

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/12, C07K 14/47, C12N 5/10,
A61K 48/00, G01N 33/68, C12Q 1/68,
C07K 16/18

(11) International Publication Number:

WO 95/18225

(43) International Publication Date:

6 July 1995 (06.07.95)

(21) International Application Number:

PCT/GB94/02822

A1

(22) International Filing Date:

23 December 1994 (23.12.94)

(30) Priority Data:

9326470.3 9411900.5 24 December 1993 (24.12.93) 14 June 1994 (14.06.94)

GB GB

(71) Applicants (for all designated States except US): MEDICAL RESEARCH COUNCIL [GB/GB]; 20 Park Crescent, London Win 4AL (GB). LEIDEN UNIVERSITY [NL/NL]; P.O. Box 9500, NL-2300 RA Leiden (NL). UNIVERSITY OF WALES COLLEGE OF MEDICINE [GB/GB]; Heath Park, Cardiff CF4 4XN (GB). ERASMUS UNIVERSITY ROTTERDAM [NL/NL]; Burg Ondiaan 50, Postbox 1738, NL-3000 DR Rotterdam (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HARRIS, Peter, Charles [GB/GB]; 65 Freelands Road, Oxford OX4 4BS (GB). PERAL, Belen [ES/GB]; 77 Lock Crescent, Kidlington, Oxford OX5 1HF (GB). WARD, Christopher, James [GB/GB]; 30 Benson Road, Oxford OX3 7EH (GB). HUGHES, James [GB/GB]; 225 Crowley Road, Oxford OX4 1XD (GB). BREUNING, Martin, Hendrik [NL/NL]; Brigantijnstraat 57,

NL-1503 BR Zaandam (NL). PETERS, Dorothea, Johanna, Maria [NL/NL]; Zuster Meljboomstraat 267, NL-2331 PH Leiden (NL). ROELFSEMA, Jeroen, Hendrik [NL/NL]; Vijf Meilaan 2006, NL-2321 RR Leiden (NL). SAMPSON, Julian [GB/GB]; 34 Bridge Street, Cardiff CF5 2EL (GB). HALLEY, Dirkje, Jorijntje, Johanna [NL/NL]; van Aerssenlaan 35d, NL-3039 KD Rotterdam (NL). NELLIST, Mark, David [GB/NL]; Noordmolenstraat 57b, NL-3053 RG Rotterdam (NL). JANSSEN, Lambertus, Antonius, Jacobus [NL/NL]; Schokker 37, NL-2991 DJ Barendrecht (NL). HESSELING, Ajenne, Lique, Wilhelma [NL/NL]; Haya van Someren Downerpad 7, NL-3207 DK Spijkenisse (NL).

(74) Agents: NEWELL, William, Joseph et al.; Wynne-Jones, Laine & James, 22 Rodney Road, Cheltenham, Gloucestershire GL50 1JJ (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: POLYCYSTIC KIDNEY DISEASE 1 GENE AND USES THEREOF

(57) Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder which frequently results in renal failure, due to progressive cyst development. The major locus, PKD1, maps to 16p13.3. A chromosome translocation is identified associated with ADPKD which disrupts a gene (PBP), encoding a 14 kb transcript, in the PKD1 candidate region. Further mutations of the PBP gene were found in PKD1 patients confirming that PBP is the PKD1 gene. This gene is located adjacent to the tuberous sclerosis (2) locus in a genomic region that is reiterated more proximally on 16p. The duplicate area encodes three transcripts substantially homologous to the PKD1 transcript. Partial sequence analysis of the PKD1 transcript shows that it encodes a novel protein. Screening of actual or suspected ADPKD patients for normal or mutated PKD1 can be used for diagnostic purposes. PKD1-associated disorders such as ADPKD may be treated or prevented by PKD1 gene therapy and/or administration of functional PKD1 protein to affected cells.

100

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hunguy	NO	Norwsy
BG	Bulgaria	TE.	Ireland	NZ	New Zealand
BJ	Benin	IT	linly	PL	Poland
BR	Brazil	JP	Japan	PŤ	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
ČG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI.	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakio
CM	Саттегооп	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad'
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES.	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan ·
FR	France	MN	Mongolia	VN	Viet Nava
GA	Gabon	17417	1410116000		
UA.	CROOM				

PCT/GB94/02822 WO 95/18225

- 1 -

POLYCYSTIC KIDNEY DISEASE 1 GENE AND USES THEREOF

The present invention relates to the polycystic kidney disease 1 (PKD1) gene, mutations thereof in patients having PKD1-associated disorders, the protein encoded by the PKD1 gene, and their uses in diagnosis and therapy.

Background to the Invention

5

15

25

30

All references mentioned herebelow are listed in full at the end of the description which are herein incorporated by reference in their entirety. Except 10 where the context clearly indicates otherwise, references to the PBP gene, transcript, sequence, protein or the like can be read as referring to the PKD1 gene, transcript, sequence, protein or the like, respectively.

A landmark study by Dalgaard, 1957 showed that autosomal dominant polycystic kidney disease (ADPKD) also termed adult polycystic kidney disease (APKD) is one of the commonest genetic diseases of man (approximately 1/1000 individuals affected). The major 20 feature of this dominant disease is the development of cystic kidneys which commonly leads to renal failure in adult life. This simple description, however, belies the diverse systemic disorder, affecting many other organs (reviewed in Gabow, 1990) and one which occasionally presents in childhood (Fink, et al., 1993; Zerres, et al., 1993). Extrarenal manifestations include liver cysts (Milutinovic, et al., 1980), and more rarely cysts of the pancreas (Gabow, 1993) and Intracranial aneurysms occur in other organs. approximately 5% of patients and are a significant cause of morbidity and mortality due to subarachnoid haemorrhage (Chapman, et al., 1992). More recently, an increased prevalence of cardiac valve defects (Hossack, et al., 1988), herniae (Gabow, 1990) and colonic

WO 95/18225

5

10

15

20

30

35

diverticulae (Scheff, et al., 1980) has been reported.

- 2 -

The major cause of morbidity in ADPKD, however, is progressive renal disease characterised by the formation and enlargement of fluid filled cysts, resulting in grossly enlarged kidneys. Renal function deteriorates as normal tissue is compromised by cystic growth, resulting in end stage renal disease (ESRD) in more than 50% of patients by the age of 60 years (Gabow, et al., 1992): ADPKD accounts for 8-10% of all renal transplantation and dialysis patients in Europe and the USA (Gabow, 1993). Biochemical studies have suggested several potential causes of cyst formation and development, including: abnormal epithelial cell growth, alterations to the extracellular matrix and changes in cellular polarity and secretion (reviewed in Gabow, 1991; Wilson and Sherwood, 1991). The primary defect in ADPKD, however, remains unclear and considerable effort has therefore been applied to identifying the defective gene(s) in this disorder by genetic approaches.

The first step towards positional cloning of an ADPKD gene was the demonstration of linkage of one locus now designated the polycystic kidney disease 1 (PKD1) locus to the a globin -cluster on the short arm of chromosome 16 (Reeders, et al., 1985). Subsequently, families with ADPKD unlinked to markers. of 16p were described (Kimberling, et al., 1988; Romeo, et al., 1988) and a second ADPKD locus (PKD2) has recently been assigned to chromosome region 4q13q23 (Kimberling, et al., 1993; Peters, et al., 1993). It is estimated that approximately 85% of ADPKD is due to PKD1 (Peters and Sandkuijl, 1992) with PKD2 accounting for most of the remainder. PKD2 appears to be a milder condition with a later age of onset and ESRD (Parfrey, et.al., 1990; Gabow, et al., 1992; Ravine, et al., 1992).

- 3 -

The position of the PKD1 locus was refined to chromosome band 16p13.3 and many markers were isolated from that region (Breuning, et al., 1987; Reeders, et al., 1988; Breuning, et al., 1990; Germino, et al., 1990; Hyland, et al., 1990; Himmelbauer, et al., 1991). Their order, and the position of the PKD1 locus, has been determined by extensive linkage analysis in normal and PKD1 families and by the use of a panel of somatic cell hybrids (Reeders, et al., 1988; Breuning, et al., 1990; Germino, et al., 1990). An accurate long range restriction map (Harris, et al., 1990; Germino, et al., 1992) has located the PKD1 locus in an interval of approximately 600 kb between the markers GGG1 and SM7 (Harris, et al., 1991; Somlo, et al., 1992) (see Figure 1a). The density of CpG islands and identification of many mRNA transcripts indicated that this area is rich in gene sequences. Germino et al (1992) estimated that the candidate region contains approximately 20 genes.

5

10

15

20

25

30

35

Identification of the PKD1 gene from within this area has thus proved difficult and other means to pinpoint the disease gene were sought. Linkage disequilibrium has been demonstrated between PKD1 and the proximal marker VK5, in a Scottish population (Pound, et al., 1992) and between PKD1 and BLu24 (see Figure 1a), in a Spanish population (Peral, et al., 1994). Studies with additional markers have shown evidence of a common ancestor in a proportion of each population (Peral, et al., 1994; Snarey, et al., 1994), but the association has not precisely positioned the PKD1 locus.

Disease associated genomic rearrangements, detected by cytogenetics or pulsed field gel electrophoresis (PFGE) have been instrumental in the identification of various genes associated with various genetic disorders. Kitherto, no such abnormalities

- 4 -

related to PKD1 have been described. This situation contrasts with that for the tuberous sclerosis locus, which lies within 16p13.3 (TSC2). In that case, TSC associated deletions were detected by PFGE within the interval thought to contain the PKD1 gene and their characterisation was a significant step toward the rapid identification of the TSC2 gene (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). The TSC2 gene therefore maps within the candidate region for the hitherto unidentified PKD1 gene; as 10 polycystic kidneys are a feature common to TSC and ADPKD1 (Bernstein and Robbins, 1991) the possibility of an aetiological link, as proposed by Kandt et al. (1992), was considered.

We have now identified a pedigree in which the two distinct phenotypes, typical ADPKD or TSC, are seen in different members. In this family, the two individuals with ADPKD are carriers of a balanced chromosome translocation with a breakpoint within 16pl3.3. We have located the chromosome 16 translocation breakpoint and a gene disrupted by this rearrangement has been defined; the discovery of additional mutations of that gene in other PKDl patients shows that we have identified the PKDl gene.

25 Summary of the Invention

30

Accordingly, in one aspect, this invention provides an isolated, purified or recombinant nucleic acid sequence comprising:-

- (a) a PKD1 gene or its complementary strand,
- (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
- (c) a fragment of a molecule defined in (a) or (b) above. In particular, there is provided a sequence wherein the PKDl gene has the partial nucleic acid sequence according to Figure 7 and/or 10. The

- 5 -

invention therefore includes a DNA molecule selected from:

- (a) a PKD1 gene or its complementary strand,
- (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,

5

15

20

30

35

- (c) a molecule coding for a polypeptide having the partial sequence of Figure 7,
- (d) genomic DNA corresponding to a molecule in10 (a) above; and
 - (e) a fragment of a molecule defined in any of(a), (b), (c) or (d) above.

The PKD1 gene described herein is a gene found on human chromosone 16, and the results of familial studies described herein form the basis for concluding that this PKD1 gene encodes a protein called PKD1 protein which has a role in the prevention or suppression of ADPKD. The PKD1 gene therefore includes the DNA sequences shown in Figures 7 and 10, and all functional equivalents. The gene furthermore includes regulatory regions which control the expression of the PKD1 coding sequence, including promotor, enhancer and terminator regions. Other DNA sequences such as introns spliced from the end-product PKD1 RNA transcript are also encompassed. Although work has been carried out in relation to the human gene, the corresponding genetic and functional sequences present in lower animals are also encompassed.

The present invention therefore further provides a PKD1 gene or its complementary strand having the partial sequence according to Figure 7. In particular, it provides a PKD1 gene or its complementary strand having the partial sequence of Figures 7 and/or 10 which gene or strand is mutated in some ADPKD patients (more specifically, PKD1 patients).

The invention further provides a nucleic acid sequence comprising a mutant PKD1 gene, especially one selected from a sequence comprising a partial sequence according to Figures 7 and/or 10 when:

6

- (a) [OX114] base pairs 1746-2192 as defined in Figure 7 are deleted5 (446bp);
 - (b) [OX32] base pairs 3696-3831 as defined in Figure 7 are deleted by a splicing defect;
- (c) [OX875] about 5.5kb flanked by the two Xbal sites shown in Figure 3a are deleted and the EcoR1 site separating the CW10 (41kb) and JH1 (18kb) sites is thereby absent
 - (d) [WS53] about 100kb extending between the JHl and CW21 and the SM6 and JHl7 sites shown in Figure 6 and the PKDl gene is thereby absent, the deletion lying proximally between SM6 and JHl3;
- (e) [461] 18bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;
 - (f) [OX1054] 20bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;
- 20 (g) [WS212] about 75kb are deleted between SM9-CW9 distally and the PKD1 3'UTR proximally as shown in Figure 12;
 - (h) [WS-215] about 160kb are deleted between CW20 and SM6-JH17 as shown in Figure 12;
- (i) [WS-227] about 50kb are deleted between CW20 and JH11 as shown in25 Figure 12;
 - (j) [WS-219] about 27kb are deleted between JHl and JH6 as shown in Figure 12;
 - (k) [WS-250] about 160kb are deleted between CW20 and BLu24 as shown in Figure 12;
 - (1) [WS-194] about 65kb is deleted between CW20 and CW10.

 The invention therefore extends to RNA molecules comprising an RNA sequence corresponding to any of the DNA sequences set out above. The molecule is preferably the transcript reference PBP and

30

SUBSTITUTE SHEET (RULE 26)

- 7 -

identifiable from the restriction map of Figure 3a and having a sequence of about 14 Kb.

In another aspect, the invention provides a nucleic acid probe having a sequence as set out above; in particular, this invention extends to a purified nucleic acid probe which hybridises to at least a portion of the DNA or RNA molecule of any of the preceding sequences. Preferably, the probe includes a label such as a radiolabel for example a \$32p\$ label.

5

10

15

20

30

35

In another aspect, this invention provides a purified DNA or RNA coding for a protein comprising the amino acid sequence of Figure 7 and/or 10, or a protein polypeptide having homologous properties with said protein, or having at least one functional domain or active site in common with said protein.

The DNA molecule defined above may be incorporated in a recombinant cloning vector for expressing a protein having the amino acid sequence of Figure 7 and/or 10, or a protein or a polypeptide having at least one functional domain or active site in common with said protein.

In another aspect, the invention provides a polypeptide encoded by a sequence as set out above, or having the amino acid sequence according to the partial amino acid sequence of Figure 7 and/or 10, or a protein or polypeptide having homologous properties with said protein, or having at least one functional domain or active site in common with said protein. In particular, there is provided an isolated, purified or recombinant polypeptide comprising a PKD1 protein or a mutant or variant thereof or encoded by a sequence set out above or a variant thereof having substantially the same activity as the PKD1 protein.

This invention also provides an in vitro method of determining whether an individual is likely to be

affected with tuberous sclerosis, comprising the steps of:

assaying a sample from the individual to determine the presence and/or amount of PKD1 protein or polypeptide having the amino acid sequence of Figure 7 and/or 10.

Additionally or alternatively, a sample may be assayed to determine the presence and/or amount of mRNA coding for the protein or polypeptide having the amino acid sequence of Figure 7 and/or 10, or to determine the fragment lengths of fragments of nucleotide sequences coding for the protein or polypeptide of Figure 7 and/or 10, or to detect inactivating mutations in DNA coding for a protein having the amino acid sequence of Figure 7 and/or 10 or a protein having homologous properties. Said screening preferably includes applying a nucleic acid amplification process to said sample to amplify a fragment of the DNA sequence. Said nucleic acid amplification process advantagously utilizes at least one of the following sets of primers as identified herein:-

AH3 F9 : AH3 B7 3A3 C1 : 3A3 C2 AH4 F2 : JH14 B3

5

10

15

20

25

30

35

Alternatively, said screening method may comprise digesting said sample to provide EcoRI fragments and hybridising with a DNA probe which hybridises to the EcoRI fragment identified (A) in Figure 3(a), and said DNA probe may comprise the DNA probe CW10 identified herein.

Another screening method may comprise digesting said sample to provide BamHI fragments and hybridising with a DNA probe which hybridises to the BamHI fragment

- 9 -

identified (B) in Figure 3 (a), and said DNA probe may comprise the DNA probe 1A1H.6 identified herein.

A method according to the present invention may comprise detecting a PKD1-associated disorder in a patient suspected of having or having predisposition to, said disorder, the method comprising detecting the presence of and/or evaluating the characteristics of PKD1 DNA, PKD1 mRNA and/or PKD1 protein in a sample taken from the patient. Such method may comprise detecting and/or evaluating whether the PKD1 DNA is deleted, missing, mutated, aberrant or not expressing normal PKD1 protein. One way of carrying out such a method comprises:

5

10

15

20

35

- A. taking a biological, tissue or biopsy sample from the patient;
 - B. detecting the presence of and/or evaluating the characteristics of PKD1 DNA, PKD1 mRNA and/or PKD1 protein in the sample to obtain a first set of results;
- c. comparing the first set of results with a second set of results obtained using the same or similar methodology for an individual not suspected of having said disorders; and if the first and second sets of results differ in that the PKD1 DNA is deleted, missing, aberrant, mutated or not expressing PKD1 protein then that indicates the presence, predisposition or tendency of the patient to develop said disorders.

A specific method according to the invention comprises extracting a sample of PKD1 DNA or DNA from the PKD1 locus purporting to be PKD1 DNA from a patient, cultivating the sample in vitro and analysing the resulting protein, and comparing the resulting protein with normal PKD1 protein according to the well-established Protein Truncation Test.

Less sensitive tests include analysis of RNA using RT PCR (reverse transcriptase polymerase chain

reaction) and examination of genomic DNA.

5

10

20

35

On the other hand, if step C of the method is replaced by:

c. comparing the first set of results with a second set of results obtained using the same or similar methodology in an individual known to have the or at least one of said disorder(s); and if the first and second sets of results are substantially identical, this indicates that the PKD1 DNA in the patient is deleted, mutated or not expressing normal PKD1 protein.

The invention further provides a method of characterising a mutation in a subject suspected of having a mutation in the PKD1 gene, which method comprises:

- A. amplifying each of the exons in the PKD1 gene of the subject;
 - B. denaturing the complementary strands of the amplified exons;
 - C. diluting the denatured separate, complementary strands to allow each single-stranded DNA molecule to assume a secondary structural conformation;
 - D. subjecting the DNA molecule to electrophoresis under non-denaturing conditions;
 - E. comparing the electrophoresis pattern of the single-stranded molecule with the electrophoresis pattern of a single-stranded molecule containing the same amplified exon from a control individual which has either a normal or PKD1 heterozygous genotype; and
- F. sequencing any amplification product which 30 has an electrophoretic pattern different from the pattern obtained from the DNA of the control individual.

The invention also extends to a diagnostic kit for carrying out a method as set out above, comprising nucleic acid primers for amplifying a fragment of the DNA or RNA sequences defined above. The nucleic acid

- 11 -

primers may comprise at least one of the following sets:

AH3 F9 : AH3 B7 3A3 C1 : 3A3 C2 AH4 F2 : JH14 B3

5

10

15

20

30

35

Another embodiment of kit may combine one or more substances for digesting a sample to provide EcoRI fragments and a DNA probe as previously defined.

A further embodiment of kit may comprise one or more substances for digesting a sample to provide BamHI fragments and a DNA probe as previously defined.

Still further, a kit may include a nucleic acid probe capable of hybridising to the DNA or RNA molecule previously defined.

A vector (such as Bluscript (available from Stratagene)) comprising a nucleic acid sequence set out above; and a host cell (such as E. coli strain SL-1 Blue (available from Stratagene)) transfected or transformed with the vector are also provided, together with the use of such a vector or a nucleic acid sequence set out above in gene therapy and/or in the preparation of an agent for treating or preventing a PKD1-associated disorder. Therefore there is further provided a method of treating or preventing a PKD1associated disorder which method comprises administering to a patient in need thereof a functional PKD1 gene to affected cells in a manner that permits expression of PKD1 protein therein and/or a transcript produced from a mutated chromosome (such as the deleted WS-212 chromosome) which is capable of expressing functional PKD1 protein therein.

The invention also extends to any inventive combination of features set out above or in the following description.

- 12 -

Brief Description Of The Drawings

5

10

15

20

25

Figure 1a (top): A long range map of the terminal region of the short arm of chromosome 16 showing the PKD1 candidate region defined by genetic linkage analysis. The positions of selected DNA probes and microsatellites used for haplotype, lindage or heterozygosity analyses are indicated. Markers previously described in linkage disequilibrium studies are shown in bold (from: Harris, et al., 1990; Harris, et al., 1991; Germino, et al., 1992; Somlo, et al., 1992; Peral, et al., 1994; Snarey, et al., 1994).

(bottom): A detailed map of the distal part of the PKDl candidate region showing: the area of 16p13.3 duplicated in 16p13.1 (hatched); C, Cla I restriction sites; the breakpoints in the somatic cell hybrids, N-OHl and P-MWH2A; DNA probes and the TSC2 gene. The limits of the position of the translocation breakpoint found in family 77 (see b), determined by evidence of heterozygosity (in 77-4) and PFGE (see c and text) is also indicated. The contig covering the 77 breakpoint region consists of the cosmids: 1, CW9D; 2, ZDS5; 3, JH2A; 4, REP59; 5, JC10.2B; 6, CW10III; 7, SM25A; 8, SMII; 9, NM17.

Figure 1b: Pedigree of family 77 which segregates a 16;22 translocation; showing the chromosomal composition of each subject. Individuals 77-2 and 77-3 have the balanced products of the exchange - and have PKD1; 77-4 is monosomic for 16p13.3-->16pter and 22q11.21-->22pter - and has TSC.

Figure 1c: PFGE of DNA from members of the 77

family: 77-1 (1); 77-2 (2); 77-3 (3); 77-4 (4); digested with Cla I and hybridised with SM6. In addition to the normal fragments of 340 and partially digested fragment of 480 kb a proximal breakpoint fragment of approximately 100 kb (arrowed) is seen in individuals, 77-2, 77-3; and 77-4; concordant with

- 13 -

segregation of the der(16) chromosome.

5

10

15

20

25

30

35

Figure 2: FISH of the cosmid CW10III (cosmid 6; Figure 1a) to a normal male metaphase. Duplication of this locus is illustrated with two sites of hybridisation on 16p; the distal site (the PKD1 region) is arrowed. The signal from the proximal site (16p13.1) is stronger than that from the distal, indicating that sequences homologous to CW10III are reiterated in 16p13.1.

Figure 3a: A detailed map of the 77 translocation region showing the precise localisation of the 77 breakpoint and the region that is duplicated in 16pl3.1 (hatched). DNA probes (open boxes); the transcripts, PKD1 and TSC2 (filled boxes; with direction of transcription indicated by an arrow) and cDNAs (grey boxes) are shown below the genomic map. The known genomic extent of each gene is indicated at the bottom of the diagram and the approximate genomic locations of each cDNA is indicated under the genomic map. positions of genomic deletions found in PKD1 patients, OX875 and OX114, are also indicated. Restriction sites for EcoR I (E) and incomplete maps for BamH I (B); Sac I (S) and Xba I (X) are shown. SM3 is a 2kb BamHl fragment shown at the 5' end of the gene.

Figure 3b: Southern blots of BamH I digested DNA from individuals: 77-1 (1); 77-2 (2); and 77-4 (4) hybridised with: left panel, 8S3 and right panel, 8S1 (see a). 8S3 detects a novel fragment on the telomeric side of the breakpoint (12 kb: arrowed) associated with the der(22) chromosome in 77-2, but not 77-4; 8S1 identifies a novel fragment on the centromeric side of the breakpoint (9 kb: arrowed) - associated with the der(16) chromosome - in 77-2 and 77-4. The telomeric breakpoint fragment is also seen weakly with 8S1 (arrowed) indicating that the breakpoint lies in the distal part of 8SI. The 8S3 and 8S1 loci are both

- 14 -

duplicated; the normal BamH I fragment detected at the 16p13.3 site by these probes is 11 kb (see a), but a similar sized fragment is also detected at the 16p13.1 site. Consequently, the breakpoint fragments are much fainter than the normal (16p13.1 plus 16p13.3) band.

5

10

20

30

35

Figure 4a: PBP cDNA, 3A3, hybridised to a Northern blot containing ~1 mg polyA selected mRNA per lane of the tissue specific cell lines: lane 1, MJ, EBVtransformed lymphocytes; lane 2, K562, erythroleukaemia; lane 3, FS1, normal fibroblasts; lane 4, HeLa, cervical carcinoma; lane 5, G401, renal Wilm's tumour; lane 6, Hep3B, hepatoma; lane 7, HT29, colonic adenocarcinoma; lane 8, SW13, adrenal carcinoma; lane 9, G-CCM, astrocytoma. A single transcript of approximately 14 kb is seen; the highest level of expression is in fibroblasts and in the astrocytoma cell line, G-CCM. Although in this comparative experiment little expression is seen in lanes 1, 4 and 7, we have demonstrated at least a low level of expression in these cell lines on other Northern blots and by RT-PCR (see later).

Figure 4b: A Northern blot containing - 20 mg of total RNA from the cell line G-CCM hybridised with cDNAs or a genomic probe which identify various parts of the PBP gene. Left panel, a single transcript is seen with a cDNA from the single copy area, 3A3. Right panel, a cDNA, 21P.9, that is homologous to parts of the region that is duplicated (JH12, JH8 and JH10; see Figure 3a) hybridises to the PBP transcript and three novel transcripts; HG-A (21 kb), HG-B ($^{-}$ 17 kb) and HG-C (8.5 kb). A similar pattern of transcripts is seen with cDNAs and genomic fragments that hybridise to the area between JH5 and JH13, with the exception of the JH8 area. Middle panel, JH8 hybridises to the transcripts PBP, HG-A and HG-B but not to HG-C. · Condition

5

10

15

20

30

35

Figure 4c: A Northern blot of 20mg total fibroblast RNA from: normal control (N); 77-2 (2); 77-4 (4) hybridised with 8S1, which contains the 16;22 translocation breakpoint (see Figure 3). A transcript of -9 kb (PBP-77) is identified in the two patients with this translocation but not in the normal control. PBP-77 is a chimeric PBP transcript formed due to the translocation and is not seen in 77-2 or 77-4 RNA with probes which map distal to the breakpoint.

Figure 5a: FIGE of DNA from: normal (N) and ADPKD patient OX875 (875), digested with EcoR I and hybridised with, left panel, CW10; middle panel, JH1. Normal fragments of 41 kb (plus a 31 kb fragment from the 16p13.1 site), CW10, and 18 kb, JHI, are identified with these probes; OX875 has an additional 53 kb band (arrowed). The EcoR I site separating these two fragments is removed by the deletion (see Figure 3a). The right panel shows a Southern blot of BamH I digested DNA (as above) hybridised with 1AlH.6. A novel fragment of 9.5 kb is seen in OX875 DNA, as well as the normal 15 kb fragment. These results indicate that OX875 has a 5.5 kb deletion; its position was determined more precisely by mapping relative to two Xba I sites which flank the deletion (see figure 3a).

Figure 5b: Northern blot of total fibroblast RNA, as (a), hybridised with the cDNAs, AH4, 3A3 and AH3. A novel transcript (PBP-875) of ~ 11 kb is seen with AH4 (the band is reduced in intensity because the probe is partly deleted) and AH3 (arrowed), which flank the deletion, but not 3A3 which is entirely deleted (see figure 3a). The transcripts HG-A, HG-B and HG-C, from the duplicated area, are seen with AH3 (see figure 4b).

Figure 5c: Left panel; FIGE of DNA from: normal (N) and ADPKD patient OX114 (114), digested with EcoR I and hybridised with CW10; a novel fragment of 39 kb (arrowed) is seen in OX114. Middle panel; DNA, as

- 16 -

above, plus the normal mother (M) and brother (B) of OX114 digested with BamH I and hybridised with CW21. A larger than normal fragment of 19 kb (arrowed) was detected in OX114 but not other family members due to deletion of a BamH I site; together these results are consistent with a 2 kb deletion (see Figure 3a). Right panel; RT-PCR of RNA, as above, with primers flanking the OX114 deletion (see Experimental Procedures). A novel fragment of 810 bp (arrowed) is seen in OX114, indicating a deletion of 446 bp in the PBP transcript.

5

10

15

20

30

Figure 5d: RT-PCR of RNA from: ADPKD patient OX32 (32) plus the probands, normal mother (M) and affected father (F) and sibs (1) and (2) using the C primer pair from 3A3 (see Experimental Procedures). A novel fragment of 125 bp is detected in each of the affected individuals.

Figure 6: Map of the region containing the TSC2 and PBP genes showing the area deleted in patient WS-53 and the position of the 77 translocation breakpoint. Localisation of the distal end of the WS-53 deletion was previously described (European Chromosome 16 Tuberous Sclerosis Consortium, 1993) and we have now localised the proximal end between SM6 and JHI7. size of the aberrant Mlu I fragment in WS-53, detected by JH1 and JH17, is 90kb and these probes lie on adjacent Mlu I fragments of 120kb and 70kb, respectively. Therefore the WS-53 deletion is ~ 100kb. Restriction sites for: Mlu I (M); Nru I (R); Not I (N); and partial maps for Sac II (S) and BssH II (H) are shown. DNA probes (open boxes) and the TSC2 and PBP transcripts (filled boxes) are indicated below the line with their known genomic extents (brackets). locations of the microsatellites KG8 and SM6 are also indicated.

Figure 7: The partial nucleotide sequence (cDNA) of the PKD1 transcript extending 5631bp to the 3' end

PCT/GB94/02822

5

10

15

20

25

30

35

of the gene. The corresponding predicted protein (also shown in SEQ ID NO: 4:) is shown below the sequence and extends from the start of the nucleotide sequence. The GT-repeat, KG8, is in the 3' untranslated region between 5430-5448 bp. This sequence corresponds to GenBank Accession No. L33243 and is shown in SEQ ID NO: 3:.

Figure 8: The sequence of the probe 1A1H0.6 (also shown in SEQ ID NO: 5:).

Figure 9: The sequence (SEQ ID NO: 6:) of the probe CW10 which is about 0.5kb.

Figure 10: The larger partial nucleotide sequence (SEQ ID NO: 1:) of the PKD1 transcript (cDNA) extending from bp 2 to 13807bp to the 3' end of the gene together with the corresponding predicted protein (also shown in SEQ ID NO: 2:). This larger partial sequence encompasses the (smaller) partial sequence of Figure 7 from amino acid no. 2726 in SEQ ID NO: 3: and relates to the entire PKD1 gene sequence apart from its extreme 5' end.

Figure 11: A map of the 75bp intron amplified by the primer set 3A3C insert at position 3696 of the 3' sequence showing the positions of genomic deletions found in PKD1 patients 461 and OX1054.

Figure 12: A map of the region of chromosome 16 containing the TSC2 and PKD1 genes showing the areas affected in patients WS-215, WS-250, WS-212, WS-194, WS-227 and WS-219; also WS-53 (but cf. Figure 6). Genomic sites for the enzymes Mlul (M), Clal (C), Pvul (P) and Nrul (R) are shown. Positions of single copy probes and cosmids used to screen for deletions are shown below the line which represents ~400kb of genomic DNA. The genomic distribution of the approximately 45kb TSC2 gene and known extent of the PKD1 gene are indicated above. The hatched area respresents an ~50kb

- 18 -

region which is duplicated more proximally on chromosome 16p.

Detailed Description of the Drawings

A translocation associated with ADPRD

5

15

30

35

A major pointer to the identity of the PKD1 gene was provided by a Portuguese pedigree (family 77) with both ADPKD and TSC (Figure 1b). Cytogenetic analysis showed that the mother, 77-2, has a balanced translocation, 46XX t(16;22)(p13.3;q11.21) which was inherited by her daughter, 77-3. The son, 77-4, has the unbalanced karyotype, 45XY-16-22+der(16)(16qter--> 16p13.3: :22q11.21-->2qter) and consequently is monosomic for 16p13.3-->16pter as well as for 22q11.21--> 22pter. This individual has the clinical phenotype of TSC (see Experimental Procedures); the most likely explanation is that the TSC2 locus located within 16p13.3 is deleted in the unbalanced karyotype.

Further analysis revealed that the mother (77-2), and the daughter (77-3) with the balanced translocation, have the clinical features of ADPKD (see Experimental Procedures), while the parents of 77-2 were cytogenetically normal, with no clinical features of TSC and no renal cysts on ultrasound examination (aged 67 and 82 years). Although kidney cysts can be a feature of TSC, no other clinical signs of TSC were identified in 77-2 or 77-3, making it unlikely that the polycystic kidneys were due to TSC. We therefore investigated the possibility that the translocation disrupted the PKD1 locus in 16p13.3 and proceeded to identify and clone the region containing the breakpoint.

The 77 family was analysed with polymorphic markers from 16p13.3. Individual 77-4 was hemizygous for MS205.2 and GGG1, but heterozygous for SM6 and more proximal markers, locating the translocation breakpoint

the second second

- 19 -

between GGG1 and SM6 (see Figure la). Fluorescence in situ hybridisation (FISH) of a cosmid from the TSC2 region, CW9D (cosmid 1 in Figure 1a), to metaphase spreads showed that it hybridised to the der(22) chromosome of 77-2; placing the breakpoint proximal to CW9D and indicating that 77-4 was hemizygous for this consistent with his TSC phenotype. DNA from members of the 77 family was digested with Cla I, separated by PFGE and hybridised with SM6; revealing a breakpoint fragment of ~ 100 kb in individuals with the der(16) chromosome (Figure 1c). The small size of this novel fragment enabled the breakpoint to be localised distal to SM6 in a region of just 60 kb (Figure la). A cosmid contig covering this region was therefore constructed (see Experimental Procedures for details). The translocation breakpoint lies within a region duplicated elsewhere on chromosome 16p (16p13.1)

5

10

15

20

35

It was previously noted that the region between CW21 and N54 (Figure 1a) was duplicated at a more proximal site on the short arm of chromosome 16 (Germino, et al., 1992; European Chromosome 16 Tuberous Sclerosis Consortium, 1993). Figure 2 shows that a cosmid, CW10III, from the duplicated region hybridises to two points on 16p; the distal, PKD1 region and a proximal site positioned in 16pl3.1. structure of the duplicated area is complex with each . fragment present once in 16pl3.3 re-iterated two-four times in 16p13.1 (see Figure 2). Cosmids spanning the duplicated area in 16p13.3 were subcloned (see Figure 3a and Experimental Procedures for details) and a restriction map was generated. A genomic map of the PKD1 region was constructed using a radiation hybrid, Hy145.19 which contains the distal portion of 16p but not the duplicate site in 16pl3.1.

To localise the 77 translocation breakpoint, subclones from the target region were hybridised to 77-

- 20 -

2 DNA, digested with Cla I and separated by PFGE. probes mapping across the breakpoint were identified they were hybridised to conventional Southern blots of Figure 3b shows that novel BamH I 77 family DNA. fragments were detected from the centromeric and telomeric side of the breakpoint, which was localised to the distal part of the probe 851 (Figure 3a). Hence, the balanced translocation was not associated with a substantial deletion, and the breakpoint was located more than 20 kb proximal to the TSC2 locus (Figure 3a). These results supported the hypothesis that polycystic kidney disease in individuals with the balanced translocation (77-2 and 77-3) was not due to disruption of the TSC2 gene, but indicated that a separate gene mapping just proximal to TSC2, was likely to be the PKD1 gene.

5

10

15

20

30

35

The polycystic breakpoint (PBP) gene is disrupted by the translocation

Localisation of the 77 breakpoint identified a precise region in which to look for a candidate for the PKD1 gene. During the search for the TSC2 gene we identified other transcripts not associated with TSC including a large transcript (14 kb) partially represented in the cDNAs 3A3 and AH4 which mapped to the genomic fragments CW23 and CW21 (Figure 3a). orientation of the gene encoding this transcript had been determined by the identification of a polyA tract in the cDNA, AH4: the 3' end of this gene lies very close to the TSC gene, in a tail to tail orientation (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). To determine whether this gene crossed the translocation breakpoint genomic probes from within the duplicated area and flanking the breakpoint were hybridised to Northern blots. Probes from both sides of the breakpoint, between JH5 and JH13 identified the 14 kb transcript (Figure 3a and see below for details).

- 21 -

Therefore, this gene previously called 3A3, but now designated the PBP gene extended over the 77 breakpoint and consequently was a candidate for the PKD1 gene. A walk was initiated to increase the extent of the PBP cDNA contig and several new cDNAs were identified using probes from the single copy (non-duplicated) region (see Experimental Procedures for details). A cDNA contig was constructed which extended ~5.7 kb, including ~2 kb into the area that is duplicated (Figure 3a).

Expression of the PBP gene

Initial studies of the expression pattern of the PBP gene were undertaken with cDNAs that map entirely within the single copy region (e.g. AH4 and 3A3). Figure 4a shows that the ~ 14 kb transcript was identified by 3A3 in various tissue-specific cell lines. From this and other Northern blots we concluded that the PBP gene was expressed in all of the cell lines tested, although often at a low level. The two cell lines which showed the highest level of expression were fibroblasts and a cell line derived from an astrocytoma, G-CCM. Significant levels of expression were also obtained in cell lines derived from kidney (G401) and liver (Hep3B). Measuring the expression of the PBP gene in tissue samples by Northern blotting proved difficult because such a large transcript is susceptable to minor RNA degradation. However, initial results with an RNAse protection assay, using a region of the gene located in the single copy area (see Experimental Procedures), showed a moderate level of expression of the PBP gene in tissue obtained from normal and polycystic kidney (data not shown). widespread expression of the PBP gene is consistent with the systemic nature of ADPKD.

35

5

10

15

20

25

30

5

10

15

20

30

35

Identification of transcripts that are partially homologous to the PBP transcript

New cDNAs were identified with the genomic fragments, JH4 and JH8, that map to the duplicated region (Figure 3a and see Experimental Procedures). However, when these cDNAs were hybridised to Northern blots a more complex pattern than that seen with 3A3 was observed. As well as the ~14 kb PBP transcript, three other, partially homologous transcripts were designated homologous gene-A (HG-A; ~ 21 identified kb), HG-B (~ 17 kb) and HG-C (8.5 kb) (Figure 4b). There were two possible explanations for these results, either the HG transcripts were alternatively spliced forms of the PBP gene, or the HG transcripts were encoded by genes located in 16p13.1. To determine the genomic location of the HG loci a fragment from the 3' end of one HG cDNA (HG-4/1.1) was isolated. HG-4/1.1 hybridised to all three HG transcripts, but not to the PBP transcript and on a hybrid panel it mapped to 16p13.1 (not the PKD1 area). These results show that all the HG transcripts are related to each other outside the region of homology with the PBP transcript and that the HG loci map to the proximal site (16p13.1).

25 An abnormal transcript associated with the 77 translocation

As the PBP gene was transcribed across the region disrupted by the 77 translocation breakpoint, in a proximal to distal direction on the chromosome (see Figure 3a) it was possible that a novel transcript originating from the PBP promotor would be found in this family. Figure 4c shows that using a probe to the PBP transcript that mapped mainly proximal to the breakpoint, a novel transcript of approximately 9 kb (PPP-77) derived from the der(16) product of the translocation was detected. Interestingly, the PBP-77

- 23 -

transcript appears to be expressed at a higher level than the normal PBP product. These results confirmed that the 77 translocation disrupts the PBP gene and supports the hypothesis that this is the PKD1 gene.

Mutations of the PBP gene in other ADPKD patients

5

15

20

25

30

To prove that the PBP gene is the defective gene at the PKD1 locus, we analysed this region for mutations in patients with typical ADPKD. The 3' end of the PBP gene was most accessible to study as it maps outside the duplicated area. To screen this region BamH I digests of DNA from 282 apparently unrelated ADPKD patients were hybridised with the probe 1A1H.6, (see Figure 3a). In addition, a large EcoR I fragment (41 kb) which contains a significant proportion of the PBP gene was assayed by field inversion gel electrophoresis (FIGE) in 167 ADPKD patients, using the probe CW10. Two genomic rearrangements were identified in ADPKD patients by these procedures; each identified by both methods.

The first rearrangement was identified in patient OX875 (see Experimental Procedures for clinical details) who was shown to have a 5.5 kb genomic deletion within the 3' end of the PBP gene, producing a smaller transcript (PBP-875) (see Figures 5a, b and 3a for details). This genomic deletion results in a 3 kb internal deletion of the transcript with the ~500 bp adjacent to the polyA tail intact. In this family linkage of ADPKD to chromosome 16 could not be proven because although OX875 has a positive family history of ADPKD there were no living, affected relatives. However, paraffin-embedded tissu from her affected father (now deceased) was available. We demonstrated that this individual had the same rearrangement as OX875 by PCR amplification of a 220bp fragment spanning the deletion (data not shown). This result and analysis of two unaffected sibs of OX875, that did not

have the deletion, showed that this mutation was transmitted with ADPKD.

5

10

15

20

25

30

35

The second rearrangement detected by hybridisation was a 2 kb genomic deletion within the PBP gene, in ADPKD patient OX114 (see Experimental Procedures for clinical details and Figures 5c and 3a). No abnormal PBP transcript was identified by Northern blot analysis, but using primers flanking the deletion (see Experimental Procedures) a shortened product was detected by RT-PCR (Figure 5c). This was cloned and sequenced and shown to have a frame-shift deletion of 446 bp (between base pair 1746 and 2192 of the sequence shown in Figure 7). OX114 is the only member of the family with ADPKD (she has no children) and ultrasound analysis of her parents at age 78 (father) and 73 years old (mother) showed no evidence of renal cysts. Somatic cell hybrids were produced from OX114 and the deleted chromosome was found to be of paternal origin by haplotype analysis. The father of OX114 is now deceased but analysis of DNA from the brother of OX114 (OX984) with seven microsatellite markers from the PKD1 region (see Experimental Procedures) showed that he shares the same paternal chromosome, in the PKD1 region, as OX114. Renal ultrasound revealed no cysts in 0X984 at age 53 and no deletion was detected by DNA analysis (Figure 5c). Hence, the deletion in OX114 is a de novo event associated with the development of ADPKD. Although it is not possible to show that the ADPKD is chromosome 16-linked, the location of the PBP gene indicates that this is a de novo PKD1 mutation.

To identify more PKD1 associated mutations, single copy regions of the PBP gene were analysed by RT-PCR using RNA isolated from lymphoblastoid cell lines established from ADPKD patients. cDNA from 48 unrelated patients was amplified with the primer pair 3A3 C (see Experimental Procedures) and the product of 260 bp was

analysed on an agarose gel. In one patient, OX32, an additional smaller product (125 bp) was identified, consistent with a deletion or splicing mutation. OX32 comes from a large family in which the disease can be traced through three generations. Analysis of RNA from two affected sibs of OX32 and his parents showed that the abnormal transcript segregates with PKD1 (Figure 5d).

5

10

15

20

Amplification of normal genomic DNA with the 3A3 C primers generates a product of 418 bp; sequencing showed that this region contains two small introns (5', 75 bp and 3', 83 bp) flanking a 135 bp exon. product amplified from OX32 genomic DNA was normal in size, excluding a genomic deletion. heteroduplex analysis of that DNA revealed larger heteroduplex bands, consistent with a mutation within that genomic interval. The abnormal OX32, RT-PCR product was cloned and sequenced: this demonstrated that, although present in genomic DNA, the 135 bp exon was missing from the abnormal transcript. Sequencing of OX32 genomic DNA demonstrated a G-->C transition at +1 of the splice donor site following the 135 bp exon. This mutation was confirmed in all available affected family members by digesting amplified genomic DNA with the enzyme Bst NI: a site is destroyed by the base substitution. The splicing defect results in an inframe deletion of 135 bp from the PBP transcript (3696 bp to 3831 bp of the sequence shown in Figure 7). Together, the three intragenic mutations confirm that the PBP gene is the defective gene at the PKD1 locus. Deletions that disrupt the TSC2 and the PKD1 gene

We previously identified a deletion (WS-53) which disrupts the TSC2 gene and the PKD1 gene (European Chromosome 16 Tuberous Sclerosis Consortium, 1993), although its full proximal extent was not determined. Further study has shown that the deletion extends 7 100

5

10

15

20

25

30

- 26 -

kb (see Figure 6 for details) and deletes most if not all of the PKD1 gene. This patient has TSC but also has unusually severe polycystic disease of the kidneys. Other patients with a similar phenotype have also been under investigation. Deletions involving both TSC2 and PKD1 were identified and characterised in six patients in whom TSC was associated with infantile polycystic kidney disease. As well as the deletion in WS-53, those in WS-215 and "S-250 also extended proximally well beyond the known distribution of PKD1 and probably delete the entire gene. The deletion in WS-194 extended over the known extend of PKD1, but not much further proximally, while the proximal breakpoints in WS-219 and WS-227 lay within PKD1 itself. Northern analysis of case WS-219 with probe JH8, which lies outside the deletion, showed a reduced level of the PKD1 transcript but no evidence of an abnormally sized transcript (data now shown). Analysis of samples from the clinically unaffected parents of patients WS-53, WS-215, WS-219, WS-227 and WS-250 showed the deletions in these patients to be de novo. The father of WS-194 was unavailable for study.

In a further case (WS-212), renal ultrasound showed no cysts at four years of age but a deletion was identified which removed the entire TSC2 gene and deleted an XbaI site which is located 42bp 5' to the polyadenylation signal of PKD1. To determine the precise position of the proximal breakpoint in PKD1, a 587bp probe from the 3' untranslated region (3'UTRP) was hybridised to XbaI digested DNA. A 15kb XbaL breakpoint fragment was detected with an approximately equal intensity to the normal fragment of 6kb, indicating that most of the PKD13'UTR was preserved on the mutant chromosome. Evidence that a PKD1 transcript is produced from the deleted chromosome in WS-212 was obtained by 3' rapid identification of cDNA ends (RACE)

- 27 -

with a novel, smaller product generated from WS-212 cNDA. Characterisation of this product showed that polyadenylation occurs 546bp 5' to the normal position, within the 3'UTR of PKD1 (231bp 3' to the stop codon at 5073bp of the described PKD1 sequence 14). A transcript with an intact open reading frame is thus produced from the deleted WS-212 chromosome. It is likely that a functional PKD1 protein in produced from this transcript, explaining the lack of cystic disease The sequence preceeding the novel in this patient. site of polyA addition is: AGTCAGTAATTTATATGGTGTTAAAATGTG(A)n. Although not conforming precisely to the concensus of AATAAA, it is likely that part of this AT rich region acts as an alternative polyadenylation signal if, as in this case, the normal signal is deleted (a possible sequence is underlined).

10

15

20

25

30

35

The WS-212 deletion if 75kb between SM9-CW9 distally and the PKD1 3'UTR proximally. The WS-215 deletion is 160kb between CW15 and SM6-JH17. WS-194 has 65kb deleted between CW20 and CW10-CW36. WS-227 has a 50kb deletion between CW20 and JH11 and WS-219 has a 27kb deletion between JH1 and JH6. end of the WS-250 deletion is in CW20 but the precise location of the proximal end is not known. However, the same breakpoint fragment of 320kb is seen with Pvul-digested DNA using probes on adjacent Pvul fragments, CE18 (which normally detects a 245kb fragment) and BLu24 (235kb). Hence this deletion can be estimated ~160kb. b. PFGE analysis of the deletion in WS-219. Mlul digested DNA from a normal control (N) and WS-219 probed with the clones H2, JH1, CW21 and CW10 which detect an ~130kb fragment in normal individuals. CW10 also detects a much smaller fragment from the duplicated region situated more proximally on 16p. A novel fragment of ~100kb is seen in WS-219 with

- 28 -

probes H2 and CW10 which flank the deletion in this patient. JH1 is partially deleted but detects the novel band weakly. The aberrant fragment is not detected by CW-21, which is deleted on the mutant chromosome. BamH1 digested DNA of normal control (N) and WS-219 separated by conventional gel electrophoresis and hybridised to probes JH1 and JH6 which flank the deletion. The same breakpoint fragment of T3kb is seen with both probes, consistent with a deletion of T27kb ending within the BamH1 fragments seen by these probes.

Two further deletions

15

20

In addition we have characterised two further mutations of this gene which were identified in typical PKD1 families. In both cases the mutation is a deletion in the 75bp intron amplified by the primer pair 3A3C (European Polycystic Kidney Disease Consortium, 1994). The deletions are of 18bp and 20bp, respectively, in the patients 461 and OX1054. Although these deletions do not disrupt the highly conserved sequences flanking the exon/intron boundaries, they do result in aberrant splicing of the transcript. In both cases, two abnormal mRNAs are produced, one larger and one smaller than normal. Sequencing of these cDNAs showed that the larger transcript includes the deleted intron, and so has an in-frame insertion of 57bp in 461, while OX1054 has a frameshift insertion of 55bp. The smaller transcript is due to activation of a cryptic splice site in the exon preceding the deleted intron and results in an in-frame deletion of 66bp in both patients. The demonstration of two additional mutations of this gene in PKD1 patients further confirms that this is the PKD1 gene.

Characterisation of the PKD1 gene

To characterise the PKD1 gene further, evolutionary conservation was analysed by zoc

- 29 -

blotting'. Using probes from the single copy, 3' region (3A3) and from the duplicated area (JH4, JH8) the PKD1 gene was conserved in other mammalian species, including horse, dog, pig and rodents (data not shown). No evidence of related sequences were seen in chicken, frog or drosophila by hybridisation at normal stringency. The degree of conservation was similar when probes from the single copy or the duplicated region were employed.

5

10

15

20

The full genomic extent of the PKD1 gene is not yet known, although results obtained by hybridisation to Northern blots show that it extends from at least as far as JH13. Several CpG islands have been localised 5' of the known extent of the PKD1 gene (Figure 6), although there is no direct evidence that any of these are associated with this gene.

The cDNA contig extending 5631 bp to the 3' end of the PKD1 transcript was sequenced; where possible more than one cDNA was analysed and in all regions both strands were sequenced (Figure 7). We estimated that this accounts for ~40% of the PKD1 transcript. open reading frame was detected which runs from the 5' end of the region sequenced and spans 4842 bp, leaving a 3' untranslated region of 789 bp which contains the previously described microsatellite, KG8 (Peral, et al., 1994; Snarey, et al., 1994). A polyadenylation signal is present at nucleotides 5598-5603 and a polyA tail was detected in two independent cDNAs (AH4 and AH6) at position, 5620. Comparison with the cDNAs HG-4 and 11BHS21, which are encoded by genes in the duplicate, 16p13.1 region, show that 1866 bp at the 5' end of the partial PKD1 sequence shown in Figure 7 lies within the duplicated area. The predicted amino acid sequence from the available open reading frame extends 1614 residues, and is shown in Figure 7. A search of the swiccprot and NBRF data bases with the available

- 30 -

protein sequence, using the Blast programme (Altschul, et al., 1990) identified only short regions of similarity (notably, between amino-acids 690-770 and 1390-1530) to a diverse group of proteins; no highly significant areas of homology were recognised. The importance of the short regions of similarity is unclear as the search for protein motifs with the ProSite Programme did not identify any recognised functional protein domains within the PKD1 gene.

10

15

20

30

35

The task of identifying and characterising the PKD1 gene has been more difficult than for other disorders because more than three quarters of the gene is embedded in a region of DNA that is duplicated elsewhere on chromosome 16. This segment of 40-50 kb of DNA, present as a single copy in the PKD1 area (16p13.3), is re-iterated as several divergent copies in the more proximal region, 16p13.1. This proximal site contains three gene loci (HG-A, -B and -C) that each produce polyadenylated mRNAs and share substantial homology to the PKD1 gene; it is not known whether these partially homologous transcripts are translated into functional proteins.

Although gene amplification is known as a major mechanism for creating protein diversity during evolution, the discovery of a human disease locus embedded within an area duplicated relatively recently is a new observation. In this case because of the recent nature of the reiteration the whole duplicated genomic region retains a high level of homology, not just the exons. The sequence of events leading to the duplication and which sequence represents the original gene locus are not yet clear. However, early evidence of homology of the 3' ends of the three HG transcripts which are different from the 3' end of the PKD1 gene indicated that the loci in 16p13.1 have probably arisen

- 31 -

by further reiteration of sequences at this site, after it separated from the distal locus.

5

10

15

20

35

To try to overcome the duplication problem we have employed an exon linking approach using RNA isolated from a radiation hybrid, Hy145.19, that contains just the PKD1 part of chromosome 16, and not the duplicate site in 16p13.1. Hence, this hybrid produces transcripts from the PKD1 gene but not from the homologous genes (HG-A, HG-B and HG-C). We have also sequenced much of the genomic region containing the PKD1 gene, from the cosmid JH2A, and have sequenced a number of cDNAs from the HG locus. To determine the likely position of PKD1 exons in the genomic DNA we compared HG cDNAs, (HG-4 and HG-7) to the genomic sequence. We then designed primers with sequences corresponding to the genomic DNA, to regions identified by the HG exons and employing cDNA generated from the hybrid Hy145.19, we amplified sections of the PKD1 transcript. The polymerase Pfu was used to minimise incorporation errors. These amplified fragments were then cloned and sequenced. The PDK1 cDNA contig whose sequence is shown in Figure 10 is made up of (3'-5') the original 5.7 kb of sequence shown in Figure 7, and the cDNAs: gap α 22 (890 bp), gap gamma (872 bp), a section of genomic DNA from the clone JH8 (2,724 bp) which corresponds to a large exon, S1-S3 (733 bp), S3-S4 (1,589 bp) and S4-S13 (1,372 bp). Together these make a cDNA of 13,807 bp with the extreme 5' end of the transcript still uncharacterised. When these cDNAs from the PKD1 contig were sequenced an open reading frame was found to run from the start of the contig to the previously-identified stop codon, a region of 13,018 bp. The predicted protein encoded by the PKD1 transcript is also shown in Figure 10 and has 4,339 amino acid residues.

- 32 -

We have therefore compelling evidence that mutations of the PKDl gene give rise to the typical phenotype of ADPKD. The location of this gene within the PKDl candidate region and the available genetic evidence from the families with mutations show that this is the PKDl gene. The present invention therefore includes the PKDl gene itself and the six PKDl-associated mutations which have been described: a de novo translocation, which was subsequently transmitted with the phenotype; two intragenic deletions (one a de novo event); two further deletions; and a splicing defect.

5

10

15

20

25

30

It has previously been argued that PKD1 could be recessive at the cellular level, with a second somatic mutation required to give rise to cystic epithelium (Reeders, 1992). This "two hit" process is thought to be the mutational mechanism giving rise to several dominant diseases, such as neurofibromatosis (Legius, et al., 1993) and tuberous sclerosis (Green, et al., 1994) which result from a defect in the control of cellular growth. If this were the case, however, we might expect that a proportion of constitutional PKD1 mutations would be inactivating deletions as seen in these other disorders.

The location of the PKD1 mutations may, however, reflect some ascertainment bias as it is this single copy area which has been screened most intensively for mutations. Nevertheless, no additional deletions were detected when a large part of the gene was screened by FIGE, and studies by PFGE showed no large deletions of this area in 75 PKD1 patients. It is possible that the mutations detected so far result in the production of an abnormal protein which causes disease through a gain of function. However, it is also possible that these mutations eliminate the production of functional protein from this chromosome and result in the PKD1

- 33 -

phenotype by haploinsufficiency, or only after loss of the second PKD1 homologue by somatic mutation.

At least one mutation which seems to delete the entire PKD1 gene has been identified (WS-53) but in this case it also disrupts the adjacent TSC2 gene and the resulting phenotype is of TSC with severe cystic kidney disease. Renal cysts are common in TSC so that the phenotypic significance of deletion of the PKD1 gene in this case is difficult to assess. It is clear that not all cases of renal cystic disease in TSC are due to disruption of the PKD1 gene; chromosome 9 linked TSC (TSC1) families also manifest cystic kidneys and we have analysed many TSC2 patients with kidney cysts who do not have deletion of the PKD1 gene.

5

10

15

20

30

Preliminary analysis of the PKD1 protein sequence has highlighted two regions which provide some clues to the possible function of the PKD1 gene. At the extreme 5' end of the characterised region are two leucine-rich repeats (LRRs) (amino acids 29-74) flanked by characteristic amino flanking (amino acids 6-28) and carboxy flanking sequences (amino acids 76-133) (Rothberg et al, 1990). LRRs are thought to be involved in protein-protein interations (Kobe and Deisenhofer, 1994) and the flanking sequences are only found in extracellular proteins. Other proteins with LRRs flanked on the amino and carboxy sides are receptors or are involved in adhesion or cellular signalling. Further 3' on the protein (amino acids 350-515) is a C-type lectin domain (Curtis et al, This indicates that this region binds carbohydrates and is also likely to be extracellular. These two regions of homology indicate that the 5' part of the PKD1 protein is extracellular and involved in protein-protein interactions. It is possible that this protein is a constituent of, or plays a role in assembling, the extracellular matrix (ECM) and may act

PCT/GB94/02822 WO 95/18225

- 34 -

as an adhesive protein in the ECM. It is also possible that the extracellular portion of this protein is important in signalling to other cells. The function of much of the PKD1 protein is still not fully known but the presence of several hydrophobic regions indicates that the protein may be threaded through the cell membrane.

5

10

15

25

30

Familial studies indicate that de novo mutations probably account for only a small minority of all ADPKD cases; a recent study detected 5 possible new mutations in 209 families (Davies, et al., 1991). However, in our study one of three intragenic mutations detected was a new mutation and the PKD1 associated translocation was also a de novo event. Furthermore, the mutations detected in the two familial cases do not account for a significant proportion of the local PKD1. The OX875 deletion was only detected in 1 of 282 unrelated cases, and the splicing defect was seen in only 1 of 48 unrelated cases. Nevertheless, studies of linkage disequilibrium have found evidence of common haplotypes associated with PKD1 in a proportion of some populations (Peral, et al., 1994; Snarey, et al., 1994) suggesting that common mutations will be identified.

Once a larger range of mutations have been characterised it will be possible to evaluate whether the type and location of mutation determines disease severity, and if there is a correlation between mutation and extra-renal manifestations. Previous studies have provided some evidence that the risk of cerebral aneurysms 'runs true' in families (Huston, et al., 1993) and that some PKD1 families exhibit a consistently mild phenotype (Ryynanen, et al., 1987). A recent study has concluded that there is evidence of 35 anticipation in ADPKD families, especially if the disease is transmitted through the mother (Fink, et

5

15

20

25

al., 1994). Furthermore, analysis of families with early manifestation of ADPKD show that there is a significant intra-familial recurrence risk and that childhood cases are most often transmitted maternally (Fink, et al., 1993; Zerres, et al., 1993). pattern of inheritence is reminiscent of that seen in diseases in which an expanded trinucleotide repeat was found to be the mutational mechanism (reviewed in Mandel, 1993). However, no evidence for an expanding 10 repeat correlating with PKDl has been found in this region although such a sequence cannot be excluded.

There is ample evidence that early presymptomatic diagnosis of PKD1 is helpful because it allows complications such as hypertension and urinary tract infections to be monitored and treated quickly (Ravine, et al., 1991). The identification of mutations within a family will allow rapid screening of that and other families with the same mutation. However, genetic linkage analysis is likely to remain important for presymptomatic diagnosis. The accuracy and ease of linkage based diagnosis will be improved by the identification of the PKD1 gene as a microsatellite lies in the 3' untranslated region of this gene (KG-8) and several CA repeats are located 5' of the gene (see Figure 1a and 6; Peral, et al., 1994; Snarey, et al., 1994).

Experimental Procedures

Clinical Details of Patients

Family 77

77-2 and 77-3 are 48 and 17 years old, 30 respectively, and have typical ADPKD. Both have bilateral polycystic kidneys and 77-2 has impaired renal function. Neither patient manifests any signs of TSC (apart from cystic kidneys) on clinical and ophthalmological examination or by CT scan of the brain.

- 36 -

77-4 is 13 years old, severely mentally retarded and has multiple signs of TSC including adenoma sebaceum, depigmented macules and periventricular calcification on CT scan. Renal ultrasound reveals a small number of bilateral renal cysts.

ADPKD patients

5

10

15

20

OX875 developed ESRD from ADPKD, aged 46. Progressive decline in renal function had been observed over 17 years; ultrasound examinations documented enlarging polycystic kidneys with less extensive hepatic cystic disease. Both kidneys were removed after renal transplantation and pathological examination showed typical advanced cystic disease in kidneys weighing 1920g and 3450g (normal average 120g).

OX114 developed ESRD from ADPKD aged 54: diagnosis was made by radiological investigation during an episode of abdominal pain aged 25. A progressive decline in renal function and the development of hypertension was subsequently observed. Ultrasonic examination demonstrated enlarged kidneys with typical cystic disease, with less severe hepatic involvement.

OX32 is a member of a large kindred affected by typical ADPKD in which several members have developed ESRD. The patient himself has been observed for 12 years with progressive renal failure and hypertension following ultrasonic demonstration of polycystic kidneys.

No signs of TSC were observed on clinical examination of any of the ADPKD patients.

30 DNA Electrophoresis and Hybridisation

DNA extraction, restriction digests, electrophoresis, Southern blotting, hybridisation and washing were performed by standard methods or as previously described (Harris, et al., 1990). FIGE was performed with the Biorad FIGE Mapper using programme 5 to separate fragments from 25-50 kb. High molecular

Ś

10

15

20

25

30

35

weight DNA for PFGE was isolated in agarose blocks and separated on the Biorad CHEF DRII apparatus using appropriate conditions.

Genomic DNA probes and somatic cell hybrids

Many of the DNA probes used in this study have been described previously: MS205.2 (D16S309; Royle, et al., 1992); GGG1 (D16S259; Germino, et al., 1990); N54 (D16S139; Himmelbauer, et al., 1991); SM6 (D16S665), CW23, CW21, and JH1 (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). Microsatellite probes for haplotype analysis were KG8 and W5.2 (Snarey, et al., 1994) SM6, CW3 and CW2, (Peral, et al., 1994), 16AC2.5 (Thompson, et al., 1992); SM7 (Harris, et al., 1991), VK5AC (Aksentijevich, et al., 1993).

New probes isolated during this study were: JH4, JH5, JH6, ll kb, 6 kb and 6 kb BamH I fragments, respectively, and JH13 and JH14, 4 kb and 2.8 kb BamH I-EcoR I fragments, respectively, all from the cosmid JH2A; JH8 and JH10 are 4.5 kb and 2 kb Sac I fragments, respectively and JH12 a 0.6 Sac I-BamH I fragment, all from JH4; 8S1 and 8S3 are 2.4 kb and 0.6 kb Sac II fragments, respectively, from JH8; CW10 is a 0.5 kb Not I-Mlu I fragment of SM25A; JH17 is a 2 kb EcoR I fragment of NM17.

The somatic cell hybrids N-OH1 (Germino, et al., 1990), P-MWH2A (European Chromosome 16 Tuberous Sclerosis Consortium, 1993) and Hy145.19 (Himmelbauer, et al., 1991) have previously been described. Somatic cell hybrids containing the paternally derived (BP2-10) and maternally derived (BP2-9) chromosomes from OX114 were produced by the method of Deisseroth and Hendrick (1979).

Constructing a cosmid contig

Cosmids were isolated from chromosome 16 specific and total genomic libraries, and a contig was constructed using the methods and libraries previously

- 38 -

described (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). To ensure that cosmids were derived from the 16p13.3 region (not the duplicate 16p13.1 area) initially, probes from the single copy area were used to screen libraries (e.g. CW21 and N54). Two cosmids mapped entirely within the area duplicated, CW10III and JC10.2B. To establish that these were from the PKD1 area, they were restriction mapped and hybridised with the probe CW10. The fragment sizes detected were compared to results obtained with hybrids containing only the 16p13.3 area (Hy145.19) or only the 16p13.1 region (P-MWH2A).

FISH

5

30

FISH was performed essentially as previously described (Buckle and Rack, 1993). The hybridisation 15 mixture contained 100 ng of biotin-II-dUTP labelled cosmid DNA and 2.5 mg human Cot-1 DNA (BRL), which was denatured and annealled at 37°C for 15 min prior to hybridisation at 42°C overnight. After stringent washes the site of hybridisation was detected with 20 successive layers of fluorescein-conjugated avidin (5 mg/ml) and biotinylated anti-avidin (5 mg/ml) (Vector Laboratories). Slides were mounted in Vectashield (Vector Laboratories) containing 1 mg/ml propidium iodide and 1 mg/ml 4', 6-diamidino-2-phenylindole (DAPI), to allow concurrent G-banded analysis under UV light. Results were analysed and images captured using a Bio-Rad MRC 600 confocal laser scanning microscope. cDNA screening and characterisation

Foetal brain cDNAs libraries in 1 phage (Clonetech and Stratagene) were screened by standard methods with genomic fragments in the single copy area (equivalent to CW23 and CW21) or with a 0.8 kb Pvu II-Eco RI single copy fragment of AH3. Six PBP cDNAs were characterised including two previously described, AH4 (1.7 kb), 3A3 (2.0 kb) (European Chromosome 16 Tuberous Sclerosis

PCT/GB94/02822

5

10

15

20

25

30

Consortium, 1993), and four novel cDNAs AH3 (2.2 kb), AH6 (2.0 kb), A1C (2.2 kb) and B1E (2.9 kb). A Striatum library (Stratagene) was screened with JH4 and a HG-C cDNA, 11BHS21 (3.8 kb) was isolated; 21P.9 is a 0.9 kb Pvu II-EcoR I subclone of this cDNA. A HG-A or HG-B cDNA, HG-4 (7 kb) was also isolated by screening the foetal brain library (Stratagene) with JH8. HG-4/1.1 is a 1.1 kb Pvu II-EcoR I fragment from the 3' end of HG-4. 1AlH.6 is a 0.6 kb Hind III-EcoR I subclone of a TSC2 cDNA, 1A-1 (1.7 kb), which was isolated from the Clonetech library. Each cDNA was subcloned into Bluescript and sequenced utilising a sequential of truncation combination oligonucleotide primers using DyeDeoxy Terminators (Applied Biosystems) and an ABI 373A DNA Sequencer (Applied Biosystems) or by hand with 'Sequenase' T7 DNA polymerase (USB).

RNA Procedures

Total RNA was isolated from cell lines and tissues by the method of Chomczynski and Sacchi (1987) and enrichment for mRNA made using the PolyAT tract mRNA Isolation System (Promega). For RNA electrophoresis 0.5% agarose denaturing formaldehyde gels were used which were Northern blotted, hybridised and washed by standard procedures. The 0.24 - 9.5 kb RNA (Gibco BRL) size standard was used and hybridisation of the probe (1-9B3) to the 13 kb Utrophin transcript (Love, et al., 1989) in total fibroblast RNA was used as a size marker for the large transcripts.

RT-PCR was performed with 2.5 mg of total RNA by the method of Brown et al (1990) with random hexamer primers, except that AMV-reverse transcriptase (Life Sciences) was employed. To characterise the deletion of the PBP transcript in OX114 we used the primers:

35

- 40 -

AH3 F9 5' TTT GAC AAG CAC ATC TGG CTC TC 3'

AH3 B7 5' TAC ACC AGG AGG CTC CGC AG 3'

in a DMSO containing PCR buffer (Dodé, et al., 1990)

with 0.5 mM MgCl₂ and 36 cycles of: 94°C, 1 min; 61°C,

1 min; 72°C, 2 min plus a final extension of 10 min.

The 3A3 C primers used to amplify the OX32 cDNA and DNA were:

3A3 C1 5' CGC CGC TTC ACT AGC TTC GAC 3'

10 3A3 C2 5' ACG CTC CAG AGG GAG TCC AC 3'

These were employed in a PCR buffer and cycle previously described (Harris, et al., 1991) with lmM ${
m MgCl}_2$ and an annealing temperature of 61°C.

PCR products for sequencing were amplified with Pfu-1 (Stratagene) and ligated into the Srf-1 site in PCR-Script (Stratagene) in the presence of Srf-1.

RNAse protection

15

20

Tissues from normal and end-stage polycystic kidneys were immediately homogenised in guanidinium thiocyanate. RNA was purified on a cesium chloride gradient and 30 mg total RNA was assayed by RNAse protection by the method of Melton, et al., (1984) using a genomic template generated with the 3A3, C primers.

25 Heteroduplex Analysis

Heteroduplex analysis was performed essentially as described by Keen et al (1991). Samples were amplified from genomic DNA with the 3A3, C primers, heated at 95°C for 5 minutes and incubated at room temperature for at least 30 minutes before loading on a Hydrolink gel (AT Biochem). Hydrolink gels were run for 12-18 hours at 250V and fragments observed after staining with ethidium bromide.

Extraction and amplification of paraffin-embedded DNA

DNA from formalin fixed, paraffin wax embedded kidney tissue was prepared by the method of Wright and

- 41 -

Manos (1990), except that after proteinase K digestion overnight at 55°C, the DNA was extracted with phenol plus chloroform before ethanol precipitation. Approximately 50 ng of DNA was used for PCR with 1.5 mM MgCl₂ and 40 cycles of 94°C for 1 min, 59°C for 1 min and 72°C for 40 s, plus a 10 min extension at 72°C. The oligonucleotide primers designed to amplify across the genomic deletion of OX875 were:

AH4F2: 5' - GGG CAA GGG AGG ATG ACA AG - 3'

JH14B3: 5' - GGG TTT ATC AGC AGC AAG CGG - 3' which produced a product of - 220 bp in individuals with the OX875 deletion.

3'RACE analysis of WS-212

3' RACE was completed essentially as described

(European Polycystic Kidney Disease Consortium (1994)).

Reverse transcription was performed with 5μg total RNA with 0.5μg of the hybrid dT₁₇ adapter primer using conditions previously described (Fronman et al., (1988)). A specific 3' RACE product was amplified with the primer F5 adn adapter primer in 0.5mM MgCl₂ with the program: 57°C, 60s; 72°C, 15 minutes and 30 cycles of 95°C, 40s; 57°C, 60s; 72°C, 60s plus 72°C, 10 minutes. The amplified product was cloned using the TA cloning system (Invitrogen) and sequenced by conventional methods.

References

Aksentijevich, I., Pras, E., Gruberg, L., Shen, Y., Holman, K., Helling, S., Prosen, L., Sutherland, G.R., Richards, R.I., Ramsburg, M., Dean, M., Pras, M., Amos, C.I. and Kastner, D.L. (1993). Refined mapping of the gene causing familial Mediterranean fever, by linkage and homozygosity studies. Am. J. Hum. Genet. 53, 451-461.

30

5

10

Altschul, S.F., Warren, G., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic alignment search tool. J. Mol. Biol. 215, 403-410.

Breuning, M.H., Reeders, S.T., Brunner, H., Ijdo, J.W., Saris, J.J., Verwest, A., van Ommen, G.J.B. and Pearson, P.L. (1987). Improved early diagnosis of adult polycystic kidney disease with flanking DNA markers. Lancet. ii, 1359-1361.

10

15

Breuning, M.H., Snijdewint, F.G.M., Brunner, H., Verwest, A., Ijdo, J.W., Saris, J.J., Dauwerse, J.G., Blonden, L., Keith, T., Callen, D.F., Hyland, V.J., Xiao, G.H., Scherer, G., Higgs, D.R., Harris, P., Bachner, L., Reeders, S.T., Germino, G., Pearson, P.L. and van Ommen, G.J.B. (1990). Map of 16 polymorphic loci on the short arm of chromosome 16 close to the polycystic kidney disease gene (PKD1). J. Med. Genet. 27, 603-613.

20

35

Brook-Carter, P.T., Peral, B., Ward, C.J., Thompson, P., Hughes, J., Maheshwar, M.M., Nellist, M., Gamble, V., Harris, P.C. & Sampson, J.R. (1994). Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease - a contiguous gene syndrome. Nature Genetics, 8, 328-332.

Brown, C.J., Flenniken, A.M., Williams, B.R.G. and Willard, H.F. (1990). X chromosome inactivation of the human TIMP gene. Nucl. Acids Res. 18, 4191-4195.

Buckle, V.J. and Rack, K. (1993). Fluorescent in situ hybridisation. Human Genetic Disease Analysis: A Practical Approach (K.E. Davies, Ed.) Vol 2, 59-82. IRL Press, Oxford.

- 43 -

Chapman, A.B., Rubinstein, D., Hughes, R., Stears, J.C., Earnest, M.P., Johnson, A.M., Gabow, P.A. and Kaehny, W.D. (1992). Intracranial aneurysms in autosomal dominant polycystic kidney disease. N. Eng. J. Med. 327, 916-920.

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.

Curtis, B.M., Scharnowske, S. & Watson, A.J., (1992) Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA, 89, 8356-8360.

Dalgaard, O.Z. (1957). Bilateral polycystic 20 disease of the kidneys: A follow-up of two hundred and eighty-four patients and their families. Acta Med. Scand. 158, 1-251.

Davies, F., Coles, G.A., Harper, P.S., Williams, A.J., Evans, C. and Cochlin, D. (1991). Polycystic kidney disease re-evaluated: a population-based study. Q. J. Med. 79, 477-485.

Deisseroth, A. and Hendrick, D. (1979). Activation of phenotypic expression of human globin genes from non-erythroid cells by chromosome-dependent transfer to tetraploid mouse erythroleukemia cells. Proc. Natl. Acad. Sci. USA. 76, 2185-2189.

5

10

15

- 44 -

Dodé, C., Rochette, J. and Krishnamoorthy, R. (1990). Locus assignment of human a globin mutations by selective amplification and direct sequencing. Brit. J. Haemat. 76, 275-281.

5

٠.

European Chromosome 16 Tuberous Sclerosis Consortium (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 75, 1305-1315.

10

European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes at 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 77, 881-894.

15

20

30

35

Fink, G.M., Johnson, A.M., Strain, J.D., Kimberling, W. J., Kumar, S., Manco-Johnson, M.L., Duley, I.T. and Gabow, P.A. (1993). Characteristics of very early onset autosomal dominant polycystic kidney disease. Journal American Society Nephrology. 3, 1863-1870.

Fink, G.M., Johnson, A.M. and Gabow, P.A. (1994).

Is there evidence for anticipation in autosomaldominant polycystic disease? Kidney Int. 45, 11531162.

Fronman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Biochemistry 85, 8998-9002 (1988).

Gabow, P.A. (1990). Autosomal dominant polycystic kidney disease - more than a renal disease. American Journal of Kidney Diseases. XVI, 403-413.

- 45 -

Gabow, P.A. (1991). Polycystic kidney disease: clues to pathogenesis. Kidney Int. 40, 989-996.

Gabow, P.A., Johnson, A.M., Kaehny, W.D., Kimberling, W.J., Lezotte, D.C., Duley, I.T. and Jones, R.H. (1992). Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 41, 1311-1319.

Gabow, P.A. (1993). Autosomal dominant polycystic kidney disease. N. Eng. J. Med. 329, 332-342.

Germino, G.G., Barton, N.J., Lamb, J., Higgs, D.R., Harris, P., Xiao, G.H., Scherer, G., Nakamura, Y. and Reeders, S.T. (1990). Identification of a locus which shows no genetic recombination with the autosomal dominant polycystic kidney disease gene on chromosome 16. Am. J. Hum. Genet. 46, 925-933.

Germino, G.G., Weinstat-Saslow, D., Himmelbauer,

H., Gillespie, G.A.J., Somlo, S., Wirth, B., Barton,

N., Harris, K.L., Frischauf, A.-M. and Reeders, S.T.

(1992). The gene for autosomal dominant polycystic kidney disease lies in a 750-kb CpG-rich region.

Genomics. 13, 144-151.

25

15

Green, A.J., Smith, M. and Yates, J.R.W. (1994). Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nature Genet. 6, 193-196.

30

35

Harris, P.C., Barton, N.J., Higgs, D.R., Reeders, S.T. and Wilkie, A.O.M. (1990). A long-range restriction map between the a-globin complex and a marker closely linked to the polycystic kidney disease (PKD1) locus. Genomics. 7, 195-202.

- 46 -

Harris, P.C., Thomas, S., Ratcliffe, P.J., Breuning, M.H., Coto, E. and Lopez-Larrea, C. (1991). Rapid genetic analysis of families with polycystic kidney disease by means of a microsatellite marker. Lancet. 338, 1484-1487.

Himmelbauer, H., Germino, G.G., Ceccherini, I., Romeo, G., Reeders, S.T. and Frischauf, A.-M. (1991). Saturating the region of the polycystic kidney disease gene with Not I linking clones. Am. J. Hum. Genet. 48, 325-334.

Hossack, K.F., Leddy, C.L., Johnson, A.M., Schrier, R.W. and Gabow, P.A. (1988). Echocardiographic findings in autosomal dominant polycystic kidney disease. N. Eng. J. Med. 319, 907-912.

Huston, J., Torres, V.E., Sulivan, P.P., Offord, K.P. and Wiebers, D.O. (1993). Value of magnetic resonance angiography for detection of intracranial aneurysm in autosomal dominant polycystic kidney disease. Journal of the American Society of Nephrology. 3, 1871-1877.

Hyland, V.J., Suthers, G.K., Friend, K.,

MacKinnon, R.N., Callen, D.F., Breuning, M.H., Keith,
T., Brown, V.A., Phipps, P. and Sutherland, G.R.

(1990). Probe, VK5B, is located in the same interval as
the autosomal dominant adult polycystic kidney disease
locus, PKD1. Hum. Genet. 84, 286-288.

30

5

10

20

Keen, J., Lester, D., Inglehearn, C., Curtis, A. and Bhattacharya, S. (1991). Rapid detection of single base mismatches as heteroduplexes on Hydrolink gels. Trends Genet. 7, 5.

35

PCT/GB94/02822

- 47 -

Kimberling, W.J., Fain, P.R., Kenyon, J.B., Goldgar, D., Sujansky, E. and Gabow, P.A. (1988). Linkage heterogeneity of autosomal dominant polycystic kidney disease. N. Eng. J. Med. 319, 913-918.

5

10

Kimberling, W.J., Kumar, S., Gabow, P.A., Kenyon, J.B., Connolly, C.J. and Somlo, S. (1993). Autosomal dominant polycystic kidney disease: Localization of the second gene to chromosome 4q13-q23. Genomics. 18, 467-472.

Kobe, B. & Deisenhofer, J. (1994) The leucine-rich repeat: a versatile binding motif. Trends in Biochemical Sciences, 19, 415-421.

Legius, E., Marchuk, D.A., Collins, F.S. and Glover, T.W. (1993). Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nature Genet. 3, 122-126.

20

Love, D.R., Hill, D.F., Dickson, G., Spurr, N.K., Byth, B.C., Marsden, R.F., Walsh, F.S., Edwards, Y.H. and Davies, K.E. (1989). An autosomal transcript in skeletal muscle with homology to dystrophin. Nature. 339, 55-58.

Mandel, J-L. Questions of expansion. Nature Genetics. 4, 8-9.

Melton, D.A., Kreig, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. (1984). Efficient in vitro synthesis of biological active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acid Research. 12, 7035-7056.

- 48 -

Milutinovic, J., Fialkow, P.J., Rudd, T.G. and Agodoa, L.Y., Phillips, L.A. and Bryant, J.I. (1980). Liver cysts in patients with autosomal dominant polycystic kidney disease. Am. J. Med. 68, 741-744.

5

Parfrey, P.S., Bear, J.C., Morgan, J., Cramer, B.C., McManamon, P.J., Gault, M.H., Churchill, D.N., Singh, M., Hewitt, R., Somlo, S. and Reeders, S.T. (1990). The diagnosis and prognosis of autosomal dominant polycystic kidney disease. N. Eng. J. Med. 323, 1085-1090.

Peral, B., Ward, C.J., San Millán, J.L., Thomas, S., Stallings, R.L., Moreno, F. and Harris, P.C. (1994). Evidence of linkage disequilibrium in the Spanish polycystic kidney disease 1 population. Am. J. Hum. Genet. 54, 899-908.

Peters, D.J.M. and Sandkuijl, L.A. (1992). Genetic 20 heterogeneity of polycystic kidney disease in Europe. Contributions to Nephrology: Polycystic Kidney Disease. 97, 128-139.

Peters, D.J.M., Spruit, L., Saris, J.J., Ravine,
D., Sandkuijl, L.A., Fossdal, R., Boersma, J., van
Eijk, R., N rby, S., Constantinou-Deltas, C.D.,
Pierides, A., Brissenden, J.E., Frants, R.R., van
Ommen, G.-J.B. and Breuning, M.H. (1993). Chromosome 4
localization of a second gene for autosomal dominant
polycystic kidney disease. Nature Genet. 5, 359-362.

Pound, S.E., Carothers, A.D., Pignatelli, P.M., Macnicol, A.M., Watson, M.L. and Wright, A.F. (1992). Evidence for linkage disequilibrium between D16S94 and the adult onset polycystic kidney disease (PKD1) gene. J. Med. Genet. 29, 247-248.

- 49 -

Ravine, D., Walker, R.G., Gibson, R.N., Forrest, S.M., Richards, R.I., Friend, K., Sheffield, L.J., Kincaid-Smith, P. and Danks, D.M. (1992). Phenotype and genotype heterogeneity in autosomal dominant polycystic kidney disease. Lancet. 340, 1330-1333.

Ravine, D., Walker, R.G., Gibson, R.N., Sheffield, L.J., Kincaid-Smith, P. and Danks, D.M. (1991). Treatable complications in undiagnosed cases of autosomal dominant polycystic kidney disease. Lancet. 337, 127-129.

Reeders, S.T. (1992). Multilocus polycystic disease. Nature Genet. 1, 235-237.

15

20

25

10

5

Reeders, S.T., Breuning, M.H., Davies, K.E., Nicholls, R.D., Jarman, A.P., Higgs, D.R., Pearson, P.L. and Weatherall, D.J. (1985). A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature. 317, 542-544.

Reeders, S.T., Keith, T., Green, P., Germino, G.G., Barton, N.J., Lehmann, O.J., Brown, V.A., Phipps, P., Morgan, J., Bear, J.C. and Parfrey, P. (1988). Regional localization of the autosomal dominant polycystic kidney disease locus. Genomics. 3, 150-155.

Romeo, G., Costa, G., Catizone, L., Germino, G.G., Weatherall, D.J., Devoto, M., Roncuzzi, L., Zucchelli, P., Keith, T. and Reeders, S.T. (1988). A second genetic locus for autosomal dominant polycystic kidney disease. Lancet. ii, 8-10.

Rothberg, J.M., Jacobs, J.R., Goodman, C.S. & Artavanis-Tsakonas, S. (1990) slit: an extracellular protein necessary for development of midlie glia and

- 50 -

commissural axon pathways contains both EGF and LRR domains. Genes and Development, 4, 2169-2187.

Royle, N.J., Armour, J.A.L., Webb, M., Thomas, A. and Jeffreys, A.J. (1992). A hypervariable locus D16S309 located at the distal end of 16p. Nucl. Acids Res. 20, 1164.

Ryynanen, M., Dolata, M.M., Lampainen, E. and Reeders, S.T. (1987). Localisation of a mutation producing autosomal dominant polycystic kidney disease without renal failure. J. Med. Genet. 24, 462-465.

Scheff, R.T., Zuckerman, G., Harter, H. Delmez, J. and Koehler, R.(1980). Diverticular disease in patients with chronic renal failure due to polycystic kidney disease. Ann. Intern. Med. 92, 202-204.

Snarey, A., Thomas, S., Schneider, M.C., Pound,
S.E., Barton, N., Wright, A.F., Harris, P.C., Reeders,
S.T. and Frischauf, A.-M. (1994). Linkage
disequilibrium in the region of the autosomal dominant
polycystic kidney disease gene (PKD1). Am. J. Hum.
Genet. in press.

25

30

5

10

15

Somlo, S., Wirth, B., Germino, G.G., Weinstat-Saslow, D., Gillespie, G.A.J., Himmelbauer, H., Steevens, L., Coucke, P., Willems, P., Bachner, L., Coto, E., Lopez-Larrea, C., Peral, B., San Millan, J.L., Saris, J.J., Breuning, M.H., Frischauf, A.-M. and Reeders, S.T. (1992). Fine genetic localization of the gene for autosomal dominant polycystic kidney disease (PKD1) with respect to physically mapped markers. Genomics. 13, 152-158.

٦5

5

Thompson, A.D., Shen, Y., Holman, K., Sutherland, G.R., Callen, D.F. and Richards, R.I. (1992). Isolation and characterization of $(AC)_n$ microsatellite genetic markers from human chromosome 16. Genomics. 13, 402-408.

Wilson, P.D. and Sherwood, A.C. (1991). Tubulocystic epithelium. Kidney Int. 39, 450-463.

- Wright, D.K. and Manos, M.M. (1990). Sample preparation from paraffin-embedded tissues. PCR Protocols: A Guide to Methods and Applications. 153-166.
- Zerres, K., Rudnik-Schöneborn, S., Deget, F. and German working group on paediatric nephrology (1993). Childhood onset autosomal dominant polycystic kidney disease in sibs: clinical picture and recurrence risk.

 J. Med. Genet. 30, 583-588.

52

CLAIMS

- 1. An isolated, purified or recombinant nucleic acid sequence comprising:-
 - (a) a PKD1 gene or its complementary strand,
- 5 (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
 - (c) a fragment of a molecule defined in (a) or (b) above.
- 2. A sequence according to claim 1, wherein the PKD1 gene has the partial nucleic acid sequence according to Figure 7 and/or 10.
 - 3. A sequence according to claim 1 or claim 2 comprising a DNA molecule selected from:
- 15 (a) a PKD1 gene or its complementary strand,
 - (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
- (c) a molecule coding for a polypeptide having the 20 partial sequence of Figure 7,
 - (d) genomic DNA corresponding to a molecule in (a) above; and
 - (e) a fragment of a molecule defined in any of (a),(b), (c) or (d) above.
- 25 4. A nucleic acid sequence comprising a mutant PKD1 gene, selected from those wherein:-
 - (a) [OX114] base pairs 1746-2192 as defined in SUBSTITUTE SHEET (RULE 26)

Figure 7 are deleted (446bp);

5

10

15

(b) [OX32] base pairs 3696-3831 as defined in Figure 7 are deleted by a splicing defect;

53

- (c) [OX875] about 5.5kb flanked by the two Xbal sites shown in Figure 3a are deleted and the EcoRl site separating the CW10 (41kb) and JH1 (18kb) sites is thereby absent; and
- (d) [WS53] about 100kb extending between the JH1 and CW21 and the SM6 and JH17 sites shown in Figure 6 and the PKD1 gene is thereby absent.
- 5. A nucleic acid sequence comprising a mutant PKD1 gene selected from those wherein-
- (a) [461] abpout 18bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;
- (b) [OX1054] about 20bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;
- (c) [WS212] about 75kb are deleted between SM9-CW9 20 distally and the PKD1 3'UTR proximally as shown in Figure 12;
 - (d) [WS-215] about 160kb are deleted between CW20 and CW10-CW36 as shown in Figure 12;
- (e) [WS-227] about 50kb are deleted between CW20 25 and JH11 as shown in Figure 12;
 - (f) [WS-219] about 27kb are deleted between JH1 and JH6 as shown in Figure 12; and
 - (g) [WS-250] about 160kb are deleted betwenn WC20

PCT/GB94/02822

10

20

25

and BLu24 as shown in Figure 12.

- (h) [WS194] a deletion of about 65kb between CW20 and CW10.
- 6. An RNA molecule comprising an RNA sequence corresponding to a DNA sequence according to any of claims 1 to 5.
 - 7. An RNA molecule according to claim 6, wherein the molecule is the transcript referenced PKD1 and identifiable from the restriction map of Figure 3a and having a sequence of about 14 KB.
 - 8. A nucleic acid probe having a sequence according to any of the preceding claims and optionally including a label.
- 9. A nucleic acid sequence according to any preceding 15 claim, wherein the nucleic acid sequence encoding PKD1 is operably linked to transcriptional and/or translational expression signals.
 - 10. An isolated, purified or recombinant polypeptide comprising a PKD1 protein or a mutant or variant thereof or encoded by a sequence according to any of claims 1 to 9 or a variant thereof having substantially the same activity as the PKD1 protein.
 - 11. A polypeptide according to claim 10, wherein the PKD1 protein has the amino acid sequence according to the partial amino acid sequence of Figure 7 and/or Figure 10.
 - 12. An anti-PKD1 antibody or a labelled anti-PKD1 antibody.
 - 13. A method for screening a subject to determine

WO 95/18225

whether said subject is a PKD1-associated disorder carrier or a patient having a PKD1-associated disorder, which method comprises detecting the presence of and/or evaluating the characteristics of PKD1 DNA, PKD1 RNA and/or PKD1 polypeptide in a biological sample from said patient.

55

- A method according to claim 13 which is or includes 14. detecting and/or evaluating whether the PKD1 DNA is mutated, deleted, aberrant or otherwise abnormal, or is not expressing normal PKD1 protein.
- A method according to claim 13 or claim 14, wherein 15. 10 the detection and/or evaluation includes the step of comparing the results thereof with results obtained using a mutated sequence according to claim 4 or claim 5.
 - A method according to any of claims 13 to 15, 16. wherein said screening includes applying a nucleic acid amplification process to said sample to amplify a fragment of the PKD1 DNA or cDNA corresponding to the PKD1 RNA.
 - A method according to claim 16, wherein said nucleic 17. acid amplification process uses at least one of the following sets of primers as identified herein:-

AH3 F9 : AH3 B7

5

15

20

3A3 C1 : 3A3 C2

AH4 F2 : JH14 B3

- A method according to any of claims 13 to 17 which 18. comprises digesting said sample to EcoRl fragments and 25 hybridising with a DNA probe which hybridises to the EcoRl fragment identified (A) in Figure 3(a).
 - A method according to claim 18, wherein said DNA 19.

10

probe comprises the DNA probe CW10 identified herein.

- 20. A method according to any of claims 13 to 17 which comprises digesting said sample to provide BamHl fragments hybridising with a DNA probe which hybridises to the BamHl fragment identified (B) in Figure 3(a).
- 21. A method according to claim 20, wherein said DNA probe comprises the DNA probe 1AlH.6 identified herein.
- 22. A vector (such as Bluscript (available from Stratagene)) comprising the nucleic acid sequence of any of claims 1 to 9.
- 23. A host cell (such as E. coli strain SL-1 Blue (available from Stratgene)) transfected or transformed with a vector according to claim 22.
- 24. The use of a vector according to claim 23 or a nucleic acid sequence according to any of claims 1 to 11 in gene therapy and/or in the preparation of an agent for treating or preventing a PKD1-associated disorder.
- 25. A method of treating or preventing a PKD1associated disorder which method comprises administering to
 20 a patient in need thereof a functional PKD1 gene to affected
 cells in a manner that permits expression of PKD1 protein
 therein and/or a transcript produced from a mutated
 chromosome such as the deleted WS-212 chromosome which is
 capable of expressing functional PKD1 protein therein.
- 25 26. A diagnostic kit for carrying out a method according to any of claims 13 to 21, comprising nucleic acid primers for amplifying a fragment of a sequence according to any of Claims 1 to 9.

57

27. A diagnostic kit according to claim 26, wherein the nucleic acid primers comprise at least one of the following sets:

AH3 F9 : AH3 B7

5 3A3 C1 : 3A3 C2

10

AH4 F2 : JH14 B3

- 28. A diagnostic kit for carrying out a method according to claim 18, including one or more substances for digesting a sample to provide EcoRI fragments and a DNA probe as defined in claim 19.
- 29. A diagnostic kit for carrying out a method according to claim 20, including one or more substances for digesting a sample to provide BamHl fragments and a DNA probe as defined in claim 21.
- 30. A diagnostic kit for carrying out a method for determining whether said subject is a PKD1-associated disorder carrier or a patient having a PKD1-associated disorder, which includes a nucleic acid probe capable of hybridising to a sequence according to any of claims 1 to 11.

SUBSTITUTE SHEET (RULE 26)

2/58

Fig. 2

SUBSTITUTE SHEET (RULE 26)

PCT/GB94/02822

3A3

1 2 3 4 5 6 7 8 9 kb

PBP

-9.5

-7.5

Fig. 4a

8S1

N 2 4

HG-A HG-B PBP

HG-C

PBP-77

Fig.4b

Fig.4c

SUBSTITUTE SHEET (RULE 26)

7 /58

1	CTCAACGAGGAGCCCTGACGCTGGCGGGGAGGAGATCGTGGCCCAGGGCAAGCCGCTCG LNEEPLTLAGEEIVAQGKRS	60 20
61 21	CACCOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	120 40
121 41	CCCGAGGCTTTCAGCGGGGCCCAACCTCAGTGACGTGGTGCAGCTCATCTTTCTG PEAFSGALANLSDVVQLIFL	180 60
181 61	GTGGACTCCAATCCCTTTCCCTTTCGCTATATCAGCAACTACACCGTCTCCACCAAGGTG V D S N P F P F G Y I S N Y T V S T K V	240 80
241 81	CCCTCGATGGCATTCCAGACACAGGCCCCCCCAGGATCCCCATCGAGCGGCTGGCCTCA A S M A F Q T Q A G A Q I P I E R L A S	300 100
301 101	GAGOGGOCATCACOGTGAAGGTGCCCCAACAACTCGGACTGGGCTGCCCGGGGCCACCGC E R A I T V K V P N N S D W A A R G H R	360 120
361 121	ACCTOCCCAACTOCCTTGTGGTCCAGCCCCAGGCCTCCGTGCTGTG S S A N S A N S V V V Q P Q A S V G A V	420 140
421 141	GTCACCCTGGACACCAACCCTGCGGCCGCCTGCATCTGCAGCTCAACTATACGCTG	480 160
481 161	CTGGACGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGCCAGTCTACCTAC	540 180
541 181	GAGCCCCGGCCCAATGAGCACAACTGCTCGGCTAGCAGGAGGATCCCCCCAGAGTCACTC E P R P N E H N C S A S R R I R P E S L	600 200
601 201	CAGGGIGCIGACCACCGGCCCI'ACACCITCTTCATTTCCCCGGGGAGCAGAGACCCAGCG	660 220
661 221	GGGAGITACCATCIGAACCTCTCCAGCCACTTCCGCTGGTCCGCCCGCTGCAGGTGTCCGTG	720 240
721 241	GCCCTGTACACGTCCCTGTGCCAGTACTTCAGCGAGGAGGACATGGTGTGGCCGACAGAG G L Y T S L C Q Y F S E E D M V W R T E	780 260
781 261	GGGCTGCTGCCCCGGGGGGGGGGCGCGCGCGCGCGCCGCC	840 230
841 281	ACCECCTTCGGCGCCAGCCTCTTCGTGCCCCCAAGCCATGTCCGCTTTGTGTTTCCTGAG	900 300
901 301	COGACAGOGGATGTAAACTACATOGTCATGCTGACATGTGCTGTGTGCCTGGTGACCTAC P T A D V N Y I V M L T C A V C L V T Y	960 320
961 321	ATGGTCATGGCCGCCATCCTGCACAAGCTGGACCAGTTGGATGCCAGCCGGGGCCGCCCCCCCC	1020 340
.021 341	ATCCCTTTCTGTGGGCAGCGGGGCCCCTTCAAGTACGAGATCCTCGTCAAGACAGGCTGG	1080 360
.081 361	GGCCGGGCTCAGGTACCACGGGCCCACGTGGGCATCATGCTGTATGGGGTGGACAGCCGG	1140 380
141 381	AGCCGCCACCGCACCTCGACGCCGACAGACCCTTCCACCGCAACAGCCTCGACATCTTC S G H R H L D G D R A F H R N S L D I F	1200 400
.201 401	COGATOGOCACOCOCACACOCTGGGTAGCCTGTGGGAAGATOCGAGTGTGGCACGACAAC RIATPHSLGSVWKIRVWHDN	1260 420

Figure 7

8 /58

	, 30	
1261 4 21	AAAGGGCTCAGOOCTGGCTGCTGCAGCAGCACGTCATGGTCAGGGACCTGCAGACGGCA KGLSPAWFLQHVIVRDLQTA	1320 440
1321 441	COCAGOGOCTICTICCTGGTCAATGACTGGCTTTCGGTGGAGACGGAGGCCAACGGGGCC R S A F F L V N D W L S V E T E A N G G	1380 460
1381 461	CTGGTGGAGAGGAGGTGCTGGCCGGGGGGAGGGAGGCAGCCCTTTTGCGCTTCCGGGGGCCTG L V E K E V L A A S D A A L L R F R R L	140 480
1441 481	CIOGIGGCIGAGCIGGCIICCITIGACAAGCACATCIGGCICICCATATGGGAC L V A E L Q R G F F D K H I W L S I W D	1500 500
1501 501	COCCOCCTOGTACCOCTTCACTCCCATCCAGAGGGCCACCTGCTGCGTTCTCCTCATC	1560 520
1561 521	TGCCTCTTCCTGGGGGCCAACGCCGTGTGGGGGGCTGTTGGGGGACTCTCCCCTACAGC	1620 540
1621 541	ACGGGCATGTGTCCAGGCTGAGCCCGCTGAGCGTCGACACAGTCGCTGTTGGCCTCGTG	1680 560
1681	TOCAGOGIGGITGICTATCCCGTCTACCTGGCCATCCTTTTTCTCTTCCCGATGTCCCGG	1740 580
561 1741	AGCAAGGTGCCTGGGACCCCGAGCACTGCCGGGCAGCAGGTGCTGGACATGGAC	1800
581 1801	S K V A G S P S P T P A G Q Q V L D I D ACCTOCCTOGACTOCTOCCTOGACACCTOCTTCCTCACGTTCTCACGCCTCCACGCTT	600 1860
601	S C L D S S V L D S S F L T F S G L H A	620
1861 621	GAGGOCTTTGTTGGACAGATGAAGAGTGACTTGTTTCTGGATGATTCTAAGAGTCTGGTG E A F V G Q M K S D L F L D D S K S L V	1920 640
1921 641	TOCTOGOCCTOCOGOGAGGGAACOCTCAGTTGGCCCCACCTGCTCAGTGACCCGTCCATT C W P S G E G T L S W P D L L S D P S I	1980 660
1981 661	GTGGGTAGCAATCTGCGGCAGGGCAGGGGGCCCAGGGGCCCAGAG V G S N L R Q L A R G Q A G H G L G P E	2040 680
2041 681	GAGGAGGCTTCTCCCTGCCAGCCCTCCTCGCCTGCCAAATCCTTCTCAGCATCAGAT E D G F S L A S P Y S P A K S F S A S D	2100 700
2101 701	GAAGACCTGATOCAGGAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCC	2160 720
2161 721	ACCCACATGGAAACGGACCTCCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAG T H M E T D L L S S L S S T P G E K T E	2220 740
2221 741	ACCTIGGOGTIGGAGGCTIGGGGGCAGCCAGCCCAGGCCTGAACTIGGGAA T L A L O R L G E L G P P S P G L N W E	2280 760
2281 761	CACCCCAGCCAGCCAGCTGTCCAGGACAGGACTGGTGGAGGGTCTGCGGAAGCGCCTG	2340 780
2341 781	CTGCCCGCCTCGTCCCTCGCCCACCGCCTCACCCTGCTCCTCGTCGCTT L P A W C A S L A H G L S L L L V A V A	2400 800
2401 801		2460 820
2461	CIGIOCAGCAGCCCAGCITCCTGGCCTCATTCCTCGGCTGGGAGCCACTGAAGGTCTTG	2520
821	LSSSASFLASFLGWEPLKVL	840

Figure 7 cont'd

9 /58

	•	
2521 841	CTGGAAGCCCTGTTACTTCTCACTGGTGGCCAAGCGGCTGCACCCGGATGAAGATGACACC L E A L Y F S L V A K R L H P D E D D T	2580 860
2581 861	CTGGTAGAGAGCCCGGTGTGACCCCTGTGACCCCACCCC	2640 880
2641 881	CACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCCCAAGGTCAAGAGGCTACATGGC H G F A L F L A K E E A R K V K R L H G	2700 900
2701 901	ATGCTGCGGAGCCTCCTGGTGACATCCTTTTTCTGCTGGTGACCCTGCTGGCCAGCTAT	2760 920
2761 921	GOGGATGCCTCATGCCATGGCCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTG G D A S C H G H A Y R L Q S A Ï K Q E L	2820 940
2821 941	CACAGOOGGCCTTCCTGGCCATCACGCGGTCTGAGGAGCTCTGGCCATGGATGG	2880 960
2881 961	GTGCTGCTGCCCTACGTCCACGGGAACCAGTCCAGGCCAGAGCTGGGGGCCCCACGGCTG	2940 980
2941 981	CCCCACGTICCCCCCACGACCCCTCTACCCAGACCCTCCCCCCCCCC	3000 1000
3001 1001	TCCICCGCCCCACGACCTCACCACCACCACCGATTACGACGTTGGCTGGGAGAGTCCTCACC	3060 1020
3061 1021	AATGGCTCGGGGACGTGGGGCCTATTCAGCGCCCGGATCTGCTGGGGGCATGGTCCTGGGGC N G S G T W A Y S A P D L L G A W S W G	3120 1040
3121 1041	TOCTGTGCCCTGTATGACAGCGGGGCTACGTGCAGGAGCTGGGGCCTGAGCCTGGAGGAG S C A V Y D S G G Y V Q E L G L S L E E	3180 1060
3181 1061	AGCCGCGACCGCCTGCCGCTGCACCACCTGCCTGGACAACAGGAGCCGCCT S R D R L R F L Q L H N W L D N R S R A	3240 1080
3241 1081	GTGTTCCTGGACCTCACGCCCTACAGCCCGCCGCGCGCGC	3300 1100
3301 1101	CCCCCCGAGITCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	3360 1120
3361 1121	CTOCOCCOCCTCAGCOCCCCCTCTCCCTCCCCCCTCCTCCTCCTCCTCCTCCTC	3420 1140
3421 1141	TTCCCCGTGCACTTCCCCGTGCCCGAGGCCCGTACTTCCCACAGGGAAGGGCCCTGCCCC F A V H F A V A E A R T W H R E G R W R	3480 1160
3481	GRECTEGGECTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3540 1180
3541	CIGGTACGCCICGCCAGCIGGGIGCCGCTGACCGCCAGTGGACCCGTTTCGTGCGCGCC	3600
3601	CCCCCCCCCCCCTTCACTACCTTCGACCACGTGCCCCACCTTGACCTCCCCACCCCGTGCC	3660
1201 3661	R P R R F T S F D Q V A H V S S A A R G CTGCCGCCTCCCTCCTCCTCCTCTTCGTCAAGGCTGCCCAGCAGGTAGGCTTCGTG	1220 3720
1221 3721	LAASLLFLLVKAAQHVRFV	1240 3780
1241	R Q W S V F G K T L C R A L P E L L G V	1260

Figure 7 cont'd

10 /58

3781 1261	ACCITIGGGCCTGGTGGTCTCGGGGTAGCCTAGGCCAGCTGGCCATCCTGCTCGTGTCT T L G L V V L G V A Y A Q L A I L L V S	3840 1280
3841 1281	TOCTGTGTGGACTCCCTCTGGAGCGTGGGCCCAGGCCCTGTTGGTGCTGTGCCCTGGGACT S C V D S L W S V A Q A L L V L C P G T	3900 1300
3901 1301	GCCTCTCTACCCTGTCCTCCCCAGTCCTCGCACCTGTCACCCCTGTGTGTG	3960 1320
3961 1321	CTCTGGGCACTGCGGGGGGGGGCCTACGGCTGGGGGGCTGTTATTCTCCGCTGGGGCCCLL W A L R L W G A L R L G A V I L R W R	4020 1340
4021 1341	TACCACCCTTGCGTGGAGACCTGTACCGGCCCTGGGAGCCCAGGACTACGAGATG Y H A L R G E L Y R P A W E P Q D Y E M	4080 1360
4081 1361	GTGGAGTTGTTCCTGCGCAGGCTGCGCCTCTGGATGGGCCTCAGCAAGGTCAAGGAGTTC V E L F L R R L R L W M G L S K V K E F	4140 1380
4141 1381	COCCACAAAGICCOCITTGAAGGGATGGAGCCCCTGCCCTCCTCCCTCCAGGGGCTCC R H K V R F E G M E P L P S R S S R G S	4200 1400
4201 1401	AAGGTATCCCCGGATGCCCACCCACCCACCCACCCACCCA	4260 1420
4261 1421	TOCTOCAGOCAGCTGGATGGGCTGAGGCTGGGGCGGGGGGGGGG	4320 1440
4321 1441	CCTGAGCCCTCCCAAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTC PEPSRLQAVFEALLTQFDRL	4380 1460
4381 1461	AACCAGGCCACAGAGGACGTCTACCAGCTGGAGCAGCTGCACAGCCTGCAAGGCCGC N Q A T E D V Y Q L E Q Q L H S L Q G R	4440 1480
4441 1481	AGGAGCAGCOGGGGCCCCGGATCTTCCCGTGGCCCATCCCCGGGCCTGCCGCCCAGCA	4500 1500
4501 1501	CTGCCCAGCCCCTTGCCCCAGTCGGGGTGTGGACCTGGCCCACTGGCCCAGCAGG L P S R L A R A S R G V D L A T G P S R	4560 1520
4561 1521	ACACCTTOGGGCCAAGAACAAGGTCCACCCCAGCAGCACTTAGTCCTCCTTCCT	4620 1540
4621	GGTGGGCCGTGGAGTCGGACACCGCTCAGTATTACTTTCTGCCGCTGTCAAGGCC	4689 0
1541	G G P W S R S G H R S V L L S A A V K A	1560
4681 1561	GAGGGCCAGGCAGATGCCTGCACGTAGGTTCCCCAGAGAGCAGCAGGGCATCTGTCT E G Q A E W L H V G S P E S R Q G H L S	4740 1580
4741 1581	GTCTGTGGGCTTCAGCACTTTAAAGAGGCTGTGTGGGCCAACCAGGACCCAGGGTCCCCTC V C G L Q H F K E A V W P T R T Q G P L	4800 1600
4801 1601	COCAGCTCCCTTGGGAAGGACACAGCAGTATTGGACGGTTTCTAGCCTCTGAGATGCTAA PSSLGKDTAVLDGF	4860 1620
4861	TTTATTTCCCCGAGTCCTCAGGTACAGCGGGCTGTGCCCGGGCCACCCCCTGGGCAGAT	4920
4921	GTCCCCCACTGCTAAGGCTGCTGCCTTCAGGGAGGGTTAGCCTGCACCGCCCCCACCCTG	4980
4981	CCCCTAAGTTATTACCTCTCCAGTTCCTACCGTACTCCCACCGTCTCACTGTGTGTC	5040
5041 .	TCGTCTCAGTAATTTATATGGTGTTAAAATGTGTATATTTTTGTATGTCACTATTTTCAC	5100
	Figure 7 Cont'd	

Figure 7 Cont'd

11/58

5101	TAGGGCTGAG	***************************************	AGAGCTGGCCT	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CCICCCITICS:	TAGG	5160				
5161	TCTCCTCCCC	PTATEGCAGOOO	CCCTCCTCCTT(GATGOGAGCIT	GCCTAGCCCC	eric	5220				
5221	CTGGGGGCAC	AGCIGICTGCCA	GGCACTCTCATO	CACCOCAGAGGC	CITGICATOCI	mar	5280				
5281	TGCCCCAGGCC	CAGGTAGCAAGA	GAGCAGOGOCZ	AGGCCTGCTGGC	ATCAGGICTGG	CAA	5340				
5341	CTACCACGAC	PAGGCATGTCAG	AGGACCCCAGG(FIGGITAGAGGA	AAAGACTCCTC	CTGG	5400				
5401	GGCCTGCCTCCCAGGGTGGAGGAAGGTGACTGTGTGTGTG										
5461	GOGACTGTGC	TGTATGGCCCAG	GCACGCTCAAGC	COCTOGGAGCI	CCCTGTCCCTC	CITC	5520				
5521	TGIGTACCAC	PTCTGTGGGCAT	GGCCCTTCTAC	BAGOCTOGACAC		œc	5580				
5581	ACCAAGCAGAC	ZAAAGTCAATAA	AAGAGCIGICIO	SACTOCAAAAAA	AAAAAA 5631						
	<u>1A1H0.6</u>										
1 61 121 181 241 301 361 421 481 541	AAGCITIGGCA TACGAGTIGCA AGCGTIGGCCA CACGCAAATA TOCAAGTIGGA GOOGCTTACT GCACAGACTIC TOCTOGGTIGG CITIGGACGGT GAGGCACAGA Figure 8	CCATCAAGGG ACCIGGIGIC AGATCGIGIC TGGCCTCACA TTGCCCGGCT CCAACCCAG CAGCCGAGCC AGGACTICAC ATTGCCIGIC TTGC	CCAGITICAAC CCTGCAGTGC TGACCGCAAC GGTGCATCAT CCGCCACATC CCTACCTCTG CACACCTGGC CGAGTTTGTG AGTGAAATAA	TTTGTCCACG AGGAAAGACA CTGCCCTTCG AGCCGCTCCA AAGCCGCTCC GTGCACCTC TATGAGGTGG TGAGGCCGG ATAAAGTCCT	TGATOGTCAC TGGAGGGCTT TGGCCCGCCA ACCCCACCGAT GCCAGCGGAT CGTCCCATAG GCCAGCGGAA GCCCAGCGAA GCCCAGCGAA GCCCAGCGAA	COCCIO TGTGGACA GATGGCCC TATCTACC CTGCGACG CAAAGCCC CACACACACA CTGCACTG CACAGACA					
	<u>wclof</u>										
1 61 121 181	CAGACGGGGA	GCACGTACGC GTACGTCCTC GCTCAGTGCC TG	ACICCITITG	TGTGAGAGGT TTCTTTTGAC TGGGAGGGG	GCGGGGCTGG CTAAGCTGGC GTGCATTCTT	GAAGTGTT GAGTGGCA GCTGTTAG	CT				
	CW10R		-								
1	AGGCAGGICT	CCCCCACGAG	CAGGGGAGAG	GCACCCAAGG	T ·						
					•						

SUBSTITUTE SHEET (RULE 26)

Figure 9

12/58

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: (Compare Fig.1)																
C GG				GC CO YS A:					er G				rg T			46
CTC (Leu (94
TCC (Ser)															1	42
TCG (Ser /															1	90
GAA (-	2	38
AGT (Ser (80											_				2	36
TCG (3.	34
TGT (3	82
TTG (4:	30
AAC A			_												41	78
GC (Gly 1 160																26
CAG (Gln (51	74
GCC (63	22
ecc o															67	79
CAC C															7:	18

13/58

	Leu					Leu					Ile				CTC Leu 255	766
					Arg					Asp					Val	814
									Arg						CCC Arg	862
			Thr			CTG Leu									CTG Leu	910
		Asp				GAA Glu 310										958
						AGT Ser										1006
						CIG Leu										1054
GGC Gly	GAG Glu	GAG Glu	000 Pro 355	GCC Ala	CGA Arg	GCG Ala	Val GTG	CAC His 360	CCG Pro	CIC Leu	TGC Cys	CC Pro	TCG Ser 365	GAC Asp	ACG Thr	1102
						GG Gly										1150
						CAG Gln 390										1198
						AGT Ser										1246
						GAC Asp										1294
						ccc Ala	Pro									1342
	Cys					CCC Pro					Pro					1390
						Pro 470				Cys						1438

	Ala					. Val					Pro				GTG Val 495		1 4 86
CAC Glr	GAT AST	Ala COO	GAG Glu	AAC Asn 500	Leu	CTC Leu	GIG Val	GGA Gly	Ala 505	Pro	AGI Ser	Gly	GAC Asp	Leu 510	CAG Gln		1534
GGA Gly	Pro	Leu	ACG Thr 515	Pro	Leu	Ala Ala	CAG Gln	CAG Gln 520	Asp	GC	CTC	TCA Ser	GCC Ala 525	Pro	CAC His		1582
GAG Glu	Pro	GIG Val 530	Glu	GIC Val	ATG Met	GTA Val	TTC Phe 535	Pro	Gly	CIG Leu	OGT Arg	CTG Leu 540	AGC Ser	OGT Arg	GAA Glu		1630
Ala	TTC Phe 545	Leu	ACC Thr	ACG Thr	GCC Ala	GAA Glu 550	TIT Phe	GCG	ACC Thr	CAG Gln	GAG Glu 555	CIC	CGG Arg	CGG Arg	CCC Pro	:	1678
GCC Ala 560	Gln	CIG Leu	CGG Arg	CTG Leu	CAG Gln 565	GTG Val	TAC Tyr	CGG Arg	CIC	CIC Leu 570	AGC Ser	ACA Thr	GCA Ala	ejà œe	ACC Thr 575	•	1726
CCG Pro	GAG Glu	AAC Asn	GC Gly	AGC Ser 580	GAG Glu	OCT Pro	GAG Glu	AGC Ser	AGG Arg 585	TCC Ser	CCG Pro	gac Asp	AAC Asn	AGG Arg 590	ACC Thr	:	1774
CAG Gln	CIG Leu	c Ala	Pro 595	ccc Ala	TGC Cys	ATG Met	CCA Pro	GGG Gly 600	GGA Gly	CCC Arg	TGG Trp	TGC Cys	CCT Pro 605	GGA Gly	GCC Ala]	1822
AAC Asn	ATC Ile	TGC Cys 610	TTG Leu	CCG Pro	CIG Leu	GAC Asp	GCC Ala 615	TCT Ser	TGC Cys	CAC His	cc Pro	CAG Gln 620	GCC Ala	TGC Cys	GCC Ala	j	1870
AAT Asn	GGC Gly 625	TGC Cys	ACG Thr	TCA Ser	GGG Gly	CCA Pro 630	Gly	CTA Leu	CCC Pro	GCG Gly	CC Ala 635	ccc Pro	TAT Tyr	ccc Ala	CTA Leu	נ	918
TGG Trp 640	AGA Arg	GAG Glu	TTC Phe	CTC Leu	TTC Phe 645	TCC Ser	GIT Val	GCC Ala	CCG Ala	GGG Gly 650	ccc Pro	ccc Pro	GCG Ala	CAG Gln	TAC Tyr 655	1	.966
TCG Ser	GTC Val	ACC Thr	CTC Leu	CAC His 660	Gly	CAG Gln	GAT Asp	GTC Val	CIC Leu 665	ATG Met	CTC Leu	CCT Pro	GIY	GAC Asp 670	CIC Leu	2	014
GTT Val	Gly	TTG Leu	CAG Gln 675	CAC His	GAC Asp	CCT Ala	Gly	CCT Pro 680	Gly GC	GCC Ala	CTC Leu	CTG Leu	CAC His 685	TGC Cys	TOG Ser	2	062
CCG Pro	GCT Ala	000 Pro 690	GLY GLY	CAC His	CCT Pro	GT Gly	Pro 695	CAG Gln	CCC Ala	OG Pro	TAC Tyr	CIC Leu 700	TCC Ser	CC Ala	AAC Asn	2	110
CCC Ala	TCG Ser 705	TCA Ser	Trp	CTG Leu	occ Pro	CAC His 710	TTG (Leu :	CCA Pro	GCC Ala	Gln	CIG Leu 715	GAG Glu	GJY GGC	ACT Thr	TGG Trp	2	158

										CIC Leu 735	2206
				TTG Leu							2254
				GCA Ala						AAC Asn	2302
				GAC Asp							2350
				CGC Arg							2398
				CAG Gln 805							2446
				Gly							2494
				ACC Thr							2542
				GTG Val							2590
-		_	_	GTG Val				-			2638
				GCG Ala 885							2686
-				CGT Arg							2734
				Gly							2782
	-			ACC Thr							2830
				TTC Phe						-	2878

16/58

AGC AAC GTC ACC GTG AAC TAC AAC GTA ACC GTG GAG CGG ATG AAC AGG Ser Asn Val Thr Val Asn Tyr Asn Val Thr Val Glu Arg Met Asn Arg 960 970 975	2926
960 965 970 975	
ATG CAG GGT CTG CAG GTC TCC ACA GTG CCG GCC GTG CTG TCC CCC AAT Met Gln Gly Leu Gln Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn 980 985 990	2974
ACA CTG GTA CTG ACG GGT GGT GTG CTG GTG GAC TCA GCT GTG GAG Ala Thr Leu Val Leu Thr Gly Gly Val Leu Val Asp Ser Ala Val Glu 995 1000 1005	3022
GTG GCC TTC CTG TGG AAC TTT GGG GAT GGG GAG CAG GCC CTC CAC CAG Val Ala Phe Leu Trp Asn Phe Gly Asp Gly Glu Gln Ala Leu His Gln 1010 1015 1020	3070
TTC CAG CCT CCG TAC AAC GAG TCC TTC CCG GTT CCA GAC CCC TCG GTG Phe Gln Pro Pro Tyr Asn Glu Ser Phe Pro Val Pro Asp Pro Ser Val 1025 1030 1035	3118
GCC CAG GTG CTG GTG GAG CAC AAT GTC ATG CAC ACC TAC GCT GCC CCA Ala Gln Val Leu Val Glu His Asn Val Met His Thr Tyr Ala Ala Pro 1040 1045 1050 1055	3166
GGT GAG TAC CTC CTG ACC GTG CTG GCA TCT AAT GCC TTC GAG AAC CTG Gly Glu Tyr Leu Leu Thr Val Leu Ala Ser Asn Ala Phe Glu Asn Leu 1060 1065 1070	3214
ACG CAG CAG GTG CCT GTG AGC GTG CGC GCC TCC CTG CCC TCC GTG GCT Thr Gln Gln Val Pro Val Ser Val Arg Ala Ser Leu Pro Ser Val Ala 1075 1080 1085	3262
GTG GGT GTG AGT GAC GGC GTC CTG GTG GCC GGC CGG CCC GTC ACC TTC Val Gly Val Ser Asp Gly Val Leu Val Ala Gly Arg Pro Val Thr Phe 1090 1095 1100	3310
TAC CCG CAC CCG CTG CCC TCG CCT CCG CGT GTT CTT TAC ACG TGG GAC Tyr Pro His Pro Leu Pro Ser Pro Gly Gly Val Leu Tyr Thr Trp Asp 1105 1110 1115	3358
TTC GGG GAC GGC TCC CCT GTC CTG ACC CAG AGC CAG CCG GCT GCC AAC Phe Gly Asp Gly Ser Pro Val Leu Thr Gln Ser Gln Pro Ala Ala Asn 1120 1135	3406
CAC ACC TAT GCC TOG AGG GGC ACC TAC CAC GTG CGC CTG GAG GTC AAC His Thr Tyr Ala Ser Arg Gly Thr Tyr His Val Arg Leu Glu Val Asn 1140 1145 1150	3454
AAC ACG GTG AGC GGT GCG GCG GCC CAG GCG GAT GTG CGC GTC TTT GAG Asn Thr Val Ser Gly Ala Ala Ala Gln Ala Asp Val Arg Val Phe Glu 1155 1160 1165	3502
GAG CTC CCC GGA CTC AGC GTG GAC ATG AGC CTG GCC GTG GAG CAG GGC Glu Leu Arg Gly Leu Ser Val Asp Met Ser Leu Ala Val Glu Gln Gly 1170 1175 1180	3550
QCC CCC GTG GTG GTC AGC GCC GCG GTG CAG ACG GGC GAC AAC ATC ACG Ala Pro Val Val Val Ser Ala Ala Val Gln Thr Gly Asp Asn Ile Thr 1185 1190 1195	3598

17/58

								,								
Thr					Asp					Ser				GCA Ala 1215	;	3646
				Tyr	CIG				Asn						;	3694
			Pro		GCC			Ala					Val	CIG Leu	3	3742
		Leu			CIG Leu		Val					Cys		CCC Pro	3	3790
	Pro				CIC Leu 1270	Thr					Gly				3	3838
Tyr					ACC Thr					Ser					3	8886
				Thr	GTG Val				Phe					Thr	3	934
			Leu		CTG Leu			Arg					His		3	982
		Ile			GAG Glu		Glu					Thr			4	.030
	Arg				CAG Gln 1350	Leu					Trp				4	078
Ala					ecc Pro			Tyr		Trp					4	126
				Thr	CGT Arg				Pro					Ile	4	174
			Gly		TAT Tyr	Leu		Thr					Asn		4	222
Ser		Ala			TCA Ser		Leu			Val		Glu			4:	270
	Thr			Lys	GTC Val 1430	Asn			Leu		Leu				. 4 :	318

18/58

									, 50							
 Pro					Ala					Arg				TAC Tyr 1455	436	56
				Asp	GT Gly				Glu					Thr	441	4
			Ser		GT Gly			Thu					Gly		446	52
		Ser			GAG Glu		Trp					Val			451	.0
	Arg				GIC Val 1510	Asn					Val				455	8
Gly					AGC Ser 5					Ala					460	6
				Leu	TGT Cys				Thr					Gly	465	4
			Tyr		TTC Phe			Val					Ile		470	2
		Glu			GTG Val		Ser					Ile			475	0
	Leu				GAG Glu 1590	Gly					Gly				479	8
Phe					ACG Thr					Ala					484	6
				Tyr	AGC Ser				Trp					Pro	489	4
	Ala		Ser		AAA Lys			Ser					Glu		494	2
		His			CTG Leu		Ala					Gly			4 990	0
	Asp				GAC Asp 1670	Phe			Pro		Gly				5038	8

GTG ACC GCC TCC CCG AAC CCA GCT GCC GTC AAC A Val Thr Ala Ser Pro Asn Pro Ala Ala Val Asn T 1680 1685 1690	ACA AGC GTC ACC CTC Thr Ser Val Thr Leu 1695	5086
AGT CCC GAG CTG GCT GGT GGC AGT GGT GTC GTA T Ser Ala Glu Leu Ala Gly Gly Ser Gly Val Val T 1700 1705		5134
GAG GAG GGG CTG AGC TGG GAG ACC TCC GAG CCA T Glu Glu Gly Leu Ser Trp Glu Thr Ser Glu Pro P 1715 1720		5182
TTC CCC ACA CCC GGC CTG CAC TTG GTC ACC ATG A Phe Pro Thr Pro Gly Leu His Leu Val Thr Met T 1730 1735		5230
CTG GGC TCA GCC AAC GCC ACC GTG GAA GTG GAT G Leu Gly Ser Ala Asn Ala Thr Val Glu Val Asp V 1745 1750 1		5278′
AGT GOC CTC AGC ATC AGG GOC AGC GAG COC GGA G Ser Gly Leu Ser Ile Arg Ala Ser Glu Pro Gly G 1760 1765 1770		5326
GCC GCG TCC TCT GTG CCC TTT TGG GCG CAG CTG G Ala Gly Ser Ser Val Pro Phe Trp Gly Gln Leu A 1780		5374
GTG AGC TGG TGC TGG GCT GTG CCC GGC GGC AGC AGC AGC Val Ser Trp Cys Trp Ala Val Pro Gly Gly Ser Se 1795 1800	AGC AAG CGT GGC CCT Ser Lys Arg Gly Pro 1805	5422
CAT GTC ACC ATG GTC TTC CCG GAT GCT GGC ACC THE Val Thr Met Val Phe Pro Asp Ala Gly Thr Pi 1810 1815		5470
AAT GCC TCC AAC GCA GTC AGC TGG GTC TCA GCC AG Asn Ala Ser Asn Ala Val Ser Trp Val Ser Ala TI 1825 1830 18		5518
GCG GAG GAG CCC ATC GTG GCC CTG GTG CTG TGG GC Ala Glu Glu Pro Ile Val Gly Leu Val Leu Trp A 1840 1845 1850		5566
GTG GCG CCC GGG CAG CTG GTC CAT TTT CAG ATC CTVal Ala Pro Gly Gln Leu Val His Phe Gln Ile Le 1860 1865		5614
TCA GCT GTC ACC TTC CGC CTG CAG GTC GGC GGG GC Ser Ala Val Thr Phe Arg Leu Gln Val Gly Gly Al 1875 1880		5662
CTC CCC GGG CCC CGT TTC TCC CAC AGC TTC CCC CC Leu Pro Gly Pro Arg Phe Ser His Ser Phe Pro Ar 1890 1895		5710
GTG GTG AGC GTG CGG GGC AAA AAC CAC GTG AGC TG Val Val Ser Val Arg Gly Lys Asn His Val Ser Tr 1905 1910 19		5758

20/58

 Arg					Glu					Leu				AAC Asn 1935		5806
				Ile					Glu					OCC Ala O		5854
 			Gly	_			-	Tyr					TOG Ser 5			5902
		Gln					Val					Arg	GAC Asp	GTC Val		5950
	Thr					Gly					Gln		CGC Arg	CCC Ala		5998
Asn					Glu					Val			GTT Val			6046
				Val					Gly				ACC Thr 2030	Asn		6094
			Phe					Ser					CGT Arg			6142
		Trp					Gly					Asp	ACA Thr	GAT Asp		6190
	Arg					Tyr					Asp		CGC Arg	GTG Val	ı	6238
Val					Leu					Val			CCC Ala	ACG Thr 2095	ı	6286
				Leu					Pro				GTG Val 2110	Val	(5334
	Leu		Val					Ser			Asn		TIG Leu		(5382
His		Asp			Asp		Val			Gln		Glu	TAC Tyr		(5430 ,
	Val			Thr		Ser					Gly		CCA Pro	GCG Ala	٠ (5478

21 /58

AI	r Gro g Val 60	Ala	CTG Leu	OCC Pro	GC Gly 216	Val	GAC Asp	GTG Val	AGC Ser	CGG Arg 2170	Pro	CCG Arg	CTG Leu	GTG Val	CTG Leu 2175	6526
	o Arg				Pro					Cys					Val	6574
TC Se	A TT r Phe	Gly GGG	GAC Asp 219	Thr	CCA Pro	CTG Leu	ACA Thr	CAG Gln 2200	Ser	ATC Ile	CAG Gln	GCC Ala	AAT Asn 220	Val	ACG Thr	6622
GI Va	G GOX 1 Ala	221	Glu	œc Arg	CIG Leu	GTG Val	Pro 2215	Ile	ATT	GAG Glu	CCT Cly	GGC Gly 2220	Ser	TAC Tyr	CGC Arg	6670
	G TGC 1 Trg 222	Ser					Leu					Ser				6718
As	c cc p Pro 40					Gly					Leu					6766
	c IGI a Cys				Thr					Gly					Asn	6814
TT	T GGG e Gly	Pro	CGC Arg 227	Gly	AGC Ser	AGC Ser	ACG Thr	GIC Val 2280	Thr	ATT Lle	CCA Pro	CCG Arg	GAG Glu 228	Arg	CIG Leu	6862
	G GCI a Ala		Val					Ser					Lys			6910
	C AAC g Lys 230	Glu					Gln					Arg			OGG Arg	6958
۷a	G 000 1 Pro 20					Glu					Lys					7006
	C GAP				Ser					Leu					Leu	7054
	T TGC n Cys			Gly					Arg					Thr		7102
	C AAC r Asr		Thr					Glu					Thr		agt Ser	7150
	A GGC a Gly 238	Met					Arg					Arg				7198

22/58

GGA Gly 240	_	ACC Thr	TTC Pre	ACG Thr	CIC Leu 240	Thr	GTG .Val	CTG Leu	Gly	CGC Arg 2410	Ser	GJ Y	GAG Glu	GAG Glu	GAG Glu 2415	7246
	TGC Cys				Arg					Arg					Gly	7294
TCT	TGC Cys	CGC Arg	CIC Leu 243	Phe	CCA Pro	CIG Leu	Gly	GCT Ala 2440	Val	CAC His	GCC Ala	CIC	ACC Thr 244	Thr	aag Lys	7342
			Glu					His					Ala		∞ Ala	7390
	CTG Leu 246	Val					Leu					Gln				7438
	Glu					Lys					Ser				GTG Val 2495	7486
	CCC Pro				Arg					Val						7534
	CAG Gln			Leu					Val					Ser		7582
	ATC		Leu					Gly					Leu		GTC Val	7630
	CTG Leu 2545	His					Ser					Leu			CAG Gln	7678
	GAT Asp O					Ile					Ala					7726
	AAC Asn				Arg					Ala					His	7774
	œ Arg			Arg					Lys					Thr		7822
	TCC Ser		Arg					Asp					Ile			7870
	CIG Leu 2625	Ala					Pro					Val				7918

23 /58

										,						
	Leu					His					Met				CTG Leu 2655	7966
	CCA Ala				Ala					Pro					Asp	8014
	ATC Ile			Ile					Ile					Ser		8062
	Arg		Pro					Leu					Pro			8110
	GIG Val 270	Ala					Asn					Leu				8158
	ATG Met O					Leu					Leu					8206
	GAG Glu				Gln					Asp					Leu	8254
	TAT Tyr			Ala					Cys					Pro		8302
CCT Ala	TTC Phe	AGC Ser 2770	Gly	CCC Ala	CTG Leu	CC Ala	AAC Asn 2775	Leu	AGT Ser	GAC Asp	GTG Val	GTG Val 2780	Gln	CTC Leu	ATC Ile	8350
TTT Phe	CTG Leu 2785	Val	GAC Asp	TCC Ser	AAT Asn	œ Pro 2790	Phe	ccc Pro	TTT Phe	GJ Y GGC	TAT Tyr 2795	Ile	AGC Ser	AAC Asn	TAC Tyr	8398
ACC Thr 2800) Val GTC	TCC Ser	ACC Thr	aag Lys	GTG Val 2805	Ala	TOG Ser	ATG Met	GCA Ala	TTC Phe 2810	Gln	ACA Thr	CAG Gln	GCC Ala	GGC Gly 2815	8446
GCC Ala	CAG Gln	ATC Ile	Pro	ATC Ile 2820	Glu	CGG Arg	CTG Leu	Ala	TCA Ser 2825	Glu	CCC Arg	CCC Ala	ATC Ile	ACC Thr 2830	Val	8494
aag Lys	GIG Val	Pro	AAC Asn 2835	Asn	TCG Ser	GAC Asp	Trp	CCT Ala 2840	Ala	OGG Arg	Gly	His	CCC Arg 2845	Ser	TCC Ser	8542
ecc Ala	AAC Asn	TCC Ser 2850	Ala	AAC Asn	TCC Ser	Val	GTG Val 2855	Val	CAG Gln	ecc Pro	Gln	CCC Ala 2860	Ser	GTC Val	GT Gly	8590 ,
	GTG Val 2865	Val					Ser			Ala		Gly				8638

24/58

	Leu					Leu					Leu				CT Pro 2895		8686
					Val	TAC				Glu							8734
_				Ala		AGG Arg			Arg					Gln			8782
			Arg			ACC Thr		Phe					Ser				8830
		Gly				CTG Leu 2950	Asn					Phe					8878
	Leu					GJY GGC					Leu						8926
					Val	TCG Trp				Gly					Glu		8974
				Arg		GCC Ala			Leu					Thr			9022
			Ser			Val Val		Pro					Phe		TTT Phe		9070
CCT Pro	GAG Glu 3025	Pro	ACA Thr	GCG Ala	GAT Asp	GTA Val 3030	Asn	TAC Tyr	ATC Ile	Val	ATG Met 3035	Leu	ACA Thr	TGT Cys	CCT Ala		9118
GIG Val 3040	Cys	CTG Leu	Val GTG	Thr	TAC Tyr 3045	ATG Met	GTC Val	ATG Met	Ala	ССС А1а 3050	Ile	CIG Leu	CAC His	Lys	CTG Leu 3055	,	9166
GAC Asp	CAG Gln	TTG Leu	GAT Asp	CCC Ala 3060	Ser	CCG Arg	Gly	Arg	GCC Ala 3065	Ile	CCT Pro	TTC Phe	TGT Cys	GGG Gly 3070	Gln	9	9214
OGG Arg	Gly	OGC Arg	TTC Phe 3075	Lys	TAC Tyr	GAG Glu	Ile	CIC Leu 3080	Val	aag Lys	ACA Thr	Gly	TGG Trp 3085	Gly	OGG Arg	9	9262
Gly	Ser	GT Gly 3090	Thr	ACG Thr	ecc Ala	CAC His	GTG Val 3095	Gly	ATC	ATG Met	Leu	TAT Tyr 3100	Gly	GTG Val	GAC Asp	9	9310
AGC Ser	CCG Arg 3105	Ser	Cly	CAC His	Arg	CAC His 3110	Leu	GAC Asp	GC Gly	Asp .	AGA Arg 3115	Ala	TTC Phe	CAC His	CGC Arg	9	9358

25 /58

AAC AGC CTG GAC ATC TTC CGG ATC GCC ACC CCG CAC AGC CTG GGT AGC ASN Ser Leu Asp Ile Phe Arg Ile Ala Thr Pro His Ser Leu Gly Ser 3120 3125 3130 3135	9406
GTG TGG AAG ATC CGA GTG TGG CAC GAC AAC AAA GGG CTC AGC CCT GCC Val Trp Lys Ile Arg Val Trp His Asp Asn Lys Gly Leu Ser Pro Ala 3140 3145 3150	9454
TGG TIC CIG CAG CAC GIC ATC GIC AGG GAC CTG CAG ACG GCA CGC AGC Trp Phe Leu Gln His Val Ile Val Arg Asp Leu Gln Thr Ala Arg Ser 3155 3160 3165	9502
GCC TTC TTC CTG GTC AAT GAC TGG CTT TCG GTG GAG ACG GAG GCC AAC Ala Phe Phe Leu Val Asn Asp Trp Leu Ser Val Glu Thr Glu Ala Asn 3170 3175 3180	9550
GGG GGC CTG GTG GAG AAG GAG GTG CTG GCC GCG AGC GAC GCA GCC CTT Gly Gly Leu Val Glu Lys Glu Val Leu Ala Ala Ser Asp Ala Ala Leu 3185 3190 3195	9598
TTG CGC TTC CGG CGC CTG CTG GTG GCT GAG CTG CAG CGT GGC TTC TTT Leu Arg Phe Arg Arg Leu Leu Val Ala Glu Leu Gln Arg Gly Phe Phe 3200 3205 3210 3215	9646
GAC AAG CAC ATC TGG CTC TCC ATA TGG GAC CGG CCG CCT CGT AGC CGT Asp Lys His Ile Trp Leu Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg 3220 3225 3230	9694
TTC ACT COC ATC CAG AGG GCC ACC TGC TGC GTT CTC CTC ATC TGC CTC Phe Thr Arg Ile Gln Arg Ala Thr Cys Cys Val Leu Leu Ile Cys Leu 3235 3240 3245	9742
TTC CTG GGC GCC AAC GCC GTG TGG TAC GGG GCT GTT GGC GAC TCT GCC Phe Leu Gly Ala Asn Ala Val Trp Tyr Gly Ala Val Gly Asp Ser Ala 3250 3255 3260	9790
TAC AGC AGG GGG CAT GTG TOC AGG CTG AGC CCG CTG AGC GTC GAC ACA Tyr Ser Thr Gly His Val Ser Arg Leu Ser Pro Leu Ser Val Asp Thr 3265 3270 3275	9838
GIC GCT GIT GGC CTG GTG TCC AGC GTG GTT GTC TAT CCC GTC TAC CTG Val Ala Val Gly Leu Val Ser Ser Val Val Val Tyr Pro Val Tyr Leu 3280 3295	9886
GCC ATC CTT TTT CTC TTC CGG ATG TCC CGG AGC AAG GTG GCT GGG AGC Ala Ile Leu Phe Leu Phe Arg Met Ser Arg Ser Lys Val Ala Gly Ser 3300 3310	9934
COG AGC COC ACA CCT GOC GGG CAG CAG GTG CTG GAC ATC GAC AGC TGC Pro Ser Pro Thr Pro Ala Gly Gln Gln Val Leu Asp Ile Asp Ser Cys 3315 3320 3325	9982
CTG GAC TCG TCC GTG CTG GAC AGC TCC TTC CTC ACG TTC TCA GGC CTC Leu Asp Ser Ser Val Leu Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu 3330 3335 3340	10030
CAC GCT GAG GCC TTT GTT GGA CAG ATG AAG AGT GAC TTG TTT CTG GAT His Ala Glu Ala Phe Val Gly Gln Met Lys Ser Asp Leu Phe Leu Asp 3345 3350 3355	10078

									20	, 50						
	Ser					Cys					Glu				AGT Ser 3375	10126
					Ser					Val					CGG Arg O	10174
				Gly					Gly					Glu	GAC Asp	10222
			Leu					Ser					Phe		GCA Ala	10270
	GAT Asp 342	Glu					Gln					Gly			AGC Ser	10318
	Ala					Thr					Asp			_	AGC Ser 3455	10366
	TCC Ser				Gly					Thr						10414
	GCG			Gly					Gly					Gln		10462
	GCA Ala		Arg					Gly					Leu			10510
	CIG Leu 3505	Leu					Ala					Gly				10558
	CIG Leu)			Val		Val					Trp					10606
TTC Phe	CCC Pro	CCG Pro	Gly	GIG Val 3540	Ser	CTT Val	CCG Ala	TCG Trp	CTC Leu 3545	Leu	TCC Ser	AGC Ser	AGC Ser	GCC Ala 3550	Ser	10654
	CTG Leu	Ala		Phe			Trp		Pro					Leu		10702
	CTG Leu		Phe			Val .		Lys			His		Asp			10750
	ACC Thr 3585	Leu			Ser		Ala			Pro		Ser				10798

Arg					His					Phe				GAA Glu 3615	10846
GCC Ala				Lys					Met					Leu	10894
 TAC Tyr			Phe					Leu					Gly	GAT Asp	10942
TCA Ser		His					Arg					Ile			10990
CTG Leu 3669	His					Leu					Ser				11038
OCA Pro O					Val					Val					11086
AGC Ser				Gly					Arg					Gln	11134
GCA Ala			Pro					Pro		_			Cys		11182
GCA Ala		Gly			Thr		Asp					Trp		AGT Ser	11230
CAC His 3745	Asn					Trp					Pro			CTG Leu	11278
CCA Ala)			Trp		Ser					Asp			Gly		11326
CAG Gln		Leu		Leu					Ser					Arg	11374
CTG Leu	Gln		His			Leu		Asn					Val		11422
GAG Glu		Thr			Ser		Ala			Leu		Ala			11470
CIG Leu 3825	Arg		Glu	Phe		Ala	Ala	Gly	Arg		Leu				11518

ř

28 /58

AGC GTC GGC GGC CTG GGC GGC CTC AGC GGG GGC CTC TGG C Ser Val Arg Pro Phe Ala Leu Arg Arg Leu Ser Ala Gly Leu Ser L 3840 3845 3850 38	TG 11566 eu 855
CCT CTG CTC ACC TCG GTG TCC CTG CTG CTG TTC GCC GTG CAC TTC GC Pro Leu Leu Thr Ser Val Cys Leu Leu Leu Phe Ala Val His Phe A 3860 3865 3870	∝ 11614 la
GTG GCC GAG GCC CGT ACT TGG CAC AGG GAA GGG CGC TGG CGC GTG C Val Ala Glu Ala Arg Thr Trp His Arg Glu Gly Arg Trp Arg Val I 3875 3880 3885	TG 11662 eu
CCG CTC CCA CCC TCG CCC CCG TCG CTC CTC CTC CCC CCC	CC 11710
ACG GCA CTG GTA CGC CTC GCC CAG CTG GGT GCC GCT GAC CGC CAG TG Thr Ala Leu Val Arg Leu Ala Gln Leu Gly Ala Ala Asp Arg Gln To 3905 3910 3915	GG 11758 rp
ACC OGT TTC GTG CGC GGC CGC CGC CGC CGC TTC ACT AGC TTC GAC CT Thr Arg Phe Val Arg Gly Arg Pro Arg Arg Phe Thr Ser Phe Asp GT 3920 3925 3930 39	
GTG GCG CAC GTG AGC TCC GCA GCC CGT GGC CTG GCG GCC TCG CTG CTG Val Ala His Val Ser Ser Ala Ala Arg Gly Leu Ala Ala Ser Leu Le 3940 3945 3950	
TTC CTG CTT TTG GTC AAG GCT GCC CAG CAC GTA CGC TTC GTG CGC CTC Phe Leu Leu Val Lys Ala Ala Gln His Val Arg Phe Val Arg GTG CGC CTC GTG CTC GT	
TGG TCC GTC TIT GGC AAG ACA TTA TGC CGA GCT CTG CCA GAG CTC CT Trp Ser Val Phe Gly Lys Thr Leu Cys Arg Ala Leu Pro Glu Leu Le 3970 3975 3980	
GCG GTC ACC TTG GCC CTG GTG GTG CTC GCG GTA GCC TAC GCC CAG CTG GTG Val Thr Leu Gly Leu Val Val Leu Gly Val Ala Tyr Ala Gln Leu 3985 3990 3995	
Ala Ile Leu Leu Val Ser Ser Cys Val Asp Ser Leu Trp Ser Val At 4000 4005	
CAG CCC CTG TTG GTG CTG TGC CCT GGG ACT GGG CTC TCT ACC CTC TC Gln Ala Leu Leu Val Leu Cys Pro Gly Thr Gly Leu Ser Thr Leu Cy 4020 4025 4030	À2 . TI 13004
CCT CCC GAG TCC TGG CAC CTG TCA CCC CTG CTG TGT GTG GGG CTC TG Pro Ala Glu Ser Trp His Leu Ser Pro Leu Leu Cys Val Gly Leu Tr 4035 4040 4045	
GCA CTG CGG CTG TGG GGC GCC CTA CGG CTG GGG GCT GTT ATT CTC CG Ala Leu Arg Leu Trp Gly Ala Leu Arg Leu Gly Ala Val Ile Leu Arg 4050 4055 4060	
TGG CGC TAC CAC GCC TTG CGT GGA GAG CTG TAC CGG CCG GCC TGG GC Trp Arg Tyr His Ala Leu Arg Gly Glu Leu Tyr Arg Pro Ala Trp G 4065 4070 4075	

. .

29/58

CCC CAG GAC TAC GAG Pro Gln Asp Tyr Glu 4080	ATG GTG GAG Met Val Glu 4085	TIG TIC CIG Leu Phe Leu 4090	Arg Arg Leu	CCC CTC Arg Leu 4095	12286
TGG ATG GGC CTC AGC Trp Met Gly Leu Ser 4100	Lys Val Lys	GAG TTC CCC Glu Phe Arg 4105	CAC AAA GTC His Lys Val	CCC TIT Arg Phe 4110	12334
GAA GOG ATG GAG COG Glu Gly Met Glu Pro 4115				Lys Val	12382
TOC COG GAT GTG COC Ser Pro Asp Val Pro 4130		Ala Gly Ser			12430
TOC ACC TOC TOC AGC Ser Thr Ser Ser Ser 4145					12478
CTG GGG ACA AGG TGT Leu Gly Thr Arg Cys 4160			Leu Gln Ala		12526
GAG GCC CTG CTC ACC Glu Ala Leu Leu Thr 4180	Gln Phe Asp		Gln Ala Thr		12574
GTC TAC CAG CTG GAG Val Tyr Gln Leu Glu 4195	CAG CAG CTG Gln Gln Leu	CAC AGC CTG His Ser Leu 4200	CAA GGC CGC Gln Gly Arg 4205	Arg Ser	12622
AGC CGG GCG CCC GCC Ser Arg Ala Pro Ala 4210		Arg Gly Pro			12670
CCA GCA CTG CCC AGC Pro Ala Leu Pro Ser 4225					12718
GCC ACT GGC CCC AGC Ala Thr Gly Pro Ser 4240			Glu Gln Gly		12766
CAG CAG CAC TTA GTC Gln Gln His Leu Val 4260	Leu Leu Pro		Gly Pro Trp		12814
AGT GGA CAC CGC TCA Ser Gly His Arg Ser 4275				Glu Gly	12862
CAG GCA GAA TGG CTG Gln Ala Glu Trp Leu 4290		Ser Pro Glu			12910
CTG TCT GTC TGT GGG Leu Ser Val Cys Gly 4305	-				12958

30/58

AGG ACC CAG GGT CCC CTC CCC AGC TCC CTT GGG AAG GAC ACA GCA GTA Arg Thr Gln Gly Pro Leu Pro Ser Ser Leu Gly Lys Asp Thr Ala Val 4320 4335	13006
TTG GAC GGT TTC TAGOCTCTGA GATGCTAATT TATTTCCCCG AGTCCTCAGG Leu Asp Gly Phe	13058
TACAGOGGC TGTGCCCGGC CCCACCCCCT GGGCAGATGT CCCCCACTGC TAAGGCTGCT	13118
GOCTTCAGGG AGGGTTAGCC TGCACCGCCG CCACCCTGCC CCTAAGTTAT TACCTCTCCA	13178
GITOCIACOG TACICOCIGO ACOGICICAC TGIGIGICICO GIGICAGIAA TITATATOGI	13238
GITAAAATGT GIATATTTTT GIATGICACT ATTTTCACTA GGGCIGAGGG GCCIGCGCCC	13298
AGAGCTGGCC TCCCCCAACA CCTGCTGCCC TTGGTAGGTG TGGTGGCGTT ATGGCAGCCC	13358
GECTECTECT TEGATECEAG CITESCETTE GECCETECT GEGEGEACAG CITETCTECCA	13418
GGCACTCTCA TCACCCCAGA GCCCTTGTCA TCCTCCCTTG CCCCAGGCCCA GGTAGCAAGA	13478
GAGCAGOGOC CAGGOCTGCT GGCATCAGGT CTGGGCAAGT AGCAGGACTA GGCATGTCAG	13538
AGGACCCCAG GGTGGTTAGA GGAAAAGACT CCTCCTGGGG GCTGGCTCCC AGGGTGGAGG	13598
AAGGIGACIG IGIGIGIG IGIGIGOGGG CGCGACGCCC GAGIGIGCIG TATGCCCCAG	13658
GCAGOCTCAA GGCCCTCGGA GCTGGCTGTG CCTGCTTCTG TGTACCACTT CTGTGGGCAT	13718
GGCCGCTTCT AGAGCCTCGA CACCCCCCCA ACCCCCGCAC CAAGCAGACA AAGTCAATAA	13778
AAGAGCTGTC TGACTGCAAA AAAAAAAAA	13807
(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
Gly Ala Ala Cys Arg Val Asn Cys Ser Gly Arg Gly Leu Arg Thr Leu 1 5 10 15	
Gly Pro Ala Leu Arg Ile Pro Ala Asp Ala Thr Ala Leu Asp Val Ser 20 25 30	
His Asn Leu Leu Arg Ala Leu Asp Val Gly Leu Leu Ala Asn Leu Ser 35 40 45	
Ala Leu Ala Glu Leu Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu Glu 50 · 55 60	
Glu Gly Ile Phe Ala Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu Ser 65 70 75 80	
Gly Asn Pro Phe Glu Cys Asp Cys Gly Leu Ala Trp Leu Pro Arg Trp 85 90 95	
Ala Glu Glu Gln Gln Val Arg Val Val Gln Pro Glu Ala Ala Thr Cys 100 105 110	
Ala Gly Pro Gly Ser Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro Leu 115 120 125	

Leu Asp Ser Gly Cys Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp Asn Ser Ser Gly Thr Val Ala Ala Val Ser Phe Ser Ala Ala His Glu Gly 155 Leu Leu Gln Pro Glu Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly Gln 170 Gly Leu Ala Ala Leu Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala Ala Gln Pro Ser Ser Ala Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly Pro 195 200 205 Pro Pro Pro Pro Ala Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln His Val Phe Pro Ala Ser Pro Gly Ala Thr Leu Val Gly Pro His Gly Pro 225 230 Leu Ala Ser Gly Gln Leu Ala Ala Phe His Ile Ala Ala Pro Leu Pro 250 Val Thr Ala Thr Arg Trp Asp Phe Gly Asp Gly Ser Ala Glu Val Asp 265 Ala Ala Gly Pro Ala Ala Ser His Arg Tyr Val Leu Pro Gly Arg Tyr His Val Thr Ala Val Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu Gly 290 Thr Asp Val Gln Val Glu Ala Ala Pro Ala Ala Leu Glu Leu Val Cys 305 310 315 Pro Ser Ser Val Gln Ser Asp Glu Ser Leu Asp Leu Ser Ile Gln Asn Arg Gly Gly Ser Gly Leu Glu Ala Ala Tyr Ser Ile Val Ala Leu Gly Glu Glu Pro Ala Arg Ala Val His Pro Leu Cys Pro Ser Asp Thr Glu **355 360 365** Ile Phe Pro Gly Asn Gly His Cys Tyr Arg Leu Val Val Glu Lys Ala Ala Trp Leu Gln Ala Gln Glu Gln Cys Gln Ala Trp Ala Gly Ala Ala Leu Ala Met Val Asp Ser Pro Ala Val Gln Arg Phe Leu Val Ser Arg Val Thr Arg Ser Leu Asp Val Trp Ile Gly Phe Ser Thr Val Gln Gly Val Glu Val Gly Pro Ala Pro Gln Gly Glu Ala Phe Ser Leu Glu Ser Cys Gln Asn Trp Leu Pro Gly Glu Pro His Pro Ala Thr Ala Glu His

Cys Val Arg Leu Gly Pro Thr Gly Trp Cys Asn Thr Asp Leu Cys Ser Ala Pro His Ser Tyr Val Cys Glu Leu Gln Pro Gly Gly Pro Val Gln Asp Ala Glu Asn Leu Leu Val Gly Ala Pro Ser Gly Asp Leu Gln Gly Pro Leu Thr Pro Leu Ala Gln Gln Asp Gly Leu Ser Ala Pro His Glu 520 Pro Val Glu Val Met Val Phe Pro Gly Leu Arg Leu Ser Arg Glu Ala 535 Phe Leu Thr Thr Ala Glu Phe Gly Thr Gln Glu Leu Arg Arg Pro Ala Gln Leu Arg Leu Gln Val Tyr Arg Leu Leu Ser Thr Ala Gly Thr Pro Glu Asn Gly Ser Glu Pro Glu Ser Arg Ser Pro Asp Asn Arg Thr Gln Leu Ala Pro Ala Cys Met Pro Gly Gly Arg Trp Cys Pro Gly Ala Asn 595 Ile Cys Leu Pro Leu Asp Ala Ser Cys His Pro Gln Ala Cys Ala Asn Gly Cys Thr Ser Gly Pro Gly Leu Pro Gly Ala Pro Tyr Ala Leu Trp Arg Glu Phe Leu Phe Ser Val Ala Ala Gly Pro Pro Ala Gln Tyr Ser Val Thr Leu His Gly Gln Asp Val Leu Met Leu Pro Gly Asp Leu Val Gly Leu Gln His Asp Ala Gly Pro Gly Ala Leu Leu His Cys Ser Pro Ala Pro Gly His Pro Gly Pro Gln Ala Pro Tyr Leu Ser Ala Asn Ala 690 Ser Ser Trp Leu Pro His Leu Pro Ala Gln Leu Glu Gly Thr Trp Ala Cys Pro Ala Cys Ala Leu Arg Leu Leu Ala Ala Thr Glu Gln Leu Thr Val Leu Leu Gly Leu Arg Pro Asn Pro Gly Leu Arg Met Pro Gly Arg 745 Tyr Glu Val Arg Ala Glu Val Gly Asn Gly Val Ser Arg His Asn Leu 760 Ser Cys Ser Phe Asp Val Val Ser Pro Val Ala Gly Leu Arg Val Ile Tyr Pro Ala Pro Arg Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly Ser

Ala Leu Val Leu Gln Val Asp Ser Gly Ala Asn Ala Thr Ala Thr Ala Arg Trp Pro Gly Gly Ser Val Ser Ala Arg Phe Glu Asn Val Cys Pro Ala Leu Val Ala Thr Phe Val Pro Gly Cys Pro Trp Glu Thr Asn Asp Thr Leu Phe Ser Val Val Ala Leu Pro Trp Leu Ser Glu Gly Glu His Val Val Asp Val Val Val Glu Asn Ser Ala Ser Arg Ala Asn Leu Ser Leu Arg Val Thr Ala Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr Pro Ser Pro Glu Ala Arg Val Leu Gln Gly Val Leu Val Arg Tyr Ser Pro Val Val Glu Ala Gly Ser Asp Met Val Phe Arg Trp Thr Ile Asn Asp Lys Gln Ser Leu Thr Phe Gln Asn Val Val Phe Asn Val Ile Tyr Gln Ser Ala Ala Val Phe Lys Leu Ser Leu Thr Ala Ser Asn His Val Ser Asn Val Thr Val Asn Tyr Asn Val Thr Val Glu Arg Met Asn Arg Met Gln Gly Leu Gln Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn Ala Thr Leu Val Leu Thr Gly Gly Val Leu Val Asp Ser Ala Val Glu Val Ala Phe Leu Trp Asn Phe Gly Asp Gly Glu Gln Ala Leu His Gln Phe Gln Pro Pro Tyr Asn Glu Ser Phe Pro Val Pro Asp Pro Ser Val Ala Gln Val Leu Val Glu His Asn Val Met His Thr Tyr Ala Ala Pro Gly Glu Tyr Leu Leu Thr Val Leu Ala Ser Asn Ala Phe Glu Asn Leu Thr Gln Gln Val Pro Val Ser Val Arg Ala Ser Leu Pro Ser Val Ala Val Gly Val Ser Asp Gly Val Leu Val Ala Gly Arg Pro Val Thr Phe Tyr Pro His Pro Leu Pro Ser Pro Gly Gly Val Leu Tyr Thr Trp Asp Phe Gly Asp Gly Ser Pro Val Leu Thr Gln Ser Gln Pro Ala Ala Asn His

- Thr Tyr Ala Ser Arg Gly Thr Tyr His Val Arg Leu Glu Val Asn Asn 1140 1145 1150
- Thr Val Ser Gly Ala Ala Ala Gln Ala Asp Val Arg Val Phe Glu Glu 1155 1160 1165
- Leu Arg Gly Leu Ser Val Asp Met Ser Leu Ala Val Glu Gln Gly Ala 1170 1175 1180
- Pro Val Val Val Ser Ala Ala Val Gln Thr Gly Asp Asn Ile Thr Trp 1185 1190 1195 1200
- Thr Phe Asp Met Gly Asp Gly Thr Val Leu Ser Gly Pro Glu Ala Thr 1205 1210 1215
- Val Glu His Val Tyr Leu Arg Ala Gln Asn Cys Thr Val Thr Val Gly 1220 1230
- Ala Ala Ser Pro Ala Gly His Leu Ala Arg Ser Leu His Val Leu Val 1235 1240 1245
- Phe Val Leu Glu Val Leu Arg Val Glu Pro Ala Ala Cys Ile Pro Thr 1250 1255 1260
- Gln Pro Asp Ala Arg Leu Thr Ala Tyr Val Thr Gly Asn Pro Ala His 1265 1270 1275 1280
- Tyr Leu Phe Asp Trp Thr Phe Gly Asp Gly Ser Ser Asn Thr Thr Val 1285 1290 1295
- Arg Gly Cys Pro Thr Val Thr His Asn Phe Thr Arg Ser Gly Thr Phe 1300 1305 1310
- Pro Leu Ala Leu Val Leu Ser Ser Arg Val Asn Arg Ala His Tyr Phe 1315 1320 1325
- Thr Ser Ile Cys Val Glu Pro Glu Val Gly Asn Val Thr Leu Gln Pro 1330 1335 1340
- Glu Arg Gln Phe Val Gln Leu Gly Asp Glu Ala Trp Leu Val Ala Cys 1345 1350 1355 1360
- Ala Trp Pro Pro Phe Pro Tyr Arg Tyr Thr Trp Asp Phe Gly Thr Glu 1365 1370 1375
- Glu Ala Ala Pro Thr Arg Ala Arg Gly Pro Glu Val Thr Phe Ile Tyr 1380 1385 1390
- Arg Asp Pro Gly Ser Tyr Leu Val Thr Val Thr Ala Ser Asn Asn Ile 1395 1400 1405
- Ser Ala Ala Asn Asp Ser Ala Leu Val Glu Val Gln Glu Pro Val Leu 1410 1415 1420
- Val Thr Ser Ile Lys Val Asn Gly Ser Leu Gly Leu Glu Leu Gln Gln 1425 1430 1435 1440
- Pro Tyr Leu Phe Ser Ala Val Gly Arg Gly Arg Pro Ala Ser Tyr Leu 1445 1450 1455

- Trp Asp Leu Gly Asp Gly Gly Trp Leu Glu Gly Pro Glu Val Thr His 1460 1465 1470
- Ala Tyr Asn Ser Thr Gly Asp Phe Thr Val Arg Val Ala Gly Trp Asn 1475 1480 1485
- Glu Val Ser Arg Ser Glu Ala Trp Leu Asn Val Thr Val Lys Arg Arg 1490 1495 1500
- Val Arg Gly Leu Val Val Asn Ala Ser Arg Thr Val Val Pro Leu Asn 1505 1510 1515 1520
- Gly Ser Val Ser Phe Ser Thr Ser Leu Glu Ala Gly Ser Asp Val Arg 1525 1530 1535
- Tyr Ser Trp Val Leu Cys Asp Arg Cys Thr Pro Ile Pro Gly Gly Pro 1540 1545 1550
- Thr Ile Ser Tyr Thr Phe Arg Ser Val Gly Thr Phe Asn Ile Ile Val 1555 1560 1565
- Thr Ala Glu Asn Glu Val Gly Ser Ala Gln Asp Ser Ile Phe Val Tyr 1570 1580
- Val Leu Gln Leu Ile Glu Gly Leu Gln Val Val Gly Gly Gly Arg Tyr 1585 1590 1595 1600
- Phe Pro Thr Asn His Thr Val Gln Leu Gln Ala Val Val Arg Asp Gly 1605 1615
- Thr Asn Val Ser Tyr Ser Trp Thr Ala Trp Arg Asp Arg Gly Pro Ala 1620 1630
- Leu Ala Gly Ser Gly Lys Gly Phe Ser Leu Thr Val Leu Glu Ala Gly 1635 1640 1645
- Thr Tyr His Val Gln Leu Arg Ala Thr Asn Met Leu Gly Ser Ala Trp 1650 1655 1660
- Ala Asp Cys Thr Met Asp Phe Val Glu Pro Val Gly Trp Leu Met Val 1665 1670 1680
- Thr Ala Ser Pro Asn Pro Ala Ala Val Asn Thr Ser Val Thr Leu Ser 1685 1690 1695
- Ala Glu Leu Ala Gly Gly Ser Gly Val Val Tyr Thr Trp Ser Leu Glu 1700 1705 1710
- Glu Gly Leu Ser Trp Glu Thr Ser Glu Pro Phe Thr His Ser Phe 1715 1720 1725
- Pro Thr Pro Gly Leu His Leu Val Thr Met Thr Ala Gly Asn Pro Leu 1730 1735 1740
- Gly Ser Ala Asn Ala Thr Val Glu Val Asp Val Gln Val Pro Val Ser 1745 1750 1755 1760
- Gly Leu Ser Ile Arg Ala Ser Glu Pro Gly Gly Ser Phe Val Ala Ala 1765 1770 1775

- Gly Ser Ser Val Pro Phe Trp Gly Gln Leu Ala Thr Gly Thr Asn Val 1780 1785 1790
- Ser Trp Cys Trp Ala Val Pro Gly Gly Ser Ser Lys Arg Gly Pro His 1795 1800 1805
- Val Thr Met Val Phe Pro Asp Ala Gly Thr Phe Ser Ile Arg Ieu Asn 1810 1815 1820
- Ala Ser Asn Ala Val Ser Trp Val Ser Ala Thr Tyr Asn Leu Thr Ala 1825 1830 1835 1840
- Glu Glu Pro Ile Val Gly Leu Val Leu Trp Ala Ser Ser Lys Val Val 1845 1850 1855
- Ala Pro Gly Gln Leu Val His Phe Gln Ile Leu Leu Ala Ala Gly Ser 1860 1865 1870
- Ala Val Thr Phe Arg Leu Gln Val Gly Gly Ala Asn Pro Glu Val Leu 1875 1880 1885
- Pro Gly Pro Arg Phe Ser His Ser Phe Pro Arg Val Gly Asp His Val 1890 1895 1900
- Val Ser Val Arg Gly Lys Asn His Val Ser Trp Ala Gln Ala Gln Val 1905 1910 1915 1920
- Arg Ile Val Val Leu Glu Ala Val Ser Gly Leu Gln Met Pro Asn Cys 1925 1930 1935
- Cys Glu Pro Gly Ile Ala Thr Gly Thr Glu Arg Asn Phe Thr Ala Arg 1940 1945 1950
- Val Gln Arg Gly Ser Arg Val Ala Tyr Ala Trp Tyr Phe Ser Leu Gln 1955 1960 1965
- Lys Val Gln Gly Asp Ser Leu Val Ile Leu Ser Gly Arg Asp Val Thr 1970 1975 1980
- Tyr Thr Pro Val Ala Ala Gly Leu Leu Glu Ile Gln Val Arg Ala Phe 1985 1990 1995 2000
- Asn Ala Leu Gly Ser Glu Asn Arg Thr Leu Val Leu Glu Val Gln Asp 2005 2010 2015
- Ala Val Gln Tyr Val Ala Leu Gln Ser Gly Pro Cys Phe Thr Asn Arg 2020 2025 2030
- Ser Ala Gln Phe Glu Ala Ala Thr Ser Pro Ser Pro Arg Arg Val Ala 2035 2040 2045
- Tyr His Trp Asp Phe Gly Asp Gly Ser Pro Gly Gln Asp Thr Asp Glu 2050 2060
- Pro Arg Ala Glu His Ser Tyr Leu Arg Pro Gly Asp Tyr Arg Val Gln 2065 2070 2075 2080
- Val Asn Ala Ser Asn Leu Val Ser Phe Phe Val Ala Gln Ala Thr Val 2085 2090 2095

- Thr Val Gln Val Leu Ala Cys Arg Glu Pro Glu Val Asp Val Val Leu 2100 2105 2110
- Pro Leu Gln Val Leu Met Arg Arg Ser Gln Arg Asn Tyr Leu Glu Ala 2115 2120 2125
- His Val Asp Leu Arg Asp Cys Val Thr Tyr Gln Thr Glu Tyr Arg Trp 2130 2135 2140
- Glu Val Tyr Arg Thr Ala Ser Cys Gln Arg Pro Gly Arg Pro Ala Arg 2145 2150 2155 2160
- Val Ala Ieu Pro Gly Val Asp Val Ser Arg Pro Arg Ieu Val Ieu Pro 2165 2170 2175
- Arg Leu Ala Leu Pro Val Gly His Tyr Cys Phe Val Phe Val Val Ser 2180 2185 2190
- Phe Gly Asp Thr Pro Leu Thr Gln Ser Ile Gln Ala Asn Val Thr Val 2195 2200 2205
- Ala Pro Glu Arg Leu Val Pro Ile Ile Glu Gly Gly Ser Tyr Arg Val 2210 2215 2220
- Trp Ser Asp Thr Arg Asp Leu Val Leu Asp Gly Ser Glu Ser Tyr Asp 2225 2230 2235 2240
- Pro Asn Leu Glu Asp Gly Asp Gln Thr Pro Leu Ser Phe His Trp Ala 2245 2250 2255
- Cys Val Ala Ser Thr Gln Arg Glu Ala Gly Gly Cys Ala Leu Asn Phe 2260 2265 2270
- Gly Pro Arg Gly Ser Ser Thr Val Thr Ile Pro Arg Glu Arg Leu Ala 2275 2280 2285
- Ala Gly Val Glu Tyr Thr Phe Ser Leu Thr Val Trp Lys Ala Gly Arg 2290 2300
- Lys Glu Glu Ala Thr Asn Gln Thr Val Leu Ile Arg Ser Gly Arg Val 2305 2310 2315 2320
- Pro Ile Val Ser Leu Glu Cys Val Ser Cys Lys Ala Gln Ala Val Tyr 2325 2330 2335
- Glu Val Ser Arg Ser Ser Tyr Val Tyr Leu Glu Gly Arg Cys Leu Asn 2340 2345 2350
- Cys Ser Ser Gly Ser Lys Arg Gly Arg Trp Ala Ala Arg Thr Phe Ser 2355 2360 2365
- Asn Lys Thr Leu Val Leu Asp Glu Thr Thr Thr Ser Thr Gly Ser Ala 2370 2375 2380
- .Gly Met Arg Leu Val Leu Arg Arg Gly Val Leu Arg Asp Gly Glu Gly 2385 2390 2395 2400
- Tyr Thr Phe Thr Leu Thr Val Leu Gly Arg Ser Gly Glu Glu Glu Gly 2405 2410 2415

٠,

38 / 58

- Cys Ala Ser Ile Arg Leu Ser Pro Asn Arg Pro Pro Leu Gly Gly Ser 2420 2425 2430
- Cys Arg Leu Phe Pro Leu Gly Ala Val His Ala Leu Thr Thr Lys Val 2435 2440 2445
- His Phe Glu Cys Thr Gly Trp His Asp Ala Glu Asp Ala Gly Ala Pro 2450 2455 2460
- Leu Val Tyr Ala Leu Leu Arg Arg Cys Arg Gln Gly His Cys Glu 2465 2470 2475 2480
- Glu Phe Cys Val Tyr Lys Gly Ser Leu Ser Ser Tyr Gly Ala Val Leu 2485 2490 2495
- Pro Pro Gly Phe Arg Pro His Phe Glu Val Gly Leu Ala Val Val Val 2500 2505 2510
- Gln Asp Gln Leu Gly Ala Ala Val Val Ala Leu Asn Arg Ser Leu Ala 2515 2520 2525
- Ile Thr Leu Pro Glu Pro Asn Gly Ser Ala Thr Gly Leu Thr Val Trp 2530 2535 2540
- Leu His Gly Leu Thr Ala Ser Val Leu Pro Gly Leu Leu Arg Gln Ala 2545 2550 2555 2560
- Asp Pro Gln His Val Ile Glu Tyr Ser Leu Ala Leu Val Thr Val Leu 2565 2570 2575
- Asn Glu Tyr Glu Arg Ala Leu Asp Val Ala Ala Glu Pro Lys His Glu 2580 2585 2590
- Arg Gln His Arg Ala Gln Ile Arg Lys Asn Ile Thr Glu Thr Leu Val 2595 2600 2605
- Ser Leu Arg Val His Thr Val Asp Asp Ile Gln Gln Ile Ala Ala 2610 2620
- Leu Ala Gln Cys Met Gly Pro Ser Arg Glu Leu Val Cys Arg Ser Cys 2625 2630 2635 2640
- Leu Lys Gln Thr Leu His Lys Leu Glu Ala Met Met Leu Ile Leu Gln 2645 2650 2655
- Ala Glu Thr Thr Ala Gly Thr Val Thr Pro Thr Ala Ile Gly Asp Ser 2660 2670
- Ile Leu Asn Ile Thr Gly Asp Leu Ile His Leu Ala Ser Ser Asp Val 2685 2685
- Arg Ala Pro Gln Pro Ser Glu Leu Gly Ala Glu Ser Pro Ser Arg Met 2690 2695 2700
- Val Ala Ser Gln Ala Tyr Asn Leu Thr Ser Ala Leu Met Arg Ile Leu 2705 2710 2715 2720
- Met Arg Ser Arg Val Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly Glu 2725 2730 2735

- Glu Ile Val Ala Gln Gly Lys Arg Ser Asp Pro Arg Ser Leu Leu Cys 2740 2750
- Tyr Gly Gly Ala Pro Gly Pro Gly Cys His Phe Ser Ile Pro Glu Ala 2755 2760 2765
- Phe Ser Gly Ala Leu Ala Asn Leu Ser Asp Val Val Gln Leu Ile Phe 2770 2775 2780
- Leu Val Asp Ser Asn Pro Phe Pro Phe Gly Tyr Ile Ser Asn Tyr Thr 2785 2790 2795 2800
- Val Ser Thr Lys Val Ala Ser Met Ala Phe Gln Thr Gln Ala Gly Ala 2805 2810 2815
- Gln Ile Pro Ile Glu Arg Leu Ala Ser Glu Arg Ala Ile Thr Val Lys 2820 2825 2830
- Val Pro Asn Asn Ser Asp Trp Ala Ala Arg Gly His Arg Ser Ser Ala 2835 2840 2845
- Asn Ser Ala Asn Ser Val Val Val Gln Pro Gln Ala Ser Val Gly Ala 2850 2855 2860
- Val Val Thr Leu Asp Ser Ser Asn Pro Ala Ala Gly Leu His Leu Gln 2865 2870 2875 2880
- Leu Asn Tyr Thr Leu Leu Asp Gly His Tyr Leu Ser Glu Glu Pro Glu 2885 2890 2895
- Pro Tyr Leu Ala Val Tyr Leu His Ser Glu Pro Arg Pro Asn Glu His 2900 2905 2910
- Asn Cys Ser Ala Ser Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly Ala 2915 2920 2925
- Asp His Arg Pro Tyr Thr Phe Phe Ile Ser Pro Gly Ser Arg Asp Pro 2930 2935 2940
- Ala Gly Ser Tyr His Leu Asn Leu Ser Ser His Phe Arg Trp Ser Ala 2945 2950 2955 2960
- Leu Gln Val Ser Val Gly Leu Tyr Thr Ser Leu Cys Gln Tyr Phe Ser 2965 2970 2975
- Glu Glu Asp Met Val Trp Arg Thr Glu Gly Leu Leu Pro Leu Glu Glu 2980 2985 2990
- Thr Ser Pro Arg Gln Ala Val Cys Leu Thr Arg His Leu Thr Ala Phe 2995 3000 3005
- Gly Ala Ser Leu Phe Val Pro Pro Ser His Val Arg Phe Val Phe Pro 3010 3015 3020
- Glu Pro Thr Ala Asp Val Asn Tyr Ile Val Met Leu Thr Cys Ala Val 3025 3030 3035 3040
- Cys Leu Val Thr Tyr Met Val Met Ala Ala Ile Leu His Lys Leu Asp 3045 3050 3055

- Gln Leu Asp Ala Ser Arg Gly Arg Ala Ile Pro Phe Cys Gly Gln Arg 3060 3065 3070
- Gly Arg Phe Lys Tyr Glu Ile Leu Val Lys Thr Gly Trp Gly Arg Gly 3075 3080 3085
- Ser Gly Thr Thr Ala His Val Gly Ile Met Leu Tyr Gly Val Asp Ser 3090 3095 3100
- Arg Ser Gly His Arg His Leu Asp Gly Asp Arg Ala Phe His Arg Asn 3105 3110 3115 3120
- Ser Leu Asp Ile Phe Arg Ile Ala Thr Pro His Ser Leu Gly Ser Val 3125 3130 3135
- Trp Lys Ile Arg Val Trp His Asp Asn Lys Gly Leu Ser Pro Ala Trp 3140 3145 3150
- Phe Leu Gln His Val Ile Val Arg Asp Leu Gln Thr Ala Arg Ser Ala 3155 3160 3165
- Phe Phe Leu Val Asn Asp Trp Leu Ser Val Glu Thr Glu Ala Asn Gly 3170 3175 3180
- Gly Leu Val Glu Lys Glu Val Leu Ala Ala Ser Asp Ala Ala Leu Leu 3185 3190 3195 3200
- Arg Phe Arg Arg Leu Leu Val Ala Glu Leu Gln Arg Gly Phe Phe Asp 3205 3210 3215
- Lys His Ile Trp Leu Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg Phe 3220 3235 3230
- Thr Arg Ile Gln Arg Ala Thr Cys Cys Val Leu Leu Ile Cys Leu Phe 3235 3240 3245
- Leu Gly Ala Asn Ala Val Trp Tyr Gly Ala Val Cly Asp Ser Ala Tyr 3250 3255 3260
- Ser Thr Gly His Val Ser Arg Leu Ser Pro Leu Ser Val Asp Thr Val 3265 3270 3280
- Ala Val Gly Leu Val Ser Ser Val Val Val Tyr Pro Val Tyr Leu Ala 3285 3290 3295
- Ile Leu'Phe Leu Phe Arg Met Ser Arg Ser Lys Val Ala Gly Ser Pro 3300 3305 3310
- Ser Pro Thr Pro Ala Gly Gln Gln Val Leu Asp Ile Asp Ser Cys Leu 3315 3320 3325
- Asp Ser Ser Val Leu Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu His 3330 3335 3340
- Ala Glu Ala Phe Val Gly Gln Met Lys Ser Asp Leu Phe Leu Asp Asp 3345 3350 3355 3360
- Ser Lys Ser Leu Val Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser Trp 3365 3370 3375

Event ID 1000,1001 Logged Every 5 Min in Application Event Log [Q290647]

PSS ID Number: Q290647

Article last modified on 05-02-2001

:2000

The information in this article applies to:

- Microsoft Windows 2000 Advanced Server
- Microsoft Windows 2000 Server

SYMPTOMS

Group Policies are not replicated between domain controllers; therefore, users do not receive Group Policies for computers. Event ID 1000,1001 may be logged in the Application Log every five minutes with the following information:

Type: Error Event ID: 1000 Source: Userenv Category: None

User: NT AUTHORITY\SYSTEM

Description: Windows cannot access the registry information at \\<domain>\sysvol\<domain>\Policies\{31B2F340-016D-11D2-945F-00C04FB984F9}\Machi with (5).

Type: Error Event ID: 1001 Source: SceCli Category: None User: N/A

Description: Security policy cannot be propagated. Cannot access the template. Error code =3.

\\<domain>\sysvol\<domain>\Policies\{31B2F340-016D-11D2-945F-00C04FB984F9}\Machi NT\SecEdit\GptTmpl.inf.

Type: Error Event ID: 1000 Source: Userenv Category: None

User: NT AUTHORITY\SYSTEM

Description: The Group Policy client-side extension Security was passed flags (17) and returned a failure status code of (3).

CAUSE

=====

This issue may occur if you assign improper permissions to the %SystemRoot%\Winnt\Sysvol folder or when you assign improper groups to Bypass Traverse Checking User Rights Assignment.

RESOLUTION

========

To resolve this issue:

- 1. Set the folder security permissions. To access the security permissions, right-click the folder, click Properties, and then click the Security tab.
 - %SystemRoot%\Winnt\Sysvol:

Administrators: Full Control

Authenticated Users: Read, Read & Execute, and List Folder Contents

Creator Owner: Nothing selected

Server Operators: Read, Read & Execute, and List Folder Contents

System: Full Control

Click to clear: "Allow inheritable permissions from parent to propagate to this object"

- %SystemRoot%\Winnt\Sysvol\Sysvol:

This folder inherits all of its permissions from its parent.

- %SystemRoot%\Winnt\Sysvol\Sysvol\<domain>:

This folder inherits all of its permissions from its parent.

- %SystemRoot%\Winnt\Sysvol\Sysvol\<domain>\Policies:

Administrators: Full Control

Authenticated Users: Read, Read & Execute, and List Folder Contents

Creator Owner: Nothing selected

Group Policy Creator Owners: Read, Read & Execute, List Folder Contents,

Modify, and Write

Server Operators: Read, Read & Execute, and List Folder Contents

System: Full Control

Click to clear: "Allow inheritable permissions from parent to propagate to this object"

- %SystemRoot%\Winnt\Sysvol\Sysvol\<domain>\Policies:

Click to select for all subfolders and files: "Allow inheritable permissions from parent to propagate to this object"

- 2. Open Active Directory Users and Computers: Click Start, click Programs, and then click Administrative Tools.
- 3. Expand Active Directory Users and Computers, and then expand the domain name.
- 4. Right-click Domain Controllers, and then click Properties.
- 5. On the Group Policy tab, click "Default Domain Controllers Policy", and then click Edit.
- 6. Expand the folders:

Computer Configuration Windows Settings Security Settings Local Policies

7. Click User Rights Assignment, and then double-click "Bypass traverse checking". The following default settings should be present:

Authenticated Users Everyone

Administrators

To add these groups if they are not present, click Add, and then click Browse.

8. At a command prompt, type:

secedit /refreshpolicy machine policy /enforce

MORE INFORMATION

For additional information, click the article numbers below to view the articles in the Microsoft Knowledge Base:

Q271213 Event ID 1000 and 1001 Repeat Every 5 Minutes in the Event Log

<u>Q259398</u> SceCli Event ID 1001 and UserEnv Event ID 1000 When Dfs Client Is Disabled

<u>Q285923</u> Error Messages Every 5 Minutes Report Events 1000, 1001, and 13508, Citing Replication Trouble

Additional query words: GPO; 1000; 1001; permissions; sysvol

Keywords

: kberrmsg kbtool

Technology

: kbwin2000AdvServSearch kbwin2000Ssearch kbPictureIt2000 kbWinA

Version

: :2000

Issue type

: kbprb

Copyright Microsoft Corporation 2001.

Error Messages Every 5 Minutes Report Events 1000, 1001, and 135 [Q285923]

PSS ID Number: Q285923

Article last modified on 01-30-2001

:2000

The information in this article applies to:

- Microsoft Windows 2000 Server
- Microsoft Windows 2000 Advanced Server
- Microsoft Windows 2000 Datacenter Server

- MICIOSOIC WINDOWS 2000 Datacenter berver

SYMPTOMS

=======

You may find that the following error messages are recorded in Event Viewer every 5 minutes on domain controller computers and every 20 minutes on member server computers:

Userenv 1000

Windows cannot access the registry information at \\domainname.com\sysvol\domainname.com\Policies\{\file://\domainname.com\sysvol\domainname.com\Policies\{31B2F340-016D\D-11D2-945F-00C04FB984F9}\Machine\registry.pol with (1398).

SceCli 1001

Security policy cannot be propagated. Cannot access the template. Error code=3.

Userenv 1000

The Group Policy client-side extension Security was passed flags (17) and returned a failure status code of (3).

NtFrs 13508

Description: The File Replication Service is having trouble enabling replication from (computername) to (computername) for c:\winnt\sysvol\domain; retrying.

RESOLUTION

=======

To resolve this issue, synchronize the computers with the domain controller clock time. Follow these steps:

1. Run the following command on all computers to synchronize the clock time with the domain controller:

"net time \\(domain controller name) /set /y" (without the quotation marks)

- 2. Stop and then restart the File Replication Service on all servers that are experiencing the problem.
- 3. Open Event Viewer to make sure that the errors are no longer occurring.

Additional query words:

Keywords

Technology : kbwin2000AdvServSearch kbwin2000DataServSearch kbwin2000Ssearc

Version : :2000 Issue type : kbprb

Copyright Microsoft Corporation 2001.

41/58

Pro Asp Leu Ser Asp Pro Ser Ile Val Gly Ser Asn Leu Arg Gln 3380 3385 3390

Leu Ala Arg Gly Gln Ala Gly His Gly Leu Gly Pro Glu Glu Asp Gly 3395 3400 3405

Phe Ser Leu Ala Ser Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala Ser 3410 3415 3420

Asp Glu Asp Leu Ile Gln Gln Val Leu Ala Glu Gly Val Ser Ser Pro 3425 3430 3435 3440

Ala Pro Thr Gln Asp Thr His Met Glu Thr Asp Leu Leu Ser Ser Leu 3455 3450 3455

Ser Ser Thr Pro Gly Glu Lys Thr Glu Thr Leu Ala Leu Gln Arg Leu 3460 3465 3470

Gly Glu Leu Gly Pro Pro Ser Pro Gly Leu Asn Trp Glu Gln Pro Gln 3475 3480 3485

Ala Ala Arg Leu Ser Arg Thr Gly Leu Val Glu Gly Leu Arg Lys Arg 3490 3495 3500

Leu Leu Pro Ala Trp Cys Ala Ser Leu Ala His Gly Leu Ser Leu Leu 3505 3510 3515 3520

Leu Val Ala Val Ala Val Ser Gly Trp Val Gly Ala Ser Phe 3525 3530 3535

Pro Pro Gly Val Ser Val Ala Trp Leu Leu Ser Ser Ser Ala Ser Phe 3540 3550

Ieu Ala Ser Phe Ieu Gly Trp Glu Pro Ieu Lys Val Ieu Ieu Glu Ala 3555 3560 3565

Leu Tyr Phe Ser Leu Val Ala Lys Arg Leu His Pro Asp Glu Asp Asp 3570 3580

Thr Leu Val Glu Ser Pro Ala Val Thr Pro Val Ser Ala Arg Val Pro 3585 3590 3595 3600

Arg Val Arg Pro Pro His Gly Phe Ala Leu Phe Leu Ala Lys Glu Glu 3605 3610 3615

Ala Arg Lys Val Lys Arg Leu His Gly Met Leu Arg Ser Leu Leu Val 3620 3625 3630

Tyr Met Leu Phe Leu Leu Val Thr Leu Leu Ala Ser Tyr Gly Asp Ala 3635 3640 3645

Ser Cys His Gly His Ala Tyr Arg Leu Gln Ser Ala Ile Lys Gln Glu 3650 3655 3660

Leu His Ser Arg Ala Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu Trp 3665 3670 3675 3680

Pro Trp Met Ala His Val Leu Leu Pro Tyr Val His Gly Asn Gln Ser 3685 3690 3695

- Ser Pro Glu Leu Gly Pro Pro Arg Leu Arg Gln Val Arg Leu Gln Glu 3700 3705 3710
- Ala Leu Tyr Pro Asp Pro Pro Gly Pro Arg Val His Thr Cys Ser Ala 3715 3720 3725
- Ala Gly Gly Phe Ser Thr Ser Asp Tyr Asp Val Gly Trp Glu Ser Pro 3730 3735 3740
- His Asn Gly Ser Gly Thr Trp Ala Tyr Ser Ala Pro Asp Leu Leu Gly 3745 3750 3755 3760
- Ala Trp Ser Trp Gly Ser Cys Ala Val Tyr Asp Ser Gly Gly Tyr Val 3765 3770 3775
- Gln Glu Leu Gly Leu Ser Leu Glu Glu Ser Arg Asp Arg Leu Arg Phe 3780 3785 3790
- Leu Gln Leu His Asn Trp Leu Asp Asn Arg Ser Arg Ala Val Phe Leu 3795 3800 3805
- Glu Leu Thr Arg Tyr Ser Pro Ala Val Gly Leu His Ala Ala Val Thr 3810 3815 3820
- Leu Arg Leu Glu Phe Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu Ser 3825 3830 3835 3840
- Val Arg Pro Phe Ala Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu Pro 3845 3850 3855
- Leu Leu Thr Ser Val Cys Leu Leu Leu Phe Ala Val His Phe Ala Val 3860 3865 3870
- Ala Glu Ala Arg Thr Trp His Arg Glu Gly Arg Trp Arg Val Leu Arg 3875 3880 3885
- Leu Gly Ala Trp Ala Arg Trp Leu Leu Val Ala Leu Thr Ala Ala Thr 3890 3895 3900
- Ala Leu Val Arg Leu Ala Gln Leu Gly Ala Ala Asp Arg Gln Trp Thr 3905 3910 3915 3920
- Arg Phe Val Arg Gly Arg Pro Arg Arg Phe Thr Ser Phe Asp Gln Val 3925 3930 3935
- Ala His Val Ser Ser Ala Ala Arg Gly Leu Ala Ala Ser Leu Leu Phe 3940 3945 3950
- Leu Leu Val Lys Ala Ala Gln His Val Arg Phe Val Arg Gln Trp 3955 3960 3965
- Ser Val Phe Gly Lys Thr Leu Cys Arg Ala Leu Pro Glu Leu Leu Gly 3970 3980
- Val Thr Leu Gly Leu Val Val Leu Gly Val Ala Tyr Ala Gln Leu Ala 3985 3990 3995 4000
- Ile Leu Leu Val Ser Ser Cys Val Asp Ser Leu Trp Ser Val Ala Gln 4005 4010 4015

- Ala Leu Leu Val Leu Cys Pro Gly Thr Gly Leu Ser Thr Leu Cys Pro 4020 4025 4030
- Ala Glu Ser Trp His Leu Ser Pro Leu Leu Cys Val Gly Leu Trp Ala 4035 4040 4045
- Leu Arg Leu Trp Gly Ala Leu Arg Leu Gly Ala Val Ile Leu Arg Trp 4050 4055 4060
- Arg Tyr His Ala Leu Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro 4065 4070 4075 4080
- Gln Asp Tyr Glu Met Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp 4085 4090 4095
- Met Gly Leu Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe Glu 4100 4105 4110
- Gly Met Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser 4115 4120 4125
- Pro Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser 4130 4135 4140
- Thr Ser Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg Leu 4145 4150 4155 4160
- Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val Phe Glu 4165 4170 4175
- Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp Val 4180 4185 4190
- Tyr Gln Leu Glu Gln Gln Leu His Ser Leu Gln Gly Arg Arg Ser Ser 4195 4200 4205
- Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro 4210 4215 4220
- Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala 4225 4230 4235 4240
- Thr Gly Pro Ser Arg Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro Gln 4245 4250 4255
- Gln His Leu Val Leu Leu Pro Gly Gly Gly Gly Pro Trp Ser Arg Ser 4260 4265 4270
- Gly His Arg Ser Val Leu Leu Ser Ala Ala Val Lys Ala Glu Gly Gln 4275 4280 4285
 - Ala Glu Trp Leu His Val Gly Ser Pro Glu Ser Arg Gln Gly His Leu 4290 4295 4300
 - Ser Val Cys Gly Leu Gln His Phe Lys Glu Ala Val Trp Pro Thr Arg 4305 4310 4315 4320
 - Thr Gln Gly Pro Leu Pro Ser Ser Leu Gly Lys Asp Thr Ala Val Leu 4325 4330 4335

Asp Gly Phe

44/58

44/58	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: (Compare Figure 7)	
CTC AAC GAG GAG CCC CTG ACG CTG GCC GCC GAG GAG ATC GTG GCC CAG Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly Glu Glu Ile Val Ala Gln 4340 4345 4350 4355	48
GGC AAG CGC TCG GAC CCG CGG AGC CTG CTG TGC TAT GGC GGC GCC CCA Gly Lys Arg Ser Asp Pro Arg Ser Leu Leu Cys Tyr Gly Gly Ala Pro 4360 4365 4370	96
GCG CCT GCC TGC CAC TTC TCC ATC CCC GAG GCT TTC AGC GGG GCC CTG Gly Pro Gly Cys His Phe Ser Ile Pro Glu Ala Phe Ser Gly Ala Leu 4375 4380 4385	144
QCC AAC CTC AGT GAC GTG GTG CAG CTC ATC TTT CTG GTG GAC TCC AAT Ala Asn Leu Ser Asp Val Val Gln Leu Ile Phe Leu Val Asp Ser Asn 4390 4395 4400	192
CCC TIT CCC TIT GGC TAT ATC AGC AAC TAC ACC GTC TCC ACC AAG GTG Pro Phe Pro Phe Gly Tyr Ile Ser Asn Tyr Thr Val Ser Thr Lys Val 4405 4410 4415	240
CCC TCG ATG CCA TTC CAG ACA CAG CCC CCC CAG ATC CCC ATC CAG Ala Ser Met Ala Phe Gln Thr Gln Ala Gly Ala Gln Ile Pro Ile Glu 4420 4430 4435	288
COG CTG GCC TCA GAG CCC GCC ATC ACC GTG AAG GTG CCC AAC AAC TCG Arg Leu Ala Ser Glu Arg Ala Ile Thr Val Lys Val Pro Asn Asn Ser 4440 4445 4450	336
GAC TGG GCT GCC CGG GGC CAC CGC AGC TCC GCC AAC TCC GCC AAC TCC ASP Trp Ala Ala Arg Gly His Arg Ser Ser Ala Asn Ser Ala Asn Ser 4465	384
GTT GTG GTC CAG CCC CAG GCC TCC GTC GGT GCT GTG GTC ACC CTG GAC Val Val Val Gln Pro Gln Ala Ser Val Gly Ala Val Val Thr Leu Asp 4470 4475 4480	432
AGC AGC AAC CCT GCG GCC GGG CTG CAT CTG CAG CTC AAC TAT ACG CTG Ser Ser Asn Pro Ala Ala Gly Leu His Leu Gln Leu Asn Tyr Thr Leu 4485 4490 4495	180
CTG GAC GGC CAC TAC CTG TCT GAG GAA CCT GAG CCC TAC CTG GCA GTC Leu Asp Gly His Tyr Leu Ser Glu Glu Pro Glu Pro Tyr Leu Ala Val 4500 4515	528
TAC CTA CAC TOG GAG COC COG COC AAT GAG CAC AAC TOC TOG GCT AGC Tyr Leu His Ser Glu Pro Arg Pro Asn Glu His Asn Cys Ser Ala Ser 4520 4525 4530	576
AGG AGG ATC CGC CCA GAG TCA CTC CAG GGT GCT GAC CAC CGG CGC TAC Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly Ala Asp His Arg Pro Tyr 4535 4540 4545	524
ACC TTC TTC ATT TCC CCG GGG AGC AGA GAC CCA GCG GGG AGT TAC CAT Thr Phe Phe Ile Ser Pro Gly Ser Arg Asp Pro Ala Gly Ser Tyr His 4550 4555 4560	572
CTG AAC CTC TCC AGC CAC TTC CGC TGG TCG GCG CTG CAG GTG TCC GTG Leu Asn Leu Ser Ser His Fire Arg Trp Ser Ala Leu Gln Val Ser Val 4565 4570 4575	720

45 /58

				, 20			
GGC CTG TAC Gly Leu Tyr 4580	Thr Ser I	CTG TGC CAG Leu Cys Gln 1585	TAC TTC Tyr. Phe	AGC GAG (Ser Glu (4590	SAG GAC A Slu Asp M	ATG GTG Met Val 4595	768
TGG CGG ACA Trp Arg Thr	GAG GGG C Glu Gly I 4500	CTG CTG CCC Leu Leu Pro	CTG GAG Leu Glu 4605	Glu Thr S	Ser Pro A	CC CAG Arg Gln 4610	816
CCC GTC TGC Ala Val Cys	CTC ACC C Leu Thr A 4615	DOC CAC CTC Arg His Leu	ACC GCC Thr Ala 4620	TTC GGC (Phe Gly /	300 AGC (Ala Ser I 4625	CTC TTC Leu Phe	864
GTG CCC CCA Val Pro Pro 4630	Ser His V	FIC COC TITY Val Arg Phe 4635	Val Phe	Pro Glu I	CCG ACA (Pro Thr 1 4640	OG GAT Ala Asp	912
GTA AAC TAC Val Asn Tyr 4645	ATC GTC A Ile Val M	ATG CTG ACA Met Leu Thr 4650	TGT CCT Cys Ala	CTG TGC (Val Cys I 4655	CTG GTG / Leu Val 1	ACC TAC Thr Tyr	960
ATG GTC ATG Met Val Met 4660	Ala Ala I	ATC CTG CAC Lle Leu His 1665	AAG CIG Lys Leu	GAC CAG 1 Asp Gln 1 4670	MTG GAT (Leu Asp /	OCC AGC Ala Ser 4675	1008
OGG GGC CGC Arg Gly Arg	CCC ATC C Ala Ile F 4680	OCT THE TOT Pro Phe Cys	GGG CAG Gly Gln 4685	Arg Gly A	Arg Phe I	AAG TAC Lys Tyr 4690	1056
GAG ATC CTC Glu Ile Leu							1104
CAC GTG GGC His Val Gly 4710	Ile Met I		Val Asp	Ser Arg S			1152
CAC CTG GAC His Leu Asp 4725	GOC GAC A	AGA GOC TIC Arg Ala Phe 4730	CAC CGC His Arg	AAC AGC (Asn Ser 1 4735	CTG GAC A Leu Asp I	ATC TTC Ile Phe	1200
CCG ATC CCC Arg Ile Ala 4740	Thr Pro I	CAC AGC CTG His Ser Leu 1745	GGT AGC Gly Ser	GTG TGG A Val Trp 1 4750	AAG ATC (Lys Ile /	CGA GTG Arg Val 4755	1248
TGG CAC GAC Trp His Asp	AAC AAA 0 Asn Lys 0 4760	GGC CTC AGC Gly Leu Ser	CCT GCC Pro Ala 4765	Trp Phe 1	Leu Gln H	CAC GTC His Val 4770	1296
ATC GTC AGG Ile Val Arg	GAC CIG (Asp Leu (4775	CAG ACG GCA Gln Thr Ala	OGC AGC Arg Ser 4780	CCC TTC TALLS Phe 1	MC CTG (Phe Leu V 4785	STC AAT Val Asn	1344
GAC TGG CIT Asp Trp Leu 4790	Ser Val (GAG ACG GAG Glu Thr Glu 479	Ala Asn	Gly Gly	CIG GIG (Leu Val (4800	GAG AAG Glu Lys	1392
GAG GTG CTG Glu Val Leu 4805					Phe Arg i		1440
CTG GTG GCT Leu Val Ala 4820	Glu Len (CAG CGT CGC Thr Arg Gly 4825	TIC TIT Phe Phe	GAC AAG (Asp Lys 1 4830	CAC ATC '	TGG CTC Trp Leu 4835	1488

46 / 58

								, 55						
TCC ATA	TGG GA Trp As	C CGG p Arg 484	Pro	CCT Pro	OGT Arg	AGC Ser	OGT Arg 484	Phe	ACT Thr	CGC Arg	ATC	CAG Gln 485	Arg	1536
GCC ACC (s Val					Leu					Asn		1584
CTG TGG Y						Ser					Gly			1632
TOC AGG (Ser Arg 1 4885	Leu Se				Val					Val				1680
TCC AGC (Ser Ser \ 4900				Pro					Ile					1728
CGG ATG ? Arg Met S			Lys					Pro					Ala	1776
GGG CAG (l Leu					Cys					Val		1824
GAC AGC ASP Ser S						Gly					Ala			1872
GGA CAG A Gly Gln N 4965	Met Ly:				Phe					Lys				1920
TGC TGG (Cys Trp I 4980				Gly					Pro					1968
GAC CCG TASP Pro S			Gly					Gln					Gln	2016
Ala Gly i		Leu					Asp					Ala		2064
CCC TAC T						Ser					Asp			2112
CAG CAG (Gln Gln \ 5045	Val Le				Val			Pro		Pro				2160
2ACC CAC Thr His N 5060		i The		Leu	Leu	Ser		Leu	Ser					2208

47/58

									4/	/58						
					Leu					Leu					CCA Pro O	2256
				Leu					Pro					Leu	G TCC Ser	2304
			Leu					Arg					Pro		TCG Trp	2352
		Ser	CIG Leu				Leu					Val			GCT Ala	2400
	Ala		TCA Ser			Val			_		Pro					2448
			CTC Leu		Ser					Phe					Leu	2496
		_	CCA Pro 5175	Leu					Glu					Ser		2544
			CCG Arg)					Glu					Val			2592
		Val	ACG Thr				Ala					Val				2640
	Gly		CCA Ala			Leu					Ala					2688
			Gly		Leu					Val					Leu	2736
			CIG Leu 5255	Leu					Asp					Gly		2784
			CTG Leu)					Lys					Ser			2832
		Ala	ATC Ile				Glu					Trp				2880
Val	Leu	Leu	CC Pro	Tyr	Val	His	Gly	Asn	Gln	Ser	Ser	Pro	Glu	Leu		2928
∞	CCA.	œ	CTG	œ	CAG	GNG	ന്ദ	CIG	(TAG	GAA	GCA	crc	TAC	CCA	GAC	2976

48 /58

					Gln					Glu					GAC Asp	297	'6
				Arg					Ser					Phe	AGC	302	4
			Tyr					Glu					Gly		Gly	307	2
		Ala					Asp					Trp			Gly	312	0
	Cys					Ser					Gln				CTG Leu 5395	316	8
					Arg					Phe					AAC Asn O	321	6
		GAC Asp		Arg					Phe					Arg		326	4
AGC Ser	CCG Pro	000 Ala 5430	Val	Gly GGG	CTG Leu	CAC His	GCC Ala 5435	Ala	GTC Val	ACG Thi	CIG Leu	CGC Arg 5440	Leu	GAG Glu	TTC Phe	3312	2
		CCC Ala					Ala					Arg				3360)
	Arg	CCC Arg				Gly					Leu					3 4 08	3
TCC Cys			Leu		Ala					Val					Thr	3456	5
TCG Trp		Arg		Gly			Arg		Leu					Trp		3504	1
Arg	Trp		Leu			Leu		Ala			Ala		Val			3552	2
Ala		Leu			Ala		Arg			Thr		Phe				3600)
∞c Arg 5540	Pro			Phe		Ser					Ala					. 3648	3

49/58

											•					
GCA Ala	€CC Ala	CGT Arg	Gly	CTG Leu 5560	Ala	GCC Ala	TCG Ser	CTG Leu	CIC Leu 556	Phe	CTG Leu	CIT Leu	TTG Leu	GIC Val 557	AAG Lys O	3696
				Val					Gln					Gly	C AAG Lys	37 44
			Arg					Leu					Leu		CTG Leu	3792
		Leu			GCC Ala		Ala					Leu			TCT Ser	3840
	Cys					Trp					Ala				CTG Leu 5635	3888
					Leu					Pro						3936
				Leu	TGT Cys				Trp					Trp	GJA GC	3984
			Leu		GCT Ala			Leu					His			4032
		Glu			CCG Arg		Ala			•		Asp				4080
	Glu				OSC Arg 5705	Arg					Met			_	_	4128
_					CAC His)		_			Glu	_				Leu	4176
				Ser	AGG Arg				Val					Pro		4224
			Gly		GAT Asp			His					Ser			4272
		Gly			GTG Val		Leu					Thr				4320
	Glu				CIC Leu 5785	Gln	Ala	Val	Phe		Ala					4368

50 /58

20 / 28	
TTT GAC CGA CTC AAC CAG GCC ACA GAG GAC GTC TAC CAG CTG GAG CAG Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp Val Tyr Gln Leu Glu Gln 5800 5805 5810	4416
CAG CTG CAC AGC CTG CAA GGC CGC AGG AGC AGC CGG GCG CCC GCA GCIn Leu His Ser Leu Gln Gly Arg Arg Ser Ser Arg Ala Pro Ala Gly 5815 5820 5825	4464
TCT TCC CGT CGC CCA TCC CCG GGC CTG CGG CCA GCA CTG CCC AGC CGC Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg 5830 5835 5840	4512
CIT GCC CGG GCC AGT CGG GGT GTG GAC CTG GCC ACT GGC CCC AGC AGC AGG Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg 5845 5850 5855	4560
ACA CCT TOG GGC CAA GAA CAA GGT CCA CCC CAG CAG CAC TTA GTC CTC Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro Gln Gln His Leu Val Leu 5860 5875	4608
CTT CCT GGC GGG GGT GGG CCG TGG AGT CGG AGT GGA CAC CGC TCA GTA Leu Pro Gly Gly Gly Pro Trp Ser Arg Ser Gly His Arg Ser Val 5880 5885 5890	4656
TTA CTT TCT GCC GCT GTC AAG GCC GAG GCC CAG GCA GAA TGG CTG CAC Leu Leu Ser Ala Ala Val Lys Ala Glu Gly Gln Ala Glu Trp Leu His 5895 5900 5905	4704
GTA GGT TCC CCA GAG AGC AGG CAG GGG CAT CTG TCT GTC TGT GGG CTT Val Gly Ser Pro Glu Ser Arg Gln Gly His Leu Ser Val Cys Gly Leu 5910 5915 5920	4752
CAG CAC TIT AAA GAG GCT GIG TGG CCA ACC AGG ACC CAG GGT CCC CIC Gln His Phe Lys Glu Ala Val Trp Pro Thr Arg Thr Gln Gly Pro Leu 5925 5930 5935	4800
CCC AGC TCC CIT GGG AAG GAC ACA GCA GTA TTG GAC GGT TTC Pro Ser Ser Leu Gly Lys Asp Thr Ala Val Leu Asp Gly Phe 5940 5945 5950	4842
TAGOCTOTGA GATGOTAATT TATTTOOOOG AGTOCTCAGG TACAGOGGGC TGTGOCOGGC	4902
COCACCOCCI GGGCAGATGT COCCCACTGC TAAGGCTGCT GGCTTCAGGG AGGGTTAGCC	4962
2TGCACCGCCG CCACCCTGCC CCTAAGTTAT TACCTCTCCA GTTCCTACCG TACTCCCTGC	5022
ACCOPTCTCAC TGTGTGTCTC GTGTCAGTAA TTTATATGGT GTTAAAATGT GTATATTTTT	5082
GTATGTCACT ATTTTCACTA GGGCTGAGGG GCCTGCGCCC AGAGCTGGCC TCCCCCAACA	5142
CCTGCTGCGC TTGGTAGGTG TGGTGGCGTT ATGGCAGCCC GCCTGCTGCT TGGATGCGAG	5202
CTTGGCCTTG GGCCGGTGCT GGGGGCACAG CTGTCTGCCA GGCACTCTCA TCACCCCAGA	5262
GEOCTTGTCA TOCTCOCTTG COCCAGGOCCA GGTAGCAAGA GAGCAGOCCC CAGGOCTGCT	5322
GGCATCAGGT CTGGGCAAGT AGCAGGACTA GGCATGTCAG AGGACCCCAG GGTGGTTAGA	5382
GGAAAAGACT CCTCCTGGGG GCTGGCTCCC AGGGTGGAGG AAGGTGACTG TGTGTGTGTG	5442
TGTGTGCGCG CGCGACGCCC GAGTGTGCTG TATGGCCCAG GCAGCCTCAA GCCCCTCGGA	5502
SUBSTITUTE SHEET (RULE 26)	

51/58

CACCOCCCCA ACCCCCCCCC CAAGCAGACA AAGTCAATAA AAGAGCTGTC TGACTGCAAA 5622
AAAAAAAAA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: (Compare Figure 7) Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly Glu Glu Ile Val Ala Gln Gly Lys Arg Ser Asp Pro Arg Ser Leu Leu Cys Tyr Gly Gly Ala Pro Gly Pro Gly Cys His Phe Ser Ile Pro Glu Ala Phe Ser Gly Ala Leu 35 Ala Asn Leu Ser Asp Val Val Gln Leu Ile Phe Leu Val Asp Ser Asn Pro Phe Pro Phe Gly Tyr Ile Ser Asn Tyr Thr Val Ser Thr Lys Val Ala Ser Met Ala Phe Gln Thr Gln Ala Gly Ala Gln Ile Pro Ile Glu Arg Leu Ala Ser Glu Arg Ala Ile Thr Val Lys Val Pro Asn Asn Ser 100 Asp Trp Ala Ala Arg Gly His Arg Ser Ser Ala Asn Ser Ala Asn Ser 115 120 125 Val Val Val Gln Pro Gln Ala Ser Val Gly Ala Val Val Thr Leu Asp 130 135 140 Ser Ser Asn Pro Ala Ala Gly Leu His Leu Gln Leu Asn Tyr Thr Leu 145 150 155 160 Leu Asp Gly His Tyr Leu Ser Glu Glu Pro Glu Pro Tyr Leu Ala Val 165 Tyr Leu His Ser Glu Pro Arg Pro Asn Glu His Asn Cys Ser Ala Ser 185 Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly Ala Asp His Arg Pro Tyr 200 Thr Phe Phe Ile Ser Pro Gly Ser Arg Asp Pro Ala Gly Ser Tyr His Leu Asn Leu Ser Ser His Phe Arg Trp Ser Ala Leu Gln Val Ser Val 230 Gly Leu Tyr Thr Ser Leu Cys Gln Tyr Phe Ser Glu Glu Asp Met Val 250

52 / 58

Trp Arg Thr Glu Gly Leu Leu Pro Leu Glu Glu Thr Ser Pro Arg Gln 265 Ala Val Cys Leu Thr Arg His Leu Thr Ala Phe Gly Ala Ser Leu Phe Val Pro Pro Ser His Val Arg Phe Val Phe Pro Glu Pro Thr Ala Asp 295 290 Val Asn Tyr Ile Val Met Leu Thr Cys Ala Val Cys Leu Val Thr Tyr 315 320 310 305 Met Val Met Ala Ala Ile Leu His Lys Leu Asp Gln Leu Asp Ala Ser 330 335 325 Arg Gly Arg Ala Ile Pro Phe Cys Gly Gln Arg Gly Arg Phe Lys Tyr 345 Glu Ile Leu Val Lys Thr Gly Trp Gly Arg Gly Ser Gly Thr Thr Ala 360 His Val Gly Ile Met Leu Tyr Gly Val Asp Ser Arg Ser Gly His Arg His Leu Asp Gly Asp Arg Ala Phe His Arg Asn Ser Leu Asp Ile Phe Arg Ile Ala Thr Pro His Ser Leu Gly Ser Val Trp Lys Ile Arg Val 410 405 Trp His Asp Asn Lys Gly Leu Ser Pro Ala Trp Phe Leu Gln His Val 425 Ile Val Arg Asp Leu Gln Thr Ala Arg Ser Ala Phe Phe Leu Val Asn 440 Asp Trp Leu Ser Val Glu Thr Glu Ala Asn Gly Gly Leu Val Glu Lys 450 455 Glu Val Leu Ala Ala Ser Asp Ala Ala Leu Leu Arg Phe Arg Arg Leu 470 465 Leu Val Ala Glu Leu Gln Arg Gly Phe Phe Asp Lys His Ile Trp Leu 485 Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg Phe Thr Arg Ile Gln Arg 505 500 Ala Thr Cys Cys Val Leu Leu Ile Cys Leu Phe Leu Gly Ala Asn Ala 520 Val Trp Tyr Gly Ala Val Gly Asp Ser Ala Tyr Ser Thr Gly His Val Ser Arg Leu Ser Pro Leu Ser Val Asp Thr Val Ala Val Gly Leu Val Ser Ser Val Val Val Tyr Pro Val Tyr Leu Ala Ile Leu Phe Leu Phe 565 570

53/58

Arg Met Ser Arg Ser Lys Val Ala Gly Ser Pro Ser Pro Thr Pro Ala 580 585 590 Gly Gln Gln Val Leu Asp Ile Asp Ser Cys Leu Asp Ser Ser Val Leu 600 **595** Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu His Ala Glu Ala Phe Val 615 620 610 Gly Gln Met Lys Ser Asp Leu Phe Leu Asp Asp Ser Lys Ser Leu Val 630 Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser Trp Pro Asp Leu Leu Ser 650 Asp Pro Ser Ile Val Gly Ser Asn Leu Arg Gln Leu Ala Arg Gly Gln Ala Gly His Gly Leu Gly Pro Glu Glu Asp Gly Phe Ser Leu Ala Ser 680 Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala Ser Asp Glu Asp Leu Ile 700 690 695 Gln Gln Val Leu Ala Glu Gly Val Ser Ser Pro Ala Pro Thr Gln Asp 705 710 715 Thr His Met Glu Thr Asp Leu Leu Ser Ser Leu Ser Ser Thr Pro Gly 730 725 735 Glu Lys Thr Glu Thr Leu Ala Leu Gln Arg Leu Gly Glu Leu Gly Pro 745 740 Pro Ser Pro Gly Leu Asn Trp Glu Gln Pro Gln Ala Ala Arg Leu Ser 755 760 765 Arg Thr Gly Leu Val Glu Gly Leu Arg Lys Arg Leu Leu Pro Ala Tro Cys Ala Ser Leu Ala His Gly Leu Ser Leu Leu Leu Val Ala Val Ala **795** Val Ala Val Ser Gly Trp Val Gly Ala Ser Phe Pro Pro Gly Val Ser 810 Val Ala Trp Leu Leu Ser Ser Ser Ala Ser Phe Leu Ala Ser Phe Leu Gly Trp Glu Pro Leu Lys Val Leu Leu Glu Ala Leu Tyr Phe Ser Leu 840 Val Ala Lys Arg Leu His Pro Asp Glu Asp Asp Thr Leu Val Glu Ser Pro Ala Val Thr Pro Val Ser Ala Arg Val Pro Arg Val Arg Pro Pro 865 His Gly Phe Ala Leu Phe Leu Ala Lys Glu Glu Ala Arg Lys Val Lys

54/58

Arg	Leu	His	900 Gly	Met	Leu	Arg	Ser	Leu 905	Leu	Val	Tyr	Met	Leu 910	Phe	Leu
Leu	Val	Thr 915	Leu	Leu	Ala	Ser	Tyr 920	Gly	Asp	Ala	Ser	Cys 925	His	Gly	His
Ala	Tyr 930	Arg	Leu	Gln	Ser	Ala 935	Ile	Lys	Ġln	Glu	Leu 940	His	Ser	Arg	Ala
Phe 945	Leu	Ala	Ile	Thr	Arg 950	Ser	Glu	Glu	Leu	Trp 955	Pro	Trp	Met	Ala	ніs 960
Val	Leu	Leu	Pro	Tyr 965	Val	His	Gly	Asn	Gln 970	Ser	Ser	Pro	Glu	Leu 975	Gly
Pro	Pro	Arg	Leu 980	Arg	Gln	Val	Arg	Leu 985	Gln	Glu	Ala	Leu	Tyr 990	Pro	Asp
Pro	Pro	Gly 995	Pro	Arg	Val	His	Thr 1000		Ser	Ala	Ala	Gly 1005		Phe	Ser
Thr	Ser 1010	Asp)	Tyr	Asp	Val	Gly 1015		Clu	Ser	Pro	His 1020		Gly	Ser	Gly
Thr 1025	_	Ala	Tyr	Ser	Ala 1030		Asp	Leu	Leu	Gly 1035		qrp	Ser	Trp	Gly 1040
Ser 2	Cys	Ala	Val	Tyr 1045		Ser	Gly	Gly	Tyr 1050		Gln	Glu	Leu	Gly 1055	
	Leu	Glu	Glu 1060		Arg	Asp	Arg	Leu 1065		Phe	Leu	Gln	Leu 1070		Asn
Trp	Leu	Asp 1075		Arg	Ser	Arg	Ala 1080		Phe	Leu	Glu	Leu 1085		Arg	Tyr
Ser	Pro 1090	Ala)	Val	Gly	Leu	His 1095		Ala	Val	Thr	Leu 1100		Leu	Glu	Phe
Pro 1105		Ala	Gly	Arg	Ala 1110		Ala	Ala	Leu	Ser 1115		Arg	Pro	Phe	Ala 1120
Leu	Arg	Arg	Leu	Ser 1125		Gly	Leu	Ser	Leu 1130		Leu	Leu	Thr	Ser 1135	
Cys	Leu	Leu	Leu 1140		Ala	Val	His	Phe 1145		Val	Ala	Glu	Ala 1150		Thr
Trp	His	Arg 1155		Gly	Arg	Trp	Arg 1160		Leu	Arg	Leu	Gly 1165		Trp	Ala
Arg 8	Trp 1170	Leu)	Leu	Val	Ala	Leu 1175		Ala	Ala	Thr	Ala 1180		Val	Arg	Leu
_		Leu	Gly	Ala			Arg	Gln	Trp			Phe	Val	Arg	Gly 1200
1185	5				1190	,				1195	,				1200

									၁၁	/58		•			
Ala	Ala	Arg	Gly 1220		Ala	Ala	Ser	Leu 1225	Leu 5	Phe	Leu	Leu	Leu 1230	Val O	Lys
Ala	Ala	Gln 1235		Val	Arg	Phe	Val 1240		Gln	Trp	Ser	Val 124		Gly	Lys
Thr	Leu 1250		Arg	Ala	Leu	Pro 1255	Glu 5	Leu	Leu	Gly	Val 1260	Thr)	Leu	Gly	Leu
Val 1265		Leu	Gly	Val	Ala 1270		Ala	Gln	Leu	Ala 1275		Leu	Leu	Val	Ser 1280
Ser	Cys	Val	Asp	Ser 1285	Leu	Trp	Ser	Val	Ala 1290	Gln)	Ala	Leu	Leu	Val 1295	Le u
Cys	Pro	Gly	Thr 1300		Leu	Ser	Thr	Leu 1305		Pro	Ala	Glu	Ser 1310	Trp)	His
Leu	Ser	Pro 1315		Leu	Căa	Val	Gly 1320		Trp	Ala	Leu	Arg 1325		Trp	Gly
Ala	Leu 1330	_	Leu	Gly	Ala	Val 1335		Leu	Arg	Trp	Arg 1340		His	Ala	Leu
Ar g 1345		Glu	Leu	Tyr	Arg 1350		Ala	Trp	Glu	Pro 1355		Asp	Tyr	Glu	Met 1360
Val	Glu	Leu		Leu 1365	_	Arg	Leu		Leu 1370		Met	Gly	Leu	Ser 1375	
Val	Lys	Glu	Phe 1380	_	His	Lys	Val	Arg 1385		Glu	Gly	Met	Glu 1390	Pro)	Leu
Pro	Ser	Arg 1395		Ser	Arg	Gly	Ser 1400		Val	Ser	Pro	Asp 1405		Pro	Pro
Pro	Ser 1410		Gly	Ser	Asp	Ala 1415		His	Pro	Ser	Thr 1420		Ser	Ser	Gln
Leu 1425	_	Gly	Leu	Ser	Val 1430		Leu	Gly	Arg	Leu 1435		Thr	Arg	Cys	Glu 1440
Pro	Glu	Pro	Ser	Arg 1445		Gln	Ala	Val	Phe 1450		Ala	Leu	Leu	Thr 1455	
Phe	Asp	Arg	Leu 1460		Gln	Ala	Thr	Glu 1465		Val	Tyr	Gln	Leu 1470	Glu)	Gln
Gln	Leu	His 1475		Leu	Gln	Gly	Arg 1480		Ser	Ser	Arg	Ala 1485		Ala	Gly
Ser	Ser		Gly	Pro	Ser	Pro 1495		Leu	Arg	Pro	Ala 1500		Pro	Ser	Arg

Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg 1505 1510 1515 1520

Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro Gln Gln His Leu Val Leu 1525 1530 1535

56/58

Leu Pro Gly Gly Gly Pro Trp Ser Arg Ser Gly His Arg Ser Val 1540 1545 1550	
Leu Leu Ser Ala Ala Val Lys Ala Glu Gly Gln Ala Glu Trp Leu His 1555 1560 1565	
Val Gly Ser Pro Glu Ser Arg Gln Gly His Leu Ser Val Cys Gly Leu 1570 1575 1580	
Gln His Phe Lys Glu Ala Val Trp Pro Thr Arg Thr Gln Gly Pro Leu 1585 1590 1595 1600	
Pro Ser Ser Leu Gly Lys Asp Thr Ala Val Leu Asp Gly Phe 1605 1610	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: (Compare Figure 8)	
ACCITOCCAC CATCAACGC CAGTTCAACT TIGTOCACGT GATOGTCACC COCCTGGACT	60
ACCACTOCAA CCTGCTGTCC CTGCAGTGCA GGAAAGACAT GGAGGGCCTT GTGGACACCA	120
GOGTIGGOCAA GATOGTIGTOT GACOGCAACO TGCCCTTOGT GGCCCCAG ATGGCCCTGC	180
ACCCAAATAT GCCCTCACAG GTGCATCATA GCCGCTCCAA CCCCACCGAT ATCTACCCCT	240
CCAAGTGGAT TGCCCGGCTC CGCCACATCA AGCGGCTCCG CCAGCGGATC TGCGAGGAAG	300
COSCUTACTIC CAACCOCAGE CTACCTICTIGG TIGCACCOCTICE GTICCCATAGE AAAGCCCCTIG	360
CACAGACTOC AGCOGAGOOC ACACCTGGCT ATGAGGTGGG CCAGOGGAAG CGCCTCATCT	420
CCTOGGTGGA GGACTTCACC GAGTTTGTGT GAGGCCGGGG CCCTOCCTCC TGCACTGGCC	480
TTGGACGGTA TTGCCTGTCA GTGAAATAAA TAAAGTCCTG ACCCCAGTGC ACAGACATAG	540
AGGCACAGAT TGC	553
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: (Compare Figure 9)	
CTGGTGTGTG TGAGACGTGC GGGGCTGGGA AGTGTTGGCA GAGCCGCGAG TACCGTCCTC	60
ACTOCITITG TICTITIGAC GIAAGCIGGC GAGIGGCACT GCCIGAGITC CGCICAGIGC	120
COGCOCTIGAT GIGOGGACCO COCTIGCATTC TIGCTGITAG GIGGTGGCGG TGTGCGCTGT	180
COCTOGTOGG CACCGAGAGT CTTTGGGGAGC TTTGGGGGAGG TTGTGCCCAAG CCTGAGCCTC	240
GACCICCCCC TICCCCCCTT TCIGITGCCT CITCIGAGCC CAGGGCATCT CTATGAGGCC	300
CTCCTCCTCG ACCCCTCTCT GTCGCATCTCC TCTCCCATCC TCCCCCATCA GTCCGTCATC	360
COCTOGOCAC CATCTOGTGA CAGTGGCCGG GCACCGCTGC CAAATGTGGG TCCCGCATCT	420

SUBSTITUTE SHEET (RULE 26)

480

517

GCAAGCCCCT CCCTGGGTCC CCTAGGGTAT GGGGTGGTTC TGCCACTGCC CTCGCTCCCC

CACCITGGG: TGCCTCTCCC CCTGCTCGTG GGGGAGA

F1g. I

INTERNATIONAL SEARCH REPORT

Internal 1 Application No PCT/GB 94/02822

A. CLASS	SIFICATION OF SUBJECT MATTER C12N15/12 C07K14/47 C12N5/10 C12Q1/68 C07K16/18	A61K48/00	G01N33/68
B. FIELD	to International Patent Classification (IPC) or to both national classification SEARCHED documentation searched (classification system followed by classification C12N A61K C12Q CO7K		
	data base consulted during the international search (name of data base		
· · · · · ·			
	MENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the re-	icasut bezzelen	
X	J. AM. SOC. NEPHROL., vol. 4,no. 3, November 1993 page 814 G. GERMINO ET AL 'A novel approa	ch to the	1-3,6-23
Y	identification of the PKD1 gene' see abstract 91p		24-30
Y	KIDNEY INTERNATIONAL, vol. 43,no. supp 39, 19 May 1993 pages s20-s25, G. GERMINO ET AL 'Positional clo approach to the dominant polycyst disease gene, PKD1' see the whole document	ic kidney	1-30
		·/	
X Fu	urther documents are listed in the continuation of box C.	Patent family members	are listed in annex.
"A" docucons "E" earlie filin "L" docucuntat "O" docucothe "P" docu	ment defining the general state of the art which is not sidered to be of particular relevance or document but published on or after the international angular date of the international or date of the cited to establish the publication date of another tion or other special reason (as specified) ument referring to an oral disclosure, use, exhibition or er means ument published prior to the international filing date but	cited to understand the print invention "X" document of particular relevant to considered novel involve an inventive step with document of particular relevant to considered to inventive step with the print to the	vance; the claimed invention or cannot be considered to then the document is taken alone vance; the claimed invention vance; the claimed invention volve an inventive step when the one or more other such docu- eing obvious to a person skilled
	than the priority date claimed the actual completion of the international search	Date of mailing of the inter-	
Date of a	8 May 1995		9. 05. 95
Name an	nd mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Far: (+31-70) 340-3016	Van der Sch	aal, C

INTERNATIONAL SEARCH REPORT

Internal 1 Application No PCT/GB 94/02822

	citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Tategory *	Citation of document, with interested where appropriately of old research participations	
•	GENOMICS, vol. 13, 1992 pages 144-151, G. GERMINO ET AL 'The gene for autosomal dominant polycystic kidney disease' cited in the application see the whole document especially page 150, left column, last paragraph	1-30
Y	A. GRIFFITHS ET AL 'An introduction to genetic analysis' 1993, W. FREEMAN AND COMPANY, NEW YORK see page 427 see page 453, left column, last paragraph - right column, paragraph 1 see page 453, right column, last paragraph - page 461	1-30
A	CURRENT OPINION IN GENETICS AND DEVELOPMENT, vol. 3, June 1993 pages 425-431, J. MULLEY ET AL 'Integrating maps of chromosome 16'	
X	EMBL DATABASE, Accession no. T05931, sequence reference HS9312, Sep. 2 1993; M. ADAMS et al 'Expressed sequence tags identify diversity of transcripts from human brain & NATURE GENETICS, vol. 4, 1993 pages 256-267,	1-3,6,8,
X	EMBL DATABASE, Accession no. T04943 sequence reference HS9431, August 30, 1993 M. ADAMS et al, 'Expressed sequence tags identify diversity of transcripts from human brain & NATURE GENETICS, vol. 4, 1993 pages 256-267,	1-3,6,8,
P,X	CELL, vol. 77, 17 June 1994 pages 881-894, C. WARD ET AL 'The polycystic kidney disease 1 gene encodes a 14kb transcript and lies within a duplicated region on chromosome 16' see the whole document	1-30
	, a section of the se	

1

INTERNATIONAL SEARCH REPORT

international application No.

PCT/GB94/02822

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 24 partially and 25 are directed to methods of treatment of the human boby the search has been carried out and based on the alleged effect of the compound.
	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international scarch can be carried out, specifically:
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inter	rnational Scarching Authority found multiple inventions in this international application, as follows: .
	As all required additional search fees were timely paid by the applicant, this international search report covers all tearchable claims.
	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. 🗌 🔏	As only some of the required additional search fees were timely paid by the applicant, this international search report - covers only those claims for which fees were paid, specifically claims Nos.:
4. 🔲 j	No required additional search fees were timely paid by the applicant. Consequently, this international search report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark e	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.