Aufgabe 1

Wir fixieren das Alphabet $\Sigma = \{a,b\}$ und definieren $L \subseteq \Sigma^*$ durch

 $L = \{ w \mid \text{in } w \text{ kommt das Teilwort bab vor } \}$

z. B. ist babaabb $\in L$, aber baabaabb $\notin L$. Der folgende nichtdeterministische Automat A erkennt L:

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Af75jwj3r

(a) Wenden Sie die Potenzmengenkonstruktion auf den Automaten an und geben Sie den resultierenden deterministischen Automaten an. Nicht erreichbare Zustände sollen nicht dargestellt werden.

Zustandsmenge	Eingabe a	Eingabe b	
$Z_0 \{z_0\}$	$Z_0 \{z_0\}$	$Z_1 \{z_0, z_1\}$	
$Z_1 \left\{ z_0, z_1 \right\}$	$Z_2\left\{z_0,z_2\right\}$	$Z_1 \{z_0, z_1\}$	
$\mathbb{Z}_2\left\{z_0,z_2\right\}$	$Z_0 \{z_0\}$	$Z_3 \{z_0, z_1, z_3\}$	
$Z_3 \{z_0, z_1, z_3\}$	$Z_4 \{z_0, z_2, z_3\}$	$Z_3 \{z_0, z_1, z_3\}$	
$Z_4 \{z_0, z_2, z_3\}$	$Z_5\left\{z_0,z_3\right\}$	$Z_3 \{z_0, z_1, z_3\}$	
$\mathbb{Z}_5\left\{z_0,z_3\right\}$	$\mathbb{Z}_5\left\{z_0,z_3\right\}$	$Z_3 \{z_0, z_1, z_3\}$	

 (b) Konstruieren Sie aus dem so erhaltenen deterministischen Automaten den Minimalautomaten für L. Beschreiben Sie dabei die Arbeitsschritte des

 $verwendeten\ Algorithmus\ in\ nach vollziehbarer\ Weise.$

z_0	Ø	Ø	Ø	Ø	Ø	Ø
z_1	<i>x</i> ₃	Ø	Ø	Ø	Ø	Ø
z_2	x_2	x_2	Ø	Ø	Ø	Ø
z_3	x_1	x_1	x_1	Ø	Ø	Ø
z_4	x_1	x_1	x_1		Ø	Ø
<i>z</i> ₅	x_1	x_1	x_1			Ø
	z_0	z_1	z_2	<i>z</i> ₃	z_4	<i>z</i> ₅

- x_1 Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- x_2 Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- x_3 In weiteren Iterationen markierte Zustände.
- *x*₄ ...

Übergangstabelle

Zustandspaar	a	b
	$(z_0, z_2) x_3$	
(z_0, z_2)	(z_0, z_0)	$(z_1,z_3) x_2$
(z_1, z_2)	$(z_2, z_0) x_3$	$(z_1,z_3) x_2$
(z_3, z_4)	(z_4, z_5)	(z_3,z_3)
(z_3,z_5)	(z_4, z_5)	(z_3, z_3)
(z_4, z_5)	(z_5, z_5)	(z_3,z_3)

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Ar3joif5z