Document Similarity

Natural Language Processing

Agenda

- What is Document Similarity
- Methods to measure Document Similarity
- Cosine Similarity Method

Goal

• Given a set of documents and search term(s)/query we need to retrieve relevant documents that are similar to the search query.

Information Retrieval

- One of the fundamental problems with having a lot of data is finding what you're looking for.
- This is called information retrieval.

Document

- A document is a piece of electronic matter that provides information or evidence or that serves as an official record.
- Examples of different document
 - Book
 - Online article
 - Newspaper article
 - Photography
 - Letter
 - Movie

Document Comparision

- Comparison between things, like clothes, food, products and even people, is an integral part of our everyday life.
- It is done by assessing similarity (or differences) between two or more things.
- Apart from its usual usage as an aid in selecting a thing-product, the comparisons are useful in searching things 'similar' to what you have and in classifying things based on similarity.

Similarity

- Similarity is the state or fact of being similar while similar is referring to a resemblance in appearance, character, or quantity, without being identical
- Example
 - Rectangles which are similar do not necessarily have the same size.

Document Similarity

- Document similarity is a metric defined over a set of documents, where the idea of distance between them is based on the likeness of their meaning or semantic content.
- Set of attributes to be used to compare documents :
 - Author
 - Category
 - Content

Match Relevant Documents

- a measure of similarity that can be used to
 - compare documents or
 - provide a ranking of documents
- with respect to a given vector of query words.

SIMILARITY VS. EXACT

- Identical duplicate documents are generally very easy to detect, for example, using a simple hash algorithm.
- Finding documents that are similar, or near-duplicates, requires more effort.

Similarity

- Similarity is the state or fact of being similar
- similar refers to a resemblance in
 - appearance,
 - character, or
 - quantity,
- without being identical

Methods to measure Document Similarity

- Jacard similarity measure
- Metric similarity measure
- Euclidean Distance measure
- Cosine similarity measure

Cosine similarity measure

- Cosine similarity documents are represented as term vectors.
- The similarity of two documents corresponds to the correlation between the vectors.
- This is quantified as the cosine of the angle between vectors known as cosine similarity.
- Cosine similarity is one of the most popular similarity measure applied to text documents

Cosine Similarity Method

- Vector Space Model
- TF , TDF ...
- Cosine Similarity Method Calculation

Vector Space Model (VSM)

- Vector Space Model (VSM) is a way of representing documents through the words that they contain
- It is a standard technique in Information Retrieval

VSM – Working

- Each document is broken down into a word frequency table
- The tables are called vectors and can be stored as arrays
- A vocabulary is built from all the words in all documents in the system
- Each document is represented as a vector based against the vocabulary

VSM – Working

- Each document is broken down into a word frequency table
- The tables are called vectors and can be stored as arrays

Document A

"A dog and a cat."

a	dog	and	cat
2	1	1	1

Document B

"A frog."

a	frog
1	1

Example

A vocabulary is built from all the words in all documents in the system

Each document is represented as a vector based against the vocabulary

Document A: "A dog and a cat."

Vector: (2,1,1,1,0)

Document B: "A frog."

Vector: (1,0,0,0,1)

a	and	cat	dog	frog
2	1	1	1	0

a	and	cat	dog	frog
1	0	0	0	1

Queries

Queries can be represented as vectors in the same way as documents:

```
Dog = (0,0,0,1,0)Frog = ( )
```

Dog and frog = (

Unstructured data

- Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?
- One could grep all of Shakespeare's plays for Brutus and Caesar, then remove out lines containing Calpurnia?
 - Slow (for large corpora)
 - flexible matching operations
 - allow ranked retrieval

Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus, When Antony found Julius **Caesar** dead, He cried almost to roaring; and he wept When at Philippi he found **Brutus** slain.

• Hamlet, Act III, Scene ii

Lord Polonius: I did enact Julius Caesar I was killed i' the

Capitol; **Brutus** killed me.

Term-document incidence matrix

	Antony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	•••
	Cleopatra		1				
Antony	i	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

Matrix element (t,d) is 1 if the play in column d contains the word in row t, and is 0 otherwise

Incidence vectors

- So we have a 0/1 vector for each term.
- To answer query: take the vectors for **Brutus**, **Caesar** and **Calpurnia** (complemented) → bitwise AND.
 - 110100 *AND*
 - 110111 *AND*
 - 101111 =
 - 100100

Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
1	1	0	0	0	1
1	1	0	1	0	0
1	1	0	1	1	1
0	1	0	0	0	0
1	0	0	0	0	0
1	0	1	1	1	1
1	0	1	1	1	0
	1 1 1	1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1	1 1 0 1 1 0 1 1 0 0 1 0	1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0	1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0

tf-idf example: Inc.ltn

Query: "best car insurance". Document: "car insurance auto insurance".

word			query			document				product
					tf-idf					
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	tf-wght	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

term frequency, df: document frequency, idf: inverse document frequency, weight:the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

1/1.92 0.52

1.3/1.92 0.68 Final similarity score between query and

document: $\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92 + 2.04 = 3.08$

Steps - Cosine Similarity

- Step 1 : Term frequency (TF)
- Step 2: Inverse Document Frequency(IDF)
- Step 3 : TF * IDF
- Step 4: Vector Space Model Cosine Similarity

Example

- Document 1: The game of life is a game of everlasting learning
- Document 2: The unexamined life is not worth living
- Document 3: Never stop learning

Step 1: Term frequency (TF)

• The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

Step 1: Term frequency (TF)

Document1	the	game	of	life	is	a	everlasting	learning	
Term Frequency	1	. 2	2	. 1	. 1	1	1	1	

Document2	the	unexamined	life	is	not	worth	living
Term Frequency	1	. 1	. 1	. 1	. 1	1	1

Document3	never	stop	learning
Term Frequency	1	1	1

- Document 1: The game of life is a game of everlasting learning
- Document 2: The unexamined life is not worth living

Term frequency tf

- In reality each document will be of different size.
- On a large document the frequency of the terms will be much higher than the smaller ones.
- Hence we need to normalize the document based on its size.
- One method divide the term frequency by the total number of terms.
- For example in Document 1 the term game occurs two times.
- The total number of terms in the document is 10.
- Hence the normalized term frequency is 2 / 10 = 0.2.

Normalized TF

Document1	the	game	of I	ife i	is	a	everlasting	learning
Normalized TF	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1

Document2	the	unexamined li	fe is	s r	ot	worth I	iving
Normalized TF	0.142857	0.142857	0.142857	0.142857	0.142857	0.142857	0.142857

Document3	never	stop	learning	ng	
Normalized TF		0.333333	0.333333	0.333333	

Step2:Inverse Document Frequency(IDF)

- The main purpose of doing a search is to find out relevant documents matching the query.
- In the first step all terms are considered equally important.
- Certain terms that occur too frequently have little power in determining the relevance.
- We need a way to weigh down the effects of too frequently occurring terms.
- Also the terms that occur less in the document can be more relevant.
- We need a way to weigh up the effects of less frequently occurring terms.
- Logarithms helps to solve this problem.

Logarithms -

helps to shrink the numbers of very high magnitude to a smaller one which our brains can deal with easily.

- $\log_{10}(100)$ is 2 because $10^2 = 100$
- $\log_{10}(1000)$ is 3 because $10^3 = 1000$
- $\log_{10}(10000)$ is 4 because $10^4 = 10000$
- 1 in 5,300 dies each year due to car crash.
- 1 in 800 dies each year due to diseases caused by smoking.
- 1 in 2,000,000 is killed by lightning.

idf - Inverse Document Frequency

- "inverse document frequency"
- measures how common a word is among all documents in bloblist.
- More common a word is, the lower its idf.
- We take the ratio of the total number of documents to the number of documents containing word, then take the log of that.
- Add 1 to the divisor to prevent division by zero.

- IDF(game) = 1 + log_e(Total Number Of Documents / Number Of Documents with term game in it)
- There are 3 documents in all
 - Document1, Document2, Document3
- The term game appears in Document1
- IDF(game) = $1 + \log_e(3 / 1) = 1 + 1.098726209 = 2.098726209$

Terms	IDF
the	1.405507153
game	2.098726209
of	2.098726209
life	1.405507153
is	1.405507153
a	2.098726209
everlasting	2.098726209
learning	1.405507153
unexamined	2.098726209
not	2.098726209
worth	2.098726209
living	2.098726209
never	2.098726209
stop	2.098726209

Step 3: TF * IDF

- to find out relevant documents for the query: life learning
- For each term in the query multiply its normalized term frequency with its IDF on each document.
- In Document1 for the term life the normalized term frequency is 0.1 and its IDF is 1.405507153.
- Multiplying them together we get 0.140550715 (0.1 * 1.405507153).

Step 3: TF * IDF

	Document1	Document2	Document3
life	0.140550715	0.200786736	0
learning	0.140550715	0	0.468502384

Step 4: Vector Space Model

- The representation of a set of documents as vectors in a common vector space is known as the vector space model
- It is fundamental to a host of information retrieval operations ranging from
 - scoring documents on a query,
 - document classification and
 - document clustering.

Step 4: Vector Space Model Cosine Similarity

- From each document we derive a vector.
- The set of documents in a collection then is viewed as a set of vectors in a vector space.
- Each term will have its own axis.

Overview

The Vector Space Model (VSM) is a way of representing documents through the words that they contain

It is a standard technique in Information Retrieval

The VSM allows decisions to be made about which documents are similar to each other and to keyword queries

How it works: Overview

Each document is broken down into a word frequency table

The tables are called vectors and can be stored as arrays

A vocabulary is built from all the words in all documents in the system

Each document is represented as a vector based against the vocabulary

Example

Document A

"A dog and a cat."

Document B "A frog."

а	dog	and	cat
2	1	1	1

а	frog
1	1

Example, continued

The vocabulary contains all words used

a, dog, and, cat, frog

The vocabulary needs to be sorted

a, and, cat, dog, frog

Example, continued

Document A: "A dog and a cat."

Vector: (2,1,1,1,0)

Document B: "A frog."

a	and	cat	dog	frog
2	1	1	1	0

Vector: (1,0,0,0,1)

а	and	cat	dog	frog
1	0	0	0	1

Queries

Queries can be represented as vectors in the same way as documents:

```
Dog = (0,0,0,1,0)
Frog = ( )
Dog and frog = (
```


Similarity measures

There are many different ways to measure how similar two documents are, or how similar a document is to a query

The cosine measure is a very common similarity measure

Using a similarity measure, a set of documents can be compared to a query and the most similar document returned

The cosine measure

For two vectors d and d' the cosine similarity between d and d' is given by:

Here d X d' is the vector product of d and d', calculated by multiplying corresponding frequencies together $d\|d'\|$

The cosine measure calculates the angle between the vectors in a high-dimensional virtual space

Example

```
Let d = (2,1,1,1,0) and d' = (0,0,0,1,0)

dXd' = 2X0 + 1X0 + 1X0 + 1X1 + 0X0 = 1

|d| = \sqrt{(2^2 + 1^2 + 1^2 + 1^2 + 0^2)} = \sqrt{7} = 2.646

|d'| = \sqrt{(0^2 + 0^2 + 0^2 + 1^2 + 0^2)} = \sqrt{1} = 1

Similarity = 1/(1 \times 2.646) = 0.378

Let d = (1,0,0,0,1) and d' = (0,0,0,1,0)

Similarity =
```


Rankingdocuments

A user enters a query

The query is compared to all documents using a similarity measure

The user is shown the documents in decreasing order of similarity to the query term

Step 4: Vector Space Model Cosine Similarity

- Julie loves me more than Linda loves me
- Jane likes me more than Julie loves me

- To know how similar these texts are, purely in terms of word counts
 - (and ignoring word order).
- Begin by making a list of the words from both texts:

me Julie loves Linda than more likes Jane

Step 4: Vector Space Model Cosine Similarity

- me 2 2
- Jane 0 1
- Julie 1 1
- Linda 1 0
- likes 0 1
- loves 2 1
- more 1 1
- than 1 1

Cosine Similarity

2 vectors are

a: [2, 0, 1, 1, 0, 2, 1, 1]

• b: [2, 1, 1, 0, 1, 1, 1, 1]

Cosine of the angles between them

- The cosine of the angle between them is about 0.822.
- These vectors are 8-dimensional.
- A virtue of using cosine similarity is clearly that
 - it converts a question that is beyond human ability to visualise to one that can be.
- In this case this is an angle of about 35 degrees which is some 'distance' from zero or perfect agreement.

Cosine Similarity

$$\cos \theta = \frac{\mathbf{d_2} \cdot \mathbf{q}}{\|\mathbf{d_2}\| \|\mathbf{q}\|}$$

