Data Science Ethics

Peter.Flach@bristol.ac.uk

Peter A. Flach www.cs.bris.ac.uk/~flach/

Department of Computer Science

Intelligent Systems Laboratory

University of Bristol

Can computers be racist?

http://www.fordfoundation.org/ideas/equals-change-blog/posts/can-computers-be-racist-big-data-inequality-and-discrimination/

What is ethics?

- What actions are right or wrong in particular circumstances?
- Philosophers have proposed different ways to formalise this; here we will take a practical, utilitarian view:

Ethical behaviour puts benefits to group or society above benefits to individual

- ▶ E.g. queuing at supermarket, letting car in side road pull out before you
- Based on shared values within the group or society
- "What one SHOULD do" rather than "what one CAN do" (legally)
 - Laws often follow ethics but not all ethics is regulated by law
- ▶ Slides in large part inspired by the edX course DS101x Data Science Ethics
 - https://courses.edx.org/courses/course-v1:MichiganX+DS101x+1T2017/course/

Data science and ethics: some key topics

- ▶ Human subjects research and informed consent
- Data ownership
- Privacy and anonymity
- Data validity, managing change
- Algorithmic fairness

Informed consent

- For consent to be valid it must be informed consent. For this to be the case it must be:
 - Given voluntarily (with no coercion or deceit)
 - Given by an individual who has capacity
 - Given by an individual who has been fully informed about the issue.
- http://ministryofethics.co.uk/?p=6#

- ▶ At UK universities this is overseen by Research Ethics Committees
 - http://www.bristol.ac.uk/red/research-governance/ethics/uni-ethics/

Informed consent: exceptions

- Not legally required in case of ordinary conduct of business
 - e.g. A/B testing by web companies
 - happens all the time!
 - e.g. 2012 Facebook/Cornell experiment
 - http://www.pnas.org/content/111/24/8788.full
 - https://www.theguardian.com/technology/2014/jun/30/facebook-emotion-study-breached-ethical-guidelines-researchers-say
 - e.g. OKCupid "We experiment on human beings"
 - https://theblog.okcupid.com/we-experiment-on-human-beings-5dd9fe28ocd5
 - https://www.theguardian.com/technology/2014/jul/29/okcupid-experiment-human-beings-dating

Informed consent: limitations

- Consent may be given for one particular use of the data, but doesn't automatically extend to retrospective analysis or repurposing
 - hence there is a difference between recording and use
 - e.g. most people are used to CCTV in shops, but there is a shared expectation that recorded video will not be published.
 - e.g. mobile phone companies need to track you in order to provide their service, but there is a shared expectation that your whereabouts won't be used or shared.
 - Often these limitations are voluntary and non-contractual, but there is a considerable grey area and lack of societal consensus (e.g. government surveillance).

▶ Is consent informed if it is hidden in many pages of dense legalese?

Data ownership: one view

- ▶ The writer of a biography owns it, not the subject.
- Wikipedia owns the encyclopaedia, not the contributors.
- TripAdvisor owns the reviews, not the contributors.
- The collector of personal data owns it, not the subject.

Data ownership: the EU view

- ▶ The **general data protection regulation** will apply from 25 May 2018. It lists the rights of the **data subject**, that is the individual whose personal data is being processed. These strengthened rights give individuals more control over their personal data, including through:
 - the need for the individual's clear consent to the processing of personal data
 - easier access by the subject to his or her personal data
 - the rights to rectification, to erasure and 'to be forgotten'
 - the right to object, including to the use of personal data for the purposes of 'profiling'
 - the right to data portability from one service provider to another
- It also lays down the obligation for **controllers** (those who are responsible for the processing of data) to provide transparent and easily accessible information to data subjects on the processing of their data.
- http://www.consilium.europa.eu/en/policies/data-protection-reform/data-protection-regulation/

Privacy

- Privacy is a basic human need, unrelated to whether you have anything to hide or not. Nevertheless, it is hard to define ("the right to be left alone").
- In general, privacy has individual and societal benefits (e.g. voting).
- Privacy is sometimes related to non-disclosure, but more often about being able to control disclosure.
- A distinction is often made between data (the actual phone call) and metadata (the number you called, where you and they were at the time, duration of the call, etc.).
 - But metadata can reveal a lot!
 - e.g. car insurers tracking driver behaviour
 - Similarly, disaggregated data can reveal a lot!
 - e.g. 'smart' water, electricity and gas meters can reveal who is at home and what they are doing

From trust to design

- Traditional social norms dealt with privacy by trust
- Modern data systems must deal with privacy by design
 - data sharing must be contractual
 - many stakeholders with different interests, but no societal consensus yet

- Absolute anonymity is probably impossible, but at least we can avoid casual identification by properly de-identifying the data.
 - "You have zero privacy anyway. Get over it." (Scott McNealy, Sun CEO, 1999)

Data validity

- ▶ Bad data and bad models can lead to bad (possibly harmful) decisions
- Many possible sources of error
 - choice of representative sample
 - e.g. are Twitter users representative of the population? Are tweets representative of Twitter users?
 - may need to rebalance important attributes (e.g. gender, race)
 - drift means that data that once was representative may no longer be
 - errors in the data
 - e.g. 26% of consumers had at least one error in their credit report; 29% of consumers had credit scores that differ by at least fifty points between credit bureaus.
 - "In the Heisenberg-meets-Kafka world of credit scoring, merely trying to figure out possible effects on one's score can reduce it." (Frank Pasquale, The Black Box Society, 2015) https://books.google.co.uk/books?id=TumaBQAAQBAJ&pg=PA24&lpg=PA24&dq=kafka+meets+heisenberg

Gender bias at UC Berkeley?

Men Men Women Women % % applied admitted applied admitted 2691 1198 45% 1835 557 30%

Gender bias at UC Berkeley?

	Men applied	Men admitted	%	Women applied	Women admitted	%
	2691	1198	45%	1835	557	30%
Α	825	512	62%	108	89	82%
В	560	353	63%	25	17	68%
С	325	120	37%	593	202	34%
D	417	138	33%	375	131	35%
E	191	53	28%	393	94	24%
F	373	22	6%	341	24	7%

Managing change

- ▶ Campbell's Law: "The more any quantitative social indicator is used for social decision-making, the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor."
- Goodhart's Law: "When a measure becomes a target, it ceases to be a good measure."
 - This also happens in data science → be critical of bake-offs!
- ► E.g. Google Flu Trends
 - ▶ launched in 2008 to detect flu outbreaks from Google search queries
 - started performing poorly in 2013, to a large extent caused by people changing their search behaviour (and by overfitting to seasonal search terms that stopped being correlated with flu occurrences)
 - https://youtu.be/e6osEYNikPk

Algorithmic fairness

- ▶ Big data can be used to facilitate proxy discrimination by means of non-protected attributes (e.g. postcode) that correlate strongly with protected attributes (e.g. race)
 - but also to detect and address this!
- ▶ The following examples are taken from the KDD 2016 tutorial on Algorithmic bias: from discrimination discovery to fairness-aware data mining
 - http://francescobonchi.com/algorithmic_bias_tutorial.html

UCI datasets can be biased!

- German credit (https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data))
 - ► N = 1,000 records of bank account holders
 - Class label: good/bad creditor (grant or deny a loan)
 - Attributes: numeric/interval-scaled: duration of loan, amount requested, number of installments, age of requester, existing credits, number of dependents; nominal: result of past credits, purpose of credit, personal status, other parties, residence since, property magnitude, housing, job, other payment plans, own telephone, foreign worker; ordinal: checking status, saving status, employment

Examples of discrimination

- ▶ PD rules A & B \rightarrow C
 - ▶ A is potentially discriminated (PD) group, B is context, C denies benefit
 - ▶ e.g. gender=female & saving_status=no_known_savings → credit=no
- Favouritist PD rules A & B → C
 - ▶ A is favoured group, B is context, C grants benefit
 - ▶ e.g. gender=male & saving status=no known savings → credit=yes
- Indirect discrimination
 - ▶ suppose neighbourhood=10451 & city=NYC → benefit=deny
 - ▶ and neighbourhood=10451 & city=NYC → ethnicity=african_american
 - ▶ then neighbourhood=10451 & city=NYC & ethnicity=african_american → benefit=deny

Measuring discrimination

- ▶ $lift(A \rightarrow C) = conf(A \rightarrow C)/conf(true \rightarrow C)$
 - ightharpoonup conf(XightharpoonupY) = support(XightharpoonupY)/support(X)
- elift_B(A&B \rightarrow C) = conf(A&B \rightarrow C)/conf(B \rightarrow C) = conf(B&C \rightarrow A)/conf(B \rightarrow A)
- We want the elift of PD-rules to be less than some threshold α
 - ▶ e.g. conf(city=NYC → benefit=deny) = 0.25
 - ▶ conf(city=NYC & ethnicity=african_american → benefit=deny) = 0.75
 - ▶ hence elift = 3.0

German credit examples

- ▶ conf(saving_status=no_known_savings → credit=no) = 0.18
- conf(personal_status=female_div/sep/mar & saving_status=no_known_savings → credit=no) = 0.27
- elift = 1.5
 - Conf(purpose=used car → credit=no) = 0.17
 - conf(age≥52.6 & personal_status=female_div/sep/mar & purpose=used_car → credit=no) = 1
- ▶ elift = 6.0

Outlook

.....

- Data science is pervasive
- Only small part of ethical issues will be regulated
- We yet have to reach societal consensus about many of them
- ▶ The Data Scientist has a large responsibility here