Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Elementos de Teoria dos Grafos

Fazer um passeio . . .

Será possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes por uma delas?

Fazer um passeio . . .

Será possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes por uma delas? Veremos porque a resposta é "Não"... a

^aLeonhard Euler (1707 – 1783), matemático suíço.

Índice

- 1 Conceitos fundamentais de teoria dos grafos
- Grafos simples
- Vizinhança e grau
- 4 Representação de grafos em computador
- 5 Grafos isomorfos e subgrafos

Definição (grafo não orientado)

Designa-se por grafo (não orientado) um terno $G=(V,E,\psi)$ onde

Definição (grafo não orientado)

Designa-se por grafo (não orientado) um terno $G = (V, E, \psi)$ onde

• V é um conjunto (os elementos de V chamamos vértices);

Definição (grafo não orientado)

Designa-se por grafo (não orientado) um terno $G = (V, E, \psi)$ onde

- V é um conjunto (os elementos de V chamamos vértices);
- E é um conjunto (os elementos de E chamamos arestas);

E é tipicamente disjunto de V.

$$V = \{1, 2, 3\}, E = \{a, b, c, d\},\$$

Definição (grafo não orientado)

Designa-se por grafo (não orientado) um terno $G = (V, E, \psi)$ onde

- *V* é um conjunto (os elementos de *V* chamamos vértices);
- E é um conjunto (os elementos de E chamamos arestas);
- ullet ψ é uma função

$$\psi \colon E \longrightarrow \{A \subseteq V \mid 1 \le |A| \le 2\}$$

(a função de incidência do grafo). Para $a \in E$ com $\psi(a) = \{u, v\}$, u e v dizem-se os pontos extremos de a.

E é tipicamente disjunto de V.

Definição (grafo orientado)

Designa-se por grafo orientado (ou digrafo) um terno

$$\overrightarrow{G} = (V, E, \psi)$$
 onde

Definição (grafo orientado)

Designa-se por grafo orientado (ou digrafo) um terno

$$\overrightarrow{G} = (V, E, \psi)$$
 onde

ullet V é um conjunto (os elementos de V chamamos vértices);

Definição (grafo orientado)

Designa-se por grafo orientado (ou digrafo) um terno

$$\overrightarrow{G} = (V, E, \psi)$$
 onde

- V é um conjunto (os elementos de V chamamos vértices);
- *E* é um conjunto (os elementos de *E* chamamos arcos);

E é tipicamente disjunto de V.

$$V = \{1, 2, 3\}, E = \{a, b, c, d\},\$$

Definição (grafo orientado)

Designa-se por grafo orientado (ou digrafo) um terno

$$\overrightarrow{G} = (V, E, \psi)$$
 onde

- V é um conjunto (os elementos de V chamamos vértices);
- *E* é um conjunto (os elementos de *E* chamamos arcos);
- ψ é uma função $\psi \colon E \longrightarrow V \times V$ (a função de incidência do grafo). Para $a \in E$ com $\psi(a) = (u, v)$, u diz-se cauda de a e v diz-se cabeça de a.

E é tipicamente disjunto de V.

$$V = \{1, 2, 3\}, E = \{a, b, c, d\},\$$

$$\psi(a) = (3,1), \ \psi(b) = (1,2), \psi(c) = (3,3), \ \psi(d) = (1,2).$$

Grafos orientados vs. não-orientados

A cada grafo orientado $\overrightarrow{G}=(V,E,\psi)$ podemos associar um grafo não orientado $G=(V,E,\widehat{\psi})$ onde

$$\widehat{\psi}(a) = \{u,v\}$$
 precisamente quando $\psi(a) = (u,v)$

(ou seja, esquecemos a direção dos arcos). Desde modo, vários conceitos de grafos aplicam-se igualmente aos digrafos.

Definição

• Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.

Definição

- Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.
- Arestas com os mesmos vértices extremos designam-se por arestas paralelas, e arcos com a mesma cauda e a mesma cabeça designam-se por arcos paralelos.
 - paralelas:

não paralelas:

Definição

- Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.
- Arestas com os mesmos vértices extremos designam-se por arestas paralelas, e arcos com a mesma cauda e a mesma cabeça designam-se por arcos paralelos.
- Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes.

Definição

- Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.
- Arestas com os mesmos vértices extremos designam-se por arestas paralelas, e arcos com a mesma cauda e a mesma cabeça designam-se por arcos paralelos.
- Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes.
- Uma aresta (um arco) diz-se incidente nos seus vértices extremos.
 - $u \stackrel{a}{\longrightarrow} v$ a arresta a é incidente nos vértices u e v.

Definição de la constant de la const

- Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.
- Arestas com os mesmos vértices extremos designam-se por arestas paralelas, e arcos com a mesma cauda e a mesma cabeça designam-se por arcos paralelos.
- Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes.
- Uma aresta (um arco) diz-se incidente nos seus vértices extremos.
- Os vértices u e v dizem-se adjacentes se existe uma aresta (um arco) com pontos extremos u e v.
 - u a = v os vértices $u \in v$ são adjacentes.

Definição

- Uma aresta (um arco) com os pontos extremos iguais diz-se lacete.
- Arestas com os mesmos vértices extremos designam-se por arestas paralelas, e arcos com a mesma cauda e a mesma cabeça designam-se por arcos paralelos.
- Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes.
- Uma aresta (um arco) diz-se incidente nos seus vértices extremos.
- Os vértices u e v dizem-se adjacentes se existe uma aresta (um arco) com pontos extremos u e v.
- Arestas (arcos) incidentes num mesmo vértice dizem-se adjacentes.

as arrestas a e b são adjacentes.

Definição

Um grafo $G = (V, E, \psi)$ (respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$) diz-se finito quando os conjuntos V e E são finitos.

Definição

Um grafo $G=(V,E,\psi)$ (respetivamente digrafo $\overrightarrow{G}=(V,E,\psi)$) diz-se finito quando os conjuntos V e E são finitos.

Exemplo

Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V|=1 e $E=\varnothing$.

Definição

Um grafo $G = (V, E, \psi)$ (respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$) diz-se finito quando os conjuntos V e E são finitos.

Exemplo

Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V|=1 e $E=\varnothing$.

No que se segue, consideramos tipicamente grafos finitos.

Definição

Um grafo $G = (V, E, \psi)$ (respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$) diz-se finito quando os conjuntos V e E são finitos.

Exemplo

Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V|=1 e $E=\varnothing$.

No que se segue, consideramos tipicamente grafos finitos.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

Definição

Um grafo $G = (V, E, \psi)$ (respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$) diz-se finito quando os conjuntos V e E são finitos.

Exemplo

Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V|=1 e $E=\varnothing$.

No que se segue, consideramos tipicamente grafos finitos.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

• ordem de G: $\nu(G) = |V|$ (o número de vértices).

Definição

Um grafo $G = (V, E, \psi)$ (respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$) diz-se finito quando os conjuntos V e E são finitos.

Exemplo

Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V|=1 e $E=\varnothing$.

No que se segue, consideramos tipicamente grafos finitos.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- ordem de G: $\nu(G) = |V|$ (o número de vértices).
- dimensão de G: $\epsilon(G) = |E|$ (o número de arestas).

Definição

Um grafo $G = (V, E, \psi)$ (respetivamente digrafo $\overrightarrow{G} = (V, E, \psi)$) diz-se finito quando os conjuntos V e E são finitos.

Exemplo

Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V|=1 e $E=\varnothing$.

No que se segue, consideramos tipicamente grafos finitos.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- ordem de G: $\nu(G) = |V|$ (o número de vértices).
- dimensão de G: $\epsilon(G) = |E|$ (o número de arestas).

(E da forma igual para digrafos.)

Simplificar a notação

Recordamos:

Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes. (Di)Grafos não simples denota-se também por multi(di)grafo.

Simplificar a notação

Recordamos:

Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes. (Di)Grafos não simples denota-se também por multi(di)grafo.

Nota

Num grafo (respetivamente digrafo) simples, cada aresta (arco) a é completamente determinada(o) pelos vértices extremos u e v (cauda u e cabeça v). Neste caso escrevemos da forma mais sugestivo uv em lugar de a.

Simplificar a notação

Recordamos:

Um grafo (respetivamente digrafo) diz-se simples quando não contém arestas (arcos) paralelas(os) nem lacetes. (Di)Grafos não simples denota-se também por multi(di)grafo.

Nota

Num grafo (respetivamente digrafo) simples, cada aresta (arco) a é completamente determinada(o) pelos vértices extremos u e v (cauda u e cabeça v). Neste caso escrevemos da forma mais sugestivo uv em lugar de a.

Com esta notação, o (di)grafo (V, E, ψ) é completamente determinado por (V, E) (ou seja, podemos "dispensar" ψ).

Grafos simples complementares

Definição

Seja G=(V,E) um grafo simples. O grafo complementar de G é o grafo $G^{\complement}=(V,E^{\complement})$ com o mesmo conjunto de vértices e com

$$uv \in E^{\complement} \iff uv \notin E.$$

Grafos simples complementares

Definição

Seja G=(V,E) um grafo simples. O grafo complementar de G é o grafo $G^\complement=(V,E^\complement)$ com o mesmo conjunto de vértices e com

$$uv \in E^{\complement} \iff uv \notin E.$$

Nota

Portanto, $(G^{\complement})^{\complement} = G$.

Grafos simples complementares

Definição

Seja G=(V,E) um grafo simples. O grafo complementar de G é o grafo $G^{\complement}=(V,E^{\complement})$ com o mesmo conjunto de vértices e com

$$uv \in E^{\complement} \iff uv \notin E.$$

Nota

Portanto, $(G^{\complement})^{\complement} = G$.

O conceito de vizinhança

Definição

• Seja $G = (V, E, \psi)$ um grafo e $v \in V$.

O conceito de vizinhança

Definição

• Seja $G = (V, E, \psi)$ um grafo e $v \in V$. O conjunto de todos os vértices adjacentes a v designa-se por vizinhança de v e denota-se por $\mathcal{N}_G(v)$ (ou simplesmente $\mathcal{N}(v)$).

O conceito de vizinhança

Definição

- Seja $G = (V, E, \psi)$ um grafo e $v \in V$. O conjunto de todos os vértices adjacentes a v designa-se por vizinhança de v e denota-se por $\mathcal{N}_G(v)$ (ou simplesmente $\mathcal{N}(v)$).
- Seja $\overrightarrow{G} = (V, E, \psi)$ um digrafo e $v \in V$. A vizinhança de entrada de v é o conjunto $\mathcal{N}^-(v)$ de todos os vértices u tal que existe um $e \in E$ com $\psi(e) = (u, v)$, e a vizinhança de saída de v é o conjunto $\mathcal{N}^+(v)$ de todos os vértices u tal que existe um $e \in E$ com $\psi(e) = (v, u)$.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

• Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

• O menor grau dos vértices do grafo G denota-se por $\delta(G)$:

$$\delta(G) = \min\{d(v) \mid v \in V\}.$$

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

• O menor grau dos vértices do grafo G denota-se por $\delta(G)$:

$$\delta(G) = \min\{d(v) \mid v \in V\}.$$

Nota

No caso de um digrafo $\overrightarrow{G} = (V, E, \psi)$, consideramos ainda

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

• O menor grau dos vértices do grafo G denota-se por $\delta(G)$:

$$\delta(G) = \min\{d(v) \mid v \in V\}.$$

Nota

No caso de um digrafo $\overrightarrow{G} = (V, E, \psi)$, consideramos ainda

• o semigrau de entrada: $d^-(v) = |\{e \mid \exists u \in V \ \psi(e) = (u, v)\}|$. Ou seja, $d^-(v)$ é o número de arcos com "cabeça em v".

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

• O menor grau dos vértices do grafo G denota-se por $\delta(G)$:

$$\delta(G) = \min\{d(v) \mid v \in V\}.$$

Nota

No caso de um digrafo $\overrightarrow{G} = (V, E, \psi)$, consideramos ainda

- o semigrau de entrada: $d^-(v) = |\{e \mid \exists u \in V \ \psi(e) = (u, v)\}|.$
- o semigrau de saida: $d^+(v) = |\{e \mid \exists u \in V \ \psi(e) = (v, u)\}|.$

Ou seja, $d^+(v)$ é o número de arcos com "cauda em v".

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- Seja $v \in V$. O grau de v é o número d(v) de arestas incidentes em v (onde cada lacete conta duas vezes).
- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$:

$$\Delta(G) = \max\{d(v) \mid v \in V\}.$$

• O menor grau dos vértices do grafo G denota-se por $\delta(G)$:

$$\delta(G) = \min\{d(v) \mid v \in V\}.$$

Nota

No caso de um digrafo $\overrightarrow{G} = (V, E, \psi)$, consideramos ainda

- o semigrau de entrada: $d^-(v) = |\{e \mid \exists u \in V \ \psi(e) = (u, v)\}|.$
- o semigrau de saida: $d^+(v) = |\{e \mid \exists u \in V \ \psi(e) = (v, u)\}|.$
- Nota: $d(v) = d^{-}(v) + d^{+}(v)$.

A matriz de incidência

Seja $G=(V,E,\psi)$ um grafo (finito). A matriz de incidência (aresta-vértice) de G é a matriz do tipo $\nu \times \epsilon$ definida por

$$V \times E \longrightarrow \mathbb{R}, \quad (v, a) \longmapsto \begin{cases} 0 & \text{se } v \notin \psi(a), \\ 1 & \text{se } \psi(a) = \{u, v\} \text{ com } u \neq v, \\ 2 & \text{se } \psi(a) = \{v\}. \end{cases}$$

A matriz de incidência

Seja $G=(V,E,\psi)$ um grafo (finito). A matriz de incidência (aresta-vértice) de G é a matriz do tipo $\nu \times \epsilon$ definida por

$$V \times E \longrightarrow \mathbb{R}, \quad (v, a) \longmapsto \begin{cases} 0 & \text{se } v \notin \psi(a), \\ 1 & \text{se } \psi(a) = \{u, v\} \text{ com } u \neq v, \\ 2 & \text{se } \psi(a) = \{v\}. \end{cases}$$

	a	b	С
1	1	1	0
2	0	1	0
3	1	0	2

A matriz de incidência

Seja $G=(V,E,\psi)$ um grafo (finito). A matriz de incidência (aresta-vértice) de G é a matriz do tipo $\nu \times \epsilon$ definida por

$$V \times E \longrightarrow \mathbb{R}, \quad (v, a) \longmapsto \begin{cases} 0 & \text{se } v \notin \psi(a), \\ 1 & \text{se } \psi(a) = \{u, v\} \text{ com } u \neq v, \\ 2 & \text{se } \psi(a) = \{v\}. \end{cases}$$

Nota: Para cada $a \in E$, a soma sobre todos os elementos da "coluna a" é 2. Para cada $v \in V$, a soma sobre todos os elementos da "linha v" é o grau de v.

	а	b	С
1	1	1	0
2	0	1	0
3	1	0	2

A matriz de incidência

Seja $\overrightarrow{G}=(V,E,\psi)$ um digrafo (finito) sem lacetes. A matriz de incidência (aresta-vértice) de \overrightarrow{G} é a matriz do tipo $\nu \times \epsilon$ definida por

$$V imes E \longrightarrow \mathbb{R},$$

$$(v,a) \longmapsto \begin{cases} -1 & \text{se existe } u \in V \text{ com } (u,v) = \psi(a), \\ 1 & \text{se existe } u \in V \text{ com } (v,u) = \psi(a), \\ 0 & \text{nos outros casos.} \end{cases}$$

A matriz de incidência

Seja $\overrightarrow{G}=(V,E,\psi)$ um digrafo (finito) sem lacetes. A matriz de incidência (aresta-vértice) de \overrightarrow{G} é a matriz do tipo $\nu \times \epsilon$ definida por

$$V imes E \longrightarrow \mathbb{R},$$

$$(v,a) \longmapsto \begin{cases} -1 & \text{se existe } u \in V \text{ com } (u,v) = \psi(a), \\ 1 & \text{se existe } u \in V \text{ com } (v,u) = \psi(a), \\ 0 & \text{nos outros casos.} \end{cases}$$

Nota: Para cada $a \in E$, a soma sobre todos os elementos da "coluna a" é 0. Para cada $v \in V$, a soma sobre todos os elementos da "linha v" é igual a $d^+(v) - d^-(v)$.

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Demonstração.

Somamos de duas maneiras diferentes as entradas da matriz de incidência de G:

<u>Te</u>orema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Demonstração.

Somamos de duas maneiras diferentes as entradas da matriz de incidência de G:

• Para cada "linha v", a soma das entradas desta linha é igual ao d(v).

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Demonstração.

Somamos de duas maneiras diferentes as entradas da matriz de incidência de G:

 Para cada "linha v", a soma das entradas desta linha é igual ao d(v). Portanto, a soma de todas as entradas da matriz de incidência é igual à ∑_{v∈V} d(v).

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Demonstração.

Somamos de duas maneiras diferentes as entradas da matriz de incidência de G:

- Para cada "linha v", a soma das entradas desta linha é igual ao d(v). Portanto, a soma de todas as entradas da matriz de incidência é igual à ∑_{v∈V} d(v).
- Para cada "coluna a", a soma das entradas desta coluna é igual à 2.

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Demonstração.

Somamos de duas maneiras diferentes as entradas da matriz de incidência de G:

- Para cada "linha v", a soma das entradas desta linha é igual ao d(v). Portanto, a soma de todas as entradas da matriz de incidência é igual à $\sum_{v \in V} d(v)$.
- Para cada "coluna a", a soma das entradas desta coluna é igual à 2. Portanto, a soma de todas as entradas da matriz de incidência é igual à 2|E|.

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Corolário

O número de vértices de grau ímpar é par.

Teorema

Para todo o grafo $G=(V,E,\psi)$ finito, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V} d(v) = 2|E|.$$

Corolário

O número de vértices de grau ímpar é par.

Teorema

Para todo o digrafo $\overrightarrow{G} = (V, E, \psi)$ finito,

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |E|.$$

As matrizes de adjacência

• Seja $G=(V,E,\psi)$ um grafo (finito). A matriz de adjacência de G é a matriz do tipo $\nu \times \nu$ com entrada (u,v) igual a número de arestas entre u e v (cada lacete conta duas vezes).

	1	2	3
1	0	1	1
2	1	0	0
3	1	0	2

As matrizes de adjacência

• Seja $G = (V, E, \psi)$ um grafo (finito). A matriz de adjacência de G é a matriz do tipo $\nu \times \nu$ com entrada (u, v) igual a número de arestas entre u e v (cada lacete conta duas vezes).

Nota: Esta matriz é simétrica e a soma sobre os elementos da coluna u (ou linha u) é igual ao grau de u.

	1	2	3
1	0	1	1
2	1	0	0
3	1	0	2

As matrizes de adjacência

• Seja $G=(V,E,\psi)$ um grafo (finito). A matriz de adjacência de G é a matriz do tipo $\nu \times \nu$ com entrada (u,v) igual a número de arestas entre u e v (cada lacete conta duas vezes).

Nota: Esta matriz é simétrica e a soma sobre os elementos da coluna u (ou linha u) é igual ao grau de u.

• Seja $\overrightarrow{G} = (V, E, \psi)$ um digrafo (finito). A matriz de adjacência de \overrightarrow{G} é a matriz do tipo $\nu \times \nu$ definida por

$$V \times V \longmapsto \mathbb{R}, \quad (u, v) \longmapsto |\{a \in E \mid \psi(a) = (u, v)\}|.$$

	1	2	3
1	0	1	0
2	0	0	0
3	1	0	1

Representação de grafos em computador

Representação de grafos em computador

Utilizando matrizes

Pode-se representar um (bi)grafo pela

Representação de grafos em computador

Utilizando matrizes

Pode-se representar um (bi)grafo pela

ullet matriz de adjacência: utiliza u^2 células de memória.

Utilizando matrizes

Pode-se representar um (bi)grafo pela

- matriz de adjacência: utiliza ν^2 células de memória.
- matriz de incidência: utiliza $\nu \times \epsilon$ células de memória.

Utilizando matrizes

Pode-se representar um (bi)grafo pela

- matriz de adjacência: utiliza ν^2 células de memória.
- ullet matriz de incidência: utiliza $u imes \epsilon$ células de memória.

Utilizando listas

Pode-se representar um (bi)grafo

Utilizando matrizes

Pode-se representar um (bi)grafo pela

- matriz de adjacência: utiliza ν^2 células de memória.
- matriz de incidência: utiliza $\nu \times \epsilon$ células de memória.

Utilizando listas

Pode-se representar um (bi)grafo

• pela lista (uv, uw, \dots) das arestas. Esta representação utiliza ϵ células de memória. (Perde-se informação sobre vértices isolados.)

Utilizando matrizes

Pode-se representar um (bi)grafo pela

- matriz de adjacência: utiliza ν^2 células de memória.
- ullet matriz de incidência: utiliza $u imes \epsilon$ células de memória.

Utilizando listas

Pode-se representar um (bi)grafo

- pela lista (uv, uw, ...) das arestas. Esta representação utiliza ϵ células de memória. (Perde-se informação sobre vértices isolados.)
- com duas listas

$$F = (f_1, \ldots, f_{\epsilon})$$
 e $T = (t_1, \ldots, t_{\epsilon})$

(que representam as arestas entre f_i e t_i).

Utilizando listas

Pode-se representar um (bi)grafo

• pelas ν listas de sucessores (ou de adjacência), uma por cada vértice.

A cada vértice v faz-se corresponder a lista de todos os vértices que lhe são adjacentes (ou todos os vértices que são cabeça de um arco com cauda em v se o grafo é orientado), com eventual repetição no caso de multigrafos.

Grafos isomorfos e subgrafos

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

Nota

• Para cada grafo $G = (V, E, \psi)$, as identidades $\mathrm{id}_V \colon V \to V$ e $\mathrm{id}_E \colon E \to E$ definem um isomorfismo de G em G.

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

- Para cada grafo $G = (V, E, \psi)$, as identidades $\mathrm{id}_V \colon V \to V$ e $\mathrm{id}_E \colon E \to E$ definem um isomorfismo de G em G.
- Para cada isomorfismo de G em H, as funções $\varphi^{-1}\colon V_H\to V_G$ e $\theta^{-1}\colon E_H\to E_G$ definem um isomorfismo de H em G.

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

- Para cada grafo $G = (V, E, \psi)$, as identidades $\mathrm{id}_V \colon V \to V$ e $\mathrm{id}_E \colon E \to E$ definem um isomorfismo de G em G.
- Para cada isomorfismo de G em H, as funções $\varphi^{-1}\colon V_H\to V_G$ e $\theta^{-1}\colon E_H\to E_G$ definem um isomorfismo de H em G.
- As compostas de isomorfismos são isomorfismos.

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

- Para cada grafo $G = (V, E, \psi)$, as identidades $\mathrm{id}_V \colon V \to V$ e $\mathrm{id}_E \colon E \to E$ definem um isomorfismo de G em G.
- Para cada isomorfismo de G em H, as funções $\varphi^{-1} \colon V_H \to V_G$ e $\theta^{-1} \colon E_H \to E_G$ definem um isomorfismo de H em G.
- As compostas de isomorfismos são isomorfismos.
- TPC: Define homomorfismo de grafos e observe que os isomorfismos são os homomorfismos invertíveis.

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

Nota

No caso de grafos simples, e denotando as arestas da forma "uv", a função θ acima é completamente determinada por φ :

$$\theta(uv) = \varphi(u)\varphi(v).$$

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. Um isomorfismo de G em H é um par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ de funções bijetivas tais que, para todos os $e\in E_G$ e $u,v\in V_G$,

$$(\psi_G(e) = \{u, v\}) \iff (\psi_H(\theta(e)) = \{\varphi(u), \varphi(v)\}).$$

(No caso de digrafos, escreve-se (u, v) em lugar de $\{u, v\}$.)

Nota

No caso de grafos simples, e denotando as arestas da forma "uv", a função θ acima é completamente determinada por φ :

$$\theta(uv) = \varphi(u)\varphi(v).$$

Portanto, um isomorfismo entre grafos simples (V_G, E_G) e (V_H, E_H) é dado por uma função bijetiva $\varphi \colon V_G \to V_H$ tal que, para todos os $u, v \in V_G$: $uv \in E_G \iff \varphi(u)\varphi(v) \in E_H$.

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Intuitivamente, grafos isomorfos são "iguais a menos da etiquetação dos vértices e aresta".

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Nota

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Nota

Grafos isomorfos tem "as mesmas propriedades de grafos". Mais concretamente, sendo o par $\varphi\colon V_G\to V_H$ e $\theta\colon E_G\to E_H$ um isomorfismo entre os grafos $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ (finitos). Então:

• Os grafos têm a mesma ordem e a mesma dimensão: $\nu(G) = \nu(H)$ e $\epsilon(G) = \epsilon(H)$.

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Nota

- Os grafos têm a mesma ordem e a mesma dimensão: $\nu(G) = \nu(H)$ e $\epsilon(G) = \epsilon(H)$.
- G é simples se e só se H é simples.

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Nota

- Os grafos têm a mesma ordem e a mesma dimensão: $\nu(G) = \nu(H)$ e $\epsilon(G) = \epsilon(H)$.
- G é simples se e só se H é simples.
- Vértices correspondentes têm o mesmo grau: para cada $v \in V_G$, $d_G(v) = d_H(\varphi(v))$.

Definição

Dois (di)grafos dizem-se isomorfos quando existe um isomorfismo entre eles.

Nota

- Os grafos têm a mesma ordem e a mesma dimensão: $\nu(G) = \nu(H)$ e $\epsilon(G) = \epsilon(H)$.
- G é simples se e só se H é simples.
- Vértices correspondentes têm o mesmo grau: para cada $v \in V_G$, $d_G(v) = d_H(\varphi(v))$.
- Portanto: $\Delta(G) = \Delta(H)$ e $\delta(G) = \delta(H)$.

Um exemplo

Exemplo

Representação gráfica de todos os grafos simples não isomorfos, com 5 vértices e 5 arestas:

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. O grafo H diz-se subgrafo de G quando $V_H\subseteq V_G$, $E_H\subseteq E_G$ e ψ_H é a restrição de ψ_G ao conjunto E_H .

Definição

Sejam $G=(V_G,E_G,\psi_G)$ e $H=(V_H,E_H,\psi_H)$ grafos. O grafo H diz-se subgrafo de G quando $V_H\subseteq V_G$, $E_H\subseteq E_G$ e ψ_H é a restrição de ψ_G ao conjunto E_H . Neste caso também se diz que G é um supergrafo de H.

Definição

Sejam $G = (V_G, E_G, \psi_G)$ e $H = (V_H, E_H, \psi_H)$ grafos. O grafo H diz-se subgrafo de G quando $V_H \subseteq V_G$, $E_H \subseteq E_G$ e ψ_H é a restrição de ψ_G ao conjunto E_H . Neste caso também se diz que G é um supergrafo de H.

Nota

Cada grafo é subgrafo de si próprio.

Definição

Sejam $G = (V_G, E_G, \psi_G)$ e $H = (V_H, E_H, \psi_H)$ grafos. O grafo H diz-se subgrafo de G quando $V_H \subseteq V_G$, $E_H \subseteq E_G$ e ψ_H é a restrição de ψ_G ao conjunto E_H . Neste caso também se diz que G é um supergrafo de H.

Nota

Cada grafo é subgrafo de si próprio. Se H é um subgrafo de G e $H \neq G$, então diz-se que H é um subgrafo próprio de G.

Definição

Sejam $G = (V_G, E_G, \psi_G)$ e $H = (V_H, E_H, \psi_H)$ grafos. O grafo H diz-se subgrafo de G quando $V_H \subseteq V_G$, $E_H \subseteq E_G$ e ψ_H é a restrição de ψ_G ao conjunto E_H . Neste caso também se diz que G é um supergrafo de H.

Nota

Cada grafo é subgrafo de si próprio. Se H é um subgrafo de G e $H \neq G$, então diz-se que H é um subgrafo próprio de G.

Definição

Um subgrafo $H = (V_H, E_H, \psi_H)$ de $G = (V_G, E_G, \psi_G)$ diz-se abrangente quando $V_H = V_G$.

Exemplos

Exemplos

Considere o seguinte grafo G.

Alguns subgrafos de G:

Definição

Seja
$$G = (V, E, \psi)$$
 um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

• O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\hat{V} \subseteq V$ e $\hat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

Nota

Tem-se G = G[V] mas em geral $G[E] \neq G$.

Para o grafo G

o grafo G[E] é o grafo

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\hat{V} \subseteq V$ e $\hat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

Nota

• Por definição, $G[V-\widehat{V}]$ é o sugrafo gerado pelo complemento de \widehat{V} , e escrevemos simplesmente $G-\widehat{V}$. Ainda mais, se $\widehat{V}=\{v\}$, escreve-se simplesmente G-v.

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

- Por definição, $G[V-\widehat{V}]$ é o sugrafo gerado pelo complemento de \widehat{V} , e escrevemos simplesmente $G-\widehat{V}$. Ainda mais, se $\widehat{V}=\{v\}$, escreve-se simplesmente G-v.
- Denota-se por $G \widehat{E}$ o subgrafo abrangente cujo conjunto de arestas é $E \widehat{E}$. Se $\widehat{E} = \{e\}$ então usa-se a notação G e.

Definição

Seja $G = (V, E, \psi)$ um grafo e sejam $\widehat{V} \subseteq V$ e $\widehat{E} \subseteq E$.

- O subgrafo $G[\widehat{V}]$ de G induzido por \widehat{V} é o grafo cujo conjunto vértices é \widehat{V} e cujo conjunto de arestas é o conjunto das arestas de G com extremos em \widehat{V} .
- O subgrafo $G[\widehat{E}]$ de G induzido por \widehat{E} é o grafo cujo conjunto de arestas é \widehat{E} e cujo conjunto de vértices é constituído pelos vértices extremos das arestas de \widehat{E} .

- Por definição, $G[V \widehat{V}]$ é o sugrafo gerado pelo complemento de \widehat{V} , e escrevemos simplesmente $G \widehat{V}$. Ainda mais, se $\widehat{V} = \{v\}$, escreve-se simplesmente G v.
- Denota-se por $G \widehat{E}$ o subgrafo *abrangente* cujo conjunto de arestas é $E \widehat{E}$. Se $\widehat{E} = \{e\}$ então usa-se a notação G e. **Atenção**: Em geral $G[E \widehat{E}]$ e $G \widehat{E}$ são distintos.