2 2. Aplicații Modele de Medie Mobilă (MA) și modele Autoregresive (AR)

Modelul de medie mobilă de ordinul unu, MA(1) $y_t = \varepsilon_t + \theta \cdot \varepsilon_{t-1}$

Funcția de autocorelație (ACF) pentru MA(1) este: $\rho_0 = 1$; $\rho_1 = \frac{\theta}{1 + \theta^2}$ și $\rho_k = 0$ pentru k > 1.

Să se determine ACF pentru fiecare model MA(1) și să se reprezinte grafic (corelograma).

1)
$$\theta = 0.9 \implies y_t = \varepsilon_t + 0.9 * \varepsilon_{t-1}$$

ACF:
$$\rho_0 = 1$$
; $\rho_1 = \frac{0.9}{1 + (0.9)^2} = 0.497$; $\rho_k = 0$ pentru $k > 1$. Reprezentați grafic!

2)
$$\theta = -0.9 \implies y_t = \varepsilon_t - 0.9 * \varepsilon_{t-1}$$

$$\rho_0 = 1$$
; $\rho_1 = \frac{-0.9}{1 + (-0.9)^2} = -0.497$; $\rho_k = 0$ pentru $k > 1$. Reprezentați grafic!

3)
$$\theta = 0.5 \implies y_t = \varepsilon_t + 0.5 * \varepsilon_{t-1}$$

$$\rho_0 = 1$$
; $\rho_1 = \frac{0.5}{1 + (0.5)^2} = ?$; $\rho_1 = 0.4$; $\rho_k = 0$ pentru $k > 1$. Reprezentați grafic!

4)
$$\theta = -0.5 \implies y_t = \varepsilon_t - 0.5 * \varepsilon_{t-1}$$

$$\rho_0 = 1$$
; $\rho_1 = \frac{-0.5}{1 + (-0.5)^2} = ?$; $\rho_1 = -0.4$; $\rho_k = 0$ pentru $k > 1$. Reprezentați grafic!

Să observăm semnul coeficientului ρ_1 , în cele 4 modele MA(1).

Simularea unui proces MA(1): $y_t = \varepsilon_t + 0.9 * \varepsilon_{t-1}$

Am creat un fișier pentru 100 observații

genr wn=nrnd

smpl 1 1

genr maunu1=wn

smpl 2 100

genr maunu1=wn+0.9*wn(-1)

$$\Leftrightarrow (y_t = \varepsilon_t + 0.9 * \varepsilon_{t-1})$$

smpl 1 100

(NRND generează numere aleatoare dintr-o distribuție N(0,1))

 $\text{genr maunu1=wn+0.9*wn(-1)} \Leftrightarrow y_{t} = \varepsilon_{t} + 0.9 * \varepsilon_{t-1} \quad \text{genr maunu2=wn-0.9*wn(-1)} \Leftrightarrow y_{t} = \varepsilon_{t} - 0.9 * \varepsilon_{t-1} = \varepsilon_{t} + 0.9 * \varepsilon_{t-1}$

Determinarea corelogramei seriei de date maunu:

- Din meniul workfile selectăm seria de date maunu.
- Din meniul seriei maunu selectăm View/Correlogram. Se deschide o fereastră în care selectăm tipul seriei(level) și numărul de lag-uri (10) ce vor fi incluse în calcule.

 $\text{genr maunu3=wn+0.5*wn(-1)} \Leftrightarrow y_t = \varepsilon_t + 0.5 * \varepsilon_{t-1} \quad \text{genr maunu4=wn-0.5*wn(-1)} \Leftrightarrow y_t = \varepsilon_t - 0.5 * \varepsilon_{t-1} = \varepsilon_{t-1} + 0.5 * \varepsilon_{t-1} = \varepsilon_{t-1$

Modelul de medie mobilă de ordinul doi, MA(2) $y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$, unde $\varepsilon_t \sim WN(0, \sigma^2)$.

Funcția de autocorelație (ACF), a lui y_t este:

$$\rho_0 = 1 \, , \; \rho_1 = \frac{\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2} \, , \; \rho_2 = \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2} \; \text{si} \; \rho_k = 0 \; \text{pentru} \; k > 2 \, .$$

Problemă (posibilă la examen)

- 1) Fie procesul $y_t = \varepsilon_t 0.5 \varepsilon_{t-1} + 0.25 \varepsilon_{t-2}$, unde ε_t este zgomot alb de medie zero şi varianţa 0,4.
- a) Stabiliți tipul de proces, calculați media și varianța acestuia. Acest proces este staționar? Argumentati raspunsul.
- b) Să se calculeze și să se reprezinte grafic funcția de autocorelație.

Obţinem: $\rho_0 = 1$, $\rho_1 = -0.4762$, $\rho_2 = 0.1905$, şi $\rho_k = 0$ pentru k > 2.

2)
$$\theta_1 = -0.6$$
, $\theta_2 = 0.3 \implies y_t = \varepsilon_t - 0.6 \varepsilon_{t-1} + 0.3 \varepsilon_{t-2}$

Obținem: $\rho_0 = 1$, $\rho_1 = -0.5379$, $\rho_2 = 0.2069$, și $\rho_k = 0$ pentru k > 2.

3)
$$\theta_1 = 0.6$$
, $\theta_2 = -0.27 \implies y_t = \varepsilon_t + 0.6 \varepsilon_{t-1} - 0.27 \varepsilon_{t-2}$

Obţinem: $\rho_0 = 1$, $\rho_1 = 0.3057$, $\rho_2 = -0.1884$, şi $\rho_k = 0$ pentru k > 2.

Simularea unui proces MA(2)

genr wn=nrnd

smpl 1 1

genr madoi=wn

smpl 2 2

genr madoi=wn-0.5*wn(-1)

smpl 3 100

 $\text{genr madoi=wn-0.5*wn(-1)+0.25*wn(-2)} \qquad \Leftrightarrow \qquad (\ y_{\scriptscriptstyle t} = \varepsilon_{\scriptscriptstyle t} - 0.5 \, \varepsilon_{\scriptscriptstyle t-1} + 0.25 \, \varepsilon_{\scriptscriptstyle t-2} \,)$

smpl 1 100

Modelul autoregresiv de ordinul unu, AR(1) $y_t = \phi \cdot y_{t-1} + \varepsilon_t$

ACF este: $\rho_k = \phi \rho_{k-1} = \phi^2 \rho_{k-1} = \dots = \phi^k, \forall k$.

PACF este: $\phi_{11} = \rho_1 = \phi$ și $\phi_{kk} = 0$ pentru k > 1.

Să se determine ACF și PACF pentru fiecare model AR(1)

1)
$$\phi = 0.8 \implies y_t = 0.8 * y_{t-1} + \varepsilon_t$$
.

ACF:
$$\rho_0 = 1$$
; $\rho_1 = \phi = 0.8$; $\rho_2 = \phi^2 = (0.8)^2 = 0.64$; $\rho_3 = (0.8)^3 = 0.512$; $\rho_4 = (0.8)^4 = 0.4096$.

PACF este: $\phi_{11} = \rho_1 = \phi = 0.8$ și $\phi_{kk} = 0$ pentru k > 1.

Procesul este staționar deoarece $|\phi| < 1$.

2)
$$\phi = -0.8 \implies y_t = -0.8 * y_{t-1} + \varepsilon_t$$
.

ACF:
$$\rho_0 = 1$$
; $\rho_1 = \phi = -0.8$; $\rho_2 = (-0.8)^2 = 0.64$; $\rho_3 = (-0.8)^3 = -0.512$; $\rho_4 = (-0.8)^4 = 0.4096$.

PACF este: $\phi_{11} = \rho_1 = \phi = -0.8$ și $\phi_{kk} = 0$ pentru k > 1.

Simularea unui proces AR(1): $y_t = 0.8 * y_{t-1} + \varepsilon_t$ și $y_t = -0.8 * y_{t-1} + \varepsilon_t$

Am creat un fișier pentru 100 observații

genr wn=nrnd

smpl 1 1

genr arunu=wn

smpl 2 100

genr arunu= 0.8*arunu(-1)+wn

smpl 1 100

 $y_t = 0.8 * y_{t-1} + \varepsilon_t$

$$y_t = -0.8 * y_{t-1} + \varepsilon_t$$

Modelul autoregresiv de ordinul doi, AR(2)

Modelul AR(2) poate fi scris în mai multe moduri echivalente:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$$

$$y_{t} - \phi_{1} y_{t-1} - \phi_{2} y_{t-2} = \varepsilon_{t}$$

$$(1 - \phi_1 L - \phi_2 L^2) y_t = \varepsilon_t$$

 $\Phi(L)y_t = \varepsilon_t$, unde $\Phi(L) = (1 - \phi_1 L - \phi_2 L^2)$ este polinomul autoregresiv al procesului AR(2).

Procesul este staționar iar polinomul $\Phi(L) = (1 - \phi_1 L - \phi_2 L^2)$ este **inversabil** dacă rădăcinile ecuației $\Phi(z) = (1 - \phi_1 z - \phi_2 z^2) = (1 - \lambda_1 z)(1 - \lambda_1 z) = 0$ se află în afara cercului unitate, adică $|z_1| > 1$ și $|z_2| > 1$ sau echivalent, rădăcinile ecuației $P(\lambda) = \lambda^2 - \phi_1 \lambda - \phi_2 = 0$ se află în interiorul cercului unitate, adică $|\lambda_1| < 1$ și $|\lambda_2| < 1$.

Pentru ca ultimele două condiții să fie îndeplinite trebuie ca cei doi parametri ai modelului să satisfacă următoarele condiții: $\phi_1 + \phi_2 < 1$, $\phi_2 - \phi_1 < 1$ și $|\phi_2| < 1$.

$$\lambda_{1,2} = \frac{\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}}{2}$$

Ecuațiile Yule-Walker:

$$\rho_k - \phi_1 \rho_{k-1} - \phi_2 \rho_{k-2} = 0$$
 sau $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$ pentru $k > 0$.

Determinarea funcției ACF:

$$k=1 \Rightarrow \rho_1 - \phi_1 \rho_0 - \phi_2 \rho_1 = 0 \Rightarrow \rho_1 (1-\phi_2) = \phi_1 \Rightarrow \rho_1 = \frac{\phi_1}{1-\phi_2}$$

$$k = 2 \Rightarrow \rho_2 - \phi_1 \rho_1 - \phi_2 \rho_0 = 0 \Rightarrow \rho_2 = \phi_1 \rho_1 + \phi_2 \Rightarrow \rho_2 = \frac{\phi_1^2}{1 - \phi_2} + \phi_2$$

$$k > 2 \Rightarrow \rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$$

Determinarea funcției PACF:

Scriem ecuațiile Yule-Walker

$$\rho_1 = \phi_1 + \rho_1 \phi_2$$

$$\rho_2 = \rho_1 \phi_1 + \phi_2$$

Coeficienții de autocorelație parțială sunt:

$$\phi_{11} = \rho_1, \ \phi_{22} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} \neq 0, \ \phi_{kk} = 0 \text{ pentru } k > 2.$$

Problemă: Se consideră modelul $y_t = 0.6 y_{t-1} - 0.08 y_{t-2} + \varepsilon_t$

Verificați dacă este îndeplinită condiția de staționaritate.

Avem
$$\phi_1 = 0.6$$
 şi $\phi_2 = -0.08$

$$\Phi(L) = (1 - \phi_1 L - \phi_2 L^2)$$

$$\Phi(z) = (1 - \phi_1 z - \phi_2 z^2) = (1 - \lambda_1 z)(1 - \lambda_2 z) = 0$$

$$P(\lambda) = \lambda^2 - \phi_1 \lambda - \phi_2 = 0 \implies P(\lambda) = \lambda^2 - 0.6\lambda + 0.08 = 0$$

$$\lambda_1 = 0.4$$
 și $\lambda_2 = 0.2$, deci $|\lambda_1| < 1$ și $|\lambda_2| < 1$.

Rezultă
$$z_1 = 1/\lambda_1 = 1/0.4 = 2.5$$
 și $z_2 = 1/\lambda_2 = 1/0.2 = 5$, deci $|z_1| > 1$ și $|z_2| > 1$.

Condiția de staționaritate este îndeplinită.

Problemă: Se consideră modelul $y_t = 1.5 y_{t-1} - 0.75 y_{t-2} + \varepsilon_t$

- a) Verificați dacă este îndeplinită condiția de staționaritate.
- b) Calculați ACF și reprezentați corelograma asociată.
- c) Calculați PACF și reprezentați corelograma corespunzătoare.
- a) Avem $\phi_1 = 1.5$ și $\phi_2 = -0.75$

$$\Phi(L) = (1 - \phi_1 L - \phi_2 L^2)$$

$$\Phi(z) = (1 - \phi_1 z - \phi_2 z^2) = (1 - \lambda_1 z)(1 - \lambda_2 z) = 0$$

$$P(\lambda) = \lambda^2 - \phi_1 \lambda - \phi_2 = 0 \implies P(\lambda) = \lambda^2 - 1.5\lambda + 0.75 = 0$$

$$\lambda_1 = a + bi = 0.75 + 0.43i$$
 și $\lambda_2 = a - bi = 0.75 - 0.43i$ $\Rightarrow |\lambda| = R = \sqrt{a^2 + b^2} = 0.8645$

Condiția de staționaritate este îndeplinită.

b) ACF:
$$\rho_1 = 0.8571$$
; $\rho_2 = 0.5357$; $\rho_3 = 0.1607$; $\rho_4 = -0.1607$; $\rho_5 = -0.3616$

c) PACF:
$$\phi_{11} = \rho_1 = 0.8571$$
; $\phi_{22} = -0.75$; $\phi_{kk} = 0$ pentru $k > 2$

Ex2.
$$y_t = 1.1 y_{t-1} - 0.6 y_{t-2} + \varepsilon_t$$

- a) Calculați ACF și reprezentați corelograma asociată.
- b) Calculați PACF și reprezentați corelograma corespunzătoare.

Avem
$$\phi_1 = 1.1$$
 și $\phi_2 = -0.6$

ACF:

$$\rho_1 = \frac{\phi_1}{1 - \phi_2} = \frac{1.1}{1 - (-0.6)} = 0.6875$$

 $\rho_2 = 0.1563; \ \rho_3 = -0.2406; \ \rho_4 = -0.3584; \ \rho_5 = -0.2499$

PACF:

$$\phi_{11} = \rho_1 = 0.6875$$
, $\phi_{22} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} = -0.6$ $\phi_{kk} = 0$ pentru $k > 2$

Determinarea funcției ACF a unui model AR(2):

$$k = 1 \Rightarrow \rho_1 - \phi_1 \rho_0 - \phi_2 \rho_1 = 0 \Rightarrow \rho_1 (1 - \phi_2) = \phi_1 \Rightarrow \rho_1 = \frac{\phi_1}{1 - \phi_2}$$

$$k = 2 \Rightarrow \rho_2 - \phi_1 \rho_1 - \phi_2 \rho_0 = 0 \Rightarrow \rho_2 = \phi_1 \rho_1 + \phi_2 \Rightarrow \rho_2 = \frac{\phi_1^2}{1 - \phi_2} + \phi_2$$

 $k > 2 \Rightarrow \rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$.

Fig. 5. ACF pentru modele AR(2)

A)
$$y_t = 0.5 y_{t-1} + 0.25 y_{t-2} + \varepsilon_t \implies \phi_1 = 0.5 \text{ și } \phi_2 = 0.25$$

ACF:
$$\rho_1 = 0.6667$$
; $\rho_2 = 0.5833$; $\rho_3 = 0.4583$; $\rho_4 = 0.3750$; $\rho_5 = 0.3021$

PACF: $\phi_{11} = \rho_1 = 0,6667$; $\phi_{22} = 0,25$; $\phi_{kk} = 0$ pentru k > 2

B)
$$y_t = y_{t-1} - 0.25 y_{t-2} + \varepsilon_t \implies \phi_1 = 1 \text{ și } \phi_2 = -0.25$$

ACF:
$$\rho_1 = 0.8000$$
; $\rho_2 = 0.5500$; $\rho_3 = 0.3500$; $\rho_4 = 0.2125$; $\rho_5 = 0.1250$

PACF: $\phi_{11} = \rho_1 = 0.80$; $\phi_{22} = -0.25$; $\phi_{kk} = 0$ pentru k > 2

C)
$$y_t = 1.5 y_{t-1} - 0.75 y_{t-2} + \varepsilon_t \implies \phi_1 = 1.5 \text{ și } \phi_2 = -0.75$$

ACF:
$$\rho_1 = 0.8571$$
; $\rho_2 = 0.5357$; $\rho_3 = 0.1607$; $\rho_4 = -0.1607$; $\rho_5 = -0.3616$

PACF:
$$\phi_{11} = \rho_1 = 0.8571$$
; $\phi_{22} = -0.75$; $\phi_{kk} = 0$ pentru $k > 2$

D)
$$y_t = y_{t-1} - 0.6 y_{t-2} + \varepsilon_t \implies \phi_1 = 1 \text{ și } \phi_2 = -0.6$$

ACF:
$$\rho_1 = 0.625$$
; $\rho_2 = 0.025$; $\rho_3 = -0.35$; $\rho_4 = -0.365$; $\rho_5 = -0.155$

PACF: $\phi_{11} = \rho_1 = 0.625$; $\phi_{22} = -0.6$; $\phi_{kk} = 0$ pentru k > 2**Simularea unui proces AR(2):** $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$

$$y_t = 1.1 * y_{t-1} - 0.6 * y_{t-2} + \varepsilon_t$$

Am creat un fişier pentru 100 observaţii genr wn=nrnd smpl 1 1 genr ardoi=wn smpl 2 2 genr ardoi=1.1*ardoi(-1)+wn smpl 3 100 genr ardoi=1.1*ardoi(-1)-0.6*ardoi(-2)+wn smpl 1 100

Modelul teoretic	ACF	PACF
AR(p)	Se amortizează tinzând la zero	Se anulează după lag-ul p
MA(q)	Se anulează după lag-ul q	Se amortizează tinzând la zero
ARMA(p,q)	Se amortizează tinzând la zero	Se amortizează tinzând la zero

Identificarea modelelor ARMA folosind SACF și SPACF

SACF	SPACF	Model posibil
Formă conică sau sinusoidală care	Valori semnificative la primele p	AR(p)
converge la 0, posibil alternând	lag-uri, apoi valori ne-semnificative.	
semnele pozitive și negative		
Valori semnificative la primele q	Formă conică sau sinusoidală care	MA(q)
lag-uri, apoi valori ne-semnificative.	converge la 0, posibil alternând	
	semnele pozitive și negative	
Formă conică sau sinusoidală care	Formă conică sau sinusoidală care	ARMA(p,q)
converge la 0, posibil alternând	converge la 0, posibil alternând	
semnele pozitive și negative	semnele pozitive și negative	