Tania Soutonglang

CS 581 Spring 2024 Written Assignment #02

Due: Monday, February 19, 2024, 11:59 PM CST

Points: 35

Instructions:

1. Use this document template to report your answers. Name the complete document as follows:

2. Submit the final document to Blackboard Assignments section before the due date. No late submissions will be accepted.

Objectives:

- 1. (10 points) Demonstrate your understanding of the concept of admissible heuristic.
- 2. (25 points) Demonstrate your understanding of a CSP and related heuristics.

Problem 1 [10 pts]:

Consider the following state space S with ACTION COSTs (you can assume action cost to be driving distance) shown (fig. 1).

Figure 1: State space S.

Both $h_1(i,j)$ and $h_2(i,j)$ are heuristic functions for S. Populate tables below with $h_1(i,j)$ and $h_2(i,j)$ values in such a way that:

- a) [5 pts] h₁(i,j) is admissible, and
- b) [5 pts] $h_2(i,j)$ is admissible and dominates $h_1(i,j)$.

h₁(i,j)							
State	Α	В	С	_	G		
Α	0	1	2	5	4.12		
В	1	0	1	4	4		
С	2	1	0	2	4.12		
Ī	5	4	2	0	8		
G	4.12	4	4.12	8	0		

h ₂ (i,j)							
State	Α	В	С	I	G		
Α	0	1		5			
В	1	0	1	3	4		
С		1	0	2			
I	5	3	2	0			
G		4			0		

Problem 2 [10 pts]:

Consider the following CSP problem:

```
\label{eq:Variables: X = {A, B, C, D, E, F, G}} \\ Domains: D_A = D_B = D_C = D_D = D_E = D_F = D_G = \{1,2,3\} \\ Constraints: C = \{A \neq B, A \neq C, A \neq E, B \neq E, B \neq G, C \neq E, C \neq G, D \neq G, E \neq G, F \neq G\} \\
```

Your CSP search is exploring a tree and the current PARTIAL assignment is:

Use the MRV heuristic to decide which variable to explore (assign a value to) next. In case of ties, use degree heuristics (if that does not help: alphabetic ordering). Justify your answer.

```
Your answer:

E = {3}

- A ≠ E

- B ≠ E

- C ≠ E

- E ≠ G

F = {2, 3}

- F ≠ G

G = {3}

- D ≠ G

- D ≠ G

- E ≠ G

E would be the next explored variable
```

Problem 3 [5 pts]:

Consider the following Constraint Satisfaction Problem (CSP). Note that all variables share the same domain D:

$$\begin{split} X &= \{A,\,B,\,C,\,D,\,E,\,F,\,G\} \\ D &= \{0,\,1\} \\ C &= \{A \neq F,\,B \neq F,\,C \neq F,\,D \neq F,\,F \neq G,\,A \neq B,\,B \neq C,\,C \neq D,\,D \neq E\} \end{split}$$

Draw a **constraint graph** (or its adjacency matrix representation if it is easier) for this CSP.

What is the degree of the most constrained vertex (variable) in this graph?

Your answer [1 pt]:	
F has a degree of 5	

Problem 4 [10 pts]:

Consider the Australia map coloring Constraint Satisfaction Problem (CSP) from the lecture.

Variables:

 $X = \{WA, NT, Q, NSW, V, SA, T\}$

Variable Domains:

 $D_{WA} = \{ RED, GREEN, BLUE \}$ $D_{NT} = \{RED, GREEN, BLUE\}$ $D_0 = \{RED, GREEN, BLUE\}$ $D_{NSW} = \{RED, GREEN, BLUE\}$ $D_V = \{RED, GREEN, BLUE\}$

 $D_{SA} = \{RED, GREEN, BLUE\}$

 $D_T = \{RED, GREEN, BLUE\}$

NT, NT \neq Q, Q \neq NSW, NSW \neq V}

Assuming:

- static variable ordering: WA, NT, Q, T, V, SA, NSW,
- static value ordering: GREEN, RED, BLUE

Complete the CSP search tree using pure/plain backtracking approach for the subtree rooted at:

If solution is found, stop. If not, show entire subtree.

Solution was not found -> Visited/dead ends -> Complete, but inconsistent assignments

