Sudoku Checker

Problem

Sudoku is a popular single player game. The objective is to fill a 9x9 matrix with digits so that each column, each row, and all 9 non-overlapping 3x3 sub-matrices contain all of the digits from 1 through 9. Each 9x9 matrix is partially completed at the start of game play and typically has a unique solution.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				З
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9
_		_	_	_	_	_	_	_
5	3	4	6	7	8	9	1	2
5 6	3 7	4 2	6 1	7 9	8 5	9	1	2
-			-			-		-
6	7	2	1	9	5	3	4	8
6 1	<mark>7</mark> 9	<mark>2</mark>	1	9 4	5 2	3	<mark>4</mark> 6	8
6 1 8	7 9 5	2 8 9	1 3 7	9 4 6	5 2 1	3 5 4	4 6 2	8 7 3
6 1 8 4	7 9 5 2	2 8 9 6	1 3 7 8	9 4 6 5	5 2 1 3	3 5 4 7	4 6 2 9	8 7 3 1
6 1 8 4 7	7 9 5 2	2 8 9 6 3	1 3 7 8 9	9 4 6 5 2	5 2 1 3 4	3 5 4 7 8	4 6 2 9 5	8 7 3 1 6

Given a completed $N^2 \times N^2$ Sudoku matrix, your task is to determine whether it is a *valid* solution. A *valid* solution must satisfy the following criteria:

- Each row contains each number from ${\bf 1}$ to ${\bf N^2}$, once each.
- Each column contains each number from ${\bf 1}$ to ${\bf N^2}$, once each.
- Divide the $N^2 \times N^2$ matrix into N^2 non-overlapping $N \times N$ sub-matrices. Each sub-matrix contains each number from 1 to N^2 , once each.

You don't need to worry about the uniqueness of the problem. Just check if the given matrix is a valid solution.

Input

The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with an integer N. The next N^2 lines describe a completed Sudoku solution, with each line contains exactly N^2 integers. All input integers are positive and less than 1000.

Output

For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is "Yes" (quotes for clarity only) if it is a valid solution, or "No" (quotes for clarity only) if it is invalid. Note that the judge is case-sensitive, so answers of "yes" and "no" will not be accepted.

Limits

Time limit: 30 seconds per test set.

Memory limit: 1GB.

 $1 \le T \le 100$.

Test set 1 - Visible

N = 3.

Test set 2 - Hidden

 $3 \le N \le 6$.

Sample

Sample Input 3 3 5 3 4 6 7 8 9 1 2 7 2 1 9 5 3 4 8 1 9 8 3 4 2 5 6 7 8 5 9 7 6 1 4 2 3 4 2 6 8 5 3 7 9 1 7 1 3 9 2 4 8 5 6 6 1 5 3 7 2 8 4 2 8 7 4 1 9 6 3 5 3 4 5 2 8 6 1 7 9 3 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 5 3 4 6 7 8 9 1 2 6 7 2 1 9 5 3 4 8

Sample Output

Case #1: Yes Case #2: No Case #3: No

```
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 999 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9
```