#### 计算机学院专业必修课

### 计算机组成

### 课程介绍

高小鹏

北京航空航天大学计算机学院 系统结构研究所

### 个人信息

- □ 地点: G1031/G843
- □电话
  - ◆ 座机: 010-82338473
  - ◆ 手机: 1391-1392-138
- Email
  - gxp@buaa.edu.cn

#### 这门课程的意义是什么?

- □ 计算机硬件再也不神秘了
- □ 奠定你坚实的计算机专业基础

- □ 迄今为止最改变你学习方法与提升工程能力的课程
  - ◆ 每个知识点都不是很深, 但知识点巨多
  - ◆ 能同时阅读多本参考书,至少学习3个以上工具软件
  - ◆ 能每周完成一个project, 具备强大的开发调试能力
  - ◆ 能正确、高效的开发大规模指令集的复杂流水线CPU
  - ◆ 体会到形式建模方法的价值

#### 感受

- □ 学生愤怒的说
  - 太过份了! 怎么能这么多自学呢?!
  - ◆ 太过份了! 每周一个CPU的节奏!
  - 太过份了! 推背感太强了!
  - 太过份了!我们的时间都用来做计组实验了?!别的课学不学了?!
- □ 辅导员哀怨的说
  - 学生很抱怨,因为学霸还不太会
  - 学生飙着泪在做实验
  - 女生把男生堵在宿舍里做实验
  - 我们没法安抚学生情绪

### 对不起!

但是,这门课很重要!

请大家不停的学习!

#### 教学目标

- □ 系统的理解并掌握计算机的运行原理
  - ◆ 学习计算机硬件的组成
  - 掌握计算机硬件的设计
  - ◆ 理解计算机硬件/软件的协同机制
- □ 核心任务:实现基于MIPS的功能型计算机
  - ◆ 以数字电路为基础,设计MIPS的功能组件
  - ◆ 以功能组件为基础,构造MIPS CPU
  - ◆ 编写MIPS程序,验证系统功能

#### 教学挑战

- □ 3大系统级核心技术: CPU、操作系统和编译器
- □ 3大必修课程: 计算机组成、操作系统、编译技术
- 3个基本问题
  - ◆ 能够开发1个功能型CPU吗?
  - 能够开发1个操作系统核心吗?
  - 能够开发1个编译器吗?

- 答案是悲观的:通常只有极少数学生能够完成!
  - 多数学生无法完成
- □ 直至今天,仍然是国内普遍的教学难题
  - ◆ 北航: 2006年工程教育专业认证试点时,发现上述问题



#### "系统能力"培养概述

- □ 教改目标: 系统能力培养
  - 系统能力:构造计算机核心系统的能力
  - ◆ 挑战性学习成果:本科生自主开发 "CPU、OS、编译器"
- □ 培养诉求:多数学生能够达成"挑战性成果"
- □ 技术路线: 组建"系统能力"课程群
  - ◆ 4门必修课:数字逻辑、计算机组成、操作系统、编译技术

- □ 计算机组成:课程群建设的最关键环节
  - 国内外公认的教学难关

### CPU开发能力@计算机组成原理

| CPU开发<br>能力等级 | 指令集<br>规模 | CPU特点                                      |
|---------------|-----------|--------------------------------------------|
| 1             | 55        | 较完整定点类指令;支持GCC;支<br>持中断/异常/系统调用            |
| 2             | 45~50     | 较完整定点类指令; 支持GCC                            |
| 3             | 30~40+    | 常用的运算/存储/分支/置位/函数<br>调用指令;手工汇编;可运行小型<br>程序 |
| 4             | 10~20+    | 基本的运算/存储/分支/函数调用<br>指令; 手工汇编; 可运行简单程序      |
| 5             | 0~10      | 简单的运算/存储/分支指令; 手工<br>汇编; 示意型设计             |

#### 十年持续改进

2014: 国家级教学成果二等奖



启动 方案研制 持续改进



#### 工程方法: CPU形式建模综合方法

- □ 目的: 让多数普通学生达成目标!
- □ 规模达到一定程度(如30+),须强调方法,否则:
  - ◆ 少数优秀学生: 靠天份能悟出来
  - ◆ 多数普通学生: 盲动→失败→挫折感
- □ 工程方法:按照方法可以一步步的开发出复杂系统
  - ◆ 要让学生拥有巅峰体验:原来我也能达到这个目标!

### 过去的教学方法: 图解式案例教学



- 讲解典型指令的数据通路的构造过程
- 建立对指令在数据通路中流动的直观认识
- 建立对数据通路基本组成的基本认识

**ADDU** 

**SUBU** 

#### CPU形式建模综合方法

**PCWr** 

S1\_FETCH:1

S1\_FETCH:1

S1\_FETCH:1

S1\_FETCH:1

S1\_FETCH:1

S1 FETCH:1

S3 J:1

S1\_1

S1

addu

subu

ori

lui

beq

jal

IRWr

S1\_FETCH:1

S1\_FETCH:1

S1\_FETCH:1

S1\_FETCH:1

S1\_FETCH:1

S1 FETCH:1

#### 图解案例分析式





ALUOp

'ADD

'ADD

`ADD

`SUB

`OR

**EXTOp** 

`SE

`SE

'UE

#### 形式建模综合式

S4\_ALUWB

S5\_MWB

| Cyc     | le Stage                  | Stage Operation Co   |           | Signal          |
|---------|---------------------------|----------------------|-----------|-----------------|
| Cvcle   | Stage                     | Operation            | Component | Signal          |
| Cycle   | Stage                     | Stage Operation C    |           | Signal          |
|         | Fetch                     | ID. IM[DO]           | IR        | <u>IRWr</u> : 1 |
| Cycle 1 | (fetch instruction)       | IR←IM[PC]<br>PC←PC+4 | ALU       | ALUOp: ADD      |
|         |                           | 10.                  | PC        | PCWr: 1         |
| Cycle2  | RF<br>(Read oper 建樟·      | 语言形式                 | 建模        | : SE            |
| Cycle3  | MA (calculate ]           | / <b>П</b>           | ~_   /    | 2:ADD -         |
| Cycle4  | MR<br>(read DM)           | DR←DM[ALUOut]        |           | -               |
| Cycle5  | MemWB<br>(write DR to RF) | RF[rt]←DR            | RF        | RFWr: 1         |
|         |                           |                      |           |                 |

| current statement | next stateme                  | transimission condition |
|-------------------|-------------------------------|-------------------------|
| S1                |                               | S2                      |
| S2                | lw/sw                         | S3_MA                   |
|                   | addu/ori/subu                 | S3_EXE                  |
| S3_MA             | lw                            | S4_MR                   |
|                   | sw                            | S4_MW                   |
| S3                | \ \D\\  \/ <del>+</del> \/-\/ | L / <del>L</del> . A    |
| S3_<br>S4_ 状态机独   | 立设计/整体                        | ≨综合 ▮                   |
| S4                |                               |                         |

S1

S1

|            |                          |              |            |            |             |                 |                       |           |                     |                                                   |        |         |           |        | $\overline{}$ |
|------------|--------------------------|--------------|------------|------------|-------------|-----------------|-----------------------|-----------|---------------------|---------------------------------------------------|--------|---------|-----------|--------|---------------|
|            | PC                       | MEN          | vI         | <u>IR</u>  |             | Į.              | RF                    |           | EXT                 | A                                                 | В      | AI      | <u>"U</u> | ALUOut | DR            |
|            |                          | A            | WD         |            | A1          | <u>A2</u>       | <u>A3</u>             | WD        |                     |                                                   |        |         |           |        |               |
| lw         | ALUOut                   | PC<br>ALUOut |            | MEM        | IR25:21     |                 | IR20:16               | DR        | IR <sub>15:00</sub> | RF.RD1                                            |        | PC<br>A | +4<br>EXT | ALU    | MEM           |
| sw         | ALUOut                   | PC<br>ALUOut | В          | MEM        | IR25:21     | IR20:16         |                       |           | IR15:00             | RF.RD1                                            | RF.RD2 | PC<br>A | +4<br>EXT | ALU    |               |
| addu       | ALUOut                   | PC           |            | MEM        | IR25:21     | IR20:16         | IR <sub>15:11</sub>   | ALUOut    |                     | RF.RD1                                            | RF.RD2 | PC<br>A | +4<br>B   | ALU    |               |
| subu       | ALUOut                   | PC           |            | MEM        | IR25:21     | IR20:16         | IR15:11               | ALUOut    |                     | RF.RD1                                            | RF.RD2 | PC<br>A | +4<br>B   | ALU    |               |
|            |                          |              |            |            |             |                 |                       |           | _                   |                                                   |        |         | _         |        |               |
|            | UOut                     | 米            | ት ቲ⊑       | い名         | <b>早夕</b> > | úн <del>.</del> | <u>`</u>              | <u> </u>  | / 東攵                | 1 <del>1                                   </del> | 亡人     |         |           |        |               |
| lui        | UOut                     |              | 女据         | 通          | 路           | 独立              | 江该                    | <br>}计/   | /整                  | 体纟                                                | 宗合     |         |           |        |               |
| lui<br>beq |                          | 数            | 女振         | 通          | 路           | 独立              | 江该                    | }计/       | /整                  | 体纟                                                | 宗合     |         |           |        |               |
| -          | ±UOut                    | 数            | 捷          | 通<br>MEM   | 路           | 独立              | 之说<br><sub>0x1F</sub> | 是计/<br>PC | /整                  | 体约                                                | 宗合     | PC      | +4        |        |               |
| beq        | LUOut<br>ALUOut          | 」<br>D<br>PC | <b>女</b> 据 |            |             | 独立              |                       |           | /整                  | 体约                                                | 宗合     |         | +4        |        |               |
| beq<br>jal | ALUOut ALU ALUOut ALUOut | PC PC        |            | MEM<br>MEM |             |                 | 0x1F<br>IR20:16       | PC        |                     | 体约<br>RF.RD1                                      |        | PC      | _         | ALU    | DM            |

RFWr

S5\_MWB:1

S4\_ALUWB:1

S4 ALUWB:1

S4\_ALUWB:1

控制信号独立设计/整体综合

DMWr

S4\_MW:1

#### 教学方法

- □ 课堂课下: 讲为辅, 练为主
- □ 老师学生:答为辅,学为主
- □ 教案组织:
  - ◆ 以Berkeley的CS61C和CS150为基础
    - 裁剪、组合
  - 部分大班计组教案
  - ◆ 部分补充内容

#### 你需要学习的内容: 基本原理

- □ 计算机的各组成要素
  - → 入门: 一台计算机都有哪些基本部件
  - ◆ 进阶: 理解计算机各组成要素间的关联关系
  - ◆ 高级:理解程序执行、硬件运行间的作用关系
- □ 突破点:CPU
  - ◆ CPU的指令集为什么要这样设计?
  - ◆ 如何从1条指令推导出数据通路(数据结构)?
  - 如何把多个数据通路组合成完整数据通路?
  - ◆ 如何设计控制指令执行的控制系统(算法)?

#### 你需要学习的内容: 硬件描述语言

- □ 现代芯片设计的基本方法: 硬件描述语言
  - HDL (Hardware Description Language)
  - ◆ 这是用于专门描述硬件工作原理的语言
- □ 与程序设计语言(C、JAVA)的主要区别
  - ◆ 语言内置的并行性/并发性
  - ◆ 不仅描述逻辑, 而且描述时序
    - 软件: 1+1的计算结果等于2
    - 硬件: 1+1的计算结果等于2 & 什么时候完成这个计算
  - ◆ 以1挡10、以1档100
- □ 本课程: Verilog HDL
  - VHDL×



#### 你需要学习的内容: 硬件描述语言

- □ 用Verilog开发大量的基础硬件
  - 基本的数字电路:与非门、组合逻辑、时序逻辑
  - ◆ 基本的数字部件: 译码器、运算器、寄存器文件、多路选择器、状态机
  - ◆ 完整的CPU: 数据通路、控制器
  - ◆ 完整的Computer: CPU、存储器接口、输入输出接口、桥接器

### 你需要学习的内容: 各种软件工具

- 电路模拟器: Logicsim
  - □ 学习如何设计和模拟数字电路



#### 你需要学习的内容: 各种软件工具

- □ MARS: MIPS模拟器
  - MARS (MIPS Assembler and Runtime Simulator)
  - ◆ 功能:模拟了一台MIPS计算机
  - ◆ 本课程用途1: 开发MIPS汇编程序
  - ◆ 本课程用途2: 黄金参考模型
- □ ISE: 硬件集成开发环境
  - ◆ 功能:用VerilogHDL开发、仿真、调试CPU;把CPU设计代码下载到实验设备
  - ◆ 本课程用途: 开发MIPS CPU

### 你需要学习的内容: 软硬件协同调试技术

- □ 程序运行出错了!!!!
- □ 错误定位: CPU有bug? MIPS汇编程序有bug?
- □ 怎么办?

#### 参考书

Computer Organization and Design

The Hardware/Software Interface

- David A. Patterson & John L. Hennessy
- Digital Design and Computer Architecture
  - David Money Harris Sarah L. Harris
- □ 计算机组成~工程化方法(还未定稿♡)
  - ◆ 高小鹏

#### 教学资源

- □ 学校课程中心
  - http://course.buaa.edu.cn/
  - ◆ 关键字: 计算机组成(2017秋)、高小鹏
  - ◆ 用途:交作业、下载PPT

- □ MOOC平台
  - ◆ 主力资源平台
  - 有专门介绍

#### 课程要求(理论课)

- □ 成绩:笔试85%;作业15%
  - ◆ 2016秋季通过率: 80%
- □ 循环开课:暑期,6周
  - ◆ 主要面向: 重修学生
  - ◆ 重修通过率: 4%

#### 课程要求

- □ 第1条: 作业/project必须截止时间前提交
  - 否则0分
- □ 第2条:可以彼此交流,但不能copy!
  - ◆ 抄袭/被抄袭者均为0分
- □ 第3条:上课纪律
  - ◆ 宗旨:不要干扰我及其他同学
  - ◆ 否则:老师很生气,后果很严重
  - 务必做到以下几点
    - 1、关闭手机或静音
    - 2、严禁开小会,欢迎随时可以举手提问
    - 3、迟到就不要进来
    - 4、可以睡觉但禁止打鼾
    - 5、可以不来上课,但请祈祷能考试pass

## 真的那么难吗? 看看其他学校吧!

### 南京航空航天大学1/3

- 2013春季学期: 4人小分队
  - 完成了MIPS系统开发:增强了信心
- 2013暑期4天短训班: 11名志愿者
  - 上午授课3小时,下午/晚上实验

- CPU开发完成作 9% 1~10 10+ 55% 30+ 40+

### 南京航空航天大学2/3

- 2014春季学期: 27人
  - -3↑Project
- Project1: 无VerilogHDL及EDA工具经验
- ▶ 达成: 26人成功, 1人失败
- 用时: 平均21; 最快6
  - □ 74%学生: 16小时~21小时

| 实验       | 时间 |
|----------|----|
| 7指令,单周期  | 2周 |
| 7指令,多周期  | 2周 |
| 40指令,多周期 | 3周 |



### 南京航空航天大学3/3

- 达成度: 89%
  - -2人请假延期一周
  - 平均13小时,最快7小时

| 实验       | 时间 |
|----------|----|
| 7指令,单周期  | 2周 |
| 7指令,多周期  | 2周 |
| 40指令,多周期 | 3周 |

• 3位同学提前完成了40指

令多周期CPUi



### 南京航空航天大学3/3

- 达成度: 74%
  - 平均19小时
  - 最快12小时

| 实     | 时间  |    |
|-------|-----|----|
| 7指令,  | 单周期 | 2周 |
| 7指令,  | 多周期 | 2周 |
| 40指令, | 多周期 | 3周 |



### 北京工业大学

• 2014春季学期: 17名学生

|   | 设计描述                | 运行平台     | 周数 |
|---|---------------------|----------|----|
| 1 | UART设计,阅读设计要求,补全代码  | ModelSim | 2  |
| 2 | 7指令,单周期,门级建模        | Logisim  | 1  |
| 3 | 7指令,单周期,行为级建模       | ModelSim | 1  |
| 4 | 9指令,多周期,行为级建模       | ModelSim | 2  |
| 5 | 40指令,多周期;工程化综合方法    | ModelSim | 1  |
| 6 | 53指令,多周期;定时中断       | ModelSim | 1  |
| 7 | MIPS小系统:定时中断/开关/数码管 | FPGA     | 2  |
| 8 | 流水线: 定时中断/开关/数码管    | FPGA     | 2  |

#### 北京工业大学

□ 优良率: 总体非常令人满意

◆ Project6(53指令/中断): 优良率达到47%

◆ Project7(流水/FPGA): 成功率18%



#### 几点忠告

- □ 不要逃课
  - ◆ 开始似乎很容易,但越来越难
- □ 不要拖延
  - ◆ 一个未能完成,后续项目就难以为继
- □ 力求甚解
  - 不独立完成的结果是最终无法完成
- □ 不要自以为是
  - 工程化方法貌似枯燥,但实则高效
  - ◆ 设计环节的所有付出,都会在总时间上得到回报
- □ 追求完美
  - ◆ 如果你打算面试时牛B, 那么坚持必有回报!
    - 各种面试: 保研/考研/外推/牛公司



# 谢谢!

#### 希望部分同学重新选课

□ 选课不均衡

◆ 栾钟治: 不到20人

◆ 刘旭东: 80+

◆ 高小鹏: 80+

□ 人数太多,势必导致教学效果差

建议:20人左右,选栾钟治