

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 - Arquitetura de Computadores

Tecnologias de memória avançadas e tendências

Gustavo Girão

Memory Wall

Hennessy and Patterson, *Computer Architecture: A Quantitative Approach*, 5th ed., Morgan Kaufmann, 2012.

Ao longo dos anos....

Caches para sistemas monoprocessados

Caches

- Como melhorar? Arquiteturas
- Tamanho, associativadade, politicas de substituição

Hennessy and Patterson, *Computer Architecture: A Quantitative Approach*, 5th ed., Morgan Kaufmann, 2012.

Caches

- Como melhorar? Diminuir o tempo de acesso
- Memórias entrelaçadas

Memory Interleaving (2¹⁶=64K words, 16 modules)

IMD0041

Memory Interleaving

1
5
9
13
17
21

2
6
10
14
18
22

3	
7	
11	
15	
19	
23	

Cache Miss - Os 4 Cs

- Compulsória
 - Cold Start Misses
 - First reference Misses
 - Há pouco a se fazer aqui...

- Capacidade
 - Cache não tem espaço
 - Mal-dimensionada ou...
 - ...Software malprogramado

- Coerência
 - Uso de coerência por invalidação
 - Um mal necessário

Miss Cache (Norman Jouppi et al.)

- Completamente associativa
- Contem entre 2 e 5 linhas
- Objetivo é reduzir conflito

- 2 linhas -> 25% menos misses
- 4 linhas -> 36% menos misses
- E se dobrarmos o tamaho do cache??
 - Muito caro: apenas 0,13% por linha

Victim Cache (Norman Jouppi et al.)

- Completamente associativa
- Parecida com a miss cache
- Quando o dado não é achado na L1:
 - Verifica Victim Cache
 - Traz o dado encontrado para L1
 - Envia um dado substituído para a Victim Cache
- Melhor do que a Miss Cache

L2 Cache

Trace Caches (Rottenberg et al)

- Acessada em paralelo com a cache de instruções
 - Hit -> Trace é lido
 - Miss -> busca da cache de instruções
- Hit ocorre quando:
 - Endereço de busca é igual
 - Predições de desvio são as mesmas
- Não está no caminho crítico!

Trace Caches (Rottenberg et al)

Non-Uniform Cache Architectures – NUMA

(Arquiteturas de Cache Não-Uniformes)

NUCA

- Grandes caches L2 dentro do chip
- Atraso devido ao tamanho dos fios dominam o tempo de acesso (uma única L2 em 2010)

3 cycles 1MB 180nm, 1999

11 cycles 4MB 90nm, 2004

24 cycles 16MB 50nm, 2010

NUCA

• Cache L2 em múltiplos nós

2MB @ 130nm

Bank Access time = 3 cycles Interconnect delay = 8 cycles

NUCA

Bank=64KB 47 cycles

16MB @ 50nm

Bank Access time = 3 cycles Interconnect delay = 44 cycles

Dynamic NUCA

· Quanto mais usado, mais próximo do processador

Dynamic NUCA

Mapeamento justo

Tempo médio de acesso igual para todos os processadores

Memórias Flash

Comparando tecnologias de memória

6 transistor cell

- + very fast read/write
- + no refresh
- + std. CMOS devices
- volatile
- very large cell

DRAM

1 transistor- / 1 capacitor cell

FLASH

1 transistor cell

- + fast read/write
- + small cell
- volatile
- complicated technology

- + nonvolatile
- + very small cell
 - slow write/erase
 - only block erase
 - limited endurance

Características

Leitura / Escrita

- (+) Baixo custo por bit
- (-) Movimento mecânico
- (-) Alto consumo de potencia (10-15W)
- (-) Pesado se comparado com flash

Leitura / Programar / Apagar

- (+) Acesso aleatório
- (+) Não volátil
- (+) Baixo consumo de potência (2W)
- (-) Apagar antes de escrever
- (-) Apagar é feito em toda a unidade do bloco e não na página
- (-) Limite no número de escritas
- (-) Alto custo por bit

NOR vs. NAND

NOR TYPE

NAND TYPE

- · Large cell and fast random access
- · Small cell, but fast sequential access

• Contact is the limiting factor for scale-down. • Easy to Scale Down.

NOR vs. NAND

- NOR (Código pode ser executado onde se encontra)
 - o Leitura rápida, escrita lenta
- NAND (Armazenamento de dados)
 - o Escrita rápida e baixo custo

	Flash Type	Performance	Application
Armazenamento de código	NOR -Intel/Sharp -AMD/Fujitsu/Toshiba	Importante: -Alto acesso aleatório -Programação por byte Aceitável: -Programação lenta -Lento ao apagar	Armazenamento de programas -Celulares -DVDs, BIOS de Set TOP Box
Armazenamento de arquivos	NAND -Samsung/Thoshiba	Importante: -Alta velocidade de programação -Alta velocidade ao apagar -Alta velocidade de leitura Aceitável: -Acesso aleatório lento	Dispositivos de tamanho limitado -Cameras digitais -Silicon Audio, PDAs -Armazenamento massivo

Array de NAND flash

- Operação de apagar utiliza a unidade de bloco
- Página é a unidade endereçável

Comparação com outros tipos de memória

	Read	Write	Erase	Cost/MB
DRAM	60ns (2B) 2.6μs (512B)	60ns (2B) 2.6μs (512B)	-	30~40
NOR-type Flash	150ns (1B) 15μs (512B)	211μs (1B) 3.5ms (512B)	1.2s (128KB)	20~30
NAND-type Flash	10μs (1B) 36μs (512B)	226μs (1B) 266μs (512B)	2ms (16KB)	10~20
Magnetic Disk	12.4ms (512B)	12.4ms (512B)	-	1

Escritas

- Operação
 - Leitura/Escrita
 - Unidade de página (tamanho de uma pagina = tamanho de um setor de um disco rígido)
 - Apagar
 - ♦ Unidade de bloco (um conjunto de páginas
- Características
 - Atualização "fora de lugar"
 - ♦ Apagar um um bloco inteiro para atualização da página

Discos SSD

Vantagens

- Confiabilidade no uso portátil e silencioso.
 - Não utiliza partes móveis
- Inicialização rápida
 - Não necessita atingir uma velocidade nominal de rotação
- Latência de leitura muito baixa
 - Não há tempo de busca (25 us per page/4KB)
- Desempenho determinístico de leitura
 - O desempenho não depende da localização do dado.

Desvantagens

- Custo significativamente maior por unidade de armazenamento
 - US\$3/GB vs. US\$0.15/GB
- Tempo de limpeza de escrita limitado
 - 100.000 escritas. Celulas de alta resistencia podem chegar 5 milhões
 - o Entretanto, alguns arquivos podem precisar de mais
 - E necessário espalhar as escritas por todo o disco
- Lentidão de escrita por ter que apagar blocos são cada vez maiores (1.5 ms por bloco apagado)
- Consumo de potência e dissipação de calor são não linearmente proporcionais à capacidade do disco.

SSD vs. HDD

- HDDs (discos magnéticos tradicionais) realizam leituras sequenciais muito mais rapidamente do que leituras aleatórias.
 - É de bom senso evitar acesso aleatório o máximo possível

SSD vs. HDD

- SSDs realizam leituras aleatórias mais de 100x mais rápido do que HDDs e oferecem leituras e escritas sequenciais com desempenho parecido.
- O desempenho de escritas aleatórias dos SSDs é muito pior do que leituras aleatórias.

Flash SSDs

- Flash Translation Layer
 - Emula completamente discos magnéticos em memórias Flash
 - Deve considerar
 - Número máximo de escritas
 - Espalhar as escritas para evitar desgaste (wear down)
 - ♦ Diferença entre Blocos e Páginas

Tendências Futuras

- Gerenciamento de recursos
 - Avaliação holística do sistema
 - ♦ Sensores
 - Distribuir os recursos de acordo com a demanda
 - o Em nível de
 - ♦ Tarefas/Processadores
 - ♦ Memória
 - ♦ Mecanismos de interconexão

- Projeto baseado em Clusters/Regiões/Seções
 - Projeto Invasic Invasive Computing

- Projeto baseado em Clusters/Regiões/Seções
 - Multi-Level Dynamic Clustering

- Projeto baseado em Clusters/Regiões/Seções
 - o Traffic-Aware NoC (R. Marculescu, ESWEEK 2012)

Próxima aula

Tendências Tecnológicas Futuras

Networks-on-Chip

- Tendencias
 - GALS (Globally Asynchronous Locally Synchronous)
 - Radu Marculescu, Carnegie Mellon University, PA, USA
 - ♦ Photonic NoCs
 - Luca Carloni, Columbia University, NY, USA
 - ♦3D NoCs
 - Luca Benini, Bologna University, Italy

- Variabilidade
 - Variação no processo de fabricação leva a variações das especificações dos componentes
 - Até 30% na variação da frequencia de operação
 - Até 20x na dissipação de potência estática
 - Heterogeneidade em potencial
 - Escalonamento de Tarefas
 - Remapeamento de recursos
- Tolerância a Falhas
 - Homogeneidade cria situações ideais para tolerar falhas
 - Voltage scale agressivo
 - ♦ Falhas mais frequentes

- Virtualização
 - Virtualização é tipicamente utilizado para descrever a virtualização da plataforma de hardware do ponto de vista do SO
 - ♦ Vários SOs executando na mesma plataforma.
 - Virtualização de processadores
 - Virtualização de memória
 - Virtualização de dispositivos externos
- Segurança
 - Codificação de dados que circulam internamente ao chip
 - ♦ Várias aplicações executando no mesmo chip!
 - Usuários diferentes

- Reconfiguração
 - Apesar de se utilizar de TLP, MPSoCs abrem espaço para ILP
 - Certas aplicações podem obter melhores resultados a partir de um modelo ou de outro
- Adaptabilidade
 - MPSoCs adaptáveis são abundantes
 - Modelo Big Little
 - Multicore
 - ♦ Simétrico
 - 1 core / N cores
 - ♦ Assimétrico
 - 1 grande core / 1 grande core + N pequenos cores
 - ♦ Dinamico
 - 1 grande core / N pequenos cores