Notes on NEWUOA

Zaikun Zhang *

June 9, 2021 3:29pm

Algorithm 0.1Algorithm 0.1

Input $\Delta_0 \in (0, +\infty)$, $m \in \{n+2, n+3, \dots, (n+1)(n+2)/2\}$, and $\mathcal{X}_0 \subset \mathbb{R}^n$ with $x_0 \in \mathcal{X}_0$ and $|\mathcal{X}_0| = m$. Set $Q_{-1} = 0$ and k = 0.

Pick $Q_k \in \{Q \in \mathcal{Q} : Q(x) = f(x) \text{ for all } x \in \mathcal{X}_k\}$. Define $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$. Calculate

$$x_k^+ \approx \operatorname{argmin}\{Q_k(x) : \|x - x_k\| \le \Delta_k\},\tag{0.1) ?eq:?}$$

If $||x_k^+ - x_k|| \le \alpha \Delta_k$, then set $\Delta_{k+1} = \theta \Delta_k$. Otherwise, calculate

$$x_k^- \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k, x_k^+, x) : x \in \mathcal{X}_k\},$$
 (0.2) eq:?

$$\rho_k = [f(x_k) - f(x_k^+)]/[Q_k(x_k) - Q_k(x_k^+)], \tag{0.3} ?eq:?$$

update Δ_k to Δ_{k+1} according to ρ_k , and set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$ if $\rho_k > 0$ or $\kappa(\mathcal{X}_k, x_k^+, x_k^-) < \kappa_0$.

if $||x_k^+ - x_k|| \le \theta \Delta_k$ or then

$$y_k^- = \operatorname{argmax}\{\|y - x_k\| : y \in \mathcal{X}_k\},$$
 (0.4) ? eq:?

$$y_k^+ \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k, y, y_k^-) : ||y - x_k|| \le \Delta_k\}$$
 (0.5) ?eq:?

$$\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{y_k^+\} \setminus \{y_k^-\}. \tag{0.6}$$
?eq:?

end if

How to terminate? Is $\|\nabla Q_k(x_k)\| \leq \eta \Delta_k$ attainable? What about $\|\nabla Q_k(x_k)\| \leq \epsilon$? What about $\|x_k^+ - x_k\| \leq \eta \Delta_k$?

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk