CustSeg

January 22, 2024

1 Mall Customer Segment Cluster Analysis

1.1 Import Libraries

```
[1]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    import warnings
    warnings.filterwarnings('ignore')
[2]: # Read data in mall customers.csv into a dataframe
    mall = pd.read_csv('../sample-notebooks/Mall_Customers.csv')
[3]: # Display first 5 rows of mall dataframe
    mall.head()
[3]:
       CustomerID Gender Age Annual Income (k$)
                                                    Spending Score (1-100)
    0
                1
                     Male
                            19
                                                15
                                                                         39
                2
                     Male
    1
                            21
                                                15
                                                                         81
    2
                3 Female
                            20
                                                16
                                                                         6
                4 Female
                                                                         77
    3
                            23
                                                 16
                5 Female
                                                17
                                                                         40
[7]: # Display information about dataframe
    mall.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

1.2 Univariate Analysis

Analysis looking at one variable

```
[9]: # Basic statistics on dataframe
      mall.describe().transpose()
 [9]:
                                                                        50%
                                                          min
                                                                 25%
                                                                                75%
                              count
                                       mean
                                                   std
      CustomerID
                                                          1.0 50.75
                                                                            150.25
                              200.0
                                     100.50 57.879185
                                                                      100.5
      Age
                              200.0
                                      38.85
                                             13.969007
                                                         18.0 28.75
                                                                       36.0
                                                                              49.00
      Annual Income (k$)
                              200.0
                                                         15.0 41.50
                                                                              78.00
                                      60.56
                                             26.264721
                                                                       61.5
      Spending Score (1-100)
                              200.0
                                      50.20 25.823522
                                                          1.0 34.75
                                                                       50.0
                                                                              73.00
                                max
      CustomerID
                              200.0
      Age
                               70.0
      Annual Income (k$)
                              137.0
      Spending Score (1-100)
                               99.0
[11]: # Get a list of the columns in the mall dataframe
      mall.columns
[11]: Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
             'Spending Score (1-100)'],
            dtype='object')
[13]: # create a list variable with the numeric column names
      columns = ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
[15]: # Create histograms for Age, Annual Income and Spending Score
      for i in columns:
          plt.figure()
          sns.distplot(mall[i])
```



```
[17]: # Create kdeplots for Age, Annual Income and Spending Score
for i in columns:
    plt.figure()
    sns.kdeplot(data=mall, x=mall[i],shade=True, hue=mall['Gender'])
```



```
[19]: # Create boxplots for Age, Annual Income and Spending Score
for i in columns:
    plt.figure()
    sns.boxplot(data=mall, x='Gender', y=mall[i])

# outlier value for male Annual Income (k$)
```



```
[21]: # Count of Gender values
mall['Gender'].value_counts()
```

[21]: Gender

Female 112 Male 88

Name: count, dtype: int64

[23]: # Percentage for Gender values
mall['Gender'].value_counts(normalize=True)

[23]: Gender

Female 0.56 Male 0.44

Name: proportion, dtype: float64

1.3 Bivariate Analysis

Analysis comparing two variables


```
[27]: # Drop CustomerID. CustomerID does not add any value
    #mall = mall.drop('CustomerID', axis=1)

# Pairplot. all combinations of features
sns.pairplot(mall)
plt.show()
```


[29]: # Pairplot. all combinations of features. Separate by Gender
sns.pairplot(mall, hue='Gender')
plt.show()


```
[31]: # Mean values by Gender
     mall.groupby('Gender')[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']].
       ⊶mean()
[31]:
                    Age Annual Income (k$) Spending Score (1-100)
      Gender
     Female
              38.098214
                                  59.250000
                                                          51.526786
     Male
              39.806818
                                  62.227273
                                                          48.511364
[33]: # Correlation
      mall.corr(numeric_only = True)
[33]:
                              CustomerID
                                               Age Annual Income (k$) \
      CustomerID
                                1.000000 -0.026763
                                                              0.977548
```

-0.026763 1.000000

0.977548 -0.012398

Age

Annual Income (k\$)

-0.012398

1.000000

Spending Score (1-100) 0.013835 -0.327227 0.009903

Spending Score (1-100)

 CustomerID
 0.013835

 Age
 -0.327227

 Annual Income (k\$)
 0.009903

 Spending Score (1-100)
 1.000000

[35]: # Graph correlation using a heatmap sns.heatmap(mall.corr(numeric_only=True),cmap="YlGnBu", annot=True)

[35]: <Axes: >

1.4 Clustering

Clustering is a type of unsupervised learning methood that groups unlabeled examples into groups based on a similarities

1.5 Clustering - Univariate

Clustering based on one feature

```
[49]: # k-means algorithm - Clustering1 - One feature
   clustering1 = KMeans(n_clusters=3, random_state=42)
[51]: # k-means algorithm - Annual Income (k$)
   clustering1.fit(mall[['Annual Income (k$)']])
[51]: KMeans(n_clusters=3, random_state=42)
[53]: clustering1.labels_
2, 2], dtype=int32)
[55]: mall['Income Cluster'] = clustering1.labels_
   mall.head()
[55]:
    CustomerID
          Gender
               Age
                 Annual Income (k$)
                            Spending Score (1-100) \
   0
            Male
               19
                          15
                                      39
         1
         2
           Male
                          15
                                      81
   1
               21
   2
         3 Female
               20
                          16
                                       6
   3
         4 Female
                          16
                                      77
               23
   4
          Female
                          17
                                      40
               31
    Income Cluster
   0
   1
           0
   2
           0
   3
           0
   4
           0
[57]: mall['Income Cluster'].value counts()
[57]: Income Cluster
   1
     90
   0
     74
   2
     36
```

```
Name: count, dtype: int64
[59]: # Score. distance between the centroids
      clustering1.inertia_
[59]: 23517.330930930926
[61]: # Determine how many clusters to use for KMeans
      # Calculate the intertia scores for a range
      intertia_scores = []
      for i in range(1,11):
          kmeans = KMeans(n_clusters=i)
          kmeans.fit(mall[['Annual Income (k$)']])
          intertia_scores.append(kmeans.inertia_)
[63]: # Display calculated scores
      intertia_scores
[63]: [137277.28,
       48660.88888888889,
       23517.330930930926,
       13278.112713472488,
       8481.49619047619,
       5081.484660267269,
       3941.4163614163617,
       2822.4996947496943,
       2193.0907275730815,
       1796.5129870129872]
[65]: # Plot calculated scores
      # looks like elbow starts at 3, recalculate KMeans using 3 clusters
      plt.plot(range(1,11), intertia_scores)
```

[65]: [<matplotlib.lines.Line2D at 0x7fa902fea890>]


```
[67]: # Mean for Age, Annual Income, & Spending Score grouped by Income Cluster
       mall.groupby('Income Cluster')[['Age', 'Annual Income (k$)', 'Spending Score
        \hookrightarrow (1-100)']].mean()
 [67]:
                              Age Annual Income (k$)
                                                       Spending Score (1-100)
       Income Cluster
       0
                        39.500000
                                            33.486486
                                                                     50.229730
       1
                        38.722222
                                            67.088889
                                                                     50.000000
       2
                        37.833333
                                            99.888889
                                                                     50.638889
[155]: # Swarmplot for Annual Income (k$)
       sns.set(rc={'figure.figsize':(5,5)})
       sns.swarmplot(x=mall['Annual Income (k$)'], y= mall['Gender'], hue=mall['Income_
        GCluster']).set(title='Income Cluster By Gender')
```

[155]: [Text(0.5, 1.0, 'Income Cluster By Gender')]

The above graph shows the distribution of the three income clusters separated by gender. Income is concentrated below \$80K.

1.6 Clustering - Bivariate

Clustering looking at two features

3 Female

4 Female

20

23

2

3

```
[122]: | # kmeans algorithm - Clustering2 - Bivariate - Two features
       clustering2 = KMeans(n_clusters=5, random_state = 42)
       clustering2.fit(mall[['Annual Income (k$)', 'Spending Score (1-100)']])
       clustering2.labels_
       mall['Spending and Income Cluster'] = clustering2.labels_
       mall.head()
[122]:
          CustomerID Gender
                                   Annual Income (k$)
                                                       Spending Score (1-100)
                             Age
                        Male
       0
                               19
                                                   15
                                                                            39
                        Male
       1
                   2
                               21
                                                   15
                                                                            81
```

16

16

6

77

	4	5 Femal	e 31	17	40			
	Income	Cluster S	pending and	l Income Cluster				
	0	0		4				
	1	0		2				
	2	0		4				
	3	0		2				
	4	0		4				
[124]:	# Determine how many clusters to use for KMeans							
	# Calculate the intertia scores for a range							
	<pre>intertia_scores2 = []</pre>							
	for i in range(1,11):							
	kmeans2 = KMeans(n clusters=i)							

kmeans2.fit(mall[['Annual Income (k\$)', 'Spending Score (1-100)']])

looks like elbow starts at 5, recalculate KMeans using 5 clusters

[124]: [<matplotlib.lines.Line2D at 0x7fa8f9fe4dd0>]

plt.plot(range(1,11), intertia_scores2)

Plot calculated scores

intertia_scores2.append(kmeans2.inertia_)


```
[128]: # Coordinates for cluster centers
       centers = pd.DataFrame(clustering2.cluster_centers_)
       centers.columns = ['x','y']
       centers.head()
[128]:
       0 55.296296 49.518519
       1 86.538462 82.128205
       2 25.727273 79.363636
       3 88.200000 17.114286
       4 26.304348 20.913043
[151]: plt.figure(figsize=(10,8))
       plt.scatter(x=centers['x'], y = centers['y'], s=100, c='black', marker='*')
       sns.scatterplot(data=mall, x = 'Annual Income (k$)', y = 'Spending Score_
        \hookrightarrow (1-100)', hue=
                      'Spending and Income Cluster', palette = 'tab10').
        ⇔set(title='Spending and Income Clusters')
       # to save plot:
       plt.savefig("../sample-notebooks/clustering_bivariate.png")
```



```
[132]: # Spending and Income Cluster value counts by Gender pd.crosstab(mall['Spending and Income Cluster'],mall['Gender'])
```

[132]:	Gender	Female	Male
	Spending and Income Cluster		
	0	48	33
	1	21	18
	2	13	9
	3	16	19
	4	14	9

[134]: # Spending and Income Cluster percentage by Gender
pd.crosstab(mall['Spending and Income Cluster'], mall['Gender'], normalize=True)

[134]:	Gender				Female	Male
	Spending	and	${\tt Income}$	Cluster		
	0				0.240	0.165
	1				0 105	0 090

```
2
                                      0.065 0.045
       3
                                      0.080 0.095
       4
                                      0.070
                                             0.045
[136]: # Mean for Age, Annual Income, & Spending Score grouped by Income Cluster
       mall.groupby('Spending and Income Cluster')[['Age', 'Annual Income (k$)', __

¬'Spending Score (1-100)']].mean()
[136]:
                                           Age Annual Income (k$) \
       Spending and Income Cluster
                                     42.716049
                                                          55.296296
       1
                                     32.692308
                                                          86.538462
       2
                                     25.272727
                                                          25.727273
       3
                                     41.114286
                                                          88.200000
       4
                                     45.217391
                                                          26.304348
                                     Spending Score (1-100)
       Spending and Income Cluster
       0
                                                   49.518519
       1
                                                   82.128205
       2
                                                   79.363636
       3
                                                   17.114286
                                                   20.913043
[138]: mall.head()
                                                         Spending Score (1-100)
[138]:
          CustomerID Gender
                               Age
                                    Annual Income (k$)
                        Male
       0
                   1
                                19
                                                     15
                                                                              39
                        Male
       1
                                21
                                                     15
                                                                              81
       2
                   3 Female
                                20
                                                     16
                                                                               6
       3
                     Female
                                23
                                                                              77
                                                     16
                      Female
                                                                              40
                                31
                                                     17
          Income Cluster
                          Spending and Income Cluster
       0
                        0
                                                      2
       1
                        0
                        0
                                                      4
       2
       3
                        0
                                                      2
                        0
                                                      4
[140]: # Save file as csv
       mall.to_csv("../sample-notebooks/clustering.csv")
[161]: mall.info()
      <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 200 entries, 0 to 199

Data columns (total 7 columns): # Column Non-Null Count Dtype _____ 0 CustomerID 200 non-null int64 Gender 200 non-null 1 object 2 Age 200 non-null int64 3 Annual Income (k\$) 200 non-null int64 Spending Score (1-100) 200 non-null int64 Income Cluster 200 non-null int32 Spending and Income Cluster 200 non-null int32 dtypes: int32(2), int64(4), object(1) memory usage: 9.5+ KB

1.7 Recommendation: Target clusters 1 and 2.

Both clusters have spending scores above 60.

1.7.1 Group 1 (Cluster 1 - Orange)

```
[220]: group1=mall[mall['Spending and Income Cluster']==1]
group1.head()

[220]: CustomerID Gender Age Annual Income (k$) Spending Score (1-100) \
```

[220]:	${\tt CustomerID}$	Gender	Age	Annual Income (k\$)	Spending Score	(1-100) '
123	124	Male	39	69		91
125	126	Female	31	70		77
127	128	Male	40	71		95
129	130	Male	38	71		75
131	132	Male	39	71		75

	Income	Cluster	Spending	and	Income	Cluster
123		1				1
125		1				1
127		1				1
129		1				1
131		1				1

1.7.2 Group 1 (Cluster 1 - Orange): Average Age, Income, and Spending Score

```
[218]: group1.groupby('Gender')[['Age', 'Annual Income (k$)', 'Spending Score_

$\times(1-100)']].mean().round(2)$
```

```
[218]: Age Annual Income (k$) Spending Score (1-100)
Gender
Female 32.19 86.05 81.67
Male 33.28 87.11 82.67
```

1.7.3 Group 2 (Cluster 2 - Green)

Female

Male

[]:

25.46

25.00

```
[227]: group2=mall[mall['Spending and Income Cluster']==2]
       group2.head()
[227]:
          CustomerID
                       Gender
                                     Annual Income (k$)
                                                          Spending Score (1-100) \
                               Age
                         Male
                    2
                                21
                                                      15
                                                                               81
       3
                    4
                      Female
                                23
                                                      16
                                                                               77
       5
                    6
                       Female
                                22
                                                      17
                                                                               76
       7
                       Female
                                23
                                                      18
                                                                               94
                   10 Female
                                30
                                                      19
                                                                               72
          Income Cluster Spending and Income Cluster
       1
       3
                        0
                                                       2
       5
                        0
                                                       2
       7
                                                       2
                        0
                        0
                                                       2
      1.7.4 Group 2 (Cluster 2 - Green): Average Age, Income, Spending Score
[229]: group2.groupby('Gender')[['Age', 'Annual Income (k$)', 'Spending Score
        \hookrightarrow (1-100)']].mean().round(2)
[229]:
                  Age Annual Income (k$) Spending Score (1-100)
       Gender
```

80.54

77.67

25.69

25.78