Deep Learning in Computer Vision COMP 4471 & ELEC 4240

Instructor: Qifeng Chen

Credit: CS231N at Stanford University

Lecture 2:

Image Classification with Linear Classifiers

Image Classification

A Core Task in Computer Vision

Today:

- The image classification task
- Two basic data-driven approaches to image classification
 - K-nearest neighbor and linear classifier

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

→ cat

The Problem: Semantic Gap

This image by Nikita is licensed under CC-BY 2.0

What the computer sees

An image is a tensor of integers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

Challenges: Illumination

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Occlusion

This image is CC0 1.0 public domain

 $\underline{\text{This image}} \text{ is } \underline{\text{CC0 1.0}} \text{ public domain}$

This image by ionsson is licensed under CC-BY 2.0

Challenges: Deformation

This image_by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image_by Tom Thai_is licensed under CC-BY 2.0

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Challenges: Context

Image source:

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-lq?utm_source=linkedin_share&utm_medium=member_desktop_web

Modern computer vision algorithms

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
```

Use model to predict labels

return test_labels

Example training set

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

```
def train(images, labels):
                                            Memorize all
  # Machine learning!
                                            data and labels
  return model
def predict(model, test_images):
                                            Predict the label
 # Use model to predict labels
                                            of the most similar
  return test_labels
                                            training image
```

First classifier: Nearest Neighbor

Training data with labels

query data

Distance Metric

$$o \mathbb{R}$$

Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

	¥5
toot	IMAGAA
1651	image
LOUL	minago

	200	200	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.vtr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.vtr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
Nearest Neighbor classifier
```

```
For each test image:
Find closest train image
Predict label of nearest image
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.vtr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation: https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

What does this look like?

1-nearest neighbor

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

$$K = 1$$

K-Nearest Neighbors: try it yourself!

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Very problem/dataset-dependent.

Must try them all out and see what works best.

Idea #1: Choose hyperparameters that work best on the training data

train

Idea #1: Choose hyperparameters that work best on the **training data**

BAD: K = 1 always works perfectly on training data

train

Idea #1: Choose hyperparameters that work best on the **training data**

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on **test** data

train

test

	= 1 always wory on training dat		
train			
	BAD: No idea how algorithm will perform on new data		
train	test		

Never do this!

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

Better!

train validation test

Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

What does this look like?

What does this look like?

k-Nearest Neighbor with pixel distance never used.

Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

k-Nearest Neighbor with pixel distance never used.

- Curse of dimensionality

Dimensions = 1 Points = 4

Dimensions = 2Points = 4^2

Dimensions = 3Points = 4^3

K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on the K nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set

Only run on the test set once at the very end!

Linear Classifier

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Neural Network

This image is CC0 1.0 public domain

[He et al. 2015]

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Linear Classifier - Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2.Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

			0	
		THE.		
2		9 1		
1		Y.		
1		V.	61-144	
	<u> </u>			2

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
froa	-1.7	2.0	-3.1

A **loss function** tells how good our current classifier is

	1		A Stance	A	
			6		
1		Y			
1		X			
482		Sec. 11.		12.00	

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog -

-1.7 2.0

-3.1

cat

3.2

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

7 2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

1.3

2.2

2.5

-3.1

cat

frog

3.2 car

5.1 4.9

-1.7 2.0

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat **3.2**

1.3

2.2

car

5.1 **4.9**

2.5

frog

-1.7

2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2 2.5

car

frog

5.1

-1.7

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

2.2

2.5

-3.1

cat

car

3.2

5.1

frog -1.7

Losses: 2.9

1.3

4.9

2.0

0

arc.

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$

 $+\max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Losses:
 2.9
 0
 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$ $+ \max(0, 2.5 - (-3.1) + 1)$
- $= \max(0, 6.3) + \max(0, 6.6)$
- = 6.3 + 6.6
- = 12.9

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

4.9

2.2

2.5

car

5.1 -1.7

2.0

-3.1

Losses:

frog

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.27**

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

cat 1.3

4.9

frog 2.0

car

Losses:

0

Q2: what is the min/max possible SVM loss L_i?

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_i , assuming N examples and C classes?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including j = y_i)

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Losses:
 2.9
 0
 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

cat

3.2

1.3

4.9

2.2

2.5

car

frog

-1.7

5.1

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

-1.7

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog

2.0

-3.1

Losses: 2.9

(

12.9

Multiclass SVM loss:

the SVISIVM lostoss hatas the formform:

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax classifier

Want to interpret raw classifier scores as **probabilities**

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

cat 3.2

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$\left|P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}
ight|$$
 Softmax Function

Probabilities must be >= 0

cat 3.2 24.5 car $5.1 \xrightarrow{\text{exp}} 164.0$ frog -1.7 0.18

unnormalized probabilities

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

 $L_i = -\log P(Y = y_i | X = x_i)$

Putting it all together:

3.2

5.1 car

cat

-1.7 frog

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q2: At initialization all s will be approximately equal; what is the loss?

A: $-\log(1/C) = \log(C)$,

If C = 10, then $L_i = \log(10) \approx 2.3$

Softmax vs. SVM hinge loss (SVM) -2.85 matrix multiply + bias offset $\max(0, -2.85 - 0.28 + 1) +$ 0.86 $\max(0, 0.86 - 0.28 + 1)$ 0.01 -0.05 0.05 0.1 -15 0.0 1.58 0.28 0.7 0.2 0.05 0.16 0.2 22 cross-entropy loss (Softmax) 0.0 -0.2 -0.450.03 -44 -0.3-2.85 0.058 0.016 Wb 56 normalize exp $-\log(0.353)$ 0.86 2.36 0.631 x_i (to sum 0.452 to one) 0.28 1.32 0.353 y_i

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i = 0$

Q: What is the **softmax loss** and the **SVM** loss?

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [20, -2, 3] [20, 9, 9] [20, -100, -100] and $y_i = 0$

Q: What is the **softmax loss** and the **SVM** loss **if I double the correct class score from 10 -> 20**?

Coming up:

- Regularization
- Optimization

f(x,W) = Wx + b

