Magnetic Flux

1 Introduction

The definition of magnetic flux is

$$\Phi_B = \int ec{f B} \cdot d{f A}$$

When the magnitude and direction of $\vec{\mathbf{B}}$ are the same at all points on the surface, the integral simplifies to

$$\Phi_B = \vec{\mathbf{B}} \cdot \mathbf{A}$$

or, equivalently,

$$\Phi_B = BA\cos\phi$$

where ϕ is the angle between the $\vec{\bf B}$ and $\vec{\bf A}$ vectors.

Note that previously, electric flux was covered. The same techniques that apply to computing electric flux apply to magnetic flux. See the Electric Flux activity for additional discussion.

2 Computing Φ_B

In the following figure, a square loop of area A that can be rotated about the z axis is shown. Assume that the normal direction of the loop is as shown in the diagram. A uniform external magnetic field points in the \hat{j} direction.

1. At what angles in the range of $\phi = [0, 360^{\circ}]$ is the magnetic flux zero?

Answer: The magnetic flux will be zero when the normal vector is perpendicular to $\vec{\mathbf{B}}_{\rm ext}$. This corresponds to $\phi=90^\circ$ and $\phi=270^\circ$

2. Draw the loop, $\hat{\bf n}$, and $\vec{\bf B}_{\rm ext}$ as they would appear when viewed from above (on the positive z-axis) when $\phi=0^{\circ}$, $\phi=45^{\circ}$, $\phi=135^{\circ}$, and $\phi=180^{\circ}$.

Answer:

View from +z axis

3. When $\phi = 45^{\circ}$, is the magnetic flux positive or negative? What is its value in terms of a fraction of B_oA ?

Answer: From the above diagram, the angle between $\hat{\bf n}$ and $\vec{\bf B}_{\rm ext}$ is ϕ , so the flux will be positive. Its value will be $B_o A \cos 45^\circ = B_o A/\sqrt{2}$.

4. When $\phi=135^{\circ}$, is the magnetic flux positive or negative? What is its value in terms of a fraction of B_oA ?

Answer: From the above diagram, the angle between $\hat{\bf n}$ and $\vec{\bf B}_{\rm ext}$ is ϕ , so the flux will be negative. Its value will be $B_oA\cos 135^\circ = -B_oA\cos 45^\circ = -B_oA/\sqrt{2}$.

5. Sketch a plot of the magnetic flux, Φ_B , as a function of ϕ .

From the diagram above, the angle of rotation of the plane is the same as the angle between the $\hat{\bf n}$ and $\vec{\bf B}_{\rm ext}$, so the general formula is $\Phi=B_oA\cos\phi$, which is sketched below along with dots that correspond to answers to the above problems.

3 Computing $d\Phi_B/dt$

The time rate of change of magnetic flux through a closed loop is a quantity that will be used when Faraday's law is covered.

Suppose the loop in the previous problem rotates at a constant rate such that $\phi = \omega t$, where ω is a constant.

1. At what angles in the range $\phi = [0^\circ, 360^\circ]$ is $d\Phi_B/dt = 0$?

The answer to part 5. of the previous problem is $\Phi_B=B_oA\cos\phi$, which is sketched below. The slope of Φ_B is zero at $\phi=0,180^\circ$, and 360° .

2. For what angle range is $d\Phi_B/dt$ increasing?

From the plot of Φ_B , the slope is positive for $180^\circ < \phi < 360^\circ$

3. For what angle range is $d\Phi_B/dt$ decreasing?

From the plot of Φ_B , the slope is negative for $0^{\circ} < \phi < 180^{\circ}$

4. What is the formula for $d\Phi_B(t)/dt$ in terms of B_o , A, t, and ω ?

$$\Phi_B=B_oA\cos\phi$$
, so $d\Phi_B/dt=-B_oA\omega\sin\omega t$