Effects of Geography & Demography on COVID-19 Hospitalizations and Deaths (Part 2)

- Daniel Johnson
- Brian Li
- Braden Lockwood
- Evan Powell
- Jowaki Merani
- Mason Hawks

Statistics & EDA Results

- → Target (hosp/death) visualizations over different features (age, month, etc)
- → State ranking T-tests for hosps/deaths per capita
- → Visualizations for illness severity by age and race
- → Feature ranking based on P-values and critical regions

Deaths Per 100,000 Max=Black=324.85 Min=Red=4.95 Missing=Gray

Hospitalizations Per 100,000 Max=Black=2173.65 Min=Red=0.09 Missing=Gray


```
top_25_pop_deathspc = [deaths_pc[state] for state in top_25_population]
                      bottom_25_pop_deathspc = [deaths_pc[state] for state in bottom_25_population]
                      pop_pval = ttest_ind(top_25_pop_deathspc, bottom_25_pop_deathspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 25 vs Bottom 25 Population Deaths Per Capita: {pop_pval/2:.3f}")
                                                                                                                                   Python
                  P-Value for Means of Top 25 vs Bottom 25 Population Deaths Per Capita: 0.048
< 0.05
                      top_10_pop_deathspc = [deaths_pc[state] for state in top_10_population]
                      bottom_40_pop_deathspc = [deaths_pc[state] for state in bottom_40_population]
                      pop_pval = ttest_ind(top_10_pop_deathspc, bottom_40_pop_deathspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 10 vs Bottom 40 Population Deaths Per Capita: {pop_pval/2:.3f}")
                                                                                                                                   Python
                  P-Value for Means of Top 10 vs Bottom 40 Population Deaths Per Capita: 0.089
> 0.05
                      top_25_pop_hospspc = [hosps_pc[state] for state in top_25_population]
                      bottom_25_pop_hospspc = [hosps_pc[state] for state in bottom_25_population]
                      pop_pval = ttest_ind(top_25_pop_hospspc, bottom_25_pop_hospspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 25 vs Bottom 25 Population Hosps Per Capita: {pop_pval/2:.3f}")
                                                                                                                                    Python
> 0.05
                   P-Value for Means of Top 25 vs Bottom 25 Population Hosps Per Capita: 0.230
                      top_10_pop_hospspc = [hosps_pc[state] for state in top_10_population]
                      bottom_40_pop_hospspc = [hosps_pc[state] for state in bottom_40_population]
                      pop_pval = ttest_ind(top_10_pop_hospspc, bottom_40_pop_hospspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 10 vs Bottom 40 Population Hosps Per Capita: {pop_pval/2:.3f}")
                                                                                                                                    Python
> 0.05
                   P-Value for Means of Top 10 vs Bottom 40 Population Hosps Per Capita: 0.427
```

```
top_25_education_deathspc = [deaths_pc[state] for state in top_25_education]
                      bottom_25_education_deathspc = [deaths_pc[state] for state in bottom_25_education]
                      pop_pval = ttest_ind(top_25_education_deathspc, bottom_25_education_deathspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 25 vs Bottom 25 Education Deaths Per Capita: {pop_pval/2:.3f}")
                                                                                                                                    Python
> 0.05
                  P-Value for Means of Top 25 vs Bottom 25 Education Deaths Per Capita: 0.383
                      top_10_education_deathspc = [deaths_pc[state] for state in top_10_education]
                      bottom_40_education_deathspc = [deaths_pc[state] for state in bottom_40_education]
                      pop_pval = ttest_ind(top_10_education_deathspc, bottom_40_education_deathspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 10 vs Bottom 40 Education Deaths Per Capita: {pop_pval/2:.3f}")
                                                                                                                                    Python
                  P-Value for Means of Top 10 vs Bottom 40 Education Deaths Per Capita: 0.400
> 0.05
                      top_25_education_hospspc = [hosps_pc[state] for state in top_25_education]
                      bottom_25_education_hospspc = [hosps_pc[state] for state in bottom_25_education]
                      pop_pval = ttest_ind(top_25_education_hospspc, bottom_25_education_hospspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 25 vs Bottom 25 Education Hosps Per Capita: {pop_pval/2:.3f}")
> 0.05
               \cdots P-Value for Means of Top 25 vs Bottom 25 Education Hosps Per Capita: 0.167
                      top_10_education_hospspc = [hosps_pc[state] for state in top_10_education]
                      bottom_40_education_hospspc = [hosps_pc[state] for state in bottom_40_education]
                      pop_pval = ttest_ind(top_10_education_hospspc, bottom_40_education_hospspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 10 vs Bottom 40 Education Hosps Per Capita: {pop_pval/2:.3f}")
               「487 ✓ 0.1s
                                                                                                                                    Python
                  P-Value for Means of Top 10 vs Bottom 40 Education Hosps Per Capita: 0.206
> 0.05
```

```
top_25_GDP_deathspc = [deaths_pc[state] for state in top_25_GDP]
                      bottom_25_GDP_deathspc = [deaths_pc[state] for state in bottom_25_GDP]
                      pop_pval = ttest_ind(top_25_GDP_deathspc, bottom_25_GDP_deathspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 25 vs Bottom 25 GDP Deaths Per Capita: {pop_pval/2:.3f}")
                                                                                                                                   Python
                  P-Value for Means of Top 25 vs Bottom 25 GDP Deaths Per Capita: 0.039
< 0.05
                      top_10_GDP_deathspc = [deaths_pc[state] for state in top_10_GDP]
                      bottom_40_GDP_deathspc = [deaths_pc[state] for state in bottom_40_GDP]
                      pop_pval = ttest_ind(top_10_GDP_deathspc, bottom_40_GDP_deathspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 10 vs Bottom 40 GDP Deaths Per Capita: {pop_pval/2:.3f}")
                                                                                                                                   Python
> 0.05
                  P-Value for Means of Top 10 vs Bottom 40 GDP Deaths Per Capita: 0.057
                      top_25_GDP_hospspc = [hosps_pc[state] for state in top_25_GDP]
                      bottom_25_GDP_hospspc = [hosps_pc[state] for state in bottom_25_GDP]
                      pop_pval = ttest_ind(top_25_GDP_hospspc, bottom_25_GDP_hospspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 25 vs Bottom 25 GDP Hosps Per Capita: {pop_pval/2:.3f}")
               7497 ✓ 0.1s
                                                                                                                                    Python
> 0.05
                  P-Value for Means of Top 25 vs Bottom 25 GDP Hosps Per Capita: 0.160
                      top_10_GDP_hospspc = [hosps_pc[state] for state in top_10_GDP]
                      bottom_40_GDP_hospspc = [hosps_pc[state] for state in bottom_40_GDP]
                      pop_pval = ttest_ind(top_10_GDP_hospspc, bottom_40_GDP_hospspc, equal_var=False).pvalue
                      print(f"P-Value for Means of Top 10 vs Bottom 40 GDP Hosps Per Capita: {pop_pval/2:.3f}")
               7507 ✓ 0.1s
                                                                                                                                    Python
> 0.05
                  P-Value for Means of Top 10 vs Bottom 40 GDP Hosps Per Capita: 0.182
```

```
blue_states_deathspc = [deaths_pc[state] for state in blue_states]
    red_states_deathspc = [deaths_pc[state] for state in red_states]
    pop_pval = ttest_ind(blue_states_deathspc, red_states_deathspc, equal_var=False).pvalue
    print(f"P-Value for Means of Red State vs Blue State Deaths Per Capita: {pop_pval/2:.3f}")

V 0.1s

P-Value for Means of Red State vs Blue State Deaths Per Capita: 0.116
```

> 0.05

> 0.05

```
blue_states_hospspc = [hosps_pc[state] for state in blue_states]
red_states_hospspc = [hosps_pc[state] for state in red_states]
pop_pval = ttest_ind(blue_states_hospspc, red_states_hospspc, equal_var=False).pvalue
print(f"P-Value for Means of Red State vs Blue State Hosps Per Capita: {pop_pval/2:.3f}")

[51] 
V 0.1s

P-Value for Means of Red State vs Blue State Hosps Per Capita: 0.123
```


As you can see there is major imbalances in our dataset. For example there are vastly more many datapoint for people ages 18-48 then other ages.

Here we can see most features are statistically significant with one being not statistically significant. This poses a challenge in feature selection since the statistical test shows that almost all features are significant.

state_fips_code

res_state

res_county

age_group

race

ethnicity process

exposure_yn current_status

symptom_status

county_fips_code case positive specimen

case_onset_interval

Classification

- Tried to classify hospitalization, death
- Models used: KNN, Decision Trees, NBC
- Techniques used: bagging, SMOTE, feature selection

Confusion matrix - KNN (Hospitalization)

After SMOTE

0.9138499406619489

0.6975989812039334

Scores - KNN (hospitalization)

Before SMOTE

	precision	recall	f1-score	support
9	0.91	1.00	0.95	83164
1	0.00	0.00	0.00	7840
				V.2/2/2/20
accuracy			0.91	91004
macro avg	0.46	0.50	0.48	91004
weighted avg	0.84	0.91	0.87	91004

After SMOTE

	precision	recall	f1-score	support
0	0.71	0.68	0.69	83146
1	0.69	0.72	0.70	83325
accuracy			0.70	166471
macro avg	0.70	0.70	0.70	166471
weighted avg	0.70	0.70	0.70	166471

Confusion matrix - KNN (Death)

Before SMOTE

After SMOTE

0.9934316260219411

0.8942884079587988

Scores - KNN (Deaths)

Before SMOTE

	precision	recall	f1-score	support
9	0.99	1.00	1.00	71085
1	0.00	0.00	0.00	470
accuracy			0.99	71555
macro avg	0.50	0.50	0.50	71555
weighted avg	0.99	0.99	0.99	71555

After SMOTE

	precision	recall	f1-score	support
0	0.98	0.81	0.88	71199
1	0.83	0.98	0.90	70933
accuracy			0.89	142132
macro avg	0.91	0.89	0.89	142132
weighted avg	0.91	0.89	0.89	142132

KNN Summary

- Model performed marginally better with more than 20 neighbors.
- No significant improvement after 100 neighbors. **0.6161553664001538**

0.6975989812039334

- Training time was long.
- Predicting time was actually around the same.
- Bagging no interesting results to show.

Conclusion: bad data

Decision Trees: Hosp. and Death

		precision	recall	f1-score	support
	0	0.64	0.81	0.71	83146
	1	0.74	0.53	0.62	83325
accui	racy			0.67	166471
macro	avg	0.69	0.67	0.67	166471
weighted	avg	0.69	0.67	0.67	166471

	precision	recall	f1-score	support
0	0.98	0.82	0.89	71199
1	0.84	0.98	0.91	70933
accuracy			0.90	142132
macro avg	0.91	0.90	0.90	142132
weighted avg	0.91	0.90	0.90	142132

Tree Feature Importance

NBC: Hosp. and Death

	precision	recall	f1-score	support
0	0.73	0.41	0.53	83147
1	0.59	0.85	0.70	83324
accuracy			0.63	166471
macro avg	0.66	0.63	0.61	166471
weighted avg	0.66	0.63	0.61	166471

	precision	recall	f1-score	support
0	0.96	0.82	0.88	71199
1	0.84	0.96	0.90	70933
accuracy			0.89	142132
macro avg	0.90	0.89	0.89	142132
weighted avg	0.90	0.89	0.89	142132

Classification: Some Conclusions and Concerns

- Data points did not take into account time or geography
- No incorporation of vaccine impacts
- Hosp Vs. Death