VERIFICATION OF GATES

Aim: - To study and verify the truth table of logic gates

Apparatus Required: -

All the basic gates mention in the fig.

74LS00,74LS02,74LS04,74LS08,74LS32,74LS86

Procedure: -

- 1. Place the IC on IC Trainer Kit.
- 2. Connect V_{CC} and ground to respective pins of IC Trainer Kit.
- Connect the inputs to the input switches provided in the IC Trainer Kit.
- 4. Connect the outputs to the switches of O/P LEDs,
- Apply various combinations of inputs according to the truth table and observe condition of LEDs.
- Disconnect output from the LEDs and note down the corresponding multimeter voltage readings for various combinations of inputs.

Quad 2 Input 7400

Hex 7404 Inverter

GND

AND Gate Implementation

Figure 1. The 2-input AND gate

Figure 2. The 4-input AND gate, built using 2-input AND gates.

Α	В	С	D	F
0	0	0	0	
U	0	U	1	
0 0 0	0	1 1 0	0 1 0	
0	0	1	1	
0	1	0		
0	1	0	0	
0	1	1	0	
0	1	1 0 0	1 0 1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	0	0	0	
1	1	0	1	
0 1 1 1 1 1 1 1	1	1	1 0 1	
1	1	1	1	

.Α	В	F	V (actual voltage)
0	0		
0	1		
1	0		
1	1		

Associative and Commutative Laws

Α	В	C	F	G
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Proving The Associative Law.

Laws of Boolean Algebra

(a) To demonstrate the Distributive law, connect AND, OR gates as shown in Figure 4. Vary the inputs A, B and C to obtain all possible combinations and check that the outputs F and G are identical.

Figure 4. The Distributive Law.

Give the outputs in a truth table as shown below:

Α	В	С	F	G
A	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Disconnected Inputs

(a) Check the behaviour of an OR gate when one of its inputs is open (disconnected - not connected to ground). Check the behaviour when two of the inputs are open. Describe what you observed. Do the same for an AND gate.