РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (РОСПАТЕНТ)

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-5, 123995 Телефон 240 60 15. Телекс 114818 ПДЧ. Факс 243 33 37

Ham № 20/12-161

СПРАВКА

Федеральный институт промышленной собственности (далее – Институт) настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы, реферата и чертежей (если имеются) заявки № 2001135068 на выдачу патента на изобретение, поданной в Институт в декабре месяце 26 дня 2001 года (26.12.2001).

Название изобретения:

Способ нанесения алюминиевых покрытий на

изделия из чугуна и стали

Заявитель:

Закрытое акционерное общество «Межотрас-

левое юридическое агентство «Юрпромконсалтинг»

ВОЛКОВ Юрий Сергеевич

МАРУТЬЯН Сергей Васильевич

Действительные авторы:

ВОЛКОВ Юрий Сергеевич

МАРУТЬЯН Сергей Васильевич

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Заведующий отделом 20

The state of the s

А.Л.Журавлев

СПОСОБ НАНЕСЕНИЯ АЛЮМИНИЕВЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯ ИЗ ЧУГУНА И СТАЛИ

Изобретение относится к области нанесения алюминиевых покрытий погружением в расплав и может быть использовано для защиты от коррозии проката и изделий из чугуна и стали.

Известны способы нанесения алюминиевых покрытий на стальные изделия погружением в расплав алюминия, содержащий цинк и магний.

Ближайшим аналогом изобретения является способ нанесения алюминиевых покрытий на изделия из чугуна и стали, включающий подготовку поверхности изделия и последующее погружение его в алюминиевый расплав, легированный цинком и кремнием (GB, № 1440328, МПК С23 С1/00, 1976г.).

В качестве недостатка ближайшего аналога можно отметить невозможность нанесения алюминиевого покрытия на изделия из чугуна и стали при температуре ниже 715°C без применения флюсов, а наличие слоя интерметаллидов достаточно большой толщины (10-15 мкм) делает покрытие хрупким, что не позволяет в дальнейшем деформировать стальное изделие с алюминиевым покрытием.

Технический результат, на достижение которого направлено изобретение, заключается в снижении температуры расплава алюминия, при которой обеспечивается формирование достаточно пластичного защитного покрытия без применения флюса, позволяющее деформировать прокат и изделия с алюминиевым покрытием.

Указанный технический результат достигается тем, что в способе нанесения алюминиевых покрытий на изделия из чугуна и стали, включающем подготовку поверхности изделия и последующее погружение его в алюминиевый расплав, легированный цинком и кремнием, проводят

струйно-абразивную подготовку изделия, а алюминиевый расплав легируют цинком, кремнием, магнием и оловом при следующем содержании масс.%:

цинк 7.0 - 10.0

кремний 3.0 - 5.0

магний 0.5 – 1.5

олово 0.2 - 0.5,

при этом температура расплава лежит в пределах от 660 до 680 град. С.

Результаты нанесения алюминиевых покрытий на образцы при струйно-абразивной подготовки поверхности в расплавах с различными химическими составами, изучение структуры и эксплуатационных свойств получаемых покрытий приведены в Таблице 1.

Пластичность покрытий оценивается с помощью пробы образца с покрытием на изгиб вокруг цилиндрической оправки. В Таблице 1 приведен минимальный диаметр оправки, при навивке на которую покрытие на образце не разрушается. Коррозионные свойства покрытий оценивается по результатам ускоренных испытаний образцов при воздействии фазовой пленки влаги, содержащей хлор-ион (имитация морской атмосферы).

Электрохимические исследования получаемых покрытий показали, что легирование алюминиевого расплава, содержащего цинк, кремний, магний оловом приводит К значительному повышению воспроизводимости результатов измерения электродного потенциала покрытия, свидетельствует 0 высокой однородности химического состава поверхностных слоев покрытия.

Алюминиевые покрытия наносили на образцы после струйноабразивной подготовки поверхности при различных температурновременных режимах погружением в расплав следующего химического состава: алюминий – основа, цинк - 8,0%, кремний - 4,5%, магний - 1,1%, олово - 0,4%. Результаты исследований полученных покрытий приведены в Таблице 2. Исследования показали, что в температурном интервале 660-680 град. С происходит формирование сплошного и равномерного по толщине алюминиевого покрытия без применения флюса, эти покрытия отличаются высокой коррозионной стойкостью и пластичностью.

Анализ результатов алюминирования в расплавах различного химического состава и по различным режимам (Табл.1,2) показал, что алюминирование стальных образцов со струйно-абразивной подготовкой поверхности в расплаве содержащем алюминий - основа, цинк - 7,0-10,0%, кремний 3,0-5,0%, магний - 0,5-1,5%, олово - 0,2-0,5% при температуре 660-680 град. С приводит к достижению поставленной цели. Алюминирование в предлагаемом расплаве без применения флюсов по приведенным режимам способствует формированию равномерных по толщине и структуре пластичных покрытий с высокой коррозионной стойкостью без применения флюсов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ нанесения алюминиевых покрытий на изделия из чугуна и стали, включающий подготовку поверхности изделия и последующее погружение его в алюминиевый расплав, легированный цинком и кремнием, отличающийся тем, что проводят струйно-абразивную подготовку изделия, а алюминиевый расплав легируют цинком, кремнием, магнием и оловом при следующем содержании масс.%:

цинк 7.0 - 10.0

кремний 3.0 – 5.0

магний 0.5 – 1.5

олово 0.2 - 0.5,

при этом температура расплава лежит в пределах от 660 до 680 град. С.

Таблица 1.

Основные характеристики алюминиевых покрытий, сформированных в расплавах различного химического состава.

	T		<u> </u>	T			Т
Характер коррозии	Язвенный	Язвенный	Общий, местный	Общий, местный	Общий, местный	Общий	Общий
Коррозионные потери	покрытия, мкм						
Мин. диаметр оправки, мм		20	15	10	10	10	10
Толщина переходной	30 ны, мкм 50	20	25	20	20	10	λύ
Толцина покрытия,	70	40	50	70	09	70	70
Выдержки в	40	70	09	09	70	70	70
Температура нанесения, грал. С	720-740	730-750	690-710	002-089	670-690	089-099	089-099
Состав расплава	Алюминий - основа, Кремний - 2,0%, Марганец - 0,5%	Алюминий - основа, Кремний - 7,0%, Марганец - 0,5%	Алюминий – основа, Цинк – 5.0%, Кремний – 2,0%	Алюминий - основа, Цинк - 7,0%, Кремний - 5,0%	Алюминий - основа, Цинк - 10,0%, Кремний - 5,0%	· · '	Алюминий - основа, Цинк - 10,0%, Кремний - 5,0%, Магний - 1,0%, Олово - 0,5%

Таблица 2.

Основные характеристики алюминиевых покрытий, сформированных в расплаве предлагаемого химического состава.

	\top	T	Τ	Т	Т	Τ	$\overline{}$
Характер коррозии	Обший	Общий	Обший	Общий	Местный	Местный	Местный
Коррознонные потери	покрытия, мкм						
Мин. днаметр оправки, мм	15	10	10	10	20	25	30
Толщина переходной	10	5		5	10	15	20
Толщина покрытия,	80	0/2	09	09	70	70	06
Время выдержки в распляве сек	120	80	70	70	70	70	80
Температура нанесения, гоал.	650	099	929	089	069	700	710
Состав расплава	'점	ı	Кремний - 4,5%,		Олово - 0,4%		

РЕФЕРАТ

СПОСОБ НАНЕСЕНИЯ АЛЮМИНИЕВЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯ ИЗ ЧУГУНА И СТАЛИ

Изобретение относится к области нанесения алюминиевых покрытий погружением в расплав и может быть использовано для защиты от коррозии проката и изделий из чугуна и стали.

Технический результат, на достижение которого направлено изобретение, заключается в снижении температуры расплава алюминия, при которой обеспечивается формирование достаточно пластичного защитного покрытия без применения флюса, позволяющее деформировать прокат и изделия с алюминиевым покрытием.

Способ нанесения алюминиевых покрытий на изделия из чугуна и стали включает струйно-абразивную подготовку изделия, а алюминиевый расплав легируют цинком, кремнием, магнием и оловом при следующем содержании масс.%:

7.0 - 10.0 кремний 3.0 - 5.0 магний 0.5 - 1.5 олово 0.2 - 0.5.

Температура расплава лежит в пределах от 660 до 680 град. С.