

REDES DE COMPUTADORES

Curso: Engenharia de Software

Prof.: Leonardo Mendes

O QUE É GATEWAY?

• Portão;

 Algo que atua como um ponto de entrada ou saída entre duas redes distintas, permitindo a comunicação entre elas;

IPv4

• O que é IPv4?

- Internet Protocol; ou, Protocolo de Internet;
- Protocolo de comunicação de dados em redes;
- V4 é uma das versões desse protocolo;

- A história do IPv4 remonta ao início da Internet e ao desenvolvimento de protocolos para facilitar a comunicação entre computadores em redes.
- 1. Década de 1970: Desenvolvimento dos Protocolos de Internet
- O trabalho inicial na criação dos fundamentos da Internet começou na década de 1970, com o desenvolvimento de protocolos de comunicação. Vinton Cerf e Robert Kahn são frequentemente creditados como os "pais da Internet" por seu trabalho na criação do Transmission Control Protocol (TCP) e do Internet Protocol (IP).
- 2. 1981: IPv4 Padronizado
- O IPv4 foi oficialmente padronizado pela primeira vez em setembro de 1981, com a publicação da RFC 791, escrita por Jon Postel e Joyce K. Reynolds. Essa versão inicial estabeleceu os princípios fundamentais do endereçamento IP e das funcionalidades básicas do protocolo.
- 3. 1980-1990: Expansão da Internet e Surgimento de Desafios
- Durante as décadas de 1980 e 1990, a Internet começou a crescer exponencialmente, e a demanda por endereços IP aumentou rapidamente. No entanto, o espaço de endereçamento do IPv4 é limitado a 32 bits, resultando em aproximadamente 4,3 bilhões de endereços únicos.

4. 1990s: Reconhecimento da Escassez de Endereços IP

• À medida que a Internet se tornava mais popular, ficou claro que o espaço de endereçamento do IPv4 seria insuficiente para suportar o crescimento contínuo. A necessidade de encontrar uma solução para a escassez de endereços IP tornou-se evidente.

5. 1998: Proposta do IPv6

 O IPv6, uma versão do protocolo de Internet que utiliza endereços de 128 bits, foi proposto como uma solução para a escassez de endereços IPv4. O IPv6 oferece um espaço de endereçamento praticamente ilimitado em comparação com o IPv4.

6. 2011 em diante: Adoção Gradual do IPv6

• Embora a transição do IPv4 para o IPv6 tenha sido lenta, houve um aumento gradual na adoção do IPv6 em resposta à crescente conscientização sobre a exaustão iminente dos endereços IPv4. Muitas organizações e prestadores de serviços de Internet começaram a implementar o suporte ao IPv6.

7. Atualidade: Coexistência de IPv4 e IPv6

- Atualmente, o IPv4 e o IPv6 coexistem. A transição para o IPv6 está em andamento, mas muitos dispositivos e redes ainda dependem do IPv4. A implementação efetiva do IPv6 é essencial para garantir o crescimento futuro da Internet e a disponibilidade de endereços IP suficientes.
- A história do IPv4 é marcada por seu papel fundamental no desenvolvimento inicial da Internet e pela conscientização posterior sobre suas limitações, levando à necessidade de uma transição para o IPv6.

Diferença entre rotas IPv4 e IPv6

Prefix Count		State
9	27182	established
1	91396	established

Fornecer endereçamento e roteamento de pacotes de dados entre dispositivos em uma rede.

CARACTERÍSTICAS IPv4

Qual a quantidade de bits de um IPv4?
32 bits

Como são divididos esses bits?
São 8 octetos dividido em 4 grupos.

Cada grupo é separado por um (.) ponto.

CARACTERÍSTICAS IPv4

Estrutura de Rede: O IPv4 permite a divisão de uma rede em sub-redes para melhor gerenciamento e alocação de endereços.

Classes de Endereços: O IPv4 utiliza classes A, B, C, D e E para categorizar diferentes faixas de endereços. As classes A, B e C são as mais comumente utilizadas para endereçamento de hosts.

Limitação de Endereços: aproximadamente 4,3 bilhões de endereços únicos.

- Como saber a quantidade de bits de um ip?
- Cada bloco de 8 bits tem seus valores definidos de 0 até 255.

• Resolva:

Transforme os bits em ip.

bits 00010111.11111110.1000001.00011100

16+4+2+1 . 128+64+32+16+8+4+2 . 128+1 . 16+8+4

ip 23. 254.129.28

• Resolva:

Transforme o endereço IP em bits.

172.100.241.148

10101100.01100010.11110001.1001100

SUB REDE (MÁSCARA)

- Para que serve SUB REDE?
 - Principal função é definir a extensão do bloco ip;
 - Divisão entre Identificação de Rede e Host;
 - Determinação do Número de Sub-redes e Hosts;
 - Isolamento de Tráfego;

• MÁSCARA DE SUBREDE IPv4:

• Quantos bits possui a máscara abaixo?

255.255.255

32 bits

Podemos chama-la de /32.

• E agora? Quantos bits tem as máscaras abaixo?

• 255.255.255.0

• 255.255.0.0

• 255.0.0.0

• Qual a menor máscara de sub rede IPv4?

/32

/8

O que é identificação da rede?

Refere-se à parte do endereço IP que identifica a rede à qual um dispositivo pertence.

A identificação da rede é determinada pelos primeiros bits do endereço IP, com base na máscara de sub-rede associada.

- Resolva:
- 1- Transforme esse ip em bits:

10.20.30.201

2- transforme essa mascara em bits:

255.255.255.252

lp: 10.20.30.201

Netmask: 255.255.255.252

00001010.00010100.00011110.11001001

• RESOLVA:

• Pelo ip e máscara de rede abaixo, indique a rede, broadcast e a quantidade de host disponíveis nesse bloco ip.

10.200.180.80/255.255.255.248

CLASSES DE IPs

Classe	se Início Fim	Máscara de	Notação	
			Subrede padrão	CIDR
Α	1.0.0.1	126.255.255.254	255.0.0.0	/8
В	128.0.0.1	191.255.255.254	255.255.0.0	/16
С	192.0.0.1	223.255.255.254	255.255.255.0	/24
D	224.0.0.0	239.255.255.255		
E	240.0.0.0	247.255.255.255		

Fonte: https://www.hardware.com.br/comunidade/ip/1421422/

Universidade Evangélica de Goiás

IPs PRIVADOS

Classe	Faixa de endereços de IP	Notação CIDR
Classe A	10.0.0.0 - 10.255.255.255	10.0.0.0/8
Classe B	172.16.0.0 - 172.31.255.255	172.16.0.0/12
Classe C	192.168.0.0 - 192.168.255.255	192.168.0.0/16

Fonte: https://pt.wikipedia.org/wiki/Endere%C3%A7o_IP

Blocos de Endereços Reservados

CIDR Bloco de Endereços	Descrição	Referência
0.0.0.0/8	Rede corrente (só funciona como endereço de origem)	RFC 1700 ₺
10.0.0.0/8	Rede Privada	RFC 1918 ம⁴
14.0.0.0/8	Rede Pública	RFC 1700 ₺
39.0.0.0/8	Reservado	RFC 1797 ₺
127.0.0.0/8	Localhost	RFC 3330 ₺
128.0.0.0/16	Reservado (IANA)	RFC 3330 ₺
169.254.0.0/16	Zeroconf	RFC 3927 ம⁵
172.16.0.0/12	Rede privada	RFC 1918 ₺
191.255.0.0/16	Reservado (IANA)	RFC 3330 ₺
192.0.2.0/24	Documentação	RFC 3330 ₺
192.88.99.0/24	IPv6 para IPv4	RFC 3068 ₺
192.168.0.0/16	Rede Privada	RFC 1918 ₺
198.18.0.0/15	Teste de benchmark de redes	RFC 2544 ₺
223.255.255.0/24	Reservado	RFC 3330 ₺
224.0.0.0/4	Multicasts (antiga rede Classe D)	RFC 3171 ₺
240.0.0.0/4	Reservado (antiga rede Classe E)	RFC 1700 ₺
255.255.255.255	Broadcast	

Fonte: https://pt.wikipedia.org/wiki/Endere%C3%A7o_IP

REDES DE COMPUTADORES

EXERCÍCIOS

Prof. esp. Leonardo Mendes

Transforme os bits em endereços ips:

a) 10101010.11100011.00010110.01011101

b) 11000011.111111000.10100011.11111110

• Transforme os endereços ips em bits

a) 192.168.0.220

b) 172.16.16.201

• Qual endereço da máscara em ip? Por exemplo(/24 – 255.255.255.0)

a) /22

b) /18

c) /32

d) /48

• Identifique nos 'bloco ip' abaixo a rede, o broadcast e a quantidade de host que é possível obter em cada bloco.

- a) 10.0.50.0/14
- b) 172.20.21.34/27

