Open Information Extraction

Dominik Both, Tonio Weidler

Proseminar *Text Mining*Andrea Zielinski

Institut für Computerlinguistik, Universität Heidelberg, 15.07.2016

Strukturierung

- Introduction to Information Extraction
- OIE Principles
- 3 Example: LODifier
- 4 OIE Systems in Context
- 5 Conclusion

Introduction to Information Extraction

What is Information Extraction?

Information Extraction

Goal of Information Extraction is automatically extracting information from unseen text *Information:* entities, relations, events...

To make the dough for a good pizza, we start with putting 1kg of flour into the mixing bowl.

(1kg of flour, put into, mixing bowl)

Problems of Information Extraction

- Named Entity Recognition
- Relationship Extraction
- Coreference Resolution
- Comment Extraction
- many more..

OIE - Principles

Open Information Extraction

OIE - Principles Open Information Extraction

Open Information Extraction

Open Information Extraction

IE: Extractor for each target relation

Open: No pre-specified extractors

Unsupervised learning of relation phrases

Extraction of information on every given domain

Problems of Open Information Extraction

- Incoherent extractions:
 This guide contains dead links and omits sites contains omits
- Uninformative extractions:
 Faust made a deal with the devil (Faust, made, a deal)

OIE - Principles Methods

Text Runner and WOE

- 1. Label: Automatic sentence labeling by heuristics
- 2. Learn: A relation phrase extractor is learned
- 3. Extract: Identifying NP pairs and searching relations words between

Problems

- Large number of labeled training examples required
- Alternative heuristic labeling leads to huge noise and stacked uncertainty
- Ignores both holistic and lexical aspects

Syntactic constraint

- Limits relations to those matching a certain POS Tag pattern:
- V | V P | VW* P
- Always choses longest possible match
- Merge ajacent matches together

$$V \mid VP \mid VW^*P$$
 $V = \text{verb particle? adv?}$
 $W = (\text{noun} \mid \text{adj} \mid \text{adv} \mid \text{pron} \mid \text{det})$
 $P = (\text{prep} \mid \text{particle} \mid \text{inf. marker})$

Lexical constraint

- Only assume relations that appear in the corpus for a certain amount
- The Obama administration is offering only modest greenhouse gas reduction targets at the conference

Limitations of those constraints

- In a set of 300 hand-annotated sentences 85% relations fell into those constraints
- Model is not complete and has its flaws

	Binary Verbal Relation Phrases			
85%	Satisfy Constraints			
8%	Non-Contiguous Phrase Structure			
	Coordination: X is produced and maintained by Y			
	Multiple Args: X was founded in 1995 by Y			
	Phrasal Verbs: X turned Y off			
4%	Relation Phrase Not Between Arguments			
	Intro. Phrases: Discovered by Y, X			
	Relative Clauses:the Y that X discovered			
3%	Do Not Match POS Pattern			
	Interrupting Modifiers: X has a lot of faith in Y			
	Infinitives: X to attack Y			

ReVerb Extraction Algorithm

- Relation Extraction: Find the longest possible string of words that match the relation constraints, merge adjacents
- Argument Extraction: Find the nearest NP left and right to the relation that is not a relativ pronoun, WHO-adverb or existential-there.
- How is the lexical constraint being checked? By creating a list of relational phrases by applying this algorithm on a 500 million Web sentences.

ReVerb Confidence Function

- The Algorithm has a high recall, but low precision
- Now the extracted relation is weighted by a confidence function:

ReVerb Confidence Function

Weight	Feature
1.16	(x, r, y) covers all words in s
0.50	The last preposition in r is for
0.49	The last preposition in r is on
0.46	The last preposition in r is of
0.43	$len(s) \le 10$ words
0.43	There is a WH-word to the left of r
0.42	r matches VW*P from Figure 1
0.39	The last preposition in r is to
0.25	The last preposition in r is in
0.23	$10 \text{ words} < len(s) \le 20 \text{ words}$
0.21	s begins with x
0.16	y is a proper noun
0.01	x is a proper noun
-0.30	There is an NP to the left of x in s
-0.43	20 words < len(s)
-0.61	r matches V from Figure 1
-0.65	There is a preposition to the left of x in s
-0.81	There is an NP to the right of u in s

Evaluation

Better results than TextRunner through lexical features, but still low recall.

Why?

Argument extraction is open to improvements

Why?

Evaluating the evaluation:

Evaluating the evaluation.							
REVERB - Incorrect Extractions			REVERB - Missed Extractions				
65%	Correct relation phrase, incorrect arguments	5	52%	Could not identify correct arguments			
16%	N-ary relation	2	23%	Relation filtered out by lexical constraint			
8%	Non-contiguous relation phrase	1	17%	Identified a more specific relation			
2%	Imperative verb		8%	POS/chunking error			
2%	Overspecified relation phrase						
7%	Other, including POS/chunking errors						

OIE - Principles Data Representation

Standard Patterns

Argument A is in a directed relation to Argument B.

Unnormalized Annotation

```
(argument_a, predicate_x, argument_b)
(argument_a, predicate_y, argument_c)
(argument_a, predicate_y, argument_d)
```

Problems

- redundant
- unnormalized
- can only produce binary predicates

RDF and Linked Data

Resource Description Framework

Models propositions by constructing *triples* including **Subjects**, **Objects** and **Predicates**Generates a directed graph

RDF Concepts and Notation

- URIs identifies ressources (S, R, O) distinctivly and references further informations (triples)
- Conclusions
 allows to draw conclusions using rules
- Turtle allows syntax abbreviations
- Queries can be searched by querying (eg SPARQL)

Vocabularies & Ontologies

Several vocabularies provide useful relations and functionality, eg.:

- RDF (rdf:type, ...)
- RDFS (rdfs:subClassOf, rdfs:domain, rdfs:range, ...)
- OWL (owl:sameAs, owl:SymmetricProperty, ...)
- FOAF

Ontologies are huge RDF Graphs containing many triples, eg.:

- DBpedia
- Wikidata
- WordNet

RDF Syntax

... as Graph

Example: LODifier

LODifier: Generating Linked Data from Unstructured Text (Augenstein et al., 2012

Generate an RDF Graph from unstructured Text

Past Approaches: Use Patterns to trade recall for precision LODifier: Process the entire text

Example: LODifier Architecture

Architecture

Approach

- Parse the input text (POS, Treetagging, NER)
- Apply Deep Semantic Analysis to get relations
- 3 Enrich NEs and words with URIs (DBpedia and WordNet)
- 4 Forge an RDF Graph of this information

How does it happen?

Lets go through the process step-by-step!

Example Text:

The New York Times reported that John McCarthy died. He invented the programming language LISP.

example taken from Augenstein et al., 2012

Preprocessing

Example: LODifier Preprocessing

Named Entity Recognition - Wikifier

Wikifier

Recognizes NE and replaces them with the Wikipedia Page Link Disambiguates by comparing links between pages.

Example Text Output:

[The New York Times] reported that [John McCarthy (computer scientist)|John McCarthy] died. He invented the [Programming language|programming language] [Lisp (programming language)|LISP].

Parsing Syntax - C&C

C&C Parser

Syntactical Parser that tags POS and builds Parse Trees (CCG).

Parsing - Output

```
ccg(1, rp(s:dcl,
    ba(s:dcl.
     lx(np. n.
        t(n, 'The_New_York_Times', 'The_New_York_Times', 'NNS', 'I-NP', '0')),
     fa(s:dcl\np.
        t((s:dcl\np)/s:em, 'reported', 'report', 'VBD', 'I-VP', 'O'),
        fa(s:em.
          t(s:em/s:dcl, 'that', 'that', 'IN', 'I-SBAR', '0'),
          ba(s:dcl.
           lx(np, n,
             t(n, 'John_McCarthy', 'John_McCarthy', 'NNP', 'I-NP', 'I-PER')),
           t(s:dcl\np, 'died', 'die', 'VBD', 'I-VP', '0'))))),
    t(period, '.', '.', '.', '0', '0'))).
ccg(2, rp(s:dcl,
    ba(s:dcl.
      t(np, 'He', 'he', 'PRP', 'I-NP', 'O'),
     fa(s:dcl\np,
        t((s:dcl\np)/np, 'invented', 'invent', 'VBD', 'I-VP', '0'),
       fa(np:nb.
          t(np:nb/n, 'the', 'the', 'DT', 'I-NP', '0'),
         fa(n.
            t(n/n, 'programming_language', 'programming_language', 'NN', 'I-NP', '0'),
            t(n, 'LISP', 'LISP', 'NNP', 'I-NP', '0')))),
    t(period, '.', '.', '.', '0', '0'))).
```

Find Relations - Boxer

Boxer

Creates DRSs from C&C Output

Find Relations - Boxer

Boxer

Creates DRSs from C&C Output

Discours Representation Structure (DRS)

Represents the discourse via *relations* between *entities* Allows referencing over the entire discourse

Find Relations - Boxer

Boxer

Creates DRSs from C&C Output

Discours Representation Structure (DRS)

Represents the discourse via *relations* between *entities* Allows referencing over the entire discourse

Boxers DRS Relations (Conditions):

- Unary Relations (Classes): eg. topic, person, event, male, ... + all verbs
- Binary Relations: agent, patient, ... (semantic roles)

Boxer Output

Assign WordNet URIs

RDF WordNet

WN: Lexicography containing senses linked by semantic relations RDF WN: LD Representation of WN providing URIs for words

Steps:

- 1 Lemmatization
- WSD (UKB)
- Assign RDF WN URIs to word senses

Preprocessing Result

We now have ...

- URIs for all NEs
- URIs for all (disambiguated) words
- Relations between entities (those URIs)

Example: LODifier RDF Construction

What now?

Let's now construct the RDF Graph from this information!

Namespaces/Vocabularies

LODifier introduces several namepaces:

- drsclass: contains Boxer classes (event, person, ...) and :named relation
- drsrel: contains Boxer relations (agent, patient, ...)
- ne: contains the named entity URIs
- reify: reification (embedding propositions into propositions)

Namespaces/Vocabularies

And uses standard namespaces:

- rdf: mainly for rdf:type and reification
- owl: for owl:sameAs

Namespaces/Vocabularies

Finally the two ontologies:

- wn30: contains all WordNet URIs
- dbpedia: contains the dbpedia URIs
- class: contains classes not in wn30 nor in dbpedia

RDF Construction Strategy

Create a blanknode :x for each discourse referent (x0, x1, ...)

RDF Construction Strategy

- Create a blanknode _:x for each discourse referent (x0, x1, ...)

RDF Construction Strategy

- Create a blanknode _:x for each discourse referent (x0, x1, ...)
- 2 if NE, then create :x drsclass:named ne:URI
- if NE and DBpedia URI exists create _:x owl:sameAs dbpedia:URI

RDF Construction Strategy

- 1 Create a blanknode _:x for each discourse referent (x0, x1, ...)
- if NE, then create :x drsclass:named ne:URI
- 3 if NE and DBpedia URI exists create
 - _:x owl:sameAs dbpedia:URI
- 4 via rdf:type assign closed classes (event, person, ...) :x rdf:type drsclass:CLOSEDCLASS

RDF Construction Strategy II

via rdf:type assign open classes (die, programming_language,
...)
:x rdf:type wn30:OPENCLASS, class:OPENCLASS

RDF Construction Strategy II

RDF Construction Strategy II

- via rdf:type assign open classes (die, programming_language,
 ...)
 - _:x rdf:type wn30:OPENCLASS, class:OPENCLASS
- recursive reification of embedded propositions (eg. by report or says)

RDF Construction: Output

```
_:var0x0 drsclass:named ne:john_mccarthy ;
         rdf:type drsclass:male . foaf:Person :
         owl:sameAs dbpedia:John_McCarthy_(computer_scientist) .
_:var0x1 rdf:type class:programming_language ;
         owl:sameAs dbpedia:Programming language .
:var0x2 drsrel:nn :var0x1 .
_:var0x2 drsclass:named ne:lisp ;
         owl:sameAs dbpedia:Lisp_(programming_language) .
_:var0x3 drsclass:named ne:the_new_york_times ;
        owl:sameAs dbpedia:The_New_York_Times .
_:var0x4 rdf:type drsclass:event , wn30:wordsense-invent-verb-2 .
         drsrel:agent _:var0x0 ; drsrel:patient _:var0x2 .
_:var0x5 rdf:type drsclass:event , wn30:wordsense-report-verb-3 ;
        drsrel:agent _:var0x3 ; drsrel:theme _:var0x6 .
_:var0x6 rdf:type drsclass:proposition , reify:proposition , reify:conjunction ;
        reifv:conjunct [ rdf:subject :var0x7 :
                          rdf:predicate rdf:type ;
                          rdf:object drsclass:event . ]
        reify:conjunct [ rdf:subject _:var0x7 ;
                          rdf:predicate rdf:type ;
                          rdf:object wn30:wordsense-die-verb-1 . ]
         reifv:conjunct [ rdf:subject :var0x7 :
                          rdf:predicate drsrel:agent ;
                          rdf:object _:var0x0 . ]
```

RDF Construction: Output as Graph

Experiments

Example: LODifier Experiments

Experiments

Method

■ TDT-2 benchmark dataset: 84.000 news documents

Experiments

Accuracy

Table 1. Accuracy on Story Link Detection Task

Model	normal	extended
Similarity measures without structural	knowledge	
Random Baseline	50.0	_
Bag of Words	63.0	_
Bag of URIs (Variant 1)	61.6	75.1
Bag of URIs (Variant 2)	70.6	76.0
Bag of URIs (Variant 3)	73.4	76.4
Similarity measures with structural kno	wledge	
proSim _{cnt} (k=6, Variant 1)	79.0	78.9
proSim _{cnt} (k=6, Variant 2)	80.3	80.3
proSim _{ent} (k=6, Variant 3)	81.6	81.6
proSim _{cnt} (k=8, Variant 1)	77.7	77.6
proSim _{ent} (k=8, Variant 2)	79.2	79.0
proSim _{ent} (k=8, Variant 3)	82.1	81.9
proSim _{len} (k=6, Variant 3)	81.5	81.4
proSim _{len} (k=8, Variant 3)	80.3	80.1
proSim _{len} (k=10, Variant 3)	80.0	79.8
proSim _{sqlen} (k=6, Variant 3)	80.4	80.4
proSim _{solen} (k=8, Variant 3)	81.1	80.9
proSim _{solen} (k=10, Variant 3)	80.5	80.4

Precision - Recall

•000

Conclusions

Example: LODifier Conclusions

0000

Conclusions

What to draw from this?

0000

Conclusions

What we liked

- full-text OIE
- relations arent overspecified
- TO BE EXTENDED

0000

What we didnt like

- Redundant processes like NER
- BlankNode Massacre
- confusing boxer relations not simplified for RDF (will be hard to search through)
- TO BE EXTENDED
- Paper scraches only the surface of the system
- Some points are unclear / not even described

OIE Systems in Context

Comparison

OIE Systems in Context Comparison

Evaluating the Approaches

OIE Systems in Context Evaluating the Approaches

Conclusion

Problems and Obstacles

Conclusion Problems and Obstacles

Future Opportunities

Future Opportunities