

HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

ICLR 2019

Keyulu Xu MIT Weihua Hu Stanford University Jure Leskovec Stanford University Stefanie Jegelka MIT

2025.07.29 DMAIS Master Course 박세준

INDEX

- Background
- Motivation
- GIN
- Experiments
- Conclusions

BACKGROUND

• Graph Isomorphism

- Graphs have the same structure, but they may be represented differently.
- o GNN that cannot distinguish graph isomorphism means that it lacks expressiveness

$$f(a) = 1$$

 $f(b) = 6$
 $f(c) = 8$
 $f(d) = 3$
 $f(g) = 5$
 $f(h) = 2$
 $f(i) = 4$
 $f(j) = 7$

Weisfeiler-Lehman Graph Isomorphism Test

- To test two graphs are isomorphism
- Iteratively aggregates the labels of nodes and their neighborhoods
- Hashes the aggregated labels into unique new labels

WL Subtree Kernel

- Based on WL test
- Measures the similarity between graph

• Graph Neural Network

- Effective framework for representation learning of graphs
- GNN follow a neighborhood aggregation (or message passing) scheme
- The design of new GNNs is mostly based on empirical intuition, heuristics, and experimental
- o Furthermore popular GNN variants cannot learn to distinguish certain simple graph structure
 - GCN, GraphSAGE...

BACKGROUND

Structures That Confuse Mean And Max-Pooling

- GraphSAGE readout function
 - $a_v^{(k)} = MAX(\{RELU(W*h_u^{(k-1)}), \forall u \in N(v)\})$
- GCN readout function

$$\bullet h_v^{(k)} = RELU(W * MEAN\{h_u^{(k-1)}, \forall u \in N(v) \cup \{v\}\})$$

- Graph representation
 - $\bullet h_G = READOUT(\{h_v^{(k)} | v \in G\})$

(a) Mean and Max both fail

(b) Max fails

(c) Mean and Max both fail

• 1-Layer Perceptrons Are Not Sufficient

Lemma 7. There exist finite multisets $X_1 \neq X_2$ so that for any linear mapping W, $\sum_{x \in X_1} \operatorname{ReLU}(Wx) = \sum_{x \in X_2} \operatorname{ReLU}(Wx)$.

MOTIVATION

Make Powerful GNN

- Effective framework for representation learning of graphs
- Have reprenstation power like WL test

TERM

Multiset

- Generalized concept of a set that allows multiple instances for its elements
- Multiset is a 2-tuple X = (S, m) where S is the underlying set of X
- $m: S \rightarrow N \ge 1$ gives the multiplicity of the elements

Injective

- Map two different neighborhoods to different representation.
 - One to one function

Building Powerful Graph Neural Networks

Lemma 2. Let G_1 and G_2 be any two non-isomorphic graphs. If a graph neural network $\mathcal{A}: \mathcal{G} \to \mathbb{R}^d$ maps G_1 and G_2 to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides G_1 and G_2 are not isomorphic.

Theorem 3. Let $A : \mathcal{G} \to \mathbb{R}^d$ be a GNN. With a sufficient number of GNN layers, A maps any graphs G_1 and G_2 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

$$h_v^{(k)} = \phi\left(h_v^{(k-1)}, f\left(\left\{h_u^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)\right),$$

where the functions f, which operates on multisets, and ϕ are injective.

b) A's graph-level readout, which operates on the multiset of node features $\left\{h_v^{(k)}\right\}$, is injective.

Building Powerful Graph Neural Networks

Lemma 4. Assume the input feature space \mathcal{X} is countable. Let $g^{(k)}$ be the function parameterized by a GNN's k-th layer for k=1,...,L, where $g^{(1)}$ is defined on multisets $X\subset\mathcal{X}$ of bounded size. The range of $g^{(k)}$, i.e., the space of node hidden features $h_v^{(k)}$, is also countable for all k=1,...,L.

GNN Difference with WL Test

- WL test based on one hot encoding
- WL test is good at distinguishing similar graphs but can't reflect the similarity of structures
- o GNN can map similar structure graphs to similar embedding space through learning

Graph Isomorphism Network

Lemma 5. Assume \mathcal{X} is countable. There exists a function $f: \mathcal{X} \to \mathbb{R}^n$ so that $h(X) = \sum_{x \in X} f(x)$ is unique for each multiset $X \subset \mathcal{X}$ of bounded size. Moreover, any multiset function g can be decomposed as $g(X) = \phi\left(\sum_{x \in X} f(x)\right)$ for some function ϕ .

Corollary 6. Assume \mathcal{X} is countable. There exists a function $f: \mathcal{X} \to \mathbb{R}^n$ so that for infinitely many choices of ϵ , including all irrational numbers, $h(c,X) = (1+\epsilon) \cdot f(c) + \sum_{x \in X} f(x)$ is unique for each pair (c,X), where $c \in \mathcal{X}$ and $X \subset \mathcal{X}$ is a multiset of bounded size. Moreover, any function g over such pairs can be decomposed as $g(c,X) = \varphi((1+\epsilon) \cdot f(c) + \sum_{x \in X} f(x))$ for some function φ .

$$h_v^{(k)} = MLP^{(k)}((1 + \epsilon^{(k)}) * h_v^{(k-1)} + \sum_{u \in N(v)} h_u(k-1))$$

Graph Level Readout Of GIN

- Just as node classification is important, graph classification is also very important
- Early iterations may sometimes have better generalization performance
- GIN combines embeddings from all layers for use
 - $h_G = \text{CONCAT}(\text{READOUT}(\{h_v^{(k)} | v \in G\}) | k = 0,1,...,K)$
- o If GIN replaces READOUT with summing all node features from the same iterations
 - Do not need an extra MLP before summation

• Structures That Confuse Mean And Max-Pooling

EXPERIMENTS

• Training Set Performance.

• Test Set Performance.

	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
Datasets	# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
Baselines	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
	DCNN	49.1	33.5	-	_	52.1	67.0	61.3	56.6	62.6
	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	$\textbf{75.9} \pm \textbf{2.8}$	60.0 ± 4.8	78.6 ± 1.9
	DGCNN	70.0	47.8	_	_	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	$\textbf{73.9} \pm \textbf{1.9}$	87.9 ± 9.8	_	-	_
GNN variants	SUM-MLP (GIN-0)	$\textbf{75.1} \pm \textbf{5.1}$	$\textbf{52.3} \pm \textbf{2.8}$	$\textbf{92.4} \pm \textbf{2.5}$	$\textbf{57.5} \pm \textbf{1.5}$	$\textbf{80.2} \pm \textbf{1.9}$	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	$\textbf{82.7} \pm \textbf{1.7}$
	SUM-MLP (GIN- ϵ)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	$\textbf{52.3} \pm \textbf{3.1}$	50.0 ± 0.0	20.0 ± 0.0	$\textbf{79.2} \pm \textbf{2.3}$	83.5 ± 6.3	75.5 ± 3.4	$\textbf{66.6} \pm \textbf{6.9}$	80.9 ± 1.8
	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	$\textbf{79.0} \pm \textbf{1.8}$	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6	-	_	-	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	-	-	-	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

• Contribution

Make GNN model good at distinguish Graph isomorphim

Theory

Mathematically proved the theory and argued against heuristics and intuition

Performance

Showed better performance than existing state-of-the-art models

FINISH

