Modelo simples de agregação linear Simulações de Monte Carlo

T. Ramalho Orientador: J. M. Tavares

4 Janeiro 2010

Tabela de conteúdos

Introdução aos métodos de simulação

Introdução ao método de Monte Carlo

Algoritmo de Metrópolis

Condições impostas

Verificar detailed balance

Modelos em estudo

Modelo de ising

Modelo de agregação linear

Implementação e análise de dados

Modelo de Ising

Modelo de Agregação linear a 2D

Visualização

Resultados experimentais

Modelo de Agregação linear a 3D

Resultados experimentais: $\rho = 0.1$

Resultados experimentais: $\rho = 0.2$

Visualização

Conclusões

Introdução ao método de Monte Carlo

- Objectivo: obter configurações microscópicas correspondentes a estados de equilíbrio do sistema físico em estudo
- ▶ Ideia: passar por estados do sistema aleatoriamente em vez de evolução contínua
- Probabilidade de passar por um estado dada pela distribuição de Boltzmann

Introdução ao método de Monte Carlo

- Objectivo: obter configurações microscópicas correspondentes a estados de equilíbrio do sistema físico em estudo
- ▶ Ideia: passar por estados do sistema aleatoriamente em vez de evolução contínua
- Probabilidade de passar por um estado dada pela distribuição de Boltzmann
- ► Algoritmo de Metrópolis

Algoritmo de Metrópolis

- Single spin flip dynamics: mudar a orientação de uma partícula aleatoriamente
- ► Aceitar a nova configuração o máximo de vezes possível

Algoritmo de Metrópolis

- ► Single spin flip dynamics: mudar a orientação de uma partícula aleatoriamente
- Aceitar a nova configuração o máximo de vezes possível
- ▶ Define-se a probabilidade de aceitação:

$$p(\mu \to \nu) = \begin{cases} e^{-\beta(E_{\nu} - E_{\mu})} & \text{se } E_{\nu} - E_{\mu} < 0\\ 1 & \text{caso contrário} \end{cases}$$
 (1)

Condições impostas

- ▶ Geração de estados: **Processo de Markov**
- Ergodicidade
- ▶ Detailed Balance

Condições impostas

- Geração de estados: Processo de Markov
- Ergodicidade
- ▶ Detailed Balance

Exemplo: Algoritmo usado para modelo de agregação

- ▶ Para um estado μ , gerar um novo estado ν , mudando a posição de uma partícula e rodando a sua orientação com $p_r = 0.5$
- ▶ Configuração de ν apenas depende de $\mu \Rightarrow Processo de Markov$
- ▶ Qualquer posição pode ser atingida (note-se que ν é escolhido aleatoriamente e uniformemente), e com qualquer rotação $\Rightarrow Ergodicidade$
- ▶ $p_{\mu}P(\mu \to \nu) = p_{\nu}P(\nu \to \mu)$ (Verificar!) \Rightarrow Detailed Balance

Verificar detailed balance

Como pretendemos uma distribuição de equilíbrio, obedecendo à distribuição de Boltzmann, temos que:

$$\frac{p_{\nu}}{p_{\mu}} = \frac{P(\mu \to \nu)}{P(\nu \to \mu)} = e^{-\beta(E_{\nu} - E_{\mu})} \tag{2}$$

Basta então verificar $P(\mu \to \nu) = P(\nu \to \mu)$.

Denotemos a probabilidade de escolher uma dada partícula por $P(\mathbf{x_i})$, notando que esta distribuição de probabilidade é uniforme para o algoritmo em estudo.

Verificar detailed balance

Consideremos todas as possibilidades de transição entre dois sistemas $\mu \neq \nu$:

- Posições diferentes, orientações diferentes
 - $P(\mu \to \nu) = P(\mathbf{x_i})P(\mathbf{x_j})p_r$
 - $P(\nu \to \mu) = P(\mathbf{x_j})P(\mathbf{x_i})p_r = P(\mu \to \nu)\sqrt{}$
- Posições iguais, orientações diferentes
 - $P(\mu \to \nu) = P(\mathbf{x_i})P(\mathbf{x_i})p_r$
 - $P(\nu \to \mu) = P(\mathbf{x_i})P(\mathbf{x_i})p_r = P(\mu \to \nu)\sqrt{}$
- Posições diferentes, orientações iguais
 - $P(\mu \to \nu) = P(\mathbf{x_i})(1 p_r)$
 - $P(\nu \to \mu) = P(\mathbf{x_j})(1 p_r) = P(\mu \to \nu) \sqrt{ }$

Modelos em estudo

Modelo de ising

- ▶ Modelo bem estudado, com solução analítica.
- ▶ Grelha de spins fixos, podem assumir os valores ± 1 .
- ▶ Podemos escrever o hamiltoniano na forma

$$H = -J \sum_{\langle i,j \rangle} s_i s_j - B \sum_i s_i, \tag{3}$$

onde $\langle i,j\rangle$ denota os vizinhos de primeira ordem na rede, e J>0, para se simular um sistema ferromagético.

Modelos em estudo

Modelo de agregação linear

- \blacktriangleright Modelo em estudo consiste de uma rede d dimensional com $N=L^d$ posições.
- ▶ n posições estão ocupadas com moléculas rígidas com atracção nas extremidades. Define-se então $\rho = \frac{n}{N}$.
- ▶ Partículas orientadas na mesma direcção (constrangidas às direcções definidas pelos eixos da rede) têm uma energia de $-\epsilon k_B T$.
- Podemos escrever o hamiltoniano na forma

$$H = \epsilon \sum_{\langle i,j \rangle} w_{i,j} \, c_i \, c_j \tag{4}$$

$$c_i = \begin{cases} 1 & \text{se a célula está ocupada} \\ 0 & \text{caso contrário} \end{cases}$$

 $w_{i,j} \begin{cases} -1 & \text{se as orientações de } i,j \text{ forem iguais} \\ 0 & \text{caso contrário} \end{cases}$

Modelo de Ising

Fig. 1: Gráfico de $\tau(T')$ para o modelo de Ising, onde T' é a temperatura reduzida $(T' \equiv \frac{k_b T}{J})$, com os pontos experimentais ligados por uma linha. A estimativa do tempo foi obtida após equilibrar o sistema com 10000 MCS (passos de monte carlo), calculando a função de autocorrelação (eq.7) e integrando-a, assumindo a forma exponencial já referida.

Modelo de Ising

Evolução da energia e magnetização para várias temperaturas. Os gráficos demonstram o sistema a evoluir para o equilíbrio, minimizando a energia.

As quantidades apresentadas são novamente reduzidas, com $m=\frac{M}{N}$ onde

$$M = \sum_{i} s_i \in E' = \frac{E}{2N}.$$

Modelo de Ising

Evolução da energia e magnetização para várias temperaturas. Os gráficos demonstram o sistema a evoluir para o equilíbrio, minimizando a energia.

As quantidades apresentadas são novamente reduzidas, com $m=\frac{M}{N}$ onde

$$M = \sum_{i} s_i \in E' = \frac{E}{2N}.$$

Modelo de Ising

Evolução da energia e magnetização para várias temperaturas. Os gráficos demonstram o sistema a evoluir para o equilíbrio, minimizando a energia.

As quantidades apresentadas são novamente reduzidas, com $m=\frac{M}{N}$ onde

$$M = \sum_{i} s_i \in E' = \frac{E}{2N}.$$

Modelo de Ising

Evolução da energia e magnetização para várias temperaturas. Os gráficos demonstram o sistema a evoluir para o equilíbrio, minimizando a energia. As quantidades apresentadas são novamente reduzidas, com $m=\frac{M}{N}$ onde

$$M = \sum_{i} s_i \in E' = \frac{E}{2N}.$$

Modelo de Agregação linear a 2D

Fig. 2: Visualização do sistema 2D para $T \in [1.4, 1.9]$, onde as partículas são representadas por quadrados vermelhos e azuis, respectivamente horizontais e verticais.

Fig. 3: Gráfico de $\tau(T')$ para o modelo de agregação a 2D, onde T' é a temperatura reduzida $(T' \equiv \frac{k_b T}{\epsilon})$, com os pontos experimentais ligados por uma linha. A estimativa do tempo foi obtida após equilibrar o sistema com 100000 MCS (passos de monte carlo), calculando a função de autocorrelação (eq.7) e integrando-a, assumindo a forma exponencial já referida.

Fig. 4: Calor específico c para o modelo de agregação a 2D com $\rho=0.2$, calculado após equilibrar o sistema esperando 100000 MCS e fazendo 20 medições da energia a cada 2 tempos de correlação, calculando então as suas flutuações.

Fig. 5: Comprimento médio das cadeias \bar{l} para o modelo de agregação a 2D com $\rho = 0.2$, calculado após equilibrar o sistema esperando 100000 MCS e fazendo 20 medições de \bar{l} a cada 2 tempos de correlação, calculando então a sua média.

Fig. 6: Parâmetro de ordem reduzido $|\Delta|$ para o modelo de agregação a 2D com $\rho=0.2$. O parâmetro foi calculado após equilibrar o sistema esperando 100000 MCS e fazendo 20 medições de $|\Delta|$ a cada 2 tempos de correlação, calculando então a sua média.

Fig. 7: Gráfico de $\tau(T')$ para o modelo de agregação a 3D, onde T' é a temperatura reduzida ($T' \equiv \frac{k_b T}{\varepsilon}$), para $\rho = 0.1$, com os pontos experimentais ligados por uma linha. A estimativa do tempo foi obtida após equilibrar o sistema com 500000 MCS (passos de monte carlo), calculando a função de autocorrelação (eq.7) e integrando-a, assumindo a forma exponencial já referida.

Fig. 8: Calor específico c para $\rho=0.1$, calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições da energia a cada 2 tempos de correlação, calculando então as suas flutuações.

Fig. 9: Comprimento médio das cadeias \bar{l} para $\rho=0.1$, calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições de \bar{l} a cada 2 tempos de correlação, calculando então a sua média.

Fig. 10: Parâmetro de ordem reduzido $|\Delta_1|$ para $\rho=0.1$, onde N é o número total de partículas. O parâmetro foi calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições de $|\Delta_1|$ a cada 2 tempos de correlação, calculando então a sua média.

Fig. 11: Flutuações do parâmetro de ordem reduzido $|\Delta_1|$ para $\rho=0.1$, calculadas da mesma forma que c. Será em princípio possível ver a transição de fase determinando T para a qual as flutuações tendem para infinito

Fig. 12: Parâmetro de ordem reduzido $|\Delta_2|$ para $\rho=0.1$, onde N é o número total de partículas. O parâmetro foi calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições de $|\Delta_2|$ a cada 2 tempos de correlação, calculando então a sua média.

Fig. 13: Flutuações do parâmetro de ordem reduzido $\frac{|\Delta_2|}{N}$ para $\rho=0.1$, calculadas da mesma forma que c. Será em princípio possível ver a transição de fase determinando T para a qual as flutuações tendem para infinito

Fig. 14: Gráfico de $\tau(T)$ para o modelo de agregação a 3D, onde T é a temperatura reduzida ($T \equiv \frac{k_b T'}{J}$), para $\rho = 0.2$, com os pontos experimentais ligados por uma linha. A estimativa do tempo foi obtida após equilibrar o sistema com 500000 MCS (passos de monte carlo), calculando a função de autocorrelação (eq.7) e integrando-a, assumindo a forma exponencial já referida.

Fig. 15: Calor específico c para $\rho=0.2$, calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições da energia a cada 2 tempos de correlação, calculando então as suas flutuações.

Fig. 16: Comprimento médio das cadeias \bar{l} para $\rho=0.2$, calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições de \bar{l} a cada 2 tempos de correlação, calculando então a sua média.

Fig. 17: Parâmetro de ordem reduzido $|\Delta_1|$ para $\rho=0.2$, onde N é o número total de partículas. O parâmetro foi calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições de $|\Delta_1|$ a cada 2 tempos de correlação, calculando então a sua média.

Fig. 18: Flutuações do parâmetro de ordem reduzido $|\Delta_1|$ para $\rho=0.2$, calculadas da mesma forma que c. Será em princípio possível ver a transição de fase determinando T para a qual as flutuações tendem para infinito

Fig. 19: Parâmetro de ordem reduzido $|\Delta_2|$ para $\rho=0.2$, onde N é o número total de partículas. O parâmetro foi calculado após equilibrar o sistema esperando 500000 MCS e fazendo 20 medições de $|\Delta_2|$ a cada 2 tempos de correlação, calculando então a sua média.

Fig. 20: Flutuações do parâmetro de ordem reduzido $|\Delta_2|$ para $\rho=0.2$, calculadas da mesma forma que c. Será em princípio possível ver a transição de fase determinando T para a qual as flutuações tendem para infinito

Fig. 21: Visualização do sistema 3D numa lattice com L=50 para T=0.1, onde as partículas são representadas por vectores orientados pela respectiva direcção. Visualização criada a partir de uma configuração de um sistema equilibrado após 500000 MCS. Apesar da dificuldade de visualização a 3D, para esta densidade pequena é visivel a orientação das partículas em planos, e torna-se óbvio que a dimensão acrescida remove o constrangimento de crescimento para as orientações não predominantes.

Conclusões

- ▶ Modelo de Ising: Pouco interessante do ponto de vista de simulação numérica, permitiu conferir os conceitos básicos.
- Modelo de agregação linear: permitiu efectuar simulações de sistemas com fenómenos ainda em estudo e pouco conhecidos, como a auto-organização.
- Reproduziu-se a simulação 2D realizada antes, tendo-se verificado que os resultados concordavam com os obtidos anteriormente.

Conclusões

- Correu-se a simulação em 3 dimensões, com resultados pouco claros.
- Verificou-se ainda assim a possibilidade de existência de uma transição de fase.
- Será necessário maior tempo de simulação, e um estudo mais aprofundado do modelo teórico para ter uma ideia mais clara das gamas de parâmetros por volta das quais simular, para confirmar a existência de fenómenos interessantes.