MTH 101: Calculus I

Nikita Agarwal

Semester II, 2024-25

Lecture 5 January 10, 2025

Countability of Sets

Sets with same Cardinality

- Consider two sets X and Y.
- We say that X and Y have the same cardinality if
 - a) either both are empty, or
 - b) there is a bijection $f: X \to Y$.
- If the sets X and Y have the same cardinality, and the sets Y and Z have the same cardinality, then the sets X and Z have the same cardinality.

Let $f: X \to Y$ and $g: Y \to Z$ be bijections, then $g \circ f: X \to Z$ is a bijection.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

Examples

• The sets $X=\{n: 1\leq n\leq 10\}$ and $Y=\{2n+1: 1\leq n\leq 10\}$ have the same cardinality.

The function $f: X \to Y$ given by f(n) = 2n + 1 is a bijection.

• Two sets X and Y both having n elements have the same cardinality.

List the elements of X as x_1, x_2, \ldots, x_n , and list the elements of Y as y_1, y_2, \ldots, y_n .

The function $f: X \to Y$ given by $f(x_i) = y_i$, for $1 \le i \le n$, is a bijection from X onto Y.

ullet The interval (-1,1) and $\mathbb R$ have the same cardinality.

The function $f:(-1,1)\to\mathbb{R}$ given by $f(x)=\tan(\pi x/2)$, for all $x\in(-1,1)$, is a bijection from (-1,1) onto \mathbb{R} .

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

More examples

• Intervals (a, b) and (c, d) have the same cardinality.

The function $f:(a,b)\to(c,d)$ given by $f(x)=c+(d-c)\frac{x-a}{b-a}$, for all $x\in(a,b)$, is a bijection from (a,b) onto (c,d).

Observe that even though (0,1) is a subset of (-1,1), the intervals (0,1) and (-1,1) have the same cardinality.

• Intervals [a, b] and [c, d] have the same cardinality.

Same f as above works.

Another example

Intervals (0,1) and [0,1] have the same cardinality.
 Hence intervals (a, b) and [c, d] have the same cardinality.

Define $f:(0,1)\to [0,1]$ as follows.

Let
$$A = \{1/2, 1/3, 1/4, \dots, 1/n, \dots\}.$$

Define f(1/2) = 0, f(1/3) = 1, f(1/(n+2)) = 1/n, for all $n \ge 2$, and f(x) = x for $x \in (0,1) \setminus A$.

Then f is a bijection.

This technique is inspired from the Hilbert's hotel example.

Finite set

- A set X is said to be finite if
 - a) either it is empty, or
 - b) there is $n \in \mathbb{N}$ such that the sets X and $\{1, 2, \dots, n\}$ have the same cardinality.
- We denote the number of elements of a finite set by |X|. Note that if X and $\{1, 2, ..., n\}$ have the same cardinality, then |X| = n.
- A set which is not finite is said to be an infinite set.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

Two finite sets

Theorem

Let X be a set with m elements and Y be a set with n elements. Then X and Y have the same cardinality if and only if m=n.

Recall: Same cardinality means there is a bijection between X and Y.

Proof

- The statement has a bi-implication. We need to prove both implications.
- Step 1: Prove $(m = n) \Rightarrow X$ and Y have the same cardinality. Already discussed the proof.
- Step 2: Prove X and Y have the same cardinality ⇒ (m = n).
 We prove this by showing that the contrapositive of this statement is true.
 The contrapositive is:
 (m ≠ n) ⇒ X and Y do not have the same cardinality.
 - We prove the contrapositive in two parts:
 - (a) Prove that if m < n, there is no onto function from X to Y.
 - (b) Prove that if m > n, there is no one-one function from X to Y.

Proof continued

- (a) We prove that if m < n, there is no onto function from X to Y.
 - Let $f: X \to Y$ be a function.

Let $X = \{x_1, x_2, \dots, x_m\}.$

Then the set $\{f(x_1), f(x_2), \dots, f(x_m)\} \subseteq Y$ is the image set f(X) having at most m elements.

Since m < n, there is some element of Y which does not belong to f(X). Hence, f is not onto.

- (b) We prove that if m > n, there is no one-one function from X to Y.
 - Let $f: X \to Y$ be a function.

Let $X = \{x_1, x_2, \dots, x_m\}.$

Then the set $\{f(x_1), f(x_2), \dots, f(x_m) \subseteq Y \text{ is the image set } f(X).$

Since Y has n elements and n < m, there is a pair $1 \le i \ne j \le m$ such that $f(x_i) = f(x_i)$.

Hence, f is not one-one.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25

Pigeonhole Principle

Pigeonhole Principle

Let X be a set with m elements and Y be a set with n elements.If m > n and $f: X \to Y$ is a function, then f is not one-one.

- f is not one-one means that there are two elements $x_1, x_2 \in X$ for which $f(x_1) = f(x_2)$.
- Why is it called Pigeonhole principle?

 Suppose there are *m* pigeons and *n* pigeonholes, and that each pigeon has to stay in a pigeonhole. Since there are more pigeons than pigeonholes, two pigeons will have to stay in the same pigeonhole.
- The Pigeonhole Principle is one of the most basic and powerful tool in Combinatorics.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25 10 / 13

An application of the Pigeonhole Principle

Let $k \geq 2$. Let $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$. Prove that there exist $1 \leq i, j \leq k, i \neq j$ such that $a_i - a_i$ is divisible by k.

Proof:

- For each $1 \le i \le k+1$, let r_i be the remainder upon dividing a_i by k. That is, $a_i = kq_i + r_i$.
- The possible values of r_i are $0, 1, \ldots, k-1$ (k many possibilities).
- Since there are k+1 many elements $a_1, a_2, \ldots, a_{k+1}$ and only k many possibilities for remainders $r_1, r_2, \ldots, r_{k+1}$, there exist $1 \le i, j \le k$, $i \ne j$ such that $r_i = r_i$.
- Hence $a_i a_j = kq_i + r_i kq_i r_j = k(q_i q_i)$. Therefore $a_i a_i$ is divisible by k.

MTH 101: Calculus I Semester II. 2024-25 11/13

Countable set

- A set X is said to be countable if
 - a) it is either finite, or
 - b) it has the same cardinality as \mathbb{N} .
- If X has the same cardinality as \mathbb{N} , then X is said to be countably infinite.
- A set which is not countable is said to be uncountable.

Nikita Agarwal MTH 101: Calculus I Semester II, 2024-25 12 / 13

Examples

- ullet $\mathbb Z$ is countably infinite.
- If X, Y are countably infinite sets, then the set $X \cup Y$ is also a countably infinite set.
- If X, Y are countably infinite sets, then the set $X \times Y = \{(x, y) : x \in X, y \in Y\}$ is also a countably infinite set.
- The set of rational numbers, \mathbb{Q} , is countably infinite.
- The power set of \mathbb{N} , denoted as $\mathcal{P}(\mathbb{N})$, is uncountable.