Topic 11 FSM Optimizations

Optimization by State Reduction

- Goal: Reduce number of states in FSM without changing behavior
 - Fewer states potentially reduce size of state register
- Consider the two FSMs below with x=1, then 1, then 0, 0

For the same sequence of inputs, the output of the two FSMs is the same

Moore vs. Mealy FSMs

- FSM implementation architecture
 - Next state logic function of present state and FSM inputs
 - Output logic
 - Depends on present state only Moore FSM
 - Depends on present state and FSM inputs Mealy FSM

Moore FSM Representation

Out

0

0

Outputs

Mealy FSM Representation

State Diagram

State Table

In	P.S.	N.S.	Out
0	S0	S0	0
1	S0	S1	1
0	S1	S1	1
1	S1	S2	0
0	S2	S2 S2	0
1	S2	S0	1
0	S3 S3	S3 S1	0
1	S3	S1	1

Present State

Design of an FSM - Mealy

Example: design a non-overlapping sequence detector as Mealy FSM

Z is determined every three bits, Z = 1, as soon as an input sequence
 101 is detected

X =	0	0	1		0		1	0	0		0		0	1	0
Z =	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

one input: X

one output: Z

Development of State Diagram

Drawing the state diagram

FSM Optimization – State Reduction

 Two states are equivalent iff both their next states and outputs are identical

Present	Next	State	Output			
State	X = 0	X = 1	X = 0	X = 1		
A0	A4	A1	0	0	ŀ	
A1	A2	A5	0	0		
A2	A0	A0	0	1		
- \ \ 3	A4	A.1	0	0	•	
A4	A5	A5	0	0		
A5	A0	A0	0	0		
- ^6	\ \ \ \ \ 4	\ \ 1	0	0		

Alternative representation of state table

- Easier for state reduction
- Harder for truth table

equivalent states

Reduced State Table

Reduced state table

Present	Next	State	Output		
State	X=0	X=1	X=0	X=1	
A0	A4	A1	0	0	
A1	A2	A5	0	0	
A2	A0	A0	0	1	
- \(\times 3 \)	<u> </u>	<u> </u>	0	0	
A4	A5	A5	0	0	
A5	A0	A0	0	0	
-A6		\ \	0	0	

 $A0 \rightarrow S0$ $A1 \rightarrow S1$ $A2 \rightarrow S2$ $A4 \rightarrow S3$ $A5 \rightarrow S4$

Present	Next	State	Output		
State	X=0	X=1	X=0	X=1	
S0	S3	S1	0	0	
S1	S2	S4	0	0	
S2	S0	S0	0	1	
S3	S4	S4	0	0	
S4	S0	S0	0	0	

Reduced State Diagram

State Assignment

Number of bits of binary number should be enough to represent all the states

S0	S1	S2	S3	S4
000	001	010	011	100

Present	Next	State	Output			
State	X=0	X=1	X=0	X=1		
000	011	001	0	0		
001	010	100	0	0		
010	000	000	0	1		
011	100	100	0	0		
100	000	000	0	0		

In	Pres	sent S	State	Ne	ext Sta	ate	Out	
Х	P2	P1	P0	n2	n1	n0	Z	
0	0	0	0	0	1	1	0	
0	0	0	1	0	1	0	0	
0	0	1	0	0	0	0	0	
0	0	1	1	1	0	0	0	
0	1	0	0	0	0	0	0	
				Х				
1	0	0	0	0	0	1	0	
1	0	0	1	1	0	0	0	
1	0	1	0	0	0	0	1	
1	0	1	1	1	0	0	0	
1	1	0	0	0	0	0	0	
					2	×		

State and Output Equations

In	Present State			Ne	xt Sta	ate	Out
Χ	P2	P1	P0	n2	n1	n0	Z
0	0	0	0	0	1	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
				Х			
1	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0
1	0	1	0	0	0	0	1
1	0	1	1	1	0	0	0
1	1	0	0	0	0	0	0
					2	X	

n2 =	p0	Х	⊦ p′	1pC
------	----	---	------	-----

$$n0 = p2'p1'p0'$$

$$n1 = p2'p1'X'$$

$$Z = p1p0'X$$

Completed Logic Circuit

- Circuit Implementation of FSM
 - Using D FFs

Alternative Design of the FSM – Moore

Example: design a non-overlapping sequence detector as Moore FSM

• Z is determined every three bits, Z = 1 at the next edge after desired sequence is detected

X =	0	0	1	A	0		1	0	0	\forall	0		0	1	0
Z =	0	0	0	0	0	9	1	0	0	0	0	0	1	0	0
time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

one input: X

one output: Z

Development of State Diagram

Drawing the state diagram

FSM Optimization - State Reduction

Two states are equivalent iff their next states and outputs are identical

Present	Next	State	Output
State	X = 0	X = 1	Output
A0	A4	A1	0
A1	A2	A5	0
A2	A0	A3	0
A3	A4	A1	1
A4	A5	A5	0
A5	A0	A0	0
- A6	<u> </u>	<u> </u>	0

equivalent states

Reduced State Table

Reduced state table

Present	Next	State	Qutnut	
State	X = 0 $X = 1$		Output	
A0	A4	A1	0	
A1	A2	A5	0	
A2	A0	A3	0	
A3	A4	A1	1	
A4	A5	A5	0	
A5	A0	A0	0	
A6	A 4	<u> </u>	0	

ΑU	\rightarrow	50
Α1	\rightarrow	S 1
A2	\rightarrow	S2
А3	\rightarrow	S3
A4	\rightarrow	S 4
A5	\rightarrow	S5

Present	Next	State	044	
State	X=0 X=1		Output	
S0	S4	S1	0	
S1	S2	S5	0	
S2	S0	S3	0	
S3	S4	S1	1	
S4	S5	S5	0	
S5	S0	S0	0	

Reduced State Diagram

State Assignment

Number of bits of binary number should be enough to represent all the states

S0	S1	S2	S3	S4	S5
000	001	010	011	100	101

Present	Next	State	Outout
State	X=0	X=1	Output
000	100	001	0
001	010	101	0
010	000	011	0
011	100	001	1
100	101	101	0
101	000	000	0

In	Pres	sent S	State	Ne	ext Sta	ate	Out
Χ	p2	p1	р0	n2	n1	n0	Ζ
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	0	0
0	0	1	1	1	0	0	1
0	1	0	0	1	0	1	0
0	1	0	1	0	0	0	0
				X			
1	0	0	0	0	0	1	0
1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	0	1	1	0	0	1	1
1	1	0	0	1	0	1	0
1	1	0	1	0	0	0	0
)	<	

State and Output Equations

In	Pres	sent S	State	Ne	Next State		Out
Χ	p2	p1	р0	n2	n1	n0	Ζ
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	0	0
0	0	1	1	1	0	0	1
0	1	0	0	1	0	1	0
0	1	0	1	0	0	0	0
				X			
1	0	0	0	0	0	1	0
1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	0	1	1	0	0	1	1
1	1	0	0	1	0	1	0
1	1	0	1	0	0	0	0
						X	

$$n1 = p1p0'X + p2'p1'p0X'$$

$$n0 = p2p0'+p2'X$$

$$Z = p1p0$$

Mealy FSM vs. Moore FSM

Output

- Mealy: depends on both inputs and presents
- Moore: doesn't depend on inputs

State Diagram

- Mealy: less states -> potentially less number of flip-flops
- Moore: more states than Mealy -> possibly bigger circuit

Speed of output response to the inputs

- Mealy: quick, as soon as input changes
- Moore: as long as one clock cycle delay

TIMING ISSUE

- Mealy: asynchronous, may cause serious problem
- Moore: synchronous, more stable

Standard Architecture of FSM

Modeling of FSM – Mealy


```
module seq det mealy 1exp (clock, reset, in bit, out bit);
  input clock, reset, in bit;
  output out bit;
  reg [2:0] curr state, next state;
             init = 3'b000;
  parameter
  parameter zero 1 = 3'b001;
  parameter one 1 = 3'b010;
  parameter zero 2 = 3'b011;
  parameter one 2 = 3'b100;
  always @ (posedge clock or posedge reset)
                                                     State register
    if (reset == 1) curr state <= init;</pre>
    else
                    curr state <= next state;</pre>
                                               Combinational logic
  always @ (curr state or in_bit)
                                               for next state
    case (curr state)
      init: if (in bit == 0) next state <= zero 1; else
            if (in bit == 1) next state <= one 1; else</pre>
                              next state <= init;</pre>
```

```
zero 1: if (in bit == 0) next state <= zero 2; else</pre>
               if (in bit == 1) next state <= one 1; else</pre>
                                  next state <= init;</pre>
      zero_2: if (in_bit == 0) next_state <= zero_2; else</pre>
               if (in bit == 1) next state <= one 1; else</pre>
                                  next state <= init;</pre>
      one 1: if (in bit == 0) next state <= zero 1; else
               if (in bit == 1) next state <= one 2; else</pre>
                                  next state <= init;</pre>
      one 2: if (in bit == 0) next state <= zero 1; else
               if (in bit == 1) next state <= one 2; else</pre>
                                  next state <= init;</pre>
      default:
                                  next state <= init;</pre>
    endcase
  assign out bit = (((curr state==zero 2)&&(in bit==0))||
                     ((curr_state==one 2) &&(in bit==1))) ? 1 : 0;
endmodule
                          Combinational logic
                          for FSM outputs
```

Modeling of FSM – Moore


```
... // the same as Mealy
    zero 1: if (in bit == 0) next state <= zero 2; else</pre>
             if (in bit == 1) next state <= one_1; else</pre>
                                next state <= init;</pre>
    zero 2: if (in bit == 0) next state <= zero 2; else</pre>
             if (in bit == 1) next state <= one 1; else</pre>
                               next state <= init;</pre>
    one 1: if (in bit == 0) next state <= zero 1; else
             if (in bit == 1) next state <= one 2; else</pre>
                               next state <= init;</pre>
    one 2: if (in bit == 0) next state <= zero 1; else
             if (in bit == 1) next state <= one 2; else</pre>
                                next state <= init;</pre>
    default:
                                next state <= init;</pre>
  endcase
assign out_bit = ((curr state==zero 2)||(curr state==one 2))
                  ? 1 : 0;
```

Mealy and Moore can be Combined

May be combined in same FSM

Difference only on the outputs Inputs: b; Outputs: s1, s0, p b'/p=0<u>Time</u> s1s0=00 Mealy output b/p=1Moore output b'/p=0Alarm s1s0=01 b/p=1b'/p=0<u>Date</u> s1s0=10b/p=1b'/p=0<u>Stpwch</u> s1s0=11

b/p=1

- Given a circuit of FSM, figure out the behavior
 - Mealy or Moore?
 - How many states?
 - Logic for next state?
 - State table?
 - State diagram?

- · Given a circuit of FSM, figure out the behavior
 - $y = s1 \cdot s0'$, Moore!
 - 2 bit state register, 4 states
 - Logic for next state:

$$n1 = a \cdot s1' \cdot s0 + a \cdot s1 \cdot s0'$$

 $n0 = a \cdot s1' \cdot s0'$

- State table?
- State diagram?

- Given a circuit of FSM, figure out the behavior
 - $y = s1 \cdot s0'$, Moore!
 - 2 bit state register, 4 states
 - Logic for next state:

$$n1 = a \cdot s1' \cdot s0 + a \cdot s1 \cdot s0'$$

 $n0 = a \cdot s1' \cdot s0'$

- State table:
- State diagram?

In	P. S	state	N. State		Out
а	s1	s0	n1	n0	У
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	1
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	0	0	0

- Given a circuit of FSM, figure out the behavior
 - State diagram

In	P. S	state	N. S	N. State	
а	s1	s0	n1	n0	У
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	1
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	0	0	0

Another Method for State Reduction

Example on the first slide

Χ	P.S.	N.S.	Z
0	S0	S0	0
1	S0	S1	0
0	S1	S2	1
1	S1	S1	1
0	S2	S2	0
1	S2	S3	0
0	\$1 \$2 \$2 \$3 \$3	S2 S1 S2 S3 S0	1
1	S3	S3	1

Can't reduce more, No equivalent states

State Reduction with Implication Tables

- State reduction through state table inspection isn't optimal
- A more methodical approach Implication Tables
- Example:

- To compare every pair of states, construct a table of state pairs
- Remove redundant state pairs, and state pairs along the diagonal since a state is equivalent to itself

State Reduction with Implication Tables

- Mark (with an X) state pairs with different outputs as non-equivalent:
 - (S1,S0): At S1, y=1 and at S0, y=0. So S1 and S0 are non-equivalent.
 - (S2, S0): At S2, y=0 and at S0, y=0. So we don't mark S2 and S0 now.
 - (S2, S1): Non-equivalent
 - (\$3, \$0): Non-equivalent
 - (\$3, \$1): Don't mark
 - (\$3, \$2): Non-equivalent
- Unmarked pairs (S2, S0) and (S3, S1)
 might be equivalent, but only if their next
 states are equivalent

State Reduction with Implication Tables

 List next states of unmarked state pair's corresponding to every combination of inputs

- (S2, S0)
 - From S2, when x=1 go to S3
 From S0, when x=1 go to S1
 So add (S3, S1) as a next state pair
 - From S2, when x=0 go to S2
 From S0, when x=0 go to S0

 So add (S2, S0) as a next state pair
- (S3, S1)
 - By a similar process, add the next state pairs (S3, S1) and (S0, S2)

State Reduction with Implication Tables

 Mark (with X) the state pair if one of its next state pairs is marked (non-equivalent)

- Next state pair (S3, S1) is not marked
- Next state pair (\$2, \$0) is not marked
- So we do nothing and move on
- (S3, S1)
 - Next state pair (\$3, \$1) is not marked
 - Next state pair (S0, S2) is not marked
 - So we do nothing and move on

State Reduction with Implication Tables

- Made a pass through the entire implication table
- Make additional passes until no change occurs
- Implied by the table, unmarked state pairs are equivalent

State Reduction with Implication Tables

	Step	Description
1	Mark state pairs having different outputs as nonequivalent	States having different outputs obviously cannot be equivalent.
2	For each unmarked state pair, write the next state pairs for the same input values	
3	For each unmarked state pair, mark state pairs having nonequivalent next-state pairs as nonequivalent. Repeat this step until no change occurs, or until all states are marked.	States with nonequivalent next states for the same input values can't be equivalent. Each time through this step is called a <i>pass</i> .
4	Merge remaining state pairs	Remaining state pairs must be equivalent.

State Reduction Example

- Given FSM on the right
 - Step 1: Mark state pairs having different outputs as nonequivalent

State Reduction Example

- Given FSM on the right
 - Step 1: Mark state pairs having different outputs as nonequivalent
 - Step 2: For each unmarked state pair, write the next state pairs for the same input values

State Reduction Example

- Given FSM on the right
 - Step 1: Mark state pairs having different outputs as nonequivalent
 - Step 2: For each unmarked state pair, write the next state pairs for the same input values
 - Step 3: For each unmarked state pair, mark state pairs having nonequivalent next state pairs as nonequivalent.
 - Repeat this step until no change occurs, or until all states are marked.
 - Step 4: Merge remaining state pairs

All state pairs are marked – there are no equivalent state pairs to merge

A Larger State Reduction Example

- Step 1: Mark state pairs having different outputs as nonequivalent
- Step 2: For each unmarked state pair, write the next state pairs for the same input values
- Step 3: For each unmarked state pair, mark state pairs having nonequivalent next state pairs as nonequivalent.
 - Repeat this step until no change occurs, or until all states are marked.
- Step 4: Merge remaining state pairs

A Larger State Reduction Example

- Step 1: Mark state pairs having different outputs as nonequivalent
- Step 2: For each unmarked state pair, write the next state pairs for the same input values
- Step 3: For each unmarked state pair, mark state pairs having nonequivalent next state pairs as nonequivalent.
 - Repeat this step until no change occurs, or until all states are marked.
- Step 4: Merge remaining state pairs

Complex FSM

Automation needed

- Table for large FSM too big for humans to work with
 - n inputs: each state pair can have 2ⁿ next state pairs.
 - 4 inputs → 2⁴=16 next state pairs

- 100 states would have table with 100*100=100,000 state pairs cells
- State reduction typically automated

Mealy FSM Reduction with Implication Table

Example:

 Should have both next state pairs and output pairs in a cell for comparison

Optimization by State Encoding

Optimization by State Encoding

- Encoding: Assigning a unique bit representation to each state
- Different encodings may optimize size, or tradeoff between size and speed
- Consider push button example
 - Regular binary encoding: 14 gate inputs
 - Try alternative encoding:

- x = s1 + s0
- n1 = s0
- n0 = s1'b + s1's0
- Only 8 gate inputs
- Known as Gray Code

	Inputs			Outputs		
	s1	s0	b	Х	n1	n0
Off	0 0	0	0 1	0 0	0 0	0 1
On1	0	1 1	0 1	1 1	1 1	0 1 0 1
On2	1 1	-0-1 -0-1	0	1 1	1 1	1
On3	1 1	10	0 1	1 1	0	0 0

State Encoding: One-Hot Encoding

One-hot encoding

- One bit per state a bit being '1' corresponds to a particular state
- For A, B, C, D: A: 0001, B: 0010, C: 0100, D: 1000
- Example: FSM that outputs 0, 1, 1, 1
 - Equations if one-hot encoding:
 - n3 = s2; n2 = s1; n1 = s0; x = s3 + s2 + s1
 - Fewer gates and only one level of logic – less delay than two levels, so faster clock frequency

	Inputs		Outputs		
	61	s 0	n1	n0	X
A	0	0	0	1	0
В	0	1	1	0	1
С	1	0	1	1	1
D	1	1	0	0	1

	Inputs				Outputs				
	s3	s2	s1	s 0	n3	n2	n1	n0	Χ
\overline{A}	0	0	0	1	0	0	1	0	0
В	0	0	1	0	0	1	0	0	1
C	0	1	0	0	1	0	0	0	1
D	1	0	0	0	0	0	0	1	1

Optimization by Self-Starting FSM

Given an FSM

Pre	sent S	State	Next State			
<u>p2</u>	p1	0 g	n2	n1	<u>n0</u>	
0	0	Q	0	1	<u>Q</u>	
Ü	0	1	Х	Χ	Χ	
0	1	0	0	1	1	
0	1	1	1	0	1	
1	0	0	X	X	X	
1	0	1	1	1	0	
1	1	0	0	0	0	
1	1	1	Χ	Χ	Χ	

$$n2 = p0$$

$$n1 = p1' + p2'p0'$$

$$n0 = p2'p1$$

Self-Starting FSM

- Start-up States
 - At power-up, FSM may be in an unused or invalid state
 - Designer must guarantee it (eventually) enters a valid state
- Self-starting Solution
 - Design the FSM so that invalid states eventually go to a valid state
 - May limit exploitation of don't cares
- With current design, unused states go:
 - $-001 \rightarrow 110$
 - $-100 \rightarrow 010$
 - $-111 \rightarrow 100$

Self-Starting FSM

- If in case an unused state does not come back to the valid states by the current design
 - Designer should bring it back to a valid state
 - Update the state table to explicitly specify the next state
 - Update equations
- Example: Let the FSM recover from state 111 faster

Self-Starting FSM

Update state table and equations

Pres	sent (State p0	Nex n2	kt Sta n1	te
0 0 0 1 1 1	0 1 1 0 1 1	0 1 0 1 0 1	0 0 1 X 1 0	1 1 0 X 1 0	0 X 1 1 X 0 0

$$n2 = p1'p0 + p2'p0$$

$$n1 = p1' + p2'p0'$$

$$n0 = p2'p1$$

Summary: FSM Design Procedure

- 1. From the given problem statement, construct a state diagram (Mealy or Moore)
- 2. Derive a state table from the state diagram
- 3. Reduce the number of the states by eliminating duplicate states
- 4. Represent each state by state encoding (binary, one-hot, ...)
- 5. Redraw the reduced state table (truth table)
- 6. Determine FSM architecture
- 7. Realize and simplify the next state equations and output equations
- Check the completeness of the design, make sure the resulted FSM is a self-starting FSM
- 9. Bring back any unused state that does not come back to a valid state by current design and update state table and equations
- 10. Check your design by signal tracing, computer simulation, or hardware testing