martes, 10 de junio de 2025

19:01

Computabilidad:

Tesis de church-turing: todo lo compuatble se puede hacer con una mt En un paso, mt cambia el sìmbolo, cambia el estado y se mueve a izq o der

Clase 2:

R siempre paran(decidibles)

Re en los positivos para siempre, en los negativos puede loopear(computables) L no tienen mt (prblemas)

Propiedades:

Si un lengaje es r o re, tambien lo serà su complemento Lo mismo con uniòn e intersecciòn en r, es poner primero una y despues la otra En re es màs dificil, tengo que paralelizar.

Versión definitiva de la jerarquía de la computabilidad

Región 1 (los lenguajes más "fáciles").

R es la clase de los lenguajes recursivos. Si L_1 está en R, entonces también L_1^C está en R.

Región 2.

Clase RE – R. Si L₂ está en RE, entonces L₂^C está en CO-RE.

Región 3.

Clase CO-RE – R. Si L_2 está en CO-RE, entonces L_2 ^C está en RE.

Región 4 (los lenguajes más "difíciles").

Clase \mathfrak{L} – (RE U CO-RE). Si L_3 está en la clase, también está L_3 °C.

16

Clase 3: diagonalización

Antes probamaos pertenencia a un conjunto, construyendo màquinas.

No nos sirve para probar que algo no està

Entra conceptualmente mètodo constructivo y no constructivo, no diagonalizar en si

Codificar cualquier simbolo con enteros. Orden canònico. Truco para no tener que decir hasta màquinas de x cantidad de icntas acepto . No entendi, min 15

Puedo ordenar las mt. Por logitudes y si hay empate por diccionario No toda cadena es una mt.

HALTING PROBLEM:

M para a partir de w?

De los màs dificiles de RE, RE-R.

Puedo decidir si una mt para si me aseguran que se mueve en un espacio acotado.

Del hp habò bastante.

Clase 4: reducciones

Funciòn computable en forma total:

Reduce u lenguaje si ed adentro va a adetro y afuera va a afuera.ùtil para probar no pertenencia. Para probar pertenencia lo màs natural es encontrar una mt.

TEOREMA

Caso 1 Si $L_1 \le L_2$ entonces $(L_2 \in R \to L_1 \in R)$ O bien: Si $L_1 \le L_2$ entonces $(L_1 \notin R \to L_2 \notin R)$ Caso 2 Si $L_1 \le L_2$ entonces $(L_2 \in RE \to L_1 \in RE)$ O bien: Si $L_1 \le L_2$ entonces $(L_1 \notin RE \to L_2 \notin RE)$

Reeducciones en el parcial van a ser elementales, naa muy complicado. La propiedad màs importante es componer, transitvidad. La de los complementos tb importa NO es simèrica la reducción.

Mt limitadas no creo que entre.

COMPLEJIDAD CLASE 5:

Complejdad siempre en R:decidibes.

Funciones que varian según el tamaño de la entrada.

Poli, exp lo importante. Poli eficiente, exponencial no eficiente. N

Una màquina tarda t(n) si hace a lo sumo t(n) pasos.

Hablamos de O(n)

A clase son los lenguajes cuya unica forma de resoluion es por fuerza bruta.

Tesis fuerte de Church-Turing (robustez de la clase P)

Si un lenguaje es decidible en tiempo poly(n) por un modelo computacional **razonable (realizable)**, también es decidible en tiempo poly(n) por una MT (¿hasta que las máquinas cuánticas sean una realidad?).

Clase np: con un certificado puede decidir si una cadena està en el lenguaje o no.

Todo conceptual en los parciales: puede ser explicar por que no estaria en p/np algo. Por que sat complemento no estaria en np? Por ejemplo Sat, hamilton hay que saberlos ch tb

CLASE 6

Min 49, no entendì pero es importante sobre np complet.

Propiedades: està en np y que todos los lengujes de np se reducen a np.

Iso no tiene mt que se resuelve en tiempo eficiente y algo màs, dij que era importante min51 aprox.

Reducciones polinomiales: tarda tiempo poli.

Ahora a las reducciones:

Función total computable

Adentro adentro afuera afuera

Ahora se suma computable EFICIENTEMENTE

Lo de la derecha es tan o màs dificil. A la izquierda lo màs fàcil en la reducciones.

Como probar NPC min 56 aprox me medio dormì

Todo par de lenguajes de npc conocidos los puedo reducir de uno al otro,

CLase 7 temporal:

Estaba en otra

CLase 7b espacial:

Todo lo de la clase rara no entra.

Complejidad espacial:

Saco del calculo la cinta de entrada.

Tiempo t(n) implica espacio s(n). Espacio s(n) implica tiempo màs grande.

Porque con timpo t(n) sabes que no te vas a mover màs de n pasos.

Se usan punteros (variables que referencian a una posición. Entonces ocupa log) Todo lo que estè e logspace va a ser tratable.

Clases 7 (parte 3), 8 y 9. Misceláneas de complejidad computacional

Problemas de búsqueda

- · Las clases P y NP correspondientes a los problemas de búsqueda se denominan FP y FNP.
- · Ejemplo. Problemas FSAT (búsqueda) y SAT (decisión).

· Esto se cumple para todos los lenguajes NP-completos.

Esto de la imagen es importante, 1:14

Parte 3: verificación

CLases 10 y 11:

Toda la parte semàntica.

Un programa s no es correcto solo, es correcto respecto de precondicion, postcondición. Correctitud parcial y total. Parcial: SI TERMINA el programa, termina como quiero Se prueba por separado verificacion parcial y total.

64

Se prueban axiomaticamente con mètodos distintos

3.1. Axiomática para la correctitud parcial (Método H)

No entra lo de concurrencia

CLASE 12:SENSATEZ