Programowanie równoległe i rozproszone

Politechnika Krakowska

Laboratorium 1

Paweł Suchanicz, Rafał Niemczyk

14 października 2019

Spis treści

	Wst	tęp
	1.1	Opis laboratorium
	1.2	Specyfikacja sprzętowa
	1.3	Zbiór danych
;	Wy	niki
	2.1	Normalizacja i standaryzacja
		2.1.1 Implementacja w C++
		2.1.2 Implementacja w Python
		2.1.3 Porównanie wyników
	2.2	Klasyfikacja KNN
		2.2.1 Implementacja w C++
		2.2.2 Implementacja w Python
		2.2.3 Porównanie wyników
	Pod	deumowanie

1 Wstęp

1.1 Opis laboratorium

Celem laboratorium było wykorzystanie interfejsu OpenMP w celu zrównoleglenia kodu C++. Interfejs OpenMP składa się głównie z dyrektyw preprocesora a także z zmiennych środowiskowych i funkcji bibliotecznych. W laboratorium wykorzystywany będzie głównie do zrównoleglania pętli.

Algorytmy, które są implementowane a następnie zrównoleglane w ramach laboratorium to normalizacja min-max, standaryzacja rozkładem normalnym i klasyfikacja KNN (k-najbliższych sąsiadów). Zaimplementowany KNN uwzględnia jednego sąsiada i używa metryki euklidesowej.

Szybkość działania każdego algorytmu została zmierzona dla implementacji w C++, implementacji w C++ po zrównolegleniu dla różnej ilości wątków (1-4) oraz impelmentacji w Python (ze skorzystaniem z funkcji z pakietu scikit-learn).

1.2 Specyfikacja sprzętowa

Przy pomiarach szybkości wykonywania algorytmów wykorzystany był sprzęt w konfiguracji:

• Procesor: Intel Core i7-4712MQ 4 x 2.30GHz

• Ram: 8GB DDR3

• System: Linux (Fedora 22)

1.3 Zbiór danych

Wykorzytany został zbiór obrazów ręcznie pisanych cyfr MNIST. Wykorzytany zbiór ma format .csv i zawiera 60000 rekordów, gdzie każdy rekord odpowiada za jeden obrazek 28x28 pikseli w skali szarości. Pierwsza wartość w rekordzie jest cyfrą która widnieje na obrazku, a kolejne to wartości pikseli obrazka.

Dla zadań postawionych w laboratorium zbiór danych jest dość duży, więc został on obcięty do pierwszych 6000 rekordów, z czego 4500 przeznaczono do trenowania, a pozostałe 1500 do testowania.

2 Wyniki

2.1 Normalizacja i standaryzacja

Normalizacja:

$$x^* = \frac{x - min(x)}{max(x) - min(x)}$$

Standaryzacja:

$$x^* = \frac{x-\mu}{\sigma}$$

- 2.1.1 Implementacja w C++
- 2.1.2 Implementacja w Python
- 2.1.3 Porównanie wyników

- 2.2 Klasyfikacja KNN
- 2.2.1 Implementacja w C++
- 2.2.2 Implementacja w Python
- 2.2.3 Porównanie wyników

3 Podsumowanie