# Introduction to Relational Databases, Data Modeling and Database Management

**ALY 6030- Week2** 

Dr. Behboudi –Northeastern University

### Past → Present → Future







## Have you experienced this?



## **Motivating questions**

- Why use relational databases to store data?
- What is the best way to store our data within a relational database?

### **Example: Excel spreadsheet**

Consider the spreadsheet, Buildings.xlsx:

| ID  | Nickname | FullName                                 | StreetNumber | StreetName    |
|-----|----------|------------------------------------------|--------------|---------------|
| 368 | Kendall  | Red Kendall Building                     | 100          | Main St.      |
| 379 | Central  | Green Central Building 200 Main St.      |              | Main St.      |
| 346 | Porter   | Purple Porter Building 103 Center Ave.   |              | Center Ave.   |
| 352 | Davis    | Blue Davis Building 105 Center Ave.      |              | Center Ave.   |
| 489 | Alewife  | Orange Alewife Building 569 Broadway Ave |              | Broadway Ave. |
| 412 | Park     | Yellow Park Building 613 Broadway Av     |              | Broadway Ave. |

- This sheet stores information about the concept of a building within some kind of company
- This would be a table in a relational database

### Relational model definitions

- Entity: object, concept or event
- Attribute (column): a characteristic of an entity
- Record (row): the specific characteristics or attribute values for one example of an entity
- Entry: the value of an attribute for a specific record
- Table: a collection of records
- Database: a collection of tables

## Single table example

**Entity:** Buildings

Park building

**Table:** A collection of records about the entity (buildings)

**-{ Buildings** 

| Record:                       | ID  | Nickname | FullName                | StreetNumber | StreetName    |
|-------------------------------|-----|----------|-------------------------|--------------|---------------|
| Information                   | 368 | Kendall  | Red Kendall Building    | 100          | Main St.      |
| about building                | 379 | Central  | Green Central Building  | 200          | Main St.      |
| 346 -{                        | 346 | Porter   | Purple Porter Building  | 103          | Center Ave.   |
|                               | 352 | Davis    | Blue Davis Building     | 105          | Center Ave.   |
| _                             | 489 | Alewife  | Orange Alewife Building | 569          | Broadway Ave. |
| Entry: Value -{ of ID for the | 412 | Park     | Yellow Park Building    | 613          | Broadway Ave. |

Attribute: FullName— the full names of the buildings

**Database:** dataMedical, includes tables such as: Employees, Buildings, Departments, Patients

## Check your knowledge Credit card database

#### What are the entities in this credit card database?

#### Records

Customer ID

**TransactionStatus** 

CreditCard ID

CustomerContactEmail

**TransactionAmount** 

CreditCardNumber

DateExpired

CreditLimit

InterestRate

Transaction ID

MerchantCategory

TransactionType

**DateIssued** 

TransactionLocation

Merchant ID

CustomerCompanyName

MerchantName

**CreditCards** 

**Customers** 

**Transactions** 

**Merchants** 

## Check your knowledge Medical database

#### Identify which are entities and which are attributes:

- Appointments
- Patient First Name
- Employee Email Address
- Patient Number
- Prescriptions
- Street Name
- Type of Department
- Department Floor
- Building Number
- Medical Notes
- Drug Count
- Healthcare Plans
- Prescription Number
- Employee Phone Extension
- Department Number
- Appointment Cost
- Refills
- Drug Strength Unit
- Hospital Center ID

- Patient Last Name
- Department Name
- Town
- Department Status
- State
- Building Name
- Street Number
- Appointment Room
- Employees
- Out Of Pocket To Date
- Job Title
- Drug Cost
- Patients
- Drug Copay
- Building Nickname
- HSA eligible
- Department
- Appointment Number
- Text of notes

- Employee First Name
- Employee ID
- Center Name
- Employee Last Name
- Zip Code
- Healthcare Plan Number
- Healthcare Plan Tier
- Note Number
- Employee Status
- Center Nickname
- Hospital Centers
- Buildings
- Max Out Of Pocket
- Appointment Length
- Drug Strength
- Appointment Copay
- Appointment Date and Time
- Drug Name
- Drug Unit

## Check your knowledge Medical database

#### Identify which are entities and which are attributes:

- Appointments (E)
- Patient First Name
- Employee Email Address
- Patient Number
- Prescriptions (E)
- Street Name
- Type of Department
- Department Floor
- Building Number
- Medical Notes (E)
- Drug Count
- Healthcare Plans (E)
- Prescription Number
- Employee Phone Extension
- Department Number
- Appointment Cost
- Refills
- Drug Strength Unit
- Hospital Center ID

- Patient Last Name
- Department Name
- Town
- Department Status
- State
- Building Name
- Street Number
- Appointment Room
- Employees (E)
- Out Of Pocket To Date
- Job Title
- Drug Cost
- Patients (E)
- Drug Copay
- Building Nickname
- HSA eligible
- Departments (E)
- Appointment Number
- Text of notes

- Employee First Name
- Employee ID
- Center Name
- Employee Last Name
- Zip Code
- Healthcare Plan Number
- Healthcare Plan Tier
- Note Number
- Employee Status
- Center Nickname
- Hospital Centers (E)
- Buildings (E)
- Max Out Of Pocket
- Appointment Length
- Drug Strength
- Appointment Copay
- Appointment Date and Time
- Drug Name
- Drug Unit

### **Client-Server Architecture**

- Client is for the user
  - User (analyst or database administrator) opens an application to run some queries or interact with the database
- Server is managed by the administrator
  - Stores the data
  - Manages connections to the data
    - Multiple clients can log into server and access data, server determines level of access
- Abstraction, performance, consistency

## Why do we need data models to design a database?

- Data models help specify each entity in a table in a standardized way
- Data models allow administrator to impose rules, constraints, and relationships on the data that are stored
  - Enables users to understand business rules and effectively process and analyze data
- Acts as a schematic for building the database

### Rules of the relational data model

- Each attribute (column) has a unique name within a table
- All entries or values in the attribute are examples of that attribute
- Each record (row) is unique in a good database

#### **Buildings**

| ID  | Nickname | FullName                 | StreetNumber | StreetName    |
|-----|----------|--------------------------|--------------|---------------|
| 368 | Kendall  | Red Kendall Building     | 100          | Main St.      |
| 379 | Central  | Green Central Building   | 200          | Main St.      |
| 346 | Porter   | Purple Porter Building 1 |              | Center Ave.   |
| 352 | Davis    | Blue Davis Building      |              | Center Ave.   |
| 489 | Alewife  | Orange Alewife Building  | 569          | Broadway Ave. |
| 412 | Park     | Yellow Park Building     | 613          | Broadway Ave. |

### What makes a good data model?

- Complete: Is all necessary data represented?
- No redundancy: Is the same fact recorded more than once?
- Enforcement of rules: How accurately does it enforce business rules?

## How to draw an entityrelationship diagram (ERD)

- ERD or entity-relationship diagram is a schematic of the database
- Entities are drawn as boxes
- Relationships between entities are indicated by lines between these entities
- Cardinality describes the expected number related occurrences between the two entities in a relationship and is shown using crow's foot notation

Relationships + cardinality = business rules

## Check your knowledge Credit card database

Which attributes are associated with each entity?

**CreditCards** 

**Transactions** 

**Customers** 

**Merchants** 

#### **Customers**

ID CompanyName ContactEmail

#### **CreditCards**

ID

**CCNumber** 

Issued

**Expiration** 

Limit

InterestRate

#### **Transactions**

ID

**Amount** 

Status

Type

Location

#### Merchants

ID

Name

Category

## Check your knowledge

#### Identify which attributes belong with which entity

- Appointments (E)
- Patient First Name
- Employee Email Address
- Patient Number
- Prescriptions (E)
- Street Name
- Type of Department
- Department Floor
- Building Number
- Medical Notes (E)
- Drug Count
- Healthcare Plans (E)
- Prescription Number
- Employee Phone Extension
- Department Number
- Appointment Cost
- Refills
- Drug Strength Unit
- Hospital Center ID

- Patient Last Name
- Department Name
- Town
- Department Status
- State
- Building Name
- Street Number
- Appointment Room
- Employees (E)
- Out Of Pocket To Date
- Job Title
- Drug Cost
- Patients (E)
- Drug Copay
- Building Nickname
- HSA eligible
- Departments (E)
- Appointment Number
- Text of notes

- Employee First Name
- Employee ID
- Center Name
- Employee Last Name
- Zip Code
- Healthcare Plan Number
- Healthcare Plan Tier
- Note Number
- Employee Status
- Center Nickname
- Hospital Centers (E)
- Buildings (E)
- Max Out Of Pocket
- Appointment Length
- Drug Strength
- Appointment Copay
- Appointment Date and Time
- Drug Name
- Drug Unit



















## ERD for Patients and Prescriptions

Relationship: There is a relationship between



**Cardinality**: Exactly one **Cardinality**: Many

- Business rules defined through relationships and cardinality:
  - There is exactly one patient for each prescription
  - Each patient may have zero, one or many prescriptions (shortened to zero or many)

### Cardinality – crow's foot notation



## Primary and foreign keys

- Primary key: one or more attributes that uniquely identify a record – Buildings.ID and MedicalCenters.ID
- Primary key of the independent or parent entity type is maintained as a non-key attribute in the related, dependent or child entity type, this is known as the foreign key



## Foreign keys



Duildings

|   |     |              |     | Buildings               |                   |
|---|-----|--------------|-----|-------------------------|-------------------|
|   | Med | dicalCenters | ID  | FullName                | MedicalCenters_ID |
| Ш | D   | Nickname     | 368 | Red Kendall Building    | 10                |
|   | 10  | River North  | 379 | Green Central Building  | 10                |
|   | 14  | River South  | 346 | Purple Porter Building  | 10                |
|   |     |              | 352 | Blue Davis Building     | 10                |
|   |     |              | 489 | Orange Alewife Building | 14                |
|   |     |              |     |                         |                   |

412 Yellow Park Building

- Database requires a valid Medical Center ID when Building is added.
- ID is the unique identifier of Buildings; MedicalCenters\_ID is not needed as part of the Buildings primary key

## dataMedical cardinality and foreign keys

- On the next slide there is a data model for the dataMedical group
- Draw relationships, indicating cardinality and select the appropriate foreign keys to:
  - Captures underlying rules or logic of the business
  - Provides information about how the database should be structured





















### **Domain validation entities**

- Also called pick lists or validation lists
- Used to standardize data in a database

|       | Employees |          |          |  | Dor | main validation | en       |
|-------|-----------|----------|----------|--|-----|-----------------|----------|
| ID    | FirstName | LastName | Status   |  |     | ValidEmpStatus  | <u> </u> |
| 94165 | Linda     | Marshall | Current  |  |     | Current         |          |
| 94312 | Timothy   | Brown    | Current  |  |     | Previous        |          |
| 94323 | Diana     | West     | Current  |  |     | <b>→</b>        | 1        |
| 94122 | Courtney  | Ford     | Current  |  |     |                 |          |
| 94324 | Dale      | Thompson | Previous |  |     |                 |          |

- Domain validation entity: table with a single attribute, enforces values of attribute in related table
- Requires that any employee status type must be on a list of existing valid employee statuses in the table "ValidEmpStatus"

## Is there always only one solution for a data model?

- Several solutions may exist
- These often depend on the application requirements or business needs

## Many to many relationships

- What if many employees can be associated with each appointment
- How can we get information a given appointment from the database?



- Associative table (entity), aka junction table
- Primary key of parent is used in foreign and primary key of child

## SQL (Structured Query Language) Overview

- Not a complete language like Java or C++
  - SQL is sub-language of about 30 statements
  - SQL has several inconsistencies; NULLs are problematic
- Variations among SQL distributions
  - Error codes
  - Data types supported
  - Joins
  - Syntax

### Database creation workflow

- 1. Create the data model.
- 2. Create a new database using the selected database software.
- 3. Create the tables within the new database.
- Insert data into the database.
- Write queries to retrieve a subset of data from the database.

### Creating the credit card database



- Step 1 is complete
- Step 2: Create a new database using the selected database software. (name the database with your username first, if using the Level Server)

```
DROP DATABASE IF EXISTS username_creditcardco; CREATE DATABASE username_creditcardco; USE username_creditcard;
```

## Numeric data types in SQL

| Numeric<br>Data Types | Description                                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------|
| INT                   | 4-Byte integer                                                                                                 |
| BIGINT                | 8-Byte integer                                                                                                 |
| DECIMAL               | Number with fixed number of digits before and after the decimal point e.g. DECIMAL(7,2): -99999.99 to 99999.99 |
| FLOAT                 | Single-precision floating-point number                                                                         |
| DOUBLE                | Double-precision floating-point number                                                                         |
| BIT                   | Bit value storage                                                                                              |

Reference: https://dev.mysql.com/doc/refman/5.7/en/numeric-types.html

## String/text data types in SQL

| String/Text Data Types | Description                                                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| CHAR                   | Fixed-length string                                                                                                   |
| VARCHAR                | Variable-length string                                                                                                |
| MEDIUMTEXT<br>LONGTEXT | Variable-length strings, with greater max length than VARCHAR MEDIUMTEXT - maximum: 16MB LONGTEXT - maximum size: 4GB |

Reference: https://dev.mysql.com/doc/refman/5.7/en/string-types.html

## Date data types in SQL

| Date and Time<br>Data Types | Description                                                                                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE                        | A date stored in 'YYYY-MM-DD' format                                                                                                                              |
| TIME                        | A time stored in 'HH:MM:SS' format, can be used for elapsed time as well as time of day data; put another way, this data type is not limited to the 24-hour cycle |
| DATETIME                    | A date and time stored in 'YYYY-MM-DD HH:MM:SS' format                                                                                                            |
| TIMESTAMP                   | A date and time stored in 'YYYY-MM-DD HH:MM:SS' UTC format                                                                                                        |
| YEAR                        | A year stored in 'YYYY' format                                                                                                                                    |

Reference: https://dev.mysql.com/doc/refman/5.7/en/date-and-time-

## Creating the customers table

- 3. Create the tables within the new database.
- Insert data into the database.

```
USE creditcardco;
```

```
CREATE TABLE Customers (ID INT, CompanyName VARCHAR(255), ContactEmail VARCHAR(255));
```

ALTER TABLE Customers ADD PRIMARY KEY (ID);

-- OR

DROP TABLE IF EXISTS Customers;

CREATE TABLE Customers (ID INT NOT NULL, CompanyName VARCHAR(255) NOT NULL, ContactEmail VARCHAR(255), PRIMARY KEY (ID));

## Walk through the CREATE and INSERT script together

- Check the database name in the script, and modify it to username\_databasename
- Review the following:
  - INSERT
  - UPDATE
  - DELETE
  - ALTER
  - CREATION OF PRIMARY KEYS
  - CREATION OF FOREING KEYS (Script vs. Workbench GUI)

## Summary

- The data model describes the data that is stored in the database and how to access it
- Each record is unique in a good database
- Data models enable users to understand business rules and effectively process and analyze data
- Business rules are imposed on the database through relationships and cardinality

## Introduction to Relational Databases and Data Modeling

How can these skills help with data analysis?

