Do we need detailed demographic data to forecast pop-

² ulation responses to climate change?

3 Andrew T. Tredennick and Peter B. Adler

- Andrew T. Tredennick (atredenn@gmail.com), Department of Wildland Resources and the
- 5 Ecology Center, Utah State University, Logan, UT
- 6 Peter B. Adler, Department of Wildland Resources and the Ecology Center, Utah State
- 7 University, Logan, UT

8 Abstract

⁹ Keywords: forecasting, climate change, grassland, integral projection model

10 Introduction

Population models are important tools for predicting the impacts of environmental change 11 on species. But reconciling the scales at which population models are parameterized and the 12 scales at which environmental changes play out remains a challenge (Clark et al. 2010, 2012, 13 Freckleton et al. 2011, Queenborough et al. 2011). The major hurdle is that most population models, at least for plant species, are built using data from small, localized plots because parameterizing traditional population models requires tracking the fates of individuals. These 16 models are difficult to scale up from the micro to meso-scales because the fitted parameters 17 do not fully represent the spatial variation present at scales beyond that at which the data are collected (Sæther et al. 2007). At the same time, most demographic data is collected over short time spans. For example, the most common study duration in the COMPADRE matrix population model database is 4 years and only a few exceed 10 years (Salguero-Gómez et al. 2015). The constrained spatio-temporal extent of most demographic datasets reflects the difficulty of collecting such data, but those constraints limit our ability to extrapolate population models. Thus, our ability to use population models to predict the consequences of climate change is limited when we rely on individual-level data.

Aggregate measures of individual plant performance, such as those typically collected as part of large-scale census efforts, offer an alternative to detailed demographic data for modeling populations (Clark and Bjørnstad 2004, Freckleton et al. 2011). Such population-level data will never match the precision of individual-level data, but it is more feasible to attain a broad coverage sample when collecting coarse-scale data. This presents a difficult trade-off: on the one hand, individual-level data leads to more reliable models; on the other hand, population-level data leads to models that will produce less precise predictions but can be applied over greater spatial and temporal extents. An open question is how well models based on population-level data compare to models based on individual-level data.

To date, relatively few studies have tried to model populations based on data other than
detailed individual-level data. An important exception is an effort by Taylor and Hastings
(2004) to model the population growth rate of an invasive species to investigate the best
strategies for invasion control. They used a "density-structured" model where the state variable
is a discrete density state rather than a continuous density measure. Building on this work,
Freckleton et al. (2011) showed that density-structured models compare well to continuous
models in theory, and Queenborough et al. (2011) showed the application of such methods
in a study on arable weeds. In particular, Queenborough et al. (2011) provide empirical
evidence that density-structured models are capable of reproducing population dynamics,
even if some precision is lost when compared to fully continuous models. Thus, population
models based on coarse, population-level data show promise for producing ecological forecasts
at landscape and regional scales (Queenborough et al. 2011). However, none of these models
included environmental covariates.

Basing population models on aggregated individual-level data in a climate change context is

hampered by the fact that it is individuals that respond to climate, not populations (Clark et al. 2012). This fact puts us in uneasy proximity to an "ecological fallacy" where one deduces inference on the individual from statistical inference on the group (Piantadosi et al. 1988). For example, individual plants may respond positively to precipitation but a negative trend is observed at the population level due to increased competition among plants as they grow larger and consume more resources. Thus, it is important to ask the question: Can aggregated data be used to detect climate signals of the same sign and magnitude as individual-level data? If not, then building population models with climate covariates on aggregated data will lead to incorrect forecasts. Here, we test the assumption that statistical and population models based on aggregated data can detect climate signals as wells as models based on individual-level data. We use a unique demographic dataset that tracks the fates of individual plants from four species over 14 years to build single-species population models, since those are often used tools for ecological forecasts and climate vulnerability assessments. We first fit population models with interannual variation in vital rates explained, in part, by climate covariates. We then perturb the climate covariates to test the sensitivities of species to climate change. By doing

67 Materials and Methods

rigorous test of our hypothesis. We find that...

68 Study site and data

Our demographic data comes from the Fort Keogh Livestock and Range Research Laboratory in eastern Montana's northern mixed prairie near Miles City, Montana, USA (46° 19' N, 105° 48' W). The dataset is freely available on Ecological Archives (Anderson et al. 2011), and interested readers should refer to the metadata therein for a complete description. The site is about 800 m above sea level and mean annual precipitation (1878-2009) is 334 mm, with

these analyses using both individual and aggregated forms of the same data, we provide a

- most annual precipitation falling from April through September. The site is grass dominated and, for the purposes of our study, we focus on the four most abundant graminoid species:

 Bouteloua gracilis (BOGR), Hesperostipa comata (HECO), Pascopyrum smithii (PASM), and Poa secunda (POSE).
- From 1932 to 1945 individual plants were identified and mapped annually in 44 1-m² quadrats using a pantograph. The quadrats were distributed in six pastures, each assigned a grazing treatment of light (1.24 ha/animal unit month), moderate (0.92 ha/aum), and heavy (0.76 ha/aum) stocking rates (two pastures per treatment). In this analysis we account for potential differences among the grazing treatments, but do not focus on grazing×climate interactions. The annual maps of the quadrats were digitized and the fates of individual plants tracked and extracted using a computer program. Daily climate data, which we aggregated into climate variables of interest, are available for the duration of the data collection period (1932 1945) from the Miles City airport, Wiley Field, 9 km from the study site.
- In this paper, we model populations based on two levels of data: individual and quadrat. The individual data is the "raw" data. For the quadrat level we data we simply sum individual areal cover for each quadrat by species. This is equivalent to a perfect census of quadrat percent cover, so we do not need to consider measurement error. Based on these two datasets we can compare population models built using individual level data and aggregated quadrat level data.

93 Stastical models of vital rates

At both levels of inference (individual and quadrat), the building blocks of our population models are vital rate regressions. For individual level data we fit models for survival, growth, and recruitment of new individuals for each species. At the quadrat level we fit a single regression model for population growth. We describe the statistical models separately since fitting the models required different approaches. All models contain five climate covariate that we chose *a priori*: "water year" precipitation at *t*-1 (lagppt); fall through spring precipitation at *t*-1 and *t*-2 (ppt1 and ppt2, respectively) and mean spring temperature at *t*-1 and *t*-2 (TmeanSpr1 and TmeanSpr2, respectively), where *t* is the observation year.

We fit all models using a hierarchical Bayesian approach, which we describe in more detail below. However, for each vital rate statistical model we also define the likelihood model we use. For the likelihood models, \mathbf{Y} is always the relevant vector of observations (e.g., whether a genet survived [1] or not [0] from year t to t+1).

Vital rate models at the individual level We used logistic regression to model survival probability (S) of genet i from species j in quadrat group Q from time t to t + 1:

$$\operatorname{logit}(S_{ijQ,t}) = \gamma_{j,t}^S + \phi_{jQ}^S + \beta_{j,t}^S x_{ij,t} + \omega_j^S w_{ij,t} + \theta_{jk}^S C_{k,t} + \varepsilon_t^S$$
(1)

$$Y_{ijQ,t}^S \sim \text{Bernoulli}(S_{ijQ,t})$$
 (2)

where $x_{ij,t}$ is the log of genet size, $\gamma_{j,t}^S$ is a year-specific intercept, $\beta_{j,t}^S$ is the year-specific slope parameter for size, ϕ_{jQ}^S is the random effect of quadrat group location, and θ_k^S is the fixed parameter for the effect of the kth climate covariate at time t ($C_{k,t}$). We include density-dependence by estimating the effect of crowding on the focal individual by other individuals of the same species. ω is the effect of crowding and $w_{t,Q}$ is the crowding experienced by the focal individual at time t in quadrat group Q.

We modeled growth as Gaussian process describing genet size at time t+1 as a function of size at t and climate covariates:

$$x_{ijQ,t+1} = \gamma_{j,t}^G + \phi_{jQ}^G + \beta_{j,t}^G x_{ij,t} + \omega_j^G w_{ij,t} + \theta_{jk}^G C_{k,t}$$
 (3)

$$Y_{ijQ,t}^G \sim \text{Normal}(x_{ijQ,t+1}, \sigma_j)$$
 (4)

where x is log genet size and all other parameters are as described for the survival regression.

Our data allows us to track new recruits, but we cannot assign a specific parent to new genets.

So, for recruitment, we work at the quadrat level and model the number of new individuals of species j in quadrat q recruiting at time t+1 as a function of quadrat "effective cover" (A') in the previous year (t). Effective cover is a mixture of observed cover (A) in the focal quadrat (q) and the mean cover across the entire group (\bar{A}) of Q quadrats in which q is located:

$$A'_{jq,t} = p_j A_{jq,t} + (1 - p_j) \bar{A}_{jQ,t}$$
(5)

where p is a mixing fraction between 0 and 1 that is estimated within the model.

We assume the number of individuals, Y^R , recruiting at time t+1 follows a negative binomial distribution:

$$Y_{jq,t+1}^R \sim \text{NegBin}(\lambda_{jq,t+1},\zeta)$$
 (6)

where λ is the mean intensity and ζ is the size parameter. We define λ as:

$$\lambda_{jq,t+1} = A'_{jq,t} e^{(\gamma_{j,t}^R + \phi_{jQ}^R + \theta_{jk}^R C_{k,t} + \omega^R \sqrt{A'_{q,t}})}$$
 (7)

where A' is effective cover (cm²) of species j in quadrat q and all other terms are as in the survival and growth regressions.

Population model at the quadrat level The statistical approach used to model vital rates using aggregated data depends on the type of data collected. In our case, and as is 129 often the case with census data, we have percent cover data (which can easily be transformed 130 to proportion data, of course). We first considered fitting three vital rate models analogous 131 to those we fit at the individual level: one for probability of extirpation within a quadrat 132 (analogous to survival), one for cover change within a quadrat (analogous to growth), and 133 one for probability of colonization within a quadrat (analogous to recruitment). However, 134 within-quadrat extirpation and colonization events were rare in our time series (N=9 and 135 N=10, respectively across all species). Given the broad spatial distribution of the quadrats 136 we are studying, it is safe to assume that these events are in fact rare enough to be ignored 137 for our purposes. So we constrained our statistical modeling of vital rates at the population 138 level to change in percent cover within quadrats. For the remaining discussion of statistical 139 modeling we refer to proportion data, which is simply percent data divided by 100. 140

An obvious choice for fitting a linear model to proportion data is beta regression because the support of the beta distribution is [0,1], not including true zeros or ones. However, when we used fitted model parameters from a beta regression in a quadrat-based population model the simulated population tended toward 100% cover for all species. We therefore chose a more constrained modeling approach based on a truncated log-normal likelihood. The model for quadrat cover change (G) from time t to t+1 is

$$x_{jq,t+1} = \gamma_{j,t}^G + \phi_{jQ}^G + \beta_{j,t}^G x_{jq,t} + \theta_{jk}^S C_{k,t}$$
 (8)

$$Y_{jq,t+1}^G \sim \text{LogNormal}(x_{jq,t+1}, \tau j)T[0, 1]$$
(9)

where $x_{jq,t}$ is the log of species' j proportional cover in quadrat q at time t and all other parameters are as in the individual-level growth model (Eq. #). The log normal likelihood includes a truncation (T[0,1]) to ensure that predicted values do not exceed 100% cover.

150 Model fitting

Our Bayesian approach to fitting the vital rate models required choosing appropriate priors 151 for unknown parameters and deciding which, if any, of those priors should be hierarchical. 152 We decided to fit models where all terms except climate covariates were fit by species, while 153 the climate covariates were fit hierarchically with species-specific coefficients drawn from a 154 shared 'global' coefficient distribution. We did so for two reasons: (1) the four focal species 155 are all perennial grasses that we expect to respond similarly to climate covariates, and (2) 156 convergence of climate effects at the quadrat level was much easier to achieve when we 157 modeled these terms hierarchically, allowing them to "share" statistical strength via partial 158 pooling (Gelman and Hill 2007). So, climate effects were modeled as: 159

$$\theta_{jk} \sim \text{Normal}(\bar{\theta_k}, \sigma_k)$$
 (10)

where $\bar{\theta_k}$ is the interspecific effect of the kth climate covariate.

We used uninformative priors for all unknown parameters, specifically:

$$\gamma, \beta, \bar{\theta} \sim \text{Normal}(0, 1e^{-6})$$
 (11)

$$\phi \sim \text{Normal}(0, \sigma_{\phi})$$
 (12)

$$\sigma_{\phi} \sim e^{(\text{Gamma}(2,0.5))}$$
 (13)

$$\sigma_{\theta}, \sigma_{\gamma}, \sigma_{\beta}, \tau, \zeta \sim \text{Gamma}(0.001, 0.001)$$
 (14)

All of our analyses (model fitting and simulating) were conducted in R (Team 2013). We used
the MCMC sampler in JAGS (Plummer 2003) to estimate the posterior distributions of model
parameters and the package 'rjags' to connect R to JAGS. We obtained posterior distributions

for all model parameters from three parallel MCMC chains run for 50,000 iterations, thinned by 50, after discarding an initial 50,000 iterations. We assessed convergence visually and using the Gelman and Rubin (1992) diagnostic in the R package 'coda' (Plummer et al. 2006). Scale reduction factors for all parameters were less than 1.01, indicating convergence. For the purposes of introducing stochasticity in our population models, we saved the final 1,000 iterations from each of the three MCMC chains for all parameters to be used as randomly drawn values during population simulation.

72 Population models

With the posterior distribution of the vital rate statistical models in hand, it is straightforward to simulate the population models. We used an Integral Projection Model (IPM) to model populations based on individual level data and an quadrat based version of an individually-based model (Quadrat-Based Model, QBM) to model populations based on quadrat level data. Both models take the general form:

$$N_{t+1} = S \times G + R. \tag{15}$$

So, at each time step in a simulation, we use the survival regression to determine if each genet lives or not (if each quadrat remains occupied or not), the growth regression to determine size changes of surviving individuals (cover change of occupied quadrats), and the recruitment regression to determine the number of new recruits (if a quadrat is colonized or not). We first use one-step-ahead forecasts to assess each model's ability to reproduce observed cover changes. Then we use the models to analyze the effect of potential climate changes on population size over long time scales.

We used random draws from the final 1,000 iterations from each of three MCMC chains to

We used random draws from the final 1,000 iterations from each of three MCMC chains to introduce stochasticity into our population models. At each time step, we randomly selected climate covariates from one of the 14 observed years. Then, we drew the full parameter

set (climate effects and density-dependence fixed effects) from a randomly selected MCMC iteration. Using this approach, rather than simply using coefficient point estimates, ensures that relatively unimportant climate covariates (those that broadly overlap 0) have little effect on the simulation results. Since our focus was on the contribution of climate covariates to population states, we set the random year effects and the random group effects to zero.

193 Model validation

To test each model's ability to forecast the population state we used leave-one-year-out cross validation. For both levels of modeling, we fit the vital rate models using observations from all years except one, and then used those fitted parameters in the population models to perform a one-step-ahead forecast for the year whose observations were withheld from model fitting. We repeated this procedure for all 13 observation years. This model validation allowed us to compare accuracy and precision of the two modeling approaches (individual-level versus population-level).

201 Results

202 Comparison of Forecast Models

We performed one-step-ahead forecasts to compare the two models (IPM vs. QBM). We did not use the random year effects for these forecasts. Thus, beyond the effect of genet size or quadrat cover, only the climate covariates could affect expect plant cover. The models had similar accuracy (ρ , correlation between observations and mean prediction from 100 forecasts) across all species (Table 1). However, the IPM had significantly lower overall error (MAE, mean absolute error) for two species (H. comita and P. smithii), and in no case did the QBM significantly outperform the IPM (Table 1).

210 Forecasting Climate Change Impacts

Equilibrium cover simulated from the models was sensitive to climate perturbations, but the 211 IPM and QBM produced inconsistent results (Figure 3). For B. gracilis, the IPM predicted a 212 modest increase in cover with a 1% increase in the mean of precipitation or a 1% increase 213 in the mean of temperature, the compounding effect of both being a 20% increase in cover. 214 This reflects the relatively strong effects of precipitation and climate on B. gracilis genet 215 growth and recruitment (Figure 1). The QBM also predicted increased B. qracilis cover with 216 a precipitation increase, but increasing temperature decreased equilibrium cover (Figure 3). 217 The IPM and QBM produced consistent predictions for *H. comita* under increased precipitation 218 and when both precipitation and temperature were increased (Figure 3). However, the IPM predicted more modest changes than the QBM, and for a temperature increase the two models differed: the IPM predicted an increase in cover while the QBM predicted the opposite.

222 Discussion

We sought to test the assumption that the sensitivities of plant populations to climate 223 variables can be detected equally well using either individual level data or population level 224 data. This is an important question to answer because population models are key tools for 225 predicting the consequences of global climate change. However, they can be of limited use 226 when built on data from a small subset of a population in space or time. If population level 227 data (i.e., some aggregated form of individual level data) can be used to detect climate effects 228 on population dynamics, then we would have a cheaper and easier option for data collection 229 over relatively large temporal and spatial extents (e.g. Freckleton et al. 2011). 230

231 It is perhaps startling that two different types of models fit using the same data produce 232 drastically different forecasts (Figure 3).

Tables Tables

Table 1: Mean absolute error (MAE) and accuracy (Pearson's ρ) for one-step-ahead forecast from both model types. Forecasts were made without random year effects; only climate covariates could explain year-to-year variation. 90 Distance refers to the average distance between the upper and lower 90 percentiles of the 100 predicted values for each quadrat-year combination.

Species	Model	MAE	90% Distance	Mean Obs. Cover
BOGR	IPM	4.77	29.33	9.16
BOGR	QBM	5.30	44.63	9.22
HECO	IPM	0.60	2.82	1.22
HECO	QBM	2.03	12.05	1.25
PASM	IPM	0.18	0.49	0.40
PASM	QBM	0.17	1.34	0.40
POSE	IPM	0.78	2.16	1.23
POSE	QBM	1.30	7.04	1.25

The IPM MAE is significantly lower for HECO $(p = 3.3 \times 10^{-10})$ and POSE (p = 0.00013).

MAEs are statisticially similar between models for BOGR and PASM.

Figures

Figure 1: Sensitivity of equilibrium cover to removal of climate effects from each vital rate regression.

Figure 2: Proportional change in species' mean cover caused by a 1% increase in observed precipitation, temperature, or both as predicted by the individual-based IPM and the aggregate-based QBM. Note that the change for POSE due to a precipitation increase predicted by the QBM is almost zero and so does not show up in the figure. Labels on x-axis refer to: 'ppt' = 1% increase in mean precipitation; 'temp' = 1% increase in mean temperature; 'ppt + temp' = 1% increase in mean precipitation and mean temperature.

237 References

- Anderson, J., L. Vermeire, and P. B. Adler. 2011. Fourteen years of mapped, permanent
- quadrats in a northern mixed prairie, USA. Ecology 92:1703.
- ²⁴⁰ Clark, J. S., and O. N. Bjørnstad. 2004. Population time series: Process variability,
- observation errors, missing values, lags, and hidden states. Ecology 85:3140–3150.
- ²⁴² Clark, J. S., D. M. Bell, M. Kwit, A. Stine, B. Vierra, and K. Zhu. 2012. Individual-scale
- inference to anticipate climate-change vulnerability of biodiversity.
- ²⁴⁴ Clark, J. S., D. Bell, C. Chu, B. Courbaud, M. Dietze, M. Hersh, J. HilleRisLambers, I.
- ²⁴⁵ Ibáñez, S. LaDeau, S. McMahon, J. Metcalf, J. Mohan, E. Moran, L. Pangle, S. Pearson,
- ²⁴⁶ C. Salk, Z. Shen, D. Valle, and P. Wyckoff. 2010. High-dimensional coexistence based on
- individual variation: a synthesis of evidence. Ecological Monographs 80:569–608.
- Freckleton, R. P., W. J. Sutherland, A. R. Watkinson, and S. A. Queenborough. 2011.
- Density-structured models for plant population dynamics. American Naturalist 177:1–17.
- ²⁵⁰ Gelman, A., and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical
- models. Page xxii, 625p.
- ²⁵² Gelman, A., and D. B. Rubin. 1992. Inference from Iterative Simulation Using Multiple
- 253 Sequences.
- ²⁵⁴ Piantadosi, S., D. P. Byar, and S. B. Green. 1988. The Ecological Fallacy. American Journal
- of Epidemiology 127:893–904.
- ²⁵⁶ Plummer, M. 2003. JAGS: A Program for Analysis of Bayesian Graphical Models Using
- ²⁵⁷ Gibbs Sampling. Pages 20–22 in Proceedings of the 3rd international workshop on distributed
- 258 statistical computing (dSC 2003). march.
- ²⁵⁹ Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence Diagnosis and
- Output Analysis for MCMC. R News 6:7–11.

- Queenborough, S. A., K. M. Burnet, W. J. Sutherland, A. R. Watkinson, and R. P. Freckleton.
- 2011. From meso- to macroscale population dynamics: A new density-structured approach.
- Methods in Ecology and Evolution 2:289–302.
- Salguero-Gómez, R., O. R. Jones, C. R. Archer, Y. M. Buckley, J. Che-Castaldo, H. Caswell,
- D. Hodgson, A. Scheuerlein, D. A. Conde, E. Brinks, H. de Buhr, C. Farack, F. Gottschalk, A.
- Hartmann, A. Henning, G. Hoppe, G. Römer, J. Runge, T. Ruoff, J. Wille, S. Zeh, R. Davison,
- D. Vieregg, A. Baudisch, R. Altwegg, F. Colchero, M. Dong, H. de Kroon, J.-D. Lebreton, C.
- J. E. Metcalf, M. M. Neel, I. M. Parker, T. Takada, T. Valverde, L. A. Vélez-Espino, G. M.
- Wardle, M. Franco, and J. W. Vaupel. 2015. The compadrePlant Matrix Database: an open
- online repository for plant demography. Journal of Ecology 103:202–218.
- Sæther, B. E., S. Engen, V. Grøtan, W. Fiedler, E. Matthysen, M. E. Visser, J. Wright, A.
- P. Møller, F. Adriaensen, H. Van Balen, D. Balmer, M. C. Mainwaring, R. H. McCleery, M.
- ²⁷³ Pampus, and W. Winkel. 2007. The extended Moran effect and large-scale synchronous
- fluctuations in the size of great tit and blue tit populations. Journal of Animal Ecology
- 275 76:315–325.
- ²⁷⁶ Taylor, C. M., and A. Hastings. 2004. Finding optimal control strategies for invasive species: a
- density-structured model for Spartina alterniflora. Journal of Applied Ecology 41:1049–1057.
- ²⁷⁸ Team, R. 2013. R Development Core Team. R: A Language and Environment for Statistical
- 279 Computing.