## Relatorio

Karine Piacentini Coelho da  $\mathrm{Costa}^1$ 

March 21, 2019

 $<sup>^{1}</sup> karinepcdc@ufrn.br\\$ 

# Contents

| 1 | Intr        | rodução                                                    | 2  |  |
|---|-------------|------------------------------------------------------------|----|--|
| 2 | Metodologia |                                                            |    |  |
|   | 2.1         | Características técnicas                                   | 3  |  |
|   | 2.2         | Algoritmos                                                 |    |  |
|   |             | 2.2.1 Busca linear                                         | 9  |  |
|   |             | 2.2.2 Busca binária                                        | 4  |  |
|   |             | 2.2.3 Busca ternária                                       | 6  |  |
|   |             | 2.2.4 Jump search                                          | 3  |  |
|   |             | 2.2.5 Busca de Fibonacci                                   | Ć  |  |
|   | 2.3         | Cenários das simulações                                    | 11 |  |
|   | 2.4         | metodologia                                                | 11 |  |
|   | 2.1         | 2.4.1 Simulações de tempo de execução                      | 11 |  |
|   |             | 2.4.2 Simulações do número de passos da operação dominante | 11 |  |
|   |             | 2.4.2 Simulações do número de passos da operação dominante | 11 |  |
| 3 | Res         | ultados                                                    | 12 |  |
|   | 3.1         | Busca linear                                               | 12 |  |
|   | 3.2         | Busca binária                                              | 13 |  |
|   | 3.3         | Busca ternária                                             | 14 |  |
|   | 3.4         | Jump search                                                | 16 |  |
|   |             | Busca de Fibonacci                                         | 17 |  |

# Chapter 1

# Introdução

Esse relatório apresenta uma análise de complexidade empírica para diferentes algoritmos de busca. Problemas de busca em um arranjo sequencial se resumem em procurar um dado valor chave k em um conjunto de valores previamente armazenados em um arranjo V passado como entrada do problema. Caso o valor seja encontrado neste arranjo, então o programa deve retornar o índice da localização de k em V, caso contrário deve retornar -1. Este estudo está interessado em problemas de busca em que os elementos do arranjo estão ordenados em *ordem crescente* e são analisados apenas o pior cenário da busca. São considerados os seguintes algoritmos de busca: busca linear; busca binária (versões iterativas e recursiva); busca ternária (versões iterativas e recursiva);  $jump\ search$ ; e busca de Fibonacci.

O primeiro objetivo desse estudo é determinar qual dos dois algoritmos lineares selecionados são mais eficientes (a busca linear ou a *jump search*). O segundo objetivo é determinar qual implementação é mais eficiente, a recursiva ou iterativa. O terceiro, é determinar como o tamanho da partição influência nos algoritmos de busca não lineares. O quarto é determinar a partir de que momento algoritmos de classe de complexidade diferentes se diferenciam, comparando a busca linear com a binária. Por fim, o quinto objetivo procura determinar se existe diferentes categorias de cenários de pior caso para o algoritmo de busca de Fibonacci.

# Chapter 2

# Metodologia

Nesta seção descrevemos os materiais e a metodologia utilizados para obteção dos resultados apresentados no capítulo 3.

#### 2.1 Características técnicas

Os algorítmos de buscas foram implementados na linguagem C++ e o compilador utilizado foi o g++ (tipo e versão????). O computador onde as simulações foram realizadas possui as seguintes características:

- MacBook Pro (2014)

- Processador: 2.5 Ghz Intel Core i7

- memória: 16 GB 1600 MHz DDR3

- Placa mãe: ????

- Sistema operaciona: (tipo e versão????)

### 2.2 Algoritmos

Dado um arranjo sequencial V, cujos elementos estão ordenado em *ordem crescente* (sem repetição) e um valor chave k, os algoritmos aqui descritos tem como objetivo retornar o índice da localização de k em V, caso este valor não esteja presente no arranjo, devem retornar -1. Os códigos utilizados no estudo baseados nesses algoritmos encontram-se no apêndice 1. ?????

#### 2.2.1 Busca linear

A busca linear varre o arranjo do primeiro ao último elemento comparando, a cada passo da varredura, o valor selecionado no arranjo com a chave procurada. Se encontrar

a chave interrompe a busca e retorna o índice atual, senão, a varredura continua até o fim do arranjo. Seu pior caso por tanto, é quando o valor procurado é maior ou igual ao último elemento do arranjo.

```
Algoritmo 1: Busca linear
```

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
  Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
  /* Precondição: l \leq r; l, r \geq 0; V em ordem crescente.
                                                                                */
1 Função buscaLin(V: arranjo de inteiros; l: inteiro; r: inteiro; k:
   inteiro): inteiro
     var i: inteiro
\mathbf{2}
     para i \leftarrow l até r faça
3
         se V[i] == k então
4
            retorna i
5
         fim
6
     fim
     retorna -1
9 fim
```

#### 2.2.2 Busca binária

Na busca binária, particiona-se o arranjo em dois, selecionando o elemento do meio. Caso este seja igual ao valor procurado, interrompe-se a busca retornado o valor do índice encontrado, caso contrário, uma comparação é feita a fim de determinar se o valor é maior ou menor do que o elemento selecionado, determinando assim em qual metade deve-se fazer a busca novamente. A nova busca repete o mesmo procedimento descrito anteriormente até que o elemento seja encontrado ou, caso a partição analizada seja igual a zero e o valor não tiver sido encontrado, o algoritmo retorna -1. O pior caso é aquele em que k não pertence ao arranjo ou é o último elemento buscado.

#### Algoritmo 2: Busca binária iterativa

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
  Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
   /* Precondição: l \le r; l, r \ge 0; V em ordem crescente.
                                                                              */
1 Função buscaBin_it(V: arranjo de inteiro; l: inteiro; r: inteiro; k:
    inteiro): inteiro
      var m: inteiro /* último valor da primeira metade do arranjo
 \mathbf{2}
 3
      enquanto r \geq l faça
 4
         m \leftarrow (l+r)/2
         se k == V[m] então
 6
             retorna m
         senão se k < V[m] então
 8
            r \leftarrow m-1
 9
         senão
10
             l \leftarrow m+1
11
         fim
12
      fim
13
      retorna -1
15 fim
```

Algoritmo 3: Busca binária recursiva

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
   Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
   /* Precondição: l \leq r; l, r \geq 0; V em ordem crescente.
                                                                              */
1 Função buscaBin_rec(V: arranjo de inteiros; l: inteiro; r: inteiro; k:
    inteiro): inteiro
 \mathbf{2}
      var m: inteiro /* último valor da primeira metade do arranjo
 3
      se r < l então
 4
         retorna -1
 5
      senão
 6
         m \leftarrow (l+r)/2
         se k == V[m] então
 8
            {f retorna}\; m
 9
         senão se k < V[m] então
10
             retorna buscaBin_rec(V, l, m-1, k)
11
         senão
12
             retorna buscaBin_rec(V, m+1, r, k)
13
         fim
14
      fim
15
16 fim
```

#### 2.2.3 Busca ternária

A busca ternário se assemelha a busca binária, com a diferença que divide o arranjo em 3 partes, selecionando o maior elemento do primeiro terço do arranjo  $t_1$  e o maior do segundo terço  $t_2$ . Em seguida, verifica-se se algum desses elementos é o valor procurado k. Caso seja, retorna o índice do elemento no arranjo, caso não, realiza-se o mesmo procedimento no terço que possivelmente contém o valor procurado, ou seja, se  $k < t_1$ , faz-se a busca ternária no primeiro terço, se  $t_1 < k < t_2$  busca-se no segundo terço, senão a busca é feita no último terço. Novamente o pior caso é aquele em que k não pertence ao arranjo ou é o último elemento buscado.

#### Algoritmo 4: Busca ternária iterativa

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
   Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
   /* Precondição: l \leq r; l, r \geq 0; V em ordem crescente.
                                                                                          */
1 Função buscaTer_it(V: arranjo de inteiros; l: inteiro; r: inteiro; k:
    inteiro): inteiro
       var t_1: inteiro /* último valor do primeiro terço do arranjo
                                                                                          */
 \mathbf{2}
       var t_2: inteiro /* último valor do segundo terço do arranjo
                                                                                          */
 3
 4
       enquanto r \geq l faça
 \mathbf{5}
           t_1 \leftarrow l + (r - l)/3
 6
           t_2 \leftarrow r - (r - l)/3
 7
 8
           \mathbf{se} \ k == \mathsf{V}[t_1] \ \mathbf{ent\tilde{ao}}
 9
             retorna t_1
10
           senão se k == V[t_2] então
11
              retorna t_2
12
           senão se k < V[t_1] então
13
              r \leftarrow t_1 - 1
14
           senão se k < V[t_2] então
15
              l \leftarrow t_1 + 1
16
              r \leftarrow t_2 - 1
17
           senão
18
              l \leftarrow t_2 + 1
19
           fim
20
       fim
\mathbf{21}
       retorna -1
22
23 fim
```

Algoritmo 5: Busca ternária recursiva

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
   Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
   /* Precondição: l \leq r; l, r \geq 0; V em ordem crescente.
                                                                                  */
1 Função buscaTer_rec(V: arranjo de inteiros; l: inteiro; r: inteiro; k:
    inteiro): inteiro
 \mathbf{2}
       \mathbf{var}\ t_1: \mathbf{inteiro}\ /*\ último valor do primeiro terço do arranjo
                                                                                  */
      var t_2: inteiro /* último valor do segundo terço do arranjo
                                                                                  */
 3
 4
      se r < l então
 5
          retorna -1
 6
      senão
          t_1 \leftarrow l + (r - l)/3
 8
          t_2 \leftarrow r - (r - l)/3
 9
10
          se k == V[t_1] então
11
             retorna t_1
12
          senão se k == V[t_2] então
13
              retorna t_2
14
          senão se k < V[t_1] então
15
             retorna buscaTer_rec(V, l, t_1 - 1, k)
16
          senão se k < V[t_2] então
17
              retorna buscaTer_rec(V,t_1+1,t_2-1,k)
18
19
              retorna buscaTer_rec(V,t_2+1,r,k)
20
          fim
21
      _{\rm fim}
22
23 fim
```

### 2.2.4 Jump search

Na Jump search, uma varredura em saltos de tamanho m (0 < m < n, com n o tamanho do vetor) é realizada. Na primeira iteração, compara-se o m-ésimo elemento ao valor buscado, caso seja igual, retorna-se m, se for menor, uma busca linear é realizada neste bloco do arranjo, caso contrário, a varredura passa para o (m+1)-ésimo elemento onde se procede da mesma maneira. Caso a busca chegue ao último elemento do vetor sem encontrar o valor chave, o valor de retorno é -1. Aqui o pior caso é quando o valor procurado é maior ou igual ao último elemento do arranjo.

#### Algoritmo 6: Jump search

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
   Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
   /* Precondição: l \leq r; l, r \geq 0; V em ordem crescente.
                                                                                   */
1 Função buscaJump(V: arranjo de inteiros; l: inteiro; r: inteiro; k:
    inteiro): inteiro
      var m: inteiro
 \mathbf{2}
      var p: inteiro /* tamanho do salto
                                                                                   */
 3
 4
      p \leftarrow \sqrt{r-l+1}
 \mathbf{5}
      m \leftarrow l + p
 6
      enquanto m \leq r faça
          se k == V[m] então
 8
              retorna m
 9
          senão se k < V[m] então
10
              retorna buscaLin(V, m-p, m-1, k)
11
          fim
12
          m \leftarrow m + p
13
      _{
m fim}
14
      se m > r e V[r] > k então
15
          retorna buscaLin(V, m - p, r, k)
16
      _{
m fim}
17
      retorna -1
19 fim
```

#### 2.2.5 Busca de Fibonacci

A busca de Fibonacci procede da mesma forma que a busca binária, mas particiona o arranjo em duas partes de tamanho diferente. O tamanho da primeira partição é o menor número da série de Fibonacci F(i) tal que o tamanho do arranjo n é maior ou igual a Fib(i+2). O pior caso é aquele em que k não pertence ao arranjo ou é o último elemento buscado. ????

#### Algoritmo 7: Busca de Fibonacci

```
Entrada: Vetor V, chave k e limites de busca esquerdo l e direito r (inclusive).
   Saída: Índice da ocorrência de k em V; ou -1 caso não exista k em V.
   /* Precondição: l \leq r; l, r \geq 0; V em ordem crescente.
                                                                                         */
1 Função buscaBin_it(V: arranjo de inteiros; l: inteiro; r: inteiro; k:
    inteiro): inteiro
 2
       var size: inteiro
       var i: inteiro
 3
       var i_{fib1}: inteiro
 4
       var fib1: inteiro
       var Fib: arranjo de inteiros
 6
       size \leftarrow r - l + 1
       /* Calcula a serie de Fibonacci até o i-ésimo termo,
       onde F(i) <= size
                                                                                         */
       Fib[0] \leftarrow 0
 8
       Fib[1] \leftarrow 1
 9
       i \leftarrow 1
10
       enquanto Fib[i] < size faça
11
           i \leftarrow i + 1
12
           Fib[i] \leftarrow Fib[i-1] + Fib[i-2]
13
       fim
14
15
       i_{fib1} \leftarrow i - 2
16
       enquanto l < r faça
           fib1 \leftarrow l + F[i_{fib1}]
18
           se k == V[fib1] então
19
             retorna fib1
20
           senão se k < V[fib1] então
\mathbf{21}
               /* Novos tamanhos das partições à esquerda
                                                                                         */
               r \leftarrow fib1 - 1
22
               i_{fib1} = i_{fib1} - 2
23
               se i_{fib1} < 0 então
24
                  i_{fib1} \leftarrow 0
25
               fim
26
           senão
27
               /* Procure os novos tamanhos das partições à direita
                                                                                         */
               l \leftarrow fib1 + 1
28
               i \leftarrow i_{fib1} + 1
29
               enquanto Fib[i] < r - l + 1 faça
30
                  i \leftarrow i - 1
31
               fim
32
               i_{fib1} = i - 1
33
           _{\rm fim}
34
       fim
35
       retorna -1
37 fim
```

## 2.3 Cenários das simulações

As simulações foram feitas buscando um valor em um conjunto *ordenado crescente*. Consideramos o pior caso apenas. Portanto, para todos os algoritmos selecionados, podemos escolher como pior caso a busca de um valor que não pertence ao conjunto de busca e é maior que o maior elemento neste conjunto.

### 2.4 metodologia

Para comparar os diferentes algoritmos de busca, simulações do tempo de execução para diferentes tamanhos de arranjos de entrada foram feitas. Também para análisar a diferença entre a implementação iterativa e recursiva do algoritmo ....???? foram feitas simulações medindo o número de passos da operação dominante.

Um vetor de inteiros longos de tamanho  $10^8$  preenchido com números pares em ordem crescente foi utilizado para gerar as amostras.

50 amostras do vetor foram utilizadas com tamanhos variando de 100 até 10<sup>8</sup>, com crescimento linear. ????

### 2.4.1 Simulações de tempo de execução

Utilizou-se a biblioteca Chronos com precisão de microsegundos para medir o tempo antes e depois da execução de cada algoritmo de busca.

Para suavizar as flutuações temporais, o tempo levado em cada amostra foi medido 100 vezes e apenas a média progressiva foi registrada. A fórmula da média temporal progressiva foi utilizada para evitar erros de arredondamento e é dada pela seguinte fórmula recusiva:

$$M_0 = 0,$$

$$M_k = M_{k-1} + \frac{x_k - M_{k-1}}{k},$$
(2.1)

onde  $x_k$  é o tempo mensurado para a k-ésima execução e  $M_{k=m}$  corresponde a média aritmética.

### 2.4.2 Simulações do número de passos da operação dominante

# Chapter 3

## Resultados

Os resultados obtidos com as simulações estão descrito abaixo.

### 3.1 Busca linear

Na figura abaixo temos o resultado de .... Fazendo um ajuste dos pontos da curva conseguimos determinar que o comportamento é linear.



Figure 3.1: Tempo vs...

### 3.2 Busca binária

Na figura abaixo temos o resultado de .... Fazendo um ajuste dos pontos da curva conseguimos determinar que o comportamento é logarítmico.



Figure 3.2: Tempo vs...

Na figura abaixo temos o resultado de .... Fazendo um ajuste dos pontos da curva conseguimos determinar que o comportamento é logarítmico.



Figure 3.3: Tempo vs...

### 3.3 Busca ternária

Na figura abaixo temos o resultado de .... Fazendo um ajuste dos pontos da curva conseguimos determinar que o comportamento é logarítmico.



Figure 3.4: Tempo vs...

Na figura abaixo temos o resultado de .... Fazendo um ajuste dos pontos da curva conseguimos determinar que o comportamento é logarítmico.



Figure 3.5: Tempo vs...

## 3.4 Jump search

Na figura abaixo temos o resultado de .... Fazendo um ajuste dos pontos da curva conseguimos determinar que o comportamento se aproxima de um comportamento quadrático.



Figure 3.6: Tempo vs...

## 3.5 Busca de Fibonacci