Examen final d'Algèbre 1

Exercice 1.

Soit l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = x^2 + y^2$$

- 1. L'application f est-elle injective? Surjective? Bijective?
- 2. Déterminer les ensembles : $f(\{(0,0)\}); f(\mathbb{R}^2); f^{-1}(\{0\}); f^{-1}(\{1\}).$
- 3. Soit \mathcal{R} la relation définie sur \mathbb{R}^2 par

$$\forall (x,y), (z,t) \in \mathbb{R}^2$$
, $(x,y)\mathcal{R}(z,t) \Leftrightarrow f(x,y) = f(z,t)$

- a) Montrer que \mathcal{R} est une relation d'équivalence.
- b) Déterminer la classe de $(a,b) \in \mathbf{R}^2$ et en donner une interprétation géométrique.
- c) Calculer f(1,2) et f(2,1). \mathcal{R} est-elle une relation d'ordre?

Exercice 2.

Soit $G = \mathbb{R}^*_{\perp} \times \mathbb{R}$ et soit * la loi de composition interne définie sur G par

$$\forall (a, b), (c, d) \in G, (a, b) * (c, d) = (ac, b + d\sqrt{a})$$

- 1. La loi * est-elle commutative?
- 2. Montrer que (G, *) est un groupe.
- 3. On pose $H = \{1\} \times \mathbb{Q}$. Montrer que H est un sous-groupe de G.
- 4. H est-il commutatif? Justifier.