Antennas and radiowave propagation - UNIK4150/9150

• Course content

- Antennas and radiowave propagation in the frequency range of about 100 MHz to 300 GHz, but including some up to infrared 350 THz (free space optics)
- Some general antenna theory and practical antennas like wire (dipole),
 apertures (reflector), and micro-strip (phased array)
- Free space loss, reflection, and obstruction/diffraction
- Effects of atmospheric gases, clouds/fog, precipitation, refraction, penetration through materials
- Radio channel models and system dimensioning
- Emphasis on actual radio systems, e.g., mobile communications, broadband wireless access, point to point links, point to multipoint links, and radar
- Radio front end introduction

Learning outcome

- Basic calculations for actual radio systems: dimensioning and interference
- Take account for the effects terrain, buildings, and varying atmospheric and climatic conditions

Required reading

UNIK 4150/9150

Book

"Antennas and propagation for wireless communication systems", Second edition, Simon R. Saunders and Alejandro Aragón-Zavala ISBN: 978-0-470-84879-1 Hardcover, 546 pages, March 2007 All chapters

Own lectures
 "Radio front-end" and "Free space optics"

UNIK 9150

In addition for PhD
 One or two journal articles

Lectures and exercises 2016 – will probably change

No	Date	Торіс		
1	22 January	Ch. 1 & 4.1-3. Introduction		
2	29 January	Ch. 2 - 3.4. EM waves & propagation mechanisms. Exercise		
3	5 February	Ch. 3.5 & 4.4. Diffraction & Dipole. Exercise		
4	12 February	Ch. 4.5 - 5. Array antennas & basic propagation. Exercise		
5	19 February	Ch. 6. Terrestrial fixed link (clear air & diffraction). Exercise		
6	26 February	Ch. 7. Satellite fixed link (rain & ionosphere). Exercise		
7	4 March	Ch. 8-9. Macro cells & shadowing. Exercise		
8	11 March	Own lecture on Radio front-end and Free-space optics. Exercise		
	18 March	Lecture free		
	25 March	Easter holiday		
9	1 April	Ch. 10-11. Narrowband & wideband. Exercise		
10	8 April	Ch. 12-13-14. Micro & pico & mega cells. Exercise		
11	15 April	Ch. 15-16. Mobile system antennas & Overcome narrowband with diversity. Exercise		
12	22 April	Guest lecture on MIMO and massive MIMO. Exercise		
13	29 April	Wanted topics. Discuss written exercise		
	6 May	Lecture free		
	13 May	Lecture free		
	20 May	Lecture free		
	27 May	Oral exam		

Chapter 1 Introduction

- Radio waves and radiowave propagation
- Radio communication system
- Radio spectrum
- Cells, orbits, access, capacity

Radiowave propagation

- Radiowaves are electromagnetic waves, often limited in frequency to below 3000 GHz (3 THz)
- A radio system has a transmitter and receiver tuned to the same frequency and well recognised by coding and modulation, amplification, and antenna
- Radio systems is a general term used in telecommunication, broadcasting, positioning, and remote sensing (radar)

Mobile propagation environment

Radiocommunication

Radar (Radio detection and ranging)

Wireless channel noise and fading

Typical signal variation for mobile

Electromagnetic spectrum

Source: www.rfsafe.com/research/rf_radiation/what_is_rf/emf_spectrum.htm

Radio frequency bands

Frequency range	Wavelength	Descriptive designation	Name
Below 3 kHz	Above 100 km		ELF
3-30 kHz	10-100 km	Myriametric waves	VLF
30-300 kHz	1-10 km	Kilometric waves	LF
300-3000 kHz	100-1000 m	Hectometric waves	MF
3-30 MHz	10-100 m	Decametric waves	HF
30-300 MHz	1-10 m	Metric waves	VHF
300-3000 MHz	10-100 cm	Decimetric waves	UHF
3-30 GHz	1-10 cm	Centimetric waves	SHF
30-300 GHz	1-10 mm	Millimetric waves	EHF
300-3000GHz	0.1-1mm	'Sub-millimetric waves'	
3-30 THz	10-100 μm	'Far-infrared waves'	
30-430 THz	0.7-10 μm	'Near-infrared waves'	
430-860 THz	0.35-0.7 μm	'Optical waves'	

Band	Name
1-2 GHz	L
2-4 GHz	S
4-8 GHz	С
8-12 GHz	X
12-18 GHz	Ku
18-26 GHz	K
26-40 GHz	Ka
40-75 GHz	V
75-111 GHz	W

Wireless communication systems

Cellular networks, mesh networks

Broadcasting (DVB-T, DMB) Radio (DAB) Satellite (DVB-S) Mobile (GSM, 3G/UMTS, 4G/LTE) Radio local network (Wi-Fi) Broadband access (Fixed LTE, WiMAX, VSAT)

Satellite orbits

Intermediate circular orbit (ICO)

The atmosphere of the Earth

Source: GPS explained [www.kowoma.de]

Path loss L for a cellular system

Approximate Path loss model:

$$\frac{P_R}{P_T} = \frac{1}{L} = k \frac{h_m h_b^2}{r^4 f_c^2}$$

Cellular system for full coverage

Signal strength and interference from reuse of frequencies

$$\frac{C}{I} = \frac{\frac{1}{r^4}}{\sum_{i=1}^{6} \frac{1}{d_i^4}} = \frac{1}{6} \left(\frac{d}{r}\right)^4$$

$$\frac{d}{r} = \sqrt{3N}$$

$$\frac{C}{I} = \frac{1}{6} (3N)^2$$

- Cluster size N = 7 for C/I = 19 dB
- Cluster size N = 4 for C/I = 14 dB
- Small *C/I* requirement allows large frequency reuse

Sectorisation

- Sectorisation reduces cluster size to increase capacity
- Reduced interference, now only from 2 and not 6
- But
 - Higher equipment cost
 - More handover (handoffs) and increased signalling
 - Pool of channels reduced

Access schemes and duplexing

Access schemes

- Means of dividing limited radio resource amongst multiple users
- Frequency Division Multiple Access
- Time Division Multiple Access
- Code Division Multiple Access

Duplexing

- 'Simultaneous' Two-way communication
- Frequency Division Duplex
- Time Division Duplex

FDMA/FDD

- Enabled by PLL
- One frequency pair per circuit
- Simultaneous Transmission & Reception
- Narrowband Little Equalisation
- Inter-channel guard but no wasted bits

TDMA/FDD

- Transmission & Reception not simultaneous
- Wide Bandwidth Equalisation
- Guard Time & Signalling Overhead

CDMA

- Soft Capacity Limit
- Frequency diversity RAKE receiver
- Soft Handover
- Near-far Problem
- Complexity

Channel capacity

The maximum capacity C (bit/s) is

$$C = B \log 2 (1 + S/N)$$

where

B is the channel bandwidth in Hz

S is the signal power in W

N is the noise power (W)

Ref. Shannon, 1948.

Example:

Assume 5 MHz bandwidth. If the signal to noise ratio (S/N) is 20 dB Shannon predicts maximum capacity to 25 Mbit/s

Radio frequencies for broadcast and communication

Conclusion

- Wide range of wireless communication systems and different technologies
- All rely on wireless channel for efficient delivery of information
- Need to understand, predict, and evaluate channel effects and impact on system performance

Chapter 4 Antenna fundamentals

- Fundamental theory
- Small antennas for mobile communication
- Free space loss

Antenna – the transition region between guided and propagation waves

Condition for radiation

- a) Charges stationary or in uniform motion
- b-d) Charges accelerates
- b) Charges reach the end and reverse direction
- c) Charges in constant speed but change direction
- d) Charges oscillating in periodic motion

Antenna examples

Spherical coordinate system

Radiation from an infinitesimal dipole L

Electric field

$$\mathbf{E} = \frac{jZ_0IL}{2\pi k_0}\cos\theta \left(\frac{jk_0}{r^2} + \frac{1}{r^3}\right)e^{-jk_0r}\mathbf{a}_r - \frac{jZ_0IL}{4\pi k_0}\sin\theta \left(-\frac{k_0^2}{r} + \frac{jk_0}{r^2} + \frac{1}{r^3}\right)e^{-jk_0r}\mathbf{a}_\theta$$

$$= E_r \mathbf{a}_r + E_\theta \mathbf{a}_\theta$$

Magnetic field

$$\mathbf{H} = j \frac{k_0 I L \sin \theta}{4\pi r} \left(1 + \frac{1}{jk_0 r} \right) e^{-jk_0 r} \mathbf{a}_{\phi}$$

Note that the term e^{jwt} is dropped for simplicity

Far-field equations

Can neglect terms of r^2 or higher

$$E_{\theta} = jZ_{0} \frac{k_{0}ILe^{-jk_{0}r}}{4\pi r} \sin \theta$$

$$E_{r} = 0$$

$$E_{\phi} = 0$$

$$H_{\phi} = j\frac{k_{0}ILe^{-jk_{0}r}}{4\pi r} \sin \theta$$

$$H_{\theta} = 0$$

- The radiated field has transverse components
- Ratio $E_{\theta}/H_{\phi} = Z_0$: fields in phase and the wave impedance is $120\pi \Omega$
- The field is inversely proportional to r
- The fields re zero at $\theta = 0$ and π , but maximum at $\pi/2$; the x-y plane

Distance to the far field

The far field formulas are valid for large r, but exactly how large? The approximation for R is the most critical one

$$R \approx r - r' \cos \psi = r - \frac{L}{2} \cos \frac{\pi}{2} = r$$

The antennas maximum length or size is L perpendicular to the direction of the field point. Real distance from the edge of the antenna to the field point is

$$R = \sqrt{r^2 + \left(\frac{L}{2}\right)^2} = r\sqrt{1 + \frac{L^2}{4r^2}} \approx r + \frac{L^2}{8r}$$

Maximum error is $L^2/8r$. Requiring this less than $\lambda/16$ gives:

$$r > \frac{2L^2}{\lambda}$$

Radiation pattern

The <u>radiation intensity</u> U (Watt per unit solid angle) at a given distance r is

$$U = r^2 S = \frac{P}{4\pi}$$

where S (watt per square meter) is the power density is given by the magnitude of the time-averaged Poynting vector: $S = \frac{P}{4\pi r^2}$

$$S = \frac{P}{4\pi r^2}$$

The radiation intensity is independent of r: $U = r^2 S = \frac{P}{r}$

For a infinitesimal (Hertzian) dipole (of length L) the radiation pattern is

$$\mathbf{S}_{av} = \frac{1}{2} E_{\theta} H_{\phi}^{*} \hat{\mathbf{r}}$$

$$U = r^{2} \frac{1}{2} \frac{|E_{\theta}|^{2}}{Z_{0}} = \frac{Z_{0}}{2} \left(\frac{k_{0} I(0) L}{4\pi}\right)^{2} \sin^{2} \theta$$
Often plotted normalised to its maximum
$$\frac{U}{U_{\text{max}}} = \sin^{2} \theta$$

$$\frac{U}{U_{max}} = \sin^2 \theta$$

Radiation pattern of a Hertzian dipole (infitetesimal)

Radiation pattern generic antenna

Directivity

The directivity D is the ratio between the antenna's radiation intensity in a direction and the average radiation intensity

$$P_{rad} = \int_{4\pi} U(\theta, \phi) d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} U(\theta, \phi) \sin \theta d\theta d\phi$$

The average radiation intensity is
$$U_0 = \frac{P_{rad}}{4\pi}$$

$$D(\theta, \phi) = \frac{U(\theta, \phi)}{U_0} = \frac{4\pi U(\theta, \phi)}{P_{rad}} = \frac{4\pi U(\theta, \phi)}{\int\limits_0^{2\pi} \int\limits_0^{\pi} U(\theta, \phi) \sin\theta d\theta d\phi}$$

If D is integrated over all solid angles then

$$\frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} D(\theta, \phi) \sin \theta d\theta d\phi = 1$$

The antenna mean directivity is 1.

The directivity D is the ratio between the radiation intensity in a direction and the radiation intensity of an isotropic antenna with same radiated power

Radiation resistance and efficiency

Equivalent circuit for a transmit antenna

Useful to define the antenna efficiency
$$e$$
: $e = \frac{\text{Power radiated}}{\text{Power accepted by the antenna}} = \frac{R_r}{R_r + R_l}$

The antenna is resonant if the reactance $X_a=0$.

Source matched to the antenna

The source impedance is $Z_s = R_s + jX_s$.

The total antenna impedance $Z_a = R_r + R_1 + jX_a$.

The source is matched to the antenna of $Z_s = Z_a^*$.

Degree of mismatch measured using the reflection coefficient ρ :

$$\rho = \frac{V_r}{V_i} = \frac{Z_a - Z_s}{Z_a + Z_s}$$

where $V_{\rm r}$ and $V_{\rm i}$ are the amplitudes of the wave reflected form the antenna and the amplitude incident on the terminals, respectively.

Also common to measure the mismatch via the voltage standing wave ratio (VSWR):

$$\frac{\text{VSWR}}{1-|\rho|} = \frac{1+|\rho|}{1-|\rho|}$$

Power gain and bandwidth

The power gain G, or simply gain, is the ratio between the radiation intensity in a direction and the radiation intensity to an isotropic loss free antenna with the same input power:

$$G(\theta,\phi) = eD(\theta,\phi)$$
 common to specify two orthogonal planes or cuts $G(\theta,\phi) \approx G_{\theta}(\theta)G_{\phi}(\phi)$

The antenna frequency bandwidth is the frequency range it operates satisfactory. Sometimes defined as the range where the gain remains within 3 dB, or the VSWR is no greater than 2:1, whichever the smaller.

Example power gain for a typical base station

$$\phi = \theta$$

Reciprocity

If a current source *I* for antenna A results in voltage *V* at antenna B the same voltage *V* will be generated at A if the current *I* is the source for the antenna in B

The reciprocity shows that the radiation pattern is the same for using the antenna in either transmitter or receiver mode

Receiving antenna aperture

Transmit power from a point source:

Power P_t radiates from a point. At distance r consider an effective aperture A_e .

Power received $P_{\rm r}$

$$P_r = SA_e$$

where S is the power density (W/m²). For the wave length λ the antenna gain is related to A_e

$$A_e = \frac{G}{4\pi} \lambda^2$$

Free space loss: receiver antenna size

Received power with physical antenna area A:

Received power P_r

$$P_r = \frac{P_t}{4\pi r^2} G_t \cdot A_e$$

 A_e is the "effective" area.

$$P_r = \frac{P_t G_t}{4\pi r^2} \cdot \frac{G_r \lambda^2}{4\pi} = P_t G_t G_r \left(\frac{\lambda}{4\pi r}\right)^2$$

Sometimes called Friis transmission equation. Note r^2 dependency for received power. The term $(4\pi r/\lambda)^2$ is called free space loss.

Common to express this in dB, i.e. in a *logarithmic form* using frequency f rather than the wave length λ , $\lambda = c/f$, where c is the speed of light $3 \cdot 10^8$ (m/s). $P_r = P_t + G_t + G_r - L_{BF}$, L_{BF} is the free space loss: $L_{BF} = \text{constant} + 20 \log r + 20 \log f$.

Conclusion

- Antenna definitions
- Radiation pattern
- Free space loss