"Diagnóstico Temprano de Neumonía Infantil: Una Perspectiva Innovadora desde la Inteligencia Artificial"

Agenda

Introducción

- Contexto
- •Objetivo General
- Objetivos Específicos

Preparación de Datos

Resultados

- •Métricas de Rendimiento
- •Curva de Pérdida y Precisión
- Predicción

Conclusiones

Contexto

Radiografías de tórax

Mortalidad por neumonía mundial

Proporción de Muertes en Niños Menores de 5 Años por Neumonía en 2

Objetivos

Objetivo General:

Desarrollar un modelo de inteligencia artificial para detectar neumonía en imágenes de rayos X de tórax, mejorando así la precisión y eficiencia en el diagnóstico temprano de esta enfermedad.

Objetivos Específicos

Desarrollar un modelo: Para la identificación de neumonía en niños menores a 5 años mediante la técnica de redes neuronales convolucionales (CNN).

Evaluación de Precisión: Mediremos la precisión del modelo en un conjunto de imágenes de rayos x con y sin neumonía.

¿Cuántos rostros pueden encontrar en la imagen?

Situación actual

¿Cómo abordar los desafíos actuales en la detección temprana de neumonía infantil y apoyar al radiólogo en el diagnóstico médico?

Deep Learning como apoyo al radiólogo

Solución

Arquitectura

"Entrenamiento", "Prueba", "Validación"

Distribución de Directorios de Entrenamiento, Prueba y \

Imágenes de rayos X de tórax clasificadas en "Normal" y "Neumonía"

Distribución de clases

Conjunto de datos de validación

Preprocesamiento de imagen

Creación del Modelo CNN

Creación de arquitectura
Entrenamiento
Evaluación
Predicción

Métricas de rendimiento

Modelo 1: Modelo con un Accuracy de 60 %.

Modelo 2: Modelo con un Accuracy de 57%.

Modelo 3: Modelo con un Accuracy de 60%.

Modelo ensamblado: con un Accuracy de 74 %.

Matriz de confusión

Clasificación correctas = 72 T.Negativas, 388 T.Positivas. Clasificación incorrectas = 2 F.Negativas, 162 F.Positivas.

Curvas de aprendizaje con 10 épocas

El Modelo 2 Es un modelo sólido y bien ajustado, con una precisión ligeramente superior en comparación con el Modelo 1 y Modelo 3

Predicción de modelos

Modelo 1 Real: NORMAL Predicción: PNEUMONIA

Modelo 2 Real: NORMAL Predicción: PNEUMONIA

Modelo 3 Real: NORMAL Predicción: PNEUMONIA

Modelo 1 Real: NORMAL Predicción: NORMAL

Modelo 2 Real: NORMAL Predicción: NORMAL

Modelo 3 Real: NORMAL Predicción: NORMAL

Conclusiones

Beneficios de la IA en la Detección de Neumonía Infantil

- •Mejora en la Precisión del Diagnóstico
- •Reducción del Tiempo de Diagnóstico
- •Mejora en la Accesibilidad al Diagnóstico
- Reducción de los Costos
- Apoyo a la toma de decisiones

Limitaciones y Desafíos

- •Falta de Datos
- Interpretabilidad
- Sesgo Algorítmico
- •Eficiencia

¡No!, la inteligencia artificial no reemplazará a los profesionales de la radiología, pero los profesionales que no trabajen con la inteligencia artificial serán reemplazados por aquellos que sí lo hagan.

No solo mejorar es transformar.

"El valor de una gran idea radica que esta idea sea utilizada."

Thomas Edison