Project #2 **Functional Decomposition**

Manoj Kumar Gummadi

Email: gummadm@oregonstate.edu

Student Id: 934565108

1. What your own-choice quantity was and how it fits into the simulation

In this simulation, we're focusing on pests. These critters play a big role in the ecosystem by munching on the available grain. As they're big fans of grains, their numbers go up when there's plenty of grain to eat, but they decline when grain is scarce. Each pest chows down a set amount of grain, which can either reduce or increase the overall grain supply, and that, in turn, affects the population of other creatures like deer.

2. A table showing values for temperature, precipitation, number of deer, height of the grain, and your own-choice quantity as a function of month number.

Number of Pests	Number of Deers	Grain Height	Precipitation	-
	3	18.7301	17.9808	-0.732422
	4	19.5187	28.1362	10.5389
	5	21.2847	27.8987	9.55711
	6	7.82964	34.3224	20.4187
	5	0	28.7536	22.1179
	4	0	16.9957	29.9655
	3	0	14.1374	21.3265
	2	0	2.00191	25.314
	1	0	0	17.1359
	0	0.27208	4.9569	11.763
	0	12.8126	11.3769	8.68745
	1	26.8418	14.1092	8.66934
	2	49.4276	20.871	6.53326
	3	47.3325	31.2202	12.2579
	4	57.56	34.8993	7.65162
	5	46.0144	35.1058	19.9051
	6	31.411	25.9862	21.9161
	7	14.139	24.2985	28.7621
	6	0	9.49409	27.9716
	5	0	10.9123	24.8749
	4	0	2.41323	15.9059
	3	0	2.83305	15.6408
	2	7.2641	4.71674	4.7852
	2	22.2703	10.4473	3.25932
	3	47.3584	25.7646	4.67324
	4	64.8758	32.6676	2.8162
	5	56.6418	30.6621	12.8608
	6	42.7271	30.1247	18.3644
	7	26.0901	24.2256	28.3875
	8	6.53211	19.4596	25.0008
	7	0	14.1378	30.886
	6	0	11.484	23.0173
	5	0	5.71627	13.4323
	4	0	6.38991	15.6821
	3	2.11061	2.08491	3.53621
	2	16.9768	17.577	6.917
	3	39.2126		6.26242
	4		24.1244	
		33.7533	32.5042	13.2483
	5	32.0946	30.987	10.5278
	6	18.777	36.0159	19.4437
	7	2.77504	26.2126	27.2069
	6	0	21.3984	26.7026
	5	0	10.5674	23.9238
	4	0	7.73171	19.5647
	3	0	0	21.7914
	2	0	3.04385	13.0626
	1	0	9.52634	12.7584
	0	24.4706	17.8055	5.42953
	1	52.0201	25.1995	6.21026
	2	78.2586	30.7378	4.50716
	3	91.5836	30.2105	8.13524
	4	83.1976	27.6938	17.479
	5	72.0216	25.9138	28.2778
	6	57.9247	25.6562	24.2607
	7	41.0344	15.6781	22.4029
	8	21.0961	7.00106	22.1648
	8	21.0301	3.94511	14.515
	7	0		16.5195
			3.97479 7.57414	
	6	2 61056		12.7589
	5	2.61856	18.746	0.91362
	4	16.7195	18.0853	3.80934
	5	24.1784	26.0379	8.41991
	6	13.8243	37.1854	12.2801
	5	0	30.6643	15.0953
	4	0	24.7637	24.8486
	3	0	22.9602	27.9687
	2	0	11.2737	29.6555
	1	0	5.87913	23.1504
	0	0	0	15.1341
	0	0.0718197	2.3125	17.1428
	0	22.3322	11.5502	3.72127
	1	43.2649	10.0885	3.82652

3. A graph showing temperature, precipitation, number of deer, height of the grain, and your own-choice quantity as a function of month number. Note: if you change the units to °C and centimeters, the quantities might fit better on the same set of axes.

4. A commentary about the patterns in the graph and why they turned out that way. What evidence in the curves proves that your own quantity is actually affecting the simulation correctly?

The graph patterns in the Deer-Grain-Pests simulation shed light on how the ecosystem functions. We can see clear cycles of population changes among deer, pests, and grain height. These patterns match what we'd expect based on how the simulation is set up.

For instance, when the grain height goes up, there's a noticeable increase in the number of pests. This is backed up by the fact that after the pest population peaks, we often see dips in grain height, indicating that pests are eating the grain. This suggests that pests are interacting with the grain just as we programmed them to in the simulation.

The behavior of the deer population also lines up with our expectations. When there's lots of grain, shown by high grain height peaks, the deer population goes up. This makes sense because more food means more deer. On the flip side, when grain height drops, so does the deer population, showing that deer rely heavily on the availability of their main food source.

Another interesting observation is the relatively low deer population throughout the simulation. This seems to be because of the competition for grain with pests. Even when grain is plentiful, the deer population doesn't boom like we might expect. This suggests

that the presence of pests, munching on the grain, limits how much food is available for the deer. So, the evidence in the graph supports the idea that the inclusion of pests is indeed affecting the simulation in the way we intended.