vAttention: Dynamic Memory Management for Serving LLMs

Presenters: Rahul Bothra, Chengyi Wang 11th October 2024

Our **comments** in purple boxes

Contents (Remove names later)

- 1. (Rahul) LLM Inference primer + KV Cache
- 2. (Chengyi)Prior work on memory management (Orca and Paged Attention)
- 3. (Rahul) vAttention Design (Design and Challenges (CUDA paging size))
- 4. (Chengyi) vAttention Evaluation
- 5. (Chengyi + Rahul) Analysis and Future work

LLM Inference Primer

Tokens processed in parallel

Tokens generated one at a time

LLM Inference memory footprint

KV Cache Memory Management

- KV-cache is large, dynamic and size is unknown/variable
- GPT-3: 1000 tokens = 4.5GB memory
- Grows one-token at a time (autoregressive decoding)
- Don't know request lengths in advance

Why care about memory management?

Would have been interesting to see ways of predicting the final KV cache size before it's full

KV-cache memory management

- KV-cache is large, dynamic and size is unknown/variable
- GPT-3: 1000 tokens = 4.5GB memory
- Grows one-token at a time (autoregressive decoding)
- Don't know request lengths in advance

Why care about memory management?

Throughput depends on batch size

Batch size depends on memory (KV-cache) allocator

A simple KV-cache memory manager

- Assume length(R_i)== max context length
- Allocate all memory upfront
 - e.g., max model length for GPT-3 = 4K
 - allocate 18GB memory for each request (= 4*4.5GB)

Can't serve more requests (though memory is underutilized)

A better approach: vLLM [SOSP'23]

Dynamic fine-grained memory allocation for KV-cache

• Dynamic:

On demand allocation

• Fine-grained:

- Divide memory into fixed-size blocks (e.g., 16 tokens)
- Allocate one block at a time

(3 tokens, 1 block) R1

GPU Memory (block size = 4)

GPU Memory (block size = 4)

GPU Memory (block size = 4)

GPU Memory (block size = 4)

16

vLLM and PagedAttention

$$Attention(q_i, K, V) = softmax(\frac{q_i K^T}{scale})V$$

- Conventional implementations expect contiguous K and V
 - No longer possible in vLLM
- PagedAttention
 - Compute attention over non-contiguous blocks of K and V

Programming overhead

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Redundant address translation has a cost

Performance overhead

^{*} Dao-AlLab/flash-attention: Fast and memory-efficient exact attention (github.com)

^{**} flashinfer-ai/flashinfer: FlashInfer: Kernel Library for LLM Serving (github.com)

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Redundant address translation has a cost

Kernels are not compatible!

Why care about Portability?

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Performance

Redundant address translation has a cost

Portability

Kernels are not compatible (different formats)

Can we do better?

Non-contiguous layout is not ideal

- Ideal solution:
 - **Dynamic** memory allocation
 - Contiguous memory layout

These goals are usually conflicting

Can we resolve the conflict?

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Enabling contiguous dynamic allocation

Virtual memory is abundant

(128TB per process)

allocate large chunks, ahead-of-time

Physical memory is limited

(80GB per GPU)

allocate small chunks, on demand

Key idea: Let's allocate them separately

vAttention

Decoupling virtual and physical memory allocation

Leveraging system support for demand paging

Optimizations (co-design with LLM inference)

Memory allocation in vAttention

- Each worker allocates 2*N virtual tensors
 - N = number of layers hosted on the worker
 - Separate tensors for K and V at each layer
 - Size based on max context length and batch size

One virtual tensor (batch size=4, each block is a token)

Memory allocation in vAttention

- Each worker allocates 2*N virtual tensors
 - N = number of layers hosted on the worker
 - Separate tensors for K and V at each layer
 - Size based on max context length and batch size

One virtual tensor (batch size=4, each block is a token)

Page Table

Physical Memory (each block is a page)

Challenges for vAttention

Allocating a physical memory page requires a syscall

CUDA drivers allocate only large pages (>=2MB)

Challenge-1: Memory allocation latency

- Allocating one page takes **~40** μs
- Need to allocate multiple pages at once
 - Latency overhead grows proportionally
- Example: Yi-34B
 - 60 layers == 120 virtual tensors
 - **5ms** (=120*40 μ s) latency overhead per request
 - 50ms overhead if 10 requests need new pages at once

Optimization: Overlap allocation with compute

- Each decode iteration generates one token (per request)
- Memory requirement is known ahead-of-time (dream property!)
- Track progress of each request to determine when a new page is required
- ♀ Asynchronously allocate pages for iteration i+1 when iteration i is executing

Challenge-2: Fragmentation (physical memory)

- Min page size in CUDA is 2MB
- vAttention allocates 2*N pages at once
- Fragmentation proportional to:
 - Number of layers
 - Degree of tensor-parallelism

Challenge-2: Fragmentation (physical memory)

- Example: Yi-34B
 - 60 layers == 120 virtual tensors (per TP-worker)

Maximum memory wasted (per request) for Yi-34B

TP Dimension	Max Memory wasted
1	240MB
2	480MB
4	960MB
8	1920MB

Optimization: Allocate smaller physical pages

- GPUs natively support 4KB, 64KB and 2MB pages
- Update CUDA drivers to allocate small (64KB) pages

Maximum memory wasted (per request) for Yi-34B

TP dimension	64KB	2MB
1	7.5MB	240MB
2	15MB	480MB
4	30MB	960MB
8	60MB	1920MB

Up to 96% reduction in memory wastage

Challenges for vAttention

Allocating a physical memory pages requires a syscall

CUDA drivers allocate only large pages (>=2MB)

High Fragmentation

Evaluation

- FlashAttention-3 released on 11-July-2024 (up to 2x faster on H100)
- Does not support PagedAttention

FA: FlashAttention FI: FlashInfer

vAttention supports FlashAttention-3 out-of-the-box

Summary

- vAttention: An alternative to PagedAttention
 - Leveraging system support for demand paging

Programming

Supports unmodified GPU implementations

Performance

Not impacted by dynamic memory allocation

Portability

Adopting new kernels is very easy