bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA

Charlie Hoy, Laura K. Nuttall

Connecting LVK/LISA Waveform Infrastructures 08/05/2024

MNRAS 529,3,3052–3059 (2024)

bilby

"Bilby: a user-friendly Bayesian inference library. The aim of bilby is to provide a user-friendly interface to perform parameter estimation"

Ashton et al. ApJS 241 27 (2019)

Abbott et al. PRX 13, 041039 (2023)

bilby

Hoy and Nuttall | charlie.hoy@port.ac.uk | University of Portsmouth

Active use and development

Bilby: A user-friendly Bayesian inference library for gravitational-wave astronomy

Gregory Ashton, ^{1,2}, Moritz Hübner, ^{1,2}, Paul D. Lasky, ^{1,2} Colm Talbot, ^{1,2}, Kendall Ackley, ^{1,2} Sylvia Biscoveanu, ^{3,1,2} Qi Chu, ^{4,5} Atul Divarkala, ^{6,1,2} Paul J. Easter, ^{1,2} Boris Goncharov, ^{1,2} Francisco Hernandez Vivanco, ^{1,2} Jan Harms, ^{7,8} Marcus E. Lower, ^{9,10,1} Grant D. Meadors, ^{1,2} Denyz Melchor, ^{11,1,2} Ethan Payne, ^{1,2} Matthew D. Pitkin, ¹² Jade Powell, ^{9,10} Nikhil Sarin, ^{1,2} Rory J. E. Smith, ^{1,2} and Eric Thrane^{1,2}

https://git.ligo.org/lscsoft/bilby/-/analytics/issues_analytic

S

Interface to multiple samplers

Nested Samplers Dynesty: bilby.core.sampler.dynesty.Dynesty Nestle bilby.core.sampler.nestle.Nestle CPNest bilby.core.sampler.cpnest.Cpnest PyMultiNest bilby.core.sampler.pymultinest.Pymultinest PyPolyChord bilby.core.sampler.polychord.PyPolyChord UltraNest bilby.core.sampler.ultranest.Ultranest DNest4 bilby.core.sampler.dnest4.DNest4 Nessai bilby.core.sampler.nessai.Nessai

Bilby interfaces with a large (and growing) number of off-the-shelf samplers, but Dynesty has been extensively used in other studies. For details see: https://lscsoft.docs.ligo.org/bilby/samplers.html

bilby_lisa

- bilby_lisa is an extension of bilby, bilby_pipe, parallel_bilby which adds functionality for LISA data analysis
- bilby_lisa adds the LISA detector, and custom source models to bilby
- All the functionality in bilby can be used with bilby_lisa, e.g. marginalizations (phase, time, distance) and accelerated likelihoods (heterodyned, ROQ, multibanded)

Implemented LISA models

bilby_lisa can generate LISA waveforms via BBHx, a package that generates GW polarizations, projects them onto LISA to form an arm response and generates waveforms in the TDI channels, via: bilby_lisa.source.lisa_binary_black_hole.

Interfacing with other models

bilby already interfaces with the "new waveforms interface" (see Frank Ohme's talk 07/05/2024) via: bilby.gw.source.gwsignal_binary_black_hole.bilby_lisa could also interface with the "new waveforms interface" in the above workflow. Other models can be added to the bilby_lisa source code, or via plugins (I am happy to add this functionality if useful).

Interfacing with other models

I am working with Jonathan Thompson to interface with FastEMRIWaveforms (see Lorenzo Speri's talk on 08/05/2024) via:

bilby_lisa.source.lisa_extreme_mass_ratio_inspiral

Generating waveforms

```
Or create your
params = {} # dictionary of parameters
                                                                                  favourite source
                                                                                       model!
generator = bilby.gw.waveform_generator.WaveformGenerator(
    duration=31536000.0, sampling_frequency=sampling_frequency,
    start_time=0., frequency_domain_source_model=bilby_lisa.source.lisa_binary_black_hole,
    waveform_arguments={
        "waveform_approximant": "BBHx_IMRPhenomD", "reference_frame": "LISA",
        "ifos": ["LISA_A", "LISA_E", "LISA_T"]
ht = generator.frequency_domain_strain(params)["LISA_A"]
freqs = generator.frequency_array
h = generator.time_domain_strain(params)["LISA_A"]
times = generator.time_array
```

pip install bilby_lisa

Data analysis with bilby_lisa

```
## Detector arguments
detectors=[LISA]
tdi=[A, E, T]
duration=2628000.0 # Approximately 30 days of data
## Job submission arguments
analysis_executable_parser=bilby_lisa.bilby_pipe.create_parser
## Waveform arguments
waveform-approximant=BBHx_IMRPhenomD
waveform-arguments-dict={'reference_frame':'LISA', t_obs_start:0.8}
                                      Or create your
frequency-domain-source-model=bilby_lisa.source.lisa_binary_black_hole
                                     favourite source
                                        model!
```

Data analysis with bilby_lisa

Demonstration: Zero noise injections

Performed full nested sampling with the dynesty sampler via bilby and parallel_bilby (a parallelized version of bilby)

We recovered the injected values to good accuracy.

Full Whittle (Heterodyned) analysis performed on 512 (32) CPUs with total sampling time: 80 (14) hours.

Demonstration: Gaussian noise

Summary

- **bilby** is the main workhorse of the LIGO-Virgo-KAGRA collaboration for gravitational-wave Bayesian inference, and it is actively developed/maintained.
- bilby_lisa is an extension of bilby to perform Bayesian inference for transient gravitational-wave signals observed with LISA
- bilby_lisa has the ability to interface with a range of samplers (although only tested with dynesty) and likelihood optimisations (although only tested with the whittle and heterodyned likelihoods). In principle these should work with LISA.
- Complements work done by PyCBC: It is good to have multiple independent implementations to check for systematics etc. There is also a strong benefit to use tools that are already being used for gravitational-wave Bayesian inference.

Questions

Likelihoods - Heterodyned

The heterodyned likelihood assumes that the ratio of two points is a smoothly varying function. Summary data for a fiducial point can then be pre-computed. This likelihood requires knowing a fiducial point *a priori*.

Likelihoods - ROQ

The ROQ likelihood works by identifying a reduced basis that accurately describes the waveform model over a reduced parameter space. This likelihood requires pre-computing the appropriate basis.

Likelihoods - Multiband

The multibanded likelihood splits the waveform into multiple frequency bands, and uses a varying delta_f in each band. This likelihood does not require any pre-calculations.