#### **CAPSTONE PROJECT**

# POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

#### **Presented By:**

 Vinitha Enagandula-Jyothishmathi Institute Of Technology and Science-Computer Science and Engineering



#### **OUTLINE**

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References



# PROBLEM STATEMENT

The objective of this project is to design a machine learning model to detect and classify faults in a power distribution system using voltage and current phasor data. The model should accurately distinguish between normal conditions and fault types such as line-to-ground, line-to-line, and three-phase faults. This will enable rapid and reliable fault identification, essential for maintaining power grid stability and operational safety.



## PROPOSED SOLUTION

- To address the challenge of rapid and accurate fault identification in power distribution systems, we propose a supervised machine learning-based solution that leverages electrical measurement data (voltage and current phasors) to detect and classify various types of faults.
- Data Collection:
  - Simulate voltage and current phasor data under normal and fault conditions using tools like MATLAB/Simulink.
  - Label each dataset with the corresponding fault type (e.g., LG, LL, LLL) for training the machine learning model.
- Data Preprocessing:
- Filter and normalize the voltage and current signals to remove noise and scale features consistently.
- Segment and extract features (e.g., RMS values, phase differences) from time-series data for model input.
- Machine Learning Algorithm:
  - Train supervised learning models like Random Forest, SVM, or XGBoost on extracted features for fault classification.
  - Use CNN or LSTM architectures if working with raw time-series data to capture spatial and temporal patterns of faults.
  - Deployment:
  - Integrate the trained model into a real-time monitoring system using edge devices or cloud services for on-site fault detection.
  - Connect the system to SCADA or protection relays to trigger automatic alarms or control actions when faults are identified.
  - Evaluation:
  - Assess model performance using accuracy, precision, recall, F1-score, and confusion matrix on a separate test dataset.
  - Measure inference time and robustness under noisy or varied operating conditions to ensure suitability for real-time deployment.

Result:



# SYSTEM APPROACH

- Use phasor measurement data acquisition, followed by preprocessing and feature extraction to prepare inputs for the machine learning model.
- Deploy the trained model in a **real-time fault monitoring system** that classifies faults and interfaces with grid control systems for automated response.



## **ALGORITHM & DEPLOYMENT**

- This solution uses machine learning (ML) techniques for classification and is aimed at real-world deployment readiness.
- Algorithm Selection:
  - Suitable for structured tabular data like RMS voltages, currents, and fault indicators.
  - Offers high accuracy with fast inference ideal for real-time fault classification at substations.
  - Data Input:
  - Time-series measurements of voltage and current phasors (magnitude and phase angle) from sensors or PMUs.
  - Extracted features like RMS values, sequence components, and rate of change for accurate fault characterization...
- Training Process:
  - Preprocess raw voltage/current data to extract features (RMS, angles, sequence components) and label each instance (e.g., Normal, LG, LL, LLG, 3-Phase).
  - Prediction Process:
  - Real-time voltage and current phasor data are fed into the system from sensors or PMUs.



# **RESULT**





## CONCLUSION

The implementation of a machine learning-based fault detection and classification system significantly enhances the reliability and responsiveness of power distribution networks. By analyzing real-time electrical measurements such as voltage and current phasors, the model accurately identifies fault types—including line-to-ground, line-to-line, and three-phase faults. This intelligent prediction process ensures faster fault localization, reduces downtime, and supports efficient maintenance, thereby contributing to a more stable and resilient power grid.



#### **FUTURE SCOPE**

The proposed fault detection and classification system holds significant potential for future enhancements. One promising direction is its integration into smart grid infrastructures, enabling automated fault isolation and system self-healing capabilities. Real-time deployment on edge devices at substations can further reduce latency and support immediate decision-making, even in remote areas.



## REFERENCES

The concepts and methodologies used in this project are inspired by various research works on fault detection in power systems, including studies on machine learning applications for real-time classification, use of phasor measurement units (PMUs), and smart grid integration strategies as outlined in recent IEEE publications and academic journals.



#### **IBM CERTIFICATIONS**

IBM SkillsBuild

Completion Certificate



This certificate is presented to

Vinitha Enagandula

for the completion of

#### **Getting Started with Artificial Intelligence**

(PLAN-E624C2604060)

According to the Your Learning Builder - Plans system of record

Completion date: 20 Jul 2025 (GMT)



#### **IBM CERTIFICATIONS**





#### **IBM CERTIFICATIONS**

IBM SkillsBuild

Completion Certificate



This certificate is presented to

Vinitha Enagandula

for the completion of

## Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE\_3824998)

According to the Adobe Learning Manager system of record

Completion date: 04 Aug 2025 (GMT) Learning hours: 20 mins



### **THANK YOU**

