block name 1

1. Holomorphic functions

Conjugation

Let:

Then, \bar{a} is not holomorphic:

$$u_x = 1$$

$$u_y = 0$$

$$v_x = 0$$

$$v_y = -1$$

$$\forall z \in \mathbb{C}$$
:

 $-1 \neq 1 \rightarrow f$ not holomorphic in z

block name 3

Quadratic norm

Let:

$$\begin{array}{cccc} . & f : \mathbb{C} & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & |z|^2 \end{array}$$

 $\cdot f_{\mathbb{R}^2}$ component decomposition of f

Then, f is holomorphic in 0:

f differentiable in \mathbb{R}^2 polinomial

 $\forall z \in \mathbb{C}$:

$$u_x(x,y) = 2x$$

$$u_y(x,y) = 2y$$

$$v_x(x,y) = 0$$

$$v_y(x,y) = 0$$

$$u_x = v_y \leftrightarrow x = 0$$

$$u_y = -v_x \leftrightarrow y = 0$$

f holomorphic function in $z \leftrightarrow z = 0$

Non preserving angles function

Let:

$$f(z) = z^2$$

Then, f is conform in $\mathbb{R} \setminus \{0\}$:

$$f(\{(x,0) \in \mathbb{C} \mid x > 0\}) = \{(x,0) \in \mathbb{C} \mid x > 0\}$$

$$f(\{(x,0) \in \mathbb{C} \mid x < 0\}) = \{(x,0) \in \mathbb{C} \mid x > 0\}$$

$$ang(A,B) = \pi \neq 0 = ang(f(A), f(B))$$

Exponential

Let:

$$\cdot a : 0$$

$$\cdot c_n : \frac{1}{n}$$

Then, $\sum_{n>0} c_n(z-a)^n$ is convergent in D1:

$$\lim_{n} \frac{|c_{n}|}{|c_{n+1}|} = \lim_{n} \frac{n+1}{n} = 1 \to R = 1$$

 $CH \rightarrow D(0,1)$ convergent

$$\mathbb{C} \setminus D(0,1)$$
 divergent

$$f' = f$$