Lemma: $f: R^n \mapsto \overline{R} = RV \{\infty\}$ convex.

Then f is continuous at any Xo Eintdomf. $\begin{cases}
\delta_{c}(x) = \begin{cases}
0, & x \in C \\
+\infty, & x \notin C
\end{cases}$ $\begin{cases}
ReLU = \max(x, 0)
\end{cases}$

max { 0, 1- y; w x } = f x

If dom f= Rn >> f is continuous.

Proof: Let $g(x) = f(x_0 + x) - f(x_0)$ $\Rightarrow g$ is convex $\mathbb{R} g(0) = 0$.

Define: e., e2, ..., en be unit vectors in Rn.

fei, ez, ..., en, -e1, ..., -en} by {y1, ..., y2n}

For any $X \in \mathbb{R}^n$ s.t. $|\chi_i| \leq \frac{\alpha}{n}$, $\alpha \in [0,1]$ s.t. $\chi_0 + \alpha \chi_i \in \text{obm} f$. $\chi = \sum_{i,\chi_i > 0} \frac{\chi_i}{\alpha} \alpha e_i + \sum_{i,\chi_i < 0} \frac{-\chi_i}{\alpha} \alpha'(-e_i) + (1 - \sum_{i=0}^{|\chi_i|} \alpha') 0$

 $\int_{\lambda_{i}}^{\infty} \left(x \right) \leq \frac{1}{\lambda_{i}} \frac{|x_{i}|}{\alpha} \int_{\alpha}^{\infty} \left(de_{i} \right) + \sum_{i, x_{i} \leq 0}^{\infty} \frac{|x_{i}|}{\alpha} \int_{\alpha}^{\infty} \left(-de_{i} \right) + \left(1 - \sum_{i=1}^{\infty} \frac{|x_{i}|}{\alpha} \right) \int_{\alpha}^{\infty} \frac{|x_{i}|}{\alpha} \leq 1$ $\leq \beta \geq |x_i|$ $\beta = \alpha^{-1} \max_{1 \leq i \leq 2n} \theta(\alpha y_i) < +\infty$

 $A(so, D = g(o) = g(\frac{1}{2}x + (-\frac{1}{2}x)) \le \frac{1}{2}g(x) + \frac{1}{2}g(-x)$

=) & (x) > - & (-x) > - & = |xil

 $\Rightarrow -\beta \bar{z}|x_1| < \beta(x) - \beta(0) \leq \beta \bar{z}|x_1| \Rightarrow \beta$ is continuous at 0

⇒ & is continuous at Xo. for Xo∈ intodomf