

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formuła 2015

INFORMATYKA Poziom rozszerzony Część I WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program użytkowy) (środowisko programistyczne)

DATA: 22 maja 2023 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci **właściwy arkusz egzaminacyjny**, tj. arkusz we **właściwej formule**, z **właściwego przedmiotu** na **właściwym poziomie**.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 11 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin: system operacyjny, program użytkowy oraz środowisko programistyczne.
- 4. Odpowiedzi i rozwiązania zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Możesz korzystać z kalkulatora prostego.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. Ciąg i jego opis

Rozważamy ciągi złożone z liczb całkowitych dodatnich. Jeżeli mamy pewien ciąg A, możemy skonstruować drugi ciąg B, będący opisem A, w następujący sposób: każdy fragment A będący p-krotnym powtórzeniem jednej liczby x zamieniamy na dwie liczby p i x w ciągu B.

Przykład: ciąg (1, 1, 3, 2, 2, 2, 1) to "dwie jedynki, jedna trójka, trzy dwójki i jedna jedynka", a więc jego opis to (2, 1, 1, 3, 3, 2, 1, 1).

Z kolei ciąg (2, 2, 2, 5, 3, 3) to kolejno "cztery dwójki, jedna piątka, dwie trójki", więc jego opis to (4, 2, 1, 5, 2, 3).

Zadanie 1.1. (0-2)

Uzupełnij poniższą tabelę – wpisz w odpowiednie pola: opisy dla podanych przykładów ciągu *A*, długości tych opisów oraz ciąg *A*, dla którego podano opis i długość tego opisu.

Ciąg A	Opis ciągu <i>A</i> (ciąg <i>B</i>)	Długość opisu ciągu <i>A</i> (liczba elementów ciągu <i>B</i>)
(1, 1, 3, 2, 2, 2, 1)	(2, 1, 1, 3, 3, 2, 1, 1)	8
(3, 3, 3, 2, 2, 1, 1, 1, 6)		
(2, 2, 2, 2, 2, 2)		
	(4, 1, 1, 4)	4

Zadanie 1.2. (0-3)

Zapisz w pseudokodzie lub wybranym języku programowania algorytm, który dla danego ciągu *A*, zapisanego w tablicy *A*[1..*n*], obliczy <u>długość jego opisu</u> (liczbę elementów ciągu *B*) zgodnie z podanymi wcześniej regułami.

Uwaga: W zapisie możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), porównywanie znaków i liczb, odwoływanie się do pojedynczego elementu tablicy, instrukcje sterujące, przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące wyżej wymienione operacje. **Zabronione** jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione, dostępnych w językach programowania.

Specyfikacja:

Dane:

n – liczba całkowita dodatnia – liczba elementów ciągu A

A[1..n] – tablica liczb całkowitych dodatnich zawierająca kolejne elementy ciągu A Wynik:

w – liczba elementów ciągu B, będącego opisem ciągu A

Miejsce na zapis algorytmu

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt	2	3
egzaminator	Uzyskana liczba pkt		

Zadanie 2. Funkcja rekurencyjna

Dane są dodatnia liczba całkowita n i tablica A[1..n] zawierająca n dodatnich liczb całkowitych. Przeanalizuj działanie zapisanej poniżej funkcji f, której parametry p i q spełniają warunek $1 \le p \le q \le n$.

f(p, q):

jeżeli $p \neq q$ $k \leftarrow (q - p + 1)$ div 2 **dla** i = 1, 2, ..., k zamień(A[p + i - 1], A[q - k + i]) f(p, p + k - 1) f(q - k + 1, q)

Uwaga:

- div jest operatorem oznaczającym część całkowitą z dzielenia
- operacja *zamień*(*x*, *y*) zamienia ze sobą wartości zmiennych *x* i *y*
- ← jest operatorem przypisania; x ← 2 oznacza, że wartość x staje się 2

Zadanie 2.1. (0-3)

Uzupełnij tabelę – dla podanych wartości n i tablicy A[1..n] podaj, jaki będzie stan tablicy A (jakie będą wartości elementów tej tablicy) po zakończeniu działania funkcji f wywołanej z parametrami 1, n.

n	А	Zawartość <i>A</i> po wykonaniu <i>f</i> (1, <i>n</i>)
3	[2, 3, 4]	
4	[1, 2, 3, 4]	
10	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	

Miejsce na obliczenia

Zadanie 2.2. (0-3)

Uzupełnij tabelę – podaj, ile razy po wywołaniu f(1, n) dla tablicy A[1..n] wykonana zostanie operacja $zamie\acute{n}()$.

Uwaga: zauważ, że liczba wykonań operacji *zamień* nie zależy od zawartości tablicy *A*, a tylko – od jej długości.

n	Liczba operacji <i>zamień</i> () po wywołaniu <i>f</i> (1, <i>n</i>)
4	4
8	
16	
256	

Miejsce na obliczenia

	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt	3	3
egzaminator	Uzyskana liczba pkt		

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz \mathbf{P} , jeśli zdanie jest prawdziwe, albo \mathbf{F} – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

F(x):

Rozważamy dwie funkcje \mathbf{F} i \mathbf{G} , których argumentem jest liczba całkowita x > 1 (gdzie mod oznacza resztę z dzielenia):

```
i \leftarrow 2
dopóki x \mod i \neq 0 wykonuj
i \leftarrow i + 1
zwróć i

G(x):
i \leftarrow x - 1
dopóki x \mod i \neq 0 wykonuj
i \leftarrow i - 1
zwróć i
```

1.	F (2)=2 oraz G (2)=1.	Р	F
2.	Dla każdej liczby parzystej <i>x</i> wartość F (<i>x</i>) jest parzysta.	Р	F
3.	Dla każdej liczby parzystej <i>x</i> wartość G (<i>x</i>) jest parzysta.	P	F
4.	Dla każdej liczby <i>x</i> większej od 2 F (<i>x</i>) dzieli liczbę <i>x</i> .	P	F

Zadanie 3.2. (0-1)

1.	A5 ₁₆ = 245 ₈	Р	F
2.	A5 ₁₆ < 10100100 ₂	Р	F
3.	10100100 ₂ = 2210 ₄	Р	F
4.	2210 ₄ < 245 ₈	Р	F

Informacja do zadań 3.3. i 3.4.

W bazie danych znajdują się tabele zwierzeta oraz gromady.

Tabela *zwierzeta* zawiera dane: identyfikator zwierzęcia (*id*), gatunek (*gatunek*), sposób odżywiania (*sposob_odzywiania* – mięsożerne, roślinożerne) oraz identyfikator gromady, do której należy dany gatunek (*id_gromady*). Pole *id* jest kluczem podstawowym w tej tabeli. Tabela *gromady* zawiera pola: identyfikator gromady (*id* – klucz podstawowy) oraz nazwę gromady (*gromada*).

Poniżej pokazano przykładowe dane z obu tabel.

Tabela zwierzeta

id	gatunek	sposob_odzywiania	id_gromady
1	lew afrykanski	miesozerne	2
2	zyrafa	roslinozerne	2
3	krokodyl nilowy	miesozerne	3

Tabela gromady

id	gromada
1	ptaki
2	ssaki
3	gady
4	ryby

Zadanie 3.3. (0-1)

Dla tabel opisanych wyżej (i podanych danych przykładowych) listę nazw gatunków wszystkich ssaków z tabeli *zwierzeta* otrzymamy w wyniku zapytania

1.	SELECT gatunek FROM zwierzeta WHERE id_gromady = 2;	Р	F
2.	SELECT gatunek FROM zwierzeta, gromady WHERE zwierzeta.id_gromady=gromady.id AND gromada = "ssaki";	Р	F
3.	SELECT gatunek FROM zwierzeta INNER JOIN gromady ON zwierzeta.id_gromady=gromady.id WHERE gromada = "ssaki";	Р	F
4.	SELECT gatunek FROM zwierzeta LEFT JOIN gromady ON zwierzeta.id_gromady=gromady.id WHERE gromada = "2";	P	F

	Nr zadania	3.1.	3.2.	3.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator	Uzyskana liczba pkt			

Zadanie 3.4. (0-1)

Dla tabel opisanych wcześniej i podanych danych przykładowych

	w wyniku zapytania:		
1.	SELECT gromada, count(*) FROM gromady INNER JOIN zwierzeta ON zwierzeta.id_gromady = gromady.id GROUP BY gromada; otrzymamy nazwy gromad oraz liczby gatunków zwierząt należących do tych gromad.	Р	F
	w wyniku zapytania:		
2.	SELECT gromada, count(*) FROM gromady INNER JOIN zwierzeta ON zwierzeta.id_gromady = gromady.id GROUP BY gromada;	Р	F
	otrzymamy liczbę różnych gromad z tabeli <i>gromady.</i>		
3.	w wyniku zapytania: SELECT count(*) FROM zwierzeta INNER JOIN gromady ON zwierzeta.id_gromady = gromady.id WHERE gromady.id=2;	Р	F
	otrzymamy liczbę gatunków ssaków z tabeli <i>zwierzeta.</i>		
	w wyniku zapytania:		
4.	SELECT count(*) FROM zwierzeta, gromady WHERE zwierzeta.id_gromady = gromady.id AND gromady.gromada = "ssaki";	Р	F
	otrzymamy liczbę gatunków ssaków z tabeli <i>zwierzeta.</i>		

Wypełnia egzaminator	Nr zadania	3.4.
	Maks. liczba pkt	1
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

INFORMATYKA Poziom rozszerzony

Formula 2015

INFORMATYKA Poziom rozszerzony

Formula 2015

INFORMATYKA Poziom rozszerzony

Formula 2015