解析开拓

July 29, 2017

1 解析开拓的概念与方法

1.1 解析开拓的概念

定义

设函数 f(z) 在集合 E 上有定义。若存在区域 $D \supset E$ 及区域 D 上的解析函数 F(z),使得在集合 E 上有 F(z) = f(z),则称函数 F(z) 是 f(z) 从 E 开拓到 D 的解析函数,简称 F(z) 是 f(z) 的解析开拓。

Theorem

设平面上的区域 D_1 与 D_2 有一个公共部分 d,函数 $f_1(z)$ 在 D_1 解析;函数 $f_2(z)$ 在 D_2 解析,且在 $d=D_1\cap D_2$ 上 $f_1=f_2$,则函数

$$F(z) = \begin{cases} f_1(z) , & z \in D_1 \setminus d , \\ f_2(z) , & z \in D_2 \setminus d , \\ f_1(z) = f_2(z) , & z \in d \end{cases}$$
 (1)

是区域 $D = D_1 + D_2$ 上的单值解析函数。

Theorem

设区域 D_1 与 D_2 有公共边界 Γ_{12} ,它是一条逐段光滑曲线。设函数 $f_1(z)$ 在 D_1 解析,在 $D_1+\Gamma_{12}$ 上连续;函数 $f_2(z)$ 在 D_2 内解析,在 $D_2+\Gamma_{12}$ 上连续,且满足 $f_1(z)=f_2(z),z\in\Gamma_{12}$,则函数

$$F(z) = \begin{cases} f_1(z) , & z \in D_1 , \\ f_1(z) = f_2(z) , & z \in \Gamma_{12} , \\ f_2(z) , & z \in D_2 \end{cases}$$
 (2)

是区域 $D = D_1 + \Gamma_{12} + D_2$ 上的单值解析函数。

1.2 解析开拓的具体方法

黎曼-施瓦茨对称定理

设区域 D_1 在上半平面上,它有一段边界 Γ_1 在实轴上,函数 $f_1(z)$ 在 D_1 内解析,在 $D_1 + \Gamma_1$ 上连续,且在 Γ_1 取实数值,则可以构成一个区域 D_2 ,它与 D_1 关于实轴对称,函数 $f_2(z)$:

$$f_2(z) = \overline{f_1(\overline{z})} , \quad z \in D_2 + \Gamma_1 , \qquad (3)$$

在 D_2 解析,在 $D_2 + \Gamma_1$ 上连续, $f_2(z) = f_1(z), z \in \Gamma_1$,且函数

$$F(z) = \begin{cases} f_1(z) , & z \in D_1 , \\ f_1(z) = f_2(z) , & z \in \Gamma_1 , \\ f_2(z) , & z \in D_2 \end{cases}$$
 (4)

就是区域 $D = D_1 + \Gamma_1 + D_2$ 上的单值解析函数。

幂级数开拓法: 设函数 $f_1(z)$ 在区域 D_1 解析, $z_0 \in D$, z_0 到 D 的边界 ∂D 的距离为

$$\rho(z_0) = \min_{z \in \partial D} |z - z_0| ,$$

定义

设函数 f(z) 在区域 D 内解析。对于区域 D 的边界 ∂D 上的任意点 z_0 。若存在一个在 $z=z_0$ 的领域 $|z-z_0|<\rho$ 上的解析函数 $\varphi_{z_0}(z)$,它在区域 $(|z-z_0|<\rho)\cap D$ 上取值等于 f(z),则称 z_0 是函数 f(z) 的正则点;若这样的解析函数 $\varphi_{z_0}(z)$ 保存在,则称 z_0 是函数 f(z) 的奇点。

对于区域内点,若函数 f(z) 在 $z=z_0$ 解析,则称 z_0 是它的正则点。若 z_0 是 f(z) 的孤立奇点,则当 z_0 是可去奇点时,它就可以看做是正则点;若 z_0 是极点或本性奇点时,则 z_0 是奇点。

对于在圆内的解析函数,有幂级数开拓的定理

定义

设函数 f(z) 在圆 $|z-z_0| < \rho$, $z_1 \in |z-z_0| < \rho$,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_1)}{n!} (z - z_1)^n .$$
 (5)

要使该幂级数的收敛半径 $R > \rho - |z_1 - z_0|$ 的充要条件是点 $z_2 = z_0 + \rho e^{i \arg(z_1 - z_0)}$ 是正则点。

推论

要使点 $z_2 = z_0 + \rho e^{i \arg(z_1 - z_0)}$ 是奇点的充要条件是

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{|f^{(n)}(z_1)|}{n!}}} = \rho - |z_1 - z_0|.$$
 (6)

定理

设幂级数

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = f(z) , \quad |z - z_0| < \rho$$
 (7)

的收敛半径是 ρ , 则函数 f(z) 在收敛圆 $|z-z_0|=\rho$ 上必有奇点。