Теория к экзамену по дифференциальным уравнениям

1 Простейшие типы уравнений первого порядка: уравнения с разделяющимися переменными, однородные, линейные, уравнения в полных дифференциалах. Интегрирующий множитель. Уравнения Бернулли и Рикатти.

Уравнения с разделяющимися переменными. Это уравнения вида $p_1(x)q_1(y)dx+p_2(x)q_2(y)dy=0$. Здесь p_1,p_2 – непрерывные функции, заданные на $x\in(\alpha,\beta)$, а q_-,q_2 – непрерывные функции, заданные на $y\in(\gamma,\delta)$. Полагаем, что область $G=(\alpha,\beta)\times(\gamma,\delta)$ не содержит особых точек уравнения (коэффиценты при dx,dy не равны нулю одновременно ни в одной точке).

В случае если $\exists x_0: p_2(x_0)=0$, решением является $x=x_0$. Аналогично для $q_1(y)$. В случае $p_2(x_1)\neq 0$, $q_1(y_1)\neq 0$, в некоторой окрестности точки (x_1,y_1) уравнение будет эквивалентно уравнению с разделенными переменными $\frac{p_1(x)}{p_2(x)}dx+\frac{q_2(y)}{q_1(y)}dy=0$. Формула решения такого уравнения: $\int \frac{p_1(x)}{p_2(x)}dx+\int \frac{q_2(y)}{q_1(y)}dy=C$. Множество составных решений получается путём склеивания интегральных кривых решений трёх рассмотренных случаев в точках их касания.

Однородные уравнения первого порядка. Так называются уравнения, которые можно записать в виде $y'=f\left(\frac{y}{x}\right)$, где $f(\cdot)$ – непрерывная функция на заданном промежутке. Заменой $u=\frac{y}{x}$ данное уравнение сводится к эквивалентному виду xu'+u=f(u). Оно эквивалентно уравнению с разделенными переменными $\frac{du}{f(u)-u}=\frac{dx}{x}$ в случае $f(u)\neq u$. Если f(u)=u, уравнение принимает вид xu'=0. Наконец, если $f(u_k)=u_k$ для некоторых точек u_k , решениями являются прямые $u=u_k$.

Линейные уравнения первого порядка. Так называются уравнения вида y' + a(x)y = f(x). В случае однородного уравнения имеем y' + a(x)y = 0. Кроме решения y = 0 имеем $\frac{dy}{y} = -a(x)dx \Rightarrow ln|y| = -\int a(x)dx + \ln C_1 \Rightarrow y = Ce^{-A(x)}$. Неоднородное уравнение решается с помощью вариации постоянной (метод Лагранжа). Сделаем замену $y = c(x)e^{-A(x)}$. Отсюда $c'(x)e^{-A(x)} = f(x) \Rightarrow c(x) = \int e^{A(x)}f(x)dx + D$. Таким образом, решение неоднородного уравнения примет вид $y = De^{-A(x)} + e^{-A(x)}\int e^{A(x)}f(x)dx$. Первое слагаемое является общим решением однородного уравнения, а второе – частным решением неоднородного

Уравнение Бернулли. Так называют уравнение вида $y'+a(x)y=b(x)y^m$. y=0 является одним из решений при m>0. Если $y\neq 0$, разделим уравнение на $y^m:y'y^{-m}+a(x)y^{1-m}=b(x)$. Делаем замену $z=y^{1-m}$. Тогда $z'=(1-m)y^{-m}y'$ и уравнение можно записать в виде z'+(1-m)a(x)z=(1-m)b(x) – линейное уравнение относительно z.

Уравнение Риккати. Так называют уравнение вида $y' = a(x)y^2 + b(x)y + c(x)$. Уравнения такого вида разрешимы в квадратурах лишь в исключительных случаях. Если известно какое-либо решение уравнения Риккати $y_0(x)$, то замена $y(x) = z(x) + y_0(x)$ даёт уравнение Бернулли для z(x). $z' = a(x)z^2 + [2a(x)y_0(x) + b(x)]z$.

Уравнения в полных дифференциалах. Рассмотрим уравнение P(x,y)dx + Q(x,y)dy = 0. Пусть $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$ непрерывны в области G, которая не содержит особых точек уравнения. Данное уравнение называется уравнением в полных дифференциалах если существует непрерывно дифференцируемая функция u:du=Pdx+Qdy. Все решения такой системы и только они имеют вид u(x,y)=C, где C произвольная постоянная.

Уравнение является уравнением в полных дифференциалах только тогда, когда $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \left(= \frac{\partial^2 u}{\partial x \partial y} \right)$. В случае когда область G односвязна (любую окружность можно стянуть в точку), это условие является также достаточным.

Интегрирующий множитель. Пусть задано уравнение Pdx + Qdy = 0, для которого $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$. Интегрирующим множителем называется непрерывно дифференцируемая в G функция $\mu(x,y) \neq 0$ такая что $\mu(x,y)[P(x,y)dx + Q(x,y)dy] = 0$ является уравнением в полных дифференциалах. Если множитель существует, он должен удовлетворять соотношению $\frac{\partial (\mu P)}{\partial y} = \frac{\partial (\mu Q)}{\partial x}$. Отсюда получаем уравнение в частных производных $P\frac{\partial \mu}{\partial y} - Q\frac{\partial \mu}{\partial x} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mu$. В общем случае эта задача не проще интегрирования исходного уравнения, но нас интересует любое частное решение и его можно искать, например, в виде $\mu = \mu(x)$.

2 Метод введения параметра для уравнения первого порядка, не разрешенного относительно первой производной.

Общий вид уравнения первого порядка, не разрешенного относительно первой производной: F(x,y,y')=0. Здесь $F(\cdot)$ – непрерывная функция, заданная в области G. Параметрическим решением данного уравнения называется вектор-функция $x=\varphi(t),y=\psi(t)$, где φ,ψ – непрерывно дифференцируемые функции и $\varphi'(t)\neq 0$ такая что $F\left[\varphi(t),\psi(t),\frac{\psi'(t)}{\varphi'(t)}\right]=0$. При x=t получаем определение явного решения $y=\psi(x)$.

Положим y' = p и рассмотрим систему:

$$\begin{cases}
F(x, y, p) = 0 \\
dy = pdx
\end{cases}$$
(1)

Исходное уравнение эквивалентно данной системе. Пусть F(x,y,p)=0 определяет в R^3 поверхность, для которой также известно параметрическое представление x=x(u,v),y=y(u,v),p=p(u,v). Также потребуем, чтобы параметризация была невырожденной: $\left[\frac{D(x,y)}{D(u,v)}\right]^2 + \left[\frac{D(y,p)}{D(u,v)}\right]^2 + \left[\frac{D(p,x)}{D(u,v)}\right]^2 > 0. \ B$ таком случае второе уравнение системы запишется в виде $\frac{\partial y}{\partial u}du + \frac{\partial y}{\partial v}dv = p(u,v)\left[\frac{\partial x}{\partial u}du + \frac{\partial x}{\partial v}dv\right]$ или $\left[\frac{\partial y}{\partial u} - p\frac{\partial x}{\partial u}\right]du + \left[\frac{\partial y}{\partial v} - p\frac{\partial x}{\partial v}\right]dv = 0. \ \text{Переход от исходного уравнения к уравнению такого вида (симметричное относительно <math>u$ и v) называется общим методом введения параметров.

На практике обычно удаётся разрешить уравнение относительно x или y и ввести параметры v=p и y=u или x=u, что приведёт соответственно к уравнениям $\left(\frac{\partial y(x,p)}{\partial x}-p\right)dx+\frac{\partial y(x,p)}{\partial p}dp=0$ или $\left(1-p\frac{\partial x(y,p)}{\partial y}\right)dx-p\frac{\partial x(y,p)}{\partial p}dp=0$.

3 Методы понижения порядка для дифференциальных уравнений.

Общий вид уравнения: $F(x, y, y', \dots, y^{(n)}) = 0$.

- 1. Пусть уравнение не содержит y: F(x,y',y'')=0. Делаем замену y'=z и получаем уравнение F(x,z,z')=0.
- 2. Пусть уравнение не содержит x: F(y,y',y'')=0. Возьмём y за независимую переменную и z(y)=y'. Тогда z'z=z'y'=y''. Получаем уравнение первого порядка F(y,z,zz')=0. При этом следует проверить, является ли решением $y=\mathrm{const.}$
- 3. $F(x,y,y_1,y_2)$ называется однородной степени m относительно y,y_1,y_2 если $\forall x,t:(x,ty,ty_1,ty_2)\in G\hookrightarrow F(x,ty,ty_1,ty_2)=t^mF(x,y,y_1,y_2)$, где m некоторое фиксированное число. Если F(x,y,y',y'') однородная функция, то его порядок можно понизить заменой y'=yz. Тогда $F(x,y,y',y'')=F(x,y,yz,y(z^2+z'))=y^mF(x,1,z,z^2+z')=0$.
- 4. Пусть $F(x, y, y', y'') = \frac{d}{dx} \Phi(x, y, y')$. Тогда уравнение называется уравнением в точных производных и оно эквивалентно $\Phi(x, y, y') = C$.
- 5. Функция $F(x,y,y_1,y_2)$ называется обобщенно однородной степени m если существует такое число k, что $F(tx,t^ky,t^{k-1}y',t^{k-2}y'')=t^mF(x,y,y_1,y_2)$. Порядок данного уравнение понижается заменой $x=e^u,y=ve^{ku}$.

4 Общее решение линейного однородного уравнения n-го порядка с постоянными коэффицентами.

Для любого комплексного числа λ имеет место $L(D)(e^{\lambda x}) = L(\lambda)e^{\lambda x}$, где L – многочлен, D – оператор дифференцирования. $L(\lambda)$ называется характеристическим многочленом дифференциального многочлена L(D). Если λ_k – корни характеристического многочлена, то можно записать $L(D) = (D-\lambda_1)(D-\lambda_2)\dots(D-\lambda_n)$. Учтём, что $L(D)[e^{\lambda x}y(x)] = e^{\lambda x}L(D+\lambda)y(x)$ – формула сдвига, которая следует из формулы Лейбница.

Пусть есть линейное однородное дифференциальное уравнение порядка n с постоянными коэффицентами: $y^{(n)}(x) + a_1 y^{(n-1)}(x) + \cdots + a_{n-1} y'(x) + a_n y(x) = f(x)$. С помощью дифференциального многочлена его можно кратко записать в виде L(D)y(x) = 0.

Теорема. Путь характеристическое уравнение $L(\lambda)$ имеет корни $\lambda_1, \ldots, \lambda_m$ кратности k_1, \ldots, k_m . Тогда:

- 1. Любая функция вида $y(x) = P_1 e^{\lambda_1 x} + \dots + P_m e^{\lambda_m x}$, где P_i многочлен степени $k_i 1$, является решением уравнения.
- 2. Если y(x) какое-либо решение уравнения, то оно единственным образом представимо в указанном выше виде.

Доказательство.

- 1. Пусть λ_0 корень кратности k характеристического многочлена. Тогда $e^{\lambda_0 x}, xe^{\lambda_0 x}, \dots, x^{k-1}e^{\lambda_0 x}$ являются решениями уравнения. Действительно, в случае $\lambda_0=0$ имеем $L(D)=D^n+a_1D^{n-1}+\dots+a_{n-k}D^k$ и функции $1,x,\dots,x^{k-1}$, очевидно, удовлетворяют уравнению. В противном случае сделаем замену $y=e^{\lambda_0 x}z$. Тогда по формуле сдвига $L(D)y=e^{\lambda_0 z}L(D+\lambda_0)z$. Характеристический многочлен $L(D+\lambda_0)$ имеет корень 0 кратности k, откуда следует обозначенное утверждение. Вместе с принципом суперпозиции (если f_1, f_2 являются решениями линейного однородного уравнения, то любая их линейная комбинация также является решением данного уравнения) это доказывает первый пункт.
- 2. Проведём доказательство с помощью математической индукции. При n=1 имеем уравнение $y'+a_1y=0$, откуда $y=Ce^{-a_1x}$. При некотором единственном значении C, данная формула содержит и указанное решение. Пусть теперь всякое решение записывается единственным образом для уравнения порядка n-1. Тогда $L(D)=(D-\lambda_1)^{k_1}\dots(D-\lambda_m)^{k_m}$. Уравнение L(D)y=0 эквивалентно системе:

$$\begin{cases}
(D - \lambda_1)y = z \\
M(D)z = 0
\end{cases}$$
(2)

В силу предположения индукции каждое решение второго уравнения имеет единственный вид $z(x)=Q_1e^{\lambda_1x}+\cdots+Q_me^{\lambda_mx}$. Варьируя постоянную в первом уравнении, придем к выводу, что его решение имеет вид $y=e^{\lambda_1x}\left(C+\int e^{-\lambda_1x}z(x)dx\right)$. Учтём, что $\int x^le^{\lambda x}dx=P(x)e^{\lambda x}$, где P(x) – полином степени не выше l+1. Отсюда следует, что решение уравнения можно представить в обозначенном виде. Предположим, что для какого-то решения существует две записи. Пусть $y(x)=\sum P_k(x)e^{\lambda_kx}=\sum \tilde{P}_k(x)e^{\lambda_kx}$. Тогда $\sum [P_k-\tilde{P}_k]e^{\lambda_kx}=0$. Но это верно только если соответствующие многочлены тождественно равны нулю. Для доказательства по индукции следует домножить уравнение на $e^{-\lambda_1x}$ и N+1 раз продифференцировать, где N – степень P_1 .

5 Общее решение линейного неоднородного уравнения n-го порядка с постоянными коэффицентами и правой частью в виде квазимногочлена.

Данные уравнения имеют вид $y^{(n)}(x) + a_1 y^{(n-1)}(x) + \cdots + a_n y(x) = f(x)$. Если известно его частное решение $y_0(x)$, то заменой $y(x) = z(x) + y_0(x)$ оно сводится к однородному. Действительно, $L(D)y = L(D)z + L(D)y_0 = L(D)z + f(x) = f(x)$. Таким образом, общее решение неоднородного линейного уравнения складывается из общего решения однородного и частного решения неоднородного.

В общем случае: Пусть $f(x) = f_1(x) + f_2(x)$ и y_1 – какое-либо решение при $f(x) = f_1(x)$, а y_2 – при $f(x) = f_2(x)$. Тогда $y_1 + y_2$ является решением исходного уравнения.

Квазимногочлен – функция $f(x) = e^{\mu x} P_m(x)$, где μ – комплексное число, P_m – многочлен степени m. Рассмотрим уравнение $L(D)y(x) = e^{\mu x} P_m(x)$. Если μ является корнем характеристического многочлена, то говорят, что имеет место резонансный случай.

Теорема. Для уравнения существует и единственно решение вида $y(x) = x^k Q_m e^{\mu x}$, где Q_m – многочлен одинаковой с P_m степень m, а число k равно кратности корня μ характеристического многочлена.

Доказательство. Если $\mu \neq 0$, то заменой $y = e^{\mu x}z$ получаем $L(D)y = e^{\mu x}L(D+\mu)z = e^{\mu x}P_m(x)$. Таким образом, доказательство остаётся привести для случая $L(D)y = P_m(x)$. В нерезонансном случае подстановка многочленов в уравнение приводит к линейной алгебраической системе с числами a_n на диагонали, поэтому все коэффиценты определяются однозначно.

В резонансном случае $L(D) = D^n + \dots + a_{n-k}D^k$. Сделаем замену $D^k y = z$. Получим систему $(D^{n-k} + \dots + a_{n-k})z = P_m(x)$, для которой имеет место нерезонансный случай и имеется решение $R_m(x)$. Таким образом, $D^k y = R_m(x)$. При нулевых начальных условиях существует и единственно решение вида $y(x) = x^k Q_m(x)$.

6 Общее решение линейной однородной системы уравнений с постоянными коэффицентами в случае, когда существует базис из собственных векторов матрицы системы.

В матричном виде нормальная линейная однородная система имеет вид $\dot{x}(t) = Ax(t)$. Очевидно, что система имеет тривиальное решение x=0. Если искать решение в виде $x=e^{\lambda t}h$, приходим к тому, что λ – собственное число преобразования A, а h – соответствующий ему собственный вектор.

Теорема. Пусть существует базис из собственных векторов h_1, \ldots, h_n линейного преобразования A и пусть $\lambda_1, \ldots, \lambda_n$ — соответствующие им собственные числа. Тогда:

- 1. Вектор-функция $x(t) = C_1 e^{\lambda_1 t} h_1 + \dots + C_n e^{\lambda_n t} h_n$ является решением системы.
- 2. Если x(t) решение системы, то найдутся C_1, \dots, C_n , при которых x(t) задаётся формулой выше.

Доказательство. Первый пункт следует из принципа суперпозиции и указанного выше случая $x=e^{\lambda t}h$. Пусть x(t) – произвольное решение. Так как h образуют базис, получаем $x(t)=\zeta_1(t)h_1+\cdots+\zeta_n(t)h_n$. Подставляя в систему, получим $\dot{\zeta}_1h_1+\cdots+\dot{\zeta}_nh_n=\lambda_1\zeta_1h_1+\cdots+\lambda_n\zeta_nh_n$. Так как h линейно независимы, получаем $\dot{\zeta}_k=\lambda_k\zeta_k\Rightarrow\zeta_k=C_ke^{\lambda_kt}$.

7 Общее решение линейной однородной системы уравнений с постоянными коэффицентами в случае, когда не существует базис из собственных векторов матрицы системы.

Теорема. Пусть жорданов базис R^n состоит из S жордановых цепочек h_1, \ldots, h_{k_j} длин k_j для собственных значений λ_j . Тогда:

- 1. Вектор-функция вида $x(t) = \sum_{j=1}^{S} e^{\lambda_j t} [C_1 P_1(t) + \dots + C_{k_j} P_{k_j}(t)]$, где $P_k = \sum_{j=1}^{k} \frac{t^{k-j}}{(k-j)!} h_j$, является решением системы.
- 2. Для любого решения x(t) найдётся набор C_k , при котором x(t) задаётся формулой выше.

Доказательство.

- 1. При k=1 утверждение доказано ранее. Пусть $k\geq 2$, тогда $\dot{P}_r(t)=P_{r-1}(t)$. Из определения жордановой цепочки следует, что $AP_r(t)=\lambda P_r(t)+P_{r-1}(t)$. Получаем $\dot{x}_r-Ax_r=\lambda e^{\lambda t}P_r+e^{\lambda t}\dot{P}_r-e^{\lambda t}AP_r=0$.
- 2. Пусть $x(t) = \sum_{j=1}^{S} [\zeta_1 h_1 + \dots + \zeta_{k_j} h_{k_j}]$ разложение решения x(t) по жордановому базису. После подстановки в исходное уравнение с использованием определения жордановой цепочки приравниваем коэффиценты при h_k . Получаем систему, решая которую получаем искомое представление.
- 8 Отыскание решений нормальной линейной неоднородной системы уравнений с постоянными коэффицентами в случае, когда свободный член является векторным квазимногочленом.

Принцип суперпозиции: Рассмотрим систему $\dot{x}(t) = Ax(t) + f(t)$. Если $f = f_1 + f_2$, а x_1, x_2 – решения для f_1 и f_2 соответственно, то $x_1 + x_2$ является решением для исходного уравнения.

Векторный квазимногочлен – функция $f(t) = e^{\mu t} P_m(t)$.

Теорема 1. Пусть $f(t) = e^{\mu t} [P_m^1 h_1 + \dots + P_m^k h_k], h_1, \dots, h_k$ – некоторая жорданова цепочка. Тогда для системы существует и единственно решение:

$$x(t) = \begin{cases} e^{\mu t} Q_m(t), \mu \neq \lambda \\ t e^{\mu t} Q_{m+k-1}(t), \mu = \lambda \end{cases}$$
 (3)

Доказательство. Ищем решение в виде $x(t) = \sum_{j=1}^k \zeta_j h_j$. Подставляем в систему и используем определение жордановой цепочки. Получаем:

$$\begin{cases}
\dot{\zeta}_1 = \lambda \zeta_1 + \zeta_2 + e^{\mu t} P_m^1(t) \\
\vdots \\
\dot{\zeta}_{k-1} = \lambda \zeta_{k-1} + \zeta_k + e^{\mu t} P_m^{k-1}(t) \\
\dot{\zeta}_k = \lambda \zeta_k + e^{\mu t} P_m^k(t)
\end{cases}$$
(4)

Решая систему снизу вверх, получаем требуемое утверждение.

Теорема 2. Если $f(t) = e^{\mu t} P_m(t)$, то для системы всегда существует решение вида $x(t) = e^{\mu t} Q_{m+k}(t)$, где k – наибольшая длина жордановой цепочки для собственного значения μ .

Доказательство. Разложим вектор-многочлен $P_m(t)$ по жорданову базису. Из принципа суперпозиции частное решение системы является суммой решений, рассматриваемых по различным жордановым цепочкам. Отсюда и из предыдущей теоремы следует указанное утверждение.

9 Экспонента квадратной матрицы; матричные формулы решения задачи Коши для нормальных линейных систем с постоянными коэффицентами.

Матричной экспонентой называется сумма абсолютно сходящегося ряда $e^{tA} = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}$.

Пемма 1. Для любой матрицы A матричный ряд, указанный выше, абсолютно сходится.

Доказательство. Пусть $\forall i,j \hookrightarrow |a_{ij}| \leq M$. Тогда $|a_{ij}^{(2)}| \leq \sum\limits_{p=1}^n |a_{ip}| \cdot |a_{pj}| \leq nM^2$. По индукции $|a_{ij}^{(k)}| \leq n^{k-1}M^k$. Отсюда следует, что ряд, соответствующий элементу матричной экспоненты мажорируется рядом $1+\sum\limits_{k=1}^\infty \frac{n^{k-1}|t|^kM^k}{k!}$. $\lim\limits_{k\to\infty} \left|\frac{a_{k+1}}{a_k}\right| = \frac{|t|nM}{k} \to 0$. Таким образом, ряд сходится по признаку д'Аламбера.

Лемма 2. Если A и B перестановочные квадратные матрицы, то $e^{tA}e^{tB}=e^{tB}e^{tA}=e^{t(A+B)}$.

Доказательство. Из AB = BA имеем формулу бинома $(A + B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k} = n! \sum_{k+m=n} \frac{A^k}{k!} \frac{B^m}{m!}$. Отсюда $e^{t(A+B)} = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{t^k A^k}{k!} \frac{t^m B^m}{m!} = e^{tA} e^{tB} = e^{tB} e^{tA}$.

Лемма 3. Если $A = HBH^{-1}$, то $e^{tA} = He^{tB}H^{-1}$.

Доказательство. Прямо следует из $A^k = HB^kH^{-1}$.

Из этой леммы можно найти способ вычисления матричной экспоненты для произвольной матрицы. Пусть J – матрица A в жордановом базисе. Каждую клетку в таком разложении следует заменить на соответствующую ей экспоненту. Клетку можно представить в виде $tJ_k(\lambda) = t\lambda E_k + tJ_k(0)$. Так как первая матрица диагональна, она перестановочна с любой другой и матричную экспоненту можно записать в виде $e^{tJ_k(\lambda)} = e^{\lambda t}e^{tJ_k(0)}$. Матрицу $e^{tJ_k(0)}$ находят с помощью матричного ряда. При возведении этой матрицы в степень единицы смещаются на одну диагональ вверх. Таким образом:

$$e^{tJ_k(0)} = \begin{pmatrix} 1 & \frac{t}{1!} & \frac{t^2}{2!} & \dots & \frac{t^{k-1}}{(k-1)!} \\ 0 & 1 & \frac{t}{1!} & \dots & \frac{t^{k-2}}{(k-2)!} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \frac{t^1}{1!} \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Пусть задана система $\dot{x}(t) = Ax(t) + f(t)$.

Теорема. Общее решение системы $\dot{x}(t) = Ax(t) + f(t)$ задаётся формулой $x(t) = e^{tA}c + e^{tA}\int e^{-tA}f(t)dt$.

Доказательство. Сделаем замену $x(t)=e^{tA}y(t)$. Получаем $e^{tA}Ay(t)+e^{tA}\dot{y}(t)=Ae^{tA}y(t)+f(t)\Rightarrow \dot{y}(t)=e^{-tA}f(t)$, что и даёт итоговый вид.

Для задачи Коши $x(t_0) = x_0$ имеем таким образом $x(t) = e^{(t-t_0)A}x_0 + e^{tA}\int_{t_0}^t e^{-tA}f(t)dt$.

10 Простейшая задача вариационного исчисления.

F(x,y,p) – непрерывно дифференцируемая функция. Рассмотрим интеграл $J(y) = \int\limits_a^b F[x,y(x),y'(x)]dx$ на множестве функций $y(x) \in C_1[a,b]$, удовлетворяющих граничным условиям y(a) = A,y(b) = B. Такие функции будем называть допустимыми.

Функция $\hat{y}(x) \in M$ даёт слабый локальный минимум функционала если $\exists \varepsilon > 0 : \forall y \in M : ||y(x) - \hat{y}(x)|| < \varepsilon \hookrightarrow J(y) \geq J(\hat{y})$. Задача нахождения слабого локального экстремума функционала, указанного выше называется простейшей вариационной задачей.

Пусть $\dot{C}_1[a,b]$ – множество непрерывно дифференцируемых функций, Для которых y(a)=y(b)=0. Рассмотрим семейство функций $y(x,a)=y(x)+ah(x)\in M$. По формуле Лейбница можно записать $\frac{d}{da}J[y(x)+ah(x)]|_{a=0}=\int\limits_a^b\left[\frac{\partial F}{\partial y}h+\frac{\partial F}{\partial y'}h'\right]dx.$

Вариацией будем называть любую функцию $h \in \dot{C}_1[a,b]$. Выражение выше называется первой вариацией функционала J и обозначается $\delta J[y,h(x)]$.

Теорема 1. Если $\hat{y} \in M$ является решением простейшей вариационной задачи, то необходимо $\delta J(\hat{y}, h) = 0$ для любой допустимой h.

Доказательство. Пусть для определённости на \hat{y} достигается минимум. Тогда $\Phi(a) = J(\hat{y} + ah) \ge J(\hat{y}) = \Phi(0)$ в некоторой окрестности. Это значит, что дифференцируемая функция $\Phi(a)$ имеет минимум в точке 0 и $\delta J(\hat{y}, h) = \Phi'(0) = 0$.

Лемма Лагранжа. Если $f(x) \in C[a,b]$ и $\int\limits_a^b f(x)h(x)dx = 0$ для любого $h(x) \in \dot{C}_1[a,b]$, то f(x) = 0 на [a,b].

Доказательство. Пусть $f(x_0)>0$. Тогда $\exists \varepsilon>0: \forall x\in U_\varepsilon(x_0)\hookrightarrow f(x)\geq \frac{1}{2}f(x_0)$. Возьмём h(x) равной нулю вне этой окрестности и равной $((x-x_0)^2-\varepsilon^2)^2$ в ней. Тогда по интегральной теореме о среднем $\int\limits_a^b f(x)h(x)dx=f(\zeta)\int\limits_{x_0-\varepsilon}^{x_0+\varepsilon}h(x)dx>0$, что противоречит условию леммы.

Теорема 2. Если дважды непрерывно дифференцируемая функция $\hat{y}(x)$ является решением простейшей вариационной задачи, то необходимо функция \hat{y} на [a,b] удовлетворяет уравнению Эйлера $\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial \dot{u}} = 0$.

Доказательство. Проинтегрируем по частям слагаемое, содержащее h' в вариации и получим уравнение Эйлера под интегралом. Необходимость получаем из леммы Лагранжа.

Всякое решение уравнения Эйлера называют экстремалью функционала.

11 Обобщения простейшей задачи вариационного исчисления: задача со свободным концом, задача для функционалов, зависящих от нескольких неизвестных функций и задача для функционалов, содержащих производные высших порядков.

Задача со свободным концом. Так называется простейшая вариационная задача, у которой не зафиксировано значение y(b) или y(a).

Теорема. Если дважды непрерывно дифференцируемая функция $\hat{y}(x) \in M$ является решением задачи со свободным концом, то $\hat{y}(x)$ необходимо на [a,b] удовлетворяет уравнению Эйлера и граничному условию $\frac{\partial F[x,y(x),y'(x)]}{\partial y'}\bigg|_{x=b} = 0.$

Доказательство. Интегрируя по частям вариацию функционала, получаем требуемое утверждение.

Функционалы, зависящие от нескольких переменных. Рассмотрим простейшую вариационную задачу, в которой y(x) – непрерывно дифференцируемая вектор-функция.

Теорема. Если дважды непрерывно дифференцируемая вектор-функция $\hat{y}(x) \in M$ даёт слабый ло-кальный экстремум функционала, то $\hat{y}(x)$ необходимо на [a,b] удовлетворяет системе уравнений Эйлера $\frac{\partial F}{\partial y_i} - \frac{d}{dx} \frac{\partial F}{\partial y_i'}$.

Доказательство. Фиксируя все компоненты, кроме k-ой в функционале, получаем простейшую задачу вариационного исчисления для каждой компоненты в отдельности.

Функционалы, содержащие производные высших порядков. Рассмотрим пространство $\dot{C}_k[a,b]$, состоящее из k раз непрерывно дифференцируемых функций таких что $\forall j \in [0,k-1] \hookrightarrow h^{(j)}(a) = h^{(j)}(b) = 0$

Лемма. Если
$$f(x) \in C[a,b]$$
 и $\forall h(x) \in \dot{C}_k[a,b] \hookrightarrow \int\limits_a^b f(x)h(x)dx = 0$, то $f(x) = 0$ на $[a,b]$.

Доказательство. Аналогично основной лемме вариационного исчисления, но теперь берём функцию $h(x) = ((x-x_0)^2 - \varepsilon^2)^{2k}$.

Теорема. Пусть $\hat{y}(x) \in M$ является 2k раз непрерывно дифференцируемой функцией и дает слабый локальный экстремум функционала $J(y) = \int\limits_a^b F[x,y,y',\dots,y^{(k)}]dx$. Тогда $\hat{y}(x)$ необходимо удовлетворяет уравнению Эйлера-Пуассона. $\sum\limits_{i=0}^k (-1)^i \frac{d^i}{dx^i} \frac{\partial F}{\partial y^{(i)}} = 0$.

Доказательство. Получаем, если распишем вариацию действия и проинтегрируем каждое слагаемое столько раз, сколько нужно чтобы избавиться от $h^{(i)}$. Проинтегрированные члены обратятся в нуль из-за граничных условий, в результате чего, применив обозначенную лемму, получаем требуемое равенство.

12 Изопериметрическая задача.

Пусть функции F(x,y,p) и G(x,y,p) дважды непрерывно дифференцируемы. Рассмотрим интеграл $J(y)=\int\limits_a^b F[x,y,y']dx$ на множестве функций $M=\{y\in C_1[a,b]:y(a)=A,y(b)=B,K(y)=\int\limits_a^b G[x,y,y']dx=l\}.$ Условие K(y)=l называют условием связи.

Изопериметрической задачей называют задачу нахождения слабого локального экстремума функционала, заданного выше. Введём в рассмотрение функцию $L(x,y,y',\lambda)=F(x,y,y')+\lambda G(x,y,y')$. Она называется лагранжианом, а параметр λ – неопределенным множителем Лагранжа.

Теорема. Пусть дважды непрерывно дифференцируемая допустимая функция $\hat{y}(x)$ является решением изопериметрической задачи и пусть вариация $\delta K[\hat{y},h(x)]\neq 0$ для всех $h(x)\in \dot{C}_1[a,b]$. Тогда найдётся такой множитель Лагранжа λ , что $\hat{y}(x)$ необходимо на [a,b] удовлетворяет уравнению Эйлера вида $\frac{\partial L}{\partial y}-\frac{d}{dx}\frac{\partial L}{\partial y'}=0$.

Доказательство. Из условия теоремы следует, что найдётся $h_0: \delta K(y,h_0) \neq 0$. Рассмотрим функции $u=J[y+ah+bh_0], v=K[y+ah+bh_0]$. В таком случае имеет место $\frac{\partial(u,v)}{\partial(a,b)}\Big|_{a=b=0}= \begin{vmatrix} \delta J(y,h) & \delta K(y,h) \\ \delta J(y,h_0) & \delta K(y,h_0) \end{vmatrix}$. Покажем, что этот якобиан равен нулю. Если это не так, то u=u(a,b), v=v(a,b) однозначно разрешимо относительно a,b в некоторой окрестности a=b=0. В таком случае разрешима система $u(a,b)=u(0,0)-\varepsilon, v(a,b)=v(0,0)$. То есть, найдутся a,b такие, что $J(\hat{y}+ah+bh_0)=J(\hat{y})-\varepsilon < J(\hat{y}), K(\hat{y}+ah+bh_0)=l$. Это противоречит предположению, что на \hat{y} достигается минимум. Таким образом, обозначенный якобиан равен нулю. Можем взять $\lambda=-\frac{\delta J(y,h_0)}{\delta K(y,h_0)}$ и получить требуемое утверждение, расписав определитель в интегральной форме.

13 Теоремы существования и единственности решения задачи Коши для нормальных систем дифференциальных уравнений и для уравнения *n*-го порядка в нормальной форме.

Задача Коши – задача поиска решения векторного уравнения y'(x) = f(x,y) при заданных начальных условиях $y(x_0) = y_0$. Система уравнений вида $y = y_0 + \int\limits_{x_0}^x f(\zeta,y(\zeta))d\zeta$ называется системой интегральных уравнений.

Лемма об эквивалентности. Вектор-функция y(x) является решением задачи Коши тогда и только тогда когда она является решением системы интегральных уравнений.

Доказательство. Получаем путём дифференцирования/интегрирования соответствующих обозначений в определениях решений.

Теорема 1. Пусть вектор-функция f(x,y) удовлетворяет на каждом компакте области G условию Липшица по y равномерно по x и пусть $(x_0,y_0) \in G$. Тогда:

- 1. Найдётся окрестность x, в которой решение существует.
- 2. Решение задачи единственно в том смысле, что любые два решения равны на пересечении их промежутков определения.

Доказательство. Будем доказывать теорему для эквивалентной системы интегральных уравнений. Рассмотрим цилиндр $G_{pq} = \{|x-x_0| \leq p, |y-y_0| \leq q\}$. Этот цилиндр – компакт и в нём выполняется условие Липпица, а также $|f(x,y)| \leq M$. Будем строить решение методом последовательных приближений Пикара при $|x-x_0| \leq \delta = \min\left(p, \frac{q}{M}\right)$:

$$y_0(x) = y_0,$$

$$y_k = y_0 + \int_{x_0}^x f[\zeta, y_{k-1}(\zeta)] d\zeta$$

Покажем по индукции, что y_k непрерывна и лежит в G. Для y_1 это верно: $|y_1-y_0| \leq \int\limits_{x_0}^x |f[\zeta,y_0]| d\zeta \leq M|x-x_0| \leq M\delta \leq q$. Аналогичным образом видим, что это верно для всех y_k .

Покажем, что последовательность y_k сходится равномерно при $|x-x_0| \leq \delta$. Это эквивалентно равномерной сходимости ряда $y_0 + \sum [y_{k+1} - y_k]$. Рассмотрим $|y_{k+1} - y_k| \leq \int\limits_{x_0}^x |f[\zeta, y_k] - f[\zeta, y_{k-1}]| d\zeta \leq L\int\limits_{x_0}^x |y_k(\zeta) - y_{k-1}(\zeta)| d\zeta$. Сделаем индукционное предположение $|y_k - y_{k-1}| \leq \frac{L^{k-1}M(x-x_0)^k}{k!}$. Отсюда получаем $|y_{k+1} - y_k| \leq \frac{L^kM(x-x_0)^{k+1}}{(k+1)!}$. Ряд из таких элементов сходится, отсюда следует, что y_k сходится равномерно к некоторой функции из того же цилиндра G_{pq} .

Из условия Липшица следует, что $f(x,y_k) \Rightarrow f(x,y)$. Переходя к пределу, получаем, что $y(x) = y_0 + \int_{x_0}^x f[\zeta,y(\zeta)]d\zeta$. Откуда следует, что y действительно является решением системы при $|x-x_0| \leq \delta$.

Наконец, докажем единственность решения. Рассмотрим два решения y_1, y_2 . Для них имеет место $|y_1(x)-y_2(x)| \leq L\int\limits_{x_0}^x |y_1(\zeta)-y_2(\zeta)| d\zeta$. Равенство этой величины нулю следует из леммы:

Лемма Гронуолла. Пусть
$$y(x) \leq A + B \left| \int\limits_{x_0}^x y(\zeta) d\zeta \right|, A \geq 0, B > 0$$
. Тогда $y(x) \leq A e^{B|x-x_0|}$.

Доказательство. Пусть $g(x) = \int\limits_{x_0}^x y(\zeta) d\zeta$. Отсюда получаем g'(x) = y(x). Отсюда $g'(x) \leq A + Bg(x)$.

Умножив обе части на $e^{-B(x-x_0)}$, интегрируя и подставляя в исходное неравенство, получаем требуемый результат.

Рассмотрим дифференциальное уравнение $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$ с заданными начальными условиями.

Теорема 2. Пусть $f(\cdot)$ непрерывна в области G, удовлетворяет на каждом компакте G условию Липшица по y_1, \ldots, y_n равномерно по x и $(x_0, y_0) \in G$. Тогда:

- 1. Найдётся окрестность x_0 , в которой решение задачи Коши существует.
- 2. Любые два решения равны на пересечении их промежутков определения.

Доказательство. Сделаем замену $y_2 = y', y_k = y'_{k-1}$ и получим нормальную систему уравнений с эквивалентным множеством решений. Таким образом, данная теорема верна в силу теоремы 1.

14 Теорема о продолжении решений нормальных систем обыкновенных дифференциальных уравнений и следствия из нее (доказательство для одного уравнения *n*-го порядка)

Пусть y_1 задано на I_1 и y_2 задано на I_2 – решения нормальной системы. Если $I_1 \subseteq I_2$ и $y_1 = y_2$ на I_1 , то y_2 – продолжение решения y_1 с I_1 на I_2 . Будем называть решение непродолжимым если не существует решения, являющегося его продолжением.

Теорема. Пусть выполнены условия теоремы о единственности и существовании. Тогда для любой точки $(x_0, y_0) \in G$ задача Коши имеет единственное непродолжимое решение, определённое на некотором максимальном интервале (a, b).

Доказательство. Будем рассматривать только продолжение вперёд. Пусть G – замкнутая ограниченная область. Если $(x_0+a\delta,y(x_0+a\delta))\in\partial G$, то доказательство завершено. Иначе перейдём в точку $x_1=x_0+\delta$ и решим новую задачу Коши в ней. Получаем возрастающую последовательность x_k , которая ограничена сверху и имеет предел $B=\sup\{x_k\}$ в силу того, что G замкнуто. Точка (B,y(B)) лежит на границе, значит, продолжение задачи невозможно.

Пусть G не является ограниченной замкнутой областью, в таком случаее аппроксимируем её вложенной последовательностью таких множеств изнутри. Для каждого n решение будет существовать на отрезке $[a_n,b_n]$ и касаться границы n-ой области на краях. Последовательности a_n и b_n монотонно убывающая и возрастающая соответственно, следовательно, они имеют пределы, возможно бесконечные, равные a и b. Таким образом, интервал (a,b) является максимальным интервалом существования решения в G.

15 Непрерывная зависимость от параметров решения задачи Коши для нормальных систем обыкновенных дифференциальных уравнений. Дифференцируемость решения по параметрам, уравнение в вариациях.

Рассмотрим задачу Коши для нормальной системы $y' = f(x, y, \lambda), y(x_0, \lambda) = y_0.$

Теорема 1. Путь вектор-функция $f(x,y,\lambda)$ непрерывна и удовлетворяет условию Липпица по y равномерно по x,λ для $|\lambda-\lambda_0| \leq r$. Тогда найдётся $\delta>0$, что решение $y(x,\lambda)$ задачи Коши является непрерывной функцией при $|x-x_0| \leq \delta, |\lambda-\lambda_0| \leq r$.

Доказательство. Доказательство повторяет схему доказательства теоремы о существовании решения задачи Коши.

Теорема 2. Если $\forall (x,y) \in G, |\lambda-\lambda_0| \leq r$ функции $f(x,y,\lambda), \frac{\partial f}{\partial y}, \frac{\partial f}{\partial \lambda_i}$ непрерывны и $(x_0,y_0) \in G$, то найдётся δ такое что при $|x-x_0| \leq \delta, |\lambda-\lambda_0| \leq r$ для решения $y=y(x,\lambda)$ задачи Коши:

- 1. Частные производные $\frac{\partial y}{\partial \lambda_i}$ непрерывны.
- 2. Смешанные производные $\frac{\partial^2 y}{\partial x \partial \lambda_i}$ непрерывны и не зависят от порядка дифференцирования.
- 3. Частная производная $z_i(x,\lambda)=\frac{\partial y}{\partial \lambda_i}$ удовлетворяет уравнению в вариациях по параметру $\lambda\colon \frac{\partial z_i}{\partial x}=\frac{\partial f}{\partial y}z_i+\frac{\partial f}{\partial \lambda_i}$ и начальному условию $z_i(x_0,\lambda)=0$.

16 Теорема существования и единственности решения задачи Коши для уравнения первого порядка, не разрешённого относительно производной. Особое решение.

Рассмотрим уравнение F(x,y,y')=0, где $F(\cdot)$ – заданная в некоторой области непрерывная функция. Задача Коши – найти решение, проходящее через точку (x_0,y_0,p_0) .

Теорема. Пусть в области G функция F(x, y, p) непрерывно дифференцируема и пусть $\frac{\partial F}{\partial p} \neq 0$. Тогда найдётся окрестность x_0 , в которой решение существует и единственно.

Доказательство. Из условий теоремы следует, что выполняются условия теоремы о неявной функции p=f(x,y). Рассмотрим задачу Коши $y'=f(x,y), y(x_0)=y_0$ в некотором прямоугольнике V. Так как V – выпуклая область и в ней $\frac{\partial f}{\partial y}$ – непрерывная ограниченная функция, f(x,y) удовлетворяет условию Липшица в прямоугольнике. Таким образом, решение данной задачи существует и единственно и является также и решением к исходной.

Решение уравнения называется особым решением, если каждая точка $(x_0,y(x_0))$ его интегральной кривой является точкой локальной неединственности решения задачи Коши. Для особого решения необходимо $F(x_0,y_0,p_0)=\frac{\partial F}{\partial p}=0.$

17 Автономные системы диф. уравнений. Свойства фазовых траекторий нормальных автономных систем. Теорема о выпрямлении траектории.

Нормальная автономная система: $\dot{x}(t) = f(x)$. Считаем, что она удовлетворяет условиям теоремы о существовании и единственности.

Теорема 1. Если решение $x = x(t), t \in I$ автономной системы таково, что определяемая им траектория все время остаётся в некотором компакте K, то необходимо $I = (-\infty, +\infty)$.

Доказательство. Непродолжимое решение покидает любой компакт. Рассмотрим цилиндр на $K \times [t_1, t_2]$. Из условий теоремы кривая не может покинуть его через боковую сторону, поэтому она проходит через нижнюю и верхнюю для произвольных t_1, t_2 . Поэтому $I = (-\infty, +\infty)$.

Свойство 1. Если $\varphi(t)$ решение системы при $t \in (a,b)$, то $\varphi(t+c)$ – решение системы при $t \in (a-c,b-c)$.

Свойство 2. Если две фазовые траектории имеют общую точку $\varphi(t_1) = \psi(t_2)$, то $\psi(t) = \varphi(t + t_1 - t_2)$ для $t \in I_1 \cap I_2$.

Теорема 2. Точка x_0 является положением равновесия в том и только в том случае когда фазовая скорость $f(x_0) = 0$.

Доказательство. Проверяется подстановкой.

Теорема 3. Всякая фазовая траектория принадлежит одному из трёх типов:

- 1. Положение равновесия.
- 2. Замкнутая траектория.
- 3. Траектория без самопересечений.

Доказательство. Если $x(t,x_0)$ – решение системы и x_0 не является положением равновесия и соответствующая траектория пересекает саму себя, то $x(t,x_0)$ – периодичная вектор-функция. Пусть $x(t_1) = x(t_2)$ и $\forall t \in (t_1,t_2) \hookrightarrow x(t) \neq x(t_1)$. Тогда в силу свойства 1 $x(t) = x(t+t_2-t_1) = x(t+T)$ при $t \in [t_1-T,t_2-T]$. По свойству 2 x(t+T) является единственным продолжением x(t) из $[t_1,t_2]$ на $[t_1-T,t_1]$. Аналогично в другую сторону. Таким образом имеем продолжение с $[t_1,t_2]$ на $[t_1-T,t_2+T]$. Продолжая процесс на всю ось, получаем, что решение даёт замкнутую траекторию.

Теорема 4. Пусть f(x) – непрерывно дифференцируемая вектор-функция в области G и пусть точка a является обыкновенной точкой системы. Тогда найдутся окрестность этой точки и гладкая обратимая замена переменных в окрестности, что в ней система примет вид $\dot{y}_i = 0$, а траектории системы в этой окрестности перейдут в отрезки прямых.

18 Классификация положений равновесия линейной автономной однородной системы дифференциальных уравнений второго порядка. Характер поведения фазовых траекторий в окрестности положения равновесия для автономных нелинейных систем второго порядка.

Рассмотрим систему уравнений второго порядка $\dot{x}=Ax$. Система называется простой если матрица невырождена. Положения равновесия являются корнями линейной системы Ax=0. Если система простая, то x=0 — единственное решение.

- 1. Пусть собственные числа действительны. Тогда все решения задаются формулой $x = c_1 e^{\lambda_1 t} h_1 + c_2 e^{\lambda_2 t} h_2$. Координаты точки в базисе из собственных векторов будут равны $(c_1 e^{\lambda_1 t}, c_2 e^{\lambda_2 t})$. Картина траекторий симметрична относительно осей, поэтому будем считать, что обе координаты положительны.
 - (а) $\lambda_2 < \lambda_1 < 0$. Пусть $c_1 > 0, c_2 > 0$. Тогда $\zeta_2 = c\zeta_1^a, a > 1$. Отсюда следует, что фазовые траектории представляют собой кривые типа ветвей параболы, касающиеся ζ_1 в начале координат. Положение называется устойчивый узел.
 - (b) $0 < \lambda_1 < \lambda_2$. Исследуется аналогично. Неустойчивый узел.
 - (c) $\lambda_1 < 0 < \lambda_2$. Исследуется аналогично, кривые в виде гипербол. Седло.
 - (d) $\lambda_1 = \lambda_2 = \lambda$, существует базис из собственных векторов. Общее решение имеет вид $x = e^{\lambda t}(c_1h_1 + c_2h_2)$. Каждое решение описывает луч, входящий или выходящий из положения равновесия. Положение равновесия дикритический (звёздный) узел.
 - (e) $\lambda_1 = \lambda_2 = \lambda$, существует базис из собственного вектора и присоединённого к нему. $\zeta_1 = (c_1 + c_2 t)e^{\lambda t}$, $\zeta_2 = c_2 e^{\lambda t}$. Точки равновесия называются соответственно вырожденными устойчивым и неустойчивым узлами.
- 2. Пусть λ_1, λ_2 комплексные. В таком случае они сопряжены. Пусть $h = h_1 \pm i h_2$ собственные векторы. Действительное решение будет иметь вид $x = c e^{\lambda_1 t} h + \bar{c} e^{\bar{\lambda}_1 t} \bar{h}$. Если $\lambda = \mu \pm i \nu$, то решение можно переписать в виде $x = 2|c|e^{\mu t}[\cos(\varphi + \nu t)h_1 + \sin(\varphi + \nu t)h_2]$ или в полярных координатах $r = 2|c|e^{\mu \frac{\psi \varphi}{\nu}}$. В случае $\mu \neq 0$ фазовые траектории логарифмические спирали, а при $\mu = 0$ эллипсы.

Направление закручивания спирали можно определить по фазовым скоростям. Положения равновесия в случае спиралей называются устойчивыми или неустойчивыми фокусами. В случае эллипсов положение равновесия называется центром.

Рассмотрим теперь случай сложной системы. Случай $\lambda_1 \neq 0, \lambda_2 = 0$ означает, что все точки ζ_2 являются положениями равновесия. А все лучи $\zeta_2 = c$ являются траекториями. Если $\lambda_1 = \lambda_2 = 0$, то либо решением является вся плоскость в случае нулевой матрицы A, либо есть базис из h_1 и присоединённого к нему h_2 . В таком базисе решения имеют вид $\zeta_1 = c_1 + c_2 t, \zeta_2 = c_2$ и все точки прямой $\zeta_2 = 0$ являются положениями равновесия. Каждая из прямых $\zeta_2 = c$ является траекторией.

Качественно эквивалентными будем называть такие системы, для которых существует взаимнооднозначное и взаимно непрерывное отображение, при котором каждая траектория первой системы с сохранением ориентации переходит в траекторию другой системы. Существует четыре типа качественно эквивалентных автономных систем: устойчивые, неустойчивые, центры и сёдла. Пусть x=0 – положение равновесия нелинейной системы. В ней можно рассмотреть линеаризованную систему (с разложением до первого члена).

Теорема. Если линеаризация нелинейной системы в начале координат является простой автономной системой и x=0 не является центром для системы, то в окрестности x=0 нелинейная система и её линеаризация качественно эквивалентны.

19 Первые интегралы автономных систем диф. уравнений. Критерий первого интеграла.

Непрерывно дифференцируемая функция u(x) называется первым интегралом если u(x(t)) = const для каждого решения x = x(t) автономной системы $\dot{x}(t) = f(x)$. Значение постоянной зависит только от выбора траектории.

Пусть u(x) – непрерывно дифференцируемая функция в G. Производной u в силу автономной системы называют скалярное произведение $(f(x), \operatorname{grad} u(x))$ и обозначается через $\dot{u}(x)$.

Теорема 1. Непрерывно дифференцируемая в G функция u(x) является первым интегралом системы в том и только в том случае, когда $\dot{u}(x) = 0$.

Доказательство. Получаем из правила дифференцирования сложной функции.

Теорема 2. Если система имеет независимые в точке a первые интегралы u_1, \ldots, u_k , то в некоторой окрестности этой точки порядок системы можно понизить на k единиц.

Доказательство. Будем считать, что отличен от нуля минор из первых k столбцов матрицы Якоби u'(a). Сделаем замену $y_i = u_i(x)$ для $i \in [1,k]$ и $y_i = x_i$ для остальных. Эта замена является гладкой и обратимой. Отсюда получаем $\dot{y}_i = 0, i \in [1,k]$ и $\dot{y}_i = F_i(y)$. Первые k уравнений дают решения $y_i = c_i$. Остаётся система порядка (n-k).

20 Теорема о числе независимых первых интегралов автономной системы дифференциальных уравнений.

Теорема. Пусть точка a не является положением равновесия автономной системы. Тогда в некоторой окрестности этой точки существуют (n-1) независимые в точке a первые интегралы системы. Кроме того если u(x) – какой-либо первый интеграл в этой окрестности, то найдётся непрерывно дифференцируемая функция такая что $u(x) = F[u_1(x), \ldots, u_{n-1}(x)]$.

Доказательство. По теореме о выпрямлении найдётся гладкая и обратимая замена такая, что уравнения примут вид $\dot{y}_i = 0, \dot{y}_n = 1$. При такой замене имеем $y_i = c_i$, которые и станут первыми интегралами. Всякий первый интеграл новой системы является непрерывно дифференцируемой функцией этих переменных. Откуда получается второе утверждение теоремы.

21 Линейное однородное уравнение в частных производных первого порядка. Формула общего решения. Теорема существования и единственности задачи Коши.

Рассмотрим уравнение $F\left(x_1,\ldots,x_n,u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_n}\right)=0.$ $F(x_1,\ldots,x_n,u,p_1,\ldots,p_n)$ – заданная непре-

рывно дифференцируемая функция в области G такая что в каждой точке G верно $\sum\limits_{i=1}^n \left(\frac{\partial F}{\partial p_i}\right)^2 \neq 0$. Такое

уравнение называется уравнением в частных производных первого порядка относительно неизвестной $u=u(x_1,\ldots,x_n)$. Уравнение называется линейным если неизвестная функция и все её частные производные входят в уравнение линейно. Уравнение называют однородным если в него не входят свободный член и u.

Рассмотрим линейные уравнения. Если ввести вектор-функцию a(x) коэффицентов при частных производных, уравнение сокращённо запишется в виде $(a(x), \operatorname{grad} u(x)) = 0$.

Автономная система $\dot{x}(t) = a(x)$ называется характеристической системой уравнения, а траектории системы – характеристиками уравнения. Условие неравенства нулю суммы частных производных означает отсутствие положений равновесия.

Теорема 1. В некоторой окрестности точки b все решения имеют вид $F[u_1(x), \ldots, u_{n-1}(x)]$. Где u_j – независимые в точке b первые интегралы характеристической системы, а $F(\cdot)$ – произвольная непрерывно дифференцируемая функция.

Доказательство. Следует из теорем для первых интегралов автономной системы.

Функция $u = F[u_1, \dots, u_{n-1}]$ называется общим решением уравнения в окрестности точки b.

Пусть уравнение g(x)=0 задаёт в области гладкую (n-1) мерную поверхность (g(x) – непрерывно дифференцируемая и grad $g(x)\neq 0$). Она называется начальной поверхностью. Пусть также задана непрерывно дифференцируемая функция $\varphi(x)$. Укажем начальное условие $u(x)|_{x\in\gamma}=\varphi(x)$. Функция $\varphi(x)$ называется начальным значением u(x).

Задача Коши – найти решение, которое удовлетворяет начальному условию.

Теорема 2. Пусть $\dot{g}(M_0) = (a(M_0), \operatorname{grad} g(M_0)) \neq 0$ тогда в некоторой окретности точки M_0 решение задачи Коши существует и единственно.

Доказательство. Так как $a(M_0) \neq 0$, в некоторой окрестности существуют (n-1) независимые первые интегралы. Рассмотрим систему уравнений $u_k(x) = u_k, g(x) = 0$. Эту систему можно однозначно разрешить относительно x. Покажем, что $\frac{\partial (u_1, \dots, u_{n-1}, g)}{\partial (x_1, \dots, x_n)} \bigg|_{M_0} \neq 0$. Пусть якобиан равен нулю. Первые (n-1) строк у него линейно независимы, значит, последняя является линейной комбинацией остальных. Отсюда получаем, что $\dot{g}(M_0) = 0$, что противоречит предположению теоремы. Таким образом обозначенная система допускает единственное непрерывно дифференцируемое решение $x = w(u_1, \dots, u_{n-1})$. Откуда находим решение $u(x) = \varphi(w(u_1, \dots, u_n))$.

22 Теоремы существования и единственности решения задачи Коши для нормальных линейных систем обыкновенных дифференциальных уравнений с переменными коэффицентами и для линейного уравнения *n*-го порядка.

Рассмотрим нормальную систему y'(x) = A(x)y(x) + f(x) с начальным условием $y(x_0) = y_0$.

Теорема. Пусть матрица A(x) и вектор-функция f(x) непрерывны на [a,b] и пусть $x_0 \in [a,b]$ и y_0 – произвольный вектор. Тогда решение задачи Коши существует и единственно на [a,b].

Доказательство. По лемме об эквивалентности задача Коши эквивалентна системе уравнений $y(x)=y_0+\int\limits_{x_0}^x [A(\zeta)y(\zeta)+f(\zeta)]d\zeta$. Существование доказываем методом последовательных приближений. Все приближения непрерывны на [a,b]. Установим равномерную сходимость ряда $y_0+\sum\limits_{i=0}^\infty [y_{i+1}(x)-y_i(x)]$. Из непрерывности A(x) и f(x) следует $|a_{ij}(x)|\leq K, |f(x)|\leq M$. Тогда норма матрицы $||A(x)||\leq nK$. Учитывая $|A(x)y_0|\leq ||A(x)||\cdot |y_0|\leq nK|y_0|$, получаем $|y_1(x)-y_0(x)|\leq (nK|y_0|+M)(b-a)=C$. Методом мат. индукции можно показать, что $|y_{i+1}(x)-y_i(x)|\leq C(nK)^i\frac{|x-x_0|^i}{i!}$. Таким образом указанный ряд сходится, значит, сходится равномерно и последовательность приближений, предел которой и есть искомым решением.

23 Фундаментальная система решений, фундаментальная матрица и структура общего решения нормальной линейной однородной системы уравнений с переменными коэффицентами. Фундаментальная система решений и структура общего решения линейного однородного уравнения n-го порядка.

Теорема 1. Пусть y_j – решения линейной однородной системы. Они линейно независимы на [a,b] тогда и только тогда, когда $\forall x_0 \in [a,b]$ векторы $y_j(x_0)$ линейно независимы.

Доказательство. Предположим, y_j линейно независимы, но $y_j(x_0)$ линейно зависимы. Тогда линейная комбинация с теми же коэффицентами y_j удовлетворяет начальному условию $y_0 = 0$. Но такое решение единственно и равно тождественно нулю. Получаем противоречие.

Любая система n линейно независимых решений на [a,b] называется фундаментальной системой решений.

Теоерма 2. Для системы существует бесконечное множество фундаментальных систем решения.

Доказательство. Различные решения получаются при различных начальных значениях.

Теорема 3. Любое решение системы единственным образом раскладывается в линейную комбинацию фундаментальных решений.

Доказательство. Раскладываем начальные значения по начальным значениям фундаментальной системы и получаем коэффиценты линейной комбинации для системы.

24 Вронскиан и формула Лиувилля-Остроградского для решений линейного однородного уравнения *n*-го порядка.

Определителем Вронского называется определитель $W(x) = W[y_1(x), \dots, y_n(x)]$. Решения y_1, \dots, y_n линейно зависимы тогда и только тогда когда $W(y_1, \dots, y_n) = 0$ на [a, b].

Теорема. Пусть W(x) – вронскиан решений y_j системы и $x_0 \in [a,b]$. Тогда имеет место формула Лиувилля-Остроградского $W(x) = W(x_0)e^{x_0}$, tr $A(\zeta) = a_{11}(\zeta) + \cdots + a_{nn}(\zeta)$.

Доказательство. Покажем, что W'(x) = tr A(x) W(x). Можно выразить $W(x) = \sum_{p,q=1}^n \frac{\partial W(x)}{\partial y_{pq}(x)} y'_{pq}(x)$. Рассмотрим разложение W по строке $W(x) = \sum_{r=1}^n y_{pr}(x) W_{pr}(x)$. Отсюда $\frac{\partial W(x)}{\partial y_{pq}} = W_{pq}(x)$. Для каждой вектор-функции имеем $y'_q(x) = A(x) y_q(x)$. Подставляя найденные выражения, получим $W'(x) = \sum_{p,r=1}^n a_{pr}(x) \sum_{q=1}^n y_{rq}(x) W_{pq}(x)$. Отсюда получаем требуемое утверждение.

25 Метод вариации постоянных для нормальной линейной неоднородной системы уравнений и для линейного неоднородного уравнения *n*-го порядка.

Рассмотрим систему y'(x) = A(x)y(x) + f(x).

Теорема. Если $\Phi(x)$ – фундаментальная матрица линейной однородной системы, то общее решение линейной неоднородной системы при всех $x \in [a,b]$ задаётся формулой $y(x) = \Phi(x) \cdot d + \Phi(x) \int_{x_0}^x \Phi^{-1}(\zeta) f(\zeta) d\zeta$.

Доказательство. Считаем $y(x) = \Phi(x)c(x)$. Потери решений не происходит, так как $\det \Phi(x) \neq 0$. Функцию c(x) находим подстановкой y(x) в исходную систему. Получаем $c'(x) = \Phi^{-1}(x)f(x)$.

26 Теорема Штурма и следствия из неё.

Пусть заданы уравнения y'' + q(x)y = 0, z'' + Q(x)z = 0.

Теорема. Пусть $q(x) \leq Q(x)$ и пусть y(x) – какое-либо нетривиальное решение первого уравнения, а z(x) – нетривиальное решение второго. Если x_1, x_2 – последовательные нули y(x) то либо $\exists x_0 \in (x_1, x_2) : z(x_0) = 0$, либо $z(x_1) = z(x_2) = 0$.

Доказательство. Пусть y(x)>0 на (x_1,x_2) . Тогда $y'(x_1)>0$, $y'(x_2)<0$. Производные не равны нулю, иначе бы решение было тривиальным в силу теоремы о существовании и единственности. Из исходных уравнений можно получить y''z-z''y=(Q-q)yz или (y'z-z'y)'=(Q-q)yz. Интегрируя с учётом $y(x_1)=y(x_2)=0$, получим $y'(x_2)z(x_2)-y'(x_1)z(x_1)=\int\limits_{x_1}^{x_2}[Q(x)-q(x)]y(x)z(x)dx$. Полагая z(x)>0 и допуская, что теорема неверна, получим несколько случаев, разбор которых приводит к противоречию. Таким образом, нули z идут не реже, чем нули y.

Следствие 1. Если $q(x) \le 0$, то всякое его решение имеет не более одного нуля.

Следствие 2. Пусть y_1, y_2 – два линейно независимых решения. Если x_1, x_2 – нули y_1 , то между ними есть ровно один нуль y_2 .

Следствие 3. Если некоторое решение y имеет бесконечное число нулей, то и каждое решение z имеет бесконечное число нулей.

27 Устойчивость по Ляпунову положения равновесия автономной системы. Достаточные условия асимптотической устойчивости положения равновесия автономной системы.

Система устойчива по Ляпунову если для любой ε окрестности найдётся δ окрестность такая что при начальном положении в δ окрестности траектория не покинет ε окрестность.

Асимптотически устойчивым называется положение равновесия, устойчивое по Ляпунову такое что существует окрестность, в которой $\lim_{t\to\infty} x(t,x_0)=0.$

Исследуем устойчивость системы $\dot{x}(t) = Ax(t)$.

Теорема 1. Если все действительные части собственных чисел A отрицательны, то положение равновесия асимптотически устойчиво.

Теорема 2. Если все действительные части собственных чисел неположительны и для каждого $\lambda=0$ число линейно независимых собственных векторов равно кратности λ , то x=0 – устойчивое по Ляпунову положение равновесия.