- 1. Rewrite the following differential equations as equivalent integral equations.
 - (a) $x'(t) = \sin t \cos 3t + x^6(t), x(0) = 4$
 - (b) $x''(t) = t^4 \cos 3x(t) + x^6(t), x(1) = 4, x'(1) = 3$
- 2. Show that x''(t) = f(t, x(t)), $x(t_0) = x_0$, $x'(t_0) = x_1$ is equivalent to $x(t) = x_0 + x_1(t t_0) + \int_{t_0}^t (t s) f(s, x(s)) ds$. (Hint: Consider changing the order of integration of you resultant double integral. (Also, for the engineers, you may have seen this formula if you have worked with Green's functions.))
- 3. Consider the autonomous system

$$dy/dt = y(y-1)(y-2), y_0 \ge 0.$$

- (a) determine the critical (equilibrium) points, and classify each one as asymptotically stable, unstable or semistable
- (b) sketch the phase diagram
- (c) use the phase diagram to give a rough sketch of the integral curves
- 4. Let $y_1(t) := t^2$ and $y_2(t) := t^{-1}$.
 - (a) Show that each y_i solves the differential equation $t^2y'' 2y = 0$, t > 0.
 - (b) Show that $\{y_1, y_2\}$ forms a fundamental set for the ODE.
 - (c) Verify the Principle of Superposition. That is, $y(t) := C_1y_1 + C_2y_2$ is the general solution to the ODE.
- 5. Let $y_1(t) := 1$ and $y_2(t) := \sqrt{t}$.
 - (a) Show that each y_i solves the differential equation $yy'' + (y')^2 = 0$, t > 0.
 - (b) Show that y_1 and y_2 are linearly independent.
 - (c) Let $y_3 = \sqrt{2t+3}$. Show that y_3 is another solution to the ODE.

- (d) Show that y_3 can not be written an a linear combination of y_1 and y_2 . Why does this result not violate the Principle of Superposition?
- (e) Solve the ODE. Hint: Consider the substitution u = yy'.
- 6. Verify that $\{e^t, e^{-t}, e^{-2t}\}$ form a fundamental set of solutions to the ODE y''' + 2y'' y' 2y = 0. That is, (i) show each solve the ODE and (ii) the functions are linearly independent.
- 7. Let y_1 and y_2 be solutions of y'' + p(t)y' + q(t)y = 0, p and q continuous on an open interval I.
 - (a) Prove that if y_1 and y_2 are zero at the same point in I, then they cannot be a fundamental set of solutions on I.
 - (b) Prove that if y_1 and y_2 have and extrema at the same point in I, then they cannot be a fundamental set of solutions on I.
- 8. Let the linear differential operator L be defined by

$$L[y] = a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y,$$

where $a_i \in \mathbb{R}$.

- (a) Find $L[t^n]$.
- (b) Find $L[e^{rt}]$.
- (c) Determine four solutions of the equation $y^{(4)} 5y'' + 4y = 0$. Do these four solutions form a fundamental set of solutions? Why?