ESERCITAZIONE

D3

Trovare (se esiste) valore asintotico della risposta impulsiva di un sistema LTI

Bisognerà capire i modi di evoluzione

- Verifico se ci sono semplificazioni
- Calcolo i poli di a(s) (denominatore)
- Classifico i poli in base alla loro posizione sul piano complesso
- Determino i modi di evoluzione
 - Concludo sull'esistenza o meno di $\lim_{t o \infty} g(t)$
 - Ad esempio applicando il teorema del valore finale

D3.
$$G(s) = \frac{s+i}{2s+s^2}$$
 lim $g(t) = ?$
 $g(t) = \sqrt{s-1} \left\{ G(s) \right\}$
 $G(s) = \frac{s+i}{s-6+2}$
 $g(s) = \frac{s+i}{s-6+2}$

poli $P_1 = 0$
 $P_2 = -2$

modo di evoluatine $P_2 = -2$

modo di evoluatine $P_2 = -2$
 $P_2 = -2$

modo di evoluatine $P_2 = -2$
 $P_2 = -2$

modo di evoluatine $P_2 = -2$
 $P_3 = -2$
 $P_4 = -2$
 $P_5 = -2$
 $P_6 = -2$
 $P_7 = -2$

D4

D4. Per un sistema LTI con f.d.t.

$$G(s) = \frac{s-1}{s^2 + s}$$

e ingresso $u(t) = [2 + \cos(2t)]1(t)$, determinare quale tra le seguenti affermazioni è vera

1) $y_f(t)$ converge a $5 + \sin(t)1(t)$; 2) $y_f(t)$ diverge; 3) $y_f(t)$ converge a $-\sin(t)1(t)$; limitata;

4) $y_f(t)$ è

Trovare in pratica il comportamento asintotico della risposta forzata (limitata, divergente etc..)

- Calcolo la risposta forzata in Laplace: $Y_f(s) = G(s)U(s)$
 - Dove U(s) lo troviamo con la trasformata di u(t)
- Adesso posso esplicitare $Y_f(s)$
 - Non sommare
 - Tenere separate le due parti (proprietà distributiva) √
 - Così da capire ogni termine come si comporta per ogni ingresso (risposta forzata)
- Studio ciascun termine (addendo)
 - Guardo dove sono i poli (e la relativa molteplicità)
 - Trovo i corrispondenti modi di evoluzione

- Individuo eventuali modi divergenti
 - Se ci sono, posso capire se la risposta forzata di un polo diverge e quindi il comportamento asintotico in generale diverge

$$G(s) = \frac{s-1}{s^2+s} = \frac{s-1}{s(s+1)} \quad \text{in} \quad (t) = [2+\cos(2t)] \cdot 1(t) \quad \text{lim} \quad$$

MODO ALTERNATIVO

Dalle considerazioni fatte sulla stabilità esterna, sappiamo che G(s) ha un polo in zero quindi non è esternamente stabile (perché per stabilità esterna tutti i poli devono avere Re < 0)

 Un sistema con polo in zero non è asintoticamente stabile perché con in ingresso un gradino entra in risonanza e diverge (componente e rampa)

D5

D5. Determinare i modi naturali di un sistema LTI descritto da

$$\ddot{y} = -2\dot{y} - 5y + 3\dot{u}$$

PRIMO MODO

- Polinomio minimo
 - Autovalori e relativa molteplicità
 - [...]

MODO ALTERNATIVO

- È già in forma standard √
- Essendo in rappresentazione ingresso uscita, sappiamo che $m(s)=arphi(s)=s^2-lpha_1s-lpha_0$
 - Trovo facilmente α_1 e α_0 osservando l'equazione di partenza
 - Individuo esplicitamente m(s) e trovo le radici (autovalori)

- Trovo i relativi modi di evoluzione

D6

D6. Determinare i modi naturali di un sistema LTI descritto da

$$\ddot{y} + 4\dot{y} + 4y = 4\dot{u}$$

- Scrivo il sistema in forma normale
- Seguo procedimento esercizio precedente
 - Qui abbiamo molteplicità 2 quindi cambia solo in questo

$$\dot{y} + 4\dot{y} + 4\dot{y} = 4\dot{x}$$
 modi noturali?
 $\dot{y} = -4\dot{y} - 4\dot{y} + 4\dot{x}$
 $m(s) = \phi(s) = s^2 - \alpha_1 s - \alpha_0 = s^2 + 4s + 4 = (s+2)^2$
entorolori in $\Omega_1 = -2$ on moltoplicate $M_1 = m_1 = 2$
 \Rightarrow modi oli envlusire
 $e^{\Omega_1 t}$, $t e^{\Omega_1 t}$
 e^{-2t} , $t e^{-2t}$

D7

D7. Studiare la stabilità interna ed esterna del sistema LTI descritto da

$$\begin{cases} \dot{x}_1 &= -2x_1 + u \\ \dot{x}_2 &= -x_1 + x_2 - u \\ y &= x_1 + u \end{cases}$$

- Scrivo esplicitamente le matrici che rappresentano il sistema A, B, C, D
- Calcolo $\varphi(s)$ e se serve m(s)
 - ullet In questo caso posso già concludere perché abbiamo un autovalore con $\mathrm{Re}>0$ quindi è internamente instabile
- Stabilità esterna (se verifico che è asintoticamente stabile so che implica stabilità esterna; in questo caso però non lo so a priori, perché ho un autovalore stabile e l'altro no --> devo calcolare la funzione di trasferimento)
 - Calcolo quindi la funzione di trasferimento

• Guardo i poli e concludo sulla stabilità

$$A = \begin{bmatrix} -2 & 0 \\ -1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$D = 1$$

$$P(s) = \det(sTA) = \det\left[\begin{array}{c} s+2 & 0 \\ 1 & s-1 \end{array} \right] = (s+2)(s-1)$$

$$1 = -2 \qquad M_1 = 1$$

$$1 = 1 \qquad M_2 = 1$$

$$1 = 1 \qquad M_2 = 1$$

$$2 = 1 \qquad M_2 = 1$$

$$3 = 1 \qquad M_2 = 1$$

$$4 = 1 \qquad M_2 = 1$$

$$3 = 1 \qquad M_2 = 1$$

$$4 = 1 \qquad M_2 = 1$$

$$3 = 1 \qquad M_2 = 1$$

$$4 = 1 \qquad M_2 = 1$$

$$3 = 1 \qquad M_2 = 1$$

$$4 = 1$$

Si nota che c'è una semplificazione

il polo in 1 si semplifica --> autovalore nascosto

$$G(s) = \frac{P(s)}{\varphi(s)} + D = \frac{s-1}{(s-1)(s+2)} + 1 = \frac{1}{s+2} + 1 = \frac{5+3}{s+2}$$

$$polo in P_1 = -2 \quad \text{oii} \quad \text{smoltepliate} \quad \text{in } \text{poli can } \text{Re } \neq 0 = 7 \quad \text{sintema} \quad \text{externomenta} \quad \text{stehille}$$

D9

Stabilità esterna

D9. Per il sistema LTI descritto da

$$-\ddot{y} + 9\,y = \dot{u} - 3\,u$$

dire se esistono ingressi limitati tali da far divergere l'uscita e nel caso, esistano, determinarne uno.

• dove per l'uscita si intende la risposta forzata $y_f(t)$

Studio della stabilità esterna (modo alternativo di dirlo) Esistono ingressi limitati che fanno divergere solo se non è esternamente stabile

- Riscrivo in forma normale
- Individuo i coefficienti
- Applico la formula per la funzione di trasferimento G(s)
- Effettuo eventuali semplificazioni
 - Individuando eventuali poli nascosti

• Studio i poli di G(s) semplificata: se sono tutti con $\mathrm{Re} < 0$ allora è esternamente stabile

D10

D10. Per il sistema LTI descritto da

$$\ddot{y} + 10\,y = \dot{u} + 2\,u$$

dire se esistono ingressi limitati tali da far divergere l'uscita e nel caso, esistano, determinarne uno.

- stesso procedimento dell'esercizio precedente
 - Solo che adesso abbiamo due poli (puramente immaginari) --> non tutti i poli con ${
 m Re} < 0$ quindi esistono ingressi limitati che fanno divergere (\star)
- (\star) L'ingresso che fa violare la condizione di stabilità esterna è tale da andare in risonanza con i poli della G(s)
 - Prendiamo quindi come ingresso limitato ad esempio $\sin(\omega_0 t) \cdot 1(t)$, del tipo:

$$u(t) = \sin(\sqrt{10} \ t) \ 1(t)$$

Extra: verifichiamo che effettivamente diverge

Deve divergere: $Y_f(s) = G(s)U(s)$

Calcoliamo quindi la relativa trasformata U(s)

Mettiamo tutto insieme e verifichiamo (si va in risonanza, i poli puramente immaginari hanno molteplicità doppia --> compaiono quindi anche i modi con $t \cdot [\ldots]$)

$$G(s) = \frac{5}{5}s^{2} + \frac{1}{5}s + \frac{1}{5}0 = \frac{5}{5}s^{2} + \frac{1}{5}0 + \frac{1}{5}0 = \frac{5}{5}s^{2} + \frac{1}{5}0 = \frac{5}{5}s^{2} + \frac{1}{5}0 = \frac{5}{5}s^{2} + \frac{1}{5}0 = \frac{5}{5}s^{2} + \frac{1}{5}00 = \frac{5}{5}s^{2} + \frac{1}{5}$$

D11

D11. Determinare i punti di equilibrio del sistema non lineare descritto da

$$\dot{x} = 2 - u x$$

- Non lineare per il prodotto ux
- Studiare anche la stabilità (con il metodo della linearizzazione)
- Calcolo gli stati di equilibrio, ovvero individuo la relazione tra x_e e u_e (isolando uno delle due)
- Linearizzazione
 - Costruisco Ae matrice Jacobiana (se lo stato ha dimensione 1 come in questo caso allora è uno scalare invece di una matrice)
 - La calcoliamo nei punti x e u di equilibrio
- ullet Individuo gli autovalori della matrice Ae
 - In questo caso avendo un solo valore studio il segno in base all'ingresso
 - Escludo i poli uguali a zero

$$\dot{x} = f(x, u)$$

$$(x_{e}, u_{e}) \text{ equations } x_{e} = \frac{2}{N_{e}}$$

$$M_{e} = 0 \text{ num } \dot{c} = \frac{1}{N_{e}} \text{ is equations } x_{e} = \frac{2}{N_{e}}$$

$$M_{e} \neq 0 \text{ states of equations } x_{e} = \frac{2}{N_{e}}$$

$$A_{e} = \frac{2f}{\partial x} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2f}{\partial x} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}{N_{e}} \right|$$

$$A_{e} = \frac{2}{N_{e}} (2-M_{x}) = -M \left| x_{e} = \frac{2}$$

D12

D12. Determinare i punti di equilibrio del sistema non lineare descritto da

$$\begin{cases} \dot{x}_1 = x_2 - x_1 \\ \dot{x}_2 = (x_1 - 2)(1 - x_2) \\ y = x_1 + 2x_2 \end{cases}$$

e studiarne la stabilità.

- y irrilevante per quello che devo trovare
- Individuo f(x)
 - Perché quando si annulla $f(x_e)$ abbiamo equilibrio
- Trovo le soluzioni (in questo caso due)

- Queste sono i punti di equilibrio del sistema non lineare
- Studio poi la stabilità, ancora con la matrice Ae Jacobiana (in questo caso viene una matrice perché lo stato è composto da due elementi)
 - Calcolo la matrice nei punti x_e di equilibrio
 - Calcolo infine $\varphi(s) = \det(sI A_e)$ per ogni punto di equilibrio
 - Concludo a seconda dei poli di $\varphi(s)$ sulla stabilità

D12.
$$\begin{cases} x_1 = x_2 - x_4 \\ x_2 = (x_1 - 2)(1 - x_2) \\ y = x_4 + 2x_2 \end{cases} \qquad \text{equation } \begin{cases} x_2 - x_4 \\ x_3 = x_4 + 2x_2 \end{cases}$$

$$\dot{x} = f(x) \qquad x = \begin{bmatrix} x_4 \\ x_1 \end{bmatrix} \qquad f(x) = \begin{bmatrix} x_2 - x_4 \\ x_2 - x_4 \end{bmatrix} \qquad x_4 = x_4 \end{cases}$$

$$x_6 = \begin{bmatrix} x_{61} \\ x_{61} \end{bmatrix} \qquad \text{equation } (x_{61} - x_{61}) = 0 \qquad \text{equation } (x_{61} - x_{61}) = (x_{61} - x_$$

D13

Risposta libera

D13. Per il sistema dinamico lineare

$$\begin{cases} \dot{x}_1 = x_1 + u \\ \dot{x}_2 = 3x_1 - 2x_2 \\ y = x_1 + 2x_2 \end{cases}$$

determinare per quali condizioni iniziali la risposta libera $y_{\ell}(t)$ è limitata.

- Calcolo la risposta libera $y_{\ell}(t)$
 - Attraverso l'antitrasformata di Laplace
- Ci costruiamo solo le matrici A e C
 - B e D sono irrilevanti per quello che devo fare

Nota: non sempre bisogna calcolare l'intera risposta libera $y_{\ell}(t)$, perché ad esempio se il sistema fosse stabile internamente allora tutti i modi sarebbero limitati/convergenti e quindi la risposta libera sarebbe limitata.

Se ci fossero invece modi divergenti, allora sarebbe necessario calcolarla esplicitamente perché vuol dire che dipende fortemente dalle condizioni iniziali

- Cerco quindi i *modi* di evoluzione (ecco perché costruisco la matrice *A*)
 - Osservo i modi trovati: se come nell'esercizio ho modi sia divergenti che convergenti, allora $y_\ell(t)$ dipende dalle condizioni iniziali in qualche modo

$$y_{e}(t) = Ce^{At} > c(0) = x^{-1} \left\{ C(sI-A)^{-1} > c(0) \right\}$$

$$A = \begin{bmatrix} 1 & 0 \\ 3 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$\varphi(s) = olet(sI-A) = olet \begin{bmatrix} s-1 & 0 \\ -3 & s+1 \end{bmatrix} = (s-1)(s+2)$$

$$\lambda_{1} = 1 \implies mode \text{ disconstance } e^{t} \text{ disconstance}$$

$$\lambda_{2} = -2t \text{ convergente}$$

$$(sI-A)^{-1} = \frac{1}{\varphi(s)} Adj(sI-A) = \frac{1}{(s-1)(s+2)} \begin{bmatrix} s+2 & 0 \\ 3 & s-1 \end{bmatrix}$$

$$Y_{\ell}(s) = C(sT+1)^{-1} \times (0) = \begin{bmatrix} 1 & 2 \end{bmatrix} \frac{1}{(s-1)(s+2)} \begin{bmatrix} s+2 & 0 \\ 3 & s-1 \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix}$$

$$= \frac{1}{(s-1)(s+2)} \begin{bmatrix} s+2+6 & 2 \cdot (s-1) \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{(s-1)(s+2)} \begin{bmatrix} s+8 & 2 \cdot (s-1) \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{(s-1)(s+2)} \begin{bmatrix} s+8 & 2 \cdot (s-1) \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{(s-1)(s+2)} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{(s-1)(s+2)} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix}$$

$$= \frac{s+8}{(s-1)(s+2)} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} + \frac{2}{(s+2)} \begin{bmatrix} x_{2}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{(s-1)(s+2)} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{(s-1)(s+2)} \begin{bmatrix} x_{1}($$

Per mere
$$y_e(t)$$
 limitate
due encre $x_1(0) = 0$