SECOND: GEOMETRY

Choose the correct answer:

	In \triangle ABC, if $(AB)^2 > (BC)^2 + (AC)^2$, then \angle C is				
•	(a) acute.	(b) right.	(c) obtuse.	(d) straight.	
	A rhombus whose o	liagonals lengths are 6 cm	n., 10 cm. has area	cm ²	
•	(a) 60	(b) 30	(c) 15	(d) 10	
	The ratio between	the lengths of two corresp	onding sides of two	o similar polygons is	
	3:5, then the ratio	between their perimeters	s is	1 78	
	(a) 2:5	(b) 5:3	(c) 3:5	(d) 1:2	
	A square of perime	ter 20 cm., then its area	equalscm	n ² .	
•	(a) 20	(b) 25	(c) 50	(d) 100	
	If the area of a trapezium is 100 cm ² and its height is 5 cm., then the length of its				
	middle base = cm.				
•	(a) 20	(b) 30	(c) 40	(d) 50	
	The median of a triangle divides its surface into two triangles				
•	(a) congruent.	(b) equal in area.		(d) coincide.	
	A trapezium whose bases lengths are 6 cm., 8 cm., then the length of its middle base				
	equals cm.				
	(a) 48	(b) 24	(c) 14	(d) 7	
	If two polygons are similar and the ratio between the lengths of two corresponding				
•	sides is 1:3 and the the greater polygon	e perimeter of the smaller	polygon is 15 cm.	, then the perimeter o	
	(a) 30	(b) 45	(c) 60	(d) 75	

	Pre	eparatory Two - Secon	d Term Revision - 20	023	
	If the area of the triangle is 24 cm. ² and its height = 8 cm., then the length of the				
9.		ase cm.		C	
	(a) 16	(b) 6	(c) 3	(d) 12	
	ABC is a right-	angled triangle at B, \overline{BD}	$\perp \overline{\mathrm{AC}}$, then the projection	ection of BD on AC	
10.	is				
	(a) A	(b) B	(c) C	(d) D	
	The area of para	allelogram whose length o	of its base 6 cm. and its	corresponding height	
11.	of this base 4 cr	n. equals ······ cm ²			
	(a) 12	(b) 20	(c) 24	(d) 48	
	The triangle wh	ose lengths of its sides 6	cm. , 8 cm. , 10 cm. is		
12.	(a) acute-angled	l triangle.	(b) right-angle	ed triangle.	
	(c) obtuse-angle	ed triangle.	(d) otherwise.		
	The rhombus wl	nose lengths of its diagona	ls 6 cm. and 10 cm., the	en its area = ······ cm ² .	
13.	(a) 60	(b) 30	(c) 15	(d) 10	
	Trapezium of le	ngth of its middle base 8	cm. and surface area 56	5 cm ² ,	
14.	then its height =	cm.			
	(a) 32	(b) 24	(c) 448	(d) 7	
	All are si	milar.			
15.	(a) squares	(b) triangles	(c) rectangles	(d) parallelograms	
1.6	A square of diag	gonal length 12 cm., then	its area = ·····cn	n ² .	
16.	(a) 24	(b) 36	(c) 48	(d) 72	
17.	In \triangle ABC if $(AC)^2 = (AB)^2 + (BC)^2$, then \angle is right.				
17.	(a) A	(b) B	(c) C	(d) otherwise	
18.	ABC is a triangle, then m (∠ A)	e where AB = 2 cm. , BC	C = 6 cm. and $CA = 5$ cm	n.	
	(a) <	(b) >	(c) =	(d) ≥	

	Prep	oaratory Two - Sec	cond Term Revision	- 2023	
10	If \triangle ABC $\sim \triangle$ XY	$(Z, m (\angle B) = 50^{\circ}$	• then m ($\angle Y$) =	·······	
19.	(a) 30°	(b) 40°	(c) 50°	(d) 60°	
20.		en the length of two		n two similar triangles is	
	(a) congruent.	(b) different.	(c) parallel.	(d) otherwise.	
21.		f two adjacent sides cm. , then its area :	· · · · · · · · · · · · · · · · · · ·	e 8 cm. and 10 cm. and its	
	(a) 80	(b) 50	(c) 40	(d) 18	
22.	and the length of then the area of	its smallest height i the parallelogram e	quals cm ²	. ,	
	(a) 35	(b) 25	(c) 28	(d) 49	
23.		argement between to angles are congruent	wo similar triangles ed t.	quals ·····	
	(a) 1	(b) 2	(c) 0.5	(d) 0.25	
2.4	If \triangle ABC in which $(AB)^2 + (BC)^2 < (AC)^2$, then $(\angle B)$ is				
24.	(a) acute.	(b) right.	(c) reflex.	(d) obtuse.	
25.	If the projection of a line segment on a straight line is a point, then the line segment the straight line.				
	(a) //	(b) ⊥	(c) ≡	(d) ⊂	
26.	If \triangle ABC $\sim \triangle$ DE perimeter of \triangle DI		hen the perimeter of Δ	A ABC equals the	
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) 3	(d) 9	
	* The ratio between	een the area of the p	arallelogram and the a	area of the triangle whose	
27.	base is common and are included between two parallel straight lines =				
	(a) 1 : 2	(b) 1:3	(c) 2:1	(d) 2:3	
ว 0	The length of the	base of a triangle wh	ose area 36 cm ² and he	eight 8 cm. iscm.	
28.	(a) 6	(b) 9	(c) 18	(d) 20	

	Р	reparatory Two - 5	Second Term Revis	ion - 2023		
29.	If $\overrightarrow{AB} / \overrightarrow{XY}$,	then the length of the	e projection of $\overline{\mathbf{A}\mathbf{B}}$ o	n \overrightarrow{XY} length of \overline{AB}		
29.	(a) <	(b) >	(c) =	(d) ≥		
30.	The area of the	e trapezium whose m	iddle bases 7 cm., a	nd height 6 cm. = cm ² .		
	(a) 21	(b) 42	(c) 40	(d) 13		
2.1		parallelogram is 80 th of the correspondi		•		
31.	(a) 8	(b) 6	(c) 7	(d) 20		
32.	Δ ABC in whi	ch AB = 4 cm. • BC :	= 6 cm. • AC = 8 cm	. ,		
	(a) >	(b) <	(c) =	(d) twice		
22	* The length of	of the base of a triangl	e whose area 30 cm ²	and height 6 cm. iscm.		
33.	(a) 5	(b) 10	(c) 15	(d) 20		
34.	In Δ ABC, if	$(AB)^2 > (BC)^2 + (AC)^2$	C) ² , then angle C is			
34.	(a) acute.	(b) right.	(c) obtuse.	(d) straight.		
35.	If $\overline{AB} / / \overline{XY}$,	If \overline{AB} // \overline{XY} , then the length of the projection of \overline{AB} on \overline{XY} the length of \overline{AB}				
33.	(a) >	(b) ≤	(c) =	(d) <		
26	A rhombus wh	ose diagonal lengths	12 cm. , 9 cm. , then	n its area = ····· cm ²		
36.	(a) 18	(b) 54	(c) 45	(d) 108		
37.	Area of the trapezium whose base lengths are 6 cm., 8 cm. and its height 10 cm. = cm ²					
	(a) 140	(b) 480	(c) 70	(d) 120		
38.	ABC is a triangle in which $(AB)^2 = (BC)^2 + (AC)^2$ and m $(\angle B) = 40^\circ$, then m $(\angle A) = \cdots$.					
	(a) 40°	(b) 50°	(c) 90°	(d) 130°		
	* The median	of a triangle divides	its surface into two			
39.	(a) congruent t	riangles.	(b) triangles e	equal in area.		
	(c) isosceles tr	iangle.	(d) right-angl	ed triangle.		

Preparatory Two - Second Term Revision - 2023

In the opposite figure:

40. **EY × EZ =**

 $(a) (XY)^2$

(b) $(XZ)^2$

(c) $(XE)^2$

 $(d)(YZ)^2$

Complete each of the following:

1.	Two triangles which have the same base and the vertices opposite to this base lie on a straight line parallel to the base have
2.	In \triangle ABC, If $(AC)^2 + (BC)^2 = (AB)^2$, then m (\angle
3.	If the point A ∈ the line L, then the projection of the point A on the line L is

- A trapezium whose bases lengths are 8 cm., 10 cm. and its height is 5 cm., then its area equals cm.²

- 10. Area of triangle is equal to half of area of a parallelogram if they have a common
- 11. The projection of point on a straight line is
- 12. If the triangle ABC is obtuse-angled triangle at B, then $(AC)^2$ $(AB)^2 + (BC)^2$
- 13. The square whose length of its diagonal 8 cm., then its area = \cdots cm².
- The two triangles have same base and the vertices opposite to this base on straight line parallel to the base

Preparatory Two - Second Term Revision - 2023 15. In \triangle ABC, if $(AB)^2 + (BC)^2 < (AC)^2$, then \angle B is 16. The two triangles are similar if the corresponding angles are From the opposite figure: 17. (a) The projection of \overline{CD} on \overline{AB} is (b) The projection of BC on AB is A rhombus whose diagonal lengths are 6 cm. , 10 cm. has area cm². 18. If \triangle ABC \sim \triangle XYZ, m (\angle A) + m (\angle B) = 60°, then m (\angle Z) = 19. The area of the trapezium whose parallel bases 6 cm. 20. , 10 cm. and height 5 cm. equals The two polygons are similar to a third are 21. The area of rhombus whose perimeter is 20 cm. and height 4 cm. = 22. The projection of a point which belong to a straight line on this line is 23. The area of the rhombus whose diagonals 6 cm., 8 cm. equals cm? 24. The two polygons are similar if the corresponding sides and their 25. corresponding angles The diagonal of a square whose area 50 cm² equals cm. 26. If two polygons are similar and the ratio between the lengths of two corresponding side is 1:3 and the perimeter of smaller polygons is 12 cm., then the perimeter of the 27. greater polygon is The ratio between the length of two corresponding sides of two similar polygon is 3:5 28. • then the ratio between their perimeter = If $\overrightarrow{AD} \perp \overrightarrow{BC}$, then the projection of \overrightarrow{AD} on \overrightarrow{BC} is 29. A square of diagonal length 12 cm., then its area = cm² 30. A triangle whose side lengths 6 cm., 8 cm., 11 cm., then its type according to its 31. angle is

Preparatory Two - Second Term Revision - 2023

32. If \triangle ABC \sim \triangle DEF and m (\angle B) + m (\angle C) = 70°, then m (\angle D) =°

Essay problems:

The sides lengths of one of two similar triangles are 3 cm., 4 cm., 5 cm. and the perimeter of the other triangle is 36 cm. find the side lengths of the other triangle.

In the opposite figure :

2. ABC is a triangle in which: BD = 2 cm. • CD = 8 cm. • AD = 4 cm. • $\overrightarrow{AD} \perp \overrightarrow{BC}$

Prove that : $m (\angle BAC) = 90^{\circ}$

ABCD is a parallelogram in which: AB = 18 cm. and BC = 12 cm.

3. We draw $\overrightarrow{DE} \perp \overrightarrow{BC}$, $\overrightarrow{DO} \perp \overrightarrow{AB}$, $\overrightarrow{DE} = 15$ cm.

Calculate the area of parallelogram ABCD and find the length of \overrightarrow{DO}

In the opposite figure:

DEO is a right-angled triangle at E

 $, \overline{EN} \perp \overline{DO}, DN = 16 \text{ cm}.$

and ON = 9 cm.

4.

6.

7.

Find the length of each of : \overline{EN} , \overline{ED} , \overline{EO}

In the opposite figure:

AO ⊥ CB, BE ⊥ AC

5. AC = 10 cm., BC = 7 cm. and AO = 5 cm.

Find: (1) The length of \overline{BE}

(2) The area of \triangle ABC

ABCD is a parallelogram in which: AB = 8 cm., AC = 20 cm. and BD = 12 cm.

Prove that: $m(\angle ABD) = 90^{\circ}$, then find the area of this parallelogram.

In the opposite figure:

 \triangle DBA is a similar to \triangle ABC, m (\angle BAC) = 90°

Prove that: $\overrightarrow{AD} \perp \overrightarrow{BC}$ and if $\overrightarrow{AB} = 8 \text{ cm.}$, $\overrightarrow{AC} = 6 \text{ cm.}$

Find the length of : \overline{BD}

Preparatory Two - Second Term Revision - 2023 In the opposite figure: ABC is a triangle, $\overrightarrow{AD} \perp \overrightarrow{BC}$ 8. If AD = 24 cm., AB = 26 cm.and AC = 30 cm. Find: BC, then calculate area of \triangle ABC Δ EFD ~ Δ ABC , AB = 4 cm. , BC = 5 cm. , AC = 6 cm. 9. , if the perimeter of Δ EFD = 60 cm. , find the length of sides Δ EFD In the opposite figure: \triangle ABC \sim \triangle AED , m (\angle AED) = 44°, AD = 3 cm., EA = 4 cm. 10. DB = 5 cm. DC = 8 cm.find the length of each of : ED and EC In the opposite figure: $m (\angle AED) = m (\angle B)$, AD = 3 cm. AE = 4.5 cm. and BD = 6 cm. 11. (1) Prove that : \triangle ADE \sim \triangle ACB E (2) Find: The length of EC * In the opposite figure: ABC is a triangle with a median AD 12. , $E \in \overline{AD}$, draw \overline{BE} and \overline{CE} **Prove that:** The area of \triangle ABE = the area of \triangle ACE In the opposite figure: ABCD is a quadrilateral in which AB = 8 cm., BC = 9 cm. and CD = 12 cm.13. • AD = 17 cm. and DB \perp AB (1) Find: The length of BD

(2) Prove that : $m (\angle C) = 90^{\circ}$

Preparatory Two - Second Term Revision - 2023 If the lengths of the two parallel bases of a trapezium are 5 cm., 7 cm. and if the 14. length of its height 4 cm., find its area In the opposite figure: ABCD is a quadrilateral, where m (\angle BCD) = m (\angle BAD) = 90° , AE \perp BD , BC = 7 cm. , CD = 24 cm. and AB = 15 cm. 15. Find: (1) The length of BD and AD 24 cm. (2) The length of the projection of AB on BD The ratio between the length of corresponding sides of two similar triangle is 3:5 and 16. if the perimeter of the greater is 60 cm., find the perimeter of the smaller triangles. In the opposite figure: AB = 3 cm., BC = 4 cm., AD = 13 cm. $, CD = 12 \text{ cm.}, m (\angle B) = 90^{\circ}$ 17. (1) Find: The length of: AC (2) Prove that : $m (\angle ACD) = 90^{\circ}$ \triangle ABC where AB = 6 cm., BC = 8 cm., AC = 4 cm., determine the type of the 18. angle BAC In the opposite figure: $\overrightarrow{AD} / / \overrightarrow{BC}$, $\overrightarrow{AD} = 4 \text{ cm.}$, $\overrightarrow{AE} = 3 \text{ cm.}$ DE = 2 cm. BC = 8 cm.19. (1) Prove that : \triangle AED \sim \triangle CED (2) Find: The perimeter of \triangle EBC In the opposite figure: $m (\angle ABC) = 90^{\circ} , \overline{BD} \perp \overline{AC}$ 20. AD = 1.8 cm. DC = 3.2 cm. 3.2cm. Find: The length of each: BD, AB In the opposite figure: If $\triangle AXY \sim \triangle ABC$, AX = 7 cm., AY = 6 cm., YB = 8 cm. 21. (1) Find: The length of \overline{XC} (2) Find: $\frac{XY}{BC}$

	Preparatory Two - Second Term Revision -	2023
22.	* In the opposite figure: ABC is a triangle in which $D \in \overline{AB}$ and $E \in \overline{AC}$ such that the area of \triangle ABE = the area of \triangle ACD Prove that: \overline{DE} // \overline{BC}	E D B
23.	* In the opposite figure: $\overline{AD} /\!\!/ \overline{BC} \text{ and } \overline{AC} \cap \overline{BD} = \{M\}$, D is the midpoint of \overline{EC} Prove that: The area of Δ MDE = the area of Δ AMB	E M C
24.	In the opposite figure: In \triangle ABC, BD = 9 cm. , DC = 16 cm. Find: Lengths of each of: \overrightarrow{AD} , \overrightarrow{AB} , \overrightarrow{AC}	B 9cm. D 16cm. C
25.	In the opposite figure: ABCD is a quadrilateral in which m (∠ C) = 90° AB = AD = 13 cm., BC = 6 cm. , CD = 8 cm., E is midpoint of BD Find: The area of the shape ABCD	A B E B E B B E B B E B B B E B B B B B
26.	In the opposite figure: $AB = 3 \text{ cm.}$, $BC = 4 \text{ cm.}$, $AD = 13 \text{ cm.}$, $CD = 12 \text{ cm.}$ and $m (\angle ABC) = 90^{\circ}$ Prove that: $m (\angle ACD) = 90^{\circ}$	D A E C Acm. B

Choose the correct answer:

1.	\triangle ABC in which AB = 3 cm., BC = 6 cm., and AC = 4 cm., then m (\angle B)				
	(a) <	(b) >	(c) =	(d) ≤	
2.	If AC is the proj	ection of \overrightarrow{AB} on \overrightarrow{AC}	, then AC A	ΔB	
2.	(a) <	(b) >	(c) =	(d) ≤	
	If Δ ABC ~ Δ D	EF and AB = $\frac{2}{5}$ DE			
3.		eter of \triangle ABC =	····· the perimeter of	Δ DEF	
	(a) 2	(b) 5	(c) $\frac{2}{5}$	(d) $\frac{4}{25}$	
	ABC is a right-an	gled triangle at B AC	$C = 10 \text{ cm.}$ $\Rightarrow BC = 8 \text{ cm}$	n. , then AB = cm.	
4.	(a) 8	(b) 10	(c) 6	(d) 4	
	ABC is a triangle in which $(AB)^2 = (AC)^2 + (BC)^2$, $m (\angle B) = 40^\circ$				
5.	then m ($\angle A$) =	······			
	(a) 90°	(b) 40°	(c) 130°	(d) 50°	
	* The triangle whose base length is 6 cm. and its area is 24 cm ² , the corresponding				
6.	height = cm.				
	(a) 4	(b) 8	(c) 3	(d) 18	
7	A square of diagonal length 12 cm. , then its area = cm ² .				
7.	(a) 24	(b) 36	(c) 48	(d) 72	
0	If \triangle ABC \sim \triangle DEF and m (\angle B) + m (\angle C) = 70°, then m (\angle D) =				
8.	(a) 70°	(b) 35°	(c) 140°	(d) 110°	

ABC is an obtuse-angled triangle at A in which AB = 5 cm., BC = 8 11. , then AC =) =				
(a) 72 (b) 36 (c) 9 (d) The length of the projection of a line segment on a given straight line length of the line segment itself. (a) < (b) ≤ (c) ≥ (c) ≥ (d) ABC is an obtuse-angled triangle at A in which AB = 5 cm., BC = 8 11. , then AC =	ethe i) = cm.				
length of the line segment itself. (a) < (b) \leq (c) \geq (c) \geq (d) ABC is an obtuse-angled triangle at A in which AB = 5 cm., BC = 8 11. , then AC =	i) = cm.				
ABC is an obtuse-angled triangle at A in which AB = 5 cm., BC = 8 11. , then AC = cm. (a) 5 (b) 7 (c) 8 (d)	cm.				
11. , then AC = cm. (a) 5 (b) 7 (c) 8 (d)					
) 13				
* The two triangles drawn on a common base their vertices located of					
12. parallel to the base are	n a straight line				
(a) congruent. (b) similar. (c) equal in perimeter. (d)	equal in area.				
If the ratio of enlargement between two triangles equals 1, then the	two triangles				
13. are					
(a) congruent. (b) different. (c) right-angled. (d) co	incide.				
The area of square of diagonal length 6 cm. is cm ²					
(a) 18 (b) 36 (c) 12 (d) 6					
In \triangle ABC if $(AC)^2 + (AB)^2 < (BC)^2$, then \angle A is					
15. (a) acute. (b) right. (c) obtuse. (d) strain	ght.				
A trapezium whose middle base length is 8 cm., then the length of 16. bases may be	A trapezium whose middle base length is 8 cm., then the length of the two parallel bases may be cm.				
(a) 3,5 (b) 6,10 (c) 4,6 (d) 4	· 4				
Complete each of the following:					
1. The two polygons that are similar to third are					
2. The two diagonals of the isosceles trapezium are					
3. The two triangles are similar if its corresponding side lengths are					
4. The area of the trapezium = ×					

Preparatory Two - Second Term Revision - 2023

Complete: In the opposite figure:

ABC is a right-angled triangle at B, $\overline{BD} \perp \overline{AC}$

- (1) The projection of \overrightarrow{AB} on \overrightarrow{AC} is 5.

 - (a) $(BD)^2 = AD \times \dots$ (3) $(BC)^2 = CA \times \dots$
 - (4) Δ ABC ~ Δ ~ Δ
 - (5) The perimeter of \triangle ABC: the perimeter of \triangle DBC =

- In \triangle ABC, if $(AB)^2 = (BC)^2 + (AC)^2$, then m (\angle ) = 90° 7.
- The area of rhombus is 20 cm², the length of one of its diagonals is 5 cm. 8. , then the length of the other diagonal =
- If \triangle ABC is right-angled at A and $\overline{AD} \perp \overline{BC}$, then $(AB)^2 = \cdots \times \cdots$ 9.
- 10.
- If the point A ∈ the line L, then the projection of the point A on the line L is 11.
- A trapezium whose bases lengths are 8 cm., 10 cm., and its height is 5 cm. 12. , then its area equals cm².
- The area of rhombus is 24 cm², the length of one of its diagonals is 8 cm. 13. , then the length of other diagonal is
- The two polygons that are similar to third are 14.

Essay problems:

1.

In the opposite figure:

The polygon ABCD ~ the polygon XYZL

- AB = 6 cm. BC = 4 cm. CD = 9 cm.
- DA = 10 cm. ZL = 3 cm.

Find: The perimeter of the polygon XYZL

Determine the type of \triangle ABC according to it's angles if AB = 3.5 cm., BC = 2.5 cm. 2. and AC = 3 cm.

Preparatory Two - Second Term Revision - 2023 In the opposite figure: \triangle ABC is right-angled at B, $\overrightarrow{BD} \perp \overrightarrow{AC}$ 3. AD = 9 cm. and CD = 16 cm.(2) The length of \overline{BD} Find: (1) The length of AB In the opposite figure: BC = 4 cm., AD = 13 cm., AB = 3 cm. $, DC = 12 \text{ cm.} , m (∠ B) = 90^{\circ}$ 4. (1) Find: The length of AC (2) Prove that : $m (\angle ACD) = 90^{\circ}$ * In the opposite figure: ABCD is a quadrilateral whose diagonals intersect at M $,\overline{AD}//\overline{BC},X\in\overline{AD}$ and $Y\in\overline{AD}$ 5. Such that : AX = DYProve that: The area of the figure ABMX = the area of the figure DCMY Two similar polygons in which the ration between the lengths of two corresponding 6. sides is 1:3 if the perimeter of the smaller is 20 cm., find the perimeter of the greater. In the opposite figure: ABC is a triangle in which $\overline{DE} // \overline{BC}$, BD = 2 cm. 7. AD = 8 cm. AE = 5 cm. CE = x cm.(1) Prove that : \triangle ADE \sim \triangle ABC (2) Find the value of : XIn the opposite figure: If \triangle ABC \sim \triangle ADE, AE = 6 cm. 8. AD = 7 cm. and BE = 8 cm. (s) $\frac{BC}{DE}$ **Find** : (1) DC * In the opposite figure: $AD // BC \cdot AC \cap BD = \{M\} \text{ and } BX = CY$ 9. **Prove that:** The area of the figure ABXM = the area of the figure DCYM

$(4) (\sqrt{3})^{-4-3+9} \times (\sqrt{2})^{-5+7} = (\sqrt{3})^2 \times (3$	1 (19) Let the number is x
= 3×2 = 6	$x^2 + x = 12$
	x2+x-12=0
$\bigcirc 2^4 \times 13^4 - 2^4 \times 3^2 - 2^2 \times 2^2$	(x+4)(x-3)=6
	x=-4 or x=3
_ 4 ~ 1 _ 4	: the number is -4 or 3
9 9	
13 3 x 2 = 2 = 2=4	20 As No. (15)
3 × 2 × -1	(a) F13 / (c) (1/)
$ (\sqrt{5})^{4} + (\frac{1}{\sqrt{5}})^{-4} = 3^{2} + 3^{2} = 18 $	88 Second: Geometry
	9
$(5) (2x8)^{2} = 4^{2} \therefore 4^{2} = 4^{3}$	Oc 26 3c 9b
: [x = 3]	6a 6b Od 8b
	96 Od Oc Ob
16 let the width = x , length =	
x(x+5)=36	176 Bb Oc Oa
$x^{2} + 5x - 36 = 0$	ec esc esa end
(x+9)(x-4)=0	29 b 66 a 67 c 88 b
x = -9 neglected	(DC (SO) 6 (S) a (SO) a
or [x = 4]	33b 34c 39c 38b
: the width= 4 cm, Length= 9.	37c 38b 39b 40c
P = (4+9) x 2 = 26 cm	
	Complete;
17 (22)x+1 x (32)2-x = 2x+2 x 3-2;	1 the same area @ m(4c)
22x x 32x 2cx x 3x	1 the point A 9 3.5 cm
2x+2-2x 4-2x-2x	5 45 cm2 Oproportional,
$= 2^2 \times 3^{-42} = 4 \times 3^4 = \frac{4}{3}$	equal in measure
2×-3 5	76cm & B Dobtus
$(8) \ 3 = 3$	D base and lie between two
: 2x-3=5 [x=4]	Parallel straight line
	(1) a Point (2) >
{No Pain, No gain}	(3) 32 (4) are equal in are
. The same of the	15 base 16 an obtuse
- A - A - A - A - A - A - A - A - A - A	

****** 2 nd prep 2 nd	term 2019 *************
@ In (ABD) = m (LD)=90	13 In △ ABC, : AD is a media.
$\Rightarrow (BD)^2 = (AB)^2 - (AD)^2 = 100$. A. A ABD= A. AACD →C
- BD= 100 = 10cm	In & EBC, ED is a median
In A ADC, = m(LD)=98	: A. A EBD = A. A ECD - @
$\therefore (CD)^2 = (AC)^2 - (AD)^2 = 324$	by subtracting 10-0
CD=√324 = 18 cm	A. A ABE = A. A ACE.
. Bc = 10+18= [28 cm]	., 5,10-1 ., 5
$A/ea = \frac{1}{2} \times 28 \times 24 = 336 \text{ cm}^2$	(4) In △ ABD, m(∠ B) = 98
111cd - 2 1 20 1 24 - 00 0 m	- (BD)2-(AD)2-(AB)2- 225
(b) : EFD ~ △ ABC	$(8D)^2 = \sqrt{225} = [15 \text{ cm}]$
	In O BCD
EF FD ED P. DEFD	$(8D)^2 = 225$
. 4 5 6 15	(Bc)2+(Dc)2=81+144=225
: 4 = 5 = 6 = 15 EF FD = ED = 60	$(80)^2 = (8c)^2 + (0c)^2$
:EF = 4x60 = 16 cm	: m (4 c) = 90°
ED - 5460 - 20 cm	m.c. c) = 90
FD = 5x60 = 20 cm ED = 6x60 = 24 cm	(5) Area = 5+7 x 4 = 24 cm2
15 = 24 cm.	2 4 7 2 2 4 CM
B ABC ~ A AED	(16) $(BD)^2 = (BC)^2 + (DC)^2 = 625$
	∴ BD = √625 = [25cm]
AB = BC = AC	$(AD)^2 = (BD)^2 - (AB)^2 = 400$
$\frac{8}{4} = \frac{8}{ED} = \frac{AC}{3}$: AD = 1400 = (20 cm)
4 ED 3	The projection of AB on BD
: ED = 4x8 -4cm	is E8
	(AB)2= EB x DB
AC= 3x8 = 6 cm	225 = EB x 25
	(EB = 9 cm)
(12) DA ADE, ACB	
(A)	$\frac{3}{5} = \frac{2}{66}$
in which { LA is common	5 - 60
: DADE ~ DACB	$z = \frac{3\times60}{5} = 36 \text{ cm}$
: AD AE : 3 - 4.5 AC AB AC 9	5
: AC = 3x9 = 6cm [: EC=1.5em	
**************************	4 ************************************
. In no 20 24 W W W 17 07 08 38 38 38 38 27 27 07 31 WW 31 17 320 W 32 W	person to a manus como contra constituir de la contra restina referencia de la contra del la contra della con

	term 2019 ***************
(B) (Ac)2 = (AB)2+(Bc)2 = 9+16=25	(23) = DAXY~DABC
AC = \25 = [5 cm]	AB BC AC
$(AD)^2 = 169$	
(Ac)2+(Dc)2=25+144=169	$\frac{7}{14} = \frac{XY}{BC} = \frac{6}{AC}$
$(AD)^2 = (Ac)^2 + (Dc)^2$	14 BC AC
	: Ac = 6x14 = 12 cm
- m (ACD) = 90°	
2 2	: xc = 12-7=[5cm]
(Bc)2 = 82 = 64 cm2	XY = 7 = 1 Bc = 14 = 2
$(AB)^2 + (Ac)^2 = 36 + 16 = 52 \text{ cm}^2$	
$-: (Bc)^2 > (AB)^2 + (Ac)^2$	24 2x+3x = 30
: ABC is obtuse-angled.	
- · · · · · · · · · · · · · · · · · · ·	$5x=66 \Rightarrow x=12$
المطاور الأول هو: AED~ OCEB	: the 2 bases are: 24 cm, 36cm
DO AED, CEB	Area = 30x24 = 720 cm2
cm(LA)=m(LC) Alt.	
	68: 55.45 - 186 6
in which Lm(LD)= m(LB) Alt.	
AAED ~ ACEB	· A. A A BC = A. A DBC
CE EB CB P. DAED	by subtracting A. A MBC
	· A. DAMB = A. DDMC -O
8 P. OCEB	. MD is a median in DEMC
8 1.006	. A. DMDE = A. DDMC > @
P. DEBC = 8x9 = 18 cm	From (1), (2) we get
4	A. A AMB = A. A MOE.
2) : m(LB)=90, BD LAC	
: (BD)2 = DAXDC= 1.8x3.2	(26) : m(∠A)=90°, AD 1 BC
.: BD= √1.8×3.2 = (2.4 cm)	: (AD)2 = DCX DB = 9 x16
(AB)2 = ADX AC = 1.8x 5=9	_ = =
	: AD=3x4=[12 cm]
AB = V9 = 3cm	"(AB)2 = BDx Bc = 9 x 25
	.: AB = 3×5 = [15 cm]
(23 . A. A ABE - A. ACO	: (AC)2= DCX BC=16x25
by subtracting A. DADE	: Ac= 4x5 = 20cm
· A. DEB = A. DEC	
But DE is a common base	
" DE118c	
**********	5 **************

************ 2nd prep 2nd term 2019 ************** (27) In A BCD, -: m(LC) =900 $(BD)^{2} - (Bc)^{2} + (Dc)^{2} - 100$ - BD = 10 cm .. AB = AD , E is midpoint of 80 (3) (8x9) = 64 · AE LBD $4^{x} = 4^{3}$ $\therefore [x = 3]$ In \(ABE , " m (LE)= 900 $\therefore (AE)^2 = (AB)^2 - (BE)^2 = 169 - 25$ 24) ([] x = ([]) = 144 : AF= 1144 = 12 cm $(\frac{2}{3})^{2-1} = (\frac{2}{3})^3 = \frac{8}{27}$: A. A BCD = 1 x 8x6 = 24 cm2 A. A A BD = 1 x 10x 12 = 60 cm2 : A. of ABCD = 24+60 = 84 cm2 (25) $26 \left(\frac{2}{5}\right)^{2x-1} = \left(\frac{2}{5}\right)^3$ 28) BC= 20cm ZAD= 20 : AD= 10cm middle base = 20+10 =19 cm : (x = 2) $(27) x^2 + 3x = 28$: h = 180 = 15 = 12 cm $x^2 + 3x - 28 = 0$ (x+7)(x-4)=029 As No. (8) x = -7 neglected Algebra Essay : the number is 4 $2 - (x^3 + 8) + (2x^2 + 4x)$ = (x+2)(x2-2x+4)+2x(x+2) (28) x2-8x+15=6 (x-3)(x-5)=0= (x+2) (x2-3/x+4+3/x) . 5.5. = { 3, 5} $=(x+2)(x^2+4)$ $29 \frac{(27)^{-1} \times 27^{2} \times 8^{2}}{(2\sqrt{3})^{2} \times (3\sqrt{2})^{2}}$ · (502-1)(502+1) $= (27)^{-1} \times \left(\frac{27 \times 8}{27 \times 18}\right)^{2} = \frac{1}{27} \times 1 = \frac{1}{27}$ $-(x-3)(x^2+3x+9)$ · (4-8)(y+1) $(\frac{4\times36}{16\times9})^n = 1^n = 1$ $-(5x-3)^2$

	: A & AXM = A . A DYM -> 2
(Geometry)	
Essay:	From C, @ we get A. of ABMX = A. of DCMY.
39 = ABCD~XYZL	
$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CD}{ZL} = \frac{AD}{XL} = \frac{P1}{P2}$	35 1 20
XY YZ ZL XL P2	J 3 2
$\frac{9}{3} = \frac{29}{P2}$	$x = \frac{3 \times 20}{1} = 60 \text{ cm}$
	•
$P = \frac{3 \times 29}{9} = 9 \frac{2}{3} \text{cm}$	36 DO ADE, A BC
	(LD)=m(LB) corre
(31) $(AB)^2 = (3.5)^2 = 12.25$	in which fm(LE)=m(LC) Corres.
$(Bc)^{2} + (Ac)^{2} = 6.25 + 9 = 15.25$	LZA Common
$\therefore (AB)^2 < (Bc)^2 + (Ac)^2$	· AADE~AABC
A ABC is an acute-angled	$\frac{AD}{AB} = \frac{AE}{AC} \qquad \frac{8}{10} = \frac{5}{AC}$
(32) - m(4B)=90°, BD 1 Ac	: Ac = 5x10 = 6.25 cm
(AB)2= ADX AC= 9 X25	8 : x = 6.25-5 =1.250
: AB=3X5 = (15 cm)	
(BD) = ADx CD = 9x16	37 : △ABC~△ADE
: BD= 3 x4 = [12 cm]	: AB AC BC : 14 AC E
(33) (Ac)2= (AB)2+ (Bc)2= 9+16=25	: Ac = 6x14 = 12 cm
AC = 5 cm	. Dc= 12-7=50
$(AD)^2 = 169$: DE - 7 = 1 Bc - 14 = 2
(Ac) 2+ (Dc)2= 144+ 25=169	
$\therefore (AD)^2 = (Ac)^2 + (Dc)^2$	38 : ADII BC , AD Common base
· m(4 ACD)=90°	ADADB=A. AADC
	by subtracting A.D ADM
(34) : ADI/ Bc , Bc Common base	
- A-DABC=A-DDBC	: 2B=Cy, M is Common Verte
by subtracting A.D MBC	- A· A MBx=A· A Mcy → @
· Mof DAMB = A. DMC -O	From O.Q weget
··· Ax = Dy, M common vertex	A. ABXM = A. DCYM.

Page [3] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717

Prep (2): Second Term (2012 – 2013): Geometry Rules 🕮 🕮

Theorem (1):

Surfaces of two parallelograms with common base and between two parallel straight lines, one is carrying this base, are equal in area.

Corollary (1)

The parallelogram and the rectangle with common base and between two parallel straight lines are equal in area.

Corollary (2)

The area of the parallelogram = the length of the base x its corresponding height. In the opposite figure :

Remark:

In the opposite figure:

If ABCD is a parallelogram, DF is the corresponding height of the base \overline{BC} and DE is the corresponding height of the base \overline{AB} , then: The area of the parallelogram

 $ABCD = BC \times DF = AB \times DE$

 $i.e. \ \ell_1 \times h_1 = \ell_2 \times h_2$

Corollary (3)

The parallelograms with bases equal in length and lying on a straight line, while the opposite sides to these bases are on another straight line, are equal in area.

Corollary (4):

Area of a triangle is equal to half of area of a parallelogram if they have a common base lying on one of two parallel straight lines including them.

Corollary (5)

Area of the triangle = $\frac{1}{2}$ of the length of the base × its corresponding height

Theorem (2)

Two triangles which have the same base and the vertices opposite to this base on a straight line parallel to the base have the same area.

Corollary (1)

Triangles of bases equal in length and lying between two parallel straight lines are equal in area.

Corollary (2)

The median of a triangle divides its surface into two triangular surfaces equal in area.
Corollary (3) Triangles with congruent bases on one straight line and have a common vertex are equal in areas.
If two triangles are equal in area and drawn on the same base and on one side of it, then their vertices lie on a straight line parallel to this base.
If two triangles have the same area and they are included between two straight lines and their bases on these two straight lines are equal in length, then the two straight lines are parallel.
Definition It is said that the two polygons P_1 and P_2 (of the same number of sides) are similar if the following two conditions are verified together: 1 Their corresponding angles are equal in measure. 2 The corresponding side lengths are proportional. In this case • we write the polygon P_1 ~ the polygon P_2 That means the polygon P_1 is similar to the polygon P_2
The two triangles are similar if one of the two following conditions is verified:
1 The measures of their corresponding angles are equal. 2 The lengths of their corresponding sides are proportional.
Remark:

Page [4] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717

Page [5] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
1 The two right-angled triangles are similar if the measure of an acute angle in one	of
them is equal to the measure of an acute angle in the other.	
2 The two equilateral triangles are similar.	
3 The two isosceles triangles are similar if the measure of an angle in one of them	

The projection of a straight line on a straight line not perpendicular to it is a straight line.

i.e.

The projection of a straight line on a straight line perpendicular to it is the point of intersection of the two straight lines.

Unit (5): Lesson (4): Euclidean Theorem U

In the right-angled triangle, the area of the square on a side of the right angle is equal to the area of the rectangle whose dimensions are the length of the projection of this side on the hypotenuse and the length of the hypotenuse.

In the following , we write the summary of the relations of Pythagoras' theorem and Euclidean theorem :

$$(BC)^2 = (AB)^2 + (AC)^2$$

$$(AB)^2 = (BC)^2 - (AC)^2$$

$$(AC)^2 = (BC)^2 - (AB)^2$$

$$(BA)^2 = BD \times BC$$

$$(CA)^2 = CD \times CB$$

$$(DA)^2 = DB \times DC$$

$$AD = \frac{AB \times AC}{BC}$$

Unit (5): Lesson (5): Classifying triangles according to their angles 🕮 🕮

If the square length of the longest side equals the sum of the squares lengths of the other two sides, then the triangle is right-angled.

i.e.

If the square length of the longest side is greater than the sum of squares lengths of the other two sides, then the triangle is obtuse-angled.

If the square length of the longest side is less than the sum of squares lengths of the other two sides, then the triangle is acute-angled.

- 1 To determine the type of an angle in a triangle, we compare between the square length of the side opposite to it and the sum of squares lengths of the other two sides.
- 2 The greatest angle in measure in the triangle is opposite to the longest side.
- 3 In any triangle, there are two acute angles at least.

Table All on laws Primary Stage Table Tabl

Triangle: Area = $0.5 \times Base \times Height$

: Perimeter = SL1 + SL2 + SL3

: Perimeter of equilateral = $SL \times 3$

Rectangle : $Area = L \times W$

: Perimeter = $(L + W) \times 2$

 $: L = Area \div W = 0.5 \times P - W$

: W = Area \div L = $0.5 \times P - L$

Area

Width Length

Square: : Area = $L \times L = 0.5 \times D \times D$

: Perimeter = $L \times 4$

D : Diagonal =
$$\sqrt{\text{Area} \times 2}$$

: L = $\sqrt{\text{Area}}$ = Perimeter ÷ 4

Parallelogram : Area = Base × Height

: Base = Area ÷ Height

: Height = Area + Base

Area of Parallelogram

Rhombus: Area = Base (L) \times H = 0.5 \times D1 \times D2

: Perimeter = length \times 4

 $L = \sqrt{Area} = Perimeter \div 4$

Area of Rhombus

Trapezium: Middle Base = $\frac{B1 + B2}{2}$

: $A = MB \times H = or \frac{B1 + B2}{2} \times H$

 $B1 = 2 \times MB - B2$

Area of Trapezium

A]: Choose The Correct Answer: -

In the two similar polygons their corresponding angles are in measure 24

(a) equal

(b) difference (c) proportional

(d) alternatives

The ratio between the lengths of two corresponding sides of two similar polygons is 25

3:5, then the ratio between their perimeters is

(a) 5:2

~ (b) 5:3

(c) 1:2

(d) 3:5

The ratio between the lengths of corresponding sides of two similar triangles is 3:5 and if the perimeter of the greater triangle is 60 cm. 26

then the perimeter of the smaller is cm.

(a) 24

(b) 36

(c) 40

(d) 100

If two polygons are similar and the ratio between the lengths of two corresponding sides is 1:3 and the perimeter of smaller polygon is 15 cm., then the perimeter of 27 the greater polygon iscm.

(b) 45

(c) 60

(d) 75

If the ratio of enlargement between two triangles equals 1, then the two triangles are 28

(a) congruent.

(b) different.

(c) right-angle.

(d) coincide.

If \triangle ABC \sim \triangle DEF and m (\angle B) + m (\angle C) = 70°, then m (\angle D) = 29

(a) 70°

(b) 90°

(c) 110°

(d) 180°

In the opposite figure:

If \triangle ADE \sim \triangle ABC, then the length of BC in cm. equals

(a) 3

30

(b) 4

(c) 6

(d) 8

Page [3] - Prep. (2) - - Second Term - Final Revision Sheet - Geometry

Pa	age [4] - Math - Mr. Mahmoud E	smaiel – Mobile	0100 648 75 39 01	110 88 27 17
40	The triangle whose side leng (a) equilateral. (b) of		and 3 cm. is (c) right-angled	triangle. (d) acute-angled
41	ABC is an acute-angled triangle (a) 2 (b) 6	-	6 cm. ,BC = 8 cm. , (c) 10	then AC =cm. (d) 14
42	In \triangle ABC if $(AB)^2 = (AC)^2$ (a) right. (b)	+ (BC) ² , then (acute.	∠ C) is (c) obtuse.	(d) straight.
43	Δ ABC in which $(AC)^2 = (Bc)^2$ (a) acute (b) 1	$(C)^2 - (AB)^2$, The right	en the angle A is (c) obtuse	····· angle. (d) straight
44	In \triangle ABC if $(AB)^2 > (AC)^2 +$ (a) right (b) as		C) isangle.	(d) reflex
45	In \triangle ABC if $(AC)^2 + (AB)^2 <$ (a) an obtuse. (b) st		e of ∠ A is ········ (c) an acute.	(d) right.
46	ABCD is a parallelogram, E (a) the same (b) I	EBC, then the ar	ea of // ABCD (c) twice	The area of Δ EAD (d) third
47	A rectangle whose perimeter is diagonal = cm. (a) 56 (b) 48			he length of its (d) 216
48	The ratio between area of partbase and including between to (a) 1:2 (b) 1	wo parallel lines		have a common (d) 2:3
49	The median of a triangle div (a) congruent triangles. (c) isosceles triangles.	ides its surface in	to two (b) triangular surfa (d) right-angled tri	

Page [4] - Prep. (2) - - Second Term - Final Revision Sheet - Geometry

- **9** XYZ is triangle in which $(XY)^2 = (YZ)^2 (XZ)^2$, then angle is right.
- In the triangle \triangle XYZ if $(XY)^2 > (XZ)^2 + (YZ)^2$, then angle Y is
- In \triangle ABC if $(AC)^2 > (AB)^2 + (BC)^2$, then \triangle ABC is an triangle.
- In \triangle ABC if $(AC)^2 + (AB)^2 < (BC)^2$, then angle A is
- 13 The triangle of side lengths 3 cm., 4 cm., 5 cm. is angled-triangle.
- In a triangle if the square of the length of a side is equal to the sum of the squares of the lengths of the other two sides, then the angle opposite to this side is

C]: Essay Problems: -

In the opposite figure:

 \triangle ABC is a right - angled at B, D is midpoint of \overline{AB} , $\overline{DE} \perp \overline{AC}$, AB = 8 cm., BC = 6 cm.

Prove that: $\triangle AED \sim \triangle ABC$, then find the length of \overline{DE}

In the opposite figure:

2

3

 $m (\angle AED) = m (\angle B) , AD = 3 cm.$

- AE = 4.5 cm. and BD = 6 cm.
- (1) Prove that : \triangle ADE $\sim \triangle$ ACB
- (2) Find the length of : CE

In the opposite figure:

 \overline{AC} // \overline{ED} , AC = 5 cm.

- ,BC = 4 cm., BD = 6 cm., ED = 15 cm.
- (1) Prove that : \triangle ABC \sim \triangle DBE
- (2) Find the length of each of : \overline{AB} and \overline{BE}

Pa	age [7] - Math - Mr. Mahmoud Esmaiel - Mobile 0100 648 75 39 01110 88 27 17
4	In the opposite figure : $\overline{DE} // \overline{BC}, AD = 6 \text{ cm}.$ $, BD = 9 \text{ cm}, \text{ and } DE = 4 \text{ cm}.$ $1) \text{ Prove that : } \Delta \text{ ADE } \sim \Delta \text{ ABC}$ $2) \text{ Find the length of : } \overline{BC}$
5	In the opposite figure : \triangle ABC \sim \triangle ADE , AE = 6 cm. , AD = 7 cm. , BE = 8 cm. Find the length of : \overline{DC}
6	In the opposite figure: ABC is a triangle in which: BD = 2 cm. , CD = 8 cm., AD = 4 cm., $\overline{AD} \perp \overline{BC}$ Prove that: m (\angle BAC) = 90°
7	In the opposite figure : ABC is a triangle , $\overline{AD} \perp \overline{BC}$ If AD = 24 cm. , AB = 26 cm. and AC = 30 cm. Find : BC , then calculate area of \triangle ABC
8	In the opposite figure: ABC is a right-angled triangle at A , $\overrightarrow{AD} \perp \overrightarrow{BC}$, BD = 9 cm., CD = 16 cm. Find the length of each of: \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD}
9	In the opposite figure: ABCD is a quadrilateral in which: AB = 8 cm. ,BC = 9 cm., CD = 12 cm. and AD = 17 cm. ,m (\angle ABD) = 90° ① Find the length of: \overline{BD} ② Prove that: \angle C is a right angle
	Page [7] - Prep. (2) Second Term - Final Revision Sheet - Geometry
	- age [.]

The sides lengths of one of two similar triangles are 3 cm., 4 cm., 5 cm. and the perimeter of the other triangle is 36 cm. find the side lengths of the other triangle.

11

Determine the type of angle C in \triangle ABC in which : AB = 7 cm., BC = 3 cm. and AC = 5 cm.

Prep (2) : Second Term (2016)

Geometry: Final Revision Solutions

[A] Choose Problems Answers

Sn.	Answer	Sn.	Answer
1	Equal	16	An obtuse
2	3:5	17	An obtuse
3	36	18	6
4	45	19	Right
5	Congruent	20	Right
6	110	21	Obtuse
7	6	22	An obtuse
8	9	23	Twice
9	1	24	10
10	BC	25	2:1
11	-	26	Answer (b)
12	{ D }	27	Equal in area
13	0	28	4
14	(3,0)	29	6
15	Right angle		

[B] Complete Problems Answers

Sn.	Answer	Sn.	Answer
1	A	5	DC
2	Itself	6	BA
3	=	7	Y
4	BC	8	C

9	Y	12	Obtuse
10	Acute	13	Right
11	Obtuse	14	right

Essay Problems

Sn	Answer			
1	In \triangle ABC: \therefore m (\angle B) = 90° \therefore (AC) ² = (AB) ² + (BC) ² = 64 + 36 = 100 \therefore AC = 10 cm. In $\triangle \triangle$ AED \Rightarrow ABC: \therefore m (\angle AED) = m (\angle B) = 90° \Rightarrow \angle A is a common angle \therefore m (\angle ADE) = m (\angle C) \therefore \triangle AED \Rightarrow \triangle ABC (First req.) \therefore $\frac{AE}{AB} = \frac{ED}{BC} = \frac{AD}{AC}$ \therefore $\frac{ED}{6} = \frac{4}{10}$ \therefore ED = $\frac{6 \times 4}{10}$ = 2.4 cm. (Second req.) In \triangle ADE \Rightarrow ACB: \therefore m (\angle AED) = m (\angle ABC) \Rightarrow \angle A is a common angle			
2	$\therefore m (\angle ADE) = m (\angle C)$ $\therefore \Delta ADE \sim \Delta ACB \qquad (First req.)$ $\therefore \frac{AD}{AC} = \frac{DE}{CB} = \frac{AE}{AB} \qquad \therefore \frac{3}{AC} = \frac{4.5}{9}$ $\therefore AC = \frac{3 \times 9}{4.5} = 6 \text{ cm.}$ $\therefore CE = 6 - 4.5 = 1.5 \text{ cm.} \qquad (Second req.)$			
3	In $\triangle \triangle$ ABC, DBE: \therefore \overrightarrow{AC} // \overrightarrow{DE} , \overrightarrow{CE} is a transversal \therefore m (\angle C) = m (\angle E) (Alternate angles) (1) \Rightarrow \Rightarrow \Rightarrow (AD is a transversal \Rightarrow m (\angle A) = m (\angle D) (Alternate angles) (2) \Rightarrow \Rightarrow m (\angle ABC) = m (\angle DBE) (V.O.A) (3) From (1), (2) and (3): \Rightarrow \Rightarrow ABC \Rightarrow \Rightarrow DBE (First req.) \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow			

	Page [7] - Math - Mr. Mahmoud Esmaie	l - Mob	oile : 01006487539 - 01110882717
		1	
4	In $\triangle\triangle$ ADE, ABC: ∴ $\overrightarrow{DE} // \overrightarrow{BC}$, \overrightarrow{AB} is a transversal ∴ m (\angle ADE) = m (\angle B) (Corresponding angles) (1) , ∴ $\overrightarrow{DE} // \overrightarrow{BC}$, \overrightarrow{AC} is a transversal ∴ m (\angle AED) = m (\angle C) (Corresponding angles) (2) From (1) and (2):, ∴ \angle A is a common angle ∴ \triangle ADE \sim \triangle ABC (First req.) ∴ $\frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC}$ ∴ $\frac{6}{15} = \frac{4}{BC}$	9	In \triangle ABD: \therefore m (\angle ABD) = 90° \therefore (BD) ² = (AD) ² – (AB) ² = (17) ² – (8) ² = 225 \therefore BD = 15 cm. (First req.) In \triangle BCD: \therefore (BD) ² = 225 \Rightarrow (BC) ² + (CD) ² = (9) ² + (12) ² = 225 \therefore (BD) ² = (BC) ² + (CD) ² \therefore m (\angle C) = 90° (Second req.) Let the two triangles be \triangle ABC \Rightarrow \triangle XYZ
5	$\therefore BC = \frac{15 \times 4}{6} = 10 \text{ cm.} \qquad \text{(Second req.)}$ $\therefore \Delta ABC \sim \Delta ADE$ $\therefore \frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE} \qquad \therefore \frac{14}{7} = \frac{AC}{6}$ $\therefore AC = \frac{6 \times 14}{7} = 12 \text{ cm.}$ $\therefore DC = 12 - 7 = 5 \text{ cm.} \qquad \text{(The req.)}$	11	
6	∴ BC = $12 - 7 = 3$ cm. (The req.) ∴ $\triangle ABD$ is right-angled at D ∴ $(AB)^2 = (AD)^2 + (DB)^2 = (4)^2 + (2)^2 = 20$, ∴ $\triangle ADC$ is right-angled at D ∴ $(AC)^2 = (AD)^2 + (DC)^2 = (4)^2 + (8)^2 = 80$ In $\triangle ABC$: ∴ $(AB)^2 + (AC)^2 = 20 + 80 = 100$, $(BC)^2 = 100$ ∴ m ($\triangle BAC$) = 90° (Q.E.D.)		∴ $(AB)^2 > (BC)^2 + (AC)^2$ ∴ ∠ C is obtuse
7	In \triangle ABD: :: m (∠ ADB) = 90° ∴ (BD)² = (AB)² - (AD)² = (26)² - (24)² = 100 ∴ BD = 10 cm. • In \triangle ACD: :: m (∠ ADC) = 90° ∴ (CD)² = (AC)² - (AD)² = (30)² - (24)² = 324 ∴ CD = 18 cm. ∴ BC = CD + DB = 18 + 10 = 28 cm. (First req.) ∴ Area of \triangle ABC = $\frac{1}{2}$ × BC × AD = $\frac{1}{2}$ × 28 × 24 = 336 cm². (Second req.)		
8	In \triangle ABC: \therefore m (\angle BAC) = 90°, $\overrightarrow{AD} \perp \overrightarrow{BC}$ \therefore (AB) ² = BD × BC = 9 × 25 = 225 \therefore AB = 15 cm. , (AC) ² = CD × CB = 16 × 25 = 400 \therefore AC = 20 cm. , (AD) ² = DB × DC = 9 × 16 = 144 \therefore AD = 12 cm. (The req.)		

Page [7] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717

Prep (2) : Second Term (2016)

Geometry: Final Revision Solutions

[A] Choose Problems Answers

Sn.	Answer	Sn.	Answer
1	Equal	16	An obtuse
2	3:5	17	An obtuse
3	36	18	6
4	45	19	Right
5	Congruent	20	Right
6	110	21	Obtuse
7	6	22	An obtuse
8	9	23	Twice
9	1	24	10
10	BC	25	2:1
11	-	26	Answer (b)
12	{ D }	27	Equal in area
13	0	28	4
14	(3,0)	29	6
15	Right angle		

[B] Complete Problems Answers

Sn.	Answer	Sn.	Answer
1	A	5	DC
2	Itself	6	BA
3	=	7	Y
4	BC	8	C

9	Y	12	Obtuse
10	Acute	13	Right
11	Obtuse	14	right

Essay Problems

38	Sn	Answer		
	1	In \triangle ABC: \therefore m (\angle B) = 90° \therefore (AC) ² = (AB) ² + (BC) ² = 64 + 36 = 100 \therefore AC = 10 cm. In $\triangle \triangle$ AED \Rightarrow ABC: \therefore m (\angle AED) = m (\angle B) = 90° \Rightarrow \angle A is a common angle \therefore m (\angle ADE) = m (\angle C) \therefore \triangle AED \Rightarrow \triangle ABC (First req.) \therefore $\frac{AE}{AB} = \frac{ED}{BC} = \frac{AD}{AC}$ \therefore $\frac{ED}{6} = \frac{4}{10}$ \therefore ED = $\frac{6 \times 4}{10}$ = 2.4 cm. (Second req.) In \triangle ADE \Rightarrow ACB: \therefore m (\angle ADE) = m (\angle ABC) \Rightarrow \angle A is a common angle \therefore m (\angle ADE) = m (\angle C) \Rightarrow \triangle ADE \Rightarrow \triangle ACB (First req.) \Rightarrow \triangle AC = $\frac{AD}{AC} = \frac{DE}{AB} = \frac{AE}{AB}$ \Rightarrow $\frac{3}{AC} = \frac{4.5}{9}$ \Rightarrow AC = $\frac{3 \times 9}{4.5}$ = 6 cm. \Rightarrow CE = 6 - 4.5 = 1.5 cm. (Second req.)		
	3	In $\triangle \triangle$ ABC, DBE: \therefore AC // DE, CE is a transversal \therefore m (\angle C) = m (\angle E) (Alternate angles) (1) \Rightarrow AC // DE, AD is a transversal \Rightarrow m (\angle A) = m (\angle D) (Alternate angles) (2) \Rightarrow m (\angle ABC) = m (\angle DBE) (V.O.A) (3) From (1), (2) and (3): \Rightarrow ABC \Rightarrow DBE (First req.) \Rightarrow AB = $\frac{BC}{BE} = \frac{AC}{DE}$ \Rightarrow $\frac{AB}{6} = \frac{4}{BE} = \frac{5}{15}$ \Rightarrow AB = $\frac{6 \times 5}{15} = 2$ cm. \Rightarrow BE = $\frac{4 \times 15}{5} = 12$ cm. (Second req.)		

In $\triangle \triangle$ ADE, ABC: ∴ $\overrightarrow{DE} // \overrightarrow{BC}$, \overrightarrow{AB} is a transversal ∴ $m (\angle ADE) = m (\angle B)$ (Corresponding angles) (1) ∴ $\overrightarrow{DE} // \overrightarrow{BC}$, \overrightarrow{AC} is a transversal ∴ $m (\angle AED) = m (\angle C)$ (Corresponding angles) (2) In \triangle ABD: ∴ $m (\angle ABD) = 90^{\circ}$ ∴ $(BD)^{2} = (AD)^{2} - (AB)^{2} = (17)^{2} - (AB)^{2} = (AB)^{2} = (AB)^{2} + (AB)^{2} + (AB)^{2} = (AB)^{2} + (AB)^{2$	(First req.)
∴ $\overrightarrow{DE} // \overrightarrow{BC}$, \overrightarrow{AB} is a transversal ∴ m (∠ ADE) = m (∠ B) (Corresponding angles) (1) ∴ $\overrightarrow{DE} // \overrightarrow{BC}$, \overrightarrow{AC} is a transversal $(BD)^2 = (AD)^2 - (AB)^2 = (17)^2 - (BD)^2 = 15 \text{ cm}.$ In $\triangle BCD$: $(BD)^2 = 225$	AND THE RESERVE OF THE PARTY OF
4 From (1) and (2): $\cdot : : \angle A$ is a common angle $\therefore (BD)^2 = (BC)^2 + (CD)^2$	C Z
5 AD DE AE $\therefore AC = \frac{6 \times 14}{7} = 12 \text{ cm.}$ $\therefore DC = 12 - 7 = 5 \text{ cm.}$ (The req.) $(AB)^2 = 7^2 = 49 \cdot (BC)^2 + (AC)^2 = 12 \text{ cm.}$ $(AB)^2 = 7^2 = 49 \cdot (BC)^2 + (AC)^2 = 12 \text{ cm.}$	$\frac{36}{2} = 15 \text{ cm}.$ $3^2 + 5^2 = 34$
∴ $\triangle ABD$ is right-angled at D ∴ $(AB)^2 = (AD)^2 + (DB)^2 = (4)^2 + (2)^2 = 20$ ∴ $\triangle ADC$ is right-angled at D ∴ $(AC)^2 = (AD)^2 + (DC)^2 = (4)^2 + (8)^2 = 80$ In $\triangle ABC$: ∴ $(AB)^2 + (AC)^2 = 20 + 80 = 100$ ∴ $(BC)^2 = 100$ ∴ $(AB)^2 > (BC)^2 + (AC)^2 = 20$ ∴ $(AB)^2 > (BC)^2 + (AC)^2 = 20$	C is obtuse
In \triangle ABD: \therefore m (\angle ADB) = 90° \therefore (BD) ² = (AB) ² - (AD) ² = (26) ² - (24) ² = 100 \therefore BD = 10 cm. • In \triangle ACD: \therefore m (\angle ADC) = 90° \therefore (CD) ² = (AC) ² - (AD) ² = (30) ² - (24) ² = 324 \therefore CD = 18 cm. • BC = CD + DB = 18 + 10 = 28 cm. (First req.) • Area of \triangle ABC = $\frac{1}{2}$ × BC × AD = $\frac{1}{2}$ × 28 × 24 = 336 cm ² . (Second req.)	
In \triangle ABC: \cdots m (\angle BAC) = 90°, AD \bot BC \therefore (AB) ² = BD \times BC = 9 \times 25 = 225 \therefore AB = 15 cm. 8 $(AC)^2 = CD \times CB = 16 \times 25 = 400$ \therefore AC = 20 cm. $(AD)^2 = DB \times DC = 9 \times 16 = 144$ \therefore AD = 12 cm. (The req.)	

RULES OF GEOMETRY

Equality of the areas of two parallelograms

The altitude of the parallelogram

- The altitude is a line segment, or the length of a line segment, giving the height of a polygon.
- In the opposite figure:

ABCD is a parallelogram,

 $F \in \overline{CB}$ such that $\overline{DF} \perp \overline{CB}$,

 $E \in \overline{AB}$ such that $\overline{DE} \perp \overline{AB}$,

then:

- The length of \overline{DF} is the altitude (height) corresponding to the base \overline{BC}
- The length of \overline{DE} is the altitude (height) corresponding to the base \overline{AB}

Notice that: •

We can consider any side in the parallelogram ABCD is a base, then:

- The altitude corresponding to the base \overline{BC} is the same altitude corresponding to the base \overline{AD}
- The altitude corresponding to the base \overline{AB} is the same altitude corresponding to the base \overline{CD}

Remark

The perpendicular distance between any two parallel straight lines is constant, then:

In the opposite figure:

AE = XY = DF = LM and each of them is considered

an altitude of the parallelogram ABCD corresponding to BC or AD

altitude

Theorem 1

Surfaces of two parallelograms with common base and between two parallel straight lines, one is carrying this base, are equal in area.

Corollary 1

The parallelogram and the rectangle with common base and between two parallel straight lines are equal in area.

• In the opposite figure :

The area of the parallelogram ABCD

= the area of the rectangle AEFD

(They have a common base AD

and they are between the two parallel straight lines AD and BC)

Try to prove this corollary in the same way of proving the previous theorem.

Corollary 2

The area of the parallelogram = the length of the base \times its corresponding height.

Remark

In the opposite figure:

If ABCD is a parallelogram, DF is the corresponding height of the base \overline{BC} and DE is the corresponding height of the base \overline{AB} , then: The area of the parallelogram ABCD = BC × DF = AB × DE

$$i.e. \ \ell_1 \times h_1 = \ell_2 \times h_2$$

Corollary 3

The parallelograms with bases equal in length and lying on a straight line, while the opposite sides to these bases are on another straight line, are equal in area.

Corollary 4

Area of a triangle is equal to half of area of a parallelogram if they have a common base lying on one of two parallel straight lines including them.

Remark

E D A

Fig. (2)

In each of the previous figures, the area of \triangle BCE = $\frac{1}{2}$ of the area of \triangle ABCD

Corollary 5

Area of the triangle = $\frac{1}{2}$ of the length of the base × its corresponding height

Remark

Any triangle has three sides , each of them is called a base and each base has a corresponding altitude , the straight lines carrying these altitudes intersect at one point as shown in the following figures :

The acute-angled triangle

They intersect at a point inside the triangle.

The obtuse-angled triangle

They intersect at a point outside the triangle.

The right-angled triangle

They intersect at the vertex of the right angle.

Remark

If \triangle ABC is right-angled at A and \triangle BC

such that : $\overline{AD} \perp \overline{BC}$

Then the area of \triangle ABC = $\frac{1}{2}$ BC \times AD = $\frac{1}{2}$ AB \times AC

$$\therefore BC \times AD = AB \times AC$$

Equality of the areas of two triangles

• We knew in the previous lesson that :

The area of the triangle = $\frac{1}{2}$ of the base length × its corresponding height.

According to this, we can say:

If the lengths of the two bases of two triangles are equal and their corresponding heights are equal, then the areas of the two triangles are equal.

In this lesson, we shall study some different cases of the equality of two areas of two triangles.

Theorem 2

Two triangles which have the same base and the vertices opposite to this base on a straight line parallel to the base have the same area.

Important corollaries

Corollary 1

Triangles of bases equal in length and lying between two parallel straight lines are equal in area.

In the opposite figure:

If $\overrightarrow{AE} // \overrightarrow{BC}$ and BC = EF = XM,

then the area of \triangle ABC = the area of \triangle DEF

= the area of Δ YXM

Notice that: $h_1 = h_2 = h_3$

Corollary 2

The median of a triangle divides its surface into two triangular surfaces equal in area.

In the opposite figure:

If \overline{AD} is a median in $\triangle ABC$,

then the area of \triangle ABD = the area of \triangle ADC

Notice that: The two triangles have the same height h and BD = DC

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [5]

Corollary 3

Triangles with congruent bases on one straight line and have a common vertex are equal in areas.

In the opposite figure:

The area of \triangle NAB = the area of \triangle NCD

Notice that:

The two triangles have the same height (h) and AB = CD

Remark

In the opposite figure:

If BD = $\frac{1}{2}$ EC, then the area of \triangle ABD = $\frac{1}{2}$ the area of \triangle AEC

Theorem 3

If two triangles are equal in area and drawn on the same base and on one side of it, then their vertices lie on a straight line parallel to this base.

Remark

If two triangles have the same area and they are included between two straight lines and their bases on these two straight lines are equal in length, then the two straight lines are parallel.

In the opposite figure :

If B, C, D and E are on a straight line,

BC = DE, the area of \triangle ABC = the area of \triangle FDE

, then \overrightarrow{AF} // \overrightarrow{BE}

2 In the opposite figure :

If $C \in \overline{AF}$, $D \in \overline{BE}$, AC = DE,

the area of \triangle ABC = the area of \triangle FDE

, then \overrightarrow{AF} // \overrightarrow{BE}

Areas of some geometric figures

(1) Rhombus

* The rhombus is a parallelogram whose sides are equal in length.

i.e.
$$\bullet$$
 $\overline{AB} // \overline{DC}$, $\overline{AD} // \overline{BC}$

•
$$AB = BC = CD = DA$$

* The two diagonals of the rhombus are perpendicular and bisect each other.

•
$$AM = CM$$
, $BM = DM$

Remark

- : The square is a rhombus with two equal diagonals in length.
- \therefore The area of the square = $\frac{1}{2}$ of the square of the length of its diagonal.

(2) The trapezium (The trapezoid)

It is a quadrilateral in which two sides are parallel.

- The two parallel sides are called the bases of the trapezium.
- The other two sides are called the two legs of the trapezium.
- The trapezium has one height only which is the perpendicular distance between its two bases (h)

The isosceles trapezium

If the two legs of the trapezium are equal in length, then it is called an isosceles trapezium. The following are the properties of the isosceles trapezium:

(1) The two base angles of the isosceles trapezium are equal in measure.

In the opposite figure :

If
$$\overline{AD} // \overline{BC}$$
 and $\overline{AB} = \overline{DC}$,

then:

$$m (\angle B) = m (\angle C)$$
 and $m (\angle A) = m (\angle D)$

(2) The two diagonals of the isosceles trapezium are equal in length.

In the opposite figure:

If
$$\overline{AD} // \overline{BC}$$
 and $\overline{AB} = \overline{DC}$,

then
$$AC = BD$$

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [7]

(3) The isosceles trapezium has only one axis of symmetry which is the perpendicular bisector of its bases.

Notice that: •

The axis of symmetry of the isosceles trapezium passes through the point of intersection of its two diagonals.

The right trapezium

- A right trapezium is a trapezium whose one of its legs is perpendicular to its two parallel bases.
- In this case, the length of this perpendicular leg is the height of the trapezium.

The middle base of the trapezium

The length of the middle base = $\frac{1}{2}$ the sum of the two lengths of the two parallel bases.

The	figure	The perimeter	The area
The triangle	h t	The sum of the lengths of its three sides	$\frac{1}{2}$ of the base length × height $= \frac{1}{2} \ell \times h$
The parallelogram	$\frac{\int_{\mathbf{h}_1}^{\mathbf{h}_2} \mathcal{L}_2}{\mathcal{L}_1}$	The sum of lengths of two adjacent sides $\times 2$ $= 2 (l_1 + l_2)$	The base length \times height $= \ell_1 \times \mathbf{h}_1 = \ell_2 \times \mathbf{h}_2$
The rectangle		2 (Length + Width) $= 2 (l + w)$	Length × Width $= \ell \times \mathbf{w}$
The square		Side length $\times 4 = 4 \ell$	Square of side length = ℓ^2 or $\frac{1}{2}$ of the square of its diagonal length = $\frac{1}{2}$ r ²
The rhombus	r ₂	Side length $\times 4 = 4 \ell$	Side length × height = ℓ × h or $\frac{1}{2}$ the product of the lengths of the two diagonals = $\frac{1}{2}$ r ₁ × r ₂
The trapezium		The sum of lengths of its sides	$\frac{1}{2}$ the sum of lengths of the two parallel bases × height $= \frac{1}{2} (\ell_1 + \ell_2) \times h$ or the length of the middle base × height $= \ell \times h$

Similarity

Similarity of two polygons

Definition

It is said that the two polygons P_1 and P_2 (of the same number of sides) are similar if the following two conditions are verified together:

- 1 Their corresponding angles are equal in measure.
- 2 Their corresponding side lengths are proportional.

 In this case, we write the polygon $P_1 \sim$ the polygon P_2 That means the polygon P_1 is similar to the polygon P_2

In the opposite figure:

 $1 m (\angle A) = m (\angle X)$

$$m (\angle B) = m (\angle Y)$$

$$m (\angle C) = m (\angle Z)$$

$$, m (\angle D) = m (\angle L)$$

i.e.

The measures of the corresponding angles are equal.

$$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CD}{ZL} = \frac{DA}{LX} = constant.$$

i.e.

The lengths of the corresponding sides are proportional

, then from 1 and 2, we deduce that : the polygon ABCD ~ the polygon XYZL

Remark (1)

In the two similar polygons P_1 and P_2 , the constant ratio among the lengths of the corresponding sides of P_1 and P_2 is called the ratio of enlargement or the drawing scale.

If the constant ratio is:

- Greater than 1, then the polygon P₁ is an enlargement to the polygon P₂
- Less than 1, then the polygon P₁ is a minimizing of the polygon P₂
- Equal to 1, then the polygon P₁ is congruent to the polygon P₂

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [9]

Remark (2)

In order that two polygons are similar, the two conditions should be verified together and verifying one of them only is not enough to be similar.

For example:

- The square and the rectangle are not similar polygons although the measures of their corresponding angles are equal (each of them is a right angle) but their corresponding side lengths are not proportional.
- So the square and the rhombus are not similar polygons although their corresponding side lengths are proportional but the measures of their corresponding angles are not equal.
 In the square, each angle is a right angle but in the rhombus that doesn't exist.

Remark (3)

The congruent polygons are similar but it is not necessary that the similar polygons are congruent.

Remark (4)

All regular polygons of the same number of sides are similar.

For example: All squares are similar.

Remark (5)

If each of two polygons is similar to a third polygon, then they are similar.

Remark (6)

The order of corresponding vertices should be kept in giving names of similar polygons that to help us finding the proportional sides lengths and the equal angles in measures.

For example:

If we write P_1 (ABCD) is similar to P_2 (XYZL) $\frac{1}{2}$, then we deduce directly that :

2
$$m (\angle A) = m (\angle X) \cdot m (\angle B) = m (\angle Y) \cdot m (\angle C) = m (\angle Z) \cdot m (\angle D) = m (\angle L)$$

i.e.

The ratio between the perimeters of two similar polygons = the ratio between the lengths of two corresponding sides.

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [10]

Similarity of two triangles

We knew that for two polygons in order to be similar, two conditions should be verified together, one of them is not enough to say that the two polygons are similar.
 But in triangles, the following fact shows that the two conditions will be verified together if one of them is verified.

A geometric fact : ---

The two triangles are similar if one of the two following conditions is verified:

- 1 The measures of their corresponding angles are equal.
- 2 The lengths of their corresponding sides are proportional.

For example:

In the opposite figure :

 \triangle ABC \sim \triangle DEF because :

$$m(\angle A) = m(\angle D)$$
,

$$m (\angle B) = m (\angle E)$$
,

$$m (\angle C) = m (\angle F)$$

As a result for their similarity , we find that :

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$

Remarks

- The two right-angled triangles are similar if the measure of an acute angle in one of them is equal to the measure of an acute angle in the other.
- 2 The two equilateral triangles are similar.
- 3 The two isosceles triangles are similar if the measure of an angle in one of them equals the measure of the corresponding angle in the other.

Converse of Pythagoras theorem

We studied Pythagoras' theorem last year.

In the following, we will remind you of what you have studied.

If ABC is a right-angled triangle at A, then $(BC)^2 = (AB)^2 + (AC)^2$

Now we shall study the converse of Pythagoras' theorem.

The converse of Pythagoras' theorem

In A ABC,

if
$$(AB)^2 + (AC)^2 = (BC)^2$$
,

then m (
$$\angle A$$
) = 90°

We can state this theorem as follows:

In a triangle, if the square of the length of a side is equal to the sum of the squares of the lengths of the other two sides, then the angle opposite to this side is a right angle.

Corollary

In \triangle ABC, if \overline{AC} is the longest side and if $(\overline{AC})^2 \neq (\overline{AB})^2 + (\overline{BC})^2$, then m $(\angle B) \neq 90^\circ$ and the triangle is not right-angled.

Projections

- 1 The projection of a point on a straight line
- In the opposite figure :

L is a straight line, the two points

A and B are not belonging to the straight line L

Draw from A the ray $\overrightarrow{AA} \perp L$ to cut L at \overrightarrow{A}

Then draw from B the ray $\overrightarrow{BB} \perp L$ to cut L at \overrightarrow{B}

Generally

- 1 The projection of a point on a straight line is the point of intersection of the perpendicular segment from this point and the straight line.
- 2 If the point lies on the straight line, its projection on it is the same point.

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [12]

Remark

In the opposite figure:

The point \overrightarrow{A} is the projection of the point A on the straight line \overrightarrow{BC}

2 The projection of a line segment on a straight line

Generally

The projection of a line segment on a given straight line is the line segment whose two endpoints are the projections of the two endpoints of the main line segment on this straight line.

The shape	The line segment	Its projection on L	The relation
B A A L B A L	ĀB	ĀB	À B < AB
B C A L	ĀB	ÀB	À B < AB
B B A	ĀB	ĀB	A B < AB
$\begin{array}{c} B & A \\ \vdots & \vdots \\ B & A \end{array}$	ĀB	ĀB	$\overrightarrow{A} \overrightarrow{B} = AB$
A B □ □ L C	ĀB	The point C	$\hat{A}\hat{B} = zero$

From the table, we notice that:

The length of the projection of a line segment on a given straight line \leq the length of the line segment.

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [13]

3 The projection of a ray on a straight line

1 In the opposite figure :

 \overrightarrow{AB} is a given ray, L is a given straight line in the same plane. If \overrightarrow{A} is the projection of A on the straight line L, \overrightarrow{B} is the projection of B on the straight line L, then the ray \overrightarrow{AB} is the projection of the ray \overrightarrow{AB} on the straight line L

D B A

If $D \in \overrightarrow{AB}$, $D \notin \overline{AB}$ and if \overrightarrow{D} is the projection of D on the straight line L, then $\overrightarrow{D} \in \overrightarrow{AB}$, $\overrightarrow{D} \notin \overrightarrow{AB}$

i.e.

The projection of a ray on a straight line not perpendicular to it is a ray ⊂ this straight line.

2 In the opposite figure :

If $\overrightarrow{AB} \perp$ the straight line L, then the projection of \overrightarrow{AB} on the straight line L is the point C

i.e.

The projection of a ray on a straight line perpendicular to it is a point belonging to the straight line.

4 The projection of a straight line on another straight line

$oldsymbol{1}$ In the opposite figure :

The projection of \overrightarrow{AB} on the straight line L is the straight line \overrightarrow{AB} or the straight line L

i.e.

The projection of a straight line on a straight line not perpendicular to it is a straight line.

2 In the opposite figure :

If $\overrightarrow{AB} \perp$ the straight line L, then the projection of \overrightarrow{AB} on the straight line L is the point C

i.e.

The projection of a straight line on a straight line perpendicular to it is the point of intersection of the two straight lines.

Euclidean theorem

In the following, we write the summary of the relations of Pythagoras' theorem and Euclidean theorem:

$$(BC)^2 = (AB)^2 + (AC)^2$$

$$(AB)^2 = (BC)^2 - (AC)^2$$

$$(AC)^2 = (BC)^2 - (AB)^2$$

$$(BA)^2 = BD \times BC$$

$$(CA)^2 = CD \times CB$$

$$(DA)^2 = DB \times DC$$

Classifying triangles according to their angles

Remarks

- 1 To determine the type of an angle in a triangle, we compare between the square length of the side opposite to it and the sum of squares lengths of the other two sides.
- 2 The greatest angle in measure in the triangle is opposite to the longest side.
- 3 In any triangle, there are two acute angles at least.

Remark

In any triangle (right, acute or obtuse-angled triangle), we find that:

The length of any side of the triangle is greater than the difference between the lengths of the other two sides and less than the sum of their lengths.

i.e. If ABC is a triangle, then:

- BC AC < AB < BC + AC
- AB AC < BC < AB + AC
- AB BC < AC < AB + BC

(1) Complete the following:
The area of the triangle whose base length 10cm and height 6cm equals cm².
Two triangles which have the same base and their vertices opposite
to this base on a straight line parallel to the base are in area.
3) The area of the rhombus whose diagonals 12 cm, 8 cm equals cm ² .
4) The median of a triangle divide it into two triangle in the area,
5) The area of trapezium whose parallel base 6 cm, 10 cm and height 5 cm. equals
6) If two triangles have equal areas and drawn on the same base and in one side of it then
7) Surface of two parallelograms with common base and between two parallel lines
8) The median of a triangle divides its surface into
9) Area of the parallelogram equals
10) Triangles of equal bases in length and lying between two parallel lines are equal in
11) The area of the rhombus whose diagonals X cm, Y cm is
12) The area of the right angled triangle whose sides length of the
right angle are 6 cm, 8 cm equals
13) The area of the trapezium whose middle base 9 cm and height
6 cm equals

Final Revision [Rules + Questions +	Answers] Geome	try 2 nd Prep. 2 nd Term [16]
14) The measu	are of base angles	of an isosceles	trapezium are
15) The length	s of two adjacent	sides in a paralle	elogram are 9 cm,
6 cm and th	ne smallest height	is 4cm then the	length of the other
height is			-3
- A20	of trapezium who		are 5 cm, 7 cm and
17) The area o	f rhombus whose	perimeter is 20	cm and height 4 cm
=			
18) The length	of the diagonal of	f a square of are	a 50 cm² equals cm .
19) The length	of side of a squar	re whose area e	quals the area of a
rectangle w	rith dimensions 9 o	cm , 16 cm =	***
20) The length	of the middle bas	e of a trapezium	whose area = 30 cm ²
and height	5 cm equals		
(2) Choose th	ne correct answe	re-	
1) The length of	of the base of a tri	angle whose are	a 30 cm² and height
6 cm			
a) 5	b) 10	c) 15	d) 20
2) The length of	of the two adjacen	t sides in a para	llelogram are 7 cm,
5 cm and th	ne length of its sm	allest height is 4	cm then the area
of the paral	lelogram equals	cm ² .	
a) 35	b) 25	c) 28	d) 49
3) The area of	trapezium whose	middle base len	gth is 10 cm and
height 8 cm	equals cn	n².	
a) 80	b) 60	c) 40	d) 20

Final Revision [Rul	es + Questions + Ans	swers] Geometry	2 nd Prep. 2 nd Term [17]
4) The quadrilater	al whose area eq	uals half square	of its diagonal is
a) parallelogra	m b) rectangle	c) rhombus	d) square
5) The diagonals	of an isosceles tra	pezium	# 3
a) congruent		b) perpendicu	ılar
c) bisect each	other	d) parallel	
6) The area of rho	mbus whose diag	gonals length are	6 cm, 8 cm
equals			
a) 2 cm ²	b) 14 cm ²	d) 24 cm ²	d) 48 cm ²
7) The ratio between	een area of paralle	elogram and area	a of triangle if
they have a co	mmon base and i	ncluding betwee	en two parallel
lines equals	and the second		
a) 1 : 2	b) 1:3	d) 2:1	d) 2:3
8) If the area of a	square 18 cm ² the	en length of its d	liagonal is
a) 36	b) 12	c) 9	d) 6
9) If two triangles	area equal in area	a and drawn on	same base and
in one side of	t then their vertice	es lie on a straigl	ht line.
a) perpendicul	ar to this base.	b) bisect this	base
c) parallel to th	nis base	d) intersects	the base.
10) The quadrilate	eral whose area e	quals the square	of its side length is
a) parallelogra	m	b) rectangle	
c) rhombus		d) square	
11) The area of th	e rectangle whose	e dimensions 5	cm, 4 cm is
a) 9 cm ²	b) 10 cm ²	c) 20 cm ²	d) 40 cm^2

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [18]

- 12) The side length of a square whose area equals the area of a parallelogram of base length 8 cm and corresponding height 4.5cm equals......
 - a) 6 cm
- b) 13 cm
- c) 18 cm
- d) 36 cm
- 13) The median of a triangle divides its surface into two triangles
 - a) congruent

b) equals in area

c) isosceles

- d) right angles
- 14) The perimeter of the square whose area 81 cm² = cm.
 - a) 24

- b) 8
- c) 9
- d) 36
- 15) If the area of a rhombus is 24 cm² and the length of one of its diagonal is 6 cm then the length of the other diagonal is
 - a) 4 cm
- b) 8 cm
- c) 10 cm
- d) 12 cm

(3) Essay Questions:-

(1) In opposite figure:

ABCD is a rectangle, ABEO is a parallelogram,

AB = 3 cm, BC = 10 cm

Find with proof: the area of Δ AXO

(2) In the opposite figure:

AD // BC , X midpoint of BC prove that:

- (i) Area of \triangle AMB = area of \triangle DMC
- (ii) Area of shape ABXM = area of shape DCXM

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [19]

(3) The area of a trapezium is 88 cm², its height is 8 cm and the length of one of the two parallel base 10 cm, find the length of the other base.

(4) In the opposite figure:

 \overline{AD} // \overline{BC} area of Δ AXB = area of Δ DYC

Prove that: XY // AD

(5) In the opposite figure:

ABCD, AEOD area two parallelograms

$$\overrightarrow{AE} \cap \overrightarrow{DC} = \{X\}$$

Prove that

Area of Δ ABX equals area of Δ DOX

(6) Two pieces of land have equal areas, one of them has the shape of a square and the other has the shape of trapezium with two parallel bases of lengths 7 m, 11 m and height of 4m find the perimeter of the square land.

(7) In the opposite figure

If area of (ΔADC) = are of (ΔAEB)

Prove that DE // BC

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [20]

(8) In the opposite figure:

 \overline{AX} is a median in Δ ABC , $Y \in \overline{AX}$, \overline{BY} , \overline{CY} are drawn prove that area of (Δ ABY) = area of (Δ ACY)

(9) In the opposite figure:

 \overline{AD} // \overline{BC} , $\overline{AC} \cap \overline{BD} = \{M\}$ X,Y $\in \overline{BC}$ such that BX = CY Prove that:

area of shape ABXM = area of shape DCYM

(10) ABCD is a parallelogram in which $\overline{DE} \perp \overline{BC}$, $\overline{DO} \perp \overline{AB}$ if AB = 4 cm, BC = 6 cm , DE = 3 cm find the length of \overline{DO}

Part (2)

First: Complete the following:

- 1) If $\overline{AB} \perp \overline{BC}$ then the projection of \overline{AC} on \overline{BC} is
- 2) In \triangle ABC if $(AB)^2 = (BC)^2 + (AC)^2$ then m (\angle ) = 90°
- 3) The two polygons are similar to a third are
- The two triangles are similar if its corresponding angles are

 in measure.
- 5) ABC is a right angled triangle at B in which AB = 5 cm, BC = 12 cm then AC = cm.
- 6) The projection of a point which belongs to a straight line on this line is
- 7) In \triangle ABC if $(AC)^2 + (AB)^2 < (BC)^2$ then angle A is
- 8) In \triangle XYZ if $(ZX)^2 + (YZ)^2 > (XY)^2$ then angle Z is
- 9) In the opposite figure:
 - \triangle ABC is right angle triangle at B, $\overline{BD} \perp \overline{AC}$
 - a) The projection of AB on AC is

b)
$$(AB)^2 = AD \times$$

c)
$$(BD)^2 = AD \times$$

d)
$$(BC)^2 = CD \times$$

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [22]

10) In the opposite figure:

If \triangle AED ~ \triangle ABC, AD = 3 cm, AE = 4 cm,

BC = 10 cm, BD = 5 cm then

b) m (
$$\angle$$
 BAC) = m (\angle )

- 11) The area of a rectangle whose length of one of its dimensions = 12 cm, its diagonal = 13 cm equal
- 12) The triangle of side length 3 cm, 4 cm, 5 cm is angled triangle.

Second: Choose the correct answer:

1) If \triangle ABC ~ \triangle DEO, AB = $\frac{1}{4}$ DE then the perimeter of \triangle ABC equals the perimeter of \triangle DEO.

a) 4

- b) 2
- c) $\frac{1}{2}$
- d) $\frac{1}{4}$

The length of the projection of a given line segment the length of the original line segment.

- a) >
- b) >
- c) <
- d) <

3) ABC is an obtuse angle triangle at A in which AB = 5 cm, BC = 8 cm then AC = cm

- a) 5
- b) 7
- c) 8
- d) 13

Final Revision [Rule	es + Questions + Ansv	wers] Geometry 2 ^r	rd Prep. 2 nd Term [23]
4) The triangle wh	ose sides length a	are 3 cm, 4 cm, 5	cm its area = cm
a) 12	b)10	c) 8	d) 6
5) If the ratio of en	nlargement betwee	en two similar triai	ngles equals
then	the two triangles	are congruent.	
a) 1	b) 2	c) 0.5	d) 0.25
6) Δ ABC in which	$(AC)^2 = (BC)^2 - (AC)^2$	AB) ² then angle A	is
a) acute	b) right	c) obtuse	d) straight
7) The triangle wh	ose sides length a	are 5 cm, 12 cm,	13 cm its area
= cm	2	5	
a) 30	b) 32.5	c) 78	d) 144
8) ABC is obtuse	e angle triangle at	B and AB = 3 cm	, BC = 5 cm
then AC =			
a) 8 cm	b) 7 cm	c) 15 cm	d) 4 cm
9) In the two similar	ar polygons their c	corresponding and	gles are
in measure.		8	
a) equal	b) difference	c) proportional	d) alternatives
10) The perpendic	cular segment drav	wn from the right	angle of a
triangle to the I	hypotenuse divide	s it to two triangle	es.
a) obtuse angle	е	b) acute angle	
c) equal's sides	s triangle	d) similar	
11) ABC is a trian	gle in which $\overline{\rm AD}$ \perp	BC then the proje	ection of \overline{AB} on
BC is	2/10		
a) BD	b) DC	c) AC	d) \overline{AB}
12) Δ ABC in which	$(AB)^2 + (BC)^2 <$	$(AC)^2$ then $\angle B$ is	**********
a) acute	b) right	c) obtuse	d) reflex

13) The diagonal of a square whose area 50 cm² equals

- a) 10 cm
- b) 20 cm
- c) 30 cm
- d) 40 cm

14) \triangle ABC in which $(AB)^2 = (AC)^2 + (BC)^2$, m (\angle B) = 40° then

- a) 40°
- b) 50°
- c) 90°
- d) 130°

15) In the opposite figure:

If \triangle ADE \sim \triangle ABC then the length

of BC in cm equals

a) 3

b) 4

c) 6

d) 8

Third: Essay question:

(1) Determine the type of the angle B in ∆ABC in each of the following:

a)
$$AB = 7 \text{ cm}$$

,
$$AC = 8 cm$$

b)
$$AB = 5 cm$$

c)
$$AB = 6 cm$$

$$BC = 3.6 \text{ cm}$$

,
$$AC = 4.6 \text{ cm}$$

(2) In the opposite figure:

 \overline{AD} // \overline{BC} , AD = 4 cm, BC = 8 cm,

$$AE = 3 \text{ cm}, ED = 2 \text{ cm}$$

- i) Prove that Δ AED ~ Δ CEB
- ii) Find the perimeter of Δ EBC

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [25]

(3) In the opposite figure:

AB = 3 cm , BC = 4 cm ,
AD = 13 cm, CD = 12 cm
$$m (\angle B) = 90^{\circ}$$

Prove that $m (\angle ACD) = 90^{\circ}$

(4) In the opposite figure:

ABC is right angle triangle at B, D is the midpoint of \overline{AB} , $\overline{DE} \perp \overline{AC}$, AB = 8 cm, BC = 6 cm

C E

Find the length of $\overline{\mbox{DE}}$

(5) In the opposite figure:

ED = 1.8 cm, DC = 3.2 cm Find the lengths of each \overline{AC} , \overline{AD}

(6) In the opposite figure:

ABCD is quadrilateral in which

$$m (\angle ABD) = 90^{\circ}, m (\angle BCD) = 90^{\circ},$$

$$m (\angle BDC) = 30^{\circ}$$

AB = 3 cm, AD = 5 cm find \overline{BC}

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [26]

(7) In the opposite figure:

ABCD is a quadrilateral in which m (\(C \)) = 90°

AB = AD = 13 cm, BC = 6 cm, CD = 8 cm

E is midpoint of BD

Find the area of the shape ABCD

(8) In the opposite figure:

The polygon ABCD is similar to the polygon XYZN,

$$AB = 6 \text{ cm}$$
, $BC = 4 \text{ cm}$,

$$CD = 9 \text{ cm}$$
, $DA = 10 \text{ cm}$

, ZN = 3 cm find the lengths of \overline{XY} , \overline{YZ} , \overline{XN}

(9) In the opposite figure:

- i) Prove that Δ ABC is similar Δ DBE
- ii) Find the length of BC, DE

(10) In the opposite figure:

ABCD is a rectangle DE ⊥ AC

, DE intersect AC at O and intersect BC at E

If AB = 15 cm, AD = 20 cm

Find the lengths of each \overline{AO} , \overline{CE}

(11) In the opposite figure:

- i) Find the length of projection of \overline{AY} on \overline{XE}
- ii) Find the length of \overline{XO} , \overline{AO}

(12) In the opposite figure:

$$\Delta$$
 DBA ~ Δ ABC , m (\angle BAC) = 90°

Prove that: $\overline{AD} \perp \overline{BC}$

Find BD if AB = 8 cm, AC = 6 cm

(13) A piece of land has a rectangle shape whose length twice its width and its area 200 meter square is drawn by a scale 1:200 find the dimensions of this land at the drawing.

Model Answers

Part (1)

(1) Complete:

1) 30 cm²

3) 48 cm².

$$5)\frac{1}{2}(6 + 10) \times 5 = 40 \text{ cm}^2$$

- 6) Their vertices lie on a straight line parallel to this base.
- 7) one is carrying this base are equal in area.
- 8) Two triangular surface equal in area.
- 9) the length of the base X its corresponding height.

10) Area.

11) $\frac{1}{2}$ XY cm². 13) $9 \times 6 = 54 \text{ cm}^2$

12) $\frac{1}{2} \times 6 \times 8 = 24 \text{ cm}^2$

15) 6 cm.

2) equal.

4) equal.

14) equal in measure

16) the middle base = $\frac{1}{2}(5 + 7) = 6$ cm

$$H = 42 \div 6 = 7$$
 cm.

17) $b = 20 \div 4 = 5 \text{ cm}$

$$A = 5 \times 4 = 20 \text{ cm}^2$$

18) 10 cm.

19) A. of rectangle = 9 × 16 = 144 cm²

S. of square =
$$\sqrt{144}$$
 = 12cm.

20) $30 \div 5 = 6$ cm.

|--|

(2) Choose the correct answer:-

1) (b)

- 2) (c)
- 3) (a)
- 4) (d)

5) (a)

- 6) (c)
- 7) (c)
- 8) (d)

9) (c)

- 10) (d)
- 11) (c)
- 12) (d)

- 13) (b)
- 14) (d)
- 15) (b)

(3)

(1) Proof: : ABCD is a rectangle, ABEO is a parallelogram

ABCD, ABEO have common base AB

: Area of ____ ABCD = Area of ___ ABEO

: AB = 3 cm , BC = 10 cm

:. Area of ABCD = 3 × 10 = 30 cm²

: Area of / ABEO = 30 cm²

: In Δ AXO , ABEO have common base AO

, AO // BE

∴ Area of \triangle AXO = $\frac{1}{2}$ area of \bigcirc ABEO

 $\frac{1}{2}$ x 30 = 15 cm

(2) Proof: ∵ AD // BC

In Δ ACD, Δ ADB have common base AD

∴ Area of ∆ ACD = Area of ∆ ADB

(1)

subtracting A. of \triangle AMD from (1)

∴ Area of Δ DMC = Area of Δ AMB

(2)

: X midpoint of BC

: Area of Δ MXC = Area of Δ MXB

(3)

Adding (2) & (3)

.. Area of the shape DCXM = Area of the shape ABXM

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [30]

(3) Area of trapezium =
$$\frac{1}{2}$$
 (b₁ + b₂) x h

$$88 = \frac{1}{2} (10 + b_2) \times 8$$

b₂= 12 cm

In Δ ADB , Δ ADC have common base AD

$$\therefore \text{ Area of } \triangle \text{ ADB} = \text{Area of } \triangle \text{ ADC}$$
 (1)

subtracting (2) from (1)

have a common base AD

(5) · ABCD , AEOD are two parallelogram

, AD is a common base

subtracting Area of the figure AECD from (1)

: OC = EB

∵ in Δ XCO, Δ XEB have common vertex X

$$, EB = CO$$

Adding (2) & (3)

∴ Area of ∆ ABX = Area of ∆ DOX

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [31]

(6) Area of trapezium =
$$\frac{1}{2}$$
 (b₁ + b₂) x h
= $\frac{1}{2}$ (7 + 11) x 4
= 36 cm³.

Area of square = 36 cm³.

$$S = \sqrt{36} = 6 \text{ cm}.$$

Perimeter of square = 6 x 4 = 24 cm²

- (7) Proof: ∴ Area of Δ ADC = Area of Δ AEB subtracting Area of Δ ADE from both side
 - ∴ Area of Δ EDC = Area of Δ DEB
 - , ED is a common base
 - ∴ ED // BC
- (8) Proof: ∵ In ∆ ABC

X is midpoint

$$\therefore A. \text{ of } \Delta \text{ ABX} = A. \text{ of } \Delta \text{ AXC}$$
 (1)

∵ In ∆ YBC

X is midpoint

$$\therefore A. \text{ of } \Delta \text{ YBX} = A. \text{ of } \Delta \text{ YXC}$$
 (2)

subtracting (2) from (1)

$$\therefore$$
 A. of \triangle ABY = A. of \triangle ACY

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [32]

(9) Proof: :: In Δ ABD, Δ ACD

 \overline{AD} // \overline{BC} , \overline{AD} is a common base .

$$\therefore \text{ Area of } \triangle \text{ ABD} = \text{Area of } \triangle \text{ ADC}$$
 (1)

By subtracting Area of Δ AMD from both side

$$\therefore \text{ Area of } \triangle \text{ AMB} = \text{Area of } \triangle \text{ DMC}$$
 (2)

" Δ MXB , Δ MYC

M is a common vertex, XB = YC

$$\therefore \text{ Area of } \Delta \text{ MXB} = A. \text{ of } \Delta \text{ MYC}$$
 (3)

Adding (2) & (3)

.. Area of shape ABXM = Area of shape DCYM

(10) Area of parallelogram

$$= b_1 \times h_1 = 3 \times 6 = 18 \text{ cm}^2$$

$$A = b_2 \times h_2 = 4 \times h_2 = 18 \text{ cm}^2$$

$$h_2$$
 (DO) = $18 \div 4 = 4.5$ cm

Part (2)

First: Complete:

1) BC

2) (\(C)

3) similar

4) equal

5) 13 cm

6) the same point

7) obtuse

8) acute

9) a) AC

b) AC c) DC d) CA e) Δ ADB - Δ BDC

10) a) m (∠ ACB) b) m (∠ EAD) c) 5 cm d) 2 cm

11) 60 cm²

12) right

13) 36 cm, 48 cm, 64 cm

Second: Choose:

1) d

2) c

3) a

4) d

5) a

6) b 7) a 8) b

9) a

10) d

11) a 12) a 13) a

14) b 15) c

Third: Essay Question

(1) a) obtuse

b) obtuse

c) obtuse

(2) : AD // BC , AC & DB are transversals

 \therefore m (\angle D) = m (\angle B)

 $m (\angle A) = m (\angle C)$ alternate angles $\rightarrow (1)$

: DB n AC = { E }

 \therefore m (\angle DEA) = m (\angle BEC) V.O.A \rightarrow (2)

From (1) & (2)

.: Δ ADE ~ Δ CBE

 $\therefore \frac{AD}{CB} = \frac{DE}{BE} = \frac{AE}{CE} = \frac{P.\text{of } \triangle ADE}{P.\text{of } \triangle CBE}$

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [34]

$$\therefore \frac{4}{8} = \frac{2}{BE} = \frac{3}{CE} = \frac{4+2+3}{P.of \Delta CBE}$$

P. of
$$\triangle$$
 CBE = $\frac{9 \times 8}{4}$ = 18 cm

In \triangle ABC: \cdots m (\angle B) = 90° (3)

$$(AC)^2 = (AB)^2 + (BC)^2$$

(Pythagoras)

$$AC = \sqrt{(3)^2 + (4)^2} = 5 \text{ cm}$$

In A ACD

$$(AD)^2 = (13)^2 = 169$$

$$(AC)^2 = 25$$

 $(AC)^2 = 25$, $(CD)^2 = 144$

:
$$(AD)^2 = (AC)^2 + (CD)^2$$

.. m (∠ ACD) = 90° (converse of Pythagoras theory)

$$(AC)^2 = (AB)^2 + (BC)^2 = 64 + 36 = 100$$

, . D is the midpoint of AB

In AA AED, ABC

$$m (\angle AED) = m (\angle B) = 90^{\circ} (given)$$

, ∠ A is common

$$\therefore$$
 m (\angle ADE) = m (\angle ACB)

$$\therefore \frac{DE}{CB} = \frac{AD}{AC} \qquad , \quad \therefore \frac{DE}{6} = \frac{4}{10}$$

$$\therefore$$
 DE = $\frac{6 \times 4}{10}$ = 2.4 cm

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [35]

(5) In ∆ ABC :

$$: m (\angle A) = 90^{\circ} , \overline{AD} \perp \overline{CB}$$

$$\therefore$$
 (AC)² = CD × CB = 3.2 × 5 = 16 (Euclidean theorem)

$$AC = 4 cm$$

$$(AD)^2 = DB \times DC = 1.8 \times 3.2 = 5.76$$

$$AD = 2.4 \text{ cm}$$

(6) In ∆ ABD: : m (∠B) = 90°

$$\therefore$$
 (BD) = $\sqrt{(5)^2 - (3)^2}$ = 4 cm (Pythagoras theorem)

In
$$\triangle$$
 BCD: \because m (\angle C) = 90°, m (\angle CDB) = 30°

:. CB =
$$\frac{1}{2}$$
 BD = $\frac{1}{2}$ × 4 = 2 cm

(7) In ∆ BCD: : m (∠ C) = 90°

:. BD =
$$\sqrt{(BC)^2 + (CD)^2} = \sqrt{(6)^2 + (8)^2} = 10 \text{ cm}$$

In \triangle ABD: E is a midpoint of \overline{BD} , AB = AD (Pythagoras Theorem)

$$\therefore AE = \sqrt{(AB)^2 - (EB)^2} = \sqrt{(13)^2 - (5)^2} = 12 \text{ cm}$$

: The area of the quadrilateral ABCD =

Area of \triangle BCD + Area of \triangle ABD

:. Area =
$$\frac{1}{2} \times DC \times BC + \frac{1}{2} \times BD \times AE$$

= $\frac{1}{2} \times 8 \times 6 + \frac{1}{2} \times 10 \times 12 = 24 + 60 = 84 \text{ cm}^2$

(8) : Polygon ABCD ~ Polygon XYZN

$$\therefore \frac{AB}{XY} = \frac{BC}{YZ} = \frac{CD}{ZN} = \frac{AD}{XN}$$

$$\frac{6}{XY} = \frac{4}{YZ} = \frac{9}{ZN} = \frac{10}{XN}$$

$$XY = 2 \text{ cm}$$
 , $YZ = 1\frac{1}{3} \text{ cm}$, $XN = 3\frac{1}{3} \text{ cm}$

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [36]

(9) : AC // ED , AD & CE are transversals

$$\therefore$$
 m (\angle A) = m (\angle D)

$$m (\angle C) = m (\angle E)$$
 alternate angles $\rightarrow (1)$

$$\therefore \overrightarrow{AD} \cap \overrightarrow{CE} = \{B\}, \therefore m (\angle ABC) = m (\angle EBD) \lor O.A \rightarrow (2)$$

From (1) & (2)

$$\therefore \frac{AB}{DB} = \frac{BC}{BE} = \frac{CA}{ED} = \frac{3}{6} = \frac{BC}{8} = \frac{5}{ED} ,$$

BC = 4 cm, ED = 10 cm

(10) In \triangle ABC: $\because (\angle B) = 90^{\circ}$

:. AC =
$$\sqrt{(AB)^2 + (BC)^2} = \sqrt{(15)^2 + (20)^2} = 25$$
 cm (Pythagoras)

In
$$\triangle$$
 ADC: \because (\angle D) = 90°

$$\therefore AO = \frac{(20)^2}{25} = 16 \text{ cm}$$

:. DO =
$$\frac{DA \times DC}{AC} = \frac{20 \times 15}{25} = 12 \text{ cm}$$

 $:: \Delta$ DCE is right angled at C, $\overline{CO} \perp \overline{DE}$

∴
$$(CD)^2 = DO \times DE \rightarrow DE = \frac{(15)^2}{12} = 18.75 \text{ cm}$$

$$OE = 18.75 - 12 = 6.75 \text{ cm}$$

$$(CE)^2 = EO \times ED = 6.75 \times 18.75 = 126.5625 \text{ cm}^2$$

$$CE = 11.25 cm$$

Final Revision [Rules + Questions + Answers] Geometry 2nd Prep. 2nd Term [37]

(11) $: \overline{XY}$ is the projection of \overline{AY} on \overline{XE} , Δ AXY is right angled

$$(XY)^2 = (AY)^2 - (AX)^2 = 100 - 64 = 36, XY = 6 cm$$

$$\because \overline{XD} \perp \overline{AY}$$
, XO = $\frac{AX \times XY}{AY} = \frac{6 \times 8}{10} = 4.8$ cm

$$(AX)^2 = AF \times AY$$
, $AF = 6.4$ cm

(12) $\therefore \triangle$ ABC is right angled at A , \therefore BC = $\sqrt{8^2 + 6^2}$ = 10 cm

$$\therefore \overline{AD} \perp \overline{BC}$$
, $\therefore (BA)^2 = BD \times BC$, $BD = \frac{64}{10} = 6.4$ cm

(13) Let the real length be = 2x, width = x

$$A = L \times w = 2 \times x \times x = 2x^2 = 200 \text{ m} \rightarrow x = 10 \text{ cm}$$
, $2x = 20 \text{ m}$

Length in drawing =
$$\frac{2000 \times 1}{200}$$
 = 10 cm

D.L: R.L

Width in drawing =
$$\frac{1000 \times 1}{200}$$
 = 5 cm

1:200

AREAS

In the opposite figure :

ABCD is a parallelogram in which DC = 50 cm. , $E \in \overrightarrow{DC}$ where $\overrightarrow{GE} \perp \overrightarrow{DC}$, $\overrightarrow{AF} \perp \overrightarrow{BC}$, $\overrightarrow{AF} = 24$ cm. , $\overrightarrow{GE} = 30$ cm. , Find :

1 The area of the parallelogram

2 the length of \overline{AD}

SOLUTION

- 1 the area of $\angle = AB \times GE = 50 \times 30 = 1500 \text{ cm}^2$.
- 2 : the area of \square = BC × AF = 24 BC = 1500 cm².
 - \therefore BC = 1500 \div 24 = 62.5 cm.

2 In the opposite figure :

 \overrightarrow{AB} // \overrightarrow{DE} , X and Y $\in \overrightarrow{AB}$, XDEY is a rectangle and \overrightarrow{AD} // \overrightarrow{BE}

- 1 Prove that: the area of the figure ABMD = the area of the figure XYEM
- 2 Find: the area of the figure ABED
- 3 If: AD = 30 cm. Find: the length of the perpendicular from B to \overline{AD} .

SOLUTION

 $\boxed{1} : \overline{AD} / / \overline{BE}$ and $\overline{AB} / / \overline{DE}$

.. ABED is a parallelogram.

∠ ABED and
☐ XYED in which { DE is a common base , DE // AY }

- ∴ The area of

 ABED = the area of

 XYED
- Subtracting the area of △ MED from the two sides
- :. the area of the figure ABMD = the area of the figure XYEM
- 2 : The area of \square XYED = length \times width = 24 \times 12 = 288 cm²
 - \therefore The area of \square ABED = 288 cm².
- 3 The area of ∠ ABED = AD × BF
 - ∴ 30 × BF = 288

$$\therefore$$
 BF = 288 \div 30 = 9.6 cm.

In the opposite figure :

 \overline{AC} // \overline{XY} and F is the midpoint of \overline{XY} .

Prove that: the area of \triangle ABF = the area of \triangle CBF

SOLUTION

In \triangle AFX and \triangle CFY $\{FX = FY, \overline{XY} // \overline{AC} \text{ and } F \in \overline{XY} \}$

 \therefore the area of \triangle AFX = the area of \triangle CFY

∴ BF is a midpoint in Δ BXY

- ∴ the area of △ BFX = the area of △ BFY
- (2

Adding $\bigcirc{1}$ and $\bigcirc{2}$ we deduce : the area of \triangle ABF = the area of \triangle CBF

2

In the opposite figure :

ABC is a triangle with a median \overline{AD} , $E \in \overline{AD}$, draw \overline{BE} and \overline{CE}

Prove that: The area of \triangle ABE = the area of \triangle ACE

SOLUTION

- ∴ AD is a midpoint in △ ABC
- \therefore the area of \triangle ABD = the area of \triangle ACD
- (1)

- ∵ ED is a midpoint in △ EBC
- \therefore the area of \triangle EBD = the area of \triangle ECD
- 2

Subtracting 2 from 1 we deduce : the area of \triangle ABE = the area of \triangle ACE

In the opposite figure :

 \overline{AD} // \overline{BC} and $\overline{AC} \cap \overline{BD} = \{ M \}$, D is a midpoint of \overline{EC}

Prove that: The area of \triangle MDE = the area of \triangle AMB

SOLUTION

In \triangle ABC and \triangle DBC $\{\overline{CB} \text{ is a common base }, \overline{AD} // \overline{BC} \}$

:. the area of \triangle ABC = the area of \triangle DBC Subtracting the area of \triangle MCB from the two sides

 \therefore the area of \triangle AMB = the area of \triangle DMC

1

- ∵ MD is a midpoint in △ CME
- \therefore the area of \triangle EMD = the area of \triangle DMC
- (2)

From 1 and 2 we deduce: The area of \triangle MDE = the area of \triangle AMB

In the opposite figure :

ABCD is a quadrilateral, its diagonals intersect at M

, and the area of \triangle ABM = the area of \triangle DCM

Prove that : AD // BC

SOLUTION

- : the area of \triangle ABM = the area of \triangle DCM Adding the area of \triangle MCB to both sides
- : the area of \triangle ABC = the area of \triangle DBC, but they have the base BC and on the same side of it.
- :. AD // BC

In the opposite figure :

ABCD and BECD are two parallelogram , where $AC \cap BD = \{ M \}$

Prove that: the area of \triangle ABD = the area of \triangle MEC

SOLUTION

In \square ABCD and BECD $\{\overline{CD} \text{ is a common base }, \overline{CD} \text{ } / \overline{AB} \text{ }, E \in \overline{AB} \}$

: the area of \(\to \) ABCD = the area of \(\to \) BECD

In \triangle ABD and \square ABCD $\{\overline{AB} \text{ is a common base }, \overline{AB} \text{ } / \overline{CD} \}$

 \therefore the area of \triangle ABD = $\frac{1}{2}$ the area of \square ABCD

In \triangle EMC and \square BECD $\{\overline{CE} \text{ is a common base }, \overline{CE} // \overline{BD}, M \in \overline{BD}\}$

:. the area of \triangle ABD = $\frac{1}{2}$ the area of \square BECD

3

From $\bigcirc{1}$, $\bigcirc{2}$ and $\bigcirc{3}$ we deduce: the area of \triangle ABD = the area of \triangle MEC

8 In the opposite figure :

ABCD is a quadrilateral whose diagonals intersect at M , $\overline{\rm AD}$ // $\overline{\rm BC}$

X and $Y \in \overline{AD}$ such that AX = DY.

Prove that: the area of the figure ABMX = the area of the figure DCMY

SOLUTION

In \triangle ABC and \triangle DBC $\{\overline{CB} \text{ is a common base }, \overline{AD} // \overline{BC} \}$

- :. the area of \triangle ABC = the area of \triangle DBC Subtracting the area of \triangle MCB from the two sides
- \therefore the area of \triangle AMB = the area of \triangle DMC

1

In $\triangle \triangle$ AMX and DMY { DY = AX and M is a common vertex }

 \therefore the area of \triangle AMX = the area of \triangle DMY

2

Adding 1 and 2 we deduce: the area of the figure ABMX = the area of the figure DCMY

9 In the opposite figure :

 \overline{AD} // \overline{BC} , $\overline{AC} \cap \overline{BD} = \{ M \}$, E is a midpoint of \overline{BC}

Prove that: the area of the figure ABEM = the area of the figure DMEC

SOLUTION

In \triangle ABC and \triangle DBC $\{\overline{CB} \text{ is a common base }, \overline{AD} // \overline{BC} \}$

:. the area of \triangle ABC = the area of \triangle DBC Subtracting the area of \triangle MCB from the two sides

 \therefore the area of \triangle AMB = the area of \triangle DMC

(1

∴ ME is a midpoint in △ MBC

 \therefore the area of \triangle MEB = the area of \triangle MEC

(2)

Adding 1 and 2 we deduce: the area of the figure ABEM = the area of the figure DMEC

10 In the opposite figure :

ABCD is a parallelogram , $E \in \overrightarrow{CB}$, where BC = BE

Prove that: The area of \triangle EFC = the area of \square ABCD

SOLUTION

In \triangle FBC and \square ABCD : $\{\overline{CB} \text{ is a common base }, \overline{CB} \text{ } / \overline{AD} \text{ }, \overline{F} \in \overline{AD} \text{ } \}$

 \therefore The area of \triangle FBC = $\frac{1}{2}$ the area of \triangle ABCD

1

In $\triangle \triangle$ FCB and FBE { CB = BE and F is a common vertex }

∴ The area of △ FCB = the area of △ FBE

2

From \bigcirc and \bigcirc we deduce: The area of \triangle EFC = the area of \bigcirc ABCD

11 In the opposite figure :

The area of the figure ABCD = the area of the figure ABCE

Prove that: DE // AC

SOLUTION

: The area of the figure ABCD = the area of the figure ABCE

Subtracting the area of △ ABC from the two sides

- :. The area of \triangle ACD = the area of \triangle ACE, but they have the base \overline{AC} and on the same side of it.
- ∴ DE // AC

12 In the opposite figure :

AD // BC , AE \cap BD = $\{M\}$, the area of \triangle AMB = the area of \triangle EMC

Prove that: ME // DC

SOLUTION

In \triangle ABE and \triangle DBE $\{\overline{EB} \text{ is a common base }, \overline{AD} // \overline{EB} \}$

:. the area of \triangle ABE = the area of \triangle DBE Subtracting the area of \triangle MEB from the two sides

:. the area of \triangle AMB = the area of \triangle DME , but the area of \triangle AMB = the area of \triangle EMC (given)

:. the area of \triangle DME = the area of \triangle EMC , but they have the base ME and on the same side of it.

∴ ME // DC

13 In the opposite figure :

If the area of \triangle ADC = the area of \triangle AEB

Prove that: DE // BC

SOLUTION

: the area of \triangle ADC = the area of \triangle AEB

Subtracting the area of △ ADE from the two sides

 \therefore The area of \triangle DBE = the area of \triangle DCE, but they have the base ED and on the same side of it.

∴ DE // BC

14 In the opposite figure :

ABCD and ABMN are two parallelogram , $M \in CD$

Prove that : The area of \triangle EBC = $\frac{1}{2}$ the area of \square ABMN

SOLUTION

In \square ABCD and ABMN { AB is a common base , AB // CD , M , N \in CD }

∴ The area of ∠ ABCD = The area of ∠ ABMN

In \triangle EBC and \square ABCD: { CB is a common base, CB // AD, F \in AD }

The area of \triangle EBC = $\frac{1}{2}$ the area of \square ABCD

2

From \bigcirc and \bigcirc we deduce: The area of \triangle EFC = the area of \bigcirc ABCD

The area of a trapezium is 88 cm.², its height is 8 cm. and the length of one of the two parallel bases is 10 cm., Find the length of the other base.

SOLUTION

Let the length of other base = x cm.

∴ The area of the trapezium =
$$\frac{1}{2}$$
 (10 + x) × 8 ∴ 88 = 4 (10 + x) (divide by 4)

:.
$$88 = 4 (10 + x) (divide by 4)$$

$$\therefore x + 10 = 22$$

$$x = 22 - 10 = 12 \text{ cm}$$
.

ABCD is a trapezium in which: AD // BC , if BC = 2 AD = 20 cm. and its area = 180 cm^2 . Find its height.

SOLUTION

$$\therefore$$
 AD = 20 \div 2 = 10 cm.

:.
$$180 = 15 h$$
 (divide by 15)

- $h = 180 \div 15 = 12 \text{ cm}$.
- The area of a trapezium is 180 cm², its height is 9 cm. Find the lengths of its parallel bases 17 if the ratio between their lengths is 3:5.

SOLUTION

Let the length of the two bases are 3 x and 5 x

∴ The area of the trapezium =
$$\frac{1}{2}(3x+5x)\times9$$
 ∴ $180 = \frac{1}{2}(8x)\times9$

$$180 = \frac{1}{2}(8x) \times 9$$

$$\therefore$$
 180 = 36 x

$$x = 180 \div 36 = 5$$

- ... The two bases are 15 cm. and 25 cm.
- A rhombus with diagonal lengths are 12 cm. and 10 cm. and its height 8 cm. Find its perimeter.

SOLUTION

The area of the Rhombus = $\frac{1}{2}$ × first diagonal × second diagonal = $\frac{1}{2}$ × 12 × 10 = 60 cm².

Side length = Area \div height = 60 \div 8 = 7.5 cm.

The perimeter = side length \times 4 = 7.5 \times 4 = 30 cm.

Find the area of the rhombus whose perimeter is 52 cm. and the length of one of its diagonals is 10 cm.

6

SOLUTION

Side length = Perimeter $\div 4 = 52 \div 4 = 13$ cm.

By drawing the rhombus ABCD and its two diagonal intersect at M we deduce:

ALGEBRA

 \therefore \triangle AMB is a right-angled triangle at M , AM = 10 \div 2 = 5 cm.

$$\therefore$$
 (MB)² = (13)² - (5)² = 169 - 25 = 144

$$\therefore$$
 MB = 12 cm.

$$\therefore$$
 DB = 12 × 2 = 24 cm.

:. the area of the rhombus =
$$\frac{1}{2} \times BD \times AC = \frac{1}{2} \times 24 \times 10 = 120 \text{ cm}^2$$

20 A peace of land has the shape of a trapezium whose area is 4000 m², the lengths of the two parallel bases and its height of ratio 3 : 2 : 4, respectively, find the length of its middle base.

SOLUTION

Let the length of the two bases are 3 x , 2 x and its height 4 x

: The area of the trapezium =
$$\frac{1}{2}$$
 (3x+2x) × 4x : 4000 = 5x × 2x

$$\therefore 4000 = 10 \,\mathrm{x}^2$$

$$\therefore x^2 = 4000 \div 10 = 400$$

- .. The two bases are 60 cm. and 40 cm.
- :. The length of the middle base = $\frac{1}{2}$ (60 + 40) = 50 cm.

21 In the opposite figure :

ABC is a right-angled triangle at B in which: BC = 5 cm., $E \in \overline{AB}$, $D \in \overline{BC}$ Where \overline{ED} // \overline{AC} and AE = 2 cm.

Find: The area of \triangle AFC.

SOLUTION

In △ ACE

$$\therefore \overline{CB} \perp \overline{AE}$$

: its area =
$$\frac{1}{2}$$
 × AE × CB = $\frac{1}{2}$ × 2 × 5 = 5 cm²

In \triangle AEC and \triangle AFC $\{\overline{AC} \text{ is a common base }, \overline{AC} \text{ } / \overline{ED} \text{ }, F \in \overline{ED} \text{ } \}$

:. The area of \triangle DBE = the area of \triangle DCE = 5 cm²

22 In the opposite figure :

EBC is a right-angled triangle at B in which : EB = 5 cm., $D \in \overline{CB}$, $E \in \overline{AB}$ Where \overline{ED} // \overline{AC} and CD = 5 cm.

Find: The area of \triangle AFC.

SOLUTION

In △ ECD

$$\therefore \overrightarrow{EB} \perp \overrightarrow{CD} \qquad \qquad \therefore \text{ its area} = \frac{1}{2} \times CD \times EB = \frac{1}{2} \times 8 \times 5 = 20 \text{ cm}^2$$

In \triangle EFD and \triangle ECD $\{\overline{ED} \text{ is a common base }, \overline{AC} \text{ } / \overline{ED} \text{ }, F \in \overline{AC} \}$

 \therefore The area of \triangle EFD = the area of \triangle ECD = 20 cm²

UNIT 5

Similarity - converse of phythagoras' theorem and edclidean theorem.

In the opposite figure :

 $m (\angle AED) = m (\angle B)$, AD = 3 cm., AE = 4.5 cm. and BD = 6 cm.

1 Prove that : △ ADE ~ △ ACB

2 Find: the length of EC

SOLUTION

In \triangle ABE and \triangle ACB { \angle A is a common angle and m (\angle AED) = m (\angle B) }

$$\therefore \frac{AD}{AC} = \frac{DE}{CB} = \frac{AE}{AB}$$

$$\therefore \frac{3}{AC} = \frac{4.5}{9}$$

$$\therefore AC = \frac{3 \times 9}{4.5} = 6 \text{ cm}.$$

$$\therefore$$
 EC = 6 - 4.5 = 1.5 cm.

2 In the opposite figure :

 \overline{AD} // \overline{BC} , AD = 4 cm. , AE = 3 cm. , DE = 2 cm. and BC = 8 cm.

1 Prove that : △ AED ~ △ CEB

2 Find: the perimeter of △ EBC

SOLUTION

∵ AD // BC

 \therefore m (\angle A) = m (\angle C) and m (\angle D) = m (\angle B)

corresponding angles

∴ **△** AED ~ **△** CEB

$$\therefore \frac{AE}{CE} = \frac{DE}{EB} = \frac{AD}{CB}$$

$$\therefore \frac{3}{AC} = \frac{2}{EB} = \frac{4}{8}$$

:. AC =
$$\frac{3 \times 8}{4}$$
 = 6 cm. and EB = $\frac{2 \times 8}{4}$ = 4 cm.

:. the perimeter of \triangle EBC = 8 + 6 + 4 = 18 cm.

In the opposite figure :

DE // BC , AD = 4 cm. , AE = 3 cm. , BD = 2 cm. and BC = 7.5 cm.

1 Prove that : △ ADE ~ △ ABC

2 Find: the perimeter of △ ADE

SOLUTION

∵ ED // BC

 \therefore m (\angle ADE) = m (\angle B) and m (\angle AED) = m (\angle C)

corresponding angles

∴ **△** ADE ~ **△** ABC

$$\therefore \frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC}$$

$$\therefore \frac{4}{6} = \frac{DE}{7.5} = \frac{3}{AC}$$

∴ AC =
$$\frac{3 \times 6}{4}$$
 = 4.5 cm. and ED = $\frac{4 \times 7.5}{6}$ = 5 cm.

 \therefore the perimeter of \triangle ADE = 3 + 4 + 5 = 12 cm.

In the opposite figure:

The polygon ABCD \sim The polygon XYZL, AB = 6 cm.

, BC = 4 cm. , CD = 9 cm. , DA = 10 cm. and ZL = 3 cm.

Find: the perimeter of △ The polygon XYZL

SOLUTION

∴ The polygon ABCD ~ The polygon XYZL

$$\therefore \frac{6}{XY} = \frac{4}{YZ} = \frac{9}{3} = \frac{10}{XL}$$

,
$$YZ = \frac{3 \times 4}{9} = 1\frac{1}{3}$$
 cm. , $XL = \frac{10 \times 3}{9} = 3\frac{1}{3}$ cm.

:. the perimeter of \triangle The polygon XYZL = 3 + 2 + $1\frac{1}{3}$ + $1\frac{1}{3}$ = $7\frac{2}{3}$ cm.

$$\therefore XY = \frac{3 \times 6}{3 \times 6} = 2 \text{ cm}.$$

$\therefore XY = \frac{3 \times 6}{9} = 2 \text{ cm}.$

In the opposite figure:

ABCD is a quadrilateral in which AB = 8 cm., BC = 9 cm. and CD = 12 cm.

AD = 17 cm. and $BD \perp AB$

1 Find: the length of BD

2 Prove that: $m (\angle C) = 90^{\circ}$

SOLUTION

∴ The △ ABD is a right-angled triangle at B

∴ (BD)² = (AD)² - (AB)² = (17)² - (8)² = 289 - 64 = 225 ∴ BD =
$$\sqrt{225}$$
 = 15 cm.

∴ BD =
$$\sqrt{225}$$
 = 15 cm.

In △ CBD

:
$$(BD)^2 = (15)^2 = 225, (CB)^2 + (CD)^2 = (9)^2 + (12)^2 = 81 + 144 = 225$$

:
$$(BD)^2 = (CB)^2 + (CD)^2$$

In the opposite figure :

BC = 4 cm., AD = 13 cm., AB = 3 cm.

, CD = 12 cm. and m ($\angle B$) = 90 °

1 Find: the length of AC

2 Prove that: $m (\angle ACD) = 90^{\circ}$

SOLUTION

∵ The △ ABC is a right-angled triangle at B

:.
$$(AC)^2 = (AB)^2 + (BC)^2 = (4)^2 + (3)^2 = 16 + 9 = 25$$

$$\therefore AC = \sqrt{25} = 5 \text{ cm}.$$

In
$$\triangle$$
 ACD: (AD)² = (13)² = 169, (CD)² + (AC)² = (12)² + (5)² = 144 + 25 = 169

:
$$(BD)^2 = (CB)^2 + (CD)^2$$

$$\therefore$$
 m (\angle ACD) = 90°

In the opposite figure :

ABC is a right-angled triangle at A , AD \perp BC , CD = 9 cm. , CD = 16 cm.

Find: the length of AC, AD and AB

SOLUTION

∵ The △ ABC is a right-angled triangle at B, and AD ⊥ BC

:. (AC)
2
 = CD × CB = 9 × 25 = 225

, (AD)
2
 = CD × DB = 9 × 16 = 144

, (AB)
2
 = BD × CB = 16 × 25 = 400

$$\therefore$$
 AC = $\sqrt{225}$ = 15 cm.

∴ AC =
$$\sqrt{144}$$
 = 12 cm.

∴ AC =
$$\sqrt{400}$$
 = 20 cm.

In the opposite figure:

ABCD is a quadrilateral, where m (\angle BCD) = m (\angle BAD) = 90°

$$\overline{AE} \perp \overline{BD}$$
, BC = 7 cm., CD = 24 cm. and AB = 15 cm. Find:

- 1 The length of BD and AD
- 2 The length of the projection of AB on BD

SOLUTION

∵ The △ BCD is a right-angled triangle at C

:
$$(BD)^2 = (BC)^2 + (CD)^2 = (7)^2 + (24)^2 = 49 + 576 = 625$$

∴ AC = 1 625 = 25 cm.

∵ The △ ABD is a right-angled triangle at A

∴ (AD)² = (BD)² - (AB)² = (25)² - (15)² = 625 - 225 = 400 ∴ AC =
$$\sqrt{400}$$
 = 20 cm.

∵ AE ⊥ BD

:. the projection of A on BD is E

 $: B \in \overrightarrow{BD}$

- : the projection of B on BD is B
- :. the projection of AB on BD is EB

$$\therefore$$
 (AB)² = BE × BD

$$\therefore$$
 225 = 25 BE

:. BE =
$$225 \div 25 = 9 \text{ cm}$$
.

In the opposite figure :

AB \cap CD = { E }, E is the midpoint of CD, AC = 16 cm.

, AE = 20 cm. and BD = BE = 10 cm.

Find: The length of the projection of AB on CD

SOLUTION

∴ AEC is a right-angled triangle at C.

∴ (EC)² = (AE)² - (AC)² = (20)² - (16)² = 400 - 256 = 144 ∴ EC =
$$\sqrt{144}$$
 = 12 cm.

: E is the midpoint of CD

 \therefore EC = DE = 12 cm.

In \triangle BDE, BE = BD and BE \perp DE

.. F is the midpoint of DE

 $\therefore \overline{AC} \perp \overline{CD}$

∵ BF ⊥ CD

: the projection of AB on CD is FC

 \therefore DF = FE = 6 cm.

: the projection of A on CD is C

: the projection of B on CD is F

 \therefore FC = 6 + 12 = 18 cm.

In the opposite figure:

ABCD is a trapezium in which AB // \overline{DC} , $\overline{AD} \perp \overline{DC}$, $\overline{AD} = 12$ cm.

BC = 13 cm., DC = 33.8 cm., BE // DC.

1 Find: The length of CE, AB and DB

2 Find: The length of the projection of DC on AB

3 Prove that: $m (\angle DBC) = 90^{\circ}$

SOLUTION

:: AB // DC , AD \perp DC and BE // DC

 \therefore AD = EB = 12 cm. and AB = ED

∵ BEC is a right-angled triangle at E.

 \therefore (EC)² = 169 - 144 = 25

 \therefore AB = ED = 33.8 - 5 = 28.8 cm.

: ABD is a right-angled triangle at A.

 \therefore (BD)² = (28.8)² + (12)² = 973.44

∵ DA ⊥ AB

∵ CF ⊥ AB

:. the projection of DC on AB is AF

: the figure ABED is a rectangle

$$\therefore$$
 EC = $\sqrt{973.44}$ = 31.2 cm.

: the projection of D on CD is A

: the projection of C on CD is F

 \therefore AF = CD = 33.8 cm.

In \triangle CBD: (CD) 2 = (33.8) 2 = 1142.44, (BD) 2 + (BC) 2 = 973.44 + 169 = 1142.44

: $(CD)^2 = (BD)^2 + (BC)^2$

 \therefore m (\angle DBC) = 90°

\triangle ABC where AB = 5 cm., BC = 8 cm., AC = 4 cm., \triangle determine the type of the angle BAC.

SOLUTION

∴
$$(BC)^2 = (8)^2 = 64$$
, $(AB)^2 + (AC)^2 = 36 + 16 = 52$ ∴ $(BC)^2 > (AB)^2 + (AC)^2$

∴ ∠ BAC is an obtuse angle

12 determine the type of the angle C in \triangle ABC in which AB = 7 cm., BC = 3 cm., AC = 5 cm.

SOLUTION

:
$$(AB)^2 = (7)^2 = 49$$
, $(BC)^2 + (AC)^2 = 9 + 25 = 34$: $(AB)^2 > (BC)^2 + (AC)^2$

$$\therefore$$
 (AB)²>(BC)²+(AC)²

∴ ∠ BAC is an obtuse angle

13 element determine the type of \triangle ABC according to its angles if AB = 3.5 cm., BC = 2.5 cm., AC = 3 cm.

SOLUTION

- : $(AB)^2 = (3.5)^2 = 12.25$, $(BC)^2 + (AC)^2 = 6.25 + 9 = 15.25$: $(AB)^2 < (BC)^2 + (AC)^2$
- ∴ ∠ BAC is an acute-angled triangle.
- 14 \triangle ABC \sim \triangle EFD, AB = 4 cm., BC = 5 cm., AC = 6 cm., If the perimeter of \triangle EFD = 60 cm.

Find: The length of sides of \triangle EFD.

SOLUTION

The perimeter of \triangle ABC = 5 + 6 + 4 = 15 cm.

$$\therefore \frac{4}{EF} = \frac{5}{FD} = \frac{6}{ED} = \frac{15}{60}$$

$$FD = \frac{5 \times 60}{15} = 20 \text{ cm. and } ED = \frac{6 \times 60}{15} = 24 \text{ cm.}$$

$$\therefore \frac{AB}{EF} = \frac{BC}{FD} = \frac{AC}{ED} = \frac{Perimeter of \triangle ABC}{Perimeter of \triangle EFD}$$

$$\therefore EF = \frac{4 \times 60}{15} = 16 \text{ cm}.$$

15 In the opposite figure :

ABCD is a trapezium in which AB // DC , E is the midpoint of BC

And m (\angle ABC) = 90°, AB = 16 cm., AD = 25 cm. and DC = 9 cm.

$$\overline{AE} \perp \overline{ED}$$
, $\overline{EF} \perp \overline{AD}$, Find:

- 1 The area of the trapezium ABCD
- $\overline{\mathbf{2}}$ The length of $\overline{\mathbf{EF}}$

SOLUTION

Draw DX ⊥ AB

- ∴ XB // DC , DX

 ⊥ AB and CB

 ⊥ AB
- : the figure XDCB is a rectangle
- \therefore DC = XB = 9 cm. and XD = BC, AX = 16 7 = 9 cm.
- ∴ AXD is a right-angled triangle at X.

$$\therefore$$
 (XD)² = (AD)² - (AX)² = 625 - 49 = 576

- \therefore XD = BC = 24 cm.
- ∴ ABE is a right-angled triangle at B.

$$\therefore$$
 (AE)² = (AB)² + (BE)² = 256 + 144 = 400

∵ DEC is a right-angled triangle at C.

$$\therefore$$
 (DE)² = (DC)² + (CE)² = 81 + 144 = 225

$$\therefore EF = \frac{AE \times ED}{AD} = \frac{15 \times 20}{25} = 12 \text{ cm}.$$

- ∴ $XD = \sqrt{576} = 24 \text{ cm}$.
- :. the area = $\frac{1}{2}$ (16 + 9) × 24 = 300 cm²
- ∴ $AE = \sqrt{400} = 20 \text{ cm}$.
- ∴ DE = $\sqrt{225}$ = 15 cm.

In the opposite figure:

ABCD is a square of side length 12 cm. , $B \in CB$

where AB \cap DF = { E } and EB = 4 cm.

1 Prove that : △ ADE ~ △ BFE

2 Find: The length of FB

SOLUTION

$$\therefore$$
 AB = BC = 12 cm., m (\angle B) = m (\angle C) = 90 °

$$\therefore$$
 AE = 12 - 4 = 8 cm.

In $\triangle \triangle$ ADE and BFE $\{ m (\angle B) = m (\angle C) = 90^{\circ} \text{ and } m (\angle AED) = m (\angle FEB) (V.O.A) \}$

$$\therefore \frac{AD}{BF} = \frac{DE}{FE} = \frac{AE}{BE}$$

$$\therefore \frac{12}{BF} = \frac{8}{4}$$

$$\therefore BF = \frac{4 \times 12}{8} = 6 \text{ cm}.$$

In the opposite figure:

ABC is a triangle in which : $D \in AB$ and $E \in AC$ such that :

DE // BC, AD = 3 cm., AE = 2 cm., BC = 12 cm., DE = y cm.

BD = (x+1) cm. and EC = (x-1) cm.

And m (\angle ABC) = 90°, AB = 16 cm., AD = 25 cm. and DC = 9 cm.

AE \perp ED , EF \perp AD , Find : The length of AB , EC and DE

SOLUTION

AC = 2 + x - 1 = (x + 1) cm. and AB = x + 1 + 3 = (x + 4) cm.

$$\therefore$$
 m (\angle ADE) = m (\angle B) and m (\angle AED) = m (\angle C)

corresponding angles

$$\therefore \frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC}$$

$$\therefore \frac{3}{x+4} = \frac{y}{12} = \frac{2}{x+1} \qquad \therefore \frac{3}{x+4} = \frac{2}{x+1}$$

$$\therefore \frac{3}{x+4} = \frac{2}{x+1}$$

$$\therefore 3x + 3 = 2x + 8$$

$$x = 8 - 3 = 5 \text{ cm}$$
.

$$, \frac{3}{9} = \frac{y}{12}$$

$$\therefore y = \frac{3 \times 12}{9} = 4 \text{ cm}.$$

$$\therefore AC = 5 + 1 = 6 \text{ cm} \quad , AB = 5 + 4 = 9 \text{ cm}. \quad , \text{ and } DE = 4 \text{ cm}.$$

Best wishes, Mr. Abdelrahman Essam

Part (1)

6 cm equals

(1) Complete the following:
1) The area of the triangle whose base length 10cm and height 6cm
equals cm ² .
2) Two triangles which have the same base and their vertices opposite
to this base on a straight line parallel to the base are in area.
3) The area of the rhombus whose diagonals 12 cm, 8 cm equals
cm ² .
4) The median of a triangle divide it into two triangle in the area,
5) The area of trapezium whose parallel base 6 cm, 10 cm and height
5 cm. equals
6) If two triangles have equal areas and drawn on the same base
and in one side of it then
7) Surface of two parallelograms with common base and between
two parallel lines
8) The median of a triangle divides its surface into
9) Area of the parallelogram equals
10) Triangles of equal bases in length and lying between two parallel
lines are equal in
11) The area of the rhombus whose diagonals X cm, Y cm is
12) The area of the right angled triangle whose sides length of the
right angle are 6 cm, 8 cm equals

13) The area of the trapezium whose middle base 9 cm and height

a) 80

Geometry 2nd Preparatory

				
14) The measure of base angles of an isosceles trapezium are				
15) The lengths of two adjacent sides in a parallelogram are 9 cm,				
6 cm and the smallest height is 4cm then the length of the other				
height is				
16) The height of trapezium whose parallel base are 5 cm, 7 cm and				
area of 42 cm ² is				
17) The area of rhombus whose perimeter is 20 cm and height 4 cm				
=				
18) The length of the diagonal of a square of area 50 cm ² equals cn	በ			
19) The length of side of a square whose area equals the area of a				
rectangle with dimensions 9 cm , 16 cm =				
20) The length of the middle base of a trapezium whose area = 30 cm ²				
and height 5 cm equals				
(2) Choose the correct answer:-				
1) The length of the base of a triangle whose area 30 cm ² and height				
6 cm				
a) 5 b) 10 c) 15 d) 20				
2) The length of the two adjacent sides in a parallelogram are 7 cm,				
5 cm and the length of its smallest height is 4 cm then the area				
of the parallelogram equals cm ² .				
a) 35 b) 25 c) 28 d) 49				
3) The area of trapezium whose middle base length is 10 cm and				
height 8 cm equals cm ² .				

c) 40

b) 60

d) 20

4)) The quadrilateral whose area equals half square of its diagonal is					
	a) parallelogram	b) rectangle	c) rhombus	d) square		
5)	The diagonals of an isosceles trapezium					
	a) congruent		b) perpendicular			
	c) bisect each other		d) parallel			
6)	The area of rhombus whose diagonals length are 6 cm, 8 cm					
	equals					
	a) 2 cm ²	b) 14 cm ²	d) 24 cm ²	d) 48 cm ²		
7)	The ratio between area of parallelogram and area of triangle if					
they have a common base and including between two parallel						
	lines equals					
	a) 1 : 2	b) 1:3	d) 2 : 1	d) 2:3		
8)	If the area of a squ	uare 18 cm² ther	n length of its dia	gonal is		
	a) 36	b) 12	c) 9	d) 6		
9)	If two triangles are	ea equal in area	and drawn on sa	me base and		
	in one side of it th	en their vertices	lie on a straight	line.		
	a) perpendicular to this base.		b) bisect this base			
	c) parallel to this I	base	d) intersects the base.			
10) The quadrilateral	l whose area equ	uals the square o	of its side length is		
	a) parallelogram		b) rectangle			
	c) rhombus		d) square			
11) The area of the r	ectangle whose	dimensions 5 cn	n, 4 cm is		
	a) 9 cm ²	b) 10 cm ²	c) 20 cm ²	d) 40 cm ²		

- 12) The side length of a square whose area equals the area of a parallelogram of base length 8 cm and corresponding height4.5cm equals......
 - a) 6 cm
- b) 13 cm
- c) 18 cm
- d) 36 cm
- 13) The median of a triangle divides its surface into two triangles
 - a) congruent

b) equals in area

c) isosceles

- d) right angles
- 14) The perimeter of the square whose area 81 cm 2 = cm.
 - a) 24

- b) 8
- c) 9
- d) 36
- 15) If the area of a rhombus is 24 cm² and the length of one of its diagonal is 6 cm then the length of the other diagonal is
 - a) 4 cm
- b) 8 cm
- c) 10 cm
- d) 12 cm

(3) Essay Questions:-

(1) In opposite figure:

ABCD is a rectangle, ABEO is a parallelogram,

AB = 3 cm, BC = 10 cm

Find with proof: the area of Δ AXO

(2) In the opposite figure:

 \overline{AD} // \overline{BC} , X midpoint of \overline{BC} prove that:

- (i) Area of \triangle AMB = area of \triangle DMC
- (ii) Area of shape ABXM = area of shape DCXM

(3) The area of a trapezium is 88 cm², its height is 8 cm and the length of one of the two parallel base 10 cm, find the length of the other base.

(4) In the opposite figure:

 \overline{AD} // \overline{BC} area of Δ AXB = area of Δ DYC

Prove that: $\overline{XY} /\!/ \overline{AD}$

(5) In the opposite figure:

ABCD, AEOD area two parallelograms

$$\overrightarrow{AE} \cap \overrightarrow{DC} = \{X\}$$

Prove that

Area of \triangle ABX equals area of \triangle DOX

(6) Two pieces of land have equal areas, one of them has the shape of a square and the other has the shape of trapezium with two parallel bases of lengths 7 m, 11 m and height of 4m find the perimeter of the square land.

(7) In the opposite figure

If area of $(\triangle ADC)$ = are of $(\triangle AEB)$

Prove that $\overline{\rm DE}$ // $\overline{\rm BC}$

(8) In the opposite figure:

 \overline{AX} is a median in Δ ABC , $\overline{Y} \in \overline{AX}$, \overline{BY} , \overline{CY} are drawn prove that area of (Δ ABY) = area of (Δ ACY)

(9) In the opposite figure:

 \overline{AD} // \overline{BC} , $\overline{AC} \cap \overline{BD} = \{M\}$ X,Y $\in \overline{BC}$ such that BX = CY Prove that:

area of shape ABXM = area of shape DCYM

(10) ABCD is a parallelogram in which $\overline{DE} \perp \overline{BC}$, $\overline{DO} \perp \overline{AB}$ if AB = 4 cm, BC = 6 cm , DE = 3 cm find the length of \overline{DO}

Part (2)

First: Complete the following:

- 1) If $\overline{AB} \perp \overline{BC}$ then the projection of \overline{AC} on \overline{BC} is
- 2) In \triangle ABC if $(AB)^2 = (BC)^2 + (AC)^2$ then m (\angle ) = 90°
- 3) The two polygons are similar to a third are
- 4) The two triangles are similar if its corresponding angles are in measure.
- 5) ABC is a right angled triangle at B in which AB = 5 cm, BC = 12 cm then AC = cm.
- 6) The projection of a point which belongs to a straight line on this line is
- 7) In \triangle ABC if $(AC)^2 + (AB)^2 < (BC)^2$ then angle A is
- 8) In \triangle XYZ if $(ZX)^2 + (YZ)^2 > (XY)^2$ then angle Z is
- 9) In the opposite figure:
 - Δ ABC is right angle triangle at B, $\overline{BD} \perp \overline{AC}$
 - a) The projection of \overline{AB} on \overleftrightarrow{AC} is
 - b) $(AB)^2 = AD \times$
 - c) $(BD)^2 = AD \times$
 - d) $(BC)^2 = CD \times$
 - e) \triangle ABC ~ \triangle ~ \triangle

10) In the opposite figure:

If \triangle AED ~ \triangle ABC, AD = 3 cm, AE = 4 cm,

BC = 10 cm, BD = 5 cm then

b) m (
$$\angle$$
 BAC) = m (\angle )

- c) DE = cm
- d) ED = cm

- 11) The area of a rectangle whose length of one of its dimensions = 12 cm, its diagonal = 13 cm equal
- 12) The triangle of side length 3 cm, 4 cm, 5 cm is angled triangle.

Second: Choose the correct answer:

- 1) If \triangle ABC \sim \triangle DEO, AB = $\frac{1}{4}$ DE then the perimeter of \triangle ABC equals the perimeter of \triangle DEO.
 - a) 4

- b) 2
- c) $\frac{1}{2}$
- d) $\frac{1}{4}$
- 2) The length of the projection of a given line segment the length of the original line segment.
 - a) <u>></u>
- b) >
- c) <
- d) <
- 3) ABC is an obtuse angle triangle at A in which AB = 5 cm, BC = 8 cm then AC = cm
 - a) 5
- b) 7
- c) 8
- d) 13

4) 1	The triangle whos	e sides length ar	e 3 cm, 4 cm, 5	cm its area = cm ²	
	a) 12	b)10	c) 8	d) 6	
5) l	f the ratio of enlar	gement betweer	n two similar triar	ngles equals	
	then th	e two triangles a	re congruent.		
	a) 1	b) 2	c) 0.5	d) 0.25	
6)	ABC in which (A	$(AC)^2 = (BC)^2 - (AB)^2$	B) ² then angle A	is	
	a) acute	b) right	c) obtuse	d) straight	
7) 1	The triangle whos	e sides length ar	e 5 cm, 12 cm, 1	13 cm its area	
:	= cm ²				
	a) 30	b) 32.5	c) 78	d) 144	
8) /	ABC is obtuse a	ingle triangle at E	3 and AB = 3 cm	, BC = 5 cm	
•	then AC =				
	a) 8 cm	b) 7 cm	c) 15 cm	d) 4 cm	
9) I	n the two similar _l	polygons their co	orresponding and	les are	
İ	in measure.				
;	a) equal	b) difference	c) proportional	d) alternatives	
10)	The perpendicula	ar segment draw	n from the right a	angle of a	
•	triangle to the hyp	ootenuse divides	it to two triangle	S.	
;	a) obtuse angle		b) acute angle		
(c) equal's sides tr	riangle	d) similar		
11)	ABC is a triangle	in which $\overline{\mathrm{AD}} \perp$	$\overline{ m BC}$ then the proje	ection of $\overline{\mathrm{AB}}$ on	
•	BC is				
	a) BD	b) $\overline{\mathrm{DC}}$	c) AC	d) \overline{AB}	
12)	Δ ABC in which ($(AB)^2 + (BC)^2 < (AB)^2$	$(AC)^2$ then $\angle B$ is		
	a) acute	b) right	c) obtuse	d) reflex	

- 13) The diagonal of a square whose area 50 cm² equals
 - a) 10 cm
- b) 20 cm
- c) 30 cm
- d) 40 cm
- 14) \triangle ABC in which $(AB)^2 = (AC)^2 + (BC)^2$, m (\angle B) = 40° then

$$m (\angle A) =$$

- a) 40°
- b) 50°
- c) 90°
- d) 130°

15) In the opposite figure:

If Δ ADE ~ Δ ABC then the length

of \overline{BC} in cm equals

a) 3

b) 4

c) 6

d) 8

Third: Essay question:

(1) Determine the type of the angle B in ∆ABC in each of the following:

a)
$$AB = 7 \text{ cm}$$

$$BC = 12 \text{ cm}$$

$$AC = 8 \text{ cm}$$

b)
$$AB = 5 \text{ cm}$$

$$BC = 8 \text{ cm}$$

$$AC = 11 \text{ cm}$$

c)
$$AB = 6 cm$$

$$BC = 3.6 \text{ cm}$$

$$AC = 4.6 \text{ cm}$$

(2) In the opposite figure:

$$\overline{AD}$$
 // \overline{BC} , AD = 4 cm, BC = 8 cm ,

$$AE = 3 \text{ cm}, ED = 2 \text{ cm}$$

- i) Prove that \triangle AED \sim \triangle CEB
- ii) Find the perimeter of Δ EBC

(3) In the opposite figure:

AB = 3 cm , BC = 4 cm ,
AD = 13 cm, CD = 12 cm
m (
$$\angle$$
 B) = 90°
Prove that m (\angle ACD) = 90°

(4) In the opposite figure:

ABC is right angle triangle at B, D is the midpoint of \overline{AB} , $\overline{DE} \perp \overline{AC}$, AB = 8 cm, BC = 6 cm Find the length of \overline{DE}

(5) In the opposite figure:

ED = 1.8 cm, DC = 3.2 cm Find the lengths of each \overline{AC} , \overline{AD}

(6) In the opposite figure:

ABCD is quadrilateral in which

$$m (\angle ABD) = 90^{\circ}, m (\angle BCD) = 90^{\circ},$$

m (
$$\angle$$
 BDC) = 30°,

AB = 3 cm, AD = 5 cm find \overline{BC}

(7) In the opposite figure:

ABCD is a quadrilateral in which m (\angle C) = 90°

$$AB = AD = 13$$
 cm, $BC = 6$ cm, $CD = 8$ cm

E is midpoint of \overline{BD}

Find the area of the shape ABCD

(8) In the opposite figure:

The polygon ABCD is similar to the polygon XYZN,

$$AB = 6 \text{ cm}$$
, $BC = 4 \text{ cm}$,

$$CD = 9 \text{ cm}$$
, $DA = 10 \text{ cm}$

, ZN = 3 cm find the lengths of \overline{XY} , \overline{YZ} , \overline{XN}

(9) In the opposite figure:

- i) Prove that Δ ABC is similar Δ DBE
- ii) Find the length of \overline{BC} , \overline{DE}

(10) In the opposite figure:

ABCD is a rectangle $\overline{DE} \perp \overline{AC}$

, DE intersect AC at O and intersect BC at E

If AB = 15 cm, AD = 20 cm

Find the lengths of each \overline{AO} , \overline{CE}

(11) In the opposite figure:

- i) Find the length of projection of \overline{AY} on \overleftrightarrow{XE}
- ii) Find the length of \overline{XO} , \overline{AO}

(12) In the opposite figure:

 Δ DBA ~ Δ ABC , m (\angle BAC) = 90°

Prove that: $\overline{AD} \perp \overline{BC}$

Find BD if AB = 8 cm, AC = 6 cm

(13) A piece of land has a rectangle shape whose length twice its width and its area 200 meter square is drawn by a scale 1:200 find the dimensions of this land at the drawing.

Model Answers Part (1)

(1) Complete:

1) 30 cm²

2) equal.

3) 48 cm².

4) equal.

5)
$$\frac{1}{2}$$
 (6 + 10) × 5 = 40 cm²

6) Their vertices lie on a straight line parallel to this base.

7) one is carrying this base are equal in area.

8) Two triangular surface equal in area.

9) the length of the base X its corresponding height.

10) Area.

11) $\frac{1}{2}$ XY cm².

12)
$$\frac{1}{2}$$
 × 6 × 8 = 24 cm²

13) $9 \times 6 = 54 \text{ cm}^2$

14) equal in measure

15) 6 cm.

16) the middle base = $\frac{1}{2}$ (5 + 7) = 6 cm H = 42 ÷ 6 = 7 cm.

17)
$$b = 20 \div 4 = 5 \text{ cm}$$

 $A = 5 \times 4 = 20 \text{ cm}^2$

18) 10 cm.

19) A. of rectangle = $9 \times 16 = 144 \text{ cm}^2$ S. of square = $\sqrt{144} = 12 \text{cm}$.

20) $30 \div 5 = 6$ cm.

(2) Choose the correct answer:-

- 1) (b)
- 2) (c)
- 3) (a)
- 4) (d)

- 5) (a)
- 6) (c)
- 7) (c)
- 8) (d)

- 9) (c)
- 10) (d)
- 11) (c)
- 12) (d)

- 13) (b)
- 14) (d)
- 15) (b)

<u>(3)</u>

(1) Proof: : ABCD is a rectangle, ABEO is a parallelogram

	ABCD,	ABEO have	common	base	\overline{AB}
	, , , , , , , , , , , , , , , , , , ,	 / IDEO Havo		Daoo	IID

∴ Area of ABCD = Area of ABEO

: AB = 3 cm , BC = 10 cm

 \therefore Area of ABCD = 3 × 10 = 30 cm²

 \therefore Area of ABEO = 30 cm²

 \because In Δ AXO , $\hfill \square$ ABEO have common base $\overline{A0}$

, AO // BE

∴ Area of \triangle AXO = $\frac{1}{2}$ area of \triangle ABEO

$$=\frac{1}{2} \times 30 = 15 \text{ cm}$$

(2) Proof: ∵ AD // BC

In \triangle ACD, \triangle ADB have common base \overline{AD}

 \therefore Area of \triangle ACD = Area of \triangle ADB

(1)

subtracting A. of \triangle AMD from (1)

: Area of Δ DMC = Area of Δ AMB

(2)

∵ X midpoint of BC

∴ Area of Δ MXC = Area of Δ MXB

(3)

Adding (2) & (3)

∴ Area of the shape DCXM = Area of the shape ABXM

(3) Area of trapezium =
$$\frac{1}{2}$$
 (b₁ + b₂) x h

$$88 = \frac{1}{2} (10 + b_2) \times 8$$

$$b_2 = 12 \text{ cm}$$

In \triangle ADB , \triangle ADC have common base \overline{AD}

$$\therefore$$
 Area of \triangle ADB = Area of \triangle ADC

(1)

(2)

subtracting (2) from (1)

$$\therefore$$
 Area of \triangle ADX = Area of \triangle AYD

(3)

have a common base $\overline{\mathrm{AD}}$

$$\therefore \overline{XY} // \overline{AD}$$

(5) : ABCD, AEOD are two parallelogram

, $\overline{\text{AD}}$ is a common base

(1)

subtracting Area of the figure AECD from (1)

(2)

 \because in \triangle XCO , \triangle XEB have common vertex X

$$, EB = CO$$

(3)

Adding (2) & (3)

 \therefore Area of \triangle ABX = Area of \triangle DOX

(6) Area of trapezium =
$$\frac{1}{2}$$
 (b₁ + b₂) x h
= $\frac{1}{2}$ (7 + 11) x 4
= 36 cm³.

Area of square = 36 cm^3 .

$$S = \sqrt{36} = 6 \text{ cm}.$$

Perimeter of square = $6 \times 4 = 24 \text{ cm}^2$

- (7) Proof: · Area of Δ ADC = Area of Δ AEB subtracting Area of Δ ADE from both side
 - \therefore Area of \triangle EDC = Area of \triangle DEB
 - , $\overline{\mathrm{ED}}$ is a common base
 - $\therefore \overline{BD} // \overline{BC}$
- (8) Proof: ∵ In ∆ ABC

X is midpoint

$$\therefore$$
 A. of \triangle ABX = A. of \triangle AXC (1)

∵ In ∆ YBC

X is midpoint

$$∴ A. of Δ YBX = A. of Δ YXC$$
 (2) subtracting (2) from (1)

$$\therefore$$
 A. of \triangle ABY = A. of \triangle ACY

(9) Proof: ∵ In ∆ ABD, ∆ ACD

 \overline{AD} // \overline{BC} , \overline{AD} is a common base .

$$\therefore \text{ Area of } \triangle \text{ ABD} = \text{Area of } \triangle \text{ ADC}$$
 (1)

By subtracting Area of Δ AMD from both side

$$\therefore \text{ Area of } \Delta \text{ AMB} = \text{Area of } \Delta \text{ DMC}$$
 (2)

.: Δ MXB, Δ MYC

M is a common vertex, XB = YC

$$\therefore \text{ Area of } \Delta \text{ MXB} = \text{A. of } \Delta \text{ MYC}$$
 (3)

Adding (2) & (3)

∴ Area of shape ABXM = Area of shape DCYM

(10) Area of parallelogram

$$= b_1 \times h_1 = 3 \times 6 = 18 \text{ cm}^2$$

$$A = b_2 \times h_2 = 4 \times h_2 = 18 \text{ cm}^2$$

$$h_2$$
 (DO) = $18 \div 4 = 4.5$ cm

Part (2)

First: Complete:

1) BC

- 2) (∠ C)
- 3) similar

4) equal

- 5) 13 cm
- 6) the same point

7) obtuse

8) acute

- 9) a) \overline{AC}
- b) AC c) DC

- d) $\overline{\text{CA}}$ e) Δ ADB Δ BDC
- 10) a) m (\angle ACB) b) m (\angle EAD) c) 5 cm d) 2 cm

- 11) 60 cm²
- 12) right
- 13) 36 cm , 48 cm , 64 cm

Second: Choose:

- 1) d
- 2) c
- 3) a 4) d
- 5) a

- 6) b

- 7) a 8) b 9) a 10) d
- 11) a
- 12) a 13) a
- 14) b 15) c

Third: Essay Question

- (1) a) obtuse
- b) obtuse
- c) obtuse
- (2) $\overline{AD} // \overline{BC}$, $\overline{AC} \& \overline{DB}$ are transversals
 - \therefore m (\angle D) = m (\angle B)
 - $m (\angle A) = m (\angle C)$ alternate angles $\rightarrow (1)$
 - $\therefore \overrightarrow{DB} \cap \overrightarrow{AC} = \{ E \}$
 - \therefore m (\angle DEA) = m (\angle BEC) V.O.A \rightarrow (2)

From (1) & (2)

- ∴ △ ADE ~ △ CBE
- $\therefore \frac{AD}{CB} = \frac{DE}{BE} = \frac{AE}{CE} = \frac{P.\text{of } \triangle ADE}{P.\text{of } \triangle CBE}$

^{1d} Preparatory

$$\therefore \frac{4}{8} = \frac{2}{BE} = \frac{3}{CE} = \frac{4+2+3}{P.\text{of } \Delta \text{ CBE}}$$

P. of
$$\triangle$$
 CBE = $\frac{9 \times 8}{4}$ = 18 cm

(3) In
$$\triangle$$
 ABC: : m (\angle B) = 90°

$$(AC)^2 = (AB)^2 + (BC)^2$$
 (Pythagoras)

$$AC = \sqrt{(3)^2 + (4)^2} = 5 \text{ cm}$$

In A ACD

$$(AD)^2 = (13)^2 = 169$$

$$(AC)^2 = 25$$

$$(AC)^2 = 25$$
 , $(CD)^2 = 144$

:
$$(AD)^2 = (AC)^2 + (CD)^2$$

$$\therefore$$
 m (\angle ACD) = 90° (converse of Pythagoras theory)

(4) In
$$\triangle$$
 ABC: \because (\angle B) = 90°

$$(AC)^2 = (AB)^2 + (BC)^2 = 64 + 36 = 100$$

, : D is the midpoint of \overline{AB}

In AA AED, ABC

$$m (\angle AED) = m (\angle B) = 90^{\circ} (given)$$

, \angle A is common

$$\therefore$$
 m (\angle ADE) = m (\angle ACB)

$$\therefore \frac{DE}{CB} = \frac{AD}{AC} \qquad , \quad \therefore \frac{DE}{6} = \frac{4}{10}$$

∴ DE =
$$\frac{6 \times 4}{10}$$
 = 2.4 cm

(5) In ∆ ABC:

$$\because m \ (\angle A) = 90^{\circ} \ , \ \overline{AD} \perp \overline{CB}$$

$$\therefore$$
 (AC)² = CD × CB = 3.2 × 5 = 16 (Euclidean theorem)

$$AC = 4 cm$$

$$(AD)^2 = DB \times DC = 1.8 \times 3.2 = 5.76$$

$$AD = 2.4 \text{ cm}$$

(6) In
$$\triangle$$
 ABD: : m (\angle B) = 90°

$$\therefore$$
 (BD) = $\sqrt{(5)^2 - (3)^2}$ = 4 cm (Pythagoras theorem)

In
$$\triangle$$
 BCD: \because m (\angle C) = 90°, m (\angle CDB) = 30°

$$\therefore$$
 CB = $\frac{1}{2}$ BD = $\frac{1}{2}$ × 4 = 2 cm

(7) In
$$\triangle$$
 BCD: : m (\angle C) = 90°

∴ BD =
$$\sqrt{(BC)^2 + (CD)^2} = \sqrt{(6)^2 + (8)^2} = 10$$
 cm (Pythagoras Theorem)

In \triangle ABD: E is a midpoint of \overline{BD} , AB = AD

$$\therefore$$
 AE \perp BD , EB = 5 cm

$$\therefore$$
 AE = $\sqrt{(AB)^2 - (EB)^2} = \sqrt{(13)^2 - (5)^2} = 12 \text{ cm}$

: The area of the quadrilateral ABCD =

Area of \triangle BCD + Area of \triangle ABD

∴ Area =
$$\frac{1}{2}$$
 × DC × BC + $\frac{1}{2}$ × BD × AE
= $\frac{1}{2}$ × 8 × 6 + $\frac{1}{2}$ × 10 × 12 = 24 + 60 = 84 cm²

$$\therefore \frac{AB}{XY} = \frac{BC}{YZ} = \frac{CD}{ZN} = \frac{AD}{XN}$$

$$\frac{6}{XY} = \frac{4}{YZ} = \frac{9}{ZN} = \frac{10}{XN}$$

$$XY = 2 \text{ cm}$$
 , $YZ = 1 \frac{1}{3} \text{ cm}$, $XN = 3 \frac{1}{3} \text{ cm}$

- (9) ∵ AC // ED , AD & CE are transversals
 - \therefore m (\angle A) = m (\angle D)

$$m (\angle C) = m (\angle E)$$
 alternate angles $\rightarrow (1)$

$$: \overrightarrow{AD} \cap \overrightarrow{CE} = \{ B \}, : m (\angle ABC) = m (\angle EBD) \ V.O.A \rightarrow (2)$$

From (1) & (2)

$$\therefore \frac{AB}{DB} = \frac{BC}{BE} = \frac{CA}{ED} = \frac{3}{6} = \frac{BC}{8} = \frac{5}{ED} ,$$

BC = 4 cm, ED = 10 cm

(10) In \triangle ABC: $\because (\angle B) = 90^{\circ}$

:. AC =
$$\sqrt{(AB)^2 + (BC)^2}$$
 = $\sqrt{(15)^2 + (20)^2}$ = 25 cm (Pythagoras)

In
$$\triangle$$
 ADC: \because (\angle D) = 90°

$$\therefore$$
 (DA)² = AO × AC (Euclidean Theorem)

$$\therefore AO = \frac{(20)^2}{25} = 16 \text{ cm}$$

:. DO =
$$\frac{DA \times DC}{AC} = \frac{20 \times 15}{25} = 12 \text{ cm}$$

 $\because \Delta$ DCE is right angled at C , $\overline{CO} \perp \overline{DE}$

∴
$$(CD)^2 = DO \times DE \rightarrow DE = \frac{(15)^2}{12} = 18.75 \text{ cm}$$

$$OE = 18.75 - 12 = 6.75 \text{ cm}$$

$$(CE)^2 = EO \times ED = 6.75 \times 18.75 = 126.5625 \text{ cm}^2$$

$$CE = 11.25 cm$$

(11) $\because \overline{XY}$ is the projection of \overline{AY} on \overline{XE} , \triangle AXY is right angled

$$(XY)^2 = (AY)^2 - (AX)^2 = 100 - 64 = 36, XY = 6 \text{ cm}$$

$$\because \overline{\text{XD}} \perp \overline{\text{AY}}$$
, $\text{XO} = \frac{AX \times XY}{AY} = \frac{6 \times 8}{10} = 4.8 \text{ cm}$

$$(AX)^2 = AF \times AY$$
, $AF = 6.4$ cm

(12) : \triangle ABC is right angled at A , \triangle BC = $\sqrt{8^2 + 6^2}$ = 10 cm

$$\therefore \triangle$$
 DBA ~ \triangle ABC , \therefore m (\angle BDA) = m (\angle BAC) = 90°

$$\therefore \overline{AD} \perp \overline{BC}$$
, $\therefore (BA)^2 = BD \times BC$, $BD = \frac{64}{10} = 6.4$ cm

(13) Let the real length be = 2x, width = x

$$A = L \times w = 2 \times x \times x = 2x^2 = 200 \text{ m} \rightarrow x = 10 \text{ cm}$$
, $2x = 20 \text{ m}$

Length in drawing =
$$\frac{2000 \times 1}{200}$$
 = 10 cm D.L : R.L

Width in drawing =
$$\frac{1000 \times 1}{200}$$
 = 5 cm 1 : 200