ECE 3043

Summer 2018 Homework Problem Set No. 10 for Experiment No. 11

Due Second Meeting Week of July 9

- 1. Use both Multisim and LT SPICE to plot the voltage transfer characteristic V_o versus V_i for the circuit shown below for $-5\,\mathrm{V} \le V_i \le 5\,\mathrm{V}$. Assume that the op amp is ideal and that each of the four diodes has as its dominant SPICE parameters: Reverse Breakdown Voltage $100\,\mathrm{V}$, Emission Coefficient 1.8, and Reverse Saturation Current $12.61f\,\mathrm{A}$. The component values are: $V^+ = 15\,\mathrm{V}$, $V^- = -15\,\mathrm{V}$, $R_1 = 1\,\mathrm{k}\Omega$, $R_2 = 3\,\mathrm{k}\Omega$, $R_3 = 5.1\,\mathrm{k}\Omega$, and $R_4 = 5.1\,\mathrm{k}\Omega$. Compare the simulation results with the theoretically expected values with regard to break points and slopes. Also plot the currents in the four diodes as functions of V_i .
- 2. Use both Multisim and LT SPICE to plot the output voltage $v_o(t)$ as a function of time for the circuit shown below if the input is

$$v_i(t) = A\sin(\omega t)$$

where $A=5\,\mathrm{V}$ and $f=1\,\mathrm{kHz}$ for two cycles of $v_i(t)$. Compare the peak value of the output from the simulation with the theoretically expected value. Use both Multisim and LT SPICE to plot the spectra output voltage as a function of frequency from $0\,\mathrm{Hz}$ to $20\,\mathrm{kHz}$.

