Q1. [40 pts] Bias and Variance of MLE

Let $x_1, x_2, ..., x_n$ be a random sample of size n from a distribution with probability density function on $(0, +\infty)$

$$p(x \mid \theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) \tag{1}$$

with $\theta > 0$. As the density function above applies only to $(0,+\infty)$, this means $x_1,x_2,...,x_n > 0$. In addition, it can be shown that for $x \sim p(x \mid \theta)$ above, $E[x^k] = k! \cdot \theta^k$ for any $k \ge 0$.

(a) [10 pts] Find the maximum likelihood estimator θ_{MLE} of θ .

Answer:

$$L(\theta|x_1,x_2,...,x_n) = \sum [1/\theta \exp(-x_i/\theta)] = \theta^{-1}(-n) \exp(-\sum x_i/\theta)$$

Taking the logarithm of both sides, we have:

$$\log L(\theta|x_1,x_2,...,x_n) = -n \log \theta - \sum x_i/\theta$$

To find the maximum likelihood estimator of θ , we need to find the value of θ that maximizes the above expression. Taking the derivative of the above expression with respect to θ , we get:

$$d/d\theta \log L(\theta|x_1,x_2,...,x_n) = -n/\theta + (\sum x_i)/(\theta^2)$$

Setting the above expression to zero, we get:

$$n/\theta = (\sum xi)/(\theta^2)$$

Solving for θ , we get:

$$\theta$$
MLE = $(\sum xi)/n$

Therefore, the maximum likelihood estimator of θ is θ MLE = $(\sum xi)/n$.

(b) [10 pts] Show that θ_{MLE} is an unbiased estimator.

Answer:

To show that θ MLE is an unbiased estimator of θ , we need to show that the expected value of θ MLE is equal to θ .

We have:

$$E[\theta MLE] = E[(\sum xi)/n]$$

Since the expected value is a linear operator, we can write:

$$E[\theta MLE] = (1/n) E[\sum xi]$$

Now, using the linearity of the expected value operator again, we have:

$$E[\sum xi] = \sum E[xi]$$

From the problem statement, we know that $E[xi] = \theta$, so we have:

$$E[\theta MLE] = (1/n) \Sigma \theta$$

Simplifying the above expression, we get:

$$E[\theta MLE] = \theta$$

Therefore, the maximum likelihood estimator θ MLE is an unbiased estimator of θ .

(c) [10 pts] Find the variance $Var(\theta_{MLE})$ of this estimator.

Answer:

To find the variance of θ MLE, we need to use the formula:

$$Var(\theta MLE) = E[(\theta MLE - E[\theta MLE])^2]$$

We know from the previous part that $E[\theta MLE] = \theta$, so we can simplify the above expression as:

$$Var(\theta MLE) = E[(\theta MLE - \theta)^2]$$

Substituting the expression for θ MLE, we have:

$$Var(\theta MLE) = E[((\sum xi)/n) - \theta]^2$$

Expanding the above expression, we get:

$$Var(\theta MLE) = E[((\sum xi)^2/n^2) - 2(\sum xi)/n \theta + \theta^2]$$

Since the expected value is a linear operator, we can write:

$$Var(\theta MLE) = (1/n^2) E[\sum xi^2] - (2\theta/n) E[\sum xi] + \theta^2$$

Using the fact that $E[xi] = \theta$ and $E[xi^2] = 2\theta^2$, we have:

$$Var(\theta MLE) = (2\theta^2/n) - (2\theta^2/n) + \theta^2$$

Simplifying the above expression, we get:

$$Var(\theta MLE) = \theta^2/n$$

Therefore, the variance of θ MLE is θ^2/n .

(d) [10 pts] Find the mean square error of θ_{MLE} , which is defined as $E[(\theta_{\text{MLE}} - \theta)^2]$.

Hint: Use results of parts (b) and (c) and the identity $Var(z) = E[z^2] - E^2[z]$ for any random variables z.

Answer:

We can use the identity $Var(z) = E[z^2] - E^2[z]$ to find the mean square error of θMLE :

$$E[(\theta MLE - \theta)^2] = Var(\theta MLE) + [E[\theta MLE] - \theta]^2$$

From part (c), we know that $Var(\theta MLE) = \theta^2/n$.

From part (b), we know that $E[\theta MLE] = \theta$.

Substituting the above values in the equation, we have:

$$E[(\theta MLE - \theta)^2] = \theta^2/n + [\theta - \theta]^2$$

Simplifying the above expression, we get:

$$E[(\theta MLE - \theta)^2] = \theta^2/n$$

Therefore, the mean square error of θ MLE is θ^2/n .

Q2. [40 pts] MLE on Bayesian Net

Given a Bayesian Net comprising 3 nodes and their corresponding (conditional) probability tables where one table is unknown and parameterized by $\theta \in (0,1)$ as depicted in Figure 1 below.

Figure 1: Bayesian Network

(a) [20 pts] Derive P(A = T, C = T) and P(A = F, C = T) as functions of θ .

Answer:

P(A=T) = 0.8 and P(B=T) = 0.5 are given.

For P(A=T,C=T), we need to consider the cases where A=T and C=T, given that B can be either T or F.

Using the conditional probability table for C, we have:

$$P(C=T \mid A=T, B=T) = \theta$$

 $P(C=T \mid A=T, B=F) = \theta(1-\theta)$

Therefore, we can compute P(A=T,C=T) as follows:

$$P(A=T,C=T) = P(C=T \mid A=T, B=T) \cdot P(B=T) \cdot P(A=T) + P(C=T \mid A=T, B=F) \cdot P(B=F) \cdot P(A=T)$$

$$= \theta \cdot 0.5 \cdot 0.8 + \theta(1-\theta) \cdot 0.5 \cdot 0.8$$

$$= 0.4\theta + 0.4\theta(1-\theta)$$

$$= 0.4\theta + 0.4\theta - 0.4\theta^2$$

$$= 0.8\theta - 0.4\theta^2$$

For P(A=F,C=T), we need to consider the cases where A=F and C=T, given that B can be either T or F.

Using the conditional probability table for C, we have:

$$P(C=T \mid A=F, B=T) = (1-\theta)^2$$

$$P(C=T \mid A=F, B=F) = 1-\theta$$

Therefore, we can compute P(A=F,C=T) as follows:

$$P(A=F,C=T) = P(C=T \mid A=F, B=T) \cdot P(B=T) \cdot P(A=F) + P(C=T \mid A=F, B=F) \cdot P(B=F) \cdot P(A=F)$$

= $(1-\theta)^2 \cdot 0.5 \cdot 0.2 + (1-\theta) \cdot 0.5 \cdot 0.2$

$$= 0.1 - 0.3\theta + 0.3\theta^2$$

(b) [20 pts] Suppose we are given a set $D = (D_1, D_2)$ of two independent snapshots of (A, C) as follow:

1.
$$D_1 = (A = T, C = T)$$

2.
$$D_2 = (A = F, C = T)$$

Derive $P(D \mid \theta)$ using the result of part (a) and find $\theta_{MLE} = \operatorname{argmax} P(D \mid \theta)$.

Answer:

$$P(D|\theta) = P(D1|\theta) \cdot P(D2|\theta)$$

$$= (0.8\theta - 0.4\theta^2) \cdot (0.1 - 0.3\theta + 0.3\theta^2)$$

To find θ MLE, we need to maximize the likelihood function $P(D|\theta)$ with respect to θ :

$$\theta$$
MLE = argmax P(D| θ)

Taking the derivative of $P(D|\theta)$ with respect to θ , we get:

$$d/d\theta P(D|\theta) = 0.24\theta^3 - 0.38\theta^2 + 0.14\theta - 0.04$$

Setting this derivative to zero to find the maximum, we get:

$$0.240^{3} - 0.380^{2} + 0.140 - 0.04 = 0$$

Solving this equation for θ , we get:

 θ MLE ≈ 0.728

Q3. [20 pts] MLE on Markov Chain

Consider the first-order Markov chain in Fig. 2 below. At each step i, the (random) state Z_i of the chain at step i can take any values in $\{0,1,2\}$. The probability of moving to $Z_{i+1} = v$ from $Z_i = u$ is detailed in the transition matrix in Fig. 2, which is parameterized by a parameter $\theta \in (0,1)$.

Transition Matrix

$$P(Z_{i+1} = v \mid Z_i = u) = T_{uv}$$

where $T_{uv} =$ the value at row u and column v of T

Figure 2: First-Order Markov Chain

(a) [10 pts] Given $P(Z_0 = 0) = 1/4$ and $P(Z_0 = 1) = 3/4$, compute $P(Z_2 = 0)$ and $P(Z_2 = 1)$ as a function of θ .

Hint: Use the filtering (without observation) formulation described in the Recitation of Week 11.

Answer:

$$\alpha 1(u) = P(Z1 = u) = T0u * P(Z0 = 0) + T1u * P(Z0 = 1)$$

 $\alpha i(u) = \Sigma v(Tvu * \alpha i-1(v)), i > 1$

Using the above formula, we can compute $\alpha 1(0)$ and $\alpha 1(1)$ as follows:

$$\alpha 1(0) = T00 * P(Z0 = 0) + T10 * P(Z0 = 1) = \theta * 1/4 + (1 - \theta) * 3/4 = (3 - 2\theta)/4$$

$$\alpha 1(1) = T01 * P(Z0 = 0) + T11 * P(Z0 = 1) = (1 - \theta) * 1/4 + \theta * 3/4 = (2\theta + 1)/4$$

Next, we can compute $\alpha 2(0)$ and $\alpha 2(1)$ using the recursive formula:

$$\alpha 2(0) = T00 * \alpha 1(0) + T10 * \alpha 1(1) = \theta * (3 - 2\theta)/4 + (1 - \theta) * (2\theta + 1)/4 = (1 + 4\theta - 4\theta^2)/4$$

$$\alpha 2(1) = T01 * \alpha 1(0) + T11 * \alpha 1(1) = (1 - \theta) * (3 - 2\theta)/4 + \theta * (2\theta + 1)/4 = (4\theta^2 - 4\theta + 3)/4$$

Therefore, we have:

$$P(Z2 = 0) = \alpha 2(0) = (1 + 4\theta - 4\theta^2)/4$$

$$P(Z2 = 1) = \alpha 2(1) = (40^2 - 40 + 3)/4$$

(b) [10 pts] Suppose we are given 3 independent observations of Z_2 where two of them have value 1 while one of them has value 0. Find the maximum likelihood estimator θ_{MLE} of θ .

Hint: Find θ such that $P(Z_2 = 0) \cdot P(Z_2 = 1)^2$ is maximized.

Answer:

The likelihood function is given by:

$$L(\theta) = P(Z2 = 0) \cdot P(Z2 = 1)2$$

Now, let's find the maximum likelihood estimator of θ by maximizing this likelihood function.

$$P(Z2 = 0) = 1 - \theta$$

$$P(Z2 = 1) = \theta$$

Substituting these values in the likelihood function, we get:

$$L(\theta) = (1 - \theta) \cdot \theta 2$$

Taking the derivative of $L(\theta)$ with respect to θ , we get:

$$d/d\theta L(\theta) = 2\theta 2 - 3\theta 3$$

Setting this derivative to zero to find the maximum, we get:

$$2\theta 2 - 3\theta 3 = 0$$

$$2\theta 2 = 3\theta 3$$

$$\theta = 2/3$$

Therefore, the maximum likelihood estimator of θ is θ MLE = 2/3.