

0,0,0	V ₂ , I = 0	Q Q		tent I=1
000	000	001	0	0
6 0 1	010	001	0	0
010	000	oti	0	0
011	010	100	0	0
(00)	101	001	0	0
101	000	001	0	1

Output = I. Oz. Q, Oo

	Dz			
0,0,	, I	01	11	10
00	0	0	6	0
01	0	0	1	0
11	RI	×	(x)	X
10	(I)	0	0	0
,	0 0 T		0,0	I

(Logic for DO, DI, DZ on

prev. page)

Bit String Modification

· Have output serve as the clock signal for another flip-flop that, whenever it is clocked, will switch its value. So whenever lollol is detected, it will switch from a 1 to a 0 or vice versa.

Q	0.	D
0	- 1	1
t	0	0
D 5	ō	

This bit will be read at every clock signed to the above diagram so the output will be occoold IIII...