

CECS 303: Networks and Network Security

Network Security Principles

Chris Samayoa

Week $4 - 2^{nd}$ Lecture 2/10/2022

Course Information

- CECS 303
- Networks and Network Security 3.0 units
- Class meeting schedule
- TuTH 5:00PM to 7:15PM
- Lecture Room: VEC 402
- Lab Room: ECS 413
- Class communication
- chris.samayoa@csulb.edu
- Cell: 562-706-2196
- Office hours
- Thursdays 4pm-5pm
- Other times by appointment only

Objectives

- Overview of Network Security fundamentals
- Attacker motivations and types
- Common security terminology
- Cryptography introduction
- Authentication basics

Three Aspects of Security

- Confidentiality
 - Keep data private
- Integrity
 - Keep data from being modified by unauthorized individuals/processes
- Availability
 - Keep the system running and reachable

Policy vs. Mechanism

- A security policy defines what is and is not allowed on a network or system
 - Needed for organizations of all sizes
- Security mechanism is a method or tool for enforcing security policy
 - Prevention
 - Detection
 - Response
- Types of mechanisms:
 - Identification
 - Authentication
 - Audit
 - Containment

Considerations

- Risk analysis and risk management
 - Impact of loss of data
 - Impact of disclosure
 - Legislation may play a role
- Human factors
 - The weakest link

Considerations (cont'd)

- What to protect?
 - System, network, data
- Risk considerations
 - Balance cost to protect against cost of compromise
 - What is attackers level of motivation? Cost to execute attack?
- Security vs. Risk Management
 - Prevent successful attacks or mitigate consequences
- These non-technical issues need to be incorporated into policy and mechanisms

Attackers

- Motivation(s)
 - Bragging Rights
 - Revenge / to inflict damage
 - Terrorism and extortion
 - Financial / criminal enterprises
 - Nation State objectives
- Risk to attacker
 - Organizations can play defensive roles
 - Effective attribution

Attacker Type: Published Attack Tools

- Attacker has specific tools
 - Casts the tool widely to see what can be caught.
 - Sometimes described as script-kiddies
 - Gets them into systems with specific vulnerabilities
 - > Gets them account access to susceptible employees
 - They gather what they find, exfiltrate or modify, and stop there
- Strong security posture is effective
 - Sound security practices
 - Systems up to date
 - Least privilege

Attacker Type: Opportunistic

- Looks for a weak link
 - Uses tools to scan for vulnerabilities
 - Once in, repeats the process
 - > This time starting with elevated access because of the system or user ID already compromised.
 - They gather what they find, exfiltrate or modify, and stop there
- Good containment architecture can be effective
 - Administrators need to be aware of what paths might be used to reach sensitive data

Attacker Type: Goal Oriented and Top Down

- Researches your organization and system
 - Goal is to compromise some component of your system or access specific data.
 - Learns precursor activities that must be achieved to meet that goal.
 - Often applies APT Advanced Persistent Threat tactics
 - Will wait for threat vector to propagate
- Defense requires comprehensive strategy:
 - Strong security posture
 - Training of privileged employees
 - Containment Architecture
 - Strong defenses to subversion

Monetary Motivations

- Botnets
 - Controlled machines for sale
- "Protection" or "recovery" for sale
- Attack software for sale
- Stolen data for sale
- Intermediaries used to convert online balances to cash
 - These are the pawns and the ones that are most easily caught

Principle of Least Privilege

Defined

- A subject should only be given those privileges that are needed in order to complete its specific task(s)
- e.g. Log aggregation service only needs 'read' privileges specifically to device log files
- In practice
 - Do not consistently use administrator privileges on systems
 - Any temporary elevation of privileges should be relinquished as soon as possible
 - Do not run services as root/admin users
- Issues
 - Makes configuration and administration much more difficult
 - Systems and software design must factor in the ability to granularly assign privileges

Terminology

- Vulnerability
 - A weakness in a system, program, procedure, or configuration that could allow an adversary to violate the intended policies of a system
- Threat
 - Tools or knowledge (capabilities) that are capable of exploiting a vulnerability to violate the intended policies of a system
- Attack
 - An attempt to exploit a vulnerability to violate the intended policies of a system
- Compromise
 - The successful actions that violate the intended polices of a system

Terminology (cont'd)

- Penetration
 - A successful attack (intrusion) that exploits a vulnerability in the code base of a system or its configuration. The result will often be to install a subversion
- Denial of Service
 - An attack that prevents authorized access to a resource, by destroying a target or overwhelming it with undesired requests
- Subversion
 - An intentional change to the code base or configuration of a system that alters the proper enforcement of policy. This includes the installation of backdoors and other control channels in violation of the policy relevant to the system
- Subversion vectors
 - The methods by which subversions are introduced into a system. Often the vectors take the form of malicious code

Terminology (cont'd)

Secure

A system is secure if it correctly enforces a correctly stated policy for a system. A system can only be secure with respect to a particular set of policies and under a set of stated assumptions. There is no system that is absolutely secure.

Attack Surface

The accumulation of all parts of a system that are exposed to an adversary against which the adversary can try to find and exploit a vulnerability that will render the system insecure (i.e. violate the security policies of the system).

Common Issue

- Loosely managed systems
- Security is made even more difficult to implement since today's systems lack a central point of control
 - Home machines unmanaged
 - Networks managed by different organizations.
 - A single function touches machines managed by different parties.
 - > Cloud
 - Who is in control?

General Security Concerns

- Buggy code
- Protocol design failures
- Weak crypto
- Social engineering
- Insider threats
- Poor configuration
- Incorrect policy specification
- Stolen keys or identities
- Denial of service

Security Mechanisms

- Encryption
- Checksums
- Key management
- Authentication
- Authorization
- Audit logs
- Firewalls

- Virtual Private Nets (VPNs)
- Intrusion detection
- Intrusion response
- Development tools
- Virus Scanners
- Policy managers
- Trusted hardware

Cryptography

- Cryptography underlies many fundamental security services
 - Confidentiality
 - Data integrity
 - Authentication
- Functions as a basic building block for security services

Cryptography

How Encryption Works

Substitution Ciphers

- Symmetric-key (conventional)
 - Single key used for both encryption and decryption
 - Keys are typically short, because key space is densely filled
 - Ex: AES, DES, 3DES, RC4, Blowfish, IDEA, etc.
- Asymmetric keys (public-private)
 - Two keys: one for encryption, one for decryption
 - Keys are typically long, because key space is sparsely filled
 - Ex: RSA, El Gamal, DSA, etc
- Often used in combination
 - e.g. Diffie-Hellman in TLS to exchange AES cipher

TLS

Identification vs Authentication

- Identification
 - Associating an identify with an individual, process, or request
- Authentication
 - Verification of a claimed identity
 - Ideally
 - Who you are
 - Practically
 - Something you know
 - Something you have
 - Something you are
- Often used in combination
 - e.g. Diffie-Hellman in TLS to exchange AES cipher

Something You Know

- Password or Algorithm
 - e.g. Encryption key derived from password
- Issues
 - How to keep it secret?
 - > Find it, sniff it, social engineer it
 - You need to remember it
 - How is it stored and checked?
- Potential attacks
 - Brute force
 - Dictionary
 - Pre-computed Dictionary
 - Guessing
 - Finding elsewhere

Passwords

- Can have too many password or too few passwords
 - Can lead to reuse of passwords
 - People are lazy
 - Can be mitigated by password vaults
- Passwords need to be presented
 - Relies on uncompromised verifier
- Password recommendations changed
 - Length over special characters at this point

Something You Have

- Cards
 - Mag stripe
 - Smart Card
 - USB Key
 - Time varying password
- Issues
 - How to validate?
 - Verifier can be compromised
 - Need special infrastructure
 - e.g. RSA SecureID (https://www.wired.com/2011/06/rsa-replaces-securid-tokens/)

Something You Are

- Biometrics
 - Iris scan
 - Fingerprint
 - Picture
 - Voice
- Issues
 - Need to prevent spoofing

Summary

- Security Triad = Confidentiality, Integrity, and Availability (CIA)
- Security policy defines acceptable use of system
- Security mechanisms enforce the policy
- Attackers have various different motivations
- Terminology is important for communication
- Cryptography is a building block for network security
- Authentication
 - Something you know
 - Something you have
 - Something you are