

Al Optimizer in Vitis Al

Compression

- Quantization
- Pruning
- Distilling

- Designed Small Networks
 - MobileNets / SqueezeNet / ShuffleNet ...

Al Optimizer - Pruning

- Benefits
 - Reduce model size 5 100x
 - Reduce running time 1.5 10x
- Supported framework
 - Caffe, Darknet, Tensorflow

Pruning from fine-grained to coarse-grained

Three aspects in coarse-grained pruning

- Sparsity Determination
 - How many flops/weights to prune in each layer
 - Sensitive analysis
 - Automated Deep Compression by reinforcement learning
- Channel selection
 - In a layer, which channel to prune
 - Different criteria
 - Lasso regression (coarse-grained only)
- Accuracy recovery
 - How to recover accuracy
 - Calibration
 - Finetune

Channel selection

Accuracy recovery

Three aspects in coarse-grained pruning

- Sparsity Determination
 - How many flops/weights to prune in each layer
 - Sensitive analysis / AutoML

Resnet-50	baseline	-10%	-20%	-30%	-40%	-50%	-60%	-70%	-80%	-90%
['conv1']	0.7448	0.7448	0.7442	0.7274	0.4662	0.0184	0.0032	0.0022	0.0014	0.0012
[ˈres2a_branch2aˈ]	0.7448	0.7436	0.7412	0.7326	0.7202	0.6952	0.6798	0.6088	0.5678	0.5358
['res2a_branch2b']	0.7448	0.744	0.7404	0.7354	0.7306	0.7304	0.7074	0.6888	0.6164	0.611
['res2b_branch2a']	0.7448	0.745	0.7416	0.7404	0.7368	0.7328	0.7286	0.724	0.7144	0.6546
['res2b_branch2b']	0.7448	0.7422	0.7396	0.738	0.7372	0.7322	0.7302	0.7158	0.6982	0.67
['res2c_branch2a']	0.7448	0.7438	0.741	0.7354	0.729	0.7228	0.7088	0.6742	0.635	0.588

Channel selection

- In a layer, which channel to prune
- Different criteria (L2norm, abs*gradient) / Lasso regression
- Accuracy recovery
 - How to recover accuracy
 - Finetune / Calibration

Three aspects in coarse-grained pruning (Cont)

- vai_p
 - Automatically prune the network models to desired sparsity
 - Significantly reduce the Ops and parameters of CNN models without losing much accuracy
- 5 commands in vai_p
 - ana run sensitivity analysis
 - prune prune the network according to config
 - finetune finetune the network to recovery accuracy
 - transform transform the pruned model to regular model
 - stat get flops and the number of parameters of a model

Iterative Pruning

- Iterative pruning
 - Iterative pruning generally works better than pruning directly
 - When facing accuracy drops, try a small step
 - For a full pruning work, set steps from large to small
 - Experience on model training is very helpful
- A typical pruning process

Pruning Results - Classification

Classification networks on ImageNet

Classification				Baseline	Pruning Result 1		(0)	Pruning Result 2		
Networks	Framework	Operations	Input size	Top-1 / Top-5	Top-1 / Top-5	Δtop-1/5	ratio	Top-1 / Top-5	ΔТор1/5	ratio
VGG-16	TensorFlow	31G	224x224	70.89 / 89.84	70.80 / 89.97	-0.09 / +0.13	69%	69.29 / 89.04	-1.60 / -0.80	55%
Resnet-50	TensorFlow	7.0G	224x224	75.20 / 92.20	74.15 / 91.76	-1.05 / -0.44	47%	72.99 / 91.16	-2.21 / -1.04	33%
Inception_v3	TensorFlow	11.4G	299x299	78.00 / 93.93	77.34 / 93.46	-0.64 / -0.47	65%	76.68 / 93.17	-1.32 / -0.76	60%
VGG-16	Caffe	30G	224x224	70.96 / 89.84	70.20 / 89.70	-0.76 / -0.14	50%	69.12 / 89.13	-1.84 / -0.71	33%
Resnet-50	Caffe	7.7G	224x224	74.83 / 92.14	73.89 / 91.68	-0.94 / -0.42	49%	73.11 / 91.14	-1.72 / -1.00	34%
Inception_v1	Caffe	3.2G	224x224	70.33 / 89.67	69.53 / 89.16	-0.80 / -0.51	80%	68.64 / 88.58	-1.69 / -1.09	72%
Inception_v2	Caffe	4.0G	224x224	72.78 / 91.07	72.30 / 90.85	-0.48 / -0.22	70%	71.17 / 90.18	-1.61 / -0.89	60%
SqueezeNet	Caffe	778M	224x224	61.41 / 83.19	60.73 / 82.46	-0.68 / -0.73	89%	59.38 / 81.57	-2.03 / -1.62	75%

Pruning Results - Detection & Segmentation

Detection	Eromowork	Operations	Detect	Input cito	Baseline mAP	Pruning Result 1			Pruning Result 2		
Networks	Framework	Operations	Dataset	Input size		mAP	ΔmAP	ratio	mAP	ΔmAP	ratio
SSD+VGG	TensorFlow	70G	VOC 21 classes	300x300	79.3%	79.0%	-0.3%	36%	77.0%	-2.3%	20%
SSD+VGG	Caffe	117G	Deephi 4 classes	480x360	61.5%	62.0%	+0.5%	16%	60.4%	-1.1%	10%
SSD+VGG	Caffe	173G	Cityscapes 4 classes	500x500	57.1%	58.7%	+1.6%	40%	56.6%	-0.5%	12%
SSD+InceptionV2	Caffe	10G	VOC 19 classes	320x320	74.6%	73.8%	-0.8%	55%	73.2%	-1.4%	45%
YoloV2	Darknet	34G	VOC 21 classes	448x448	78.5%	77.0%	-1.5%	34%	76.7%	-1.8%	29%
YoloV3 variant	Darknet	53.7G	Cityscapes 3 classes	512x256	53.7%	56.1%	+2.4%	26%	55.2%	+1.5%	11%

Segmentation	Framowork	ework Operations Dataset Input size Baseline		eline Pruning Result 1			Pruning Result 2				
Networks	Framework	Operations	Dataset	mlc mlc	mloU	mloU	ΔmIoU	ratio	mloU	ΔmIoU	ratio
FPN	Caffe	163G	Cityscapes 19 classes	1024x2048	65.69%	65.21%	-0.48%	80%	64.07%	-1.62%	60%

vai_p Usage

- Sensitivity analysis, searching for best pruning strategy
- Prune the network iteratively until the network's sparsity meets your needs
- Using the pruning tool
 - Prune the network using a certain pruning ratio
 - Fine-tune the pruned network
 - Increase pruning ratio
 - Prune again
 - Loop the pruning-retraining iteration for a few times
 - Generate a final dense model

vai_p_caffe Usage

```
workspace: "examples/"
gpu: "0,1,2,3"
test_iter: 2500
acc_name: "top-5"
model: "examples/vai_p/float.prototxt"
weights: "examples/vai_p/float.caffemodel"
solver: "examples/vai_p/solver.prototxt"
rate: 0.1
pruner {
 method: REGULAR
```


vai_p_caffe Usage (Cont)

▶ Run sensitivity analysis (may take several hours to ten hours depending on the size of network)

```
vai_p_caffe ana -config config.prototxt
```

Start pruning

```
vai_p_caffe prune -config config.prototxt
```

Fine-tune the pruned model

```
vai_p_caffe finetune -config config.prototxt
```

▶ Transform the pruned (sparse) model to a normal (dense) model

```
vai_p_caffe transform -model baseline.prototxt -weights pruned.caffemodel
```

For more details, see <u>UG1333</u>

vai_p_tensorflow Usage

- Export an Inference Graph
 - evaluation codes are used to export an inference GraphDef file and evaluate network's performance during pruning.
- ▶ Run sensitivity analysis (may take several hours to ten hours depending on the size of network)

```
vai_p_tensorflow --action=ana ...
```

Start pruning

```
vai_p_tensorflow --action=prune ...
```

- Fine-tune the pruned model
 - Training model with the generate checkpoint file generated in the previous fine-tune process and increased value of -sparsity flag
- ▶ Transform the pruned (sparse) model to a normal (dense) model

```
vai_p_tensorflow --action=transform ...
```

- Freezing Graph
 - Get the final output file named frozen.pb which can be used for inference

For more details, see <u>UG1333</u>

vai_p_darknet Usage

- Create a configuration file
 - A full list of main cfg options can be found in UG1333.
- ▶ Run sensitivity analysis (may take several hours to ten hours depending on the size of network)
 - vai_p_darknet pruner ana pruning/cfg pruning/weights
- Start pruning
 - vai_p_darknet pruner prune pruning/cfg pruning/weights
- Fine-tune the pruned model
 - vai_p_darknet pruner finetune pruning/cfg
- ▶ Transform the pruned (sparse) model to a normal (dense) model
 - vai_p_darknet pruner transform pruning/cfg backup/*_final.weights
- Model Evaluation
 - vai_p_darknet pruner valid pruning/cfg weights.transform

For more details, see <u>UG1333</u>

Pruning Example for Embedded

Pruning Example for Embedded (Cont)

Pruning Example for Alveo

Detection(VOC dataset) - 416x416

Model	Ops	Weights	Model size	After finetune	After quantization	U200 fps - batch=1	U250 fps - batch = 1
Standard yolo v2	1	1	194M	76.95	75.99	250	334
Compress 22G	0.34	0.28	56M	75.32	74.6	703	937
Compress 24G	0.29	0.26	51M	75.1	74.1	901	1201
Compress 26G	0.23	0.19	37M	73.9	73.34	1073	1431

Availability

- Available on Now on AI Optimizer Lounge https://www.xilinx.com/member/ai_optimizer.html
 - Both node-locked and floating license available

Documents & Files

Description	File	Filesize	Checksum
Xilinx AI Optimizer Pruning Tool	vai_p.tar.gz	309 MB	2b8be4fdd1d5c18abbe22c63b313bb6c
Xilinx Al Optimizer User Guide	ug1333-ai-optimizer_WtMkX.pdf		
Xilinx Al Optimizer Introduction	Xiinx_AI_Optimizer_intro_WtMkX.pdf		

Pricing

Please contact your Xilinx representative

Support

- Direct support from Xilinx
- ▶ Assign the support window from Xilinx customer assign their contact window
 - Regular review meeting (if necessary)
 - Email/Skype/Webex on demand
- Provide guidance and support to set up the environment
- Provide pruning examples to get started
- On-site training (if necessary)
- Support pruning with custom dataset

