## Faster Analytics - Optimizing the Data Engineering Process



He/Him

**Analytics Architect** 

Iteration Insights





#### **Jarid**

#### **McKenzie**

He/Him

Analytics Architect

Iteration Insights



LinkedIn: jarid-mckenzie

**Foundatum** 



- Lead Analytics Architect
- Post Secondary Instructor
- Nerd

Who I actually am...





#### Want to become a speaker or mentor?



newstarsofdata.com

5/16/2025



Call for Speakers & Helpers is open!



#### What are we going to talk about?

- 1. What sort of environment are we loading?
- 2. What are some of the tasks that need to be handled?
- 3. How do we manage the task dependencies?
- 4. Which tasks should we optimize?



### What sort of environment are we loading?

Data Lakehouse for Analytics



#### **Loading Semantic Models**



#### An Aside on Real-time Analytics

- System 1 Fast, Instinctive, and Emotional
- System 2 Slower, Deliberative, Logical

















#### How on earth do we mange all these tasks?

- Handwriting process dependencies within their own pipeline
- Find some open-source solution (<u>CF.Cumulus</u>)
- Apache Airflow (need to deploy a container or service)





**What do Frameworks Look Like?** 



#### **Using Stages**



#### Books that motivated this approach











#### **Analogy from Manufacturing**

 In Manufacturing, there are many steps that need to be taken to arrive at a finished product.

Some can be done in parallel, some in series.
Most need to be performed using separate,
specialized equipment.

The key takeaway is to Identify the Bottlenecks.





#### **Bottlenecks Data Engineering**



#### **Identify the Bottlenecks:**

- Self-hosted Integration Runtimes
- Servers that we're pulling data from
- Rate limited APIs
- Spark Pools

Remember that this is cloud processing. We can run significantly more operations in parallel than a physical manufacturing plant.



#### **Identify the primary constraint of each task**



# What on Earth is a DAG?



#### What on Earth is a DAG?



irected – the edges within a graph have direction from one vertex to another

cyclic – the graph contains no cycles. Once a vertex has been visited, there is no way to 'walk' back to that vertex

raph – A set of vertices (objects) and edges (relationships). An edge joins two vertices



#### **Semantic Model DAG**



#### **DAGs Help Us Schedule**

#### **Topological Sorting:**

Arranging the nodes of the graph in such a way that we can complete them one after the other.



#### **DAG Scheduling Demo**

#### **Some Easy Queue Ordering Strategies**

- Longest Waiting (FIFO)
- 2. Shortest Average Runtime
- 3. Longest Average Runtime





#### **Longest Waiting (FIFO)**

Include the timestamp of when the task is added to the queue.



#### **Shortest and Longest Average Runtime**

- 1. Keep a record of when the task starts and ends
- 2. Take a recent sample of runs (10ish)
- 3. When calculating the DAG, include the average



#### **Simulation in Python**

#### **Hard Queue Ordering Strategies**

- 1. Most Dependent Tasks
- 2. Longest Cumulative DependentTasks





#### **Dependent Tasks**



#### **Dependent Task Calculation**



#### **Dependent Task Calculation - BFS**



#### **Longest Dependency – Finding the Critical Path**



#### **Longest Dependency – Finding the Critical Path**



#### Thank you

Let's go faster together!

#### Name goes here



GitHub (Foundatum)



My Website (foundatum.ca)



<u>LinkedIn</u> (jarid-mckenzie)





## Your feedback is important to us



#### **Evaluate this session at:**

www.PASSDataCommunitySummit.com/evaluation

