Αρχιτεκτονική Διάλεξη 10

Ανάκληση

T0:MAR←PC, Z←PC+1 T1:MDR←M[MAR],PC←Z T2:IR←MDR[OPCODE],F←1 Εκτέλεση STA

T3:MAR←MDR[ADDRESS 1]

T4:MDR←ACC T5:M[MAR]←MDR

Εκτέλεση ADD

T3:MAR←MDR[ADDRESS 1]

T4:MDR←M[MAR] T5:Z←ACC+MDR

T6: ACC←Z

Εκτέλεση JSR T3:Z←SP-1

T4:SP←Z, MAR←Z(Address)

T5:Z←MDR

T6: MDR←PC

 $T7:M[MAR] \leftarrow MDR, PC \leftarrow Z$

Εκτέλεση AND

T3:MAR←MDR(Address)

T4:MDR←M[MAR]

T5:Z←ACC^MDR

T6: ACC←Z

Κύκλος διακοπής

T0: Z←SP-1

T1:SP←Z,MAR←Z

T2:MDR←PC

T3:M[MAR]←MDR

T4:MAR←Z

T5:MDR←M[MAR]

 $T6:PC \leftarrow MDR, F \leftarrow 0, G \leftarrow 0, Ien \leftarrow 0$

Εντολή LDA

T3:MAR←MDR[ADDRESS 1]

T4:MDR←M[MAR]

T5:ACC←MDR,IF(Interact Enable=0)

then F←0 else G←1

	Ανάκληση		I	.DA	١.	S	STA	١		ΑI	DD			Αì	ND		JSR				Διακοπή								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
MARin	1	1		1			1			1				1					1					1			1		
PCin		1																				1							1
PCout	1																				1				1				
Zin	1											1				1		1		1				1					
Zout		1											1				1		1		1	1			1			1	
MDRin								1																		1			
MDRout			1	1		1	1					1		1		1				1									1
IRin			1																										
IRout																													
ACCin						1							1				1												
ACCout								1																					
SPin																			1					1					
Spout																		1					1						
F	0	0	1	1	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0

Τα ΙΝ θα ειναι αριστερα και τα ΟΟΤ θα είναι δεξιά για παράδειγμα.

Παράδειγμα στην Ανακληση για το Τ0:

MAR← PC, Z← PC+1, PC δεξια αρα PCout και τα αλλα in αφου είναι αριστερα

Έστω ότι ένα πρόγραμμα πρέπει να εκτελέσει διαδοχικά τις εντολές

ADD

JSR

STA

Για να διαβάσουμε απο την μνήμη ελέγχου τα σήματα ελέγχου πρέπει να υπάρχει ένας δείκτης που θα μετακινηθεί διαδοχικά στις θέσεις

Αρχική Θέση	Διάβασμα στηλών
0	(0,1,2)
9	(9,10,11,12)→ ξανά 0
17	(17,18,19,20,21)→ ξανά 0
6	(6,7,8)

000 \rightarrow LDA Θέλουμε ένα κύκλωμα το οποίο στις εισόδους του να 001 \rightarrow STA σχηματίζει τους αριθμους 0-4 (3 είσοδοι) Επίσης, οι έξοδοι πρέπει να σχηματίζουν τους αριθμούς απο 3-17(5 bit) 011 \rightarrow AND 100 \rightarrow JSR

Είσοδοι			Έξοδοι								
I2	I1	10	D4	D3	D2	D1	D0				
0	0	0	0	0	0	1	1				
0	0	1	0	0	1	1	0				
0	1	0	0	1	0	0	1				
0	1	1	0	1	1	0	1				
1	0	0	1	0	0	0	1				

Στόχος: Κάθε φορά που διαβάζω ένα OPCODE να στέλνω τον δεικτή στην θέση εκκίνησης της αντιστοιχης εντολής

Φτιάχνω χάρτη Karnaugh

Κοιταω αριστερα στον πίνακα της 2ης σελίδας τους εισοδους και οπου έχει ασσο προσθετω και ασσο στον πίνακα

I2\ I1I0	00	01	11	10			
0	$\left(\exists \right)$	\bigcap					
1							

D3=I2'I1 D4=I2I1'I0'

Νά δειξετε τις τιμές που θα διαβάσουν τα σχηματα ελεγχού MARin, Pcin....

Κατά την ανάκληση στο βήμα ο IR διαβάζει το OPCODE. Το OPCODE περνάει στή μονάδα ελέγχου και αποκωδικοποιειται απο τον ειδικό αποκωδικοποιητή.

Ο μΡΟ σχηματίζει μια τιμή εκκινηση .

Ο μPC=01101=13 Ζητάει τη διεύθυνση 13 απο τη μνήμη ελεγχου (ουσιαστικά η στήλη 13)

Διέυθυνση 13=	1				1				1
R=	1				1				1
	MARin	PCin	PCout		MDRout				F

Οταν τελειώσουμε τη 13, έχει εκτελεστεί το T3 της ADD. Ο μPC ←μPC+1 στον επόμενο παλμο του ρολογιού μPC=14 και επαναλαμβάνεται η διαδικασία. Οταν μPC=16, τοτε F=0(ανάκληση) Ένα σήμα CLK μηδενίζει τον μPC και επαναλαμβάνεται η διαδικασία μPC

Ο αριθμός που αποθηκεύεται σε κάθε χρονική στιγμή μέσα στον μετρητή, αποθηκεύεται σε ένα πλήθος Flip-Flop

	17	JSR	21	22	28

Αν έρθει διακοπή, τότε $G{=}1$ και ο μPC οδηγείται στην αρχή του κύκλου διακοπής

Άσκηση:

Ένα σύστημα διαθέτει 32 εντολές των οποιων η εκτελεσή απαιτεί 3 βήματα, 32 εντολές τεσσάρων βημάτων και 64 εντολές 5 βημάτων. Επισης διαθέτει τον κύκλο διακοπής 7 βημάτων και τον κυκλο ανάκλησης.

Τα σήματα ελεγχου είναι 20.

- 1. Ποιο το μέγεθος της μνήμης ελέγχου
- 2. Οι τιμές των σημάτων ελεγχου τοποθετουνται με τη σειρά
 - 2.1. Ανάκληση
 - 2.2. 32 εντολές τριων βημάτων
 - 2.3. 32 εντολές 4 βημάτων
 - 2.4. 64 εντολές 5 βημάτων
 - 2.5. κυκλος διακόπτη
 - 2.6. Ποιο το μέγεθος του αποκωδικοποιητή και του μΡC

Λύση:

```
Γραμμές= 20*(32 εντολές*3 βήματα + 32 εντολές*4 βήματα+ 64 εντολές*5 βήματα+ 3 + 7 bit
κύκλος
ανάκλησης κύκλος διακοπή:
```

- 2) 2.1.Ανάκληση: 0-2
 - 2.2 32 εντολές τριων βημάτων: 3-98
 - 2.3 32 εντολές 4 βημάτων:99-226
 - 2.4 64 εντολές 5 βημάτων:227-547
 - 2.5κυκλος διακόπτη:548-554
 - 2.6 Αποκωδικοποιητης 128 αρα 7 bit \rightarrow 2⁷ = 128 bit 10 bit εξοδό

Η αρχή τελευταίας εντολής \rightarrow 543

Το 543 γραφεται σε 10 bit(1000011111)

10 bit

O μ PC =10x1024 (10 flip flop)

Ο μΡΟ πρεπει να μετράει ως την τελευταία στηλη (553)

Ο αποκωδικοποιητης πρεπει να μετράει ως την αρχή της τελευταίας εντολής (543)