Table of Contents

Section A)

```
determinants = [];
alphas = 0:0.01:3;
alphaZeros = [];
posicio = [];
figure(1)
i = 1;
for alpha = alphas
    f = @(phi)([tan(phi(1)) - alpha * (2 * sin(phi(1)) + sin(phi(2)));
 tan(phi(2)) - 2 * alpha * (sin(phi(1)) + sin(phi(2)))]);
    phi = [0, 0];
    j = jaco(f, phi);
    determinants = [determinants, det(j)];
    if abs(det(j)) < 0.01
        alphaZeros = [alphaZeros, alpha];
        posicio = [posicio i];
    end
    i = i + 1;
end
Det0 = [determinants(posicio(1)), determinants(posicio(2))];
plot(alphas, determinants, 'LineWidth', 2)
hold on
title('Det(J(0,0)) as a function of alpha')
xlabel('Alpha')
ylabel('Det(J(0,0))')
```

```
plot(alphaZeros, Det0, '*')
% The implicit function theorem (imft) states that as long as the
   jacobian
% is non-singular (det non zero) the system will define phi(1) and
   phi(2)
% as a unique functions of aplha, so we'll have a unique map between
% the solutions and alphas
%When the determinant is zero the uniqueness will be lost locally
   nearby
% the aplha points which make the determinant 0 and new branches of
% solution may emerge.
disp('The alpha values that make zero the determinant are more less:')
disp(alphaZeros)
```

The alpha values that make zero the determinant are more less: $0.2900 \quad 1.7100$

Section B)

```
%addpath('..Practica_5')
x = 0.01;
alphas = 0:x:2;
% Dominis dels angles
dom1 = [0, pi / 2];
dom2 = [-pi / 2, pi / 2];
```

```
factor = [dom1(2); (dom2(1) - dom2(2))];
a = [dom1(1); dom2(1)];
aleatoryTimes = 1:20;
sol = [];
alphasol = [];
figure(2)
for alpha = alphas
    f = @(phi)([(tan(phi(1)) - alpha * (2 * sin(phi(1)) +
 sin(phi(2))), (tan(phi(2)) - 2 * alpha * (sin(phi(1)) +
 sin(phi(2))))]);
    for i = aleatoryTimes
        aleatory = rand(2, 1);
        phi0 = aleatory .* factor - a;
        %Formula per canviar de escala i moure:
        x*(a-b) - a
        [XK, resd, it] = newtonn(phi0, 1e-6, 100, f);
        % Comprobar que estigui dintre el domini
        if XK(1, end) > dom1(1) && XK(1, end) < dom1(2) && XK(2, end)
 > dom2(1) \&\& XK(2, end) < dom2(2)
            sol = [sol, XK(:, end)];
            alphasol = [alphasol, alpha];
        end
    end
end
subplot(2, 1, 1)
plot(alphasol, sol(1, :), 'o', 'Color', 'blue')
axis([0 2 -0.8 1.6])
title('Phil as a function of alpha')
xlabel('Alpha')
ylabel('Phi1')
subplot(2, 1, 2)
plot(alphasol, sol(2, :), 'o', 'Color', 'y');
axis([0 2 -0.8 1.6])
title('Phi2 as a function of alpha')
xlabel('Alpha')
ylabel('Phi2')
figure(3)
plot(alphasol, sol(2, :), 'o', 'Color', 'y');
hold on
plot(alphasol, sol(1, :), 'o', 'Color', 'blue')
axis([0 2 -0.8 1.6])
title('Angles of rotation as a function of alpha')
legend('Phi2', 'Phi1', 'Location', 'southwest', 'Interpreter', 'latex')
xlabel('Alpha')
ylabel('Phi')
hold off
```


Section c)

```
%Agafem les primeres solucions de la drieta:
%As it has been seen analitically there are two alpha's that make zero
%jocobian determinant, this alphas are 0.293 and 1.707, so the in
 order to
%obtand all the solutions with the secant continuation step we will
 take 3
%difrent y0 and y1 at the right plot of the anterious exercise
funAlpha = @(y)([tan(y(1)) - y(3) * (2 * sin(y(1)) + sin(y(2)));
 tan(y(2)) - 2 * y(3) * (sin(y(1)) + sin(y(2)))]);
figure(4)
epsilon = 0.01;
alphas = [2 - epsilon, 2 - 2 * epsilon];
MP = [[]];
dom1 = [0, pi / 2];
dom2 = [-pi / 2, pi / 2];
% Trobem ara dos solucions per dos alphas diferents per tirar el
 continuationStep:
% Ens guiem per el plot fet anteriorment per trobar les solucions
diferents que volem
% Sabem que hi haura 3 solucions: La 0 (trivial), una per sobre 0.6 i
 una per sota. Trobarem aquestes dos ultimes
for jj = 1:2
    sol1 = 0; % Si es 0 es que falta trobarla:
    sol2 = 0;
    alpha = 2 - jj*epsilon;
    f = @(phi)([(tan(phi(1)) - alpha * (2 * sin(phi(1)) +
 sin(phi(2))), (tan(phi(2)) - 2 * alpha * (sin(phi(1)) +
 sin(phi(2))))]);
    while sol1 == 0 | sol2 == 0
        aleatory = rand(2, 1);
        phi0 = aleatory .* factor - a;
        x*(a-b) - a
        [XK, resd, it] = newtonn(phi0, 1e-16, 100, f);
        % Comprobar que estigui dintre el domini
        if XK(1, end) > dom1(1) && XK(1, end) < dom1(2) && XK(2, end)
 > dom2(1) \&\& XK(2, end) < dom2(2)
            % I a mes que no siqui 0:
            if XK(1, end) > epsilon \mid \mid XK(1, end) < (-0.001)% El blau
 sempre esta per sobre i nomes cal que comprobem aquest
                %Classificar si es de dalt o de sota
                if XK(1, end) > 0.6
                    MP(:, jj) = [XK(:, end); alpha];
                    sol1 = 1;
                else
                    MP(:,jj+2) = [XK(:,end); alpha];
```

```
sol2 = 1;
                end
            end
        end
    end
end
% Hi afegim la solució 0,0 tambe:
MP(:,5) = [0; 0; 2-epsilon];
MP(:,6) = [0; 0; 2-2*epsilon];
%Matriu dels punts on s'iniciaran els contSteps cap a la esquerra:
% Solucions:
MΡ
s = 1; % En un principi utilitzarem s = 1 per mantenir una separacio
mes o menys similar entre les solucions.
% Aquesta separacio vindra definida per el parametre epsilon declarat
anteriorment.
tol = 1e-6;
itmax = 100;
Y = [];
for it = 1:2:length(MP)% Tirarem el continuation step en les 3
 branques de solucions trobades:
    y0 = MP(:, it);
    y1 = MP(:, it + 1);
    disp(y0)
    y = y1;
    while y(3) < 2 \&\& y(3) > 0 \&\& s > 0
        [y, iconv] = continuationStep(funAlpha, y0, y1, s, tol,
 itmax);
        if iconv == 1 % No hem aconseguit solució i ajustem s
            s = s - 0.1; % Si la s arriba a 0 desistirem i no buscarem
 mes solucions
        else
            y0 = y1;
            y1 = y;
            % Nomes les guardem si estan dintre el domini
            if y(1, end) > dom1(1) && y(1, end) < dom1(2) && y(2, end)
 > dom2(1) \&\& y(2, end) < dom2(2)
                Y = [Y, y]; %solucions
            end
        plot(Y(end, :), Y(1:2, :), 'o');
        hold on
    end
end
hold off
```

```
% Dibuix del pendul en alfa = 2.14:
% Com que volem una alfa determinada utilitzarem el metode de newton
amb exploracio i
% no el del continuationStep per trobar les solucions:
figure(5)
aleatoryTimes = 1:1:1000;
alpha = 2.14;
f = @(phi)([(tan(phi(1)) - alpha * (2 * sin(phi(1)) + sin(phi(2))))),
 (tan(phi(2)) - 2 * alpha * (sin(phi(1)) + sin(phi(2))))));
for i = aleatoryTimes
    aleatory = rand(2, 1);
    phi0 = aleatory .* factor - a;
    x*(a-b) - a
    [XK, resd, it] = newtonn(phi0, 1e-16, 100, f);
    % Comprobar que estigui dintre el domini
    if XK(1, end) > dom1(1) && XK(1, end) < dom1(2) && XK(2, end) >
 dom2(1) \&\& XK(2, end) < dom2(2)
            plot(alpha, XK(1, end), '*'); %phi1
            plot(alpha, XK(2,end), '*') %phi2
            hold on
    end
end
hold off
% Canviem ara la direccio en la que tirem el continuationStep i anem
cap a la dreta.
% Posarem com a maxim alfa = 3;
maxAlfa = 3;
perDibuixar = [];
figure;
% Tirarem el continuation step en les 3 branques de solucions trobades
anteriorment:
for it = 1:2:length(MP)
    y1 = MP(:, it); % Per ferho cal canviar el sentit, ja que ara
 anirem cap a la dreta
    y0 = MP(:, it + 1);
    y = y0;
    sensePintar = 1;
    while y(3) < \max Alfa && y(3) > 0 && s > 0
        [y, iconv] = continuationStep(funAlpha, y0, y1, s, tol,
 itmax);
        if iconv == 1 % No hem aconseguit solució i ajustem s
            s = s - 0.1; % Si la s arriba a 0 desistirem i no buscarem
 mes solucions
        else
            y0 = y1;
            y1 = y;
            Y = [Y, y]; %solucions
            % Pintarem el pendul solament una vegada:
```

```
if abs(alpha-y(3)) < epsilon && sensePintar == 1</pre>
                perDibuixar = [perDibuixar, y];
                sensePintar = 0;
            end
        end
        plot(Y(end, :), Y(1:2, :), 'o');
    end
end
hold off
% Dibuixem els pendols:
for ii = perDibuixar
    figure;
    dibuixarPendul(ii(1), ii(2), 1);
end
% Com es pot observar, les solucions continuen cap a la dreta amb
normalitat.
% No es troben noves branques ni amb el continuationStep ni amb
l'exploracio newton aleatoria
% Per tant determinem que no hi ha noves branques.
% Aixo es deu a que les noves branques nomes poden neixer quan el
determinant del jacobia es 0.
% Mirem com evoluciona el jacobia per alfas mes grans de dos i veiem
 que no torna a ser 0 (fet a l'exercici a)
MP =
    1.4028
              1.4020
                        0.4171
                                   0.4114
                                                   0
                                                             0
    1.4444
              1.4438
                       -0.6281
                                  -0.6181
                                                   0
                                                             0
    1.9900
              1.9800
                        1.9900
                                   1.9800
                                             1.9900
                                                        1.9800
    1.4028
    1.4444
    1.9900
    0.4171
   -0.6281
    1.9900
         0
         0
    1.9900
```

Published with MATLAB® R2019b