

Théorème 1

Soit G une grammaire non contextuelle sous la forme normale de Chomsky. Soit L l'ensemble de tous les mots qui ont une dérivation où chaque production est sous la forme: Variable Variable Variable est utilisé au plus une fois. Alors L est un langage fini.

<u>Démonstration</u>. A chaque étape dans une dérivation, une variable est remplacée par soit 2 variables soit un terminal. Donc, s'il y a p productions de la forme:

Variable → Variable Variable

un mot de L contient au plus p+1 lettres. L'ensemble des mots qui contiennent au plus p+1 lettres est fini.

Exemple

$$S \rightarrow AB|a$$
 (1)
 $A \rightarrow XY|a$ (2)
 $Y \rightarrow SX$ (3)
 $X \rightarrow a|b$
 $B \rightarrow b$

- $S \Rightarrow AB \Rightarrow aB \Rightarrow ab$
- $\underline{S} \Rightarrow \underline{A}B \Rightarrow XYB \Rightarrow \underline{b}\underline{Y}B \Rightarrow \underline{b}SXB \Rightarrow \underline{b}aAB \Rightarrow \underline{b}aaB \Rightarrow \underline{b}aab$ (1) (2) (3)
- $S \Rightarrow \underline{A}B \Rightarrow X\underline{Y}B \Rightarrow XSXB \Rightarrow bSXB \Rightarrow baXB \Rightarrow baaB \Rightarrow baab$ (1) (2) (3)

Branche

une branche: un chemin entre la racine et une feuille d'un arbre

$$S \rightarrow AZ$$

$$Z \rightarrow BB$$

$$B \rightarrow ZA$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \Rightarrow A\underline{Z} \Rightarrow aZ \Rightarrow aBB \Rightarrow abB \Rightarrow ab\underline{Z}A...$$

Z est une variable qui apparaît 2 fois sur la même branche.

$$S \rightarrow AA$$

$$A \rightarrow BC$$

$$C \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \Rightarrow AA \Rightarrow BCA \Rightarrow bCA \Rightarrow bBBA...$$

B apparaît sur 2 branches différentes

Remarque: les arbres de dérivations sont binaires

Théorème 2

Soit G une grammaire non contextuelle sous la forme normale de Chomsky et que contient p productions de la forme:

Variable → Variable Variable.

Soit w un mot généré par G tel que longueur(w)>2p.

Tout arbre de dérivation pour w contient une branche tel qu'il existe une variable Z qui apparaît au moins 2 fois sur la même branche.

Exemple

Démonstration [1]

Un arbre contenant plus de 2^p feuilles contient plus de p+1 rangs. (Un arbre contenant p+1 rangs contient 2^p feuilles au maximum.)

Démonstration [2]

s →xy	$B \rightarrow b$
$X \rightarrow BY$	$X \rightarrow a$
$Y \rightarrow XY$	$Y \rightarrow a$
$B \rightarrow SX$	$Y \rightarrow b$

- p=4
- La branche qui se termine par a contient 6 variables (5 applications des productions qui ne contiennent que des variables)
- →Au moins une production est utilisée plus qu'une fois

Exemple: PALINDROME $-\{\Lambda\}$

 $S \rightarrow AX|BY|AA|BB|a|b$

 $X \rightarrow SA$

 $Y \rightarrow SB$

 $A \rightarrow a$

 $B \rightarrow b$

• p = 6

Exemple: PALINDROME $-\{\Lambda\}$

Le lemme de l'étoile (pour les langages non contextuels)

Soit G une grammaire non contextuelle sous la forme normale de Chomsky et qui contient p productions de la forme:

Variable → Variable Variable.

Soit w un mot tel que longueur(w)>2^p. Le mot w peut être décomposer en 5 facteurs: w = uvxyz tel que

- x n'est pas ∧
- Au moins un des deux mots v et y n'est pas Λ
- Pour tout n ≥ 1, uvⁿxyⁿz est dans le langage engendré par G.

Démonstration

Par le théorème précédent, il existe une variable P qui apparaît au moins 2 fois sur la même branche.

w = uvxyz $x \neq \Lambda$ soit $v \neq \Lambda$, soit $y \neq \Lambda$

Démonstration

Remarque: u, z, et un des deux mots v ou y peut être ∧.

$$u = \Lambda$$

$$v = \Lambda$$

$$x = ba$$

$$y = a$$

$$z = \Lambda$$

Démonstration

En général: uv¹xy¹z

uvvvxyyyz

Une autre alternative

$$S \Rightarrow *uPz$$

 $P \Rightarrow *vPy$
 $P \Rightarrow *x$
 $S \Rightarrow *uPz \Rightarrow *uvPyz \Rightarrow *uvxyz$
 $w = uvxyz$
 $x \neq \Lambda$
 $x \neq \Lambda$
 $x \neq \Lambda$, soit $y \neq \Lambda$

Question?