Yuliang(Leo) Chen

□ 805-637-4650 | @ yuc204@ucsd.edu | ♥ GitHub | ♥ Portfolio | ♥ Hanover, NH

EDUCATION

Dartmouth College, Hanover

Ph.D. Student in Computer Science

Hanover, New Hampshire

 $Sep \ 2025 - Jun \ 2030$

University of California, San Diego

M.S. in Data Science GPA: 3.97/4.00 San Diego, California Sep 2023 – Jun 2025

University of California, Santa Barbara

 $B.S.\ in\ Statistics-Data\ Science \mid B.S.\ in\ Mathematics$

GPA: 3.43/4.00

Santa Barbara, California

 $Sep\ 2018-Jun\ 2022$

Relevant coursework: Computer Vision, Natural Language Processing, Algorithm Design, Distributed Computing, Advanced Machine Learning, Probability Theory, Convex Optimization, Linear Algebra, Abstract Algebra

PUBLICATION

Toward Foundation Model for Multivariate Wearable Sensing of Physiological Signals Yunfei Luo, Yuliang Chen (Co-first author), Asif Salekin, Tauhidur Rahman.

MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements

Howon Ryu, Yuliang Chen (Co-first author), Yacun Wang, Andrea Z. LaCroix, Loki Natarajan, Yu Wang, Jingjing Zou.

EXPERIENCE

Graduate Student Researcher

San Diego, California

July 2024 – Present

- Implemented self-supervised learning algorithms to tackle cardiovascular disease research challenges.
- Constructed dashboards to expose representational behavior in Masked Image Modeling (MIM) models trained on synthesized dataset.
- Established theoretical guarantees for MIM models to ensure their robustness and effectiveness in downstream classification tasks.

Research Assistant

Advisor: Jingjing Zou

San Diego, California Mar 2024 – Present

Advisor: Tauhidur Rahman

- Developed a self-supervised learning algorithm to produce learned wearable signal representation for use in few-shot and zero-shot healthcare application.
- Proposed modality- and number-agnostic fusion for representation learning with arbitrary wearable signal input.
- Trained foundation models distributed across multiple GPUs on a Kubernetes-based cluster using large-scale, self-curated datasets.
- Researched fine-grained health acoustic event detection from audio.

Micro Ingredients

Montclair, California

Supply Chain Analyst

Oct 2022 – Sep 2023

- Led a team of three to implement and deploy a Random Forest model for demand forecasting, achieving 83% accuracy and improving product availability by 27%.
- Collaborated with software engineers to establish a robust database system using Amazon RDS Aurora.
- Developed an interactive Python-based Streamlit dashboard to provide data-driven insights for strategic decision-making.

E-StyTR2: Efficient Image Style Transfer with Transformers \mid *GitHub* Spring 2024

- Developed efficient attention-based fusion for style transfer.
- Evaluated common neural style transfer models (CycleGAN, Pix2Pix, Stable Diffusion, StyTR2) using Fréchet inception distance (FID).

Vivid Panels: Deep Neural Networks for Manga Colorization | GitHub Spring 2024

- Researched GAN- and diffusion-based generative models for large-scale image inpainting and colorization.
- Developed a CRAFT-based manga panel extractor to bridge the distribution gap for effective use of a pre-trained CycleGAN backbone.

VitT: Vision-Topological Transformer for Medical Image Classification \mid GitHub Spring 2024

- Researched topological tools and algorithm (persistent homology and persistence diagrams) for characterizing feature under complex data (image, graph, point sets).
- Designed a dual-branch topology-transformer framework for empirical improvement of medical image classification.

Foundation Model On Retinal Images using Masked Autoencoders | GitHub Fall 2023, Winter 2024

- Curated large-scale (100k+) medical image datasets for foundation model training and evaluation.
- Developed a foundation model for fundus images using Masked Autoencoders (MAE) for medical image segmentation and classification.

Image-to-Image Retrieval with CLIP | GitHub

Winter 2024

- Evaluated common vision models (ResNets, Inception, VGG) for image representation extraction.
- Developed an image-to-image retrieval algorithm using the CLIP image encoder to enhance semantic retrieval.

SKILLS

Languages: Python, SQL, R, C/C++

Technologies: PyTorch, TensorFlow, Kubernetes, Docker, Ray, Git, Jupyter Notebook, OpenCV, MySQL