

Digital IO and Networking Engine Hardware Guide

Revision 1.03

May 2, 2015

CONTENTS

1	ABOUT	TCD30XX	6
2	INTROD	DUCTION	7
	2.1 BL	OCK DIAGRAM	7
	2.2 M	AIN FEATURES	8
3	PACKA	GE	11
	3.1 QF	-N-88	12
		-N-148	
	3.3 BG	6A-225	14
4	PIN-OU	т	15
	4.1 Sig	SNAL DESCRIPTION	15
		WER AND GROUND	
		ULTIFUNCTION PINS (APORT)	
	4.3.1	Configuration after reset	
	4.3.2	Primary function selection	
	4.3.3	Input Function Select	
	4.4 UN	iused Pins	23
	4.4.1	RGMII Inputs	23
	4.4.2	Firewire IO's	23
	4.4.3	SDIO Interface	23
	4.4.4	External VCO pins	23
5	GROUN	ID AND POWER CONSIDERATIONS	24
	5.1 AD	OC REFERENCE RESISTOR	24
6	CRYSTA	AL OSCILLATOR	25
	6.1 CR	YSTAL OSCILLATOR CIRCUIT	25
	6.2 CR	YSTAL SPECIFICATIONS	25
	6.3 Os	CILLATION FREQUENCY	25
	6.4 C1	, C2,RF AND RX SELECTION	25
	6.5 PC	B CONSIDERATIONS	26
7	TEST A	ND JTAG OPERATION	27
8	RESET (CIRCUITRY	28
9	ELECTR	ICAL SPECIFICATIONS	29
	9.1 PA	RAMETER CONDITIONS	29
	9.1.1	Minimum and maximum values	29
	9.1.2	Typical values	29
	9.1.3	Loading capacitor	29
	9.1.4	Power supply scheme	29
	9.2 AB	SOLUTE MAXIMUM RATINGS	
	9.3 OP	PERATING CONDITIONS	30
	9.4 Tyr	PICAL POWER CONSUMPTION BY APPLICATION	31
	9.5 1/0	O CHARACTERISTICS	31
	9.6 AC	CHARACTERISTICS	32
	9.6.1	RGMII	32
	9.6.2	IEEE1394	32

10	REVIS	IONS	35
	9.6.6	SPI Master	. 34
	9.6.5	SDIO	
	9.6.4	EBI	33
	9.6.3	InS	32

LIST OF TABLES

TABLE 1, ORDERING INFORMATION	6
Table 2, Power Consumption	10
TABLE 3, PACKAGE CODES	11
TABLE 4, IO CELL TYPES	15
Table 5, Pin description	19
TABLE 6, POWER AND GROUND	20
TABLE 7, MULTIFUNCTION PINS	22
Table 8, Absolute Maximum Ratings	29
Table 9, Operating conditions	
Table 10, I/O Characteristics	31
TABLE 11, RGMII TIMING	32
TABLE 12, IEEE1394 TIMING	32
TABLE 13, INS TIMING	33
TABLE 14, INS SAMPLING POINT	33
TABLE 15, EBI TIMING	34
TABLE 16, SDIO TIMING	34
TABLE 17, SPI TIMING	34
TABLE 18. DOCUMENT REVISION HISTORY	35

LIST OF FIGURES

FIGURE 1, BLOCK DIAGRAM	7
FIGURE 2, QFN-88 PACKAGE OUTLINE DRAWING	
FIGURE 3, QFN-148 PACKAGE OUTLINE DRAWING	
FIGURE 4, BGA-225 PACKAGE OUTLINE DRAWING	14
FIGURE 5, On-Chip oscillator typical connections	25
FIGURE 6. CAPACITIVE OUTPUT LOAD	29

1 About TCD30xx

The DICE 30xx (TCD30xx) family of chips is based on the DICE III platform. There are a number of options for package and functionality.

Ordering information

ID	ROHS		Temp.	Package
TCD3000-CF	√	USB2, 8 ports, SDIO	0 °C to 70 °C	QFN 88
TCD3020-CG	√	USB2, 19 ports, SDIO	0 °C to 70 °C	QFN 148
TCD3040-CG	√	AVB, USB2, 19 ports, SDIO	0 °C to 70 °C	QFN 148
TCD3070-CH	√	AVB, USB2, 1394, 32 ports, EBI	0 °C to 70 °C	BGA 225

Table 1, Ordering Information

2 Introduction

The TCD30xx chip family covers a wide range of audio applications, professional as well as consumer.

The audio sub-system is centered on the DICE III platform with JET-PLL[™], router, mixer and audio clock controller. Apart from traditional digital audio interfaces such as I2S, TDM, ADAT and SPDIF/AES3 the system includes USB2, FireWire (IEEE1394) and Ethernet AVB streaming engines.

While the moving of audio streams between interfaces is done entirely in hardware the platform features a rather powerful host processor (ARM9, 200MHz). The processor will typically handle configuration of the audio engine, UI tasks etc. It is however possible to transfer up to 64 channels of audio between the processor and the audio system enabling DSP processing.

The processor has a number of peripherals including the traditional UART, TIMER, SPI, I2C etc. It also features an SDCARD/SDIO controller capable of 200Mbit/s transfer rates, and advanced 8 channel DMA controller, internal RAM and boot ROM. For demanding system control applications an SDRAM controller is included supporting up to 128Mbytes external memory.

2.1 Block Diagram

Figure 1, Block Diagram

2.2 Main Features

CPU core

- 32-bit ARM9EJ-S RISC processor
- 32-bit internal bus
- 32-bit ARM and 16-bit Thumb mode
- 320 Kb internal RAM
- 16 Kb internal ROM
- 4K ICache, 4K DCache and MMU
- External Dynamic Memory Interface (EBI)

I2C Interface

- Standard and Full Speed support
- Slave mode with address match logic
- Master Mode
- 10 bit and 7 bit addressing mode
- 8 deep Rx/Tx FIFO
- DMA support

Dual SPI Master Interface

- Up to 25MHz
- Supports all SPI modes
- 4 SS signals per controller
- 8 deep Rx/Tx FIFO
- DMA support

SPI Slave Interface

- Up to 3MHz
- Supports all SPI modes
- Dedicated SS signal
- 8 deep Rx/Tx FIFO
- DMA support

Quad Timer Unit

- 32 bit down counter
- Free running and user-defined count
- Prescaler, clocked by CPU clock
- Interrupt on counter wrap
- Each configurable for independent operation

Watch Dog

• 32 bit down counter

Dual Universal Asynchronous Receiver Transmitter (UART)

- Industry standard 16550 Compliant
- 16 byte deep receive and transmit FIFOs
- · Supports all standard RS232 Rates
- Supports MIDI rate
- DMA support

General Purpose Input Output (GPIO)

- 16 individual ports (8 on TCD3000)
- Each port configurable as input or output
- Each port configurable for level or edge sensitive interrupts
- Configurable deglitching logic for each port

SDCARD/SDIO Controller

• Standard and high speed, 4 bit data. DMA support.

DMA Controller

• 8 channel DMA with descriptor scatter/gather support

EBI

External SDRAM interface, 2 chip selects, 128MBytes

Analog to Digital Converter

• 3 channel 10 bit ADC

Interrupt Controller

• 27 interrupt sources with priority handling

USB2 Device Controller

- 1 Control Endpoint, 6 IN and 6 OUT endpoints
- 4k byte local FIFO
- Integrated descriptor based scatter/gather DMA
- Audio IN and OUT endpoint for hardware streaming

IEEE 1394b Link Layer Controller (LLC)

- IEEE 1394b compliant LLC
- Compliant Beta PHY interface
- 512x32 FIFO for asynchronous communication
- Dual Isochronous Audio streaming

GigE Ethernet MAC with PTP and RTC (AVB) support

JetPLL[™]

Router

Audio Clock Controller

Mixer

Float/Fix Converter

CPU Audio Buffer Interface

I2S/TDM Interface

ADAT Interface

SPDIF/AES3 Interface

IEEE1394 Audio Streaming Engine

Ethernet AVB Streaming Engine

USB Audio Streaming Engine

System Clock and Reset Controller

Operating Voltage

3.3 volts - I/O

1.2 volts - core

Power Consumption

DICE III variant	Max	Typical
TCD3000	500mW	240mW
TCD3020	500mW	240mW
TCD3040	500mW	240mW
TCD3070	740mW	310mW

Table 2, Power Consumption

3 Package

There are a number of different packages available. The last letter in the ID indicates the package type.

CODE	Type	Spacing	Pins	Size
F	QFN-Single Row	0.4mm	88	10x10mm
G	QFN-Dual Row	0.5 mm	148	12x12mm
Н	BGA	1.0mm	225	16x16mm

Table 3, Package codes

3.1 **QFN-88**

Figure 2, QFN-88 Package Outline Drawing

3.2 **QFN-148**

Figure 3, QFN-148 Package Outline Drawing

3.3 **BGA-225**

PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS

DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C

1. ALL DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5 - 2009

NOTES: UNLESS OTHERWISE SPECIFIED

Figure 4, BGA-225 Package Outline Drawing

4 Pin-out

4.1 **Signal Description**

The following table lists each I/O signal for the TCD30xx. Note that the chips use a number of shared pins, whereby each shared pin can be configured to contain different signals. The SYS_CTRL module is used to configure the shared pins for a particular signal. The shared pins and their multiple functions are also listed in a table that follows the table below. Note that all the shared pins are bi-directional.

ID	IBIS Model	Туре	Drive	Slew	Schmitt Trigger	Pull
1	PBS8W	Bidir	8mA	Low	Yes	
2	PISW	Input			Yes	
3	PO8W	Output	8mA	Normal		
4	POL8W	Output	8mA	Low		
5	PBDL8W	Bidir	8mA	Low		Down
6	PIW	Input				
7	POTL8W	Output/Z	8mA	Low		
8	PISDW	Input			Yes	Down
9	PO16W	Output	16mA	Normal		
10	PBSUL8W	Bidir	8mA	Low	Yes	Up
11	PIUW	Input				Up
12	PBL8W	Bidir	8mA	Low		
13	PBD8W	Bidir	8mA	Normal		Down
14	PB12W	Bidir	12mA	Normal		

Table 4, IO Cell Types

Pin Name	TCD3000	TCD3020	TCD3040	TCD3070	TYPE	DRIVE	SLEW	STRIG	PULL	IBIS	Description
adc_in[0]		B49	B49	J15	Α						Input for 10bit ADC, 0-adc_vref
adc_in[1]	56	A46	A46	J13	Α						Input for 10bit ADC, 0-adc_vref
adc_in[2]	55	B48	B48	J14	Α						Input for 10bit ADC, 0-adc_vref
adc_25k	59	A48	A48	H14	Α						25k 1% resistor to GND for ADC
adc_vref	58	B50	B50	H13	Α						Vref for adc 0 - 0.9*AVDD_ADC
fw_d[7]				M1	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[6]				L1	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[5]				K3	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[4]				J3	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[3]				J2	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[2]				J1	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[1]				Н3	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_d[0]				H2	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_ctl[1]				N1	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_ctl[0]				K2	IO	8mA		S		1	FireWire PHY interface 3.3v
fw_pclk				K1	I			S		2	FireWire PHY interface 3.3v
fw_lreq				L2	0	8mA				3	FireWire PHY interface 3.3v
fw_pint				P1	I			S		2	FireWire PHY interface 3.3v
fw_lps				M2	0	8mA				3	FireWire PHY interface 3.3v
bclk0	60	A49	A49	H15	0	8mA	L			4	Serial Audio Bit clock 0
mclk0	62	A50	A50	G15	0	8mA	L			4	Serial Audio master clock 0
fclk0	64	A51	A51	G13	0	8mA	L			4	Serial Audio LR/frame clock 0
aport[0]	34	A26	A26	R9	IO	8mA	L		PD	5	see aport-mux section below
aport[1]	35	B28	B28	N9	IO	8mA	L		PD	5	see aport-mux section
aport[2]	40	B34	B34	N11	IO	8mA	L		PD	5	see aport-mux section
aport[3]	42	B35	B35	R13	IO	8mA	L		PD	5	see aport-mux section
aport[4]	45	A37	A37	N14	IO	8mA	L		PD	5	see aport-mux section
aport[5]	46	B40	B40	P15	IO	8mA	L		PD	5	see aport-mux section
aport[6]	50	B44	B44	M15	IO	8mA	L		PD	5	see aport-mux section
aport[7]	51	A42	A42	L15	IO	8mA	L		PD	5	see aport-mux section
aport[8]		A24	A24	R8	IO	8mA	L		PD	5	see aport-mux section
aport[9]		B26	B26	N8	IO	8mA	L		PD	5	see aport-mux section
aport[10]		B29	B29	R10	IO	8mA	L		PD	5	see aport-mux section
aport[11]		B30	B30	R11	IO	8mA	L		PD	5	see aport-mux section
aport[12]		B31	B31	N10	IO	8mA	L		PD	5	see aport-mux section
aport[13]		A34	A34	R14	IO	8mA	L		PD	5	see aport-mux section
aport[14]		B36	B36	R15	IO	8mA	L		PD	5	see aport-mux section
aport[15]		B42	B42	M14	IO	8mA	L		PD	5	see aport-mux section
aport[16]		A40	A40	L13	IO	8mA	L		PD	5	see aport-mux section
aport[17]		B47	B47	K15	IO	8mA	L		PD	5	see aport-mux section
aport[18]		B46	B46	K13	IO	8mA	L		PD	5	see aport-mux section
aport[19]		-		K14	IO	8mA	L		PD	5	see aport-mux section

Pin Name	TCD3000	TCD3020	TCD3040	TCD3070	TYPE	DRIVE	SLEW	STRIG	PULL	IBIS	Description
aport[20]				P8	IO	8mA	L		PD	5	see aport-mux section
aport[21]				P9	IO	8mA	L		PD	5	see aport-mux section
aport[22]				P10	IO	8mA	L		PD	5	see aport-mux section
aport[23]				R12	IO	8mA	L		PD	5	see aport-mux section
aport[24]				P11	IO	8mA	L		PD	5	see aport-mux section
aport[25]				P12	IO	8mA	L		PD	5	see aport-mux section
aport[26]				P13	IO	8mA	L		PD	5	see aport-mux section
aport[27]				N12	IO	8mA	L		PD	5	see aport-mux section
aport[28]				P14	IO	8mA	L		PD	5	see aport-mux section
aport[29]				M13	IO	8mA	L		PD	5	see aport-mux section
aport[30]				N15	IO	8mA	L		PD	5	see aport-mux section
aport[31]				L14	IO	8mA	L		PD	5	see aport-mux section
pll_filter	5	A7	A7	F4	Α						passive filter for PLL
vco_ext_u		В6	В6	F2	0	8mA	L			4	Charge pump up signal for optional external VCO
vco_ext_d		A6	A6	F3	0	8mA	L			4	Charge pump down signal for optional external VCO
vco_ext_in		В7	В7	F1	I					6	Clock input from optional external VCO (nominal 50MHz or 100MHz)
spi0_clk	80	B68	B68	B5	0	8mA	L			4	spi0 signals (spi0 ss0 is used for SPI Flash boot, mandatory)
spi0_mosi	81	A65	A65	C5	0	8mA	L			7	spi0 signals (spi0 ss0 is used for SPI Flash boot, mandatory)
spi0_miso	83	A66	A66	А3	I			S		2	spi0 signals (spi0 ss0 is used for SPI Flash boot, mandatory)
spi0_ss0	84	B70	B70	В3	0	8mA	L			4	spi0 signals (spi0 ss0 is used for SPI Flash boot, mandatory)
tsten	85	A67	A67	B4	I			S	PD	8	For internal use pull down or leave floating.
rgmii_txgclk			A68	A2	I					6	Ethernet GigE RGMII interface
rgmii_txctl			B72	A1	0	16mA				9	Ethernet GigE RGMII interface
rgmii_txd[0]			A69	B2	0	16mA				9	Ethernet GigE RGMII interface
rgmii_txd[1]			B73	B1	0	16mA				9	Ethernet GigE RGMII interface
rgmii_txd[2]			B74	C2	0	16mA				9	Ethernet GigE RGMII interface
rgmii_txd[3]			A71	C1	0	16mA				9	Ethernet GigE RGMII interface
rgmii_txclk			B75	C3	0	16mA				9	Ethernet GigE RGMII interface
rgmii_rxclk			A72	C4	I					6	Ethernet GigE RGMII interface
rgmii_rxd[0]			B2	D2	Ι					6	Ethernet GigE RGMII interface
rgmii_rxd[1]			A2	D1	I					6	Ethernet GigE RGMII interface
rgmii_rxd[2]	1		А3	E2	Ι					6	Ethernet GigE RGMII interface
rgmii_rxd[3]	1		B4	E1	Ι					6	Ethernet GigE RGMII interface
rgmii_rxctl			A4	E3	I					6	Ethernet GigE RGMII interface
mdio_clk			A14	R1	0	8mA	L			4	Ethernet GigE RGMII interface
mdio_d	1		B15	N2	IO	8mA	L	S	PU	10	Ethernet GigE RGMII interface
jtag_tck	68	B59	B59	B14	I				PU	11	JTAG for debugging
jtag_tms	69	A56	A56	B13	I				PU	11	JTAG for debugging
jtag_tdi	74	B65	B65	A9	I				PU	11	JTAG for debugging
jtag_tdo	75	A62	A62	B8	0	8mA	L			12	JTAG for debugging
jtag_trstn	77	A63	A63	В7	I				PU	11	JTAG for debugging

Pin Name	TCD3000	TCD3020	TCD3040	TCD3070	TYPE	DRIVE	SLEW	STRIG	PULL	IBIS	Description
sdio_cmd	22	B19	B19	N3	IO	8mA		S		1	SDIO Card interface (max 50MHz)
sdio_clk	21	A18	A18	М3	0	8mA				3	SDIO Card interface (max 50MHz)
sdio_d[0]	20	B18	B18	L3	IO	8mA		S		1	SDIO Card interface (max 50MHz)
sdio_d[1]	18	B17	B17	P3	IO	8mA		S		1	SDIO Card interface (max 50MHz)
sdio_d[2]	17	A16	A16	R2	IO	8mA		S		1	SDIO Card interface (max 50MHz)
sdio_d[3]	15	A15	A15	P2	IO	8mA		S		1	SDIO Card interface (max 50MHz)
uart0_rx	30	A23	A23	P7	Ι			S		2	Uart, typically for debug and boot
uart0_tx	31	B25	B25	R7	0	8mA	L			4	Uart, typically for debug and boot
ebi_d[0]				G14	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[1]				F15	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[2]				F13	Ю	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[3]				F14	Ю	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[4]				E13	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[5]				E15	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[6]				E14	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[7]				D15	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[8]				D14	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[9]				D13	Ю	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[10]				C13	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[11]				C12	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[12]				C14	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[13]				C15	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[14]				D11	Ю	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_d[15]				B15	IO	8mA			PD	13	External SDRAM interface, upper addresses are bank select signals
ebi_a[0]				A15	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[1]				B12	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[2]				A14	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[3]				B11	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[4]				C11	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[5]				A13	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[6]				A12	О	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[7]				C10	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[8]				B10	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[9]				A11	0	8mA				3	External SDRAM interface, upper addresses are bank select signals

Pin Name	TCD3000	TCD3020	TCD3040	TCD3070	TYPE	DRIVE	SLEW	STRIG	PULL	IBIS	Description
ebi_a[10]				D9	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[11]				A10	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[12]				В9	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[13]				C9	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_a[14]				D8	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_dqm[0]				C8	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_dqm[1]				A8	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_ncas				C7	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_nras				A7	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_nwe				A5	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_ncs[0]				В6	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_ncs[1]				C6	0	8mA				3	External SDRAM interface, upper addresses are bank select signals
ebi_clk				A4	0	12mA				14	External SDRAM interface, upper addresses are bank select signals
xi	9	B10	B10	G1	Α						Xtal, 12MHz required for USB operation
хо	10	A10	A10	H1	Α						Xtal, 12MHz required for USB operation
nreset	78	B67	B67	A6	I			S		2	Active low reset
usb_vbus	23	B20	B20	R3	Α						USB VBUS for internal comparator
usb_dp	25	A20	A20	R4	Α						USB D+ signal, directly from connector, device only
usb_tune	26	B22	B22	P5	Α						Use 44.1 Ohms 1% to GND
usb_dm	27	A21	A21	R5	Α						USB D- signal, directly from connector, device only

Table 5, Pin description

4.2 Power and Ground

Pin	Voltage	TCD3000	TCD3020	TCD3040	TCD3070	Description
AVDD_USB	3.3V	24, 28	A19, B23	A19, B23	M5, N5, N6	VDD for USB PHY
AVDD_PLL	3.3V	8	В9	В9	G4 H4	VDD for CPU PLL
AVDD_VCO	3.3V	6	В8	B8	G3	VDD for JET PLL VCO
AVDD_PLL1_2	1.2V	7	A8	A8	G2	VDD for PLL's
AVDD_ADC	3.3V	57	A47	A47	H12	VDD for ADC
VDD	1.2V	1, 3, 12, 14, 16, 29, 33, 37, 39, 43, 47, 49, 53, 61, 65, 67, 71, 73, 79, 86, 88	A1, A11, A22, A28, A32, A35, A38, A39, A41, A44, A61, A64, B5, B16, B27, B52, B54, B55, B58, B61, B71, B76	A1, A11, A22, A28, A32, A35, A38, A39, A41, A44, A61, A64, B5, B16, B27, B52, B54, B55, B58, B61, B71, B76	E6, E7, E8, E9, E10, F5, F11, G5, G11, H11, J5, J11, K5, K11, L8, L9, L10, M6	Core VDD
VDDIO	3.3V	2, 4, 11, 13, 19, 32, 36, 38, 41, 44, 48, 52, 54, 63, 66, 70, 72, 76, 82, 87,	B3, B13, B24, B37, B41, B53, B60, B64, B66, B69, A5, A17, A25, A27, A30, A33, A43, A45, A52, A54, A70	B3, B13, B24, B37, B41, B53, B60, B64, B66, B69, A5, A17, A25, A27, A30, A33, A43, A45, A52, A54, A70	D5, D6, D7, D10, E4, E12, F12, G12, J4, J12, K4, K12, L4, L12, M8, M9, M10, M11	IO VDD
VSS	0V	PAD	PAD	PAD	D3, D4, D12, E5, E11, F6, F7, F8, F9, F10, G6, G7, G8, G9, G10, H5, H6, H7, H8, H9, H10, J6, J7, J8, J9, J10, K6, K7, K8, K9, K10, L5, L6, L7, L11, M4, M7, M12, N4, N7, N13, P4, P6, R6	Ground
NC			B1, B2, A2, A3, A4, B4, A9, B11, B12, A12, A13, B14, A14, B15, B21, A29, B32, A31, B33, A36, B38, B39, B43, B45, B51, A53, B56, B57, A55, A57, A58, B62, A59, B63, A60, A68, B72, A69, B73, B74, A71, B75, A72,	B1, A9, B11, B12, A12, A13, B14, B21, A29, B32, A31, B33, A36, B38, B39, B43, B45, B51, A53, B56, B57, A55, A57, A58, B62, A59, B63, A60		

Table 6, Power and Ground

4.3 Multifunction pins (APORT)

The APORT is a multi-function port. The functionality is programmable from firmware. The port is highly configurable providing several alternative pins for certain signals. This can help make layout easier as the functionality can be placed where it is easily routable on the PCB.

4.3.1 Configuration after reset

After reset the ports will come up in 'Audio' mode. This also means that all the even numbered ports will come up as an output driven low. Care must be taken if they are intended to be used as inputs (GPIO or SPI) to avoid a short after boot. If possible use odd pins for GPIO inputs. If that is not possible, use a series resistor or assure that the external signal is low until the firmware has configured the port. If the SPI2 Slave is being used please note that the SPI2_SS signal will be an output driven low until configured by firmware. It is suggested that a series resistor is put on this pin to avoid a short or assure that the SPI2 SS signal is dot driven high by the external master until firmware has configured it for SPI functionality.

4.3.2 Primary function selection

The primary function is selected by firmware on a per pin basis. Some functions can appear on several pins. If the same function is configured to more than one pin then if the function is an output it will appear on all the pins and if it is an input the input will be taken from the pin with the lowest number.

4.3.3 Input Function Select

There are a number of input functions which can be selected to come from any of the odd numbered pins. Those are independent of the primary function selection but if the primary function selected is an output the function will simply receive what that function is sending out.

For that reason it is suggested that if one of the input select functions are used the primary function should be set to 'Audio' as that will assure that the pin is an input.

			Prim	ary fı	ınctio	n			(w			elects ry=Auc	dio)
Port	Audio	Alt Audio	SPDIF tx	ADAT tx	GPIO	UART1 tx	SPI	12C	SPDIF in	ADAT in	UART1 in	wclk in	jet_ext in
0	InS_00	wclk_out	spdif	adat0	gpio0	uart1	spi0_ss1	i2c_sck					
1	InS_I0				gpio1		spi0_ss2	i2c_d	spdif	adat0	uart1	wclk_in0	jet_ext
2	InS_O1				gpio2		spi0_ss3						
3	InS_I1				gpio3				spdif	adat1	uart1	wclk_in1	jet_ext
4	InS_O2				gpio4	uart1							
5	InS_I2				gpio5				spdif	adat0	uart1	wclk_in0	jet_ext
6	InS_O3		spdif	adat1	gpio6	uart1	spi0_ss1						
7	InS_I3				gpio7		spi0_ss2		spdif	adat1	uart1	wclk_in1	jet_ext
8	InS_O4				gpio8		spi1_mosi						
9	InS_I4				gpio9		spi1_miso		spdif	adat0	uart1	wclk_in0	jet_ext
10	InS_O5		spdif	adat0	gpio10		spi1_sck						
11	InS_I5				gpio11		spi1_ss0		spdif	adat1	uart1	wclk_in1	jet_ext
12	InS_O6				gpio12		spi1_ss1						
13	InS_I6				gpio13		spi1_ss2		spdif	adat0	uart1	wclk_in0	jet_ext
14	InS_07				gpio14		spi1_ss3						
15	InS_I7				gpio15		spi2_mosi		spdif	adat1	uart1	wclk_in1	jet_ext
16	InS_O8	bclk1			gpio0		spi2_miso						
17	InS_I8	mclk1			gpio1		spi2_sck		spdif	adat0	uart1	wclk_in0	jet_ext
18	InS_O9	fck1	spdif	adat1	gpio2	uart1	spi2_ss						
19	InS_I9				gpio3		spi0_ss3		spdif	adat1	uart1	wclk_in1	jet_ext
20	InS_010		spdif	adat0	gpio4		spi1_mosi						
21	InS_I10				gpio5		spi1_miso		spdif	adat0	uart1	wclk_in0	jet_ext
22	InS_011				gpio6		spi1_sck						
23	InS_I11				gpio7		spi1_ss0		spdif	adat1	uart1	wclk_in1	jet_ext
24	InS_012	mclk2	spdif	adat1	gpio8	uart1	spi1_ss1						
25	InS_I12				gpio9		spi1_ss2	i2c_sck	spdif	adat0	uart1	wclk_in0	jet_ext
26	InS_013		spdif	adat0	gpio10		spi1_ss3	i2c_d					
27	InS_I13				gpio11		spi2_mosi		spdif	adat1	uart1	wclk_in1	jet_ext
28	InS_014				gpio12		spi2_miso						
29	InS_I14				gpio13		spi2_sck		spdif	adat0	uart1	wclk_in0	jet_ext
30	InS_015	wclk_out			gpio14		spi2_ss						
31	InS_I15	bclk2			gpio15				spdif	adat1	uart1	wclk_in1	jet_ext

Table 7, Multifunction pins

4.4 Unused pins

Most of the input pins have internal pulls as stated in the table but a few are pure CMOS inputs with no internal pull. These pins must be tied to either VSS or VDDIO either directly or through a resistor (10K suggested).

4.4.1 RGMII Inputs

If the RGMII interface is not used connect rgmii_rx* pins to VSS.

4.4.2 Firewire IO's

If the firewire interface is not used make sure to connect the fw_* inputs to VSS and the fw_* bidirectional pins to VSS through 100k.

4.4.3 SDIO Interface

If the SDIO interface is not being used make sure to connect the *sdio_** bidirectional pins to VSS or VDDIO through 100k.

4.4.4 External VCO pins

The pin vco_ext_in should be connected to VSS if an external VCO is not used in the design.

5 Ground and Power Considerations

Extended copper planes must be used for the ground and power supplies. Ground planes for each voltage domain should be separate and analog ground should be kept separate from digital to ensure analog performance of ADC, USB and PLL's. It is suggested to use a separate voltage regulator for 3.3V analog power supply for use by the two chip PLL's or make sure these supplies are decoupled from the noise of the other supplies by inductors and local decoupling capacitors.

Designs should make sure that the supply has a proper amount of bypass capacitors placed as close as possible to the supply pins. The amount of capacitors on the VDDIO might vary depending on the applications use of high speed IO.

The capacitors should be placed as close to the package as possible, preferably on the bottom side of the board. The decoupling capacitors should be tied directly to the power and ground planes with vias that touch their solder pads. Surface-mount capacitors are recommended because of their lower series inductances (ESL) and higher series resonant frequency. Connect the power and ground planes to the TCD30xx pins directly with vias—do not use traces. The ground planes should not be densely perforated with vias or traces as this will reduce their effectiveness.

In addition, we recommend tantalum capacitors (or better) on the board to be used for decoupling.

5.1 ADC Reference resistor

The ADC requires a precision resistor for internal calibration. The resistor is connected between adc_25k and VSS. The resistor value should be 25k Ohms 1% and it should have a 10nF capacitor in parallel.

6 Crystal Oscillator

The TCD30xx features an on-board oscillator. The on-board ARM processor is clocked by this oscillator after reset. For applications using USB this crystal must be 12MHz. It is also possible to feed a clock directly to the XI pin of the chip. If USB is not being used a crystal between 10MHz and 20MHz can be used or an external clock to XI from 10MHz to 30MHz.

It is strongly recommended that 12MHz is used, as the boot sector is assuming this frequency when functioning in UART mode (if SPI load fails).

6.1 **Crystal Oscillator Circuit**

Figure 5, On-Chip oscillator typical connections

The tolerance of the crystal should be 100ppm or better if more precision is needed in customer application.

The external components commonly used for the oscillator circuit are a positive reactance (normal crystal oscillator), two capacitors, C1 and C2; and two resistors, Rf and Rx.

6.2 Crystal Specifications

Specifications for an appropriate crystal are not very critical. Any fundamental mode crystal of medium or better quality can be used. Crystal resistance affects start-up time and steady state amplitude but can be compensated by the choice of C1 and C2, however, the lower the crystal resistance, the better. A discussion of external R and C components follows below.

6.3 **Oscillation Frequency**

The oscillation frequency is mainly determined by the crystal. The USB PHY requires the frequency to be within 100ppm of 12MHz.

The precision of the oscillator is dependent on the selection of the external components. For applications not using USB it is possible to use other frequencies but it is recommended that 12MHz is used.

6.4 C1, C2,Rf and Rx Selection

Optimal values for C1 and C2 depend on the crystal parameters.

CL Crystal Load Capacitance (typical 12pF)

Equivalent Series Resistance (typical 80 Ω)

The values of C1 and C2 should be selected such that C1*C2/(C1+C2) = CL.

Assuming that C1==C2 the value should be 2*CL. For a typical crystal with a CL of 12pF we get C1=C2=24pF. Higher values of C1 and C2 give better frequency precision but longer start-up time.

A large Rf (1M) holds the on-chip oscillator (a CMOS inverter) in its linear region allowing it to oscillate. The inverter has a fairly low output resistance which destabilizes the oscillator circuit. Rx size could be anywhere between 330hm and 1000hm. This resistor is added to the feedback network, as shown in the Figure 5, to stabilize the oscillator circuit.

6.5 PCB CONSIDERATIONS

Noise glitches arising at XI or XO pins at the wrong time can cause a miscount in the internal clock-generating circuitry. These kinds of glitches can be produced through capacitive coupling between the oscillator components and PCB traces carrying digital signals with fast rise and fall times. For this reason, the oscillator components should be mounted close to the chip and have short, direct traces to the XTAL1, XTAL2, and Vss pins. Additionally surrounding oscillator components with "quiet" traces (VDD and VSS) will alleviate capacitive coupling to signals having fast edges. To minimize inductive coupling, the PCB layout should minimize lead, wire, and trace lengths for oscillator components.

7 Test and JTAG operation

TCD30xx JTAG interface is predominantly used for JTAG debugging of the ARM. The general recommendation is to put external pull-ups on TCK pin and to provide space for the JTAG connector on the board.

The TCD30xx chips have internal pull-up resistors on the input pins. Those resistors are nominally 60k and it is required to put a stronger pull-up on TRSTN as debuggers drive to low only (OC).

Important note:

It is important that the debug circuit is reset during a power cycle as the debug circuit is not reset by NRESET. It is suggested that TRSTN have an external pull-up of 10k and is reset by the reset circuit on the design when power is cycled.

In order for debugging to work in an optimal way it is also recommended that these signals be isolated such that when the debugger issues a reset it will not affect TRSTN. This functionality can be obtained with two diodes.

It is also possible to simply connect NRESET to TRSTN through a OR resistor. While debugging the target this resistor should be removed.

8 Reset circuitry

The TCD30xx chip will always use the crystal oscillator after reset. The firmware can program the internal circuits to use a PLL generated clock. The PLL will use the crystal oscillator as reference.

It is important that the system has a reliable active RESET that is released once the power supplies and internal clock circuits have stabilized. The RESET signal should not only offer a suitable delay, but it should also have a clean monotonic edge. The reset input does have Schmitt Trigger functionality.

The external reset circuitry should be designed to hold system in reset enough time for the oscillator to settle after the initial power surge. The rise time should be less than one half oscillator cycle (<40ns).

9 Electrical Specifications

9.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = 100$ °C and $T_A = 100$ °C and $T_A = 100$ °C are the second seco T_{Amax} (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 1.2$ V, $V_{ddio} = 3.3$ V. They are given only as design guidelines and are not tested.

9.1.3 Loading capacitor

The loading condition used for output pin parameter measurements are:

Signal	Capacitive load
fw_d[7:0], fw_ctl[1:0], fw_lreq, fw_lps, rgmii_txctl, rgmii_txd[3:0], rgmii_txclk	5pF
All other signals	15pF

Figure 6, Capacitive output load

9.1.4 Power supply scheme

The TCD30xx uses two supply voltages. The order of voltage ramp-up should not differ by a significant amount of time. The 3.3V supplies should be ramped up ahead of the 1.2V supplies. Sustained periods with only one voltage can result in long term damage of the chip.

9.2 Absolute maximum ratings

Stress outside absolute maximum listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External core supply voltage	-0.5	1.8	V
V _{DDIO} -V _{SS}	External IO supply voltage	-0.5	4.6	V
V _{IN}	Input voltage	-0.5	6.0	V
T _{STG}	Storage temperature	-65	150	°C

Table 8, Absolute Maximum Ratings

9.3 Operating conditions

Symbol	Parameter	Min	Max	Unit	
f _{ARM}	Internal ARM cloc	0	200	MHz	
V_{DD}	Core supply		1.14	1.26	V
AV _{DD_PLL1_2}	PLL/VCO Analog s	supply	1.14	1.26	V
$V_{\rm DDIO}$	I/O Supply		2.97	3.63	V
AV_{DD_USB}	USB Analog supp	ly	2.97	3.63	V
AV_{DD_PLL}	CPU PLL Analog s	upply	2.97	3.63	V
AV_{DD_VCO}	JET VCO Analog s	supply	2.97	3.63	V
AV_{DD_ADC}	ADC Analog supp	ly	2.97	3.63	V
I_{DD}	Core Supply			300	mA
I _{DD_PLL12}	PLL/VCO analog supply			2	mA
I_{DDIO}	I/O Supply	TCD3000		14	mA
		TCD3020		21	mA
		TCD3040		33	mA
		TCD3070		80	mA
I_{DD_USB}	USB Analog supp	у		15	mA
I_{DD_PLL}	CPU PLL Analog s	upply		3	mA
I_{DD_VCO}	VCO PLL Analog s	supply		3	mA
I_{DD_ADC}	VCO PLL Analog s	supply		0.2	mA
P_D	Power	TCD3000		496	mW
	dissipation at T _A = 85°C	TCD3020		520	mW
		TCD3040		560	mW
		TCD3070		717	mW
T _A	Temperature rang	ge	0	85	°C
T _J	Junction tempera	ture		125	°C

Table 9, Operating conditions

9.4 Typical Power Consumption by application

Application	mW
Minimal, 12MHz, boot sector	63
USB 48x48 Channels	248
USB Suspended	150
Firewire S800, 100X100	218

9.5 I/O Characteristics

Symbol	Parameter	Condition		Min	Тур	Max	Unit
V _{IL}	Input low level voltage			-0.3		0.8	V
V _{IH}	Input high level voltage			2.0		5.5	V
V _{T-}	Schmitt trig H->L Thr.	For Schmitt Tri	g. cells	0.95	1.02	1.09	V
V _{T+}	Schmitt trig L->H Thr.	For Schmitt Tri	g. cells	1.53	1.64	1.73	V
IL	Input leakage current					±1	μΑ
I _{OZ}	Tri-state leakage current					±1	μΑ
R _{PU}	Pull up resistor			62	77	112	kΩ
R _{PD}	Pull down resistor			48	85	174	kΩ
V _{OL}	Output low voltage	$@I_{OL} = 8,12,16$	imA			0.4	V
V _{OH}	Output high voltage	$@I_{OH} = 8,12,16$	5mA	2.4			V
I _{OL}	Low level current	$@V_{OL} = 0.4V$	8mA	8.6	13.9	18.9	mA
			12mA	12.9	20.8	28.3	mA
			16mA	17.2	27.7	37.8	mA
I _{OH}	High level current	$@V_{OL} = 2.4V$	8mA	12.5	26.9	47.1	mA
			12mA	18.7	40.3	70.7	mA
			16mA	25.0	53.8	94.2	mA

Table 10, I/O Characteristics

9.6 AC Characteristics

9.6.1 RGMII

Symbol	Parameter	Min	Max	Unit
T _{SKEW}	Output Skew	-500	500	ps
T _{SU}	Input Setup	500		ps
T _{HLD}	Input Hold	500		ps

Table 11, RGMII Timing

9.6.2 IEEE1394

Symbol	Parameter	Min	Max	Unit
T _{DO}	Data out from fw_pclk rising	1.7	6.2	ns
T _{su}	Input Setup before fw_pclk rising	2.4		ns
T _{hld}	Input Hold after fw_pclk rising	0		ns

Table 12, IEEE1394 Timing

9.6.3 InS

The InS is highly configurable in regards to the polarity of clocks and the interpretation of the f_{svnc} signal.

The outputs will be driven relative to the "driving edge" which depends on the programmed polarity of the b_{clk} signal. The timing diagrams using b_{clk} inverted which means the driving edge is the negative edge.

Attached devices will sample data on the "sampling edge" which is the edge of opposite direction to the "driving edge".

As the TCD30xx is always the clock master the sampling point is chosen to be closer to the driving edge. This will make it easier to comply with timing for compliant devices driving on the "driving edge".

There are a few non-compliant ADC's on the market which only drive their outputs in a very narrow window around the sampling edge. For those devices it might be necessary to insert a flip flop sampling the data from the ADC on the "sampling edge".

9.6.3.1 Internal Sampling Edge

Data are sampled on the first positive edge of the internal sys_f512br after the "sampling edge". The period of sys f512br is 512 times the base sampling rate which for 44k1 based rates is 44.29ns and for 48k based rates is 40.69ns.

Symbol	Parameter	Min	Max	Unit
T _{BCLK}	Bit clock cycle	40		ns
T _{DO}	Data out from driving edge	0.7	9.3	ns
T _{su}	Input Setup before internal sampling edge	12		ns
T _{hld}	Input Hold after internal sampling edge	-2		ns

Table 13, InS Timing

The timing will depend on the ratio of BCLK to the internal clock in the sense that when BCLK is equal to sys f512br the internal sampling edge is half a period after the BCLK sampling edge. That only happens in I⁴S @high_rate and I⁸S @ mid_rate.

In all other configurations the sampling edge is one full period of sys f512fsbr after the BCLK sampling edge.

Examples of sampling point for rates based on 48KHz.

Mode	Rate	T _{BCLK} (ns)	Data stable after BCLK sampling edge			
Mode	Rate	I BCLK(IIS)	Min (ns)	Max (ns)		
I2S	48K	325.52				
I4S	48K	162.76				
I2S	96K	102.70	28.69	38.69		
I8S	48K	01 20	81.38	20.03	30.03	
I4S	96K	01.50				
I2S	192K					
I8S	96K	40.69	8.35	18.35		
I4S	192K	40.03	10.33			

Table 14, InS Sampling point

9.6.4 EBI

Note that while many SDRAM devices only promise a hold time of 1ns the PCB path from the TCD30xx ebi clk output to the SDRAM and the return PCB path of ebi d[] to the TCD30xx chip should assure that hold time is not a problem.

Symbol	Parameter	Min	Max	Unit
T _{CLK}	ebi_clk	10		ns
T _{DO}	Data out delay from ebi_clk	2.8	6.8	ns

Symbol	Parameter	Min	Max	Unit
T _{su}	Input Setup before ebi_clk	1.2		ns
T _{hld}	Input Hold after ebi_clk	1.05		ns

Table 15, EBI Timing

9.6.5 SDIO

Note that the minimum T_{DO} can be programmed in firmware. It can be programmed to 5.0ns or 7.5ns. In that case the Max will increase with similar amounts. It might be necessary to program a Min time of 5ns for use with 'default speed' devices. Those devices will only run as fast as 25MHz ($T_{CLK} = 40ns$) so in that case the increase of the Max value will not be a problem.

Symbol	Parameter	Min	Max	Unit
T _{CLK}	sdio_clk Clock	20		ns
T _{DO}	Data out delay from sdio_clk	2.5	8.25	ns
T_{su}	Input Setup before sdio_clk	5.35		ns
T _{hld}	Input Hold after sdio_clk	1.80		ns

Table 16, SDIO Timing

9.6.6 SPI Master

The various SPIO and SPI1 signals can be programmed to appear on different pins of the chip. The timing is for the worst case combination.

Symbol	Parameter	Min	Max	Unit
T _{CLK}	spi0/1_clk	40		ns
T _{DO}	Data out delay from spi_clk	0	4.6	ns
T _{su}	Input Setup before spi_clk	11.8		ns
T _{hld}	Input Hold after spi_clk	-2.6		ns

Table 17, SPI Timing

10 Revisions

Date	Rev.	Ву	Change
April 24, 2014	0.1	ML	First version created
April 25, 2014	0.2	ВК	Document formatting, branding
April 28, 2014	0.2.1	ВК	Updated figure 1 block diagram
May. 27, 2014	0.3	ML	Fixed typos and changed QFN124 to QFN148 including updated pin-out. Added preliminary current consumption values.
June 2, 2014	0.4	ML	nreset is pin B67 not B57 on QFN148
			Updated preliminary QFN148 drawing
June 12, 2014	0.5	ML	Changed QFN148 pinouts as USB DP/DM were brought to outer pin row.
			Fixed bugs in VDD, VDIO and NC lists.
June 13, 2014	0.6	ML	Removed replicated A4 in the TCD3020 NC list.
July 17, 2014	0.7	ВК	Corrected fw_ctl and fw_d signal names in Table 4. Clarified number of GPIO lines on TCD3000.
October 23, 2014	0.75	ВК	Replaced package outline diagrams with scalable versions, add 'preliminary' watermark, various edits.
November 22, 2014	0.8	ВК	Various typographical edits, tables and diagrams reformatted, remove 'preliminary' watermark.
November 28, 2014	0.9	ML	Added more explanation to the APORT mux section to help designers choose pins for designs.
December 2, 2014	0.95	ВК	Review and formatting.
December 4, 2014	0.96	ВК	Fix typos.
December 4, 2014	1.0	ВК	Replace cover page logo.
December 10, 2014	1.01	BK	Doc no longer confidential, change footer.
December 16, 2014	1.02	ML	Relaxed requirement for separate regulator for PLL 3.3V, added section about decoupling the adc_25k resistor. Added pull-up on TRSTN as a requirement.
April 29, 2015	1.03	ML	Added more description of the InS sampling point.
April 29, 2015	1.03	ML	Added description of what to do with unused input and bidirectional pins.
April 29, 2015	1.03	ML	Added description of TRSTN requirements during power cycle.

Table 18, Document revision history