Eddie C. Fox

October 26, 2015

Username: foxed

Exercise Set 6.1: 12, 16 and Exercise Set 6.2: 4, 10, 14

6.1 #12:

Let the universal set be the set R of all real numbers and let $A = \{x \in R \mid -3 \le x \le 0\}$, $B = \{x \in R \mid -1 < x < 2\}$, and $C = \{x \in R \mid 6 < x \le 8\}$. Find each of the following.

- a. $A \cup B$. [-3, 2)
- b. $A \cap B (-1,0]$
- c. A^c (- infinity, -3) \cup (0, infinity)
- d. $A \cup C = [-3, 0] \cup (6, 8]$
- e. $A \cap C = \text{null set}$
- f. $B^c = (-infinity to -1] \cup [2, infinity)$
- g. $A^{C} \cap B^{C} = (-infinity to -1] U [2, infinity)$
- h. $A^c \cup B^c = (-infinity, -1] \cup (0, infinity)$
- i. (A \cap B) c = (- infinity to -1] \cup (0, infinity)
- j. (A \cup B) c = (-infinity, -3) \cup [2, infinity)

6.1 #16:

a. Find A \cup (B \cap C), (A \cup B) \cap C and (A \cup B) \cap (A \cup C). Which of these sets are equal?

 $A \cup (B \cap C) = \{a,b,c\}, (A \cup B) \cap C = \{b,c\} \text{ and } (A \cup B) \cap (A \cup C). \{a,b,c,d\} \cap \{a,b,c,e\} = \{a,b,c\}$

 $A \cup (B \cap C)$, and $(A \cup B) \cap (A \cup C)$ are equal.

b. $A \cap (B \cup C) = \{b, c\}. (A \cap B) \cup C = \{b, c, e\}. (A \cap B) \cup (A \cap C) = \{b, c\}$

 $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$ are equal.

c. (A-B) - C = A. A - (B - C) = A. The sets are equal.

6.2 #4:

Bold is blank.

Proof: Suppose A and B are any sets and $A \subseteq B$. [We must show that $A \cup B \subseteq B$.]. Let $x \in A \cup B$. [We must show that $x \in B$]. By definition of union $x \in A$, or $x \in B$. In case $x \in A$, then since $A \subseteq B$, $x \in A$. In case $x \in B$, then clearly $x \in B$. So in either case, $x \in B$ [as was to be shown.]

Note **A** and **or** are separate blanks, meant to fill answers D and E.

#10: For all sets A, B and C,

$$(A-B) \cap (C-B) = (A \cap C) - B.$$

For these two expressions to be equal, they must be subsets of each other.

First, we will show that is $(A-B) \cap (C-B \subseteq)$. $(A \cap C) - B$.

Let $x \in (A-B) \cap (C-B)$. We must show that $x \in (A \cap C) - B$

By definition of intersection, for $x \in (A \cap C) - B$, $x \text{ must } \in (A-B)$ and $\in (C-B)$

By definition of intersection $x \in (A-B)$ and $x \in (C-B)$, as was to be shown.

Next, we need to show that is $(A \cap C) - B$. $\subseteq (A - B) \cap (C - B)$.

Let $x \in (A \cap C)$ – B. We must show that $x \in (A - B) \cap (C - B)$

By definition of intersection, for $x \in (A-B) \cap (C-B)$, x must show that $x \in (A-B)$ and $x \in (C-B)$.

By definition of intersection, $x \in (A-B)$ and $x \in (C-B)$, as was to be shown.

Because both expressions are subsets of each other, they are equivalent.

#14: For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.

 $A \cup C \subseteq B \cup C$, we must show that if $x \in A \cup C$, then $x \in B \cup C$.

Let $x \in A \cup C$.

Because $x \in A \cup C$, $x \in A$ or $x \in C$ by definition of union.

If $x \in C$, then clearly x is in B \cup C as an element of C.

If $x \in A$, then x also $\in B$ because $A \subseteq B$, meaning there is no element in A that is not in B. Because $x \in B$, clearly $x \in B \cup C$ as an element of B.

In either case, if $x \in A \cup C$, then $x \in B \cup C$.

Thus, $A \cup C \subseteq B \cup C$, as was to be shown.