3.3

Tra due superfici sferiche concentriche di raggio $R_1=10\ cm$ e $R_2=20\ cm$ è distribuita una carica elettrica con densità uniforme $\rho = 26.58 * 10^{-8} \frac{C}{m^3}$. Determinare l'espressione del campo elettrostatico E(r) in funzione della distanza r dal centro del sistema.

Se un elettrone viene abbandonato sulla superfice esterna, quanto tempo impiega ad attraversare la cavità interna?

Formule utilizzate

Soluzione punto a

Dividiamo il problema in 3 regioni:

I: $o < r \le R_1$

II: $R_1 \leq r \leq R_2$

III: $r \geq R_2$

Regione I: $o < r \le R_1$

E = 0

Regione II: $R_1 \leq r \leq R_2$ $\Phi(E) = E * 4\pi r^2 = \frac{q}{\epsilon_0}$

 $q = \int \rho dv = \rho \int dv = \rho \int_{R_1}^{\epsilon_0} 4\pi r^2 dr = \rho \left[\frac{4}{3}\pi r^3 \right]_{R_1}^r = \rho \frac{4}{3}\pi (r^3 - R_1^3)$ $E = \rho \frac{r^3 - R_1^3}{3\epsilon_0 r^2}$

Regione III: $r \geq R_2$

 $q = \rho_{\frac{4}{3}}^{4}\pi (R_{2}^{3} - R_{1}^{3})$ $E = \frac{q}{4\pi\epsilon_{0}r^{2}} = \rho_{\frac{3}{3}\epsilon_{0}r^{2}}^{\frac{3}{2}-R_{1}^{3}}$

Soluzione punto b

$$\Delta V = V(R_1) - V(R_2) = \int_{R_1}^{R_2} E(r) dr = \frac{\rho}{3\epsilon_0} \left(r - \frac{R_1^3}{r^2} \right) dr = \frac{\rho}{3\epsilon_0} \left[\frac{R_2^2 - R_1^2}{2} + R_1^3 \left(\frac{1}{R_2} - \frac{1}{R_1} \right) \right] = 100V$$

$$E_k = 100 \ eV = 1.6 * 10^{-17} \ J$$

$$v = \sqrt{\frac{2E_k}{m_e}} = \sqrt{\frac{2*1.6*10^{-17}}{9.1*10^{-31}}} = 5.93 * 10^6 \ \frac{m}{s}$$

$$t = \frac{l}{v} = \frac{2R_1}{v} = \frac{0.2}{5.93*10^6} = 33.7 \ nS$$