idea is to insert the completeness relation $\sum_{x} |x\rangle\langle x| = I$ between each term in (4.86), obtaining

$$\langle y|U_{p(n)}\cdots U_{2}U_{1}|0\rangle = \sum_{x_{1},\dots,x_{p(n)-1}} \langle y|U_{p(n)}|x_{p(n)-1}\rangle \langle x_{p(n)-1}|U_{p(n)-2}\dots U_{2}|x_{1}\rangle \langle x_{1}|U_{1}|0\rangle.$$
(4.87)

Given that the individual unitary gates appearing in this sum are operations such as the Hadamard gate, CNOT, and so on, it is clear that each term in the sum can be calculated to high accuracy using only polynomial space on a classical computer, and thus the sum as a whole can be calculated using polynomial space, since individual terms in the sum can be erased after being added to the running total. Of course, this algorithm is rather slow, since there are exponentially many terms in the sum which need to be calculated and added to the total; however, only polynomially much space is consumed, and thus $\mathbf{BQP} \subseteq \mathbf{PSPACE}$, as we set out to show.

A similar procedure can be used to simulate an *arbitrary* quantum computation on a classical computer, no matter the length of the quantum computation. Therefore, the class of problems solvable on a quantum computer with unlimited time and space resources is no larger than the class of problems solvable on a classical computer. Stated another way, this means that quantum computers do not violate the Church–Turing thesis that any algorithmic process can be simulated efficiently using a Turing machine. Of course, quantum computers may be much more *efficient* than their classical counterparts, thereby challenging the *strong* Church–Turing thesis that any algorithmic process can be simulated *efficiently* using a probabilistic Turing machine.

4.6 Summary of the quantum circuit model of computation

In this book the term 'quantum computer' is synonymous with the quantum circuit model of computation. This chapter has provided a detailed look at quantum circuits, their basic elements, universal families of gates, and some applications. Before we move on to more sophisticated applications, let us summarize the key elements of the quantum circuit model of computation:

- (1) Classical resources: A quantum computer consists of two parts, a classical part and a quantum part. In principle, there is no need for the classical part of the computer, but in practice certain tasks may be made much easier if parts of the computation can be done classically. For example, many schemes for quantum error-correction (Chapter 10) are likely to involve classical computations in order to maximize efficiency. While classical computations can always be done, in principle, on a quantum computer, it may be more convenient to perform the calculations on a classical computer.
- (2) A suitable state space: A quantum circuit operates on some number, n, of qubits. The state space is thus a 2^n -dimensional complex Hilbert space. Product states of the form $|x_1, \ldots, x_n\rangle$, where $x_i = 0, 1$, are known as *computational basis states* of the computer. $|x\rangle$ denotes a computational basis state, where x is the number whose binary representation is $x_1 \ldots x_n$.
- (3) Ability to prepare states in the computational basis: It is assumed that any computational basis state $|x_1, \ldots, x_n\rangle$ can be prepared in at most n steps.

- (4) Ability to perform quantum gates: Gates can be applied to any subset of qubits as desired, and a universal family of gates can be implemented. For example, it should be possible to apply the CNOT gate to any pair of qubits in the quantum computer. The Hadamard, phase, CNOT and $\pi/8$ gates form a family of gates from which any unitary operation can be approximated, and thus is a universal set of gates. Other universal families exist.
- (5) Ability to perform measurements in the computational basis: Measurements may be performed in the computational basis of one or more of the qubits in the computer.

The quantum circuit model of quantum computation is equivalent to many other models of computation which have been proposed, in the sense that other models result in essentially the same resource requirements for the same problems. As a simple example which illustrates the basic idea, one might wonder whether moving to a design based on three-level quantum systems, rather than the two-level qubits, would confer any computational advantage. Of course, although there may be some slight advantage in using three-level quantum systems (*qutrits*) over two-level systems, any difference will be essentially negligible from the theoretical point of view. At a less trivial level, the 'quantum Turing machine' model of computation, a quantum generalization of the classical Turing machine model, has been shown to be equivalent to the model based upon quantum circuits. We do not consider that model of computation in this book, but the reader interested in learning more about quantum Turing machines may consult the references given in the end of chapter 'History and further reading'.

Despite the simplicity and attraction of the quantum circuit model, it is useful to keep in mind possible criticisms, modifications, and extensions. For example, it is by no means clear that the basic assumptions underlying the state space and starting conditions in the quantum circuit model are justified. Everything is phrased in terms of finite dimensional state spaces. Might there be anything to be gained by using systems whose state space is infinite dimensional? Assuming that the starting state of the computer is a computational basis state is also not necessary; we know that many systems in Nature 'prefer' to sit in highly entangled states of many systems; might it be possible to exploit this preference to obtain extra computational power? It might be that having access to certain states allows particular computations to be done much more easily than if we are constrained to start in the computational basis. Likewise, the ability to efficiently perform entangling measurements in multi-qubit bases might be as useful as being able to perform just entangling unitary operations. Indeed, it may be possible to harness such measurements to perform tasks intractable within the quantum circuit model.

A detailed examination and attempted justification of the physics underlying the quantum circuit model is outside the scope of the present discussion, and, indeed, outside the scope of present knowledge! By raising these issues we wish to introduce the question of the completeness of the quantum circuit model, and re-emphasize the fundamental point that information is physical. In our attempts to formulate models for information processing we should always attempt to go back to fundamental physical laws. For the purposes of this book, we shall stay within the quantum circuit model of computation. It offers a rich and powerful model of computation that exploits the properties of quantum mechanics to perform amazing feats of information processing, without classical prece-

dent. Whether physically reasonable models of computation exist which go beyond the quantum circuit model is a fascinating question which we leave open for you.

4.7 Simulation of quantum systems

Perhaps [...] we need a mathematical theory of quantum automata. [...] the quantum state space has far greater capacity than the classical one: for a classical system with N states, its quantum version allowing superposition accommodates c^N states. When we join two classical systems, their number of states N_1 and N_2 are multiplied, and in the quantum case we get the exponential growth $c^{N_1N_2}$. [...] These crude estimates show that the quantum behavior of the system might be much more complex than its classical simulation.

- Yu Manin (1980)^[Man80], as translated in [Man99]

The quantum-mechanical computation of one molecule of methane requires 10^{42} grid points. Assuming that at each point we have to perform only 10 elementary operations, and that the computation is performed at the extremely low temperature $T = 3 \times 10^{-3} K$, we would still have to use all the energy produced on Earth during the last century.

- R. P. Poplavskii (1975)^[Pop75], as quoted by Manin

Can physics be simulated by a universal computer? [...] the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics [...] the full description of quantum mechanics for a large system with R particles [...] has too many variables, it cannot be simulated with a normal computer with a number of elements proportional to R [... but it can be simulated with] quantum computer elements. [...] Can a quantum system be probabilistically simulated by a classical (probabilistic, I'd assume) universal computer? [...] If you take the computer to be the classical kind I've described so far [..] the answer is certainly, No!

- Richard P. Feynman (1982)^[Fey82]

Let us close out this chapter by providing an interesting and useful application of the quantum circuit model. One of the most important practical applications of computation is the simulation of physical systems. For example, in the engineering design of a new building, finite element analysis and modeling is used to ensure safety while minimizing cost. Cars are made lightweight, structurally sound, attractive, and inexpensive, by using computer aided design. Modern aeronautical engineering depends heavily on computational fluid dynamics simulations for aircraft designs. Nuclear weapons are no longer exploded (for the most part), but rather, tested by exhaustive computational modeling. Examples abound, because of the tremendous practical applications of predictive simulations. We begin by describing some instances of the simulation problem, then we present a quantum algorithm for simulation and an illustrative example, concluding with some perspective on this application.

4.7.1 Simulation in action

The heart of simulation is the solution of differential equations which capture the physical laws governing the dynamical behavior of a system. Some examples include Newton's