MEAK CONVERGENCE OF THE VARIATIONS ITERATED INTEGRALS AND DOLEANS-DADE EX. (U) MORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROC. F AVRAM MAR 86 TR-135 AFOSR-TR-86-8127 F49628-85-C-8144 F/G 12/1 UNCLASSIFIED

1/1

AD-8168 942

MICROCOR

38121

nie er er er er er

	2 bat bocum	ENTATION PAGE	:		
L. Uni GELUHITY CLASSIFICATION	ECTE	16. RESTRICTIVE M			
MUCHOO, F. ED	0 6 1986	a pistribution/A Approved fo Unlimited	vaicabic. TY o r Public Ri	FREPORT elease: Dis	tribution
Technical Report No. 155		AFOSR-TR. 86-0327			
iniversity of North Carclina	6b. OFFICE SYMBOL (If applicable)	AFOSR/NM	ORING ORGAN	IZATION	
ADDRESS (City, State and ZIP Code) Lenter for Stochastic Processes Department, Phillips Hall 039- Chapel Hill, NC 27514		7b. ADDRESS (CHY.) Bldg. 410 Bolling AFB			
NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F49620 85 C 0144			
ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN	DING NOS.	· · · · · · · · · · · · · · · · · · ·	
ldg. 410 olling AFB, DC		PROGRAM ELEMENT NO. 6.1102F	PROJECT NO. 2304	TASK NO. A.5	WORK UN
TITLE Include Security Classification leak convergence of the variat			Doleans-I	ade exponer	itials of
PERSONAL AUTHORIS) sequences of Avram. F.	semimartingales	;**			
A TYPE OF REPORT 136. TIME O	OVERED	Tet 0425 05 0530		. Tre sace	
Technicut	9/85 to <u>8/86</u>	March 1986	AT (Yr., Mo., Day) 15. PAGE (COUNT
COSATI CODES	9/85 TO 8/86 18 SUBJECT TERMS (Keywords:	March 1986)	6	
COSATI CODES FIELD GROUP SUB. GR.	Is subject terms of Keywords: d identify by block number martingales, compared to [X, (n)	March 1986 Continue on reverse if ne onverging to a X], then all h	semimartin	afy by block number	(F)
COSATI CODES FIELD GROUP SUB. GR. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Is subject terms of Keywords: d identify by block number martingales, compared to [X, (n)	March 1986 Continue on reverse if ne onverging to a X], then all h	semimartin	agale er variation	(F)
COSATI CODES FIELD GROUP SUB. GR. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TE SUBJECT TERMS (Keywords: d identify by block number martingales, co converges to [X,	March 1986 Continue on reverse if ne onverging to a X], then all h	semimarting the respe	agale er variation	iri IS

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics University of North Carolina Chapel Hill, North Carolina

WEAK CONVERGENCE OF THE VARIATIONS, ITERATED INTEGRALS,
AND DOLEANS-DADE EXPONENTIALS OF SEQUENCES OF SEMIMARTINGALES

by

Florin Avram

Technical Report No. 135

March 1986

Approve for all to always distribution of the form

WEAK CONVERGENCE OF THE VARIATIONS, ITERATED INTEGRALS, AND DOLÉANS-DADE EXPONENTIALS OF SEQUENCES OF SEMIMARTINGALES

ЪУ

Florin Avram

University of North Carolina at Chapel Hill

Abstract

If X is a sequence of semimartingales, converging to a semimartingale
(n)(n)

X, and such that [X , X] converges to [X,X], then all higher order variations
(n)
and all the iterated integrals of X converge jointly to the respective

functionals of X.

AMS 1980 Subject Classifications: Primary, 60F17; Secondary, 60H05.

Keywords and Phrases: Semimartingales, weak J₁ Skoronod topology, variations, multiple integrals, Doléans-Dade exponential.

This research supported by the Air Force Office of Scientific Research Contract No. F49620 85C 0144.

1. Introduction

(n)

where X is a semimartingale, and $\xrightarrow{w(J_1)}$ denotes weak convergence on D[0,1] with respect to the J_1 -Skorohod topology.

We investigate the convergence of the variations, iterated integrals (n) and Doléans Dade exponentials of X , which are defined as follows: For Y a semimartingale,

(1.2)
$$V_{k}(Y)_{t} = \begin{cases} Y_{t} & \text{for } k = 1 \\ [Y,Y]_{t} = \langle Y,Y \rangle_{t} + \sum_{s \leq t} (\Delta Y_{s})^{2}, & \text{for } k = 2 \\ \sum_{s \leq t} (\Delta Y_{s})^{k}, & \text{for } k \geq 3 \end{cases}$$

(1.3)
$$I_{k}(Y)_{t} = \begin{cases} Y_{t} & \text{for } k = 1 \\ t & \text{for } k = 1 \end{cases}$$

$$\begin{cases} I_{k-1}(Y)_{s-1} dY_{s}, & \text{for } k \geq 2 \end{cases}$$

(1.4)
$$E(\lambda Y)_{t} = \exp[\lambda Y_{t} - \frac{\lambda^{2}}{2} [Y,Y]_{t}] \prod_{s \leq t} \ell(\lambda \Delta Y_{s}),$$

where $\ell(x) = (1+x)e^{-x+\frac{x^2}{2}}$.

 $V_k(Y)$, $I_k(Y)$ and $E(\lambda Y)$ are called respectively the variations, the iterated integrals and the Doléans-Dade exponential of the semimartingale Y. It is known that V_k , I_k and E are well defined for any semimartingale Y (see Meyer, 1976). These quantities are important in the theory of multiple integration with respect to Y_t .

(n) [nt]

B. When $X_t = \sum_{i=1}^{n} X_{i,n}$, with $X_{i,n}$ a triangular array, then

$$V_{k}^{(n)} = \sum_{i=1}^{(nt)} X_{i,n}^{k},$$

$$I_{k}(X)_{t} = \sum_{1 \leq i_{1} < ... < i_{k} \leq [nt]} X_{i_{1},n} ... X_{i_{k},n},$$

and

$$E(\lambda X)_{t} = \prod_{i=1}^{(nt)} (1 + \lambda X_{i,n}) = \sum_{k=0}^{(nt)} \lambda^{k} I_{k}(X)_{t}.$$

The problem of the convergence of these "moments", "symmetric statistics", and generating function of the symmetric statistics have been studied in [1],[3-5],[7], and [9].

$$X_{t} = \sum_{k=1}^{\lfloor n^{2}t \rfloor} \frac{(-1)^{k}}{n}$$
 converges uniformly to 0, but $[X,X]_{t} = \sum_{k=1}^{\lfloor n^{2}t \rfloor} \frac{1}{n^{2}} + t$.

E. However, the following result holds:

Theorem 1: The following three statements are equivalent.

(1.5)
$$(x, [x,x]) \xrightarrow{n \to \infty} (x, [x,x]),$$

(1.6)
$$(v_1(X), ..., v_m(X)) \xrightarrow{w(J_1)} v_1(X), ..., v_m(X), \forall m \ge 2,$$

(1.7)
$$(I_{1}(X), \dots, I_{m}(X)) \xrightarrow{w(J_{1})} I_{1}(X), \dots, I_{m}(X)), \forall m \geq 2.$$

They also imply:

(1.8)
$$E(\lambda X) \xrightarrow{w(J_1)} E(\lambda X), \quad \forall \lambda.$$

Corollary: If

and the condition of Jacod (1983) holds:

(1.10)
$$\lim_{b\to\infty} \sup_{n\to\infty} P\{Var(B^h, n)_1 > b\} = 0$$

(where h is a truncation function and $(B^{h,n})_t$ is the previsible projection of the truncated semimartingale X), then (1.5), (1.6), (1.7) and (1.8) hold. Proof: cf. Jacod (1983), Theorem 5.1.1, (1.9) and (1.10) imply (1.5).

2. Proofs

Introduce the following notation: For any real number x,

$$x^{a} := x^{a} \{|x|>a\}$$
 $x^{a} := x^{a} \{|x|>a\}$

We establish now the following:

(n)
Lemma 1: a) Suppose X are semimartingales such that

(2.1)
$$\lim_{b\to\infty} \overline{\lim_{n\to\infty}} P\{[X, X]_1 > b\} = 0,$$

and let f(x) be any real function such that $f(x) = o(x^2)$, as $x \to 0$. Then, for all ϵ ,

(2.2)
$$\lim_{a\to 0} \overline{\lim_{n\to \infty}} P\{\sum_{s\leq 1} |f(\Delta x_s^{\leq a})| \geq \varepsilon\} = 0.$$

b) If the assumptions of a) hold, $X \xrightarrow{w(J_1)} X$ and f is a continuous, vector valued function, then:

(2.3)
$$\sum_{\mathbf{s} \leq \mathbf{t}} f(\Delta X_{\mathbf{s}}) \xrightarrow{\mathbf{w}(J_1)} \sum_{\mathbf{s} \leq \mathbf{t}} f(\Delta X_{\mathbf{s}}).$$

 $\frac{\text{Proof:}}{\text{g(a)}} \text{ Note first that } \sum_{s \leq t} \left| f(\Delta X_s) \right| < \infty, \text{ since } \sum_{s \leq t} \Delta X_s^2 < \infty. \text{ Let now } g(a) = \sup_{|x| \leq a} \left| f(x) \right| / x^{-2}. \text{ Then,}$

$$P\{\sum_{s\leq 1} |f(\Delta X_{s}^{(n)})| > \epsilon\} \leq P\{\sum_{s\leq 1} (\Delta X_{s}^{(n)})^{2} g(a) > \epsilon\}$$

$$\leq P\{[X, X]_{1} > \epsilon/g(a)\}.$$

Since $g(a) \rightarrow 0$, (2.2) follows from (2.1).

b) Let $U(X) = \{u > 0 : P\{|\Delta X_t| \neq u, \text{ for all } t\} = 0\}$. U(X) is dense in R_+ . For any $a \in U(X)$, and f continuous, the functional

$$s_f^a(Z)_t = \sum_{s \le t} f(\Delta Z_s^{>a})$$

is J_1 continuous a.s. (dist (X)). Thus, $X \xrightarrow{w(J_1)} X$ implies for $a \in U(X)$

$$S_f^a(X) \xrightarrow{w(J_1)} S_f^a(X).$$

Also,

$$S_f^a(X)_t \xrightarrow{a.s. (J_1)} S_f(X)_t := \sum_{s \le t} f(\Delta X_s).$$

The result follows now by (2.2) and Theorem 4.2 of Billingsley (1968).

Proof of Theorem 1:

By Lemma 1b, we have $(1.5) \Rightarrow (1.6)$, and in fact the same type of argument yields $(1.5) \Rightarrow (1.8)$, as follows: Assume for convenience $\lambda = 1$ and $1 \in U(X)$, let

$$f(x) = [\ell_n(1+x) - x + \frac{x^2}{2}] |_{\{|x| \le 1\}},$$

and let $T:D_{[0,1]} \rightarrow D_{[0,1]}$ be defined by:

$$T(Z)_{t} := \prod_{s \le t} \ell(\Delta Z_{s}^{>1}) = \prod_{s \le t} (1 + \Delta Z_{s}^{>1}) \exp\{-\Delta Z_{s}^{>1} + \frac{1}{2}(\Delta Z_{s}^{>1})^{2}\}.$$

Since the Doléans-Dade exponential

$$E(X)_{t} = \exp\{X_{t} - \frac{1}{2}[X,X]_{t} + \sum_{s \le t} f[\Delta X_{s}^{\le 1}]\} \cdot T(X)_{t},$$

it remains only to note that the functional:

$$x^a : D^{(2)}[0,1] \rightarrow D^{(4)}[0,1]$$

$$X(Z_1,Z_2) = (Z_1,Z_2,S_f^a(Z_1),T_{Z_1})$$

is continuous a.s., if both spaces are endowed with the respective J_1 topologies. Letting then $a \rightarrow 0$, as in the proof of Lemma 1, one gets:

$$(x_t, (x, x)_t, \sum_{s \le t} f(\Delta x_s), \prod_{s \le t} \ell(\Delta x_s))$$

$$\xrightarrow{w(J_1)} (X_t, [X,X]_t, \sum_{s \le t} f(\Delta X_s^{\le 1}), \prod_{s \le t} \ell(\Delta X_s^{>1})),$$

since $ln(1+x) - x + \frac{x^2}{2} = o(x^2)$, and since (1.5) implies (2.1). Finally, applying the continuous functional

$$\rho: D^{(4)}_{[0,1]} \to D_{[0,1]},$$

$$\rho(Z_1, Z_2, Z_3, Z_4) = \exp[Z_1 - \frac{1}{2}Z_2 + Z_3] \cdot Z_4,$$

we get that

$$E(\lambda X) \xrightarrow{w(J_1)} E(\lambda X).$$

Since (1.6) is equivalent to (1.7) (by the use of the polynomial mapping), and (1.6) trivially implies (1.5), Theorem 1 is proved.

References

- 1. Avram, F., Taqqu, M.S.: Symmetric Polynomials of Random Variables
 Attracted to an Infinitely Divisible Law. To appear in Z. für Wahr.
- 2. Billingsley, P.: Convergence of probability measures. Wiley: New York, (1968).
- Dynkin, E.3.. Mandelbaum, A.: Symmetric statistics, Poisson point processes and multiple Wiener integrals. <u>Ann. of Statistics</u> 11, 739-745, (1983).
- Denker, M., Grillenberger, Chr., Keller, G.: A note on invariance principles for von Mises' statistics. <u>Metrika</u> (to appear 1985).
- 5. Feinsilver, P.J.: Special functions, probability semigroups and Hamilton flows. Lect. Notes in Math., 696. Springer Verlag: New York (1978).
- 5. Jacod, J.: Theorèmes Limite Pour Les Processus. École d'Été de Probabilités de Caint-Flour XIII--1983. Lect. Notes in Math. 1117. Springer Verlag: New York (1983).
- 7. Mandelbaum, A., Taqqu, M.S.: Invariance principle for symmetric statistics. Ann. of Statistics 12, 483-496 (1984).
- Meyer, P.-A.: Un cours sur les integrales stochastiques. Sem. Probl X. Lect. Notes Math. 511, 245-400. Springer Verlag: New York (1976).
- 9. Rubin. H., Vitale, R.A.: Asymptotic distribution of symmetric statistics. Ann. of Statistics 3, 165-170 (1980).

CATTER 10000000