INDEX

Sr.no.	Practical	Date	Sign
1.	Data Pre-processing and Exploration a. Load a CSV dataset. Handle missing values, inconsistent formatting, and outliers.		
	 b. Load a dataset, calculate descriptive summary statistics, create visualizations using different graphs, and identify potential features and target variables Note: Explore Univariate and Bivariate graphs (Matplotlib) and Seaborn for visualization 		
	c. Create or Explore datasets to use all pre-processing routines like label encoding, scaling, and binarization.		
2.	Testing Hypothesis a. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from CSV file and generate the final specific hypothesis. (Create your dataset)		
3.	Linear Models		
3.	a. Simple Linear Regression Fit a linear regression model on a dataset. Interpret coefficients, make predictions, and evaluate performance using metrics like R-squared and MSE		
	b. Multiple Linear Regression Extend linear regression to multiple feature. Handle feature selection and potential multicollinearity		
	 Regualarized Linear Models Implement Regression variants like LASSO and Ridge on any generated dataset 		
4.	Discriminative Models a. Logistic Regression : Perform binary classification using logistic regression. Calculate accuracy, precision, recall, and understand the ROC curve."		
	b. Implement and demonstrate k-nearest Neighbor algorithm. Read the training data from a .CSV file and build the model to classify a test sample. Print both correct and wrong predictions.		
	 Build a decision tree classifier or regressor. Control hyperparameters like tree depth to avoid overfitting. Visualize the tree. 		
	d. Implement a Support Vector Machine for any relevant dataset.		
	e. Train a random forest ensemble. Experiment with the number of trees and feature sampling. Compare performance to a single decision tree.		
	f. Implement a gradient boosting machine (e.g., XGBoost). Tune hyperparameters and explore feature importance.		

5.	Generative Models a. Implement and demonstrate the working of a Naive Bayesian classifier using a sample data set. Build the model to classify a test sample.
	b. Implement Hidden Markov Models using hmmlearn
6.	Probabilistic Models a. Implement Bayesian Linear Regression to explore prior and posterior distribution. b. Implement Gaussian Mixture Models for density estimation and unsupervised clustering.
7.	Model Evaluation and Hyperparameter Tuning a. Implement cross-validation techniques (k-fold, stratified, etc.) for robust model evaluation b. Systematically explore combinations of hyperparameters to optimize model performance.(use grid and randomized search)
8.	Bayesian Learning a. Implement Bayesian Learning using inferences
9.	Deep Generative Models a. Set up a generator network to produce samples and a discriminator network to distinguish between real and generated data. (Use a simple small dataset)
10.	Develop an API to deploy your model and perform predictions

Practical 1: Data Pre-processing and Exploration

1a. Load a CSV dataset. Handle missing values, inconsistent formatting, and outliers.

1. Import Libraries

Import necessary libraries

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

2. Load the Dataset

Load the Titanic dataset from a URL

url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv" data = pd.read_csv(url)

Display the first few rows

print(data.head())

3. Handle Missing Values

Check for missing values

print("Missing values in each column:")

print(data.isnull().sum())

Fill missing values in 'Age' with the mean

data['Age'].fillna(data['Age'].mean(), inplace=True)

Fill missing values in 'Embarked' with the most common value

data['Embarked'].fillna(data['Embarked'].mode()[0], inplace=True)

Drop rows where 'Cabin' is missing (too many NaNs)

data.drop(columns=['Cabin'], inplace=True)

Verify missing values are handled

print("\nAfter handling missing values:")
print(data.isnull().sum())

4. Fix Inconsistent Formatting

```
# Fix inconsistent formatting in the 'Sex' column
```

```
data['Sex'] = data['Sex'].str.lower().str.strip()
# Verify unique values
```

```
print("\nUnique values in 'Sex' column after formatting:")
print(data['Sex'].unique())
```

5. Detect and Handle Outliers

Boxplot for the 'Fare' column

```
sns.boxplot(data['Fare'], color='skyblue')
plt.title('Boxplot of Fare')
plt.show()
```

Detect outliers using the IQR method

```
Q1 = data['Fare'].quantile(0.25)
```

Q3 = data['Fare'].quantile(0.75)

IQR = Q3 - Q1

lower bound = Q1 - 1.5 * IQR

upper bound = Q3 + 1.5 * IQR

Capping outliers

```
data['Fare'] = np.where(data['Fare'] > upper_bound, upper_bound, np.where(data['Fare'] <
lower_bound, lower_bound, data['Fare']))</pre>
```

Verify with an updated boxplot

sns.boxplot(data['Fare'], color='lightgreen')

plt.title('Boxplot of Fare (After Handling Outliers)')

plt.show()

6. Save the Cleaned Dataset

Save the cleaned dataset

```
data.to_csv('cleaned_titanic.csv', index=False)
print("\nCleaned dataset saved as 'cleaned_titanic.csv'") .
```


1b. Load a dataset, calculate descriptive summary statistics, create visualizations using different graphs, and identify potential features and target variables Note: Explore Univariate and Bivariate graphs (Matplotlib) and Seaborn for visualization

1. Import Necessary Libraries

Import required libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

2. Load the Dataset

Load the dataset from the URL

url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv" data =
pd.read_csv(url)

Display the first few rows

```
print("First 5 rows of the dataset:")
print(data.head())
```

3. Calculate Descriptive Summary Statistics

Dataset information

```
print("\nDataset Info:")
print(data.info())
```

Summary statistics for numerical columns

```
print("\nDescriptive Statistics for Numerical Columns:")
print(data.describe())
```

Check unique values for categorical columns

```
print("\nUnique values in 'species' column:")
print(data['species'].value_counts())
```

4. Univariate Analysis

Histograms for numerical columns data.hist(figsize=(10, 8), color='skyblue', edgecolor='black') plt.suptitle("Histograms of Numerical Features") plt.show() # Bar plot for 'species' column sns.countplot(x='species', data=data, palette='pastel') plt.title("Count of Each Species") plt.show() 5. Bivariate Analysis # Scatter plot for two features plt.figure(figsize=(8, 6)) plt.scatter(data['sepal length'], data['sepal width'], alpha=0.7, c='blue') plt.title("Sepal Length vs Sepal Width") plt.xlabel("Sepal Length") plt.ylabel("Sepal Width") plt.show() # Pairplot to visualize relationships between features sns.pairplot(data, hue='species', palette='husl', diag kind='kde') plt.suptitle("Pairplot of Features by Species", y=1.02) plt.show() # Boxplot for petal_length across species sns.boxplot(x='species', y='petal_length', data=data, palette='Set3') plt.title("Boxplot of Petal Length by Species")

6. Identify Potential Features and Target Variables

Separate features and target

plt.show()

features = data.drop(columns=['species']) # Drop the target column

```
target = data['species'] # Target variable
print("\nFeatures:")
print(features.head())
print("\nTarget:")
print(target.head())
# Visualize target distribution
sns.countplot(x=target, palette='viridis')
plt.title("Target Variable Distribution")
```

7. Save the Cleaned and Processed Dataset

Save the dataset

plt.show()

data.to_csv('processed_iris.csv', index=False) print("\nProcessed dataset saved as 'processed iris.csv'")

Histograms of Numerical Features

1c. Create or Explore datasets to use all pre-processing routines like label encoding, scaling, and binarization.

1. Import Necessary Libraries

Import required libraries

```
import pandas as pd
```

import numpy as np

from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler, Binarizer

2. Create or Load a Dataset

Create a sample dataset

```
data = pd.DataFrame({
```

'Category': ['A', 'B', 'C', 'A', 'B', 'C'], # Categorical variable

'Age': [23, 45, 31, 22, 35, 30], # Numerical variable

'Income': [50000, 60000, 70000, 80000, 90000, 100000], # Numerical variable 'Has_Car': ['Yes', 'No', 'Yes', 'No', 'Yes', 'No'] # Binary categorical variable })

Display the dataset

```
print("Sample Dataset:")
print(data)
```

3. Apply Pre-Processing Routines

Label Encoding for 'Category' column

```
label_encoder = LabelEncoder()
data['Category_Encoded'] = label_encoder.fit_transform(data['Category'])
# Label Encoding for binary column 'Has_Car'
data['Has_Car_Encoded'] = label_encoder.fit_transform(data['Has_Car'])
print("\nAfter Label Encoding:")
print(data)
```

Min-Max Scaling for 'Income'

```
min max scaler = MinMaxScaler()
```

data['Income_MinMax'] = min_max_scaler.fit_transform(data[['Income']]) # Standard Scaling
for 'Age'

```
standard_scaler = StandardScaler()
data['Age Standardized'] = standard scaler.fit transform(data[['Age']])
print("\nAfter Scaling:")
print(data)
# Binarization for 'Income' with a threshold of 75,000
binarizer = Binarizer(threshold=75000)
```

data['Income Binary'] = binarizer.fit transform(data[['Income']]) print("\nAfter Binarization:") print(data)

4. Save the Processed Dataset

Save the processed dataset

```
data.to csv('processed data.csv', index=False)
print("\nProcessed_data.csv'")
```

 Sample Dataset:									
Ca	ategory	Age	Income	Has_Car					
0	Α	23	50000	Yes					
1	В	45	60000	No					
2	С	31	70000	Yes					
3	Α	22	80000	No					
4	В	35	90000	Yes					
5	С	30	100000	No					

```
After Label Encoding:
 Category Age Income Has_Car
                                Category_Encoded Has_Car_Encoded
                 50000
0
                            Yes
                                                                 0
                 60000
                            No
                 70000
                            Yes
                                                                 1
                                                0
                  80000
         Α
                            No
                 90000
                            Yes
5
         C
             30 100000
                            No
                                                2
```

```
₹
    After Scaling:
                    Income Has_Car Category_Encoded Has_Car_Encoded
      Category Age
                     50000
             В
                      60000
                                No
                                                                   0
                      70000
                               Yes
                      80000
                                No
                     90000
                               Yes
                 30 100000
                                No
                                                                    0
       Income_MinMax Age_Standardized
    0
                 0.0
                           -1.035676
                 0.2
                             1.812434
                 0.4
                             0.000000
                 0.6
                             -1.165136
                 0.8
                             0.517838
                             -0.129460
                 1.0
```

<u>-</u> ∓•								
_	A-	fter Binar	izati	on:				
		Category	Age	Income	Has Car	Category Encoded	Has Car Encoded	\
	0	A	23	50000	Yes	0	1	
	1	В	45	60000	No	1	0	
	2	С	31	70000	Yes	2	1	
	3	Α	22	80000	No	0	0	
	4	В	35	90000	Yes	1	1	
	5	С	30	100000	No	2	0	
		Income_M	linMax	Age_St	tandardize	ed Income_Binary		
	0		0.0		-1.03567	76 0		
	1		0.2		1.8124	34 0		
	2		0.4		0.00000	90 0		
	3		0.6		-1.1651	36 1		
	4		0.8		0.51783	38 1		
	5		1.0		-0.12946	50 1		

2: Testing Hypothesis

AIM: Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a. CSV file and generate the final specific hypothesis. (Create your dataset)

1. Import Necessary Libraries

```
# Import required libraries
```

```
import pandas as pd
import numpy as np
```

2. Create the Dataset and Save it as CSV

```
# Create a synthetic dataset
data = {
'Sky': ['Sunny', 'Sunny', 'Rainy', 'Sunny', 'Rainy'],
'Temperature': ['Warm', 'Cold', 'Warm', 'Warm', 'Cold'],
'Humidity': ['Normal', 'High', 'High', 'Normal', 'Normal'],
'Wind': ['Strong', 'Strong', 'Weak', 'Strong', 'Weak'],
'Water': ['Warm', 'Warm', 'Cool', 'Warm', 'Cool'],
'Forecast': ['Same', 'Same', 'Change', 'Same', 'Change'],
'Condition': ['Yes', 'No', 'No', 'Yes', 'No'] # Target variable
}
# Convert the dataset to a DataFrame
df = pd.DataFrame(data)
# Save the dataset to a CSV file
df.to csv('training data.csv', index=False)
# Display the dataset
print("Dataset:")
print(df)
3. Load the Dataset
# Load the dataset from CSV
dataset = pd.read csv('training data.csv')
```

Display the dataset

```
print("\nLoaded Dataset:")
print(dataset)
```

4. Define the FIND-S Algorithm

def find_s(training_data):

Extract the features and target

```
features = training_data.iloc[:, :-1].values # All columns except the last target = training_data.iloc[:, -1].values # Last column (target variable) # Initialize the most specific hypothesis hypothesis = ['\emptyset'] * features.shape[1]
```

Iterate through each example in the dataset

for i, example in enumerate(features):

```
if target[i] == 'Yes': # Consider only positive examples for j in range(len(hypothesis)): if hypothesis[j] == '\emptyset': # Update the hypothesis initially hypothesis[j] = example[j] elif hypothesis[j] != example[j]: # Generalize if inconsistent hypothesis[j] = '?' return hypothesis
```

5. Run the FIND-S Algorithm

Apply the FIND-S algorithm

```
final hypothesis = find_s(dataset)
```

Display the final specific hypothesis

print("\nFinal Specific Hypothesis:")
print(final hypothesis)

→	Da	taset:						
		Sky	Temperature	Humidity	Wind	Water	Forecast	Condition
	0	Sunny	Warm	Normal	Strong	Warm	Same	Yes
	1	Sunny	Cold	High	Strong	Warm	Same	No
	2	Rainy	Warm	High	Weak	Cool	Change	No
	3	Sunny	Warm	Normal	Strong	Warm	Same	Yes
	4	Rainy	Cold	Normal	Weak	Cool	Change	No

```
∓*
   Loaded Dataset:
       Sky Temperature Humidity Wind Water Forecast Condition
   0 Sunny Warm Normal Strong Warm Same
                        High Strong Warm
   1 Sunny
                Cold
                                           Same
                                                    No
   2 Rainy
                Warm
                        High Weak Cool Change
                                                    No
   3 Sunny
                Warm Normal Strong Warm
                                         Same
                                                    Yes
   4 Rainy
                Cold
                              Weak Cool
                      Normal
                                         Change
                                                     No
```

```
Final Specific Hypothesis:
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
```

3. Linear Models

3a. Simple Linear Regression

Fit a linear regression model on a dataset. Interpret coefficients, make predictions, and evaluate performance using metrics like R-squared and MSE

Step 1: Import Libraries

Import required libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

Step 2: Create a Dataset and Save as CSV

Create a sample dataset

```
data = {
    'House_Size': [750, 800, 850, 900, 1000, 1100, 1200, 1300, 1400, 1500],
    'Price': [150000, 160000, 165000, 170000, 180000, 190000, 200000, 210000, 220000,
230000]
}
# Convert the dataset into a DataFrame

df = pd.DataFrame(data)
# Save to CSV file

df.to csv('house prices.csv', index=False)
```

Display the dataset

```
print("Dataset:")
print(df)
```

```
Step 3: Load the Dataset
```

print(dataset.head())

Load the dataset dataset = pd.read_csv('house_prices.csv') # Display the first few rows print("\nLoaded Dataset:")

Step 4: Split the Dataset into Training and Test Sets

Features and target variable

```
X = dataset[['House_Size']] # Feature: House size
y = dataset[['Price']  # Target: Price
# Split data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("\nTraining and Testing Data Sizes:")
print("Training Data Size:", X_train.shape[0])
print("Testing Data Size:", X_test.shape[0])
```

Step 5: Fit a Linear Regression Model

model = LinearRegression()

Initialize and fit the linear regression model

```
model.fit(X_train, y_train)

# Display the coefficients

print("\nModel Coefficients:")

print("Slope (m):", model.coef_[0])

print("Intercept (b):", model.intercept_)
```

Step 6: Make Predictions

Predict on the test set

```
y_pred = model.predict(X_test)
```

```
# Display predictions
print("\nPredictions on Test Data:")
print("Actual Prices:", y test.values)
print("Predicted Prices:", y pred)
Step 7: Evaluate the Model
# Calculate evaluation metrics
mse = mean squared error(y test, y pred)
r2 = r2_score(y_test, y_pred)
# Display metrics
print("\nModel Performance Metrics:")
print("Mean Squared Error (MSE):", mse)
print("R-squared (R2):", r2)
Step 8: Visualize the Results
# Scatter plot of the training data
plt.scatter(X_train, y_train, color='blue', label='Training Data')
# Plot the regression line
plt.plot(X train, model.predict(X train), color='red', label='Regression Line')
# Scatter plot of the test data
plt.scatter(X_test, y_test, color='green', label='Test Data')
plt.title("Simple Linear Regression")
plt.xlabel("House Size (sq ft)")
plt.ylabel("Price ($)")
plt.legend()
```

plt.show()

3b. Multiple Linear Regression

Extend linear regression to multiple feature. Handle feature selection and potential multicollinearity

```
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import LabelEncoder # Import LabelEncoder
from sklearn.impute import SimpleImputer
```

Load dataset

```
from google.colab import files

uploaded = files.upload() # Upload your CSV file

# Read the CSV file

data = pd.read_csv(list(uploaded.keys())[0])

# Display the first few rows

print(data.head())

# Check for null values and basic statistics

print(data.info())

print(data.describe())

# Define a function to calculate VIF

def calculate_vif(df):
```

Select only numeric features for VIF calculation

numeric_df = df.select_dtypes(include=np.number)

```
# Drop rows with infinite or missing values
  numeric df = numeric df.replace([np.inf, -np.inf], np.nan).dropna()
  vif data = pd.DataFrame()
  vif data["feature"] = numeric df.columns
  vif data["VIF"] = [variance inflation factor(numeric df.values, i) for i in
range(numeric df.shape[1])]
  return vif data
# Selecting features and target variable
X = data.drop("Survived", axis=1) # Changed 'y' to 'Survived'
y = data["Survived"]
# Handle categorical features (e.g., using Label Encoding)
for col in X.select dtypes(include=['object']).columns:
  le = LabelEncoder()
  X[col] = le.fit transform(X[col])
# Impute missing values using the mean (you can choose other strategies)
imputer = SimpleImputer(strategy='mean') # Create an imputer instance
X = pd.DataFrame(imputer.fit transform(X), columns=X.columns) # Impute and update X
# Calculate VIF for initial features
print("VIF before handling multicollinearity:")
print(calculate vif(X)) # Call the modified function
# Drop features based on VIF analysis (example: drop 'X1' if VIF is high)
# Check if the column exists before dropping
if 'X1' in X.columns:
  X = X.drop("X1", axis=1) # Replace 'X1' with the actual high VIF feature name
else:
  print("Column 'X1' not found in the DataFrame.")
# Recalculate VIF
print("VIF after handling multicollinearity:")
print(calculate_vif(X))
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
```

```
# Initialize and fit the model
model = LinearRegression()
model.fit(X train, y train)
# Get coefficients and intercept
print("Coefficients:", model.coef )
print("Intercept:", model.intercept )
# Predictions
y pred = model.predict(X test)
# Evaluation metrics
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test, y_pred)
print(f"RMSE: {rmse}")
print(f"R^2: {r2}")
from sklearn.feature selection import RFE
# Recursive Feature Elimination
rfe = RFE(estimator=LinearRegression(), n features to select=5) # Adjust features
rfe.fit(X train, y train)
# Selected features
print("Selected Features:", X.columns[rfe.support_])
# Scatter plot of actual vs predicted values
plt.scatter(y test, y pred)
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title("Actual vs Predicted")
plt.show()
# Residuals
residuals = y_test - y_pred
sns.histplot(residuals, kde=True)
plt.title("Residuals Distribution") plt.show()
```


3c. Regualarized Linear Models

Implement Regression variants like LASSO and Ridge on any generated dataset

1. Set Up the Environment

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.datasets import make_regression
# Set random seed for reproducibility
np.random.seed(42)
```

2. Generate a Synthetic Dataset

Generate synthetic data

```
X, y = make_regression(
    n_samples=1000, # Number of samples
    n_features=10, # Number of features
    noise=15, # Add some noise
    random_state=42
)
# Convert to DataFrame for exploration
data = pd.DataFrame(X, columns=[f"X{i}" for i in range(1, 11)])
data["y"] = y
```

Display the first few rows

print(data.head())

3. Split the Dataset

```
# Split data into training and testing sets
```

```
X_train, X_test, y_train, y_test = train_test_split(
  data.drop("y", axis=1), # Features
  data["y"], # Target variable
  test_size=0.2, # 20% for testing
  random_state=42
)
```

4. Train and Evaluate Ridge Regression

Initialize Ridge Regression with a regularization parameter (alpha)

```
ridge = Ridge(alpha=1.0)
```

Train the model

```
ridge.fit(X_train, y_train)
```

Predictions

```
ridge_pred = ridge.predict(X_test)
```

Evaluate Ridge Regression

```
ridge_rmse = np.sqrt(mean_squared_error(y_test, ridge_pred))
ridge_r2 = r2_score(y_test, ridge_pred)
print(f"Ridge RMSE: {ridge_rmse}")
print(f"Ridge R^2: {ridge_r2}")
```

5. Train and Evaluate Lasso Regression

Initialize Lasso Regression

```
lasso = Lasso(alpha=0.1)
```

Train the model

```
lasso.fit(X train, y train)
```

Predictions

```
lasso pred = lasso.predict(X test)
```

Evaluate Lasso Regression

```
lasso_rmse = np.sqrt(mean_squared_error(y_test, lasso_pred))
lasso r2 = r2 score(y test, lasso pred)
print(f"Lasso RMSE: {lasso rmse}")
print(f"Lasso R^2: {lasso r2}")
# Features shrunk to zero
print("Lasso Coefficients:", lasso.coef )
6. Train and Evaluate ElasticNet Regression
# Initialize ElasticNet
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5) # l1_ratio balances L1 and L2 penalties
# Train the model
elastic net.fit(X train, y train)
# Predictions
elastic_net_pred = elastic_net.predict(X_test)
# Evaluate ElasticNet Regression
elastic net rmse = np.sqrt(mean squared error(y test, elastic net pred))
elastic_net_r2 = r2_score(y_test, elastic_net_pred)
print(f"ElasticNet RMSE: {elastic net rmse}")
print(f"ElasticNet R^2: {elastic net r2}")
7. Compare Results
# Collect metrics
metrics = pd.DataFrame({
  "Model": ["Ridge", "Lasso", "ElasticNet"],
  "RMSE": [ridge_rmse, lasso_rmse, elastic_net_rmse],
  "R^2": [ridge_r2, lasso_r2, elastic_net_r2]
})
print(metrics)
```

Plot RMSE comparison

sns.barplot(data=metrics, x="Model", y="RMSE")
plt.title("Model RMSE Comparison")
plt.show()

4. Discriminative Models

4a. Logistic Regression : Perform binary classification using logistic regression. Calculate accuracy, precision, recall, and understand the ROC curve."

Step 1: Import Required Libraries

Import necessary libraries

import numpy as np

import pandas as pd

from sklearn.model selection import train test split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, auc import matplotlib.pyplot as plt

Step 2: Prepare the Dataset

from sklearn.datasets import make_classification

Create a synthetic dataset

X, y = make classification(n samples=1000, n features=10, n classes=2, random state=42)

Split data into training and testing sets

X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)

Step 3: Train the Logistic Regression Model

Initialize the logistic regression model

logreg = LogisticRegression()

Train the model on the training data

logreg.fit(X_train, y_train)

Step 4: Make Predictions

Predict labels for the test set

y pred = logreg.predict(X test)

Predict probabilities for the ROC curve

y_prob = logreg.predict_proba(X_test)[:, 1]

Step 5: Evaluate the Model

Calculate metrics

```
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
```

Step 6: Plot the ROC Curve

Compute ROC curve and AUC

```
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
```

Plot the ROC curve

```
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f"ROC curve (AUC = {roc_auc:.2f})")
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
```


4b .Implement and demonstrate k-nearest Neighbor algorithm. Read the training data from a .CSV file and build the model to classify a test sample. Print both correct and wrong predictions.

Step 1: Import Required Libraries

Import necessary libraries

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from google.colab import files
```

Step 2: Create or Upload the CSV File

Check if the user wants to create a dataset or upload one

```
# Save the dataset to a CSV file
```

```
filename = "synthetic_data.csv"

data.to_csv(filename, index=False)
print(f"Synthetic dataset saved as {filename}.")
```

Step 3: Load the CSV File into a DataFrame

Load the dataset into a DataFrame

data = pd.read csv(filename)

Display the first few rows of the dataset

```
print("Loaded Dataset:")
print(data.head())
```

Step 4: Preprocess the Data

Separate features (X) and labels (y)

X = data.iloc[:, :-1].values # All columns except the last one

y = data.iloc[:, -1].values # Last column as the target

Split the dataset into training and testing sets (80% train, 20% test)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Step 5: Train the k-NN Model

Initialize the k-NN model with k=3

knn = KNeighborsClassifier(n_neighbors=3)

Train the model on the training data

knn.fit(X_train, y_train)

Step 6: Predict Test Samples

Predict the labels for the test set

y_pred = knn.predict(X_test)

Step 7: Evaluate and Print Predictions

Calculate and display the accuracy

```
accuracy = accuracy_score(y_test, y_pred)
print(f"\nModel Accuracy: {accuracy:.2f}\n")
# Display correct and incorrect predictions
print("Correct Predictions:")
for i in range(len(y_test)):
    if y_pred[i] == y_test[i]:
        print(f"Sample {i}: Predicted={y_pred[i]}, Actual={y_test[i]}")
print("\nIncorrect Predictions:")
for i in range(len(y_test)):
    if y_pred[i] != y_test[i]:
        print(f"Sample {i}: Predicted={y_pred[i]}, Actual={y_test[i]}")
```

Output:

```
Model Accuracy: 0.88
Correct Predictions:
Sample 0: Predicted=0, Actual=0
Sample 1: Predicted=1, Actual=1
Sample 2: Predicted=1, Actual=1
Sample 3: Predicted=0, Actual=0
Sample 4: Predicted=1, Actual=1
Sample 5: Predicted=1, Actual=1
Sample 6: Predicted=0, Actual=0
Sample 9: Predicted=1, Actual=1
Sample 10: Predicted=1, Actual=1
Sample 11: Predicted=1, Actual=1
Sample 12: Predicted=0, Actual=0
Sample 13: Predicted=0, Actual=0
Sample 14: Predicted=0, Actual=0
Sample 15: Predicted=0, Actual=0
Sample 16: Predicted=0, Actual=0
Sample 17: Predicted=1, Actual=1
Sample 18: Predicted=1, Actual=1
Sample 19: Predicted=0, Actual=0
Sample 20: Predicted=0, Actual=0
Sample 22: Predicted=1, Actual=1
Sample 23: Predicted=1, Actual=1
Sample 24: Predicted=1, Actual=1
Sample 25: Predicted=1, Actual=1
Sample 26: Predicted=1, Actual=1
Sample 27: Predicted=0, Actual=0
Sample 28: Predicted=0, Actual=0
Sample 30: Predicted=1, Actual=1
Sample 31: Predicted=1, Actual=1
Sample 32: Predicted=1, Actual=1
Sample 34: Predicted=0, Actual=0
Sample 35: Predicted=1, Actual=1
Sample 36: Predicted=1, Actual=1
Sample 38: Predicted=1, Actual=1
Sample 39: Predicted=1, Actual=1
```

Incorrect Predictions:

Sample 8: Predicted=1, Actual=0 Sample 21: Predicted=1, Actual=0 Sample 29: Predicted=0, Actual=1 Sample 33: Predicted=1, Actual=0 Sample 37: Predicted=1, Actual=0 4c. Build a decision tree classifier or regressor. Control hyperparameters like tree depth to avoid overfitting. Visualize the tree.

Step 1: Import Required Libraries

Import necessary libraries

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, plot_tree
from sklearn.metrics import accuracy_score, mean_squared_error
import matplotlib.pyplot as plt
from google.colab import files
```

Step 2: Create or Upload the CSV File

Check if the user wants to upload a file or generate one

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
    filename = list(uploaded.keys())[0]
else:
    # Generate synthetic data (classification or regression)
    from sklearn.datasets import make_classification, make_regression
    print("Choose a task: (1) Classification (2) Regression")
    task = int(input())
    if task == 1:
    # Generate synthetic classification data
    X. v = make_classification(n_samples=200, n_features=5, random_state=42)
```

```
X, y = make_classification(n_samples=200, n_features=5, random_state=42) task type = "classification"
```

```
else:
```

Generate synthetic regression data

```
X, y = make_regression(n_samples=200, n_features=5, random_state=42) task_type = "regression"
```

Combine features and target into a single DataFrame

```
data = pd.DataFrame(X, columns=[f"Feature_{i}" for i in range(X.shape[1])])
data['Target'] = y
```

Save the dataset to a CSV file

```
filename = "synthetic_data.csv"
data.to_csv(filename, index=False)
print(f"Synthetic {task_type} dataset saved as {filename}.")
```

Step 3: Load the Dataset

Load the dataset

```
data = pd.read_csv(filename)
```

Display the first few rows of the dataset

```
print("Dataset Preview:")
print(data.head())
```

Step 4: Preprocess the Data

Separate features and target

```
X = data.iloc[:, :-1].values # All columns except the last one
y = data.iloc[:, -1].values # Last column as the target
```

Split data into training and testing sets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 5: Build the Decision Tree

Define the tree depth to avoid overfitting

```
max depth = 3
```

```
# Initialize the model
if task type == "classification":
  model = DecisionTreeClassifier(max depth=max depth, random state=42)
else:
  model = DecisionTreeRegressor(max_depth=max_depth, random_state=42)
# Train the model
model.fit(X train, y train)
Step 6: Make Predictions
# Predict on the test set
y pred = model.predict(X test)
# Evaluate the model
if task type == "classification":
  accuracy = accuracy_score(y_test, y_pred)
  print(f"Accuracy: {accuracy:.2f}")
else:
  mse = mean_squared_error(y_test, y_pred)
  print(f"Mean Squared Error: {mse:.2f}")
Step 7: Visualize the Tree
# Visualize the decision tree
plt.figure(figsize=(12, 8))
plot_tree(model, feature_names=data.columns[:-1], class_names=str(np.unique(y)) if
task type == "classification" else None, filled=True)
plt.title("Decision Tree Visualization")
plt.show()
```

Decision Tree Visualization

4d. Implement a Support Vector Machine for any relevant dataset.

Step 1: Import Required Libraries

Import necessary libraries

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
from google.colab import files
```

Step 2: Create or Upload a Dataset

Check if the user wants to upload a file or generate one

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
    filename = list(uploaded.keys())[0]
else:
    # Generate synthetic classification data
    from sklearn.datasets import make_classification
    X, y = make_classification(n_samples=200, n_features=5, n_classes=2, random_state=42)
```

Combine features and target into a DataFrame

Save the synthetic dataset to a CSV file

```
filename = "synthetic_data.csv"
```

```
data.to_csv(filename, index=False)
  print(f"Synthetic dataset saved as {filename}.")
Step 3: Load the Dataset
# Load the dataset into a DataFrame
data = pd.read csv(filename)
# Display the first few rows of the dataset
print("Dataset Preview:")
print(data.head())
Step 4: Preprocess the Data
# Separate features (X) and target (y)
X = data.iloc[:,:-1].values # All columns except the last one
y = data.iloc[:, -1].values # Last column as the target
# Split the dataset into training (80%) and testing (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Step 5: Train the Support Vector Machine
# Initialize the SVM model (use RBF kernel as default)
svm_model = SVC(kernel='rbf', C=1.0, gamma='scale', random_state=42)
# Train the SVM model on the training data
svm model.fit(X train, y train)
Step 6: Make Predictions
# Predict the labels for the test set
y pred = svm model.predict(X test)
Step 7: Evaluate the Model
```

Calculate and print the accuracy

```
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
# Print a detailed classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
Step 8: Visualize the Decision Boundary (Optional for 2D Data)
import matplotlib.pyplot as plt
# Generate 2D synthetic data
from sklearn.datasets import make_blobs
X, y = make blobs(n samples=100, centers=2, random state=42, cluster std=1.5)
# Fit the SVM on this data
svm_model.fit(X, y)
# Plot the decision boundary
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='coolwarm', edgecolor='k')
# Create a grid to evaluate the model
xx, yy = np.meshgrid(np.linspace(X[:, 0].min(), X[:, 0].max(), 100),
            np.linspace(X[:, 1].min(), X[:, 1].max(), 100))
Z = svm model.decision function(np.c [xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the decision boundary and margins
plt.contour(xx, yy, Z, levels=[-1, 0, 1], linestyles=['--', '-', '--'], colors='k')
plt.title("SVM Decision Boundary")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()
```


4e. Train a random forest ensemble. Experiment with the number of trees and feature sampling. Compare performance to a single decision tree.

Step 1: Import Required Libraries

Import necessary libraries

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
from google.colab import files
```

Step 2: Create or Upload a Dataset

Check if the user wants to upload a file or generate one

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
    filename = list(uploaded.keys())[0]
else:
```

Generate synthetic classification data

```
from \ sklearn. datasets \ import \ make\_classification
```

```
X, y = make_classification(n_samples=300, n_features=10, n_classes=2, random_state=42)
```

Combine features and target into a DataFrame

```
data = pd.DataFrame(X, columns=[f"Feature_{i}" for i in range(X.shape[1])])
data['Target'] = y
```

Save the synthetic dataset to a CSV file

```
filename = "synthetic_data.csv"

data.to csv(filename, index=False)
```

```
print(f"Synthetic dataset saved as {filename}.")
```

Step 3: Load the Dataset

Load the dataset

```
data = pd.read csv(filename)
```

Display the first few rows of the dataset

```
print("Dataset Preview:")
print(data.head())
```

Step 4: Preprocess the Data

Separate features (X) and target (y)

```
X = data.iloc[:, :-1].values # All columns except the last one
```

y = data.iloc[:, -1].values # Last column as the target

Split the dataset into training (80%) and testing (20%) sets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 5: Train a Single Decision Tree Classifier

Initialize and train the Decision Tree model

```
decision_tree = DecisionTreeClassifier(random_state=42)
decision_tree.fit(X_train, y_train)
```

Predict and evaluate

```
y_pred_tree = decision_tree.predict(X_test)
accuracy_tree = accuracy_score(y_test, y_pred_tree)
print(f"Decision Tree Accuracy: {accuracy_tree:.2f}")
```

Step 6: Train a Random Forest Classifier

Initialize the Random Forest model with hyperparameter tuning

```
random_forest = RandomForestClassifier(n_estimators=100, max_features='sqrt',
random_state=42)
```

```
# Train the model
```

```
random forest.fit(X train, y train)
```

Predict and evaluate

```
y_pred_rf = random_forest.predict(X_test)
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print(f"Random Forest Accuracy (100 trees, sqrt features): {accuracy_rf:.2f}")
```

Step 7: Experiment with Random Forest Hyperparameters

Experiment with fewer trees and different feature sampling

```
rf_experiment = RandomForestClassifier(n_estimators=50, max_features=3,
random_state=42)
rf_experiment.fit(X_train, y_train)
```

Predict and evaluate

```
y_pred_rf_exp = rf_experiment.predict(X_test)
accuracy_rf_exp = accuracy_score(y_test, y_pred_rf_exp)
print(f"Random Forest Accuracy (50 trees, max features=3): {accuracy rf_exp:.2f}")
```

Step 8: Compare the Models

```
print("\nModel Comparison:")
print(f"Decision Tree Accuracy: {accuracy_tree:.2f}")
print(f"Random Forest Accuracy (100 trees): {accuracy_rf:.2f}")
print(f"Random Forest Accuracy (50 trees, max features=3): {accuracy rf exp:.2f}")
```

Step 9: Visualize Feature Importance (Optional)

import matplotlib.pyplot as plt

Extract feature importance from the Random Forest model

feature_importances = random_forest.feature_importances_

Plot the feature importance

```
plt.figure(figsize=(10, 6))
plt.bar(range(len(feature importances)), feature importances, tick label=data.columns[:-1])
```

plt.title("Feature Importance in Random Forest")
plt.xlabel("Features")
plt.ylabel("Importance")
plt.show()

4f. Implement a gradient boosting machine (e.g., XGBoost). Tune hyperparameters and explore feature importance.

Step 1: Import Required Libraries

```
# Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score, classification_report
from xgboost import XGBClassifier, plot_importance
import matplotlib.pyplot as plt
from google.colab import files
```

Step 2: Create or Upload a Dataset

filename = "synthetic data.csv"

Check if the user wants to upload a file or generate one

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
    filename = list(uploaded.keys())[0]
else:
    # Generate synthetic classification data
    from sklearn.datasets import make_classification
    X, y = make_classification(n_samples=300, n_features=10, n_classes=2, random_state=42)
    # Combine features and target into a DataFrame
    data = pd.DataFrame(X, columns=[f"Feature_{i}" for i in range(X.shape[1])])
    data['Target'] = y
    # Save the synthetic dataset to a CSV file
```

```
data.to_csv(filename, index=False)
  print(f"Synthetic dataset saved as {filename}.")
Step 3: Load the Dataset
# Load the dataset
data = pd.read csv(filename)
# Display the first few rows of the dataset
print("Dataset Preview:")
print(data.head())
Step 4: Preprocess the Data
# Separate features (X) and target (y)
X = data.iloc[:, :-1].values # All columns except the last one
y = data.iloc[:, -1].values # Last column as the target
# Split the dataset into training (80%) and testing (20%) sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
Step 5: Train a Basic XGBoost Model
# Initialize and train the XGBoost model with default parameters
xgb = XGBClassifier(random state=42)
xgb.fit(X train, y train)
# Predict and evaluate the model
y_pred = xgb.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"XGBoost Accuracy (Default Parameters): {accuracy:.2f}")
Step 6: Tune Hyperparameters with GridSearchCV
# Define a grid of hyperparameters
param grid = {
```

```
'n_estimators': [50, 100, 150],
  'learning rate': [0.01, 0.1, 0.2],
  'max depth': [3, 5, 7]
}
# Initialize GridSearchCV
grid_search = GridSearchCV(estimator=XGBClassifier(random_state=42),
              param grid=param grid,
              scoring='accuracy',
              cv=3,
              verbose=1)
# Fit the model with grid search
grid search.fit(X train, y train)
# Best parameters from GridSearch
print(f"Best Parameters: {grid_search.best_params_}")
# Train the final model with the best parameters
best xgb = grid search.best estimator
# Predict and evaluate
y_pred_best = best_xgb.predict(X_test)
accuracy_best = accuracy_score(y_test, y_pred_best)
print(f"XGBoost Accuracy (Tuned Parameters): {accuracy best:.2f}")
Step 7: Explore Feature Importance
# Plot feature importance for the tuned model
plt.figure(figsize=(10, 6))
plot_importance(best_xgb, importance_type='weight', xlabel="Importance",
ylabel="Features")
plt.title("XGBoost Feature Importance")
plt.show()
```

Step 8: Evaluate the Model

Print a detailed classification report

print("Classification Report:")
print(classification_report(y_test, y_pred_best))

5a. Implement and demonstrate the working of a Naive Bayesian classifier using a sample data set. Build the model to classify a test sample.

Step 1: Import Required Libraries

Import necessary libraries

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from sklearn.naive_bayes import GaussianNB
from google.colab import files
```

Step 2: Create or Upload a Dataset

data.to csv(filename, index=False)

Ask if the user wants to upload a file or generate one

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
    filename = list(uploaded.keys())[0]
else:
    # Generate synthetic classification data
    from sklearn.datasets import make_classification
    X, y = make_classification(n_samples=300, n_features=8, n_classes=2, random_state=42)
    # Combine features and target into a DataFrame
    data = pd.DataFrame(X, columns=[f"Feature_{i}" for i in range(X.shape[1])])
    data['Target'] = y
    # Save the synthetic dataset to a CSV file
    filename = "synthetic_naive_bayes_data.csv"
```

```
print(f"Synthetic dataset saved as {filename}.")
```

Step 3: Load the Dataset

Load the dataset

```
data = pd.read csv(filename)
```

Display the first few rows of the dataset

```
print("Dataset Preview:")
```

print(data.head())

Step 4: Preprocess the Data

Separate features (X) and target (y)

X = data.iloc[:, :-1].values # All columns except the last one

y = data.iloc[:, -1].values # Last column as the target

Split the dataset into training (80%) and testing (20%) sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Step 5: Train a Naive Bayes Classifier

Initialize the Gaussian Naive Bayes classifier

```
naive_bayes = GaussianNB()
```

Train the model

naive bayes.fit(X train, y train)

Step 6: Make Predictions and Evaluate

Predict on the test set

```
y_pred = naive_bayes.predict(X_test)
```

Evaluate the model

```
accuracy = accuracy_score(y_test, y_pred)
```

print(f"Naive Bayes Accuracy: {accuracy:.2f}")

Detailed classification report

```
print("Classification Report:")
print(classification_report(y_test, y_pred))
```

Step 7: Test the Model with a Custom Sample

Define a sample test input (replace with meaningful values based on your dataset)

test sample = [X test[0]] # Taking the first test sample for demonstration

Predict the class for the test sample

```
predicted_class = naive_bayes.predict(test_sample)
print(f"Test Sample: {test_sample}")
print(f"Predicted Class: {predicted_class[0]}")
```

```
Dataset Preview:
   Feature_0 Feature_1 Feature_2 Feature_3 Feature_4 Feature_5
0 -1.274158 1.317988 -2.423879 0.906946 -1.583903 -0.331811
1 1.607963 -1.649959 0.299293 -0.891720 1.301741 1.508502
 2 -0.154167 0.161033 2.210523 0.139400 -0.557492 0.087713
 3 -0.920991 0.949136 -1.613561 0.588410 1.471170 -0.529287
4 1.013304 -1.038578 -0.305225 -0.539334 -0.609512 1.048078
   Feature_6 Feature_7 Target
0 -0.452306 0.760415
                           1
1 0.742095 1.561511
                           0
   0.963879 -1.369803
 2
                           0
 3 -1.371901 -0.209324
                           0
 4 -1.065114 -0.186971
                           0
```

```
Test Sample: [array([-0.90320608, 0.9220511, -1.32308979, 0.41081065, 1.64201516, -1.23559176, -0.63896175, 1.00981709])]

Predicted Class: 1
```

5b. Implement Hidden Markov Models using hmmlearn

Step 1: Install Required Libraries

Install hmmlearn

!pip install hmmlearn

Step 2: Import Required Libraries

Import necessary libraries

import numpy as np

import pandas as pd

from hmmlearn import hmm

import matplotlib.pyplot as plt

Step 3: Create or Load a Dataset

Generate synthetic observable data

np.random.seed(42)

Create a sequence of observations and hidden states

```
observations = np.random.choice(['A', 'B', 'C'], size=100, p=[0.5, 0.3, 0.2])
```

hidden_states = np.random.choice(['X', 'Y'], size=100, p=[0.6, 0.4])

Save the data in a DataFrame for analysis

```
data = pd.DataFrame({'Observations': observations, 'Hidden States': hidden_states})
print("Generated Data:")
```

print(data.head())

Step 4: Encode Observations

Encode the observations into integers

```
observation_mapping = {obs: idx for idx, obs in enumerate(np.unique(observations))}
encoded_observations = np.array([observation_mapping[obs] for obs in observations])
```

```
# Print the mapping
print("Observation Encoding:")
print(observation mapping)
Step 5: Initialize and Configure the HMM
# Initialize the HMM model
n states = 2 # Number of hidden states
n observations = len(observation mapping) # Number of unique observations
model = hmm.MultinomialHMM(n components=n states, random state=42, n iter=100,
tol=0.01)
# Define start probabilities (initial distribution of states)
start probs = np.array([0.6, 0.4]) # Assumed probabilities
model.startprob = start probs
# Define transition probabilities between states
trans probs = np.array([
  [0.7, 0.3], # From state X
  [0.4, 0.6], # From state Y
])
model.transmat_ = trans_probs
# Define emission probabilities (probability of observations given states)
emission probs = np.array([
  [0.5, 0.4, 0.1], # State X emits A, B, C
  [0.2, 0.3, 0.5], # State Y emits A, B, C
1)
model.emissionprob = emission probs
# Print the configured model parameters
print("Start Probabilities:", model.startprob_)
print("Transition Matrix:", model.transmat_)
print("Emission Probabilities:", model.emissionprob_)
```

```
Step 6: Train the Model
```

```
# Reshape the data for HMM (requires 2D array)
encoded observations = encoded observations.reshape(-1, 1)
# Fit the model
model.fit(encoded observations)
# Predict hidden states for the observations
predicted states = model.predict(encoded observations)
# Print the predicted states
print("Predicted States:")
print(predicted states)
Step 7: Visualize the Results
# Map predicted states back to their original labels
state_mapping = {0: 'X', 1: 'Y'}
predicted_state_labels = [state_mapping[state] for state in predicted_states]
# Add predicted states to the DataFrame
data['Predicted States'] = predicted state labels
# Display the first few rows with predicted states
print("Data with Predicted States:")
print(data.head())
# Plot the observations and predicted states
plt.figure(figsize=(12, 6))
plt.plot(data['Observations'], label='Observations', marker='o', linestyle='-', alpha=0.7)
plt.plot(data['Predicted States'], label='Predicted States', marker='x', linestyle='--', alpha=0.7)
plt.legend()
plt.title("Observations and Predicted States")
plt.xlabel("Time")
plt.ylabel("Value")
plt.show()
```


6. Probabilistic Models

6a. Implement Bayesian Linear Regression to explore prior and posterior distribution.

Bayesian Linear Regression is a probabilistic approach to linear regression that incorporates uncertainty in the model parameters. Instead of estimating point values for parameters (as in traditional linear regression), we estimate distributions over the parameters.

Step 1: Install Required Libraries

Install necessary libraries

!pip install matplotlib seaborn scikit-learn

Step 2: Import Required Libraries

Import necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import BayesianRidge
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from google.colab import files
```

Step 3: Create or Upload a Dataset

Upload a CSV file if you have one

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
```

```
filename = list(uploaded.keys())[0]
else:
 # Generate synthetic data for demonstration
 np.random.seed(42)
 X = np.random.rand(100, 1) * 10 # Random data between 0 and 10
 y = 2 * X + 1 + np.random.randn(100, 1) * 2 # y = 2x + 1 with some noise
 # Convert to a DataFrame
  data = pd.DataFrame(np.hstack((X, y)), columns=["X", "y"])
  # Save to CSV for convenience
  filename = "synthetic data.csv"
  data.to_csv(filename, index=False)
  print(f"Synthetic dataset saved as {filename}.")
Step 4: Load and Explore the Data
# Load the dataset (for CSV file)
data = pd.read csv(filename)
# Display first few rows
print("Dataset Preview:")
print(data.head())
Step 5: Preprocess the Data
# Separate features (X) and target (y)
X = data["X"].values.reshape(-1, 1) # Feature matrix
y = data["y"].values # Target vector
# Split the dataset into training (80%) and testing (20%) sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
Step 6: Implement Bayesian Linear Regression Model
# Initialize the BayesianRidge model (which implements Bayesian Linear Regression)
```

```
bayesian_regressor = BayesianRidge()
# Fit the model on the training data
bayesian regressor.fit(X train, y train)
# Predict on the test data
y_pred = bayesian_regressor.predict(X_test)
Step 7: Visualize the Prior and Posterior Distributions
# Plot the prior and posterior distributions of the parameters
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
# Plot prior distribution (assuming the model starts with a standard prior)
ax[0].set_title("Prior Distribution (Assumed)")
ax[0].hist(np.random.normal(0, 1, 1000), bins=50, alpha=0.7, color='blue', label="Prior")
ax[0].legend()
# Plot posterior distribution (after model fitting)
ax[1].set_title("Posterior Distribution (After Fitting)")
ax[1].hist(bayesian_regressor.coef_, bins=50, alpha=0.7, color='green', label="Posterior")
ax[1].legend()
plt.show()
Step 8: Evaluate the Model Performance
# Calculate the Mean Squared Error (MSE)
mse = mean squared error(y test, y pred)
print(f"Mean Squared Error (MSE): {mse:.2f}")
Step 9: Visualize the Fit of the Model
# Plot the true values and the predicted values
plt.figure(figsize=(8, 6))
plt.scatter(X test, y test, color="blue", label="True values")
plt.plot(X_test, y_pred, color="red", label="Predicted values", linewidth=2)
```

```
plt.title("Bayesian Linear Regression: True vs Predicted Values")
plt.xlabel("X")
plt.ylabel("y")
plt.legend()
plt.show()
```

Mean Squared Error (MSE): 3.9

6b. Implement Gaussian Mixture Models for density estimation and unsupervised clustering.

Step 1: Install Required Libraries

Install required libraries

!pip install matplotlib seaborn scikit-learn

Step 2: Import Required Libraries

Import necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import train_test_split
from google.colab import files
```

Step 3: Create or Upload a Dataset

Ask if the user has a CSV file to upload

```
print("Do you have a CSV file to upload? (yes/no)")
response = input().lower()
if response == "yes":
    # Upload the CSV file
    uploaded = files.upload()
    filename = list(uploaded.keys())[0]
else:
    # Generate synthetic 2D data with two clusters for demonstration
    np.random.seed(42)
```

Generate data for two Gaussian distributions

```
X1 = np.random.normal(loc=0, scale=1, size=(300, 2)) # Cluster 1: mean = 0, std = 1
X2 = np.random.normal(loc=5, scale=1, size=(300, 2)) # Cluster 2: mean = 5, std = 1
```

```
# Stack the data to create a dataset
 X = np.vstack([X1, X2])
 # Create DataFrame to simulate the CSV file for consistency
 data = pd.DataFrame(X, columns=["Feature 1", "Feature 2"])
  filename = "synthetic data.csv"
  data.to csv(filename, index=False)
  print(f"Synthetic dataset saved as {filename}.")
Step 4: Load and Explore the Dataset
# Load the dataset (if CSV file is uploaded)
data = pd.read csv(filename)
# Display the first few rows
print("Dataset Preview:")
print(data.head())
# Plot the data to visualize its structure
sns.scatterplot(data=data, x="Feature 1", y="Feature 2")
plt.title("Synthetic Data")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()
Step 5: Fit a Gaussian Mixture Model (GMM)
# Define the GMM model
n_components = 2 # Number of Gaussian distributions (clusters)
gmm = GaussianMixture(n components=n components, covariance type='full',
random_state=42)
# Fit the GMM model to the data
gmm.fit(data)
# Predict the cluster labels for each data point
```

```
labels = gmm.predict(data)
# Add the cluster labels to the dataset for visualization
data['Cluster'] = labels
# Plot the clustered data
sns.scatterplot(data=data, x="Feature 1", y="Feature 2", hue="Cluster", palette="viridis",
marker="o")
plt.title("Gaussian Mixture Model Clustering")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.legend()
plt.show()
Step 6: Visualize the Gaussian Mixture Model (GMM) Components
# Extract the means and covariances of the Gaussian components
means = gmm.means
covariances = gmm.covariances
# Plot the GMM components on top of the data
plt.figure(figsize=(8, 6))
# Plot data points
sns.scatterplot(data=data, x="Feature 1", y="Feature 2", hue="Cluster", palette="viridis",
marker="o", s=60, alpha=0.7)
# Plot the GMM ellipses
for mean, covar in zip(means, covariances):
 # Plot the Gaussian components as ellipses
 v, w = np.linalg.eigh(covar)
 v = 2.0 * np.sqrt(2.0) * np.sqrt(v) # Scaling factor for the ellipse
 u = w[0] / np.linalg.norm(w[0]) # Normalize the eigenvector
  angle = np.arctan(u[1] / u[0])
 # Create the ellipse
  angle = angle * 180.0 / np.pi # Convert to degrees
```

```
ellipse = plt.matplotlib.patches.Ellipse(mean, v[0], v[1], angle=angle, color='red',
alpha=0.3)
  plt.gca().add_patch(ellipse)
plt.title("GMM Clustering with Gaussian Components")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.legend()
plt.show()
Step 7: Model Evaluation (Optional)
# Compute the log-likelihood of the data under the fitted GMM model
log_likelihood = gmm.score(data)
print(f"Log-Likelihood of the data: {log likelihood:.2f}")
Step 8: Predict New Data Points
# Example of predicting the cluster for new data points
new_data = np.array([[1.5, 2.5], [4.5, 5.5], [7.0, 8.0]])
new_labels = gmm.predict(new_data)
# Print the predicted clusters for the new data points
print("Predicted Clusters for New Data Points:")
for i, label in enumerate(new labels):
  print(f"Data point {new_data[i]} is in Cluster {label}")
```


