

Bluebike Summer Usage Pattern: Determinants of a Station's Popularity

Ashley Kang Wellesley College Class of 2025 Data Science Major Capstone

Introduction

Background:

Bluebike is a public transportation system centered in the Metro Boston area that offers users over 4,500 bikes from more than 480 stations, ranging from Arlington to Watertown.

Research Question:

What station characteristics and demographic factors contribute to the popularity of Bluebike stations in Massachusetts during the summer months?

Data Cleaning

Sources:

- Bluebike Station Data
 - Indiv. station information: total docks, municipality, seasonal status, location (lat. / long.)
- Bluebike 2020-2024 trip history for the summer months (June through Sept.)
 - Indiv. trip information: total duration, user's membership status, start/end station
- Higher Educational Institution Data
 - US institution information: name, location (lat. / long.), state abbreviations
- MBTA Train Station Data
 - Individual station information: name, location (lat. / long.)
- Massachusetts Weather Data
 - avg. minimum temperature, avg. maximum temperature, avg. precipitation
 - Used separate datasets (above/below the Charles) due to limited datasets
- New variables:
 - Trip Duration (Numeric)
 - Trip Displacement (Numeric)
 - Population (Numeric)
 - n_institution_1km (Numeric): institutions within 1km of the station
 - n mbta 1km (Numeric): MBTA stations within 1km of the station

Data Manipulation:

- Dimensions: 8800 observations x (27 predictors + 1 response)
- Aggregated monthly
- Removed rows with missing and non-imputable station information
- Tested Full, AIC, and BIC first-order models for model selection

Figure 1: Barplot by municipality showing the distribution of five key factors logged along with total trips as the response variable. We can see that most of the factors are positively correlated with the response variable total_trips.

Methodology

STEP 1: Check multicollinearity: remove the 'population' variable due to the VIF score being 53

STEP 2: Identify the best first order model by comparing multiple metrics, including the 10-fold CV

	Full Linear Model	AIC	BIC	BIC outliers Removed
RMSE	18.798	18.829	18.831	18.721
R squared	0.965	0.965	0.964	0.965
MAE	11.539	11.544	11.515	11.476
р	26	23	21	21

Table 1: Table for comparing the four models. We can see that the all three metrics don't vary much by model, but the BIC model with the significant outliers removed tends to be slightly better.

STEP 3: Check the assumptions for the best model

Figure 2: There is a bigger chunk because this plot depends on the number of observations. Since a lot of observations are made in Boston, Cambridge, and Somerville, we are going to have this chunk. However, the spread from the 0 line seems to be somewhat equal. So we can say that this model meets the constant variance assumption.

Results and Model

Based on the observations, the linear model appears to be the best model for predicting the popularity of a station, which I have defined as the total number of trips that started and ended at that station.

Predictor	Coefficient	Predictor	Coefficient	Predictor	Coefficient
Intercept	-926.9	Municipality - Revere	-14.25	Municipality - Watertown	7.274
Seasonal status: winter storage	-2.011	Municipality - Salem	-41.79	Total Docks	0.1746
Seasonal status: year round currently stored	-19.32	Municipality - Somerville	-2.642	Institutions within 1km of the Station	2.181
Municipality - Cambridge	-7.383	MBTA Stations within 1km of the Station	-0.1379	Latitude	161.7
Municipality - Chelsea	-11.05	Seasonal status: year round	0.4774	Longitude	83.31
Municipality - Everett	-9.042	Municipality - Boston	11	Number of Trips made by Subscribers	1.296
Municipality - Malden	-14.79	Municipality - Brookline	8.073		
Municipality - Medford	-8.434	Municipality - Newton	10.74		

Discussion and Conclusion

- **Discussion:** The weather related variables do not have an impact on the model. This could be due to the consistent summer temperatures over the years, as the temperature during the summer does not vary significantly over years.
- Limitation & Future Work: The relationship between the predictors and the outcome may be non-linear, which standard linear models may not fully capture. I will propose the Random Forests method to better capture complex, non-linear patterns in my predictors. Also for a better prediction, I can add tourist attractions as a factor since people tend to visit Boston to tour the area.