CLAIMS

1. A method of segmenting a composite image of pixels into a number of fields corresponding to lay-out elements of the image, the pixels having a value representing the intensity and/or color of a picture element, the method comprising:

constructing separating elements corresponding to rectangular areas of adjacent pixels of the image having a background property indicative of a background of the image; and

constructing a graph representing the lay-out elements of the image by

- defining vertices of the graph on the basis of intersections of separating elements that are substantially oriented in predetermined separation directions,
- defining edges of the graph between the vertices corresponding to the separating elements, and
 - defining field separators corresponding to the edges of the graph.
- 2. The method as claimed in claim 1, wherein the step of defining vertices comprises:

constructing subsets of the separating elements that are substantially oriented in the predetermined separation directions, and

determining the intersections between pairs of separating elements from the subsets.

3. The method as claimed in claim 2, wherein the step of determining the intersections comprises:

determining an area of overlap of the separating elements from the subsets, and

locating the vertex at the center of the area of overlap.

4. The method as claimed in claim 1, wherein the graph constructing step comprises:

assigning a weight to the edges indicating an Euclidean distance between the vertices.

5. The method as claimed in claim 1, further comprising:

constructing a set of maximal rectangles, a maximal rectangle being a rectangular part of the image in one of the separation directions, that has the maximum possible area without including a pixel not having the background property indicative of a background of the image; and

constructing the separating elements in a cleaning step wherein at least one pair of overlapping maximal rectangles in the set is replaced by an informative rectangle that is a rectangular part of an area combining the areas of the pair, the rectangular part having the maximum possible length in the relevant separation direction.

6. The method as claimed in claim 5, wherein the cleaning step further comprises at least one of the following:

deleting a maximal rectangle having a length below a predefined value, deleting a maximal rectangle having a width below a predefined value, and deleting a maximal rectangle having an aspect ratio below a predefined value, the aspect ratio being a longer side length divided by a shorter side length.

7. The method as claimed in claim 5, wherein, prior to the step of constructing the maximal rectangles, the image is preprocessed by at least one of the following:

removing noise by adapting the value of isolated deviant pixels to an average value of pixels in the neighborhood,

halftoning by transforming the pixels to either white or black, and reducing the number of pixels by downsampling.

- 8. The method as claimed in claim 5, wherein, prior to the step of constructing the maximal rectangles, the image is filtered by detecting foreground separator elements that are objects in the foreground of the image having a pattern of pixel values deviating from said background property, and by replacing pixels of the detected foreground separators by pixels having the background property.
- 9. The method as claimed in claim 8, wherein the foreground separator elements include black lines, dashed lines, or dotted lines.

10. The method as claimed in claim 5, wherein the step of constructing the maximal rectangles comprises:

determining a list of maximal runs, a maximal run being a straight line of pixels having the background property, the line having the maximum possible length without including a pixel not having the background property,

taking a specific maximal run from the list as rectangle,

testing the rectangle if extension is possible by determining for a next maximal run if the next maximal run comprises pixels adjacent to pixels of the rectangle in a width direction.

if the extension is possible, extending the rectangle by constructing a new rectangle having the maximum area including pixels of the rectangle and the next maximal run,

if no extension is possible, adding the rectangle to the set of maximal rectangles, and

eliminating from the list any maximal run that is completely contained in the new rectangle.

11. The method as claimed in claim 1, wherein the step of constructing the separating elements comprises:

processing the image in two orthogonal separation directions.

12. The method as claimed in claim 1, wherein the step of constructing the separating elements comprises:

detecting graphical elements that are objects in the foreground of the image having a pattern of pixel values deviating from said background property, wherein the separating elements are constructed around the graphical elements.

- 13. The method as claimed in claim 1, wherein at least one of the fields is classified as text field, a reading order is detected in the text field, and foreground components are joined to text lines in the text field in a direction corresponding to said reading order.
- 14. A computer program product embodied on at least one computer readable medium, for segmenting an image of pixels into a number of fields, corresponding to

lay-out elements of the image, the pixels having a value representing the intensity and/or color of a picture element, the computer program product comprising computer-executable instructions for:

constructing separating elements corresponding to rectangular areas of adjacent pixels of the image having a background property indicative of a background of the image; and

constructing a graph representing the lay-out elements of the image by

- defining vertices of the graph on the basis of intersections of separating elements that are substantially oriented in predetermined separation directions,
- defining edges of the graph between the vertices corresponding to the separating elements, and
 - defining field separators corresponding to the edges of the graph.
- 15. The computer program product as claimed in claim 14, wherein the computer-executable instructions for defining vertices comprise computer-executable instructions for:

constructing subsets of the separating elements that are substantially oriented in the predetermined separation directions, and

determining the intersections between pairs of separating elements from the subsets.

- 16. The computer program product as claimed in claim 14, wherein at least one of the fields is classified as text field, a reading order is detected in the text field, and foreground components are joined to text lines in the text field in a direction corresponding to said reading order.
- 17. The computer program as claimed in claim 14, further comprising computer-executable instructions for:

constructing a set of maximal rectangles, a maximal rectangle being a rectangular part of the image in one of the separation directions, that has the maximum possible area without including a pixel not having the background property indicative of a background of the image; and

constructing the separating elements in a cleaning step wherein at least one pair of overlapping maximal rectangles in the set is replaced by an informative rectangle that is a rectangular part of an area combining the areas of the pair, the rectangular part having the maximum possible length in the relevant separation direction.

18. A device for segmenting a composite image of pixels into a number of fields corresponding to lay-out elements of the image, the pixels having a value representing the intensity and/or color of a picture element, the device comprising:

an input unit for inputting an image; and

a processing unit for constructing a graph representing the lay-out elements of the image by

- constructing separating elements corresponding to rectangular areas of adjacent pixels having a background property indicative of a background of the image,
- defining vertices of the graph based on intersections of separating elements that are substantially oriented in different separation directions, and
- defining edges of the graph between the vertices corresponding to the separating elements.
- 19. The device as claimed in claim 18, further comprising: a display unit for displaying fields of the image after segmenting.
- 20. The device as claimed in claim 18, wherein the processing unit constructs a set of maximal rectangles, a maximal rectangle being a rectangular part of the image in one of the separation directions, that has the maximum possible area without including a pixel not having the background property indicative of a background of the image; and constructs the separating elements in a cleaning step wherein at least one pair of overlapping maximal rectangles in the set is replaced by an informative rectangle that is a rectangular part of an area combining the areas of the pair, the rectangular part having the maximum possible length in the relevant separation direction.

21. The device as claimed in claim 18, wherein at least one of the fields is classified as text field, a reading order is detected in the text field, and foreground components are joined to text lines in the text field in a direction corresponding to said reading order.