Precise Dependence Partitioning Algoritm

Archana Kale*

Supratim Biswas[†]
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

IS is the Iteration Space of a Loop. This algorithms generates PDP partition as Set of Components i.e. $P = \{C\}$. Each component is a Set of Dependent Iterations $i \in IS = [l, u]$. This solves LDE ax + by = c. The inputs to the algorithm are:

- $a \Rightarrow$ coefficient of x.
- $b \Rightarrow$ coefficient of y.
- $c \Rightarrow$ constant on the RHS for LDE.
- $l \Rightarrow$ Lower Bound.
- $u \Rightarrow \text{Upper Bound}$.

1 Formation of Components

The objective of this section is to formulate the structure of a C and relationship between its constituent iterations. The solutions, to LDE in parametric form, are $\{(\alpha - mb), (\alpha + ma)\}$, where m is an integer and $\{\alpha, \alpha\}$ is a particular solution form Cs of length 2.

Longer Cs are formed if m is a multiple of a or b (m = qa) or (m = qb). As $(\alpha + qab)$ is a common iteration of $\{(\alpha - qbb), (\alpha + qab)\}$ and $\{(\alpha + qab), (\alpha - qaa)\}$ longer $C = \{(\alpha - qbb), (\alpha + qab), (\alpha - qaa)\}$ is formed.

The general structure of Cs of length l+1 where m is not a multiple of a or b is: $\{(\alpha \pm ma^l), (\alpha \mp ma^{l-1}b), (\alpha \pm ma^{l-2}b^2),, (\alpha \pm (-1)^{l-2}.ma^2b^{l-2}), (\alpha \pm (-1)^{l-1}.mab^{l-1}), (\alpha \pm (-1)^{l}.mb^l)\}$

An iteration i, of a component C, is defined to be a seed of C if all the iterations of C can be generated using i. Seed is a representative iteration of a C which can generate it. For a single LDE single LOOP case, all iterations are seeds of corresponding Cs. If α is not an integer, C and seeds are computed using particular solution $\{\beta,\gamma\}$ of LDE as: $\{(\beta-mb), (\gamma+ma)\}$.

2 PD for 2 variable LDE

The following 2 results, known for 2 variable LDE L and its solution S, provide the basis for the correctness of PDP for Type 1 LDEs.

^{*}archanak@cse.iitb.ac.in

[†]sb@cse.iitb.ac.in

Algorithm for PDP submitted to PACT 2015

Draft—Do not Distribute

- 1. All the dependent iterations in L are elements of S. (i.e if iterations i_1 and i_2 are dependent then $(i_1, i_2) \in S$ or $(i_2, i_1) \in S$.
- 2. All elements in S represent dependent iterations in L. i.e if $(i_1, i_2) \in S$ or $(i_2, i_1) \in S$ then iterations i_1 and i_2 are dependent.

3 Non-Integer α

If $\alpha = c/(a+b)$ exists and is not an integer, solutions for ax + by = c can be computed from specific solutions of ax + by = 0.

Solution of ax + by = c(a + b) can be translated from solutions of solution of ax + by = 0 for $\alpha = c$.

Result to be proved:

If S^0 is the solution of ax + by = c where, $(a + b) \not| c$ and

If S^t is the solution of ax + by = c(a + b), then establish relation between S^t and S^0 .

PROOF of $S^t = f_1(S^0)$ Let $(x', y') \in S^0$, then $(x'(a+b), y'(a+b)) \in S^t$. $\therefore \forall (x', y') \in S^0$, $(x'(a+b), y'(a+b)) \in S^t$. f_1 is one-to-one function.

PROOF of $S^0 = f_2(S^t)$

Let (x^n, y^n) be a solution of ax + by = c(a + b).

If $((a+b)|x^n)$ AND $((a+b)|y^n)$ then $(x^n/(a+b), y^n/(a+b))$ will be a solution of ax + by = c. Function f_2 is defined only for a subset of domain S^t .

Thus all solutions of 2 variable LDEs having $\alpha \notin Z$ can be obtained from ax + by = 0.

4 Algorithm for All-C-Size2

This is the case when a * b == 1, i.e. the LDE is of form x + y = c. The Steps are:

- 1. $k_1 = c/2$.
- 2. if $(k_1 \in Z)$, $k_2 = k_1$. else $k_2 = k_1 + 0.5$, $k_1 = k_1 - 0.5$.
- 3. Add $\{k_1, k_2\}$ to P.
- 4. d = min(|c/2 l|, |u c/2|).
- 5. for i = 1 to d Add $\{k_1 i, k_2 + i\}$ to P.
- 6. Add remaining iterations as singular sets of components to P as they are all independent.
- 7. Return P, Goto Step 14 in Algorithm 9.

5 Algorithm for All-C-spirals

This is the case when a and b have same sign. The components have iterations from both sides of α .

- 1. if $(\alpha \in Z)$
 - (a) Translate iteration space $B = [l, u] = [l \alpha, u \alpha]$
 - (b) Generate chains as per formula in section 1 for B and add them to P'.
 - (c) $P'' = \forall C \in P'$ Add $C'' \in P''$ such that $\forall i \in C$ Add $-i \in C''$.
 - (d) Add $P' + \{0,0\} + P$ " to P.
 - (e) Return P, Goto Step 13 in Algorithm 9.
- 2. else B = [l, u]
 - (a) Initialize 2D array I[B][2] as follows
 - (b) for j = l to $u \{ I[j-l][0] = ((j-l)*(a+b)); I[j-l][1] = 1) \}$
- 3. Initialize P' to empty.
- 4. i = 1, cno = 1, set I[i][1] = 0.
- 5. While (some element in I[i][1] is equal to 1):
 - (a) Add $I[i] \in C_{cno}$, $Chain(i, C_{cno})$.
 - (b) i = nextelement().
- 6. $P'' = \forall C \in P'$ Add $C'' \in P''$ such that $\forall i \in C$ Add $-i \in C''$.
- 7. Add $P' + \{0,0\} + P$ " to P.
- 8. $\forall i \in C \in P \ i \Leftarrow i/(a+b)$
- 9. Return P, Goto Step 13 in Algorithm 9.

6 Algorithm for Chain

Use formula given in section 1 to generate components. Set corresponding element in I to zero.

7 Algorithm for GenComp

This is the case when a and b have different sign. The components have all iterations on same side of α .

Input is B the size of range to be used to compute P'

- 1. Let I be a boolean array of size B initialized to 1.
- 2. i = 1, cno = 1, set I[i] = 0.
- 3. While (some element in I is equal to 1):
 - (a) Add $i \in C_{cno}$, $Chain(i, C_{cno})$.
 - (b) i = nextelement().
- 4. Return P, Goto Step 12d in Algorithm 9.

8 Algorithm for Gen-nonint

This is the case when α is not an integer.

- 1. $B = max((\alpha l), (u \alpha)).$
- 2. Initialize 2D array I[B][2] as follows

(a) for
$$j = 1$$
 to B { $I[j][0] = (j*(a+b)); I[j][1] = 1$)}

- 3. i = 1, cno = 1, set I[i][1] = 0.
- 4. While (some element in I[i][1] is equal to 1):
 - (a) Add $I[i] \in C_{cno}$, $Chain(i, C_{cno})$.
 - (b) i = nextelement().
- 5. $\forall i \in C \in P \ i \Leftarrow i/(a+b)$
- 6. Return P, Goto Step 13 in Algorithm 9.

9 Algorithm for 2 variable LDE

Inputs: a, b, c, l, u.

Output: $P = \{C\} = \{\{i\}\}.$

Steps:

- 1. if $(!a \text{ OR } !b) \Rightarrow \text{"No LDE"}$
- 2. Initialize P = empty.o
- 3. if $(!a \& !b) \Rightarrow P = \{\{l, l+1, l+2, ..., u\}\}$ ("All iterations are dependent"), Goto Step 14.
- 4. if $(gcd(a, b) \not| c) \Rightarrow$ "No Solutions".
- 5. $a = \gcd(a,b)$. $b = \gcd(a,b)$. $c = \gcd(a,b)$.
- 6. if $(a*b == -1) \& !c \Rightarrow P = \{\{l\}, \{l+1\}, \{l+2\}, ..., \{u\}\}\$ ("All iterations are independent"), Goto Step 14.
- 7. if $(a*b==-1) \Rightarrow P = \{\{l, l+c, l+2c, ..\}, \{i+1, l+1+c, l+1+2c, ..\}, ..\{l+c-1, l+2c-1, ..\}\}$ ("Constant dependence"), Goto Step 14.
- 8. if $(a * b == 1) \Rightarrow P = All C size2()$.
- 9. if $c \neq 0$ Compute Loop independent iteration $\alpha = c/(a+b)$. else $\alpha = 0$.
- 10. if $(a * b > 0) \Rightarrow P = All C spirals()$.
- 11. if $(\alpha \notin Z)$, Gen-nonint().

- 12. else
 - (a) Compute range $R' = [1, max(|\alpha l|, |u \alpha|)].$
 - (b) P' = GenComp(R') (Single sided part of P).
 - (c) Generate other part of P i.e. P" by translating every iteration of every $C' \in P'$ as $\forall i, i \in C', -i \in C$ ".
 - (d) Add $P' + \{0\} + P$ " to P.
- 13. If(α) Translate P by α i.e. for every $C \in P$, $\forall i, i \in C, i \Leftarrow i + \alpha$.
- 14. Output P.