Dokumentacja projektowa

Współbieżna, rozproszona gra life w erlangu

Autorzy:

Małgorzata Maciurzyńska Rafał Płonka Konrad Seweryn Mateusz Stanaszek Mateusz Ścirka

1. Wprowadzenie teoretyczne

1.1. Cel projektu i wymagania

Celem projektu bylo opracowanie architektury rozproszonego, skalowalnego systemu w erlangu dla gry Life w/g podstawowej reguły Conwaya 23/3.

Rozmiar planszy jest kwadratowy będący potęgą 2 począwszy od 256×256 do 16384×16384 (rozmiar 8-14)

Program wykorzystuje rozproszenie.

Program uwzględnia, że nie wszystkie węzły będą zawsze dostępne i nie będą znikać w trakcie obliczeń.

Program posiada możliwość generowania losowych plansz.

Program posiada wbudowany **benchmark**.¹ (funkcję **test_time/1** wykonująca **podaną ilość iteracji funkcji** next/0)

Program posiada funkcję "next/0", która wylicza następną iterację.

Program ma możliwość wczytania planszy z pliku i zapisu do pliku.²

1.2. Reguly gry według Conwaya

Martwa komórka, która ma dokładnie 3 żywych sąsiadów, staje się żywa w następnej jednostce czasu (rodzi się)

Żywa komórka z 2 albo 3 żywymi sąsiadami pozostaje nadal żywa; przy innej liczbie sąsiadów umiera (z "samotności" albo "zatłoczenia").

¹ https://erlangcentral.org/wiki/index.php/Measuring Function Execution Ti

 $^{^2}$ Plik jest skompresowanym ciągiem zawierającym rozmiar jako pierwszy bajt (2^X, np. 12 oznacza planszę 2^12 na 2^12) oraz wartości poszczególnych komórek (0 lub 1) wierszami

2. Wykorzystywane algorytm

2.1. Dzielenie tablicy na mniejsze

Rozważana jest tablica 2^3 żeby pokazać w sposób przejrzysty działanie algorytmu.

1	0	1	1	1	1	1	1
0	1	1	1	0	1	1	1
1	1	0	0	1	1	0	0
0	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1
1	1	0	0	1	1	0	0
0	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Jak widać tablica jest podzielone na 4 mniejsze podtablice, które zostaną wysłane później do policzenia następnej iteracji. Gdyby tablice zostały wysłane w ten sposób:

1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1
0	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

pogrubione kolumny i wiersze nie mogłyby zostać poprawnie obliczone. Dlatego też musi zostać dodany dodatkowy wiersz i kolumna dla wszystkich miejsc złączeń podtablic.

1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1
1	1	0	0	1	0	1	1	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	0	1	0	0	0	1	1	1	0	0	1	0	1	1	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	1	0	0	0	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Są to minimalne wielkości tablic jakie muszą zostać przesłane do dalszych obliczeń. Wraz z tablicami przesyłana jest informacja o miejscu wklejenia nowo policzonej tablicy (dwie zmienne – x oraz y).

2.2. Algorytm liczenia podtablicy

Otrzymany fragment tablicy wraz z informacją czy i gdzie należy dodać wiersz/kolumnę zerową:

 $0000\,$ – kolejne bity oznaczają odpowiednio górny wiersz, prawą kolumnę, dolny wiersz, lewą kolumnę.

W tym przypadku byłoby to zatem 1001.

Algorytm dodaje kolumnę, wiersz zerową w odpowiednie miejsca i rozpoczyna iterację po wszystkich komórkach które nie leżą na krawędzi, a dzięki dodatkowym krawędziom wartości odpowiednich komórek zostaną policzone w sposób prawidłowy.

0	0	0	0	0	0
0	1	0	1	1	1
0	0	1	1	1	0
0	1	1	0	0	1
0	0	0	0	1	0
0	1	1	1	1	1
0	1	0	1	1	1

Algorytm zwraca już tylko odpowiedni fragment bez zbytecznych kolumn i wierszy, które to zostaną wysłane do nadzorcy sklejającego tablicę oraz wraz z informacją o miejscu wklejenia nowo policzonej tablicy:

N	N	N	N
N	N	N	N
N	N	N	N
N	N	N	N
N	N	N	N

Commented [K1]: Tego jeszcze nie ma i mam nadzieję że Mateuszowi się to uda

Commented [M2R1]: Moja propozycja jest taka że Node dostaje od serwera pewną zmienną, która go poinformuje, gdzie wstawić zera, np {lewygorny}, {lewy}, {prawydolny} czy {nigdzie} itd. Razem jest tych warunkow 9 (jezeli dobrze liczę). Natomiast serwer nie powinien wysyłać do Node'a pozycji przetwarzanej tablicy w tablicy scalanej, gdyż Node'a to nie interesuje (co jest także sprzeczne ze wszelkimi paradygmatami programowania obiektowego (tak wiem że to jest erlang i tu jest wszystko inaczej, pogmatwane]) gdyż obiektowi, naszemu Node'owi ta wiedza jest do niczego nie potrzebna. On powinien jedynie wiedziec gdzie wstawic zera. To juz powinien policzyc serwer a nie kazdy node. Zamiast tego, serwer powinien trzymac liste nodow odpowiedzialnych za kokretne fragmenty tabeli, cos w tym stylu [[node1, 0], [node2, 1].. gdzie 0, 1, ... to kolejne czesci tablicy, czy jak tam to sobie oznaczymy.

Piszę to o dość późnej porze, jakby w tym rozumowaniu był błąd pisać

2.3. Algorytm scalania podtablic

Otrzymany fragment tablicy wraz z informacją gdzie należy u tablicę zostaje następnie umieszczony w odpowiednie miejsce, aż nowa tablica zostaje całkowicie wypełniona.

N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N
N	N	N	N	N	N	N	N

Gdy to nastąpi, tablica albo zostaje ponownie policzona dla kolejnej iteracji albo są zwracane nowe wartości komórek, ponieważ żądana liczba iteracji osiągnęła żądaną wartość.

3. Przebieg algorytm

3.1. Warunki wstępne

Użytkownik ma możliwość:

- wygenerowania losowej planszy i zapisania do pliku
- wczytania planszy z pliku na podstawie jego nazwy
- wyświetlenia planszy z pliku (działa tylko dla małych tablic)
- rozpoczęcia symulacji (konkretna liczba iteracji) wraz ze zmierzeniem czasu iteracji

3.2. Działanie

Zachodzą odpowiednie operacje:

- sprawdzenie liczby dostępnych węzłów i na tej podstawie wybranie nadzorcy oraz procesów odpowiedzialnych za liczenie części tablicy
- nadzorca dzieli planszę podzielenie na mniejsze fragmenty i wysyła je do procesów liczących
- nadzorca czeka aż wszystkie procesy przyślą wiadomość z obliczonym fragmentem tablicy i wszystkie fragmenty tablicy zostaną obliczone
- jeżeli ma wykonać kolejną iterację to wraca do punktu 2 w przeciwnym razie idzie dalej
- zwrócenie przez nadzorcę informacji do użytkownika, że zostały wykonane iteracje

3.3. Warunki końcowe

Na koniec zostają wykonane następujące czynności:

- użytkownik zostaje poinformowany o czasie działania algorytmu
- zapisanie do pliku?

Commented [K3]: Nie wiem czy potrzebne, chyba tak bo pewnie sprawdzi ze wzorcem czy dobrze policzyło

Spis Treści

1. Wp	prowadzenie teoretyczne	. 2
1.1.	Cel projektu i wymagania	. 2
1.2.	Reguły gry według Conwaya	. 2
2. Wy	ykorzystywane algorytm	. 3
2.1.	Dzielenie tablicy na mniejsze	. 3
2.2.	Algorytm liczenia podtablicy	. 4
2.3.	Algorytm scalania podtablic	. 5
3. Prz	rebieg algorytm	. 6
3.1.	Warunki wstępne	. 6
3.2.	Działanie	. 6
3.3.	Warunki końcowe	. 6