

Il parsing shift-reduce è una forma di parsing bottom-up.

```
Algorithm 1: Shift-Reduce Algorithm
          input
                              : bottom-up parsing table T for \mathcal{G}; w
                              : the rightmost derivation of w in reverse order if w \in \mathcal{L}(\mathcal{G}),
          output
                                error() if w \notin \mathcal{L}(\mathcal{G})
          data structures: input\_buffer (init: w$);
                                state\_stack (init: initial state of the CA underlying T);
                                symbol_stack (init: empty)
VARIABILE b \leftarrow \text{get\_next\_char}(input\_buffer);
          while true do
              if T[top(state\_stack), b] = shift P then
                  push b onto the symbol\_stack;
                  push P onto the state\_stack;
                  b \leftarrow \text{get\_next\_char}(input\_buffer);
              else
                  if T[top(state\_stack), b] = reduce A \rightarrow \beta then
                      pop |\beta| times from the symbol_stack;
                      push A onto the symbol\_stack;
                      pop |\beta| times from the state\_stack;
                      push T[top(state\_stack), A] onto the state\_stack;
                      print("A \rightarrow \beta");
                  else
                      if T[top(state\_stack), b] = accept then
                          break;
                      else
                          break invoking error();
```

Esercizio 1

```
INPUT: w=a_1a_2a_3b_3b_2b_1, precedente tabella di parsing T

DATA STRUCTURES: input_buffer = w$ = a_1a_2a_3b_3b_2b_1$, state_stack = [0], symbol_stack = []
```

						a₂₎a3 diventa S		a₂,S,b ₂ diventa	S	a₁₁, S , b , diventa S	
						5,8 diventa 7		5,7,3 diventa 3		2,3,6 diventa 1	
						"S→ ab"		"S→aSb"		"S→aSb"	
VARIABILE	a	a_2	a ₃	b ₃	b ₂	b ₂	b 1	Ь	\$	\$	T[1,\$]*
symbol_stack		a	a_1, a_2	a ₁ ,a ₂ ,a ₃	a_1, a_2, a_3, b_3	a_1, a_2, S	a_1, a_2, S, b_2	a ₄ ,S	a_1, S, b_1	S	ACCEPT
state_stack	0	0,2	0,2,5	0,2,5,5	0,2,5,5,8	0,2,5,7	0,2,5,7,9	0,2,3	0,2,3,6	0,1	

Esercizio 2

state_stack

INPUT: $W = a_1 a_1 a_2 b_2$, tabella T

DATA STRUCTURES: input_buffer = $w = a_1 a_1 a_2 b_2$, state_stack = [0], symbol_stack = []

VARIABILE $a_1 b_1 a_2$ symbol_stack $a_1 a_1 b_1 T[4,b] = ERROR$

Anticipazione lezioni successive

Per creare la tabella di parsing LR(1) ci sono due passaggi:

0,2,4

- · Determinare l'automa caratteristico.
- · Determinare i lookahead set per le riduzioni.

0,2

Definizione di LR(1) item:

 $A \rightarrow \alpha \cdot \beta$, $\Delta (\Delta \subseteq T \cup \{\$\})$

Esempi di possibili LR(1) item:

S -> •aS, {\$}
S -> •aSb, {\$}
S -> •ab, {\$}

Chi sono gli item per $\mathbb{A} \rightarrow \epsilon$?

A -> •