Sequential Logic

- In Combinational Circuit, the outputs at any instant of time are entirely dependent upon the inputs present at that time.
- A Sequential Circuit consists of a Combinational Circuit to which a memory elements are connected to form a feedback path.
- The memory elements are devices capable of storing binary information within them.
- The binary information stored in the memory elements at any given time defines the state of the sequential circuit.

In foot ball game,

- The score of the goals = the pervious goals (state) + new goal (input)
- For example if you have pervious goal score of 5 and there's a new goal then the final score will be 6
 - Past state = 5 scores, and input = 1 score
 So, the new score state will be=5+1=6 scores

Sequential Circuit

- The sequential circuit receives binary information from external inputs, together with the present state of the memory elements, determine the binary value at the output terminals.
- They also determine the condition for changing the state in the memory elements.

- A circuit with memory, whose outputs depend on the current input and the sequence of past inputs, is called a sequential circuit.
- The behaviour of such a circuit may be described by a state table that specifies its output and next state as functions of its current state and input.

Sequential Circuit

- A Sequential Circuit is specified by a time sequence of inputs, outputs and internal states.
- Classification of Sequential Circuits depend on the timing of their signals.
- Types of Sequential Circuits:
 - Synchronous: a sequential circuit whose behavior can be defined from the knowledge of its signals at a discrete instance of time.
 - Asynchronous: a sequential circuit whose behavior depends on the order in which its input signals change and can be affected at any instance of time.

Storage elements

What's required from storage element?

- -Store data (hold)
- –Accept writing a new data (write)

Types of storage (memory) elements

Sequential Logic: Memory Element

- The memory elements used in clocked sequential circuits are called Flip-Flops.
- Flip-flop circuits are binary cells capable of storing one bit of information.
- A flip-flop circuit has two outputs, one for normal output and one for the complement value of the bit stored in it.
- Binary information can enter a flip-flop in a variety of ways.

SR Flip Flop logic Symbol

- The SR Flip Flop has two inputs, SET (S) and RESET (R).
- The SR Flip Flop has two outputs, Q and Q
- The Q output is considered the normal output and is the one most used.
- The other output Q is simply the compliment of output Q.

NAND GATE LATCH

SR NAND (Active LOW) Logic circuit.

- The NAND gate version has two inputs, SET (S) and RESET (R).
- Two outputs, Q as normal output and Q as inverted output and feedback mechanism.
- The feedback mechanism is required to form a sequential circuit by connecting the output of NAND-1 to the input of NAND-2 and vice versa.
- The circuit outputs depends on the inputs and also on the outputs.

NOR GATE LATCH

- The latch circuit can also be constructed using two NOR gates latch.
- The construction is similar to the NAND latch except that the normal output Q and inverted output \(\overline{Q} \) have reversed positions.

SR NOR (Active HIGH) Logic circuit

- After each write operation there must be a hold operation to store the data,
- Each cell store only one bit.

2 Input NOR gate		
Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

R U	Q
s 0 1	Q'

Hold the written data in the memory cell (Hold State)

S	R	Q	ā	STATUS
0	0	Q	Q	HOLD (NoChange)
0	1	0	1	RESET
1	0	1	0	SET
1	1	0	0	INVALID

Clocked RS Flip-Flop

The graphic symbol for Clocked RS flip-flop is

- The Clock Pulse is marked with small triangle.
- The triangle is a symbol for dynamic indicator and denotes the fact that the flip-flop responds to an input clock transition from a low-level (binary 0) to a high-level (binary 1)

SR flip flop Truth table Characteristic Table OXX Qn On S R Qn+1 0 | Qn Excitation Table :

D Flip Flop

A D flip-flop is a modification of the Clocked RS flip-flop.

Positive and Negative Edge D Flip-Flop

- Flop
 D flops can be triggered on positive or negative edge
- Bubble before Clock (C) input indicates negative edge trigger

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

JK Flip Flop

JK Flip-Flop

Graphic Symbol

JK flip flop

Truth table:

Characteristic Table

dk	J	Κ	Sn+1
0	×	×	Sn & Memory
í	0	٥	Sn / Lemony
1	0	1	O
1	1	٥	1 6.
1	ı	1	8n (toggle

8)n	J	K	Sin+1
0	0	٥	0
0	0	ſ	0
0	1	O	1
0	ŧ	J	1
ł	0	٥	i
1	0	1	0
Ì	ĵ	٥	1
1	1		0

Excitation table:

Θ_{n}	O_{n+1}	JK
0	0	ο×
0	1	١×
1	0	× 1
ì	ı	Xo

Asynchronous Inputs

- J, K are synchronous inputs
 - o Effects on the output are synchronized with the CLK input.
- Asynchronous inputs operate independently of the synchronous inputs and clock
 - o Set the FF to 1/0 states at any time.

PRES	SET CLEAR	FF response
1	1	Clocked operation*
0	1	Q = 1 (regardless of CLK)
1	0	Q = 0 (regardless of CLK)
0	0	Not used

^{*}Q will respond to J, K, and CLK

Asynchronous Inputs

Point	Operation
a	Synchronous toggle on NGT of CLK
b	Asynchronous set on PRE = 0
С	Synchronous toggle
d	Synchronous toggle
е	Asynchronous clear on CLR = 0
f	CLR over-rides the NGT of CLK
g	Synchronous toggle

T flip flop Truth table: Characteristic table elk T | 9n+1

0 x | 9n (memory)

1 0 | 9n

1 | 1 | 9n (toggle) Sn T Sn+1 0 Excitation Table: On Onti 0 0 CLK

Master Slave Flip Flop

schematic diagram of master sloave J-K flip flop

Master Slave JK Flip Flop

Master slave using SR Latch

Master-Slave using D Flip-Flop

Thanks to Ali Mustafa for the slides