LOG8470

Méthodes formelles en fiabilité et en sécurité

TP 2 : Élection dynamique d'un leader

Session	Automne 2021
Pondération	5 % de la note finale
Taille des équipes	2 étudiants
Date de remise	5 octobre (23 h 55 au plus tard)
Directives particulières	Soumission des fichiers Promela par moodle
	dans un dossier zip sous la forme tp2 -
	matricule1_matricule2.zip.
	Toute soumission du livrable en retard est
	pénalisé à raison de 10 % par jour de retard.
Moyen de communication	- Serveur discord
	- Courriel: basil.capar@polymtl.ca

1. Notion du cours à connaître

- Élection dynamique d'un leader

2. Objectif

Ce laboratoire est séparé en 2 exercices. L'objectif du premier est d'implanter l'algorithme de Dolev-Klawe-Rodeh. Le second exercice a pour but d'implanter le *Bully algorithm*.

3. Utilité de l'élection dynamique d'un leader

L'élection dynamique d'un *leader* permet de sélectionner un nœud qui coordonne un système au complet. Effectivement, ce processus est souvent utilisé dans les systèmes distribués, ce qui permet d'assigner des tâches à différents nœuds, modifier des données et de s'occuper des différentes requêtes qui sont passées dans le système. En effet, lorsque les bases de données sont répliquées, on peut déterminer un *leader* qui s'occupera d'effectuer des écritures.

Le partage de ressources dans un système distribué est assez complexe¹. Effectivement, on peut penser au fait que les systèmes distribués sont semblables à des *threads* qui possèdent un processus, mais tous ces *threads* sont des ordinateurs qui parviennent à se communiquer grâce au réseau. Ainsi, il n'y a pas de principe de sémaphores et de mutex pour l'utilisation des ressources partagées². À cet effet, Dolev-Klawe-Rodeh et *Bully* sont deux des algorithmes qui permettent de remédier à ces problèmes.

¹ Implementing leader election on Google Cloud Storage | Google Cloud Blog

² <u>Leader election in distributed systems (amazon.com)</u>

4. Algorithme de Dolev-Klawe-Rodeh (3 pts)

Ce premier exercice consiste à expliquer comment l'algorithme Dolev-Klawe-Rodeh fonctionne et de l'implémenter. Au niveau de l'algorithme, il est important de savoir que les nœuds communiquent grâce à des *channels*. Seul 6 nœuds sont nécessaires pour représenter le système distribué. Vous devez considérer qu'il n'y a pas eu de crash parmi les nœuds et que c'est la première fois que le système distribué se met en marche. Ainsi, parmi les 6 nœuds, on veut déterminer lequel sera le leader pour que le système soit opérationnel. Bien entendu, le résultat final que vous devrez obtenir est 6 qui est le id du leader.

5. Bully algorithm (1,5 pts)

Quant à l'algorithme *Bully*, il faut également l'expliquer et l'implémenter. Contrairement à l'exercice ci-dessus, quatre nœuds sont suffisants pour représenter l'algorithme. Aussi, il faut savoir que vous devez implémenter cet algorithme en sachant que le *leader* était le nœud #4, mais il n'est plus opérationnel et que c'est le nœud #1 qui a détecté la panne. Ainsi, il faut que le système trouve un nouveau *leader* qui est le nœud #3.

Les nœuds doivent se communiquer grâce aux *channels*. Aussi, les messages de communications possibles sont *Error*, *Election*, *Ok* et *Coordinator*. Bien entendu, les nœuds 1, 2 et 3 sont opérationnels. Cependant, chacun de ces nœuds devra s'assurer que les autres nœuds sont fonctionnels en vérifiant qu'ils n'ont pas reçu de message *Error*.

6. Discussion entre les 2 algorithmes (0,5 pt)

Discuter des différences entre les deux algorithmes.

7. Bonus (**0,5 pt**)

Implémentez un algorithme personnalisé qui permet d'élire un leader dynamiquement et expliquez comment il fonctionne.

8. Modalité de remise

Vous devez remettre un fichier *zip* qui contient les 2 fichier. *pml* ainsi qu'un rapport. Le rapport devra être nommé comme suit : tp2-matricule1_matricule2.pdf. Pour les fichiers promela, ils devront être nommés comme suit : tp2-bully-matricule1_matricule2.pml et tp2-dolev-matricule1_matricule2.pml.

9. Critères d'évaluation

Qualité du code	1.5 points
Utilisation des canaux pour communiquer	1 point
entre les processus	
Le leader élu est le bon	1 point
Implémentation adéquate des algorithmes	1.5 points
Bully et Dolev-Klawe-Rodeh	
Utilisation des goto	-1 point
Code non exécutable	-3 points
Mauvais format de remise	-1 point
Retard	-10 % par jour de retard