

MetaIRN

Meta-Gradient-based Intrinsic 1002 Rewards via Attention Network

Meta

Learner

Philipp Link, Julius Heidmann, Luan Liebig-Schultz

{p.link, julius.heidmann, luan.liebig-schultz}@stud.uni-hannover.de

Motivation

- Sparse Reward Environments make Learning for Agents difficult
 - → slow/unstable
- How to facilitate Training?
 - → Use Intrinsic Rewards to enrich Feedback through Temporal Credit Assignment (TCA)
- Which Actions lead to Future Success?
- TCA: Associate Actions with Temp. distant Rewards and assign Credit (int. Rewards)

Related Work & Setting

SAIR¹/ LIRPG² [Jiang et al. 2021], [Zheng et al. 2018]

• Meta-Gradient to train an Attention Network producing Intrinsic **Rewards** to facilitate PPO learning

Decoupling Memory from **TCA**⁴ [Ni et al. 2023]

- Exactly distinguish between TCA and Memory ability of an Agent
 - → Memory Problem⁴:

Definition 1.A (Reward memory length $m_{\text{reward}}^{\mathcal{M}}$). For a POMDP \mathcal{M} , $m_{\text{reward}}^{\mathcal{M}}$ is the smallest $n \in \mathbb{N}$ such that the expected reward conditioned on recent n observations is the same as the one conditioned on full history, i.e., $\mathbb{E}[r_t \mid h_{1:t}, a_t] = \mathbb{E}[r_t \mid h_{t-n+1:t}, a_t], \forall t, h_{1:t}, a_t$.

→ Credit Assignment Problem⁴: $c(h_{1:t};\pi) := \min_{1 \leq n \leq T-t+1} \left\{ n \mid \exists a_t^* \in A_t^*, \text{s.t.} \, G_n^\pi(h_{1:t}, a_t^*) > G_n^\pi(h_{1:t}, a_t'), \forall a_t' \not \in A_t^* \right\}$

Approach

- Can a Combination of Meta-Gradient Optimization and Attention-based intrinsic Rewards enhance the Agent's Ability to assign Credit in TCA-only scenarios?
- Based on SAIR¹/ LIRPG² Meta-Gradient:
 - Inner Loop: PPO Update (Ex.&In. Rew.)
 - Outer Loop: Attention Net Update (Ex. Rew.)
- This Agent is trained in Umbrella Length³ (TCA-Only) Env, which is isolated to focus exclusively on TCA problems
- Comparison to Vanilla PPO Performance

Meta-Gradient Update¹:

PPO Network:

$$\theta' \leftarrow \theta + \alpha \nabla_{\theta} J^{ex+in}(\theta|\mathcal{D})$$

Intrinsic Network:

$$\eta' \leftarrow \eta + \alpha \nabla_{\eta} J^{ex}(\theta'|\mathcal{D}) \nabla_{\eta} \theta'$$

Key Insights

RLLib Implementation

- PPO with Intrinsic Attention & Vanilla
- Hyperparameter based on SMAC HPO with 100 Configurations each
- 10 Seeds Evaluations for each Environment Length (2, 5, 10, 20, 50)

Umbrella Length³ Env Fully observable MDP

- Intermediate Reward $R_i \in \{-0.1, 0.1\}$
- Final Reward $R_f \in \{-10, 10\}$ depends only on First Action

Future Works

- TMaze Env (Memory-Only Test)
- Meta-Gradient Implementation
- Research Ext. Value Pred. Behaviour

