(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-322881

(43)公開日 平成7年(1995)12月12日

(51) Int.CL* C 1 2 N 15/09	識別記号 ZNA	庁内整理番号	ΡI				技術表示箇所
C 1 2 Q 1/68 G 0 1 N 33/50		9453-4B					
·	_	9281 – 4B	C 1 2 N	15/ 00	ZNA	Α	
			審查請求	未請求	請求項の数20	FD	(全 27 頁)
(21)出顯書号	特顯平6-142564		(71)出願人	3900370	06		
(22)出顧日	平成6年(1994)5月	J31日			エスアールエル 公川市曜町二丁目	-	9 号
			(72)発明者	東京都方	能一 【王子市小宮町5 レ八王子ラポラト		
:			(72)発明者	引地 一	-4昌		•
		·.·			【王子市小宮町5 レ八王子ラポラト	• • • •	•• ••
			(74)代理人	弁理士	谷川 英次郎		
		•					
		<u> </u>					

(54) 【発明の名称】 オリゴヌクレオチド、それから成るC型肝炎診断試薬及びそれを用いたC型肝炎の診断方法

(57)【要約】

【目的】 検体中のHCV間にゲノムの塩基配列に関して変異があるか否かを簡便にかつ高感度に知ることができるC型肝炎の診断手段を提供すること。

【構成】 配列番号1~10の新規なオリゴヌクレオチドを提供した。また、配列番号1、3、5、7、8及び9記載のオリゴヌクレオチドからなる群より選ばれるオリゴヌクレオチドと、配列番号2、4及び6記載のオリゴヌクレオチドからなる群より選ばれるオリゴヌクレオチドをプライマーとして用いたPCRにより、検体中のHCVゲノムのcDNAを増幅し、増幅産物を変性状態で電気泳動にかけ、バンドの位置を検出することを含むC型肝炎の診断方法を提供した。

【特許請求の範囲】

【請求項1】 5' CACCGCATGGCWTGGGATAT 3' (ただし、 WはA又はT)で示される塩基配列を有するオリゴヌク レオチド。

【請求項2】 5' GGGCTNGGRGTGAAGCARTA 3' (ただし、 NはA又はC又はG又はT、RはA又はG)で示される 塩基配列を有するオリゴヌクレオチド。

【請求項3】 5' TTGGGATATGATGAACTGG 3'で示され る塩基配列を有するオリゴヌクレオチド。

【請求項4】 5' CTGTTGATGTGCCAGCTGCC 3'で示される 10 塩基配列を有するオリゴヌクレオチド、

【請求項5】 5'GGATATGATGATGAAGTGG 3'で示される 塩基配列を有するオリゴヌクレオチド。

【請求項6】 5' TCYGTCTCATTYGCCCCCA 3' (ただし、 YはT又はC)で示される塩基配列を有するオリゴヌク レオチド。

【請求項7】 5'GGNCAYHGNATGGCNTGG 3'(ただし、N はA又はC又はG又はT、YはT又はC)で示される塩 基配列を有するオリゴヌクレオチド、

【請求項8】 5'GCTACTCTTTGCCGGCGT 3'で示される塩 20 基配列を有するオリゴヌクレオチド。

【請求項9】 5' CTCTTTGCCGGCGTTGACG 3' で示される 塩基配列を有するオリゴヌクレオチド。

【請求項10】 5' GAGGAACTACTGTCTTCACG 3'で示され る塩基配列を有するオリゴヌクレオチド。

【請求項11】 請求項1ないし10のいずれか1項に 記載のオリゴヌクレオチドから成るC型肝炎診断薬。

【請求項12】 請求項1、3、5、7、8及び9記載 のオリゴヌクレオチドからなる群より選ばれるオリゴヌ クレオチドと、請求項2、4及び6記載のオリゴヌクレ 30 オチドからなる群より選ばれるオリゴヌクレオチドをア ライマーとして用いたPCRにより、検体中のHCVゲ ノムのcDNAを増幅し、増幅産物を変性状態で電気泳 動にかけ、バンドの位置を検出することを含むC型肝炎 の診断方法。

【請求項13】 前記PCRを2段階に分けて行い、1 回目のPCRに用いるプライマーと2回目のPCRに用 いるプライマーが異なっている請求項12記載の方法。

【請求項14】 1回目のPCRに請求項1、請求項2 して用いる請求項13記載の方法。

【請求項15】 2回目のPCRに請求項3及び請求項 4記載のオリゴヌクレオチドをプライマーとして用いる 請求項13又は14記載の方法。

【請求項16】 2回目のPCRに請求項5及び請求項 4記載のオリゴヌクレオチドをプライマーとして用いる 請求項13又は14記載の方法。

【請求項17】 2回目のPCRに請求項8及び請求項 4記載のオリゴヌクレオチドをプライマーとして用いる 請求項13又は14記載の方法。

【請求項18】 2回目のPCRに請求項9及び請求項 4記載のオリゴヌクレオチドをプライマーとして用いる 請求項13又は14記載の方法。

2

【請求項19】 前記電気泳動は1℃~42℃の温度下 で行う請求項12ないし18のいずれか1項に記載の方

【請求項20】 請求項1ないし10のいずれか1項に 記載のオリゴヌクレオチドをプライマーとして用いたP CRにより、検体中のHCVゲノムのcDNAを増幅す ることを含むC型肝炎ウイルスの増幅方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規なオリゴヌクレオ チド、それから成るC型肝炎診断薬及びそれを用いたC 型肝炎診断方法及びC型肝炎ウイルスの増幅方法に関す る。

[0002]

【従来の技術】C型肝炎に対しては、インターフェロン (以下、「IFN」ということがある)が有効であるこ とが知られている。しかしながら、IFNによるC型肝 炎の治療効果は、人体中のC型肝炎ウイルス(以下、 「HCV」ということがある) のクローン数が多くなる と低下することも知られている。すなわち、人体中のH CVが単一クローン起源である場合にはIFNによる治 療効果が高いが、複数クローン起源の場合には治療効果 が低く、例えば、HCVが人体中で変異を起こして複数 クローンとなる場合には治療効果が低い。従って、検体 中のHCVに変異が存在するか否かを調べることは、そ の患者にIFNによる治療が有効であるか否かを知る上 で重要である。

【0003】従来より、HCVゲノムのcDNAをPC R (ポリメラーゼ・チェイン・リアクション法) により 増幅し、電気泳動にかけることによりC型肝炎の診断を 行うことが知られている。例えば、特開平5-3018 87号公報には、特定のオリゴヌクレオチドを用いてH CVゲノムのcDNAをPCRにより増幅後、電気泳動 にかけてバンドを検出することによりHCVを4種類の ジェノタイプに分類する方法が記載されている。しかし ながら、この方法では、HCVを4種類のジェノタイプ 及び請求項4記載のオリゴヌクレオチドをプライマーと 40 に重複することなく分類することは可能であるが、検体 中に含まれるHCVが単一クローン起源か否か、すなわ ち、各HC V間に変異があるか否かを知ることはほとん どできない。すなわち、当該変異により、決定されるジ ェノタイプが異なってくる場合には変異があるか否かを 知ることができるが、同一のジェノタイプに包含される HCV間に変異があるか否かは知ることができない。 [0004]

> 【発明が解決しようとする課題】従って、本発明の目的 は、検体中のHCV間にゲノムの塩基配列に関して変異 50 があるか否かを簡便にかつ高感度に知ることができる C

型肝炎の診断手段を提供することである。また、本発明 は、高感度にHCVを増幅できる方法を提供することで ある。

[0005]

【課題を解決するための手段】HCVゲノムには、超可 変領域 (以下、「HVR」と言うことがある) と呼ばれ る、高い頻度で変異を起こす領域が知られている(中沢 貴秀ら、日本臨林 51巻2号(2,1993)、66 -70頁)。本願発明者らは、鋭意研究の結果、特定の オリゴヌクレオチドをプライマーとして用いることによ 10 り、現在知られている全てのHCVクローンについて、 このHVRを含む領域をPCRで増幅することができ、 かつ、PCRの増幅産物を変性状態で、電気泳動にかけ ることにより各HCVのHVRに変異が存在するか否か を容易に知ることができることを見出し、本発明を完成 した。

【0006】すなわち、本発明は、下記の塩基配列を有 するオリゴヌクレオチドを提供する。

- 5' CACOGCATGGOWTGGGATAT 3' (ただし、WはA又はT) (以下、このオリゴヌクレオチドを「MS1」と言う) 5' GGGCTNGGRGTGAAGCARTA 3'(ただし、NはA又はC又 はG又はT、RはA又はG)(以下、このオリゴヌクレ オチドを「MR1」と言う)
- 5' TTGGGATATGATGATGAACTGG 3'(以下、このオリゴヌク レオチドを「MS2」と言う)
- 5' CTGTTGATGTGCCAGCTGCC 3'(以下、このオリゴヌクレ オチドを「MR2」と言う)
- 5'GGATATGATGAAGTGG 3'(以下、このオリゴヌクレ オチドを「MS3」と言う)
- 5' TCYGTCTCATTYGCCCCCA 3' (ただし、YはT又はC) (以下、このオリゴヌクレオチドを「MR1'」と言 う)
- 5' GGNCAYHGNATGGCNTGG 3'(ただし、NはA又はC又は G又はT、YはT又はC)(以下、このオリゴヌクレオ チドを「MS4」と言う)
- 5'GCTACTCTTTGCCGGCGT 3'(以下、このオリゴヌクレオ チドを「MS5」と言う)
- 5'CTCTTTGCCGGCGTTGACG 3'(以下、このオリゴヌクレ オチドを「MS6」と言う)
- 5' GAGGAACTACTGTCTTCACG 3'(以下、このオリゴヌクレ 40 オチドを「MS13」と言う)

【0007】また、本発明は、上記オリゴヌクレオチド から成るC型肝炎診断薬を提供する。さらにまた、本発 明は、オリゴヌクレオチドの少なくとも2種類をプライ マーとして用いたPCRにより、検体中のHCVゲノム のcDNAを増幅し、増幅産物を変性状態で電気泳動に かけ、バンドの位置を検出することを含むC型肝炎の診 断方法を提供する。さらにまた、本発明は、上記本発明 のオリゴヌクレオチドの少なくとも1つをプライマーと

4 NAを増幅することを含むC型肝炎ウイルスの増幅方法 を提供する。

【0008】以下、本発明を詳細に説明する。

【0009】本願発明者らは、HCVゲノムのHVR領 域を含む領域をPCRにより増幅し、増幅産物を変性 後、電気泳動にかけ、現れるバンドを検出することによ り、検体中に何クローンのHCVが含まれているかを知 ることができることに想到した。DNAを変性状態(一 本鎖状態)で電気泳動にかけることにより、DNA中の 点突然変異の有無を検出できることは公知である (Orit a et al., Proc. Natl. Acad. Sci. USA 86: 2766, 198 9). この方法はSSCP法 (single strand conformati on polymorphism)と呼ばれている。一本鎖DNAは、そ の塩基配列に特有の立体構造をとる。従って、DNAの 塩基配列が1塩基でも異なっておれば、それによって立 体構造が異なるため、電気泳動における移動度が異な る。従って、一本鎖状態でDNAを電気泳動にかけ、バ ンドが何本現れるかによって試料DNAが何種類のDN Aを含んでいるかを知ることができる。

【0010】この方法を適用して、HCVの変異を調べ るためには、先ず、数十種類にも及ぶHCVの全てのH VR領域を増幅できるプライマーを開発しなければなら ない。さらに、SSCP法は、試料DNAのサイズが大 きくなると感度が低下するので、増幅される領域のサイ ズは約400kb以下でなければならない。このような 制約の下でプライマーとして用いることができるオリゴ ヌクレオチドを見つけ出さなければならない。

【0011】本願発明者らは、後述の参考例1に詳述す るように、データベースに登録されたHCVゲノムのH 30 VRを包含する領域 (E1-E2/NS1領域) の塩基 配列及び慢性C型肝炎患者の血清からクローニングした HCVのE1-E2/NS1領域の塩基配列を丹念に比 較し、上記の条件を満足し得るプライマーを提供するこ とに成功した。このようにして開発されたプライマーが 上述のMS1、MR1、MS2、MR2、MS3、MR 1'、MS4、MS5及びMS6である。

【0012】また、HCVの5、非翻訳領域を増幅する ためのプライマーとして、従来のプライマーよりも検出 感度が高い上記MS13を見出した。5¹ 非翻訳領域に おける変異もHCVの変異を調べるために有効な領域で あることが知られており、5'非翻訳領域の変異と上記 HVR領域の変異を調べることにより、HCVの変異を より高感度に検出することができる。

【0013】これらのオリゴヌクレオチドの位置を図1 及び図2に示す。なお、図1及び図2に示される塩基配 列は、日本人のC型肝炎患者から得られたHCVのゲノ ムの塩基配列の一部を一例として示したものである(Ka to, N. et al., Proc. Natl. Acad. Sci. U.S.A. 87, 95 24-9528 (1990) 、GeneBank) 。これらのオリゴヌクレ して用いたPCRにより、検体中のHCVゲノムのcD 50 オチドは、市販のDNA合成機を用いて容易に化学合成 することができる。

【0014】なお、上記プライマーのうち、MS1、M R1、MR1、及びMS4は一般式で示されているが、 C型肝炎の診断にあたっては、一般式に包含される全て のオリゴヌクレオチドを混合して用いる。

【0015】なお、上記した本発明のオリゴヌクレオチ ドは、PCRのためのプライマーとしてのみならず、c DNA合成のためのプライマーとしても用いることがで きる。本発明のオリゴヌクレオチドをプライマーとして 用いて合成したcDNAも本発明の方法に供することが 10 できる。

【0016】次に、上記オリゴヌクレオチドをプライマ ーとして用いてC型肝炎を診断する方法を説明する。

【0017】診断に供する検体としては、人の体液を用 いることができ、例えば血清を好ましく用いることがで きる。先ず、検体から全RNAを抽出し、それらのcD NAを合成する。これらの操作はこの分野において周知 の方法により行うことができ、そのための試薬も市販さい れている。

鋳型として、PCRによりDNAを増幅する。PCRの 操作自体はこの分野において周知であり、そのためのキ ットも市販されている。PCRに用いるプライマーとし て、上記した本発明のオリゴヌクレオチドを用いる。P CRを行うためには、増幅する領域の両端にハイブリダ イズする第1及び第2のプライマーを用いる必要があ る。HCVのHVRを含む領域を増幅する場合、HVR 領域の上流領域にハイブリダイズするオリゴヌクレオチ ドを第1のプライマーとして用い、HVR領域の下流領 ライマーとして用いる。図1及び図2に示すように、上 記オリゴヌクレオチドのうち、MS1、MS2、MS 3、MS4、MS5及びMS6がHVR領域の上流領域 にハイブリダイズするので、これらのうちのいずれかを 第1のプライマーとして用いる。また、MR1、MR2 及びMR1、がHVR領域の下流領域にハイブリダイズ するので、これらのうちのいずれかを第2のプライマー として用いる。また、5、非翻訳領域を増幅する場合に は、上記MS13を第1のプライマーとして用い、第2 のプライマーとしては、例えば従来より公知のYCA (5'-ACTCGCAAGCACCCTATCA-3') XIZY C S 1 (5'-CGACA CTCCACCATAGATC-3')を用いることができる(下記実施 例5参照)。

【0019】PCRは一段階で実施してもよいが、二段 階で実施すると検出の感度が高まるので好ましい。すな わち、1回目のPCRでHVR領域を含む領域又は5° 非翻訳領域を増幅し、2回目のPCRでその増幅された 領域内の領域を増幅し、この2回目のPCRで増幅され た領域を電気泳動で検出することにより、より高感度の

プライマー及び2回目のPCRで用いるプライマーは、 1回目のPCRで増幅される領域が2回目のPCRで増 幅される領域よりも広くなるように選択する。また、1 回目のPCRで増幅された領域のバンドが後の電気泳動 で検出されないように2回目に用いるオリゴヌクレオチ ドは1回目よりTm値(Tm値=4℃xG、Cの数+2 ℃xA、Tの数)を高く設定することが好ましい。この ような例として、1回目のPCRのプライマーとしてM S1とMR1又はMS1とMR1及びMR2を用い、2 回目のPCRのプライマーとしてMS2とMR2、MS 3とMR2、MS5とMR2又はMS6とMR2を用い る場合を挙げることができる。下記実施例3に示すよう に、1回目のPCRにMS1とMR1及びMR2を用 い、2回目のPCRにMS2とMR2又はMS3とMR 2を用いた場合が最も高感度になるので好ましい。 な お、この例から明らかなように、1回目のPCRでは上 記のオリゴヌクレオチドのうち、複数のものを用いるこ とも可能である。さらに、2回目のPCRにおけるアニ ール温度を1回目のPCRにおけるアニール温度よりも 【0018】次いで、得られたcDNAライブラリーを 20 高く設定することが好ましい。例えば、下記実施例で は、1回目のPCRのアニール温度を45℃とし、2回 目のPCRのアニール温度を55℃としている。

【0020】PCRによりDNAを増幅した後、増幅さ れたDNAを変性状態、すなわち一本鎖の状態で電気泳 動にかける。変性は、例えばフォルムアミド溶液にPC R産物を加え、これを80℃~95℃程度の温度に加熱 することにより行うことができる。変性状態で電気泳動 にかけるために、変性した増幅産物をアニールすること なく急冷する。これは、例えば、変性した増幅産物を含 域にハイブリダイズするオリゴヌクレオチドを第2のプ 30 むチューブを氷上で10分間程度放置することにより達 成することができる。次いで、この冷却した試料を、1 ~42℃、好ましくは4~37℃程度、さらに好ましく は約10℃程度に保持されたゲル上で電気泳動にかけ

> 【0021】上述の、変性状態での電気泳動は、上記の ようにSSCP法と呼ばれるものであり、この方法で は、2つのDNAのヌクレオチド配列が1塩基でも異な っておれば、DNAがとる立体構造の相違に基づく移動 度の差により、この2つのDNAのバンドが異なった位 40 置に現れる。従って、増幅されたDNAが何種類あるか を知ることができる。従って、検体中に含まれるHCV が単一クローンである場合、すなわち、増幅されたDN Aが1種類しか存在しない場合には、2本のバンドが現 れる(変性により1本の二本鎖DNAが二本の一本鎖D NAに分離するため)。同様に、2クローンの場合には 4本、3クローンの場合には6本のバンドが現れる。な お、バンドの検出は、常法により、臭化エチジウム染色 や銀染色等により容易に行うことができる。

【0022】なお、増幅産物は、上記のようなSSCP 診断が可能になる。この場合、1回目のPCRで用いる 50 法による解析の他、TGGE法やDGGE法により解析

することも可能である。DGGEとはdenaturing gradientgel electrophoresis の略語 (Fischer, S.G., et a l., Proc. Natl. Acid. Sci.: 1579, 315, 1985) でアルカリ変性濃度勾配アクリルアミドゲルを用い電気泳動を行うものである。TGGEとはtemperature gradient gel electrophoresisの略語で、温度勾配アクリルアミドゲルを用いて電気泳動を行う方法である (文献: D. Riesner et al., Electrophoresis 10: 377-389 (1989))。

【0023】これらの電気泳動の際、塩基配列に依存し 10 たDNAバンドの分離をよくする方法として、先のヘテ 口2重鎖法 (heteroduplex analysis: C.M. Nagamine, et al.,: Am. J. Hum. Genet., 45, 337, 1989) を用い ることができる。この方法では、DNAを変性後 (アル カリ変性又は熱変性)アニール(再生)させる。1種類 の塩基配列では1本のバンドを形成する。DGGE、T GGEでは2種類(複数)の塩基配列では元の2本鎖 (複数)以外に2種類(複数)のヘテロ2重鎖を形成 し、適当なアクリルアミドゲル(たとえば、MDE G e 1 : Mutation detection enhancement gel, AT Bioch 20 em. Inc. 30 Spring Mill Drive, Malvern, PA 19355) を用いた場合は元の2本鎖(複数)以外に1種類(複数 /2) のヘテロ2重鎖を形成する (J. Keen, et al.,: Genetics, 7, 5, 1991)。また、検出されるバンド数を 減らす方法として、アシメトリックPCR法を用いるこ とができる (Gyllensten, U.B., et al.,: Proc. Nat. Acad. Sci, USA, 85, 7652, 1988) 。この方法は、PC Rを行う際に使用する2対のオリゴヌクレオチドの一方 を他方より量的に少なくし(たとえば50:1)、1本 鎖を優先的に増幅する方法で、2本鎖に比べ、SSCP 30 電気泳動後の出現バンド数は半分となり、出現バンドが 多い場合、バンドの分離が改善され、また、出現するバ ンドがDNAの種類となる。

【0025】本発明はまた、上述のように、上記本発明のオリゴヌクレオチドの少なくとも1つをプライマーと 40 して用いたPCRにより、検体中のHCVゲノムのcDNAを増幅することを含む、HCVの増幅方法を提供する。HCVゲノムで非常に共通性の高い上記本発明のオリゴヌクレオチドをプライマーとして用いることで、5 非翻訳領域と、E1、E2/NS1領域の塩基配列決定を高感度(検出率)で行うことができる。また、同様な理由で、C型肝炎ウイルスを高感度で検出することができる。

[0026]

【実施例】以下、本発明を実施例に基づきより具体的に 50 に2回行い、沈殿をデシケーター中で15分間乾燥さ

8 説明する。もっとも、本発明は下記実施例に限定される ものではない。

【0027】参考例1 プライマー配列の設定本発明のオリゴヌクレオチドの配列は、次のようにして決定した。すなわち、データベース(商品名GeneBank、ロスアラモス、USA)に登録された種々のHCVクローンのE1-E2/NS1領域を比較することにより、HVR領域を挟む、保存性の高い領域と相補的なオリゴヌクレオチドである上記MS1及びMR1を設定した。MS1及びMR1は、検出率をできるだけ上げるために混合オリゴヌクレオチドとした。

【0028】C型慢性肝炎患者の血清よりRNAを抽出し、オリゴヌクレオチドMS1, MR1を用いてHVRを含むHCVのE1-E2/NS1領域の一部をPCRにより増幅後、BluescriptII(STRATAGENE, USA)にクローニングし、各クローンに単離した。それらの塩基配列を決定した。さらにHCVのE1-E2/NS1領域の既存の塩基配列をGeneBank(商品名)より入手し、さきに得られた塩基配列と比較した。

0 【0029】さらに、プライマー設定に際しては、できるだけHCV間で共通で特に3 末端が共通であるように設定した。また、検出率を上げるために混合プライマーを設定した。HCVは変異を起こしやすくプライマーの設定は、検出率に影響を与える為にその選定は検出率に影響を与える。また、これらのプライマーはGC%が10から90%の範囲で、望ましくは40から60%が良い。これらを考慮した上で検討した結果、図2~図14に示すように比較的各HCVクローン間で保存性の高い共通配列を見いだし同領域のDNA増幅に適したプライマーである上記MS2、MR2、MS3、MR1、MS4、MS5及びMS6を設定した。また、5 非翻訳領域についても同様な検索を行い、上記MS13を設定した。

【0030】実施例1 HCVのHVR領域の変異の検 wi

IFNα治療に対しての著効例であった慢性C型肝炎患者より経時的に末梢血を採取しHCV-HVRのSSC P解析を以下のようにして行った。

【0031】(1) RNA抽出、cDNA合成、PCR 患者血清100μ1をRNAzolB(商品名、BIO TEX Inc., USA))900μ1及びクロロホルム150μ1と混合し、5秒間攪拌し、-20℃で5分間インキュベートした。次いで12000rpmで5分間遠心し、上清(600μ1)を500μ1のイソプロパノール及び5μ1(20ng)のグリコーゲンと混合し、4℃で15分間反応させた。次いでこれを12000rpmで20分間遠心した。沈殿に1m1の75%エタノールを加えて懸濁後、12000rpmで5分間遠心した。この75%エタノール処理ー違心操作をさらに2回伝い、沈殿をごとなーター中で15分間をはさ

せ、精製された抽出RNAを得た。次いで、抽出したR NAを鋳型とし、ランダムヘキサマーのオリゴヌクレオ チド(5'-NNNNN-3'; N=AまたはTまた はGまたはC)をプライマーとして用いて常法によりc DNA合成した(37℃、90分)。その一部をオリゴ ヌクレオチドMS1, MR1, MR2を用いてPCR法 (Saikib, Science, 239, 487-4 91、1988) により増幅 (PCRサイクル35、変 性94℃、1分、アニール45℃、2分、伸長72℃、 3分) し、増幅産物の一部をオリゴヌクレオチドMS 2、MR2を用いて2回目のPCR(PCRサイクル2 5、変性94℃、1分、アニール55℃、2分、伸長7 2℃、3分)を行いさらに増幅させた。3%アガロース 電気泳動で315bpの増幅産物を確認した。

【0032】(2) SSCP解析

その一部を80℃で2分間処理することにより熱変性 後、10℃に保ち、5分放置した。これをあらかじめ冷 却型恒温水槽(スーパースッタッドミニPID、AB-160 0型、アトー株式会社)で10℃一定に保った電気泳動 漕(レゾマックス・2連ミニスラブ、ゲルサイズ:90 20 mm (W) x80mm (H))で厚さ1mmの1/3M DEゲル (AT Biochem)を用いて電気泳動を 行った。電気泳動条件:300V一定、トリスーグリシ ンバッファー、3時間、10℃。電気泳動後、臭化エチ ジウムの水溶液で15分染色後、紫外線照射下でポラロ イド撮影を行った。その結果、明瞭な2本のバンドが観 察された。

【0033】著効例である本症例ではIFN投与前のH CV-HVRのSSCP解析バンド数が2本であり、H 数は変わらず、バンド移動度は変化しなかった。また、 HCV-RNAは、16週から陰性化し、GPTは正常 化、IFN治療終了後24週でもHCV-RNAは検出 されなかった。この結果は多くの文献の結果と一致(著 効例ではクローン数が単一か少ない) するものである。 【0034】実施例2

IFNα不応例の慢性C型肝炎患者について、IFN治 療中及び治療後のHCV-HVRのSSCP解析を実施*

*例1と同様に行った。IFN治療中はSSCP結果のバ ンドパターンが変動し、バンド数も増加し、IFN治療 後も変動し続けた(図15)。なお、図15における各 レーンの血清採取時期及びその時点でのGTP活性を表 1に示す。HCVはHIV同様エンベロープ蛋白を変化 させる事により免疫系を逃れ、侵性感染を起こす事が予 想されており、本発明はHCVのHVRを含むE1-E 2の一部のSSCPバンドパターンの変化を簡便に経時 的にとらえこのことを証明する共に、C型肝炎に対する 10 薬物療法の効果判定のモニターとして有用であると考え られた。

1.0

[0035]

【表1】

レーン	血清採取時期	GTP, IU/L
1	IFN治療中 8週目	8 0
2	1 2週目	7 7
3	16週目	80
4	2.4週目	74
5	IFN治療後 8週目	196
6	16週目	101
7	2 4 週目	5 4
8	分子量マーカー: 入/HindIII	

【0036】実施例3

C型肝炎慢性患者血清 (MS13とYCA (5'-ACTCGCA AGCACCCTATCA-3')を用いたPCRによりcDNAが増幅 されたもの)50例を用い、実施例1と同様にして、1 CVは単一クローンであった。IFN治療中もクローン 30 回目のPCRまでを行った。次いで、下記表2に示す組 合せのオリゴヌクレオチドをプライマーとして用いて2 回目のPCRを行った。各組合せのプライマーを用いた 場合の検出率を下記表2に示す。表2に示すように、2 回目のPCRにはMS2とMR2又はMS3とMR2を 用いた時検出率が最も高かった。

[0037]

【表2】

2回目のPCRに使用する オリゴヌクレオチドの組み合わせ。	検出率
MS2. MR2	99%
MS3, MR2	99%
MS5, MR2	75%
MS6, MR2	80%

【0038】実施例4

参考例1に記載した方法により得られたクローンのうち 1,1:0.8,1:0.6,1:0.4,1:0. の3つ(クローンA、B、C)を用いて次の実験を行っ%50-2、1:0.1、及び0:1の比率に混合した試料につ いて、実施例1と同様に、PCR、SSCP解析を行った。なお、1回目のPCRにはMR1とMS1をプライマーとして用い、2回目のPCRにはMS2とMR2をプライマーとして用いた。その結果、クローンが単一の場合は2本のバンドが、2種混合の場合には4本のバンドが検出された。しかも、混合の場合、混合比率によりクローンBのバンドの太さが変化したので、ある程度定量的にその比率を予測することができた。

【0039】クローンBとクローンCの混合物及びクローンA、B、Cの混合物についても同様に試験した。そ 10の結果、3クローン混合の場合には6本のバンドが検出され、2クローン混合の場合には4本のバンドが検出された。このように、本発明の方法により、検体中のHCVのクローン数を確実に知ることができる。なお、クローンA、B、CのHVR領域の変異部分の配列を図16に示す。

【0040】実施例5 HCVの5'非翻訳領域の増幅5'非翻訳領域についてもその共通塩基配列を検索しオリゴヌクレオチドMS13を設定した。実施例1同様、C型慢性肝炎患者の血清よりRNAを抽出し、オリゴヌクレオチドYCA:5'-ACTCGCAAGCACCCTATCA-3'でcDNA合成し、1回目のPCR増幅でオリゴヌクレオチドMS13とYCAを用い、2回目にYCS2とYCAを用いてPCRを行った(MS13系)。同様に1回目のオリゴヌクレオチドをMS13をYCS1:5'-CGACACTCCACCACTAGATC-3'にかえた場合(YCS1系)と検出率の比較を行った。下記表3に示すように1回目のPCRにMS13を用いた場合の方が従来用いられていたYCS1を用いるより検出率が高かった。HCVタイプIII、IVで特に検出率がより高くなった。

【0041】 【表3】

MS13系

		陽性	陰性
	陽性	68	0
1系	陰性	3	5

【0042】実施例6

YCS

複数の領域を同時にSSCP解析を行うことを試みた。この際、増幅する遺伝子の長さを変える事により各領域ごとにSSCPによる解析を後述のように行った。HCVのHVRを含む領域とHCVゲノム中、最も保存性の高い5'非翻訳領域を同時に増幅し、同時にSSCP解析を行った。5'非翻訳領域を同時に増幅する事でHCVー

12 RNAの存在および5'非翻訳領域の変異の確認をHVR の解析と同時に行う事ができる。

【0043】C型慢性肝炎患者より実施例1と同様に血清よりRNA抽出後、オリゴヌクレオチドMR1、YCAを等量混合しcDNA合成後、オリゴヌクレオチドMS1、MS13、YCAを等量混合しPCRを行い、その一部をさらにオリゴヌクレオチドMS2、MR2、YCS2、YCAを用いてPCRを行った。増幅産物を実施例1と同様にSSCP解析を行った。

0 【0044】その結果、図17に示すように、HCVの HVRと5'非翻訳領域を同時に判別し、1つのレーンで 複数の領域を同時にSSCP解析する事ができた。 【0045】

Vのクローン数を確実に知ることができる。なお、クローンA、B、CのHVR領域の変異部分の配列を図16に示す。
【0040】実施例5 HCVの5'非翻訳領域の増幅 方法及びそれに用いられるオリゴヌクレオチドが提供された。上記から明らかなように、本発明により、検体中5'非翻訳領域についてもその共通塩基配列を検索しオリーン数を確実に簡便に知ることができるゴヌクレオチドMS13を設定した。実施例1同様、C型慢性肝炎患者の血清よりRNAを抽出し、オリゴヌクセオチドYCA:5'-ACTCGCAAGCACCCTATCA-3'でcDN

【発明の効果】本発明により、検体中のHCVのクローン数を確実、簡便に調べることができるC型肝炎の診断なびそれに用いられるオリゴヌクレカチドが提供された。上記から明らかなように、本発明により、検体中のHCVのクローン数を確実に簡便に知ることができる。ようになったので、そのC型肝炎の1FNによる治療効果と確実に予想することができる。どって、本発明はCレオチドYCA:5'-ACTCGCAAGCACCCTATCA-3'でcDN

【0046】実施例7

5'非翻訳領域をSSCP解析によりゲノタイピングを 試みた。C型慢性肝炎患者8例より実施例3と同様に、 オリゴヌクレオチドYCAを用いてcDNA合成し、1 回目のPCRにオリゴヌクレオチドMS13、YCAを 用い、2回目のPCRにはオリゴヌクレオチドYCS2 とYCAを用いた。実施例1同様SSCP解析を行った

30 【0047】その結果、図18に示すように、検出バンド位置により少なくとも2つのパターンに分類できた。 岡本らの方法(H. Okamoto et al., J. Gen. Virol. 7 3: 673-679)でのタイピングを同一検体で実施し、先の 結果と比較したところ、下記表4及び5に示すように、 相関性を示した。

[0048]

【表4】

40

SSCPパターン	ゲノタイプ(岡本ら)
I	II
11	III. IV

【0049】 【表5】

1 3			
レーン	検体No.	SSCPパターン	ゲノタイプ (岡本ら)
1	1	I	II
2	2	I	II
3	3	II	III
4	4	II	III
5	5	II	III
6	6	I	II
7	7	I	II
8	8	II	Ι¥
		1	

[0050] 【配列表】

配列番号:1

配列の長さ:336

*配列の型:核酸

トポロジー:直鎖状

配列の種類: cDNA to genomic RNA

	_										37 3. 7	12277			, ac		
•	0								*								
	配列															•	
																OGCAGA	60
																rcccgg	120
																CGGGTC	180
																CTGCTA	240
																GCGAGT	300
	GCC	CCGG	GAG	GTCT	CGTA	GA C	CGTG	CATC	ATG	AGC	ACA	AAT	CCT	AAA	CCT	CAA	353
									Met	Ser	Thr	Asn	Pro	Lys	Pro	Gln	
									1				5				
	AGA	AAA	ACC	AAA	CGT	AAC	ACC	AAC	CGC	α c	CCA	CAG	GAC	GTT	AAG	TTC	401
	Arg	Lys	Thr	Lys	Arg	Asn	Thr	Asn	Arg	Arg	Pro	Gln	Asp	Val	Lys	Phe	
		10					15					20					
															CGC		449
	Pro	Gly	Gly	Gly	Gln	He	Val	Gly	Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	
	25					30					35					40	
	GGC	CCC	AGG	TTG	GGT	GTG	αc	GCG	ACT	AGG	aag	ACT	TCC	GAG	CGG	TCG	497
	Gly	Pro	Arg	Leu	Gly	Val	Arg	Ala	Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	
					45					50					55		
	CAA	CCT	CGT	GGA	AGG	CGA	CAA	CCT	ATC	CCC	AAG	GCT	CGC	CGG	CCC	GAG	545
	Gln	Pro	Arg	Gly	Arg	Arg	Gln	Pro	He	Pro	Lys	Ala	Arg	Arg	Pro	Glu	
				60					65					70			
	GGT	AGG	ACC	TGG	GCT	CAG	CCC	GGG	TAC	CCT	TGG	CCC	CTC	TAT	GGC	AAC	593
	Gly	Arg	Thr	Trp	Ala	Gln	Pro	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	
			75					80					85				
	GAG	GGT	ATG	GGG	TGG	GCA	GGA	TGG	CTC	CTG	TCA	CCC	CGT	GGC	TCT	CGG	641
	Glu	Gly	Met	Gly	Trp	Ala	Gly	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Ser	Arg	
		90					95					100					
	CCT	AGT	TGG	GGC	CCC	ACA	GAC	CCC	CGG	ŒΤ	AGG	TCG	CGT	AAT	TTG	GGT	689
															Leu		
	105					110					115		-			120	
	AAG	GTC	ATC	GAT	ACC	CTT	ACA	TGC	GGC	TTC	GCC	GAC	CTC	ATG	GGG		737
															Gly		
					125			-	•	130		•			135	J =	
	ATT	CCG	CTT	GTC		GCC	CCC	СТА	GGG		GCT	GCC	AGG	GCC	CTG	GCA	785
				J. J		200	300	J1	Juu	300	301	acc	,100	acc	UIU	GUI	100

He	Pro	Leu	Val 140		y Ala	Pro	Leu	Gly 145		Ala	Ala	Are	Ala 150		ı Ala	
CAT	GGT	GTC			r ctg	GAG	GAC			AAC	TAT	GCA			AAT	833
															Asn	ررن
		155					160					165		U.,		
CTG	ccc	GGT	TGC	TCT	TTC	TCT			СТС	TTA	GCT			TCT	TGT	881
															Cys	001
	170					175					180					
TTG	ACC	ATC	CCA	GCT	TCC	GCT	TAC	GAG	GTG	CGC	AAC	GTG	TCC	GGG	ATA	929
Leu	Thr	He	Pro	Ala	Ser	Ala	Tyr	Glu	Val	Arg	Asn	Val	Ser	Gly	He	
185					190					195					200	
TAC	CAT	GTC	ACG	AAC	GAC	TGC	TCC	AAC	TCA	AGT	ATT	GTG	TAT	GAG	GCA	977
Tyr	His	Val	Thr	Asn	Asp	Cys	Ser	Asn	Ser	Ser	He	Val	Tyr	Glu	Ala	
				205					210					215		
								GGG								1025
Ala	Asp	Met		Met	His	Thr	Pro	Gly	Cys	Val	Pro	Cys	Val	Arg	Glu	
A CTT		mmo	220					225					230			
								GCG								1073
ser	ASI		Ser	Arg	Lys	Trp		Ala	Leu	Thr	Pro		Leu	Ala	Ala	
۸CC	۸۸۲	235	VCC	۸TC	ccc	۸۲۲	240	ACA	AT A	CCA	ccc	245	CTC	CAT	TTC	1101
								Thr								1121
111 8	250	<i>5</i> u	JCI	110	110	255	1111	1111	116	ит В	260	nis	441	ASP	Leu	
стс		GGG	GCG	GCT	GCT		TGT	TCC	GCT	ATG		GTT	ccc	GAT	CTC	1169
								Ser								1109
265					270		-,-			275	.,.	, 41	0.7	, Lop	280	
TGC	GGA	TCC	GTT	TTT		GTC	TCC	CAG	CTG		ACC	TTC	TCA	ССТ		1217
								Gln								1-11
				285					290					295	-	
CGG	TAT	GAG	ACG	GTA	CAA	GAT	TGC	AAT	TGC	TCA	ATC	TAT	CCC	GGC	CAC	1265
Arg	Tyr	Glu	Thr	Val	Gln	Asp	Cys	Asn	Cys	Ser	lle	Tyr	Pro	Gly	His	
			300					305					310			
								GAT								1313
Val	Ser		His	Arg	Met	Ala	Trp	Asp	Met	Met	Met	Asn	Trp	Ser	Pro	
		315					320					325				
								CTA								1361
ınr		Ala	Leu	Val			Gln	Leu	Leu	Arg		Pro	Gln	Ala	Val	
CTC	330	ATC	ሮሞሮ	ccc		335	CAC	TCC	CCT	CTC	340	~~~	606	com m		4 400
								TGG								1409
345	пор	rict	Vai	MIG	350	mia	nis	Trp	GIY		Leu	на	GIY	Leu		
	ТДТ	ፐርር	ΔTG	GTG		۸۵۲	ፐርር	GCT	AAC	355 crc	ጉ ፐር	ΑТТ	СТС	ATC	360	1.457
								Ala								1457
. , .	.,.	J.,		365	41)	<i>1</i> 5 11	117		370	741	Leu	116		375	Leu	
CTC	TTT	GCT			GAC	GGG	CAC	ACC		GTG	ACA	GGG			GTΔ	1505
								Thr								1505
	-		380			3		385					390	6	, 1	
GCC	TCC			CAG	AGC	CTC		TCC	TGG	стс	TCA			CCA	TCT	1553
								Ser								
		395					400		-			405			-	

CAG	AAA	ATO	CAA	CTC	GTO	. AAC	ACC	CAAC	GGC	AGC	TGG	CAC	AT(: AAC	AGG	1601
Gln	Lys	Πe	Gln	Leu	. Val	Asn	Thr	Asn	Gly	Ser	Trp	His	: I1e	: Asn	Arg	
	410)				415	•				420)				
ACC	GCT	CTG	AAT	TGC	: AAT	GAC	TCC	CTC	CAA	ACT	GGG	TTC	: ATT	GCT	GŒ	1649
Thr	Ala	Leu	Asn	Cys	Asn	Asp	Ser	Leu	Gln	Thr	Gly	Phe	: Ile	Ala	Ala	
425	j				430)				435	;				440	
CTG	TTC	TAC	GCA	CAC	AGG	TTC	: AAC	GCG	TCC	GGG	TGC	CCA	GAG	CGC	ATG	1697
Leu	Phe	Tyr	Ala	His	Arg	Phe	Asn	Ala	Ser	Gly	Cys	Pro	Glu	Arg	Met	
				445					450					455		
GCT	AGC	TGC	CGC	CCC	ATC	GAT	GAG	TTC	GCT	CAG	GGG	TGG	GGT	CCC	ATC	1745
Ala	Ser	Cys	Arg	Pro	He	Asp	Glu	Phe	Ala	Gln	Gly	Trp	Gly	Pro	lle	
			460					465					470			
															CAC	1793
Thr	His	Asp	Met	Pro	Glu	Ser	Ser	Asp	Gln	Arg	Pro	Tyr	Cys	Trp	His	
		475					480					485				
								GTG								1841
Tyr		Pro	Arg	Pro	Cys	Gly	He	Val	Pro	Ala	Ser	Gln	Val	Cys	Gly	
	490					495					500					
								CCT								1889
	Val	Tyr	Cys	· Phe		Pro	Ser	Pro	Val	Val	Val	Gly	Thr	Thr	Asp	
505					510					515					520	
								TGG								1937
Arg	Phe	Gly	Ala		Thr	Tyr	Ser	Trp		Glu	Asn	Glu	Thr	Asp	Val	
CTIC	~~.	CALAIL	466	525					530					535		
								CCT								1985
Leu	Leu	Leu		Asn	Ihr	Arg	Pro	Pro	GIn	Gly	Asn	Trp		Gly	Cys	
A CCC	TCC	ATTO	540	400		600	mme	545		. ~~			550			
								ACC								2033
HIL	ігр		ASI	ær	ınr	ыу		Thr	Lys	Thr	tys		Gly	Pro	Pro	
TCC	AAC	555	ccc	ccc	CTC	ccc	560	AAC.	ACC.	TTC.	cmc	565	ccc	100	C ATT	0004
								AAC								2081
Cys	570	116	diy	ury	141	575	ASII	Asn	HII.	Leu		cys	Pro	mr	ASP	
ፐርር		rac:	ΔAG	ርልር	LLL		פרר	ACT	TAC	۸۲۸	580	ጥርጥ	ccc	ጥርር	ccc	2120
								Thr								2129
585	inc	шБ	LJS	1113	590	ulu	ura	1111	ıyı .	595		Cys	uly	ær	600	
	TGG	TTG	ACA	ccc		ፐርር	ATG	GTT	GAC			ፐለር	ACC	CTC.		2177
								Val								2177
			••••	605	0	0,5	IRCU	, 41	610	131	110	131	nı g	615	111	
CAC	TAC	CCC	TGC		GTT	AAC	TTT	ACC		TTT	AAG	GTC	ACC		ТДТ	2225
								Thr								رعم
			620			. 2		625	•	1 110	2,5	,	630	1100	1 71	
GTG	GGG	GGC		GAG	CAC	AGG	CTC	AAT	GCT	GCA	ፐርሮ	ΔΔΤ		ΔΛΤ	CGA	2273
								Asn								4617
		635				· - 0	640				0,0	645				
GGA			TGT	GAC	TTG	GAG		AGG	GAT	AGG	TCA		CTC	AGC	COG	2321
								Arg								1201
	650	-		-		655	•	Ü	•		660					
		CTG	TCT	ACA	ACA		TGG	CAG	ATA	CTG		TGT	TCC	TTC	ACC	2369
								Gln								

	-	-														
665					670					675					680	
															ATC	241
Thr	Leu	Pro	Ala			Thr	Gly	Leu			Leu	His	Arg			
ርሞር	CAC	· (T)	CAA	685			· con	474	690			Cara	CT C	695		045
			CAA													246
Vai Va	ASP	yaı	Gln		Leu	ııyr	GIA			' Ser	Ala	vai			Phe	
	ለፐር		700 TGG		тлт	ልሞር	СТ С	705 TTC		ጥጥሮ	CTT T	CTT	710		CAC	254
			Trp													2513
niu	110	715		uiu	ıyı	110	720		LEU	rije	LCu	725	Leu	HId	ASP	
GŒ	OGC		TGT	GCC	TGC	ፐፐ ር			ATG	CTG	CTG.		err	CAG	േന	2561
			Cys													250
	730				-,-	735				500	740		,,,,			
GAG	GCC	ACC	TTA	GAG	AAC	CTG	GTG	GTC	CTC	AAT		GCG	TCT	GTG	GCC	2609
			Leu													
745					750					755					760	
GGA	GCG	CAT	GGC	CTT	CTC	TCC	TTC	CTC	GTG	TTC	TTC	TGC	GCC	GCC	TGG	2657
Gly	Ala	His	Gly	Leu	Leu	Ser	Phe	Leu	Val	Phe	Phe	Cys	Ala	Ala	Trp	
				765					770					775		
			GGC													2705
Tyr	He	Lys	Gly	Arg	Leu	Val	Pro		Ala	Ala	Tyr	Ala	Leu	Tyr	Gly	
am.			780					785					790			
			TTG													2753
Val	lrp		Leu	Leu	Leu	Leu		Leu	Ala	Leu	Pro		Arg	Ala	Tyr	
ccc	ATC	795	CCA	CAC	ATC	CCT	800	ም ርር	TCC	CCA	ccc	805	СТТ	արդումո	CT I	2001
			CGA Arg													2801
nia	810	usp	MI &	uru	nec	815	Ald	Ser	CyS	GLY	820	Ald	Val	rne	vai	
GGT		GTA	СТС	TTG	ACC		TCA	CCA	TAC	ТАТ		GTG	ፐፐር	רדר	CCT	2849
			Leu													2017
825					830					835	5,0			504	840	
AGG	CTC	ATA	TGG	TGG	TTA	CAA	TAT	TTT	ATC	ACC	AGA	GCC	GAG	GCG	CAC	2897
Arg	Leu	He	Trp	Trp	Leu	Gln	Tyr	Phe	He	Thr	Arg	Ala	Glu	Ala	His	
				845					850					855		
TTG	CAA	GTG	TGG	GTC	CCC	CCT	CTC	AAT	GTT	CGG	GGA	GGC	CGC	GAT	GCC	2945
Leu	Gln	Val	Trp	Val	Pro	Pro	Leu	Asn	Val	Arg	Gly	Gly	Arg	Asp	Ala	
			860					865					870			
			CTT									_				2993
He	He		Leu	Thr	Cys	Ala		His	Pro	Glu	Leu		Phe	Asp	He	
		875	CEC	om a			880					885				
			CTG													3041
HILE	890	Leu	Leu	Leu	на		Leu	GIY	rro	Leu		Vai	Leu	61n	Ala	
ccc		ለርተ	AGA	стс	ccc	895	ттт	ርጥል	œς	CCT	900	ccc	ርሞር	ATC.	CCT	2000
			Arg													3089
905	110	* : 11	ιцБ	141	910	ıyı	1110	441	un R	915	9111	aiy	Leu	116	агд 920	
	TGC	ATG	TTA	GTG		AAG	GTC	GCT	GGA		CAC	ТДТ	ርፐር	۲۵۵		3137
			Leu													7171
	-			925	Ü				930			- , .		935		
GCC	TTC	ATG			GCC	GCG	CTG			ACG	TAC	GTA	TAT		CAT	3185

```
21
                                                              22
               Ala Phe Met Lys Leu Ala Ala Leu Thr Gly Thr Tyr Val Tyr Asp His
                        940
                                        945
               CTT ACT CCA CTG CGG GAT TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG
               Leu Thr Pro Leu Arg Asp Trp Ala His Ala Gly Leu Arg Asp Leu Ala
                                    960
               GTG GCA GTA GAG CCC GTC GTC TTC TCT GAC ATG GAG ACT AAA CTC ATC 3281
               Val Ala Val Glu Pro Val Val Phe Ser Asp Met Glu Thr Lys Leu Ile
                  970
                                 975
               ACC TGG GGG GCA GAC ACC GCG GCG TGT GGG GAC ATC ATC TCG GGT CTA
               Thr Trp Gly Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Ser Gly Leu
                              990
               CCA GTC TCC GCC CGA AGG GGG AAG GAG ATA C
                                                                  3360
              Pro Val Ser Ala Arg Arg Gly Lys Glu Ile
                           1005
 【0051】配列番号:2
                                          *トポロジー:直鎖状
配列の長さ:20
                                            配列の種類:他の核酸
配列の型:核酸
              配列
              CACCGCATGG CWTGGGATAT
                                                                   20
 【0052】配列番号:3
                                        20%トポロジー:直鎖状
配列の長さ:20
                                           配列の種類:他の核酸
配列の型:核酸
              配列
              GGGCTNGGRG TGAAGCARTA
                                                                   20
【0053】配列番号:4
                                          ★トポロジー:直鎖状
配列の長さ:22
                                           配列の種類:他の核酸
配列の型:核酸
              配列
              TTGGGATATG ATGATGAACT GG
                                                                   22
【0054】配列番号:5
                                        30☆トポロジー:直鎖状
配列の長さ:20
                                           配列の種類:他の核酸
配列の型:核酸
              配列
              CTGTTGATGT GCCAGCTGCC
                                                                   20
【0055】配列番号:6
                                          ◆トポロジー:直鎖状
配列の長さ:19
                                           配列の種類:他の核酸
配列の型:核酸
              配列
              GGATATGATG ATGAAGTGG
                                                                  19
【0056】配列番号:7
                                        40*トポロジー:直鎖状
配列の長さ:19
                                           配列の種類:他の核酸
配列の型:核酸
              配列
              TCYGTCTCAT TYGCCCCCA
                                                                  19
【0057】配列番号:8
                                          ※トポロジー:直鎖状
配列の長さ:18
                                           配列の種類:他の核酸
配列の型:核酸
              配列
              GGNCAYHGNA TGGCNTGG
                                                                  18
【0058】配列番号:9
                                      ★50★配列の長さ:18
```

23

配列の型:核酸

*配列の種類:他の核酸

トポロジー: 直鎖状

配列

GCTACTCTTT GCCGGCGT

18

24

【0059】配列番号:10

配列の長さ:19 配列の型:核酸 ※トポロジー:直鎖状

配列の種類:他の核酸

10★トポロジー:直鎖状

☆トポロジー:直鎖状

20◆トポロジー:直鎖状

配列の種類:他の核酸

配列の種類:他の核酸

配列

CTCTTTGCCG GCGTTGACG

19

【0060】配列番号:11

配列の長さ:20 配列の型:核酸

*

×

配列

GAGGAACTAC TGTCTTCACG

20

【0061】配列番号:12

配列の長さ:19 配列の型:核酸

厽

配列

ACTCGCAAGC ACCCTATCA

19

【0062】配列番号: 13

配列の長さ:19 配列の型:核酸

配列

CGACACTCCA CCATAGATC

配列の種類:他の核酸

【0063】配列番号:14

配列の長さ:40 配列の型:核酸 *トポロジー:直鎖状

配列の種類:他の核酸

配列

CGCCCGCCGC GCCCCGCGCC CGTCCCGCCG CCCCCGCCCC

40

19

【図面の簡単な説明】

【図1】HCVゲノムの一部の塩基配列の一例と、本発明のオリゴヌクレオチドがハイブリダイズする領域を示す図である。

【図2】図1の続きを示す図である。

【図3】本発明のオリゴヌクレオチドMS1、MS2、MS3及びMS4を設定した根拠となる、種々のクローンの当該領域の塩基配列を異同を比較する図である。

【図4】図3の続きを示す図である。

【図5】図4の続きを示す図である。

【図6】図5の続きを示す図である。

【図7】本発明のオリゴヌクレオチドMR2を設定した 根拠となる、種々のクローンの当該領域の塩基配列を異 同を比較する図である。

【図8】図7の続きを示す図である。

【図9】図8の続きを示す図である。

【図10】図9の続きを示す図である。

【図11】図10の続きを示す図である。

【図12】本発明のオリゴヌクレオチドMR1を設定した根拠となる、種々のクローンの当該領域の塩基配列を※

30%異同を比較する図である。

【図13】本発明のオリゴヌクレオチドMS5及びMS 6を設定した根拠となる、種々のクローンの当該領域の 塩基配列を異同を比較する図である。

【図14】本発明のオリゴヌクレオチドMR1'を設定した根拠となる、種々のクローンの当該領域の塩基配列を異同を比較する図である。

【図15】IFNα不応例の慢性C型肝炎患者について、IFN治療中及び治療後のHCV-HVRのSSC P解析を本発明の方法により行った結果の電気泳動パタ 40 ーンを示す模式図である。

【図16】3種のクローンを利用して、本発明の方法によりクローン数の測定を行った実験に用いた各クローンの変異領域の塩基配列を示す図である。

【図17】HVR領域と5¹ 非翻訳領域の両方を長さを変えて同時に増幅させた産物についてのSSCP電気泳動のパターンを示す模式図である。

【図18】HCVの5、非翻訳領域のSSCP解析を本発明の方法により行った結果の電気泳動パターンを示す模式図である。

[図1]

5'	非翻譯	超科					
3			CACTCCACCA	TAGATCACTC	CCCTGTGAGG	AACTACTGTC MS 1 3	TTCACGCAGA
	61	AAGCGTCTAG	CCATGGCGTT	AGTATGAGTG	TTGTGCAGCC	TOCAGGACCC	CCC TCCCCC
	121	GAGAGCCATA	GTGGTCTGCG	GAACCGGTGA	GTACACCGGA	ATTGCCAGGA	CGACCGGGTC
	181	CTTTCTTGGA	TCAACCOGCT	CAATGCCTGG	AGATTTGGGC	CTCCCCCCC	GAGACTGCTA
	241	GCCGAGTAGT	GTTGGGTCGC	GAAAGGCCTT	GTGGTACTGC	CTGATAGGGT	CCTTCCCACT
	301	GCCCCGGGAG	GTCTCGTAGA	CCGTGCATC	0.00.00	010/1/1/00/01	0011000/101
	001			35575511.0			
福田	領域						
					TGAGCACAAA	TCCTAAACCT	CAAAGAAAAA
	361	CCAAACGTAA	CACCAACCGC	CCCCACAGG	ACGTTAAGTT	CCCGGGGGGT	GCTCAGATCG
	421	TTGGTGGAGT	TTACCTGTTG	CCGCGCAGGG	GCCCCAGGTT	GGGTGTGCGC	GCGACTAGGA
	481	AGACTTCCGA	GCGGTCGCAA	CCTCGTGGAA	GGCGACAACC	TATCCCCAAG	GCTCGCCGGC
	541	CCGAGGGTAG	GACCTGGGCT	CAGCCCGGGT	ACCCTTGGCC	CCTCTATGGC	AACGAGGGTA
	601	TGGGGTGGGC	AGGATGGCTC	CTGTCACCCC	GTGGCTCTCG	GCCTAGTTGG	GGCCCCACAG
	661	ACCCCCGGCG	TAGGTCGCGT	AATTTGGGTA	AGGTCATCGA	TACCCITACA	TCCCCCTTCC
	721	CCGACCTCAT	GGGGTACATT	CCGCTTGTCG	GOGCCCCCCT	AGGGGGCGCT	GCCAGGGCCC
	181	TUGCACATGO	TGTCCGGGTT	CTGGAGGACG	GOGTGAACTA	TGCAACAGGG	AATCTGCCCG
	841	GIIGCICIII	CICIAICTIC	CTCTTAGCTT	TUCTUTCTTU	TITGACCATC	CCAGCTTCCG
	901	CITACGAGGI	TOLOGOLOGO	TCCGGGATAT	ACCATGICAC	GAACGACTGC	TCCAACTCAA
	1001	CCCACACTA	TTTCTCCCC	GACATGATCA	16CACACCCC	CUGGIUCUIG	CCTGCGTCC
	1021	COLCOLOGIAN	1110100001	TGCTGGGTAG	ACCTOCATOR	CAUGUIUGUG	GCCAGGAACA
	1001	TOTOTTOCOC	TATOTACCTT	ATACGACGCC GGGGATCTCT	ACG1CGA111	PC1CP110PP	DCCCCTGCTC
				TATGAGACGG			
	1201	QCCVC01V1C		ATGGCTTGGG			CUTACAACGG
			MI, MS	0 Z . IMI S S .	. M3422	心頂場	
	1321	CCCTAGTGGT	ATCGCAGCTA	CTCCGGATCC	CACAAGCCGT	CCTCGACATG	CTCCCCGCGC
	1381	CCCACTGGGG	TGTCCTAGCG	GGCCTTGCCT	ACTATTCCAT	GGTGGGGAAC	TGGGCTAAGG
	1441	TCTTGATTGT	GATGCTACTC	TTTGCTGGCG	TTGACGG		•
			MS 5	, 6を含む	領域		•
ц	CV.	HVR					
11	1478	II Y K			5' CCA	CACCCACCTG	ACACCCCCAA
		CCCTACCCTC	CICCICCIC	AGCCTCGTGT		CUCCCUCCIO	TOTOLOGICAL
	1561	T Q'	CHOCHECCHU	MOCCICUIUI	COMOCICIC	леллически	IC ICHUMANA
	1501						
		CCAACTCGT	GAACACCAAC	GGCAGCTGGC	ACATCAACAG	GACCCCTCTG	AATTGCAATG
				MR	2の相補鎖を	含む領域	
	1621	ACTCCCTCCA	AACTGGGTTC	ATTGCTGCGC	TGTTCTACGC	ACACAGGTTC	AACGCGTCCG
	1681	GGTGCCCAGA	GCGCATGGCT	AGCTGCCGCC	CCATCGATGA	GTTCGCTCAG	GGGTGGGGTC
	1741	CCATCACTCA	TGATATGCCT	GAGAGCTCGG	ACCAGAGGCC		
						MR 1 Ø	相補鎖
	1901	CTCC LCCCTC	CCCC A TCCTC	CCTGCGTCGC	ACCTCTCTCC	TOULOWOULT	ጥር ስጥተር ፈ ስጥር
	1001	を含む領域	COOGNICOIO	CCIGORICOC	VOOTOTOTOO	ICCMOIGINI	IGCIICACIC
		CHUMA					
	1861	CGAGCCCTGT	TGTAGTGGGG	ACGACCGATC	CTTTCGGCGC	TCCTACGTAT	AGCTGGGGGG
							MR1
				CTACTTAGCA	ACACGCGGCC	GCCTCAAGGC	AACTGGTTTG
	Ø	相補鎖を含む	む領域				

【図16】

クローン人:	GGGGAGACCCACGTGACAGGGGCGACGCAGGGTCGCGCCCCCCGGGCTCACAGGTCCCTTCACAGTT
クローンB:	CAGAGT
	jj

【図2】

【図3】

【図18】

【図4】

【図5】

【図6】

HCVのE1領域中の比較的共通な塩基配列の変異

5' CBGGBCAFHGBATGGCBTGGDAFDTGATGBTGAEFTGGDD 3'

B=A, T, G, C E=A, T D=A, G F-T, C H-C, A

共通配列 ち' C-GG-CA--G-ATGGC-TGG-A--TGA--TGG 3' M S 1 5' CACCGCATGGCETGGGATAT 3' M S 2 5' TGGGATATGATGATGAACTGG 3' 5' GGATATGATGATGAACTGG 3' 5' GGNCAYHCNATGGCNTGG 3' H C V の E 1 領域(一部)の塩基配列 アライメントとオリゴヌクレオチドMS1,MS2の設定位置。

【図7】

ዚር ላ ብ 1 ወ- ν	MR2 941 3
HPCJC6 5'CAMBECECATCTCABAMATCCAMETCETE	NEVERTHER CHECKET CYCLOSPICES IC 10 VILLOCK 3,
HPCNS1SP0 _0T_0T_0_CB_T_A	
HEPCRESSO _TTGT_GCAAGTA_A	
HEPORESSE _TT_B_GCAGGG_TA_A	_t
HEPCRESSF _T_OT_GAACQTA_A	_fa
HPC1DE1E2 _TT_8_GCGGT_G_TA_A	
HEPORE7 _TT_6_6AC66_T	
HEPORE558 _TT_CGCTA_A	
HEPORE89 _CT8CCC8TA	
HEPORESSO _CT_BB_GCGCTA_A	
HEPORESSA _CT_GB_GCBCTA_A	
HEPORE738 _GT_A_BA1BTA_A	
HPCUNKCOS _CTG_661C_CCCGA_A	TC6C
HCYCENS1 TC9CCAAC_8_8_8_C	_ATTĊ8TTCT_
HPCFRL _C 8_CASB C _A _O _QA_C	ttca_ctc
HPCFRX _CB_CASBCGA_C	ttc_c_a_ctc_
HPGST77 _C B_CAAB C BA_C	
HPEOGAA _CE_COA6CEA_C	1166CTC
HPC6TRJ1 _C8_TAA6CG_GA_C	
HPCHCJI _CG_TAAGCG_GA_C	
HPCPLYPRE _CCAUGCSCC	
HPCX1 _CG_CAASC6E_GA_C	
HPCNS1SPA_T0_CAABCBBCAC	tttc_a_ctc
HEPCRE42 _C _G_CAAGCGG_AA_C	rtc_c_c_ctc_t
HPCST90 _6CALOCG_QL_C	_ATTC_G_CC
HPCFR8 AS CACC C.C. G. GA.C.	GTG_CTC
HPCHETHIY _6G_GAQA_C_T_G_GA_C	T_TT0_CTC_T_
HPCHS1SPI _6CAGCC_TGA_C	
HEPCRE37B _CCAGGC _C _G_C	
HEPCRESTA _0CAA8C8 _G _C	TTO6GTCT
HPCFRC TCAAGC_A_6_6A_G	T_TTGCC
HPCFRHB_CAAGTG_GA_C	TTC_A_CTC
HEPCRE43 _C0B_CC6GC66C	ttttfct
HPCHS1SPE TCGG_CAAGCGA_C	
NPCFRE GTCC	
1	1

[図8]

HPCNS18FK_CT_66 C G_TA_A TT_CC_
HPOPRO4A_CT_6Q_6CG_TA_A_TT_TTTCC
HPGP263A _6T_68_60_8_T_A_TTTT1_GC_
HPCCGENON _CTEE_CEETA_N_TTTTCC
· · · · · · · · · · · · · · · · · · ·
;
HPCJ485CT60GT
HPC5TRJ4 _CT_GG_GGG_TTTC_A_C
HEPCRES6 _C _B _BC
HEPCRE39 _C68_6665T5TT
HCVEGIEZ GTT_0_6A
HPCPEP68 1CT_G_GG G_T_A11_CTC
HPCPGLYPR_CT_Q_GGG_TA_ATTTCG_
\$62220 _CT_G_GGG_TA_ATTTTCG
HEPCRE40 _6T66A6A6TA_ATTT
HPCHURR ART_B_B G_TA_AT_G_TT_CC^
HEPCRE6 ACG_G_G_G_CA_A_ATA_T_C
HEPCRE76 1CT 6 C C G TA A T T T C
HCV-HS1E2 TCT_G_GAAGCGA_TA_A_TTT_C_C_C
HEPCRESS _CT_G_GGG_T_ATTTC
HEPCRE35 _CTGGGGTATTT_
HEPCRESS _CT_G_GGG_T_ATTTC
HEPCRE35 _CT_ G_ 66 G_ T_ A T T C HEPCRE30 _TT_ G G_ T_ A_ T T_ C_ C HPCNS1SPL _CT_ G_ 8_ C_ 68 O_ T_ A_ T T C_ C T_ C_ C HEPCRE71 _TCT_ T_ G A_ C G A_ A T_ T T T C C_
HEPCRE35 _CT_G_GGG_T_ATTT
HEPCRE35 _CT_ G_ 66 G_ T_ A T T C HEPCRE30 _TT_ G G_ T_ A_ T T_ C_ C HPCNS1SPL _CT_ G_ 8_ C_ 68 O_ T_ A_ T T C_ C T_ C_ C HEPCRE71 _TCT_ T_ G A_ C G A_ A T_ T T T C C_
HEPCRE35 _CT_ G_ GG G_ T_ A T T T C HEPCRE30 _1T_ G G_ T_ A_ T T T_ C C HPCNS1SPL _CT_ G_ G_ C_ G_ A_ T_ T T T_ C_ C HEPCRE71 _IGTTT_ G C_ G_ A_ T_ T_ T T_ C_ C HPCCPEP2 _1T_ G_ G_ C_ G_ G_ TA_ T_ T T_ C_ C
HEPCRE35 _CT _G _GG G _T _A T T C HEPCRE30 _IT _G G _T _A _T T C C HPCNS1SPL _CT _G _B _C GB O _T _A _T T C C C HEPCRE71 _ICT _IT _G A C G A T T T C C HPCCPEP2 _IT _G _G _C G G TA _A T T C C HPCCPEP1 _IT _B _B _C G G TA _A T T C C
HEPCRE35 _CTG_66
HEPCRE35 _CT _ G_ GG G_ T_ A T T T _ C _ C HEPCRE30 _1T _ G G_ T_ A _ T T T _ C _ C _ C _ C _ C _ C
HEPCRE35 _CTG_66
HEPCRE35 _CTG_GGG_T_ATTTC
HEPCRE35 _CT _ G_ GG G_ T_ A T T T C _ C HEPCRE30 _IT _ G G_ T_ A _ T T T C _ C C _ C _ HPCRS1SPL _CT _ G_ G_ G_ G_ G_ A T _ T T T C_ C _ C _ HPCCPEP2 _IT _ G_ G_ C_ G_ A T _ T T T _ C_ C _ C _ HPCCPEP2 _IT _ G_ G_ C_ G_ G_ TA _ A _ T T _ C_ C_ C _ HPCCPEP4 _ CT _ G_ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ T _ C_ C_ C _ HPCCPEP4 _ CT _ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ T _ C_ C_ C _ HEPCRE72A _ C_ G_ G_ C_ G_ TA _ A _ T _ T _ T T _ C_ C HEPCRE72B _ C_ G_ C_ C_ G_ A _ T _ T _ T _ G_ C C HEPCRE72B _C_ G_ C_ G_ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ G_ C C HEPCRE72B _CT _ G_ C_ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ G_ C C C HEPCRE72B _CT _ G_ C_ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ G_ T _ C_ C C HEPCRE72B _CT _ G_ G_ G_ G_ G_ G_ A _ T _ T _ T _ G_ T _ C_ C C HEPCRE72B _CT _ G_ G_ G_ G_ G_ G_ A _ T _ T _ T _ G_ T _ C_ C C C
HEPCRE35 _CT _ G_ GG G_ T_ A _ T T _ T _ C _ C _ HEPCRE30 _TT _ G _ G_ T_ A _ T T _ T _ C _ C _ C _ HPCNS1SPL _CT _ G_ G_ G_ G_ A _ T_ T _ T _ T _ C _ C _ C _ HEPCRE71
HEPCRE35 _CT _ G_ GG G_ T_ A _ T T _ T _ C _ C _ HEPCRE30 _1T _ G G_ T_ A _ T T _ T _ C _ C _ C _ HPCNS1SPL _CT _ G_ G_ G_ G_ A _ T _ T _ T _ T _ C _ C _ C _ HEPCRE71
HEPCRE35 _CT _ G_ GG G_ T_ A _ T T _ T _ C _ C _ HEPCRE30 _1T _ G G_ T_ A _ T T _ T _ C _ C _ C _ C _ C _ C _
HEPCRE35 _CT _ G_ GG G_ T_ A _ T T _ T _ C _ C _ HEPCRE30 _IT _ G G_ T_ A _ T T _ T _ C _ C _ C _ HPCNS1SPL _CT _ G_ G_ G_ G_ A _ T _ T _ T _ T _ C _ C _ C _ HPCNS1SPL _CT _ G_ G_ G_ G_ G_ A _ T _ T _ T _ T _ T _ C _ C _ HPCCPEP2 _ ITT _ G_ G_ C_ G_ G_ A _ T _ T _ T _ T _ C _ C _ C _ HPCCPEP2 _ ITT _ G_ G_ C_ G_ G_ TA _ A _ T _ T _ T _ C _ C _ HPCCPEP4 _ CT _ G_ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ T _ C _ C _ HPCCPEP4 _ CT _ G_ BAGG _ G_ TA _ A _ T _ T _ T _ T _ C _ C _ HEPCRE72A _ C _ G_ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ G_ C _ HEPCRE72B _ CT _ G_ G_ G_ G_ G_ A _ T _ T _ T _ G_ C _ HEPCRE72B _ CT _ G_ G_ G_ G_ G_ A _ T _ T _ T _ G_ C _ HEPCRE7B _ CT _ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ G_ C _ HEPCRE7B _ CT _ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ G_ C _ HEPCRE7B _ CT _ G_ G_ G_ G_ G_ TA _ A _ T _ T _ T _ T _ C _ C _ HEPCNIX1 _ CT _ T_ GG _ T _ T _ T _ T _ T _ T _ C _ C _ HEPCNIX1 _ CT _ T_ GG _ T _ T _ T _ T _ T _ T _ C _ C _ HEPCNIX1 _ CT _ T_ GG _ T _ T _ T _ T _ T _ T _ C _ C _ HEPCNIX1 _ CT _ T_ GG _ T _ T _ T _ T _ T _ T _ C _ C _ HEPCNIX1 _ GT _ T_ GG _ T _ T _ T _ T _ T _ T _

[図9]

HPONS ISPH 018 CAAB C GA_E F T T_C_A_CT_C_
HPOFRJ _CG_CNGCG_GA_CTTT_C_G_CTC
SASSAD _TGCAMBCE_GTC_BTC_C_BCTC_T
HPOFRI A.G. G.CMGTGB_BA_G
\$55630 _08T_CA68T6_CGA_CTTTC_C_6_CTC
HPCFRE _000_C6TG6_GA_CTTC06_CTC_T
HPCFRD _080_CA_8TG8GA_C;TTTCG6CTCT
HPGZ5E1E2 _GAG6C6_GA_C:TTCCTCTC
HPOFRM _CGG_CAAST6_GA_TTTTC_C6_CT
HPCFRF _080_CAA8T8_&A_TTTTTC_C _0_CT
HPCNS ISPB _CQ _Q_TAGB _G_T 6_GA_G T T C_G_G_CT C
HPOFRN _CG_CAG8_A_CGG_GA_C;TT_C_B_CTC
HPOFRA _CG_CAGG_A_CGG_GA_C; TTTTG_G_GTC
HPOHETHIV _CG_CA68A _COB_BACT1CG_CTC
HPCHC.17 _CTT_CC888_TA8TAA_CTACC
HPCMBG ACT_TG_CAMSCC_1_TT_AM_CTA_C_T_C_C
HPCPOLP _TT_TQ_CA606A_G;TTTG_GGG
HPCHCUS ICT_1_GAAGCC_T_G_A_TTC_C_T_C
HPCE1E2 _CTTGABC_A_6TTC_C_T
HEPCRE73A GCT_A_GCTA_A:TT_C
HEPCREAS GC_A_TQ_A_G_B_TA_A'TA_T_C
HPCETVRSK GCC_1_GC_ G_ C_ TA_A TA_T_
HPCENVRSA GCC1_GQCTA_A:TATCi
HPCERVRS1 GCC1_G0CTA_ATATC
HPCENVRSF GCCT_GCCTA_ATA_T_C
HPCENVRSE GCCT_GGCTA_A:TA_T_C
HPCENVRSG GCCT_GGCTA_ATATC
USCONIDAL ACC. T DA
UDOCHIDA OO T DO D
HPCENVRSL GCCI_GG_CCTA_ATA_T_C
HPCENVRSM ACC T GG C C TA A T
HPCENVRSN GCC1_GGCTA_ATAT_C
HPCENVRSN 6CC1_GQ_CCTA_AT

【図10】

【図11】

5' GGJEJKFJGCDFDTLADENGBACBGC 3'

共通配列 5' GG-----GC---T-A---G-AC-GC 3'

5'GGCAGCTGGCACTACAACAG 3'の相補鎖をMR2とした。

MR 2 5' CTGTTGATGTGCCAGCTGCC 3'

オリゴヌクレオチドMR2の位置

図、2.H C V の E 2 / N S 1 領域 (一部) の塩基配列アライメントとオリゴヌクレオチドMR2の設定位置。

【図12】

HCV79->		&2 5¹}	
	TACTOTOT		CCCTOTTOT 3'
HPCPLYPRE		T C	C G
BPCPOLYP	TC	-	
HPCHCJ1	T C	'r c	C G
BPCST90	C		C 6
HPCST77	TC		C 6
HPCCGAA	T_C	T C	C G
HPCNS2PA	T_C	T C	C G
HPCUNKCDS	C_	G_	TC
HCVJK3	T C		
HCVJK5			
BCVJK2	T		
HCVJK4	TC		
HCVE81E2	C	G	
HCVBU1E2	TC		
HPCPVGP	TC	G	T
HPCJCG	TC	T6	
HPCCOENON			C
HPCHUNR	C		C
HPCPOLYPR	TC		T
001214	TC		TA
HPCJTB			
BPCJTA			
HPCJ483	TC		
HPCJ491	f		
HCVCR1B2	TC		⁶
HPCGENANT HCVJK1G	TC		
BCVJK1G	~ - *		
S62220	1	Ť	
BPCCORREN	TC	,	
HPCPOLP	' V	C	A
HPCRCJ7		T C	n
HPCJ86		·	
HPCR1E2	·	c	A A
HPCECJ5		T C	A G

HCVのE2/NS1領域中の比較的共通な塩基配列の変異

5' TEFTGFTFFACFCCBAGFCCLGTBGF 3'

B=A, T, G, C F=T, C

E=A.T L=A.T.C

共通配列

5' T--TG-T--AC-CC-AG-CC-GT-G- 3'

5' TAFTGCTTCACFCCBAGCCC 3' の相補鎖をMR1とした。 5' GGGCTBGGDGTGAAGCADTA 3'

MR1

HCVのE2/NS1領域(一部)の塩基配列アライメントとオリゴヌクレオチドMR1の設定位置

【図13】

ALIONHEN	T OF SEQUENCES:	₩₩ HYR	
	11		
	11	a habit be up pp	
	3 B 6		
		A D D D D D D D D D D D D D D D D D D D	6 5 5 6 5 6 5
	12 14188110 880 14 82118 10 68		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# # # # # # # # # # # # # # # # # # #	6 8 8 8 8 B
HEPCRE71	01 8000000000000	naasscossconon's one as a n	
HEPCRE38	////////////C///C////	actageoffaecdo-asamascacatacashead	0000101
HPCPEPBB	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	G/C///////////////////////////////////	
HPCJ491 HPCJ483	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	U / U / / / / / / / / / / / / / / / / /	///66//**
HPC5TRJ4		G = C =	///56/6.
HEPCRE7 Hepcress		ログノブグイイクファイクスクスクスカメノメリカメノスファファフェスのエンス、	
HEPCRESO		0-C	/// GGR C
571864		3/C/////C//C//C///A////////////////////	
HPCHCJ2 HEPCRE73A		G/C////CG1/////A///A///CC/////CG1///// G/C//////CG1/////A///A///CA///CG1/////	///8G/C··
HEPCRETSE	//////////////C//t/c//	3/6////////////////////////////////////	G G T C
HPCCOENON	//////////////////////////////////	3/6////////////////////////////////////	
HEPCREIN	////////////////////////////////////	3/C///////////////////////////////////	'///g//···
HEPCREIB Hepcrest		3/G///////////////////////////////////	///88/0
HCA1K5		1-C	'//AGCA++
HCUJKIG] < C < < < < < < < < < < < < < < < < <	
HCUJK1 -HEPCRES		1/C///////////////////////////////////	
HEPCRESS		**************************************	// 0 1 6 / /
HEPCRETO Hepcressc	************	^ 6 ^ 6 ^ 7 / 7 E / / / / / / / A / / / / A / / / / C G T / / / / / /	· / B 1 G / / · ·
HEPCRESSF	///C//1//6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
HEPCRE48 Hepcre38)/[///////////////CC/////C//////////c////c////	
HCUJK4	/	*C************************************	//GGCA
HPCPUGP HEPCRE55B		/ C / / / / / / / / T / / / / / / / / /	~ / GGCA * *
HEPCRE55A	///G	//////////////////////////////////////	C / G G A - · ·
HEPCRESS D HPCPRCIA	/	·/ 6 / / / / / / / / / / / C / A / / / G / / / / A T C T 1 C / A G / /	A / G B C - * *
S 1 9 5 9 4 8		//////////T////A///CA///GGGTAG//	// GGC
HEPCRE.48	///0	////////////////////A///BC///FCCBT/G1///	//BBC
HEPCRE76 Hepcre66		/ C - / - / - / - / - / - / - / - / - /	//GG/C++
HEPCRES	//////////////////////	1¢////////////////////////////////////	*****
HEPCRE78 HCUJK5	/////////////////	ノC<<a<<<<<<<<<<a<><bt>>/T>CGT>>>></bt></a<<<<<<<<<<a<>	//66/0
H C U J K 3	///////////////////////////////////	/C////C///C///////////////////////////	*********
MEPCRE41 Hepcre40	////////////////////////////////////	10/////00001//////////////////////////	4 C D D C O
598797	/////////C//F//G	/C////////////////////////////////////	//GGAG
HEPCRE72A	////////////////////////////////////	/C///////////AA///AA///AA////A////CGT////G//	//GGCG++
HEPCRET2B Hepcreb4	////////////////////////////////////	-C	//00000.
HPCGENANT	////////////////////////////////////	/C////////////////////////////////////	A / G G O C + +
\$ 86288 NPCJTA	//// ///// 6///// ////	1C////////////////////////////////////	
HPCJTB		/C////////////////////////////////////	//BGTC++
H E P C R E 5 \$ 1 1 6 2 6 8	////////////////////////////////////	ノじノノノノノノノノノノノノノノノノノノスカノノてノノなGTノノノノノノ	* * B A * C * *
WPCCPEP1	//////0//////////////////////////	^C	//GGAC++
HPCCPEPZ		<u>くじくくくくくくくくくくくくくとじゅんじょくしょくとくしゅゅろっょう</u>	// 6 D A C + +
H P C P O L Y P A H P C H U M R	////////////////////////////////////	*G************************************	/ / G G / F * *
HEPCRE35		·C	//G6/C++
HEPCRESO	111111111111111111111111		

【図14】

HPCJTA	ATAACTE	e de gecerri	TE AG A C'A G	ATRIBETECI	TCTCAACAAC	ACGCGGCCGCCACAA-
	_C_6	TAA	_T6_		C_ f1	
HPCPOLYP	_C_8		T 6		CTT	
HPCBCJI	C		CG	_CCT_CG		
HPCST90	C	TAA			C_T	
HPCS777	C 6	TA		CT CG		
HPCCGAA		TA			C . T	CAAG_TG
HPCMS2PA	_C_G	T_A_	T 6	CT_CG		CAA_G_TG
HPCUBKCDS	_C_GA		G_			G_CGG
	C C		a	- C		A
BCVJK5		[~]	<u>6</u> -	C AG	· c · r · · · · · · · ·	^
HCVJK2				_CAG	C T	
HCA1K4				_CAG	C T	
HCVEG1B2	CG.			_C_C	-v	TT66
HCVEU182	CGT		ia G	-°-`		6_6
HPCPVGP		A	/nu_	_CCG		
HECTCE	g	¹		_C	-^	
BPCCGRNON		^-		-°	- ¼1-u	..
RPCHUMR	GA	^	- -	_C		
	~~~~~	^		-°		
U01214	~ C~G	^	'	-b	- [ [	
BPCJTB		A	⁴ -	·		· ⁻ ^U
HPCJTA						^
HPCJ483						
HPCJ491		<del>^</del> -		<u>^-</u>		TT
HCVCR1R2	c	^		_b	. ·	1
HPCGRNANT		A	⁶ -	-%		
HCVJK16						
HCVJK16		XC		_CA		G
362220		AC AT		_CA		G
HPCCORREN		A1		-%	_CA	· ti
	6		6_	_CA	AT G G	· <u>-</u> -1
		<del>y</del>		CT_C_		tAAÜÜ.
HPCHCJ7		<del>-</del> \	,Ľ_	CT_1	_GAT_G_	AA_ACG_G
HPCJ86	_C_C		;C_	CT_C	_GAP_G_	AA_AC6_6
	_C_C6		·	CT_C_	.AT_GG_	TAG_GG.
HPCHCJ5	_C_CG	&^			AT_GG	TAAG_GG
		Ē	X			