Planar Quadrotor PID Controller Design Report

Samarth Barve

Abstract—This report details the design and implementation of a PID controller for a planar quadrotor restricted to motion in the YZ plane. The controller is designed to regulate the quadrotor's position and attitude to follow a specified trajectory accurately.

I. INTRODUCTION

The objective of this task was initially to develop a PID controller for a UAV that could follow complex trajectories such as sine wave, diamond-like, and straight-line structures. However, due to the complexities involved, the focus was narrowed down to designing a PID controller for a planar quadrotor confined to motion in the YZ plane. The controller aims to regulate the quadrotor's position and attitude accurately to follow a specified trajectory within the YZ plane.

II. CONTROLLER DESIGN

The PID controller is implemented as a MATLAB function named controller. It takes the current state of the quadrotor (state), the desired state (des_state), and additional parameters as inputs and computes the desired controls (F and M) for position and attitude, respectively.

A. A. PID Controller Constants

The PID controller utilizes the following constants for position and attitude control:

• Position Control Constants:

- Proportional Gain (Kp_{pos}) : 4
- Derivative Gain (Kd_{pos}) : 0.1
- Integral Gain (Ki_{pos}): 0

• Attitude Control Constants:

- Proportional Gain (Kp_{att}) : 0.001
- Derivative Gain (Kd_{att}): 0

B. B. Implementation Details

- **Persistent Variables:** The controller maintains a persistent variable (prev_error_integral) for integral error in position control.
- **Initialization:** If the persistent variable is empty, it is initialized to zero.
- Error Calculation: Position and velocity errors are computed based on the current and desired states.
- **Integral Error Update:** The integral error is updated using trapezoidal integration.
- Control Input Calculation: Control inputs for position (F) and attitude (M) are computed using PID control formulas.
- Range Limitation: The attitude error is ensured to be within the $[-\pi, \pi]$ range.

III. CHALLENGES FACED

Writing the code for the controller.m file in MAT-LAB posed several challenges:

- Complex Trajectories: Designing a PID controller capable of accurately tracking complex trajectories such as sine wave, diamond-like, and straight-line structures proved to be highly challenging due to the nonlinearities and uncertainties in the system dynamics.
- Algorithm Complexity: Implementing algorithms to compute control inputs for position and attitude while ensuring stability and robustness in various scenarios required careful consideration of system dynamics and controller design principles.
- Tuning PID Gains: Tuning the PID gains to achieve desired performance while avoiding instability or overshoot presented a significant challenge, requiring iterative testing and adjustment.

IV. LEARNING OUTCOMES

Through this project, several key learning outcomes were achieved:

- Gain Understanding: Gain insights into the principles of PID control and its application in quadrotor control systems.
- System Modeling: Learn techniques for modeling complex dynamical systems and translating them into control algorithms.
- Algorithm Development: Enhance skills in algorithm development and implementation for real-time control applications.
- Problem Solving: Develop problem-solving skills to address challenges in controller design, tuning, and optimization.

V. CONCLUSION

The developed PID controller for the planar quadrotor effectively regulates position and attitude to follow a specified trajectory within the YZ plane. Despite the challenges faced, the controller demonstrates satisfactory performance and lays the groundwork for future enhancements and optimizations.

VI. SUGGESTIONS FOR OPTIMIZATION

- **Parameter Tuning:** Experiment with different values of PID gains to achieve better performance and trajectory tracking.
- **Trajectory Planning:** Implement advanced trajectory planning algorithms to generate smooth and optimal trajectories for the quadrotor.
- **Real-time Control:** Optimize the controller for realtime performance to ensure rapid response to trajectory changes and external disturbances.