

Efficient Model Checking

- Avoid graph construction and traversal.
 - Kripke Structure via propositional logic
 - Sets of states
 - · Sets of transitions
 - Kripke Structure traversal via propositional logic formula manipulation.

Abhik Roychoudhury, CS4271 lectures

So far ...

- We have encoded transition systems as boolean functions. We can encode
 - Sets of states
 - Sets of transitions
- Now, to verify a temporal property $\boldsymbol{\phi},$ we will
 - Compute St_φ iteratively.
 - $^{\circ}$ During the computation, we always maintain our current value of St $_{\phi}$ as a BDD
 - \circ Compute $\mathrm{St\,}_{\scriptscriptstyle\phi}$ iteratively by repeatedly applying boolean operations.
- Let us look at the case where ϕ = EG f.

Abhik Roychoudhury, CS4271 lectures

Computing St_{EGf}

- Inputs:
 - ∘ Kripke Structure $M = (S, S0, \rightarrow, L)$.
 - $\,^{\circ}$ CTL formula to be checked EG f
 - St, set of states satisfying f in M.
- Output:
 - Set of states satisfying EG f in M

Abhik Roychoudhury, CS4271 lectures

Computing St_{EGf}

- Technique
 - Result := St_f;
 - \circ repeat
 - Temp := $\{ s \mid s \in Result, and \}$
 - $\forall \mathsf{sl}\;\mathsf{s}\to\mathsf{sl}\; \Rightarrow \mathsf{sl}\not\in \mathsf{Result}\; \}\;;$
 - Result := Result Temp;
 - until Temp = empty;
 - return Result;

Symbolic fixed-pt constr. The prev slide shows computing of St_{EGp} via fixed point construction. Computation terminates when St_{EGp} does not change from one iteration to the next. In symbolic model checking St_{EGp} represented as a ROBDD Computation terminates when ROBDD for St_{EGp} does not change from one iteration to the next.

Symbolic computation

- Now suppose we represent all sets of states and sets of transitions as boolean function and hence ROBDD.
 - · All set operations are boolean operations
- · For representing sets of states
 - Input variables are AP, set of atomic props.
 - St_f (one of the inputs) is presented as a ROBDD
 - St_{EGf} (the output) is computed as another ROBDD.

Abhik Rovchoudhury, CS4271 lectures

Symbolically computing Stegf

- Inpu
 - Kripke Structure M
 - Transition relation \rightarrow represented as ROBDD
 - $^\circ$ St_f represented as a ROBDD with AP (set of atomic props.) as input variables
 - $\,\cdot\,$ To emphasize this representation, call it bdd_f
- Output
 - St_{EGf} represented as a ROBDD with AP as input
 - · To emphasize this representation, call it bdd_{EGf}

hill Development CC 4274 Indiana

Symbolically computing Stegf

- Technique
 - \circ bdd_{EGf} (AP) := true;
 - Repeat{
 - $\circ \qquad bdd_{EGf}(AP) := bdd_f(AP) \wedge bdd_{\{s \mid \exists s \rightarrow t \text{ s.t. } t \in bdd_{EGf}\}}$
 - Until no change;
- Return bdd_{EGf} (AP)
- How to compute $bdd_{\{s \mid \exists \ s \ \to \ t \ s.t. \ t \ \in \ bdd_{EGf}\}}$
- A will be achieved by the Apply algorithm of BDDs

Abhik Roychoudhury, CS4271 lectures

Symbolically computing SteGf

- St_{EGf} is a subset of states of the Kripke Structure M being verified.
 - Represented as ROBDD.
 - · Iteratively updated via boolean operations
 - Need to be reduced after each iteration to ensure we always work with a ROBDD
 - Iteration stopped when fixed point reached
 - Easily detected since ROBDD is a normal form for a boolean function.

Abhik Roychoudhury, CS4271 lectures

Symbolically computing St_{EGf}

- Start with St_{EGf} = set of all states
 - Set of all states trivially represented as a single node BDD, no state space explosion
- In each iteration update
 - \circ St_{EGf} = bdd_f /\ EX St_{EGf}
 - $^{\circ}$ bdd_f is the BDD representation of St_{f}
 - \circ How to compute the BDD for EX $\mathrm{St}_{\mathrm{EGf}}, \mathrm{i.e.}$

Abhik Roychoudhury, CS4271 lectures 1

Symbolically computing St_{EGf}

- $\bullet \ \, \text{How to compute} \ \, \text{bdd}\,_{\{s|\,\exists\,\, s\, \rightarrow\, t\,\, s.t.\, t\,\, \in\,\, \text{bdd}_{EGf}\}}$
 - $^{\circ}$ bdd_{EGf} represents the current approximation of St_{EGf}
 - ullet Call this current approximation as Υ
 - We need to compute the set of states satisfying EX Υ, and represent it as ROBDD
 - This should be achieved without converting BDDs to sets of states and then back to BDDs

The EX operator

- Given the BDD for a set of states $\Upsilon\subseteq S$, compute the BDD for the set of states satisfying (EX Υ)
- · Sets of states represented as boolean functions
 - Input variables are AP (set of atomic props.)
 - \circ So BDD representation of $\Upsilon {\subseteq}$ S captures a boolean function $F_{_{\Upsilon}}(AP)$
- Transition relation also represented as boolean func.
 - Input variables are AP, AP'
 - BDD representation of transition relation \to captures a boolean func. F $_\to$ (AP,AP')

Abbit Pouchoudhum, CS4271 lectures

The EX operator

- BDD for the set of states satisfying (EX $\Upsilon)$ then captures the boolean function
- $F_{EX}(AP) = \exists AP' (F_Y(AP') \land F_{\rightarrow}(AP,AP'))$
- If we have the BDD for $F_{\Upsilon}(AP')$ and $F_{\to}(AP,AP')$
- $^{\circ}$ bdd_{EX}(AP) = ∃AP' (bdd_Y(AP') \wedge bdd $_{\rightarrow}$ (AP,AP'))
 - · A is computed by Apply
 - How to compute $bdd_{\gamma}(AP')$ from $bdd_{\gamma}(AP)$?
 - · How to compute existential quantification ?

Abbik Roychoudbury, CS4271 Jectures

QBF - Easy!

- · Quantified Boolean Formula
 - ∘ $\exists x F$ is same as $F|_x \lor F|_{\neg x}$
 - $\lor \forall x F \text{ is same as } F|_x \land F|_{\neg x}$
- - · Similarly define $\forall x,y \; F$
- $^{\circ}$ Can use the above def to define $\exists X F$
- Similarly define ∀ X F

Abhik Roychoudhury, CS4271 lectures

Computing BDD for St_{EGf}

- Input: M=(S,S0,→,L) and bdd_f capturing St_f
- Output: bdd_{EGf} capturing St_{EGf}
- Technique
 - bdd_{EGf} := single-node BDD for "true";
 - Repeat{
 - bdd1(AP) := \exists AP' (bdd_→(AP,AP') \land bdd_{EGf}(AP'))
 - $\quad \bullet \ \, \mathsf{bdd}_{\mathsf{EGf}}(\mathsf{AP}) \!:= \mathsf{bdd}_\mathsf{f}\!(\mathsf{AP}) \wedge \mathsf{bdd}\,\mathsf{I}\,(\mathsf{AP});$
 - } until no change in bdd_{EGf}
 - Return bdd_{EGf}

Transition graph is not traversed explicitly.

Computation proceeds by BDD manipulation.

Abhik Roychoudhury, CS4271 lectures

Comparison

- Explicit-state
- St_{EGf} := S
- do{
- SI := {s| ∃ s → sI s.t.
- $sl \in St_{EGf}$
- St_{EGf}:= St_f ∩ S1;
- }until no change in St_{EGf}
- Return St_{EGf}
- Symbolic
- bdd_{EGf} (AP) := true
- do{
- $bddI(AP) := \exists AP' (bdd_{\rightarrow}(AP,AP'))$
 - $\wedge bdd_{EGf}(AP'))$
- $bdd_{EGf}(AP) := bdd_{f}(AP) \wedge$
- bdd1(AP);
- } until no change in bdd_{EGf}
 Return bdd_{EGf}

Symbolic FP computation via BDDs

- Since the symbolic FPs compute boolean functions, they are compactly represented as BDDs.
- The logical operations can be done over BDDs using Apply algorithm.
- Fixed point detection can proceed due to canonical nature of ROBDD for fixed variable order.
- To compute the set of states satisfying a CTL property as a fixed point construction, the property needs to have an iterative definition.

Abbit Pouchoudhum, CS4271 lectures

Fixed point characterization

- EG $\phi = \phi \wedge EX EG \phi$
- $E(\phi \cup \Psi) = \Psi \vee (\phi \wedge EX E(\phi \cup \Psi))$
- \bullet Similar characterizations exist for AG, EF, AF \dots

Abhik Rovchoudhury, CS4271 lectures

Computing St_{E(f U g)}

- Input: $M = (S, S0, \rightarrow, L)$
- St_f, St_g
- Output: St $_{E(f \cup g)}$
- Technique:
 - $\circ \ \ \mathsf{St}_{\ \mathsf{E}(\mathsf{f}\ \mathsf{Ug})} := \mathsf{empty}\text{-}\mathsf{set};$
 - ∘ do{
 - $^{\circ} \qquad \quad \mathsf{St}_{\mathsf{EX}} := \{ \mathsf{s} \mid \exists \ \mathsf{s'} \ \mathsf{such} \ \mathsf{that} \ \mathsf{s} \to \mathsf{s'} \ \mathsf{and} \ \mathsf{s'} \in \mathsf{St}_{\mathsf{E}(\mathsf{f} \ \mathsf{U} \ \mathsf{g})} \, \}$
 - St $_{\mathsf{E}(\mathsf{f} \, \mathsf{U} \, \mathsf{g})} := \mathsf{St}_{\mathsf{g}} \cup (\, \mathsf{St}_{\mathsf{f}} \cap \, \mathsf{St}_{\mathsf{EX}}) \,;$
 - $^{\circ}$ } until no change in St $_{\text{E(f U g)}}$;
 - Return St E(f U g)

bhik Roychoudhury, CS4271 lectures

States satisfying E(pUq) P Q P Abbilk Roychoudhury, CS4271 loctures 28

Computing BDD for $St_{E(f \cup g)}$

- Input: $M=(S,S0,\rightarrow,L)$, bdd_f/bdd_g capturing St_f/St_g
- Output: $bdd_{E(fUg)}$ capturing $St_{E(fUg)}$
- Technique
 - $\circ \ \ \mathsf{bdd}_{\mathsf{E}(\mathsf{f} \ \mathsf{U} \ \mathsf{g})} \ := \mathsf{single}\text{-}\mathsf{node} \ \mathsf{BDD} \ \mathsf{for} \text{``false''};$
 - Repeat{
 - $\overset{\cdot}{\bullet} \mathsf{bdd} \mathsf{I} (\mathsf{AP}) := \exists \mathsf{AP'} \; (\; \mathsf{bdd}_{\to} (\mathsf{AP;AP'}) \; \land \mathsf{bdd}_{\mathsf{E}(\mathsf{fUg})} (\mathsf{AP'}) \;)$
 - $\bullet \ \ \mathsf{bdd}_{\mathsf{E}(\mathsf{f}\,\mathsf{ug})}\,(\mathsf{AP})\!:=\!\ \mathsf{bdd}_{\mathsf{g}}(\mathsf{AP})\,\vee\,(\ \mathsf{bdd}_{\mathsf{f}}(\mathsf{AP})\,\wedge\,\mathsf{bdd}\,\mathsf{I}\,(\mathsf{AP})\)\ ;$
 - } until no change in bdd_{E(f U g)}
 - $\circ \ \ Return \ bdd_{E(f \ U \ g)}$

Transition graph is not traversed explicitly.

Computation proceeds by BDD manipulation.

Abhik Roychoudhury, CS4271 lectures

Symbolic MC for CTL

- We have given techniques for computing BDD for set of states satisfying E(f U g) and EGf.
- How to compute BDD for set of states satisfying
 - Atomic props.
 - ∘ ¬ f
- ∘ f∧g ∘ EX f
- Case I :Atomic prop. p1 ∈ AP={p1,p2,...,pm}
- Captured by F_{p1}(p1,...,pm) = p1

Symbolic MC for CTL

- • Case 2: Given $\mathsf{bdd}_{\mathsf{f}}$ (BDD for $\mathsf{St}_{\mathsf{f}_{\mathsf{f}}}$ how to compute $\mathsf{bdd}_{\mathsf{-f}}$ (BDD for $\mathsf{St}_{\mathsf{-f}}$)
 - Swap the leaves of bdd_f
- Case 3 : Given bdd $_f$, bdd $_g$ (BDD for St_f , St_g) how to compute bdd $_{f \land g}$ (BDD for $St_{f \land g}$)
- Algorithm Apply
- Case 4: Given bdd_f, how to compute bdd_{EXf}
- \circ bdd_{EXf}(Vars) = ∃Vars' (bdd_→ (Vars, Vars') \land bdd_f(Vars'))
- Vars is the set of variables used to define sets of states
 For our purposes Vars = AP (set of atomic propositions)
- Vars' is another set of variables used to describe the destination states in a transition.

Abhik Rovchoudhury, CS4271 lectures

Computing Relational Products

- ∃Vars' (bdd_→ (Vars, Vars') ∧ bdd_f(Vars'))
 - · This is simply a boolean function.
 - Given the BDD for transition relation → and the BDD for St, we can compute the above BDD using Apply algorithm.
 - Just compute the conjunction bdd_ (Vars, Vars') \(\times \text{bdd}_f(Vars') \)
 and then employ existential quantification
 - But the conjunction itself can blow up in the numbers of variables, leading to a possibly large BDD
 - Furthermore, many of these variables will be quantified away anyway, so
- · Can we employ the quantification aggressively ?

Abhik Roychoudhury, CS4271 lectures

Computing Relational Products

- ∃Vars' (bdd_→ (Vars, Vars') ∧ bdd_f(Vars'))
 - Break the conjunction computation into subproblems.
 - Employ existential quantification on the subproblem results.
 - Quantification not postponed until the end
 - · Substantial space savings in practice.
 - · Worst-case space complexity remains same.

The RelProd Algorithm

- Computes ∃V(F∧G)
 - · V is subset of vars in F, G
- Computes by divide-and-conquer
 - Results cache remembers past answers
- Let z be the "top of the tops" in F, G
 - $\circ \ \text{If} \ z \in V$
 - · z does not appear in the returned bdd
 - Existential quantification at the earliest
 - \circ If $z \notin V$
 - Test on z is introduced, and bdd returned.

Abhik Roychoudhury, CS4271 lectures 3

```
The RelProd Algorithm
```

Summary

- Kripke Structure represented as BDD
 - BDD directly generated from SMV code.
- Sets of states satisfying any CTL formula always represented as BDDs.
- Fixed point computation over sets becomes fixed point computation over boolean functions i.e. ROBDD
- Application of these predicate transformers involve set operations
 - Achieved by logical operations
 - Algorithm Apply discussed earlier can implement all the 2^(2^2) = 16 possible binary logical ops.

Abhik Roychoudhury, CS4271 lectures

Exercises - I

- Try to write symbolic versions of the customized algorithms for AG, EF, AF that we worked out in an earlier lecture.
- We had re-written the explicit-state algo for checking EGf before constructing the symbolic version.
 - Try to construct a symbolic version of the original algo. (reproduced in the next slide).

Abhik Roychoudhury, CS4271 lectures

Exercises - I

- Result := St(f);
- repeat
- Temp := $\{ s \mid s \in Result, and \}$
- $\forall sls \rightarrow sl \Rightarrow sl \notin Result \};$
- Result := Result Temp;
- until Temp = empty;
- return Result;

