予測問題発展: モデル集計

機械学習入門

川田恵介

Table of contents

1	復習	2
1.1	予測問題	2
1.2	OLS & LASSO	2
1.3	例: OLS: Price ~ Size	3
1.4	例: OLS: Price ~ Size + + Size^6	3
1.5	例: LASSO: Price ~ Size + + Size^6	4
1.6	決定木 モデル	4
1.7	例: 決定木	4
1.8	例: 決定木	5
1.9	決定木の難しさ	6
1.10	例: データ主導の決定木	6
1.11	例: データ主導の決定木	6
1.12	複雑さの影響	7
2		_
2	モテル集計: Random Forest	7
	モデル集計: Random Forest 直感	•
2.1	直感	7
2.1 2.2	直感	7 8
2.1	直感	7 8 8
2.1 2.2 2.3 2.4	直感	7 8 8 8
2.1 2.2 2.3 2.4 2.5	直感 イメージ: モデル集計 ブートストラップ集約法 (Bagging) イメージ: Bagging	7 8 8 8 9
2.1 2.2 2.3 2.4 2.5 2.6	直感 イメージ: モデル集計 ブートストラップ集約法 (Bagging) イメージ: Bagging 例: Bagging 多様な予測の集計	7 8 8 8 9 10
2.1 2.2 2.3 2.4 2.5 2.6 2.7	直感 イメージ: モデル集計 ブートストラップ集約法 (Bagging) イメージ: Bagging 例: Bagging 多様な予測の集計 Bagging の問題	7 8 8 8 9 10
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	直感 イメージ: モデル集計 ブートストラップ集約法 (Bagging) イメージ: Bagging 例: Bagging 多様な予測の集計 Bagging の問題 イメージ: Bagging	7 8 8 8 9 10 10
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	直感 イメージ: モデル集計 ブートストラップ集約法 (Bagging) イメージ: Bagging 例: Bagging 多様な予測の集計 Bagging の問題 イメージ: Bagging イメージ: Bagging	7 8 8 8 9 10 10 10
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	直感 イメージ: モデル集計 ブートストラップ集約法 (Bagging) イメージ: Bagging 例: Bagging 多様な予測の集計 Bagging の問題 イメージ: Bagging	7 8 8 8 9 10 10 10 10

2.13	実装	12
	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13
3.1	動機	13
3.2	復習: モデル選択	13
3.3	モデル集計	13
3.4	実例	13
3.5	予測	
3.6	Stacking	14
3.7	他の実装	15

1 復習

1.1 予測問題

- X から Y を予測する
- \bullet 「 $(Y-予測モデル)^2$ の平均値」を予測性能の指標とするのであれば、
 - Yの母平均が理想的な予想モデル

1.2 OLS & LASSO

- 予測モデルの大枠 $\beta_0+\beta_1X_1+..+\beta_LX_L$ を研究者が設定、 β をデータにより決定
- OLS: 複雑にしすぎる (β の数を増やしすぎる) と、
 - データに過剰適合
 - 母平均から乖離
 - 予測性能が悪化
- LASSO: **データ主導**で、複雑さを抑制する

1.3 例: OLS: Price ~ Size

1.4 例: OLS: Price \sim Size $+ ... + Size^6$

1.5 **例**: LASSO: Price ~ Size + .. + Size⁶

1.6 決定木 モデル

- OLS や LASSO は線型モデル $(\beta \times X)$ の足し算のモデル) と呼ばれる分類
 - 母平均によっては、異なってモデルの方が適する
 - 代表例は決定木 (サブグループ平均) モデル (01Introduction 参照)
 - * サブグループ平均値を予測値とする

1.7 例: 決定木

• Size $\in [-50, 50 - 70, 70-]$ に分割し、平均値を計算

1.8 例: 決定木

• Size $\in [-30, 30 - 80, 80-]$ に分割し、平均値を計算

1.9 決定木の難しさ

- サブグループの定義に予測性能が決定的に依存する
 - OLS と類似
- データ主導の決定木
 - データへの適合度を最大化するようにグループの定義を決定

1.10 例: データ主導の決定木

• 最大 2 分割、最小サンプルサイズ =5

1.11 例: データ主導の決定木

• 最大 30 分割/最小事例数 1

1.12 複雑さの影響

- 複雑なモデル = 分割数が多い
 - 少数事例の平均値を予測値となるので、事例の偏りの影響が大きい
 - * 母平均から乖離する可能性が高くなる
- LASSOとは異なり、モデルの単純化は行わない
 - 何らかの方法で単純化する必要がある
 - * 剪定などの多様な方法があるが、ここではモデル集計を紹介

2 モデル集計: Random Forest

- 複雑なモデルを推定すると、母平均から大きく乖離した事例 (ハズレ値) の影響を強く受ける
 - 多様な予測モデルを沢山作り、その予測の平均値を最終予測とする

2.1 直感

- 「不適当な予測」が生じる大きな原因は、「観察した事例の偏り」
 - どれだけ「情報処理」に長けた「専門家」でも、偏った経験により、極端な予測を行いうる

- 誰にこのような現象が生じているのか、事前にはわからない
- 解決策: 複数の専門家の予測を集計し、極端な予測の影響を緩和する

2.2 イメージ: モデル集計

• 複数データを用いて、予測モデルを作る

2.3 ブートストラップ集約法 (Bagging)

- 現実には、データは一つしか存在しない
 - 訓練データからデータの複製を行い (ブートストラップ)、複製データから生成した予測モデルの平 均値を算出する
- ブートストラップ: あるデータから、ランダムに事例を抜き出し、新しいデータを作る
 - 同じ事例を抜き出すことを許容する(復元抽出)

2.4 イメージ: Bagging

• Bootstrap 法を用いて、予測モデルを大量に作る (500-5000 個程度)

2.5 例: Bagging

2.6 多様な予測の集計

- 一般に、ある程度の予測性能を前提に、多様な予測モデル (データの異なる情報を活用したモデル) を 集計した方が性能改善が期待できる
 - 全く同じ予測しか生み出さないモデルを集計しても意味がない

2.7 Bagging の問題

- 多くの応用で、一部の変数が強力な予測力を持つ
 - 不動産価格予測では Size
- 限られた事例数のもとでは、他の (予測力をもつ) 変数の情報が活用されない

2.8 イメージ: Bagging

複製データ1

2.9 イメージ: Bagging

複製データ 2

2.10 RandomForest

- 未活用の情報を利用するために、分割に使用できる変数もランダムに決める
 - 典型的には $\sqrt{$ 元の変数数 個の変数をランダムに選び、その中から分割に用いる変数を探す

2.11 イメージ: RandomForest

• Size の使用を禁止すると

2.12 RandomForest の利点

- Bootstrap は、"ハズレ値"を含まないデータとそれを用いたモデルも生成される
 - ハズレ値の影響を軽減できる
- 変数の一部を確率的に使用できなくすることで、モデル間で用いる変数の多様性が促進される
 - より多くの変数の情報が活用できる
- 注: モデル単位ではなく、サンプル分割ごとに、(元々の変数数の square root 個) ランダムに使用禁止している

2.13 実装

• ranger 関数 (ranger パッケージ) を使えば、lm と同じような文法で実装できる

```
library(ranger)

Group = sample(
    1:2,
    nrow(Data),
    replace = TRUE)

Train = Data[Group == 1,]
```

```
Test = Data[Group == 2,]

RF = ranger(Price ~ Size + Tenure + Distance, Train) # モデル推定

predict(RF, Test)$predictions # 予測値の算出
```

3 モデル集計: Stacking

- 「多様な予測モデルの集計」をさらに推し進める
- 異なるアルゴリズムが生み出すモデルを集計する

3.1 動機

- 予測モデルを生み出す多くのアルゴリズム (OLS/LASSO/Random Forest 等) が提案されている
 - モデル選択: どのアルゴリズムが最も適しているのか?
 - モデル集計: どのように予測を組み合わせれば良いのか?

3.2 復習: モデル選択

- データを2分割(訓練/テスト)し、訓練モデルで予測モデル群を推定し、テストデータで評価する
- 最も性能の良いモデルを選択し、使用する

3.3 モデル集計

- テストデータへの当てはまりが最も良くなるように、モデルを組み合わせる
- 代表的な方法は、線型モデルの推定

 $eta_{OLS} imes OLS$ の予測値 + $eta_{RF} Random Forest$ の予測値 + ...

• β をテストデータへの当てはまりを最大化するように推定

3.4 実例

```
library(tidyverse)
library(ranger)
library(hdm)
```

```
Data = read_csv("Public/Example.csv")

Group = sample(
   1:2,
   nrow(Data),
   replace = TRUE
)

Train = Data[Group == 1,]
Test = Data[Group == 2,]
```

3.5 予測

3.6 Stacking

- OLS や LASSO の結果も活用

```
lm(Price ~ PredOLS + PredLASSO + PredRF, Test)

Call:
lm(formula = Price ~ PredOLS + PredLASSO + PredRF, data = Test)

Coefficients:
(Intercept) PredOLS PredLASSO PredRF
-1.8714 -0.3600 0.7133 0.6736

• Random Forest の結果を強く反映したモデル
```

3.7 他の実装

- Stacking の実装については、多くの議論が積み上げられている
 - 交差推定の活用 (後述) など