

Artificial Intelligence

Lecture05 - NLP Word2vec

Contenido

- 1. Word embeddings
- 2. Language modeling
- 3. Next Word prediction
- 4. Language model training
- 5. Continuous bag of words
- 6. Skipgrams
- 7. Negative sampling
- 8. Training

Escuela de Ciencias Aplicadas e Ingeniería

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov Google Inc. Mountain View mikolov@google.com Ilya Sutskever Google Inc. Mountain View ilyasu@google.com Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado
Google Inc.
Mountain View
gcorrado@google.com

Jeffrey Dean Google Inc. Mountain View jeff@google.com

Openness to experience 79	out	of	100
Agreeableness 75	out	of	100
Conscientiousness 42	out	of	100
Negative emotionality 50	out	of	100
Extraversion 58	out	of	100

cosine similarity =
$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

Two central ideas:

1. We can represent things as vectors

2. We can easily calculate how similar vectors are to each other:

The people most similar to Jay are:

reson #1 0.86

Person #2 0.5

Person #3 −0.20

King (GloVe vector trained on Wikipedia):

```
[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
-0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961
, -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 ,
-0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 ,
                                                                                      -1.6
                                                                                      -0.8
                                                                                      --1.6
"king"
"Man"
"Woman"
```


- •Word Embedding Analogies: Demonstrates how word embeddings capture semantic relationships.
- •Famous Example: "king" "man" + "woman" ≈ "queen".
- •**Key Insight**: Embeddings encode meaning in a way that allows vector arithmetic to reflect real-world relationships.
- •Implication: Shows how models learn contextual and relational information beyond individual words.

woman

queer

king-man+woman

Language Modeling

A language model is a statistical or probabilistic model that learns the likelihood of word sequences. It is used to predict the next word in a sentence or generate text based on learned patterns.

Limitations of Traditional Language Models

- Traditional models process text linearly, which may fail to capture deeper, multi-dimensional word relationships.
- Example from *God Emperor of Dune*: Language imposes a **linear structure**, but meaning can be **non-linear** and contextual.

Next word prediction

Language Model Training

- Learn the context in which a particular word appears
- Words that appear in similar contexts have similar embeddings
- Unlike other applications, in Language Models we have a lot of text to train

Continuos Bag of Words

Jay was hit by a _____ bus

Instead of only looking two words before the target word, we can also look at two
words after it.

Jay was hit by a _____ bus in...

 If we do this, the dataset we're virtually building and training the model against would look like this:

Continuos Bag of Words - CBoW

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

- •Skip-Gram Architecture: Instead of predicting a word based on its context, Skip-Gram predicts neighboring words given a target word.
- •Sliding Window Approach: The model moves through the text, learning which words frequently appear around others.

•Key Benefit: Works well with smaller datasets and captures rare word relationships.

input word	target word
not	thou
not	shalt
not	make
not	a
make	shalt
make	not
make	a
make	machine
a	not
a	make
a	machine
a	in
machine	make
machine	0
machine	in
machine	the
in	. 0
in	machine
in	the
in	likoness

Trainig process

Negative sampling

• Recall the three steps of how this neural language model calculates its prediction:

 The third step is computationally expensive due to the size of the vocabulary

- 1. Generate high-quality word embeddings (Don't worry about next-word prediction).
- 2.Use these high-quality embeddings to train a language model (to do next-word prediction). We'll focus on step 1.

From:

To:

- We need to introduce negative samples to our dataset – samples of words that are not neighbors.
- We use random words from our vocabulary

input word	target word	input word	output word	target
not	thou	not	thou	- 1
not	shalt	not	shalt	1
not	make	not	make	1
not	a	not	a	1
make	shalt	make	shalt	1
make	not	make	not	1
make	a	make	a	1
make	machine	make	machine	- 1

Skipgram with negative sampling

Escuela de Ciencias Aplicadas e Ingeniería

Neg	n	gran	Skip	5	
input v	machine	a	make	not	shalt
mak	put	out		input	
	alt	sh		make	
mak	ot	n		make	
	n			make	
mak	hine	mac		make	

Negative Sampling input word output word target make shalt 1 make aaron 0 make taco 0

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models

Michael Gutmann

Dept of Computer Science and HIIT, University of Helsinki michael.gutmann@helsinki.fi

Aapo Hyvärinen

Dept of Mathematics & Statistics, Dept of Computer Science and HIIT, University of Helsinki aapo.hyvarinen@helsinki.fi

Word2vec training process

Escuela de Ciencias Aplicadas e Ingeniería

• We create two matrices – an Embedding matrix and a Context matrix. These two matrices have an embedding for each word in our vocabulary. At the start of the training process we initialize both matrices randomly.

vocab_size = 10.000 embedding size = 300

 In each training step, we take one positive example and its associated negative examples.

	dataset	
input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0

dataset

Word2vec training process

- •Compute Similarity: Take the dot product between the input word embedding and each context word embedding.
- •Apply Sigmoid Function: Convert similarity scores into probabilities between 0 and 1.
- •Compare with Target: Measure how well the model's predictions match the actual context words.
- •Compute Error: Calculate error = target sigmoid_scores for each word.
- •Update Embeddings: Adjust the embeddings using the error to improve word representation.
- •Repeat Process: Move to the next training sample and perform the same steps.

input word	output word	target	input • output	sigmoid()	Error
not	thou	1	0.2	0.55	0.45
not	aaron	0	-1.11	0.25	-0.25
not	taco	0	0.74	0.68	-0.68
	3000	not @	600000 (aa	oron do	Update Model

Word2vec cost function

- For each positive (correct) word pair, the model should output a probability close to 1.
- For each negative (randomly sampled) word pair, the model should output a probability close to 0.

The loss function for a single word pair is:

$$L = -\sum_{(c,w)\in D} \left[y \log \sigma(\mathbf{v}_c \cdot \mathbf{v}_w) + (1-y) \log(1 - \sigma(\mathbf{v}_c \cdot \mathbf{v}_w)) \right]$$
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- y is 1 for positive (real) word-context pairs and 0 for negative (random) pairs.
- $\sigma(x)$ is the **sigmoid function**, ensuring outputs are between **0 and 1**.

Parameters

- •Window Size in Word2Vec: Determines how many words before and after the target word are considered.
- •Small Window (2-15 words): Produces embeddings where high similarity means interchangeability (e.g., "good" and "bad" may appear in similar contexts).
- •Large Window (15-50+ words): Captures relatedness rather than interchangeability (e.g., "car" and "road" are related but not interchangeable).
- •Annotation Matters: The choice of window size depends on the task and may require manual tuning.
- •Gensim Default: Uses a window size of 5 (five words before and after the target word).