BÀI TẬP CHƯƠNG 2: BỘ CHỈNH LƯU

Lưu ý: Mạch tương đương của bộ chỉnh lưu (1 pha, 3 pha) và tải (R+L+E) với điện áp trung bình ngõ ra U_d và dòng trung bình ngõ ra I_d như hình 1. Trong mạch này, diode nhằm mục đích lưu ý là dòng điện I_d chỉ chạy theo một chiều từ nguồn \rightarrow tải. Mạch này có thể áp dụng để giải các bài toán về bộ chỉnh lưu ở chế độ xác lập.

Từ đây, suy ra phương trình mạch: $U_d = RI_d + E$

Trong trường hợp mạch làm việc ở chế độ dòng liên tục, U_d là một hàm theo góc kích α , mà không phụ thuộc vào giá trị của R, L hoặc E (xem lại các công thức phần lý thuyết).

Chỉnh lưu 1 pha

Bài 1:

1. Trị trung bình điện áp ngõ ra (xem dạng u_d trên hình 2):

$$U_d = \frac{1}{\pi} \int_{\alpha}^{\pi} \sqrt{2}U \sin(\omega t) d(\omega t) = \frac{\sqrt{2}}{\pi} U(1 + \cos \alpha) = 0.45U(1 + \cos \alpha),$$

trong đó: U: trị hiệu dụng áp nguồn xoay chiều cung cấp cho cầu chỉnh lưu.

Sinh viên tự vẽ quan hệ $U_{d}\left(\alpha\right)$, lưu ý là chỉ vẽ với α trong khoảng $0\rightarrow\pi$.

2. Dạng sóng u_d, i_d, và i_s như hình 2.

Lưu ý là trường hợp tải thuần trở như bài này, giá trị tức thời của dòng ngõ ra sẽ là:

$$i_d = \frac{u_d}{R}$$

Do đó, dạng dòng ngõ ra i_d sẽ giống như dạng áp ngõ ra $u_d \rightarrow Khi \ u_d = 0 \ thì \ i_d = 0 \rightarrow SCR tắt <math>\rightarrow$ điện áp ngõ ra u_d và dòng ngõ ra i_d sẽ bằng zero khi $u_s < 0$.

3. Trị trung bình dòng ngõ ra của bộ chỉnh lưu:

$$I_d = \frac{U_d}{R}$$

Trị hiệu dụng dòng ngõ ra bộ chỉnh lưu:

$$I_{d,\text{rms}} = \sqrt{\frac{1}{\pi}} \int_{\alpha}^{\pi} i_d^2 d(\omega t) = \sqrt{\frac{1}{\pi}} \int_{\alpha}^{\pi} \left(\frac{\sqrt{2} U \sin(\omega t)}{R} \right)^2 d(\omega t) = \frac{U}{R} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin(2\alpha)}{2\pi}}$$
; α : góc kích (rad)

Trị hiệu dụng dòng ngõ vào bộ chỉnh lưu:

$$I_{s,\text{rms}} = I_{d,\text{rms}}$$

(S/v tự chứng minh, lưu ý là $i_s = i_d$ khi T1 và T2 dẫn, và $i_s = -i_d$ khi T3 và T4 dẫn).

Công suất P tại ngõ vào bộ chỉnh lưu = công suất P_d tại ngõ ra của bộ chỉnh lưu (bỏ qua tổn hao trên cầu chỉnh lưu). Ngoài ra, do tải là điện trở thuần nên:

$$P = P_d = RI_{d,rms}^2$$

Công suất biểu kiến tại ngõ vào:

$$S = U_{s,rms} \cdot I_{s,rms} = U \cdot I_{d,rms}$$

Từ đó suy ra hệ số công suất tại ngõ vào bộ chỉnh lưu đã cho trong bài là:

$$HSCS = \frac{P}{S} = \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin(2\alpha)}{2\pi}} = 0.707 \text{ (v\'oi } \alpha = \frac{\pi}{2} \text{)}$$

Hình 2

Bài 2:

1. Theo giả thiết của đề bài, dòng tải i_d là phẳng (nghĩa là mạch hoạt động ở chế độ dòng liên tục) nên ta có:

$$U_d = \frac{2\sqrt{2}}{\pi} U \cos \alpha$$

(SV xem lại phần chứng minh công thức này trong lý thuyết)

Sinh viên tự vẽ quan hệ $U_d(\alpha)$, lưu ý là chỉ vẽ với α trong khoảng $0 \rightarrow \pi$.

2. Dạng sóng u_d , i_d , u_{T1} và i_s như hình 3.

Với các dạng sóng u_d , i_d , và i_s , có thể xem lại phần lý thuyết.

Với dạng sóng u_{T1} , lưu ý là:

- Khi T1 dẫn (T3 tắt): $u_{T1} = 0$
- Khi T3 dẫn (T1 tắt): $u_{T1} = u_s$

Hình 3

3. Vì i_d phẳng nên trị trung bình của dòng tải i_d = trị hiệu dụng của i_d (SV tự chứng minh điều này)

$$I_{d,rms} = I_d = \frac{U_d - E}{R} = \frac{99 - 75}{2} = 12A$$

Công suất tại ngõ vào bộ chỉnh lưu P = công suất tại ngõ ra P_d (bỏ qua tổn hao trên cầu chỉnh lưu). Ngoài ra, do dòng i_d là phẳng nên:

$$P = P_d = U_d I_d$$

Công suất biểu kiến tại ngõ vào:

$$S = U_{s.rms} \cdot I_{s.rms} = U \cdot I_d$$
 (SV tự chứng minh $I_{s,rms} = I_d$)

Từ các biểu thức trên, suy ra hệ số công suất ngõ vào bộ chỉnh lưu:

$$HSCS = \frac{P}{S} = \frac{2\sqrt{2}}{\pi} \cos \alpha = 0.45 \text{ (v\'oi } \alpha = \frac{\pi}{3} \text{)}$$

Bộ chỉnh lưu lúc này hoạt động ở chế độ chỉnh lưu (do công suất ra $P_d = U_d I_d > 0$ và góc kích $\alpha < \pi/2$), do đó chiều truyền công suất là: nguồn \rightarrow tải.

4. Để $I_d = 10A$ khi E = -75V, có thể tính ra được:

$$U_d = RI_d + E = -55V$$

Từ đó suy ra: $\cos \alpha = -0.152$

Góc kích cần thiết: $\alpha = 103^{\circ}$

Bộ chỉnh lưu lúc này hoạt động ở chế độ nghịch lưu (do công suất ra $P_d = U_d I_d < 0$ và góc kích $\alpha > \pi/2$), do đó chiều truyền công suất là: tải \rightarrow nguồn.

Dạng sóng u_d , i_d , u_{T1} và i_s tương tự như hình 2 nhưng với góc kích $\alpha = 103^{\circ}$ (SV tự vẽ)

Bài 4:

- 1. Dạng sóng u_d, i_d, và i_s **giống như hình 2, câu 1**. Như vậy, với tải thuần trở, dạng sóng của cầu chỉnh lưu điều khiển toàn phần và của cầu chỉnh lưu điều khiển bán phần tương tự nhau.
- 2. Vì dạng sóng dòng và áp ngõ ra của bộ chỉnh lưu lúc này giống như bài 1, các công thức tính trị trung bình và trị hiệu dụng dòng tải i_d, và hệ số công suất ngõ vào của cầu chỉnh lưu cũng **giống như bài 1**.

SV tự tính toán các kết quả cuối cùng dựa trên thông số đã cho của cầu chỉnh lưu.

Bài 5:

1. Dạng sóng u_d , i_d , u_{T1} và i_s như hình 6.

Với các dạng sóng u_d, i_d, và i_s, có thể xem lại phần lý thuyết.

Với dạng sóng u_{T1} , lưu ý là:

- Khi T1 dẫn (T3 tắt): $u_{T1} = 0$
- Khi T3 dẫn (T1 tắt): $u_{T1} = u_s$
- 2. Theo giả thiết của đề bài, dòng tải i_d là phẳng (nghĩa là mạch hoạt động ở chế độ dòng liên tục) nên ta có:

$$U_d = \frac{\sqrt{2}}{\pi} U(1 + \cos \alpha) = 99V \text{ (v\'oi } \alpha = \frac{\pi}{2} \text{)}$$

SV tự vẽ mạch tương đương của bài này, từ đó suy ra:

$$U_d = RI_d$$

Hình 4

Trị trung bình dòng ngõ ra: $I_d = \frac{U_d}{R} = 49.5A$

Từ đồ thị có thể suy ra trị hiệu dụng của dòng ngõ vào $I_{s,\,rms}$ như sau:

$$I_{s,\text{rms}} = \sqrt{\frac{1}{2\pi}} \int_{\alpha}^{\pi} i_s^2 d(\omega t) = \sqrt{\frac{1}{2\pi}} \left[\int_{\alpha}^{\pi} I_d^2 d(\omega t) + \int_{\pi+\alpha}^{2\pi} (-I_d)^2 d(\omega t) + \right] = I_d \sqrt{\frac{\pi-\alpha}{\pi}} ; \alpha: \text{g\'oc k\'ich (rad)}$$

Công suất tại ngõ vào bộ chỉnh lưu P = công suất tại ngõ ra P_d (bỏ qua tổn hao trên cầu chỉnh lưu). Vì dòng i_d là phẳng nên công suất tại ngõ ra có thể tính như sau:

$$P = P_d = U_d I_d$$

Công suất biểu kiến tại ngõ vào bộ chỉnh lưu:

$$S = U_{s,rms} \cdot I_{s,rms} = U \cdot I_d \sqrt{\frac{\pi - \alpha}{\pi}}$$

Từ đó suy ra hệ số công suất tại ngõ vào bộ chỉnh lưu đã cho trong bài là:

$$HSCS = \frac{P}{S} = \frac{\sqrt{2}}{\pi} \sqrt{\frac{\pi}{\pi - \alpha}} (1 + \cos \alpha) = 0.636 \text{ (v\'oi } \alpha = \frac{\pi}{2} \text{)}$$

Chỉnh lưu 3 pha

Bài 6:

1. Giả thiết tải có $R=10\Omega,\,L=0$ (tải thuần trở). Với góc kích $\alpha=\pi/3$, các dạng sóng $u_d,\,i_d,\,u_{T1}$ như hình 5 dưới đây

Hình 5

Lưu ý là dạng sóng u_{T1} trên T1 phụ thuộc vào trạng thái đóng ngắt của các SCR nối chung cực cathode với SCR này:

- Khi T1 dẫn (T3, T5 tắt): $u_{T1} = 0$
- Khi T3 dẫn (T1, T5 tắt): $u_{T1} = u_{an} u_{bn} = u_{ab}$
- Khi T5 dẫn (T1, T3 tắt): $u_{T1} = u_{an} u_{cn} = u_{ac}$
- Khi các SCR đều tắt: $u_{T1} = u_{an}$ (do lúc này $u_d = 0$ vì id = 0)

Sinh viên tự suy ra dạng sóng dòng ia (đây cũng là dòng qua SCR T1)

2. Giả thiết tải có $R=10\Omega$, L đủ lớn để dòng i_d có thể xem là phẳng. Với góc kích $\alpha=\pi/3$, các dạng sóng u_d và u_{T1} như hình 6 dưới đây. Các dạng sóng dòng ngõ ra (i_d) và dòng ngõ vào trên pha a (i_a) sinh viên tự xem lại slide tương ứng trong phần lý thuyết.

Hình 6

Lưu ý là dạng sóng u_{T1} trên T1 phụ thuộc vào trạng thái đóng ngắt của các SCR nối chung cực cathode với SCR này:

- Khi T1 dẫn (T3, T5 tắt): $u_{T1} = 0$

- Khi T3 dẫn (T1, T5 tắt): $u_{T1} = u_{an} - u_{bn} = u_{ab}$

- Khi T5 dẫn (T1, T3 tắt): $u_{T1} = u_{an} - u_{cn} = u_{ac}$

Bài 8:

1. Theo giả thiết của đề bài, dòng tải i_d là phẳng (nghĩa là mạch hoạt động ở chế độ dòng liên tục) nên ta có:

$$U_d = \frac{3\sqrt{6}}{\pi} U \cos \alpha = 2.34 U \cos \alpha$$

Sinh viên tự vẽ quan hệ giữa $U_d(\alpha)$, lưu ý là chỉ vẽ với α trong khoảng $0 \rightarrow \pi$.

2. Giả thiết tải có L đủ lớn để dòng i_d có thể xem là phẳng. Với góc kích $\alpha = \pi/3$, các dạng sóng u_d , i_d , dòng ngõ vào i_a của pha a và điện áp u_{T1} trên T1, như hình 7 dưới đây.

Lưu ý là dạng sóng u_{T1} trên T1 phụ thuộc vào trạng thái đóng ngắt của các SCR nối chung cực cathode với SCR này:

- Khi T1 dẫn (T3, T5 tắt): $u_{T1} = 0$

- Khi T3 dẫn (T1, T5 tắt): $u_{T1} = u_{an} - u_{bn} = u_{ab}$

- Khi T5 dẫn (T1, T3 tắt): $u_{T1} = u_{an} - u_{cn} = u_{ac}$

Dòng ngõ vào i_a phụ thuộc vào trạng thái hoạt động của T1 và T4:

- Khi T1 dẫn và T4 tắt: $i_a = i_d$

- Khi T4 dẫn và T1 tắt: $i_a = -i_d$

- Khi T1 và T4 tắt: $i_a = 0$

Hình 7

3. Theo giả thiết của đề bài, dòng tải i_d là phẳng (nghĩa là mạch hoạt động ở chế độ dòng liên tục) nên ta có:

$$U_d = \frac{3\sqrt{6}}{\pi}U\cos\alpha = 257.4V \text{ (v\'oi } \alpha = \frac{\pi}{3} \text{)}$$

SV tự vẽ mạch tương đương của bài này, từ đó suy ra:

$$U_d = RI_d + E$$

Dòng ngỗ ra trung bình:
$$I_d = \frac{U_d - E}{R} = \frac{257.4 - 200}{2} = 28.7A$$

Vì i_d phẳng nên trị trung bình của dòng tải i_d = trị hiệu dụng của i_d :

$$\boldsymbol{I}_{d,rms} = \boldsymbol{I}_{d}$$

Từ đồ thị có thể suy ra trị hiệu dụng của dòng ngõ vào $I_{s, \, \rm rms}$ như sau (lưu ý là ở bán kỳ dương, $i_s = I_d$ trong khoảng $2\pi/3$):

$$I_{s,\text{rms}} = \sqrt{\frac{1}{2\pi}} \int_{\alpha}^{\pi} i_s^2 d(\omega t) = \sqrt{\frac{1}{2\pi}} \left[\int_{0}^{2\pi/3} I_d^2 d(\omega t) + \int_{\pi}^{\pi+2\pi/3} (-I_d)^2 d(\omega t) + \right] = I_d \sqrt{\frac{2}{3}}$$

Công suất tại ngõ vào bộ chỉnh lưu P = công suất tại ngõ ra P_d (bỏ qua tổn hao trên cầu chỉnh lưu). Vì dòng i_d là phẳng nên công suất ngõ ra có thể tính theo công thức:

$$P = P_d = U_d I_d$$

Công suất biểu kiến tại ngõ vào:

$$S = 3U_{s,rms} \cdot I_{s,rms} = 3U \cdot I_d \sqrt{\frac{2}{3}}$$

Từ đó suy ra hệ số công suất tại ngõ vào bộ chỉnh lưu đã cho trong bài là:

$$HSCS = \frac{P}{S} = \frac{3\sqrt{2}}{\pi} \cos \alpha = 0.68 \text{ (v\'oi } \alpha = \frac{\pi}{3} \text{)}$$

Bộ chỉnh lưu lúc này hoạt động ở chế độ chỉnh lưu (do công suất ra $P_d = U_d I_d > 0$ và góc kích $\alpha < \pi/2$), do đó chiều truyền công suất là: nguồn \rightarrow tải.

4. Để $I_d = 20A$ khi E = -200V, có thể tính ra được:

$$U_d = RI_d + E = 2 \times 20 - 200 = -160V$$

Từ đó suy ra:
$$\cos \alpha = \frac{U_d}{\frac{3\sqrt{6}}{\pi}U} = \frac{U_d}{2.34U} = \frac{-160}{2.34 \times 220} = -0.31$$

Góc kích cần thiết: $\alpha = 108^{\circ}$

Bộ chỉnh lưu lúc này hoạt động ở chế độ nghịch lưu (do công suất ra $P_d = U_d I_d < 0$ và góc kích $\alpha > \pi/2$), do đó chiều truyền công suất là: tải \rightarrow nguồn.

Bài 9:

1. Vẽ dạng sóng: u_d , i_d , dòng qua diode D4, dòng qua thyristor T1, dòng ngõ vào i_a và điện áp u_{T1} với góc kích $\alpha = 30^\circ$.

Các dạng sóng như hình 8 dưới đây.

Về dạng sóng u_d, xin xem chi tiết trong các slide bài giảng tương ứng.

Lưu ý là dạng sóng u_{T1} trên T1 phụ thuộc vào trạng thái đóng ngắt của các SCR nối chung cực cathode với SCR này:

- Khi T1 dẫn (T3, T5 tắt): $u_{T1} = 0$
- Khi T3 dẫn (T1, T5 tắt): $u_{T1} = u_{an} u_{bn} = u_{ab}$
- Khi T5 dẫn (T1, T3 tắt): $u_{T1} = u_{an} u_{cn} = u_{ac}$

Dòng ngõ vào i_a phụ thuộc vào trạng thái hoạt động của T1 và D4:

- Khi T1 dẫn: $i_a = i_d$
- Khi D4 dẫn: $i_a = -i_d$

- Khi T1 và D4 cùng tắt, hoặc T1 và D4 cùng dẫn: $i_a = 0$

Hình 8 ($\alpha = 30^{\circ}$)

2. Vẽ dạng sóng: u_d , i_d , dòng qua diode D4, dòng qua thyristor T1, dòng ngõ vào i_a và điện áp u_{T1} với góc kích $\alpha = 90^{\circ}$.

Các dạng sóng như hình 9 dưới đây.

Hình 9 ($\alpha = 90^{\circ}$)