

Toward Fully Automated Driving

Dr. Jan Becker

Engineering Automated Driving, Robert Bosch LLC

Future Mobility - Automated, Connected,

E

Automated mobility

Parking management

Integration of CE world

Electric mobility

Multimodal mobility

Automated and Connected - Social

Technologies for an intelligent and forward-thinking Safety vehicle □ Injury and accident-free driving Reduced traffic jams and waiting time at intersections **Traffic** and lights **Management** □ Relaxed driving even in dense traffic Reduced driver burden **Demographics** Allow a variety of age ranges to be mobile Networked Vehicle as part of the driver's connected life Society □ Time on the road becomes more productive

Clean Technology Synchronizes traffic flow

→ Improved fuel economy

Road Safety - Influence of Driver

Number of road fatalities reduced by 60% within last 14 years

- · 90% of all car accidents involving injury are caused by human error
- Introduction of fur Source: Bosch, DAT, BASt. Based on total vehicle fleet. 1 Figures estimated 2 ACC and lane keeping support only

Roadmap to Fully Automated Driving

Automated driving starts with highway driving and parking functions

- · Step-by-step approach for technological and psychological reasons
- · Survey: 59% in favor of automated driving as long as it can be switched off 1

1 Source: Bosch survey 2012 (CC)

Prerequisites for Automated Driving -

Surround sensing - vehicle sensor

360° surround sensing by combination of different sensors

- · Long- and mid-range radar prerequisite for driving at higher speed
- · Satisfy reliability requirements by using multiple sensors for each

area

Chassis Systems Control

Surround sensing - reliability

Timber transport may not be detected reliably by radar sensor

Low standing sun can fade the video sensor

Tunnel entrances can affect the radar and video sensors

Highly automated driving raises new challenges for sensor concept

 Application cases show need for a third sensor principle Chassis Systems Control

Third sensor principle - lidar strategy

Requirements 3 ^{rd sensor principle}			Sensor principles	Design elements	Availabl e
Range	$(0.2 200) m \pm 0.1 m$				
Field of view	(50 120)° ± 0.15° (9 120)° ± 0.15°		Macro scanner	 Edge emitter 905 nm Motor driven rotor Avalanche photo diode 	2016 to 2018
Frame rate	~ 20 Hz				
Eye safety	Class 1 (eye safe)				
design Requirements design		MEMS scanner	 Vertical emitter ~1 µm MEMS mirror InGaAs / new Si-technology 	2020	
elements Lighting				• Solid-state laser	
Detecto r	Single photon avalanche photo diodes (SPAD) / Imager		Flash lidar	~1.5 µm • InGaAs time-of- flight imager	2020
Laser	Wavelength ~ 850 - 1500 nm Pulse length ~ 10 ⁻⁹ s			ingite illiagei	

Ligar sensor is key for automated driving: three different possibilities

· Development of innovative semiconductor technologies is essential Chassis Systems Control

Dynamic map data - layered approach

Highly automated driving requires latest high-precision map data

· Aggregated information processing and delivery via the cloud Chassis Systems Control

Connected mobility - cloud and car2x

The automotive cloud will be an integral part of the vehicle architecture

· Car2x concepts include local danger warning and driver assistance

Driver Monitoring

Distraction detection

... because 80% of accidents caused by

Drowsiness detection

... because 30% of drivers have experienced microsleep events²

Health monitoring

... because 10% of fatal accidents caused by medical conditions³

Identification

... because it enables the vehicle to adapt to the person driving

Adaptive assistance

... because it enables the vehicle to react according to the driver's state

Driver monitoring will be a key element for automated driving functions

System has to be able to return control to the driver at any time Chassis Systems Control

Safety and security - distinction

Safety

- Protection against technical failures
- → Covers malfunction aspects

Security

- → Blocking of deliberate attacks
- Confidentiality, integrity, availability

Safety (malfunction) differs in scope from security (deliberate attack)

· Leaks in security can put safety at risk Chassis Systems Control

Safety - reliable actuation elements

Redundant steering, braking, and stabilization systems required

· Modular actuation concept offers a perfect solution for automated Chassis Systems Control ROSCH

Security - layered automotive approach

E/E

- → Arebitecture separate domains
- → Secure E/E architectures, and security gateways

Individual ECU

- Protect integrity of ECU SW & data
- → Bosch hardware security module (HSM) in µC

Connected

- → **Pehiele** afety & integrity of vehicle and privacy of driver
- Vehicle firewalls and security standards

In-vehicle

- pekw@ckintegrity of critical in-vehicle signals
- → Truncated message authentication codes (MAC)

No automotive security standardization or agreement available yet

· Bosch offers a broad spectrum of solutions for automotive security
Chassis Systems Control

Validation and release process -

Expenditure for validation will increase by a factor of 106 to 107

- · Traditional statistical validation not suitable for higher degree of automation
- · Highly automated systems require completely new release strategies

Legislation frameworks - need for

Current legal framework

- National laws
- · Geneva convention (1949)
- Vienna convention on road traffic (1968):

Article 8 (5):

"Every driver shall at all times be able to control his vehicle or to guide

Ongoing activities

- Legislation and regulation of automated driving decided in individual U.S. states
- · Initiative in Europe by VDA
- Japan (MLIT) is exploring different possibilities (e. g. special lanes)

Legislation framework no longer reflects technical progress

· Need for adaptation to take account of highly automated driving

Development steps - automated

Klimer sensors

automato

of

Degree

Ultrasonic sensors + cameras

trasonic sensors + cameras + map

Park steering control

Automated steering, driver applies gas and brake

Park maneuver control

Steering and braking partly automated

Driver applies gas

utomatic / remot park assist

Partially automated longitudinal and lateral guidance

Driver supervises (from outside vehicle)

Robust environment

recog**nition 5** (possibly camera)

Auto park pilot

Highly automated longitudinal and lateral guidance

No supervision by driver

Robust environment recognition necessary

Strict safety requirements

Valet parking

Connected vehicle drives autonomously into parking space

Robust environment recognition + maps necessary

Strictest safety requirements

C2x communication

Series production

2018

> 2018

Development steps - automated driving

Single sensor

automation

of

Degree

Sensor-data fusion

ensor-data fusion + map

ACC/lane keeping support

Only longitudinal or lateral control

Integrated cruise assist

Partially
automated
longitudinal and
lateral guidance in
driving lane
Speed range

Highway assist

Partially automatic longitudinal and lateral guidance

Lane change after driver confirmation

Supervision of surrounding traffic (next lane, ahead, behind)

2018

Highway pilot

Highly automated longitudinal and lateral guidance with lane changing

Reliable environment recognition, including in complex driving situations

No permanent supervision by driver 2020

Auto pilot

Door-to-door commuting (e.g. to work) in urban traffic

Strictest safety requirements

No supervision by driver

> 2025

Series production

Automated Driving - Already on Public

Prototypes driving on public freeways in Germany and USA

- · Bosch: first vehicles on German freeways since early 2013
- · Tests in real traffic conditions accelerate the development of new

functions

Chassis Systems Control

Conclusion

- → Future mobility will be connected and automated
- Automated driving functions will irreversibly change vehicle architecture
- The development of automated driving functions calls for profound knowledge of all vehicle systems

 (e. g. sensors, actuation, E/E architecture, semiconductor technologies, and automotive cloud)
- Technical and legal challenges still need to be solved
- Bosch has all necessary key technologies
 available and is getting them ready for market entry

Dr. Jan Becker
Engineering Automated Driving
Robert Bosch LLC

