Optimization for Machine Learning (Final Exam)

Assignment date: Nov 24 Due date: Dec 12 (noon)

1. (6 points) Consider the following finite sum optimization problem

$$\frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - w^{\top} x_i y_i)^2 + \frac{\lambda}{2} ||w||_2^2,$$

where $x_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$.

- (1 points) Derive the dual formulation, as in the SDCA procedure.
- (1 point) Write down the formula for closed form solution for SDCA (Option I of Algorithm 11.1).
- (1 point) Write down the dual free SDCA update rule for $\Delta \alpha_i$ in Algorithm 14.3.
- (1 point) Write down the SGD update rule.
- (2 points) Implement the three methods (SDCA, dual-free SDCA, SGD) in prob1() of progtemplate.py, and plot the convergence curves (wrt primal-suboptimality) until SDCA converges (error $< 10^{-10}$).
- 2. (6 points) Consider the minimax problem:

$$\min_{x} \max_{y \in C} \left[x^{\top} A y + b^{\top} y + \frac{1}{2} ||x||_{2}^{2} \right], \qquad C = \left\{ y : y_{j} \ge 0 \right\}.$$

- (2 points) Write down the optimal solution of x as a function of y. Write the optimization problem in terms of y by eliminating x. Explain the derivations.
- (1 points) Write down the GDA update rule for this problem with learning rate η .
- (3 points) Implement GDA, extra gradient, optimistic GDA in prob2() of prog-temp.py, and plot the convergence curves (wrt gradient norm of x and y; 2-norm of x Ay; $by \frac{1}{2}||Ay||_2^2$) for 100 iterations.
- 3. (6 points) Consider zero-th order optimization.
 - (2 points) In Theorem 18.6, if we further assume that f(x) is λ strongly convex, and take $\eta_t = (\lambda t)^{-1}$. Derive the corresponding convergence result.
 - (2 points) the optimization problem

$$\min_{\theta} \mathbb{E}_{x \sim \pi(x|\theta)} f(x),$$

where $x \in \mathbb{R}^d$. Assume we want to solve this problem using policy gradient, with $\theta = (\mu, \rho)$, where μ is d-dimensional vector, and $\rho \in \mathbb{R}$. Both are part of model parameters. Consider distribution $\pi(x|\theta) = N(\mu, e^{-\rho}I)$. Derive the policy gradient update rule for θ including both (μ, ρ) .

• (2 points) Consider the zero-th order optimization problem over discrete set $x \in \{0,1\}^d$. Implement policy gradients in Example 18.10 and Example 18.11 to solve the objective function

$$\min_{x \in \{0,1\}^d} f(x), \qquad f(x) = \left[\frac{1}{2} x^{\top} A x - b^{\top} x + c \right]$$

on prob3() of prog-template.py, plot convergence curves (wrt f(x)) and report your x_* , θ_* (refer to the Example, $p(x_i = 1) = \theta_i$).

- 4. (6 points) Consider the setting of decentralized computing, where we are given m nodes. A vector $x = [x_1, \ldots, x_m]$ has m components, and each node contains a local component x_i of the vector, with local objective function $f_i(x_i) + g_i(x_i)$. At any time step, in addition to local algebraic operations, we can perform the following function calls simultaneously on all nodes:
 - (gradient computation) call grad(x): each node computes the local gradient $\nabla f_i(x)$.
 - (proximal mapping) call $prox(\eta, z)$: each node computes the local proximal mapping

$$\arg\min_{u_i} [0.5||u_i - z_i||_2^2 + \eta g_i(u_i)].$$

• (communication) call communicate(z) = $[(z_{i-1} + z_{i+1})/2]_{i=1,...,m}$: each node sends its local vector z_i over the network, then it receives vectors from the neighboring nodes i-1 and i+1 via the network, and computes the average $(z_{i-1} + z_{i+1})/2$ (where $z_0 = z_m$ and $z_{m+1} = z_1$).

If we have a variable $w = [w_1, \dots, w_m]$, with w_i stored on node i, then node $j \neq i$ cannot access the information w_i on node i directly, except through calling communicate(). We want to use the above function calls to jointly optimize the following objective function:

$$\sum_{i=1}^{m} [f_i(x_i) + g_i(z_i)] \qquad x_1 = x_2 = \dots = x_m = z_1 = \dots = z_m,$$

by rewriting the above problem as

$$f(x) + g(z)$$
 $\begin{bmatrix} 0 \\ I \end{bmatrix} x - \begin{bmatrix} B \\ I \end{bmatrix} z = 0,$

with
$$[Bz]_i = z_i - (z_{i-1} + z_{i+1})/2$$
, $f(x) = \sum_i f_i(x_i)$, $g(z) = \sum_i g_i(z_i)$.

- (3 points) Write down an algorithm for decentralized optimization using linearized ADMM. Try to combine redundant communications so that no more than two communication calls are needed for each gradient computation.
- (3 points) Implement and plot convergence curves (wrt primal-suboptimality) with different parameters (eta and rho in ADMM) to solve the objective function in prob4() of prog-template.py.