Appendix B: Sets, Relations, Functions, Tree, an Graphs, etc.

EE602

Modified from Prof. Galen Sasaki's slides

Sets, etc.

- Reading Assignment:
- Read Appendix B.1, B.2, and B.3

Topics

- Sets, relations, and functions
- Predicates and quantifiers
- · Proof methods
 - Contradiction (by contrapositive is similar) and
 - Mathematical induction
- Recursion and recursive algorithms

B.1 The language of sets

- Suppose S is a set, x is an element of S
- x ∈ S means that x is a member of S
- x ∉ S means that x is not a member of S
- Set roster notation: {1, 2, 3}, {1, 2, ..., 10}, or {1, 2,}
 - "..." is known as an ellipse, which means "and so forth"
- ullet \varnothing is an empty set
- R is the set of all real numbers
 - R+ is the set of positive real numbers
- **Z** is the set of all integers
 - Z^{nonneg} is the set of nonnegative integers, i.e., the natural numbers N
- Q is the set of all rational numbers

The language of sets

- Set builder notation: $\{x \in S \mid P(x)\}\$ or $\{x \in S : P(x)\}\$
 - Example: $\{x \in N: 11 < x < 100\}$
 - ":" or "|" means "such that"
- A is a subset of B ($A \subseteq B$) means every element in A is in B
- A is a proper subset of B (A ⊂ B) means A is a subset of B but A and B are not the same sets.
- Forward slash "/" means "not"
 - Examples: ∉ and ⊄
- Ordered pair (x,y) the order of the elements matters
 - Not the same as (y,x)
 - Not the same as $\{x,y\}$, where order does not matter

Subsets - definitions

- Definitions
 - Subset: $A \subseteq B \leftrightarrow \forall x$, if $x \in A$ then $x \in B$
 - Proper Subset: A ⊂ B ↔
 - A ⊆ B and
 - $\exists x \in B \text{ such that } x \notin A$
- Element Argument

Basic method for proving that one set is a subset of another

- Let sets X and Y be given. To prove $X \subseteq Y$
- 1. Suppose that \boldsymbol{x} is a particular but arbitrarily chosen element of \boldsymbol{X}
- 2. Show that x is an element of Y
- Basic Method to Proving that Sets are Equal
 - Let sets X and Y be given. To prove X = Y.
 - 1. Prove $X \subseteq Y$
 - 2. Prove $Y \subseteq X$

X is a subset of Y

Set Operations and their laws

- The intersection of sets A and B is the set A \cap B = {x : x \in A and x \in B}
- The *union* of sets A and B is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- The difference between two sets A and B is the set A B = $\{x: x \in A \text{ and } x \not\in B\}$
- Set operations obey the following laws:

 Empty set laws: $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$ Idempotency laws: $A \cap A = A$, $A \cup A = A$ Commutative laws: $A \cap B = B \cap A$, $A \cup B = B \cup A$ Associative laws: $A \cap (B \cap C) = (A \cap B) \cap (C, A \cup (B \cup C) = (A \cup B) \cup C$ Distributive laws: $A \cap (B \cup C) = (A \cap B) \cap (A \cap C)$; $A \cap (B \cup C) = (A \cup B)$ $A \cap (B \cup C) = (A \cap B) \cap (A \cap C)$; $A \cap (B \cup C) = (A \cup B)$

 - $A \cap (A \cup B) = A;$ $A \cup (A \cap B) = A;$ $A \cdot (B \cap C) = (A \cdot B) \cup (A \cdot C);$ $A \cdot (B \cup C) = (A \cdot B) \cap (A \cdot C);$ DeMorgan's laws:

Identities

- Commutative laws
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associative laws
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- · Distributive laws
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
- Identity Laws
 - A $\cup \emptyset$ = A, here \emptyset is the empty set
 - A ∩ U = A, here U is the universal set

Identities

- Complement law
 - A ∪ A^c = U
 - A ∩ A^c = Ø
- Double complement law
 - (Ac)c = A
- Idempotent law
 - A U A = A
 - A ∩ A = A
- Universal bound laws
 - A ∩ Ø = Ø
 - A ∪ U = U

Identities

- De Morgan's laws
 - $(A \cup B)^c = A^c \cap B^c$
 - $(A \cap B)^c = A^c \cup B^c$
- Absorption laws
 - (A^c)^c = A
- ullet Complements of U and \varnothing
 - Uc = ∅
 - Øc = U
- Set difference law
 - $A B = A \cap B^c$

Set Operations

- Union
 - A \cup B = set of elements that are in A or B

- A ∩ B = set of elements that are in A and B
- Difference (or exclusion) • A – B (or A \ B) = set of elements in A that are not in B
- Complement

Intersection

• Ac = set of elements in U that are not in A

The Universe, the complement

- all the sets under consideration are subsets of some larger set U called the universe
- Given a universe U, we define the complement of a set A as $\sim A = U - A = \{x: x \in U \text{ and } x \notin A\}.$
- For any set $A \subseteq U$, we have the following laws:
 - \sim \sim A = A; A \cap \sim A = \varnothing ; A \cup \sim A = U
 - Rewrite DeMorgan's Law: for any two sets B, C ⊆ U, we have $^{\sim}(B \cap C) = ^{\sim}B \cup ^{\sim}C$; $^{\sim}(B \cup C) = ^{\sim}B \cap ^{\sim}C$

Disjoint Sets

- Two sets A and B are disjoint if they have no elements in common
 - If $A \cap B = \emptyset$:
- A collection S = {S_i} of nonempty sets forms a partition of a set S if the sets are pairwise disjoint
 - S_i , $S_i \in S$ and $i \neq j$ imply $S_i \cap S_i = \emptyset$;
 - And their union is S, that is, $S = \bigcup S_i$

Disjoint sets

- A and B are disjoint \leftrightarrow A \cap B = \varnothing
- Sets A_1 , A_2 , A_3 ,... are mutually disjoint (or pair-wise disjoint or nonoverlapping)

if and only if

for all $i, k = 1, 2, 3, ..., A_i \cap A_k = \emptyset$

- A finite or infinite collection {A₁, A₂, A₃,...} of nonempty sets is a partition of a set A if, and only if
- 1. A is the union of all the sets A_k
- 2. The sets are mutually disjoint

Cardinality

- The number of elements in a set is the cardinality (or size) of the set, denoted |S|

 - |A| = cardinality of set A

 - |(x, y)| = 2 If the cardinality of a set is a natural number, we say the set is finite; otherwise, it is infinite.
- For any two finite sets A and B, we have the identity $|A \cup B| = |A| + |B| |A \cap B|$
 - $|A \cup B| \le |A| + |B|$
- A finite set of n elements is sometimes called an n-set.
 - A 1-set is called a singleton.
 - A subset of k elements of a set is sometimes called a k-subset.

Power Set

- Given a set A, the **power set** of A, is the set of all subsets of A
 - $A = \{x, y\}$
 - Power set of A = { Ø, { x }, { y }, { x, y } }
- Cardinality of the power set of A is $2^{|A|}$

Cartesian product

- Given sets A and B, the Cartesian product of A and B is the set of all ordered pairs (a,b) where a is in A and b is in B.
 - A x B, read as "A cross B"
 - $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$
 - $A \times B = \{(a,b) \mid a \in A, b \in B\}$, where "," means "and"

Ordered n-tuples

- Let n be a positive integer
- \bullet Let \mathbf{x}_1 , \mathbf{x}_2 , ... Be the elements of a set
- The ordered n-tuple, $(x_1, x_2, ..., x_n)$ consists of $x_1, x_2, ..., x_n$
 - The ordering: first x_1 , then x_2 , and so forth up to x_n
 - A 2-tuple is an ordered pair
 - A 3-tuple is an ordered triple
- Two ordered n-tuples $(x_1$, x_2 ,..., $x_n)$ and $(y_1$, y_2 ,..., $y_n)$ are equal if, and only if x_1 = y_1 , x_2 = y_2 , ..., x_n = y_n
- Given sets A_1 , A_2 ,..., A_n , the *Cartesian product* of A_1 , A_2 ,..., A_n denoted by A_1 x, A_2 x..., A_n , is the set of all ordered n-tuples $(a_1, a_2, ..., a_n)$

 - where $a_1 \in A_1$, $a_2 \in A_2$,, $a_n \in A_n$ $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) : a_1 \in A_1, a_2 \in A_2,, a_n \in A_n\}$

B.2 Relations

- Let A and B be sets. a Relation R from A to B is a subset of A x B.
 - $A = B = \{1, 2, 3\}$ and the relation is "<". Then, $R = \{(0,1), (0,2), (1,2)\}$
 - A = domain and B = co-domain of R
- Given an ordered pair (x,y) in A x B, x is related to y by R if and only if (x,y) is in R
 - Written x R y
 - Example: 1 < 2
- R is a *function* if every element of A maps to one element in

0 R = "<" 0 1 1 2 2

2 2 2

Domain Co-domain

Note that this relation is not a "function" since 1. Domain member "0" leads to two values "1" and

in the co-domain

2. Domain member "0" does not lead to any value in

the co-domain

Intervals on the real line

- (a,b)
- (a, b]
- [a,b)
- [a,b]
- (a, ∞), [a, ∞),
- (-∞, b), (-∞, b]

20

Properties of Sets: Relations

- Inclusion of intersection
 - $A \cap B \subseteq A$
 - $A \cap B \subseteq B$
- Inclusion in union
 - A ⊆ A ∪ B
 - B ⊆ A ∪ B
- Transitive property of subsets
 - If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$

21

Statements

- A statement (or proposition) is a sentence that is true or false but not both
 - Example: The dog is white
- A *universal statement* says that a certain property is true for all elements in a set
 - Example: All dogs are animals, or \forall dogs d, d is an animal
- A conditional statement says that if one thing is true then some other thing is true
 - Example: If Z is a dog then Z is an animal
 - If X is true then Y is true
- Existential statement says that there is at least one thing for which the property is true
 - Example: There is a polygon that has four sides, or \exists a polygon p, p has 4 sides

22

Conditional statements

- Conditional statement has the form "If p then q"
 - p is the hypothesis (or antecedent)
 - q is the conclusion (or consequent)
- The **contrapositive** of a conditional statement of the form **"if** *p* **then** *q*" is

• If ~q then ~p

if p then q means p inside q

if ~q then ~p means ~q inside ~p

23

Conditional statements

- "r is a sufficient condition for s" means "if r then s"
- "r is a necessary condition for s" means "if s then r"
- "r is a necessary and sufficient condition for s" means "s iff r"

24

Predicates and quantified statements

- A predicate is a sentence that contains a finite number of variables and becomes a statement when specific values are substituted for the variables.
 - Example: Let P(x) be the predicate " $x^2 > x$ "
- The domain of a predicate variable is the set of all values that may be substituted in place of the variable
 - Example: Domain of P(x) is the set R of all real numbers
- If P(x) is a predicate and x has the domain D, the truthset of P(x) is the set of all elements of D that make P(x)true when they are substituted for x
 - The truth set of P(x) is denoted $\{x \in D \mid P_{Trut} \mid D\}$

Predicates and quantified statements

- A predicate is a sentence that contains a finite number of variables and becomes a statement when specific
- · A statement is true or false but not both
- Quantifiers
 - · A method to convert a predicate to a statement is to add word(s) that refer to quantities of the variables

 - Example: "for all x ∈ R and x > 1, x < x²"
 Example: "there exists some value x ∈ R such that, x > x²"
 - Universal quantifier ∀ means "for all"
 - Also "for every", "for any", "for each", and "given any"
 - . Existential quantifier ∃ means "there exists"
 - Also, "there is a", "we can find a", "there is at least one", for some", and "for at least one"
 - · "such that" is inserted before the predicate

Predicates and quantified statements

- Let Q(x) be a predicate and D the domain of x
- A *universal* statement has the form " $\forall x \in D$, Q(x)"
 - It is true iff Q(x) is true for all x in D
 - Example: for all dogs x, x is a mammal
 - It is false iff Q(x) is false for some x in D
 - Example: for all dogs x, x weighs less than four pounds
 - Example: counter example, an adult great dane weights at least
 - A value of x for which Q(x) is false is called a counterexample to the universal statement
- A existential statement has the form " $\exists x \in D, Q(x)$ "
 - It is true iff Q(x) is true for some x in D
 - It is false iff Q(x) is false for all x in D

Predicates and quantified statements

Negation of quantified statements

- Consider the statement " $\forall x \in D, Q(x)$ "
- Its negation is logically equivalent to " $\exists x \in D$ such that $^{\sim}Q(x)$
- Symbolically \sim ($\forall x \in D$, Q(x)) ≡ $\exists x \in D$ such that $^{\sim}Q(x)$
- Consider the statement " $\exists x \in D$ such that Q(x)"
- Its negation is logically equivalent to " $\forall x \in D, ^{\sim}Q(x)$ "
- Symbolically $\sim (\forall x \in D, Q(x)) \equiv \exists x \in D \text{ such that }$

Theorems

- Theorem is a statement that has been proven on the basis of previously established statements such as other theorems and or axioms
 - Example: Theorem: Suppose n is even. Then n^2 is even
- Theorem has assumptions (or hypothesis) and a result
- Lemma is like a theorem but its used to prove a
- Conjecture: A statement that is asserted to be true but is not proven

Writing Proofs

- A proof is a convincing argument that a theorem is
 - · Should be clearly understood by someone else
- Step 1. Copy the statement of the theorem to be proved on your paper
- Step 2. Clearly mark the beginning of your proof with the word "Proof"
 - Terminate the proof with
 - "■" (a black box) or
 - "QED", which means "quod erat demonstrandum" "which had to be proven'

Writing Proofs

- Step 3. Make your proof self contained
 - At the beginning explain the meaning of each variable
 - Example: "Let x be a positive real number"
 - Example: "Suppose x is a solution to the quadratic equation x^2 -2x + 1 = 0
 - You may introduce new variables
 - Example: "Since x is a solution to the quadratic equation x^2 –
- Step 4. Write your proof in complete, grammatically correct sentences
 - You may use equations, symbols, and shorthand notations
 - As much as possible keep it readable

Writing Proofs

- Step 5. Keep your reader informed about the status of each statement in the proof
 - · If something is assumed, preface it with
 - "Suppose"
 - "Assume"
 - If something is still to be shown, preface it with
 - · "We must show that"
 - "In other words, we must show that"
- Step 6. Give a reason for each assertion in your proof
 - Examples:
 - "by hypothesis","by definition",

 - · "by theorem",
 - · "by the last equality"

Writing Proofs

- Step 7. Include the "little words and phrases" that make the logic of your argument clear
 - A new thought that doesn't necessarily follow from the previous statement
 - "Note that",
 - · "Observe that",
 - "Note",
 - "But",
 - "Now",
 - "However" • In many cases, it's a good idea to start a new paragraph
- Step 8. Display equations and inequalities
 - Examples: each equation and inequality are on separate lines
 - Example:
 - X = (25+2)/3 = (27)/3 = 9

Getting proofs started

Theorem. Every complete bipartite graph is connected

Suppose G is a complete bipartite graph

Fill in here

Thus, G is connected

Proof methods – some examples

- · Direct proof
- Constructive proof
- Nonconstructive proof of existence method
 - Example: pidgeon hole argument
- Disprove by counter example
- · Proof by exhaustion
- · Proof by cases
 - · Divide and conquer
- Proof by contradiction (next slide)
 - Proof by contraposition
- Proof by mathematical induction (later slides)

6

Proof by Contradiction

- Method of proof by contradiction
 - Step 1. Suppose the statement to prove is false
 - Step 2. Show that this supposition leads logically to a contradiction
 - Step 3. Conclude that the statement to prove is true
- Proof by contrapositive is related

Contradiction - Example

- Theorem. There is no greatest integer
- Proof
 - · Suppose there is a greatest integer M
 - Let n = M+1
 - n is an integer and n > M
 - · Therefore, M is not the greatest integer
 - But we supposed that M is the greatest integer, so we have a contradiction
 - · Therefore, there is no greatest integer

Contradiction – Example 2 – on

Theorem. There is no integer that is both odd and even

- Proof
- · Suppose there is an integer n that is odd and even
- Since n is odd, there is an integer s such that n = 2s+1
- Since n is even, there is an integer t such that n = 2t
- Then 2s = 2t+1
 Then s = t + (1/2) by dividing by two on both sides
 The left side is integer
- The right side is an integer t plus 0.5, so the right side is not integer
- Since the left side is integer but the right side is not, their equality is false
- We have a contradiction, so the initial assumption is false
- · So there is no integer that is both odd and even

Contradiction – Example 2 – on

YOUR OWN• Theorem. The sum of a rational and an irrational number is irrational

- - · Let m be an arbitrary rational number
 - · Let n be an arbitrary irrational number
 - Suppose m + n is rational
 - Since m is rational, m = a/b for some integers a and b
 - Since m + n is irrational, m + n = c/d for some integers c and
 - We'll work with m + n = c/d
 - Now n = c/d m
 - = c/d a/b
 - = c/d + (-a/b)
 - n is the sum of two rational numbers, so it's rational
 - Contradicts the assumption that n is irrational

Mathematical induction

- Application
 - · Prove something is true of a sequence, e.g., sequence of values, steps of an algorithm
 - · Goal: Prove
 - Property P is true for index 1
 - Property P is true for index 2
 - Property P is true for index 3

 - In other words, Property P is true over all indices
 - Example property: for all positive in $\frac{n}{\log e} e^{\frac{n!}{2}(n+1)}$

Principle of mathematical induction

- Let P(n) be a property that is defined for integers n
- Let m be a fixed integer, the starting index
- Suppose the following two statements are true
 - P(m) is true [starting point]
 - For all integers $k \ge m$, if P(k) is true then P(k+1) is true
- Then the following statement is true
 - for all integers $n \ge m$, P(n) is true

Method of Proof by Mathematical Induction

- Prove: "For all integers n ≥ m (usually m=0 or 1), a property P(n) is true"
- Proof method
- Step 1 (basis step): Show that P(m) is true. [Also called the base case]
- Step 2 (induction step): Show that
 - for all integers $k \ge m$, if P(k) is true then P(k+1) is true
- [Step 2 can be done as follows:]
 - Suppose that P(k) is true, where k is any value at least a
 - This is called the "induction hypothesis"
 - Show that P(k+1) is true

Example 1 – sum of integers

Prove for all integers n $\sum_{n=0}^{\infty} k_n = \frac{n(n+1)}{2}$

Base case: Suppose n = $1\sum_{k=1}^{n} \frac{1}{k}$ Then and $\frac{1(1+1)}{2} = 1$ Therefore $\sum_{k=1}^{n} \frac{1}{k} = \frac{n(n+1)}{2}$

Induction step:

Induction hypothesis: Suppose for so n(n+1)

We now proceed to show that the equality is true for n+1

Example 1 – sum of integers

Induction hypothesis: Suppose for some $\frac{n}{n} = \frac{n(n+1)}{n-1}$

We now proceed to show that the equality is true for n+1

Note that
$$\sum_{k=1}^{n+1} k = \underbrace{(n+1)}_{k=1} + \sum_{k=1}^{n} k$$

From the induction hypothesis $k=(n+1)+\frac{n(n+1)}{2}$

$$(n+1) + \frac{n(n+1)}{2} = \frac{2(n+1)}{2} + \frac{n(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= \frac{n+1}{2} = \frac{n+1}{2} =$$

Strong Mathematical Induction

- Principle of Strong Mathematical Induction
- Let P(n) be a property that is defined for integers n, and let x and y be fixed integers with $x \le y$. Suppose the following two statements are true:
 - P(x), P(x+1), ..., P(y) are true. (basis step)
 - For any integer $k \ge x$, if P(x), P(x+1), ..., P(k) is true (inductive hypothesis)
 - Then P(k+1) is true (inductive step)
- Then for all integers $n \ge x$, P(n) is true

Example 2 – sum of geometric series Go over on your own

Prove any real number r except 1, and any in $\frac{1}{\log e^r} = 0$

Base case n =
$$0 \sum_{k=0}^{0} r^{k} = r^{0} = 1$$
 $\frac{r^{n+1}}{r-1} = \frac{1}{r-1} \frac{r}{r-1} = 1$

so the left and right hands of the equality are equal to one, which mean

Induction step: Induction step: $\sum_{r}^{r} \frac{r}{r} = \frac{r}{\rho_{r1}}$ Induction hypothesis: Suppose for $\frac{r}{\rho_{r1}} = \frac{r}{\rho_{r1}}$

We will show the
$$\sum_{k=1}^{n+1} t^k = \frac{r^{n+2}-1}{r-1}$$

[Expand left side then do some algebra to get the right side]

Example 2 – sum of geometric series Go over on vour own

Expand left side then do some algebra to get the right side

from induction hypothesis

$$= \frac{r^{n+1}(r-1)}{r-1} + \frac{r^{n+1}-1}{r-1}$$

$$= \frac{r^{n+2}-r^{n+1}+r^{n+1}-1}{r-1}$$

Example: $2^{2n} - 1$ is divisible by 3 Go over on your own

- For all integers $n \ge 0$, $2^{2n} 1$ is divisible by 3
- Proof by mathematical induction
- Base case, n = 0.
 - $2^{2n} 1 = 2^0 1 = 1 1 = 0$
 - 0 is divisible by 3, so base case is true
- Induction step
 - Suppose $2^{2n}-1$ is divisible by 3 for an arbitrary $n \ge 0$
 - We will show that the property is true for n+1, i.e.,
 - 22(n+1) 1 is divisible by 3

Example: $2^{2n} - 1$ is divisible by 3 - on

Y Muchon Step

- Suppose $2^{2n} 1$ is divisible by 3 for an arbitrary n >= 0 • Hence, there is an integer r such that $2^{2n} - 1 = 3r$
- We will show that the property is true for n+1, i.e.,
- $2^{2(n+1)}-1$ is divisible by 3 We'll start with $2^{2(n+1)}-1$ and check if it is divisible by 3
- Note
 - $2^{2(n+1)}-1=2^{2n+2}-1$ [Let's make it something we've seen before]

[Induction hypothesis]

- $= 2^2$ x $2^2 1$ $= 2^2$ x 4 1
- = $4 \times 2^{2n} 1$
- = 4 x (2²ⁿ-1) + 4 1
- $=4 \times (2^{2n}-1)+3$
- = $4 \times 3r + 3$
- = 3 (4r + 1)
- So it's divisible by 3

Example: $2n+1 < 2^n -- on your$ own

- For all integers $n \ge 3$, $2n+1 < 2^n$
- Proof by mathematical induction
- Base case, n = 3.
 - Note 2n+1 = 7
 - Note 2ⁿ = 8
 - Thus, Since 7 < 8, $2n+1 < 2^n$
 - Induction step
 - Induction hypothesis: Suppose n is arbitrary and $n \ge 3$.
 - We want to prove the inequality for n+1

Example: $2n+1 < 2^n - on your own$

- Induction step
 - Induction hypothesis: Suppose n is arbitrary and n >= 3. Then 2n+1 < 2ⁿ
 - We want to prove the inequality for n+1
 - · Left hand side becomes
 - 2(n+1) +1 = 2n +2 +1 [transform it into something we've seen before]
 =2n+1+1+1

 - = (2n + 1) + 2
 - < 2ⁿ + 2 [using induction hypothesis]
 - < 2ⁿ + 2ⁿ [using the fact that $2 < 2^k$ for all $k \ge 2$]
 - $= 2(2^n)$

 - · Which is the right hand side

Rooted Trees

• Reading Assignment: Appendix B.5.2 and B.5.3

Rooted Trees

- A rooted tree is a graph with the following properties
- Nodes are partitioned into levels numbered 0, 1,
- There is only one vertex at level 0 which is referred as the root
- A node at level \emph{k} is connected by links only to nodes at level $\emph{k}\text{-1}$ and $\emph{k}\text{+1}$
 - · Nodes have neighbors only at adjacent levels
- A node at level k > 0, is connected to exactly one node at level k-1 called its parent
 - The root does not have a parent
 - · Nodes are children of their parents
 - Children are one level further away from the root than their parents
 - Nodes with the same parent are siblings
- The height of a rooted tree is the maximum level over all the vertices

Rooted Trees

- Suppose vertex x that is along the path from a vertex y to the root
 - x is an ancestor of v
 - y is a descendent of x
 - A node is a descendent and ancestor of itself
 - If $x \neq y$ then x is an **proper ancestor** of y
 - If $y \neq x$ then y is an **proper descendent** of x
- A node with no children is a *leaf* or *external node*
- · A node with a child is an internal node
- A node's degree is the number of its children
 - · Different definition of "degree" than for ordinary graphs
- The depth of a node is it's level
 - The path length from the root to the node
- An ordered tree has an ordering of its children: child 1,

A full binary tree is a binary tree where each **Binary Tree** parent has exactly two children A binary tree is a rooted tree, where each internal vertex has at most two children: usually labeled left and right Left child of 8 Right child of 8 A complete or perfect binary tree has all its leaves at the same level and each internal node has exactly two leaves An almost complete binary tree is a tree where all levels are filled except possibly the last, and the last level is filled from the left

A Result

- Theorem. If T is a full binary tree with k internal vertices, then
 - T has k+1 terminal vertices (leaves)
 - T has a total of 2k+1 vertices
- Proof
 - Note that n = p + r
 - n = number of vertices in T
 - p = number of vertices with a parent
 - p = 2k because only internal vertices are parents, and each have exactly 2 children
 - r = number of vertices without a parent
 - But only the root has no parent, so r = 1
 - Then n = 2k + 1
 - Next note that n = k + t
 - t = number of terminating vertices (leaves)
 - t + k = 2k + 1, so t = k + 1

Another Result

• Theorem. If T is a binary tree with height h and t leaves then $t \le 2^h$

[A tree of height h has at most 2^h leaves]

- Proof. (by strong mathematical induction)
 - Let P(k) = "A T is a tree with height k has at most 2^k leaves" • Base case: P(0) is true because a tree of height 0 is a single vertex, which is terminal vertex. Thus, the number of terminal vertices = $1 \le 2^0$
 - Induction step
 - Induction hypothesis: P(i) is true for i = 0, 1, ..., k
 - We want to show P(k+1)
 - · Let r be the root
 - Case 1: r has one child; without loss of generality, assume it's the left child
 - · Case 2: r has two children

Another Result Continued Case 2 (r) Root is a leaf k+1 k+1Induction hypothesis R applies to Left Left this subtree ubtre Subtree because $L \le k$ Left subtree has at most 2^L leaves Induction hypothesis applies to these subtrees # leaves = # leaves in left subtree + root Left subtree has at most 2^L leaves ≤ 2^L + 1 Right subtree has at most 21 leave $\leq 2^k + 2^k$ $\leq 2^{k+1}$ # leaves = # leaves in subtrees $\leq 2^L + 2^R$ $\leq 2^k + 2^k$ $\leq 2^{k+1}$