Universidade Lusófona de Humanidades e Tecnologias

Faculdade de Engenharia e Ciências Naturais

Cálculo I

Licenciaturas em

Ciências do Mar, Engenharia do Ambiente, Engenharia Biotecnológica, Engenharia Electrotécnica, Engenharia e Gestão Industrial e Química 1º Semestre 2008/2009

Folhas de apoio

VALOR ABSOLUTO DE UM NÚMERO REAL

Valor absoluto ou módulo

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}, \text{ ou seja, } \begin{aligned} |x| = x & \text{se } x \ge 0 \\ |x| = -x & \text{se } x < 0 \end{cases}.$$

Propriedades Sejam $x, y \in \mathbb{R}$

Gerais	Operações	Condições
$\bullet x \ge 0$	• $ x + y \le x + y $ (Designaldade Triangular)	$\bullet x = 0 \Leftrightarrow x = 0$
$\bullet - x \le x \le x $	$\bullet \mathbf{x} \pm \mathbf{y} \ge \mathbf{x} - \mathbf{y} $	$\bullet x = a \Leftrightarrow x = a \lor x = -a, \ a > 0$
$\bullet x = -x $	$\bullet x-y \le x + y $	$\bullet x < a \iff x < a \land x > -a, \ a > 0$
	$\bullet \mathbf{x} \times \mathbf{y} = \mathbf{x} \times \mathbf{y} $	$\bullet x > a \iff x > a \lor x < -a$
	$\bullet \left \frac{\mathbf{x}}{\mathbf{y}} \right = \frac{ \mathbf{x} }{ \mathbf{y} }, \ \mathbf{y} \neq 0$	$\bullet x = y \Leftrightarrow x = y \lor x = -y$
	• n par : $ x^n = x^n$	$\bullet x + y = 0 \Leftrightarrow x = 0 \land y = 0$
	$n \text{ impar } : \mathbf{x} - \mathbf{x}$ $n \text{ impar } : \mathbf{x} ^n = \mathbf{x} ^n$	$\bullet x < y \Leftrightarrow x^2 < y^2$
		$\bullet x < y \land y \neq 0 \Leftrightarrow \frac{ x }{ y } < 1$

Casos particulares

Seja $x \in \mathbb{R}$

- $\bullet |x| < 0 \Leftrightarrow x \in \emptyset$
- $\bullet |x| \le 0 \Leftrightarrow x = 0 \Leftrightarrow x \in \{0\}$
- $|x| \ge 0 \Leftrightarrow x \in \mathbb{R}$
- $\bullet |x| > 0 \Leftrightarrow x \in \mathbb{R} \land x \neq 0 \Leftrightarrow x \in \mathbb{R} \setminus \{0\}$

MAJORANTE, MINORANTE, SUPREMO, ÍNFIMO, MÁXIMO DE UM CONJUNTO. CONJUNTO LIMITADO

Seja $A \neq \emptyset$ e $A \subseteq \mathbb{R}$.

- a é *majorante* de A $\Leftrightarrow \forall x \in A, a \ge x$
- b é <u>supremo</u> de A ⇔ b é o menor dos majorantes de A
- b é $\underline{máximo}$ de A \Leftrightarrow b = \sup (A) e b \in A
- c é *minorante* de A $\Leftrightarrow \forall x \in A, c \le x$
- d é *ínfimo* de A ⇔ d é o maior dos minorantes de A
- $d \notin \underline{minimo} de A \Leftrightarrow d = \inf (A) e d \in A$
- A é *limitado* sse é majorado e minorado, isto é, limitado superiormente e inferiormente.

SUCESSÕES DE NÚMEROS REAIS

> Sucessão de números reais

 $u: \mathbb{N} \to \mathbb{R}$ n-Ordem $n \mapsto u_n$ $u_n-Termo$ geral

> Sucessão crescente, sucessão decrescente e sucessão monótona

- $\bullet \ \, \left(u_{\,n}\right) \ \, \acute{e} \ \, \underbrace{\mathit{crescente}} \ \, \left\langle \frac{\mathit{em \ sentido \ estrito}}{\mathit{em \ sentido \ lato}} \forall n \in \mathbb{N}, \ u_{\,n+1} u_{\,n} > 0 \Leftrightarrow \forall n \in \mathbb{N}, \ u_{\,n+1} > u_{\,n} \right.$
- $\bullet \ \, \left(u_{\,n}\right) \,\, \acute{e} \underline{\textit{decrescente}} \,\, \left\langle \underline{\textit{em sentido estrito}} \forall n \in \mathbb{N}, \, u_{_{n+1}} u_{_{n}} < 0 \Leftrightarrow \forall n \in \mathbb{N}, \, u_{_{n+1}} < u_{_{n}} \right. \\ \left. \underline{\textit{em sentido lato}} \forall n \in \mathbb{N}, \, u_{_{n+1}} u_{_{n}} \leq 0 \Leftrightarrow \forall n \in \mathbb{N}, \, u_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{em sentido lato}} \forall n \in \mathbb{N}, \, u_{_{n+1}} u_{_{n}} \leq 0 \Leftrightarrow \forall n \in \mathbb{N}, \, u_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{em sentido lato}} \forall n \in \mathbb{N}, \, u_{_{n+1}} u_{_{n}} \leq 0 \Leftrightarrow \forall n \in \mathbb{N}, \, u_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{em sentido lato}} \forall n \in \mathbb{N}, \, u_{_{n+1}} u_{_{n}} \leq 0 \Leftrightarrow \forall n \in \mathbb{N}, \, u_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{em sentido lato}} \forall n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \forall n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{em sentido lato}} \forall n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \forall n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{u}}_{_{n}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{u}}_{_{n}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{u}}_{_{n}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{u}}_{_{n}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n+1}} \leq u_{_{n}} \right. \\ \left. \underline{\textit{u}}_{_{n}} \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{n}} \leq 0 \Leftrightarrow \exists n \in \mathbb{N}, \, \underline{\textit{u}}_{_{$
- (u_n) é monótona $\Leftrightarrow (u_n)$ é crescente ou decrescente.

Propriedades

- Se (u_n) é crescente então $\forall n \in \mathbb{N}, u_n \ge u_1$, ou seja, u_1 é o mínimo do conjunto dos termos de (u_n) .
- Se (u_n) é decrescente então $\forall n \in \mathbb{N}, \ u_n \leq u_1$, ou seja, u_1 é o máximo do conjunto dos termos de (u_n) .

> Sucessão limitada

 $\left(u_{\,n}\right)\, \acute{e}\, \underline{\mathit{limitada}} \, \Longleftrightarrow \, \exists a,b \in \mathbb{R} : \forall n \in \mathbb{N}, \; a \leq u_{_{n}} \leq b$

ou equivalentemente

 $\left(u_{n}\right) \notin \underline{limitada} \iff \exists L \in \mathbb{R}^{+} : \forall n \in \mathbb{N}, \left|u_{n}\right| \leq L$

> Sucessão convergente

 (u_n) é <u>convergente</u> para $a \in \mathbb{R}$ se:

$$\forall \varepsilon > 0 \ \exists p \in \mathbb{N} \ \forall n \in \mathbb{N} : n > p \Longrightarrow |u_n - a| < \varepsilon$$

Neste caso escrevemos $\lim u_n = a$.

Propriedades

- O limite de uma sucessão quando existe, é único.
- Toda a sucessão constante é convergente e tem por limite a constante dos seus termos.
- Se uma sucessão é convergente para a, então qualquer sua subsucessão é também convergente para a.
- Se uma sucessão é monótona e limitada é convergente.

Casos particulares:

- Se for crescente e majorada é convergente.
- Se for decrescente e minorada é convergente.
- Se (u_n) é convergente, então (u_n) é limitada.
- Se a sucessão convergente (u_n) é, a partir de certa ordem, $u_n \ge 0$, então $\lim u_n \ge 0$.
- Se (u_n) e (v_n) são sucessões convergentes, e, a partir de certa ordem, se tem $u_n \ge v_n$, então, $\lim u_n \ge \lim v_n$.

> Sucessão divergente

(u_n) é <u>divergente</u> se:

$$\forall a \in \mathbb{R} \exists \varepsilon > 0 \ \forall p \in \mathbb{N} \ \exists n \in \mathbb{N} : n > p \Longrightarrow |u_n - a| \ge \varepsilon$$

Infinitamente grande positivo

• (u_n) diverge para $+\infty$ se:

$$\forall L > 0 \exists p \in \mathbb{N} \ \forall n \in \mathbb{N} : n > p \Longrightarrow u_n > L$$
.

Neste caso escrevemos $\lim u_n = +\infty$.

Infinitamente grande negativo

• (u_n) diverge para $-\infty$ se:

$$\forall L > 0 \exists p \in \mathbb{N} \ \forall n \in \mathbb{N} : n > p \Longrightarrow -u_n > L.$$

Neste caso escrevemos $\lim u_n = -\infty \Leftrightarrow \lim (-u_n) = +\infty$.

Infinitamente grande

• (u_n) é um infinitamente grande se:

$$\forall L > 0 \,\exists p \in \mathbb{N} \, \forall n \in \mathbb{N} : n > p \Longrightarrow |u_n| > L.$$

Neste caso escrevemos $\lim u_n = \infty \Leftrightarrow \lim |u_n| = +\infty$.

> Classificação da sucessão quanto à existência e natureza do limite

> Propriedades dos limites

Sejam (u_n) e (v_n) duas sucessões convergentes, respectivamente, para a e b.

$$\lim (u_n + v_n) = \lim u_n + \lim v_n = a + b$$

$$\lim (u_n - v_n) = \lim u_n - \lim v_n = a - b$$

$$-\lim (u_n \times v_n) = \lim u_n \times \lim v_n = a \times b$$

$$-\lim (\alpha \times u_n) = \alpha \times \lim u_n = \alpha \times a, \ \alpha \in \mathbb{R}$$

$$\lim \left(u_{n}\right)^{p} = \left(\lim u_{n}\right)^{p} = \left(a\right)^{p}, p \in \mathbb{N}$$

$$\lim \frac{\mathbf{u}_{n}}{\mathbf{v}_{n}} = \frac{\lim \mathbf{u}_{n}}{\lim \mathbf{v}_{n}} = \frac{\mathbf{a}}{\mathbf{b}}, \lim \mathbf{v}_{n} \neq 0 \text{ e } \mathbf{v}_{n} \neq 0, \forall n \in \mathbb{N}$$

$$--\lim \sqrt[p]{u_n} = \sqrt[p]{\lim u_n} = \sqrt[p]{a}, \ \forall p \in \mathbb{N} \ \ (\text{se p for par, terá de ser} \ u_n \geq 0, \ \forall n \in \mathbb{N} \)$$

$$\lim |u_n| = |\lim u_n| = |a|$$

$$- \lim \left(a^{u_n}\right) = a^{\lim u_n}, \ a \in \mathbb{R}^+ \setminus \{1\}$$

$$-\lim \left(u_n^{v_n}\right) = \left(\lim u_n\right)^{\lim v_n}, u_n > 0, \forall n \in \mathbb{N}$$

$$\lim \log_a (u_n) = \log_a (\lim u_n), u_n > 0, \forall n \in \mathbb{N}$$

— Se
$$\lim \left| u_n \right| = +\infty$$
, então $\lim \left(1 + \frac{k}{u_n} \right)^{u_n} = e^k$, $\forall k \in \mathbb{R}$

— Se
$$\lim u_n = a$$
, então $\lim \frac{u_1 + u_2 + ... + u_n}{n} = a$

— Se
$$u_n > 0$$
, $\forall n \in \mathbb{N}$ e $\lim u_n = a$, então $\lim \sqrt[n]{u_1 \times u_2 \times ... \times u_n} = a$

— Se
$$\lim (u_n - u_{n-1}) = a$$
, então $\lim \frac{u_n}{n} = a$

— Se
$$(v_n)$$
 é estritamente crescente e não limitada, e $\lim \left(\frac{u_{n+1}-u_n}{v_{n+1}-v_n}\right) = a$, então $\lim \frac{u_n}{v_n} = a$

— Se
$$u_n > 0$$
, $\forall n \in \mathbb{N}$ e $\lim \frac{u_{n+1}}{u_n} = a$, então $\lim \sqrt[n]{u_n} = a$

— Se
$$v_n \le u_n$$
 para $n > p$ $(p \in \mathbb{N})$ e $\lim v_n = +\infty$, então $\lim u_n = +\infty$

— Se
$$u_n \le v_n$$
 para $n > p (p \in \mathbb{N}) e \lim v_n = -\infty$, então $\lim u_n = -\infty$

Teorema

O produto de um infinitésimo por uma sucessão limitada é um infinitésimo.

Simbolicamente:

$$\left. \begin{array}{l} \lim u_{_{n}} = 0 \\ v_{_{n}} \text{ \'e uma sucess\~ao limitada} \end{array} \right\} \Longrightarrow \lim \left(u_{_{n}} \times v_{_{n}} \right) = 0$$

<u>Teorema das sucessões enquadradas</u>

Se (u_n) e (v_n) são sucessões convergentes para o mesmo limite a e se, a partir de certa ordem, a sucessão (w_n) é tal que $u_n \le w_n \le v_n$, então, $\lim w_n = a$.

Simbolicamente:

$$u_{n} \le w_{n} \le v_{n}, \text{ para } n \ge p(p \in \mathbb{N})$$

$$\lim u_{n} = a \text{ e } \lim v_{n} = a$$

Elaborado por Maria Cristina Jorge e João Prata

> Limites notáveis

No cálculo de alguns limites utiliza-se muitas vezes os conhecimentos seguintes:

$$\lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = 1 \qquad \bullet \lim_{x \to -\frac{\beta}{2}} \frac{\operatorname{sen}(\alpha x + \beta)}{\alpha x + \beta} = 1, \ \alpha, \beta \in \mathbb{R}, \alpha \neq 0 \qquad \bullet \lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = 1 \qquad \bullet \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

$$\bullet \lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

$$\bullet \lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1 \qquad \qquad \bullet \lim_{x \to +\infty} \frac{e^{x}}{x^{p}} = +\infty, \ p \in \mathbb{R}$$

$$\bullet \lim_{x \to +\infty} \frac{\log(x)}{x^p} = 0, \ p \in \mathbb{R} \qquad \bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1 \qquad \bullet \lim_{x \to +\infty} \frac{\ln(x)}{x+1} = 0$$

$$\bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\bullet \lim_{x \to +\infty} \frac{\ln(x)}{x+1} = 0$$

> Operações com limites

$$\lim u_n = a \in \mathbb{R}$$

$$\lim v_n = b \in \mathbb{R}$$

$$\lim (u_n + v_n) = a + b$$

$$\lim (u_n \times v_n) = a \times b$$

$$\lim \frac{u_n}{v_n} = \frac{a}{b}, \ v_n \neq 0 \ e \ b \neq 0$$

$$\lim u_n = a \in \mathbb{R} \setminus \{0\}$$

$$\lim v_n = +\infty$$

$$\lim \frac{u_n}{v_n}$$

$$\lim (u_n + v_n) = a + (+\infty) = +\infty$$

$$\lim (u_n \times v_n) = a \times (+\infty) = \begin{pmatrix} +\infty & \text{se } a > 0 \\ -\infty & \text{se } a < 0 \end{pmatrix}$$

$$\lim \frac{u_n}{v_n} = \frac{a}{+\infty} = 0$$

$$\lim u_{n} = a \in \mathbb{R} \setminus \{0\}$$

$$\lim u_{n} = -\infty$$

$$\lim_{n \to +\infty} u_n = +\infty$$

$$\lim_{n \to +\infty} v_n = +\infty$$

$$\lim_{n \to +\infty} \frac{\lim_{n \to +\infty} (u_n + v_n) = (+\infty) + (+\infty) = +\infty}{\lim_{n \to +\infty} (u_n \times v_n) = (+\infty) \times (+\infty) = (+\infty)}$$

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{+\infty}{+\infty} \quad \text{(Indeterminação)}$$

	T
	$\lim (u_n + v_n) = (-\infty) + (-\infty) = -\infty$
$\lim u_n = -\infty$	$\lim (u_n \times v_n) = (-\infty) \times (-\infty) = +\infty$
$\lim v_n = -\infty$	$\lim \frac{u_n}{v_n} = \frac{-\infty}{-\infty} (Indeterminação)$
lim v — Las	$\lim (u_n + v_n) = (+\infty) + (-\infty) = \infty - \infty (Indeterminação)$
$\lim u_n = +\infty$ $\lim v_n = -\infty$	$\lim (\mathbf{u}_{n} \times \mathbf{v}_{n}) = (+\infty) \times (-\infty) = -\infty$
mm v _n = 33	$\lim \frac{u_n}{v_n} = \frac{+\infty}{-\infty} (Indeterminação)$
	$\lim \left(\mathbf{u}_{\mathbf{n}} + \mathbf{v}_{\mathbf{n}}\right) = 0 + \left(+\infty\right) = +\infty$
	$\lim (u_n \times v_n) = 0 \times (+\infty)$ (Indeterminação)
$\lim_{n} u_{n} = 0$ $\lim_{n} v_{n} = +\infty$	$\lim \frac{u_n}{v_n} = \frac{0}{+\infty} = 0$
mi v _n	$v_n + \infty / +\infty$ se $\lim u_n = 0^+$
	$\lim \frac{\mathbf{v}_{\mathbf{n}}}{\mathbf{u}_{\mathbf{n}}} = \frac{+\infty}{0} = \begin{cases} +\infty & \text{se } \lim \mathbf{u}_{\mathbf{n}} = 0^{+} \\ -\infty & \text{se } \lim \mathbf{u}_{\mathbf{n}} = 0^{-} \end{cases}$
	$\lim \left(u_n + v_n \right) = 0 + \left(-\infty \right) = -\infty$
	$\lim (\mathbf{u}_{n} \times \mathbf{v}_{n}) = 0 \times (-\infty)$ (Indeterminação)
$\lim u_n = 0$	$\lim \frac{u_n}{v_n} = \frac{0}{-\infty} = 0$
$\lim v_n = -\infty$	
	$\lim \frac{\mathbf{v}_{\mathbf{n}}}{\mathbf{u}_{\mathbf{n}}} = \frac{-\infty}{0} = \begin{cases} -\infty & \text{se } \lim \mathbf{u}_{\mathbf{n}} = 0^{+} \\ +\infty & \text{se } \lim \mathbf{u}_{\mathbf{n}} = 0^{-} \end{cases}$
	$u_n = 0 +\infty \text{ se } \lim u_n = 0^-$
lim	L P
$\lim u_n = +\infty$	$\lim_{n \to \infty} u_n^p = +\infty$ $p \in \mathbb{N}$
	l berr
$\lim u_n = -\infty$	lim v P _ ∫+∞ se pepar
	$\lim u_n^p = \begin{cases} +\infty & \text{se pe par} \\ -\infty & \text{se pe impar} \end{cases}$
$\lim u_n = +\infty$	lim Plu = loo co y > 0 no coco do n con non
mm u _n = 155	$\lim \sqrt[p]{u_n} = +\infty$ se $u_n \ge 0$, no caso de p ser par
$\lim u_n = -\infty$	$\lim_{n \to \infty} \sqrt[n]{u_n} = -\infty$
	p é um n.º natural ímpar
$\lim u_n = 0$	u 0
$\lim_{n \to 0} u_n = 0$ $\lim_{n \to 0} v_n = 0$	$\lim \frac{u_n}{v_n} = \frac{0}{0} \text{(Indeterminação)}$
$m_{n} = 0$	'n

> Como levantar indeterminações

Indetermi nações	Casos	Como levantar a indeterminação	Exemplo
	O numerador e o denominador são polinómios em n.	Dividem-se ambos os termos da fracção pela maior potência em n.	$\lim_{n \to +\infty} \frac{2n^3 + 3n}{5n^2 + 1} = \lim_{n \to +\infty} \frac{\frac{2n^3}{n^3} + \frac{3n}{n^3}}{\frac{5n^2}{n^3} + \frac{1}{n^3}}$
	Um só dos termos da fracção é uma expressão irracional (√) em n.	Dividem-se ambos os termos da fracção pela maior potência de n situada fora do radical	$\lim_{n \to +\infty} \frac{\sqrt{4n^2 + 1}}{n + 3} = \lim_{n \to +\infty} \frac{\frac{\sqrt{4n^2 + 1}}{n}}{\frac{n}{n}}$
<u>~</u> 8	Ambos os termos da fracção são expressões irracionais (√) em n.	Dividem-se ambos os termos da fracção pela maior potência em n.	$\lim_{n \to +\infty} \frac{\sqrt{n} + \sqrt[3]{n}}{\sqrt[3]{n^2} + 1} = \lim_{n \to +\infty} \frac{\frac{\sqrt{n}}{\sqrt[3]{n^2}} + \frac{\sqrt[3]{n}}{\sqrt[3]{n^2}}}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}}$ Re pare que : $\sqrt{n} = n^{\frac{1}{2}}$, $\sqrt[3]{n} = n^{\frac{1}{3}}$, $\sqrt[3]{n^2} = n^{\frac{2}{3}}$ $\operatorname{sendo} \frac{2}{3} > \frac{1}{2} > \frac{1}{3}$
	Ambos os termos da fracção apresentam potência de expoente variável	Divide-se ambos os termos da fracção pela potência de expoente variável cuja base tem maior valor absoluto	$\lim_{n \to +\infty} \frac{1+3^n}{1+2^n} = \lim_{n \to +\infty} \frac{\frac{1}{3^n} + \frac{3^n}{3^n}}{\frac{1}{3^n} + \frac{2^n}{3^n}}$
0×∞	A sucessão é um produto entre uma: -Sucessão racional em que o grau do numerador é inferior ao grau do denominador e -Sucessão polinomial em n	Multiplicam-se as duas sucessões.	$\lim_{n \to +\infty} \left[\frac{3}{n^2 + 1} (2n + 3) \right] = \lim_{n \to +\infty} \frac{6n + 9}{n^2 + 1}$
$\frac{0}{0}$	A sucessão é uma divisão entre duas sucessões racionais, em que o grau do numerador de cada uma delas é inferior ao grau do denominador	Dividem-se as duas sucessões.	$\lim_{n \to +\infty} \left(\frac{\frac{5}{2n+1}}{\frac{3}{n^2+1}} \right) = \lim_{n \to +\infty} \left(\frac{5}{2n+1} \times \frac{n^2+1}{3} \right)$
	A sucessão é um polinómio em n	Põe-se em evidência a maior potência de n	$\lim_{n \to +\infty} (n^2 - n) = \lim_{n \to +\infty} \left[n^2 \left(1 - \frac{1}{n} \right) \right]$
$\infty - \infty$	A sucessão é uma diferença entre: -radical e uma expressão em n, -uma diferença entre dois radicais	Multiplica-se e divide-se a sucessão pelo conjugado	$\lim_{n \to +\infty} \sqrt{n+5} - n = \lim_{n \to +\infty} \frac{\left(\sqrt{n+5} - n\right)\left(\sqrt{n+5} + n\right)}{\sqrt{n+5} + n}$ $\lim_{n \to +\infty} \sqrt{n+5} - \sqrt{n} = \lim_{n \to +\infty} \frac{\left(\sqrt{n+5} - \sqrt{n}\right)\left(\sqrt{n+5} + \sqrt{n}\right)}{\sqrt{n+5} + \sqrt{n}}$

Elaborado por Maria Cristina Jorge e João Prata

> Progressões

	Definição	Termo geral	Soma dos n primeiros termos
Aritmética	$u_{n+1} - u_n = r, \ \forall n \in \mathbb{N}$	$u_n = u_1 + (n-1) \times r, \forall n \in \mathbb{N}$	$S_n = n \times \frac{u_1 + u_n}{2}$
Geométrica	$\frac{\mathbf{u}_{n+1}}{\mathbf{u}_{n}} = \mathbf{r}, \ \forall n \in \mathbb{N}$	$u_n = u_1 \times r^{n-1}, \forall n \in \mathbb{N}$	$r \neq 1 \Rightarrow S_n = u_1 \times \frac{1 - r^n}{1 - r}$ $r = 1 \Rightarrow S_n = \underbrace{u_1 + u_1 + \dots + u_1}_{\text{in parcelas}} = n \times u_1$

Estudo da sucessão: (aⁿ), a∈ ℝ

VALORES DE a	MONOTONIA	LIMITE	CLASSIFICAÇÃO
a > 1	Estritamente crescente	+∞	Propriamente divergente
a = 1	Constante	1	Convergente
0 < a < 1	Estritamente decrescente	0	Convergente
a = 0	Constante	0	Convergente
-1 < a < 0	Não monótona	0	Convergente
a = -1	Não monótona	Não existe	Divergente oscilante
a < -1	Não monótona	∞	Divergente oscilante

FUNÇÕES REAIS DE VARIÁVEL REAL

Sejam $A\subset \mathbb{R}$ e $B=\mathbb{R}$. Seja a função $f{:}A\to B$ $x\mapsto y{=}f\left(x\right)$

> Caracterização de uma função

Uma função fica *caracterizada ou definida* quando se indica:

- o domínio
- o contradomínio
- a lei que permite associar a cada elemento do domínio (A) um único valor do conjunto de chegada (B).

> Domínio, contradomínio, zeros, classificação, simetrias, monotonia e período

	O <u>domínio</u> da função é o conjunto dos valores da variável independente (x)	Geometricamente: O domínio de uma função pode ser identificado	
Domínio	para os quais a	pela projecção ortogonal do gráfico da função	
	expressão y=f (x) tem significado	sobre o eixo das abcissas	
Contradomínio	$D_{f}' = \{ y \in \mathbb{R} : y = f(x), x \in D_{f} \}$	Geometricamente: O contradomínio de uma função pode ser identificado pela projecção ortogonal do gráfico de f sobre o eixo das ordenadas	
Zeros	$a \in D_f \notin \underline{\text{zero da função } f} \Leftrightarrow f(a) = 0$	Geometricamente: O gráfico da função intersecta o eixo das abcissas	
20103		nos pontos de coordenadas (a,0)	
	• $f \notin \underline{sobrejectiva} \Leftrightarrow D'_f = B \Leftrightarrow \forall y \in D'_f$	$B \exists x \in A : y = f(x)$	
Classificação	• $f \notin \underline{injectiva} \iff \forall x_1, x_2 \in D_f, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$		
	$\Leftrightarrow \forall x_1, x_2 \in D_f, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$		
	• f é <i>bijectiva</i> se é simultaneamente injectiva e sobrejectiva.		
	f é uma <u>função par</u>	Geometricamente:	
G	$\Leftrightarrow \forall x \in D_f, f(-x) = f(x)$	O gráfico da função é simétrico em relação ao eixo das ordenadas	
Simetrias	f é uma <i>função ímpar</i>	Geometricamente:	
	$\Leftrightarrow \forall x \in D_f, f(-x) = -f(x)$	O gráfico da função é simétrico em relação à origem do referencial	
	/em sentido estrito $-\forall x_1, x_2 \in I: x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$		
	• f é <u>crescente</u> em $I \subset D_f$ $\left\langle {em \ sentido \ lato} - \forall x_1, x_2 \in I : x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2) \right\rangle$		
Monotonia	/em sentido estrito $-\forall x_1, x_2 \in I: x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$		
	• $f \in \underline{decrescente} \ em \ I \subset D_f$ $\underbrace{em \ sentido \ lato}_{em \ sentido \ lato} - \forall x_1, x_2 \in I : x_1 > x_2 \Rightarrow f(x_1) \leq f(x_2)$		
Período	f tem período $p \Leftrightarrow f(x+p) = f(x), \forall x \in D_f$		

FUNÇÃO			DOMÍNIO	
		Inteira y = A(x)		$\mathbb R$
	Racional	Fraccionária $y = \frac{A(x)}{B(x)}$		$\left\{ \mathbf{x} \in \mathbb{R} : \mathbf{B}(\mathbf{x}) \neq 0 \right\}$
Função Algébrica			De índice par $y = \sqrt[n]{A(x)}$	$\left\{ x \in \mathbb{R} : A(x) \ge 0 \right\}$
	Irracional		Radicando inteiro $y = \sqrt[n]{A(x)}$	R
		De índice ímpar	Radicando fraccionário $y = \sqrt[n]{\frac{A(x)}{B(x)}}$	$\left\{x \in \mathbb{R} : B(x) \neq 0\right\}$
	Função exponencial		oonencial	Sendo o expoente uma função algébrica o domínio determina- se aplicando ao expoente as regras das funções algébricas.
	Função logarítmica $y = \ln [A(x)]$			$\left\{ x \in \mathbb{R} : A(x) > 0 \right\}$
			$y = \operatorname{sen} [A(x)]$ $y = \cos [A(x)]$	$\mathbb R$
Função Transcendente		Directas	$y = tg [A(x)]$ $= \frac{sen [A(x)]}{cos [A(x)]}$	$\left\{x \in \mathbb{R} : \cos\left[A(x)\right] \neq 0\right\} = \left\{x \in \mathbb{R} : A\left(x\right) \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$ Limitando ao intervalo $\left[0, 2\pi\right]$: $\left\{x \in \mathbb{R} : A\left(x\right) \neq \frac{\pi}{2} \lor A\left(x\right) \neq \frac{3}{2}\pi\right\}$ $= \left\{x \in \mathbb{R} : 0 < A\left(x\right) < \frac{\pi}{2} \lor \frac{\pi}{2} < A\left(x\right) < \frac{3}{2}\pi \lor \frac{3}{2}\pi < A\left(x\right) < 2\pi\right\}$
			$y = \cot \left[A(x) \right]$ $= \frac{\cos \left[A(x) \right]}{\sin \left[A(x) \right]}$	$ \left\{ x \in \mathbb{R} : \operatorname{sen} \left[A(x) \right] \neq 0 \right\} = \left\{ x \in \mathbb{R} : A\left(x\right) \neq k\pi, k \in \mathbb{Z} \right\} $ Limitando ao intervalo $\left[0, 2\pi \right] :$ $ \left\{ x \in \mathbb{R} : A\left(x\right) \neq 0 \lor A\left(x\right) \neq \pi \lor A\left(x\right) \neq 2\pi \right\} $ $ = \left\{ x \in \mathbb{R} : 0 < A\left(x\right) < \pi \lor \pi < A\left(x\right) < 2\pi \right\} $
		I	y = arc sen [A(x)] y = arc cos [A(x)]	$\left\{x \in \mathbb{R} : -1 \le A(x) \le 1\right\}$
			y = arc tg[A(x)] y = arc cotg[A(x)]	$\mathbb R$

Nota: A(x) e B(x) são polinómios

> Função inversa

Se $f: A \to B$ é uma função bijectiva, então a $x \mapsto y$ $\underbrace{função\ inversa}_{} \text{de f \'e a função} \qquad \text{sobre}$

$$f^{-1}: B \to A$$
$$y \mapsto x$$

tal que:

$$x = f^{-1}(y) \Leftrightarrow y = f(x), \forall x \in A, \forall y \in B$$

Se $f:A \to B$ é uma função injectiva mas não $x \mapsto y$

sobrejectiva, então a <u>função inversa</u> de f é a função

$$f^{-1}: f(A) \rightarrow A$$

 $y \mapsto x$

tal que:

$$x = f^{-1}(y) \Leftrightarrow y = f(x), \forall x \in A, \forall y \in f(A)$$

<u>Definição</u>

Uma função diz-se <u>invertível</u> se admite função inversa.

FUNÇÕES TRIGONOMÉTRICAS E TRIGONOMETRIA

> Função seno

Chama-se função seno à função:

$$f:\mathbb{R}\to\!\left[-1,1\right]$$

$$x \mapsto sen(x)$$

	Propriedades	Representação gráfica
Domínio	$D_{\mathrm{f}} = \mathbb{R}$	
Contradomínio	$D'_{f} = \left\{ y \in \mathbb{R} : -1 \le \underbrace{\operatorname{sen}(x)}_{y} \le 1 \right\} = [-1, 1]$	у.
Paridade	A função $y = \operatorname{sen} x$ é uma função ímpar, isto é, $\operatorname{sen} (-x) = -\operatorname{sen} (x), \forall x \in D_f$	
Período (positivo mínimo)	A função $y = \operatorname{sen} x$ tem período 2π , isto é, $\operatorname{sen}(x + 2k\pi) = \operatorname{sen}(x), \forall x \in D_f, \forall k \in \mathbb{Z}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Zeros	$\operatorname{sen}(x) = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$	
Monotonia (no intervalo $\left[0, 2\pi\right]$)	A função $y = \operatorname{sen} x$ nos intervalos: • $\left[0, \frac{\pi}{2}\right] \operatorname{e}\left[\frac{3\pi}{2}, 2\pi\right]$ é crescente • $\left[\frac{\pi}{2}, \pi\right] \operatorname{e}\left[\pi, \frac{3\pi}{2}\right]$ é decrescente	

> Função arco seno

A função f não é injectiva; logo, não admite inversa.

Consideremos uma restrição g de f que seja injectiva (restrição principal):

$$g: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$$
$$x \mapsto \operatorname{sen}(x)$$

A função inversa de g será:

$$g^{-1}:[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

 $x \mapsto arc sen(x)$

a que se dá o nome de <u>função arco seno</u>. Então:

$$y = sen(x) \Leftrightarrow x = arc sen(y)$$

Propriedades		
Domínio	$D_{g^{-1}} = \{ x \in \mathbb{R} : -1 \le x \le 1 \} = [-1, 1]$	
Contradomínio	$D'_{g^{-1}} = \left\{ y \in \mathbb{R} : -\frac{\pi}{2} \le \underbrace{\arcsin\left(x\right)}_{y} \le \frac{\pi}{2} \right\} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	
Paridade	A função $y = \arcsin(x)$ é uma função ímpar, isto é, $\arcsin(-x) = -\arcsin(x)$, $\forall x \in D_{g^{-1}}$	
Zeros	$\arcsin(x) = 0 \Leftrightarrow x = \sin(0) \Leftrightarrow x = 0$	
Monotonia	A função $y = arc sen(x)$ é crescente em $D_{g^{-1}}$	

Representação gráfica

> Função coseno

Chama-se função coseno à função:

$$f: \mathbb{R} \to [-1,1]$$

$$x \mapsto \cos(x)$$

	Propriedades	Representação gráfica
Domínio	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	
Contradomínio	$D'_{f} = \left\{ y \in \mathbb{R} : -1 \le \underbrace{\cos(x)}_{y} \le 1 \right\} = [-1, 1]$	
Paridade	A função $y = cos(x)$ é uma função par, isto é,	у *
randade	$\cos(-x) = \cos(x), \forall x \in D_f$	
Período	A função $y = cos(x)$ tem período 2π , isto é,	$\frac{1}{\sqrt{-\pi}}$ O $\frac{\pi}{\pi}$ $\frac{3\pi}{\pi}$ $\frac{3\pi}{2\pi}$ $\frac{\pi}{\chi}$
(positivo mínimo)	$\cos(x+2k\pi) = \cos(x), \forall x \in D_f, \forall k \in \mathbb{Z}$	2 -1 -2 2
Zeros	$\cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$	
	A função $y = cos(x)$ nos intervalos:	
Monotonia (no intervalo $[0, 2\pi]$)	• $\left[0, \frac{\pi}{2}\right] e \left[\frac{\pi}{2}, \pi\right]$ é decrescente	
	• $\left[\pi, \frac{3\pi}{2}\right] e \left[\frac{3\pi}{2}, 2\pi\right] \acute{e}$ crescente	

> Função arco coseno

A função f não é injectiva; logo, não admite inversa.

Consideremos uma restrição g de f que seja injectiva (restrição principal):

$$g:[0,\pi] \rightarrow [-1,1]$$

$$x \mapsto \cos(x)$$

A função inversa de g será:

$$g^{-1}: [-1,1] \rightarrow [0,\pi]$$

 $x \mapsto arc \cos(x)$

a que se dá o nome de <u>função arco coseno</u>. Então:

$$y = cos(x) \Leftrightarrow x = arc cos(y)$$

Propriedades		Representação gráfica
Domínio	$D_{g^{-1}} = \{x \in \mathbb{R} : -1 \le x \le 1\} = [-1, 1]$	v.
Contradomínio	$D'_{g^{-1}} = \left\{ y \in \mathbb{R} : 0 \le \underbrace{\arccos(x)}_{y} \le \pi \right\} = [0, \pi]$	$y = \operatorname{arc} \cos x$
Zeros	$arc cos(x) = 0 \Leftrightarrow x = cos(0) \Leftrightarrow x = 1$	$\frac{A}{2}$
Monotonia	A função $y = arc cos(x)$ é decrescente em $D_{g^{-1}}$	-1 0 1 x

> Função tangente

Chama-se função tangente à função:

$$f: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\} \to \mathbb{R}$$
$$x \mapsto tg(x)$$

	Propriedades	Representação gráfica
Domínio	$D_{f} = \left\{ x \in \mathbb{R} : \cos(x) \neq 0 \right\} = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$ $= \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$	gt vå gt
Contradomínio	$\mathbf{D}_{\mathrm{f}}' = \mathbb{R}$	
Paridade	A função $y = tg(x)$ é uma função ímpar, isto é, $tg(-x) = -tg(x), \forall x \in D_f$	
Período (positivo mínimo)	A função $y=tg(x)$ tem período π , isto é, $tg(x+k\pi)=tg(x), \forall x\in D_{_f}, \forall k\in \mathbb{Z}$	$-\pi$ $\frac{-\pi}{2}$ 6 $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π
Zeros	$tg(x) = 0 \Leftrightarrow \frac{\operatorname{sen}(x)}{\cos(x)} = 0 \Leftrightarrow \operatorname{sen}(x) = 0 \wedge \cos(x) \neq 0$ $\Leftrightarrow x = k\pi \wedge x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = k\pi, k \in \mathbb{Z}$	
Monotonia	A função $y = tg x$ é crescente em D_f	

> Função arco tangente

A função f não é injectiva; logo, não admite inversa. Consideremos uma restrição g de f que seja injectiva (restrição principal):

$$g: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$$
$$x \mapsto tg(x)$$

A função inversa de g será:

$$g^{-1}: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
$$x \mapsto \operatorname{arctg}(x)$$

a que se dá o nome de $\underline{\mathit{função}\ arco\ tangente}$. Então:

$$y = tg(x) \Leftrightarrow x = arctg(y)$$

	Propriedades	Representação gráfica		
Domínio	$D_{g^{-1}} = \mathbb{R}$			
Contradomínio	$D_{g^{-1}}' = \left\{ y \in \mathbb{R} : -\frac{\pi}{2} < \underbrace{\arctan \left(x \right)}_{y} < \frac{\pi}{2} \right\} = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$	y = arc tg x		
Paridade	A função $y = \operatorname{arc} \operatorname{tg} x$ é uma função ímpar, isto é, $\operatorname{arc} \operatorname{tg}(-x) = -\operatorname{arc} \operatorname{tg}(x), \forall x \in D_{g^{-1}}$	0 ×		
Zeros	$\operatorname{arc} \operatorname{tg}(x) = 0 \Leftrightarrow x = \operatorname{tg}(0) \Leftrightarrow x = 0$	$-\frac{\pi}{2}$		
Monotonia	A função $y = arctg(x)$ é crescente em $D_{g^{-1}}$			

> Função cotangente

Chama-se <u>função cotangente</u> à função:

$$\begin{split} f: \mathbb{R} \setminus & \big\{ k\pi, \ k \in \mathbb{Z} \big\} \to \mathbb{R} \\ & x \mapsto cotg \big(x \big) \end{split}$$

	Propriedades	Representação gráfica
Domínio	$D_{f} = \{x \in \mathbb{R} : \text{sen} x \neq 0\} = \{x \in \mathbb{R} : x \neq k\pi, k \in \mathbb{Z}\}$ $= \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$	
Contradomínio	$D_{\mathrm{f}}' = \mathbb{R}$	
Paridade	A função $y = \cot(x)$ é uma função ímpar, isto é, $\cot(-x) = -\cot(x), \forall x \in D_f$	
Período (positivo mínimo)	A função $y = \cot g(x)$ tem período π , isto é, $\cot g(x + k\pi) = \cot g(x), \forall x \in D_f$	$-\pi$ 2π 2π
Zeros	$\cot g(x) = 0 \Leftrightarrow \frac{\cos(x)}{\sin(x)} = 0 \Leftrightarrow \cos(x) = 0 \land \sin(x) \neq 0$ $\Leftrightarrow x = \frac{\pi}{2} + k\pi \land x \neq k\pi, k \in \mathbb{Z}$ $\Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$	$\begin{bmatrix} -\frac{\pi}{2} \\ \end{bmatrix} \begin{bmatrix} \frac{\pi}{2} \\ \end{bmatrix} \begin{bmatrix} \frac{3\pi}{2} \\ \end{bmatrix} \begin{bmatrix} \frac{5\pi}{2} \\ \end{bmatrix} $
Monotonia	A função $y = \cot g x$ é decrescente em D_f	

> Função arco cotangente

A função f não é injectiva; logo, não admite inversa. Consideremos uma restrição g de f que seja injectiva (restrição principal):

$$g: \left]0, \pi\right[\to \mathbb{R}$$
$$x \mapsto \cot g\left(x\right)$$

A função inversa de g será:

$$g^{-1}: \mathbb{R} \to]0, \pi[$$

 $x \mapsto \operatorname{arc} \operatorname{cotg}(x)$

a que se dá o nome de *função arco cotangente*. Então:

$$y = \cot g(x) \Leftrightarrow x = \operatorname{arc} \cot g(y)$$

	Propriedades	Representação gráfica		
Domínio	$D_{g^{-1}} = \mathbb{R}$	y=arc cotg x, y		
Contradomínio	$D_{g^{-1}}' = \left\{ y \in \mathbb{R} : 0 < \underbrace{\operatorname{arc} \operatorname{cotg}(x)}_{y} < \pi \right\} = \left] 0, \pi \right[$	$\frac{\pi}{2}$		
Zeros	Não tem zeros	0 x		
Monotonia	A função $y = \operatorname{arccotg}(x)$ é decrescente em $D_{g^{-1}}$	Censiderande a petricae princil		

> Sinais das funções trigonométricas

> Seno, coseno e tangente de um ângulo no círculo trigonométrico

> Valores das funções trigonométricas

, î	0°	30°	45°	60°	90°	180°	270°	360°
Ângulo Função	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
Seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
coseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nd	0	nd	0
cotangente	nd	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	nd	0	nd

Notação: nd - não definido

> Redução ao primeiro quadrante

$$\bullet \operatorname{sen} (\pi - x) = \operatorname{sen} (x)$$

$$\bullet \cos (\pi - x) = -\cos (x)$$

$$\bullet \operatorname{tg}(\pi - x) = -\operatorname{tg}(x)$$

$$\cot g (\pi - x) = -\cot g (x)$$

$$\pi$$
 \times \times \times \times

$$\bullet \operatorname{sen}(\pi + x) = -\operatorname{sen}(x)$$

$$\bullet \cos (\pi + x) = -\cos(x)$$

$$\bullet \operatorname{tg}(\pi + x) = \operatorname{tg}(x)$$

$$\bullet \cot (\pi + x) = \cot (x)$$

$$\bullet \operatorname{sen}\left(\frac{\pi}{2} - x\right) = \cos\left(x\right)$$

$$\bullet \cos\left(\frac{\pi}{2} - x\right) = \operatorname{sen}\left(x\right)$$

•
$$tg\left(\frac{\pi}{2} - x\right) = \cot g(x)$$

$$\bullet \cot g \left(\frac{\pi}{2} - x \right) = tg(x)$$

$$\bullet \operatorname{sen}\left(\frac{\pi}{2} + x\right) = \cos\left(x\right)$$

$$\bullet \cos\left(\frac{\pi}{2} + x\right) = -\sin\left(x\right)$$

•
$$\operatorname{tg}\left(\frac{\pi}{2} + x\right) = -\operatorname{cotg}\left(x\right)$$

$$\bullet \cot g \left(\frac{\pi}{2} + x \right) = -tg(x)$$

$$\bullet \operatorname{sen}\left(\frac{3\pi}{2} - x\right) = -\cos(x)$$

$$\bullet \cos\left(\frac{3\pi}{2} - x\right) = -\sin(x)$$

•
$$\operatorname{tg}\left(\frac{3\pi}{2} - x\right) = \operatorname{cotg}\left(x\right)$$

$$\bullet \cot \left(\frac{3\pi}{2} - x\right) = tg(x)$$

$$\bullet \cos\left(\frac{3\pi}{2} + x\right) = \operatorname{sen}(x)$$

•
$$\operatorname{tg}\left(\frac{3\pi}{2} + x\right) = -\operatorname{cotg}(x)$$

$$\bullet \cot \left(\frac{3\pi}{2} + x\right) = -\operatorname{tg}(x)$$

> Relações fundamentais

$$\bullet \operatorname{tg}(x) = \frac{\operatorname{sen}(x)}{\cos(x)}$$

$$\bullet \cot (x) = \frac{\cos (x)}{\sin (x)}$$

$$\bullet \sec(x) = \frac{1}{\cos(x)}$$

•
$$\csc(x) = \frac{1}{\sin(x)}$$

$$\bullet 1 + tg^{2}(x) = \frac{1}{\cos^{2}(x)} = \sec^{2}(x)$$

•1+cotg²(x) =
$$\frac{1}{\text{sen}^2(x)}$$
 = cosec²(x)

$$\bullet \cot g(x) = \frac{1}{tg(x)}$$

$$\bullet \operatorname{sen}^{2}(x) + \cos^{2}(x) = 1$$

> Equações trigonométricas

Supondo α uma das soluções:

•
$$\operatorname{sen}(x) = a \land a \in [-1,1] \Leftrightarrow \operatorname{sen}(x) = \operatorname{sen}(\alpha)$$

$$\Leftrightarrow x = \alpha + 2k\pi \lor x = (\pi - \alpha) + 2k\pi, k \in \mathbb{Z}$$

•
$$\cos(x) = a \land a \in [-1,1] \Leftrightarrow \cos(x) = \cos(\alpha)$$

$$\Leftrightarrow x = \alpha + 2k\pi \lor x = -\alpha + 2k\pi, k \in \mathbb{Z}$$

$$\bullet \, tg \, \big(\, x \, \big) = a \wedge a \in \mathbb{R} \, \Longleftrightarrow \, tg \, \big(\, x \, \big) = tg \, \big(\, \alpha \big)$$

$$\Longleftrightarrow x=\alpha+k\pi, k\in\mathbb{Z}$$

$$\bullet \cot g(x) = a \land a \in \mathbb{R} \Leftrightarrow \cot g(x) = \cot g(\alpha)$$

$$\Longleftrightarrow x=\alpha+k\pi, k\in\mathbb{Z}$$

> Fórmulas trigonométricas

Fórmulas da soma e da diferença de ângulos

•
$$\operatorname{sen}(a \pm b) = \operatorname{sen}(a) \times \cos(b) \pm \cos(a) \times \operatorname{sen}(b)$$

•
$$\cos(a \pm b) = \cos a \times \cos(b) \mp \sin(a) \times \sin(b)$$

•
$$tg(a \pm b) = \frac{tg(a) \pm tg(b)}{1 \mp tg(a) \times tg(b)}$$

•
$$\cot g (a \pm b) = \frac{\cot g(a) \times \cot g(b) \mp 1}{\cot g(a) \pm \cot g(b)}$$

Fórmulas de duplicação

•
$$\operatorname{sen}(2a) = 2\operatorname{sen}(a)\cos(a) = \frac{2\operatorname{tg}(a)}{1+\operatorname{tg}^2(a)}$$

•
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 1 - 2 \sin^2(a)$$

= $2 \cos^2(a) - 1 = \frac{1 - tg^2(a)}{1 + tg^2(a)}$

•
$$tg(2a) = \frac{2tg(a)}{1 + tg^2(a)}$$

$$\bullet \cot (2a) = \frac{\cot^2(a) - 1}{2\cot(a)}$$

Fórmulas de bissecção

•
$$\operatorname{sen}\left(\frac{a}{2}\right) = \pm \sqrt{\frac{1 - \cos\left(a\right)}{2}}$$

$$\bullet \cos\left(\frac{a}{2}\right) = \pm \sqrt{\frac{1 + \cos\left(a\right)}{2}}$$

•
$$\operatorname{tg}\left(\frac{a}{2}\right) = \pm \sqrt{\frac{1 - \cos\left(a\right)}{1 + \cos\left(a\right)}}$$

• sen (a) + sen (b) =
$$2 \operatorname{sen}\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)$$

•
$$\operatorname{sen}(a) - \operatorname{sen}(b) = 2 \operatorname{sen}\left(\frac{a-b}{2}\right) \cos\left(\frac{a+b}{2}\right)$$

•
$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\frac{(a-b)}{2}$$

•
$$\cos(a) - \cos(b) = -2 \operatorname{sen}\left(\frac{a+b}{2}\right) \operatorname{sen}\left(\frac{a-b}{2}\right)$$

•
$$\operatorname{sen}(a) + \operatorname{sen}(b) = 2\operatorname{sen}\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

$$\operatorname{• }\operatorname{sen}(a) - \operatorname{sen}(b) = 2\operatorname{sen}\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$$

$$\operatorname{sen}^{2}(a) = \frac{1-\cos(2a)}{2}$$

$$\operatorname{cos}^{2}(a) = \frac{1+\cos(2a)}{2}$$

> Trigonometria hiperbólica

•
$$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$$
 (seno hiperbólico de x)

•
$$\cosh(x) = \frac{e^x + e^{-x}}{2} (coseno \ hiperbólico \ de \ x)$$

•
$$tgh(x) = \frac{senh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} (tangente\ hiperbólica\ de\ x)$$

•
$$tgh(x) = \frac{senh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} (tangente\ hiperbólica\ de\ x)$$
• $cotgh(x) = \frac{cosh(x)}{senh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}} (cotangente\ hiperbólica\ de\ x)$

• $\cosh^2(x) - \sinh^2(x) = 1$ (Relação fundamental da trigonometria hiperbólica)

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

> Função exponencial

Chama-se <u>função exponencial de base a</u> à função:

$$f{:}\mathbb{R} \to \mathbb{R}$$

$$x \mapsto a^x, a \in \mathbb{R}^+ \setminus \{1\}$$

> Função logarítmica

Com a \neq 1, função exponencial de base a é uma bijecção de $\mathbb R$ sobre $\mathbb R^+$, logo admite inversa. À inversa da aplicação

$$g: \mathbb{R} \to \mathbb{R}^+$$
$$x \mapsto a^x, a \in \mathbb{R}^+ \setminus \{1\}$$

dá-se o nome de função logarítmica de base a:

$$\begin{split} g^{-1} : & \mathbb{R}^+ \to \mathbb{R} \\ & x \mapsto \log_a(x), a \in \mathbb{R}^+ \setminus \{1\} \end{split}$$

Então

$$y = \log_a(x) \Leftrightarrow x = a^y$$
.

<u>Notação</u>

Quando a=e tem-se que $\log_e(x) = \ln(x)$

Propriedades dos logaritmos

Sejam $x, y \in \mathbb{R}^+, a, b \in \mathbb{R}^+ \setminus \{1\}$

$$\bullet \log_a(a) = 1$$

$$\bullet \log_a(1) = 0$$

$$\bullet a^{\log_n(x)} = x$$

$$\bullet \log_a \left(a^y \right) = y$$

$$\bullet \log_a(x \times y) = \log_a(x) + \log_a(y)$$

$$\bullet \log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

$$\bullet \log_a(x)^{-1} = -\log_a(x) = \cos\log_a(x)$$

$$\bullet \,log_{_{a}}\big(x^{_{r}}\big)\!=\!r\!\times\!log_{_{a}}\big(x\big),\,r\!\in\mathbb{R}$$

$$\bullet log_{a}\left(\sqrt[n]{x}\right) = \frac{log_{a}\left(x\right)}{n}, \ n \in \mathbb{N}$$

$$\bullet \log_b x = \log_a(x) \times \log_b a$$

$$\bullet \log_b x = \frac{\log_a(x)}{\log_a(b)}$$

Fórmulas da mudança de base

LIMITES DE FUNÇÕES REAIS DE VARIÁVEL REAL

> Ponto de acumulação

Definição

Seja C um subconjunto de \mathbb{R} , diz-se que a (pertencente ou não a C) é <u>ponto de acumulação</u> de C sse em qualquer vizinhança de a existe pelo menos um elemento de C, diferente de a.

Simbolicamente:

a é ponto de acumulação de
$$C \Leftrightarrow \forall \delta > 0 \exists b \in C : b \neq a \land b \in V_{\delta}(a)$$

Nota

$$b \in V(a) \Leftrightarrow |b-a| < \delta \Leftrightarrow b \in]a - \delta, a + \delta[$$

Limite de uma função real de variável real

<u>Definição</u> (Segundo Heine)

Seja f uma função real de variável real e a um ponto de acumulação do seu domínio. Diz-se que f tem por <u>limite b quando x tende para a</u> se e só se a toda a sucessão (x_n) de valores de x, diferentes de a e pertencentes ao domínio de f, que tenda para a, corresponde uma sucessão $(f(x_n))$ convergente para b.

Simbolicamente:

$$\lim_{x \to a} f(x) = b \Leftrightarrow \forall (x_n), x_n \to a \land (x_n \neq a \land x_n \in D, \forall n \in \mathbb{N}) \Rightarrow f(x_n) \to b$$

Nota:

Nesta definição a e b tanto podem ser números reais como qualquer dos símbolos +∞ e -∞.

<u>Definição</u> (Segundo Cauchy)

Seja f uma função real de variável real e a um ponto de acumulação do seu domínio. Diz-se que f tem <u>limite</u> <u>b quando x tende para a</u> se e só se a toda a vizinhança $V_{\epsilon}(b)$ for possível associar uma vizinhança $V_{\delta}(a)$ de tal modo que, para todo o x pertencente a $V_{\delta}(a)\setminus\{a\}$, o correspondente valor de f(x) pertence a $V_{\epsilon}(b)$.

Simbolicamente.

$$\begin{split} \lim_{x \to a} f(x) &= b \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 : \forall x \in V_{\delta}(a) \setminus \{a\} \Rightarrow f(x) \in V_{\epsilon}(b) \\ &\Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 : \underbrace{|x - a| < \delta \land x \neq a}_{x \in [a - \delta, a + \delta[} \Rightarrow \underbrace{|f(x) - b|}_{f(x) \in [b - \epsilon, b + \epsilon[} = \epsilon] \end{cases} < \epsilon \end{split}$$

Nota:

Nesta definição a e b são números reais.

Graficamente:

Observação:

Na fig.1 não é possível associar à vizinhança ϵ_2 de b uma vizinhança de a nas condições requeridas pela definição, embora seja possível fazê-lo para outros valores de ϵ , tais como ϵ_1 (fig.2).

Seja f uma função real de variável real e a um ponto de acumulação do seu domínio.

Definição

Diz-se que <u>b é limite de f, à esquerda</u>, no ponto a, sse a toda a sucessão (x_n) de valores de x menores que a e pertencentes ao domínio de f que tenda para a corresponde uma sucessão $(f(x_n))$ convergente para b.

Simbolicamente:

te:
$$\lim_{x \to a^{-}} f(x) = b \Leftrightarrow \forall (x_n), x_n \to a \land (x_n < a \land x_n \in D, \forall n \in \mathbb{N}) \Rightarrow f(x_n) \to b$$

Graficamente:

Definição

Diz-se que <u>b é limite de f, à direita</u>, no ponto a, sse a toda a sucessão (x_n) de valores de x maiores que a e pertencentes ao domínio de f que tenda para a corresponde uma sucessão $(f(x_n))$ convergente para b.

Simbolicamente:

te:
$$\lim_{x \to a^{+}} f(x) = b \iff \forall (x_{n}), x_{n} \to a \land (x_{n} > a \land x_{n} \in D, \forall n \in \mathbb{N}) \Rightarrow f(x_{n}) \to b$$

Graficamente:

Propriedades

• $\lim_{x \to a} f(x) = b \Leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b$

• Se a função f está definida apenas à direita (ou à esquerda) de a, então o valor do limite da função no ponto a coincide com o limite à direita (ou à esquerda) de a.

> Propriedades dos limites de funções

• O limite de uma função num ponto, caso exista, é único.

• O limite de uma função constante é a própria constante.

• Se f e g têm limites finitos no ponto a, então:

i.
$$\lim_{x\to a} (f+g)(x) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x);$$

ii.
$$\lim_{x \to a} (f - g)(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x);$$

iii.
$$\lim_{x\to a} (f\times g)(x) = \lim_{x\to a} f(x) \times \lim_{x\to a} g(x);$$

iv.
$$\lim_{x \to a} \frac{f}{g}(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ com } \lim_{x \to a} g(x) \neq 0;$$

• Se a função f tem limite finito no ponto a e p é um número natural, então:

i.
$$\lim_{x \to a} \left[f(x) \right]^p = \left[\lim_{x \to a} f(x) \right]^p;$$

ii.
$$\lim_{x \to a} \left[\sqrt[p]{f(x)} \right] = \sqrt[p]{\lim_{x \to a} f(x)}, \text{ sup ondo } f(x) \ge 0 \text{ quando } p \text{ \'e par};$$

> Limites notáveis

Ver página 6.

> Operações com limites

$$\lim_{x \to a} f(x) = b \in \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to a} g(x) = +\infty$$

$$\lim_{x \to a} f(x) = b \in \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to a} g(x) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = b + (-\infty) = -\infty$$

$$\lim_{x \to a} f(x) + g(x) = -\infty$$

$$\lim_{x \to a$$

$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a} g(x) = +\infty$$

$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a} f(x) + g(x) = +\infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a} g(x) = -\infty$$

$$\lim_{x \to a} g(x) = -\infty$$

$$\lim_{x \to a} \frac{f(x) + g(x)}{g(x)} = (-\infty) + (-\infty) = -\infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = (-\infty) \times (-\infty) = +\infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{-\infty}{-\infty} \quad \text{(Indeterminação)}$$

$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a} g(x) = -\infty$$

$$\lim_{x \to a} g(x) = -\infty$$

$$\lim_{x \to a} \frac{f(x) + g(x)}{f(x) + g(x)} = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty - \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (-\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) + (+\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) + (+\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) + (+\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) + (+\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) + (+\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) + (+\infty) + (+\infty) = \infty$$

$$\lim_{x \to a} f(x) + g(x) = (+\infty) + (+\infty) +$$

$$\lim_{x \to a} f(x) + g(x) = 0 + (+\infty) = +\infty$$

$$\lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} g(x) = +\infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{+\infty} = 0$$

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \frac{+\infty}{0} = 0$$

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \frac{+\infty}{0} = 0$$

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \frac{+\infty}{0} = 0$$

$$\lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} g(x) = -\infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{-\infty} = 0$$

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \frac{-\infty}{0} = \sqrt{-\infty} \text{ se } \lim_{x \to a} f(x) = 0^+$$

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \frac{-\infty}{0} = \sqrt{-\infty} \text{ se } \lim_{x \to a} f(x) = 0^-$$

$$\lim_{\substack{x \to a \\ \lim_{x \to a} g(x) = 0}} f(x) = 0$$

$$\lim_{\substack{x \to a \\ g(x)}} \frac{f(x)}{g(x)} = \frac{0}{0} \quad \text{(Indeterminação)}$$

CONTINUIDADE DE FUNÇÕES

> Continuidade de uma função num ponto do seu domínio

Seja a um ponto de acumulação do domínio.

Definição (Cauchy)

Diz-se que f é <u>contínua no ponto a</u> $(a \in D)$ sse

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in D : |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Geometricamente: significa que o gráfico da restrição de f ao intervalo $\left]a-\delta,a+\delta\right[$ está contido no rectângulo a tracejado.

Definição

$$f \in \underline{continua\ em\ a},\ (a \in D) \Leftrightarrow \begin{cases} \exists \lim_{x \to a} f(x) \\ \lim_{x \to a} f(x) = f(a) \end{cases}$$

Descontinuidade de uma função num ponto do seu domínio

Seja a um ponto de acumulação do domínio.

Definição

Diz-se que f é <u>descontínua no ponto a</u> $(a \in D)$ sse não é contínua nesse ponto, isto é, não existe limite da função quando x tende para a ou esse limite é diferente do valor da função para x = a.

Simbolicamente:

$$f \notin \underline{descontinua\ em\ a},\ (a \in D) \Leftrightarrow \begin{vmatrix} \exists \lim_{x \to a} f(x) \\ ou \\ \lim_{x \to a} f(x) \neq f(a) \end{vmatrix}$$

Graficamente:

> Continuidade de uma função à direita e à esquerda num ponto do seu domínio

Seja a um ponto de acumulação do domínio.

Definições

- A função f diz-se <u>contínua à direita de a</u> $(a \in D)$ sse $\lim_{x \to a} f(x) = f(a)$;
- A função f diz-se <u>contínua à esquerda de a</u> $(a \in D)$ sse $\lim_{x \to a^{-}} f(x) = f(a)$;

Propriedade

f é contínua à esquerda e à direita de a ⇔ f é contínua no ponto a

Propriedades das funções contínuas

- Toda a função constante é contínua em qualquer ponto do domínio.
- A função identidade é contínua em $\mathbb R$

- Toda a função polinomial é contínua em ℝ
- A soma de duas funções contínuas é contínua no seu domínio
- O produto de duas funções contínuas é contínuo no seu domínio
- O quociente de duas funções contínuas é contínuo no seu domínio
- Uma função racional (quociente de funções polinomiais) é contínua no seu domínio
- As funções seno, coseno, arco tangente e arco cotangente são funções contínuas em todos os pontos do seu domínio, ou seja, ℝ
- As funções tangente e cotangente são funções contínuas em todos os pontos do seu domínio, ou seja,
 - a função tangente é contínua em: $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$
 - a função cotangente é contínua em: $\mathbb{R} \setminus \left\{ k\pi, \, k \in \mathbb{Z} \right\}$
- As funções arco seno e arco coseno são funções contínuas em todos os pontos do seu domínio, ou seja, [-1,1]
- Continuidade da função composta
 Se a função f for contínua em a e a função g for contínua em b=f (a), então a função composta g o f é contínua em a.

> Continuidade de uma função num subconjunto do domínio

- Uma função f diz-se *contínua num intervalo*]a, b[(subconjunto do domínio) sse for contínua em todos os pontos desse intervalo.
- Uma função f diz-se *contínua num intervalo* [a, b] (subconjunto do domínio) sse
 - f é contínua em]a, b[
 - f é contínua à direita de a
 - f é contínua à esquerda de b.
- Uma função f diz-se contínua sse é contínua em todos os pontos do seu domínio.

> Propriedades das funções contínuas num intervalo fechado

Teorema de Bolzano ou Teorema dos Valores Intermédios

Se a função f é contínua no intervalo [a,b] e k é um número real compreendido entre f (b) e f (a), então existe pelo menos um $c \in [a,b]$ tal que f (c) = k.

Simbolicamente:

$$\left. \begin{array}{l} \text{f \'e contínua em} \left[a,b \right] \\ \text{k} \in \mathbb{R} : \text{f (b)} < \text{k} < \text{f (a)} \end{array} \right\} \Rightarrow \exists c \in \left] a,b \right[: \text{f (c)} = \text{k} \right.$$

Interpretação:

Toda a função contínua num intervalo fechado não pode ir de um valor a outro sem passar por todos os valores intermédios.

Nota:

O teorema de Bolzano estende-se aos intervalos a, b, limitados ou não, se $\lim_{x \to a^+} f(x) e \lim_{x \to b^-} f(x)$ existem ou são infinitos.

Corolário do Teorema de Bolzano

Se a função f é contínua no intervalo [a,b] e $f(a) \times f(b) < 0$, então a função admite pelo menos um zero no intervalo [a,b[, isto é, existe pelo menos um $c \in [a,b[$ tal que f(c) = 0.

Simbolicamente:

$$\begin{cases}
f \notin continua em[a,b] \\
f(a) \times f(b) < 0
\end{cases} \Rightarrow \exists c \in]a,b[:f(c) = 0$$

Graficamente:

Observação:

Este corolário permite-nos localizar um intervalo onde a função se anula.

DERIVADAS DE FUNÇÕES

> Derivada de uma função num ponto

Definição

Chama-se <u>derivada de f no ponto a</u> $(a \in D)$, a

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}, \text{ equivalentemente, } f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}.$$

Este número f'(a) pode também ser representado por:

$$\left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{x=a} \text{ ou } \inf_{x\to a}$$

Geometricamente

f'(a)- Representa o declive da recta tangente ao gráfico da função no ponto x=a

Observação

A equação da recta tangente ao gráfico de f no ponto x=a é:
$$y - f(a) = f'(a)(x-a) \Leftrightarrow y = f'(a)(x-a) + f(a)$$

Nota

A derivada de uma função num ponto pode ser finita ou infinita

<u>Definição</u>

Se a derivada de f num ponto existe e é finita, f diz-se diferenciável ou derivável nesse ponto.

> Derivadas laterais

Pode não existir derivada num ponto mas existirem derivadas laterais.

Definições

- fé diferenciável ou derivável à esquerda de $a(a \in D)$ se existe e é finito o $\lim_{x \to a^{-}} \frac{f(x) f(a)}{x a}$, a que se chama-se <u>derivada lateral à esquerda de a</u> e se representa por $f'(a^{-})$.
- f é diferenciável ou derivável à direita de a (a \in D) se existe e é finito o $\lim_{x \to a^+} \frac{f(x) f(a)}{x a}$, a que se chama <u>derivada lateral à direita de a</u> e se representa por $f'(a^+)$.

Geometricamente

 $f'(a^-)$ - Representa o declive da semitangente á esquerda ao gráfico de f ponto x=a $f'(a^+)$ - Representa o declive da semitangente á direita ao gráfico de f ponto x=a

Propriedade

• f é derivável para x=a sse $f'(a^-)=f'(a^+)$ e são ambas finitas.

> Diferenciabilidade num intervalo

Definições

- Uma função diz-se <u>diferenciável num intervalo</u>]a,b[quando admite derivada finita em todos os pontos do intervalo.
- Uma função diz-se <u>diferenciável num intervalo</u> [a,b] quando é diferenciável em]a,b[e diferenciável à esquerda de b $(f'(b) = f'(b^-))$ e à direita de a $(f'(a) = f'(a^+))$.

Função derivada

Definição

Seja $f: D \to \mathbb{R}$ e E o conjunto dos números reais para os quais a função f é diferenciável.

$$x \mapsto f(x)$$

Chama-se função derivada de f a:

$$f': E \to \mathbb{R}$$

 $x \mapsto f'(x)$

Observação

Não confundir "derivada de uma função num ponto" que se existir, é um número real, com "função derivada", que é uma nova função f'(x), cujo domínio é constituído por todos os números reais x para os quais f(x) admite derivada

Continuidade e derivabilidade

Teorema

Toda a função que admite derivada finita num ponto é contínua nesse ponto.

O recíproco deste teorema não é verdadeiro; há funções contínuas num ponto que não têm derivada finita nesse ponto.

Regras de derivação

Sejam $u = g(x), v = h(x), k \in \mathbb{R}, a \in \mathbb{R}^+ \setminus \{1\}.$

•
$$(k)' = 0$$

$$\bullet (x)' = 1$$

$$\bullet (u+v)' = u' + v'$$

$$\bullet (\mathbf{u} - \mathbf{v})' = \mathbf{u}' - \mathbf{v}'$$

$$\bullet (u \times v)' = u' \times v + u \times v'$$

$$\bullet (k \times u)' = k \times u'$$

$$\bullet \left(u^{k}\right)' = k \times u^{k-1} \times u', \ k \neq 1$$

$$k \in \mathbb{R}, a \in \mathbb{R}^{+} \setminus \{1\}.$$

$$(k)' = 0$$

$$(x)' = 1$$

$$(u+v)' = u'+v'$$

$$(u-v)' = u'-v'$$

$$(u\times v)' = u'\times v + u\times v'$$

$$(k\times u)' = k\times u'$$

$$(u^{k})' = k\times u^{k-1}\times u', k\neq 1$$

$$(u^{k})' = u'\times v + u\times v', k\neq 1$$

$$\bullet \left(\sqrt[n]{u}\right)' = \frac{u'}{n\sqrt[n]{u^{n-1}}}, n \in \mathbb{N}, \text{ com } u > 0, \text{ se } n \text{ \'e par}$$

Derivadas das funções circulares

$$\bullet (\operatorname{sen}(\mathbf{u}))' = \mathbf{u}' \cos(\mathbf{u})$$

$$\bullet (\cos(u))' = -u' \operatorname{sen}(u)$$

$$\bullet (tg(u))' = \frac{u'}{\cos^2(u)}$$

$$\bullet \left(\cot g \left(u \right) \right)' = -\frac{u'}{\sin^2 \left(u \right)}$$

$$\bullet (\sec(u))' = u' tg(u) \sec(u)$$

$$\bullet (\operatorname{cosec}(u))' = -u'\operatorname{cotg}(u)\operatorname{cosec}(u)$$

Derivadas das funções circulares inversas

•
$$(\arcsin(u))' = \frac{u'}{\sqrt{1-u^2}}$$

$$\bullet \left(\operatorname{arc} \cos \left(\mathbf{u} \right) \right)' = -\frac{\mathbf{u}'}{\sqrt{1 - \mathbf{u}^2}}$$

•
$$\left(\operatorname{arctg}\left(\mathbf{u}\right)\right)' = \frac{\mathbf{u}'}{1+\mathbf{u}^2}$$

•
$$\left(\operatorname{arccotg}\left(\mathbf{u}\right)\right)' = -\frac{\mathbf{u}'}{1+\mathbf{u}^2}$$

<u>Derivadas das funções circulares</u> <u>hiperbólicas</u>

•
$$(\operatorname{senh}(u))' = u' \operatorname{cosh}(u)$$

$$\bullet \left(\cosh\left(\mathbf{u}\right)\right)' = \mathbf{u}' \mathrm{senh}\left(\mathbf{u}\right)$$

$$\bullet (tgh(u))' = \frac{u'}{\cosh^2(u)}$$

•
$$\left(\operatorname{cotgh}(u)\right)' = -\frac{u'}{\operatorname{senh}^2(u)}$$

<u>Derivadas das funções: exponencial e</u> logarítmica

$$\bullet \left(e^{u}\right)' = u' \times e^{u}$$

•
$$(a^u)' = u' \times a^u \times \ln(a)$$

$$\bullet \left(\ln\left(u\right)\right)' = \frac{u'}{u}$$

$$\bullet \left(\log_{a} \left(u \right) \right)' = \frac{u'}{u \times \ln\left(a \right)}$$

$$\bullet \left(u^{v}\right)' = v \times u^{v-1}u' + u^{v} \times v' \times \ln\left(u\right), \left(u > 0\right)$$

Derivada da função inversa de uma função

Se f é uma função invertível que admite derivada finita, não nula, num ponto a, então a função inversa f^{-1} é derivável em f(a)e

$$\left(f^{-1}\right)'\left(f(a)\right) = \frac{1}{f'(a)}.$$

De um modo geral em pontos correspondentes, tem-se:

$$\boxed{\left(f^{-1}\right)'(y) = \frac{1}{f'(x)}} \text{ com } y = f(x).$$

Derivada da função composta

Se g tem derivada finita num ponto a e se f é diferenciável no ponto g(a), então $f \circ g$ é derivável em a e

$$(f \circ g)'(a) = g'(a) \times f'[g(a)]$$

De um modo geral em pontos correspondentes, tem-se:

$$(f \circ g)'(x) = g'(x) \times f'[g(x)].$$

Derivadas sucessivas

Definição

Dada a função f, chama-se <u>derivada de ordem (n+1) de f</u> e representa-se por $f^{(n+1)}$, à derivada da derivada de ordem (n) de f, ou seja:

$$f^{(n+1)}(x) = (f^{(n)})'(x), n \in \mathbb{N}$$

TEOREMAS DE ROLLE, LAGRANGE E CAUCHY

Teorema de Rolle

Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b], diferenciável em [a,b] e f(a) = f(b), então existe pelo menos um ponto c pertencente ao intervalo [a,b[, tal que f'(c) = 0.

Simbolicamente:

$$\begin{cases} f \notin contínua \ em [a, b] \\ f \notin diferenciável \ em \]a, b[\\ f(a) = f(b) \end{cases} \Rightarrow \exists c \in \]a, b[: f'(c) = 0$$

Interpretação geométrica:

Geometricamente, o teorema de Rolle afirma que o gráfico de f admite pelo menos uma tangente horizontal num ponto interior de]a, b[.

Teorema de Lagrange ou Teorema do Valor Intermédio

Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e diferenciável em]a,b[então existe pelo menos um ponto c pertencente ao intervalo]a,b[, tal que $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Simbolicamente:

$$\left\{ \begin{array}{l} f \text{ \'e cont\'inua em } \left[a,b\right] \\ f \text{ \'e diferenci\'avel em } \left]a,b\right[\end{array} \right\} \Rightarrow \exists c \in \left]a,b\right[:f'(c) = \frac{f(b)-f(a)}{b-a} \right.$$

Interpretação geométrica:

$$A(a,f(a))$$
 $B(b,f(b))$

Declive de AB =
$$\frac{f(b)-f(a)}{b-a}$$
 e Declive de $t = f'(c)$

Existe pelo menos um ponto do gráfico no qual a tangente é paralela à secante, isto é,

$$f'(c) = \frac{f(b) - f(a)}{b - a} \Leftrightarrow \text{Declive de } t = \text{Declive de AB}$$

$$\Leftrightarrow AB//t$$

Geometricamente, o teorema de Lagrange garante que, entre os pontos do gráfico de abcissas a e b, há pelo menos um ponto desse gráfico onde a tangente é paralela à secante definida pelos pontos A(a, f(a)) e B(b, f(b)).

Teorema de Cauchy ou Teorema do Valor médio de Cauchy

Se $f:[a,b] \to \mathbb{R}$ e $g:[a,b] \to \mathbb{R}$ são duas funções contínuas em [a,b]e diferenciáveis em]a,b[e $g'(x) \neq 0, \forall x \in]a,b[$, então existe pelo menos um ponto c pertencente ao intervalo]a,b[, tal que $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

Simbolicamente:

<u>Regra de Cauchy</u> (Utilizada no levantamento de indeterminações dos tipos $\left(\frac{0}{0}\right)$ ou $\left(\frac{\infty}{\infty}\right)$)

Sejam f e g duas funções diferenciáveis num intervalo aberto I, tal que $g'(x) \neq 0$, $\forall x \in I$ e seja a um dos extremos de I. Se, quando x tende para a, f(x) e g(x) tendem para 0, ou para $+\infty$ ou para $-\infty$, e se

$$\text{existe } \lim_{x \to a} \frac{f^{\, \prime}(x)}{g^{\, \prime}(x)}, \text{ então existe } \lim_{x \to a} \frac{f\left(x\right)}{g\left(x\right)} \text{e tem-se } \lim_{x \to a} \frac{f\left(x\right)}{g\left(x\right)} = \lim_{x \to a} \frac{f^{\, \prime}(x)}{g^{\, \prime}(x)}.$$

Simbolicamente:

$$\begin{cases} f e g são diferenciáveis em I \\ g'(x) \neq 0, \ \forall x \in I \\ \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \text{ ou } +\infty \text{ ou } -\infty \end{cases}$$

$$\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Nota:

• A regra de Cauchy é ainda aplicável quando $x \to +\infty$ ou $x \to -\infty$.

Se a indeterminação não for do tipo $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ou do tipo $\begin{pmatrix} \infty \\ \infty \end{pmatrix}$, é possível transformá-la numa indeterminação de um daqueles tipos:

Indeterminação do tipo (0×∞)

Transforma-se numa indeterminação do tipo $\left(\frac{0}{0}\right)$ ou do tipo $\left(\frac{\infty}{\infty}\right)$, usando uma relação do tipo:

$$f(x) \times g(x) = \frac{f(x)}{\frac{1}{g(x)}} \left(\text{ou } \frac{g(x)}{\frac{1}{f(x)}} \right)$$

Indeterminação do tipo (∞×∞)

Transforma-se numa indeterminação do tipo $\left(\frac{0}{0}\right)$ ou do tipo $\left(\frac{\infty}{\infty}\right)$, usando uma relação do tipo:

$$f(x) - g(x) = f(x) \times g(x) \times \left[\frac{1}{g(x)} - \frac{1}{f(x)} \right] = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x) \times g(x)}}$$
ou do tipo

$$f(x) - g(x) = \log\left(e^{f(x) - g(x)}\right) = \log\left(\frac{e^{f(x)}}{e^{g(x)}}\right)$$

Indeterminações dos tipos $(1^{\circ}, 0^{\circ}, \infty^{\circ})$

Transforma-se numa indeterminação do tipo $(0 \times \infty)$, usando uma relação do tipo:

$$f\left(x\right)^{g(x)} = e^{\ln\left(f(x)^{g(x)}\right)} = e^{g(x)\ln\left(f(x)\right)}$$

e posteriormente numa indeterminação do tipo $\left(\frac{0}{0}\right)$ ou do tipo $\left(\frac{\infty}{\infty}\right)$.

<u>Regra de L'Hôpital</u> (Utilizada no levantamento de indeterminações do tipo $\left(\frac{0}{0}\right)$)

Sejam f e g duas funções que se anulam num ponto a de um intervalo I, em que estão definidas. Se $g(x) \neq 0$, $\forall x \in I \setminus \{a\}$ e f e g tiverem derivadas não conjuntamente infinitas no ponto a e se for $g'(a) \neq 0$,

então existe
$$\lim_{x \to a} \frac{f(x)}{g(x)} e \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$
.

Simbolicamente:

$$\begin{vmatrix} a \in I \\ f(a) = g(a) = 0 \\ g(x) \neq 0, \ \forall x \in I \setminus \{a\} \end{vmatrix} \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

Notas:

- Para se aplicar a regra de Cauchy, não se torna necessário que f(x) ou g(x) tenham derivada no ponto a mas apenas na vizinhança de a.
- Para aplicar a regra de L'Hôpital não é necessário que f (x) ou g (x) tenham derivada em pontos vizinhos de a.

REPRESENTAÇÃO GRÁFICA DE FUNÇÕES REAIS DE VARIÁVEL REAL

O estudo das funções resume-se geralmente em determinar:

- 1. O domínio;
- 2. Os pontos de intersecção com os eixos coordenados;
- 3. Os pontos de descontinuidade;
- 4. As simetrias do gráfico (em relação à origem e ao eixo dos yy);
- 5. As assíntotas do gráfico;
- 6. Os intervalos de crescimento e decrescimento; os máximos e os mínimos relativos;
- 7. O sentido da concavidade do gráfico; os pontos de inflexão.

> 1. Domínio

Ver página 10 e 11.

2. Pontos de intersecção com os eixos coordenados

Pontos de intersecção do gráfico com os eixos			
Eixo dos yy			
$\int y = 0$	$\int x = 0$		
$\int y = f(x)$	$\int y = f(x)$		

> 3. Pontos de descontinuidade

Ver página 26.

> 4. Simetrias

Ver página 10.

> 5. Assíntotas

Assíntotas						
Verticais (paralelas ao eixo yy)	Horizontais (paralelas ao eixo xx)	Oblíquas				
Diz-se que a recta de equação x=a, $a \notin D_f$, é uma <u>assíntota vertical do gráfico da função f</u> se: $\lim_{x \to a^+} f(x) = \pm \infty \text{ ou } \lim_{x \to a^-} f(x) = \pm \infty$	Diz-se que a recta de equação y=b, $b \in \mathbb{R}$, é uma <u>assíntota horizontal do gráfico da função f</u> se: $\lim_{x \to +\infty} f(x) = b \text{ ou } \lim_{x \to -\infty} f(x) = b$	Diz-se que a recta de equação $y=mx+b \ (m \neq 0)$ é uma $assintota$ oblíqua do gráfico da função f se: $ [\lim_{x \to \pm \infty} [f(x) - mx - b] = 0] $ Os valores de m e b são determinados a partir de: $ [m = \lim_{x \to \pm \infty} \frac{f(x)}{x} b = \lim_{x \to \pm \infty} [f(x) - mx]] $				

Posição da curva que representa a função f, em relação às assíntotas (oblíqua e horizontal (m=0))

- Se $\lim_{x \to +\infty} \left[f(x) mx b \right] = 0^+$ a curva que representa a função situa-se acima da assíntota.
- Se $\lim_{x \to +\infty} \left[f(x) mx b \right] = 0^-$ a curva que representa a função situa-se abaixo da assíntota.

> 6. Monotonia; extremos relativos

Seja $f: I \to \mathbb{R}$ uma função contínua em I e diferenciável no int(I). Então

- $f'(x) \ge 0$, $\forall x \in int(I) \Leftrightarrow f \notin \underline{crescente} \text{ em } I$;
- $f'(x) \le 0$, $\forall x \in int(I) \Leftrightarrow f \notin \underline{decrescente}$ em I.

Tem-se ainda

- f'(x) > 0, $\forall x \in int(I) \Rightarrow f \in estritamente crescente em I;$
- f'(x) < 0, $\forall x \in int(I) \Rightarrow f \in estritamente decrescente em I.$

Considerando $I = I_1 \cup I_2$

- f'(x) > 0, $\forall x \in I_1 \Rightarrow f$ é estritamente crescente em I_1
- f'(x) < 0, $\forall x \in I_2 \Rightarrow f$ é estritamente decrescente em I_2

	\mathbf{I}_{1}	I_2
f′	+	-
f	7	/

Definição

Chamam-se <u>pontos críticos ou de estacionariedade</u> de uma função f às raízes da sua derivada, isto é, aos pontos x tais que f'(x) = 0.

Definição

 $a \in D_f$ é <u>extremo relativo (máximo relativo ou mínimo relativo)</u> para a função f, num intervalo I, se f' muda de sinal em V_δ (a), $\forall \delta$

Sinal de f' em V_{δ} (a)			Natureza do ponto a	
x < a $x = a$ $x > a$			T (MOM2 COM MO POSSES M	
+	$f'(a) = 0$ ou $a \notin D_{f'}$	-	Máximo relativo	
-	$f'(a) = 0$ ou $a \notin D_{f'}$	+	Mínimo relativo	
+	$f'(a) = 0$ ou $a \notin D_{f'}$	+	Nem máximo relativo Nem mínimo relativo	
-	$f'(a) = 0$ ou $a \notin D_{f'}$	-	Nem máximo relativo Nem mínimo relativo	

> 7. Concavidades e pontos de inflexão

Seja $\,f:I\to\mathbb{R}\,$ uma função duas vezes diferenciável em I.

Se f''(x) > 0, $\forall x \in int(I)$ então <u>f tem concavidade voltada</u> para cima (convexa) em I.

Se f''(x) < 0, $\forall x \in int(I)$ então <u>f tem concavidade voltada</u> para baixo (côncava) em I.

Considerando $I = I_1 \cup I_2$.

 $f''(x) > 0, \forall x \in I_1 \Rightarrow f \text{ tem concavidade}$ voltada para cima em I_1 .

Se f''(x) < 0, $\forall x \in I_2 \Rightarrow f$ tem concavidade voltada para baixo em I_2 .

	I_1	I_2
f "	+	-
c		

Definição

 $a \in D_{_{f}} \, \acute{e} \, \underline{\textit{ponto de inflexão}} \, \text{para a função f, num intervalo I, se } \, f\,'' \, \text{muda de sinal em } \, V_{_{\delta}} \, \big(a \big), \, \, \forall \delta$

Sinal de f" em V _{\delta} (a)			Natureza do ponto a
x < a	x = a	•	
+	$f''(a) = 0$ ou $a \notin D_{f''}$	-	Ponto de inflexão
-	$f''(a) = 0$ ou $a \notin D_{f'}$	+	Ponto de inflexão
+	$f''(a) = 0$ ou $a \notin D_{f''}$	+	Não é ponto de inflexão
-	$f''(a) = 0$ ou $a \notin D_{f''}$	-	Não é ponto de inflexão