

PANDAS DATA ANALYSIS PROJECT

Prepared by:

AAKASH V DEVAN

INTRODUCTION

The dataset used in this project focuses on analyzing various aspects of health and fitness, including lifestyle habits, medical conditions, and demographic information. This dataset provides a comprehensive view of individuals' health-related metrics, helping to uncover patterns and insights into how different factors influence physical fitness and health conditions like hypertension and diabetes.

ABOUT DATASET

Dataset Includes:

A Rows: 14590

❖ Columns: 13

> df.dtypes:

ID	int64
Sex	object
Age	int64
Height	float64
Weight	float64
Hypertension	object
Diabetes	object
BMI	float64
Level	object
Fitness Goal	object
Fitness Type	object
Exercises	object
Diet	object

> df.shape:

(14589, 13)

Key Features:

Demographics:

- Age: Age of individuals, which allows grouping into age categories for trend analysis.
- Sex: Gender information, enabling comparisons of health and fitness goals between males and females.
- Height: Height of the Person
- Weight: Weight of the person

Health Metrics:

- BMI (Body Mass Index): A crucial indicator of body fat based on height and weight, which is central to understanding health risks.
- Level: Categorized based on the BMI
- Hypertension: Information on whether an individual has hypertension (Yes/No).
- Diabetes: Information on whether an individual has diabetes (Yes/No).

Lifestyle and Fitness:

- Fitness Goal: Describes the primary objective of an individual, such as weight loss, muscle gain, or endurance improvement.
- Exercises: Lists recommended or followed exercises, providing insights into popular fitness routines.
- Fitness Type: Specifies the fitness category (e.g., cardio, strength training, or flexibility).
- Diet: Diet plan Recommendation

OBJECTIVES

The primary objective of this project is to analyze the provided health and fitness dataset to extract meaningful insights, identify patterns, and generate actionable recommendations. The project aims to investigate the relationship between Body Mass Index (BMI) and health conditions like hypertension and diabetes, identifying critical BMI thresholds that indicate higher risks. It also seeks to examine how fitness goals vary across different demographics, such as age, gender, and health conditions, to highlight common objectives for various groups. Furthermore, the project explores the types and frequencies of exercises recommended or followed, identifying popular activities and their alignment with specific goals or health conditions.

- A better understanding of how lifestyle and health are interlinked.
- Enhanced strategies for promoting fitness and preventing chronic conditions.

DATA CLEANING

df.isna().sum()

ID	0
Sex	0
Age	0
Height	0
Weight	0
Hypertension	0
Diabetes	0
BMI	0
Level	0
Fitness Goal	0
Fitness Type	0
Exercises	0
Diet	0

There is no NULL Values

df.duplicated().sum()

0

There is no Duplicates

Drop Unnecessary Rows & Columns

From Diet Column, found that some rows contain 'Diet' are values

df['Diet'].value_counts()

- 1		
	Vegetables: (Garlic, Mushroom, Green Papper, Icebetg Lettuce); Protein Intake: (Baru Nuts, Beech Nuts, Hemp Seeds, Cheese Spandwich); Juice: (Apple Juice, Mango juice, and Beetroot juice)	5038
	Vegetables: (Broccoli, Carrots, Spinach, Lettuce, Onion); Protein Intake: (Cheese, Cattoge cheese, Skim Milk, Law fat Milk, and Baru Nuts); Juice: (Fruit Juice, Aloe vera juice, Cold-pressed juice, and Watermelon juice)	2507
	Vegetables: (Garlic, Roma Tomatoes, Capers, Green Papper, and Iceberg Lettuce); Protein Intake: (Cheese Sandwich, Baru Nuts, Beech Nuts, Squash Seeds, Mixed Teff, peanut butter, and jelly sandwich); Juice: (Apple juice, beetroot juice, and mango juice)	1688
	Vegetables: (Mixed greens, cherry tomatoes, cucumbers, bell peppers, carrots, celery, bell peppers);Protein Intake: (Chicken, fish, tofu, or legumes); Juice : (Green juice,kale, spinach, cucumber, celery, and apple)	1100
	Vegetables: (Tomatoes, Garlic, leafy greens, broccoli, carrots, and bell peppers); Protein Intake: (poultry, fish, tofu, legumes, and low-fat dairy products); Juice: (Apple juice, beetroot juice and mango juice)	844
	Vegetables: (Garlic, Roma Tomatoes, Capers and Iceberg Lettuce); Protein Intake: (Cheese Standwish, Baru Nuts, Beech Nuts, Squash Seeds, and Mixed Teff); Juice: (Apple juice, beetroot juice and mango juice)	844
	Vegetables: (Garlic, mushroon, green papper and water chestnut);Protein Intake: (Baru Nuts, Beech Nuts, and black walnut); Juice : (Apple juice, Mango, and Beetroot Juice)	844
	Vegetables: (Garlic, mushroon, green papper);Protein Intake: (Baru Nuts, Beech Nuts, and Hemp Seeds); Juice: (Apple juice, Mango, and Beetroot Juice)	844
	Vegetables: (Carrots, Sweet Potato, and Lettuce); Protein Intake: (Red meats, poultry, fish, eggs, dairy products, legumes, and nuts); Juice: (Fruit juice, watermelon juice, carrot juice, apple juice and mango juice)	422
	Vegetables: (Carrots, Sweet Potato, Lettuce); Protein Intake: (Red meats, poultry, fish, eggs, dairy products, legumes, and nuts); Juice: (Fruit juice, watermelon juice, carrot juice, apple juice and mango juice)	422
	Diet	36

There are 36 rows just contains '*Diet*' as Values So Remove all rows which is equal to '*Diet*'

> df=df[df['Diet']!='Diet']

Vegetables: (Garlic, Mushroom, Green Papper, Icebetg Lettuce); Protein Intake: (Baru Nuts, Beech Nuts, Hemp Seeds, Cheese Spandwich); Juice: (Apple Juice, Mango juice,and Beetroot juice)	5038
Vegetables: (Broccoli, Carrots, Spinach, Lettuce, Onion); Protein Intake: (Cheese, Cattoge cheese, Skim Milk, Law fat Milk, and Baru Nuts); Juice: (Fruit Juice, Aloe vera juice, Cold-pressed juice, and Watermelon juice)	2507
Vegetables: (Garlic, Roma Tomatoes, Capers, Green Papper, and Iceberg Lettuce); Protein Intake: (Cheese Sandwich, Baru Nuts, Beech Nuts, Squash Seeds, Mixed Teff, peanut butter, and jelly sandwich); Juice: (Apple juice, beetroot juice, and mango juice)	1688
Vegetables: (Mixed greens, cherry tomatoes, cucumbers, bell peppers, carrots, celery, bell peppers);Protein Intake: (Chicken, fish, tofu, or legumes); Juice : (Green juice,kale, spinach, cucumber, celery, and apple)	1100
Vegetables: (Tomatoes, Garlic, leafy greens, broccoli, carrots, and bell peppers); Protein Intake: (poultry, fish, tofu, legumes, and low-fat dairy products); Juice: (Apple juice, beetroot juice and mango juice)	844
Vegetables: (Garlic, Roma Tomatoes, Capers and Iceberg Lettuce); Protein Intake: (Cheese Standwish, Baru Nuts, Beech Nuts, Squash Seeds, and Mixed Teff); Juice: (Apple juice, beetroot juice and mango juice)	844
Vegetables: (Garlic, mushroon, green papper and water chestnut);Protein Intake: (Baru Nuts, Beech Nuts, and black walnut); Juice : (Apple juice, Mango, and Beetroot Juice)	844
Vegetables: (Garlic, mushroon, green papper);Protein Intake: (Baru Nuts, Beech Nuts, and Hemp Seeds); Juice: (Apple juice, Mango, and Beetroot Juice)	844
Vegetables: (Carrots, Sweet Potato, and Lettuce); Protein Intake: (Red meats, poultry, fish, eggs, dairy products, legumes, and nuts); Juice: (Fruit juice, watermelon juice, carrot juice, apple juice and mango juice)	422
Vegetables: (Carrots, Sweet Potato, Lettuce); Protein Intake: (Red meats, poultry, fish, eggs, dairy products, legumes, and nuts); Juice: (Fruit juice, watermelon juice, carrot juice, apple juice and mango juice)	422

> df.drop(columns='ID',inplace=True)

The ID Column is not Useful for my analysis. So remove that Column

In my Dataset, The Diet column contains 3 category of diet plans:

['Vegetables','Protein Intake','Juice ']

df['Diet'].value_counts().head(1)

Using Feature Extraction divide the Diet Column into 3 Columns ["Vegetables", 'Protein Intake", 'Juice"]

- ➤ df['Vegetables'] = df['Diet'].str.extract(r'Vegetables:\s*\((.*?)\)')
- df['Protein_Intake'] = df['Diet'].str.extract(r'Protein Intake:\s*\((.*?)\)')
- df['Juice'] = df['Diet'].str.extract(r'Juice:\s*\((.*?)\)')

Then Remove the Diet Column

df.drop(columns='Diet',inplace=True)

There are some rows which has same meaning but the rows are different

df['Juice'].value_counts()

The 3rd and 4th rows are same values but it treated as 2 rows because of an extra comma(,) occurred.

'Vegetables & Juice' columns are face these issues. To solve this problem use Replace function.

- > df['Vegetables']=df['Vegetables'].replace('Carrots, Sweet Potato, and Lettuce','Carrots, Sweet Potato, Lettuce')
- df['Juice']=df['Juice'].replace('Apple juice, beetroot juice, and mango juice','Apple juice, beetroot juice and mango juice')

OUTLIER DETECTION

plt.boxplot(df['Height'])
plt.title("Boxplot of Height")
plt.show()

To remove Outliers:

To Reset Index:

df.reset_index(inplace=True,drop=True)

DATA ANALYSIS

Gender Distribution:

> gender_distribution=df['Sex'].value_counts()
gender_distribution

SEX	COUNT	
Male	9164	
Female	5147	

- There are 9164 Males and 5147 Females are Doing Workouts
- Males are doing workouts more

Age Distribution:

age_distribution=df['Age'].describe()
age_distribution

	AGE
count	14311.00
mean	39.54084
std	13.28198
min	18.00000
25%	28.00000
50%	39.00000
75%	51.00000
max	63.00000

- The Age group are in between 18-63
- From Age group of 18-25 was doing more workout and second was 25-35
- Around Age group 40-48 was doing less workout

BMI Distribution Across Age Groups:

age_groups=pd.cut(df['Age'],bins=[10,20,30,40,50,60,70],labels=["1020","20-30","30-40","40-50","50-60","60-70"])
df['Age Group']=age_groups
bmi_by_age_group=df.groupby('Age Group')['BMI'].describe()
bmi_by_age_group

Age Group	count	mean	std	min	25%	50%	75%	max
10-20	997.0	24.572	6.25	14.88	19.27	25.15	29.32	39.56
20-30	3520.0	24.277	6.52	9.52	19.05	25.39	28.60	44.20
30-40	3140.0	24.026	6.48	9.62	18.71	25.10	28.72	44.73
40-50	2893.0	24.017	6.26	10.49	18.79	25.18	28.41	39.76
50-60	2948.0	24.261	5.98	13.15	19.16	25.15	29.78	38.59
60-70	813.0	24.007	6.11	14.35	18.56	24.93	29.00	35.86

- 20-30 has the highest count
- If the BMI is in between 18.5 24.9 then we considered as Normal. From this understood that most of them have not normal BMI

Proportion of Hypertension and Diabetes:

hypertension_counts=df['Hypertension'].value_counts()
diabetes_counts=df['Diabetes'].value_counts()
print("\nHypertension Counts:\n", hypertension_counts)
print("\nDiabetes Counts:\n", diabetes_counts)

Hypertension Counts:

Hypertension

No 7694

Yes 6617

Name: count, dtype: int64

Diabetes Counts:

Diabetes

No 7694

Yes 6617

Name: count, dtype: int64

Key Insights:

- Persons with no Diabetes and Hypertension are more
- But above 80% have Diabetes and Hypertension

Correlation Between BMI and Health Conditions:

	BMI	Hypertension	Diabetes
BMI	1.0000	-0.0278	-0.0275
Hypertension	-0.0278	1.0000	0.0698
Diabetes	-0.0275	0.0698	1.0000

Fitness Goals by Gender:

fitness_goals_by_gender=df.groupby(['Sex','Fitness
Goal']).size().reset_index(name='Count')
fitness_goals_by_gender

	Sex	Fitness Goal	Count
0	Female	Weight Gain	2578
1	Female	Weight Loss	2571
2	Male	Weight Gain	4349
3	Male	Weight Loss	4815

- In Males more are try to loss weight
- Females are approximately equal in both gain and loss. But more are try to gain weight

Fitness Type Variation with Age:

fitness_type_by_age=df.groupby(['Age Group','Fitness
Type']).size().reset_index(name='Count')
fitness_type_by_age

	Age Group	Fitness Type	Count
0	10-20	Cardio Fitness	500
1	10-20	Muscular Fitness	497
2	20-30	Cardio Fitness	1857
3	20-30	Muscular Fitness	1663
4	30-40	Cardio Fitness	1621
5	30-40	Muscular Fitness	1519
6	40-50	Cardio Fitness	1480
7	40-50	Muscular Fitness	1413
8	50-60	Cardio Fitness	1516
9	50-60	Muscular Fitness	1432
10	60-70	Cardio Fitness	412
11	60-70	Muscular Fitness	401

- Most of them are doing Cardio Fitness and they are in the age group of 20-30
- 60-70 Age groups do less Muscular Fitness Workouts.
- Also they are less is Cardio Fitness

Most Recommended Vegetables and Proteins:

```
vegetable_recommendations = Counter(", ".join(df['Vegetables']).split(",
    "))
vegetable_freq_table=
pd.DataFrame.from_dict(vegetable_recommendations,
    orient="index").reset_index()
vegetable_freq_table.columns=["Vegetable","Frequency"]
```

vegetable_freq_table.sort_values(by="Frequency",ascending=
False,inplace=True)
vegetable_freq_table.reset_index(inplace=True,drop=True)
vegetable_freq_table

Key Insights:

- Garlic is most used vegetable
- Green Papper, Icebetg Lettuce and Mushroom also Recommended

```
protein_recommendations = Counter(",
    ".join(df['Protein_Intake']).split(", "))
    protein_freq_table =

pd.DataFrame.from_dict(protein_recommendations,
    orient="index").reset_index()

protein_freq_table.columns = ["Protein", "Frequency"]

protein_freq_table.sort_values(by="Frequency", ascending=False, inplace=True)

protein_freq_table.reset_index(inplace=True,drop=True)

protein_freq_table
```


- Beech Nuts and Baru Nuts are mostly use proteins
- Cattoge cheese was used less

TOP 10 WORKOUTS:

Key Insights:

- Squats, Deadlifts, Bench Presses, overhead presses are Highly recommended Workouts
- Yoga has less demand

Average BMI by Age Group and Gender:

> average_bmi_table=df.groupby(['Age Group','Sex'])['BMI'].mean().reset_index(name='Count') average_bmi_table

Relationship Between Weight and Height:

Pie-Plot of BMI Level:

Classified by BMI

Key Insights:

- Overweight are more
- 25% are Normal BMI

CONCLUSION

This analysis provides valuable insights into the relationship between health, fitness, and demographic factors based on the given dataset. The study highlights the importance of monitoring BMI and its strong association with health conditions like hypertension and diabetes. By categorizing individuals into age groups and fitness goals, it was possible to observe trends in exercise preferences and health conditions across different demographics.

The findings also emphasize the need for targeted fitness programs and lifestyle interventions, especially for groups at higher risk of chronic conditions. For example, age groups with higher BMIs may benefit from tailored exercise recommendations to lower their risk of hypertension and diabetes. Additionally, differences in fitness goals between genders and age groups suggest that health professionals should consider these factors when designing fitness plans.

- ➤ Doing Workout Mostly in the Age Group of 20-30
- Males are more number on doing workout
- Most of them not have the normal BMI
- > Squats, Deadlifts, Bench Presses, overhead presses are Highly recommended Workouts