Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head

Crypto'23 Submission 482

Anonymous Authors

August 27, 2023 Presented by Hongrui Cui

1

Motivations

ac^{ılıı}

- Efficient VOLE-based DVZK
- How to transform DVZK to (NI)ZK?
- P.S. Landscape of Efficient Zero Knowledge

_	zk-SNARK, GKR, etc	GCZK	DVZK
Prover Computation	$\Omega(\mathcal{C})$	O(C)	O(C)
Prover Memory	$\Omega(C)$	O(1)	O(1)
Proof Size	$O(\log(C))$	$O(\kappa \cdot \mathcal{C})$	O(C) or $O(w +d)$
Verifier Type	Universal	Designated	Designated
Advantago	Low-Bandwidth	High-Bandwidt	h High-Bandwidth
Advantage	Small Circuit	Large Circuit	Large Circuit
			Polynomials

Main techniques (of DVZK):

- Random (subfield) VOLE
- Low-Degree Test

Contributions

- Observation 1: In DVZK, Verifier is public coin and VOLE output can be delayed to the very end after all communications
- Observation 2: Subspace VOLE (SoftSpokenOT) allows reduction to OT
- Observation 3: OT can be replaced with com-and-open

Performance of the ZK Compilers

Table 1. Comparison of linear-size zero-knowledge proof systems

Protocol	Field*	Model	Comm./gate [†]	Assumption
VOLE-ZK [YSWW21] [‡] VOLE-ZK [DIO21, YSWW21] [‡]	\mathbb{F}_2 \mathbb{F}_p	\deg - d constraints \deg - d constraints	1 1	LPN LPN
Limbo [dOT21] Limbo [dOT21]	\mathbb{F}_2 \mathbb{F}_p	Circuits (free XOR) Circuits (free add)	42 (11) 40 (11)	Hash Hash
VOLE-in-the-head (§E.3) VOLE-in-the-head (§5.1)	\mathbb{F}_2 \mathbb{F}_p	\deg - d constraints \deg - d constraints	16 (5) 3 (2)	Hash Hash

^{*} $p \approx 2^{64}$

[†] Soundness error at most 2^{-128} (2^{-40}). Cost is average number of field elements sent per AND/mult. gate, for a circuit with 2^{20} such gates.

[‡] Designated-verifier only

Preliminary: VOLE as IT-MAC (Linear Commitment)

Sender/ \mathcal{P}

$$\mathbf{a} \in \mathbb{F}_{p^r}^n$$
 (message)

$$\mathbf{b} \in \mathbb{F}_{p^r}^n$$
 (MAC Tag)

IT-MAC [x] := (x, v, b) subject to $v = b + x \cdot \Delta$

- Linear Homomorphism: $[x] + [y] \mapsto [x + y]$
- Open([x]): $\mathcal{P} \to \mathcal{V}$: (x, b), \mathcal{V} checks $\mathbf{v} = \mathbf{b} + \mathbf{x} \cdot \Delta$
- Batched Open:

Receiver/
$$\mathcal{V}$$
 { χ_i } Sender/ \mathcal{P}
 \mathbf{x} , Open([$\sum_i \chi_i \cdot \mathbf{x}_i$])

- lacksquare Opens a different value $ightarrow \mathcal{P}$ guesses Δ
- Soundness error = $\frac{1}{p^r}$

$$f(\mathbf{a}) = f_d(\mathbf{a}) + f_{d-1}(\mathbf{a})... + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + ... + f_0$$

$$= f_d(\mathbf{a})\Delta^d + f_{d-1}(\mathbf{a})\Delta^{d-1} + ... + f_0 + f_r(\mathbf{a}, \mathbf{b})$$

$$a_{1}$$

$$a_{n}$$

$$f$$

$$a_{n+1}$$

$$v = \Delta \cdot \mathbf{a} + \mathbf{b}$$

$$\mathcal{P}$$

$$f(\mathbf{a}) = f_d(\mathbf{a}) + f_{d-1}(\mathbf{a})... + f_0$$

 $f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + ... + f_0$
 $= f_d(\mathbf{a})\Delta^d + f_{d-1}(\mathbf{a})\Delta^{d-1} + ... + f_0 + f_r(\mathbf{a}, \mathbf{b})$

$$g(\mathbf{v}) := f_d(\mathbf{v}) + \Delta f_{d-1}(\mathbf{v}) + ... + \Delta^{d-1} f_1(\mathbf{v}) + \Delta^d f_0 - \Delta^{d-1} \mathbf{v}_{n+1}$$

$$= (f_d(\mathbf{a}) + ... + f_0 - a_{n+1}) \Delta^d + \underbrace{f'_{r,\mathbf{a},\mathbf{b}}(\Delta)}_{\deg(\Delta) < d}$$

$$f(\mathbf{a}) = f_{d}(\mathbf{a}) + f_{d-1}(\mathbf{a}) \dots + f_{0}$$

$$f(\mathbf{v}) = f_{d}(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_{0}$$

$$= f_{d}(\mathbf{a}) \Delta^{d} + f_{d-1}(\mathbf{a}) \Delta^{d-1} + \dots + f_{0} + f_{r}(\mathbf{a}, \mathbf{b})$$

$$g(\mathbf{v}) := f_{d}(\mathbf{v}) + \Delta f_{d-1}(\mathbf{v}) + \dots + \Delta^{d-1} f_{1}(\mathbf{v}) + \Delta^{d} f_{0} - \Delta^{d-1} \mathbf{v}_{n+1}$$

$$= (f_{d}(\mathbf{a}) + \dots + f_{0} - a_{n+1}) \Delta^{d} + f'_{r,\mathbf{a},\mathbf{b}}(\Delta)$$

$$deg(\Delta) < d$$

$$\left\{
 egin{align*}
 & V_1 = a_1 \Delta + b_1 \\
 & V_2 \Delta = a_2 \Delta^2 + b_2 \Delta \\
 & \vdots \\
 & V_{d-1} \Delta^{d-2} = a_{d-1} \Delta^{d-1} + b_{d-1} \Delta^{d-2}
 \end{array}

ight.$$

$$f(\mathbf{a}) = f_d(\mathbf{a}) + f_{d-1}(\mathbf{a}) \dots + f_0$$

$$f(\mathbf{v}) = f_d(\mathbf{v}) + f_{d-1}(\mathbf{v}) + \dots + f_0$$

$$= f_d(\mathbf{a})\Delta^d + f_{d-1}(\mathbf{a})\Delta^{d-1} + \dots + f_0 + f_r(\mathbf{a}, \mathbf{b})$$

$$g(\mathbf{v}) := f_d(\mathbf{v}) + \Delta f_{d-1}(\mathbf{v}) + \dots + \Delta^{d-1} f_1(\mathbf{v}) + \Delta^d f_0 - \Delta^{d-1} v_{n+1}$$

 $= (f_d(\mathbf{a}) + ... + f_0 - a_{n+1})\Delta^d + f'_{r,\mathbf{a},\mathbf{b}}(\Delta)$

$$egin{align*} \Pi_{\mathsf{gen}}^{d-1} & \mathsf{v}_1 = a_1 \Delta + b_1 \ & \mathsf{v}_2 \Delta = a_2 \Delta^2 + b_2 \Delta \ & dots \ & \mathsf{v}_{d-1} \Delta^{d-2} = a_{d-1} \Delta^{d-1} + b_{d-1} \Delta^{d-2} \ \end{pmatrix} + \Rightarrow g^*(\Delta)$$

- Sends collapsed, masked coeff. of $g(\mathbf{v})$
- of $g(\mathbf{v})$ Soundness: $\frac{d}{p}$

 $\deg(\Delta) < d$

Starting Point: Public Coin $\mathcal{F}_{\mathsf{OT}}$ by Com&Open

For public-coin \mathcal{V} , we have public-coin $\binom{2}{1}$ -OT

In particular, we have public-coin random $\binom{N}{N-1}$ -OT with $O(\log N)$ comm.

$$(c, d, \{m_i\}_{i \in [N]}) \leftarrow VC.Com()$$

$$\mathcal{P} \xrightarrow{c} \xrightarrow{X}$$

$$d_x := VC.Open(d, x) \xrightarrow{d_b}$$

Next Step: From $\mathcal{F}_{\bar{1}\text{-OT}}$ to Subspace $\mathcal{F}_{\text{VOLE}}$ (SoftSpokenOT)

From $\mathcal{F}_{\overline{1}\text{-OT}}$ to Subspace $\mathcal{F}_{\text{VOLE}}$ (SoftSpokenOT), Continued

■ Goal: q^{-d} -sound IT-MAC

From \mathcal{F}_{1-OT} to Subspace \mathcal{F}_{VOLE} (SoftSpokenOT), Continued

lacksquare $\mathcal V$ locally sets $\mathsf V=\mathsf V'-\mathsf C\cdot\mathsf H_{\mathcal C}$

$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} V' \\ - \end{bmatrix} - \begin{bmatrix} A \\ \times \end{bmatrix} \begin{bmatrix} G_C \\ + \end{bmatrix} + \begin{bmatrix} C \\ \times \end{bmatrix} \begin{bmatrix} H_C \\ - \end{bmatrix} \times \begin{bmatrix} \Delta_1 \\ \Delta_{n_C} \end{bmatrix}$$

$$= \begin{bmatrix} V \\ - \end{bmatrix} - \begin{bmatrix} A \\ \times \end{bmatrix} \begin{bmatrix} G_C \\ - \end{bmatrix} \times \begin{bmatrix} \Delta_1 \\ - \end{bmatrix} \begin{bmatrix} \Delta_1 \\ -$$

 \blacksquare Consistency Check: Use Linear-UHF to hash and reveal some rows to check $\mathcal{C}\text{-}\Delta\text{-relations}$

Theorem 2. Protocol Π_{sVOLE} securely realizes $\mathcal{F}_{\text{sVOLE}}$ with distinguishing advantage $\binom{n_{\mathcal{C}}}{k_{\mathcal{C}}+1} \cdot \varepsilon$

Half-tree Optimization

Save computation/communication by introducing correlation at each level

GGM Tree

Correlated GGM Tree

$$G_{00}$$
 G_{01} G_{10} G_{11} G_{100} G_{111} G_{110} G_{111}

Expansion:
$$G_{00}||G_{01} = PRG(G_0)$$

Output Costs:
$$N \times RO \text{ or } 2N \times RP$$

Initial Setup:
$$G \leftarrow \mathbb{F}_2^{\kappa}$$

$$G_{00}=\mathsf{H}(G_0), G_{01}=G_0\oplus G_{00}$$

$$N \times RP$$

$$G_0 = k \leftarrow \mathbb{F}_2^{\kappa} \quad G_1 = \Delta - k$$

Optimization?

acilii

- We need $\ell := m + 2\kappa$ random bits for QuickSilver
- Half-tree gives κ bits
- How to expand it into ℓ bits with less than ℓ bit communication?

Scheme	SD Parameters					MPC Parameters			
Scheme	q	m	k	w	d	$ \mathbb{F}_{ ext{poly}} $	$ \mathbb{F}_{ ext{points}} $	t	p
Variant 1	2	1280	640	132	1	2^{11}	2^{22}	6	$\approx 2^{-69}$
Variant 2	2	1536	888	120	6	2^{8}	2^{24}	5	$\approx 2^{-79}$
Variant 3	2^8	256	128	80	1	2^{8}	2^{24}	5	$\approx 2^{-78}$

Table 3: SD and MPC parameters.

n	k	h	Best [34]	$d_{ m conj}$ plain	(f,u)	$d_{ m conj}$	XL hybrid Sec. 4.2
	64770			2	(0,0)	2	<u>103</u>
	32771	1419	99	3	(1159, 2)	2	<u>98</u>
2^{18}		760	95	3	(657, 7)	2	104
2^{16}	7391	389	91	4	(373, 10)	2	108
2^{14}	3482	198	86	6	(197, 11)	2	106
2^{12}	1589	98	83	8	(88, 13)	2	103
2^{10}	652	57	94	12	(54, 9)	2	101

Table 2. Hybrid approach of Section 4.2 over \mathbb{F}_2 (Modeling 2).

$$y = H \times e$$

instance witness length = $m - k$

weight = w

Hongrui Cui · VOLE-in-the-Head

ZK for Polynomial Constraints Over **Small** Fields

Hongrui Cui · VOLE-in-the-Head

The 3-Round Protocol

Protocol $\Pi_{2D\text{-Rep}}^t$

PARAMETERS: Code $C_{\mathsf{Rep}} = [\tau, 1, \tau]_p$ with $\mathbf{G}_{\mathcal{C}} = (1 \dots 1) \in \mathbb{F}_p^{1 \times \tau}$. VOLE size $q = p^r$. Inputs: Polynomials $f_i \in \mathbb{F}_{p^k}[X_1, \dots, X_\ell]_{\leq 2}, i \in [t]$. The prover \mathcal{P} also holds a witness $\mathbf{w} \in \mathbb{F}_p^{\ell}$ such that $f_i(\mathbf{w}) = 0$ for all $i \in [t]$.

Round 1. \mathcal{P} does the following:

1. Call the functionality $\mathcal{F}_{\mathsf{sVOLE}}^{p,q,S_{\Delta},\mathcal{C}_{\mathsf{Rep}},\ell+r\tau,\mathcal{L}}$ and receive $\mathbf{u} \in \mathbb{F}_p^{\ell+r\tau}, \mathbf{V} \in \mathbb{F}_q^{(\ell+r\tau)\times\tau}$.

 \mathcal{V} receives done.

- 2. Compute $\mathbf{d} = \mathbf{w} \mathbf{u}_{[1..\ell]} \in \mathbb{F}_p^{\ell}$ and send \mathbf{d} to \mathcal{V} .
- 3. For $i \in [\ell + 1..\ell + r\tau]$, embed $u_i \hookrightarrow \mathbb{F}_{q^{\tau}}$. For $i \in [\ell + r\tau]$, lift $\mathbf{v}_i \in \mathbb{F}_q^{\tau}$ into $v_i \in \mathbb{F}_{q^{\tau}}$. For $i \in [\ell]$, also embed $w_i \hookrightarrow \mathbb{F}_{q^{\tau}}$.

Round 2. \mathcal{V} sends challenges $\chi_i \in \mathbb{F}_{q^{\tau}}, i \in [t]$.

Round 3. \mathcal{P} does the following:

1. For each $i \in [t]$, compute $A_{i,0}, A_{i,1} \in \mathbb{F}_{q^{\tau}}$ such that

$$c_i(Y) = \bar{f}_i(w_1, \dots, w_n) \cdot Y^2 + A_{i,1} \cdot Y + A_{i,0}.$$

2. Compute

$$u^* = \sum_{i \in [r\tau]} u_i X^{i-1}$$
 $v^* = \sum_{i \in [r\tau]} v_i X^{i-1}$,

where $\mathbb{F}_{q^{\tau}} \simeq \mathbb{F}_p[X]/F(X)$.

3. Compute $\tilde{b} = \sum_{i \in [t]} \chi_i \cdot A_{i,0} + v^* \in \mathbb{F}_{q^{\tau}}$ and $\tilde{a} = \sum_{i \in [t]} \chi_i \cdot A_{i,1} + u^* \in \mathbb{F}_{q^{\tau}}$ and send (\tilde{a}, \tilde{b}) to \mathcal{V} .

Verification. V runs the following check:

- 1. Call $\mathcal{F}_{\mathsf{sVOLE}}^{p,q,S_{\Delta},\mathcal{C}_{\mathsf{Rep}},\ell+r\tau,\mathcal{L}}$ on input (get) and obtain $\Delta \in \mathbb{F}_q^{\tau}$, $\mathbf{Q} \in \mathbb{F}_q^{(\ell+r\tau)\times \tau}$ such that $\mathbf{Q} = \mathbf{V} + \mathbf{u}^T \mathbf{G}_{\mathcal{C}} \mathsf{diag}(\Delta)$.
- 2. Compute $\mathbf{Q}' = \mathbf{Q}_{[1..\ell]} + \mathbf{d}^T \mathbf{G}_{\mathcal{C}} \mathsf{diag}(\boldsymbol{\Delta}) = \mathbf{V}_{[1..\ell]} + \mathbf{w}^T \mathbf{G}_{\mathcal{C}} \mathsf{diag}(\boldsymbol{\Delta})$.
- 3. Lift $\Delta, \mathbf{q}'_1, \ldots, \mathbf{q}'_{\ell}, \mathbf{q}_{\ell+1}, \ldots, \mathbf{q}_{\ell+r\tau} \in \mathbb{F}_q^{\tau}$ into $\Delta, q'_1, \ldots, q'_{\ell}, q_{\ell+1}, \ldots, q_{\ell+r\tau} \in \mathbb{F}_q^{\tau}$.
- 4. For each $i \in [t]$, compute

$$c_i(\varDelta) = \sum_{h \in [0,2]} ar{f}_{i,h}(q_1',\ldots,q_\ell') \cdot \varDelta^{2-h}$$

- 5. Compute $q^* = \sum_{i \in [r\tau]} q_{\ell+i} \cdot X^{i-1}$ such that $q^* = v^* + u^* \Delta$.
- 6. Compute $\tilde{c} = \sum_{i \in [t]} \chi_i \cdot c_i(\Delta) + q^*$.
- 7. Check that $\tilde{c} \stackrel{?}{=} \tilde{a} \cdot \Delta + \tilde{b}$.

Theorem 4. The Protocol $\Pi_{\text{2D-Rep}}^t$ is a ZKPoK with soundness error $\frac{3}{p^{r\tau}}$.

How to Handle Arbitrary C?

- lacksquare For subspace VOLE with general code $[n_{\mathcal{C}},k_{\mathcal{C}},d_{\mathcal{C}}]$ and witness $oldsymbol{w}=\mathbb{F}_p^{oldsymbol{\ell} imes k_{\mathcal{C}}}$
- The committed witness is as follows

$$\ell$$
 $\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} V \end{bmatrix} - \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} G_C \\ n_C \end{bmatrix} \times \begin{bmatrix} \Delta_1 \\ \Delta_{n_C} \end{bmatrix}$
 n_C
 k_C

Problem: Only row-wise linearity

In Rep (κ) , $k_{\mathcal{C}}=1$

Solution: Simulate VOLE in \mathcal{P} 's head once again

 ${\cal V}$ accepts if

- \blacksquare π is valid under Δ'
- The opening of V is correct under diag $(\vec{\Delta})$

The Code-Switching Technique

Protocol Π_{2D-1C}^t

The protocol is parameterized by an $[n_{\mathcal{C}}, k_{\mathcal{C}}, d_{\mathcal{C}}]_p$ linear code \mathcal{C} , set $S_{\Delta} \subset \mathbb{F}_p^{n_{\mathcal{C}}}$ and a leakage space \mathcal{L} (used in $\mathcal{F}_{\text{sVOLE}}$).

INPUTS: Both parties hold a set of polynomials $f_i \in \mathbb{F}_p[X_1, \dots, X_\ell]_{\leq 2}, i \in [t]$. \mathcal{P} also holds a witness $\mathbf{w} \in \mathbb{F}_p^{k_{\mathcal{C}}\ell}$ such that $f_i(\mathbf{w}) = 0$, for all $i \in [t]$.

Round 1. \mathcal{P} does as follows:

- 1. \mathcal{P} and \mathcal{V} call $\mathcal{F}_{\mathsf{sVOLE}}^{p,p,S_{\Delta},\mathcal{C},2\ell+1,\mathcal{L}}$, \mathcal{P} receives $\mathbf{U} \in \mathbb{F}_p^{(2\ell+2) \times k_{\mathcal{C}}}$, $\mathbf{V} \in \mathbb{F}_p^{(2\ell+2) \times n_{\mathcal{C}}}$, while \mathcal{V} gets the message done.
- 2. \mathcal{P} sets $\mathbf{V}_1 = \mathbf{V}_{[1..\ell+1]}, \mathbf{V}_2 = \mathbf{V}_{[\ell+2..2\ell+2]}$ and $\mathbf{R} = \mathbf{U}_{[\ell+2..2\ell+2]}$
- 3. \mathcal{P} commits to its witness by sending $\mathbf{D} = \mathbf{W} \mathbf{U}_{[1..\ell]}$.

Round 2. \mathcal{V} samples $\chi \leftarrow \mathbb{F}_p^t$ and sends it to \mathcal{P} .

Round 3. \mathcal{P} proceeds as follows.

1. For each $i \in [t]$, compute

$$g_i(Y) := \sum_{h \in [0,2]} f_{i,h}(\mathbf{r}_1 + \mathbf{w}_1 \cdot Y, \dots, \mathbf{r}_{\ell} + \mathbf{w}_{\ell} \cdot Y) \cdot Y^{2-h}$$
$$= \sum_{h \in [0,1]} A_{i,h} \cdot Y^h$$

- 2. Compute $\widetilde{\mathbf{b}} = \sum_{i \in [t]} \chi_i \cdot A_{i,0} + \mathbf{r}_{\ell+1}$ and $\widetilde{\mathbf{a}} = \sum_{i \in [t]} \chi_i \cdot A_{i,1} + \mathbf{u}_{1,\ell+1}$, where $\mathbf{u}_{1,i}$ is the *i*th row of \mathbf{U} .
- 3. Send $(\widetilde{\mathbf{b}}, \widetilde{\mathbf{a}})$ to \mathcal{V} .

Round 4. V samples $\Delta' \leftarrow \mathbb{F}_p$ and sends it to the prover.

Round 5. \mathcal{P} sends $\mathbf{S} = \mathbf{R} + \mathbf{U}_{[1..\ell+1]} \cdot \Delta' \in \mathbb{F}_p^{(\ell+1) \times n_{\mathcal{C}}}$ to \mathcal{V} Round 6. \mathcal{V} samples $\boldsymbol{\eta} \leftarrow \mathbb{F}_p^{\ell+1}$ and sends it to \mathcal{P}

Round 7. \mathcal{P} computes $\widetilde{\mathbf{v}} = \boldsymbol{\eta}^{\top} (\mathbf{V}_2 + \mathbf{V}_1 \cdot \Delta')$ and sends it to \mathcal{V} .

Verification. \mathcal{V} runs the following checks.

- 1. Check the constraints:
 - Compute $\mathbf{S}' = \mathbf{S} + \begin{bmatrix} \mathbf{D} \\ 0 \end{bmatrix} \cdot \Delta' = \mathbf{R} + \begin{bmatrix} \mathbf{W} \\ \mathbf{u}_{\ell+1} \end{bmatrix} \cdot \Delta'$.
 - For each $i \in [t]$, compute

$$\mathbf{c}_i(Y) = \sum_{h \in [0,2]} f_{i,h}(\mathbf{s}'_1, \dots, \mathbf{s}'_\ell) \cdot Y^{2-h}.$$

- Let $\widetilde{\mathbf{s}} = \sum_{i \in [t]} \chi_i \cdot \mathbf{c}_i(\Delta') + \mathbf{s}'_{\ell+1}$.
- Check that $\widetilde{\mathbf{s}} = \widetilde{\mathbf{b}} + \widetilde{\mathbf{a}} \cdot \Delta'$.
- 2. Check the opening of S:
 - Call $\mathcal{F}_{\mathsf{sVOLE}}^{p,p,\mathcal{F}_\Delta,\mathcal{C},2\ell+1,\mathcal{L}}$ on input (get) and obtain $\Delta \in \mathbb{F}_p^{n_{\mathcal{C}}}$ and $\mathbf{Q} \in \mathbb{F}_p^{(2\ell+2)\times n_{\mathcal{C}}}$ such that $\mathbf{Q} = \mathbf{V} + \mathcal{C}(\mathbf{U}) \cdot \mathsf{diag}(\Delta)$
 - Set $\mathbf{Q}_1 = \mathbf{Q}_{[1..\ell+1]}$ and $\mathbf{Q}_2 = \mathbf{Q}_{[\ell+2..2\ell+2]}$.
 - Check that

$$oldsymbol{\eta}^{ op}(\mathbf{Q}_2+\mathbf{Q}_1\cdot\Delta')=\widetilde{\mathbf{v}}+oldsymbol{\eta}^{ op}\cdot\mathcal{C}(\mathbf{S})\cdot\mathsf{diag}(oldsymbol{\Delta})$$

Theorem 3. The protocol \prod_{2D-LC}^{t} is a SHVZKPoK with soundness error $\frac{3}{n}+2|S_{\Delta}|^{-d_{C}}$ in the $\mathcal{F}_{\mathsf{sVOLF}}^{p,\mathsf{S}_\Delta,\mathcal{C},2(\ell+2),\mathcal{L}}$ -hybrid model

Use LHL to remove selective failure leackage on Δ

Use LHL to remove selective failure leackage on Δ

Use LHL to remove selective failure leackage on Δ

Use LHL to remove selective failure leackage on Δ

- Use Multiple $\mathcal{F}_{\mathsf{spVOLE}}$ to get sparse **e**
- Use LPN* to expand to pseudorandom u

Com&Open doesn't work when \mathcal{P} is OT receiver

FAEST Signature

- Apply FS transform to Π_{2D-LC}^t scheme
- \blacksquare pk = x, $y \in \mathbb{F}_2^{128}$, sk = $k \in \mathbb{F}_2^{128}$
- Relation: $y = \operatorname{Enc}_k(x)$
- For AES128, S-box is \mathbb{F}_{2^8} inversion, so we can use 2D polynomial to express it

Theorem 5. The Π_{FAEST} protocol, defined as

$$\Pi_{\mathsf{FAEST}} = \mathsf{FS}^{H_{\mathsf{FS}}}[\mathsf{O2C}^{H_{\mathsf{O2C}}}[\Pi_{2D\text{-}Rep\text{-}OT}]],$$

is a zero-knowledge non-interactive proof system in the CRS+RO model with knowledge error

$$\begin{split} 2 \cdot (Q_{\mathsf{FS}} + Q_{\mathsf{Verify}}) \cdot \frac{2}{p^{r\tau}} + M \cdot (Q_{\mathsf{FS}} + Q_{\mathsf{Verify}}) \cdot \mathsf{AdvEB}^{\mathsf{VC}}_{\mathcal{A}'}[Q_{H_{\mathsf{O2C}}}] \\ + \mathsf{AdvDist}^{\mathsf{VC}.\mathsf{Setup},\mathsf{VC}.\mathsf{TSetup}}_{\mathcal{D}}, \end{split}$$

where M is an upper bound on the number of VC commitments sent during a run of $O2C[\Pi_{2D-Rep-OT}]$.

Claimed Performance of FAEST

Scheme	$t_{\mathcal{P}}$ (ms)	$t_{\mathcal{V}} \ \mathrm{(ms)}$	sign (B)	Assumption
SDitH [FJR22b] (fast)	13.40	12.70	17866	$\mathrm{SD}\ \mathbb{F}_2$
SDitH [FJR22b] (short)	64.20	60.70	12102	$\mathrm{SD}\ \mathbb{F}_2$
SDitH [FJR22b] (fast)	6.40	5.90	12115	$\mathrm{SD}~\mathbb{F}_{256}$
SDitH [FJR22b] (short)	29.50	27.10	8481	$SD \mathbb{F}_{256}$
Rainier ₃ [DKR ⁺ 22]	2.96	2.92	6 176	$RAIN_3$
Rainier ₄ [DKR^+22]	3.47	3.42	6816	RAIN_4
Limbo [dOT21] (fast)	2.61	2.25	23264	Hash
Limbo [dOT21] (short)	24.51	21.82	13316	Hash
SPHINCS+-SHA2 [HBD ⁺ 22] (fast)	4.40	0.40	17 088	Hash
SPHINCS+-SHA2 [HBD ⁺ 22] (short)	88.21	0.15	7856	Hash
Falcon-512 [PFH ⁺ 22]	0.11	0.02	666	Lattice
Dilithium2 [LDK ⁺ 22]	0.07	0.03	2420	Lattice
FAEST (this work, fast, $q = 2^8$)	2.28	2.11	6 583	Hash
FAEST (this work, short, $q = 2^{11}$)	11.05	10.18	5559	Hash

Linear Combination Opening

- We can save the C-matrix communication if verifier only need to get a linear combination of the matrix B
- First P and V run Com/OT to get A, B', U'
- For a linear combination \mathbf{r} , P simply sends $\hat{\mathbf{c}} := \mathbf{r}^T \cdot \mathbf{C} \in \mathbb{F}_{2^{\kappa}}^{\tau}$ to the verifier
- Now the two parties can compute

$$\mathbf{r}^{\mathsf{T}} \cdot B = \mathbf{r}^{\mathsf{T}} \cdot \mathsf{A}' + [0||\hat{c}] \cdot \mathsf{diag}(\Delta) + u \cdot [11...1] \cdot \mathsf{diag}(\Delta)$$

Perform consistency check as usual after sending \hat{c}

SD-in-the-Head

- An alternative approach towards Hamming weight checking
- Let S encodes the noise $S(\gamma_i) = \phi(e_i)$ for $i \in [m]$
- Let Q encodes the non-zero positions