Russellsche Antinomie

EINE FREUNDLICHE EINLEITUNG

Omar Elshinawy, Herbst 2023

ÜBERBLICK

Was ist eine Menge?

MATHE BEIM FRISEUR

Russellsche Menge

Abschliessende Worte

- ► Eine Sammlung von Dingen
- $ightharpoonup K := \{x : x \text{ ist im Klassenzimmer}\}$ ist eine Menge
- ▶ Frau Eber $\in K$
- $ightharpoonup A := \{x \text{ ist eine natürliche Zahl } : x \le 5\}$
- Nenne ein $x \in A!$

- ► Eine Sammlung von Dingen
- $ightharpoonup K := \{x : x \text{ ist im Klassenzimmer}\}\ \text{ist eine Menge}$
- ▶ Frau Eber $\in K$
- $ightharpoonup A := \{x \text{ ist eine natürliche Zahl } : x \le 5\}$
- Nenne ein $x \in A!$

- ► Eine Sammlung von Dingen
- ightharpoonup K := $\{x : x \text{ ist im Klassenzimmer}\}$ ist eine Menge
- ightharpoonup Frau Eber $\in K$
- $ightharpoonup A := \{x \text{ ist eine natürliche Zahl } : x \le 5\}$
- Nenne ein $x \in A!$

- ► Eine Sammlung von Dingen
- $ightharpoonup K := \{x : x \text{ ist im Klassenzimmer}\}\ \text{ist eine Menge}$
- ▶ Frau Eber $\in K$
- $ightharpoonup A := \{x \text{ ist eine natürliche Zahl } : x \le 5\}$
- ightharpoonup Nenne ein $x \in A!$

- ► Eine Sammlung von Dingen
- ightharpoonup K := $\{x : x \text{ ist im Klassenzimmer}\}$ ist eine Menge
- ▶ Frau Eber $\in K$
- $ightharpoonup A := \{x \text{ ist eine natürliche Zahl } : x \le 5\}$
- ightharpoonup Nenne ein $x \in A!$

Steh auf wenn du einen Bart hast.

- ▶ Ich bin Omar
- ▶ Ich rasiere **nur** alle Männer

die sich selbst nicht rasiert!

Steh auf wenn du einen Bart hast.

- ▶ Ich bin Omar
- ▶ Ich rasiere **nur** alle Männer

die sich selbst nicht rasiert!

Steh auf wenn du einen Bart hast.

- ► Ich bin Omar
- ▶ Ich rasiere **nur** alle Männer

die sich selbst nicht rasiert!

Steh auf wenn du einen Bart hast.

- ▶ Ich bin Omar
- ▶ Ich rasiere **nur** alle Männer

die sich selbst nicht rasiert!

Steh auf wenn du einen Bart hast.

- ▶ Ich bin Omar
- ▶ Ich rasiere **nur** alle Männer

die sich selbst nicht rasiert!

Ja, dann

- ▶ Omar rasiert sich selbst
- Der Manner die sich selbst nicht rasiert
- ▶ ⇒ Omar soll sich selbst nicht rasieren.

Ja, dann

- ► Omar rasiert sich selbst
- ▶ Omar rasiert nur Männer die sich selbst nicht rasiert
- \triangleright \Longrightarrow Omar soll sich selbst nicht rasieren.

Ja, dann

- ► Omar rasiert sich selbst
- ▶ Omar rasiert nur Männer die sich selbst nicht rasiert
- ightharpoonup Omar soll sich selbst nicht rasieren.

Ja, dann

- ► Omar rasiert sich selbst
- ▶ Omar rasiert nur Männer die sich selbst nicht rasiert
- ightharpoonup Omar soll sich selbst nicht rasieren.

 \implies Widerspruch!

Nein, dann

- ▶ Omar rasiert sich selbst **nicht**.
- ightharpoonup Omar soll sich selbst rasieren.

 \implies Widerspruch!

Nein, dann

- ▶ Omar rasiert sich selbst **nicht**.
- ▶ Omar rasiert nur Männer die sich selbst nicht rasiert
- ightharpoonup Omar soll sich selbst rasieren.

Nein, dann

- ▶ Omar rasiert sich selbst **nicht**.
- ▶ Omar rasiert nur Männer die sich selbst nicht rasiert
- ightharpoonup Omar soll sich selbst rasieren.

Nein, dann

- ▶ Omar rasiert sich selbst **nicht**.
- ▶ Omar rasiert nur Männer die sich selbst nicht rasiert
- ightharpoonup Omar soll sich selbst rasieren.

Russellsche Menge

Wir definieren die Russellsche Menge,

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

Zum Beispiel,

$$\blacktriangleright \ S = \{1\} \implies \{1\} \notin \{1\} \implies S \in R. \ \textbf{Aber},$$

$$\{1\} \in \{0, \{1\}, 2\}$$

Frage: $ist R \in R$?

Russellsche Menge

Wir definieren die Russellsche Menge,

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

Zum Beispiel,

$$ightharpoonup S = \{1\} \implies \{1\} \notin \{1\} \implies S \in R.$$
 Aber,

$$\{1\} \in \{0, \{1\}, 2\}$$

Frage: $ist R \in R$?

Russellsche Menge

Wir definieren die Russellsche Menge,

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

Zum Beispiel,

$$ightharpoonup S = \{1\} \implies \{1\} \notin \{1\} \implies S \in R.$$
 Aber,

$$\{1\} \in \{0, \{1\}, 2\}$$

Frage: $ist R \in R$?

Nochmal,

 $R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$

- ▶ Fall I: $R \in R$, dann R ist eine Menge : $R \in R$ und das meint (per definition) $R \notin R$.
- ▶ Fall II: $R \notin R$, dann R ist eine Menge : $R \notin R$ und das meint (per definition) $R \in R$.

 \implies R ist ein Paradox. Also, ist Mathematik kaputt (?)

Nochmal,

 $R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$

- ▶ Fall I: $R \in R$, dann
 - R ist eine Menge : $R \in R$ und das meint (per definition) $R \notin R$.
- ▶ Fall II: $R \notin R$, dann R ist eine Menge : $R \notin R$ und das meint (per definition) $R \in R$.
 - \implies R ist ein Paradox. Also, ist Mathematik kaputt (?)

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

- ▶ Fall I: $R \in R$, dann R ist eine Menge : $R \in R$ und das meint (per definition) $R \notin R$.
- ▶ Fall II: $R \notin R$, dann R ist eine Menge : $R \notin R$ und das meint (per definition) $R \in R$.
 - \implies R ist ein Paradox. Also, ist Mathematik kaputt (?)

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

- ▶ Fall I: $R \in R$, dann R ist eine Menge : $R \in R$ und das meint (per definition) $R \notin R$.
- ▶ Fall II: $R \notin R$, dann R ist eine Menge : $R \notin R$ und das meint (per definition) $R \in R$.
 - \implies R ist ein Paradox. Also, ist Mathematik kaputt (?)

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

- ▶ Fall I: $R \in R$, dann R ist eine Menge : $R \in R$ und das meint (per definition) $R \notin R$.
- ▶ Fall II: $R \notin R$, dann R ist eine Menge : $R \notin R$ und das meint (per definition) $R \in R$.
 - \implies R ist ein Paradox. Also, ist Mathematik kaputt (?)

$$R \coloneqq \{x \text{ ist eine Menge } : x \notin x\}$$

- ▶ Fall I: $R \in R$, dann R ist eine Menge : $R \in R$ und das meint (per definition) $R \notin R$.
- ▶ Fall II: $R \notin R$, dann R ist eine Menge : $R \notin R$ und das meint (per definition) $R \in R$.
 - \implies R ist ein Paradox. Also, ist Mathematik kaputt (?)

- ► Ein faszinierendes Ergebnis
- Kontrovers; Mengetheorie ist der Grundlage der Mathematik
- ▶ Eine Geschichte der Mathematik
- ► Schlussfolgerung: Mathematik ist nicht vollständig

- ► Ein faszinierendes Ergebnis
- Kontrovers; Mengetheorie ist der Grundlage der Mathematik
- ► Eine Geschichte der Mathematik
- ► Schlussfolgerung: Mathematik ist nicht vollständig

- ► Ein faszinierendes Ergebnis
- Kontrovers; Mengetheorie ist der Grundlage der Mathematik
- ► Eine Geschichte der Mathematik
- ► Schlussfolgerung: Mathematik ist nicht vollständig

- ► Ein faszinierendes Ergebnis
- Kontrovers; Mengetheorie ist der Grundlage der Mathematik
- ► Eine Geschichte der Mathematik
- ► Schlussfolgerung: Mathematik ist nicht vollständig

- ► Ein faszinierendes Ergebnis
- Kontrovers; Mengetheorie ist der Grundlage der Mathematik
- ► Eine Geschichte der Mathematik
- ► Schlussfolgerung: Mathematik ist nicht vollständig

Danke! Fragen?

MATHE-CLUB

- Machen wir mehr im Mathe-Club
- Samstags um 14:00
- IRC Seminar II

Bis dann!