

m EMSE 6035: Marketing Analytics for Design Decisions

2 John Paul Helveston

August 27, 2025

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions

BREAK: Teaming

4. Getting started with R & RStudio

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions

BREAK: Teaming

4. Getting started with R & RStudio

Meet your instructor!

John Helveston, Ph.D.

- 2025 Present: Associate Professor, EMSE
- 2018 2025: Assistant Professor, EMSE
- 2016-2018: Postdoc at Institute for Sustainable Energy, Boston University
- 2016: PhD in Engineering & Public Policy at Carnegie Mellon University
- 2015: MS in Engineering & Public Policy at Carnegie Mellon University
- 2010: BS in Engineering Science & Mechanics at Virginia Tech
- Website: www.jhelvy.com

Course website: https://madd.seas.gwu.edu/2025-Fall/

Course slack: https://emse-madd-f25.slack.com

R & RStudio: Course Software Page

Why **R**?

Wait, why aren't we using Python?

The field of choice modeling grew out of Statistics, not Machine Learning

- Python is a general purpose language developed by Guido van Rossum, a computer scientist.
- Unlike R, Python was not originally developed for data analysis.
- Both languages are extremely useful, and you should probably learn python too.

Learning Objectives

After this class, you will know how to...

- ...work with data in **R**
- ...design effective surveys to get rich data
- ...analyze consumer choice data to model consumer preferences
- ...effectively communicate insights

Course prerequisites

This course requires prior exposure to:

- Probability theory
- Multivariable calculus
- Linear algebra
- Regression

Not sure?

Take this self assessment

Reflections (30% of grade)

Do some readings, recorded lectures, practice problems

Write a short reflection

- == ~Every week (12 total)
- © Due 11:59pm Monday before class
- Graded for completion (looking for engagement)

Quizzes (10% of grade)

- At the start of class every other week-ish. Make ups only for excused absences (i.e. don't be late).
- © 10 minutes

Why quiz at all? The "retrieval effect" - basically, you have to *practice* remembering things, otherwise your brain won't remember them (see the book "Make It Stick: The Science of Successful Learning")

Exam (10% of grade)

Take home exam, 2nd to last week of class

We'll go over exam solutions on last day of class

Semester Project (45% of grade)

Teams of 3-4 students

Goals:

- Assess market viability of a new technology or design
- Recommend best design choices for target market or application

Key deliverables:

Item	Weight	Due
Project Proposal	5 %	Sep. 21
Survey Plan	5 %	Sep. 30
Pilot Survey	5 %	Oct. 14
Pilot Analysis	5 %	Nov. 02
Final Survey	5 %	Nov. 16
Final Analysis Report	15 %	Dec. 07
Final Presentation	5 %	Dec. 09

Grades

Grades

Item	Weight	Notes
Participation / Attendance	e 5%	(Yes, I take attendance)
Reflections	30 %	Weekly assignment (10 \times 3%, lowest dropped)
Quizzes	10 %	5 quizzes, lowest dropped
Final Exam	10 %	Take home exam
Project Proposal	5 %	Teams of 3-4 students
Survey Plan	5 %	
Pilot Survey	5 %	
Pilot Analysis	5 %	
Final Survey	5 %	
Final Analysis Report	15 %	
Final Presentation	5 %	15

Course policies

- BE NICE
- BE HONEST
- DON'T CHEAT

Copying is good, stealing is bad

"Plagiarism is trying to pass someone else's work off as your own. Copying is about reverse-engineering."

-- Austin Kleon, from Steal Like An Artist

Use of chatGPT and other AI tools

- Large language models (LLMs) are pretty good
- Sometimes they suck.
- I will grade your work. Your work should not suck

Ways to not have your work suck:

- Don't submit code that doesn't run (actually run it before submitting it).
- Actually read what the Al generates.
- There are dozens of ways to do things you should use the approach I teach.

Use Al as an assistant, not a solutions manual

Late submissions

- 5 late days use them anytime, no questions asked
- No more than 2 late days on any one assignment
- Contact me for special cases

How to succeed in this class

- Participate during class!
- Start assignments early and read carefully!
- Get sleep and take breaks often!
- Ask for help!

Getting Help

Use Slack to ask questions.

Schedule a meeting w/Prof. Helveston:

- Mondays from 8:00-4:30pm
- Tuesdays from 8:00-4:30pm
- Fridays from 8:00-4:00pm

</>
</> GW Coders

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions

BREAK: Teaming

4. Getting started with R & RStudio

Engineers often design things nobody wants!

We want to answers to questions like...

- Higher prices decrease demand, but by how much?
- How much more is a consumer willing to pay for increased performance in X?
- How will my product compete against competitors in the market?

Answers depend on knowing what people want

Directly asking people what they want isn't always helpful

(People want everything)

Which feature do you care more about?

Battery Life?

Brand?

Signal quality?

Conjoint approach: Use consumer choice data to model preferences

<u>Attribute</u>	Phone 1	Phone 2	Phone 3
Price	\$400	\$450	\$350
Brand	Ć	LG	SAMSUNG
Battery Life			
Signal Quality			
N chosen:	350	250	400

Use random utility framework to predict probability of choosing phone *j*

1.
$$u_j = \beta_1 \operatorname{price}_j + \beta_2 \operatorname{brand}_j + \beta_3 \operatorname{battery}_j + \beta_4 \operatorname{signal}_j + \varepsilon_j$$

2. Assume $\varepsilon_i \sim$ iid extreme value

3. Probability of choosing phone j: $P_j = rac{e^{eta'x_j}}{\sum_k^J e^{eta'x_k}}$

4. Estimate eta_1 , eta_2 , eta_3 , eta_4 by minimizing $-L=-\sum_n^N\sum_j^J y_{nj}\ln P_{nj}$

Willingness to Pay

$$u_j = eta' x_j + lpha p_j + arepsilon_j$$

$$\omega = rac{eta}{-lpha}$$

"Respondents on average are willing to pay \$XX to improve battery life by XX%"

Make predictions

$$P_j = rac{e^{\hat{eta}'x_j}}{\sum_k^J e^{\hat{eta}'x_k}}$$

Example: Pocket Charge

A Flexible, Portable Solar Charger

Product Diagram

Attribute Units

Price-USD
Weight-Kg
Power Output - Watts
Durability - Months
Portability - LxWxH

<u>Decision Variable</u> Units

Power Density – W/Kg Degradation Rate – Hours Packing Design – Cm³

Example survey choice question

Ch	oice 1	Choice 2		Choice 3	
Price (USD)	200	Price (USD)	50	Price (USD)	100
Weight (lbs)	3	Weight (lbs)	0.5	Weight (lbs)	0.5
Power Output (Watts)	16 (One cellphone in 2 hours)	Power Output (Watts)	16 (One cellphone in 2 hours)	Power Output (Watts)	16 (One cellphone in 2 hours)
Years of Manufacturers Warranty	1	Years of Manufacturers Warranty	1	Years of Manufacturers Warranty	3
Portability	Compacted size of a thumb drive	Portability	Compacted size of a deck of cards	Portability	Compacted size of a box fan
	0		0		0

Your project starts now!

View projects

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions

BREAK: Teaming

4. Getting started with R & RStudio

Introduce yourself

- Preferred name
- Degree program
- Prior experience
- What do you hope to gain from this class?
- Project interests?

Break

- 1. If you haven't already, install everything on the software page
- 2. Stand up, meet each other, (maybe form teams?...use this sheet)

Week 1: Getting Started

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions

BREAK: Teaming

4. Getting started with R & RStudio

If you're familiar with R and RStudio, download and try out Positron

RStudio Orientation

- Know the boxes
- Customize the layout
- Customize the look
- Extra themes

Open intro-to-R.R file and follow along

View prior code in history pane

Use "up" arrow see previous code

Staying organized

1) Save your code in .R files

File > New File > R Script

2) Keep work in R Project files

File > New Project...

Your turn

A. Practice getting organized

- 1. Open RStudio and create a new R project called week1.
- 2. Create a new R script and save it as practice.R.
- 3. Open the **practice.** R file and write your answers to these questions in it.

10:00

B. Creating & working with objects

1). Create objects to store the values in this table:

City	Area (sq. mi.)	Population (thousands)
San Francisco, CA	47	884
Chicago, IL	228	2,716
Washington, DC	61	694

- 2) Using the objects you created, answer the following questions:
 - Which city has the highest density?
 - How many more people would need to live in DC for it to have the same population density as San Francisco?

>15,000 packages on the CRAN

Installing packages

```
install.packages("packagename")
```

(The package name **must** be in quotes)

```
install.packages("packagename") # This works
install.packages(packagename) # This doesn't work
```

You only need to install a package once!

Loading packages

library(packagename): Loads all the functions in a package

(The package name *doesn't* need to be in quotes)

```
      library("packagename") # This works

      library(packagename) # This also works
```

You need to load the package every time you use it!

Installing vs. Loading

INSTALL ONCE:

USE MANY TIMES:

Example: wikifacts

Install the Wikifacts package, by Keith McNulty:

```
install.packages("wikifacts")
```

Load the package:

library(wikifacts) # Load the library

Use one of the package functions

```
wiki_randomfact()
```

#> [1] "Here's some news from 02 August 2025. American professional wrestler Hulk Hogan dies at the age of 71. (Courtesy of Wikipedia)"

Example: wikifacts

Now, restart your RStudio session:

Session -> Restart R

Try using the package function again:

```
wiki_randomfact()
```

#> Error in wiki_randomfact(): could not find function "wiki_randomfact"

Using only some package functions

You don't always have to load the whole library.

Functions can be accessed with this pattern:

```
packagename::functionname()
```

```
wikifacts::wiki_randomfact()
```

```
#> [1] "Did you know that computer says no? (Courtesy of Wikipedia)"
```

If you haven't yet, install these packages

Back intro-to-R.R for the rest of class!