

IIT Madras ONLINE DEGREE

Natural numbers and integers

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 1

Natural numbers

- Numbers keep a count of objects
 - 7 represents "seven"-ness
- **1**, 2, 3, 4, . . .
- 0 to represent no objects at all
- Natural numbers: $\mathbb{N} = \{0, 1, 2, \ldots\}$
 - Sometimes \mathbb{N}_0 to emphasize 0 is included
- Addition, subtraction, multiplication, division
 - Which of these always produce a natural number as the answer?

Integers

- = 5 6 is not a natural number
- Extend the natural numbers with negative numbers
- $-1, -2, -3, \dots$
- Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Number line

Multiplication and exponentiation

- \blacksquare 7 × 4 make 4 groups of 7
- $m \times n = \underbrace{m + m + \dots + m}_{n \text{ times}}$
 - Notation: $m \times n$, $m \cdot n$, mn
 - Sign rule for multiplying negative numbers

$$-m \times n = -(m \cdot n), -m \times -n = m \cdot n$$

- $\mathbf{m} \times m = m^2 m$ squared
- $\mathbf{m} \times m \times m = m^3 m$ cubed
- $m^k = \underbrace{m \times m \times \cdots \times m}_{k \text{ times}} m \text{ to the power } k$
- Multiplication is repeated addition
 Exponentiation is repeated multiplication

Division

■ You have 20 mangos to distribute to 5 friends. How many do you give to each of them?

Division

- You have 20 mangos to distribute to 5 friends. How many do you give to each of them?
 - Give them 1 each. You have 20 5 = 15 left.
 - Another round. You have 15 5 = 10 left.
 - Third round. You have 10 5 = 5 left.
 - Fourth round. You have 5-5=0 left.
 - $20 \div 5 = 4$
- Division is repeated subtraction
- What if you had only 19 mangos to start with?
 - After distributing 3 to each, you have 4 left
 - Cannot distribute another round
 - The quotient of $19 \div 5$ is 3
 - The remainder of $19 \div 5$ is 4
 - \blacksquare 19 mod 5 = 4

Factors

- \blacksquare a divides b if b mod a = 0
 - a | b
 - b is a multiple of a
- **4** | 20, 7 | 63, 32 | 1024, . . .
- **4** / 19, 9 / 100, ...
- \blacksquare a is a factor of b if a | b
- Factors occur in pairs factors of 12 are {1,12}, {2,6}, {3,4}
- ... unless the number is a perfect square factors of 36 :
 {1,36}, {2,18}, {3,12}, {4,9}, {6}

Prime numbers

- p is prime if it has only two factors $\{1, p\}$
 - 1 is not a prime only one factor
- Prime numbers are 2, 3, 5, 7, 11, 13, ...
 - Sieve of Eratosthenes remove multiples of p
- Every number can be decomposed into prime factors
 - $12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$
 - \blacksquare 126 = 2 · 3 · 3 · 7 = 2 · 3² · 7
- This decomposition is unique prime factorization

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
				35					
				45					
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
		$\overline{}$		85	$\overline{}$				
91	92	93	94	95	96	97	98	99	100

Summary

- \mathbb{N} : natural numbers $\{0, 1, 2, \ldots\}$
- \blacksquare \mathbb{Z} : integers = $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Arithmetic operations: $+, -, \times, \div, m^n$
- Quotient, remainder, a mod b
- Divisibility, a | b
- Factors
- Prime numbers
- Prime factorization