Claims:

1. A compound which conforms to the general formula I:

Wherein

W represents a 5 to 7 atoms cycloalkyl or heterocycloalkyl ring;

 $\begin{array}{lll} R_1 \text{ and } R_2 & \text{represent independently hydrogen, } C_1\text{-}C_6\text{-alkyl, } C_2\text{-}C_6\text{-alkenyl, } C_2\text{-}C_6\text{-alkenyl, } C_2\text{-}C_6\text{-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, } C_1\text{-}C_6\text{-alkoxy or } R_1 \text{ and } R_2 \text{ together can form a } C_3\text{-}C_7\text{-cycloalkyl ring, a carbonyl bond } C=0 \text{ or a carbon double bond;} \end{array}$

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, alkynyl, halo-C₁-C₆-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-NR_8R_9$, $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, $-NR_8COR_9$, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl₁-O(C₀-C₆alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃alkylaryl), $-O(C_1-C_3$ -alkylheteroaryl), $-N(C_0-C_6-alkyl)(C_0-C_3$ alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, arylalkyl or

aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

A is azo -N=N-, ethyl, ethenyl, ethynyl, $-NR_8C(=O)-$, $NR_8S(=O)_2-$, $-C(=O)NR_8-$, -S-, -S(=O)-, $-S(=O)_2-$, $-S(=O)_2NR_8-$, -C(=O)-, $-C(=NR_8)NR_9-$, $-NR_8C(=NOR_9)-$

R₃, R₄, R₅ and R₆ independently are as defined above; D, E, F, G and H independently represent a carbon group, oxygen, nitrogen, sulphur or a double bond;

B represents a single bond, $-C(=O)-C_0-C_2-alkyl-$, $-C(=O)-C_2-C_6-alkenyl-$, $-C(=O)-C_2-C_6-alkynyl-$, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2-alkyl-$, $-C(=NR_8)NR_9-S(=O)-C_0-C_2-alkyl-$, $-S(=O)_2-C_0-C_2-alkyl-$, $-S(=O)_2NR_8-C_0-C_2-alkyl-$, $-C(=NOR_8)-C_0-C_2-alkyl-$, or $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$; $-C(=NOR_8)NR_9-C_0-C_2-Alkyl-$;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

2. A compound according to claim 1 having the formula I-A

$$\begin{array}{c|c}
P & A & N & B \\
\hline
R_1 & & R_2
\end{array}$$

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl,

hydroxyalkyl, C_1 - C_6 -alkoxy or R_1 and R_2 together can form a C_3 - C_7 -cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q

are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C_2 - C_6 -alkenyl, alkynyl, halo-C1-C6-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, -NR₈COR₉, -NR₈R₉, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl₁-O(C₀-C₆alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃- $-O(C_1-C_3-alkylheteroaryl)$, $-N(C_0-C_6-alkyl)(C_0-C_3$ alkylaryl). alkylaryl) or $-N(C_0-C_6-alkyl)(C_0-C_3-alkylheteroaryl)$ groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

A

is azo –N=N-, ethyl, ethenyl, ethynyl, -NR₈C(=O)-, NR₈S(=O)₂-, -C(=O)NR₈-, -S-, -S(=O)-, -S(=O)₂-, -S(=O)₂NR₈-, -C(=O)-O-, -O-C(=O)-, -C(=NR₈)NR₉-, C(=NOR₈)NR₉-, -NR₈C(=NOR₉)-, =N-O-, -O-N=CH- or a group aryl or heteroaryl of formula

 R_3 , R_4 , R_5 and R_6 independently are as defined above; D, E, F, G and H independently represent a carbon group, oxygen, nitrogen, sulphur or a double bond;

B represents a single bond, $-C(=O)-C_2-C_6$ -alkenyl-, $-C(=O)-C_2-C_6$ -alkynyl-, $-C(=O)-C_0-C_2$ -alkyl-, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2$ -alkyl-, $-C(=NR_8)NR_9-S(=O)-C_0-C_2$ -alkyl-, $-S(=O)_2-C_0-C_2$ -alkyl-, $-S(=O)_2NR_8-C_0-C_2$ -alkyl-, $-C(=NOR_8)-C_0-C_2$ -alkyl-, $-C(=NOR_8)-C_0-C_2$ -alkyl- or $-C(=NOR_8)NR_9-C_0-C_2$ -alkyl-; $-C(=NOR_8)NR_9-C_0-C_2$ -alkyl-; $-C(=NOR_8)NR_9-C_0-C_2$ -alkyl-; $-C(=NOR_8)NR_9$ -co- $-C_2$ -alky

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

3. A compound according to claim 1 or 2 having the formula I-B

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C₁-C₆-alkoxy or R₁ and R₂ together can form a C₃-C₇-cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₂-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆alkynyl, halo-C1-C6-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, $-NR_8COR_9$, $-NR_8R_9$, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl -O(C₀-C₆alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃alkylaryl), $-O(C_1-C_3$ -alkylheteroaryl), $-N(C_0-C_6-alkyl)(C_0-C_3$ alkylaryl) or $-N(C_0-C_6-alkyl)(C_0-C_3-alkylheteroaryl)$ groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(caryl), -O(heterocyl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H in P & Q represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

D, E and G in A independently are as defined for A in claim 1;

B represents a single bond, $-C(=O)-C_0-C_2$ -alkyl-, $-C(=O)-C_2-C_6$ -alkenyl-, $-C(=O)-C_2-C_6$ -alkynyl-, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2$ -alkyl-, $-C(=NR_8)NR_9-S(=O)-C_0-C_2$ -alkyl-, $-S(=O)_2-C_0-C_2$ -alkyl-, $-S(=O)_2NR_8-C_0-C_2$ -alkyl-, $-C(=NOR_8)-C_0-C_2$ -alkyl-, $-C(=NOR_8)-C_0-C_2$ -alkyl- or $-C(=NOR_8)NR_9-C_0-C_2$ -alkyl-; $-C(=NOR_8)NR_9-C_0-C_2$

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

4. A compound according to claim 1 or 2 having the formula I-C

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkyl, arylalkyl, heteroarylalkyl, hydroxy, hydroxyalkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, C₂-C₆-alkyl, C₁-C₆-alkyl, C₂-C₆-alkyl, C₂-

alkoxy or R₁ and R₂ together can form a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C_2 - C_6 -alkenyl, alkynyl, halo-C₁-C₆-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, $-NR_8R_9$ OR_8 $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, or heteroaryl ring; wherein each ring is optionally further aryl substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl -O(C₀-C₆alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3- $-O(C_1-C_3$ -alkylheteroaryl), alkylaryl). $-N(C_0-C_6-alkyl)(C_0-C_3-alkyl)$ alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(caryl), -O(heterocycloalkyl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl), -N(C_0 - C_6 -alkyl) (aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

B represents a single bond, $-C(=O)-C_0-C_2-alkyl-$, $-C(=O)-C_2-C_6-alkenyl-$, $-C(=O)-C_2-C_6-alkynyl-$, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2-alkyl-$, $-C(=NR_8)NR_9-S(=O)-C_0-C_2-alkyl-$, $-S(=O)_2-C_0-C_2-alkyl-$, $-S(=O)_2-C_0-C_2-alkyl-$, $-C(=NOR_8)-C_0-C_2-alkyl-$ or $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$; $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

5. A compound according to claim 1 or 2 having the formula I-D

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, N(=NR₁₀)NR₈R₉, -NR₈COR₉, NR₈CO₂R₉, NR₈SO₂R₉, -NR₁₀CO NR₈R₉, -S(=O)₂R₈, -S(=O)₂R₈, -S(=O)₂NR₈R₉, -C(=O)₂R₈, -C(=O)₂NR₈R₉, -C(=NR₈)R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃-alkylaryl), -O(C₁-C₃-alkylheteroaryl), -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylheteroaryl) groups;

R₈, R₉, R₁₀ each independently is hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, heterocycloalkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C₀-C₆-alkyl)(C₀-C₆-alkyl),-N(C₀-C₆-alkyl)(C₃-C₇-cycloalkyl) or -N(C₀-C₆-alkyl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

6. A compound according to claim 1 or 2 having the formula I-E

SUBSTITUTE SHEET (RULE 26)

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₇-cycloalkylalkyl, C₃-C₆-cycloalkyl, C_2 - C_6 -alkenyl, alkynyl, halo-C₁-C₆-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-NR_8R_9$, $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, $-NR_8COR_9$, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl -O(C₀-C₆alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃alkylaryl), $-O(C_1-C_3-alkylheteroaryl)$, $-N(C_0-C_6-alkyl)(C_0-C_3-alkyl)$ alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_9 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(caryl), -O(heterocycloalkyl), -N(C_9 - C_6 -alkyl)(C_9 - C_6 -alkyl), -N(C_9 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_9 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=$ C(R_4)-,-C(=O)-,-C(=S)-, -O-, -N=, $-N(R_3)$ - or -S-;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

7. A compound according to claim 1 or 2 having the formula I-F

P and Q are each independently selected and denote a cyclolkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyl, C₃-C₇-cycloalkylalkyl, alkynyl, halo-C1-C6-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-NR_8R_9$, $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C6-alkyl -O(C0-C6alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃- $-O(C_1-C_3$ -alkylheteroaryl), $-N(C_0-C_6-alkyl)(C_0-C_3-alkyl)$ alkylaryl). alkylaryl) or $-N(C_0-C_6-alkyl)(C_0-C_3-alkylheteroaryl)$ groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_9 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heterocyl), -N(C_9 - C_6 -alkyl)(C_9 - C_6 -alkyl),-N(C_9 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_9 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

8. A compound according to claim 1 having the formula I-G

$$\begin{array}{c|c}
P & A & B \\
\hline
P & I-G & R_2
\end{array}$$

 R_1 and R_2

represent independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C_1 - C_6 -alkoxy or R_1 and R_2 together can form a C_3 - C_7 -cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q

are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₁-C₆-alkenyl, C₁-C₆-alkynyl, halo-C₁-C₆-alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, N(=NR₁₀)NR₈R₉, -NR₈COR₉, NR₈CO₂R₉, NR₈SO₂R₉, -NR₁₀CO NR₈R₉, -SR₈, -S(=O)₂R₈, -S(=O)₂R₈, -S(=O)₂NR₈R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃-alkylaryl), -O(C₁-C₃-alkylheteroaryl), -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) groups;

 $R_8,\ R_9,\ R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-}alkyl,\ C_3\text{-}C_6\text{-}cycloalkyl,\ C_3\text{-}C_7\text{-}cycloalkylalkyl,\ C_2\text{-}C_6\text{-}alkenyl,\ C_2\text{-}C_6\text{-}alkynyl,\ halocycloalkyl,\ heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which is optionally substituted with 1-5 independent halogen, -CN, <math display="inline">C_1\text{-}C_6\text{-}alkyl,\ -O(C_0\text{-}C_6\text{-}alkyl),\ -O(aryl),\ -O(beteroaryl),\ -N(C_0\text{-}C_6\text{-}alkyl)(C_0\text{-}C_6\text{-}alkyl),\ -N(C_0\text{-}C_6\text{-}alkyl)(C_3\text{-}C_7\text{-}cycloalkyl)\ or\ -N(C_0\text{-}C_6\text{-}alkyl)(aryl)\ substituents;$

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

A is azo -N=N-, ethyl, ethenyl, $-NR_8C(=O)-$, $NR_8S(=O)_2-$, $-C(=O)NR_8-$, -S-, -S(=O)-, $-S(=O)_2-$, $-S(=O)_2NR_8-$, -C(=O)-O-, -O-C(=O)-, $-C(=NR_8)NR_9-$, $-NR_8C(=NOR_9)-$

 R_3 , R_4 , R_5 and R_6 independently are as defined above; D, E, F, G and H independently represent a carbon group, oxygen, nitrogen, sulphur or a double bond;

J represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(aryl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

9. A compound according to claim 1 or 8 having the formula I-H

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C₁-C₆-alkoxy or R₁ and R₂ together can form a C₃-C₇-cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, N(=NR₁₀)NR₈R₉, -NR₈COR₉, NR₈CO₂R₉, NR₈SO₂R₉, -NR₁₀CO NR₈R₉, -S(=O)R₈, -S(=O)₂R₈, -S(=O)₂NR₈R₉, -C(=O)₂R₈, -C(=O)₂NR₈R₉, -C(=NR₈)R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃-alkylaryl), -O(C₁-C₃-alkylheteroaryl), -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H in P & Q represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

D,E and G in A are independently as defined for A in claim 1;

B represents a single bond, $-C(=O)-C_0-C_2-alkyl-$, $-C(=O)-C_2-C_6-alkenyl-$, $-C(=O)-C_2-C_6-alkynyl-$, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2-alkyl-$, $-C(=NR_8)NR_9-S(=O)-C_0-C_2-alkyl-$, $-S(=O)_2-C_0-C_2-alkyl-$, $-S(=O)_2NR_8-C_0-C_2-alkyl-$, $-C(=NOR_8)-C_0-C_2-alkyl-$ or $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$; $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$

represents $-C(R_{11}, R_{12}), -O_{-}, -N(R_{11})$ - or -S-;

J

 $R_{11},\ R_{12}$ independently are hydrogen, $C_1\text{-}C_6\text{-}alkyl,\ C_3\text{-}C_6\text{-}cycloalkyl,\ C_3\text{-}C_7\text{-}cycloalkylalkyl,\ C_2\text{-}C_6\text{-}alkenyl,\ C_2\text{-}C_6\text{-}alkynyl,\ halo-}C_1\text{-}C_6\text{-}alkyl,\ heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which\ is\ optionally\ substituted\ with\ 1-5\ independent\ halogen,\ -CN,\ C_1\text{-}C_6\text{-}alkyl,\ -O(C_0\text{-}C_6\text{-}alkyl),\ -O(C_3\text{-}C_7\text{-}cycloalkylalkyl),\ -O(aryl),\ -O(heteroaryl),\ -N(C_0\text{-}C_6\text{-}alkyl)(C_0\text{-}C_6\text{-}alkyl),\ -N(C_0\text{-}C_6\text{-}alkyl)(C_3\text{-}C_7\text{-}cycloalkyl)\ or\ -N(C_0\text{-}C_6\text{-}alkyl)(aryl)\ substituents;$

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

10. A compound according to claim 1 or 8 having the formula I-I

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, hydroxyalkyl, C₁-C₆-alkoxy or R₁ and R₂ together can form a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 C_3 -alkylheteroaryl), $-N(C_0-C_6$ -alkyl)(C_0-C_3 -alkylaryl) or $-N(C_0-C_6$ -alkyl)(C_0-C_3 -alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=$ C(R_4)-,-C(=O)-,-C(=S)-, -O-, -N=, -N(R_3)- or -S-;

B represents a single bond, $-C(=O)-C_0-C_2-alkyl-$, $-C(=O)-C_2-C_6-alkenyl-$, $-C(=O)-C_2-C_6-alkynyl-$, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2-alkyl-$, $-C(=NR_8)NR_9-S(=O)-C_0-C_2-alkyl-$, $-S(=O)_2-C_0-C_2-alkyl-$, $-S(=O)_2NR_8-C_0-C_2-alkyl-$, $-C(=NOR_8)-C_0-C_2-alkyl-$ or $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$; $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$

J represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

11. A compound according to claim 1 or 8 having the formula I-J

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-C(=NR_{10})NR_8R_9$ $N(=NR_{10})NR_8R_9$ -NR₈R₉, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl -O(C₀-C₆-alkyl), -O(C₃-C₇cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃-alkylaryl), -O(C₁- C_3 -alkylheteroaryl), $-N(C_0-C_6$ -alkyl)(C_0-C_3 -alkylaryl) or $-N(C_0-C_6-C_6)$ alkyl)(C₀-C₃-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

J represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

12. A compound according to claim 1 or 8 having the formula I-K

P and Q

are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C_2 - C_6 -alkenyl, alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, - $-C(=NR_{10})NR_8R_9$ OR₈, $-NR_8R_9$ $N(=NR_{10})NR_8R_9$ $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)R_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=NR_8)R_9$, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1- C_3 -alkylheteroaryl), $-N(C_0-C_6$ -alkyl)(C_0-C_3 -alkylaryl) or $-N(C_0-C_6$ alkyl)(C₀-C₃-alkylheteroaryl) groups;

 $R_8,\ R_9,\ R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-alkyl},\ C_3\text{-}C_6\text{-cycloalkyl},\ C_3\text{-}C_7\text{-cycloalkylalkyl},\ C_2\text{-}C_6\text{-alkenyl},\ C_2\text{-}C_6\text{-alkynyl},\ halo-C_1\text{-}C_6\text{-alkyl},\ heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which is optionally substituted with 1-5 independent halogen, -CN, C_1\text{-}C_6\text{-alkyl}, -O(C_0\text{-}C_6\text{-alkyl}), -O(C_3\text{-}C_7\text{-cycloalkylalkyl}), -O(aryl), -O(heteroaryl), -N(C_0\text{-}C_6\text{-alkyl})(C_0\text{-}C_6\text{-alkyl}),-N(C_0\text{-}C_6\text{-alkyl})(C_3\text{-}C_7\text{-cycloalkyl})\ or\ -N(C_0\text{-}C_6\text{-alkyl})(aryl)\ substituents;$

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=$ C(R_4)-,-C(=O)-,-C(=S)-, -O-, -N=, -N(R_3)- or -S-;

represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(aryl),

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

13. A compound according to claim 1 or 8 having the formula I-L

$$P$$
 R_3
 $I-L$
 Q

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, N(=NR₁₀)NR₈R₉, -NR₈COR₉, NR₈CO₂R₉, NR₈SO₂R₉, -NR₁₀CO NR₈R₉, -SR₈, -S(=O)₂R₈, -S(=O)₂R₈, -S(=O)₂NR₈R₉, -C(=O)₈, -C(=O)₂R₈, -C(=O)NR₈R₉, -C(=NR₈)R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃-alkylaryl), -O(C₁-C₃-alkylheteroaryl), -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) groups;

 $R_8,\ R_9,\ R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-alkyl},\ C_3\text{-}C_6\text{-cycloalkyl},\ C_3\text{-}C_7\text{-cycloalkylalkyl},\ C_2\text{-}C_6\text{-alkenyl},\ C_2\text{-}C_6\text{-alkynyl},\ halo-C_1\text{-}C_6\text{-alkyl},\ heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which is optionally substituted with 1-5 independent halogen, -CN, C_1\text{-}C_6\text{-alkyl}, -O(C_0\text{-}C_6\text{-alkyl}),\ -O(C_3\text{-}C_7\text{-cycloalkylalkyl}),\ -O(aryl),\ -O(heteroaryl),\ -N(C_0\text{-}C_6\text{-alkyl})(C_0\text{-}C_6\text{-alkyl}),\ -N(C_0\text{-}C_6\text{-alkyl})(C_3\text{-}C_7\text{-cycloalkyl})\ or\ -N(C_0\text{-}C_6\text{-alkyl})(aryl)\ substituents;$

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

represents $-C(R_{11}, R_{12})$, $-O_-$, $-N(R_{11})$ - or $-S_-$; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

14. A compound according to claim 1 or 8 having the formula I-M

$$\begin{array}{c|c}
P & N & O \\
\hline
N & N & O \\
\hline
I-M & O \\
\end{array}$$

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, N(=NR₁₀)NR₈R₉, -NR₈COR₉, NR₈CO₂R₉, NR₈SO₂R₉, -NR₁₀CO NR₈R₉, -SR₈, -S(=O)R₈, -S(=O)₂R₈, -S(=O)₂NR₈R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C₁-C₃-alkylaryl), -O(C₁-C₃-alkylheteroaryl), -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) or -N(C₀-C₆-alkyl)(C₀-C₃-alkylaryl) groups;

R₈, R₉, R₁₀ each independently is hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-

 C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(beteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(aryl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

15. A compound according to claim 1 or 8 having the formula I-N

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

$$R_3$$
 R_4
 R_5
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_7
 R_8
 R_9
 R_9

R₃, R₄, R₅, R₆, and R₇ independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, N(=NR₁₀)NR₈R₉, -NR₈COR₉, NR₈CO₂R₉, NR₈SO₂R₉, -NR₁₀CO NR₈R₉, -SR₈, -S(=O)₂R₈, -S(=O)₂R₈, -S(=O)₂NR₈R₉, -C(=O)₂R₈, -C(=O)₂NR₈R₉, -C(=NR₈)R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are

combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C_1 - C_3 -alkylaryl), -O(C_1 - C_3 -alkylheteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylheteroaryl) groups;

R₈, R₉, R₁₀ each independently is hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆-alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C₁-C₆-alkyl, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C₀-C₆-alkyl)(C₀-C₆-alkyl),-N(C₀-C₆-alkyl)(C₃-C₇-cycloalkyl) or -N(C₀-C₆-alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=$ C(R₄)-,-C(=O)-,-C(=S)-, -O-, -N=, -N(R₃)- or -S-;

represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(beteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

- 16. A compound according to claims 1 to 15, which can exist as optical isomers, wherein said compound is either the racemic mixture or the individual optical isomers.
- 17. A compound according to claims 1 to 16, wherein said compounds are selected from:
 - (4-Fluoro-phenyl)-[3-(4-fluoro-phenylethynyl)-piperidin-1-yl]-methanone
 - (4-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-4H-[1,2,4]triazol-3-yl]-piperidin-1-yl}-methanone
 - (S)-(4-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
 - (S)-(thiophen-2-yl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
 - {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-methyl-2-pyrazin-2-yl-thiazol-5-yl)-methanone

- (2,4-Difluoro-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(3,4,5-trifluoro-phenyl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(5-pyridin-2-yl-thiophen-2-yl)-methanone
- Cyclopentyl-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (3,4-Difluoro-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- Benzothiazol-6-yl-{(S)-3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (3,5-Dimethyl-isoxazol-4-yl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-{(S)-3-[3-(2,4,6-trifluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-pyridin-3-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-pyridin-4-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- {(S)-3-[3-(2,4-Difluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-fluoro-phenyl)-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- (4-Fluoro-phenyl)-{(S)-3-[3-(2-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-pyridin-2-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- (4-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,3,4]oxadiazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{(S)-3-[2-(3,4-difluoro-phenyl)-1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-{2-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-morpholin-4-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-thiophen-3-yl-methanone
- (4-Fluoro-phenyl)-[3-(5-phenyl-tetrazol-2-yl)-piperidin-1-yl]-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- (3,4-Difluoro-phenyl)-[(S)-3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- 18. A compound according to claims 1 to 16, wherein said compounds are selected from:
 - {3-[3-(4-Methoxy-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-phenyl-methanone
 - {3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-phenyl-methanone (4-Fluoro-phenyl)-[3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone

- (3-Fluoro-phenyl)-[3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- (4-Fluoro-phenyl)-{3-[3-(3-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (3-Fluoro-phenyl)-{3-[3-(3-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (3-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (R)-(4-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-4-methyl-4H-[1,2,4]triazol-3-yl]-piperidin 1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-l}-(2-phenyl-thiazol-4-yl)-methanone
- {{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-
- [1,2,3]thiadiazol-4-yl-methanone
- Benzothiazol-2-yl-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(5-methyl-isoxazol-3-yl)-methanone
- (1,5-Dimethyl-1H-pyrazol-3-yl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-trifluoromethyl-phenyl)-methanone
- 4-{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidine-1-carbonyl}-benzonitrile
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-isoxazol-5-yl-methanone
- (3-Chloro-4-fluoro-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(2-phenyl-2H-pyrazol-3-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(5-methyl-2-phenyl-2H-[1,2,3]triazol-4-yl)-methanone
- (4-Fluoro-3-methyl-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(3-methyl-thiophen-2-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(1-methyl-1H-pyrrol-2-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-thiazol-2-yl-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(4-methyl-thiazol-5-yl)-methanone

- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(6-morpholin-4-yl-pyridin-3-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(1H-indol-5-yl)-methanone
- 2-(4-Fluoro-phenyl)-1-{(S)-3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-ethanone
- 3-(4-Fluoro-phenyl)-1-{(S)-3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-propan-1-one
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-isoquinolin-3-yl-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-quinoxalin-6-yl-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-benzoimidazol-6-yl-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-naphthalen-1-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- {(S)-3-[3-(2,6-Difluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-fluoro-phenyl)-methanone
- (4-Fluoro-phenyl)-{(S)-3-[3-(2-methoxy-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-naphthalen-2-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone
- (4-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-4-methyl-piperazin-1-yl}-methanone
- (S)-1-(4-Fluoro-benzoyl)-piperidine-3-carboxylic acid (4-fluoro-phenyl)-amide
- (S)-1-(4-Fluoro-benzoyl)-piperidine-3-carboxylic acid (4-fluoro-phenyl)-methylamide.
- (E)-3-(4-Fluoro-phenyl)-1-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-propenone
- 1-(4-{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidine-1-carbonyl}-piperidin-1-yl)-ethanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-imidazol-1-yl-phenyl)-methanone
- (4-Fluoro-phenyl)-{(S)-3-[3-(4-nitro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (3,4-Difluoro-phenyl)-{(S)-3-[3-(4-nitro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- 19. A compound according to claims 1 to 16, wherein said compounds are selected from:
- (4-fluorophenyl)-{(S)-3-[5-(4-fluorophenyl)isoxazol-3-yl]piperidin-1-yl}methanone (4-fluorophenyl)-{(S)-3-[5-(4-fluorophenyl)-1H-imidazol-2-yl]piperidin-1-
- yl)methanone
- (4-fluorophenyl)-{(S)-3-[4-(4-fluorophenyl)-1H-imidazol-1-yl]piperidin-1-yl}methanone

(4-fluorophenyl)-{(S)-3-[4-(4-fluorophenyl)-1H-pyrazol-1-yl]piperidin-1-yl}methanone

N-(1-(4-fluorobenzoyl)piperidin-3-yl)-4-fluorobenzamid

- (2-Fluoro-phenyl)-{3-[2-(4-fluoro-phenyl)-oxazol-5-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-oxazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-thiazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[2-(4-fluoro-phenyl)-thiazol-5-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone
- (2-fluorophenyl)(3-(5-(4-fluorophenyl)isoxazol-3-yl)piperidin-1-yl)methanone
- (2-fluorophenyl)(3-(5-(4-fluorophenyl)-1H-imidazol-2-yl)piperidin-1-yl)methanone
- (2-fluorophenyl)(3-(4-(4-fluorophenyl)-1H-imidazol-1-yl)piperidin-1-yl)methanone
- (2-fluorophenyl)(3-(4-(4-fluorophenyl)-1H-pyrazol-1-yl)piperidin-1-yl)methanone
- N-(1-(4-fluorobenzoyl)piperidin-3-yl)-2-fluorobenzamid
- (2-Fluoro-phenyl)-{3-[2-(3,4-fluoro-phenyl)-oxazol-5-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-oxazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-thiazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[2-(3,4-fluoro-phenyl)-thiazol-5-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-[1,3,4]thiadiazol-2-yl]-piperidin-1-yl}-methanone
- (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone
- (2-fluorophenyl)(3-(5-(3,4-fluorophenyl)isoxazol-3-yl)piperidin-1-yl)methanone
- (2-fluorophenyl)(3-(5-(3,4-fluorophenyl)-1H-imidazol-2-yl)piperidin-1-yl)methanone
- (2-fluorophenyl)(3-(4-(3,4-fluorophenyl)-1H-imidazol-1-yl)piperidin-1-yl)methanone
- (2-fluorophenyl)(3-(4-(3,4-fluorophenyl)-1H-pyrazol-1-yl)piperidin-1-yl)methanone
- N-(1-(3,4-fluorobenzoyl)piperidin-3-yl)-2-fluorobenzamid.
- 20. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claims 1 to 19 and pharmaceutically acceptable carriers and/or excipients.
- 21. A method of treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of mGluR5 allosteric modulators, comprising administering to a mammal in need of such treatment or prevention, an effective amount of a compound/composition according to claims 1 to 20.
- 22. A method of treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of mGluR5 positive allosteric modulators (enhancer), comprising administering to a mammal in need of such treatment or prevention, an effective amount of a compound according to claims 1 to 20.

- 23. A method useful for treating or preventing central nervous system disorders selected from the group consisting of anxiety disorders: Agoraphobia, Generalized Anxiety Disorder (GAD), Obsessive-Compulsive Disorder (OCD), Panic Disorder, Posttraumatic Stress Disorder (PTSD), Social Phobia, Other Phobias, Substance-Induced Anxiety Disorder, comprising administering an effective amount of a compound according to claims 1 to 20.
- 24. A method useful for treating or preventing central nervous system disorders selected from the group consisting of childhood disorders: Attention-Deficit/Hyperactivity Disorder), comprising administering an effective amount of a compound according to claims 1 to 20.
- 25. A method useful for treating or preventing central nervous system disorders selected from the group consisting of eating Disorders (Anorexia Nervosa, Bulimia Nervosa), comprising administering an effective amount of a compound according to claims 1 to 20.
- 26. A method useful for treating or preventing central nervous system disorders selected from the group consisting of mood disorders: Bipolar Disorders (I & II), Cyclothymic Disorder, Depression, Dysthymic Disorder, Major Depressive Disorder, Substance-Induced Mood Disorder, comprising administering an effective amount of a compound according to claims 1 to 20.
- 27. A method useful for treating or preventing central nervous system disorders selected from the group consisting of psychotic disorders: Schizophrenia, Delusional Disorder, Schizoaffective Disorder, Schizophreniform Disorder, Substance-Induced Psychotic Disorder, comprising administering an effective amount of a compound according to claims 1 to 20.
- 28. A method useful for treating or preventing central nervous system disorders selected from the group consisting of cognitive disorders: Delirium, Substance-Induced Persisting Delirium, Dementia, Dementia Due to HIV Disease, Dementia Due to Huntington's Disease, Dementia Due to Parkinson's Disease, Dementia of the Alzheimer's Type, Substance-Induced Persisting Dementia, Mild Cognitive Impairment, comprising administering an effective amount of a compound according to claims 1 to 20.
- 29. A method useful for treating or preventing central nervous system disorders selected from the group consisting of personality disorders: Obsessive-Compulsive Personality Disorder, Schizoid, Schizotypal disorder, comprising administering an effective amount of a compound according to claims 1 to 20.

WO 2005/044797 PCT/IB2004/003822

- 30. A method useful for treating or preventing central nervous system disorders selected from the group consisting of substance-related disorders: Alcohol abuse, Alcohol dependence, Alcohol withdrawal, Alcohol withdrawal delirium, Alcohol-induced psychotic disorder, Amphetamine dependence, Amphetamine withdrawal, Cocaine dependence, Cocaine withdrawal, Nicotine dependence, Nicotine withdrawal, Opioid dependence, Opioid withdrawal, comprising administering an effective amount of a compound according to claims 1 to 20.
- 31. Use of a compound according to claims 1 to 20 in the manufacture of a medicament for a treatment or prevention as defined in any of claims 23 to 28.
- 32. The use of the compounds of the invention to prepare tracers for imaging metabotropic glutamate receptors.