

Secure Water Treatment (SWaT) Testbed

Version: 4.3

Last updated: 16 July 2020

Contact information: itrust@sutd.edu.sg
Website: https://itrust.sutd.edu.sg/

INTRODUCTION

Aim

This documentation provides readers with an in-depth understanding of how the Secure Water Treatment (SWaT) testbed works, the capabilities it is equipped with as a platform for **research and experimentation**, **education and training and testing**. Included in this document also are the technical details relating to the operation, components, drawings, equipment list and control and communication network of SWaT.

Background

Operational since March 2015, SWaT is a key asset for researchers aiming at the design of **safe and secure cyber-physical systems** (**CPS.**) The testbed consists of a modern six-stage water treatment process that closely mimics a real world treatment plant. Stage 1 of the **physical process** begins by taking in raw water, followed by chemical dosing (Stage 2), filtering it through an Ultrafiltration (UF) system (Stage 3), dechlorination using UV lamps (Stage 4), and then feeding it to a Reverse Osmosis (RO) system (Stage 5). A backwash process (Stage 6) cleans the membranes in UF using the RO permeate.

The **cyber portion** of SWaT consists of a layered communications network, Allen-Bradley Programmable Logic Controllers (PLCs), Human Machine Interfaces (HMIs), Supervisory Control and Data Acquisition (SCADA) workstation, and a Historian. Data from sensors is available to the SCADA system and recorded by the Historian for subsequent analysis.

Research and Experimentation

Notable aspects of the testbeds include segmented communications networks, wired and wireless communications, distributed dynamic control, interconnection among the testbeds, and complete access to the control logic inside the PLCs and HMIs. Access to them allows researchers to develop their own code and upload it in the controllers for research and experimentation. It also allows them to demonstrate their technologies in a **safe, controlled and realistic environment.**

Our **SWaT dataset** consists of 11 days of continuous operation – of which 7 days' worth of data was collected under normal operation while 4 days' worth of data was collected with attack scenarios. During the data collection, all network traffic, sensor and actuator data were collected. The <u>dataset</u> (available upon request) is highly sought after, with requests from more than 140 researchers from over 30 countries.

Education and Training

SWaT is being used by students from SUTD's Master of Science Security by Design (MSSD) programme as an **education and training platform** to cement and bring to life concepts introduced in the classroom. It is also offered to organisations in training their **operational technology (OT) personnel** in cyber incidents.

Testing

iTrust has organised two international competitions, named <u>SUTD Security Showdown (S3)</u>, attracting researchers and engineers from US, Europe, and Asia to attack SWaT and enabling iTrust researchers and companies to **test their technologies** when a testbed is under attack by independent attackers. At the request of our collaborators, iTrust has also been involved in the **proof-of-concept** of defensive technologies installed on SWaT.

Each of the six sub-processes, referred to as P1 through P6, is controlled by a set of dual Allen-Bradley PLCs, a primary and a redundant hot-standby. The operation status of the PLCs is monitored by the SCADA system. These sub-processes are shown in Figures 1 and 2.

Figure 1: SWaT's six-stage processes

Figure 2: HMI/SCADA screenshot

COMPONENTS (SENSORS AND ACTUATORS)

SWaT consists of an array of monitoring sensors to ensure its safe operations. These are:

- Level Indication Transmitter (measured in mm)
- Flow Indication Transmitter (m³/hr)
- Analyser Indicator Transmitter
 - Conductivity (µS/cm)
 - pH
 - Oxidation Reduction Potential (mV)
- Differential Pressure Indicator Transmitter (kPa)
- Pressure Indicator Transmitter (kPa)

The sensors and actuators associated with each PLC are shown in Figure 3 below.

Figure 3: Sensors and actuators associated with each PLC

PIPING AND INSTRUMENTATION DIAGRAMS (P&ID)

A piping and instrumentation diagram (P&ID) shows the piping and vessels in the process flow, together with the instrumentation and control devices. This website explains the common symbols found in P&ID diagrams.

Figure 4: P&ID for P1 (raw water) and P2 (chemical dosing)

Figure 5: P&ID for P3 (ultrafiltration)

Figure 6: P&ID for P4 (dechlorination)

Figure 7: P&ID for P5 (RO)

Figure 8: P&ID for (from top) P6_1 (RO Permeate Module), P6_2 (UF Backwash module) and $P6_3 \; (RO/UF \; Cleaning \; Module)$

EQUIPMENT LIST

Table 1: Equipment list for P1 (raw water)

Description	Design Specification	Material	Qty	Brand & Model	Remarks
Pumps & Tanks					
Raw Water Tank	Capacity: 1.8m³ Dia xH= 1.38 x 1.36	PE	1	Rotamas CPE 1800	T101
Raw Water Transfer Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl Shaft: SS	2	CALPEDA MXH 203	P101/102
Instrumentation					
Raw Water Tank LIT	Ultrasonic, Range 0.2 to 6m	Non Contact	1	iSOLV LevelWizard II	LIT101
Raw Water FIT	Electromagnetic DN25	PTFE	1	iSOLV EFS803/CFT183	FIT101
Piping & Accessor	ries			<u> </u>	
Piping	SCH80	PVC	Lot	Glywed	
Raw Water Inlet On/Off Valve	DN 25, Electric Actuated	PVC	1	Burkert EV2650	MV101
PRV	DN 25	PVC	1	Prominent DHV-DM PVC	

Table 2: Equipment list for P2 (chemical dosing)

Description	Design Specification	Material	Qty	Brand & Model	Remarks
Pumps & Tanks					
NaCl Tank	Capacity: 2501	PE	1	Rotamas CGD 250	
NaC/Dosing Pump	Capacity: 50 I/h @ 10 bar	Liquid end : PVDF Diaphragm : PTFE faced	2	Prominent Sigma S1Ba	P201/202
HC/ Tank	Capacity: 2501 Capacity: 251 (9% HCI)	PE	1	Rotamas CGD 250 25L Carboy	Double Containment
HC/Dosing Pump	Capacity : 0.78 I/h @ 08 bar	Liquid end : Plexiglas Diaphragm : PTFE faced	2	Prominent GALa1601	P203/204
NaOCI Tank	Capacity: 2501	PE	1	CGD 250	
NaOC/Dosing Pump (FAC)	Capacity: 0.78 I/h @ 8 bar	Liquid end : Plexiglas Diaphragm : PTFE faced	2	Prominent GALa1601	P205/206
NaOCIDosing Pump (UF Cleaning)	Capacity: 65I/h @ 7 bar	Liquid end : PVDF Diaphragm : PTFE faced	2	Prominent Sigma S1Ba	P207/208
Instrumentation	ile.			o o	
Static Mixer	2" NPT M/ 12 elements	PVC	1	Omega	
Raw Water to UF Feed Tank FIT	Electromagnetic DN25	PTFE	1	iSOLV EFS803/CFT183	FIT201
AIT - Conductivity	Up to 1000µS/cm	-	1	Mettler Toledo M200 Single/ easySense Cond 71	AIT201
AIT – pH & ORP	pH: 0-14 ORP: -800mV to 800mV		1	Mettler Toledo M200 Dual/ easySense pH 32 & ORP 41	AIT202/203
NaCI Level Switch	Low Alarm	PVC	1	iSOLV LS880	LS201
HCI Level Switch	Low Alarm	PVC	1	iSOLV LS880	LS202
NaOCI Level Switch	Low Alarm	PVC	1	iSOLV LS880	LS203
Piping & Accessor					
Piping	SCH80	PVC	Lot	Glywed	
Raw Water Tank Outlet On/Off Valve	DN 25, Electric Actuated	PVC	1	Burkert EV2650	MV201

Table 3: Equipment list for P3 (ultrafiltration)

Description	Design Specification	Material	Qty	Brand & Model	Remarks
UF Membranes		ta:			To:
UF Membranes	2.5 m ³ /h	PVDF	1	TORAY HFU-2020	
Pumps & Tanks		No.			
UF Feedwater Tank	Capacity: 1.8m³ Dia xH= 1.38 x 1.36	PE	1	Rotamas CPE 1800	T301
UF Feedwater Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl Shaft: SS	2	CALPEDA MXH 203	P301/302
Instrumentation					
UF Feed Water Tank LIT	Ultrasonic, Range 0.2 to 6m	Non Contact	1	iSOLV LevelWizard II	LIT301
UF Feed Water FIT	Electromagnetic DN25	PTFE	1	iSOLV EFS803/CFT183	FIT301
UF Feed Water FI	Rotameter, 1"	PVC	1	FSIV Flowmeter	FI301
Pressure Switch	Switch High/ 0-7 Bar Adjustable	SS316 Port	1	CCS 604GZ	PSH301
Differential Pressure Switch	Switch High/ 0-1 Bar	SS316 Port	1	CCS 604DZ	DPSH301
Differential Pressure Indicating Transmitter	Range: 0-2 Bar	SS316 Port	1	SPT 100 DP	DPIT301
Piping & Accessor	ies			S)	
Piping & Manual Valves	SCH80	PVC	Lot	Glywed	
PRV	DN 25	PVC	1	Prominent DHV-DM PVC	
Backwash On/Off Valve	DN 25, Electric Actuated	PVC	4	Burkert EV2650	MV301/2/3/4

Table 4: Equipment list for P4 (dechlorination)

Description	Design Specification	Material	Qty	Brand & Model	Remarks
Pumps & Tanks	3	to:	A.F	÷	in a second
RO Feedwater Tank	Capacity: 1.8m ³ Dia xH= 1.38 x 1.36	PE	1	Rotamas CPE 1800	T401
RO Feedwater Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl Shaft: SS	2	CALPEDA MXH 203	P401/402
NaHSO ₃ Tank	Capacity: 2501 Capacity: 251 (10% NaHSO ₃)	PE	1	Rotamas CGD 250 25L Carboy	Double Containment
NaHSO₃ Dosing Pump	Capacity: 0.78 I/h @ 8 bar	Liquid end : Plexiglas Diaphragm : PTFE faced	2	Prominent GALa1601	P403/404
UV Chlorine Destr	ruction Unit				
UV Unit	Removal up to 0.5ppm 2.3m³/h	SS316	1	Aquafine Optima 200	UV401
Instrumentation				K	
RO Feed Water Tank LIT	Ultrasonic, Range 0.2 to 6m	Non Contact	1	iSOLV LevelWizard II	LIT401
Hardness Monitor	Range: 0-10ppm	2	1	HACH APA 6000	AIT401
AIT -ORP	ORP: -800mV to 800mV	3	1	Mettler Toledo M200 Singlel/ easySense ORP 41	AIT402
RO Feed FIT	Electromagnetic DN25	PTFE	1	iSOLV EFS803/CFT183	FIT401

Table 5: Equipment list for P5 (RO)

Description	Design Specification	Material	Qty	Brand & Model	Remarks	Description	Design Specification	Material	Qty	Brand & Model	Remarks
RO Membranes	Heavy Duty Multi- Cartridge Housing Max Pressure: 125PSI					AIT = pH & ORP (RO Feed)	pH: 0-14 ORP: -800mV to 800mV	-	1	Mettler Toledo M200 Dual/ easySense pH 32 & ORP 41	AIT501 / 502
Pre RO Cartridge Filter	Number of Cartridges &Size: (4) 10" Flowrate: 28 GPM Element: 1 Micron	SS304 Housing	1	Graver 4MC1-VB-316L-1.5N-B		Pressure Switch (Before High Pressure RO Pump)	Low Alarm, 0-10 Bar (Adjustable)	SS316 Port	1	CCS 604GZ	PSL501
RO Membrane	As Per Design Considerations	•	3+3 4	Toray TMH10A		Pressure Switch (After High	High Alarm, 0-10 Bar	SS316 Port	,	CCS 604GZ	PSH501
RO Vessel		Shell: Epoxy/Glass	3	Pentair Codeline40\$30		Pressure RO Pump)	(Adjustable)	33316 FOII		CC3 804GZ	F3H3U1
Pumps		Composites		Codemic-toso		PIT (After High Pressure RO	0-10 Bar	SS316 Port	1	iSOLV SPT 100	PIT501
High Pressure RO		Casing: Chrome Nickel SS		CALPEDA		Pump) PIT (RO Concentrate)	0-10 Bar	SS316 Port	1	iSOLV SPT 100	PIT503
Pump With VSD	Duty: 2m³/h @ 5bar	Impeller: Noryl	2	MXH206	P501/5	PIT (RO Permeate)	0-10 Bar	SS316 Port	1	iSOLV SPT 100	PIT502
Instrumentation		Shaft: SS				FIT (RO Concentrate)	Electromagnetic DN25	PTFE	1	iSOLV EF\$803/CFT183	FIT503
AIT - Conductivity (RO Feed)	Up to 1000µS/cm	-	1	Mettler Toledo M200 Dual/ easySense Cond 71	AIT503	FIT (RO Recirculation)	Electromagnetic DN25	PTFE	1	iSOLV EFS803/CFT183	FIT504
AIT - Conductivity	Range: 0.02 to 20		1	easySense Cond 71	AIT504						

Table 6: Equipment list for P6 (RO permeate transfer, UF backwash)

Description	Design Specification	Material	Qty	Brand & Model	Remarks	Description	Design Specification	Material	Qty	Brand & Model	Remarks
Pumps & Tanks						Cartridge Filter					
RO Permeate Tank	Capacity: 1.2m ³ DiaxH = 1.16 x 1.24	PE	1	Rotamas CPE 1200	T601		Heavy Duty Multi- Cartridge Housing				
RO Permeate Transfer Pump	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS Impeller: Noryl	1	CALPEDA MXP 203	P601	Pre RO Cartridge Filter	Max Pressure: 125PSI Number of Cartridges &Sze: (4) 10" Flowrate: 28 GPM Element: 1 Micron	SS304 Housing	1	Graver 4MC1-VB-316L-1.5N-B	
		Shaft: SS				Instrumentation					
UF Backwash Tank	Capacity: 1.2m ³ DiaxH = 1.16 x 1.24	PE	1	Rotamas CPE 1200	T602	RO Permeate Tank	Low & High Alarm	PVC	1	iSOLV LS880	LS601
UF Backwash	Duty: 2.5 m³/h @ 20m	Casing: Chrome Nickel SS	1	CALPEDA	P602	Level Switch UF Backwash Tank Level Switch	Low & High Alarm	PVC	1	iSOLV LS880	LS602
Tank Pump		Impeller: Noryl Shaft: SS		MXP 203		CIP Tank Level Switch	Low & High Alarm	PVC	1	iSOLV LS880	LS603
CIP Tank (UF/RO)	Capacity: 5501	PE	1	CGD 550		FIT (UF	Electromagnetic	PTFE	1	iSOLV EFS800/CFT180	FIT601
		Casing: Chrome				Backwash) FI (RO/UF	DN25		<u> </u>		111001
CIP Pump	Duty: 2.5 m³/h @ 20m	Nickel SS Impeller: Norvl	1	CALPEDA MXP 203	P603	Cleaning)	Rotameter, 1"	PVC	1	FSIV Flowmeter	FI601/2

CONTROL AND COMMUNICATION NETWORK

The network architecture for SWaT complies with the <u>Industrial Automation and Control Systems Security-ISA99</u>, a security standard for industrial automation and control systems. This standard suggests a core concept which is "Zone and Conduits" and "Layer". It offers a level of segmentation and traffic control inside the Control and Communication Network, and is designed to support both wired and wireless network communication.

Layers

- Layer 3.5 Demilitarised Zone (DMZ)
- Layer 3 Operation Management (Historian)
- Layer 2 Supervisory Control (Touch Panel, Engineering Workstation, HMI Control Clients)
- Layer 1 Plant Control Network (PLCs) (Star Network)
- Layer 0 Process (Actuator/Sensors and Input/output modules) (Ring Network)

Figure 9: SWaT network architecture (PLC7 is for training/testing)

NETWORK PROTOCOL AND MONITORING AND DECODING

Network Protocol

All network communication by PLCs, sensors and actuators in SWaT is using the industrial EtherNet/IP and Common Industrial Protocol (CIP) stack. Specifically:

- 1) CIP¹ over EtherNet/IP (Network level 1)
- 2) EtherNet/IP (Network level 0 i.e. between PLC and remote I/O)

Network Monitoring and Decoding

Researchers perform network traffic monitoring and decoding, using tools such as Wireshark (monitoring/listening), Scapy (decoding, Ethernet/IP reverse-engineering) and Ettercap (network sniffing, MITM attacks). Examples of these processes are shown below.

```
Almost every second, there will be packets coming from HMI to PLC1 which look
like this eg: hex-offset hex-packet (read from top-left to right-bottom)::
                     and right after, a response from PLC1 to HMI::
                    08 00 45 00
01 0a c0 a8
43 bd 50 18
16 00 00 00
00 00 00 00
00 80 bl 00
00 00 eb 14
00 00 40 40
24 00 00 48
43 13 01 00
00 00 03 00
06 00 00 00
        0010
0020
0030
        0040
        0040
0050
0060
0070
        0080
0090
00a0
00b0
Once decoded with scapy, these packets become::
        ###[Ethernet]###
dst = 00:1d:9c:c8:bd:e7
src = 00:1d:9c:c6:72:e8
        type =
###[ IP ]###
version
ihl
                                   0x800
                                      = 51
                                    = 5L
= 0x0
= 94
= 12181
= DF
= 0L
= 128
= tcp
= 0x4746
= 192.168.1.100
= 192.168.1.10
                  flags
                  frag
ttl
                  proto
chksum
src
dst
        \options
###[ TCP ]###
sport
                                          = 49667
= EtherNet_IP_2
= 2390377351
= 29171294
= 5L
= 0L
= PA
= 33436
= 0x2a07
= 0
                        dport
seq
ack
dataofs
                        reserved
flags
window
chksum
                        urgptr
options
```

¹ The <u>Common Industrial Protocol (CIP) and the Family of CIP Networks</u> gives a comprehensive look at how CIP and its network implementations are designed. The guide is a great starting point for those who are new to CIP Networks.

```
###[ ENIP_TCP ]###
                             command_id= SendUnitData
length = 30
                             length = 30
session = 1441794
status = success
                             status = succes
sender_context= 0
       options = 0
###[ ENIP_SendUnitData ]###
                                   interface_handle= 0
                                   timeout = 0
                                   count
                                    items
                                       ###[ ENIP_SendUnitData_Item ]###
                                        type_id = conn_address
length = 4
                                        ###L ENIP_SendUnitData_Item J###
                                         type_id = conn_packet
length = 100
                                       ###[ ENIP_ConnectionPacket ]###
                                                 sequence = 1930
CIP ]###
direction = response
                                       ###[ CIP
                                                       service = Read_Tag_Service
                                                        \path 
                                                        \status
                                                          status
|###[ CIP_ResponseStatus ]###
| reserved = 0x0
| status = success
| additional_size= 0x0
| additional= ''
                                       ###[ Raw ]###
                                                              load
                                                                                 = '\x01\x00\x00 [[ SNIPPED ]] \x14B'
Therefore:
* HMI is requesting to read tag ``class 0xb2,instance 0x22`` on PLC1. In this request, the class ID never change but the instance ID may change.
* PLC1 is responding with a successful status and a binary blob of data. This data is the concatenation of several tags, and it is only needed to find the offset where the water level is reported to be able to modify it (there is no authentication nor integrity check of the result).
```

Figure 10: Sample network packet monitoring and decoding using Wireshark and Scapy respectively

```
As ettercap works from the TCP payload, here is this payload from another
network capture, with some important values::
                                                                                               --- ENIP Send Unit Data command
                  0010
                  al 00 ----- ENIP first item: Connected Address Item
         1e
       0020
          22
24
                           04 00 -----
                                                                                                                                 length = 4 bytes
                                     db e8 00 80
                                                         b1 00 ----- ENIP second item: Connected Data Item 51 00 ----- Size of CIP packet: 81 bytes (= 0x51)
          2a
          2c
                                                                            78 ed
                                                        cc 00 - CIP response to Read Tag Service
      0030
                 00 00 -----
                          01 00 00 00 00 00
          32
                                                         c5 8e 6d 44 ------ Water level (LIT101 tag): 0x446d8ec5 = 950.23
01 00 ----- Motored Valve MV101 off (on is "02 00")
02 00 - Pump P101 state: open
          3с
                01 00 ----- 02 00 00 00 00 40 40 00 00 80 40 00 00 80 3f 00 00 00 3f 22 00 00 48 44 00 80 89 44 00 00 6a 43 00 00 7a 43 13 01 00 0b 02 00 01 0b 01 00 01 01 01 00 00 00 03 00 02 00 01
      0040
                                                                                     ----- Pump P102 state: closed
         42
The water level is encoded in little-endian single-precision floating-point format (IEE 754, https://en.wikipedia.org/wiki/Single-precision_floating-point_format), so bytes ``c5 8e 6d 44`` can be decoded in a simple Python program::
program::
      import binascii, struct
print(struct.unpack('<f', binascii.unhexlify('c58e6d44'))[0])</pre>
which displays ``950.2307739257812``.
To find the offset of this value, it is possible to quickly scroll in Wireshark the CIP payloads of packets matching the filter
'`cip.service == 0xcc && cip.class == 0xb2``, and two bytes would keep changing a lot between packets, which would be the first bytes of ``c5 8e 6d 44`` here, as they encode a part of the fraction part of the float number linked to a
Once the offset is found, it is possible to modify the bytes in an ettercap filter, as it is done in ``mitm-b2cls_rdtag.ecf``. For example value 420 is encoded in bytes ``00 00 d2 43`` so this etterfilter code modifies the water
level to 420::
```

Figure 11: Sample process of modifying bytes in an Ettercap filter to modify tag values

The IP addresses of the seven PLCs and SCADA in SWaT are shown below.

P1 - Raw Water			
Device	IP Address		
E/IP (PCN) - Primary	192.168.1.10		
E/IP (PCN) - Secondary	192.168.1.11		
Wireless Client (PCN)	192.168.1.12		
E/IP (RIO) - Primary	192.168.0.10		
E/IP (RIO) - Secondary	192.168.0.11		
RIO Adaptor	192.168.0.12		
RIO Access Point	192.168.0.14		
Wireless Adaptor	192.168.0.15		

Device	IP Address
E/IP (PCN) - Primary	192.168.1.20
E/IP (PCN) - Secondary	192.168.1.21
Wireless Client (PCN)	192.168.1.22
E/IP (RIO) - Primary	192.168.0.20
E/IP (RIO) - Secondary	192.168.0.21
RIO Adaptor	192.168.0.22
RIO Access Point	192.168.0.24
Wireless Adaptor	192,168,0,25

Device	IP Address
E/IP (PCN) - Primary	192.168.1.30
E/IP (PCN) - Secondary	192.168.1.31
Wireless Client (PCN)	192.168.1.32
E/IP (RIO) - Primary	192.168.0.30
E/IP (RIO) - Secondary	192.168.0.31
RIO Adaptor	192.168.0.32
RIO Access Point	192.168.0.34
Wireless Adaptor	192.168.0.35

Device	IP Address
Device	IP Address
E/IP (PCN) - Primary	192.168.1.40
E/IP (PCN) - Secondary	192.168.1.41
Wireless Client (PCN)	192.168.1.42
E/IP (RIO) - Primary	192.168.0.40
E/IP (RIO) - Secondary	192.168.0.41
RIO Adaptor	192.168.0.42
RIO Access Point	192.168.0.44
Wireless Adaptor	192,168,0,45

P5 - Reverse Osmosis		
Device	IP Address	
E/IP (PCN) - Primary	192.168.1.50	
E/IP (PCN) - Secondary	192.168.1.51	
Wireless Client (PCN)	192.168.1.52	
E/IP (RIO) - Primary	192.168.0.50	
E/IP (RIO) - Secondary	192.168.0.51	
RIO Adaptor	192.168.0.52	
RIO Access Point	192.168.0.54	
Wireless Adaptor	192.168.0.55	
ETAP (VSD 1)	192.168.0.56	
VSD 1	192.168.0.57	
ETAP (VSD 2)	192.168.0.58	
VSD 2	192.168.0.59	

Wirelss Client (PCN) 192.168.1.62 E/IP (RIO) - Primary 192.168.0.60 E/IP (RIO) - Secondary 192.168.0.61 RIO Adaptor 192.168.0.62 RIO Access Point 192.168.0.64	E/IP (PCN) - Primary	400 460 4 60
Wirelss Client (PCN) 192.168.1.62 E/IP (RIO) - Primary 192.168.0.60 E/IP (RIO) - Secondary 192.168.0.61 RIO Adaptor 192.168.0.62 RIO Access Point 192.168.0.64		192.100.1.00
E/IP (RIO) - Primary 192.168.0.60 E/IP (RIO) - Secondary 192.168.0.61 RIO Adaptor 192.168.0.62 RIO Access Point 192.168.0.64	E/IP (PCN) - Secondary	192.168.1.61
E/IP (RIO) - Secondary 192.168.0.61 RIO Adaptor 192.168.0.62 RIO Access Point 192.168.0.64	Wirelss Client (PCN)	192.168.1.62
RIO Adaptor 192.168.0.62 RIO Access Point 192.168.0.64	E/IP (RIO) - Primary	192.168.0.60
RIO Access Point 192.168.0.64	E/IP (RIO) - Secondary	192.168.0.61
000-0 19 (a-19 00)	RIO Adaptor	192.168.0.62
Wireless Adaptor 192.168.0.65	RIO Access Point	192.168.0.64
	Wireless Adaptor	192.168.0.65

Device	IP Address
E/IP (PCN) - Primary	192.168.1.70
Wireless Client (PCN)	192.168.1.72
E/IP (RIO) - Primary	192.168.0.70
RIO Adaptor	192.168.0.72
RIO Access Point	192.168.0.74
Wireless Adaptor	192.168.0.75

Device	IP Address
E/IP (PCN) - Primary	192.168.1.100
Wireless Client	192.168.1.101
Firewall	192.168.1.102
PCN Access Point	192.168.1.103
DMZ Access Point	192.168.1.104
Historian Server	192.168.1.200
Engineering Workstation	192.168.1.201

