Logika i teoria mnogości

Ćwiczenia 5

Funkcje logiczne

Definicja. Niech $n \ge 1$. Funkcję n-argumentową, której argumenty i wartości są wartościami logicznymi 0,1, nazywamy n-argumentową funkcją boolowskq.

Inne nazwy: funkcja logiczna, funkcja przełączająca.

Niech x, y, z reprezentują wartości logiczne.

Funkcje jednoargumentowe (n = 1)

x	\int_{0}^{1}	f_1^1	f_2^1	f_3^1
1	0	0	1	1
0	0	1	0	1

 $f_0^1(x) = 0$ funkcja zero

 $f_1^1(x) = \neg x$ funkcja negacji

 $f_2^1(x) = x$ funkcja identycznościowa

 $f_3^{\bar{1}}(x) = 1$ funkcja jeden

 $f_0^1(1) = 0, f_0^1(0) = 0$ kod: 00

 $f_1^1(1) = 0, f_1^1(0) = 1$ kod: 01

 $f_2^1(1) = 1, f_2^1(0) = 0$ $f_3^1(1) = 1, f_3^1(0) = 1$ kod: 10

kod: 11

 \mathbf{Fakt} . Liczba wszystkich n-argumentowych funkcji boolowskich wynosi 2^{2^n} .

Zatem, są 4 funkcje boolowskie 1-argumentowe, jest 16 funkcji boolowskich 2-argumentowych i 256 3-argumentowych.

Funkcje dwuargumentowe (n=2)

x	y	f_0^2	f_1^2	f_2^2	f_3^2	f_4^2	f_5^2	f_6^2	f_7^2	f_{8}^{2}	f_9^2	f_{10}^2	f_{11}^2	f_{12}^2	f_{13}^2	f_{14}^2	f_{15}^2
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Zauważmy, że kody funkcji logicznych są binarnymi rozwinięciami numeru funkcji.

 $f_8^2(x,y) = x \wedge y$ funkcja koniunkcji

 $f_9^2(x,y)=x\Leftrightarrow y$ funkcja równoważności $f_{11}^2(x,y)=x\Rightarrow y$ funkcja implikacji

 $f_{14}^2(x,y) = x \vee y$ funkcja alternatywy

Zadanie 1. Znaleźć numery funkcji

- 1. $x \Leftrightarrow \neg y$
- 2. $x \downarrow y$
- 3. $x \uparrow y$

Funkcja 2-argumentowa (strzałka Sheferra lub funkcja NAND):

 $x \uparrow y = \neg(x \land y)$ odpowiada spójnikowi "co najwyżej jedno z dwojga".

Funkcja 2-argumentowa (binegacja lub funkcja NOR): $x \downarrow y = \neg(x \lor y)$ odpowiada spójnikowi "ani ... ani ..."

x	y	$x \uparrow y$	$x \downarrow y$
1	1	0	0
1	0	1	0
0	1	1	0
0	0	1	1

Przykład. Wyznaczyć tablicę funkcji f_{200}^3 .

Rozwiązanie:

 $200 = (11001000)_2$ Kod 11001000 wpisujemy do tablicy wartościowań:

x	y	z	$f_{200}^3(x,y,z)$
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

Zadanie 2. Wyznaczyć tablice funkcji: a) $f_{25}^3(x,y,z)$, b) $f_{33}^3(x,y,z)$,

c) $f_{105}^3(x, y, z)$, d) $f_{199}^3(x, y, z)$.

Wskazówka. $25 = (11001)_2$. Kod 11001 uzupełniamy zerami do 8 znaków (na początku (!)) otrzymując: 00011001 i ten kod wpisujemy do tablicy.

Zadanie 3. Znaleźć numer funkcji logicznej 3-argumentowej o kodzie a) 11001, b) 100001, c) 11001101.

Fakt. Każdą funkcję boolowską można przedstawić jako wyrażenie w KPN i jako wyrażenie w APN.

Przykład

$$\begin{array}{l} f_0^2(x,y) = x \wedge \neg x = (\neg x \vee \neg y) \wedge (\neg x \vee y) \wedge (x \vee \neg y) \wedge (x \vee y) \\ f_1^2(x,y) = \neg x \wedge \neg y = (\neg x \vee \neg y) \wedge (\neg x \vee y) \wedge (x \vee \neg y) \\ f_2^2(x,y) = \neg x \wedge y = (\neg x \vee \neg y) \wedge (\neg x \vee y) \wedge (x \vee y) \\ f_3^2(x,y) = (\neg x \wedge y) \vee (\neg x \wedge \neg y) = (\neg x \vee \neg y) \wedge (\neg x \vee y) \end{array}$$

Dla funkcji logicznych zachodzą pewne prawa, zwane prawami algebry logiki:

- dla 0: $x \land 0 = 0, x \lor 0 = x, x \land \neg x = 0$
- dla 1: $x \lor 1 = 1, x \land 1 = x, x \lor \neg x = 1$
- prawa pochłaniania: $x \wedge x = x, x \vee x = x$
- prawa przemienności: $x \wedge y = y \wedge x, x \vee y = y \vee x$
- prawa łączności: $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ $(x \vee y) \vee z = x \vee (y \vee z)$
- prawa rozdzielności: $x \land (y \lor z) = (x \land y) \lor (x \land z)$ $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
- \bullet prawo podwójnej negacji: $\neg \neg x = x$
- prawa De Morgana: $\neg(x \land y) = \neg x \lor \neg y, \neg(x \lor y) = \neg x \land \neg y$
- prawo transpozycji: $x \Rightarrow y = \neg y \Rightarrow \neg x$

Wyrażenie w APN dla $f_3^2(x,y)$ można uprościć, stosując prawa algebry logiki:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), x \vee \neg x = 1, x \wedge 1 = x$$
$$f_3^2(x, y) = \neg x \wedge (y \vee \neg y) = \neg x \wedge 1 = \neg x$$

Zadanie 4. Stosując prawa algebry logiki uprościć następujące funkcje logiczne:

- 1. $f(x, y, z) = (x \land y \land z) \lor (x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (\neg x \land y \land \neg z)$
- 2. $f(x,y,z) = (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (x \land \neg y \land z) \lor (\neg x \land \neg y \land \neg z)$

Definicja. Zbiór funkcji boolowskich F nazywamy zupełnym, jeżeli każda funkcja boolowska jest przedstawialna przez funkcje ze zbioru F.

Przykład. Zbiór $\{\neg, \land, \lor\}$ jest zbiorem zupełnym, gdyż \Rightarrow oraz \Leftrightarrow można przedstawić za pomocą \neg, \land oraz \lor .

$$x \Rightarrow y = \neg x \vee y$$

$$x \Leftrightarrow y = (x \Rightarrow y) \land (y \Rightarrow x) = (\neg x \lor y) \land (\neg y \lor x)$$

Również:

$$x \Leftrightarrow y = (x \land y) \lor (\neg x \lor \neg y)$$

Zadanie 5. Wykazać, że następujące zbiory są zupełne:

- 1. $\{\neg, \land\}$
- $2. \ \{\neg, \vee\}$
- 3. $\{\neg, \Rightarrow\}$
- 4. {↑}
- 5. $\{\downarrow\}$