Math 445 Number Theory

October 1, 2004

Theorem: If p is an odd prime and $k \ge 1$, then $m = p^k$ has a primitive root, i.e., there is an integer b with $\operatorname{ord}_{p^k}(b) = \Phi(p^k) = p^{k-1}(p-1)$.

We have so far shown this to be true for k = 1, 2. Today we see:

If p is an odd prime and b is a primitive root mod p^2 , then b is a primitive root mod p^k for all $k \ge 1$. In fact, we will show:

(*) If p is an odd prime and, for $k \geq 1$, $\operatorname{ord}_{p^{k+1}}(b) > \operatorname{ord}_{p^k}(b)$, then $\operatorname{ord}_{p^{k+m}}(b) = p^m \cdot \operatorname{ord}_{p^k}(b)$ for all $m \geq 1$.

To see this, set $\alpha = \operatorname{ord}_{p^{k+1}}(b)$ and $\beta = \operatorname{ord}_{p^k}(b)$, then $b^{\alpha} \equiv 1 \pmod{p^{k+1}}$ implies $b^{\alpha} \equiv 1 \pmod{p^k}$, so $\alpha \mid \beta$, while $p^k \mid b^{\beta} - 1$ and $p^{k+1} \not\mid b^{\beta} - 1$ (since $\alpha > \beta$ implies $b^{\beta} = 1 + sp^k$ with $p^{k+1} \not\mid sp^k$, so $p \not\mid s$, so (s,p) = 1. But then, mod p^{k+1}

$$b^{p\beta} = (1+sp^k)^p = 1 + psp^k + \binom{p}{2}s^2p^{2k} + \binom{p}{3}s^3p3k + \dots = 1 + p^{k+1}(s + \frac{p-1}{2}s^2p^k + \binom{p}{3}s^3p^{2k-1} + \dots) = 1 + p^{k+1}(s + p(\frac{p-1}{2}s^2p^{k-1} + \binom{p}{3}s^3p^{2k-2} + \dots))1 + p^{k+1}s' \equiv 1$$

so $\alpha|p\beta$, so $\alpha=\beta$ (contradicting our hypothesis) or $\alpha=p\beta$. So $\alpha=p\beta$. But even more, since $s+p(\frac{p-1}{2}s^2p^{k-1}+\binom{p}{3}s^3p^{2k-2}+\cdots\equiv s\pmod{p}$, so (s',p)=1, we have $b^{p\beta}\not\equiv 1\pmod{p^{k+2}}$ (since $p^{k+2}\not\mid s'p^{k+1}$). So $\operatorname{ord}_{p^{k+2}}(b)>\operatorname{ord}_{p^{k+1}}(b)$. So we can start the exact same argument over again, to show that $\operatorname{ord}_{p^{k+2}}(b)=p\cdot\operatorname{ord}_{p^{k+1}}(b)$. This type of argument can be continued indefinitely (formally, we could simply say that under the assumption (*) we showed that the exact same statement with k+m replaced by (k+m)+1 was true, which is the inductive step for showing that (*) is true by induction! (We simply "called" k+m, k.) So we have proved (*) by induction. The initial step is literally the first part of our proof.). So (*) is true for all $m\geq 1$.

Applying this to $\operatorname{ord}_{p^2}(b) = p(p-1)$, we have that for every $k \geq 2$, $\operatorname{ord}_{p^k}(b) = p^{k-1}(p-1) = \Phi(p^k)$. So b is a primitive root modulo p^k .

The only place where this argument breaks down for the prime p=2 is when we write $((p-1)/2)s^2p^{k-1}$, since (p-1)/2=1/2 is not an integer. But we need to extract the initial p of $p((p-1)/2)s^2p^{k-1}$ from p(p-1)/2, rather than from p^{2k} , only when k=1,

otherwise $k \geq 2$ and we write this as $1 + p^{k+1}(s + p(\binom{p}{2})s^2p^{k-2} + \binom{p}{3}s^3p2k - 2 + \cdots$

instead. Then the proof goes through as before. And so, for p=2, we have:

If p=2, $k\geq 2$ and $\operatorname{ord}_{2^{k+1}}(b)>\operatorname{ord}_{2^k}(b)$, then $\operatorname{ord}_{2^{k+m}}(b)=2^m\operatorname{ord}_{2^k}(b)$ for all $m\geq 1$. So, for example, since $\operatorname{ord}_{16}(3)=4>2=\operatorname{ord}_8(3)$, we have $\operatorname{ord}_{2^k}(3)=2^{k-2}$ for all $k\geq 3$. Since $(a,8)=1\Rightarrow\operatorname{ord}_8(a)=2<4=\Phi(8)$, there is no no primitive root mod 2^k for $k\geq 3$; our proof above shows that $2^{k-2}<2^{k-1}=\Phi(2^k)$ is the highest order possible.

Finally, with this result in hand, we can extend our result about n^{th} roots mod p:

Theorem: If p is an odd prime, $k \geq 1$, and (a, p) = 1, then the equation

$$x^n \equiv a \pmod{p^k}$$
 has
$$\begin{cases} (n, \Phi(p^k)) \text{ solutions,} & \text{if } a^{\frac{\Phi(p^k)}{(n, \Phi(p^k))}} \equiv 1\\ 0 \text{ solutions,} & \text{if } a^{\frac{\Phi(p^k)}{(n, \Phi(p^k))}} \equiv -1 \end{cases}$$