Pomiary rezystancji w układach mostkowych prądu stałego

Pomiary laboratoryjnym mostkiem Wheatstone'a (mostkiem zestawionym online z rezystorów nastawnych)

Nr	Ustawier	nia przy rezys	zenia (10)x 1 Ω)/	/0,75A	75A Wyniki pomiarów w układzie mostka Wheatstone'a						
pom.	R_{xt}	R_3	R_4	R_3/R_4	U_{zas}	I_{zas}	R _{2.1}	U _M (R _{2.1})	R _{2.2}	U _M (R _{2.2})	U	I _A
-	Ω	Ω	Ω	-	V	mA	Ω	μV	Ω	μV	V	mA
1	31	1x 1	1x 1 000	0,001		30						
2		1x 10	1x 10 000			8						
3			1x 1 000	0,01	2	30						
4				0,1		75						
5		1x 100	1x 100	1								
6		1x 10	1x 10			300						
7		1x 1 000	1x 10	-		30						
8		1x 10 000	1x 100			8						
9	1,02 M											
10		10x 10 000	1x 1 000		20							
11	197	1x 10	1x 1 000	0,01	2	25						
12					20							
13												

Pomiary rezystancji w układach mostkowych prądu stałego

	Wyniki obliczeń dla mostka Wheatstone'a											
Nr pom.	R_{xt}	ΔU _M (ΔR ₂)	R _{2.0}	R _x	I	S _{ΔR2} (0)	S ₀	$\Delta_n R_2 (1 \mu V)$	$\delta_{nRx}^{\%}$	δ _{sgRx}	δ _{gRx}	Ι Δ _g R _x Ι
-	Ω	μV	Ω	Ω	mA	μV/Ω	-	Ω	%	%	%	Ω
1												
2												
3												

Uzas – ustalona wartość progu ograniczenia napięcia zasilającego układ mostka rezystancyjnego,

I_{zas} – ustalona wartość progu ograniczenia prądu zasilającego układ mostka rezystancyjnego,

U = U_{AB} – zmierzona wartość napięcia na przekątnej zasilania mostka w stanie jego równowagi,

IA - wartość prądu zasilającego mostek zmierzona w stanie jego równowagi,

I – wartość prądu zasilającego mostek obliczona dla stanu jego równowagi,

R_{xt} - wartość rezystancji podana przez producenta elementu lub wyznaczona metodą techniczną, czy też zmierzona multimetrem technicznym lub mostkiem technicznym o odczycie analogowym,

Zgodnie z ilustracją "Proces równoważenia mostka R_DC" wyznacza się wartość rezystancji równoważącej $R_{r.0} = R_{2.0}$ mostek rezystancyjny w stanie jego równowagi poprzez aproksymację charakterystyki równoważenia

$$U_{M}(R_{r}) = U_{M}(R_{2}).$$

Wartość rezystancji mierzonej mostkiem jest wyznaczona z warunku równowagi

$$R_x = k_{34} \cdot R_{2.0}$$

gdzie $k_{34} = R3/R4$ jest współczynnikiem jako ilorazem wartości rezystancji dzielnika napięciowego.

Zmiana napięcia niezrównoważenia mostka o założonej wartości ok. $50-100\mu V$ lub powyżej wywołana zmianą rezystancji równoważącej R_2 o wartość $\Delta R_2 = (R_{2.2} - R_{2.1})$ w bezpośrednim otoczeniu jego stanu równowagi $(R_{2.0}, 0)$

$$\Delta U_{M} = \Delta U_{M} (\Delta R_{2}) = U_{M} (R_{2.2}) - U_{M} (R_{2.1}) = [U_{M} (R_{2.1} + \Delta R_{2}) - U_{M} (R_{2.1})].$$

Pomiary rezystancji w układach mostkowych prądu stałego

Czułość napięciowa bezwzględna mostka w stanie jego równowagi ($R_{2.0}$,0) określona nachyleniem charakterystyki równoważenia $S_{\Delta R2}(0) = \Delta U_{M}/\Delta R_{2}$

jest wyrażona w $\mu V/\Omega$.

Czułość napięciowa względna mostka w stanie jego równowagi (R2.0,0)

$$S_0 = [\Delta U_M/U)]/[(\Delta R_2/R_{2.0})] = (R_{2.0}/U) \cdot S_{\Delta R_2}(0).$$

Zakładając progową, zauważalną i zarazem rozróżnialną zmianę napięcia niezrównoważenia U_M czyli wartość napięcia nieczułości $\Delta_n U_M = 10 \cdot \Delta_r U_M = 1 \mu V$ przy użyciu cyfrowego wskaźnika zera o rozdzielczości $\Delta_r U_M = 0.1 \mu V$ do pomiaru tego napięcia wyznacza się wartość bezwzględnej zmiany rezystancji równoważącej mostek

$$\Delta_{\rm n}R_2 (1 \,\mu{\rm V}) = [1\mu{\rm V}]/[S_{\Delta R2} (0)]$$

wywołującej zmianę napięcia niezrównoważenia równą napięciu nieczułości $\Delta_n U_M = 1 \mu V$.

W badaniach mostka zakłada się liniowość czułości napięciowej

$$S_{\Delta R2}(0) = \Delta U_M/\Delta R = \Delta_n U_M/\Delta_n R_2 = [1 \mu V]/[\Delta_n R_2(1 \mu V)]$$

w bezpośrednim otoczeniu jego stanu równowagi (R2.0,0).

wartości względnego błędu nieczułości mostka

$$\delta_{nRx}^{\%} = \delta_{nR2}^{\%} = [\Delta_n R_2]/[R_{2.0}] \cdot 100\% = [\Delta_n U_M/\Delta U_M)] \cdot [(\Delta R_2/R_{2.0})] \cdot 100\%$$

przy założonej wartości napięcia nieczułości $\Delta_n U_M = 1 \mu V$, zwykle jest wyrażona w %.

Przedział wartości względnego systematycznego granicznego błędu pomiaru rezystancji Rx

$$\delta_{\text{sgRx}}^{\%} = \pm (|\delta_{\text{R2}}^{\%}| + |\delta_{\text{R3}}^{\%}| + |\delta_{\text{R4}}^{\%}|),$$

gdzie | $\delta_{R2}^{\%}$ | , | $\delta_{R3}^{\%}$ | , | $\delta_{R4}^{\%}$ | są wartościami względnymi błędów (tolerancji) wykonania rezystorów R_2 , R_3 , R_4 , zwykle wyrażonymi jako moduły w %.

Przedział wartości względnego granicznego błędu pomiaru rezystancji Rx

$$\delta_{\text{gRx}}^{\%} = \pm (|\delta_{\text{sgRx}}^{\%}| + |\delta_{\text{nRx}}^{\%}|),$$

zwykle wyrażonego w %.

W analizie błędów pomija się błąd nieczułości jeżeli jest on co najmniej 10-krotnie mniejszy niż błąd systematyczny graniczny

$$|\delta_{nRx}^{\%}| < 0.1 \cdot |\delta_{sgRx}^{\%}|$$
).

Przedział wartości bezwzględnego granicznego błędu pomiaru rezystancji R_x

$$\Delta_{\rm g} R_{\rm x} = \pm (|\delta_{\rm gRx}^{\%}|/100\%) \cdot R_{\rm x} = \pm |\Delta_{\rm g} R_{\rm x}|,$$

wyrażonego w Ω, przy czym jego moduł

$$|\Delta_{g}R_{x}| = (|\delta_{gRx}^{\%}|/100\%) \cdot R_{x}$$
.