INSTRUCTIONS

NUMBER OF QUESTIONS: 100

TIME: 2 Hrs

- 1. ATTEMPT ALL QUESTIONS WITHIN THE TIME.
- 2. EACH OUESTION CARRIES 1 MARK
- 3. NO NEGATIVE MARKS.
- 4. DON'T DO ROUGH WORK ON QUESTION PAPER AND OMR.
- 5. USE BLACK (OR) BLUE PEN FOR BUBBLING ON OMR.

CORRECT METHOD OF BUBBLING

MATHEMATICS

- What is the L.C.M and H.C.F. of 17, 23 and 29
 - 1. 1. 11339
- 2. 11339, 1
- 3.17, 11339
- 4. 11339, 17
- Which of the following number is a composite number?
 - 1. $2 \times 5 \times 17 + 3$ 2. $2^3 \times 3^2 + 1$ 3. $2 \times 3^2 + 1$
- 4. $7 \times 11 \times 13 + 13$

- 3. $\log_9 \sqrt{3\sqrt{3\sqrt{3}}} =$
 - 1. $\frac{7}{8}$

- If $x^2 + y^2 = 6xy$ then $2\log(x + y) =$
 - 1. $\log x \log y + 3\log 2$

2. $\log x + \log y + 3\log 2$

3. logx+logy-3log2

- 4. logx-logy-3log2
- let $A = \{x : x \text{ is a letter of the word "ASSASSINATION"}\}$

 $B = \{x : x \text{ is a letter of the word 'STATION'}\}$ then

- 1. A = B
- 2. A $\neq B$
- $3.A \subset B$
- 4. $B \subset A$

The shaded part of 6.

- 1. $A \cap (B \cup C)$
- 2. $(A-B)\cap(A-C)$
- 3. $A-(B\cap C)$
- 4. $(A-B) \cup (A-C)$
- The graph of the polynomial f(x)=2x-5 is a straight line which intersects the X-axis at 7. exactly one point namely
 - 1. $\left| 0, \frac{-5}{2} \right|$
- $2. \left\lceil \frac{5}{2}, \frac{-5}{2} \right\rceil \qquad \qquad 3. \left\lceil \frac{5}{2}, 0 \right\rceil$
- 4. $\left[\frac{-5}{2}, 0\right]$

8.	If $f(x)=ax^2+bx+c$ has no real zeros and $a+b+c<0$ then								
	1. c=0	2. c<9	3.c<0	4. c>0					
9.	If α, β, γ are the zero	s of the polynomial f($x) = ax^3 + bx^2 + cx + d th$	nen $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = $					
	1	1		α ρ γ					
	1. $\frac{1}{d}$	2. $\frac{1}{c}$	$3.\frac{c}{d}$	4. $-\frac{c}{d}$					
10.	$\alpha + \beta = 0, \ \alpha\beta = -\sqrt{5} \ \text{tl}$	nen quadratic polynor							
	1. $x^2 - \sqrt{5}$	2. $x^2 - 1$	3. $x^2 - 3$	4. x^2-5					
11.	x + y + 1 = 0 and $2x$	x + 2y = -2 are	equations						
	1. Graph		2. Consistent						
	3. Inconsistent		4.Cannot be dete	ermined					
12.	If $ad \neq bc$ then the pa	air of linear equations	ax + by = p and cx	+ dy = q has					
	solution								
	1. Infinite		2. Unique						
	3. No solution		4. Cannot be det	ermined					
13.	The condition that a	$ax^2 + bx + c = 0 \text{ repres}$	ents a quadratic equ	ation.					
	1. $a \neq 0$, a, b, $c \in R$		2. $a = 0$, $b = 0$, c	$z \neq 0$					
	3. $a = 0, b \neq 0, c > 0$		4. $a = 0$, $b = 0$, c	t=0					
14	$2x^2 - x - 6 = (2x + 3)k$	then k=							
	1. x + 7	2. $x - 3$	3.x - 2	4. $x + 2$					
15.	Which of the follow	ing is an A.P.							
	1. 4, 9, 16, 25	2. 2, 4, 6, 8	3.3, 9, 12, 18	4. 1, 2, 4, 8					
16.	If $a = -7$, $d = -2$ the	en the A.P. is							
	17, -9, -11, -13	,	27, 9, -11, 13	3,					
	37, 14, -21, 28, .		4. 7, 9, 11, 13, .	••••					
17.		(n^2+1)	d.						
	If <i>n</i> th term of series	is $\frac{(n^2+1)}{(n+2)(n+3)}$, then	7 th term =						
	1. 5/9	2. 49/9	3.73/90	4. 2/9					
18.	How many numbers	are divisible by 4 lyi	ng between 101 and	1 250?					
	1.40	2. 62	3.38	4. 37					
19.		$9 + 7 + \dots$ is -13 ?							
	1. 13	2. 12	3.5	4. 11					
20.	In a G.P if $a_n = x^{n-1}$	$(x \neq 0)$ then $a_4 =$							
	1. x^2	2. x ³	$3.x^4$	4. x ⁵					
	* · · · · · · · · · · · · · · · · · · ·	A	····	, ,					

21. The nearest point from the origin is

1.(2, -3)

2. (5, 0)

3.(2,-1)

4. (1, 3)

22. If (0, 0), $(3, \sqrt{3})$, (3, y) form an equilateral triangle then y =

 $1.-\sqrt{3}$

2. -4

3. - 3

4. 2

23. If (0, 2) divides the line segment joining (0, 0), (t, 5) in the ratio 2 : 3 then t =

2. 2

3.1

24. The line joining (-3, 4), (1, -2) is divided by y axis in the ratio

1.1:3

2. 2:3

3.3:1

25. In $\triangle ABC$ if A = (3, -5), B = (-7, 4) and centroid G = (2, -1) then C =

1. (10, 2)

2. (10, -2)

3.(-10, 2)

4. (-10, -2)

P(2,2) Q(-4,4) & R(5,-8) are the vertices of \triangle PQR then length of the median through 26.

1. $\sqrt{147}$

2. $\sqrt{157}$

 $3.4\sqrt{17}$

4. $2\sqrt{13}$

'O' is any point in a rectangle ABCD then $OA^2 + OC^2 =$ _

 $1. OB^2 + OD^2$

28.

2. $AB^{2} + BC^{2}$

 $4. BD^2$

From adjacent diagram AB²+CD²=

 $1. BD^2 + AC^2$

 $2. BD^2 + CD^2$

 $3. AC^2 + AD^2$

4. $BD^2 + AB^2$

Two poles of heights 6m and 11m stand on a plane ground. If the distance between the 29. feet of the poles is 12m then the distance between their tops is

1. 16m

3.13m

4. 14m

30. From the figure |DAC| =

 1.35^{0}

2. 55⁰

 4.60^{0}

31. From diagram, $|\underline{P} = 90^{\circ}, |\underline{S} = 90^{\circ}, PS =$

1. 10

2.6

3. 19

4.8

32. Find the sum of a+b+c+d+e of the figure inscribed in the circle.

 1.160^{0}

 2.120^{0}

 3.180^{0}

 4.190^{0}

33. Hexagon ABCDEF circumscribes a circle. The sides of the hexagon are 2cm, 3cm, 4cm, 5cm, 6cm and xcm. Find x.

1. 2cm

2.4cm

3. 8cm

4. 9cm

34. In the figure, ABCD is a rectangle. Circle with B as centre and radius 4cm touches the circle with D as centre and radius 5cm as shown in the figure.

Length of AD = ____cm.

1. $9\sqrt{3}$

2. $2\sqrt{14}$

3. $9\sqrt{7}$

4. $\sqrt{45}$

44.	$\tan \theta = \frac{p}{q}$, then	$\frac{p\sin\theta - q\cos\theta}{p\sin\theta + q\cos\theta} =$								
	$1. \frac{p^2 - q^2}{pq}$	$2. \frac{p^2 - q^2}{2pq}$	$3. \frac{p^2 - q^2}{p^2 + q^2}$	4. $\frac{p^2 + q^2}{p^2 - q^2}$						
45.	$cosec \theta + \sin \theta$	$=1$; $cosec^3\theta + sin^3\theta =$								
	12	2. 2	3.1	41						
46.	$a \cos A + b \sin A$	$A = 1$, $a \sin A - b \cos$	A = 1 then							
	1. $a^2+b^2=2$	2. $a^2+b^2=1$	$3.a^2 - b^2 = 1$	4. $a^2b^2=0$						
47.	If $\cos \theta . \sin \theta = \frac{1}{2}$, then $\theta =$									
	1.0^{0}	$2. 30^{0}$	3.45^{0}	4. 90^{0}						
48.	If $\tan (A+B) = -$	$\sqrt{3}$, tan $A = 1$ then $B =$								
	1. 15 ⁰	$2. \ 30^{0}$	3.45^{0}	4. 60^{0}						
49.	If $\sin \theta = \frac{15}{17}$, 0	$< \theta < 90^0 \text{ then } \frac{15 \cot \theta}{8 \tan \theta}$	$\frac{+17\sin\theta}{-16\sec\theta} =$							
	1. $\frac{23}{49}$	2. $\frac{49}{23}$	₂ 15	₄ 17						
	$\frac{1}{49}$	$\frac{2}{23}$	$3.\frac{15}{49}$	4. $\frac{17}{49}$						
50.	1 1	$+\frac{2}{\sec^2\alpha.\cos ec^2\alpha} =$								
	$\sec^4 \alpha \cos ec^4 \alpha$	$\sec^2 \alpha . \cos ec^2 \alpha$								
	1. 0	21	3.1	4. None						
51.	The angle of e	levation of the sun who	en the length of the	shadow of a pole is $\sqrt{3}$ times						
	the height of th	ne pole is								
	1.30^{0}	$2. 45^{0}$	3.60^{0}	4. 15^{0}						
52.	Number of poi	nts in the sample spac	e of the experiment	of tossing two coins are						
	1. 2	2. 4	3.6	4. 8						
53.	One number is s	selected from the set – {	1, 2, 3,30} then t	the probability that the number						
	selected is less	than 11 is								
	$1.\frac{1}{3}$	2. $\frac{11}{30}$	$3.\frac{1}{2}$	4. $\frac{2}{3}$						
	3	30	2	3						
54.	The number of	suits in the deck play	ing cards is							
	1. 2	2. 4	3.18	4. 52						
55.	The probability	y of 2 students not hav	ing same birthday i	is 0.992. What is the						
	probability tha	t 2 students have the s	ame birthday is	_						
	1. 0.992	2. 0.008	3.0.08	4. 0.5						
56.	The numbers 4	, 6 and 8 have the free	quencies $x+2$, x and	d x -1 and if their Arithmetic						
	mean is 8, the	value of x is								
	1.7	2. 9	3.6	44/3						

- The median of the data $\frac{3}{4}, \frac{1}{2}, \frac{2}{3}, \frac{1}{6}, \frac{7}{12}$ is 57.
 - 1. $\frac{3}{4}$

- $3.\frac{7}{12}$

- 58. l = 40, F = 25, f = 24, C = 20, n = 70 then median =
 - 1.48.3
- 2. 49.5
- 3.50.5
- 4. 40.7
- 59. If an arranged data containing 20 items can be arranged in ascending order, then item is the median
 - 1. 9th

2. 10th

3. 11th

- 4. Average of 10^{th} & 11^{th}
- The mean age of combined group of man and woman is 35 years. If the mean age of 60. man is 36 years and that of woman is 32 years. The percentage of man and woman is the group is respectively given by
 - 1. Men=75%, Women = 25%
- 2. Men=70%, Women = 30%
- 3. Men=50%, Women = 50%

4. Men=25%, Women = 75%

PHYSICS

A telescope is focused from rim to the opposite side of the bottom of an empty 61. cylinder of equal diameter and height. When the cylinder is completely filled with a transparent liquid, the centre of base is visible through telescope, without any change in its position. Refractive index of the liquid is

- 1. $\sqrt{5/2}$
- 2. $\sqrt{5/3}$
- $3.\sqrt{3/2}$
- Two liquids A and B are at 32°C and 24°C. When mixed in equal masses the 62. temperature of the mixture is found to be 28°C. Their specific heats are in the ratio of 1.3:2

In the figure below, PQRS denotes the path followed by a ray of light as it travels 63. through three media in succession. The absolute refractive indices of the media are μ_1 , μ_2 and μ_3 respectively. (the line segment RS' in the figure is parallel to PQ). Then

1.
$$\mu_1 > \mu_2 > \mu_3$$

2.
$$\mu_1 = \mu_3 > \mu_1$$

3.
$$\mu_1 < \mu_2 < \mu_3$$

1.
$$\mu_1 > \mu_2 > \mu_3$$
 2. $\mu_1 = \mu_3 > \mu_2$ 3. $\mu_1 < \mu_2 < \mu_3$ 4. $\mu_1 < \mu_3 < \mu_2$

If there are no heat losses, the heat released by the condensation of x g of steam at 64. 100° C into water at 100° C can be used to convert y gm of ice at 0° C into water at 100° C. Then the ratio y:x is nearly

A spherical surface of radius of curvature R separates air from glass of refractive 65. index $\frac{3}{2}$. When a point object P placed in air is found to have its real image is formed at Q inside glass such that PO = QO as shown. The distance of the object from the spherical surface is

1.3R

2. R

3.5R

4. 2R

A bird in air is at a height y from the surface of water. A fish is at a depth x below the 66. surface of water. The refractive index of water is μ . The apparent distance of fish from the bird is

1.
$$x + \frac{y}{\mu}$$

2.
$$\mu x + y$$

$$3.\frac{x}{u}+y$$

4.
$$\frac{x}{\mu} - y$$

1. $x + \frac{y}{\mu}$ 2. $\mu x + y$ 3. $\frac{x}{\mu} + y$ 4. $\frac{x}{\mu} - y$ A ray of light is incident on the surface of separation of a medium with the velocity of 67. light at an angle 45⁰ and is refracted in the medium at an angle of 30⁰. What will be the velocity of light in the medium?

$$1.1.96 \times 10^8 \text{ m/s}$$

2.
$$2.12 \times 10^8$$
 m/s

2.
$$2.12 \times 10^8$$
 m/s $3.3.18 \times 10^8$ m/s $4. 3.33 \times 10^8$ m/s

4.
$$3.33 \times 10^8$$
 m/s

68.	10 g of ice at -20° C is dropped into a calorimeter containing 10 g of water at 10° C;									
	the specific heat of	water is twice that of	ice. When equilibri	um is reached, the						
	calorimeter will con	ntain								
	1. 20 <i>g</i> of water		2. 20 <i>g</i> of ice							
	3. 10 <i>g</i> ice and 10 g	g water	4. 5 <i>g</i> ice and 1:	4. 5 <i>g</i> ice and 15 g water						
69.	A double convex le	ens of focal length f is	cut into 4 equivaler	nt parts. One cut is						
	perpendicular to the	of the lens. The focal								
	length of each part is									
	1. f/2	2. f	3.2f	4. 4f						
70.	Two lenses of pow	er -15D and +5D are i	n contact with each	other. The focal length of						
	the combination is									
	1. +10cm	220 cm	310 cm	4. +20 cm						
71.	A convex lens A of	focal length 20 cm ar	nd a concave lens B	of focal length 5cm are						
	kept along the same	e axis with a distance	d between them as s	shown in figure. If a						
	parallel beam, then	d is equal to (in cm):								
		→ ∧								
			\/ ≢							
		≟ ()•	-d→ <u></u>							
		₹ \/	/\\\							
	1 15	2 20	2 22 5	1 25						
72	1.15	2. 20	3.22.5	4. 25						
72.	The power of a lens	s used to remove the r		4. 25 e is 0.66 D. The far point						
72.	The power of a lens of this eye is (nearl	s used to remove the r y)	nyopic defect of eye	e is 0.66 D. The far point						
72.	The power of a lens of this eye is (nearl 1. 25 cm	s used to remove the r y) 2. 150 cm	myopic defect of eye 3.100 cm	e is 0.66 D. The far point 4. 75 cm						
72. 73.	The power of a lens of this eye is (nearl 1. 25 cm lie between	s used to remove the r y) 2. 150 cm een aqueous humor an	myopic defect of eye 3.100 cm d the lens of the eye	e is 0.66 D. The far point 4. 75 cm						
	The power of a lens of this eye is (nearl 1. 25 cm lie between 1. Pupil	s used to remove the r y) 2. 150 cm een aqueous humor an 2. Iris	nyopic defect of eye 3. 100 cm d the lens of the eye 3. Cornea	e is 0.66 D. The far point 4. 75 cm e. 4. Retina						
72. 73. 74.	The power of a lens of this eye is (nearl 1. 25 cm lie between 1. Pupil When one ampere of	s used to remove the r y) 2. 150 cm een aqueous humor an 2. Iris current is flowing thro	3. 100 cm d the lens of the eye 3. Cornea ough a wire the num	e is 0.66 D. The far point 4. 75 cm						
	The power of a lense of this eye is (nearly 1. 25 cm lie between 1. Pupil When one ampere of passing any point in	s used to remove the r y) 2. 150 cm een aqueous humor an 2. Iris current is flowing thro n the conductor in one	3.100 cm d the lens of the eye 3.Cornea ough a wire the nume execond is	4. 75 cm e. 4. Retina ber of electrons that are						
74.	The power of a lense of this eye is (nearly 1. 25 cm lie between 1. Pupil When one ampere of passing any point in 1. 1.6×10 ¹⁹	s used to remove the r y) 2. 150 cm een aqueous humor an 2. Iris current is flowing thro n the conductor in one 2. 6.25×10 ¹⁸	3. 100 cm d the lens of the eye 3. Cornea ough a wire the num e second is 3. 6.25×10 ²⁰	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸						
74.	The power of a lense of this eye is (nearly 1. 25 cm lie between 1. Pupil When one ampere of passing any point in 1. 1.6×10 ¹⁹ Two resistances 50	s used to remove the results used to remove and 2. Iris current is flowing through the conductor in one 2. 6.25×10 ¹⁸ used to remove the results used to remove the re	3.100 cm d the lens of the eye 3. Cornea ough a wire the num e second is 3. 6.25×10 ²⁰ are connected in ser	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸ ries with a battery of 1.5						
74.	The power of a lense of this eye is (nearly 1. 25 cm) Let between 1. Pupil When one ampere of passing any point in 1. 1.6×10 ¹⁹ Two resistances 50 volt. The voltage according to the second of th	s used to remove the results as used to remove and 2. Iris current is flowing through the conductor in one 2. 6.25×10 ¹⁸ O ohm and 1000 ohm cross 1000Ω resistance	3.100 cm d the lens of the eye 3. Cornea ough a wire the num e second is 3. 6.25×10 ²⁰ are connected in ser	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸						
74.	The power of a lense of this eye is (nearly 1.25 cm) Length lie between 1. Pupil When one ampere of passing any point in 1. 1.6×10^{19} Two resistances 50 volt. The voltage and 1000Ω . The reading	s used to remove the results as used to remove and a substitution of the conductor in one 2. 6.25×10 ¹⁸ O ohm and 1000 ohm cross 1000Ω resistance g of volt meter is	3.100 cm d the lens of the eye 3.Cornea ough a wire the num e second is 3.6.25×10 ²⁰ are connected in ser e is measured by a	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸ ries with a battery of 1.5 volt meter of resistance						
74.	The power of a lense of this eye is (nearly 1. 25 cm) ———————————————————————————————————	s used to remove the results used to remove and 2. Iris current is flowing through the conductor in one 2. 6.25×10^{18} used to remove the results used to remove the remov	3.100 cm d the lens of the eye 3.Cornea ough a wire the num e second is 3.6.25×10 ²⁰ are connected in ser e is measured by a 3.0.75V	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸ ries with a battery of 1.5 volt meter of resistance 4. 0.5V						
74. 75.	The power of a lense of this eye is (nearly 1. 25 cm) ———————————————————————————————————	s used to remove the results as used to remove the results as 2.150 cm . Seen aqueous humor and 2.1 Iris . The current is flowing through the conductor in one $2.6.25 \times 10^{18}$. The conductor in one $2.6.25 \times 10^{18}$. The conductor in one cross 1000Ω resistance g of volt meter is 2.1 V . Stretched to increase in the conductor in the conductor in one cross 1000Ω resistance g of volt meter is 2.1 V .	3.100 cm d the lens of the eye 3.Cornea ough a wire the num e second is 3.6.25×10 ²⁰ are connected in ser e is measured by a 3.0.75V	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸ ries with a battery of 1.5 volt meter of resistance 4. 0.5V						
74. 75.	The power of a lense of this eye is (nearly 1.25 cm) ———————————————————————————————————	s used to remove the regy) 2. 150 cm een aqueous humor and 2. Iris current is flowing through the conductor in one 2. 6.25×10^{18} 0 ohm and 1000 ohm cross 1000Ω resistance g of volt meter is 2. $1V$ stretched to increase it tance will be	3.100 cm d the lens of the eye 3.Cornea ough a wire the num e second is 3.6.25×10 ²⁰ are connected in ser e is measured by a 3.0.75V	4. 75 cm 4. Retina ber of electrons that are 4. 1.6×10 ¹⁸ ries with a battery of 1.5 volt meter of resistance 4. 0.5V						

88.	wnich of th	ie ioli	owing may represent th	e groui	na state of nit	trogen atom?	·				
	1. ↓↑ ↓↑ [́	$\uparrow \downarrow \downarrow$	$2. \boxed{\downarrow\uparrow\downarrow\uparrow} \boxed{\uparrow\uparrow\uparrow}$	3. ↓′		4. ↓↑ ↑ ↓	$\uparrow\downarrow\downarrow$				
89.	If the nitrog	gen ha	d electronic configurati	on $1s^7$,	it would hav	e energy lower	than that				
	of the norm	al gro	ound state configuration	$1s^22s^2$	2p ³ , because	the electrons v	vould be				
	closer to the	e nucl	eus Yet 1s ⁷ is not obser	ved. It	violates						
	1. Heisenberg's uncertainty principle										
	2. Hund's rule										
	3. Pauli's exclusion principle										
	4. Bohr pos	tulate	of stationary orbits								
90.	Which of th	ne foll	owing is Dobereiner tri	ad							
	1. Li, Na, K		2. Fe, Co, Ni	3. Ru	ı, Rh, Pd	4. Os, Ir, Pt					
91.	The ground	state	electonic configuration	s of the	e elements, U	, V, W, X, and	Y (these				
	symbols do	not h	ave any chemical signif	ficance)) are as follow	WS.					
	$U 1s^2 2s^2 2p^3$	3									
	$V 1s^2 2s^2 2p^6$	$^{5}3s^{1}$									
	$W 1s^2 2s^2 2p$	$^{6}3s^{2}3$	p^2								
	$X 1s^2 2s^2 2p^6$	$63s^23p$	$0^6 3 d^5 4 s^2$								
	$Y 1s^2 2s^2 2p^6$	$^{5}3s^{2}3p$	$0^6 3d^{10} 4s^2 4p^6$								
	Determine v	which	sequence of elements s	satisfy t	the following	statements					
	i) Element 1	forms	a carbonate which is no	ot deco	mposed by he	eating					
	ii) Element	is mo	st likely to form colour	ed ioni	c compounds						
	iii) Element	t has l	argest atomic radius								
	iv) Element	t form	s only acidic oxide								
	1. V W Y U	J	2. V X Y W	3. V	WYX	4. V X W U	J				
92.	Which of th	ne foll	owing is the correct ord	ler of e	nergy levels						
	1. 1 <i>s</i> < 2 <i>s</i> <	2 <i>p</i> <	3s < 3p < 3d < 4s < 4p								
	2.1s < 2s < 2	2p < 3	3s < 3p < 4s < 3d < 4p								
		•	3s < 4s < 3p < 3d < 4p								
			3s < 4s < 4p < 3p < 3d								
93.	Match the f				11						
		1)	Noble gas	a)	ns ¹						
		2)	Alkali metals	b)	ns ² np ⁶						
		3)	Halogens	c)	ns^2np^4						
		4)	Chalcogens	d)	ns ² np ⁵						
	1. 1 – b, 2 –				1 - a, 2 - b, 3	•					
	3. 1 – b, 2 –	- d, 3	- a, 4 − c	4.	1 - c, 2 - a, 3	6 - a, 4 - b					

94. Which of the following is not an oxide ore?

1. Corundum

2. Zincite

3. Calamine

4. Chromite

95. Which of the following have covalent, coordinate and ionic all three types of bonds

a) NH_4Cl

b) KNO_3

 $c)K_3[Fe(CN)_6]$

 $d)H_2CO_3$

1. only c

2. b and c only

3. a, b and c only

4. a, b, c and d

96. For ionic compounds correct statement is

I) The higher the temperature, the more the solubility

II) The higher the dielectric constant of the solvent, the more the solubility

III)The higher the dipole moment of the solvent, the more the solubility

IV) The higher the lattice energy, the more the solubility

1. I, II& III

2. II, III, IV

3. I, IV & III

4. All the above

97. Which of the following is correct?

1. the number of electrons present in the valence shell of S in SF_6 is 12

2. The rates of ionic reactions are very slow

3. In O₂ molecule there are two pi bonds

4. correct order of ability to form ionic compounds is $Al^{3+} > Mg^{2+} > Na^{+}$

98. Among the following statements the incorrect ore is

1. Zincblende and iron pyrities are sulphides ore

2. Haematite and zincite are oxide ore

3. Epsomsalt & Gypsum are sulphate ore

4. Lime stone & magnesite are carbonate ore

99. One mole of molecules of oxygen represents

 $1.6.02 \times 10^{23}$ molecules of oxygen

2. 8 gms of oxygen

 $3.16g ext{ of } O_2$

4.11.2L of o₂ at STP

100. The compound having same number of σ and Π bonds is

$$1. H_2C = CH - CN$$

$$2.H_2C=CH-CH=CH_2$$

THE END

KEY	(SET-1)
\mathbf{M}_{ℓ}	ATHS

1) 2	2) 4	3) 2	4) 2	5) 1	6) 2	7) 3	8) 3	9) 4	10) 1
11) 2	12) 2	13) 1	14) 3	15) 2	16) 1	17) 1	18) 4	19) 1	20) 2
21) 3	22) 1	23) 4	24) 3	25) 2	26) 2	27) 1	28) 1	29) 3	30) 1
31) 2	32) 3	33) 2	34) 2	35) 3	36) 1	37) 1	38) 4	39) 4	40) 2
41) 2	42) 2	43) 4	44) 3	45) 1	46) 1	47) 3	48) 1	49) 1	50) 3
51) 1	52) 2	53) 1	54) 2	55) 2	56) 4	57) 3	58) 1	59) 4	60) 1

PHYSICS

61) 1	62) 3	63) 4	64) 4	65) 3	66) 3	67) 2	68) 3	69) 3	70) 3
71) 1	72) 2	73) 2	74) 2	75) 3	76) 1	77) 2	78) 2	79) 2	80) 2

CHEMISTRY

81) 4	82) 4	83) 4	84) 2	85) 4	86) 3	87) 2	88) 2	89) 3	90) 1
91) 2	92) 2	93) 1	94) 3	95) 3	96) 1	97) 1	98) 2	99) 1	100)3