

MATLAB® Basic Functions Reference

MATLAB Environment	
clc	Clear command window
help fun	Display in-line help for fun
doc fun	Open documentation for fun
load("filename","vars")	Load variables from .mat file
uiimport("filename")	Open interactive import tool
save("filename","vars")	Save variables to file
clear item	Remove items from workspace
examplescript	Run the script file named
	examplescript
format style	Set output display format
ver	Get list of installed toolboxes
tic, toc	Start and stop timer
Ctrl+C	Abort the current calculation

Operators and Special Characters	
+, -, *, /	Matrix math operations
.*, ./	Array multiplication and division (element-wise operations)
^, .^	Matrix and array power
\	Left division or linear optimization
.', '	Normal and complex conjugate transpose
==, ~=, <, >, <=, >=	Relational operators
&&, , ~, xor	Logical operations (AND, NOT, OR, XOR)
;	Suppress output display
	Connect lines (with break)
% Description	Comment
'Hello'	Definition of a character vector
"This is a string"	Definition of a string
str1 + str2	Append strings

Special Variables and Constants	
ans	Most recent answer
pi	π=3.141592654
i, j, 1i, 1j	Imaginary unit
NaN, nan	Not a number (i.e., division by zero)
Inf, inf	Infinity
eps	Floating-point relative accuracy

Defining and	Changing Array Variables
a = 5	Define variable a with value 5
A = [1 2 3; 4 5 6] A = [1 2 3 4 5 6]	Define A as a 2x3 matrix "space" separates columns ";" or new line separates rows
[A,B]	Concatenate arrays horizontally
[A;B]	Concatenate arrays vertically
x(4) = 7	Change 4th element of x to 7
A(1,3) = 5	Change A(1,3) to 5
x(5:10)	Get 5th to 10th elements of x
x(1:2:end)	Get every 2nd element of x (1st to last)
x(x>6)	List elements greater than 6
x(x==10)=1	Change elements using condition
A(4,:)	Get 4th row of A
A(:,3)	Get 3rd column of A
A(6, 2:5)	Get 2nd to 5th element in 6th row of A
A(:,[1 7])=A(:,[7 1])	Swap the 1st and 7th column
a:b	[a, a+1, a+2,, a+n] with a+n≤b
a:ds:b	Create regularly spaced vector with spacing ds
linspace(a,b,n)	Create vector of n equally spaced values
logspace(a,b,n)	Create vector of n logarithmically spaced values
zeros(m,n)	Create m x n matrix of zeros
ones(m,n)	Create m x n matrix of ones
eye(n)	Create a n x n identity matrix
A=diag(x)	Create diagonal matrix from vector
x=diag(A)	Get diagonal elements of matrix
meshgrid(x,y)	Create 2D and 3D grids
rand(m,n), randi	Create uniformly distributed random numbers or integers
randn(m,n)	Create normally distributed random numbers

Complex Numbers	
i, j, 1i, 1j	Imaginary unit
real(z)	Real part of complex number
imag(z)	Imaginary part of complex number
angle(z)	Phase angle in radians
conj(z)	Element-wise complex conjugate
isreal(z)	Determine whether array is real

Elementary Functions	
sin(x), asin	Sine and inverse (argument in radians)
sind(x), asind	Sine and inverse (argument in degrees)
sinh(x), asinh	Hyperbolic sine and inverse (arg. in radians)
Analogous for the other trigonometric functions: cos, tan, csc, sec, and cot	
abs(x)	Absolute value of x, complex magnitude
ехр(х)	Exponential of x
sqrt(x), nthroot(x,n)	Square root, real nth root of real numbers
log(x)	Natural logarithm of x
log2(x), log10	Logarithm with base 2 and 10, respectively
factorial(n)	Factorial of n
sign(x)	Sign of x
mod(x,d)	Remainder after division (modulo)
ceil(x), fix, floor	Round toward +inf, O, -inf
round(x)	Round to nearest decimal or integer

Tables	
table(var1,,varN)	Create table from data in variables var1,, varN
readtable("file")	Create table from file
array2table(A)	Convert numeric array to table
T.var	Extract data from variable var
T(rows,columns), T(rows,["col1","coln"])	Create a new table with specified rows and columns from T
T.varname=data	Assign data to (new) column in T
T.Properties	Access properties of T
categorical(A)	Create a categorical array
summary(T), groupsummary	Print summary of table
join(T1, T2)	Join tables with common variables

Tasks (Live Editor)

Live Editor tasks are apps that can be added to a live script to interactively perform a specific set of operations. Tasks represent a series of MATLAB commands. To see the commands that the task runs, show the generated code

Common tasks available from the Live Editor tab on the desktop toolstrip:

- Clean Missing Data
- F: 1.61 P.:
- Find Change Points
- Clean Outlier
- Find Local Extrema
- Remove Trends
- Smooth Data

Plotting		
plot(x,y,LineSpec) Line styles: -,, :, Markers: +, o, *, ., x, s, d Colors: r, g, b, c, m, y, k, w	Plot y vs. x (LineSpec is optional) LineSpec is a combination of linestyle, marker, and color as a string. Example: "-r" = red solid line without markers	
title("Title")	Add plot title	
legend("1st", "2nd")	Add legend to axes	
x/y/zlabel("label")	Add x/y/z axis label	
x/y/zticks(ticksvec)	Get or set x/y/z axis ticks	
x/y/zticklabels(labels)	Get or set x/y/z axis tick labels	
x/y/ztickangle(angle)	Rotate x/y/z axis tick labels	
x/y/zlim	Get or set x/y/z axis range	
axis(lim), axis style	Set axis limits and style	
text(x,y,"txt")	Add text	
grid on/off	Show axis grid	
hold on/off	Retain the current plot when adding new plots	
<pre>subplot(m,n,p), tiledlayout(m,n)</pre>	Create axes in tiled positions	
yyaxis left/right	Create second y-axis	
figure	Create figure window	
gcf, gca	Get current figure, get current axis	
clf	Clear current figure	
close all	Close open figures	

Common Plot Types

Plot Gallery: mathworks.com/products/matlab/plot-gallery

Programming Methods Functions % Save your function in a function file or at the end % of a script file. Function files must have the % same name as the 1st function function cavg = cumavg(x) %multiple args. possible cavg=cumsum(vec)./(1:length(vec)); end Anonymous Functions % defined via function handles fun = @(x) cos(x.^2)./abs(3*x);

```
Control Structures
if, elseif Conditions
if n<10
    disp("n smaller 10")
elseif n<=20
    disp("n between 10 and 20")
else
    disp("n larger than 20")
Switch Case
n = input("Enter an integer: ");
switch n
    case -1
        disp("negative one")
    case {0,1,2,3} % check four cases together
        disp("integer between 0 and 3")
    otherwise
        disp("integer value outside interval [-1,3]")
end % control structures terminate with end
% loop a specific number of times, and keep
% track of each iteration with an incrementing
% index variable
for i = 1:3
    disp("cool");
end % control structures terminate with end
While-Loop
% loops as long as a condition remains true
n = 1:
nFactorial = 1;
while nFactorial < 1e100
    n = n + 1;
    nFactorial = nFactorial * n;
end % control structures terminate with end
Further programming/control commands
break
                Terminate execution of for- or while-loop
continue
                Pass control to the next iteration of a loop
```

Execute statements and catch errors

Numerical Methods	
fzero(fun,x0)	Root of nonlinear function
fminsearch(fun,x0)	Find minimum of function
fminbnd(fun,x1,x2)	Find minimum of fun in [x1, x2]
fft(x), ifft(x)	Fast Fourier transform and its inverse

Integration and Differentiation	
integral(f,a,b)	Numerical integration (analogous functions for 2D and 3D)
trapz(x,y)	Trapezoidal numerical integration
diff(X)	Differences and approximate derivatives
gradient(X)	Numerical gradient
curl(X,Y,Z,U,V,W)	Curl and angular velocity
divergence(X,,W)	Compute divergence of vector field
ode45(ode,tspan,y0)	Solve system of nonstiff ODEs
ode15s(ode,tspan,y0)	Solve system of stiff ODEs
deval(sol,x)	Evaluate solution of differential equation
pdepe(m,pde,ic, bc,xm,ts)	Solve 1D partial differential equation
pdeval(m,xmesh, usol,xq)	Interpolate numeric PDE solution

Interpolation and Polynomials	
interp1(x,v,xq)	1D interpolation (analogous for 2D and 3D)
pchip(x,v,xq)	Piecewise cubic Hermite polynomial interpolation
spline(x,v,xq)	Cubic spline data interpolation
ppval(pp,xq)	Evaluate piecewise polynomial
mkpp(breaks,coeffs)	Make piecewise polynomial
unmkpp(pp)	Extract piecewise polynomial details
poly(x)	Polynomial with specified roots x
polyeig(A0,A1,,Ap)	Eigenvalues for polynomial eigenvalue problem
polyfit(x,y,d)	Polynomial curve fitting
residue(b,a)	Partial fraction expansion/decomposition
roots(p)	Polynomial roots
polyval(p,x)	Evaluate poly p at points x
polyint(p,k)	Polynomial integration
polyder(p)	Polynomial differentiation

try, catch

Matrices and Arrays	
length(A)	Length of largest array dimension
size(A)	Array dimensions
numel(A)	Number of elements in array
sort(A)	Sort array elements
sortrows(A)	Sort rows of array or table
flip(A)	Flip order of elements in array
squeeze(A)	Remove dimensions of length 1
reshape(A,sz)	Reshape array
repmat(A,n)	Repeat copies of array
any(A), all	Check if any/all elements are nonzero
nnz(A)	Number of nonzero array elements
find(A)	Indices and values of nonzero elements

	Linear Algebra	
rank(A)	Rank of matrix	
trace(A)	Sum of diagonal elements of matrix	
det(A)	Determinant of matrix	
poly(A)	Characteristic polynomial of matrix	
eig(A), eigs	Eigenvalues and vectors of matrix (subset)	
inv(A), pinv	Inverse and pseudo inverse of matrix	
norm(x)	Norm of vector or matrix	
expm(A)	Matrix exponential	
cross(A,B)	Cross product	
dot(A,B)	Dot product	
kron(A,B)	Kronecker tensor product	
null(A)	Null space of matrix	
orth(A)	Orthonormal basis for matrix range	
tril(A), triu	Lower and upper triangular part of matrix	
linsolve(A,B)	Solve linear system of the form AX=B	
lsqminnorm(A,B)	Least-squares solution to linear equation	
qr(A), lu, chol	Matrix decompositions	
svd(A)	Singular value decomposition	
gsvd(A,B)	Generalized SVD	
rref(A)	Reduced row echelon form of matrix	

Descriptive Statistics		
sum(A), prod	Sum or product (along columns)	
max(A), min, bounds	Largest and smallest element	
mean(A), median, mode	Statistical operations	
std(A), var	Standard deviation and variance	
movsum(A,n), movprod, movmax, movmin, movmean, movmedian, movstd, movvar	Moving statistical functions n = length of moving window	
cumsum(A), cumprod, cummax, cummin	Cumulative statistical functions	
smoothdata(A)	Smooth noisy data	
histcounts(X)	Calculate histogram bin counts	
corrcoef(A), cov	Correlation coefficients, covariance	
xcorr(x,y), xcov	Cross-correlation, cross-covariance	
normalize(A)	Normalize data	
detrend(x)	Remove polynomial trend	
isoutlier(A)	Find outliers in data	

Symbolic Math*		
sym x, syms x y z	Declare symbolic variable	
eqn = y == 2*a + b	Define a symbolic equation	
solve(eqns,vars)	Solve symbolic expression for variable	
subs(expr,var,val)	Substitute variable in expression	
expand(expr)	Expand symbolic expression	
factor(expr)	Factorize symbolic expression	
simplify(expr)	Simplify symbolic expression	
assume(var,assumption)	Make assumption for variable	
assumptions(z)	Show assumptions for symbolic object	
fplot(expr), fcontour, fsurf, fmesh, fimplicit	Plotting functions for symbolic expressions	
diff(expr,var,n)	Differentiate symbolic expression	
dsolve(deqn,cond)	Solve differential equation symbolically	
int(expr,var,[a, b])	Integrate symbolic expression	
taylor(fun,var,z0)	Taylor expansion of function	

^{*}requires Symbolic Math Toolbox