# **Exercises on modal logic**

Radu Mateescu

Inria and LIG / Convecs

http://convecs.inria.fr





## **HML** logic

(syntax)

$$\phi ::= true$$

| false

 $| \phi_1 \vee \phi_2 |$ 

 $\mid \phi_1 \wedge \phi_2 \mid$ 

 $\mid \neg \varphi_1$ 

 $|\langle \alpha \rangle \varphi_1|$ 

 $[\alpha]\phi_1$ 

constant "true"

constant "false"

disjunction

conjunction

negation

possibility

necessity

$$[\alpha] \phi = \neg \langle \alpha \rangle \neg \phi$$

### **HML** logic

(semantics)

Let  $M = (S, A, T, s_0)$ . Interpretation  $[[\phi]] \subseteq S$ :

- [[ true ]] = S
- **■** [[ false ]] = ∅
- $\blacksquare$  [[  $φ_1 \lor φ_2$  ]] = [[  $φ_1$  ]]  $\cup$  [[  $φ_2$  ]]
- $[[\neg \varphi_1]] = S \setminus [[\varphi_1]]$
- $[[\langle \alpha \rangle \varphi_1]] = \{ s \in S \mid \exists (s, a, s') \in T . \\ a \in [[\alpha]] \land s' \in [[\varphi_1]] \}$

#### **Exercise: contradictions**

- Show the contradictions below
  - $\triangleright \langle \alpha \rangle$  false = false

```
Let s \in [[\langle \alpha \rangle \text{ false }]], i.e.,
```

$$\exists$$
  $(s, a, s') \in T$ .  $(a \in [[\alpha]] \land s' \in [[false]]) \Leftrightarrow$ 

$$\exists$$
  $(s, a, s') \in T$ .  $(a \in [[\alpha]] \land s' \in \emptyset) \Leftrightarrow$ 

$$\exists$$
  $(s, a, s') \in T$ .  $(a \in [[\alpha]] \land false) \Leftrightarrow \exists (s, a, s') \in T$ . false  $\Leftrightarrow false$ 

i.e., 
$$s \in [[\langle \alpha \rangle \text{ false }]] \Leftrightarrow \text{false, so } [[\langle \alpha \rangle \text{ false }]] = \emptyset = [[\text{ false }]]$$

$$\blacktriangleright$$
  $\langle$  false  $\rangle$   $\phi$  = false

Let 
$$s \in [[\langle false \rangle \varphi ]]$$
, i.e.,

$$\exists$$
  $(s, a, s') \in T$ .  $(a \in [[false]] \land s' \in [[\phi]]) \Leftrightarrow$ 

$$\exists$$
  $(s, a, s') \in T$ .  $(a \in \emptyset \land s' \in [[\phi]]) \Leftrightarrow$ 

$$\exists$$
  $(s, a, s') \in T$ . (false  $\land s' \in [[\phi]]) \Leftrightarrow \exists (s, a, s') \in T$ . false  $\Leftrightarrow$  false

i.e., 
$$s \in [[\langle false \rangle \varphi]] \Leftrightarrow false$$
, so  $[[\langle false \rangle \varphi]] = \emptyset = [[false]]$ 



### **Exercise: tautologies**

- Show the tautologies below
  - $\triangleright$  [  $\alpha$  ] true = true

Start with the contradiction already established

```
\langle \alpha \rangle false = false \Leftrightarrow // apply \neg on both sides \neg \langle \alpha \rangle false = \neg false \Leftrightarrow // propagate \neg using duality [ \alpha ] true = true
```

[ false ] φ = true

Start with the contradiction already established (for any  $\varphi$ )

```
\langle \text{ false } \rangle (\neg \phi) = \text{ false } \Leftrightarrow // \text{ apply } \neg \text{ on both sides } 
 \neg \langle \text{ false } \rangle (\neg \phi) = \neg \text{ false } \Leftrightarrow // \text{ propagate } \neg \text{ using duality } 
 [ false] \phi = \text{true}
```

# **Exercise:** distributivity of $\langle \ \rangle$ over $\vee$

■ Show the distributivity of ⟨ ⟩ over ∨

Let 
$$s \in [[\langle \alpha \rangle \varphi_1 \lor \langle \alpha \rangle \varphi_2 = \langle \alpha \rangle (\varphi_1 \lor \varphi_2)]$$
  
 $\exists (s, a, s') \in T. ((a \in [[\alpha]] \land s' \in [[\varphi_1]]) \lor (a \in [[\alpha]] \land s' \in [[\varphi_2]]))$   $\Leftrightarrow // factor$   
 $\exists (s, a, s') \in T. (a \in [[\alpha]] \land (s' \in [[\varphi_1]] \lor s' \in [[\varphi_2]])) \Leftrightarrow // by [[.]]$   
 $\exists (s, a, s') \in T. (a \in [[\alpha]] \land (s' \in [[\varphi_1 \lor \varphi_2]])) \Leftrightarrow // by [[.]]$   
 $s \in [[\langle \alpha \rangle (\varphi_1 \lor \varphi_2)]]$ 

(Hint: similar reasoning as above.)



# **Exercise:** distributivity of [] over $\land$

- Show the distributivity of [] over ∧
  - $[\alpha] \varphi_1 \wedge [\alpha] \varphi_2 = [\alpha] (\varphi_1 \wedge \varphi_2)$
  - $[\alpha_1] \phi \wedge [\alpha_2] \phi = [\alpha_1 \vee \alpha_2] \phi$

(Hint: use the identities for distributivity of  $\langle \ \rangle$  over  $\vee$  and apply the duality between  $\langle \ \rangle$  and [ ].)



# **Exercise:** monotonicity of $\langle \ \rangle$

- Show the monotonicity of  $\langle \alpha \rangle \phi$  over  $\phi$  and  $\alpha$ 
  - $(\phi_1 \Rightarrow \phi_2) \Rightarrow (\langle \alpha \rangle \phi_1 \Rightarrow \langle \alpha \rangle \phi_2)$

Let  $s \in [[\langle \alpha \rangle \varphi_1]]$ , i.e.,  $\exists (s, a, s') \in T$ .  $(a \in [[\alpha]] \land s' \in [[\varphi_1]])$ . Since  $\varphi_1 \Rightarrow \varphi_2$ , and  $s' \in [[\varphi_1]]$ , it follows that  $s' \in [[\varphi_2]]$ , and so  $s \in [[\langle \alpha \rangle \varphi_2]]$ .

 $(\alpha_1 \Rightarrow \alpha_2) \Rightarrow (\langle \alpha_1 \rangle \varphi \Rightarrow \langle \alpha_2 \rangle \varphi)$ 

(Hint: similar reasoning as above.)



## **Exercise: monotonicity of []**

■ Show the monotonicity of  $[\alpha] \varphi$  over  $\varphi$  and  $\alpha$ 

$$(\phi_1 \Rightarrow \phi_2) \Rightarrow ([\alpha] \phi_1 \Rightarrow [\alpha] \phi_2)$$

Start with the (established) monotonicity of  $\langle \alpha \rangle \phi$  over  $\phi$ 

$$((\neg \phi_2) \Rightarrow (\neg \phi_1)) \Rightarrow (\langle \alpha \rangle (\neg \phi_2) \Rightarrow \langle \alpha \rangle (\neg \phi_1)) \qquad \Leftrightarrow // \text{ counterpose}$$

$$(\phi_1 \Rightarrow \phi_2) \Rightarrow (\neg \langle \alpha \rangle (\neg \phi_1) \Rightarrow \neg \langle \alpha \rangle (\neg \phi_2)) \qquad \Leftrightarrow // \text{ by duality}$$

$$(\phi_1 \Rightarrow \phi_2) \Rightarrow ([\alpha] \phi_1 \Rightarrow [\alpha] \phi_2)$$

$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$

$$(\alpha_1 \Rightarrow \alpha_2) \Rightarrow ([\alpha_2] \varphi \Rightarrow [\alpha_1] \varphi)$$

(Hint: similar reasoning as above, starting with

$$(\alpha_1 \Rightarrow \alpha_2) \Rightarrow (\langle \alpha_1 \rangle (\neg \varphi) \Rightarrow \langle \alpha_2 \rangle (\neg \varphi))$$

### **Exercise: HML identity**

Show the identity below

$$\left\langle\begin{array}{c} \alpha \right\rangle \text{ true } \wedge \left[\begin{array}{c} \alpha \end{array}\right] \phi = \left\langle\begin{array}{c} \alpha \right\rangle \phi \wedge \left[\begin{array}{c} \alpha \end{array}\right] \phi$$
" $\Leftarrow$ ": Holds by monotonicity of modalities over  $\phi$ 

$$\left(\left\langle\begin{array}{c} \alpha \right\rangle \text{ true } \Leftarrow \left\langle\begin{array}{c} \alpha \right\rangle \phi\right)$$
" $\Rightarrow$ ": Let  $s \in [\left[\left\langle\begin{array}{c} \alpha \right\rangle \text{ true } \wedge \left[\begin{array}{c} \alpha \end{array}\right] \phi\right]]$ , i. e.,
$$\exists \left(s, a', s'\right) \in T. \ a' \in [\left[\begin{array}{c} \alpha \end{array}\right]]$$

$$\wedge$$

$$\forall \left(s, a'', s''\right) \in T. \ \left(a'' \in [\left[\begin{array}{c} \alpha \end{array}\right]\right] \Rightarrow s'' \in [\left[\begin{array}{c} \phi \end{array}\right]]$$

$$\Rightarrow s' \in [\left[\begin{array}{c} \phi \end{array}\right]$$

$$\Rightarrow s \in [\left[\left\langle\begin{array}{c} \alpha \right\rangle \phi\right]\right]$$

$$s \in [\left[\left[\begin{array}{c} \alpha \right] \phi\right]\right]$$

$$\Rightarrow s \in [\left[\left\langle\begin{array}{c} \alpha \right\rangle \phi \wedge \left[\begin{array}{c} \alpha \end{array}\right] \phi\right]$$

#### **Exercise**

- Characterize in HML the tree-like LTSs below
  - ► Action predicates:

```
I (leaf)
b (branch)
```





11

# Solution (bush)

State formula characterizing deadlocks (sink states):

deadlock = [ true ] false



■ **Remark:** the *bush* formula cannot distinguish bushes with different number of leaves (they are *strongly bisimilar*).

# Solution (shrub)

Define HML subformulas characterizing each subtree rooted at s<sub>1</sub> ... s<sub>4</sub>:

$$s1 = s2 = s4 = bush$$
  
 $s3 = \langle I \rangle deadlock \land \langle b \rangle s4 \land [b] s4 \land [\neg (b \lor I)] false$   
there is an I from there is a b all b from no action but  
 $s_3$  to a deadlock from  $s_3$  to  $s_4$   $s_3$  lead to  $s_4$  b or I from  $s_3$ 

#### **Exercise**

- Characterize in HML the tree-like LTS below
  - ► Action predicates:

```
I (leaf)
t (trunk)
```



palm tree

# Solution (palm tree)

■ Characterize each subtree rooted at  $s_0$  ...  $s_3$  by a HML subformula:

```
palm =
      \langle t \rangle (
                         \langle t \rangle bush \land [ \neg t ] false
                [\neg t] false
      [ \neg t ] false
```



#### **Exercise**

■ Characterize in HML the tree-like LTS below



#### **Solution**

Characterize each subtree rooted at s<sub>0</sub> ... s<sub>5</sub> using an HML formula:

$$s3 = s5 = bush$$

$$s4 = \langle l \rangle \text{ deadlock } \land \langle b \rangle \text{ s5 } \land$$

$$[b] s5 \land [\neg(b \lor l)] \text{ false}$$

$$s2 = \langle b \rangle s3 \land \langle b \rangle s4 \land [b] \text{ (s3 } \lor s4) \land [\neg b] \text{ false}$$

$$s1 = \langle t \rangle s2 \land [t] s2 \land [\neg t] \text{ false}$$

$$tree = \langle t \rangle s1 \land [t] s1 \land [\neg t] \text{ false}$$



characterizes s<sub>0</sub>

#### **Exercise: ACTL**

Characterize in ACTL the tree-like LTSs below





#### **Solution**





 $shrub = A [true_b U_l deadlock]$   $palm = A [true_t U bush]$ 

Remark: all trunk/branch/leaf actions are assumed to be visible ( $\neq \tau$ ).

#### **Exercise: ACTL**

■ Characterize in ACTL the tree-like LTS below



(Hint: use nested ACTL operators.)