2주 2강

통신(정보전송) 시스템의 하드웨어 (1)

중실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다. *사용서체 : 나눔글꼴

- 데이터를 전송하는 통로
- 통신기기 사이(단말장치와 단말장치, 단말장치와 컴퓨터, 컴퓨터와 컴퓨터)를 연결하는 역할
- 데이터 전송선로 또는 정보전송 매체
- 데이터 전송선로는 유선과 무선으로 구분
- 전송선로는 전송속도에 영향을 줌

표 2-6 전송선로의 종류와 특징

구분	기능 기능	종류	정보전송 수단	특징
유선선로	전화선과 동축 케이블 은 정보전송 수단이 전 기이며, 광섬유 케이블 은 빛임	꼬임선(전화선)	전기(금속도체)	 기후 조건(온도, 날씨 등)으로 감쇄 현상 발생 지형에 따라 설치할 때 장애 발생 가입자만 데이터를 전달할 수 있음 전선이 끊어질 수 있음 근거리 통신에 적합
		동축 케이블		
		광섬유 케이블	빛	
무선선로	무선선로는 안테나를 이용해 송수신하며 전 송할 때는 안테나가 공 기 등의 매체를 이용해 전자기파를 방출하고, 수신할 때는 주위 매체 를 이용해 전자 기파를 끌어당김	마이크로파 (위성, 지상)	전파	 지형, 재해와 관계없이 전송 가능 지형, 기후에 따라 전파방법이 다름 수신 범위가 넓어 많은 사람에게 데이터 전달 주파수 대역에서 전파법 규제를 받음 광대역 통신에 적합
		라디오파		

KOREA SOONGSIL CYBER UNIVERSITY

- 유선선로
 - 꼬임선
 - 구리선 두 가닥을 서로 균일하게 꼬아서 여러 다 발로 묶어 보호용 피복선을 입힌 케이블
 - 전자기 간섭 현상을 줄이려고 전선을 꼬아서 사용
 - 전자기 간섭을 차단하는 피복방법에 따라 분류
 - 트위스티드 페어 케이블이라고도 함

그림 2-13 꼬임선(트위스티드 페어 케이블)의 구조

- 유선선로
 - 동축 케이블
 - 내부에 있는 단열 구리선과 외부 도체로 구성
 - 내부 도체와 외부 도체 사이에는 절연물질이 있으며, 외부 도체는 피복으로 보호
 - 유선TV 전송, 근거리 통신망, CATV 등 고주파 신호의 광대역 전송과 장거리 전화 전송에 주로 사용

그림 2-14 동축 케이블

- 유선선로
 - 광섬유 케이블
 - 지름의 굵기가 0.1mm 정도인 석영(유리섬유)을 케이블 안에 여러 가닥 넣어서 레이저광의 전반사 현상을 이용해 데이터를 전송하는 원통형 선로

- 광섬유케이블
 - 장점
 - 꼬임선, 동축 케이블에 비해 대역폭이 넓어 고속으로 전송 가능
 - 감쇄 영향도 상대적으로 아주 낮음
 - 외부 전자기장에 영향을 받지 않아 오류 발생률도 매우 낮음
 - 케이블이 작고 가벼우며(유연성)
 - 단점
 - 가격이 비쌈
 - 탭을 이용하여 분기선을 만들기가 어려움
 - 연결할 부위를 일직선으로 만들어야 해서 정교한 납땜 기술 필요

■ 통신회선

- 유선선로
 - 광섬유 케이블
 - 광코어, 광클래딩, 재킷 등으로 구성
 - 신호를 전달할 때 전반사로 빛을 전달하는 원리 이용
 - 2진 수 0과 1을 구현하려고 광섬유가 빛을 켰다 껐다하는 캐리어 역할을 수행

그림 2-15 광섬유 케이블의 구성

그림 2-16 광섬유 케이블에서 빛의 신호 전달

- 통신회선
 - 유선선로
 - 광섬유 케이블
 - 빛의 전송과정
 - 1. 송신 측에서 레이저 다이오드인 발광기와 발광 다이오드 를 이용해 전기 신호를 광신호(빛)로 변환
 - 2. 변환된 광신호를 광섬유 케이블로 수신 측에 전달
 - 수신 측에서는 수광기와 애벌런치 포토 다이오드 또는 핀 광다이오드를 이용해 광신호를 전기 신호로 변환

〈광통신 흐름도〉

음성/영상 신호 → 변조회로 → 발광소자(레이저나 발광 다이오드: 전기 신호를 빛으로 변환) → 광섬유 → 수광 소자(광 검출기: 빛 신호를 전기 신호로 변환) → 복조 회로 → 음성/영상 신호

그림 2-17 광섬유 케이블을 이용한 빛의 전송 과정

■ 통신회선

- 유선선로
 - 광섬유 케이블

표 2-10 광섬유의 장단점

장점	단점
• 광대역성 및 고속 정보전송	• 접속 어려움
• 저손실성과 비간섭성	• 충격에 약함
• 보안성 및 무누화	• 케이블 장애 대책이 금속 케이블보다 어려움
• 높은 경제성과 소형 경량화	• 비전도체로 중계기에 급전을 위한 별도의 기술이 필요

수고하셨습니다.

