Package 'bugwas'

December 20, 2015

Title Wh	at the Package Does (one line, title case)
Version	.0.0.9000
Descripti	on What the package does (one paragraph)
Depends	R (>= 3.2.1)
License	What license is it under?
LazyData	true
Imports pha	ape, ngorn
Roxygen	Note 5.0.1.9000
R topi	es documented:
	ll_plots
	payesianWaldTestPCsBarplot
	genVarPlots
	in_loc
	ogregVsLMM
	ocLoadingPlot
	olotIndividualBy2PCs
	npManhattanPlot
	npPCManhattanPlot
	estGenomeWidePCs

Index

11

all_plots

Generates all plots.

Description

This function generates all the plots

Usage

```
all_plots(biallelic = NULL, triallelic = NULL, genVars = NULL,
    treeInfo = NULL, config = NULL)
```

Arguments

biallelic	A list called 'biallelic' created from the lin_loc function
triallelic	A list called 'triallelic' created from the lin_loc function
genVars	A list called 'genVars' created from the lin_loc function
treeInfo	A list called 'treeInfo' created from the lin_loc function
config	A list called 'config' created from the lin_loc function

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
all_plots(biallelic = data$biallelic, triallelic = data$triallelic,
genVars = data$genVars, treeInfo = data$treeInfo, config = data$config)</pre>
```

 ${\tt bayesianWaldTestPCsBarplot}$

Barplot of Bayesian Wald Test on principal components

Description

This function generates the barplot of Bayesian Wald Test on principal components.

Usage

```
bayesianWaldTestPCsBarplot(config, biallelic, treeInfo, colourPalette = NULL,
    p.genomewidepc = NULL)
```

genVarPlots 3

Arguments

config	A list called 'config' created from the lin_loc function. It is a required input.
biallelic	A list called 'biallelic' created from the lin_loc function. It is a required input.
treeInfo	A list called 'treeInfo' created from the lin_loc function. It is a required input.
colourPalette	A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.
p.genomewidepc	A matrix of the significant principal component and their correlation with lineages. This is Bayesian Wald test results produced by the function testGenomeWidePCs. If this is NULL then testGenomeWidePCs is called to generate the required test results.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
testGenomeWidePCs(config = data$config, biallelic = data$biallelic)</pre>
```

genVarPlots	
Scillar Tors	

Plots for GWAS on general variants

Description

This function generates the various Manhattan plots for general variants.

Usage

```
genVarPlots(genVars, biallelic, config, colourPalette = NULL)
```

Arguments

genVars	A list called 'genVars' created from the lin_loc function. It is a required input.
biallelic	A list called 'biallelic' created from the lin_loc function. It is a required input.
config	A list called 'config' created from the lin_loc function. It is a required input.
colourPalette	A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
genVarPlots(genVars = data$genVars, biallelic = data$biallelic, config = data$config)</pre>
```

lin_loc

1i	n 1	oc
		-00

Lineage and locus tests for bacterial GWAS

Description

This function tests for locus effects using GEMMA and lineage effects using a bayesian wald test for haploid data

Usage

```
lin_loc(gen = NULL, pheno = NULL, phylo = NULL, prefix = NULL,
  gem.path = NULL, pcs = NULL, lmm.bi = NULL, lmm.tri.tetra = NULL,
  logreg.bi = NULL, logreg.tri.tetra = NULL, var.matrix = NULL,
  logreg.var = NULL, lmm.var = NULL, cutOffCor = 0, run.lmm = TRUE,
  maf = 0, relmatrix = NULL, lognull = NULL, lambda = NULL,
  output.dir = getwd(), creatingAllPlots = TRUE,
  allBranchAndPCCor = FALSE)
```

Arguments

S	
gen	A file name specified by either a variable of mode character, or a double-quoted string, containing imputed haploid SNP data. Rows are SNPs, and columns are samples, with the first column being SNP positions. Column headers must contain 'ps' for the SNP positions with the others being the sample names. This must contain biallelic SNPs, but can also contain tri and tetra-allelic SNPs. Required argument.
pheno	A file name specified by either a variable of mode character, or a double-quoted string, containing a column of sample names with header 'ID' and a column of the binary phenotype (coded by 0s and 1s) with column header 'pheno'. Required argument.
phylo	A file name specified by either a variable of mode character, or a double-quoted string, containing a phylogeny of the samples, with the same names matching with arguments gen and pheno. Required argument.
prefix	Output file prefix. Required argument.
gem.path	A file path specified by either a variable of mode character, or a double-quoted string. gem.path is the file path to the software GEMMA (version >= ?). Required argument.
pcs	A file name specified by either a variable of mode character, or a double-quoted string, containing the principle components of the data. Column names should be 'PC1' to 'PCn' and row names should be the sample names.
lmm.bi	A file name specified by either a variable of mode character, or a double-quoted string, containing GEMMA results (ending '.assoc.txt') for the biallelic SNPs in argument 'gen'.

lin_loc 5

Imm. tri. tetra A file name specified by either a variable of mode character, or a double-quoted string, containing GEMMA results for the tri and tetra allelic SNPs in argument 'gen'. This must contain column headers 'ps' for SNP positions/IDs, 'pvals' for p-values and 'negLog10' for -log10(p).

A file name specified by either a variable of mode character, or a double-quoted string, containing logistic regression -log10(p) for the biallelic SNPs with column names 'ps' for SNP positions/IDs and 'negLog10' for -log10(p).

logreg.tri.tetra

logreg.bi

var.matrix

logreg.var

lmm.var

cutOffCor

A file name specified by either a variable of mode character, or a double-quoted string, containing logistic regression -log10(p) for the tri and tetra allelic SNPs with column names 'ps' for SNP positions/IDs and 'negLog10' for -log10(p).

A vector of file names specified by double-quoted strings. The files should contain presence absence matrices, with rows being variants (of 0s and 1s), and columns being samples. Column headers must contain 'ps' for variant positions/IDs with the others being the sample names.

A vector of file names specified by double-quoted strings, of files containing logistic regression -log10(p-value) results for the presence absence matrices. Column names must contain 'ps' for variant positions/IDs and 'negLog10' for the -log10(p).

A vector of file names specified by double-quoted strings, of files containing GEMMA results for the presence absence matrices.

Correlation cut-off for assigning and colouring variants by Principal Components (Default = 0, variants are coloured by the PC they are most correlated with).

run.1mm Whether to run GEMMA (Default = TRUE).

maf Minor allele frequency for GEMMA (Default = 0, all varaints are tested).

relmatrix A file name specified by either a variable of mode character, or a double-quoted string of a file containing the GEMMA relatedness matrix of the samples created from biallelic SNPs. The individual ordering must be in the same order as the column names in argument 'gen'.

lognull The log likelihood under the null from GEMMA.

lambda Lambda from GEMMA.
output.dir Output file directory.

creatingAllPlots

Whether to create all bugwas plots. Default = TRUE.

allBranchAndPCCor

Whether or not to retreive correlation matrix between branches and PCs. Default = FALSE.

```
lin_loc()
## An example of running lin_loc with the minimum required inputs
## Assuming gemma is installed in the present working directory
gen <- system.file("extdata", "gen.txt", package = "bugwas")</pre>
```

6 pcLoadingPlot

```
pheno <- system.file("extdata", "pheno.txt", package = "bugwas")
phylo <- system.file("extdata", "tree.txt", package = "bugwas")
prefix <- "test_bugwas"
gem.path <- "./gemma"
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo, prefix = prefix, gem.path = gem.path)</pre>
```

logregVsLMM

Plot of the P-values of logistic regression versus those of LMM

Description

This function generates the plot of the P-values of logistic regression versus those of SNP GWAS.

Usage

```
logregVsLMM(config, biallelic, triallelic, colourPalette = NULL)
```

Arguments

config A list called 'config' created from the lin_loc function. It is a required input.

A list called 'biallelic' created from the lin_loc function. It is a required input.

A list called 'triallelic' created from the lin_loc function. It is a required input.

A list called 'triallelic' created from the lin_loc function. It is a required input.

A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
logregVsLMM(biallelic = data$biallelic, triallelic = data$triallelic, config = data$config)</pre>
```

pcLoadingPlot

Plot PC loadings of all SNPs.

Description

This function plots the loadings of all SNPs for each significant principle component identified by the Bayesian Wald test.

Usage

```
pcLoadingPlot(config, biallelic)
```

plotIndividualBy2PCs 7

Arguments

config A list called 'config' created from the lin_loc function. It is a required input.

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
pcLoadingPlot(config = data$config, biallelic = data$biallelic)</pre>
```

plotIndividualBy2PCs Plot of the sample on the first two principal components

Description

This function generates a plot of the sample on the first two principal components.

Usage

```
plotIndividualBy2PCs(biallelic = NULL, config = NULL)
```

Arguments

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

config A list called 'config' created from the lin_loc function. It is a required input.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
plotIndividualBy2PCs(biallelic = data$biallelic, config = data$config)</pre>
```

snpManhattanPlot

Generates Manhattan plots for a SNP GWAS

Description

This function generates the Manhattan plot(s) for a SNP GWAS.

Usage

```
snpManhattanPlot(biallelic, triallelic, config, colourPalette = NULL)
```

8 *snpPCManhattanPlot*

Arguments

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input. triallelic A list called 'triallelic' created from the lin loc function. It is a required input. config A list called 'config' created from the lin loc function. It is a required input. colourPalette A vector of colours colour the significant principal components identified by the

Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are

chosen from a default colour palette.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,</pre>
prefix = prefix, gem.path = gem.path)
snpManhattanPlot(biallelic = data$biallelic, triallelic = data$triallelic,
config = data$config)
```

snpPCManhattanPlot

Plot the a Manhattan plot organised by the signficance of PCs.

Description

This function generates a Manhattan plot organised by the signficance of the principal components.

Usage

```
snpPCManhattanPlot(config, biallelic, triallelic, colourPalette = NULL)
```

Arguments

A list called 'config' created from the lin_loc function. It is a required input. config biallelic A list called 'biallelic' created from the lin_loc function. It is a required input. triallelic A list called 'triallelic' created from the lin_loc function. It is a required input. colourPalette A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are

chosen from a default colour palette.

p.genomewidepc A matrix of the significant principal component and their correlation with lin-

eages. This is Bayesian Wald test results produced by the function testGenomeWide-PCs. If this is NULL then testGenomeWidePCs is called to generate the required

test results.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,</pre>
prefix = prefix, gem.path = gem.path)
snpPCManhattanPlot(biallelic = data$biallelic, triallelic = data$triallelic,
config = data$config)
```

testGenomeWidePCs 9

testGenomeWidePCs	Testing the genome-wide principal components
-------------------	--

Description

This function performs the genome-wide principal components.

Usage

```
testGenomeWidePCs(config = NULL, biallelic = NULL)
```

Arguments

config A list called 'config' created from the bugwas function
biallelic A list called 'biallelic' created from the bugwas function

Value

The p-value of the Bayesian Wald test for the genome-wide effect of principal components.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
testGenomeWidePCs(config = data$config, biallelic = data$biallelic)</pre>
```

testGenomeWidePCsAll Testing the genome-wide principal components for all PCs.

Description

This function identifies the non-genome-wide principal components.

Usage

```
testGenomeWidePCsAll(config = NULL, biallelic = NULL)
```

Arguments

config A list called 'config' created from the bugwas function biallelic A list called 'biallelic' created from the bugwas function

Value

The p-value of the Bayesian Wald test for the genome-wide effect of principal components.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
testGenomeWidePCsAll(config = data$config, biallelic = data$biallelic)</pre>
```

trueAndPredPhenoOnTreePlot

Generates all plots.

Description

This function that plots the true and predicted phenotypes on a tree.

Usage

```
trueAndPredPhenoOnTreePlot(config, biallelic, treeInfo, p.genomewidepc = NULL,
  colourPalette = NULL)
```

Arguments

config A list called 'config' created from the lin_loc function. It is a required input.

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

treeInfo A list called 'treeInfo' created from the lin_loc function. It is a required input.

p.genomewidepc A matrix of the significant principal component and their correlation with lineages. This is Bayesian Wald test results produced by the function testGenomeWide-PCs. If this is NULL then testGenomeWidePCs is called to generate the required test results.

colourPalette A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
trueAndPredPhenoOnTreePlot(biallelic = data$biallelic, treeInfo = data$treeInfo,
  config = data$config)</pre>
```

Index

*Topic Barplot	lin_loc, 4
bayesianWaldTestPCsBarplot, 2	*Topic plot
*Topic Bayesian-Wald-test	all_plots, 2
bayesianWaldTestPCsBarplot, 2	*Topic wald
testGenomeWidePCs,9	lin_loc, 4
testGenomeWidePCsAll, 9	
*Topic GEMMA	all_plots, 2
lin_loc,4	havaajanWaldTaatDCaDannlat 2
*Topic GWAS	bayesianWaldTestPCsBarplot,2
lin_loc, 4	genVarPlots, 3
*Topic Manhattan-plot	genvari 1000, 5
genVarPlots, 3	lin_loc, 4
<pre>snpManhattanPlot, 7</pre>	logregVsLMM,6
<pre>snpPCManhattanPlot, 8</pre>	
*Topic P-values	pcLoadingPlot, 6
logregVsLMM, 6	plotIndividualBy2PCs, 7
*Topic PCA	ann Manhattan Diat 7
${\tt bayesianWaldTestPCsBarplot, 2}$	snpManhattanPlot, 7
${\sf snpPCManhattanPlot}, 8$	snpPCManhattanPlot,8
${\tt testGenomeWidePCs}, 9$	testGenomeWidePCs, 9
testGenomeWidePCsAll, 9	testGenomeWidePCsAll, 9
*Topic Phenotype	trueAndPredPhenoOnTreePlot, 10
${\tt trueAndPredPhenoOnTreePlot}, 10$,
*Topic Phylogram	
trueAndPredPhenoOnTreePlot, 10	
*Topic Reduced-space-plot	
plotIndividualBy2PCs,7	
*Topic SNP	
logregVsLMM, 6	
snpManhattanPlot, 7	
snpPCManhattanPlot, 8	
*Topic Scatter-plot	
logregVsLMM,6	
pcLoadingPlot, 6	
*Topic bacteria	
lin_loc, 4	
*Topic lineage	
lin_loc, 4	
*Topic locus	