Công Thức trong thông kê

1 Cách tính các đặc trương của mẫu bằng máy tính Casio

1.1 Cách tính các đặc trưng mẫu

```
Máy FX500MS và FX570MS Mở chương trình: Mode \rightarrow 2. (Với FX500MS) Mode \rightarrow Mode \rightarrow 1. (Với FX570MS)

Nhập số liệu: x_1 \rightarrow SHIPFT \rightarrow; \rightarrow m_1 \rightarrowDT \rightarrow ... x_k \rightarrow SHIPFT \rightarrow; \rightarrow m_k \rightarrowDT

Kết quả:

SHIFT \rightarrowS-Var \rightarrow1 \rightarrow = cho \overline{X} =

SHIFT \rightarrowS-Var \rightarrow2 \rightarrow = cho \sigma =

SHIFT \rightarrowS-Var \rightarrow3 \rightarrow = cho s =

Dối với máy FX570ES Mở chương trình: SHIFT \rightarrow setup \rightarrow \nabla \rightarrow 4 \rightarrow 1

Nhập số liệu: Mode \rightarrow 3 \rightarrow 1. Sau đó nhập vào bảng trên màn hình. \rightarrow AC

Kết quả:

SHIFT \rightarrow 1 \rightarrow 5(4) (Chọn Var) \rightarrow 2 \rightarrow = cho \overline{X} =

SHIFT \rightarrow 1 \rightarrow 5(4) \rightarrow 3 \rightarrow = cho \sigma =

SHIFT \rightarrow 1 \rightarrow 5(4) \rightarrow 4 \rightarrow = cho s =
```

1.2 Cách tìm r và hệ số A, B của đường hồi quy bằng máy tính Fx $500,570~\mathrm{MS}$

```
Mở chương trình: Mode \rightarrow 3 \rightarrow 1. (Fx500). Mode \rightarrow Mode \rightarrow 2 \rightarrow 1. (Fx570)

Nhập số liệu: x_1 \rightarrow, \rightarrow y_1 \rightarrow shift \rightarrow; \rightarrow m_1 \rightarrow DT

......x_k \rightarrow, \rightarrow y_k \rightarrow shift \rightarrow; \rightarrow m_k \rightarrow DT

Kết quả: shift \rightarrow 2 \rightarrow \bowtie \rightarrow 1 \rightarrow = (\text{cho A})

shift \rightarrow 2 \rightarrow \bowtie \rightarrow 2 \rightarrow = (\text{cho B})

shift \rightarrow 2 \rightarrow \bowtie \rightarrow 3 \rightarrow = (\text{cho r})

Cách tìm r và hệ số A, B của đường hồi quy bằng máy tính Fx 570 ES Mở chương trình: Shift \rightarrow Mode \rightarrow \bowtie 4 \rightarrow 1
```

Mode $\rightarrow 3 \rightarrow 2$. Nhập số liệu: Nhập x_i, y_i, m_i . Kết quả: $shift \rightarrow 1 \rightarrow 7(5) \rightarrow 1 \rightarrow = (\text{cho A})$ $shift \rightarrow 1 \rightarrow 7(5) \rightarrow 2 \rightarrow = (\text{cho B})$ $shift \rightarrow 1 \rightarrow 7(5) \rightarrow 3 \rightarrow = (\text{cho r})$

2 Các công thức ước lượng điểm

- + Ước lượng điểm cho trung bình là \overline{X} , và đó là ước lượng không chệch.
- + Uớc lượng điểm cho phương sai là s^2 (là ước lượng không chệch), hoặc σ^2 (là ước lượng chệch với đô chêch là -DX/n.)
- + Ước lượng điểm cho độ lệch tiêu chuẩn là s (là ước lượng không chệch).
- +Ước lượng điểm cho xác suất là $p^* = m/n$ (m là giá trị mẫu thuộc vào tập đang xét.)

3 Các công thức khoảng tin cậy

3.1 Khoảng tin cậy cho chung bình

a. Nếu phương sai $\mathrm{DX} = \sigma_X^2$ đã biết, X có phân bố chuẩn hoặc cỡ mẫu đủ lớn $(n \geq 30)$ khi đó khoảng tin cậy của EX là

$$\mu \in \left(\overline{X} - z(\frac{\alpha}{2})\frac{\sigma_X}{\sqrt{n}}; \overline{X} + z(\frac{\alpha}{2})\frac{\sigma_X}{\sqrt{n}}\right)$$

b. Nếu phương sai DX chưa biết, X có phân bố chuẩn khi đó khoảng tin cậy cho EX là

$$\mu \in \left(\overline{X} - t_{n-1}(\frac{\alpha}{2}) \frac{s}{\sqrt{n}}; \overline{X} + t_{n-1}(\frac{\alpha}{2}) \frac{s}{\sqrt{n}}\right)$$

c. Nếu phương sai DX chưa biết, X chưa biết có phân bố chuẩn nhưng cỡ mẫu đủ lớn $(n \geq 30)$ khi đó khoảng tin cậy của EX là

$$\mu \in \left(\overline{X} - z(\frac{\alpha}{2}) \frac{s}{\sqrt{n}}; \overline{X} + z(\frac{\alpha}{2}) \frac{s}{\sqrt{n}}\right)$$

3.2 Khoảng tin cậy cho tỉ lệ

$$p \in \left(p^* - z(\frac{\alpha}{2}) \frac{\sqrt{p^*(1 - p^*)}}{\sqrt{n}}, p^* + z(\frac{\alpha}{2}) \frac{\sqrt{p^*(1 - p^*)}}{\sqrt{n}}\right)$$

3.3 Độ chính xác của ước lượng và số quan sát cần thiết

Ước lượng khoảng dạng $(\theta^* - b(n), \theta^* + b(n))$ thì giá trị b(n) gọi là độ chính sác của ước lượng. Với độ tin cậy cho trước, giá trị ε cho trước, số quan sát n nhỏ nhất sao cho $b(n) \le \varepsilon$ thì n gọi là số quan sát cần thiết nhận được ước lượng với độ tin cậy và độ chính xác đã cho.

4 Các công thức của bài toán kiểm định

4.1 Kiểm định cho trung bình

a. Nếu phương sai DX= σ^2 đã biết, X phân bố chuẩn hoặc $n \geq 30$, đặt $z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$

$$S_1 = \{|z| \ge z(\frac{\alpha}{2})\}$$
 $S_2 = \{z \ge z(\alpha)\}$ $S_3 = \{z \le -z(\alpha)\}$

b. Nếu phương sai DX chưa biết, X có phân bố chuẩn, đặt $t=\frac{\overline{X}-\mu_0}{s/\sqrt{n}}$

$$S_1 = \{|t| \ge t_{n-1}(\frac{\alpha}{2})\}$$
 $S_2 = \{t \ge t_{n-1}(\alpha)\}$ $S_3 = \{t \le -t_{n-1}(\alpha)\}$

c. Nếu phương sai DX chưa biết, X chưa biết có phân bố chuẩn nhưng $n \geq 30$ đặt $z = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$

$$S_1 = \{|z| \ge z(\frac{\alpha}{2})\}$$
 $S_2 = \{z \ge z(\alpha)\}$ $S_3 = \{z \le -z(\alpha)\}$

4.2 Kiểm định cho tỉ lệ

$$S_1 = \{|z| \ge z(\frac{\alpha}{2})\}$$
 $S_2 = \{z \ge z(\alpha)\}$ $S_3 = \{z \le -z(\alpha)\}$

với
$$z = \frac{m/n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$$

4.3 So sánh hai trung bình

a. Nếu phương sai σ_X^2, σ_Y^2 đã biết, X,Y phân bố chuẩn hoặc $n_1, n_2 \geq 30$, đặt

$$z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}}} \text{ thì } S_1 = \{|z| \ge z(\frac{\alpha}{2})\} \quad S_2 = \{z \ge z(\alpha)\} \quad S_3 = \{z \le -z(\alpha)\}$$

b. Nếu phương sai DX, DY chưa biết, X,Y có phân bố chuẩn và biết hai phương sai bằng nhau,

$$\det t = \frac{X - Y}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{n_1 + n_2}{n_1 n_2}}},$$

$$S_1 = \{|t| \ge t_{n_1 + n_2 - 2}(\frac{\alpha}{2})\} \quad S_2 = \{t \ge t_{n_1 + n_2 - 2}(\alpha)\} \quad S_3 = \{t \le -t_{n_1 + n_2 - 2}(\alpha)\}$$

c. Nếu phương sai DX, DY chưa biết, X, Y chưa biết có phân bố chuẩn nhưng $n_1, n_2 \geq 30$,

$$z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}; S_1 = \{|z| \ge z(\frac{\alpha}{2})\} \quad S_2 = \{z \ge z(\alpha)\} \quad S_3 = \{z \le -z(\alpha)\}$$

4.4 So sánh hai tỉ lệ

$$z = \frac{p_1^* - p_2^*}{\sqrt{p^*(1 - p^*)(\frac{1}{n_1} + \frac{1}{n_2})}};$$

$$S_1 = \{|z| \ge z(\frac{\alpha}{2})\} \quad S_2 = \{z \ge z(\alpha)\} \quad S_3 = \{z \le -z(\alpha)\}$$

4.5 Tiêu chuẩn phù hợp χ^2

$$\chi^2 = \sum_{i=1}^k \frac{(m_i - np_i)^2}{np_i} = \frac{1}{n} \sum_{i=1}^k \frac{m_i^2}{p_i} - n; \quad S = \{\chi^2 \ge \chi_{k-1}^2(\alpha)\}$$

5 Các công thức tương quan hồi quy

5.1 Hệ số tương quan mẫu

Từ số liệu của mẫu chung của X, Y, tìm phân bố mẫu của từng thành phần. (Cộng tổng hàng: $hgi = \sum_{i=1}^{s} n_{ij}$, tổng cột: $cotj = \sum_{i=1}^{r} n_{ij}$)

Tính
$$\overline{X}, \overline{Y}, \sigma_X, \sigma_Y$$
 và \overline{XY} trong đó $\overline{XY} = 1/n$. $\sum_{i=1}^s \sum_{j=1}^n m_{ij} x_i y_j$ Khi đó hệ số tương quan mẫu $r = \frac{\overline{XY} - \overline{XY}}{\sigma_X \sigma_Y}$

Đường hồi quy 5.2

Đường hồi quy của y theo x: $y-\overline{Y}=r.\frac{\sigma_y}{\sigma_x}(x-\overline{X})$ với sai số bình phương trung bình là

 $\sigma_{y/x}^2=\sigma_y^2(1-r^2)$ Dường hồi quy của x theo y: $x-\overline{X}=r.\frac{\sigma_x}{\sigma_y}(y-\overline{Y})$ với sai số bình phương trung bình là $\sigma_{x/y}^2=\sigma_x^2(1-r^2)$