Cálculo Integral em \mathbb{R}^n : Integrals Duplos

M. Elfrida Ralha (eralha@math.uminho.pt)

M.Isabel Caiado (icaiado@math.uminho.pt)

abril 2018

[MIEInf] Análise-2017-18

1 / 22

Integrais Duplos

Somas de Riemann: Definição de integral duplo

Integral Duplo: definição

Funções integráveis

Integrais Duplos: Propriedades

Integração em regiões não Retangulares

Troca da ordem de Integração

Volumes e áreas

Mudança de Variáveis, no plano

Jacobiano

Coordenadas Cartesianas

Coordenadas Polares

Mudança: Cartesianas & Polares

Obs: Nesta secção, a função $f:\mathcal{D}\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ é limitada, isto é,

|f(x,y)| < M, para algum $M \in \mathbb{R}$.

O Cálculo de Volume(s)

▶ [Problema] Determinar o volume de um sólido.

Seja \mathcal{R} o retângulo [a,b] imes [c,d] e $f:\mathcal{R} \longrightarrow \mathbb{R}$ tal que

$$f(x,y) \geq 0$$

- lacksquare o retângulo (definido por) $\mathcal{R}\subset\mathbb{R}^2,$
- ▶ a superfície (definida por) z = f(x, y) e
- os planos (definidos por) $x = a, \quad x = b, \quad y = c, \quad y = d$

definem um sólido (de \mathbb{R}^3) cujo volume se busca.

[MIEInf] Análise-2017-18

3 / 22

Definição de integral duplo

A. Seja $\mathcal{R} = [a, b] \times [c, d]$ e $f : \mathcal{R} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$. Particione-se \mathcal{R} :

1. Considera-se uma partição de [a,b] em n subintervalos

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b;$$

2. Considera-se uma partição [c,d] em m subintervalos

$$c = y_0 < y_1 < \dots < y_{m-1} < y_m = d;$$

3. As partições anteriores estabelecem uma partição do retângulo \mathcal{R} em $n \times m$ subretângulos

$$\mathcal{R}_{ij} = [x_i, x_{i+1}] \times [y_i, y_{j+1}]$$

 $lackbox{D}$ Denote-se $\Delta x_i = x_{i+1} - x_i$ e $\Delta y_j = y_{j+1} - y_j$

ightharpoonup A área do subretângulo R_{ij} é então $\Delta A_{ij} = \Delta x_i \, \Delta y_j$

- B. Em cada subretângulo \mathcal{R}_{ij} escolha-se um ponto (x^*_i, y^*_j) e calcule-se $f(x^*_i, y^*_j)$
- ▶ O volume do paralelipípedo de base \mathcal{R}_{ij} e altura $f(x^*_i, y^*_j)$ é

$$f(x^*_i, y^*_j)\Delta A_{ij}$$

• O volume do sólido limitado por \mathcal{R} e pelo gráfico de f (e lateralmente pelos planos definidos por $x=a, \quad x=b, \quad y=c, \quad y=d)$ pode ser aproximado por

[MIEInf] Análise-2017-18

5 / 22

Integral Duplo: definição

lacktriangle A soma de Riemann de f relativa à partição de ${\mathcal R}$ é o número

$$\sum_{i=0}^{n} \sum_{j=0}^{m} f(x^*_{i}, y^*_{j}) \Delta A_{ij}$$

Definição: Quando $n, m \longrightarrow +\infty$ (isto é, quando Δx_i e Δy_j tendem para 0), o valor da soma de Riemann de f designa-se por integral duplo de f em \mathcal{R} e denota-se por f

$$\iint_{\mathcal{R}} f(x,y) \, dA$$

▶ Se existir o integral duplo de f em \mathcal{R} , diz-se que f é integrável em \mathcal{R} .

Também se escreve $\iint_{\mathcal{R}} f(x,y) \, dx \, dy \quad \text{ou} \quad \iint_{\mathcal{R}} f(x,y) \, dy \, dx \quad \text{ou} \quad \iint_{\mathcal{R}} f(x,y) \, d(x,y)$ [MIEInf] Análise-2017-18

Funções integráveis

- 1. Toda a função contínua definida num retângulo fechado é integrável.
- 2. Seja $f: \mathcal{R} \longrightarrow \mathbb{R}$ uma função limitada em \mathcal{R} e suponha-se que os pontos de descontinuidade de f pertencem à união finita de gráficos de funções contínuas. Então f também é integrável.

[MIEInf] Análise-2017-18

7 / 22

Propriedades dos integrais duplos

Sejam $f, g: \mathcal{R} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis no retângulo \mathcal{R} e $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$. Então:

- 1. $\iint_{\mathcal{R}} [f(x,y) \pm g(x,y)] dA = \iint_{\mathcal{R}} f(x,y) dA \pm \iint_{\mathcal{R}} g(x,y) dA;$
- 2. $\iint_{\mathcal{R}} \lambda \ f(x,y) dA = \lambda \ \iint_{\mathcal{R}} f(x,y) dA, \qquad \lambda \in \mathbb{R};$
- 3. $\iint_{\mathcal{R}} f(x,y) dA = \iint_{\mathcal{R}_1} f(x,y) dA + \iint_{\mathcal{R}_2} f(x,y) dA;$
- 4. $f \geq g \Longrightarrow \iint_{\mathcal{R}} f(x,y) dA \geq \iint_{\mathcal{R}} g(x,y) dA$;
 - $f \ge 0 \Longrightarrow \iint_{\mathcal{R}} f(x,y) dA \ge 0$;
- 5. $\left| \iint_{\mathcal{R}} f(x,y) dA \right| \leq \iint_{\mathcal{R}} |f(x,y)| dA$.

Como calcular um integral duplo?

► [Teorema 1 (de Fubini)]

Seja f uma função contínua no retângulo $\mathcal{R} = [a,b] imes [c,d]$. Então

$$\iint_{\mathcal{R}} f(x,y) dA = \int_a^b \left[\int_c^d f(x,y) \frac{dy}{dy} \right] dx = \int_c^d \left[\int_a^b f(x,y) \frac{dx}{dy} \right] \frac{dy}{dx}.$$

Exemplo

▶ Calcular o integral duplo, onde \mathcal{R} é o retângulo $[0,1] \times [1,2]$,

$$\iint_{\mathcal{R}} (x^3 + y^2) d(x, y).$$

[MIEInf] Análise-2017-18

9 / 22

► [Teorema 2 (de Fubini)]

Seja f uma função limitada no retângulo $R=[a,b]\times[c,d]$ e suponha-se que os pontos de descontinuidade de f pertencem à união finita de gráficos de funções contínuas.

Se $\int_{c}^{d}f(x,y)\,dy$ existe para cada $x\in [a,b]$ então o integral duplo

$$\int_a^b \left[\int_c^d f(x,y) \, \frac{dy}{dy} \right] \, dx \quad \text{existe e} \quad \int_a^b \left[\int_c^d f(x,y) \, \frac{dy}{dy} \right] \, dx = \iint_R f(x,y) \, dA.$$

De modo análogo, se $\int_a^b f(x,y) \, dx$ existe para cada $y \in [c,d]$ então o integral duplo

$$\int_c^d \left[\int_a^b f(x,y) \, dx \right] \, \frac{dy}{dy} \quad \text{existe e} \quad \int_c^d \left[\int_a^b f(x,y) \, dx \right] \, \frac{dy}{dy} = \iint_R f(x,y) \, dA.$$

Se todas as condições se verificam em simultâneo

$$\int_a^b \left[\int_c^d f(x,y) \, dy \right] \, dx = \int_c^d \left[\int_a^b f(x,y) \, dx \right] \, dy = \iint_R f(x,y) \, dA.$$

Integração em regiões gerais

Região do tipo I

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

Região do tipo II

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

[MIEInf] Análise-2017-18

11 / 22

Regiões elementares de \mathbb{R}^2

► [Região do tipo I]

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo I de \mathbb{R}^2 , ou verticalmente simples, se existe um intervalo [a,b] e duas funções

$$\varphi_1: [a,b] \longrightarrow \mathbb{R}$$
 e $\varphi_2: [a,b] \longrightarrow \mathbb{R}$,

 $\varphi_1, \varphi_2 \in \mathcal{C}^1(]a, b[)$ tais que

$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x)\}$$

Neste caso,

$$\iint_{\mathcal{D}} f(x,y) dx dy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) dy \right] dx.$$

► [Região do tipo II]

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo II de \mathbb{R}^2 , ou horizontalmente simples, se existe um intervalo [c,d] e duas funções

$$\mu_1:[c,d]\longrightarrow \mathbb{R}$$
 e $\mu_2:[c,d]\longrightarrow \mathbb{R}$ $\mu_1,\mu_2\in \mathcal{C}^1(]c,d[)$ tais que $\mathcal{D}=\{(x,y)\in \mathbb{R}^2:c\leq y\leq d,\;\mu_1(y)\leq x\leq \mu_2(y)\}$

Neste caso,

$$\iint_{\mathcal{D}} f(x,y) dx dy = \int_{c}^{d} \left[\int_{\mu_{1}(y)}^{\mu_{2}(y)} f(x,y) dx \right] dy.$$

▶ [Região do tipo III] $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo III de \mathbb{R}^2 se for, simultaneamente, uma região do tipo I e do tipo II.

13 / 22

Exemplo

▶ [7.3a)] Calcular

$$\iint_{\mathcal{D}} xy \, dx \, dy$$

quando $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le x^2\}.$

- 1. Usando uma região verticalmente simples.
- 2. Usando uma região horizontalmente simples.

Mudança da ordem de Integração

$$\iint_{\mathcal{D}} f(x,y) \, dx \, dy \qquad \mathsf{OU} \qquad \iint_{\mathcal{D}} f(x,y) \, dy \, dx$$

- Antes de calcular um integral duplo é aconselhável fazer um esboço da região de integração.
- A ordem de integração é muito importante!
 - $\iint_{\mathcal{D}} f(x,y) dx dy \neq \iint_{\mathcal{D}} f(x,y) dy dx$
 - $dx\,dy$ corresponde a uma subdivisão "vertical" da região, enquanto que em $dy\,dx$ a subdivisão é "horizontal".
 - A alteração da ordem de integração pode, em particular, permitir o cálculo de um integral que, de outra forma, não seria possível; por exemplo:

[MIEInf] Análise-2017-18

15 / 22

Volumes e áreas

• Se $f:B\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ é não negativa e integrável em B e $\mathcal S$ é a região do espaço definida por

$$S = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in B, \ 0 \le z \le f(x, y)\}$$

define-se o volume de ${\cal S}$ por

$$\operatorname{vol}(\mathcal{S}) = \iint_{B} f(x, y) dA.$$

• Se $f:B\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ é a função constante f(x,y)=1 a área de B, é dada por

$$\mathsf{área}(\mathcal{S}) = \iint_B 1 \, dA$$

1. Calcular a área da região definida pelo conjunto

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, \ x \le y \le x^2\}$$

- 2. Sejam
 - \mathcal{D} o círculo unitário de centro na origem;
 - \mathcal{R} a região de \mathcal{D} em que $x \geq 0$;
 - ullet $\mathcal B$ a região de $\mathcal D$ na qual $y\leq 0$

Em cada uma das alíneas indique, justificando sem efetuar cálculos e nos casos em que for possível, se o valor do integral é positivo, negativo ou nulo.

2.1 $\iint_{\mathcal{R}} dA$; 2.3 $\iint_{\mathcal{D}} 5x \, dA$; 2.2 $\iint_{\mathcal{D}} 5x \, dA$; 2.4 $\iint_{\mathcal{D}} \operatorname{sen} y \, dA$.

[MIEInf] Análise-2017-18

17 / 22

Mudança de variáveis: Jacobianos

Relembre-se como (e para quê) se mudava de variável no caso do integral definido de uma função de 1 variável real... E no caso da integração dupla?

Teorema

Sejam \mathcal{R} e \mathcal{S} , regiões nos planos XY e UV, relacionadas por x=g(u,v) e y=h(u,v), de tal modo que cada ponto de \mathcal{R} é imagem de um único ponto de \mathcal{S} .

Se f é contínua em \mathcal{R} , g e h tiverem derivadas parciais de primeira ordem contínuas em \mathcal{S} e o **Jacobiano**² $\frac{\partial(x,y)}{\partial(u,v)}$ for não nulo em \mathcal{S} , então

$$\iint_{\mathcal{R}} f(x,y) d(x,y) = \iint_{\mathcal{S}} f(g(u,v), h(u,v)) \cdot \left| \frac{\partial(\mathbf{x}, \mathbf{y})}{\partial(\mathbf{u}, \mathbf{v})} \right| d(u,v)$$

²Se x=g(u,v) e y=h(u,v), o **Jacobiano** de x e y em relação a u e v denota-se por $\frac{\partial(x,y)}{\partial(u,v)}$ e é igual a $\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u}$, isto é, o determinante de uma matriz quadrada cujos elementos são...

Mudança de coordenadas

► [CARTESIANAS] Representar pontos/curvas em um plano XOY

Em um sistema de coordenadas, no plano, ditas CARTESIANAS (ou retangulares) há um par de eixos concorrentes (e, normalmente, ortogonais e normados) a partir dos quais se representa cada ponto $-\mathbf{P}$ — como par ordenado $-(\mathbf{x},\mathbf{y})$ (de dois números reais), a que chamamos, respetivamente abcissa e ordenada— cuja primeira coordenada é a distância ou o simétrico da distância desse ponto ao eixo das ordenadas e cuja segunda coordenada é a distância ou o simétrico da distância do ponto ao eixo das abcissas.

Nestas condições tem-se $x \in \mathbb{R}$ e $y \in \mathbb{R}$...

[MIEInf] Análise-2017-18

19 / 22

Mudança de coordenadas

► [POLARES] Representar pontos/curvas em um plano "polar"

Em um sistema de coordenadas, igualmente no plano, ditas POLARES há um (semi)eixo (que se diz "polar"e cuja origem se denomina pólo) a partir do qual se representa um ponto $-\mathbf{P}-$ como par ordenado $-(\mathbf{r},\theta)$ (de dois números reais), a que chamamos, raio polar e $\hat{a}ngulo$ polar- e que se definem, respetivamente, como a distância de \mathbf{P} ao "pólo"e a medida do ângulo formado pelo semieixo polar e o segmento que une o pólo a \mathbf{P} . Nestas condições tem-se $r \in \mathbb{R}_0^+$ e $\theta \in [0,2\pi]$...

Curvas em coordenadas polares

► [Curvas POLARES] Cardióides, Espirais, Lemniscatas, Rosáceas,...

[MIEInf] Análise-2017-18

21 / 22

Mudança de coordenadas: Cartesianas vs. Polares

Polares para Cartesianas	Cartesianas para Polares
$\left\{ \begin{array}{l} x=r\cos\theta\\ y=r\sin\theta \end{array} \right.$	$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \operatorname{arctg} \frac{y}{x} \end{cases}$

Exercícios

- 1. Exprima-se em coordenadas polares e cartesianas
 - Uma circunferência de centro na origem e raio R.
 - Uma reta que passe pela origem.
- 2. Esboce
 - ullet a curva polar ${\mathcal C}$ definida por r= heta
 - ullet Exprima ${\mathcal C}$ em coordenadas cartesianas.
- 3. Qual o Jacobiano, em coordenadas polares?
- 4. Use um integral duplo (em coordenadas polares) para calcular a área da figura limitada por uma rosácea de 3 pétalas, definda por $r=\sin3\theta$.