Applied Deep Learning

Introduction

February 14nd, 2022 http://adl.miulab.tw

National Taiwan University

What is Machine Learning?

什麼是機器學習?

白話文讓你了解!

What Computers Can Do?

Programs can do the things you ask them to do

Program for Solving Tasks

Task: predicting positive or negative given a product review

Some tasks are complex, and we don't know how to write a program to solve them.

Learning ≈ **Looking for a Function**

Task: predicting positive or negative given a product review

Given a large amount of data, the machine learns what the function f should be.

Learning ≈ **Looking for a Function**

Speech Recognition

 \bigcirc Handwritten Recognition f(

Weather forecast

f(Thursday)= " Saturday"

Play video games

)= "move left"

Machine Learning Framework

Training is to pick the best function given the observed data Testing is to predict the label using the learned function

What is Deep Learning?

什麼是深度學習?

A subfield of machine learning

Stacked Functions Learned by Machine

● Production line (生產線)

End-to-end training: what each function should do is learned automatically

Deep learning usually refers to neural network based model

Stacked Functions Learned by Machine

Representation Learning attempts to learn good features/representations

Deep Learning attempts to learn (multiple levels of) representations and an output

Deep v.s. Shallow – Speech Recognition

Shallow Model

Each box is a simple function in the production line:

Deep v.s. Shallow – Speech Recognition

"Bye bye, MFCC" - Deng Li in Interspeech 2014

Deep Model

Less engineering labor, but machine learns more

Deep v.s. Shallow – Image Recognition

Shallow Model

Deep v.s. Shallow – Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833)

Deep Model

All functions are learned from data

Features / Representations

Machine Learning v.s. Deep Learning

Machine Learning v.s. Deep Learning

Deep learning usually refers to *neural network* based model

Inspired by Human Brain

A Single Neuron

Each neuron is a very simple function

Deep Neural Network

A neural network is a complex function: $f: \mathbb{R}^N \longrightarrow \mathbb{R}^M$

Cascading the neurons to form a neural network

Each layer is a simple function in the production line

History of Deep Learning

- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2010: breakthrough in Speech Recognition (Dahl et al., 2010)
- 2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
- 2015: "superhuman" results in Image and Speech Recognition

Deep Learning Breakthrough

First: Speech Recognition

Acoustic Model	WER on RT03S FSH	WER on Hub5 SWB
Traditional Features	27.4%	23.6%
Deep Learning	18.5% (-33%)	16.1% (-32%)

Second: Computer Vision

Persian cat Siamese cat

Egyptian cat

History of Deep Learning

- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2010: breakthrough in Speech Recognition (Dahl et al., 2010)
- 2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
- 2015: "superhuman" results in Image and Speech Recognition

Why does deep learning show breakthrough in applications after 2010?

Reasons why Deep Learning works

Big Data

GPU

Why to Adopt GPU for Deep Learning?

- GPU is like a brain
- Human brains create graphical imagination for mental thinking

台灣好吃牛肉麵

Why Speed Matters?

- Training time
 - Big data increases the training time
 - Too long training time is not practical
- Inference time
 - Users are not patient to wait for the responses

GPU enables the real-world applications using the computational power

Why Deeper is Better?

Open → More parameters

Deep

Universality Theorem

 \bigcirc Any continuous function f

$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$$

o can be realized by a network with only hidden layer

Why "deep" not "fat"?

Fat + Shallow v.s. Thin + Deep

Two networks with the same number of parameters

Fat + Shallow v.s. Thin + Deep Hand-Written Digit Classification

The deeper model uses less parameters to achieve the same performance

Fat + Shallow v.s. Thin + Deep

Two networks with the same number of parameters

How to Apply?

如何應用深度學習?

How to Frame the Learning Problem?

 \bigcirc The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

- Input domain: word, word sequence, audio signal, click logs
- Output domain: single label, sequence tags, tree structure, probability distribution

Output Domain – Classification

Sentiment Analysis

Speech Phoneme Recognition

Handwritten Recognition

Output Domain – Sequence Prediction

POS Tagging

"推薦我台大後門的餐廳"

→ 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition

Machine Translation

"How are you doing today?" → "你好嗎?"

Learning tasks are decided by the output domains

Input Domain – How to Aggregate Information

- Input: word sequence, image pixels, audio signal, click logs
- Property: continuity, temporal, importance distribution
- Example
 - CNN (convolutional neural network): local connections, shared weights, pooling
 AlexNet, VGGNet, etc.
 - RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

How to Frame the Learning Problem?

 \bigcirc The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

- Input domain: word, word sequence, audio signal, click logs
- Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

"Applied" Deep Learning

How to frame a task into a learning problem and design the corresponding model

Core Factors for Applied Deep Learning

- 1. Data: big data
- 2. Hardware: GPU computing
- 3. Talent: design algorithms to allow networks to work for the specific problems

Concluding Remarks

Concluding Remarks

Concluding Remarks

Main focus: how to apply deep learning to the real-world problems

Reference

- Reading Materials
 - Academic papers will be put in the website
- Deep Learning
 - Goodfellow, Bengio, and Courville, "Deep Learning," 2016.
 http://www.deeplearningbook.org
 - Michael Nielsen, "Neural Networks and Deep Learning" http://neuralnetworksanddeeplearning.com

• Thanks!

Any questions?

You can find the course information at

- http://adl.miulab.tw
- <u>adl-ta@csie.ntu.edu.tw</u>
- slido: #ADL2022
- YouTube: Vivian NTU MiuLab