Chomsky Normal Form

Venkatesh Choppella

April 11, 2019

Outline

Chomsky Normal Form

Chomsky Normal Form

Definition of CNF

A grammar $G = (V, \Sigma, R, S)$ is in Chomsky Normal Form (CNF) if every production is of the form

- $A \rightarrow BC$,
- $A \rightarrow a$, or
- $S \rightarrow \epsilon$.

where

- $B, C \in V \setminus \{S\}$,
- $a \in \Sigma$

Why is CNF useful?

- CNF's are useful because they are canonical:
- ullet Every CFG G is convertible to a grammar G' such that
 - G' is in CNF
 - L(G) = L(G')
- All parse trees are binary trees. A derivation for s has length 2|s|-1 steps, where $s \neq \epsilon$. The derivation for ϵ , if in the language, takes 1 step.
- Membership determined by standard algorithm (CYK algorithm).

Example Grammar in CNF

$$G = (\{S, A, B\}, \{a, b\}, R, S)$$

where R is:

$$\begin{split} S &\to \epsilon \mid AB \\ A &\to AA \mid a \\ B &\to BB \mid BA \mid b \end{split}$$

Rules for transforming a CFG into CNF via example

Initial Grammar G₀

Based on Example 2.10 of Sipser 3ed (where it is called G_6).

$$S \rightarrow A S A \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

Transformations

- START: Introduce new start symbol.
- BIN: Ensure rhs of each rule has only two variables.
- DEL: Remove ϵ productions.
- UNIT: Remove unit productions
- TERM: replace non-solitary terminals with nonterminals

START transformation

- 1. Introduce new start symbol S_0 not occurring in G_0 .
- 2. Introduce new production $S_0 \to S$.
- 3. This ensures S₀ doesn't occur in the RHS of any production.

Grammar G_1

$$S_0 \rightarrow S$$

$$S \rightarrow A S A \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \epsilon$$

BIN transformation

Grammar G_2

- 1. Introduce auxiliary variables and
- 2. transform each rhs of length greater than 2
- 3. so that rhs of each rule is of size atmost 2.

$$S_0 o S$$
 $S o A A_1 \mid aB$
 $A_1 o S A$
 $A o B \mid S$
 $B o b \mid \epsilon$

Nullable variables in a grammar

- 1. If $X \to \epsilon$, then X is nullable
- 2. If $Y \to X_1 \dots X_n$ and each X_i is nullable, then Y is nullable.

DEL transformation Part 1

- 1. Identify nullable variables ({B, A}).
- 2. for each nullable variable X occurring in the rhs of a production, create a new production replacing that occurrence with ϵ .
- 3. Eliminate all ϵ productions so that the grammar has atmost one ϵ production, from S_0 .

Grammar $G_{3.1}$

$$S_0
ightarrow S$$
 $S
ightarrow A A_1 \mid \mathbf{A_1} \mid aB \mid \mathbf{a}$
 $A_1
ightarrow S A \mid \mathbf{S}$
 $A
ightarrow B \mid \epsilon \mid S$
 $B
ightarrow b \mid \epsilon$

DEL transformation Part 2

• 1. Eliminate all ϵ productions so that the grammar has atmost one ϵ production, from S_0 , if necessary.

Grammar $G_{3.2}$ (or G_3)

$$S_0 \rightarrow S$$
 $S \rightarrow A A_1 \mid A_1 \mid aB \mid a$
 $A_1 \rightarrow S A \mid S$
 $A \rightarrow B \mid \not \mid S$
 $B \rightarrow b \mid \not \mid$

UNIT xformation Part 1: locate unit rules

- 1. Locate unit rules of the form $X \to Y$.
- 2. For each existing rule $Y \to Z_1 \dots Z_n$, add the rule $X \to Z_1 \dots Z_n$, unless $Y \to Z_1$ is already a unit rule.
- 3. Remove all the unit rules.

Unit rules in Grammar G_3 Unit rules

$$S_0 \rightarrow S$$

 $S \rightarrow A A_1 \mid A_1 \mid aB \mid a$
 $A_1 \rightarrow S A \mid S$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

UNIT xformation Part 2: inline rhs of unit rules

• 2. For each existing rule $Y \to Z_1 \dots Z_n$, add the rule $X \to Z_1 \dots Z_n$, unless $Y \to Z_1$ is already a unit rule.

Grammar $G_{4.1}$

$$S_0
ightarrow \mathbf{A} \ \mathbf{A_1} \ | \ \mathbf{a} \ \mathbf{B} \ | \ \mathbf{a} | \ \mathbf{S}$$
 $S
ightarrow A \ A_1 \ | \ \mathbf{A_T} \ | \ \mathbf{S} \ \mathbf{A} | \ aB \ | \ a$
 $A_1
ightarrow S \ A \ | \ S \ | \ \mathbf{A} \ \mathbf{A_1} \ | \ \mathbf{a} \mathbf{B} \ | \ \mathbf{a}$
 $A
ightarrow \mathbf{B} \ | \ \mathbf{S} \ | \ \mathbf{b}$
 $| \ \mathbf{A} \ \mathbf{A_1} \ | \ \mathbf{S} \ \mathbf{A} \ | \ \mathbf{a} \mathbf{B} \ | \ \mathbf{a}$
 $B
ightarrow b$

UNIT xformation Part 3: eliminate unit rules

• 3. Remove all unit rules.

Grammar $G_{4.2}$ (G_4)

$$S_0
ightarrow A A_1 \mid a B \mid a$$
 $S
ightarrow A A_1 \mid S A \mid aB \mid a$
 $A_1
ightarrow S A \mid A A_1 \mid aB \mid a$
 $A
ightarrow b$
 $\mid A A_1 \mid S A \mid aB \mid a$
 $B
ightarrow b$

TERM transformation

- 1. Identify non-solitary terminal productions: of the form $X \to \alpha$ a β , where $\alpha\beta \neq \epsilon$.
- ullet 2. Create new non-terminal N_a and a production $N_a o a$.
- 3. Replace each non-solitary terminal production with $X \to \alpha \ N_a \ \beta.$

TERM Part 1: Identify non-solitary terminals

• Identify non-solitary terminal productions.

Grammar G_4

$$S_0
ightarrow A A_1 \mid a \mid B \mid a$$
 $S
ightarrow A A_1 \mid S \mid A \mid a \mid B \mid a$
 $A_1
ightarrow S \mid A \mid A \mid A_1 \mid a \mid B \mid a$
 $A
ightarrow b$
 $\mid A \mid A_1 \mid S \mid A \mid a \mid B \mid a$
 $B
ightarrow b$

TERM Part 2: Create new productions

• 2. Create new non-terminal N and a production $N \rightarrow a$.

Grammar $G_{5.1}$

$$S_0
ightarrow A A_1 \mid a \mid B \mid a$$
 $S
ightarrow A A_1 \mid S \mid A \mid a \mid B \mid a$
 $A_1
ightarrow S \mid A \mid A \mid A_1 \mid a \mid B \mid a$
 $A
ightarrow b$
 $\mid A \mid A_1 \mid S \mid A \mid a \mid B \mid a$
 $B
ightarrow b$
 $N
ightarrow a$

TERM Part 3: Replace non-solitary terminal produtions

• 3. Replace each non-solitary terminal production $X \to \alpha a \beta$ with

 $X \to \alpha N_a \beta$

Grammar
$$G_{5.2}$$
 (G_5)

$$S_0
ightarrow A A_1 \mid N B \mid a$$
 $S
ightarrow A A_1 \mid S A \mid N B \mid a$
 $A_1
ightarrow S A \mid A A_1 \mid N B \mid a$
 $A
ightarrow b$
 $\mid A A_1 \mid S A \mid N B \mid a$
 $B
ightarrow b$
 $N
ightarrow a$

Ordering of transformations matters

The order is important!

- START results in constant increment to grammar size.
- BIN before DEL gives linear increase in grammar size.
- DEL before BIN could result in exponential blowup of resultant grammar.
- UNIT causes quadratic increase.
- TERM causes linear increase.

gives overall quadratic increase.

Comparison with Example 2.10 in Sipser 3ed.

- The book does not name the transformations.
- It seems to use *DEL* (Step 2 in Example 2.10) before \$BIN (Step 4.).
- Total 19 productions (compared to 18 here).