

Codinthenerd

not the god

04.11.2016

Application: Predictive maintenance of plastic injection molding machines

Delivery: High-performance ultrasonic amplification circuit, digitization, Ethernet/USB driver and individual software

std::variant

std::variant< MontoringSystems, PhysicalSensors, PowerOverEthernet, TimeSeriesDataProcessing, ComeToEmBO>

std::variant


```
union U {
    uint8_t i;
    bool b;
};
int main() {
    U u;
    u.i = 10;
    std::println("{}",u.i);
    return 0;
}
```



```
union U {
    uint8_t i;
    bool b;
};
int main( ) {
    U u;
    u.i = 10;
    std::println("{}",u.i);
    return 0;
```

```
union U {
    uint8_t i;
    bool b;
};
int main( ) {
    U u;
    u.b = false;
    std::println("{}",u.b);
    return 0;
```

```
union U {
    uint8_t i;
    bool b;
};
int main( ) {
    U u;
    u.i = false;
    std::println("{}",u.b);
    return 0;
```



```
union U {
    uint8_t i;
    bool b;
};

int main() {
    U u;
    u.i = false;
    std::println("{}",u.b);
    return 0;
}
```


Discriminated union

```
std::variant<int,std::string> v = "one million dollars";
v = 1000000;
if(std::holds_alternative<int>(v)){
   int i = std::get<int>(v);
```


Discriminated union

```
std::variant<int,std::string> v = "one million dollars";
v = 1000000;
if(std::holds_alternative<int>(v)){
   int i = std::get<int>(v);
```


That is O(n) => spaghetti

```
std::variant<int,std::string> v = "one million dollars";
v = 1000000;
if(std::holds_alternative<int>(v)){
    int i = std::get<int>(v);
```


That is O(n) => spaghetti

```
std::variant<int,std::string /*...*/> v = "one million dollars";
v = 1000000;
if(std::holds_alternative<int>(v)){
    int i = std::get<int>(v);
```


That is O(n) => spaghetti

```
std::variant<int,std::string /*...*/> v = "one million dollars";
v = 1000000;
if(std::holds_alternative<int>(v)){
    int i = std::get<int>(v);
```


How about in O(1)

```
std::variant<int,std::string> v = "one million dollars";
v = 1000000;
std::visit(visitor{}, v);
```


What is std::variant?

```
std::variant<int,std::string> v = "one million dollars";
v = 1000000;
struct visitor{
    void operator()(int i){
        //int stuff
    void operator()(std::string s){
        //string stuff
std::visit(visitor{}, v);
```


I think about visit as a multiplexed/overloaded function call

```
T t;
f(t);

//vs

std::variant<Ts...> v;
std::visit(fs,v);
```


I think about visit as a multiplexed/overloaded function call

```
T t;
f(t);

//vs

std::variant<Ts...> v;
std::visit(fs,v);
```


this seem more logical to me but we'll get back to that later

```
T t;
f(t);
//vs

std::variant<Ts...> v;
fs(v);
```


What about evil?

not evil yet

```
struct dr_evil{
    dr_evil& operator=(const dr_evil& other){
    }
};
```


now its evil


```
struct dr_evil{
    dr_evil& operator=(const dr_evil& other){
        throw diabolical_plot{};
    }
};
```


what state is v in?

```
struct dr_evil{
    dr_evil& operator=(const dr_evil& other){
        throw diabolical_plot{};
    }
};

v = dr_evil{};
```


what should visit do?

```
struct dr_evil{
    dr_evil& operator=(const dr_evil& other){
        throw diabolical_plot{};
    }
};

v = dr_evil{};
//...
std::visit(visitor{},v);
```


~30 years of discussion

boost::variant

boost::variant2

QVariant

• std::variant

I've got other problems

```
template<typename T, typename U>
void do_generic_stuff(){
    struct visitor{
       void operator()(const T& t){
       void operator()(const U& u){
   };
    std::visit(visitor{},f());
```


Mo' legacy mo' problems

```
std::variant<OBSCURE_OS_ERROR_TYPE,int> f(){
   if(stuff_works()){
      return 43;
   }
   return OS_CODE_SOMETHING_IS_WRONG_IN_THE_STATE_OF_DENMARK;
}
```


Mo' legacy mo' problems

```
std::variant<OBSCURE_OS_ERROR_TYPE,int> f(){
   if(stuff_works()){
      return 43;
   }
   return OS_CODE_SOMETHING_IS_WRONG_IN_THE_STATE_OF_DENMARK;
}
```


Mo' legacy mo' problems

```
std::variant<OBSCURE_OS_ERROR_TYPE,int> f(){
   if(stuff_works()){
      return 43;
   }
   return OS_CODE_SOMETHING_IS_WRONG_IN_THE_STATE_OF_DENMARK;
}
```


What if T and U are the same type?

```
template<typename T, typename U>
void do_generic_stuff(){
    struct visitor{
       void operator()(const T& t){
       void operator()(const U& u){
    };
    std::visit(visitor{},f());
```


Less memory mo' problems

```
my_buffer<std::variant<bool,char,std::array<long, 10000>>> buff;
buff.push(true);
```


Less memory mo' problems

```
my_buffer<bool,char,std::array<long, 10000>> buff;
buff.push<bool>(true);
```


Think real hard.

Think real hard.

Write down the answer.

a variant is a type safe visitable closed sum type with fixed layout

a variant is a type safe visitable closed sum type with fixed layout


```
visitor(
          converter(
                discriminator(sum),
                sum
          )
);
```



```
struct sum_type{
   int type;
   char data[1024]
};
```



```
struct sum_type{
    int type;
    char data[1024]
};

template<typename T>
int discriminator(const T& s){
    return s.type;
}
```



```
template<typename...Ts>
struct converter{
    template<std::size_t I, typename T>
    auto operator()(std::integral_constant<I>,T& t){
        return *static_cast<call_<at_<int_<I>>,Ts...>*>(
            static_cast<void*>(t.data)
        )
    }
}
```



```
template<typename...Ts>
struct converter{
   template<std::size_t I, typename T>
   auto operator()(std::integral_constant<I>,T& t){
      return *static_cast<call_<at_<int_<I>>>,Ts...>*>(
        static_cast<void*>(t.data)
   )
   }
}
```



```
fun_ptr_type arr[]{
    [](auto f, auto s){
        return f(mp::int_<0>{}, s);
    },
    [](auto f, auto s){
        return f(mp::int_<1>{}, s);
    },
    [](auto f, auto s){
        return f(mp::int_<2>{}, s);
};
```



```
fun_ptr_type arr[]{
    [](auto f, auto s){
        return f(mp::int_<0>{}, s);
    },
    [](auto f, auto s){
        return f(mp::int_<1>{}, s);
    },
    [](auto f, auto s){
        return f(mp::int_<2>{}, s);
};
```

```
fun_ptr_type arr[]{
    [](auto f, auto s){
        return f(mp::int_<0>{}, s);
    },
    [](auto f, auto s){
        return f(mp::int_<1>{}, s);
    },
    [](auto f, auto s){
        return f(mp::int_<2>{}, s);
};
arr[idx](func,sum);
```

68


```
template<typename F, typename V, std::size_t...Is>
struct indexes<F,V,std::index_sequence<Is...>>{
   using ret_type = decltype(std::declval<F>()(mp::int_<0>{}),
                              std::declval<V>()));
    static constexpr fun_ptr<ret_type,F,V> arr[]{
        [](F f, V v){
            return f(mp::int_<Is>{}, v);
       }...
    };
```



```
template<typename F, typename V, std::size_t...Is>
struct indexes<F,V,std::index_sequence<Is...>>{
   using ret_type = decltype(std::declval<F>()(mp::int_<0>{}),
                              std::declval<V>()));
    static constexpr fun_ptr<ret_type,F,V> arr[]{
        [](F f, V v){
            return f(mp::int_<Is>{}, v);
       }...
    };
```



```
template<typename F, typename V, std::size_t...Is>
struct indexes<F,V,std::index_sequence<Is...>>{
    using ret_type = decltype(std::declval<F>()(mp::int_<0>{}),
                              std::declval<V>()));
    static constexpr fun_ptr<ret_type,F,V> arr[]{
        [](F f, V v){
            return f(mp::int_<Is>{}, v);
        }...
    };
```



```
template<typename F, typename V, std::size_t...Is>
struct indexes<F,V,std::index_sequence<Is...>>{
    using ret_type = decltype(std::declval<F>()(mp::int_<0>{}),
                              std::declval<V>()));
    static constexpr fun_ptr<ret_type,F,V> arr[]{
        [](F f, V v){
            return f(mp::int_<Is>{}, v);
        }...
```



```
template<typename F, typename V, std::size t...Is>
struct indexes<F,V,std::index_sequence<Is...>>{
    using ret_type = decltype(std::declval<F>()(mp::int_<0>{}),
                              std::declval<V>()));
    static constexpr fun_ptr<ret_type,F,V> arr[]{
        [](F f, V v){}
            return f(mp::int_<Is>{}, v);
       } . . .
    };
};
template<typename D, typename F>
constexpr auto make_demux_callable(D d, F f){
    return [=](auto v) constexpr{
        using idxs = std::make_index_sequence<decltype(d(v))::value>;
        auto fn_ptr = indexes<F, decltype(v), idxs>::arr[d(v)];
        return fn_ptr(f,v);
    };
```



```
template<typename F, typename V, std::size t...Is>
struct indexes<F,V,std::index_sequence<Is...>>{
   using ret_type = decltype(std::declval<F>()(mp::int_<0>{}),
                              std::declval<V>()));
    static constexpr fun_ptr<ret_type,F,V> arr[]{
        [](F f, V v){}
            return f(mp::int_<Is>{}, v);
       } . . .
   };
template<typename D, typename F>
constexpr auto make_demux_callable(D d, F f){
   return [=](auto v) constexpr{
       using idxs = std::make_index_sequence<decltype(d(v))::value>;
        auto fn_ptr = indexes<F, decltype(v), idxs>::arr[d(v)];
        return fn_ptr(f,v);
   };
```



```
constexpr auto fun = make_demux_callable(
    [](const auto& s)->of_n_alternatives<3>{ return s.type; },
    [](auto idx,const auto& s){
        using ty = call_<at_<decltype(idx)::value>,A,B,C>;
        auto p = static_cast<ty>(static_cast<void*>(s.data));
        do_something(*p);
    }
);
```



```
constexpr auto fun = make_demux_callable(
    [](const auto& s)->of_n_alternatives<3>{ return s.type; },
    [](auto idx,const auto& s){
        using ty = call_<at_<decltype(idx)::value>,A,B,C>;
        auto p = static_cast<ty>(static_cast<void*>(s.data));
        do_something(*p);
    }
);
fun(s);
```



```
std::tuple t{
   [](auto in){},
   [](auto in){},
   [](auto in){}
};
constexpr auto fun = make_demux_callable(
    [](const auto& s)->of_n_alternatives<3>{ return s.type; },
    [=](auto idx,const auto& s){
       using ty = call_<at_<decltype(idx)::value>,A,B,C>;
       auto p = static_cast<ty>(static_cast<void*>(s.data));
       std::get<decltype(idx)::value>(t)(*p);
```



```
constexpr auto make_indexed_visitor = [](auto t){
   return [=](auto idx, const auto& s){
        constexpr int i = decltype(idx)::value;
       return std::get<i>(t)(s);
   };
constexpr auto make_converting_visitor = [](auto typelist, auto f){
   return [=](auto idx, const auto& s){
       using ty = type_<call_<unwrap_<at_<decltype(idx)::value>>,decltype(typelist)>>;
       return f(ty{},s);
```



```
constexpr auto ep_handlers = std::tuple{
    [](auto s){ return 1; },
    [](auto s){ return 2; },
    [](auto s){    return 2;    },
    [](auto s){ return 2; },
    [](auto s){ return 3; }
};
char packet[128];
auto handle usb frame = make demux callable(
    get_ep,
    make_indexed_visitor(ep_handlers));
handle_usb_frame(packet);
```


@odinthenerd

- Github.com
- Twitter.com
- Gmail.com
- Blogspot.com
- LinkedIn.com
- Embo.io

04.11.2016 Auto-Intern GmbH 80