A. VOCABULARY

WORD	MEANING	
PHOSPHORYLATION	Adding a PHOSPHATE group This makes a molecule more reactive and less stable.	
OXIDATION	Removing HYDROGEN Removing ELECTRONS	
REDUCTION	Adding HYDROGEN Adding ELECTRONS	
DECARBOXYLATION	Removing CARBON DIOXIDE	
NAD <u>P</u>	A co-enzyme that can pick up and release HYDROGEN	
	NAD <u>P</u> H = reduced form (picked up H) NAD <u>P</u> = oxidised form (released H)	

B. A CHLOROPLAST

Stroma

 Has an optimum pH and enzymes for the Calvin cycle

<u>Thylakoid</u>

Contains electron transport chain and ATP synthase for photophosphorylation

Small internal volume to provide a steep proton gradient

Grana

- Flat membrane stacks that are highly folded to give a high SA:VOL to quickly accumulate protons
- Chlorophyll arranged into photosystems for maximum absorption of light energy
- Both chloroplasts and mitochondria have a double membrane, 70S ribosomes and their own DNA.

C. THE POINT OF EACH STAGE

Stage	Where It Occurs	What Is Involved	The Point Of It
Light-dependent	Thylakoids	LIGHT CHLOROPHYLL WATER	To produce NADPH and ATP for the next stage. To produce OXYGEN.
Light-independent	Stroma	CARBON DIOXIDE GLUCOSE	To produce GLUCOSE.

D. PHOTOSYSTEMS

- Contain many pigments that absorb photons of light
- This causes electrons within them to become excited
- These electrons then pass along electron carriers

Photosystem	Part of the thylakoid membrane it is found in	Involved
I	Parts exposed to the stroma	In producing NADPH
II	Parts stacked inside the grana	In producing: - an H+ concentration gradient - ATP

• NADPH and ATP are made in the light-dependent reactions (Stage 1) as they are needed for the light-independent reactions (Calvin cycle: Stage 2).

E. PHOTOSYNTHESIS

Stage 1: Light-dependent reactions (Thylakoids)

• Occur in the thylakoids

Needed: light; chlorophyll; water

Produced: NADPH; ATP; oxygen

3. ELECTRON TRANSPORT CHAIN (ETC)

e- travel along a chain of
electron carrier molecules,
losing energy at each stage.
The energy released from the
e is used to pump H⁺ from the
stroma of the chloroplast to the
thylakoid space

PROBLEM!

NADPH STILL NEEDS TO BE MADE

PSII CANNOT ABSORB MORE LIGHT UNLESS THE 2E" THAT IT HAS LOST ARE REPLACED

How NADPH is made

3. ELECTRON TRANSPORT CHAIN (ETC)

e- travel along a chain of
electron carrier molecules,
losing energy at each stage.
The energy released from the
e- is used to reduce
NADP to NADPH

How the process is completed

in the thylakoid space

Stage 2: Light-independent reactions = The Calvin Cycle (Stroma)

- Occur in the stroma
- Needed: CO₂; NADPH; ATP
- Produced: glucose (phosphate)
- ATP and NADPH from the light-dependent reactions are used here
- Ribulose bisphosphate is simply a CO₂ acceptor molecule it fixes (combines with) CO₂.

F. MELVIN CALVIN'S LOLLIPOP EXPERIMENT

• He worked out the **order** that **different compounds are produced** in the **light-independent** reactions (**Calvin cycle**).

What Calvin did

- Algae (Chlorella) are placed in a thin glass container of a large surface area for maximum light absorption.
- Algae are given plenty of light and CO₂.
- At the start, algae are supplied with radioactive carbon (H¹⁴CO₃⁻)
- Algae will use this in photosynthesis to produce compounds in the Calvin cycle.
- All compounds produced would contain ¹⁴C and be radioactive.
- At fixed time intervals, algae cells were killed with hot alcohol to stop photosynthesis.
- 2-D chromatography was then used to separate the different compounds produced.
- Autoradiography was then used to detect and identify the radioactive compounds produced.
- These compounds would appear black on an X-ray film.

Calvin's results

exposure to ¹⁴CO₂

There is more labelled PGA = glycerate-3-phosphate than any other compound after 5 secs so this must be the first compound produced

What Calvin Showed

- After **5 seconds**, there is **more glycerate-3-phosphate** than any other compound
- (So) glycerate-3-phosphate is the first stable product
- The next compound to be detected was triose phosphate
- A wide range of carbon compounds was quickly made in sequence from this
- A cycle of reactions was used to regenerate RuBP

G. STRUCTURE & FUNCTION OF A CHLOROPLAST

ELECTRON MICROGRAPH

DIAGRAM

Feel free to also add many 70S ribosomes and circular DNA to the diagram.

STRUCTURE	ADAPTATION	
Thylakoid Space	Very small volume so:	
	a steep H⁺ concentration gradient can be created	
Thylakoid Membranes	Large total surface area so: maximum light absorption by PSI and PSII	
	Provide a site for electron flow, creation of an H ⁺ concentration gradient and chemiosmosis	
Starch Grains	For storage of carbohydrate until it is exported from the chloroplast	
Cronwa	A stack of thylakoids so:	
Granum	maximum absorption of photons of light	
	Highly folded provides a large SA:VOL so: H ⁺ can be quickly accumulated	
	Contains:	
Stroma	All enzymes needed for the Calvin cycle (e.g. Rubisco)	
	 Naked DNA for protein synthesis 70S Ribosomes 	