$N(1720) \ 3/2^{+}$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1720) POLE POSITION

REAL	PART
------	-------------

REAL PAR I				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1660 to 1690 (≈ 1675) OUR ESTI				
1670 ± 25	SOKHOYAN	15A	DPWA	Multichannel
$1677 \pm 4 \pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1666	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
1686	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1680 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1670	SHKLYAR	13	DPWA	Multichannel
1660 ± 30	ANISOVICH	12A	DPWA	Multichannel
1687	SHRESTHA	12A	DPWA	Multichannel
1691 ± 23	BATINIC	10	DPWA	π N $ ightarrow$ N π , N η
1692	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 400 (≈ 250) OUR ESTIMA	-			
430±100	SOKHOYAN	15A	DPWA	Multichannel
184± 8±1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
355	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
187	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
120± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
118	SHKLYAR	13	DPWA	Multichannel
450 ± 100	ANISOVICH	12A	DPWA	Multichannel
175	SHRESTHA	12A	DPWA	Multichannel
233± 23	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
94	VRANA	00		Multichannel

N(1720) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
15± 8 OUR ESTIMATE				
26 ± 10	SOKHOYAN	15A	DPWA	Multichannel
13± 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
25	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
15	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
8± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Created: 5/30/2017 17:20

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

12	SHKLYAR	13	DPWA Multichannel
22± 8	ANISOVICH	12A	DPWA Multichannel
20	BATINIC	10	DPWA $\pi N \rightarrow N\pi$. Nn

PHASE θ

PHASE 0				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-130±30 OUR ESTIMATE				
-100 ± 25	SOKHOYAN	15A	DPWA	Multichannel
$-115\pm \ 3\pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
– 94	ARNDT	06	DPWA	$\pi N o \pi N, \eta N$
-160 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •
– 45	SHKLYAR	13	DPWA	Multichannel
-115 ± 30	ANISOVICH	12A	DPWA	Multichannel
-109	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

N(1720) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \rightarrow N(1720) \rightarrow N\eta$

MODULUS	DOCUMENT ID	TECN	COMMENT
0.03 ± 0.02	ANISOVICH 12A	DPWA	Multichannel

Normalized residue in $N\pi \rightarrow N(1720) \rightarrow \Lambda K$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.06 ± 0.04	-150 ± 45	ANISOVICH 12	2a DPWA	Multichannel

Normalized residue in $N\pi \to N(1720) \to \Delta \pi$, *P*-wave

	•	•			
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.28 ± 0.09	95 ± 30	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not	t use the following data	for averages, fits	s, lim	its, etc.	• • •
0.29 ± 0.08	80 + 40	ANISOVICH	12Δ	DPWA	Multichannel

Normalized residue in $N\pi \to N(1720) \to \Delta \pi$, F-wave

<u>MODULUS</u>	DOCUMENT ID	TECN	COMMENT	
0.07 ± 0.05	SOKHOYAN 1	5a DPWA	Multichannel	
• • • We do not use the follow	ing data for averages, f	its, limits,	etc. • • •	
$0.03\!\pm\!0.03$	ANISOVICH 1	2A DPWA	Multichannel	

Normalized residue in $N\pi \rightarrow N(1720) \rightarrow N\sigma$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.08 ± 0.04	-110 ± 35	SOKHOYAN 15A	DPWA	Multichannel

Created: 5/30/2017 17:20

Normalized residue in $N\pi \to N(1720) \to N(1520)\pi$, S-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.05 ± 0.04	undefined	SOKHOYAN 15A	DPWA	Multichannel

N(1720) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1700 to 1750 (≈ 1720) OUR EST	IMATE			
1690 ± 30	SOKHOYAN	15A	DPWA	Multichannel
1700 ± 10	SHKLYAR	13	DPWA	Multichannel
1763.8 ± 4.6	ARNDT	06	DPWA	$\pi N o \pi N, \eta N$
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1710 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	tc. • • •
$1690 \begin{array}{c} + & 70 \\ - & 35 \end{array}$	ANISOVICH	12A	DPWA	Multichannel
1720 ± 5	SHRESTHA	12A	DPWA	Multichannel
1720 ± 18	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1705 ± 10	PENNER	02C	DPWA	Multichannel
1716 ± 112	VRANA	00	DPWA	Multichannel

N(1720) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 400 (≈ 250) OUR ESTIMAT	Έ			
420± 80	SOKHOYAN	15A	DPWA	Multichannel
152± 2	SHKLYAR	13	DPWA	Multichannel
210± 22	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
125 ± 70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
190± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
420 ± 100	ANISOVICH	12A	DPWA	Multichannel
200± 20	SHRESTHA	12A	DPWA	Multichannel
244± 28	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
237± 73	PENNER	02 C	DPWA	Multichannel
121± 39	VRANA	00	DPWA	Multichannel

N(1720) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode		Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$		8–14 %
Γ_2	$N\eta$		1–5 %
Γ3	$N\omega$		
Γ_4	ΛK		4–5 %
Γ_5	$\mathcal{N}\pi\pi$		50–90 %
Γ ₆	Δ (1232) π		
НТТ	ΓP://PDG.LBL.GOV	Page 3	Created: 5/30/2017 17:20

Γ_7	$\Delta(1232)\pi$, $ extit{\it P}$ -wave	47–77 %
Γ ₈	${\it \Delta}(1232)\pi$, $\it F-wave$	<12 %
Γ ₉	$N \rho$	70–85 %
Γ_{10}	$N\rho$, $S=1/2$, P -wave	seen
Γ_{11}	$N\sigma$	2–14 %
Γ_{12}	$\mathcal{N}(1440)\pi$	<2 %
Γ_{13}	$\mathit{N}(1520)\pi$, $\mathit{S} ext{-}$ wave	1-5 %
Γ_{14}	$oldsymbol{ ho}\gamma$	0.05-0.25 %
Γ_{15}	$p\gamma$, helicity $=1/2$	0.05-0.15 %
Γ_{16}	$p\gamma$, helicity=3/2	0.002-0.16 %
Γ_{17}	$n\gamma$	0.0-0.016 %
Γ_{18}	$n\gamma$, helicity=1/2	0.0-0.01 %
Γ ₁₉	$n\gamma$, helicity=3/2	0.0-0.015 %

N(1720) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
11 ±3 OUR ESTIMATE					
11 ± 4	SOKHOYAN	15A	DPWA	Multichannel	
17 ± 2	SHKLYAR	13	DPWA	Multichannel	
9.4 ± 0.5	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
10 ±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
14 ±3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
ullet $ullet$ We do not use the following d	ata for averages	s, fits,	limits, e	tc. • • •	
10 ±5	ANISOVICH	12A	DPWA	Multichannel	
13.6 ± 0.6	SHRESTHA	12A	DPWA	Multichannel	
18 ± 3	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
17 ± 2	PENNER	02C	DPWA	Multichannel	
5 ±5	VRANA	00	DPWA	Multichannel	
$\Gamma(N\eta)/\Gamma_{\text{total}}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
0 ±1	SHKLYAR	13	DPWA	Multichannel	
3 ±2	ANISOVICH	12A	DPWA	Multichannel	
ullet $ullet$ We do not use the following d	ata for averages	s, fits,	limits, e	tc. • • •	
< 1	SHRESTHA	12A	DPWA	Multichannel	
0 ± 1	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
10 ±7	THOMA	80	DPWA	Multichannel	
$0.2 \!\pm\! 0.2$	PENNER	02C	DPWA	Multichannel	
4 ±1	VRANA	00	DPWA	Multichannel	
$\Gamma(N\omega)/\Gamma_{total}$					Г3/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
26±14	DENISENKO	16	DPWA	Multichannel	

Created: 5/30/2017 17:20

$\Gamma(\Lambda K)/\Gamma_{\text{total}}$					Γ_4/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
4.3 ± 0.4	SHKLYAR	05		Multichannel	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
2.8 ± 0.4	SHRESTHA	12A		Multichannel	
12 ± 9	THOMA	80		Multichannel	
9 ±3	PENNER	02C	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>P</i> -wave $)/\Gamma_{ ext{total}}$					Γ_7/Γ
VALUE (%)	DOCUMENT ID		TECN		
62±15	SOKHOYAN			Multichannel	
• • • We do not use the following of					
75 ± 15	ANISOVICH	12A	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>F</i> -wave $)/\Gamma_{ exttt{total}}$					Γ ₈ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
6 ± 6	SOKHOYAN	15A	DPWA	Multichannel	
$\Gamma(N\rho, S=1/2, P-wave)/\Gamma_{total}$					Γ ₁₀ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
1.4 ± 0.5	SHRESTHA	12A	DPWA	Multichannel	
91 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N\sigma)/\Gamma_{\text{total}}$					Γ ₁₁ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
8±6	SOKHOYAN	15A	DPWA	Multichannel	
$\Gamma(N(1440)\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TE 611	CO. 44 45 47	Γ_{12}/Γ
VALUE (%)	DOCUMENT ID	154	TECN DDV4/A	COMMENT	
<2	SOKHOYAN	15A	DPWA	Multichannel	
$\Gamma(N(1520)\pi, S\text{-wave})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₁₃ /Γ
<u>VALUE (%)</u>	DOCUMENT ID	1 .	TECN	COMMENT	
3±2	SOKHOYAN	15A	DPWA	Multichannel	
N(1720) PHOTON D	ECAY AMPL	ITUE	DES AT	THE POLE	
$N(1720) \rightarrow p\gamma$, helicity-1/2 a	•	2			
MODULUS (GeV ^{-1/2}) PHASE (°)	DOCUMEN'	T ID		COMMENT	
0.115 ± 0.045 0 ± 35	SOKHOY	AN	15A DI	PWA Multichan	nel
$0.051^{+0.005}_{-0.004}$ 57^{+9}_{-4}	ROENCH	EN	14 DI	PWA	
$N(1720) \rightarrow p\gamma$, helicity-3/2 a	amplitude A _{3/2}	2			
MODULUS (GeV $^{-1/2}$) PHASE ($^{\circ}$)	DOCUMEN [*]	T ID	TE	ECN COMMENT	
0.140 ± 0.040 65 ± 35	SOKHOY			PWA Multichan	nel
$0.014 {}^{+ 0.009}_{- 0.003} \qquad 102 {}^{+ 29}_{- 59}$	ROENCH				
HTTP://PDG.LBL.GOV	Page 5		Creat	ed: 5/30/201	7 17:20

N(1720) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1720) ightarrow p \gamma$, helicity-1/2 amplitude $A_{1/2}$

$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
0.100±0.020 OUR ESTIMATE				
0.115 ± 0.045	SOKHOYAN	15A	DPWA	Multichannel
0.095 ± 0.002	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
• • • We do not use the following of	lata for averages	, fits,	limits, e	tc. • • •
-0.065 ± 0.002	SHKLYAR	13	DPWA	Multichannel
0.110 ± 0.045	ANISOVICH	12A	DPWA	Multichannel
0.057 ± 0.003	SHRESTHA	12A	DPWA	Multichannel
0.073	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
0.097 ± 0.003	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
-0.053	PENNER	02 D	DPWA	Multichannel

$N(1720) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
$0.135\!\pm\!0.040$	SOKHOYAN	15A	DPWA	Multichannel
-0.048 ± 0.002	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
0.035 ± 0.002	SHKLYAR	13	DPWA	Multichannel
0.150 ± 0.030	ANISOVICH	12A	DPWA	Multichannel
-0.019 ± 0.002	SHRESTHA	12A	DPWA	Multichannel
-0.011	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
-0.039 ± 0.003	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
0.027	PENNER	02 D	DPWA	Multichannel

$N(1720) ightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$

<i>VALUE</i> (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.080 ± 0.050	ANISOVICH	13 B	DPWA	Multichannel
• • • We do not use the following of	lata for averages	s, fits,	limits, e	tc. • • •
$-0.002\!\pm\!0.001$	SHRESTHA	12A	DPWA	Multichannel
-0.003	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
-0.004	PENNER	02 D	DPWA	Multichannel

$N(1720) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.140 ± 0.065	ANISOVICH	13 B	DPWA	Multichannel
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
$-0.001\!\pm\!0.002$	SHRESTHA	12A	DPWA	Multichannel
-0.031	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
0.003	PENNER	02 D	DPWA	Multichannel

N(1720) FOOTNOTES

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.

N(1720) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

DENISENKO	16	PL B755 97	I. Denisenko <i>et al.</i>	
SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan et al.	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen et al.	` ,
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mosel	(GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	` (KSU)
WORKMAN	12A	PR C86 015202	R. Workman et al.	(ĠWU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ZAGR)
THOMA	08	PL B659 87	U. Thoma et al.	(CB-ELSA Collab.)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalov, L. Tiat	or (MAINZ, JINR)
DUGGER	07	PR C76 025211	M. Dugger et al.	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	` (GWU)
SHKLYAR	05	PR C72 015210	V. Shklyar, H. Lenske, U. Mosel	(GIES)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	` (KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	` (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
				() -