MATH 450 Assignment 3

Please submit using your Crowdmark link for this assignment by the due date.

- (1) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Show if f is continuous in the analysis sense, then it is continuous in the topological sense.
- (2) Let Y be an ordered set which is given the order topology. Let $f,g:X\to Y$ be continuous.
 - (a) Show that the set $\{x: f(x) \leq g(x)\}$ is closed in X.
 - (b) Let $h: X \to Y$ be the function $h(x) = \min\{f(x), g(x)\}$. Show that h is continuous. (Hint: use the pasting lemma.).
- (3) Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are eventually zero, that is, all sequences (x_1, x_2, \ldots) such that $x_i \neq 0$ for only finitely many values of i. What is the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} in the box and product topologies? Justify your answer.
- (4) Given sequences $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ of real numbers with $a_i > 0$ for all i, define $h : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ by the equation

$$h((x_1, x_2, \ldots)) = (a_1x_1 + b_1, a_2x_2 + b_2, \ldots).$$

Show that if \mathbb{R}^{ω} is given the product topology, then h is a homeomorphism of \mathbb{R}^{ω} to itself. What happens if \mathbb{R}^{ω} is given the box topology.

- (5) (a) Let $p:X\to Y$ be a continuous map. Show that if there is a continuous map $f:Y\to X$ such that $p\circ f$ equals the identity map of Y, then p is a quotient map.
 - (b) If $A\subseteq X$, a retraction of X onto A is a continuous map $r:X\to A$ such that r(a)=a for all $a\in A$. Show that a retraction is a quotient map.

1