

Global Electron Density (Ne) Observations from GPS-RO in the D- and E-Region Ionosphere

Dong L. Wu

NASA Goddard Space Flight Center

Outline

- Challenges in retrieving D- and E-region Ne from GPS-RO
- New algorithm
- Initial results
- Implications for energetic electron precipitation (EEP)

Wu (2017), JASTP, in press, 1–24. DOI: 10.1016/j.jastp.2017.07.013

Challenges in Retrieving E-Region Ne from RO (1)

Excess phase

$$\tau_{ex} = \tau_{bend} - \tau_{p}$$

- From bending: au_{bend}
- From phase advance in plasma: τ_p

Challenges in Retrieving E-Region Ne from RO (2)

Hajj and Romans (1998)

Wu et al. (2005)

Ne Retrievals from GPS/Met

Hajj and Romans (1998)

Problems with the Abel Weighting Functions

Model-Aided E-Region Ne Retrievals

This Work

- Self-sustained new retrieval method
 - No auxiliary inputs from model/data
 - Full utilization of good precision of L1 excess phase
- L1 50-Hz data only
 - Slowly-varying F-region contributions
 - Dominant phase advance due E-region Ne

Radio Wave Propagation in Plasma

Dispersion Relation
$$\omega^2=c^2k^2+\omega_c^2$$

Critical Plasma Frequency $\omega_c=56.4\cdot N_e^{1/2} \ {
m rad/s}$

Phase and Group Velocity
$$v_p\equiv\omega/k,\,v_g\equiv d\omega/dk,$$
 Phase and Group Refr Indices $n_p\equiv c/v_p\,\,n_g\equiv c/v_g$

Advance
$$n_p = \sqrt{1 - (f_c/f)^2} \approx 1 - 40.3 \cdot N_e/f^2$$

Delay $n_g = 1/\sqrt{1 - (f_c/f)^2} \approx 1 + 40.3 \cdot N_e/f^2$

Phase Delay from Bending $\tau_{bend_{-}I}(\lambda_i, h_t) \propto 1/f_i^2$

Delay due to F-region ionospheric bending is 1-2 m (Hoque and Jakowski, 2011)

Ne Retrievals from Simulated Data (1/2)

Courtesy of X. Yue for the simulated data from UCAR

Ne Retrievals from Simulated Data (2/2)

New Weighting Functions

March 2008

COSMIC Ne (UTC=10:00-14:00)

IRI2016 Ne (UTC=12:00)

July 2008

COSMIC Ne (UTC=10:00-14:00)

IRI2016 Ne (UTC=12:00)

10⁸

107

10⁹

Ne (e⁻/m³)

1010

1011

1012

10⁷

α-Chapman Function

$$N_{e}(z) = N_{mE} e^{\left\{0.5 \cdot (1-z'-e^{-z'})\right\}} \qquad z' = (z-h_{mE})/H$$

$$\sum_{\substack{140 \\ 130 \\ 120 \\ 120 \\ 10$$

1012

1011

10⁹

Ne (e⁻/m³)

10⁸

1010

Science Applications

- Ionosphere-atmosphere coupling
 - Auroral electron and energetic electron precipitation, and their impacts on O3 chemistry
 - Planetary and gravity wave disturbances
 - Global electric circuit
- Ionosphere-magnetosphere coupling
 - Solar impacts
 - Storm-time electron density disturbances

Sensitivity of Ne to Magnetosphere Substorms

Impacts on Medium-Level Electron on NOy

Sensitivity of Ne to Energetic Particle Precipitation

GPS-RO Ne

Top Height of GPS-RO Data

120+ km	< 85 km
CHAMP	SAC-C
COSMIC-1	MetOp-A, -B, -C
C/NOFS	KOMPSat5
GRACE	
TerraSAR-X	

Courtesy of CDAAC

Summary

- New "bottom-up" method provides sharper weighting functions than Abel. Key assumptions:
 - F-region contributions varying slowly at low tangent heights
 - Excess phase due to the advance of E-region Ne
- The technique works with 50-Hz RO if reached 80-120 km, but not all operation RO data go above 85km;
- Initial Ne retrievals at 80-120 km show good agreement with IRI-2016 but with auroral electron;
- GPS-RO Ne data provide a critical source for studying energetic electron precipitation and its impacts on the upper atmosphere