

Introduction

We have created a compact wearable device that aims to improve the user's auditory awareness by monitoring their environment for specific sounds. The device alerts the user using haptic feedback if a keyword is detected.

Intended Users

Deaf Hard of Hearing Age Related

Hearing Loss

General Public

Synesthesia Wear

McMaster University

Product Design & Use

Figure 1 - Keyword detection workflow diagram

The device collects audio data from the user's environment and extracts Mel-frequency cepstral coefficients (MFCCs). These coefficients/features are then classified using a neural network. If a user-specific sound is detected, the wearable device will provide a unique vibration to notify the user.

Figure 2 - MFCCs from raw sound wave of "Jordan"

Figure 3 - Screenshots of the Synesthesia Wear App

Figure 4 - Exploded diagram

Figure 5 - Confusion matrix from trained neural network

Technology Used

Testing

- > Testing at different distances
- > Testing variability speech (4 accents)
- **>>** Bluetooth connections (Disconnect 15m)
- > Surveying people (5 people)

Goals Achieved

What's Next?

- > More tests with the target audience
- > Sound detection in loud environments
- > Live training
- > Make the device more compact