The User Datagram Protocol

This lesson gives an introduction to one of the protocols at the heart of the transport layer: UDP!

We'll cover the following

- What is UDP?
- How It Works
- Structure of A UDP Datagram
 - Header
 - Data
- Quick Quiz!

What is UDP?

UDP, or **User Datagram Protocol**, is a transport layer protocol that works over the network layer's famous **Internet protocol** (which we'll look at indepth in the next chapter). RFC 768 is the official RFC for UDP.

How It Works

UDP does not involve any initial handshaking like TCP does, and is hence called a **connectionless** protocol. This means that there are no established 'connections' between hosts.

UDP prepends the **source and destination ports** to messages from the application layer and hands them off to the network layer. The Internet Protocol of the network layer is a **best-effort** attempt to deliver the message. This means that the message-

- 1. May or **may not get delivered**.
- 2. May get delivered with changes in it.
- 3. May get **delivered out of order**.

UDP only adds the **absolute bare minimum** functionality over the network layer. So it...

- Does not ensure that messages get sent.
- It does check, however, if a message got 'corrupted' yet does not take any measures to correct the errors by default.

Structure of A UDP Datagram

Header

UDP prepends **four** 2-byte header fields to the data it receives from the application layer. So in total, a UDP header is **8 bytes** long. The fields are:

- 1. **Source** port number
- 2. **Destination** port number
- 3. Length of the datagram (header and data in bytes)
- 4. **Checksum** to detect if errors have been introduced into the message. We'll study this in detail in the next lesson!

Data

Other than the headers, a UDP datagram contains a body of data which can be up to **65,527** bytes long. Since the maximum possible length of a UDP datagram is 65,535 bytes which includes the 8-byte header, we are left with 65,527 bytes available. The nature of the data depends on the overlying application. So if the application is querying a DNS server, it would contain bytes of a zone file.

Here's what a UDP message looks like:

Quick Quiz!

1	An application layer hands down 10 bytes to be sent in datagram. The value in the length field in the datagram.	
0	A) _{0x000} A	
	B) _{0x0012}	
0	C) _{0x0018}	
0	D) None of the above	
COMPL	1 of 4	< >

Let's go on to look at how UDP does error detection, why UDP is used, and what well-known protocols are built on top of it in the next lesson!