#### 8. Les filtres

#### 8.1. <u>Définitions - Fonction de transfert</u>



• Fonction de transfert :  $\underline{H}(\omega) = \frac{\underline{u}_S}{\underline{u}_E}$  (grandeur complexe)

• Gain :  $G_{IJ} = 20 \log_{10} |\underline{H}(\omega)|$  (grandeur réelle)

#### 8.2. Filtre idéal



Filtre idéal passe-bas Bande passante :  $[0, \omega_C]$ 

Filtre idéal passe-haut Bande passante :  $[\omega_C, \infty]$ 



Filtre idéal passe-bande Bande passante :  $[\omega_{C1}, \omega_{C2}]$ 

Filtre idéal coupe-bande Bande coupée :  $[\omega_{C1}, \omega_{C2}]$ 

Exemple : signal constitué de la somme de plusieurs sinusoïdes pures, filtré par un filtre passe-bande :



Signal d'entrée Filtre idéal passe-bande Signal filtré

#### 8.3. Filtre réel

Exemple: Filtre idéal passe-bas et Filtre réel réel :



Fréquence de coupure : 
$$|\underline{H}(\omega_{\mathbb{C}})| = \frac{H_{\text{Max}}}{\sqrt{2}}$$

Autre exemple : Filtre passe-bande réel :



Fréquences de coupure : 
$$|\underline{H}(\omega_{C1})| = |\underline{H}(\omega_{C2})| = \frac{H_{\text{Max}}}{\sqrt{2}}$$

## 8.4. <u>Diagramme de Bode</u>

Résonance en intensité (RLC série) : figure peu exploitable en échelles linéaires.



#### La même courbe en échelles log-log :



#### 8.5. Echelle logarithmique

Manipulation des échelles log : une même distance entre 2 points correspond à un même facteur multiplicatif :



Détermination de la valeur d'un point (ici : une fréquence) sur un graphe :



Soit : 
$$f = 10^{[2+(x/d)]}$$

#### Lois de puissances :

Courbe rouge:  $Y = K X^2 \Leftrightarrow \log_{10}(Y) = K' + (2) \log_{10}(X)$ 

Courbe verte :  $Y = K X^1 \Leftrightarrow \log_{10}(Y) = K' + (1) \log_{10}(X)$ 

Courbe violette : Y = K  $X^{1/3} \Leftrightarrow \log_{10}(Y) = K' + (1/3) \log_{10}(X)$ 



## 8.6. Filtres en L

$$\underline{H}(\omega) = \frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$$

Deux dipôles  $\underline{Z}_1$  et  $\underline{Z}_2$ 





## 9. Filtre passe-bas

## 9.1. Fonction de transfert



$$\underline{\mathsf{H}}(\omega) = \frac{1}{1 + \mathsf{j}(\omega/\omega_1)}$$

Où 
$$\omega_1 = 1/RC$$

## 9.2. **Gain**

Gain:

$$|\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_1)^2}}$$



## 9.3. <u>Diagramme de Bode</u>



# 9.4. Déphasage

#### Déphasage:

 $\theta$  = - Arc tan ( $\omega$  /  $\omega_1$ )



## 9.5. Analyse qualitative

Equivalence : filtre passe-bas à <u>basse fréquence</u> :  $\underline{i}_S \approx 0$  alors  $\underline{u}_S = \underline{u}_E$ 



Filtre passe-bas à <u>haute fréquence</u> : <u>u</u><sub>S</sub> ≈ 0



## 10. Filtre passe-haut

#### 10.1. Fonction de transfert



$$\underline{H}(\omega) = \frac{1}{1 - j(\omega_2/\omega)}$$

Où 
$$\omega_2 = R/L$$

# 10.2. **Gain**

Gain:

$$|\underline{H}(\omega)| = \frac{1}{\sqrt{1 + (\omega_2 / \omega)^2}}$$



## 10.3. Diagramme de Bode



# 10.4. Déphasage

Déphasage:

 $\theta$  = Arc tan ( $\omega_2$  /  $\omega$ )



## 10.5. Analyse qualitative

Equivalence : filtre passe-haut à <u>basse fréquence</u> : <u>u</u><sub>S</sub> ≈ 0



Filtre passe-haut à <u>haute fréquence</u> : si  $\underline{i}_S \approx 0$  alors  $\underline{u}_S = \underline{u}_F$ 



#### 11. Filtre passe-bande

#### 11.1. Fonction de transfert



$$\underline{H}(\omega) = \frac{1}{1 + j\left(\frac{L}{R}\omega - \frac{1}{RC\omega}\right)} = \frac{1}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

Où 
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et  $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ 

#### 11.2. Gain

Gain:

$$|\underline{H}(\omega)| = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$



## 11.3. Diagramme de Bode



## 11.4. Déphasage

Déphasage:

$$\theta = - \operatorname{Arc} \tan \left( \frac{L}{R} \omega - \frac{1}{RC\omega} \right)$$



#### 11.5. Analyse qualitative

Equivalence : Filtre passe-bande à <u>basse fréquence</u> : <u>u</u><sub>S</sub> ≈ 0



Equivalence : Filtre passe-bande à <u>haute fréquence</u> : <u>u</u><sub>S</sub> ≈ 0



Filtre passe-bande à la <u>fréquence de résonance</u>  $\omega = \omega_0$  :  $\underline{u}_C + \underline{u}_L = 0$ , alors  $\underline{u}_S = \underline{u}_E$ 

