実数論

Toshi2019

2021-04-18

概要

1 凡例

よく用いる用語と記号をまとめておく.

- 数列: 数列 $(a_n)_{n\in\mathbb{N}}=(a_0,a_1,\ldots)$ を (a_n) のように略記することがある.
- 開球: \mathbb{R}^n をユークリッド距離による距離空間と考え, $a\in\mathbb{R}^n$ を中心とする半径 r>0 の開 球を $U_r(a)=\{x\in\mathbb{R}^n\mid d(a,x)\leq r\}$ で表す.
- 開集合: X を位相空間とする. U が X の開集合であることを U $\subset X$ のようにかくことがある.

2 導入

 $1/3=0.333\cdots$ であることはよく知られた事実である。中学校では $x=0.333\cdots$ とおき、両辺に 10 を掛けて $10x=3.333\cdots$ 辺々引いて 9x=3. 最後に両辺を 9 で割って $0.333\cdots=x=1/3$ のようにすると習った.

これを示すのに、 高校では極限を教わった上で

$$0.333\dots = 0.3 + 0.03 + 0.003 + \dots$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{3}{10^{k}}$$

$$= \lim_{n \to \infty} \left(\frac{3}{10} \frac{1 - (1/10)^{n}}{1 - 1/10} \right)$$

$$= \lim_{n \to \infty} \frac{1}{3} \left(1 - \left(\frac{1}{10} \right)^{n} \right)$$

$$= \frac{1}{3} \times (1 - 0) = \frac{1}{3}$$

と習った.

大学に入ってすぐの微積分の授業で極限を厳密に定義することで、これがきちんと基礎付けられた。 すなわち、任意の自然数 $n \ge 1$ に対し、

$$\left| \sum_{k=1}^{n} \frac{3}{10^k} - \frac{1}{3} \right| = \left| \frac{1}{3} \left(1 - \left(\frac{1}{10} \right)^n \right) - \frac{1}{3} \right|$$

$$= \left| - \left(\frac{1}{10} \right)^n \right|$$

$$= \left(\frac{1}{10} \right)^n < \frac{1}{n}$$

が成り立つので、後述するはさみうちの原理 (命題 3.3) より、 $0.333\dots = 1/3$ ということになるのであった.

このように、無限小数を、無限級数と捉えることで、特に有理数の場合には、容易に極限を求められる.

3 実数の連続性

次を公理とする.

公理 **3.1.** 1. (アルキメデスの原理 (axiom of Archimedes)) a が実数ならば, $n \le a \le n+1$ を みたす整数 n が存在する.

2. (a_n) を自然数列で、任意の $n \ge 0$ に対し、 $a_n = 0$ か $a_n = 1$ のどちらかであるものとする. このとき、実数 b で、全ての自然数 $m \ge 0$ に対し

$$\sum_{n=1}^{m} \frac{a_n}{2^n} \le b \le \sum_{n=1}^{m} \frac{a_n}{2^n} + \frac{1}{2^m}$$
 (3.1)

をみたすものが存在する.

$$m=0$$
 とすると, $\sum_{n=1}^{m} \frac{a_n}{2^n} = 0$ となり不等式 (3.1) は $0 \le b \le 1$ を表す.

公理 3.1 から, 実数は閉区間 [0,1] を整数で左右にずらしたもので覆うことができ, それらを整数部分と 2 進小数で表せる. 次の命題の系から式 (3.1) の b はただ 1 つであることがわかる.

命題 **3.2** (有理数の稠密性). a と b を実数とする. a < b ならば, 有理数 r で a < r < b をみたすものが存在する.

証明. a < b より b - a > 0. 自然数 n を、 $n = \left[\frac{1}{b-a}\right] + 1$ とおく. n は $0 < \frac{1}{b-a} < n$ をみたす最小の自然数である. さらに m = [na] + 1 とおくと $na < m \le na + 1 < nb$ なので、有理数 r = m/n は a < r < b をみたす.

命題 3.3 (はさみうちの原理 (squeeze theorem)). a と b を実数とする. 任意の自然数 $n \ge 1$ に対し $|a-b| < \frac{1}{n}$ ならば, a=b である.

証明. |a-b|>0 だったとする.このとき, $\frac{1}{|a-b|}>0$ は実数なので,アルキメデスの公理(公理 3.1.1)より $\frac{1}{|a-b|} \le n$ をみたす自然数 $n>0 \Leftrightarrow n \ge 1$ が存在する.この不等式の逆数をとると, $\frac{1}{n} \le |a-b|$ となるが,仮定より $|a-b|<\frac{1}{n}$ なので $\frac{1}{n} \le |a-b|<\frac{1}{n}$ となりムジュン.したがって |a-b|=0 であり,a=b.

系 3.4. (a_n) を公理 3.1.2 の仮定をみたす数列とする. 不等式 (3.1) をみたす実数 b はただ 1 つである.

証明. b と c を不等式 (3.1) をみたす実数とすると、すべての自然数 $m \ge 1$ に対し、 $\sum_{n=1}^m \frac{a_n}{2^n} \le b \le \sum_{n=1}^m \frac{a_n}{2^n} + \frac{1}{2^m}$ 、 $\sum_{n=1}^m \frac{a_n}{2^n} \le c \le \sum_{n=1}^m \frac{a_n}{2^n} + \frac{1}{2^m}$ が成り立つので、ふたつめの不等式を -1 倍したものをひとつめの不等式に辺々足して、 $-\frac{1}{2^m} \le b - c \le \frac{1}{2^m}$ すなわち $|b-c| \le \frac{1}{2^m}$ を得る。 $|b-c| \le \frac{1}{2^m}$ なので、はさみうちの原理(命題 3.3)より b=c である。

これで公理 3.1.2 の b を特徴づけることができた.この b を $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ で表す.(∞ の記号単体では意味を持たせていない.) $0.a_1a_2a_3a_4\dots$ のように表し,b の 2 進小数表示(binary decimal representation)ということもある.(たとえば $1/2=0.1000\dots,5/8=1/2+1/8=0.101000\dots$ のように.)

実数はいくつかの同値な性質により、その性質を様々な視点から捉えることができる. 以下、公理 3.1 から出発して、それらの性質を順次示していくことにする.

定理 3.5 (実数の連続性 (continuity of real numbers)). $a \le b$ を実数とし、閉区間 [a,b] の部分集合 A が次の条件 (D) をみたすとする.

(D) x が A の元ならば、閉区間 [a,x] は A に含まれる.

このとき、実数 c で A = [a, c] か A = [a, c) のどちらか一方が成り立つものが存在する.

定理 3.5 の実数 c を A の終点 (end point) と呼ぶことにする.

証明. まず, [a,b]=[0,1] の場合に示し、その後 a,b が一般の場合を a=0,b=1 の場合に帰着させて示す。 a=0,b=1 とする。 $0 \notin A$ のとき、条件 (D) より, $A=\emptyset$. $1 \in A$ のとき、条件 (D) より,A=[0,1]. よって $0 \in A, 1 \notin A$ のときを考える.

数列 (a_n) を次のように帰納的に定義する. $a_0=0$ とする. a_n が自然数 m に対し a_m まで定まっているとき, $s_m=\sum_{n=1}^m \frac{a_n}{2^n}$ とおく. $s_0=0$ である. $s_m+\frac{1}{2^{m+1}}\in A$ のとき, $a_{m+1}=1$ とおき, そうでないときは $a_{m+1}=0$ とおく.

 (a_n) の定義と、自然数 m に関する帰納法により、どの番号 $m=0,1,2,\ldots$ に対しても、 $s_m\in A$

かつ $s_m+\frac{1}{2^m}\notin A$ が成り立つことを示す。(I) m=0 のとき, $s_0=a_0=0\in A$ かつ $s_0+\frac{1}{2^0}=1$ $\notin A$. $(0\in A,1\notin A$ と仮定したのだった。) (II) m=l のとき, $s_l\in A$ かつ $s_l+\frac{1}{2^l}\notin A$ であるとすると,m=l+1 のとき,(1) $s_l+\frac{1}{2^{l+1}}\in A$ の場合, $a_{l+1}=1$ であり, $s_{l+1}=s_l+\frac{1}{2^{l+1}}\in A$. (たった今そう場合分けした。) また, $s_{l+1}+\frac{1}{2^{l+1}}=s_l+\frac{1}{2^{l+1}}=s_l+\frac{1}{2^{l+1}}=s_l+\frac{1}{2^l}\notin A$. (m=l のときの帰納法の仮定。) (2) $s_l+\frac{1}{2^{l+1}}\notin A$ の場合, $a_{l+1}=0$ であり, $s_{l+1}=s_l\in A$. また, $s_{l+1}+\frac{1}{2^{l+1}}=s_l+\frac{1}{2^{l+1}}\notin A$. 以上より,どの番号 $m=0,1,2,\ldots$ に対しても, $s_m\in A$ かつ $s_m+\frac{1}{2^m}\notin A$ が成り立つ.

4 上限と下限*1

 $A \subset \mathbb{R}$ に対し, A の上界と下界を定める. 実数 r が A の上界 (下界) であるとは, 任意の A の元 $x \in A$ に対し $x \le r$ ($r \le x$) となることをいう.

参考文献

- [1] 青本和彦、『微分と積分1』, 現代数学への入門、岩波書店、2003.
- [2] 斎藤毅, 『集合·位相』, 東京大学出版会, 2009.
- [3] 斎藤毅、『微積分』, 東京大学出版会, 2013.
- [4] 斎藤毅, 「はじまりはコンパクト」, 『新・数学の学び方』, 岩波書店, 2015, pp.34-50.
- [5] 杉浦光夫, 『解析入門 I』, 東京大学出版会, 1980.
- [6] 一松信, 『解析学序説 上』, 裳華房, 1962.
- [7] 一松信, 『初等関数の数値計算』, シリーズ新しい応用の数学 8, 教育出版, 1974.
- [8] 森毅、『現代の古典解析』, ちくま学芸文庫, 2006.
- [9] 森毅, 『位相のこころ』, ちくま学芸文庫, 2006.

 $^{^{*1}}$ ここからは、2021,Apr,17 以降の追加分.