## **Chapter 4. Angle Modulation**

Modulation: the process by which some characteristics of a carrier wave is varied in accordance with an information-bearing signal M(t) gnment Project Exam Help - Carrier: used to facilitate the transmission of messages, e.g.,

 Carrier: used to facilitate the transmission of messages, e.g., sinusoid waves. <a href="https://tutorcs.com">https://tutorcs.com</a>

 $c(t) = A_c \cos(2\pi f_c t + \theta)$ WeChat: estutores

- Amplitude modulation: the amplitude  $A_C$  is varied in accordance with m(t).
- Angle modulation: the angle  $2\pi f_c t + \theta$  is varied in accordance with m(t).

- 4.1 Fundamental Theories of Angle Modulation (Haykin & Moher 4.1, 4.3)
- 4.2 Properties of Angle Modulation (Haykin & Moher 4.2,)
- 4.3 Spectral Analysis of FM (Haykin & Moher 4.4, partial 4.5 & 4.6)
- 4.4 Generation and Demodulation of Five Haykin & Moher partial 4.7 & 4.8)

https://tutorcs.com

## 4.1 Fundamental Theories of Angle Modulation

#### A sinusoidal carrier wave:

$$c(t) = A_c \cos(2\pi f_c t),$$

where  $f_c$  is the <u>carrier frequency</u>,  $A_c$  is the <u>carrier amplitude</u>.

Assignment Project Exam Help Message signal/information-bearing signal: m(t)

https://tutorcs.com

# Angle-modulated wave: WeChat: cstutorcs

$$s(t) = A_c \cos[\theta_i(t)],$$

 $\theta_i(t)$ : angle of the modulated wave. Varies in accordance with the message signal m(t).

If no message signal (or m(t) = 0),  $\theta_i(t) = 2\pi f_c t + \phi_c$ .

Without loss of generality,  $\phi_c$  is assumed to be 0.

#### Angle modulated signal:

$$s(t) = A_c \cos[\theta_i(t)],$$

The angle  $\theta_i(t)$  is a function of time and changes by  $2\pi$  radians.

## Instantaneous frequency of the modulated signal:

$$\frac{f_i(t)}{\uparrow} = \lim_{\Delta t \to 0} \frac{\text{hetes:} \#/\text{textores:} \& \text{om}}{2\pi \Delta t} = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}.$$
Hz: cycles/s rads/s

That is: 
$$\theta_i(t) = 2\pi \int_0^t f_i(\tau) d\tau$$

Phase modulation (PM): the **angle** is varied <u>linearly</u> with the message signal m(t) ( $k_p$ : the <u>phase-sensitivity factor</u>)

#### PM modulated wave:

$$s(t) = A_c \cos[2\pi f_c t + k_p m(t)].$$

## Assignment Project Exam Help

- Instantaneous phase:  $\theta_i(t) = 2\pi f_c t + k_p m(t)$ . https://tutorcs.com
  - Maximum phase deviation:  $\Delta \theta_{\max} = k_p \max_t |m(t)|$ . WeChat: cstutorcs
- Instantaneous frequency:  $f_i(t) = f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$ .
  - Maximum frequency deviation:  $\Delta f_{\max} = \frac{k_p}{2\pi} \max_t \left| \frac{dm(t)}{dt} \right|$ .

Frequency modulation (FM): the instantaneous frequency is varied linearly with the message signal m(t) ( $k_f$ : the frequency-sensitivity factor)

#### FM modulated wave:

$$s(t) = Assignment Project Examplelp$$

https://tutorcs.com

- Instantaneous phase:  $\theta_i(t) = 2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau$ . WeChat: cstutorcs
  - Maximum phase deviation:  $\Delta heta_{\max} = 2\pi k_f \max_t \left| \int_0^t \ m( au) au \right|.$
- Instantaneous frequency:  $f_i(t) = f_c + k_f m(t)$ .
  - Maximum frequency deviation:  $\Delta f_{\max} = k_f \max_t |m(t)|$ .

## **Example:** modulation of a single-tone message



FIGURE 4.1 Illustration of AM, PM, and FM waves produced by a single tone.
(a) Carrier wave. (b) Sinusoidal modulating signal. (c) Amplitude-modulated signal. (d) Phase-modulated signal. (e) Frequency modulated signal.

**Example:** Given frequency and phase modulations of rectangular messages in the figure, find  $f_c$ ,  $k_f$ , and  $k_p$ .



#### Relationship between PM and FM

An FM wave 
$$s(t) = A_c \cos \left[ 2\pi f_c t + 2\pi k_f \int_{0.5}^t m(\tau) d\tau \right]$$

- can be seen as a PM wave produced by the modulating message:  $\int_0^t \mathbf{Assignwhere} \, \mathbf{Project} k \mathbf{Exam} \, \mathbf{Help}$ 

A PM wave 
$$s(t) = \frac{\text{https://tutorcs.com}}{A_c \cos[2\pi f_c t + k_p m(t)]}$$

- can be seen as an white produced by the modulating message:  $\frac{dm(t)}{dt}$  , where  $k_f=k_p/(2\pi)$ .



## **4.2 Properties of Angle Modulation**

#### 1. Constant transmit power.

Amplitude of modulated wave is fixed:  $A_c$ 



Average transpin power Pfoject Exam Help modulated wave:

$$P_{\text{Ave}} = \frac{1}{2} A_c^{\text{https://tutorcs.com}}$$

WeChat: cstutores

#### 2. Irregularity of zero-crossings.

For angle modulation, the message resides in the zero-crossings of the modulated wave.



#### 3. Non-linear modulation process.

Violates the principle of superposition.

Difficult to analyze.

Assignment Project Exam Help
4. Visualization difficulty of message waveform.

## 5. Tradeoff of trahstpission to and performance

Less sensitive to noise compared to AM, WeChat: cstutorcs but with increased bandwidth.

Offers a tradeoff.

Example: Given an angle-modulated signal  $s(t) = 100\cos[2\pi f_c t + 4\sin(2000\pi t)]$  where  $f_c = 10MHz$ . (a) Determine the average transmit power; (b) Determine the max phase and max frequency derivations; (c) Is this an FM or PM signals? If yes, please find corresponding m(t).

## Assignment Project Exam Help

https://tutorcs.com

## 4.3 Spectral Analysis of FM

FM is non-linear. How to conduct the spectral analysis?

Step 1: Consider single-tone modulation

Step 2: Gain insights for the general case, and approximations are necessary.

#### Spectral analysis of single-tone modulation

Assignment Project Exam Help
Message signal:

#### FM wave:

$$s(t) = A_c \cos \left[ 2\pi f_c t + 2\pi k_f A_m \int_{-0}^{\infty} \cos(2\pi f_m \tau) d\tau \right]$$

$$= A_c \cos \left[ 2\pi f_c t + \frac{k_f A_m}{f_m} \sin(2\pi f_m t) \right].$$

$$= A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)].$$

where 
$$\beta = \frac{\Delta f_{max}}{f_m} = \frac{k_f A_m}{f_m}$$
 is the FM modulation index.

#### Spectral analysis of single-tone modulation (continued)

**Claim:** in time domain, the single-tone

FM modulated wave can be written as:

$$s(t) = A_c \sum_{n = -\infty}^{\infty} J_n(\beta) \cos[2\pi (f_c + n f_m)t]$$

Assignment Project Exam

Where the nth order Bessel function

of the first kind:

of the first kind: https://tutorcs.com 
$$J_n(eta) = rac{1}{2\pi} \int_{-\pi}^{\pi} \exp[j(eta \sin x - nx)] dx,$$
 WeChat: cstutorcs

and  $\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$  for arbitrary  $\beta$ .

Plots of the Bessel function of the first kind,  $I_{rr}(\beta)$ , for varying order

#### Frequency representation:

$$S(f) = \frac{1}{2}A_c \sum_{n=-\infty}^{\infty} J_n(\beta) [\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m)]$$

#### Properties of the spectrum of single-tone FM wave:

$$S(f) = \frac{1}{2} A_c \sum_{n=-\infty}^{\infty} J_n(\beta) [\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m)]$$
Assignment Project Exam Help

-steps://tutores.com

- 1. Infinite bandwidth: the spectrum contains a carrier component and an infinite set of side frequencies located symmetrically on both side of the carrier  $\pm f_c$  at frequency separations of  $f_m$ .
- 2. The amplitude of the carrier component  $\frac{1}{2}A_cJ_0(\beta)$  varies with  $\beta$ .

https://tutorcs.com

https://tutorcs.com

#### 3. Narrow-band FM ( $\beta \ll 1$ ):

$$s(t) = A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)]$$

$$= A_c \cos(2\pi f_c t) \cos[\beta \sin(2\pi f_m t)] - A_c \sin(2\pi f_c t) \sin[\beta \sin(2\pi f_m t)]$$

$$\approx A_c \cos(2\pi f_c t) - \beta A_c \sin(2\pi f_m t) \sin(2\pi f_c t).$$

Narrow-band



**FIGURE 4.4** Block diagram of an indirect method for generating a narrow-band FM wave.

$$S(f) = \frac{A_c}{2} \left[ \delta(f - f_c) + \delta(f + f_c) \right] - \frac{\beta A_c}{4} \left[ \delta(f - f_c + f_m) + \delta(f + f_c - f_m) \right] + \frac{\beta A_c}{4} \left[ \delta(f - f_c - f_m) + \delta(f + f_c + f_m) \right]$$

Narrow-band FM Bandwidth: approximately  $2f_m$ 

#### **Summary:**

Strictly speaking, FM wave has infinite bandwidth.

In practice, FM wave is effectively limited to a finite number of significant side-frequencies compatible with a specific amount of distortion.

## For single-ton A F Mignament Project Exam Help

Carson's rule (for both narrow-band FM and wideband FM) for the bandwidth of the modulated wave:

$$B_T \approx 2(\beta + 1)$$
 echat; a stuttores  $2\Delta f_{\max}\left(1 + \frac{1}{\beta}\right)$ 

For PM, define the modulation index as

$$\beta = \Delta \theta_{\text{max}} = k_p A_m.$$

The same result on bandwidth can be obtained.

#### For the general case, define modulation index

$$\beta = \Delta \theta_{\max} = k_p \max_t |m(t)| \quad \text{for PM}$$
 
$$\beta = \frac{\Delta f_{\max}}{\text{Assign}} = \frac{k_f \max_t |m(t)|}{\text{ent Project Exam Help}}$$

where W is the message bandwidth.

https://tutorcs.com

Generalized Carson's rule for the bandwidth of angle modulated wave:

$$B_T \approx 2(\beta + 1)W$$

- Increase in the message amplitude increases the bandwidth.
- Increase in the message frequency increases the bandwidth.

**Example:** Given  $m(t) = 10 sinc(10^4 t)$ . Determine the bandwidth of an FM-modulated signal with  $k_f = 4000$ .

## Assignment Project Exam Help

https://tutorcs.com

#### 4.4 Generation and Demodulation of FM

Generation: Direct method.

 Voltage-controlled oscillator: an sinusoidal oscillator which is directly controlled by the message signal.

## Assignment Project Exam Help

Advantage: Direct and straightforward Can have large frequency deviations.

Disadvantage: Prone to the the the total control of the total control of

#### Generation: Indirect method.

First produce a narrow-band FM, which is followed by frequency multiplier to increase the frequency deviation to the desired level.



FIGURE 4.10 Block diagram of the indirect method of generating a wide-band FM wave.

Less prone to frequency-drift.

#### Frequency-multiplier



FIGURE 4.11 Block diagram of frequency multiplier.

$$v(t) = a_1 s(t) + a_2 s^2(t) + \dots + a_n s^n(t).$$
Assignment Project Exam Help
$$s(t) = A_c \cos(2\pi f_c t + \theta(t)), \text{ where } \theta(t) = 2\pi k_p \int_0^\infty m(\tau) d\tau.$$

$$\text{https://tutorcs.com}$$

$$v(t) = a_1 A_c \cos(2\pi f_c t + \theta(t)) + \dots + a_n \left[ A_c \cos(2\pi f_c t + \theta(t)) \right]^n.$$

We Chat: cstutorcs With large enough  $f_c$ , the term in v(t) whose frequency is around  $nf_c$  takes the following form:

$$ca_n A_c^n \cos(2\pi n f_c t + n\theta(t))$$

This is also the output of the bandpass filter, i.e., the desired FM wave.  $s'(t) = A_c \cos \left[ 2\pi f_c' t + 2\pi k_f' \int_0^t m(\tau) d\tau \right]$ .  $f_c' = n f_c$ ,  $k_f' = n k_f$ .

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

**Demodulation:** To recover the message from the FM wave.

#### Frequency Discriminator.

#### FM wave:

$$s(t) = A_c \text{ Ass} \left[ \text{Performant Project Exam} \right] \text{ Help}$$
 
$$\frac{ds(t)}{dt} = -2\pi A_c \text{ lifted states} \text{ larger than the lifted states} \left[ \text{Performant Project Pexam} \right].$$

Envelop of 
$$\frac{ds(t)}{dt}$$
 :  $\frac{\text{WeChat: cstutorcs}}{2\pi A_c[f_c + k_f m(t)]}$ 

After DC blocker and scaling: m(t) is obtained.



https://tutorcs.com