1 Convex Optimization

1.1 Solution

1. Let $C \subseteq \mathbf{R}^n$ be a convex set, with $x_1, \ldots, x_k \in C$, and let $\theta_1, \ldots, \theta_k \in \mathbf{R}$ satisfy $\theta_i \leq 0$, $\theta_1 + \cdots + \theta_k = 1$. Show that $\theta_{1x_1} + \cdots + \theta_{kx_k} \in C$. (The definition of convexity is that this holds for k = 2; you must show it for arbitrary k)

Solution This is readily show by induction from the definition of convex set. We illustrate the idea for k=3, leaving the general case to the reader. Suppose that $x_1, x_2, x_3 \in C$, and $\theta_1 + \theta_2 + \theta_3 = 1$ with $\theta_1, \theta_2, \theta_3 \geq 0$. We will show that $y = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \in C$. At least one of the θ_i is not equal to one; without loss of generality we can assume that $\theta_1 \neq 1$. Then we can write

$$y = \theta_1 x_1 + (1 - \theta_1)(\mu_2 x_2 + \mu_3 x_3) \tag{1}$$

where
$$\mu_2 = \theta_2/(1-\theta_1)$$
 and $\mu_2 = \theta_3/(1-\theta_1)$. Note that $\mu_2, \mu_3 \ge$ and (2)

$$\mu_1 + \mu_2 = \frac{\theta_2 + \theta_3}{1 - \theta_1} = \frac{1 - \theta_1}{1 - \theta_1} = 1 \tag{3}$$

(4)

2. Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if and only if its intersection with any line is affine.

Solution. We prove the first part. The intersection of two convex sets is convex. Therefore is S is a convex set, the intersection of S with a line is convex.

Conversely, suppose the intersection of S with any line is convex. Take any two distinct points x_1 and $x_2 \in S$. The intersection of S with the line through x_1 and x_2 is convex. Therefore convex combinations of x_1 and x_2 belong to the intersection, hence also to S

- 3. For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.
 - (a) $f(x_1, x_2) = x_1 x_2$ on \mathbf{R}_{++}^2 . Solution. The Hessian of f is

$$\Delta^2 f(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{5}$$

(6)

Which is neither positive semidefinite nor negative semidefinite. Therefore, f is neither convex and concave. It is quasiconcave, since its superlevel sets are convex. It is not quasiconvex.

$$\{(x_1, x_2) \in \mathbf{R}^2_{++} \mid x_1, x_2 \ge \alpha\}$$
 (7)

(b) $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbf{R}_{++}^2 . Solution. The Hessian of f is

$$\Delta^2 f(x) = \frac{1}{x_1 x_2} \begin{bmatrix} 2/(x_1^2) & 1/(x_1 x_2) \\ 1/(x_1 x_2) & 2/x_2^2 \end{bmatrix} \succeq 0$$
 (8)

(9)

Therefore, f is convex and quasiconvex. It is not quasiconcave or concave.

4. Derive the conjugates of the following functions max function $f(x) = \max_{i=1,\dots,n} x_1$ on \mathbf{R}^n . Solution. We will show that

$$f^*(y) = \begin{cases} 0, & \text{if } y \succeq 0, 1^T y = 1\\ \infty, & \text{otherwise} \end{cases}$$
 (10)

(11)

We first verify the domain of f^* . First suppose y has a negative component, say $y_k < 0$. If we choose a vector x with $x_k = -t, x_i = 0$ for $i \neq k$ and let t go to infinity, we see that

$$X^T y - \max_i x_i = -t_{y_k} \to \infty \tag{12}$$

(13)

so y is not in $\operatorname{dom} f^*$. Next, assume $y \succeq 0$ but $1^T y > 1$. We choose x = t1 and let t go to infinity, to show that

$$x^{T}y - \max_{i} x_{i} = t1^{T}y - 1 \tag{14}$$

is unbounded above. Similarly, when $y \succeq 0$ and $1^T y < 1$, we choose x = -t1 and let t go to infinity: The remaining case for y is $y \succeq 0$ and $1^T y = 1$. In this case we have

$$x^T y \le \max_i x_i \tag{15}$$

for all x, and therefore $x^Ty - \max_i x_i \leq 0$ for all x with equality for x = 0. Therefore f * (y) = 0

5. Approximation width. Let $f_0; \ldots, f_n : \mathbf{R} \to \mathbf{R}$ be given continuous functions. We consider the problem of approximating f_0 as a linear combination of f_0, \ldots, f_n . For $x \in \mathbf{R}^n$, we say that $f = x_1 + \cdots + x_n f_n$ approximates f_0 with tolerance $\epsilon > 0$ over the interval [0, T] if $|f(t) - f_0(t)| \le \epsilon$ for $0 \le t \le T$. Now we choose a fixed tolerance $\epsilon > 0$ and define the approximation width as the largest T such that f approximates f_0 over the interval [0, T]:

$$W(x) = \sup\{T | |x_1 f_1(t) + \dots + x_n f_n(t) - f_0(t)| \le \epsilon \text{ for } 0 \le t \le T\}$$
(16)

Show that W is quasiconcanve

Solution. To show that W is quasiconcanve we show that the sets $\{x|W(x) \geq \alpha\}$ are convec for all α . We have $W(x) \geq \alpha$ if and only if

$$-\epsilon \le x_1 f_1(t) + \dots + x_n f_n(t) - f_0(t) \le \epsilon \tag{17}$$

(18)

for all $t \in [0, \alpha)$. Therefore the set $\{x|W(x) \leq \alpha\}$ is an intersection of infinitely many halfspaces (two for each t), hence a convex set.

- 6. Some simple LPs, give an explicit solution of each of the following LPs.
 - (a) Minimizing a linear function over an affine set

minimize
$$c^T x$$
 (19)

subject to
$$Ax = b$$
 (20)

(21)

Solution We distinguish three possibilities

- i. The problem is infeasible $(b \notin \mathcal{R}(A))$. The optimal value is ∞
- ii. The problem is feasible, and c is orthogonal to the nullspace of A. We can decompose c as

$$c = A^T \lambda + \hat{c}, A\hat{c} = 0 \tag{22}$$

(23)

(\hat{c} is the component in the nullspace of A; $A^T\lambda$ is orthogonal to the nullspace.) If $\hat{c} = 0$, then on the feasible set the objective function reduces to a constant:

$$c^T x = \lambda^T A x + \hat{c}^T x = \lambda^T b \tag{24}$$

(25)

The optimal value is $\lambda^T b$. All feasible solutions are optimal

iii. The problem is feasible and c is not in the range of $A^T(\hat{c} \neq 0)$. The problem is unbounded $(p^* = -\infty)$. To verfy this, note that $x = x_0 - t\hat{c}$ is feasible for all t; as t goes to infinity, the objective value decreases unboundedly. In summary,

$$p^* = \begin{cases} +\infty, & b \notin \mathcal{R}(A) \\ \lambda^T b, & c = A^T \lambda \text{for some } \lambda \\ \infty, & \text{otherwise} \end{cases}$$
 (26)

7. Minimax rational function fitting. Show that the following problem is quasiconvex:

$$minimize \max_{i=1,\dots,k} \left| \frac{p(t_i)}{q(t_i)} - y_i \right|$$
 (27)

Where
$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_m t^m, q(t) = 1 + b_1 t + \dots + b_n t^n,$$
 (28)

and the domain of the objective function is defined as

$$D = \{(a,b) \in \mathbf{R}^{m+1} \times \mathbf{R}^n | q(t) > 0, \alpha \le t \le \beta\}$$
(29)

(30)

In this problem we fit a rational function p(t)/q(t) to given data, while constraining the denominator polynomial to be positive on the interval $[\alpha, \beta]$. The optimization variables are the numerator and denominator coefficients a_i, b_i . The interpolation points $t_i \in [\alpha, \beta]$, and desired function values $y_i, i = 1, ..., k$, are given.

Solution. Lets show the objective is quasiconvex. Its domain convex. Since $q(t_i) > 0$ for i = 1, ..., k we have

$$\max_{i=1,\dots,k} |p(t_i)/q(t_i) - y_i| \le \gamma \tag{31}$$

(32)

if and only if

$$|p(t_i)/q(t_i) - y_i| \le \gamma q(t_i), i = 1, \dots, k,$$
 (33)

which defines a convex set in the variables a and b, since the lefthand side is convex and the righthand side is linear. We can further express these inequalities as a set of 2k linear inequalities.

$$-\gamma q(t_i) \le p(t_i) - y_i q(t_i) \le \gamma q(t_i), i = 1, \dots, k \tag{34}$$

(35)

8. $\ell_1, \ell_2,$ and ℓ_{∞} approximation by a constant vector. What is the solution of the norm approximation problem with one scalar variable $x \in \mathbf{R}$

$$minimize ||x1 - b|| \tag{36}$$

for the ℓ_1, ℓ_2 and $\ell_{\infty} - norms$ Solution.

- (a) $\ell_2 norm$: the average $1^T b/m$
- (b) $\ell_1 norm$: the (or a) median of the coefficients of b.
- (c) $\ell_{\infty} norm$: the midrange point $(\max b_i \max b_i)/2$.