continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Langley; Lan-	search	past perfor-	algorithm	hand-crafted and learned rules	offline and	dynamic
[Carbonell et al.]	planning	problem domain features, search	control rules	explanation-based rule construction	online	dynamic
[Gratch and DeJong]	planning	problem fea- tures, search	control rules	probabilistic rule construction	online	dynamic
[Smith and Setliff]	software design	features of abstract representation	algorithms and data structures	simulated annealing	offline	static
[Aha]	Machine Learning	problem fea-	algorithm	learned rules	offline	static
[Brodley]	Machine Learning	problem and algorithm features	algorithm	hand-crafted rules	offline	static
[Kamel et al.]	differential equations	past performance, problem	algorithm	hand-crafted rules	offline	static
[Minton; Minton; Minton]	constraints	runtime per- formance	algorithm	hand-crafted and learned rules	offline	dynamic
[Cahill]	software design	problem fea- tures	algorithms and data structures	frame-based knowledge base	offline	static
[Tsang et al.]	constraints	problem features	1	1	1	static
[Brewer]	software design	runtime per- formance	algorithms, data structures and their parameters	statistical model	offline	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Weerawarana et al.; Joshi et al.]	differential equations	problem fea- tures	runtime perfor- mance	Bayesian belief propagation, neural nets	offline	static
[Borrett et al.]	constraints	search statis- tics	switch algorithm?	hand-crafted rules	online	static, static
[Allen and Minton]	SAT, constraints	probing	runtime perfor-	hand-crafted rules	online	static
[Sakkout et al.]	constraints	search statis- tics	switch algorithm?	hand-crafted rules	online	static
[Huberman et al.]	graph colour-	past perfor- mance	resource allocation	statistical model	offline	static
[Gomes and Selman; Gomes and Solman]	constraints	problem size and past per- formance	algorithm	statistical model	offline	static
[Cook and Varnell]	parallel search	probing	set of search strategies	decision trees, Bayesian classifier, nearest neighbour,	online	static
$[{ m Fink}; \ { m Fink}]$	planning	past perfor- mance	resource alloca-	statistical model, regression	offline	static
[Lobjois and Lemaître]	branch and	probing	runtime perfor-	hand-crafted rules	online	static
[Caseau et al.]	vehicle routing problem	runtime per- formance	algorithm	genetic algorithms	offline	static
[Howe et al.]	planning	problem fea-	resource alloca-	linear regression	offline	static
[Terashima- Marín et al.]	scheduling	problem and search features	algorithm	genetic algorithms	offline	dynamic

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Wilson et al.]	software de- sign	problem fea- tures	data structures	nearest neighbour	offline	static
[Beck and Fox]	job shop scheduling	problem fea- ture changes during search	algorithm scheduling policy	hand-crafted rules	online	static
[Brazdil and Soares]	classification	past performance	ranking	distribution model	offline	static
[Lagoudakis and Littman]	order selection, sorting	problem fea- tures	remaining cost for each sub-problem	MDP	online	static
[Sillito]	constraints	probing	cost of solving problem	statistical model	offline	static
[Pfahringer et al.]	classification	problem features, probing	algorithm	9 different classifiers	offline	static
[Fukunaga]	TSP	past perfor- mance	resource allocation	performance simulation for different allocations	offline	static
[Gomes and Selman]	constraints, mixed integer programming	past perfor- mance	algorithm	statistical model	offline	dynamic
[Cowling et al.]	scheduling	problem features	algorithm	hand-crafted rules, weights	online	static
[Epstein and Freuder; Epstein et al.; Epstein et al.; Epstein et al.; Epstein and Petrovic]	constraints	variable characteristics	algorithm	weights, hand-crafted rules	offline and online	dynamic
[Lagoudakis and Littman]	DPLL branch- ing rules	problem fea- tures	remaining cost for each sub-problem	MDP	online	static
[Nareyek]	optimisation	search statis- tics	expected utility of algorithm	reinforcement learning	offline and online	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Horvitz et al.]	constraints	problem and problem generator fea- tures, search statistics	runtime performance, restart parameters	Bayesian model	offline and online	static
[Borrett and Tsang]	constraints	problem features, search statistics	redundant constraints to add	hand-crafted rules	offline	1
[Little et al.]	logic puzzles	problem graph fea- tures	problem model transformations for runtime per- formance	nearest neighbour	offline	1
[Petrovic and Qu]	scheduling	problem fea- tures	algorithm	case-based reasoning	offline	static
[Leyton- Brown et al.]	winner deter- mination prob- lem	problem fea- tures	problem hardness	several forms of regression	offline	static
[Fukunaga; Fukunaga]	SAT	variable characteristics	algorithm	genetic algorithms	offline	dynamic
[Yu et al.; Yu et al.; Yu et al.; Yu and Banchwerger]	parallel reduction algorithms	problem fea- tures	algorithm	decision trees, general linear regression	offline and online	static
[Vrakas et al.]	planning	problem fea- tures	parameters	classification association rules	offline	dynamic
[Gno]	sorting, probabilistic inference	problem features	algorithm	decision tree, naïve Bayes, Bayesian net- work, meta-learning	offline	static
[Watson]	job shop scheduling	problem features, search statistics	local search algorithm	statistical model	offline and online	static
[Brazdil et al.]	Machine Learning	problem features	ranking	nearest neighbour	offline	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Gebruers et al.]	bid evaluation problem	problem and problem lem graph features	solution method	nearest neighbour	offline	static
[Guerri and Milano]	bid evaluation problem	problem and prob- lem graph features	solution method, algorithm	decision trees	offline	static
[Beck and Freuder]	scheduling	probing	algorithm	hand-crafted rules	offline	static
[Nudelman et al.; Xu et al.; Xu et al.]	SAT	problem features, probing	runtime performance	ridge regression, lasso regression, SVMs, Gaussian processes	offline	static
[Carchrae and Beck; Carchrae and Beck]		probing, search statis- tics	length of exploration phase, switch algorithm?	Bayesian classifier, reinforcement learning	offline and online	static
[Soares et al.]	Machine Learning	problem features	ranking of SVM kernel widths	nearest neighbour	offline	static
[Guo and Hsu]	most probable explanation problem	problem features	algorithm	decision trees, naïve Bayes rules, Bayes net- works, meta-learning techniques	offline	static
[Gagliolo et al.]	search problems	past perfor- mance	resource allocation	linear model	online	static
[Deminel et al.]	linear algebra	problem features	algorithm	multivariate Bayesian decision rule	offline	static
[Gebruers et al.]	constraints	problem features	problem model, solution strategy	nearest neighbour, decision trees, statistical model	offline	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Petrik]	SAT	past perfor- mance	resource allocation	analytic model, MDP	offline and online	static
[Cicirello and Smith]	scheduling	past perfor- mance	algorithm	reinforcement learning	online	static
[Gagliolo and Schmidhuber]	1	past perfor- mance	resource allocation	neural nets	online	static
[Armstrong et al.]	procedure calls	runtime per- formance	switch algorithm?	reinforcement learning	online	static
[Gagliolo and Schmidhuber]	SAT, auction winner determination problem	past perfor- mance	resource allocation	reinforcement learning	online	static
[Roberts and Howe]	planning	problem fea- tures	resource allocation	decision trees	offline	static
[Hough and Williams]	optimisation	problem, algorithm and environment features	algorithm	ensembles of decision trees, SVMs	offline	static
[Bhowmick et al.]	linear systems	problem fea- tures	algorithm	boosting, alternating decision trees	offline	static
[Hutter et al.]	stochastic local search	problem features	runtime performance		offline	dynamic
[Sayag et al.]	SAT	past perfor- mance	resource alloca-	static model, probabilistic model	offline	static
[Xu et al.]	$_{ m SAT}$	problem fea- tures	satisfiability and runtime performance	sparse multinomial logistic regression, ridge	offline	static
[Pulina and Tacchella; Pulina and Tacchella]	QBF	problem features	resource allocation	decision trees, decision rules, logistic regres- sion, nearest neighbour	offline and online	static

citation	domain	features	predict what	predict how	predict when	portfolio
[Samulowitz and Memise-vic]	QBF	problem fea- tures	algorithm, confidence values	multinomial logistic regression	offline and online	static
$[Wu]$ and van B_{Polk}	scheduling	1	portfolio	case-based reasoning	offline	dynamic
Streeter	planning	past perfor-	resource alloca-	statistical model	offline and	static
[Wang and Tropper]	simulation al-	past perfor-	control parameter	reinforcement learning	online	static
[Roberts and Howe; Roberts	planning	problem fea- tures	runtime, probability of success	32 different algorithms	offline	static
[Streeter and Smith]	SAT, integer programming,	problem fea- tures	resource allocation	statistical model	offline and online	static
[O'Mahony et al.; Bridge et al.]	constraints	problem features, probing	resource allocation	nearest neighbour	offline	static
[Kuefler and Chen]	linear systems	problem features, search	algorithm	reinforcement learning	online	static
[Wei et al.]	SAT	search statis-	algorithm	hand-crafted rules	online	static
[Gagliolo and Schmidhuber]	SAT	past perfor-	resource alloca-	reinforcement learning	online	static
[Smith-Miles]	Quadratic Assignment Problem	problem features,	algorithm, run- time performance	neural networks and self-organising maps	offline	static
[Stergiou; Stergiou; Pa- parrizou and Stergiou]	constraints	search statistics	propagation method	clustering	online	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Nikolić et al.]	SAT	problem features	search strategy	nearest neighbour	offline	static
[Stamatatos and Stergiou]	constraints	probing	propagation method	clustering	offline	static
[Arbelaez et al.; Arbelaez et al.]	constraints	problem features, search statistics	search strategy	$_{ m NN}$	online	static
[Haim and Walsh]	SAT	problem features	restart strategy and satisfiability	ridge regression, logistic regression	offline	static
[Bhowmick et al.]	linear systems	problem features	algorithm	nearest-neighbour, alternating decision trees, naïve Bayes, SVM	offline	static
[Gerevini et al.]	planning	past perfor- mance	macro actions, resource allocation	performance simulations for different allocations	offline	static
[Xu et al.]	constraints	problem features	algorithm	reinforcement learning	online	static
[Bougeret et al.]	SAT	past perfor- mance	resource allocation	static model	offline	static
[Leite et al.]	Machine Learning	past per- formance,	ranking of classifi- cation algorithms	statistical model	offline and online	static
[Silverthorn and Miikku-	SAT	past performance	runtime perfor- mance	latent class models	offline	static
[Stern et al.]	QBF, combinatorial	problem and algorithm features	algorithm	Bayesian model	offline and online	static
[Garrido and Riff]	dynamic vehicle routing problem	runtime per- formance	combination of low-level heuris- tics	genetic algorithms	online	dynamic

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Domshlak et al.]	planning	state vari- ables	algorithm	naïve Bayes classifier	online	static
[Kadioglu et al.]	SAT, mixed integer programming, set covering	problem fea- tures	algorithm	clustering	offline	dynamic
[Gent et al.]	constraints	problem features, probing	$\operatorname{algorithm}$	decision trees	offline	static
[Gent et al.]	software design	problem features	implementation	19 different classifiers	offline	static
[Kotthoff et al.]	constraints	problem features, probing	algorithm	ensembles of classifiers	offline	static
[Ewald et al.]	simulation algorithms	past performance	portfolio	genetic algorithms	offline	dynamic
[Elsayed and Michel; El- sayed and Michel]	constraints	problem fea- tures	search strategy	hand-crafted rules	online	dynamic
[Valenzano et al.]	search problems	1	algorithm	round-robin	online	static
$[ext{Leite}] ext{ and } ext{Brazdil} $	classification	past performance	ranking	statistical model	offline	static
[Aiguzhinov et al.]	classification	past perfor- mance	ranking	naïve Bayes	offline	static
[Kanda et al.; Kanda et al.]	TSP	problem fea- tures	algorithms	nearest neighbour, decision tree, SVM, naïve Bayes	offline	static
[Tolpin and Shimony]	constraints	search statis- tics	algorithm	hand-crafted rules	online	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Malitsky et al.]	SAT	problem fea-	algorithm	nearest neighbour	offline	static
[Kadioglu et al.]	SAT	problem fea- tures	resource allocation	nearest neighbour	offline	static
[Kroer and Malitsky]	SAT, constraints	problem fea-	algorithm	clustering	offline	dynamic
[Kotthoff et al Kot-	SAT, QBF,	problem features	algorithm, run-	31 different Machine	offline	static
thoff et al.] [Gagliolo and	SAT. OBF.	probing perfor-	ranking alloca-	reinforcement learning	online	static
Schmidhuber; Gagliolo and Schmidhuberl	air.	mance		0		
[Gebser et al.]	Answer Set Programming	problem features, probing	runtime perfor- mance	$_{ m NNM}$	offline	static
[Xu et al.]	MIP	problem features, probing	algorithm	random forests	offline	dynamic
[Maturana et al.]	evolutionary algorithms	past perfor- mance	algorithm	statistical models	online	static
[Helmert et al.]	planning	past perfor- mance	resource allocation	statistical model	offline	static
[Kiziltan et al.]	constraints	problem features	resource allocation	8 classification algorithms, ridge regression	offline	static
[Smith-Miles and Hemert]	TSP	problem fea- tures	algorithm	self-organizing map, decision tree, neural	offline	static
[Kotthoff]	SAT, QBF, constraints	problem features, probing	algorithm	5 regression algorithms, 2 classification algorithms	offline	static

continued on next page

citation	domain	features	predict what	predict how	predict when	portfolio
[Yun and Ep-stein]	constraints	problem features	portfolio	case-based reasoning, hand-crafted rules	offline	dynamic
[Hurley and OSullivan]	SAT	problem features	ranking	case-based reasoning with voting	offline	static
[Shukla et' al.]	inventory rout- ing problem	past performance	portfolio	statistical model	offline	static
[Malitsky et al.]	SAT	past perfor- mance	resource allocation	nearest neighbour	offline and online	static
[Bischl et al.]	optimisation problems	problem features	algorithm	$_{ m NVM}$	offline	static
[Veerapen et al.]	Quadratic Assignment Problem and TSP	past perfor- mance	algorithm	statistical model	online	static
[Valenzano et al.]	planning	past perfor- mance	resource alloca- tion	statistical model	offline and online	static
[Hutter et al.]	SAT, MIP, TSP	problem fea-	algorithm performance	11 algorithms	offline	static
[Kanda et al.]	TSP	problem fea-	ranking	neural networks	offline	static
[Kadioglu et al.]	MIP	problem features	heuristic	clustering	online	static
[Sabharwal et al.]	SAT	problem fea- tures	resource allocation and switch algorithm?	nearest neighbour and decision tree classifica- tion	offline and online	static
[Abell et al.]	black-box opti- misation	problem fea- tures	algorithm	clustering	offline	static
[Hutter et al.]	SAT, MIP, TSP	problem features and algorithm parameters	algorithm performance	random forests, linear regression, neural net- works, Gaussian pro- cesses, regression trees	offline	static

citation	domain	features	predict what	predict how	predict when	portfolio
[Musliu and	graph coloring	problem fea-	algorithm	six classifiers	offline	static
Schwengerer] [Amadini et al]	constraints	tures problem fea-	${ m algorithm}$	range of different approaches	offline	static
[Alhossaini	planning	problem fea-	model	SVM	offline	static
Seijen et al.]	reinforcement	past perfor-	abstraction	MDP	online	static
[Malitsky	SAT	problem fea-	${ m algorithm}$	clustering	online	static
et al.] [Mehta et al.]	constraints	problem fea-	${ m algorithm}$	classification, regression and clustering	offline	static
[Malitsky	SAT	problem fea-	algorithm	clustering	offline	static
et al.] [Rayner et al.]	combinatorial	probing	subset of algo-	optimisation problem	offline	static
[Sun and	machine learn-	past perfor-	ranking	pairwise rules and trees	offline	static
r lanringer] [Collautti et al.]	SAT	mance problem fea- tures. past	algorithm	clustering	offline	static
[Amadini	constraints	σ.	algorithm, re-	5 different classifiers	offline and	static
et al.] [Cauwet et al.]	optimisation	tures past perfor-	source allocation resource alloca-	statistical model	online online	static
[Hoos et al.]	ASP, SAT,	mance perfor-	resource alloca-	answer set program-	offline	static
[Hurley et al.]	CSP	problem fea-	problem encoding,	classification, regres-	offline	static
$[{\rm Kotthoff}]$	CSP, SAT, QBF	problem fea- tures	argorromu ranking	sion, classification, regression, meta-learning	offline	static

Table I: Summary of the Algorithm Selection literature.

REFERENCES

- ABELL, T., MALITSKY, Y., AND TIERNEY, K. 2013. Features for exploiting black-box optimization problem structure. In LION 7.
- Aha, D. W. 1992. Generalizing from case studies: A case study. In *Proceedings of the 9th International Workshop on Machine Learning*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1–10.
- AIGUZHINOV, A., SOARES, C., AND SERRA, A. P. 2010. A similarity-based adaptation of naive bayes for label ranking: Application to the metalearning problem of algorithm recommendation. In 13th International conference on Discovery Science. Springer-Verlag, 16–26.
- Alhossaini, M. and Beck, J. C. 2013. Instance-specific remodelling of planning domains by adding macros and removing operators. In *Symposium on Abstraction, Reformulation, and Approximation*.
- Allen, J. A. and Minton, S. 1996. Selecting the right heuristic algorithm: Runtime performance predictors. In *The 11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence*. Springer-Verlag, 41–53.
- AMADINI, R., GABBRIELLI, M., AND MAURO, J. 2013. An empirical evaluation of portfolios approaches for solving CSPs. In *Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems*. Lecture Notes in Computer Science Series, vol. 7874. Springer Berlin Heidelberg, 316–324.
- AMADINI, R., GABBRIELLI, M., AND MAURO, J. 2014. Portfolio approaches for constraint optimization problems. In *LION 8*.
- Arbelaez, A., Hamadi, Y., and Sebag, M. 2009. Online heuristic selection in constraint programming. In Symposium on Combinatorial Search.
- Arbelaez, A., Hamadi, Y., and Sebag, M. 2010. Continuous search in constraint programming. In 22nd IEEE International Conference on Tools with Artificial Intelligence. 53–60.
- ARMSTRONG, W., CHRISTEN, P., McCreath, E., and Rendell, A. P. 2006. Dynamic algorithm selection using reinforcement learning. In *International Workshop on Integrating AI and Data Mining*. 18–25.
- Beck, J. C. and Fox, M. S. 2000. Dynamic problem structure analysis as a basis for constraint-directed scheduling heuristics. *Artificial Intelligence* 117, 1, 31–81.
- Beck, J. C. and Freuder, E. C. 2004. Simple rules for low-knowledge algorithm selection. In *CPAIOR*. Springer, 50–64.
- BHOWMICK, S., EIJKHOUT, V., FREUND, Y., FUENTES, E., AND KEYES, D. 2006. Application of machine learning in selecting sparse linear solvers. Tech. rep., Columbia University.
- Bhowmick, S., Toth, B., and Raghavan, P. 2009. Towards Low-Cost, High-Accuracy classifiers for linear solver selection. In *Proceedings of the 9th International Conference on Computational Science*. ICCS '09. Springer-Verlag, Berlin, Heidelberg, 463–472.
- BISCHL, B., MERSMANN, O., TRAUTMANN, H., AND PREUSS, M. 2012. Algorithm selection based on exploratory landscape analysis and Cost-Sensitive learning. In 14th International Conference on Genetic and Evolutionary Computation. GECCO '12. ACM, New York, NY, USA, 313–320.
- BORRETT, J. E. AND TSANG, E. P. K. 2001. A context for constraint satisfaction problem formulation selection. *Constraints* 6, 4, 299–327.
- BORRETT, J. E., TSANG, E. P. K., AND WALSH, N. R. 1996. Adaptive constraint satisfaction: The quickest first principle. In *ECAI*. 160–164.
- BOUGERET, M., DUTOT, P., GOLDMAN, A., NGOKO, Y., AND TRYSTRAM, D. 2009. Combining multiple heuristics on discrete resources. In *IEEE International Symposium on Parallel & Distributed Processing*. IEEE Computer Society, Washington, DC, USA, 1–8.
- Brazdil, P. and Soares, C. 2000. A comparison of ranking methods for classification algorithm selection. In *Proceedings of the 11th European Conference on Machine Learning*. ECML '00. Springer-Verlag, London, UK, 63–74.
- Brazdil, P. B., Soares, C., and Da Costa, J. P. 2003. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. *Mach. Learn.* 50, 3, 251–277.
- Brewer, E. A. 1995. High-level optimization via automated statistical modeling. In *Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming*. PPOPP '95. ACM, New York, NY, USA, 80–91.
- BRIDGE, D., O'MAHONY, E., AND O'SULLIVAN, B. 2011. Case-Based reasoning for autonomous constraint solving. In Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds. Springer Berlin Heidelberg, 73–95.
- Brodley, C. E. 1993. Addressing the selective superiority problem: Automatic Algorithm/Model class selection. In ICML. 17–24.

- CAHILL, E. 1994. Knowledge-based algorithm construction for real-world engineering PDEs. Mathematics and Computers in Simulation 36, 4-6, 389–400.
- Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., and Veloso, M. 1991. PRODIGY: an integrated architecture for planning and learning. SIGART Bull. 2, 51–55.
- CARCHRAE, T. AND BECK, J. C. 2004. Low-Knowledge algorithm control. In AAAI. 49-54.
- CARCHRAE, T. AND BECK, J. C. 2005. Applying machine learning to Low-Knowledge control of optimization algorithms. *Computational Intelligence 21*, 4, 372–387.
- Caseau, Y., Laburthe, F., and Silverstein, G. 1999. A Meta-Heuristic factory for vehicle routing problems. In *Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming*. Springer-Verlag, London, UK, 144–158.
- CAUWET, M.-L., LIU, J., AND TEYTAUD, O. 2014. Algorithm portfolios for noisy optimization: Compare solvers early. In *LION 8*.
- CICIRELLO, V. A. AND SMITH, S. F. 2005. The max k-armed bandit: A new model of exploration applied to search heuristic selection. In *Proceedings of the 20th National Conference on Artificial Intelligence*. AAAI Press, 1355–1361.
- COLLAUTTI, M., MALITSKY, Y., MEHTA, D., AND O'SULLIVAN, B. 2013. SNNAP: solver-based nearest neighbor for algorithm portfolios. In *ECML/PKDD*. 435–450.
- COOK, D. J. AND VARNELL, R. C. 1997. Maximizing the benefits of parallel search using machine learning. In *Proceedings of the 14th National Conference on Artificial Intelligence*. AAAI Press, 559–564.
- COWLING, P., KENDALL, G., AND SOUBEIGA, E. 2001. A Parameter-Free hyperheuristic for scheduling a sales summit. In *Proceedings of the 4th Metaheuristic International Conference*. 127–131.
- Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley, R. C., and Yelick, K. 2005. Self-Adapting linear algebra algorithms and software. *Proceedings of the IEEE 93*, 2, 293–312.
- Domshlak, C., Karpas, E., and Markovitch, S. 2010. To max or not to max: Online learning for speeding up optimal planning. In AAAI.
- ELSAYED, S. A. M. AND MICHEL, L. 2010. Synthesis of search algorithms from high-level CP models. In Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation.
- ELSAYED, S. A. M. AND MICHEL, L. 2011. Synthesis of search algorithms from high-level CP models. In 17th International Conference on Principles and Practice of Constraint Programming. Springer-Verlag, Berlin, Heidelberg, 256–270.
- Epstein, S. and Petrovic, S. 2011. Learning a mixture of search heuristics. In *Autonomous Search*, Y. Hamadi, E. Monfroy, and F. Saubion, Eds. Springer Berlin Heidelberg, 97–127.
- Epstein, S. L. and Freuder, E. C. 2001. Collaborative learning for constraint solving. In *Proceedings of the* 7th International Conference on Principles and Practice of Constraint Programming. Springer-Verlag, London, UK, 46–60.
- Epstein, S. L., Freuder, E. C., Wallace, R., Morozov, A., and Samuels, B. 2002. The adaptive constraint engine. In *Principles and Practice of Constraint Programming*. Springer, 525–540.
- Epstein, S. L., Wallace, R. J., Freuder, E. C., and Xingjian, L. 2005. Learning propagation policies. In Second International Workshop on Constraint Propagation and Implementation.
- EWALD, R., SCHULZ, R., AND UHRMACHER, A. M. 2010. Selecting simulation algorithm portfolios by genetic algorithms. In *IEEE Workshop on Principles of Advanced and Distributed Simulation*. PADS '10. IEEE Computer Society, Washington, DC, USA, 1–9.
- FINK, E. 1997. Statistical selection among Problem-Solving methods. Tech. Rep. CMU-CS-97-101, Carnegie Mellon University.
- FINK, E. 1998. How to solve it automatically: Selection among Problem-Solving methods. In *Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems*. AAAI Press, 128–136.
- Fukunaga, A. S. 2000. Genetic algorithm portfolios. In *IEEE Congress on Evolutionary Computation*. Vol. 2. 1304–1311.
- Fukunaga, A. S. 2002. Automated discovery of composite SAT variable-selection heuristics. In 18th National Conference on Artificial Intelligence. American Association for Artificial Intelligence, Menlo Park, CA, USA, 641–648.
- FUKUNAGA, A. S. 2008. Automated discovery of local search heuristics for satisfiability testing. *Evol. Comput.* 16, 31–61.
- Gagliolo, M. and Schmidhuber, J. 2005. A neural network model for Inter-Problem adaptive online time allocation. In 15th International Conference on Artificial Neural Networks: Formal Models and Their Applications. Springer, 7–12.

- GAGLIOLO, M. AND SCHMIDHUBER, J. 2006. Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 3-4, 295–328.
- Gagliolo, M. and Schmidhuber, J. 2008. Towards distributed algorithm portfolios. In *International Symposium on Distributed Computing and Artificial Intelligence, Advances in Soft Computing*. Springer.
- Gagliolo, M. and Schmidhuber, J. 2010. Algorithm selection as a bandit problem with unbounded losses. In *Learning and Intelligent Optimization*. Lecture Notes in Computer Science Series, vol. 6073. Springer Berlin Heidelberg, 82–96.
- Gagliolo, M. and Schmidhuber, J. 2011. Algorithm portfolio selection as a bandit problem with unbounded losses. *Annals of Mathematics and Artificial Intelligence 61*, 2, 49–86.
- Gagliolo, M., Zhumatiy, V., and Schmidhuber, J. 2004. Adaptive online time allocation to search algorithms. In *ECML*. Springer, 134–143.
- GARRIDO, P. AND RIFF, M. 2010. DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. *Journal of Heuristics* 16, 795–834.
- Gebruers, C., Guerri, A., Hnich, B., and Milano, M. 2004. Making choices using structure at the instance level within a case based reasoning framework. In *CPAIOR*. 380–386.
- Gebruers, C., Hnich, B., Bridge, D., and Freuder, E. 2005. Using CBR to select solution strategies in constraint programming. In *Proc. of ICCBR-05*. 222–236.
- Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., and Ziller, S. 2011. A portfolio solver for answer set programming: preliminary report. In 11th International Conference on Logic Programming and Nonmonotonic Reasoning. Springer-Verlag, Berlin, Heidelberg, 352–357.
- Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., and Petrie, K. 2010a. Learning when to use lazy learning in constraint solving. In 19th European Conference on Artificial Intelligence. 873–878.
- Gent, I., Kotthoff, L., Miguel, I., and Nightingale, P. 2010b. Machine learning for constraint solver design a case study for the all different constraint. In 3rd Workshop on Techniques for implementing Constraint Programming Systems (TRICS). 13–25.
- Gerevini, A. E., Saetti, A., and Vallati, M. 2009. An automatically configurable portfolio-based planner with macro-actions: PbP. In *Proceedings of the 19th International Conference on Automated Planning and Scheduling*. 350–353.
- Gomes, C. P. and Selman, B. 1997a. Algorithm portfolio design: Theory vs. practice. In UAI. 190-197.
- Gomes, C. P. and Selman, B. 1997b. Practical aspects of algorithm portfolio design. In *Proc. of 3rd ILOG International Users Meeting*.
- Gomes, C. P. and Selman, B. 2001. Algorithm portfolios. Artificial Intelligence 126, 1-2, 43-62.
- Gratch, J. and DeJong, G. 1992. COMPOSER: a probabilistic solution to the utility problem in Speed-Up learning. In AAAI. 235–240.
- GUERRI, A. AND MILANO, M. 2004. Learning techniques for automatic algorithm portfolio selection. In ECAI. 475–479.
- Guo, H. 2003. Algorithm selection for sorting and probabilistic inference: A machine Learning-Based approach. Ph.D. thesis, Kansas State University.
- Guo, H. And Hsu, W. H. 2004. A Learning-Based algorithm selection meta-reasoner for the Real-Time MPE problem. In Australian Conference on Artificial Intelligence. 307–318.
- HAIM, S. AND WALSH, T. 2009. Restart strategy selection using machine learning techniques. In Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing. Springer-Verlag, Berlin, Heidelberg, 312–325.
- Helmert, M., Röger, G., and Karpas, E. 2011. Fast downward stone soup: A baseline for building planner portfolios. In *ICAPS-2011 Workshop on Planning and Learning (PAL)*. 28–35.
- Hoos, H. H., Kaminski, R., Lindauer, M., and Schaub, T. 2014. aspeed: Solver scheduling via answer set programming. Theory and Practice of Logic Programming FirstView, 1–26.
- Horvitz, E., Ruan, Y., Gomes, C. P., Kautz, H. A., Selman, B., and Chickering, D. M. 2001. A bayesian approach to tackling hard computational problems. In *Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 235–244.
- HOUGH, P. D. AND WILLIAMS, P. J. 2006. Modern machine learning for automatic optimization algorithm selection. In *Proceedings of the INFORMS Artificial Intelligence and Data Mining Workshop*.
- Howe, A. E., Dahlman, E., Hansen, C., Scheetz, M., and von Mayrhauser, A. 1999. Exploiting competitive planner performance. In *Proceedings of the 5th European Conference on Planning*. Springer, 62–72.

- Huberman, B. A., Lukose, R. M., and Hogg, T. 1997. An economics approach to hard computational problems. *Science* 275, 5296, 51–54.
- Hurley, B., Kotthoff, L., Malitsky, Y., and O'Sullivan, B. 2014. Proteus: A hierarchical portfolio of solvers and transformations. In *CPAIOR*.
- HURLEY, B. AND OSULLIVAN, B. 2012. Adaptation in a CBR-Based solver portfolio for the satisfiability problem. In Case-Based Reasoning Research and Development. Lecture Notes in Computer Science Series, vol. 7466. 152–166.
- HUTTER, F., HAMADI, Y., HOOS, H. H., AND LEYTON-BROWN, K. 2006. Performance prediction and automated tuning of randomized and parametric algorithms. In *CP*. 213–228.
- HUTTER, F., HOOS, H. H., AND LEYTON-BROWN, K. 2013. Identifying key algorithm parameters and instance features using forward selection. In LION 7.
- HUTTER, F., Xu, L., Hoos, H. H., AND LEYTON-BROWN, K. 2012. Algorithm runtime prediction: The state of the art. CoRR abs/1211.0906.
- Joshi, A., Weerawarana, S., Ramakrishnan, N., Houstis, E. N., and Rice, J. R. 1996. Neuro-Fuzzy support for Problem-Solving environments: A step toward automated solution of PDEs. *IEEE Comput. Sci. Eng.* 3, 1, 44–56.
- KADIOGLU, S., MALITSKY, Y., SABHARWAL, A., SAMULOWITZ, H., AND SELLMANN, M. 2011. Algorithm selection and scheduling. In 17th International Conference on Principles and Practice of Constraint Programming, 454–469.
- Kadioglu, S., Malitsky, Y., and Sellmann, M. 2012. Non-model-based search guidance for set partitioning problems. In AAAI.
- Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. 2010. ISAC Instance-Specific algorithm configuration. In 19th European Conference on Artificial Intelligence. IOS Press, 751–756.
- KAMEL, M. S., ENRIGHT, W. H., AND MA, K. S. 1993. ODEXPERT: an expert system to select numerical solvers for initial value ODE systems. *ACM Trans. Math. Softw.* 19, 1, 44–62.
- KANDA, J., DE CARVALHO, A., HRUSCHKA, E., AND SOARES, C. 2010. Using meta-learning to classify traveling salesman problems. In *Eleventh Brazilian Symposium on Neural Networks*. 73–78.
- KANDA, J., DE CARVALHO, A., HRUSCHKA, E., AND SOARES, C. 2011. Selection of algorithms to solve traveling salesman problems using meta-learning. Int. J. Hybrid Intell. Syst. 8, 3, 117–128.
- Kanda, J., Soares, C., Hruschka, E., and de Carvalho, A. 2012. A meta-learning approach to select meta-heuristics for the traveling salesman problem using MLP-Based label ranking. In 19th International Conference on Neural Information Processing. Springer-Verlag, Berlin, Heidelberg, 488–495.
- KIZILTAN, Z., MANDRIOLI, L., MAURO, J., AND O'SULLIVAN, B. 2011. A classification-based approach to managing a solver portfolio for CSPs. In 22nd Irish Conference on Artificial Intelligence and Cognitive Science.
- Kotthoff, L. 2012. Hybrid regression-classification models for algorithm selection. In 20th European Conference on Artificial Intelligence. 480–485.
- KOTTHOFF, L. 2014. Ranking algorithms by performance. In LION 8.
- KOTTHOFF, L., GENT, I. P., AND MIGUEL, I. 2011. A preliminary evaluation of machine learning in algorithm selection for search problems. In 4th Annual Symposium on Combinatorial Search. 84–91.
- KOTTHOFF, L., GENT, I. P., AND MIGUEL, I. 2012. An evaluation of machine learning in algorithm selection for search problems. *AI Communications* 25, 3, 257–270.
- Kotthoff, L., Miguel, I., and Nightingale, P. 2010. Ensemble classification for constraint solver configuration. In 16th International Conference on Principles and Practices of Constraint Programming. 321–329.
- Kroer, C. and Malitsky, Y. 2011. Feature filtering for Instance-Specific algorithm configuration. In Proceedings of the 23rd International Conference on Tools with Artificial Intelligence.
- Kuefler, E. and Chen, T. 2008. On using reinforcement learning to solve sparse linear systems. In *Proceedings of the 8th International Conference on Computational Science*. ICCS '08. Springer-Verlag, Berlin, Heidelberg, 955–964.
- LAGOUDAKIS, M. G. AND LITTMAN, M. L. 2000. Algorithm selection using reinforcement learning. In *Proceedings of the 17th International Conference on Machine Learning*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 511–518.
- LAGOUDAKIS, M. G. AND LITTMAN, M. L. 2001. Learning to select branching rules in the DPLL procedure for satisfiability. In LICS/SAT. 344–359.
- Langley, P. 1983a. Learning effective search heuristics. In IJCAI. 419-421.

- Langley, P. 1983b. Learning search strategies through discrimination. *International Journal of Man-Machine Studies*, 513–541.
- Leite, R. and Brazdil, P. 2010. Active testing strategy to predict the best classification algorithm via sampling and metalearning. In ECAI. 309–314.
- Leite, R., Brazdil, P., Vanschoren, J., and Queiros, F. 2010. Using active testing and Meta-Level information for selection of classification algorithms. In 3rd PlanLearn Workshop.
- Leyton-Brown, K., Nudelman, E., and Shoham, Y. 2002. Learning the empirical hardness of optimization problems: The case of combinatorial auctions. In *Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming*. Springer-Verlag, London, UK, 556–572.
- LITTLE, J., GEBRUERS, C., BRIDGE, D., AND FREUDER, E. 2002. Capturing constraint programming experience: A Case-Based approach. In *Modref*.
- LOBJOIS, L. AND LEMAÎTRE, M. 1998. Branch and bound algorithm selection by performance prediction. In Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. American Association for Artificial Intelligence, Menlo Park, CA, USA, 353–358.
- Malitsky, Y., Ashish, S., Samulowitz, H., and Sellmann, M. 2012. Parallel SAT solver selection and scheduling. In *Principles and Practice of Constraint Programming*.
- MALITSKY, Y., MEHTA, D., AND O'SULLIVAN, B. 2013a. Evolving instance specific algorithm configuration. In Symposium on Combinatorial Search.
- Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. 2011. Non-model-based algorithm portfolios for SAT. In *Theory and Applications of Satisfiability Testing (SAT)*. 369–370.
- Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. 2013b. Algorithm portfolios based on cost-sensitive hierarchical clustering. In *IJCAI*.
- Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Lardeux, F., and Sebag, M. 2011. Adaptive operator selection and management in evolutionary algorithms. In *Autonomous Search*, Y. Hamadi, E. Monfroy, and F. Saubion, Eds. Springer Berlin Heidelberg, 161–189.
- Mehta, D., O'Sullivan, B., Kotthoff, L., and Malitsky, Y. 2013. Lazy branching for constraint satisfaction. In *ICTAI*.
- MINTON, S. 1993a. An analytic learning system for specializing heuristics. In *IJCAI'93: Proceedings of the 13th International Joint Conference on Artifical Intelligence*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 922–928.
- MINTON, S. 1993b. Integrating heuristics for constraint satisfaction problems: A case study. In AAAI: Proceedings of the 11th National Conference on Artificial Intelligence. 120–126.
- MINTON, S. 1996. Automatically configuring constraint satisfaction programs: A case study. Constraints 1, 7–43.
- Musliu, N. and Schwengerer, M. 2013. Algorithm selection for the graph coloring problem. In *LION 7*. Nareyek, A. 2001. Choosing search heuristics by Non-Stationary reinforcement learning. In *Metaheuristics: Computer Decision-Making*. Kluwer Academic Publishers, 523–544.
- Nikolić, M., Marić, F., and Janičić, P. 2009. Instance-Based selection of policies for SAT solvers. In *Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing*. SAT '09. Springer-Verlag, Berlin, Heidelberg, 326–340.
- Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A., and Shoham, Y. 2004. Understanding random SAT: beyond the Clauses-to-Variables ratio. In *Principles and Practice of Constraint Programming CP 2004*, M. Wallace, Ed. Lecture Notes in Computer Science Series, vol. 3258. Springer Berlin / Heidelberg, 438–452.
- O'Mahony, E., Hebrard, E., Holland, A., Nugent, C., and O'Sullivan, B. 2008. Using case-based reasoning in an algorithm portfolio for constraint solving. In *Proceedings of the 19th Irish Conference on Artificial Intelligence and Cognitive Science*.
- Paparrizou, A. and Stergiou, K. 2012. Evaluating simple fully automated heuristics for adaptive constraint propagation. In ICTAI.
- Petrik, M. 2005. Statistically optimal combination of algorithms. In Local Proceedings of SOFSEM 2005.
- Petrovic, S. and Qu, R. 2002. Case-Based reasoning as a heuristic selector in Hyper-Heuristic for course timetabling problems. In KES. 336–340.
- PFAHRINGER, B., BENSUSAN, H., AND GIRAUD-CARRIER, C. G. 2000. Meta-Learning by landmarking various learning algorithms. In 17th International Conference on Machine Learning. ICML '00. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 743–750.
- Pulina, L. and Tacchella, A. 2007. A multi-engine solver for quantified boolean formulas. In *Proceedings* of the 13th International Conference on Principles and Practice of Constraint Programming. CP'07. Springer-Verlag, Berlin, Heidelberg, 574–589.

- Pulina, L. and Tacchella, A. 2009. A self-adaptive multi-engine solver for quantified boolean formulas. Constraints 14, 1, 80–116.
- RAYNER, C., STURTEVANT, N., AND BOWLING, M. 2013. Subset selection of search heuristics. In *Proceedings* of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI). 637–643.
- ROBERTS, M. AND HOWE, A. E. 2006. Directing a portfolio with learning. In AAAI 2006 Workshop on Learning for Search.
- ROBERTS, M. AND HOWE, A. E. 2007. Learned models of performance for many planners. In *ICAPS 2007 Workshop AI Planning and Learning*.
- Roberts, M., Howe, A. E., Wilson, B., and desjardins, M. 2008. What makes planners predictable? In *ICAPS*. 288–295.
- Sabharwal, A., Samulowitz, H., Sellmann, M., and Malitsky, Y. 2013. Boosting sequential solver portfolios: Knowledge sharing and accuracy prediction. In *LION 7*.
- SAKKOUT, H. E., WALLACE, M. G., AND RICHARDS, E. B. 1996. An instance of adaptive constraint propagation. In *Proc. of CP96*. Springer Verlag, 164–178.
- Samulowitz, H. and Memisevic, R. 2007. Learning to solve QBF. In *Proceedings of the 22nd National Conference on Artificial Intelligence*. AAAI Press, 255–260.
- SAYAG, T., FINE, S., AND MANSOUR, Y. 2006. Combining multiple heuristics. In STACS. Vol. 3884. Springer, Berlin, Heidelberg, 242–253.
- Seijen, H. v., Whiteson, S., and Kester, L. 2013. Efficient abstraction selection in reinforcement learning. Computational Intelligence.
- Shukla, N., Tiwari, M., and Ceglarek, D. 2012. Genetic-algorithms-based algorithm portfolio for inventory routing problem with stochastic demand. *International Journal of Production Research*, 1–20.
- SILLITO, J. 2000. Improvements to and estimating the cost of solving constraint satisfaction problems. M.S. thesis, University of Alberta.
- SILVERTHORN, B. AND MIIKKULAINEN, R. 2010. Latent class models for algorithm portfolio methods. In *Proceedings of the 24th AAAI Conference on Artificial Intelligence.*
- SMITH, T. E. AND SETLIFF, D. E. 1992. Knowledge-based constraint-driven software synthesis. In *Knowledge-Based Software Engineering Conference*. 18–27.
- Smith-Miles, K. and Hemert, J. 2011. Discovering the suitability of optimisation algorithms by learning from evolved instances. *Annals of Mathematics and Artificial Intelligence 61*, 2, 87–104.
- SMITH-MILES, K. A. 2008. Towards insightful algorithm selection for optimisation using Meta-Learning concepts. In IEEE International Joint Conference on Neural Networks. 4118–4124.
- SOARES, C., BRAZDIL, P. B., AND KUBA, P. 2004. A Meta-Learning method to select the kernel width in support vector regression. *Mach. Learn.* 54, 3, 195–209.
- STAMATATOS, E. AND STERGIOU, K. 2009. Learning how to propagate using random probing. In *Proceedings* of the 6th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Springer-Verlag, Berlin, Heidelberg, 263–278.
- Stergiou, K. 2008. Heuristics for dynamically adapting propagation. In ECAI. 485-489.
- Stergiou, K. 2009. Heuristics for dynamically adapting propagation in constraint satisfaction problems. AI Commun. 22, 3, 125-141.
- Stern, D. H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., and Tacchella, A. 2010. Collaborative expert portfolio management. In AAAI. 179–184.
- STREETER, M. J., GOLOVIN, D., AND SMITH, S. F. 2007. Combining multiple heuristics online. In *Proceedings of the 22nd National Conference on Artificial Intelligence*. AAAI Press, 1197–1203.
- STREETER, M. J. AND SMITH, S. F. 2008. New techniques for algorithm portfolio design. In UAI. 519-527.
- Sun, Q. and Pfahringer, B. 2013. Pairwise meta-rules for better meta-learning-based algorithm ranking. *Machine Learning 93*, 1, 141–161.
- Terashima-Marín, H., Ross, P., and Valenzuela-Rendón, M. 1999. Evolution of constraint satisfaction strategies in examination timetabling. In *Proceedings of the Genetic and Evolutionary Computation Conference*. Morgan Kaufmann, 635–642.
- Tolpin, D. and Shimony, S. E. 2011. Rational deployment of CSP heuristics. In IJCAI. 680–686.
- TSANG, E. P. K., BORRETT, J. E., AND KWAN, A. C. M. 1995. An attempt to map the performance of a range of algorithm and heuristic combinations. In *Proc. of AISB'95*. IOS Press, 203–216.
- Valenzano, R., Sturtevant, N., Schaeffer, J., and Buro, K. 2010. Simultaneously searching with multiple settings: An alternative to parameter tuning for suboptimal single-agent search algorithms. In *ICAPS*. 177–184.

- Valenzano, R. A., Nakhost, H., Müller, M., Schaeffer, J., and Sturtevant, N. R. 2012. ArvandHerd: parallel planning with a portfolio. *European Conference on Artificial Intelligence (ECAI)*, 786–791.
- VEERAPEN, N., MATURANA, J., AND SAUBION, F. 2012. An Exploration-Exploitation Compromise-Based adaptive operator selection for local search. In 14th International Conference on Genetic and Evolutionary Computation. GECCO '12. ACM, New York, NY, USA, 1277–1284.
- VRAKAS, D., TSOUMAKAS, G., BASSILIADES, N., AND VLAHAVAS, I. 2003. Learning rules for adaptive planning. In Proceedings of the 13th International Conference on Automated Planning and Scheduling. 82–91.
- WANG, J. AND TROPPER, C. 2007. Optimizing time warp simulation with reinforcement learning techniques. In Proceedings of the 39th conference on Winter simulation. WSC '07. IEEE Press, Piscataway, NJ, USA, 577–584.
- Watson, J. 2003. Empirical modeling and analysis of local search algorithms for the job-shop scheduling problem. Ph.D. thesis, Colorado State University, Fort Collins, CO, USA.
- WEERAWARANA, S., HOUSTIS, E. N., RICE, J. R., JOSHI, A., AND HOUSTIS, C. E. 1996. PYTHIA: a knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw. 22, 4, 447–468.
- Wei, W., Li, C. M., and Zhang, H. 2008. Switching among Non-Weighting, clause weighting, and variable weighting in local search for SAT. In *Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming*. Springer-Verlag, Berlin, Heidelberg, 313–326.
- WILSON, D., LEAKE, D., AND BRAMLEY, R. 2000. Case-Based recommender components for scientific Problem-Solving environments. In *Proc. of the 16th International Association for Mathematics and Computers in Simulation World Congress*.
- Wu, H. And van Beek, P. 2007. On portfolios for backtracking search in the presence of deadlines. In *Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence*. IEEE Computer Society, Washington, DC, USA, 231–238.
- Xu, L., Hoos, H. H., and Leyton-Brown, K. 2007a. Hierarchical hardness models for SAT. In CP. 696-711.
- Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2007b. SATzilla-07: the design and analysis of an algorithm portfolio for SAT. In *CP*. 712–727.
- Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2008. SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606.
- Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2011. Hydra-MIP: automated algorithm configuration and selection for mixed integer programming. In RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI).
- Xu, Y., Stern, D., and Samulowitz, H. 2009. Learning adaptation to solve constraint satisfaction problems. In *Learning and Intelligent Optimization*.
- Yu, H., Dang, F., and Rauchwerger, L. 2002. Parallel reductions: An application of adaptive algorithm selection. In Proceedings of the 15th International Conference on Languages and Compilers for Parallel Computing. Springer-Verlag, Berlin, Heidelberg, 188–202.
- Yu, H. AND RAUCHWERGER, L. 2006. An adaptive algorithm selection framework for reduction parallelization. IEEE Transactions on Parallel and Distributed Systems 17, 10, 1084–1096.
- Yu, H., Zhang, D., and Rauchwerger, L. 2004. An adaptive algorithm selection framework. In Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques. IEEE Computer Society, Washington, DC, USA, 278–289.
- Yun, X. and Epstein, S. L. 2012. Learning algorithm portfolios for parallel execution. In *Proceedings of the 6th International Conference Learning and Intelligent Optimisation LION*. Springer, 323–338.