

$ADS - 1^{\circ}$

Matemática Discreta

sábados - 09:50 ~ 13:20

Aula 03 – Lógica Proposicional Tautologias

Prof^a Carlota

Proposições simples e compostas

Uma proposição é <u>simples</u>, se e somente se, contiver uma única afirmação.

As proposições <u>compostas</u> são constituídas de proposições simples, conectadas por palavras denominadas **conectivos lógicos**.

Exemplo de proposição composta:

Se relampejar ou chover à tarde, então eu fico em casa.

As proposições simples serão representadas por letras minúsculas (p, q, r, ...) e as proposições compostas serão representadas por letras maiúsculas (P, Q, R, ...).

Mais exemplos de proposições compostas:

Maria se matriculou no curso e vai estudar.

Se Maria se matriculou no curso então vai estudar.

Se chover amanhã, então Maria vai estudar.

Maria vai estudar amanhã se, e somente se, chover.

Maria **não** foi para praia.

Maria está estudando ou mergulhando no mar.

Maria é estudante ou Maria é mãe.

Conectivos e seus símbolos:

Conectivo	Símbolo	Nome
Não	~	Negação
E	\wedge	Conjunção
Ou	V	Disjunção Inclusiva
Ou Ou	V	Disjunção Exclusiva
Se então	\rightarrow	Condicional
Se e somente se	\leftrightarrow	Bicondicional

Expressões associadas ao conectivo:

- Conjunção: e, mas, também, além disso.
- Negação: não, é falso que, não é verdade que.

Diferença entre as disjunções

Disjunção exclusiva – É verdadeira <u>apenas uma</u> das duas proposições simples é verdadeira.

Maria está almoçando **ou** nadando na piscina. A temperatura mínima de hoje será 12°C **ou** 14°C.

Marcelo é gaúcho ou paulistano.

Disjunção inclusiva — É verdadeira quando <u>pelo</u> menos uma das duas proposições simples é verdadeira; não desconsidera o fato de ambas serem verdadeiras simultaneamente.

Maria é estudante ou Maria é mãe.

Os alunos dessa turma gostam de cantar **ou** dançar. Marcelo é dentista **ou** professor.

Oba: Utilizaramas ananas a disjunção inclusiva

Representação simbólica

p: Maria foi para praia.

 $\sim p$: Maria **não** foi para praia.

p: Maria se matriculou no curso.

q: Maria vai estudar.

 $p \land q$: Maria se matriculou no curso **e** vai estudar.

p: Vai relampejar à tarde.

q: Vai chover à tarde.

r: Vou ficar em casa.

 $(p \lor q) \rightarrow r$: **Se** relampejar **ou** chover à tarde, **então** vou ficar em casa.

- Observe as proposições a seguir:
 - I. Daniel é professor e Isis é psicóloga.
 - II. O tigre corre se, e somente se, está caçando.
 - III. Diego gosta de matemática ou Michael anda de carro.
 - IV. Se Celina é avó, então Aline é sua neta.
- A(s) frase(s) que utiliza(m) o conectivo condicional é (são):
 - a) I e II
 - b) III
 - c) III e IV
 - d) I
 - e) IV

EXERCÍCIO 2 Em cada uma das proposições compostas a seguir, identifique qual o conectivo usado.

- a) O pano está sujo e molhado.
- b) Se estiver chovendo, então uso um guarda-chuvas.
- c) 2+2=4 ou 3.4=12
- d) Ingrid joga vôlei se, e somente se, vai à quadra.
- e) Aline estuda e trabalha.
- f) Não está chovendo.

EXERCÍCIO 3 Represente as proposições compostas na forma simbólica.

- a) Adriana está feliz ou Ricardo é cozinheiro.
- b) Faz calor em Diadema e o trânsito está intenso.
- c) O cachorro late se, e somente se, o carteiro entrega a carta.
- d) Maria não é farmacêutica.

Leia a frase a seguir:

"Se Antônio é mecânico então Cecília é dona de casa, ou Felipe joga bola."

A forma simbólica, com "p: Antônio é mecânico", "q: Cecília é dona de casa" e "r: Felipe joga bola", da frase acima é:

- a) $(p \rightarrow q) \land r$
- b) $(p \rightarrow q) \rightarrow r$
- c) $(p \rightarrow q) \vee r$
- d) $(p \lor q) \land r$
- e) $(p \land q) \rightarrow r$

EXERCÍCIO 5 Considere as seguintes proposições:

p: Luan vai surfar.

q: Cristina vai nadar na piscina.

r: Está calor.

Considere a frase:

"Luan vai surfar e Cristina vai nadar na piscina, se somente se, está calor".

A representação simbólica respectiva é:

- a) $(p \land q) \lor r$
- b) $(p \lor q) \leftrightarrow r$
- c) $(p \leftrightarrow q) \land r$
- d) $(p \land q) \leftrightarrow r$
- e) $(p \rightarrow q) \leftrightarrow r$

EXERCÍCIO 6 Sejam as proposições:

p: Carlos fala francês.

q: Carlos fala inglês.

r: Carlos fala alemão.

Traduzir para a linguagem simbólica as seguintes proposições:

- a) Carlos fala francês ou inglês, mas não fala alemão.
- b) Carlos fala francês e inglês, ou não fala francês e nem alemão.
- c) É falso que Carlos fala francês mas que não fala alemão.
- d) É falso que Carlos fala inglês ou alemão mas que não fala francês.

Conectivos e Tabela Verdade

Negação (NÃO): ~

p	~ p
V	F
F	V

Se "Ana é feliz" é verdadeiro, então "Ana não é feliz" é falso.

OBS.:
$$\sim (\sim p) = p$$

Exemplo:

"Não é verdade que Ana não é feliz."

significa que "Ana é feliz.".

Disjunção (OU): V

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Associação Possível

Conta conjunta solidária: um cheque pode ser assinado só por um dos correntistas para ser aceito.

(Fulano e/ou ciclano)

Conjunção (E): ∧

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Conta conjunta simples ou não-solidária: um cheque deve ser assinado pelos dois.

(Fulano e ciclano)

14

Associação Possível: Circuitos em série ("E")

A	B	$A \wedge B$
V	V	V
V	F	F
F	V	F
F	F	F

Associação Possível: Circuitos em paralelo ("OU")

A	B	$A \vee B$
V	V	V
V	F	V
F	V	V
F	F	F

Condicional (SE...ENTÃO): \rightarrow

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Bicondicional (...SE, E SOMENTE SE...): \leftrightarrow

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

De acordo com o contrato:

"se bater o carro, então a seguradora pagará indenização."

Bateu o carro?	O seguro pagou?	Resultado
Sim	Sim	Ok
Sim	Não	X
Não	Sim	Ok
Não	Não	Ok

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

"A seguradora pagará a indenização se, e somente se, bater o carro."

Bateu o carro?	O seguro pagou?	Resultado
Sim	Sim	Ok
Sim	Não	X
Não	Sim	X
Não	Não	Ok

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

RESUMO

Conjunção (E)

Para ser VERDADEIRA é preciso que todas as proposições sejam VERDADEIRAS.

Negação (NÃO)

O valor lógico é invertido.

Disjunção (OU)

Para ser VERDADEIRA basta que pelo menos uma das proposicões seja VERDADEIRA.

Condicional (Se..., então...)

Só é FALSA quando $V \rightarrow F$

Bicondicional (Se..., e somente se...)

Para ser VERDADEIRA é preciso que as duas proposições tenham o MESMO VALOR LÓGICO.

EXERCÍCIO 1 Leia as seguintes afirmações:

- I. O cachorro mia ou o pássaro pia se, e somente se, o sapo tem asa.
- II. Regina é professora e não é professora.
- III. 2/4 = 0.5 e $2^0 = 1$.
- A(s) proposição(ões) que possui(em) valor lógico falso é (são):
- a) I
- b) II
- c) III
- d) I e III
- e) I e II

A tabela-verdade lista todas as possíveis combinações de valores-verdade (ou valores lógicos) V ou F para as componentes simples envolvidas na proposição composta.

Quando uma proposição é composta de n proposições simples, sua tabela-verdade contém 2^n linhas.

Por exemplo, na tabela-verdade da proposição composta $(p \land q) \leftrightarrow r$ contém $2^3 = 8$ linhas porque ela é composta de 3 proposições simples (p, q e r).

Tabela-verdade de $(p \land \sim q) \leftrightarrow p$

p	q	$\sim q$	$p \wedge \sim q$	$(p \land \sim q) \leftrightarrow p$
V	V	L	F	F
V	F	V	V	V
F	V	F	F	V
F	F	V	F	V

Tabela-verdade de $(p \land q) \leftrightarrow r$

p	q	r	$p \wedge q$	$(p \land q) \leftrightarrow r$
V	V	V	V	V
V	V	F	V	£
V	F	V	F	F
V	F	F	F	V
F	V	V	F	F
F	V	F	F	V
F	F	V	F	F
F	F	F	F	V

Tabela-verdade de $p \rightarrow (q \lor r)$

p	q	r	$q \vee r$	$p \rightarrow (q \lor r)$
V	\	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	V	V
F	F	V	V	V
F	F	F	F	V

25

Ordem para agrupamento (Prioridade):

$$\begin{array}{c} (\) \\ \sim \\ \lor \land \\ \rightarrow \\ \leftrightarrow \end{array}$$

$$p \rightarrow q \lor r$$
 equivale a $p \rightarrow (q \lor r)$

$$\sim (p \lor \sim q)$$
 equivale a $\sim (p \lor (\sim q))$

$$p \land q \rightarrow \sim p \leftrightarrow q \text{ equivale a}$$

 $((p \land q) \rightarrow (\sim p)) \leftrightarrow q$

Em cada caso a seguir, determine o número de linhas necessárias para se construir a tabela-verdade.

- Cinco proposições simples.
- Sete proposições simples.
- Nove proposições simples.

Construa tabela-verdade para cada fórmula lógica:

- $\mathbf{a}) (\sim p) \land (\sim q)$
- **b**) $\sim (p \lor \sim q)$
- c) $p \wedge (\sim p)$
- **d**) $p \lor \sim p$
- $(e) \sim (p \land q) \lor \sim (q \leftrightarrow p)$
- $\mathbf{f}) p \rightarrow q \leftrightarrow p \rightarrow p \wedge q$
- \mathbf{g}) $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$
- $\mathbf{h}) p \rightarrow (\sim q \vee r) \wedge \sim (q \vee (p \leftrightarrow \sim r))$

EXERCÍCIO 4

Usando tabela-verdade, mostre que $\sim (p \land q)$ é logicamente equivalente a $\sim p \lor \sim q$.

Regras de Equivalência $P \Longleftrightarrow Q$					
P	Equivale a $\it Q$	Nome	Abrev.		
p	~(~p)	Dupla negação	DN		
$p \lor q$	$q \lor p$	Comutatividade	COM		
$p \wedge q$	$q \wedge p$				
$(p \lor q) \lor r$	$p \lor (q \lor r)$	Associatividade	ASS		
$(p \land q) \land r$	$p \wedge (q \wedge r)$				
$\sim (p \lor q)$	~ <i>p</i> ∧ ~ <i>q</i>	Leis de Morgan	DM		
$\sim (p \land q)$	~ <i>p</i> ∨ ~ <i>q</i>				
$p \rightarrow q$	$p \to p \land q$	Absorção	ABS		
$p \rightarrow q$	~ <i>p</i> ∨ <i>q</i>	Condicional	COND		
$p \longleftrightarrow q$	$(p \to q) \land (q \to p)$	Bicondicional	BI		

Sabendo que os valores lógicos das proposições p e q são respectivamente V e F, determinar o valor lógico da proposição $\sim (p \ \lor \ q) \leftrightarrow \sim p \ \land \sim q$.

EXERCÍCIO 5

Sabendo que o valor lógico de q é V, determinar o valor lógico da proposição

$$(p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p).$$

Sabendo que o valor lógico de p, q e r são respectivamente V, F e F, determinar o valor lógico da proposição

$$(q \leftrightarrow (r \rightarrow \sim p)) \lor ((\sim q \rightarrow p) \leftrightarrow r).$$

EXERCÍCIO 7

Sabendo que os valores lógicos das proposições p,q,r e s são respectivamente V, F, V e F, determinar o valor lógico da proposição

$$\sim (p \rightarrow \sim q \leftrightarrow (p \lor r) \land s)$$

Utilizando as Leis de Morgan:

$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$$

$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$$

escreva a negação das sentenças:

(a) Chove hoje ou faz frio.

(b) Carlos é um bom profissional e será promovido.

EXERCÍCIO 9 (TRT 1ª Reg/CESPE/2008)

Considerando todos os possíveis valores lógicos V ou F atribuídos às proposições p e q, assinale a opção correspondente à proposição composta que tem sempre valor lógico F.

(a)
$$(p \land \sim q) \land (\sim p \lor q)$$

(b)
$$(p \lor q) \lor (\sim p \land \sim q)$$

(c)
$$(p \land \sim q) \lor (p \land q)$$

(d)
$$(p \land \sim q) \lor p$$

(e)
$$p \land (\sim q \lor p)$$