11.08 Notes

Math 403/503

November 2022

1 Homework Hint

Use sin and cos identities to solve 5.

2 Projections

In the proof of Gram-Schmidt we showed that if $e_1, ..., e_j$ is an orthonormal list and v is any vector, then v can be written as $v = \langle v, e_1 \rangle e_1 + ... + \langle v, e_j \rangle e_j + w$ where w is orthogonal to $e_1, ..., e_j$.

Why does it work?

$$< w, e_j > = < v - < v, e_1 > e_1 - \dots - < v, e_j > e_j, e_j > \\ = < v, e_i > - < v, e_1 > < e_1, e_i > - \dots - < v, e_j > < e_j, e_j > \\ = < v, e_i > - < v, e_i > < e_i, e_i > \\ = < v, e_i > - < v, e_i > = < v, e_i > = 0$$

This key idea leads to the following definition.

Definition: Let V be an inner product space and let U be a subspace of V. The <u>orthogonal complement</u> of U, denoted U^{\perp} is defined by $U^{\perp} = \{v \in V : \forall u \in U, < u, v >= 0\}$.

Proposition: U^{\perp} is a subspace of V. The proof follows from the additivity and scalar multiple properties of the inner product.

Example: If $v_1, \epsilon U^{\perp}, v_2 \epsilon U^{\perp} : \forall u \epsilon U < u, v_1 >= 0 \text{ and } < u, v_2 >= 0$. Then $\forall u \epsilon U < u, v_1 + v_2 >= < u, v_1 > + < u, v_2 >= 0$.

Theorem: V equals the direct sum of U and U^{\perp} (provided U is finite dimensional).

Proof: First we need to show V equals the sum of U and U^{\perp} . This comes from the calculation earlier. Let U have ONB $e_1, ..., e_j$ (we know such a basis exists by Gram-Schmidt). Then for any $v \in V$ we can express $v = \langle v, e_1 \rangle + ... + \langle v, e_j \rangle + w$ where $\langle w, v_1 \rangle = ... = \langle w, e_j \rangle = 0$. Then v = u + w where $u = \langle v, e_1 \rangle = e_1 + ... + \langle v, e_j \rangle = e_j \in U$ and $w \in U^{\perp}$ (w is orthogonal to a basis

of U, thus orthogonal to everything in U). Last, we need to show directness of the sum. We can simply show that the intersection of U and U^{\perp} equals the zero space. This is true because if u exists in the intersection of U and U^{\perp} then < u, u >= 0 and this implies that u = 0.

This decomposition theorem $V=U\oplus U^{\perp}$ allows us to talk about projections onto U.

Definition: Suppose $V = U \oplus U^{\perp}$. Then for any $v \in V$ we can write v = u + w where $u \in U$ and $w \in U^{\perp}$. We call u the <u>orthogonal projection</u> of v onto U. **Notation**: PU denotes the mapping that carries v to the orthogonal projection onto U. $P_U(v) = u$. Thus PU is determined by the constraints: $v = P_U(v) + w$ where $w \in U^{\perp}$. How to calculate $P_U(v)$? Let $e_1, ..., e_j$ be an ONB for U. Then $P_U(v) = \langle v, e_1 \rangle e_1 + ... + \langle v, e_j \rangle e_j$.

The map P_U is a linear map $P_U: V \to V$. It has many special properties, see 6.55 in the textbook. Projections help solve "nearest vector" optimization problems including curve fitting and linear least squares.

```
Theorem: P_U(v) is the vector in U nearest to v.

Proof: ||P_U(v) - v||^2 \le ||P_U(v) - v||^2 + ||u - P_U(v)||^2 for any u \in U.

= ||P_U(v) - v + u - P_U(v)||^2

= ||u - v||^2

Thus, ||P_U(v) - v|| \le ||u - v|| for any u \in U.
```

Example using orthogonal projections for curve fitting. Problem: Let $f(x) = e^x$. Find the quadratic function that best approximates e^x on the interval [-1,1]. Use the inner product: $\langle f, g \rangle = \int_{-1}^{1} fg$

Procedure: Let $U = \operatorname{span}(1, x, x^2) = \operatorname{the}$ quadratic functions, a subspace of $V = \operatorname{all}$ continuous functions. The basis is not orthonormal *sad*. Use Gram-Schmidt to get an ONB of U:

```
q_0(x) = \dots

q_1(x) = \dots

q_3(x) = \dots
```

Then project e^x onto U to get $p(x) = \langle e^x, q_0(x) \rangle = \langle e^x, q_1(x) \rangle = \langle e^x, q_1(x) \rangle = \langle e^x, q_2(x) \rangle = \langle e^$