Materials 33 - Estimating the anchoring function

Laura Gáti

June 14, 2020

Instead of the AR(1) anchoring function used so far (Equation A.6), I use the following equation

$$k_t^{-1} = \beta s(X) \tag{1}$$

where $X = (k_{t-1}^{-1}, fe_{t|t-1})$ and I use piecewise linear interpolation. Now I initialize β by specifying a grid for X, passing the grid through Equation (A.6) to generate k_t^{-1} -values, and approximating by fitting the grid to the k_t^{-1} -values. This means that if the functional relationship in Fig. 1 is the right one, then the AR(1) specification of Equation (A.6) isn't a bad description of the anchoring function.

Then I estimate β using GMM, targeting the autocovariance structure of inflation, the output gap and the nominal interest rate (federal funds rate) in the data.

Figure 1: Initialization via Equation (A.6) implies this functional relationship

- 1. T = 233 before BK-filtering, T = 209 after BK-filtering.
- 2. I try to set the loss very large if the gain explodes or turns negative, but I worry that it still does so off the grid, especially as the PEA's fsolve cannot solve now.

Figure 2: k_t^{-1} as a function of k_{t-1}^{-1} and $fe_{t|t-1}$ given $\hat{\beta}^{GMM}>0$

Figure 3: k_t^{-1} as a function of k_{t-1}^{-1} and $fe_{t|t-1}$ given $\hat{\beta}^{GMM}$ (not restricted > 0)

1 Is the estimated LOM gain in the nonpermissible range for PEA?

No, it doesn't look like it. If I fit an AR(1) (Equation A.6) to the estimated gain evolution, I obtain $(\rho_k, \gamma_k) = (0.6151, 0.0011)$ which results in the following relationship:

Figure 4: AR(1) approximation to the estimated functional form of the gain

In particular, when doing PEA with the AR(1) specification for the gain, fsolve solved for my values of (0.5, 0.001). Rerunning PEA with the AR(1) specification and the values (0.6151, 0.0011) also works. So what's the problem with the PEA given approximated anchoring function?

2 PEA plots with constant only, π only learning

Figure 6: VFI-PEA comparison using the "constant only, π only" PLM

A Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
(A.1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
(A.2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \bar{i}_t$$
 (if imposed) (A.3)

PLM:
$$\hat{\mathbb{E}}_t z_{t+h} = a_{t-1} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x h_x$$
 (A.4)

Updating:
$$a_t = a_{t-1} + k_t^{-1} (z_t - (a_{t-1} + bs_{t-1}))$$
 (A.5)

Anchoring function:
$$k_t^{-1} = \rho_k k_{t-1}^{-1} + \gamma_k f e_{t-1}^2$$
 (A.6)

Forecast error:
$$fe_{t-1} = z_t - (a_{t-1} + bs_{t-1})$$
 (A.7)

LH expectations:
$$f_a(t) = \frac{1}{1 - \alpha \beta} a_{t-1} + b(\mathbb{I}_{nx} - \alpha \beta h)^{-1} s_t$$
 $f_b(t) = \frac{1}{1 - \beta} a_{t-1} + b(\mathbb{I}_{nx} - \beta h)^{-1} s_t$ (A.8)

This notation captures vector learning (z learned) for intercept only. For scalar learning, $a_t = \begin{pmatrix} \bar{a}_t & 0 & 0 \end{pmatrix}'$ and b_1 designates the first row of b. The observables (π, x) are determined as:

$$x_t = -\sigma i_t + \begin{bmatrix} \sigma & 1 - \beta & -\sigma \beta \end{bmatrix} f_b + \sigma \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (\mathbb{I}_{nx} - \beta h_x)^{-1} s_t$$
 (A.9)

$$\pi_t = \kappa x_t + \begin{bmatrix} (1 - \alpha)\beta & \kappa \alpha \beta & 0 \end{bmatrix} f_a + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\mathbb{I}_{nx} - \alpha \beta h_x)^{-1} s_t$$
 (A.10)

B Target criterion

The target criterion in the simplified model (scalar learning of inflation intercept only, $k_t^{-1} = \mathbf{g}(fe_{t-1})$):

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right\}$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j}^{-1} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}}(t+j)) \right)$$
(B.1)

where I'm using the notation that $\prod_{j=0}^{0} \equiv 1$. For interpretation purposes, let me rewrite this as follows:

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} x_{t} + \frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i}$$

$$-\frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (k_{t+1+j}^{-1} + f e_{t+1+j|t+j}^{eve}) \mathbf{g}_{\pi}(t+j) \right)$$
(B.2)

Interpretation: tradeoffs from discretion in RE + effect of current level and change of the gain on future tradeoffs + effect of future expected levels and changes of the gain on future tradeoffs