

JOBSHEET 6 Case Method 1

1. Learning Outcome

Students can solve case study problems by applying the concepts of data types, variables, operators, input-output, and selection structures.

2. Experiment

Allocated time: 100 minutes Instruction:

- Complete this assignment individually.
- Each student must write a program based on the given case study. Ensure that the program runs correctly and implements all the required features.

Question:

The academic department of a university wants to develop a simple system to determine student graduation status based on grades from two core courses:

- Algorithms and Programming
- Data Structures

Each course consists of three assessment components: Midterm Exam (30%), Final Exam (40%), and Assignments (30%).

Course Completion Requirements

1. Course Completion Status Student

passes a course if: • Final score ≥ 60

• If final score $< 60 \rightarrow$ Fail

Numeric Score	Letter Grade	Grade Point	Qualification
80 < N ≤ 100	B+	4.0	Excellent
73 < N ≤ 80	В	3.5	Very Good
65 < N ≤ 73	C+	3.0	Good
60 < N ≤ 65	С	2.5	Fairly Good
50 < N ≤ 60	D	2.0	Fair
39 < N ≤ 50	Е	1.0	Poor
N ≤ 39		0.0	Fail

• Convert the final score into a letter grade according to the following rules:

2. Semester Completion Status (Nested

- **If)** A student passes the semester if:
- Both courses have a "PASS" status.
- > If the average final score of both courses ≥ 70 → Semester Status: PASS
- > If the average $< 70 \rightarrow$ Semester Status: FAIL

- If one or both courses are not passed → Semester Status: FAIL

Example:

```
Name: Cindy Canda
Student ID: 232342345

--- Course 1: Algorithms and Programming ---
Midterm Score: 60
Final Exam Score: 70
Assignment Score: 50

--- Course 2: Data Structures ---
Midterm Score: 70
Final Exam Score: 80
Assignment Score: 80
Assignment Score: 80
```

```
----- ACADEMIC RESULT -----
Name: Cindy Canda
Student ID: 232343245
Courses:
 - Course: Algorithms & Programming
   UTS: 60
   UAS: 70
   Assignment: 50
   Final_Score: 61.00
   Grade: C+
   Status: PASS
  - Course: Data Structures
   UTS: 70
   UAS: 80
   Assignment: 80
   Final_Score: 77.00
   Grade: B+
   Status: PASS
Summary:
 Average_Final_Score: 69.00
 Semester_Status: FAIL (Average < 70)</pre>
```


Assessment Rubric

Assessment Aspect	Weight (%)	Max Score	e Evaluation Criteria
Understanding of Case Study & Logical Flow Analysis	20%	20	15–20: The student explains the program flow systematically (input → process → nested condition → output) and clearly understands the course and semester passing rules. 8–14: Explanation is adequate but some logic parts are not well understood. 0–7: Unable to explain the program flow correctly.
2. Identification of Variables & Data Types	15%	15	12–15: The student explains the purpose of variables, data types, and program block order clearly; able to show the relationship between variables and calculations. 6–11: Explanation is fair but shows some confusion. 0–5: Does not understand code structure or variables.
3. Understanding of Arithmetic Operators in Score Calculation	10%	10	8–10: The student correctly explains how operators (+, *, /) are used to calculate final scores and averages, and understands operator precedence. 4–6: Mostly correct but uncertain about calculation order. 0–4: Does not understand arithmetic operations.
4. Explanation and Understanding of IF and Nested IF Usage	20%	20	15–20: The student can identify nested if parts in the code, explain why they are used, and describe how the hierarchical logic works (e.g., check final score → check exam score). 8–14: Nested if is used but explanation lacks depth. 0–7: Does not understand or misinterprets nested if concepts.
5. Ability to Explain the Logi of Course and Semester Passing Criteria	c 15%	15	12–15: Clearly explains course and semester passing logic, including the relationship with average scores. 6–11: Some minor misconceptions. 0–5: Cannot explain or gives incorrect reasoning.
6. Program Compilation and Correct Output	d 10%	10	8–10: Runs perfectly with correct output. 4–7: Runs with minor bugs. 0–3: Does not run or produces errors.
7. Code Relevance to the Case Study (including variables, operators, conditions, output)	10%	10	8–10: Code fully matches all instructions (no arrays/loops/methods), correctly uses nested if, and produces accurate output. 4–7: Minor technical deviations but main logic is correct. 0–3: Code does not match the case study or contains major errors.

The program can be compiled and the output runs smoothly:

```
TERMINAL
                                               SOURCE CONTROL
 === INPUT DATA ===
 Nama : RINGGA BUDI UTAMA
 NIM : 254107020251
 --- Algoritma dan Pemrograman ---
 UTS : 85
 UAS : 85
 Tugas: 85
 --- Struktur Data ---
 UTS : 90
 UAS : 90
 Tugas: 90
 === HASIL ===
 Nama : RINGGA BUDI UTAMA
 NIM : 254107020251
 Algoritma dan Pemrograman : 85.0 - LULUS
 Struktur Data : 90.0 - LULUS
Rata-rata Nilai Akhir : 87.5
Status Semester : LULUS
 PS C:\Users\RINGGA BUDI UTAMA\OneDrive\Dokumen\RINGGA-1\Jobsheet5>
=== INPUT DATA MAHASISWA ===
Nama : RINGGA BUDI UTAMA
NIM : 254107020251
--- Algoritma dan Pemrograman ---
UAS : 85
Tugas: 85
--- Struktur Data ---
UTS : 90
UAS : 90
Tugas: 90
======= HASIL PENILAIAN AKADEMIK ========
Nama : RINGGA BUDI UTAMA
NIM : 254107020251
Mata Kuliah UTS UAS Tugas Nilai Akhir Nilai Huruf Status
Algoritma Pemrograman 85 85 85,00 A LULUS
Struktur Data 90 90 90,00 A LULUS
                                                               LULUS
Rata-rata Nilai Akhir : 87,50
Status Semester : LULUS (Rata-rata ? 70)
```