Application Number	Submit		
IDS Flog Classones for Applicat	tion 10022272	 	
IDS Flag Clearance for Applications IDS Information	non 10823273		

Content	Mailroom Date	Entry Number	IDS Review	Last Modified	Reviewer
M844	2004-05-07	12	Y 🗹	2006-02-27 13:03:12.0	BShrivastav
M844	2004-04-12	10 _	Y 🗹	2006-02-27 13:03:11.0	BShrivastav
Update				,	

Refine Search

Search Results -

Term	Documents
@PD	37922541
(13 AND (@PD > "20061027")) PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	0
(L13 AND @PD > 20061027).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	0

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database

Database:

US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

L14 ·			Refine Search
19	Recall Text	Ole -	Interrint

Search History

DATE: Friday, October 27, 2006 Purge Queries Printable Copy Create Case

Set Name side by side	Query	<u>Hit</u> Count	Set Name result set
DB=	=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=ADJ	•	
<u>L14</u>	L13 and @pd > 20061027	0	<u>L14</u>
<u>L13</u>	L12 and HTSC	6	<u>L13</u>
<u>L12</u>	L11 and (substrate or dielectric or (thin adj film))	218	<u>L12</u>
<u>L11</u>	L10 and (resonator or antenna or coil or receiver or detector)	258	<u>L11</u>
<u>L10</u>	L9 and L8	266	<u>L10</u>
<u>L9</u>	(High adj temperature adj superconductor) or HTC	6871	<u>L9</u>

(324/300 |324/301 |324/302 |324/303 |324/304 |324/305 |324/306 |324/307 |324/308 |324/309 |324/310 |324/311 |324/312 |324/313 |324/314 |324/315 |324/316 |324/317 |324/318 |324/319 |324/320 |324/321 |324/322 or 333/202

	·		
<u>L8</u>	333/203 333/204 333/205 333/206 333/207 333/208 333/209 333/210 333/211 333/212 333/24C 333/213 333/214 333/215 333/216 333/217 333/81R 333/81R 333/81B 333/218 333/219 333/219 1 333/219 2 333/220 333/221 333/222 333/223 333/224 333/225 333/226 333/227 333/228 333/229 333/230 333/231 333/232 333/233 333/234 333/235 333/236 333/237 333/238 333/239 333/240 333/241 333/242 333/243 333/244 333/245 333/246).ccls.	27810	<u>Ĺ8</u>
<u>L7</u>	(324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/310 324/311 324/312 324/313 324/314 324/315 324/316 324/317 324/318 324/319 324/320 324/321 324/322 or 333/202 333/203 333/204 333/205 333/206 333/207 333/208 333/209 333/210 333/211 333/212 333/24C 333/213 333/214 333/215 333/216 333/217 333/81R 333/81A 333/81B 333/218 333/219 333/219 1 333/219 2 333/220 333/221 333/222 333/223 333/224 333/225 333/226 333/227 333/228 333/229 333/230 333/231 333/232 333/234 333/235 333/236 333/237 333/238 333/239 333/240 333/241 333/242 333/243 333/244 333/245 333/246).ccls.	27810	<u>L7</u>
<u>L6</u>	L5 and HTSC	6	<u>L6</u>
<u>L5</u>	L4 and (substrate or dielectric or (thin adj film))	218	<u>L5</u>
<u>L4</u>	L3 and (resonator or antenna or coil or receiver or detector)	258	<u>L4</u>
<u>L3</u>	L2 and L1	266	<u>L3</u>
<u>L2</u>	(High adj temperature adj superconductor) or HTC	6871	<u>L2</u>
<u>L1</u>	(324/300-322 or 333/202-246).ccls.	27810	<u>L1</u>

END OF SEARCH HISTORY

Create A Case

t? Database Query	Plura	l Op Thesauru	Set ^S Name
333/202-246).c	r vec		L1
PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD temperature adjusted superconductor	yes or	ADJ	L2
PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL2 and L1		ADJ	L3
PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDantenna or coil receiver or dete	or YES ector)	ADJ	L4
· ·		ADJ	L5
PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL5 and HTSC	YES	ADJ	L6
324/302 324/30 324/304 324/30 324/306 324/3 324/310 324/3 324/312 324/3 324/314 324/3 324/318 324/3 324/322 or 333 333/203 333/2 333/205 333/2 333/207 333/2 333/207 333/2 333/211 333/2 333/214 333/2 333/216 333/2 333/216 333/2 333/216 333/2 333/219 333/2 333/219 333/2 333/219 333/2 333/221 333/2 333/221 333/2 333/221 333/2 333/221 333/2 333/225 333/2 333/225 333/2	03 05 07 09 11 13 15 17 19 21 3/202 04 06 08 YES 10 12 213 15 17 31A 218 191 /220 22 24 26 28	ADJ	L7
1	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD (324/300-322 of 333/202-246).c (High adj) PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD temperature adj superconductor HTC PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL2 and L1 L3 and (resonal receiver or dete L4 and (substrate adj superconductor HTC PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDDantenna or coil receiver or dete L4 and (substrate PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDdielectric or (the Adj film)) PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL5 and HTSC (324/300 324/3 324/302 324/3 324/303 324/3 333/2	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD (High adj) PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD temperature adj superconductor) or HTC PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL2 and L1 PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL2 and L1 PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDantenna or coil or YES receiver or detector) L4 and (substrate or PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDdielectric or (thin adj film)) PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL5 and HTSC (324/300 324/301 324/302 324/303 324/304 324/305 324/306 324/307 324/308 324/309 324/311 324/312 324/311 324/314 324/315 324/316 324/316 324/317 324/318 324/319 324/320 324/320 324/320 333/205 333/204 333/205 333/206 333/206	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD (324/300-322 or 333/202-246).ccls. (High adj temperature adj superconductor) or HTC PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDD and fresonator or PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDD and fresonator or PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDD and full yES ADJ L4 and (substrate or PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDDL5 and HTSC YES ADJ adj film)) PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL5 and HTSC YES ADJ (324/300 324/301 324/303 324/304 324/305 324/306 324/307 324/308 324/306 324/301 324/311 324/312 324/313 324/316 324/311 324/318 324/316 324/317 324/318 324/319 324/320 333/208 333/208 333/208 333/208 333/208 333/208 333/208 333/208 333/208 333/208 333/208 333/218 333/216 333/218 3

```
|333/231 |333/232
                                                       |333/233 |333/234
                                                       |333/235 |333/236
                                                       |333/237 |333/238
                                                       |333/239 |333/240
                                                       |333/241 |333/242
                                                       |333/243 |333/244
                                                       333/245
                                                       |333/246).ccls.
                                                       (324/300 | 324/301
                                                       |324/302 |324/303
                                                       |324/304 |324/305
                                                       |324/306 |324/307
                                                       |324/308 |324/309
                                                       |324/310 |324/311
                                                       |324/312|324/313
                                                       |324/314 |324/315
                                                       |324/316 |324/317
                                                       |324/318 |324/319
                                                       |324/320 |324/321
                                                       324/322 or 333/202
                                                       |333/203 |333/204
                                                       |333/205 |333/206
                                                      |333/207 |333/208
                                                       |333/209 |333/210
                                                       |333/211 |333/212
                                                       |333/24C |333/213
      PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD|333/214 |333/215

abla
                                                                           YES ADJ
                                                                                                 L8
                                                       |333/216<sup>-</sup>|333/217
                                                       |333/81R |333/81A
                                                      |333/81B |333/218
                                                      |333/219|333/219.1
                                                      |333/219.2 |333/220
                                                      |333/221 |333/222
                                                      |333/223 |333/224
                                                      |333/225 |333/226
                                                      |333/227 |333/228
                                                      |333/229 |333/230
                                                      |333/231 |333/232
                                                      |333/233 |333/234
                                                      |333/235 |333/236
                                                      |333/237 |333/238
                                                      |333/239 |333/240
                                                      |333/241 |333/242
                                                      |333/243 |333/244
                                                      333/245
                                                      333/246).ccls.
                                                      (High adj
      PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD<sup>temperature</sup> adj
\overline{\mathbf{v}}
                                                                          YES ADJ
                                                                                                 L9
                                                      superconductor) or
                                                      HTC
```

$\overline{\mathbf{v}}$	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL9 and L8 L10 and (resonator	YES	ADJ	L10
	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDor antenna or coil or receiver or detector) L11 and (substrate		ADJ	L11
✓	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDor dielectric or (thin adj film))	YES	ADJ	L12
✓	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBDL12 and HTSC	YES	ADJ	L13
☑	PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD ^{L13} and @pd > 20061027	YES	ADJ	L14
	Please enter the case name: 823_273_10			
	Create Case Clear All Reset Canc	••••••••••••••••••••••••••••••••••••••	220000000000000000000000000000000000000	

Rules for naming Cases

- Case names can only contain alphanumeric characters including underscore ().
- Any other special characters or punctuation characters will be automatically removed prior to saving the case.
- All white space characters will be replaced by an underscore.

Hit List

First Hit Clear Generate Collection Print Fwd Refs Bkwd Refs

Generate OACS

Search Results - Record(s) 1 through 6 of 6 returned.

☐ 1. Document ID: US 5721194 A Relevance Rank: 68

L6: Entry 6 of 6

File: USPT

Feb 24, 1998

US-PAT-NO: 5721194

DOCUMENT-IDENTIFIER: US 5721194 A

** See image for Certificate of Correction **

TITLE: Tuneable microwave devices including fringe effect capacitor incorporating

ferroelectric films

DATE-ISSUED: February 24, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Yandrofski; Robert M. Littleton CO Price; John Charles Boulder CO Barnes; Frank Boulder CO Hermann; Allen M. Golden CO Scott; James Floyd Boulder CO

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Superconducting Core Technologies, Inc. Denver CO 02
University Research Corporation Boulder CO 02

APPL-NO: 08/480164 [PALM]
DATE FILED: June 7, 1995

PARENT-CASE:

This is a divisional of application Ser. No. 07/983,632, filed Dec. 1, 1992, (now U.S. Pat. No. 5,472,935)

INT-CL-ISSUED: [06] H01B 12/02, H01G 7/06

INT-CL-CURRENT:

TYPE IPC DATE

CIPS <u>H01</u> <u>G</u> <u>7/00</u> 20060101

CIPS <u>H01</u> <u>Q</u> <u>1/36</u> 20060101

CIPS <u>H01</u> <u>Q</u> <u>3/00</u> 20060101

CIPS <u>H01</u> <u>P</u> <u>7/08</u> 20060101

Record List Display Page 2 of 14

CIPS <u>H01</u> <u>Q</u> <u>3/44</u> 20060101 CIPS <u>H01</u> <u>G</u> <u>7/06</u> 20060101 CIPS <u>H01</u> <u>P</u> <u>1/18</u> 20060101

US-CL-ISSUED: 505/210; 505/700, 505/701, 505/866, 333/74C, 333/99S, 361/281,

361/321.1

US-CL-CURRENT: 505/210; 333/24C, 333/99S, 361/281, 361/321.1, 505/700, 505/701,

505/866

FIELD-OF-CLASSIFICATION-SEARCH: 333/24C, 333/161, 333/99S, 361/277, 361/281, 361/322, 361/321.1, 505/210, 505/700, 505/701, 505/866 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

	•	·	
PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3365400	January 1968	Pulvari	361/281
3569795	March 1971	Gikow	361/321.1 X
3784937	January 1974	Jackson et al.	333/24C
4161766	July 1979	Castleberry et al.	361/281 X
4837536	June 1989	Honjo	.333/247
5070241	December 1991	Jack	250/336.2
5105200	April 1992	Koepf	343/700MS
5142437	August 1992	Kammerdiner et al.	361/321.1
5146299	September 1992	Lampe et al.	361/321.1
5208213	May 1993	Ruby	505/1
5212463	May 1993	Babbitt et al.	333/161
5307033	April 1994	Koscica et al.	333/161
5409889	April 1995	Das	505/210

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
0193816	February 1990	JP	
0205904	September 1991	JP	
1177869A	September 1985	SU	
1224868A	April 1986	SU	
1352562A	November 1987	su	

OTHER PUBLICATIONS

Ramesh, et al., "Feuoelectric PbZr.sub.0.2 Ti.sub.0.2 Ti.sub.0.8 O.sub.3 Thin Films on Epitaxial Y-Ba-Cu-O" (Oct. 5, 1991). McAvoy, et al., "Superconducting Stripline Resonator Performance" Proc. 1988 Applied Superconductivity Conf.

Jackson, et al., "A High Temperature Superconductor Phase Shifter", Dec. 1992, Microwave Journal.

Record List Display Page 3 of 14

Bowling et al., "Radiation Efficiency Measurements of a
Thin-Film Y-Ba-Cu-O">https://example.com/html/>
Superconducting Half-Loop Antenna at 500 Mhz", IEEE, No Month, 1991, pp. 1243-1246.

Takemoto et al., "Microstrip Resonators and Filters using High-TC Superconducting Thin Films on LaA10.sub.3 ", IEEE No Month, 1991, pp. 2549-2552.

Kobayashi et al., "Monolithic HTS Microwave Phase Shifter and Other Devices", No Month, 1992, pp. 419-424.

White et al., United States Statutory Invention Registration No. H1079, filed Feb. 25, 1992, Published Jul. 07, 1992.

Jackson et al., Novel Monolithic Phase Shifter Combining Ferroelectrics And <u>High</u>
<u>Temperature Superconductors</u>, Microwave And Optical Technology Letters, vol. 5, Nov.
14, Dec. 20, 1992.

Takemoto-Kobayashi, et al., Monolithic High-Tc Superconducting Phase Shifter at 10 GHz, 1992 IEEE MTT-S Digest.

Jackson et al., Monolithic HTS Microwave Phase Shifter and Other Devices, Journal of Superconductivity, vol. 5, Nov. 4, 1992.

Walkenhorst et al., <u>Dielectric</u> properties of SrTiO.sub.3 <u>thin films</u> used in high T.sub.c Superconducting Field-Effect Devices, Appl. Phys. Lett. 60 (14), 6 Apr. 1992, American Institute of Physics.

Varadan et al., Ceramic Phase Shifters For Electronically Steerable <u>Antenna</u> Systems, Microwave Journal, Jan. 1992.

Dinger et al., A Survey of Possible Passive <u>Antenna</u> Applications of <u>High-</u>
<u>Temperature Superconductors</u>, IEEE Transactions on Microwave Theory and Techniques, vol. 39, Nov. 9, Sep. 1991.

Dinger et al., Radiation Efficiency Measurements of a <u>Thin-Film</u> Y-Ba-CU-O Superconducting Half-Loop Antenna at 500 MHZ, 1991 IEEE MTT-S Digest.

Track et al., Investigation of an Electronically Tuned 100 GHz Superconducting Phase Shifter, 1991 IEEE.

Ryan, Paul A., High-Temperature Superconductivity for EW and Microwave Systems, Journal of Electronic Defense, May 1990.

Das, S.N., Ferroelectrics For Time Delay Steering Of An Array, Ferroelectrics, 1973, vol. 5.

Scott et al., Microstructure-Induced Schottky Barrier Effects in Barium Strontium Titanate (BST) $\underline{\text{Thin Films}}$ For 16 and 64 MBIT Dram Cells, Sep. 1992 IEEE.

ART-UNIT: 252

PRIMARY-EXAMINER: Lee; Benny T.

ATTY-AGENT-FIRM: Sheridan Ross P.C.

ABSTRACT:

The present invention relates to a tuneable fringe effect capacitor for conducting radio frequency energy. The capacitor includes a thin film of ferroelectric material, a pair of films of a conductive material deposited on the ferroelectric film with a gap between the films, and a <u>substrate</u> for the ferroelectric material and the conductive films. The capacitance value across the gap is varied by applying a voltage to the ferroelectric material and thereby altering the <u>dielectric</u> constant of the ferroelectric material.

23 Claims, 24 Drawing figures

		Reference	
run me chanen rivin	Recess Classification Lan	a predictions:	2131m3 1.000 10136); U

☐ 2. Document ID: US 20030222731 A1 Relevance Rank: 58

L6: Entry 1 of 6

File: PGPB

Dec 4, 2003

PGPUB-DOCUMENT-NUMBER: 20030222731

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030222731 A1

TITLE: DUAL-MODE BANDPASS FILTER WITH DIRECT CAPACITIVE COUPLINGS AND FAR-FIELD

SUPPRESSION STRUCTURES

PUBLICATION-DATE: December 4, 2003

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY Raihn, Kurt F. Goleta CA US Hey-Shipton, Gregory L. Santa Barbara CA US Hernandez, Matthew Santa Barbara CA US

ASSIGNEE-INFORMATION:

NAME CITY STATE COUNTRY TYPE CODE

SUPERCONDUCTOR TECHNOLOGIES, INC. 02

APPL-NO: 10/159974 [PALM]
DATE FILED: May 29, 2002

INT-CL-PUBLISHED: [07] H01P 1/203

INT-CL-CURRENT:

TYPE IPC DATE

CIPS H01 P 1/203 20060101

CIPS H01 P 7/08 20060101

CIPS H01 P 1/20 20060101

US-CL-PUBLISHED: 333/99.00S; 333/202, 333/219, 505/210 US-CL-CURRENT: 333/99S; 333/202, 333/219, 505/210

REPRESENTATIVE-FIGURES: 6

ABSTRACT:

A dual-mode <u>resonator</u> comprises a <u>dielectric</u> substrate having a region divided into four quadrants, and a ring <u>resonator</u> forming quadrangularly symmetrical configurations within the four quadrants of the region. The symmetrical configurations may be formed from folded sections of the <u>resonator</u>, so that parallel lines with opposite currents that cancel to minimize the far-field radiation of the filter structures. The symmetrical configuration can also be meandered, so that opposite currents in parallel line segments within each meander and the line segments that interconnect the meanders cancel to minimize the far-field radiation of the filter structures. One <u>resonator</u> can be used in a two-pole dual-mode filter structures, or multiple <u>resonators</u> can be used in more complex

Record List Display Page 5 of 14

dual-mode filter structures. The filter structures also include input and output couplings with capacitors and transmission lines that directly connected to the <u>resonator</u> to provide a point of contact, which more accurately represent ideal lumped element capacitor connections from computer modeling.

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KIMC Draw Do

☐ 3. Document ID: US 6700459 B2 Relevance Rank: 57

L6: Entry 2 of 6 File: USPT Mar 2, 2004

US-PAT-NO: 6700459

DOCUMENT-IDENTIFIER: US 6700459 B2

TITLE: Dual-mode bandpass filter with direct capacitive couplings and far-field

suppression structures

DATE-ISSUED: March 2, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Raihn; Kurt F. Goleta CA Hey-Shipton; Gregory L. Santa Barbara CA Hernandez; Matthew Santa Barbara CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Superconductor Technologies, Inc. Santa Barbara CA 02

APPL-NO: 10/159974 [PALM]
DATE FILED: May 29, 2002

INT-CL-ISSUED: [07] H01P 1/203, H01B 12/02

INT-CL-CURRENT:

TYPE IPC DATE

CIPS H01 P 1/203 20060101

CIPS H01 P 1/20 20060101

CIPS H01 P 7/08 20060101

US-CL-ISSUED: 333/99S; 333/202, 333/219, 505/210 US-CL-CURRENT: 333/99S; 333/202, 333/219, 505/210

FIELD-OF-CLASSIFICATION-SEARCH: 333/202, 333/219, 333/205, 333/99S, 333/210,

333/204, 333/134, 333/212, 333/219.1, 505/210 See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4642591	February 1987	Kobayashi	333/227
5078621	January 1992	Nishikawa et al.	439/581
5336112	August 1994	Michishita et al.	439/581
5638037	June 1997	Kurisu et al.	333/202
5708404	January 1998	Kurisu et al.	333/202
5786303	July 1998	Mansour	333/99s

OTHER PUBLICATIONS

Schornstein, S. et al. "<u>High Temperature Superconductor</u>-Shielded High Power <u>Dielectric</u> Dual-Mode Filter for Applications In Satellite Communication" 1998 IEEE MTT-S International Microwave Symposium Digest, New York, NY, IEEE, vol. 3, pp1319-1322.*

Casinese, A. et al. "High Power Handling Superconducting Planar Filters for Telecommunication Applications" International Journal of Modern Physics 6, vol. 14, Nos. 25-27 (2000), pp. 3092-3097.

Curtis, J.A. et al., "Dual Mode Microstrip Filters", Applied Microwave, Fall 1991, pp. 56-93.

Hammond, R.B. et al., "Epitaxial T/2CaBa2Cu2O8 Thin Films With Low 9.6 GHz Surface Resistance at High Power and Above 77K", Appl. Phys. Lett. 57 (8), Aug. 20, 1990, pp. 825-827.

Hejazi, Z.M., "Compact Dual-Mode Filters for HTS Satellite Communication Systems", IEEE Microwave and Guided Wave Letters, vol. 8, No. 8, Aug. 1996, pp. 275-277. Hong, J.S. et al., "Recent Advances in Microstrip Filters for Communications and Other Applications", IEE Colloquium on Advances in Passive Microwave Components (Ref. No. 1997/154), 1997, pp. 2/1-2/6.

Jiang, Z.F. et al., "A New HTS Microwave Filter Using Dual-Mode Multi-Zigzag Microstrip Loop Resonators", 1999 Asia Pacific Microwave Conference, vol. 3, 1999, pp. 813-816.

ART-UNIT: 2817

PRIMARY-EXAMINER: Tokar; Michael

ASSISTANT-EXAMINER: Mai; Lam T.

ATTY-AGENT-FIRM: O'Melveny & Myers LLP

ABSTRACT:

A dual-mode <u>resonator</u> comprises a dielectric <u>substrate</u> having a region divided into four quadrants, and a ring <u>resonator</u> forming quadrangularly symmetrical configurations within the four quadrants of the region. The symmetrical configurations may be formed from folded sections of the <u>resonator</u>, so that parallel lines with opposite currents that cancel to minimize the far-field radiation of the filter structures. The symmetrical configuration can also be meandered, so that opposite currents in parallel line segments within each meander and the line segments that interconnect the meanders cancel to minimize the far-field radiation of the filter structures. One <u>resonator</u> can be used in a two-pole dual-mode filter structures, or multiple <u>resonators</u> can be used in more complex dual-mode filter structures. The filter structures also include input and output couplings with capacitors and transmission lines that directly connected to the

Record List Display Page 7 of 14

<u>resonator</u> to provide a point of contact, which more accurately represent ideal lumped element capacitor connections from computer modeling.

34 Claims, 29 Drawing figures

Full Title Citation Front Review Classification Date Reference

Claims 1000 Drawi Da

4. Document ID: US 6130189 A Relevance Rank: 57

L6: Entry 4 of 6

File: USPT

Oct 10, 2000

US-PAT-NO: 6130189

DOCUMENT-IDENTIFIER: US 6130189 A

TITLE: Microwave hairpin-comb filters for narrow-band applications

DATE-ISSUED: October 10, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Matthaei; George L. Santa Barbara CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Superconductor Technologies, Inc. Santa Barbara CA 02

APPL-NO: 09/159015 [PALM]
DATE FILED: September 23, 1998

PARENT-CASE:

This application is a Continuation of U.S. patent application Ser. No. 08/668,093, filed Jun. 17, 1996, now U.S. Pat. No. 5,888,942, issued Mar. 30, 1999.

INT-CL-ISSUED: [07] H01P 1/203, H01B 12/06

INT-CL-CURRENT:

TYPE IPC DATE
CIPS <u>H01</u> <u>P</u> <u>1/20</u> 20060101
CIPS H01 P 1/203 20060101

US-CL-ISSUED: 505/210; 505/700, 505/701, 505/866, 333/99.005, 333/204, 333/205 US-CL-CURRENT: 505/210; 333/204, 333/205, 333/995, 505/700, 505/701, 505/866

FIELD-OF-CLASSIFICATION-SEARCH: 333/204, 333/205, 333/219, 333/995, 505/210, 505/700, 505/701, 505/866

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE .	PATENTEE-NAME	US-CL
4423396	December 1983	Makimoto et al.	333/204
5055809	October 1991	Sagawa et al.	333/204 X
5616538	April 1997	Hey-Shipton et al.	333/204 X
5888942	March 1999	Matthaei	505/210

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
326498	August 1989	EP	333/205
204801	August 1988	JP	333/204

ART-UNIT: 287

PRIMARY-EXAMINER: Lee; Benny T.

ATTY-AGENT-FIRM: Lyon & Lyon LLP

ABSTRACT:

Microwave hairpin-comb filters utilize a plurality of hairpin (i.e., folded) halfwavelength microstrip or stripline resonators arranged side-by-side and all with the same orientation. The coupling regions between resonators extend parallel to the sides of the resonators for substantially 1/8 to 1/4 wavelength at the frequency of resonance of the resonators. This length of coupling region between resonators, along with all resonators being oriented in the same direction, result in resonance effects in the coupling regions between the resonators. These effects greatly reduce the couplings between the resonators so that the resonators can be very closely spaced so as to produce a compact filter structure yet still have a narrow passband. The structure can also be made to produce poles of attenuation adjacent to the passband in order to enhance the filter cutoff characteristic. The filter structure can be conveniently tuned using asymmetric <u>dielectric</u> pieces which rotate above an interdigital conductor pattern placed between the open ends of each resonator, the axis of rotation being normal to the substrate. This manner of tuning is particularly attractive for narrow-band, very low loss, high temperature superconductor (HTS) filters since these tuners can be made to give smooth tuning with no normal metal parts in the circuit and with no ground connections required. Such normal metal parts or ground connections would introduce considerable loss and degrade the HTS filter performance.

15 Claims, 7 Drawing figures

	e Citation Front Review Classification	Data Reference Draw Dr
_	<u>-</u>	
□ 5.	Document ID: US 6498549 B1	Relevance Rank: 56

Record List Display Page 9 of 14

L6: Entry 3 of 6 File: USPT Dec 24, 2002

US-PAT-NO: 6498549

DOCUMENT-IDENTIFIER: US 6498549.B1

TITLE: Dual-tuning microwave devices using ferroelectric/ferrite layers

DATE-ISSUED: December 24, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Jiang; Hua Mansfield MA Hu; Wei Cambridge MA Liang; Shaohua Somerset Li; Yi-Qun Orinda CA Fuflyigin; Vladimir Winchester

Huang; Jiankang Cambridge

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

ΜA

Corning Applied Technologies Corporation Woburn MA 0:

APPL-NO: 09/457430 [PALM]
DATE FILED: December 7, 1999

PARENT-CASE:

RELATED APPLICATIONS This application claims priority from provisional application serial No. 60/111,265, filed on Dec. 7, 1998 and incorporated herein by reference.

INT-CL-ISSUED: [07] H01P 1/20, H01P 1/18

INT-CL-CURRENT:

TYPE IPC DATE

CIPS H01 P 1/20 20060101

CIPS H01 P 7/08 20060101

CIPS H01 P 1/18 20060101

CIPS H01 P 1/203 20060101

US-CL-ISSUED: 333/202; 333/156, 333/161 US-CL-CURRENT: 333/202; 333/156, 333/161

FIELD-OF-CLASSIFICATION-SEARCH: 333/202, 333/156, 333/161

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 3661241 May 1972 Ioffe et al. 198/33

Record List Display Page 10 of 14

5309166	May 1994	Collier et al.	343/778
5484765	January 1996	Dionne et al.	505/210
5496795	March 1996	Das	505/210
5512196	April 1996	Mantese et al.	252/62.9
5589845	December 1996	Yandrofski et al.	343/909
5601748	February 1997	Mansour et al.	252/62.9
5635453	June 1997	Pique et al.	505/239
5650378	July 1997	Iijima et al.	505/473
5694134	December 1997	Barnes	343/700
5703020	December 1997	Das	505/210
6097263	August 2000	Mueller et al.	333/17.1
6265353	July 2001	Kinder et al.	505/238

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
2194685	March 1988	GB	
07245224	September 1995	JP	
WO 99/66584	December 1999	WO	

OTHER PUBLICATIONS

Jia, Q.X., et al., "Integration of Nonlinear <u>Dielectric</u> Barium Strontium Titanate with Polycrystalline Yttrium Iron Garnet," Applied Physics Letters, 74 (11) 1564-1566 (1999).

Chen, K.Y., et al., "Improvement of In-plane Alignment of YBa.sub.2 Cu.sub.3 O.sub.7-x Films on Polycrystalline Alumina <u>Substrates</u> Using Biaxially Aligned CeO.sub.2 /YSZ Buffer Layers," Physica C 282-287:613-614 (1997).

Jiang, H., "Low Loss Ferroelectric Films Grown on Polycrystalline Ferrite

<u>Substrates</u> for Dual-Tuning Microwave Devices," Mat. Res. Soc. Symp. Proc., 574:311-

316 (1999).

Demidov, V.E., and Kalinikos, B.A., "Electrical Tuning of the Dispersion Characteristics of Spin Waves in Metal-ferroelectric-ferrite-ferroelectric-metal Structures," Technical Physics Letters, 25 (11):880-883 (1999).

- J. D. Adam, "an MSW Tunable Bandpass Filter, "IEEE 1985 Ultrasonics Symposium, pp. 157-162.
- K. K. Li et al., "An Automatic Dip Coating Process for Thin and Thick Films," Integrated Ferroelectrics, vol. 3, Gordon and Breach Science Publishers S.A., 1993, pp. 81-91.
- A. M. Hermann et al., "Oxide Superconductors and Ferroelectrics--Materails for a New Generation of Tunable Micrwave Devices," J. Superconductivity, vol. 7, No. 2, 1994, pp. 463-469.
- Gerals F. Dionne et al., "YBCO/Ferrite Low-Loss Microwave Phase Shifter," IEEE Trans. Appl. Supercond., vol. 5, No. 2, Jun. 1995, pp. 2083-2086.
- Jack W. Judy et al., "Batch-Fabricated, Addressable, Magnetically Actuated Microstructures," Technical Digest Solid Stated Sensor and Actuator Workshop, Hilton Head, SC, 1996, pp. 197-190.
- Spartak S. Gevorgian et al., "CAD Models for Multilayered Suubstrate Interdigital Capacitors," IEEE Trans. Microwave Theory Tech., vol. 44, No. 6, Jun. 1966, pp. 896-904.
- R. Kalyanaraman et al, "Influence of oxygen background pressure on crystalline quality of SrTiO3 films grown on MgO by pulsed laser deposition." Appl. Phys. Lett., vol. 71, No. 12, Sep. 22, 1997, pp. 1709-1711.

Record List Display Page 11 of 14

C. P. Wang et al., "Deposition of in-plane textured mgO on amorphous Si3N4 <u>substrates</u> by ion-beam-assisted deposition with ion-beam-assisted deposited yttria-stabilized zirconia," Appl. Phys. Lett., vol. 71, No. 20, Nov. 17, 1997, pp. 2955-2957.

F.A. Miranda et al. "Tunable Microwave Components for Ku- and K-Band Satellite Comunications," NASA/TM--1998-206963, May 1998, pp. 1-10.

ART-UNIT: 2817

PRIMARY-EXAMINER: Nguyen; Patricia

ATTY-AGENT-FIRM: Hamilton, Brook, Smith & Reynolds, P.C.

ABSTRACT:

A ferroelectric layer is deposited or in close proximity to a ferromagnetic ferrite layer to make a microwave <u>substrate</u> on which conductors can be deposited or placed to make devices. The permittivity of the ferroelectric layer can be changed by applying a voltage and the permeability of the ferromagnetic layer can be changed with a magnetic field. This makes it possible to tune the device characteristics with two different effects taking best advantage of the capabilities of each. A material example is ferromagnetic yttrium-iron-garnet on which is deposited a <u>thin film</u> of ferroelectric barium strontium titanate. To minimize losses, the ferroelectric film should be high quality, but practical yttrium-iron-garnet <u>substrates</u> are polycrystalline so that the use of buffer layers is desirable. At least two methods can be used to deposit the ferroelectric film, pulsed laser deposition and metal-organic chemical liquid deposition. A variety of dual tunable microwave devices can be made with this <u>substrate</u>, including by way of example only, phase shifters, frequency filters, and <u>resonators</u>.

19 Claims, 25 Drawing figures

Full Title Citation	Front Review Classification	
	t ID: US 5888942 A	Relevance Rank: 53

File: USPT

L6: Entry 5 of 6
US-PAT-NO: 5888942

DOCUMENT-IDENTIFIER: US 5888942 A

TITLE: Tunable microwave hairpin-comb superconductive filters for narrow-band

applications

DATE-ISSUED: March 30, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Matthaei; George L. Santa Barbara CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Mar 30, 1999

02

Superconductor Technologies, Inc. Santa Barbara CA

APPL-NO: 08/668093 [PALM]
DATE FILED: June 17, 1996

INT-CL-ISSUED: [06] H01P 1/203

INT-CL-CURRENT:

TYPE IPC DATE
CIPS H01 P 1/20 20060101
CIPS H01 P 1/203 20060101

US-CL-ISSUED: 505/210; 505/700, 505/701, 505/866, 333/204, 333/205, 333/219 US-CL-CURRENT: 505/210; 333/204, 333/205, 333/219, 505/700, 505/701, 505/866

FIELD-OF-CLASSIFICATION-SEARCH: 333/204, 333/205, 333/219, 333/995, 505/210,

505/700, 505/701, 505/866

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4578656	March 1986	La Cour et al.	333/205
4992759	February 1991	Giraudeau et al.	333/204
5055809	October 1991	Sagawa et al.	333/219

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
71508	February 1983	JP	333/204
193302	August 1987	JP .	333/204
204801	August 1988	JP	333/204
206201	August 1990	JP	333/204
1309125	May 1987	RU	333/204

OTHER PUBLICATIONS

"Concerning the Use of High-Temperature Supreconductivity in Planar Microwave Filters," GL Matthaei and GL Hey-Shipton IEEE Trans. on MTT, (Jul. 1994) vol. 42, pp. 1287-1293.

Microwave Filters, Impedance-Matching Networks, and Coupling Structures, GL Matthaei, L Young, and EMT Jones Artech House Books, Dedham, MA, 91980, pp. 497-506 and 516-518.

"Hairpin-Line and Hybrid Hairpin-Line/Half-Wave Parallel-Coupled-Line Filters," EG Cristal and S Frankel IEEE Trans. MTT, (Nov. 1972) vol. MTT-20, pp.719-728.

"Parallel-Couped Transmission-Line-Resonator Filters," SB Cohn IRE Trans. PGMTT, (Apr. 1958) vol. MTT-6, pp. 223-231.

"Miniaturized Hairpin Resonator Filters and Their Application of Receiver Front-End

Record List Display Page 13 of 14

MIC's," M Sagawa, K Takahashi, and M Makimoto IEEE Trans. MTT, (Dec. 1989) vol. 37, pp. 1991-1997.

"Novel, Staggered <u>Resonator</u> Array Superconducting 2.3-GHz Bandpass Filters," GL Mattaei and GL Hey-Shipton IEEE Trans. MTT, (Dec. 1993) vol. 41, pp. 2345-2352.

ART-UNIT: 287

PRIMARY-EXAMINER: Lee; Benny T.

ATTY-AGENT-FIRM: Lyon & Lyon LLP

ABSTRACT:

Microwave hairpin-comb filters utilize a plurality of hairpin (i.e., folded) halfwavelength microstrip or stripline resonators arranged side-by-side and all with the same orientation. The coupling regions between <u>resonators</u> extend parallel to the sides of the resonators for substantially 1/8 to 1/4 wavelength at the frequency of resonance of the resonators. This length of coupling region between resonators, along with all resonators being oriented in the same direction, result in resonance effects in the coupling regions between the resonators. These effects greatly reduce the couplings between the resonators so that the resonators can be very closely spaced so as to produce a compact filter structure yet still have a narrow passband. For example, a compact narrow band filter structure is possible using high-Q nominally half wavelength hairpin resonators. The structure can also be made to produce poles of attenuation adjacent to the passband in order to enhance the filter cutoff characteristic. The filter structure can be conveniently tuned using asymmetric dielectric pieces which rotate above an interdigital conductor or other two conductors pattern placed between the open ends of each resonator, the axis of rotation being normal to the substrate. This manner of tuning is particularly attractive for narrow-band, very low loss, high temperature superconductor (HTS) filters since these tuners can be made to give smooth tuning with no normal metal parts in the circuit and with no ground connections required. Such normal metal parts or ground connections would introduce considerable loss and degrade the HTS filter performance.

13 Claims, 17 Drawing figures

Fall	Title Citation Front Review Classification Date Reference	Claims	MC Draw D
Clear	Generate Collection Print Fwd Refs Bkwd Refs	Generate	OACS
	Term	Documents	
	HTSC	519	
	HTSCS	35	
	(HTSC AND 5).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	6	
	(L5 AND HTSC).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	6	

Display Formate		Change Format
ijichiav rarmai:	3- :	

Previous Page

Next Page

Go to Doc#