

OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015.03.26

MAT234 Matematik IV – Ara Sınavın Çözümleri

N. Course

Soru 1 (Convergent Sequences).

(a) [10p] Let (a_n) be a sequence of real numbers and let $l \in \mathbb{R}$. Give the definition of $a_n \to l$ as $n \to \infty$.

We say that (a_n) tends to l $(a_n \to l \text{ as } n \to \infty)$ iff, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n > N \implies |a_n - l| < \varepsilon.$$

(b) [15p] Let $b_n = \frac{4n-1}{2n+2}$ for all $n \in \mathbb{N}$. Use the definition that you wrote in part (a) to prove that $b_n \to 2$ as $n \to \infty$.

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $N \geq \frac{5}{2\varepsilon}$. Then

$$\begin{split} n > N &\implies |b_n - 2| = \left| \frac{4n - 1}{2n + 2} - \frac{4n + 4}{2n + 2} \right| \\ &= \frac{5}{2n + 2} \le \frac{5}{2n} < \frac{5}{2N} \le \frac{5}{2\left(\frac{5}{2\varepsilon}\right)} = \varepsilon. \end{split}$$

Therefore $b_n \to 2$ as $n \to \infty$.

- (c) [25p] Suppose that
 - $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are sequences;
 - $a_n \neq 0$ for all $n \in \mathbb{N}$;
 - $a_n \to \infty$ as $n \to \infty$; and
 - $b_n = \frac{1}{a_n}$ for all $n \in \mathbb{N}$.

Show that $b_n \to 0$ as $n \to \infty$.

Let $\varepsilon > 0$. Then let $A = \frac{1}{\varepsilon} > 0$. Since $a_n \to \infty$ as $n \to \infty$, $\exists N \in \mathbb{N}$ such that

$$n > N \implies a_n > A$$
.

But then

$$n > N \implies 0 < \frac{1}{a_n} < \frac{1}{A} = \varepsilon \implies 0 < b_n < \varepsilon \implies |b_n| < \varepsilon.$$

Therefore $b_n \to 0$ as $n \to \infty$.

Soru 2 (Bounded and Unbounded Sequences).

(a) [10p] Give the definition of a bounded sequence

We say that (a_n) is bounded iff, $\exists M > 0$ such that $\forall n \in \mathbb{N}, |a_n| \leq M$.

(b) [10p] Give the definition of an *unbounded* sequence.

[HINT: Negate your answer to part (a).]

We say that (a_n) is unbounded iff $\forall M > 0, \exists n \in \mathbb{N}$ such that $|a_n| > M$.

(c) Decide if each of the sequences below is bounded or unbounded.

[10p]
$$c_n = \frac{6^n + n!}{n + 7^n}$$
 [10p] $d_n = \frac{6^n + n!}{n + (-7)^n}$ [10p] $e_n = \frac{6^n + n!}{n! + (-7)^n}$

[You must prove your answers. You may use any theorem or lemma from the course.]

2pts for correct answering bounded or unbounded 8pts for reasonable justification.

incorrect answer with incorrect proof can get up to 5pts depending on mistakes in proof

Since

$$|c_n| = \frac{6^n + n!}{n + 7^n} = \frac{\left(\frac{6}{7}\right)^n + \frac{n!}{7^n}}{\frac{n}{7^n} + 1} \ge \frac{\frac{n!}{7^n}}{1 + 1} = \frac{1}{2}\frac{n!}{7^n} \to \infty$$

as $n \to \infty$, it follows that (c_n) is <u>unbounded</u>.

Note that

$$|d_n| = \left| \frac{6^n + n!}{n + (-7)^n} \right| = \left| \frac{\left(\frac{6}{-7}\right)^n + (-1)^n \frac{n!}{7^n}}{\frac{n}{(-7)^n} + 1} \right| \ge \frac{0 + \frac{1}{2} \frac{n!}{7^n}}{1 + 1} = \frac{n!}{4 \times 7^n}$$

for sufficiently large n. Since $\frac{n!}{7^n} \to \infty$ as $n \to \infty$, it follows that (d_n) is <u>unbounded</u>.

$$e_n = \frac{6^n + n!}{n! + (-7)^n} = \frac{\frac{6^n}{n!} + 1}{1 + \frac{(-7)^n}{n!}} \to \frac{0+1}{1+0} = 1$$

as $n \to \infty$. Since every convergent sequence is bounded (we proved this), we have that (e_n) is bounded.

Soru 3 (Sequences). Define a sequence of real numbers (a_n) by

$$a_1 = 1$$
 and $20a_{n+1} = a_n^2 + 99$.

(a) [13p] Show that $0 \le a_n \le 9$ for all $n \in \mathbb{N}$. [HINT: Use proof by induction.].

Since $0 \le a_1 = 1 \le 9$, the statement is true for n = 1 3. Suppose that it is true for n = k. Then $0 \le a_k \le 9$ 2. So $20a_{k+1} = a_k^2 + 99 \le 9^2 + 99 = 180 \implies a_{k+1} \le 9$ 3 and $20a_{k+1} = a_k^2 + 99 \ge 0^2 + 99 \ge 0 \implies a_{k+1} \ge 0$ 3. By the principle of mathematical induction 2, it follows that $0 \le a_n \le 9 \ \forall n \in \mathbb{N}$.

(b) [13p] Show that $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.

First note that $a_{n+1} - a_n = \frac{1}{20}(a_n^2 + 99) - a_n = \frac{1}{20}(a_n^2 - 20a_n + 99) = \frac{1}{20}(a_n - 9)(a_n - 11)$ 5. Since $0 \le a_n \le 9$, $(a_n - 9) \le 0$ and $(a_n - 11) \le 0$ 4. Therefore $a_{n+1} - a_n = \frac{1}{20}(a_n - 9)(a_n - 11) \ge 0$. So $a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$ 4.

(c) [12p] Show that (a_n) is a convergent sequence.

By a theorem from the course, "every increasing sequence which is bounded above is convergent". In part (a), I proved that (a_n) is bounded above. In part (b), I proved that (a_n) is increasing. Therefore (a_n) is convergent.

(d) [12p] Calculate $\lim_{n\to\infty} a_n$.

Let $a = \lim_{n \to \infty} a_n$. Then $20a \leftarrow 20a_{n+1} = a_n^2 + 99 \to a^2 + 99$ as $n \to \infty$ 4. Because limits are unique, it follows that $0 = a^2 - 20a + 99 = (a - 9)(a - 11)$. So a = 9 or a = 11 4. Finally, since (a_n) is bounded above by 9, we must have that a = 9 4.