

Chap 03 운영체제_3.2 메모리

3.2 메모리

CPU는 메모리에 올라와 있는 프로그램의 명령어를 실행하는 것

3.2.1 메모리 계층

▲ 그림 3-8 메모리 계층

계층 구조의 이유: 경제성

로딩중: 하드디스크 또는 인터넷에서 데이터를 읽어 RAM으로 전송하는 과정 중

▼ 캐시

- = 데이터를 미리 복사해 놓는 임시 저장소
- = 빠른 장치와 느린 장치에서 속도 차이에 따른 병목 현상을 줄이기 위한 메모리
- = 다시 계산하는 시간 절약
- *캐싱 계층 = 속도 차이(메모리와 CPU) 해결을 위해 계층과 계층 사이에 있는 계층

■지역성의 원리

: 캐시를 직접 설정 할 경우 (계층x)

[시간 지역성]

최근 사용한 데이터를 다시 접근하려는 특성 ex) for문의 변수 i

[공간 지역성]

최근 접근한 데이터를 이루고 있는 공간 or 가까운 공간에 접근하는 특성

☑ 캐시히트와 캐시미스

▲ 그림 3-9 캐시히트와 캐시미스

캐시히트 = 캐시에서 원하는 데이터를 찾음 (속도 빠름)

캐시미스 = 해당 데이터가 캐시에 없다면 주메모리로 가서 데이터를 찾아봄

■캐시매핑

: 캐시가 히트되기 위해 매핑하는 방법

▼ 표 3-1 캐시매핑 분류

이름	설명
직접 매핑 (directed mapping)	메모리가 1~100이 있고 캐시가 1~10이 있다면 1:1~10, 2:1~20··· 이런 식으로 매핑하는 것을 말합니다. 처리가 빠르지만 충돌 발생이 잦습니다.
연관 매핑 (associative mapping)	순서를 일치시키지 않고 관련 있는 캐시와 메모리를 매핑합니다. 충돌이 적지만 모든 블록을 탐색해야 해서 속도가 느립니다.
집합 연관 매핑 (set associative mapping)	직접 매핑과 연관 매핑을 합쳐 놓은 것입니다. 순서는 일치시키지만 집합을 둬서 저장하며 블록화되어 있기 때문에 검색은 좀 더 효율적입니다. 예를 들어 메모리가 1~100이 있고 캐시가 1~10이 있다면 캐시 1~5에는 1~50의 데이터를 무작위로 저장시키는 것을 말합니다.

■웹 브라우저의 캐시

쿠기/로컬 스토리지/세션 스토리지

- → 보통 사용자의 커스텀한 정보나 인증 모듈 관련 사항들을 웹 브라우저에 저장해서 추후 서버에 요청할 경우 쓰임
- → 오리진에 종속
- ex) 검색어 자동완성

[쿠키]

- 서버와 클라이언트 간의 데이터 교환 지원
- 만료 기한 있는 key-value 저장소
- **크기 제한**: 최대 4KB.
- **유효 기간**: 설정 가능 (만료 날짜까지 유지).
- **용도**: 사용자 세션 관리, 추적, 인증 정보 저장.
- 오리진: 특정 도메인과 경로에 종속.

[로컬 스토리지]

- 세션 간 데이터 유지
- 만료 기한 없는 key-value 저장소
- **크기 제한**: 약 5~10MB.
- 유효 기간: 브라우저에 무기한 저장.
- **용도**: 사용자 설정, 장기 데이터 저장.
- **오리진**: 특정 오리진에 종속.

[세션 스토리지]

- 동일한 세션 내에서만 데이터 유지
- 만료 기한 없는 key-value 저장소
- **크기 제한**: 약 5~10MB.
- 유효 기간: 브라우저 세션(탭/창)이 닫힐 때까지 유지.
- 용도: 임시 데이터 저장, 탭 간 데이터 공유.
- 오리진: 특정 오리진에 종속, 동일 탭에서만 접근 가능.
- ■데이터베이스의 캐싱 계층

Redis 데이터베이스 계층을 캐싱 계층으로 두어 성능 향상

▲ 그림 3-10 레디스 캐싱 계층 아키텍처

ex) 모니터링 ...?

3.2.2 메모리 관리

☑ 가상 메모리

= 컴퓨터가 실제로 이용 가능한 메모리 자원을 추상화 → 사용자들에게 큰 메모리로 보이게 함

▲ 그림 3-11 **가상 메모리**

- → 가상 메모리는 프로세스의 주소 정보가 들어 있는 '페이지 테이블'로 관리
- → 속도 향상을 위해 TLB 사용
 (TLB:메모리와 CPU사이에 있는 주소 변환을 위한 캐시)

- ■스와핑
- ■페이징 폴트

✓ 스레싱

- = 메모리의 페이지 폴트율이 높은 것
- → 컴퓨터의 성능 저하 초래
- → 메모리에 너무 많은 프로세스 동시에 올라가면 스와핑 발생 → cpu 이용률 낮아짐
- → cpu 이용률 낮아지면 OS는 계속해서 프로세스 올림 → 악순환 발생
- → [해결] 작업 세트 or PFF
- ■작업세트
- = 프로세스의 과거 사용 이력인 지역성을 통해 결정된 페이지 집합을 만듬 → 미리 메모리에 로드
- = 작업 세트 개수만큼 메모리 용량을 받지 못할 경우 그 프로세스의 메모리를 빼앗아 스레싱 방지
- ⇒ 탐색 비용, 스와핑 감소

ex)

과거에 접근된 페이지 번호가 1, 2, 3, 4, 4 이고 x 가 5 라면 Working Set은 중복을 제거한 1, 2, 3, 4 으로 4개이다.(4는 중복이니 제거)

■PFF

페이지 폴트 빈도를 조절하는 방법 (상한선, 하한선 만듬)

→ 상항선 도달시 프레임 늘리고 하한선 도달시 프레임 줄임

☑ 메모리 할당

메모리의 할당 크기를 기반으로 할당 → 연속 할당/불연속 할당

- ■연속 할당
- = 프로그램이 통째로 메모리 한 장소에 올라가는 것

[고정 분할 방식]

메모리를 미리 나누어 관리 (영구적 분할로 나누는 것)

- → 메모리가 미리 나눠짐으로 융통성 없음 , 내부 단편화 발생
- *융통성 = 메모리 관리의 유연성
- *내부 단편화 = 프로그램이 필요로 하는 메모리보다 큰 블록을 할당받게 되어 사용되지 않는 공간 발생

[가변 분할 방식]

- 매 시점 프로그램의 크기에 맞게 동적으로 메모리 나눠 사용
- → 내부 단편화 발생x, 외부 다편화 발생 o
- → 중간에 프로그램 종료되어 중간에 빈 공간 발생시 새로 올릴 프로그램이 크기가 맞지 않을 수 잇음
- *외부 단편화 = 메모리를 나눈 크기보다 프로그램이 커서 들어가지 못하는 공간 발생
- ex) 100MB → 55,45로 나눴지만 프로그램 크기가 70으로 들어가지 못하는 상황
- ■불연속 할당
- = 메모리를 연속적으로 할당x

[페이징 기법]

- = 메모리를 동일한 크기의 페이지로 나누고 메모리의 서로 다른 위치에 프로세스 할당
- → 홀의 크기가 균일하지 않은 문제 해결
- → 주소 변환 복잡 (페이지 테이블 조회 후 변환 수행)

[세그멘테이션]

= 페이지 단위가 아닌 의미 단위(세그먼트)로 나누는 방식

Step1) "MS-DOC" OS 45 42 HIN, Apprication Fix P, OSBE → DMBY 647 岩小 智等性别 多 號. @ MB21 481 245 OSTAPP HW => CPU + OS D 247532 SHE, Step2) State to (The read 34) + 7/4/01/1821 575 748MB21 73 * Stack, head, Gode & HEM/B21 ₹3AKA → | | | | | | | | | USEO Kernel (cos) H/W RAM (15+ M/321) HOD (25+171821) DESALB Lead @ रिक्ष माध्य मा माध्य सेम + OSE दिसंह 3) OSA RAMIN MBM HE 25 SHEET THE (= 647) 马州台的上 4星祖区 @ 13AC 3/4 OSE 56X > 75 Memore (Af -/1 * HEMBY HESY MI) OF Phone D BALL SAM 48 + 21m 多川 ··· 芸知

AS BLENX

7/501184

) मेर MB21 हम्ड

今月38日(AN) 4 315日上生 美州町 新华 安徽 明显是 新华 32年 31年. " → 阿州 在高端 町里山生 OSH 214 > 町野山 東東社 8位 所知 5月.

HEOUBUR IPC
Shared Memory Quent 2524
DIST WITHE @Read
TBAKA > TBAKB
nser
kernel (cos)
HW de
RAM (154 0/321) HDD (2540/324)
* 7年的1927年 等智度(智慧 岩水)
一种军机 新光
000 = DSANJES THE FATT 20 HOW ONE COMES Whom I continue
0,0,3 = B341251 702 7039 70 451 FM OFAGER 76 MM MAPTIES
→升等3 等化 升台
ex) "34 = 171 " 7)=

1 TUB

LP CPV TOOK takes - 314 M/22.

* Thori table of Chilean 22 % MEN AR FOR X24H D THA SILBY of

ABIR 7 9/72

