CSEE 3827: Fundamentals of Computer Systems, Spring 2022

Lecture 8

Prof. Dan Rubenstein (danr@cs.columbia.edu)

Assembly Code vs. Machine Code

- An instruction has two forms: Assembly and Machine
 - Assembly: human-readable form, e.g., an instruction: add \$t1, \$s0, \$s2
 - says take values in registers s0 and s2, add them together, store result in register t1
 - Machine: bits that actually store the instruction that feed into the various MUXs, decoders, selector bits to produce the desired computation and/or operation:
 - instruction add \$t1, \$s0, \$s2 is 00000010 00110010 01000000 001000000
 in binary or 02 32 40 28 in hex
- An assembler is software that converts a text file of assembly code (instructions) into a binary file of machine code
 - Mostly a very straightforward (trivial) process: each instruction converts quite easily
 - One "smart" thing assembler does is permit labels for branches and jumps

Assembly Instruction ↔ Machine Code Instruction

- Each assembly instruction (e.g., add \$t1, \$s0, \$s2)
- Has a corresponding 32-bit machine code representation,
 (e.g., 00000010 00110010 01000000 00100000 (binary) or 02 32 40 28 (hex))
- How is this 1-1 mapping performed?
 - Some parts are easy:
 - e.g., Each register is numbered (between 0 and 31), hence can be described with 5 bits
 - The operation (e.g., add) also easily described by a few bits
 - Constants (e.g., the -10 in adde \$t1, \$s0, -10) described using 16 bits or less (e.g., the 7 in s11 \$t1, \$s0, 7 requires 5 bits)

Addressing in an Instruction (for branches and jumps)

	fact	::		
40000		addi	\$sp,	\$sp, -8
40004		sw	\$ra,	4(\$sp)
40008		sw	\$a0,	0(\$sp)
40012		slti	\$t0,	\$a0, 1
40016		beq	\$t0,	\$zero, L1
40020		addi	\$v0,	\$zero, 1
40024		addi	\$sp,	\$sp, 8
40028		jr	\$ra	
40032	L1:	addi	\$a0,	\$a0, -1
40036		jal	fact	
40040		lw	\$a0,	0(\$sp)
40044		lw	\$ra,	4(\$sp)
40048		addi	\$sp,	\$sp, 8
40052		mul	\$v0,	\$a0, \$v0
40056		jr	\$ra	

2 ways to interpret label:

Indirect addressing:

- info in instruction explains how how far from current address
- e.g., "From current location, go 10 miles East and 3 miles North"

Direct addressing:

- Specify exact address to go to
- e.g., "Go to 500 W 120th Street, New York NY 10027 USA"

	fact	:		
40000		addi	\$sp,	\$sp, -8
40004		sw	\$ra,	4(\$sp)
40008		sw	\$a0,	0(\$sp)
40012		slti	\$t0,	\$a0, 1
40016		beq	\$t0,	\$zero, L1
40020		addi	\$v0,	\$zero, 1
40024		addi	\$sp,	\$sp, 8
40028		jr	\$ra	
40032	L1:	addi	\$a0,	\$a0, -1
40036		jal	fact	
40040		lw	\$a0,	0(\$sp)
40044		lw	\$ra,	4(\$sp)
40048		addi	\$sp,	\$sp, 8
40052		mul	\$v0,	\$a0, \$v0
40056		jr	\$ra	

- Branches use Indirect addressing:
 - e.g., for beq instruction in fact, "If conditional true, skip 3 instructions" from where we would have otherwise been.
 - Uses a 16-bit (signed) constant to indicate # instructions to skip

40000 addi \$sp, \$sp, -8 40004 sw \$ra, 4(\$sp) 40008 sw \$a0, 0(\$sp) 40012 slti \$t0, \$a0, 1 40016 beq \$t0, \$zero, fact 40020 addi \$v0, \$zero, 1 40024 addi \$sp, \$sp, 8 40028 jr \$ra 40032 L1: addi \$a0, \$a0, -1 40036 lw \$a0, 0(\$sp) 40040 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0 40056 jr \$ra		fact	:			
40008 sw \$a0, 0(\$sp) 40012 slti \$t0, \$a0, 1 40016 beq \$t0, \$zero, fact 40020 addi \$v0, \$zero, 1 40024 addi \$sp, \$sp, 8 40028 jr \$ra 40032 L1: addi \$a0, \$a0, -1 40036 lw \$a0, 0(\$sp) 40040 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40000		addi	\$sp,	\$sp, -8	
40012 slti \$t0, \$a0, 1 40016 beq \$t0, \$zero, fact 40020 addi \$v0, \$zero, 1 40024 addi \$sp, \$sp, 8 40028 jr \$ra 40032 L1: addi \$a0, \$a0, -1 40036 jal fact 40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40004		sw	\$ra,	4(\$sp)	
40016 beq \$t0 \$zero fact 40020 addi \$v0 \$zero 1 40024 addi \$sp \$sp 8 40028 jr \$ra 40032 L1: addi \$a0 -1 40036 jal fact 40040 lw \$a0 0(\$sp) 40044 lw \$ra 4(\$sp) 40048 addi \$sp \$sp 8 40052 mul \$v0 \$a0 \$v0	40008		sw	\$a0,	0(\$sp)	
40020 addi \$v0, \$zero, 1 40024 addi \$sp, \$sp, 8 40028 jr \$ra 40032 L1: addi \$a0, \$a0, -1 40036 jal fact 40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40012		slti	\$t0,	\$a0, 1	
40024 addi \$sp, \$sp, 8 40028 jr \$ra 40032 L1: addi \$a0, \$a0, -1 40036 jal fact 40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40016		beq	\$t0,	\$zero, f	act
40028 jr \$ra 40032 L1: addi \$a0, \$a0, -1 40036 jal fact 40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40020		addi	\$v0,	\$zero, 1	
40032 L1: addi \$a0, \$a0, -1 40036 jal fact 40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40024		addi	\$sp,	\$sp, 8	
40036 jal fact 40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40028		jr	\$ra		
40040 lw \$a0, 0(\$sp) 40044 lw \$ra, 4(\$sp) 40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40032	L1:	addi	\$a0,	\$a0, -1	
40044lw\$ra, 4(\$sp)40048addi \$sp, \$sp, 840052mul\$v0, \$a0, \$v0	40036		jal	fact		
40048 addi \$sp, \$sp, 8 40052 mul \$v0, \$a0, \$v0	40040		lw	\$a0,	0(\$sp)	
40052 mul \$v0, \$a0, \$v0	40044		lw	\$ra,	4(\$sp)	
	40048		addi	\$sp,	\$sp, 8	
40056 jr \$ra	40052		mul	\$v0,	\$a0, \$v0	
· · · · · · · · · · · · · · · · · · ·	40056		jr	\$ra		

- Branches use Indirect addressing:
 - e.g., for beq instruction in fact, "If conditional true, skip 3 instructions" from where we would have otherwise been.
 - Uses a 16-bit (signed) constant to indicate # instructions to skip
 - Can branch backwards as well
 - e.g., here it says "If conditional true, skip -5 instructions"

	fact	::		
40000		addi	\$sp,	\$sp, -8
40004		sw	\$ra,	4(\$sp)
40008		sw	\$a0,	0(\$sp)
40012		slti	\$t0,	\$a0, 1
40016		beq	\$t0,	\$zero, L1
40020		addi	\$v0,	\$zero, 1
40024		addi	\$sp,	\$sp, 8
40028		jr	\$ra	
40032	L1:	addi	\$a0,	\$a0, -1
40036		jal	fact	
40040		lw	\$a0,	0(\$sp)
40044		lw	\$ra,	4(\$sp)
40048		addi	\$sp,	\$sp, 8
40052		mul	\$v0,	\$a0, \$v0
40056		jr	\$ra	

- Branches use Indirect addressing:
 - e.g., for beq instruction in fact, "If conditional true, skip 3 instructions" from where we would have otherwise been.
 - Uses a 16-bit (signed) constant to indicate # instructions to skip
 - Can branch backwards as well
 - e.g., here it says "If conditional true, skip -5 instructions"

- Jumps use Direct addressing:
 - Requires that assembler know where (i.e., 32-bit addresses) in memory of code to be known by assembler
 - e.g., for jal instruction: "The next instruction to execute will be at address
 40,000.

Instruction Formats

Representing Instructions

General form of machine code instruction:

- op is the 6-bit op-code: indicates how remaining 26 bits will be interpreted
- There are 3 basic formats
 - R-format: instructions with 3 register parameters (e.g., add \$s1, \$s2, \$s3)
 - Shifting (sll, slr) are also R-format even though only have 2 params
 - I-format / mem-access / (indirect addressing) conditional branches
 - (direct addressing) jumps

Representing Instructions

R-format (R-type): instructions that have 3 register parameters

6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
op=000000	rs	rt	rd	shamt	funct

- e.g., add \$t0, \$s1, \$s2: must indicate 3 registers, "+" operation
- op-code always 000000 for R-format instruction
- rs = 5-bit description of 1st register to be read from
- rt = 5-bit description of 2nd register to be read from
 - rs = rt permitted
- rd = 5-bit description of register to write to (desination reg)
- shamt: used only for shift ops, 5-bit specification for how much to shift by
- funct: the specific operation (e.g., add, sub, or, sll, etc. to perform)
 - e.g., add is 100000, addu is 100001, subtract is 100010, etc.

R-format Example: add

	ор	rs	rt	rd	shamt	funct
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
add	\$t0,	\$s1, \$	s2		field not used for add	
	special	\$s1	\$s2	\$tO	0	add
	0	17	18	8	0	32
	000000	10001	10010	01000	00000	100000

R-Format Example 2: shift right logical (srl)

- e.g., shift left logical (i.e., instruction is = s11)
 - Shift left and fill with 0s
 - sll by *i* bits multiplies by 2 (unsigned only)
- Shift right logical (op = srl)
 - Shift right and fill with 0s
 - srl by i bits divides by 2^{i} (for unsigned values only)
- shamt is 5-bit description of how far to shift by

2-register Instructions

I-format / mem-access / (indirect addressing) conditional branches

6 bits	5 bits	5 bits	16 bits
ор	rs	rt	constant

- op-code describes what the instruction will do (no funct field here)
 - op = 1?????: memory access op (e.g., lw, sw)
 - op = 001???: I-format: immediate (uses constant) arithmetic/logic op (e.g., addi, ori, etc.
 - op = 0001?? or 000001: conditional branch
- rs = 5-bit description of a register to read from
- **rt** = 5-bit description of 2nd register (some instructions write to, some read to)
- constant: 16-bit constant (usually unsigned)

MIPS I-format Instructions

op=001???	rs	rt	constant
6 bits	5 bits	5 bits	16 bits

- Includes immediate arithmetic and load/store operations
 - op: operation code (opcode): addi [001000], addiu [001001], etc.
 - rs: source register number (register to read from)
 - rt: destination register number (register to write to)
 - constant: offset added to base value in rs, its interpretation depends on opcode (i.e., signed or unsigned)

I-format Example: add

op=001???	rs	rt	constant
6 bits	5 bits	5 bits	16 bits

addi \$t0, \$s1, -1

addi	\$s1	\$tO	-1
8	17	8	-1
001000	10001	01000	111111111111111

Memory Access

	base addr register	register w/ data	
op=1?????	rs	rt	constant
6 bits	5 bits	5 bits	16 bits

- e.g., lw [100011], sw [101011]
- Let A = value in register #rs, B = value in register #rt, C = value of constant
- lw: loads word in memory at address A+C into register #rt
- sw: stores B into memory at address A+C

Iw Example

op=100011	rs	rt	constant
6 bits	5 bits	5 bits	16 bits

lw \$t0, 8(\$s1)

lw	\$s1	\$tO	8
35	17	8	00000000001000
100011	10001	01000	00000000001000

sw Example

op=101011	rs	rt	constant
6 bits	5 bits	5 bits	16 bits

sw \$t0, 8(\$s1)

SW	\$s1	\$tO	8
43	17	8	00000000001000
101011	10001	01000	00000000001000

Branch Addressing

Branch instructions specify: opcode, two registers, branch target

op also 000001 (Bltz/gez)

MK

- Uses both registers: beg [000100], bne [000101]
- Uses just rs: blez [000110], bgtz [000111]
- Most branch targets are near branch (either forwards or backwards)
- Recall branches use relative addressing: instruction's constant specifies offset from next instruction (current address + 4)
 - target address = next address + (offset * 4) (NOTE constant counts instructions (words), not bytes - hence the need to * 4)
 - Q: Why is offset computed from next (+4) address instead of current?

Target Addressing Example

- Loop code from earlier example
- Assume Loop label placed in memory at address 80000

		Machine code							
Loop:	sll \$t1, \$s3, 2	80000	0	0	19	9	4	0	Note: branch
	add \$t1, \$t1, \$s5	80004	0	9	21	9	0	32	constant measures
	lw \$t0, 0(\$t1)	80008	35	9	8		0		distance in words
	bne \$t0, \$s4, Exit	80012	5	8	20		2	—	(i.e., instructions), not bytes (whereas
	addi \$s3, \$s3, 1	80016	8	19	19		1		memory access is in
	j Loop	80020	2		20	00	0		bytes, not words)
Exit:		80024							

Jump Addressing

 Jump (j and jal) targets could be anywhere in a text segment, so, encode the full address in the instruction

op=00001X	address=A
6 bits	26 bits

- jump (j): 000010, jump and link (jal): 000011
- Pseudo-direct addressing: address, not offset, is specified
- target address: how to build 32-bit address from 26 bits included in instruction?
- Ans:
 - bottom 2 bits are 00 (instruction (word) address is always a multiple of 4)
 - top 4 bits stay same as current (entire program should fit within a 2^{28} byte = 2^{26} word > 67 million instruction block)
- e.g., @ addr 0101 1110 0101 1100 0011 1100 1010 1100:
 - j 1010 0101 1000 0010 1010 1111 10
 - new addr: 0101 1010 0101 1000 0010 1010 1111 1000

Target Addressing Example

- Loop code from earlier example
- Assume loop at location 80000

```
Loop: sll $t1, $s3, 2
                                80000
                                              19
                                           0
                                                       0
                                              21
       add $t1, $t1, $s5
                                80004
                                        35
       lw $t0, 0($t1)
                                           9
                                              8
                                80008
       bne $t0, $s4, Exit
                                80012
                                              20
                                                          Note: divided by 4
       addi $s3, $s3, 1
                                        8
                                80016
                                                          because last 2 bits
                                                              omitted
                                              20000 ←
                                80020
       j Loop
Exit:
                                80024
```


Relative v. Direct Addressing

- Why are branches addressed in a relative manner while jumps are (pseudo)direct?
 - branch distance is usually short (e.g., while or for loop), so relative values will usually be small (easily fit in 16 bits)
 - jumps often used to reach external code (e.g., standard procedures at fixed locations, like a sqrt() procedure)
 - using direct addressing means just using a fixed value rather than computing offset

That f*****g offset by 4

- Data Memory access (e.g., lw, sw): there are times a single byte access (in the middle of the word) might be desired, hence constants, registers are in address (byte) units.
- Instruction memory access (i.e., jumps and branches): since instructions always start an address A where A mod 4 = 0, offsets (in branches) and addresses (in jumps) within instruction are in instruction (word) units.
 - Note: if they were in address units, the 2 lowest order bits would always be 0 anyhow, why waste the bits?

Where to find various opcodes and funcs

2(10)

				op(31:26)				
28-26	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
31-29	R-format	Bltz/gez	jump	jump & link	branch eq	branch ne	blez	bgtz
1(001)	add immediate	addiu	set less than imm.	sltiu	andi	ori	xori	load upper imm
2(010)	TLB	FlPt						
3(011)				and distributions		The P		
4(100)	load byte	load half	lwl	load word	1bu	1hu	lwr	
5(101)	store byte	store half	swl	store word			swr	
6(110)	1wc0	lwc1				10		
7(111)	swc0	swc1	Alternate At	E Zimele oz (ji)	Mergalia			
			on/21:26\-	:010000 (TLB), ı	vc(25:21)			
			op(31:26)=	O10000 (IEB), I				
23–21 25–24	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
0(00)	mfc0		cfc0	and thirteenal	mtc0		ctc0	The state of the state of the
1(01)					Leaven Victoria		Head and but h	

TARRES.	op(31:26)=000000 (R-format), funct(5:0)											
2-0	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)				
5–3			Mary England	O STANDARY								
0(000)	shift left logical		shift right logical	sra	sllv		srlv	srav				
1(001)	jump reg.	jalr	- 4 cario n		syscall	break						
2(010)	mfhi	mthi	mflo	mtlo								
3(011)	mult	multu	div	divu								
4(100)	add	addu	subtract	subu	and	or	xor	not or (nor)				
5(101)			set 1.t.	sltu	Teal (-Habb			a legionim de la la				
6(110)				L. Library								
7(111)					772.000							

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the figure shows | oad word in row number 4 (100 two for bits 31–29 of the instruction) and column number 3 (011 two for bits 28–26 of the instruction), so the corresponding value of the op field (bits 31–26) is 100011 two. Underscore means the field is used elsewhere. For example, R-format in row 0 and column 0 (op = 000000 two) is defined in the bottom part of the figure. Hence, Subtract in row 4 and column 2 of the bottom section means that the funct field (bits 5–0) of the instruction is 100010 two and the op field (bits 31–26) is 000000 two. The F1Pt value in row 2, column 1 is defined in Figure 3.20 in Chapter 3. B1tz/gez is the opcode for four instructions found in Appendix A: b1tz, bgez, b1tzal, and bgezal. Chapter 2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all instructions.

				op(31:26)				
28-26	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
31-29	R-format	Bltz/gez	jump	jump & link	branch eq	branch ne	blez	bgtz
(001)	add immediate	addiu	set less than imm.	sltiu	andi	ori	xori	load upper imm
(010)	TLB	FlPt						
(011)			La dinesa	a retarially learn				
(100)	load byte	load half	lwl	load word	1bu	1hu	lwr	
101)	store byte	store half	swl	store word			swr	
(110)	1wc0	lwc1				19 21 115		
(111)	swc0	swc1	ill money.	E Imodulos (n	KEE ALD IA			
			Remind 28	id-tudda yd gi				
			op(31:26)=	:010000 (TLB),	rs(25:21)			
3–21	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
5-24			The Dale of	DESCRIPTION OF		THE RESIDENCE	Marine 1	
(00)	mfc0		cfc0	be a Controvension	mtc0	E. III	ctc0	A Bertham Land
(01)					0000			
(10)	R-type	e instruc	tions wit	th opcode	e=0000	100, wl	hat is f	unct?
(11)	MIN III III III III III III III III III						THE RESERVE ASSESSMENT	

	op(31:26)=000000 (R-format), funct(5:0)											
2-0	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)				
5–3												
0(000)	shift left logical		shift right logical	sra	sllv		srlv	srav				
1(001)	jump reg.	jalr	- 3 CONTO 10		syscall	break						
2(010)	mfhi	mthi	mflo	mtlo								
3(011)	mult	multu	div	divu				The Republic				
4(100)	add	addu	subtract	subu	and	or	xor	not or (nor)				
5(101)	and the second has		set 1.t.	sltu	Teal Astable		Landy Carlot					
6(110)				J. L. LOVE T. F.								
7(111)			TANK HE		a Magazi							

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the figure shows | oad word in row number 4 (100 two for bits 31–29 of the instruction) and column number 3 (011 two for bits 28–26 of the instruction), so the corresponding value of the op field (bits 31–26) is 100011 two. Underscore means the field is used elsewhere. For example, R-format in row 0 and column 0 (op = 000000 two) is defined in the bottom part of the figure. Hence, Subtract in row 4 and column 2 of the bottom section means that the funct field (bits 5–0) of the instruction is 100010 two and the op field (bits 31–26) is 000000 two. The F1Pt value in row 2, column 1 is defined in Figure 3.20 in Chapter 3. B1tz/gez is the opcode for four instructions found in Appendix A: b1tz, bgez, b1tzal, and bgezal. Chapter 2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all instructions.

				op(31:26)				
28-26	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
31-29	R-format	Bltz/gez	jump	jump & link	branch eq	branch ne	blez	bgtz
1(001)	add immediate	addiu	set less than imm.	sltiu	andi	ori	xori	load upper imm
2(010)	TLB	FlPt						
3(011)			Land House			L. Tru V	January.	
(100)	load byte	load half	lwl	load word	1bu	1hu	lwr	
5(101)	store byte	store half	swl	store word			swr	ed ter in 1
(110)	1wc0	1wc1	IGNO	ORE THIS	SIII			
7/111)	swc0	swc1		J. (= 1111)	IN IA			

op(31:26)=010000 (TLB), rs(25:21)											
23–21 25–24	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)			
0(00)	mfc0		cfc0	a filifonesia	mtc0		ctc0	Defendance.			
1(01)			The Control of the Co		e description of		estage by the	Legentral Spirit			
2(10)											
3(11)	ME IAMAMAUCITAS		Laster Indian	Sunda etta	www.mb/xf:		nami yoanu				

TARRES.	op(31:26)=000000 (R-format), funct(5:0)											
2-0	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)				
5–3			AND PERSONAL	O STREET	The second second							
0(000)	shift left logical		shift right logical	sra	sllv		srlv	srav				
1(001)	jump reg.	jalr	- 4 cario n		syscall	break						
2(010)	mfhi	mthi	mflo	mtlo								
3(011)	mult	multu	div	divu								
4(100)	add	addu	subtract	subu	and	or	xor	not or (nor)				
5(101)	The Charles of the		set 1.t.	sltu	Ted s to be							
6(110)				LEDVICE.								
7(111)			THE BUILDING									

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the figure shows | oad word in row number 4 (100 two for bits 31–29 of the instruction) and column number 3 (011 two for bits 28–26 of the instruction), so the corresponding value of the op field (bits 31–26) is 100011 two. Underscore means the field is used elsewhere. For example, R-format in row 0 and column 0 (op = 000000 two) is defined in the bottom part of the figure. Hence, Subtract in row 4 and column 2 of the bottom section means that the funct field (bits 5–0) of the instruction is 100010 two and the op field (bits 31–26) is 000000 two. The FIPt value in row 2, column 1 is defined in Figure 3.20 in Chapter 3. Bltz/gez is the opcode for four instructions found in Appendix A: bltz, bgez, bltzal, and bgezal. Chapter 2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all instructions.

				op(31:26)				
	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
R-foi	rmat	Bltz/gez	jump	jump & link	branch eq	branch ne	blez	bgtz
add	diate	addiu	set less than imm.	sltiu	andi	ori	xori	load upper imm
TLB		FlPt						
			and different	materially light,	laffe	The Y	Sandra.	
load	byte	load half	lwl	load word	1bu	1hu	lwr	
stor	e byte	store half	swl	store word			swr	
1wc0		lwc1						
swc0		swc1	the arbited JE	A limite of the	Keennih.			

	υρ(31.20)-010000 (1EB), 19(23.21)									
23-21	0(000)	1(001)	2(010)	2/011)	4(100)	5(101)	6(110)	7(111)		
23- <mark>21</mark> 25- <mark>24</mark>			All th	e rest!			Activities of	Simulation Line		
0(00)	mfc0		cfc0		mtc0		ctc0	Herry erass		
1(01)			THE STREET				is and or	dress as a second		
2(10)										
3(11)	MID INSTAURACIONS		Last M. Ingred of	lunds elfq	A Just this se		a ma boarm			

		on/21:26)=000	000 (R-forma	t), funct(5:0)			
3 high-order bits of op-code 10)				4(100)	5(101)	6(110)	7(111)
shift left logical		shift right logical	sra	sllv	100	srlv	srav
jump reg.	jalr		*	syscall	break		
mfhi	mthi	mflo	mtlo				
mult	multu	div	divu				
add	addu	subtract	subu	and	or	xor	not or (nor)
		set l.t.	sltu	Teal (-Habb			
1 2 2 3 5 5 6 5			Maria Maria				
	shift left logical jump reg. mfhi mult add	shift left logical jump reg. jalr mfhi mthi mult multu add addu	n-order bits of op-code 10) shift left shift right logical logical jump reg. jalr mfhi mflo mult div add addu subtract sot t	shift left logical shift right logical logical logical shift mthi mflo mtlo mult div divu add addu subtract subu	n-order bits of op-code 10) 3(011) 4(100) shift left logical shift right logical syscall syscall mfhi mthi mflo mtlo mult div divu add subtract subu and	shift left logical shift right sra sllv logical jump reg. jalr syscall break mfhi mthi mflo mtlo mult div divu add addu subtract subu and or	n-order bits of op-code 10) 3(011) 4(100) 5(101) 6(110) shift left logical shift right logical syscall break syscall break mfhi mthi mflo mtlo mult div divu add subtract subu and or xor

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the figure shows | oad word in row number 4 (100 two for bits 31–29 of the instruction) and column number 3 (011 two for bits 28–26 of the instruction), so the corresponding value of the op field (bits 31–26) is 100011 two. Underscore means the field is used elsewhere. For example, R-format in row 0 and column 0 (op = 000000 two) is defined in the bottom part of the figure. Hence, Subtract in row 4 and column 2 of the bottom section means that the funct field (bits 5–0) of the instruction is 100010 two and the op field (bits 31–26) is 000000 two. The F1Pt value in row 2, column 1 is defined in Figure 3.20 in Chapter 3. B1tz/gez is the opcode for four instructions found in Appendix A: b1tz, bgez, b1tzal, and bgezal. Chapter 2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all instructions.

3 low-order bits of op-code

op(31:26)										
	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)		
	R-format	Bltz/gez	jump	jump & link	branch eq	branch ne	blez	bgtz		
	add immediate	addiu	set less than imm.	sltiu	andi	ori	xori	load upper imm		
Ì	TLB	FlPt								
Ī			AGRES .		Intition	The P	Samile.			
Ì	load byte	load half	lwl	load word	1bu	1hu	lwr			
	store byte	store half	swl	store word			swr			
	1wc0	lwc1								
	swc0	swc1	dianbya ak	All mode of the	Seegal IA					
	3,100		K					THE PERSON NAMED IN		

OP(31.20)=010000 (1ED), 13(20.21)										
23-21 25-24	0(000)	1(001)	2(010)	2/011\	4(100)	5(101)	6(110)	7(111)		
25-24			All the	e rest!		DE LA PARI	ten menon			
0(00)	mfc0		cfc0		mtc0		ctc0	Sering and		
1(01)			ALC: UNIVERSE					Angeles and the		
2(10)										
3(11)	Maria de la compansión	n ituatin u	Light by Lynny Light	unda estua	State industri		and gone			

			on(31:36)=000	000 (R-forma	t), funct(5:0)			
3 high	n-order bits	3(011)	4(100)	5(101)	6(110)	7(111)		
5–3								
0(000)	shift left logical		shift right logical	sra	sllv		srlv	srav
1(001)	jump reg.	jalr	- I - i - i - i - i - i - i - i - i - i		syscall	break		
2(010)	mfhi	mthi	mflo	mt1o				
3(011)	mult	multu	div	divu				
4(100)	add	addu	subtract	subu	and	or	xor	not or (nor)
5(101)	In a work to be			4000	I A SHIP LIV			
6(110)		e.g., lo	ad word i					
7(111)			2011年出现第2		1 1 A . mail			

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the figure shows | oad word in row number 4 (100 two for bits 31–29 of the instruction) and column number 3 (011 two for bits 28–26 of the instruction), so the corresponding value of the op field (bits 31–26) is 100011 two. Underscore means the field is used elsewhere. For example, R-format in row 0 and column 0 (op = 000000 two) is defined in the bottom part of the figure. Hence, Subtract in row 4 and column 2 of the bottom section means that the funct field (bits 5–0) of the instruction is 100010 two and the op field (bits 31–26) is 000000 two. The F1Pt value in row 2, column 1 is defined in Figure 3.20 in Chapter 3. B1tz/gez is the opcode for four instructions found in Appendix A: b1tz, bgez, b1tzal, and bgezal. Chapter 2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all instructions.

3 low-order bits of op-code