Summer Semester 2017 To be Discussed on: 11th May 2017

Exercise 2

Window Models

- 1. What is the main difference between a Sliding and Landmark windows?
- 2. Consider the scenario of Exercise 1, Task 2. We still consider the reviews as a stream with the timepoint being the 1st of each month. Let the window size be 3 months. Calculate
 - a. For timepoint t_i, the number of reviews in the window
 - b. For timepoint t_i, the number of positive/negative reviews in the window
 - c. For timepoint t_i, the number of users in the window

Use a Sliding window and Landmark window for the above calculations.

- 3. In your implementation have you maintained any sufficient statistics? If yes, can you define them and any operators that you have used? If no, are there any disadvantages to your implementation?
- 4. For a damped window model, consider the fading function $f(t) = 2^{-\lambda t}$ where t is the timepoint and λ is a user-defined parameter. What is the weight of an instance x observed at timepoint T(T>t)? Calculate the weight of the instance x at t_0,t_1,t_2,t_3,t_4 since t_0 . Plot a graph of weight vs timepoint.

CluStream Algorithm

5. With q = 5, determine the initial micro-clusters for the following set of initial points.

Х	у
6	2
7	3
6.5	1
1	1
2	2
3	1
3	2.5
2	8
2	6
2.5	7
4	7
	6 7 6.5 1 2 3 3 2 2 2.5

Use the following points for the initial cluster centers: (1, 1), (2.5, 2), (2, 7), (4, 7), (6, 2)

6. Perform the online step of the CluStream Algorithm for the following stream of points: (2, 7), (2.5, 3), (3.5, 7), (7, 8), (6, 7), (2.5, 2), (5, 5).

Т	Х	у
12	2	7
13	2.5	3
14	3.5	7
15	7	8
16	6	7
17	2.5	2
18	5	5

The maximum boundary of the micro-cluster is defined as follows:

For micro-cluster with more than 1 point: It is 2 times the micro-cluster radius

For a single point micro-cluster: distance to the closest micro-cluster

To calculate relevancy of the micro-cluster use a time window of 10 timepoints.

7. Perform the offline step to form 3 clusters. (HINT: No need to perform Step 1 of the of the Offline step)