XDS100 用户手册

1 功能概述

XDS100 是 TI(德州仪器)推出的一款超低成本 USB 接口 JTAG 硬件仿真器(Emulator),TI 官方提供了硬件参考设计。XDS100 可以作为独立的仿真器使用,也可以集成到开发板中。由于成本限制,XDS100 性能要低于传统的 XDS510 和 XDS560 仿真器,下载程序和数据的时候速度会慢一些,在 C 和汇编环境下单步运行速度也会慢一些。

XDS100 仿真器有三个版本:

- XDS100v1 是原始版本,可以支持 CCS3.3, USB 接口为 USBFS-12M
- XDS100v2 是 XDS100v1 的升级版本,不再支持 CCS3.3, USB 接口升级到 USBHS-480M
- XDS100v3 是 XDS100v2 的升级版本,主要增加了 1149.7 协议支持

普通用户不需要 1149.7 协议,因此没必要使用 XDS100v3。常用版本为 XDS100v1 和 XDS100v2, XDS100v1 速度稍慢一些但是成本更低,并且支持 CCS3.3; XDS100v2 支持最新的开发软件,速度稍微快一些,成本更高一些。注意虽然 XDS100v2 的 USB 理论速度是 XDS100v1 的 40 倍,实际由于 JTAG 接口 TCK 频率限制,两者实际速度差异并不是特别大。

TI 官方提供的硬件参考设计中,XDS100v1 使用了 FTDI 公司的 FT2232D 芯片; XDS100v2 使用了 FTDI 公司的 FT2232H 芯片和 CPLD,均为纯硬件方案。现在是 2024 年,这些芯片已经有接近 20 年的历史了,结果就是 XDS100 硬件体积仍然偏大、功耗偏高、成本也偏高。其他芯片比如 ARM 的 Cortex-M、ALTERA 的 FPGA 早已经广泛使用基于 MCU 软件方案的调试器,我也设计了自己的 DAP 调试器和 USB-Blaster 下载器,现在 MCU 软件方案的 XDS100 仿真器也开发成功了。目前提供两个版本 XDS100v1 和 XDS100v2。

1.1主要特性

- ◆ 体积小巧便携, 主体 41x18mm, 含插头插座 65x25mm, 仅优盘大小。
- ◆ USB-A 口直插计算机,无需数据线。
- ◆ 内置 500mA 自恢复保险丝。
- ◆ 完全兼容 TI 官方 XDS100v1 和 XDS100v2。
- ◆ 支持 CCS、C2Prog、UniFlash 等软件。
- ◆ MCU 软件方案,支持固件升级。

图 1 XDS100v1 正面外观

图 2 XDS100v2 正面外观

1.2接口定义

XDS100 输出使用 2x7 PIN 2.54 排针标准 14PIN JTAG 接口,排针定义图 3。

图 32x7JTAG 接口定义

2 软件支持与使用方法

2.1C2Prog

C2Prog 是 CodeSkin 提供的一款 C2000 系列芯片编程工具。

官方网站: https://www.codeskin.com

C2Prog 支持 XDS100v1、XDS100v2、串口等各种接口烧录。软件体积小巧,使用方便,支持硬件丰富,推荐使用。C2Prog 软件界面见图 4。

如果你只需要烧录固件,尤其是生产线烧录,强烈推荐使用 C2Prog。

图 4 C2Prog 2.1.3 版本

2.2 UniFlash

UniFlash 是 TI 提供的一款微控制器片内闪存编程软件,适用于各种 TI 微控制器, UniFlash 同时提供 GUI 和命令行界面。该软件同样适合产线烧录。

UniFlash 3.4.1 (图 5) 之后的版本不再支持 XDS100v1, 因此如果使用 XDS100v1 硬件, 推荐使用 UniFlash 3.4.1 版本。XDS100v2 无此限制,可以使用最新的 UniFlash 版本,目前最新为 8.7.0 版本(图 6)

图 5 UniFlash 3.4.1 版本

图 6 UniFlash 8.7.0 版本

2.3 CCS (Code Composer Studio)

CCS(Code Composer Studio)是适用于 TI 微控制器和处理器的集成开发环境 (IDE)。它包含一整套用于开发和调试嵌入式应用的工具。C2000 系列开发都会使用 CCS 软件。

官方网站: https://www.ti.com.cn/tool/cn/CCSTUDIO

下载链接: https://www.ti.com.cn/tool/cn/download/CCSTUDIO

早期版本为 CCS3.3, 见图 8, TI 官方已经停止更新, 对新器件支持有限, 不推荐使用。

CCS 3.3 只支持 XDS100v1,不支持 XDS100v2.

图 7 CCS 3.3 版本

新的 CCS 基于 Eclipse 框架,支持全部新器件,见图 8,推荐使用大版本的最后一个修订版本,比如 CCS11 的最后一个大版本是 11.2.0.00007,基于 Eclipse 的 CCS 新版本同时支持 XDS100v1 和 XDS100v2。

图 8 CCS 11.2.0 版本

根据 TI 官网信息,CCS 将进行一次重大更新。作为此次重大更新的一部分,CCS 将从 Eclipse 框架过渡到更现代的 Theia 框架。CCS Theia 现适用于大多数器件,并会在后续每个版本中逐渐添加更多功能。计划基于 Eclipse 的最终版本预计为 CCS 12.8。

3 常见问题 FAQ

3.1选择 XDS100v1 还是 XDS100v2

生产烧录或者开发偶尔使用,XDS100v1 足够,大部分器件都支持,成本低。研发使用推荐 XDS100v2,支持最新的器件,速度也快一些。

3.2 EMU0 和 EMU1 信号

EMU0 和 EMU1 是 TI 的 C2000 系列独有的管脚,不是 JTAG 标准信号。

具备 EMU0 和 EMU1 的芯片: 2812, 2808, 28335 等;

没有 EMU0 和 EMU1 的芯片: 28035, 28069, 28377 等;

C2000 系列比较新的型号都不具备 EMU0 和 EMU1 信号,芯片烧录和调试也不需要使用这两个信号。

Q: What are the EMU0/1 pins used for?

A: The EMU0/1 pins can be used for High Speed RTDX (HSRTDX) or cross-core triggering(ex: one device halts and signals the others to halt, see Advanced Event Triggering). For selected devices, these pins are used for wait-in-reset (ex: TMS320F2808, etc. -->Please see the device datasheet/TRM for details). For selected devices, these pins may also be used to transfer instrumentation and trace information.

28335 的手册介绍:

Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the JTAG debug probe system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA drive \uparrow) NOTE: An external pullup resistor is required on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-k Ω to 4.7-k Ω resistor is generally adequate. Because this is application-specific, TI recommends validating each target board for proper operation of the debugger and the application.

3.3 XDS100 序列号

XDS100 仿真器会给每个不同序列号的 XDS100 仿真器分配不同的串口号,如图 10,只有一台 XDS100 仿真器的时候这不是问题,但是如果有十几甚至几十个 XDS100 仿真器的时候,就会占用过多的串口号,解决方法是给 XDS100 仿真器驱动默认使用相同的序列号,目前默认全部是"FFFFFFF",推荐一台计算机同一时间只插入一只 XDS100 仿真器。

真正的 XDS100 序列号见图 11 中 version 命令的输出。

如果还是希望使用"FFFFFFF"之外的序列号,登录串口命令行:

- 执行 "ctrl usn 1" 命令打开唯一序列号
- 执行"param save"命令保存参数
- 执行 "reboot" 命令重启即可

4 固件更新

4.1.1 进入 XBOOT

更新固件第一步是进入内置 bootloader (XBOOT), 有两种方法:

第一种方法: 短接 BOOT 焊盘到 GND, 插入计算机上电, 此时进入 XBOOT, XDS100 会识别成一个 CH340, 操作系统会分配一个串口号。注意无需去掉热缩管, BOOT 焊盘位置见图 9, 靠近 USB 公头有个金属孔, 使用导线将该金属孔段接到 USB 公头外壳即可连接 GND。

图 9 BOOT 焊盘位置

第二种方法:正常连接设备,硬件管理器中会看到图 10 所示的串口号,使用超级终端连接该串口以后执行"reboot xboot"命令,设备自动重启,重新枚举以后设备识别成一个 CH340,操作系统会分配一个串口号。

推荐使用第二种方法。

4.1.2 更新固件

设备进入 XBOOT 以后,会识别成一个 CH340 芯片并自动分配串口号,使用超级终端连接该串口号以后,可以执行命令。串口参数 115200-8-N-1.

首先执行 version 命令,查看当前设备信息,确定已经成功进入 XBOOT。

在执行 erase app 命令擦除 APP。

执行 ymodem 命令,选择要升级的固件,协议选择 ymodem。等待烧录完成即可。完整烧录过程见图 11。

图 11 ymodem 命令固件升级过程

如果您的设备使用正常,不建议进行固件升级操作。

5 更新记录

更新日期	更新类型	更新人	更新内容
2024/9/6	Α	Echo	新建文档

Ī		

注:

M-->修改

A -->添加

ECHO Studio 保留本文档最终解释权.

请使用 PDF 书签阅读本文档,快速定位所需内容!

项目主页: https://github.com/xjtuecho/XDS100 国内镜像: https://gitee.com/xjtuecho/XDS100