1.3 Properties of Regular Languages

- Pumping Lemma
- Closure properties
- Decision properties
- Minimization of DFAs

Closure Properties

 Certain operations on regular languages are guaranteed to produce regular languages

```
■ Union: L \cup M
```

■ Intersection:
$$L \cap M$$

Reversal:
$$L^R = \{w^R \mid w \in L\}$$

$$h(L) = \{h(w) \mid w \in L, h \text{ is a homomorphism}\}\$$

Inverse homomorphism:

```
h^{-1}(L) = \{ w \mid h(w) \in L, h \text{ is a homomorphism} \}
```

Closure under Regular Operators

- \square L = L(R₁), M = L(R₂), then by definition
 - $\blacksquare L \cup M = L(R_1 + R_2)$
 - $\blacksquare LM = L(R_1R_2)$

Closure under Complement

 \Box if L is a regular language over Σ , so is $\overline{L} = \Sigma^* - L$

Proof. Let L be recognized by an DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

Construct B as (Q, Σ , δ , q₀, Q-F), now $\overline{L} = L(B)$

□ L is recognized by

 \square Then \overline{L} is recognized by

Closure under Intersection

☐ If L and M are regular languages, so is L∩M

Proof 1. By DeMorgan's Law, L∩M = L∪M. we already know that regular languages are closed under complement and union.

Closure under Intersection

Proof 2. Let L be recognized by an DFA

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

And M be recognized by an DFA

$$A_{M} = (Q_{M}, \Sigma, \delta_{M}, q_{M}, F_{M})$$

We can cross product the two DFAs as:

$$A_{L \cap M} = (Q_L \times Q_M, \Sigma, \delta_{L \cap M}, (q_L, q_M), F_L \times F_M)$$

Where

$$\delta_{L\cap M}((p, q), a) = (\delta_L(p, a), \delta_M(q, a))$$

Then $L \cap M$ is recognized by $A_{L \cap M}$.

Closure under Difference

- □ If L and M are regular languages, then so is L - M
- Proof. Observe that L M = L∩M. We already know that regular languages are closed under complement and intersection.

Closure under Reversal

- ☐ If L is a regular language, so is L^R

 Proof 1. Let L be recognized by an FA A, turn A into an FA recognizing L^R, by
 - Reversing all arcs
 - Making the old start state the new sole accepting state
 - Creating a new start state q_0 , with $δ(q_0, ε)=F$ (the old accepting states)

Closure under Reversal

Proof 2. Let L be described by a regex E. We shall construct a regex E^R such that $L(E^R) = L^R$.

We proceed by a structural induction on E.

- \blacksquare E is ε , \varnothing , a, then $\mathsf{E}^\mathsf{R}=\mathsf{E}$
- \blacksquare E = F + G, then $E^R = F^R + G^R$
- \blacksquare E = FG, then $E^R = G^R F^R$
- \blacksquare E = (F)*, then E^R = (F^R)*

Homomorphism

- \square A homomorphism on Σ_1 is a function h: $\Sigma_1^* \rightarrow \Sigma_2^*$, where Σ_1 and Σ_2 are alphabets.
- Let $w = a_1 a_2 ... a_n$, then $h(w) = h(a_1)h(a_2)...h(a_n)$ and $h(L) = \{h(w) \mid w \in L\}$
- □ Example: Let h: $\{0,1\}^* \rightarrow \{a,b\}^*$ be defined by h(0)=ab, h(1)= ϵ . Then
 - h(0011) = abab
 - h(L(10*1)) = L((ab)*)

Closure under Homomorphism

- □ If L is a regular language over Σ , and h is a homomorphism on Σ , then h(L) is regular
- Proof. Let L be described by a regex E. We claim that L(h(E)) = h(L)
 - E is ε , \emptyset , then h(E)=E, L(h(E)) = L(E) = h(L(E))
 - E is a, then L(E)={a}, L(h(E)) = {h(E)} = {h(a)} = h(L(E))
 - E = F+G, then L(h(E)) = L(h(F+G)) = L(h(F)+h(G)) = L(h(F))∪L(h(G)) = h(L(F))∪h(L(G)) = h(L(F)∪L(G)) = h(L(F+G)) = h(L(E))
 - E = FG, then L(h(E)) = L(h(FG)) = L(h(F)h(G)) =
 L(h(F))L(h(G)) = h(L(F))h(L(G)) = h(L(F)L(G)) = h(L(E))
 - $E = F^*$, then $L(h(E)) = L(h(F^*)) = L(h(F)^*) = L(h(F))^* = h(L(F))^* = h(L(F)^*) = h(L(F^*)) = h(L(E))$

Inverse Homomorphism

Let h: $\Sigma_1^* \to \Sigma_2^*$ be a homomorphism, and $L \subseteq \Sigma_2^*$, then define $h^{-1}(L) = \{w \in \Sigma_1^* \mid h(w) \in L\}$

□ Let h: $\{a,b\}^* \rightarrow \{0,1\}^*$ be defined by h(a)=01, h(b)=10. If $L = L((00+1)^*)$, then $h^{-1}(L) = L((ba)^*)$.

Claim: $h(w) \in L$ if and only if $w = (ba)^n$

Proof. If $w=(ba)^n$, then $h(w)=(1001)^n \in L$; if $h(w) \in L$, and assume w not in $L((ba)^*)$, then four possible cases for w.

- w begins with a. Then h(w) begins with 01, not in L
- w ends with b. Then h(w) ends with 10, not in L
- $\mathbf{w} = \mathbf{x}$ w = \mathbf{x} aay. Then $\mathbf{h}(\mathbf{w}) = \mathbf{u}0101\mathbf{v}$, not in L
- \blacksquare w = xbby. Then h(w) = u1010v, not in L

Closure under Inverse Homom.

Let h: $\Sigma_1^* \to \Sigma_2^*$ be a homomorphism, and $L \subseteq \Sigma_2^*$ is regular, then $h^{-1}(L)$ is regular.

Proof. Let L is recognized by an FA

$$A = (Q, \Sigma_2, \delta, q_0, F)$$

We construct an FA B = $(Q, \Sigma_1, \gamma, q_0, F)$, where $\gamma(q, a) = \delta(q, h(a))$.

h⁻¹(L) is recognized by B.

- $\square \Sigma_1 = \{a, b\}, \Sigma_2 = \{0, 1\}$
- \Box h(a) = 01, h(b) = 10
- □ L:
- □ h⁻¹(L):

1.3 Properties of Regular Languages

- Pumping Lemma
- ☐ Closure properties
- Decision properties
- Minimization of DFAs

Decision Properties

- ☐ Given a representation (e.g. RE, FA) of a regular language, what can we tell about L?
 - Membership: Is string w in L?
 - Emptiness: Is $L = \emptyset$?
 - Finiteness: Is L a finite language?
 - Note that every finite language is regular (why?), but a regular language is not necessarily finite.

Emptiness

- ☐ Given an FA for L, L is not empty if and only if at least one final state is reachable from the start state in FA.
- \square Alternatively, given a regex E for L, we can use the following to test if L(E) = \emptyset :
 - E=F+G, L(E)=∅ if and only if L(F) and L(G) are empty
 - E=FG, L(E)= \emptyset if and only if either L(F) or L(G) is empty
 - \blacksquare E=F*, L(E) is not empty

Finiteness

- ☐ Given a DFA for L, eliminate all states that are not reachable from the start state and all states that do not reach an accepting state.
- ☐ Test if there are any cycles in the remaining DFA; if so, L is infinite, if not, then L is finite.

Equivalence of States

- Let $A = (Q, \Sigma, \delta, q_0, F)$, and $p, q \in Q$. We define
- □ p≡q (p and q are equivalent) \Leftrightarrow \forall w∈Σ*, δ *(p,w)∈F iff δ *(q,w)∈F
- □ Otherwise, p and q are distinguishable $\Leftrightarrow \exists w \in \Sigma^*, \delta^*(p,w) \in F$ and $\delta^*(q,w) \notin F$, or vice versa
- □ "≡" is an equivalence relation

Compute Equivalence of States

- □ Initially, all pairs of states are in relation "≡"; remove the pairs of distinguishable states inductively as the following
 - Basis: any non-accepting state is distinguishable from any accepting state. (w=ε)
 - Induction: p and q are distinguishable if there is some input symbol a such that $\delta(p, a)$ is distinguishable from $\delta(q, a)$.

 $A \equiv E$ $B \equiv H$ $D \equiv F$

Equivalence of Reg. Languages

- □ Let L and M be two regular languages, to test if L = M?
 - Convert L and M to DFA representations
 - Compute the equivalence relation "≡" on all the states of the two DFAs together.
 - If the two start states are equivalent, then L = M, else $L \neq M$.

$$A \equiv C$$
 $B \equiv E$
 $D \equiv C$

Minimization of DFAs

- □ Equivalence relation "≡" partitions the states into groups, where all the states in one group are equivalent.
- We can minimize the DFA by merging all equivalent states into one state, and merging the transitions between the states into the transitions between groups.

□ ({A, E}, {B, H}, {C}, {D, F}, {G})

Why the Minimization Can't Be Beaten?

- □ Suppose we have a DFA A, and we minimize it to construct a DFA M. Yet there is another DFA N with fewer states than M and L(N)=L(M)=L(A). Proof by contradiction that this can't happen:
 - Compute the equivalence relation "≡" on the states of M and N together.
 - Start states of M and N are equivalent because L(M)=L(N).
 - If p, q are equivalent, then their successors on any one input symbol are also equivalent. Since neither M not N could have an inaccessible state, every state of M is equivalent to at least one state of N.

Why the Minimization Can't Be Beaten? (Cont'd)

- Since N has fewer states than M, there are two states of M that are equivalent to the same state of N, and therefore equivalent to each other.
- But M was designed so that all its states are distinguishable from each other.
- We have a contradiction, so the assumption that N exists is wrong.
- In fact (stronger), there must be a 1-1 correspondence between the states of any other minimum-state N and the DFA M, showing that the minimum-state DFA for A is unique up to renaming of the states.

Summary of Chap. 1

- Finite Automata perform simple computations that read the input from left to right and employ a finite memory.
- □ The languages recognized by FA are the regular languages.
- Nondeterministic Finite Automata may have several choices at each step.
- NFAs recognize exactly the same languages that FAs do.

Summary of Chap. 1

- Regular expressions are languages built up from the operations union, concatenation, and star.
- Regular expressions describe exactly the same languages that FAs (and NFAs) recognize.
- Some languages are not regular. This can be proved using the Pumping Lemma.

Summary of Chap. 1

- The regular languages are closed under union, concatenation, star, and some other operations.
- Any FA has a unique minimum-state equivalent DFA.