Mathématiques Financières

Licence 3

2021 - 2022

Table des matières

1	Inti	roduction	2
2	Rés	umé des formules	2
3	Ver	sement initial unique	3
	3.1	Capitalisation	3
		3.1.1 Au bout de 1 période	3
		3.1.2 Au bout de n périodes	3
	3.2	Passage période annuelle à période mensuelle	4
	3.3		4
		3.3.1 Au bout de 1 période	4
		3.3.2 Au bout de n périodes	4
4	Ver	sements constants	5
	4.1	Capitalisation	5
	4.2	Actualisation	5

1 Introduction

Ce cours traite la valeur acquise par un capital, avec soit :

- un versement initial unique,
- des versements constants à chaque période.

2 Résumé des formules

$$V_n = C \cdot (i+1)^n$$

$$i_m = (i+1)^{\frac{1}{12}} - 1$$

$$V_{act} = \frac{V_f}{(\tau+1)^n}$$

$$V_{acq}^{deb} = a(i+1) \cdot \frac{(i+1)^n - 1}{i}$$

$$V_{act}^{deb} = a(\tau+1) \cdot \frac{1 - \frac{1}{(\tau+1)^n}}{\tau}$$

3 Versement initial unique

3.1 Capitalisation

On investit un capital de départ et on cherche à savoir combien on gagnera plus tard : c'est la **capitalisation**.

On raisonne par unité de temps : les **périodes** (une année en général).

3.1.1 Au bout de 1 période

On cherche la valeur à droite

$$V = C \cdot (i+1)$$

avec:

- C : capital de départ à la date 0
- V : capital après 1 période de temps

- i : taux d'intérêt

3.1.2 Au bout de n périodes

On cherche la valeur à droite

$$V_n = C \cdot (i+1)^n$$

avec:

- C: capital initial

- V_n : valeur capitalisée finale du placement

3.2 Passage période annuelle à période mensuelle

Soit i le taux d'intérêt annuel et i_m le taux d'intérêt mensuel.

On cherche i_m à partir de i

$$C(i_m + 1)^{12} = C(i + 1)$$

$$\implies i_m = (i + 1)^{\frac{1}{12}} - 1$$

3.3 Actualisation

On veut savoir combien investir pour obtenir plus tard un capital défini : c'est l'actualisation.

Capitalisation et actualisation

3.3.1 Au bout de 1 période

$$V_{act} \times (\tau + 1) = V_f$$

avec:

- V_{act} : valeur actualisée (valeur aujourd'hui de $V_f)$

- V_f : capital futur

- τ : taux d'actualisation

3.3.2 Au bout de n périodes

$$V_{act} \times (\tau + 1)^n = V_f$$

$$\implies V_{act} = \frac{V_f}{(\tau + 1)^n}$$

4 Versements constants

Ici, on ne suppose plus un versement initial, mais des versements constants en **début de période**, de valeur constante a.

4.1 Capitalisation

On cherche la valeur à droite

$$V_{acq}^{deb} = a(i+1) \cdot \frac{(i+1)^n - 1}{i}$$

4.2 Actualisation

On cherche la valeur à gauche

$$V_{act}^{deb} = a(\tau + 1) \cdot \frac{1 - \frac{1}{(\tau + 1)^n}}{\tau}$$