

Masterclass organisée par : Togo Data Lab Fondements Mathématiques des Transformers et des LLMs

Module 5 : Cas d'usage des LLMs en santé + limites éthiques et techniques

Présentée par : Tiebekabe Pagdame Enseignant-chercheur - Université de Kara

<u>Dates</u>: 15-16 juillet 2025

Bienvenue à la Masterclass

Objectif de la session

- Comprendre les cas d'usage concrets des modèles de langage (LLMs) dans le secteur de la santé.
- Identifier les bénéfices et les impacts de l'intégration de ces outils dans la pratique médicale, la recherche biomédicale, la formation, etc.
- Discuter les limites techniques des LLMs appliqués au domaine médical (hallucinations, biais, manque de données spécifiques, etc.).
- Évaluer les enjeux éthiques (confidentialité, responsabilité, consentement, transparence).
- Anticiper les bonnes pratiques et recommandations pour une intégration responsable des LLMs en santé.

Public cible

- Étudiants en Mathématiques/Informatique et Science des Données
- Étudiants à la Faculté des Sciences et de la Santé
- Chercheurs en NLP
- Professionnels du secteur

Sommaire

- Introduction
- Panorama des cas d'usage concrets en santé
- Limites techniques
- Enjeux éthiques
- Bonnes pratiques
- 6 Conclusion

Introduction générale

- Les modèles de langage de grande taille (LLMs) ont transformé de nombreux secteurs :
 - service client (chatbots),
 - éducation (assistants pédagogiques),
 - droit (aide à la rédaction juridique),
 - recherche scientifique (résumé d'articles, exploration documentaire), etc.
- Le domaine de la santé n'est pas en reste, mais présente des spécificités critiques.

Pourquoi un traitement spécifique pour la santé?

- Les données médicales sont extrêmement sensibles : pathologies, traitements, diagnostics, données génétiques...
- Les décisions médicales peuvent avoir un impact direct sur la vie ou la mort des patients.
- Nécessité de :
 - parantir la précision et la vérifiabilité des sorties des LLMs,
 - respecter des contraintes légales et éthiques strictes (ex : RGPD, HIPAA),
 - maintenir la relation de confiance entre professionnel et patient.

Objectifs du module

À l'issue de ce module, vous serez en mesure de :

- Comprendre les cas d'usage concrets des LLMs dans le secteur de la santé.
- Identifier les bénéfices et les impacts de leur intégration dans :
 - la pratique médicale,
 - la recherche biomédicale,
 - la formation.
- Oiscuter les limites techniques (hallucinations, biais, données spécifiques...).
- Évaluer les enjeux éthiques (confidentialité, responsabilité, consentement).
- Anticiper les bonnes pratiques pour une intégration responsable des LLMs en santé.

Cas d'usage en santé Vue d'ensemble

- Les LLMs peuvent être intégrés dans plusieurs sous-domaines de la santé :
 - Pratique médicale
 - Recherche biomédicale
 - Formation et vulgarisation
- L'objectif est d'augmenter les capacités humaines sans les remplacer.
- Ces usages nécessitent souvent un encadrement rigoureux : validation humaine, cadre éthique, gouvernance des données.

Résumé automatique de dossiers cliniques

- Objectif : résumer rapidement des dossiers médicaux complexes et longs.
- Utilisation :
 - Synthèse de comptes rendus d'hospitalisation,
 - Regroupement des antécédents, allergies, traitements en cours.
- Gain de temps pour les médecins, standardisation du format.
- Exemple : modèle fine-tuné sur les notes cliniques (ex : MIMIC-III).

Génération de lettres de sortie et prescriptions

- Les LLMs peuvent :
 - rédiger des lettres de sortie automatiquement à partir des événements cliniques structurés,
 - suggérer des prescriptions ou ordonnances types selon le diagnostic.
- Avantages :
 - réduction du temps administratif,
 - homogénéisation des pratiques rédactionnelles.
- Attention : nécessite une vérification systématique par un professionnel.

Aide à la décision clinique

- Objectif : assister les cliniciens dans des décisions complexes.
- Applications :
 - Génération de listes de diagnostics différentiels,
 - Aide au triage des patients aux urgences,
 - Suggestions de protocoles thérapeutiques.
- Exemples: utilisation de ChatGPT, Med-PaLM, GatorTron dans des environnements simulés.
- Risque : hallucinations médicales ⇒ nécessite des bases spécifiques et supervision clinique.

Extraction automatisée d'informations scientifiques

- LLMs appliqués à de grands corpus scientifiques (ex. PubMed, PMC).
- Objectif : extraire des relations complexes :
 - entre gènes, maladies, traitements;
 identification de cibles thérapeutiques potentielles.
- Utilisation de techniques de NLP biomédical : BioBERT, SciSpacy, PubMedBERT.
- Réduction du temps de veille scientifique.

Génération d'hypothèses de recherche

- À partir de vastes bases scientifiques, les LLMs peuvent :
 - suggérer de nouvelles associations ou mécanismes biologiques,
 - prédire des liens non encore explorés entre entités biomédicales.
- Exemple : techniques d'inférence inductive via embeddings.
- Attention : ces hypothèses doivent être validées par des protocoles expérimentaux rigoureux.

Annotation sémantique de bases de données biologiques

- Problème : complexité et hétérogénéité des bases biomédicales (gènes, protéines, pathologies).
- LLMs peuvent aider à :
 - annoter automatiquement des données selon des ontologies (ex : MeSH, SNOMED),
 - désambigüiser les termes médicaux.
- Impact : amélioration de la qualité des bases de données pour la recherche translationnelle.

Chatbots éducatifs pour étudiants et patients

- Déploiement de LLMs sous forme d'assistants conversationnels :
 - pour réviser les cours de médecine,
 - pour informer les patients sur leurs pathologies.
- Exemple : simulateurs de consultations cliniques pour internes.
- Risques: simplification excessive, erreurs potentielles.

Génération de QCM et d'études de cas

- Les LLMs peuvent produire :
 - des questions à choix multiples (QCM) avec justification,
 - des cas cliniques simulés pour la formation initiale ou continue.
- Gain de temps pour les enseignants, scénarios réalistes.
- Intégration possible dans des plateformes LMS (Moodle, OpenEdx).

Traduction automatique multilingue

- Objectif : améliorer l'accès à l'information médicale pour tous.
- Applications :
 - Traduction de documents médicaux, consentements éclairés,
 - ▶ Traduction d'articles scientifiques ou guides cliniques.
- Avantages :
 - Réduction des barrières linguistiques,
 - Aide à la formation dans les pays non anglophones.

Principaux écueils techniques

Hallucinations:

- 18% des faits médicaux inventés (JAMA 2024)
- Confusion entre médicaments similaires
- Références bibliographiques fictives

Biais:

- Performances inégales selon :
- Groupes ethniques (Δ =23%)
- Genre (∆=15%)
- Pays à revenu faible (∆=35%)

Exemple concret

"La metformine est contre-indiquée chez les patients asiatiques" Affirmation fausse mais fréquente

Cadre éthique

4 principes fondamentaux

Non-malfaisance : Mécanismes de vérification

Autonomie : Consentement éclairé

3 Justice : Accès équitable

Transparence : Explicabilité des décisions

Qui est responsable en cas d'erreur?

Comment auditer les décisions?

Où sont stockées les données?

Recommandations opérationnelles

Implémentation	Développement
 Validation clinique rigoureuse Approche "human-in-the-loop" Formation des utilisateurs finaux	 - Modèles spécialisés par domaine - Données représentatives et locales - Benchmarks spécifiques au domaine médical
Checklist avant déploiement	

Auditabilité

Journalisation des actionsProtocole d'erreur bien défini

Synthèse et perspectives

Points clés

- Les LLMs offrent un potentiel transformateur dans le secteur médical
- Leur utilisation doit être encadrée par des garde-fous techniques et éthiques
- Des efforts importants restent à faire sur les données locales et multilingues

Citation inspirante

Les LLMs ne remplaceront pas les médecins, mais les médecins qui utilisent les LLMs remplaceront ceux qui ne le font pas. Adapté de Bernard Baruch

Questions ouvertes

Quels garde-fous mettre en place? Comment garantir l'équité d'accès? Quelle place pour l'Afrique francophone?