$11n_{113} (K11n_{113})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 6u^{12} - 31u^{11} + \dots + 77b + 51, \ -16u^{12} - 20u^{11} + \dots + 77a + 18, \\ &u^{13} + 9u^{11} + u^{10} + 29u^9 + 6u^8 + 37u^7 + 10u^6 + 14u^5 + 3u^4 + 5u^3 - 2u^2 + u - 1 \rangle \\ I_2^u &= \langle 27350u^{11} - 10434u^{10} + \dots + 116501b + 508418, \\ &- 702574u^{11} + 701168u^{10} + \dots + 2213519a - 5780311, \\ &u^{12} - u^{11} + 8u^{10} - 7u^9 + 26u^8 - 13u^7 + 53u^6 + 7u^5 + 80u^4 + 38u^3 + 72u^2 + 24u + 19 \rangle \\ I_3^u &= \langle u^7 + 4u^5 - u^4 + 6u^3 - 2u^2 + b + 3u, \ u^7 + 5u^5 - u^4 + 10u^3 - 3u^2 + a + 7u - 2, \\ &u^8 + 5u^6 - u^5 + 10u^4 - 3u^3 + 8u^2 - 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 6u^{12} - 31u^{11} + \dots + 77b + 51, -16u^{12} - 20u^{11} + \dots + 77a + 18, u^{13} + 9u^{11} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.207792u^{12} + 0.259740u^{11} + \dots + 0.246753u - 0.233766 \\ -0.0779221u^{12} + 0.402597u^{11} + \dots + 1.53247u - 0.662338 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.259740u^{12} + 0.324675u^{11} + \dots - 0.441558u + 1.20779 \\ -0.376623u^{12} - 0.220779u^{11} + \dots + 0.740260u + 0.298701 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 1.77922u - 0.896104 \\ -0.0779221u^{12} + 0.402597u^{11} + \dots + 1.53247u - 0.662338 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 1.77922u - 0.896104 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{3}{7}u^{12} - \frac{2}{7}u^{11} + \dots + \frac{10}{7}u - \frac{1}{7} \\ -0.0779221u^{12} + 0.402597u^{11} + \dots + 1.53247u - 0.662338 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 1.53247u - 0.662338 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 0.779221u - 0.896104 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 0.779221u - 0.896104 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 0.779221u - 0.896104 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.129870u^{12} + 0.662338u^{11} + \dots + 0.779221u - 0.896104 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.207792u^{12} + 0.259740u^{11} + \dots + 0.753247u - 0.233766 \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.207792u^{12} + 0.259740u^{11} + \dots - 0.753247u - 0.233766 \\ u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{222}{77}u^{12} + \frac{8}{77}u^{11} + \frac{2008}{77}u^{10} + \frac{345}{77}u^9 + \frac{6465}{77}u^8 + 26u^7 + \frac{8137}{77}u^6 + \frac{3748}{77}u^5 + \frac{2942}{77}u^4 + \frac{285}{11}u^3 + \frac{1313}{77}u^2 - \frac{54}{77}u + \frac{501}{77}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{13} - 6u^{12} + \dots + 26u - 4$
c_2	$u^{13} + 8u^{12} + \dots + 124u - 16$
$c_3,c_4,c_8 \ c_9$	$u^{13} + 9u^{11} + \dots + u - 1$
c_6, c_{10}	$u^{13} - 9u^{12} + \dots + 40u - 8$
c_7	$u^{13} - 2u^{12} + \dots - 7u - 1$
c_{11}	$u^{13} - 2u^{12} + \dots - 6u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{13} + 8y^{12} + \dots + 124y - 16$
c_2	$y^{13} - 4y^{12} + \dots + 31600y - 256$
c_3, c_4, c_8 c_9	$y^{13} + 18y^{12} + \dots - 3y - 1$
c_6, c_{10}	$y^{13} - 3y^{12} + \dots + 352y - 64$
c_7	$y^{13} + 26y^{12} + \dots + 53y - 1$
c_{11}	$y^{13} - 24y^{12} + \dots + 50y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.589003 + 0.398981I		
a = -0.155544 + 0.694999I	-1.89853 - 1.81856I	3.56685 + 4.77795I
b = -0.701578 - 0.113111I		
u = -0.589003 - 0.398981I		
a = -0.155544 - 0.694999I	-1.89853 + 1.81856I	3.56685 - 4.77795I
b = -0.701578 + 0.113111I		
u = 0.313260 + 0.606523I		
a = 0.71205 - 1.73803I	1.23789 - 1.81241I	3.13803 - 1.59537I
b = -0.241660 - 0.056194I		
u = 0.313260 - 0.606523I		
a = 0.71205 + 1.73803I	1.23789 + 1.81241I	3.13803 + 1.59537I
b = -0.241660 + 0.056194I		
u = -0.067844 + 0.603023I		
a = 0.009402 + 0.327160I	1.10712 + 2.64289I	2.15723 - 4.40909I
b = -0.281404 + 1.089340I		
u = -0.067844 - 0.603023I		
a = 0.009402 - 0.327160I	1.10712 - 2.64289I	2.15723 + 4.40909I
b = -0.281404 - 1.089340I		
u = 0.435514		
a = 0.789752	0.684474	14.6290
b = 0.240167		
u = -0.15240 + 1.67572I		
a = 1.291360 - 0.096165I	-12.27390 - 4.64857I	3.70723 + 2.31166I
b = -2.11530 - 0.55305I		
u = -0.15240 - 1.67572I		
a = 1.291360 + 0.096165I	-12.27390 + 4.64857I	3.70723 - 2.31166I
b = -2.11530 + 0.55305I		
u = -0.07312 + 1.68645I		
a = -1.339690 - 0.391716I	-16.5929 - 2.0437I	1.74217 + 0.86236I
b = 2.00168 - 0.40120I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.07312 - 1.68645I		
a = -1.339690 + 0.391716I	-16.5929 + 2.0437I	1.74217 - 0.86236I
b = 2.00168 + 0.40120I		
u = 0.35135 + 1.77586I		
a = -1.41246 + 0.16455I	-17.1576 + 11.0164I	1.87407 - 4.91060I
b = 2.21818 - 0.62507I		
u = 0.35135 - 1.77586I		
a = -1.41246 - 0.16455I	-17.1576 - 11.0164I	1.87407 + 4.91060I
b = 2.21818 + 0.62507I		

II.
$$I_2^u = \langle 27350u^{11} - 10434u^{10} + \dots + 116501b + 508418, -7.03 \times 10^5u^{11} + 7.01 \times 10^5u^{10} + \dots + 2.21 \times 10^6a - 5.78 \times 10^6, u^{12} - u^{11} + \dots + 24u + 19 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.317401u^{11} - 0.316766u^{10} + \dots + 11.2217u + 2.61137 \\ -0.234762u^{11} + 0.0895615u^{10} + \dots - 7.84627u - 4.36407 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.537344u^{11} - 0.633335u^{10} + \dots + 18.5569u + 3.49184 \\ -0.413104u^{11} + 0.358821u^{10} + \dots - 14.9788u - 5.59521 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0826395u^{11} - 0.227205u^{10} + \dots + 3.37538u - 1.75270 \\ -0.234762u^{11} + 0.0895615u^{10} + \dots - 7.84627u - 4.36407 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0826395u^{11} - 0.227205u^{10} + \dots + 3.37538u - 1.75270 \\ -0.131415u^{11} + 0.0852353u^{10} + \dots + 5.94685u - 1.61733 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0300079u^{11} - 0.174573u^{10} + \dots - 0.414089u - 3.01586 \\ -0.0241200u^{11} + 0.170445u^{10} + \dots - 0.572871u + 4.03170 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.214055u^{11} - 0.312440u^{10} + \dots + 9.32223u - 0.135373 \\ -0.131415u^{11} + 0.0852353u^{10} + \dots - 5.94685u - 1.61733 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.214055u^{11} - 0.312440u^{10} + \dots + 9.32223u - 0.135373 \\ -0.131415u^{11} + 0.0852353u^{10} + \dots - 5.94685u - 1.61733 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.214055u^{11} - 0.312440u^{10} + \dots + 9.32223u - 0.135373 \\ -0.131415u^{11} + 0.0852353u^{10} + \dots - 5.94685u - 1.61733 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.674354u^{11} + 0.991579u^{10} + \dots - 10.4369u - 12.7712 \\ -0.0941194u^{11} + 0.432511u^{10} + \dots + 2.19875u + 7.10565 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.674354u^{11} + 0.991579u^{10} + \dots - 19.6620u + 0.118551 \\ 0.516880u^{11} - 0.642235u^{10} + \dots + 16.6038u + 4.18226 \end{pmatrix}$$

$$\begin{pmatrix} -0.674354u^{11} + 0.991579u^{10} + \dots - 19.6620u + 0.118551 \\ 0.516880u^{11} - 0.642235u^{10} + \dots + 16.6038u + 4.18226 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{7968}{116501}u^{11} + \frac{34084}{116501}u^{10} + \dots - \frac{122912}{116501}u - \frac{631486}{116501}u^{10}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^3 + u^2 + 2u + 1)^4$
c_2	$(u^3 + 3u^2 + 2u - 1)^4$
c_3, c_4, c_8 c_9	$u^{12} - u^{11} + \dots + 24u + 19$
c_6, c_{10}	$(u^2 + u + 1)^6$
c_7	$u^{12} + 5u^{11} + \dots + 96u + 37$
c_{11}	$u^{12} - 3u^{11} + \dots + 18u + 19$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^3 + 3y^2 + 2y - 1)^4$
c_2	$(y^3 - 5y^2 + 10y - 1)^4$
c_3, c_4, c_8 c_9	$y^{12} + 15y^{11} + \dots + 2160y + 361$
c_6, c_{10}	$(y^2 + y + 1)^6$
c_7	$y^{12} + 19y^{11} + \dots - 1224y + 1369$
c_{11}	$y^{12} - 17y^{11} + \dots - 2224y + 361$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.538956 + 0.733343I		
a = 0.564995 + 0.432837I	-3.82135 - 2.02988I	7.01951 + 3.46410I
b = 0.527133 - 0.553665I		
u = -0.538956 - 0.733343I		 -
a = 0.564995 - 0.432837I	-3.82135 + 2.02988I	7.01951 - 3.46410I
b = 0.527133 + 0.553665I		
u = -0.230918 + 0.703145I		
a = -0.20112 + 2.69084I	-7.95893 - 0.79824I	0.490245 - 0.484655I
b = -0.69983 - 1.68387I		
u = -0.230918 - 0.703145I		
a = -0.20112 - 2.69084I	-7.95893 + 0.79824I	0.490245 + 0.484655I
b = -0.69983 + 1.68387I		
u = 0.161517 + 1.387090I		
a = 1.002040 + 0.183839I	-3.82135 + 2.02988I	7.01951 - 3.46410I
b = -1.65945 + 0.10008I		
u = 0.161517 - 1.387090I		
a = 1.002040 - 0.183839I	-3.82135 - 2.02988I	7.01951 + 3.46410I
b = -1.65945 - 0.10008I		
u = -0.22870 + 1.46755I		
a = -1.84111 + 0.39110I	-7.95893 - 4.85801I	0.49024 + 6.44355I
b = 2.46907 - 0.14826I		
u = -0.22870 - 1.46755I		
a = -1.84111 - 0.39110I	-7.95893 + 4.85801I	0.49024 - 6.44355I
b = 2.46907 + 0.14826I		
u = 1.31249 + 1.08009I		
a = -0.043037 - 0.415642I	-7.95893 + 4.85801I	0.49024 - 6.44355I
b = -0.507847 + 0.209151I		
u = 1.31249 - 1.08009I		
a = -0.043037 + 0.415642I	-7.95893 - 4.85801I	0.49024 + 6.44355I
b = -0.507847 - 0.209151I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.02457 + 1.83546I		
a = -0.902821 + 0.085368I	-7.95893 + 0.79824I	0.490245 + 0.484655I
b = 1.370920 + 0.193309I		
u = 0.02457 - 1.83546I		
a = -0.902821 - 0.085368I	-7.95893 - 0.79824I	0.490245 - 0.484655I
b = 1.370920 - 0.193309I		

$$\begin{aligned} \text{III. } I_3^u &= \langle u^7 + 4u^5 - u^4 + 6u^3 - 2u^2 + b + 3u, \ u^7 + 5u^5 - u^4 + 10u^3 - 3u^2 + \\ & a + 7u - 2, \ u^8 + 5u^6 - u^5 + 10u^4 - 3u^3 + 8u^2 - 2u + 1 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} - 5u^{5} + u^{4} - 10u^{3} + 3u^{2} - 7u + 2 \\ -u^{7} - 4u^{5} + u^{4} - 6u^{3} + 2u^{2} - 3u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + 3u^{2} + 4 \\ -u^{7} - 4u^{5} + u^{4} - 6u^{3} + 3u^{2} - 3u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{7} - 9u^{5} + 2u^{4} - 16u^{3} + 5u^{2} - 10u + 2 \\ -u^{7} - 4u^{5} + u^{4} - 6u^{3} + 2u^{2} - 3u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{7} - 9u^{5} + 2u^{4} - 16u^{3} + 5u^{2} - 10u + 2 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{7} + u^{6} + 6u^{5} + 3u^{4} + 12u^{3} + 2u^{2} + 9u - 1 \\ u^{7} + 4u^{5} - u^{4} + 6u^{3} - 2u^{2} + 3u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{7} - 9u^{5} + 2u^{4} - 16u^{3} + 5u^{2} - 9u + 2 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} + 4u^{4} - u^{3} + 7u^{2} - 2u + 3 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} - 5u^{5} + u^{4} - 9u^{3} + 3u^{2} - 6u + 2 \\ -u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} - 5u^{5} + u^{4} - 9u^{3} + 3u^{2} - 6u + 2 \\ -u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^7 + u^6 + 5u^5 + 7u^4 + 10u^3 + 15u^2 + 5u + 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 - u^7 + 3u^6 - 2u^5 + 4u^4 - 2u^3 + 4u^2 - u + 1$
c_2	$u^8 + 5u^7 + 13u^6 + 24u^5 + 32u^4 + 30u^3 + 20u^2 + 7u + 1$
c_3, c_8, c_9	$u^8 + 5u^6 - u^5 + 10u^4 - 3u^3 + 8u^2 - 2u + 1$
c_4	$u^8 + 5u^6 + u^5 + 10u^4 + 3u^3 + 8u^2 + 2u + 1$
<i>C</i> 5	$u^8 + u^7 + 3u^6 + 2u^5 + 4u^4 + 2u^3 + 4u^2 + u + 1$
<i>C</i> ₆	$u^8 - 2u^7 + 3u^5 - 4u^4 + u^3 + 3u^2 - 2u + 1$
c ₇	$u^8 - 2u^7 + 3u^6 + u^5 - 4u^4 + 3u^3 - 2u + 1$
c_{10}	$u^8 + 2u^7 - 3u^5 - 4u^4 - u^3 + 3u^2 + 2u + 1$
c_{11}	$u^8 - 2u^7 + u^5 + 2u^4 - 5u^3 + 6u^2 - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^8 + 5y^7 + 13y^6 + 24y^5 + 32y^4 + 30y^3 + 20y^2 + 7y + 1$
c_2	$y^8 + y^7 - 7y^6 - 4y^5 + 36y^4 + 70y^3 + 44y^2 - 9y + 1$
c_3, c_4, c_8 c_9	$y^8 + 10y^7 + 45y^6 + 115y^5 + 176y^4 + 157y^3 + 72y^2 + 12y + 1$
c_6, c_{10}	$y^8 - 4y^7 + 4y^6 + y^5 + 4y^4 - 13y^3 + 5y^2 + 2y + 1$
c_7	$y^8 + 2y^7 + 5y^6 - 13y^5 + 4y^4 + y^3 + 4y^2 - 4y + 1$
c_{11}	$y^8 - 4y^7 + 8y^6 - 9y^5 + 4y^4 + 5y^3 + 10y^2 + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.333178 + 1.212560I		
a = 0.543877 + 0.445748I	-5.36621 + 1.77463I	0.03179 - 1.94850I
b = -1.43305 - 0.31113I		
u = 0.333178 - 1.212560I		
a = 0.543877 - 0.445748I	-5.36621 - 1.77463I	0.03179 + 1.94850I
b = -1.43305 + 0.31113I		
u = 0.050347 + 1.305130I		
a = 0.079860 + 0.540066I	-1.51415 + 3.01964I	3.37685 - 3.22289I
b = -0.318291 + 0.506872I		
u = 0.050347 - 1.305130I		
a = 0.079860 - 0.540066I	-1.51415 - 3.01964I	3.37685 + 3.22289I
b = -0.318291 - 0.506872I		
u = -0.53500 + 1.45526I		
a = -0.757549 + 0.849919I	-8.16060 - 3.11503I	-0.52239 + 1.94780I
b = 1.119420 - 0.799585I		
u = -0.53500 - 1.45526I		
a = -0.757549 - 0.849919I	-8.16060 + 3.11503I	-0.52239 - 1.94780I
b = 1.119420 + 0.799585I		
u = 0.151478 + 0.362294I		
a = 1.13381 - 1.98717I	1.88148 - 2.34966I	12.61375 + 3.05058I
b = -0.368086 - 0.741932I		
u = 0.151478 - 0.362294I		
a = 1.13381 + 1.98717I	1.88148 + 2.34966I	12.61375 - 3.05058I
b = -0.368086 + 0.741932I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	
c_2	$(u^{3} + 3u^{2} + 2u - 1)^{4}$ $\cdot (u^{8} + 5u^{7} + 13u^{6} + 24u^{5} + 32u^{4} + 30u^{3} + 20u^{2} + 7u + 1)$ $\cdot (u^{13} + 8u^{12} + \dots + 124u - 16)$
c_3, c_8, c_9	$(u^{8} + 5u^{6} + \dots - 2u + 1)(u^{12} - u^{11} + \dots + 24u + 19)$ $\cdot (u^{13} + 9u^{11} + \dots + u - 1)$
c_4	$(u^8 + 5u^6 + \dots + 2u + 1)(u^{12} - u^{11} + \dots + 24u + 19)$ $\cdot (u^{13} + 9u^{11} + \dots + u - 1)$
c_5	$(u^{3} + u^{2} + 2u + 1)^{4}(u^{8} + u^{7} + 3u^{6} + 2u^{5} + 4u^{4} + 2u^{3} + 4u^{2} + u + 1)$ $\cdot (u^{13} - 6u^{12} + \dots + 26u - 4)$
c_6	$(u^{2} + u + 1)^{6}(u^{8} - 2u^{7} + 3u^{5} - 4u^{4} + u^{3} + 3u^{2} - 2u + 1)$ $\cdot (u^{13} - 9u^{12} + \dots + 40u - 8)$
<i>c</i> ₇	$(u^8 - 2u^7 + \dots - 2u + 1)(u^{12} + 5u^{11} + \dots + 96u + 37)$ $\cdot (u^{13} - 2u^{12} + \dots - 7u - 1)$
c ₁₀	$(u^{2} + u + 1)^{6}(u^{8} + 2u^{7} - 3u^{5} - 4u^{4} - u^{3} + 3u^{2} + 2u + 1)$ $\cdot (u^{13} - 9u^{12} + \dots + 40u - 8)$
c_{11}	$(u^8 - 2u^7 + \dots - 3u + 1)(u^{12} - 3u^{11} + \dots + 18u + 19)$ $\cdot (u^{13} - 2u^{12} + \dots - 6u - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{3} + 3y^{2} + 2y - 1)^{4}$ $\cdot (y^{8} + 5y^{7} + 13y^{6} + 24y^{5} + 32y^{4} + 30y^{3} + 20y^{2} + 7y + 1)$ $\cdot (y^{13} + 8y^{12} + \dots + 124y - 16)$
c_2	$(y^3 - 5y^2 + 10y - 1)^4$ $\cdot (y^8 + y^7 - 7y^6 - 4y^5 + 36y^4 + 70y^3 + 44y^2 - 9y + 1)$ $\cdot (y^{13} - 4y^{12} + \dots + 31600y - 256)$
c_3, c_4, c_8 c_9	$(y^{8} + 10y^{7} + 45y^{6} + 115y^{5} + 176y^{4} + 157y^{3} + 72y^{2} + 12y + 1)$ $\cdot (y^{12} + 15y^{11} + \dots + 2160y + 361)(y^{13} + 18y^{12} + \dots - 3y - 1)$
c_6, c_{10}	$(y^{2} + y + 1)^{6}(y^{8} - 4y^{7} + 4y^{6} + y^{5} + 4y^{4} - 13y^{3} + 5y^{2} + 2y + 1)$ $\cdot (y^{13} - 3y^{12} + \dots + 352y - 64)$
c_7	$(y^8 + 2y^7 + 5y^6 - 13y^5 + 4y^4 + y^3 + 4y^2 - 4y + 1)$ $\cdot (y^{12} + 19y^{11} + \dots - 1224y + 1369)(y^{13} + 26y^{12} + \dots + 53y - 1)$
c_{11}	$(y^8 - 4y^7 + 8y^6 - 9y^5 + 4y^4 + 5y^3 + 10y^2 + 3y + 1)$ $\cdot (y^{12} - 17y^{11} + \dots - 2224y + 361)(y^{13} - 24y^{12} + \dots + 50y - 1)$