Normalize Maxwell's Equations	$ [a] - Tensor $ $ \vec{v} - vector $		
$ abla imes \vec{E} = -[\mu] \frac{\partial \vec{H}}{\partial t}$	$\nabla \times \vec{H} = [\epsilon] \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \vec{E} = -[\mu] \frac{\partial \vec{H}}{\partial t}$	$ abla imes ec{H} = [\epsilon] rac{\partial ec{E}}{\partial t}$
let: $\vec{\widetilde{H}} = \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{H}$	or: $\vec{H} = \sqrt{\frac{\epsilon_0}{\mu_0}} \vec{\widetilde{H}}$	let: $\vec{\tilde{E}} = \sqrt{\frac{\epsilon_0}{\mu_0}} \vec{E}$	or: $\vec{E} = \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{\tilde{E}}$
Substitute:	And:	Substitute:	And:
$ abla imes ec{E} = -[\mu] rac{\partial \left(\sqrt{rac{ec{\epsilon_0}}{\mu_0}} \vec{\widetilde{H}} ight)}{\partial t}$	$\nabla \times \left(\overrightarrow{\frac{\vec{H}}{H}} \sqrt{\frac{\epsilon_0}{\mu_0}} \right) = [\epsilon] \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \sqrt{\frac{\mu_0}{\epsilon_0}} \vec{\tilde{E}} = -[\mu] \frac{\partial (\vec{H})}{\partial t}$	$ abla imes ec{H} = [\epsilon] rac{\partial \left(\sqrt{rac{\mu_0}{\epsilon_0}} ec{ec{E}} ight)}{\partial t}$
$\nabla \times \vec{E} = -[\mu_r \mu_0] \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{\partial \left(\vec{\tilde{H}}\right)}{\partial t}$	$\nabla \times \overline{\widetilde{H}} = -\sqrt{\frac{\mu_0}{\epsilon_0}} [\epsilon_r \epsilon_0] \frac{\partial \vec{E}}{\partial t}$	$\nabla imes \vec{\tilde{E}} = -[\mu_r \mu_0] \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{\partial (\vec{H})}{\partial t}$	$ abla imes ec{H} = \sqrt{rac{\mu_0}{\epsilon_0}} \left[\epsilon_r \epsilon_0 \right] rac{\partial ec{ ilde{E}}}{\partial t}$
$ abla imes ec{E} = -[\mu_r] \sqrt{\mu_0 \epsilon_0} \frac{\partial \left(\widetilde{\widetilde{H}} \right)}{\partial t}$	$\nabla \times \overline{\widetilde{H}} = \sqrt{\mu_0 \epsilon_0} [\epsilon_r] \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \vec{\tilde{E}} = -[\mu_r] \sqrt{\mu_0 \epsilon_0} \frac{\partial (\vec{H})}{\partial t}$	$\nabla \times \vec{H} = \sqrt{\mu_0 \epsilon_0} [\epsilon_r] \frac{\partial \vec{\tilde{E}}}{\partial t}$
recall:		recall:	Also let:
$c_0 = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$		$c_0 = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$	$\overrightarrow{\widetilde{E}} = \frac{\overrightarrow{\widetilde{D}}}{\epsilon_r}$
$\nabla \times \vec{E} = -\frac{[\mu_r]}{c_0} \frac{\partial \left(\vec{\tilde{H}}\right)}{\partial t}$	$\nabla \times \vec{\tilde{H}} = \frac{[\epsilon_r]}{c_0} \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \vec{\tilde{E}} = -\frac{[\mu_r]}{c_0} \frac{\partial (\vec{H})}{\partial t}$	$\nabla \times \vec{H} = \frac{[\epsilon_r]}{c_0} \frac{\partial \vec{\tilde{E}}}{\partial t} = \frac{1}{c_0} \frac{\partial \vec{\tilde{D}}}{\partial t}$

Expansion	Expansion of spatial component (Analytic)				Expansion of tem	poral component (A	analytic)	
$ abla imes \vec{ ilde{E}} =$	$\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{vmatrix}$	$\hat{x} \left[\frac{\partial \tilde{E}_z}{\partial y} - \frac{\partial \tilde{E}_y}{\partial z} \right] - \hat{y} \left[\frac{\partial \tilde{E}_z}{\partial x} - \frac{\partial \tilde{E}_x}{\partial z} \right] +$	$\hat{z} \left[\frac{\partial \tilde{E}_y}{\partial x} - \frac{\partial \tilde{E}_x}{\partial y} \right]$ or	$\begin{bmatrix} \frac{\partial \tilde{E}_z}{\partial y} - \frac{\partial \tilde{E}_y}{\partial z} \\ \frac{\partial \tilde{E}_z}{\partial x} - \frac{\partial \tilde{E}_x}{\partial z} \\ \frac{\partial \tilde{E}_y}{\partial x} - \frac{\partial \tilde{E}_x}{\partial y} \end{bmatrix}$	$-\frac{[\mu_r]}{c_0}\frac{\partial(\vec{H})}{\partial t} =$	$\begin{bmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{bmatrix} \begin{bmatrix} c_1 & c_2 \\ c_2 & c_3 \end{bmatrix}$	$ \frac{\frac{\partial H_x}{\partial t}}{\frac{\partial H_y}{\partial t}} = -\frac{1}{c_0} \left[\mu_{xx} \frac{\partial H_x}{\partial t} + \mu_{xy} \frac{\partial H_y}{\partial t} + \mu_{xz} \frac{\partial H_z}{\partial t} \right] \\ \mu_{yx} \frac{\partial H_x}{\partial t} + \mu_{yy} \frac{\partial H_y}{\partial t} + \mu_{yz} \frac{\partial H_z}{\partial t} \\ \mu_{yx} \frac{\partial H_x}{\partial t} + \mu_{zy} \frac{\partial H_y}{\partial t} + \mu_{zz} \frac{\partial H_z}{\partial t} \right] $	
$\nabla \times \vec{H} =$	$\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix}$	$\hat{x} \left[\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right] - \hat{y} \left[\frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z} \right] +$	$\hat{z} \left[\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right]$ or	$\begin{bmatrix} \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \\ \frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z} \\ \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \end{bmatrix}$	$\frac{[\epsilon_r]}{c_0}\frac{\partial \vec{\tilde{E}}}{\partial t} =$	$\begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial t} \\ \frac{\partial}{\partial t} \end{bmatrix}$	$ \frac{\frac{\partial \tilde{E}_{x}}{\partial t}}{\frac{\partial \tilde{E}_{y}}{\partial t}} = \frac{1}{c_{0}} \left[\epsilon_{xx} \frac{\partial \tilde{E}_{x}}{\partial t} + \epsilon_{xy} \frac{\partial \tilde{E}_{y}}{\partial t} + \epsilon_{xz} \frac{\partial \tilde{E}_{z}}{\partial t} \right] \\ \epsilon_{yx} \frac{\partial \tilde{E}_{x}}{\partial t} + \epsilon_{yy} \frac{\partial \tilde{E}_{y}}{\partial t} + \epsilon_{yz} \frac{\partial \tilde{E}_{z}}{\partial t} \\ \epsilon_{zx} \frac{\partial \tilde{E}_{x}}{\partial t} + \epsilon_{zy} \frac{\partial \tilde{E}_{y}}{\partial t} + \epsilon_{zz} \frac{\partial \tilde{E}_{z}}{\partial t} \right] $	
Combine L	ike terms							
1)	$\frac{\partial \tilde{E}_z}{\partial y} - \frac{\partial \tilde{E}_y}{\partial z} =$	$\frac{\mu_{xx}}{c_0}\frac{\partial H_x}{\partial t} + \frac{\mu_{xy}}{c_0}\frac{\partial H_y}{\partial t} + \frac{\mu_{xz}}{c_0}\frac{\partial H_z}{\partial t}$		$\frac{\partial \tilde{E}_z}{\partial y} - \frac{\partial \tilde{E}_y}{\partial z} =$	$= \frac{\overbrace{\mu_{xx}}^{Temporal}}{c_0} \frac{\partial H_x}{\partial t}$			Ums?si=RskghzimP8cbLjer&t=2488 cL0?si=CZmMD1BDGB6J-39e&t=1150
2)	$\frac{\partial \tilde{E}_x}{\partial z} - \frac{\partial \tilde{E}_z}{\partial x} =$	$\frac{\mu_{yx}}{c_0}\frac{\partial H_x}{\partial t} + \frac{\mu_{yy}}{c_0}\frac{\partial H_y}{\partial t} + \frac{\mu_{yz}}{c_0}\frac{\partial H_z}{\partial t}$		$\frac{\partial \tilde{E}_x}{\partial z} - \frac{\partial \tilde{E}_z}{\partial x} =$	$= \frac{\mu_{yy}}{c_0} \frac{\partial H_y}{\partial t}$			
3)	$\frac{\partial \tilde{E}_{y}}{\partial x} - \frac{\partial \tilde{E}_{x}}{\partial y} =$	$\frac{\mu_{zx}}{c_0}\frac{\partial H_x}{\partial t} + \frac{\mu_{zy}}{c_0}\frac{\partial H_y}{\partial t} + \frac{\mu_{zz}}{c_0}\frac{\partial H_z}{\partial t}$	Assume Diagonal $\epsilon \& \mu$ Tensor \rightarrow	$\frac{\partial \tilde{E}_y}{\partial x} - \frac{\partial \tilde{E}_x}{\partial y} =$	$= \frac{\mu_{zz}}{c_0} \frac{\partial H_z}{\partial t}$			
4)	$\frac{\partial \widetilde{H}_z}{\partial y} - \frac{\partial \widetilde{H}_y}{\partial z} =$	$\frac{\epsilon_{xx}}{c_0} \frac{\partial \tilde{E}_x}{\partial t} + \frac{\epsilon_{xy}}{c_0} \frac{\partial \tilde{E}_y}{\partial t} + \frac{\epsilon_{xz}}{c_0} \frac{\partial \tilde{E}_z}{\partial t}$		$\frac{\partial \widetilde{H}_z}{\partial y} - \frac{\partial \widetilde{H}_y}{\partial z} =$	$= \frac{\epsilon_{xx}}{c_0} \frac{\partial \tilde{E}_x}{\partial t}$			
5)	$\frac{\partial \widetilde{H}_x}{\partial z} - \frac{\partial \widetilde{H}_z}{\partial x} =$	$\frac{\epsilon_{yx}}{c_0} \frac{\partial \tilde{E}_x}{\partial t} + \frac{\epsilon_{yy}}{c_0} \frac{\partial \tilde{E}_y}{\partial t} + \frac{\epsilon_{yz}}{c_0} \frac{\partial \tilde{E}_z}{\partial t}$		$\frac{\partial \widetilde{H}_x}{\partial z} - \frac{\partial \widetilde{H}_z}{\partial x} =$	$= \frac{\epsilon_{yy}}{c_0} \frac{\partial \tilde{E}_y}{\partial t}$			
6)	$\frac{\partial \widetilde{H}_y}{\partial x} - \frac{\partial \widetilde{H}_x}{\partial y} =$	$\frac{\epsilon_{zx}}{c_0} \frac{\partial \tilde{E}_x}{\partial t} + \frac{\epsilon_{zy}}{c_0} \frac{\partial \tilde{E}_y}{\partial t} + \frac{\epsilon_{zz}}{c_0} \frac{\partial \tilde{E}_z}{\partial t}$		$\frac{\partial \widetilde{H}_y}{\partial x} - \frac{\partial \widetilde{H}_x}{\partial y} =$	$= \frac{\epsilon_{zz}}{c_0} \frac{\partial \tilde{E}_z}{\partial t}$			

Expansion of Temporal component (numeric)			
Temporal	Future value		$c_0 \Delta t \left[\partial \tilde{E}_z(t) \partial \tilde{E}_y(t) \right]$
$\partial \tilde{E}_z(t) \partial \tilde{E}_y(t) \widetilde{\mu_{xx} \partial H_x(t)}$	$\partial \tilde{E}_{z}(t) \partial \tilde{E}_{y}(t) = \mu_{xx} \underbrace{H_{x}(t + \Delta t/2)} - H_{x}(t - \Delta t/2)$		$H_x(t + \Delta t/2) = \frac{c_0 \Delta t}{\mu_{xx}} \left[\frac{\partial \tilde{E}_z(t)}{\partial y} - \frac{\partial \tilde{E}_y(t)}{\partial z} \right] + H_x(t - \Delta t/2)$
$\frac{\partial y}{\partial y} - \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} - \frac{\partial t}{\partial t}$	$\frac{\partial z}{\partial z} - \frac{\partial z}{\partial z} - \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z}$		
$\frac{\partial \tilde{E}_{x}(t)}{\partial \tilde{E}_{z}(t)} = \frac{\mu_{yy}}{\partial \tilde{E}_{z}(t)} \frac{\partial \tilde{E}_{z}(t)}{\partial \tilde{E}_{z}(t)} \frac$	$\partial \tilde{E}_{x}(t) = \partial \tilde{E}_{z}(t) = \mu_{yy} H_{y}(t + \Delta t/2) - H_{y}(t - \Delta t/2)$		$H_{y}(t + \Delta t/2) = \frac{c_{0}\Delta t}{\mu_{yy}} \left[\frac{\partial \tilde{E}_{x}(t)}{\partial z} - \frac{\partial \tilde{E}_{z}(t)}{\partial x} \right] + H_{y}(t - \Delta t/2)$
$\frac{\partial z}{\partial z} - \frac{\partial x}{\partial x} = \frac{\partial z}{\partial z} - \frac{\partial t}{\partial t}$	$\frac{\partial z}{\partial z} - \frac{\partial x}{\partial x} = \frac{1}{c_0} \frac{\Delta t}{\Delta t}$		$ \frac{\Pi_{y}(t + \Delta t/2) - \frac{\partial}{\partial x} - \frac{\partial}{\partial x}}{\Pi_{y}(t - \Delta t/2)} $
$\partial \tilde{E}_{y}(t) \partial \tilde{E}_{x}(t) \mu_{zz} \partial H_{z}(t)$	$\partial \tilde{E}_{y}(t) = \partial \tilde{E}_{x}(t) = \mu_{zz} H_{z}(t + \Delta t/2) - H_{z}(t - \Delta t/2)$	Solve for the	$H_z(t + \Delta t/2) = \frac{c_0 \Delta t}{\mu_{zz}} \left[\frac{\partial \tilde{E}_y(t)}{\partial x} - \frac{\partial \tilde{E}_x(t)}{\partial y} \right] + H_z(t - \Delta t/2)$
$\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} = \frac{\partial y}{\partial t} - \frac{\partial t}{\partial t}$	$\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} = \frac{1}{c_0} \frac{\Delta t}{\Delta t}$	future value of the field	$H_{z}(t + \Delta t/2) = \frac{1}{\mu_{zz}} \left[\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} \right] + H_{z}(t - \Delta t/2)$
$\partial H_z(t + \Delta t/2) \partial H_y(t + \Delta t/2) = \epsilon_{xx} \partial \tilde{E}_x(t + \Delta t/2)$	$\partial H_z(t + \Delta t/2) \partial H_y(t + \Delta t/2) = \epsilon_{xx} \tilde{E}_x(t + \Delta t) - \tilde{E}_x(t)$	→ Of the field	$ \tilde{E}_{x}(t+\Delta t) = \frac{c_{0}\Delta t}{\epsilon} \left[\frac{\partial H_{z}(t+\Delta t/2)}{\partial y} - \frac{\partial H_{y}(t+\Delta t/2)}{\partial z} \right] + \tilde{E}_{x}(t) $
$\frac{\partial y}{\partial z} - \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} - \frac{\partial t}{\partial z}$	$\frac{\partial y}{\partial z} - \frac{\partial z}{\partial z} = \frac{1}{c_0} \frac{\partial z}{\partial z}$		$E_{x}(t + \Delta t) = \frac{1}{\epsilon_{xx}} \left[\frac{\partial y}{\partial z} \right] + E_{x}(t)$
$\partial H_x(t + \Delta t/2) = \partial H_z(t + \Delta t/2) = \epsilon_{yy} \partial \tilde{E}_y(t + \Delta t/2)$	$\partial H_x(t + \Delta t/2) \partial H_z(t + \Delta t/2) = \epsilon_{yy} \tilde{E}_y(t + \Delta t) - \tilde{E}_y(t)$		$ \frac{\tilde{E}_{xx}}{\tilde{E}_{y}(t+\Delta t)} = \frac{c_{0}\Delta t}{\epsilon} \left[\frac{\partial H_{x}(t+\Delta t/2)}{\partial z} - \frac{\partial H_{z}(t+\Delta t/2)}{\partial x} \right] + \tilde{E}_{y}(t) $
$\frac{\partial z}{\partial z} - \frac{\partial z}{\partial x} \equiv \frac{\partial z}{\partial z} - \frac{\partial t}{\partial t}$	$\frac{\partial z}{\partial z} - \frac{\partial x}{\partial x} \equiv \frac{1}{c_0} \Delta t$		
$\partial H_y(t + \Delta t/2) \partial H_x(t + \Delta t/2) \epsilon_{zz} \partial \tilde{E}_z(t + \Delta t/2)$	$\partial H_y(t + \Delta t/2) \partial H_x(t + \Delta t/2) = \epsilon_{zz} \tilde{E}_z(t + \Delta t) - \tilde{E}_z(t)$		$\tilde{E}_{z}(t+\Delta t) = \frac{c_{0}\Delta t}{\epsilon_{zz}} \left[\frac{\partial H_{y}(t+\Delta t/2)}{\partial x} - \frac{\partial H_{x}(t+\Delta t/2)}{\partial y} \right] + \tilde{E}_{z}(t)$
$\frac{\partial x}{\partial x} - \frac{\partial y}{\partial t} = \frac{\partial z}{\partial t} - \frac{\partial t}{\partial t}$	$\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} = \frac{1}{c_0} \frac{\partial t}{\partial t}$		$\left[\frac{E_{z}(t+\Delta t)-\overline{\epsilon_{zz}}}{\epsilon_{zz}}\left[\frac{\partial x}{\partial x}\right]^{-1}\frac{\partial y}{\partial y}\right]^{+E_{z}(t)}$

Expansion of Spatial component	Expansion of Spatial component (numeric)					
Analytical	Numerical	Yee Grid Cell	Analytical	Numerical	Yee Grid	
$ \frac{\partial \tilde{E}_{z}(t)}{\partial y} - \frac{\partial \tilde{E}_{y}(t)}{\partial z} = \mu_{xx} \frac{\partial H_{x}^{i,j,k}(t)}{\partial t} $	$\frac{\tilde{E}_{z}^{\mathbf{i},\mathbf{j+1},\mathbf{k}}(t) - \tilde{E}_{z}^{\mathbf{i},\mathbf{j},\mathbf{k}}(t)}{\Delta y} - \frac{\tilde{E}_{y}^{\mathbf{i},\mathbf{j},\mathbf{k+1}}(t) - \tilde{E}_{y}^{\mathbf{i},\mathbf{j},\mathbf{k}}(t)}{\Delta z}$	$E_{x}^{i,j,k-1}$ $E_{y}^{i,j,k-1}$ $E_{y}^{i,j,k-1}$ $E_{y}^{i,j-1,k}$	$\frac{\partial H_z\left(t + \frac{\Delta t}{2}\right)}{\partial y} - \frac{\partial H_y\left(t + \frac{\Delta t}{2}\right)}{\partial z} = \epsilon_{xx} \frac{\partial \tilde{E}_x^{i,j,k}\left(t + \frac{\Delta t}{2}\right)}{\partial t}$	$\frac{H_z^{\mathbf{i},\mathbf{j},\mathbf{k}}\left(t+\frac{\Delta t}{2}\right)-H_z^{\mathbf{i},\mathbf{j}-1,\mathbf{k}}\left(t+\frac{\Delta t}{2}\right)}{\Delta y}-\frac{H_y^{\mathbf{i},\mathbf{j},\mathbf{k}}\left(t+\frac{\Delta t}{2}\right)-H_y^{\mathbf{i},\mathbf{j},\mathbf{k}-1}\left(t+\frac{\Delta t}{2}\right)}{\Delta z}$		
$\frac{\partial \tilde{E}_{x}(t)}{\partial z} - \frac{\partial \tilde{E}_{z}(t)}{\partial x} = \mu_{yy} \frac{\partial H_{y}^{i,j,k}(t)}{\partial t}$	$\frac{\tilde{E}_{x}^{\mathbf{i},\mathbf{j},\mathbf{k+1}}(t) - \tilde{E}_{x}^{\mathbf{i},\mathbf{j},\mathbf{k}}(t)}{\Delta z} - \frac{\tilde{E}_{z}^{\mathbf{i+1},\mathbf{j},\mathbf{k}}(t) - \tilde{E}_{z}^{\mathbf{i},\mathbf{j},\mathbf{k}}(t)}{\Delta x}$	$E_{x}^{i,j,k}$ $E_{x}^{i,j,k}$ H_{x} $E_{x}^{i,j,k}$ H_{x} Y	$\frac{\partial H_x\left(t + \frac{\Delta t}{2}\right)}{\partial z} - \frac{\partial H_z\left(t + \frac{\Delta t}{2}\right)}{\partial x} = \epsilon_{yy} \frac{\partial \tilde{E}_y^{i,j,k}\left(t + \frac{\Delta t}{2}\right)}{\partial t}$	$\frac{H_x^{\mathbf{i,j,k}}\left(t + \frac{\Delta t}{2}\right) - H_x^{\mathbf{i,j,k-1}}\left(t + \frac{\Delta t}{2}\right)}{\Delta z} - \frac{H_z^{\mathbf{i,j,k}}\left(t + \frac{\Delta t}{2}\right) - H_z^{\mathbf{i-1,j,k}}\left(t + \frac{\Delta t}{2}\right)}{\Delta x}$	H _y H _z H _z y	
$\frac{\partial \tilde{E}_{y}(t)}{\partial x} - \frac{\partial \tilde{E}_{x}(t)}{\partial y} = \mu_{zz} \frac{\partial H_{z}^{i,j,k}(t)}{\partial t}$	$\frac{\tilde{E}_{y}^{i+1,j,k}(t) - \tilde{E}_{y}^{i,j,k}(t)}{\Delta x} - \frac{\tilde{E}_{x}^{i,j+1,k}(t) - \tilde{E}_{x}^{i,j,k}(t)}{\Delta y}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\partial H_{y}\left(t + \frac{\Delta t}{2}\right)}{\partial x} - \frac{\partial H_{x}\left(t + \frac{\Delta t}{2}\right)}{\partial y} = \epsilon_{zz} \frac{\partial \tilde{E}_{z}^{i,j,k}\left(t + \frac{\Delta t}{2}\right)}{\partial t}$	$\frac{H_{y}^{\mathbf{i,j,k}}\left(t + \frac{\Delta t}{2}\right) - H_{y}^{\mathbf{i-1,j,k}}\left(t + \frac{\Delta t}{2}\right)}{\Delta x} - \frac{H_{x}^{\mathbf{i,j,k}}\left(t + \frac{\Delta t}{2}\right) - H_{x}^{\mathbf{i,j-1,k}}\left(t + \frac{\Delta t}{2}\right)}{\Delta y}$	H _x E _y H _y E _y y	

Create Short-Hand Variable for Curl terms		
Analytical	Numerical	
$C_x^{\tilde{E}}(t) = \frac{\partial \tilde{E}_z(t)}{\partial y} - \frac{\partial \tilde{E}_y(t)}{\partial z}$	$C_x^{\tilde{E}}(t) = \frac{\tilde{E}_z^{i,j+1,k}(t) - \tilde{E}_z^{i,j,k}(t)}{\Delta y} - \frac{\tilde{E}_y^{i,j,k+1}(t) - \tilde{E}_y^{i,j,k}(t)}{\Delta z}$	
	$C_y^{\tilde{E}}(t) = \frac{\tilde{E}_x^{i,j,k+1}(t) - \tilde{E}_x^{i,j,k}(t)}{\Delta z} - \frac{\tilde{E}_z^{i+1,j,k}(t) - \tilde{E}_z^{i,j,k}(t)}{\Delta x}$	
$C_{z}^{\tilde{E}}(t) = \frac{\partial \tilde{E}_{y}(t)}{\partial x} - \frac{\partial \tilde{E}_{x}(t)}{\partial y}$	$C_z^{\tilde{E}}(t) = \frac{\tilde{E}_y^{i+1,j,k}(t) - \tilde{E}_y^{i,j,k}(t)}{\Delta x} - \frac{\tilde{E}_x^{i,j+1,k}(t) - \tilde{E}_x^{i,j,k}(t)}{\Delta y}$	
	$C_x^H(t + \Delta t/2) = \frac{H_z^{i,j,k}(t + \Delta t/2) - H_z^{i,j-1,k}(t + \Delta t/2)}{\Delta y} - \frac{H_y^{i,j,k}(t + \Delta t/2) - H_y^{i,j,k-1}(t + \Delta t/2)}{\Delta z}$	
$C_y^H(t + \Delta t/2) = \frac{\partial H_x(t + \Delta t/2)}{\partial z} - \frac{\partial H_z(t + \Delta t/2)}{\partial x}$	$C_{y}^{H}(t + \Delta t/2) = \frac{H_{x}^{i,j,k}(t + \Delta t/2) - H_{x}^{i,j,k-1}(t + \Delta t/2)}{\Delta z} - \frac{H_{z}^{i,j,k}(t + \Delta t/2) - H_{z}^{i-1,j,k}(t + \Delta t/2)}{\Delta x}$	
$C_z^H(t + \Delta t/2) = \frac{\partial H_y(t + \Delta t/2)}{\partial x} - \frac{\partial H_x(t + \Delta t/2)}{\partial y}$	$C_z^H(t + \Delta t/2) = \frac{H_y^{i,j,k}(t + \Delta t/2) - H_y^{i-1,j,k}(t + \Delta t/2)}{\Delta x} - \frac{H_x^{i,j,k}(t + \Delta t/2) - H_x^{i,j-1,k}(t + \Delta t/2)}{\Delta y}$	
$\widetilde{D}_{x}^{i,j,k}(t) = \epsilon_{xx}^{i,j,k} \widetilde{E}_{x}^{i,j,k}(t + \Delta t)$ $\widetilde{D}_{y}^{i,j,k}(t) = \epsilon_{yy}^{i,j,k} \widetilde{E}_{y}^{i,j,k}(t + \Delta t)$ $\widetilde{D}_{z}^{i,j,k}(t) = \epsilon_{zz}^{i,j,k} \widetilde{E}_{z}^{i,j,k}(t + \Delta t)$	$\widetilde{ ilde{D}}$ is going to make our code more modular	

Rewrite Maxwell's Equations with Short-Hand Curl Terms		
Analytical	Numerical	Solve for future value:
		FDTD UPDATE EQUATIONS
$C_x^{\tilde{E}}(t) = -\frac{\mu_{xx}}{c_0} \frac{\partial H_x(t)}{\partial t}$	$C_x^{\tilde{E}}(t) = -\frac{\mu_{xx}}{c_0} \frac{\overline{H_x(t + \Delta t/2)} - H_x(t - \Delta t/2)}{\Delta t}$	$H_{\mathcal{X}}(t+\Delta t/2) = \frac{c_0 \Delta t}{\mu_{\mathcal{X}\mathcal{X}}} C_{\mathcal{X}}^{\mathcal{E}}(t) + H_{\mathcal{X}}(t-\Delta t/2)$
$C_y^{\tilde{E}}(t) = -\frac{\mu_{xx}}{c_0} \frac{\partial H_y(t)}{\partial t}$	$C_y^{\tilde{E}}(t) = -\frac{\mu_{yy}}{c_0} \frac{H_y(t + \Delta t/2) - H_y(t - \Delta t/2)}{\Delta t}$	$H_{y}(t + \Delta t/2) = \frac{c_0 \Delta t}{\mu_{yy}} C_{y}^{\tilde{E}}(t) + H_{y}(t - \Delta t/2)$
$C_{Z}^{\tilde{E}}(t) = -\frac{\mu_{xx}}{c_0} \frac{\partial H_{Z}(t)}{\partial t}$	$C_z^{\tilde{E}}(t) = -\frac{\mu_{zz}}{c_0} \frac{H_z(t + \Delta t/2) - H_z(t - \Delta t/2)}{\Delta t}$	$H_z(t + \Delta t/2) = \frac{c_0 \Delta t}{\mu_{zz}} C_z^{\tilde{E}}(t) + H_z(t - \Delta t/2)$
$C_x^H(t + \Delta t/2) = \frac{\epsilon_{xx}}{c_0} \frac{\partial \tilde{E}_x(t + \Delta/2)}{\partial t} = \frac{1}{c_0} \frac{\partial \tilde{D}_x(t + \Delta/2)}{\partial t}$	$C_x^H(t + \Delta t/2) = \frac{1}{c_0} \frac{\widetilde{D}_x(t + \Delta t) - \widetilde{D}_x(t)}{\Delta t}$	$\widetilde{D}_{x}(t+\Delta t) = \frac{c_{0}\Delta t}{1}C_{x}^{H}(t+\Delta t/2) + \widetilde{D}_{x}(t)$
1	$C_y^H(t + \Delta t/2) = \frac{1}{c_0} \frac{\widetilde{D}_y(t + \Delta t) - \widetilde{D}_y(t)}{\Delta t}$	$\widetilde{D}_{y}(t+\Delta t) = \frac{c_{0}\Delta t}{1}C_{y}^{H}(t+\Delta t/2) + \widetilde{D}_{y}(t)$
$C_z^H(t + \Delta t/2) = \frac{\epsilon_{zz}}{c_0} \frac{\partial \tilde{E}_z(t + \Delta/2)}{\partial t} = \frac{1}{c_0} \frac{\partial \tilde{D}_z(t + \Delta/2)}{\partial t}$	$C_z^H(t + \Delta t/2) = \frac{1}{c_0} \frac{\widetilde{D}_z(t + \Delta t) - \widetilde{D}_z(t)}{\Delta t}$	$\widetilde{D}_{z}(t+\Delta t) = \frac{c_{0}\Delta t}{1}C_{z}^{H}(t+\Delta t/2) + \widetilde{D}_{z}(t)$
$\widetilde{D}_{x}^{i,j,k}(t) = \epsilon_{xx}^{i,j,k} \widetilde{E}_{x}^{i,j,k}(t + \Delta t)$	$\widetilde{D}_{x}^{i,j,k}(t+\Delta t) = \epsilon_{xx}^{i,j,k} \widetilde{E}_{x}^{i,j,k}(t+\Delta t)$	$\tilde{E}_{x}^{i,j,k}(t+\Delta t) = \frac{1}{\epsilon_{xx}^{i,j,k}} \tilde{D}_{x}^{i,j,k}(t+\Delta t)$
$\widetilde{D}_{y}^{i,j,k}(t) = \epsilon_{yy}^{i,j,k} \widetilde{E}_{y}^{i,j,k}(t + \Delta t)$	$\widetilde{D}_{y}^{i,j,k}(t+\Delta t) = \epsilon_{yy}^{i,j,k} \widetilde{E}_{y}^{i,j,k}(t+\Delta t)$	$\widetilde{E}_{y}^{i,j,k}(t+\Delta t) = \frac{1}{\epsilon_{yy}^{i,j,k}} \widetilde{D}_{y}^{i,j,k}(t+\Delta t)$
$\widetilde{D}_{z}^{i,j,k}(t) = \epsilon_{zz}^{i,j,k} \widetilde{E}_{z}^{i,j,k}(t + \Delta t)$	$\widetilde{D}_{z}^{i,j,k}(t+\Delta t) = \epsilon_{zz}^{i,j,k} \widetilde{E}_{z}^{i,j,k}(t+\Delta t)$	$\tilde{E}_{z}^{i,j,k}(t+\Delta t) = \frac{1}{\epsilon_{zz}^{i,j,k}} \tilde{D}_{z}^{i,j,k}(t+\Delta t)$

Update Equations: https://youtu.be/f0orcF2ubls?si=eFNDKVIReuYxd584&t=1326

Variable	Matlab	Dimension	Matlab Initialization
List	variable	Dimension	Mattab initiatization
LIST	t		
	T	1×1	
	Nx	1×1	
	Ny	1×1	
	Nz	1×1	
$C_x^{\tilde{E}}$	CEx	Nx × Ny × Nz	
C_y^{E}	CEy	Nx × Ny × Nz	
$C_z^{\tilde{E}}$	CEz	Nx × Ny × Nz	
C_Z	CHx	Nx × Ny × Nz	
C_x^H C_y^H	СНу	Nx × Ny × Nz	
C_z^H	CHz	Nx × Ny × Nz	
H_{χ}	Hx	Nx × Ny × Nz	
H_{ν}	Ну	Nx × Ny × Nz	
H_z	Hz	Nx × Ny × Nz	
\widetilde{D}_{χ}	Dx	Nx × Ny × Nz	
$\epsilon_{nn}^{i,j,k}$	exx	Nx × Ny × Nz	
$\begin{array}{c} \epsilon_{i,j,k} \\ \epsilon_{xx} \\ \epsilon_{i,j,k} \\ \epsilon_{yy} \\ \epsilon_{i,j,k} \\ \epsilon_{zz} \\ \mu_{i,j,k} \\ \mu_{xx} \\ \mu_{yy} \\ \mu_{i,j,k} \\ \mu_{zz} \end{array}$	еуу	Nx × Ny × Nz	
$\epsilon_{zz}^{i,j,k}$	ezz	Nx × Ny × Nz	
$\mu_{rr}^{i,j,k}$	uxx	Nx × Ny × Nz	
$\mu_{\nu\nu}^{i,j,k}$	uyy	Nx × Ny × Nz	
$\mu_{zz}^{i,j,k}$	uzz	Nx × Ny × Nz	
c_0	c0	1×1	
ϵ_0	e0	1×1	
μ_0	u0	1×1	
Δt	dt	1×1	
Δx	dx	1×1	
Δy	dy	1×1	
Δz	dz	1×1	

Solve for future value:
FDTD UPDATE EQUATIONS (same ones highlighted above.)
Written Matlab Code: Update Equations
$C_x^{\tilde{E}}(t) = \frac{\tilde{E}_z^{i,j+1,k}(t) - \tilde{E}_z^{i,j,k}(t)}{\Delta y} - \frac{\tilde{E}_y^{i,j,k+1}(t) - \tilde{E}_y^{i,j,k}(t)}{\Delta z}$
$C_{2}^{\tilde{E}}(t) = \frac{\tilde{E}_{\chi}^{i,j,k+1}(t) - \tilde{E}_{\chi}^{i,j,k}(t)}{\tilde{E}_{\chi}^{i,j,k}(t) - \tilde{E}_{\chi}^{i,j,k}(t) - \tilde{E}_{\chi}^{i,j,k}(t)}$
$\tilde{E}_{y}^{\underline{i+1},j,k}(t) - \tilde{E}_{y}^{\underline{i},j,k}(t) \tilde{E}_{x}^{\underline{i},j,k}(t) - \tilde{E}_{x}^{\underline{i},j,k}(t)$
$C_{x}^{H}(t + \Delta t/2) = \frac{H_{z}^{i,j,k}(t + \Delta t/2) - H_{z}^{i,j-1,k}(t + \Delta t/2)}{H_{z}^{i,j,k}(t + \Delta t/2) - H_{z}^{i,j,k}(t + \Delta t/2)} - \frac{H_{y}^{i,j,k}(t + \Delta t/2) - H_{y}^{i,j,k-1}(t + \Delta t/2)}{H_{z}^{i,j,k}(t + \Delta t/2)}$
$\frac{\Delta y}{C^{H}(t + \Delta t/2) - H_{x}^{i,j,k}(t + \Delta t/2) - H_{x}^{i,j,k-1}(t + \Delta t/2)} - \frac{H_{z}^{i,j,k}(t + \Delta t/2) - H_{z}^{i-1,j,k}(t + \Delta t/2)}{(t + \Delta t/2) - H_{z}^{i-1,j,k}(t + \Delta t/2)}$
$C_{Z}^{H}(t + \Delta t/2) = \frac{\Delta z}{\Delta x} \frac{\Delta x}{\Delta x}$ $C_{Z}^{H}(t + \Delta t/2) = \frac{H_{y}^{i,j,k}(t + \Delta t/2) - H_{y}^{i-1,j,k}(t + \Delta t/2)}{\Delta x} - \frac{H_{x}^{i,j,k}(t + \Delta t/2) - H_{x}^{i,j-1,k}(t + \Delta t/2)}{\Delta y}$
$H_x(t + \Delta t/2) = \frac{c_0 \Delta t}{c_x} C_x^{\mathcal{E}}(t) + H_x(t - \Delta t/2)$
$H_{y}(t + \Delta t/2) = \frac{c_{0}\Delta t}{\mu_{yy}} C_{y}^{\mathcal{E}}(t) + H_{y}(t - \Delta t/2)$ $H_{z}(t + \Delta t/2) = \frac{c_{0}\Delta t}{\mu_{zz}} C_{z}^{\mathcal{E}}(t) + H_{z}(t - \Delta t/2)$ $\tilde{D}_{x}(t + \Delta t) = \frac{c_{0}\Delta t}{1} C_{x}^{\mathcal{H}}(t + \Delta t/2) + \tilde{D}_{x}(t)$
$H_z(t + \Delta t/2) = \frac{c_0 \Delta t}{\mu_{zz}} C_z^{\tilde{E}}(t) + H_z(t - \Delta t/2)$
$\widetilde{D}_{\chi}(t+\Delta t) = \frac{c_0 \Delta t}{1} C_{\chi}^H(t+\Delta t/2) + \widetilde{D}_{\chi}(t)$
$\widetilde{D}_{y}(t+\Delta t) = \frac{c_{0}\Delta t}{1}C_{y}^{H}(t+\Delta t/2) + \widetilde{D}_{y}(t)$
$\widetilde{D}_{z}(t+\Delta t) = \frac{c_0 \Delta t}{1} C_z^H(t+\Delta t/2) + \widetilde{D}_z(t)$
$\widetilde{E}_{x}^{i,j,k}(t+\Delta t) = \frac{1}{\epsilon_{xx}^{i,j,k}} \widetilde{D}_{x}^{i,j,k}(t+\Delta t)$
$\tilde{E}_{y}^{i,j,k}(t+\Delta t) = \frac{1}{\epsilon_{yy}^{i,j,k}} \tilde{D}_{y}^{i,j,k}(t+\Delta t)$
$\widetilde{E}_{z}^{i,j,k}(t+\Delta t) = \frac{1}{\epsilon_{zz}^{i,j,k}} \widetilde{D}_{z}^{i,j,k}(t+\Delta t)$

Boundary Conditions: https://youtu.be/f0orcF2ubls?si=DO1kOVgE6b5TPSIn&t=1553

Full Finite Difference Equations	
Human Readable Math Form	Matlab Code Form
$H_x^{i,j,k}(t+\Delta t/2) = \frac{\Delta t}{\mu_{xx}} \left[\frac{\tilde{E}_z^{i,j+1,k}(t) - \tilde{E}_z^{i,j,k}(t)}{\Delta y} - \frac{\tilde{E}_y^{i,j,k+1}(t) - \tilde{E}_y^{i,j,k}(t)}{\Delta z} \right] + H_x(t-\Delta t/2)$	<pre>% Calculate Magnetic field (for next integer half step) Hx(1:(Nz-1)) = Hx(1:(Nz-1)) + squeeze(mH(30,30,1:(Nz-1))) .* (Ey(2:Nz) - Ey(1:(Nz-1)));</pre>
$H_y^{i,j,k}(t+\Delta t/2) = \frac{\Delta t}{\mu_{yy}} \left[\frac{\tilde{E}_x^{i,j,k+1}(t) - \tilde{E}_x^{i,j,k}(t)}{\Delta z} - \frac{\tilde{E}_z^{i+1,j,k}(t) - \tilde{E}_z^{i,j,k}(t)}{\Delta x} \right] + H_y(t-\Delta t/2)$	
$H_{z}^{i,j,k}(t + \Delta t/2) = \frac{\Delta t}{\mu_{zz}} \left[\frac{\tilde{E}_{y}^{i+1,j,k}(t) - \tilde{E}_{y}^{i,j,k}(t)}{\Delta x} - \frac{\tilde{E}_{x}^{i,j+1,k}(t) - \tilde{E}_{x}^{i,j,k}(t)}{\Delta y} \right] + H_{z}(t - \Delta t/2)$	
$\tilde{E}_{x}^{i,j,k}(t+\Delta t) = \frac{\Delta t}{\epsilon_{xx}} \left[\frac{H_{z}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{z}^{i,j-1,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta y} - \frac{H_{y}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{y}^{i,j,k-1}\left(t+\frac{\Delta t}{2}\right)}{\Delta z} \right] + \tilde{E}_{x}(t)$	
$\tilde{E}_{y}^{i,j,k}(t+\Delta t) = \frac{\Delta t}{\epsilon_{yy}} \left[\frac{H_{x}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{x}^{i,j,k-1}\left(t+\frac{\Delta t}{2}\right)}{\Delta z} - \frac{H_{z}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{z}^{i-1,j,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta x} \right] + \tilde{E}_{y}(t)$	
$\tilde{E}_{z}^{i,j,k}(t+\Delta t) = \frac{\Delta t}{\epsilon_{zz}} \left[\frac{H_{y}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{y}^{i-1,j,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta x} - \frac{H_{x}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{x}^{i,j,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta y} \right] + \tilde{E}_{z}(t)$	

Full Finite Difference Equations	
Human Readable Math Form	Matlab Code Form
$H_x^{i,j,k}(t+\Delta t/2) = \frac{\Delta t}{\mu_{xx}} \left[\frac{\tilde{E}_z^{i,j+1,k}(t) - \tilde{E}_z^{i,j,k}(t)}{\Delta y} - \frac{\tilde{E}_y^{i,j,k+1}(t) - \tilde{E}_y^{i,j,k}(t)}{\Delta z} \right] + H_x(t-\Delta t/2)$	<pre>% Calculate Magnetic field (for next integer half step) Hx(1:(Nz-1)) = Hx(1:(Nz-1)) + squeeze(mH(30,30,1:(Nz-1))) .* (Ey(2:Nz) - Ey(1:(Nz-1)));</pre>
$H_y^{i,j,k}(t+\Delta t/2) = \frac{\Delta t}{\mu_{yy}} \left[\frac{\tilde{E}_\chi^{i,j,k+1}(t) - \tilde{E}_\chi^{i,j,k}(t)}{\Delta z} - \frac{\tilde{E}_Z^{i+1,j,k}(t) - \tilde{E}_Z^{i,j,k}(t)}{\Delta x} \right] + H_y(t-\Delta t/2)$	
$H_{z}^{i,j,k}(t + \Delta t/2) = \frac{\Delta t}{\mu_{zz}} \left[\frac{\tilde{E}_{y}^{i+1,j,k}(t) - \tilde{E}_{y}^{i,j,k}(t)}{\Delta x} - \frac{\tilde{E}_{x}^{i,j+1,k}(t) - \tilde{E}_{x}^{i,j,k}(t)}{\Delta y} \right] + H_{z}(t - \Delta t/2)$	
$\widetilde{D}_{x}^{i,j,k}(t+\Delta t) = \frac{\Delta t}{c_0} \left[\frac{H_z^{i,j,k}\left(t + \frac{\Delta t}{2}\right) - H_z^{i,j-1,k}\left(t + \frac{\Delta t}{2}\right)}{\Delta y} - \frac{H_y^{i,j,k}\left(t + \frac{\Delta t}{2}\right) - H_y^{i,j,k-1}\left(t + \frac{\Delta t}{2}\right)}{\Delta z} \right] + \widetilde{D}_{x}(t)$	
$\widetilde{D}_{y}^{i,j,k}(t+\Delta t) = \frac{\Delta t}{c_0} \left[\frac{H_{x}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{x}^{i,j,k-1}\left(t+\frac{\Delta t}{2}\right)}{\Delta z} - \frac{H_{z}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{z}^{i-1,j,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta x} \right] + \widetilde{D}_{y}(t)$	
$\widetilde{D}_{z}^{i,j,k}(t+\Delta t) = \frac{\Delta t}{c_0} \left[\frac{H_{y}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{y}^{i-1,j,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta x} - \frac{H_{x}^{i,j,k}\left(t+\frac{\Delta t}{2}\right) - H_{x}^{i,j-1,k}\left(t+\frac{\Delta t}{2}\right)}{\Delta y} \right] + \widetilde{D}_{z}(t)$	