

Learning

Overview

PGM Learning Tasks and Metrics

Learning dataset of instances True distribution P* D={d[1],...d[M]} (maybe corresponding sampled from P* to a PGM \mathcal{M}^*) domain expert Data elicitation Network Learning

Known Structure, Complete Data

Unknown Structure, Complete Data

Known Structure, Incomplete Data

Input Data

X ₁	X ₂	Υ
3	x_2^1	y ^o
X ₁ ¹	\bigcirc	y ⁰
7	x ₂ ¹	?
X ₁ ⁰	x_{2}^{0}	y ^o
?	x_2^{1}	y ¹
X ₁ ⁰	x ₂ ¹	?
X ₁ ¹	?	y ^o

		$P(Y X_1,X_2)$	
<i>X</i> ₁	<i>X</i> ₂	y ⁰	y ¹
x ₁ ⁰	x ₂ ⁰	1	0
x ₁ ⁰	x ₂ ¹	0.2	0.8
x ₁ ¹	x_{2}^{0}	0.1	0.9
x ₁ ¹	x ₂ ¹	0.02	0.98

Unknown Structure, Incomplete Data

Input Data

X ₁	X ₂	Υ
?	x_{2}^{1}	y ⁰
x ₁ ¹	?	y ⁰
?	x ₂ ¹	?
X ₁ ⁰	x_{2}^{0}	y ⁰
?	x_{2}^{1}	y ¹
X ₁ ⁰	x ₂ ¹	?
X ₁ ¹	?	y ^o

		P(Y	$P(Y X_1,X_2)$	
X_1	X_2	y ^o	y^1	
X ₁ ⁰	X ₂ ⁰	1	0	
X_1^{0}	x ₂ ¹	0.2	8.0	
x_1^{1}	x_2^0	0.1	0.9	
x ₁ ¹	x ₂ ¹	0.02	0.98	

Latent Variables, Incomplete Data

Input Data

X ₁	X_2	Υ
?	x_{2}^{1}	y ⁰
x ₁ ¹	?	y ^o
?	x ₂ ¹	?
x ₁ ⁰	x_{2}^{0}	y ⁰
?	x_{2}^{1}	y ¹
x ₁ ⁰	x ₂ ¹	?
x ₁ ¹	?	y ^o

		$P(Y X_1,X_2)$	
X_1	X_2	y ⁰	y ¹
x ₁ ⁰	x_{2}^{0}	1	0
x_1^{0}	x_2^{-1}	0.2	8.0
x_1^{1}	x_2^0	0.1	0.9
x_1^{1}	x_2^{-1}	0.02	0.98

PGM Learning Tasks I

- Goal: Answer general probabilistic queries about new instances
- Simple metric: Training set likelihood $-P(D): \mathcal{M}) = \Pi_{m} P(d[m]: \mathcal{M}) \quad \text{(ILO)}$
- But we really care about new data
 - Evaluate on test set likelihood P(D': M)
 generalization performance

PGM Learning Tasks II

- Goal: Specific prediction task on new instances
 - Predict target variables y from observed variables x
 - E.g., image segmentation, speech recognition
- Often care about specialized objective
 - E.g., pixel-level segmentation accuracy
- Often convenient to select model to optimize
 - likelihood $\Pi_{\mathsf{m}} \mathsf{P}(\mathsf{d}[\mathsf{m}]: \mathcal{M})$ or
 - conditional likelihood $\Pi_{m} P(y[m] \mid x[m] : \mathcal{M})$
- Model evaluated on "true" objective over test data

PGM Learning Tasks III

- ×_-Y
- Goal: Knowledge discovery of M^*
 - Distinguish direct vs indirect dependencies
 - Possibly directionality of edges
 - Presence and location of hidden variables
- Often train using likelihood
 - Poor surrogate for structural accuracy
- Evaluate by comparing to prior knowledge

Avoiding Overfitting

- Selecting \mathcal{M} to optimize training set likelihood overfits to statistical noise
- Parameter overfitting
 - Parameters fit random noise in training data
 - Use regularization / parameter priors
- Structure overfitting
 - Training likelihood always increases for more complex structures
 - Bound or penalize model complexity

Selecting Hyperparameters

- Regularization for overfitting involves hyperparameters:
 - Parameter priors (residerization)
 - Complexity penalty
- Choice of hyperparameters makes a big difference to performance
- Must be selected on validation set

Why PGM Learning

- Predictions of structured objects (sequences, graphs, trees)
 - Exploit correlations between several predicted variables
- · Can incorporate prior knowledge into model
- Learning single model for multiple tasks
- Framework for knowledge discovery