

Alta Disponibilidad COBIS

Banco Hipotecario (Argentina)

Alexis Rodríguez – Julio 2015

Alta disponibilidad COBIS

Estrategias

- COBIS emplea una combinación de diferentes estrategias de alta disponibilidad en los componentes de su infraestructura base:
 - Cold Standby Failover
 - Servidores Branch
 - Warm Standby Failover
 - Clusters de Hardware Activo/Pasivo
 - Multi-instance MQ Managers
 - Esquema Activo/Pasivo Websphere Edge Component Load Balancer
 - Hot Standby Failover
 - Clusters de WAS Horizontales
 - Clusters de WAS Verticales

Cold Standby Failover

Cold Standby Failover

Características

- El componente primario se ejecuta activamente mientras el secundario o backup permanece inactivo.
- Cuando el componente primario falla, el secundario se activa para asumir un rol activo.
- La interrupción es visible a los usuarios.

Confidential

Cold Standby Failover

Características

- Se lo encuentra muy frecuentemente para:
 - Servidores Branch de Oficina
 - Servidor Central de BDD
 - Servidor de BDD de Canales

Características

- El componente primerio se ejecuta activamente con el secundario o backup en ejecución sin una participación activa en el balanceo de carga.
- El componente secundario recibe actualizaciones de datos frecuentes del componente primario, por lo que existen momentos en los que los componentes no están sincronizdos.
- Cuando el componente primario falla, el componente secundario asume un rol activo.
- Al haber estado ejecutándose pasivamente con datos parciales, el "fail over" es más rápido que el de un cold standby, con interrupciones mínimas para los usuarios.

- Los servidores activos y de reserva, tienen cada uno una instancia del mismo manejador de colas.
- Ambos manejadores usan los mismos datos albergados en almacenamiento compartido por red. (datos y logs)
- La primera instancia que se inicia se convierte en activo y obtiene bloqueos de los archivos compartidos.
- El control pasa a la otra instancia cuando la instancia activa libera su bloqueo de los archivos compartidos.
- Esto puede ser iniciado en una conmutación controlada desde el nodo activo al nodo de espera o por el failover automático en caso de una interrupción del servidor no planificada.

- Se utiliza conjuntamente con MQ Reconnecting Client
 - Cada Nodo de un Manejador de Colas Multi-Instancia maneja una dirección IP diferente.
 - Por ello para soluciones de alta disponibilidad requieren trabajar con clientes con capacidad de reconexión.
 - Habilitar la reconexión automática al mismo manejador de colas para clientes conectados a manejadores de colas multi-instancia proporciona Alta Disponibilidad a nivel de MQ.

- MQ Reconnecting Client
 - Feature Disponible a partir de MQ 7.0.1
 - Enmascara cortes en la red y en los manejadores de colas desde aplicaciones conectadas en modo cliente.
 - Detecta problemas de conectividad y genera reconexiones automáticas a los manejadores de colas originales o a alternos.

- Los componentes de infraestructura COBIS que trabajan como clientes MQ incluyen soporte para operar como "MQ Reconnecting Clients"
 - COBIS KernelHandler
 - COBIS XPCTS
 - COBIS TCPHandler
- La infraestructura Websphere que debe operar como cliente MQ soporta nativamente "MQ Reconnecting Cliet"
 - Websphere Application Server

Backup Load Balancer

Cluster de Hardware Activo-Pasivo

- Consiste de nodos redundantes usados para proveer servicio cuando el componente de sistema principal fallas.
- Usa Heartbeats para monitorear el estado de salud de cada nodo en el cluster.
- Cuando ocurre un fallo la aplicación es reiniciada automáticamente en el nodo de backup, en un proceso que se conoce como "failover".
- El procedimiento de "failover" implica generalmente la reasignación de la IP del servidor con falla al servidor de backup, configuración de acceso al filesystem compartido y sincronización de estado con el servidor con falla antes del reinicio del servicio en el servidor de backup.

Cluster de Hardware Activo-Pasivo

Figure 3-1 Hardware clustering

Cluster de Hardware Activo-Pasivo

- El Clustering de Alta Disponibilidad usa el concepto de grupos de recursos:
 - Aplicaciones
 - Direcciones IP
 - Filesystems
 - Etc...
- Cuando se produce el failover el grupo de recursos entero es movido al servidor de standby a través de los servicios de cluster.

- Los componentes primario y secundario se ejecutan activamente como un único sistema unificado.
- Se produce una replicación activa de datos entre los componentes primario y secundario.
- Cuando el componente primario falla, el componente secundario continúa trabajando sin interrupciones para los usuario.

Clusters Verticales

Figure 1-3 Vertical clustering

Clusters Verticales

Figure 1-4 Horizontal clustering

Clusters Verticales

Figure 1-5 Vertical and horizontal clustering

Figure 1-5 WebSphere system HA level 1

Figure 1-6 WebSphere system HA level 2

Figure 1-7 WebSphere system HA level 3

Figure 1-8 WebSphere system HA level 4 - Database dustering/failover

WebSphere system HA level 5 Figure 1-9

Topologías HA CTS/CIS

Topologías HA CTS/CIS

Topologías HA CTS/CIS

¡Gracias!

Contacto

Alexis Rodríguez Arquitecto

Mail: alexis.rodriguez@cobiscorp.com

Teléfono: (593 2) 380-2920

Calle del Establo No. 50 Centro Empresarial Site Center Santa Lucía Alta, Cumbayá Quito, Ecuador

info@cobiscorp.com www.cobiscorp.com

