1. Objective

The overall objective is to determine if someone earns more than 50. Specifically, the objective is to build a model that predicts if a person earns more than 50K.

The data for this is obtained from "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/".

2. Exploration and Data Analysis

2.1. Data Description

The data has 15 attributes in which 14 are features and one will be made the target set. A look through the data shows the data columns are not properly labelled as seen in figure 1. Thus, exploratory data analysis will involve renaming the columns by looking at the appropriate name given at the file's location. The corresponding object types show that there are a lot of object datatypes which will need to be converted to numbers during future engineering.

39	int64
State-gov	object
77516	int64
Bachelors	object
13	int64
Never-married	object
Adm-clerical	object
Not-in-family	object
White	object
Male	object
2174	int64
0	int64
40	int64
United-States	object
<=50K	object
dtype: object	

Figure 1: Miss-labelled columns of the data set and corresponding data type.

From the file of the data, the column names are age, workclass, fnlwgt, education, education num, marital status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, country and salary. Table 1 shows the columns and corresponding data description.

Table 1: Column Name and Data Values of Data Set

Column Name	Data
age	continuous
workclass	Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,
	Without-pay, Never-worked
fnlwgt	continuous
education	Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc,
	9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool
education-num	continuous

marital-status	Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-			
	spouse-absent, Married-AF-spouse			
occupation	Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-			
	specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-			
	fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces			
relationship	Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried			
race	White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black			
sex	Female, Male			
capital-gain	continuous			
capital-loss	continuous			
hours-per-week	continuous			
native-country	country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.			
>50K, <=50K				

As can be seen the last column has two values >50K, <=50K which will be renamed as greater than 50K and less than or equal to 50K. This will be called 'salary' and will be set as the target variable (Y).

After renaming the columns, the new columns names are shown in Figure 2.

age	int64
workclass	object
fnlwgt	int64
education	object
education-num	int64
marital-status	object
occupation	object
relationship	object
race	object
sex	object
capital-gain	int64
capital-loss	int64
hours-per-week	int64
country	object
salary	object
dtype: object	-

Figure 2: Rename Column names and corresponding object type.

The number of values in each column is shown in Table 2. It shows that the amount of data in each column is 32560 and there are no missing values.

Table 2: Information of the Data Set

Range Index: 32560 entries, 0 to 32559					
Data	columns (total	15 columns):			
#	Column	Non-Null Count	Dtype		
0	age	32560 non-null	int64		
1	workclass	32560 non-null	object		
2	fnlwgt	32560 non-null	int64		
3	education	32560 non-null	object		
4	education-num	32560 non-null	int64		
5	marital-status	32560 non-null	object		
6	occupation	32560 non-null	object		
7	relationship	32560 non-null	object		
8	race	32560 non-null	object		
9	sex	32560 non-null	object		
10	capital-gain	32560 non-null	int64		
11	capital-loss	32560 non-null	int64		
12	hours-per-week	32560 non-null	int64		
13	country	32560 non-null	object		
14	salary	32560 non-null	object		
dtypes: int64(6), object(9)					

2.2. Visualizations

For exploratory data analysis, some visualizations are done. These are shown in figures 3 through 5. Figures 3 shows the workclass variable. It can be seen that workers in the Private sector earn above 50K. Figure 4 shows that those with some form of education (high school, college, masters) earn more than 50K than those with other kinds of education. Figure 5 indicates that married couples who stay together earn more than 50k.

Figure 3: Worker's earnings per class

Figure 4: Earning per Education

Figure 5: Earnings based on Marital Status

Other visualizations show that those who earn more than 50k are workers such as executive managers, professional specialties, those in sales and craft-repairs (Figure 6); husbands (Figure 7); whites (Figure 8); males (Figure 9) and stay in the United States (Figure 10).

Figure 6: Earnings of Different Occupations

Figure 7: Earnings based on Relationship

Figure 8: Earnings of Different Races

Figure 9: Earnings of Different Sex

Figure 10: Earnings in Different Countries.

3. Feature Engineering

The feature engineering will focus on converting the non-categorical values to numerical ones. The salary column will be converted using label encoder while the 'one-hot-encoder' using 'get dummies' method is used for the other columns.

Furthermore, the columns are separated to X (independent) variables and y (dependent) variable where the salary column becomes the y (dependent variable) and other columns are the independent variables. Thus, salary is predicted using the other variables.

Table 3: View of Data Set before Feature Engineering

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	country	salary
0	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
1	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
2	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
3	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
4	37	Private	284582	Masters	14	Married-civ- spouse	Exec- managerial	Wife	White	Female	0	0	40	United- States	<=50K

4. Pre-Modelling

The data is split into training and testing set to ensure that there is an even ratio of the variable to be predicted is the same in both the training and testing set. After application, the ratio is the same in both the test and training sets as seen in Table 4.

Table 4: Training Value Counts In both Train and Tests Sets of Salary

Train		Test	
0	0.75917		0.75917
1	0.24083		0.24083

Furthermore, the independent variables are scaled.

5. Modelling

Since the objective is to predict a categorical variable, the logistic regression, logistic regression with lasso regression (L1) and Random Forests are used. The accuracy, precision, recall, F1 and AUC scores are used for performance measurement of the models.

Performance Metrics	Scores				
	Logistic	Logistic Regression with	Random Forests		
	Regression	Lassa (L1) Regularization			
Accuracy	0.857801	0.857801	0.858825		
Precision	0.752756	0.752756	0.743372		
Recall	0.609694	0.609694	0.631803		
F1	0.673714	0.673714	0.683061		
AUC	0.910556	0.910556	0.908223		

The Random Forest Model has the highest accuracy and the highest F1 values. However, in terms of precision. Recall and AUC, the logistic regression models (with and without regularization) have higher values and are similar.

The Random Forest Model is chosen since it has higher F1 values which incorporates both precision and recall and also has higher accuracy.

To have an idea of the influence of each independent variables in predicting if salary is greater than 50k, the feature importance is carried out and it shows that fnlwgt, age, capital-gain, marital status, hoursper-week have higher influence on if income is greater than 50k.

Observations/Suggestions

The random forest is a better predictor with 85.88% accuracy and in this data set features such as age, capital gains, marital status, hours of work per week, education level (num) have higher influence on predicting if a person earns more than 50K.