Solution:

<u>Q1</u>

First, order the points so that they are as close to and as centered about the unknown as possible

$$x_0 = 7$$
 $f(x_0) = 6.5$
 $x_1 = 12$ $f(x_1) = 7.0$
 $x_2 = 15$ $f(x_2) = 11.2$
 $x_3 = 18$ $f(x_3) = 10.8$
 $x_4 = 19$ $f(x_4) = 8.5$

Next, the divided differences can be computed and displayed in the recursive format,

i	X i	$f(x_i)$	$g[x_{i+1},x_i]$	$g[x_{i+2},x_{i+1},x_i]$	$g[x_{i+3},x_{i+2},x_{i+1},x_i]$	g[Xi+4,Xi+3,Xi+2,Xi+1,Xi]
0	7	6.5	0.1	0.1625	-0.038	-0.000239
1	12	7.0				
2	15	11.2				
3	18	10.8				
4	19	8.5				

The first through third-order interpolations can then be implemented as

$$f_3(11) = 6.5 + 0.1*(11-7) + 0.1625*(11-7)(11-12)$$
$$-0.038*(11-7)*(11-12)*(11-15)$$
$$= 5.642$$

The error for the third-order prediction can be computed with R₃ as

$$R_3 = 0.000239*(11-7)*(11-12)*(11-15)*(11-18)$$

=0.026768

$$a_{0} = \left(\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}\right) / \left(n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}\right)$$

$$= 2.01$$

$$a_{1} = \left(n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}\right) / \left(n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}\right)$$

$$= 0.903$$

$$a_0 = 0.5$$

$$a_{k} = \frac{2}{1} \left[\int_{-0.5}^{0} -2t \cos(2k\pi t) dt + \int_{0}^{0.5} 2t \cos(2k\pi t) dt \right]$$

$$= 4 \left\{ \left[-\frac{\cos(2k\pi t)}{(2k\pi)^{2}} - \frac{t \sin(2k\pi t)}{2k\pi} \right]_{-0.5}^{0} + \left[\frac{\cos(2k\pi t)}{(2k\pi)^{2}} + \frac{t \sin(2k\pi t)}{2k\pi} \right]_{0}^{0.5} \right\}$$

$$= \frac{8}{(2k\pi)^{2}} (\cos k\pi - 1) = \frac{2}{(k\pi)^{2}} (\cos k\pi - 1)$$

$$b_k = 0$$

Substituting these coefficients gives

$$f(t) = \frac{1}{2} - \frac{4}{\pi^2} \cos(2\pi t) - \frac{4}{9\pi^2} \cos(6\pi t) - \frac{4}{25\pi^2} \cos(10\pi t) + \cdots$$

<u>Q4</u>

For second derivative, the central finite difference with 2nd-order accuracy is as follow

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

	X	f(x)
X_{i-1}	-0.2	0.9607894
X_i	0.0	1
X_{j+1}	0.2	0.9607894

At
$$x=0$$
, $h=0.2$

$$f''(x) = \frac{2*0.9607894 - 2*1}{0.2^2} = -1.960528$$

The analytical result is $f''(x) = 4x^4e^{-x^2} - 2e^{-x^2} = -2$

The percentage relative error is $\frac{|2 - 1.960528|}{|-2|} \times 100\% = 1.976\%$

05

Analytical solution:

$$\int_0^3 x^2 e^x dx = \left[(x^2 - 2x + 2)e^x \right]_0^3 = 98.42768$$

Trapezoidal rule (n = 4):

$$I = (3-0)\frac{0+2(1.190813+10.0838+48.03166)+180.7698}{8} = 112.2684 \qquad \varepsilon_t = 14.062\%$$

Simpson's rule (n = 4):

$$I = (3-0)\frac{0+4(1.190813+48.03166)+2(10.0838)+180.7698}{12} = 99.45683 \qquad \varepsilon_t = 1.046\%$$