Übersicht über die Vorlesung

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
 - 2.1 Die zeitunabhängige Schrödinger-Gleichung
 - 2.2 Der unendlich hohe Potentialtopf
 - 2.3 Der endliche Potentialtopf
 - 2.4 Potentialbarrieren
 - 2.5 Eigentliche und uneigentliche Zustände, Normierung
 - 2.6 Quantenmechanische Messungen
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
- 4. Elektronen im Kristall
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Ladungsträgerdynamik im Halbleiter
- 9. Der pn-Übergang

Festkörperelektronik SS 2016 6. Foliensatz

13.05.2016

2.5 Eigentliche und Uneigentliche Lösungen

Seit Anfang der Vorlesung verfolgen uns schon die uneigentlichen Lösungen, z.B. beim freien Elektron.

In den meisten Fällen gibt es eigentliche und uneigentliche Eigenzustände.

Eigentliche Zustände sind *ortho*normierbar:

$$\int_{-\infty}^{\infty} \psi_m^*(x) \psi_n(x) dx = \begin{cases} 1 \text{ für m=n} \\ 0 \text{ sonst} \end{cases} = \delta_{mn}$$

Uneigentliche Zustände sind nicht normierbar:

$$\int_{-\infty}^{\infty} \psi_{k'}^{*}(x)\psi_{k}(x)dx = \begin{cases} \infty & \text{für k'=k} \\ 0 & \text{sonst} \end{cases} = \delta(k'-k)$$

Übersicht über die Vorlesung

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
 - 2.1 Die zeitunabhängige Schrödinger-Gleichung
 - 2.2 Der unendlich hohe Potentialtopf
 - 2.3 Der endliche Potentialtopf
 - 2.4 Potentialbarrieren
 - 2.5 Eigentliche und uneigentliche Zustände, Normierung
 - 2.6 Quantenmechanische Messungen
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
- 4. Elektronen im Kristall
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Ladungsträgerdynamik im Halbleiter
- 9. Der pn-Übergang

2.6 Quantenmechanische Messungen

Quantenmechanische Eigenwertgleichung:

$$\hat{F}\psi(x) = f_n\psi(x)$$
 z.B. $\left\{-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\right\}\psi(x) = W_n\psi(x)$

Erwartungswert:
$$=\frac{\int dx \psi^*(x) \tilde{F} \psi(x)}{\int dx \psi^*(x) \psi(x)}$$

Einfacher wird die Berechnung bei der Verwendung einer normierten Wellenfunktion

$$\psi_{norm}(x) = \frac{\psi(x)}{\sqrt{\int dx \psi^*(x) \psi(x)}}$$
 (geht nur bei eigentlichen Zuständen)

$$\int dx \psi_{norm}^{*}(x) \psi_{norm}(x) = 1$$

Dann gilt für den Erwartungswert:
$$<$$
F $>=$ $\int dx \psi_{norm}^{*}(x) \hat{F} \psi_{norm}(x)$

Meßwerte in der Quantenmechanik

Generell kann die Berechnung eines Erwartungswertes auch für eine Wellenfunktion erfolgen, die *nicht* eine Eigenfunktion ist.

Bsp.:
$$\psi(x) = \frac{1}{\sqrt{2}} \psi_1(x) + \frac{1}{\sqrt{2}} \psi_2(x)$$

Ist normiert, da:

$$\int_{0}^{L} \left(\frac{1}{\sqrt{2}} \psi_{1}^{*}(x) + \frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \right) \left(\frac{1}{\sqrt{2}} \psi_{1}(x) + \frac{1}{\sqrt{2}} \psi_{2}(x) \right) dx =$$

$$W_3$$
 W_2
 W_2
 W_1
 W_1
 W_2
 W_3
 W_4
 W_4
 W_5
 W_4
 W_5
 W_6
 W_8

$$\int_{0}^{L} \underbrace{\frac{1}{\sqrt{2}} \psi_{1}^{*}(x) \frac{1}{\sqrt{2}} \psi_{1}(x)}_{\rightarrow \frac{1}{2}} + \underbrace{\frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \frac{1}{\sqrt{2}} \psi_{1}(x)}_{\rightarrow 0} + \underbrace{\frac{1}{\sqrt{2}} \psi_{1}^{*}(x) \frac{1}{\sqrt{2}} \psi_{2}(x)}_{\rightarrow 0} + \underbrace{\frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \frac{1}{\sqrt{2}} \psi_{2}(x)}_{\rightarrow \frac{1}{2}} + \underbrace{\frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \frac{1}{\sqrt{2}} \psi_{2}(x)}_{\rightarrow 0} + \underbrace{\frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \frac{1}{\sqrt{2}} \psi_{2}^{*}(x)}_{\rightarrow 0} + \underbrace{\frac{1}{\sqrt{2}} \psi_{2}^{*}(x)}_{\rightarrow 0} + \underbrace{\frac$$

Erwartungswert bei Messung der Energie:

$$\psi(x) = \frac{1}{\sqrt{2}} \psi_1(x) + \frac{1}{\sqrt{2}} \psi_2(x)$$

$$= \int_{0}^{L} \left(\frac{1}{\sqrt{2}} \psi_{1}^{*}(x) + \frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \right) \left\{ -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} \right\} \left(\frac{1}{\sqrt{2}} \psi_{1}(x) + \frac{1}{\sqrt{2}} \psi_{2}(x) \right) dx$$

$$= \int_{0}^{L} \left(\frac{1}{\sqrt{2}} \psi_{1}^{*}(x) + \frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \right) \left(W_{1} \frac{1}{\sqrt{2}} \psi_{1}(x) + W_{2} \frac{1}{\sqrt{2}} \psi_{2}(x) \right) dx$$

$$= \int_{0}^{L} \left(\frac{1}{\sqrt{2}} W_{1} \frac{1}{\sqrt{2}} \psi_{1}^{*}(x) \psi_{1}(x) + \frac{1}{\sqrt{2}} W_{2} \frac{1}{\sqrt{2}} \psi_{2}^{*}(x) \psi_{2}(x) \right) dx$$

$$= \frac{1}{2} W_{1} + \frac{1}{2} W_{2} = \frac{W_{1} + W_{2}}{2}$$

Das heißt der Erwartungswert ist hier ein Wert, der nie gemessen wird!

4. Postulat der Quantenmechanik: (1. Teil)

Wenn ψ eine Eigenfunktion zum Operator \hat{F} ist, dann führt die Messung von F stets zum gleichen Ergebnis, nämlich dem Eigenwert f_n .

Wenn ψ keine Eigenfunktion von \hat{F} ist, dann ergibt eine einzelne Messung von F ein Ergebnis, das irgendeinem der Eigenwerte von \hat{F} entspricht. Die Wahrscheinlichkeit, einen bestimmten Eigenwert f_n zu messen, ist proportional zu $|a_n|^2$, wobei a_n der zugehörige Entwicklungskoeffizient ist .

Meßwerte in der Quantenmechanik

$$\psi(x) = \frac{1}{\sqrt{2}} \psi_1(x) + \frac{1}{\sqrt{2}} \psi_2(x)$$

Es kommt bei der Messung immer

W₁ oder W₂ heraus, niemals ein Zwischenwert!!

Wahrscheinlichkeit für die Messung von W₁:

$$\left|a_{1}\right|^{2}=\frac{1}{2}$$

Wahrscheinlichkeit für die Messung von W₂:

$$\left|a_2\right|^2 = \frac{1}{2}$$

4. Postulat der Quantenmechanik: (2. Teil)

Misst man bei Messung der Observablen F den Eigenwert F_n , dann wird das quantenmechanische System so präpariert, dass es unmittelbar nach der Messung im zugehörigen Eigenzustand ψ_n ist.

Meßwerte in der Quantenmechanik: Kryptografie

Was hat das mit Kryptografie zu tun?

Einfacher Ansatz: Wenn eine Messung das System stört (in einen Eigenzustand zerfallen lässt), dann kann man nicht unbemerkt mithören.

Allgemeines Schema für Nachrichtenübertragung

Meßwerte in der Quantenmechanik: Kryptografie

Quantenkryptografie

- •Ist eine echte Anwendung der Merkwürdigkeiten der Quantenmechanik
- Macht abhörsichere Informationsübertragung nicht möglich, kann aber sicher testen, ob ein übertragener Schlüssel mitgehört wurde oder nicht.
- •Realisierte Übertragungsstrecken: >10km
- Benötigte optoelektronische Bauelemente:
 Single-Photon-Quellen
 rauscharme Detektoren
 dämpfungsarme Fasern

siehe z.B. http://de.wikipedia.org/wiki/Quantenschl%C3%BCsselaustausch

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
 - 3.1 Quantenmechanische Probleme in drei Dimensionen
 - 3.2 Das Wasserstoffatom
 - 3.3 Das Periodensystem der Elemente
 - 3.4 Chemische Bindungen
- 4. Elektronen in Kristallen
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Halbleiter im Nichtgleichgewicht
- 9. Der pn-Übergang

3.1 Quantenmechanische Probleme in drei Dimensionen

zu lösen ist dann die dreidimensionale S.-Glg:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x)+V(x)\psi(x)=W\psi(x)$$

$$-\frac{\hbar^{2}}{2m}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)\psi(\vec{r}) + V(\vec{r})\psi(\vec{r}) = W\psi(\vec{r})$$

$$\nabla^{2}$$

Nehmen wir den dreidimensionalen harmonischen Oszillator

$$V(\vec{r}) = \frac{m}{2} \sum_{i=1}^{3} \omega_i X_i^2$$

Das Potential ist somit additiv

$$V(\vec{r}) = f_1(x) + f_2(y) + f_3(z)$$

Quantenmechanische Probleme in 3D

Bei einem additiven Potential kann die S-Glg. durch einen Produktansatz separiert werden:

$$V(\vec{r}) = f_1(x) + f_2(y) + f_3(z)$$

Produktansatz:

$$\psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \psi_1(\mathbf{X})\psi_2(\mathbf{Y})\psi_3(\mathbf{Z})$$

Einsetzen in die Schrödinger-Gleichung ergibt:

$$\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + \frac{f_1(x)}{\partial z^2} + \frac{f_2(y)}{\partial z^2} + \frac{f$$

$$\Rightarrow -\frac{\hbar^2}{2m} (\psi_1''(x)\psi_2(y)\psi_3(z) + \psi_1(x)\psi_2''(y)\psi_3(z) + \psi_1(x)\psi_2(y)\psi_3''(z)) + (f_1(x) + f_2(y) + f_3(z))\psi_1(x)\psi_2(y)\psi_3(z) = W\psi_1(x)\psi_2(y)\psi_3(z)$$

Quantenmechanische Probleme in 3D

$$-\frac{\hbar^2}{2m}\left(\frac{\psi_1''(x)}{\psi_1(x)} + \frac{\psi_1''(y)}{\psi_1(y)} + \frac{\psi_1''(z)}{\psi_1(z)}\right) + \left(\frac{f_1(x) + f_2(y) + f_3(z)}{f_2(y) + f_3(z)}\right) = W\left(=W_x + W_y + W_z\right)$$

Gleichung muss gelten für alle x,y,z. Daher muss auch einzeln gelten:

$$-\frac{\hbar^{2}}{2m}\frac{\psi_{1}"(x)}{\psi_{1}(x)} + f_{1}(x) = W_{x} \Leftrightarrow -\frac{\hbar^{2}}{2m}\psi_{1}"(x) + f_{1}(x)\psi_{1}(x) = W_{x}\psi_{1}(x)$$
etc. etc.

D.h. die Funktionen müssen die **eindimensionalen** S.-Glg. erfüllen. Die dreidimensionale Lösung ergibt sich dann als Produkt der 1D-Lösungen.

Zustände:

Für die Energieeigenwerte gilt in diesem Fall:

$$\psi(x,y,z) = \psi_{nx}(x)\psi_{ny}(y)\psi_{nz}(z)$$

$$W_{nx,ny,nz} = W_{nx} + W_{ny} + W_{nz}$$

Sprechweise: Zustand wird beschrieben durch die drei Quantenzahlen nx,ny,nz

Elektronische Zustände in einem Quantenpunkt (quantum dot)

Wachstum von Quantenpunkten

Quelle: J. Reithmaier, Uni Würzburg

Abb: Elektronenmikroskopische Aufnahme sogenannter Quantenpunkte (Quelle: Infineon).

In nullter Näherung handelt es sich um einen unendlich hohen dreidimensionalen Potentialtopf.

Elektronische Zustände in einem Quantenpunkt (quantum dot)

Zustände im unendlich hohen 1 D Potentialtopf

$$\psi_{nx}(x) = A_n \sin\left(\frac{n_x \pi x}{L}\right)$$

$$W_{nx} = \frac{\hbar^2}{2m} \left(\frac{n_x \pi}{L}\right)^2$$

Für den unendlich hohen Potentialtopf in 3 D ergibt sich also:

$$\psi_{nx,ny,nz}(x) = A_{nx,ny,nz} \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right) \sin\left(\frac{n_z \pi z}{L}\right)$$

W=W_{nx}+W_{ny}+W_{nz} =
$$\frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 \left(n_x^2 + n_y^2 + n_z^2\right)$$

Energieschema der Zustände in einem Quantenpunkt (quantum dot)

Zustände werden klassifiziert durch die 3 Quantenzahlen n_x,n_y,n_z Unterschiedlicher Entartungsgrad für unterschiedliche Energieniveaus

Die Sache mit dem Spin

Experimenteller Nachweis: Stern und Gerlach (Uni Frankfurt, 1922)

-Elektronenstrahl spaltet auf beim Durchgang durch ein inhomogenes Magnetfeld

- Elektronen tragen ein magnetisches Moment
- " sind komplizierter als eine punktförmige Masse
- haben einen Eigendrehimpuls (Spin)

-dieser Freiheitsgrad muss bei der Beschreibung des Zustandes mit berücksichtigt werden

- der Spin kann beim Elektron zwei Werte einnehmen: s=-1/2;+1/2 (Fermion)

-Erweiterung der
$$\psi(\vec{r},t) \rightarrow \begin{bmatrix} \psi_{1}(\vec{r},t) \\ \frac{1}{2} \\ \psi_{-\frac{1}{2}}(\vec{r},t) \end{bmatrix}$$

"Spinor"

-Erweiterung der Quantenzahlen: z.B. für den Quantenpunkt

$$(n_x, n_y, n_z) \rightarrow (n_x, n_y, n_z, s)$$

Die Sache mit dem Spin

- von fundamentaler Bedeutung für den Aufbau der Materie:

Ausschliessungsprinzip (Pauli-Prinzip)

Wolfgang Pauli (1900-1958)

Zwei Fermionen unterscheiden sich in mindestens einer Quantenzahl!

 n_x, n_y, n_z, s d.h. beim Quantenpunkt maximal zwei Elektronen in einem Zustand mit den Quantenzahlen n_x, n_y, n_z

- .. der Spin ergibt sich als Konsequenz einer relativistischen Formulierung der Quantenmechanik.
- .. das Pauli-Prinzip muss bei einer saubereren Vorgehensweise als Postulat formuliert werden.

Mehrelektronensysteme

Konsequenzen für den Aufbau von Mehrelektronensystemen:

-minimale Energie des Mehrelektronenproblems ergibt sich, wenn alle Zustände "von unten nach oben" mit jeweils zwei Elektronen aufgefüllt werden. Wieder das Beispiel Quantenpunkt:

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
 - 3.1 Quantenmechanische Probleme in drei Dimensionen
 - 3.2 Das Wasserstoffatom
 - 3.3 Das Periodensystem der Elemente
 - 3.4 Chemische Bindungen
- 4. Elektronen in Kristallen
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Halbleiter im Nichtgleichgewicht
- 9. Der pn-Übergang

Warum ist schon das Wasserstoffatom ein verdammt schwieriges System?

1. Problem: Es handelt sich um ein Zweiteilchenproblem!?

...das führt zunächst mal auf zwei gekoppelte Schrödinger-Gleichungen für Proton und Elektron.

aber: $Masse_{Proton}=1.672*10^{-27}kg >> Masse (Elektron)=9.1*10^{-31}kg$

Born-Oppenheimer-Näherung: Gegenüber der schnellen Elektronenbewegung kann die Kernbewegung zunächst vernachlässigt werden. Kernkoordinaten gehen dann als Parameter ein.

Elektron bewegt sich also im Potential des (festgehaltenen) Protons.

Aufbau der Materie: Das Wasserstoffatom

Von Elektron gesehenes Potential

2. Problem: Das Coulombpotential separiert nicht in sowas wie

$$V(\vec{r}) = f_1(x) + f_2(y) + f_3(z)$$

$$\begin{bmatrix}
-\frac{\hbar^{2}}{2m_{0}}\Delta + V(\vec{r}) \\
\end{bmatrix}\Psi(x,y,z) = W\Psi(x,y,z)$$

$$\begin{bmatrix}
-\frac{\hbar^{2}}{2m_{0}}\Delta - \frac{e^{2}}{4\pi\varepsilon_{0}\sqrt{x^{2} + y^{2} + z^{2}}}
\end{bmatrix}\Psi(x,y,z) = W\Psi(x,y,z)$$

Aufbau der Materie: Das Wasserstoffatom

Für dieses radialsymmetrische $\Psi(x,y,z)$ bzw. $\Psi(x_1,x_2,x_3) \rightarrow \Psi(r,\theta,\varphi)$ Problem ist der Übergang zu Kugelkoordinaten sinnvoll:

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \longrightarrow \Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

Dann lässt sich das Problem wieder separieren:

$$\Psi(r,\theta,\varphi) = f(r)g(\theta)h(\varphi)$$

H-Atom: Eigenfunktionen

Konzeptionell genau wie beim Quantenpunkt aber diesmal mathematisch viel komplizierter ergeben sich wieder Eigenfunktionen und Eigenwerte:

- mehrere mögliche Eigenfunktionen $\Psi_{n,l,m}(r,\theta,\phi)$ für einen Eigenwert W_n . entartete Zustände
- Nomenklatur:

```
n = 1, 2, 3, ... (Hauptquantenzahl)

oder K, L, M, ...

I = 0, 1, 2, 3, ... n - 1 (Nebenquantenzahl, Drehimpulsquantenzahl)

oder s, p, d, f, ...
```

m = - I, - I + 1, ... | (Magnetquantenzahl)

z.B. für n = 2 vier verschiedene Eigenfunktionen und damit vier verschiedene räumliche Elektronenverteilungen (l=0, m=0; l=1, m-1; l=1, m=0; l=1, m=1) und damit insgesamt acht Elektronen

H-Atom: Eigenfunktionen

s-Orbital

H-Atom: Eigenwerte

Wie beim Potentialtopf sind auch die Eigenwerte des H-Atoms diskret und hängen (näherungsweise) **nur** von der Hauptquantenzahl ab.

$$W_n = -\frac{Ry}{n^2}$$
 $n = 1,2,3...$ $Ry = -13.6eV$

optische Übergänge beim Wasserstoff

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
 - 3.1 Quantenmechanische Probleme in drei Dimensionen
 - 3.2 Das Wasserstoffatom
 - 3.3 Das Periodensystem der Elemente
 - 3.4 Chemische Bindungen
- 4. Elektronen in Kristallen
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Halbleiter im Nichtgleichgewicht
- 9. Der pn-Übergang

Aufbau der Materie: Vom H-Atom zum Periodensystem

- in anderen Atomen ähnliche Wellenfunktionen (Orbitale)
- das Potential für die äußeren Elektronen wird durch die inneren abgeschirmt
- Beschreibung ebenfalls durch die "Quantenzahlen" n,l,m
- wird u. U. sehr kompliziert, da die Elektronen miteinander wechselwirken

Besetzung erfolgt (fast) nach dem folgenden Schema:

Aufbau der Materie: Vom H-Atom zum Periodensystem

Beschreibung der Elektronen erfolgt durch die Elektronenkonfigurationen:

H (1e): 1s1

He (2e): 1s²

. .

C (6e): 1s²2s²2p²

Si (14e): 1s²2s²2p⁶3s²3p²

IA							0
1 H 1.008	ΠА	III A	IV A	VA	VIA	VIIA	2 He 4.003
3	4	5	6	7	8	9	10
Li	Be	B	C	N	O	F	Ne
6,941	9,012	10.81	12.01	14.01	16.00	19.00	20.18
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
22.99	24.31	26.98	28.09	30.97	32.06	35.45	39.95
19	20	31	32	33	34	35	36
K	Ca	Ga	Ge	As	Se	Br	Kr
39.10	40.08	69.72	72.59	74.92	78.96	79.90	83.80
37	38	49	50	51	52	53	54
Rb	Sr	In	Sn	Sb	Te	I	Xe
85.47	87.62	114.82	118.69	121.75	127.60	126.90	131,30
55	56	81	82	83	84	85	86
Cs	Ba	TI	Pb	Bi	Po	At	Rn
132.91	137.33	204.37	207.2	208.98	(210)	(210)	(222)
87 Fr (223)	88 Ra 226.03						

Periode: gleiche Hauptquantenzahl

Gruppe: gleiche Anzahl an Außenelektronen (chemisch ähnlich, z.B. Metalle