Análisis Matemático II Relación de ejercicios del tema I

ÓSCAR BERMÚDEZ Universidad de Granada 17 de febrero de 2015

Sucesiones de funciones

1. Estudia la convergencia uniforme en intervalos de la forma [0, a] y $[a, +\infty[$, donde a > 0, de la sucesión de funciones $\{f_n\}$ definidas para todo $x \ge 0$ por:

$$f_n(x) = \frac{2nx^2}{1 + n^2x^4}$$

2. Dado $\alpha \in \mathbb{R}$, consideremos la sucesión de funciones $\{f_n\}$, donde $f_n : [0,1] \to \mathbb{R}$ es la función definida para todo $x \in [0,1]$ por:

$$f_n(x) = n^{\alpha} x (1 - x^2)^n$$

¿Para qué valores de α hay convergencia uniforme en [0,1]?¿Para qué valores de α hay convergencia uniforme en $[\rho,1]$, donde $\rho \in]0,1[$?

3. Para cada $n\in\mathbb{N},$ sea $f_n:\left[0,\frac{\pi}{2}\right]\to\mathbb{R}$ la función dada por:

$$f_n(x) = n(\cos x)^n \sin x$$

Estudia la convergencia puntual de la sucesión de funciones $\{f_n\}$ y la convergencia uniforme en los intervalos [0, a] y $[a, \frac{\pi}{2}]$, donde $0 < a < \frac{\pi}{2}$.

4. Para cada $n \in \mathbb{N}$ sea $f_n :]0, \pi] \to \mathbb{R}$ la función dada por:

$$f_n(x) = \frac{\operatorname{sen}^2(nx)}{n \operatorname{sen} x} \quad (0 < x < \pi)$$

Estudia la convergencia puntual de la sucesión de funciones $\{f_n\}$, así como la convergencia uniforme en los intervalos del tipo [0, a], $[a, \pi]$ y [a, b], donde $0 < a < b < \pi$.

5. Estudia la convergencia puntual y uniforme de la sucesión de funciones $\{f_n\}$, donde $f_n : \mathbb{R} \to \mathbb{R}$ está definida por:

$$f_n(x) = \sqrt[n]{1 + x^{2n}} \quad (x \in \mathbb{R})$$

6. Estudia la convergencia uniforme en intervalos de la forma $]-\infty,a]$, [-a,a] y $[a,+\infty[$, donde a>0, de la sucesión de funciones $\{f_n\}$ definidas por:

$$f_n(x) = n \operatorname{sen}\left(\frac{x}{n}\right) \quad (x \in \mathbb{R})$$

7. Estudia la convergencia uniformen en \mathbb{R}_0^+ , de la sucesión de funciones $\{f_n\}$ definidas para todo $x \in \mathbb{R}_0^+$ por:

$$f_n(x) = \arctan\left(\frac{n+x}{1+nx}\right)$$

Series de funciones

1. Para cada $n \in \mathbb{N}$ sea

$$f_n(x) = \frac{x}{n^{\alpha}(1 + nx^2)} \quad (x \ge 0)$$

Prueba que $\sum f_n$ converge:

- a) puntualmente en \mathbb{R}_0^+ si $\alpha > 0$.
- $b)\,$ uniformemente en semirrecas cerradas que no contienen al 0.
- c) uniformemente en \mathbb{R}_0^+ si $\alpha > \frac{1}{2}$.
- 2. Estudia la convergencia puntual y uniforme de la serie $\sum f_n$, donde $f_n : \mathbb{R} \to \mathbb{R}$ es la función dada por:

$$f_n(x) = \frac{x}{1 + n^2 x^2}$$
 $(n = 0, 1, 2, ...)$

Sea $F(x)=\sum_{n=0}^{\infty}f_n$, la función suma de la serie. Calcula $\lim_{x\to 0^-}F(x)$ y $\lim_{x\to 0^+}F(x)$.

Para x > 0 se tiene que

$$\int_{k}^{k+1} \frac{x}{1+t^2x^2} dt \le f_k(x) = \int_{k}^{k+1} \frac{x}{1+k^2x^2} dt \le \int_{-k}^{k} \frac{x}{1+t^2x^2} dt$$

¹Sugerencia:

3. Estudia la convergencia puntual y uniforme de la serie $\sum f_n$, donde

$$f_n(x) = \frac{n^{n+1}}{n!} x^n e^{-nx} \quad (x \ge 0)$$

4. En cada uno de los siguientes ejercicios se especifica un conjunto $A \subset \mathbb{R}$ y, para cada $n \in \mathbb{N}$, se define una función $f_n : A \to \mathbb{R}$. Se pide estudiar, en cada caso, la convergencia puntual en A de la serie de funciones

$$\sum f_n$$
, y la continuidad de la función suma $F = \sum_{n=1}^{\infty} f_n$:

a)
$$A = \mathbb{R} \text{ y } f_n(x) = e^{-nx}$$
.

b)
$$A = \mathbb{R} \text{ y } f_n(x) = (-1)^n \cdot \frac{\sin(n^2 x)}{n(\log(n+1))^2}$$
.

c)
$$A = \mathbb{R} \setminus \mathbb{Z}^* \text{ y } f_n(x) = \frac{1}{n^2 - x^2}.$$

d)
$$A = \mathbb{R} \setminus \{-1, 1\}$$
 y $f_n(x) = \frac{x^{2n}}{1 - x^{2n+1}}$.

5. Estudia la derivabilidad de la función de Riemann $\xi:]1, +\infty[\to \mathbb{R},$ definida para todo x>1 por:

$$\xi(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

Justifica también que $\lim_{x\to 1} \xi(x) = +\infty$.

Series de potencias

1. Calcula el radio de convergencia de cada una de las series de potencias $\sum_{n} a_n x^n$ y estudia el comportamiento de la serie en los extremos del intervalo de convergencia, en los siguientes casos:

$$a) \ a_n = \frac{1}{\log(n+2)}$$

b)
$$a_n = (n+1)^{\log(n+1)}$$

$$c) \ a_n = e - \left(1 + \frac{1}{n}\right)^n$$

$$d) \ a_n = \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n+1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n)}$$

$$e) \ a_n = a^{\sqrt{n}} \quad (a > 0)$$

$$f) \ a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$

- 2. Calcula la función suma de las series de potencias $\sum_{n\geq 0} (n+1) \frac{x^{3n}}{2^n}$ y $\sum_{n\geq 1} \frac{n(x+3)^{3n}}{2^n}.$
- 3. Expresa la función suma de las series de potencias $\sum_{n\geq 1} nx^{n-1}$ y $\sum_{n\geq 1} \frac{n}{n+1}x^n$ por medio de funciones elementales y calcula el valor de $\sum_{n=1}^{\infty} \frac{n}{2^n(n+1)}$.
- 4. Calcula el radio de convergencia y la suma de las series:

$$\bullet \sum_{n\geq 0} \frac{n^3+n+3}{n+1} x^n$$

$$\sum_{n>0} \frac{n^3}{n!} x^n$$

$$\sum_{n \ge 1} \frac{1}{1 + 2 + \ldots + n} x^n$$

- 5. Calcula la función suma de la serie de potencias $\sum_{n\geq 1} \frac{1}{n(2n+1)} x^n$ y deduce el valor de las sumas de las series $\sum_{n\geq 1} \frac{1}{n(2n+1)}$ y $\sum_{n\geq 1} \frac{(-1)^n}{n(2n+1)}$.
- 6. Calcula la función suma de la serie de potencias $\sum_{n\geq 1} \frac{x^{2n}}{n(2n-1)}$.
- 7. Prueba que las funciones definidas por:

$$g(x) = \frac{\sin x}{x}, \quad g(0) = 1$$

•
$$f(x) = \frac{e^x - 1}{x}$$
, $f(0) = 1$

son de clase C^{∞} en su intervalo natural de definición.

8. Calcula el desarrollo en serie de potencias centrada en un punto a de la función:

$$f(x) = \frac{2x^3 - x^2 + 2x - 7}{x^4 - x^3 - 3x^2 + x + 2}$$