

Factors Influencing Spatial Plant Diversity in California Vernal Pools

Vincent Chen¹, Jennifer Buck-Diaz², Nina Tortosa¹, Jamie M. Kneitel¹

¹ Department of Biological Sciences, CSUS

² California Native Plant Society

Introduction

- California vernal pools are seasonal wetlands that support unique plant and animal communities, including many endemic and endangered species
- They inundate during winter and dry by spring with a diverse plant community (Fig 1)
- This habitat has been reduced to less than 10% of its original distribution and is also threatened by many invasive plant species
- Much of their basic ecology is still largely unknown, which becomes more pressing with anticipated climate change in California
- The purpose of this study was to assess the environmental factors associated with native and invasive plant diversity using data from across California (Barbour et al. 2007)

Fig. 1: The aquatic phase (left) and flowering phase (right) of California vernal pools.

Methods

- Databases were used which included species presence, location (latitude and longitude), species traits, pool size, and climate for >500 vernal pools
- Data was compiled and variables calculated included diversity (α, β, and γ; Fig.2) for plant categories (native vs invasive and forb (herbs) vs graminoids (grasses)) and temperature and rainfall data
- Data (diversity, pool size and location, and climate) was analyzed by for each of the 19 USFWS-categorized regions in California
- Multiple regression (backward elimination) was used to assess which variables explained diversity at different spatial scales (Fig. 2).

Fig. 2: Three measures of diversity used in this study: alpha is diversity in a vernal pool, beta is differences in diversity among pools, and gamma diversity is total diversity in the region.

Results

Table 1. Multiple regression results for <u>native</u> species diversity.
The + and – in parentheses indicate direct of relationship.

Species	α (pool)	β (differences)	γ (regional)
Forbs	Surface area (+) Latitude (+) Temp ave (+) R ² = 0.76	Surface area (-) Temp SD (-) Rainfall SD (+) R ² = 0.55	Temp ave (+) Temp SD (-) R ² = 0.61
Graminoids	Surface area (+) Temp ave (+) Temp SD (+) Rainfall ave (+) Rainfall SD (-) R ² = 0.82	Surface area (-) Rainfall ave (-) Temp SD (-) R ² = 0.61	Latitude (+) Longitude (+) Temp ave (+) R ² = 0.71

Table 2. Multiple regression results for invasive species diversity.

Species	α (pool)	β (differences)	γ (regional)
Forbs	Latitude (+) Rainfall ave (-) Rainfall SD (+) R² = 0.62	Longitude (+) Temp SD (-) R ² = 0.40	Latitude (+) Temp ave (+) R ² = 0.67
Graminoids	Latitude (+) Longitude (+) Temp SD (-) Rainfall ave (-) Rainfall SD (+) R ² = 0.88	Surface area (-) Rainfall ave (+) Rainfall SD (-) R ² = 0.67	Latitude (+) Rainfall ave (-) R ² = 0.37

Results

Fig. 3. Scatterplots of diversity values against different abiotic factors

Discussion

- Plant diversity in vernal pools was significantly influenced by abiotic factors, and plant groups responded differently to environmental variables
- Invasive species declined with rainfall. They are not adapted to standing water compared to native species (Gerhardt and Collinge 2007)
- Increased surface area of pools increased α diversity, but decreased β diversity for some groups. This has been previously been found with vernal pool animals (Kneitel 2016)
- There was an increase in α diversity for both native and invasive species as latitude increases, supporting other studies of the reverse latitudinal diversity gradient (Hillebrand 2004, Kneitel 2016)

Conclusions

- The environment affects diversity at different spatial scales. Pool size, climate, and location all influenced diversity of native and invasive plants
- Management and restoration of vernal pools will need to consider how these change plant diversity, including plant status, plant type, and invasibility
- Further ecological research into vernal pools should consider the effects of species interactions (e.g., competition), land use, and future climate change

Acknowledgements

This research was funded through the Hornet Science Scholars Program under a grant from the National Science Foundation (NSF 1644273). We thank Ryan Castle and Crystal Sturgeon with previous data assistance

References

Barbour, MG, Solomeshch, A. & Buck, J. (2007) Classification, ecological characterization, and presence of listed plant taxa of vernal pool associations in California. Final report to the US Elike pendid Multilife Service.

Gerhardt, F & Collinge, S. K., (2007). Abiotic constraints eclipse biotic resistance in determining invasibility along experimental vernal pool gradients. *Ecological Applications* 17: 022-033

Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist 163: 192-211.

Kneitel, J. M. (2016). Climate-driven habitat size determines the latitudinal gradient of diversity in California vernal pools. *Ecology* 97: 961-968.