勒贝格积分

• Lebesgue 积分的思想:设 f(x) 是在集合 E 上定义的有界函数, $m \le f(x) \le M$. 把区间 [m, M] 进行分割

$$m = y_0 < y_1 < y_2 < \cdots < y_n = M.$$

令 $E_i = \{x : y_{i-1} \le f(x) < y_i\}, \ 0 \le i < n, \ E_n = \{x : y_{n-1} \le f(x) \le y_n = M\}.$ $\lambda = \max\{\Delta y_i\}, \ \text{Lebesgue} 积分定义为$

$$\int_{E} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1} m(E_i).$$

 $h = \sum_{i=1}^{n} (x) y_{i-1} \chi_{E_i} \le f(x), |f(x) - h(x)| \le \lambda. \sum_{i=1}^{n} y_{i-1} m(E_i)$ 是 h 的积分.

简单可测函数的积分

- 任意函数可分解为 $f = f^+ f^-$, 任意非负函数可以用非负简单函数 逼近.
- 定义:设ℝⁿ 非负可测简单函数 f 可表示为

$$f(x) = \sum_{i=1}^{p} c_i \chi_{A_i}, A_i$$
 两两不交, $\bigcup A_i = \mathbb{R}^n$.

f 在可测集 E 上的 Lebesgue 积分定义为(规定 $0 \cdot (+\infty) = 0$.)

$$\int_E f(x)dx = \sum_{i=1}^p c_i m(A_i \cap E).$$

• 注: 上面的积分中, c_j 不要求两两不同. $\bigcup A_i$ 不等于 \mathbb{R}^n 时可添加一个等于零的项. 如 $f=\chi_{A_i}=\chi_{A_i}+0\cdot\chi_{A_i^c}$.

- \mathfrak{H} : $\int_{(0,1)} \chi_{\mathbb{Q}} dx = 0$.
- 设 h 是简单函数. 当 $A \subset E$ 时, $\int_A h(x) dx = \int_E h(x) \chi_A dx$. 证明: 若 $h(x) = \sum_{j=1}^m a_j \chi_{E_j}$, $h(x) \chi_A = \sum_{j=1}^m a_j \chi_{E_j \cap A}$,

$$\int_{E} h(x)\chi_{A}dx = \sum_{j=1}^{m} a_{j}m(E_{j} \cap A) = \int_{A} h(x)dx.$$

• 设f 是 \mathbb{R}^n 上的非负简单可测函数, $c \ge 0$, $\int_E c \cdot f(x) dx = c \int_E f(x) dx$.

• 设 f,g 是 \mathbb{R}^n 上的非负简单可测函数,

• 设 f,g 是 \mathbb{R}^n 上的非负简单可测函数,

• 推论: 设 \mathbb{R}^n 非负可测简单函数 f 可表示为 $f(x) = \sum_{i=1}^p c_i \chi_{A_j}$, 这里 A_j 不要求两两不交, 并集也不一定是全空间. 则 f 在可测集 E 上的 Lebesgue 积分为

$$\int_{E} f(x)dx = \sum_{i=1}^{p} c_{i} m(A_{i} \cap E).$$

- A, B 不交, $\int_{A \cup B} h(x) dx = \int_A h(x) dx + \int_B h(x) dx$.
- $h(x) \leq g(x)$, 则有 $\int_E h dx \leq \int_E g dx$. 证明: $\int_E g(x) dx = \int_E h(x) dx + \int_E (g(x) - h(x)) dx$.

• E_k 是递增集合列, $E = \bigcup_{j=1}^{\infty} E_k = \lim_{k \to \infty} E_k$, 则有

$$\lim_{k\to\infty}\int_{E_k}h(x)dx=\int_Ehdx.$$

证明:

$$\lim_{k \to \infty} \int_{E_k} h(x) dx = \sum_{j=1}^m a_j \lim_{k \to \infty} m(E_j \cap E_k)$$
$$= \sum_{j=1}^m a_j m(E_j \cap E) = \int_E h dx$$

非负可测函数积分的定义

• 定义: f(x) 是 E 上的非负可测函数, h 在 E 上的 Lebesgue 积分定义为

$$\int_{E} f(x)dx = \sup \Big\{ \int_{E} h(x)dx : h(x) \ \text{\^{n}} \ \text{\^{e}}, \ \text{\^{m}} \ \text{\AE} \ h(x) \leq f(x) \Big\}.$$

若 $\int_E f(x)dx < +\infty$, 则称 f 在 E 上 Lebesgue 可积, E 上 Lebesgue 可积函数的全体记为 L(E).

注: 若 f(x) 是 E 上的非负可测简单函数,显然有

$$\int_{E} f(x)dx = \sup \Big\{ \int_{E} h(x)dx : h(x) 简单, 满足 h(x) \leq f(x) \Big\}.$$

非负函数积分的性质

- 若 E 为零测集, 则有 $\int_{F} f(x) dx = 0$.
- 若 $A \subset E$,则有 $\int_A f(x)dx = \int_E f(x)\chi_A dx$. 证明: $\sup\{\int_A h(x)dx : h(x) \le f(x)\}$ 等于 $\sup\Big\{\int_E h(x)\chi_A dx : h(x) \le f(x)\Big\} = \sup\Big\{\int_E h(x)dx : h(x) \le f(x)\chi_A\Big\}.$
- 若 $m(E) < +\infty$, 则 E 上的有界可测函数可积.
- Levi 定理: 设非负函数列 f_k 满足 $f_1 \leq f_2 \leq \cdots f_n$, $\lim_{k \to \infty} f_k = f$, $x \in E$. 则有 $\lim_{k \to \infty} \int_E f_k(x) dx = \int_E f(x) dx$.

Levi 定理的证明

$$\int_{E} f_{k}(x)dx \geq \int_{E_{k}} f_{k}(x)dx \geq \int_{E_{k}} \alpha h(x)dx \rightarrow \alpha \int_{E} h(x)dx.$$

上式中 $\alpha \to 1$, 得 $\lim_{k \to \infty} \int_{E} f_k(x) dx \ge \int_{E} h(x) dx$.

Levi 定理的推论1

若 E_k 是递增集合列, 极限集为 E, 则有

$$\lim_{k\to\infty}\int_{E_k}f(x)dx=\int_Ef(x)dx.$$

• f(x,y) 是 $E \times (a,b)$ 上定义的非负函数,对任意固定 $y \in (a,b)$, f(x,y) 关于 x 在 E 上可积;对固定的 $x \in E$, f(x,y) 关于 y 单调增. 若 $\lim_{y \to b-0} f(x,y) = f(x)$,则有

$$\lim_{y\to b-0}\int_E f(x,y)dx = \int_E f(x)dx.$$

证明: 对任意趋向于 b 的递增列 y_n , $\lim_{n\to\infty}\int_E f(x,y_n)dx = \int_E f(x)dx$.

非负函数积分的线性性质

• 积分的线性性质: 设 $\alpha, \beta \ge 0$, f, g 是非负函数, 则有

$$\int_{E} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{E} f(x) dx + \beta \int_{E} g(x) dx.$$

证明: 取趋向于 f(x) 的递增简单函数列 ϕ_k , 取趋向于 g(x) 的递增简单函数列 ψ_k , 则有递增列 $\alpha\phi_k(x)+\beta\psi_k(x)$ 趋向于 $\alpha f(x)+\beta g(x)$.由

$$\int_{E} (\alpha \phi_{k}(x) + \beta \psi_{k}(x)) dx = \alpha \int_{E} \phi_{k}(x) dx + \beta \int_{E} \psi_{k}(x) dx.$$

中 $k \to \infty$ 即得.

• 推论: 若 $E = E_1 \cup E_2$ (不交), $\int_E f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx$.

• 设 E 上的非负可积函数列 ft 几乎处处收敛到 f. 则有

$$\lim_{k\to\infty}\int_E f_k(x)dx = \int_E f(x)dx.$$

证明: $g_k(x) = f_1(x) - f_k(x)$ 是 E 上的渐升列.

$$\int_{E} f_1(x)dx - \int_{E} f_k(x)dx = \int_{E} (f_1(x) - f_k(x)) \rightarrow \int_{E} (f_1(x) - f(x))dx$$
$$= \int_{E} f_1(x)dx - \int_{E} f(x)dx$$

逐项积分定理

• 逐项积分定理: f_n 是 E 上的非负可测函数列, $f(x) = \sum_{k=1}^{\infty} f_k(x)$. 则有

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E} f_{k}(x).$$

证明: 令 $S_n(x) = \sum_{k=1}^{n} f_k(x)$, 是递增列, 且 $\lim_{k \to \infty} S_n(x) = f(x)$. 利用积分的线性性质, 由 Levi 定理, 有

$$\int_{E} f(x)dx = \lim_{n \to \infty} \int_{E} S_n(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{E} f_k(x)dx = \sum_{k=1}^{\infty} \int_{E} f_k(x)dx.$$

推论:若 E = ∪E_k (不交), f 是 E 上的非负可测函数,则有

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E_{k}} f(x)dx.$$

非负函数积分的性质1

- 若 $f(x) \le g(x)$, 则有 $\int_E f(x) dx \le \int_E g(x) dx$. 证明: g(x) = f(x) + (g(x) - f(x)). 两边积分即得.
- 若 f(x), g(x) 非负, 若 f 与 g 几乎处处相等, 则有

$$\int_{E} f(x)dx = \int_{E} g(x)dx.$$

证明: $E_1 = E(f \neq g)$, $E_2 = E \setminus E_1$.

非负函数积分的性质2

- 若 $\int_E f(x)dx < +\infty$, 则有 f 几乎处处有限. 证明: 令 $E_k = \{x \in E : f(x) > k\}$, 则有 $km(E_k) \leq \int_E f(x)dx$, 从而 $m(E_k) \to 0$, $E(f = +\infty) = \cap E_k$ 是零测集.
- 若 $\int_E f(x)dx = 0$, 则有 f(x) = 0, $a.e.x \in E$. 证明: 令 $E_k = E(f \ge \frac{1}{k})$, 则有

$$0 = \int_{E} f(x)dx \ge \int_{E_k} f(x)dx \ge \frac{1}{k} m(E_k),$$

15 / 1

故 E_k 都是零测集, $E(f > 0) = \bigcup E_k$ 也是零测集.

Fatou 引理

• 定理: 设 $f_n(x)$ 是 E 上的非负可积函数列, 有

$$\int_{E} \underline{\lim}_{k \to \infty} f_k(x) dx \le \underline{\lim}_{k \to \infty} \int_{E} f_k(x) dx.$$

证明:定义 $g_k(x) = \inf\{f_j(x) : j \ge k\}$,则 g_k 是递增函数列, $g_k(x) \le f_k(x)$,且 $\lim_{k\to\infty} g_k = \varliminf_{k\to\infty} f_k(x)$.由 Levi 定理,

$$\int_{E} \underline{\lim}_{k \to \infty} f_k(x) dx = \lim_{k \to \infty} \int_{E} g_k(x) dx \le \underline{\lim}_{k \to \infty} \int_{E} f_k(x) dx$$

• $\{f_n(x) = n\chi_{(0,\frac{1}{2})} \to f(x) \equiv 0,$

$$0 = \int_{\mathbb{R}} \underline{\lim}_{k \to \infty} f_n(x) dx < \underline{\lim}_{k \to \infty} \int_{E} f_n(x) dx = 1.$$

刘建明 (北大数学学院)

• 设 f(x) 是集合 E 上非负可测函数, $m(E) < \infty$,在 $[0, +\infty)$ 做分划 $0 = y_0 < y_1 < y_2 < \cdots$, $y_{k+1} - y_k < \delta$,令 $E_k = \{x \in E : y_k \le f(x) \le y_{k+1}\}$,则 f 可积 $\iff \sum_{k=0}^{\infty} y_k m(E_k) < +\infty$. 且

$$\lim_{\delta\to 0}\sum_{k=0}^{\infty}y_km(E_k)=\int_Ef(x)dx.$$

证明: $y_k m(E_k) \leq \int_{E_k} f(x) dx \leq y_{k+1} m(E_k) \leq \delta m(E_k) + y_k m(E_k)$.

一般可测函数积分的定义

• 设 f 是 E 上可测函数,

$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \max\{-f(x), 0\},$$

是非负可测函数, 且 $f = f^+ - f^-, |f| = f^+ + f^-.$

• 定义: $f \in E$ 上可测函数, $f \in E$ 上可测函数, $f \in E$ 上的积分

$$\int_{E} f(x)dx = \int_{E} f^{+}(x)dx - \int_{E} f^{-}(x)dx.$$

18 / 1

若 f^+ , f^- 都可积, 则称 f 在 E 上可积, 记为 $f \in L(E)$.

刘建明 (北大数学学院) 实变函数第四章

• 定理: f 可积, 对任意 $\epsilon > 0$, 则存在简单函数 $\phi_k(x)$ 满足 $|\phi_k(x)| \le |f(x)|$, 且有

$$\Big| \int_{E} |f(x) - \phi(x)| dx < \epsilon.$$

• 定理: f 可积的充分必要条件是 |f| 可积. 且 f 可积时, 有

$$\Big|\int_{E}f(x)dx\Big|\leq\int_{E}|f|(x)dx.$$

证明: $f \in L(E) \Leftrightarrow f^+, f^- \in L(E) \Leftrightarrow |f| = f^+ + f^- \in L(E)$, 又

$$\int_{E} f(x)dx \leq \int_{E} f^{+}(x)dx \leq \int_{E} |f|(x)dx,$$
$$-\int_{E} f(x)dx \leq \int_{E} f^{-}(x)dx \leq \int_{E} |f|(x)dx.$$

- 有界集上的有界可测函数可积,可积函数与有界函数的乘积函数可积.
- 可积函数几乎处处有限; 几乎处处为零的函数积分为零.
- 若g 可积, 且 $|f| \le g$, 则有f 可积, 且

$$\Big|\int_E f(x)dx\Big| \leq \int_E g(x)dx.$$

- 有界集上的有界可测函数可积,可积函数与有界函数的乘积函数可积.
- 可积函数几乎处处有限; 几乎处处为零的函数积分为零.
- 若g 可积, 且 $|f| \le g$, 则有f 可积, 且

$$\Big|\int_E f(x)dx\Big| \leq \int_E g(x)dx.$$

- 若 $f,g \in L(E)$, $f(x) \leq g(x)$, 则有 $\int_{E} f(x) dx \leq \int_{E} g(x)(x) dx$. 证明: $f^{+} - f^{-} \leq g^{+} - g^{-}$, 因此 $f^{+} + g^{-} \leq f^{-} + g^{+}$, 两边积分即 得 $\int_{E} f^{+} dx + \int_{E} g^{-} dx \leq \int_{E} f^{-} dx + \int_{E} g^{+} dx$. 移项即可得.
- 若 $f \in L(E)$, 则有 $|f(x)| < +\infty$, $a.e.x \in E$.
- 若 $m(E) < +\infty$, 则 E 上的有界可测函数可积.
- 若 $f \in L(E)$, $A \subset E$, 则 $f \in L(A)$, 且 $\int_A f(x) dx = \int_E f(x) \chi_A(x) dx$.

刘建明 (北大数学学院)

- 若 $f,g \in L(E)$, $f(x) \leq g(x)$, 则有 $\int_{E} f(x) dx \leq \int_{E} g(x)(x) dx$. 证明: $f^{+} - f^{-} \leq g^{+} - g^{-}$, 因此 $f^{+} + g^{-} \leq f^{-} + g^{+}$, 两边积分即 得 $\int_{E} f^{+} dx + \int_{E} g^{-} dx \leq \int_{E} f^{-} dx + \int_{E} g^{+} dx$. 移项即可得.
- 若 $f \in L(E)$, 则有 $|f(x)| < +\infty$, $a.e.x \in E$.
- 若 $m(E) < +\infty$, 则 E 上的有界可测函数可积.
- 若 $f \in L(E)$, $A \subset E$, 则 $f \in L(A)$, 且 $\int_A f(x) dx = \int_E f(x) \chi_A(x) dx$.

刘建明 (北大数学学院)

- 若 $f,g \in L(E)$, $f(x) \leq g(x)$, 则有 $\int_{F} f(x) dx \leq \int_{F} g(x)(x) dx$.
- 若 E_k 是递增集合列, 极限集为 E. 若 $f \in L(E)$, 则有 $f \in L(E_k)$, 且

$$\int_{E} f(x)dx = \lim_{k \to \infty} \int_{E_k} f(x)dx.$$

证明: $f = f^+ - f^-$, $\int_E f(x)^{\pm} dx = \lim_{k \to \infty} \int_{E_k} f^{\pm}(x) dx$.

f ∈ L(E), E_n = {x ∈ E : |x| ≥ n}, lim ∫_{E_n} f(x)dx = 0.
 证明: ∫_{E_n} f(x)dx = ∫_E f(x)dx - ∫_{x∈E:|x|<n} f(x)dx, {x ∈ E : |x| < n}
 是递增列, 极限集为 E.

刘建明 (北大数学学院) 实变函数第四章

• 定理: $f,g \in L(E)$, $\alpha \in \mathbb{R}$, 则有 $\alpha f \in L(E)$, 且有

$$\int_{E} \alpha f(x) dx = \alpha \int_{E} f(x) dx.$$

证明: $\alpha < 0$ 时, $(\alpha f)^+ - (\alpha f)^- = (-\alpha)f^- - (-\alpha)f^+$ 两边积分得第一个等式.

$$\int_{E} \alpha f(x) dx = \int_{E} (-\alpha) f^{-}(x) dx - \int_{E} (-\alpha) f^{+}(x) dx$$
$$= \alpha \left(\int_{E} f^{+}(x) dx - \int_{E} f^{-}(x) dx \right) = \alpha \int_{E} f(x) dx.$$

刘建明 (北大数学学院)

定理: f,g∈L(E),则有f+g∈L(E),且有

$$\int_{E} (f(x) + g(x)) dx = \int_{E} f(x) dx + \int_{E} g(x) dx.$$
证明: $(f+g)^{+} - (f+g)^{-} = f^{+} + g^{+} - f^{-} - g^{-}$, 从而有 $(f+g)^{+} + f^{-} + g^{-} = (f+g)^{-} + f^{+} + g^{+}$, 两边积分得
$$\int_{E} (f+g)^{+} dx + \int_{E} f^{-} dx + \int_{E} g^{-} dx$$

 $= \int_{E} (f+g)^{-} dx + \int_{E} f^{+} dx + \int_{E} g^{+} dx,$

移项即得要证的等式.

刘建明 (北大数学学院) 实

积分对区域的可加性

- 推论: $E = E_1 \cup E_2($ 不交并), $\int_E f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx$.
- 若 E_k 是两两不交的可测集, $E = \bigcup_{k=1}^{\infty} E_k$,

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E_{k}} f(x)dx.$$

证明: $\int_E f(x)dx = \int_E f^+(x)dx - \int_E f^-(x)dx$ 。

若 |f(x)| ln(1+|f(x)|) ∈ L([0,1]), 则有 |f(x)| ∈ L([0,1]),
 证明: 设 E₁ = {x ∈ [0,1] : |f(x)| ≤ e-1}, E₂ = {x ∈ [0,1] : |f(x)| > e-1},

$$\int_{[0,1]} |f(x)| dx \le \int_{E_1} |f(x)| dx + \int_{E_2} |f(x)| (\ln(1+|f(x)|)) dx$$

• (下)凸函数: 若 $\phi(x)$ 是 [a,b] (可以是无穷区间)上的(下)凸函数, $a_i > 0 (1 \le i \le n)$ 满足 $\sum_{i=1}^n a_i = 1$, 则有

$$\phi(\sum_{i=1}^n a_i x_i) \le \sum_{i=1}^n a_i \phi(x_i).$$

|Jensen不等式

• Jensen不等式: 设 w(x) 是 $E \subset \mathbb{R}^n$ 上的正值可测函数, 且 $\int_E w(x) dx = 1$. $\phi(x)$ 是 I = [a, b] 上的(下)凸函数, f(x) 在 E 上可测, 且值域 $R(f) \subset I$, 若 $fw \in L(E)$, 则

$$\phi(\int_{E} f(x)w(x)dx) \leq \int_{E} \phi(f(x))w(x)dx.$$

证明: 令 $y_0 = \int_E f(x)w(x)dx$, 若 y_0 不是 I 的端点, 存在 k (只要取 k 在 y_0 的左右导数之间), 使得 $\phi(y) \ge \phi(y_0) + k(y-y_0)$, 则有

$$\phi(f(x)) \geq \phi(y_0) + k(f(x) - y_0)$$

两边乘以 w(x) 再积分即得. 若 $y_0 = b$, $\int_E (b - f(x))w(x)dx = 0$, b = f(x), $a, e \in E$.

设 f ∈ L([a, b]), 若对任意 c ∈ [a, b], 有 ∫_[a,c] f(x)dx = 0, 则有f(x) = 0, a.e. x ∈ [a, b].
证明: 由条件, f在任意区间上的积分为零. 反设存在正测集 E ⊂ [a, b], 使得在 E 上 f(x) > 0, 做正测集 F ⊂ E, 则 f 在 F 上的积分大于0,则在 G = (a, b)\F = (a_n, b_n)上的积分小于零,则 f 必在某

个区间 $[a_n, b_n]$ 上积分小于0, 矛盾.

• 设 g(x) 是 E 上的可测函数, 若对任意的 $f \in L(E)$, 都有 $f \cdot g \in L(E)$, 证明存在零测集 $Z \subset E$, 使得f 在 $E \setminus Z$ 上有界.

证明: 反设存在自然数的子列 k_i ,使得集合 $E_i = \{x \in E : k_i \le f(x) \le t \}$ k_{i+1} 都是正测集. 做函数

$$f(x) = \sum_{i=1}^{n-1/2} (m(E_i))^{-1} \operatorname{sign}(g(x)) \chi_{E_i}(x)$$

则有 $f \in L(E)$, 但是

$$\int_{E} f(x)g(x)dx \geq \sum \frac{k_{i}}{i^{1+1/2}m(E_{i})}m(E_{i}) = \infty$$

积分的绝对连续性

定理: 若 f ∈ L(E), 则对任意的 ε > 0, 存在 δ > 0, 当 A ⊂ E 满足 m(A) < δ 时, |∫_A f(x)dx| ≤ ∫_A |f|(x)dx < ε.
 证明: 令 E_n = {x ∈ E : |f(x)| ≤ n}, 则 E_n 是递增集合列, 其极限集 为 E₀ = E(|f| < +∞), 由 f 几乎处处有限, 从而 E\E₀ 是零测集. 因此有

$$\lim_{n\to\infty}\int_{E_n}|f(x)|dx=\int_{E_0}|f(x)|dx=\int_{E}|f(x)|dx.$$
取 N , 使得 $\int_{E\setminus E_N}|f(x)|dx=\int_{E}|f(x)|dx-\int_{E_N}|f(x)|dx<\frac{\epsilon}{2}$, 再取 $\delta=\frac{\epsilon}{2N}$, 则当 $m(A)<\delta$ 时,

$$\int_{A} |f(x)| dx \leq \int_{A \cap E_{n}} |f(x)| dx + \int_{E \setminus E_{N}} |f(x)| dx < \epsilon.$$

• 也可先用简单函数逼近, 再利用简单函数有界.

刘建明 (北大数学学院)

积分的平移不变性

• 定理: 若 $f \in L(\mathbb{R}^n)$, 则对任意 $y \in \mathbb{R}^n$, $f(\cdot + y) \in L(\mathbb{R}^n)$. 且有

$$\int_{\mathbb{R}^n} f(x+y) dx = \int_{\mathbb{R}^n} f(x) dx.$$

证明: $f = \chi_E$ 时,

$$\int_{\mathbb{R}^n} \chi_{E}(x+y) dx = \int_{\mathbb{R}^n} \chi_{E-y}(x) dx = m(E)$$

因此当 f 是简单函数时, 结论成立.

当 f 是非负可测函数时, 取非负简单递增函数列 ϕ_k , 使得 $\lim \phi_k(x) = f(x)$, 则有 $\lim \phi_k(x+y) = f(x+y)$,

$$\int_{\mathbb{R}^n} \phi_k(x) dx = \int_{\mathbb{R}^n} \phi_k(x+y) dx,$$

上面等式中令 k 趋向 $+\infty$, 由 Levi 定理即得.

控制收敛定理

• 定理: 设 $f_n(x)$ 是 E 上的可积函数列, $\lim_{n \to +\infty} f_n(x) = f(x)$, $a.e.x \in E$, 且存在可积函数 $F \in L(E)$, 使得 $|f_n(x)| \le F(x)$, $a, e, x \in E$, $\forall n$. 则有 $f \in L(E)$, 且

$$\lim_{n\to\infty}\int_E f_n(x)dx = \int_E f(x)dx.$$

• 例: $f_n(x) = n\chi_{(0,\frac{1}{n})}$, 没有可积的控制函数,

$$\lim_{n\to\infty}\int_E f_n(x)dx\neq\int_E f(x)dx.$$

定理证明:由 F(x) - f_n(x) ≥ 0,利用 Fatou 引理,

$$\int_{E} (F(x) - f(x)) dx = \int_{E} \lim_{n \to \infty} (F(x) - f_{n}(x)) dx$$

$$\leq \lim_{n \to \infty} \int_{E} (F(x) - f_{n}(x)) dx = \int_{E} F(x) dx - \overline{\lim}_{n \to \infty} \int_{E} f_{n}(x) dx,$$
由此得 $\int_{E} f(x) dx \geq \overline{\lim} \int_{E} f_{n}(x) dx$. 又由 $F(x) + f_{n}(x) \geq 0$,
$$\int_{E} (F(x) + f(x)) dx = \int_{E} \lim_{n \to \infty} (F(x) + f_{n}(x)) dx$$

$$\leq \underline{\lim}_{n \to \infty} \int_{E} (F(x) + f_{n}(x)) dx = \int_{E} F(x) dx + \underline{\lim}_{n \to \infty} \int_{E} f_{n}(x) dx.$$

33 / 1

刘建明 (北大数学学院) 实变函数第四章

控制收敛定理的证明2

• 定理证明(续): 得 $\int_E f(x) dx \le \underline{\lim} \int_E f_n(x) dx$, 从而有

$$\overline{\lim}_{n\to\infty}\int_E f_n(x)dx = \underline{\lim}_{n\to\infty}\int_E f_n(x)dx = \int_E f(x)dx.$$

• 另一证明: 令 $E_N = E \cap \{x : ||x|| \le N\}$, $E_\delta \subset E_N$ 使得 $m(E_N \setminus E_\delta) < \delta$, 且在 $E_\delta \perp f_n \Longrightarrow f$.

$$\int_{E} |f - f_n| dx \leq \int_{E_{\delta}} |f - f_n| dx + \int_{E_N \setminus E_{\delta}} 2F(x) dx + \int_{E \setminus E_N} 2F(x) dx.$$

刘建明 (北大数学学院) 实变函数第四章 34,

依测度收敛的控制收敛定理

• 定理: 设 $f_n(x)$ 是 E 上的可积函数列, $f_n(x)$ 依测度收敛到 f(x), 且存在可积函数 $F \in L(E)$, 使得对任意 n, $|f_n(x)| \leq F(x)$, a, e, $x \in E$. 则有 f_n , $f \in L(E)$, 且

$$\lim_{n\to\infty}\int_E f_n(x)dx = \int_E f(x)dx.$$

• 证明: 反设存在 ϵ_0 , 存在子列 f_{n_k} , 使得

$$\left| \int_{E} f_{n_{k}}(x) dx - \int_{E} f(x) dx \right| > \epsilon_{0}. \tag{1}$$

则由 $f_{n_k} \stackrel{m}{\to} f$,又存在子列 $f_{n_{k_j}} \stackrel{a.e.}{\to} f$. 由控制收敛定理, $\int_E f_{n_{k_j}}(x) dx \to \int_E f(x) dx$,这与(1)式矛盾.

依测度收敛的控制收敛定理的证明

• 另一证明:(1) f 可积, 因为存在子列 $f_{k_i} \to f(x)$, a.e. $|f_{k_i}| \le F(x)$. 因此 $|f(x)| \le F(x)$.

(2)
$$E_N = E \cap \{x \in E : ||x|| \le N\}, E_k = \{x \in E : |f_k(x) - f(x)| > \epsilon\}.$$

$$\int_{E} |f - f_k| dx \leq \int_{E_N \setminus E_k} |f - f_n| dx + \int_{E_k} 2F(x) dx + \int_{E \setminus E_N} 2F(x) dx.$$

$$\lim_{n\to\infty}\int_E f_n(x)dx = \int_E f(x)dx.$$

• 注: 若 $f_k(x)$ 非负可积, $f_k(x)$ 依测度收敛到可积函数 f(x),若 $\lim_{n\to\infty}\int_E f_n(x)dx = \int_E f(x)dx$,则有 $\lim_{n\to\infty}\int_E |f_k(x) - f(x)|dx = 0$. 证明: 记 $m_k(x) = \min\{f_k(x), f(x)\}$. $M_k(x) = \min\{f_k(x), f(x)\}$, $m_k(x) + M_k(x) = f(x) + f_k(x)$, $\{x \in E : |f(x) - m_k(x) > \sigma\} \subset \{x \in E : |f(x) - f_k(x)| > \sigma\}$, 因此 $m_k(x)$ 依测度收敛到 f(x). 且 $m_k(x) \le f(x)$, 因此 $\lim_{n\to\infty}\int_E m_k(x)dx = \int_E f(x)dx$. M_k 也有类似结论. $|f_k(x) - f(x)| = M_k(x) = m_k(x)$.

控制收敛定理的应用1

• 例: $f_n(x) = e^{-x} \cos x \frac{\ln(x+n)}{n}$, 求 $\lim_{n \to \infty} \int_0^{+\infty} f_n(x) dx$. 解: 对任意 $x \ge 0$, $f_n(x) \to 0$, 又有

$$|f_n(x)| \leq e^{-x} \frac{\ln(x+n)}{n+x} \frac{n+x}{n} \leq Ce^{-x} (1+x) \in L[0,+\infty).$$

由控制收敛定理,所求极限为0.

• 注: 若利用含参变量广义积分, 要验证 [0,A] 上 f_n 一致收敛, 还要验证 $A \to +\infty$ 时, $\int_A^{+\infty} f_n(x) dx$ 一致收敛到 0.

刘建明 (北大数学学院) 实变函数第四章 38 / 1

控制收敛定理的应用2

- \mathfrak{P} : $f_n(x) = \frac{n^{\frac{3}{2}x}}{1+(nx)^2}$, $\sharp \lim_{n\to\infty} \int_0^{+\infty} f_n(x) dx$.
- 解:对任意 $x \in [0,1], f_n(x) \to 0, 又有$

$$|f_n(x)| \leq \frac{1}{\sqrt{x}} \cdot \frac{(nx)^{\frac{3}{2}}}{1 + (nx)^2} \leq M \frac{1}{\sqrt{x}} \in L[0, 1].$$

由控制收敛定理,所求极限为0.

• $ightharpoonup E: f_n(\frac{1}{n}) = \frac{\sqrt{n}}{2}, f_n \, \text{TR} - \mathfrak{L} - \mathfrak{L} \times \mathfrak{L}$

逐项积分定理

• 利用 Levi 定理我们已经证明: 若 f_n 是 E 上的非负可测函数列, $f(x) = \sum_{k=1}^{\infty} f_k(x)$. 则有

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E} f_{k}(x)dx.$$

• 逐项积分定理: fn 是 E 上的可积函数列, 且

$$\sum_{k=1}^{\infty} \int_{E} |f_k(x)| dx < +\infty.$$

则 $\sum_{k=1}^{\infty} f_k(x)$ 在 E 上几乎处处收敛. 设和函数为 f(x), 则有 $f \in L(E)$,

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E} f_{k}(x)dx.$$

逐项积分定理的证明

$$\int_{E} F(x)dx = \sum_{k=1}^{\infty} \int_{E} |f_{k}(x)|dx < +\infty.$$

因此 $F \in L(E)$, 从而 $\sum_{k=1}^{\infty} f_k(x)$ 在 E 上几乎处处收敛, 且 $|f(x)| \le F(x)$. 令 $S_n(x) = \sum_{k=1}^n f_k(x)$ 则有 $|S_n(x)| \le F(x)$, a.e.. 由控制收敛定理,

$$\int_{E} f(x)dx = \lim_{n \to \infty} \int_{E} \sum_{k=1}^{n} f_{k}(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{E} f_{k}(x)dx.$$

刘建明 (北大数学学院) 实变函数第四章

逐项积分定理的推论

• 推论: 若 $E = \bigcup E_k(\overline{X}, f) \in L(E)$, 则有 $f \in L(E_k)$, 且有

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E_{k}} f(x)dx.$$

• 例: $f_n = n\chi_{(0,\frac{1}{n})} - (n+1)\chi_{(0,\frac{1}{n+1})}$, 则有 $\sum_{k=1}^{\infty} f_n = \chi_{(0,1)}$. 但是

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}} f_k(x) dx = 0 \neq \int_{\mathbb{R}} \sum_{k=1}^{\infty} f_k(x) dx = 1.$$

这里 fn 不满足定理要求, 因为

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}} |f_n| dx = \sum_{k=1}^{\infty} \frac{2}{n+1} = +\infty.$$

• $f \in L([0,+\infty))$, 则有 $\lim_{n\to\infty} f(x+n) = 0$, a.e. $z \in \mathbb{R}$. 证明:

$$\int_{[0,1]} \sum_{n=1}^{\infty} |f(x+n)| dx = \sum_{n=1}^{\infty} \int_{[0,1]} |f(x+n)| dx$$
$$= \sum_{n=1}^{\infty} \int_{[n,n+1]} |f(x)| dx = \int_{[0,+\infty)} |f(x)| dx$$

因此 $\sum_{n=1}^{\infty} |f(x+n)|$ 在 [0,1] 上几乎处处有限.

含参变量积分的极限

- 含参变量积分: 设 f(x,y) 是 $E \times [a,b]$ 上定义的函数, 对任意固定 $y \in [a,b]$, 关于 x 可积. 定义 $\phi(y) = \int_E f(x,y) dx$.
- 对 $y_0 \in [a, b]$, 若存在可积函数 F(x) 使得 $|f(x, y)| \le F(x)$, 且极限 $\lim_{y \to y_0} f(x, y)$ 对 $a.e.x \in E$ 存在, 则有

$$\lim_{y\to y_0}\phi(y)=\int_E\lim_{y\to y_0}f(x,y)dx.$$

证明: 对任意 $[a,b] \ni y_n \to y_0$, 由控制收敛定理,

$$\lim_{n\to\infty}\phi(y_n)=\int_E\lim_{n\to\infty}f(x,y_n)dx=\int_E\lim_{y\to y_0}f(x,y)dx.$$

• 若存在可积函数 F(x), 使得 $|f(x,y)| \le F(x)$, 且 $\lim_{y \to y_0} f(x,y) = f(x,y_0)$, a.e. $x \in E$, 则有 $\phi(y)$ 在 $y = y_0$ 处连续.

含参变量积分的导数

• 若 $f_y(x,y)$ 存在,且存在可积函数 F(x),使得 $|f_y(x,y)| \leq F(x)$,则有 $\phi(y)$ 在 $y = y_0$ 处可导,且 $\phi'(y) = \int_E f_y(x,y) dx$. 证明:利用中值定理.

$$\left|\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}\right|=|f_y(x,y+\theta\Delta)|\leq F(x),$$

利用控制收敛定理,

$$\lim_{\Delta y \to 0} \frac{\phi(y + \Delta y) - \phi(y)}{\Delta y} dx = \lim_{\Delta y \to 0} \int_{E} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} dx$$
$$= \int_{E} \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} dx = \int_{E} f_{y}(x, y) dx.$$

刘建明 (北大数学学院) 实变函数第四章

含参变量积分—例

- 例: 设 $f(x), xf(x) \in L(\mathbb{R}), \ \phi(y) = \int_{\mathbb{R}} f(x) \arctan(xy) dx, \ y \in \mathbb{R}.$ 讨论 ϕ 的连续性和可微性.
- 解:设 $f(x,y) = f(x) \arctan(xy)$,则有 $|f(x,y)| \leq \frac{\pi}{2} |f(x)| \in L(\mathbb{R})$,又 f(x,y) 关于 y 连续,因此 ϕ 连续.又因为

$$|f_y(x,y)| = |f(x)| \frac{x}{1+(xy)^2} \le |xf(x)| \in L(\mathbb{R}),$$

46 / 1

故 φ 可微.

紧支连续函数的稠密性

- 定义:设 f 是 \mathbb{R}^n 上的连续函数,若 $\{x: f(x) \neq 0\}$ 是一个有界集,则称 f 有紧支集. \mathbb{R}^n 上有紧支集的连续函数的全体记为 $C_c(\mathbb{R}^n)$.
- 定理: 若 $f \in L(E)$. 对任意 $\epsilon > 0$, 存在 $g \in C_c(\mathbb{R}^n)$, 使得

$$\int_{E} |f(x) - g(x)| dx < \epsilon.$$

• 推论: $f \in L(E)$, 对任意 $\epsilon > 0$, g 可分解为 f(x) = g(x) + h(x), 其中 $g \in C_c(\mathbb{R}^n)$, $\int_E |h(x)| dx < \epsilon$.

紧支连续函数稠密性的证明1

• 利用积分的定义, 存在非负简单函数 ϕ_1, ϕ_2 , 使得 $\int_E |f^+(x) - \phi_1(x)| dx < \frac{\epsilon}{6}$, $\int_E |f^-(x) - \phi_1(x)| dx < \frac{\epsilon}{6}$, 令 $\phi = \phi_1 - \phi_2$, 则有

$$\int_{E} |f(x) - \phi(x)| dx < \frac{\epsilon}{3}.$$

• 令 $\phi_n = \phi \chi_{|\mathbf{x}| < n}$, 则 $|\phi_n|$ 单调递增趋向于 $|\phi|$, 由 Levi 定理

$$\int_{E} |\phi(x) - \phi_n(x)| dx = \int_{E} |\phi(x)| dx - \int_{E} |\phi_n(x)| dx \to 0.$$

取 N 足够大, 紧支简单函数 $\psi = \phi \chi_{|x| < N}$ 满足

$$\int_{E} |\phi(x) - \psi(x)| dx < \frac{\epsilon}{3}.$$

紧支连续函数的稠密性的证明2

• 设 $|\psi| \leq M$, 把 ψ 限制到一个闭集 $F \subset E$ 上, 使得 $m(E \setminus F) \leq \frac{\epsilon}{6M}$, 取 $g \in C_c(\mathbb{R}^n)$ 为 $\psi|_F$ 的延拓,且上界不变(事实上,若 $h \in C(\mathbb{R}^n)$ 为 $\psi|_F$ 的延拓,作 \mathbb{R}^n 上的连续函数 $\omega(x)$,使得当 $|x| \leq N$ 是 $\omega(x) = 1$,当 $|x| \geq N + 1$ 是 $\omega(x) = 0$,且 $0 \leq \omega(x) \leq 1$ 对所有 x 成立.则 $g(x) = h(x)\omega(x) \in C_c(\mathbb{R}^n)$ 为 $\psi|_F$ 的延拓).则

$$\int_{E} |\psi(x) - g(x)| dx = \int_{E \setminus F} |\psi(x) - g(x)| dx < 2M \cdot \frac{\epsilon}{6M} < \frac{\epsilon}{3}.$$

• 因此, 上面的 $g \in C_c(\mathbb{R}^n)$, 满足

$$\int_{E} |f(x) - g(x)| dx < \epsilon.$$

可积函数与连续紧支函数

- 定理: 设 $f \in L(E)$, 存在 $g_k \in C_c(\mathbb{R}^n)$, 使得

 - ② gk 在 E 上几乎处处收敛到 f.
- 证明: 存在函数列 $f_k \in C_c(\mathbb{R}^n)$, 使得 $\int_E |f(x) k_k(x)| dx \leq \frac{1}{k}$. 则对任意的 $\epsilon > 0$.

$$\epsilon \cdot m(E(|f-f_k| \ge \epsilon)) \le \int_E |f(x)-f_k(x)| dx \to 0,$$

因此 f_k 依测度收敛到 f,则存在子列 f_{k_n} 几乎处处收敛到 f.取 $g_n = f_{k_n}$ 即可.

可积函数与阶梯函数

- 定理: 设 $f \in L(E)$, 存在紧支阶梯函数列 ϕ_k , 使得
 - (1) ϕ_k 在 E 上几乎处处收敛到 f.
 - (2) $\int_{F} |f(x) \phi_k(x)| dx = 0.$

证明: 存在 $g \in C_c(\mathbb{R}^n)$, 使得 $||f - g|| < \epsilon$, 设 f 的支集包含在方体 $I = \{x = (\xi_1, \xi_2, \cdots, \xi_n) : |\xi_i| \le k_0\}$ 中, 把 I 的边长等分, 每次取出振幅小于 $\epsilon/|I|$ 的方体 I_i , f 在 I_i 中某一点的值为 c_i , 由一致收敛, 有限步可完成. 则 $\phi = \sum c_i \chi_i$ 满足 $|f - \phi| < \epsilon/|I|$.因此 $||g - \phi|| < \epsilon$.

51 / 1

• 定理: 设 $f \in L([a,b])$, 若对任意 $\phi \in C_c^1((a,b))$, 有

$$\int_{[a,b]} f(x)\phi'(x)|dx = 0,$$

则有 f(x) = 0, a,e, $x \in [a, b]$.

证明: 任取 $g \in C_c((a,b))$, h(x) 支于 (a,b) 满足 $||h||_1 = 1$,

$$\phi(x) = \int_{[a,x]} g(t)dt - \int_{[a,x]} h(t)dt \cdot \int_{[a,b]} g(t)dt,$$

则 $\operatorname{supp} \phi \subset (a,b)$, $\phi'(x) = g(x) - h(x) \int_{[a,b]} g(t) dt$,

$$0 = \int_{[a,b]} f(x)\phi'(x)dx = \int_{[a,b]} (f(x) - \int_{[a,b]} f(t)h(t)dt)g(x)dx.$$

因此 $f(x) - \int_{[a,b]} f(t)h(t)dt$, a.e. $x \in [a,b]$.

刘建明 (北大数学学院)

平均连续性

• 定理: 设 $f \in L(\mathbb{R}^n)$, 则有

$$\lim_{|h|\to 0}\int_{\mathbb{R}^n}|f(x+h)-f(x)|dx=0.$$

证明: 任给 $\epsilon > 0$, 存在分解 $f = f_1 + f_2$, $f_1 \in C_c(\mathbb{R}^n)$, $\|f_2\|_1 < \epsilon$, 当 |h| < 1 时, $|f_1(x+h) - f_1(x)|$ 的支集包含在某个有界集 F 上, 存在 $\delta > 0$. 使得 $|h| < \delta$ 时 $|f_1(x+h) - f_1(x)| < \frac{\epsilon}{m(F)}$,

$$\int_{\mathbb{R}^n} |f(x+h) - f(x)| dx \le \int_F |f_1(x+h) - f_1(x)| dx + 2\epsilon$$

刘建明 (北大数学学院) 实变函数第四章 53/1

R-L引理的推广

• 定理: 若 $g_k(x)$ 是 [a,b] 上的可测函数列,且满足(1) $|g_n| \leq M$ (2) 对任意 $c \in [a,b]$, $\lim_{[a,c]} g_n(x) dx = 0$. 则对任意 $f \in L([a,b])$ 有

$$\lim_{n\to\infty}\int_{[a,b]}f(x)g_n(x)dx=0$$

证明: 对任给 $\epsilon > 0$,存在阶梯函数 $\phi(x) = \sum_{i=1}^{p} y_i \chi_{[x_{i-1},x_i]}(x)$, 使得 $\|f - \phi\| < \frac{\epsilon}{2M}$,

$$\int_{[x_{i-1},x_{i}]} g_{n}(x)dx = \int_{[a,x_{i}]} g_{n}(x)dx - \int_{[a,x_{i-1}]} g_{n}(x)dx \to 0.$$

$$\Big|\int_{[a,b]} f(x)g_n(x)dx\Big| \leq \Big|\int_{[a,b]} (f(x)-\phi(x))g_n(x)dx\Big| + \Big|\int_{[a,b]} \phi(x)g_n(x)dx\Big|$$

• 定理: f 是 [a,b] 上的 Riemann 可积函数(有界),则 $f \in L([a,b])$,且 $\int_{[a,b]} f(x) dx = \int_a^b f(x) dx$.

证明: 设 f 是 [a, b] 上的 Riemann 可积函数, 考虑 [a, b] 的一列划分

$$\Delta_n : a = x_0^{(n)} < x_1^{(n)} < \cdots < x_{i_n}^{(n)} = b,$$

满足
$$\Delta_n \subset \Delta_{n+1}$$
, $|\Delta_n| = \max_{1 \le i \le i_n} \{x_i^{(n)} - x_{i-1}^{(n)}\} \to 0$. 取

$$M_i^{(n)} = \sup\{f(x)|x_{i-1}^{(n)} \le x \le x_i^{(n)}\},$$

$$m_i^{(n)} = \inf\{f(x)|x_{i-1}^{(n)} \le x \le x_i^{(n)}\}.$$

• 定理证明(续): 定义函数列:

$$\phi_n(x) = \begin{cases} m_i^{(n)}, & x_{i-1}^{(n)} < x \le x_i^{(n)} \\ f(a), & x = a \end{cases}, \psi_n(x) = \begin{cases} M_i^{(n)}, & x_{i-1}^{(n)} < x \le x_i^{(n)} \\ f(a), & x = a \end{cases}$$

则有 $\phi_n(x)$ 递增趋向于某个函数 f_1 , 而 $\psi_n(x)$ 递减趋向于某个函数 f_2 . 则 $f_2 \geq f \geq f_1$. 由于 f 是 Riemann 可积, Darboux 上下积分

$$\lim_{n \to \infty} \sum_{j=1}^{i_n} M_j^{(n)}(x_j^{(n)} - x_{j-1}^{(n)}) = \lim_{n \to \infty} \int_a^b \psi_n(x) dx = \int_a^b f(x) dx,$$

$$\lim_{n \to \infty} \sum_{j=1}^{i_n} m_j^{(n)}(x_j^{(n)} - x_{j-1}^{(n)}) = \lim_{n \to \infty} \int_a^b \phi_n(x) dx = \int_a^b f(x) dx.$$

• 证明(续): 因此

$$\begin{split} \int_{[a,b]} (f_2 - f_1) dx & \leq \int_{[a,b]} (\psi_n - \phi_n) dx \to 0, \\ f_1 = f_2 = f, \text{ a.e.} x \in [a,b], 从希 f 可测, 且 \\ \int_{[a,b]} f(x) dx & \geq \lim_{n \to \infty} \int_a^b \phi_n(x) dx = \int_a^b f(x) dx, \\ \int_{[a,b]} f(x) dx & \leq \lim_{n \to \infty} \int_a^b \psi_n(x) dx = \int_a^b f(x) dx, \end{split}$$

因此 $\int_{[a,b]} f(x) dx = \int_a^b f(x) dx$.

• 推论: 若对任意的 A > a, $f \in R([a,A])$, 则 $f \in L([a,+\infty))$ 的充分必要条件是 $\lim_{A \to +\infty} \int_a^A |f(x)| dx$ 存在(即广义积分 $\int_a^{+\infty} |f(x)| dx$ 收敛). 且收敛时 $\int_{[a,+\infty)} f(x) dx = \int_a^{+\infty} f(x) dx$. 证明: $f \in L([a,+\infty)) \iff |f| \in L([a,+\infty)) \iff \lim_{A \to +\infty} \int_a^A |f(x)| dx$ 存在.

$$\int_{[a,+\infty)} f(x)dx = \lim_{n \to \infty} \int_{[a,n]} f(x)dx$$
$$= \lim_{n \to \infty} \int_{a}^{n} f(x)dx = \int_{a}^{+\infty} f(x)dx.$$

<u>5</u>8 / 1

• 推论: 若 $b \in f$ 的瑕点, 对任意的 $b-a > \epsilon > 0$, $f \in R([a, b-\epsilon])$, 且 $\lim_{\epsilon \to 0+} \int_a^{b-\epsilon} |f(x)| dx$ 存在, 则 $f \in L([a, b], \mathbb{L})$

$$\int_{[a,b]} f(x) dx = \int_a^b f(x) dx.$$

- 例: $\frac{\sin x}{x} \not\in L[0,+\infty)$, 但广义积分 $\int_0^{+\infty} \frac{\sin x}{x} dx$ 存在.
- 证明: 广义积分 $\int_0^{+\infty} \left| \frac{\sin x}{x} \right| dx = +\infty$.

振幅函数1

• 振幅函数: 设 f(x) 是区间 [a,b] 上的有界函数, f 在 [a,b] 上的振幅 函数定义为

$$\omega_f(x) = \lim_{\delta \to 0} \sup\{|f(x') - f(x'')| : x', x'' \in B(x, \delta) \cap [a, b]\}.$$

- 注: 设 $f_{\delta}(x) = \sup\{|f(x') f(x'')| : x', x'' \in B(x, \delta) \cap [a, b]\}$, 则 $f_{\delta}(x)$ 关于 δ 递减.
- 引理: 对于任意的 $t \in \mathbb{R}$, $\{x \in (a,b) : w_f(x) < t\}$ 是开集.
- 定理: ω_f 是 [a, b]上的可测函数.
- 性质: f 在 x 点连续 $\iff \omega_f(x) = 0$.

振幅函数2

• 引理的证明: 对于任意的 $t \in \mathbb{R}$, 设 $H = \{x : w_f(x) < t\}$. 设 $x_0 \in H$, 则存在 $\delta_0 > 0$, 使得 $B(x_0, \delta_0) \subset (a, b)$, 且有

$$\sup\{|f(x') - f(x'')| : x', x'' \in B(x_0, \delta_0) \cap [a, b]\} < t.$$

对任意 $x \in B(x_0, \delta_0)$, 可取 $\delta_1 > 0$, 使得 $B(x, \delta_1) \subset B(x_0, \delta_0)$, 且有

$$\sup\{|f(x') - f(x'')| : x', x'' \in B(x, \delta_1) \cap [a, b]\} < t.$$

因此 $B(x, \delta_1) \subset H$.

振幅函数和 Darboux 上下积分1

• 考虑 [a, b] 的一列划分

$$\Delta_n: a = x_0^{(n)} < x_1^{(n)} < \dots < x_{i_n}^{(n)} = b,$$

满足 $|\Delta_n| = \max_{1 \le i \le i_n} \{x_i^{(n)} - x_{i-1}^{(n)}\} \to 0.$ 取 $M_i^{(n)} = \sup\{f(x)|x_{i-1}^{(n)} \le x \le x_i^{(n)}\},$ $m_i^{(n)} = \inf\{f(x)|x_{i-1}^{(n)} \le x \le x_i^{(n)}\}.$

定义函数列:

$$\omega_n(x) = egin{cases} M_i^{(n)} - m_i^{(n)}, & x_{i-1}^{(n)} < x < x_i^{(n)} \ 0, & x \, \not\in \, \Delta^{(n)} \; 的分点. \end{cases}$$

振幅函数和 Darboux 上下积分2

- 性质: $\lim_{n\to\infty} \omega_n(x) = \omega_f(x)$, $a.e.x \in [a,b]$ 证明: 当 $x \in [a,b]$ 不是 Δ_n 的分点时,取 δ_1 为x到 $\Delta^{(n)}$ 分点的最小距离, $\delta_2 = |\Delta^{(n)}|$,则当 $n \to \infty$ 时有 $\delta_1 \to 0$, $\delta_2 \to 0$. 由 $f_{\delta_1}(x) \le \omega_n(x) \le f_{\delta_2}(x)$ 得 $\lim_{n\to\infty} \omega_n(x) = \omega_f(x)$.
- Darboux 上下积分:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{i_{n}} M_{j}^{(n)}(x_{j}^{(n)} - x_{j-1}^{(n)}),$$

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{i_{n}} m_{j}^{(n)}(x_{j}^{(n)} - x_{j-1}^{(n)}).$$

振幅函数和 Darboux 上下积分3

• 引理: 设 f 是区间 [a, b] 上的有界函数, 则有

$$\int_{[a,b]} \omega_f(x) dx = \int_a^b f(x) dx - \int_a^b f(x) dx.$$

证明: 利用控制收敛定理,

$$\int_{a}^{b} f(x)dx - \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{i_{n}} (M_{j}^{(n)} - M_{j}^{(n)})(x_{j}^{(n)} - x_{j-1}^{(n)})$$

$$= \lim_{n \to \infty} \int_{[a,b]} \omega_{n}(x)dx = \int_{[a,b]} \omega_{f}(x)dx$$

刘建明 (北大数学学院)

Riemann 可积函数的刻画

- 定理: f 是 [a,b] 上的有界函数,则 f 是 Riemann 可积 \iff f 在 [a,b] 上的不连续点集是零测集. 证明: f 是 Riemann 可积 \iff $\int_a^b f(x)dx \int_a^b f(x)dx = 0 \iff$ $\int_{[a,b]} \omega_f(x)dx = 0 \iff \omega_f(x) = 0, a.e.x \in [a,b] \iff f(x)$ 几乎处处连续.
- 例: $f = \chi_{\mathbb{Q}}$ 在任意区间上不是 Riemann 可积; [a, b] 上的单调函数可积.

刘建明 (北大数学学院) 实变函数第四章 65/1

Tonelli 定理

记号: $\mathbb{R}^p \times \mathbb{R}^q = \mathbb{R}^n$, n = p + q, $F_f(x) = \int_{\mathbb{R}^q} f(x, y) dy$.

定理:设f(x,y)是 $\mathbb{R}^p \times \mathbb{R}^q$ 上的非负可测函数.则有

- 对 $a.e.x \in \mathbb{R}^p$, $f(x,\cdot)$ 是 \mathbb{R}^q 上的非负可测函数.
- 对 $a.e.x \in \mathbb{R}^p$, $F_f(x) = \int_{\mathbb{R}^q} f(x,y) dy$ 有定义, 且 $F_f(x)$ 是 \mathbb{R}^p 上的非负可测函数.
- 重积分等于累次积分, 即

$$\int_{\mathbb{R}^n} f(x,y) dx dy = \int_{\mathbb{R}^p} F_f(x) dx = \int_{\mathbb{R}^p} dx \int_{\mathbb{R}^n} f(x,y) dy.$$

<u>6</u>6 / 1

Tonelli 定理的证明1

只需对 $f = \chi_E$ 证明, 其中 E 可测. 我们设 p = q = 1.

• $E = [a, b) \times [c, d)$, 则有 $F_f(x) = (d - c)\chi_{[a, b)}$

$$\int_{\mathbb{R}^2} f(x,y) dx dy = m(E) = (d-c)(b-a) = \int_{\mathbb{R}} F_f(x) dx.$$

$$\int_{\mathbb{R}} F_f(x) dx = \sum_{n=1}^{\infty} \int_{\mathbb{R}} F_{f_n}(x) dx$$
$$= \sum_{n=1}^{\infty} \int_{\mathbb{R}^2} f_n(x, y) dx dy = \int_{\mathbb{R}^2} f(x, y) dx dy.$$

Tonelli 定理的证明2

• $E \not\in G_\delta$ 集, 若 $m(E) < +\infty$, 则有测度有限的递减开集列 $G_n \to E$, 令 $f_n = \chi_{G_n}$, 则 f_n 单调递减趋向于 f. 由于 $\int_{\mathbb{R}} F_{f_1}(x) dx < +\infty$, $F_{f_1} = \int_{\mathbb{R}} f_1(x,y) dy$ 几乎处处有限. 由 Levi 定理的推论, F_{f_n} 单调递减趋向于 F_f , 且

$$\int_{\mathbb{R}} F_f(x) dx = \lim_{n \to \infty} \int_{\mathbb{R}} F_{f_n}(x) dx$$
$$= \lim_{n \to \infty} \int_{\mathbb{R}^2} f_n(x, y) dx dy = \int_{\mathbb{R}^2} f(x, y) dx dy.$$

若 E 为满足 $m(E) = +\infty$, 令 $E_n = E \cap B((0,0),n)$, 则 E_n 是测度有限的递增 G_δ 集合列, 且 $E_n \to E$, 由 Levi 定理, F_{f_n} 单调递增收敛到 F_f .

刘建明 (北大数学学院) 实变函数第四章 68 / 1

Tonelli 定理的证明3

• E 为零测集, 存在测度有限递减开集列 $G_k \supset E$, 使得 $m(G_k) \to 0$. 令 $H = \bigcap G_k$, $g = \chi_u$. 则有

$$0 = \int_{\mathbb{R}^2} g(x, y) dx dy = \int_{\mathbb{R}} F_g(x) dx$$

因此 $F_g=0$, a.e., 又因 $f\leq g=\chi_H$, $F_f(x)\leq F_g(x)$, 因此 $F_f=0$, a.e., 从而 $\int_{\mathbb{R}^2} f(x,y) dx dy = \int_{\mathbb{R}} F_f(x) dx = 0$.

• E 为可测集且测度, 则存在 G_δ 集 G 和零测集 Z, 使得 $E = G \setminus Z$. 设 $g = \chi_G$, $h = \chi_Z$, 则 f = g - h, $F_f = F_g - F_h$ (这里 h, F_h 几乎处处为 零).

Fubini 定理

定理: 设 f(x,y) 是 $\mathbb{R}^p \times \mathbb{R}^q$ 上的可积函数. 则有

- 对 $a.e.x \in \mathbb{R}^p$, $f(x,\cdot) \in \mathbb{R}^q$ 上的可积函数.
- 对 $a.e.x \in \mathbb{R}^p$, $F_f(x) = \int_{\mathbb{R}^q} f(x,y) dy$ 有定义, 且 $F_f(x)$ 是 \mathbb{R}^p 上的可积函数.
- 重积分等于累次积分, 即

$$\int_{\mathbb{R}^n} f(x,y) dx dy = \int_{\mathbb{R}^p} F_f(x) dx = \int_{\mathbb{R}^p} dx \int_{\mathbb{R}^n} f(x,y) dy$$

证明: $f(x,y) = f^+(x,y) - f^-(x,y)$, 对 a.e.x, $F_f(x) = F_{f^+}(x) - F_{f^-}(x)$.

刘建明 (北大数学学院) 实变函数第四章 70 / 1

Fubini 定理的推广

定理:设 $A \times B \subset \mathbb{R}^p \times \mathbb{R}^q$, f(x,y)是 $A \times B$ 上的非负可测函数或者可积函数.则有

- 对 $a.e.x \in A$, $f(x,\cdot)$ 是 B 上的可积函数.
- 对 $a.e.x \in A$, $F_f(x) = \int_B f(x,y) dy$ 有定义, 且 $F_f(x)$ 是 A 上的可积函数.
- 重积分等于累次积分, 即

$$\int_{A\times B} f(x,y)dxdy = \int_A F_f(x)dx = \int_A dx \int_B f(x,y)dy.$$

71 / 1

刘建明 (北大数学学院) 实变函数第四章

例:
$$\dot{x}I = \int_{[0,+\infty)\times[0,+\infty)} \frac{1}{(1+v)(1+x^2v)} dxdy.$$

解: 由 Tonelli 定理,

$$I = \int_{[0,+\infty)} dy \int_{[0,+\infty)} \frac{1}{(1+y)(1+x^2y)} dx$$

$$= \int_{[0,+\infty)} \frac{1}{(1+y)\sqrt{y}} \frac{\pi}{2} dy$$

$$= \int_{[0,+\infty)} \frac{1}{(1+t^2)} \pi dt = \frac{1}{2} \pi^2.$$

设 $f,g \in L(\mathbb{R}^n)$.

- 则有 f(x-y)g(y), 是 $\mathbb{R}^n \times \mathbb{R}^n$ 上的可测函数. 证明: F(x,y) = f(x-y), G(x,y) = g(y) 是 $\mathbb{R}^n \times \mathbb{R}^n$ 上的可测函数. 事实上, $\{(x,y): G(x,y) > t\} = \mathbb{R}^n \times \{y: g(y) > t\}$, G(x,y) 可测. 利用坐标变换 $x' = \frac{1}{\sqrt{2}}(x-y)$, $y' = \frac{1}{\sqrt{2}}(x+y)$ 可证明 F(x,y) 可测.
- f(x-y)g(y) 是 $\mathbb{R}^n \times \mathbb{R}^n$ 上的可积函数, 且有

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x-y)g(y)| dx dy = \int_{\mathbb{R}^n} |g(y)| dy \int_{\mathbb{R}^n} |f(x-y)| dx$$
$$= \int_{\mathbb{R}^n} |g(y)| dy \int_{\mathbb{R}^n} |f(x)| dx.$$

卷积2

• 定义 f 与 g 的卷积

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

则 f * g(x) 是 \mathbb{R}^n 上的可积函数, 且有

$$\int_{\mathbb{R}^n} |f * g(x)| dx \le \int_{\mathbb{R}^n} |f(x)| dx \int_{\mathbb{R}^n} |g(x)| dx.$$

证明:

$$\int_{\mathbb{R}^n} |f * g(x)| dx \le \int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x - y)g(y)| dx dy.$$