

PES Solution Ethernet

The Vector Embedded Ethernet-Stack and its Use-Cases

PES Solution Ethernet Overview

The PES Solution Ethernet comprises:

Ethernet - MICROSAR.ETH

- Service Discovery, SOME/IP
- UDP Network Management
- Signal- and PDU-based communication
- Diagnostics over Internet Protocol, Flashbootloader
- XCP on Ethernet, XCP Routing
- Mirroring

Vehicle-to-Grid - MICROSAR.V2G

- Smart Charge Communication
- Customer-specific functions

Audio/Video Bridging - MICROSAR.AVB

- Audio/Video Transport Protocol
- ▶ Generalized Precision Time Protocol / Best Master Clock Algorithm

Agenda

PES Solution Ethernet Overview	2
> AUTOSAR and MICROSAR Software Architecture	4
MICROSAR.ETH	11
MICROSAR.V2G	35
MICROSAR.AVB	38
Summary	42

vector

Ethernet Communication Stack

- ETH Ethernet Driver
 - Uniform API to access all Ethernet controllers of the same type
- ▶ ETHTRCV Ethernet Transceiver Driver
 - Uniform API to access all Ethernet transceivers of the same type
- ETHSWT Ethernet Switch Driver
 - Configuration of Ethernet switches e.g. Virtual Local Area Networks (VLANs) and routing tables
 - Uniform API to access all Ethernet switches of the same type (ETHSWTEXT for external switches which are configured e.g. via SPI)
- ► FTHIF Fthernet Interface
 - Hardware independent interface to access all Ethernet drivers and Ethernet transceiver drivers
 - > Handling of different VLANs
- ETHSM Ethernet State Manager
 - Enabling and disabling of Ethernet controller and Ethernet transceiver to switch on or off Ethernet communication

Ethernet Communication Stack

- ► TCPIP TCP/IP stack
 - IPv4/IPv6 Internet Protocol version 4/version 6 (IPv4 and IPv6 can be used in parallel on the same ECU)
 - > ARP Address Resolution Protocol (IPv4)
 - > NDP Neighbor Discovery Protocol (IPv6)
 - > ICMPv4/v6 Internet Control Message Protocol
 - > UDP User Datagram Protocol
 - > TCP Transmission Control Protocol
 - > DHCPv4/v6 Dynamic Host Configuration Protocol
 - > v4: Client and Server
 - > v6: Client only
- ▶ SOAD Socket Adaptor
 - Transformation of socket-based into AUTOSAR PDU-oriented communication

Supported Hardware

- Microcontrollers / Ethernet controllers
 - > MPC (FEC and ENET)
 - > TriCore, Aurix
 - > V850, RH850
 - > Jacinto 6 (incl. switch functionality)
 - > AR7000 (Powerline communication)
 - > CANoeEmu (Simulating an Ethernet controller within a CANoe DLL)
- Ethernet transceivers
 - > BCM89810 (BroadR-Reach)
 - > DP83848 (100BASE-TX)
 - > AR7000 (Powerline communication)
 - > CANoeEmu (Simulating an Ethernet transceiver within a CANoe DLL)
 - > Generic (Support of all transceivers which have a MII interface)
- Ethernet switches
 - > BCM89501 (BroadR-Reach)

Further controllers, transceivers and switches can be supported on request!

Supported Hardware

Ethernet Switches

- Automotive Ethernet switches offer different configuration possibilities
 - > VLAN
 - > Forwarding tables
 - > Queuing mechanisms
 - > ...
- ▶ AUTOSAR architecture fits to all known Ethernet switch architectures

Agenda

PES Solution Ethernet Overview	2
AUTOSAR and MICROSAR Software Architecture	4
> MICROSAR.ETH	11
MICROSAR.V2G	35
MICROSAR.AVB	38
Summary	42

In-Vehicle Ethernet Communication

Service Discovery (SD)

- Service-oriented communication scheme instead of a classical signal-oriented approach
- What is a "Service"?
 - A Service can contain "Methods" which can be called by other ECUs, this mechanism is known as Remote Procedure Call (RPC)
 - > A Service can contain "Events" to which other ECUs can subscribe to be informed about changes or updates
 - > There are Service providers (servers) and Service consumers (clients)
- What is the purpose of Service Discovery?
 - A provider announces the availability and implicitly the location of a Service via Service Discovery to other ECUs
 - A consumer knows the availability of a Service, can call Methods and can subscribe to offered Event groups
- Service Discovery was first specified in AUTOSAR 4.1.1

In-Vehicle Ethernet Communication

Advantages

- > Avoid sending of invalid signals
 - > Save bandwidth
- Avoid sending multi- and broadcasts but use unicast
 - Save bandwidth on alternative communication paths (use advantage to Ethernet as a switched network)
- > Reduce CPU load
- > Dynamic relocation of Services possible

Modes

- > Announce on startup
- > Query/Announce
- > Publish/Subscribe

In-Vehicle Ethernet Communication

Scalable Service-Oriented Middleware over IP (SOME/IP)

- SOME/IP is an automotive serialization protocol
 - Definition of a header format which supports RPCs, i.e. calling a function on a remote server ECU like it would be executed on the own ECU
 - Definition how application data shall be serialized to the on-the-wire payload
 - Support of basic data types, complex data types (e.g. C-struct), static and dynamic array data types
 - > Independent on endianness
 - > Designed for AUTOSAR and non-AUTOSAR ECUs

Slide: 13/50

In-Vehicle Ethernet Communication

- SOME/IP does not require Service Discovery and vice versa; however, they are designed to work together
 - Methods calls can be performed via SOME/IP messages
 - Event notifications can be sent via SOME/IP messages
 - Service Discovery messages like 'Offer' and 'Query' use the SOME/IP header
- SOME/IP was specified by BMW
 - > Auxiliary document in AUTOSAR 4.1.1
 - > SOME/IP will be specified in AUTOSAR 4.2.1

In-Vehicle Ethernet Communication

UDP Network Management (UDPNM)

- Coordination of the transition between normal operation and bus-sleep mode of an Ethernet network
 - > Periodic broadcast messages are sent by nodes which want to keep the NM-cluster awake
 - No master node
 - > Node detection (detect all present nodes in a network)
 - > Ready sleep detection (detect if all nodes in a network are ready for bus-sleep mode)
 - > Partial Networking support added with AUTOSAR 4.1.1
 - > Similar to network management on CAN
- No wake-up based on Ethernet communication possible
 - > Additional bus connection or wake-up line necessary
 - > Transceiver support missing
 - > Power consumption in sleep mode is too high (all switches have to be powered up)
 - > New transceivers will be available soon (2014)

In-Vehicle Ethernet Communication

Signal-/PDU-based communication

- Mapping of Signals onto a PDU and a PDU onto a frame
 - > Similar to classical communication on CAN

- Transmission and reception of multiple PDUs in one Ethernet frame to save resources
 - > Fan-out mechanism allows to transmit one PDU to several destinations via unicast
 - > Location of a PDU within a frame is dynamic
 - Socket Adaptor adds and removes a small header to differentiate between PDUs which comprises a PDU identifier and a length field
 - > Different frame triggering mechanisms available

vector

In-Vehicle Ethernet Communication

- SD Service Discovery
 - > Management of service states
 - Configuring communication paths over the Socket Adaptor e.g. disable routing if service is not available
- SOME/IP Scalable Service-Oriented Middleware over Internet Protocol
 - Serialization of application data and deserialization of received data
 - Since AUTOSAR 4.2.1 specified as RTE transformer
 - Large Data COM (LDCOM) can be used to save resources
- UDPNM UDP Network Management
 - > Coordinated shut down of Ethernet ECUs
 - > Connection to NMIF is not shown in the figure

Diagnostics, Measurement and Calibration

Diagnostics over Internet Protocol (DoIP)

Use-cases

- > Diagnostics (repair shop, legislator)
- ECU re-programming
 Manufacturer: End of line programming
 Repair shop: Software update

Advantages

- > High-speed access to vehicle ECUs
- Gateway to existing bus systems like CAN and FlexRay
- > Parallel flash download
- > Ethernet, TCP/IP as well-known technology
- New possibility for production and repair shop infrastructure (WLAN)

DoIP Diag. Message

Eth

ΙP

TCP

DoIP

UDS

...

...

Eth

- DOIP Diagnostics over Internet Protocol
 - > Implementation of ISO 13400-2
 - > The handling of the DoIP protocol was specified as Socket Adaptor plug-in in AUTOSAR 4.0.x and became a separate module in AUTOSAR 4.1.x
- ▶ PDUR PDU Router
 - Central module for PDU forwarding and routing e.g. DoIP ←→ Dcm and DoIP ←→ CanTp
- ▶ DCM Diagnostic Communication Manager
 - > Implementation of the diagnostic protocol (UDS)
 - Interaction with the Diagnostic Event Manager (DEM) to get diagnostic event information
 - Interaction with the application over the RTE to query diagnostic information and execute procedures

Diagnostics, Measurement and Calibration

Ethernet Flashbootloader (FBL)

- ► Fast ECU (re-)programming over Ethernet via DoIP
 - > 100MBit/s instead of max. 1MBit/s with CAN
- Use-cases
 - > End-of-line (EOL) ECU programming
 - > After-sales ECU re-programming
 - > ECU development
- Properties
 - Independent application which remains permanently in the ECU
 - The FBL is based on the MICROSAR.ETH BSW modules, but the source code cannot be shared between FBL and normal application
 - > Because of the special flash driver, the FBL is a hardware dependent application
- Offered as additional service

Diagnostics, Measurement and Calibration

▶ Flashbootloader

- > Communication (COMM and PDUR) wrapper
- > Flash/EEPROM driver
- > FBL security module
- > FBL diagnostics
- > FBL application

Diagnostics, Measurement and Calibration

Universal (X) Measurement and Calibration Protocol (XCP)

- Successor of CCP CAN Calibration Protocol
- Used for measurement, calibration, bypassing and ECU re-programming
- ▶ The XCP protocol is split into transport and protocol layer
 - > The protocol layer is identical for all network technologies i.e. CAN, FlexRay, Ethernet, USB
 - > The transport layer is specific for each network technology (different header and trailer data)
- ► ASAM AE MCD-1 XCP V1.1.0
 - > ASAM AE MCD-1 XCP V1.2.0 only adds CAN-FD as new transport layer, no functional changes

XCP H. = XCP Header (transport layer specific)

XCP P. = XCP Packet (protocol layer)

Diagnostics, Measurement and Calibration

Slide: 30/50

Diagnostics, Measurement and Calibration

XCP Routing

- > Route XCP data from a XCP master over a gateway to multiple ECUs and back
 - > Send XCP on CAN/FlexRay messages over Ethernet from a XCP master to the gateway
 - > UDP or TCP can be used as transport protocol
 - > Cascading of XCP on X messages possible

XCP RH. = XCP Routing Header (Vector-specific extension)

 $XCP ext{ on } X = XCP ext{ on } CAN/FlexRay message$

Diagnostics, Measurement and Calibration

Mirroring

- How can vehicle internal bus traffic be logged and analyzed if Ethernet is the only access point to the vehicle and without additional logging equipment?
- Solution: Mirroring of CAN/LIN/FlexRay bus traffic to Ethernet
 - > Mirroring of complete communication
 - Simultaneous mirroring of all connected busses possible
 - Multiple CAN/LIN/FlexRay messages are packed in one Ethernet packet
 - Additional information is added to the mirrored messages
 - Mirror functionality can be switched on/off e.g. by a diagnostic command
 - Implementation as CDD above the Socket Adaptor with direct access to bus drivers
- Analysis of mirrored data in CANoe

- ▶ ETHXCP XCP on Ethernet
 - Ethernet specific transport layer of ASAM AE MCD-1 XCP V1.1.0
- SOAD Socket Adaptor
 - Vector specific extensions to the AUTOSAR specification to support XCP routing and Mirroring
- MIRROR Mirroring
 - Complex Driver above the Socket Adaptor with direct access to communication drivers

Agenda

PES Solution Ethernet Overview	2
AUTOSAR and MICROSAR Software Architecture	4
MICROSAR.ETH	11
> MICROSAR.V2G	35
MICROSAR.AVB	38
Summary	42

MICROSAR.V2G

Smart Charge Communication (SCC)

- When and how to charge an electric vehicle?
 - > How much energy is available/required?
 - > How to pay?
- ▶ ISO 15118
 - > AC and DC charging
 - > Profile: Plug and Charge (PnC) charging in a public environment with billing
 - > Profile: External Identification Means (EIM) "simple" charging
 - > Value Added Services (VAS)
- ▶ DIN 70121
 - > DC charging (similar to ISO DC EIM no encryption, no payment)

Customer Specific Functions

▶ If the vehicle is connected to the Internet e.g. via a charge spot, additional webservices may be available or implemented by using e.g. HTTP

MICROSAR.V2G

- ▶ TLS Transport Layer Security
 - > Encryption and decryption of TCP streams
- SCC Smart Charge Communication
 - Implementation of the V2GTP (Vehicle-to-Grid transport protocol)
 - Efficient XML Interchange (EXI) and XML Security are implemented in separate modules
- ▶ DNSv4/v6 Domain Name Service
 - > Resolver only: Resolution of URLs into IP addresses (IPv4/IPv6)
- HTTP Hypertext Transfer Protocol
 - > String-based communication with a server
- Customer Functions
 - Customer specific functions, which e.g. are based on HTTP communication
 - An implementation of XML Engine and JSON (JavaScript Object Notation) is also available

Slide: 36/50

Agenda

	Summary	42
>	MICROSAR.AVB	38
	MICROSAR.V2G	35
	MICROSAR.ETH	11
	AUTOSAR and MICROSAR Software Architecture	4
	PES Solution Ethernet Overview	2

MICROSAR.AVB

Audio/Video Bridging (AVB)

- ► Transport audio and video streams
 - Through standard Ethernet network technology
 - > With simple cabling
 - > Fast and in real-time
 - > Well synchronized and prioritized

MICROSAR.AVB

- Important IEEE specifications for bridging & management
 - Introduction and Overview
 - > IEEE 802.1BA Audio Video Bridging (AVB) Systems
 - > Generalized Precision Time Protocol (gPTP) and Best Master Clock Algorithm (BMCA)
 - > IEEE 802.1AS Timing and Synchronization for Time-Sensitive Applications
 - > References IEEE 1588
 - > Traffic shaping
 - > IEEE 802.1Qav Forwarding and Queuing Enhancements for Time-Sensitive Streams
 - > Stream management
 - > IEEE 802.1Qat Stream Reservation Protocol (SRP)
 - > Dynamic stream announcement with admission control
 - > Static implementation for automotive possible
- Audio/Video data transmission and reception
 - > Audio/Video Transport Protocol (AVTP)
 - IEEE 1722(a) Layer 2 Transport Protocol for Time Sensitive Applications
 (a): Automotive version in draft status covers encryption, simple A/V streams and formats, automotive message types within an A/V stream

Slide: 39/50

MICROSAR.AVB

- ► ETHTSYN Ethernet Time Synchronization
 - > Time synchronization between Ethernet ECUs
 - The Synchronized Time Base Manager (STBM) acts as coordinator between different networks
 - ETHTSYN can also be used without STBM
 - Implements the Generalized Precision Time Protocol (gPTP)
 - > IEEE 802.1AS
 - > Is specified by AUTOSAR 4.2
 - Is part of MICROSAR.ETH but because it implements gPTP, it is explained in context of MICROSAR.AVB
 - > Best Master Clock Algorithm (BMCA) to determine the best clock in the system
 - > Can be provided on request
- AVTP Audio/Video Transport Protocol
 - Transmission and reception of audio and video streams
 - > IEEE 1722(a)

Agenda

Summary	42
MICROSAR.AVB	38
MICROSAR.V2G	35
MICROSAR.ETH	11
AUTOSAR and MICROSAR Software Architecture	4
PES Solution Ethernet Overview	2

Summary

Overall MICROSAR Ethernet Architecture

- MICROSAR.ETH is the basis of MICROSAR.V2G and MICROSAR.AVB
 - > All clusters and use-cases can run in parallel
 - > Figure does not show ETHSWTEXT and the flashbootloader

Summary

ECU Configuration Flow for MICROSAR.ETH

Summary

Vector Ethernet Solution

Ethernet and TCP/IP in Vehicles

- ► Ethernet and TCP/IP technologies have made their way into the vehicle and they are expected to extend into new application areas
- Automotive OEMs and suppliers are facing diverse challenges here
- Vector supports you in meeting these challenges with professional tools, embedded software and services

Thank you for your attention.

For detailed information about Vector and our products please visit

www.vector.com

Author:

Weber, Marc

Vector Informatik GmbH

