SHOW ALL WORK. Justify your answers!

Simplify your answers. Give exact answers whenever possible.

PART I: Answer all 4 of the following questions worth 24 points each.

- 1. Do the following.
 - (a) State the limit definition of the derivative of f at x.
 - (b) Use the limit definition in part (a) to show that the derivative of $2x^2 + 7x$ is 4x + 7.
- 2. Find the slope of the tangent line to the function $f(x) = \frac{x^2}{x+1}$ at the point $(1, \frac{1}{2})$.
- 3. The interval [1, 8] is partitioned into n subintervals $[x_{k-1}, x_k]$ for k = 1, ..., n, each of width Δx . Choose any x_k^* such that $x_{k-1} \leq x_k^* \leq x_k$. Let the function f be continuous over [1, 8]. Do the following.
 - (a) State the limit definition of $\int_{1}^{8} f(x) dx$.
 - (b) Estimate the integral in (a) if $f(x) = x^2$ using a Riemann sum with n = 4 subintervals of equal width and sample points $x_k^* = x_k$ for k = 1, 2, 3, 4.
 - (c) Sketch $f(x) = x^2$ and the rectangles whose area is the Reimann sum in (b). Use this sketch to explain why the sum in (b) overestimates the value of the integral in (a) when $f(x) = x^2$.
- 4. Evaluate each of the following integrals.

(a)
$$\int \frac{x^3 + x}{x^2} dx$$

(b)
$$\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + 4x \right) dx$$

PART II: Answer any 8 of the following questions worth 18 points each.

5. Let f be the function defined by

$$f(x) = \begin{cases} -2x^2 + 1 & , x < 2 \\ 3x - 13 & , x \ge 2 \end{cases}.$$

- (a) Evaluate $\lim_{x\to 2^-} f(x)$, $\lim_{x\to 2^+} f(x)$, and $\lim_{x\to 2} f(x)$.
- (b) Is f continuous at 2? Use the definition of continuity to justify your answer.
- (c) If f differentiable at 2? Show the work that leads to your conclusion.
- 6. Let $f(x) = \frac{4x}{e^x e}$. Do the following.
 - (a) Evaluate the limits : $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to -\infty} f(x)$.
 - (b) State the equation(s) of any horizontal and/or vertical asymptote(s) to the graph y = f(x). Justify each answer with a limit statement.

(continued on the next page)

- 7. Find $\frac{dy}{dx}$ for each of the following.
 - $(a) \quad y = \sin^2 x^2$
- $(b) y^4 + xy = 5$
- 8. Do the following.
 - (a) Determine the linearization of $f(x) = \ln x$ about the number e.
 - (b) Using your answer from part (a), along with 2.718 as an approximation for e, approximate $\ln 3$ to 3 decimal places.
- 9. A 10 foot ladder is leaning against a wall that is perpendicular to the level floor. Let θ be the angle between the bottom of the ladder and the floor. Do the following.
 - (a) If the bottom of the ladder is being pushed toward the wall at the constant rate of 6 inches per second, how fast is θ increasing when the ladder is 2 feet from the wall?
 - (b) Show that the area of the triangle formed by the ladder, the wall and the floor is $A = 25 \sin 2\theta$. You may use the identity $\sin 2\theta = 2 \cos \theta \sin \theta$.
 - (c) Find the largest possible area of the triangle in (b). Justify your answer.
- 10. Let $f(x) = (x^2 4)^3$. Do the following.
 - (a) Find the maximum value and the minimum value of f on the interval [-2,3].
 - (b) For what value of c such that $-2 \le c \le 3$ does f attain its maximum value?
- 11. Let $f(x) = k \ln(x^2 + 1) + 4$, where k < 0. Do the following.
 - (a) Find the critical numbers of f, and make a sign chart for f'(x).
 - (b) Find the open interval(s) on which f is increasing and the open interval(s) on which f is decreasing. Justify each answer.
 - (c) Find the value of x where f has a local extreme value, and classify this extrema as a local maximum or minimum. Justify your answer.
- 12. The velocity of a particle traveling along a straight line is given by $v(t) = t^2 2t 3$ for $2 \le t \le 4$.
 - (a) Find the acceleration of the particle at the time when the particle is at rest.
 - (b) Find the total distance traveled by the particle over the time interval $2 \le t \le 4$.
- 13. If $F(x) = \int_2^x \sqrt{3t^2 + 1} dt$, find F(2), F'(2), and F''(2).
- 14. Integrate the following.

(a)
$$\int_0^2 (x-1)e^{(x-1)^2} dx$$
 (b) $\int \frac{\cos(\ln x)}{x} dx$

(end of exam)