Chapter 3 Supervised Machine Learning (in a nutshell)

supplementary slides to

Machine Learning Fundamentals

© Hui Jiang 2020

published by Cambridge University Press

August 2020

Machine Learning Pipeline

- data collection
 - the more in-domain data, the better
 - data cleaning
- feature extraction
 - feature engineering
 - o feature normalization, dimensionality reduction
- model learning
 - supervised machine learning
 - discriminative vs. generative models

Machine Learning Procedure

- feature extraction (optional)
- 2 choose a model from LIST-A
 - o discriminative vs. generative models
 - o simple vs. complex models
 - o parametric vs. non-parametric models
- 3 choose a learning criterion from LIST-B
 - o construct an objective function of model parameters
- 4 choose an optimization algorithm from LIST-C
 - o analytic vs. numerical methods
- **5** empirical evaluation and (optional) theoretical guarantees
 - whether the learning process converges?
 - how well the learned models generalize?

LIST-A: Machine Learning Models (I)

(i) discriminative models:

- linear models
- bilinear models, quadratic models
- logistic sigmoid, softmax, probit
- nonlinear kernels
- decision trees
- neural networks:
 - FCNN, CNN, RNN, LSTM, transformers, etc.

LIST-A: Machine Learning Models (II)

(ii) generative models:

- Gaussian models
- multinomial models
- Markov chain models
- mixture models
 - Gaussian mixture models
 - hidden Markov models
- entangled models
- deep generative models
 - variational autoencoders
 - generative adversarial nets
- graphical models:
 - Bayesian networks, e.g. naïve Bayes classifiers, LDA
 - Markov random fields, e.g. CRF, RBM
- Gaussian processes

LIST-B: Machine Learning Criteria

for discriminative models:

- least square error
- o minimum classification error
- minimum cross-entropy
- o maximum margin
- \circ minimum L_p norm

for generative models:

- maximum likelihood
- maximum conditional likelihood
- maximum a posteriori
- maximum marginal likelihood
- minimum KL divergence

LIST-C: Optimization Methods

- grid search
- gradient descent
- stochastic gradient descent (SGD)
- coordinate descent
- subgradient methods
- Newton's method
- quasi-Newton methods:
 - quickprop, R-prop, BFGS, L-BFGS
- expectation-maximization (EM)
- sequential line search
- alternating direction method of multipliers (ADMM)
- gradient boosting

Case Studies (I)

- not all combinations from the three lists make sense
- linear regression
 (linear model) × (least square error) × (closed-form or gradient descent)
- ridge regression (linear model) \times (least square error + min L_2 norm) \times (closed-form or gradient descent)
- **LASSO** (linear model) \times (least square error + min L_1 norm) \times (subgradient descent)

Case Studies (II)

- logistic regression (linear model + logistic sigmoid) × (max likelihood) × (gradient descent)
- linear SVM (linear model) × (max margin) × (gradient descent)
- nonlinear SVM (nonlinear kernels + linear model) × (max margin) × (gradient descent)
- soft SVM
 (kernels + linear model) × (min linear error + max margin) ×
 (gradient descent)

Case Studies (III)

- matrix factorization (bilinear model) \times (least square error + min L_2 norm) \times (gradient descent)
- dictionary learning (bilinear model) \times (least square error + min L_1 norm) \times (gradient descent)
- topic modelling (latent Dirichlet allocation) × (max marginal likelihood) × (EM algorithm)
- deep learning (neural networks) × (min cross-entropy error) × (SGD)
- boosted trees (decision trees) × (least square error) × (gradient boosting)