Лабораторная работа № 4

Цель работы:

- 1. Ознакомиться с преимуществами неравномерной сетки.
- 2. Разобрать случай осевой симметрии.
- 3. Научиться рассчитывать силу воздействия магнитного поля на ферромагнетик.

Описание: Данная лабораторная работа предполагает несколько различающиеся варианты задания. В материалах к лабораторной работе содержится информация по заданию пользовательских материалов в Femm. Более подробную информацию можно найти в руководствах Femm и справке к нему.

В ходе выполнения работы необходимо выполнить действия:

- а) Получить начальное приближение для значения силы притяжения электромагнитом груза.
 - б) Добиться необходимой точности в вычислении силы.
 - в) Уменьшить время расчета, перейдя к нелинейной сетке.
- г) Определить, удержит ли электромагнит груз при заданном воздушном зазоре.

ЗАДАНИЕ

Задание: Рассчитать силу притяжения груза электромагнитом. Определить, удержит ли электромагнит груз при заданном воздушном зазоре.

Модель: цилиндрический электромагнит с грузом.

Рисунок 1 – Модель электромагнита с грузом

Радиус сердечника электромагнита равен 5 см, высота сердечника — 6 см. Толщина слоя обмотки составляет 5 мм. Радиус груза а, его высота b, величина воздушного зазора между электромагнитом и грузом h и сила тока I приведены в таблице 4.1 и индивидуальны для каждого варианта.

№ вар.	Радиус груза r, см	Величина воздушного зазора	Сила тока I, А
		h, см	
6	4	1.0	120

Таблица 4.1

ВЫПОЛНЕНИЕ РАБОТЫ

Создание задачи

Зададим граничные условия на внешних границах расчетной области и выполним расчет поля.

Рисунок 2 – расчет поля

Для расчета силы необходимо нарисовать контур вокруг груза. Для рисования контура активируем режим привязки к сетке (Snap to Grid), чтобы ставить опорные точки контура точно в точки сетки. Также зададимшаг сетки. В примере был выбран шаг 0,1 см, а контур был проведен на расстоянии 0,2 см от груза. Обратим внимание, что т.к. ось симметрии проходит через груз, контур начинается и заканчивается на оси.

Для выбранного контура примените интеграл Force from stress tensor – его результат представляет собой силу воздействия магнитного поля на груз.

Рисунок 3 — Результат вычисления интеграла Force from stress tensor

Далее необходимо подобрать такой размер конечных элементов и такой радиус искусственной границы, чтобы обеспечить необходимую точность.

Т.к. при подборе параметров придется выполнять расчет силы многократно, можно нарисовать контур на стадии препроцессора, а на стадии постпроцессора легко выделить контур левой кнопкой мыши.

Рисунок 4 – Добавление контура на стадии препроцессора

Введем более разреженную сетку вблизи искусственной границы. Для этого нарисуем две полуокружности с центром в начале координат, разделяющие воздушную область на три подобласти. Т.к. количество областей в задаче увеличилось, то нужно поставить дополнительные метки блоков. Увеличим размер элементов в новых областях: во внутреннем слое в два раза, во внешнем — в четыре.

Рисунок 5 – Разрежение сетки

Рисунок 6 – Определение объема груза при помощи интеграла Block volume

Рисунок 7 – Найденный объем груза

Для определения силы тяжести необходимо вычислить массу груза. Это можно сделать по формуле:

$$m = V * \rho$$
, где $\rho = 7700 \text{ кг/м}^3$

Подставляя значения в формулу, получаем, что $m=46343,\!22$ кг.

Далее найдем силу тяжести, подставив найденное значение массы и значение g в формулу ниже:

$$F = m * g$$
 , где $g = 10$ $F = 4,634322 \text{ N}$

Теперь определим, при каком воздушном зазоре сохранится условие равновесия. Для удобства сравнения последующих расчетов, создадим таблицу, в которую будем вносить данные силы тяжести и силы притяжения при различных значениях воздушного зазора.

Величина воздушного	Значение силы тяжести	Значение силы притяжения
зазора h, см	$F_{\text{тяж}}, N$	F_{np} , N

0.5	4,634	14,7887
1	4,634	9,7702
1.5	4,634	6,9388
1.8	4,634	5,66655
2	4,634	4,9694
2.1	4,634	4,66253
2.2	4,634	4,37115

Вывод: в результате выполнения лабораторный работы мы ознакомились с преимуществами неравномерной сетки, разобрали случай осевой симметрии и научились рассчитывать силу воздействия магнитного поля на ферромагнетик. Было выявлено, что груз при воздушном зазоре h=1 см будет удержан электромагнитом. Также было определено, что для соблюдения равновесия необходимо выбрать значение воздушного зазора $h=2.1\,$ см.

Выполнил студент Пузанов В.Е., ФИТУ 010304-КМСб-o22 Проверила ст. преподаватель каф. ПМ Балабан А.Л.