允许使用 <u>TeX</u>, <u>LaTeX</u>, 或者 <u>MathML</u> 符号书写公式。如果浏览器支持就处理为MathML,否则就使用Html和Css渲染。

TeX-AMS HTML.js

允许使用 TeX 或者 LaTeX 符号书写公式。使用Html和Css渲染。

MML HTMLorMML.js

允许使用 MathML 符号书写公式。如果浏览器支持就处理为MathML, 否则就使用Html和Css渲染。

AM HTMLorMML.js

允许使用 AsciiMath 符号书写。如果浏览器支持就处理为MathML,否则就使用Html和Css渲染。

TeX-AMS-MML SVG.js

允许使用 TeX, LaTeX, 或者 MathML 符号书写公式。使用SVG产生输出。

TeX-MML-AM HTMLorMML.js

允许使用 <u>TeX</u>, <u>LaTeX</u>, <u>MathML</u>,或者 <u>AsciiMath</u> 符号书写公式。如果浏览器支持就处理为MathML,否则就使用 Html和Css渲染。

第一个文件是提供给你修改的。它基本上包含了MathJax的所有配置选项,同时有注释解释。 其他的文件就是我们联合配置文件。它们不仅仅配置Mathjax,还预加载了一些配置所需的文件。 这些文件内容在 联合配置 中有详细的解释。

基本用法

1. 在\$...\$中插入MathJax语法(只能在行内输入,不能换行):

 $S = \pi r^2$

$$S = \pi r^2$$

1. 在 \$\$... \$\$中插入MathJax语法(可以换行):

\$\$ $Gamma(z) = \int_0^\infty \int_0^\infty t^{z-1} e^{-t} dt$

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

1. 空间:

通常MathJax通过内部策略自己管理公式内部的空间,普通的空格是不起作用的,可以通过在ab间加入\$\,\$增加些许间隙,\$\;\$增加较宽的间隙,\$\quad\$与\$\qquad\$会增加更大的间隙。

 $a \ , b \ ; c \ quad d \ qquad e f g$

$a\,b\,c\,d\,efg$

1. 需要注意的是一些MathJax使用的特殊字符,可以使用\转义符转义为为原来的含义,\\ 代表换行。

\quad \quad \& \quad 1 2 3 4 \ 5 6 7\$

公式标记与引用

使用\tag{yourtag}来标记公式,如果想在之后引用该公式,则还需要加上\label{yourlabel}在\tag之后,如:

```
$$
a = x^2 - y^3 \tag{公式1}\label{label1}
$$
```

$$a = x^2 - y^3 \tag{公式1}$$

为了引用公式,可以使用\eqref{rlabel},如:

$$x + y^3 \operatorname{stackrel} \{ \operatorname{labell} \} = x^2$$

$$a+y^3 \stackrel{\text{(Art1)}}{=} x^2$$

可以看到,通过超链接可以跳转到被引用公式位置(公式1)。

上标与下标

- 1. 上标和下标分别使用 $\hat{}$ 与 $_{-}$,例如 $\hat{}_{}^{x}$ $_{i}$ $\hat{}_{-}^{2}$ $\hat{}_{i}$ $\hat{}_{-}^{2}$
- 2. 默认情况下,上下标符号仅仅对下一个组起作用。一个组即单个字符或者使用 $\{...\}$ \$包裹起来的内容。也就是说,如果使用 $\{10^10^5\}$,会得到 10^10 ,而 $\{10^5\}$ 42 10^{10} 。
- 3. 大括号还能消除二义性,如\$x^5^6\$将得到一个错误,必须使用大括号来界定的结合性,

如 ${x^5}^6$ 或者 x^5^6 家者

运算符	说明	代码	示例
^	上标	\$x ^ y\$	x^y
_	下标	\$x _ y\$	x_y
	上下限	\$ _a ^b\$	$ _a^b$
\mid	上下限	\$\mid _a ^b\$	$ _a^b$
\sideset	四周标记	$\hat{1}_2 {\hat 3}_4 $ bigotimes	$^{1}_{2}\bigotimes_{4}^{3}$
\choose	选择排列	$n+1 \ge 2k$	$\binom{n+1}{2k}$
\binom .	二项式排列	$n+1 {2k}$	$\binom{n+1}{2k}$

括号

1. 需要注意的是,原始符号并不会随着公式大小缩放,可以使用\left(...\right)来自适应的调整括号()[]{}及分隔符 |大小,\left与\right要求必须配对使用,如果需要省略部分括号内容可以使用\left.代替。

```
\label{thm:linear} $$  \ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{1 \ 2}{e} \right) \\ \left( \frac{1 \ 2}{e} \right) &= \left[\frac{1 \ 2}{e} \right] \\ \left( \frac{
```

$$egin{aligned} &(rac{1}{2})=[rac{1}{2}]\ &\left(rac{1}{2}
ight)=\left[rac{1}{2}
ight]\ &\{\sum_{i=0}^n i^2\}=\langlerac{(rac{n}{2}+n)(2n+1)}{6}
angle\ &\{\sum_{i=0}^n i^2
ight\}=\left\langlerac{(rac{n}{2}+n)\left(2n+1
ight)}{6}
ight
angle\ &\sum_{i=0}^n i^2
ight
brace=\left\langlerac{(rac{n}{2}+n)\left(2n+1
ight)}{6}
ight
brace\ &rac{du}{dx}igg|_{x=0}=1 \end{aligned}$$

运算符	说明	代码	示例
(禾 口)	小括号	\$ (2+3) \$	(2+3)
[和]	中括号	\$[4+4]\$	[4+4]
{ 禾□ }	大括号	\$\{a*b\}\$	a*b
\lbrace 和\rbrace	大括号	<pre>\$\lbrace a * b \rbrace\$</pre>	$\{a*b\}$
< 和 >	尖括号	<pre>\$\langle x+y \rangle\$</pre>	$\langle x+y angle$
\lceil 和 \rceil	上取整	\$\lceil\frac{1}{2}\rceil = 1\$	$\lceil rac{1}{2} ceil = 1$
\lfloor ⊼ ∏\rfloor	下取整	\$\lfloor\frac{1}{2}\rfloor = 0\$	$\lfloor \frac{1}{2} \rfloor = 0$

分式与根式

分式的表示。

- 2. 第二种,使用\over来分隔一个组的前后两部分。

 ${a+1 \text{ (over b+1)}}$: $\frac{a+1}{b+1}$.

3. 根式使用\sqrt来表示。

$$\left(4\right) \left(x y \right)$$
 : $\sqrt{\frac{x}{y}}$

4. 不要在再指数或者积分中使用\frac。在指数或者积分表达式中使用\frac会使表达式看起来不清晰,因此在专业的数学排版中很少被使用。应该使用一个水平的/来代替,效果如下:

```
$$
\begin{array}
{c | c} \\
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i \frac {\pi} 2} \quad e^{\frac{i \pi} 2} & e^{i \pi / 2} \\
\int _ {- \frac \pi 2}^{\frac \pi 2 \sin x \, dx \\
\int _ {- \pi / 2}^{\pi / 2} \sin x \, dx \\
\end{array}
$$
```

Bad	${ m Better}$
$e^{irac{\pi}{2}}$ $e^{rac{i\pi}{2}}$	$e^{i\pi/2}$
$\int_{-rac{\pi}{2}}^{rac{\pi}{2}}\sin xdx$	$\int_{-\pi/2}^{\pi/2} \sin x dx$

1. 书写连分数表达式时,请使用\cfrac代替\frac或者\over两者效果对比如下:

```
 \begin{array} $ \{c \mid c\} \\ \text{mathrm} \{Bad(\text{over})\} & \text{mathrm} \{Bad(\text{frac})\} & \text{mathrm} \{Better(\text{cfrac})\} \\ \text{hline} \\ x = a_0 + \{ \{1^2\} \setminus \{2^2\} \setminus \{a_2 + \{3^2\} \setminus \{a_3 + \{4^4\} \setminus \{a_4 + (\text{cdots})\}\}\} \} \} \\ x = a_0 + \text{frac} \{1^2\} \{a_1 + \text{frac} \{2^2\} \{a_2 + \text{frac} \{3^2\} \{a_3 + \text{frac} \{4^4\} \{a_4 + \text{cdots}\}\} \} \\ x = a_0 + \text{frac} \{1^2\} \{a_1 + \text{frac} \{2^2\} \{a_2 + \text{frac} \{3^2\} \{a_3 + \text{frac} \{4^4\} \{a_4 + \text{cdots}\}\} \} \\ \text{end} \{\text{array}\} \\ \$
```

$\operatorname{Bad}(\operatorname{over})$	$\operatorname{Bad}(\operatorname{frac})$	Better(cfrac)
$x=a_0+rac{1^2}{a_1+rac{2^2}{a_2+rac{3^2}{a_3+rac{4^4}{a_4+\dots}}}}$	$x=a_0+rac{1^2}{a_1+rac{2^2}{a_2+rac{3^2}{a_3+rac{4^4}{a_4+\dots}}}}$	$x=a_0+rac{1^2}{a_1+rac{2^2}{a_2+rac{3^2}{a_3+rac{4^4}{a_4+\cdots}}}$

运算符	说明	代码	示例
\frac	分式	$\frac{x}{y}$	$\frac{x}{y}$
\over	分式	\${x} \over {y}\$	$\frac{x}{y}$
\cfrac	分式	\$\cfrac {x} {y}\$	$\frac{x}{y}$
\sqrt	开二次方	<pre>\$\sqrt x\$</pre>	\sqrt{x}
\sqrt	开n次方	\$\sqrt [n] {x}\$	$\sqrt[n]{x}$

表格

使用 \$\begin{array} {列样式: c(居中);1(左对齐);r(右对齐);|(竖线)} \end{array} \$这样的形式来创建表格。

- 各行使用换行符\\进行分隔
- 各列使用&进行分隔
- 使用\hline在本行前加入一条直线
- 使用\text{文字内容} 在表格中插入文本
- 使用% 注释内容进行注释

```
\begin{array}
{c | 1 c r}
n & \text{Left} & \text{Center} & \text{Right} \\
hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i \\
end{array}
```

n	Left	Center	Right
1	0.24	1	125
2	-1	189	-8
3	-20	2000	1+10i

一个复杂的例子如下:

```
$$
% outer vertical array of arrays
\begin{array}
% inner horizontal array of arrays
\begin {array}
{c c} \\
% inner array of minimum values
\begin{array}
{c | c c c c}
\texttt{\text{min}} \& 0 \& 1 \& 2 \& 3 \\ \\ \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
2 & 0 & 1 & 2 & 2 \\
3 & 0 & 1 & 2 & 3
\end{array} &
% inner array of maximum values
\begin{array}
{c | c c c c}
\text{text{max}} \& 0 \& 1 \& 2 \& 3 \
\hline
0 \& 0 \& 1 \& 2 \& 3 \setminus \\
1 & 1 & 1 & 2 & 3 \\
2 & 2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array} \\
% inner array of delta values
\begin{array}
{c | c c c c}
\Delta & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 1 & 2 \\
2 \; \& \; 2 \; \& \; 1 \; \& \; 0 \; \& \; 1 \; \setminus \backslash
3 & 3 & 2 & 1 & 0
\end{array}
\end{array}
```

\$\$

min	0	1	2			max	ς	0	1		
0	0	0	0	0	-	0		0	1	2	3
1	0	1	1	1		1				2	
$\frac{2}{3}$	0	1	$rac{2}{2}$	2		2		2	2 3	2	3
3	0	1	2	3		3		3	3	3	3
			Δ	0	1	2	3	}			
		•	0	0	1	2	3	3			
			1	1	0	1	2	2			
			2	2	1	0	1	-			
			3	3	2	1	C)			

公式对齐:有时候可能需要一系列的公式中等号对齐,这需要使用形如\$\begin{align}...\end{align}\$的格式,其中需要使用&来指示需要对齐的位置。

$$egin{align} \sqrt{37} &= \sqrt{rac{73^2-1}{12^2}} \ &= \sqrt{rac{73^2}{12^2} \cdot rac{73^2-1}{73^2}} \ &= \sqrt{rac{73^2}{12^2}} \sqrt{rac{73^2-1}{73^2}} \ &= rac{73}{12} \sqrt{1-rac{1}{73^2}} \ &pprox rac{73}{12} igg(1-rac{1}{2\cdot 73^2}igg) \ \end{pmatrix}$$

分类表达式:定义函数的时候经常需要分情况给出表达式,可使用\\begin\cases\...\end\cases\\...\end

```
$$
f(n) =
\begin{cases}
n/2, &\text{if $n$ is even} \\[2ex]
3n+1, &\text{if $n$ is odd}
\end{cases}
$$
```

$$f(n) = \left\{ egin{aligned} n/2, & ext{if n is even} \ 3n+1, & ext{if n is odd} \end{aligned}
ight.$$

上述公式的括号也可以移动到右侧,不过需要使用array来实现,如下:

```
$$
\left.
\begin{array}
{1}
\text{if $n$ is even:} & n/2 \\[5ex]
\text{if $n$ is odd:} & 3n+1
\end{array}
\right \rbrace
=f(n)
$$$
```

$$\left. egin{array}{ll} ext{if n is even:} & n/2 \ & & & \\ ext{if n is odd:} & 3n+1 \end{array}
ight\} = f(n)$$

使用\mid代替|作为分隔符:符号|作为分隔符时有排版空间大小的问题 , 应该使用\mid代替。

```
$$
\begin{array}
{c | c}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
{ x | x^2 \in \Bbb Z } & { x \mid x^2 \in \Bbb Z } \\
```

\end{array}
\$\$

Better
$x^2\in\mathbb{Z}$

方程组

使用\begin{array} ... \end{array}与\left{...\ right.配合,表示方程组,如:

```
$$
\left\{
\begin{array}
{c}
a_1 x + b_1 y + c_1 z = d_1 + e_1 \\
a_2 x + b_2 y = d_2 \\
a_3 x + b_3 y + c_3 z = d_3 \\
end{array}
\right.
$$
```

$$\left\{egin{aligned} a_1x+b_1y+c_1z &= d_1+e_1\ a_2x+b_2y &= d_2\ a_3x+b_3y+c_3z &= d_3 \end{aligned}
ight.$$

还可以使用\begin{cases}...\ end{cases}表达同样的方程组,如:

```
$$
\begin{cases}
a_1 x + b_1 y + c_1 z = d_1 + e_1 \\
a_2 x + b_2 y = d_2 \\
a_3 x + b_3 y + c_3 z = d_3 \end{cases}
$$
$$
```

$$\left\{egin{aligned} a_1x+b_1y+c_1z&=d_1+e_1\ a_2x+b_2y&=d_2\ a_3x+b_3y+c_3z&=d_3 \end{aligned}
ight.$$

对齐方程组中的=号,可以使用 \begin {aligned} ... \end {aligned},如:

```
$$
\left\{
\begin{aligned}
a_1 x + b_1 y + c_1 z &= d_1 + e_1 \\
a_2 x + b_2 y &= d_2 \\
a_3 x + b_3 y + c_3 z &= d_3 \\
end{aligned}
\right.
$$$
```

$$\left\{egin{array}{l} a_1x+b_1y+c_1z=d_1+e_1\ a_2x+b_2y=d_2\ a_3x+b_3y+c_3z=d_3 \end{array}
ight.$$

如果要对齐号和项,可以使用\begin{array} {列样式} ... \end{array},如:

```
$$
\left\{
\begin{array}
{1 1}
a_1 x + b_1 y + c_1 z &= d_1 + e_1 \\
a_2 x + b_2 y &= d_2 \\
a_3 x + b_3 y + c_3 z &= d_3 \\
end{array}
\right.
```

$$\left\{egin{array}{ll} a_1x+b_1y+c_1z &=d_1+e_1\ a_2x+b_2y &=d_2\ a_3x+b_3y+c_3z &=d_3 \end{array}
ight.$$

矩阵

使用\begin{matrix} \end{matrix} 这样的形式来表示矩阵。矩阵的行之间使用\\分隔,列之间使用&分隔。如果要对矩阵加括号,可以使用\\eft与\right配合表示括号符号。

```
$$
\left\{ \left[ \left(
\begin {\text{matrix}}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2
\end {\text{matrix}}
\right) \right] \right\}
$$
```

$$\left\{ \left[\begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix} \right] \right\}$$

也可以使用特殊的matrix。即替换\$begin{matrix}...end{matrix}\$中的matrix为pmatrix,bmatrix,Bmatrix,vmatrix,Vmatrix。可以使用\$\cdots \dots \vdots\$来省略矩阵中的元素。

```
% matrix, bmatrix, Bmatrix, pmatrix, vmatrix, Vmatrix
\begin{array}
\{c \mid c \mid c\}
% matrix
\verb|\begin{matrix}|
1 & 2 \\
3 & 4
\end{matrix} &
% bmatrix
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} &
% Bmatrix
\begin{Bmatrix}
1 & 2 \\
3 & 4
\end{Bmatrix} \\
\hline
% pmatrix
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix} &
% vmatrix
\verb|\begin{vmatrix}|
1 & 2 \\
3 & 4
\end{vmatrix} &
% Vmatrix
\begin{Vmatrix}
1 & 2 \\
3 & 4
\end{Vmatrix}
\end{array} \\
\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{pmatrix}
```

$$egin{array}{c|c|c|c} 1 & 2 & igg[1 & 2 \ 3 & 4 \end{array} &$$

增广矩阵需要使用array来实现,如

```
$$
\left[
\begin{array}
{c c | c}
1 & 2 & 3 \\
4 & 5 & 6 \\
end{array}
\right]
$$
```

$$\left[\begin{array}{cc|c}1&2&3\\4&5&6\end{array}\right]$$

算术运算符

运算符	说明	代码	示例
+	+力口	\$x + y\$	x+y
-	-减	\$x - y\$	x-y
\times	×乘	\$x \times y\$	x imes y
\cdot	·乘	<pre>\$x \cdot y\$</pre>	$x\cdot y$
\ast	*乘	\$x \ast y\$	x * y
\div	÷除	\$x \div y\$	$x \div y$
\pmode	mod取模	<pre>\$a \equiv b \pmod n\$</pre>	$a \equiv b \pmod n$
\pm	±加减	\$x \pm y\$	$x\pm y$
\mp	干减加	\$x \mp y\$	$x \mp y$
=	= 等于	\$x = y\$	x=y
\mbox{mid}		\$x \mid y\$	$x\mid y$
\nmid	ł	<pre>\$x \nmid y\$</pre>	Undefined control sequence \nmid
\sum	∑连加求和	$\sum_{i=0}^n \frac{1}{i^2}$	$\sum_{i=0}^n rac{1}{i^2}$
\prod	∏连乘求积	\$prod_{i=0}^n frac{1}{i^2}\$	$\prod_{i=0}^n rac{1}{i^2}$
\coprod	Ш	$coprod_{i=0}^n frac_{1}_{i^2}$	$\coprod_{i=0}^{n} rac{1}{i^2}$
\oplus	⊕圆加	<pre>\$x \oplus y\$</pre>	$x\oplus y$
\odot	⊙圆点	<pre>\$x \odot y\$</pre>	$x\odot y$
\otimes	⊗圆乘	<pre>\$x \otimes y\$</pre>	$x\otimes y$
\bigoplus	⊕圆加	<pre>\$x \bigoplus y\$</pre>	$x \bigoplus y$
\bigodot	⊙圆点	<pre>\$x \bigodot y\$</pre>	$x \bigodot y$
\bigotimes	⊗圆乘	<pre>\$x \bigotimes y\$</pre>	$x \bigotimes y$

比较运算符

运算符	说明	代码	示例
=	=等于	\$x = y\$	x=y
\neq	≠不等于	$x \neq y \neq z$	$x \neq y \neq z$
〈与 \1t	: <小于	\$x < y \1t z\$	x < y < z
\n	≮不小于	$x \mid x \mid x \mid x \mid x$	$x \not< y \not< z$
\leq	≤小于等于	\$x \leq y\$	$x \leq y$
\nleq	≰不小于等于	$x \in x \in y \in z$	Undefined control sequence \nleq
> 与 \gt	>大于	\$x > y \gt z\$	x>y>z
\not\gt	≯不大于	$x \neq x $	$x \not > y \not > z$
\geq	≥大于等于	\$x \geq y\$	$x \geq y$
\ngeq	≱不大于等于	sx \ngeq y \not\geq z\$	Undefined control sequence \ngeq
\approx	≈约等于	<pre>\$x \approx y\$</pre>	xpprox y
\equiv	≡恒等于	<pre>\$x \equiv y\$</pre>	$x\equiv y$
\sim	~	\$x \sim y\$	$x\sim y$
\cong	≅	\$x \cong y\$	$x\cong y$
\prec	<	<pre>\$x \prec y\$</pre>	$x \prec y$

集合运算符

运算符	说明	代码	示例
\emptyset	Ø空集	<pre>\$\emptyset\$</pre>	Ø
\varnothing	Ø空集	<pre>\$\varnothing\$</pre>	Undefined control sequence \varnothing
\in	∈属于	\$x \in y\$	$x \in y$
\notin	∉不属于	\$x \notin y\$	$x\not\in y$
\subset	⊂子集	\$x \subset y\$	$x\subset y$
\not\subset	⊄非子集	<pre>\$x \not\subset y\$</pre>	$x\not\subset y$
\subseteq	⊆子等集	\$x \subseteq y\$	$x\subseteq y$
\not\subsete	q ⊈非子等集	$x \neq y$	$x \not\subseteq y$
\supset	⊃超集	\$x \supset y\$	$x\supset y$
\not\supset	⊅非超集	<pre>\$x \not\supset y\$</pre>	$x\not\supset y$
\supseteq	⊇超等集	x \supseteq y\$	$x\supseteq y$
\not\supsete	q ≱非超等集	<pre>\$x \not\supseteq y\$</pre>	$x\not\supseteq y$
\cup	∪并	\$x \cup y\$	$x \cup y$
\not\cup	少非并	<pre>\$x \not\cup y\$</pre>	$x\not \cup y$
\cap	⋂交	\$x \cap y\$	$x\cap y$
\not\cap	n非交	<pre>\$x \not\cap y\$</pre>	$x \not \cap y$
\vee	∨合取	\$x \vee y\$	xee y
\not\vee	∨非合取	<pre>\$x \not\vee y\$</pre>	$x\not\vee y$
\wedge	^析取	\$x \wedge y\$	$x \wedge y$
\not\wedge	/4非析取	<pre>\$x \not\wedge y\$</pre>	$x \not \wedge y$
\uplus	⊎	\$x \uplus y\$	$x \uplus y$
\not\uplus	⊌	<pre>\$x \not\uplus y\$</pre>	$x\not\boxminus y$

运算符	说明	代码	示例
\sqcup	Ц	\$x \sqcup y\$	$x \sqcup y$
\not\sqcup	Ľ	<pre>\$x \not\sqcup y\$</pre>	$x \not \sqcup y$
\bigcup	U大并	<pre>\$x \bigcup y\$</pre>	$x \bigcup y$
\not\bigcup	/U大非并	<pre>\$x \not\bigcup y\$</pre>	$x \biguplus y$
\bigcap	n 大交	<pre>\$x \bigcap y\$</pre>	$x \cap y$
\not\bigcap	∕∩大非交	<pre>\$x \not\bigcap y\$</pre>	$x \wedge y$
\bigvee	, V命题的"合取"("与")运算	<pre>\$x \bigvee y\$</pre>	$x \bigvee y$
\not\bigvee	√V命题的"合取"("与")运算	<pre>\$x \not\bigvee y\$</pre>	$x \not \bigvee y$
\bigwedge	, Λ命题的"析取"("或","可兼或")运 算	\$x \bigwedge y\$	$x \bigwedge y$
\not\bigwedg	│	<pre>\$x \not\bigwedge y\$</pre>	$x \not \bigwedge y$
\biguplus	⊎	<pre>\$x \biguplus y\$</pre>	$x \biguplus y$
\not\biguplu	s / 🖳	<pre>\$x \not\biguplus y\$</pre>	$x \not \biguplus y$
\bigsqcup	Ц	<pre>\$x \bigsqcup y\$</pre>	$x \bigsqcup y$
\not\bigsqcu	p / U	<pre>\$x \not\bigsqcup v\$</pre>	$x \not \coprod y$

对数运算符

运算符 说明 代码 示例

\log log对数 $\log(x)$ \$\log(x)\$

 \lg lg对数 $\lg(x)$ lg(x)

\ln In对数 $\ln(x)$ $\ln(x)$

三角运算符

运算符	· 说明	代码	示例
\bot	⊥垂直	\$A \bot B\$	$A\bot B$
\angle	∠角	\$\angle 45\$	$\angle 45$
\circ	∘度	\$45^\circ\$	45°
\sin	sine正弦函数	\$\sin 30^\circ = 0.5\$	$\sin 30^\circ = 0.5$
\cos	cosine余弦函数	\$\cos 90^\circ = 0\$	$\cos 90^\circ = 0$
\tan	tangent正切函数	\$\tan 45^\circ = 1\$	$ an 45^\circ = 1$
\arcsin	arcsine反正弦函数	\$\arcsin 0.5 = 30^\circ\$	$\arcsin 0.5 = 30^\circ$
\arccos	arccosine反余弦函数	\$\arccos 0.5 = 60^\circ\$	$rccos 0.5 = 60^{\circ}$
\arctan	arctangent反正切函数	\$\arctan 1 = 45^\circ\$	$rctan 1 = 45^\circ$
\cot	cotangent余切函数	\$\cot\$	\cot
\sec	secant正割函数	\$\sec\$	\sec
\csc	cosecant余割函数	\$\csc\$	csc

微积分运算符

运算符	说明	代码	示例
\prime	,	<pre>\$\prime\$</pre>	,
\int	∫积分	\$\int_0^1 x^2 {\rm d}x\$	$\int_0^1 x^2 \mathrm{d}x$

运算符	说明	代码	示例
\iint	∬二重积分	$\int f(x, y) d\simeq $	$\iint_D f(x,y) d\sigma$
\iiint	∭三重积分	<pre>\$\iiint_D f(x, y)d\sigma\$</pre>	$\iiint_D f(x,y) d\sigma$
\iiiint	∭四重积分	<pre>\$\iiiint_D f(x,y)d\sigma\$</pre>	$\iiint_D f(x,y)d\sigma$
\oint	∮闭合曲面(曲线)积分	$\circ e^{x+y} ds$	$\oint e^{x+y}ds$
\1 i m	lim极限	$\lim_{x\to \infty} x\to \infty$	$\lim_{x\to\infty}$
\infty	∞极限	$\sum_{i=0}^{i=0} \in i^2$	$\sum_{i=0}^{\infty}i^2$
\nabla	∇	%\nabla\$	abla
\partial	∂部分	<pre>\$\frac{\partial x}{\partial y}\$</pre>	$rac{\partial x}{\partial y}$
\displaystyle	块公式格式	<pre>\$\displaystyle \lim*{x\to\infty}\$</pre>	$\lim_{x o \infty}$

对于多重积分,不要使用\int\int此类的表达,应该使用\iint\\iint等特殊形式。在微分前应该使用\,来增加些许空间,否则 T_EX 会将微分紧凑地排列在一起。

```
$$
\begin{array}
{c | c}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\int\int_S f(x) \, dy \, dx \\ \int\int_V f(x) \, dz \, dy \, dx \\
\int\int\int_V f(x) \, dz dy dx dt \\ \init\int_V f(x) \, dz \, dy \, dx \\
\end{array}
$$
```

Bad	Better
$\int\int_S f(x)dydx$	$\iint_S f(x) dy dx$
$\int \int \int_V f(x)dzdydx$	$\iiint_V f(x) dz dy dx$
$\int \int \int \int_V f(x) dz dy dx dt$	$\int \!\!\! \int \!\!\! \int_V f(x)dzdydxdt$

逻辑运算符

运算符	说明	代码	示例
\because	∵因为	\$\because\$	Undefined control sequence \because
\therefore	∴所以	\$\therefore\$	Undefined control sequence \therefore
\land	٨	\$\land\$	\wedge
\lor	٧	\$\lor\$	V
\lnot	¬	\$\lnot\$	\neg
\forall	∀全称量词	\$\forall\$	\forall
\exists	3存在量词	<pre>\$\exists\$</pre>	3
\top	Т	\$\top\$	Т
\bot	\perp	\$\bot\$	\perp
\vdash	⊢	\vdash\\$	⊢
\vDash	⊨	\vDash\\$	Undefined control sequence \vDash

顶部符号与连线符号

- 1. 对于单字符,\$\hat x\$: \hat{x} ,多字符可以使用\$widehat $\{x + y\}\$$, $\widehat{x + y}$ 。
- 2. 类似的还有\hat, \check, \breve, \overline, \underline, \vec, \overrightarrow, \overleftarrow, \dot, \ddot, \overbrace, \underbrace,

		~				\rightarrow	\longrightarrow	\leftarrow			\sim	
$x\hat{y}z$	\widehat{xyz}	abc	$xreve{y}z$	\overline{xyz}	\underline{abc}	abc	xyz	abc	$x\dot{y}z$	$x\ddot{y}z$	abc	xyz

运算符	说明	代码	示例
\hat	ŷ	\$\hat{xyz}\$	$x\hat{y}z$
\hat	Ŷ拟合值	$\Lambda Y = \hat X + \beta_1 $	$\hat{Y} = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 X$
\vec	a□ 向量	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	$\vec{a} + \vec{b} = \vec{c}$
\vec	abc→向量	\$\vec {abc} \$	$\overset{\rightarrow}{abc}$
\widehat	xyz^	<pre>\$\widehat{xyz}\$</pre>	\widehat{xyz}
\check	y	<pre>\$\check{xyz}\$</pre>	$x\check{y}z$
\breve	y ̈	\$\breve{xyz}\$	$xreve{y}z$
\overline	——平均数	$\sigma x = x$	\overline{x}
\overline	——连线符号	$\$ \\overline{a+b+c} +d\\$	$\overline{a+b+c}+d$
\underline	——下划线	$a+\underline\{b+c\}+d$	$a + \underline{b+c} + d$
\overrightarrow	<i>y</i> →	<pre>\$\overrightarrow{y}\$</pre>	\overrightarrow{y}
\overleftarrow	y←	<pre>\$\overleftarrow{y}\$</pre>	$\overset{\leftarrow}{y}$
\dot	y [·]	\$\dot{xyz}\$	$x\dot{y}z$
\ddot	y	\$ \ddot{xyz}\$	$x\ddot{y}z$
\overbrace	[~] 上大括号	$\cdots = a+\cdots = $	$\overbrace{a+\underbrace{b+c}_{1.5}+d}^{2.0}$
\underbrace	_。 下大括号	$\ \$ \underbrace \{b+c} _{\{1.5}} \\$	$\underbrace{b+c}_{1.5}$

箭头符号

运算符	说明	代码	示例
\to	→右箭头	\$\to\$	\rightarrow
\mapsto	↦左顶右箭头	<pre>\$\mapsto\$</pre>	\mapsto
\uparrow	↑上箭头	\$\uparrow\$	\uparrow
\Uparrow	↑上箭头	\$\Uparrow\$	\uparrow
\downarrow	↓下箭头	\$\downarrow\$	\downarrow
\Downarrow	↓下箭头	\$\Downarrow\$	\Downarrow
\leftarrow	←左箭头	\$\leftarrow\$	\leftarrow
\Leftarrow	←左箭头	\$\Leftarrow\$	\Leftarrow
\longleftarrow	←左箭头	\$\longleftarrow\$	\leftarrow
\Longleftarrow	⇐左箭头	\$\Longleftarrow\$	\iff
\rightarrow	→右箭头	\rightarrow\	\rightarrow
\Rightarrow	⇒右箭头	\$\Rightarrow\$	\Rightarrow
\longrightarrow	→右箭头	\$\longrightarrow\$	\longrightarrow
\Longrightarrow	⇒右箭头	\$\Longrightarrow\$	\Longrightarrow
\dagger	†剑标	\$\dagger\$	†

运算符	说明	代码	示例
\ddagger	‡双剑标	\ddagger\	‡

- †的叫法是匕首 (dagger) , 是脚注符号之一。
- 第一个脚注用星号 *
- 第二个用匕首 † †
- 第三个脚注用双匕首 ‡ ‡
- †放在作者的名字旁边,具体意义要看杂志,一般都能找到另外的文字说明。可能标注:作者单位,通讯作者, 同等贡献,作者去世,等等......(具我所知,标注死亡是很少见的。)写论文的时候,作者标注的使用要查询杂志的要求,是重要的论文格式。
- 基百科上将其译作「剑标」,置于作者姓名旁边的时候象征该作者已经过世。

其他符号

运算符	说明	代码	示例
\ldots	底端对齐的省略号	\$1, 2, \ldots, n\$	$1,2,\ldots,n$
\cdots	中线对齐的省略号	$x_1^2 + x_2^2 + \cot x + x_n^2$	$x_1^2+x_2^2+\cdots+x_n^2$
\vdots	竖对齐的省略号	\$1, 2, \vdots, n\$	$1,2,\dot{:},n$
\ddots	矩阵对齐的省略号	\$1, 2, \ddots, n\$	$1,2,\overset{\cdot}{\cdots},n$
\star	*五角星	\$\star\$	*
\ast	*雪花	\$\ast\$	*
\circ	。圆点	\$\circ\$	0
\bullet	·实着重号	<pre>\$\bullet\$</pre>	•
\bigstar	*五角星	\$\bigstar\$	Undefined control sequence \bigstar
\bigcirc	。圆点	\$\bigcirc\$	\bigcirc
\aleph	×	\$\aleph\$	х
\Im	\mathfrak{I}	\$\Im\$	$\mathfrak I$
\Re	R	\$\Re\$	\mathfrak{R}

希腊字母

序 号	希腊字母 大写	· 语法	希腊字母 小写	语法	中文名 称	示例	意义
1	Α	\$A\$	α	\$\alhpa\$	阿尔法	$A \qquad lpha$	角度,系数,角加 速度
2	В	\$B\$	β	\$\beta\$	贝塔	B β	磁通系数,角度, 系数
3	Γ	\$\Gamma\$	γ	\$\gamma\$	伽马	$\Gamma \qquad \gamma$	电导系数,角度, 比热容比
4	Δ	\$\Delta\$	δ	\$\delta\$	德尔塔	Δ δ	变化量,屈光度, 一元二次方程中的 判别式
5	Е	\$E\$	€	<pre>\$\epsilon\$</pre>	伊普西 隆	$E \qquad \epsilon$	对数之基数 , 介电 常数
6	Z	\$Z\$	ζ	\zeta\$	泽塔	Z ζ	系数,方位角,阻 抗,相对粘度
7	Н	\$H\$	η	\eta\$	伊塔	$H \qquad \eta$	迟滞系数,效率
8	Θ	\$\Theta\$	θ	\$\theta\$	西塔	$\Theta \qquad heta$	温度,角度
9		\$1\$	ι	\$\iota\$	约塔	I ι	微小,一点

序 希 号	制字母 大写	语法	希腊字母 小写	语法	中文名 称	示例	意义
10	K	\$K\$	κ	\$\kappa\$	卡帕	$K - \kappa$	介质常数 , 绝热指 数
11	٨	\$\Lambda\$	λ	\$\lambda\$	兰姆达	$\Lambda \qquad \lambda$	波长 , 体积 , 导热 系数
12	М	\$M\$	μ	\$\mu\$	谬	$M~\mu$	磁导系数,微,动 摩擦系(因)数, 流体动力粘度
13	N	\$N\$	ν	\$\nu\$	纽	$N \qquad u$	磁阻系数,流体运 动粘度,光子频率
14	Ξ	\$\Xi\$	ξ	\$ \xi\$	克西	Ξ ξ	随机数 , (小)区 间内的一个未知特 定值
15	0	\$O\$	0	<pre>\$\omicron\$</pre>	欧 米 克 隆	O o	高阶无穷小函数
16	П	\$\Pi\$	π	\$ \pi\$	派	$\Pi = \pi$	圆周率 , π(n)表示 不大于n的质数个数
17	R	\$R\$	ρ	\rho\\$	柔	P - ho	电阻系数 , 柱坐标 和极坐标中的极 径 , 密度
18	Σ	\$\Sigma\$	σ	\$\sigma\$	西格玛	$\Sigma \qquad \sigma$	总和 , 表面密度 , 跨导 , 正应力
19	T	\$T\$	τ	\$\tau\$	陶	$T \qquad au$	时间常数,切应力
20	Υ	\$\Upsilon\$	υ	<pre>\$\upsilon\$</pre>	宇普西 隆	$\Upsilon = v$	位移
21	Φ	\$\Phi\$	ф	<pre>\$\phi\$</pre>	弗爱	$\Phi \qquad \phi$	磁通 , 角 , 透镜焦 度 , 热流量
22	Χ	\$X\$	χ	\$\chi\$	卡	X χ	统计学中有卡方 (χ^2)分布
23	Ψ	\$\Psi\$	Ψ	\$\psi\$	普赛	$\Psi \qquad \psi$	角速,介质电通量
24	Ω	\$\Omega\$	ω	\$\omega\$	欧米伽	$\Omega \qquad \omega$	欧姆,角速度,交 流电的电角度
异 体	Ε	\$E\$	3	<pre>\$\varepsilon\$</pre>	异体伊 普西隆	$E \qquad arepsilon$	
异 体	K	\$K\$	и	\$\varkappa\$	异体卡 帕	Undefined control sequence \varkapp	a
异 体	Θ	\$\Theta\$	ϑ	<pre>\$\vartheta\$</pre>	异体西 塔	Θ $artheta$	
异 体	П	\$\Pi\$	ω	\varpi\\$	异体派	P = arpi	
异 体	R	\$R\$	6	\$\varrho\$	异体柔	$R \qquad arrho$	
异 体	Σ	\$\Sigma\$	ς	<pre>\$\varsigma\$</pre>	异体西 格玛	Σ $arsigma$	
异 体	Ф	\$\Phi\$	φ	\varphi\\$	异体弗 爱	$\Phi \qquad arphi$	

字体

 语法
 字体
 例子
 效果

 \rm
 罗马体
 \${\rm 你好, abc, 123.}\$
 {你好, abc, 123.}

语法	字体	例子	效果
\mathrn	」 罗马体	\${\mathrm 你好, abc, 123.}\$	{你好, $abc, 123.$ }
\bf	黑体	\${\bf 你好, abc, 123.}\$	{你好, abc , 123. }
\Bbb	黑板粗体字	\${\Bbb 你好, abc, 123.}\$	{你好, $abc, 123.$ }
\mit	数学斜体	\${\mit 你好, abc, 123.}\$	{你好,abc, 123.}
\scr	小体大写字母	\${\scr 你好, abc, 123.}\$	{你好, ${ m abc}, 123.}$
\it	意大利体	\${\it 你好, abc, 123.}\$	{你好,abc, 123.}
\cal	花体	\${\cal 你好, abc, 123.}\$	{你好, <i>abc</i> , 123 .}
\sf	等线体	\${\sf 你好, abc, 123.}\$	{你好, abc, 123. }
\tt	打字机字体	\${\tt 你好, abc, 123.}\$	{你好, abc, 123.}
\frak	Fraktur字母 (一种德国字体)	\${\frak 你好, abc, 123.}\$	{你好, abc, 123.}

颜色

代码	效果
<pre>\$\color{black} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{gray} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{silver}{Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{white} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{maroon} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{red} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{yellow} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{lime} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{olive} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{green} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{teal} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{aqua} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{blue} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{navy} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{purple} {Hello World!}\$</pre>	HelloWorld!
<pre>\$\color{fuchsia} {Hello World!}\$</pre>	HelloWorld!

Feedback? Create an issue on the GitHub repository.

Have an idea? Read our contribution guidelines.

© 2017 waterbolik@163.com

As a work of the WaterBolik, this project is in the public domain.