Sequence (Lecture-7)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Cauchy sequence

Definition

A sequence $\{a_n\}$ is called a **Cauchy sequence** if for any given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon \text{ for all } n, m \ge N.$$

Example

Show that the sequence $\{\frac{1}{n}\}$ is a Cauchy sequence.

Solution: Let $\epsilon > 0$ be given, we choose a natural number N such that $N > 2/\epsilon$. Then if $m, n \ge N$, we have $\frac{1}{n} \le \frac{1}{N} < \frac{\epsilon}{2}$ and similarly $\frac{1}{m} < \frac{\epsilon}{2}$. Therefore, it follows that if $m, n \ge N$, then

$$\left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since, $\epsilon > 0$ is arbitrary, we conclude that $\{\frac{1}{n}\}$ is a Cauchy sequence.

Cauchy sequence

Theorem

Every convergent sequence is a Cauchy sequence.

Proof: Let $\{a_n\}$ be a sequence such that $\{a_n\}$ converges to L (say). Let $\epsilon > 0$ be given. Then there exists $N \in \mathbb{N}$ such that

$$|a_n-L|<\frac{\epsilon}{2}\ \forall\ n\geq N.$$

Now, for $n, m \ge N$, we have

$$|a_n - a_m| \le |a_n - L| + |a_m - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\{a_n\}$ is a Cauchy sequence.

Theorem

If $\{a_n\}$ is a Cauchy sequence, then $\{a_n\}$ is bounded.

Theorem

If $\{a_n\}$ is a Cauchy sequence, then $\{a_n\}$ is convergent.

Cauchy's criterion for convergence

A sequence $\{a_n\}$ converges if and only if for every $\epsilon > 0$, there exists N such that

$$|a_n - a_m| < \epsilon, \ \forall \ m, n \ge N.$$

Theorem

Let $\{a_n\}$ be a sequence such that $|a_{n+2} - a_{n+1}| < \alpha |a_{n+1} - a_n|$ for all $n \ge N$ for some N and $0 < \alpha < 1$. Then $\{a_n\}$ is a Cauchy sequence.

Definition

We say that a sequence of real numbers $\{a_n\}$ is **contractive** if there exists a constant α , $0 < \alpha < 1$ such that $|a_{n+2} - a_{n+1}| \le \alpha |a_{n+1} - a_n|$ for all $n \in \mathbb{N}$. The number α is called the constant of the contractive sequence.

• Every contractive sequence is a Cauchy sequence, and therefore is convergent.

Cauchy sequence

Example

Let $\{a_n\}$ be defined as $a_1 = 1$, $a_{n+1} = 1 + \frac{1}{a_n}$. The show that $\{a_n\}$ is a Cauchy sequence and hence convergent sequence.

Solution: Note that $a_n > 1$ and $a_n a_{n+1} = a_n + 1 > 2$. Then

$$|a_{n+2} - a_{n+1}| = \left| \frac{a_{n+1} - a_n}{a_n a_{n+1}} \right| \le \frac{1}{2} |a_{n+1} - a_n|, \ \forall \ n \ge 1.$$

Hence $\{a_n\}$ is a contractive sequence. Thus $\{a_n\}$ is a Cauchy sequence and hence convergent sequence.

Theorem

For any sequence $\{a_n\}$ with $a_n > 0$

$$\lim_{n\to\infty} a_n^{1/n} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$$

provided the limit on the right side exists.

Result

Let
$$a_n > 0$$
 and $\lim_{n \to \infty} \frac{a_{n+1}}{n} = L$.

- (i) If L < 1, then $\lim_{n \to \infty} a_n = 0$.
- (ii) If L > 1, then $a_n \to \infty$.

Remark

If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L = 1$, we cannot make any conclusion. For example, consider the sequence $\{n\}, \{\frac{1}{n}\}$ and $\{\frac{2+n}{n}\}$.

Examples

- (i) Let $a_n = \frac{n}{2^n}$. Then $a_n \to 0$ as $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$.
- (ii) Let $a_n = ny^{n-1}$ for some $y \in (0, 1)$. Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = y$, $a_n \to 0$.
- (iii) Let $a_n = \frac{n^{\alpha}}{(1+p)^n}$ for some $\alpha > 0$ and p > 0. Then $a_n \to 0$.
- (iv) $\lim_{n\to\infty} n^{\alpha} x^n = 0$, if |x| < 1 and $\alpha \in \mathbb{R}$.

Hint: If $x \neq 0$, take $a_n = n^{\alpha} x^n$, then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} (1 + \frac{1}{n})^{\alpha} |x| = |x|$.

Limit superior and limit inferior

Definition

Let $\{a_n\}$ be a bounded sequence. Then limit superior of the sequence $\{a_n\}$, denoted by $\limsup_{n\to\infty} a_n$, is defined as

$$\limsup_{n\to\infty} a_n := \lim_{k\to\infty} \left(\sup_{n\geq k} a_n \right).$$

Similarly limit inferior of the sequence $\{a_n\}$, denoted by $\liminf_{n\to\infty} a_n$, is defined as

$$\liminf_{n\to\infty} a_n := \lim_{k\to\infty} \left(\inf_{n\geq k} a_n\right).$$

Examples

Consider the sequence $\{a_n\} = \{0, 1, 0, 1, \ldots\}$. Then $\beta_n = \sup\{a_m : m \ge n\} = 1$ and $\alpha_n = \inf\{a_m : m \ge n\} = 0$. Therefore, $\liminf a_n = 0$, $\limsup a_n = 1$.

Limit superior and limit inferior

Theorem

- (i) If $\{a_n\}$ is a bounded sequence, then $\limsup_{n\to\infty} a_n \ge \liminf_{n\to\infty} a_n$.
- (ii) If $\{a_n\}$ and $\{b_n\}$ are bounded sequences of real numbers and if $a_n \leq b_n$ for all $n \in \mathbb{N}$, then

$$\limsup_{n\to\infty} a_n \le \limsup_{n\to\infty} b_n \quad \text{and} \quad \liminf_{n\to\infty} a_n \le \liminf_{n\to\infty} b_n.$$

(iii) Let $\{a_n\}$ and $\{b_n\}$ are bounded sequences of real numbers. Then

$$\limsup_{n\to\infty}(a_n+b_n)\leq \limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n\quad\text{and}\quad \liminf_{n\to\infty}(a_n+b_n)\geq \liminf_{n\to\infty}a_n+\liminf_{n\to\infty}b_n.$$

Example

Consider the sequences $\{(-1)^n\}$ and $\{(-1)^{n+1}\}$. Here $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$. Also $\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} b_n = 1$. But $a_n + b_n = 0$ for all $n \in \mathbb{N}$ and hence $\limsup_{n \to \infty} (a_n + b_n) = 0$.

Thus a strict inequality may hold in (iii) the above theorem.

Limit superior and limit inferior

Theorem

If $\{a_n\}$ is a bounded sequence, then there exists subsequences $\{a_{n_k}\}$ and $\{b_{n_k}\}$ such that

 $\limsup a_n = \lim a_{n_k} \text{ and } \liminf a_n = \lim b_{n_k}.$

Theorem

If $\{a_n\}$ is a convergent sequence, then $\liminf_{n\to\infty} a_n = \lim_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$.

Theorem

If $\{a_n\}$ is a bounded sequence and if $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = L, L \in \mathbb{R}$, then $\{a_n\}$ is a convergent sequence.

