Lösungen für Übungsblatt 1

Henning Lehmann, Ayoub Errami

18.10.2022

1 Aufgabe 1.1: Vereinfachen von Funktionen

- $g_1(n) = n^4$
- $g_2(n) = 1$
- $g_3(n) = n^{3,5}$
- $g_4(n) = max(k_1, k_2)$

2 Aufgabe 1.2: Algorithmus analysieren

$2.1 \quad (a)$

2.1.1 Theorem

Der Algorithmus gibt eine absteigend sortierte Permutation von A zurück.

2.1.2 Beweis

Sei sort(X) eine absteigend sortierte Permutation einer Zahlenfolge X.

Sei $S_n(x)$ eine Zahlenfolge mit den n größten Elementen aus einer Zahlenfolge X.

Sei $U_n(A)$ der initiale Inhalt von A ohne die n größten Elemente.

Invariante in Zeile 1:

$$A[1..i-1] = \text{sort}(S_{i-1}(A))$$

 $A[i..n] = U_{i-1}(A)$

Induktionsanfang i=1:

$$A[1..0] = \text{leere Zahlenfolge} = \text{sort}(s_0(A))$$

$$A[1..n] = U_0(A)$$

In duktions schritt

Angenommen die Invariante gilt für ein $i \geq 1$.

Im Schleifendurchlauf wird das größte Element aus A[i..n] an die Stelle i gesetzt, wobei alle kleineren Elemente in A[i+1..n] verbleiben.

D.h. am Ende der Schleife gilt:

$$A[1..i] = sort(s_i(A))$$

$$A[i+1..n] = U_i(A)$$

 \Rightarrow die Invariante gilt auch für i+1.

Für i = n - 1:

$$A[1..n-1] = sort(s_{n-1}(A))$$

$$A[n..n] = U_{n-1}(A)$$

Eine Zahlenreihe aus n Elementen ohne die n-1 größten Elemente enthält trivialerweise lediglich das kleinste Element, welches sich hierbei in A[n] befindet. Da die übrigen Elemente sich sortiert in A[1..n-1] befinden, folgt:

Die Ausgabe des Algorithmus ist eine absteigend sortierte Permutation von A. $\hfill\Box$

2.2 (b)

Objektvergleiche in Z.2: n-i.

Objektvergleiche in Z.3: 1.

 \rightarrow Objektvergleiche pro Schleifendurchlauf: n-i+1.

Insgesamt:

$$\sum_{i=1}^{n-1} (n-i+1) = (n-1) * n - \frac{(n-1) * n}{2} + (n-1)$$

$$= n^2 - n - 0, 5n^2 - 0, 5n + n - 1$$

$$= 0, 5n^2 - 0, 5n - 1 \in \Theta(n^2)$$
(1)

2.3 (c)

Minimale Vertauschungen:

Bereits absteigend sortierte Zahlenfolge (z.B. [5, 4, 3, 2, 1]).

 $\rightarrow 0$ Vertauschungen, da sich das Maximum aus A[i..n]immer an der Stelle i befindet und daher in Z.3 nie $j\neq i.$

Maximale Vertauschungen:

Zahlenfolge, bei welcher das kleinste Element an erster Stelle steht, der Rest jedoch absteigend sortiert ist (z.B. [1, 5, 4, 3, 2]).

 $\rightarrow n-1$ Vertauschungen, da das kleinste Element bei jedem Schleifendurchlauf einen Platz nach rechts getauscht wird, bis es nach n-1 Vertauschungen an seinem korrekt einsortierten Platz ankommt.

3 1.3: O-Notation

	s(n)	$log_2(n)$	2n	3^n	$\frac{log_2(n)}{sqrt(n)}$	0,05	ne^n
s(n)	Θ	-	О	О	ω	Ω	0
$log_2(n)$		Θ	0	О	ω	ω	О
2n			Θ	О	ω	ω	О
3^n				Θ	ω	ω	О
$\frac{log_2(n)}{sqrt(n)}$					Θ	О	О
0,05						Θ	О
ne^n							Θ

Um die restlichen Felder auszufüllen, orientiere man sich am gegenüberliegenden Feld der Diagonale:

$$f = o(g) \iff g = \omega(f)$$

$$f = O(g) \iff g = \Omega(f)$$

$$f = \Theta(g) \iff g = \Theta(f)$$

Wenn keine Beziehung zwischen f und g, dann auch keine Beziehung zwischen g und f.