IoT @ FMI Lecture 5

22.03.2017

Power Consumption

• ESP8266 (2.9-4.2v)

• Active: 30-300 ma

• Sleep: 0.1 – 10 ma

Arduino (Atmega328p)

• Active: 4-20 ma

• Sleep: 0.001 – 0.01 ma

Raspberry PI

Active: 80-240 ma

BLE/Zigbee modules

• 0.02ma (BLE), 0.05ma (Zigbee)

Types of Batteries

Туре	Voltage (V)	Capacity (mAh)	Resistance	Self Discharge
Coin Cell 2032	3.00	200	High	Low
AAA/AA/C/D (Alkaline)	1.2 – 1.5	1000/2000/5000/10000	Medium	Low
AAA/AA/C/D (NiMh)	0.2 – 1.3	same	Medium	Med/Low
AAA/AA/C/D (Ni-Zn)	1.3 – 1.6	Same	>	?
LiPo (Generic)	3.3 – 4.2 (3.7)	10 – 5000	Low	Low
LiPo - 16850	Same	1000 – 5000		
LiPo – 14500	Same	500 – 1000	Low	Low

Battery Discharge Curve

- Internal Resistance increases with decreased capacity
- 1 om @ 300 ma = 0.3v voltage Drop

ESP8266 – DeepSleep

- Sleep current in DeepSleep is 0.08 ma
- Connect D0 and RST with a jumper wire
- Call ESP.deepSleep(time); delay(1000);
- ESP will go to deep sleep and reset after "time"
- Time is in us (1,000,000 us = 1,000 ms = 1 sec)
- RTC Memory can be used to store data between iterations
- After wake up it takes ~300 ms to boot and ~3-10 sec to connect to WiFi
- All GPIOs are set to INPUT during sleep
- http://www.espressif.com/sites/default/files/9b-esp8266low power solutions en 0.pdf

ESP8266 – LIGHT and MODEM sleep

- Modem Sleep: ~15 ma. Just use delay(xxx)
- Light Sleep: ~0.5 ma
 - Details: https://github.com/esp8266/Arduino/issues/1381#issuecomment-279117473

LiPo Chargers

Only Charge

+ battery protection

- Wemos Battery Shield
 - + battery protection
 - + 5v Boost

Popular Software

NodeRED

- Design flows
- Java Script
- Dashboards

Thingspeak

- Easy integration
- Lots of display options

Blynk – Arduino to Mobile

Ubidots – IoT Dashboards

Popular Hardware

Sonoff

Thin But Not Simple

Sonoff Smart Solution, makes your life easier!

• https://www.itead.cc/search/result/?cat=&g=sonoffput

SHARP GP2Y1010AU0F-Dust Sensor

- 1. Low consumption current (Icc: MAX. 20 mA)
- 2. Working Temperature: -10~65°C
- The presence of dust can be detected by the photometry of only one pulse
- Enable to distinguish smoke from house dust
- Lead-free and RoHS directive compliant

DHT11 Humidity & Temperature Sensor

- 1. Humidity measuring range: 20% ~ 9 0% RH
- 2. Temperature measuring range: 0 ~ +100°C
- 3. High reliability
- 4. Optimized long-term stability
- 5. Ultra-low consumption

GM55 Serie Photoconductive resistance-GM5528

- 1. Epoxy encapsulated
- 2. Quick response
- 3. Small size
- 4. High sensitivity
- 5. Reliable performance
- 6. Good characteristic of spectrum

Electret Condenser Microphone

- 1. Wide frequency band
- 2. Great sound quality
- 3. Low noise
- 4. Low power consumption
- High sensitivity

Broadlink

Grove / Wio Link

Xiaomi

