August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering
Polish (POL)

T - Covering

Jeśli kiedykolwiek grałaś lub grałeś w Tetrisa, to na pewno wiesz, że jedna z kostek wygląda następująco:

Taką kostkę będziemy nazywali *T-tetromino*. To bardzo wyrafinowana nazwa na kostkę złożoną z czterech komórek. Komórka oznaczona znakiem \times będzie nazywana *centrum kostki*.

Manca narysowała prostokątną planszę złożoną z m wierszy i n kolumn. Wiersze zostały ponumerowane od 0 do m-1 oraz kolumny zostały ponumerowane od 0 do n-1. W każdą komórkę Manca wpisała liczbę. Dodatkowo, niektóre z komórek oznaczyła jako specjalne (pomalowała je na czerwono). Następnie poprosiła swoją przyjaciółkę Nikę o rozłożenie tetrominów na planszy tak, aby spełnione były następujące warunki:

- Liczba tetrominów na planszy ma być taka sama jak liczba specjalnych komórek. Centrum każdego tetromino powinno znajdować się w specjalnej komórce.
- Żadna para tetrominów nie może na siebie nachodzić.
- Każde tetromino powinno w całości leżeć na planszy (nie może wychodzić poza).

Zauważ, że tetromino może leżeć na jeden z czterech sposobów: $(\top, \bot, \vdash,$ and $\dashv)$.

Jeśli nie można rozłożyć tetrominów tak, aby spełnić powyższe warunki, wtedy Nika powinna zwrócić No. W przeciwnym przypadku dziewczyna chce znaleźć takie rozmieszczenie, aby suma liczb pokrytych przez kostki była jak największa. W tym przypadku Nika musi znaleźć tę wartość.

Napisz program, który pomoże Nice rozwiązać tę zagadkę.

Wejście

Każdy wiersz wejścia zawiera sekwencję liczb całkowitych oddzielonych pojedynczą spacją.

W pierwszym wierszu zapisano dwie liczby całkowite m i n. W kolejnych m wierszach zapisano po n liczb naturalnych z przedziału [0,1000]. j-ta liczba w i-tym wierszu oznacza j-tą liczbę zapisaną w i-tym wierszu. W następnym wierszu zapisano liczbę naturalną $k \in \{1,\ldots,mn\}$. W kolejnych k wierszach opisano kolejne komórki specjalne. Opis każdej komórki specjalnego składa się z dwóch liczb naturalnych $r_i \in \{0,\ldots,m-1\}$ i $c_i \in \{0,\ldots,n-1\}$, które opisują jej położenie (r_i)

oznacza numer wiersza, zaś c_i oznacza numer kolumny). Możesz założyć, że lista specjalnych komórek nie zawiera dwóch tych samych komórek.

Wyjście

Wypisz maksymalną sumę liczb zapisanych w komórkach, które mogą zostać pokryte przez tetrominy. Jeśli nie istnieje żadne pokrycie, wtedy należy wypisać No.

Ograniczenia

• $1 < mn < 10^6$.

Podzadania

- 5 punktów: $k \leq 1000$; dla każdej pary różnych specjalnych komórek i i j zachodzi, że $|r_i-r_j|>2$ lub $|c_i-c_j|>2$.
- 10 punktów: $k \leq 1000$; dla każdej pary różnych specjalnych komórek i i j, jest spełnione, że jeśli $|r_i-r_j| \leq 2$ i $|c_i-c_j| \leq 2$, wtedy (r_i,c_i) i (r_j,c_j) mają wspólny bok, lub bardziej formalnie następujący warunek jest prawdziwy ($|r_i-r_j|=1$ i $|c_i-c_j|=0$) lub ($|r_i-r_j|=0$ i $|c_i-c_j|=1$).
- 10 punktów: $k \leq 1000$; dla każdej pary różnych specjalnych komórek i i j, jest spełnione, że jeśli $|r_i-r_j| \leq 2$ i $|c_i-c_j| \leq 2$, wtedy $|r_i-r_j| \leq 1$ i $|c_i-c_j| \leq 1$.
- 10 punktów: $k \leq 1000$; wszystkie komórki specjalne leżą w tym samym wierszu.
- 15 punktów: $k \leq 10$.
- 20 punktów: $k \le 1000$.
- 30 punktów: brak dodatkowych ograniczeń.

Przykład 1

Wejście

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Wyjście

```
67
```

Wyjaśnienie

Aby uzyskać maksymalną wartość, Nina może rozłożyć tetrominy w następujący sposób:

- ⊢ w komórce (1, 1);
- ⊢ w komórce (2, 2);
- ⊥ w komórce (3, 4).

Przykład 2

Wejście

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Wyjście

```
No
```