Math 7240, Linear Algebraic Groups over Fields, Fall 2025 Homework

Instructor: Danny Krashen

from lecture 1

1. Let X be a k-space (that is, a functor from commutative k-algebras to sets). A field point of X is an element of X(L) where L is a field extension of k. If $x \in X(L)$ and $y \in X(E)$ are field valued points of X, we say that $x \sim y$ if there exists a field extension M/k and morphisms of field extensions $\phi : E \to M$, $\psi : L \to M$ such that $X(\psi)(x) = X(\phi)(y)$ (in class we wrote this as $x_M = y_M$).

Show that if $X = \operatorname{Spec} A$, then the equivalence classes of field valued points of X are in bijection with the prime ideals of A.

2. Recall that if X is a k-space which is of the form $X(R) = \operatorname{Hom}_{k-alg}(A, R)$ for some k-algebra A (i.e. X is a representable functor), we say that A is the coordinate ring of X and write A = k[X]. We also say in this case that X is the spectrum of A and write $X = \operatorname{Spec} A$. If X has this form, we say that X is an affine k-scheme.

Show that Spec and $k[\]$ defines an equivalence of categories between the category of affine k-schemes (that is, the full subcategory of the category of k-spaces consisting of affine k-schemes) and the opposite of the category of k-algebras.

note: you should prove this "from scratch," and not simply quote theorems from category theory!

- 3. (possibly challenging)
 - (a) Show that if A, B are k-algebras, then $A \times B$ is the categorical product of A and B in the category of rings and $\operatorname{Spec}(A \times B)$ is the categorical coproduct of $\operatorname{Spec} A$ and $\operatorname{Spec} B$ in the category of k-sheaves¹.
 - (b) On the other hand, show that if $A_{\lambda}, \lambda \in \Lambda$ is a collection of nonzero k-algebras, then $\times_{\lambda \in \Lambda} A_{\lambda}$ is the categorical product of the A_{λ} 's in the category of rings, but if Λ is infinite, $\operatorname{Spec}(\times_{\lambda \in \Lambda} A_{\lambda})$ is not the categorical coproduct of the spaces $\operatorname{Spec} A_{\lambda}$ in the category of k-sheaves.

¹note – this was incorrectly writen as spaces previously!

from lecture 2

4. Suppose $X = Z(f_1, \ldots, f_s)$ with $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$ and $Y = Z(g_1, \ldots, g_t)$ with $g_1, \ldots, g_t \in k[y_1, \ldots, y_m]$ are finite type affine k-schemes. We think of these as sitting inside the affine spaces $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$ where \mathbb{A}^n has coordinate functions given by the x_i 's and \mathbb{A}^m has coordinate functions given by the y_i 's.

A morphism of affine schemes from X to Y is a collection of polynomials $\phi = (\phi_1, \dots, \phi_m)$ with $\phi_i \in k[x_1, \dots, x_n]$ (which we can think of as polynomial functions from \mathbb{A}^n to \mathbb{A}^m), such that whenever we have an R-point of X, that is, $a = (a_1, \dots, a_n) \in R^n$ such that $f_i(a) = 0$ for all i, we have $\phi(a) = (\phi_1(a), \phi_2(a), \dots, \phi_m(a)) \in R^m$ is an R-point of Y.

Show that morphisms of affine schemes $X \to Y$ are in bijection with natural transformations of functors from X to Y (considered as k-spaces).

- 5. Show that if the coordinate rings of X and Y are domains in the prior problem, if $\phi = (\phi_1, \ldots, \phi_m)$ with $\phi_i \in k[x_1, \ldots, x_n]$, then ϕ is a morphism from X to Y as affine schemes if and only if for every field extension L/k, we have an L-point of X, $a = (a_1, \ldots, a_n) \in L^n$ then $\phi(a) = (\phi_1(a), \phi_2(a), \ldots, \phi_m(a)) \in L^m$ is an L-point of Y.
- 6. (challenging) In the previous problem, show that instead of considering all field extensions L/k, it suffices to consider any single field extension L/k with L algebraically closed!

lecture 3

- 7. Consider the following functors from k-algebras to sets defined by
 - 1. $F: R \mapsto R[[t]]$
 - 2. $G: R \mapsto R((t)) = \{\sum_{i=d}^{\infty} a_i x^i \mid d \in \mathbb{Z}, a_i \in R\}$
 - 3. $H: R \mapsto R[[t]]^*$
 - 4. $K: R \mapsto R((t))^*$

Which of these are representable? If a functor is representable, demonstrate it by finding a k-algebra representing it. If it isn't representable, provide an argument explaining why.

8. Consider the k-group space T_2 , defined as the functor from rings to sets given by

$$T_2(R) = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mid ad \in R^* \right\},$$

with its usual group structure.

- (a) Show that T_2 is representable that is, show that $T_2 = \operatorname{Spec}(A)$ for some k-algebra A.
- (b) Recall that this implies that A has a comultiplication operation $A \to A \otimes_k A$ corresponding to the group operation $T_2 \times T_2 \to T_2$. Give an explicit description of this comultiplication.
- (c) Similarly, there should be a map $S:A\to A$ (the "antipode") corresponding to group inversion $\iota:T_2\to T_2$. Find an explicit description of the map S.

vaguely lecture 1-4 related, making connections to schemes

9. Let Top be the category of topological spaces. If F is a contravariant functor from Top to sets, we say that F is a Top-sheaf if for every topological space X, when F is restricted to open subsets of X, it forms a sheaf.

Show that for every topological space Y, the functor $X \mapsto \operatorname{Hom}(X,Y)$ is a Top-sheaf.

- 10. Recall that a ringed space is a pair $X = (X, \mathcal{O}_X)$ consisting of a topological space X and a sheaf of rings \mathcal{O}_X on X. A morphism of locally ringed spaces $f = (f, f^{\#}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ consists of a map of topological spaces $f : X \to Y$ together with a morphism of sheaves of rings $f^{\#} : \mathcal{O}_Y \to f_*\mathcal{O}_X$.
 - (a) Fix a ringed space Y and consider the functor h_Y from ringed spaces to sets given by $h_Y(X) = Hom(X,Y)$. Show that if we restrict h_Y to the open subsets of X, we obtain a sheaf on X.
 - (b) Recall that X is called locally ringed if the stalks $\mathcal{O}_{X,x}$ are local rings, and a morphism $f: X \to Y$ is a morphism of locally ringed spaces if the induced maps $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ are local maps that is, they take the maximal ideal of one to the maximal ideal of the other.

Show that if Y is a locally ringed space and if we define a functor from locally ringed spaces to sets via $\widetilde{h}_Y(X) = Hom_{local}(X,Y)$, then again for every locally ringed space X, the restriction of \widetilde{h}_Y to the open sets of X is a sheaf on X.

- (c) Use the above to show that if X is a scheme, then $R \mapsto Hom_{scheme}(\operatorname{Spec} R, X)$ is a k-sheaf.
- 11. Let X be a k-sheaf. Define a "relative power-set space" of X via

$$\mathcal{P}_X(R) = \{ \text{subsheaves } F \subseteq X \times \operatorname{Spec} R \}$$

with, for $\phi: R \to R'$, we define

$$\mathcal{P}_X(\phi)(F) = F \times_{\operatorname{Spec} R} \operatorname{Spec} R' \subseteq X \times \operatorname{Spec} R' \cong (X \times \operatorname{Spec} R) \times_{\operatorname{Spec} R} \operatorname{Spec} R'.$$

Show that \mathcal{P}_X is a k-sheaf.