- 3. A and (B or not(A)) = A; A or (B and not(A)) = A
- 4. Функция правило, согласно которому каждому элементу х из области определения (X) ставится в соответствие определенный элемент из области значений (F).
- 5. Арность функции число аргументов данной функции.
- 8. Функцию можно задать с помощью:
- а) вектора значений (по сути просто переписанный столбец значений функции из таблицы истинности)
 - b) вектора минтермов, то есть представление функции в виде суммы минтермов
 - с) графически, то есть с помощью карт Вейча и Карно
- 9. Конъюнкт конъюнкция п аргументов
- 11. ДНФ дизъюнкция выражений, которые либо: отдельный аргумент, простая конъюнкция некоторых аргументов

Какие из диаграмм представляют отношения строгого или нестрогого порядка?

Задание 2

Построить диаграмму Хассе отношения \leq делимости на множестве A == {2, 3, 4, 6, 8, 9, 12, 18, 24, 36}. Описать это отношение правилом.

Найти минимальные и максимальные элементы. Наименьший и наибольший элементы, если есть.

X Ry (=)

Показать, что отношение ≼+, заданное тем же правилом, но введенное на → х:у множестве $A \cup \{72\}$, обладает наибольшим (или наименьшим) элементом.

namenament: 36,24 Moramabnae: 2,3

Установить, является ли отношением порядка на множестве \mathbb{Z}^2

- a) $(x_1, y_1)R_1(x_2, y_2) \Leftrightarrow x_1 \leq x_2, y_1 \leq y_2;$
- b) $(x_1, y_1)R_2(x_2, y_2) \Leftrightarrow x_1 < x_2$ или $(x_1 = x_2$ и $y_1 \le y_2)$;
- c) $(x_1, y_1)R_3(x_2, y_2) \Leftrightarrow x_1 + y_1 \le x_2 + y_2$.

Для каждого отношения порядка определить, является ли оно линейным.

a) pego, announ, nyanz => neonyo ma;] mode at b mode bla B) pigo, cumus many = peconpeir unemor

Задание 4

Составить список упорядоченных пар принадлежащих отношению нестрогого порядка, представленного

диаграммой Хассе. Найти минимальные и максимальные элементы.

R= 2 (A, E), (A, H), (A, G), (B, E), (B, G), (B, F), (B, H), (E, G), (E, H), (F. H), (C)) um. neuerma; a, b, c, +

wanc. surrenmo . G. H, I D

Задание 5

Какие аргументы являются существенными, а какие – фиктивными для функции заданной вектором значений? Удалить фиктивные переменные.

б) (0000 0101); в)(1010 0000 1111 1010). a) (0011 1100); Задание 6

Построить таблицы истинности для следующих формул.

2) $(x \to y) \land (y \to x)$; 3) $x \leftrightarrow y$; 4) $(x \to y) \to y$. $1) x \vee y;$

X y X VY	219	12-99	y-3x	ヤラツハ(ツラ2)	γ	191	Ktyj	2	14	x - y	(x-y) -y
0070	001	7	10	10	0	0	1	0	0	1	0
177	70	0	1	0	1	101	0	1	0	0	7
	1.7	1	1	1	1	7	1	1	17	1	1

Доказать тождество используя основные тождества алгебры логики

1)
$$x \vee (y \rightarrow z) = (x \vee y) \rightarrow (x \vee z);$$

 $x \vee (y \rightarrow z) = x \vee \hat{y} \vee Z$
 $(x \vee y) = (x \vee z) = (x \wedge \hat{y}) \vee (x \vee z) = x \vee \hat{y} \vee Z$
2) $x \wedge (y \rightarrow z) = (x \wedge y) \wedge (x \wedge z)$

2)
$$x \wedge (y \to z) = (x \to y) \to (x \wedge z)$$
.
 $2 \wedge (y \to z) = (x \to y) \to (x \wedge z)$.
 $(x \to y) \to (x \wedge z) = (x \wedge y) \to (x \wedge z)$ (=) $(x \to y) \to (x \to$

Задание 8

Подберите формулу к функции заданной вектором

(a) (0100 1000); 6) (0011 1100); (b) (1000 0011); r) (0111 1000).
(a)
$$\overline{A}$$
 \overline{B} C + A \overline{B} \overline{C}
(b) A \overline{B} \overline{C} + A B \overline{C} + A B C

Задание 9*

Сколько различных отношений порядка можно определить на множестве $A = \{\Box, \triangle, \bigcirc\}$? Сколько из них линейных?

Задание 10*

Доказать, что если у функции $f(\tilde{x}^n) = f(x_1, x_2, ..., x_n)$ имеются фиктивные переменные, то она принимает значение 1 на четном числе наборов. Верно ли обратное утверждение?

- 12. Минтерм булева функция, которая принимает единичное значение только на одном наборе значений переменных.
- 17. СКНФ КНФ, которая не имеет одинаковых дизъюнкций и все они полные. Тождественно истинную функцию невозможно представить в СКНФ.

- 18. Для функции f найти $ar{f}$. В аналитической записи $ar{f}$ по теореме де Моргана проинвертировать результат.
- 19. Импликанта функции функция, все минтермы которой входят в множество минтермов исходной функции
- 20. Сокращенная ДНФ запись функции, в которой любые два слагаемых отличаются минимум в двух местах и ни один их конъюнкт не содержится в другом.

ЗАНЯТИЕ 5: ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

Вопросы:

- (13) Минтерм.
- 14. СДНФ. Функции, непредставимые в СДНФ.
- 15. Теорема разложения для ДНФ.
- 16. Макстерм.
- СКНФ. Функции, непредставимые в СКНФ.
- [8]. Построение СКНФ по СДНФ.
- **1** Импликанта.
- 20. Сокращенная ДНФ.
 - .. Простая импликанта.

Задание 11*

Сколько булсвых функций от n аргументов удовлетворяют равен-

a)
$$f(0,0,...,0) = f(1,1,...,1) = 0$$
;

6)
$$f(\bar{x}_1, \bar{x}_2, ..., \bar{x}_n) = f(x_1, x_2, ..., x_n)$$
?

Задание 12

Найдите инверсию выражения и упростите:

1)
$$(\overline{A} + \overline{B} + \overline{C})(\overline{B} + \overline{C})(\overline{B} + \overline{C} + \overline{D}); ABC+BC+BCO=BC$$

2)
$$(\overline{X} + \overline{Y})(\overline{X} + \overline{Y} + \overline{Z})(T + \overline{X} + \overline{Y}); \quad \Upsilon Y + Y Y Z + T X Y = X Y$$

3)
$$(\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + \overline{C})(\overline{B} + \overline{C} + \overline{D})$$
. ABC + \overline{A} BC + \overline{B} C = \overline{B} C

Доказать тождество используя основные тождества алгебры логики

1)
$$A \leftrightarrow B = (A \rightarrow B) \cdot (B \rightarrow A);$$
 $A \leftrightarrow B = (\widehat{A} \vee B) \wedge (\widehat{A} \vee B)$
 $A \leftrightarrow B = (\widehat{A} \vee B) \wedge (\widehat{A} \vee B)$
 $A \leftrightarrow B = (\widehat{A} \vee B) \wedge (\widehat{A} \vee B)$
 $A \leftrightarrow B = (\widehat{A} \vee B) \wedge (\widehat{A} \vee B)$
 $A \leftrightarrow B = (\widehat{A} \vee B) \wedge (\widehat{A} \vee B)$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \rightarrow B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{B} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{A} \wedge B) \cdot (\widehat{A} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{A} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \vee B) \cdot (\widehat{A} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \wedge B) \cdot (\widehat{A} \rightarrow A);$
 $A \leftrightarrow B = (\widehat{A} \wedge B) \cdot (\widehat{A} \rightarrow A);$
 $A \leftrightarrow B = ($

Решить систему булевых уравнений:

a)
$$\begin{cases} (x \oplus y) \cdot (z \oplus 1) = 0 \\ (x \oplus y) \cdot (z \oplus 1) = 0 \end{cases} \Rightarrow (y = 0)$$

$$\begin{cases} (x \oplus y) \cdot (z \oplus 1) = 0 \\ (x \oplus y) \cdot (z \oplus 1) = 0 \end{cases} \Rightarrow (y = 0)$$

$$\begin{cases} (x \oplus y) \cdot (z \oplus 1) = 0 \\ (x \oplus y) \cdot (z \oplus 1) = 0 \end{cases} \Rightarrow (y = 0)$$

$$\begin{cases} (x \oplus y) \cdot (z \oplus 1) = 0 \\ (y = 0) \end{cases} \Rightarrow (y = 0)$$

$$\begin{cases} (x \oplus y) \cdot (z \oplus 1) = 0 \\ (y = 0) \end{cases} \Rightarrow (y = 0)$$

Задание 15

Упростить формулу:

a)
$$(x \to y) \& (x \lor y);$$

a) $(x \to y) \& (x \lor y);$
b) $(x \to y) |_{x \to y} |_{$

Задание 16

Для указанной функции написать СДНФ:

a)
$$f = (0110\ 1011);$$
 6) $f = (0100\ 1110).$
a) $f = \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C}$
b) $f = \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C} + \widehat{A}\widehat{B}\widehat{C}$

• Задание 17

Получить СДНФ для функции. Представить функцию в виде вектора минтермов.

• Задание 18

Разложить до СДНФ по Шеннону. Не строить таблицу истинности! $(x \oplus 0 = x, x \oplus 1 = \bar{x}, x \to 0 = \bar{x}, x \to 1 = 1, x \downarrow 0 = \bar{x}, x \downarrow 1 = 0, x \leftrightarrow 0 = \bar{x}, x \leftrightarrow 1 = x, 0 \to x = 1, 1 \to x = x, x \mid 0 = 1, x \mid 1 = \bar{x})$

a)
$$f(x,y,z) = x \cdot y + x \cdot z + y \cdot z;$$

b)
$$f(x, y, z) = x \cdot y \cdot z \oplus (\bar{x} \to z);$$

(c)
$$f(x,y,z) = (x \rightarrow y) \rightarrow (\bar{y} \rightarrow \bar{x});$$

 $(x \rightarrow y) \rightarrow (\bar{y} \rightarrow \bar{x}) = x(y \rightarrow y) + \bar{x} = \bar{x}y + \bar{x}y + \bar{x}\bar{y} + \bar{x}\bar{y}$

d)
$$f(x,y,z) = x \oplus y \rightarrow y \cdot z$$
;

(a)
$$f(x,y,z) = x \leftrightarrow (y + \overline{z})$$
.
 $\chi \leftrightarrow (y + \overline{z}) = y(\chi \leftrightarrow 0) + 5(\chi \leftrightarrow 2) = y + \overline{\chi} + 5 = \chi + 5 = \overline{\chi}$
 $= \chi + 72 + \overline{\chi} + 5 = \chi + \chi + 5 = \chi + 5 = 0$

Задание 19

• Построить СКНФ функций из предыдущего задания по известным СДНФ.

Задание 20

Упростить функцию, заданную параметрически

a)
$$f(x_1, x_2, x_3, x_4) = V_{\sigma_1 \in \{0,1\}, \sigma_3 \in \{0,1\}}(x_1^{\sigma_1} \cdot x_2^1 \cdot x_3^{\sigma_3} \cdot x_4^0);$$

 $\overline{\chi}_1 \chi_2 \chi_3 \overline{\chi}_4 + \overline{\chi}_1 \chi_2 \chi_3 \chi_4 + \chi_1 \chi_2 \chi_3 \chi_4 + \chi_1 \chi_2 \chi_3 \overline{\chi}_9 =$

$$= \chi_2 \chi_3 \overline{\chi}_0 + \chi_2 \chi_3 \overline{\chi}_4 = \chi_2 \chi_3 \chi_4 = \chi_2 \chi_4 \chi_5 \chi_5 = \chi_4 \chi_5 \chi_5 = \chi_5 \chi_5 = \chi_5 = \chi_5 = \chi_5 \chi$$

b)
$$f(x_1, x_2, x_3, x_4) = \bigvee_{\sigma_1 \neq \sigma_2, \sigma_3 = \sigma_4} (x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdot x_3^{\sigma_3} \cdot x_4^{\sigma_4}).$$

Переменную с отрицанием или без будем называть литералом. Для простоты и универсальности записи введем следующее обозначение

$$x^{\sigma} = \begin{cases} x, & \sigma = 1, \\ \bar{x}, & \sigma = 0. \end{cases}$$

Можно заметить, что при фиксированном параметре σ (задано $\sigma=1$ или $\sigma=0$), любая формула, использующая данную символику, обратится в формулу алгебры логики. (σ – греч. «сигма») Кроме того, можно видеть $x^{\sigma} = 1 \iff x = \sigma$,

а также $x^{\sigma} = x \leftrightarrow \sigma = x \oplus \sigma \oplus 1$

(данное тождество можно применять, если требуется переход в запись над функциями алгебры логики и в них допустимо применять параметры).

Задание 21

Сколько минтермов содержат следующие функции, если все они зависят от четырех аргументов?

1)
$$f = AB + CD$$
.

1)
$$f = AB + CD$$
. \Rightarrow 3) $f = P + QRS$.

5)
$$f = \overline{A}\overline{B}\overline{C}\overline{D}$$
.

2)
$$f = AC\overline{D}$$
. 2

4)
$$f = ABC + \overline{B}C$$
. 6

 $(\varphi$ "содержится в" f(f) "содержит" φ) означает следующее отношение нестрогого порядка:

нестрогого порядка.
$$\varphi \subseteq f \iff (\forall \alpha = (a_1, a_2, ..., a_n) \in B^n) \varphi(\alpha) = 1 \Rightarrow f(\alpha) = 1,$$
 где $B = \{0, 1\}, \varphi$ и f – булевы функции арности n)

Задание 22

Указать номера функций представленных

1)
$$f(A, B) = \overline{A}\overline{B} + A\overline{B}$$
;

2)
$$f(A, B, C) = AB + AC + BC$$
;

3)
$$f(A, B, C) = (A + B + C)(\overline{A} + B + \overline{C})(A + \overline{B} + C);$$

4)
$$f(A, B, C, D) = (\bar{A} + B + \bar{C} + D)(\bar{B} + C + D)(A + \bar{C} + D);$$

5)
$$f(A, B, C, D) = \overline{A}BC + \overline{B}CD + \overline{A}CD + \overline{A}BD$$
;

6)
$$f(A, B, C) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}\overline{B}\overline{C}$$
;

7)
$$f(A, B, C, D) = (A + \overline{B} + C)(A + B + C)(A + \overline{B} + C)$$
.

Нанесите функцию на карту Вейча четырех аргументов, записывая в клетках не более чем по одной единице. Определите число клеток, занятых единицами:

- 1) $f = AB + C\overline{D}$;
- $2)f = A + \overline{B} + C;$
- (3) $f = ABCD + \overline{A}\overline{D}$;
- 4) $f = AB + C + \overline{D}$;
- (5) $f = A + \overline{D}$; $\widehat{6})f=A+C.$

Задание 24

По построенной карте Вейча для каждой из функций из предыдущего задания получить вектор минтермов.

3) F = (10101010000000001)6) f = (00110011111111111)5) F=[1010 10101111 1111]

Перечислить импликанты функции

a)
$$f(x,y,z) = (4,5,6,7);$$

b)
$$f(x,y,z) = \bar{x} \cdot y + y \cdot z$$
.

Задание 26

Определить число аргументов функции и число вхождений аргументов.

- 1) $f = A\overline{C} + B + \overline{A}\overline{C}$; 3 op : $A \neq 2$ 8:7 C: 2
- 2) $f = Y + X\bar{Z} + \bar{X}\bar{Z}$; 3 am \times :2 \times : 1 2.5 2
- 3) $f = P + \overline{P}Q$;
- 2 am p: 2 Q: 1

Найти минимальную ДНФ.

Запишите функцию в СДНФ:

$f = AB\overline{D} + A\overline{B}D + ABC + \overline{B}C + \overline{A}B\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D}.$

- Для ее СДНФ определите количество минтермов и число вхож-1) дений аргументов.
- Выполните операции первого этапа метода Квайна, т. е. сравните все минтермы между собой. Найдите число минтермов, оставшихся неподчеркнутыми, и количество неповторяющихся конъюнкций, содержащих по три аргумента.
- Выполните операции второго этапа метода Квайна. Определите число неподчеркнутых конъюнкций трех аргументов и число конъюнкций, содержащих по два аргумента.
- 4) Найдите число простых импликант и число вхождений аргументов сокращенной формы функции.
- Задайте перечислением отношение "содержится в" между конъюнктами исходной формулы и полученными простыми импликантами.
- Подтвердите, что полученная на шаге (3) формула действительно обладает свойствами сокращенной ДНФ.

Определение:

Сокращенная ДНФ (англ. reduced disjunctive normal form) — форма записи функции, обладающая следующими свойства

- любые два слагаемых различаются как минимум в двух позициях,
- ни один из конъюнктов не содержится в другом.

Задание 28

Сколько существует импликант, содержащих точно два минтерма:

(1) $f = (1, 3, 5, 7); \quad \forall$

3) f = (4, 9, 15, 20, 21, 30);

2) f(A, B, C, D) = B;

Задание 29

Дано шесть конъюнкций:

1) AB; 2) BD; 3) AC; 4) $\overline{A}\,\overline{B}\,\overline{C}$; 5) AD; 6) $A\,\overline{B}\,C$. Укажите номера тех конъюнкций, которые являются простыми импли-

134 кантами функции

f = (0, 1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15).