

客 戶:

Customer

品 名:
LTCC Chip Antenna

Part name

型 號:
A02

Mode No.

CHIEF	SALES	R&D	DESIGN
Martin	James	GWP	Hui
Date: 2008.12.19	•	Date: 2008.12.19	•

驊原科技股份有限公司 WIESON INTERNATIONAL CO., LTD.

WIESON

CO., LTD.

INTERNATIONAL | SPECIFICATION LIST

TYPE OF **PRODUCT**

A02 LTCC Chip Antenna

ITEM	INDEX	PAGE
	概述 Introduction	3
<u> </u>	外型尺寸 Dimensions	3
三.	測試電路 Evaluation Board	3
四.	電氣特性 Electrical Characteristics	4
五.	回流焊溫度 Reflow Soldering Standard Condition	4
六.	環境測試 Environmental Test	5
七.	測試報告 Test Report	6~17

				Approv	als
Rev	Date	Description	Edited by	Prepared	Hui
01	2008.12.19	NEW RELEASE	Hui	Checked	GWP
				Approved	Martin
				Issued No	1.0
				Sheet	2 OF 17

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 3/17

一. 概述 Introduction

"驊原"微波多層片狀陶瓷天線 GPL 系列產品用於無線區域網路、藍芽天線、手機多頻天線、GPS 等小體積貼版式設計。

"WIESON" microwave multi-layer chip ceramic antenna GPL series are designed to be used in WLAN, Bluetooth, multiple-band mobile phone antenna, GPS, etc and compact size SMD chip design.

二. 外型尺寸 Dimensions

三. 測試電路 Evaluation Board

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 4/17

四. 電氣特性Electrical Characteristics

項目	Item	特性	Specification
中心頻率	Center Frequency	2450 ± 25 MI	Hz
頻寬	Bandwidth	>100MHz	
增益	Gain	1 dBi Typical	
電壓駐波比	VSWR	2.0 MAX.	
極化方式	Polarization	線性	Linear
方位角	Azimuth Beam width	全向性	Omni-directional
阻抗	Impedance	50 Ohm	

[※]本天線在應用 PCB 上通過設計匹配電路,將天線工作頻率調整到 2.45GHz 的中心頻率。

五. 回流焊溫度Reflow Soldering Standard Condition

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 5/17

六. 環境測試Environmental Test

測試項目	測試項目 測試條件			
Item		Requirement		
振動	Vibration Resist	在振動頻率為 10~55Hz 振幅為 1.5mm 沿 X,Y,Z 方向各振動 2 小時		
落摔	Drop Shock	在 100CM 高度處按 X,Y,Z 三個面分別自由落下在 木質地板上共 3 次		
焊接耐熱	Solder Heat Proof	能承受經 120~150℃的溫度預熱 120 秒後,在 255 ℃+5℃的焊錫浸 5±0.5 秒。		
結合力	Tensile Strength of Terminal	在產品電極端上或表面上能承受 1 公斤拉力 10±1 秒。		
耐彎曲	Bending Resist Test	將產品接圖焊在1.6 ±0.2mm 的 PCB 中間,由箭頭方向施力:1mm/s,彎曲距離:1.5mm,保持5 ±1 秒,產品金屬無脫落。		
耐濕熱	Moisture Proof	在溫度爲 60±2℃,相對濕度 90~95%的恆溫恆濕機 器中放置 96 小時,在常溫中恢復 1~2 小時。		
高溫	High Temperature Endurance	在溫度爲 85±5℃的恆溫箱中放置 24±2 小時,在常溫中恢復 1~2 小時。		
低溫	Low Temperature Endurance	在溫度爲-40±5℃的恆溫箱中放置 24±2 小時,在常溫中恢復 1~2 小時。		
冷熱衝擊	Temperature Cycle Test	在-25℃中保持 30 分鐘,在+85℃中保持 30 分鐘, 共循環 5 次後在常溫中恢復 1~2 小時。		

基礎條件

項目	Item	條件 Requirement
溫度範圍	Temperature range	25 ± 5
相對濕度範圍	Relative Humidity range	55~75%RH
工作溫度	Operating Temperature range	-40 ~+85
儲存溫度	Storage Temperature range	-40 ~+85

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 6/17

七. 測試報告 Test Report

1. S-PARAMETER

Summary:

This report to account for the measurement setup and result of LTCC Chip antenna.

- (1) The measurement setup includes reflection coefficient, pattern, and gain measurement.
- (2) The measured data for LTCC Chip antenna are presented and analysis.

I. Measurement Coefficient Measurement:

A. Reflection Coefficient Measurement:

- (a) Instrument: Network Analyzer.
- (b) Setup:
 - (1) Calibrate the Network Analyzer by one port calibration using O.S.L. calibration kits.
 - (2) Connect the antenna under test to the Network Analyzer.
 - (3) Measure the S11(reflection coefficient) shown in Fig. 1.
 - (4) Generally, the S11 is less than -10dB to ensure the 90% power into antenna and only less than 10% power back to system.

NETWORK ANALYZER

Fig. 1 A02 LTCC chip antenna measured in Network Analyzer.

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 7/17

II. Test Value:

A. VSWR

Frequency Sample	2.40GHz	2.45GHz	2.50GHz
1	1.5674	1.0470	1.5456
2	1.6036	1.1096	1.5586

SAMPLE-2

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 8/17

B. RETURN LOSS

Frequency Sample	2.40GHz	2.45GHz	2.50GHz
1	-13.080	-33.852	-13.111
2	-12.683	-25.761	-13.219

SAMPLE-1

SAMPLE-2

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 9/17

SAMPLE-1

SAMPLE-2

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 10/17

2. 2D PATTERN

I. Measurement

- (a) **Instruments**: anechoic chamber, network analyzer, standard gain antenna.
- (b) chamber description:
 - (1) The anechoic chamber is a far-field measurement system with size of 3.25M*2.84M*6.4M. The quiet zone region is 44cm*44cm*44cm at frequency range of 2.4GHz in the center of the rotator.

Fig. 2 The interior components of the anechoic.

- (2) Fig. 2. shows the interior components of the anechoic chamber. The antenna standard antenna as probe and antenna under test is 3M. The antenna under test is fixed on a step rotator. We can control the rotating angle for accurate or rough measurement.
- (3) While we measure the radiation patterns by rotating AUT with 360 degrees and repeat again by replacing the AUT with the standard gain antenna under test, we compare both data and using a formula to obtain the

$$G_{AUT} = G_{stand} + P_{AUT} - P_{stand}$$

G_{AUT}: Gain of AUT

G_{stand}: Gain of Standard Gain Antenna

P_{AUT}: Measured Power of AUT

P_{stand}: Measured Power of Standard Gain Antenna

TYPE OF PRODUCT

A02 LTCC Chip Antenna

- **PAGE: 11/17**
- (3) Gain of AUT. The standard gain antenna is a gain horn(SG-430 1.7GHz ~ 2.6GHz).
- (4) The planes defined in the Fig. 4 which we want to measure are H(X-Y), E1(X-Z) and E2(Y-Z) planes. The vertical or horizontal polarization's power is measured by rotating the antenna probe to 0 degree or to 90 degree shown in Fig. 3, respectively. While we combine both vertical and horizontal power, we obtain total power.
- (5) From the total power in three basic planes(H, and E), we can analyze the performance of the antenna is good or not.

(a) Antenna Probe at 0 degree as a vertical polarization.

(b) Antenna Probe at 90 degree as a horizontal polarization.

Fig. 3. The definition of vertical and horizontal polarization.

Fig. 4. The plane definition: H-Plane, E1-Plane and E2-Plane.

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 12/17

II. Test Value:

A. Sample-1

(1) H-Plane

Frequency Gain (dBi)	2.40GHz	2.45GHz	2.50GHz
Peak	-0.21363	0.70693	0.9275
Avg.	-1.661	-0.732	-0.483

Far-field amplitude of A02 LTCC Chip Antenna H-Plane.nsi

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 13/17

(2) E1-Plane

Frequency Gain (dBi)	2.40GHz	2.45GHz	2.50GHz
Peak	-0.07064	0.09436	0.35672
Avg.	-4.492	-4.276	-4.051

Far-field amplitude of A02 LTCC Chip Antenna E1-Plane.nsi

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 14/17

(3) E2-Plane

Frequency Gain (dBi)	2.40GHz	2.45GHz	2.50GHz
Peak	0.46674	0.84435	1.27986
Avg.	-3.956	-3.716	-3.314

Far-field amplitude of A02 LTCC Chip Antenna E2-Plane.nsi

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 15/17

B. Sample-2 (1) H-Plane

Frequency Gain (dBi)	2.40GHz	2.45GHz	2.50GHz
Peak	-0.03555	0.83865	0.99994
Avg.	-1.589	-0.666	-0.451

Far-field amplitude of A02 LTCC Chip Antenna H-Plane.nsi

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 16/17

(2) E1-Plane

Frequency Gain (dBi)	2.40GHz	2.45GHz	2.50GHz
Peak	-0.052	0.1088	0.33895
Avg.	-4.524	-4.297	-4.039

Far-field amplitude of A02 LTCC Chip Antenna E1-Plane.nsi

TYPE OF PRODUCT

A02 LTCC Chip Antenna

PAGE: 17/17

(3) E2-Plane

Frequency Gain (dBi)	2.40GHz	2.45GHz	2.50GHz
Peak	0.40821	0.83895	1.28315
Avg.	-4.013	-3.727	-3.314

Far-field amplitude of A02 LTCC Chip Antenna E2-Plane.nsi

