MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 30th January 2018 D1 - Lecture 12

Random Attendance

0	170050090	Vijaykrishna G
2	170050103	Penagamuri Pavan Chaitanya
3	170050109	Rachit Bansal
4	170070004	Syomantak Chaudhuri
5	170070016	Sahil Harish Walke
6	170070031	Jayesh Songara
7	17D070012	Naman Rajesh Narang Absent
8	17D070013	Paras Vijay Bodake Absent
9	17D070026	Anubhav Agarwal
10	17D070031	Bhavesh Garg
•	17D070037	Shreyas Goenka
12	17D070038	Divyansh Ahuja Absent
13	170050003	Makwana Jigar
14	170050012	Rahul Bhardwaj
15	170050045	Saksham Goel
16	170050105	Himanshu Sheoran

Matrices as Transformations: Examples

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then

$$A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$
. Let $\mathbf{x} = (2,1)^T$. $B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$. If

What is Ax? How does A transform *x*?

A reflects vectors across the X-axis.

Let
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Then

$$B\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$
. If

$$\mathbf{x} = (-1, 0.5)^T$$
, then

$$\mathbf{B}x = (0.5, -1)^T$$
. How does B transform x ?

B reflects vectors across the line

3/11

$$x_1 = x_2.$$
 $(-1,0.5)$
 $(0.5,-1)$

Q: Do reflections preserve scalar multiples? Sums of vectors?

Matrices as Transformations: Examples

•
$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
 transforms $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $Px = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix}$.

$$Pe_1 = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} = Pe_2.$$

The transforms the vector $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

 $P_{e_1} = P_{e_2}$ P transforms the vector $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ to the origin.

Q: Geometrically, how is P transforming the vectors?A: Projects onto the line x₁ = x₂.

30th January 2018

4/11

Q: What happens to sums of vectors when you project them? What about scalar multiples?

Exercise: Understand the effect of $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ on e_1 and e_2 and interpret what P represents geometrically.

Matrices as transformations: Examples

$$\text{Let } Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix}.$$

How does Q transform the standard basis vectors \mathbf{e}_1 and \mathbf{e}_2 ?

Q: What does the transformation $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto Qx$ represent geometrically?

Again note that rotations map sum of vectors to sum of their images and scalar multiple of a vector to scalar multiple of its image.

H. Ananthnarayan D1- Lecture 12 30th January 2018

Matrices as Transformations

- An $m \times n$ matrix A transforms a vector x in \mathbb{R}^n into the vector Ax in \mathbb{R}^m . Thus T(x) = Ax defines a function $T : \mathbb{R}^n \to \mathbb{R}^m$.
- The domain of *T* is ___. The codomain of *T* is ___.
- Let $b \in \mathbb{R}^m$. Then b is in $C(A) \Leftrightarrow Ax = b$ is consistent $\Leftrightarrow T(x) = b$, i.e., b is in the image (or range) of T.

Hence, the range of T is $_{--}$.

Example: Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
. Then $T(x) = Ax$ is a function with

domain \mathbb{R}^4 , codomain \mathbb{R}^3 , and range equal to

$$C(A) = \{(a, b, c)^T \mid 2a - b - c = 0\} \subseteq \mathbb{R}^3.$$

Q: How does *T* transform sums and scalar multiples of vectors?

A. Nicely! For scalars a and b, and vectors x and y,

$$T(ax + by) = A(ax + by) = aAx + bAy = aT(x) + bT(y)$$
. Thus

T takes linear combinations to linear combinations.

Linear Transformations

Defn. Let V and W be vector spaces. A *linear transformation* from V to W is a function $T:V\to W$ which takes linear combinations of vectors in V to the linear combinations of their images, i.e., for $x,y\in V$, scalars a and b,

$$T(ax + by) = aT(x) + bT(y)$$

- The image (or range) of T is defined to be $C(T) = \{ y \in W \mid T(x) = y \text{ for some } x \in V \}.$
- The kernel (or null space) of T is defined as $N(T) = \{x \in V \mid T(x) = 0\}.$

Main Example:

Let A be an $m \times n$ matrix. Define T(x) = Ax.

- This defines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.
- The image of T is the column space of A, i.e., C(T) = C(A).
- The kernel of T is the null space of A, i.e., N(T) = N(A).

Linear Transformations: Examples

Which of the following functions are linear transformations?

• $g: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $g(x_1, x_2, x_3)^T = (x_1, x_2, 0)^T$

$$ag(x) + bg(y) = ag\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + bg\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} ax_1 \\ ax_2 \\ 0 \end{pmatrix} + \begin{pmatrix} by_1 \\ by_2 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ 0 \end{pmatrix} = g(ax + by) \text{ is a linear transformation.}$$

Exercise: Find N(g) and C(g).

• $h : \mathbb{R}^3 \to \mathbb{R}^3$ defined as $h(x_1, x_2, x_3)^T = (x_1, x_2, 5)^T$.

Note: $h(0+0) \neq h(0) + h(0)$.

Observe: A linear transformation must map $0 \in V$ to $0 \in W$.

Linear Transformations: Examples

transformation.

• $f: \mathbb{R}^2 \to \mathbb{R}^4$ defined by $f(x_1, x_2)^T = (x_1, 0, x_2, x_2^2)^T$. **Note:** f transforms the Y-axis in \mathbb{R}^2 to $\{(0, 0, y, y^2)^T \mid y \in \mathbb{R}\}$. **Observe:** A linear transformation must transform a subspace of V into a subspace of W.

ullet $S:\mathcal{M}_{2 imes2} o\mathbb{R}^4$ defined by $S\left(egin{pmatrix} a & b \ c & d \end{pmatrix}
ight)=(a,b,c,d)^T$ is a linear

Observe: The function S is onto $\Rightarrow C(S) = \mathbb{R}^4$, and $S(A) = S(B) \Rightarrow A = B$, i.e., the function S is one-one. In particular, $N(S) = \{0\}$.

Linear Transformations: Examples

Show that the following functions are linear transformations.

$$T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$$
 defined by $T(x_1, x_2, \ldots) = (x_1 + x_2, x_2 + x_3, \ldots,)$.

Exercise: What is N(T)?

$$S: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$$
 defined by $S(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$.

Exercise: Find C(S), and a basis of N(S).

Let
$$T: \mathcal{P}_2 \to \mathcal{P}_1$$
 be $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$.

Exercise: Show that dim
$$(N(T)) = 1$$
, and find $C(T)$.

Let
$$D: \mathcal{C}^{\infty}([0,1]) \to \mathcal{C}^{\infty}([0,1])$$
 defined as $Df = \frac{df}{dx}$.

Exercise: Is
$$D^2 = D \circ D$$
 linear? What about D^3 ?

Exercise: What is
$$N(D)$$
? $N(D^2)$? $N(D^k)$?

Of which vector space?

Properties of Linear transformations

Let $\mathcal{B} = \{v_1, \dots, v_n\} \subseteq V$, $T: V \to W$ be linear. Then:

- T takes linear combinations to linear combinations. In particular, T(0) = 0.
- N(T) is a subspace of V. Why? C(T) is a subspace of W. Why?
- If $\operatorname{Span}(\mathcal{B}) = V$, is $\operatorname{Span}\{T(v_1), \ldots, T(v_n)\} = W$?

Observe: Span $\{T(v_1), \ldots, T(v_n)\} = C(T)$. Why?

Conclusion: (i) If dim (V) = n, then dim $(C(T)) \le n$.

- (ii) T is onto \Leftrightarrow Span $\{T(v_1), \ldots, T(v_n)\} = C(T) = W$.
- $T(u) = T(v) \Leftrightarrow u v \in N(T)$.

Conclusion: *T* is one-one $\Leftrightarrow N(T) = 0$.

• If $\mathcal{B} \subseteq V$ is linearly independent, is $\{T(v_1), \dots, T(v_n)\} \subseteq W$ linearly independent?

HINT: $a_1 T(v_1) + \cdots + a_n T(v_n) = 0 \Rightarrow a_1 v_1 + \cdots + a_n v_n \in N(T)$.

• If $S: U \to V$, $T: V \to W$ are linear, then the composition $T \circ S: U \to W$ is linear. **Exercise:** Show that $N(S) \subseteq N(T \circ S)$. How are $C(T \circ S)$ and C(T) related?