Φροντιστήριο Μέσης Εκπαίδευσης

🗣 : Βροκίνη Λαυρεντίου 2 (Πλατεία Γεωργάκη) | 📞 : 26610 40414

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

14 Σεπτεμβρίου 2017

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Όρια - Συνέχεια

ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ

Δίνεται μια συνάρτηση f με πεδίο ορισμού ένα σύνολο A και $x_0 \in \mathbb{R}$. Το όριο της f όταν το x τείνει στο x_0 λέγεται μη πεπερασμένο όταν είναι ένα από τα $+\infty$ ή $-\infty$.

$$\lim_{x \to x_0} f(x) = \pm \infty$$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ

Θεωρούμε μια συνάρτηση $f:A\to\mathbb{R}$ και $x_0\in\mathbb{R}$. Θα ισχύει ότι:

- i. Αν $\lim_{x\to x_0} f(x) = +\infty$ τότε f(x) > 0 σε μια περιοχή του x_0 .
- ii. Αν $\lim_{x\to x_0} f(x) = -\infty$ τότε f(x) < 0 σε μια περιοχή του x_0 .

ΘΕΩΡΗΜΑ 2: ΙΔΙΟΤΗΤΕΣ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟΥ ΟΡΙΟΥ

Θεωρούμε μια συνάρτηση $f:A\to\mathbb{R}$ και $x_0\in\mathbb{R}$. Αν η f έχει μη πεπερασμένο όριο στο σημείο x_0 τότε ισχύουν γι αυτήν οι ακόλουθες ιδιότητες.

i. Aν
$$\lim_{x \to x_0} f(x) = \pm \infty$$
 τότε $\lim_{x \to x_0} \frac{1}{f(x)} = 0$.

ii. Αν ισχύουν οι σχέσεις
$$\begin{cases} \lim_{x\to x_0} f(x) = 0 \\ f(x) > 0 \ (<0) \text{ κοντά στο } x_0 \end{cases} \quad \text{τότε } \lim_{x\to x_0} \frac{1}{f(x)} = +\infty (-\infty).$$

iii.
$$\lim_{x \to x_0} f(x) \pm \infty \Rightarrow \lim_{x \to x_0} |f(x)| = +\infty$$
.

iv.
$$\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} \sqrt[\kappa]{f(x)} = +\infty.$$

v.
$$\lim_{x \to x_0} \frac{1}{(x - x_0)^{2\nu}} = +\infty.$$

vii.
$$\lim_{x \to x_0^-} \frac{1}{(x - x_0)^{2\nu + 1}} = -\infty.$$

vi.
$$\lim_{x \to x_0} \frac{1}{|x - x_0|} = +\infty$$
.

viii.
$$\lim_{x \to x_0^+} \frac{1}{(x - x_0)^{2\nu + 1}} = +\infty.$$

ix. Δεν υπάρχουν τα όρια της μορφής $\lim_{x\to x_0}\frac{1}{(x-x_0)^{2\nu+1}}$.

ΘΕΩΡΗΜΑ 3: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ 2

Αν για δύο συναρτήσεις f, g ισχύει η σχέση $f(x) \le g(x)$ κοντά στο x_0 τότε παίρνουμε ότι:

i.
$$\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} g(x) = +\infty$$
.

ii.
$$\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty$$
.

ΘΕΩΡΗΜΑ 4: ΟΡΙΟ ΑΘΡΟΙΣΜΑΤΟΣ

Για το όριο του αθροίσματος δύο συναρτήσεων f,g έχουμε τις παρακάτω περιπτώσεις:

Όριο συνάρτησης	Τιμή ορίου										
$\lim_{x \to x_0} f(x)$	$a \in \mathbb{R}$	$a \in \mathbb{R}$	$+\infty$	$+\infty$	$-\infty$	$-\infty$					
$\lim_{x \to x_0} g(x)$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$					
$\lim_{x \to x_0} (f + g)(x)$	$+\infty$	$-\infty$	$+\infty$	Απροσδιόριστη	Απροσδιόριστη	$-\infty$					

ΘΕΩΡΗΜΑ 5: ΟΡΙΟ ΓΙΝΟΜΕΝΟΥ

Για το όριο του γινομένου δύο συναρτήσεων f,g έχουμε τις παρακάτω περιπτώσεις:

Όριο συνάρτησης	Τιμή ορίου										
$\lim_{x \to x_0} f(x)$	a > 0	<i>a</i> > 0	<i>a</i> < 0	<i>a</i> < 0	$+\infty$	$+\infty$	$-\infty$	$-\infty$	0	0	
$\lim_{x \to x_0} g(x)$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	
$\lim_{x \to x_0} (f \cdot g)(x)$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	Απρ.	Απρ.	

Από τα δύο προηγούμενα θεωρήματα παίρνουμε τις εξής απροσδιόριστες μορφές:

ΑΠΡΟΣΔΙΟΡΙΣΤΕΣ Μ<u>ΟΡΦΕΣ</u>

$$\begin{array}{l} +\infty-\infty \ , \ -\infty+\infty \\ \\ 0\cdot (\pm\infty) \ , \ \frac{0}{0} \ , \ \frac{\pm\infty}{\pm\infty} \end{array}$$