Math 173A - Signatures

- 1. Sign a "document" with RSA and have your partner verify the signature. That is, pick two primes p and q and a verification key e coprime to (p-1)(q-1). Publish N=pq and e. Compute your signing key d with $de \equiv 1 \pmod{(p-1)(q-1)}$ and keep it secret.
 - Now choose a document $D \pmod{N}$ and sign it by computing $S \equiv D^d \pmod{N}$. Have your partner verify your signature by computing $S^e \pmod{N}$ and making sure it's congruent to D.
- 2. Sign a "document" with ElGamal and have your partner verify the signature. That is, pick a prime p and a primitive root g modulo p. Choose a secret signing key $1 \le a \le p-1$ and publish the verification key $A \equiv g^a \pmod{p}$.

Now choose a document $D \pmod{p-1}$ and sign it. Do this by picking a random 1 < k < p with gcd(k, p-1) = 1. Compute the signature

$$S_1 \equiv g^k \pmod{p}$$
 and $S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}$.

Have your partner verify your signature by verifying that $A^{S_1}S_1^{S_2} \equiv g^D \pmod{p}$.

Here are some primes for RSA

$$23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.$$

Here are some primes and primitive roots for ElGamal.

p	Primitive root modulo p
241	7
353	3
419	2
557	2
683	5