FINAL PROJECT REPORT

14TH JULY, 2023

DESIGN AND IMPLEMENTATION 8 - BIT ARITHMETIC LOGIC UNIT USING CMOS

USING CADENCE VIRTUOSO

Prepared By:

21BEC1662 - RAGHUL G

21BEC1692 - OVISHREE S

21BEC1655 - NIRANJANA D

21BEC1625 - RAGUL D

This project contain an Arithmetic & Logic Unit (ALU) using logic gates.

This ALU will perform 5 different operations:

- LOGIC NOT
- LOGIC AND
- LOGIC OR
- ARITHMETIC ADDITION
- ARITHMETIC SUBTRACTION

INSTRUCTION TABLE OF ALU

FO	F1	F2	OPERATIONS
0	0	0	NOT
0	0	1	AND
0	1	0	OR
0	1	1	FULL ADDER
1	0	0	FULL SUBTRACTOR

1 BIT ALU CIRCUIT

1 BIT ALU SYMBOL

8 BIT ALU SYMBOL

DECODER CIRCUIT

DECODER SYMBOL

NOT GATE CIRCUIT

NOT GATE SYMBOL

AND GATE CIRCUIT

AND GATE SYMBOL

OR GATE CIRCUIT

OR GATE SYMBOL

FULL ADDER CIRCUIT

FULL ADDER SYMBOL

FULL SUBTRACTOR CIRCUIT

FULL SUBTRACTOR SYMBOL

1 BIT ALU CIRCUIT

1 BIT ALU SYMBOL

8 - BIT ALU

RESULT

COMBINATION 1

INPUTS		ALU OPERATIONS					
AO	ВО	NOT	AND	OR	FA	FS	
0	0	1	0	0	0	0	
1	1	0	1	1	0	0	
1	0	0	0	1	0	1	
0	1	1	0	1	0	1	
1	0	0	0	1	0	0	
0	1	1	0	1	0	1	
0	0	1	0	0	1	1	
1	1	0	1	1	0	1	

NOT

AND

OR

FULL ADDER

FULL SUBTRACTOR

COMBINATION 2

INPUTS		ALU OPERATIONS					
AO	ВО		NOT	AND	OR	FA	FS
1	0		0	0	1	1	1
0	1		1	0	1	1	1
0	0		1	0	0	0	1
1	1		0	1	1	0	1
0	0		1	0	0	1	1
1	1		0	1	1	0	1
1	0		0	0	1	0	0
0	1		1	0	1	0	1

NOT

AND

OR

FULL ADDER

FULL SUBTRACTOR

RESULT:

We have implemented 8 Bit ALU which contains logical NOT, AND, OR and Arithmetic ADDER and SUBTRACTOR using cadence.

We can infer that both Theoretical and Graphical values are same.

