Aerobatics(特技飞行) Control of Flying Creatures via Self-Regulated Learning

JUNGDAM WON, Seoul National University, South Korea JUNGNAM PARK, Seoul National University, South Korea JEHEE LEE * , Seoul National University, South Korea

Target:
Designing physics-based controller for flying creature to track trajectory

Basic Ideas

- Aerodynamics
- Reinforcement learning
- Discretization
- Neural network
- "Changeable rewards"

Trajectory: $C(\sigma) = (R(\sigma), p(\sigma), h(\sigma))$

 $R(\sigma) \in SO(3)$ and $p(\sigma) \in R^3$

threshold: $d(R, p, \sigma^*) < h(\sigma^*)$

Trajectory:
$$C(\sigma) = (R(\sigma), p(\sigma), h(\sigma))$$

$$R(\sigma) \in SO(3) \text{ and } p(\sigma) \in R^3$$

$$d(R, p, \sigma^*) < h(\sigma^*)$$

$$d(R, p, \sigma) = \|log(R^{-1}R(\sigma))\|_F^2 + w_p \|p - p(\sigma)\|^2$$

$$\tilde{C}(\sigma + \Delta \sigma)$$

$$\tilde{C}(\sigma)$$

Dragon with bird-like articulated(用关节连接的) wings

Dynamics state:

$$s_d = (q, \dot{q})$$

$$q = (q_1, \cdots, q_D)$$

$$\dot{q} = (\dot{q}_1, \cdots, \dot{q}_D)$$

I think this should satisfy some constrains.

Dragon with bird-like articulated(用关节连接的) wings

Sensory state:

$$s_s = (C(\sigma), C(\sigma + \epsilon), \cdots, C(\sigma + w\epsilon))$$

Dragon with bird-like articulated(用关节连接的) wings

Sensory state:

$$s_s = (C(\sigma), C(\sigma + \epsilon), \cdots, C(\sigma + w\epsilon))$$

Controller: Reinforcement learning

Algorithm 1 DRL Algorithm

```
Q|_{\theta_{\Omega}}: state-action value network
     \pi|_{\theta_{\pi}}: policy network
     B: experience replay memory
 1: repeat
          s_0 \leftarrow \text{random initial state}
 2:
          for i = 1, \dots, T do
 3:
                a_i \leftarrow \pi(s_{i-1})
 4:
               if unif(0,1) \le \rho then
 5:
                     a_i \leftarrow a_i + \mathcal{N}(\mathbf{0}, \Sigma)
          s_i \leftarrow \text{StepForward}(s_{i-1}, a_i)
         r_i \leftarrow \mathcal{R}(s_{i-1}, a_i, s_i)
               e_i \leftarrow (s_{i-1}, a_i, r_i, s_i)
               Store e_i in B
10:
         X_O, Y_O \leftarrow \emptyset
11:
         X_{\pi}, Y_{\pi} \leftarrow \emptyset
12:
          for i = 1, \dots, N do
13:
                Sample an experience tuple e = (s, a, r, s') from B
14:
        y \leftarrow r + \gamma Q(s', \pi(s'|\theta_{\pi})|\theta_{O})
15:
        X_O \leftarrow X_O \cup \{(s, a)\}
16:
            Y_O \leftarrow Y_O \cup \{y\}
17:
               if y - Q(s, \pi(s|\theta_{\pi})|\theta_{O}) > 0 then
18:
                     X_{\pi} \leftarrow X_{\pi} \cup \{s\}
19:
                     Y_{\pi} \leftarrow Y_{\pi} \cup \{a\}
          Update Q by (X_O, Y_O)
21:
          Update \pi by (X_{\pi}, Y_{\pi})
22:
23: until no improvement on the policy
```

Algorithm 2 Step forward with self-regulation

```
s: the current state
```

$$a = (\hat{a}, \tilde{a})$$
: the action determined by the current policy

$$\tilde{a} = (\Delta \sigma, \Delta R, \Delta p, \Delta h)$$
: a self-regulation part of the action

- 1: **procedure** StepForwardWithSRL(s, a)
- 2: $\sigma \leftarrow \sigma + \Delta \sigma$
- 3: $\tilde{R} \leftarrow R(\sigma)\Delta R$
- 4: $\tilde{p} \leftarrow p(\sigma) + R(\sigma)\Delta p$
- 5: $\tilde{h} \leftarrow h(\sigma) + \Delta h$
- 6: $s' \leftarrow \text{Dynamic simulation with } \hat{a}$
- 7: $r \leftarrow \text{Compute } \mathcal{R}(s, a, s') \text{ with progress } \sigma \text{ and target } (\tilde{R}, \tilde{p}, \tilde{d})$

$$a = (\hat{a}, \tilde{a}) \ \hat{a} = (\hat{q}, \tau)$$

 $\tilde{a} = (\Delta \sigma, \Delta R, \Delta p, \Delta h)$

$$\begin{split} \tilde{R}(\tilde{\sigma}) &= R(\tilde{\sigma})\Delta R, \\ \tilde{p}(\tilde{\sigma}) &= p(\tilde{\sigma}) + R(\tilde{\sigma})\Delta p, \\ \tilde{h}(\tilde{\sigma}) &= h(\tilde{\sigma}) + \Delta h, \end{split}$$

Table 1. Simulation and learning parameters

Simulation time step	0.001		
Control time step	≈ 0.2		
Policy learning rate (π)	0.0001		
Value learning rate (Q)	0.001		
Discount factor (γ)	0.95		
Exploration probability (ρ)	0.5		
Exploration noise (Σ)	0.05I		
Maximum time horizon (sec)	50		
Action range (normalized)	±10		
State range (normalized)	±10		
w_p	0.005		
w_h	0.001		
\bar{h}	20.0		
d_{max}	3.0		
W	0.02		

Algorithm	X-turn	Y-turn	XY-turn	Double X-turn	Ribbon	Z-turn	Zigzag	Infinite X-turn	Combination
Default	2304.2	1815.6	1644.9	14201	8905.4	2180.2	1046.2	36182	48869
	(12137)	(10401)	(13428)	(79039)	(42555)	(11043)	(4348.9)	(107998)	(250762)
Classat	28.193*	162.10 [*]	274.48*	35.891	146.46*	152.68	175.46*	942.81	9050.0
Closest	(132.4)	(461.81)	(1266.9)	(145.72)	(739.98)	(1846.5)	(609.79)	36182 (107998) 942.81 (5653.4) 136.82*	(54705)
SRL	30.235*	115.89*	114.77	39.18*	131.47	67.479*	137.70°	136.82	264.82*
	(177.93)	(516.43)	(531.96)	(232.25)	(484.56)	(228.965)	(500.29)	(1456.8)	(988.96)

Basic Ideas

- Aerodynamics for physics simulation
- Reinforcement learning for controller policy
- Discretization, Neural network for continuous, high dimesion value function & policy function
- "Changeable rewards" for unrealizable trajectory