Grid connection 2: PU 기반 필터 설계

소개 Introduction

3상 PWM 컨버터의 계통 연계 시, 용량에 따라 적절한 고조파 필터를 선택하기 위하여 Per-unit system 기반으로 설계할 수 있다. 본 문서에서는 기저값 기반으로 L 혹은 LCL 고조파 필터를 설계하는 기본 개념에 대해서 소개한다.

Per-unit system

Per-unit system으로 분석하기 위한 기저값 계산은 아래와 같이 요약할 수 있다.

$$P_{base} = Rated power$$
 [W]

$$V_{base} = Rated \ phase \ voltage$$
 [V_{rms}]

$$f_{base} = Rated\ frequency$$
 [Hz]

$$I_{base} = \frac{P_{base}}{3} \times \frac{1}{V_{base}}$$
 [A_{rms}]

$$Z_{base} = V_{base}/I_{base}$$
 [Ω]

$$\omega_{base} = 2\pi f_{base}$$
 [rad/s]

$$L_{base} = \frac{Z_{base}}{\omega_{base}}$$
 [H]

$$C_{base} = \frac{1}{\omega_{base} Z_{base}}$$
 [F]

정격 전력은 역률 1 운전을 가정하여 유효 전력으로 설정할 수 있으며, 정격 전압은 상전압으로 설정하였다.

고조파 필터 설계 (1) 1차 필터 (L)

고조파 필터는 3상 PWM 컨버터의 PWM 동작으로 인해 발생하는 전류 고조파를 저감하기 위하여 반드시 필요하다. 간단히 인버터에서 발생하는 PWM 고조파 전압원에 대하 여 고조파 필터를 거쳐 나오는 전류 신호의 고조파의 전달 함수를 기반으로 설정할 수 있다.

L 필터를 고조파 필터로 사용하는 경우, 설계를 비교적 간단히 접근할 수 있다. 고정 주파수로 스위칭 하는 컨버터 를 가정하면, 스위칭 주파수와 그 정수 배 주파수 근처에서 가장 큰 고조파 전압이 발생한다. 이에 대한 이론적인 값은 PWM 관련 서적에서 참고할 수 있으며, 회로 시뮬레이션으 로 대략적으로 짐작할 수 있다.

그림 1. 2.5 kHz 스위칭 시 PWM 컨버터 출력 전압 FFT 예시 *Byung-Geuk Cho, et al, "LCL filter design for grid-connected voltage-source converters in high power systems."

L 필터는 1차 필터로, 전압/전류 전달함수가 -20 dB/dec로 감소한다. 스위칭 주파수에서 고조파 전압 크기를 알면목표 전류를 달성하기 위한 인덕턴스를 아래와 같이 계산할수 있다.

$$L = \frac{1}{\omega_{sw}} \frac{V_{har}}{I_{har}} = \frac{\omega_{base}}{\omega_{sw}} \frac{V_{har,pu}}{I_{har,pu}} L_{base}$$

작은 용량의 높은 스위칭 주파수를 가지는 PWM 컨버터는 위의 식을 토대로 간단히 설계할 수 있다. 예를 들어 5 kW 급 컨버터로 10 kHz 스위칭 주파수를 사용할 때 기본 파 대비 20 %가량의 스위칭 주파수 고조파 전압이 발생하고, 해당 주파수 전류 고조파를 1 %이내로 억제하고 싶다면, 0.12 pu의 인덕터를 사용하면 원하는 스펙을 달성할 수

있다. 하지만 대용량, 낮은 주파수는 이러한 설계로 원하는 고조파 스펙을 달성하기 어렵다.

고조파 필터 설계 (2) 고차 필터 (LCL)

L 필터는 기본적으로 1차 필터이므로 감쇄 정도가 -20 dB/dec로 제한된다. 따라서 더 높은 고조파 필터링 성능을 얻고 싶다면 고차 필터를 사용해야 한다. 다양한 종류가 있지만, 많이 알려진 LCL 필터의 경우 댐핑을 고려하지 않으면 3차로 고조파를 감쇄할 수 있다. LCL 필터의 입력 전압으로부터 출력 전달함수는 다음과 같이 계산한다.

$$\frac{ig}{v_c} = \frac{1}{s(L_{fg}L_{fc}C_{f}s^2 + L_{fg} + L_{fc})} = \frac{1}{L_{fg}L_{fc}C_{f}s\left(s^2 + \frac{1}{L_{p}C_{f}}\right)}$$

여기서 i_g 는 계통 측 출력 전류, v_c 는 컨버터 측 입력 전압, L_{fc} 는 컨버터 측 인덕터, L_{fg} 는 계통 측 인덕터를 의미한다. $L_p = \left(L_{fc}^{-1} + L_{fg}^{-1}\right)^{-1}$ 는 두 인덕터의 병렬 등가 값을 의미한다.

LCL 필터의 공진 주파수는 아래와 같이 계산할 수 있다.

$$\omega_{res} = \frac{1}{\sqrt{L_p C_f}}$$

그림 2와 같이 공진 주파수 이전에는 입력 전압, 출력 전류 전달함수가 -20 dB/dec로 감쇄하다가 공진 주파수보다 높은 구간에서는 -60 dB/dec로 감쇄한다. 보통 스위칭 주파수보다 낮은 공진 주파수를 선택하게 된다. 제어 안정성 등을 고려하여 적절히 선택해야 한다.

LCL 필터 값 설계는 다양한 접근 방식이 있어, 문헌을 참고하고, 본인의 설계 목적에 맞는 값을 찾는 것이 중요하다.

필자는 Rule of thumb으로 스위칭 주파수의 $0.4 \sim 0.6$ 배로 공진 주파수를 설정하며, L_{fc} 와 L_{fg} 의 합친 값이 $0.05 \sim 0.07$ pu가 되도록 설정한다. 그리고 L_{fc} 와 L_{fg} 의 비율은 6:4 혹은 7:3 정도로 설정한다.

추가로 **Yi Tang**, **et al**, "Generalized Stability Regions of Current Control for LCL-Filtered Grid-Connected Converters without Passive or Active Damping"의 분석 결과를 참고하여 공진 주파수와 샘플링 주파수의 관계에 다라 제어 전류를 결정하기도 한다. (해당 논문은 단상 인버터에서 분석했다는 한계를 유념하여야 한다.)

- 1. 컨버터 측 전류: $f_{res} < \frac{f_s}{6}$ and $f_{res} > \frac{f_s}{2}$
- 2. 계통 측 전류: $\frac{f_s}{6} < f_{res} < \frac{f_s}{2}$

그림 **2.LCL** 필터 입력 전압으로부터 출력 전류 전달함수 예시 * Byung-Geuk Cho, et al, "LCL filter design and control for grid-connected PWM converter"

LCL 필터를 설계할 때, 현실적인 고려 사항을 몇 가지 생각하면 다음과 같다.

- 먼저 용량에 따라 스위칭 주파수의 제한이 발생할 수 있으며, 이 때 공진 주파수가 매우 낮아질 수 있다. 하지만 원하는 필터 성능을 얻기 위해서는 세심한 설 계가 필요하다.
- 2. 용량에 따라 전체 인덕턴스가 커지면 무게 및 비용 측면에서 시스템 구성에 부담이 발생한다. 반면에, 인 덕터 크기를 줄여 스위칭 리플이 커지면 컨버터 측 인덕터의 코어 손실이 커질 수도 있다.
- 3. 인덕터 간의 비율은 저장되는 에너지를 고려하면 1:1 이 이상적이다. 하지만, 실제 계통 설비 혹은 계통 임피던스로 인해 계통 측 인덕터가 추가되는 효과가 발생하게 된다. 전류 제어 측면에서 계통 측 임피던 스가 과도하게 커지면 불안정성이 발생할 수 있는데, PCS 내의 인덕터 구성만 고려하여 설계하면 제어 불안정성이 발생할 수도 있다.
- 4. 멀티레벨 인버터, 예를 들어 3-Level로 컨버터를 구성할 때 고조파 전압의 크기를 줄일 수 있으므로 전체 인덕터 값을 줄일 수도 있다.

본 자료는 대략적인 정보 전달을 위한 매거진으로, 기술 상의 오류가 있을 수 있으며, 최신 동향이 누락될 수 있 습니다. 상세한 지식과 정보를 얻기 위해서는 교재 및 논문 등을 참고하시기 바랍니다.

Reporting: benkim@plecko.biz