Sample Mid-Term Examination

Communications II, Spring 2021

Consider the random process, $X(t) = A\cos(2\pi t) - B\sin(2\pi t)$, where A and B are two independent random variables with zero mean and unit variance. (Answer questions 1) – 3) based on the above)

1)
$$E\{X(t)\} = \boxed{0}$$

2)
$$E\{X(t)X(t+\tau)\} = \boxed{b}$$

a.
$$\sin(2\pi\tau)$$
; b. $\cos(2\pi\tau)$; c. $\frac{\cos(2\pi\tau)+\sin(2\pi\tau)}{2}$; d. $\frac{\cos(2\pi\tau)-\sin(2\pi\tau)}{2}$

- 3) Whether the random process, X(t), is wide-sense stationary (WSS) or not? \boxed{Q}
 - a. yes; b. no; c. not sure.

4) Let $u(t) = \cos(2\pi \times 1005 \times t)$ be a passband signal corresponding the carrier frequency, $f_c = 1000 \text{ Hz}$. The corresponding in-phase signal and quadrature signal will be \square

$$\text{a.} \quad u_{\scriptscriptstyle I}(t) = \cos \left(2\pi \times 5 \times t\right), \ u_{\scriptscriptstyle Q}(t) = \sin \left(2\pi \times 5 \times t\right);$$

b.
$$u_I(t) = 0$$
, $u_Q(t) = \sin(2\pi \times 5 \times t)$;

c.
$$u_I(t) = \cos(2\pi \times 5 \times t)$$
, $u_Q(t) = 0$;

d.
$$u_I(t) = \cos(2\pi \times 5 \times t)$$
, $u_Q(t) = -\sin(2\pi \times 5 \times t)$;

Consider a passband Gaussian noise, n(t), with the power spectrum density function as

$$S_n(f) = \begin{cases} 2, & |f - f_c| \le 1 \text{ or } |f + f_c| \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

where f_c (\gg 3) is the career frequency. Denote the corresponding in-phase noise and quadrature noise components as $n_I(t)$ and $n_Q(t)$, respectively. Then the passband noise can be expressed as $n(t) = n_I(t)\cos(2\pi f_c t) - n_Q(t)\sin(2\pi f_c t)$. (Answer questions 5) – 6) based on the above)

- 5) Then $E\{n_I^2(t)\} = \boxed{\boxtimes}$ and $E\{n_Q^2(t)\} = \boxed{\boxtimes}$;
- **6)** What is the distribution of its envelop, $r(t) = \sqrt{n_I^2(t) + n_Q^2(t)}$?
 - a. Exponential distribution; b. Rayleigh distribution; c. Rice distribution; d. not sure.

- 7) Consider a message signal, m(t), with bandwidth W = 1500 Hz (2W if counting negative frequency). If double-sideband (DSB) modulation is used with carrier frequency $f_c = 6000 \text{ Hz}$, then the bandwidth of passband signal will be
 - a. 1500 Hz (double if including the negative frequency)
 - b. 3000 Hz (double if including the negative frequency)
 - c. 6000 Hz (double if including the negative frequency)
 - d. 12000 Hz (double if including the negative frequency)
- 8) Consider a message signal, m(t), with bandwidth W = 1500 Hz (2W if counting negative frequency). If signal-sideband (SSB) modulation is used with carrier frequency $f_c = 6000 \text{ Hz}$, then the bandwidth of passband signal will be
 - a. 1500 Hz (double if including the negative frequency)
 - b. 3000 Hz (double if including the negative frequency)
 - c. 6000 Hz (double if including the negative frequency)
 - d. 12000 Hz (double if including the negative frequency)
- 9) Consider a message signal, m(t), with bandwidth W = 1500 Hz (2W if counting negative frequency). If standard amplitude modulation (standard AM) is used with carrier frequency $f_c = 6000 \text{ Hz}$, then the bandwidth of passband signal will be
 - a. 1500 Hz (double if including the negative frequency)
 - b. 3000 Hz (double if including the negative frequency)
 - c. 6000 Hz (double if including the negative frequency)
 - d. 12000 Hz (double if including the negative frequency)

Consider a message signal, $m(t) = \cos\left(100\pi t\right)$. If the standard AM is used, then the modulated signal can be expressed as $s_{AM}(t) = \left(A + m(t)\right)\cos\left(2\pi \times 60000 \times t\right)$. (Answer questions 10) – 11) based on the above)

- **10)** To ensure coherent detection without distortion, then A should be \boxed{a}
 - a. A = 0;
 - b. 0 < A < 1;
 - c. $A \ge 1$;
 - d. All above.
- 11) To ensure envelop detection without distortion, then A should be \Box
 - a. A = 0;
 - b. 0 < A < 1;
 - c. $A \ge 1$;
 - d. All above

Consider a message signal, m(t), with bandwidth W = 1000 Hz (2W if including negative frequency) and $m_p = \max |m(t)| = 2$. Frequency modulation (FM) is used with carrier frequency $f_c = 4000$ kHz and frequency sensitivity $k_f = 2500$ and the receiver as the following diagram is used to demodulate the massage signal.

- 12) The bandwidth of the modulated signal, according to the Carson's rule of thumb, is
 - a. $B_T = 1000 \text{ Hz}$;
 - b. $B_T = 2000 \text{ Hz}$;
 - c. $B_T = 6000 \text{ Hz}$;
 - d. $B_T = 12000 \text{ Hz}$;
- 13) The bandwidth of the bandpass filter in the block diagram is C
 - a. 1000 Hz (double if including the negative frequency);
 - b. 2000 Hz (double if including the negative frequency);
 - c. same as the Carson's bandwidth (double if including the negative frequency);
 - d. twice of the Carson's bandwidth (double if including the negative frequency);
- 14) The bandwidth of the baseband low-pass filter in the block diagram is Ω
 - a. 1000 Hz (double if including the negative frequency);
 - b. 2000 Hz (double if including the negative frequency);
 - c. same as the Carson's bandwidth (double if including the negative frequency);
 - d. twice of the Carson's bandwidth (double if including the negative frequency);

- 15) For the band-limited signal, $s(t) = 0.2 + 2\cos(200\pi t \frac{\pi}{4}) 0.5\sin(3000t) + \cos(1000\pi t)$, what is the minimum sample frequency/rate, f_s , to ensure exact reconstruction from its samples?
 - a. $f_s = 200 \text{ Hz}$;
 - b. $f_s = 500 \text{ Hz}$;
 - c. $f_s = 1000 \text{ Hz}$;
 - d. $f_s = 3000 \text{ Hz}.$
- **16)** Which of the following is **not** true on quantization?
 - a. For uniform quantization, increasing the number of encoded bits for each symbol/sample by one will reduce the average power of quantization error by 6 dB;
 - b. For uniform quantization, the number of quantization levels will increase linearly with the number of encoded bits;
 - c. Non-uniform quantization (or companding) reduces the average power of the quantization error;
 - d. Non-uniform quantization (or companding) may increase quantization error for signal in certain range.