

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 2017 Электронный журнал, пер. Эл. N. ФС77-39410 от 15.04 2010

электронный журнал, рег. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal\\ e-mail:jodiff@mail.ru$

Дифференциальные уравнения в частных производных

Вязкостные субрешения в теории *m*-гессиановских уравнений

H.M.Ивочкина * , C.И.Прокофъева ** , $\Gamma.B.$ Якунина **

*Санкт-Петербургский государственный университет

** Санкт-Петербургский государственный архитектурно-строительный университет

Памяти Евгения Константиновича Ершова

Аннотация

В статье показано, что в теории m-гессиановских операторов возможная негладкость вязкостных субрешений не представляет интереса. Определяющим фактором является то, что множество вязкостных C^2 -субрешений совпадает с множеством корректной постановки задачи Дирихле. В статье приводится пример, показывающий, что на множестве эллиптичности 5-гессиановского оператора постановка задачи Дирихле некорректна, поскольку она имеет два C^∞ -решения, но только одно из них является вязкостным субрешением.

Ключевые слова: полностью нелинейные дифференциальные уравнения, вязкостные субрешения, суперрешения, конусы Гординга, m-гессиановские уравнения.

Abstract

We show that possible non-smoothness of viscosity sub-solutions is of no interest in the theory of m-Hessian operators. It is crucial that the set of viscosity

 C^2 -sub-solutions coincides with the set of correct setting of the Dirichlet problem. Moreover, we present an example to demonstrate that on the set of ellipticity of 5-Hessian operator the setting of the Dirichlet problem is incorrect because our problem has two C^∞ -solutions but only one of them is viscosity sub-solution.

Keywords: fully nonlinear differential equations, viscosity sub-solutions, supersolutions, Gårding cones, m-Hessian equations.

§1 Введение

Первые попытки рассмотреть задачу Дирихле для полностью нелинейных дифференциальных уравнений в частных производных второго порядка были предприняты С.Н.Бернштейном в начале прошлого века [1]. Было введено понятие тотально эллиптических уравнений и для равномерно эллиптических уравнений построена априорная оценка C^2 -нормы решения u задачи Дирихле в двумерном случае. В работе Л.Ниренберга [2] была доказана априорная ограниченность нормы u в $C^{2+\alpha}\left(\bar{\Omega}\right)$, $\Omega\subset\mathbb{R}^2$, и сформулированы условия существования и единственности классического решения задачи Дирихле для равномерно эллиптических полностью нелинейных уравнений в двумерном случае. Однако, в отличие от линейной теории, распространить этот результат на произвольную размерность невозможно, что следует из основополагающих в современной теории полностью нелинейных уравнений работ Л.К.Эванса [7], Н.В.Крылова [8] и М.В.Сафонова [9].

В схему исследования тотально эллиптических уравнений не вкладывается уравнение Монжа-Ампера, которое с давних пор привлекало внимание геометров. В книге А.В.Погорелова [3] представлены достаточные условия разрешимости задачи Дирихле для уравнения Монжа-Ампера в регулярном смысле. Для этого использовались разработанные ранее геометрические подходы в комбинации с некоторыми методами теории квазилинейных эллиптических уравнений [5]. Отметим, что регулярными решениями А.В.Погорелова являются выпуклые функции из пространства $C^2\left(\Omega\right) \cap C^1\left(\bar{\Omega}\right)$.

В заметке [4] найден метод построения априорной оценки выпуклых решений задачи Дирихле для уравнений Монжа-Ампера в $C^2(\bar{\Omega})$, а в статье [10] введчн класс m-гессиановских уравнений, на которые распространены новые методы исследования. Заметим, что в перечисленных работах уравнения рассматривались в выпуклых областях, а решения принимали постоянное значение на границе. Благодаря результатам, полученным в [7],

[8], [9], оценка решений задачи Дирихле для m-гессиановских уравнений в $C^2(\bar{\Omega})$ гарантирует разрешимость этой задачи в классическом смысле [11].

В программной статье Л.Каффарелли, Л.Ниренберга и Д.Спрука [12] была предпринята попытка ввести максимальный класс гессиановских уравнений, для которых применимы методы исследования m-гессиановских уравнений, в частности, уравнения Монжа-Ампера, m=n. При этом, допускается произвольное условие Дирихле и на геометрию границы налагается новое условие, которое при $1 \le m < n$ не предполагает еч выпуклости. Там же введено понятие допустимого решения гессиановского уравнения.

Приведчиные публикации можно рассматривать как основу современной теории полностью нелинейных дифференциальных уравнений в частных производных второго порядка, и создана она по аналогии с линейной теорией. Со времени их написания прошло более 30 лет и мы считаем, что сейчас интерес представляют результаты, не имеющие линейных аналогов, чему и посвящена предлагаемая статья.

Если имеются проблемы с доказательством разрешимости в классе гладких функций, традиционно вводится концепция слабых решений, существование которых предполагается известным. В теории нелинейных дифференциальных уравнений эта роль предназначалась вязкостным решениям [17], впервые введчиным в работе [6] для уравнения Гамильтона-Якоби-Беллмана. В §2 мы приводим основные понятия этой теории, следуя работам [17], [18]. Для их демонстрации мы выбираем уравнения с *т*-гессиановскими операторами, которые являются *т*-следами матриц Гессе. Анализируя алгебраические свойства *т*-следов симметричных матриц в §3 и соответствующие свойства *т*-гессиановских операторов в §4, мы приходим к выводам:

- (i) проблема существования вязкостного субрешения, принимающего заданные граничные условия, для m-гессиановского уравнения при m>1 является проблемой той же степени сложности, что и доказательство разрешимости в классическом смысле задачи Дирихле;
- (ii) C^2 -гладкие вязкостные субрешения заполняют конус m-допустимых функций, который совпадает с множеством корректной постановки задачи Дирихле для m-гессиановских уравнений;
- (iii) множество корректной постановки задачи Дирихле для m-гессиановских уравнений совпадает с конусом Л.Гординга и является

множеством положительной монотонности m-гессиановских операторов.

В §5 мы показываем, что множество эллиптичности m-гессиановских операторов, вообще говоря, не является множеством корректной постановки задачи Дирихле. Именно, приводится пример задачи Дирихле в шаре $B_1 \subset \mathbb{R}^6$ для 5-гессиановского уравнения, которая имеет два бесконечно гладких решения. При этом, на каждом из них оператор эллиптичен. Дополнительный анализ показывает, что лишь одно из них является вязкостным.

§2 О разрешимости задачи Дирихле в вязкостном смысле

Приведчм одну из интерпретаций понятия вязкостного решения [18], [19].

Рассмотрим функцию u(x), определчнную в области $\Omega \subset \mathbb{R}^n$, и обозначим через X^+ и X^- множества точек, где существуют первый и второй суб- и супердифференциалы функции u(x) соответственно:

$$X^{+} = \left\{ x^{+} \in \Omega : u\left(x^{+} + h\right) - u\left(x^{+}\right) \le \left(p^{+}, h\right) + \frac{1}{2}\left(r^{+}h, h\right) + o\left(h^{2}\right) \right\},$$

$$(2.1)$$

$$X^{-} = \left\{ x^{-} \in \Omega : u\left(x^{-} + h\right) - u\left(x^{-}\right) \ge \left(p^{-}, h\right) + \frac{1}{2}\left(r^{-}h, h\right) + o\left(h^{2}\right) \right\}.$$

$$(2.2)$$

Отметим, что для $u \in C^2(\Omega)$

$$X^{+} = X^{-} = \Omega, \quad p^{+} = p^{-} = u_{x},$$

 $r^{+} = u_{xx}(x^{+}) + A(x^{+}), \quad r^{-} = u_{xx}(x^{-}) + A(x^{-}),$

где $A \in Sym\left(n\right),\ A \geq 0,\ Sym\left(n\right)$ – пространство симметричных матриц размера $n \times n.$

Определение 2.1. Функция и называется субрешением уравнения

$$F\left(x, u, u_x, u_{xx}\right) = 0\tag{2.3}$$

в области Ω , если для любых $x^+ \in X^+$, $p,r \in \{p^+,r^+\}$ выполнено неравенство

$$F\left(x, u\left(x\right), p, r\right) \ge 0\tag{2.4}$$

и суперрешением, если для любых $x^- \in X^-$, $p,r \in \{p^-,r^-\}$ справедливо неравенство

$$\inf_{\eta \ge 0} F\left(x, u\left(x\right), p, r + \eta\right) \le 0,\tag{2.5}$$

 $r\partial e \ \eta \in Sym(n).$

Определение 2.2. Непрерывная функция и называется вязкостным решением уравнения (2.3), если для неч выполнены как неравенство (2.4), так и неравенство (2.5).

Для доказательства разрешимости задачи Дирихле для дифференциальных уравнений второго порядка в вязкостном смысле используется классический метод Перрона, который можно распространить на полностью нелинейные уравнения [18], [19], [20].

Приведчм идею этого метода для уравнений общего вида (2.3).

Пусть $u^i \in C\left(\Omega\right), i=1,2,...,N$, — субрешения уравнения (2.3), тогда из определения 2.1 следует, что функция $u=\sup_i \left(u^i\right)$ — субрешение уравнения (2.3). Обозначим символом $\bar{\mathfrak{M}}\left(F\right)$ множество всех субрешений уравнения (2.3).

Аналогично, если $v^i \in C(\Omega)$, i=1,2,...,N, – суперрешения уравнения (2.3), тогда функция $v=\inf_i v^i$ – суперрешение уравнения (2.3). Обозначим символом $\bar{\mathfrak{N}}(F)$ множество всех суперрешений уравнения (2.3).

Далее введчм следующие обозначения

$$\bar{\mathfrak{M}}^{\varphi}(F) = \left\{ u \in \bar{\mathfrak{M}}(F) ; u|_{\partial\Omega} \leq \varphi \right\},
\bar{\mathfrak{N}}_{\varphi}(F) = \left\{ u \in \bar{\mathfrak{N}}(F) ; u|_{\partial\Omega} \geq \varphi \right\},
\bar{u} = \sup_{\bar{\mathfrak{M}}^{\varphi}(F)} \left\{ \omega \right\}, \quad \underline{u} = \inf_{\bar{\mathfrak{N}}_{\varphi}(F)} \left\{ \omega \right\},$$
(2.6)

где φ – известная ограниченная функция.

В работе [19] показано, что если функции \overline{u} , \underline{u} – суб- и суперрешения уравнения (2.3), то они являются вязкостными решениями этого уравнения. А именно, доказано следующее утверждение.

Лемма 2.3. Предположим для простоты, что функция F не зависит от аргумента $u. F \in C(\Gamma), \Gamma = \Omega \times \mathbb{R}^n \times Sym(n).$

1. Пусть \overline{u} – непрерывное субрешение уравнения (2.3). Предположим, что функция F удовлетворяет неравенству

$$F\left(x,p,\eta\right) > 1,\tag{2.7}$$

если хотя бы одно из собственных чисел неотрицательной матрицы η достаточно велико в зависимости от (x,p). Тогда \overline{u} – вязкостное решение уравнения (2.3).

2. Пусть \underline{u} — непрерывное суперрешение уравнения (2.3). Тогда \underline{u} — вязкостное решение этого уравнения.

Таким образом, проблема существования вязкостного решения уравнения (2.3) сводится к существованию хотя бы одной из функций \overline{u} или \underline{u} . По аналогии с гармоническим случаем решением Перрона принято называть функцию \overline{u} .

Понятие вязкостного решения является корректным, если доказана его единственность. Эта проблема была решена в работе [21], где был доказан принцип максимума для непрерывных вязкостных решений и непрерывных функций F.

Следствием принципа максимума из [21] была лемма, доказанная Н.Трудингером в статье [18]. Приведчм эту лемму.

Лемма 2.4. Пусть функция F удовлетворяет в Γ неравенствам

$$|F(x, u, p, r) - F(y, u, p, r)| \le \omega(|x - y|),$$

 $r \partial e$

$$\omega(t) \to 0 \ npu \ t \to 0, \tag{2.8}$$

$$F(x, u, p, r) - F(x, u + t, p, r) \ge 0, \quad t \ge 0.$$
 (2.9)

Предположим также, что выполнено неравенство (2.7) леммы 2.3 с матрицами $\eta \geq 0$.

Тогда для функций $u,v\in C\left(\bar{\Omega}\right)$, удовлетворяющих неравенствам $F\left[u\right]\geq\delta,\ F\left[v\right]\leq0$ в Ω в вязкостном смысле $(\delta>0)$ справедливо неравенство

$$u - v \le \max_{\partial \Omega} (u - v)^+, \quad x \in \Omega.$$
 (2.10)

В области Ω поставим задачу Дирихле для уравнения (2.3) с граничным условием

$$u|_{\partial\Omega} = \varphi, \quad \varphi \in C(\partial\Omega).$$
 (2.11)

Применение метода Перрона и принципа максимума приводит к следующему утверждению.

Теорема 2.5. Пусть функция $F = F(x, u, p, r) \in C(\Gamma)$, где $\Gamma = \Omega \times \mathbb{R} \times \mathbb{R}^n \times Sym(n)$, удовлетворяет в Γ условиям (2.7)-(2.9). Предположим, что существуют хотя бы одно непрерывное субрешение и непрерывное суперрешение уравнения (2.3), равные $\varphi(x)$ на $\partial\Omega$. Тогда существует единственное непрерывное вязкостное решение задачи (2.3), (2.11).

Таким образом, проблема разрешимости задачи Дирихле для уравнения (2.3) в вязкостном смысле сведена к вопросу существования суб- и суперрешения.

Отметим, что суперрешения для уравнения (2.3) можно легко построить. Покажем это на примере задачи Дирихле для уравнения Монжа-Ампера

$$\det u_{xx} = f B \Omega, \qquad (2.12)$$

$$f \ge \nu > 0$$
,

с граничным условием (2.11). Здесь u_{xx} – матрица Гессе функции $u \in C^2(\bar{\Omega})$, Ω – строго выпуклая область.

Можно показать, что решение задачи Дирихле для уравнения Лапласа

$$\Delta u = 0, \quad u|_{\partial\Omega} = \varphi,$$

является суперрешением задачи (2.12), (2.11).

Однако вопрос о существовании субрешений остачтся открытым. Продемонстрируем это опять на примере задачи Дирихле для уравнения Монжа-Ампера (2.12) с граничным условием

$$u|_{\partial\Omega} = const.$$
 (2.13)

Вопрос о разрешимости задачи (2.12), (2.13) тесно связан со свойствами границы $\partial\Omega$.

В работе [22] показано, что если гауссова кривизна поверхности $\partial\Omega$ вырождается хотя бы в одной точке $x_0 \in \partial\Omega$, т.е. $G(\partial\Omega)(x_0) = 0$, то задача (2.12), (2.13) вообще не имеет C^2 -гладких решений. Таким образом,

$$\{u \in C^2(\bar{\Omega}) : \det u_{xx} > 0, \quad u|_{\partial\Omega} = const\} = \varnothing.$$

§3 Свойства *m*-следов симметричных матриц

Рассмотрим пространство Sym(n) симметричных матриц размера $n \times n$. Выберем и зафиксируем число $m, 1 \leq m \leq n$. Обозначим символом $\mathrm{tr}_m S$

сумму всех главных миноров порядка m матрицы $S \in Sym(n)$. В частности, $\operatorname{tr}_1 S = \operatorname{tr} S$, $\operatorname{tr}_n S = \det S$. По определению полагают $\operatorname{tr}_0 S = 1$.

Пусть $S \in Sym(n)$, рассмотрим функцию

$$T_m(S) = \frac{\operatorname{tr}_m S}{C_n^m}.$$

Из теории гиперболических многочленов известно, что функция $T_m(S)$ является гиперболическим многочленом в направлении единичной матрицы I, а каждый гиперболический многочлен порождает конус Гординга [23], [14], [24].

Обозначим конус Гординга для многочлена $T_m(S)$ символом K_m и приведум четыре равносильных определения множества K_m .

Определение 3.1. Для I-гиперболического многочлена $T_m(S)$ назовум конусом Γ ординга множество

(i) K_m , состоящее ровно из таких матриц S, для которых многочлен

$$p(t) = T_m(S + tI) = \sum_{k=0}^{m} C_m^k T_k(S) t^{m-k}$$
(3.1)

имеет только отрицательные корни;

(ii) K_m – это компонента связности множества $\{S: T_m(S) > 0\},$ содержащая единичную матрицу I;

(iii)
$$K_m = \{ S \in Sym(n) : T_i(S) > 0, \quad i = 1, 2, ..., m \};$$

(iv)
$$K_m = \{ S \in Sym(n) : T_m(S + tI) > T_m(S) > 0, \quad t > 0 \};$$

Определение 3.2. *Матрицы* $S \in \mathcal{K}_m$ *называются* m*-положительными*.

Для конусов Гординга справедлива цепочка вложений

$$K_n \subset K_{n-1} \subset ... \subset K_1$$
.

§4 *т*-Гессиановские операторы и их свойства

Положим $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega)$, u_{xx} – матрица Гессе функции u. Введчм оператор, порождунный функцией $T_m(S)$

$$T_m[u] = T_m(u_{xx}),$$

который называется т-гессиановским.

Отметим, что при m=1 $\mathrm{T}_1[u]=\frac{\Delta u}{n}$, где Δu – оператор Лапласа, при m=n $\mathrm{T}_n[u]=\det u_{xx}$ – оператор Монжа-Ампера.

Определение 4.1. Функция $u \in C^2(\Omega)$ называется m-допустимой в области Ω , если $u_{xx} \in K_m$, $x \in \Omega$.

Множество *т*-допустимых функций образует функциональный конус

$$\mathbb{K}_{m} = \left\{ u \in C^{2}(\Omega) : u_{xx} \in \mathcal{K}_{m}, \quad x \in \Omega \right\}.$$

Справедлива цепочка вложений

$$\mathbb{K}_n \subset \mathbb{K}_{n-1} \subset ... \subset \mathbb{K}_1$$
.

Впервые конусы m-допустимых функций были введены в работе [10]. В ней описаны свойства конусов \mathbb{K}_m . В частности, для функции $u \in \mathbb{K}_m$ выполнены неравенства Маклорен

$$T_m^{\frac{1}{m}}[u] \le T_{m-1}^{\frac{1}{m-1}}[u] \le \dots \le T_1[u] = \frac{\Delta u}{n}.$$

В области Ω рассмотрим уравнение

$$T_m[u] = f, \quad f \ge \nu > 0. \tag{4.1}$$

Выясним, какие C^2 -функции являются субрешениями уравнения (4.1). Положим

$$F[u] = T_m[u] - f.$$

Тогда (2.4) равносильно неравенству

$$T_m(r^+) \ge f(x) > 0, \tag{4.2}$$

где $r^{+} = u_{xx}(x^{+}) + A(x^{+}), A \in Sym(n), A \geq 0.$

В частности для A=tI, где $t\geq 0$, имеем

$$T_m(u_{xx} + tI) \ge f(x) > 0. \tag{4.3}$$

Неравенство (4.3) означает, что многочлен p(t), определунный равенством (3.1), имеет только отрицательные корни, а это значит, что $u_{xx} \in K_m$.

Таким образом, неравенство (4.3) описывает конус \mathbb{K}_m , а именно, если $u \in C^2$ является субрешением уравнения (4.1), то $u \in \mathbb{K}_m$.

$\S 5$ Об эллиптичности m-гессиановских операторов

В работах С.Н.Бернштейна [1], посвящчных двумерным полностью нелинейным уравнениям второго порядка, было введено понятие эллиптичности уравнения на решении. Это значит, что в случае уравнения (2.3) на решении $u \in C^2(\Omega)$ выполнено неравенство

$$\frac{\partial F[u]}{\partial u_{ij}} \xi^i \xi^j > 0, \quad |\xi| = 1, \quad \xi \in \mathbb{R}^n.$$

В работе [10] было показано, что оператор $\mathbf{T}_m\left[u\right]$ эллиптичен в конусе \mathbb{K}_m , приччм

$$\frac{1}{c(n)} \left(\frac{\nu}{\mu} \right) \le \frac{\partial \mathcal{T}_m[u]}{\partial u_{ij}} \xi^i \xi^j \le c(n) \left(\frac{\mu}{\nu} \right)^{m-1}, \tag{5.1}$$

где $\xi \in \mathbb{R}^n$, $|\xi| = 1$, если $T_m[u] \ge \nu > 0$, $T_1[u] \le \mu$ в Ω .

Таким образом $T_m[u]$ является эллиптическим на каждом m-допустимом решении уравнения (4.1) при условии $f \ge \nu > 0$ в Ω и при наличии априорной оценки $||u||_{C^2(\Omega)}$.

В работах [14], [25] были приведены примеры, показывающие, что неравенство (5.1) не гарантирует однозначной разрешимости задачи (4.1), (2.11).

В этих работах построены примеры задачи Дирихле для 5-гессиановского уравнения в единичном шаре $B_1 \subset \mathbb{R}^6$, которая имеет по крайней мере два гладких решения класса C^2 , приччм оператор T_5 является эллиптическим на этих решениях. А именно, построена функция

$$w(x) = \frac{9}{40} (x^1)^2 - \sum_{i=2}^{6} (x^i)^2,$$

которая является решением задачи Дирихле

$$T_5(w_{xx}) = \frac{2}{3},$$
 (5.2)
 $w|_{\partial B_1} = \frac{49}{40} (x^1)^2 - 1.$

моте иqП

$$\frac{\partial \mathcal{T}_{5}\left[w\right]}{\partial w_{ii}} \xi^{i} \xi^{j} \ge \frac{4}{15},$$

 $\xi \in \mathbb{R}^n$, $|\xi| = 1$, т.е. уравнение (5.2) эллиптично на решении w.

Покажем, что функция w(x) не является вязкостным решением уравнения (5.2), а именно не является его субрешением. Предположим, что это не так и w(x) – вязкостное субрешение. Тогда, выполнено неравенство

$$T_5(w_{xx} + tI) \ge T_5(w_{xx}), \quad t \ge 0.$$
 (5.3)

Используя разложение (3.1) для функции $T_5(w_{xx}+tI)$, получим

$$T_5(w_{xx} + tI) = t^5 + 5T_1(w_{xx})t^4 + 10T_2(w_{xx})t^3 + 10T_3(w_{xx})t^2 + 5T_4(w_{xx})t + T_5(w_{xx}).$$

Последнее соотношение и неравенство (5.3) приводят к неравенству

$$t(t^4 + 5T_1(w_{xx})t^3 + 10T_2(w_{xx})t^2 + 10T_3(w_{xx})t + 5T_4(w_{xx})) \ge 0,$$

которое невозможно, например, при t=1,6. Значит, наше предположение ошибочно. Таким образом, построенное решение задачи (5.2) не является субрешением, т.е. не является вязкостным решением и не принадлежит конусу допустимых функций \mathbb{K}_5 .

Этот пример показывает, что задача Дирихле для полностью нелинейных дифференциальных уравнений в частных производных второго порядка корректна только для вязкостных решений. При этом она имеет не более одного решения только на множестве всех субрешений.

Список литературы

- [1] Бернштейн С.Н. Собр. соч., т.З, изд-во АН СССР, 1960.
- [2] Nirenberg L. On nonlinear elliptic partial differential equations and Holder continuity. Comm. Pure and Appl. Math., 6 (1953), pp.103-156.
- [3] Погорелов А.В. Многомерная проблема Минковского. "Наука", Москва, 1975, 95 с.
- [4] Ивочкина Н.М. Априорная оценка выпуклых $||u||_{C^2}$ решений задачи Дирихле для уравнений Монжа Ампера. Зап. науч. семин. ЛОМИ, 96 (1980), С.69-79.
- [5] Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа. "Наука", Москва, 1973, 576 с.

- [6] Lions P.-L. Optimal control of diffusion processes and Hamilton Jacobi Bellman equations. Part II: Viscosity solutions and uniqueness, Comm. Partial Diff. Eqns. 8 (1983), pp.1229-1276.
- [7] Evans L.C. Classical solutions of fully nonlinear convex second order elliptic equations. Comm. Pure Appl. Math. 1982, 25, pp.333-363.
- [8] *Крылов Н.В.* Ограниченно неоднородные эллиптические и параболические уравнения в области. Изв. АН СССР, Сер. мат., 1983, 47,1, C.75-108.
- [9] *Сафонов М.В.* Неравенство Харнака для эллиптических уравнений и гельдеровость их решений. Зап. науч. семин. ЛОМИ, 1983, Вып. 12, С.272-287.
- [10] *Ивочкина Н.М.* Описание конусов устойчивости, порождаемых дифференциальными операторами типа Монжа-Ампера. Мат.сб., 1983, Вып.22, С.265-275.
- [11] Ивочкина Н.М. Решение задачи Дирихле для некоторых уравнений типа Монжа Ампера. Мат.сб. 128 (170), 1985, С.403-415.
- [12] L. Caffarelli, L. Nirenberg, J. Spruck. The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the Hessian. Acta Math., 155 (1985), pp.261-301.
- [13] Ивочкина Н.М. От конусов Гординга к p-выпуклым гиперповерхностям. Современная математика. Фунд. направления, 45 (2012), РУДН, С.94-104.
- [14] N.M.Ivochkina, S.I.Prokof'eva, G.V.Yakunina. The Gårding cones in the modern theory of fully nonlinear second order differential equations. Journal of Mathematical Sciences., 2012, Vol.184, Issue 3, pp.295-315.
- [15] Ivochkina N. M., Filimonenkova N. V. On the backgrounds of the theory of m-Hessian equations. Comm. Pure Appl. Anal., 12 (2013), 4.
- [16] *Ivochkina N.M.* On classic solvability of the m-Hessian evolution equation. AMS Transl. 229 (2010), Series 2, pp.119-129.
- [17] M.C. Crandall, H.Ishii, P.L.Lions. User's guide to viscosity solutions of second order partial differential equations. Bull.Am.Math.Soc., 1992, Vol. 27, pp.1-67.

- [18] Trudinger N.S. The Dirichlet problem for the prescribed curvature equations. Arch.Rat.Mech.Anal., 1990, Vol.111, pp.153-179.
- [19] Ивочкина Н.М. Принцип Дирихле в теории уравнений типа Монжа-Ампера. Алгебра и анализ., 1992, Том. 4, 6, С.131-156.
- [20] Ishii H. On uniqueness and existance of viscosity solutions of fully nonlinear second order elliptic equtions. Comm.Pure Appl.Math., 1989, Vol.42, pp.14-45.
- [21] Jensen R. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch.Rat.Mech.Anal., 1988, Vol.101, pp.1-27.
- [22] Ивочкина Н.М. Филимоненкова Н.В. Геометрические модели в теории нелинейных дифференциальных уравнений. Препринт СПбМО, 2016, 6.
- [23] Gårding L. An inequality for hyperbolic polynomials., J.Math.Mech., 1959, Vol.8, pp.957-965.
- [24] Филимоненкова Н.В., Бакусов П.А. Гиперболические многочлены и конусы Гординга. Мат.просв., сер. 3, Вып. 20, 2016, С.143-166.
- [25] $\Pi po \kappa o \phi beea$ С.И., Якунина Г.В. О понятии эллиптичности для полностью нелинейных дифференциальных уравнений в Эл. производных второго порядка. ж. Дифференциальные 2012, 1, C.142-145. уравнения И процессы управления, http://math.spbu.ru/diffjournal/pdf/prokofyeva.pdf