Méthodes itératives

2022-2023

Introduction

On cherche une suite $x^{(p)}$ de \mathbb{R}^n convergeant vers la solution x^* de $A \cdot x = b$

$$\forall x^{(0)} \in \mathbb{R}^n$$
 $x^{(p+1)} = H(x^{(p)})$

- ► La matrice A n'est jamais modifiée
- ▶ Problème du suivi de la convergence et du choix du test d'arrêt
- ► La solution obtenue n'est pas exacte
- ▶ La matrice doit vérifier des conditions de convergence
- La vitesse de convergence dépend de la valeur des coefficients de la matrice

1/32

Familles de méthodes

Algorithmes itératifs de relaxation

Algorithmes associés à une décomposition de A sous la forme M-N : Gauss-Seidel, Jacobi, SOR

Méthodes de gradient

Plus grande pente, directions conjuguées, gradient conjugué

Première partie l

Méthodes itératives de relaxation

Algorithme itératif de relaxation associé à une décomposition de A sous une forme M-N

Soit A = M - N avec M inversible

$$A \cdot x^* = b \iff (M - N) \cdot x^* = b$$

$$\iff M \cdot x^* = N \cdot x^* + b$$

$$\iff x^* = M^{-1} \cdot N \cdot x^* + M^{-1} \cdot b$$

Algorithme itératif de relaxation associé :

$$\begin{cases} x^{(0)} \in \mathbb{R}^n \\ x^{(p+1)} = M^{-1} \cdot N \cdot x^{(p)} + M^{-1} \cdot b \\ = M^{-1} \cdot (M - A) \cdot x^{(p)} + M^{-1} \cdot b \\ = x^{(p)} + M^{-1} \cdot r^{(p)} \end{cases}$$

avec $r^{(p)} = b - A \cdot x^{(p)}$ le vecteur résidu

Coût d'une itération (en dehors du calcul du résidu) : résolution d'un système de matrice ${\it M}$

Introduction

Soit la décomposition de A = D - E - F avec :

$$D = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} \qquad E = \begin{pmatrix} 0 & \dots & \dots & 0 \\ -a_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{nn-1} & 0 \end{pmatrix}$$

$$F = \begin{pmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{n-1n} \\ 0 & \dots & \dots & 0 \end{pmatrix}$$

6/32

Deux variantes

Algorithme de Jacobi : M = D et N = E + F

L'itération p consiste à résoudre l'équation :

$$D \cdot x^{(p+1)} - (E + F) \cdot x^{(p)} = b$$

C.N. d'application : D inversible i = 1, ..., n $a_{ii} \neq 0$

Algorithme de Gauss-Seidel : M = D - E et N = F

L'itération p consiste à résoudre l'équation :

$$(D-E) \cdot x^{(p+1)} - F \cdot x^{(p)} = b$$

C.N. d'application : (D - E) inversible $\iff i = 1, ..., n \ a_{ii} \neq 0$

Condition d'arrêt

Mise en œuvre du test d'arrêt (à la fin de chaque itération) Choix d'une norme vectorielle $|\cdot|$, d'une précision ε puis d'un test d'arrêt :

- ▶ $||x^{(p+1)} x^{(p)}|| < \varepsilon$: simple mais numériquement dangereux (risque d'arrêt prématuré loin de la solution).
- $\|b A \cdot x^{(p+1)}\| / \|b\| < \varepsilon$: numériquement plus sûr.

La mise en œuvre de ce test d'arrêt n'entraîne pas de calculs supplémentaires

Pour Jacobi :
$$x^{(p+1)} = D^{-1} \cdot [b - A.x^{(p)}] + x^{(p)}$$

Pour Gauss-Seidel : $x^{(p+1)} = (D - E)^{-1} \cdot [b - A.x^{(p)}] + x^{(p)}$

Convergence d'un algorithme issu d'une décomposition de A = M - N

Soit
$$x^{(p)} = x^* + \varepsilon^{(p)}$$

$$x^{(p+1)} = M^{-1} \cdot N \cdot x^{(p)} + M^{-1} \cdot b$$

$$x^* = M^{-1} \cdot N \cdot x^* + M^{-1} \cdot b$$

$$\Rightarrow \varepsilon^{(p)} = (M^{-1} \cdot N)^p \cdot \varepsilon^{(0)}$$

Convergence
$$\iff \forall x^{(0)} \in \mathbb{R}^n \lim_{p \to +\infty} x^{(p)} = x^*$$
 $\iff \forall \varepsilon^{(0)} \in \mathbb{R}^n \lim_{p \to +\infty} \varepsilon^{(p)} = 0$
 $\iff \forall \varepsilon^{(0)} \in \mathbb{R}^n \lim_{p \to +\infty} \left(M^{-1} \cdot N \right)^p \cdot \varepsilon(0) = 0$
 $\iff \lim_{p \to +\infty} \left(M^{-1} \cdot N \right)^p = 0$
 $\iff \rho \left(M^{-1} \cdot N \right) < 1 \text{ (propriété admise)}$

9/32

CNS de convergence

CNS de convergence (admise)

$$\lim_{p \to +\infty} \left(M^{-1} \cdot N \right)^p = 0 \iff \rho \left(M^{-1} \cdot N \right) < 1$$

 ρ désignant le rayon spectral d'une matrice : soient $\lambda_i \in \mathbb{C}, i=1,\ldots,n$ les valeurs propres d'une matrice A :

$$\rho(A) = \max_{i=1,\dots,n} |\lambda_i|$$

Autre version de la CNS de convergence :

$$\forall \lambda \in \mathbb{C}$$
 valeur propre de $\mathit{M}^{-1} \cdot \mathit{N} \; : \; |\lambda| < 1$

Première possibilité pour vérifier la convergence : utiliser la CNS

Jacobi : $\rho(D^{-1} \cdot (E+F)) < 1$

Gauss-Seidel: $\rho((D-E)^{-1} \cdot F) < 1$

10/32

Exercice 1

Soit le système $A \cdot x = b$ avec $A \in \mathcal{M}_n(\mathbb{R})$ inversible. On considère une décomposition de A sous la forme M - N.

On supposera (pour simplifier) que toutes les valeurs propres de la matrice $M^{-1} \cdot N$ sont réelles et que tous les vecteurs propres associés appartiennent à \mathbb{R}^n .

Montrer la propriété suivante (réciproque de la propriété admise en cours) :

La méthode itérative de relaxation associée à la décomposition de A converge vers x quelque soit le vecteur initial $\implies \rho(M^{-1} \cdot N) < 1$

CS de convergence

Deuxième possibilité pour vérifier la convergence : utiliser des CS spécifiques (déduites de la CNS)

A à diagonale dominante :
$$i=1,\ldots,n$$
 $|a_{ii}| \geqslant \sum_{j=1,j\neq i}^{n} |a_{ij}|$

 $\frac{\text{Th\'eor\`eme 1}}{\text{Th\'eor\`eme 1}}: \text{Si } A \text{ est \`a diagonale dominante stricte, alors les algorithmes de Jacobi et de Gauss-Seidel convergent quelque soit le vecteur de d\'epart.}$

Théorème 2 : Si A est à diagonale dominante et si :

$$\exists k \in \{1, \dots, n\} |a_{kk}| > \sum_{j=1, j \neq k}^{n} |a_{kj}|$$

alors l'algorithme de Gauss-Seidel converge quelque soit le vecteur de départ.

<u>Théorème 3</u>: Si A est symétrique définie positive, alors l'algorithme de <u>Gauss-Seidel</u> converge quelque soit le vecteur de départ.

Méthode SOR (successive over-relaxation)

Technique d'accélération de Gauss-Seidel

$$x_i^{(p+1)} = \omega(\mathsf{Gauss-Seidel}) + (1 - \omega)x_i^{(p)}$$

$$x_i^{(p+1)} = \frac{\omega}{a_{ii}} (b_i - \sum_{j>i} a_{ij} x_j^{(p)} - \sum_{j$$

C'est un algorithme itératif de relaxation issu d'une décomposition de A sous la forme $M_\omega-N_\omega$ avec $M_\omega=\frac{D}{\omega}-E$ et $N_\omega=\left(\frac{1}{\omega}-1\right)D+F$

Conditions sur ω pour assurer la convergence?

Quelques résultats pour des cas particuliers :

A symétrique définie positive et tridiagonale par blocs, un seul paramètre optimal $\omega:\omega=\frac{2}{1+\sqrt{1-\rho(D^{-1}\cdot(E+F))^2}}$

Deuxième partie ||

Méthodes de gradient

14/32

Principes

Rappel: si
$$F: \mathbb{R}^n \to \mathbb{R}$$
 et $x \in \mathbb{R}^n$, $grad(F)(x) = \begin{pmatrix} \frac{\partial F}{\partial x_1}(x) \\ \vdots \\ \frac{\partial F}{\partial x_n}(x) \end{pmatrix}$

Propriété 1

$$F: \mathbb{R}^n \to \mathbb{R}$$

 $x \mapsto F(x) = \frac{1}{2}x^T \cdot A \cdot x - x^T \cdot b$

Si A symétrique, $A \cdot x - b = grad(F)(x)$ ou $b - A \cdot x = -grad(F)(x)$

Propriété 2

Si A symétrique définie positive (supposé vrai pour toute méthode de gradient) : $A \cdot x^* = b \iff \forall x' \neq x^* \qquad F(x') > F(x^*)$

Interprétation de la "steepest descent" en 2D

15 / 32

13 / 32

Méthode de la Steepest Descent

A symétrique définie positive, $x^{(0)} \in \mathbb{R}^n$ quelconque Au cours de l'itération p, $x^{(p+1)}$ se déduire de $x^{(p)}$ par :

$$x^{(p+1)} = x^{(p)} + \lambda_p r^{(p)}$$

- $ightharpoonup r^{(p)}$: direction de descente (vecteur)
- \triangleright λ_p : progression dans la direction de descente (scalaire)

Choix des paramètres de la descente :

- ▶ Direction : suivant la plus grande pente i.e. direction opposée au gradient en $x^{(p)}$: $r^{(p)} = -grad(F)(x^{(p)}) = b A \cdot x^{(p)}$
- Progression: recherche du point "le plus bas" dans la direction $r^{(p)}$ obtenu en minimisant:

$$f(\lambda) = F(x^{(p)} + \lambda r^{(p)}) - F(x^{(p)}) = \frac{1}{2} \lambda^2 (r^{(p)})^T \cdot A \cdot r^{(p)} - \lambda (r^{(p)})^T \cdot r^{(p)}$$

Le minimum de cette fonction de λ_p est atteint en $\lambda_p = \frac{(r^{(p)})^T \cdot r^{(p)}}{(r^{(p)})^T \cdot A \cdot r^{(p)}}$

17 / 3

Propriétés de la Steepest Descent

- ▶ Deux directions de descente successives $r^{(p+1)}$ et $r^{(p)}$ sont orthogonales.
- Soit u vecteur propre de A. Si $x^{(0)}$ vérifie : $\exists \beta \in \mathbb{R}, \beta \neq 0$ t.q. $x^* x^{(0)} = \beta u$, la SD atteint la solution exacte en une itération.
- Si toutes les valeurs propres de la matrice A sont égales (une seule valeur propre), alors, $\forall x^{(0)}$, la SD atteint la solution exacte en une itération.

Algorithme

D'où l'algorithme : $x^{(0)} = \dots$ $r^{(0)} = b - A \cdot x^{(0)}$ p = 1 Tant que $\frac{\|r^{(p-1)}\|}{\|b\|} > \varepsilon$ faire $\lambda_{p-1} = \frac{(r^{(p-1)})^T \cdot r^{(p-1)}}{(r^{(p-1)})^T \cdot A \cdot r^{(p-1)}}$ $x^{(p)} = x^{(p-1)} + \lambda_{p-1} r^{(p-1)}$ $r^{(p)} = b - A \cdot x^{(p)}$ p = p + 1

Coût d'une itération : 2 produits matrice-vecteur mais
$$r^{(p)} = b - A \cdot x^{(p)} = b - A \cdot x^{(p-1)} - \lambda_{p-1} A \cdot r^{(p-1)}$$

$$r^{(p)} = r^{(p-1)} - \lambda_{p-1} A \cdot r^{(p-1)}$$

18 / 32

Propriétés de la Steepest Descent

Soit u vecteur propre de A. Si $x^{(0)}$ vérifie : $\exists \beta \in \mathbb{R}, \beta \neq 0$ t.q. $x^* - x^{(0)} = \beta u = \varepsilon^{(0)}$, la SD atteint la solution exacte en une itération.

Figure 14: Steepest Descent converges to the exact solution on the first iteration if the error term is an eigenvector.

Propriétés de la Steepest Descent

Si toutes les valeurs propres de la matrice A sont égales (une seule valeur propre), alors, $\forall x^{(0)}$, la SD atteint la solution exacte en une itération.

Figure 15: Steepest Descent converges to the exact solution on the first iteration if the eigenvalues are all equal.

21/32

cas défavorable de la "steepest descent" en 2D

Référence : An Introduction to the Conjugate Gradient Method without the Agonizing Pain, Jonathan Richard Shewchuk

22/32

Idée : ne considérer une direction qu'une fois

Problème : pour savoir où s'arrêter dans une direction, il faut connaître la suivante

Solution : considérer des directions A-conjuguées

Figure 22: These pairs of vectors are A-orthogonal... because these pairs of vectors are orthogonal.

A-orthogonalisation de Gram-Schmidt

Soit u_i $i=0,\ldots,n-1$ une base quelconque de \mathbb{R}^n et $A\in\mathcal{M}_n(\mathbb{R})$ symétrique définie positive.

On considère le produit scalaire suivant (A-produit scalaire) :

$$\forall (x,y) \in (\mathbb{R}^n)^2, (x|y)_A = (x|A \cdot y)$$

On veut construire une nouvelle base d_i $i=0,\ldots,n-1$ qui soit A-orthogonale i.e. $\forall i \neq j, (d_i|d_i)_A = 0$

$$d_0 = u_0$$

$$d_1 = u_1 + \beta_{10} d_0$$

$$d_2 = u_2 + \beta_{20} d_0 + \beta_{21} d_1$$

$$d_{p+1} = u_{p+1} + \sum_{j=0}^{p} \beta_{p+1j} d_j$$

$$\cdots$$

$$d_{n-1} = u_{n-1} + \sum_{j=0}^{n-2} \beta_{nj} d_j$$

25 / 32

A-orthogonalisation de Gram-Schmidt - suite

$$d_{p+1} = u_{p+1} + \sum_{j=0}^{p} \beta_{p+1j} d_j$$

Calcul de d_{p+1} en supposant $d_i, i=0,\ldots,p$ déjà calculés et $\forall j \neq i, (d_j|d_i)_A=0$:

$$i = 0, \dots, p$$
 $(d_{p+1}|d_i)_A = (u_{p+1}|d_i)_A + \sum_{j=0}^p \beta_{p+1j}(d_j|d_i)_A$
 $0 = (u_{p+1}|d_i)_A + \beta_{p+1i}(d_i|d_i)_A$

D'où

$$\beta_{p+1i} = -\frac{(u_{p+1}|d_i)_A}{(d_i|d_i)_A} = -\frac{(u_{p+1}|A\cdot d_i)}{(d_i|A\cdot d_i)}$$

26 / 32

Exercice 2 (avec nouvelles notations)

Soit à résoudre $A \cdot x = b$ avec $A \in \mathcal{M}_n(\mathbb{R})$ symétrique définie positive. On note $u_i, i = 0, \ldots, n-1$ les différentes colonnes de A. Le procédé de A-orthogonalisation de Gram-Schmidt est appliqué à $u_i, i = 0, \ldots, n-1$ pour construire une base $d_i, i = 0, \ldots, n-1$ A-orthogonale de \mathbb{R}^n .

- 1. Exprimer la solution du système $A \cdot x^* = b$ dans la base d_i , i = 0, ..., n 1.
- 2. Montrer que $\forall y \in \mathbb{R}^n, x^* = y + \sum_{i=0}^{n-1} \frac{(d_i|b A \cdot y)}{(d_i|A \cdot d_i)} d_i$
- 3. On considère l'algorithme itératif suivant :

$$\forall x^{(0)} \in \mathbb{R}^n, \ x^{(p+1)} = x^{(p)} + \alpha_p d_p \text{ avec } \alpha_p = \frac{(d_p|b - A \cdot x^{(p)})}{(d_p|A \cdot d_p)}$$

- 3.1 Donner la relation entre $x^{(p)}$ et $x^{(0)}$
- 3.2 Montrer que pour $p = 1, 2, 3, ... (d_p | A \cdot x^{(p)}) = (d_p | A \cdot x^{(0)})$
- 4. Montrer que l'algorithme de la question ci-dessus atteint exactement la solution du système $A \cdot x^* = b$ en n itérations.

Quelques propriétés

Propriété 0 (question 3 de l'exercice)

$$p = 1, 2, 3, \dots, (d_p | A \cdot x^{(p)}) = (d_p | A \cdot x^{(0)}) \implies (d_p | r^{(p)}) = (d_p | r^{(0)})$$

Propriété 1

$$j = 0, \ldots, p - 1, \ (r^{(p)}|d_j) = 0$$

Propriété 2

$$j = 0, \ldots, p - 1, (r^{(p)}|u_i) = 0$$

Propriété 3

$$(r^{(p)}|d_p) = (r^{(p)}|u_p)$$

Mise en forme d'une itération de l'algorithme :

$$\begin{array}{l} x^{(0)} = ?, \ r^{(0)} = b - Ax^{(0)} \\ \{u_i\}_{i=0,\dots,n-1} \ \text{colonnes de } A \\ d_0 = u_0 \\ \text{Pour } p = 0, n-1 \\ \alpha_p = \frac{(d_p|r^{(p)})}{(d_p|A\cdot d_p)} \\ x^{(p+1)} = x^{(p)} + \alpha_p d_p \\ r^{(p+1)} = r^{(p)} - \alpha_p A \cdot d_p \\ \text{pour } j = 0,\dots,p, \ \beta_{p+1j} = -\frac{(u_{p+1}|A\cdot d_j)}{(d_j|A\cdot d_j)} \\ d_{p+1} = u_{p+1} + \sum_{j=0}^p \beta_{p+1j} d_j \end{array}$$
 Fin Pour

Coût : mémoire, calcul?

Cas particulier du Gradient Conjugué

Soit $u_i = r^{(i)}, i = 0, ..., n-1$

▶ 1ère conséquence :

$$\alpha_p = \frac{(d_p|r^{(p)})}{(d_p|A \cdot d_p)} = \frac{(r^{(p)}|r^{(p)})}{(d_p|A \cdot d_p)}$$

 \triangleright 2ème conséquence : j = 0, ..., p

$$\beta_{p+1j} = -\frac{(u_{p+1}|A \cdot d_j)}{(d_j|A \cdot d_j)} = -\frac{(r^{(p+1)}|A \cdot d_j)}{(d_j|A \cdot d_j)}$$

D'autre part $r^{(j+1)} = r^{(j)} - \alpha_j A \cdot d_j$

$$(r^{(p+1)}|r^{(j+1)}) = (r^{(p+1)}|r^{(j)}) - \alpha_i(r^{(p+1)}|A \cdot d_i)$$

et donc

$$\alpha_i(r^{(p+1)}|A\cdot d_i) = (r^{(p+1)}|r^{(j)}) - (r^{(p+1)}|r^{(j+1)})$$

30/32

Cas particulier du gradient conjugué – suite

$$\alpha_{j}(r^{(p+1)}|A \cdot d_{j}) = (r^{(p+1)}|r^{(j)}) - (r^{(p+1)}|r^{(j+1)})$$

$$j = p$$

$$\alpha_{p}(r^{(p+1)}|A \cdot d_{p}) = (r^{(p+1)}|r^{(p)}) - (r^{(p+1)}|r^{(p+1)})$$

$$= 0 - (r^{(p+1)}|r^{(p+1)}) \quad \text{(prop. 2)}$$

$$(r^{(p+1)}|A \cdot d_{p}) = -\frac{1}{\alpha_{p}}(r^{(p+1)}|r^{(p+1)})$$

$$= 0 - (r^{(p+1)}|r^{(p+1)})$$

$$= 0 - 0 \quad \text{(prop. 2)}$$

$$\Rightarrow \beta_{p+1j} = \frac{(r^{(p+1)}|A \cdot d_{j})}{(d_{j}|A \cdot d_{j})} = 0$$

$$\Rightarrow \beta_{p+1j} = \frac{(r^{(p+1)}|A \cdot d_{j})}{(d_{j}|A \cdot d_{j})} = 0$$

$$\Rightarrow \beta_{p+1j} = \frac{(r^{(p+1)}|r^{(p+1)})}{(d_{j}|A \cdot d_{j})}$$

$$\Rightarrow \beta_{p+1p} = \frac{(r^{(p+1)}|r^{(p+1)})}{(r^{p}|r^{(p)})}$$

d'où l'expression de d_{p+1} :

$$d_{p+1} = r^{(p+1)} + eta_{p+1p} d_p$$
 avec $eta_{p+1p} = rac{\left(r^{(p+1)} | r^{(p+1)}
ight)}{\left(r^{(p)} | r^{(p)}
ight)}$

Algorithme final du Gradient Conjugué

$$x^{(0)} = ?, \ d^{(0)} = b - Ax^{(0)}, \ r^{(0)} = d^{(0)}, \ p = 0$$
 Boucler
$$\alpha_p = \frac{\left(r^{(p)}|r^{(p)}\right)}{\left(d_p|A\cdot d_p\right)}$$

$$x^{(p+1)} = x^{(p)} + \alpha_p d_p$$

$$r^{(p+1)} = r^{(p)} - \alpha_p A\cdot d_p$$

$$\beta_p = \beta_{p+1p} = \frac{\left(r^{(p+1)}|r^{(p+1)}\right)}{\left(r^{(p)}|r^{(p)}\right)}$$

$$d_{p+1} = r^{(p+1)} + \beta_p d_p$$

$$p = p + 1$$
 Every β Convergence

Jusqu'à Convergence

Coût : mémoire, calcul? Convergence?