# Optimisation –Résumé de cours

#### D. Bresch-Pietri

Mines Paris - PSL

3 avril 2023



# Conditions d'optimalité : cas général

#### **Existence**

### **Théorème 1** (Weierstrass)

Si f est une fonction réelle continue sur un compact  $K \subset \mathbb{R}^n$  alors le problème de recherche de minimum global

$$\min_{x \in K} f(x)$$

possède une solution  $x^* \in K$ .

#### Théorème 2

Soit  $f: \mathbb{R}^n \to \mathbb{R}$  continue et telle que  $\lim_{\|x\| \to \infty} f(x) = +\infty$ . Alors, pour tout F fermé non-vide de  $\mathbb{R}^n$ , il existe une solution au problème  $\min_{x \in F} f(x)$ .

# Conditions d'optimalité : cas général

#### Condition nécessaire sur un ouvert

#### Théorème 3

Soit  $\Omega$  un ouvert de  $\mathbb{R}^n$ . Une condition nécessaire pour que  $x^*$  soit un optimum local de  $\Omega \ni x \mapsto f(x) \in \mathbb{R}$  fonction deux fois différentiable est

$$\left\{\nabla f(x^*)=0, \nabla^2 f(x^*)\geq 0\right\}$$

#### Condition suffisante sur un ouvert

#### Théorème 4

Une condition suffisante pour que  $x^*$  soit un optimum local de  $\Omega \ni x \mapsto f(x) \in \mathbb{R}$  fonction deux fois différentiable sur  $\Omega$  ouvert de  $\mathbb{R}^n$  est

$$\left\{\nabla f(x^*)=0,\nabla^2 f(x^*)>0\right\}$$

#### **Définition 8**

On dit que l'application  $f: E \to \mathbb{R}$  (E convexe de  $\mathbb{R}^n$ ) est convexe si

$$\forall (x,y) \in E \times E \quad \forall \lambda \in [0,1] \quad f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$$

#### Théorème 5

Soient E convexe de  $\mathbb{R}^n$  et  $f: E \to \mathbb{R}$  continue. Les deux propositions suivantes sont équivalentes :

- f convexe
- $Epi(f) = \{(x,y) \mid x \in E, y \ge f(x)\} \text{ est convexe}$

Par ailleurs, dans le cas où  $E^{\circ} \neq \emptyset$ , ceci est équivalent à

### Définition 9

Soit  $f: E \to \mathbb{R}$  convexe. Un vecteur  $v \in \mathbb{R}^n$  est appelé sous-gradient de f au point  $x_0 \in \mathbb{R}^n$  si

$$\forall x \in E \quad f(x) \ge f(x_0) + v^T(x - x_0) \tag{1}$$

L'ensemble de tous les sous-gradients en  $x_0$  est appelé sous-différentiel de f en  $x_0$  et noté  $\partial f(x_0)$ 

$$\partial f(x_0) = \left\{ v \in \mathbb{R}^n \mid \forall x \in E \quad f(x) \ge f(x_0) + v^T(x - x_0) \right\} \tag{2}$$

#### Théorème 9

Soit f une application différentiable de  $\Omega$  dans  $\mathbb{R}$ . Les propositions suivantes sont équivalentes

- f est convexe
- **③**  $\nabla f$  est monotone :  $\forall (x,y) \in \Omega^2$   $(\nabla f(x) \nabla f(y))^T (x y) \ge 0$

Et, si f deux fois différentiable, ces propriétés sont équivalentes à

#### Définition 10

Soit  $E \subset \mathbb{R}^n$  convexe. On dit que  $f: E \to \mathbb{R}$  est fortement convexe (ou  $\alpha$ -convexe) s'il existe  $\alpha > 0$  tel que  $f - \frac{\alpha}{2} \|.\|^2$  est convexe.

#### Théorème 11

Soit f une application différentiable de  $\Omega$  dans  $\mathbb{R}$ , et  $\alpha > 0$ . Les propositions suivantes sont équivalentes

- f est  $\alpha$ -convexe sur  $\Omega$
- $\forall (x,y) \in \Omega^2$   $f(y) \ge f(x) + (\nabla f(x))^T (y-x) + \frac{\alpha}{2} ||x-y||^2$
- $\forall (x,y) \in \Omega^2$   $((\nabla f(x))^T (\nabla f(y))^T)(x-y) \ge \alpha \|x-y\|^2$

Et si f est deux fois différentiable, ces propriétés sont équivalentes à

• 
$$\forall x \in \Omega \quad \nabla^2 f(x) \ge \alpha I$$

# Conditions d'optimalité : cas convexe

#### Théorème 6

Soient  $f: \mathbb{R}^n \to \mathbb{R}$  convexe. Alors  $x^*$  est un minimiseur global de f si et seulement si  $0 \in \partial f(x^*)$ . De plus, tout minimiseur local est global.

#### NB: si f différentiable:

 $x^*$  est un minimiseur global de f si et seulement si  $\nabla f(x^*) = 0$ .

#### Théorème 12

Soit  $f: \mathbb{R}^n \to \mathbb{R}$  fortement convexe. Alors f admet un unique minimum (global) sur tout fermé convexe de  $\mathbb{R}^n$ .

$$x^{k+1} = x^k + l^k p^k$$

### Algorithme 1 (Gradient à pas optimal)

À partir de  $x^0 \in \mathbb{R}^n$  quelconque, itérer

$$x^{k+1} = x^k - I^k \nabla f(x^k)$$

où  $I^k \in \operatorname{argmin}_{I \in \mathbb{R}} f(x^k - I \nabla f(x^k))$ .

#### Théorème 13

Si f est  $\alpha$ -convexe, différentiable et de gradient  $\nabla f$  Lipschitzien sur tout borné, alors l'algorithme du gradient à pas optimal converge vers l'unique solution  $x^*$  du problème d'optimisation  $\min_{x \in \mathbb{R}^n} f(x)$ .

#### **Définition 13**

On appelle **condition d'Armijo** (de paramètre  $c_1$ ) sur les itérations  $(x^k, p^k, l^k)_{k \in \mathbb{N}}$  l'inéquation

$$f(x^k + l^k p^k) \le f(x^k) + c_1 l^k \nabla f(x^k)^T p^k$$
(3)

On appelle **condition de courbure** (de paramètre  $c_2$ ) sur les itérations  $(x^k, p^k, l^k)_{k \in \mathbb{N}}$  l'inéquation

$$\nabla f(x^k + l^k p^k)^T p^k \ge c_2 \nabla f(x^k)^T p^k \tag{4}$$

On appelle **conditions de Wolfe** ces deux conditions avec  $0 < c_1 < c_2 < 1$ .



Armijo Courbure

Wolfe

#### Théorème 16

Soit f différentiable, bornée inférieurement et telle que  $\nabla f$  Lispchitzien. Alors on a la convergence

$$\lim_{k\to\infty}\left\|\nabla f(x^k)\right\|=0$$

11/37

### Algorithme 2 (Gradient stochastique)

A partir de  $x^0 \in \mathbb{R}^n$ ,  $\theta \in ]0,2[$  et une loi de probabilité discrète  $(p_i)_{i=1,\dots,n}$   $(p_i>0)$  et  $\sum_{i=1}^n p_i=1$ , itérer

• choisir avec une probabilité  $p_i$  l'indice i ( $i \in \{1, ..., n\}$ )

• 
$$x_j^{k+1} = \begin{cases} x_j^k - \frac{\theta}{L_i} \frac{\partial f}{\partial x_i}(x) \text{ si } j = i \\ x_j^k \text{ sinon} \end{cases}$$

où 
$$\left|\frac{\partial^2 f}{\partial x_i^2}(x)\right| \leq L_i$$
.

### Méthodes diff. sans contraintes : second ordre

#### Algorithme 3 (Newton)

À partir de  $x^0 \in \mathbb{R}^n$  quelconque, itérer

$$x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

#### Théorème 18

Soit  $\mathbb{R}^n \ni x \mapsto f(x) \in \mathbb{R}$  deux fois différentiable, possédant un unique minimum global  $x^*$  tel que  $\nabla^2 f(x^*)$  est définie positive (on note  $\lambda > 0$  sa plus petite valeur propre) et tel que  $\mathbb{R}^n \ni x \mapsto \nabla^2 f(x) \in \mathcal{M}_n(\mathbb{R})$  est localement Lipschitz au voisinage de  $x^*$  (on note C sa constante Lipschitz). L'algorithme de Newton **converge quadratiquement** vers  $x^*$  si on l'initialise en un point  $x^0$  tel que  $\|x^0 - x^*\| \leq \frac{2\lambda}{3C}$ .

### Méthodes diff. sans contraintes : second ordre

### Algorithme 4 (Algorithme de BFGS)

À partir de  $x^0 \in \mathbb{R}^n$  quelconque et de  $R^0 = I(n)$  (d'autres choix de matrice définie positive sont possibles), itérer

$$\begin{aligned} p^k &= -R^k \nabla f(x^k) \\ x^{k+1} &= x^k + l^k p^k, \quad l^k \text{ satisfaisant les conditions de Wolfe} \\ s^k &= x^{k+1} - x^k \\ y^k &= \nabla f(x^{k+1}) - \nabla f(x^k) \\ R^{k+1} &= \left(l - \gamma^k s^k (y^k)^T\right) R^k \left(l - \gamma^k y^k (s^k)^T\right) + \gamma^k s^k (s^k)^T \end{aligned}$$

CV superlinéaire sous certaines hypothèses de Lipschitziannité.

Méthode pour les fonctions quadratiques de grande taille.

Directions A-conjuguées :  $p_i^T A p_j = 0$ 

### Algorithme 5 (Algorithme du gradient conjugué)

À partir de  $x^0 \in \mathbb{R}^n$  quelconque calculer  $r^0 = Ax^0 - b$  et  $p^0 = -r^0$ . Itérer

$$I^{k} = \frac{(r^{k})^{T} r^{k}}{(p^{k})^{T} A p^{k}}$$

$$x^{k+1} = x^{k} + I^{k} p^{k}$$

$$r^{k+1} = r^{k} + I^{k} A p^{k}$$

$$\beta^{k+1} = \frac{\|r^{k+1}\|^{2}}{\|r^{k}\|^{2}}$$

$$p^{k+1} = -r^{k+1} + \beta^{k+1} p^{k}$$



#### Théorème 21

Soit  $A \in \mathcal{M}_n(\mathbb{R})$  symétrique définie positive,  $K(A) = \frac{\lambda_1}{\lambda_n}$  le rapport entre la plus petite et la plus grande des valeurs propres de A (aussi appelé nombre de conditionnement). Les itérations de l'algorithme 5 du gradient conjugué appliqué à  $\mathbb{R}^n \ni x \mapsto \phi(x) = \frac{1}{2} x^T A x - b^T x \in \mathbb{R}$  avec  $b \in \mathbb{R}^n$ , **convergent en** n étapes et vérifient l'inégalité

$$||x^{k} - x^{*}||_{A} \le 2 \left(\frac{\sqrt{K(A)} - 1}{\sqrt{K(A)} + 1}\right)^{k} ||x^{0} - x^{*}||_{A}$$

Extension aux fonctions non-linéaires : algorithme de Fletcher-Reeves et Polak-Ribière. **Convergence superlinéaire**.

### Méthodes diff. sans contraintes

| Méthode        | Convergence             | Avantages/Inconvénients       |
|----------------|-------------------------|-------------------------------|
| Gradient       | linéaire                |                               |
| pas optimal    |                         | sous-pb à résoudre            |
| Wolfe          |                         |                               |
| stochastique   |                         | plus lent mais utile pour     |
|                |                         | gradt numérique et gde taille |
| Newton         | quadratique             | pb de complexité              |
| Quasi-newton   | superlinéaire           | requiert stockage hessien     |
| Grad. conjugué | superlinéaire et exacte | pour pb de grande taille      |

# Optimisation sous contraintes : égalités

#### Contraintes égalités

$$\min_{c(x,u)=0} f(x,u)$$

#### Lagrangien:

$$\mathcal{L}(x,u,\lambda) = f(x,u) + \lambda^T c(x,u) \in \mathbb{R}$$

### Théorème 23

Il existe  $\lambda^*$  tel que  $(x^*, u^*, \lambda^*) \in \mathbb{R}^{2n+m}$  est un point stationnaire de  $\mathcal{L}$  ssi  $(x^*, u^*)$  est un point stationnaire de f sous la contrainte c.

# Optimisation sous contraintes : égalités

#### Multiplicateurs de Lagrange $\lambda$ :

#### Théorème 24

Si  $(x^*, u^*, \lambda^*) \in \mathbb{R}^{2n+m}$  est un point stationnaire de  $\mathcal{L}$ , alors

$$(\nabla f)^T(x^*,u^*) = -(\lambda^*)^T(\nabla c)^T(x^*,u^*)$$

### Théorème 25 (coût marginal)

Si  $(x^*, u^*, \lambda^*) \in \mathbb{R}^{2n+m}$  est un point stationnaire de  $\mathcal{L}$ , alors

$$\frac{\partial f^*}{\partial c} = (\lambda^*)^T$$

# Optimisation sous contraintes : inégalités

$$\min_{c(x) \le 0} f(x) \tag{5}$$

#### Théorème 26 (Conditions KKT)

Considérons un point  $x^* \in \mathbb{R}^n$ . Notons la famille des indices des **contraintes** actives en  $x^*$  par  $I = \{i \in \{1,...,m \text{ tel que } c_i(x^*) = 0\}\}$ . Supposons que la famille  $(\nabla c_i(x^*))_{i \in I}$  est une famille libre (on dit que les contraintes sont qualifiées).

Alors, si  $x^*$  est une solution du problème (5),  $\nabla f(x^*)$  appartient au cône convexe engendré par  $(-\nabla c_i(x^*))_{i\in I}$ .

$$\exists \lambda_i \geq 0, i=1,...,m$$
 tels que  $\nabla f(x^*) = -\sum_{i=1}^m \lambda_i \nabla c_i(x^*)$  et  $\lambda_i c_i(x^*) = 0, i=1,...,m$ 

## Optimisation sous contraintes : inégalités

#### Théorème 26

Soit le problème d'optimisation  $\min_{c(x) \le 0} f(x)$  où les fonctions f et c sont différentiables et convexes. On suppose qu'il existe  $x \in \mathbb{R}^n$  tel que  $c_i(x) < 0$  pour  $c_i$  non affine, alors les conditions KKT sont nécessaires et suffisantes pour que  $x^*$  soit un minimum global.

Base de l'algorithme des contraintes actives pour QP et SQP (non-linéaire).

### Optimisation sous contraintes : dualité

$$\mathcal{L}(x,\lambda) = f(x) + \lambda^T c(x) \in \mathbb{R}$$

#### **Définition 20**

On dit que  $(x^*, \lambda^*)$  est un point selle de  $\mathcal{L}$  si  $x^*$  est un minimum pour  $X \ni x \mapsto \mathcal{L}(x, \lambda^*)$  et  $\lambda^*$  est un maximum pour  $L \ni \lambda \mapsto \mathcal{L}(x^*, \lambda)$  ou encore si

$$\sup_{\lambda \in L} \mathcal{L}(x^*, \lambda) = \mathcal{L}(x^*, \lambda^*) = \inf_{x \in X} \mathcal{L}(x, \lambda^*)$$
 (6)



### Optimisation sous contraintes : dualité

### **Théorème 27** (Théorème du point selle)

Si  $(x^*, \lambda^*)$  est un point selle de  $\mathcal{L}$  sur  $X \times L$  alors

$$\sup_{\lambda \in L} \inf_{x \in X} \mathcal{L}(x, \lambda) = \mathcal{L}(x^*, \lambda^*) = \inf_{x \in X} \sup_{\lambda \in L} \mathcal{L}(x, \lambda)$$

Prob. dual

Prob. primal

### Théorème 28 (Optimalité du point selle)

Si  $(x^*, \lambda^*)$  est un point selle de  $\mathcal{L}$  sur  $X \times (\mathbb{R}^+)^m$ , alors  $x^*$  est solution du problème (5).

Si f, c convexes et  $x^*$  solution de (5) tq contraintes qualifiées alors  $(x^*, \lambda^*)$  point selle.

### Optimisation sous contraintes : dualité

#### Algorithme 8 (Algorithme d'Uzawa)

À partir de  $x^0 \in \mathbb{R}^n$ ,  $\lambda^0 \in \mathbb{R}^m$ ,  $\alpha \in \mathbb{R}^+$  quelconques, on note  $\mathbb{R}^m \ni \lambda \mapsto P(\lambda) \in (\mathbb{R}^+)^m$  la projection sur  $(\mathbb{R}^+)^m$ , itérer

résoudre  $\min_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda^k)$ , on note  $x^{k+1}$  la solution

$$\lambda^{k+1} = P\left(\lambda^k + \alpha c(x^{k+1})\right)$$

### Méthodes diff. sous contraintes

On remplace la recherche de minima sous contrainte par celle de :

- points stationnaires du Lagrangien (contraintes égalités)
   conditions KKT : le signe des multiplicateurs asociés aux contraintes actives permet de conclure
  - → Algorithme des contraintes actives
- points selles du Lagrangien  $X \times (\mathbb{R}^+)^m$ 
  - → Algorithme d'Uzawa

Ces deux algorithmes s'appuient sur la résolution de sous-problèmes sans contraintes.

#### **Fenchel**

#### **Définition 21**

Soit  $f: \mathbb{R}^n \to \mathbb{R}$ . On appelle transformée de Fenchel de f la fonction  $f^*$  définie par

$$f^*(\varphi) = \sup_{x \in \mathbb{R}^n} (\varphi^T x - f(x))$$

Pour toute fonction  $f: \mathbb{R}^n \to \mathbb{R}$  continue, la biconjuguée  $f^{\star\star}$  est définie par

$$f^{**}(x) = \sup_{\varphi \in \mathbb{R}^n} (x^T \varphi - f^*(\varphi))$$

#### Théorème 32 (Théorème de Moreau-Fenchel)

Soit  $f: \mathbb{R}^n \to \mathbb{R}$  continue.  $f^*$  est convexe et la biconjuguée de f satisfait  $f^{**} = f$  ssi f est convexe.

#### **Théorème 33** (Régularisation des fonctions fortement convexes)

Soit  $f: \mathbb{R}^n \to \mathbb{R}$  fortement convexe. Alors  $f^*$  est de classe  $C^1$  sur  $\mathbb{R}^n$  avec

$$\forall \phi \in \mathbb{R}^n \quad \nabla f^{\star}(\phi) = argmax_{x \in \mathbb{R}^n} (\phi^T x - f(x))$$

#### Opérateur proximal

#### **Définition 22**

Soient  $f: \mathbb{R}^n \to \mathbb{R}$  et  $\mu > 0$ . L'opérateur proximal de f (pour le paramètre  $\mu$ ), noté  $\text{Prox}_{\mu f}$ , est défini, pour tout  $x \in \mathbb{R}^n$ , par

$$\operatorname{Prox}_{\mu f}(x) = \operatorname{argmin}_{s \in \mathbb{R}^n} \left( f(s) + \frac{1}{2\mu} \|s - x\|^2 \right)$$
 (7)

L'enveloppe de Moreau de f (pour le paramètre  $\mu$ ), notée  $M_{\mu f}$ , est définie, pour tout  $x \in \mathbb{R}^n$ , par

$$M_{\mu f}(x) = \min_{s \in \mathbb{R}^n} \left( f(s) + \frac{1}{2\mu} ||s - x||^2 \right)$$

### Théorème 34 (Régularisation de Moreau-Yosida)

Soient f convexe et  $\mu > 0$ . L'enveloppe de Moreau de f est de classe  $\mathcal{C}^1$  sur  $\mathbb{R}^n$  avec

$$\forall x \in \mathbb{R}^n \quad \nabla M_{\mu f}(x) = \frac{1}{\mu} (x - \operatorname{Prox}_{\mu f}(x))$$

#### Théorème 35

Soit f convexe et soit  $\mu >$  0. Les trois propriétés suivantes sont équivalentes :

- $\bullet$   $x^* \in \mathbb{R}^n$  est un minimiseur (global) de f
- $x^* = \mathsf{Prox}_{\mu f}(x^*)$

# Méthodes non-diff sans contraintes : sous-gradient

#### Algorithme 13

A partir de  $x_0 \in \mathbb{R}^n$  quelconque, itérer

$$x^{k+1} = x^k - Ig^k, \quad g_k \in \partial f(x^k)$$

### Théorème 38

Si f est convexe de minimiseur  $x^* \in \mathbb{R}^n$ , et que son sous-gradient est borné au moins localement par G>0, alors l'Algorithme 9 de sous-gradient à pas fixe garantit, pour tout  $\varepsilon>0$ ,

$$\exists k \in \mathbb{N} \quad |f(x^k) - f(x^*)| \leq \frac{IG^2}{2}(1+\varepsilon)$$

# Méthodes non-diff sans contraintes : sous-gradient

### Algorithme 14

A partir de  $x_0 \in \mathbb{R}^n$  quelconque et  $\hat{f} = f(x_0)$ , itérer

$$x^{k+1} = x^k - I^k g^k, \quad g_k \in \partial f(x^k)$$
$$\hat{f} = \min \left\{ \hat{f}, f(x^{k+1}) \right\}$$

#### Théorème 39

Si f est convexe, que son sous-gradient est borné au moins localement par G>0 et que la suite  $(I^k)$  satisfait la condition C1 ou C2 ci-dessus, alors l'Algorithme 14 converge vers un minimum de f.

# Méthodes non-diff sans contraintes : min. proximale

### Algorithme 15

A partir de  $x^0 \in \mathbb{R}^n$  quelconque, itérer

$$x^{k+1} = \mathsf{Prox}_{I^k f}(x^k)$$

avec  $(I_k)$  choisie hors ligne, satisfaisant par exemple les propriétés C1 ou C2.

On lui préfère la variante suivante.

# Méthodes non-diff sans contraintes : gradient proximal

$$\min_{x \in \mathbb{R}^n} [f(x) = g(x) + h(x)],$$
 avec  $g$  différentiable

#### Algorithme 16

A partir de  $x^0 \in \mathbb{R}^n$  quelconque, itérer

$$x^{k+1} = \operatorname{Prox}_{lh}(x^k - l\nabla g(x_k))$$

#### Théorème 40

Soit  $g: \mathbb{R}^n \to \mathbb{R}$  de gradient L-Lipschitzien. Pour  $I \leq 1/L$ , l'Algorithme 16 de gradient proximal assure que, pour  $x^*$  minimiseur de f,

$$f(x^k) - f(x^*) \le \frac{1}{2lk} ||x_0 - x^*||^2$$

### Méthodes non-diff sans contraintes : faisceaux

Etant donné un faisceau d'informations

$$\{(x_i, f(x_i), g_i) \mid g_i \in \partial f(x_i), i = 1, ..., k\}$$

obtenu après k itérations, on construit une approximation linéaire par morceaux de la fonction f

$$\forall y \in \mathbb{R}^n \quad \varphi_k(y) = \max_{i=1,\dots,k} \left\{ f(x_i) + g_i^T(y - x_i) \right\} \tag{8}$$

et on résout  $\min_{y\in\mathbb{R}^n} \phi_k(y)$  qui se reformule comme un problème de programmation linéaire (LP).

### Méthodes non-diff sans contraintes

| Méthode                | Convergence   | Avantages/Inconvénients |
|------------------------|---------------|-------------------------|
| Sous-gradient          |               | oscillatoire            |
| pas fixe               | -             | pas de CV               |
| pas variable           | sous-linéaire |                         |
| Prox/Gradient proximal | sous-linéaire | méthode de descente     |
|                        |               | calcul de Prox          |
| Faisceaux              | ?             | pas de descente         |
|                        |               | stockage faisceaux      |
|                        |               | LP simple               |

## Quelques perspectives rapides...

On a traité de l'optimisation **continue** de **dimension finie**. Certains éléments mathématiques s'étendent

- aux fonctions à valeurs dans  $\mathbb{R} \cup \{\pm \infty\}$
- aux espaces de Hilbert

#### Et il y a d'autre pans :

- optimisation combinatoire (variables de décision entières, ordonnancement)
- optimisation de trajectoires (Euler-Lagrange, contrôle optimal)
- optimisation robuste ou stochastique, analyse de sensibilité

Et, souvent, la partie la plus compliquée en pratique est de formaliser le problème que l'on veut résoudre, cad à formuler f et c...