# International

## HFA25PB60

#### $HEXFRED^{\mathsf{TM}}$

### Ultrafast, Soft Recovery Diode

#### **Features**

- · Ultrafast Recovery
- · Ultrasoft Recovery
- Very Low I<sub>RRM</sub>
- Very Low Q<sub>rr</sub>
- · Specified at Operating Conditions

#### **Benefits**

- · Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count

# BNE CATHODE 4 1 CATHODE ANDE





#### Description

International Rectifier's HFA25PB60 is a state of the art ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 25 amps continuous current, the HFA25PB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA25PB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

#### **Absolute Maximum Ratings**

| Parameter                               |                                    | Max         | Units |  |
|-----------------------------------------|------------------------------------|-------------|-------|--|
| $V_R$                                   | Cathode-to-Anode Voltage           | 600         | V     |  |
| I <sub>F</sub> @ T <sub>C</sub> = 25°C  | Continuous Forward Current         |             |       |  |
| I <sub>F</sub> @ T <sub>C</sub> = 100°C | Continuous Forward Current         | 25          | Α .   |  |
| I <sub>FSM</sub>                        | Single Pulse Forward Current       | 225         | _ ^   |  |
| I <sub>FRM</sub>                        | Maximum Repetitive Forward Current | 100         |       |  |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C  | Maximum Power Dissipation          | 151         | 10/   |  |
| P <sub>D</sub> @ T <sub>C</sub> = 100°C | Maximum Power Dissipation          | 60          | W     |  |
| TJ                                      | Operating Junction and             | 551150      |       |  |
| T <sub>STG</sub>                        | Storage Temperature Range          | -55 to +150 | С     |  |
|                                         |                                    |             |       |  |

<sup>\* 125°</sup>C



#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                 | Parameter                       | Min | Тур | Max  | Units | Test Conditions                              |  |
|-----------------|---------------------------------|-----|-----|------|-------|----------------------------------------------|--|
| $V_{BR}$        | Cathode Anode Breakdown Voltage | 600 |     |      | V     | I <sub>R</sub> = 100μA                       |  |
| V <sub>FM</sub> | Max Forward Voltage             |     | 1.3 | 1.7  | ٧     | I <sub>F</sub> = 25A                         |  |
|                 |                                 |     | 1.5 | 2.0  |       | I <sub>F</sub> = 50A See Fig. 1              |  |
|                 |                                 |     | 1.3 | 1.7  |       | I <sub>F</sub> = 25A, T <sub>J</sub> = 125°C |  |
| I <sub>RM</sub> | Max Reverse Leakage Current     |     | 1.5 | 20   | μA    | $V_R = V_R$ Rated See Fig. 2                 |  |
|                 |                                 |     | 600 | 2000 | μΛ    | $T_J = 125$ °C, $V_R = 0.8 \times V_R$ Rated |  |
| C <sub>T</sub>  | Junction Capacitance            |     | 55  | 100  | pF    | V <sub>R</sub> = 200V See Fig. 3             |  |
| Ls              | Series Inductance               |     | 12  | _    | nH    | Measured lead to lead 5mm from package body  |  |

#### Dynamic Recovery Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                           | Parameter                              | Min | Тур | Max  | Units | Test Conditions                                     |                      |  |
|---------------------------|----------------------------------------|-----|-----|------|-------|-----------------------------------------------------|----------------------|--|
| t <sub>rr</sub>           | Reverse Recovery Time                  |     | 23  |      |       | $I_F = 1.0A$ , $di_f/dt = 200A/\mu s$ , $V_R = 30V$ |                      |  |
| t <sub>rr1</sub>          | See Fig. 5, 6 & 16                     |     | 50  | 75   | ns    | T <sub>J</sub> = 25°C                               |                      |  |
| t <sub>rr2</sub>          |                                        |     | 105 | 160  |       | T <sub>J</sub> = 125°C                              | I <sub>F</sub> = 25A |  |
| I <sub>RRM1</sub>         | Peak Recovery Current                  |     | 4.5 | 10   | Α     | T <sub>J</sub> = 25°C                               |                      |  |
| I <sub>RRM2</sub>         | See Fig. 7& 8                          |     | 8.0 | 15   | , , i | T <sub>J</sub> = 125°C                              | $V_{R} = 200V$       |  |
| Q <sub>rr1</sub>          | Reverse Recovery Charge                |     | 112 | 375  | nC    | T <sub>J</sub> = 25°C                               |                      |  |
| Q <sub>rr2</sub>          | See Fig. 9 & 10                        |     | 420 | 1200 | l IIC | T <sub>J</sub> = 125°C                              | di∉dt = 200A/µs      |  |
| di <sub>(rec)M</sub> /dt1 | Peak Rate of Fall of Recovery Current  |     | 250 |      | A/µs  | T <sub>J</sub> = 25°C                               |                      |  |
| di <sub>(rec)M</sub> /dt2 | During t <sub>b</sub> See Fig. 11 & 12 |     | 160 |      | ΑνμS  | T <sub>J</sub> = 125°C                              |                      |  |

#### **Thermal - Mechanical Characteristics**

|                     | Parameter                               | Min | Тур  | Max  | Units  |
|---------------------|-----------------------------------------|-----|------|------|--------|
| T <sub>lead</sub> ① | Lead Temperature                        |     |      | 300  | °C     |
| R <sub>thJC</sub>   | Thermal Resistance, Junction to Case    |     |      | 0.83 |        |
| R <sub>thJA</sub> @ | Thermal Resistance, Junction to Ambient |     |      | 40   | K/W    |
| R <sub>thCS</sub> ③ | Thermal Resistance, Case to Heat Sink   |     | 0.25 |      |        |
| Wt                  | Weight                                  |     | 6.0  |      | g      |
|                     |                                         |     | 0.21 |      | (oz)   |
|                     | Mounting Torque                         | 6.0 |      | 12   | Kg-cm  |
|                     | Modifiend Torquo                        | 5.0 |      | 10   | lbf•in |

① 0.063 in. from Case (1.6mm) for 10 sec

② Typical Socket Mount

Mounting Surface, Flat, Smooth and Greased



Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current



Fig. 2 - Typical Reverse Current vs. Reverse Voltage





Fig. 4 - Maximum Thermal Impedance Z<sub>thjc</sub> Characteristics

Bulletin PD-2.338 rev. A 11/00



30 V<sub>R</sub> = 200V T<sub>J</sub> = 125°C T<sub>J</sub> = 25°C T<sub>J</sub> = 25°C T<sub>J</sub> = 25A I<sub>F</sub> = 10A I<sub></sub>

Fig. 5 - Typical Reverse Recovery vs. di<sub>f</sub>/dt

Fig. 6 - Typical Recovery Current vs. di<sub>f</sub>/dt





Fig. 7 - Typical Stored Charge vs. di<sub>f</sub>/dt

Fig. 8 - Typical di<sub>(rec)M</sub>/dt vs. di<sub>f</sub>/dt



Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

Bulletin PD-2.338 rev. A 11/00



## International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 U.S.A. Tel: (310) 322 3331. Fax: (310) 322 3332. EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, U.K. Tel: ++ 44 1883 732020. Fax: +4 44 1883 733408. IR CANADA: 15 Lincoln Court, Brampton, Markham, Ontario L6T322. Tel: (905) 453 2200. Fax: (905) 475 8801. IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg. Tel: ++ 49 6172 96590. Fax: ++ 49 6172 965933. IR ITALY: Via Liguria 49, 10071 Borgaro, Torino. Tel: ++ 39 11 4510111. Fax: ++ 39 11 4510120. IR FAR EAST: K&H Bidg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171. Tel: 813 3983 0086. IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 23799-1. Tel: ++65 833 4630. IR TAIWAN: 16 Fl. Sulte D.207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan. Tel: 886 2 2377 9936.

http://www.irf.com

Fax-On-Demand: +44 1883 733420

Data and specifications subject to change without notice.