IE2111 ISE Principles & Practice II Solutions to Tutorial #3

Question 1.

	A	В	C
Investment cost	\$30,000	\$60,000	\$50,000
Estimated units to be sold/year	15,000	20,000	18,000
Unit selling price, \$/unit	\$3.50	\$4.40	\$4.10
Variable costs, \$/unit	\$1.00	\$1.40	\$1.15
Annual expenses (fixed)	\$15,000	\$30,000	\$26,000
Market value	0	\$20,000	\$15,000
Useful life	10 years	10 years	10 years

$$MARR = 20\%$$

Study period = 10 years

Assume all units are produced and sold each year.

The AW for the alternatives are:

$$AW_A(20\%) = -30,000 \ [A/P,20\%,10] + 15,000 \ (3.50 - 1.00) - 15,000$$

$$= -30,000 \ (0.238523) + 15,000 \ (3.50 - 1.00) - 15,000$$

$$= \$15,344.32$$

$$AW_B(20\%) = -60,000 \ [A/P,20\%,10] + 20,000 \ (4.40 - 1.40) - 30,000 + 20,000 \ [A/F,20\%,10]$$

$$= -60,000 \ (0.238523) + 20,000 \ (4.40 - 1.40) - 30,000 + 20,000 \ (0.038523)$$

$$= \$16,459.09$$

$$AW_C(20\%) = -50,000 \ [A/P,20\%,10] + 18,000 \ (4.10 - 1.15) - 26,000 + 15,000 \ [A/F,20\%,10]$$

$$= -50,000 \ (0.238523) + 18,000 \ (4.10 - 1.15) - 26,000 + 15,000 \ (0.038523)$$

$$= \$15,751.70$$

Select Design B which has the highest AW.

Question 2.

	A	В
Capital investment	\$ 272,000	\$346,000
Annual expenses (Y1 to Y9)	\$ 28,800	\$19,300
Useful life	6 years	9 years
Market Value at end of useful life	\$ 25,000	\$40,000
Annual leasing cost for year 7 to 9	\$ 66,000	

MARR = 15%

(a) PW Method:

$$PW_A(15\%) = -272,000 - 28,800 [P/A, 15\%, 9] + 25,000 [P/F, 15\%, 6] - 66,000 [P/A, 15\%, 3] [P/F, 15\%, 6] = -$463,762.11$$

$$PW_B(15\%) = -346,000 - 19,300 [P/A, 15\%, 9] + 40,000 [P/F, 15\%, 9]$$

= - \$ 426,721.07

Select Alternative *B* which has the highest *PW*.

(b) IRR Method:

EoY	\boldsymbol{A}	В	B - A
0	-272,000	-346,000	-74,000.
1	-28,800	-19,300	9,500
2	-28,800	-19,300	9,500
3	-28,800	-19,300	9,500
4	-28,800	-19,300	9,500
5	-28,800	-19,300	9,500
6	-28,800 + 25,000 = -3,800	-19,300	-15,500
7	-28,800 - 66,000 = -94,800	-19,300	75,500
8	-28,800 - 66,000 = -94,800	-19,300	75,500
9	-28,800 - 66,000 =-94,800	-19,300 + 40,000 = 20,700	115,500

Incremental IRR Analysis:

1. Alternative sorted in increasing capital investment List = [A, B] We are considering cost projects.

Base alternative = A

Next alternative = B.

2. Consider the increment (B - A):

To fine the *IRR* of B-A, we solve:

$$-74,000 + 9,500 [P/A, i, 5] - 15,500 [P/F, i, 6] + 75,500 [P/F, i, 7] + 75,500 [P/F, i, 8] + 115,500 [P/F, i, 9] = 0$$

Using any solver: IRR(B-A) = 22.51% > MARR.

The incremental investment (B - A) is feasible.

3. Base alternative = B.

Choose Alternative B.

(c) If Crane A is leased for 9 years:

$$PW_{\text{Lease}}(15\%) = -(66,000 + 28,800) [P/A, 15\%, 9]$$

= -94,800 [P/A,15\%,9]
= -\$452,346.16

Since $PW_A < PW_{Lease} < PW_B$, leasing crane A is not preferred to the selected Alternatives B, but would be preferred to the purchase of crane A.

Question 3.

	Boiler A	Boiler B
Capital investment	\$50,000	\$100,000
Useful life, N	20 years	40 years
Market value at EOY N	\$10,000	\$20,000
Annual operating costs	\$9,000	\$3,000, increasing \$300 per year after first year

```
MARR = 10\%
```

Study period = 40 years

Assume that Boiler A is repeated at the end of year 20.

```
AW(10\%) of A over 40 years = AW(10\%) of A over first 20 years = -50,000 \ [A/P,10\%,20] + 10,000 \ [A/F,10\%,20] - \$9,000 = -50,000 \ (0.117460) + 10,000 \ (0.017460) - \$9,000 = -\$14,698.38 AW(10\%) of B over 40 years = -100,000 \ [A/P,10\%,40] + 20,000 \ [A/F,10\%,40] - 3,000 - 300 \ [A/G,10\%,40] = <math>-100,000 \ (0.102259) + 20,000 \ (0.002259) - 3,000 - 300 \ (9.096234) = -\$15,909.59
```

Select Boiler A which has a higher AW over the study period.

Note that if PW with repeatability assumption is used instead, then

- $PW_A(10\%) = -\$143,736.25$ over 2 life cycles or 40 years
- $PW_B(10\%) = -\$155,581.01$ over 1 life cycle or 40 years

You must get the same decision as in the AW method with repeatability assumption.

Question 4.

	Alternative A	Alternative B
Capital investment	\$20,000	\$38,000
Annual expenses	5,500	4,000
Market value at end of useful life	1,000	4,200
Useful life	5 years	10 years

MARR = 20%.

(a) If the service is needed indefinitely.

Study period = infinity and assume Repeatability.

```
AW(20\%) of A over study period infinity = AW(20\%) of A over its first 5 years = -20,000 \ [A/P, 20\%, 5] - 5,500 + 1,000 \ [A/F, 20\%, 5] = -20,000 \ (0.334380) - 5,500 + 1,000 \ (0.134380) = -\$ 12,053.21 AW(20\%) of B over study period infinity = AW(20\%) of B over its first 10 years = -38,000 \ [A/P,20\%, 10] - 4,000 + 4,200 \ [A/F,20\%,10] = -38,000 \ (0.238523) - 4,000 + 4,200 \ (0.038523) = -\$ 12,902.07
```

Select Alternative A which has a higher AW over study period under repeatability assumption.

(b) If the service is required for only 5 years:

Study period = 5 years, and assume co-termination at EoY 5.

```
AW(20\%) of A over study period 5 years = -$ 12,053.21 as in Part (a)
```

Given market value (MV_5) for B at EoY 5 = \$15,000

```
AW(20\%) of B over study period 5 years
= -38,000 [A/P, 20\%, 5] - 4,000 + 15,000 [A/F, 20\%, 5]
= -38,000 (0.334380) - 4,000 + 15,000 (0.134380)
= -\$14,690.73
```

Select Alternative A which has higher AW over study period 5 years under co-termination assumption.

Question 5.

Route	Construction costs	Annual maintenance cost	Annual Savings in fire damage	Annual recreational benefit	Annual Time access benefit
A	\$185,000	\$2,000	\$5,000	\$3,000	\$500
В	\$220,000	\$3,000	\$7,000	\$6.500	\$1,500
C	\$290,000	\$4,000	\$12,000	\$6,000	\$2,800

MARR = 8%

Study period = 50 years

Assume zero salvage value for all alternatives.

The initial investment costs, total annual costs, and total annual benefits are:

Route	Initial Cost	Total Annual Cost	Total Annual Benefits
A	\$185,000	\$2,000	\$8,500
В	\$220,000	\$3,000	\$15,000
C	\$290,000	\$4,000	\$20,800

The *PW* of costs for each alternative:

- PW(8%) of Costs for route A = 185,000 + 2,000 [P/A, 8%, 50] = \$209,466.97
- PW(8%) of Costs for route B = 220,000 + 3,000 [P/A, 8%, 50] = \$256,700.45
- PW(8%) of Costs for route C = 290,000 + 4,000 [P/A, 8%, 50] = \$338,933.94

The *PW* of benefits for each alternative:

- PW(8%) of Benefits for route A = 8,500 [P/A, 8%, 50] = \$103,984.62
- PW(8%) of Benefits for route B = 15,000 [P/A, 8%, 50] = \$183,502.27
- PW(8%) of Benefits for route C = 20,800 [P/A, 8%, 50] = \$254,456.48

(a)

If this is considered as a cost (service) project and there is no need to consider the "do-nothing" alterative.

Perform incremental $\Delta B/\Delta C$ ratio analysis to find the best alternative.

Alternatives sorted increasing PW of Costs = [A, B, C]

Base alternative = ANext alternative = B.

List = [*C*]

$$\Delta B/\Delta C (B-A) = (183,502.27 - 103,984.62) / (256,700.45 - 209,466.97)$$

= 1.6835 > 1

The incremental investment (B-A) is feasible.

Base alternative = B

Next alternative = C

List = []

$$\Delta B/\Delta C$$
 (*C*–*B*) = (254,456.48 – 183,502.27) / (338,933.94 – 256,700.45)
= 0.8628 < 1

The incremental investment (C-B) is infeasible.

Base alternative remains as *B*.

Choose Route *B*.

(b)

If this problem is considered as an investment project, then economic feasibility is also a requirement.

None of the routes are feasible as the individual B/C ratios are all less than one.

Route	B/C ratio	
A	0.4964	
В	0.7148	
C	0.7508	

If the "do-nothing" is included in the analysis, it will be the first base alternative, and each of the incremental investment will be rejected. Do-nothing will then emerge as the best alternative at the end.

Also take note that in Part (a), the best alternative B does not have the maximum B/C ratio.