

Project Report On

Store Order Handling

Project By

Sushant S

Tushar Nirkulwar

Saurabh Deshmane

TABLE OF CONTENTS

Abstract	
Case Study	
Section 1	
Project Plan	3
Section 2	4
Logical Data model	4
Section 3	5
Physical Data Model	5
Section 4	6
Database Syatem	6
Conclusion	12

ABSTRACT

To investigate a real-life problem in an organization and take the necessary steps to provide them with a database solution. We are provided with sample case study that we will use to build our solution. We had made the necessary assumptions and enrich the case environment using details that we have researched about current database implementations in organizations.

CASE STUDY

A store selling computer accessories handles orders of computer accessories like colour monitors, printers, chargers etc. The store has multiple vendors who provide specific product(s). The name and the selling price of every product are mentioned on the packing. The store needs to keep the information about the quantity on hand for every product.

The store has sales consultants and managers to interact with the customers. Information about the base location of the employee needs to be stored. Employees get commission for every product that they sell. Per product commission is fixed for an employee. For the same product, sales consultants get marginally more commission than the managers.

The store keeps details of every customer for various types of communications. The customer can purchase the goods on credit also. The bill provided to the customer includes order number, order date, name of the employee who catered to the order, customer name, city of the customer, city in which the order is placed and the order details. Order details contain the product name, class of the product and quantity ordered.

Section 1

PROJECT PLAN

Problem Statement:

The AZ Electronics solutions is one of biggest computer hardware and accessories store in our city. Store has multiple branches across the city and also have pan India presence in different states. They cater to huge customer base because of the reliable customer service and quality of products. Even though they provide services in computer industry they are facing many issues in manging their huge customer and vendor base requirements on time. Few of their branches have negative sales because of order delivery and handling constraints in backend operations across multiple locations.

It is observed that they are using Flat file system to store their customer data regarding purchase and delivery of items. Similar case is with vendors' data as they are not being able to keep track of availability of different products among different vendors and manage its supply chain efficiently. This has created issues like delayed products delivery, how mange huge customer database, security issue of huge data, lot people in upper management don't know how tackle this situation database management since there is no centralized system in place from which we can draw meaning full conclusions which will fast-track business growth.

We are required to collect vendor communication data, customer data, employ data and tracking of that data in one centralized database so that by manipulating it we can generate some good results

with single click. This will also ensure safe and organize data access for different people in business which will enhance productivity further.

Section 2

LOGICAL DATA MODEL

Logical data model has been shown in following entity relationship diagram. There various are components of ER diagram which explained below:

- 1. **Entity Identification:** We have 7 entities in ER diagram. Which includes Customer, order, Product, Vendor, Vendor products, Employee, commission.
- 2. **Relationship Identification:** Here Customer entity is giving the order which gets updated in product table. Order is received by employee and he gets commission based on order count he handles. Product is dispatched from vendor with product details.
- 3. **Cardinality Identification:** Customer has one to many relationships with order which means one customer can give multiple orders, order has many to one relationship with employee; which means multiple order can be taken one employee. Similarly, product has one to many relationships with vendor product.

ER diagram Relationship Identification

Section 3

PHYSICAL DATA MODEL

This model explains attributes related to all 7 entities along with their cardinality relationships. Here we can see Customer table has one primary key assigned to customer id. Order table has one primary key as order id and three foreign keys for product ID, customer ID, Employee ID.

Product table has one Primary key as Product ID. Vendor table and vendor product table has been joined with foreign keys as product ID, vendor ID. Employee table is joined with commissions table with Role as primary key in commission table and Employee ID as primary key in employee table.

ER Model with Identified Attributes

Section 4

DATABASE SYSTEM

A) List of tables created in database and their purpose

1. Commission Table

Query:

CREATE TABLE commission (role_type ENUM ('Manager', 'Consultant'), sale_comm float, PRIMARY KEY (role_type));

2. Customer Table

Query:

CREATE TABLE customer (cust_fname VARCHAR(30) NOT NULL, cust_Iname VARCHAR(30) NOT NULL, city VARCHAR(30), cust_ID INT NOT NULL UNIQUE, PRIMARY KEY (cust_ID), INDEX (cust_ID));

Result:

3. Employee Table

Query:

```
CREATE TABLE employee (emp_ID INT UNIQUE, emp_fname VARCHAR(50), emp_lname VARCHAR(50), location VARCHAR(30), gender ENUM ('M','F'), role_type ENUM ('Manager', 'Consultant'), PRIMARY KEY (emp_ID));
```

Result:

4. Order Table

Query:

CREATE TABLE order_t(order_ID INT NOT NULL UNIQUE, cust_ID int NOT NULL, emp_ID int NOT NULL, Ord_qty INT NOT NULL, ord_type ENUM ('credit', 'full', 'emi') NOT NULL, prod_ID INT NOT NULL, order_date DATE NOT NULL, PRIMARY KEY (order_ID), FOREIGN KEY (prod_ID) REFERENCES product (prod_ID), FOREIGN KEY (cust_ID) REFERENCES customer (cust_ID), FOREIGN KEY (emp_ID) REFERENCES employee(emp_ID));

Result:

5. Product Table

Query:

CREATE TABLE product (prod_ID INT UNIQUE, prod_class, ENUM('hardware', 'software', 'misc'), sell_price float, qty_avlb int, PRIMARY KEY (prod_ID));

Result:

6. Vendor Table

Query:

CREATE TABLE vendor (vendor_ID INT <u>UNIQUE</u>, vendor_name varchar(20), location varchar(20), contact_no int, email_ID varchar(20), PRIMARY KEY (vendor_ID));

Result:

7. Vendor Product Information Table

Query:

CREATE TABLE vendor_prod (prod_ID int, vendor_ID INT, unit_price float, lead_time INT, FOREIGN KEY (prod_ID) REFERENCES product (prod_ID), FOREIGN KEY (vendor_ID) REFERENCES vendor(vendor_ID));

Result:

B) List of queries to address strategic management requirements

1. Query 1: Insert a record in employee table

Query: insert into employee values (107, 'Kumar', 'Sahoo', 'Bangalore', 'M', 'Manager');

2. Query 2: Delete the new record inserted into employee table

Query: DELETE FROM employee WHERE emp_ID = 107;

3. Query 3: Update order date for any record in the order table

Query: UPDATE order t SET order date = '2022-06-17' WHERE order ID = 2007;

4. Query 4: Give total orders taken by each employee in descending order

5. Query 5: Get the name of employee who has not taken any order till date

Query:

SELECT e.emp_ID, e.emp_fname, e.emp_lname, e.role_type,
COUNT(o.order_ID) as Order_taken
FROM employee e
LEFT JOIN order_t o ON e.emp_ID = o.emp_ID
GROUP BY e.emp_ID
HAVING Order_taken = 0
ORDER BY Order_taken DESC;

6. Query 6: Arrange the product in descending order of lead time to delivery

Query:

SELECT * FROM vendor prod

ORDER BY lead_time DESC;

Result:

7. Query 7: Display the total sales for each customer in descending order - SUB Query

Query:

SELECT c.cust_fname, c.cust_lname, c.city, o.total_order, o.total_sale
FROM (SELECT o.cust_ID, o.prod_ID,
COUNT(o.order_ID) total_order,(SUM(o.Ord_qty) * p.sell_price) total_sale
FROM Order_t O
JOIN product p ON o.prod_ID = p.prod_ID
GROUP BY prod_ID) o
JOIN customer c ON o.cust_ID = c.cust_ID
GROUP BY o.cust_ID
ORDER BY o.total_sale DESC;

Result:

8. Query 8: Display commission earned by each employee in descending order

Query:

SELECT em.emp_ID, em.emp_fname, em.emp_lname, em. role_type, round ((om. total_sale * em. sale_comm)) total_commission

FROM (SELECT o.emp_ID, o.prod_ID,

COUNT(o.order_ID) total_order, (SUM(o.Ord_qty) * p.sell_price) total_sale

FROM Order_t O

JOIN product p ON o.prod_ID = p.prod_ID

GROUP BY o.prod_ID) om JOIN (SELECT e.emp_ID, e.emp_fname, e.emp_Iname, e.location, e.role_type, c.sale_comm

FROM employee e

JOIN commission c ON e.role_type = c.role_type) em ON om.emp_ID = em.emp_ID

group by om.emp_ID

ORDER BY total_commission DESC;

Result:

	sult Grid				Export: Wrap
	emp_ID	emp_fname	emp_Iname	role_type	total_commission
•	103	Mathew	Paul	Consultant	25992
	102	Daicy	Brown	Manager	3330
	106	Manu	Puliyoor	Manager	2818
	104	Pual	Bar	Manager	1783
	101	Houston	Kill	Manager	1125

CONCLUSION

- This project consolidates the idea that how database management system creates more integrated picture of your operations by easily illustrating how processes in one segment of the organization affect other segments. What once was done completely manually now can be fully automated and more accurate.
- We have successfully demonstrated that how one centralized database system in place can help businesses to increase their productivity and efficiency in longer run. It empowers people to spend more time on high-value activities and strategic initiatives, and less time cleaning data and manually scrubbing lists like flat file system.
- This also explains the fact that by manipulating data by various angles we can minimize our mistakes while doing any tasks in business environment to boost healthy work culture. A database management system helps provide a framework to facilitate data quality initiatives.
- In this unified database system store chain not only being able keep track of customer requirements but they are also managing their supply chain efficiently by analysing key hiccups from database. Database management systems also provided a better framework for the enforcement of privacy and security policies.
- We also showed that in datacentric world how important it is to store customer data in an
 organized manner. By providing quick solutions to database queries, a data management
 system enables faster access to more accurate data. End users, like salespeople, are able to
 speed up sales cycles and get more accurate in their sales prospecting.