Corso di Linguaggi di Programmazione — Parziale A-L di fine modulo Prova scritta del 20 Dicembre 2022

Tempo a disposizione: 2 ore e 30 minuti.

1. Per quali valori delle variabili X e Y la seguente espressione

$$\mathcal{I}_{L_1}^{L_0^*}(\mathcal{C}_{L_1,L_2}^X,\mathcal{C}_{X,Y}^Y)$$

non produce errore? È utile il programma che viene calcolato?

- 2. Descrivere le regole di semantica operazionale strutturata per l'espressione booleana b_0 or b_1 , secondo la disciplina di valutazione interna-parallela (IP). Mostrare un esempio di una espressione di quel tipo tale che la valutazione IP e quella ES (esterna-sinistra, vista a lezione) non sono uguali.
- 3. Classificare $L = \{a^{n+1}b^mc^n \mid n \geq 0, m \geq 1\}$, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 4. È vero che, per ogni linguaggio regolare L, esiste una grammatica G di classe LR(1) tale che L = L(G)? Motivare la risposta.
- 5. Si consideri il seguente DFA $M = (\Sigma, Q, \delta, q_0, F)$, dove $\Sigma = \{a, b\}$, $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$, $F = \{q_2, q_3\}$ e la funzione di transizione $\delta : Q \times \Sigma \to Q$ è cosí definita: $\delta(q_0, a) = q_1, \, \delta(q_0, b) = q_2, \, \delta(q_1, a) = q_0, \, \delta(q_1, b) = q_3, \, \delta(q_2, a) = q_4, \, \delta(q_2, b) = q_5, \, \delta(q_3, a) = q_4, \, \delta(q_3, b) = q_5, \, \delta(q_4, a) = q_4, \, \delta(q_4, b) = q_5, \, \delta(q_5, a) = q_4, \, \delta(q_5, b) = q_5.$

Si fornisca una rappresentazione grafica di M. Si verifichi se M sia minimo, utilizzando l'algoritmo con tabella a scala; nel caso esistano stati equivalenti, produrre l'automa minimo M'. Si ricavi da M' la grammatica regolare associata secondo la costruzione vista a lezione. Qual è il linguaggio riconosciuto da M'?

- 6. Considerando il DFA M' del punto 5 ed il suo linguaggio riconosciuto L, costruire l'automa M'' che riconosce il linguaggio complementare $\overline{L} = \{w \in \{a,b\}^* \mid w \notin L\}$. Quale espressione regolare denota il linguaggio \overline{L} ?
- 7. Mostrare che $L_1 = \{a^n b^m \mid 0 \le n \le m\}$ è libero deterministico, costruendo un opportuno DPDA. Sapendo che anche $L_2 = \{a^n b^m \mid 0 \le m \le n\}$ è libero deterministico, è vero che $L_1 \cup L_2$ è un linguaggio libero deterministico?
- 8. Si consideri la seguente grammatica G con simbolo iniziale S:

$$egin{array}{lll} S &
ightarrow & BCA \mid ABE & A &
ightarrow & a \mid aDb \mid bSc \ B &
ightarrow & C \mid Bb & C &
ightarrow & \epsilon \mid dC \ D &
ightarrow & dD & E &
ightarrow & D \mid dE \ \end{array}$$

- (i) Si calcolino i First e i Follow per tutti i nonterminali. (ii) Si rimuovano i simboli inutili, ottenendo una grammatica semplificata G'. (iii) Si rimuova la produzione epsilon per ottenere una grammatica G'' senza produzioni epsilon, che sia equivalente a G'. (iv) Si rimuovano le produzioni unitarie da G'' per ottenere una grammatica G''' senza produzioni unitarie equivalente a G''. (v) Si rimuova la ricorsione sinistra immediata per B per ottenere una \overline{G} equivalente a G'''.
- 9. Data la seguente grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & \epsilon \mid A \\ A & \rightarrow & \mathtt{a} A \mathtt{c} \mid \mathtt{a} \mathtt{c} \mid B \\ B & \rightarrow & \mathtt{b} \mid \mathtt{b} B \end{array}$$

si determini L(G). Si verifichi se G è di classe LL(1). Se non lo è, si manipoli opportunamente G per trasformarla in una grammatica equivalente G' di classe LL(1). Si costruisca quindi la tabella di parsing LL(1). Si nostri il funzionamento del parser LL(1) sull'input abbc.

 Data la grammatica G del punto 9, si verifichi che non è di classe LR(0), ma è di classe SLR(1). Si mostri il funzionamento del parser SLR(1) sull'input abbc.

Parsiale A del 20/12/22

I Lo
$$(C_{L_1L_2}^{\times}, C_{XY}^{\times})$$
 Per non produce errore, deve essere $x = L_1$ e $y = L_1$.

Ma quells che viene calcolato è CLILI che non la senso; si cun amente non è utile un compilator da LI a LI...

2) boor by convalutatione IP (interne-parallela)

(bo or b1, 6) -> (bo or b1, 5')

IPE ES, se terminano entrambe, danno lo sieno risultato.
Tuttavia ES é più "definita" di IP, a de puir formire un
risultato quando IP non ai riesce.

$$G = \begin{array}{c} -S \rightarrow aA \\ G = A \rightarrow aAc \mid bB \\ B \rightarrow \epsilon \mid bB \end{array}$$

$$L(S) = a \cdot L(A) = L$$

 $L(A) = \{a^n bb^* c^n | n \ge 0\}$
 $L(B) = b^*$

Gélibera, quindi L=L(G) é libero.

L non é repolare e la dimostro usando il pumping lemma a rivercio

- Fissiamo N>0 generico (VN>0)
- Scephamo z = a to c (JzEL, IZIZN)
- Pen ogni U, V, W tals che Z=UWW, IUVIEN e IVIZI, deve essere che V= a con J>1.
- Allow 3k=2 tale che UV2W&L Infatti UV2W= aN+1+5 bcN&L

Se L é regolare, allora F 6 di classe LL(1) tale che L=L(6) per un teorema visto a lessone.

Poi ché le grammatiche LL(1) sono incluse nelle grammatiche LR(1), ne segue che l'affermassone é vera.

0~1 2~3 4~5

 $A \rightarrow aA \mid bB \mid b$ $B \rightarrow aC \mid bC$ $C \rightarrow aC \mid bC$ -B = C sons invite $A \rightarrow aA \mid b$ L(A) = a*b

Automa H che ziconosce il linguaggo A*\ a*b = I dove A = {a,b}

Una expressione regolare per I potrebbe essere

a* (E | b (a | b))

ricavabile dalle grammatice per H

L, UL2 = 2[a*b*] = { an bm | n, m > 0}

Questo linguaggo è reglare e perais à pure libero deterministico!

(Notare che i ling. liberi deterministici non sono chiusi per unione, ma, in questo caso, l'unione di Li e Lz da un ling. libero deterministico.)

L2={ an 6m | 0 < m < n}

$$S \rightarrow BCA \mid ABE$$

$$A \rightarrow a \mid aDb \mid bSc$$

$$B \rightarrow C \mid Bb$$

$$C \rightarrow \varepsilon \mid dC$$

$$D \rightarrow dD$$

$$E \rightarrow D \mid dE$$

$$S \rightarrow A$$

De E non sono generatori = inutile

$$S \rightarrow BCA$$
 $A \rightarrow a \mid bSc$
 $B \rightarrow C \mid Bb$
 $C \rightarrow \epsilon \mid dC$

Zimusvere le prod. unitare

	First	tollow
5	d,b,a	\$, c
A	aib	\$, c, d, b
B	E, d, b	d, a, b
0	E, d	a, b, d
D	d	b, \$, c
E	d	4, c

elimino le prod. epsilon $N(G) = \{c, B\}$ $S \rightarrow BCA | CA | BA | A$ $A \rightarrow a | b Sc$ $B \rightarrow C | Bb | b$ $C \rightarrow dC | d$

> Emusière la Siriconsione SX B-9Bb A -9 ---B -> dCA' | dA' | bA' A' -> bA' | E

$$S \rightarrow \varepsilon | A$$

$$A \rightarrow aAc | ac | B$$

$$B \rightarrow b | bB$$

$$L(S) = \{\epsilon\} UL(A)$$

$$L(A) = \{a^{n}c^{n} | n \ge 1\} U$$

$$\{a^{n}b^{m}c^{n} | n \ge 0\}$$

$$L(B) = b^{+}$$

Gnon é du clarse LLL1) < A - a de la c

Fattorizzamo G:

$$S \rightarrow \epsilon | A$$
 $A \rightarrow a A' | B$
 $A' \rightarrow Ac | c$
 $B \rightarrow b B'$
 $B' \rightarrow \epsilon | B$

	00			5-98
-	S-DA	SAA		
5	A-saA'	ABB		
A	A'-Ac	A' AC	A -9 C	
A	AARC	B -> 68'		RIDE
B		B'-9 B	BIDE	0 -7
D				

C

abbc \$	S
66c\$	a A' A'
	BC
	bB'c

	First	Follow
51	E,a,b	\$
A	a, b	\$, C
AI	a, b, c	\$,c
B	6	\$, C
31	£, b	\$, 6

OR

İ	Follow
5	\$
A	#, C
В	\$, C

	a	Ь	C	\$	5	A	В
0	53	55	1	R1	61	62	64
d				ACC			
2		1		RZ			
3	53	55	58			6-6	64
4			R5	R5			
3 4 5	1	55	R6	R6			69
6			57	Tricken agents			
7			R3	R3			u de la constante de la consta
8			R4	R4			
9			R7	R7			

$$(0, \epsilon, abbc $)$$

 $(03, a, bbc $)$
 $(035, ab, bc $)$
 $(0355, abb, c $)$
 $(0355, abb, c $)$
 $(0359, abB, c $)$
 $(034, aB, c $)$
 $(036, aA, c $)$
 $(0367, aAc, $)$
 $(0367, aAc, $)$
 $(02, A, $)$
 $(02, A, $)$
 $(02, A, $)$
 $(01, S, $)$

ACCEPT!