TOPOLOGICAL SPACES

ARTHUR RYMAN

ABSTRACT. This article contains Z Notation definitions for topological spaces and related concepts. It has been type checked by fUZZ.

Contents

1. Topological Spaces

1.1. Topology. A topology τ on X is a family of subsets of X, referred to as the open subsets of X, that satisfy the following axioms.

```
 \begin{array}{c} Topology[X] \\ \hline \tau: \mathcal{F} X \\ \hline \varnothing \in \tau \\ X \in \tau \\ \forall F: \mathbb{F} \tau \bullet \bigcap F \in \tau \\ \forall F: \mathbb{P} \tau \bullet \bigcup F \in \tau \end{array}
```

- The empty set is open.
- The whole set is open.
- The intersection of a finite family of open sets is open.
- The union of any family of open sets is open.
- 1.2. top and tops. Let top[X] denote the set of all topologies on X.

```
top : \mathbb{P}(\mathcal{F}X)
top = \{ Topology[X] \bullet \tau \}
```

Let tops[X] denote the set of all topologies on subsets $U \subseteq X$.

Date: August 14, 2022.

```
tops : \mathbb{P}(\mathcal{F}X)
tops = \bigcup \{ U : \mathbb{P}X \bullet top[U] \}
```

1.3. discrete and indiscrete. The discrete topology on X consists of all subsets of X. The indiscrete topology on X consists of just X and \emptyset . Let discrete[X] and indiscrete[X] denote the discrete and indiscrete topologies on X.

Example. Let X be an arbitrary set. Then discrete [X] and indiscrete [X] are topologies on X.

 $\mathit{discrete}[X] \in \mathit{top}[X]$

 $indiscrete[X] \in top[X]$

 $1.4. \ top Gen.$

Remark. The intersection of a set of topologies on X is also a topology on X.

Given a family B of subsets of X, the topology generated by B is the intersection of all topologies that contain B. The set B is referred to as a basis for the topology it generates. Let topGen[X] B denote the topology on X generated by the basis B.

```
[X] = topGen : \mathcal{F} X \to top[X]
\forall B : \mathcal{F} X \bullet topGen B = \bigcap \{ \tau : top[X] \mid B \subseteq \tau \}
```

Example. Let X be an arbitrary set.

 $topGen[X]\emptyset = indiscrete[X]$

 $topGen[X]{\emptyset} = indiscrete[X]$

 $topGen[X]{X} = indiscrete[X]$

1.5. topSpace. Let X be a set. A topological space is a pair (X, τ) where τ is a topology on X. Let topSpace[X] denote the set of all topological spaces (X, τ) .

$$topSpace[X] == \{ \tau : top[X] \bullet (X, \tau) \}$$

Example. Let X be an arbitrary set.

 $(X, indiscrete[X]) \in topSpace[X]$

 $(X, \mathit{discrete}[X]) \in \mathit{topSpace}[X]$

1.6. topSpaces. Let topSpaces[t] denote the set of all topological spaces (X, τ) where X is a subset of t.

Remark.

 $topSpace[X] \subseteq topSpaces[X]$

2. Continuous Mappings

Let (X, τ) and (Y, σ) be topological spaces.

2.1. Continuous. A mapping $f \in X \longrightarrow Y$ is said to be continuous if the inverse image of every open set is open.

```
 \begin{array}{c} Continuous[X, Y] \\ f: X \to Y \\ \tau: top[X] \\ \sigma: top[Y] \\ \hline \\ \forall \, U: \sigma \bullet \\ f^{\sim}(U) \in \tau \end{array}
```

2.2. C^0 \CzeroTT. Let A and B be topological spaces, and let $C^0(A,B)$ denote the set of continuous mappings from A to B.

2.3. The Identity Mapping.

Remark. The identity mapping is continuous.

$$\forall \tau : top[X] \bullet$$

$$let A == (X, \tau) \bullet$$

$$id X \in C^{0}(A, A)$$

Remark. The constant mapping is continuous.

$$\forall \tau : top[\mathsf{X}]; \ \sigma : top[\mathsf{Y}]; \ c : \mathsf{Y} \bullet$$

$$\mathsf{let} \ A == (\mathsf{X}, \tau); \ B == (\mathsf{Y}, \sigma) \bullet$$

$$\mathsf{const}[\mathsf{X}, \mathsf{Y}] \ c \in \mathsf{C}^0(A, B)$$

2.4. Composition of Continuous Mapping.

Remark. Let X, Y, and Z be arbitrary sets. The composition of continuous mappings is a continuous mapping.

```
 \forall A: topSpace[X]; B: topSpace[Y]; C: topSpace[Z] \bullet \\ \forall f: \mathbf{C}^0(A,B); g: \mathbf{C}^0(B,C) \bullet \\ g \circ f \in \mathbf{C}^0(A,C)
```

3. Induced Topology

Let $A = (X, \tau)$ be a topological space and let $U \subseteq X$ be a subset. The topology on X induces a topology on U. This topology is variously referred to as the induced, relative, or subspace topology on U.

3.1. $|_{\mathcal{F}} \setminus \text{inducedFam.}$ Let ϕ be a family of subsets of X and let U be a subset of X. The family of subsets of U induced by ϕ is the set of intersections of the members of ϕ with U. Let $\phi |_{\mathcal{F}} U$ denote the family on U induced by ϕ .

Remark. If τ is a topology on X then $\tau \mid_{\mathcal{F}} U$ is a topology on U.

```
\forall \tau : top[X]; \ U : \mathbb{P} X \bullet \tau \mid_{\mathcal{F}} U \in top[U]
```

3.2. $|_{\mathsf{top}} \setminus \mathsf{inducedTopSp.} \ \, \mathsf{Let} \ (X,\tau)|_{\mathsf{top}} \ U \ \, \mathsf{denote} \ \, \mathsf{the} \ \, \mathsf{corresponding} \ \, \mathsf{induced} \ \, \mathsf{topological} \ \, \mathsf{space}.$

4. Product Topology

Let (X, τ) and (Y, σ) be topological spaces. There is a natural topology on $X \times Y$ generated by the products of the sets in τ and σ .

4.1. $\times_{\mathcal{F}} \backslash \text{prodFam}$. Let X and Y be sets and let ϕ and ψ be families on them. The product of these families is the family that consists of the products of the sets in them and is a family on $X \times Y$. Let $\phi \times_{\mathcal{F}} \psi$ denote the product of the families.

Remark. If τ and sigma are topologies then $\tau \times_{\mathcal{F}} \sigma$ is not, in general, a topology. However, we can use it to generate a topology.

4.2. $\times_{\mathsf{top}} \setminus \mathsf{prodTop.}$ Let $\tau \times_{\mathsf{top}} \sigma$ denote the topology generated by $\tau \times_{\mathcal{F}} \sigma$.

4.3. $\times_{\sf top} \prodTopSp.$ Let $(X, \tau) \times_{\sf top} (Y, \sigma)$ denote the product topological space.

Email address, Arthur Ryman: arthur.ryman@gmail.com