NOMBRE: Nicolás Alonso Benítez Romero

SECCIÓN: 1

Nº LISTA: 12

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2019

Tarea 4 – Respuesta Pregunta 1

1. Supongamos que $R^s = R \cup R^{-1}$. Referencia: https://en.wikipedia.org/wiki/Symmetric_closure

Para demostrar que efectivamente es la clausura simétrica de cualquier relación R, se deben cumplir las siguientes propiedades:

- i) $R \subseteq R^s$.
- ii) R^s es simétrica.
- iii) Para toda R' simétrica con $R \subseteq R'$, se cumple que $R^s \subseteq R'$.
- i) $R \subseteq R^s$, esto es inmediato, ya que R^s contiene a los elementos de R y R^{-1} , por lo tanto se satisface.
- ii) Supongamos que $(a,b) \in R^s$. Luego, por la definición de R^s , se tiene que: $(a,b) \in R \lor (a,b) \in R^{-1}$. Si $(a,b) \in R$, entonces $(b,a) \in R^{-1} \subseteq R^s$. Si $(a,b) \in R^{-1}$, entonces $(b,a) \in R \subseteq R^s$. Por lo tanto, se puede concluir que si $(a,b) \in R^s$ entonces $(b,a) \in R^s$, por lo tanto R^s es simétrica.
- iii) Supoganmos que $R \subseteq R' \subseteq A \times A$ y R' es simétrica. Supongamos que $(a,b) \in R^s$. Como en **ii**), se tiene que $(a,b) \in R \vee (a,b) \in R^{-1}$. Por lo tanto, se tienen dos casos. Si $(a,b) \in R$ entonces $(a,b) \in R'$, ya que $R \subseteq R'$. Si $(a,b) \in R^{-1}$ entonces $(b,a) \in R$, ya que $R \subseteq R'$ se tiene que $(b,a) \in R'$. Como R' es simétrica se sigue que $(a,b) \in R'$, por lo que queda demostrado que $R^s \subseteq R'$.

Finalmente, se cumple que R^s es la clausura simétrica para cualquier R, por lo tanto es verdad que para algún $R \subseteq A \times A$ siempre existe R^s .

2. Se pregunta si para una relación $R \subseteq A \times A$ cualquiera, existe siempre la clausura conexa R^x .

En este caso, mediante un contra ejemplo es posible mostrar que para una relación R particular no existe la clausura conexa R^x y por lo tanto, **NO** es verdad que siempre existe R^x . A continuación se muestra tal caso:

NOTA: Los grafos y las relaciones a continuación tienen los pares (a, a), (b, b) y (c, c), se omiten por simplicidad, ya que no afectan el desarrollo.

Sea $A = \{a, b, c\}$ y $R = \{(a, b)\}$, gráficamente:

Luego, si tomamos $R^x = \{(a, b), (c, b)\}$, grafo a continuación:

Se deben cumplir las propiedades enunciadas, es decir, $R^x \subseteq A \times A$, tal que $R \subseteq R^x$ y, para toda R' conexa con $R \subseteq R'$, se cumple que $R^x \subseteq R'$.

Un posible R' es $R' = \{(a, b), (b, c)\}$, conexa, se muestra a continuación:

Es claro que se cumple $R \subseteq R'$, ya que $(a,b) \in R \to (a,b) \in R'$. Sin embargo, se contradice el hecho de que $R^x \subseteq R'$, en particular, se debe cumplir que $(c,b) \in R^x \to (c,b) \in R'$, pero se tiene que $(c,b) \notin R'$. Por lo tanto, **NO** se cumple que para toda R' conexa $R^x \subseteq R'$.

NOMBRE: Nicolás Alonso Benítez Romero

SECCIÓN: 1

Nº LISTA: 12

PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2019

Tarea 4 – Respuesta Pregunta 2

- 1. Sea $R \subseteq S \times S$. Demuestre que R es refleja y transitiva, pero no es simétrica.
 - R refleja, se debe cumplir que $\forall s \in \mathcal{S}.(s,s) \in R$.

Debido a la definición de R $(s,s) \in R$ $ssi \exists f : \mathbb{N} \to \mathbb{N}$ tal que f(s) = s. Si tomamos f(x) = x, es inmediato que $f : \mathbb{N} \to \mathbb{N}$, además se cumple que f(s) = s. Se demuestra así que R es una relación refleja.

• R transitiva, es decir, $\forall a, b, c \in \mathcal{S}$. $(a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$.

En base a la definición se tiene que si aRb entonces $\exists f_1.\ f_1(a) = b,\ bRc$ entonces $\exists f_2.\ f_2(b) = c,\ y$ también, aRc entonces $\exists f_3.\ f_3(a) = c$. Por lo tanto, se debe demostrar que aRc, tanto f_1, f_2, f_3 están definidas de $\mathbb{N} \to \mathbb{N}$.

Luego, si tomamos $f_1(a) = b$ y $f_2(b) = c$, podemos apreciar el recorrido de f_1 está en el dominio de f_2 , por lo que es válido que $f_2(f_1(a)) = f_2(b) = c$, esto es equivalente a $f_2 \circ f_1(a) = c$, por lo tanto, existe $f = f_2 \circ f_1$ tal que f(a) = c, por lo anterior se cumple que aRc, así se demuestra lo pedido.

• No es simétrica, esto es, $\exists a, b \in \mathcal{S}$. $(a, b) \in R \land (b, a) \notin R$.

Según la definición de R, esto es equivalente a probar que existe una función $f_1 : \mathbb{N} \to \mathbb{N}$ tal que $f_1(a) = b$ y que NO existe $f_2 : \mathbb{N} \to \mathbb{N}$ tal que $f_2(b) = a$.

Si tomamos f(x)=x!, la cual está definida de $\mathbb{N}\to\mathbb{N}$ y tomamos un a=0,1,..., entonces f(a)=1,1,..., por lo tanto b=1,1..., es claro ver que no existe $f:\mathbb{N}\to\mathbb{N}$ tal que $f(1)=0\land f(1)=1$, ya que esto contradice la definición de función.

- 2. Se pide demostrar que $R^* = R \cap R^{-1}$ es una relación de equivalencia y explicar qué representan sus clases de equivalencia. R^* es una **relación de equivalencia** si cumple con ser **simétrica**, **transitiva y refleja**. Según la definición de R, $aR^*b \iff (a,b) \in R \land (a,b) \in R^{-1} \equiv (a,b) \in R \land (b,a) \in R$ $\equiv \exists f_1 : \mathbb{N} \to \mathbb{N}. f_1(a) = b \land \exists f_2 : \mathbb{N} \to \mathbb{N}. f_2(b) = a$.
 - Refleja, $\forall (a, a) \in \mathcal{S}.(a, a) \in R^*$.

Por demostrar $(a, a) \in R \cap R^{-1}$, esto es equivalente a que $(a, a) \in R \cap (a, a) \in R^{-1}$, y también a que $(a, a) \in R$, esto se demostro en **Pregunta 2 - 1.**, por lo tanto R^* es refleja.

• Simétrica. $\forall a, b \in \mathcal{S}.(a, b) \in R^* \to (b, a) \in R^*$.

Si aR^*b entonces se tiene que $aRb \wedge aR^{-1}b$ y esto es equivalente a que $bR^{-1}a \wedge bRa$, por lo tanto $(b,a) \in R \wedge (b,a) \in R^{-1}$, esto es equivalente a $(b,a) \in R \cap R^{-1} \equiv (b,a) \in R^*$.

• Transitiva. $\forall a, b, c \in \mathcal{S}.(a, b) \in \mathbb{R}^* \land (b, c) \in \mathbb{R}^* \rightarrow (a, c) \in \mathbb{R}^*.$

En la izquierda de la implicancia se tiene aR^*b y bR^*c , reescribiendo, $aR^*b = aRb \wedge aR^{-1}b$ y $bR^*c = bRc \wedge bR^{-1}c$. Por lo tanto, se tiene que $aR^*b \wedge bR^*c = aRb \wedge aR^{-1}b \wedge bRc \wedge bR^{-1}c \equiv aRb \wedge bRa \wedge bRc \wedge cRb$. Además se tiene que $aR^*c \equiv aRc \wedge cRa$.

Reordenando, $aR^*b \wedge bR^*c = aRb \wedge bRc \wedge cRb \wedge bRa$, como R es transitiva de **Pregunta 2** -1, entonces se tiene que $aRc \wedge cRa$, lo que es equivalente a cR^*a . Demostrando así lo pedido.