ÉNONCÉS

2.1

On se propose d'étudier le fonctionnement du circuit amplificateur de la figure 2.1 réalisé en utilisant un transistor à effet de champ à canal n dont les caractéristiques liant le courant drain I_D aux tensions grille-source V_{GS} et drain-source V_{DS} sont données sur la figure 2.2.

Figure 2.1

Figure 2.2

- a) Ecrire l'équation de la droite de charge statique et calculer la valeur de $R_D + R_S$ pour qu'elle passe par le point $I_{DO} = 6.4 \text{mA}$ $V_{DS} = 0$.
- b) Tracer sur le même graphique, dans le deuxième quadrant, la caractéristique de transfert $I_D = f(V_{GS})$ pour cette droite de charge. Vérifier pour l'ensemble des points relevés qu'elle représente bien l'équation :

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GSO}} \right)^{2}$$

- c) On choisit le point de polarisation tel que $I_D = I_{DP} = 2mA$, déterminer les tensions V_{DSP} et V_{GSP} correspondant à ce point de fonctionnement, en déduire la valeur des résistances R_S et R_D .
- d) Ecrire l'équation de la droite de charge dynamique du montage, déterminer ses points d'intersection avec les axes I_D et V_{DS} en supposant que le condensateur C_S se comporte comme un court-circuit et la tracer sur le graphique.
- e) Le générateur, supposé de résistance interne nulle, délivre une tension sinusoïdale d'amplitude 0,5 V.

En supposant que le condensateurs C_L correspond a une impédance nulle à la fréquence considérée, déterminer graphiquement l'amplitude de l'excursion de la tension V_{DS} de part et d'autre du point de polarisation. En déduire le gain en tension de l'amplificateur.

- f) Les caractéristiques $I_D = g(V_{DS}) à V_{GS} = C^{te}$, sont pratiquement horizontales dans la zone de fonctionnement choisie; que peut on en déduire en ce qui concerne la résistance interne du générateur de courant qui représente le fonctionnement du transistor en régime de petits signaux?
- g) A partir de l'équation de la caractéristique de transfert, calculer la transconductance g_m du transistor en fonction de I_{DSS} , V_{GS} et V_{GSO} . Calculer sa valeur au point de polarisation choisi et en déduire le gain en tension $A_v = \frac{v_{ds}}{e_p}$ de l'amplificateur.

CORRIGÉS

2.1

a) Droite de charge statique $V_{DS} = E_c - (R_D + R_S)I_D$

$$I_{DO} = \frac{E_c}{R_D + R_S}$$

$$R_D + R_S = 1250\Omega$$

b)

V	GSV	0	0,7	1,4	2,1	2,8
II)mA	4	2,25	l	0,25	0

c) pour 2mA

$$V_{GSP} = -0.82 V$$
 $V_{DSP} = 5.5 V$ $-V_{GSP} = R_S I_{DP} = 0.82 V$ $R_S = 410 \Omega$ $R_D = 840 \Omega$

d)
$$V_{DS} - V_{DSP} = -R_D (I_D - I_{DP})$$

$$I_D = O \qquad V_{DS} = 7,18 \text{ V}$$

$$V_{DS} = O \qquad I_D = 8,55 \text{mA}$$

- e) Le point de fonctionnement se déplace sur la droite de charge dynamique, l'excursion de la tension V_{DS} est d'environ 0,85 V de part et d'autre de V_{DSP} .
- f) La résistance interne du générateur de courant est infinie.

g)

$$\frac{\delta I_{D}}{\delta V_{GS}} = -\frac{2I_{DSS}}{V_{GSO}} \left(1 - \frac{V_{GS}}{V_{GSO}} \right)$$

$$g_{m} = -2,02 \cdot 10^{-3} \text{ A/V}$$

$$v_{ds} = -R_{D} \cdot i_{d} = g_{m} R_{D} v_{gs} = -g_{m} R_{D} e_{g}$$

$$A_{v} = \frac{v_{ds}}{e_{g}} = -g_{m} R_{D}$$

$$A_{v} = 1,7$$

6.1

Un transistor npn est utilisé dans le circuit amplificateur de la figure 6.1. La caractéristique $I_B = f(V_{BE})$ est assimilée à la droite $V_{BE} = C^{te} = 0,7V$. Les caractéristiques $I_C = g(I_B,V_{CE})$ sont assimilées à des droites parallèles telles que $I_C = 100 \ I_B$.

Figure 6.1

a) Tracer le réseau de caractéristiques pour :

$$I_B = 0 - 0.5 - 10 - 15 - 20 \,\mu A$$

- b) Tracer la droite de charge pour E_c = 20Volts et R_L = 10k Ω et sur le même graphique tracer la caractéristique de transfert correspondante.
- c) Déterminer le point de fonctionnement P_0 caractérisé par I_{BO} , I_{CO} et V_{CEO} lorsque $E_B = 2V$ et $R_B = 100 k\Omega$.
- d) Lorsque E_B varie de \pm 0,1 Volt autour de 2 V déterminer graphiquement et analytiquement l'amplitude des variations ΔI_B ΔI_C ΔV_{CE} de I_B , I_C et V_{CE} .

En déduire le gain en tension : $A_v = \frac{\Delta V_{CE}}{\Delta E_B}.$

Qu'exprime le fait que le gain soit négatif ?

e) En conservant la même droite de charge, comment faut-il choisir le point de fonctionnement P'₀ pour que les variations maximales positive et négative autour de ce point soient identiques. Quelle doit-être alors la valeur de la résistance R_B, E_B restant égal à 2 Volts, en déduire la nouvelle valeur du gain A_v.

f) Calculer la puissance P_{ALO} fournie par la source E_C, la puissance

P_{LO} dissipée dans la charge et la puissance P_{TO} , dissipée dans le transistor lorsque le point de fonctionnement est P_0 . Calculer les mêmes puissances lorsque la tension E_B est de la forme :

$$E_B = E_{BO} + E_{BM} \cos \omega t$$

 E_{BO} étant égale à 2 Volts et E_{BM} correspondant à la variation maximum possible déterminée au paragraphe f.

Que peut-on en déduire ?

6. Problèmes et exercices corrigés

L'amplificateur de la figure 6.2 est produit en grande série avec des transistors npn de faible coût dont les caractéristiques sont fortement dispersées, le gain en courant β pouvant varier de 50 à 200 alors que la chute de tension V_{BE} reste toujours autour de +0.7V. Le courant de polarisation I_{CO} souhaité pour une température de 20°C est de 1,6mA pour une tension V_{CEO} de 4 volts. La tension d'alimentation E_{C} est égale à 20 volts.

- a) Représenter la figure 6.2 en remplaçant le transistor par son schéma équivalent en régime de polarisation (en négligeant le courant I_{CEO}) et le pont diviseur R_1 et R_2 par la source de Thévenin équivalente de force électromotrice E_B et de résistance interne R_B . R_B a pour valeur $10k\Omega$.
- b) Calculer la valeur de la résistance R_E pour que I_C ne varie pas de plus de 10% dans tous les amplificateurs produits et déterminer la valeur de la résistance R_{LO}.
- c) Calculer la tension E_B pour que $I_{CO} = 1,6mA$ pour $\beta = 200$ et vérifier que pour $\beta = 50$, le courant I_C est bien maintenu dans la plage de variation souhaitée.

Calculer R₁ et R₂.

39

- d) Ecrire l'équation de la droite de charge dynamique en considérant C_E comme un court-circuit à la fréquence considérée et déterminer ses points d'intersection avec les axes I_C et V_{CE} .
- e) Dans certaines conditions de fonctionnement la température peut varier de ± 20°C autour de 20°C. Les transistors ont les caractéristiques suivantes :

à 40°C 60
$$\langle \beta \langle 210 \rangle \Phi = 0,6V$$

à 0°C 40 $\langle \beta \langle 190 \rangle \Phi = 0,8V$

Le circuit extérieur étant celui déterminé précédemment, calculer en pourcentage les variations de I_{CO} correspondantes.

6.3

On considère le montage amplificateur à deux étages de la figure 6.3. Les transistors utilisés sont de type pnp, ils ont chacun un gain en courant β de 100 et une tension base-emetteur Φ de -0,7V.

Figure 6.3

- a) Déterminer les expressions des courants I_{C1} et I_{C2} en fonction des paramètres du circuit. Pour calculer l'expression du courant I_{C2} on remplacera entre E_C et B_2 le pont diviseur par le générateur de Thévenin équivalent de f.e.m. E_{B2} et de résistance interne R_{B2} .
- b) Calculer les courants et les tensions I_{C1} I_{C2} V_{CE1} et V_{CE2} pour :

$$\begin{split} E_C &= 20V & R_{Bi} = 50k\Omega & R_{L1} = 680\Omega \\ R_1 &= 2k\Omega & R_2 = 8k\Omega & R_3 = 3k\Omega & R_{L3} = 3k\Omega \end{split}$$

L'amplificateur d'un circuit intégré silicium est constitué par deux transistor npn dans un montage de type "miroir de courant" représenté sur la figure 6.4 (a).

Figure 6.4

- a) Déterminer l'expression du courant I_{C2} en fonction des paramètres du circuit.
- b) Calculer le courant I_{C2} pour $R_1 = 8K\Omega$, $R_2 = 4K\Omega$ $R_3 = 2K\Omega$ et $E_C = 12V$ lorsque β varie de 50 à 200 dans une production de masse et déterminer les tensions V_{CE2} correspondantes. On prend $V_{BE1} = V_{BE2} = 0,7V$.
- c) Au cours du procédé de fabrication du circuit intégré les valeurs des résistances déterminées par le dopage peuvent être multipliées par un facteur k, qu'elle en est la conséquence sur la tension V_{CE2}.
- d) Les transistors sont représentés en régime de petits signaux par le schéma de la figure 6.4(b).

Dessiner le schéma équivalent de l'amplificateur en régime de petits signaux. Simplifier le circuit en supprimant la source de courant du transistor $T_{\rm I}$, tout en s'assurant que la tension aux bornes de la résistance $R_{\rm I}$ n'est pas modifiée.

Figure 6.4

e) Pour β = 200, calculer la résistance r_{π} sachant que la résistance de base r_b est égale à 100Ω . En déduire la résistance d'entrée de l'amplificateur et son gain en tension. Quelle est la valeur de la résistance de sortie? Représenter l'amplificateur par une source de tension liée à la tension d'entrée.

En régime de petits signaux le modèle basse fréquence d'un transistor bipolaire dans un schéma "base à la masse" est représenté sur la figure 6.5.

Figure 6.5

- a) En utilisant les équations de définition du quadripôle "admittance" équivalent déterminer les paramètres y_b correspondants en fonction de α r_e r_b et r_c .
- b) Réciproquement, en tenant compte du fait que r_c est toujours beaucoup plus grand que r_b , calculer les valeurs de α r_e r_b et r_c en fonction des paramètres y_b .

c) Le courant collecteur de polarisation du transistor étant de 2mA déterminer la valeur de la résistance r_e et calculer les paramètres y_b en prenant :

$$\alpha = 0.99$$
 $r_b = 100\Omega$ et $r_c = 10M\Omega$.

d) En utilisant le quadripôle ainsi déterminé, calculer le gain en tension, les impédances d'entrée et de sortie d'un amplificateur qui utiliserait ce transistor avec une résistance de charge de $10k\Omega$ et un générateur de signal dont la résistance serait de 100Ω . Verifier les résultats numériques obtenus en les comparant à ceux calculés directement à partir du schéma naturel.

On réalise l'amplificateur représenté sur la figure 6.6 en utilisant un transistor bipolaire polarisé par un courant I_{co} de 2 mA dans un montage "émetteur à la masse".

Le schéma équivalent du transistor en "haute fréquence" a pour caractéristiques :

$$\beta = 100$$
 $r_{bb'} = 100 \Omega$ $r_{b'c} = 10M \Omega$ $C_{b'e} = 8p F$ $C_{b'c} = 0.4p F$

- a) Dessiner le schéma équivalent du transistor en hautes fréquences et déterminer la valeur des différents éléments.
- b) En utilisant l'hypothèse de Miller dans le cas où le transistor est chargé par une résistance de $10 \text{ k} \Omega$, simplifier le schéma et calculer le gain en tension de l'amplificateur lorsque le générateur a une résistance interne de 100Ω . Calculer la fréquence de coupure haute fréquence (on néglige dans ce calcul le courant traversant le pont diviseur constitué par R_1 et R_2).

- c) Calculer la valeur de la résistance R_2 pour que le transistor soit convenablement polarisé lorsque $R_1=5000\Omega$ $R_E=3000\Omega$ et $E_C=10V$.
- d) Déterminer l'expression de l'impédance d'entrée Z_e et du gain en tension A_v dans le domaine des basses fréquences en négligeant l'influence du pont diviseur constitué de R_1 et R_2 . Calculer les valeurs remarquables des fréquences et des gains en tension lorsque $C_L = l\mu F$ et $C_E = l0\mu F$.

Tracer les diagrammes de Bode correspondants en amplitude et phase.

e) Calculer la valeur de l'impédance d'entrée à fréquence nulle et montrer que l'approximation précédente (paragraphe d) n'est plus valable en très basses fréquences.

Déterminer l'expression du gain en tension en prenant en compte l'influence de R_1 et R_2 .

CORRIGÉS

6.1

Figure 6.1

b) La droite de charge a pour équation :

$$V_{CE} = E_C - R_L I_C.$$

Elle passe par les points :

$$I_C = O$$
 $V_{CE} = E_C = 20V$
 $V_{CE} = O$ $I_{CC} = \frac{E_C}{R_L} = 2mA$

c) Dans le circuit de base, on a :

$$V_{BE} = E_B - R_B I_B$$

La droite correspondante dite souvent "droite d'attaque" passe par les points :

$$I_B = O$$
 $V_{BE} = E_B = 2V$
 $V_{BE} = O$ $I_B = \frac{E_B}{R_B} = 20\mu A$

Elle coupe la caractéristique $I_B = f(V_{BE})$ au point :

$$V_{BEO} = 0.7V$$

$$I_{BO} = 13\mu A$$

et l'on a :

$$I_{CO} = 1,3mA$$

$$V_{CEO} = 7V$$

d) La droite d'attaque se déplace parallèlement a elle-même lorsque E_B varie de 0,1V (R_B constant).

On a donc:

$$\Delta I_B = 1 \mu A$$
 $\Delta I_C = 0.1 mA$ $\Delta V_{CE} = -1 V$

$$A_{v} = -\frac{\Delta V_{CE}}{\Delta E_{R}} = -10$$

Le gain en tension négatif exprime le fait que les variations de V_{CE} et de $E_{\rm B}$ sont de sens contraires.

e) Les variations maximales autour du point de fonctionnement sont identiques lorsque le point P_O' est situé au milieu du segment I_{CC} E_C de la droite de charge (point centré). On a alors $V_{CEO}' = 10V$ $I_{CO}' = 1mA$ $I_{BO}' = 10\mu A$.

La droite d'attaque passe par les points :

$$I_B = O$$
 $V_{BE} = 2V$
 $I'_{BO} = 10\mu A$ $V_{BF} = 0.7V$

d'où

$$R_{\rm B} = \frac{E_{\rm B} - V_{\rm BE}}{I_{\rm B}} = 130 \text{k}\Omega$$

$$A_v = -100 \frac{R_L}{R_B} = -7,69$$

Dans les conditions d'excursion maximales :

$$\Delta V_{CEM} = 10V$$

$$\Delta E_{BM} = \frac{\Delta V_{CEM}}{A_{v}} = 1.3V$$

f) Puissances fournies par la source E_C et dissipées dans la charge et le transistor.

• pour $E_B = E_{BO} = 2V$ $P_{ALO} = 20 \text{mW}$ $P_{LO} = 10 \text{mW}$ $P_{TO} = 10 \text{mW}$

• pour $E_B = E_{BO} + E_{BM} \cos \omega t$

$$P_{AL} = 20 \text{mW}$$

$$P_{L} = P_{LO} + \frac{1}{2} R_{L} \Delta I_{CM}^{2} = 15 \text{mW}$$

$$P_{T} = P_{TO} - \frac{1}{2} R_{L} \Delta I_{CM}^{2} = 5 \text{mW}$$

Le transistor convertit la puissance fournie par la source E_C en puissance signal dans la résistance R_L .

6.2

a)
$$E_{B} = \frac{R_{2}}{R_{1} + R_{2}} E_{C} \qquad R_{B} = \frac{R_{1}R_{2}}{R_{1} + R_{2}} = 10 \text{ K}\Omega$$

Figure 6.2

b) Les variations de I_C sont liées aux variations de β par la relation 6.18 du cours.

6.4

$$\frac{I_{C2} - I_{C1}}{I_{C1}} = \frac{\beta_2 - \beta_1}{\beta_1} \times \frac{\frac{R_E}{R_B} + 1}{1 + (1 + \beta_2)\frac{R_E}{R_B}} = 0.1$$

$$\text{d'où } \frac{R_E}{R_B} = 0.17 \quad \text{et} \quad R_E = 1700 \,\Omega.$$

Dans le circuit collecteur on a :

$$E_{C} - (R_{E} + R_{L})I_{CO} = V_{CEO}$$

$$R_{E} + R_{L} = \frac{E_{C} - V_{CEO}}{I_{CO}} = 10\,000\Omega$$

$$R_{L} = 8\,300\Omega$$

c) Dans le circuit de base on a :

$$E_B = \phi + \left(\frac{R_B}{\beta} + R_E\right)I_C$$

$$E_B = 3.5 \text{ V pour } \beta = 200 \text{ et } I_C = 1.6 \text{ mA}$$

$$I_C = 1.47 \text{ mA pour } \beta = 50$$

La variation de I_C est donc bien inférieure à 10%:

$$R_1 = R_B \frac{E_C}{E_B} = 57000\Omega$$

 $R_2 = \frac{R_B R_1}{R_1 - R_B} = 12000\Omega$

d) L'équation de la droite de charge dynamique s'écrit :

$$V_{CE} - V_{CEO} = -R_L (I_C - I_{CO})$$

Elle coupe les axes aux points :

$$I_C = 2,08 \text{mA}$$
 $V_{CE} = O$ $I_C = O$ $V_{CE} = 17,28 \text{V}$

e)
$$I_C = \frac{\beta(E_B - \Phi)}{R_B + (1 + \beta)R_B}$$

$$\beta = 60$$
 $\Phi = 0,6$ \rightarrow $I_C = 1,53mA = -3\%$
 $\beta = 210$ $\Phi = 0,6$ \rightarrow $I_C = 1,65mA = +3,7\%$
 $\beta = 40$ $\Phi = 0,8$ \rightarrow $I_C = 1,36mA = -16\%$
 $\beta = 190$ $\Phi = 0,8$ \rightarrow $I_C = 1,53mA = -9,6\%$

a) Pour le transistor T₁ on peut écrire :

$$\begin{split} E_C + V_{BE1} = & \left(\frac{R_{B1}}{\beta} + R_{L1} \right) I_{C1} \\ soit \\ I_{C1} = & \frac{E_C + V_{BE1}}{R_{L1} + \frac{R_{B1}}{\beta}}. \end{split}$$

Pour le transistor T₂, on a:

$$V_{BE2} + E_{B2} = \left(\frac{R_{B2}}{\beta} + R_3\right) I_{C2}$$

$$R_{B2} = \frac{R_1 R_2}{R_1 + R_2}$$

$$E_{B2} = \frac{R_1}{R_1 + R_2} E_{C}$$

avec

soit

$$I_{C2} = \frac{V_{BE2} + E_{B2}}{\frac{R_{B2}}{\beta} + R_3}$$

b)
$$I_{C1} = \frac{20 - 0.7}{680 + 500} = 16.34 \text{mA}$$

$$V_{CEI} = 8,88V$$
 $R_{B2} = 1600\Omega$
 $E_{B2} = 4V$
 $I_{C2} = 1,1mA$
 $V_{CE2} = 13,4V$

a) On a:

$$V_{BE1} = V_{BE2} = \Phi$$
$$I_{B1} = I_{B2} = I_{B}$$

$$I_{C1} = I_{C2} = \beta I_{B}$$

$$I = I_{C1} + 2I_{B} = I_{C} \left(1 + \frac{2}{\beta} \right) = (\beta + 2)I_{B}$$

$$E_{C} - V_{BE1} = R_{1}I + R_{3}I_{B}$$

$$I_{C2} = \frac{E_{C} - V_{BE1}}{R_{1} + \frac{2R_{1} + R_{3}}{\beta}}$$

b) Pour:

$$\beta = 50$$
 I_C = 1,35mA V_{CE2} = 6,6V
 $\beta = 200$ I_C = 1,40mA V_{CE2} = 6,4V

c) I_C est inversement proportionnel à k. $V_{CE2} = E_C - k R_2 I_C \text{ est indépendant de } k.$

d)

Figure 6.4

Figure 6.4

e) $r_{e} = \frac{1}{40 I_{C}} = \frac{1}{40 \times 1, 4 \cdot 10^{-3}} = 17,86\Omega$ $r_{\pi} = r_{b} + (1+\beta)r_{e} = 100 + 200 \times 17,86 = 3670\Omega$ $R_{a} = \frac{R_{3} + r_{\pi}}{1+\beta} = 283,5\Omega$ $R_{1} || R_{a} = R_{b} = 274\Omega$

Problèmes et exercices corrigés

Figure 6.4

$$R_C = R_3 + R_b = 2274\Omega$$

$$R_e = r_{\pi} || R_C = 1400\Omega$$

$$v_s = -\beta R_2 i_{b2} = -\beta R_2 \frac{v_e}{r_\pi}$$

$$A_v = \frac{v_s}{v_e} = -\frac{\beta R_2}{r_\pi} = -\frac{200 \times 4000}{3670} = -218$$

$$R_s = R_2 = 4K\Omega$$

6.5

Les paramètres "admittance" sont définis dans le quadripôle correspondant par les relations.

$$i_1 = y_{11} \ v_1 + y_{12} \ v_2$$

$$i_2 = y_{21} v_1 + y_{22} v_2$$

On les détermine en réalisant successivement $v_1 = 0$ et $v_2 = 0$ d'où :

$$y_{11} = \left(\frac{i_1}{v_1}\right)_{v_2=0}$$
 $y_{21} = \left(\frac{i_2}{v_1}\right)_{v_2=0}$

$$y_{12} = \left(\frac{i_1}{v_2}\right)_{v_{1=0}}$$
 $y_{22} = \left(\frac{i_2}{v_2}\right)_{v_{1=0}}$

Le schéma du molèle "base à la masse" devient pour $v_i = 0$.

Figure 6.5

et pour $v_2 = 0$.

Figure 6.5

Pour $v_2 = 0$, on ne tient pas compte de la résistance r_c très grande devant r_b donc $i_c \approx -\alpha i_e$. On a en outre :

$$v_{eb} = v_1 \quad i_e = i_1 \quad i_c = i_2 \quad \text{et} \quad i_e + i_b + i_c = 0$$

En écrivant les équations du circuit on obtient :

$$y_{11b} = \frac{1}{r_e + r_b(1 - \alpha)} \qquad y_{21b} = \frac{-\alpha}{r_e + r_b(1 - \alpha)}$$
$$y_{12b} = \frac{-r_b}{r_c[r_e + r_b(1 - \alpha)]} \qquad y_{22b} = \frac{r_e + r_b}{r_c[r_e + r_b(1 - \alpha)]}$$

b) Réciproquement les expressions permettent de calculer α, r_e r_b et r_c en fonction des paramètres y.

$$\alpha = -\frac{y_{21b}}{y_{11b}}$$
 $r_b = -\frac{y_{12b}}{\Delta y_b}$ $r_e = \frac{y_{12b} + y_{22b}}{\Delta y_b}$ $r_c = \frac{y_{11b}}{\Delta y_b}$

 $\Delta y_b = y_{11b} \ y_{22b} - y_{12b} \ y_{21b}$ avec

c) Le transistor étant polarisé à un courant I_{CO} de 2 mA, on a :

$$r_{\rm e} = \frac{1}{40 I_{\rm CO}} = 12,5\Omega$$

pour

d)

$$\alpha = 0.99 \quad r_c = 10 M \Omega \quad r_b = 100 \Omega$$

on obtient:

$$y_{11b} = 74 \text{ m.m ho}$$

$$y_{21b} = -73,3 \,\mathrm{m.m\,ho}$$

$$y_{12b} = -7,41 \, 10^{-4} \, \text{m.m ho}$$
 $y_{22b} = 8,33 \, 10^{-4} \, \text{m.mho}$

$$y_{22h} = 8.33 \, 10^{-4} \, \text{m.mhc}$$

$$A_v = -y_g \times \frac{y_{21}}{(y_{11} + y_g)(y_{22} + y_L) - y_{12} y_{21}} = 87,26$$

$$Y_e = y_{11} - \frac{y_{12} y_{21}}{y_{22} + y_1} \cong 74 \ 10^{-3} \ \text{mho} \rightarrow Z_e = 13,51\Omega$$

$$Y_s = y_{22} - \frac{y_{12} y_{21}}{y_{11} + y_g} = 1,93 \cdot 10^{-7} \text{ mho } \rightarrow Z_s = 5,18 \cdot 10^6 \Omega$$

a)

6.6

$$r_{bb'} = 100 \ \Omega$$
 $r_{bc'} = 10 M \ \Omega$ $r_{ce} \approx r_c' \approx \frac{r_c}{\beta} = 100 \ K \Omega$

$$r_{be'} = \beta r_{eb'} = \beta \times \frac{1}{40 I_{co}} = 1250 \Omega$$
 $g_m = \frac{\beta}{r_{be'}} = \frac{100}{1250} = 80 \text{ m A/V}$

b)

$$C_T = C_{b'e} + (1 + g_m R'_L)C_{b'c}$$

avec
$$R'_{L} = R_{L} || r_{ce} = 9090 \Omega$$

$$C_T = 300 \, pF$$

$$A_{v} = \frac{-g_{m} R'_{L} r_{b'e}}{r_{b'e} + r_{g} + r_{bb'} + j\omega C_{T} r_{b'e} (r_{g} + r_{bb'})}$$

$$\omega_c = 1,93 \ 10^7 \, \text{rads}^{-1}$$
 $f_c = 3 \, \text{MHz}$

$$A_{vo} = -627$$
 20 Log $|627| = 56 \, dB$

c) Dans le circuit d'entrée on peut écrire :

$$E_{c} \frac{R_{2}}{R_{1} + R_{2}} - V_{BE} = R_{E} I_{co} + \frac{R_{1}R_{2}}{R_{1} + R_{2}} \frac{I_{co}}{\beta}$$

$$R_{2} = \frac{\left(R_{E} I_{CO} + V_{BE}\right) R_{1}}{E_{c} - R_{E} I_{CO} - V_{BE} - R_{1} \frac{I_{CO}}{\beta}} = 10,5 \text{K}\Omega$$

d) Impédance d'entrée

En posant $r_{\pi} = r_{bb'} + r_{b'e}$ il vient :

$$Z_e = r_{bb'} + r_{b'e} + \beta Z_E = r_{\pi} + \beta Z_E$$

Gain en tension:

$$A_{v} = \frac{-\beta R'_{L}}{r_{\pi} + r_{g} + \beta Z_{E} + \frac{1}{j\omega C_{L}}} = \frac{-\beta R'_{L} j\omega C_{L}}{1 + j\omega C_{L} (r_{\pi} + r_{g} + \beta Z_{E})}.$$

en très basses fréquences $Z_E \approx R_E$

$$A_{v} = \frac{-\beta R_{L}' \ j\omega C_{L}}{1 + j\omega C_{L} (r_{\pi} + r_{g} + \beta R_{E})}$$

$$\omega_{p1} = \frac{1}{C_{L} (r_{\pi} + r_{g} + \beta R_{E})} = 3,33 \text{ rads}^{-1}$$

$$f_{p1} = 0,53 \text{ Hz}$$

$$A'_{vo} = \frac{-\beta R'_{L}}{r_{\pi} + r_{g} + \beta R_{E}} = -3 \qquad 20 \text{ Log} |A'_{vo}| = 9,5.$$

Aux fréquences telles que $\omega * \omega_{p1}$, $\frac{1}{\omega C_L}$ devient négligeable devant les autres termes.

$$A_{v} = \frac{-\beta R'_{L}}{r_{\pi} + r_{g} + \beta R_{E}} \times \frac{1 + j\omega R_{E}C_{E}}{1 + j\omega \frac{R_{E}C_{E}(r_{g} + r_{\pi})}{r_{g} + r_{\pi} + \beta R_{E}}}.$$

Les deux fréquences remarquables sont :

$$\omega_{\rm o} = \frac{1}{R_{\rm E} C_{\rm E}} = 33.3 \text{ rads}^{-1}$$
 $f_{\rm o} = 5.3 \,\text{Hz}$

$$\omega_{p_2} = \frac{r_g + r_\pi + \beta R_E}{R_E C_E (r_g + r_\pi)} = 6900 \text{ rads}^{-1}$$
 $f_{p_2} = 1100 \text{ Hz}$

$$A_v = A_{vo} = \frac{-\beta R'_L}{r_o + r_\pi} = -627 \text{ pour } f * f_o$$

Figure 6.6

e) L'impédance d'entrée $Z_e = r_\pi + \beta \, Z_E$ a pour valeur à fréquence nulle :

$$Z_e' = 310^5 \Omega$$

 $R_B = R_1 || R_2$ a pour valeur 3387 Ω . On ne peut donc négliger son influence.

En la prenant en compte on obtient :

$$A_{v} = -\beta R'_{L} \frac{R_{B}}{\left(r_{\pi} + \beta Z_{E}\right) R_{B} + \left(r_{\pi} + \beta Z_{E} + R_{B}\right) \left(r_{g} + \frac{1}{j\omega C_{L}}\right)}$$

$$avec \quad Z_{E} = \frac{R_{E}}{1 + j\omega R_{E} C_{E}}.$$

Il n'est alors plus possible d'introduire les approximations précédentes. La détermination des fréquences caractéristiques doit se faire globalement à partir de l'expression de A_v.

ÉNONCÉS

7.1

On considère le circuit de la figure 7.1 dans lequel un transistor npn de gain β est utilisé.

a) Tracer dans le plan I_C , V_{CE} les droites de charge statique et dynamique après avoir déterminé le point de polarisation M_O (I_{CO} , V_{CEO}).

On prend:

$$\beta = 50$$
, $E_C = 30 \text{ V}$, $R_1 = 2 \text{ K}\Omega$, $R_2 = 1 \text{ K}\Omega$, $R_E = 1 \text{ K}\Omega$, $R_C = 500 \Omega$, $R_L = 500 \Omega$.

Pour déterminer le point de fonctionnement, on négligera la tension $V_{BE} = \Phi = 0,7\,V$ et la chute de tension dans la résistance R_B équivalente à la résistance du pont diviseur. On justifiera après calcul cette approximation. Pour quelle valeur de V_{CE} le transistor est il bloqué $\left(I_{CO} = O\right)$?

b) En supposant que les caractéristiques I_C , V_{CE} sont régulièrement réparties dans tout le plan $I_C V_{CE} (\beta = C^{te} = 50)$, tracer la forme de la tension V_{CE} lorsque le courant de base est de la forme :

$$I_B = I_{BO} + I_{BM} \sin \omega t$$

avec

$$I_{BM} = 400 \mu A.$$

Que peut on dire du défaut de l'amplificateur ainsi réalisé ?

- c) On cherche à obtenir un signal sinusoïdal d'amplitude maximale sur la résistance R_L , déterminer un nouveau point de polarisation M^\prime_O (Γ_{CO} , V^\prime_{CEO})pour que ce résultat soit atteint. Quelles sont alors les variations maximales du courant I_C et de la tension V_{CE} ? En maintenant la valeur de la résistance R_1 constante quelle doit être la nouvelle valeur de la résistance R_2 ? Effectuer le calcul en négligeant la tension $V_{BE}=0,7\,V$ et la chute de tension dans R_B .
- d) Déterminer la puissance maximum dissipée dans le transistor et calculer la température de la jonction collecteur-base en sachant que la résistance thermique R_{TJB} entre la jonction et le boîtier est de 350°C/W et que la résistance thermique R_{TBA} entre le boîtier et l'air ambiant supposé à 20°C est de 20°C/W.

Deux transistors bipolaires complémentaires sont associés dans le circuit de la figure 7.2.

- a) Tracer dans les demi-plans $V_{CE1}I_{C1}$ et $V_{CE2}I_{C2}$ les droites de charges en les raccordant aux points $I_{C1} = I_{C2} = 0$.
- b) Représenter la forme des courants I_{CI} , I_{C2} et I_{L} en fonction du temps t lorsque la tension e_s est de forme sinusoïdale.
- c) En régime sinusoïdal, calculer la puissance maximale dissipée dans la charge, dans chacun des transistors et la puissance fournie par les deux alimentations en fonction de E_Cet du courant maximum I_{CM}.

- d) Calculer la valeur minimale de E_C pour que l'amplificateur puisse délivrer une puissance de 50 watts à un haut parleur ayant une résistance de 4Ω . Quelle sont alors la tension et le courant maximal que les transistors doivent supporter et quelle est la puissance dissipée par chaque transistor ?
- e) Les transistors choisis pouvant supporter une tension V_{CE} maximale de 60 volts, un courant maximum de 4A et une puissance maximale de 50 watts lorsqu'ils sont montés sur un radiateur convenablement dimensionné, calculer la puissance maximale que l'amplificateur peut délivrer en régime sinisoïdal et déterminer alors les valeurs de R_I et de E_C correspondantes.

7.3

L'étage de sortie d'un amplificateur utilisant deux transistors complémentaires dans un montage "push-pull" à collecteur commun est représenté sur la figure 7.3.

Figure 7.3

- a) Déterminer en fonction de E_C, R et V_{BE} le courant I_{CO} de polarisation des transistors.
- b) Calculer l'impédance d'entrée en signaux forts en fonction de β_m , R_{em} et R_L ainsi que le gain en tension et le gain en puissance.

Donner les valeurs numériques de ces mêmes grandeurs pour :

$$E_C = 20 \text{ V}$$
 $\beta_m = 50 \text{ R}_{em} = 0.1 \Omega$ $R_L = 4 \Omega$ $R = 100 \Omega$.

c) Déterminer la puissance maximale fournie à la résistance R_L en régime alternatif et calculer la puissance d'entrée nécessaire pour obtenir cette puissance maximale. Quel type de montage permet de la réduire?

Le signal d'entrée de l'amplificateur de puissance du problème 7.3 est fourni par un montage amplificateur de tension (fig. 7.4) réalisé à l'aide du transistor T_3 .

Figure 7.4

a) Donner l'expression du courant I_{C3} en fonction de :

$$R_2$$
, R_3 , R_4 , V_{BE3} et β_3

et l'exprimer en fonction de R₄ lorsque :

$$R_2 = 10\Omega$$
, $R_3 = 10K\Omega$, $V_{BE3} = 0.7 \text{ V}$, $\beta_3 = 100$, $E_C = 20 \text{ V}$.

- b) Déterminer la relation entre E_C , R_1 , I_{C3} et V_{BE1} pour que la tension de sortie V_s soit nulle lorsqu'au aucun signal n'est appliqué à l'entrée E et calculer la valeur de R_4 pour que ce résultat soit atteint lorsque $R_1 = 100\Omega$ et $V_{BE1} = 0,7\,V$. Quelle est alors la valeur de la tension V_F ?
- c) Dessiner le schéma équivalent de l'amplificateur de tension en régime de variation de grande amplitude et calculer son gain en tension et son impédance d'entrée.

On prendra $R_{em3} = 0.1\Omega$ et $\beta_{m3} = 100$.

 d) Calculer le gain en tension et le gain en puissance de l'amplificateur complet.

CORRIGÉS

7.1

a) Droite de charge statique :

$$E_C - V_{CE} = (R_E + R_C)I_C$$

Équation du circuit d'entrée :

$$E_B - R_B I_B = V_{BE} + I_{CO} R_E$$

Soit en négligeant R_B I_B et V_{BE}:

$$I_{CO} = \frac{E_B}{R_E} = \frac{E_C}{R_E} \times \frac{R_2}{R_1 + R_2} = 10 \text{mA}, \ V_{CEO} = 15 \text{V}$$

Figure 7.1

Droite de charge dynamique :

$$V_{CE} - V_{CEO} = -R'_{L}(I_{C} - I_{CO})$$
 avec $R'_{L} = R_{C} || R_{L} = 250 \Omega$.

Cette droite coupe les axes aux points :

$$V_{CE} = O$$
 $I_C = 70 \text{mA}$
 $I_C = O$ $V_{CE} = 17,5 \text{ V}$

$$R_B = R_1 || R_2 = 666 \Omega$$

 $R_B I_B = \frac{666 \times 10 \cdot 10^{-3}}{50} = 0.13 \text{ V}$

On peut donc en première approximation négliger cette tension devant $E_B = 10 \, \text{Volts}$.

b) Le point de fonctionnement se déplace sur la droite de charge dynamique, il atteint le courant maximum.

$$I_{CO} + \beta I_{RM} = 30 \text{ mA}$$

pour une excursion positive et un courant nul pour une excursion négative. Il y a donc écrêtage du courant sinusoïdal par blocage du transistor pour les excursions négatives ce qui introduit un très fort taux de distorsion.

c) Le point de polarisation doit être "centré" sur la droite de charge dynamique. Le courant maximum I_{CMAX} obtenu pour $V_{CE} = O$ doit être égal a $2\Gamma_{CO}$.

D'après l'équation de la droite de charge dynamique on doit donc avoir :

$$V'_{CEO} = R'_{L} (\Gamma_{CMAX} - \Gamma_{CO}) = R'_{L} \Gamma_{CO}$$

$$\Gamma_{CO} = \frac{V'_{CEO}}{R'_{L}}$$

et comme:

$$E'_{C} - V'_{CEO} = (R_{E} + R_{C})I'_{CO}$$

$$\Gamma_{CO} = \frac{E_C}{R'_L + R_E + R_C} = 17,14 \text{ mA}$$

$$V'_{CEO} = R'_{L} I'_{CO} = 4,28V$$

$$E_B = \frac{R_2}{R_1 + R_2} E_C \approx I'_{CO} R_E = 17,14V$$

d'où
$$R_2 = \frac{E_B R_1}{E_C - E_B} = 2,66 \text{ K}\Omega$$

d) La puissance P_T dissipée dans transistor est donnée par :

$$P_{T} = \frac{1}{2} V_{CEO} I_{CO} = 73,4 \text{mW}$$

La température de la jonction est égale à :

$$\Theta j = 20 + P_T (R_{TJB} + R_{TBA}) = 47^{\circ} C$$

7. Problèmes et exercices corrigés

7.3

7.2

- a) Les demi-droites de charge passent par le point $I_{C1} = I_{C2} = O$ et $|V_{CE1}| = V_{CE2}| = E_C$. Elles ont pour pente $-\frac{1}{R_L}$.
- b) Les courants I_{Cl} et I_{C2} sont formés de demi-sinusoïdes de valeur positive décalées d'une demi-période. Le courant I_L est formé par la somme algébrique de ces deux sinusoïdes.
- c) En régime sinusoïdal, la puissance dissipée dans la charge P_{LM} est égale à :

$$P_{LM} = \frac{1}{2} E_C I_{CM}.$$

La puissance fournie par les deux alimentations P_{DC} est donnée par :

$$P_{DC} = 2 \frac{E_C}{T} \int_0^{T/2} I_{CM} \sin \omega t \, dt$$

$$P_{DC} = \frac{2E_C I_{CM}}{\pi}.$$

La puissance maximale dissipée par chaque transistor P_{TM} a pour valeur :

$$P_{TM} = \frac{E_C I_{CM}}{4}$$

Figure 7.2

d) On doit avoir E_C = R_L I_{CM} dans les conditions maximales de modulation d'où :

$$P_{LM} = \frac{1}{2} \frac{E_C^2}{R_L}$$

$$E_C = \sqrt{2R_L P_{LM}} = 20V$$

$$I_{CM} = \frac{E_C}{R_L} = \frac{20}{4} = 5A.$$

La tension V_{CE} aux bornes du transistor qui conduit peut devenir très faible lorsque le courant est maximum, le transistor bloqué supporte alors la tension $2E_{C}$ on a donc :

$$E_{CM} = 2E_{C} = 40V$$
.

La puissance dissipée dans un transistor est égale à :

$$P_{\rm T} = \frac{E_{\rm C} I_{\rm CM}}{4} = 25 \, \text{Watts}$$

e) La puissance maximale est délivrée à la charge R_I, lorsque :

$$E_C = \frac{E_{CM}}{2} = 30V$$
 et $I_{CM} = 4A$.

On a alors:

$$P_{LM} = \frac{1}{2} E_C I_{CM} = 60 \text{ watts}$$

$$R_L = \frac{E_C}{I_{CM}} = \frac{30}{4} = 7.5\Omega$$

$$P_T = \frac{E_C I_{CM}}{4} = 30 \text{ watts}$$

les transistors travaillent nettement au dessous de la puissance permise.

a) L'étage de sortie utilise un montage "miroir de courant complémentaire". Le courant I_{CO} de polarisation est donné par :

$$I_C = \frac{E_C - V_{BE}}{R} = \frac{20 - 0.7}{R} = 193 \,\text{mA}$$

b) Dans un amplificateur classe B, l'un des transistors est actif pendant que l'autre est bloqué et présente une impédance infinie; l'impédance d'entrée au niveau des bases est donc celle du transistor actif. Elle a pour valeur, en forts signaux, dans un montage à collecteur commun.

$$Z_T = \beta_m (R_L + R_{em})$$

= 50(4+0,1) = 205 Ω .

L'impédance d'entrée totale doit prendre aussi en compte les deux résistances du circuit de polarisation, on a donc :

$$Z_e = Z_T ||R||R = 205||100||100 = 40 \Omega.$$

Le gain en tension dans un montage à collecteur commun est égal a :

$$A_v \approx \frac{R_L}{R_L + R_{em}} = \frac{4}{4 + 0.1} = 0.976.$$

Le gain en puissance est donné par :

$$G = (A_v)^2 \frac{Z_e}{R_L} = \frac{0.953 \times 40}{4} = 9.53$$

c) La puissance maximale fournie à la résistance R_L est égale à :

$$P_{LM} = \frac{1}{2} R_L I_{CM}^2$$

 I_{CM} étant le courant maximum possible dans R_L . Ce résultat est obtenu lorsque l'un des transistors est complètement saturé $\{V_{CF} \approx O\}$, on a donc :

$$I_{CM} = \frac{E_C}{R_L} = \frac{20}{4} = 5 A$$

$$P_{LM} = \frac{1}{2}(4 \times 25) = 50W.$$

La puissance d'entrée nécessaire pour fournir la puissance maximale à la charge est donc :

$$P_{cM} = \frac{P_{LM}}{G} = \frac{50}{9,53} = 5,2 \text{ W}.$$

En utilisant un montage "Darlington" à transistors complémentaires du même type que les transistors précédents le nouveau gain en puissance $G_{\rm D}$ serait :

$$G_D = G \times \beta_m = 9,53 \times 60 = 571,8$$

Une puissance d'entrée de 5,25/60 = 87 mW est seulement nécessaire.

a) Dans la maille "base-émetteur" du transistor T_3 (fig. 7.4), on peut écrire :

$$2E_{C} \frac{R_{4}}{R_{3} + R_{4}} - (R_{3} || R_{4})I_{B3} = V_{BE3} + R_{2} I_{E3}$$

et comme $I_{E3} \approx I_{C3}$

$$I_{C3} = \frac{\frac{2E_{C} R_{4}}{R_{3} + R_{4}} - V_{BE3}}{R_{2} + \frac{R_{3} \| R_{4}}{\beta_{3}}}$$

$$I_{C3} = \frac{39,3 R_4 - 0,7 10^4}{110 R_4 + 10^5}$$

b) Dans la maille "base-émetteur" du transistor T_i on peut écrire :

$$E_C - R_1 I_{C3} - V_{BE1} = V_s = 0$$

$$I_{C3} = \frac{E_C - V_{BE1}}{R_1} = \frac{20 - 0.7}{100} = 193 \text{mA}$$

d'où $R_4 = 1455\Omega$

$$V_E = R_2 I_{C3} + V_{BE3} - E_C$$

$$V_E = -17,37 \text{ V}.$$

 $V_{e} = \frac{i_{b}}{R_{3}} + \frac{i_{b}}{R_{1}} \times \frac{\beta_{m3}i_{b}}{R_{1}} \times \frac{\beta_{m3}i_{b}}{R_{2}}$

Figure 7.4

$$\mathbf{v}_{s} = \beta_{m3} \, \mathbf{i}_{b} \big(\mathbf{R}_{I} \| \mathbf{Z}_{T} \big)$$

$$v_e = \beta_{m3} i_b (R_{em3} + R_2)$$

$$A_{v} = \frac{R_{1} || Z_{T}}{R_{em3} + R_{2}} = \frac{100 || 205}{0.1 + 10} = 6,67$$

$$Z_e = \beta_{m3} (R_{em3} + R_2) ||R_3||R_4 = 562, 6\Omega$$

$$A_{vT} = 6,67 \times 0,976 = 6,51$$

$$G = (A_{vT})^2 \frac{Z_e}{R_I} = 5961.$$