4.2. Реализовать метод стрельбы и конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

No	Краевая задача	Точное решение
1	xy''+2y'-xy=0,	
	y'(1)=0,	$y(x) = \frac{e^x}{x}$
	$1.5y(2)+y'(2)=e^2$	A .
2	xy''+2y'-xy=0,	e^{-x}
	$y(1)=e^{-1}$	$y(x) = \frac{e^{-x}}{x}$
	$y(2)=0,5e^{-2}$	A
3	$x^2(x+1) y''-2y=0,$	$y(x) = \frac{1}{x} + 1$
	y' (1)=-1,	$\begin{pmatrix} y(X) + 1 \\ X \end{pmatrix}$
	2y(2) - 4y'(2) = 4 $x^2(x+1) y''-2y=0,$	
4		$y(x) = -1 + \frac{2}{x} + \frac{2(x+1)}{x} \ln x+1 $
	$y(1)=1+4 \ln 2,$	$\begin{vmatrix} y(x) - 1 \\ x \end{vmatrix} = \begin{vmatrix} x - 1 \\ x \end{vmatrix}$
<u></u>	$y(2)=-1+3 \ln 2$	
5	$y''-2(1+(tgx)^2)y=0,$	
	$y'(\frac{\pi}{4}) = 3 + \frac{\pi}{2}$,	$y(y) = 1 + 1 + t \alpha(y(y+1))$
	2	y(x)=1++tg(x(x+1))
	$y'(\frac{\pi}{3}) - y(\frac{\pi}{3}) = 3 + \frac{\pi(4 - \sqrt{3})}{3}$	
6	3 3 3	
6	$y''-2(1+(tgx)^2)y=0,$ y(0)=0,	
		y(x) = -tgx
	$y(\frac{\pi}{6}) = -\frac{\sqrt{3}}{3}$	V \/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7	0 5	
7	(2x+1) y"+4xy'-4y=0,	-2x
	y'(0) = -1,	$y(x) = x + e^{-2x}$
8	y'(1)+2y(1)=3	
0	(2x+1) y"+4xy'-4y=0,	$y(x) = 3x + e^{-2x}$
	y'(-2)+2y(-2)=-9,	y(x) = 5x + e
9	y'(0)=1 xy''-(2x+1)y'+(x+1)y=0,	
7	y'(0)=1,	$y(x) = e^x (x^2 + 1)$
	y'(0)=1, y'(1)=2y(1)=0	y(A) = C (A + 1)
10	xy''-(2x+1)y'+(x+1)y=0,	
	y'(1)=3e,	$y(x) = e^x x^2$
	y'(2)-2y(2)=0	
11	x(x-1)y''-xy'+y=0,	$y(x)=1+x+x \ln x $
	y'(1)=2,	
	2y'(2)-y(2)=1	

12	x(x-1)y''-xy'+y=0	$y(x)=2+x+2x \ln x $
12		$y(\Lambda) - 2 + \Lambda + 2\Lambda \prod_{i=1}^{M} \lambda_i$
	y'(1)=3 y'(2)=4	
No	y(3)-3y'(3)=-4 Vnacnog payona	Тончо почночно
13	Краевая задача $(e^x + 1) y'' - 2y' - e^x y = 0,$	Точное решение
13		1
	$y'(0) = \frac{3}{4}$,	$y(x) = e^x - 1 + \frac{1}{e^x + 1}$
	 	$e^{r}+1$
	$y^{\dagger}(1) = \frac{e^2(e+2)}{(e+1)^2}$	
14	$(e^{x} +1) y''-2y'-e^{x}y=0,$	
	y' (0)=1,	$y(x) = e^x - 1$
	$y'(1)-y(1)=1 x^2 \ln x y'' - xy'+y=0,$	
15	$x^2 \ln x y'' - xy' + y = 0,$	
	y' (-1)=0,	$y(x)=1+x+\ln x$
	y' (1)-y(1)=0	
16		
	y(0)=2,	$y(x) = \sin x + 2 - \sin x \cdot \ln \left(\frac{1 + \sin x}{1 - \sin x} \right)$
	$y(\frac{\pi}{6}) = 2.5 - 0.5 \cdot \ln 3$	$\int (x)^{-\sin x} dx = 2 \sin x \sin x$
	0	
17	$(x^2-1) y''+(x-3)y'-y=0,$	
	y'(0)=0,	$y(x) = x - 3 + \frac{1}{x + 1}$
	y'(1)+y(1)=-0.75	x+1
18	x y''-(x+1)y'-2(x-1)y=0,	() -2x + (2- +1) -x
	y'(0)=4,	$y(x) = e^{2x} + (3x+1) e^{-x}$
10	$y'(1)-2y(1)=-9e^{-1}$	
19	$y''+4xy'+(4x^2+2)y=0,$	2
	y'(0)=1,	$y(x) = (1+x)e^{-x^2}$
20	4y(2)-y'(2)=23e ⁻⁴	
20	xy''-(2x+1)y'++2y=0,	2
	y'(0)=4,	$y(x) = 2x + 1 + e^{2x}$
21	y'(1)-2y(1)=-4	
41	x(2x+1)y''+2(x+1)y'-2y=0,	1
	y'(1)=0,	$y(x) = x + 1 + \frac{1}{x}$
	$y(3)-y'(3)=\frac{31}{9}$	X
22	x(x+4)y''-(2x+4)y'+2y=0,	
22	` /5 ` /5	$y(x)=x^2+x+2$
	y'(0)=1, y(2)-y'(2)=3	$J(\Lambda) = \Lambda + \Lambda + \Delta$
	y(2)-y (2)-3	
23	$x(x^2+6)y''-4(x^2+3)y'+6xy=0,$	
	y'(0)=0,	$y(x)=x^3+x^2+2$
		3(-7)
24	y(4)-y'(4)=26 $(x^2+1)y''-2y=0$	$y(x)=x^2+x+1+$
	y'(0)=2	$+(x^2+1)\operatorname{arctg}(x)$
	1 · · · · · · · · · · · · · · · · · · ·	(
	$y(1) = 3 + \frac{\pi}{2}$	
25	2x(x+2)y''+(2-x)y'+y=0,	
	$= \sum_{X \in X} (X + Z) y + (Z - X) y + y - U,$	

	$y'(4)+y(4)=\frac{21}{4}$,	$y(x) = \sqrt{ x } + x - 2$
№	Краевая задача	Точное решение
26	$x(x+1)y''+(x+2)y' - y = x + \frac{1}{x},$ $y'(1) = \frac{3}{2},$	$y(x) = x + \frac{7}{2} + \frac{1}{x} + \left(\frac{x}{2} + 1\right) \ln x $
	$4y'(2)+y(2)=13+4\ln 2$	
27		$y(x) = 2x - 1 + e^{-x} + \frac{x^2 + 1}{2}$
28	xy''-(2x+1)y'++2y=0, y'(0)=2, $y(1)=e^2$	$y(x) = e^{2x}$
29	$(x^{2}-1) y''+(x-3)y'-y=0,$ y(0)=-18, y(3)=0	y(x)=6x-18
30	$(x^2+1)y''-2y=0,$ y'(0)=0, y(2)-y'(2)=1	$y(x)=x^2+1$