

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

AX

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 : G01N 33/574, C07K 13/00 C12N 15/12	A1	(11) Internationale Veröffentlichungsnummer: WO 94/08241 (43) Internationales Veröffentlichungsdatum: 14. April 1994 (14.04.94)
(21) Internationales Aktenzeichen: PCT/EP93/02666 (22) Internationales Anmeldedatum: 30. September 1993 (30.09.93) (30) Prioritätsdaten: P 42 32 823.3 30. September 1992 (30.09.92) DE (71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): DEUTSCHES KREBSFORSCHUNGSZENTRUM STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, D-69120 Heidelberg (DE). (72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>) : ZENTGRAF, Hanswalter [DE/DE]; Bluntschlistrasse 6, D-69115 Heidelberg (DE). SCHRANZ, Peter [DE/DE]; Langgarten 12, D-69124 Langgarten (DE). VOLKMANN, Martin [DE/DE]; Görresstrasse 13, D-69126 Heidelberg (DE). TESSMER, Claudia [DE/DE]; Höhenstrasse 23, D-74869 Schwarzach (DE). KLEIN, Ralf [DE/DE]; Alemannenstrasse 26, D-68259 Mannheim (DE).	(74) Anwalt: MÜLLER-BORE & PARTNER; Isartorplatz 6, D-80331 München (DE). (81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	

Veröffentlicht

*Mit internationalem Recherchenbericht.
Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.*

(54) Title: PROCESS FOR DETECTING P53-SPECIFIC ANTIBODIES

(54) Bezeichnung: NACHWEISVERFAHREN FÜR p53-SPEZIFISCHE ANTIKÖRPER

(57) Abstract

In a process for detecting p53-specific antibodies in body fluids, p53 and/or fragments thereof having binding regions for p53-specific antibodies immobilised on a substrate are incubated with body fluids and the specific antibodies (a) bound to p53 and/or its fragments are reacted with labelled antibodies (b) directed against the antibodies (1), or with unlabelled antibodies (b), then the latter are reacted with marked antibodies (c) directed against the antibodies (b). All labelling is non radioactive. Also disclosed are kits for carrying out this process, p53-fragments having binding regions for p53-specific antibodies, the DNA sequences coding for said fragments, as well as a process for producing the same.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Nachweis von p53-spezifischen Antikörpern in Körperflüssigkeiten, das dadurch gekennzeichnet ist, daß man Trägermaterial-gebundenes p53 und/oder Bindungsregionen für p53-spezifische Antikörper aufweisende Fragmente davon mit Körperflüssigkeiten inkubiert und die spezifischen, an das p53 und/oder die Fragmente gebundenen Antikörper (a), mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b), oder mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c) reagieren läßt, wobei die Markierung jeweils nicht-radioaktiv ist. Ferner betrifft die Erfindung hierfür verwendbare Kits. Des Weiteren betrifft sie p53-Fragmente und die sie codierenden DNA-Sequenzen, wobei die Fragmente Bindungsregionen für p53-spezifische Antikörper aufweisen und Verfahren zu ihrer Herstellung.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FI	Finnland	MR	Mauritanien
AU	Australien	FR	Frankreich	MW	Malawi
BB	Barbados	GA	Gabon	NE	Niger
BE	Belgien	GB	Vereinigtes Königreich	NL	Niederlande
BF	Burkina Faso	GN	Guinea	NO	Norwegen
BG	Bulgarien	GR	Griechenland	NZ	Neuseeland
BJ	Benin	HU	Ungarn	PL	Polen
BR	Brasilien	IE	Irland	PT	Portugal
BY	Belarus	IT	Italien	RO	Rumänien
CA	Kanada	JP	Japan	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SD	Sudan
CG	Kongo	KR	Republik Korca	SE	Schweden
CH	Schweiz	KZ	Kasachstan	SI	Slowenien
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slowakischen Republik
CM	Kamerun	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxemburg	TD	Tschad
CS	Tschechoslowakei	LV	Lettland	TG	Togo
CZ	Tschechischen Republik	MC	Monaco	UA	Ukraine
DE	Deutschland	MG	Madagaskar	US	Vereinigte Staaten von Amerika
DK	Dänemark	ML	Mali	UZ	Usbekistan
ES	Spanien	MN	Mongolei	VN	Vietnam

Nachweisverfahren für p53-spezifische Antikörper

Die Erfindung betrifft ein Verfahren zum Nachweis von p53-spezifischen Antikörpern in Körperflüssigkeiten. Ferner betrifft sie einen hierfür verwendbaren Kit. Des Weiteren betrifft die Erfindung p53-Fragmente und die sie codierenden DNA-Sequenzen, wobei die Fragmente Bindungsregionen für p53-spezifische Antikörper aufweisen, und Verfahren zu ihrer Herstellung.

Es ist bekannt, daß eukaryotische Zellen ein mit p53 bezeichnetes Protein (p53) exprimieren. Dieses Protein ist in seiner Primärstruktur bekannt und weist 393 Aminosäuren auf (vgl. Lamb, P. und Crawford, L.V., Mol. Cell. Biol., Band 6 (1986), 1379-1386). Bei vielen Tumorerkrankungen findet man eine erhöhte Expression von p53. Dies kann mit dem Vorliegen spezifischer gegen p53 gerichteter Antikörper einhergehen. Zum Nachweis solcher Antikörper werden verschiedene Verfahren beschrieben. Beispielsweise werden p53-enthaltende Zellextrakte *in vivo* radioaktiv markiert und mit Patientenserien immunpräzipitiert (vgl. de Fromentel, C.C. et al., Int. J. Cancer 39 (1987), 185-189). Auch werden Trägermaterialien mit gegen p53-gerichteten Antikörpern beschichtet, hieran p53 aus Zellextrakten adsorbiert und Patientenserien hinzugegeben. Gebundene Anti-p53-Antikörper werden mit Jod-gekoppeltem Protein A nachgewiesen (vgl. Crawford, L.V. et al., Mol. Biol. Med. 2 (1984), 261-272).

In diesen Nachweisverfahren werden radioaktive Substanzen verwendet. Dies bedeutet ein erhöhtes Sicherheitsrisiko und damit eine eingeschränkte Verwendbarkeit, insbesondere in der Klinik. Auch ist die *in vivo*-Markierung von Zellen finanziell und arbeitstechnisch aufwendig und somit für größere Testreihen nur bedingt geeignet. Des Weiteren führt die Verwendung von Zellextrakten vielfach zu unspezifischer Antikörperbindung.

-2-

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Nachweis von p53-spezifischen Antikörpern bereitzustellen, das nicht die angesprochenen Nachteile aufweist.

Erfindungsgemäß wird dies in einem Verfahren erreicht, bei dem man Trägermaterial-gebundenes p53 und/oder Trägermaterial-gebundene, Bindungsregionen für p53-spezifische Antikörper aufweisende Fragmente davon mit Körperflüssigkeiten inkubiert und die spezifischen an das p53 und/oder die Fragmente gebundenen Antikörper (a)

- mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b),
oder
- mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c) reagieren lässt, wobei die Markierung jeweils nicht-radioaktiv ist.

Der Ausdruck "p53" umfaßt ein p53-Protein mit Wildtyp-Sequenz. Ein solches kann aus Zellen, wie HepG2, isoliert werden (vgl. Knowles, B. et al., Science 209 (1990), 497-499). P53 kann auch eine von der Wildtyp-Sequenz abweichende Sequenz haben. Eine solche kann Additonen, Deletionen und/oder Substitutionen von ein oder mehreren Aminosäuren aufweisen. Ferner kann p53 Teil eines Fusionsproteins sein. Ein solches wie auch jedes andere p53 kann aus Zellen isoliert werden, die es nach Genmanipulation exprimieren. Solche Zellen umfassen prokaryotische und eukaryotische Zellen. Beispiele ersterer sind E. Coli-Stämme, wie BL21 (vgl. Studier, F.W. et al., Methods in Enzymology 185 (1990), 60-89), während als letztere insbesondere Säugetier-, Hefe- und Insektenzellen zu

nennen sind. Unter Genmanipulation sind übliche aus dem Stand der Technik bekannte Verfahren zu verstehen, mit denen Nukleinsäuren bestimmter Sequenzen hergestellt, in Zellen eingeführt und exprimiert werden. Der Fachmann kennt hierfür geeignete Materialien, wie Vektoren, und Bedingungen (vgl. z.B. Maniatis, T. et al., Cold Spring Harbor Laboratory, 1982).

Vorliegend wird eine p53-cDNA aus HepG2-Zellen (vgl. vorstehend) in üblicher Weise revers transkribiert und in einem gängigen PCR-Verfahren amplifiziert. Die cDNA wird in ihrer Sequenz mit publizierten Daten (z.B. EMBL-Genbank) verglichen und in den bekannten Vektor pet 3d inseriert, wodurch der rekombinante Vektor pet 92/2 erhalten wird. Dieser wird zur Expression von p53 in den Bakterienstamm BL21 (vgl. vorstehend) transformiert. Eine p53-Induktion wird durch Zugabe von IPTG erreicht. Die Bakterien werden sedimentiert und nach Einfrieren und Auftauen einer Lysozym- und DNaseI-Behandlung unterzogen. Die Lysate werden mit Harnstofflösungen verschiedener Konzentrationen inkubiert und nach Zentrifugation wird freigesetztes p53 durch eine Polyacrylamid-Gelelektrophorese und anschließender Elektroelution in reiner Form bereitgestellt. Der Fachmann kennt vorstehende Verfahren und hierzu notwendige Materialien und Bedingungen.

Erfnungsgemäß werden p53-Fragmente bereitgestellt, die Bindungsregionen für p53-spezifische Antikörper enthalten. Diese Fragmente werden nachstehend mit p53-AKBR-Fragmente bezeichnet. Vorzugsweise umfassen die p53-AKBR-Fragmente die Aminosäuren 1-241, 40-349, 40-393, 66-241, 66-393, 237-349 und 237-393 sowie 9-33, 37-52 und 368-386 von p53 (vgl. Figur 1).

Zur Herstellung von p53-AKBR-Fragmenten können mehrere Verfahren verwendet werden. Als günstig hat sich ein Verfahren erwiesen, bei dem man über die Gesamtlänge von p53

verteilt Fragmente konstruiert, wobei jeweils mindestens zwei Fragmente einen überlappenden Bereich aufweisen, die Fragmente mit einem p53-spezifischen Antikörper reagieren lässt und den überlappenden, durch den Antikörper gebundenen Bereich identifiziert und als p53-AKBR-Fragment bereitstellt sowie dieses ggf. als Basis für eine ein- oder mehrfache Wiederholung obigen Zyklus verwendet.

Ausgangspunkt für dieses Verfahren ist eine aus HepG2-Zellen erhaltene p53-cDNA (vgl. vorstehend). Von dieser werden über die Gesamtlänge der cDNA verteilt DNA-Fragmente in einem gängigen PCR-Verfahren amplifiziert, wobei jeweils mindestens zwei Fragmente einen überlappenden Bereich aufweisen. Die amplifizierten DNA-Fragmente werden, wie vorstehend beschrieben, in pet 3d inseriert und nach Transformation und IPTG-Induktion im Bakterienstamm BL21 exprimiert. Die erhaltenen p53-Fragmente werden, wie vorstehend für p53 beschrieben, isoliert und einer Polyacrylamid-Gelelektrophorese unterzogen. Dieser folgt eine Westernblot-Analyse, worin markierte, allgemein erhältliche p53-spezifische Antikörper, z.B. Pab 240, zur Bindung an die p53-Fragmente eingesetzt werden. Durch Bindung eines dieser Antikörper an zwei einen überlappenden Bereich aufweisende p53-Fragmente wird die Bindungsregion des Antikörpers dem überlappenden Bereich zugewiesen. Dieser Bereich wird als mit p53-AKBR bezeichnetes Fragment bereitgestellt. Hierfür wird z.B. ein gängiges PCR-Verfahren angewandt. Mit dem p53-AKBR-Fragment kann vorstehender Zyklus ein- oder mehrfach wiederholt werden, um die Bindungsregion des p53-spezifischen Antikörpers noch weiter einzugrenzen. Diese Bindungsregion kann bis auf wenige Aminosäuren eingegrenzt werden. Die hierzu u.U. notwendigen kurzen p53-Fragmente können synthetisch hergestellt werden. Dem Fachmann sind die vorstehenden Verfahren und die zu ihrer Durchführung notwendigen Materialien und Bedingungen bekannt.

-5-

Erfindungsgemäß werden auch die für p53-AKBR-Fragmente codierenden DNA-Sequenzen bereitgestellt. Vorzugsweise umfassen diese DNA-Sequenzen die für die Aminosäuren 1-241, 40-349, 40-393, 66-241, 66-393, 237-349 und 237-393 sowie 9-33, 37-52 und 368-386 von p53 codierenden Nukleotide (vgl. Figur 2).

Erfindungsgemäß werden p53 und/oder p53-AKBR-Fragmente an ein Trägermaterial gebunden. Selbstverständlich kann auch ein einzelnes p53-AKBR-Fragment oder dieses zusammen mit p53 gebunden werden. Als Trägermaterial kann jegliches zur Bindung von Proteinen geeignetes Material, insbesondere Mikrotiterplatten, Röhrchen, Mikrokugeln und Objektträger, verwendet werden. Bei sehr kleinen p53-AKBR-Fragmenten, insbesondere Peptiden, ist es ratsam die Bindung an das Trägermaterial über einen üblichen Carrier, z.B. BSA, erfolgen zu lassen. Eine solche Bindung wie auch eine ohne Carrier, kann nach üblichen Verfahren erzielt werden. Vorliegend werden Mikrotiterplatten als Trägermaterial verwendet. Hierzu werden p53 und/oder p53-AKBR-Fragmente in Carbonatpuffer aufgenommen, verschieden verdünnt und in die Löcher einer Mikrotiterplatte gegeben. Nach Inkubation über Nacht bei 4°C folgen mehrere Waschschritte in physiologischem Puffer. Die Bindung von p53 und/oder der p53-AKBR-Fragmente ist stabil.

Erfindungsgemäß werden gebundenes p53 und/oder gebundene p53-AKBR-Fragmente mit Körperflüssigkeiten inkubiert. Als solche sind sämtliche Flüssigkeiten gemeint, die aus einem tierischen Körper, insbesondere einem Säugetier und ganz besonders einem Menschen erhalten werden können. Die Flüssigkeiten umfassen vorzugsweise Serum, Lymphe, Speichel und Urin. Ferner gehören zu ihnen auch Flüssigkeiten, die aus

-6-

festen Geweben, wie Lunge, Gehirn und Knochenmark, sowie aus Tumoren, wie Colorektal-Karzinom und Hepatozell-Karzinom isoliert werden können. Die Inkubation erfolgt nach üblichen Verfahren. Vorliegend werden Seren von Patienten verschieden verdünnt und gebundenem p53 und/oder gebundenen p53-AKBR-Fragmenten in der Mikrotiterplatte zugegeben. Nach 1-stündiger Inkubation bei 37°C folgen mehrere Waschschritte in physiologischem Puffer. Die Bindung von spezifischen Anti-p53-Antikörpern ist stabil.

Erfindungsgemäß werden solche gebundenen Antikörper (nachstehend mit Antikörper (a) bezeichnet)

- mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b), oder
- mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c) umgesetzt.

Die Markierung ist jeweils nicht-radioaktiv. Vielmehr werden andere übliche Marker verwendet. Geeignet sind insbesondere Fluoreszenzfarbstoffe, wie z.B. Fluoresceinisothiocyanat, und Enzyme, wie alkalische Phosphatase oder Peroxidase. Als Verstärkersystem kann ein Biotin/Streptavidinkomplex eingesetzt werden. Die Marker sind allgemein erhältlich. Die Konjugierung mit den Antikörpern (b) oder (c) erfolgt nach den Vorschriften des Herstellers. Auch sind bereits markierte Antikörper (b) und (c) allgemein erhältlich.

Die Wahl der geeigneten Antikörper (b), ob markiert oder unmarkiert, hängt davon ab, von welchem Tier bzw. welcher Tierart die verwendete Körperflüssigkeit stammt. Handelt es sich beispielsweise um eine Flüssigkeit aus einem Menschen, so werden als Antikörper (b) solche verwendet, die gegen humanes Immunglobulin gerichtet sind. In entsprechender

- 7 -

Weise werden, sofern zusätzlich noch Antikörper (c) eingesetzt werden, diese bezüglich des Tiers oder der Tierart ausgewählt, aus der die Antikörper (b) stammen. Die Wahl geeigneter Antikörper ist dem Fachmann bekannt und kann ohne weiteres durchgeführt werden.

Die Umsetzung von gebundenen Antikörpern (a) mit markierten Antikörpern (b) bzw. mit unmarkierten Antikörpern (b) und dann mit markierten Antikörpern (c) kann in üblicher Weise erfolgen. Vorliegend findet die Umsetzung mit den Antikörpern (b) in beiden Alternativen innerhalb von 1 h bei 37°C statt. Nach mehreren Waschvorgängen wird in der ersten Alternative eine dem Marker entsprechende Substratlösung zur Entwicklung der Nachweisreaktion zugegeben. Dies erfolgt gemäß der Anleitung des Herstellers. In der zweiten Alternative werden nach den Waschvorgängen die Antikörper (c) zugegeben. Deren Umsetzung und die Entwicklung der Nachweisreaktion erfolgen in entsprechender Weise.

Das erfindungsgemäße Verfahren weist eine hohe Sensitivität auf. Diese ist besonders hoch, wenn auch die Antikörper (c) eingesetzt werden. Darüberhinaus ist das vorliegende Verfahren rasch in jedem Labor durchführbar. Besondere Sicherheitsvorkehrungen sind hierfür nicht zu treffen. Das erfindungsgemäße Verfahren eignet sich daher besonders zur Durchführung größerer Reihenuntersuchungen.

Erfindungsgemäß wird auch ein Kit bereitgestellt, der zur Durchführung vorstehender Verfahren geeignet ist. Dieser Kit enthält

- Trägermaterial-gebundenes p53 und/oder Trägermaterial-gebundene p53-AKBR-Fragmente und markierte Antikörper (b) sowie übliche Waschpuffer und ein der

-8-

Markierung entsprechendes Substrat

oder

- Trägermaterial-gebundenen p53, und/oder Trägermaterial-gebundene p53-AKBR-Fragmente unmarkierte Antikörper (b) und markierte Antikörper (c) sowie übliche Waschpuffer und ein der Markierung entsprechendes Substrat.

Die Markierung ist jeweils nicht-radioaktiv. Für sie wie auch die anderen Komponenten des Kits gelten die vorstehend für das erfindungsgemäße Verfahren gemachten Ausführungen.

Kurze Erläuterung der Seiten 17-25:

Die Seiten 17-19 zeigen die Aminosäuresequenzen von bevorzugten p53-AKBR-Fragmenten,

Die Seiten 20-25 zeigen die DNA-Sequenzen der in den Seiten 17-19 aufgeführten p53-AKBR-Fragmenten.

Die vorliegende Erfindung wird durch die Beispiele erläutert.

Beispiel 1: Expression von p53 und His-p53-Fusionsprotein

A) Expression von p53

Aus der Zelllinie HepG2 (vgl. vorstehend) wurde eine p53 cDNA mit einem "hexamer random primer" revers transkribiert und mittels der Oligoprimer "Fo" und "R₁₁" in einem gängigen PCR-Verfahren amplifiziert (Sequenz "Fo": GCA TGG ATC CGA ATT CTG CCT TCC GGG TCA CTG C; "R₁₁

-9-

Restriktionsenzymstellen am Startcodon von p53 (NcoI) und im Primer R₁₁ (BamHI) unter Erhalt des gesamten codierenden Bereichs in dem Vektor pet3d im Bakterienstamm HMS 174 kloniert. Zur Expression von p53 wurde der erhaltene Vektor pet 92/2 in den Bakterienstamm BL21 (vgl. vorstehend) transformiert. Nach Kultivierung der Bakterien bei 37°C bis zu einer optischen Dichte von 0,6 (600 nm) in 100 µg/ml Ampicillin und 30 µg/ml Chloramphenicol enthaltendem LB-Medium wurde eine 3-stündige Induktion von p53 bei 30°C mit 2mM IPTG durchgeführt.

(B) Expression von His-p53-Fusionsprotein

Aus der Zelllinie HepG2 (vgl. vorstehend) wurde eine p53 cDNA revers transkribiert und mittels der Oligoprimer "Fp53-B" und "His-Rp53" durch PCR amplifiziert. (Sequenz "Fp53": CGC GGA TCC ATG GAG GAG CCG CAG TCA G; "His-Rp53": CGC GGA TCC TCA ATG GTG ATG GTG ATG GTG GTC TGA GTC AGG CCC TTC TG). Die amplifizierte Sequenz wurde über BamH1-Schnittstellen in beiden PCR-primern in dem bekannten, mit BamH1 geöffneten Expressionsvektor pQE-8 kloniert. Die Expression dieses an beiden Enden mit je 6 Histidinen verknüpften p53-Proteins erfolgte im Bakterienstamm E.coli SG13009 (vgl. Gottesmann, S. et al., J. Bacteriol. 148, (1981) 265-273). Nach Kultivierung der Bakterien bei 37°C bis zu einer optischen Dichte von 0,6 in LB-Medium mit 100 µg/ml Ampicillin und 25 µg/ml Kanamycin wurde eine 6-stündige Induktion von His-p53-Fusionsprotein bei 37°C mit 1 mM IPTG durchgeführt.

-10-

Beispiel 2: Isolierung und Reinigung von p53 und
His-p53-Fusionsprotein

(A) Isolierung und Reinigung von p53

400 ml Bakterienkultur von Beispiel 1, (A) wurden nach der p53-Induktion durch 10-minütige Zentrifugation bei 500 g sedimentiert, in 50 mM Tris-HCl, pH 8,0, 100 mM NaCl gewaschen und erneut zentrifugiert. Nach Einfrieren und Auftauen wurde das Sediment in 1,6 ml eines Lyse-Puffers resuspendiert (50 mM Tris-HCl, pH 8,0, 10 % Saccharose). Nacheinander wurden hierzu Lysozym (Endkonz. 2mg/ml) und 0,5 M EDTA (Endkonz. 50 mM) zugegeben. Nach 20-minütiger Inkubation auf Eis wurden MgCl₂ (Endkonz. 80 mM) und DNase I (250 µg) zugegeben, gefolgt von einer 10-minütigen Inkubation bei Raumtemperatur (Endvolumen 6,5 ml). Hierzu wurden 10 µl 0,1M PMSF gegeben und das Gemisch wurde 15 Minuten bei 10000 g, 4°C zentrifugiert. Dieser Zentrifugationsschritt wurde dreimal wiederholt, und zwar jeweils nach Resuspendieren des Sediments und 10-minütiger Inkubation in 1M, 3M bzw. 7M Harnstoff mit PMSF (0,1 M, 10 µl). Der Überstand des letzten Zentrifugationsschritts wurde wie folgt weiter aufgereinigt: Nach Gelelektrophorese in einem 10 % Polyacrylamidgel, Ausschneiden der gewünschten Proteinbande und Elektroelution über Nacht bei 4°C in 25 mM Tris-HCl, 0,2M Glycin, 0,5 % SDS, pH 8,8 in einer allgemein erhältlichen Biotrap-Elutionskammer wurde p53 in reiner Form erhalten.

-11-

(B) Isolierung und Reinigung von His-p53-Fusionsprotein

250 ml Bakterienkultur von Beispiel 1, (B) wurden nach der Induktion des His-p53-Fusionsproteins sedimentiert und einmal in 40ml PBS gewaschen. Je 1g Bakterienpellet wurde in 3 ml Lösung A für 1 min beschallt und anschließend bei RT 8-12h bei mittlerer Geschwindigkeit auf einem Magnetrührer gerührt. Die erhaltene Suspension wurde erneut bei RT für 30 min bei 15000 rpm sedimentiert. 2-6 ml des dabei erhaltenen Überstands wurden auf eine allgemein bekannte Nickel-Chelat-Chromatographiesäule (Ni-NTA-Resin) gegeben. Das Säulenmaterial war zuvor mit 3 Säulenvolumina Lösung A (vgl. nachstehend) gewaschen worden. Die Säule wurde nach Aufladen des Bakterienextrakts nacheinander mit Lösung A bis F gewaschen und zwar mit 2-3 Säulenvolumina der entsprechenden Lösung, solange bis kein Protein mehr eluiert werden konnte. Der Proteingehalt der aufgefangenen Fraktionen wurde durch Extinktionsmessung bei 280 nm photometrisch bestimmt, wobei 1 O.D. ca. 1 mg Protein/ml entsprach. Das His-p53-Fusionsprotein war in den Fraktionen nach Elution mit Lösung D oder E enthalten, wobei in der Regel nur ein sehr geringer Anteil bakterieller Proteine enthalten war. Um diesen Anteil zu entfernen, wurde ggfs. das eluierte Protein nochmals an die Ni-NTA-Resin Säule gebunden, indem der pH-Wert der vereinigten Fraktionen mit der Hauptmenge des zu reinigenden Proteins auf pH 8,0 eingestellt wurde und diese dann nochmals auf die Säule gegeben wurden. Die anschließende Elution erfolgte mit Lösung A bis F wie vorstehend beschrieben. Die Reinheit und Qualität des eluierten His-p53-Fusionsproteins wurde durch SDS-PAGE geprüft.

-12-

Zusammensetzung der verwendeten Lösungen:

Lösung A: 6M Guanidinium Hydrochlorid, 0,1M NaH_2PO_4 ,
10mM β -Mercaptoethanol, 0,01M TrisHCl, pH 8,0

Lösung B: 8M Harnstoff, 0,1M NaH_2PO_4 , 0,01M TrisHCl,
pH 8,0

Lösung C: 8M Harnstoff, 0,1M NaH_2PO_4 , 0,01M TrisHCl,
pH 6,3

Lösung D: 8M Harnstoff, 0,1M NaH_2PO_4 , 0,01M TrisHCl,
pH 5,9

Lösung E: 8M Harnstoff, 0,1M NaH_2PO_4 , 0,01M TrisHCl,
pH 4,5

Lösung F: 6M Guanidinium Hydrochlorid, 0,2M Essigsäure

Vorstehendes Verfahren von (B) zeichnet sich durch eine
extrem schnelle und effiziente Aufreinigung des exprimierten
Proteins aus.

Beispiel 3: Herstellung von p53-AKBR- und His-p53-
AKBR-Fragmenten

(A) Herstellung eines p53-AKBR-Fragments

Von der aus der Zelllinie Hep G2 (vgl. vorstehend) erhaltenen
cDNA wurden zwei sich überlappende DNA-Sequenzen mittels der
Oligoprimer-Paare "Fp 53-B"/"Rp 53-55" und "Fp 53-30"/
"Rp 53-70" in einem gängigen PCR-Verfahren amplifiziert. Die
eine DNA-Sequenz codierte für ein p53-Fragment der Aminosäu-
ren 1-55, während die andere für ein p53-Fragment der Amino-
säuren 30-70 codierte. Die Sequenzen der verwendeten Oligo-

-13-

primer waren wie folgt: "Fp 53-B"
CGCGGATCCATGGAGGGAGCCGCAGTCAG, "Rp 53-55"
CGCGGATCCTCAAGTGAACCATTGTTCAATATCGTCCG, "Fp 53-30"
CGCGGATCCAACGTTCTGTCCCCCTGCCG, "Rp 53-70"
CGCGGATCCTCAAGCAGCCTCTGGCATTCTGGG.

Die amplizierten Sequenzen wurden mit publizierten Daten (EMBL-Genbank) verglichen und über die Restriktionsenzymstelle BamHI in den Vektor pET 3 d (vgl. vorstehend) kloniert. Die Expression der Sequenzen erfolgte nach Transformation und IPTG-Induktion im Bakterienstamm BL21 (vgl. vorstehend). Die exprimierten Sequenzen (p53-Fragmente) wurden, wie in Beispiel 2 (A) für P53 beschrieben, isoliert und einer Polyacrylamid-Gelektrophorese unterzogen. Dieser folgte eine übliche Westernblot-Analyse, worin ein allgemein erhältlicher p53-spezifischer Antikörper zur Bindung an die p53-Fragmente verwendet wurde. Dieser Antikörper zeigte eine Bindung an beide sich überlappende p53-Fragmente. Der überlappende Bereich, d.h. die Aminosäuren 30-55, wurde als Bindungsregion des Antikörpers angesehen. Diese Bindungsregion wurde in vorstehender Weise weiter eingeengt, indem zwei synthetische sich überlappende p53-Peptide verwendet wurden. Damit konnte die Bindungsregion des p53-spezifischen Antikörpers auf das p53-AKBR-Fragment der Aminosäuren 37-52 eingegrenzt werden.

(B) Herstellung eines His-p53-AKBR-Fragments

Von der aus der Zelllinie Hep G2 (vgl. vorstehend) erhaltenen cDNA wurden zwei sich überlappende DNA-Sequenzen mittels der Oligoprimer-Paare "Fp 53-B"/"Rp 53-55-His" und "Fp 53-30"/"Rp 53-70-His" in einem gängigen PCR-Verfahren amplifiziert.

-14-

Die eine DNA-Sequenz codierte für ein p53-Fragment der Aminosäuren 1-55, während die andere für ein p53-Fragment der Aminosäuren 30-70 (vgl. vorstehend (A)) codierte. Die Sequenzen der verwendeten Oligoprimer waren wie folgt: "Fp 53-B" (vgl. vorstehend (A)), "Rp 53-55-His" CGCGGATCCTCAATGGTGATGGTGAGTGAACCATTGTTCAATATCGTCCG, "Fp 53-30" (vgl. vorstehend (A)), "Rp 53-70-His" CGCGGATCCTCAATGGTGATGGTGAGCAGCCTCTGGCATTCTGGG. Die amplizierten Sequenzen wurden mit publizierten Daten (EMBL-Genbank) verglichen und über die Restriktionsenzymstelle BamHI in den Vektor pQE-8 (vgl. vorstehend) kloniert. Die Expression der Sequenzen erfolgte nach Transformation und IPTG-Induktion im Bakterienstamm E.coli SG 13009 (vgl. vorstehend). Die exprimierten Sequenzen (His-p53-Fragmente) wurden, wie in Beispiel 2 (B) für His-p53-Fusionsprotein beschrieben, isoliert und einer Polyacrylamid-Gelektrophorese unterzogen. Dieser folgte eine übliche Westernblot-Analyse, worin ein allgemein erhältlicher p53-spezifischer Antikörper zur Bindung an die His-p53-Fragmente verwendet wurde. Dieser Antikörper zeigte eine Bindung an beide sich überlappende p53-Fragmente. Wie vorstehend in (A) wurde der überlappende Bereich, d.h. die Aminosäuren 30-55, als Bindungsregion des Antikörpers angesehen. Diese wurde wie vorstehend in (A) auf die Aminosäuren 37-52 eingegrenzt.

Beispiel 4: Nachweis von spezifischen p53-Antikörpern im Serum von Patienten durch p53

Zur Durchführung eines ELISA wurde p53 aus Beispiel 2, (A) in 0,1 M Carbonatpuffer (Natriumcarbonat/Natriumhydrogen-carbonat, pH 9,6) aufgenommen. Zur Beschichtung einer 96 Loch-Mikrotiterplatte wurden nebeneinander je 100 μ l Carbonatpuffer mit 0,2 ng, 0,15 ng, 0,1 ng, 0,05 ng, 0,01 ng

-15-

und 0,005 ng p53 sowie einmal eine 1 % BSA-Lösung als Leer- kontrolle einpipettiert. Nach Inkubation über Nacht bei 4°C wurden zehn kurze Waschschrifte mit PBS durchgeführt. Ein zu testendes Serum eines Patienten mit einem Leberzell-Karzinom wurde in Verdünnungen von 1:100, 1:250, 1:500 und 1:1000 (Verdünnung in 500 mg BGG/l, 100 mg BSA/l, 0,05 % Tween-20) in jede der verschiedenen p53-Konzentrationen und der BSA- Kontrolle gegeben und 1 Stunde bei 37°C inkubiert ("Schach- brett titration"). Danach folgten fünf Waschschrifte mit 0,05 % Tween-20 enthaltendem PBS. Ein allgemein erhältlicher Peroxidase-gekoppelter Ziege Anti-Human Antikörper wurde nach den Angaben des Herstellers verdünnt (100 mg/l BGG, 500 mg/l BSA, 0,05 % Tween-20). Es folgten drei Waschschrifte mit PBS. Die Peroxidase-Nachweisreaktion wurde mit OPD- Entwicklungslösung durchgeführt. Dazu wurde eine 0,1 M Na₂HPO₄-Lösung mit 0,1 M KH₂PO₄ auf pH 6,0 ein- gestellt. In 20 ml dieses Puffers wurden 30 mg O-Phenylen- diamin Dihydrochlorid (OPD) gelöst und kurz vor Verwendung 35,_{ul} 35 % H₂O₂ zugegeben. Pro Loch wurden 150,_{ul} Entwicklerlösung zugegeben. Nach 5-minütiger Inkubation wurde die Reaktion mit 75,_{ul} 4M H₂SO₄ gestoppt und die Farbintensität photometrisch bei 492 nm bestimmt. Absorp- tionswerte des mehr als doppelten der BSA-Kontrolle wurden als positive Reaktion gewertet.

Die Tabelle zeigt die Daten eines entsprechend durch- geführten ELISA im Vergleich zur Bestimmung spezifischer Antikörper mittels Immunoblot. Die nahezu vollständige Übereinstimmung beider Verfahren weist den Anti-p53 ELISA als geeignetes Verfahren zur Reihentestung klinischen Materials aus. Ferner zeigt der ELISA eine größere Sensi- tivität als der Immunoblot, wodurch die Eignung des ELISA als Erstuntersuchungsverfahren unterstrichen wird.

-16-

Tabelle: Nachweis von spezifischen p53-Antikörpern in Seren von Patienten mit heptatozellulärem Karzinom durch Immunoblot und ELISA mit p53

Serum-Code:	5	9	10	11	13	14	15	18	28	29	38
Immunoblot:	-	+	-	-	-	-	+	+	-	+	+
ELISA:	+-	+	+-	-	+-	+	-	+	-	+	+

Legende: Immunoblot:

+ : sichtbare Bande auf der Höhe eines Proteins mit 53 kD Molekulargewicht bei einer Serumverdünnung von 1:15, Inkubation mit alkalischer Phosphatase-gekoppeltem human-spezifischen Ziegen-Antikörper (1:5000) und alkalischer Phosphatase-Nachweisreaktion.

- : kein sichtbares Signal

ELISA:

- : Absorptionswert unterhalb des 2-fachen des BSA-Kontrollwerts
+--: Absorptionswert um das 2-fache des BSA-Kontrollwerts
+: Absorptionswert des wenigstens 2-fachen des BSA-Kontrollwerts in allen Verdünnungen

Aminosäuresequenzen von p53-AKBR-Fragmenten

Die Aminosäuren sind in dem üblichen, aus der Literatur bekannten "One-Letter-Code" angegeben:

A	Alanin	L	Leucin
R	Arginin	K	Lysin
N	Asparagin	M	Methionin
D	Asparaginsäure	F	Phenylalanin
C	Cystein	P	Prolin
E	Glutaminsäure	S	Serin
Q	Glutamin	T	Threonin
G	Glycin	W	Tryptophan
H	Histidin	Y	Tyrosin
I	Isoleucin	V	Valin

Fragment 1: Aminosäuresequenzen 1-241

```

1 MEEPQSDPSV EPPPLSQETPS DLWKLLPENN VLSPLPSQAM DDLMLSPDDI
51 EQWFTEDPGP DEAPRMPEAA PPVAPAPAPA PTPAAPAPAPS WPLSSSVPSQ
101 KTYQGSYGF LGFLHSGTAK SVTCTYSPA LNKMFQQLAKT CPVQLWVDST
151 PPPGTRVRAM AIYKQSQHMT EVVRRCPHHE RCSDSDGLAP PQHLIRVEGN
201 LRVEYLDDRN TFRESVVVPY EPPEVGSDCT TIHYNYMCNS S

```

Fragment 2: Aminosäuresequenzen 40-349

```

1 MDDMLSPDD IEQWFTEDPG PDEAPRMPEA APPVAPAPAA PTPAAPAPAP
51 SWPLSSSVPS QKTYQGSYGF RLGFLHSGTA KSVTCTYSPA LNKMFQQLAK
101 TCPVQLWVDS TPPPGTRVRRA MAIYKQSQHM TEVVRRCPHH ERCSDSGLA
151 PPQHLIRVEG NLRVEYLDDR NTFRH5VVVP YEPPEVGSDC TTIHYNYMCN
201 85CMGGMNRR PILTIITLED SSGNLLGRNS FEVRVCACPG RDRRTZEENL
251 RKKGEPHEL PPGSTKRALP NNTSSSPQPK KKPLDGEYPT LQIRGRERFE
301 MFRELNEALE

```

Fragment 3: Aminosäuresequenzen 40-393

1 MDDLMLSPDD IEQWFTEDPG PDEAPRMPEA APPVAFAPAA PTPAAPAPAP
51 SWPLSSSVPS QKTYQGSYGF RLCFLHSGTA KSVTCTYSPA LNKMFCQLAK
101 TCPVQLWVDS TPPPGTRVRA MAIYKQSQHM TEVVRRCPHE ERCSDSGGLA
151 PPQHLIRVEG NLRVEYLDDR NTFRHSVVVP YEPPEVGSDC TTIHYNYMCN
201 SSCMGGMNRR PILTIITLED SSGNLLGRNS FEVRVCACPG RDERRTEEENL
251 RKKGEPHHEL PPGSTKRALP NNTSSSPQPK KKPLDGEYFT LQIRGRERFE
301 MPREINZEALE LKDAQAGKEP GGSRAHSSHL KSKKGQSTSRSR HKKLMFKTEG
351 PDSD

Fragment 4: Aminosäuresequenzen 66-241

1 MPEAAPPVAP APAAPTPAAP APAPSWPLSS SVPSQKTYQG SYGFRLGFLH
51 SGTAKSVTCT YSPALNMFC QLAKTCPVQL WVDSTPPPGT RVARAMAIYKQ
101 SQHMTEVVRR CPHHERCSDS DGLAPPQHLI RVEGNLRVEY LDDRNTFRHS
151 VVVPYEPPEV GSDCTTIHYN YMNCNSCMGG MNRRPILTI TLEDSSGNLL

Fragment 5: Aminosäuresequenzen 66-393

1 MPEAAPPVAP APAAPTPAAP APAPSWPLSS SVPSQKTYQG SYGFRLGFLH
51 SGTAKSVTCT YSPALNMFC QLAKTCPVQL WVDSTPPPGT RVARAMAIYKQ
101 SQHMTEVVRR CPHHERCSDS DGLAPPQHLI RVEGNLRVEY LDDRNTFRHS
151 VVVPYEPPEV GSDCTTIHYN YMNCNSCMGG MNRRPILTI TLEDSSGNLL
201 GRNSFEVRVC ACPGRDRRT EENLRKKGEF KHELPPGSTK RALPNNTSSS
251 PQPKKKPLDG EYFTLQIRGR ERFEMFRELN EAELKDAQA GKEPGGSRAH
301 SSHLKSKKGQ STSRHKKLMF KTEGPDS

Fragment 6: Aminosäuresequenzen 237-349

1 MCNSSCMGGM NRRPILTIIT LEDSSGNLLG RNSFEVRVCA CPGRDRRTEE
51 ENLRKKGEPEH HELPPGSTKR ALPNNTSSSP QPKKKPLDGE YFTLQIRGRE
101 RFEMFRELNE ALE

Fragment 7: Aminosäuresequenzen 237-393

1 MCNSSCMGGM NRRPILTIIT LEDSSGNLLG RNSFEVRVCA CPGRDRRTEE
51 ENLRKKGEPEH HELPPGSTKR ALPNNTSSSP QPKKKPLDGE YFTLQIRGRE
101 RFEMFRELNE ALELKDAQAG KEPGGSRAHS SHLKSKKGQS TSRHKKLMFK
151 TEGPDSD

Fragment 8: Aminosäuresequenzen 9-33

S V E P P L S Q E T F S D L W K L L P E N N V L S

Fragment 9: Aminosäuresequenzen 37-52

S Q A M D D L M L S P D D I E Q

Fragment 10: Aminosäuresequenzen 368-386

H L K S K K G Q S T S R M K K L M F K

-20-

DNA-Sequenzen von P53-AKBR-FragmentenFragment 1: DNA-Sequenzen 1-723 (=Aminosäuresequenzen 1-241)

1 ATGGAGGAGC CCCAGTCAGA TCCTAGCGTC GAGCCCCCTC TGAGTCAGGA
51 AACATTTCA GACCTATGGA AACTACTTCC TGAAAACAAC GTTCTGTCCC
101 CCTTGCCGTC CCAAGCAATG GATGATTGTA TGCTGTCCCC GGACGATATT
151 GAACAATGGT TCACTGAAGA CCCAGGTCCA GATGAAGCTC CCAGAAATGCC
201 AGAGGCTGCT CCCCCCGTGG CCCCTGCACC ACCAGCTCCT ACACCGGGCGG
251 CCCCTGCACC AGCCCCCTCC TGGCCCCCTGT CATCTTCTGT CCCTTCCCAG
301 AAAACCTACC AGGGCAGCTA CGGTTTCCGT CTGGGCTTCT TGCAATTCTGG
351 GACAGCCAAG TCTGTGACTT GCACGTACTC CCCTGCCCTC AACAAAGATGT
401 TTTGCCAACT GGCCAAGACC TGCCCTGTGC AGCTGTGGGT TGATTCCACA
451 CCCCCGCCCG GCACCCCCGT CCGCGCCATG GCCATCTACA AGCAGTCACA
501 GCACATGACG GAGGTTGTGA GGCCTGCCC CCACCATGAG CGCTGCTCAG
551 ATAGCGATGG TCTGGCCCCCT CCTCAGCATC TTATCCGAGT GGAAGGAAAT
601 TTGGCGTGTGG AGTATTTGGA TGACAGAAC ACTTTTCGAC ATAGTGTGGT
651 GGTGCCCTAT GAGCCGCCCTG AGGTTGGCTC TGACTGTACC ACCATCCACT
701 ACAACTACAT GTGTAACAGT TCC

Fragment 2: DNA-Sequenzen 1-930 (=Aminosäuresequenzen
40-349)

1 ATGGATGATT TGATGCTGTC CCCGGACCGAT ATTGAACAAT GGTTCACTGA
51 AGACCCAGGT CCAGATGAAG CTCCCAGAAAT CCCAGAGGCT GCTCCCCCG
101 TGGCCCCCTGC ACCAGCAGCT CCTACACCGG CGGCCCCCTGC ACCAGCCCCC
151 TCCTGGCCCC TGTCACTTTC TGTCCCTTCC CAGAAAACCT ACCAGGGCAG
201 CTACGGTTTC CGTCTGGGCT TCTTGCATTC TGGGACAGCC AAGTCTGTGA
251 CTTGCACGTA CTCCCCCTGCC CTCAACAAGA TGTTTGCCCA ACTGGCCAAG
301 ACCTGCCCTG TGCAGCTGTG GGTTGATTCC ACACCCCCCGC CCGGCACCCCG
351 CGTCCGGCCC ATGGCCATCT ACAAGCAGTC ACAGCACATG ACGGAGGTTG
401 TGAGGGCGCTG CCCCCCACCCT GAGCGCTGCT CAGATAGCGA TGGTCTGGCC
451 CCTCCTCAGC ATCTTATCCG AGTGGAAAGGA AATTTGCGTG TGGAGTATTT
501 GGATGACAGA AACACTTTTC GACATAGTGT CGTGGTGCC TATGAGCCCC
551 CTGAGGTTGG CTCTGACTGT ACCACCATCC ACTACAACTA CATGTGTAAC
601 AGTTCCCTGCA TGGGGGGCAT GAACCGGAGG CCCATCCTCA CCATCATCAC
651 ACTGGAAGAC TCCAGTGGTA ATCTACTGGG ACGGAACAGC TTTGAGGTGC
701 ATGTTTGTGC CTGTCCTGGG AGAGACCGGC GCACAGAGGA AGAGAATCTC
751 CGCAAGAAAG GGGAGCCTCA CCACCGAGCTG CCCCCAGGGA GCACTAAGCG
801 AGCACTGCCA AACAAACACCA CCTCCTCTCC CCAGCCAAAG AAGAAACCAC
851 TGGATGGAGA ATATTTCACC CTTCAGATCC GTGGGCGTGA GCGCTTCGAG
901 ATGTTCCGAG AGCTGAATGA GGCCTTGGAA

Fragment 3: DNA-Sequenzen 1-1062 (=Aminosäuresequenzen
40-393)

1 ATGGATGATT TGATGCTGTC CCCGGACGAT ATTGAACAAT GGTTCACTGA
51 AGACCCAGGT CCAGATGAAG CTCCCAGAAT GCCAGAGGCT GCTCCCCCG
101 TGGCCCCCTGC ACCAGCAGCT CCTACACCGG CGGGCCCTGC ACCAGCCCC
151 TCCTGGCCCC TGTCATCTTC TGTCCTTCC CAGAAAACCT ACCAGGGCAG
201 CTACGGTTTC CGTCTGGGCT TCTTGCATTC TGGGACAGCC AAGTCTGTGA
251 CTTGCACGTA CTCCCCCTGCC CTCAAACAAGA TGTTTGCCA ACTGGCCAAG
301 ACCTGCCCTG TGCAGCTGTG GTTGATTCC ACACCCCCGC CGGGCACCCG
351 CGTCCGGGCC ATGGCCATCT ACAAGCAGTC ACAGCACATG ACGGAGGTTG
401 TGAGGGCGCTG CCCCCACCAT GAGCGCTGCT CAGATAGCGA TGGTCTGGCC
451 CCTCCTCAGC ATCTTATCCG AGTGGAAAGGA AATTTGGCTG TGGAGTATT
501 GGATGACAGA AACACTTTTC GACATAGTGT GGTGGTGCCT TATGAGCCGC
551 CTGAGGTTGG CTCTGACTGT ACCACCATCC ACTACAACTA CATGTGTAAC
601 AGTTCCCTGCA TGGGCGGCAT GARCCGGAGG CCCATCCTCA CCATCATCAC
651 ACTGGAAGAC TCCAGTGGTA ATCTACTGGG ACGGAACAGC TTTGAGGTGC
701 ATGTTTGTGC CTGTCTGGG AGAGACCGGC GCACAGAGGA AGAGAAATCTC
751 CGCAAGAAAG GGGAGCCTCA CCACGAGCTG CCCCCAGGGA GCACTAAGCG
801 AGCACTGCC AACAACACCA GCTCCTCTCC CCAGCCAAAG AAGAAACCAC
851 TGGATGGAGA ATATTCACC CTTCAAGATCC GTGGGCGTGA GCGCTTCGAG
901 ATGTTCCGAG AGCTGAATGA GGCCTTGAA CTCAAGGATG CCCAGGCTGG
951 GAAGGAGCCA GGGGGGAGCA GGGCTCACTC CAGCCACCTG AAGTCCAAA
1001 AGGGTCAGTC TACCTCCCGC CATAAAAAC TCATGTTCAA GACAGAAGGG
1051 CCTGACTCAG AC

Fragment 4: DNA-Sequenzen 1-528 (Aminosäuresequenzen
66-241)

1 ATGCCAGAGG CTGCTCCCCC CGTGGCCCT GCACCAGCAG .CTCCTACACC
51 GGCGGCCCT GCACCAGCCC CCTCCTGGCC CCTGTCACT TCTGTCCCTT
101 CCCAGAAAAC CTACCAGGGC AGCTACGGTT TCCGTCTGGG CTTCTTGCAT
151 TCTGGACAG CCAAGTCTGT GACTTGCACG TACTCCCCTG CCCTCAACAA
201 GATGTTTGCG CAACTGGCCA AGACCTGCC C TGTGCAGCTG TGGGTTGATT
251 CCACACCCCCC GCCCGGCACC CGCGTCCCGCG CCATGCCAT CTACAAGCAG
301 TCACAGCACA TGACGGAGGT TGTGAGGC GC TGCCCCCACC ATGAGCGCTG
351 CTCAGATAAGC GATGGTCTGG CCCCCCTCTCA GCATCTTATC CGAGTGGAAAG
401 GAAATTTGCG TGTGGAGTAT TTGGATGACA GAAACACTTT TCGACATAGT
451 GTGGTGGTGC CCTATGAGCC GCCTGAGGTT GGCTCTGACT GTACCACCAT
501 CCACTACAAC TACATGTGTA ACAGTTCC

Fragment 5: DNA-Sequenzen 1-984 (=Aminosäuresequenzen
66-393)

1 ATGCCAGAGG CTGCTCCCC CGTGGCCCT GCACCAGCAG CTCCTACACC
51 GGC GGCCCCT GCACCAGCCC CCTCCTGGCC CCTGTCACTCT TCTGTCCCTT
101 CCCAGAAAAC CTACCAGGGC AGCTACGGTT TCCGTCTGGG CTTCTTGCAT
151 TCTGGGACAG CCAAGTCTGT GACTTGACAG TACTCCCTG CCCTCAACAA
201 GATGTTTGCA CAACTGGCCA AGACCTGCC C TGTGCAGCTG TGGGTTGATT
251 CCACACCCCC GCCCGGCACC CGCGTCCGGG CCATGGCCAT CTACAAGCAG
301 TCACAGCAC A TGACGGAGGT TGTGAGGCC TGCCCCCACC ATGAGCGCTG
351 CTCAGATAGC GATGGTCTGG CCCCTCCTCA GCATCTTATC CGAGTGGAAAG
401 GAAATTTGCG TGTGGAGTAT TTGGATGACA GAAACACTTT TCGACATAGT
451 GTGGTGGTGC CCTATGAGCC GCCTGAGGTT GGCTCTGACT GTACCACCAT
501 CCACTACAAC TACATGTGTA ACAGTTCCCTG CATGGGGCC ATGAACCGGA
551 GGCCCATCCT CACCATCATC ACACTGGAAG ACTCCAGTGG TAATCTACTG
601 GGACGGAACA GCTTGAGGT GCATGTTTGT GCCTGTCCTG GGAGAGACCG
651 GCGCACAGAG GAAGAGAAC TCCGCAAGAA AGGGGAGCCT CACCACGAGC
701 TGCCCCCAGG GAGCACTAAG CGAGCACTGC CCAACAAACAC CAGCTCCTCT
751 CCCCAGCAA AGAAGAAACC ACTGGATGGA GAATATTCA CCCTTCAGAT
801 CCGTGGGCGT GAGCGCTTCG AGATGTTCCG AGAGCTGAAT GAGGCCTTGG
851 AACTCAARGGA TGCCCAGGCT GGGAAAGGAGC CAGGGGGAG CAGGGCTCAC
901 TCCAGCCACC TGAAGTCCAA AAAGGGTCAG TCTACCTCCC GCCATAAAAAA
951 ACTCATGTTC AAGACAGAAG GGCCTGACTC AGAC

-25-

Fragment 6: DNA-Sequenzen 1-339 (=Aminosäuresequenzen
237-349)

1 ATGTGTAACA GTTCCTGCAT GGGCGGCATG AACCGGAGGC CCATCCTCAC
51 CATCATCACA CTGGAAGACT CCAGTGGTAA TCTACTGGGA CGAACACAGCT
101 TTGAGGTGCA TGTTTGTGCC TGTCTGGGA GAGACCGGCG CACAGAGGAA
151 GAGAATCTCC GCAAGAAAAGG GGAGCCTCAC CACGAGCTGC CCCCAGGGAG
201 CACTAACCGA GCAC TGCCCCA ACAACACCAG CTCTCTCCC CAGCCAAAGA
251 AGAAACCACT GGATGGAGAA TATTTCACCC TTCAGATCCG TGGGCGTGAG
301 CGCTTCCGAGA TGTTCCGAGA GCTGAATGAG GCCTTGGAA

Fragment 7: DNA-Sequenzen 1-471 (=Aminosäuresequenzen
237-393)

1 ATGTGTAACA GTTCCTGCAT GGGCGGCATG AACCGGAGGC CCATCCTCAC
51 CATCATCACA CTGGAAGACT CCAGTGGTAA TCTACTGGGA CGAACACAGCT
101 TTGACCTCCA TGTTTGTGCC TGTCTGGGA GAGACCGGCG CACAGAGGAA
151 GAGAATCTCC GCAAGAAAAGG GGAGCCTCAC CACGAGCTGC CCCCAGGGAG
201 CACTAACCGA GCAC TGCCCCA ACAACACCAG CTCTCTCCC CAGCCAAAGA
251 AGAAACCACT GGATGGAGAA TATTTCACCC TTCAGATCCG TGGGCGTGAG
301 CGCTTCCGAGA TGTTCCGAGA GCTGAATGAG GCCTTGGAA TCAGACGATCC
351 CCAGGCTGGG AACCAACCCAG GGGGGACCAAG CCCTCACTCC AGCCACCTGA
401 AGTCCAAAAAA CGGTCACTCT ACCTCCCCCC ATAAAAACT CATGTTCAAG
451 ACAGAACGGGC CTGACTCAGA C

Fragment 8: DNA-Sequenzen 1-75 (=Aminosäuresequenzen 9-33)

1 TCCCAAGCAA TCGATGATTG GATCCTGTCC CCGGACGATA TTGAACAA

Fragment 9: DNA-Sequenzen 1-48 (=Aminosäuresequenzen 37-52)

1 AGCGTCGAGC CCCCTCTGAG TCACGAAACA TTTTCAGACC TATGGAAACT
51 ACTTCCTGAA AACACCGTTC TGTCC

Fragment 10: DNA-Sequenzen 1-57 (=Aminosäuresequenzen
368-386)

1 CACCTGAAGT CCAAAACGGC TCAGTCTACC TCCCGCCATA AAAAACTCAT
51 GTTCAAG

Patentansprüche

1. Verfahren zum Nachweis von p53-spezifischen Antikörpern in Körperflüssigkeiten, dadurch gekennzeichnet, daß man Trägermaterial-gebundenes p53 und/oder Trägermaterial-gebundene, Bindungsregionen für p53-spezifische Antikörper aufweisende Fragmente davon mit Körperflüssigkeiten inkubiert und die spezifischen, an das p53 und/oder die Fragmente gebundenen Antikörper (a)
 - mit markierten, gegen die Antikörper (a) gerichteten Antikörpern (b),
oder
 - mit unmarkierten Antikörpern (b) und letztere mit markierten, gegen die Antikörper (b) gerichteten Antikörpern (c) reagieren läßt, wobei die Markierung jeweils nicht-radioaktiv ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Körperflüssigkeiten Serum, Lymphe, Speichel und Urin sowie aus festen Geweben und Tumoren erhaltene Flüssigkeiten umfassen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das p53 durch Expression einer cDNA-Sequenz erhalten ist.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die p53-Fragmente die Aminosäuren 1-241, 40-349, 40-393, 66-241, 66-393, 237-349 und 237-393 sowie 9-33, 37-52 und 368-386 von p53 umfassen.
5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß das Trägermaterial Mikrotiterplatten, Röhrchen, Mikrokugeln und Objektträger umfaßt.

6. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß die Antikörper (b) in der ersten Alternative und die Antikörper (c) in der zweiten Alternative mit einem Enzym markiert sind.
7. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß die Antikörper (b) in der ersten Alternative und die Antikörper (c) in der zweiten Alternative mit einem Fluoreszenzfarbstoff markiert sind.
8. Kit, enthaltend
 - Trägermaterial-gebundenes p53 und/oder Trägermaterial-gebundene, Bindungsregionen für p53-spezifische Antikörper aufweisende Fragmente davon und markierte Antikörper (b) nach Anspruch 1 sowie übliche Waschpuffer und ggfs. ein der Markierung entsprechendes Substrat oder
 - Trägermaterial-gebundene p53 und/oder Trägermaterial-gebundene, Bindungsregionen für p53-spezifische Antikörper aufweisende Fragmente davon und unmarkierte Antikörper (b) und markierte Antikörper (c) nach Anspruch 1 sowie übliche Waschpuffer und ggf. ein der Markierung entsprechendes Substrat.
9. p53-Fragment mit Bindungsregion für p53-spezifischen Antikörper.
10. p53-Fragment nach Anspruch 9, dadurch gekennzeichnet, daß es die Aminosäuren 1-241, 40-349, 40-393, 66-241, 66-393, 237-349 oder 237-393 von p53 umfaßt.
11. p53-Fragment nach Anspruch 9, dadurch gekennzeichnet, daß es die Aminosäuren 9-33, 37-52 oder 368-386 von p53 umfaßt.

-28-

12. DNA-Sequenz eines p53-Fragments nach Anspruch 9.
13. DNA-Sequenz einen p53-Fragments nach Anspruch 10.
14. DNA-Sequenz eines p53-Fragments nach Anspruch 11.
15. Verfahren zur Herstellung eines p53-Fragments mit Bindungsregion für p53-spezifischen Antikörper, bei dem man über die Gesamtlänge von p53 verteilt Fragmente in üblicher Weise konstruiert, wobei jeweils mindestens 2 Fragmente einen überlappenden Bereich aufweisen, die Fragmente mit einem p53-spezifischen Antikörper reagieren lässt und den überlappenden, durch den Antikörper gebundenen Bereich identifiziert und als eingangs definiertes Fragment in üblicher Weise bereitstellt sowie dieses ggf. als Basis für eine ein- oder mehrfache Wiederholung des Zyklus verwendet.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 93/02666

A. CLASSIFICATION OF SUBJECT MATTER
IPC 5 G01N33/574 C07K13/00 C12N15/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 5 G01N C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	CLINICAL BIOCHEMISTRY vol. 25 , December 1992 , OTTAWA, CA pages 445 - 449 STAVROULA HASSAPOGLIDOU AND ELEFTHERIOS P. DIAMANDIS 'Antibodies to the p53 Tumor Suppressor Gene Product Quantified in Cancer Patient Serum With a Time-Resolved Immunofluorometric Technique' see the whole document ---	1,2,5-8
P,A	CANCER RESEARCH vol. 53 , 1 August 1993 , BALTIMORE, MD, US pages 3468 - 3471 SYLVIE LABREQUE ET AL. 'Analysis of the Anti-p53- Antibody Response in Cancer Patients' see the whole document ---	1-15
P,A		1-15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

'A' document member of the same patent family

1

Date of the actual completion of the international search

Date of mailing of the international search report

20 January 1994

03.02.94

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentstaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Doeper, K-P

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 93/02666

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,92 13970 (ONCOGENE SCIENCE, INC.) 20 August 1992 see the whole document ---	1-15
A	JOURNAL OF IMMUNOLOGICAL METHODS. vol. 151, no. 1-2 , 6 July 1992 , NEW YORK US pages 237 - 244 B.VOJTESEK ET AL. 'An immunochemical analysis of the human nuclear phosphoprotein p53' see the whole document ---	1-15
A	MOLECULAR AND CELLULAR BIOLOGY vol. 6, no. 5 , May 1986 , WASHINGTON, D.C., US pages 1379 - 1385 PETER LAMB AND LIONEL CRAWFORD 'Characterization of the Human p53 Gene' cited in the application see the whole document ---	1-15
A	MOLECULAR BIOLOGY & MEDICINE vol. 2 , 1984 , LONDON, GB pages 261 - 272 L.V. CRAWFORD, D.C. PIM AND P. LAMB 'The Cellular Protein p 53 in Human Tumours' cited in the application see the whole document -----	1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 93/02666

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9213970	20-08-92	AU-A-	1370592	07-09-92

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 93/02666

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 5 G01N33/574 C07K13/00 C12N15/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationsymbole)
IPK 5 G01N C07K C12N

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	CLINICAL BIOCHEMISTRY Bd. 25 , Dezember 1992 , OTTAWA, CA Seiten 445 - 449 STAVROULA HASSAPOGLIDOU UND ELEFTHERIOS P. DIAMANDIS 'Antibodies to the p53 Tumor Suppressor Gene Product Quantified in Cancer Patient Serum With a Time-Resolved Immunofluorometric Technique'	1,2,5-8
P,A	siehe das ganze Dokument ---	1-15
P,A	CANCER RESEARCH Bd. 53 , 1. August 1993 , BALTIMORE, MD, US Seiten 3468 - 3471 SYLVIE LABREQUE ET AL. 'Analysis of the Anti-p53- Antibody Response in Cancer Patients' siehe das ganze Dokument ---	1-15

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *' A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *' E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *' L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *' O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *' P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *' T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *' X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *' Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *' &' Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

03.02.94

Name und Postanschrift der Internationale Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentanlagen 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensträger

Doepfer, K-P

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 93/02666

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO,A,92 13970 (ONCOGENE SCIENCE, INC.) 20. August 1992 siehe das ganze Dokument ---	1-15
A	JOURNAL OF IMMUNOLOGICAL METHODS. Bd. 151, Nr. 1-2 , 6. Juli 1992 , NEW YORK US Seiten 237 - 244 B.VOJTESEK ET AL. 'An immunochemical analysis of the human nuclear phosphoprotein p53' siehe das ganze Dokument ---	1-15
A	MOLECULAR AND CELLULAR BIOLOGY Bd. 6, Nr. 5 , Mai 1986 , WASHINGTON, D.C., US Seiten 1379 - 1385 PETER LAMB AND LIONEL CRAWFORD 'Characterization of the Human p53 Gene' in der Anmeldung erwähnt siehe das ganze Dokument ---	1-15
A	MOLECULAR BIOLOGY & MEDICINE Bd. 2 , 1984 , LONDON, GB Seiten 261 - 272 L.V. CRAWFORD, D.C. PIM AND P. LAMB 'The Cellular Protein p 53 in Human Tumours' in der Anmeldung erwähnt siehe das ganze Dokument -----	1-15

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 93/02666

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO-A-9213970	20-08-92	AU-A-	1370592	07-09-92