Inference 2, 2023, lecture 2

Rolf Larsson

November 6, 2023

Today

Chap. 3. Inference Principles:

- 3.1 Likelihood function
- 3.2 Score function
 - Fisher information

Example 1: Poisson distribution

- Suppose that $\mathbf{X} = (X_1, X_2, X_3)$ where each X_i is Poisson with parameter λ .
- The X_i are independent.
- We observe $x_1 = 1, x_2 = 2, x_3 = 3$.
- The probability to obtain these observations is (why?)

$$P(X_1 = 1, X_2 = 2, X_3 = 3) = \frac{\lambda^6}{12} \exp(-3\lambda).$$

Figure: Probability of Poisson sample.

Figure: Log probability of Poisson sample.

Definition (3.1)

For a fixed observation \mathbf{x} of a random variable \mathbf{X} with probability function $p(\cdot; \theta)$, the **likelihood function** $L(\cdot; \mathbf{x}) : \Theta \to \mathcal{R}_+$ is defined by

$$L(\theta; \mathbf{x}) = p(\mathbf{x}; \theta).$$

If $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent, then

$$L(\theta; \mathbf{x}) = P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P_{i,\theta}(x_i)$$

in the discrete case and

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f_i(x_i; \theta)$$

in the continuous case.

6/20

- Suppose $\mathbf{X} = (X_1, ..., X_n)$, where the X_i are independent.
- We observe $\mathbf{x} = (x_1, ..., x_n)$.
- Write down the likelihood function if
 - **1** X_i is Exponential with intensity β .
 - ② X_i is Uniform on the interval $[0, \theta]$.

Definition

The **maximum likelihood principle** says that the likelihood should be large(st) at the parameter which fits best to the data.

Figure: Likelihood function for a Poisson sample 1,2,3.

Example 1: Poisson distribution

- Suppose that $\mathbf{X} = (X_1, X_2, X_3)$ where each X_i is Poisson with parameter λ .
- The X_i are independent.
- We observe $x_1 = 1, x_2 = 2, x_3 = 3$.
- Calculate the maximum likelihood estimate (MLE) of λ .

Lemma (3.1)

Define the log likelihood $I(\theta; \mathbf{X}) = \log\{L(\theta; \mathbf{X})\}$. Let $\theta = \theta_0$ be the true (underlying) parameter value. Then,

$$\mathrm{E}_{\theta_0}\{I(\theta;\mathbf{X})\} \leq \mathrm{E}_{\theta_0}\{I(\theta_0;\mathbf{X})\}$$

for all $\theta_0, \theta \in \Theta$.

Suppose the following regularity conditions are satisfied (2-3 are stated only in the scalar case):

 $\P \ \ \, \text{The distributions} \,\, \{P:\theta\in\Theta\} \,\, \text{have common support, so that the set}$

$$\mathcal{A} = \{\mathbf{x} : p(\mathbf{x}; \theta) > 0\}$$

is independent of θ .

- ② The parameter space Θ is an open interval (finite or infinite).
- **3** For any $\mathbf{x} \in \mathcal{A}$ and all $\theta \in \Theta$, the derivative $\partial p(\mathbf{x}; \theta)/\partial \theta$ exists and is finite.

The regularity conditions imply that

$$\frac{\partial}{\partial \theta} \int_{\mathcal{A}} f(\mathbf{x}; \theta) d\mathbf{x} = \int_{\mathcal{A}} \frac{\partial}{\partial \theta} f(\mathbf{x}; \theta) d\mathbf{x}$$

in the continuous case, and similarly in the discrete case.

Do the regularity conditions hold for

- the exponential distribution?
- 2 the uniform distribution?

Definition (3.2)

Suppose regularity conditions 1-3 are satisfied. For every $\mathbf{x} \in \mathcal{A}$, we define the **score function** as the derivative of the log-likelihood function, i.e.

$$V(\theta; \mathbf{x}) = l'(\theta; \mathbf{x}) = \frac{\partial}{\partial \theta} \log\{L(\theta; \mathbf{x})\}.$$

Theorem (3.1)

Suppose regularity conditions 1-3 are satisfied. We have

$$\mathrm{E}_{\theta}\{V(\theta;\mathbf{X})\}=0$$

for all $\theta \in \Theta$.

- Suppose $\mathbf{X} = (X_1, ..., X_n)$, where the X_i are independent.
- We observe $\mathbf{x} = (x_1, ..., x_n)$.
- Calculate the score function and verify that it has expectation 0 when the X_i have the following distributions:
 - **1** Exponential with intensity β .
 - 2 $N(\mu, \sigma^2)$ with known σ^2 .

Definition (3.3)

Suppose regularity conditions 1-3 are satisfied.

The Fisher information is defined by

$$I_{\mathbf{X}}(\theta) = \operatorname{Var}_{\theta} \{ V(\theta; \mathbf{X}) \}.$$

Regularity condition 4: For all $\mathbf{x} \in \mathcal{A}$ and all $\theta \in \Theta$ the log-likelihood is twice differentiable and for all $\theta \in \Theta$,

$$\frac{\partial^2}{\partial \theta^2} \int_{\mathcal{A}} f(\mathbf{x}; \theta) d\mathbf{x} = \int_{\mathcal{A}} \frac{\partial^2}{\partial \theta^2} f(\mathbf{x}; \theta) d\mathbf{x}$$

in the continuous case, and similarly in the discrete case.

The score function is the derivative of log L w.r.t. θ .

If (minus) this derivative changes quickly w.r.t. θ , then the "information" contained in the sample is high.

Theorem (3.1)

Suppose regularity conditions 1-4 are satisfied. Then

$$I_{\mathbf{X}}(\theta) = -\mathrm{E}_{\theta}\{I''(\theta; \mathbf{X})\} = -\mathrm{E}_{\theta}\left[\frac{\partial^2}{\partial \theta^2}\log\{p(\mathbf{X}; \theta)\}\right].$$

Figure: Log likelihood function for a Poisson sample 1,2,3.

Figure: Log likelihood function for a Poisson sample 1,2,3,1,2,3,1,2,3,1,2,3.

- Suppose $\mathbf{X} = (X_1, ..., X_n)$, where the X_i are independent.
- We observe $\mathbf{x} = (x_1, ..., x_n)$.
- Calculate the Fisher information and verify theorem 3.1 by direct calculation when the X_i have the following distributions:
 - **1** Exponential with intensity β .
 - **2** $N(\mu, \sigma^2)$ with known σ^2 .

News of today

- Likelihood
- MLE
- Score function (derivative of log likelihood)
- Fisher information
 - the variance of the score
 - minus the expected second derivative of the log likelihood