Projekte SoSe2020

Projekte, VMC-, Master-, Abschlussarbeiten

Zugangsvoraussetzung: MC, PMC, (VMC)

<u>Umfang:</u> die Themen werden nach Projekttyp (VMC im Bachelor bzw. Master) im

Umfang angepasst,

an einem einzigen Thema können auch mehrere Studenten arbeiten

Ablauf: zu jedem Projekt gehören

-- zwei Präsentation (Zwischen- und Abschlussvortrag – ca. 15...20 Min.)

-- die schriftliche Dokumentation + Datenträger (CD)/USB und der

-- EI-WIKI-Eintrag <u>notengebend ist die schriftliche Doku</u>

schauen Sie sich die EI-WIKI-Einträge an

Vergeben / zu vergeben:

Motorsteuerung

Mode	llbau-Servomotor + CAN	Layout-O	ptimierun	g
0 0	Leistungselektronik + Controller auf eine Platine Layout (eagle oder KiCad) kompakter gestalten und ins Originalgehäuse integrieren Regler anpassen kleinere Stecker auswählen	CAN aufger Platinen in d die Original	üstet und fun lem <u>erweitert</u> platine des M	e mit μC für PWM und ktioniert. Derzeit sind zwei en Servo-Gehäuse verbaut: Iodellbau-Servos und die μC für die PWM-CAN-An-
0	testen		1	
		Kilian	Kürzinger	VMCB
		Thomas	Mayer	VMCB

Elekti	ronische Traverse – load leveler	Layout-0	Optimierung	
0	Modell aufbauen mechanischen Heber mit einem Motorantrieb	Mo		
0	zum Lageausgleich ausrüsten Lagemessung und danach steuern sowie fest-			
	klemmen			
	TÜV-Prüfung – unte	rschreiben la	<mark>issen</mark>	
		Felix	Mercks	VMCM

Sensoren Temperatur, Feinstaub ...

	erbad erwärmen – Optimierung/Lay- edesign	Layout erstellen	
0	Layout der Basisplatine erstellen – derzeit als Lochrasterplatine vorhanden	Es wurde bereits funktions Das Gerät soll labortauglic	
0	aufbauen, testen: Bedienmenue und Funktion	Absprache mit Prof. Birgit	Rösel nötig
•			

Feinstaubmessung	Weiteren Prototyp für Messgerät				
 funktionsfähigen Prototypen um LoRa (Funkanbindung ergänzen ESP32-Lora-Modul nutzen neues Layout mit Eagle erstellen OTH-Server bereits aufgesetzt ggf. E-Ink-Anzeige für aktuelle Messwerte 	aufbauen ggf. vernetzen Messzeit: 1-10s SDS 011 bisheriger Prototyp (EI-Wiki: Düring/Rappl) ist ohne Funkanbindung				
	Michael Emmert VMCB				

e e e e e e e e e e e e e e e e e e e		Weiteren Prototyp für Messgerät			
o thingsboard als Visualisierung nutzen		aufbauen g	gf. vernet	zen	
0	evtl. weitere (Wetterstation) Daten darstellen	Messzeit: 1-10 bisheriger Pro ohne Funkanb	totyp (EI-Wi	l 1 ki: Düring/Rappl) ist	
		Florian	Ströbl	VMCM	

Stimn	Stimmungsbarometer oder -ampel		Button für Partyeinsatz oder Sitz			
0 0 0	minimalistisch anlegen (= kostengünstig) STM M0 mit 8 Pins nutzen RGB-LED (rot, gelb, grün, blau/weiss) zyklisch weiterschalten z.B. durch Taster – besser durch Berühren Knopfzelle	xxx				
0	Layout KiCad					

state of charge SoC (1)	Batteriefüllstand messen – d.h. Strom				
 INA 226 Strom-/Spannungssensor per I2C in festen zeitlichen Abständen auslesen und über die Zeit integrieren nucleo board oder STM32G0 (8 Pins) freeRTOS oder timer als Zeitbasis nutzen 	messen und aufintegrieren Um den Füllstand einer Batterie mitzuprotokollie- ren/überwachen gibt es verschiedene Ansätze und auch spezielle ICs.				
o Layout KiCad					

state of charge SoC (2)	Batteriefüllstand messen – besondere ICs nutzen					
 coulomb / gaugemeter auswählen (TI) möglichst EVA-board über serielle Schnittstelle auslesen 	Es gibt spezielle ICs, die den SoC für bestimmte Batterietypen messen – wir nutzen i.M. LiFe.					
o ggf. Layout KiCad						

Sensorik für Bienenstocküberwachung / Hamster

Verda	mpfer im Bienenstock steuern	Messger	ät für Bien	enstock
Temp	genaue Temperaturregelung Hochspannungseinheit (Fliegenklatsche) anbauen mitzählen	einheit ein	es 3D-Drucke den erwärmt u	nes Verdampfers (Heiz- ers) ist vorhanden – Duft- end locken Insekten/Un-
		Johannes	Meister	VMCM

Analy o o	Drehzahl an Hamsterrad messen Daten erfassen, loggen (SD-Karte), auswerten (Excel oder thingsboard) und visualisieren					
		Florian Hochmuth VMC B				

Sensoraufbereitung

- o analoge OP-Schaltungen aufbauen Sensoraufbereitung Schaltungen für 0...5V, 0...10V, -5V...+5V, Bereichsanpassung für ADC eines μC
- STM32G0 (M0+ mit 8 Pins) für Weitergabe der Messergebnisse

Platine für Sensoren mit unterschiedlichen Spannungsausgängen

Manche Sensorausgänge sind für 0..5V o.ä. ausgelegt – zur Anpassung an den ADC-Eingang des μC brauchen wir Anpassungsplatinen

CO2-Ampel

- o geeignete Energieversorgung (Steckernetzteil)
- o Schaltung im unteren Gehäuseteil integrieren
- Anzeige wie bei Werkzeugmaschinen (– siehe unten)
- o ggf. eigenes Standunterteil 3D-drucken
- Funkanbindung mit ESP32 wäre noch chic (Daten mitloggen MQTT)

Aufbau einer CO2-Ampel, d.h. Anzeige (rot gelb grün)

CO2-Sensor-Datenerfassung – bereits in anderen Projekten erfolgt (EI-Wiki)

Man vergisst immer wieder das Lüften und merkt nicht, dass man sich nicht mehr konzentrieren kann

https://www.werma.com/de/products/signalsaeulen_konfigurator.php

https://www.werma.com/de/products/signalsaeulen konfigur	ator.pnp			
	Simon	Heiss	VMCB	
	Nicolai	Rainprechter	VMCB	

Autarke Energieversorgung Solar + Akku (für diverse Sensoranwendungen) Solarpanel entsprechend Verbrauch und Nutzungsdauer auslegen Ladeelektronik für Akku / Solarpanel intelligenter Ladechip - harvesting noch festzulegen wofür man es braucht und damit sparsamen μC nutzen (z.B. ST M0 mit 8 Pins) auch die Leistung Layout erstellen – Oberseite Solarpanel, unten Anwendung Schaltregler + LED, Helligkeitssensor Nachtbeleuchtung z.B. Hausnummer mechanische 2-teilig (austauschbares Plexiglassowas wie eine Notbeleuchtung teil für unterschiedliche Anzeigen) tagsüber laden nachts anzeigen Wandmontage

Fahrzeuge -- Fahrradanhänger

e-bike Motoransteuerung in Motor einbauen	Rekupera	tion bei Tal	fahrfahrt	bzw. b	eim
 vorhandene Motorsteuerung in BLDC-Motor (500 W 1000 W) – kreisförmige Platine bereits erstellt einbauen Rekuperation in der SW noch nicht implementiert 	Bremsen Vorarbeit von Daniel Klingshirn				

ndw	agensteuerung per Handgriff	Anhänger für händische Lastfahrt			
0	Bedienteil/Handgriff erstellen – ggf. fertiges finden evtl. eigene Deichsel nur für Handbetrieb	vorhandenen Fahrradanhänger mit e-Antrieb als Handwagen mit eigenem Griff nutzen			
o on/off, p o Rückwä	n/off, permanentes/gelegentliches Drücke ückwärtsfahrt ng-/Drucksensorik	wenn man zieht treibt der Anhänger an – ansonsten bremsen oder rekuperieren			
0 0	Ansteuern des Anhängers erfolgt über CAN Sicherheitskomponenten Notaus (z.B. beim Loslassen bzw. rasanter Fahrt) vorse-	möglichst einfache Bedienung (mit einem Taster/Schalter und unterschiedlichen Zeiten)			
	hen	Unterstützung durch Neigungssensorik			

Fahrzeuge – kleines rotes Fahrzeug

Auton	omes Flurfahrzeug – QR-Code-Ziel-	Weiterarb			
folger			– QR-Code Auswertung verbessern– Kameranachführung verbessern und mi		
0	Fahrverhalten verbessern – Kameranachführung und weichere Fahrbewegungen	Fahrbewegung kombinieren			
0	Größeninvarianz bzgl. QR-Codegröße im Bild	kleines rote	s Fahrzeug vorhan	den – mit Raspberry	
0	o Bild-/Erkennungsrate verbessern Lesen des QR-Codes verbessern			erating system), QR-	
0	Fahrdaten mitloggen	Code auswi	or ton		
		Sebastian	Friedrich	Projekt	
		Scoastian	THEATICH	110JCKt	

Autonomes Flurfahrzeug – QR-Code-Zielfolger		Weiterarbeit – verschiedene QR-Codes Anwendung				
0	Abstandssensorik derzeit Ultraschall nutzen und z.B. mit TOF ergänzen Objekte erkennen und umfahren Fahrdaten mitloggen	kleines rotes Fahrzeug vorhanden – mit Raspberry PI steuerbar, ROS (roboter operating system), QR- Code auswerten				

Positionsbestimmung indoor eines Fahrzeugs	kleines rotes Fahrzeug verfolgen					
 Raspberry nutzen geeignete Technologie auswählen 	eher als BA, Projekt im Master					
o geeignete Technologie auswählen https://www.decawave.com/product/dw1000-radio-ic/						
https://w3-						
mediapool.hm.edu/mediapool/media/fk04/fk04_lokal/_fk04/fwp1/p	rojekte 1/projekte im wise 19 20/Projekt KT V2.pdf					

Fahrzeuge – Buschhacker Zusammenarbeit mit Prof. Hermann Ketterl, Maschinenbau

sog. Volksbot ausprobieren	GPS-Daten erfassen						
Nur auf Absprache mit Prof. Hermann Ketterl (943-5193) Maschinenbau							

CAN-Themen

$\mu C \rightarrow POF \rightarrow RS232, SPI, (CAN)$ plastic optical fibre STM32 F103 nanoboard benutzen galvanisch getrennte serielle Datenübertravers. Serielle Schnittstellen über POF-Treiber gung (z.B. in eine EMV-Kabine) transportieren (CAN bereits vorhanden) in kleinem (ALU-)Gehäuse verbauen Lichtwellenleiter LWL nutzen, Treiberbausteine CAN-Daten wieder zurückwandeln und wieder vorhanden ausgeben zwei (Gehäuse-)Boxen 10 m Übertragung reicht VRDM 564/50 LNA EI-Wiki Maximilian Gröbner

dual CAN	Fehlererk	ennung bei CA	AN-Datenübertra-
 μC mit zwei CANs nutzen und über beide Nachrichten versenden (eine davon verwerfen) Ausfall eines CANs erkennen und Nachrichten über zweiten weiterverbreiten auf CAN-FD erweitern 	gung		
	Tobias	Langer	Projekt

CAN -	→ WLAN	Informationen am CAN über Funk auslesen
0	ESP32 mit Micro Python den CAN ausprobieren ausprobieren (ist eher eine Beta-Version)	ESP32 scheint einen CAN zu haben, der offensicht- lich noch nicht freigegeben ist
0	CANoe o.ä. zum Verfolgen am CAN-Bus nutzen	
0	CAN-Daten visualisieren (z.B. Füllstand einer Batterie an BMS)	
ist ein '	Thema für jemanden, der schon was mit CAN gemad	cht hat
http://w	<u>vww.barth-dev.de/can-driver-esp32/</u>	

Micro Python

Weite für T	rarbeit an Portierung MicroPython IVA	intensive nahem C	SW-Aufgab	e in hardware-
0	Portierung von MicroPython erfolgte für TIVA 123 Board mit größerem RAM-Speicher (TIVA129) nutzen weitere Einheiten ergänzen: PWM, Timer, ADC, QEI, flash,DMA, Energie- sparmodi	Einstieg in die Portierung von MicroPython für GPIO, UART, SD-Karte ist bereits erfolgt (EI-Wik Raphael Kriegl)		
	•	Andreas	Schlapps	VMCB
		Daniel	Hoerber	VMCB
		•	•	
		Sven	Glück	VMCM

Prototyp Gehäuse mit	Gehäuse für universelle Projekte					
 CD + Bedienelement Gehäuse auswählen, externes Netzteil Montage überlegen Fräsvorlage erstellen für Einbau des graphischem Displays + Bedienelements 	Wir brauchen im Labor immer wieder ein Protypengehäuse (möglichst mit Anzeige, Drehencoder) – z.B. PLACE-Board					
<mark>macht Jürgen Bachl ggf. selber</mark>						

Automatisierung

Fließband - Eigenbau Steuerung mit RTOS realisieren. Testmodus und Betriebsmodus - damit einzelne Funktionen getestet werden können Austauschen der Spindel austauschen für Greifers 3D-Gehäuse für Farbsensor Platine für Sensoren mit unterschiedlichen Spannungsausgängen Manche Sensorausgänge sind für 0..5V o.ä. ausgelegt – zur Anpassung an den ADC-Eingang des μC brauchen wir Anpassungsplatinen

	Anja	Preitschaft	VMCB
	Joahnnes	Drexler	VMCB
duale Studenten Krones			

Fließband		Fließband mit CAN ausstatten und		
0 0	CAN-Anbindung (TIVA) Nachrichten festlegen (rechts/links, stop/go, speed, aktuelle Position) Steuerung mit RTOS realisieren. Testmodus und Betriebsmodus - damit einzelne Funktionen getestet werden können	Deltaroboter anbauen		
weiterf	ührende Arbeit wäre die Koordination mit Deltarob	Doter und Greifer		

n Deltaroboter (IGUS) weiterarbeiten	Themen stehen ausführlicher bereits im grips				
0	zus. mit Arm	in Merten			
		_			

Demonstrator-Einheit mit LED-bar und Display für Batterie-Managment-System

- Prozessor STM32 direkt verbauen <u>oder</u> nucleoboard verwenden Prozessor direkt verbauen
- o WS2812 für die LED-Anzeigen (Pfeil, 2 LEDbars, leader/co-leader)
- o sparsames E-Ink für Text-/Graphikausgabe
- Protokoll auslegen Schnittstelle zum DCDC-Controller noch festzulegen (SPI, CAN)
- Layout in KiCad erstellen Maße wie DCDC-Wandler
- o Befestigungsbohrungen

Statusanzeige sollte chic / schnieke sein

Hiermit soll man erkennen können was in dem BMS gerade passiert:

- ob es eine leader election gibt,
- ob ge- oder entladen wird (Pfeil)
- LEDs f
 ür Sonderanzeigen (Temperatur, F
 üllstand
- E-Ink-Anzeige, energiesparend

Thomas	Singer	VMCM	

Abschaltplatine

- galvanisches Abtrennen der Batterie im Betrieb Relais auswählen
- o STM32 nucleo-board
- o einfache LED-Anzeige (als Ampel)
- o CAN-Schnittstelle (abmelden vor dem Ausbau)
- Layout in KiCad erstellen
- o testen, d.h. ggf. EMV bei hohen Strömen
- o INA 226 Strom-/Spannungssensoren (I2C)

bei Wartungsarbeiten an Batterie/DC-Modul ein-/ausbauen

Die Akkus eines BMS sollen – auch während des Betriebs ein-/ausgebaut werden können. Hierfür ist eine Abschaltung mit Relais vorzusehen. Vorher soll der Anwender dies dem BMS ankündigen und eine Freigabe erhalten.

DC/DC-Wandler	(mit CAN-Schnittstelle)
Layout aufteilen i	n boost und buck

- DCDC-Spannungswandler 12V (Bleiakku) → 18 V
- INA 226 zur Strom-/Spannungsmessung einbauen
- o Layout KiCad erstellen
- o in BMS-Aufbau integrieren

DC-DC-Wandlermodul vorhanden in Gehäuse mit Schnittstelle

<u>käufliches</u> unidirektionales DCDC-Modul (buck boost) auftrennen in zwei Richtung damit man Batterie laden und entladen kann, d.h. separat ansteuern – sonst braucht man 2 DCDC-Module

 μ C (nucleoboard) als Aufsteckplatine sollte mitintegriert werden

Schaltplan vorhanden

Aufsteckplatine mit ST H7 Prozessor für Aufsteckplatine für Launchpad **DCDC-Wandler** $CAN \rightarrow PWM$ Die Einstellungen für Strom und Spannung des DCDC-Wandler erfolgte ursprünglich per Taster. H7 nanoboard verwenden Der µC STM32 steuert derzeit den DCDC-Wand-PWM-Ausgabe gemäß erfasster Messdaten lers per PWM. Der µP erhält die Anweisungen CAN-Anschluß (PHY) über CAN-Nachtrichten. CAN-Nachrichten in PWM umsetzten Layout für Huckepack-Platine erstellen Der μP soll durch einen neuen ST H7 ersetzt werden. Alexander Schäffer VMCM

BOOT-loader mit ST H7 Prozessor		STM32 bootloader vorhanden – für Fergänzen				
0	o besondere Anforderungen: einzeln oder gruppenweise booten		BA wurde bereits e stellt. Dieser müsste			
		Viola	Schneider	VMCM Projekt		

ST	H7	Prozessor steuert elektronische Last	Weitere Lastprofile erstellen, dafür			
			Testreihe überlegen und ausprobieren			
	0	H7 nanoboard verwenden				
	0	H7 steuert elektronische Last – (RS232/CAN)	Die elektronische Last wird derzeit von einem			
	0	an für zwei unterschiedlichen DCDC-Wandlern	STM32 M3/4 angesteuert. Mit dem Umstieg auf			
		testen	den ST H7 stehen neben einer gr. Rechenleistur			
	0	HW-Aufbau neu gestalten	auch zus. Schnittstellen zur Verfügung.			
	0	RS232-Anpassung der python-lib	Eine python-lib wurde bereits für erste Tests			
		1 & 17	erstellt (STM32).			
			<u>'</u>			
			Sebastian Träger Master			

ST H7 mit Ethernet-Anbindung O Umsetzung als Ethernet – CAN Bridge ggf. CAN-FD O Kommunikation zw. mehreren Teilnehmern O Zeiten messen für Nachrichten zw. Teilnehmern über unterschiedliche Wege/Schnittstellen O Energieverbrauch pro Nachricht (mW/Bit) Daniel Wetzel Bachelor

Themen für andere Labore

Labor für Elektrische Maschinen

(Anton Haumer)

Weiterentwicklung eines Prototyps zur Aufnahme von Drehzahl und -moment

- Prototyp weiterentwickeln Gehäuse auswählen
- o Layout erstellen für Frontplatine (LCD, Drehencoder, on/off, Status-LED) oder touch
- o Platine mit Sensorsignal-Anbindung
- o ggf. Menü ergänzen
- Modularität für weitere Kabelanschlüsse (25-D-Sub, Stiftleiste) erstellen – Kabeladapter vorhanden

Weitere Thematik

- o Daten der SD-Karte auslesen
- o mit excel aufbereiten und darstellen
- o Funktion an einer Anwendung zeigen, z.B. Maschine hochfahren oder abbremsen

Messwerte an Drehmomentmesswelle erfassen –anzeigen

an einer Messwelle im Labor für elektrische Maschinen werden Messwerte {-10 ... 10 V für das Drehmoment sowie Taktsignale für die Drehzahl} aufgenommen und anschließend auf einem LC-Display ausgeben

wird für Labor elektrische Maschinen gebraucht

Lucas	Kurpas	VMC	N

Amateurfunkanlage

ESP32 – RFID Modul O RFID-Karten über SPI auslesen O ggf. studentischen Ausweis als Zugang nutzen ESP32-Modul mit Ethernet-Anbindung O MQTT-Datenübertragung O Layout erstellen KiCad - Gehäuse auswählen und einbauen Christian Ostheimer Projekt

Messtechnik (Heiko Unold)

Signal	lgenerator weiterentwickeln	Zugangsbe spezieller I	erechtigung Karte	/ Türöffn	er und	mit
0	<u>Layout in KiCad – derzeit als nucleo-Aufsteck-platine</u>	μC gesteuerte	er Signalgener	ator vorhan	den (EI-V	<u>Viki)</u>
0	beliebige Kurvenformen laden (z.B. csv-Dateien)					
0	(Kurvenformen erzeugen aus FFT-Spektrum)					
	-					

neues update des Türschilds				
Pavel	Viktorin	3210734 Projekt		
		SW für Energieeinsparun Kommunikation wurde o		

Systemintegration E-Paper-Display als Parkplatzanzeige		ähnlich dem Türschild jedoch andere Nu zung				
0	passendes Gehäuse mit Befestigungsmöglichkeit vorsehen: in Gehäuse integrieren (Frontscheibe Glas, zweite Scheibe Kunststoff und entsprechend Größe des Displays ausfräsen s.o.) hier ist die Spannungsversorgung noch anzupassen Display mit HS-MOSFET abschaltbar machen (Staub-)Abdeckung 3D-drucken		emplate Parkj eits erstellt	platzbelegung	(Kennzei-	
	, 8-	Simon	Schindler	Matrikel ??	VMCB	
		Martin	Brandl	Matrikel ??	VMCB	

TIVA	boosterpack mit e-INK-Anzeige	Aufsteckplatine mit e-ink
0 0 0	Aufsteckplatine mit e-ink-Display über SPI anschließen boost-Wandler für spez. Spannungen am e-ink Layout in KiCad	TIVA launchpad bietet verschiedene Energiesparmodi (sleep, deep sleep), die man anstoßen können sollte Mit einere e-Ink-Anzeige könnte man diese Energiesparmodi gut kombinieren.
0	(ggf. Montagerahmen in 3D-Druck zur Befestigung konstruieren so, dass evtl. Drehencoder (Tasten) für Menü angebracht werden können)	Ellergiesparmour gut komonneren.
0	für Test des 10-poligen Wannenstecker mit SPI am PLACE nutzen	
Schaltur	ngsempfehlung von Fa. electronic assembly	

Florian

Huber

VMCM

Taktsignal-Generator für DCF77	Quelle für F	Quelle für Funkuhren im Labor				
ESP32 oder Raspberry nutzenLayout + Gehäuse		für Raspberry gibt es youtube-Video: radio controller for clocks)				
11.	•					
Hinweis: https://www.youtube.com/watch?v=JdV4x925au0&feato	ure=youtu.be					
		leiner	VMCB			

Welcomeboard / Uhr Vorarbeit erfolgt – ein größeres Modul aufbauen (16x16)-Modul aufbauen mit 1"-OLED (128*64) mit SPI Lukas Bauer hat bereits drei solcher Module Schaltplan erweitern (Bustreiber vorsehen) betrieben – auf größere Display aufbohren Layout mit KiCad erstellen ESP32-Board steuert weitere Funktionen (für eine Uhr) erstellen: Weckerfunktion (blinken/piepsen) ergänzen Farbeinstellung (Helligkeit, Farbe, Offset) dimmen Energiesparmodus (nachts) Abdeckrahmen 3D drucken Module die wir schon vorausgewählt haben: http://www.alibaba.com/product-detail/128X64-I2C-IIC-Serial-white-OLED_60721824737.html?spm=a2700.7724838.2017115.243.2bae3e05SBbVSo Andere Optionen: http://www.alibaba.com/product-detail/0-96-inch-OLED-128x64-OLED 60717668245.html?spm=a2700.7724838.2017115.190.2bae3e05SBbVSo $\frac{\text{http://www.alibaba.com/product-detail/128x64-monochrome-oled-display-cheap-0 60688609197.html?spm=a2700.7724838.2017115.50.2bae3e05SBbVSo}{\text{1}}$

Bühne

 Vorgängerversion funktioniert prinzipiell passendes Gehäuse (Meterware) 		_		belgebunden sowie LEDs ansteuern
0	RGBw-LEDs in einem Gehäuse auswählen			
0	geeigneten Optikaufsatz suchen			
0	kabelgebunden Ansteuerung + Menü anpassen			
0	ESP32 für WLAN-Anbindung optional			
		Florian	Herbold	VMCM

Sehbehinderten-Projekt

VORINFORMATION zu Ausgabesystem für Sehbehinderte

- o EI-WIKI und google: Ultraschall Handschuh
- o Sensoren in geeigneten Handschuh
- o Vibrationsmotoren als Ausgabesystem
- o systematischer Test (mit sehbehinderten Person)
- o Piepsen nur im Notfall -- andere Sinne nutzen

Datenhandschuh

Aufgabe in Stichpunkten

- Sensoren in Betrieb nehmen
- Layout für Platinenmontage der Sensoren
- Anzeige ggf. an einem LED-Balken (-streifen) (für Nichtsehbehinderte)
- vers. Objektgrößen ausprobieren

Bis 40 cm mal zum Ausprobieren: https://www.sparkfun.com/products/12785

ToF (time of flight) Bautsteine der Fa. ST angekündigt

- Reichweite 10 bis 40 cm

http://www.st.com/web/catalog/mmc/FM132/CL2136/SC1934/PF260441?sc=vl6180x

http://www.st.com/content/ccc/resource/technical/document/da-

 $\frac{tasheet/group3/b2/1e/33/77/c6/92/47/6b/DM00279086/files/DM00279086.pdf}{ons/en.DM00279086.pdf}$

 Reichweite 100 bis 200 cm lt. Messeaussage erst ab Mai 2016 lieferbar – http://www.st.com/web/en/catalog/mmc/FM132/SC1934/PF263309?sc=VL53L0X

andere Quelle

http://www.all-electronics.de/von-m18-auf-m8-per-time-of-flight/

Handschuhe bei: proglove

Array aus ToF-Sensoren (für Handschuh) ausprobieren

- Sensor-Array so aktuell, dass man nur Entwicklungsmuster bekommt
- Sensordaten über serielle Schnittstelle (I2C, SPI) abholen
- o darstellen
- o mitloggen

ToF-Sensorarray

Time_off_flight Sensoren messen Pixel für Pixel die Distanz (ToF-Kameras liefern zusätzlich noch ein s/w-Kamerabild)

Idealerweise wären diese Sensor-Arrays dafür geeignet die bisherige Sensorik auf dem Handschuh (2x Ultraschall, 2x ToF-Einzelsensor, Lagesensor) zu ersetzen

Viktoria	Eder	VMCM	
Tobias	Bretzendorfer	VMCM	

Ausgabesystem für Sehbehinderte über Jacke Vibrationsjacke konzipieren Handschuh liefert Distanzinformationen (2 Kanäle Anbringen der Vibrationsaktoren an OTH-Jacke links/rechts) (Taschen einnähen) – Jacke muss waschbar bleiben Wiedergabe über Vibrationsmotoren in einer Ja-0 USB-powerbank vorsehen Jacke muss waschbar bleiben (Aktoren muss man 0 rausnehmen können) USB-Powerbank zur Energieversorgung 0 Bluetooth Funkanbindung Thema zurück gestellt wegen Brustgurt

Ausgabesystem für Blindenstock	NORD-Anzeige an einem Blindenstock Vibration, Schall					
 Kompass IC auswählen Daten auslesen und anzeigen: optisch für den Tester, akustisch bzw. Vibration für den Anwender 	Anbringen der Aktoren zur Vibration an Blindenstock					

O O	Ultraschallsensor für > 50 kHz auswählen Vibrationsmotor ansteuern Gehäuse auswählen oder 3D-drucken, dann erst Platine erstellen optische LED-Ausgabe für Tester	nicht hör Vorgänger	all-Sensorii baren – Be projekt vorha erät mit Gehä	reich aufb	auen	n

Pfützenerkennung	für Sehhilfe-Projekt
o ggf. mit Wärme oder spez. Funk-, Radar-Sensor	wer immer dafür eine Idee hat - melden

Busnummern-Erkennung	für Sehhilfe-Projekt
o ggf. mit Kamera und vorlesen	Sehbehinderte Personen haben in Busbahnhöfen das Problem am richtigen Bushaltestelle zu stehen, aber nicht zu erkennen ob der einfahrende Bus die richtige Nummer hat

BeagleBoneBlack BBB

Modellboot mit BBB oder Raspberry	Modellboot auf dem OTH-Teich fahren lassen			l	
 Vorarbeit vorhanden 					
0					
0					

FPGA

FPGA-Evalutionboard in Betrieb nehmen	FPGA-C	Cortex M3			
Cortex M3 auf FPGA-Entwicklungsumgebung zum Laufen gebracht					
	Florian	Abeltshauser	XXXX	Projekt	

FPGA-Board für (parallele) Motoransteuerung der kleinen Fräse o MachineKit nutzen o Motortreiber einpassen	FPGA Motorsteuerung fertige Motortreiber (RAMPS-Board) aus 3D- Druckern nutzen

LINUX-CNC – MachineKit mit BeagleBoneBlack BBB

werkzeugwechsler für kleine Fräs- nine konstruieren und in Linux-CNC nden Werkzeugwechsler (mit Höhenjustierung) anpassen für kleine Fräsmaschine mechanische Konstruktion Ansteuerung in Linux-CNC einbinden	richtung – tischer Wei	se – ohne (bedienen z rkzeugwec	en Öffnen der Sich u können, soll hsler installier t ein Wechsler	ein autom t werden	a-

CNC-	Fräsmaschine mit Zynq board ansteuern	moderne	Ansteuer-H	IW (FPGA	A) benutz	zen
0 0	FPGA-boards auswählen (paralleles) Ansteuern der Fräsmotoren für kleine Fräsmaschine in Gehäuse integrieren Ansteuerung in machinekit/Linux-CNC einbinden					
		Felix	Lindmeier		VMCB	
		•		•		

CNC benutzen	Fräsmaschine	e für Auss	tellungss	tücke	
 Anleitung schreiben 	benutzen				
o was Schönes fräsen:					
"Es ist"-Uhr – Holzrahmen Fräsdaten erstellen					
http://www.lisaboyer.com/Claytonsite/zinniapage1.htm					
https://www.youtube.com/watch?v=lxyQ3PFbK9Y					
https://www.youtube.com/watch?v=lxyQ3PFbK9Y					
	<u>.</u>				

CNC Themen auf Anfrage	Fräsmaschine				
			•		•

Weitere Themen

Sandmaler_3	neuen Sandmaler entwerfen
 Sandmaler_1+ 2 vorhanden HW verwenden wie in 3D-Druckern innenliegend drehbar App zur Bedienung 	Bauteile und Ansatz verwenden wie in 3D-Druckern (RAMPS-Board)

Bedieneinheit (App-/Webanwendung oder touch) für Sandmaler	vorhandene wählen	e Muster für d	len Sandma	aler au	IS-
 WLAN-Anbindung (USB-Stick an BBB) verschiedene Muster für Sandmaler vorhanden ordnen/systematisieren, Bilder/Videos aufnehmen auswählen neue Muster erstellen (Simulator-Tool wieder aktivieren) 					
,	Sebastian	Friedrich	7	/MCB	
Zwischenpräsentation 25.4.19, wird wohl erst nach den Prüfungen weitermachen wahrscheinlich alter Eintrag					
	Florian	Dobler			

Demo entwi	onstrator für neuronale Netze weiter- ckeln	Weiterar	beit - Ergänz	zungen		
0 0 0	0 9 sowie 0 9, A F 0x hex zusätzlicher Knoten für Ausgabe bei Fehlmustern 7-Segment-Beschriftung ergänzen (A, B,) 3D-Druck bias/offset-Anzeige (1"-OLED) im Knoten Ansteuerung per TIVA (PLACE) Datensätze erstellen und neurale Netze trainieren ggf. CAD-Daten fürs Fräsen deer Holzplatte (OTH-Schreinerei) unnötige Knoten ausblenden	Ausgabe:	7-Segmentanzei binär codiert ator vorhanden -		RGB-LE	Ds
				I		L

useless box bauen	für "Tage der offenen Tür" u.ä.			
 verschiedene Implementierungen vergleichen aussuchen, aufbauen und ggf. kaufen (mit μC) 	Es gibt bereits eine größere Anzahl an Implementierungen – wir brauchen etwas Ansprechendes.			
https://9gag.com/gag/aDg476d?ref=9g.wsa.mw				

Laser-	-Schießstand für die Vereinsjugend	Raspberry F	PI + Kamer	a + Bea	mer	
0	Bild an die Wand werfen					
0	mit Laser draufzielen und					
0	mit Kamera erkennen					
		Michael	Böhm		VMCB	

Rasph	perry Cluster	19"-Rechner Cluster aufbauen
0 0 0 0 0	mehrere (10 20) Raspberry 4 oder 3B+ zu einem Cluster verschalten Ethernet-Switches 19"-Gehäuse oder anreihbar Hutschienen- Gehäuse (Fischer) Spanungsversorgung auslegen Linux MPI message passing interface	Student Cluster – wäre der Einstieg mal einen eigenen leistungsfähigen Rechner - auch - mit mehreren Studenten aufzubauen
auch m	it mehreren Studenten	
http://w	ww.isc-hpc.com/	

Zwischenvortrag	xx.xx.2020 (Raum wie im Stundenplan)
Endvortrag	xx.xx.2020	(Raum wie im Stundenplan)

Solid state	Kurs von Matthias Hausladen	Freitag nachmittag
KiCad	Kurs von Jürgen Bachl	lt. elearning-Ankündigung

<u>Teilnehmer</u> VMC_B: xxxx VMC_M: xxxx

vom letzten Semester