

Models

Classification

Target variable is categorical. Predictors could be of any data type.

Algorithms

Decision Trees

Rule induction

kNN

Naive Bayesian

Neural Networks

Support Vector Machines

Ensemble Meta Models

Decision Trees

Decision Trees

Predictors / Attributes

Target / Class

Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	FALSE	no
sunny	80	90	TRUE	no
overcast	83	78	FALSE	yes
rain	70	96	FALSE	yes
rain	68	80	FALSE	yes
rain	65	70	TRUE	no
overcast	64	65	TRUE	yes
sunny	72	95	FALSE	no
sunny	69	70	FALSE	yes
rain	75	80	FALSE	yes
sunny	75	70	TRUE	yes
overcast	72	90	TRUE	yes
overcast	81	75	FALSE	yes
rain	71	80	TRUE	no

Decision Tree

Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	FALSE	no
sunny	80	90	TRUE	no
overcast	83	78	FALSE	yes
rain	70	96	FALSE	yes
rain	68	80	FALSE	yes
rain	65	70	TRUE	no
overcast	64	65	TRUE	yes
sunny	72	95	FALSE	no
sunny	69	70	FALSE	yes
rain	75	80	FALSE	yes
sunny	75	70	TRUE	yes
overcast	72	90	TRUE	yes
overcast	81	75	FALSE	yes
rain	71	80	TRUE	no

Measure of impurity

Every split ties to make child node more pure.

Gini impurity

Information Gain (Entropy)

Misclassification Error

Rule Induction

Tree to Rules

Rule 1: if (Outlook = overcast) then yes

Rule 2: if (Outlook = rain) and (Wind = false) then yes

Rule 3: if (Outlook = rain) and (Wind = true) then no

Rule 4: if (Outlook = sunny and (Humidity > 77.5) then

no

Rule 5: if (Outlook = sunny and (Humidity ≤ 77.5) then

yes

Rules

 $R = \{ \ r_1 \cap r_2 \cap r_3 \cap ... r_k \}$ Where k is the number of disjuncts in a rule set. Individual disjuncts can be represented as

 r_i = (antecedent or condition) then (consequent)

Approaches

Sequential covering

 $Rule\ accuracy\ A\left(r_{i}\right) = \frac{Correct\ records\ covered\ by\ rule}{All\ records\ covered\ by\ the\ rule}$

K Nearest Neighbors

Guess the species for A and B

KNN

K=1 Predicted Class is triangle

K=3 Predicted Class is circle

Measure of Proximity

Distance

Distance d =
$$\sqrt{(x1-y1)^2 + (x2-y2)^2}$$

Distance d =
$$\sqrt{(x1-y1)^2 + (x2-y2)^2 + \dots + (xn-yn)^2}$$

Measure of Proximity

Correlation similarity

Simple matching coefficient

Jaccard Similarity

Cosine similarity

. .

Correlation
$$(X, Y) = \frac{s_{xy}}{s_x * s_y}$$

Simple matching coefficient (SMC) =
$$\frac{matching\ occurences}{total\ occurences}$$

$$Jaccard\ coefficient = \frac{common\ occurences}{total\ occurences}$$

Cosine similarity
$$(|X,Y|) = \frac{x \cdot y}{\|x\| \|y\|}$$

NAÏVE BAYESIAN

Predict your commute time

Bayes' theorem

Posterior probability

Data set

Table 4.4 Golf Data Set with Modified Temperature and Humidity Attributes					
No.	Temperature X ₁	Humidity X ₂	Outlook X ₃	Wind X ₄	Play (Class Label) Y
1	high	med	sunny	false	no
2	high	high	sunny	true	no
3	low	low	rain	true	no
4	med	high	sunny	false	no
5	low	med	rain	true	no
6	high	med	overcast	false	yes
7	low	high	rain	false	yes
8	low	med	rain	false	yes
9	low	low	overcast	true	yes
10	low	low	sunny	false	yes
11	med	med	rain	false	yes
12	med	low	sunny	true	yes
13	med	high	overcast	true	yes
14	high	low	overcast	false	yes

Class conditional probability

Class Conditional Probability of Temperature				
Temperature (X ₁)	$P(X_1 Y=no)$	P(X ₁ Y = yes)		
high med	2/5	2/9		
med	1/5	3/9		
low	2/5	4/9		

Conditional Probability of Humidity, Outlook, and Wind				
Humidity (X ₂)	$P(X_1 Y=no)$	$P(X_1 Y = yes)$		
high low med	2/5 1/5 2/5	2/9 4/9 3/9		
Outlook (X ₃)	$P(X_1 Y=no)$	$P(X_1 Y = yes)$		
overcast Rain sunny	0/5 2/5 3/5	4/9 3/9 2/9		
Wind (X ₄)	$P(X_1 Y=no)$	$P(X_1 Y = yes)$		
false true	2/5 3/5	6/9 3/9		

Test record

Table 4.7 Test Record					
No.	Temperature X ₁	Humidity X ₂	Outlook X ₃	Wind X ₄	Play (Class Label) Y
Unlabeled Test	high	low	sunny	false	?

Calculation of posterior probability P(Y/X)

$$\begin{split} &P(Y = yes|X) = \frac{P(Y) * \prod_{i=1}^{n} P(Xi|Y)}{P(X)} \\ &= P(Y = yes) * \{P(Temp = high|Y = yes) * P(Humidity = low|Y = yes) * P(Outlook = sunny|Y = yes) * P(Wind = false|Y = yes)\}/P(X) \\ &= 9/14 * \{2/9 * 4/9 * 2/9 * 6/9\}/P(X) \\ &= 0.0094/P(X) \\ &P(Y = no|X) = 5/14 * \{2/5 * 4/5 * 3/5 * 2/5\} \\ &= 0.0274/P(X) \end{split}$$

We normalize both the estimates by dividing both by (0.0094 + 0.027) to get

Likelihood of (Play = yes) =
$$\frac{0.0094}{0.0274 + 0.0094}$$
 = 26%
Likelihood of (Play = no) = $\frac{0.0094}{0.0274 + 0.0094}$ = 74%

Issues

Incomplete training set -> Use laplace correction

Continuous numeric attributes -> Use Probability density function

Attributes independence -> remove correlated attributes

NEURAL NETWORKS

Model

Y = 1 + 2X1 + 3X2 + 4X3

Neurons

SUPPORT VECTOR MACHINES

Boundary

Margin

Transforming linearly non-separable data

Optimal hyperplane

Ensemble Learners

Ensemble model

Wisdom of the Crowd

Meta learners = sum of several base models

Reduces the model generalization error

Ensemble models

