CSC209H Worksheet: Function Calls and Pointers

1. Trace the memory usage for the program below up to the point when lie returns. We have set up both stack frames for you.

```
Section
                                                                   Address
                                                                                 Value
                                                                                               Label
                                                     stack frame
                                                                    0x23c
                                                                                               age
                                                     for lie
                                                                    0x240
#include <stdio.h>
                                                                    0x244
void lie(int age) {
    printf("You are %d years old\n", age);
                                                                    0x248
    age += 1;
    printf("You are %d years old\n", age);
                                                                    0x24c
}
                                                     stack frame
                                                                    0x250
                                                                                               age
int main() {
                                                     for main
    int age = 18;
                                                                    0x254
    lie(age);
    printf("But your age is still %d\n", age);
                                                                    0x258
    return 0;
}
                                                                    0x25c
                                                                    0x260
                                                                    0x264
```

2. In the space below, modify the above program so that lie takes in a pointer so that the change it makes persists after it returns. Trace through your new program (you'll need to write sections and labels yourself).

Section	Address	Value	Label
	0x23c		
	0x240		
	0x244		
	0x248		
	0x24c		_
	0x250		_
	0x254		
	0x258		
	0x25c		
	0x260		
	0x264		

CSC209H Worksheet: Function Calls and Pointers

- 3. In the space below, write a small program that allocates an array of integers in the main function and passes that array to a function call **change**. (You'll also need to pass in the length of the array **why**?) The function should do two things:
 - Add 10 to each element of the array.
 - Return the average of the new contents of the array.

Check your understanding carefully by tracing the execution of the function on the given memory model diagram.

Section	Address	Value	Label
	0x23c		
	0x240		
	0x244		
	0x248		
	0x24c		
	0x250		
	0x254		
	0x258		
	0x25c		
	0x260		_
	0x264		_
	0x268		_
	0x26c		_