Принимая и и о за новые независимые переменные, преобразовать следующие уравнения:

3462.
$$x \frac{\partial z}{\partial x} + \sqrt{1 + y^2} \frac{\partial z}{\partial y} = xy$$
, если $u = \ln x$ и $v = \ln (y + \sqrt{1 + y^2})$.
3463. $(x + y) \frac{\partial z}{\partial x} - (x - y) \frac{\partial z}{\partial y} = 0$, если $u = \ln \sqrt{x^2 + y^2}$ и $u = \arctan \frac{y}{x}$.
3464. $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z + \sqrt{x^2 + y^2 + z^2}$, если

$$u = \frac{y}{x}$$
 H $v = z + \sqrt{x^2 + y^2 + z^2}$.

3465.
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \frac{x}{z}$$
, если $u = 2x - z^2$ н

$$v=\frac{y}{z}$$
.

3466.
$$(x+z)\frac{\partial z}{\partial x} + (y+z)\frac{\partial z}{\partial y} = x+y+z$$
, ecan
 $u=x+z$ in $v=y+z$.

3467. Преобразовать выражение

$$(z+e^x)\frac{\partial z}{\partial x}+(z+e^y)\frac{\partial z}{\partial y}-(z^2-e^{x+y})$$

приняв за новые независимые переменные

$$\xi = y + ze^{-x}, \quad \eta = x + ze^{-y}.$$

3468. Преобразовать выражение

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$$
,

полагая

$$x = uv$$
, $y = \frac{1}{2}(u^2 - v^2)$.

3469. В уравнении

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$

положить $\xi = x$, $\eta = y - x$, $\zeta = z - x$. 3470. Преобразовать уравнение

$$(x-z)\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=0,$$