UNIVERSIDADE FEDERAL DE VIÇOSA

Centro de Ciências Exatas Departamento de Matemática

1^a Lista - MAT 138 - Noções de Álgebra Linear (Matrizes)

II/2005

- 1. Considere as matrizes A, B, C, D e E com respectivas ordens, 4×3 , 4×5 , 3×5 , 2×5 e 3×5 . Determine quais das seguintes expressões matriciais são possíveis e determine a respectiva ordem.
 - (a) $AE + B^T$;
- (b) $C(D^T + B)$:
- (c) AC + B:
- (d) $E^T(CB)$.

2. Sejam A, B, C, D e E matrizes que satisfazem:

 AB^T tem ordem 5×3 ; $(C^T + D)B$ tem ordem 4×6 e

 E^TC tem ordem 5×4 .

Determine as ordens das matrizes A, B, C, D e E, respectivamente.

- 3. Construa uma matriz e identifique a ordem, em cada caso:
 - (a) linha;
- (b) coluna;
- (c) quadrada;
- (d) diagonal.

- (e) triangular superior;
- (f) simétrica;
- (g) anti-simétrica.
- 4. Dadas as matrizes $A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
 - (a) Obtenha as matrizes A^2 , $A \cdot B$, B^2 , A + B e $(A + B)^2$.
 - (b) Verifique se vale a identidade: $A^2 + 2A \cdot B + B^2 = (A + B)^2$
 - (c) Verifique se vale a identidade: $A^2 B^2 = (A + B) \cdot (A B)$.
 - (d) Qual é a condição necessária para que as identidades dos itens (b) e (c) sejam verdadeiras?
- 5. Obtenha as matrizes que comutam com a matriz $A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$.
- 6. Dadas as matrizes $A = \begin{bmatrix} 1 & 5 & -1 & 3 \\ -1 & 2 & -2 & 4 \\ 6 & 7 & 3 & -1 \\ 5 & 3 & 0 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 3 & 13 & 15 \\ 3 & -4 & 20 & 33 \\ 1 & 2 & 1 & 44 \\ 2 & 1 & 3 & 2 \end{bmatrix}$ determine os elementos $(A \cdot B)_{12} \in (B \cdot A)_{23}$
- 7. Dadas as matrizes $A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & x \\ -1 & y \end{bmatrix}$ e $C = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$.
 - (a) Determine $x \in y$ tais que $A \cdot C = B \cdot C$.
 - (b) Sendo $A \cdot C = B \cdot C$, é possível cancelar C?
 - (c) E se a matriz C tivesse determinante diferente de zero?
- 8. Se A é uma matriz 2×4 , definida pela lei $\begin{cases} i+j, \text{ se } i \leq j \\ i-j, \text{ se } i > j \end{cases}$, determine a matriz A e A^T .
- 9. Dadas as matrizes $A = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$.
 - (a) Encontre uma matriz X tal que A + X = B. Essa matriz X é única?
 - (b) Encontre uma matriz X tal que $A \cdot X = B$. Essa matriz X é única? Por quê?
 - (c) Encontre uma matriz X tal que $B \cdot X = A$. Essa matriz X é única? Por quê?

- 10. Dada uma matriz quadrada A, se existir um número inteiro p > 0, tal que $A^p = A$, diz-se que A é uma matriz idempotente. Se $A = \begin{bmatrix} 2 & -1 & -1 \\ -3 & 4 & -3 \\ -5 & 5 & -4 \end{bmatrix}$, mostre que A é idempotente. Determine o menor inteiro p para o qual $A^p =$
- 11. Calcule o valor de x, para que o produto da matriz $A = \begin{bmatrix} -2 & x \\ 3 & 1 \end{bmatrix}$ pela matriz $B = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$ seja uma matriz simétrica. (Observação: dizemos que uma matriz A é simétrica se $A = A^t$.)
- 12. Seja a matriz $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (a) Calcule $\det A$, $\det A^T$ e compare os resultados.
 - (b) Se k é um número (escalar), calcule:
 - i. $\det(kA)$.
 - ii. Escreva esse resultado em termos de $\det A$.
 - (c) Seja M uma matriz anti-simétrica.
 - i. Se M for de ordem 2, mostre que M pode ser inversível.
 - ii. Se a ordem de M for 3, então M não tem inversa.
- 13. Calcule o determinante das seguintes matrizes e identifique as que são inversíveis.

$$C = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 & 3 & -2 \\ 0 & 4 & -1 & 3 \\ 0 & 0 & -2 & 1 \\ 0 & 5 & -3 & 4 \end{bmatrix}, E = \begin{bmatrix} 2 & 1 & 2 & 1 & -1 \\ 0 & 2 & 3 & 1 & 2 \\ 0 & 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

14. Dada a matriz A abaixo, determine sua inversa se isso for possível. Use neste primeiro exercício o método que trabalha com operações elementares sobre linhas. Classifique as matrizes em singular ou não singular.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \ C = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}.$$

- 15. Considere a matriz $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Determine o polinômio $p(X) = \det(A xI_3)$ sendo I_3 a matriz identidade de ordem 3 e
 - (b) Verifique que p(A) = 0 (matriz nula).
 - (c) Use o item (b) para calcular a inversa de A.
- 16. Sendo A e B matrizes inversíveis de ordem n, isolar a matriz X de cada equação abaixo:
 - (a) AXB = I:
- (b) $(AX)^T = B$:
- (c) $(AX)^{-1} = I$;

- (a) AXB = I;(d) $(A + X)^T = B;$

- 17. Sejam A, B e C, matrizes reais de ordem 3, satisfazendo a seguintes relações; $A \cdot B = C^{-1}$, B = 2A. Se o determinante da matriz C vale 32, qual é o valor, em módulo, do determinante da matriz A?
- 18. Seja Q uma matriz de ordem 4, tal que det $Q \neq 0$ e $Q^3 + 2Q^2 = 0$. Calcule o valor de det Q.
- 19. Use algumas propriedades de determinantes para mostrar que: det $\begin{pmatrix} a+c & b+c & 2c \\ a & b & c \\ 1 & 1 & 1 \end{pmatrix} = 0.$
- 20. Sejam $A = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $B_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $B_2 = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$.
 - (a) Determine, se possível, a inversa da matriz A.
 - (b) Utilize o item (a) para resolver a equação matricial $A \cdot X = B_k$, k = 1, 2.
- 21. Um fabricante de móveis faz cadeiras e mesas, cada uma das quais passa por um processo de montagem e outro de acabamento. O tempo necessário para esses processos é dado (em horas) pela matriz

Montagem Acabamento
$$A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix} \begin{array}{c} Cadeira \\ Mesa \end{array}.$$

O fabricante tem uma fábrica em Belo Horizonte e outra em Ubá. As taxas por hora para cada um dos processos são dadas (em dólares) pela matriz

Belo Horizonte Ubá
$$A = \begin{bmatrix} 9 & 10 \\ 10 & 12 \end{bmatrix} \begin{array}{l} \text{Montagem} \\ \text{Acabamento} \end{array}.$$

Qual o significado dos elementos do produto matricial $A \cdot B$?

22. Um fabricante faz dois tipos de produtos, $P \in Q$, em cada uma de suas fábricas, $X \in Y$. Ao fazer esses produtos, são produzidos dióxido de enxofre, óxido nítrico e partículas de outros materiais poluentes. As quantidades de poluente são dadas (em quilos) pela matriz:

	Dióxido de Enxofre	Óxido Nítrico	Partículas	
A =	300	100	150 Produ	ıto P
	200	250	400 Produ	ıto Q ·

Leis estaduais e federais exigem a remoção desses poluentes. O custo diário para remover cada quilo de poluentes é dado (em dólares) pela matriz

	Fábrica X	Fábrica Y	
В=	8 7	$\begin{bmatrix} 12 \\ 9 \end{bmatrix}$	Dióxido de Enxofre Óxido Nítrico
	15	10	Partículas

Qual é o significado dos elementos do produto matricial AB?

23. Um projeto de pesquisa alimentar conta com a participação de adultos e crianças de ambos os sexos. A composição dos participantes no projeto é dada pela matriz

	Adulto	Criança	
A =	80 100	$\begin{bmatrix} 120 \\ 200 \end{bmatrix}$	sexo feminino sexo masculino .

O número de gramas diários de proteínas, gordura e carboidratos consumido por cada criança e cada adulto é dado pela matriz

I	Proteína	Gordura	Carboidra	to
A=	$\begin{bmatrix} 20 \\ 10 \end{bmatrix}$	20 20	$\begin{bmatrix} 20 \\ 30 \end{bmatrix}$	Adulto Criança ·

- (a) Quantos gramas de proteína são consumidos diariamente pelos homens que participam do projeto?
- (b) Quantos gramas de gordura são consumidos diariamente pelas mulheres que participam do projeto?
- 24. A tiragem diária na cidade de Mimosa dos jornais: **Dia a Dia, Nossa Hora, Acontece e Urgente**, durante o ano de 2002 está representada na seguinte tabela:

	Dia a Dia	Nossa Hora	Acontece	Urgente
Dias úteis	400	600	450	650
Feriados	350	550	500	600
Sábados	350	600	500	650
Domingos	450	500	400	700

Determine:

- (a) A tiragem de cada jornal em Mimosa em 2002, sabendo-se que 2002 tivemos 52 sábados, 52 domingos, 12 feriados e 249 dias úteis.
- (b) A estimativa da tiragem total de cada jornal em Mimosa para o ano de 2005, sabendo-se que a previsão é que até o final deste ano (2005) a tiragem tenha um aumento de 60% em relação à 2002.
- 25. Uma construtora está fazendo o orçamento de 47 estabelecimentos rurais sendo estes divididos em: 20 de alvenaria, 30 mistos e 15 de madeira. A tabela abaixo descreve a quantidade de material utilizado em cada tipo de construção.

Tipo de Construção/Material	Tábuas (unidade)	Tijolos (mil)	Telhas (mil)	Tinta (litros)	Mão-de-obra (dias)
Alvenaria	50	15	6	70	25
Madeira	500	1	5	20	30
Misto	200	8	7	50	40

Pede-se:

- (a) Determinar, utilizando produto de matrizes, a matriz A que descreve quantas unidades de cada componente serão necessárias para cumprir o orçamento.
- (b) Dar o significado do produto de matrizes AB, onde A é a matriz obtida no item (a) e B é a matriz obtida pela tabela abaixo.

	Valor da Compra (a unidade em reais)	Transporte (a unidade em reais)
Tábuas	12	0,08
Tijolos	100	20
Telhas	300	10
Tinta	3	0,50
Mão-de-obra	40	1,50

26. Considere os adubos I, II, III e IV com características e preços descritos nas tabelas abaixo:

Substância por kg	Fósforo	Nitrato	Potássio
Adubo I	25g	15g	70 <i>g</i>
Adubo II	30g	25g	40g
Adubo III	60g	10g	55g
Adubo <i>IV</i>	15g	30g	60g

Adubos	I	II	III	IV
Preço por kg	R\$ 7,50	R\$ 5,00	R\$ 4,50	R\$ 6,50

Um agricultor necessita de uma mistura com a seguinte especificação:

6 kg do adubo I, 7 kg do adubo II, 5 kg do adubo III e 8 kg do adubo IV.

Usando produto de matrizes determine a quantidade de cada substância na mistura descrita acima e o preço (da mistura).

27. Um fabricante de farinha produz três tipos de farinha: de mandioca, de milho e de trigo. Para produzir cada um dos tipos de farinha o produto bruto passa por três processos: seleção, processamento e embalagem. O tempo necessário (em horas), em cada processo, para produzir uma saca de farinha, é dado na tabela abaixo:

Processos/ Tipo de Farinha	Seleção	Processamento	Embalagem
Mandioca	1	3	1
Milho	2	5	1
Trigo	1,5	4	1

O fabricante produz as farinhas em duas usinas uma em Cacha Pregos (BA) e outra em Cacimba de Dentro (PB), as taxas por hora para cada um dos processos são dadas (em reais) na tabela abaixo:

	Cacha Pregos	Cacimba de Dentro
G 1 ~		
Seleção	2	1,50
_		
Processamento	1	1,80
Embalagem	0,50	0,60

Encontre A e B matrizes obtidas pelas primeira e segunda tabelas, respectivamente. Qual o significado do produto matricial AB?

28. A secretaria de meio ambiente de uma cidade constatou que as empresas que trabalham nos ramos de suinocultura, cunicultura e piscicultura são as grandes poluidoras de três regiões do município, diariamente despejam dejetos destas culturas segundo a descrição da tabela abaixo:

Quant. de Dejetos por dia $(em kg)$	1 ^a Região	2^a Região	3^a Região
Cunicultura	80	90	70
Piscicultura	200	40	30
Suinocultura	150	120	100

A secretaria decidiu então aplicar multas diárias sobre estas empresas afim de angariar fundos para despoluir tais regiões, as multas foram estabelecidas de acordo com a tabela abaixo:

Multa Cobrada (em reais) por kg de dejetos depositados	1^a Região	2^a Região	3^a Região
Cunicultura	400	200	300
Piscicultura	50	400	100
Suinocultura	600	300	500

Considerando A a matriz obtida através da tabela 1 e B a matriz obtida através da tabela 2, determine os elementos da matriz quem fornecem a arrecadação da secretaria nas regiões, por ramo de atividade, ao aplicar tais multas.

- 29. Verifique se as sentenças abaixo são verdadeiras ou falsas. Justifique sua resposta.
 - (a) () $\det(-A) = -\det A$.
 - (b) () $(b) \det(A + B) = \det(A) + \det(B)$.
 - (c) () Sejam A, B e P matrizes reais de ordem n, tais que $B = P^TAP$, sendo P inversível. Então det $A = \det B$.
 - (d) () Dada a equação matricial $X^2 + 2X = 0$, onde X é uma matriz quadrada de ordem n, não singular. Então esta equação tem única solução.
 - (e) () Se $A, B \in M_{n \times n}(I\!\! R)$ são tais que $A \cdot B = 0$ (matriz nula), então $B \cdot A$ também é a matriz nula.
 - (f) () Se $A, B \in M_{n \times n}(\mathbb{R})$ são tais que $A \cdot B = 0$ (matriz nula), então A = 0 ou B = 0.
 - (g) () A soma de duas matrizes simétricas de mesma ordem é uma matriz simétrica.
 - (h) () O produto de duas matrizes simétricas de mesma ordem é uma matriz simétrica.
 - (i) () Se um sistema quadrado Ax=0 tem somente a solução trivial, então Ax=b tem uma única solução.
 - (j) () A soma de dois vetores soluções de um sistema linear é sempre um vetor solução do sistema.

Nas afirmativas abaixo, $A, B \in C$ são matrizes cujos tamanhos são apropriados para as operações indicadas.

- (k) () Se $A \cdot C = B \cdot C$ e C é inversível, então A = B.
- (l) () Se $A \cdot B = 0$ e B é inversível, então A = 0.
- (m) () Se $A \cdot B = C$ e duas das matrizes são inversíveis, então a terceira também é.
- (n) () Se $A \cdot B = C$ e duas das matrizes são singulares (não inversíveis), então a terceira também é.
- 30. Sejam as matrizes $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Definamos $A^0 = I$ e $A^n = A^{n-1} \cdot A$ para todo número natural n, com $n \ge 1$. Então mostre que: $A^{2n} = I$ e $A^{2n+1} = I$, para todo natural n.
- 31. Sendo A uma matriz real quadrada de ordem 3, cujo determinante é igual a 4, qual o valor de x na equação $\det(2AA^T)=4x$.
- 32. Coloque a matriz de observações $\begin{bmatrix} 12 & 13 & 13 & 14 \\ 61 & 60 & 62 & 65 \end{bmatrix}$ em forma de desvio médio e construa a matriz de covariância das amostras. Qual o significado de cada elemento dessa matriz?