2012年数据仓库与知识发现试题

- 1. 数据仓库及其实现技术。(25分)
 - a) 简述数据仓库在知识发现过程 中的作用和地位。
 - b) 为何 B 树等在数据库中广泛使用的索引技术无法被直接引入数据仓库?
 - c) 试采用 BITMAP 索引方式对图 1 中的维度表进行索引。

ID	SKU	TYPE	PRICE
01	BK-6573	воок	High
02	CD-7189	CD	Low
03	SW-8761	SOFTWARE	High
04	BK-7651	воок	Middle
05	CD-3413	CD	Middle
06	BK-9861	воок	Free
07	CD-6573	CD	Free
08	SW-9871	SOFTWARE	Middle
09	CD-7123	CD	Low
10	BK-7123	воок	High

图 1 产品维度表

2. 关联 (25分)

图 1 产品维度表

- 2. 关联 (25分)
- a) 针对图 2 的交易事务数据,采用 Apriori 算法求取频繁项集,

假设最小支持度为≥30%

事务ID	购买项				
1	{a, b, d, e}				
2	{b, c, d}				
3	{a, b, d, e}				
4	{a, c, d, e}				
5	{b, c, d, e}				
6	{b, d, e}				
7	{c, d}				
8	{a, b, c}				
9	{a, d, e}				
10	{b, d}				
田文文目本在學坦					

图 2 交易事务数据

b) 基于上述频繁项集,构造关联规则,要求最小置信度≥50%

- 3. 数据预处理与分类(25分)
 - a) 针对图 3 中训练数据集进行离散化处理。要求采用等宽分桶的方式将 age 和 incoming 属性离散到 3 个区间。
 - b) 依据训练集,采用信息 增益作为指标构造决 策树。
 - c) 采用构造出的决策树, 分类未知元组(24, 75000, yes)。

66-21+1

4. 聚类 (25分)

ID	age	income	student	Class:buys_MP	
1 23		68000	no	>2000	
2 49		36000	nq	10002000	
3	55	22000	no.	10002000 -	
4	34	30000	yes	<1000	
5 38		15000	yes	<1000 ↔	
6	57	75000	no.	>2000	4
7	21 ,	52000	no,	10002000.	
8 31		45000	yes	10002000 •	
9	66 _	58000	no-	10002000	
10	34	12000	yes	<1000 _	
11	40	40000	yes	10002000	
12	50	78000	no.	>2000	
13	29	20000	yes	10002000_	1
14	25	70000	no ·	<1000 .	
15	61	55000	no ,	>2000	
16	45	65000	no '	>2000	

图 3 训练数据集

	16	45	65000	no '	>2000
				训练数据集	
6		66	3 46		bb

	1	ID 1		X		У	
	1			3		5	
		2		2		6	
		3	100	3		8	19.5
		4		3		4	
		5 6 7 8		7		7	
				4		5	
	0			9		1	
1				4		10	
	9		T	1	1	6	
	10		1	6	8		
	11		1.	5		2	
12		4	1		2		
m		7000	-	-	-		

图 4 聚类数据集

- a) 针对下图的数据,采用曼哈顿距离作为距离函数,给出对应的相异矩阵。
- b) 采用 K-平均点方法对该数据集进行聚类,其中 K=3,起始中心点 ID=1, ID=2, ID=3,即,(3,5);(2,6);(3,8)。


```
0336312900413456
072985413456
07298543
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
07498
(2) 10=1 (3,5) (2,6), (3,8)
      第一次编码: (900, 800 (3.3) (3.4) (4.5) (9.1) (5,2) (4.2) K) (46667,3,1667)
                          (2,6)(1,6) K2(15,6.0)
                           (4,8) (7,7) (4,60) (6,8) K3(5.0,8.25)
                       (3,4) (4,5) (9,1) (5,2) (4,2) KI(50,228) (861)
               (3,5) (7,6) (1,6) K2(2,5,6667)
                       (3,3) (7,7) (4,10) (6,8) K3(5,0,8,25)
         =: (9,1) (5,2) (4,2) K1(6.0,1.0667)
              (3,5) (2,6) (3,4) (4,5) (1,6) k2(2,6,5,2)
              (3,8) (7,7) (4,10) (6,18) (5,8,25)
```

三次省面山