## Security Governance: Fundamentals and Best Practices

Instructor Name

School/College Name

March 12, 2025

## Introduction to Security Governance: Protecting What Matters

- Security governance is the framework of rules, processes, and practices that ensure an organization protects its information assets.
- Effective security governance aligns security practices with business objectives and stakeholder expectations.
- Security governance establishes accountability and clear lines of responsibility for protecting systems and data.
- Security governance reduces risks by providing structure and consistency to security efforts across an organization.

#### Why Security Governance Matters

Without proper governance, security efforts become fragmented, inconsistent, and ineffective, leaving organizations vulnerable to threats.

## The Security Governance Framework: An Overview

- A security governance framework provides the structure that guides all security decisions and activities.
- The framework includes guidelines, policies, standards, and procedures that work together to protect assets.
- Effective frameworks balance security needs with usability to avoid creating barriers to legitimate work.
- Frameworks must adapt to changing threats, technologies, and regulatory requirements.



## Security Guidelines: Setting the Foundation

- **Security guidelines** are recommendations that suggest how security should be implemented without mandating specific actions.
- Guidelines provide flexibility for different departments or situations while still promoting security best practices.
- Guidelines often serve as the starting point for developing more specific security policies and standards.
- Well-crafted guidelines help staff understand the reasoning behind security requirements.

#### Example Guideline

"Users should create passwords that are difficult for others to guess while still being memorable to themselves."

## Policy Development: Creating Clear Security Direction

- **Security policies** are formal documents that define required behaviors, responsibilities, and consequences for non-compliance.
- Effective policies clearly state what must be done rather than how it should be accomplished.
- Policies should be written in clear, understandable language that avoids technical jargon when possible.
- All security policies should be regularly reviewed and updated to address emerging threats and technologies.

#### Policy Development Process

- Identify need and gather requirements
- Draft policy with stakeholder input
- Review and obtain approval
- Communicate and implement
- Monitor, enforce, and revise

## Acceptable Use Policies (AUP): Defining Proper Technology Use

- An Acceptable Use Policy (AUP) defines how employees may use company systems, networks, and data.
- AUPs outline prohibited activities such as accessing inappropriate content or installing unauthorized software.
- AUPs establish that company systems are primarily for business purposes and may be monitored.
- Effective AUPs balance necessary restrictions with reasonable allowances for limited personal use.

| Typically Allowed                | Typically Prohibited             |
|----------------------------------|----------------------------------|
| Limited personal email           | Installing unauthorized software |
| Brief web browsing during breaks | Accessing inappropriate content  |
| Occasional personal calls        | Sharing credentials              |
| Using approved cloud storage     | Circumventing security controls  |

Table: Common AUP Elements

## Information Security Policies: Safeguarding Digital Assets

- Information security policies establish rules for protecting the confidentiality, integrity, and availability of data.
- These policies define data classification schemes that determine how different types of information should be handled.
- Information security policies specify access control requirements based on the principle of least privilege.
- They include requirements for data protection throughout its lifecycle, from creation to deletion.

#### Key Information Security Policy Components

- Data classification (public, internal, confidential, restricted)
- Access control requirements
- Data handling procedures
- Security incident reporting

## Business Continuity: Keeping Operations Running

- Business continuity refers to maintaining essential functions during and after a disruptive event.
- Business continuity policies define how an organization will continue operating during disasters, outages, or other crises.
- These policies establish the maximum acceptable downtime for critical systems and processes.
- Business continuity planning includes identifying essential functions and creating alternate procedures when normal operations are disrupted.

#### Business Impact Analysis (BIA)

A BIA identifies critical business functions, determines the impact of disruptions, establishes recovery time objectives (RTOs), and informs resource allocation for continuity planning.

## Disaster Recovery: Bouncing Back from Catastrophe

- **Disaster recovery** focuses specifically on restoring IT systems and infrastructure after a disruptive event.
- Disaster recovery policies define the methods, tools, and procedures for recovering damaged systems.
- These policies establish Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO) for each system.
- Effective disaster recovery requires regular testing, updating, and training for all involved personnel.



### Incident Response: Managing Security Breaches

- **Incident response** is the organized approach to addressing and managing security breaches.
- Incident response policies define what constitutes a security incident and establish procedures for handling various types of incidents.
- These policies create a structured framework that enables quick and effective responses to minimize damage.
- Incident response requires clear communication protocols and defined roles for all team members.

#### The Incident Response Lifecycle

- Preparation: Create plans and train teams
- Detection & Analysis: Identify and assess the incident
- Containment: Prevent the incident from spreading
- Eradication: Remove the threat from systems
- Recovery: Restore systems to normal operation
- Lessons Learned: Improve future responses

## SDLC Security: Building Safety into Software Development

- **Software Development Lifecycle (SDLC)** security integrates security practices throughout the entire development process.
- SDLC security policies establish requirements for secure coding, testing, and validation at each development phase.
- These policies mandate security reviews and testing before software can move to the next development stage.
- Effective SDLC security shifts the focus from fixing vulnerabilities after deployment to preventing them during development.



## Change Management Policies: Controlling System Modifications

- Change management policies establish processes for making changes to IT systems in a controlled, documented manner.
- These policies require formal approval processes before changes can be implemented in production environments.
- Change management ensures that modifications are properly tested and do not negatively impact security or functionality.
- Effective change management includes rollback plans in case changes create unexpected problems.

#### Example Change Management Process

A system administrator wants to update server software. They must:

- Submit a change request with details and justification
- Obtain approval from the change advisory board
- Schedule the change during an approved maintenance window
- Test the change in a non-production environment first
- Document results and follow rollback procedures if needed

## Security Standards: Establishing Consistent Practices

- Security standards define specific, mandatory requirements for implementing security controls.
- Standards provide detailed technical specifications that support the broader objectives stated in security policies.
- Unlike guidelines, standards leave little room for interpretation and establish clear compliance requirements.
- Effective standards balance security needs with practicality to ensure they can be reasonably implemented.

| Security Element | Example Standard Requirement                    |  |
|------------------|-------------------------------------------------|--|
| Passwords        | Minimum 12 characters with complexity require-  |  |
|                  | ments                                           |  |
| System Updates   | Critical patches must be applied within 14 days |  |
| Data Encryption  | All sensitive data must use AES-256 encryption  |  |
| Access Reviews   | Administrator access must be reviewed quarterly |  |

Table: Example Security Standards

## Password Standards: Creating Strong Authentication Rules

- Password standards define specific requirements for creating, managing, and protecting user credentials.
- These standards specify minimum password length, complexity requirements, and expiration periods.
- Password standards often include rules for password storage, such as requiring salted hashing rather than storing plaintext passwords.
- Effective standards balance security needs with usability to avoid encouraging risky workarounds like writing passwords down.

#### Modern Password Guidance

The National Institute of Standards and Technology (NIST) now recommends:

- Longer passwords (at least 12 characters)
- Checking new passwords against lists of commonly used or compromised passwords
- Eliminating arbitrary complexity requirements
- Removing periodic password change requirements



## Access Control Standards: Managing Who Gets In

- Access control standards define requirements for granting, managing, and revoking access to systems and data.
- These standards implement the principle of least privilege, ensuring users have only the access necessary for their job functions.
- Access control standards require regular reviews of user permissions to identify and remove unnecessary access rights.
- Effective standards include special provisions for privileged accounts that have elevated system access.

| Control Type          | Examples                    |
|-----------------------|-----------------------------|
| Preventive Controls   | Authentication              |
| Preventive Controls   | Authorization               |
| Detective Controls    | Access auditing             |
| Detective Controls    | Login monitoring            |
| Corrective Controls   | Account lockout             |
| Corrective Controls   | Password reset              |
| Compensating Controls | Multi-factor authentication |
|                       | Separation of duties        |

Table: Examples of Access Control Standards

## Physical Security Standards: Protecting Tangible Assets

- Physical security standards establish requirements for protecting facilities, equipment, and physical information assets.
- These standards define access requirements for different security zones within facilities (e.g., lobbies, server rooms).
- Physical security standards include requirements for monitoring systems like cameras and intrusion detection.
- Effective standards consider both deliberate threats (theft, vandalism) and environmental risks (fire, flood, power loss).

#### Example: Server Room Requirements

- Access limited to authorized IT personnel via card readers with PIN
- 24/7 video surveillance with 90-day retention
- Environmental monitoring for temperature, humidity, and water
- Fire suppression system specific to electronic equipment



# Encryption Standards: Securing Data Transmission and Storage

- **Encryption standards** define requirements for protecting data confidentiality through cryptographic methods.
- These standards specify which encryption algorithms and key lengths must be used for different types of data.
- Encryption standards establish requirements for key management, including generation, storage, and rotation practices.
- Effective standards address both data at rest (stored) and data in transit (being transmitted).

| Data Type       | Encryption Method | Key Management                |
|-----------------|-------------------|-------------------------------|
| Data at rest    | AES-256           | Keys stored in secure hard-   |
|                 |                   | ware                          |
| Data in transit | TLS 1.3           | Certificates rotated annually |
| Emails          | S/MIME or PGP     | Key pairs for each user       |
| Backups         | AES-256           | Offline key storage           |

Table: Example Encryption Standards

17/29

## Security Procedures: Implementing Day-to-Day Practices

- **Security procedures** are detailed, step-by-step instructions for performing specific security-related tasks.
- Procedures translate high-level policies and standards into practical, actionable steps for implementation.
- Well-written procedures reduce human error by providing clear guidance for complex or infrequent tasks.
- Effective procedures include verification steps to confirm proper completion and documentation requirements.

#### Components of Effective Security Procedures

- Clear purpose and scope statement
- Required tools and prerequisites
- Detailed sequential steps with screenshots or diagrams
- Expected outcomes and verification methods
- Troubleshooting guidance for common issues

## Change Management Procedures: Steps for Safe System **Updates**

- Change management procedures provide detailed instructions for implementing the change management policy.
- These procedures define the exact steps for requesting, approving, implementing, and documenting changes.
- Change management procedures include methods for categorizing changes based on risk and potential impact.
- Effective procedures establish different approval paths for routine. significant, and emergency changes.



## Onboarding Procedures: Securely Adding New Users

- **Onboarding procedures** define the process for granting new employees appropriate access to systems and data.
- These procedures establish verification requirements to confirm user identity before access is granted.
- Onboarding procedures include security training requirements that must be completed before users receive full access.
- Effective onboarding creates a complete record of all access granted for future reference and auditing.

#### Sample Onboarding Procedure Steps

- HR verifies employee identity and provides documented approval
- IT creates accounts based on role-specific access templates
- Employee completes security awareness training
- Employee acknowledges acceptance of security policies
- Manager confirms appropriate access levels
- Access provisioning is documented in access management system

## Offboarding Procedures: Safely Removing Access

- **Offboarding procedures** define the process for removing access when an employee leaves the organization.
- These procedures establish timelines for access removal based on the nature of the departure (e.g., immediate for terminations, phased for retirements).
- Offboarding procedures include steps to recover company equipment and data from departing employees.
- Effective offboarding requires coordination between HR, IT, facilities, and the employee's department.

| Departure Type        | Access Removal Time-    | Special Considerations   |
|-----------------------|-------------------------|--------------------------|
|                       | line                    |                          |
| Voluntary resignation | End of last workday     | Knowledge transfer pe-   |
|                       |                         | riod                     |
| Retirement            | End of last workday     | Phased transition period |
| Termination           | Immediate               | Monitor final access ac- |
|                       |                         | tivities                 |
| Transfer              | Based on new role start | Modify rather than re-   |
|                       |                         | move                     |

## Security Playbooks: Standardized Response Actions

- **Security playbooks** are detailed action plans for responding to specific security incidents or scenarios.
- Playbooks provide step-by-step instructions that reduce decision-making burden during high-stress situations.
- Well-designed playbooks include decision trees to guide responders through different scenario variations.
- Effective playbooks assign clear responsibilities to specific roles rather than individuals to ensure coverage.

#### Common Security Playbook Elements

- Incident identification criteria and severity classifications
- Required tools and resources for response
- Communication templates and escalation paths
- Detailed containment and eradication steps
- Evidence collection and preservation procedures
- Recovery validation checkpoints

## External Regulatory Considerations: Compliance Requirements

- Regulatory compliance involves adhering to laws, regulations, and standards established by external authorities.
- Security governance must account for industry-specific regulations that mandate certain security controls or practices.
- Non-compliance with regulations can result in significant financial penalties, legal liability, and reputational damage.
- Effective governance includes monitoring regulatory changes to ensure continued compliance as requirements evolve.



## Legal Considerations in Security Governance

- Security governance must align with relevant laws regarding data protection, privacy, and breach notification.
- Legal considerations include liability for security failures that impact customers, partners, or the public.
- Security governance documentation may become legal evidence during investigations or litigation.
- Effective governance includes consultation with legal experts when developing policies for sensitive areas.

#### Legal Compliance Considerations

- Data breach notification requirements vary by jurisdiction
- Privacy laws restrict how personal data can be collected and used
- Contractual obligations may impose additional security requirements
- Intellectual property laws affect how proprietary information must be protected

## Industry-Specific Security Standards

- Industry-specific security standards are frameworks tailored to address unique risks in particular sectors.
- These standards often develop through industry associations or specialized regulatory bodies.
- Industry standards may be voluntary but can become de facto requirements for doing business in certain sectors.
- Effective governance leverages these standards to establish baseline security controls relevant to the organization's industry.

| Industry             | Standard | Focus Areas                       |
|----------------------|----------|-----------------------------------|
| Healthcare           | HIPAA    | Patient data privacy and security |
| Financial            | PCI DSS  | Payment card processing secu-     |
|                      |          | -7                                |
| Critical Infrastruc- | NERC CIP | Power grid protection             |
| ture                 |          |                                   |
| Government           | FedRAMP  | Cloud service security            |

Table: Example Industry Standards

## Local and Regional Security Regulations

- Local and regional regulations establish security and privacy requirements specific to geographic areas.
- These regulations can vary significantly between different cities, states, provinces, or regions.
- Organizations operating in multiple locations must ensure compliance with all applicable local requirements.
- Effective governance includes monitoring for new or changing local regulations that may impact security practices.

#### Examples of Regional Security Regulations

- California Consumer Privacy Act (CCPA) applies specifically to businesses operating in California
- New York SHIELD Act establishes specific data security requirements for companies with New York residents' data
- Illinois Biometric Information Privacy Act (BIPA) regulates collection and storage of biometric data
- Massachusetts 201 CMR 17.00 establishes specific technical security requirements for personal information

## National Security Standards and Laws

- National security standards provide frameworks that apply to all organizations within a country.
- These standards establish baseline security expectations that may be further strengthened by industry regulations.
- National laws often include penalties for security breaches or failure to implement reasonable security measures.
- Effective governance ensures compliance with both mandatory requirements and voluntary national standards.

| Country        | Standard/Law        | Primary Focus            |
|----------------|---------------------|--------------------------|
| United States  | FISMA               | Federal information se-  |
|                |                     | curity                   |
| United Kingdom | Data Protection Act | Personal data protection |
| Australia      | Privacy Act         | Data breach notification |
| Canada         | PIPEDA              | Consumer privacy         |

Table: National Security Standards Examples

## Global Security Frameworks and Regulations

- Global security frameworks provide standardized approaches recognized across international boundaries.
- These frameworks help organizations establish security governance that satisfies requirements in multiple countries.
- Global regulations like GDPR may apply to organizations regardless of where they are physically located.
- Effective governance identifies which global frameworks best align with the organization's operations and compliance needs.

#### Key Global Security Frameworks

- ISO 27001: International standard for information security management systems
- NIST Cybersecurity Framework: Flexible framework for managing and reducing cybersecurity risk
- CIS Controls: Prioritized set of actions to protect critical systems and data
- COBIT: Framework for governance and management of enterprise information technology

## Monitoring and Revising Security Governance

- **Security governance monitoring** involves regular assessment of how well policies and standards are being followed.
- Effective governance requires continuous review to address emerging threats, technologies, and regulatory changes.
- Revisions should be based on compliance data, incident response lessons, and security testing results.
- A formal review cycle ensures all governance documents remain relevant and effective over time.

