Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ

По лабораторной работе 3

«Определение главных напряжений при совместном действии изгиба и кручения»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2021

1 Цель работы

Напряжения на площадке, проходящей через заданную точку нагруженного тела, зависят от ее ориентации. С поворотом площадки меняются в определенной зависимости и напряжения. Совокупность напряжений, возникающих на множестве площадок, проходящих через рассматриваемую точку, называется напряженным состоянием в точке. Напряженное состояние в точке характеризуется тензором напряжений, компоненты которого представляют собой проекции векторов напряжений, действующих на трех площадках, перпендикулярных координатным осям. Диагональные компоненты тензора представляют собой нормальные составляющие напряжений, недиагональные – касательные.

Тензор напряжений, ввиду отсутствия моментов сил, является симметричным, а это означает, что его можно диагонализовать. Оси тензора, в которых он имеет диагональный вид, называют главными осями. Соответствующие им взаимно перпендикулярные площадки называются главными площадками, а нормальные напряжения на них – главными напряжениями.

Цель работы заключается в экспериментальном определении посредством электротензометрии положения главных осей и значений главных напряжений при плоском напряженном состоянии и сравнение результатов эксперимента с теоретическими расчетами.

2 Теоретические исследования

При кручении тонкостенного полого стержня с одновременным изгибом, в точках сечения возникают нормальное и касательное напряжения, наибольшие значения которых определяются по формулам:

$$\sigma_{max} = \frac{M_x}{W_x} = \frac{4Fl}{\pi d^2 h} \tag{1}$$

$$\tau_{max} = \frac{M_k}{W_p} = \frac{2Fa}{\pi d^2 h} \tag{2}$$

Здесь M_x и M_k – изгибающий и крутящий моменты в сечении, W_x и W_p – моменты сопротивления сечения изгибу и кручению, F – сила, действующая на рычаг, a – длина рычага ($a=300\,\mathrm{mm}$), l – расстояние от рычага до исследуемого сечения ($l=260\,\mathrm{mm}$), d – средний диаметр сечения тонкостенного стержня ($d=41\,\mathrm{mm}$), h – толщина стенки стержня ($h=1\,\mathrm{mm}$).

Главные напряжения и угол наклона β одной из главных осей к оси стержня вычисляются по формулам:

$$\sigma_{1,3} = \frac{\sigma_{max}}{2} \pm \sqrt{\frac{\sigma_{max}^2}{2} + \tau_{max}^2} \tag{3}$$

$$tg2\beta = \frac{2\tau}{\sigma} \tag{4}$$

Если же нам известны деформации в данной точке сечения в направлении трех осей (u, z, v), расположенных под углом 45° друг к другу, то главные деформации ε_1 , ε_3 и угол α между осью стержня и главными осями можно вычислить по формулам:

$$\varepsilon_{1,3} = \frac{\varepsilon_u + \varepsilon_v}{2} \pm \sqrt{\frac{1}{2} \left[(\varepsilon_u - \varepsilon_z)^2 + (\varepsilon_v - \varepsilon_z)^2 \right]}$$
 (5)

$$tg2\beta = \frac{2\varepsilon_z - (\varepsilon_u + \varepsilon_v)}{\varepsilon_u - \varepsilon_v} \tag{6}$$

$$\alpha = 45^{\circ} - \beta \tag{7}$$

Значения главных напряжений в соответствии с законом Гука (связь тензора напряжений и тензора малых деформаций) будем вычислять по формулам:

$$\sigma_1 = E \cdot \frac{\varepsilon_1 + \nu \varepsilon_3}{1 - \nu^2} \tag{8}$$

$$\sigma_3 = E \cdot \frac{\varepsilon_3 + \nu \varepsilon_1}{1 - \nu^2} \tag{9}$$

3 Экспериментальная установка

Установка (1) выполнена в настольном исполнении и состоит из опорных стоек 1 и 2, корпуса 3, ступенчатого вала (образца) 4, закрепленного центральным невыпадающим болтом 5 рукоятки 6, рычага 9 и подвески 13 с гирями 14. Для снятия показаний тензорезисторов 15, наклеенных на ступень большого диаметра образца 4, измеритель деформации ИДТЦ-01 подключается к разъему 16.

Рис. 1: Схема установки.

Для работы используется образец большего диаметра с наклеенными в среднем сечении тремя тензорезисторами (один вдоль оси, а два других под углом 45° к ней). Для создания в сечении образца совместного кручения и изгиба необходимо опустить упор 11 стойки 2 так, чтобы он не касался подшипника 10. Положение упора фиксируется винтом 12.

4 Эксперимент

В данной работе при плоском напряженном состоянии проводится определение главных осей тензоров напряжений и деформаций посредством электротензометрии, также определяются соответствующие главные напряжения. Важно отметить, что все вычисления и построения производились с помощью пакета Matlab, с исходным кодом программы можно ознакомиться отдельно. Начальные данные представлены в таблице 1.

Величина	Значение	Размерность	
a	300		
l	260	101	
d	41	MM	
h	1		
E	$0.7 \cdot 10^5$	МПа	
ν	0.33	_	

Таблица 1: Начальные данные.

Показания прибора были усреднены для 4 измерений, были рассчитаны изменеия деформаций для каждого тезодатчика по формулам:

$$\varepsilon_z = K \cdot \Delta n_z, \quad \varepsilon_u = K \cdot \Delta n_u, \quad \varepsilon_v = K \cdot \Delta n_v.$$
 (10)

Здесь $K=6.4\cdot 10^{-7}$ – цена единицы дискретности измерителя деформаций. Погрешность измерений вычислили как сумму погрешности среднего для 4 измерений с доверительной вероятностью 90% и систематической погрешности прибора $\Delta \varepsilon = 0.16\cdot 10^{-5}$.

Выполнили теоретический расчет главных напряжений и угла наклона β одной из главных осей к оси стержня по формулам (1) - (4) и экспериментальный расчет в соответствии с законом Гука по формулам (5) - (9), рассчитали относительную погрешность измерений.

Нагрузка	Изменение деформации ТД					
тат рузка	1		2		3	
F	Δn_z	ε_z	Δn_u	$arepsilon_u$	Δn_v	ε_v
Н	дел	$\cdot 10^{-5}$	дел	$\cdot 10^{-5}$	дел	$\cdot 10^{-5}$
10	29	1.86	21	1.34	-16	-1.02
20	30	1.94	18	1.15	-20	-1.28
30	28	1.79	20	1.28	-16	-1.024
40	28	1.79	20	1.28	-19	-1.216
$\Delta F = 10 \text{ H}$		1.84		1.26		-1.14

Таблица 2: Изменение деформаций в зависимости от приложенной нагрузки.

	σ_1	σ_3	$tg2\beta$	β
	M	Па	_	0
Теория	2.49	-0.52	1.15	24.54
Эксперимент	1.19	-1.06	1.48	27.94
Погрешность	23%	36%	22%	10%

Таблица 3: Экспериментальные и рассчетные данные.

Nº .	F	n_z	n_u	n_v
	Н	дел		
0	0	966	824	851
	10	995	847	835
1	20	1026	865	816
1	30	1053	885	800
	40	1082	904	780
	10	995	845	834
2	20	1025	863	815
	30	1052	883	799
	40	1081	903	779
3	10	994	843	835
	20	1024	862	815
	30	1053	883	798
	40	1080	902	781
4	10	996	844	834
	20	1023	863	815
	30	1053	881	797
	40	1080	902	851

Таблица 4: Показания ИД при 4 измерениях.

5 Выводы

Цель данной работы заключалась в экспериментальном определении посредством электротензометрии положения главных осей и значений главных напряжений при плоском напряженном состоянии. Все поставленные задачи были выполнены, результаты эксперимента и теоретические расчеты были сведены в отдельную таблицу.

В ходе работы мы ознакомились с основными принципами электротензометрии и устройством тензодатчиков. Отклонение экспериментальных результатов от теоретических происходит из-за неточности оборудования для снятия показаний с тензодатчиков.