# CS 302.1 - Automata Theory

#### Lecture 03

#### Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad



#### Quick Recap

- DFAs and NFAs are equivalent
- For every NFA we can obtain a "Remembering DFA" that accepts the same language.
- The language accepted by finite automata are called Regular Languages.
- Regular operations: Union, Complement, Concatenation, **Star**.

#### Quick Recap

- DFAs and NFAs are equivalent
- For every NFA we can obtain a "Remembering DFA" that accepts the same language.
- The language accepted by finite automata are called Regular Languages.
- Regular operations: Union, Complement, Concatenation, **Star**.
- Star:  $L_1^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$ . Examples:
  - If  $\Sigma = \{a\}, \ \Sigma^* = \{\epsilon, a, aa, aaa, ... ...\}$

### Quick Recap

- DFAs and NFAs are equivalent
- For every NFA we can obtain a "Remembering DFA" that accepts the same language.
- The language accepted by finite automata are called Regular Languages.
- Regular operations: Union, Complement, Concatenation, **Star**.
- Star:  $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$ . Examples:
  - If  $\Sigma = \{a\}, \ \Sigma^* = \{\epsilon, a, aa, aaa, ... ...\}$
  - If  $\Sigma = \{\Phi\}, \Sigma^* = \{\epsilon\}$
- Regular Languages are closed under: Union, Star, Concatenation, Complement,...



**Set of all regular Languages** 

**Q:** Is the set of all regular languages **closed under intersection**? If  $L_1$  and  $L_2$  are regular, then is  $L = L_1 \cap L_2$  also regular?

**Proof:** We shall use the fact that regular languages are **closed** under union and complement.

**Q:** Is the set of all regular languages **closed under intersection**? If  $L_1$  and  $L_2$  are regular, then is  $L = L_1 \cap L_2$  also regular?

**Proof:** We shall use the fact that regular languages are **closed** under union and complement.

Note that using De Morgan's laws:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

**Q:** Is the set of all regular languages **closed under intersection**? If  $L_1$  and  $L_2$  are regular, then is  $L = L_1 \cap L_2$  also regular?

**Proof:** We shall use the fact that regular languages are **closed** under union and complement.

Note that using De Morgan's laws:

$$L_1 \cap L_2 = \overline{L_1 \cup \overline{L_2}}$$

Given a DFA for  $L_1$  and a DFA for  $L_2$ , we know how to construct an NFA for  $\overline{L_1}$ ,  $\overline{L_2}$  as well as for  $L_1 \cup L_2$ . Using these constructions and the aforementioned relationship, we can construct an NFA for  $L = L_1 \cap L_2$ 



#### **Summary:**

Regular Languages are closed under:

- Union
- Intersection
- Star
- Complement
- Concatenation



**Set of all regular Languages** 

#### Regular Languages

If  $\Sigma$  is an alphabet, then

```
 \begin{array}{l} \bullet \quad \Sigma^0 = \{\epsilon\} \\ \bullet \quad \Sigma^2 = \{a_1 a_2 | a_1 \in \Sigma, \ a_2 \in \Sigma\} \\ \bullet \quad \Sigma^k = \{a_1 a_2 \cdots a_k | a_i \in \Sigma \ | 1 \leq i \leq k\} \\ \bullet \quad \Sigma^* = \{\bigcup_{i \geq 0} \Sigma^i\} = \{\Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \ \cdots\} = \{a_1 a_2 \cdots a_k | k \in \{0,1,\cdots\} \ \& \ a_i \in \Sigma, \forall j \in \{1,2,\cdots,k\}\} \end{array}
```

A Language  $L \subset \Sigma^*$  and  $L^* = \{ \bigcup_{i \geq 0} L^i \}$ 

#### Regular Languages

If  $\Sigma$  is an alphabet, then

- $\Sigma^0 = \{\epsilon\}$
- $\Sigma^2 = \{a_1 a_2 | a_1 \in \Sigma, a_2 \in \Sigma\}$
- $\Sigma^k = \{a_1 a_2 \cdots a_k | a_i \in \Sigma \mid 1 \le i \le k\}$
- $\Sigma^* = \{ \bigcup_{i \geq 0} \Sigma^i \} = \{ \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cdots \} = \{ a_1 a_2 \cdots a_k | k \in \{0, 1, \cdots \} \& a_j \in \Sigma, \forall j \in \{1, 2, \cdots, k\} \}$

A Language  $L \subset \Sigma^*$  and  $L^* = \{\bigcup_{i>0} L^i\}$ 

**Regular Language (alternate definition):** Let  $\Sigma$  be an alphabet. Then the following are the regular languages over  $\Sigma$ :

- The empty language Φ is regular
- For each  $a \in \Sigma$ ,  $\{a\}$  is regular.
- Let  $L_1, L_2$  be regular languages. Then  $L_1 \cup L_2, L_1, L_2, L_1^*$  are regular languages.

A regular expression describes regular languages algebraically. The algebraic formulation also provides a powerful set of tools which will be leveraged to prove

- languages are regular
- derive properties of regular languages

A regular expression describes regular languages algebraically. The algebraic formulation also provides a powerful set of tools which will be leveraged to prove

- languages are regular
- derive properties of regular languages

**Syntax for regular expressions (Recursive definition):** R is said to be a regular expression if it has one of the following forms:

- $\Phi$  is a regular expression,  $L(\Phi) = \Phi$
- $\epsilon$  is a regular expression,  $L(\epsilon) = {\epsilon}$
- Any  $a \in \Sigma$  is a regular expression,  $L(a) = \{a\}$

A regular expression describes regular languages algebraically. The algebraic formulation also provides a powerful set of tools which will be leveraged to prove

- languages are regular
- derive properties of regular languages

**Syntax for regular expressions (Recursive definition):** R is said to be a regular expression if it has one of the following forms:

- $\Phi$  is a regular expression,  $L(\Phi) = \Phi$
- $\epsilon$  is a regular expression,  $L(\epsilon) = {\epsilon}$
- Any  $a \in \Sigma$  is a regular expression,  $L(a) = \{a\}$
- $R_1 + R_2$  is a regular expression if  $R_1$  and  $R_2$  are regular expressions,  $L(R_1 + R_2) = L(R_1) \cup L(R_2)$
- $R^*$  is a regular expression if R is a regular expression,  $L(R^*) = (L(R))^*$

A regular expression describes regular languages algebraically. The algebraic formulation also provides a powerful set of tools which will be leveraged to prove

- languages are regular
- derive properties of regular languages

**Syntax for regular expressions (Recursive definition):** R is said to be a regular expression if it has one of the following forms:

- $\Phi$  is a regular expression,  $L(\Phi) = \Phi$
- $\epsilon$  is a regular expression,  $L(\epsilon) = {\epsilon}$
- Any  $a \in \Sigma$  is a regular expression,  $L(a) = \{a\}$
- $R_1 + R_2$  is a regular expression if  $R_1$  and  $R_2$  are regular expressions,  $L(R_1 + R_2) = L(R_1) \cup L(R_2)$
- $R^*$  is a regular expression if R is a regular expression,  $L(R^*) = (L(R))^*$
- $R_1R_2$  is a regular expression if  $R_1$  and  $R_2$  are regular expressions,  $L(R_1R_2) = L(R_1)$ .  $L(R_2)$
- (R) is a regular expression if R is a regular expression, L(R) = R

#### **Syntax for regular expressions:**

| Regular Expression | Regular Language     | Comment                                 |
|--------------------|----------------------|-----------------------------------------|
| Ф                  | {}                   | The empty set                           |
| $\epsilon$         | $\{\epsilon\}$       | The set containing $\epsilon$ only      |
| а                  | {a}                  | Any $a \in \Sigma$                      |
| $R_1 + R_2$        | $L(R_1) \cup L(R_2)$ | For regular expressions $R_1$ and $R_2$ |
| $R_1R_2$           | $L(R_1).L(R_2)$      | For regular expressions $R_1$ and $R_2$ |
| $R^*$              | $(L(R))^*$           | For regular expressions R               |
| (R)                | L(R)                 | For regular expressions $R$             |

Order of precedence: (), \*, . , +

A language L is regular if and only if for some regular expression R, L(R) = L.

**RE's are equivalent in power to NFAs/DFAs** 

#### **Syntax for regular expressions:**

| Regular Expression R   | L(R)                                              |
|------------------------|---------------------------------------------------|
| 01                     | {01}                                              |
| 01 + 1                 | {01,1}                                            |
| $(0+1)^*$              | $\{\epsilon, 0, 1, 00, 01, \cdots\}$              |
| $(01+\epsilon)1$       | {011,1}                                           |
| $(0+1)^*01$            | {01,001,101,0001,}                                |
| $(0+10)^*(\epsilon+1)$ | $\{\epsilon, 0, 10, 00, 001, 010, 0101, \cdots\}$ |

NFA for RE:  $(0+1)^*01$ 

(i) NFA for (0 + 1)









NFA for  $(0+1)^*01$ 





Let  $\Sigma = \{a, b\}$ .

| Language                                                       | Regular Expression                 |
|----------------------------------------------------------------|------------------------------------|
| $\{\omega \omega \text{ ends in "}ab"\}$                       | $(a+b)^*ab$                        |
| $\{\omega   \omega \text{ has a single } \alpha \}$            | $b^*ab^*$                          |
| $\{\omega   \omega \text{ has at most one } a\}$               | $b^* + b^*ab^*$                    |
| $\{\omega    \omega  \text{ is even}\}$                        | $((a+b)(a+b))^* = (aa+bb+ab+ba)^*$ |
| $\{\omega   \omega \text{ has "} ab" \text{ as a substring}\}$ | $(a+b)^*ab(a+b)^*$                 |
| $\{\omega  \omega $ is a multiple of 3 $\}$                    | $((a+b)(a+b)(a+b))^*$              |

Let  $\Sigma = \{a, b\}$ .

| Language                                                       | Regular Expression                 |
|----------------------------------------------------------------|------------------------------------|
| $\{\omega \omega \text{ ends in "}ab"\}$                       | $(a+b)^*ab$                        |
| $\{\omega   \omega \text{ has a single } a \}$                 | $b^*ab^*$                          |
| $\{\omega   \omega \text{ has at most one } a\}$               | $b^* + b^*ab^*$                    |
| $\{\omega    \omega  \text{ is even}\}$                        | $((a+b)(a+b))^* = (aa+bb+ab+ba)^*$ |
| $\{\omega   \omega \text{ has } "ab" \text{ as a substring}\}$ | $(a+b)^*ab(a+b)^*$                 |
| $\{\omega  \omega $ is a multiple of 3 $\}$                    | $((a+b)(a+b)(a+b))^*$              |

#### Some algebraic properties of Regular Expressions:

• 
$$R_1 + (R_2 + R_3) = (R_1 + R_2) + R_3$$

• 
$$R_1(R_2R_3) = (R_1R_2)R_3$$

• 
$$R_1(R_2 + R_3) = R_1R_2 + R_1R_3$$

• 
$$(R_1 + R_2)R_3 = R_1R_3 + R_2R_3$$

• 
$$R_1 + R_2 = R_2 + R_1$$

• 
$$R_1^*R_1^* = R_1^*$$

• 
$$(R_1^*)^* = R_1^*$$

• 
$$R\epsilon = \epsilon R = R$$

• 
$$R\Phi = \Phi R = \Phi$$

• 
$$R + \Phi = R$$

• 
$$\epsilon + RR^* = \epsilon + R^*R = R^*$$

• 
$$(R_1 + R_2)^* = (R_1^* R_2^*)^* = (R_1^* + R_2^*)^*$$

### DFA to Regular Expressions

If a language is regular then it accepts a regular expression. We could draw equivalent NFAs for Regular Expressions.

How can we obtain Regular expressions given a DFA?

Given a DFA M, we **recursively** construct a two-state **Generalized NFA** (GNFA) with

- A start state and a final state
- A single arrow goes from the start state to the final state
- The label of this arrow is the regular expression corresponding to the language accepted by the DFA M.



What are GNFAs? They are simply NFAs such that

- The transitions may have regular expressions
- A unique start state that has arrows going to other states, but has no incoming arrows
- A unique final state that has arrows incoming from other states, but has no outgoing arrows
- For an input string, runs on a GNFA are similar to that of an NFA, except now a block of symbols are read corresponding to the Regular Expressions on the transitions.
- b, abababab, abaaaba are some input strings that have accepting runs for the GNFA on the right



What are GNFAs? They are simply NFAs such that

- The transitions may have regular expressions
- A unique start state that has arrows going to other states, but has no incoming arrows
- A unique final state that has arrows incoming from other states, but has no outgoing arrows
- For an input string, runs on a GNFA are similar to that of an NFA, except now a block of symbols are read corresponding to the Regular Expressions on the transitions.
- b, abababab, abaaaba are some input strings that have accepting runs for the GNFA on the right



Starting from a DFA we will begin by constructing a GNFA with k states. We then outline a recursive procedure by which at each step, we will construct a GNFA with one less state. This step will be repeated until we obtain the **2-state GNFA**.

#### Starting from the DFA M,

- Add a new start state with an  $\epsilon$  arrow to the old start state.
- Add a new final state by with an  $\epsilon$  arrow to the old final state.



The crucial step is to convert a GNFA with k (>2) states to a GNFA with k-1 states. This is what we shall show next.

- Start by picking any state of the GNFA (except the new start and final states)
- Let us call this state  $q_{rip}$ . We "rip"  $q_{rip}$  out of the machine and create a GNFA with k-1 states.
- Of course, we need to "repair" the machine by altering the regular expressions that label each of the remaining arrows.
- The new labels compensate for the loss of  $q_{rip}$ .



The crucial step is to convert a GNFA with k (>2) states to a GNFA with k-1 states. This is what we shall show next.

- Start by picking any state of the GNFA (except the new start and final states)
- Let us call this state  $q_{rip}$ . We "rip"  $q_{rip}$  out of the machine and create a GNFA with k-1 states.
- Of course, we need to "repair" the machine by altering the regular expressions that label each of the remaining arrows.
- The new labels compensate for the loss of  $q_{rip}$ .





The crucial step is to convert a GNFA with k (>2) states to a GNFA with k-1 states.

How do we remove  $q_{rip}$ ? In the old machine if

- $q_i$  goes to  $q_{rip}$  with an arrow labelled  $R_1$
- $q_{rip}$  goes to itself with an arrow labelled  $R_2$
- $q_{rip}$  goes to  $q_i$  with an arrow labelled  $R_3$
- $q_i$  goes to  $q_j$  with an arrow labelled  $R_4$

Repeat this until k=2

then in the new machine, the arrow from  $q_i$  to  $q_j$  has the label  $(R_1)(R_2)^*(R_3) + R_4$ 



$$(R_1)(R_2)^*(R_3) + R_4$$

$$q_j$$

This should be done for **every pair** of arrows outgoing and incoming  $q_{rip}$ 

Let us look at an example. Consider the original DFA M below and find the regular expression corresponding to L(M).



**Step 1: Add new start and final states** 



Step 2: Eliminate A





#### Step 2: Eliminate *B*

 $S \rightarrow C$  via B, RE:  $ab^*a$ 





#### Step 2: Eliminate B

 $S \rightarrow C$  via B, RE:  $ab^*a$ 

Overall RE for  $S \rightarrow C$ :  $ab^*a + b$ 





#### Step 2: Eliminate *C*

 $S \rightarrow F$  via C, RE:  $(ab^*a + b)(a + b)^*$ 





Recursively, we managed to convert the DFA M to a 2-state GNFA such that the label from of the arrow from the start state to the final state of the GNFA is the Regular Expression corresponding to L(M).

Formally, a GNFA is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$  where

- Q is a finite set of states.
- $\Sigma$  is the input alphabet.
- $\delta: Q \{q_0\} \times Q \{F\} \mapsto \mathcal{R}$  is the transition function.
- $q_0$  is the start state.
- *F* is the final state.

#### Convert *k*-state GNFA to a 2-state GNFA:

We provide a recursive algorithm CONVERT(G) for this.



#### CONVERT(G):

- 1. Let *k* be the number of states of *G*.
- 2. If k = 2, then return the label R of the arrow between the start and the final state.
- 3. If k > 2, select any state Q different from  $q_0$  and F and let G' be the GNFA $(Q', \Sigma, \delta', q_0, F)$ , where

$$Q' = Q - \{q_{rip}\},$$
 and for any  $q_i \in Q' - \{q_0\}$  and any  $q_j \in Q' - \{q_0\},$  let

$$\delta'(q_i, q_i) = (R_1)(R_2)^*(R_3) + R_4,$$

for 
$$R_1 = \delta(q_i, q_{rip})$$
,  $R_2 = \delta(q_{rip}, q_{rip})$ ,  $R_3 = \delta(q_{rip}, q_j)$  and  $R_4 = \delta(q_i, q_j)$ 

4. Compute CONVERT(G') and return its value.

Formally, a GNFA is a 5-tuple (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F ) where

- Q is a finite set of states.
- $\Sigma$  is the input alphabet.
- $\delta: Q \{q_0\} \times Q \{F\} \mapsto \mathcal{R}$  is the transition function.
- $q_0$  is the start state.
- *F* is the final state.

#### Convert k-state GNFA to a 2-state GNFA:

We provide a recursive algorithm CONVERT(G) for this.



DFA, NFA, Regular Expressions have equal power and all of them correspond to Regular Languages

How do Non-regular languages look like? How can we prove that certain languages are not regular?

#### Pumping Lemma

Recall that so far, we have proven that the following statements are all equivalent:

- *L* is a regular language.
- There is a DFA D such that  $\mathcal{L}(D) = L$ .
- There is an NFA N such that  $\mathcal{L}(N) = L$ .
- There is a regular expression R such that  $\mathcal{L}(R) = L$ .

Not all languages are regular.



Recall that so far, we have proven that the following statements are all equivalent:

- *L* is a regular language.
- There is a DFA D such that  $\mathcal{L}(D) = L$ .
- There is an NFA N such that  $\mathcal{L}(N) = L$ .
- There is a regular expression R such that  $\mathcal{L}(R) = L$ .

Not all languages are regular.





How do we prove that certain languages are non-regular? We start with an example

Let  $\Sigma = \{0,1\}$ . Consider the language  $L = \{0^n 1^n | n \ge 0\}$  and the following conversation between Karl and Mil.

How do we prove that certain languages are non-regular? We start with an example

Let  $\Sigma = \{0,1\}$ . Consider the language  $L = \{0^n 1^n | n \ge 0\}$  and the following conversation between Karl and Mil.

**Mil:** I have a DFA for *L*.

**Karl:** How many states are there?

Mil: n-states (say n = 10)

How do we prove that certain languages are non-regular? We start with an example

Let  $\Sigma = \{0,1\}$ . Consider the language  $L = \{0^n 1^n | n \ge 0\}$  and the following conversation between Karl and Mil.

**Mil:** I have a DFA for *L*.

**Karl:** How many states are there?

Mil: n-states (say n = 10)

**Karl:** Then  $0^{10}1^{10}$  must be accepted.

By the **pigeonhole principle**, while reading the first (n = 10) symbols, some states need to be revisited. Otherwise n + 10

1 = 11 states would have been present. Hence some loop must be present. How many states are there in the loop?

How do we prove that certain languages are non-regular? We start with an example

Let  $\Sigma = \{0,1\}$ . Consider the language  $L = \{0^n 1^n | n \ge 0\}$  and the following conversation between Karl and Mil.

**Mil:** I have a DFA for *L*.

**Karl:** How many states are there?

Mil: n-states (say n = 10)

**Karl:** Then  $0^{10}1^{10}$  must be accepted. By the **pigeonhole principle**, while reading the first (n = 10) symbols, some states need to be revisited. Otherwise n + 1 = 11 states would have been present. Hence some loop must be present. How many states are there in the loop?

Mil: t-states (say t = 3).

**Karl:** If your DFA accepts  $0^n 1^n$ , it must also accept  $0^{n+t} 1^n$ . This is because, if we take the loop one extra time, we read t more 0's.



Contradiction as  $0^{n+t}1^n \notin L$ . So Mil, you never had a DFA for L and in fact, L is not regular.

If L is a regular language, all strings in the language, larger than a certain length (pumping length), can be pumped: the string contains a certain section that can be repeated any number of times and the resulting string still  $\in L$ .



If L is a regular language, all strings in the language, larger than a certain length (pumping length), can be pumped: the string contains a certain section that can be repeated any number of times and the resulting string still  $\in L$ .

(Pumping Lemma) If L is a regular language, then there exists a number p (the pumping length) where for all  $s \in L$  of length at least p, there exists x, y, z such that s = xyz, such that

- 1.  $|xy| \leq p$ .
- 2.  $|y| \ge 1$
- 3.  $\forall i \geq 0, xy^i z \in L$ .



If L is a regular language, all strings in the language, larger than a certain length (pumping length), can be pumped: the string contains a certain section that can be repeated any number of times and the resulting string still  $\in L$ .

(Pumping Lemma) If L is a regular language, then there exists a number p (the pumping length) where for all  $s \in L$  of length at least p, there exists x, y, z such that s = xyz, such that

- 1.  $|xy| \leq p$ .
- 2.  $|y| \ge 1$
- 3.  $\forall i \geq 0, xy^i z \in L$ .

Note:  $(A \Rightarrow B) \equiv (\neg B) \Rightarrow (\neg A)$ 

If L is regular then, pumping property is satisfied

 $\equiv$ 

If pumping property is NOT satisfied, then  $\boldsymbol{L}$  is NOT regular.



**Proof sketch**: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.



**Proof sketch**: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose  $s=s_1s_2\cdots s_n$  be any such string of length  $n\ (\geq p)$  and suppose  $r_1r_2\cdots r_{n+1}$  be the sequence of states encountered, while implementing a run of s in M.

As  $n+1 \ge p+1$ , in the above sequence at least two states must be repeated. Let them be  $r_i$  and  $r_l$ , i.e.,  $r_i = r_l$ , but  $j \ne l$ .



**Proof sketch**: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose  $s=s_1s_2\cdots s_n$  be any such string of length  $n\ (\geq p)$  and suppose  $r_1r_2\cdots r_{n+1}$  be the sequence of states encountered, while implementing a run of s in M.

As  $n+1 \ge p+1$ , in the above sequence at least two states must be repeated. Let them be  $r_i$  and  $r_l$ , i.e.,  $r_j = r_l$ , but  $j \ne l$ .

So we can divide the s into three parts,  $x=s_1\dots s_{j-1},\ y=s_j\dots s_{l-1},\ z=s_l\dots s_n.$  For a run on M, due to s

- the x part takes us from  $r_1$  to  $r_i$
- the y part belongs to the loop part (we go from  $r_i$  to  $r_i$ )
- z takes us from  $r_j$  to  $r_{n+1}$ , which is a final state if  $s \in L$ .



**Proof sketch**: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose  $s = s_1 s_2 \cdots s_n$  be any such string of length  $n \geq p$  and suppose  $r_1 r_2 \cdots r_{n+1}$  be the sequence of states encountered, while implementing a run of s in M.

As  $n+1 \ge p+1$ , in the above sequence at least two states must be repeated. Let them be  $r_j$  and  $r_l$ , i.e.,  $r_j = r_l$ , but  $j \ne l$ .

So we can divide the s into three parts,  $x=s_1\dots s_{j-1},\ y=s_j\dots s_{l-1},\ z=s_l\dots s_n.$  For a run on M, due to s

- the x part takes us from  $r_1$  to  $r_j$
- the y part belongs to the loop part (we go from  $r_i$  to  $r_i$ )
- z takes us from  $r_i$  to  $r_{n+1}$ , which is a final state if  $s \in L$ .



• We can traverse the loop bit any number of times and so  $\forall i \geq 0, xy^iz \in L$ .

**Proof sketch**: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose  $s=s_1s_2\cdots s_n$  be any such string of length  $n\ (\geq p)$  and suppose  $r_1r_2\cdots r_{n+1}$  be the sequence of states encountered, while implementing a run of s in M.

As  $n+1 \ge p+1$ , in the above sequence at least two states must be repeated. Let them be  $r_j$  and  $r_l$ , i.e.,  $r_j = r_l$ , but  $j \ne l$ .

So we can divide the s into three parts,  $x = s_1 \dots s_{j-1}$ ,  $y = s_j \dots s_{l-1}$ ,  $z = s_l \dots s_n$ . For a run on M, due to s

- the x part takes us from  $r_1$  to  $r_j$
- the y part belongs to the loop part (we go from  $r_i$  to  $r_i$ )
- z takes us from  $r_i$  to  $r_{n+1}$ , which is a final state if  $s \in L$ .



- We can traverse the loop bit any number of times and so  $\forall i \geq 0, xy^iz \in L$ .
- Also, as  $j \neq l$ ,  $|y| \geq 1$
- While reading the input, within the first p symbols of s, some state must be repeated.

**Proof sketch**: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose  $s=s_1s_2\cdots s_n$  be any such string of length  $n\ (\geq p)$  and suppose  $r_1r_2\cdots r_{n+1}$  be the sequence of states encountered, while implementing a run of s in M.

As  $n+1 \ge p+1$ , in the above sequence at least two states must be repeated. Let them be  $r_j$  and  $r_l$ , i.e.,  $r_j = r_l$ , but  $j \ne l$ .

So we can divide the s into three parts,  $x=s_1\dots s_{j-1},\ y=s_j\dots s_{l-1},\ z=s_l\dots s_n.$  For a run on M, due to s

- the x part takes us from  $r_1$  to  $r_j$
- the y part belongs to the loop part (we go from  $r_i$  to  $r_i$ )
- z takes us from  $r_i$  to  $r_{n+1}$ , which is a final state if  $s \in L$ .



- We can traverse the loop bit any number of times and so  $\forall i \geq 0, xy^iz \in L$ .
- Also, as  $j \neq l$ ,  $|y| \geq 1$ , and
- The DFA reads |xy| by then and so  $|xy| \le p$ .

In order to prove that a language is non-regular,

- Assume that it is regular and obtain a contradiction.
- Find a string in the language of length  $\geq p$  (pumping length) that cannot be pumped.

Examples of languages that are NOT regular:

- $\{0^p | p \text{ is prime}\}$
- $\{0^n 1^n | n \ge 0\}$
- $\{\omega | \omega \text{ has equal number of } 0\text{'s and } 1\text{'s}\}$
- $\{\omega | \omega \text{ is palindrome}\}$

:

# The story so far...

- We have built devices (DFAs/NFAs) that decides some languages.
- Regular languages are precisely the ones that are accepted by finite automata.
- For any  $L \in RL$ , we have DFA/NFA M such that L(M) = L.
- Regular expressions describe regular languages algebraically.
- There are languages that are not regular.

 $DFA \equiv NFA \equiv Regular Expressions$ 

#### Next up:

- How do we generate the strings in a language?
- **Syntax:** What are the set of legal strings in a language?
- Think of the English language (Rules of grammar)

# Thank You!