

 $\lambda_{1}(k \to \infty)$ $\lambda_{1}(k \to \infty)$ $\lambda_{2}(k \to \infty)$ $\lambda_{3}(k \to \infty)$ $\lambda_{4}(k \to \infty)$ $\lambda_{4}(k \to \infty)$ $\lambda_{5}(k \to \infty)$ λ_{5

数值计算方法

Numerical Computational Method

9.2.3 Military Market State St

$$\frac{1}{m!h^m}\Delta^m f_k$$

Apa

果程负责义: 刘春风教授

插值法

第二章 插值法

$\langle 1 \rangle$	插值法的一般理论	
$\langle 2 \rangle$	Lagrange插值	
3	Newton插值	
$\overline{4}$	分段低次插值	
5	Hermite插值、样条插值	

一、插值法的一般理论

- 问题的引入
- ▶ 插值法及其相关概念 •
- 一般插值多项式的原理。
- 一般插值的程序设计

数学的期望与烦恼

问题的引入

引例1

标准正态分布函数 Φ(x)

X	0	1	2	•••
-	ł	:		i
1.0	0.8413	0.8438 0.8665	0.8461	•••
1.1	0.8643	0.8665	0.8686	• • •
ŀ		}	ļ	;

求Φ(1.014)

问题的引入

引例2

求机翼下轮廓线上一点的近似数值

插值问题的一般提法

已知 n+1个节点 (x_i, y_i) $(i = 0, 1, \dots n)$, 其中 x_i 互不相同,不妨设 $a = x_0 < x_1 < \dots < x_n = b$),

求任一插值点 $x^* (\neq x_i)$ 处的插值 y^* .

构造平面曲线

$$y = G(x)$$

使其通过所有节点,即:

$$y_i = G(x_i)$$

$$(i = 0, 1, ..., n)$$

插值法的基本思路

思路

构造一个(相对简单的)函数

$$y = G(x)$$

使其通过所有节点,即:

$$y_i = G(x_i)$$

$$(i = 0,1,...,n)$$

目标

求点 $x^* (\neq x_i)$ 处的插值 $y^* = G(x^*)$

插值法的概念

设函数 y = f(x)在区间 [a,b]上有定义 ,且已知在点

$$a \le x_0 < x_1 < \dots < x_n \le b$$

上的值分别为: y_0, y_1, \dots, y_n ,

若存在一简单函数P(x),使

$$P(x_i) = y_i$$
 $(i = 0, 1, 2 \cdots, n)$ (1.1)

则称 P(x)为f(x)的插值函数,点 x_0, x_1, \dots, x_n 称为插值节点,包含插值节点的区间 [a,b]称为插值区间,求插值函数 P(x)的方法称为插值法。

主要概念

- 插值函数
- 6 插值
- 插值法

插值法的概念

着 P(x) 是次数不超过 n 的代数多项式,即 $P(x) = a_0 + a_1 x + \dots + a_n x^n,$

- \bigcap 若P(x)为分段多项式,就称为分段插值。
- 若P(x)为三角多项式,就称为三角插值。

本章只讨论多项式插值和分段插值。

主要概念

- 分段插值
- 插值多项式
- 三角插值

华田里工大学

2018.7