Übungen zu Diskrete Wahrscheinlichkeitstheorie

Dieses Blatt ist am 15. Juni bis 10:15 abzugeben und wird am 15./16. Juni besprochen.

Beachten Sie: Alle Ergebnisse sind zu begründen!

Aufgabe 6.1

Sei X_1, X_2, \ldots eine Folge von unabhängigen (diskreten) Zufallsvariablen. Wir definieren für jedes $n \geq 1$ die Zufallsvariable $S_n = X_1 + \cdots + X_n$. In der Vorlesung wurde für den Fall, dass die X_i identisch verteilt sind, das sog. Schwache Gesetz der Großen Zahlen bewiesen, d.h., für alle $\delta > 0$ gilt, dass

$$\Pr\left[\left|\frac{S_n}{n} - \mathbb{E}X_1\right| \le \delta\right] \text{ gegen 1 konvergiert für } n \to \infty.$$

Wenn die X_i verschieden verteilt sind, erfüllen die X_i das Schwache Gesetz der Großen Zahlen nicht unbedingt.

Zeigen Sie: Wenn $\Pr[X_i = 2^i - 1] = \Pr[X_i = -(2^i - 1)] = \frac{1}{2}$, dann erfüllen die X_i das Schwache Gesetz nicht und es gilt:

$$\Pr\left[\left|\frac{S_n}{n}\right| \ge 1\right] = 1 \quad \text{ für alle } n \ge 1.$$

Aufgabe 6.2 1P+1P+1P

Sei X eine stetige Zufallsvariable mit Wertebereich [-1,1] und einer Dichte f_X der Form

$$f_X(x) = \begin{cases} ax + b & \text{wenn } |x| < 1\\ 0 & \text{sonst} \end{cases}$$

- (a) Zeigen Sie: b = 1/2.
- (b) Zeigen Sie: $-1/2 \le a \le 1/2$.
- (c) Zeigen Sie: $\mathbb{E}X = \frac{2}{3}a$ und damit auch $-1/3 \le \mathbb{E}X \le 1/3$.

Aufgabe 6.3

Sei X eine beliebige stetige Zufallsvariable. Zeigen Sie, dass die Funktion

$$\phi(a) = \mathbb{E}[(X - a)^2]$$

ihr Minimum bei $a = \mathbb{E}X$ annimmt.

Hinweis: Leiten Sie z.B. die Funktion nach a ab.

Aufgabe 6.4 2P+2P+2P

Die Lebensdauer T einer Energiesparlampe hat die folgende (mit $\lambda > 0$ parametrisierte) Dichte:

$$f_T(t) = \begin{cases} \lambda^2 t e^{-\lambda t} & t \ge 0\\ 0 & t < 0 \end{cases}$$

- (a) Zeigen Sie, dass für alle $\lambda > 0$ die Funktion f_T tatsächlich eine Dichte ist, d.h., dass $\int_{-\infty}^{\infty} f_T(t) \ dt = 1$ gilt.
- (b) Berechnen Sie $\Pr[T \leq \frac{4}{\lambda}]$.
- (c) Berechnen Sie $\mathbb{E}T$ in Abhängigkeit von λ .

Aufgabe 6.5 1P + 2P + 2P

(a) Es sei Ω eine Ergebnismenge. Weiterhin sei eine Menge $\mathcal E$ von Ereignissen gegegeben (d.h., $\mathcal E\subseteq 2^\Omega$). Wir nehmen an, dass \mathcal{E} gerade die Ereignisse enthält, an denen wir prinzipiell interessiert sind. Wir suchen daher eine σ -Algebra \mathcal{A} über Ω mit $\mathcal{E} \subseteq \mathcal{A}$. Dies wirft die Frage auf, ob es eine kleinste σ -Algebra über Ω , die \mathcal{E} enthält. Hierfür definiert man:

$$\sigma_{\Omega}(\mathcal{E}) := \bigcap \{ \mathcal{A} \mid \mathcal{A} \text{ ist } \sigma\text{-Algebra "uber } \Omega \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}.$$

Zeigen Sie, dass $\sigma_{\Omega}(\mathcal{E})$ eine σ -Algebra über Ω ist mit $\mathcal{E} \subseteq \sigma_{\Omega}(\mathcal{E})$, und für jede andere σ -Algebra über Ω mit $\mathcal{E} \subseteq \mathcal{A}$ gilt $\sigma_{\Omega}(\mathcal{E}) \subseteq \mathcal{A}$.

Bemerkungen:

- Man nennt $\sigma_{\Omega}(\mathcal{E})$ auch die kleinste von \mathcal{E} erzeugte σ -Algebra über Ω .
- Wenn es auf $\sigma_{\Omega}(\mathcal{E})$ kein W'keitsmaß gibt, so kann es auch auf keiner anderen σ -Algebra über Ω , die \mathcal{E} enthält, ein W'keitsmaß geben.
- Die Borelschen Mengen über \mathbb{R} sind gerade die kleinste σ -Algebra, die von den geschlossenen Intervallen erzeugt
- Die Borelschen Mengen $\mathcal{B}(\mathbb{R}^2)$ über \mathbb{R}^2 sind definiert durch

$$\mathcal{B}(\mathbb{R}^2) := \sigma_{\mathbb{R}^2}(\{[a,b] \times [c,d] \mid a,b,c,d \in \mathbb{R} \land a < b \land c < d\}).$$

- (b) Zeigen Sie, dass die Menge $\{(x,y) \in \mathbb{R}^2 \mid x+y \leq 1\}$ in $\mathcal{B}(\mathbb{R}^2)$ enthalten ist.
- (c) Zeigen Sie, dass die Menge $K_1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ in $\mathcal{B}(\mathbb{R}^2)$ enthalten ist.

Aufgabe 6.6 Unkorrigierte Zusatzaufgabe

0P

Sei X_1, X_2, \ldots eine Folge von unabhängigen (diskreten) Zufallsvariablen mit $\mathbb{E} X_i = 0$ für alle $i \in \{1, 2, \ldots\}$. Wir definieren für jedes $n \geq 1$ die Zufallsvariable $S_n = X_1 + \cdots + X_n$. In der Vorlesung wurde für den Fall, dass die X_i identisch verteilt sind, das sog. Schwache Gesetz der Großen Zahlen bewiesen, d.h., für alle $\delta > 0$ gilt, dass

$$\Pr\left[\left|\frac{S_n}{n}\right| \le \delta\right] \text{ gegen 1 konvergiert für } n \to \infty.$$

 $\Pr\left[\left|\frac{S_n}{n}\right| \leq \delta\right] \text{ gegen 1 konvergiert für } n \to \infty.$ Tatsächlich gilt für identisch verteilte X_i aber sogar das (schwerer zu beweisende) $Starke\ Gesetz\ der\ Großen\ Zahlen,\ d.h.$

$$\Pr\bigg[\frac{S_n}{n} \text{ konvergiert gegen 0 für } n \to \infty\bigg] = 1$$

Ziel der Aufgabe ist zu sehen, dass das nicht dasselbe ist.

 ${\it Hinweis}$: Alle Teilaufgaben können unabhängig voneinander gelöst werden.

Wir betrachten nun (nicht identisch verteilte) X_i mit der Dichte

$$\Pr[X_i = i] = \Pr[X_i = -i] = \frac{1}{2i \log_2 i}, \quad \Pr[X_i = 0] = 1 - \frac{1}{i \log_2 i} \quad \text{für } i \ge 2$$

und $\Pr[X_1 = 0] = 1$. In den folgenden drei Teilaufgaben zeigen wir, dass diese X_i das Schwache Gesetz erfüllen

(a) Zeigen Sie:

$$\operatorname{Var}\left[\frac{S_n}{n}\right] = \frac{1}{n^2} \cdot \sum_{i=2}^n \frac{i}{\log i}$$

(b) Verwenden Sie (a), um zu zeigen, dass Var $\left[\frac{S_n}{n}\right]$ gegen 0 konvergiert für $n\to\infty$.

Hinweis: Betrachten Sie nur Quadratzahlen n und zerlegen Sie die Summe in $\sum_{i=2}^{\sqrt{n-1}}$ und $\sum_{i=2}^{n}$.

(c) Verwenden Sie (b) und die Chebyshev-Ungleichung, um zu zeigen, dass die X_i das Schwache Gesetz erfüllen.

Im Rest der Aufgabe zeigen wir, dass diese X_i das Starke Gesetz **nicht** erfüllen.

(d) Betrachten Sie eine beliebige Folge A_1,A_2,\ldots unabhängiger Ereignisse mit $\Pr[A_i]=a_i$. Geben Sie einen Ausdruck für \Pr ["Kein A_i mit $i \ge r$ geschieht"] an und benutzen Sie anschließend die Ungleichung $1 - x \le e^{-x}$, um zu zeigen:

$$\Pr[\text{"Kein } A_i \text{ mit } i \geq r \text{ geschieht"}] \leq e^{-\sum_{i=r}^{\infty} a_i}$$

- (e) Zeigen Sie mit (d) folgende Version des Borel-Cantelli-Lemmas: Wenn $\sum_{i=1}^{\infty} a_i$ divergiert, dann ist Pr["Nur endlich viele A_i geschehen"] = 0.
- Sei nun A_i das Ereignis " $|X_i| \geq i$ ". Geben Sie $\Pr[A_i] = a_i$ an und zeigen Sie mit dem Integralkriterium (siehe Wikipedia), dass $\sum_{i=1}^{\infty} a_i$ divergiert. Mit (e) folgt dann also $Pr["Nur endlich viele A_i geschehen"] = 0.$
- (g) Zeigen Sie mit (f), dass die X_i das Starke Gesetz nicht erfüllen, indem Sie zeigen:

$$\Pr\left[\frac{S_n}{n} \text{ konvergiert gegen 0 für } n \to \infty\right] = 0$$

 $\Pr\left[\frac{S_n}{n} \text{ konvergiert gegen 0 für } n \to \infty\right] = 0$ $\textit{Hinweis: Angenommen, } \frac{S_n}{n} \to 0. \text{ Dann folgt } \frac{X_n}{n} \to 0 \text{ wegen } \frac{X_n}{n} = \frac{S_n}{n} - \frac{n-1}{n} \cdot \frac{S_{n-1}}{n-1}. \text{ Setzen Sie von hier fort.}$