Group 3 – "Deteção de Lixo no Chão"

You already have a clean TACO \rightarrow YOLO pipeline, a YOLOv8-nano baseline, and first mAP ≈ 0.63 on five super-classes. For next steps you need to (a) lift the glass/other performance, (b) reduce tiny-object false-positives, (c) show you explored at least two axes of the "architecture \times data \times training" design space—without exceeding one free-tier Colab week.

Below is a 7-day, \leq 6 GPU-h roadmap.

0 One-time fixes to lock in on Day 1

Fix	How	Why
Class- imbalance weights	<pre>In yolo train addcls_weights 1.0 1.0 1.0 2.0 2.5 (glass, other heavier).</pre>	Balances BCE part of loss; almost free.
Small-object anchor tuning	anchors 3 (NA = 3) +rect flag; repicks anchor sizes on your data.	YOLO default anchors are COCOcentric (median obj \approx 10 % image).
Mosaic & Copy- Paste aug	Keep Ultralytics defaults on , but raisedegrees 10scale 0.5 1.5.	Larger scale range → glass fragments appear bigger; copypaste boosts rare classes.
Label-sanity script	Plot 200 random bboxes; hand- check for mis-labels after your superclass merge.	Wrong targets doom glass & other classes.

1Experiment grid – pick three (Days 2-5)

ID	Hypothesis	Change vs. baseline	Expected Δ	GPU h
A	Bigger feature maps help small trash	YOLOv8-s (11 M params) @ imgsz = 768 ; batch = 8, AMP.	↑ mAP (glass + other) 4–6 pp	1.5
В	Focal loss reduces BG confusion	fl_gamma 2.0 (focal) + cls_weights as above.	↓ FP small shards, ↑ precision	0.3
С	Synthetic oversampling boosts rare classes	Run Albumentations Copy-Paste script to replicate 1 k glass/other instances → new train folder, then retrain nano 50 ep.	↑ AP_glass 6 pp, other 4 pp	0.8
D	Segmentation pre- training transfers better	Fine-tune YOLOv8-seg-s (weights from COCO-seg) on TACO masks 40 ep → export only detector head.	↑ box AP via mask cues	1.5
E	Multi-dataset pre- train improves generalisation	1. Fine-tune on TrashNet + pLitterStreet (5 ep) → 2. Continue on TACO (50 ep).	↑ recall on shiny glass & wrappers	1.2

ID	Hypothesis	Change vs. baseline	Expected Δ	GPU h
	Post-process size filter cuts tiny FP	After NMS, drop boxes with wh < 0.02 imgsz.	↑ precision 3 pp, negligible recall loss	0

2Training hygiene

- Mixed precision (--device 0 --half) saves 40 % VRAM.
- Grad-acc 2 keeps effective batch = 16 even if memory allows 8.
- Early-stop patience = 10 on metrics/mAP50 to avoid 100-epoch over-train.
- Log to **Weights & Biases** (already integrated in Ultralytics) → metrics survive Colab resets.

3 Evaluation protocol (fixed for all runs)

- 1. **Split** 5-fold stratified by superclass counts (you already have train/val/test; put test aside).
- 2. **Metrics** mAP50 (overall), per-class AP, precision/recall at conf = 0.25, FPS@T4.
- 3. Stat test Bootstrap 1000× AP glass/other vs. baseline; report CI.
- 4. **Qualitative** 10-image collage of successes + top-5 FP/FN crops for glass & other.

4 One-week timeline (GPU ≈ 6 h)

Day Agenda

- 1 Anchor-tune, class weights, sanity plots; re-run nano 20 ep \rightarrow new Baseline-v2.
- 2 Train YOLOv8-s@768 (Exp A).
- 3 Train nano+Focal (Exp B) and run copy-paste script.
- 4 Retrain nano+synthetic (Exp C).
- 5 Optional Exp E or segmentation pre-train (Exp D) if GPU budget remains.
- 6 Aggregate metrics across folds; size-filter experiment; create Grad-CAMs.
- Write Milestone-2: scoreboard, PR curves, compute budget, lesson-learned paragraph.

5 Scoreboard template for the report

Ехр	Model / imgsz	AP50 ↑	AP_Plast ↑	AP_Paper ↑	AP_Glass ↑	AP_Other ↑	GPU min
Base- v2	v8-n / 640	63.3	72.1	68.4	41.0	38.2	30
Α	v8-s / 768	67.8	74.3	70.2	49.5	43.7	55
В	v8-n / 640 + Focal	65.4	73.2	69.1	46.2	41.9	35

Ехр	Model / imgsz	AP50 ↑	AP_Plast ↑	AP_Paper ↑	AP_Glass ↑	AP_Other ↑	GPU min
С	v8-n / 640 + synth	66.6	72.8	71.4	47.7	46.3	40

Shade column bests; mark "√" in write-up when 95 %-CI excludes baseline.

Quick-wins checklist

- **Anchor-tune** + class weights
- YOLOv8-s @ 768 for small litter
- Focal loss to curb BG confusion
- Copy-paste to oversample glass/other
- Size-filter post-NMS tiny boxes
- Report per-class AP & bootstrap CI

Follow this plan and you'll deliver a report that clearly shows *which* choices moved the needle for the hardest litter classes—while staying well inside the free Colab compute budget. Good luck!