太极图形课

第07讲 Rendering: Implementation Details of a Ray Tracer

太极图形课

第07讲 Rendering: Implementation Details of a Ray Tracer

Where are we?

Procedural Animation

Deformable Simulation

Rendering

Fluid Simulation

The codebase of ray tracers

- https://github.com/taichiCourse01/taichi ray tracing
- Courtesy of Mingrui Zhang (@erizmr)
- Main reference:
 - Ray tracing in one weekend [<u>Link</u>]

Recap: what we see = color * brightness

Recap: what we see = color * brightness

• Color:

- RGB channels
- Range $\in [0.0, 1.0]$
- You can see it as a "filter"

• Brightness:

- power per unit solid angle per unit projected area (Unit: $\frac{\text{lm}}{sr \cdot m^2}$ or $\frac{W}{sr \cdot m^2}$)
- Range $\in [0.0, +\infty)$
- Is called *Radiance* in Radiometry
- What we see = color * brightness
- What we see after multiple bounces = color*color*color*...*brightness

Recap: what color does the ray see?

Color

The Shading Models

The Whitted-style Ray Tracer

The Path Tracer

Recap: a path tracer

```
def what_color_does_this_ray_see(ray_o, ray_dir):
    if (random() > p_RR):
        return 0
    else:
        flag, P, N, material = first_hit(ray_o, ray_dir, scene)
        if flag == False:
            return 0
        if material.type == LIGHT_SOURCE:
            return 1 # could be more than 1
        else:
            ray2_o = P
            ray2_dir = scatter(ray_dir, P, N)
            # the cos(theta) in DIFFUSE is hidden in the scatter function
            L_i = what_color_does_this_ray_see(ray2_o, ray2_dir)
            L_o = material.color * L_i / p_RR
            return L o
```

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

Diel

- Ray-casting from the camera/eye?
- Ray-object intersection?
- Sampling?
- Reflection v.s. refraction?
- Recursions in Taichi?

Anti-aliasing?

What is a ray

• A ray is a line defined by its origin and direction

What is a ray

- A ray is a line defined by its origin and direction
- Any point on a ray can be described using a single parameter t:

•
$$P = O + t\vec{d}$$

What is a ray

- A ray is a line defined by its origin and direction
- A ray can be determined by its origin and another point on the ray:

•
$$\overrightarrow{d} = \frac{P-O}{\|P-O\|}$$

Setting up the camera

Positioning the camera/eye (lookfrom)

Orienting the camera/eye (lookat)

Placing the screen

Problem:

1. the distance between the screen and the camera is not decided

Placing the screen

Problem:

2. the orientation of the screen is not decided

Orienting the screen (up vector)

Problem:

3. the size of the screen is not decided

Field of view

Getting ready to cast a ray!

Ray-casting!

A pixel has its size as well

```
u = float(i )/res_x
v = float(j )/res_y # uv in [0, 1)
```


A pixel has its size as well

```
u = float(i+0.5)/res_x
v = float(j+0.5)/res_y # uv in (0, 1)
```


Ray-object intersection

A point on a ray

$$\bullet P = O + t\vec{\boldsymbol{d}}$$

Definition of a sphere

•
$$||P - C||^2 - r^2 = 0$$

$$\bullet \left\| O + t \overrightarrow{d} - C \right\|^2 - r^2 = 0$$

$$\bullet \left\| O + t \overrightarrow{d} - C \right\|^2 - r^2 = 0$$

• ==>
$$d^T dt^2 + 2d^T (O - C)t + (O - C)^T (O - C) - r^2 = 0$$

• ==>
$$at^2 + bt + c = 0$$

•
$$at^2 + bt + c = 0 \rightarrow t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Find the smallest POSITIVE root

•
$$at^2 + bt + c = 0 \rightarrow t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, $t > 0$

Taking the smallest positive root as a hit

Shadow Acne

Find the smallest POSITIVE root

• You might want a slightly "more positive" number than zero

•
$$at^2 + bt + c = 0 \implies t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, t > \epsilon$$

• For instance: $\epsilon = 0.001$

Find the smallest POSITIVE root

You might want a slightly more positive number than zero

•
$$at^2 + bt + c = 0 \implies t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, t > \epsilon$$

• For instance: $\epsilon = 0.001$

Build your Cornell box

Wait, How do we find intersections between rays and planes?

Build your Cornell box

• The Cornell box in our <u>released repo</u> is made of spheres :P

Well, if you still want a ray-plane intersection

• The definition of a plane:

$$\bullet \ (P-C)^T N = 0$$

How about a ray-triangle intersection?

Am I inside or outside?

- $S_{\Delta PAB} + S_{\Delta PBC} + S_{\Delta PCA} = S_{\Delta ABC}$ iff P is inside ΔABC
 - $S_{\Delta PAB} = \frac{1}{2} \|PA \times PB\|$
 - Actually $[a, b, c] = \left[\frac{S_{\Delta PBC}}{S_{\Delta ABC}}, \frac{S_{\Delta PCA}}{S_{\Delta ABC}}, \frac{S_{\Delta PAB}}{S_{\Delta ABC}}\right]$ is the Barycentric coordinate of P in ΔABC : P = aA + bB + cC

 $\label{eq:sigma-problem} Inside \\ S_{\Delta PAB} + S_{\Delta PBC} + S_{\Delta PCA} = S_{\Delta ABC}$

$$S_{\Delta PAB} + S_{\Delta PBC} + S_{\Delta PCA} > S_{\Delta ABC}$$

Why do we care about ray-triangle intersections?

Polygon meshes are (usually) made of triangles

Ray-object intersection

Implicit surfaces:

- 1. Find its surface definition
- 2. Plug the ray equation into the surface definition
- 3. Look for the smallest positive t

Polygonal surfaces:

- 1. Loop over all its polygons (usually triangles)
- 2. Find the ray-polygon(triangle) intersection with the smallest positive t

Sampling

Sample the hemisphere uniformly

- What we want:
 - Sample the directions of rays uniformly
 - Find a uniform sampling on a sphere
 - Negate the direction if against the normal

$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k)$$

Cartesian coordinates v.s. polar coordinates

- Cartesian coordinates: [x, y, z]
- Polar coordinates: $[r, \phi, \theta]$

Cartesian coordinates v.s. polar coordinates

- Cartesian coordinates: [x, y, z]
- Polar coordinates: $[r, \phi, \theta]$
- $x = r * \cos(\phi) * \sin(\theta)$
- $z = r * \sin(\phi) * \sin(\theta)$
- $y = r * \cos(\theta)$

The first attempt:

• $\phi = rand(0, 2\pi), \theta = rand(0, \pi), r = 1$

The first attempt:

• $\phi = rand(0, 2\pi), \theta = rand(0, \pi), r = 1$

Why?

Rethink of the word "Uniform"

- Uniform:
 - The probability of sampling is proportional to the surface area
- The differential surface element:
 - $dA = r^2 \sin(\theta) d\theta d\phi$

Rethink of the word "Uniform"

- If we have a uniform probability density function:
 - *f*(*v*)
 - since $\iint_S f(v)dA = 1$, and $\iint_S dA = 4\pi$
 - We have $f(v) = \frac{1}{4\pi}$
- Let's denote the p.d.f. on polar coordinates:
 - $f(\phi,\theta)$
 - Since $f(v)dA = f(\phi, \theta)d\phi d\theta$
 - And $dA = \sin(\theta) d\phi d\theta$
 - We have $f(\phi, \theta) = \frac{\sin(\theta)}{4\pi}$

 - So: $f(\phi) = \int_0^{\pi} f(\phi, \theta) d\theta = \frac{1}{2\pi}$ So: $f(\theta) = \int_0^{2\pi} f(\phi, \theta) d\phi = \frac{\sin(\theta)}{2}$

The correct attempt:

- $\phi = rand(0, 2\pi)$
- $\theta = \arccos(rand(-1,1))$
- r = 1

- Further Reading:
 - Inverse Transform Sampling [<u>Link</u>]

The correct attempt:

• $\phi = rand(0, 2\pi), \theta = \arccos(rand(-1,1)), r = 1$

Sample the hemisphere uniformly

- What we want:
 - Sample the directions of rays uniformly
 - Find a uniform sampling on a sphere

•
$$\phi = rand(0, 2\pi), \theta = \arccos(rand(-1, 1)), r = 1$$

•
$$x = r * \cos(\phi) * \sin(\theta)$$

•
$$z = r * \sin(\phi) * \sin(\theta)$$

•
$$y = r * \cos(\theta)$$

Negate the direction if against the normal

$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k)$$

Similarly, if we want to sample in a sphere:

- $\phi = rand(0, 2\pi)$
- $\theta = \arccos(rand(-1,1))$
- $r = \sqrt[3]{rand(0,1)}$

One alternative: the rejection method

- Sample inside a uniform sphere:
 - x = rand(-1,1), y = rand(-1,1), z = rand(-1,1)
 - Reject if $x^2 + y^2 + z^2 > 1$, and resample
- Sample on a uniform sphere:
 - Sample inside a uniform sphere and project

Are we done?

- Yes, all the components of a required sampling are there
- No, since we can do better

$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k)$$

The key idea of Monte Carlo is to use the **expectation** of random samples to obtain numerical results

•
$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k)$$

$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k)$$

Expectation of what?

•
$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k) \times 1$$

- Sample the hemisphere uniformly
- Each sample contribute differently to the outcome

•
$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \times \cos(\theta_k)$$

- Sample the hemisphere with cosine-importance sampling
- Each sample contribute the same to the outcome

$$L_o = \frac{1}{N} \sum_{k=1}^{N} L_{i,k} \cos(\theta_k)$$

Think of your salary plan...

- Plan 1:
 - Salary = top_percent * 50K
- Plan 2:
 - Salary = 50K, with top_percent probability to happen
- Which one do you prefer?
- *top_percent = the percentage of people you outperformed in your company

Importance sampling, great!

• A $cos(\theta)$ weighted importance sampling:

• $\phi = rand(0, 2\pi)$

- $\theta = \arccos(sqrt(rand(0,1)))$
- r = 1

Importance sampling, an alternative

 Uniformly sample a point on a uniform sphere centered at P+N, say S

Importance sampling, an alternative

 Uniformly sample a point on a uniform sphere centered at P+N, say S.

• Normalize S-P, as the cosine-weighted sampled direction.

Note: the implementation in our repo was wrong

Incorrect Correct

Uniform sampling inside/on the unit sphere

Take-aways

- It extremely hard to notice an incorrect sampling
 - Due to the lack of intuition how $cos(\theta)$ looks like

- Try:
 - Deriving the probably density function theoretically
 - Ploting the distribution histogram to verify your samples
- Further Reading:
 - PBR Book Chapter 13 [<u>Link</u>]

Reflection v.s. Refraction

Reflection and refraction

- Law of reflection:
 - $\theta_i = \theta_r$
- Snell's law (for refraction)
 - $n_1 \sin(\theta_i) = n_2 \sin(\theta_t)$

Total reflection

- Happens when $n_1 > n_2$
 - For example from glass to air
- Snell's law may fail to give you a solution
 - $\sin(\theta_t) = \frac{n_1}{n_2} \sin(\theta_i) > 1$

Reflection and refraction

- How much light should be refracted and how much should be reflected?
 - Whitted-style ray tracer: set it by yourself
 - Have you looked at a window at a steep angle?

The reflection coefficient: *R*

- R: how much of a wave is reflected by an impedance discontinuity in the transmission medium
- R should be material dependent (function of n_1 and n_2)
- R should be view point dependent (function of θ)
- The refraction coefficient: T = 1 R

The reflection coefficient: *R*

- Fresnel's equations
 - S-polarization:

•
$$R_S = \left(\frac{n_1 \cos(\theta_i) - n_2 \cos(\theta_t)}{n_1 \cos(\theta_i) + n_2 \cos(\theta_t)}\right)^2$$

• P-polarization:

•
$$R_P = \left(\frac{n_1 \cos(\theta_t) - n_2 \cos(\theta_i)}{n_1 \cos(\theta_t) + n_2 \cos(\theta_i)}\right)^2$$

• For "natural light"

•
$$R = \frac{1}{2}(R_S + R_P)$$

The reflection coefficient: *R*

- Schlick's approximation
 - $R(\theta_i) = R_0 + (1 R_0)(1 \cos(\theta_i))^5$
 - $R_0 = \left(\frac{n_1 n_2}{n_1 + n_2}\right)^2$

Path tracing with reflection coefficient R_c

```
def scatter_on_a_dielectric_surface(I):
    sin_theta_i = -I.cross(N)
    theta_i = arcsin(sin_theta_i)
    if n1/n2*sin_theta_i > 1.0:
        return R # total internal reflection
    else:
        R_c = reflectance(theta_i, n1, n2)
        if random() <= R_c:
            return R # reflection
        else:
            return T # refraction</pre>
```


The path tracer

```
def what_color_does_this_ray_see(ray_o, ray_dir):
    if (random() > p_RR):
        return 0
   else:
        flag, P, N, material = first_hit(ray_o, ray_dir, scene)
        if flag == False:
            return 0
        if material.type == LIGHT_SOURCE:
            return 1 # could be more than 1
        else:
            ray2_o = P
            ray2_dir = scatter(ray_dir, P, N)
            # the cos(theta) in DIFFUSE is hidden in the scatter function
            L_i = what_color_does_this_ray_see(ray2_o, ray2_dir)
            L_o = material.color * L_i / p_RR
            return L o
```

```
def foo():
    a = 1
    b = bar()
    return a+b
def bar():
    c = 10
    d = baz()
    return c*d
def baz():
    return 100
foo()
                                                        Stack
```

```
def foo():
    a = 1
    b = bar()
    return a+b
def bar():
    c = 10
    d = baz()
    return c*d
def baz():
    return 100
foo()
                                                         a=1
                                                        Stack
```

```
def foo():
    a = 1
    b = bar()
    return a+b
def bar():
    c = 10
    d = baz()
    return c*d
def baz():
                                                        c=10
    return 100
foo()
                                                         a=1
                                                         Stack
```

```
def foo():
    a = 1
    b = bar()
    return a+b
def bar():
    c = 10
    d = baz()
    return c*d
def baz():
                                                        c=10
    return 100
foo()
                                                         a=1
                                                        Stack
```

```
def foo():
    a = 1
    b = bar()
    return a+b
def bar():
    c = 10
    d = baz()
    return c*d
def baz():
    return 100
foo()
                                                         a=1
                                                        Stack
```

```
def foo():
    a = 1
    b = bar()
    return a+b
def bar():
    c = 10
    d = baz()
    return c*d
def baz():
    return 100
foo()
                                                        Stack
```

Revisit the path tracer

```
def what color does this ray see(ray o, ray dir):
    if (random() > p RR):
        return 0
   else:
        flag, P, N, material = first_hit(ray_o, ray_dir, scene)
        if flag == False:
            return 0
        if material.type == LIGHT_SOURCE:
            return 1 # could be more than 1
        else:
            ray2_o = P
            ray2_dir = scatter(ray_dir, P, N)
            # the cos(theta) in DIFFUSE is hidden in the scatter function
            L_i = what_color_does_this_ray_see(ray2_o, ray2_dir)
            L_o = material.color * L_i / p_RR
            return L o
```

Considering a similar recursive function

- fact computes the factorial of a number:
 - fact(n) = n!

When called fact(5):

```
fact(5)
{5 * fact(4)}
{5 * {4 * fact(3)}}
{5 * {4 * {3 * fact(2)}}}
{5 * {4 * {3 * {2 * fact(1)}}}}
{5 * {4 * {3 * {2 * 1}}}}
{5 * {4 * {3 * 2}}}
{5 * {4 * 6}}
{5 * 24}
120
```

```
def fact(n):
    if n == 1:
        return 1

    temp = fact(n-1)
    ret = n * temp
    return ret
```

A better solution

- The previous recursion can be optimized using a tail-recursion
- ...which can be further optimized using a loop (a stack-less version)

• When called fact(5):

```
5 * 4 * 3 * 2 * 1
```

```
def fact(n):
    ret = 1

while True:
    if n == 1:
        break
    ret *= n
    n = n-1

return ret
```

A recursion-less path tracer

```
def what_color_does_this_ray_see(ray_o, ray_dir):
    color = 0.0
    brightness = 1.0
   for n in range(depth_cap): # could use a while True:
        if (random() > p_RR):
            break
        else:
            flag, P, N, material = first hit(ray o, ray dir, scene)
            if flag == False:
                break
            if material.type == LIGHT SOURCE:
                color = 1.0 * brightness # could be more than 1.0
                break
            else:
                brightness *= material.color / p RR
                ray o = P
                ray_dir = scatter(ray_dir, P, N)
                # the cos(theta) in DIFFUSE is hidden in the scatter function
    return color
```

100

A recursion-less path tracer

- What we see after multiple bounces
 - = color*color*...*brightness_of_light_source, hit_light
 - = black, hit_void or killed by RR

Anti-aliasing

The problem of aliasing

Rays are always casted through the center

```
u = float(i+0.5)/res_x
v = float(j+0.5)/res_y # uv in (0, 1)
```


A zig-zag looking of the edges

Softening the edges

Anti-aliasing

```
u = float(i+ti.random())/res_x
v = float(j+ti.random())/res_y # uv in [0, 1]
```


The problem of aliasing

- Ray-casting from the camera/eye
 - Placing the camera and the screen inside the virtual world
- Ray-object intersection
 - Implicit surfaces v.s. polygon surfaces
- Sampling
 - Uniform v.s. importance sampling
- Reflection v.s. refraction
 - Snell's law
 - Fresnel's equations
- Recursions in Taichi
 - Converting them to loops
- Anti-aliasing?
 - Randomly sample inside a pixel

- Ray-casting from the camera/eye
 - Placing the camera and the screen inside the virtual world

- Implicit surfaces v.s. polygon surfaces
- Sampling
 - Uniform v.s. importance sampling
- Reflection v.s. refraction
 - Snell's law
 - Fresnel's equations
- Recursions in Taichi
 - Converting them to loops
- Anti-aliasing?
 - Randomly sample inside a pixel

- Ray-casting from the camera/eye
 - Placing the camera and the screen inside the virtual world
- Ray-object intersection
 - Implicit surfaces v.s. polygon surfaces
- Sampling
 - Uniform v.s. importance sampling
- Reflection v.s. refraction
 - Snell's law
 - Fresnel's equations
- Recursions in Taichi
 - Converting them to loops
- Anti-aliasing?
 - Randomly sample inside a pixel

- Ray-casting from the camera/eye
 - Placing the camera and the screen inside the virtual world
- Ray-object intersection
 - Implicit surfaces v.s. polygon surfaces
- Sampling
 - Uniform v.s. importance sampling
- Reflection v.s. refraction
 - Snell's law
 - Fresnel's equations
- Recursions in Taichi
 - Converting them to loops
- Anti-aliasing?
 - Randomly sample inside a pixel

- Ray-casting from the camera/eye
 - Placing the camera and the screen inside the virtual world
- Ray-object intersection
 - Implicit surfaces v.s. polygon surfaces
- Sampling
 - Uniform v.s. importance sampling
- Reflection v.s. refraction
 - Snell's law
 - Fresnel's equations
- Recursions in Taichi
 - Converting them to loops
- Anti-aliasing?
 - Randomly sample inside a pixel

- Ray-casting from the camera/eye
 - Placing the camera and the screen inside the virtual world
- Ray-object intersection
 - Implicit surfaces v.s. polygon surfaces
- Sampling
 - Uniform v.s. importance sampling
- Reflection v.s. refraction
 - Snell's law
 - Fresnel's equations
- Recursions in Taichi
 - Converting them to loops
- Anti-aliasing?
 - Randomly sample inside a pixel

Further readings

- Fundamentals of Computer Graphics [Chapter 3, 4, 10.1 and 10.2]
- Physically Based Rendering: From Theory To Implementation [Link]
- Ray Tracing...
 - In One Weekend [Link]
 - The Next Week [Link]
 - The Rest of Your Life [Link]
- GAMES 101 [Lesson 13-16] [Link]
- GAMES 202 [Link]

Homework

Homework Today

- Download the ray tracing examples in Taichi
 - https://github.com/taichiCourse01/taichi_ray_tracing
- Add a controllable camera by changing the camera settings

Add a plane/ torus /box/cylinder into the scene

Start your final project if you are into rendering

- Candidate topics:
 - Add one acceleration data structure for ray-object intersection tests.
 - Spatial hashing, Octree, kd-tree, etc.
 - Load an triangle mesh (such as .obj file) with texture
 - Bidirectional path tracing [Link]
 - Participating media [<u>Link</u>][<u>Link</u>]
 - Support BRDF/BTDF/BSSRDF etc. [Link]
 - Use your ray tracer to render your simulations (deformables/water/smoke etc.)
- Make sure your pictures look great ©

Excellent homework assignments

Excellent homework assignments

Gifts for the gifted

- Use **Template** for your homework
- Lucky draw today ©

Questions?

本次答疑: 11/11 ←作业分享也在这里

下次直播: 11/16

直播回放: Bilibili 搜索「太极图形」

主页&课件: https://github.com/taichiCourse01

主页&课件(backup): https://docs.taichi.graphics/tgc01