

Triângulos: Cevianas e pontos notáveis

Resumo

Ceviana é qualquer segmento que parte de um **vértice** de um triângulo e corta o **lado oposto** ou seu prolongamento. São exemplos de cevianas: mediana, altura e bissetriz

Mediana

Mediana é uma ceviana que liga o vértice de onde ela parte ao ponto médio do lado oposto a esse vértice.

Baricentro

O Baricentro é exatamente o ponto de encontro das **medianas**.

Importante saber que se \overline{BD} for a mediana do triangulo temos algumas relações importantes:

$$\overline{BG} = \frac{2}{3}\overline{BD}$$

$$\overline{DG} = \frac{1}{3}\overline{BD}$$

Altura

A altura é uma ceviana que parte de um vértice e faz 90° com o lado oposto ao mesmo, ou seja, ela é perpendicular ao lado oposto a esse vértice.

De cada vértice do triângulo parte UMA altura.

Ortocentro

O ortocentro é exatamente o ponto de encontro das três alturas desse triângulo.

Bissetriz

A Bissetriz é uma ceviana que parte de um vértice do triângulo e que divide ao meio o ângulo referente a esse vértice.

Em um triângulo, de cada vértice parte UMA bissetriz.

Incentro

O incentro é o ponto onde se encontram as três bissetrizes do triângulo.

O incentro também é o centro da circunferência inscrita nesse triângulo:

Mediatriz

Qualquer segmento de reta perpendicular a um lado do triângulo e que passa por seu ponto médio.

A reta r é a mediatriz do triângulo ABC relativa ao lado BC pois é perpendicular a BC e M é ponto médio deste lado.

Circuncentro

Todo triângulo possui três mediatrizes que se encontram em um ponto denominado circuncentro, simbolizado na figura pela letra C:

O Circuncentro é equidistante dos lados do triângulo.

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Para fazer um experimento em sala de aula, um professor utilizou uma placa rígida uniforme com formato de um triângulo escaleno e um pouco maior que um livro escolar. Assim, apoiando seu dedo indicador em um ponto destacado na superfície da placa, o professor conseguiu equilibrá-la e mantê-la paralela ao chão.

Esse feito ocorre pelo fato de o ponto destacado sobre a superfície ser

- a) o ortocentro da placa triangular.
- b) o ex-incentro da placa triangular.
- c) o incentro da placa triangular.
- d) o circuncentro da placa triangular.
- e) o baricentro da placa triangular.
- 2. No triangulo obtusângulo MNP da figura, podemos afirmar que:

- a) o baricentro se encontra na região externa do triângulo MNP.
- b) o ortocentro se encontra na região externa do triângulo MNP.
- c) o incentro se encontra na região externa do triângulo MNP.
- d) o circuncentro se encontra na região interna do triângulo MNP.

3. Na figura abaixo, o triângulo ABD é equilátero, e seu lado mede 3m.; H é o ortocentro, sendo que os pontos F e G são os pontos médios dos lados \overline{AD} e \overline{BD} , respectivamente.

Quantos rolos de fita adesiva serão necessários, no mínimo, para cobrir todos os segmentos da figura, se cada rolo possui 1m de fita?

- **a)** 18
- **b)** 20
- **c)** 22
- **d)** 24
- **e)** 26

4. Se I é incentro do triangulo ABC abaixo, os ângulos Â, \hat{B} e \hat{C} são, respectivamente, iguais a:

- **a)** 30°, 60° e 90°.
- **b)** 55°, 65° e 60°.
- **c)** 40°, 80° e 60°.
- **d)** 100°, 60° e 20°.
- **e)** 65°, 55° e 60°.

- **5.** Em um triangulo acutângulo não equilátero, os três pontos notáveis (ortocentro, circuncentro e baricentro) estão alinhados. Dado que a distancia entre o ortocentro e o circuncentro e k, pode-se concluir que a distancia entre o circuncentro e o baricentro será:
 - a) $\frac{5k}{2}$
 - 4*k*
 - **b)** 3
 - 4*k*
 - c) 5
 - k
 - d) $\frac{1}{2}$
 - k
 - e) 3
- **6.** No triangulo ABC a seguir, temos $\overline{AP} = \overline{BP}$ e $\overline{AQ} = \overline{CQ}$. Sendo assim, os valores de x e y são, respectivamente, iguais a:

- **a)** 30 e 24.
- **b)** 20 e 4.
- **c)** 5 e 16.
- **d)** 8 e 10.
- **e)** 4 e 8.

7. Considere um triângulo equilátero de lado L como mostra a figura a seguir. Unindo-se os pontos médios dos seus lados obtemos 4 (quatro) novos triângulos. O perímetro de qualquer um destes quatro triângulos é igual a:

- <u>5L</u> 2
- **b)** L

a)

- **c)** 3L
- d) $\frac{L}{2}$
- -, 3L

2

e)

8. No triangulo ABC abaixo, temos $\overline{BM} = \overline{CM}$, BÂP = PÂC e \overline{AH} perpendicular a \overline{BC} e os pontos M, P e H não são coincidentes. Podemos afirmar que:

- I. AM é uma mediana e AH e uma altura
- II. \overline{AP} é uma mediatriz
- III. \overline{AP} é uma bissetriz
- IV. \overline{AH} é uma altura e \overline{AM} é uma mediatriz
- a) II e IV são verdadeiras.
- b) I e III são verdadeiras.
- c) I e II são verdadeiras.
- d) III e IV são verdadeiras

9. Na figura, \overline{AN} e \overline{BM} são medianas do triângulo ABC. Se \overline{BM} e igual a 12 cm, a medida do segmento \overline{GM} é igual a:

- **a)** 10.
- **b)** 9.
- **c)** 8.
- **d)** 6.
- **e)** 4.

- **10.** Em relação a um triangulo qualquer ABC, quais pontos notáveis estão posicionados necessariamente na região interna do triangulo?
 - a) Baricentro e ortocentro.
 - **b)** Incentro e circuncentro.
 - c) Baricentro e circuncentro.
 - d) Incentro e ortocentro.
 - e) Baricentro e incentro.

Gabarito

1. **E**

O baricentro de um triângulo é também seu centro de massa, ou seja, seu ponto de equilíbrio.

2. **B**

Todo triângulo obtusângulo possui ortocentro na região externa do triângulo.

3. **E**

Como ABCE é um retângulo, podemos calcular alguns de seus lados:

Repare que AE e BC tem a mesma medida da altura do triângulo ABD.

$$\frac{l\sqrt{3}}{2}$$

altura \triangle equilátero de lado $I \Rightarrow 2$

AE = BC =
$$\frac{3\sqrt{3}}{2}$$
 \Rightarrow Então, a soma desses lados dá $2.\frac{3\sqrt{3}}{2}$ = 3 $\sqrt{3}$

Nos $\Delta(s)$ equiláteros, altura, bissetriz e mediana são sobrepostas e o ponto de encontro das medianas dista 2/3 do vértice:

$$AH = DH = BH \Rightarrow \frac{2}{3} \cdot \frac{3\sqrt{3}}{2} = \sqrt{3}.$$
 Somando esses três lados, encontramos $3\sqrt{3}$.

 Δ AED e Δ DCB \Rightarrow são retângulos, logo são inscritíveis numa semi circunferência logo "F" e "G" são centros de tais semi círculos onde EF e DF são raios do mesmo semi círculo. Análago raciocínio em relação DG e CG.

$$EF = CG \Rightarrow \frac{2 \cdot \frac{3}{2}}{2} = 3$$

Enfim, somando tudo: $12 + 6\sqrt{3} + 3 = 15 + 6(1,7) = 15 + 10,20 = 25,20 \approx 26$.

des complica

4. **C** Observe a figura:

Podemos montar o sistema:

$$\begin{cases} a+c+130 = 180 \\ a+b+120 = 180 \\ b+c+110 = 180 \end{cases}$$

Resolvendo o sistema, encontramos a = 20, b = 40 e c = 30.

Por sim,
$$\hat{A} = 40$$
, $\hat{B} = 80$ e $\hat{C} = 60$.

5. **E**

Pelo Teorema da Reta de Euller, sabemos que o ortocentro,baricentro e circuncentro, nessa ordem, são colineares em um triângulo isósceles, bem como também sabemos que a distância entre o ortocentro e o baricentro (x) é duas vezes a distância do baricentro ao circuncentro (y). Então:

$$x = 2y$$

 $x + y = k$
 $3y = k$
 $y = k/3 e x = 2k/3$

6. **C**

Pelo teorema do baricentro:

$$Y = 2 \times 8 = 16$$

 $X = 10/2 = 5$.

7. **E**

Ponto médio significa dividir o segmento em 2. Ou seja, cada segmento valerá L/2. Como são todos triângulos equiláteros, todos os lados medirão L/2. Assim, o perímetro valerá 3L/2.

8. **B**

Já que BM = CM, então AM é uma mediana. Como AH é perpendicular a BC, então AH é altura do triângulo ABC. Alternativa I verdadeira.

AP não é mediatriz pois não passa pelo ponto médio do segmento AC, que é o ponto M. Alternativa II falsa.

AP é uma bissetriz pois BÂP = PÂC. Alternativa III verdadeira.

AH é uma altura, mas AM não é mediatriz por não ser perpendicular ao lado AC Alternativa IV falsa.

9. **E**

Pelo teorema do baricentro, GM mede 1/3 do segmento BM ou seja, GM = 12/3 = 4. Letra E.

10. **E**

O Circuncentro e o ortocentro estão localizados na região externa de triângulos obtusângulos. Eliminando as alternativas ficamos com a letra E.