AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Presently amended) A compound including resolved enantiomers, diastereomers, solvates and pharmaceutically acceptable salts thereof, said compound comprising Formula I:

$$A \longrightarrow X \\ R^3 \longrightarrow N \longrightarrow H$$

wherein an A group is bonded to at least one of the carbons at the 5, 6, 7 or 8 position of the bicyclic ring, and the ring is substituted by up to three independent R³ groups;

X is N, CH, CF or C-CN;

 R^1 is a substituted or unsubstituted, monocyclic or bicyclic, aryl or heteroaryl moiety; R^2 is H or a substituted or unsubstituted C_{1-8} alkyl;

 R^3 is hydrogen, halogen, cyano, nitro, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -NR 4 SO $_2$ R 5 -SO $_2$ NR 6 R 4 , -C(O)R 6 , -C(O)OR 6 , -OC(O)R 6 , -NR 4 C(O)OR 5 , -NR 4 C(O)NR 4 R 6 , -NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -OR 6 , -S(O)R 5 , -SO $_2$ R 5 , where each of the above alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl portion of R 3 is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR 4 SO $_2$ R 5 , -SO $_2$ NR 6 R 4 , -C(O)R 6 , -C(O)OR 6 , -OC(O)R 6 , -NR 4 C(O)OR 5 , -NR 4 C(O)CR 6 , -C(O)NR 4 R 6 , -NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(NCN)NR 4 R 6 , -OR 6 , -S(O)R 5 , -SO $_2$ R 5 , aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

A is $[[Q \text{ or}]] - (U)_n Z$, where

$$\mathbb{R}^{6} \longrightarrow \mathbb{R}^{8} \qquad \mathbb{R}^{8} \qquad ;]]$$

n is 0 or 1, and U is C₁-C₄ alkyl, C₂-C₄ alkenyl or C₂-C₄ alkynyl; where each alkyl, alkenyl or alkynyl is optionally substituted with up to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, - NR⁴SO₂R⁵, -SO₂NR⁶R⁴, -C(O)R⁶, -C(O)OR⁶, -OC(O)R⁶, -NR⁴C(O)OR⁵, -NR⁴C(O)CR⁶, -C(O)NR⁴R⁶, -NR⁴C(O)NR⁴R⁶, -NR⁴C(O)NR⁴R⁶, -OR⁶, -S(O)R⁵, -SO₂R⁵, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

$$Z \text{ is } \mathbb{R}^9$$

$$\begin{bmatrix}
R^6 \\
R^8 \\
Y \\
W
\end{bmatrix}$$

$$\begin{bmatrix}
R^8 \\
Y \\
Y \\
W
\end{bmatrix}$$

where W, V and Y and V are selected independently from CR⁷R⁸, CR⁸R⁹, O, NR⁶, S, SO, SO₂, provided

if W is O, NR⁶, S, SO, SO₂, then V is CR⁸R⁹[[,]];

if V is O, NR⁶, S, SO, SO₂, then W and Y are each CR⁸R⁹, and

if Y is O. NR⁶. S, SO, SO₂, then V is CR⁸R⁹;

Z includes one or more R⁸ or R⁹ groups, wherein said R⁸ and R⁹ groups may be bonded to the same or different atoms;

R⁴ is H or C₁₋₆ alkyl;

R⁵ is trifluoromethyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclylalkyl, where each alkyl, cycloalkyl, aryl, heteroaryl, heterocyclylalkyl is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, OR⁶, NR⁴R⁶, trifluoromethyl,

difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

R⁶, R⁸ and R⁹ are independently selected from hydrogen, trifluoromethyl, C₁-C₁₀ alkyl, (CH₂)₀₋₄C₃-C₁₀ cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, where each alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, OR⁶, NR⁶R⁸, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided if R⁶ is directly bonded to Z, then R⁶ is not hydrogen;

 R^7 is hydrogen, halogen, cyano, nitro, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -NR 4 SO $_2$ R 5 -SO $_2$ NR 6 R 4 , -C(O)R 6 , -C(O)OR 6 , -OC(O)R 6 , -NR 4 C(O)OR 5 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -OR 6 , -S(O)R 5 , -SO $_2$ R 5 , where each of the above alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl portion of R 3 is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR 4 SO $_2$ R 5 , -SO $_2$ NR 6 R 4 , -C(O)R 6 , -C(O)OR 6 , -OC(O)R 6 , -NR 4 C(O)OR 5 , -NR 4 C(O)CR 6 , -C(O)NR 4 R 6 , -NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(NCN)NR 4 R 6 , -OR 6 , -S(O)R 5 , -SO $_2$ R 5 , aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

an R⁴ group and an R⁶ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms;

an R⁶ group and an R⁸ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl,

difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms;

an R⁷ group and an R⁸ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms; and

an R⁸ group and an R⁹ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

- 2. (Original) The compound of claim 1, wherein R^2 is a C_{1-8} alkyl having a terminal carbon atom bound to one of the ring atoms of R^1 .
- 3. (Original) The compound of claim 1, wherein an A group is bonded to at least one of the carbons at the 6 or 7 position of the bicyclic ring.
- 4. (Presently amended) The compound of claim 1, wherein R^2 is hydrogen, and R^3 is hydrogen or OR^6 , and X is N or C-CN.
- 5. (Presently amended) The compound of claim 3, wherein R³ is hydrogen or OR⁶, and n is 0, and X is N or C-CN.
 - 6. (Original) The compound of claim 1, wherein R² is hydrogen.

7. (Presently amended) The compound of claim 1, wherein Z is and W is O and X is CR^8R^9 .

- 8. (Presently amended) The compound of claim 5, wherein Z is R⁹ vv and W is O and X is CR⁸R⁹.
- 9. (Original) The compound of claim 1, wherein the R⁴ group and the R⁶ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.
- 10. (Original) The compound of claim 1, wherein the R⁶ group and the R⁸ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.
- 11. (Original) The compound of claim 1, wherein the R⁷ group and the R⁸ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each

ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms

- 12. (Original) The compound of claim 1, wherein the R⁸ group and the R⁹ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.
- 13. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 1 to said mammal.
- 14. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 2 to said mammal.
- 15. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 3 to said mammal.
- 16. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 4 to said mammal.
- 17. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 5 to said mammal.

- 18. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 6 to said mammal.
- 19. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 7 to said mammal.
- 20. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 8 to said mammal.
- 21. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 9 to said mammal.
- 22. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 10 to said mammal.
- 23. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 11 to said mammal.
- 24. (Withdrawn) A method of treating hyperproliferative diseases in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 12 to said mammal.
 - 25. (New) The compound of claim 1, wherein R¹ is selected from the structures:

- 26. (New) The compound of claim 7, wherein R⁶ is an optionally substituted alkyl or cycloalkyl.
- 27. (New) The compound of claim 26, wherein R⁶ is methyl, ethyl, CH₂CF₃, CH₂CH₂OH, or cyclopropyl.
- 28. (New) The compound of claim 26, wherein R⁸ and R⁹ are independently an optionally substituted alkyl.
- 29. (New) The compound of claim 28, wherein R^8 and R^9 are independently CH_2OH , CH_2NMe_2 or CH_2O -t-butyl.
- 30. (New) The compound of claim 26, wherein R⁸ and R⁹ together with the atoms to which they are attached form an optionally substituted heterocyclic ring.
 - 31. (New) The compound of claim 7, wherein Z is selected from the structures:

32. (New) The compound of claim 1, wherein Z is

- 33. (New) The compound of claim 32, wherein R⁶ is an optionally substituted alkyl.
- 34. (New) The compound of claim 33, wherein Z is methyl
- 35. (New) The compound of claim 34, wherein Z is

36. (New) The compound of claim 1, selected from:

N4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(3-methyl-oxazolidin-2-ylidene)-quinazoline-4,6-diamine;

N-4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(3-ethyl-oxazolidin-2-ylidene)-quinazoline-4,6-diamine;

(2-{4-[3-Chloro-4-(3-fluorobenzyloxy)-phenylamino]-quinazolin-6-ylimino}-3-methyloxazolidin-5-yl)-methanol;

- 2-(2-{4-[3-Chloro-4-(3-fluorobenzyloxy)-phenylamino]-quinazolin-6-ylimino}-oxazolidin-3-yl)-ethanol;
- N-4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(4-dimethylaminomethyl-3-methyl-oxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- (S)-N6-(4-tert-Butoxymethyl-3-methyl-oxazolidin-2-ylidene)-N4-[3-chloro-4-(3-fluoro-phenoxymethyl)-phenyl]-quinazoline-4,6-diamine;
- (S)-(2-{4-[3-Chloro-4-(3-fluorophenoxymethyl)-phenylamino]-quinazolin-6-ylimino-3-methyl-oxazolidin-4-yl)-methanol;
- (2-{4-[3-Chloro-4-(3-fluorophenoxymethyl)-phenylamino]-quinazolin-6-ylimino}-3-methyl-oxazolidin-5-yl)-methanol;
- {3-Methyl-2-[4-(3-methyl-4-phenoxyphenylamino)-quinazolin-6-ylimino]-oxazolidin-5-yl}-methanol;
- (2-{4-[3-Chloro-4-(6-methylpyridin-3-yloxy)-phenylamino]-quinazolin-6-ylimino}-3-methyl-oxazolidin-5-yl)-methanol;
- N4-(4-Benzenesulfonylphenyl)-N6-(3-methyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- {2-[4-(4-Benzenesulfonylphenylamino)-quinazolin-6-ylimino]-3-methyl-oxazolidin-5-yl}-methanol;
- N4-(4-Benzenesulfonylphenyl)-N6-(3-cyclopropyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- N6-(Dimethylhexahydropyrrolo[3,4-d]oxazol-2-ylidene)-N4-(3-methyl-4-phenoxyphenyl)-quinazoline-4,6-diamine;
- N4-[3-Chloro-4-(thiazol-2-ylmethoxy)-phenyl]-N6-(3-methyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- N4-[3-Chloro-4-(pyridin-2-ylmethoxy)-phenyl]-N6-(dimethyl-3-oxa-1,8-diaza-spiro[4.5]dec-2-ylidene)-quinazoline-4,6-diamine;
- [2-{4-[3-Chloro-4-(3-fluorobenzyloxy)-phenylamino]-quinazolin-6-ylimino}-3-(2,2,2-trifluoroethyl)-oxazolidin-5-yl]-methanol; and
- N4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(1-methylpyrrolidin-2-ylidene)-quinazoline-4,6-diamine.