

Adversarial ML

・常見名詞・

Threat	Adversarial Falsification	False Negative(FN) (Adversarial example)	FGSM · L-BFGS · DeepFool · Uni. perturbations · C&W
		False Positive(FP) (Fooling example)	
	Adversary's Knowledge	White-Box	FGSM · L-BFGS · DeepFool · Uni. perturbations · C&W
		Black-Box	
	Adversarial Specificity	Targeted	L-BFGS · C&W
		Non-Targeted	FGSM · DeepFool · Uni. perturbations
	Attack Frequency	One-time	FGSM
		Iterative	L-BFGS \ DeepFool \ Uni. perturbations \ C&W

・常見名詞・

	Dorturbation Coope	Individual	FGSM · L-BFGS · DeepFool · C&W
	Perturbation Scope	Universal	Uni. perturbations
	Perturbation Limitation	Optimized	L-BFGS \ DeepFool \ Uni. perturbations \ C&W
		Constraint	
Perturbation		None	FGSM
	Perturbation Measurement (lp)	p=0	C&W
		p=1	
		p=2	L-BFGS \ Uni. perturbations \ DeepFool \ C&W
		p=∞	FGSM · DeepFool · Uni. perturbations · C&W

Box-Constrained L-BFGS

$$\min_{\rho} c|\rho| + \mathcal{L}(\mathbf{I}_c + \rho, \ell) \quad s. t. \quad \mathbf{I}_c + \rho \in [0, 1]^m$$

- 第一篇提出「Adversarial Example」概念
- Results in the exact solution for a classifier that has a convex loss function.
- Make us understand better the input-to-output mapping represented by the trained network.

 To find a minimal norm adversarial perturbation for a given image in an iterative manner

• How: 推到分類器的邊界

Figure 1: An example of adversarial perturbations. First row: the original image x that is classified as $\hat{k}(x)$ ="whale". Second row: the image x+r classified as $\hat{k}(x+r)$ ="turtle" and the corresponding perturbation r computed by DeepFool. Third row: the image classified as "turtle" and the corresponding perturbation computed by the fast gradient sign method [4]. DeepFool leads to a smaller perturbation.

Figure 2: Adversarial examples for a linear binary classifier.

Figure 4: For x_0 belonging to class 4, let $\mathscr{F}_k = \{x : f_k(x) - f_4(x) = 0\}$. These hyperplanes are depicted in solid lines and the boundary of P is shown in green dotted line.

Figure 5: For x_0 belonging to class 4, let $\mathscr{F}_k = \{x : f_k(x) - f_4(x) = 0\}$. The linearized zero level sets are shown in dashed lines and the boundary of the polyhedron \tilde{P}_0 in green.

```
Algorithm 2 DeepFool: multi-class case
  1: input: Image x, classifier f.
  2: output: Perturbation \hat{r}.
  3:
  4: Initialize x_0 \leftarrow x, i \leftarrow 0.
  5: while \hat{k}(\boldsymbol{x}_i) = \hat{k}(\boldsymbol{x}_0) do
             for k \neq \hat{k}(\boldsymbol{x}_0) do
         oldsymbol{w}_k' \leftarrow 
abla f_k(oldsymbol{x}_i) - 
abla f_{\hat{k}(oldsymbol{x}_0)}(oldsymbol{x}_i)
            f_k' \leftarrow f_k(\boldsymbol{x}_i) - f_{\hat{k}(\boldsymbol{x}_0)}(\boldsymbol{x}_i)
            \hat{l} \leftarrow \operatorname{arg\,min}_{k \neq \hat{k}(\boldsymbol{x}_0)} \frac{|f_k'|}{\|\boldsymbol{w}_k'\|_2}
            oldsymbol{r}_i \leftarrow rac{|f_{\hat{t}}'|}{\|oldsymbol{w}_{\hat{t}}'\|_2^2} oldsymbol{w}_{\hat{t}}'
            \boldsymbol{x}_{i+1} \leftarrow \boldsymbol{x}_i + \boldsymbol{r}_i
          i \leftarrow i + 1
14: end while
15: return \hat{r} = \sum_{i} r_{i}
```

To find a single pertubation
 which is able to fool a network on
 "any" image with high
 confidience

• How: 漸進的推進到分類的邊界

Figure 1: When added to a natural image, a universal perturbation image causes the image to be misclassified by the deep neural network with high probability. *Left images:* Original natural images. The labels are shown on top of each arrow. *Central image:* Universal perturbation. *Right images:* Perturbed images. The estimated labels of the perturbed images are shown on top of each arrow.

1. Goal

$$\hat{k}(x+v) \neq \hat{k}(x)$$
 for "most" $x \sim \mu$.

- 1. Constraints
 - 擾動不能過大

$$||v||_p \le \xi,$$

• 成功率要夠高

$$\underset{x \sim \mu}{\mathbb{P}} \left(\hat{k}(x+v) \neq \hat{k}(x) \right) \ge 1 - \delta.$$

Figure 2: Schematic representation of the proposed algorithm used to compute universal perturbations. In this illustration, data points x_1, x_2 and x_3 are super-imposed, and the classification regions \mathcal{R}_i (i.e., regions of constant estimated label) are shown in different colors. Our algorithm proceeds by aggregating sequentially the minimal perturbations sending the current perturbed points $x_i + v$ outside of the corresponding classification region \mathcal{R}_i .

3. Algorithm

 $\Delta v_i \leftarrow \arg\min_r ||r||_2 \text{ s.t. } \hat{k}(x_i + v + r) \neq \hat{k}(x_i).$

a. If v not best pertubation:

$$\mathcal{P}_{p,\xi}(v) = \arg\min_{v'} \|v - v'\|_2 \text{ subject to } \|v'\|_p \le \xi.$$

b. To fit constraint-1:

c. Update v:
$$v \leftarrow \mathcal{P}_{p,\xi}(v + \Delta v_i)$$
.

d. Stop when:
$$\operatorname{Err}(X_v) := rac{1}{m} \sum_{i=1}^m 1_{\hat{k}(x_i+v)
eq \hat{k}(x_i)} \geq 1 - \delta.$$

Algorithm 1 Computation of universal perturbations.

- 1: **input:** Data points X, classifier \hat{k} , desired ℓ_p norm of the perturbation ξ , desired accuracy on perturbed samples δ .
- 2: **output:** Universal perturbation vector v.
- 3: Initialize $v \leftarrow 0$.
- 4: **while** $Err(X_v) \leq 1 \delta \operatorname{do}$
- 5: **for** each datapoint $x_i \in X$ **do**
- 6: **if** $\hat{k}(x_i + v) = \hat{k}(x_i)$ **then**
- 7: Compute the *minimal* perturbation that sends $x_i + v$ to the decision boundary:

$$\Delta v_i \leftarrow \arg\min_r ||r||_2 \text{ s.t. } \hat{k}(x_i + v + r) \neq \hat{k}(x_i).$$

8: Update the perturbation:

$$v \leftarrow \mathcal{P}_{p,\xi}(v + \Delta v_i).$$

- 9: **end if**
- 10: end for
- 11: end while

The objective function to change the label vector

$$\begin{split} f_1(x') &= -\mathrm{loss}_{F,t}(x') + 1 \\ f_2(x') &= (\max_{i \neq t} (F(x')_i) - F(x')_t)^+ \\ f_3(x') &= \mathrm{softplus}(\max_{i \neq t} (F(x')_i) - F(x')_t) - \mathrm{log}(2) \\ f_4(x') &= (0.5 - F(x')_t)^+ \\ f_5(x') &= -\mathrm{log}(2F(x')_t - 2) \\ f_6(x') &= (\max_{i \neq t} (Z(x')_i) - Z(x')_t)^+ \\ f_7(x') &= \mathrm{softplus}(\max_{i \neq t} (Z(x')_i) - Z(x')_t) - \mathrm{log}(2) \end{split}$$

- An aderverial method to attack defensive distillation(防禦性蒸餾)
- 攻擊防禦性蒸餾模型實際上很簡單,不考慮這些其他的類向量值,只考慮需要超過的類向量(目標類)和自身的類向量值即可,甚至可以只關注增加自身的類向量
 - Ex:

```
[ -674.3225 , -371.59705 , -177.78831 , 562.87225 , -1313.5781 , 998.18207 , -886.97107 , -511.58194 , -126.719666 , -43.129272]
```

Box Constraint

$$0 \le x_i + \delta_i \le 1$$

- To solve box constraints
 - a. 投影梯度下降法:對於具有復雜更新步驟的梯度下降方法(例如, 具有動量的梯度下降),效果不佳
 - b. 裁剪梯度下降法:將裁剪直接放入了優化目標,但容易卡在平坦區 域,x卡在邊界值動不了
 - c. 改變變量:用新的變量w代替原先的x(本篇作者的用法)

$$\delta_i = \frac{1}{2}(\tanh(w_i) + 1) - x_i.$$

- How: L2 attack
 - a. Chose the target label t
 - b. Our goal is to optimize:

minimize
$$\|\frac{1}{2}(\tanh(w) + 1) - x\|_2^2 + c \cdot f(\frac{1}{2}(\tanh(w) + 1))$$

$$f(x') = \max(\max\{Z(x')_i : i \neq t\} - Z(x')_t, -\kappa).$$

- a. by adjusting c: from 10^-4 to 10^10;
- b. by adjusting k: 錯誤分類發生的置信度

架構

- 三種防禦方法
 - a. Training時修改訓練集或testing時修改測試樣本
 - b. 更改網路架構-training
 - c. 外接其他網路-testing

- 兩種對抗程度
 - a. Complete-能辨識回原本label
 - b. Detection only-僅辨識是否為攻擊樣本並拒絕分類

Brute-Force Adversarial Training

- Modified Training/Input
- 使用adversarial training的方法,需要來自強大攻擊方法的 樣本增加訓練集,使模型正規化,減少overfitting

Virtual Adversarial Training

• 缺點:依舊能找出新漏洞

Virtual Adversarial Training(VAT)

• 目標逐數
$$\frac{1}{N} \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}, \theta) + \lambda \frac{1}{N} \sum_{n=1}^{N} LDS(x^{(n)}, \theta)$$

• 定義LDS
$$LDS(x^{(n)}, heta) = -\Delta_{KL}(r_{v-adv}^{(n)}, x^{(n)}, heta)$$

• 定義Rv-adv

$$egin{aligned} \Delta_{\mathit{KL}}(r, x^{(n)}, heta) &= \mathit{KL}[p(y \, | \, x^{(n)}, heta) | | p(y \, | \, x^{(n)} + r, heta)] \ r_{v-adv}^{(n)} &= rg \max_r \{\Delta_{\mathit{KL}}(r, x^{(n)}, heta); ||r|| \leq \epsilon \} \end{aligned}$$

Deep Contractive Network

- Modifying the Network
- 借由類似Contractive Auto Encoders的平滑度懲罰項,可 防禦L-BGFS

Loss function T:target Y:model prediction

$$J_{DCN}(\theta) = \sum_{i=1}^{m} \left(L(t^{(i)}, y^{(i)}) + \lambda \parallel \frac{\partial y^{(i)}}{\partial x^{(i)}} \parallel_2 \right)$$

Loss function(layer wise)
h:h-th hidden layer

$$J_{DCN}(\theta) = \sum_{i=1}^{m} \left(L(t^{(i)}, y^{(i)}) + \sum_{j=1}^{H+1} \lambda_j \parallel \frac{\partial h_j^{(i)}}{\partial h_{j-1}^{(i)}} \parallel_2 \right)$$

Gradient Regularization/Masking

- Modifying the Network
- training時減少gradient的變化,或隱藏gradient,有利於 對抗基於gradient的攻擊方法

- Masking-based Defense
- 通過在網絡的logit輸出中添加noise,實現了masking based的對於C&W攻擊的防禦。

A Learning and Masking Approach to Secure Learning

- 攻擊方法: ALN
- 防禦方法: DLN、NAC
- DLN
 - a. 去噪前後相似
 - b. 去噪後要能辨識回原類別
 - c. Cat(y)-原類別、D(x)-去噪器、Cp(x)-分類器
- NAC
 - a. 對於低干擾的對抗樣本,它們大多在分類邊界附近,因此可以通過屏 蔽分類邊界來愚弄低干擾對抗樣本

 $\alpha \overline{sim}(x, D(x')) + \overline{opsim}(Cat(y_x), C_p(D(x')))$

b. 在模型輸出中加入noise

Nguyen, L., Wang, S., & Sinha, A. (2018, October). A learning and masking approach to secure learning. In International Conference on Decision and Game Theory for Security (pp. 453-464). Springer, Cham. [Online]. Available: https://arxiv.org/abs/1709.04447

Defensive Distillation

- Modifying the Network
- Distillation 是指將復雜網絡的知識遷移到簡單網絡上

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a defense to adversarial perturbations against deep neural networks," in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 582–597. [Online]. Available: https://arxiv.org/abs/1712.07107 [Online]. Available: https://arxiv.org/abs/1511.04508

Detector Subnetwork

- Modifying the Network-Detection Only Approaches
- 增加一個子網路辨識是否為擾動樣本,可防禦FGSM、BIM、DeepFool

- Additional Class Augmentation
- 方法:增加一個class來辨識攻擊樣本
- 缺點:依舊會被找到漏洞

Defense Against Universal Perturbations

Network Add-ONS

- $\mathcal{J}(\boldsymbol{\theta}_p, \mathbf{b}_p) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\ell_i^*, \ell_i),$
- 增加一個預輸入層-Perturbation Rectifying Network (PRN)

MagNet

- Network Add-ONS Detection Only Approaches
- 訓練一個detector來辨識乾淨圖片的manifold,並訓練一個 reformer來重構接近manifold邊界的圖片

Meng, D., & Chen, H. (2017, October). Magnet: a two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 135-147). ACM. [Online].