16.2: Double Integrals over General Regions

In this section, we consider double integrals over non-rectangular regions. For instance, my domain for x and y can be constrained where $a \le x \le b$ and $g(x) \le y \le h(x)$:

Theorem 16.2: Double Integrals over Nonrectangular Regions

Let R be a region bounded below and above by the graphs of the continuous functions y = g(x) and y = h(x), respectively, and by the lines x = a and x = b. If f is continuous on R, then

$$\iint\limits_{R} f(x,y) dA = \int_{a}^{b} \int_{g(x)}^{h(x)} f(x,y) dy dx.$$

Let R be a region bounded on the left and right by the graphs of the continuous functions x = g(y) and x = h(y), respectively, and the lines y = c and y = d. If f is continuous on R, then

$$\iint\limits_R f(x,y) \, dA = \int_c^d \int_{g(y)}^{h(y)} f(x,y) \, dx \, dy.$$

Spring 2021

Example. Consider the surface generated by the function f(x,y) = 3xy. Find the volume of the solid generated by f(x,y) over the region bounded by $2x^2$ and $3-x^2$.

Example. Find the area under $f(x,y) = \frac{1}{x} + 1$ over the region formed by the lines x = 2, y = 1 + x, and y = 5 - x.

Example. Find the volume of the tetrahedron in the first octant bounded by the plane z = c - ax - by and the coordinate planes (x = 0, y = 0, and z = 0). Assume a, b, and c are positive real numbers.

Example. For the following problems, reverse the order of integration

$$\bullet \int_0^2 \int_0^{2x} f(x,y) \, dy \, dx$$

$$\bullet \int_0^1 \int_{x^3}^{\sqrt{x}} f(x,y) \, dy \, dx$$

$$\bullet \int_{-3}^{4} \int_{2x^2}^{2x+24} f(x,y) \, dy \, dx$$

Example. Find the volume between f(x,y) = 5 - y and $g(x,y) = 1 + x^2$ over the region $R = \{(x,y) : 0 \le y \le 4 - x^2, -2 \le x \le 2\}.$

Areas of Regions by Double Integrals

Let R be a region in the xy-plane. Then

area of
$$R = \iint_R dA$$
.

Example. Find the area of the region R bounded by $y = x^2$, y = 6 - x, and y = 6 + 5x where $x \ge 0$.