SISTEMI OPERATIVI

Sistemi Distribuiti
Funzioni dei Sistemi Distribuiti

Lezione 1 - Obiettivi e funzioni

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Architetture di elaborazione distribuite
- Sistemi operativi per architetture di elaborazione distribuite
- Obiettivi
- Funzionalità

Architetture di elaborazione distribuite (1)

Caratteristiche

- Processore
 - Almeno uno per sistema di elaborazione
- Memoria
 - Locale ai sistemi di elaborazione
- Periferiche
 - Locali ai sistemi di elaborazione, ma usabili in rete
 - Locali ai sistemi di elaborazione, e non condivise (orologio)
 - Globali in rete
 - Rete di comunicazioni

Architetture di elaborazione distribuite (2)

Caratteristiche

• Eterogeneità dei sistemi di elaborazione

Architetture di elaborazione distribuite (3)

- Sito (site)
- Macchina (machine), host, computer, nodo (node)
 - Server
 - Client

Architetture di elaborazione distribuite (4)

Vantaggi

- Integrazione di sottosistemi
- Condivisione delle risorse (resource sharing)
- Parallelismo della computazione: aumento della velocità di calcolo (computation speedup)
- Interazione con utente

Architetture di elaborazione distribuite (5)

Vantaggi

- Riduzione della complessità e del costo (downsizing)
- Aumento dell'affidabilità (reliability), della tolleranza ai guasti (fault tolerance) e della disponibilità (dependability)
- Scalabilità (scalability)

Sistemi operativi per architetture di elaborazione distribuite

- Sistemi operativi di rete network operating systems
 - Visibilità della struttura e delle caratteristiche dei componenti e della rete
- Sistemi operativi distribuiti distributed operating systems
 - Completa trasparenza della struttura e delle caratteristiche dei componenti e della rete

Sistema operativo di rete (1)

- Accesso alle risorse condivise in rete
- Collegamento per elaborazione remota

Login remoto telnet

Comunicazione tra processi remoti socket

Attivazione di procedure remote remote procedure call RPC

Stampanti remote

Spooling di stampa remoto

Sistema operativo di rete (2)

- Trasferimento remoto di file ftp
- File server remoto
 Montaggio di file system remoti
- · Posta elettronica

Sistema operativo distribuito (1)

- · Risorse remote accessibili come risorse locali
- Migrazione dei dati e dei processi gestita dal sistema operativo in modo trasparente

Sistema operativo distribuito (2)

Migrazione dei dati

- Copia-lavoro-salvataggio
 Il lavoro viene svolto su una copia locale
 del file; il file modificato viene ritrasmesso
 al server (FTP automatizzato)
- Copia di parti di file Simile alla paginazione
- Problema: compatibilità di rappresentazione tra le varie macchine

Sistema operativo distribuito (3)

Migrazione computazionale

- Migrazione di procedura
- Migrazione di processo

Sistema operativo distribuito (4)

Migrazione di procedura

- Chiamata di procedura remota Remote Procedure Call (RPC)
- Processo remoto con scambio messaggi
- Motivazioni
 - Preferibilità dell'hardware o del software remoti
 - Disponibilità di risorse specifiche
 - Accesso ai dati

Sistema operativo distribuito (5)

Migrazione di processo

- Processo
- Agenti mobili
- Motivazioni:
 - bilanciamento del carico
 - velocità di elaborazione
 - preferibilità dell'hardware o del software remoti
 - disponibilità di risorse specifiche
 - accesso ai dati

Sistema operativo distribuito (6)

- File server distribuito
 - Montaggio di file system remoti in modo omogeneo e trasparente
- Stampanti distribuite
- Posta elettronica

Robustezza (1)

Problema

Guasti e malfunzionamenti del sistema di elaborazione distribuito

Tecniche di gestione

- · Rilevazione dei guasti
- Mascheramento degli errori
- Riconfigurazione del sistema
- Ripristino del sistema

Robustezza (2)

Rilevamento dei guasti

- Monitoraggio periodico con handshaking
- Tempo massimo di attesa (time-out)
- Computazione duplicata con confronto dei risultati

Robustezza (3)

Mascheramento degli errori

- Computazione duplicata con votazione a maggioranza dei risultati
- Risorse duplicate

Robustezza (4)

Riconfigurazione

Interruzione di un collegamento o guasto ad una macchina

- Aggiornamento tabelle di instradamento per escludere il collegamento o la macchina guasti
- Sostituzione della macchina nei suoi compiti

Robustezza (5)

Ripristino

- Riconfigurazione per includere nuovamente il componente riparato
 - Informare le macchine (handshaking)
 - Aggiornamento tabelle
 - Aggiornamento siti non funzionanti
- Gestione posta non consegnata

Aspetti progettuali

- Trasparenza di allocazione delle risorse
 - Processori
 - Dispositivi di memorizzazione
 - Periferiche
 - File
- Mobilità dell'utente, della computazione e dei dati
- Tolleranza ai guasti
- Scalabilità

In sintesi

- Architetture di elaborazione distribuite
- Sistemi operativi per architetture di elaborazione distribuite
- Funzionalità

SISTEMI OPERATIVI

Sistemi Distribuiti Comunicazione in rete

Lezione 1 – Gestione della comunicazione in rete

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Nomi e risoluzione dei nomi
- Strategie di instradamento
- Strategie di pacchetto
- Strategie di connessione
- · Gestione dei conflitti

Nomi e risoluzione dei nomi (1)

Identificatore di risorsa o processo

<nome host, identificatore>

- Nome host
 - Identificatore numerico

Identificatore logico

128.148.31.100 dti.unimi.it

Nomi e risoluzione dei nomi (2)

Risoluzione dei nomi

- Processo simile alla compilazione
- Ogni host può avere un file contenente i nomi e gli indirizzi di tutti gli altri host
- Informazioni distribuite fra i computer nella rete e usare un protocollo per effettuare la risoluzione
 - server dei nomi del dominio
 Domain Name Server DNS

Nomi e risoluzione dei nomi (3)

Ottimizzazione delle prestazioni

- Caching delle tabelle dei nomi degli host
 - Aggiornamento e rinfresco
- Caching gerarchico

Strategie di instradamento (1)

Identificazione del percorso per un messaggio da A a B

- Unico percorso fisico
- Tabella di instradamento
 - Velocità percorso
 - Costo percorso
 - Aggiornamento tabelle

Strategie di instradamento (2)

Schemi di instradamento

- Instradamento statico (o fisso)
 - Percorso tra A e B definito a priori e non modificabile
 - Non richiede ricerca del percorso
 - Non adattabile a variazioni di carico
 - Non adattabile per gestire guasti
- Instradamento virtuale
 - Percorso tra A e B definito per una sessione
 - Percorso non modificabile nella sessione
 - Percorso modificabile al cambiare della sessione
 - Richiede ricerca del percorso solo all'inizio della sessione
 - Non adattabile a variazioni di carico o guasti durante la sessione

Strategie di instradamento (2)

Schemi di instradamento

- Instradamento dinamico
 - Percorso tra A e B definito per ogni messaggio
 - Percorso modificabile al cambiare del messaggio
 - Richiede ricerca del percorso all'inizio di ogni messaggio
 - Messaggi possono arrivare in ordine diverso da quello in cui sono inviati
 - Adattabile a variazioni di carico
 - Adattabile per gestire guasti

Strategie di instradamento (3)

Gateway

- Collega la rete locale ad altre reti gestendo l'eventuale cambiamento di protocollo di comunicazione
- Host → Gateway: instradamento statico
- Gateway → Host: instradamento dinamico
- Realizzazione
 - Software
 - Dispositivi hardware dedicati

Strategie di instradamento (4)

Router

- Dispositivo responsabile dell'instradamento dei messaggi tra due reti
- Realizzazione
 - Software
 - Dispositivi hardware dedicati

Strategie di pacchetto

Invio di messaggi a lunghezza variabile

- Divisione del messaggio in porzioni di dimensione fissa
 - PacchettiPacket
 - Strutture Frame
 - Datagrammi Datagram
- · Invio dei pacchetti e ricostruzione del messaggio
- Gestione degli errori e della perdita di pacchetti

Strategie di connessione (1)

Sessioni di comunicazione

Schemi per le sessioni di comunicazione

- a commutazione di circuito circuit switching
- a commutazione dei messaggi message switching
- a commutazione di pacchetto packet switching

Strategie di connessione (2)

Comunicazioni a commutazione di circuito

- Due processi che devono comunicare stabiliscono un collegamento fisico fisso per tutta la sessione
- Nessun altro processo può usare tale collegamento
- Notevole tempo di attivazione
- Possibile spreco di larghezza di banda
- Sovraccarico di gestione inferiore

Strategie di connessione (3)

Comunicazioni a commutazione dei messaggi

- Due processi che devono comunicare stabiliscono un collegamento temporaneo per la durata dell'invio del messaggio
- Il collegamento è creato dinamicamente
- Sovraccarico di gestione medio

Comunicazioni a commutazione di pacchetto

- Ciascun pacchetto di un messaggio è inviato separatamente su una connessione attivata dinamicamente
- Migliore uso della larghezza di banda
- Suddivisione e riassemblaggio dei pacchetti
- Sovraccarico di gestione superiore

Gestione dei conflitti (1)

Trasmissioni in

- · Bus multi-accesso
- Rete ad anello

Conflitto per uso contemporaneo del canale di comunicazione

Gestione dei conflitti (2)

Rete a bus multi-accesso

- Rilevamento delle collisioni
 - Analisi della portante ad accesso multiplo
 - Dati trasmessi diversi da quelli osservati
 → collisione
- Gestione delle collisioni
 - Ritrasmissione a tempi differenti
- Prevenzione delle collisioni
 - Limitare il numero dei nodi sulla rete

Gestione dei conflitti (3)

Rete ad anello

- Rilevamento della perdita del token
 - Tempo massimo di attesa
- Gestione della perdita del token
 - Elezione

In sintesi

- Nomi e risoluzione dei nomi
- Strategie di instradamento
- Strategie di pacchetto
- Strategie di connessione
- Gestione dei conflitti

SISTEMI OPERATIVI

Sistemi Distribuiti
Comunicazione in rete

Lezione 2 – Protocolli di comunicazione

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Obiettivi
- Modello teorico
 - Protocollo ISO/OSI
- Modelli reali
 - Protocollo TCP/IP
 - Protocollo UDP/IP
 - Protocolli applicativi

Problemi

- Comunicazione asincrone
- · Probabilità di errori
- Interazione tra ambienti eterogenei

Obiettivi

- Semplificare la progettazione
- Creare un ambiente omogeneo di comunicazione tra componenti eterogenei
- Astrazione della visione delle comunicazioni in rete
- Virtualizzazione delle comunicazioni
- Gestione efficiente
- Gestione degli errori e dei guasti

Soluzione

- Protocolli di comunicazione come driver della rete
- Sottosistema dedicato alle comunicazioni in rete suddiviso in strati
- Comunicazione gestita tra strati equivalenti
- Protocolli specifici

Modello teorico

Protocollo ISO / OSI

ISO: International Standards Organization

OSI: Open Systems Interconnection

Protocollo ISO/OSI (2)

Strato fisico physical layer

• Strato di collegamento tra i dati

data-link layer

Strato di rete network layer

Strato di trasporto transport layer

• Strato di sessione session layer

• Strato di presentazione presentation layer

Strato di applicazione application layer

Protocollo ISO/OSI (3)

Strato fisico

- Dettagli della trasmissione dei bit
 - Meccanici
 - Elettrici

Protocollo ISO/OSI (4)

Strato del collegamento tra i dati

- Gestione dell'invio e della ricezione del singolo pacchetto
- Rilevazione e correzione degli errori

Protocollo ISO/OSI (5)

Strato di rete

- Connessione
- · Instradamento dei pacchetti
- · Indirizzo pacchetti in uscita
- · Decodifica indirizzo pacchetti in entrata

Protocollo ISO/OSI (6)

Strato di trasporto

- Partizionamento dei messaggi in pacchetti
- Mantenimento dell'ordine dei pacchetti
- Controllo del flusso
- Gestione degli errori a livello di messaggio

Protocollo ISO/OSI (7)

Strato di sessione

- Realizzazione delle sessioni
- Protocolli di comunicazione tra processi

Protocollo ISO/OSI (8)

Strato di presentazione

- Risolvere le differenze di formato tra le varie macchine
 - conversione dei formati di rappresentazione dei dati
 - modalità semi-duplex
 - modalità full-duplex

Protocollo ISO/OSI (9)

Strato di applicazione

• Interazione a livello di applicazione

Esempi:

- trasferimento di file
- protocolli di connessione remoti
- posta elettronica
- basi di dati distribuite

Modelli reali (1)

- Obiettivo:
 - più efficiente
 - più semplice
- Problema:
 - più difficile da realizzare
 - meno astratto

Modelli reali (2)

- Internet Protocol
- Transmission Control Protocol TCP
- User Datagram Protocol
 UDP
- · Protocolli applicativi

Internet Protocol

Strato di rete

- Gestione pacchetti
- Instradamento pacchetti

Protocolli di trasporto

Strato di trasporto

- User Datagram Protocol UDP
 - Inaffidabile
 - Senza gestione delle connessioni
- Transmission Control Protocol TCP
 - Affidabile
 - Orientato alle connessioni

Strati TCP/IP

Strato di applicazione

• Telnet, SSH

• FTP, SFTP

• HTTP, HTTPS Web

• SMTP

• DNS

• Nolymer hours

In sintesi

· Gestione della comunicazione in rete

driver di rete

protocolli di comunicazione in rete

- Modello teorico
 - Protocollo ISO/OSI
- Modelli reali
 - Protocollo TCP/IP
 - Protocollo UDP/IP
 - Protocolli applicativi

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 1 – Distribuzione della computazione

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Motivazioni
- Obiettivi
- Tecniche di distribuzione della computazione

Motivazioni

- Aumento della velocità di elaborazione Parallelelismo
- Accesso efficiente a risorse informative o fisiche
- Elaborazione su grandi quantità di dati localizzate
- Tolleranza ai guasti

Obiettivi

Spostare la computazione sulla macchina in cui si trovano le risorse adatte a raggiungere l'obiettivo applicativo

Tecniche per la distribuzione della computazione

- Chiamate di procedure remote
- Allocazione di processi
- Agenti

Tecniche per il supporto alla computazione distribuita

- Comunicazione tra processi distribuiti
- Sincronizzazione tra processi distribuiti

In sintesi

- Parallelismo
 - Diminuzione latenza
 - Aumento throughput
 - Diminuzione tempo risposta
- Uso di risorse fisiche o informative locali
- Tolleranza ai guasti
 - Rilevamento e correzione errori
 - Sopravvivenza
- Tecniche per la distribuzione della computazione e il suo supporto

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 2 – Chiamata di procedura remota

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Obiettivo
- Realizzazione
- Esecuzione
- Valutazione
- Invocazione di metodo remoto

Obiettivo

- Eseguire una procedura sulla macchina su cui sono disponibili le risorse informative o fisiche necessarie
- Lasciare il resto del processo sulla macchina su cui è stato attivato

Chiamata di procedura remota

Remote Procedure Call

Chiamata di procedura fra macchine in rete

- Simile alla chiamata di procedura all'interno del processo oppure al sistema operativo
- Processo chiamante è entità attiva, procedura chiamata è entità passiva
- RPC è realizzata mediante comunicazione tra processi basata su messaggi strutturati

Realizzazione (1)

- · Processo chiamante
- Procedura chiamata (stub)
- Demone in ascolto su porta

- Attivazione mediante messaggio strutturato
 - Identificatore della funzione richiesta
 - Parametri
- Risultato restituito al mittente in messaggio separato

Realizzazione (2)

Stub (terminale remoto della procedura)

- Uno stub per ogni procedura
- Parametri
- Traduzione parametri
- Scambio messaggi

Vantaggi

- Procedura remota come se fosse locale
- Dettagli nascosti

Problemi (1)

- Diverse rappresentazioni dei dati
- Rappresentazione esterna dei dati external data rappresentation, XDR

Problemi (2)

- Semantica della chiamata
 - Al più una volta
 - Marche di tempo
 - Storico delle richieste
 - Esattamente una volta
 - Unicità delle richieste
 - Esecuzione garantita

Esempio di uso delle RPC

Realizzazione di un file system distribuito

- Demoni RPC
- Client
- Messaggi sulla porta DFS del server dove risiede il file
- Messaggio di ritorno col risultato

Invocazione di metodo remoto (1)

Remote Method Invocation

- Specifica di linguaggi ad oggetti (ad esempio Java)
- Simile a RPC
- Thread invoca un metodo su un oggetto remoto
 - differente JVM sullo stesso computer
 - computer remoto connesso tramite rete

RPC rispetto RMI

RPC

 Gestione della connessione è responsabilità del programmatore

RMI

- Gestione trasparente al programmatore
- Gestita dall'ambiente di programmazione

In sintesi

- Chiamate di procedure remote
 - Realizzazione
 - Esecuzione
 - Vantaggi e problemi
- Invocazione di Metodi Remoti

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 3 – Allocazione dei processi

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Obiettivi
- Allocazione statica
- Allocazione dinamica

Obiettivi

- Attivare i processi sulla macchina più adatta ad effettuare la compputazione tenendo conto del carico computazionale e delle risorse informative o fisiche necessarie
- **Migliorare** lo sfruttamento dei processori: bilanciamento del carico
- Migliorare lo sfruttamento delle risorse
- Gestire in modo efficiente l'uso delle risorse minimizzando il carico computazionale di gestione
- Realizzare la tolleranza ai guasti

Allocazione statica (1)

- L'allocazione dei processi è definita alla loro attivazione ottimizzando uno o più obiettivi
- Effettuata l'allocazione dei processi, tale allocazione è permanente e i processi vengono attivati

Allocazione statica (2)

Allocazione completa

Tutti i processi che devono essere attivati sono allocati contemporaneamente e poi sono attivati

Allocazione incrementale

Quando un gruppo di processi deve essere attivato,

viene prima allocato tenendo fissa l'allocazione dei processi già attivati e poi viene attivato

Allocazione statica (3)

- Funzione obiettivo per l'ottimizzazione
 - Sfruttamento dei processori
 - Tempo di idle totale dei processori
 - Distribuzione del tempo di idle dei processori
 - Latenza media dei processi
 - Throughput dei processi
 - Tempo di risposta in sistemi in tempo reale
 - ...
 - Efficienza della gestione
 - Minimizzazione del tempo di accesso alle informazioni
 - Minimizzazione del tempo di accesso alle periferiche
 - Minimizzazione del tempo di accesso ai servizi del sistema operativo
 - · ...

– ..

Allocazione statica (4)

- Vincoli per l'ottimizzazione
 - Locazione di processi
 - Locazione delle risorse informative o fisiche necessarie con accesso solo locale
 - Interazione con utente
 - Basi dati
 - Sensori e attuatori
 - Sicurezza e autenticazione
 - ...
 - Incompatibilità con locazione (hw, sw, sistema operativo)
 - Incompatibilità tra processi

— ..

Allocazione statica (5)

- · Caratteristiche degli algoritmi di allocazione
 - Modalità di ricerca della soluzione
 - Algoritmi deterministici
 - Algoritmi euristici
 - Modalità di esecuzione
 - Algoritmi centralizzati
 - Algoritmi distribuiti
 - Qualità della soluzione
 - Soluzione ottima
 - Soluzione sub-ottima

Allocazione statica (6)

- · Caratteristiche degli algoritmi di allocazione
 - Allocazione
 - Globale
 - Locale
 - Attivazione dell'algoritmo di allocazione
 - Eseguita dal processore mittente
 - Eseguita dal processore ricevente

Allocazione dinamica (1)

- L'allocazione dei processi è definita durante tutta la loro vita ottimizzando uno o più obiettivi
- L'allocazione effettuata all'attivazione non è permanente

Allocazione dinamica (2)

Allocazione totale

L'allocazione è definita considerando tutti i processi contemporaneamente

Allocazione parziale

L'allocazione è definita considerando un sottoinsieme di processi che soddisfa una regola di candidatura alla riallocazione

Allocazione dinamica (3)

Allocazione periodica

L'allocazione è effettuata a intervalli regolari

Allocazione reattiva

L'allocazione è effettuata quando si verifica una condizione di riallocazione

Riallocazione volontaria

La riallocazione di uno o più processi è richiesta da un processo

Allocazione dinamica (4)

- Funzione obiettivo per l'ottimizzazione
- Vincoli per l'ottimizzazione
- Caratteristiche degli algoritmi di allocazione

Allocazione dinamica (5)

- Migrazione dei processi
 - Stato di evoluzione della computazione del processo
 - Trasferimento del processo
 - Riattivazione del processo
 - Compatibilità e traduzione della rappresentazione dei dati e del codice

Allocazione dinamica (6)

- Costo della migrazione dei processi
 - Tempo di gestione dell'algoritmo di allocazione
 - Tempo di gestione della migrazione

In sintesi

- Allocazione statica
- Allocazione dinamica

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 4 – Agenti mobili

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Obiettivi
- Modello computazionale ad agenti
- Agenti mobili

Obiettivi

- Innalzare il livello di astrazione della computazione secondo i principi dell'ingegneria del software
- Descrivere la computazione mediante tecnologie ad oggetti con capacità di esecuzione di azioni

Modello della computazione ad oggetti

- Oggetti
 collezione di dati e
 procedure (metodi) per la loro gestione
- Incapsulamento delle caratteristiche dei dati e delle procedure
- Programmi → Processi/Thread

Agenti

Entità software

- Autonoma
- Inserita in un ambiente
- Pro-attiva
- Cooperante

Agenti mobili

Agenti
 con capacità di
 muoversi nel sistema distribuito
 interagire con le singole macchine
 scoprire le risorse e i servizi
 delle singole macchine

In sintesi

- Agenti
- Agenti mobili

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 5 – Coordinamento distribuito tra processi (parte 1)

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Ordinamento degli eventi
- Sincronizzazione
 - Mutua esclusione
 - Atomicità
 - Gestione concorrenza

Sincronizzazione dei processi

Ordinamento degli eventi in sistema distribuito

- Soluzione ideale: ordinamento totale
- Problema:

in sistemi distribuiti non ci sono orologio e memoria comune per realizzare ordinamento totale

 Soluzione pratica: ordinamento parziale

Relazione "accaduto prima" (1)

Definizione

 Se A e B sono eventi dello stesso processo ed A avviene prima di B,

 Se A è l'evento di trasmissione del messaggio in un processo,

e B è l'evento di ricezione di quel messaggio da parte di un altro processo,

• Se A \rightarrow B e B \rightarrow C, allora $\stackrel{\frown}{A} \rightarrow$ C

Relazione "accaduto prima" (2)

Caratteristiche

- · Non riflessiva
- Eventi non in relazione sono concorrenti e non si influenzano
- Se due eventi sono in relazione possono influenzarsi

Relazione "accaduto prima" (3)

Tre processi concorrenti

Ordinamento globale

- · Marca di tempo
- · Orologio logico
- Incremento monotono
- Avanzamento forzato per processi diversi che comunicano

Marca di tempo

Generazione delle marche di tempo uniche a livello di sistema distribuito

- · Soluzione centralizzata: unico distributore
- Soluzione distribuita:
 marca di tempo locale + identificatore del sito

Marca di tempo locale

- Orologio di sistema
- Orologio logico locale

Orologi locali

- · Velocità diverse
- · Orologi logici
- Sincronizzazione degli orologi logici
 - Aggiornamento dell'orologio a n+1
 qualora un sito riceva una marca di valore n

Mutua esclusione (1)

- · Metodo centralizzato
- Metodo distribuito

Mutua esclusione (2)

Metodo centralizzato

- Processo coordinatore centralizzato per la gestione dell'accesso alle sezioni critiche
- Coda dei processi in attesa
- Prestazioni: limitate per centralizzazione
- Tolleranza ai guasti: vulnerabile

Mutua esclusione (3)

Metodo distribuito

- Quando P vuole entrare in sezione critica:
 - genera marca tempo
 - invia richiesta di entrata in sezione critica a tutti i processi
- Quando un processo Q riceve richiesta di entrare in sezione critica:
 - ritarda la risposta se è in sezione critica
 - risponde immediatamente se non intende entrare in sezione critica
 - se desidera entrare nella propria sezione critica ma non vi è entrato, compara la propria marca di tempo con quella di P: se la propria è più grande, allora risponde immediatamente, altrimenti ritarda la risposta per entrare prima

Mutua esclusione (4)

Metodo distribuito

- No starvation
- No deadlock
- Tolleranza ai guasti

Mutua esclusione (5)

Metodo a passaggio di token

- Processi organizzati ad anello logico
- Token indica autorizzazione ad accedere

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 5 – Coordinamento distribuito tra processi (parte 2)

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Atomicità (1)

- Coordinatore delle transazioni in ciascuna macchina
 - Iniziare la transazione
 - Dividere la transazione in sotto-transazioni
 - Distribuzione delle sotto-transazioni sulle macchine adatte
 - Coordinamento della fine della transazione

Atomicità (2)

Protocollo di commit a due fasi

- Transazione inizia su macchina S_i
- Quando tutti i siti comunicano a S_i che è stata completata la porzione di T ad essi assegnata si attiva il protocollo a due fasi per definire il commit della transazione
- Fase 1
 - C_i aggiunge prepare T> e manda messaggio
 "prepare T" a tutte le macchine coinvolte
 - Quando tale messaggio è ricevuto da una macchina $S_j,\ C_j$ decide se commit sulla macchina è possibile
 - Se non possibile, aggiunge <no T> e risponde a C_i con abort
 - \blacksquare Se possibile, aggiunge <ready T> e risponde a C_i con "ready T"

Atomicità (3)

Protocollo di commit a due fasi

- Fase 2
 - Quando C_i riceve le risposte oppure dopo che è trascorso time-out, C_i stabilisce se può chiudere la transazione
 - T è chiusa con commit se sono ricevuti <ready T> da tutte le macchine, aggiungendo <commit T> al log
 - Altrimenti T è abortita aggiungendo <abort T>
 - Il risultato è trasmesso a tutte le macchine
 - Quando un coordinatore locale riceve "commit T" o "abort T", registra <commit T> o <abort T> rispettivamente

Atomicità (4)

Protocollo di commit a due fasi

- Tolleranza ai guasti delle macchine
- Tolleranza ai guasti della rete

Concorrenza

Ambiente distribuito

- Gestore delle transazioni
 - Transazioni locali
 - Transazioni globali
- File di log
- Protocolli
 - bloccanti
 - non bloccanti

Protocolli bloccanti (1)

- Realizzazione del gestore del blocco in ambiente distribuito
- Replicazione dei dati
- Modalità di gestione del blocco condiviso o esclusivo

Protocolli bloccanti (2)

Coordinatore centralizzato dei lock

- Dati non replicati
- Unico responsabile centralizzato dei lock
- Realizzazione semplice: richiesta di lock mediante scambio di messaggi (2 messaggi)
- Gestione stallo: complicata
- Prestazioni: limiti dovuti a coordinatore unico
- Tolleranza ai guasti: critica dovuta alla centralizzazione

Protocolli bloccanti (3)

Coordinatori multipli dei lock

- Dati non replicati
- Responsabile locale dei lock
- Realizzazione semplice: richiesta di lock mediante scambio di messaggi (2 messaggi)
- Gestione stallo: complicata

Protocolli bloccanti (4)

Coordinatore dei lock a maggioranza

- Dati replicati
- Responsabile dei lock per ogni sito
- Richiesta di almeno n/2+1 lock locali; lock globale ottenuto quanto almeno n/2+1 lock locali sono ottenuti
- Realizzazione complicata
 - -2(n/2+1) messaggi per gestire il blocco
 - (n/2 + 1) messaggi per gestire lo sblocco
- Bisogna modificare gli algoritmi per la gestione dello stallo

Protocolli bloccanti (5)

Protocollo polarizzato

- Dati replicati
- Responsabile dei lock per ogni sito
- Blocchi condivisi: richiesta locale
- Blocchi esclusivi: richiesta globale come in lock a maggioranza
- Minore sovraccarico nella lettura rispetto ai protocolli di lock a maggioranza
- Ulteriore sovraccarico in scrittura
- Difficile gestire lo stallo

Coordinatore (1)

Compito

- Gestione del coordinamento tra processi in ambiente distribuito
 - Mutua esclusione
 - Rilevazione degli stalli
 - Sostituzione token persi
 - Controllo input/output

Coordinatore (2)

Algoritmi di elezione

- Processo con identificatore di priorità più alto
- Algoritmo del bullo
- Algoritmo dell'anello

Coordinatore (3)

Algoritmo del bullo

P cerca di eleggere se stesso come coordinatore.

Quando P si accorge che il coordinatore non funziona

- manda un messaggio di inizio elezione ai processi con priorità più alta e attende risposta
- se nessuna risposta entro timeout T, P elegge se stesso come coordinatore e informa tutti i processi che ha assunto tale ruolo
- se P riceve una risposta, allora attende l'identificatore del nuovo coordinatore
- se P non riceve l'identificatore del nuovo coordinatore, deve far ripartire l'elezione

Coordinatore (4)

Algoritmo dell'anello

- Collegamento logico ad anello unidirezionale
- Lista attiva

Quando P si accorge che il coordinatore non funziona

- genera una nuova lista attiva vuota
- attiva elezione inviando la lista attiva al processo successivo nell'anello

Se P riceve un messaggio di elezione

- se è primo messaggio ricevuto o inviato, crea una lista attiva includendo se stesso e il processo che lo precede nell'anello e invia un messaggio di elezione indicando se stesso e il processo predecessore
- se il messaggio ricevuto non contiene P, aggiunge il predecessore alla propria lista attiva ed inoltra il messaggio di elezione al processo successivo
- se il messaggio ricevuto contiene P, la lista attiva contiene tutti i processi: P può identificare il coordinatore nella lista come il processo con priorità più elevata

In sintesi

- Ordinamento degli eventi
- Tecniche per la sincronizzazione
 - Mutua esclusione
 - Atomicità
 - Gestione concorrenza

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 6 – Deadlock in ambiente distribuito

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Estensione ai sistemi di elaborazione distribuiti
- · Prevenzione in ambiente distribuito
- Rilevamento e gestione in ambiente distribuito

Prevenzione dello stallo

- Estensione degli algoritmi per la macchina singola al caso distribuito
- Ordinamento globale delle risorse nel sistema distribuito
 - Sovraccarico minimo
- · Algoritmo del banchiere
 - Sovraccarico elevato
 - Prestazioni basse per centralizzazione

Marche di tempo con rilascio della risorsa (1)

- Identificatore di priorità per ogni processo
- Rilascio anticipato
 Se P possiede risorsa, e Q ha priorità più alta di P
 - P deve rilasciare la risorsa
 - Rollback di P
 - Risorsa assegnata a Q
- Possibile starvation
 Soluzione: marche di tempo

Marche di tempo con rilascio della risorsa (2)

Schema wait-die

- Senza rilascio anticipato
- Se la risorsa è occupata dal processo P
 - Se processo richiedente Q ha marca più piccola, attende
 - Se processo richiedente Q ha marca più grande, fa rollback e muore
- Si evita starvation se non si assegna una nuova marca al rollback

Marche di tempo con rilascio della risorsa (3)

Schema wound-wait

- Con rilascio anticipato delle risorse
- Se la risorsa è occupata dal processo P
 - Se processo richiedente Q ha marca più grande, attende
 - Se processo richiedente Q ha marca più piccola, fa rollback
- Si evita la starvation se non si assegna una nuova marca al rollback

Rilevamento dello stallo

- Grafo di allocazione delle risorse
 → grafo di attesa
- Ciclo = Stallo
- Come realizzare e mantenere il grafo di attesa in ambiente distribuito?

Grafo di attesa in ambiente distribuito

- Ogni macchina ha un grafo di attesa locale
- Se non ci sono cicli nel grafo di attesa locale, non è garantito che non ci siano stalli

Unione dei grafi non ha cicli → non ci sono stalli

Grafo di attesa centralizzato (1)

- Coordinatore centralizzato del rilevamento degli stalli
- Grafo di attesa globale = unione dei grafi di attesa locali
 - Grafo reale
 - Grafo costruito dall'algoritmo
 - se esiste uno stallo, questo deve essere segnalato
 - se viene rilevato uno stallo, il sistema deve essere effettivamente in stallo

Grafo di attesa centralizzato (2)

- · Aggiornamento del grafo di attesa
 - Inserimento o rimozione di un arco
 - La macchina manda un messaggio per avvisare della modifica del grafo locale
 - Dopo un certo numero di cambiamenti
 - La macchina manda un messaggio dopo un certo numero di cambiamenti locali
- Cercare un ciclo

Algoritmo di rilevamento centralizzato

- Trasmissione dei grafi di attesa locali
- Costruzione del grafo di attesa globale
 - Un nodo per ogni processo
 - Riporta gli archi dei grafi di attesa locali
- C'e' un ciclo nel grafo di attesa globale?
 - Si: il sistema è in stallo
 - No: la verifica non è significativa

Algoritmo di rilevamento distribuito (1)

- Ogni macchina costruisce una parte del grafo di attesa globale
- In ogni grafo di attesa locale si inserisce un nodo P_{ex} per identificare attesa coinvolgente risorse di altre macchine
- Se esiste uno stallo, apparirà almeno un ciclo in uno dei grafi di attesa locale
 - Se un grafo di attesa locale contiene un ciclo che non coinvolge il nodo $P_{\rm ex}$, il sistema è in stallo
 - Se esiste un ciclo che coinvolge P_{ex}, allora si ha la possibilità di stallo
 - → contattare macchine per verificare esistenza stallo

Algoritmo di rilevamento distribuito (2)

Algoritmo di rilevamento distribuito (3)

Problema:

rilevamento contemporaneo di cicli in grafi di attesa locali provoca sovraccarico di gestione e messaggi ridondanti

- Assegnare un unico identificatore ad ogni processo P_i
- Quando la macchina S_i scopre un ciclo che coinvolge il nodo P_{ex} nel proprio grafo locale,

manda un messaggio di rilevamento dello stallo ad altre macchine

solo se il processo precedente $P_{\rm ex}$ nel ciclo ha identificatore minore del processo successivo a $P_{\rm ex}$

 Altrimenti, la macchina S_i continua la propria attività, lasciando il compito di iniziare la procedura di rilevazione dello stallo ad altre macchine.

Gestione dello stallo (1)

- Tra processi in stallo, il coordinatore sceglie una vittima a cui applicare il rollback
- Tutte le macchine vengono informate
 - Chi stava interagendo con la vittima fa rollback

Gestione dello stallo (2)

Rollback inutili

- Falsi cicli nel grafo globale dovuti a tempi di trasmissione dei messaggi di acquisizione e rilascio delle risorse
- Le richieste, provenienti da macchine differenti, devono essere individuate da identificatori o marche di tempo unici
- Nel grafo globale vanno solo le richieste non immediatamente soddisfacibili

In sintesi

- Tecniche di prevenzione dello stallo
- Tecniche di rilevamento e gestione dello stallo

SISTEMI OPERATIVI

Sistemi Distribuiti Computazione Distribuita

Lezione 7 – Comunicazione tra processi in rete

Vincenzo Piuri

Università degli Studi di Milano

Sommario

- Messaggi
- Mailbox
- File
- Socket

Scambio di messaggi

- Analogo allo scambio di messaggi tra processi su una singola macchina
- Buffer in ambiente distribuito

Mailbox

- Analogo allo scambio di messaggi attraverso mailbox in una singola macchina
- Mailbox in ambiente distribuito

File

- Analogo all'uso di file in una singola macchina
- File in ambiente distribuito

Socket

- Analogo all'uso di socket in una singola macchina
- Porte e messaggi in ambiente distribuito

Realizzazione

• Il sistema operativo remotizza le operazioni di comunicazione

In sintesi

- Abbiamo visto come estendere le tecniche per la comunicazione tra processi in una macchina ad architetture distribuite
 - Messaggi
 - Mailbox
 - File
 - Socket

SISTEMI OPERATIVI

Sistemi Distribuiti File System Distribuiti

Lezione 1 - Struttura e funzioni

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Obiettivi
- File system di rete
- File system distribuito

Obiettivi

- Accedere ai file system
 (risorse informative e fisiche)
 delle macchine connesse in una architettura
 di elaborazione distribuita
- Trasparenza dell'accesso al file system
- Gestione efficiente dell'accesso ai file system

File system in sistemi di elaborazione distribuiti

File system di rete Network File System - NFS

File system distribuito

Distributed File System - DFS

Condivisione di file delocalizzati

File system di rete

- Collezione di file system delle macchine della rete
- · Montaggio locale di file system remoti
- · Problema:

visibilità della struttura della rete e dell'allocazione delle risorse

File system distribuito

- Integrazione dei file system delle macchine in rete in un unico file system globale
- Omogeneità di visione del file system su tutte le macchine della rete
- Trasparenza dell'allocazione delle risorse

Nomi dei file (1)

- Identificatore unico del file nel sistema di elaborazione distribuito
- Identificatore del file in file system di rete
 - nome macchina + nome file nel file system della macchina
 - montaggio file system remoto su direttorio locale con nome file nel file system della macchina (incluso il file system remoto montato)
- File system distribuito
 - nome unico nel file system globale

Nomi dei file (2)

- · Nome del file mappato automaticamente
 - -ad un indirizzo locale
 - -ad un indirizzo remoto
- · Locazione del file
 - -visibile agli utenti
 - -invisibile agli utenti
 - trasparenza della posizione
 - trasparenza (indipendenza) della locazione
- Repliche dei file
- Migrazione dei file

Accesso ai file (1)

- File system di rete
 - -Servizi remoti mediante RPC
 - Copiatura locale, aggiornamento locale, salvataggio remoto
- File system distribuito
 - Servizi locali, eventualmente eseguiti remotamente in modo trasparente

Accesso ai file (2)

- Cache
 - -Locazione
 - -Politiche di aggiornamento
 - Write-through
 - Delayed-write
 - Write-on-close
 - -Consistenza
 - Verifica iniziata dal client
 - Verifica iniziata dal server
 - -Scelta della dimensione

Stato del file server

- Definizione Insieme delle informazioni che caratterizzano l'uso di un file aperto
- File server senza stato
 - Richieste soddisfatte in modo indipendente
 - Più semplice
- File server con stato
 - Operazione di open()
 - Identificatore di connessione
 - Più efficiente

Replica dei file

- Ridondanza
- Migliori prestazioni
- Replicazione invisibile agli utenti
- Aggiornamento

In sintesi

- File system di rete
- File system distribuito