Undetermined Coefficients — Superposition Approach

Michael Brodskiy

Professor: Meetal Shah

October 7, 2020

- Method of Undetermined Coefficients A way of obtaining a particular solution to a nonhomogeneous equation.
- Ex. $y'' + 4y' 2y = 2x^2 3x + 6$
 - 1. First solve the associated homogeneous equation.
 - 2. Next, Assume the particular solution, y_p , is a quadratic (as the DE equals a quadratic):

$$y'_{p} = 2Ax + B, y''_{p} = 2A$$

$$2A + 8Ax + 4B - 2Ax^{2} - 2Bx - 2C = 2x^{2} - 3x + 6$$

$$A = -1, B = -\frac{5}{2}, C = -9$$

$$\therefore y_{p} = -x^{2} - \frac{5}{2}x - 9$$

3. Then, find the complementary solution and add them together:

$$y = y_c + y_p = c_1 e^{-(2+\sqrt{6})x} + c_2 e^{(-2+\sqrt{6})x} - x^2 - \frac{5}{2}x - 9$$

- The form of a prediction may be found using the following table:¹
- If any y_p predictions are similar to terms in the complementary function, multiply by x^n , where n is the smallest integer which eliminates any correlation to the complementary function.

Note: for functions like $8xe^{2x}$, it is necessary to create a second term, $(Ax + B)e^{2x} + e^{2x}$

g(x)	Form of y_p
1. 1 (any constant)	A
2. 5x + 7	Ax + B
3. $3x^2 - 2$	$Ax^2 + Bx + C$
4. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5. sin 4x	$A \cos 4x + B \sin 4x$
6. cos 4x	$A \cos 4x + B \sin 4x$
7. e ^{5x}	Ae^{5x}
8. $(9x - 2)e^{5x}$	$(Ax + B)e^{5x}$
9. x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11. 5x ² sin 4x	$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
12. $xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

Figure 1: Table of Trials