1. Вспомогательные определения

В данном разделе введем некоторые обозначения, которые будем использовать в дальнейшем.

Определение 1.1. Случайный процесс $\{Y_t: t \in \mathbb{Z}\}$ называют стационарным (в широком смысле), если

- 1. $EY_t \equiv \text{const}$ (среднее постоянно по времени);
- 2. $cov(Y_t, Y_{t+h}) = \gamma(h)$ (ковариация зависит только от лага h).

Замечание 1.1. Поскольку $\gamma(0) = \text{cov}(Y_t, Y_t) = \mathsf{D}Y_t$, то дисперсия также не меняется со временем.

Замечание 1.2. Далее под стационарностью будет подразумеваться именно стационарность в широком смысле.

Определение 1.2. Случайный процесс $\{\varepsilon_t\}$ называют белым шумом WN $(0, \sigma^2)$, если он стационарный, $\mathsf{E}\varepsilon_t = 0, \, \gamma(h) = 0 \,\, \forall h \neq 0 \,\, \mathsf{u} \,\, \mathsf{D}\varepsilon_t = \sigma^2.$

Определение 1.3. Моделью ARMA(p,q), где $p, q \in \mathbb{N} \cup \{0\}$ называют случайный процесс $\{X_t\}$, удовлетворяющий соотношению

$$X_t = \varepsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i},$$

где $\{\varepsilon_t\} \sim \mathrm{WN}(0, \sigma^2)$.

Определение 1.4. Спектральной плотностью стационарного процесса называется такая функция $f(\omega)$, что

$$\gamma(h) = 2 \int_0^{1/2} e^{2\pi h\omega i} f(\omega) d\omega.$$

Определение 1.5. Пусть $\{Y_t\}$ — стационарный процесс. Функцию

$$I(\omega) = \frac{1}{n} \left| \sum_{j=1}^{n} Y_j e^{-2\pi\omega j i} \right|^2$$

называют периодограммой выборки размера n процесса $\{Y_t\}$.

2. Процессы с длинной памятью

Определение 2.1. Говорят, что стационарный процесс $\{Y_t\}$ обладает длинной памятью, если

$$\sum_{h=0}^{H} |\gamma(h)| \to \infty,$$

при $H \to \infty$. Иначе говорят, что $\{Y_t\}$ обладает короткой памятью:

$$\sum_{h=0}^{\infty} |\gamma(h)| < \infty.$$

Существуют и альтернативные определения процессов с длинной памятью, которые можно найти в [1, Section 3.1]. Там же показано, что они согласованы с определением 2.1.

Пример 2.1. Процессом с короткой памятью является, например, стационарная модель ARMA(p,q), поскольку $|\gamma(h)| \leq CR^h$, где C > 0 и 0 < R < 1 [2].

Введем понятие дробного интегрирования $(1-L)^d$, где L — оператор сдвига. Например, для d=1 имеем $(1-L)Y_t=Y_t-Y_{t-1}$, для $d=2-(1-L)^2Y_t=Y_t-2Y_{t-1}+Y_{t-2}$, и так далее. Обобщим этот оператор для нецелых d с помощью разложения в ряд Тейлора функции $(1-x)^d$ в нуле:

$$(1-x)^{d} = 1 - dx - \frac{d(1-d)}{2}x^{2} - \frac{d(1-d)(2-d)}{3!}x^{3} - \dots$$
$$= \sum_{j=0}^{\infty} \pi_{j}(d)x^{j} = \sum_{j=0}^{\infty} {d \choose j} (-1)^{j} x^{j},$$

где $\binom{d}{j}$ — обобщенный биномиальный коэффициент. Коэффиенты $\pi_j(d)$ удовлетворяют соотношению

$$\pi_j(d) = (-1)^j \binom{d}{j} = \frac{j-1-d}{j} \pi_{j-1}(d) = \frac{\Gamma(j-d)}{\Gamma(j+1)\Gamma(-d)},$$
(1)

где $\Gamma(x)$ — гамма функция. Заметим, что второе равенство в формуле (1) верно для любых d, третье же верно только для $d \notin \mathbb{N} \cup \{0\}$, поскольку гамма функция не определена для неположительных целых чисел.

Определение 2.2. Пусть процесс $\{Y_t\}$ определен соотношением

$$Y_t = (1 - L)^{-d} X_t = \sum_{k=0}^{\infty} \pi_k(-d) X_{t-k}, \quad d < 1/2,$$

где $\pi_k(-d)$ из формулы (1), $\{X_t\}$ — стационарная и обратимая модель ARMA(p,d). Процесс $\{Y_t\}$ называют дробно интегрированной моделью ARMA или ARFIMA(p,d,q).

Предложение 2.1. ARFIMA(p,d,q) является стационарным процессом с нулевым средним при d < 1/2. Его спектральная плотность определяется выражением

$$f(\omega) = \sigma^{2} 4^{-d} \sin^{-2d} (\pi \omega) \frac{\left| \theta(e^{-2\pi\omega i}) \right|^{2}}{\left| \phi(e^{-2\pi\omega i}) \right|^{2}}, \quad \omega > 0$$

$$\sim \sigma^{2} \omega^{-2d} \frac{\left| \theta(1) \right|^{2}}{\left| \phi(1) \right|^{2}}, \quad \omega \to 0,$$
(2)

Доказательство. См. [3, Proposition 6.1].

Замечание 2.1. Из формулы (2) видно, что спектральная плотность дробно интегрированного процесса монотонно убывает (возрастает) тогда и только тогда, когда монотонно убывает (возрастает) спектральная плотность процесса $\{X_t\}$.

Следствие 2.1. В условиях предложения 2.1 при 0 < d < 1/2

$$\gamma(h) \sim C_{\gamma,d} h^{2d-1}, \quad h \to \infty,$$

где

$$C_{\gamma,d} = \sigma^2 \frac{|\theta(1)|^2}{|\phi(1)|^2} \frac{\Gamma(1-2d)}{\Gamma(d)\Gamma(1-d)}.$$

Доказательство. См. [3, Corollary 6.1].

Замечание 2.2. Из следствия 2.1 сразу следует, что ARFIMA(p,d,q) с $d \in (0,1/2)$ обладает длинной памятью.

2.1. Возникновение процессов с длинной памятью

Нас интересуют процессы с монотонной спектральной плотностью, поскольку они довольно распространены в реальном мире. Такими процессами являются процессы со степенной спектральной плотностью $f(\omega) \sim \omega^{-\alpha}$, имеющие большое применение в различных областях, например, в физике, биологии, астрофизике, геофизике и экономике.

Процессы с длинной памятью, являющиеся частным случаем процессов со степенной спектральной плотностью, довольно распространены. Например, в работе [4] обнаружена длинная память в таких среднегодовых гидрологических временных рядах, как количество осадков, температура и данных о речном стоке. В работе [5] на наличие длинной памяти исследовалась скорость ветра в Ирландии, в работе [6] исследовался эффект длинной памяти у сейсмических данных. Помимо геофизики, длинная память встречается также в финансах [7, 8].

3. Оценка параметров

Пусть $Y_t=(1-L)^{-d}X_t,\ d<1/2$. Будем считать, что $\{X_t\}$ представляет собой модель $\mathrm{ARMA}(p,q)$ с нормально распределенным белым шумом $\{\varepsilon_t\}$. Тогда его спектральная плотность $f_X(\omega)=f_X(\omega;\boldsymbol{\psi},\sigma)$, где

$$\boldsymbol{\psi} = (\phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)^{\mathrm{T}}.$$

Поставим задачу оценить параметры $\boldsymbol{\varphi}^{\mathrm{T}} = \left(d, \boldsymbol{\psi}^{\mathrm{T}}\right)$ и $\sigma^2.$

3.1. Maximum likelihood estimation (MLE)

Поскольку $\{\varepsilon_t\}$ — гауссовский белый шум, вектор

$$Y = (Y_1, \dots, Y_n)^{\mathrm{T}} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{\Sigma}_n),$$

где $\Sigma_n = (\gamma(|i-j|))_{i,j=1}^n$ — ковариационная матрица Y. Совместная плотность распределения Y равна

$$(2\pi)^{-n/2} \left| \mathbf{\Sigma}_n \right|^{-1/2} \exp \left\{ -\frac{1}{2} Y^{\mathrm{T}} \mathbf{\Sigma}_n^{-1} Y \right\}.$$

Рассмотрим логарифм функции правдоподобия. Отбрасывая аддитивные константы, получаем

$$\ell(\boldsymbol{\varphi}, \sigma^2) = -\frac{1}{2} \ln |\boldsymbol{\Sigma}_n| - \frac{1}{2} Y^{\mathrm{T}} \boldsymbol{\Sigma}_n^{-1} Y.$$

Положим $\Gamma_n = \Sigma_n/\sigma^2$ и, максимизируя ℓ по σ^2 , получаем

$$\ell_c(\boldsymbol{\varphi}) = -\frac{n}{2} \ln \left(S(\boldsymbol{\varphi})/n \right) - \frac{1}{2} \ln g_n(\boldsymbol{\varphi}),$$

где $S(\boldsymbol{\varphi}) = \boldsymbol{Y}^{\mathrm{T}} \boldsymbol{\Gamma}_n \boldsymbol{Y}, \, g_n(\boldsymbol{\varphi}) = |\boldsymbol{\Gamma}_n|.$ Тогда

$$\widehat{\boldsymbol{\varphi}}_{\mathrm{ML}} = \operatorname*{argmax}_{\boldsymbol{\varphi}} \ell_c(\boldsymbol{\varphi}), \quad \widehat{\sigma}_{\mathrm{ML}}^2 = S(\widehat{\boldsymbol{\varphi}}_{\mathrm{ML}}).$$

Замечание 3.1. В случае ненулевого матожидания $\mathsf{E}Y_t = \mu$, для получения оценок максимального правдоподобия нужно вместо \boldsymbol{Y} рассматривать $\boldsymbol{Y} - \mu$.

Замечание 3.2. Для вычисления ℓ_c можно использовать алгоритм Левинсона-Дурбина, имеющий временную трудоемкость $O(n^2)$.

3.2. Whittle estimation

Метод максимального правдоподобия применим, когда известно матожидание μ . При неизвестном μ можно использовать его оценку \overline{Y} , однако, помимо этого, существует проблема вычислительной сложности метода при больших n.

Обе эти проблемы можно решить, используя оценку Уиттла (Whittle): вместо логарифма функции правдоподобия рассматривается ее оценка (с точностью до константы) [9]. Пусть $f(\omega, \varphi, \sigma^2)$ — спектральная плотность $\{Y_t\}$, $I(\omega)$ — периодограмма Y, тогда

$$\ell_W(\boldsymbol{\varphi}, \sigma^2) = -\frac{1}{m} \sum_{j=1}^m \left(\ln f(\omega_j; \boldsymbol{\varphi}, \sigma^2) + \frac{I(\omega_j)}{f(\omega_j; \boldsymbol{\varphi}, \sigma^2)} \right),$$

где $m=\lfloor (n-1)/2\rfloor$, $\omega_j=j/n,\ j=1,2,\ldots,m$. Заметим, что $f(\omega;\boldsymbol{\varphi},\sigma^2)=\sigma^2g(\omega;\boldsymbol{\varphi})$. Тогда, максимизируя ℓ_W по σ^2 , получаем

$$\widehat{\varphi}_W = \operatorname*{argmax}_{\varphi} Q(\varphi), \quad \widehat{\sigma}_W^2 = \frac{1}{m} \sum_{j=1}^m \frac{I(\omega_j)}{g(\omega_j; \widehat{\varphi}_W)},$$

где

$$Q(\varphi) = -\ln \frac{1}{m} \sum_{j=1}^{m} \frac{I(\omega_j)}{g(\omega_j; \varphi)} - \frac{1}{m} \sum_{j=1}^{m} \ln g(\omega_j; \varphi).$$

Замечание 3.3. Такой метод оценки параметров можно использовать при неизвестном среднем, поскольку при ее вычислении не используется значение периодограммы в нуле.

Замечание 3.4. Периодограмму временного ряда можно вычислить за $O(n \log n)$ с помощью быстрого преобразования Фурье (FFT), что делает этот метод значительно быстрее MLE для больших n.

3.3. Численное сравнение методов оценки параметров

Сравним качество оценки параметров следующих моделей:

- 1. d = q = 0, p = 1 модель AR(1);
- 2. p = q = 0 модель ARFIMA(0, d, 0).
- 3. p = 1, q = 0 модель ARFIMA(1, d, 0).

Будем оценивать параметры этих моделей методами, реализация которых есть на языке программирования R [10]:

- 1. Функция arima из пакета stats, соответствующая MLE модели ARMA;
- 2. Функция arfima из пакета arfima [11], соответствующая MLE модели ARFIMA;
- 3. Функция fracdiff из пакета fracdiff [12], соответствующая апроксимации MLE модели ARFIMA, описанной в работе [5] (обозначим за H&R).

Качественная реализации оценки Уиттла не была найдена, поэтому для сравнения с MLE она была реализована самостоятельно. Поскольку для реальных временных рядов матожидание μ неизвестно, будем рассматривать MLE с известным средним и с его оценкой — выборочным средним (будем обозначать их MLE(μ) и MLE(\bar{x}) соответственно). Не умаляя общности, пусть $\mu=0$.

Рис. 1. Среднеквадратичное отклонение, смещение и дисперсия оценок параметра ϕ модели AR(1) (500 повторений)

На рис. 1 и 2 изображены среднеквадратичное отклонение, смещение и дисперсия оценок параметров ϕ и d моделей AR(1) и ARFIMA(0,d,0). Отметим, что все оценки

Рис. 2. Среднеквадратичное отклонение, смещение и дисперсия оценок параметра d модели $\operatorname{ARFIMA}(0,d,0)$ (500 повторений)

имеют в большинстве своем отрицательное смещение и отличаются между собой в основном степенью смещения. Как и ожидалось, оценка параметров методом максимального правдоподобия с известным средним дает оценку с наименьшим MSE. С другой стороны, если использовать вместо известного среднего выборочное сренее, оценки становятся сильно смещенными. Whittle же, в свою очередь, дает менее смещенную оценку, чем $\mathrm{MLE}(\bar{x})$, а в случае оценки d имеет смещение даже меньше, чем у $\mathrm{MLE}(\mu)$. Однако оценки Whittle обладают наибольшей дисперсией среди всех рассмотренных методов, но разница не такая значительная, как в случае смещения.

В таблице 1 представлены значения среднеквадратичной ошибки и смещения оценок параметров d и ϕ модели ARFIMA(1, d). Заметим, что в оценках присутствует смещение, и оно уменьшается с увеличением ϕ . Также для $\phi=0.1$ и $\phi=0.5$ оценки d имеют отрицательное смещение, а оценки ϕ , наоборот, положительное. Также в таблице синим

Таблица 1. Смещение и среднеквадратичное отклонение оценок параметров d и ϕ модели ARFIMA(1,d,0) $(n=100,\,500\,$ повторений)

					M M	MSE							Ä	Bias			
		ML	$\mathrm{MLE}(\mu)$	$\mathrm{MLE}(ar{x})$	$\mathbb{E}(ar{x})$	Η&	&R	Whittle	ttle	$\mathrm{MLE}(\mu)$	$\Im(\mu)$	$\mathrm{MLE}(ar{x})$	$\mathbb{E}(\bar{x})$	H&R	zR	Wh	Whittle
p	Φ	\hat{d}	ф ,	\hat{d}	ϕ	\hat{d}	ϕ	\hat{d}	ϕ	\hat{d}	φ	\hat{d}	φ	\hat{d}	ϕ	\hat{d}	ψ,
0.1	0.1	0.071	0.075	0.205	0.179	0.009	0.018	0.069	0.067	-0.096	0.083	-0.301	0.26	-0.054	0.035	-0.086	0.068
0.2	0.1	0.064	0.07	0.224	0.201	0.025	0.032	0.077	0.073	-0.095	0.083	-0.336	0.296	-0.119	0.099	-0.094	0.074
0.3	0.1	0.081	0.086	0.303	0.272	0.049	0.055	0.084	0.081	-0.12	0.108	-0.427	0.386	-0.179	0.161	-0.109	0.00
0.4	0.1	0.072	0.08	0.367	0.328	0.081	0.089	0.179	0.194	-0.119	0.111	-0.499	0.456	-0.243	0.23	-0.26	0.241
0.1	0.5	0.057	0.048	0.099	0.059	0.01	0.015	0.057	0.054	-0.102	0.065	-0.258	0.185	-0.07	0.033	-0.066	0.024
0.2	0.5	0.055	0.045	0.107	0.062	0.031	0.025	0.074	0.058	-0.108	0.071	-0.277	0.201	-0.154	0.108	-0.153	0.107
0.3	0.5	0.051	0.041	0.119	0.068	0.063	0.043	0.098	0.062	-0.114	0.079	-0.304	0.225	-0.232	0.174	-0.209	0.161
0.4	0.5	0.052	0.043	0.129	0.074	0.104	0.065	0.104	990.0	-0.131	0.098	-0.326	0.244	-0.306	0.235	-0.228	0.177
0.1	6:0	0.029	0.028	0.013	0.008	0.007	0.007	0.034	0.025	0.07	-0.085	0.003	-0.044	0.001	-0.043	0.049	-0.069
0.2	6.0	0.019	0.021	0.011	0.006	0.009	0.004	0.026	0.019	0.038	-0.063	-0.013	-0.034	-0.037	-0.026	0.03	-0.056
0.3	6.0	0.013	0.016	0.009	0.004	0.014	0.003	0.022	0.015	0.007	-0.043	-0.033	-0.022	-0.076	-0.011	-0.024	-0.039
0.4	6.0	0.009	0.018	0.009	0.004	0.025	0.003	0.028	0.01	-0.019	-0.036	-0.059	-0.011	-0.121	0.003	-0.095	-0.016

цветом выделена лучшая по строке оценка d, а красным — лучшая оценка ϕ . Видно, что метод Н&R в большинстве случаев дает оценки с наименьшим MSE, однако оценки имеют большое смещение при $\phi=0.1$ и $\phi=0.5$. Наиболее смещенные оценки получаются в методе MLE(\bar{x}), причем это перестает быть таковым только при $\phi=0.9$. Оценки методом Whittle по смещению находятся посередине, однако имеют наибольшую дисперсию среди остальных.

Список литературы

- 1. Palma Wilfredo. Long-Memory Time Series: Theory and Methods. Wiley, 2006.
- 2. Time Series Analysis: Forecasting and Control / Box G., Jenkins G., Reinsel G., and Ljung G. Fifth ed. 2016.
- 3. Hassler Uwe. Time Series Analysis with Long Memory in View. Wiley, 2018.
- 4. Hipel Keith W., McLeod Ian. Time series modelling of water resources and environmental systems. Elsevier, 1994.
- 5. Haslett John, Raftery Adrian E. Space-Time Modelling with Long-Memory Dependence: Assessing Ireland's Wind Power Resource // Journal of the Royal Statistical Society. Series C (Applied Statistics). 1989. Vol. 38, no. 1. P. 1–50.
- Long memory effects and forecasting of earthquake and volcano seismic data / Mariani Maria C., Bhuiyan Md Al Masum, Tweneboah Osei K. and Gonzalez-Huizar Hector // Physica A: Statistical Mechanics and its Applications. 2020. Vol. 559. P. 125049.
- 7. Barkoulas J., Labys W. C., Onochie J. I. Fractional dynamics in international commodity prices // Journal of Futures Markets. 1997. Vol. 17. P. 161–189.
- 8. Guglielmo Maria Caporale Luis Gil-Alana, Plastun Alex. Long memory and data frequency in financial markets // Journal of Statistical Computation and Simulation.— 2019.—Vol. 89, no. 10.—P. 1763–1779.
- 9. Whittle P. The Analysis of Multiple Stationary Time Series // Journal of the Royal Statistical Society. Series B (Methodological). 1953. P. 125–139.
- 10. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2024. Access mode: https://www.R-project.org/.
- Veenstra J.Q. arfima: Fractional ARIMA (and Other Long Memory) Time Series Modeling: 2012.
- 12. Maechler Martin. fracdiff: Fractionally Differenced ARIMA aka ARFIMA(P,d,q) Models: 1999.