NANYANG TECHNOLOGICAL UNIVERSITY

MIDTERM II (CA2)

MH1812 - Discrete Mathematics

April 2018	TIME ALLOWED: 40 minutes
Name:	
Matric. no.:	Tutor group:

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains **THREE** (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Candidates can write anywhere on this midterm paper.
- 5. This **IS NOT** an **OPEN BOOK** exam.
- 6. Candidates should clearly explain their reasoning when answering each question.

QUESTION 1.

(30 marks)

Solve the following linear recurrences, that is, write a_n and b_n in terms of n:

(a) $a_n = 10a_{n-1} - 21a_{n-2}$ for $n \ge 2$, with initial conditions $a_0 = 3$, $a_1 = 5$;

(b) $b_n = b_{n-1} + 2$ for $n \ge 1$, with initial condition $b_0 = 2$.

Justify your answers.

a)
$$\chi^2 = 10\chi - 21$$

 $\chi = 7, \chi = 3.$ $\alpha_0 = 3 = U + V$ $\therefore U = -1 V = 4$
 $\alpha_n = U(7)^n + V(3)^n$ $\alpha_1 = 5 = U(7) + V(3)$ $\alpha_n = -(7)^n + 4(3)^n$

b)
$$b_{n} = b_{n-1} + 2$$

= $(b_{n-2} + 2) + 2 = b_{n-2} + 4$
= $(b_{n-3} + 2) + 4 = b_{n-3} + (3)(2)$
= $b_{n-k} + k(2) + 0$
= $b_{n-k} + k(2)$
= $b_{n-k} + k(2)$

Let p(x) be T

inductive,
$$P(n+1) = b_n + 2$$

= 2+2n +2
= 2+2(n+1)

: True!

QUESTION 2.

(30 marks)

(a) Prove that

$$\sum_{j=1}^{n} j(3j-1) = n^{2}(n+1), \quad \forall n \in \mathbb{N}.$$

- (b) Let $A = \{0, 1\}$ and $B = \{4, 5\}$.
 - (i) Write out all elements of the set $A \times B$.
 - (ii) What is the cardinality of the power set of $A \times B$?

a) Let
$$P(n)$$
 be $\sum_{j=1}^{n} j(3j-1) = n^{2}(n+1)$

Base case $P(i)$: $\sum_{j=1}^{n} j(3j-1) = \binom{2}{n+1}$

$$1(3-1) = 2$$

$$2 = 2$$
Let $P(n)$ be T

inductive step $P(n+1) = \sum_{j=1}^{n} j(3j-1)$

$$= \sum_{j=1}^{n} j(3j-1) + \binom{n+1}{3(n+1)-1}$$

$$= n^{2}(n+1) + \binom{n+1}{n^{2}+3n+2}$$

$$= \binom{n+1}{n^{2}+3n+2}$$

$$= \binom{n+1}{n^{2}+3n+2}$$

$$= \binom{n+1}{n^{2}+3n+2}$$

$$= \binom{n+1}{n^{2}+3n+2}$$

QUESTION 3.

(40 marks))

Prove LHS $\chi \in (\widehat{A \cap B}) \land C$ $\chi \in (\widehat{A \cap B}) \land \chi \in C$ $\chi \notin (\widehat{A \cap B}) \land \chi \in C$ $\chi \notin A \land \chi \notin B \land \chi \in C$ $\chi \in C \land \chi \notin A \land \chi \notin B \land \chi \in C$

- (a) Let A, B, and C be sets.
 - (i) Prove that $(\overline{A \cap B}) \cap C = (C A) \cup (C B)$;
 - (ii) Is $(C A) \cup (C B) = C$? If yes, prove it, if no, give a counterexample.
- (b) Let $S = \{3a + 6b \mid a, b \in \mathbb{Z}\}.$
 - (i) Show that $S \subseteq \mathbb{Z}$;
 - (ii) Is $S = \mathbb{Z}$? If yes, prove it, if no, give a counterexample.

take XES, We want to show XEZ

 $\therefore x \in 3a + 3b$

To close whe add