第6問

ネットワークにおいて、最短経路と最短距離を求めるアルゴリズムを考える。図 1 はネットワークの一例である。図において、○印はノードを表し、ノードとノードを結ぶ直線はリンクを表す。リンクに付与された整数は隣接ノード間の距離を表す。

- (1) 図1でノードットを起点とした場合,ノードットに至るまでの最短経路と最短距離を示せ、
- (2) ノードの集合を $V = \{v_1, v_2, ..., v_n\}$, 隣接するノード v_i と v_j の間の距離を c_{ij} (i, j = 1, 2, ..., n), $c_{ij} = c_{ji}$, $c_{ij} \ge 0$, $c_{ii} = 0$, ノード v_i から v_j への距離を a_j とする. a_j が最短距離であることが確定したノードの集合を P, P に含まれないノードの集合を U とする. ノード v_i から全てのノードに対する最短距離を求めるアルゴリズムを以下に示す. この場合の, 手順(ii), (iii)の空欄(I), (II)を埋めよ.

手順(i): $P = \{v_1\}$, U = V - P, i = 1, $a_1 = 0$, $a_j = \infty$ (j=2, ..., n) とする.

手順(ii):ノードviとその全ての隣接ノードviについて、

[(I)] の場合, $a_j = a_i + c_{ij}$ とする.

手順(iii): [(II)] を満たす v_k を、集合Uから除き、集合Pに加える。 手順(iv): $U=\emptyset$ ならば終了、そうでなければkの値をiに代入し、手順(ii)に戻る.

- (3) 図1のネットワークに対して(2)の手順を適用し、手順(iv) にて i=5 となった時点の集合 P,U と $a_j(j=1,2,...,8)$ の値を示せ、また、手順が全て終了した時点の $a_j(j=1,2,...,8)$ を示せ、
- (4) (2)の手順を改良し、最短距離だけではなく最短経路も導出できるようにしたい. 改良方法を具体的に述べよ.
- (5) (2)の手順によって導出した $a_j(j=2,...,n)$ は、ノード v_1 からノード $v_j(j=2,...,n)$ への最短距離になっていることを証明せよ.

Problem 6

Let us consider an algorithm to find the shortest paths and their distances in a network. Figure 1 shows an example network, in which a circle denotes a node and a line segment between two nodes denotes a link. The integer attached to a link presents the distance between the adjacent nodes.

- (1) In Fig. 1, find the shortest path and its distance from v_1 to v_8 .
- (2) Let V = {v₁, v₂, ..., v_n} be the set of all nodes, c_{ij} (i, j = 1, 2, ..., n) be the distance between adjacent nodes v_i and v_j, where c_{ij} = c_{ji}, c_{ij} ≥ 0, and c_{ii} = 0. Furthermore, let a_j be the distance from v₁ to v_j. The set P consists of nodes v_j whose shortest distances from v₁ are derived as a_j. The set U consists of nodes v_j that are not in P. We show an algorithm for deriving the shortest distances from v₁ to all the other nodes in the following. Fill in (I) and (II) in Step (ii) and Step (iii), respectively.

Step (i): Let
$$P = \{v_1\}$$
, $U = V - P$, $i = 1$, $a_1 = 0$ and $a_j = \infty$ $(j = 2, ..., n)$.

Step (ii): Regarding nodes v_i and all its adjacent nodes v_j , if

[], then
$$a_i = a_i + c_{ii}$$
.

Step (iii): Remove v_k , which satisfies [(II)], from U_k and add v_k to P_k .

Step (iv): If $U = \emptyset$, stop, else let i=k and go back to Step (ii).

- (3) Applying the algorithm in (2) to the network of Fig. 1, show the members of P and U, and the values of a_j (j=1, 2, ..., 8) when i=5 in Step (iv). Furthermore, show the final values of a_j (j=1, 2, ..., 8) when the algorithm terminates.
- (4) Describe in concrete how to improve the algorithm in (2) to find the shortest paths in addition to the shortest distances.
- (5) Prove that the distances a_j (j=2, ..., n) derived by the algorithm in (2) represent the shortest distances from v_1 to v_j (j=2, ..., n).