Chapter 7: Eikonal Equation

Elements of Parallel Computing

Eric Aubanel

Problem

- ► Find continuous shortest path in the plane from given source locations and a speed function.
- Moving fronts (wave propagation): stationary problem if front only passes through a give point once

Eikonal Equation

$$|\nabla U(\mathbf{x})| = \frac{1}{F(\mathbf{x})}, \ \mathbf{x} \in \Re^n,$$

- \triangleright ∇ : gradient, $|\cdot|$: Euclidean norm
- F(x): positive speed function
- ▶ $U(\mathbf{x}) = 0$, $\mathbf{x} \in \Gamma \subset \Re^n$: initial position of the front:
- $ightharpoonup U(\mathbf{x})$: the arrival time at position \mathbf{x}
- ▶ We'll stick to 2D

Discretization

- ▶ Discretize rectangular domain into $(n_i 1) \times (n_j 1)$ squares of length h
- Solve the Eikonal equation at corners of the squares
- ▶ $u_{i,j}$ is initialized to ∞ , except to 0 at boundary (source of the front)
- Add another layer of points around the edge of the domain, with $u_{0,0..n_j+1} = u_{n_i+1,0..n_j+1} = u_{0..n_i+1,0} = u_{0..n_i+1,n_i+1} = \infty$

Example 7×7 Grid

Boundary at center point

100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	0	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100

Numerical Solution: Upwind finite difference

$$\frac{\partial U}{\partial x} pprox \frac{u_{i,j} - u^{imin}}{h}, \ u^{imin} = \min(u_{i-1,j}, u_{i+1,j})$$

Numerical Solution: Discretized Eikonal equation

$$((u_{i,j}-u^{imin})^+)^2+((u_{i,j}-u^{jmin})^+)^2=\frac{h^2}{f_{i,j}^2},$$

where $f_{i,j}$ is the speed function F evaluated at (i,j), and

$$(x)^+ = \begin{cases} x, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Solution of Discretized Equation

$$u_{i,j}^{\text{new}} =$$

$$\begin{cases} \min(u^{imin}, u^{jmin}) + h/f_{i,j}, & |u^{imin} - u^{jmin}| \ge h/f_{i,j}, \\ \frac{u^{imin} + u^{jmin} + \sqrt{2h^2/f_{i,j}^2 - (u^{imin} - u^{jmin})^2}}{2}, & |u^{imin} - u^{jmin}| < h/f_{i,j}. \end{cases}$$

Fast Sweeping Method

Visit the interior points on the grid left to right, a row at a time, starting from the bottom row, replacing $u_{i,j}$ by $u_{i,j}^{\text{new}}$ at each point if $u_{i,j}^{\text{new}} < u_{i,j}$, using F=1 everywhere and h=1

First Sweep

100	100	4	3	3.4422	4.0480	4.7551
100	100	3	2	2.5453	3.2524	4.0480
100	100	2	1	1.7071	2.5453	3.4422
100	100	1	0	1	2	3
100	100	100	1	2	3	4
100	100	100	100	100	100	100
100	100	100	100	100	100	100

©2017 by Taylor & Francis Group, LLC.

Chapter 7: Eikonal Equation

Second Sweep

4.7551	4.0480	3.4422	3	3.4422	4.0480	4.7551
4.0480	3.2524	2.5453	2	2.5453	3.2524	4.0480
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.4422
3	2	1	0	1	2	3
3.7071	2.7071	1.7071	1	1.7071	2.7071	3.7071
5	4	3	2	3	4	5
100	100	100	100	100	100	100

Third Sweep

4.7551	4.0480	3.4422	3	3.4422	4 0480	4.7551
		· · · ·	2	-		
4.0480	3.2524	2.5453	2	2.5453	3.2524	4.0480
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.4422
3	2	1	0	1	2	3
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.5453
4.0480	3.2524	2.5453	2	2.5453	3.4422	4.4422
4.7551	4.0480	3.4422	3	3.5453	4.4422	5.4422

Fourth Sweep

4.7551	4.0480	3.4422	3	3.4422	4.0480	4.7551
4.0480	3.2524	2.5453	2	2.5453	3.2524	4.0480
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.4422
3	2	1	0	1	2	3
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.4422
4.0480	3.2524	2.5453	2	2.5453	3.2524	4.0480
4.7551	4.0480	3.4422	3	3.4422	4.0480	4.7551

2D Fast Sweeping Method

```
Input: Grid spacing h, (n_i + 2) \times (n_j + 2) speed function matrix F, (n_i + 2) \times (n_j + 2) solution matrix U initialized to large value everywhere except boundary (source of front), where it is initialized to 0.
```

Output: Solution matrix *U*

```
while not converged do
```

```
sweep(U, n_i, 1, 1, n_j, F, h) // Northeast
sweep(U, n_i, 1, n_j, 1, F, h) // Northwest
sweep(U, 1, n_i, n_j, 1, F, h) // Southwest
sweep(U, 1, n_i, 1, n_j, F, h) // Southeast
```

end

```
Procedure sweep (U, i_a, i_b, j_a, j_b, F, h)
     if i_b < i_a then step_i = -1 else step_i = 1
     if j_b < j_a then step_i = -1 else step_i = 1
     for i \leftarrow i_a to i_b step step_i do
           for i \leftarrow j_a to j_b step step_i do
                 u_{\text{new}} \leftarrow \text{solveQuadratic}(U, i, j, F, h)
                if u_{\text{new}} < U[i,j] then U[i,j] \leftarrow u_{\text{new}}
           end
     end
end
```

```
Procedure solveQuadratic(U, i, j, F, h)
    // Don't update boundary points
    if U[i,j] \leftarrow 0 then
        return U[i,j]
    end
    a \leftarrow \min(U[i-1,j], U[i+1,j])
    b \leftarrow \min(U[i, i-1], U[i, i+1])
    if |a-b| > h/F[i,j] then
        return min(a, b) +h/F[i, i]
    else
        return (a + b + \sqrt{2 * (h/F[i,j])^2 - (a-b)^2})/2
    end
end
```

Fast Marching Method

- Like a continous Dijkstra algorithm
- Each point visited once
- ▶ Points labelled as KNOWN, BAND, or FAR
- Initially: all points FAR, except for boundary points, which are KNOWN
- ▶ BAND points: neighbours of known points
- ► At each iteration select BAND point with smallest value (becomes KNOWN), compute value of neighbours
- ▶ BAND points stored in an *indexed* priority queue

FMM step 1

```
100
     100
           100
                 100
                       100
                             100
                                   100
100
     100
           100
                 100
                       100
                             100
                                   100
100
                       100
                                   100
     100
           100
                    1
                             100
100
     100
              1
                         1
                             100
                                   100
                    0
100
     100
           100
                       100
                             100
                                   100
100
     100
           100
                 100
                       100
                             100
                                   100
100
     100
           100
                 100
                       100
                             100
                                   100
```

100	100	100	100	100	100
100	100	100	100	100	100
100	100	100	1	100	100
100	100	1	0	1	100
100	100	2	1	2	100
100	100	100	2	100	100
100	100	100	100	100	100

100	100	100	100	100	100
100	100	100	100	100	100
100	100	2	1	100	100
100	2	1	0	1	100
100	100	1.7071	1	2	100
100	100	100	2	100	100
100	100	100	100	100	100

100	100	100	100	100	100
100	2.7071	2	2.7071	100	100
2.5453	1.7071	1	1.7071	2.7071	100
2	1	0	1	2	100
2.5453	1.7071	1	1.7071	2.7071	100
100	2.5453	2	2.5453	100	100
100	100	3	100	100	100

100	100	100	100	100	100
100	2.7071	2	2.7071	100	100
2.5453	1.7071	1	1.7071	2.5453	100
2	1	0	1	2	3
2.5453	1.7071	1	1.7071	2.5453	100
100	2.5453	2	2.5453	100	100
100	100	3	100	100	100

Input: As in FSM, but also with desired width L of solution **Output**: Solution matrix *U* **Data**: $(n_i + 2) \times (n_i + 2)$ matrix G, with possible values KNOWN, BAND, FAR. Initialized to FAR everywhere except boundary, where it is initialized to KNOWN Data: Indexed min priority queue iQmin **foreach** element (i, j) of G such that G[i, j] = KNOWN **do** updateNeighbors(iQmin, U, G, i, j, F, h) end while iQmin is not empty do $(l,m) \leftarrow iQmin.minIndex() // retrieve index of$ element at front of queue if U[I, m] > L then break $G[I, m] \leftarrow KNOWN$ iQmin.delMin() // remove element at front of queue updateNeighbors(iQmin, U, G, i, j, F, h) end

```
Procedure updateNeighbors(iQmin, U, G, i, j, F, h)
    for (1, m) \leftarrow (i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1) do
         if G[I, m] = KNOWN \lor (I, m) outside domain then
         continue
         u_{\text{temp}} \leftarrow \text{solveQuadratic}(G, U, I, m, F, h)
         if u_{temp} < U[I, m] then
              U[I, m] \leftarrow u_{\text{temp}}
              G[I, m] \leftarrow BAND
              if iQmin.contains ((1, m)) then
                   iQmin.change((I, m), u_{temp})// update
                       element in queue
              else
                   iQmin.insert((I, m), u_{temp})// insert
                       element in queue
              end
         end
    end
end
```

```
Procedure solveQuadratic(G, U, i, j, F, h)
    a \leftarrow selectMin(G, U, i + 1, j, i - 1, i)
    b \leftarrow selectMin(G, U, i, i + 1, i, i - 1)
    if a = -1 then
        return b + h/F[i, j]
    else if b = -1 then
        return a + h/F[i, j]
    else if |a-b| > h/F[i,j] then
        return min(a, b) +h/F[i, i]
    else
        return (a+b+\sqrt{2*(h/F[i,j])^2-(a-b)^2})/2
    end
end
```

```
Procedure selectMin(G, U, I, m, p, q)
    x \leftarrow -1
    if G[I, m] = KNOWN \wedge G[p, q] = KNOWN then
         x \leftarrow \min(U[I, m], U[p, q])
    else if G[I, m] \neq \text{KNOWN} \land G[p, q] = \text{KNOWN} then
         x \leftarrow U[p, q]
    else if G[I, m] = KNOWN \wedge G[p, q] \neq KNOWN then
         x \leftarrow U[I, m]
    end
    return x
end
```

Analysis

- ► FSM: $O(n^2)$ for a $n \times n$ grid, number of iterations independent of problem size
- ightharpoonup FMM: $O(n^2 \log n^2)$
- FMM usually faster in practice

Parallel Design Exploration

- Influence of geometry and speed function
- Many independent small problems or a few large problems?
- Strong scaling vs. weak scaling

Parallel FSM

Idea 1: do four sweeps in parallel

4.7551	4.0480	3.4422	3	4	100	100
4.0480	3.2524	2.5453	2	3	100	100
3.4422	2.5453	1.7071	1	2	100	100
3	2	1	0	1	100	100
4	3	2	1	100	100	100
100	100	100	100	100	100	100
100	100	100	100	100	100	100

100	100	100	100	100	100	100
100	100	100	100	100	100	100
4	3	2	1	100	100	100
3	2	1	0	1	100	100
3.4422	2.5453	1.7071	1	2	100	100
4.0480	3.2524	2.5453	2	3	100	100
4.7551	4.0480	3.4422	3	4	100	100

100	100	100	100	100	100	100
100	100	100	100	100	100	100
100	100	100	1	2	3	4
100	100	1	0	1	2	3
100	100	2	1	1.7071	2.5453	3.4422
100	100	3	2	2.5453	3.2524	4.0480
100	100	4	3	3.4422	4.0480	4.7551

Parallel FSM

Idea 2: 2D domain decomposition

100	100	100	3	3.5453	4.2524	5.0480
100	100	100	2	2.7071	3.5453	4.4422
100	100	100	1	2	3	4
3	2	1	0	1	2	3
3.5453	2.7071	2	1	1.7071	2.5453	3.4422
4.2524	3.5453	3	2	2.5453	3.2524	4.0480
5.0480	4.4422	4	3	3.4422	4.0480	4.7551

	4.0480					
4.0480	3.2524	2.5453	2	2.5453	3.2524	4.0480
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.4422
3	2	1	0	1	2	3
3.4422	2.5453	1.7071	1	1.7071	2.5453	3.4422
4.0480	3.2524	2.5453	2	2.5453	3.2524	4.0480
4.7551	4.0480	3.4422	3	3.4422	4.0480	4.7551

Parallel FSM

Idea 3: Reordering sweeps

Parallel FMM: Fast Iterative Method

- Update band elements in parallel
- Update onto copy of grid

100	100	100	100	100	100	100
100	100	100	2	100	100	100
100	100	1.7071	1	1.7071	100	100
100	2	1	0	1	2	100
100	100	1.7071	1	1.7071	100	100
100	100	100	2	100	100	100
100	100	100	100	100	100	100

100	100	100	3	100	100	100
100	100	2.5453	2	2.5453	100	100
100	2.5453	1.7071	1	1.7071	2.5453	100
3	2	1	0	1	2	3
100	2.5453	1.7071	1	1.7071	2.5453	100
100	100	2.5453	2	2.5453	100	100
100	100	100	3	100	100	100