PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
G01N 33/569, 33/564, 33/566, C07K
14/705

(11) International Publication Number:

WO 98/59244

(43) International Publication Date:

30 December 1998 (30.12.98)

(21) International Application Number:

PCT/GB98/01801

A1

(22) International Filing Date:

19 June 1998 (19.06.98)

(30) Priority Data:

9712892.0

20 June 1997 (20.06.97)

GB

(71) Applicant (for all designated States except US): ECLAGEN LIMITED [GB/GB]; Marischal College, Broad Street, Aberdeen AB9 1AS (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): FOTHERGILL, John [GB/GB]; The Granary, Shorehead AB39 2JY, Stonehaven (GB). KEMP, Graham [GB/GB]; Netherton, Sauchen AB59 7JP, Inverurie (GB). BROOKS, Tony [GB/GB]; 10 Sunnybank Place, Aberdeen AB24 3LA (GB). CARR, Frank [GB/GB]; Auris, 23 St. Machar Drive, Aberdeen AB24 3RY (GB).
- (74) Agents: STEBBING, Peter, John, Hunter et al.; Ablett & Stebbing, 45 Lancaster Mews, Lancaster Gate, London W2 3QQ (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: IDENTIFICATION OF MHC BINDING PEPTIDES

(57) Abstract

The invention provides a method for the prediction of the binding affinity of a peptide to a major histocompatilibity (MHC) class II molecules comprising; 1) ascertaining the characteristics of a MHC molecule binding groove, 2) presenting a selected peptide to the MHC molecule and ascertaining a first conformation score for each pocket bound peptide side—chain, 3) amending the conformation of each pocket bound peptide side—chain and ascertaining a second conformation score, 4) repeating step 3 with alternative conformations of each peptide pocket bound side—chain, 5) choosing the highest conformation score for each pocket bound peptide side—chain in each binding groove pockets, herein known as "the pocket", and 6) combining the highest conformation score for each pocket and ascertaining a binding score for the complete peptide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/59244

- 1 -

PCT/GB98/01801

IDENTIFICATION OF MHC BINDING PEPTIDES

The present invention relates to a new method for the prediction of peptides which bind to major histocompatibility 5 (MHC) class II molecules and to molecules created or modified through the use of these methods.

The immune system of the mammalian organism principally comprises two arms, the cellular immune system and the humoral or antibody-associated immune system. The cellular immune system is centred around the activity of T cells. There are two major classes of T cells, cytotoxic T lymphocytes (CTLs) which attack cells displaying foreign antigen complexed with MHC class I molecules, and helper T cells which react to cells displaying foreign antigens in a complex with MHC class II molecules resulting in the secretion of cytokines which can activate B cells to produce antibody molecules.

Humans express six different MHC class I genes and six 20 different MHC class II genes, which are located on three highly polymorphic loci. This leads to considerable allelic variation in MHC molecules. The MHC class I consist of a α chain and a β_2 -microglobulin, the α -chain is split into three domains α_1 , α_2 and α_3 . α_1 and α_2 form the MHC class I binding 25 groove which contains pockets that bind the side chains and the amino and carboxy termini of any peptide present in the The MHC class II molecules comprise an α -chain and a β -chain, it is the α_1 and β_1 domains which create the MHC class II binding groove. The MHC class II binding groove also 30 contains pockets but it does not bind the end termini of the peptide. For this reason the peptides bound by the MHC class II molecule can be longer and of a more variable length. typical length of peptides complexed with a MHC class I or a MHC class II molecule are 8-10 amino acids and 13-20 amino 35 acids, respectively.

At present only three MHC class II structure are available but

it is believed that the backbone structure of all MHC class II alleles presently identified are similar to that of HLA-DR1. Structures of different alleles can be predicted by using homology modelling. This involves identifying the amino acid differences near the binding groove and using a computer to change the conformation of the side-chains to give favourable steric and electrostatic arrangements and to make the pockets as large as possible. The end result is a three dimensional structure of a MHC class II molecule, which can be used in various experiments.

The ability to predict the peptides in a protein which can bind to a given MHC molecule has great value especially for medical applications. It is known, for example, that in 15 certain auto-immune diseases, T cells react with self-peptides presented by MHC class II molecules. It would be valuable to predict which peptides from auto-immune proteins are presented by MHC class II molecules in these diseases as well as to predict the binding of analogues of these peptides synthesised 20 as potential antagonists for the presentation of self-In the selection of peptides for synthetic peptides. vaccines, the ability to predict MHC class II binding peptides would be advantageous. In addition, where heterologous proteins are developed as medicines or diagnostic imaging 25 agents, it would be advantageous to predict potential MHC class II binding peptides in order to eliminate these from the heterologous proteins before administration to patients.

While studies of peptides complexed with MHC class I molecules
have revealed conserved "anchor" residues at certain positions within the presented peptides, such studies with peptides complexed with MHC class II molecules have been less successful mainly because of the greater length variability of such peptides and the consequent difficulty in aligning their sequences.

Methods for accurately predicting the binding potential of

- 3 -

peptides have been restricted to MHC class I interaction with a peptide. In one method using three-dimensional structures of MHC class I molecules, peptide binding is ranked in ascending order according to the energy values determined.

5 This method requires that the MHC structure be known, or that there is an obvious molecular model for the MHC structure. An identical method is said to be available for MHC class II but it does not consider the longer average length of the peptide and the open-ended peptide binding groove of MHC class II molecules. Neither does it use the best potential conformation of peptide amino acid side-chains and, therefore the binding energies calculated are only approximations.

Another drawback of using the same method for MHC class I and

15 MHC class II peptide binding is that the binding of peptides
to MHC class II is less dependant on strict allele-specific
binding motifs than peptides binding to MHC class I.
Individual amino acids in the peptide play a more significant
role in MHC class II binding than MHC class I such that the

20 conformation of amino acid side-chains is proportionally more
important to the accuracy of binding analysis. Therefore,
known methods do not provide a general method for analysing
the binding of peptides to three-dimensional structures of MHC
class II. There is thus a need for improved methods for

25 predicting the MHC class II binding potential of peptides.

An object of this invention is to provide a method for accurately predicting the binding affinity of a peptide fragment binding to a MHC class II molecule.

30

Another object of this invention is to provide a computer conditioned to perform the task of predicting the binding affinity of a peptide fragment binding to a MHC class II molecule.

35

A yet further object of this invention is to provide a vaccine derived from the peptide fragment whose binding affinity to

MHC class II molecules has been determined.

Another object of this invention is to provide a pharmaceutical composition which comprises a peptide whose 5 binding affinity to MHC class II molecules has been determined.

According to the first aspect of this invention, there is provided a method for the prediction of the binding affinity of a peptide and a major histocompatibility (MHC) class II molecules comprising;

- 1) ascertaining the characteristics of a MHC molecule binding groove,
- 2) presenting a selected peptide to the MHC molecule and 15 ascertaining a first conformation score for each pocket bound peptide side-chain,
 - 3) amending the conformation of each pocket bound peptide side-chain and ascertaining a second conformation score,
- 4) repeating step 3 with alternative conformations of each 20 peptide pocket bound side-chain,
 - 5) choosing the highest conformation score for each pocket bound peptide side-chain,
- 6) combining the highest conformation score for each pocketbound peptide side-chain and then ascertaining a binding score25 for the peptide.

It is particularly desirable to then compile information on all peptide fragments in a protein and compare the binding scores. It is preferable if the conformation of the backbone 30 of the peptide fragment is also altered and the conformation score and the binding score is then reassessed.

The method of this invention thus involves assessing a binding score for all possible candidate peptides by considering the predicted three-dimensional conformations and interactions between the MHC and the peptide in the complex. The computed score indicates the predicted binding affinity for the

particular peptide binding with the MHC allele and can be used to predict whether the peptides are likely to bind, or not.

Preferably, the conformation score for each pocket bound 5 peptide side-chain is ascertained by considering at least one of the following parameters:

- a) the steric overlap between the pocket bound peptide residue bound in the pocket and an atom forming the pocket; this is value B,
- 10 b) the number of hydrogen bonds which can be formed between the pocket bound peptide residue and an atom forming the pocket; this is value C,
 - c) the strength of electrostatic interactions between any polar atoms of the pocket bound peptide residue and any polar
- 15 atoms forming the pocket; this is value D, and
 - d) the number of favourable contacts between the pocket bound peptide residue and the MHC residues forming one of the pockets; this is value E.
- The conformation score for each peptide is computed based upon the predicted atomic interactions between each of the pocket bound peptide residues and MHC pockets. The geometric constraints imposed on the peptide by the shape of the MHC binding groove play an important part of the scoring function.
- 25 Favourable packing arrangements between peptide and MHC sidechains are rewarded by the scoring function, whilst arrangements involving steric overlap are penalised. Alternative conformation are tried for MHC residues if an MHC residue overlaps with a peptide side chain.

30

If no preferable conformation can be found the MHC side-chain is returned to its original conformation. In the event of more than a pocket residue side-chain overlapping with a pocket bound peptide side chain, the pocket residue side chains are adjusted in order of overlap severity, with the pocket residue side-chain which has the most severe overlap being adjusted first.

WO 98/59244

In preferred embodiments the steric overlap between the pocket bound peptide residue and the atoms forming the pocket can not be greater than 0.35 Angstroms, otherwise the residue is deemed unable to fit in the pocket.

5

Conveniently a favourable contact occurs when an atom from an MHC residue and an atom from the peptide residue have their centres separated by no more than the sum of their radii plus 0.5 Angstroms and are not overlapping.

10

Preferably the values B to E are imported into a first equation to give a conformation score(Z). The first equation is $Z_n = (cK_2C) - (cK_3D) + (cK_4E) - (cK_1B)$, where cK_1 to cK_4 are constants and n is the number of the pocket.

15

The value of cK_1 is between 50 and 150. Preferably between 75 and 125.

The value of cK_2 is between 1000 and 2000. Preferably between 20 1250 and 1750.

The value of cK_3 is between 250 and 750. Preferably between 350 and 650.

25 The value of cK_4 is between 500 and 1500. Preferably between 750 and 1250.

Conveniently the Z_n value for a pocket is multiplied by a coefficient, L, depending on the pockets importance in binding, to give a second Z_n value. The value L is in the range of 0.001 to 5. Larger pockets are considered more important in determining which peptide can bind, compared with the other smaller pockets, so the scores contributed by each pocket are weighted in proportion to the amount of the peptide side-chain buried by the surface of the MHC molecule. When binding to MHC class II molecules, peptides have shown high similarity in the degree to which their side-chains are buried

by the MHC surface, despite having dissimilar sequences.

Preferably all the Z_n values are summed to give a value J. Value J is the overall contributing score of all the pockets for a certain conformation of the peptide fragment.

Conveniently the MHC residue is paired with the pocket-bound peptide residue if an atom from the MHC residue and an atom from the pocket-bound peptide residue have their centres separated by no more than the sum of their van der Waal radii plus one Angstrom.

In a preferred embodiment a value A_n is calculated by summing the pairwise interaction frequencies of paired residues. As 15 for the Z_n value, preferably the value A_n for a pocket is multiplied by a coefficient, X_n depending on the pockets importance in binding. Preferably X is between 0.001 and 5.

Conveniently the A_n value for the pockets are summed to give 20 a value P.

In a preferred embodiment the binding score is ascertained by at least one of the following parameters

- a) the number of groove-bound hydrophobic residues; this is25 value F,
 - b) the number of non groove-bound hydrophilic residues; this is value G,
 - c) the number of peptide residues deemed to fit within their respective binding pocket; this is value H.

30

Preferably values F, G, H, J and P are imported into a second equation to give a first binding score, Y.

Conveniently the second equation is $Y=J*F^2*(G*H+1)+P$.

35

However, in the alternative, the term He, which evaluates the hydrophobicity of the pocket bound peptide side chains using

a hydrophobicity scale disclosed in Janin et al [1979] Nature, 277 pg 491, can also be used to determine the Y value. Accordingly, Y=(bK₂C)-(bK₃D)+(bK₄E)-(bK₁B)+(bK₅He)+P. The scale used in Janin et al to measure hydrophobicity has a range from 5 -1.8 for lysine to 0.9 for cysteine.

It is known that peptides having favourable hydrophobic/hydrophobic interactions with solvent and MHC atoms have a higher binding affinity. Accordingly, it is 10 preferable to include the term He.

The value of bK_1 is between 1 and 10. Preferably between 1 and 5.

15 The value of bK_2 is between 20 and 60. Preferably between 30 and 50.

The value of bK_3 is between 300 and 900. Preferably between 450 and 750.

20

The value of bK_4 is between 1 and 20. Preferably between 5 and 15.

The value of bK_5 is in between 1 and 800. Conveniently 25 between 100 and 600. Preferably between 100 and 400.

In a preferred embodiment determination of the conformation score and the binding score are repeated for each pocket and each conformation of the peptide residue in said pocket. The conformation of the peptide is altered by rotating a side chain of the peptide residue by a pre-determined amount. In this way all possible conformations of the peptide side-chain in the pocket can be studied and the best or most likely conformation can be chosen to obtain the binding score.

35

The conformation of the backbone of the peptide fragment is changed by modelling the conformation of the backbone on any

one of 167 backbones which have been previously generated, based on human and murine crystallographic structures of MHC class II peptide complexes. The backbone conformation and the conformation of the peptide fragment side chains are altered systematically until the conformation score and the binding score of every possible conformation has been determined.

Conveniently the steps are repeated using different peptides from a protein.

10

In preferred embodiments the binding scores (Y) for different peptides are tabulated and compared. Peptides with the highest scores are predicted to have the highest binding affinity for the particular MHC allele.

15

In a preferred embodiment the method of determining the binding affinity of a peptide residue for an MHC class II molecule is used in the manufacture of a vaccine derived from a peptide identified by said method.

20

Preferably the method of determining the binding affinity of a peptide residue for an MHC class II molecule is used to remove potentially immunogenic sequences from a protein and thus reduce said proteins immunogenicity when administered to 25 an organism.

Using the afore-detailed method it is possible to predict the peptides from an auto-immune protein which are presented by MHC class II molecules. Thereafter, it is possible to synthesise peptides which would be antagonists to the presentation of such peptides by the MHC class II molecules. It is also possible to determine any proteins in a vaccine containing heterologous proteins which might result in the stimulation of T cells due to their presentation on MHC class II molecules. These proteins could then be altered or removed depending on their function in the vaccine.

According to a second aspect of the invention there is provided a computer conditioned to receive information characterising a peptide bound to the MHC molecule and to utilise said information to perform a procedure having the 5 following steps;

- 1) ascertaining the characteristics of a MHC molecule binding groove;
- 2) presenting a selected peptide, which is selected by a predetermined program, to the MHC molecule and ascertaining10 a first conformation score;
 - 3) amending the conformation of the peptide, by way of a predetermined program, and ascertaining a second conformation score;
 - 4) repeating step 3 with other conformations of the peptide;
- 15 5) selecting the peptide conformation with the highest conformation score; and
 - 6) calculating the binding score from the conformation score.

Preferably the above detailed procedure also includes a step 20 (7) which comprises repeating steps 1-4 with other peptide fragments in the protein to generate information on all peptide fragments in a protein so that a comparison can be made of the strength of the binding between the peptide and the MHC molecule.

25

Conveniently the above detailed procedure further comprising a step (8) which comprises altering the conformation of the backbone of the peptide fragment.

The use of a computer in such a task is important because there are hundreds of calculations to perform per peptide fragment. A computer conditioned to perform the task can systematically change the conformation of the side chains and the backbone of the peptide fragment while calculating the conformation score and the binding score.

According to a third aspect of the invention there is provided

a pharmaceutical composition made by determining the binding affinity of a peptide for a MHC class II molecule.

A pharmaceutical composition is thus engineered to contain a peptide which is presented by an MHC class II molecule and which therefore stimulates the bodies cellular immune system. Alternatively the pharmaceutical composition is engineered so that it does not include peptides which significantly stimulate the immune system.

10

The invention will now be described, by way of illustration only, with reference to the following examples, tables and figures accompanying the specification.

15 Figure 1 shows a graphical representation of the binding score distribution of all 554 13-mer Influenza haemagglutinin peptides bound to HLA-DRB1*0101.

Figure 2 shows a graphical representation of the binding score 20 distribution of all 554 13-mer Influenza haemagglutinin peptides bound to HLA-DRB1*0401.

Table 1 shows the value for all the factors required to determine the binding score for the 15 peptides from Influenza 25 haemagglutinin which have the highest binding affinity for HLA-DRB1*0101.

Table 2 shows the value for all the factors required to determine the binding score for the 15 peptides from Influenza 30 haemagglutinin which have the highest binding affinity for HLA-DRB1*0401.

Table 3 lists the sequence difference between HLA-DRB1*0101 and HLA-DRB1*0401.

35

Table 4 shows the torsion angles of the mutated side chains in HLA-DRB1*0401.

Example 1

The following method was used to confirm that the peptide PKYVKQNTLKLAT, has a high affinity binding for the MHC molecule HLA-DRB1*0101.

- 5 The conformation score was calculated as follows for an oligomeric peptide having thirteen amino acid residues, herein known as a 13-mer peptide:
- a) Calculate the steric overlap between the pocket bound
 10 peptide residue in the binding groove and an atom forming the pocket; this is value B.
- b) Count the number of hydrogen bonds which could be formed between the pocket bound peptide residue and atoms forming the
 pocket; this is value C.
 - c) Calculate the strength of electrostatic interactions between any polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.

20

- d) Count the number of favourable contacts between the pocket bound peptide residue and atoms forming the pocket; this is value E.
- 25 These values were then transformed into a conformation score (Z) by using the following equation:

$$Z_n = (cK_2C) - (cK_3D) + (cK_4E) - (cK_1B)$$

where cK_1 to cK_4 are constants and n is the number of the 30 pocket. CK_1 , cK_2 , cK_3 and cK_4 are equal to 100, 1500, 500 and 1000 respectively.

The conformation of each rotatable side chain of the pocket bound peptide bound residue was then altered by 30° and the conformation score was recalculated.

The above steps were repeated for each of the pockets and the

highest conformation score for each of the pockets was used to determine the binding score.

The binding score was determined by establishing values for the following parameters:

- a) the number of groove-bound hydrophobic residues; this is value F.
- b) the number of non groove-bound hydrophilic residues; this is value G.
- 10 c) the number of peptide residues deemed to fit within their respective binding groove; this is value H.

The conformational scores for pockets one and five were doubled and then all the conformational scores were summed to give a value J.

The above values were then imported in to the following equation in order to determine the binding score:

$$J*F^2*(G*H+1)+P$$

The binding scores for all the 13-mer peptides from Influenza Haemagglutinin binding with MHC molecule HLA-DRB1*0401 were calculated and the resultant top 15 binding scores are presented in Table 1. PKYVKQNTLKLAT has the 8th highest binding affinity for HLA-DRB1*0101 from all 554 possible overlapping 13-mer peptides.

Table 1

	Rank	Seq.	Peptide	Binding Score	P	В	С	D	E	F	G	н
	1	328	NTLKLATGMRNVP	9382500	15012	0.00	1		27	4	6	5
5	2	453	IDLTDSEMNKLFE	8288922	17964	0.72	1		40	3	6	5
	3	373	NSEGTGQAADLKS	7520420	10661	0.68	0	+0.01	30	4	7	
	4	504	HDVYRDEALNNRF	7211042	15527	0.56	1	-0.05	31	3	6	5
	5	119	PDYASLRSLVASS	7174962	17351	0.68	1		40	4	4	5
	6	461	NKLFEKTRRQLRE	7049469	19407	0.79	0	+0.01	56	2	7	5
10	7	122	ASLRSLVASSGTL	6922064	16346	0.09	0		25	4	4	5
	8	322	PKYVKQNTLKLAT	6765975	18217	1.82	1		56	3	5	5
	9	458	SEMNKLFEKTRRQ	6156822	16617	0.30	4	+0.08	44	2	7	5
	10	513	NNRFQIKGVELKS	6096900	14052	1.32	3	-0.01	30	4	7	4
	11	439	YNAELLVALENQH	5890199	14198	0.60	1		33	4	4	5
15	12	63	STGKICNNPHRIL	5887908	12776	0.75	5	-0.05	31	3	6	5
	13	50	IEVTNATELVQSS	5503551	14297	0.95	2	+0.06	39	3	5	5
	14	262	NSNGNLIAPRGYF	5284475	10102	0.09	1		21	4	5	5
	15	257	DVLVINSNGNLIA	5239292	17028	1.35	2		35	3	4	5

20

Example 2

A method as described in Example 1 was used to confirm that the peptide PDYASLRSLVASS from Influenza haemagglutinin, has 25 high affinity binding for the MHC molecule HLA-DRB1*0401.

The structure of HLA-DRB1*0401 is not known but a three dimensional model was constructed based on the known structure of HLA-DRB1*0101 by homology modelling. 10 amino acid differences between the two molecules were identified (see Table 2) and HLA-DRB1*0101 was mutated using the molecular modelling package 'Quanta' to produce a model of HLA-DRB1*0401.

- 15 -

Then the side-chain conformations of the 10 amino acids were adjusted interactively. In most cases, torsion angles were chosen which resulted in little or no steric overlap between the mutated residues and surrounding atoms. In the case of 5 non-conserved residues which were either charged or whose side-chains were able to form hydrogen bonds, the potential to form favourable interactions was also considered. placement of 13H, 28D and 71K was such that these residues were able to form a favourable electrostatic arrangement 10 whilst at the same time, having minimum steric overlap with In the case of 30Y, this residue was surrounding atoms. positioned such that its hydroxyl group was situated close to the side-chain of 9E, where a hydrogen bond may be formed. The torsion angles chosen for the 10 mutated amino acid 15 residues were calculated in accordance with the standard conventions and are listed in Table 3.

The binding scores for all 13-mer peptides from Influenza Haemagglutinin binding with MHC molecule HLA-DRB1*0401 were calculated and the resultant top 15 binding scores are presented in Table 4. PDYASLRSLVASS has the 9th highest binding affinity for HLA-DRB1*0401 from all 554 possible overlapping 13-mer peptides.

Table 2

	Seq. Pos.	HLA-DRB1*0101	HLA-DRB1*0401
	b9	Tryptophan	Glutamic acid
	b11	Leucine	Valine
5	b13	Phenylalanine	Histidine
	b26	Leucine	Phenylalanine
,	b28	Glutamic acid	Aspartic Acid
`	b30	Cysteine	Tyrosine
	b31	Isoleucine	Phenylalanine
10	b33	Asparagine	Histidine
	b37	Serine	Tyrosine
	b71	Arginine	Lysine

Table 3

15

24

9°

Table 4

	Rank	Seq.	Peptide	Binding Score	P	В	С	D	E	F	G	н
				00010						<u> </u>		
	1	453	IDLTDSEMNKLFE	3070823	6559	0.36	0		42	3	6	5
	2	373	NSEGTGQAADLKS	2988447	4182	0.36	0	+0.01	32	4	7	5
5	3	328	NTLKLATGMRNVP	2899375	4639	0.00	1		27	4	6	5
	4	122	ASLRSLVASSGTL	2894599	6819	0.03	0		24	4	4	5
	5	72	HRILDGIDCTLID	2820446	4623	0.60	1	+0.16	28	4	6	5
	6	461	NKLFEKTRRQLRE	2662369	7203	0.36	0	-0.11	50	2	7	5
	7	119	PDYASLRSLVASS	2616648	6184	0.11	1		32	4	4	5
10	8	188	DNFDKLYIWGIHH	2615259	5429	0.58	0		29	5	6	4
	9	322	PKYVKQNTLKLAT	2515861	6407	0.46	2		44	3	5	5
	10	232	NIGSRPWVRGLSS	2488137	4818	0.41	0	-0.02	35	4	5	5
	11	504	HDVYRDEALNNRF	2353661	4965	0.05	1	-0.07	25	3	6	5
	12	135	EFITEGFTWTGVT	2208179	3543	0.07	1		20	4	5	5
15	13	251	TIVKPGDVLVINS	2176819	5259	0.10	0		16	5	5	4
	14	257	DVLVINSNGNLIA	2107570	6673	0.71	2		40	3	4	5
	15	439	YNAELLVALENOH	2035430	4795	0.03	1		26	4	4	5

20 Example 3

A library of backbones were constructed by examining the crystal structure of the HLA-DR1 complexed with SEB superantigen. This results in a collection of homogenous peptides within the MHC binding groove. The atomic positions of the peptide backbone, as shown in the PDB file produced from the crystal, were considered to be the 'representative' backbone conformation of a peptide which binds to HLA-DR1.

30 Each of the peptide backbone conformations from the known MHC class II crystallographic structures are taken and after being transformed to the same frame of reference as the `representative' peptide had the differences between their $C\alpha/C\beta$ positions and those of the `representative' peptide

calculated. These differences summarise the variability of $C\alpha/C\beta$ atomic positions between the known peptides and the `representative' peptide.

5 The differences were doubled to take into account the fact that the variability of peptides thus far crystallised may not fully represent the true variability of peptides binding to MHC class II molecules. The differences were then used to define regions within which peptide Cα and Cβ atoms centres are constrained to lie.

An exhaustive search was then made through candidate peptide backbones. Starting from the 'representative' peptide candidates are generated by adjusting backbone ϕ and ψ angles in ten degree steps from the N-terminus to the C-terminus. An adjustment was rejected if it led to any $C\alpha$ or $C\beta$ atom centre being outside the allowed region, derived above. An adjustment which did not violate the constraint results in a new backbone conformation which is stored within the peptide backbone library.

The x, y, and z co-ordinates of atoms in the backbones designated 0, 14, 62, 65, 75, 93, 104, 107, 112, 118, 129, 134, 141, 144 are given in Tables 5 to 18.

Table 5

Backbone 0					
Atom	Atom	Position	x		-
Number	type	in peptide		У	Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 41	N C C O C N C C	0000011111222223333334444455555666667777788	7.330 6.355 5.266 4.167 4.342 5.349 3.044 1.950 1.050 0.836 1.163 0.420 -0.503 -1.889 -2.429 -0.611 -2.442	86.191 86.222 85.531 84.640 87.660 85.957 85.315 84.127 86.325 81.825 82.737 80.785 81.821 82.737 80.785 79.730 82.744 80.855 79.734 79.658 87.7560 77.437 78.938 77.550 77.437 78.938 77.5517 80.226 77.190 76.607 77.530 76.607 77.530 76.607 77.530 76.607 77.530 76.607 77.530 76.607 77.530 76.607 77.530	22.078 22.516 23.352 22.593 22.044

- 20 -

Table 5 continued

	Atom	Atom	Position	х	У	z
	Number	type	in peptide			
	42	С	8	-4.839	75.618	20.504
5	43	0	8	-4.505	74.687	21.236
_	44	CB	8	-3.924	75.908	18.149
	45	N		-6.093	76.041	20.436
	46	CA	9 9 9 9	-7.113	75.382	21.236
	47	С	9	-7.976	74.424	20.403
	48	0	9	-8.366	74.742	19.266
	49	CB	9	·-7.963	76.413	21.973
	50	N	10	-8.203	73.232	20.971
10	51	CA	10	-8.995	72.149	20.365
	52	С	10	-10.492	72.527	20.200
	53	0	10	-10.962	73.563	20.702
	54	CB	10	-8.830	70.835	21.191
	55	N	11	-11.238	71.661	19.523
	56	CA	11	-12.654	71.907	19.270
	57	С	11	-13.603	71.483	20.395
	58	0	11	-13.661	70.302	20.800
15	59	CB	11	-13.072	71.269	17.940
	60	N	12	-14.360	72.481	20.852
	61	CA	12	-15.363	72.337	21.898
	62	С	12	-14.758	72.166	23.281
	63	0	12	-14.785	71.069	23.853
	64	CB	12	-16.320	71.168	21.577

- 21 -

Table 6

	Backbone 14					
	Atom	Atom	Position	x	У	z
5	Number	type	in peptide		•	_
	0		0	0.000	0.000	0.000
	0	N CA	ő	18.281	86.637	22.405
	2	C	0	16.799	86.756	22.715
	3	0	0	16.250	87.880	22.720
	1 2 3 4 5 6	CB	0 0 1 1 1	0.000	0.000	0.000
10	5	N	1	16.174 14.768	85.601 85.553	22.931 23.287
	6 7	CA	1	14.708	84.393	23.267
	8	C 0	. 1	13.053	84.588	21.908
	9	СВ		14.090	86.846	22.869
	10	N	2	14.723	83.223	22.680
	11	CA	2	14.182	82.013	22.093
	12	С	2	12.659	82.164	21.901
15	13	0	2	11.952 14.470	82.431 80.825	22.884 22.994
	14 15	CB N	3	12.242	82.022	20.649
	16	CA	3	10.845	82.086	20.317
	17	C.	3	10.219	80.681	20.423
	18	0	1 2 2 2 2 2 3 3 3 3 3	10.898	79.694	20.101
	19	СВ	3	10.669	82.621	18.906
	20	N	4 4	8.980 8.245	80.660 79.430	20.898 21.010
20	21 22	CA	4	6.863	79.586	20.344
	23	C 0	4	6.283	80.680	20.413
į	24	СВ		8.071	79.059	22.472
	25	N	4 5 5 5 5 5	6.427	78.504	19.710
	26	CA	5	5.135	78.479	19.082
	27	С	5	4.084 4.171	77.942 76.770	20.074
	28 29	0	5	5.174	77.593	20.468
25	30	CB . N	6	3.174	78.832	20.452
	31	CA		2.100	78.470	21.336
	32	C	6 6 6	1.349	77.248	20.769
	33	0	6	1.703	76.776	19.678
	34	CB		1.139	79.635	21.492
	35	N	7	0.381 -0.441	76.781 75.677	21.550
	36 37	CA	7	-1.906	76.139	21.137 21.008
30	38	0	7	-2.505	76.533	22.020
	39	CB	7 7 7 7 7	-0.346	74.551	22.153
	40	N	8	-2.392	76.101	19.773
;	41	CA	8 8 8	-3.758	76.454	19.498
	42	С	8 8	-4.704	75.537	20.299
	43 44	O CB	8 8	-4.316 -4.043	74.404 76.313	20.618
	33	CB		3.033	,0.313	10.013

- 22 -

Table 6 continued

Atom	Atom	Position	x	У	z
Number	type	in peptide			
45	N	9	-5.873	76.084	20.610
46	CA	9	-6.881	75.338	21.313
47	С	9	-7.500	74.285	20.371
48	0	9	-7.243	74.336	19.159
49	CB	9	-7.964	76.275	21.818
50	N	10	-8.250	73.372	20.978
51	CA	10	-8.934	72.354	20.229
52	С	10	-10.393	72.786	19.976
53	0 .	10	-11.075	73.192	20.928
54	CB	10	-8.914	71.043	20.996
55	N	11	-10.781	72.710	18.708
56	CA	11	-12.127	73.032	18.320
57	C.	11	-13.058	71.846	18.640
58	0	11	-13.254	70.984	17.770
59	CB	11	-12.180	73.341	16.834
60	N	12	-13.551	71.844	19.872
61	CA	12	-14.474	70.830	20.305
62	С	12	0.000	-12.127	73.032
63	0	12	18.356	0.000	
64	CB	12	0.000	0.000	0.000

Table 7

Backbone 62					
Atom	Atom	Position	x	У	z
Number	type	in peptide		-	_
0	N CA	0	0.000	0.000	0.000
1 2 3 4 5 6	CA	0	18.315	86.971	22.396
3	Ö	0	16.796 16.173	86.979 87.867	22.404
4	СВ	ŏ	0.000	0.000	21.780 0.000
5	N	1	16.231	85.979	23.075
6	CA	1	14.791	85.876	23.216
7 8	С	1	14.286	84.665	22.451
8	0	1	13.659	84.820	21.380
9	CB	1	14.132	87.123	22.652
10 11	N CA	2	14.595	83.487	22.989
12	C	2	14.144	82.241	22.404
13	Ö	2	12.614 11.890	82.280 82.495	22.212
14	CB	2	14.518	81.077	23.195 23.305
15	N	2 2 2 2 2 3 3 3 3 4	12.208	82.108	20.960
16	CA	3	10.810	82.071	20.629
17	С	3 ·	10.289	80.623	20.734
18	. 0	3	11.105	79.691	20.783
19	CB	3	10.596	82.591	19.218
20 21	N CA	4	8.967	80.514	20.800
22	C	4	8.328 6.861	79.228	20.852
23	0	4	6.157	79.356 80.256	20.395 20.876
24	CB	4	8.377	78.680	22.268
25	N	5	6.490	78.478	19.470
26	CA	5 5 5 5 5	5.140	78.440	18.978
27	C	5	4.171	78.141	20.139
28 29	O CB	5	4.543	77.392	21.055
30	N	6	5.006	77.369	17.909
31	CA	6	3.002 1.975	78.765 78.549	20.060 21.042
32	C		1.039	77.416	20.577
33	0	6 6	1.276	76.842	19.503
34	CB	6	1.174	79.824	21.246
35	N	7	0.052	77.131	21.418
36 37	CA	7	-0.931	76.132	21.102
37 38	C 0	7	-2.325	76.784	21.008
39	CB	7 7	-2.553	77.814	21.661
40	N	8	-0.941 -3.166	75.055	22.174
41	CA	8	-4.518	76.177 76.638	20.179
42	С	8	-5.491	75.631	20.020 20.666
43	0	8	-5.155	74.441	20.754

- 24 -

Table 7 continued

Atom Number	Atom type	Position in peptide	x	У	z
44 45 46 47 48 49 51 52 53 55 57 58 59 61 62 64	CB NCCOCNCCOCNACCOCS	8 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12	-4.845 -6.623 -7.650 -8.161 -8.197 -8.802 -9.030 -10.518 -11.258 -8.887 -10.869 -12.232 -13.047 -13.155 -12.284 -14.366 0.000 18.332 0.000	76.793 76.163 75.345 74.329 74.658 76.215 73.143 72.107 72.390 72.730 70.758 72.271 72.455 71.182 70.312 72.752 71.124 70.022 -12.232 0.000 0.000	18.545 21.113 21.696 20.655 19.460 22.170 21.153 20.315 20.029 20.964 21.000 18.754 18.336 18.641 17.764 16.847 19.871 20.291 72.455 -12.232 0.000

. Tab<u>l</u>e 8

Backbone 65	5				
Atom	Atom	Position	×	У	z
Number	type	in peptide		1	2
0 12 3 4 5 6 7 8 9 0 11 12 13 14 15 16 7 18 19 20 12 22 23 24 25 26 27 28 29 30 31 33 33 33 33 33 33 33 33 33 33 33 33	NACOOC	0000011111222223333344444555566666777778888	0.000 18.487 16.990 16.510 0.000 16.279 14.844 14.178 13.234 14.301 14.699 14.144 12.616 11.950 14.457 12.150 10.742 10.206 10.895 10.491 9.029 8.376 6.930 6.309 8.365 6.484 5.139 4.150 4.487 4.985 3.002 1.959 0.861 0.752 1.360 0.134 -0.959 -1.983 -1.708 -1.631 -3.087 -4.156 -5.496	0.000 86.641 86.870 87.999 0.000 85.866 84.664 84.830 87.132 82.382 82.382 82.382 82.065 82.624 79.325 80.419 79.325 80.419 79.325 80.419 79.325 78.731 78.731 78.731 77.274 77.2	0.000 22.418 22.533 22.287 0.000 22.868 23.065 22.417 21.612 22.424 22.746 22.248 22.089 23.038 23.212 20.895 20.608 20.484 19.902 19.314 21.065 20.993 20.491 20.801 22.364 19.718 19.212 20.363 21.280 18.142 20.275 21.246 20.665 19.676

- 26 -

Table 8 continued

	Atom	Atom	Position	х	У	z
]	Number	type	in peptide			
5	43 44 45 46 47 48 49	O CB N CA C O CB N	000000000000000000000000000000000000000	-6.146 -3.906 -5.817 -7.058 -7.606 -7.311 -8.071	75.692 76.820 76.283 75.736 74.721 74.855 76.849 73.746	18.775 17.831 20.964 21.439 20.416 19.219 21.649 20.940
10	50 51 52 53	CA C	10 10 10 10	-8.959 -10.421 -10.685	72.751 73.147 73.773	20.108 19.824 18.787
	54 55 56 57 58	CB N CA C	10 11 11 11 11	-8.919 -11.294 -12.689 -13.474 -13.031	71.398 72.734 73.067 71.860 71.253	20.799 20.735 20.635 20.085 19.099
15	59 60 61 62 63 64	CB N CA C O CB	11 12 12 12 12 12 12	-12.873 -14.572 -15.436 0.000 18.675 0.000	74.262 71.556 70.486 -12.689 0.000 0.000	19.715 20.766 20.348 73.067 -12.689 0.000

Table 9

Backbone 75						
Atom Number	Atom type	Position in peptide	x	У	Z	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	NACCOCNACCOCNACCOCNACCOCNACCOCNACCOCNACCOCNACCOCNA	000001111122222333333444455555666667777788	0.000 18.442 16.947 16.452 0.000 16.265 14.823 14.466 14.197 14.218 14.505 14.144 12.615 11.895 14.601 10.808 10.331 11.176 10.592 9.013 8.414 6.322 8.478 6.482 5.116 4.609 4.932 2.974 1.974 0.736 0.206 -0.980 -1.844 -1.778 -2.952 -3.885	0.000 86.539 86.419 86.839 0.000 85.822 85.676 84.417 86.875 83.290 82.013 81.942 81.727 80.882 82.078 80.615 79.709 82.592 80.465 79.245 80.304 78.609 77.470 76.823 77.470 76.823 77.869 77.470 76.823 77.869 77.470 76.823 77.867 77.877	0.000 22.377 22.136 21.066 0.000 23.109 23.048 22.277 21.057 22.338 22.985 22.404 22.214 23.200 23.308 20.971 20.626 20.726 20.772 19.213 20.789 20.836 20.772 19.213 20.789 20.836 20.377 20.544 22.251 19.793 19.354 20.577 21.629 18.483 20.389 21.420 20.910 19.748 21.788 21.478 20.071 22.745 20.088 19.189	

- 28 -

Table 9 continued

Atom Number	Atom type	Position in peptide	х	У	z
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	C O CB N CC O CB N CC O CB N CC O CB	8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 11 11 12 12 12 12	-5.324 -6.195 -3.604 -5.491 -6.786 -7.424 -7.209 -7.681 -8.142 -8.840 -10.312 -10.616 -8.772 -11.149 -12.546 -13.321 -12.815 -12.741 -14.483 -15.343 0.000 18.817 0.000	76.483 76.435 76.435 76.194 75.859 74.747 74.729 77.087 73.864 72.797 73.196 73.833 71.532 72.774 73.108 72.011 71.509 74.445 71.674 70.702 -12.546 0.000 0.000	19.579 18.698 17.762 20.865 21.391 20.535 19.314 21.388 21.219 20.556 20.334 19.314 21.394 21.275 21.233 20.475 19.460 20.540 21.023 20.406 73.108 -12.546 0.000

Table 10

Backbone 93						
Atom Number	Atom type	Position in peptide	х	У	z	
0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 19 20 12 22 23 24 25 26 27 28 29 30 30 31 33 33 33 33 33 33 33 33 33 34 34 34 34	N C C O C N C N	00000111112222333333444455555666667777788888	0.000 18.249 16.910 16.646 0.000 14.782 14.078 12.999 13.932 14.144 12.613 11.912 14.484 12.179 10.763 10.712 10.564 9.085 4.298 5.163 2.980 1.839 0.169 -0.585 -2.067 -0.639 -4.853 -4.853 -4.314	0.000 86.312 86.341 87.271 0.000 85.351 85.213 83.978 84.095 86.434 82.828 81.558 81.568 81.568 81.568 80.454 79.206 79.401 80.546 79.401 80.546 79.401 80.546 79.206 78.283 77.229 78.741 78.572 77.213 76.687 76.173 76.173 75.344 74.368	0.000 21.629 22.345 23.139 0.000 22.027 22.662 22.127 21.505 22.345 21.938 21.812 22.828 22.959 20.587 20.300 20.176 19.439 19.005 20.925 20.882 20.159 20.036 20.925 20.036 20.925 20.036 20.925 20.434 19.876 20.726 20.434 19.510 20.486 21.254 21.080 21.037 22.086 21.253 21.198	

Table 10 continued

Atom Number	Atom type	Position in peptide	х у г
44 45 46 47 48 49 51 52 53 54 55 57 59 61 62 63 64	CB NCCOCNACOOB NCCOCNACOOB	8 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12	-4.445 75.782 18.223 -6.082 75.791 20.882 -6.974 75.097 21.769 -8.018 74.312 20.948 -8.754 74.928 20.163 -7.679 76.089 22.679 -8.002 72.999 21.144 -8.947 72.137 20.488 -10.274 72.891 20.269 -10.348 73.727 19.356 -9.194 70.899 21.332 -11.256 72.533 21.087 -12.539 73.179 21.038 -13.542 72.288 20.278 -13.224 71.836 19.167 -12.418 74.524 20.343 -14.678 72.054 20.925 -15.731 71.281 20.326 0.000 -12.539 73.179 18.616 0.000 -12.539 0.000 0.000

Table 11

Backbone 104							
Atom	Atom	Position	х	У	z		
Number	type	in peptide		_	:		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 36 37 38 38 38 39 40 40 40 40 40 40 40 40 40 40 40 40 40	N A C C O B N A C C O C N A C	00000111112222233333344444555556666677777888888	0.000 18.400 16.914 16.453 0.000 16.189 14.763 14.059 12.980 14.693 14.125 12.594 11.945 12.104 10.690 10.159 10.406 8.902 8.905 6.415 8.009 6.401 5.135 2.968 1.164 5.135 2.968 1.164 5.135 2.968 1.164 5.135 2.968 1.164 5.135 2.968 1.945 1.944 1.944 1.944 1.944	0.000 86.585 86.850 87.991 0.000 85.793 85.897 84.662 84.778 87.122 83.511 82.372 82.026 82.048 80.604 79.713 82.801 80.444 79.166 79.319 80.450 78.158 77.862 77.862 77.138 76.935 77.091 78.680 77.138 77.138 77.935 77.091 78.699 76.935 77.091 78.502 77.138 76.935 77.091 78.502 77.138 77.1	0.000 22.355 22.523 22.296 0.000 22.880 23.128 22.593 21.971 22.421 22.810 22.421 23.424 21.093 20.723 20.723 20.317 19.548 21.029 20.290 20.160 22.420 19.817 19.147 20.165 20.975 18.066 20.975 18.066 20.975 18.066 20.9656 19.864 20.708 21.334 21.135 21.135 21.135 21.135 21.129 22.267 19.873 19.670 20.684 21.228		

Table 11 continued

Atom	Atom	Position	x	У	z
Number	type	in peptide			
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	CB N CA C O CB N CA C O CB N CA C O CB N CA	8 9 9 9 9 10 10 10 10 11 11 11	-4.550 -6.200 -7.100 -8.146 -8.997 -7.800 -8.007 -8.934 -10.266 -10.341 -9.181 -11.249 -12.537 -13.529 -13.514 -12.421	75.803 75.824 75.134 74.358 74.991 76.129 73.038 72.175 72.919 73.752 70.924 72.557 73.194 72.297 74.537	18.256 20.911 21.794 20.969 20.328 22.704 21.000 20.320 20.092 19.177 21.145 20.907 20.850 20.086 18.847 20.152
61 62 63 64	CA C O CB	12 12 12 12 12 12	-14.310 -15.320 0.000 18.422 0.000	71.549 70.695 -12.537 0.000 0.000	73.194

Table 12

Backbone 107						
Atom Number	Atom type	Position in peptide	x	У	Z	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 33 34 35 36 37 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	N A C O C N A C O C N A C O C N A C O C N A C C O C N	0000011111222223333334444455555666667777788888	0.000 18.468 16.971 16.491 0.000 14.825 14.159 13.215 14.282 14.680 14.125 12.597 11.931 14.438 12.131 10.723 10.187 10.876 10.472 9.010 8.357 6.290 8.346 6.465 5.120 4.131 4.469 4.966 2.983 1.940 0.842 0.733 1.341 0.115 -0.978 -2.002 -1.650 -3.106 -4.175 -5.514 -6.165	0.000 86.641 86.870 87.999 0.000 85.796 85.866 84.664 84.830 87.132 83.484 82.241 82.381 82.822 81.109 82.065 80.624 79.773 82.818 80.419 79.322 80.350 78.340 78.339 78.731 78.731 77.634 77.533 77.634 77.533 77.634 77.533 76.994 76.143 76.952 76.921 76.242 75.692	0.000 22.418 22.533 22.287 0.000 22.868 23.065 22.417 21.612 22.424 22.746 22.248 22.089 23.038 23.212 20.895 20.608 20.484 19.902 19.314 21.065 20.993 20.491 20.801 22.364 19.718 19.212 20.363 21.280 18.142 20.275 21.246 20.665 19.433 21.280 18.142 20.275 21.246 20.665 19.433 21.573 21.187 20.366 20.039 22.422 20.048 19.326 19.676 18.775	

Table 12 continued

Atom Number	Atom type	Position in peptide	х	У	z
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	CB N CA C O CB N CA C O CB N CA C O CB	8 9 9 9 9 10 10 10 11 11 11 11 11 12 12 12 12	-3.925 -5.836 -7.077 -7.625 -7.330 -8.090 -8.358 -8.977 -10.440 -10.703 -8.938 -11.313 -12.708 -13.493 -13.050 -12.892 -14.591 -15.455 0.000 18.675 0.000	76.820 76.283 75.736 74.721 74.855 76.849 73.746 72.751 73.147 73.773 71.398 72.734 73.067 71.860 71.253 74.262 71.556 70.486 -12.708 0.000 0.000	17.831 20.964 21.439 20.416 19.219 21.649 20.940 20.108 19.824 18.787 20.799 20.735 20.635 20.635 20.085 19.099 19.715 20.766 20.348 73.067 -12.708 0.000

Table 13

Backbone 11	Backbone 112								
Atom	Atom	Position	x	У	z				
Number	type	in peptide		4	_				
0	N	0	0.000	0.000	0.000				
1 2	CA	0	18.408	86.726	22.399				
2 3	CO	0	16.919 16.449	86.606 87.028	22.121				
4	CB	0	0.000	0.000	21.041 0.000				
4 5 6 7	N	1	16.215	86.005	23.077				
6	CA	1	14.774	85.858	22.981				
	С	1	14.438	84.649	22.125				
8 9	0	1	14.190	84.795	20.907				
9 10	СВ	1	14.176	87.097	22.337				
11	N	2	14.470	83.480	22.761				
12	CA C	2	14.125 12.600	82.241 82.176	22.093				
13	0	2	11.849	82.176	21.872 22.858				
14	СВ	2	14.572	81.057	22.932				
15	N	3	12.224	82.187	20.598				
16	CA	1 2 2 2 2 2 3 3 3 3	10.839	82.083	20.230				
17	С	3	10.319	80.669	20.557				
18 .	0	3	11.133	79.744	20.692				
19	CB		10.674	82.359	18.745				
20 21	N	4	9.001	80.583	20.701				
22	CA	4	8.361	79.323	20.960				
23	C	4	6.868	79.411	20.585				
24	O CB	4	6.126	80.158	21.239				
25	N	4	8.500 6.516	78.961 78.676	22.429				
26	CA	5 5 5 5	5.150	78.615	19.537 19.095				
27		5	4.229	78.301	20.291				
28	C	5	4.706	77.734	21.285				
29	СВ		4.995	77.540	18.033				
30	N	6	2.976	78.716	20.149				
31 32	CA	6	1.986	78.455	21.158				
33	C	6 6 6 7 7	0.948	77.449	20.621				
34 ·	O CB	6	1.060	77.031	19.459				
35	N	5 7	1.291 0.020	79.747	21.552				
36	CA	7	-1.045	77.088 76.194	21.499 21.133				
37	c	7	-2.219	76.999	20.540				
38	Ō	7	-2.062	78.205	20.340				
39	CB	7 7 7	-1.517	75.422	22.353				
40	N	8	-3.314	76.286	20.301				
41	CA	8	-4.508	76.904	19.793				
42 43	C	8	-5.720	75.987	20.056				
4.4	0	8	-5.881	74.984	19.345				
45	CB	8	-4.369	77.156	18.302				
10	N	9	-6.483	76.357	21.078				

Table 13 continued

Atom Number	Atom type	Position in peptide	x	У	z
46 47 48 49 50 51 52 53 55 57 59 60 61 62 63 64	CA C O CB N CA C O CB N CA C O CB	9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12	-7.676 -7.858 -7.297 -8.883 -8.598 -8.898 -10.415 -11.204 -8.455 -10.740 -12.112 -12.689 -12.384 -12.211 -13.459 -14.109 0.000 18.708 0.000	75.631 74.446 74.482 76.549 73.451 72.298 72.236 72.400 71.034 72.040 71.910 70.583 69.523 71.942 70.705 69.563 -12.112 0.000 0.000	

Table 14

Backbone 11	8				
Atom	Atom	Position	x	У	z
Number	type	in peptide			
0	N	0	0.000	0.000	0.000
1	CA	0	18.471	86.536	22.407
2	C O	0	16.968	86.701	22.266
2 3 4 5 6 7	CB	ŏ	16.498 0.000	87.742 0.000	21.755
5	N	1	16.246	85.665	0.000 22.686
6	CA	1	14.795	85.690	22.663
	С	1 1	14.271	84.435	21.986
8	0	1	13.620	84.525	20.922
9	CB	1 2 2 2 2 2 3 3 3 3 3 4	14.318	86.904	21.884
10	N	2	14.591	83.292	22.589
11	CA	2	14.125	82.013	22.093
12	C	2	12.591	82.045	21.934
13	O	2	11.881	82.067	22.951
14 15	CB N	2	14.518	80.907	23.057
16	CA	3	12.165	82.081	20.677
17	C	3	10.762 10.221	82.064	20.366
18	0	3	11.005	80.625 79.674	20.479
19	CB	3	10.536	82.588	20.343 18.958
20	N	4	8.925	80.541	20.756
21	CA	4	8.263	79.268	20.845
22	C	4	6.879	79.352	20.171
23	0	4	6.325	80.457	20.070
24	CB	4 4 5 5 5 5 5 6	8.101	78.868	22.301
25	N	5 5	6.413	78.195	19.716
26 27	CA C) 5	5.115	78.103	19.106
28	0	5	4.061	77.755	20.177
29	CB	5	4.217 5.122	76.737 77.034	20.866
30	N	6	3.069	78.632	18.027 20.282
31	CA	6	1.984	78.421	21.202
32	С	6	1.060	77.308	20.670
33	. 0	6 6 6 7	1.327	76.771	19.584
34	CB	6	1.192	79.706	21.374
35	N	7	0.048	76.997	21.472
36	CA	7	-0.928	76.012	21.093
37	C	7	-2.316	76.673	20.976
38	O CB	7 7	-2.546	77.708	21.619
39 40	N N	8	-0.975	74.902	22.128
41	CA	8	-3.150	76.066	20.139
42	C	8	-4.496 -5.484	76.535 75.538	19.959
43	O	8	-5.163	74.343	20.596
44	СВ	8	-4.801	76.684	20.680 18.479
	L	<u> </u>	1 3.00	70.004	10.4/9

Table 14 continued

Atom Number	Atom type	Position in peptide	x	У	z
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	N CA C O CB N CC O CB N CC O CB C O CB	9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12	-6.612 -7.652 -8.169 -8.200 -8.795 -8.513 -9.059 -10.544 -11.281 -8.931 -10.894 -12.254 -13.135 -13.091 -12.328 -13.856 -14.763 0.000 18.754 0.000	72.355 72.703 70.703 72.239	20.214 19.925 20.859 20.892 18.649 18.229 18.754 18.183 16.713 19.828 20.406 72.439

Table 15

Backbone 129								
Atom	Atom	Position	x	У	z			
Number	type	in peptide		1	2			
0	N	0	0.000	0.000	0.000			
1. 2 [.]	CA	0	18.495	86.291	22.091			
2	С	0	17.099	86.364	22.686			
3	0	0	16.668	87.449	23.137			
4	CB	0 1 1 1 2 2 2 2 2 3 3 3 3	0.000	0.000	0.000			
5	N	1	16.409	85.228	22.645			
6	CA	1	15.079	85.125	23.217			
7	С	1	14.331	83.972	22.570			
8	0	1	13.400	84.204	21.766			
9	CB .	1	14.313	86.412	22.964			
10	N	2	14.767	82.758	22.900			
11	CA	2	14.125	81.558	22.404			
12	C	2	12.611	81.805	22.245			
13	O	2	11.911	81.927	23.261			
14	CB	2	14.358	80.407	23.367			
15 16	N	3	12.194	81.901	20.988			
16 17	CA	3	10.803	82.082	20.676			
	C	3	10.173	80.727	20.297			
18 19	O . CB	3	10.650	80.085	19.349			
20	N	4	10.652	83.058	19.522			
21	CA		9.165	80.348	21.074			
22	C	4 4	8.445	79.131	20.819			
23	Ö	4	7.047	79.462	20.257			
24	СВ		6.608	80.615	20.376			
25	N	-	8.305	78.330	22.102			
26	CA	4 5 5 5 5 5 6	6.442	78.450	19.647			
27	C	5	5.114	78.588	19.113			
28	Õ	. 5	4.079	78.178	20.180			
29	СВ	5 5	4.373	77.289	20.993			
. 30	N	6	4.955	77.714	17.881			
31	CA	6	2.945	78.866	20.145			
32	C	6	1.864	78.568	21.044			
33	0	6	1.193	77.243	20.630			
34·	СВ	6 6	1.658	76.606	19.673			
35	N	7	0.841	79.690	21.018			
36	CA	, i	0.165	76.881	21.388			
37	C	7	-0.594	75.695	21.099			
38	O	7	-2.093	76.044	21.014			
39	CB	7	-2.691	76.384	22.046			
40	N	8	-0.369 -2.610	74.657	22.184			
41	CA	8	-4.006	75.977 76.226	19.793			
42	С	7 7 7 7 8 8 8 8 9 9	-4.854	75.414	19.560			
43	0	8	-4.305	74.533	20.559			
44	СВ	8	-4.305	75.835	21.237			
45	N	9	-6.130	75.774	18.139			
46	CA	· 9	-7.058	75.774	20.624			
47	С	9	-8.093	74.330	21.473 20.610			

- 40 -

Table 15 continued

	Atom Number	Atom type	Position in peptide	х у	Z
5	48 49 50 51 52	O CB N CA C	9 9 10 10	-8.797 74.974 -7.768 76.066 -8.107 73.013 -9.049 72.181 -10.358 72.962	22.384 20.781 20.083
:	53 54 55 56	O CB N CA	10 10 11 11	-10.355 73.921 -9.337 70.929 -11.409 72.493 -12.689 73.142	19.062 20.893 20.510 20.432
10	57 58 59 60 61 62 63	C O B N C C O	11 11 12 12 12 12	-13.742 72.155 -13.537 71.595 -12.603 74.353 -14.788 71.968 -15.877 71.114 0.000 -12.689 18.488 0.000	18.802 19.519 20.684 20.295 73.142
15	64	СВ	12	0.000 0.000	0.000

Table 16

Backbone 13	4			<u> </u>	
Atom	Atom	Position	x	У	z
Number	type	in peptide		4	2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 19 20 21 22 32 42 5 26 27 28 29 30 31 32 33 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	NA COBNA COB	00000111112222233333344444555556666677777888888999	0.000 18.230 16.891 16.627 0.000 16.061 14.059 12.980 13.913 14.693 14.125 12.594 11.893 14.160 10.545 12.756 10.144 10.693 10.545 10.545 10.545 10.546 10.693 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.604 10.606 10.6	0.000 86.341 0.000 86.341 0.000 85.271 85.2978 84.0958 84.438 81.588 81.	0.000 21.629 22.345 23.139 0.000 22.027 22.662 22.127 21.505 22.357 22.345 21.938 21.812 22.828 22.959 20.587 20.300 20.176 19.439 19.005 20.925 20.882 20.159 20.036 22.292 19.690 19.035 20.991 17.954 19.876 20.991 17.954 19.876 20.991 17.954 19.876 20.991 17.954 19.876 20.486 21.254 21.080 21.037 22.223 19.635 20.653 21.198 18.223 20.882 21.769

WO 98/59244

- 42 -

Table 16 continued

	Atom Number	Atom type	Position in peptide	x	У	z
5	47 48 49 50 51 52 53 54 55 56	C O CB N CC O CB N CA C	9 9 9 10 10 10 10 10 11 11	-8.036 -8.773 -7.698 -8.021 -8.966 -10.293 -10.367 -9.213 -11.275 -12.558 -13.561	74.312 74.928 76.089 72.999 72.137 72.891 73.727 70.899 72.533 73.179 72.288	20.948 20.163 22.679 21.144 20.488 20.269 19.356 21.332 21.087 21.038 20.278
15	58 59 60 61 62 63 64	O CB N CA C O CB	11 12 12 12 12 12	-13.243 -12.437 -14.696 -15.750 0.000 18.616 0.000	71.836 74.524 72.054 71.281 -12.558 0.000 0.000	19.167 20.343 20.925 20.326 73.179 -12.558 0.000

Table 17

Backbone 141								
Atom	Atom	Position	x	У	z			
Number	type	in peptide		_				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	N A C C O C N A C	00000111112222233333344445555566666777777888889999	0.000 18.454 16.950 16.481 0.000 16.227 14.776 14.252 13.601 14.299 14.573 14.106 12.572 11.868 14.499 12.141 10.736 10.224 11.035 10.489 8.338 6.108 8.338 6.147 4.999 2.972 1.943 1.0265 1.130 0.938 -2.338 -2.577 -0.938 -2.5149 -7.625	0.000 86.485 86.573 87.220 85.918 84.752 87.132 83.5241 82.2473 83.5241 82.2473 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.483 82.493 79.285 77.285 78.430 78.437 76.693 77.285 77.285 77.285 77.697 76.693 77.697 77.697 77.697 77.697 77.797	0.000 22.460 22.266 21.305 0.000 23.151 23.128 22.452 21.387 22.349 23.055 22.559 22.400 23.398 23.523 21.156 20.855 20.855 20.855 20.868 20.405 20.888 20.405 20.888 20.405 20.888 21.054 17.911 20.055 21.033 20.156 17.911 20.055 21.033 20.156 21.054 17.911 20.055 21.053 20.156 21.054 21.054 21.055 21.053 20.156 21.055 21.053 20.156 21.050 21.0641 20.985 21.0729 18.520 21.0729 18.520 21.0729 18.520 21.0729 18.520 21.0729 18.520 21.0729			

- 44 -

Table 17 continued

Atom Number	Atom type	Position in peptide	×	У	z
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	O CB N CA C O CB N CA C O CB N CA C O CB	9 10 10 10 10 11 11 11 11 11 11 12 12 12 12	-6.531 -9.013 -8.822 -8.965 -10.460 -11.065 -8.334 -10.983 -12.353 -12.732 -12.400 -12.548 -13.373 -13.836 0.000 18.541 0.000	73.205 75.766 73.200 71.925 71.616 70.945 70.836 72.148 71.910 70.452 69.551 72.168 70.294 69.000 -12.353 0.000 0.000	20.765 21.470 20.803 20.155 19.939 20.788 21.005 18.840 18.476 18.805 18.020 16.992 19.958 20.380 71.910 -12.353 0.000

- 45 -

Table 18

Backbone 144								
Atom	Atom	Position	x	У	z			
Number	type	in peptide		4	2			
Number 0 1 2 3 4 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	та совиссовий совий сови	in peptide 0000011111222223333334444455555666667777778888888888888888888	0.000 18.480 16.967 16.431 0.000 16.308 14.262 13.512 14.630 14.565 11.968 14.581 12.006 10.578 10.094 10.578 10.094 10.177 8.846 8.236 6.338 8.027 6.422 5.148 4.052 4.068 5.198 4.052 4.068 5.198 5.198 6.3184 6.318	0.000 86.428 86.551 0.7259 85.7553 84.919 87.091 82.2417 82.287 82.280.981 82.280.981 82.280.981 82.280.981 82.380.435 79.288 79.335 77.645 77	0.000 22.392 22.343 21.553 0.000 23.153 23.256 22.416 21.454 22.745 22.767 22.092 23.158 22.767 22.092 23.158 22.767 20.273 19.479 21.020 20.273 19.479 21.020 20.292 20.167 22.424 19.822 19.162 20.190 20.737 18.081 20.765 19.423 21.319 20.765 19.676 21.481 21.553 21.152 21.512 22.174 20.357 20.198 20.198 20.198 20.737			

Table 18 continued

Atom Number	Atom type	Position in peptide	x	У	Z
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	N A C O C N A C C O C N A C C O C B	9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12	-6.623 -7.669 -8.201 -8.407 -8.801 -8.360 -8.894 -10.383 -11.124 -8.745 -10.734 -12.097 -12.907 -12.859 -12.150 -13.575 -14.414 0.000 18.465 0.000	76.144 75.348 74.731 76.243 73.106 72.067 72.344 72.681 70.719 72.224 72.403 71.126 70.178 72.700 71.155 70.059 -12.097 0.000 0.000	72.403

Example 4

The following method was used to identify high affinity binding peptides from Myelin Basic Protein (MBP). The binding affinities for a set of MBP peptides to HLA-DRB1*0401 have been experimentally determined and published. This set includes all possible 13 amino acid peptides from the MBP sequence which have a hydrophobic anchor residue at the P3 position. It is known that only such peptides bind to HLA-DR molecules with detectable affinity.

The same homology model of HLA-DRB1*0401 was used for this example as was used in Examples 1 and 2.

- 15 For each of the 13-mer peptides from the experimental determined set, a binding score was calculated as follows:
- a) Calculate the steric overlap between the pocket bound peptide residue in the binding groove and an atom forming the
 20 pocket; this is value B.
 - b) Count the number of hydrogen bonds which could be formed between the pocket bound peptide residue and atoms forming the pocket; this is value C.
- 25
- c) Calculate the strength of electrostatic interactions between any polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.
- 30 d) Count the number of favourable contacts between the pocket bound peptide residue and atoms forming the pocket; this is value E.
- e) These values were then transformed into a conformation 35 score (Z) by using the following equation:

 $Z_n = cK_2C - cK_3D + cK_4E - cK_1B$

Where K_1 to K_4 are constants and n is the sequence position of the peptide residue (numbered from 1 to the N-terminus to 13 at the C-terminus). K_1 , K_2 , K_3 and K_4 are equal to 100, 1500, 500 and 1000, respectively.

5

The conformation of each rotatable side-chain of the peptide residue was then altered by 15 degrees and the conformation score was recalculated.

10 The above steps were repeated for each residue of the peptide and the highest conformation score for each peptide residue was sued to determine the conformation score for the peptide.

At the point, the entire proceedings for establishing the conformation score for the peptide were repeated another 166 times, each time using a different peptide backbone form the library of peptide backbones.

The combination of peptide backbone and peptide side-chain 20 conformations which gave the best conformation was then used to determine a binding score for the peptide.

The binding score was determined by establishing values of the following parameters:

25

- a) Calculate the steric overlap between the pocket bound peptide residue in the binding groove and an atom forming the pocket; this is value B.
- 30 b) Count the number of hydrogen bonds which could be formed between the pocket bound peptide residue and atoms forming the pocket; this is value C.
- c) Calculate the strength of electrostatic interactions
 35 between any polar atoms of the pocket bound peptide residue
 and any polar atoms forming the pocket; this is value D.

- d) Count the number of favourable contacts between the pocket bound peptide residue and atoms forming the pocket; this is value E.
- e) Calculate the hydrophobicity of the pocket bound peptide side chains using a hydrophobicity scale disclosed in Janin et al.
- f) Calculate the number of MHC pocket residues which are paired with the pocket bound peptide residues. Pairing takes place if the centre of an atom from the MHC pocket residue and the centre of an atom from the pocket bound peptide residues are no more than the sum of their van der wall radii plus one Angstrom. The value An is calculated by summing the number of paired residues, where n is the number of the pocket. The values of An taking into account the pockets importance in binding are summed to give a value P.

The above values were then imported in to the following 20 equation in order to determine the binding score (Y):

$Y=P+bK_2C-bK_3D+bK_4E-bK_1B+bK_5He$

Wherein the values bK_1 , bK_2 , bK_3 , bK_4 and bK_5 are 2, 40, 600, 25 10 and 200 respectively.

As can be seen from the results in Table 19 the top four predicted scores pertain to four peptides which appear within the top five best binders.

Table 19

BB	PEPTIDE A	FFINITY	BINDING	D	E	F	В	P	Но
			SCORE						
104	HFFKNIVTPRTPP	40	4729	-0.12	11	17	97.7	3580	1.5
107	VHFFKNIVTPRTP	135	2125	-0.19	12	15	284.5	2255	0.2
104	PVVHFFKNIVTPR	161	4528	-0.06	15	12	337.6	4565	1.4
104	FSWGAEGQRPGFG	298	5205	-0.15	12	10	169.7	4670	-0.2
104	KGFKGVDAQGTLS	460	4353	-0.09	9	13	66.2	3145	1.9
112	KYLATASTMDHAR	479	2672	-0.09	13	15	106.8	1480	2.4
129	SKYLATASTMDHA	601	498	-0.08	11	13	275.7	620	0.4
141	RGLSLSRF8WGAE	1213	4140	-0.05	17	16	81.4	3455	1.7
62	TGILDSIGRFFGG	2942	337	0.04	21	17	25.3	-5	-0.6
0	RFFGGDRGAPKRG	3403	3218	-0.24	20	14	369.1	3100	1.6
104	NIVTPRTPPPSQG	6615	1971	0	10	11	305	2090	0.8
14	DSIGRFFGGDRGA	7268	1904	-0.08	8	15	37.3	1640	0.2
0	SRFSWGAEGQRPG	8352	1735	-0.08	20	13	466.8	1965	0.8
104	SKIFKLGGRDSRS	8494	1387	-0.1	10	10	149.2	825	. 2.8
118	SDYKSAHKGFKGV	8510	1864	-0.27	14	14	14.2	775.	0.7
65	STMDHARHGFLPR	8860	1886	-0.21	14	15	191.3	1410	2.2
104	NPVVHFFKNIVTP	12870	1347	-0.11	12	10	332.5	1690	0.2
104	GTLSKIFKLGGRD	16000	4152	-0.11	17	10	118	3775	1.1
93	GRFFGGDRGAPKR	18467	244	-0.11	8	9	161	-175	2.3
75	KIFKLGGRDSRSG	25358	2185	-0.13	19	12	279.4	2060	1.4
0	FGYGGRASDYKSA	25397	1301	-0.12	15	15	306.1	1530	-0.4
0	PGFGYGGRASDYK	35200	3485	0.01	14	13	183.5	3165	1.4
144	GILDSIGRFFGGD	44400	2031	-0.09	21	14	32.1	1745	-0.5
134	KNIVTPRTPPPSQ	59000	1077	-0.04	9	10	45.9	340	3.1
0	KGVDAQGTLSKIF	100000	2067	-0.11	24	15	695.2	2795	0.3

KEY - BB = NUMBER OF THE BACKBONE CHOSEN FROM THE LIBRARY

CLAIMS

20

- A method for the prediction of the binding affinity of a peptide to a major histocompatibility (MHC) class II
 molecules comprising;
 - a) ascertaining the characteristics of a MHC molecule binding groove,
- b) presenting a selected peptide to the MHC molecule and ascertaining a first conformation score for each pocket bound
 peptide side-chain,
 - c) amending the conformation of each pocket bound peptide side-chain and ascertaining a second conformation score,
 - d) repeating step 3 with alternative conformations of each peptide pocket bound side-chain,
- e) choosing the highest conformation score for each pocket bound peptide side-chain in each binding groove pockets, herein known as 'the pocket', and
 - f) combining the highest conformation score for each pocket and ascertaining a binding score for the complete peptide.
 - 2. A method according to claim 1 which further comprises the step of compiling information on all peptide fragments in a protein and comparing the binding scores.
- 25 3. A method according to any preceding claim wherein the conformation score is ascertained by at least one of the following parameters:
- a) the number of favourable contacts between MHC residues forming one of the pockets and the pocket bound peptide
 30 residue; this is value E
 - b) the steric overlap between the pocket bound peptide residue bound in the pocket and an atom forming the pocket; this is value B,
- c) the number of hydrogen bonds which could be formed between 35 the pocket bound peptide residue and an atom forming the pocket; this is value C,
 - d) the strength of electrostatic interactions between any

polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.

- 4. A method according to claim 3 wherein the steric overlap
 5 between the pocket bound peptide residue and the atoms forming
 the pocket can not be greater than 0.35 Angstroms.
- A method according to claim 3 wherein a favourable contact occurs when an atom from an MHC residue and an atom
 from the peptide residue have their centres separated by no more than the sum of their radii plus 0.5 Angstroms and are not overlapping.
- 6. A method according to the preceding claims wherein values 15 B to E are imported into a first equation, to give a conformation score (Z)
- 7. A method according to claim 6 wherein the first equation is $Z_n=(cK_2C)-(cK_3D)+(cK_4E)-(cK_1B)$, where cK_i to cK_4 are 20 constants and n is the number of the pocket.
 - 8. A method according to claim 7 wherein cK_1 is between 50 and 150.
- 25 9. A method according to claim 7 wherein cK₂ is between 1000 and 2000.
 - 10. A method according to claim 7 wherein cK_3 is between 250 and 750.
 - 11. A method according to claim 7 wherein cK_4 is between 500 and 1500.

30

12. A method according to any preceding wherein the Z_n value 35 for a pocket is multiplied by a coefficient, L, depending on the pockets importance in binding, to give a second Z_n value.

- 13. A method according to any of the preceding claims wherein all the Z values are summed to give a value J.
- 14. A method according to any of the preceding claims wherein 5 the MHC residue is paired with the pocket-bound peptide residue if an atom from the MHC residue and an atom from the pocket-bound peptide residue have their centres separated by no more than the sum of their van der Waal radii plus one Angstrom.

10

- 15. A method according to claim 14 wherein a value A_n is calculated by summing the pairwise interaction frequencies of paired residues.
- 15 16. A method according to either claim 14 or 15 wherein the value A_n for a pocket is multiplied by a coefficient, X, depending on the pockets importance in binding.
- 17. A method according to claim 16 wherein the A_n value for 20 the pockets are summed to give a value P.
 - 18. A method according to any preceding claim wherein the binding score is ascertained by at least one of the following parameters
- 25 a) the number of groove-bound hydrophobic residues; this is value F,
 - b) the number of non groove-bound hydrophilic residues; this is value G,
- c) the number of peptide residues deemed to fit within their 30 respective binding pocket; this is value H.
 - 19. A method according to any one of claims 13 to 18 wherein values F, G, H, J and P are imported into a second equation to give a first binding score, Y.

35

20. A method according to claim 19 wherein the second algorithm is $Y=J*F^2*(G*H+1)+P$.

- 54 -

21. A method according to claim 1-17 wherein the hydrophobicity of the pocket bound peptide side chains is evaluated using a hydrophobicity scale; this is value He.

- 5 22. A method according to claim 21 wherein the hydrophobicity scale ranges from -1.8 for lysine to 0.9 for cysteine.
 - 23. A method according to either of claims 21 or 22 wherein $Y=(bK_2C)-(bK_3D)+(bK_4E)-(bK_1B)+(bK_5He)+P$.

. 10

- 24. A method according to claim 23 wherein bK_1 is between 1 and 5.
- 25. A method according to claim 23 wherein bK_2 is between 20 15 and 60.
 - 26. A method according to claim 23 wherein bK_3 is between 300 and 900.
- 20 27. A method according to claim 23 wherein bK_4 is between 1 and 20.
 - 28. A method according to claim 23 wherein bK_5 is between 1 and 800.

25

- 29. A method according to any preceding claim wherein the steps in claim 3 are repeated for each pocket and each conformation of the peptide residue in said pocket.
- 30 30. A method according to claim 29 wherein the conformation of the peptide is altered by rotating a side chain of the peptide residue by a pre-determined amount.
- 31. A method according to either claim 29 or 30 where in the 35 conformation of the peptide is altered by changing the conformation of the peptide backbone.

- 32. A method according to any preceding claim wherein the steps are repeated using different peptides from a protein.
- 33. A method according to any of the preceding claim wherein the binding scores (Y) for different peptides are tabulated and compared.
- 34. A method according to any of the preceding claim which is used in the manufacture of a vaccine derived from a peptide 10 identified by said method.
- 35. A method according to any of the preceding claims which is used to remove potentially immunogenic sequences from a protein and thus reduce said proteins immunogenicity when 15 administered to an organism.
- 36. A computer conditioned to receive information characterising a peptide bound to the MHC molecule and to utilise said information to perform a procedure having the 20 following steps;
 - a) ascertaining the characteristics of a MHC molecule binding groove;
- b) presenting a selected peptide, which is selected by a predetermined program, to the MHC molecule and ascertaining
 25 a first conformation score;
 - c) amending the conformation of the peptide, by way of a predetermined program, and ascertaining a second conformation score;
 - d) repeating step 3 with other conformations of the peptide;
- 30 e) selecting the peptide conformation with the highest conformation score; and
 - f) calculating the binding score from the conformation score.
- 37. A computer according to claim 36 further comprising a 35 step (7) which comprises repeating steps 1-4 with other peptide fragments in the protein to generate information on all peptide fragments in a protein

- 56 -

so that a comparison can be made of the strength of the binding between the peptide and the MHC molecule.

38. A computer according to either claim 36 or 37 further 5 comprising a step (8) which comprises altering the conformation of the backbone of the peptide fragment.

39. A pharmaceutical composition produced resultant upon to a method as claimed in anyone of claims 1 to 35.

10

15

20

25

SUBSTITUTE SHEET (RULE 26)

International Application No PCT/GB 98/01801

A CLASSI	FICATION OF SUBJECT MATTER	1	01001
IPC 6	FICATION OF SUBJECT MATTER G01N33/569 G01N33/564 G01N33/5	566 C07K14/705	
	•		
According to	o International Patent Classification (IPC) or to both national classification	ation and IPC	
	SEARCHED		
IPC 6	cumentation searched (classification system followed by classification $601N-C07K$	on symbols)	
	doin cork		
Documenta	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields sea	rched
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with Indication, where appropriate, of the rela		
Galogoly	onation of document, with indication, where appropriate, of the reli	evant passages	Relevant to claim No.
Α	WO 95 31483 A (ECLAGEN LTD)		
'	23 November 1995		1-35
	see page 2, line 23 - line 28		
	see page 5, line 5 - line 12		
X	, , , , , , , , , , , , , , , , , , , ,	į	39
X,P	WO 97 40852 A (ANERGEN INC)		39
	6 November 1997		
A,P	see claims 31,32	1	
Α,Ι			1-35
		-/	
		′	
		į	
			,
	·		
X Furti	ner documents are listed in the continuation of box C.	χ Patent family members are listed in	annex.
° Special ca	tegories of cited documents :		
"A" docume	ent defining the general state of the art which is not	"T" later document published after the inter or priority date and not in conflict with	the application but
consid	ered to be of particular relevance	cited to understand the principle or the invention	ory underlying the
Illing a		"X" document of particular relevance; the c	aimed invention
"L" docume which	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the doc	zument is taken alone
citation	or other special reason (as specified)	"Y" document of particular relevance; the cl cannot be considered to involve an inv	almed invention
other r		document is combined with one or mo ments, such combination being obvious	re other such docu-
"P" docume	ont published prior to the international filing date but an the priority date claimed	in the art.	·
	actual completion of theinternational search	"&" document member of the same patent t	
20.000		Date of mailing of the international sear	ch report
2:	2 October 1998	05/11/1998	
Name and a	nailing address of the ISA		·
· turne and fi	European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo ni,		
	Fax: (+31-70) 340-3016	Van Bohemen, C	

International Application No PCT/GB 98/01801

		PCT/GB 98	98/01801		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category ·	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.		
Γ	T.E. JOHANSEN ET AL.: "Peptide binding to MHC class I is determined by individual pockets in the binding groove." SCANDINAVIAN JOURNAL OF IMMUNOLOGY, vol. 46, no. 2, 1 August 1997, pages 137-146, XP002081826 oxford uk see the whole document		1-35,39		
	·				
	• *				
	-				

International application No.

PCT/GB 98/01801

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 36-38 because they relate to subject matter not required to be searched by this Authority. namely: Rule 39.1(i) PCT - Mathematical method
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box il Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Information on patent family members

International Application No
PCT/GB 98/01801

Patent document cited in search report	t	Publication date		Patent family member(s)	Publication date
WO 9531483	Α	23-11-1995	AU CA EP JP	2452195 A 2190101 A 0759944 A 10500670 T	05-12-1995 23-11-1995 05-03-1997 20-01-1998
WO 9740852	Α	06-11-1997	AU	2421397 A	19-11-1997

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL AT LICATION TODAIS		JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/53038
C12N 9/00	A2	(43) International Publication Date: 21 October 1999 (21.10.99)
 (21) International Application Number: PCT/USS (22) International Filing Date: 14 April 1999 (1996) (30) Priority Data: 09/060,872 15 April 1998 (15.04.98) (71) Applicant: GENENCOR INTERNATIONAL, INC. 4 Cambridge Place, 1870 South Winton Road, R NY 14618 (US). (72) Inventors: ESTELL, David, A.; 248 Woodbridge Cin Mateo, CA 94403 (US). HARDING, Fiona, A.; 77 Street, Santa Clara, CA 95050 (US). (74) Agent: STONE, Christopher, L.; Genencor Internation 925 Page Mill Road, Palo Alto, CA 94304–1013 (1996) 	US/US/Cochestercle, Sarcle, Sa	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.
(54) Title: MUTANT PROTEINS HAVING LOWER ALING, IDENTIFYING AND PRODUCING SUC		ENIC RESPONSE IN HUMANS AND METHODS FOR CONSTRUCT- OTEINS
(57) Abstract		
The present invention relates to a novel improved pro		utant which produces low allergenic response in humans compared to the s neutralizing or reducing the ability of T-cells to recognize epitopes and

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/53038 PCT/US99/08253

MUTANT PROTEINS HAVING LOWER ALLERGENIC RESPONSE IN HUMANS AND METHODS FOR CONSTRUCTING, IDENTIFYING AND PRODUCING SUCH PROTEINS

BACKGROUND OF THE INVENTION

A. Field of the Invention

5

10

15

20

25

30

35

The present invention relates to proteins which produce lower allergenic response in humans exposed to such proteins, and an assay predictive of such response. More specifically, the present invention relates to a novel improved protein mutant which produces very low allergenic response in humans sensitized to that protein through exposure compared to the precursor of such protein mutant.

B. State of the Art

Proteins used in industrial, pharmaceutical and commercial applications are of increasing prevalence. As a result, the increased exposure due to this prevalence has been responsible for some safety hazards caused by the sensitization of certain persons to those peptides, whereupon subsequent exposure causes extreme allergic reactions which can be injurious and even fatal. For example, proteases are known to cause dangerous hypersensitivity in some individuals. As a result, despite the usefulness of proteases in industry, e.g., in laundry detergents, cosmetics, textile treatment etc...., and the extensive research performed in the field to provide improved proteases which have, for example, more effective stain removal under detergency conditions, the use of proteases in industry has been problematic due to their ability to produce a hypersensitive allergenic response in some humans.

Much work has been done to alleviate these problems. Among the strategies explored to reduce immunogenic potential of protease use have been improved production processes which reduce potential contact by controlling and minimizing workplace concentrations of dust particles or aerosol carrying airborne protease, improved granulation processes which reduce the amount of dust or aerosol actually produced from the protease product, and improved recovery processes to reduce the level of potentially allergenic contaminants in the final product. However, efforts to reduce the allergenicity of protease, per se, have been relatively unsuccessful. Alternatively, efforts have been made to mask epitopes in protease which are recognized by immunoglobulin E (IgE) in hypersensitive individuals (PCT Publication No. WO 92/10755) or to enlarge or change the nature of the antigenic determinants by attaching polymers or peptides/proteins to the problematic protease.

When an adaptive immune response occurs in an exaggerated or inappropriate form, the individual experiencing the reaction is said to be hypersensitive. Hypersensitivity reactions are the result of normally beneficial immune responses acting inappropriately and sometimes cause inflammatory reactions and tissue damage. They can be provoked by many antigens; and the cause of a hypersensitivity reaction will vary from one individual to the next. Hypersensitivity does not normally manifest itself upon first contact with the antigen, but usually appears upon subsequent contact. One form of hypersensitivity occurs when an IgE response is directed against innocuous environmental antigens, such as pollen, dust-mites or animal dander. The resulting release of pharmacological mediators by IgE-sensitized mast cells produces an acute inflammatory reaction with symptoms such as asthma or rhinitis.

5

10

15

20

25

30

35

Nonetheless, a strategy comprising modifying the IgE sites will not generally be successful in preventing the cause of the initial sensitization reaction. Accordingly, such strategies, while perhaps neutralizing or reducing the severity of the subsequent hypersensitivity reaction, will not reduce the number or persons actually sensitized. For example, when a person is known to be hypersensitive to a certain antigen, the general, and only safe, manner of dealing with such a situation is to isolate the hypersensitive person from the antigen as completely as possible. Indeed, any other course of action would be dangerous to the health of the hypersensitive individual. Thus, while reducing the danger of a specific protein for a hypersensitive individual is important, for industrial purposes it would be far more valuable to render a protein incapable of initiating the hypersensitivity reaction in the first place.

T-lymphocytes (T-cells) are key players in the induction and regulation of immune responses and in the execution of immunological effector functions. Specific immunity against infectious agents and tumors is known to be dependent on these cells and they are believed to contribute to the healing of injuries. On the other hand, failure to control these responses can lead to auto aggression. In general, antigen is presented to T-cells in the form of antigen presenting cells which, through a variety of cell surface mechanisms, capture and display antigen or partial antigen in a manner suitable for antigen recognition by the T-cell. Upon recognition of a specific epitope by the receptors on the surface of the T-cells (T-cell receptors), the T-cells begin a series of complex interactions, including proliferation, which result in the production of antibody by B-cells. While T-cells and B-cells are both activated by antigenic epitopes which exist on a given protein or peptide, the actual epitopes recognized by these mononuclear cells are generally not identical. In fact, the epitope which activates a T-cell to initiate the creation

5

of immunologic diversity is quite often not the same epitope which is later recognized by B-cells in the course of the immunologic response. Thus, with respect to hypersensitivity,

PCT/US99/08253

while the specific antigenic interaction between the T-cell and the antigen is a critical element in the initiation of the immune response to antigenic exposure, the specifics of that interaction, i.e., the epitope recognized, is often not relevant to subsequent development of a full blown allergic reaction.

PCT Publication No. WO 96/40791 discloses a process for producing polyalkylene oxide-polypeptide conjugates with reduced allergenicity using polyalkylene oxide as a starting material.

-3-

WO 99/53038

reaction has been initiated, sensitization has already occurred. Accordingly, there is a need for a method of determining epitopes which cause sensitization in the first place, as neutralization of these epitopes will result in significantly less possibility for sensitization to occur, thus reducing the possibility of initial sensitization.

-4-

5

10

15

20

SUMMARY OF THE INVENTION

It is an object of the invention to provide a protein having decreased potential to cause allergenic response in humans compared to a precursor protein.

It is a further object of the present invention to provide for a protease variant which has useful activity in common protease applications, such as detergents and or the treatment of wool to prevent felting, in bar or liquid soap applications, dish-care formulations, contact lens cleaning solutions or products, peptide hydrolysis, waste treatment, textile applications such as anti-felting, in cosmetic formulations and for skin care, or as fusion-cleavage enzymes in protein production, which protease variant can be more safely used due to its lowered allergenic potential.

According to the present invention, a method for identifying T-cell epitopes within a protein is provided. The present invention provides an assay which identifies epitopes as follows: antigen presenting cells are combined with naïve human T-cells and with a peptide of interest. In a preferred embodiment of the invention, a method is provided wherein a T-cell epitope is recognized comprising the steps of: (a) obtaining from a single blood source a solution of dendritic cells and a solution of naïve CD4+ and/or CD8+ T-cells; (b) promoting differentiation in said solution of dendritic cells; (c) combining said solution of differentiated dendritic cells and said naïve CD4+ and/or CD8+ T-cells with a peptide of interest; (d) measuring the proliferation of T-cells in said step (c).

25

30

35

According to another embodiment of the present invention, a protein is provided in which a T-cell epitope is modified so as to reduce or preferably neutralize (eliminate) the ability of the T-cell to identify that epitope. Thus, a protein is provided having reduced allergenicity, wherein said protein comprises a modification comprising the substitution or deletion of amino acid residues which are identified as within a T-cell epitope. According to a preferred embodiment, an epitope is determined in a protein or peptide which, when recognized by a T-cell, results in the proliferation of T-cells which is greater than the baseline. That T-cell epitope is then modified so that, when the peptide comprising the epitope is analyzed in the assay of the invention, it results in lesser proliferation than the protein comprising the unmodified epitope. More preferably, the epitope to be modified produces greater than three times the baseline T-cell proliferation in a sample. When

5

10

15

20

25

30

modified, the epitope produces less than three times the baseline T-cell proliferation, preferably less than two times the baseline T-cell proliferation and most preferably less than or substantially equal to the baseline T-cell proliferation in a sample.

Preferably, the epitope is modified in one of the following ways: (a) the amino acid sequence of the epitope is substituted with an analogous sequence from a human homolog to the protein of interest, i.e., human subtilisin or another human protease derived subtilisin like molecule such as furin or the kexins (see e.g., *Methods in Enzymology*, Vol. 244., (1994) pp. 175 et seq; Roebroek et al., *EMBO J.*, Vol. 5, No. 9, pp. 2197-2202 (1986); Tomkinson et al., *Biochem.*, Vol. 30, pp. 168-174 (1991); Keifer et al., *DNA and Cell Biol.*, Vol. 10, No. 10, pp. 757-769 (1991)); (b) the amino acid sequence of the epitope is substituted with an analogous sequence from a non-human homolog to the protein of interest, which analogous sequence produces a lesser allergenic response due to T-cell recognition than that of the protein of interest; (c) the amino acid sequence of the epitope is substituted with a sequence which substantially mimics the major tertiary structure attributes of the epitope, but which produces a lesser allergenic response due to T-cell recognition than that of the protein of interest; or (d) with any sequence which produces lesser allergenic response due to T-cell recognition than that of the protein of interest; or (d) with any sequence which produces lesser allergenic response due to T-cell recognition than that of the protein of interest.

In a specific embodiment of the invention, a protease variant is provided comprising at least one amino acid substitution at a position corresponding to residues 170, 171, 172 and/or 173 in BPN', wherein such substitutions comprise modifying residue 170 to aspartic acid, modifying residue 171 to glutamine, modifying residue 172 to methionine and/or modifying residue 173 to aspartic acid. In a most preferred embodiment, the substitution comprises modifying residues 170, 171 and 173 to aspartic acid, glutamine and aspartic acid, respectively.

In another embodiment of the present invention, a method for producing the protein of the invention having reduced allergenicity is provided. Preferably, the mutant protein is prepared by modifying a DNA encoding a precursor protein so that the modified DNA encodes the mutant protein of the invention.

In yet another embodiment of the invention, DNA sequences encoding the mutant protein, as well as expression vectors containing such DNA sequences and host cells transformed with such vectors are provided, which host cells are preferably capable of expressing such DNA to produce the mutant protein of the invention either intracellularly or extracellularly.

5

10

15

20

25

30

The mutant protein of the invention is useful in any composition or process in which the precursor protein is generally known to be useful. For example, where the protein is a protease, the reduced allergenicity protease can be used as a component in cleaning products such as laundry detergents and hard surface cleansers, as an aid in the preparation of leather, in the treatment of textiles such as wool and/or silk to reduce felting, as a component in a personal care, cosmetic or face cream product, and as a component in animal or pet feed to improve the nutritional value of the feed. Similarly, where the protein is an amylase, the reduce allergenicity amylase can be used for the liquefaction of starch, as a component in a dishwashing detergent, for desizing of textiles, in a laundry detergent or any other use for which amylase is useful.

One advantage of the present invention is that by measuring the proliferation of T-cells due to T-cell epitope recognition, it is possible to identify peptides which contain epitopes responsible for initially sensitizing an individual. That is, T-cell proliferation due to T-cell epitope recognition results in sensitization of an individual to that peptide or a protein which contains it. Neutralization of such "sensitizing" T-cell epitopes will inevitably result in a greater degree of safety for those who handle or are otherwise exposed to the antigen containing the epitope because they will not be initially sensitized, thus preventing the production of Ig antibodies typical of an allergic reaction upon subsequent exposure to the antigen.

An advantage of the present invention is the preparation of proteins, including enzymes, which may be used with significantly less danger of sensitization for the individuals exposed. Thus, for example, the proteins of the invention may be more safely used in cosmetics such as face creams, detergents such as laundry detergents, hard surface cleaning compositions and pre-wash compositions or any other use of protein, including enzymes, wherein human exposure is a necessary by-product.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1 A, B1, B2 and B3 illustrate the DNA (SEQ ID:NO 1) and amino acid (SEQ ID: NO 2) sequence for *Bacillus amyloliquefaciens* subtilisin (BPN') and a partial restriction map of this gene.

Fig. 2 illustrates the conserved amino acid residues among subtilisins from *Bacillus* amyloliquefaciens (SEQ ID:NO 3) and *Bacillus lentus* (wild-type) (SEQ ID:NO 4).

Figs. 3A and 3B illustrate an amino acid sequence alignment of subtilisin type proteases from *Bacillus amyloliquefaciens* (BPN'), *Bacillus subtilis*, *Bacillus licheniformis*

10

15

20

25

30

(SEQ ID:NO 5) and *Bacillus lentus*. The symbol * denotes the absence of specific amino acid residues as compared to subtilisin BPN'.

Fig. 4 illustrates the additive T-cell response of 16 peripheral mononuclear blood samples to peptides corresponding to the *Bacillus lentus* protease. Peptide E05 includes the region comprising residues corresponding to 170-173 in protease from *Bacillus amyloliquefaciens*.

Fig. 5 illustrates the additive T-cell response of 10 peripheral mononuclear blood samples to peptides corresponding to the human subtilisin molecule. Peptides F10, F9, F8 and F7 all contain the amino acid sequence DQMD corresponding to the region comprising residues corresponding to 170-173 in protease from *Bacillus amyloliquefaciens* in the sequence alignment of Fig. 3.

Fig. 6A and 6B/6C illustrate amino acid strings corresponding to peptides derived from the sequence of *Bacillus lentus* protease and a human subtilisin, respectively.

Fig. 7 illustrates the amino acid sequence of human subtilisin (SEQ ID:NO 6).

Fig. 8 illustrates an amino acid sequence alignment of BPN' (*Bacillus amyloliquefaciens*) protease, SAVINASE (*Bacillus lentus*) protease and human subtilisin (S2HSBT).

Fig. 9 illustrates the T-cell response to peptides derived from *Bacillus lentus* protease in a sample taken from an individual known to be hypersensitive to *Bacillus lentus* protease. Peptide E05 represents the region corresponding to 170-173 in protease from *Bacillus amyloliquefaciens*.

Fig. 10 illustrates the T-cell response to various alanine substitutions in the E05 Bacillus lentus protease peptide set in a sample taken from an individual known to be hypersensitive to Bacillus lentus protease.

DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, a method for identifying T-cell epitopes is provided. The present invention provides an assay which identifies epitopes as follows: differentiated dendritic cells are combined with naïve human CD4+ and/or CD8+ T-cells and with a peptide of interest. More specifically, a method is provided wherein a T-cell epitope is recognized comprising the steps of: (a) obtaining from a single blood source a solution of dendritic cells and a solution of naïve CD4+ and/or CD8+ T-cells; (b) promoting differentiation in said solution of dendritic cells; (c) combining said solution of differentiated

10

15

20

25

30

35

-8-

dendritic cells and said naïve CD4+ and/or CD8+ T-cells with a peptide of interest; (d) measuring the proliferation of T-cells in said step (c).

The peptide of interest to be analyzed according to the assay of the invention is derived from a protein or enzyme for which reduced allergenicity is desirable or required. In the practice of the invention, it is possible to identify with precision the location of an epitope which can cause sensitization in an individual or sampling of individuals. In a particularly effective embodiment of the invention, a series of peptide oligomers which correspond to all or part of the protein or enzyme are prepared. For example, a peptide library is produced covering the relevant portion or all of the protein. One particularly useful manner of producing the peptides is to introduce overlap into the peptide library, for example, producing a first peptide corresponds to amino acid sequence 1-10 of the subject protein, a second peptide corresponds to amino acid sequence 4-14 of the subject protein, a third peptide corresponds to amino acid sequence 7-17 of the subject protein, a fourth peptide corresponds to amino acid sequence 10-20 of the subject protein etc....until representative peptides corresponding to the entire molecule are created. By analyzing each of the peptides individually in the assay provided herein, it is possible to precisely identify the location of epitopes recognized by T-cells. In the example above, the reaction of one specific peptide to a greater extent than it's neighbors will facilitate identification of the epitope anchor region to within three amino acids. After determining the location of these epitopes, it is possible to alter the amino acids within each epitope until the peptide produces a less significant T-cell response.

"Antigen presenting cell" as used herein means a cell of the immune system which present antigen on their surface which is recognizable by receptors on the surface of T-cells. Examples of antigen presenting cells are dendritic cells, interdigitating cells, activated B-cells and macrophages.

"T-cell proliferation" as used herein means the number of T-cells produced during the incubation of T-cells with the antigen presenting cells, with or without antigen.

"Baseline T-cell proliferation" as used herein means T-cell proliferation which is normally seen in an individual in response to exposure to antigen presenting cells in the absence of peptide or protein antigen. For the purposes herein, the baseline T-cell proliferation level was determined on a per sample basis for each individual as the proliferation of T-cells in response to antigen presenting cells in the absence of antigen.

"T-cell epitope" means a feature of a peptide or protein which is recognized by a T-cell receptor in the initiation of an immunologic response to the peptide comprising that antigen. Recognition of a T-cell epitope by a T-cell is generally believed to be via a

10

15

20

25

30

mechanism wherein T-cells recognize peptide fragments of antigens which are bound to class I or class II major histocompatability (MHC) molecules expressed on antigen-presenting cells (see e.g., Moeller, G. ed., Antigenic Requirements for Activation of MHC-Restricted Responses, *Immunological Review*, Vol. 98, p. 187 (Copenhagen; Munksgaard) (1987).

The epitopes determined according to the assay provided herein are then modified to reduce the allergenic potential of the protein of interest. In a preferred embodiment, the epitope to be modified produces a level of T-cell proliferation of greater than three times the baseline T-cell proliferation in a sample. When modified, the epitope produces less than three times the baseline proliferation, preferably less than two times the baseline proliferation and most preferably less than or substantially equal to the baseline proliferation in a sample.

Preferably, the epitope is modified in one of the following ways: (a) the amino acid sequence of the epitope is substituted with an analogous sequence from a human homolog to the protein of interest; (b) the amino acid sequence of the epitope is substituted with an analogous sequence from a non-human homolog to the protein of interest, which analogous sequence produces a lesser allergenic response due to T-cell epitope recognition than that of the protein of interest; (c) the amino acid sequence of the epitope is substituted with a sequence which substantially mimics the major tertiary structure attributes of the epitope, but which produces a lesser allergenic response due to T-cell epitope recognition than that of the protein of interest; or (d) with any sequence which produces lesser allergenic response due to T-cell epitope recognition than that of the protein of interest.

"Sample" as used herein comprises mononuclear cells which are naïve, i.e., not sensitized, to the antigen in question.

"Homolog" as used herein means a protein or enzyme which has similar catalytic action, structure and/or use as the protein of interest. It is desirable to find a homolog that has a tertiary and/or primary structure similar to the protein of interest as replacement of the epitope in the protein of interest with an analogous segment from the homolog will reduce the disruptiveness of the change. Thus, closely homologous enzymes will provide the most desirable source of epitope substitutions. Alternatively, if possible, it is advantageous to look to human analogs for a given protein. For example, substituting a specific epitope in a bacterial subtilisin with a sequence from a human analog to subtilisin (i.e., human subtilisin) should result in less allergenicity in the bacterial protein.

PCT/US99/08253

5

10

15

20

25

30

35

An "analogous" sequence may be determined by ensuring that the replacement amino acids show a similar function, the tertiary structure and/or conserved residues to the amino acids in the protein of interest at or near the epitope. Thus, where the epitope region contains, for example, an alpha-helix or a beta-sheet structure, the replacement amino acids should maintain that specific structure.

While the present invention extends to all proteins for which it is desired to reduce allergenicity, for the sake of simplicity, the following will describe a particularly preferred embodiment of the invention, the modification of protease. Proteases are carbonyl hydrolases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "protease" means a naturally-occurring protease or a recombinant protease. Naturally-occurring proteases include α -aminoacylpeptide hydrolase, peptidylamino acid hydrolase, acylamino hydrolase, serine carboxypeptidase, metallocarboxypeptidase, thiol proteinase, carboxylproteinase and metalloproteinase. Serine, metallo, thiol and acid proteases are included, as well as endo and exo-proteases.

Subtilisins are bacterial or fungal proteases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "subtilisin" means a naturally-occurring subtilisin or a recombinant subtilisin. A series of naturally-occurring subtilisins is known to be produced and often secreted by various microbial species. Amino acid sequences of the members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine. In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus, is aspartatehistidine-serine. In the chymotrypsin related proteases, the relative order, however, is histidine-aspartate-serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases. Examples include but are not limited to the subtilisins identified in Fig. 3 herein. Generally and for purposes of the present invention, numbering of the amino acids in proteases corresponds to the numbers assigned to the mature Bacillus amyloliquefaciens subtilisin sequence presented in Fig. 1.

"Recombinant subtilisin" or "recombinant protease" refer to a subtilisin or protease in which the DNA sequence encoding the subtilisin or protease is modified to produce a variant (or mutant) DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally-occurring amino acid sequence. Suitable

-11-

methods to produce such modification, and which may be combined with those disclosed herein, include those disclosed in US Patent 4,760,025 (RE 34,606), US Patent 5,204,015 and US Patent 5,185,258.

"Non-human subtilisins" and the DNA encoding them may be obtained from many procaryotic and eucaryotic organisms. Suitable examples of procaryotic organisms include gram negative organisms such as *E. coli* or *Pseudomonas* and gram positive bacteria such as *Micrococcus* or *Bacillus*. Examples of eucaryotic organisms from which subtilisin and their genes may be obtained include yeast such as *Saccharomyces cerevisiae*, fungi such as *Aspergillus* sp.

5

10

15

20

25

30

35

"Human subtilisin" means proteins of human origin which have subtilisin type catalytic activity, e.g., the kexin family of human derived proteases. An example of such a protein is represented by the sequence in Fig. 7. Additionally, derivatives or homologs of human subtilisin, including those from non-human sources such as mouse or rabbit, which retain the essential ability to hydrolyze peptide bonds and have at least 50%, preferably at least 65% and most preferably at least 80% homology to the protein of Fig. 7 are considered human subtilisins for the purpose of the invention.

A "protease variant" has an amino acid sequence which is derived from the amino acid sequence of a "precursor protease". The precursor proteases include naturally-occurring proteases and recombinant proteases. The amino acid sequence of the protease variant is "derived" from the precursor protease amino acid sequence by the substitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the amino acid sequence of the precursor protease rather than manipulation of the precursor protease enzyme *per se*. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein, as well as methods known to those skilled in the art (see, for example, EP 0 328299, WO89/06279 and the US patents and applications already referenced herein).

The amino acid position numbers used herein refer to those assigned to the mature *Bacillus amyloliquefaciens* subtilisin sequence presented in Fig. 1. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor proteases containing amino acid residues at positions which are "equivalent" to the particular identified residues in *Bacillus amyloliquefaciens* subtilisin. In a preferred embodiment of the present invention, the precursor protease is *Bacillus lentus* subtilisin and the substitutions, deletions or insertions are made at the equivalent amino acid residue in *B. lentus* corresponding to those listed above.

A residue (amino acid) of a precursor protease is equivalent to a residue of *Bacillus amyloliquefaciens* subtilisin if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in *Bacillus amyloliquefaciens* subtilisin (i.e., having the same or similar functional capacity to combine, react, or interact chemically).

5

10

15

20

25

30

In order to establish homology to primary structure, the amino acid sequence of a precursor protease is directly compared to the *Bacillus amyloliquefaciens* subtilisin primary sequence and particularly to a set of residues known to be invariant in subtilisins for which the sequence is known. For example, Fig. 2 herein shows the conserved residues as between *B. amyloliquefaciens* subtilisin and *B. lentus* subtilisin. After aligning the conserved residues, allowing for necessary insertions and deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of *Bacillus amyloliquefaciens* subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is also adequate to define equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained.

For example, the amino acid sequence of subtilisin from *Bacillus* amyloliquefaciens, *Bacillus subtilis*, *Bacillus licheniformis* (carlsbergensis) and *Bacillus lentus* can be aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved residues contained in each sequence. The conserved residues as between BPN' and *B. lentus* are identified in Fig. 2.

These conserved residues, thus, may be used to define the corresponding equivalent amino acid residues of *Bacillus amyloliquefaciens* subtilisin in other subtilisins such as subtilisin from *Bacillus lentus* (PCT Publication No. W089/06279 published July 13, 1989), the preferred protease precursor enzyme herein, or the subtilisin referred to as PB92 (EP 0 328 299), which is highly homologous to the preferred *Bacillus lentus* subtilisin. The amino acid sequences of certain of these subtilisins are aligned in Figs. 3A and 3B with the sequence of *Bacillus amyloliquefaciens* subtilisin to produce the maximum homology of conserved residues. As can be seen, there are a number of deletions in the sequence of *Bacillus lentus* as compared to *Bacillus amyloliquefaciens* subtilisin. Thus, for example, the equivalent amino acid for Val165 in *Bacillus amyloliquefaciens* subtilisin in the other subtilisins is isoleucine for *B. lentus* and *B. licheniformis*.

10

15

20

25

30

Thus, for example, the amino acid at position +170 is lysine (K) in both *B. amyloliquefaciens* and *B. licheniformis* subtilisins and arginine (R) in Savinase. In one embodiment of the protease variants of the invention, however, the amino acid equivalent to +170 in *Bacillus amyloliquefaciens* subtilisin is substituted with aspartic acid (D). The abbreviations and one letter codes for all amino acids in the present invention conform to the Patentln User Manual (GenBank, Mountain View, CA) 1990, p.101.

"Equivalent residues" may also be defined by determining homology at the level of tertiary structure for a precursor protease whose tertiary structure has been determined by x-ray crystallography. Equivalent residues are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the precursor protease and *Bacillus amyloliquefaciens* subtilisin (N on N, CA on CA, C on C and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the protease in question to the *Bacillus amyloliquefaciens* subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the highest resolution available.

$$R factor = \frac{\sum_{h} |Fo(h)| - |Fc(h)|}{\sum_{h} |Fo(h)|}$$

Equivalent residues which are functionally analogous to a specific residue of *Bacillus amyloliquefaciens* subtilisin are defined as those amino acids of the precursor protease which may adopt a conformation such that they either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the *Bacillus amyloliquefaciens* subtilisin. Further, they are those residues of the precursor protease (for which a tertiary structure has been obtained by x-ray crystallography) which occupy an analogous position to the extent that, although the main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie with 0.13nm of the corresponding side chain atoms of *Bacillus amyloliquefaciens* subtilisin. The coordinates of the three dimensional structure of *Bacillus amyloliquefaciens* subtilisin are set forth in EPO Publication No. 0 251 446 (equivalent to US Patent 5,182,204, the disclosure of which is incorporated herein by

10

15

20

25

30

35

reference) and can be used as outlined above to determine equivalent residues on the level of tertiary structure.

Some of the residues identified for substitution, insertion or deletion are conserved residues whereas others are not. In the case of residues which are not conserved, the replacement of one or more amino acids is limited to substitutions which produce a variant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such replacements should not result in a naturally-occurring sequence. The protease variants of the present invention include the mature forms of protease variants, as well as the pro- and prepro- forms of such protease variants. The prepro- forms are the preferred construction since this facilitates the expression, secretion and maturation of the protease variants.

"Prosequence" refers to a sequence of amino acids bound to the N-terminal portion of the mature form of a protease which when removed results in the appearance of the "mature" form of the protease. Many proteolytic enzymes are found in nature as translational proenzyme products and, in the absence of post-translational processing, are expressed in this fashion. A preferred prosequence for producing protease variants is the putative prosequence of *Bacillus amyloliquefaciens* subtilisin, although other protease prosequences may be used.

A "signal sequence" or "presequence" refers to any sequence of amino acids bound to the N-terminal portion of a protease or to the N-terminal portion of a proprotease which may participate in the secretion of the mature or pro forms of the protease. This definition of signal sequence is a functional one, meant to include all those amino acid sequences encoded by the N-terminal portion of the protease gene which participate in the effectuation of the secretion of protease under native conditions. The present invention utilizes such sequences to effect the secretion of the protease variants as defined herein. One possible signal sequence comprises the first seven amino acid residues of the signal sequence from *Bacillus subtilis* subtilisin fused to the remainder of the signal sequence of the subtilisin from *Bacillus lentus* (ATCC 21536).

A "prepro" form of a protease variant consists of the mature form of the protease having a prosequence operably linked to the amino terminus of the protease and a "pre" or "signal" sequence operably linked to the amino terminus of the prosequence.

"Expression vector" refers to a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable

10

15

20

25

30

35

mRNA ribosome binding sites and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most commonly used form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.

The "host cells" used in the present invention generally are procaryotic or eucaryotic hosts which preferably have been manipulated by the methods disclosed in US Patent 4,760,025 (RE 34,606) to render them incapable of secreting enzymatically active endoprotease. A preferred host cell for expressing protease is the *Bacillus* strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in US Patent 5,264,366. Other host cells for expressing protease include *Bacillus subtilis* I168 (also described in US Patent 4,760,025 (RE 34,606) and US Patent 5,264,366, the disclosure of which are incorporated herein by reference), as well as any suitable *Bacillus* strain such as *B. licheniformis*, *B. lentus*, etc.

Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. Such transformed host cells are capable of either replicating vectors encoding the protease variants or expressing the desired protease variant. In the case of vectors which encode the pre- or prepro-form of the protease variant, such variants, when expressed, are typically secreted from the host cell into the host cell medium.

"Operably linked", when describing the relationship between two DNA regions, simply means that they are functionally related to each other. For example, a presequence is operably linked to a peptide if it functions as a signal sequence, participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

The genes encoding the naturally-occurring precursor protease may be obtained in accord with the general methods known to those skilled in the art. The methods generally comprise synthesizing labeled probes having putative sequences encoding regions of the protease of interest, preparing genomic libraries from organisms expressing the protease.

10

15

20

25

30

35

-16-

and screening the libraries for the gene of interest by hybridization to the probes. Positively hybridizing clones are then mapped and sequenced.

The cloned protease is then used to transform a host cell in order to express the protease. The protease gene is then ligated into a high copy number plasmid. This plasmid replicates in hosts in the sense that it contains the well-known elements necessary for plasmid replication: a promoter operably linked to the gene in question (which may be supplied as the gene's own homologous promoter if it is recognized, i.e., transcribed, by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the protease gene in certain eucaryotic host cells) which is exogenous or is supplied by the endogenous terminator region of the protease gene and, desirably, a selection gene such as an antibiotic resistance gene that enables continuous cultural maintenance of plasmidinfected host cells by growth in antibiotic-containing media. High copy number plasmids also contain an origin of replication for the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations. However, it is within the scope herein to integrate multiple copies of the protease gene into host genome. This is facilitated by procaryotic and eucaryotic organisms which are particularly susceptible to homologous recombination.

In one embodiment, the gene can be a natural gene such as that from *B lentus* or *B. amyloliquefaciens*. Alternatively, a synthetic gene encoding a naturally-occurring or mutant precursor protease may be produced. In such an approach, the DNA and/or amino acid sequence of the precursor protease is determined. Multiple, overlapping synthetic single-stranded DNA fragments are thereafter synthesized, which upon hybridization and ligation produce a synthetic DNA encoding the precursor protease. An example of synthetic gene construction is set forth in Example 3 of US Patent 5,204,015, the disclosure of which is incorporated herein by reference.

Once the naturally-occurring or synthetic precursor protease gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor protease. Such modifications include the production of recombinant proteases as disclosed in US Patent 4,760,025 (RE 34,606) and EPO Publication No. 0 251 446 and the production of protease variants described herein.

The following cassette mutagenesis method may be used to facilitate the construction of the protease variants of the present invention, although other methods may be used. First, the naturally-occurring gene encoding the protease is obtained and

sequenced in whole or in part. Then the sequence is scanned for a point at which it is desired to make a mutation (deletion, insertion or substitution) of one or more amino acids in the encoded enzyme. The sequences flanking this point are evaluated for the presence of restriction sites for replacing a short segment of the gene with an oligonucleotide pool which when expressed will encode various mutants. Such restriction sites are preferably unique sites within the protease gene so as to facilitate the replacement of the gene segment. However, any convenient restriction site which is not overly redundant in the protease gene may be used, provided the gene fragments generated by restriction digestion can be reassembled in proper sequence. If restriction sites are not present at locations within a convenient distance from the selected point (from 10 to 15 nucleotides). such sites are generated by substituting nucleotides in the gene in such a fashion that neither the reading frame nor the amino acids encoded are changed in the final construction. Mutation of the gene in order to change its sequence to conform to the desired sequence is accomplished by M13 primer extension in accord with generally known methods. The task of locating suitable flanking regions and evaluating the needed changes to arrive at two convenient restriction site sequences is made routine by the redundancy of the genetic code, a restriction enzyme map of the gene and the large number of different restriction enzymes. Note that if a convenient flanking restriction site is available, the above method need be used only in connection with the flanking region which does not contain a site.

5

10

15

20

25

30

35

Once the naturally-occurring DNA or synthetic DNA is cloned, the restriction sites flanking the positions to be mutated are digested with the cognate restriction enzymes and a plurality of end termini-complementary oligonucleotide cassettes are ligated into the gene. The mutagenesis is simplified by this method because all of the oligonucleotides can be synthesized so as to have the same restriction sites, and no synthetic linkers are necessary to create the restriction sites.

In one aspect of the invention, the objective is to secure a variant protease having altered allergenic potential as compared to the precursor protease, since decreasing such potential enables safer use of the enzyme. While the instant invention is useful to lower allergenic potential, the mutations specified herein may be utilized in combination with mutations known in the art to result altered thermal stability and/or altered substrate specificity, modified activity or altered alkaline stability as compared to the precursor.

Accordingly, the present invention is directed to altering the capability of the T-cell epitope which includes residue positions 170-173 in *Bacillus lentus* to induce T-cell

proliferation. One particularly preferred embodiment of the invention comprises making modification to either one or all of R170D, Y171Q and/or N173D. Similarly, as discussed in detail above, it is believed that the modification of the corresponding residues in any protease will result in a the neutralization of a key T-cell epitope in that protease. Thus, in combination with the presently disclosed mutations in the region corresponding to amino acid residues 170-173, substitutions at positions corresponding to N76D/S103A/V104I/G159D optionally in combination with one or more substitutions selected from the group consisting of positions corresponding to V68A, T213R, A232V, Q236H, Q245R, and T260A of Bacillus amyloliquefaciens subtilisin may be used, in addition to decreasing the allergenic potential of the variant protease of the invention, to modulate overall stability and/or proteolytic activity of the enzyme. Similarly, the substitutions provided herein may be combined with mutation at the Asparagine (N) in Bacillus lentus subtilisin at equivalent position +76 to Aspartate (D) in combination with the mutations S103A/V104I/G159D and optionally in combination with one or more substitutions selected from the group consisting of positions corresponding to V68A, T213R, A232V, Q236H, Q245R, and T260A of Bacillus amyloliquefaciens subtilisin, to produce enhanced stability and/or enhanced activity of the resulting mutant enzyme.

5

10

15

30

35

The most preferred embodiments of the invention include the following specific combinations of substituted residues corresponding to positions:

N76D/S103A/V104I/G159D/K170D/Y171Q/S173D;
V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D /Q236H;
V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D /Q236H/Q245R;
V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/A232V/Q236H/Q245R; and
V68A/N76D//S103A/V104I/G159D/K170D/Y171Q/S173D/T213R/A232V/Q236H/
Q245R/T260A of Bacillus amyloliquefaciens subtilisin. These substitutions are preferably made in Bacillus lentus (recombinant or native-type) subtilisin, although the substitutions may be made in any Bacillus protease.

Based on the screening results obtained with the variant proteases, the noted mutations noted above in *Bacillus amyloliquefaciens* subtilisin are important to the proteolytic activity, performance and/or stability of these enzymes and the cleaning or wash performance of such variant enzymes.

Many of the protease variants of the invention are useful in formulating various detergent compositions. A number of known compounds are suitable surfactants useful in compositions comprising the protease mutants of the invention. These include nonionic, anionic, cationic, anionic or zwitterionic detergents, as disclosed in US 4,404,128 to Barry

10

15

20

25

30

J. Anderson and US 4,261,868 to Jiri Flora, et al. A suitable detergent formulation is that described in Example 7 of US Patent 5,204,015 (previously incorporated by reference). The art is familiar with the different formulations which can be used as cleaning compositions. In addition to typical cleaning compositions, it is readily understood that the protease variants of the present invention may be used for any purpose that native or wild-type proteases are used. Thus, these variants can be used, for example, in bar or liquid soap applications, dishcare formulations, contact lens cleaning solutions or products, peptide hydrolysis, waste treatment, textile applications, as fusion-cleavage enzymes in protein production, etc. The variants of the present invention may comprise, in addition to decreased allergenicity, enhanced performance in a detergent composition (as compared to the precursor). As used herein, enhanced performance in a detergent is defined as increasing cleaning of certain enzyme sensitive stains such as grass or blood, as determined by usual evaluation after a standard wash cycle.

Proteases of the invention can be formulated into known powdered and liquid detergents having pH between 6.5 and 12.0 at levels of about .01 to about 5% (preferably .1% to .5%) by weight. These detergent cleaning compositions can also include other enzymes such as known proteases, amylases, cellulases, lipases or endoglycosidases, as well as builders and stabilizers.

The addition of proteases of the invention to conventional cleaning compositions does not create any special use limitation. In other words, any temperature and pH suitable for the detergent is also suitable for the present compositions as long as the pH is within the above range, and the temperature is below the described protease's denaturing temperature. In addition, proteases of the invention can be used in a cleaning composition without detergents, again either alone or in combination with builders and stabilizers.

The variant proteases of the present invention can be included in animal feed such as part of animal feed additives as described in, for example, US 5,612,055; US 5,314,692; and US 5,147,642.

One aspect of the invention is a composition for the treatment of a textile that includes variant proteases of the present invention. The composition can be used to treat for example silk or wool as described in publications such as RD 216,034; EP 134,267; US 4,533,359; and EP 344,259.

The following is presented by way of example and is not to be construed as a limitation to the scope of the claims.

WO 99/53038

15

20

25

30

The variants can be screened for proteolytic activity according to methods well known in the art. Preferred protease variants include multiple substitutions at positions corresponding to: N76D/S103A/V104I/G159D/K170D/Y171Q/S173D; V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/Q236H;

-20-

5 V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/Q236H/Q245R; V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/A232V/Q236H/Q245R; and V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/T213R/A232V/Q236H/Q245R/T2 60A of *Bacillus amyloliquefaciens* subtilisin.

All publications and patents referenced herein are hereby incorporated by reference in their entirety.

EXAMPLES

Example 1

Assay for the Identification of Peptide T-Cell Epitopes Using Naïve Human T-Cells

Fresh human peripheral blood cells were collected from "naïve" humans, i.e., persons not known to be exposed to or sensitized to *Bacillus lentus* protease, for determination of antigenic epitopes in protease from *Bacillus lentus* and human subtilisin. Naïve humans is intended to mean that the individual is not known to have been exposed to or developed a reaction to protease in the past. Peripheral mononuclear blood cells (stored at room temperature, no older than 24 hours) were prepared for use as follows: Approximately 30 mls of a solution of buffy coat preparation from one unit of whole blood was brought to 50 ml with Dulbecco's phosphate buffered solution (DPBS) and split into two tubes. The samples were underlaid with 12.5 ml of room temperature lymphoprep density separation media (Nycomed density 1.077 g/ml). The tubes were centrifuged for thirty minutes at 600G. The interface of the two phases was collected, pooled and washed in DPBS. The cell density of the resultant solution was measured by hemocytometer. Viability was measured by trypan blue exclusion.

From the resulting solution, a differentiated dendritic cell culture was prepared from the peripheral blood mononuclear cell sample having a density of 10⁸ cells per 75 ml culture flask in a solution as follows:

(1) 50 ml of serum free AIM V media (Gibco) was supplemented with a 1:100 dilution beta-mercaptoethanol (Gibco). The flasks were laid flat for two hours at 37°C in 5% CO₂ to allow adherence of monocytes to the flask wall.

10

15

20

25

30

- (2) Differentiation of the monocyte cells to dendritic cells was as follows: nonadherent cells were removed and the resultant adherent cells (monocytes) combined with 30 ml of AIM V, 800 units/ml of GM-CSF (Endogen) and 500 units/ml of IL-4 (Endogen); the resulting mixture was cultured for 5 days under conditions at 37°C in 5% CO₂. After five days, the cytokine TNF α (Endogen) was added to 0.2 units/ml, and the cytokine IL-1 α (Endogen) was added to a final concentration of 50 units/ml and the mixture incubated at 37°C in 5% CO₂ for two more days.
- (3) On the seventh day, Mitomycin C was added to a concentration of 50 microgram/ml was added to stop growth of the now differentiated dendritic cell culture. The solution was incubated for 60 minutes at 37°C in 5% CO₂. Dendritic cells were collected by gently scraping the adherent cells off the bottom of the flask with a cell scraper. Adherent and non-adherent cells were then centrifuged at 600G for 5 minutes, washed in DPBS and counted.

(4) The prepared dendritic cells were placed into a 96 well round bottom array at 2x10⁴/well in 100 microliter total volume of AIM V media.

CD4+ T cells were prepared from frozen aliquots of the peripheral blood cell samples used to prepare the dendritic cells using the human CD4+ Cellect Kit (Biotex) as per the manufacturers instructions with the following modifications: the aliquots were thawed and washed such that approximately 10⁸ cells will be applied per Cellect column; the cells were resuspended in 4 ml DPBS and 1 ml of the Cell reagent from the Cellect Kit, the solution maintained at room temperature for 20 minutes. The resultant solution was centrifuged for five minutes at 600G at room temperature and the pellet resuspended in 2 ml of DPBS and applied to the Cellect columns. The effluent from the columns was collected in 2% human serum in DPBS. The resultant CD4+ cell solution was centrifuged, resuspended in AIMV media and the density counted.

The CD4+ T-cell suspension was resuspended to a count of 2x10⁸/ml in AIM V media to facilitate efficient manipulation of the 96 well plate.

Peptide antigen is prepared from a 1M stock solution in DMSO by dilution in AIM V media at a 1:10 ratio. 10 microliters of the stock solution is placed in each well of the 96 well plate containing the differentiated dendritic cells. 100 microliter of the diluted CD4+ T-cell solution as prepared above is further added to each well. Useful controls include diluted DMSO blanks, and tetanus toxoid positive controls.

The final concentrations in each well, at 210 microliter total volume are as follows:

2x104 CD4+

2x10⁵ dendtritic cells (R:S of 10:1)

5 mM peptide

5

10

15

20

25

30

35

Example 2

Identification of T-Cell Epitopes in Protease from Bacillus Ientus and Human subtilisin

Peptides for use in the assay described in Example 1 were prepared based on the Bacillus lentus and human subtilisin amino acid sequence. Peptide antigens were designed as follows. From the full length amino acid sequence of either human subtilisin or Bacillus lentus protease provided in Figure 1, 15mers were synthetically prepared, each 15mer overlapping with the previous and the subsequent 15mer except for three residues.

Peptides used correspond to amino acid residue strings in *Bacillus lentus* as provided in Figure 8, and peptides correspond to amino acid residues in human subtilisin as provided in Figure 7. The peptides used corresponding to the proteases is provided in Fig. 6. All tests were performed at least in duplicate. All tests reported displayed robust positive control responses to the antigen tetanus toxoid. Responses were averaged within each experiment, then normalized to the baseline response. A positive event was recorded if the response was at least 3 times the baseline response.

The immunogenic response (i.e., T-cell proliferation) to the prepared peptides from human subtilisin and *Bacillus lentus* was tallied and is provided in Figures 4 and 5, respectively. T-cell proliferation was measured by the incorporated tritium method. The results shown in Figures 4 and 5 as a comparison of the immunogenic additive response in 10 individuals (Figure 4) and 16 individuals (Figure 5) to the various peptides. Response is indicated as the added response wherein 1.0 equals a baseline response for each sample. Thus, in Figure 4, a reading of 10.0 or less is the baseline response and in Figure 5 a reading of 16.0 or less the baseline response.

As indicated in Figures 4 and 5, the immunogenic response of the naïve blood samples from unsensitized individuals showed a marked allergenic response at the peptide fragment from *Bacillus lentus* corresponding to residues 170-173 of *Bacillus amyloliquefaciens* protease. As expected, the corresponding fragment in human subtilisin evokes merely baseline response.

Fig. 9 shows the T-cell response to peptides derived from *Bacillus lentus* protease in a sample taken from an individual known to be hypersensitive to *Bacillus lentus*

protease. Peptide E05 represents the region corresponding to 170-173 in protease from *Bacillus amyloliquefaciens*. As shown in Fig. 9, the hypersensitive individual was highly responsive to the T-cell epitope represented by the peptide E05. This result confirms that, by practicing the assay according to the invention, it is possible to predict the major epitopes identified by the T-cells of a hypersensitive individual.

5

10

15

20

Fig. 10 shows the T-cell response to various alanine substitutions in the E05 peptide derived from *Bacillus lentus* protease in a sample taken from an individual known to be hypersensitive to *Bacillus lentus* protease. Alanine substitutions were used as substitutions for the purpose of determining the role of any specific residue within the epitope. The legend of Figure 10 refers to the position of the peptide in which an alanine was substituted, i.e., in peptide E06 (sequence GSISYPARYANAMAV), G to A = 2, S to A = 3, I to A = 4, S to A = 5, Y to A = 6, P to A = 7, R to A = 8, Y to A = 9, N to A = 10, M to A = 11 and V to A = 12. As indicated in Figure 10, substitution of either of the residues R170A, Y171A and/or N173A in protease from *Bacillus lentus* results in dramatically reduced response in the hypersensitive individual's blood sample.

From these results, it is apparent that the residues 170, 171 and 173 are critical for T-cell response within this peptide. Accordingly, it is further apparent that these residues are largely responsible for the initiation of allergic reaction within the protease from *Bacillus lentus*.

WE CLAIM:

5

15

- 1. A protease variant comprising a substitution made at one or more of positions in a precursor protease corresponding to K170D, Y171Q and/or S173D of *Bacillus* amyloliquefaciens subtilisin.
- 2. The protease variant according to claim 1, further comprising a substitution at one or more positions in a precursor protease equivalent to those selected from the group consisting of N76D, S103A, V104I, G159D, V68A, T213R, A232V, Q236H, Q245R, and T260A.
- 3. The protease variant according to claim 2 which is derived from a *Bacillus* subtilisin.
 - 4. The protease variant according to claim 3 which is derived from *Bacillus lentus* subtilisin or *Bacillus amyloliquefaciens* subtilisin.
 - 5. A DNA encoding a protease variant of claim 1.
 - 6. An expression vector encoding the DNA of claim 5.
 - 7. A host cell transformed with the expression vector of claim 6.
 - 8. A cleaning composition comprising the protease variant of claim 1.
 - 9. An animal feed comprising the protease variant of claim 1.
 - 10. A composition for treating a textile comprising the protease variant of claim 1.
- 11. A protease variant according to claim 1, comprising combined substitution sets selected from the group consisting of positions corresponding to K170D/Y171Q/S173D; N76D/S103A/V104I/G159D/ K170D/Y171Q/S173D/Q236H; V68A/N76D/S103A/V104I/G159D/ K170D/Y171Q/S173D/Q236H/Q245R;
 - V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/
- 25 A232V/Q236H/Q245R; and V68A/N76D/S103A/V104I/G159D/K170D/Y171Q/S173D/T213R/A232V/Q236H/ Q245R/T260A of *Bacillus amyloliquefaciens* subtilisin.

10

15

20

25

- 12. A method for determining T-cell epitopes in humans comprising the steps of:
- (a) obtaining from a single blood source a solution of dendritic cells and a solution of naïve CD4+ and/or CD8+ T-cells;
 - (b) promoting differentiation in said solution of dendritic cells;
- (c) combining said solution of differentiated dendritic cells and said naïve CD4+ and/or CD8+ T-cells with a peptide of interest;
 - (d) measuring the production of antibodies in said step (c).
 - 13. A method of reducing the allergenicity of a protein comprising the steps of:
 - (a) identifying a T-cell epitope in said protein;
 - (b) modifying said protein to neutralize said T-cell epitope.
 - 14. The method according to claim 13, wherein said epitope is modified by:
- (a) substituting the amino acid sequence of the epitope with an analogous sequence from a human homolog to the protein of interest;
- (b) substituting the amino acid sequence of the epitope with an analogous sequence from a non-human homolog to the protein of interest, which analogous sequence produces a lesser allergenic response from T-cells than that of the protein of interest; or
- (c) substituting the amino acid sequence of the epitope with a sequence which substantially mimics the major tertiary structure attributes of the epitope, but which produces a lesser allergenic response from T-cells than that of the protein of interest.
- 15. A protein having reduced allergenicity made by the method according to claim 14.
- 16. A protein having reduced allergenicity, wherein said protein comprises a modification comprising the substitution or deletion of amino acid residues which are identified as within a T-cell epitope according to the assay provided in claim 13.

्र ध Met ATG శ్ స్ట **88** & ₹ Val GTA ¥ SS **88** ₹8 ₹\$ AG द ह्र ACA -60 Met Ser 1 ATG AGC / 3 § -107 (4) -107 (4) -107 (4) -107 (5) ESCITATIOCATATIANTACACAGAATAATCTGTCTATTGGTTATTCTGCAAATGAAAAAAGGAGAGATAAAAGA GTG Ser AGC Val GTA 휷გ 马芒 & € ₹ 29 21 gy gg 74 of Kal Val Gly Phe Lys Gln Thr GTC GGG TTT AAA CAG ACA £₹ Ata GCT ₽ £ 55 Pe TC Asp Pro Ser Val Ala Tyr GAC CCG AGC GTC GCT TAC Ala Gin Phe CAA TTC 85 충동 **₽** 80 80 Ser TCT Met Thr ACG K\$ AG Ser TCT ₹Ł ₽ 5 8 gy B lle A∏ ag E Val GTG Gly Ile GGT ATC .90 lle ATC ౭ౖౖౖౖౢ -20 Giu Leu Lys Lys A 1 GAA TTG AAA AAA C Gly Gly Lys GGC GGG AAA Ala Leu GCG TTA Z ₹ Gly Lys Ser Asn Gly Glu Lys Lys Tyr Ile GGG AAA TCA AAC GGG GAA AAG AAA TAT ATT lle Asp Ser (ATC GAC AGC (Gly Val GGC GTA J.Y.Y. Ala GCT ક્રસ્ TĂC TĂC Ala Val Lys (GCT GTA AAA (MAT Ma val Leu Leu Phe TTG CTG TTT ₹ 8 85 24 Val GTG Ser TCT Val Lys Val A £ € AT TE S S S Val GTC Ser Leu Asn Glu Lys TTA AAC GAA AAA - **₽**2 CCG -100 Trp Re TGG ATC & **§** § Asa AT - 75 180 ያ_ፈ Ala Ala CCG CCA (Gy Ser GGA TCA Lys AG . 900 € CTA Val ACA P 85 A5 AG 육동 ક્રફ g g Ata CCT SC1 № ₽ 8 ₹ S ි ලි 8 & S **₽** ₹ ĭ £ % ₹ Val GTA . ວິວິ ຂ*ື*ອີ eg ta 휷옰 S & S **A**60 Se इं इं 474 \$€ 324 89 174 83

FIG._1B - 1

	·							
Ala GCC	Lys.	Met ATG	Ala GCA	G	P8 CCT	G. GGT	TP. ACT	
Vat GTT	Val GTA	ASS AND	Val GTT	Pro CCT	& 89 89	ASG AAC	Asn	
CA CA CA	Ata GCT	ASC ASC	As GCC	TAC	Val GTA	Ty TAC	The ACA	
Th ACT	TAC	₽ &	₹ ₹	∂ 89	Ser AGC	Ata GCG	170 166	
₹ 00	CH 88	₽ ATC	6 & 8 & 8 & 8 & 9	Val GTG	<u>8</u> % 5	66 666	240 Asn AAC	
His CAC	\$ % ₹ 12.	Ala GCG	Val GTT	¥Ç ¥Ç	₽	TAC	ال 200	
Ser TCT	§ & §	т р 75	S AB S AB	Ser	Ser 101	₹ ₹	His CAC	
A GC	Ser AGC	Glu GAG	Ala GCG	Ser TCA	Ata GCA	Asn	Lys AAG	
Asp Asn AAC	£ 23	lle ATC	₹ \$	Ser AGC		GG GGA	Ser TCT	
60 GAC	Ala GCG	G.₹ G.¥ G.A	∃ ₹	කි <u>ද</u> ි බි	క్ కి	210 Pro CCT	CTT CTT	
S S	Val GTT	Asa	Ata GCT	Ser TCC	Asa		ATT C	
Pre TC	000 €	lle ATT	Ala GCT	Ser Thr ACT	Ser AGC	Thr ACG	Lee III A	J
Asn CCT	Lee TTA	Ile ATC	Ser TCT	ე დ	Ser AGC	Ser . AGC	As GCT	
Pro Asn AAT	Val GTA	1թ 16 G	G. G.	æ S∳	Ago GAC	₽ S	230 A Ala Ala A A GCG GCT G	
ACA P	86 G,y GG1	Ser AGC	130 Ser 1CT	Asn	188 Val CT	He ATC	230 SCG SCG	
<i>⊋</i> ,₹	lle ATC	TAC	55 CCT	Gy GGT	Ala GCT	1CT	Y 25 35	•
Ser TCT	Ser TCA	CAA.	ල් ල්	Ala	20 2 5 20	Val GTA	Aka GCC	
25 CC1	Asn	ပ္သ လ ွ်	ე დ <u>₹</u>	3 25	Val GTA	& €	Val	
Val GTT	AST ANT	Ser 100	E C1C	₽ ₽ 000	₽ \$	P CCT	表 Se	
S0 Met ATG	Lev	§ § § §61	Ser AGC	150 Vai GTT	ATT A	S & S	5 000	
Ser	Ala GCT	Asp GAC	Met	Val GTC	Val GTC	Met ATG	Ser TCT	
₽	8 ₽ 200	Asp GCT	Asn	Val GTA	य हु	Val GTC	Ala	
G G A	Val GTT	Gy GGT	AT	Val GTC	55 T 25	Asp.	Met ATG	
ე ეეე	ACA F	CIC CIC	Val GTT	≽ ე	TAC	3 E	% 1₹	
Aga GCA	2 (Val GTT	5 8 S	Set 150	క గె శ్	Glu GAG	ACG ACG	
549	624	669	7	849	924	86	1074	

260 Gin Val Arg Ser Ser Leu Giu Asn Thr Thr Thr Lys Leu Giy Asp Ser Phe Tyr Tyr Giy Lys Giy Leu Ile Asn 1149 CAA GTC CGC AGC AGT TTA GAA AAC ACC ACT ACA AAA CTT GGT GAT TCT TTC TAC TAT GGA AAA GGG CTG ATC AAC 1316 ATAATCGACGGATGGCTCCCTCTGAAAATTTTAACGAGAAACGGCGGGTTGACCGGGCTCAGTCCCGTAACGGCCAAGTCCTGAAACGTCTCAATCGCCG 270

Val Gin Ala Ala Ala Gin OC

1224 GTA CAG GCG GCA GCT CAG TAA AACATAAAAAACCGGCCCTTGGCCCCCGCCGCTTTTTATTTTCTTCCTCCGCATGTTCAATCCGCTCC

FIG._ 1B - 3

1416 CTTCCCGGTTTCCGGTCAGCTCAATGCCGTAACGGTCGGCGGCGTTTTCCTGATACCGGGAGACGGCATTCGTAATCGGATC

FIG. 18-2 FIG. 18-3

			RV US										INS	S F	RO	М			
1									1	0			P	Α	•	н	•	•	20 G
2:		G	s		v	ĸ	v	Α	3 V	٥.	D		G	•	•	•	•	н	40 P
4: D		•	•	•	G	G	À	s	5	o V	P	•	•	·•	•	•	•	Q	60 D
61	N	•	·H	G	T	н	v	A	7 (G	0 T	•	A	A	L	N	N	s	i	80 G
81 V	L	G	V	A	P	s	A		9 (L	0 Y	Α	v	ĸ	v	L	G	A		G G
10 S			•	s	•	L	•		11 G		E	W	A	•	N	•	•		20
12 V	21	N	•	s	L	G	•	P	13(S	•	s		٠.	•	•	•	A		40
14	1	•			G	v	•		\ V		A	•	G	N	·	G	•		60
16	1		•	•	•	Y	P	•		Y		•	•	•	A	v	G) A	80
18 D	_		N	•	•	A	S		.90 S		•	C	•	•	L	D	•	.2	00 A
20 P		v	•	•	Q	s	T		10 P	G			Y	•	•	•	N	. 2 G	
22 S		A	•	P	н	v	Α		3 C A		A	L	•	•	•	ĸ	•	. 2	40 -
24 W		•		Q		R	•	. 2	50 L		N	T			•	L	G		60 •
26 •	_	Y	G		G	L	•		70		Α	Α		•					

FIG._2

A A A E

XXXX

טטצצ

0000

8 8 8 9

H S Z K

 \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}

 $\omega \omega \vdash \omega$

4444

0 0 0 *

	0 0 0 4	a a H a	zzoo	HOZK
	SSAF	ZZZZ	2	${\tt o} {\tt o} {\tt o} {\tt o}$
	5000	ZZAZ	ASEZ	្សស្ន
	ннын	2222	нныю	2 2 2 Z
	0000	**	**	0000
	SSFF	**	3 3 3 3	***
	9999	> H > H	医医医鼠	**
•	_ нныы	_ 6666	оннны	ORRER
	30 4 4 4	င္ကလက္လ	2000	15(V) V)
	RRRR	AAAA	zzvo	>>>>
	>>>>	>>>>	H H > 4	マママコ
	KKKK		нннн	> H > >
	>>>>	4444	3 3 0 W	o o o o
	zzzu	o o o o	ស ស ស ស	8 8 8 8
	೮ ೪ ೩ ೮	* * * *	4 4 4 4	< 0
	o o o o	တတ္လည	9998	> > > # #
	FFKF	ZOZZ	o o o o	**
	ほまなよ「	_ 2000	100 G S G S G S	OKKZS
	80000	00000	20000	HODOX
	aaaĸ	aara	ប្រស	>>>>
÷	ប្រ A Z	日本本 市	4004	* > * *
ğ	HOH	4420	0220	AHOO
뜐	せるでは	2274	4444	KKKB
ES	KKKK	H H K *	>>>>	コロばロ
2	4404	医医医医	KKKK	KKKH
3	**	8889 0	>>>>	AHHA
8	KKKO	A A A A	**	်တတတတ
S	онныр	_ > > > >	****	S G G G W
<u>15</u>	HOOUR	N X M M M	64444	113 8 8 8 8
Ħ	លស់មល	លលលល	លលលស	$\alpha \alpha \ll \dot{\alpha}$
UB Sr	⊳ннн	**	4424	0000
F S ie	0000	$o \circ o \circ o$	លលលល	0000
or fac sic	的ままま	0000	пппп	ㅋㅋㅋㅋ
NO Pro	рипи	4 11 7 11	RORK	លលលល
AIS lis	>>>>	> > > H	>>>>	HHHH
COMPARISON OF SUBTILISIN SEQUENCES FROM: B.amyloliquefaciens B.subtilis B.licheniformis	ស ស 🗗 ស	KZZZ	0000	zzzz
ON su su lic	_aaaa	ីមមមម	부모모모모	HHHK
COMPARISON OF SUBT B.amyloliquefaciens B.subtilis B.licheniformis B.lentus	9 8 8 8 9	40000	8 > > >	4 4 4 4 4 5

FIG._3A

			4 8
***	Z t Z W		FIG. 3A
XXX>	20 12 12 12 12		F16
>>>H			
	KKKK		•
2222	8 8 8 C		ω
គេសភណ	ななむれ	9995	FIG
ANKK	ннн>	**	<u> </u>
o o o o	되고리다	**	II
> < > >	**	**	
0 8 8 8 9	2444 230 2444	бааыы	•
3 3 3 3	REEEE	A 4 4 4 7	
医医肾管	0000	2222	
ស ស ស ស	RRRR	ннн>	
**	>>>>	2222	
 	* # # #	0000	
aazz	рири	KKK0	
ZZSZ	SHSH	0000	
SSSS	KKKK	***************************************	m
8 8 8 B	EEEE	でまれま	3E
99299	O 20 20 20 20	09 4442	
H 4 4 4 H	24444	4000	FIG
***	9999	OKSS	2
0000	zzzz	9999	Щ
>>>>	ははなよ	4444	
***	A A H W	S K K X	
ннн≍	. 0044	8 8 8 B 8.	
> H > K	在在在在	HAKA	
ស ស ស 🗷	* # # #	8886	
A A A A	2020	% 8 8 8 8	
在 在末点	ဝ္ဗဗဗဗ	O M M W K	
HKKKK	20000	ななななら	
0 K K K	よよで に	50 我我我	
	4444	SEDS	
在 4 4 4	ស ស ស ស	我我我我	
0000	9979	> > > H	
> > H H	нн>>	0000	
* 4 4 4	8 8 8 8 B	ま 丸 ひ V	
សស≱ 🛊	>><>	ZZKZ	
19 8 H H *	10000	44400	
16 8 8 8 8 *	22444	X H X H X	

T. 5. 4

		•			
1	A12	IKDFHVYFRESRDAG	49	E12	SATSRGVLVVAASGN
2	A11	LEQAVNSATSRGVLV	50	E11	SRGVLVVAASGNSGA
3	A10	AQSVPWGISRVQAPA	51	E10	VLVVAASGNSGAGSI
4	A9	VPWGISRVQAPAAHN	52	E9	VAASGNSGAGSISYP
5	A8	GISRVQAPAAHNRGL	53	Ē8	SGNSGAGSISYPARY
6	A7	RVQAPAAHNRGLTGS	54	Ē7	SGAGSISYPARYANA
7	A6	APAAHNRGLTGSGVK	55	Ē6	GSISYPARYANAMAV
8	A5	AHNRGLTGSGVKVAV	56	E5	SYPARYANAMAVGAT
9	A4	RGLTGSGVKVAVLDT	57	E4	ARYANAMAVGATDON
10	A4 A3	TGSGVKVAVLDTGIS	58	E3 .	ANAMAVGATDONNNR
11		GVKVAVLDTGISTHP	59	E2	MAVGATDONNNRASF
12	A2	VAVLDTGISTHPDLN	60	E1	GATDONNNRASFSQY
13	A1	LDTGISTHPDLNIRG	61	F12	DQNNNRASFSQYGAG
14	B12	GISTHPDLNIRGGAS	62		NNRASFSQYGAGLDI
15	B11	THPDLNIRGGASTVP	63	F11	
16	B10		64	F10	ASFSQYGAGLDIVAP
	B9	DLNIRGGASFVPGEP		F9	SQYGAGLDIVAPGVN
17	B8	IRGGASFVPGEPSTQ	65	F8	GAGLDIVAPGVNVQS
18	B7	GASFVPGEPSTQDGN	66	F7	LDIVAPGVNVQSTYP
19	B6	FVPGEPSTQDGNGHG	67	F6	VAPGVNVQSTYPGST
20	B5	GEPSTQDGNGHGTHV	68	F5	GVNVQSTYPGSTYAS
21	B4	STQDGNGHGTHVAGT	69	F4	VQSTYPGSTYASLNG
22	В3	DGNGHGTHVAGTIAA	70	F3	TYPGSTYASLNGTSM
23	B2	GHGTHVAGTIAALNN	71	F2	GSTYASLNGTSMATP
24	B1	THVAGTIAALNNSIG	72	F1	YASLNGTSMATPHVA
25	C12	AGTIAALNNSIGVLG	73	G12	LNGTSMATPHVAGAA
26	C11	IAALNNSIGVLGVAP	74	G11	TSMATPHVAGAAALV
27	C10	LNNSIGVLGVAPSAE	75	G10	ATPHVAGAAALVKQK
28	C9	SIGVLGVAPSAELYA	76	G9	HVAGAAALVKQKNPS
29	ČŠ	VLGVAPSAELYAVKV	77	Ğ8	GAAALVKQKNPSWSN
30	C7	VAPSAELYAVKVLGA	78	G7	ALVKQKNPSWSNVQI
31.	C6	SAELYAVKVLGASGS	7 9	G6	KQKNPSWSNVQIRNH
32	C5	LYAVKVLGASGSGSV	80	G5	NPSWSNV <u>O</u> IRNHLKN
33	C4	VKVLGASGSGSVSSI	81	G4	WSNVQIRNHLKNTAT
34	C3	LGASGSGSVSSIAQG	82	G3	VQIRNHLKNTATSLG
35	C2	SGSGSVSSIAQGLEW	83	G2	RNHLKNTATSLGSTN
36:	C1	GSVSSIAQGLEWAGN	84	G1	LKNTATSLGSTNLYG
37.	D12	SSIAQGLEWAGNNGM	85	H12	TATSLGSTNLYGSGL
38	D11	AQGLEWAGNNGMHVA	86	H11	SLGSTNLYGSGLVNA
39	D10	LEWAGNNGMHVANLS	87	H10	STNLYGSGLVNAEAA
40	D9	AGNNGMHVANLSLGS	88	H9	NLYGSGLVNAEAATR
41	D8	NGMHVANLSLGSPSP		113	
42	D7	HVANLSLGSPSPSAT			
43	D6	NLSLGSPSPSATLEQ			
44		LGSPSPSATLEQAVN			
45	D5	PSPSATLEQAVNSAT			
46	D4	SATLEQAVNSAT			
47	D3	LEQAVNSATSRGVLV		•	
48	D2	AVNSATSRGVLV			
- 0	D1	WAAATAGATAGAA			

FIG. 6A

A4/4G PCT/US99/08253

1	A12	IKDFHVYFRESRDAG	49	E12	KKIDVLNLSIGGPDF
2	A11	DAELHIFRVFTNNQV	50	E11	DVLNLSIGGPDFMDH
3	A10	PLRRASLSLGSGFWH	51	E10	NLSIGGPDFMDHPFV
4	A9	RASLSLGSGFWHATG	52	E9	IGGPDFMDHPFVDKV
5	A8	LSLGSGFWHATGRHS	53	E8 -	PDFMDHPFVDKVWEL
6	A7	GSGFWHATGRHSSRR	54	E7	MDHPFVDKVWELTAN
7	A 6	FWHATGRHSSRRLLR	55	E6	PFVDKVWELTANNVI
8	A5	ATGRHSSRRLLRAIP	56	E5	DKVWELTANNVIMVS
9	A4	RHSSRRLLRAIPRQV	57	E4	WELTANNVIMVSAIG
10	A3	SRRLLRAIPRQVAQT	58	E3	TANNVIMVSAIGNDG
11	A2	LLRAIPROVAOTLOA	59	E2	NVIMVSAIGNDGPLY
12	A1	AIPROVAOTLOADVL	60	ĒĪ	MVSAIGNDGPLYGTJ.
13	B12	RQVAQTLQADVLWQM	61	F12	AIGNDGPLYGTLNNP
14	B11	AQTLQADVLWQMGYT	62	F11	NDGPLYGTLNNPADQ
15	B10	LQADVLWQMGYTGAN	63	F10	PLYGTLNNPADQMDV
16	B9	DVLWQMGYTGANVRV	64	F9	GTLNNPADQMDVIGV
17	B8	WOMGYTGANVRVAVF	65	F8	NNPADOMDVIGVGGI
18	B7	GYTGANVRVAVFDTG	66	F7	ADOMOVIGVGGIDFE
19	B6	GANVRVAVFDIG	67	F6	MDVIGVGGIDFEDNI
20	B5	VRVAVFDTGLSEKHP	68	F5	•
21	B4	AVFDTGLSEKHPHFK	69	F4	IGVGGIDFEDNIARF
22	B3	DTGLSEKHPHFKNVK	70	F3	GGIDFEDNIARFSSR
23	B2			F2	DFEDNIARFSSRGMT
		LSEKHPHFKNVKERT	71		DNIARFSSRGMTTWE
24	B1 C12	KHPHFKNVKERTNWT	72	F1 G12	ARFSSRGMTTWELPG
25	C11	HFKNVKERTNWTNER	73		SSRGMTTWELPGGYG
26	C10	NVKERTNWTNERTLD	74	G11	GMTTWELPGGYGRMK
27 .		ERTNWTNERTLDDGL	75	G10	TWELPGGYGRMKPDI
28	C9	NWTNERTLDDGLGHG	7,6	G9	LPGGYGRMKPDIVTY
29	C8	NERTLDDGLGHGTFV	77	G8	GYGRMKPDIVTYGAG
30	C7	TLDDGLGHGTFVAGV	78	G7	RMKPDIVTYGAGVRG
31	C6	DGLGHGTFVAGVIAS	7 9	G6	PDIVTYGAGVRGSGV
32	C5	GHGTFVAGVIASMRE	80	G5	VTYGAGVRGSGVKGG
33	C4	TFVAGVIASMRECQG	81	G4	GAGVRGSGVKGGCRA
34	C3	AGVIASMRECQGFAP	82	G3	VRGSGVKGGCRALSG
35	C2	IASMRECQGFAPDAE	83	G2	SGVKGGCRALSGTSV
36	C1	MRECQGFAPDAELHI	84	G1	KGGCRALSGTSVASP
37	D12	CQGFAPDAELHIFRV	85	H12	CRALSGTSVASPVVA
38	D11	FAPDAELHIFRVFTN	86	H11	LSGTSVASPVVAGAV
39	D10	DAELHI FRVFTNNQV	87	H10	TSVASPVVAGAVTLL
40	D9	LHIFRVFTNNQVSYT	88	Н9	ASPVVAGAVTLLVST
41	D8	FRVFTNNQVSYTSWF	89	Н8	VVAGAVTLLVSTVQK
42	D7	FTNNQVSYTSWFLDA	- 90	H7	GAVTLLVSTVOKREL
43	D6	NOVSYTSWFLDAFNY	91	Н6	TLLVSTVQKRELVNP
44	D5	SYTSWFLDAFNYAIL	92	Н5	VSTVOKRELVNPASM
45	D4	SWFLDAFNYAILKKI	93	Н4	VQKRELVNPASMKQA
46	D3	LDAFNYAILKKIDVL	94	Н3	RELVNPASMKOALIA
47	D2	FNYAILKKIDVLNLS	95	H2	VNPASMKQALIASAR
48	D1	AILKKIDVLNLSIGG	96	H1	ASMKQALIASARRLP
_		TIGGTD A TIMED T.G.G.	20	- ,	HOUNTADHKKTT

FIG. 6B

12/16

97	I12	IKDFHVYFRESRDAG
98	I11.	DAELHIFRVFTNNQV
99	110	KQALIASARRLPGVN
100	19	LIASARRLPGVNMFE
101	18	SARRLPGVNMFEQGH
102	17	RLPGVNMFEQGHGKL
103	16	GVNMFEQGHGKLDLL
104	15	MFEQGHGKLDLLRAY
105	I 4	QGHGKLDLLRAYQIL
106	13	GKLDLLRAYQILNSY
107	12	DLLRAYQILNSYKPQ
108	I1	RAYQILNSYKPQASL
109	J12	QILNSYKPQASLSPS
110	J11	NSYKPQASLSPSYID
111	J10	KPQASLSPSYIDLTE
112	J9	ASLSPSYIDLTECPY
113	J8	SPSYIDLTECPYMWP
114	J7	YIDLTECPYMWPYCS
115	J6	LTECPYMWPYCSQPI
116	J5	CPYMWPYCSOPIYYG

FIG. 6C

13/16

MKLVNIWLLLLVVLLCGKKHLGDRLEKKSFEKAPCPGCSHLTLKVEFSSTVVEYEYIVAFNGYFT AKARNSFISSALKSSEVDNWRIIPRNNPSSDYPSDFEVIQIKEKQKAGLLTLEDHPNIKRVTPQR KVFRSLKYAESDPTVPCNETRWSQKWQSSRPLRRASLSLGSGFWHATGRHSSRRLLRAIPRQVAQ TLQADVLWQMGYTGANVRVAVFDTGLSEKHPHFKNVKERTNWTNERTLDDGLGHGTFVAGVIASM RECOGFAPDAELHIFRVFTNNQVSYTSWFLDAFNYAILKKIDVLNLSIGGPDFMDHPFVDKVWEL TANNVIMVSAIGNDGPLYGTLNNPADQMDVIGVGGIDFEDNIARFSSRGMTTWELPGGYGRMKPD IVTYGAGVRGSGVKGGCRALSGTSVASPVVAGAVTLLVSTVQKRELVNPASMKQALIASARRLPG VNMFEQGHGKLDLLRAYQILNSYKPQASLSPSYIDLTECPYMWPYCSQPIYYGGMPTVVNVTILN GMGVTGRIVDKPDWQPYLPQNGDNIEVAFSYSSVLWPWSGYLAISISVTKKAASWEGIAQGHVMI TVASPAETESKNGAEQTSTVKLPIKVKIIPTPPRSKRVLWDQYHNLRYPPGYFPRDNLRMKNDPL DWNGDHIHTNFRDMYQHLRSMGYFVEVLGAPFTCFDASQYGTLLMVDSEEEYFPEEIAKLRRDVD NGLSLVIFSDWYNTSVMRKVKFYDENTRQWWMPDTGGANIPALNELLSVWNMGFSDGLYEGEFTL ANHDMYYASGCSIAKFPEDGVVITQTFKDQGLEVLKQETAVVENVPILGLYQIPAEGGGRIVLYG DSNCLDDSHRQKDCFWLLDALLQYTSYGVTPPSLSHSGNRQRPPSGAGSVTPERMEGNHLHRYSK VLEAHLGDPKPRPLPACPRLSWAKPQPLNETAPSNLWKHQKLLSIDLDKVVLPNFRSNRPQVRPL SPGESGAWDIPGGIMPGRYNQEVGQTIPVFAFLGAMVVLAFFVVQINKAKSRPKRRKPRVKRPQL MOOVHPPKTPSV

FIG. 7

			30	40	50
	. 10	20			
	AQSVPYGVSQ-IKAPALH	SQGYTGSNVI	KVAVIDSGIDS	: S	GA 4
NASE					
SBT	AQSVPWGISR-VQAPAAH -RAIPRQVAQTLQADVLW	QMGTTGARV	KVAVI DIGBSE	,	
	60 -	70	80	90	100
		HVAGTVAAL	NNSIGVLGVAP	SASLYAVKVI	LGA !
		TOVALET LAAL	ииэтелпалиг		
NASE BT	SFVPGEPST-QDGNGRGI NWTNERTLDDGLGHGT	FVAGVIASM	RECQGFAF	PDAELHIFRVI	FTN :
	110	120	130	140	150
		NNMDVINMS	LGGPS-GSAAI	LKAAVDKAVA	SGV
		INCMHVANLS	LUSPS-PSATI	1 F () W \ M D W Y D :	<i>1</i> /
NASE BT	NQVSYTSWFLDAFNYAIL	KKIDVLNLS	IGGPDFMDHPF	FVDKVWELTAI	NNV
	160	170	180	190	200
		GYPGKYPSV	IAVGAVDSSNO	QRASFSSVGP:	EL-
	CC1	CVDARYANA	MAVGATDUNNI	NKASESQIGA	G D
inase Bt	LVVAASGNSGAGSI IMVSAIGNDGPLYGTI	VDMQDAGNN	IGVGGIDFED	NIARFSSRGM	TTW
	210	220	230	240	250
_	DUMBEC	SIOSTLPGN	KYGAYNGTSM	ASPHVAGAAA	LIL
	2117061	1 N V O S T Y P G S	TYASLNGTSM	ATPHVAGAAA	PAK .
inase SBT	ELPGGYGRMKPDIVTYG	GVRGSGVKG	GCRALSGTSV	ASPVVAGAVT	LLV
	260	270	280	290	
•	SKHPNWTNTQ VRSS	LENTTTKLGD	SFYYGKGLIN	VQAAAQ	
INASE	T P N H	r. KNTATSLGS	TNLYGSGLVN	ALAAIR	
SBT	STVQKRELVNPASMKQA	LIASARRLPG	VNMFEQG	n G K L	

FIG. 8

FIG. 10

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/53038 (11) International Publication Number: **A3** C12N 15/57, 15/63, 9/54, 1/21 (43) International Publication Date: 21 October 1999 (21.10.99) (21) International Application Number: PCT/US99/08253 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, (22) International Filing Date: 14 April 1999 (14.04.99) GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, (30) Priority Data: SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, 09/060,872 15 April 1998 (15.04.98) US ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (71) Applicant: GENENCOR INTERNATIONAL, INC. [US/US]; 4 Cambridge Place, 1870 South Winton Road, Rochester, (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). NY 14618 (US). (72) Inventors: ESTELL, David, A.; 248 Woodbridge Circle, San Published Mateo, CA 94403 (US). HARDING, Fiona, A.; 772 Lewis With international search report. Street, Santa Clara, CA 95050 (US). Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (74) Agent: STONE, Christopher, L.; Genencor International, Inc., 925 Page Mill Road, Palo Alto, CA 94304-1013 (US). (88) Date of publication of the international search report: 10 February 2000 (10.02.00) (54) Title: MUTANT PROTEINS HAVING LOWER ALLERGENIC RESPONSE IN HUMANS AND METHODS FOR CONSTRUCT-ING, IDENTIFYING AND PRODUCING SUCH PROTEINS (57) Abstract The present invention relates to a novel improved protein mutant which produces low allergenic response in humans compared to the parent of that mutant. Specifically, the present invention comprises neutralizing or reducing the ability of T-cells to recognize epitopes and thus prevent sensitization of an individual to the protein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

International Application No PCT/US 99/08253

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/57 C12 C12N9/54 C12N15/63 C12N1/21 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ^a Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P.X WO 98 20116 A (NOVONORDISK AS) 1-8 14 May 1998 (1998-05-14) * see claims 13-17* the whole document X WO 96 34946 A (NOVONORDISK AS) 1-11 7 November 1996 (1996-11-07) * see claims 13-15 * the whole document Υ WO 92 10755 A (NOVONORDISK AS) 1-11 25 June 1992 (1992-06-25) Х the whole document 13.14 EP 0 006 638 A (NOVO INDUSTRI AS) 1-11 9 January 1980 (1980-01-09) the whole document -/-l xl Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. *P* document published prior to the international filing date but later than the priority date claimed "3" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 17 0. 12.99 30 November 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hillenbrand, G Fax: (+31-70) 340-3016

11

International Application No
PCT/US 99/08253

		PC1/US 99/08253
· · · · · · · · · · · · · · · · · · ·	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GUNDLACH B R ET AL: "Determination of T cell epitopes with random peptide libraries" JOURNAL OF IMMUNOLOGICAL METHODS,NL,ELSEVIER SCIENCE PUBLISHERS B.V.,AMSTERDAM, vol. 192, no. 1, page 149-155 XP004020829 ISSN: 0022-1759	12
	abstract	·
Y	WO 97 30148 A (NOVONORDISK AS ;PRENTOE ANNETTE (DK); BISGAARD FRANTZEN HENRIK (DK) 21 August 1997 (1997-08-21) the whole document	13
Y	WO 96 16177 A (NOVONORDISK AS ;BJOERNVAD MADS ESKELUND (DK); PRENTOE ANNETTE (DK)) 30 May 1996 (1996-05-30) the whole document	13
·		
		·
	•	
	·	

International application No. PCT/US 99/08253

Boxi	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. 🗓	Claims Nos.: 15-16 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: The subject-matter of claims 15-16 is so broadly and imprecisely drafted with respect to the claimed proteins that no meaningful search could be carried out.
3.	Claims Nos.; because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	emational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

International Application No. PCT/US 99 /08253

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 15-16

The subject-matter of claims 15-16 is so broadly and imprecisely drafted with respect to the claimed proteins that no meaningful search could be carried out.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

International Application No. PCT/US 99/08253

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-11

The subject-matter of claims 1-11 is directed to specific protease (subtilisin) variants, a DNA encoding said variants, an expression vector encoding said DNA, and a cleaning composition or animal feed comprising said protease (subtilisin) variants.

2. Claim: 12

The subject-matter of claim 12 is directed to a method for determining T-cell epitopes in humans.

3. Claims: 13-14

The subject-matter of claims 13-14 is directed to a method of reducing the allergenicity of a protein.

The subject-matter of the present set of claims is not so linked together by a specific technical feature as to form a single general inventive concept.

Information on patent family members

International Application No PCT/US 99/08253

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9820116 A	14-05-1998	AU 4773197 A EP 0932667 A	29-05-1998 04-08-1999
WO 9634946 A	07-11-1996	AU 5644896 A BR 9608149 A CA 2219949 A CN 1183800 A EP 0824585 A JP 11504805 T US 5837517 A	21-11-1996 09-02-1999 07-11-1996 03-06-1998 25-02-1998 11-05-1999 17-11-1998
WO 9210755 A	25-06-1992	AT 170630 T AU 9052891 A CA 2095852 A DE 69130113 D DE 69130113 T EP 0561907 A FI 932561 A JP 6502994 T US 5766898 A	15-09-1998 08-07-1992 06-06-1992 08-10-1998 12-05-1999 29-09-1993 04-06-1993 07-04-1994 16-06-1998
EP 0006638 A	09-01-1980	BE 877435 A BR 7904209 A CA 1142105 A CH 642395 A DE 2926808 A DK 281579 A,B, ES 482133 A FR 2430453 A GB 2024830 A,B IT 1162338 B JP 1241461 C JP 55039794 A JP 59013187 B MX 6034 E NL 7905172 A SE 447661 B SE 7905828 A US 4266031 A YU 161379 A	03-01-1980 17-06-1980 01-03-1983 13-04-1984 17-01-1980 05-01-1980 01-04-1980 01-02-1980 25-03-1987 26-11-1984 19-03-1980 28-03-1984 04-10-1984 08-01-1980 01-12-1986 05-01-1980 05-05-1981 30-04-1984
WO 9730148 A	21-08-1997	AU 1540697 A CA 2242488 A CN 1211278 A EP 0894128 A	02-09-1997 21-08-1997 17-03-1999 03-02-1999
WO 9616177 A	30-05-1996	AU 3924095 A EP 0793726 A JP 10509324 T	17-06-1996 10-09-1997 14-09-1998

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.