3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 3: System Design: Time and Wavelength Division Multiplexing

Lecture

DWDM Components

 $\frac{\text{Fiber}}{\text{core:}} \ (\alpha = 0.2 \text{ dB/km})$ $\text{core:} \ d = 8 \text{ } \mu\text{m}$ $\text{clad:} \ d = 125 \text{ } \mu\text{m}$ $\Delta n = 0.5\%$

Dispersion control: D↓

Amplifier (EDFA)

SiO₂: Er (100 ppm)

 Al_2O_3 doping $\rightarrow Al^{3+} \Rightarrow$ more Er^{3+} w/o clustering

L = 20-60 meters Amplification = 10^3 - 10^4

BW: $12 \text{ nm} \rightarrow 16 \text{ ch}$ $35 \text{ nm} \rightarrow 80 \text{ ch}$ $80 \text{ nm} \rightarrow 200 \text{ ch}$

Waveguide amplifier Δ = 10%

Higher Δ than fiber : higher pump rate

Dispersion compensation

Broader spectrum \rightarrow D fiber (opposite dispersion filter)

CATV → 1 amp/1000 homes

More BW

+Sb-doping → more BW +Yb → pumping efficiency

System

40 Gb/s \Rightarrow D_{max} = 63 ps/nm

10 Gb/s \Rightarrow D_{max} = 10³ ps/nm

Lecture

$$B^2 \uparrow DL \approx 10^5 \text{ ps/nm} \cdot (Gb/s)^2$$

$$\Rightarrow$$
 B \(\gamma\) by 2\(\times\), D \(\psi\) by 4\(\times\)

Filters (MUX, deMUX, add/drop) Mach. Zehnder interferometer T (delay) = L n_q/C_0

$$H\!\left(\nu\right)\!=\!\frac{1}{2}\!\!\left[1\!-\!e^{-j2\pi\nu T}\right]$$

Fabry-Perot interferometer

$$H\!\left(\nu\right)\!=C_{n}e^{-j\left(2\pi\nu n-\Phi_{n}\right)}$$

$$FSR = \frac{1}{T} = \frac{C_0}{nL}$$

T = 100 ps
$$\Rightarrow$$
 FSR = 10 GHz

1 dB system penalty

 n_q = group index

FSR = free spectral range

Filter applications in a simplified WDM system

Lecture

Out 1

Splitter Combiner
Out 2

AL/2

Turning mirrors

(a)

(c)

A Mach-Zehnder interferometer: (a) free-space propagation, (b) waveguide device, (c) transmission response.

Notes

Lecture

Out 2

Out 1

Out 1

In —

Out 1

➤ Out 2

(b)

(c)

A Fabry-Perot interferometer: (a) freespace propagation, (b) waveguide analog, and (c) transmission response. Notes