5 Discrete Memoryless Channels

5.1 Homework 7

- Chapter 7, Problems 3,7,8,9,10,11
- Supplementary Problems:
 - 1. Let X and Y be the input and output of a BSC. Show that if $\epsilon = 0.5$, then X and Y are independent.
 - 2. Show in Example 7.8 that $H(Y \mid E) = (1 \gamma)h_b(a)$
- **3. Memory increases capacity.** Consider a BSC with crossover probability $0 < \epsilon < 1$ represented by $X_i = Y_i + Z_i \mod 2$, where X_i, Y_i , and Z_i are respectively, the input, the output, and the noise variable at time i. Then

$$\Pr\{Z_i = 0\} = 1 - \epsilon$$
 and $\Pr\{Z_i = 1\} = \epsilon$

for all i. We assume that $\{X_i\}$ and $\{Z_i\}$ are independent, but we make no assumption that Z_i are i.i.d. so that the channel may have memory.

a) Prove that

$$I(\mathbf{X}; \mathbf{Y}) \le n - h_b(\epsilon)$$

- b) Show that the upper bound in (a) can be achieved by letting X_i be i.i.d. bits taking the values 0 and 1 with equal probability and $Z_1 = Z_2 = \cdots = Z_n$
- c) Show that with the assumptions in (b), $I(\mathbf{X}; \mathbf{Y}) > nC$, where $C = 1 h_b(\epsilon)$ is the capacity of the BSC if it is memoryless.

Typo: $Y_i = X_i + Z_i$, $X_i + Y_i = (X_i + X_i) + Z_i = 0 + Z_i = Z_i$)

Answer (a)

$$I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y} \mid \mathbf{X})$$

$$\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i \mid \mathbf{Y}^{i-1}, \mathbf{X})$$

$$\leq n \cdot 1 - H(Y_1 \mid \mathbf{X})$$

$$= n - h_b(\epsilon)$$

- (b) In order to achieve this upper bound, we have to 1) make $H(\mathbf{Y}) = \sum_{i=1}^{n} H(Y_i)$ and $H(Y_i) = 1$, i.e., the output distribution of the BSC is uniform. This can be done by letting $p(X_i)$ be the uniform distribution on $\{0,1\}$. 2) $H(Y_i | \mathbf{Y}^{i-1}, \mathbf{X}) = 0, i \geq 2$, that is the random variable $Z_i, i \geq 2$ are fixed (same as Z_1).
- (c) With assumption in b holds

$$I(\mathbf{X}; \mathbf{Y}) = n - h_b(\epsilon) \ge n - nh_b(\epsilon) = n(1 - h_b(\epsilon)) = nC$$

7. Let

$$P(\epsilon) = \left[\begin{array}{cc} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{array} \right]$$

be the transition matrix for a BSC with crossover probability ϵ . Define a*b=(1-a)b+a(1-b) for $0\leq a,b\leq 1$

- a) Prove that a DMC with transition matrix $P(\epsilon_1) P(\epsilon_2)$ is equivalent to a BSC with crossover probability $\epsilon_1 * \epsilon_2$. Such a channel is the cascade of two BSCs with crossover probabilities ϵ_1 and ϵ_2 respectively.
- b) Repeat (a) for a DMC with transition matrix $P(\epsilon_2) P(\epsilon_1)$.
- c) Prove that

$$1 - h_b\left(\epsilon_1 * \epsilon_2\right) \le \min\left(1 - h_b\left(\epsilon_1\right), 1 - h_b\left(\epsilon_2\right)\right)$$

This means that the capacity of the cascade of two BSCs is upper bounded by the capacity of either of the two BSCs

d) Prove that a DMC with transition matrix $P(\epsilon)^n$ is equivalent to a BSC with crossover probabilities $\frac{1}{2}(1-(1-2\epsilon)^n)$

Answer (a) The composite transition probability is

$$p(Y|X) = \sum_{Z=0,1} p(Y|Z)p(Z|X)$$

Given $p(Y|Z) = P(\epsilon_2), p(Z|X) = P(\epsilon_1)$ the above could be write down in matrix format, that is

$$p(\epsilon) = P(\epsilon_2)P(\epsilon_1) = \begin{bmatrix} 1 - \epsilon_2 & \epsilon_2 \\ \epsilon_2 & 1 - \epsilon_2 \end{bmatrix} \begin{bmatrix} 1 - \epsilon_1 & \epsilon_1 \\ \epsilon_1 & 1 - \epsilon_1 \end{bmatrix}$$

$$= \begin{bmatrix} (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2 & (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2 \\ (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2 & (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2 \end{bmatrix}$$

$$= \begin{bmatrix} (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2 & (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2 \\ (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2 & (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2 \end{bmatrix}$$

Note that, denoting $\epsilon^* = (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2$, and

$$1 - \epsilon^* = 1 - ((1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2) = (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2$$

We obtain

$$p(\epsilon^*) = \begin{bmatrix} (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2 & (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2 \\ (1 - \epsilon_2)\epsilon_1 + (1 - \epsilon_1)\epsilon_2 & (1 - \epsilon_2)(1 - \epsilon_1) + \epsilon_1 * \epsilon_2 \end{bmatrix} = \begin{bmatrix} 1 - \epsilon^* & \epsilon^* \\ \epsilon^* & 1 - \epsilon^* \end{bmatrix}$$

therefore equivalent to a BSC with crossover probability $\epsilon^* = \epsilon_1 * \epsilon_2$

(b) As seen from the above matrix multiplication, the formula is symmetric about ϵ_1 and ϵ_2 . Therefore the conclusion holds for $p(\epsilon_1)p(\epsilon_2)$

(c)

$$C_1 = 1 - H_b(\epsilon_1)$$
 $C_2 = 1 - H_b(\epsilon_2)$ $C_3 = 1 - H_b(\epsilon_1 * \epsilon_2)$

From Markov Chain X - Z - Y we can see that

$$C_3 = I(X;Y) \le I(X;Z,Y) = I(X;Z) = C_1$$

$$C_3 = I(X;Y) \le I(X,Z;Y) = I(Z;Y) = C_2$$

Thus

$$C_3 = \min \{ \{C_1, C_2\} \}$$

which is exactly same as

$$1 - h_b(\epsilon_1 * \epsilon_2) < \min(1 - h_b(\epsilon_1), 1 - h_b(\epsilon_2))$$

(d) For n=1, the $\frac{1}{2}(1-(1-2\epsilon)^n)=\epsilon$ trivially holds. Suppose it holds for $n=k-1, k\geq 2$, then for n=k,

$$\begin{split} \Pr\left(Y_{k} = 1 \mid X = 0\right) &= \Pr\left(Y_{k} = 1 \mid Y_{k-1} = 0, X = 0\right) \Pr\left(Y_{k-1} = 0 \mid X = 0\right) + \\ &\quad \Pr\left(Y_{k} = 1 \mid Y_{k-1} = 1, X = 0\right) \Pr\left(Y_{k-1} = 1 \mid X = 0\right) \\ &= \Pr\left(Y_{k} = 1 \mid Y_{k-1} = 0\right) \Pr\left(Y_{k-1} = 0 \mid X = 0\right) + \Pr\left(Y_{k} = 1 \mid Y_{k-1} = 1\right) \Pr\left(Y_{k-1} = 1 \mid X = 0\right) \\ &= \epsilon \left(1 - \frac{1}{2} \left(1 - (1 - 2\epsilon)^{k-1}\right)\right) + (1 - \epsilon) \frac{1}{2} \left(1 - (1 - 2\epsilon)^{k-1}\right) \\ &= \frac{1}{2} \left(1 - (1 - 2\epsilon)^{k}\right) \end{split}$$

We proved by mathematical induction.

8. Symmetric channel. A DMC is symmetric if the rows of the transition matrix $p(y \mid x)$ are permutations of each other and so are the columns. Determine the capacity of such a channel. See Section 4.5 in Gallager [129] for a more general discussion.

Answer Note that

$$H(Y \mid X) = -\sum_{x} \sum_{y} P(y \mid x) P(x) \log P(y \mid x)$$
$$= -\sum_{x} P(x) \left(\sum_{y} P(y \mid x) \log P(y \mid x) \right)$$

Note that by symmetric assumption, $H(\Pi) = -\sum_{y} P(y \mid x) \log P(y \mid x)$ is independent of x. Thus,

$$H(Y \mid X) = -\sum_{x} P(x) \left(\sum_{y} P(y \mid x) \log P(y \mid x) \right)$$
$$= \sum_{x} P(x) H(\Pi) = H(\Pi)$$

Since the capacity is

$$C = \max_{x} I(X; Y) = \max_{x} H(Y) - H(Y|X)$$
$$= \max_{x} H(Y) - H(\Pi)$$

Recall that In Theorem 2.43, we have proved that for any random variable

$$H(X) \le \log |\mathcal{X}|$$

Therefore

$$C \le \log |\mathcal{Y}| - H(\Pi)$$

where $H(\Pi) = -\sum_{y} P(y \mid x) \log P(y \mid x)$ and the equality is attained when Y is uniform.

9. Let C_1 and C_2 be the capacities of two DMCs with transition matrices P_1 and P_2 , respectively, and let C be the capacity of the DMC with transition matrix P_1P_2 . Prove that $C \leq \min(C_1, C_2)$

Answer Think of the constructed Markov Chain X - Z - Y, where Z denoted the DMC in the middle phase

$$C_3 = I(X;Y) \le I(X;Z,Y) = I(X;Z) = C_1$$

$$C_3 = I(X;Y) \le I(X,Z;Y) = I(Z;Y) = C_2$$

Similar to proof in Problem 7.

$$C_3 = \min \le \{C_1, C_2\}$$

10. Two parallel channels. Let C_1 and C_2 be the capacities of two DMCs $p_1(y_1 \mid x_1)$ and $p_2(y_2 \mid x_2)$, respectively. Determine the capacity of the DMC

$$p(y_1, y_2 \mid x_1, x_2) = p_1(y_1 \mid x_1) p_2(y_2 \mid x_2)$$

Hint: Prove that

$$I(X_1, X_2; Y_1, Y_2) \le I(X_1; Y_1) + I(X_2; Y_2)$$

if $p(y_1, y_2|x_1, x_2) = p_1(y_1|x_1) p_2(y_2|x_2)$

Answer

$$\begin{split} I(X_1, X_2; Y_1, Y_2) &= \sum_{x_1, x_2, y_1, y_2} p(x_1, x_2, y_1, y_2) \log \frac{p(x_1, x_2, y_1, y_2)}{p(x_1, x_2) p(y_1, y_2)} \\ &= \sum_{x_1, x_2, y_1, y_2} p(x_1, x_2, y_1, y_2) \log \frac{(y_1, y_2 | x_1, x_2) p(x_1, x_2)}{p(x_1, x_2) p(y_1, y_2)} \\ &= \sum_{x_1, x_2, y_1, y_2} p(x_1, x_2, y_1, y_2) \log \frac{p_1(y_1 | x_1) p_2(y_2 | x_2)}{p(y_1, y_2)} \\ &= \sum_{x_1, x_2, y_1, y_2} p(x_1, x_2, y_1, y_2) \log p_1(y_1 | x_1) + \sum_{x_1, x_2, y_1, y_2} p(x_1, x_2, y_1, y_2) \log p_2(y_2 | x_2) - \\ &= \sum_{x_1, x_2, y_1, y_2} p(x_1, x_2, y_1, y_2) \log p(y_1, y_2) \\ &= \sum_{x_1, y_1} p(x_1, y_1) \log p_1(y_1 | x_1) + \sum_{x_2, y_2} p(x_2, y_2) \log p_2(y_2 | x_2) - \sum_{y_1, y_2} p(y_1, y_2) \log p_1(y_1, y_2) \\ &= I(X_1; Y_1) + I(X_2; Y_2) + H(Y_1, Y_2) - H(Y_1) - H(Y_2) \\ &\leq I(X_1; Y_1) + I(X_2; Y_2) \end{split}$$

Therefore we know that the new $C \leq C_1 + C_2$

11. In the system below, there are two channels with transition matrices $p_1(y_1 \mid x)$ and $p_2(y_2 \mid x)$. These two channels have a common input alphabet \mathcal{X} and output alphabets \mathcal{Y}_1 and \mathcal{Y}_2 , respectively, where \mathcal{Y}_1 and \mathcal{Y}_2 are disjoint. The position of the switch is determined by a random variable Z which is independent of X, where $\Pr\{Z=1\} = \lambda$

a) Show that

$$I(X;Y) = \lambda I(X;Y_1) + (1 - \lambda)I(X;Y_2)$$

- b) The capacity of the system is given by $C = \max_{p(x)} I(X;Y)$. Show that $C \leq \lambda C_1 + (1-\lambda)C_2$, where $C_i = \max_{p(x)} I(X;Y_i)$ is the capacity of the channel with transition matrix $p_i(y_i \mid x)$, i = 1, 2
- c) If both C_1 and C_2 can be achieved by a common input distribution, show that $C = \lambda C_1 + (1 \lambda)C_2$

Figure 16: Problem 11.

$$E(Y) = \lambda E(Y_1) + (1 - \lambda)E(Y_2)$$

$$I(X;Y) = E \log \frac{p(X,Y)}{p(X)p(Y)}$$

$$= E \log \frac{p(X,(Y_1,Y_2,Z))}{p(X)p(Y_1,Y_2,Z)}$$

$$= E \left(\mathbb{1}_{Z=1} \log \frac{p(X,Y_1)}{p(X)p(Y_1)} \right) + E \left(\mathbb{1}_{Z=2} \log \frac{p(X,Y_2)}{p(X)p(Y_2)} \right)$$

$$= \lambda I(X;Y_1) + (1 - \lambda)I(X;Y_2)$$

(b)
$$\max_{p(x)} I(X;Y) = \max_{p(x)} \lambda I(X;Y_1) + (1-\lambda)I(X;Y_2)$$

$$\leq \max_{p(x)} \lambda I(X;Y_1) + \max_{p(x)} \lambda I(X;Y_2)$$

$$= \lambda C_1 + (1-\lambda)C_2$$

(c) The equality achieved when $\operatorname{argmax} I(X; Y_1) = \operatorname{argmax} I(X; Y_2)$, otherwise the two maximum values cannot be achieved simultaneously.

Let X and Y be the input and output of a BSC. Show that if $\epsilon = 0.5$, then X and Y are independent.

Answer

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - h_b(0.5) = 1 - 1 = 0$$

Therefore, X, Y independent

Show in Example 7.8 that $H(Y \mid E) = (1 - \gamma)h_b(a)$, where

$$E = \begin{cases} 0 \text{ if } Y \neq e \\ 1 \text{ if } Y = e \end{cases}$$

Figure 17: Example 7.8.

$$H(Y \mid E) = -\sum_{e,y} p(e,y) \log \frac{p(e,y)}{p(e)}$$

$$= -p(e=1, y=e) \log \frac{p(e=1, y=e)}{p(e=1)} - p(e=0, y=1) \log \frac{p(e=0, y=1)}{p(e=0)} - p(e=0, y=0) \log \frac{p(e=0, y=0)}{p(e=0)}$$

$$= -0 - (1-a)(1-\gamma) \log(1-a) - a(1-\gamma) \log(a)$$

$$= (1-\gamma)h_b(a)$$