Trend estimation for electricity prices

Angus Lewis with Nigel Bean & Giang Nguyen

ANZIAM, February 2019, Nelson

Motivation

- Forecasting
- Risk management
- Examine factors affecting prices

Electricity prices

Electricity prices

Price setting

- Every 5 minutes AEMO
 - Aggregates supply bids
 - Estimates demand
 - Matches supply and demand
 - Dispatches generators
 - Sets the dispatch price
 - Spot price = average over 30 minutes
- One-sided market
- Inelastic demand
- Cheap generators cannot vary supply easily the most expensive generators can

Price Model

$$P_t = T_t + X_t$$

- T_t Trend component
- ullet X_t Stochastic Component MRS model

MRS models

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2. \end{cases}$$

- R_t is a (latent) Markov chain: $p_{ii} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- B_t
 - Base prices
 - AR(1) process $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$
 - $\varepsilon_t \sim \text{i.i.d. } N(0,1)$
- S_t
 - Spikes
 - i.i.d. typically Gamma or Log-Normal

Trend Model, T_t

- Deterministic
- Must capture long/short term movements

Common models

- Wavelets
 - Non-parametric
 - Flexible, non-periodic localised in frequency and time
 - Can perform well for parameter estimation
- Fourier/other sinusoidal models Periodic
- Indicator functions

We use wavelets + day-of-week indicator functions

Simple trend estimation

Output:

trend – wavelet component + day-of-week component

Extreme prices may have a large effect

Filtering extreme prices

• How do we identify extreme prices?

How do we identify extreme prices?¹

Stochastic model independent

- Fixed price threshold: $> 3\sigma$ from mean
- Variable price threshold: $> 3\sigma$ from moving average
- Threshold on price changes: top 10% of price changes
 - What threshold to use? Somewhat arbitrary

¹Janczura et at. 2013, Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling, Energy Economics

Model-independent trends

How do we identify extreme prices?²

Stochastic model-based

• Fit an MRS model and use the output to classify prices

²Janczura et at. 2013, Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling, Energy Economics

Model estimation

Stochastic model

- Bayesian inference using Data-Augmented MCMC
- Maximum likelihood

Both output parameter estimates and

$$P(R_t = i | x_0, ..., x_T)$$

Use these to classify prices into regime k if

$$k = \operatorname{argmax}_{i} P(R_{t} = i | x_{0}, ..., x_{T}).$$

Def: A price is classified as extreme if k does not belong to a base regime.

MRS classification

- Iterative scheme
 - **0.** Estimate T_t from raw data
 - 1. Estimate MRS model on residuals
 - 2. Classify and replace extreme prices in raw data
 - **3.** Estimate T_t from filtered prices
 - **4.** Repeat 1.-3.
- Replace extreme prices with the current value of the trend estimate
- Simulations suggest this is good for recovering parameters
- Note: trend model depends on MRS model!

MRS model-dependent trends

MRS model-dependent trends

MRS model-dependent trends – Model comparison

Model-dependent trend estimation

A proposed approach

 Include trend in MRS model and estimate with ML or Bayesian inference.

$$X_t = \begin{cases} T_t + B_t & R_t = 1, \\ S_t & R_t = 2 \end{cases}$$

- Complexity of T_t is limited
 - identifiability
 - it's just not practical
 - can we still use wavelets?

Summary of methods

MRS model independent (i.e. threshold methods)

- somewhat arbitrary
- can use likelihood-based model comparisons for stochastic components

MRS model-based

- natural classification of extreme prices
- trend depends on MRS specification
- cannot use likelihood-based methods to compare models trend or stochastic

Start with a simple model from literature

$$X_t = \begin{cases} B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t & R_t = 1 \\ S_t - q_3 \text{ i.i.d. } LN(\mu_2, \sigma_2^2) & R_t = 2 \\ q_1 - D_t \text{ i.i.d. } LN(\mu_3, \sigma_2^2) & R_t = 3. \end{cases}$$

Remove the drops

$$X_t = \begin{cases} B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t & R_t = 1\\ S_t - q_3 \text{ i.i.d. } LN(\mu_2, \sigma_2^2) & R_t = 2 \end{cases}$$

Remove the drops

$$X_t = \begin{cases} B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t & R_t = 1\\ S_t - q_3 \text{ i.i.d. } LN(\mu_2, \sigma_2^2) & R_t = 2 \end{cases}$$

Add base regime

$$X_{t} = \begin{cases} B_{t}^{(1)} = \alpha_{1} + \phi_{1}B_{t-1}^{(1)} + \sigma_{1}\varepsilon_{t}^{(1)} & R_{t} = 1\\ B_{t}^{(2)} = \alpha_{2} + \phi_{2}B_{t-1}^{(2)} + \sigma_{2}\varepsilon_{t}^{(2)} & R_{t} = 2\\ S_{t} - q_{3} \text{ i.i.d. } LN(\mu_{3}, \sigma_{3}^{2}) & R_{t} = 3 \end{cases}$$

Add base regime

$$X_{t} = \begin{cases} B_{t}^{(1)} = \alpha_{1} + \phi_{1} B_{t-1}^{(1)} + \sigma_{1} \varepsilon_{t}^{(1)} & R_{t} = 1 \\ B_{t}^{(2)} = \alpha_{2} + \phi_{2} B_{t-1}^{(2)} + \sigma_{2} \varepsilon_{t}^{(2)} & R_{t} = 2 \\ S_{t} - q_{3} \text{ i.i.d. } LN(\mu_{3}, \sigma_{3}^{2}) & R_{t} = 3 \end{cases}$$

Add spike regime

$$X_{t} = \begin{cases} B_{t}^{(1)} = \alpha_{1} + \phi_{1} B_{t-1}^{(1)} + \sigma_{1} \varepsilon_{t}^{(1)} & R_{t} = 1 \\ B_{t}^{(2)} = \alpha_{2} + \phi_{2} B_{t-1}^{(2)} + \sigma_{2} \varepsilon_{t}^{(2)} & R_{t} = 2 \\ S_{t}^{(1)} - q_{3} \text{ i.i.d. } Gamma(\mu_{3}, \sigma_{3}^{2}) & R_{t} = 3 \\ S_{t}^{(2)} - q_{98} \text{ i.i.d. } Gamma(\mu_{4}, \sigma_{4}^{2}) & R_{t} = 4 \end{cases}$$

Add spike regime

$$X_{t} = \begin{cases} B_{t}^{(1)} = \alpha_{1} + \phi_{1} B_{t-1}^{(1)} + \sigma_{1} \varepsilon_{t}^{(1)} & R_{t} = 1 \\ B_{t}^{(2)} = \alpha_{2} + \phi_{2} B_{t-1}^{(2)} + \sigma_{2} \varepsilon_{t}^{(2)} & R_{t} = 2 \\ S_{t}^{(1)} - q_{3} \text{ i.i.d. } Gamma(\mu_{3}, \sigma_{3}^{2}) & R_{t} = 3 \\ S_{t}^{(2)} - q_{98} \text{ i.i.d. } Gamma(\mu_{4}, \sigma_{4}^{2}) & R_{t} = 4 \end{cases}$$

Model selected!

Parameter		Parameter	
α_1	-0.0658	q 3	11.9
ϕ_1	0.532	μ_3	2.50
σ_1^2	50.6	μ_3 σ_3^2	21.9
α_2	0.280	<i>q</i> ₄	168
ϕ_2	0.415	μ_{4}	2.50
σ_2^2	382	$\mu_4 \ \sigma_4^2$	104.6

 $\text{Transition Matrix} \left(\begin{array}{cccc} 0.929 & 0.008 & 0.062 & 0.000 \\ 0.000 & 0.906 & 0.092 & 0.002 \\ 0.313 & 0.260 & 0.377 & 0.050 \\ 0.062 & 0.048 & 0.456 & 0.433 \\ \end{array} \right)$