Math 115A: Problem set 4

Sections 1 and 3. Instructor: James Freitag

Due 10/30

Problem 1 Lagrange map

For any two real numbers a, b, there is a polynomial $f_{a,b}$ of degree at most 1 such that $f_{a,b}(0) = a, f_{a,b}(1) = b$. Define the map $T : \mathbb{R}^2 \to P_1(\mathbb{R})$ given by $(a, b) \mapsto f_{a,b}$. Prove that T is a linear map.

Problem 2 Matrix for Lagrange

Consider the map T from the previous problem. Let α be the standard ordered basis of \mathbb{R}^2 , $\{(1,0),(0,1)\}$. Let $\beta=(1,x)$. Compute $[T]^{\beta}_{\alpha}$.

Problem 3 A map in the other direction

Let α and β be as in the previous problem. Let $S: P_1(\mathbb{R}) \to \mathbb{R}^2$ be given by S(f) = (f(0), f(1)). Show that S is a linear map. Compute $[S]^{\alpha}_{\beta}$.

Problem 4 The inverse map

Show that $[S]^{\alpha}_{\beta}[T]^{\beta}_{\alpha} = [T]^{\beta}_{\alpha}[S]^{\alpha}_{\beta} = id_{2\times 2}$. Explain why this implies that T is the inverse of S.

Problem 5 Exercises from the book

Do the following exercises from book:

- Problems 1 and 9 from section 2.4.
- Problems 3 and 5 from section 2.5.