FINAL DE LOGICA 2006

- 1. V o F, justifique. Hacer 4 de 5.
- Sea $\tau = (\emptyset, \{f^1\}, \emptyset, a)$. Toda τ -álgebra infinita tiene más de una subálgebra
- Sea $\tau = (\emptyset, \{s^2\}, \emptyset, a)$. Si θ es una congruencia de $A = (\mathcal{P}(\{x, y\}, \cup), \text{ entonous es congruencia de } B = (\mathcal{P}(\{x, y\}, \cap))$.
- Sea θ una congruencia de $(\mathbb{Z}, +, \cdot, 1, 0)$ (pensado como modelo de $\tau = (\{1, 0\}, \dots, \{x, y\}, (1, z) \in \theta$, entonces $((2 + x \cdot z) y, (z + z + y x)) \in \theta$
 - (d) Sea $\tau = (\emptyset, \{f^1\}, \emptyset, a)$. En el algebra de Lindenbaum $\mathcal{A}_{(\{f(0)=0\},\tau)}$ se tiene $[\forall x \ f(x) = 0] < [\forall x \ f(f(x)) = 0]$
 - Sea $\tau = (\emptyset, \{f^1\}, \emptyset, a)$ y sean A y B τ -algebras. Si $A \times B \models f(f(x)) \approx x$, enter $A \models f(f(x)) \approx x$
- 2. Sea $\tau = (\emptyset, \emptyset, \{r^2\}, a)$ y Σ formado por las siguientes sentencias

$$\forall x \exists y \ r(x,y)$$

$$\forall x, y, z \ ((r(x, y) \land r(y, z)) \rightarrow z = x))$$

Dar pruebas formales que atestigüen que:

- (a) $(\Sigma, \tau) \vdash \forall x, y \ (r(x, y) \rightarrow r(y, x))$
- (b) $(\Sigma, \tau) \vdash \forall y \exists x \ r(x, y)$
- (c) $(\Sigma, \tau) \vdash \forall x, y, z \ ((r(x, z) \land r(y, z)) \rightarrow x = y))$

(Hint: Para (b) y (c) usar (a))

- 3. Sea (L, \leq) un poset tal que para cada $a, b \in L$ existe $\inf\{a, b\}$. Sea $\tau = (\emptyset, \{i^2\}, \emptyset)$ sea $A_{(L, \leq)}$ la τ -álgebra cuyo universo es L e $i^{A_{(L, \leq)}}(a, b) = \inf\{a, b\}$, para todo a, b
 - (a) De una sentencia φ de tipo τ tal que $A_{(L,\leq)} \models \varphi$ sii (L,\leq) es un reticulado
 - (b) Sea B dado por

Universo de $B = \{0, 1\}$

$$i^{\mathbf{B}}(a,b) = a.b$$

Dado $m_0 \in L$, definimos $F: L \to \{0,1\}$ por F(x) = 1 si $m_0 \le x$ y $F(x) = m_0 \le x$. Pruebe que F es un homomorfisme de $\mathbf{A}_{(L,\le)}$ en \mathbf{B} .