Supplementary Materials of "Block Tensor Ring Decomposition: Theory and Application"

Sheng Liu, Xi-Le Zhao*, and Hao Zhang

I. The proof of Theorem 1

Before proving Theorem 1, we need to introduce and establish some lemmas.

Lemma 1 (permutation lemma [1]). Consider two matrices $\bar{\mathbf{A}}, \mathbf{A} \in \mathbb{R}^{n \times d}$, that have no zero columns. If for every vector \mathbf{x} such that $\omega\left(\mathbf{x}^{\top}\bar{\mathbf{A}}\right) \leqslant d - r_{\bar{\mathbf{A}}} + 1$, we have $\omega\left(\mathbf{x}^{T}\mathbf{A}\right) \leqslant \omega\left(\mathbf{x}^{T}\bar{\mathbf{A}}\right)$, then there exists a unique permutation matrix Π and a unique nonsingular diagonal matrix Λ such that $\bar{\mathbf{A}} = \mathbf{A}\Pi\Lambda$.

Lemma 2. For $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times n_4}$, its BTRD is $\mathcal{X} = \sum_{k=1}^d e^k \circ TR\left(\mathcal{F}_1^k, \mathcal{F}_2^k, \mathcal{F}_3^k\right)$ with $R_1 = R_2 = R$ and $R_3 = 1$. Suppose F_1, F_2 , and F_3 are full column rank matrices satisfy

$$k'_{F_1} + k'_{F_2} + k'_{F_3} + k'_E + \ge 2d + 3,$$
 (1)

where k_{F_1}' is k'-rank (Kruskal rank) of \mathbf{F}_1 , $\mathbf{F}_1 = \left[\left(\mathcal{F}_1^1 \right)_{(3)}^\top, \cdots, \left(\mathcal{F}_1^d \right)_{(3)}^\top \right]$, $\mathbf{F}_2 = \left[\left(\mathcal{F}_2^1 \right)_{(1)}^\top, \cdots, \left(\mathcal{F}_2^d \right)_{(1)}^\top \right]$, $\mathbf{F}_3 = \left[\left(\mathcal{F}_3^1 \right)_{(1)}^\top, \cdots, \left(\mathcal{F}_3^d \right)_{(1)}^\top \right]$ and $\mathbf{E} = [\mathbf{e}^1, \cdots, \mathbf{e}^d]$. Then, we have an alternative decomposition of \mathcal{X} , i.e., $\mathcal{X} = \sum_{k=1}^d \bar{\mathbf{e}}^k \circ TR\left(\bar{\mathcal{F}}_1^k, \bar{\mathcal{F}}_2^k, \bar{\mathcal{F}}_3^k \right)$, where there holds $\bar{\mathbf{E}} = \mathbf{E}\Pi_{\mathbf{E}}\Lambda_{\mathbf{E}}$, $\Pi_{\mathbf{E}}$ is a permutation matrix and $\Lambda_{\mathbf{E}}$ a nonsingular diagonal matrix.

Proof. Based on Lemma 1, for any \boldsymbol{y} such that $\omega(\boldsymbol{y}^{\top}\bar{\boldsymbol{E}}) \leq d - r_{\bar{\boldsymbol{E}}} + 1$, we have $\omega(\boldsymbol{y}^{\top}\boldsymbol{E}) \leq \omega(\boldsymbol{y}^{\top}\bar{\boldsymbol{E}})$. Thus, this proof is divided into three parts:

(1) the upper-bound of $\omega(\boldsymbol{y}^{\top}\bar{\boldsymbol{E}})$: Given that both $\{\mathcal{F}_1^k,\mathcal{F}_2^k,\mathcal{F}_3^k,\boldsymbol{e}^k\}$ and $\{\bar{\mathcal{F}}_1^k,\bar{\mathcal{F}}_2^k,\bar{\mathcal{F}}_3^k,\bar{\boldsymbol{e}}^k\}$ a constitute a decomposition of \mathcal{X} . For any \boldsymbol{y} , we have

$$[\operatorname{vec}(\operatorname{TR}(\mathcal{F}_{1}^{1}, \mathcal{F}_{2}^{1}, \mathcal{F}_{3}^{1})), \cdots, \operatorname{vec}(\operatorname{TR}(\mathcal{F}_{1}^{d}, \mathcal{F}_{2}^{d}, \mathcal{F}_{3}^{d}))] \boldsymbol{E}^{\top} \boldsymbol{y}$$

$$= [\operatorname{vec}(\operatorname{TR}(\bar{\mathcal{F}}_{1}^{1}, \bar{\mathcal{F}}_{2}^{1}, \bar{\mathcal{F}}_{3}^{1})), \cdots, \operatorname{vec}(\operatorname{TR}(\bar{\mathcal{F}}_{1}^{d}, \bar{\mathcal{F}}_{2}^{d}, \bar{\mathcal{F}}_{3}^{d}))] \bar{\boldsymbol{E}}^{\top} \boldsymbol{y}.$$
(2)

Since F_1, F_2, F_3 are full column rank matrices, they exhibit linear independence for any column vector. By partitioning F_1 into submatrices $F_1 = [(\mathcal{F}_1^1)_{(3)}^{\top}, \cdots, (\mathcal{F}_1^d)_{(3)}^{\top}] = [F_1^1, \cdots, F_1^d]$, it follows that these submatrices are also linearly independent, i.e., any specific submatrix F_1^k cannot be expressed as a linear combination of the others $F_1^{\neq k}$. This linear independence extends similarly to the submatrices of F_2 and F_3 . Due to $\mathcal{Z}_k = \operatorname{TR}(\mathcal{F}_1^k, \mathcal{F}_2^k, \mathcal{F}_3^k)$, the space spanned by \mathcal{Z} , denoted as $\operatorname{span}(\mathcal{Z}^k)$, is generated by the $\operatorname{span}(\mathcal{F}_1^k)$, $\operatorname{span}(\mathcal{F}_2^k)$, and $\operatorname{span}(\mathcal{F}_3^k)$. Therefore, we have $\operatorname{span}(\mathcal{Z}^k) \subseteq \operatorname{span}(\mathcal{F}_1^k) + \operatorname{span}(\mathcal{F}_2^k) + \operatorname{span}(\mathcal{F}_3^k)$. And since any corresponding block matrices of \mathcal{F}_1^k , \mathcal{F}_2^k , and \mathcal{F}_3^k are linearly independent, respectively, then the intersections are $\bigcap_{k=1}^d \operatorname{span}(\mathcal{F}_1^k) = \{0\}$, $\bigcap_{k=1}^d \operatorname{span}(\mathcal{F}_2^k) = \{0\}$, and $\bigcap_{k=1}^d \operatorname{span}(\mathcal{F}_3^k) = \{0\}$, respectively. From this, we conclude $\bigcap_{k=1}^d \operatorname{span}(\mathcal{Z}^k) = \{0\}$. Then, we deduce that \mathcal{Z}^k is linearly independent and $[\operatorname{vec}(\mathcal{Z}_1), \cdots, \operatorname{vec}(\mathcal{Z}^d)]$ is full column rank matrix. Considering Equation (2), above result implies that if $\omega(\mathbf{y}^{\top}\bar{\mathbf{E}}) = 0$, then $\omega(\mathbf{y}^{\top}\bar{\mathbf{E}}) = 0$ is hold, indicating that $\operatorname{null}(\bar{\mathbf{E}}) \subseteq \operatorname{null}(E)$. It implies that $\operatorname{span}(E) \subseteq \operatorname{span}(E)$ and $r_E \le r_E$. Furthermore, if $\omega(\mathbf{y}^{\top}\bar{\mathbf{E}}) \le d - r_E + 1$, then we derive

$$\omega\left(\boldsymbol{y}^{\top}\bar{\boldsymbol{E}}\right) \le d - r_{\bar{\boldsymbol{E}}} + 1 \le d - r_{\boldsymbol{E}} + 1 \le d - k_{\boldsymbol{E}}' + 1 \le k_{\boldsymbol{F}_{1}}' + k_{\boldsymbol{F}_{2}}' + k_{\boldsymbol{F}_{3}}' - d - 2. \tag{3}$$

(2) the lower-bound of $\omega(y^{\top}\bar{E})$: Based on the definition of BTRD, we have

$$\boldsymbol{X}_{n_{2}n_{3}\times n_{4},i_{1}} = \begin{bmatrix} \boldsymbol{S}_{1}^{1},\cdots,\boldsymbol{S}_{1}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\begin{bmatrix} \left(\boldsymbol{F}_{1}^{1}\right)_{i_{1}1},\cdots,\left(\boldsymbol{F}_{1}^{1}\right)_{i_{1}R} \end{bmatrix},\cdots, \begin{bmatrix} \left(\boldsymbol{F}_{1}^{d}\right)_{i_{1}1},\cdots,\left(\boldsymbol{F}_{1}^{d}\right)_{i_{1}R} \end{bmatrix} \right) \boldsymbol{E}^{\top}$$

$$\boldsymbol{X}_{n_{1}n_{3}\times n_{4},i_{2}} = \begin{bmatrix} \boldsymbol{S}_{2}^{1},\cdots,\boldsymbol{S}_{2}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\begin{bmatrix} \left(\boldsymbol{F}_{2}^{1}\right)_{i_{2}1},\cdots,\left(\boldsymbol{F}_{2}^{1}\right)_{i_{2}R} \end{bmatrix},\cdots, \begin{bmatrix} \left(\boldsymbol{F}_{2}^{d}\right)_{i_{2}1},\cdots,\left(\boldsymbol{F}_{2}^{d}\right)_{i_{2}R} \end{bmatrix} \right) \boldsymbol{E}^{\top}$$

$$\boldsymbol{X}_{n_{1}n_{2}\times n_{4},i_{3}} = \begin{bmatrix} \boldsymbol{S}_{3}^{1},\cdots,\boldsymbol{S}_{3}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\begin{bmatrix} \left(\boldsymbol{F}_{3}^{1}\right)_{i_{3}1},\cdots,\left(\boldsymbol{F}_{3}^{1}\right)_{i_{3}R} \end{bmatrix},\cdots, \begin{bmatrix} \left(\boldsymbol{F}_{3}^{d}\right)_{i_{3}1},\cdots,\left(\boldsymbol{F}_{3}^{d}\right)_{i_{3}R} \end{bmatrix} \right) \boldsymbol{E}^{\top}$$

$$\boldsymbol{X}_{n_{1}n_{2}\times n_{3},i_{4}} = \begin{bmatrix} \boldsymbol{S}_{3}^{1},\cdots,\boldsymbol{S}_{3}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\boldsymbol{e}_{i_{4}1}\boldsymbol{I},\cdots,\boldsymbol{e}_{i_{4}d}\boldsymbol{I} \right) \begin{bmatrix} \boldsymbol{F}_{3}^{1},\cdots,\boldsymbol{F}_{3}^{d} \end{bmatrix}^{\top},$$

$$(4)$$

Sheng Liu, Xi-Le Zhao, and Hao Zhang are with the School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China (email: liusheng16@163.com; xlzhao122003@163.com; aaronzhangfy@163.com;), Corresponding author: Xi-Le Zhao.

1

where $\boldsymbol{S}_{i}^{k} \triangleq (\boldsymbol{S}^{\neq i})^{k}$ for $i \in [3]$ and $k \in [d]$, and $(\boldsymbol{S}^{\neq i})^{k}$ satisfies $\mathrm{TR}(\mathcal{F}_{1}^{k},\mathcal{F}_{2}^{k},\mathcal{F}_{3}^{k})_{(i)} = \boldsymbol{F}_{i}^{k}((\boldsymbol{S}^{\neq i})^{k})^{\top}$. Consider the linear combination $\sum_{k=1}^{n_{4}} \boldsymbol{y}_{i_{4}} \boldsymbol{X}_{n_{1}n_{2} \times n_{3}, i_{4}}$, it is given by

$$\begin{bmatrix} \boldsymbol{S}_{3}^{1}, \cdots, \boldsymbol{S}_{3}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\boldsymbol{y}^{\top} \boldsymbol{e}_{1} \boldsymbol{I}, \cdots, \boldsymbol{y}^{\top} \boldsymbol{e}_{d} \boldsymbol{I} \right) \begin{bmatrix} \boldsymbol{F}_{3}^{1}, \cdots, \boldsymbol{F}_{3}^{d} \end{bmatrix}^{\top}$$

$$= \begin{bmatrix} \bar{\boldsymbol{S}}_{3}^{1}, \cdots, \bar{\boldsymbol{S}}_{3}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\boldsymbol{y}^{\top} \bar{\boldsymbol{e}}_{1} \boldsymbol{I}, \cdots, \boldsymbol{y}^{\top} \bar{\boldsymbol{e}}_{d} \boldsymbol{I} \right) \begin{bmatrix} \bar{\boldsymbol{F}}_{3}^{1}, \cdots, \bar{\boldsymbol{F}}_{3}^{d} \end{bmatrix}^{\top}.$$

$$(5)$$

Let $S_3 \triangleq \left[S_3^1, \cdots, S_3^d\right]$, we have

$$R\omega\left(\boldsymbol{y}^{\top}\bar{\boldsymbol{E}}\right) = r_{\text{blockdiag}}(\boldsymbol{y}^{\top}\bar{\boldsymbol{e}}_{1}\boldsymbol{I},\dots,\boldsymbol{y}^{\top}\bar{\boldsymbol{e}}_{d}\boldsymbol{I}) \geq r_{\bar{\boldsymbol{S}}_{3} \text{ blockdiag}}(\boldsymbol{y}^{\top}\bar{\boldsymbol{e}}_{1}\boldsymbol{I},\dots,\boldsymbol{y}^{\top}\bar{\boldsymbol{e}}_{d}\boldsymbol{I})\bar{\boldsymbol{F}}_{3}$$

$$= r_{\boldsymbol{S}_{3} \text{ blockdiag}}(\boldsymbol{y}^{\top}\boldsymbol{e}_{1}\boldsymbol{I},\dots,\boldsymbol{y}^{\top}\boldsymbol{e}_{d}\boldsymbol{I})\boldsymbol{F}_{3}.$$
(6)

Let $\gamma = \omega (\mathbf{y}^{\top} \mathbf{E})$, $\hat{\mathbf{S}}_3$ and $\hat{\mathbf{F}}_3$ consist of the submatrices of \mathbf{S}_3 and \mathbf{F}_3 , respectively, corresponding to the nonzero elements of $\mathbf{y}^{\top} \mathbf{E}$. Then $\hat{\mathbf{S}}_3$ and $\hat{\mathbf{F}}_3$ both have γR columns. Let be the $(\gamma \times 1)$ vector containing the nonzero elements of $\mathbf{y}^{\top} \mathbf{E}$ such that

$$S_3$$
 blockdiag $(\boldsymbol{y}^{\top}\boldsymbol{e}_1\boldsymbol{I},\cdots,\boldsymbol{y}^{\top}\boldsymbol{e}_d\boldsymbol{I})\boldsymbol{F}_3^{\top} = \hat{\boldsymbol{S}}_3$ blockdiag $(\boldsymbol{u}_1\boldsymbol{I},\cdots,\boldsymbol{u}_{\gamma}\boldsymbol{I})\hat{\boldsymbol{F}}_3^{\top}$. (7)

And then, we have

$$r_{\mathbf{S}_3blockdiag}(\mathbf{y}^{\top} \mathbf{e}_1 \mathbf{I}, \dots, \mathbf{y}^{\top} \mathbf{e}_d \mathbf{I}) \mathbf{F}_3 = r_{\hat{\mathbf{S}}_3blockdiag}(\mathbf{u}_1 \mathbf{I}, \dots, \mathbf{u}_{\gamma} \mathbf{I}) \hat{\mathbf{F}}_3$$

$$\geq r_{\hat{\mathbf{S}}_3} + r_{blockdiag}(\mathbf{u}_1 \mathbf{I}, \dots, \mathbf{u}_{\gamma} \mathbf{I}) \hat{\mathbf{F}}_3 - \gamma d \geq r_{\hat{\mathbf{S}}_3} + r_{\hat{\mathbf{F}}_3} - \gamma R$$
(8)

From the definition of k'-rank, we have

$$r_{\hat{\mathbf{S}}_2} \ge R \min(\gamma, k'_{\mathbf{S}_2}), r_{\hat{\mathbf{F}}_2} \ge R \min(\gamma, k'_{\mathbf{F}_2})$$
 (9)

Combination of Equation (6), Equation (8), and Equation (9), we can deduce the lower bound of the lower-bound of $\omega(y^{\top}\bar{E})$ as follows:

$$\min(\gamma, k'_{S_2}) + \min(\gamma, k'_{F_2}) - \gamma \le \omega(\boldsymbol{y}^\top \bar{\boldsymbol{E}}). \tag{10}$$

(3) Combination of the two bounds: Combination of Equation (10) and Equation (3), we have

$$\min(\gamma, k'_{S_3}) + \min(\gamma, k'_{F_3}) - \gamma \le \omega \left(\boldsymbol{y}^{\top} \bar{\boldsymbol{E}} \right) \le k'_{F_1} + k'_{F_2} + k'_{F_3} - d - 2.$$
 (11)

Let $k'_{S_3} = \varsigma$. Based on the definition of k'-rank, there exists $\{S_3^{p_1}, \cdots, S_3^{p_\varsigma}\}$ form $\{S_3^1, \cdots, S_3^d\}$ and $\mu_1 \neq 0, \mu_2 \neq \cdots, \mu_\varsigma \neq 0$, such that

$$\mu_{1} \mathbf{S}_{3}^{p_{1}} + \mu_{2} \mathbf{S}_{3}^{p_{2}} + \dots + \mu_{\varsigma} \mathbf{S}_{3}^{p_{\varsigma}} = 0$$

$$\Leftrightarrow \mu_{1} \mathbf{S}_{3}^{p_{1}} + \mu_{2} \mathbf{S}_{3}^{p_{2}} + \dots + \mu_{\varsigma} \mathbf{S}_{3}^{p_{\varsigma}} = 0$$

$$\Leftrightarrow \mu_{1} \left(\mathbf{S}_{3}^{p_{1}} \right)_{(3)} + \mu_{2} \left(\mathbf{S}_{3}^{p_{2}} \right)_{(3)} + \dots + \mu_{\varsigma} \left(\mathbf{S}_{3}^{p_{\varsigma}} \right)_{(3)} = 0$$
(12)

Based on definition of subchain tensor S_3^k , we have

$$\mu_{1} \left(\mathcal{S}_{3}^{p_{1}} \right)_{(3)} + \mu_{2} \left(\mathcal{S}_{3}^{p_{2}} \right)_{(3)} + \dots + \mu_{\varsigma} \left(\mathcal{S}_{3}^{p_{\varsigma}} \right)_{(3)} = 0$$

$$\Leftrightarrow \left[\left(\mathcal{F}_{1}^{p_{1}} \right)_{(3)}^{\mathsf{T}}, \dots, \left(\mathcal{F}_{1}^{p_{\varsigma}} \right)_{(3)}^{\mathsf{T}} \right] blockdiag \left(\mu_{1} \boldsymbol{I}, \dots, \mu_{\varsigma} \boldsymbol{I} \right) \left[\left(\mathcal{F}_{2}^{p_{1}} \right)_{(1)}^{\mathsf{T}}, \dots, \left(\mathcal{F}_{2}^{p_{\varsigma}} \right)_{(1)}^{\mathsf{T}} \right] = 0$$

$$\Leftrightarrow \tilde{\boldsymbol{F}}_{1} blockdiag \left(\mu_{1} \boldsymbol{I}, \dots, \mu_{\varsigma} \boldsymbol{I} \right) \tilde{\boldsymbol{F}}_{2} = 0, \tag{13}$$

where $\tilde{\boldsymbol{F}}_1 = \left[(\mathcal{F}_1^{p_1})_{(3)}^\top, \cdots, (\mathcal{F}_1^{p_\varsigma})_{(3)}^\top \right]$ and $\tilde{\boldsymbol{F}}_2 = \left[(\mathcal{F}_2^{p_1})_{(1)}^\top, \cdots, (\mathcal{F}_2^{p_\varsigma})_{(1)}^\top \right]$. And then, we have

$$r_{\tilde{\boldsymbol{F}}_{1}block\mathrm{diag}(\mu_{1}\boldsymbol{I},\cdots,\mu_{\varsigma}\boldsymbol{I})\tilde{\boldsymbol{F}}_{2}} \geq r_{\tilde{\boldsymbol{F}}_{1}} + r_{block\mathrm{diag}(\mu_{1}\boldsymbol{I},\cdots,\mu_{\varsigma}\boldsymbol{I})\tilde{\boldsymbol{F}}_{2}} - \varsigma d \geq r_{\tilde{\boldsymbol{F}}_{1}} + r_{\tilde{\boldsymbol{F}}_{2}} - \varsigma R \tag{14}$$

From the definition of k'-rank, we have

$$r_{\tilde{\mathbf{F}}_1} \ge R \min(\varsigma, k_{\mathbf{F}_1}'), r_{\tilde{\mathbf{F}}_2} \ge R \min(\varsigma, k_{\mathbf{F}_2}'), \tag{15}$$

and thus

$$r_{\tilde{\mathbf{F}}_1 block \operatorname{diag}(\mu_1 \mathbf{I}, \cdots, \mu_{\varsigma} \mathbf{I}) \tilde{\mathbf{F}}_2} \ge R \min \left(k'_{\mathbf{F}_1}, \varsigma \right) + R \min \left(k'_{\mathbf{F}_2}, \varsigma \right) - \varsigma R. \tag{16}$$

We note that $k'_{F_1}+k'_{F_2}-1=\max(k'_{F_1},k'_{F_2})+\min(k'_{F_1},k'_{F_2})-1\geq\max(k'_{F_1},k'_{F_2})$ due to $k'_{F_1}\geq 1,k'_{F_2}\geq 1$. According to Equation (13) is a zero matrix, we deduce that $r_{\tilde{F}_1block\mathrm{diag}(\mu_1I,\cdots,\mu_\varsigma I)\tilde{F}_2}=0$. Suppose $k'_{F_1}+k'_{F_2}-1\geq\varsigma\geq\max(k'_{F_1},k'_{F_2})$, we deduce that $k'_{F_1}+k'_{F_2}-1\geq\varsigma\geq k'_{F_1}+k'_{F_2}$ is hold via Equation (16), which is impossible. Suppose $k'_{F_1}\geq\varsigma\geq k'_{F_2}$, we deduce $0\geq k'_{F_2}$ via Equation (16), which is impossible. Suppose $k'_{F_2}\geq\varsigma\geq k'_{F_1}$, we deduce $0\geq k'_{F_1}$ via Equation (16), which is impossible. Suppose $k'_{F_2}\geq\varsigma\geq k'_{F_1}$, we deduce $0\leq k'_{F_1}$ via Equation (16), which is impossible. Based on the above analysis, we have

$$k'_{S_2} = \varsigma \ge k'_{F_1} + k'_{F_2} - 1. \tag{17}$$

Similarly, we analyze Equation (11). Suppose $\gamma>\max(k'_{S_3},k'_{F_3})$, we can deduce $\gamma\geq d+1$ via Equation (11), which is impossible. Suppose $k'_{F_3}\geq\gamma\geq k'_{S_3}$, we can deduce $k'_{F_3}\geq d+1$, which is impossible. Suppose $k'_{S_3}\geq\gamma\geq k'_{F_3}$, we can deduce $k'_{S_3}\geq k'_{F_1}+k'_{F_2}-1\geq d+1$, which is impossible. Thus, we have $\gamma<\min(k'_{S_3},k'_{F_3})$, which implies $\omega\left(\boldsymbol{y}^{\top}\boldsymbol{E}\right)\leq\omega\left(\boldsymbol{y}^{\top}\boldsymbol{\bar{E}}\right)$. Applied Lemma 1, there holds $\bar{\boldsymbol{E}}=\boldsymbol{E}\Pi_{\boldsymbol{E}}\Lambda_{\boldsymbol{E}}$, $\Pi_{\boldsymbol{E}}$ is a permutation matrix and $\Lambda_{\boldsymbol{E}}$ a nonsingular diagonal matrix.

Lemma 3. For $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times n_4}$, its BTRD is $\mathcal{X} = \sum_{k=1}^d e^k \circ TR\left(\mathcal{F}_1^k, \mathcal{F}_2^k, \mathcal{F}_3^k\right)$ with $R_1 = R_2 = R$ and $R_3 = 1$. Suppose F_2, F_3 and E are full column rank matrices satisfy

$$k'_{F_1} + k'_{F_2} + k'_{F_3} + k'_E + \ge 2d + 3,$$
 (18)

Then, we have an alternative decomposition of \mathcal{X} , i.e., $\mathcal{X} = \sum_{k=1}^d \bar{\mathbf{e}}^k \circ TR\left(\bar{\mathcal{F}}_1^k, \bar{\mathcal{F}}_2^k, \bar{\mathcal{F}}_3^k\right)$, where there holds $\bar{\mathbf{F}}_1 = \mathbf{F}_1\Pi_{\mathbf{F}_1}\Lambda_{\mathbf{F}_1}$, $\Pi_{\mathbf{F}_1}$ is a permutation matrix and $\Lambda_{\mathbf{F}_1}$ a nonsingular diagonal matrix.

Proof. Similar to the proof of Lemma 2, this proof is divided into three parts:

(1) the upper-bound of $\omega(y^{\top}\bar{F}_1)$: As $\{\mathcal{F}_1^k, \mathcal{F}_2^k, \mathcal{F}_3^k, e^k\}$ and $\{\bar{\mathcal{F}}_1^k, \bar{\mathcal{F}}_2^k, \bar{\mathcal{F}}_3^k, \bar{e}^k\}$ are both represent a decomposition of X. Due to E is full column rank, there are $\{e_{i_41}, \cdots e_{i_4d}\}$ which are different from zero. For any y, we have

$$\begin{bmatrix} \boldsymbol{S}_{1}^{1}, \cdots, \boldsymbol{S}_{1}^{d} \end{bmatrix} \operatorname{blockdiag}\left(\boldsymbol{e}_{i_{4}1}\boldsymbol{I}, \cdots, \boldsymbol{e}_{i_{4}d}\boldsymbol{I}\right) \begin{bmatrix} \boldsymbol{F}_{1}^{1}, \cdots, \boldsymbol{F}_{1}^{d} \end{bmatrix}^{\top} \boldsymbol{y}$$

$$= \begin{bmatrix} \bar{\boldsymbol{S}}_{1}^{1}, \cdots, \bar{\boldsymbol{S}}_{1}^{d} \end{bmatrix} \operatorname{blockdiag}\left(\bar{\boldsymbol{e}}_{i_{4}1}\boldsymbol{I}, \cdots, \bar{\boldsymbol{e}}_{i_{4}d}\boldsymbol{I}\right) \begin{bmatrix} \bar{\boldsymbol{F}}_{1}^{1}, \cdots, \bar{\boldsymbol{F}}_{1}^{d} \end{bmatrix}^{\top} \boldsymbol{y}.$$
(19)

Since F_2 and F_3 are full column rank, We have that $\left[S_1^1,\cdots,S_1^d\right]$ is a column full matrix. And then $\{e_{i_41},\cdots e_{i_4d}\}$ which is different from zero yields blockdiag $(e_{i_41}\boldsymbol{I},\cdots,e_{i_4d}\boldsymbol{I})$ with full column rank property. This result implies that if $\omega(\boldsymbol{y}^\top\bar{F}_1)=0$, then also $\omega(\boldsymbol{y}^\top\bar{F}_1)=0$, which shows $\operatorname{null}(\bar{F}_1)\subseteq\operatorname{null}(F_1)$. It states that $r_{F_1}\leq r_{\bar{F}_1}$. If $\omega(\boldsymbol{y}^\top\bar{F}_1)\leq d-r_{\bar{F}_1}+1$, then we have

$$\omega\left(\boldsymbol{y}^{\top}\bar{\boldsymbol{F}}_{1}\right) \leq d - r_{\bar{\boldsymbol{F}}_{1}} + 1 \leq d - r_{\boldsymbol{F}_{1}} + 1 \leq d - k'_{\boldsymbol{F}_{1}} + 1 \leq + k'_{\boldsymbol{F}_{2}} + k'_{\boldsymbol{F}_{3}} + k'_{\boldsymbol{E}} - d - 2. \tag{20}$$

(2) the lower-bound of $\omega(y^{\top}\bar{F}_1)$: Consider the linear combination $\sum_{k=1}^{n_1} y_{i_1} X_{n_2 n_3 \times n_4, i_1}$, it is given by

$$\begin{bmatrix} \boldsymbol{S}_{1}^{1}, \cdots, \boldsymbol{S}_{1}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\begin{bmatrix} (\boldsymbol{F}_{1}^{1})_{i_{1}1}, \cdots, (\boldsymbol{F}_{1}^{1})_{i_{1}R} \end{bmatrix}, \cdots, \begin{bmatrix} (\boldsymbol{F}_{1}^{d})_{i_{1}1}, \cdots, (\boldsymbol{F}_{1}^{d})_{i_{1}R} \end{bmatrix} \right) \boldsymbol{E}^{\top} \\
= \begin{bmatrix} \bar{\boldsymbol{S}}_{1}^{1}, \cdots, \bar{\boldsymbol{S}}_{1}^{d} \end{bmatrix} \operatorname{blockdiag} \left(\begin{bmatrix} (\bar{\boldsymbol{F}}_{1}^{1})_{i_{1}1}, \cdots, (\bar{\boldsymbol{F}}_{1}^{1})_{i_{1}R} \end{bmatrix}, \cdots, \begin{bmatrix} (\bar{\boldsymbol{F}}_{1}^{d})_{i_{1}1}, \cdots, (\bar{\boldsymbol{F}}_{1}^{d})_{i_{1}R} \end{bmatrix} \right) \bar{\boldsymbol{E}}^{\top} \tag{21}$$

And then, we have

$$R\omega\left(\boldsymbol{y}^{\top}\bar{\boldsymbol{F}}_{1}\right) = r_{\text{blockdiag}\left(\boldsymbol{y}^{\top}\boldsymbol{T}^{1}\cdots,\boldsymbol{y}^{\top}\boldsymbol{T}^{d}\right)} \geq r_{\bar{\boldsymbol{S}}_{1} \text{ blockdiag}\left(\boldsymbol{y}^{\top}\boldsymbol{T}^{1}\cdots,\boldsymbol{y}^{\top}\boldsymbol{T}^{d}\right)\boldsymbol{E}^{\top}}$$

$$= r_{\boldsymbol{S}_{1} \text{ blockdiag}\left(\boldsymbol{y}^{\top}\boldsymbol{T}^{1},\cdots,\boldsymbol{y}^{\top}\boldsymbol{T}^{d}\right)\boldsymbol{E}^{\top}}$$
(22)

where $T^k \triangleq \left[\left(\boldsymbol{F}_1^k \right)_{i_1 1}, \cdots, \left(\boldsymbol{F}_1^k \right)_{i_1 R} \right]$. Let $\gamma = \omega \left(\boldsymbol{y}^{\top} \boldsymbol{F}_1 \right)$, $\hat{\boldsymbol{S}}_1$ and $\hat{\boldsymbol{E}}$ consist of the submatrices of \boldsymbol{S}_1 and \boldsymbol{E} , respectively, corresponding to the nonzero elements of $\boldsymbol{y}^{\top} \boldsymbol{F}_1$. Then $\hat{\boldsymbol{S}}_1$ and $\hat{\boldsymbol{E}}$ both have columns.

$$r_{\mathbf{S}_1 \operatorname{blockdiag}}(\mathbf{y}^{\top} \mathbf{T}^1, \dots, \mathbf{y}^{\top} \mathbf{T}^d) \mathbf{E}^{\top} \ge r_{\hat{\mathbf{S}}_1} + r_{\hat{\mathbf{E}}} - \gamma R. \tag{23}$$

From the definition of k'-rank, we have

$$r_{\hat{\boldsymbol{S}}_1} \ge R \min(\gamma, k'_{\boldsymbol{S}_1}), r_{\hat{\boldsymbol{E}}} \ge R \min(\gamma, k'_{\boldsymbol{E}}) \tag{24}$$

Combination of Equation (22), Equation (23), and Equation (24), we can deduce the lower bound of the lower-bound of $\omega(y^{\top}\bar{F}_1)$ as follows:

$$\min(\gamma, k'_{S_1}) + \min(\gamma, k'_{E}) - \gamma \le \omega(\mathbf{y}^{\top} \bar{\mathbf{F}}_1). \tag{25}$$

(3) Combination of the two bounds: Combination of Equation (25) and Equation (20), we have

$$\min(\gamma, k_{S_1}') + \min(\gamma, k_E') - \gamma \le \omega \left(\boldsymbol{y}^{\top} \bar{\boldsymbol{F}}_1 \right) \le k_{F_2}' + k_{F_3}' + k_E' - d - 2.$$
(26)

Similarly for the derivation of Equation (17), based on definition of subchain tensor \mathcal{S}_1^k , we deduce $k'_{S_1} \geq k'_{F_2} + k'_{F_3} - 1$. Suppose $\gamma > \max(k'_{S_1}, k'_{E})$, we can deduce $\gamma \geq d+1$ via Equation (26), which is impossible. Suppose $k'_{E} \geq \gamma \geq k'_{S_1}$, we can deduce $k'_{E} \geq d+1$, which is impossible. Suppose $k'_{S_1} \geq \gamma \geq k'_{E}$, we can deduce $k'_{S_1} \geq d+1$, which is impossible. Thus, we have $\gamma < \min(k'_{S_1}, k'_{E})$, which implies $\omega\left(\boldsymbol{y}^{\top}\boldsymbol{F}_1\right) \leq \omega\left(\boldsymbol{y}^{\top}\bar{\boldsymbol{F}}_1\right)$. Applied Lemma 1, there holds $\bar{\boldsymbol{F}}_1 = \boldsymbol{F}_1\Pi_{\boldsymbol{F}_1}\Lambda_{\boldsymbol{F}_1}$, $\Pi_{\boldsymbol{F}_1}$ is a permutation matrix and $\Lambda_{\boldsymbol{F}_1}$ a nonsingular diagonal matrix.

Remark 1. There holds $\bar{F}_2 = F_2\Pi_{F_2}\Lambda_{F_2}$ with similar conditions for Lemma 3, where Π_{F_2} is a permutation matrix and Λ_{F_2} a nonsingular diagonal matrix. And, there holds $\bar{F}_3 = F_3\Pi_{F_3}\Lambda_{F_3}$ with similar conditions for Lemma 3, where Π_{F_3} is a permutation matrix and Λ_{F_3} a nonsingular diagonal matrix. These proofs are similar to Lemma 3 and will not be repeated here.

Based on the above Lemmas, we accomplish the proof of Theorem 1.

Proof. Based on the definition of BTRD, we have

$$\boldsymbol{X}_{(4)}^{\top} = [\operatorname{vec}(\operatorname{TR}(\mathcal{F}_{1}^{1}, \mathcal{F}_{2}^{1}, \mathcal{F}_{3}^{1})), \cdots, \operatorname{vec}(\operatorname{TR}(\mathcal{F}_{1}^{d}, \mathcal{F}_{2}^{d}, \mathcal{F}_{3}^{d}))] \boldsymbol{E}^{\top}
= [\operatorname{vec}(\operatorname{TR}(\bar{\mathcal{F}}_{1}^{1}, \bar{\mathcal{F}}_{2}^{1}, \bar{\mathcal{F}}_{3}^{1})), \cdots, \operatorname{vec}(\operatorname{TR}(\bar{\mathcal{F}}_{1}^{d}, \bar{\mathcal{F}}_{2}^{d}, \bar{\mathcal{F}}_{3}^{d}))] \bar{\boldsymbol{E}}^{\top}.$$
(27)

According to lemma 2, we can get $\bar{E} = E \Pi_E \Lambda_E$. Since $k'_E = d$, E is full column rank, and then we have

$$[\operatorname{vec}(\operatorname{TR}(\mathcal{F}_{1}^{1}, \mathcal{F}_{2}^{1}, \mathcal{F}_{3}^{1})), \cdots, \operatorname{vec}(\operatorname{TR}(\mathcal{F}_{1}^{d}, \mathcal{F}_{2}^{d}, \mathcal{F}_{3}^{d}))$$

$$=[\operatorname{vec}(\operatorname{TR}(\bar{\mathcal{F}}_{1}^{1}, \bar{\mathcal{F}}_{2}^{1}, \bar{\mathcal{F}}_{3}^{1})), \cdots, \operatorname{vec}(\operatorname{TR}(\bar{\mathcal{F}}_{1}^{d}, \bar{\mathcal{F}}_{2}^{d}, \bar{\mathcal{F}}_{3}^{d}))]\Pi_{\boldsymbol{E}}^{\top} \Lambda_{\boldsymbol{E}}^{\top}.$$
(28)

Taking into account that $\text{vec}(\text{TR}(\mathcal{F}_1^k,\mathcal{F}_2^k,\mathcal{F}_3^k))$ is a vector representation of the tensor $\text{TR}(\mathcal{F}_1^k,\mathcal{F}_2^k,\mathcal{F}_3^k)$. This implies that the tensor $\text{TR}(\mathcal{F}_1^k,\mathcal{F}_2^k,\mathcal{F}_3^k)$ are ordered in the same way as the vectors $\bar{\boldsymbol{e}}^k$. Furthermore, according to Lemma 3, if $\bar{\boldsymbol{e}}^k = \lambda \boldsymbol{e}^k$, then we have $\text{TR}(\bar{\mathcal{F}}_1^k,\bar{\mathcal{F}}_2^k,\bar{\mathcal{F}}_3^k) = \lambda^{-1} \, \text{TR}(\mathcal{F}_1^k,\mathcal{F}_2^k,\mathcal{F}_3^k)$.

II. THE PROOFS OF THE THEOREM 2 AND THEOREM 3

A. The proof of the Theorem 2

We first introduce some definitions and lemmas before proving Theorem 2.

Definition 1 (ϵ -net [2]). Let (\mathcal{L}, d) be a metric space and $\mathscr{E} \subset \mathcal{L}$. For a given $\epsilon > 0$, a subset $\overline{\mathscr{E}} \subseteq \mathscr{E}$ is called an ϵ -net of \mathscr{E} if every point in \mathscr{E} is within a distance of ϵ from some point in $\overline{\mathscr{E}}$, i.e.,

$$\forall \mathcal{X} \in \mathscr{E}, \ \exists \ \mathcal{X}_0 \in \overline{\mathscr{E}} : d\left(\mathcal{X}, \mathcal{X}_0\right) \le \epsilon. \tag{29}$$

Definition 2 (ϵ -covering numbers [2]). The smallest possible cardinality of an ϵ -net of $\mathscr E$ is called the covering number of $\mathscr E$ and is denoted as $\mathcal N(\mathscr E,d,\epsilon)$.

Lemma 4. Let $\mathscr{E}_i^k = \{ \underline{\mathcal{F}_i^k} \in \mathbb{R}^{R_{i-1} \times n_i \times R_i} | \|\mathcal{F}_i^k\|_F \leq \zeta_i^k \}$, where $k \in [d]$ and $i \in [N-1]$. The ϵ -net of \mathscr{E}_i^k is denoted as $\overline{\mathscr{E}_i^k}$. If $\overline{\mathcal{F}_i^k} \in \overline{\mathscr{E}_i^k}$, we have $\|\mathcal{F}_i^k\|_F \leq \zeta_i^k$.

Proof. Since the ϵ -net of a set is a subset of that set, we have $\overline{\mathscr{E}_i^k} \subset \mathscr{E}_i^k$. It follows that $\overline{\mathcal{F}_i^k} \in \overline{\mathscr{E}_i^k} \subset \mathscr{E}_i^k$. Therefore, we can further deduce that $\|\overline{\mathcal{F}_i^k}\|_F^2 \leq \zeta_i^k$, where $k \in [d]$ and $i \in [N-1]$.

$$\begin{array}{l} \textbf{Lemma 5. } \textit{Let } \mathscr{E}_1 = \left\{ \mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \cdots \times n_N} | \mathcal{X} = \mathcal{P}_{\Omega^c} \left(\sum_{k=1}^d e^k \circ \operatorname{TR} \left(\mathcal{F}_1^k, \cdots, \mathcal{F}_{N-1}^k \right) \right) + \\ \mathcal{P}_{\Omega} \left(\hat{\mathcal{X}} \right) \right\} \textit{ and } \mathscr{E}_2 = \left\{ \mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \cdots \times n_N} | \mathcal{X} = \sum_{k=1}^d e^k \circ \operatorname{TR} \left(\mathcal{F}_1^k, \cdots, \mathcal{F}_{N-1}^k \right) \right\}, \textit{ where } \hat{\mathcal{X}} \textit{ is is a constant tensor, } \| \mathcal{F}_i^k \|_F \leq \\ \zeta_i^k, \textit{ } k \in [d] \textit{ and } i \in [N-1], \textit{ and } \| \boldsymbol{E} \|_F \leq \eta \textit{ with } \boldsymbol{E} = [\boldsymbol{e}_1, \cdots, \boldsymbol{e}_d] \in \mathbb{R}^{n_N \times d}. \textit{ Then, we have } (\mathscr{E}_1, \| \cdot \|_F, \epsilon) \leq (\mathscr{E}_2, \| \cdot \|_F, \epsilon). \end{array}$$

Proof. According to Definition 1 and Definition 2, we have

$$\forall \mathcal{Q}_2 \in \mathscr{E}_2, \exists \mathcal{Q}_2' \in \overline{\mathscr{E}_2} : \|\mathcal{Q}_2 - \mathcal{Q}_2'\|_F \le \epsilon. \tag{30}$$

Furthermore, based on the relationship between \mathcal{E}_1 and \mathcal{E}_2 , we obtain

$$\forall \mathcal{Q}_1 \in \mathscr{E}_1, \exists \mathcal{Q}_2 \in \mathscr{E}_2 : \mathcal{Q}_1 = \mathcal{P}_{\Omega^C} \left(\mathcal{Q}_2 \right) + \mathcal{P}_{\Omega} \left(\hat{\mathcal{X}} \right)$$
(31)

and

$$\forall \mathcal{Q}_2 \in \mathcal{E}_1, \exists \mathcal{Q}_1 \in \mathcal{E}_2 : \mathcal{Q}_1 = \mathcal{P}_{\Omega^C} \left(\mathcal{Q}_2 \right) + \mathcal{P}_{\Omega} \left(\hat{\mathcal{X}} \right). \tag{32}$$

Let $\overline{\mathscr{E}_2}$ be the ϵ -net of \mathscr{E}_2 with the smallest possible cardinality. Then, we can obtain a set $\overline{\mathscr{E}}$ whose elements are of the form

$$Q = \mathcal{P}_{\Omega^{C}}(Q_{2}) + \mathcal{P}_{\Omega}(\hat{\mathcal{X}}), \forall Q_{2} \in \overline{\mathscr{E}_{2}}.$$
(33)

According to the above mapping, the cardinality of the set $\overline{\mathscr{E}}$ is less than or equal to the cardinality of $\overline{\mathscr{E}}_2$. Next, we prove that $\overline{\mathscr{E}}$ is an ϵ -net for the set \mathscr{E}_1 . For every $\mathcal{Q}_1 \in \mathscr{E}_1$, and every $\mathcal{Q} \in \overline{\mathscr{E}}$, we have

$$\|Q_1 - Q\|_F = \|\mathcal{P}_{\Omega^C}(Q_1 - Q)\|_F = \|\mathcal{P}_{\Omega^C}(Q_2 - Q)\|_F \le \|Q_2 - Q\|_F. \tag{34}$$

Therefore, $\overline{\mathscr{E}}$ is a ϵ -net of \mathscr{E}_1 . Then, we can get $(\mathscr{E}_1, \|\cdot\|_F, \epsilon) \leq (\mathscr{E}_2, \|\cdot\|_F, \epsilon)$.

Lemma 6. Let $\mathscr{E} = \{\mathcal{X} | \mathcal{X} = \sum_{k=1}^d e^k \circ \operatorname{TR} \left(\mathcal{F}_1^k, \cdots, \mathcal{F}_{N-1}^k \right) \}$ and $\|\mathcal{F}_i^k\|_F \leq \zeta_i^k$, where $k \in [d]$ and $i \in [N-1]$, $\mathcal{F}_i^k \in \mathbb{R}^{R_{i-1} \times n_i \times R_i}$ with $R_0 = R_{N-1}$, and $\|\boldsymbol{E}\|_F \leq \eta$, $\boldsymbol{E} = [e_1, \cdots, e_d] \in \mathbb{R}^{n_N \times d}$. Then, the covering numbers of \mathscr{E} with respect to the Frobenius norm satisfy

$$\mathcal{N}(\mathscr{E}, \|\cdot\|_F, \epsilon) \le \left(\frac{3Nd\eta \prod_{k=1}^d \prod_{i=1}^{N-1} \zeta_i^k}{\epsilon}\right)^{d\left(n_N + \sum_{i=1}^{N-1} n_i R_{i-1} R_i\right)}.$$
(35)

 $\textit{Proof.} \ \ \text{Let} \ \mathscr{E}^k_i := \{ \pmb{F}^k_i \in \mathbb{R}^{n_i \times R_{i-1}R_i} : \| \pmb{F}^k_i \| \leq \zeta^k_i \}. \ \text{Then, there exists an ϵ-net } \overline{\mathscr{E}^k_i} \ \text{such that}$

$$\mathcal{N}\left(\mathcal{E}_{i}^{k}, \|\cdot\|_{F}, \epsilon\right) \leq \left(\frac{3\zeta_{i}^{k}}{\epsilon}\right)^{n_{i}R_{i-1}R_{i}},\tag{36}$$

where $\| \boldsymbol{F}_i^k - \overline{\boldsymbol{F}_i^k} \|_F \le \epsilon$. By substituting ϵ with ϵ/γ_i^k , we obtain $\| \boldsymbol{F}_i^k - \overline{\boldsymbol{F}_i^k} \|_F \le \epsilon/\gamma_i^k$ and $\| \boldsymbol{E}_i^k - \overline{\boldsymbol{E}_i^k} \|_F \le \epsilon/\gamma_0$. Let $\gamma_0 = Nd \prod_{m=1}^d \prod_{n=1}^{N-1} \zeta_n^m$ and $\gamma_i^k = Nd\eta \prod_{m \neq k} \prod_{n \neq i} \zeta_n^m$. Therefore, we have

$$\|\mathcal{X} - \overline{\mathcal{X}}\|_{F} = \|\sum_{k=1}^{d} e^{k} \circ \mathcal{Z}^{k} - \sum_{k=1}^{d} e^{\overline{k}} \circ \overline{\mathcal{Z}^{k}}\|_{F}$$

$$\leq \|\sum_{k=1}^{d} e^{k} \circ \mathcal{Z}^{k} - \sum_{k=1}^{d} e^{\overline{k}} \circ \mathcal{Z}^{k} + \sum_{k=1}^{d} e^{\overline{k}} \circ \mathcal{Z}^{k} - \sum_{k=1}^{d} e^{\overline{k}} \circ \overline{\mathcal{Z}^{k}}\|_{F}$$

$$\leq \|\sum_{k=1}^{d} \left(e^{k} - e^{\overline{k}}\right) \circ \mathcal{Z}^{k}\|_{F} + \|\sum_{k=1}^{d} e^{\overline{k}} \circ \left(\mathcal{Z}^{k} - \overline{\mathcal{Z}^{k}}\right)\|_{F}$$

$$\leq \|E - \overline{E}\|_{F} \sum_{k=1}^{d} \|\mathcal{Z}^{k}\|_{F} + \|\overline{E}\|_{F} \sum_{k=1}^{d} \|TR\left(\mathcal{F}_{1}^{k}, \cdots, \mathcal{F}_{N-1}^{k}\right) - TR\left(\overline{\mathcal{F}_{1}^{k}}, \cdots, \overline{\mathcal{F}_{N-1}^{k}}\right)\|_{F}$$

$$\leq \|E - \overline{E}\|_{F} \sum_{k=1}^{d} \|\mathcal{Z}^{k}\|_{F} + \|\overline{E}\|_{F} \sum_{k=1}^{d} \|F_{1}^{k}S^{\neq 1} - \overline{F_{1}^{k}}S^{\neq 1} + \overline{F_{1}^{k}}S^{\neq 1} + \cdots - \overline{F_{1}^{k}}S^{\neq 1}\|_{F}$$

$$\leq \|E - \overline{E}\|_{F} \sum_{k=1}^{d} \|\mathcal{Z}^{k}\|_{F} + \|\overline{E}\|_{F} \sum_{k=1}^{d} \left(\|F_{1}^{k} - \overline{F_{1}^{k}}\|_{F}\|S^{\neq 1} + \|F_{2}^{k} - \overline{F_{2}^{k}}\|_{F}\|S^{\neq 2}\|_{F}\right)$$

$$+ \cdots + \|\overline{E}\|_{F} \sum_{k=1}^{d} \left(\|F_{N-2}^{k} - \overline{F_{N-2}^{k}}\|_{F}\|S^{\neq N-2}\|_{F} + \|F_{N-1}^{k} - \overline{F_{N-1}^{k}}\|_{F}\|S^{\neq N-1}\|_{F}\right)$$

$$\leq \frac{\epsilon}{\gamma_{0}} \prod_{m=1}^{d} \prod_{n=1}^{N-1} \zeta_{n}^{m} + \frac{\epsilon}{\gamma_{1}^{1}} \prod_{m\neq 1} \prod_{n\neq 1} \zeta_{n}^{m} + \frac{\epsilon}{\gamma_{2}^{1}} \prod_{m\neq 2} \prod_{n\neq 1} \prod_{n\neq 2} \zeta_{n}^{m} + \cdots + \frac{\epsilon}{\gamma_{N-1}^{1}} \prod_{m\neq 1} \prod_{n\neq N-1} \zeta_{n}^{m}$$

$$< \epsilon.$$

Based on the above formulas, we know $\overline{\mathscr{E}}$ is an ϵ -net of \mathscr{E} . By applying Lemma 5, we can know that the covering number

$$\leq \left(\frac{3Nd\prod_{m=1}^{d}\prod_{n=1}^{N-1}\zeta_{n}^{m}}{\epsilon}\right)^{n_{N}d}\prod_{k=1}^{d}\prod_{i=1}^{N-1}\left(\frac{3\zeta_{i}^{k}\gamma_{i}^{k}}{\epsilon}\right)^{n_{i}R_{i-1}R_{i}} \\
\leq \left(\frac{3Nd\prod_{m=1}^{d}\prod_{n=1}^{N-1}\zeta_{n}^{m}}{\epsilon}\right)^{n_{N}d}\left(\frac{3Nd\eta\prod_{k=1}^{d}\prod_{i=1}^{N-1}\zeta_{i}^{k}}{\epsilon}\right)^{\sum_{k=1}^{d}\sum_{i=1}^{N-1}n_{i}R_{i-1}R_{i}} \\
\leq \left(\frac{3Nd\eta\prod_{k=1}^{d}\prod_{i=1}^{N-1}\zeta_{i}^{k}}{\epsilon}\right)^{d(n_{N}+\sum_{i=1}^{N-1}n_{i}R_{i-1}R_{i})} \\
\leq \left(\frac{3Nd\eta\prod_{k=1}^{d}\prod_{i=1}^{N-1}\zeta_{i}^{k}}{\epsilon}\right)^{d(n_{N}+\sum_{i=1}^{N-1}n_{i}R_{i-1}R_{i})} . \tag{38}$$

Therefore Lemma 6 holds.

Lemma 7 ([3]). Consider $\mathscr E$ be a set defined over tensors of size $n_1 \times n_2 \cdots \times n_N$. Let $|\mathscr E|$ be the ϵ covering number of $\mathscr E$ with respect to the Frobenius norm, $P = \prod_{i=1}^N$, and $|\Omega|$ be the sampling number. Supposing $\mathcal X \in \mathscr E$ and $\max\{\|\mathcal O\|_\infty, \|\mathcal X\|_\infty\} \leq \xi$, then

$$\sup_{\mathcal{X} \in \mathscr{E}} \left| \frac{\|\mathcal{O} - \mathcal{X}\|_F}{\sqrt{P}} - \frac{\|\mathcal{P}_{\Omega} (\mathcal{O} - \mathcal{X})\|_F}{|\Omega|} \right| \le \frac{2\epsilon}{\sqrt{|\Omega|}} + \left(\frac{8\xi^4 \log(|\mathscr{E}|P)}{|\Omega|} \right)^{1/4},\tag{39}$$

with probability at least $1-2P^{-1}$, where $\mathcal{P}_{\Omega}(\cdot)$ is projected operator. See [3] for the detailed proof of Lemma 7.

Based on the above lemmas, we accomplish the proof of Theorem 2.

Proof. Based on Lemma 6 and Lemma 7, we derive the inequality

$$\frac{\|\mathcal{X} - \hat{\mathcal{X}}\|_F}{\sqrt{P}} \le \frac{\|\mathcal{P}_{\Omega}\left(\mathcal{X} - \hat{\mathcal{X}}\right)\|_F}{|\Omega|} + \frac{2\epsilon}{\sqrt{|\Omega|}} + \left(\frac{8\xi^4 \log\left(|\mathcal{E}|P\right)}{|\Omega|}\right)^{1/4}. \tag{40}$$

Given the assumptions, we know that $\|\mathcal{P}_{\Omega}\left(\mathcal{X}-\hat{\mathcal{X}}\right)\|_{F}=0$. By substituting the expression for \mathscr{E} into Equation (35), we can obtain

$$\frac{\|\mathcal{X} - \hat{\mathcal{X}}\|_F}{\sqrt{P}} \le \frac{2\epsilon}{\sqrt{\Omega}} + \left(\frac{8\xi^4 \left(\log P + \left(d\left(n_N + \sum_{i=1}^{N-1} n_i R_{i-1} R_i\right)\right) \log\left(\frac{3Nd\eta \prod_{k=1}^d \prod_{i=1}^{N-1} \zeta_i^k}{\epsilon}\right)\right)}{|\Omega|}\right)^{1/4}.$$
(41)

Setting $\epsilon = 3\xi Nd$, Equation (41) can be rewritten

$$\frac{\|\mathcal{X} - \hat{\mathcal{X}}\|_F}{\sqrt{P}} \le \frac{6\xi Nd}{\sqrt{\Omega}} + \left(\frac{8\xi^4 \log P + \left(d\left(n_N + \sum_{i=1}^{N-1} n_i R_{i-1} R_i\right)\right) H}{|\Omega|}\right)^{1/4},\tag{42}$$

where
$$H = 8\xi^4 \log(\xi^{-1}\eta \prod_{k=1}^d \prod_{i=1}^{N-1} \zeta_i^k)$$
.

B. The proof of the Theorem 3

Similarly to the proof of Theorem 2, we first prove Lemma 8 before proving Theorem 3.

Lemma 8. Let $\mathscr{E} = \{\mathcal{X} | \mathcal{X} = \sum_{k=1}^{d} c^k \circ \left(A^k B^k \right) \}$ and $\|A^k\|_F \leq \zeta_1^k$, $\|B^k\|_F \leq \zeta_2^k$, where $k \in [d]$, $A \in \mathbb{R}^{n_1 \times R}$ and $B \in \mathbb{R}^{R \times n_2}$, and $\|C\|_F \leq \eta$, $C = [c_1, \cdots, c_d] \in \mathbb{R}^{n_3 \cdots n_N \times d}$. Then, the covering numbers of \mathscr{E} with respect to the Frobenius norm satisfy

$$\mathcal{N}(\mathscr{E}, \|\cdot\|_F, \epsilon) \le \left(\frac{9d\eta \prod_{k=1}^d \zeta_1^k \zeta_2^k}{\epsilon}\right)^{d\left(\prod_{i=3}^N n_i + (n_1 + n_2)R\right)}.$$
(43)

Proof. Let $\mathscr{E}_1^k:=\{\pmb{A}^k\in\mathbb{R}^{n_1 imes R}:\|\pmb{A}^k\|\leq\zeta_1^k\}$. Then, there exists an ϵ -net $\overline{\mathscr{E}_1^k}$ such that

$$\mathcal{N}\left(\mathscr{E}_{1}^{k}, \|\cdot\|_{F}, \epsilon\right) \leq \left(\frac{3\zeta_{1}^{k}}{\epsilon}\right)^{n_{1}R},\tag{44}$$

where $\|\boldsymbol{A}^k - \overline{\boldsymbol{A}^k}\|_F \leq \epsilon$. Similarly, let $\mathscr{E}_2^k := \{\boldsymbol{B}^k \in \mathbb{R}^{R \times n_2} : \|\boldsymbol{B}^k\| \leq \zeta_2^k\}$. Then, there exists an ϵ -net $\overline{\mathscr{E}_2^k}$ such that

$$\mathcal{N}\left(\mathscr{E}_{2}^{k}, \|\cdot\|_{F}, \epsilon\right) \leq \left(\frac{3\zeta_{2}^{k}}{\epsilon}\right)^{n_{2}R},\tag{45}$$

where $\| \boldsymbol{B}^k - \overline{\boldsymbol{B}^k} \|_F \le \epsilon$. By substituting ϵ with ϵ/γ_i^k , we obtain $\| \boldsymbol{A}^k - \overline{\boldsymbol{A}^k} \|_F \le \epsilon/\gamma_1^k$, $\| \boldsymbol{B}^k - \overline{\boldsymbol{B}^k} \|_F \le \epsilon/\gamma_2^k$, and $\| \boldsymbol{C} - \overline{\boldsymbol{C}} \|_F \le \epsilon/\gamma_0$. Let $\gamma_0 = 3d \prod_{m=1}^d \zeta_1^m \zeta_2^m$, $\gamma_1^k = 3d\eta \prod_{m \neq k} \zeta_2^m$, and $\gamma_2^k = 3d\eta \prod_{m \neq k} \zeta_1^m$. Therefore, we have

$$\begin{split} &\|\mathcal{X} - \overline{\mathcal{X}}\|_F = \|\sum_{k=1}^d c^k \circ \left(A^k B^k\right) - \sum_{k=1}^d \overline{c^k} \circ \left(\overline{A^k B^k}\right)\|_F \\ \leq &\|\sum_{k=1}^d c^k \circ \left(A^k B^k\right) - \sum_{k=1}^d \overline{c^k} \circ \left(A^k B^k\right) + \sum_{k=1}^d \overline{c^k} \circ \left(A^k B^k\right) - \sum_{k=1}^d \overline{c^k} \circ \left(\overline{A^k B^k}\right)\|_F \\ \leq &\|\sum_{k=1}^d \left(c^k - \overline{c^k}\right) \circ \left(A^k B^k\right)\|_F + \|\sum_{k=1}^d \overline{c^k} \circ \left(A^k B^k - \overline{A^k B^k}\right)\|_F \\ \leq &\|C\|_F \|\sum_{k=1}^d A^k B^k\|_F + \|\overline{C}\|_F \|\sum_{k=1}^d \left(A^k B^k - \overline{A^k B^k}\right)\|_F \\ \leq &\|C\|_F \|\sum_{k=1}^d A^k B^k\|_F + \|\overline{C}\|_F \|\sum_{k=1}^d \left(A^k - \overline{A^k}\right) B^k\|_F + \|\overline{C}\|_F \|\sum_{k=1}^d \overline{A^k} \left(B^k - \overline{B^k}\right)\|_F \\ \leq &\frac{\epsilon}{\gamma_0} \prod_{m=1}^d \zeta_1^m \zeta_2^m + \frac{\epsilon \eta}{\gamma_1} \prod_{m \neq k}^d \zeta_2^m + \frac{\epsilon \eta}{\gamma_2} \prod_{k=1}^d \zeta_1^m \\ \leq \epsilon. \end{split}$$

By applying Lemma 5, we can know that the covering number

$$\mathcal{N}\left(\mathscr{E}, \|\cdot\|_{F}, \epsilon\right) \leq \left(\frac{3 \cdot 3d \prod_{k=1}^{d} \zeta_{1}^{k} \zeta_{2}^{k}}{\epsilon}\right)^{d \prod_{i=3}^{N} n_{i}} \prod_{k=1}^{d} \left(\frac{3\zeta_{1}^{k} \gamma_{1}^{k}}{\epsilon}\right)^{n_{1}R} \prod_{k=1}^{d} \left(\frac{3\zeta_{2}^{k} \gamma_{2}^{k}}{\epsilon}\right)^{n_{2}R} \leq \left(\frac{9d\eta \prod_{k=1}^{d} \zeta_{1}^{k} \zeta_{2}^{k}}{\epsilon}\right)^{d \left(\prod_{i=3}^{N} n_{i} + (n_{1} + n_{2})R\right)} \tag{46}$$

We accomplish the proof of Theorem 3 based on the this Lemma 8.

Proof. Based on Lemma 8 and Lemma 7, we derive the inequality

$$\frac{\|\mathcal{X} - \hat{\mathcal{X}}\|_F}{\sqrt{P}} \le \frac{\|\mathcal{P}_{\Omega}\left(\mathcal{X} - \hat{\mathcal{X}}\right)\|_F}{|\Omega|} + \frac{2\epsilon}{\sqrt{|\Omega|}} + \left(\frac{8\xi^4 \log\left(|\mathcal{E}|P\right)}{|\Omega|}\right)^{1/4}. \tag{47}$$

Given the assumptions, we know that $\|\mathcal{P}_{\Omega}\left(\mathcal{X}-\hat{\mathcal{X}}\right)\|_{F}=0$. By substituting the expression for \mathscr{E} into Equation (43), we can obtain

$$\frac{\|\mathcal{X} - \hat{\mathcal{X}}\|_F}{\sqrt{P}} \le \frac{2\epsilon}{\sqrt{\Omega}} + \left(\frac{8\xi^4 \left(\log P + \left(d\left(\prod_{i=3}^N n_i + (n_1 + n_2)R\right)\right) \log\left(\frac{9d\eta \prod_{k=1}^d \zeta_1^k \zeta_2^k}{\epsilon}\right)\right)}{|\Omega|}\right)^{1/4}.$$
 (48)

Setting $\epsilon = 9\xi d$, Equation (48) can be rewritten

$$\frac{\|\mathcal{X} - \hat{\mathcal{X}}\|_{F}}{\sqrt{P}} \le \frac{18\xi d}{\sqrt{\Omega}} + \left(\frac{8\xi^{4} \log P + \left(d\left(\prod_{i=3}^{N} n_{i} + (n_{1} + n_{2})R\right)\right) H}{|\Omega|}\right)^{1/4},\tag{49}$$

where $H = 8\xi^4 \log(\xi^{-1}\eta \prod_{k=1}^d \zeta_1^k \zeta_2^k)$.

III. THE PROOF OF THEOREM 4

We first introduce some lemmas before proving Theorem 4.

Lemma 9 (Sufficient decrease lemma [4].). For any $\rho > 0$, the sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t)_{t \in \mathbb{N}}$ be generated by Equation (13) (in the main document) satisfies the following formulae:

$$\begin{cases}
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right) + \frac{\rho}{2} \|\mathcal{X} - \mathcal{X}^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right), \\
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right) + \frac{\rho}{2} \|\mathcal{F}_{i}^{k} - \left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right), \\
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right) + \frac{\rho}{2} \|\mathcal{Z} - \mathcal{Z}^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right), \\
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t+1}\right) + \frac{\rho}{2} \|\mathbf{E} - \mathbf{E}^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right).
\end{cases} (50)$$

Proof. Let \mathcal{X}^{t+1} , $(\mathcal{F}_i^k)^{t+1}$, \mathcal{Z}^{t+1} , and \mathbf{E}^{t+1} are minimizers of $\mathcal{L}(\mathcal{X}, \mathcal{F}_i^k, \mathcal{Z}, \mathbf{E})$. Then, we have

$$\begin{cases}
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right) + \frac{\rho}{2} \|\mathcal{X} - \mathcal{X}^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right), \\
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right) + \frac{\rho}{2} \|\mathcal{F}_{i}^{k} - \left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right), \\
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right) + \frac{\rho}{2} \|\mathcal{Z} - \mathcal{Z}^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right), \\
\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t+1}\right) + \frac{\rho}{2} \|\mathbf{E} - \mathbf{E}^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right).
\end{cases} (51)$$

Therefore, the proof of Lemma 9 is completed.

Lemma 10 (Boundedness). The sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t)_{t \in \mathbb{N}}$ be generated by Equation (13) (in the main document) is bounded.

Proof. According to Lemma 9, it follows that

$$\|\left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2} \leq \sum_{k=1}^{d} \sum_{i=1}^{N-1} \|\left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2} \leq \mathcal{L}\left(\mathcal{X}^{t}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right)$$

$$\leq \mathcal{L}\left(\mathcal{X}^{t-1}, \left(\mathcal{F}_{i}^{k}\right)^{t-1}, \mathcal{Z}^{t-1}, \mathbf{E}^{t-1}\right) \leq \cdots \leq \mathcal{L}\left(\mathcal{X}^{0}, \left(\mathcal{F}_{i}^{k}\right)^{0}, \mathcal{Z}^{0}, \mathbf{E}^{0}\right).$$

$$(52)$$

Since $\mathcal{L}\left(\mathcal{X}^{0},\left(\mathcal{F}_{i}^{k}\right)^{0},\mathcal{Z}^{0},\boldsymbol{E}^{0}\right)$ is is a constant, $\left(\mathcal{F}_{i}^{k}\right)^{t}$ is bound. By applying the triangle inequality, we obtain

$$\|\left(\mathcal{Z}^{k}\right)^{t}\|_{F}^{2} - \sum_{i=1}^{N-1} \|\left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2} \leq \|\left(\mathcal{Z}^{k}\right)^{t}\|_{F}^{2} - \operatorname{TR}\left(\left(\mathcal{F}_{1}^{k}\right)^{t}, \cdots, \left(\mathcal{F}_{N-1}^{k}\right)^{t}\right)$$

$$\leq \|\left(\mathcal{Z}^{k}\right)^{t} - \operatorname{TR}\left(\left(\mathcal{F}_{1}^{k}\right)^{t}, \cdots, \left(\mathcal{F}_{N-1}^{k}\right)^{t}\right)\|_{F}^{2}.$$

$$(53)$$

This implies

$$\|\mathcal{Z}^{t}\|_{F}^{2} \leq \sum_{k=1}^{d} \|\left(\mathcal{Z}^{k}\right)^{t}\|_{F}^{2} \leq \sum_{k=1}^{d} \left(\sum_{i=1}^{N-1} \|\left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2} + \|\left(\mathcal{Z}^{k}\right)^{t} - \operatorname{TR}\left(\left(\mathcal{F}_{1}^{k}\right)^{t}, \cdots, \left(\mathcal{F}_{N-1}^{k}\right)^{t}\right)\|_{F}^{2}\right).$$
(54)

Suppose $\|\left(\mathcal{Z}^k\right)^t - \operatorname{TR}\left(\left(\mathcal{F}_1^k\right)^t, \cdots, \left(\mathcal{F}_{N-1}^k\right)^t\right)\|_F^2 \to +\infty$, we have

$$\mathcal{L}\left(\mathcal{X}^{t},\left(\mathcal{F}_{i}^{k}\right)^{t},\mathcal{Z}^{t},\boldsymbol{E}^{t}\right)\to+\infty.$$
 (55)

This result contradicts Lemma 9, which emphasizes $\mathcal{L}\left(\mathcal{X}^t, \left(\mathcal{F}_i^k\right)^t, \mathcal{Z}^t, \mathbf{E}^t\right)$ is bound. Consequently, \mathcal{Z}^t must also be bounded. Based on $\|\mathbf{E}(:,k)\|_F^2 = 1$, we can have $\|\mathbf{E}^t\|_F^2 \leq d$. This analysis implies that \mathbf{E}^t is bound. By applying the triangle inequality, we obtain

$$\|\mathcal{X}^t\|_F^2 - \|E^t\| \|\mathcal{Z}^t\|_F^2 \le \|\mathcal{X}^t\|_F^2 - \|\sum_{k=1}^d \left(e^k\right)^t \circ \left(\mathcal{Z}^k\right)^t\|_F^2 \le \|\mathcal{X}^t - \sum_{k=1}^d \left(e^k\right)^t \circ \left(\mathcal{Z}^k\right)^t\|_F^2,$$

which implies

$$\|\mathcal{X}^t\|_F^2 \le \|E^t\| \|\mathcal{Z}^t\|_F^2 + \|\mathcal{X}^t - \sum_{k=1}^d (e^k)^t \circ (\mathcal{Z}^k)^t \|_F^2.$$
 (56)

Suppose $\|\mathcal{X}^t - \sum_{k=1}^d (e^k)^t \circ (\mathcal{Z}^k)^t\|_F^2 \to +\infty$, we have

$$\mathcal{L}\left(\mathcal{X}^{t}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \boldsymbol{E}^{t}\right) \to +\infty.$$
 (57)

This result contradicts Lemma 9, which emphasizes $\mathcal{L}\left(\mathcal{X}^t, \left(\mathcal{F}_i^k\right)^t, \mathcal{Z}^t, \boldsymbol{E}^t\right)$ is bound. Thus, \mathcal{X}^t must also be bounded. In summary, the sequence $\left(\mathcal{X}^t,(\mathcal{F}_i^k)^t,\mathcal{Z}^t,\boldsymbol{E}^t\right)_{t\in\mathbb{N}}$ be generated by $\ref{eq:sequence}$ is bounded.

Lemma 11 (Relative error lemma [4].). For any $\rho > 0$, there exist $Q_w^{t+1}(w = 1, \dots, 4)$ such that the sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t)_{t \in \mathbb{N}}$ be generated by Equation (13) (in the main document) is bounded, and satisfies the following formulae:

$$\begin{cases}
\|Q_{1}^{t+1} + \nabla_{\mathcal{X}} \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right)\|_{F}^{2} \leq \rho \|\mathcal{X}^{t+1} - \mathcal{X}^{t}\|_{F}^{2}, \\
\|Q_{2}^{t+1} + \nabla_{\mathcal{F}_{i}^{k}} \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right)\|_{F}^{2} \leq \rho \|\left(\mathcal{F}_{i}^{k}\right)^{t+1} - \left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2}, \\
\|Q_{3}^{t+1} + \nabla_{\mathcal{Z}} \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right)\|_{F}^{2} \leq \rho \|\mathcal{Z}^{t+1} - \mathcal{Z}^{t}\|_{F}^{2}, \\
\|Q_{4}^{t+1} + \nabla_{\mathcal{E}} \mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t+1}\right)\|_{F}^{2} \leq \rho \|\mathbf{E}^{t+1} - \mathbf{E}^{t}\|_{F}^{2},
\end{cases} (58)$$

 $\textit{where } \boldsymbol{Q}_{1}^{t+1} \in \partial \varPhi(\mathcal{X}), \, \boldsymbol{Q}_{2}^{t+1} \in \partial \mathcal{L}_{1}(\mathcal{F}_{i}^{k}), \, \boldsymbol{Q}_{3}^{t+1} \in \partial \mathcal{L}_{2}(\mathcal{Z}), \, \textit{and } \boldsymbol{Q}_{4}^{t+1} \in \partial \varPsi(\boldsymbol{E}), \, \mathcal{L}_{1} = \frac{1}{2} \sum_{k=1}^{d} \|\mathcal{Z}^{k} - \operatorname{TR}\left(\mathcal{F}_{1}^{k}, \cdots, \mathcal{F}_{N-1}^{k}\right)\|_{F}^{2}, \, \textit{and } \mathcal{L}_{2} = \frac{\alpha}{2} \|\mathcal{X} - \sum_{k=1}^{d} e^{k} \circ \mathcal{Z}^{k}\|_{F}^{2}.$

Proof. Let \mathcal{X}^{t+1} , $(\mathcal{F}_i^k)^{t+1}$, \mathcal{Z}^{t+1} , and \mathbf{E}^{t+1} are the optimal solutions of $\mathcal{L}(\mathcal{X}^{t+1}, (\mathcal{F}_i^k)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t+1})$. For each subproblem, we have

$$\begin{cases}
0 \in \partial \Phi\left(\mathcal{X}\right) - \alpha \left(\mathcal{X}^{t} - \sum_{k=1}^{d} \left(e^{k}\right)^{t} \circ \left(\mathcal{Z}^{k}\right)^{t}\right) + \rho \left(\mathcal{X}^{t+1} - \mathcal{X}^{t}\right), \\
0 \in \partial \mathcal{L}_{1}\left(\mathcal{F}_{i}^{k}\right) - \beta \left(\mathcal{F}_{i}^{k}\right)^{t} + \rho \left(\left(\mathcal{F}_{i}^{k}\right)^{t+1} - \left(\mathcal{F}_{i}^{k}\right)^{t}\right) \\
0 \in \partial \mathcal{L}_{2}\left(\mathcal{Z}\right) - \sum_{k=1}^{d} \left(\left(\mathcal{Z}^{k}\right)^{t} - \operatorname{TR}\left(\left(\mathcal{F}_{1}^{k}\right)^{t}, \cdots, \left(\mathcal{F}_{N-1}^{k}\right)^{t}\right)\right) + \rho \left(\mathcal{Z}^{t+1} - \mathcal{Z}^{t}\right), \\
0 \in \partial \Psi\left(\mathbf{E}\right) - \alpha \left(\mathbf{E}^{t} \mathbf{Z}^{t+1} \left(\mathbf{Z}^{t+1}\right)^{\top}\right) + \rho \left(\mathbf{E}^{t+1} - \mathbf{E}^{t}\right).
\end{cases} (59)$$

Then, we define $oldsymbol{Q}_1, oldsymbol{Q}_2, oldsymbol{Q}_3$ and $oldsymbol{Q}_4$ as

$$\begin{cases}
\mathbf{Q}_{1}^{t+1} = \alpha \left(\mathcal{X}^{t} - \sum_{k=1}^{d} \left(\mathbf{e}^{k} \right)^{t} \circ \left(\mathcal{Z}^{k} \right)^{t} \right) - \rho \left(\mathcal{X}^{t+1} - \mathcal{X}^{t} \right), \\
\mathbf{Q}_{2}^{t+1} = \beta \left(\mathcal{F}_{i}^{k} \right)^{t} - \rho \left(\left(\mathcal{F}_{i}^{k} \right)^{t+1} - \left(\mathcal{F}_{i}^{k} \right)^{t} \right) \\
\mathbf{Q}_{3}^{t+1} = \sum_{k=1}^{d} \left(\left(\mathcal{Z}^{k} \right)^{t} - \operatorname{TR} \left(\left(\mathcal{F}_{1}^{k} \right)^{t}, \dots, \left(\mathcal{F}_{N-1}^{k} \right)^{t} \right) \right) - \rho \left(\mathcal{Z}^{t+1} - \mathcal{Z}^{t} \right), \\
\mathbf{Q}_{4}^{t+1} = \alpha \left(\mathbf{E}^{t} \mathbf{Z}^{t+1} \left(\mathbf{Z}^{t+1} \right)^{\top} \right) - \rho \left(\mathbf{E}^{t+1} - \mathbf{E}^{t} \right)
\end{cases} (60)$$

Since the sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \boldsymbol{E}^t)_{t \in \mathbb{N}}$ is bounded and $\nabla \mathcal{L}$ is Lipschitz continuous on any bounded set, then there exist $\rho > 0$ satisfy the following formulae:

$$\begin{cases}
\|Q_{1}^{t+1} + \nabla_{\mathcal{X}}\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right)\|_{F}^{2} \leq \rho \|\mathcal{X}^{t+1} - \mathcal{X}^{t}\|_{F}^{2}, \\
\|Q_{2}^{t+1} + \nabla_{\mathcal{F}_{i}^{k}}\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t}, \mathbf{E}^{t}\right)\|_{F}^{2} \leq \rho \|\left(\mathcal{F}_{i}^{k}\right)^{t+1} - \left(\mathcal{F}_{i}^{k}\right)^{t}\|_{F}^{2}, \\
\|Q_{3}^{t+1} + \nabla_{\mathcal{Z}}\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t}, \mathcal{Z}^{t+1}, \mathbf{E}^{t}\right)\|_{F}^{2} \leq \rho \|\mathcal{Z}^{t+1} - \mathcal{Z}^{t}\|_{F}^{2}, \\
\|Q_{4}^{t+1} + \nabla_{\mathcal{E}}\mathcal{L}\left(\mathcal{X}^{t+1}, \left(\mathcal{F}_{i}^{k}\right)^{t+1}, \mathcal{Z}^{t+1}, \mathbf{E}^{t+1}\right)\|_{F}^{2} \leq \rho \|\mathbf{E}^{t+1} - \mathbf{E}^{t}\|_{F}^{2},
\end{cases} (61)$$

The proof of Lemma 11 is completed.

Based on the above preparations, we provide the proof of Theorem 4 about convergence analysis as follows.

Proof. The proof process of Theorem 4 is to refer to Theorem 6.2 in [4], which the proposed algorithm satisfies the following conditions:

- 1) The sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \boldsymbol{E}^t)_{t \in \mathbb{N}}$ satisfies sufficient decrease condition. 2) The sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \boldsymbol{E}^t)_{t \in \mathbb{N}}$ satisfies relative error condition. 3) The sequence $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \boldsymbol{E}^t)_{t \in \mathbb{N}}$ is bounded;

- 4) The $\mathcal{L}\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \boldsymbol{E}^t\right)$ has the Kurdyka-Łojasiewicz (K-Ł) property [4] at $(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \boldsymbol{E}^t)_{t \in \mathbb{N}}$;
- 5) The $\mathcal{L}\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t\right)$ satisfies continuity condition;

For condition 1), it follows from the proof of Lemma 9 that the sequence $(\mathcal{X}^t, (\mathcal{F}i^k)^t, \mathcal{Z}^t, \mathbf{E}^t)_{t \in \mathbb{N}}$ satisfies the sufficient decrease condition.

For condition 2), it follows from the proof of Lemma 11 that the sequence $(\mathcal{X}^t, (\mathcal{F}i^k)^t, \mathcal{Z}^t, \mathbf{E}^t)_{t \in \mathbb{N}}$ satisfies the relative error condition.

For condition 3), it follows from the proof of Lemma 10 that the sequence $(\mathcal{X}^t, (\mathcal{F}i^k)^t, \mathcal{Z}^t, \ \mathbf{E}^t)_{t \in \mathbb{N}}$ is bound.

For condition 4), we demonstrate that $\mathcal{L}\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t\right)$ satisfy the K-Ł property at each point $\mathcal{L}\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t\right)$ by proving that \mathcal{L} is a semi-algebraic function. The terms $\mathcal{L}_1, \mathcal{L}_2$, and $\frac{\beta}{2} \sum_{k=1}^d \sum_{i=1}^{N-1} \|\mathcal{F}_i^k\|_F^2$ are the Frobenius norm, and

Frobenius norms are semi-algebraic functions [5]. Since $\Phi(\mathcal{X})$ and $\Psi(\mathbf{E})$ are indicator functions with semi-algebraic sets, they are semi-algebraic functions [5]. Thus, the function $\mathcal{L}\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t\right)$ is a semi-algebraic function. Consequently, the function $\mathcal{L}\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t\right)$ has the K-Ł property at each $\left(\mathcal{X}^t, (\mathcal{F}_i^k)^t, \mathcal{Z}^t, \mathbf{E}^t\right)_{t \in \mathbb{N}}$.

For condition 5), the above four conditions ensure that there exists a subsequence $(\mathcal{X}^{t_s}, (\mathcal{F}^k_i)^{t_s}, \mathcal{Z}^{t_s}, \mathbf{E}^{t_s})_{t_s \in \mathbb{N}}$ such that $\lim_{s \to \infty} \mathcal{L}\left(\mathcal{X}^{t_s}, (\mathcal{F}^k_i)^{t_s}, \mathcal{Z}^{t_s}, \mathbf{E}^{t_s}\right)$ exists. The objective function $\mathcal{L}\left(\mathcal{X}, (\mathcal{F}^k_i), \mathcal{Z}, \mathbf{E}\right)$ is composed of the L_2 metric function and the indicator function. The indicator function $\Phi(\mathcal{X})$ satisfies $\Phi(\mathcal{X}) = 0$ when $\mathcal{X}_\Omega = \mathcal{O}_\Omega$ and $\Phi(\mathcal{X}) = +\infty$ otherwise. \mathcal{X} -based update rule, it satisfies $\mathcal{X}^*_\Omega = \mathcal{O}_\Omega$. Thus, we have $\lim_{s \to \infty} \Phi(\mathcal{X}^{t_s}) = \Phi(\mathcal{X}^*) = 0$. Similarly, \mathbf{E} -based update rule, it satisfies $\|\mathbf{E}^*(:,k)\|_F^2 = 1$. Thus, we have $\lim_{s \to \infty} \Psi\left(\mathbf{E}^{t_s}\right) = \Psi\left(\mathbf{E}^*\right) = 0$. Since all components of $\mathcal{L}\left(\mathcal{X}, (\mathcal{F}^k_i), \mathcal{Z}, \mathbf{E}\right)$ are continuous at the limit point, it follows that

$$\lim_{s \to \infty} \mathcal{L}\left(\mathcal{X}^{t_s}, (\mathcal{F}_i^k)^{t_s}, \mathcal{Z}^{t_s}, \mathbf{E}^{t_s}\right) = \lim_{s \to \infty} \mathcal{L}\left(\mathcal{X}^*, (\mathcal{F}_i^k)^*, \mathcal{Z}^*, \mathbf{E}^*\right). \tag{62}$$

REFERENCES

- [1] L. De Lathauwer, "Decompositions of a higher-order tensor in block terms—part ii: Definitions and uniqueness," SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 3, pp. 1033–1066, 2008.
- [2] R. Vershynin, High-dimensional probability: An introduction with applications in data science. Cambridge university press, 2018, vol. 47.
- [3] J. Fan, "Multi-mode deep matrix and tensor factorization," in Proceedings of the International Conference on Learning Representations, 2022.
- [4] H. Attouch, J. Bolte, and B. F. Svaiter, "Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods," *Mathematical Programming*, vol. 137, no. 1, pp. 91–129, 2013.
- [5] J. Bolte, S. Sabach, and M. Teboulle, "Proximal alternating linearized minimization for nonconvex and nonsmooth problems," *Mathematical Programming*, vol. 146, no. 1, pp. 459–494, 2014.