

DNB

MLINAML Machine Learning for Anti Money Laundering

Martin Jullum,

Senior Research Scientist, Norwegian Computing Center

Oslo Machine Learning Meetup, March 2nd 2023

Schedule

- (Anti) Money Laundering
 - What, why, how
- ML model for detecting money laundering transactions
 - Method, results and limitations
- Ongoing work
 - a) Algorithms for finding suspicious transaction patterns
 - b) GNNs for detecting money launderers

Journal of Money Laundering Control

Detecting money laundering transactions with

machine learning

Martin Jullum, Anders Løland and Ragnar Bang Huseby
Norwegian Computing Center, Oslo, Norway, and
Geir Ånonsen and Johannes Lorentzen
DNB. Oslo, Norway

Department of Mathematics University of Oslo

Finding Money Launderers Using Heterogeneous Graph Neural Networks

Fredrik Johannessen Master's Thesis, Spring 2022

1. (Anti) Money Laundering

What, why, how

Money laundering

- Making money from criminal activity appear legal
- Examples
 - Buy antics with dirty money state as attic finding – sell legally
 - Incorporate criminal funds in your own legal business

Money laundering

- Making money from criminal activity appear legal
- Examples
 - Buy antics with dirty money state as attic finding – sell legally
 - Incorporate criminal funds in your own legal business

All financial institutions are legally binded to report "suspicious transactions" to Økokrim

- ML model for detecting money laundering transactions
 - Method, results and limitations

Journal of

Money Laundering Control

Detecting money laundering transactions with machine learning

Martin Jullum, Anders Løland and Ragnar Bang Huseby Norwegian Computing Center, Oslo, Norway, and Geir Ånonsen and Johannes Lorentzen DNB, Oslo, Norway

Current AML process at DNB

What we have done

More realistic setting!

- Available data types:
 - transaction history
 - customer data
 - alerts
 - manually inspected cases

What we have done

More realistic setting!

- Available data types:
 - transaction history
 - customer data
 - alerts
 - manually inspected cases

What we have done

More realistic setting!

- Replace the AMLsystem with a machine learning model
- Available data types:
 - transaction history
 - customer data
 - alerts
 - manually inspected cases

What makes this hard?

Modelling

- Binary response (Y): Transaction sent to Økokrim (Yes = 1, no = 0)
- Want to model P(Y = 1|data related to present transaction)
- State of the art: Gradient boosting machines (GBM)
- XGBoost very efficient and flexible implementation of GBM based on tree models

Transforming raw data (feature engineering)

XGBoost requires numeric tabular data as input!

Raw input data

- Specific transaction info
- Background info about sender/receiver
- Sender/receiver's transaction history
- Previously reported transactions from sender/receiver

Υ	X1	X2	X3	X4	X5	X6
1	0,453406	0,992838	0,734389	0,159918	0,397515	0,949952
0	0,274	0,654207	0,169886	0,493841	0,407112	0,939789
0	0,741897	0,855005	0,585788	0,366456	0,365123	0,57955
1	0,488119	0,465754	0,716517	0,493048	0,855049	0,632114
0	0,134458	0,762057	0,848194	0,098779	0,872603	0,063026
0	0,531914	0,998817	0,808215	0,060721	0,716595	0,35374
0	0,341509	0,8398	0,637808	0,48304	0,279987	0,730286
0	0,530306	0,463271	0,338713	0,986781	0,925251	0,272484
1	0,864123	0,652763	0,689599	0,080937	0,990294	0,364736
0	0,106812	0,900351	0,450224	0,143815	0,593244	0,020764

1716 columns (features)

Data refinement

2 years of modellable transaction data

- All transactions leading to
 - A report (C)
 - An alert, but no report (B)
- A sample of normal transactions (A)

Data refinement

- We chose #A = #B
- Use only one transaction from each manual investigation (2)
- No transactions with same sender/receiver two consecutive days

Training, testing and modelling

Modelling

- 10-fold cross validation (CV)
- Stopping criterion (# boosting rounds): AUC
- Tuning: Random + iterative grid-search
- Model trained on GPU
- Final model used for prediction on test data:

$$\hat{f}(x_{\text{test}}) = \frac{1}{10} \sum_{i=1}^{10} \hat{f}_{cv,-i}(x_{\text{test}})$$

2 training scenarios

No unreported transactions

Evaluation metrics

Ranking: AUC

Probabilities: Brier score

$$\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} (y_i - \hat{p}_i)^2$$

Comparing scenarios

ML vs current AML system

Hard to properly compare

PPP = Proportion of Positive Predictions:
 Proportion of transactions that needs to be controlled to find 95% of the reported transactions

	ML (all data types)	Current system
PPP	31.5 %	48.9 %

Limitations

- We are not really using the time-evolving transaction network
 - Who are you sending/receiving money to/from
 - When are you sending/receiving
- Social/professional network information is not used
- Many variables complicates putting the model into production
- The model only learns what has already been reported

- 3. Ongoing work
 - a) Algorithms for finding suspicious transaction patterns
 - b) GNNs for detecting money launderers

- 3. Ongoing work
 - a) Algorithms for finding suspicious transaction patterns
 - b) GNNs for detecting money launderers

Previous slide

Attempts to address

a) |-

b)

Limitations

- We are not really using the time-evolving transaction network
 - Who are you sending/receiving money to/from
 - When are you sending/receiving
 - Social/professional network information is not used
 - Many variables complicates putting the model into production
- The model only learns what has already been reported

Algorithms for finding suspicious transaction patterns

Attempts to detect unknown money laundering cases

- We have developed algorithms that searches for typical/hypothetical money laundering patterns
 - Time aspect is central: Fast in fast out
 - Specific transaction types
- Problematic that we only see part of the transaction network
- Still promising initial results

- Work initiated as part of master thesis
- In the process of writing a paper
- Graph Neural Network
 - Class of methods for building predictive models directly on graph data

Department of MathematicsUniversity of Oslo

Finding Money Launderers Using Heterogeneous Graph Neural Networks

Fredrik Johannessen Master's Thesis, Spring 2022

Message passing is the core idea of GNNs

Aggregation parameters are shared across nodes – allowing generalizing to new nodes

Our graph

- Heterogeneous in both edges and nodes
 - Transaction + role network
 - Individual + organization + external accounts

- MPNN
 - Homogeneous GNN that can handle edge features
- We expand the MPNN model to work on our heterogeneous graph
 - Separate MPNN-models for each combination of node_type → node_type
- All built within Pytorch Geometric
- Good results!

4. Q&A

Thank you!

Martin Jullum – martinjullum.com – jullum@nr.no