PROBLEM SET 4

Reading: Class Notes, Sections 2.8–2.10, 4.1, 4.5.

Problems:

- 1. Prove that the Euclidean norm $|x|:=\sqrt{\langle x,x\rangle}=\sqrt{x_1^2+\cdots+x_n^2}$ satisfies the triangle inequality. (Hint: use the Cauchy-Schwarz inequality $|\langle x,y\rangle|^2\leq \langle x,x\rangle\cdot \langle y,y\rangle$.)
- **2.** Let A be a symmetric real-valued square matrix.
- a) Show that if $\lambda + i\mu$ is an eigenvalue of A and z = x + iy is a corresponding eigenvector, then $\mu = 0$ and x is an eigenvector. In other words, eigenvalues of symmetric matrices are always real and eigenvectors can always be chosen to be real. (Hint: show that $\overline{z}^T A z$ is real.)
- b) Show that eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
- **3.** Let M be a symmetric real-valued $n \times n$ matrix. Show that the following three statements are equivalent:
- 1. *M* is positive definite.
- 2. All eigenvalues of M are positive.
- 3. $M = N^T N$ for some nonsingular $n \times n$ matrix N.

(Hint: show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.)

4. Let X and Y be linear vector spaces over \mathbb{R} equipped with inner products $\langle \cdot, \cdot \rangle_X$ and $\langle \cdot, \cdot \rangle_Y$, respectively. Let $L: X \to Y$ be a linear operator. We define the *adjoint* of L to be a linear operator $L^*: Y \to X$ with the property that

$$\langle y, Lx \rangle_Y = \langle L^*y, x \rangle_X \qquad \forall x \in X, \ y \in Y$$

Assume that the map $LL^*: Y \to Y$ is invertible. Then the equation $Lx = y_0$ has a solution

$$x_0 = L^* (LL^*)^{-1} y_0$$

for each $y_0 \in Y$. Prove that if x_1 is any other solution of $Lx = y_0$, then $\langle x_1, x_1 \rangle \geq \langle x_0, x_0 \rangle$.

(Hint: Let $y_1 := (LL^*)^{-1}y_0$. Using the definition of adjoint, show that $\langle y_1, Lx_0 \rangle = \langle x_0, x_0 \rangle$ and also that $\langle x_0, x_1 \rangle = \langle y_1, Lx_0 \rangle$. Complete the proof by using the fact that $\langle x_1 - x_0, x_1 - x_0 \rangle \ge 0$.)

5. Using the stability definitions given in class, determine if the systems below are stable, asymptotically stable, globally asymptotically stable, or neither. The first two systems are in \mathbb{R}^2 , the last is in \mathbb{R} .

a)
$$\dot{x}_1 = 0$$
 b) $\dot{x}_1 = -x_2$ c) $\dot{x} = 0$ if $|x| > 1$ $\dot{x}_2 = -x_2$ $\dot{x}_2 = 0$ $\dot{x} = -x$ if $|x| \le 1$

Justify your answers using *only* the definitions of stability (not eigenvalues or Lyapunov's method).

6. Consider the LTI system $\dot{x} = Ax$ where

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

Identify the stable and unstable invariant subspaces by giving a real basis for each of them.