Chapitre 2 : Généralités sur les suites

Cours 2 : Sens de variations d'une suites numérique

R. KHODJAOUI

Lycée J.J. HENNER - Première

Samedi 21 septembre 2019

Sommaire

Définition 1

Définition 2

3 Propriété

Représentation graphique d'une suite numérique

On considère un repère du plan

La représentation graphique d'une suite (u_n) est le **nuage de points** de coordonnées $(n; u_n)$ où $n \in \mathbb{N}$.

Représentation graphique d'une suite numérique

On considère un repère du plan

La représentation graphique d'une suite (u_n) est le nuage de points de coordonnées $(n; u_n)$ où $n \in \mathbb{N}$.

Exemple

Dans cet exemple, la suite u est définie par une formule explicite, elle est représentée par le nuage de points constitué des points bleus d'abscisses entières sur la courbe rouge de la fonction f associée telle que $u_n = f(n)$.

Représentation graphique d'une suite numérique

On considère un repère du plan

La représentation graphique d'une suite (u_n) est le **nuage de points** de coordonnées $(n; u_n)$ où $n \in \mathbb{N}$.

Remarque

Une suite définie par récurrence peut être représentée graphiquement à l'aide d'une méthode géométrique particulière qui vous découvrirez en exercice.

(u_n) est une suite définie sur \mathbb{N}

- → La suite u est croissante lorsque pour tout entier naturel n, $u_{n+1} \ge u_n$.
- → La suite u est décroissante lorsque que pour tout entier naturel n, $u_{n+1} \leq u_n$.
- \rightarrow La suite u est constante lorsque que pour tout entier naturel n, $u_{n+1} = u_n$.

(u_n) est une suite définie sur \mathbb{N}

- → La suite u est croissante lorsque pour tout entier naturel n, $u_{n+1} \ge u_n$.
- → La suite u est décroissante lorsque que pour tout entier naturel n, $u_{n+1} \leq u_n$.
- \rightarrow La suite u est constante lorsque que pour tout entier naturel n, $u_{n+1} = u_n$.

Remarques

- Une suite qui est ni croissante, ni décroissante (ni constante) est dite non monotone, sinon elle est dite monotone.
- Certaines suites sont croissantes, ou décroissantes, ou constantes à partir d'un certain rang n_0 .
- Pour étudier la monotonie d'une suite (u_n) , on étudie le signe de $u_{n+1} u_n$.

(u_n) est une suite définie sur \mathbb{N}

- → La suite u est croissante lorsque pour tout entier naturel n, $u_{n+1} \ge u_n$.
- → La suite u est décroissante lorsque que pour tout entier naturel n, $u_{n+1} \leq u_n$.
- \rightarrow La suite u est constante lorsque que pour tout entier naturel n, $u_{n+1} = u_n$.

Remarques

- Une suite qui est ni croissante, ni décroissante (ni constante) est dite non monotone, sinon elle est dite monotone.
- Certaines suites sont croissantes, ou décroissantes, ou constantes à partir d'un certain rang n_0 .
- Pour étudier la monotonie d'une suite (u_n) , on étudie le signe de $u_{n+1} u_n$.

(u_n) est une suite définie sur \mathbb{N}

- → La suite u est croissante lorsque pour tout entier naturel n, $u_{n+1} \ge u_n$.
- → La suite u est décroissante lorsque que pour tout entier naturel n, $u_{n+1} \leq u_n$.
- → La suite u est constante lorsque que pour tout entier naturel n, $u_{n+1} = u_n$.

Remarques

- Une suite qui est ni croissante, ni décroissante (ni constante) est dite non monotone, sinon elle est dite monotone.
- Certaines suites sont croissantes, ou décroissantes, ou constantes à partir d'un certain rang n_0 .
- Pour étudier la monotonie d'une suite (u_n) , on étudie le signe de $u_{n+1} u_n$.

(u_n) est une suite définie sur \mathbb{N}

- \rightarrow La suite u est croissante lorsque pour tout entier naturel n, $u_{n+1} \geqslant u_n$.
- → La suite u est décroissante lorsque que pour tout entier naturel n, u_{n+1} ≤ u_n.
- \rightarrow La suite u est constante lorsque que pour tout entier naturel n, $u_{n+1} = u_n$.

Exemple

Soit u la suite définie sur \mathbb{N} par $u_n = 2n + 1$.

Pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 2(n+1) + 1 = 2n + 3$$

Donc

$$u_{n+1} - u_n = 2n + 3 - (2n + 1) = 2 \ge 0$$

Par conséquent pout tout $n \in \mathbb{N}$:

$$u_{n+1} \geqslant u_n$$

Donc u est une suite croissante.

Dans ce cas, on peut utiliser les variations de f

Soit u une suite définie par une **formule explicite**, $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$:

- → Si f est croissante sur $[0; +\infty[$ alors u est croissante.
- $\boldsymbol{\rightarrow}$ Si f est décroissante sur $[0\,;+\infty[$ alors u est décroissante.

Dans ce cas, on peut utiliser les variations de f

Soit u une suite définie par une formule explicite, $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$:

- \rightarrow Si f est croissante sur $[0; +\infty[$ alors u est croissante.
- $\boldsymbol{\rightarrow}$ Si f est décroissante sur $[0\,;+\infty[$ alors u est décroissante.

Exemple

Soit u la suite définie sur \mathbb{N} par $u_n = n^2$.

 $u_n = f(n)$, f étant la fonction carré.

Or on sait que la fonction carré est croissante sur $[0\,;+\infty[,$ donc la suite u est croissante.

Dans ce cas, on peut utiliser les variations de f

Soit u une suite définie par une **formule explicite**, $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$:

- → Si f est croissante sur $[0; +\infty[$ alors u est croissante.
- $\boldsymbol{\rightarrow}$ Si f est décroissante sur $[0\,;+\infty[$ alors u est décroissante.

Remarque

La réciproque est fausse :

La suite u peut être croissante sans que la fonction f le soit.

Dans ce cas, on peut utiliser les variations de f

Soit u une suite définie par une **formule explicite**, $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$:

- → Si f est croissante sur $[0; +\infty[$ alors u est croissante.
- $\boldsymbol{\rightarrow}$ Si f est décroissante sur $[0\,;+\infty[$ alors u est décroissante.

Exercice

Soit u la suite définie sur \mathbb{N} par $u_n = \frac{1}{n}$. Etudier le sens de variation de la suite u.

FIN

Revenir au début

