Procesory

Struktura současných procesorů (x86/64). Techniky optimalizace provádění instrukcí, snižování spotřeby, Rozšířené instrukční sady.

- Procesor jakožto elektronický obvod (složený z velkého množství součástek převážně tranzistorů) je umístěn na křemíkové destičce
- CPU je složitý integrovaný obvod
- Populární díky výpočetní technice (PC, laptop, mobilní zařízení, ...), dnes se s nimi můžeme setkat i třeba v pračce nebo ledničce
- Procesor zpracovává informace (instrukce) v podobě strojového kódu a procesory s obdobnou strukturou jádra, které zpracovávají shodný strojový kód, mají stejnou architekturu

Vnitřní architektura

- Podle vnitřního uspořádání dělíme procesory na RISC a CISC lišící se počtem instrukcí, které procesor umí vykonat
- Současné procesory Intel, nebo ty, které jsou s nimi kompatibilní, jsou vnitřně RISC, ač uvnitř vlastně probíhají složité CISC instrukce
- Dále dovedou měnit, resp. Aktualizovat, svůj řídící mikro kód
- Architektura jde ruku v ruce s instrukční sadou a její délkou, jež díky překotnému vývoji roste
- Jednodušší procesory dodnes používané jsou 8bitové, a naopak na vrcholu jsou dnes 64bitové, používané hlavně ve výkonnějších výpočetních strojích a serverech

Struktura moderních CPU

Vícejádrový procesor

- Vícejádrový procesor je mikroprocesor, který v jednom pouzdře nebo na jednom čipu integruje více CPU => jádra
- Obvykle jde o jádra, která jsou vzájemně programově kompatibilní a mohou ta snáze spolupracovat
- Jejich společná činnost se nazývá multitasking, případně multithreading
- U vícejádrových procesorů je dobrá součinnost důležitá, protože umožňuje využít celý systém v maximální možné míře
- Spolupráce jader se obecně děje prostřednictvím operační paměti (RAM)
- Přirozené zefektivnění spolupráce jader nastává v případě společné sdílené paměti cache, která umožňuje další zlepšení spolupráce příslušných jader
- Pro využití vícejádrových procesorů je obvykle třeba podpora ze strany OS

Řadič

- Registr adres instrukcí
 - o 0 až do hodnoty adresy poslední paměťové buňky v OP
 - Touto hodnotou je omezena OP (operační paměť), kterou lze k CPU připojit
 - Např. u 32bitového registru lze adresovat max. 2**32 = 4 GB
 - o Při zapnutí počítače RAI nastaví na výchozí hodnotu, zpravidla nulu
 - Tímto nulovým obsahem se na výstupu RAI objeví číslo, které odpovídá adrese první instrukce uložené v OP
 - Výstup RAI je spojen s adresovou sběrnicí
- Registr instrukce:
 - o Do tohoto registru se po datové sběrnici přivádí z OP instrukce
 - o Zde se uloží až do okamžiku, než je přepsaná instrukcí následující
- Dekodér instrukce:
 - Instrukce je přivedena z registru na dekodér, kde se dekóduje a postupuje do generátoru řídících impulsů
 - Procesem dekódování se rozumí nalezení mikrokódu k vykonání instrukce ve vnitřní paměti ROM řadiče
- Generátor Řídících impulsů
 - Spuštění mikrokódu se v určité časové posloupnosti generují řídící impulsy do ostatních jednotek počítače

ALU

Provádí s daty příslušné aritmetické a logické operace

- Operační blok
 - Zpracovává operandy přiváděné na dva vstupy a výsledek se předává jedním výstupem k dalšímu zpracování
- Střadač
 - o Je registr, v němž se uchovávají data
 - 1. operand, mezivýsledky, výsledky
- Registr příznaků
 - Stavový registr
 - Skládá se z řady jednobitových pamětí, ve kterých je uložena 0 nebo 1, podle výseldků
 - Obsah stavových registrů kontroluje řadič, který na ně příslušně reaguje
 - Nejčastější příznaky:
 - CARRY
 - ZERO
 - SIGN

Cache v procesoru

- Ukládá kopie dat přečtených z adresy v operační paměti
- Pokud při čtení obsahu slova z adresy v paměti je tato položka nalezena v cache paměti, je její obsah přečten z cache paměti, a ne z operační paměti
- Mezi procesorem a cache pamětí se přenášejí jednotlivá slova, mezi cache paměti a operační pamětí se přenášejí rámce slov o velikosti několikanásobku velikosti slova procesoru
- Protože asi 90 % operací procesoru je čtení paměti, většinou sekvenční, je tímto způsobem dosaženo větší propustnosti dat z operační paměti do procesoru => vyšší výpočetní výkon
- Vyrovnávací paměť procesoru bývá dvojstupňová
- Část paměti o malé kapacitě je přímo součástí procesoru a je stejně rychlá, jako vlastní procesor
 (L1)
- Další paměť, pomalejší, ale s větší kapacitou, je mezi procesorem a operační pamětí, dnes se již umísťuje do pouzdra s procesorem (značí se L2)
- Protože cena paměti stoupá s její rychlostí, je možné tímto uspořádáním najít kompromis mezi cenou a rychlostí
- Na přelomu 2008 a 2009 se začíná používat L3 cache i v běžných procesorech, která je pro všechny jádra společná a většinou má velikost několik megabajtů

iGPU

- Integrovaná grafická karta
- Dvě skupiny
- Úzce vázané, které sdílí paměť s procesorem, se kterým také mohou bezprostředně spolupracovat a ty, které třeba i sdílí část operační paměti, ale nejsou schopny úzce spolupracovat
- Systém s úzce vázanými procesory je zvláštně výhodný v případě výpočetně náročných operací,
 kdy CPU a GPU spolupracují na stejných datech
- V tomto případě odpadá nadbytečné kopírování dat mezi pamětí CPU a GPU
- Výhodou tohoto řešení je kromě lepší spolupráce i nižší spotřeba než v případě dedikovaných grafických karet

Severní můstek (Northbridge)

- Systémový řadič
- Jedním ze dvou základních čipů na základní desce
- Zajišťuje komunikaci mezi CPU, pamětí RAM (řadič paměti), AGP portem nebo PCI Express sběrnicí a také zajišťuje spojení s jižním mostem
- Některé severní můstky obsahují integrované grafické karty
- Protože různé procesory a paměti vyžadují rozdílnou signalizaci, pracuje severní můstek pouze s jedním nebo se dvěma typy procesorů a zpravidla pouze s jedním typem paměti RAM
- Severní můstek je na základních deskách základním prvkem, který určuje rychlost, druh procesorů, jejich množství a druh paměti RAM, který bude použit
- Ostatní faktory, jako jsou regulace napětí a počet konektorů, také hrají roli

Serverový a počítačový procesor

Více jader v CPU serveru

- Protože musí spouštět více procesů než PC, musí mít větší počet jader
- Důvod více jader a větší mezi paměti souvisí s ekonomikou
- Společnost, co staví serve má dostatek kapitálu na to, aby zaplatila za nákup velkého procesoru s velkým počtem jader a mezi paměti

Více procesorů na serverech

- U serverů je normální mít několik cpu na stejné desce, každý s rozdílnou paticí
- U PC jsou CPU s chiplety, ale není to stejné, protože i nadále používají jednu zásuvku a není to stejné velikosti jako zásuvky pro servery

Patice a základní deska CPU serveru se liší

- Procesor serveru je mnohem větší než procesor počítače = speciální zásuvka a speciální základní deska
- Z8kladní desky serverů mají věci, které konvenční počítače nemají
 - víc ethernet portů
 - o vysílače a přijímače SFP, které umožňují použití optického propojení
 - o porty SAS pro připojení disků na serverech
- Pokud jde o RAM, mnoho procesorů serveru používá paměť ECC, kterou nelze použít u konvenčních procesorů a tradiční RAM nelze použít u základních desek, a tedy u serverových procesorů

CPU serveru je vždy spuštěno

- Je zapnuto 24 hodin denně, 7 dní v týdnu a 365 dní v roce
- Pokud jde o provádění testů kvality na CPU pro servery, jsou mnohem náročnější a počet procesorů, které projdou cutem, je mnohem nižší
- Proto mají CPU serveru tendenci běžet při nižší průměrné rychlosti hodin na jádro než jejich desktopové protějšky
- Nižší taktovací frekvence je vyrovnávaná vyšším počtem jader
 - o Paralelní spouštění větší počet podprocesů

Žádné GPU ani integrované koprocesory médií

- CPU serveru se nepoužívají k reprodukci plné grafiky, navíc konstruktéři neumísťují žádný grafický hardware na stejný čip jako samotný procesor, takže nemají integrovaný GPU
- Jedním z důvodů je tepelné udušení, které může vysoce výkonný GPU umístit na CPU sdílením prostoru s ním

Mobilní procesory

- Nejdůležitější parametr je spotřeba energie
- Režim se sníženou frekvencí => snížení energie
- Například notebooky s mobilním procesorem bývají tiší a lehčí
- Velmi dobrý výpočetní výkon i v porovnání s desktopovými počítači

Technika optimalizace provádění instrukcí

Vývoj technologie výroby čipů

- Zmenšování šířky spojů mezi jednotlivými tranzistory
- Zmenšování tranzistorů
- Snižování napájecího napětí
- Zvyšování taktovací frekvence
- Vyzařený výkon = frekvence * napětí
- Zvětšení plochy čipů na waferu

Rozšíření bitové šířky zpracování

- Nejsnazším metoda zvýšení výpočetního výkonu
- Rozšíření počtu bitů, které dokážou mikroprocesory v každé instrukci zpracovávat
- 8-bit mikrořadiče dodnes používány
- Desktopové 32-bit procesory nahrazeny 64-bit

Zvýšení počtu pracovních registrů

- Přidané tranzistory dávají možnost zvýšení počtu registrů
- Dřivé se na registrech šetřilo kvůli vyšší ceně
- Dnes je počet rozsáhlý:
 - o Zabírají minimální místo
 - o Tvoří nejrychlejší úroveň paměti

Hierarchické uspořádání paměti

- Kvůli cenně je nemožné, aby celá operační paměť byla nejrychlejší:
 - o L1 cache
 - o L2 cache
 - Operační paměť
 - o Virtuální paměť

Fronta instrukcí

• Fronta do které se vkládají operační kódy instrukcí načítané z operační paměti

Pipelining

• Instrukce se zřetězí a současně se tak zpracovává větší množství instrukcí, ale každá instrukce se nachází v jiné části zpracování

 Např. je možné provádět aritmetickou operaci na ALU a současně ukládat výsledek předchozí operace do pracovního registru a současně již načítat operační kód následující instrukce

Explicitní paralelní zpracování instrukcí

- Všechny výkonné jednotky umístěny paralelně vedle sebe možnost vykonávat operace nezávisle na sobě
- Speciální formát operačních kódů VLIW

Skalární architektura

 Mikroprocesory, které v jednom taktu načtou maximálně jednu instrukci a provedou na základě jejího operačního kódu pouze jednu instrukci a provedou na základě jejího operačního kódu pouze jednu aritmetickou či logickou operaci s jednoduchou (skalární) hodnotou

Prediktory skoků

• Dopředu odhadnou, zda se skok provede či nikoli a na základě toho začnou do instrukční pipeline vkládat instrukce, které se nachází ihned ze skokem či naopak v cíli skoku

SISD

- Single Instruction, Single Data
- Každá instrukce pracovala maximálně se dvěma operandy

SIMD

Architektura, ve které se pomocí jedné instrukce může zpracovat větší množství dat

MISD

Umožňuje na jedny data aplikovat více operací zapsaných ve více instrukcích za sebou – zobecněná pipeline

MIMD

- Největší úroveň paralelismu
- V procesoru nebo procesorovém poli je paralelně zpracováváno větší množství dat a to nezávislé na sobě

Masivně paralelní architektury

 Místo sběrnice je použita nějaká obecnější struktura, například v nejjednodušším případě mřížka, dále pak hyperkostka, "tlustý binární strom" apod.

Provádění instrukcí mimo pořadí

- Je možné začít provádět nějakou jinou instrukci, u niž je zaručeno, že používá jiné pracovní registry a příznaky
- Interně se řazení instrukcí provádí na základě jejich ukládání do instrukční fronty, ze které jsou instrukce vybírány ve chvíli, kdy jsou známy hodnoty jejich operandů

Snižování spotřeby

Snížením napětí

- Snížením napětí se zmenší maximální frekvence
- Redukuje se tím i spotřeba zdroje a základní desky

Snížením frekvence

• Nižší frekvence umožňuje snížit napětí ještě více

Vypnutí jader procesoru

• Vypnutím jader procesoru se sníží výkon, tím pádem i spotřeba

Odpojení nepotřebných periferií

• Odpojení nedůležitých periferií se sníží celková spotřeba systému

Změna otáček ventilátoru

Snížením otáček se sníží spotřeba i výkon

Výměna HDD za SSD

Výměna nám umožní vyšší rychlost a nižší spotřebu

Snížení jasu monitoru

• Menší jas sníží spotřebu několikanásobně

Snížení spotřeby v OS

- Režim spánku
- Režim hibernace
- Zapnutí úsporného režimu

Rozšířené instrukční sady

- Skupina nových instrukcí rozšiřující instrukční sadu dané mikro architektury procesoru
- Mohou přidávat nové registry anebo jednotky integrovaného obvodu
- Mají zvýšit reálný výpočetní výkon procesoru bez zvyšování hodinové frekvence či kapacity vyrovnávací paměti

SIMD

- Provádění instrukce s více daty
- Urychlení běhu programů jejichž algoritmy provádí velké množství stejných operací s rozsáhlým objemem dat
- SIMD = Single Instruction Stream, Multiple Data Stream

Vektorové operace

- Zatímco u skalárních procesorů se každá instrukce provádí s jedním či dvěma operandy (příkladem může být instrukce ADD R1, R2)
- Vektorová operace je prováděna s obsahem vektorové proměnné
- Vektor obsahuje několik hodnot stejného typu
- Vektorové instrukce se kromě již zmíněné x86 architektury používají i v ostatních architekturách např. ARM, PowerPC, MIPS ...

MMX

- První rozšiřující instrukční sadou obsahující SIMD operace pro architekturu x86
- Navržena v roce 1996 ve firmě Intel
- 57 nových instrukcí a čtyři datové typy, které byl těmito instrukcemi podporovány
- 4 nové datové typy: 3 z nich vektorové
- Většina nových instrukcí přidaných v rámci sady MMX byla určena pro provádění aritmetických a bitových operací s celočíselným operandy o šířce 8, 16, 32 či 64 bitů

Datové typy přidané MMX

Datový typ	Bitová šířka operandu	Počet prvků vektoru
packed byte	8 bitů	8
packed word	16 bitů	4
packed doubleword	32 bitů	2
quadword	64 bitů	1

Instrukce přidané MMX

#	Skupina instrukcí	Příklady instrukcí
1	Základní aritmetické operace	PADD, PADDS, PADDUS, PSUBS, PSUBUS, PMULHW, PMULLW
2	Logické (bitové) operace	PAND, PANDN, POR, PXOR
3	Bitové posuny	PSLL, PSRL, PSRA
4	Porovnávání	PCMPEQ, PCMGT
5	Konverze dat	PACKUSWB, PACKSS, PUNPCKH, PUNPCKL
6	Přenosy dat + práce s pamětí	MOV
7	Řízení jednotky MMX	EMMS

Problém MMX s FPU

- FPU = floating-point unit, anebo MCP = math coprocessor
- Aby se ušetřilo místo na čipu, MMX instrukce pracovali s osmicí 64bitových registrů využívaných matematickým koprocesorem (FPU)
- Kvůli tomu bylo komplikované používat MMX a FPU najednou

3DNow!

- Odpověď firmy AMD na MMX
- Kromě stejných instrukcí jako sada MMX také obsahuje nové instrukce pro práci s čísly reprezentovanými 32bitovými hodnotami s plovoucí řadovou čárkou
- Přidám vector obsahující dvojici 32bitových čísel s plovoucí řádovou čárkou
- Nabízí instrukce se zaokrouhlením směrem k nule a instrukce se zaokrouhlením k nejbližší reprezentované hodnotě
- Díky vectoru a instrukcím pracují s 32bitovými čísly s plovoucí řádovou čárkou, se už k tomu nemusela používat matematický koprocesor (FPU)
- FPU bylo stále potřeba pro práci s hodnotami s dvojitou (double) či rozšířenou přesností (extended)

SSE

- Streaming SIMD Extension
- Přidány registry XMM0 až XMM7 a XMM8 až XMM15 u 64bitových platformách mají šířku 128 bitů
- Přidáno 70 instrukcí
- Zaokrouhlení směrem k nule, ke kladnému nekonečnu, k zápornému nekonečnu i k nejbližšímu reprezentovatelnému číslu
- Volba režimu se provádí přes řídící registr MXCSR

Instrukce přidané SSE

- Instrukční sada typu SIMD
- Některé instrukce měli skalární a vektorovou podobu
- SS = single scalar
- PS = parallel scalar
- Operace ADDSS sčítá pouze dvojici skalárních hodnot typu float/single (pokud se jedná o XMN registry bere z nejnižších 32 bitů v registru)
- Operace ADDPS sečte dvojici vektorů, z nichž každý obsahuje čtyři 32bitové hodnoty typu float/single

AVX (Advanced Vector Extensions)

- Vylepšení SSE
- Namísto 128bitových registrů XMM0-XMM15 přidává 256bitové registry YMM-YMM15
- Přidává SSE instrukce upravené pro 256 bitů

AVX2

Přidává další instrukce pro celá čísla

AVX-512

 Mění velikost registrů na 512 bitů a zvyšuje jejich počet na 32 a přidává některé instrukce upravené pro 512 bitů

Další instrukční sady

AMD-V/Intel-VTx

• Rozšíření Hardwarově pomáhající s virtualizací

AES

• Rozšíření, které zrychluje šifrování podle standartu AES

SHA

Zrychluje algoritmus SHA