Finding Near-Duplicates

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Source for this deck

• Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 3) [slides ch3]

Fast near-neighbor applications

- For documents
 - Find "legitimate" duplicates
 - Copies of the same press release or cable
 - Mirrors of the same documents, for efficiency
 - Find "illegitimate" duplicates
 - Plagiarism
- For baskets
 - Find customers who purchase similar items

Example: plagiarism detection

Fast near-neighbor challenges

- Too many documents to compare all pairs
 - OK to pay linear or log cost, but not quadratic
- Documents cannot fit in main memory
 - They are too large or too many
- Many small pieces of one document can appear out of order in another

Shingling (ngrams)

First step: shingling

Candidate pairs:

those pairs of signatures that we need to test for similarity

Sets of **k** letters or words that appear consecutively in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Naïve solution:

feature selection over bag of words

- Document = set of terms
 - \rightarrow Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?

Naïve solution:

feature selection over bag of words

- Document = set of terms
 - \rightarrow Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?
 - Doesn't preserve the ordering
 - Unimportant terms are also relevant (stylistic)

Shingles

- An n-gram in a document is a sequence of n tokens that appears in the document
- Shingles are either n-grams (word-level) or sequences of characters ("character n-grams"), depending on the application
- Character-level example: k=2; document D1 = abcabSet of 2-shingles: $S(D1) = \{ab, bc, ca\}$
 - Option: Shingles as a bag (multiset), count ab twice: $S'(D1) = \{ab, bc, ca, ab\}$

Example: 4-grams

E.g., 4-shingles of "My name is Inigo Montoya. You killed my father. Prepare to die":

{

- my name is inigo
- name is inigo montoya
- is inigo montoya you
- inigo montoya you killed
- montoya you killed my
- you killed my father
- killed my father prepare
- my father prepare to
- father prepare to die

Compressed representation of shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its kshingles
 - Note we could have false positives due to hash collisions
- Example: k=2; document D1= abcab Set of 2-shingles: $S(D1) = \{ab, bc, ca\}$ Hash the singles (example): $h(D1) = \{1, 5, 7\}$

Documents as sets of shingles

- A document is now a set of shingles
 - Dimensionality reduced from "words in a dictionary" to "number of distinct shingles"
 - Higher dimensionality but more sparse
- Working assumption
 - Documents that have lots of shingles in common have similar text, even if the text appears in different order
- In practice, k should be large enough, or most documents will have most shingles
 - -k = 5 is OK for short documents
 - k = 10 is better for long documents

Using shingles directly

- Suppose we need to find near-duplicate documents among one million documents
- Naïvely, we would have to compute all pairwise Jaccard similarities $\approx 5*10^{11}$ comparisons
- At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For 10 million documents, it takes more than a year...

Min hashing

Next step: min hashing

Candidate pairs:

those pairs of signatures that we need to test for similarity

Sets of k letters or words that appear consecutively in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Sets can be bit vectors

- Many similarity problems involve finding subsets with substantial intersection
- Remember we can encode sets using bit vectors
 - set intersection = bitwise AND
 - set union = bitwise OR
- Example: $C_1 = 10111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

$$J(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

From sets to boolean matrices

- Rows = items (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is very sparse!

Hashing set representations

- We don't want to compare c₁, c₂, they might be too large, slowing down the computation
- Instead, we compute signatures $h(c_1)$, $h(c_2)$ that are smaller in size than c_1 and c_2

Desired properties:

$$c_1 = c_2 \Rightarrow Prob.(h(c_1) = h(c_2))$$
 is large
 $c_1 \neq c_2 \Rightarrow Prob.(h(c_1) \neq h(c_2))$ is large

Hashing set representations (cont.)

- Naïve approach (non-LSH-based):
 - 1) Compute signatures of columns: small summaries of columns
 - 2) Examine all pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: verify that columns with similar signatures are really similar
- Warnings:
 - Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hash function for Jaccard metric: min hashing

- Imagine the rows of the boolean matrix permuted under random but fixed permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Minhash example

Rows=Shingles, Columns=Documents
Permutation D1 D2 D3 D4

3 1 0 1 0

6

Exercise: shingling

Index of the bit vector position where the first 1 occurs according to the ordering of the permutation

Pin board: https://upfbarcelona.padlet.org/chato/bu8ekcrferwf6lv5

Minhash approximates Jaccard

- Let π be a random permutation
- Let $h_{\pi}(S)$ be the first element of S under the permutation π
- If $h_{\pi}(A) = h_{\pi}(B)$ and there are no collisions, then:
 - Among all elements in A U B ...
 - $^-$... the chosen element is in A \cap B
- This happens with probability $|A \cap B|/|A \cup B| = \operatorname{Jaccard}(A, B)$
- Hence $Pr[h_{\pi}(A) = h_{\pi}(B)] = Jaccard(A, B)$

We will use multiple permutations

- Jaccard(A, B) = $E[h_{\pi}(A) = h_{\pi}(B)]$
 - = number of matches / number of permutations
- We will use many permutations, e.g., 100

Example: three permutations

Rows=Shingles, Columns=Documents

Permutations			D1	D2		
	2	4	3		1	0
	3	2	4		1	0
	7	1	7		0	1
	6	3	2		0	1
	1	6	6		0	1
	5	7	1		1	0
	4	5	5		1	0

D1	D2	D3	D4
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Sigi D1	Signature matrix <i>M</i> D1 D2 D3 D4					
2	1	2	1			
2	1	4	1			
1	2	1	2			

Similarities	1-3	2-4	1-2	3-4
Complete	0.75	0.75	0	0
Signatures	0.67	1.00	0	0

Minhash signatures

- Pick $\pi_1 \dots \pi_{100}$ random permutations of the rows (K=100)
- Think of sig(C) as a column vector
 - sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C
 - $sig(C)[i] = min(\pi_i(C))$
- The signature or "sketch" of document C has fixed size!
 - We achieved our goal: we "compressed" long bit vectors into short signatures

Implementation

- Permuting rows even once is prohibitive
- Instead, we create Π_1 ... Π_{100} by using K=100 hash actual functions H_i ... which map to integer numbers

```
Ordering of \{1,2,...,n\} under H_i
```

... i.e., computing h(1), h(2), ..., h(n) and sorting

... is a random permutation!

Summary

Things to remember

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations

Exercises for TT08-TT09

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises 3.1.4 (Jaccard similarity)
 - Exercises 3.2.5 (Shingling)
 - Exercises 3.3.6 (Min hashing)
 - Exercises 3.4.4 (Locality-sensitive hashing)