

Data Visualization ADDA71

Correspondence Analysis (CA)

Ilyes Jenhani

Schedule (Tentative)

(2)

#	Class type	Content
1	СТР	Principal Component Analysis (PCA)
2	СТР	Correspondence Analysis (CA)
3	СТР	Multiple Correspondence Analysis (MCA)
4	PRJ	Project

Remember

Dimensionality reduction methods

• Aim: summarize and visualize *multivariate* data

2. Correspondence Analysis (CA)

What is Correspondence Analysis?

- Correspondence Analysis (CA) is a statistical technique used to <u>analyze</u> and <u>visualize</u> the relationships between 2 <u>categorical</u> variables within a <u>contingency table</u>.
- Categorical variables:

What is Correspondence Analysis?

(2)

• Contingency tables: a.k.a. crosstabs, Chi-square tables, Pivot tables, etc.

• Tables used in statistics to display the frequency distribution of the categories of variables.

 Used to examine the relationship between two or more categorical variables: Show how the categories of one variable relate to the categories of another.

 Help summarize the data and facilitate the calculation of probabilities, statistical tests like the chi-square test, etc.

Gender

female

female

female male

female

male

female female

male female

male
male
male
female

female

male

umbrella

yes

no

Case	Gender	Highest level of	occurs 6 times in the data			3
		education			Female	Male
1	Male	College		Without graduation	6	7
2	Female	Bachelor			0	- 1
3	Male	Without graduation	١,	College	13	16
4	Male	Master		Bachelor	16	15
5	Female	Master		Master	8	11
				Total	43	49

Female and without a degree

What is Correspondence Analysis?

(3)

- CA provides a visual representation of the data allowing for the identification of the patterns and associations between the categories of the variables.
- CA is a dimensionality reduction technique that converts categorical data into coordinates in a low-dimensional space.
- As in PCA, the first component (or dimension) captures the most variation in the data, reducing the complexity while retaining the essential information. Each component is a linear combination of the original variables, representing a new axis of variation.
- The output of CA is a set of factor scores that can be plotted to show how the categories of the variables relate to one another in terms of proximity or distance.

Chi-square test of independence

- A statistical test used to determine if there is a significant association (dependency) between two categorical variables.
- It evaluates whether the observed distribution of sample categorical data deviates from the expected distribution.
 - The expected distribution is what we would observe if the two variables were statistically independent.
- Calculating the distance between the observed and expected distributions is a key step in CA
- The distances are used as input for the *Singular value decomposition* (SVD). This decomposition helps in identifying the most important factors driving the associations in the data.
- In CA, the total variance (Inertia or deviation) in the data is computed as the sum of all chisquare distances across the table, divided by the total number of observations

- Null Hypothesis (H_o): Assumes that the two variables are independent (no association between them).
- Alternative Hypothesis (H_1): Assumes that the two variables are not independent (there is an association).

Chi-square test of independence STEPS

	With umbrella				
		yes	no	Total	
Gender	female	5	7	12	
	male	5	5	10	
	Total	10	12	22	

From a contingency table:

- Calculate Expected Frequencies: Based on the assumption of independence, the expected frequency $E_{ij} = \frac{(\operatorname{Row} \operatorname{Total} \times \operatorname{Column} \operatorname{Total})}{}$ for each cell in the contingency table is calculated using the formula:
- 2. Calculate the Chi-Square statistic:

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
• O_{ij} = Observed frequency in each

- O_{ij} = Observed frequency in each cell
- E_{ij} = Expected frequency for each cell
- 3.
- Compare the calculated Chi-Square statistic (step 2) with a critical value from the Chi-square 4. distribution (based on the degrees of freedom and significance level alpha, e.g., 0.05) to determine if the observed distribution significantly differs from the expected distribution.

5. Conclusion: If the Chi-square value is greater than the critical value, the null hypothesis is rejected, indicating that the variables are dependent (associated) and we can proceed to the CA. Otherwise, CA will not be informative.

(1)

The below contingency table is the result of a survey about brands of soda products:

Each cell in the table represents the number of responses or counts associating that attribute with that brand.

This 'association' would be displayed through a survey question such as 'pick brands from a list below which you believe show attribute'

Contingency Table					
Brands	Attributes				
Dianus	Tasty	Aesthetic	Economic		
Butterbeer	5	7	2		
Squishee	18	46	20		
Slurm	19	29	39		
Fizzy Lifting Drink	12	40	49		
Brawndo	3	7	16		

Residuals (R): Chi-square distances

- A residual quantifies the difference between the observed data and the data we would expect assuming there is no dependency between the row and column categories.
- A residual (R) is equal to: R = P E, where P is the observed proportions and E is the expected proportions for each cell.
- A high residual (distance) indicates that the count for that brand-attribute pairing is much higher than expected, suggesting a strong relationship and vice versa.

Observed proportions (P):

• P = the value in a cell divided by the total sum of all of the values in the table (312 in this example)

Contingency Table					
Brands	Attributes				
branus	Tasty	Aesthetic	Economic		
Butterbeer	5	7	2		
Squishee	18	46	20		
Slurm	19	29	39		
Fizzy Lifting Drink	12	40	49		
Brawndo	3	7	16		

Observed Proportions Calculations (R = P - E)					
Brands		Attributes			
Dianus	Tasty	Aesthetic	Economic		
Butterbeer	0.016	0.022	0.006		
Squishee	0.058	0.147	0.064		
Slurm	0.061	0.093	0.125		
Fizzy Lifting Drink	0.038	0.128	0.157		
Brawndo	0.01	0.022	0.051		

Rows and columns masses:

A row (resp. column) mass is the proportion of values for that row (resp. column)

Ro				
Brands		Attributes		Row Masses
brands	Tasty	Aesthetic	Economic	Row Masses
Butterbeer	0.016	0.022	0.006	0.044
Squishee	0.058	0.147	0.064	0.269
Slurm	0.061	0.093	0.125	0.279
Fizzy Lifting Drink	0.038	0.128	0.157	0.324
Brawndo	0.01	0.022	0.051	0.083
Column Masses	0.182	0.413	0.404	

Expected proportions (E):

- What we expect to see in each cell's proportion, assuming that there is no relationship between rows and columns.
- Our expected value for a cell would be the row mass of that cell multiplied by the column mass of that cell.

Expected Proportion Calculations (R = P - E)					
Brands		Attributes			
brangs	Tasty	Aesthetic	Economic		
Butterbeer	0.008	0.019	0.018		
Squishee	0.049	0.111	0.109		
Slurm	0.051	0.115	0.113		
Fizzy Lifting Drink	0.059	0.134	0.131		
Brawndo	0.015	0.034	0.034		

(4)

Residuals calculation:

Observed Proportions Calculations (R = P - E)				
Brands		Attributes		
Branus	Tasty Aesthetic Economic			
Butterbeer	0.016	0.022	0.006	
Squishee	0.058	0.147	0.064	
Slurm	0.061	0.093	0.125	
Fizzy Lifting Drink	0.038	0.128	0.157	
Brawndo	0.01	0.022	0.051	

Expected Proportion Calculations (R = P - E)				
Drondo		Attributes		
Brands	Tasty	Aesthetic	Economic	
Butterbeer	0.008	0.019	0.018	
Squishee	0.049	0.111	0.109	
Slurm	0.051	0.115	0.113	
Fizzy Lifting Drink	0.059	0.134	0.131	
Brawndo	0.015	0.034	0.034	

Indexed residuals (I):

interpret here is that there is a negative association between Squishee and Economic; Squishee is much less likely to be viewed as 'Economic' than our other brands of drinks.

Taking our most negative value of -.045 for Squishee and Economic, what we would

- Looking at the top row from our residuals calculation table above, we see that all these numbers are very close to 0. We shouldn't take the obvious conclusion from this that Butterbeer is unrelated to our attributes, as this assumption is incorrect.
- The actual explanation would be that the observed proportions (P) and the expected proportions (E) are small because, as our row mass tells us, only 4.4% of the sample are Butterbeer.
- Results are skewed towards the rows/columns with larger masses. We can fix this by dividing our residuals by our expected proportions (E), giving us a table of our indexed residuals (I, I = R / E):

I = (P-E)/E: relative difference

Indexed Residuals Calculation (I, I = R / E)				
Brands		Attributes		
Dianus	Tasty	Aesthetic	Economic	
Butterbeer	0.95	0.21	-0.65	
Squishee	0.17	0.32	-0.41	
Slurm	0.2	-0.19	0.11	
Fizzy Lifting Drink	-0.35	-0.04	0.2	
Brawndo	-0.37	-0.35	0.52	

Butterbeer is 95% more likely to be viewed as 'Tasty' than what we would expect if there were no relationship between these brands and attributes. Whereas at the top right value, Butterbeer is 65% less likely to be viewed as 'Economic' than what we would expect - given no relationship between our brands and attributes

- Given our indexed residuals(I), our expected proportions (E), our observed proportions (P), and our row and column masses, let's get to calculating our correspondence analysis values for our chart!
- Calculating coordinates for Correspondence Analysis
 - 1. Singular Value Decomposition (SVD): The SVD gives us values to calculate variance and plot our rows and columns (brands and attributes).
 - We calculate the SVD on the standardized residual (Z), where Z = I * sqrt(E), where I is our indexed residual, and E is our expected proportions
 - 3. SVD = svd(Z). A singular value decomposition generates 3 outputs:

A vector, d, containing the singular values

Singular Values (d)					
1st dim 2nd dim 3rd d					
2.65E-01	1.14E-01	4.21E-17			

A matrix, u, containing the left singular vectors

Left Singluar Vectors (u)				
Brands		Dimensions		
Brancs	1st dim	2nd dim	3rd dim	
Butterbeer	-0.439	-0.424	-0.084	
Squishee	-0.652	0.355	-0.626	
Slurm	0.16	-0.0672	-0.424	
Fizzy Lifting Drink	0.371	0.488	-0.274	
Brawndo	0.469	-0.06	-0.588	

A matrix, v, containing the right singular vectors.

Right Singluar Vectors (v)				
Dimensions				
Attributes	1st dim	3rd dim		
Tasty	-0.41	-0.81	-0.427	
Aesthetic	-0.489	0.59	-0.643	
Economic	0.77	-0.055	-0.635	

(6)

A vector, d, containing the singular values

 Singular Values (d)

 1st dim
 2nd dim
 3rd dim

 2.65E-01
 1.14E-01
 4.21E-17

A matrix, u, containing the left singular vectors

Loft Cincluse	11 1 1 1		
Left Singluar Vectors (u)			
	Dimensions		
1st dim	2nd dim	3rd dim	
-0.439	-0.424	-0.084	
-0.652	0.355	-0.626	
0.16	-0.0672	-0.424	
0.371	0.488	-0.274	
0.469	-0.06	-0.588	
	1st dim -0.439 -0.652 0.16 0.371	Dimensions 1st dim 2nd dim -0.439 -0.424 -0.652 0.355 0.16 -0.0672 0.371 0.488	

A matrix, v, containing the right singular vectors.

Right Singluar Vectors (v)				
Attributes	Dimensions			
Attributes	1st dim	2nd dim	3rd dim	
Tasty	-0.41	-0.81	-0.427	
Aesthetic	-0.489	0.59	-0.643	
Economic	0.77	-0.055	-0.635	

- Each of the singular values corresponds to a dimension.
- The left (resp. right) singular vectors correspond to the categories in the rows (resp. columns) of the table.
- The coordinates used to plot row and column categories for our correspondence analysis chart are derived from the first two dimensions.
- Variance expressed by our dimensions:
 - Squared singular values are known as *eigenvalues*(d^2). The <u>eigenvalues</u> in our example are .0704, .0129, and .0000.
 - Expressing each eigenvalue as a proportion of the total sum tells us the amount of *variance* captured in each dimension of our correspondence analysis.
 - Based on each dimensions' singular value; we get 84.5% of variance expressed by our first dimension, and 15.5% in our second dimension (our third dimension explains 0% of the variance).

(7)

A vector, d, containing the singular values

 Singular Values (d)

 1st dim
 2nd dim
 3rd dim

 2.65E-01
 1.14E-01
 4.21E-17

A matrix, u, containing the left singular vectors

Left Singluar Vectors (u)				
Brands		Dimensions		
branus	1st dim	2nd dim	3rd dim	
Butterbeer	-0.439	-0.424	-0.084	
Squishee	-0.652	0.355	-0.626	
Slurm	0.16	-0.0672	-0.424	
Fizzy Lifting Drink	0.371	0.488	-0.274	
Brawndo	0.469	-0.06	-0.588	

Ro	Row and Column Mass Calculations				
Brands	Row Masses				
Brands	Tasty	Aesthetic	Economic	Row Masses	
Butterbeer	0.016	0.022	0.006	0.044	
Squishee	0.058	0.147	0.064	0.269	
Slurm	0.061	0.093	0.125	0.279	
Fizzy Lifting Drink	0.038	0.128	0.157	0.324	
Brawndo	0.01	0.022	0.051	0.083	
Column Masses	0.182	0.413	0.404		

A matrix, v, containing the right singular vectors.

Right Singluar Vectors (v)				
Attributes	Dimensions			
Attributes	1st dim	2nd dim	3rd dim	
Tasty	-0.41	-0.81	-0.427	
Aesthetic	-0.489	0.59	-0.643	
Economic	0.77	-0.055	-0.635	

Standard coordinates:

- Calculated from the left and right singular vectors.
- Previously, we weighted the indexed residuals prior to performing the SVD. In order to get coordinates that represent our indexed residuals, we now need to unweight the SVD's outputs, by dividing each row of the left singular vectors by the square root of the row masses, and dividing each column of the right singular vectors by the square root of the column masses, getting us the standard coordinates of the rows and columns for plotting.

0.16 / sqrt(0.279) = 0.16 / 0.528 = 0.3

Brand Standard Coordinates				
Brands		Dimensions		
branus		1st dim	2nd dim	3rd dim
Butt	erbeer	-2.07	-2	-0.4
Sq	uishee	-1.27	0.68	-1.21
	Slurm	→ 0.3	-1.27	-0.8
Fizzy Lifting	g Drink	0.65	0.86	-0.48
Br	awndo	1.62	-0.21	-2.04

Attribute Standard Coordinates				
Attributes				
Attributes	1st dim	2nd dim	3rd dim	
Tasty	-0.96	-1.89	-1	
Aesthetic	-0.76	0.92	-1	
Economic	1.21	-0.09	-1	

Brand Standard Coordinates				
Brands		Dimensions		
Dranus	1st dim	2nd dim	3rd dim	
Butterbeer	-2.07	-2	-0.4	
Squishee	-1.27	0.68	-1.21	
Slurm	0.3	-1.27	-0.8	
Fizzy Lifting Drink	0.65	0.86	-0.48	
Brawndo	1.62	-0.21	-2.04	

Attribute Standard Coordinates				
Attributes				
Auributes	1st dim	2nd dim	3rd dim	
Tasty	-0.96	-1.89	-1	
Aesthetic	-0.76	0.92	-1	
Economic	1.21	-0.09	-1	

• We use the two dimensions with the *highest variance* captured for plotting, the first dimension going on the X axis, and the second dimension on the Y axis, generating our correspondence analysis graph.

Prince

- <u>Prince</u> is a Python library for multivariate exploratory data analysis in Python.
- It includes a variety of methods for summarizing tabular data, including principal component analysis and correspondence analysis.
- Prince provides efficient implementations, using a scikit-learn API.
- Prince uses <u>Altair</u> for making charts.
- Prince GitHub
- Let's start our Lab!