Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

Ι	I Случайные события							
1	Элементарная теория вероятности							
	1.1	Основные понятия. Испытание (опыт, эксперимент), событие						
	1.2	Вероятность						
		1.2.1 Классическая формула вычисления вероятности						
		1.2.2 Статистическое определение вероятности						
		1.2.3 Геометрическое определение вероятности						
	1.3	Операции над событиями						
	1.4	Основные теоремы теории вероятностей						
		1.4.1 Независимость событий						
	1.5	Основные формулы комбинаторики						
		1.5.1 Перестановки						
		1.5.2 Правила комбинаторики						
	1.6	Выборки						
2	Аксиоматика А.М. Колмогорова							
	2.1	Аксиоматическое определение вероятности						
	2.2	Формула полной вероятности						
	2.3	Формула Байеса						
	2.4	Схема Бернулли						
	2.5	Формула Пуассона						
	2.6	Простейший поток событий						
II	\mathbf{C}	лучайные величины						
3	Дис	Дискретные величины						
	3.1	Случайная величина						
	3.2	Дискретные случайные величины						
	3.3	Основные распределения дискретных случайных величин						
	3.4	Числовые характеристики дискретных случайных величин						
	3.5	Моменты порядка k						
	3.6	Числовые характеристики для основных распределений дискретной случай-						
		ной величины						
4	pas	5						
	4.1	Функция распределения случайной величины						
	4.2	Числовые характеристики абсолютно непрерывных случайных величин						
	4.3	Основные распределения непрерывных случайных величин						
		4.3.1 Равномерное						
		4.3.2 Экспоненциальное						
		4.3.3 Гауссово или нормальное						

(Екатерина Викторовна, 234 или 236 аудитория) E-mail: ekaterina.shevkoplyas@gmail.com ДОСРОКА НЕ БУДЕТ.

Часть I

Случайные события

1 Элементарная теория вероятности

1.1 Основные понятия. Испытание (опыт, эксперимент), событие

Определение 1.1. Теория вероятности — наука, изучающая закономерности случайных явлений.

Определение 1.2. Опыт, испытание, эксперимент — некоторая воспроизводиная совокупность условий, в рамках которых может произойти то или иное явление, тот или иной факт.

Пример 1.1.

- 1) Подбрасывание одной монеты;
- 2) Двух;
- 3) Выстрел по мишени;
- 4) Подбрасывание игрального кубика-кости (да, берцовой);
- 5) Рождение ребенка и тому подобное.

Определение 1.3. Событие — любой факт, который может произойти либо не произойти в результате испытания. Обычно обозначаются заглавными латинскими буквами: A, B.

Пример 1.2.

- 1) Событие A выпадение герба. $\Omega = \{\Gamma, P\}$;
- 2) Выпали все решки;
- 3) Попали по мишени;
- 4.1) Выпало шесть точек;
- 4.2) Выпало четное число точек;
- 5) Родился мальчик.

Событие 4.2 является составным.

Определение 1.4. Элементарное событие (или исход) — событие, которое не может являться объединением более мелких событий. Неопределяемое понятие.

 $\it Замечание 1.1. \ \omega_i - {\it обозначение элементарного исхода}.$

 $\Omega = \{\omega_i\}$ — пространство элементарных исходов.

Определение 1.5. Случайное событие $A\subseteq\Omega$. Лежит между \varnothing и Ω .

Определение 1.6. Событие, которое обязательно произойдет, называется достоверным. Так как оно состоит из всех элементов пространства элементарных исходов, оно обозначается Ω .

Определение 1.7. Событие, которое никогда не произойдет в результате испытаний, называется невозможным. Оно обозначается \varnothing .

Определение 1.8. Вероятность события A — число, характеризующее степень возможности этого события. Обозначается p(A). Данное определение не является классическим.

Вероятность невозможного события $p(\emptyset) = 0$

Вероятность достоверного события $p(\Omega) = 1$.

Таким образом, $0 \le p(A) \le 1$.

1.2 Вероятность

1.2.1 Классическая формула вычисления вероятности

Пусть относительно Ω выполнены условия:

- 1) $|\Omega| = n$.
- 2) «Равные шансы»: все элементарные исходы равновозможны.

Тогда

$$p(A) = \frac{|A|}{|\Omega|}$$

где |A| — мощность множества элементарных исходов, составляющих множество благоприятных исходов.

1.2.2 Статистическое определение вероятности

Если не выполнено второе условие, то формула приобретает вид:

$$p(A) = \frac{m_A}{n}$$

где m_A — число появлений события A, а n — число экспериментов.

1.2.3 Геометрическое определение вероятности

Выполнено второе условие, но не выполнено первое (конечность множества). В этом случае формула приобретет вид:

$$p(A) = \frac{l}{L}$$

где l — площадь (n-мерная) области, удовлетворяющей условию, L — площадь всей области.

1.3 Операции над событиями

Теория множеств	Теория вероятности		
Ω — универсальное множество	пространство элем. исходов		
$A \subset \Omega$	случайное событие		
Ø — пустое множество	невозможное событие		
$\overline{A} = \Omega \backslash A$ — дополнение	противоположное событие		
$A \cap B$	$A \cdot B$ произведение событий		
$A \cup B$	A+B сумма событий		

Определение 1.9. Суммой событий A + B называется событие D, которое состоит в выполнении хотя бы одного события A и B.

Определение 1.10. $\{A_1,...,A_n\}$ — полная группа событий, если $A_i \cap A_j = \emptyset \ \forall i \neq j$ и $\sum_{i=1}^n A_i = \Omega$.

Определение 1.11. События A и B называются несовместными, если появление одного из них исключает появление другого. Не путать с независимостью!

Замечание 1.2. $A \subset B$ — появление события A влечет появление события B.

1.4 Основные теоремы теории вероятностей

Теорема 1.1. Пусть A, B — несовместные события, то есть $(A \cdot B = \varnothing)$. Тогда p(A + B) = p(A) + p(B).

Вывод 1.1. $p(\overline{A}) = 1 - p(A)$.

Теорема 1.2. (о сложении) $p(A+B) = p(A) + p(B) - p(A \cdot B)$.

Определение 1.12. $p(A/B) = p_B(A)$ (читается «пэ от A при условии В») вводится как

$$\frac{p(A \cdot B)}{p(B)}$$

— условная вероятность события A при условии, что событие B произошло.

Теорема 1.3. (умножения)

Вероятность того, что произошло событие A и событие B равна $p(A \cdot B) = p(A) \cdot p(B) = p(B) \cdot p(A/B)$.

Вывод 1.2. $p(A \cdot B \cdot C) = p(A) \cdot p(B/A) \cdot p(C/A \cdot B)$ и аналогично для большего числа событий.

1.4.1 Независимость событий

Определение 1.13. A и B независимы, если $p(A \cdot B) = p(A) \cdot p(B)$.

Определение 1.14. $A_1,...,A_n$ независимы в совокупности, если $\forall A_{i_1},...,A_{i_k}$ выполнено $p(A_{i_1},...,A_{i_k}) = \prod_{l=1}^k p(A_{i_l})$

Определение 1.15. $A_1, ..., A_n$ попарно независимы, если $\forall A_i, A_j$ верно $p(A_i \cdot A_j) = p(A_i) \cdot p(A_j) \ \forall i \neq j$. Очевидно, что из независимости в совокупности следует попарная независимость.

Пример 1.3. (Контрпример. Пирамида Бернштейна)

Кидаем тетраэдр, грани которого раскрашены в красный, зеленый и синий цвета, а основание — во все три. Мы ее бросаем и смотрим, какой цвет выпал. Пусть A — выпадение красного, B — синего и C — зеленого цвета. Тогда $p(A \cdot B) = \frac{1}{4} = p(A) \cdot p(B) = \frac{2}{4} \cdot \frac{2}{4}$. Аналогично для других цветов. То есть эти события попарно независимы. Но $p(A \cdot B \cdot C) = \frac{1}{4} = p(A)p(B)p(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \Rightarrow$ нет независимости в совокупности.

1.5 Основные формулы комбинаторики

1.5.1 Перестановки

Определение 1.16. Перестановки — комбинации из n элементов, отличающихся порядком их расположения.

Множество всех перестановок множества из n элементов равно n!. $P_n = n!$.

Определение 1.17. Размещения — комбинации из n элементов по m элементов, отличающихся либо порядком, либо составом элементов.

Число всевозможных размещений $A_n^m = n \cdot (n-1) \cdot ... \cdot (n-m+1)$.

Определение 1.18. Сочетания — комбинации из n элементов по m элементов, отличаюшихся только составом элементов.

Число всевозможных сочетаний $C_n^m=\frac{n!}{m!(n-m)!}$. Запомним: $C_n^{n-m}=C_n^m,\,C_n^0=1$.

Правила комбинаторики 1.5.2

Определение 1.19. Правило произведения: $(a_1,...,a_n)$ и $(b_1,...,b_m)$. Тогда выбрать пару (a_i, b_i) можно $n \cdot m$ способами.

Определение 1.20. Правило суммы: $(a_1,...,a_n)$ и $(b_1,...,b_m)$. Тогда выбрать либо a_i , либо b_i можно m+n способами.

Выборки 1.6

Определение 1.21. $(a_1,...,a_n)$ — некоторая генеральная совокупность однородных объектов. Вынем из них $\langle a_{i_1},...,a_{i_m} \rangle$ — выборка объема m. Выборка может быть с возвращением и без возвращения элементов в генеральную совокупность, а так же упорядоченная или неупорядоченная.

- 1) Упорядоченная выборка с возвращением: $\langle a_{i_1}, ..., a_{i_n} \rangle$, тогда $|\Omega| = n^m$.
- 2) Упорядоченная выборка без возвращения: $[a_{i_1},...,a_{i_n}],$ тогда $|\Omega|=A_n^m.$
- 3) Неупорядоченная выборка без возвращения: $[a_{i_1},...,a_{i_n}]$, при этом порядок не важен, важен состав $|\Omega| = C_n^m = \frac{n!}{m!(n-m)!}$.
 - 4) Неупорядоченная выборка с возвращением, $|\Omega| = C_{n+m-1}^m$.

M состояний частицы есть фактически M ящиков, в которые мы кладем n частиц. Частицы могут быть различимыми, а могут быть неразличимыми.

Запрет Паули говорит о том, что в коробке может находится одна или ноль частиц.

- 1) Частицы различимы, запрета Паули нет. Тогда это состояние эквивалентно упорядоченной выборке с возвращением.
- 2) Частицы неразличимы, есть запрет Паули. Тогда это состояние состояние эквивалентно неупорядоченной выборке без возвращения.
- 3) Частицы неразличимы, нет запрета Паули. Тогда это состояние эквивалентно неупорядоченной выборке с возвращением.
- 4) Частицы различимы, запрет Паули существует. Тогда это состояние эквивалентно упорядоченной выборке без возвращения.

2 Аксиоматика А.М. Колмогорова

2.1 Аксиоматическое определение вероятности

Определение 2.1. $\mathbb{A} \in 2^{\Omega}$, где Ω — пространство элементарных исходов, называется алгеброй, если:

1) $\Omega \in \mathbb{A}$

2)
$$\forall A, B \in \mathbb{A}, \begin{cases} A \cup B \in \mathbb{A} \\ A \cap B \in \mathbb{A} \end{cases}$$

3) $\forall A \in \mathbb{A}$ выполняется $\overline{A} \in \mathbb{A}$.

Пример 2.1. $A_1 = \{\emptyset, \Omega\}$

Определение 2.2. Числовая функция $\mu(A)$ называется конечной аддитивной мерой на \mathbb{A} , если:

- 1) $\mu(A) \ge 0 \ \forall A \in \mathbb{A}$.
- 2) $\forall A, B \in \mathbb{A}$: $A \cap B = \emptyset$ выполняется $\mu(A \cup B) = \mu(A) + \mu(B)$.

Определение 2.3. Если $\mu(A) = 1$, то ее говорят, что это конечная аддитивная вероятностная мера. Она обозначается $p(A) = \mu(A)$.

Она обладает следующими свойствами:

- 1) $p(A) \ge 0$
- $2) p(\Omega) = 1$
- 3) $\forall A, B \in \mathbb{A}$: $A \cap B = \emptyset$ выполняется $p(A \cup B) = p(A) + p(B)$.

Определение 2.4. Система подмножеств \mathbb{F} называется сигма-алгеброй, если:

- 1) Она является алгеброй
- 2) Она замкнута относительно счетного объединения/пересечения событий.

Определение 2.5. Счетно-аддитивная вероятностная мера p(A) заданная $\forall A \in \mathbb{F}$ называется вероятностью, то есть:

- 1) $\forall A \in \Omega \ p(A) \ge 0$
- $p(\Omega) = 1$
- 3) $\forall A_1,...,A_n \in \mathbb{F},\ A_i \cap A_j = \varnothing \forall i \neq j$ выполняется $p(\cup_{n=1}^\infty A_n) = \sum_{n=1}^\infty p(A_n)$

Определение 2.6. (Ω, \mathbb{F}, p) — вероятностное пространство.

Определение 2.7. (Ω, \mathbb{F}) — измерительное пространство.

2.2 Формула полной вероятности

Пусть у нас есть событие A и оно может произойти одновременно с одним и только одним из событий $H_1, ..., H_n$, таких, что:

- 1) $H_i \cdot H_j = \emptyset \ \forall i \neq j;$
- 2) $H_1 + ... + H_n = \Omega;$

И нам нужно найти вероятность события A.

$$p(A) = p(A \cdot \Omega) = p(A \cdot (H_1 + \dots + H_n)) = p(\sum_{i=1}^n A \cdot H_i) = \sum_{i=1}^n p(A \cdot H_i)$$

2.3 Формула Байеса

$$p(H_i/A) = \frac{p(H_i \cdot A)}{p(A)} = \frac{p(H_i) \cdot p(A/H_i)}{\sum_{i=1}^{n} p(H_i) \cdot p(A/H_i)}$$

 $p(H_i/A)$ — апостариорная вероятность.

2.4 Схема Бернулли

Определение 2.8. Схема Бернулли — последовательность из n независимых испытаний, в каждом из которых вероятность появления события A одинакова и равна p.

Если событие A произошло, то говорят об успехе, иначе — о неудаче.

Определение 2.9. Сама формула Бернулли имеет вид

$$p_n(K) = C_n^k p^k q^{n-k}$$

где q = 1 - p.

2.5 Формула Пуассона

Пусть $np = \lambda$, тогда

$$\lim_{n \to \infty} p_n(k) = \lim_{n \to \infty} \frac{n(n-1)...(n-k)\lambda^k}{n \cdot n \cdot ... \cdot n \cdot k!} \left(1 - \frac{\lambda}{n}\right)^n \cdot \left(1 - \frac{\lambda}{n}\right)^{-k} =$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} 1 \cdot \left(1 - \frac{1}{n}\right) \cdot ... \cdot \left(1 - \frac{k-1}{n}\right) \cdot \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Отсюда выводится сама формула:

$$P_n(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

2.6 Простейший поток событий

Определение 2.10. Потоком событий называется последовательность событий, которые наступают в случайный момент времени.

Определение 2.11. Поток называется простейшим/пуассоновским, если выполнены свойства:

- 1) Станционарность: вероятность появления k событий длины t $P_t(k)$ зависит только от t и k и не зависит начала.
- 2) Отсутствие последействия: вероятность появления k событий длины t $P_t(k)$ не зависит от предыстории процесса.
- 3) Ординарность: \forall сколь угодно малого Δt вероятность наступления двух событий стремится к нулю.

Теорема 2.1. Если поток пуассоновского типа, то вероятность $P_t(k)$ можно вычислить по формуле

$$P_t(k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

z де λ — интенсивностть потока, то есть количество наступлений событий за единицу времени.

Часть II

Случайные величины

3 Дискретные величины

3.1 Случайная величина

Определение 3.1. $\xi:\Omega\to\mathbb{R}^1$. Функция называется измеримой, если прообраз баррельского множества изменим.

Определение 3.2. Неформальное определение: числовая функция, которая в результате испытания примет одно и только одно значение, неизвестное заранее.

Случайные величины делятся на 3 типа:

- 1) Дискретные
- 2) Непрерывные
- 3) Сингулярные

Определение 3.3. Случайная величина является дискретной, если ее возможное значение конечно или счетно.

3.2 Дискретные случайные величины

Определение 3.4. Законом распределения ДСВ x называется перечень всех ее возможных значений x_i и соответсвующих им вероятностей p_i .

Записи:									
	x	x_1	x_2		x_n				
	p	p_1	p_2		p_n				

События попарно несовместны, и сумма всех вероятностей равна единице.

Либо в виде многоугольника распределения.

3.3 Основные распределения дискретных случайных величин

- 1) Биномиальное. Если S_n число успехов в схеме Бернулли, то случайная величина будет принимать целочисленные значения от 0 до n. $p_k\{S_n=k\}=C_n^kp^kq^{n-k}$.
 - 2) Распределение Пуассона.
 - 3) Геометрическое распределение.
 - 4) Гипергеометрическое распределение.

3.4 Числовые характеристики дискретных случайных величин

Определение 3.5. Математическое ожидание случайной величины X есть среднее значение случайной величины X:

$$M(X) = \sum_{i} x_i p_i$$

9

Свойства:

- 1) M(c) = c;
- $2) \ M(c \cdot X) = c \cdot M(X);$

- 3) M(X + Y) = M(X) + M(Y);
- 4) $M(XY) = M(X) \cdot M(Y)$, если X, Y независимы.

Пример 3.1. (Санкт-Петербургский парадокс — пример не существования матожидания) Игрок играет против казино. Подбрасывают монетку. Если выпадает герб на i броске, то игрок получает 2^i доллара. Посчитаем матожидание выигрыша: $M(Y) = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \dots$ Этот ряд расходится, следовательно, матожидания выигрыша не существует.

Определение 3.6. Дисперсия случайной величины X:

$$D(x) = M(X - M(X))^2$$

или, что тоже самое,

$$D(X) = M(X^2) - (M(X))^2$$

3.5 Моменты порядка k

Определение 3.7. Начальный момент порядка k: $\mu_k = M(X^k)$

Определение 3.8. Центральный момент порядка k: $\nu_k = M(X - M(X))^k$

3.6 Числовые характеристики для основных распределений дискретной случайной величины

1) Биномиальное: S_n — число успехов:

$$p_k = p\{S_n = k\} = C_n^k p^k q^{n-k}$$

4 pass

4.1 Функция распределения случайной величины

Определение 4.1. Функция распределения задается как

$$F(x) = p\{X < x\}$$

либо

$$F(x) = p\{X \le x\}$$

Свойства функции распределения:

- 1) Принимает значение от 0 до 1, как вероятность;
- 2) F(x) является неубывающей функцией;
- 3) $p\{x_1 \le X \le x_2\} = F(x_2) F(x_1);$
- 4) $\lim_{x \to +\infty} F(x) = 1$, $\lim_{x \to 0} F(x) = 0$;
- 5) Непрерывна слева.

Определение 4.2. Случайная величина называется абсолютно непрерывной, если $\exists f(x) \geq 0$, такая, что

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

при этом f(x) называется плотностью распределения.

 $F(x) = \int_{-\infty}^{x} f(t)dt$ — интегральный закон; f(x) = F'(x) — дифференциальный закон. Свойства:

- 1) f(x) > 0
- 2) $p\{x_1 \leq X \leq x_2\} = \int_{x_1}^{x_2} f(t)dt$. 3) Условие нормировки: $\int_{-\infty}^{\infty} f(x)dx = 1$.

Числовые характеристики абсолютно непрерывных случайных 4.2 величин

Матожидание:
$$M(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
; Дисперсия: $D(X) = \int_{-\infty}^{\infty} (x - M(X))^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - (M(x))^2$. $\mu_k = \int_{-\infty}^{\infty} x^k f(x) dx$, $\nu_k = \int_{-\infty}^{\infty} (x - M(X))^k \cdot f(x) dx$

4.3 Основные распределения непрерывных случайных величин

4.3.1 Равномерное

 $X \sim R(a, b)$ — равномерное распределение на промежутке (a, b).

$$f(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & x \in [a,b) \\ 0 & x \ge b \end{cases}$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b) \\ 1 & x \ge b \end{cases}$$

$$M(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{x^2}{2} \cdot \frac{1}{b-a} |_{a}^{b} = \frac{b^2 - a^2}{2} \cdot \frac{1}{b-a} = \frac{a+b}{2}.$$

$$D(X) = \dots = \frac{(b-a)^2}{12} \text{ (убедиться в этом)}.$$

4.3.2 Экспоненциальное

Определение 4.3. Случайная величина имеет экспоненциальное распределение, если

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t \ge 0 \end{cases}$$
$$F(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t > 0 \end{cases}$$

$$M(T) = \int_0^\infty t \cdot \lambda e^{-\lambda t} dt = \frac{1}{\lambda}.$$

4.3.3 Гауссово или нормальное

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Стандартное нормальное распределение при $a = 0, \sigma = 1$.