

Data Sets

Supreme Court Cases

Supreme Court Judges

US Presidents

Supreme Court Cases

	name	term	first_party	second_party	facts	decision_type	disposition	issue_area	first_party_winner
0	Roe v. Wad∈	1971	Jane Roe	Henry Wade	In 1970, Jane Roe (a fictional name used in	majority opinion	reversed	NaN	True
1	Stanley v. Illinois	1971	Peter Stanley, Sr.	Illinois	Joan Stanley had three children with Peter	majority opinion	reversed/remanded	Civil Rights	True
2	Giglio v. United States	1971	John Giglio	United States	John Giglio was convicted of passing forged	majority opinion	reversed/remanded	Due Process	True
3	Reed v. Reed	1971	Sally Reed	Cecil Reed	The Idaho Probate Code specified that "male	majority opinion	reversed/remanded	Civil Rights	True
4	Miller v. California	1971	Marvin Miller	California	Miller, after conducting a mass mailing cam	majority opinion	vacated/remanded	First Amendment	True

Supreme Court Judges

Index	Justice Name
1	Jackson, Ketanji Brown(Associate Justice)
2	Coney Barrett, Amy(Associate Justice)
3	Kavanaugh, Brett M.(Associate Justice)
4	Gorsuch, Neil M.(Associate Justice)
5	Kagan, Elena(Associate Justice)
•••	
117	Rutledge, John(Associate Justice)
118	Cushing, William(Associate Justice)
119	Blair, John(Associate Justice)
120	Jay, John(Chief Justice)

Supreme Court Term End	Supreme Court Term Start
	June 30, 2022
	October 27, 2020
	October 6, 2017
	April 10, 2017
	August 7, 2010
March 5, 1791	February 15, 1790
September 13, 1810	February 2, 1790
October 25, 1795	February 2, 1790
June 29, 1795	October 19, 1789
August 21, 1798	October 5, 1789

Appointing President
Biden, Joseph R.
Trump, Donald J.
Trump, Donald J.
Trump, Donald J.
Obama, Barack H.
Washington, George

US Presidents

Party	President
Independent	George Washington
Federalist	John Adams
Democratic-Republican	Thomas Jefferson
Democratic-Republican	James Madison
Democratic-Republican	James Monroe
Democratic-Republican/National Republican	John Quincy Adams
Democratic	Andrew Jackson
Democratic	Martin Van Buren
Whig	William Henry Harrison

Party Affiliation Assumption

117 Rutledge, John(Associate Justice)

February 15, 1790

March 5, 1791

Washington, George

George Washington

Independent

John Rutledge associated as an "Independent"

Data Cleaning

Get All Dates in Terms of Years

```
judges['start_year'] = pd.to_datetime(judges['Supreme Court Term Start']).dt.year
judges['end_year'] = pd.to_datetime(judges['Supreme Court Term End'].replace("--","01-Mar-24")).dt.year
```

Match Judges to their Party Affiliations

```
judges['president_last_name'] = judges["Appointing President"].str.extract(r'^(\w+),')
presidents['president_last_name'] = presidents['President '].str.extract(r'\s(\w+)$')
```

```
Democratic + Republican != Democratic-Republican
```

Match Cases to Judges to Get Counts for Each Ideology

```
cases["conservative"] = 0
cases["liberal"] = 0
cases["neutral"] = 0
```

Remove Rows Missing "Issue_area " and "first_party_winner"

```
cases = cases.loc[cases.issue_area.notnull()]
cases = cases.loc[cases.first_party_winner.notnull()]
```

Merged data

	name	first_party	second_party	facts	majority_vote	minority_vote	decision_type	first_party_winner	disposition	issue_area	conservative	liberal	neutral
1	Stanley v. Illinois	Peter Stanley, Sr.	Illinois	>Joan Stanley had three children with Peter	5	2	majority opinion	True	reversed/remanded	Civil Rights	5	4	0
2	Giglio v. United States	John Giglio	United States	John Giglio was convicted of passing forged	7	0	majority opinion	True	reversed/remanded	Due Process	5	4	0
3	Reed v. Reed	Sally Reed	Cecil Reed	The Idaho Probate Code specified that "male	7	0	majority opinion	True	reversed/remanded	Civil Rights	5	4	0
4	Miller v. California	Marvin Miller	California	Miller, after conducting a mass mailing cam	5	4	majority opinion	True	vacated/remanded	First Amendment	5	4	0

Natural Language Processing

Regularize Facts Statements

```
import nltk
import string
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
def tokenizer(text):
  "Tokenize document text by stripping the text into individual tokens, removing digit characters, removing punctuation, remove stop words, and lemmatizing the tokens.
   Parameters
   text : str
    The body of text that you would like to tokenize
   Returns
   cleaned_doc_tokens : str
    The cleaned and tokenized text
   Example
   text = "Hailey Naugle was quite the important contributor to this Supreme Court analysis. - Brandon Owens"
   clean_text = tokenizer(text)
    "hailey naugle important contributor supreme court analysis brandon owens"
   text_tokens = []
   sentences = nltk.sent_tokenize(text)
    for sentence in sentences:
       sent_tokens = nltk.word_tokenize(sentence)
       sent_tokens = [lemmatizer.lemmatize(word.lower()) for word in sent_tokens
                   if (word.lower() not in stop_words) and (word not in string.punctuation) and (len(word) > 1) and not(word.isdigit())]
       text_tokens += sent_tokens
   cleaned_doc_tokens = ' '.join(text_tokens)
    return cleaned_doc_tokens
```

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
count_vectorizer = CountVectorizer()
```

```
counts_vectorized = count_vectorizer.fit_transform(cases["cleaned_facts"])
counts_array = counts_vectorized.toarray()
counts_df = pd.DataFrame(counts_array, columns = count_vectorizer.vocabulary_.keys())
```

Ex:

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
You heard about the bird	1	1	1	0	1	0	1
The bird is the word	0	1	0	1	2	1	0

Features

Non-NLP:

NLP:

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF
Term x within document y

tf_{x,y} = frequency of x in y df_x = number of documents containing x N = total number of documents

Cases By Term

```
ax = cases.feat_term.hist(color = 'pink', grid = False)
ax.set_title('Histogram of Cases by Term')
ax.set_xlabel('Term')
ax.set_ylabel('count')
```

Text(0, 0.5, 'count')


```
winner_counts = cases.first_party_winner.value_counts()

plt.figure()
plt.bar(winner_counts.index, winner_counts, color = ['skyblue', 'purple'])
plt.title('Count Plot of First party winner')
plt.xlabel('First party winner')
plt.ylabel('Count')
plt.xticks( [0,1], [False, True])
```

Count Plot of First party winner


```
issue_counts = cases2.issue_area.value_counts()
issue_true = cases2[cases2.first_party_winner == True].issue_area.value_counts()
issue_false = cases2[cases2.first_party_winner == False].issue_area.value_counts()

bar_width = 0.35
bar_p1 = np.arange(len(issue_counts.index))
bar_p2 = bar_p1 + bar_width

plt.bar(bar_p1, issue_true, width=bar_width, label='First Party Won', color='skyblue')
plt.bar(bar_p2, issue_false, width=bar_width, label='First Party Lost', color='purple')
plt.xlabel('Issue Area')
plt.ylabel('Count')
plt.xticks(bar_p1 + bar_width/2, issue_counts.index.tolist(), rotation = 90)
plt.title('Bar Graph of count of Issue Areas by Outcome')
plt.legend()
plt.show()
```



```
ideology_counts = cases.ratio_conservative_to_liberal.value_counts()
ideology_true = cases[cases.first_party_winner == True].ratio_conservative_to_liberal.value_counts()
ideology false = cases[cases.first party winner == False].ratio conservative to liberal.value counts()
bar width = 0.4
bar_p1 = np.arange(len(ideology_counts.index))
bar p2 = bar p1 + bar width
loc = bar_p1 + bar_width/2
rounded_ideology_ratios = [round(x,2) for x in ideology_counts.index.tolist()]
plt.bar(bar pl, ideology true, width=bar width, label='First Party Won', color='skyblue')
plt.bar(bar p2, ideology false, width=bar width, label='First Party Lost', color='purple')
plt.xlabel('Ratio of Conservative to Liberal Judge Ideologies')
plt.ylabel('Count')
plt.xticks(loc, rounded_ideology_ratios, rotation = 90)
plt.title('Bar Graph of count of Ratio of Conservative to Liberal Judge Ideologies by Outcome')
plt.legend()
plt.show()
```

Bar Graph of count of Ratio of Conservative to Liberal Judge Ideologies by Outcome


```
sums = counts_df.sum()
sums.sort_values(ascending=False, inplace=True)

fig, ax = plt.subplots()
ax.bar(sums.index[sums > 700], sums[sums > 700], color="pink")
ax.xaxis.set_tick_params(rotation=90, labelsize = 8)
```


Baseline

What do these disposition terms mean exactly?

- Reversed/Remanded: The Supreme Court disagrees with the decision of the lower court and sent it back for further consideration.
- Affirmed: The Supreme Court agrees and upholds the lower court's decision.
- Vacated/Remanded: The Supreme Court nullified the decision of the lower court and sent it back for further consideration.
- Reversed-in-Part: The Supreme Court partially disagreed with the decision of the lower court but did not send the case back for further consideration.
- Vacated: The Supreme Court nullified the decision of the lower court without sending it back for further consideration.
- Vacated-in-Part/Remanded: The Supreme Court nullified part of the decision of the lower court and sent it back for further consideration.

Comparison of all the models

	No-NLP	Only	NLP	Features + NLP			
	NO-NLF	Counts	TFIDF	Counts	TFIDF		
Logistic Regression	0.667	0.578	0.667	0.657	0.638		
Decision Tree	0.594	0.573	0.554	0.658	0.655		
Random Forest	0.595	0.668	0.657				
KNN	0.606	0.635	0.560				
XGB				0.657	0.657		
	Baseline: 0.						

