$\overline{}$					
(-	മറ	۱m	۱Dt	rv:	

Run title	> CFETR small (5.7m) refe	erence file R_0	= 5.72 m
PROCESS Version	> 1.0.3	a	= 1.605 m
Date:	> 02/12/2016	Α	= 3.563
Time:	> 14:33	κ_{95}	= 1.607
User:	> morrisj	δ_{95}	= 0.2667
Optimising:	> toroidal field on axis	Surface area	$= 496.4 \text{ m}^2$
Plasma composition:		Plasma volume	$= 475.7 \text{ m}^3$
	lative to electron density:	No. of TF coils	= 16
D + T	= 0.7547	inboard blanket+shield	= 0.732 m
Не	= 0.07143	ouboard blanket+shield	= 1.852 m
Ве	= 0.02	Fusion power	= 247.5 MW
Ar	= 0.001256		

Power flows:

Coil currents etc:		Power flows:		
	PF 1	= 10.27 MA	Nominal neutron wall load	= 0.3669 MW m ⁻
PF 3 = -7.873 MA		Normalised radius of 'core' region= 0.6		
			Electron density at pedestal	$= 0 \text{ m}^{-3}$
	Startup flux swing	= 120.4 Wb	r/a at density pedestal	= 1
	Available flux swing	= -238 Wb	Helium fraction	= 0.07143
	Burn time	= 0.2778 hrs	Core radiation	= 12.42 MW
			Total radiation	= 23.17 MW
	TF coil type is ITER Nb3Sn		Nuclear heating in blanket	= 208.4 MW
	Peak field at conductor (w. rip.)	= 11.18 T	Nuclear heating in shield	= 0.218 MW
	I/I _{crit}	= 0.623	Power to divertor	= 80.16 MW
	Temperature margin	= 1.916 K	H-mode threshold	= 45.12 MW
	Conduit Von Mises stress	= 3.549e+08 Pa	Divertor life	= 2.348 years
	Case Von Mises stress	= 4.228e+08 Pa	Primary (high grade) heat	= 245.4 MW
	Allowable stress	= 7e+08 Pa	Gross cycle efficiency	= 41.12 %
			Net cycle efficiency	= 40.98 %
	Costs		Gross electric power	= 100.9 MW
	Cost of electricity	=ERROR! Var missing	Net electric power	= -169.5 MW
			Fusion-to-electric efficiency $rac{P_{ m e,net}}{P_{ m fus}}$	= -68.48 %

Physics:

I_p	= 8.705 MA
$Vacuum\ B_T$ at R_0	= 4.95 T
q_{95}	= 2.901
eta_N , thermal	= 2.502 % m T MA^{-1}
eta_N , total	= $2.95 \% m T MA^{-1}$
eta_P , thermal	= 1.14
eta_P , total	= 1.345
$< t_e >$	= 8.772 keV
$< n_e >$	$= 9.841e + 19 \text{ m}^{-3}$
$<\!n_{\rm e,line}\!>\!/n_G$	= 1
$T_{e0}/<\!T_e>$	= 1.5
$n_{e0}/{<}n_{ m e,vol}\!>$	= 1.25
$Z_{ m eff}$	= 1.763
$Z_{ m eff,SoL}$	=ERROR! Var missing
$n_Z/\!<\! n_{ m e,vol}\!>$	= 0.02126
$ au_e$	= 2.149 s
H-factor	= 1.3
Scaling law	= IPB98(y,2)

Neutral Beam Current Drive:

Steady state auxiliary power	= 55.95 MW
Power for heating only	= 0 MW
Bootstrap fraction	= 0.4292
Auxiliary fraction	= 0.324
Inductive fraction	= 0.2468
NB gamma	= $0.2835 \ 10^{20} \ A \ W^{-1} \ m^{-2}$
NB energy	= 802.8 keV
Plasma heating used for H factor	= 90.92 MW
$\begin{array}{c} P_{\rm div} \\ \overline{R_0} \\ \hline P_{\rm div} \\ \hline < n > \overline{R_0} \end{array}$	$= 14.01 \; MW \; m^{-1}$
$\frac{P_{\text{div}}}{\langle n \rangle R_0}$	= 14.24 $\times 10^{-20}$ MW m ²
$rac{P_{ m div}}{P_{ m LH}}$	= 1.777
H* (non-rad. corr.)	= 1.242

