ T$ (i) $S^{-1} \circ T^{-1}$ (l) $R \circ (S \circ T)$
- **5.3.** Sejam $A = \{1, 2, 3\}$ e $B = \{x, y, w, z\}$. Considere as relações binárias R, de A em B, e S, de B em A:

$$R = \{(1, x), (1, z), (2, y), (2, z)\}\$$

$$S = \{(x, 1), (x, 3), (y, 2), (w, 2), (z, 3)\}.$$

Sejam $T = S \circ R$ e $U = R \circ S$.

- (a) Determine R^{-1} , S^{-1} , T, $T \circ T$, $U \in U \circ U$.
- (b) Verifique que $T^{-1} = R^{-1} \circ S^{-1}$.
- (c) Indique o domínio e a imagem de R.
- (d) Indique quantas relações binárias de A em B existem.
- (e) Indique todas as relações binárias de A em B cujo domínio é $\{2,3\}$ e cuja imagem é $\{x,z\}$.
- (f) Dê um exemplo de relações binárias não vazias R', de A em B, e S', de B em A, tais que $S' \circ R' \neq \emptyset \in R' \circ S' = \emptyset.$
- **5.4.** Sejam $A = \{1, 2, 3, 4\}$ e $B = \{3, 4, 5, 6\}$. Dê exemplo de, ou justifique que não existe:
 - (a) uma relação binária R de A em B tal que $R = R^{-1}$;
 - (b) relações binárias R e S em A tais que $R \circ S = S \circ R$ e $R \neq S$;
 - (c) uma relação binária R em A tal que $\mathrm{id}_A \subseteq R$ e $\mathrm{id}_A \not\subseteq R^{-1}$;
 - (d) uma relação binária R de A em B tal que $Dom(R) = \emptyset$;
 - (e) relações binárias R de A em B e S de B em A tais que $R \circ S = \mathrm{id}_B$ e $S \circ R = \mathrm{id}_A$.

folha 12 -

- **5.5.** Sejam A um conjunto e R uma relação binária em A. Mostre que
 - (a) Se $R^{-1} = R$, então R é simétrica.
 - (b) R é transitiva se e só se $R \circ R \subseteq R$.
- **5.6.** Considere o conjunto $A = \{1, 2, 3, 4\}$ e as seguintes relações em A:

$$R_1 = \{(1,4), (2,2), (2,3), (3,2), (4,1)\},$$
 $R_2 = \{(2,3)\},$ $R_3 = \{(1,2), (2,3), (3,2), (1,3), (2,2), (3,3)\},$ $R_4 = \{(a,a) \mid a \in A\} = \mathrm{id}_A.$

Diga, justificando, se cada uma das relações apresentadas é ou não uma relação

- (a) reflexiva;
- (b) simétrica;
- (c) antissimétrica;
- (d) transitiva.
- $\mathbf{5.7.}$ Sejam A um conjunto e R uma relação simétrica e transitiva em A. Mostre que
 - (a) R não é necessariamente reflexiva.
- (b) Se o domínio de R é A, então R é reflexiva.
- **5.8.** Considere o conjunto $A = \{a, b, c\}$. Determine todas as relações de equivalência em A e, para cada uma, indique o conjunto quociente.
- **5.9.** Seja $A = \{-3, -1, 0, 1, 2, 3\}$ e considere a relação de equivalência R em A definida por x R y se e só se $x^2 = y^2$. Indique todos os elementos da classe $[-3]_R$ e determine o conjunto quociente A/R.
- **5.10.** Seja $A = \{1, 2, 4, 6, 7, 9\}$ e considere a relação de equivalência \sim em A definida por $x \sim y$ se e só se x + y = 2n, para algum $n \in \mathbb{N}$. Indique todos os elementos da classe $[2]_{\sim}$ e determine o conjunto quociente A/\sim .
- **5.11.** Seja $A = \{1, 2, 3, 4, 5\}$. Considere as seguintes relações de equivalência em A: R é a menor relação de equivalência em A tal que $(1, 2), (1, 3), (4, 5) \in R$ e S é a relação de equivalência em A cujas classes de equivalência são: $\{1, 3\}, \{4\}$ e $\{2, 5\}$. Determine R, indique todos os elementos da classe $[2]_R$ e indique, se existirem, $a, b \in A$ tais que aRb e aSb.
- **5.12.** Considere a relação R em $\mathbb{R} \times \mathbb{R}$ definida por (x,y) R(z,w) se e só se y=w. Verifique que R é uma relação de equivalência em $\mathbb{R} \times \mathbb{R}$ e descreva a classe de equivalência $[(2,3)]_R$.
- **5.13.** Seja $A = \{2, 3, 4, 6, 7\}$ e sejam

$$\begin{split} \Pi_1 &= \left\{ \left\{ 2,4 \right\}, \left\{ 3 \right\}, \left\{ 4,6 \right\}, \left\{ 3,6,7 \right\} \right\}, & \Pi_2 &= \left\{ \left\{ 2,4,6 \right\}, \left\{ 3,7 \right\} \right\}, \\ \Pi_3 &= \left\{ \left\{ 2 \right\}, \left\{ 3,4,7 \right\} \right\}, & \Pi_4 &= \left\{ \left\{ 2 \right\}, \left\{ 3 \right\}, \left\{ 4 \right\}, \left\{ 6 \right\}, \left\{ 7 \right\} \right\}, \\ \Pi_5 &= \left\{ \left\{ 2 \right\}, \emptyset, \left\{ 3,4 \right\}, \left\{ 6,7 \right\} \right\}, & \Pi_6 &= \left\{ \left\{ 2,6 \right\}, \left\{ 3,7 \right\}, \left\{ 4 \right\} \right\}. \end{split}$$

- (a) Diga, justificando, quais dos conjuntos Π_i $(1 \le j \le 6)$ são partições de A.
- (b) Para os conjuntos Π_j $(1 \le j \le 6)$ que são partições, determine \mathcal{R}_{Π_j} e indique $[7]_{\mathcal{R}_{\Pi_j}}$.

folha 13 —

5.14. Seja $A = \{a, b\}$. Indique todas as relações de ordem parcial em A e apresente os correspondentes diagramas de Hasse.

5.15. Sejam $A = \{1, 2, 3, 4\}$ e sejam ρ_1, ρ_2, ρ_3 e ρ_4 as seguintes relações em A:

$$\rho_{1} = \{(1,1), (4,1), (2,2), (4,2), (3,3), (4,4)\}$$

$$\rho_{2} = \{(1,1), (1,4), (2,2), (4,2), (3,3), (4,4), (2,4)\}$$

$$\rho_{3} = \{(1,1), (2,2), (3,3), (4,4)\}$$

$$\rho_{4} = \{(1,1), (2,3), (2,2), (2,1), (3,3), (4,4), (3,1)\}$$

Indique se cada uma destas relações é ou não uma ordem parcial e, para cada ordem parcial, apresente o correspondente diagrama de Hasse.

- **5.16.** Mostre que os seguintes pares são c.p.o.'s:
 - (a) $(\mathcal{P}(A),\subseteq)$, onde A é um conjunto;
 - (b) $(\mathbb{N}, |)$, onde | é a relação "divide" definida por $x|y \leftrightarrow (\exists_{k \in \mathbb{N}} y = kx)$.
- 5.17. Construa diagramas de Hasse para os seguintes c.p.o.'s:
 - (a) $(\mathcal{P}(A), \subseteq)$, sendo $A = \{1, 2\}$;
 - (b) (A, |), sendo $A = \{2, 3, 4, 6, 10, 12, 20\}$ e | a relação dada por $x | y \leftrightarrow (\exists_{k \in \mathbb{N}_0} y = kx)$.
- **5.18.** Sejam $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, X = \{1, 2, 6\}$ e $Y = \{2, 3, 4, 8\}$. Considere o c.p.o. (A, \preceq) com o seguinte diagrama de Hasse:

Para cada um dos conjuntos A, X e Y determine, caso existam, os majorantes e os minorantes, o supremo e o ínfimo, os elementos maximais e minimais e o máximo e o mínimo.

5.19. Sejam (A, \leq) um c.p.o. e $X \subseteq A$. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes proposições:

- (a) Se X tem um elemento maximal então X tem elemento máximo;
- (b) Se X tem elemento máximo então X tem um elemento maximal;
- (c) Se existe $\sup(X)$ então X tem um elemento maximal;
- (d) Se X tem um elemento maximal então existe $\sup(X)$.

folha 14 –

5.20. Seja $A = \{a, b, c, d, e, f, g, h, i\}$. Considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado:

- (a) Indique os elementos maximais e minimais de A.
- (b) Seja $X = \{c, d, e, g, h\}$. Indique o conjunto dos majorantes e o conjunto dos minorantes de X em A e, caso existam, o máximo, o mínimo, o supremo e o ínfimo de X.
- (c) Dê exemplo de um subconjunto próprio de A com 3 elementos maximais e indique-os.
- **5.21.** Mostre que, num c.p.o. (A, \leq) , são equivalentes as seguintes afirmações, para quaisquer $a, b \in A$: (1) $a \leq b$; (2) $\sup\{a, b\} = b$; (3) $\inf\{a, b\} = a$.
- **5.22.** Considere o c.p.o. $(\mathbb{N}, |)$ (definido no exercício 5.16.(b)).
 - (a) Mostre que (N, |) não é uma cadeia.
 - (b) Diga, justificando, se $(\mathbb{N}, |)$ tem elemento máximo ou elemento mínimo.
 - (c) Mostre que $(\mathbb{N}, |)$ é um reticulado, indicando para quaisquer $a, b \in \mathbb{N}_0$, o supremo e o ínfimo de $\{a, b\}$.
 - (d) Considere $X = \{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 36\}$ e $Y = \{1, 2, 5, 6, 12, 20, 30, 120\}$.
 - (i) Construa os diagramas de Hasse de (X, |) e de (Y, |).
 - (ii) Indique, caso existam, os elementos minimais e os elementos maximais de X.
 - (iii) Dê exemplos de subconjuntos Z de Y, com pelo menos quatro elementos, tais que (Z, |) é uma cadeia.
 - (iv) Indique, caso existam, elementos $a, b \in Y$ tais que:
 - (α) exista supremo de $\{a,b\}$ em (Y,|) e este supremo seja diferente do supremo de $\{a,b\}$ em $(\mathbb{N},|)$;
 - (β) não exista supremo de $\{a,b\}$ em (Y,|);
 - (v) Dê exemplo de um subconjunto W de X tal que (W, |) tenha elemento máximo e elemento mínimo e não seja um reticulado.