

# COS 221 Tutorial 2

- This tutorial takes place on 17 March 2025.
- This tutorial consists of **3 questions**.
- The tutorial does not contribute towards your final marks.

# Question 1: Relational Model and SQL - Queries, SQL, RA, RC (domain and tuple) (0 marks)

Using the COMPANY database and the queries presented in Lectures 12 and 13, given below.

Query 7: List the names of managers who have at least one dependent.

Figure 3.6
One possible database state for the COMPANY relational database schema.

#### EMPLOYEE

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |  |
|----------------|---------|-----------|----------------|--|
| Research       | 5       | 333445555 | 1988-05-22     |  |
| Administration | 4       | 987654321 | 1995-01-01     |  |
| Headquarters   | 1       | 888665555 | 1981-06-19     |  |

#### DEPT\_LOCATIONS

| Dnumber | Dlocation |  |  |
|---------|-----------|--|--|
| 1       | Houston   |  |  |
| 4       | Stafford  |  |  |
| 5       | Bellaire  |  |  |
| 5       | Sugarland |  |  |
| 5       | Houston   |  |  |

#### WORKS\_ON

| Essn      | Pno | Hours |
|-----------|-----|-------|
| 123456789 | 1   | 32.5  |
| 123456789 | 2   | 7.5   |
| 666884444 | 3   | 40.0  |
| 453453453 | 1   | 20.0  |
| 453453453 | 2   | 20.0  |
| 333445555 | 2   | 10.0  |
| 333445555 | 3   | 10.0  |
| 333445555 | 10  | 10.0  |
| 333445555 | 20  | 10.0  |
| 999887777 | 30  | 30.0  |
| 999887777 | 10  | 10.0  |
| 987987987 | 10  | 35.0  |
| 987987987 | 30  | 5.0   |
| 987654321 | 30  | 20.0  |
| 987654321 | 20  | 15.0  |
| 888665555 | 20  | NULL  |

#### PROJECT

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

### DEPENDENT

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

Consider the relational database schema for the LIBRARY database. The database is used to keep track of books, borrowers, and book loans. Referential integrity constraints are shown as directed arcs in the figure. Answer the questions which follow.



- 2.1 Write Relational Algebra expressions to determine:
  - a) The names the borrowers who took books out on 28 February 2018. You may assume a date (2) is in the form dd/mm/yyyy.
  - b) The total number of books per library branch. (2)
- 2.2 Write Domain Relational Calculus expressions to determine:
  - a) The address of branch(es) with the name "Brooklyn". (2)

| b) A list of all book titles and their authors.                                                                                                 | (2                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <ul><li>2.3 Write Tuple Relational Calculus expressions to determine:</li><li>a) The due date for all books borrowed by John Sithole.</li></ul> | (2                                     |
| b) The name of the publisher(s) of a book titled "Great Expec                                                                                   | tations". (2                           |
| <ul><li>2.4 Write SQL expressions to:</li><li>a) Insert a new borrower, (328820001, 'Marten Fisher', '123 Fain the database.</li></ul>          | ke St, Springfield', 406 582 2400), (2 |
| b) Update the database to increase the number of copies for the one in the Bozeman branch.                                                      | ne book Here Comes a Candle by (3      |

c) Delete a borrower with Card\_no 5 if they have no books on loan.

(3)

(3)

d) List the titles of all the books by "Jane Austen".

**Question 3: 3** ......(0 marks)

Consider the following database schema for a company:

 $\bullet \ \mathbf{Employee}(\mathit{EmployeeID}, \mathit{Name}, \mathit{ManagerID})$ 

## Where:

- EmployeeID: Unique identifier for each employee
- Name: Name of the employee
- ManagerID: ID of the employee's manager (referencing EmployeeID)

Table 1: Employee

| 1 0        |         |           |  |  |
|------------|---------|-----------|--|--|
| EmployeeID | Name    | ManagerID |  |  |
| 1          | Alice   | NULL      |  |  |
| 2          | Bob     | 1         |  |  |
| 3          | Charlie | 1         |  |  |
| 4          | Dave    | 2         |  |  |
| 5          | Eve     | 2         |  |  |
| 6          | Frank   | 3         |  |  |

Write a relational algebra expression to retrieve all employees who are either directly or indirectly

managed by Alice (Employee ID = 1). Use recursive closure operations and Union in relational algebra to find all subordinates of Alice.