Homework 01-25-2021

Jeffrey Liang ZL2974

Problem 1

Develop two Monte Carlo methods for the estimation of $\theta = \int_0^1 e^{x^2} dx$ and implement in ${\bf R}$.

Answer: your answer starts here...

```
Method 1
```

Introduce Let $Y \sim U(0,1)$

$$\theta = \int_0^1 e^{y^2} * 1 dx = E[e^{y^2}]$$

1.46 with absolute error < 1.6e-14

Method 2

```
plot.function(gfun,0,1)
```


looking at the function, which is similar to a exponetial funciton, thus introducing $f(x) = e^x$ as control variate, we have:

$$\theta = \int_0^1 \beta * e^x + (e^{x^2} - \beta * e^x) dx = \beta * e^x|_0^1 + E[(e^{x^2} - \beta * e^x)]$$

\$theta

```
## [1] 1.46
##
## $theta2
## [1] 1.45
##
## $var_theta
## [1] 0.0124
```

Problem 2

Show that in estimating $\theta = E\{\sqrt{1-U^2}\}\$ it is better to use U^2 rather than U as the control variate, where $U \sim U(0,1)$. To do this, use simulation to approximate the necessary covariances. In addition, implement your algorithms in ${\bf R}$.

Answer: your answer starts here...

Objective:

We are interest in estimating the performance of U^2 and U as a control variate to estimate $\theta = E\{\sqrt{1-U^2}\}\$, which $U \sim U(0,1)$,

Data Genearation Mechanisms:

We generate data from $U \sim U(0,1)$ with sample size(n) from 10^1 to 10^5

Estimate and method

 $\theta = E\{\sqrt{1 - U^2}\}$ will be estimate by:

•
$$\theta_0 = \frac{1}{n} \sum_{i=1}^n \sqrt{1 - U^2}$$

•
$$\theta_1 = \int \beta_1 u f_1(u) du + \frac{1}{n} \sum_{i=1}^n (\sqrt{1 - U^2} - \beta_1 U)$$

•
$$\theta_1 = \int \beta_2 u^2 f_2(u) du + \frac{1}{n} \sum_{i=1}^n (\sqrt{1 - U^2} - \beta_2 U^2)$$

where β is estimate by $\frac{-cov(\sqrt{1-U^2},g_i(U))}{var(g_i(U))}$

each estimate is simulated 1000 times

Performance

Variance of the estimate and the mean sum of square of θ_i and θ_0 will be estimate as well as their efficiency $\frac{var(theta_0)-cov(theta_0,theta_i)}{var(theta_0)}$

```
gfun = function(x)
  return(sqrt(1 - x^2))
f1fun = function(x)
  return(x ^ 2)
f2fun = function(x)
  return(x)
simulating =
  function(sample_size = 100, simulation = 1000){
    set.seed(123123)
    result = tibble()
    for (i in 1:simulation) {
      y = runif(sample_size, 0, 1)
      gx = gfun(y)
      f1x = f1fun(y)
      b1 = lm(gx - f1x) coef[2]
      f2x = f2fun(y)
      b2 = lm(gx - f2x) scoef[2]
      theta_1 =
        b1 * (1 / 3) + gx - b1 * f1x
      theta_2 =
        b2 * (1 / 2) + gx - b2 * f2x
      result = result %>%
        rbind(
          tibble(
            sample_size = rep(sample_size, 3),
            model = c("gx", "U^2", "U"),
            theta = c(mean(gx), mean(theta_1), mean(theta_2)),
            variance = c(var(gx), var(theta_1), var(theta_2)),
            MSE = list(gx, theta_1, theta_2) %>% lapply(function(x)
              mean(x - mean(gx)) ^ 2) %>% as.numeric(),
            effic = c(0, (var(gx) - var(theta_1)), (var(gx) - var(theta_2))) / var(gx)
          )
        )
    }
    result = result %>%
      group_by(model,sample_size) %>%
      summarise(
            variance = var(theta),
            theta = mean(theta),
```

model	$sample_size$	variance	theta	MSE	effic
gx	1e+01	0.005171	0.786	0.000000	0.000
U	1e+01	0.001063	0.794	0.004481	0.890
U^2	1e+01	0.000213	0.789	0.004687	0.982
gx	1e+02	0.000540	0.786	0.000000	0.000
U	1e+02	0.000079	0.787	0.000471	0.851
U^2	1e+02	0.000017	0.786	0.000525	0.969
gx	1e+03	0.000052	0.786	0.000000	0.000
U	1e+03	0.000007	0.786	0.000044	0.849
U^2	1e+03	0.000001	0.785	0.000050	0.967
gx	1e+04	0.000005	0.785	0.000000	0.000
U	1e+04	0.000001	0.785	0.000004	0.849
U^2	1e+04	0.000000	0.785	0.000005	0.967
gx	1e+05	0.000001	0.785	0.000000	0.000
U	1e+05	0.000000	0.785	0.000000	0.849
U^2	1e+05	0.000000	0.785	0.000000	0.967

```
p1 = result %>%
    ggplot(aes(
    x = sample_size,
    y = MSE,
    color = as.factor(model),
    group = as.factor(model)
)) +
    geom_path()+
    scale_x_continuous(trans = "log")+
    scale_y_continuous(trans = "log")
```

```
ggplot(aes(
    x = sample_size,
    y = effic,
    color = as.factor(model),
    group = as.factor(model)
  )) +
  geom_path()+
  scale_x_continuous(trans = "log")
p3 = result %>%
  ggplot(aes(
    x = sample_size,
    y = variance,
    color = as.factor(model),
    group = as.factor(model)
  )) +
  geom_path()+
  scale_x_continuous(trans = "log")
(p1+p2)/p3 + plot_layout(guides = "collect")
```


The mean square error of U^2 is similar to U, but the result shows that U^2 has higher efficiency than U and a lower variance of simulation estimation, the plot shows that, $1 - U^2$ is more resemble to the original

function.

```
plot.function(gfun,0,1)
plot.function(function(x) 1-f1fun(x),0,1,add=T,col = "red")
plot.function(function(x) 1-f2fun(x),0,1,add=T,col = "blue")
```


Problem 3

Obtain a Monte Carlo estimate of

$$\int_{1}^{\infty} \frac{x^2}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

by importance sampling and evaluate its variance. Write a ${f R}$ function to implement your procedure.

Answer: your answer starts here...

From wolfarm/alpha we know that the integral integrate to 0.40.

Method 1

$$\theta = \int \frac{\frac{x^2}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} * (I > 1) + 0 * (I <= 0)}{Gamma(1, 1/2)} * Gamma(1, 1/2) dx$$
 (1)

```
set.seed(123123)
result_1 = tibble()
for (i in 1:1000) {
  y = rgamma(1000, 1, 1 / 2)
  gfun = function(x)
    return(x^2 / sqrt(2 * pi) * exp(-x^2 / 2) * (x > 1))
  gx = gfun(y)
  y = \operatorname{dgamma}(y, 1, 1 / 2)
  theta = mean(gx / y)
  result_1 = result_1 %>%
    rbind(tibble(
      theta = theta
}
result_1 %>%
  summarise(variance = var(theta),
            theta = mean(theta)) %>%
  knitr::kable(digits = 6)
```

variance	theta
0.000243	0.401

Method 2

We first us change of variables, where we take x = tan(y), s.t

$$\theta = \int_{1}^{\infty} \frac{x^{2}}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= \int_{\pi/4}^{\pi/2} \frac{\tan(y)^{2}}{\sqrt{2\pi}} * e^{-\frac{\tan(y)^{2}}{2}} \frac{1}{\cos(y)^{2}} dy$$

$$= \int_{1}^{\infty} \frac{x^{2}}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= \int_{\frac{\pi/4^{\pi/2}}{\sqrt{2\pi}}} \frac{\tan(y)^{2}}{\sqrt{2\pi}} e^{-\frac{\tan(y)^{2}}{2}} \frac{1}{\cos(y)^{2}} * \frac{1}{(\pi/2 - \pi/4)}} dy$$

```
set.seed(123123)
result_2 = tibble()
for (i in 1:1000){
  y = runif(1000, pi / 4, pi / 2)
  yfun =
   function(x) {
     return((\tan(x)^2 + \exp(-\tan(x)^2 - 2/2))) / ((\sec(x + pi) + \cos(x)^2))
 gx = yfun(y)
  yx = 1 / (pi / 2 - pi / 4)
  theta = mean(gx / yx)
  theta
  result_2 = result_2 %>%
   rbind(tibble(theta = theta))
result_2 %>%
  summarise(variance = var(theta),
            theta = mean(theta)) %>%
  knitr::kable(digits = 6)
```

 $\frac{variance}{0.000112} \quad \frac{theta}{0.401}$

Method 3

 $\int_{1}^{\infty} x^2 * \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$

if we use $g(x) = x^2 * I(x > 1) + 0 * I(x \le 0)$ and introduce standard normal as p(x), the function becomes:

$$\int_{1}^{\infty} \frac{x^{2} * \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx = E[x^{2} * I(x > 1)]$$

,

```
set.seed(123123)

result_3 = tibble()

for (i in 1:1000) {
```

variance	theta
0.00125	0.4