(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 27.08.1997 Bulletin 1997/35
- (21) Application number: 97301066.3
- (22) Date of filing: 19.02.1997

- (51) Int Oi.6: C12N 15/52, C12N 9/00, C12N 15/63, C12P 19/62, C12P 17/08
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
 PT SE

 Designated Extension States:
 RO
- (30) Priority: 22.02.1996 US 12050
- (71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)
- (72) Inventors:
 - Burgett, Stanley Gene Indianapolis, Indiana 46227 (US)

- Kuhstoss, Stuart Allen Indianapolis, Indiana 46256 (US)
- Rao, Ramachandra Nagaraja Indianapolis, Indiana 46260 (US)
- Richardson, Mark Alan
 Bloomington, Indiana 46408 (US)
- Rosteck, Paul Robert, Jr.
 Indianapolis, Indiana 46237 (US)
- (74) Representative: Tapping, Kenneth George et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)
- (54) Platenolide synthase gene
- (57) A DNA molecule isolated from Streptomyces

ambofaciens encodes the multi-functional proteins which direct the synthesis of the polyketide platenolide.

Description

5

10

25

45

The present invention is directed to the DNA isolated from *Streptomyces ambofaciens* responsible for encoding the multi-functional proteins which direct the synthesis of the polyketide platenolide. The present invention also is directed to use of that DNA to produce compounds exhibiting antibiotic activity based on the platenolide structure, including specifically spiramycin and spiramycin analogues and derivatives.

Spiramycin is a macrolide antibiotic useful in both veterinary and human medicine produced by *Streptomyces ambofaciens* (ATCC 15154). Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. Spiramycin's antibiotic activity is believed to be due to its inhibition of protein synthesis by a mechanism that involves binding of the antibiotic to a ribosome. Spiramycin is structurally similar to another antibiotic, tylosin, and the biosynthetic pathways of both are known to be similar.

The biosynthesis of tylosin has been thoroughly investigated (Baltz et al., Antimicrobial Agents and Chemotherapy, 20(2):214-225(1981); Beckmann et al., Genetics and Molecular Biology of Industrial Microorganisms, (1989):176-186). Polyketides are synthesized via a common mechanistic scheme thought to be related to fatty acid synthesis. The cyclic lactone framework is prepared by a series of condensations involving small carboxylic acid residues. Modifications of the structure, such as ketoreduction, dehydration and enolylreduction, also occur during the processing. The synthesis is driven by a set of large multi-functional polypeptides, referred to as polyketide synthases.

PCT Publication WO 93/13663 describes the organization of the gene encoding the polyketide synthase of Saccharapolyspora ezythraea. The gene is organized in modules, with each module effecting one condensation step. The precise sequence of chain growth and the processing of the growing chain is determined by the genetic information in each module. This PCT application describes an approach for synthesizing novel polyketide structures by manipulating in several ways the DNA governing the biosynthesis of the cyclic lactone framework. In order to adapt this methodology to other polyketides, however, the DNA molecules directing the biosynthetic processing must first be isolated.

The present invention is directed to the DNA sequence for the gene cluster responsible for encoding platenolide synthase, the building machinery of platenolide which is the basic building block of spiramycin. As a result, the present invention provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide, arising from modifications of this DNA sequence designed to change the number and type of carboxylic acids incorporated into the growing polyketide chain and to change the kind of post-condensation processing that is conducted.

The present invention provides a DNA molecule comprising an isolated DNA sequence that encodes a platenolide synthase domain. Thus, the present invention provides the DNA molecule of SEQ ID NO:1 and DNA molecules that contain submodules thereof. The present invention also provides the products encoded by said DNA molecules, recombinant DNA expression vectors, and transformed microbial host cells. The present invention is further directed to a method of screening for new antibiotics based on the platenolide structure.

Figure 1 shows the map of the srmG region of the *S. ambofaciens* DNA. Distances in kb are shown relative to the beginning of srmG. Open reading frames (ORF) are indicated by block arrows. The srmG DNA (0-42 kb) is the platenolide PKS region. The indicia Ap, G, E, K, P, and X denote restriction sites Apal, Bglll, EcoRl, Kpnl, Pstl and Xhol, respectively. Predicted domains for the srmG DNA are labeled as shown. ACP stands for acyl carrier protein; AT stands for acyltransferase; DH stands for dehydratase; ER stands for enoylreductase; KR stands for ketoreductase; KS stands for ketosynthase; and KS' stands for a ketosynthase-like domain in which a glutamine residue is present in the position occupied by an active site cysteine in a normal ketosynthase. KR' is a domain that resembles a ketoreductase but which is predicted to be inactive.

Figure 2 demonstrates the biosynthetic pathway for platenolide synthesis. A denotes malonyl-CoA; B denotes ethylmalonyl-CoA; P denotes methylmalonyl-CoA; C2 denotes a CoA derivative related to malonyl-CoA but of unknown structure.

Figure 3 shows the map of two clones that span the whole region of the srmG DNA.

The term polyketide defines a class of molecules produced through the successive condensation of small carboxylic acids. This diverse group includes plant flavonoids, fungal aflatoxins, and hundreds of compounds of different structures that exhibit antibacterial, antifungal, antitumor, and anthelmintic properties. Some polyketides produced by fungi and bacteria are associated with sporulation or other developmental pathways; others do not yet have an ascribed function. Some polyketides have more than one pharmacological effect. The diversity of polyketide structures reflects the wide variety of their biological properties. Many cyclized polyketides undergo glycosidation at one or more sites, and virtually all are modified during their synthesis through hydroxylation, reduction, epoxidation, etc.

A common feature of compounds in this class is that their synthesis is directed by a complex of multi-functional peptides, termed a "polyketide synthase". Molecular genetic analysis of polyketide synthase genes has revealed two distinct classes of enzymes operating for different polyketides: (a) the aromatics, which are made through an essentially iterative process; (b) the complex polyketides, which comprise several repeats of the same activities arranged in few, very large polypeptides. A common feature among complex polyketide synthase genes is that they are generally arranged in several open reading frames (ORFs), each of which contains one or more repeated units, designated mod-

ules. Each module processes one condensation step and typically requires several activities accomplished by several enzymes including acyl carrier protein (ACP), β-ketosynthase (KS), and acyltransferase (AT).

Therefore a "module" is defined as the genetic element encoding a multi-functional protein segment that is responsible for all of the distinct activities required in a single round of synthesis, i.e., one condensation step and all the β-carbonyl processing steps associated therewith. Each module encodes an ACP, a KS, and an AT activity to accomplish the condensation portion of the synthesis, and selected post-condensation activities to effect β-carbonyl processing. Each module is therefore, further characterized by the inclusion of submodules that are responsible for encoding the distinct activities of a complex polyketide synthase. A "submodule" thus is defined as the portion of the polyketide synthase DNA sequence that encodes a distinct activity, or "domain". A distinct activity or domain is commonly understood to mean that part of the polyketide synthase polyprotein necessary for a given distinct activity.

The protein segments corresponding to each module are called synthase units (SUs). Each SU is responsible for one of the fatty acid-like cycles required for completing the polyketide; it carries the elements required for the condensation process, for selecting the particular extender unit (a coenzyme A thioester of a dicarboxylate) to be incorporated, and for the extent of processing that the β -carbon will undergo. After completion of the cycle, the nascent polyketide is transferred from the ACP it occupies to the KS of the next SU utilized, where the appropriate extender unit and processing level are introduced. This process is repeated, employing a new SU for each elongation cycle, until the programmed length has been reached. As in synthesis of long chain fatty acids, the number of elongation cycles determines the length of the molecule. However, whereas fatty acid synthesis involves a single SU used iteratively, formation of complex polyketides requires participation of a different SU for each cycle, thereby ensuring that the correct molecular structure is produced. The composition of the polyketide synthase gene modules are variable. Some carry the full complement of β -ketoreductase(KR), dehydratase(DH), and enoylreductase(ER) domains, and some encode a particular domain only or lack a functional domain, although much of the sequence is preserved.

20

25

30

40

This variable composition of the modules, which correlate with the asymmetry in the synthesis of the polyketide precursor, enable a specific step to be assigned to each module. Since each enzymatic activity is involved in a single biochemical step in the pathway, loss of any one activity should affect only a single step in the synthesis. Knowledge of the correlation between the structure of the polyketide and the organization of the polyketide synthase genes enables one to produce altered genes selectively which produce a polyketide derivative with predicted structure.

Because the degree of processing appears to depend on the presence of functional domains in a particular SU, inactivation of a KR, DH, or ER will result in a polyketide less processed at a single site, but only if the altered chain thus produced can be utilized as a substrate for the subsequent synthesis steps. Thus, the inactivation of one of these domains should result in the formation of a polyketide retaining a ketone, hydroxyl, or site of unsaturation at the corresponding position. This rationale has led to the successful production of altered erythromycin derivatives from strains in which a KR or an ER domain had been inactivated.

Thus, one can engineer polyketide pathways by genetic intervention of the polyketide synthase and by adding or eliminating modification steps. Many of the enzymes involved in postpolyketide modifications do not seem to have absolute specificity for a particular structure. In addition one can also select the desired components from a library of polyketide and postpolyketide biosynthesis genes and combine them to produce novel structures.

The present invention provides, in particular, the DNA sequence encoding the polyketide synthase responsible for biosynthesis of platenolide, i.e., platenolide synthase. Platenolide itself is the foundation for spiramycin-related polyketides. The platenolide synthase DNA sequence, which defines the platenolide synthase gene cluster, directs biosynthesis of the platenolide polyketide by encoding the various distinct activities of platenolide synthase.

The gene cluster for platenolide synthase, like other polyketide biosynthetic genes whose organization has been elucidated, is characterized by the presence of several ORFs, each of which contains one or more repeated units termed modules as defined above. Each module also further includes submodules as defined above. Organization of the platenolide synthase gene cluster derived from *Streptomyces ambofaciens* is shown in Figure 1. The accompanying synthetic pathway and the specific carboxylic acid substrates that are used for each condensation reaction and the post-condensation activities of platenolide synthesis are indicated in Figure 2.

A preferred DNA molecule comprising the platenolide synthase gene cluster isolated from *Streptomyces ambofaciens* is represented by SEQ ID NO: 1. Other preferred DNA molecules of the present invention include the various ORFs of SEQ ID NO: 1 that encode individual multi-functional polypeptides. These are represented by ORF1, 350 to 14002, ORF2, 14046 to 20036, ORF3, 20110 to 31284, ORF4, 31329 to 36071, and ORF5, 36155 to 41830 all in SEQ ID NO: 1. The predicted amino acid sequences of the various peptides encoded by these sequences are shown in SEQ ID NO: 2, 3, 4, 5, and 6.

Yet other preferred DNA molecules of the present invention include the modules that encode all the activities necessary for a single round of synthesis. These are represented by starter module 392 to 3424, module 1, 3527 to 8197, module 2, 8270 to 13720, module 3, 14148 to 19730, module 4, 20215 to 24678, module 5, 24742 to 31002, module 6, 31428 to 35837, and module 7, 36257 to 41395 all in SEQ ID NO: 1. The predicted amino acid sequences of the various synthase units encoded by these modules are represented by starter SU 15 to 1025, SU1, 1060 to 2616,

and SU2, 2641 to 4457 in SEQ ID NO: 2; SU3, 35 to 1895 in SEQ ID NO: 3; SU4, 36 to 1523, and SU5, 1545 to 3631 in SEQ ID NO: 4; SU6, 34 to 1503 in SEQ ID NO: 5; SU7, 35 to 1747 all in SEQ ID NO: 6.

Still other preferred DNA molecules include the various submodules that encode the various domains of platenolide synthase. These submodules are represented by KS'(s), 392 to 1603, AT(s), 1922 to 2995, and ACP(s), 3173 to 3424 of starter module in SEQ ID NO:1; KS1, 3527 to 4798, AT1, 5135 to 6208, KR1, 7043 to 7597, and ACP1, 7946 to 8197 of module 1 in SEQ IN NO: 1; KS2, 8270 to 9541, AT2, 9899 to 10909, DH2, 10985 to 11530, KR2, 12596 to 13153, and ACP2, 13469 to 13720 of module 2 in SEQ ID NO: 1; KS3, 14148 to 15422, AT3, 15789 to 16844, DH3, 16914 to 17510, KR3, 18612 to 19166, and ACP3, 19479 to 19730 of module 3 in SEQ ID NO: 1; KS4, 20215 to 21486, AT4, 21889 to 22872, KR'4, 23638 to 24159, and ACP4, 24484 to 24678 of module 4 in SEQ ID NO: 1; KS5, 24742 to 26016, AT5, 26371 to 27381, DH5, 27442 to 27966, ER5, 28843 to 29892, KR5, 29905 to 30462, and ACP5, 30760 to 31002 of module 5 in SEQ ID NP: 1; KS6, 31428 to 32696, AT6, 33024 to 34022, KR6, 34770 to 35327, and ACP6, 35586 to 35837 of module 6 in SEQ ID NO: 1; KS7, 36257 to 37528, AT7, 37898 to 38905, KR7, 39851 to 40408, ACP7, 40658 to 40909, and TE, 41297 to 41395 of module 7 in SEQ ID NO: 1. The predicted amino acid sequences of the various domains encoded by these submodules are represented by KS'(s), 15 to 418, AT(s), 525 to 882, and ACP(s), 942 to 1025 of starter SU in SEQ ID NO:2; KS1, 1060 to 1483, AT1, 1596 to 1953, KR1, 2232 to 2416, and ACP1, 2533 to 2616 of SU1 in SEQ IN NO: 2; KS2, 2641 to 3064, AT2, 3184 to 3520, DH2, 3546 to 3727, KR2, 4083 to 4268, and ACP2, 4374 to 4457 of SU2 in SEQ ID NO: 2; KS3, 35 to 459, AT3, 582 to 933, DH3, 957 to 1155, KR3, 1523 to 1707, and ACP3, 1812 to 1895 of SU3 in SEQ ID NO: 3; KS4, 36 to 459, AT4, 594 to 921, KS⁰4, 1177 to 1350, and ACP4, 1459 to 1523 of SU4 in SEQ ID NO: 4; KS5, 1545 to 1969, AT5, 2088 to 2424, DH5, 2445 to 2619, ER5, 2912 to 3261, KR5, 3266 to 3451, and ACP5, 3551 to 3631 of SU5 in SEQ ID NO: 4; KS6, 34 to 456, AT6, 566 to 898, KR6, 1148 to 1333, and ACP6, 1420 to 1503 of SU6 in SEQ ID NO: 5, KS7, 35 to 458, AT7, 582 to 917, KR7, 1233 to 1418, ACP7, 1502 to 1585, and TE, 1715 to 1747 of SU7 in SEQ ID NO: 6.

Although not wishing to be bound to any particular technical explanation, a sequence similarity exists among domain boundaries in various polyketide synthase genes. Thus, one skilled in the art is able to predict the domain boundaries of newly discovered polyketide synthase genes based on the sequence information of known polyketide synthase genes. In particular, the boundaries of submodules, domains, and open reading frames in the instant application are predicted based on sequence information disclosed in this application and the locations of the domain boundaries of the erythromycin polyketide synthase (Donadio et al., *GENE*, 111 51-60 (1992)). Furthermore, the genetic organization of the platenolide synthase gene cluster appears to correspond to the order of the reactions required to complete synthesis of platenolide. This means that the polyketide synthase DNA sequence can be manipulated to generate predictable alterations in the final platenolide product.

30

35

45

The DNA sequence of the platenolide synthase gene can be determined from recombinant DNA clones prepared from the DNA of *Streptomyces ambofaciens*, in particular strain ATCC 15154. The platenolide synthase gene is contained in recombinant DNA vectors pKC1080 and pKC1306 (Figure 1), which are available from the National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604-3999, in *E. coli* DH10B under accession numbers B-21500 for pKC1080 (deposited Sep 21, 1995) and B-21499 for pKC1306 (deposited Sep 21, 1995) respectively.

Techniques of isolating bacterial DNA are readily available and well known in the art. Any such techniques can be employed in this invention. In particular DNA from these deposited cultures can be isolated as follows. Lyophils of *E. coli* DH10B/pKC1080 or *E. coli* DH10B/pKC1306 are plated onto L-agar (10 g tryptone, 10 g NaCl, 5 g yeast extract, and 15 g agar per liter) plates containing 100 µg/ml apramycin to obtain a single colony isolate of the strain. This colony is used to inoculate about 500 ml of L-broth (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter) containing 100 µg/ml apramycin, and the resulting culture is incubated at 37°C with aeration until the cells reach stationary phase. Cosmid DNA can be obtained from the cells in accordance with procedures known in the art (see e.g., Rao et al., 1987 in Methods in Enzymology, 153:166).

DNA of the current invention can be sequenced using any known techniques in the art such as the dideoxynucle-otide chain-termination method (Sanger, et al., Proc. Natl. Acad. Sci. 74:5463 (1977)) with either radioisotopic or fluorescent labels. Double-stranded, supercoiled DNA can be used directly for templates in sequence reactions with sequence-specific oligonucleotide primers. Alternatively, fragments can be used to prepare libraries of either random, overlapping sequences in the bacteriophage M13 or nested, overlapping deletions in a plasmid vector. Individual recombinant DNA subclones are then sequenced with vector-specific oligonucleotide primers. Radioactive reaction products are electrophoresed on denaturing polyacrylamide gels and analyzed by autoradiography. Fluorescently labeled reaction products are electrophoresed and analyzed on Applied Biosystems (ABI Division, Perkin Elmer, Foster City, CA 94404) model 370A and 373A or Dupont (Wilmington, DE) Genesis DNA sequencers. Sequence data are assembled and edited using Genetic Center Group (GCG, Madison, WI) programs GelAssemble and Seqed or the ABI model 670 Inherit Sequence Analysis system and the AutoAssembler and SeqEd programs.

Polypeptides corresponding to a domain, a submodule, a module, a synthesis unit (SU), or an open reading frame can be produced by transforming a host cell such as bacteria, yeast, or eukaryotic cell-expression system with the

cDNA sequence in a recombinant DNA vector. It is well within one skilled in the art to choose among host cells and numerous recombinant DNA expression vectors to practice the instant invention. Multifunctional polypeptides of polyketide platenolide synthase can be extracted from platenolide-producing bacteria such as *Streptomyces ambofaciens* or translated in a cell-free in vitro translation system. In addition, the techniques of synthetic chemistry can be employed to synthesize some of the polypeptides mentioned above.

Procedures and techniques for isolation and purification of proteins produced in recombinant host cells are known in the art. See, for example, Roberts et al., Eur. J. Biochem. 214, 305-311, (1993) and Caffrey et al., FEBS 304, 225-228 (1992) for detailed description of polyketide synthase purification in bacteria. To achieve a homogeneous preparation of a polypeptide, proteins in the crude cell extract can be separated by size and/or charge through different columns well known in the art once or several times. In particular the crude cell extract can be applied to various cellulose columns commercially available such as DEAE-cellulose columns. Subsequently the bound proteins can be eluted and the fractions can be tested for the presence of the polyketide platenolide synthase or engineered derivative protein. Techniques for detecting the target protein are readily available in the art. Any such techniques can be employed for this invention. In particular the fractions can be analysized on Western blot using antibodies raised against a portion or portions of such polyketide platenolide synthase proteins. The fractions containing the polyketide platenolide synthase protein can be pooled and further purified by passing through more columns well known in the art such as applying the pooled fractions to a gel filtration column. When visualized on SDS-PAGE gels homogeneous preparations contain a single band and are substantially free of other proteins.

Knowledge of the platenolide synthase DNA sequence, its genetic organization, and the activities associated with particular open reading frames, modules, and submodules of the gene enables production of novel polyketides having a predicted structure that are not otherwise available. Modifications may be made to the DNA sequence that either alter the initial carboxylic acid building block used or alter the building block added at any of the condensation steps. The platenolide synthase gene may also be modified to alter the actual number of condensation steps done, thereby changing the size of the carbon backbone. Submodules that are part of the present invention may be selectively inactivated thereby giving rise to predictable, novel polyketide structures. Modifications to portions of the DNA sequence that encode the post-condensation processing activities will alter the functional groups appearing at the various condensation sites on the carbon chain backbone.

One skilled in the art is fully familiar with the degeneracy of the genetic code. Consequently, the skilled artisan can modify the specific DNA sequences provided by this disclosure to provide proteins having the same or improved characteristics compared to those polypeptides specifically provided herein. Also, one skilled in the art can modify the DNA sequences to express an identical protein to those provided, albeit expressed at higher levels. Furthermore, one skilled in the art is familiar with means to prepare synthetically, either partially, or in whole, DNA sequences which would be useful in preparing recombinant DNA vectors or coding sequences which are encompassed by the current invention. Additionally, recombinant means for modifying the DNA sequences provided may include for example site-directed deletion or site-directed mutagenesis. These techniques are well known to those skilled in the art and require no further elaboration here. Consequently, as used herein, DNA which is isolated from natural sources, prepared synthetically or semi-synthetically, or which are modified by recombinant DNA methods, are within the scope of the present invention.

Likewise, those skilled in the art will recognize that the polypeptides of the invention may be expressed recombinantly. Alternatively, these polypeptides may be synthesized as well, either in whole or in part, by conventional known non-recombinant techniques; for example, solid-phase synthesis. Thus, the present invention should not be construed as necessarily limited to any specific vector constructions or means for production of the specific polyketide synthase molecules exemplified. These alternate means for preparing the present polypeptides are meant to be encompassed by the present invention.

Many cyclized polyketides undergo glycosidation at one or more sites. Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. The process of converting platenolide to spiramycin is well known in the art. The present invention also provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide. The principles have already been described above. In addition, any product resulting from post-transcriptional or post-translational modification in vivo or in vitro based on the DNA sequence information disclosed here are meant to be encompassed by the present invention.

The following example is provided for exemplification purposes only and is not intended to limit the scope of the invention which has been described in broad terms above.

Example 1:

5

20

40

50

Specific experimental details and results from the sequencing of platenolide synthase.

The DNA sequence of the S. ambofaciens platenolide synthase (srmG) gene can be obtained by sequencing inserts of recombinant DNA subclones containing contiguous or overlapping DNA segments of the region indicated in

Figure 3. All sequences representing srmG are fully contained in the overlapping cosmid clones pKC1080 and pKC1306 (Figure 3). The sequence can be obtained by subcloning and sequencing the fragments bounded by Nrul sites at position 1, 0.3 kb, 8.2 kb, 14.1 kb, 20.2 kb, 29.5 kb, 31.4 kb, 41.1 kb and 42.0 kb. In order to obtain the srmG region on a single fragment, the 25.0 kb fragment bounded by the Nrul site at position 1 and the Sful site at 25.0 kb should be isolated from a partial digestion of pKC1080 with restriction enzymes Nrul and Sful. The 17.8 kb DNA fragment bounded by the Sful sites at 25.0 kb and 42.8 kb should be isolated from a digestion of pKC1306 with the restriction enzyme Sful. The resulting fragments should be ligated and cloned in an appropriate recombinant DNA vector. Clones containing the correct orientation of the two ligated fragments can be identified by restriction enzyme site mapping.

The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: ELI LILLY AND COMPANY (B) STREET: Lilly Corporate Center (C) CITY: Indianapolis (D) STATE: Indiana (E) COUNTRY: United States of America (F) ZIP: 46285
	(ii) TITLE OF INVENTION: PLATENOLIDE SYNTHASE GENE
15	(iii) NUMBER OF SEQUENCES: 6
20	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: K. G. Tapping (B) STREET: Erl Wood Manor (C) CITY: Windlesham (D) STATE: Surrey (E) COUNTRY: United Kingdom (F) ZIP: GU20 6PH
25	(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Macintosh (C) OPERATING SYSTEM: Macintosh 7.0 (D) SOFTWARE: Microsoft Word 5.1
30	
35	
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: DNA (genomic)
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 35014002
55	(ix) FEATURE: (A) NAME/KEY: CDS

(B) LOCATION: 14046..20036

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 20110..31284

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 31329..36071

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 36155..41830

15

20

25

30

35

40

45

50

55

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GACCGCTCGG	GGAGACCTGA	CATATTCGTC	GCGAAGTGGT	TCTCCGCGCC	GCGAGGTACT	60
GAAATCTTCT	CCGCTCGCCC	AGGACTCCGC	GTGCAGGTCA	CCGGAGTGCG	CGACCGGCCG	120
GGACGTCGGA	GCGCCGACCC	TGCGGACCTG	GTGCGATGCC	GTGTGGTCCC	GCATGATCCC	180
GCGCCGTCTC	CGGTGACGAG	AATCGGTGGA	CAATCTCCGA	ACTTGACACA	ATTGATTGTC	240
GTTCACCGGC	CGTTCCTGTC	GCCCGGCAGT	TCCCCCCCTG	TACGCTCGGG	AAGATCAAGA	300
AAAGGCAGAA	AAGCCACGGC	GTGGTACGGC	GAACATATGA	GGGATGCAGG	TGTCTGGAGA	360
ACTCGCGATT	TCCCGCAGTG	ACGACCGGTC	CGACGCCGTT	GCCGTGGTCG	GAATGGCGTG	420
CCGGTTTCCC	GGCGCCCCGG	GAATTGCCGA	ATTCTGGAAA	CTGCTGACCG	ACGGAAGGGA	480
CGCGATCGGC	CGGGACGCCG	ACGGCCGCCG	GCGCGGCATG	ATCGAGGCGC	CCGGCGACTT	540
CGACGCCGCC	TTCTTCGGCA	TGTCACCCCG	CGAGGCCGCC	GAGACCGACC	CCCAGCAGCG	600
CCTGATGCTC	GAACTCGGCT	GGGAGGCTCT	GGAGGACGCC	GGCATCGTCC	CCCCCTCCCT	660
GCGCGGCGAG	GCGGTCGGCG	TCTTCGTCGG	GCCATGCAC	GACGACTACG	CCACCCTGCT	720
CCACCGCGCC	GCCCCCCCCG	TCGGCCCCCA	CACCGCCACC	GCCTCCAGC	GCCCATGCT	780
CGCCAACCGG	CTCTCCTACG	TCCTGGGGAC	cccccccc	AGCCTCGCGG	TCGACACCGC	840
CCAGTCGTCC	TCCCTGGTCG	CCCTGGCCCT	CGCCGTCGAG	AGCCTGCGGG	CCGGCACCTC	900
CCGCGTCGCC	GTCGCCCGGG	GCGTCAACCT	CCTCCTCCCC	GACGAGGGAA	CGCCGCCAT	960
GGAACGCCTC	GCCCCCCTCT	CACCCGACGG	CCGCTGCCAC	ACCTTCGACG	CCCGTGCCAA	1020
CGGCTATGTC	CGCGGTGAGG	GCGCCCCCC	CGTCGTCCTG	AAGCCCCTCG	CCGACGCCCT	1080
GGCCGACGGG	GACCCCCTCT	ACTGCGTGGT	GCGTGGCGTC	GCCGTCGGCA	ACGACGGCGG	1140
CGGCCCCGGG	CTGACCGCTC	CCGACCGCGA	GGGACAGGAG	GCGGTGCTCC	CCCCCCCTG	1200
CGCCCAGGCC	CGGGTCGACC	CCGCCGAGGT	GCGTTTCGTC	GAACTGCACG	GCACGGGAAC	1260

	CCCGGTGGGC	GACCCGGTCG	AGGCACACGC	CCTCGGCGCG	GTGCACGGCT	CCCGTCGCCC	1320
	GGCCGACGAC	CCCCTGCTGG	TGGGGTCGGT	GAAGACCAAC	ATCGGCCACC	TGGAGGGCGC	1380
5	CGCCGGCATC	GCGGGCCTGG	TCAAGGCCGC	ACTGTGCCTG	CGGGAACGCA	CCCTTCCCGG	1440
	CTCGCTGAAC	TTCGCCACCC	CCTCTCCGGC	CATCCCGCTG	GACCAGCTCC	GGCTGAAGGT	1500
10	GCAGACCGCT	GCCGCCGAGC	TGCCGCTCGC	cccaaccaac	GCACCCCTGC	TGGCGGGTGT	1560
	CAGTTCGTTC	GGCATCGGTG	GCACCAACTG	CCATGTGGTC	CTGGAACACC	TCCCCTCCCG	1620
	GCCCACCCCG	GCCGTCTCCG	TCGCCGCCTC	GCTTCCGGAC	GTCCCGCCGC	TCTTCTTCTC	1680
15	CCCCCCCTCC	GAGGGGGCGT	TGCGGGCGCA	GCCGGTGCGG	TTGGGTGAGT	ACGTGGAGCG	1740
	CCTCCCCCC	GATCCGCGGG	ATGTGGCTTA	TTCGCTGGCT	TCGACGCGGA	CTCTTTTCGA	1800
	GCACCGTGCG	CTCCTCCCCT	GTGGTGGGCG	TGGGGAGCTC	GTCGCTGCTC	TTGGTGGGTT	1860
20	TGCTGCCGGG	AGGGTGTCTG	GGGTGTGCG	GTCCGGGCGG	GCTGTGCCGG	GTGGGGTGGG	1920
	GGTGTTGTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	GGGCGTGGGT	TGTATGCGGG	1980
25	CCCTCCCCTC	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	ATGGTGGGG	AGGTGGATGG	2040
	TCGGTCGTTG	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	CCGGGGCTGA	2100
	TGCGGGTGCC	GCTGCGGGTG	CTGGGGTCGG	TTCTGGTTCC	GCTTCTCTGG	GTGGGTTGTT	2160
30	GGGTCGGACG	GAGTTTGCTC	AGCCTGCGTT	GTTTGCGTTG	GAGGTGGCGT	TGTTCCGGGC	2220
ı	GTTGGAGGCT	CCCCCTCTCC	AGGTGTCGGT	CCTCTTCCCT	CATTCGGTGG	GGGAGGTGGC	2280
	TGCTGCGTAT	GTGGCGGGG	TGTTGTCGTT	GGGTGATGCG	GTGCGGTTGG	TGGTGGCGCG	2340
35	GGGTGGGTTG	ATGGGTGGGT	TGCCGGTGGG	TGGGGGGATG	TGGTCGGTGG	GGGCGTCGGA	2400
	CTCCCTCCTC	CGGGGGGTTG	TTGAGGGGTT	GGCGGAGTCG	GTGTCGGTTG	CGGCGGTGAA	2460
40	TGGGCCGCGG	TCGGTGGTGT	TGTCGGGTGA	TGTGGGTGTG	CTGGAGTCGG	TGGTTGCCTC	2520
	GCTGATGGGG	GATGGGGTGG	AGTGCCGGCG	GTTGGATGTG	TCGCATGGGT	TTCATTCGGT	2580
	GTTGATGGAG	CCGGTGTTGG	GGGAGTTCCG	GGGGGTTGTG	GAGTCGTTGG	AGTTCGGTCG	2640
45	GCTGCGGCCG	GCTCTCCTCC	TGGTGTCGGG	TGTGTCGGGT	GGGGTGGTGG	CTTCGGGGGA	2700
	CTTCCCCCAT	CCCCCCTATT	GGGTGCGTCA	TGCGCGGGAG	GCGGTGCGTT	TCGCGGATGG	2760
	GCTGGGGGTG	GTGCGTCGTC	TGGGTGTGGG	GACGTTGGTG	GAGGTGGGTC	CGCATGGGGT	2820
50	GCTGACGGGG	ATGGCGGGTG	AGTGCCTGGG	GGCCGGTGAT	GATGTGGTGG	TGGTGCCGGC	2880
	GATGCGGCGG	GCCCTCCCG	AGCGGGAGGT	GTTCGAGGCG	GCGCTGGCGA	CGGTGTTCAC	2940
55	CCGGGACGCC	GGCCTGGACG	CCACGGCACT	CCACACCGGG	AGCACCGGCC	GGCGCATCGA	3000
	CCTCCCCACC	TACCCCTTCC	AACGCCGTAC	CCACTGGTCG	CCCGCGCTGA	GCCGGCCGGT	3060

	CACGGCCGAC	GCCGGGGGG	GTGTGACCGC	CACCGATGCC	GTGGGGCACA	CCCTCTCCCC	3120
5	GGACCCGGAG	AGCACCGAGG	GGACGTCCCA	CAGGGAC ACG	GACGACGAGG	CGGACTCGGC	3180
	GTCACCGGAG	CCGATGTCCC	CCGAGGATGC	CGTCCGCCTG	GTCCGCGAGA	GCACCGCGGC ·	3240
	CCTCCTGGGC	CACGACGATC	CCGGCGAGGT	CGCGCTCGAC	CGCACCTTCA	CCTCCCAGGG	3300
10	CATGGACTCG	GTGACCGCGG	TCGAGCTGTG	CGACCTGCTG	AAGGCCCCT	CCCCCCTCCC	3360
·	CCTCGCCGCC	ACGCTGGTCT	ACGACCTGCC	CACCCCCCCT	GCCGTCGCCG	AGCACATCGT	3420
	GGAAGCCGCG	GGCGGGCCGA	AGGACTCGGT	TGCCGGTGGG	CCCGGAGTGC	TCTCGTCGGC	3480
15	CGCGGTAGGG	GTGTCGGACG	cccccccc	CAGCCGGGAC	GACGACGACC	CGATCGCCAT	3540
	CCTCCCTCTC	GGCTGCCGGC	TCCCCGGCGG	CGTCGACTCG	CCCCCCCTC	TCTGGGAGCT	3600
20	GCTGGAGTCC	GGCGCCGACG	CCATCTCGTC	CTTCCCCACC	GACCGCGGCT	GGGACCTCGA	3660
	CGGGCTGTAC	GACCCCGAGC	CCGGGACGCC	CGGCAAGACC	TATGTGCGGG	AGGGCGGGTT	3720
	CCTGCACTCG	GCGGCCGAGT	TCGACGCGGA	CTTCTTCGGG	ATATCGCCGC	GCGAGGCCAC	3780
25	GCCATGGAC	CCGCAGCAGC	GCTTGCTGCT	GGAAGCGTCG	TGGGAGGCCC	TCGAGGACGC	3840
	CGGAGTGCTC	CCCGAGTCAC	TGCGCGGCGG	CGACGCCGGA	GTGTTCGTCG	GCGCCACCGC	3900
	ACCGGAGTAC	GGGCCGAGGC	TTCACGAGGG	AGCGGACGGA	TACGAGGGGT	ACCTGCTCAC	3960
30	CGCCACCACC	GCGAGCGTGG	CCTCCGGCCG	GATCGCCTAC	ACCCTCGGCA	CCGGCGGACC	4020
	GCCCTCACC	GTCGACACCG	CGTGCTCCTC	GTCCCTGGTG	GCGCTGCACC	TGGCCGTGCA	4080
35	GCCCTGCGC	CGGGGCGAGT	GCGGGCTGGC	TCTGGCGGGC	GCCCCACGG	TGATGTCGGG	4140
	GCCCGGCATG	TTCGTGGAGT	TCTCGCGGCA	CCCCCCCCTC	GCCCCCGACG	GCCGCTGCAT	4200
	GCCGTTCTCC	GCCGATGCCG	ACGGTACGGC	CTGGTCCGAG	GGTGTCGCCG	TACTGGCACT	4260
40	GGAGCGGCTC	TCCGACGCCC	GCCTCCGG	ACACCGGGTG	CTGGGCGTGG	TGCGGGGCAG	4320
	TGCGGTCAAC	CAGGACGGTG	CCAGCAACGG	CCTGACCGCT	CCCAACOGCT	CCGCGCAGGA	4380
	GGCGTCATC	CGAGCTGCCC	TGGCCGACGC	CCCCTCCCC	CCGGGTGACG	TGGACGCGGT	4440
45	GGAGGCGCAC	GGTACGGGGA	CGCCCTCGG	CGATCCGATC	GAGGCGAGCG	CGCTGCTGGC	4500
	CACGTACGGG	CGTGAGCGGG	TGGGCGACCC	CTTCTCCCTC	GGGTCGCTGA	AGTCCAACGT	4560
50	CGGTCACACC	CAGGCCGCCG	ccccccc	CCCTCTCCTC	AAGATGCTGC	TTGCCCTGGA	4620
	GCACGGCACG	CTGCCGCGGA	CACTTCACGC	GGACCGGCCC	AGCACGCACG	TCGACTGGTC	4680
	GTCGGGCACC	CTCCCCCTCC	TGGCAGAGGC	CCCCCCTCC	CCCCGGCGGT	CGGACCGCCC	4740
55	GCGCCGGGCG	GCTGTGTCGT	CCTTCCCGAT	CAGTGGGACG	AACGCGCATC	TGATCATCCA	4800

	GGAGGCGCCG	GAGTGGGTCG	AGGACATCGA	CGCCGTCGCT	GCTCCTGACC	GCGCTACCGC	4860
	GGACGCGGCT	GCTCCGTCGC	CGCTGTTGTT	CTCCGCGCGG	TCGGAGGGGG	CCTTGCGGGC	4920
5	GCAGGCGGTG	CCCTTCCCTC	AGTACGTGGA	GCGGGTGGGT	GCGGATCCGC	GGGATGTGGC	4980
	TTATTCGCTG	GCTTCGACGC	GGACTCTTTT	CGAGCACCGT	GCGGTGGTGC	CCTCTCCTCC	5040
10	GCGTGGGGAG	CTCGTCGCTG	CTCTTGGTGG	CTTTGCTGCC	GGGAGGGTGT	CTGGGGGTGT	5100
10	GCGGTCCGGG	CGGGCTGTGC	CGGGTGGGGT	GGGGTGTTG	TTCACGGGTC	AGGGTGCGCA	5160
	CTCCCTTCCT	ATGGGGCGTG	GGTTGTATGC	GGGGGTGGG	GTGTTTGCGG	AGGTGCTGGA	5220
15	TGAGGTGTTG	TCGATGGTGG	GGGAGGTGGA	TGGTCGGTCG	TTGCGGGATG	TGATGTTCGG	5280
	CGACGTCGAC	GTGGACGCGG	GTGCCGGGGC	TGATGCGGGT	GCCGGTGCGG	CTCCTCCCCT	5340
	CGGTTCTGGT	TCCGGTTCTG	TGGGTGGGTT	GTTGGGTCGG	ACGGAGTTTG	CTCAGCCTGC	5400
20	GCTGTTTGCG	TTGGAGGTGG	CCTTCTTCCC	GGCGTTGGAG	CCTCCCCCTC	TGGAGGTGTC	5460
	CCTCCTCTTC	GGTCATTCGG	TGGGGGAGGT	GGCTGCTGCG	TATGTGGCGG	GCCTCTTCTC	5520
25	CTTCCCTCAT	GCGGTGCGGT	TGGTGGTGGC	CCCCCCTCCC	TTGATGGGTG	GCTTGCCGGT	5580
25	CCCTCCCCC	ATGTGGTCGG	TGGGGGCGTC	GGAGTCGGTG	GTGCGGGGG	TTGTTGAGGG	5640
	CTTCCCCCAC	TGGGTGTCGG	TTGCGGCGGT	GAATGGGCCG	CCCTCCCTCC	TGTTGTCGGG	5700
30	TGATGTGGGT	GTGCTGGAGT	CCCTCCTTCC	CTCGCTGATG	GGGGATGGGG	TGGAGTGCCG	5760
	GCGGTTGGAT	GTGTCGCATG	GGTTTCATTC	GGTGTTGATG	GAGCCGGTGT	TGGGGGAGTT	5820
	CCGGGGGTT	GTGGAGTCGT	TGGAGTTCGG	TCGGGTGCGG	CCGGGTGTGG	TEGTEGTETC	5880
35	CCCTCTCTCC	CCTCCCCTCC	TOGGTTCGGG	CGACTTCCCC	GATCCGGGGT	ATTGGGTGCG	5940
	TCATGCGCGG	GAGGCGGTGC	GTTTCGCGGA	TCCCCTCCCC	GTGGTGCGTG	CTCTCCCTCT	6000
40	GGGGACGTTG	GTGGAGGTGG	GTCCGCATGG	GGTGCTGACG	GGGATGGCGG	GTGAGTGCCT	6060
70	CCCCCCCT	GATGATGTGG	TGGTGGTGCC	GCCGATGCGG	CGGGGCCGTG	CGGAGCGGGA	6120
	GGTGTTCGAG	CCCCCCTCC	CGACGGTGTT	CACCCGGGAC	GCCGGCCTCG	ACCCACCCC	6180
45	ACTCCACACC	GGGAGCACCG	GCCGCGCAT	CGACCTCCCC	ACCTACCCCT	TCCAACGCGA	6240
	CCGCTACTGG	CTGGACCCCG	TTCGCACCGC	CCTGACCGGC	GTCGAGCCCG	CCGCCTCGCC	6300
	GCCGGACGCT	CGGGCCACTG	AGCGGGGACG	GTCGACGACG	GCCGGGATCC	GCTACCGCGT	6360
50	CGCTTGGCAG	CCGGCCGTCG	TCGACCGCGG	CAACCCCGGG	CCTGCCGGTC	ATGTGCTGCT	6420
	TCTGGCCCCG	GACGAGGACA	CCCCCGACTC	CGGACTCGCC	CCCGCGATCG	CACGTGAACT	6480
55	CCCCGTGCGC	GGGGCCGAGG	TCCACACCGT	CCCCGTGCCG	GTCGGTACAG	GCCGGGAGGC	6540
	AGCCGGGGAC	CTCTTCCGGG	CCGCCGGTGA	CCCTCCCCCC	CGCAGCACCC	GACTTCTGTG	6600

	GCTCGCCCCG GCCGAGCCG	G ACGCGGCCGA	CGCCGTCGCC	CTCGTCCAGG	CCCTCCCCCA	6660
5	GGCGGTACCC GAAGCCCCGG	TCTGGATCAC	CACCCGTGAG	GCGGCGGCCG	TGCGGCCGGA ·	6720
	CGAGACCCCT TCCGTCGGG	GCGCTCAGCT	GTGGGGACTC	GGACAGGTCG	CCCCCCTCCA	6780
	ACTEGEGGG CGCTGGGGC	GCTTGGCGGA	CCTGCCCGGG	AGTGCGTCGC	CCCCCGTCCT	6840
10	CCGTACGTTC GTCGGGGCGC	TGCTCGCCGG	GGGAGAGAAC	CAGTTCGCGG	TACGGCCCTC	6900
	CGGCGTCCAT GTCCGCCGTC	TGGTTCCCGC	GCCCGTCCCC	GTCCCGGCCT	CCGCTCGCAC	6960
15	CGTCACCACG GCCCCCGCCA	CCCCCGTCGG	CGAGGACGCA	CGGAACGACA	CCTCGGACGT	7020
15	GGTCGTGCCG GACGACCGGT	GCTCCTCCGG	CACCGTACTG	ATCACCGGGG	GCACCGGTGC	70 80
	CCTGGGTGCG CAGGTCGCCC	GCAGGCTCGC	CCGGTCGGGC	GCCGCGCGTC	TGCTCCTGGT	7140
20	GGGCCGCCCC GGCGCGGCCC	GCCCCGGAGT	GGGCGAACTC	GTCGAGGAGC	TGACGGCGCT	7200
	CGGTTCCGAA GTGGCCGTCC	AGGCCTGCGA	CGTCGCCGAC	CGGGACGCAC	TGGCCGCGCT	7260
	CCTCGCGGGC CTCCCCGAGG	AGCGGCCCCT	CGTCGCCGTA	CTGCACGCGG	CAGGTGTGCT	7320
25	CGACGACGGT GTGCTCGACT	CGCTCACCTC	CGACCGGGTG	GACGCCGTAC	TGCGGGACAA	7380
	GGTCACCGCC GCCCGTCACC	TGGACGAGCT	GACCGCGGAC	CTTCCGCTCG	ACCCCTTCGT	7440
	GCTCTTCTCC TCCATCGTCG	GCCTCTCCCG	CAACGGAGGG	CAGGCCGTCT	ACGCCGCCCCC	7500
30	CAACGCCGCG CTCGACGCCC	TGGCGCAGCG	GCGCCGGGCC	AGGGGAGCCC	CTCCCCCCTC	7560
	GATCGCCTGG GGGCCGTGGG	CCGGTGCCGG	AATGGCCTCC	GGAACGGCGG	CGAAGTCCTT	7620
35	CGAACGGGAC GGCGTCACGG	CCCTGGACCC	CGAGCGCGCG	CTCGACGTCC	TCGACGACGT	7680
	GGTGGGCGCC GGCGGGACCT	CTGCCGCAGG	GACGCACGCG	GCCGGCGAGA	GCTCCCTGCT	7740
	CGTCGCCGAC GTGGACTGGG	AGACCTTCGT	CGGGCGTTCG	GTCACCCGCC	GTACCTGGTC	7800
40	GCTCTTCGAC GGCGTCTCCG	CCCCCCTTC	GCCCCTGCC	GGCCATGCCG	CGGACGACCG	7860
	TGCCGCTCTC ACCCCAGGGA	CCCCCCCCC	CGACGCCCCA	CCGGGCGGGA	CCCCACACGA	7920
	CGGGGGGAG GGCCGGCCGT	GGCTCTCCGT	CGGCCCCTCG	CCGGCGGAAC	CCCCTCCTCC	7980
45	TCTGCTCACG CTTGTGCGCT	CGGAGGCCGC	CGGGATCCTG	CCCCACCCCT	CCCCCCACCC	8040
	GGTCGACCCG GAGCTGGCCT	TCCGGTCCGC	CGGGTTCGAC	TCCCTCACCG	TTCTCGAACT	8100
50	GCGTAACCGC CTGACCGCTG	CCACCGGCCT	GAACCTGCCG	AACACGCTGC	TCTTCGACCA	8160
	CCCGACCCC CTCTCGCTCG	CCTCCCACCT	GCACGACGAA	CTCTTCGGTC	CCCACAGCGA	8220
	GCCGGAGCCG GCAGCGGCCG	CCCCCACGCC	GGTCATGGCC	GACGAGCGTG	AGCCCATCGC	8280
55	GATCGTGGGC ATGGCGTGCC	GTTACCCGGG	CGGTGTGGCG	TCGCCGGACG	ACCTGTGGGA	8340

	CCTGGTGGCC	GGTGACGGGC	ACACGCTCTC	CCCGTTCCCG	GCCGACCGTG	GCTGGGACGT	8400
	CGAGGGGCTG	TACGACCCGG	AGCCGGGGGT	GCCGGGCAAG	AGCTATGTAC	GGGAAGGCGG	8460
5	CTTCCTGCGT	TCCGCGGCCG	AGTTCGACGC	GGAGTTCTTC	GGGATATCGC	CGCGCGAGGC	8520
	CACGCCATG	GACCCGCAGC	AGCGGTTGCT	GCTGGAGACG	TCGTGGGAGG	CGCTGGAGCG	8580
10	GGCCGGCATC	GTTCCGGACT	CGCTGCGCGG	CACCCGGACC	GGTGTCTTCA	GCGGCATCTC	8640
	CCAGCAGGAC	TACGCGACCC	AGCTGGGGGA	CGCCGCCGAC	ACCTACGGCG	GCCATGTGCT	8700
	CACGGGGACC	CTCGGCAGTG	TGATCTCCGG	TCGGGTTGCC	TATGCGTTGG	GGTTGGAGGG	8760
15	GCCGCGCTG	ACGGTGGACA	CGCCGTGTTC	GTCGTCGTTG	GTGCCGTTGC	ATCTGGCGGT	8820
	GCAGTCGTTG	CGGCGGGGTG	AGTGTGATCT	GCCGTTGGCC	GGTGGGGTGA	CGGTGATGGC	8880
	GACGCCGACG	CTCTTCCTCC	AGTTCTCGCG	GCAGCGGGG	CTGGCGGCGG	ACGGGCGGTG	8940
20	CAAGGCGTTC	GCGGAGGGTG	CGGACGGGAC	GCCTCGCC	GAGGGTGTGG	GTGTGCTGCT	9000
	GGTGGAGCGG	CTTTCCGACG	CGCGCCGCAA	CGGTCATCGG	GTGCTGGCGG	TGGTGCGGGG	9060
25	CAGTGCGGTC	AATCAGGACG	GTGCGAGCAA	TGGGCTGACG	GCGCCGAGTG	GTCCGGCGÇA	9120
	GCAGCGGGTG	ATCCGTGAGG	CGCTGGCTGA	TGCGGGGCTG	GTGCCCGCCG	ACGTGGATGT	9180
	GGTGGAGGCG	CACGGTACGG	GGACGCGCT	GGGTGATCCG	ATCGAGGCGG	GTGCGCTGCT	9240
30	GGCCACGTAC	GGGCGGGAGC	GGGTCGGCGA	TCCGTTGTGG	CTCGGGTCGT	TGAAGTCGAA	9300
	CATCGGGCAT	GCGCAGGCGG	CTGCGGGTGT	GGGTGGTGTG	ATCAAGGTGG	TGCAGGGGAT	9360
	GCGGCATGGG	TCGTTGCCGC	GGACGCTGCA	TGTGGATGCG	CCGTCGTCGA	AGGTGGAGTG	9420
35	CCCTTCCCCT	CCGCTGGAGC	TGCTGACCGA	GACCCGGTCG	TGGCCGCGGC	GGGTGGAGCG	9480
	GGTGCGGCGG	GCCGCGGTGT	CGGCGTTCGG	GGTGAGCGGG	ACCAACGCCC	ATGTGGTCCT	9540
40	GGAGGAAGCG	CCGCCGAGG	CCGGGAGCGA	GCACGGGGAC	GGCCCTGAAC	CTGAGCGGCC	9600
	CGACGCGGTG	ACGGGTCCGT	TGTCGTGGGT	GCTTTCTGCG	CGGTCGGAGG	GGGCGTTGCG	9660
	GGCGCAGGCG	CTCCCCTTCC	GTGAGTGTGT	GGAGCGGGTG	GGTGCGGATC	CGCGGGATGT	9720
45	GCCGGGTCG	TIGGTGGTGT	CCCCTCCCTC	GTTCGGTGAG	CCTCCCGTCG	TOGTOGGCCG	9780
	GGGCGTGAG	GAGTTGCTGG	CGGGTCTGGA	TGTGGTGGCT	GCCGGGGCTC	CTCTCCCTCT	9840
	CTCTTCGCCC	GCCGGTGCTG	TCCTCCCGCG	GACTCCCCTC	CGGGGTCGTG	CCCTCCCCCT	9900
50	GTTGTTCACG	GGTCAGGGTG	CGCAGTGGGT	TGGTATGGGG	CCTCCCTTCT	ATGCGGGGG	9960
	TGGGGTGTTT	GCGGAGGTGC	TGGATGAGGT	CTTCTCCCTC	CTCCCCCACC	TOGATGGTCG	10020
55	CTCCTTCCCG	GATGTGATGT	TCGCGGATGC	TGACTCGGTT	TTGGGTGGGT	TCTTCGCTCG	10080
	GACGGAGTTT	GCTCAGCCTG	CCTTCTTTCC	CTTCGACCTC	GCGTTGTTCC	CCCCTTCGA	10140

	GGCTCGGGGT	CTCGACGTCT	CCCTCCTCTT	GGGTCATTCG	CTCCCCCACC	TOGCTGCTGC	10200
5	GTATGTGGCG	GGGGTGTTGT	CCTTGGGTGA	TGCGGTGCGG	TTGGTGGTGG	CCCCCCCTCC	10260
	GTTGATGGGT	CCCTTCCCCC	TGGGTGGGG	GATGTGGTCG	CTCCCCCCT	CGGAGTCGGT	10320
	GCTGCGGGG	GTTGTTGAGG	GGTTGGGGGA	GTGGGTGTCG	CTTCCCCCC	TGAATGGGCC	10380-
10	GCGGTCGGTG	GTGTTGTCGC	GTGATGTGGG	TGTGCTGGAG	TCGGTGGTTG	TCACGCTGAT	10440
	GGGGGATGGG	GTGGAGTGCC	GCCGCTTGGA	TGTGTCGCAT	GGGTTTCATT	COGTGTTGAT	10500
	GGAGCCGGTG	TTGGGGGAGT	TCCGGGGGGT	TGTGGAGTCG	TTGGAGTTCG	CTCGCGTGCG	10560
15	GCCGGGTGTG	GTGGTGGTGT	CGGGTGTGTC	CCCTCCCCTC	GTGGGTTCGG	GGGAGTTGGG	10620
	GGATCCGGGG	TATTGGGTGC	GTCATGCGCG	GGAGGCGGTG	CGTTTCGCGG	ATGGGGTGGG	10680
20	GGTGGTGCGT	GCTCTCGCTC	TGGGGACGTT	GGTGGAGGTG	GGTCCGCATG	GGGTGCTGAC	10740
	GGGGATGGCG	GGTCAGTGCC	TGGAGGCCGG	TGATGATGTG	GTGGTGGTGC	CGCGATGCG	10800
	GCGGGGCCGT	CCGGAGCGGG	AGGTGTTCGA	GGCGGCGCTG	GCGACGCTCT	TCACCCGGGA	10860
25	CGCCGGCCTC	GACGCCACGA	CACTCCACAC	CGGGAGCACC	GGCCGACGCA	TCGACCTCCC	10920
	CACCTACCCC	TTCCAACACA	ACCGCTACTG	GGCAACCGGC	TCAGTGACCG	GTGCGACCGG	10980
30	CACCTCGGCA	GCCGCGCGCT	TCGGCCTGGA	GTGGAAGGAC	CACCCCTTCC	TCAGCGGCGC	11040
30	CACGCCGATA	GCCGGCTCCG	GCGCGCTGCT	CCTCACCGGC	AGGGTGGGGC	TCGCTGCCCA	11100
	CCCGTGGCTG	GCCGACCACG	CCATCTCCGG	CACGGTGCTG	CTCCCCGGAA	CGCCGATCGC	11160
35	CGACCTGCTG	CTGCGGGCGG	TCGAGGAGGT	CGGCGCCGGA	GGGGTCGAGG	AACTGACGCT	11220
	CCATGAGCCC	CTGCTCCTCC	CCGAGCGAGG	CGGCCTGCAC	GTCCAGGTGC	TOCTCGAGGC	11280
	GGCGACGAG	CAGGGACGGC	GTGCCGTGGC	AGTCGCCGCA	CGCCCGGAGG	GCCCTGGGCG	11340
40	GGACGGTGAG	GAACAGGAGT	GGACCCGGCA	CGCGGAAGGC	GTGCTCACCT	CCACCGAGAC	11400
	GGCCGTTCCG	GACATGGGCT	GGGCCGCCGG	GCCTGGCCG	CCGCCCCGTG	CCGAGCCGAT	11460
45	CGACGTCGAG	GAGCTGTACG	ACGCGTTCGC	CGCGGACGGC	TACGGCTACG	GCCCGGCCTT	11520
45	CACCGCACTG	TCCGCCGTGT	GCCTCTCGG	CGACGAACTC	TTCGCCGAGG	TGCGGCGGCC	11580
	CGCGGGGGGC	GCGGGCACGA	CCGGTGACGG	TTTCGGCGTC	CACCCCGCAC	TCTTCGATGC	11640
50	GGCCCTCCAC	CCGTGGCGCG	CCGCCGGCT	GCTGCCCGAC	ACGGGCGCA	CCACCTGGGC	11700
	GCCGTTCTCC	TGCCAGGGCA	TCGCGCTCCA	CACCACCGGA	GCCGAGACGC	TCCGCGTCAG	11760
	ACTGGCCCCT	GCGCCCGCCG	GCACCGAGTC	GGCCTTCTCC	GTACAGGCCG	CCGACCCGGC	11820
55	GGGCACCCCG	GTCCTCACCC	TCGACGCACT	GCTGCTCCGC	CCGGTGACCC	TGGGGAGGGC	11880

	CGACGCGCCG CA	ACCGCTGT	ACCGCGTCGA	CTGGCAGCCG	GTCGGCCAGG	GGACCGAGGC	11940
5	CTCCGGCGCC CA	CCCTCCA	CCCTCCTCCC	CCACCCCCCC	GCCGAGACGG	TCGCGCAGCC	12000
Ū	CGCCGCCCAT GC	GGACCTCA	CCGCCCTGCG	TACGGCTGTG	GCCGCGGCGG	GAACACCCGT	12060
	CCCCCCCCTC GTY	GGTCGTGT	CGCCGGTGGA	CACCCGGCTG	GACGAGGGGC	CGGTGCTGGC	12120
10	GGACGCCGAG GC	TCCGCCCC	GTGCGGGTGA	CGGCTGGGAC	GACGATCCCC	TACGTGTCGC	12180
	CCTCGGGCGC GG	CCTGACCC	TGGTCCGGGA	GTGGGTCGAG	GACGAACGGT	TGGCGGACTC	12240
	CCGCCTCGTC GTY	CCTCACCC	CTCCCCCCCT	GCCGCCGGT	CCCGGCGATG	TGCCGGACCT	12300
15	GACAGGTGCG GC	CCTGTGGG	GCTGCTCCG	CTCCGCGCAG	TCGGAGTATC	CGGACCGCTT	12360
	CACCCTCATC GAG	CGTGGACG	ATTCCCCCGA	GTCCCGTGCG	GCTCTGCCCC	GGGCTCTGGG	12420
••	ATCGGCCGAG CG	ACAACTCG	CCCTGCGGAC	GGCGACGTG	CTGGCGCCGG	CCCTGGTCCC	12480
20	GATGGCCACC CGC	SCCGGCGG	AGACCACTCC	AGCGACGGCG	GTCGCCTCGG	CGACAACACA	12540
	GACACAGGTC ACC	cccccc	CTCCCGACGA	CCCGCCTGCG	GATGCCGTGT	TCGACCCGC	12600
25	GGGCACCGTA CTC	GATCACCG	GCGGCACCGG	CGCCCTGGGA	CGCCGTGTCG	CCTCGCACCT	12660
	CGCGCGCCGG TAC	CGGCGTAC	GCCACATGCT	TCTGGTCAGC	AGGCGTGGAC	CGGACGCCCC	12720
30	CGAGGCCGGT CCC	CCTGGAAC	GGGAACTCGC	CGGTCTCGGA	GTCACCGCCA	CCTTCCTGGC	12780
	ATGCGACCTC ACC	CGACATCG	AGGCCGTACG	GAAGGCCGTC	GCCGCGGTGC	CGTCGGACCA	12840
•	CCCGCTGACC GG1	IGTGGTGC	ACACCGCCGG	CGTGCTGGAC	GACGGCGCCC	TGACCGGCCT	12900
	GACCCGGCAA CGC	CCTCGACA	CCGTGCTGCG	GCCCAAGGCC	GACGCCGTGC	GGAACCTCCA	12960
35	CGAGGCGACC CTC	CGACCGGC	CGCTGCGCGC	CTTCCTCCTC	TTCTCCGCCG	CCCCCGGACT	13020
	CCTGGGCCGC CCC	CGGGCAGG	CCTCCTACGC	CGCCGCCAAC	GCGGTCCTCG	ACGCGCTCGC	13080
40	GGGAGCCCGC CGC	cececce	GACTGCCCGC	AGTGTCCCTG	CCCTCCCCC	TGTGGGACGA	13140
	GCAGACGGC ATO	GCAGGAG	GCCTCGACGA	GATGGCCCTG	CGCGTGCTGC	GCCGGGACGG	13200
	CATCGCCGCG ATO	CCTCCGG	AGCAGGGGCT	CGAACTGCTC	GACCTGGCCC	TGACCGGACA	13260
45	CCGGGACGGA CCC	CCCCTCC	TCGTCCCCCT	CCTCCTCGAC	ecceccccc	TGCGCCGCAC	13320
	GGCGAAGGAG CGC	cececee	CCACGATGTC	CCCCTTGCTG	CGCGCCCTGC	TGCCCGCCGC	13380
	CCTGCGCCGC AGG	CGCTGGAG	CCGCCCCCC	ccccccccc	GACCGGCACG	GCAAGGAGGC	13440
50	GGACCCCGGT GCG	GGACGCC	TCGCAGGGAT	GGTGGCACTC	GAAGCGGCGG	AGCGTTCCGC	13500
	GCCCTCCTT GAG	CTGCTCA	CCGAACAGGT	CCCCGACGTC	CTCGGCTACG	CGTCGGCCGC	13560
	GGAGATCGAG CCC	CGAACGAC	CCTTCCGGGA	GATCGCCGTC	GACTCCCTGG	CCCCCCTCGA	13620
55	GCTGCGCAAC CGG	CTCAGCC	CTCTCCTCCC	CCTGCGGTTG	CCGACCACGC	TGTCCTTCGA	13680

	CCACCCCACG CCGAAGGACA TGGCGCAGCA CATCGACGGG CAGCTCCCCC GCCCGGCCGG	13740
5	AGCCTCGCCC GCGGACGCAG CGCTGGAAGG GATCGGCGAC CTCGCGCGGG CGGTCGCCCT	13800
	GCTGGGCACG GGCGACGCCC GCCGGGCCGA GGTACGAGAG CAGCTCGTCG GACTGCTGGC	13860
10	CGCGCTCGAC CCACCTGGGC GGACGGGCAC CGCCGCACCC GGCGTCCCCT CCGGTGCCGA	13920
10	TGGCGCGGAA CCGACCGTGA CGGACCGGCT CGACGAGGCG ACCGACGACG AGATCTTCGC	13980
	CTTCCTGGAC GAGCAGCTGT GACCACACCG TGGACCGACC GCATGCCGAG GAGTTGGTGG	14040
15	CAGCAATGAC CGCCGAGAAC GACAAGATCC GCAGCTACCT GAAGCGTGCC ACCGCCGAAC	14100
	TGCACCGGAC CAAGTCCCGC CTGGCCGAGG TCGAGTCGGC GAGCCGCGAG CCGATCGCGA	14160
	TCGTGGGCAT GGCGTGCCGT TACCCGGGCG GTGTGGCGTC GCCGGACGAC CTGTGGGACC	14220
20	TGGTGGCAGC CGGTACGGAC GCGGTCTCCG CGTTCCCCGT CGACCGTGGC TGGGACGTCG	14280
	AGGGGCTGTA CGACCCCGAT CCGGAGGCCG TGGGGCGGTAG TTACGTGCGG GAGGGCGGGT	14340
	TCCTGCACTC GGCGGCCGAG TTCGACGCGG AGTTCTTCGG GATCTCGCCC CGTGAGGCGG	14400
25	CGGCGATGGA TCCGCAGCAG CGGTTGCTGC TGGAGACGTC GTGGGAGGCG CTGGAGCGGG	14460
	CGGGGATCGT CCCCGCGTCG CTGCGCGGCA CCCGTACCGG CGTCTTCACC GGCGTCATGT	14520
20	ACGACGACTA CGGGTCGCGG TTCGACTCGG CTCCGCCGGA GTACGAGGGC TACCTCGTGA	14580
30	ACGCCAGCGC CGGCAGCATC GCGTCCGGTC GGGTTGCCTA TGCGTTGGGG TTGGAGGGGC	14640
	CGCCGCTGAC GGTGGACACG GCGTGTTCGT CGTCGTTGGT GGCGTTGCAT CTGGCGGTGC	14700
35	AGTCGTTGCG GCGGGGTGAG TGTGATCTGG CGTTGGCCGG TGGGGTGACG GTGATGGCGA	14760
	CGCCGACGGT GCTCGTGGAG TTCTCGCGGC AGCGGGGGCT GGCGGCGGAC GGGCGGTGCA	14820
	AGGCGTTCGC GGAGGGTGCG GACGGGACGG CGTGGGCCGA GGGTGTGGGC GTGCTGCTGG	14880
40	TGGAGCGGCT CTCCGACGCC CGCCGCAATG GCCATCGGGT GCTGGCGGTG GTGCGGGGCA	14940
	GTGCGGTCAA TCAGGACGGT GCGAGCAACG GCCTGACGGC GCCGAGTGGT CCTGCGCAGC	15000
	ACCCCCTGAT CCCTGACCCC CTCCCCGACC CCCCCCGAC CTCCACCCCC	15060.
45	TOGAGGOGCA CGGCACCGGC ACACCCCTGG GCGACCCCAT CGAGGGGGGT GCGTTGCTGG	15120
	CCACCTATGG CAGTGAGCGC CAGGGCCAAG GTCCGTTGTG GTTGGGGGTCG TTGAAGTCGA	15180
50	ACATOGGGCA TOCGCAGGCG COTTCCCCCTC TOCCTCCCCTT CATTCAGGCT	15240
50	TGCGGCATGG GTCGTTGCCG CGGACGCTGC ATGTCCATCC AGGGTGGTGG	15300
	GGGCTTCGGG TGCGGTGGAG CTCCTGACCG AGACCCCCTTC CTCCCCCCCC	15360
55	GGGTGCGGCG GGCCGCGCTG TCCCCCTTTCC CCCTTCACCCC CACCAACCCC	15420

	TGGAGGAAGC	GCCGCCGAG	GCCGGGAGCG	AGCACGGGGA	CGGCCCTGAA	CCCGAGCGGC	15480
5	CCGACGCGGT	GACGGGTCCG	TTCTCCTCCC	TGCTTTCTGC	GCGGTCGGAG	GGGGCGTTGC	15540
-	GGCGCAGGC	GCTGCGGTTG	CCTGACTCTC	TGGAGCGGGT	GGGTGCGGAT	CCGCGGGATG	15600
	TCCCCCCCCTC	CTTCCTCCTC	TCGCGTGCGT	CGTTCGGTGA	GCGTGCGGTG	GTGGTGGGCC	15660
10	GGGGGGTGA	GGAGTTGCTG	GCGGGTCTGG	ATGTGGTGGC	TGCCGGGGCT	CCTGTGGGTG	15720
	TCTCCGGGG	CGTGTCTTCG	GCCCCCCTC	CTCTCCTCCC	GGGGAGTGCG	CTCCCCCCTC	15780
٠	CTCCCGTGGG	GGTGTTGTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTCGTATC	GGCCTGGCT	15840
15	TGTATGCGGG	GGGTGGGGTG	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	CTCCTCCCCC	15900
	AGGTGGGGG	TTCGTCGTTG	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	15960
	CCGGGGCTGA	TGCGGGTGTC	GGTTCGGGTG	TTGGTGTGGG	TGGGTTGTTG	GGTCGGACGG	16020
20	AGTTTGCTCA	GCCTGCGTTG	TTTGCGTTGG	AGGTGGCGTT	GTTCCGGGCG	TTGGAGGCTC	16080
	GGGGTGTGGA	CCTCTCCCTC	GTGTTGGGTC	ATTCGGTGGG	GGAGGTGGCT	GCTGCGTATG	16140
25	TGGCGGGGT	CTTCTCCTTC	GGTGATGCGG	TGCGGTTGGT	GGTGGCGCGG	GCTGGGTTGA	16200
	TGGGTGGGTT	GCCGGTGGGT	GGGGGGATGT	GCTCGCTGGG	GCCGTCGGAG	TCGGTGGTGC	16260
	CCCCCTTCT	TGAGGGGTTG	GGGGAGTGGG	TGTCGGTTGC	GGCGGTGAAT	CCCCCCCCT	16320
30	CGGTGGTGTT	GTCGGGTGAT	CTCCCTCTCC	TGGAGTCGGT	CCTTCCCTCC	CTGATGGGG	16380
	ATGGGGTGGA	GTGCCGGCGG	TTGGATGTGT	CGCATGGGTT	TCATTCGGTG	TTGATGGAGC	16440
	CCCTCTTCCC	GGAGTTCCGG	GGGGTTGTGG	AGTCGTTGGA	GTTCGGTCGG	CTCCCCCCC	16500
35	CTCTCCTCCT	GGTGTCGAGT	GTGTCGGGTG	GGGTGGTGGG	TTCGGGGGAG	TTGGGGGATC	16560
	CGGGGTATTG	GGTGCGTCAT	GCGCGGGAGG	CGCTGCGTTT	CGCGGATGGG	CTGGGGGTGG	16620
40	TGCGTGGTCT	GGGTGTCGGG	ACCTTCCTCC	AGGTGGGTCC	GCATGGGGTG	CTGACGGGGA	16680
	TGCCGGGTGA	GTGCCTGGGG	GCCGGTGATG	ATGTGGTGGT	CCTCCCCCCC	ATGCGGCGGG	16740
	GCCGTGCGGA	GCGGGAGGTG	TTCGAGGCGG	CGCTGGCGAC	GGTGTTCACC	CGGGACGCCG	16800
45	GCCTGGACGC	CACGACACTC	CACACCGGGA	GCACCGGCCG	ACGCATCGAC	CTCCCCACCT	16860
	ACCCCTTCCA	ACACGACCGC	TACTGGCTGG	CCGCCCCGTC	CCGGCCCAGG	ACGGACGGC	16920
	TCTCCCCCC	GGGTCTGCGC	GAGGTGGAGC	ACCCCCTGCT	CACCGCCGCC	GTGGAACTGC	16980
50	CCGCCACCGA	CACCGAGGTG	TGGACCGGCC	GCATATCCGC	TGCCGACCTG	CCCTGGCTCG	17040
	CCGACCACCT	GGTGTGGGAC	CGAGGCGTGG	TGCCGGGGAC	CGCGCTGCTG	GAGACGGTGC	17100
	TCCAGGTGGG	AAGCCGGATC	GCTCTGCCGC	GCGTCGCCGA	ACTGGTCCTG	GAGACGCCGC	17160
55	TGACCTGGAC	GTCGGACCGC	CCGCTCCAGG	TCCGGATCGT	CGTGACCGCT	GCCGCCACCG	17220

	ccccccccc cccc	CGTGAG CTGACCCTC	ACTCGCGGCC	CGAGCCCGTG	CCCCCCTCCT	17280
5	CGTCCTCCCC GAGT	CCCCC TCTCCCCCG	CACCTCACGGC	GCAGGAGAGC	GACGACGACT	17340
·	GGACCCGGCA TGCCT	TCAGGG CTGCTCGCC	C CGGCTGCCGG	CCTCGCCGAC	GACTTCGCCG	17400
	AGCTCACCGG CGCC1	rescee ecestesse	G CCGAGCCCCT	CGACCTCGCC	GGTCAGTACC	17460
10	CGCTCTTCGC AGCCC	SCCGGA GTGCGCTAC	G AAGGCGCCTT	CCGAGGGCTG	CGCGCGCAT	17520
	GGCGTCGAGG CGACC	SAGGTC TTCGCCGAC	TACGGCTGCC	CGACGCGCAC	GCGGTCGACG	17580
15	CTGATCGTTA CGGGG	STGCAC CCCGCCCTG	TCGACGCGGT	GCTCCACCCG	ATCGCCTCGC	17640
	TGGACCCGCT GGGCG	BACGGC GGGCACGGT	TGCTGCCGTT	CTCCTGGACC	GACGTACAGG	17700
	GACACGGCGC CGGCG	GACAC GCCCTCCCC	TACGGGTGGC	GCCGTCGAC	GCCGCCCCC	17760
20	TGTCGGTCAC CGCGG	SCCGAC CACGCGGGC	ACCCGGTGTT	ATCCGCCCGG	TCCCTGGCAC	17820
	TGCGTCGTAT CACCO	CCCCAC CCCCTTCCCC	CCCCCCCCT	CCCCCTCTC	TACCGCGTGG	17880
	ACTGGCTGCC GTTCC	CCCCT CCCCTCCCCC	TATCCGCGGG	CGGCCGCTGG	GCGGTCGTCG	17940
25	GACCCGAGGC CGAAG	CCACG GCTGCCGGAC	TGCGTGCGGT	GGGCCTCGAC	GTGCGTACCC	18000
	ATGCGCTCCC CCTCG	GAGAG CCCCTGCCTC	CGCAGGCCGG	TACCGACGCG	GAGGTGATCA	18060
30	TCCTCGACCT GACCA	CCACC GCAGCCGGCC	GTACGGCGTC	GGACGGGGG	CGGCTCAGTC	18120
	TCCTCGACGA GCTGC	GTGCG ACGGTGCGCC	GGACCCTCGA	AGCCGTACAG	CCCCCCCTCC	18180
	CCGACACCGA AACGG	CCCCC GACGTCGACC	TCCGTACGGC	cccccccc	CGCACAGCCG	18240
<i>35</i>	CCCGTACAAG CCCCC	GCGTG GACACCCGCA	CGGGAGCCCG	CACCGCTGAC	cccccccc	18300
	TCGTCGTCCT GACCC	GGGGC GCGGCCGGAC	CCGAGGGAGG	CGCGGCCGAT	CCCGCGGGTG	18360
	CCGCTGTCTG GGGGC	TCGTC CGGGTCGCCC	AGGCCGAACA	eccceccec	TTCACCCTGG	18420
40	TGGACGTCGA CGGCA	CCCAG GCGTCGCTCC	GGGCCCTGCC	CCCTCTCCTC	GCCACGGATG	18480
	CCGGCCAGTC GGCCG	TGCGC GACGGACGTG	TCACCGTCCC	GCGCCTCGTC	CCGGTGGCCG	18540
	ACCCCGTCCC CCACG	GCGGC GGCACGCGG	CCGACGGGAC	GGGTGCCGGC	GAGCCGTCCG	18600
45	CGACCCTGGA CCCCG	AAGGC ACCGTGCTGA	TCACCGGCGG	CACCGGAGCA	CTGGCCGCGG	18660
	3AAACCGCCCG GCAC	CTGGTC GACCGGCAC	A AGGTGCGCCA	TCTCCTGCTG	GTGGGCAGGC	18720
50	GCGGTCCCGA CGCAC	CCGCC GTCGATCGAC	TGGTCGCCGA	GTTGACCGAG	TCGGGTGCCG	18780
	AGGTCGCCGT ACGGG	CCTGT GACGTCACGG	ACCGCGACGC	CCTGCGCCGC	CTGCTCGACG	18840
	CACTCCCCGA CGAAC	ACCCG CTGACCTGCG	TGGTGCACAC	CGCCGGGGTG	CTCGACGACG	18900
55	GCGTGCTCTC CGCCC	AGACG GCCGAGCGCA	TCGACACGGT	GCTCCGGCCC .	AAGGCCGACG	18960

	CCGCCGTCCA	CCTGGACGAG	CTGACCCGGG	AGATCGGACG	CCTCCCCTC	GTGCTGTACT	19020
5	CCTCCGTCTC	GCCACCCTG	GGCAGCGCGG	GGCAGGCCGG	GTACGCGGCG	GCCAACGCCT	19080
3	TCATGGACGC	GCTGGCCGCC	CGGCGGTGCG	CCGCCGGGCA	CCCCCCCCTC	TOGOTOGGOT	19140
	GGGGCTGGTG	GTCCGGGGTG	GGTCTCGCCA	CCGGACTGGA	CGGAGCGGAC	ccccccccc	19200
10	TCAGGCGCTC	GGGTCTCGCC	CCGCTCGACG	cccccccc	ACTGGACCTG	CTCGACCGGG	19260
	CGCTGACCCG	GCCCGAGCCG	GCCCTGCTGC	CCGTGCGGCT	CGACCTGCGC	ccccccccc	19320
	GTGCCACCGC	TCTCCCGGAG	GTCCTGCGTG	ACCTGGCCGG	CGTACCGGCG	GACGCCCGCA	19380
15	GCACGCCCGG	GCCCCCGCG	GGCACCGGGG	ACGAGGACGG	TGCCGTGCGC	CCTCCCCCC	19440
	CCCCGGCCGA	CCCCCCCCCC	ACGCTGGCCG	CGCGGCTCGC	GGGACGTTCC	GCACCCGAGC	19500
	GTACGGCTCT	CCTGCTCGAC	CTGGTGCGGA	CCGAGGTCGC	CCCCCTCCTC	GGACACGGGG	19560
20	ACCCCGCCGC	GATCGCCCCC	GCCCGCACCT	TCAAGGACGC	CGGATTCGAC	TCCCTCACCG	19620
	CTGTCGACCT	CCGCAACCGG	CTGAACACAC	GCACCGGACT	GCGGCTGCCC	GCGACCCTCG	19680
25	TCTTCGACCA	CCCCACACCG	CTCGCCCTCG	CCGAACTCCT	GCTCGACGGG	CTGGAGGCGG	19740
	CCGGTCCAGC	GGAACCGGCC	GCTGAGGTCC	CGGACGAAGC	GGCCGGTGCC	GAGACCCTGT	19800
	CCGCCGTGAT	CGACCGGCTG	GAACGCAGCC	TCGCCGCGAC	CGACGACGGC	GACGCCCGGG	19860
30	TCCGCGCGGC	ACGGCGGCTG	CGCGGCCTGC	TGGACGCGCT	CCCCGCCGGT	CCCGGTGCCG	19920
	CCTCCCGTCC	GGATGCCGGA	GAGCACGCCC	CCGGTCGCGG	CGACGTGGTG	ATCGACCGGC	19980
	TCAGGTCGGC	CTCCGACGAC	GACTTGTTCG	ACCTGCTCGA	CAGCGACTTC	CAGTGAGCCG	20040
35	GACCGCGCCG	CGCGCCGACC	GCTGAACCGC	TCTTCACCCA	GACCCACGAG	ACCACGCCTG	20100
	AGGAGAACCG	TGTCTGCGAC	CAACGAGGAG	AAGTTGCGGG	AGTACCTGCG	GCGCGCGATG	20160
40	GCCGACCTGC	ACAGCGCACG	AGAGCGGTTG	CGCGAGGTCG	AGTCGGCGAG	CCGTGAGCCG	20220
40	ATCGCGATCG	TGGGCATGGC	GTGCCGTTAC	CCGGGCGGTG	TGGCGTCGCC	GGAGGAGCTG	20280
	TGGGACCTGG	TGGCCGCCGG	TACGGACGCG	ATCTCCCCGT	TCCCCGTCGA	CCGCGGCTGG	20340
45	GACGCCGAGG	GTCTGTACGA	CCCGGAGCCG	GGGGTGCCGG	GCAAGAGCTA	CCTCCCCCAC	20400
	GGCGGGTTCC	TGCACTCGGC	GGCCGAGTTC	GACGCGGAGT	TCTTCGGGAT	CTCGCCGCGT	20460
	GAGGCGGCGG	CGATGGATCC	GCAGCAGCGG	TTGCTGCTGG	AGACGTCGTG	GGAGGCGCTG	20520
50	GAGCGGGCCG	GGATCGTCCC	CGCGTCGCTG	CGCGGCACCC	GTACCGGCGT	CTTCACCGGC	20580
	GTCATGTACC	ACGACTACGG	CAGCCACCAG	GTCGGCACCG	CCGCCGATCC	CAGTGGACAG	20640
	CTCGCCCTCG	GCACCGCGGG	GAGCGTCGCC	TCGGGCCGGG	TGGCGTACAC	CCTCGGTCTA	20700
55	CAGGGGCCGG	CCGTGACCAT	GGACACGGCA	TGCTCGTCCT	CGCTGGTGGC	GTTGCACCTG	20760

	GCGGTGCAGT CGTTGCGGCG GGGCGAGTGC GATCTCGCGT TGGCCGGCGG GGCGACGGTC	20820
5	TTGGCGACGC CCACGGTGTT CGTGGAGTTC TCGCGGCAAC GGGGGCTGGC GGCGGACGGA	20880
	CGGTGCAAGG CGTTCGCGGA GGGCGCCGAC GGCACGCCGT GGGCCGAGGG CGCCGGTGTG	20940
10	CTGCTGGTGG AGCGGCTCTC CGACGCCCGC CGCAACGGCC ATCGGGTGCT CGCGGTGGTG	21000
70	CGGGGCAGCG CGGTCAACCA GGACGGTGCC AGCAACGGCC TCACCGCACC CAGCGGGCCC	21060
	GCCCAGCAGC GGGTGATCCG TGACGCGCTG GCCGACGCGG GGCTGACGCC CGCCGACGTG	21120
15	GACGCGGTCG AGGCGCACGG CACCGGCACA CCGCTCGGCG ACCCGATCGA GGCCGGCGCG	21180
	CTGATGGCCA CCTACGGCAG TGAACGGGTG GGCGACCCGC TGTGGCTGGG TTCGCTGAAG	21240
	TCGAACATCG GACACACCCA GGCCGCCGCC GGGGCCGCCG GCGTCATCAA GATGGTGCAG	21300
20	GCGTTACGGC AGTCCGAGCT GCCGCGCACC CTGCACGTCG ACGCGCCCTC GGCCAAGGTC	21360
	GAATGGGACG CGGGCGCCGT GCAACTGCTC ACCGGCGTCC GGCCATGGCC CCGGCGCGAG	21420
	CACAGGCCCC GGCGGGCCGC GGTCTCCGCC TTCGGCGTCA GCGGCACCAA CGCCCACGTC	21480
25	ATCATCGAGG AACCGCCCGC GGCCGGTGAC ACCTCGCCCG CCGGCGACAC CCCTGAGCCG	21540
	GGCGAGGCGA CCGCGTCCCC CTCCACCGCG GCCGGGCCGT CGTCCCCCTC CGCGGTGGCC	21600
30	GGGCCGCTGT CCCCCTCCTC CCCGGCCGTG GTCTGGCCCC TGTCCGCCGA GACCGCCCCC	21660
	GCCCTGCGCG CCCAGGCCGC CCGCCTGCGG GCGCACCTCG AACGCCTCCC CGGCACCTCG	21720
	CCGACCGACA TCGGCCACGC CCTGGCCGCC GAACGCGCCG CCCTCACCCG ACGCGTCGTG	21780
35		21840
		21900
		21960
40		22020
		220 80
45		22140
₩.		22200
	TCCCTGGAGG ACGCCGCCCG GATCGTGGCC CTGCGCTCCC AGGTCATCGC CCGCGAACTG	22260
50		22320
		22380
	CCCGGCGCCC TGGAGGCGTT GCTCGTCACG CTGGAGAGCG AAGGCACCCG GGTCCGCCGC	22440
55	ATCGACGTCG ACTACGCGTC CCACTCCCAC TACGTCGAGA GCATCCGGGC GGAACTCGCC	22500

	ACCGTCCTCG GCCCCGT	CCC GCCGCGAGG	GCCGACCTGC	ССТТСТАСТС	CACCGTCGAG	22560
5	GCGGCGCTCC TCGACAC	CGC CACCCTGGA	GCCGACTACT	GGTACCGCAA	CCTGCGCCTC	22620
J	CCGGTGCGCT TCGAGCC	GAC CGTACGCGCC	ATGCTCGACG	ACGGCGTCGA	CCCCTTCCTC	22680
	GAGTGCTCCG CGCATCC	CGT CCTGACCGTC	GCCTGCGCC	AGACCGTGGA	GAGCGCCGGC	22740
10 '	GGCGCGGTCC CGGCCCT	CGC TTCGCTGCGC	CGCGACGAGG	GCGGGCTGCG	GCGCTTCCTC	22800
	ACCTCCGCCG CCGAGGC	CCA GGTCGTCGG	GTCCCCGTGG	ACTGGGCGAC	GCTCCGCCCA	22860
	GGCGCCGGCC GGGTGGA	CCT GCCGACCTAC	GCCTTCCAGC	GCGAACGCCA	CTGGGTCGGC	22920
15	CCCGCCCGGC CCGACTC	CGC GGCGACGGCC	GCCACGACCG	GTGACGACGC	CCCGGAGCCC	22980
	GGAGACCGGC TCGGCTA	CCA CGTCGCGTGG	AAGGGACTGC	GCTCCACCAC	CGGCGGCTGG	23040
	CGCCCCGGCC TGCGCCT	GCT GATCGTGCCC	ACCGGGGACC	AGTACACCGC	CCTCGCCGAC	23100
20	ACCCTGGAAC AGGCGGT	CGC CTCCTTCGGC	GGAACGGTCC	GCCGCGTCGC	CTTCGACCCG	23160
	GCACGCACCG GACGCGC	CGA GCTGTTCGGC	CTGCTCGAGA	CGGAGATCAA	CGCCGACACC .	23220
25	GCCGTCACCG GCGTCGT	CTC GCTGCTCGGA	CTGTGCACCG	ACGGCAGGCC	GGACCACCCC	23280
	GCCGTGCCCG TCGCCGT	CAC CGCCACCCTC	GCCCTCGTCC	AGGCCCTGGC	CGACCTCGGC	23340
	AGCACCGCAC CGCTGTG	GAC CGTCACCTGC	GGCGCGGTCG	CCACCGCCCC	CGACGAACTG	23400
30	CCGTGCACCG CCGGTGC	CCA GCTGTGGGGC	CTGGGCCGGG	TGGCCGCGCT	GCAGCTGCCC	23460°
	GAGGTGTGGG GCGGCCT	CAT CGACCTTCCC	GCGCGCCCG	ACGCCCGGGT	CCTGGACCGT	23520
	CTCGCCGGCG TCCTCGC	CGA ACCCGGCGGC	GAGGACCAGA	TCGCCGTACG	GATGGCGGGC	23580
35	GTCTTCGGCC GCCGGGT	CCT GCGGAACCCG	GCCGACTCCC	GCCCCCGGC	CTGGCGCGCC	23640
	CGGGGCACCG TCCTCAT	CGC CGGCGACCTC	ACGACGGTGC	CCGGCCGACT	GGTCCGGTCC	23700
40	CTCCTCGAGG ACGGCGC	GGA CCGCGTGGTG	CTGGCCGGAC	CCGACGCCCC	CGCACAGGCC	23760
40	GCCGCCGCCG GACTGAC	CGG CGTCTCCCTC	GTCCCCGTGC	GCTGCGACGT	CACCGACCGC	23820
	GCCGCACTGG CCGCGCT	SCT CGACGAGCAC	GCGCCCACCG	TCGCCGTGCA	CCCCCCCCCC	23880
45	CTGGTGCCCC TGGCGCCC	SCT GCGGGAGACG	GCACCCGGCG	ACATCGCCGC	CCCCTCCCC	23940
	GCCAAGACCA CGGCCGC	CGG CCACCTGGTC	GACCTGGCGC	cecceces	CCTCGACGCG	24000
	CTGGTGCTGT TCTCCTCC	GT CTCCGGAGTG	TGGGGCGGCG	CGGCCCAGGG	CGGCTACGCG	24060
50	GCCGCCAGCG CGCACCTY	CGA CGCGCTCGCC	GAACGCGCCC	cccccccc	GCTGCCCGCG	24120
	TTCTCCGTGG CCTGGAGG	CCC CTGGGCCGGA	GCACGCCCG	CCGACGGTGC	CGACCCCGAC	24180
	TTCCTCAGCC GGCGCGG	CT GCCTCCCCTC	GACCCCGACC	AGGCGGTGCG	CACCCTGCGC	24240
55	CGCATGCTGG AGCGCGG	AG CGCCTGCGGT	GCGGTCGCCG	ACGTCGAGTG	GAGCCGGTTC	24300

	GCCGCCTCCT	ACACCTGGGT	GCGTCCCGCC	GTACTCTTCG	ACGACATCCC	GCACGTGCAG	24360
5	COGCTGCGCG	CGGCCGAACT	CGCCCCGAGC	ACCGGAGACT	CGACCACCTC	CGAACTCGTC	24420
	CGCGAGCTGA	CCGCGCAGTC	CGGCCACAAG	CGGCACGCCA	CCCTGCTGCG	GCTGGTGCGC	24480
	GCACACGCCG	CCGCCGTCCT	CGGACAGTCC	TCCGGCGACG	CGGTGAGCAG	CGCCCGCGCC	24540
10	TTCCGCGACC	TCGGCTTCGA	CTCGCTGACC	GCCCTCGAAC	TGCGCGACCG	GCTCAGCACC	24600
	AGCACCGGGC	TCAAACTGCC	CACCTCCCTG	GTCTTCGACC	ACTCCAGCCC	GCCCCCCCTC	24660
15	GCCCGGCACC	TCGGTGAGGA	ACTCCTCGGC	CGGAACGACA	CCGCCGACCG	GCCGGCCCC	24720
	GACACCCCGG	TACGGACGGA	CGAGCCCATC	GCCATCATCG	GCATGGCCTG	CCGGCTGCCC	24780
	GGCGGGGTGC	AGTCCCCCGA	GGACCTGTGG	GACCTGCTGA	CCGGTGGGAC	CGACGCCATC	24840
20	ACCCCCTTCC	CGACCAACCG	GGGATGGGAC	AACGAGACCC	TCTACGACCC	CGACCCCGAC	24900
	TOGCCCGGGC	ACCACACCTA	CGTGCGCGAG	GCCGGGTTCC	TGCACGACGC	GCCGAGTTC	24960
	GACCCCGGCT	TCTTCGGCAT	CAGCCCCCGC	GAGGCCCTGG	CCATGGACCC	GCAGCAGCGG	25020
25	CTGATCCTGG	AGACGTCCTG	GGAGTCCTTC	GAACGGGCCG	GCATCGACCC	GGTCGAACTG	25080
	CGCGGCAGCC	GCACCGGGGT	CTTCGTCGGC	ACCAACGGAC	AGCACTACGT	GCCGCTCCTC	25140
	CAGGACGCCG	ACGAGAACTT	CGACGGCTAC	ATCGCCACCG	GCAACTCCGC	CAGCGTGATG	25200
30	TCCGGCCGGC	TCTCCTACGT	CTTCGGACTG	GAGGGCCCCG	CCGTCACCGT	CGACACCGCC	25260
	TGCTCGGCCT	CCCTGGCCGC	ACTGCACCTG	GCGGTGCAGT	CACTGCGCCG	CGGCGAATGC	25320
35	GACTACGCCC	TCGCCGGCGG	GCCACGGTG	ATGTCCACCC	CCGAGATGCT	GGTGGAGTTC	25380
	GCCCGTCAGC	GAGCGGTGTC	GCCGGACGGC	CGCAGCAAGG	CCTTCCCCGA	GCCGCCGAC	25440
	GGGGTCGGTC	TCGCCGAGGG	AGCCGGGATG	CTGCTCGTGG	AGCGGCTGTC	GGAGGCGCAG	25500
40	AAGAAGGCCC	ATCCGGTACT	GCCGCTCGTG	CGGGGCAGTG	CCGTCAACCA	GGACGGTGCC	25560
	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	GCCCAGCAGC	GGGTGATACG	CGAGGCGCTG	25620
	GCCGACGCGG	GGCTGACGCC	CCCCGACGTG	GACGCGGTCG	AGGCGCACGG	CACCGGCACG	25680
45	CCGCTCGGCG	ACCCCATCGA	GCCCGCCGCG	CTGCTCGCCA	CGTACGGCCG	GGACCGGCGC	25740
	GACGGCCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	GGCACACCCA	GCCCGCCGCC	25800
50	GCCGTGCCCG	GGGTGATCAA	GATGCTGCTG	GCCTGCGCC	ACCCCCACCT	GCCGCGCACC	25860
••	CTGCACGCGT	CGACGCGTC	GTCCAGGATC	GATTGGGACG	CGGGCGCCCT	GGAGTTGCTG	25920
	GACGAGGCCA	GCCCTGGCT	CCAGCGGGCC	GAGGGGCCGC	cccccccc	CATCTCCTCG	25980
55	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	AGCCGCCGGA	GCCCACCGCG	26040

	CCCGAACTGC TCGCGCCCGA ACCGGCCGCC GACGCCCGACT TCTCGTCCGA GGACTCGTCG	26100
-	CACGAGGTGA CCGTGCCCCT GATGATGTCC GCGCAUAACG AAGCCGCCCT GCGCGACCAG	26160
5	GCGCGGCGCC TGCGCGCGA CCTGCTCGCC CACCCCGACC TGCACCCGGC CGACGTCGGC	26220
	TACACCCTCA TCACCACCCG CACCCGGTTC GAGCANCGGG CCGCCGTCGT CGGCGAGAAC	26280
10	TTCACGGAGC TGATCGCGGC CCTCGACGAC CTCGTTGAAG GCCGACCGCA CCCGCTCGTG	26340
	CTGCGGGGCA CCGCCGGCAC CTCCGACCAG GTCGTWTTCG TCTTCCCCGG CCAGGGCTCG	26400
	CAGTGGCCCG AGATGGCCGA CGGGCTGCTG GCCCCTTCCA GCGGCTCCGG CTCCTTCCTG	26460
15	GAGACCGCCC GCGCCTGCGA CCTCGCGCTC CGGCCCCACC TCGGCTCGTC CGTCCTGGAC	26520
	GTACTGCGCC GGGAACCCGG CGCGCCCTCG CTCGACCTGGT TCGACGTGGT GCAGCCCGTG	26580
	CTGTTCACCA TGATGGTCTC GCTCGCCGAG ACGTCXCGTT CGCTGGGCGT CGAACCGGCC	26640
20	GCGGTCGTCG GTCACTCCCA GGGCGAGATC GCCGCXCCT ACGTCGCCGG CGCCCTGACG	26700
	CTGGACGACG CGGCGCGCAT CGTCGCCCTG CGCACXCAGG CGTCGCTGCG GCTCGCCCGC	26760
	AAGGGCGCA TGGTCGCCGT GACCCTGTCC GAACCXCACC TGCGTCCCCG CCTGGAGCCC	26820
25	TGGAGCGACC GGCTCGCCGT CGCCGCCGTC AACGCXCCCG AGACCTGCGC CGTCTCCGGG	26880
	GACCCGGACG CCCTGGCGGA GCTGGTCGCC GAACTICGTC CGGAGGGCGT GCACGCCCGC	26940
30	CCCATCCCCG GCGTCGACAC CGCCGGGCAC TCGCCXCCAGG TCGACACGCT GGAGGCCCCAC	27000
	CTGCGGAAGG TGCTCGCGCCC CGCCCCTTCCG ACATCCCGTT CTACTCGACG	27060
	GTCACCGGAG GACTGATCGA CACCGCCGAG CTGGACCCCC ACTACTGGTA CCGCAACATG	27120
35	CGCGAGCCGG TGGAGTTCGA GCAGGCCACC CGCGCCCTGA TCGCCGACGG CCACGACGTG	27180
	TTCCTGGAGT CGAGCCCGCA CCCCATGCTG GCCGTTTCCC TCCAGGAGAC GATCAGCGAC	27240
	GCCGGTTCCC CGGCGGCCGT CCTCGGCACC CTGCGACGGCGG GCCAGGGGGG CCCCCGCTGG	27300
40	CTGGGCGTCG CCCTCTGCCG CGCCTACACC CACGCCCTGG AGATCGACGC CGAGGCCATC	27360
	TTCGGCCCCG ACTCACGCCA GGTGGAACTG CCCACATACC CCTTCCAGCG CGAGCGCTAC	27420
45	TEGTACAGCC CCGGCCACCG CGGTGACGAC CCCGCTTCCC TCGGTCTGGA CGCCGTCGAC	27480
	CACCCGCTGC TGGGCAGCGG CGTCGAACTG CCGGAFTCCG GTGACCGGAT GTACACCGCA	27540
	CGGCTGGGGG CCGACACCAC CCCGTGGCTG GCCGACCACG CGCTGCTGGG GTCGCCCCTG	27600
50	CTGCCCGGCG CCGCCTTCGC CGACCTGGCG CTCTGXCCCG GCCGCCAGGC CGGCACCGGC	27660
	CGCGTCGAGG AGCTCACCCT GGCCGCGCCC CTGGTNCTGC CCGGCTCCGG GGGTGTCCGG	27720
	CTGCGGCTGA ACGTCGGCGC CCCGGGCACC GACGANGCCC GCCGCTTCGC CGTGCACGCC	27780
55	CGCGCCGAGG GCGCCACGGA CTGGACCCTG CACG«CCAGG GGCTGCTCAC CGCGCAGGAC	27840

	ACGGCCGACG CGCCGGACGC CTCGGCGGCCC ACCCCGCCCC CCGGCGCCGA ACAACTGGAC	27900
5	ATCGGCGACT TCTACCAGCG CTTCTCCGAA CTCGGTTACG GCTACGGCCC GTTCTTCCGG	27960
	GGACTGGTGA GCGCCCACCG CTGCGGCCCC GACATCCACG CGGAGGTCGC GCTGCCCGTC	28020
	CAGGCGCAGG GCGACGCGGC CCGCTTCGGC ATCCATCCCG CGCTGCTGGA CGCGGCGCTG	28080
10	CAGACCATGA GCCTCGGGG CTTCTTCCCC GAGGACGGCC GCGTCCGCAT GCCGTTCGCC	28140
	CTGCGCGGCG TTCGGCTGTA CCGCGCCGGA GCCGACCGGC TGCACGTGCG CGTCTCGCCC	28200
15	GTCTCCGAGG ACGCGGTCCG CATCAGGTGC GCCGACGGCG AGGGACGGCC GGTCGCCGAG	28260
	ATCGAGTCCT TCATCATGCG GCCGGTCGAC CCGGGACAGC TCCTGGGCGG CCGCCCGGTC	28320
	GGCGCCGACG CGCTCTTCCG CATCGCCTGG CGGGAACTCG CCGCCGGCCC GGGCACCCGT	28380
20	ACCGGCGACG GCACCCCTCC CCCGGTGCGC TGGGTGCTGG CGGGACCCGA CGCGCTGGGC	28440
	CTGGCCGAGG CGGCCGACGC CCACCTGCCC GCCGTTCCCG GCCCGGACGG CGCACTGCCG	28500
	TCCCCGACGG GACGCCCGGC GCCGGACGCC GTCGTGTTCG CGGTCCGTGC CGGGACCGGC	28560
25	GACGTCGCCG CCGACGCGCA CACCGTGGCC TGCCGGGTGC TGGACCTCGT CCAGCGCCGG	28620
	CTCGCGGCCC CGGAGGGCCC GGACGGCGCC CGCCTGGTGG TGGCCACCCG CGGCGCGGTC	28680
30	GCCGTACGCG ACGACGCCGA GGTGGACGAC CCGGCCGCGG CCGCCGCGTG GGGCCTGCTG	28740
•••	CGCTCCGCGC AGGCCGAGGA GCCCGGCCGG TTCCTGCTCG TGGACCTGGA CGACGACCCG	28800
	GCGTCCGCCC GGGCGCTGAC CGACGCCCTC GCCTCCGGCG AACCGCAGAC CGCGGTCCGG	28860
35	GCCGGGACGG TGTACGTGCC CCGGCTGGAG CGGGCCGCCG ACCGCACGGA CGGGCCGCTC	28920
	ACCCCGCCCG ACGACGGTGC CTGGCGGCTG GGCCGGGGCA CCGACCTCAC CCTCGACGGC	28980
	CTCGCCCTGG TGCCCGCCCC GGACGCCGAG GCGCCGCTGG AGCCCGGCCA GGTGCGCGTC	29040
40	GCCGTACGCG CCGCGGGCGT CAACTTCCGC GACGCCCTCA TCGCCCTCGG CATGTACCCG	29100
	GGCGAGGCGG AGATGGGAAC GGAGGGCGCC GGCACCGTCG TCGAGGTCGG CCCCGGCGTC	29160
	ACCECTOTCE CCGTCGGCGA CCGCGTGCTC GGCCTGTGGG ACGGGGGCCT GGGCCCGCTG	29220
45	TECCTEGCCG ACCACCGGCT GCTCGCCCCC GTCCCGGACG GCTGGTCCTA CGCCCAGGCC	29280
	GCCTCGGTCC CCGCGGTGTT CCTCAGCGCC TACTACGGTC TGGTCACCCT GGCCGGCCTC	29340
50	AGGCCGGGG AGCGGGTGCT CGTGCACGCC GCCGCGGGG GCGTCGGCAT GGCCGCGGTG	29400
	CAGATCGCCC GCCACCTCGG CGCGGAGGTG CTGGCCACCG CGAGCCCCGG CAAGTGGGAC	29460
	GCCCTGCGCG CCATGGGCAT CACCGACGAC CACCTCGCCT CCTCCCGCAC CCTCGACTTC	29520
55	GCGACCGCCT TCACCGGAGC GGACGGCACG TCCCGCGCGG ACGTCGTCCT GAACTCGCTC	29580

	ACCAAGGAGT	TCGTGGACGC	CTCCCTCGGG	CTCCTCCCTC	ceeccecce	GTTCCTGGAG	29640
5	CTGGGCAAGA	CCGACGTCCG	GGACCCCGAG	CGGATCGCCG	CCGAACACCC	CGGGGTGCGC	29700
	TACCGGGCGT	TCGACCTCAA	CGAGGCCGGA	CCCGACGCAC	TCGGCCGGCT	GCTGCGGGAA	29760
	CTGATGGACC	TGTTCGCCGC	CGCCTGCTG	CACCCCCTGC	CCGTCGTCAC	CCACGACGTG	29820
10	cecceecce	CGGACGCCCT	GCGCACCATC	AGCCAGGCCC	GGCACACCGG	AAAGCTCGTC	29880
	CTGACCATGC	CGCCCGCCTG	GCACCCGTAC	GGCACGGTCC	TGGTCACCGG	TGGCACCGGC	29940-
	GCCCTCGGCA	GCCGCATCGC	CCGCCACCTG	GCGAGCCGGC	ACGCCTCCC	CCGGCTGCTG	30000
15	ATCGCCGCCC	ccccccccc	GGACGCCGAG	GCCCCCCCC	AGCTGGTCGC	CGACCTCGCC	30060
	GCCCTGGGCG	CGTCGGCCAC	CCTCGTCGCC	TGCGACGTCT	CCGACGCGGA	CGCCGTCCGC	30120
20	GGACTGCTCG	CCGGCATACC	GGCCGATCAC	CCGCTGACGG	CGGTGGTGCA	CAGCACCGGC	30180
20	GTCCTCGACG	ACGGCGTGCT	GCCCGGGCTC	ACCCCGAGC	GGATGCGGCG	CGTGCTGCGG	30240
	CCCAAGGTGG	AGGCCGCCGT	CCACCTGGAC	GAACTCACCC	GCGACCTCGA	CCTGTCGGCG	30300
25	TTCGTCCTCT	TCTCCTCCAG	CGCCGGTCTG	CTGGGCAGCC	CGGCCCAGGG	CAACTACGCG	30360
	GCGGCCAACG	CCACCCTCGA	CGCCCTCGCC	GCCCGGCGCC	GGTCCCTCGG	CCTCCCGTCG	30420
	GTGTCACTCG	CCTGGGGTCT	GTGGTCCGAC	ACCAGCCGGA	TGGCACACGC	ACTGGACCAG	30480
30	GAGAGCCTCC	AGCGGCGCTT	CGCCCGCAGC	GGCTTCCCGC	CCCTGTCCGC	CACGCTGGGC	30540
	GCCGCGCTGT	TCGACGCCGC	CCTGCGGGTC	GACGAGGCCG	TGCAGGTCCC	CATGCGGTTC	30600
	GACCCGGCCG	CGCTGCGCGC	CACCGGAAGC	GTCCCCGCCC	TGCTGTCGGA	CCTCGTCGGG	30660
35	TCCGCCCCGG	CGACCGGGTC	CGCGGCCCCG	GCGTCCGGCC	CCCTTCCGGC	TCCGGACGCC	30720
	GGGACCGTCG	GCGAGCCGCT	CGCCGAGCGG	TTGGCCGGAC	TCTCCGCCGA	GGAACGCCAC	30780
40	GACCGGCTGC	TCGGCCTGGT	CGGCGAACAC	GTGGCCGCGG	TACTGGGCCA	CCCCTCCCCC	30840
	GCCGAGGTCC	GCCCGACCG	CCCCTTCCCC	GAGGTCGCGT	TCGACTCGCT	CACGGCCGTG	30900
	GAACTGCGCA	ACCGGATGGC	GGCGGTCACC	GGGGTCAGGC	TCCCCGCCAC	CCTGGTCTTC	30960
45	GACCACCCCA	ccccccccc	GCTGTCCTCG	CACCTCGACG	GCCTGCTGGC	CCCGGCACAG	31020
	CCGGTCACCA	CCACACCGCT	GCTGTCCGAA	CTGGACCGCA	TCGAGGAGGC	CCTGGCCGCC	31080
	CTCACCCCCG	AGCACCTCGC	GGAGCTCGCC	cccccccc	ACGACCGGGC	CGAGGTCGCC	31140
50	CTGCGCCTGG	ACGCCCTGGC	CGACCGCTGG	CCCCCCTCC	ACGACGCCCC	GCCCGGCGCC	31200
	GACGACGACA	TCACCGACGT	GCTGAGCAGC	GCCGACGACG	ACGAGATCTT	OCCUTTCATC	31260
55	GACGAGCGGT	ACGGCACGTC	GTGACCGCCG	GCCCGGAGCC	CCGCCCGTCA	TCGAAAGGAA	31320
55	GCACCACCAT	GGCGAACGAA	GAGAAGCTGC	GCGCCTACCT	CAAGCGCGTG	ACGGGTGAGC	31380

	TGCACCGGGC	CACCGAGCAG	CICCGICCCC	TGGACCGGCG	GCCCACGAG	CCGATCGCGA	31440
5	TCGTCGGGGC	GGCCTGCCGA	CTCCCCGGGG	GCGTCGAGAG	TCCGGACGAC	CTGTGGGAGC	31500
	TGCTGCACGC	CGGTGCCGAC	GCGGTCGGCC	ceeccccccc	CGACCGCGGC	TGGGACGTGG	31560
40	AGGGAAGGTA	CTCGCCCGAC	CCCGACACGC	CCGGCACCTC	GTACTGCCGC	GAGGGGGGCT	31620
10	TCGTGCAGGG	GCCGACCGG	TTCGACCCCG	CCCTCTTCGG	CATCTCGCCC	AACGAGGCGC	31680
	TCACCATGGA	CCCCCAGCAG	CGGCTGCTGC	TGGAGACCTC	CTGGGAGGCG	CTGGAGCGAG	31740
15	CCGGTCTGGA	CCCCCAGTCC	CTGGCGGGCA	GCCGGACCGG	CGTGTTCGCC	CCCCCTCCC	31800
	AGAGCGGCTA	CCAGAAGGGC	GTCGAAGGGC	TCGAAGCCGA	TCTGGAGGCC	CAACTCCTGG	31860
	CCGGCATCGT	CAGCTTCACC	GCCGGCCGCG	TCGCCTACGC	CCTGGGCCTG	GAGGCCCGG	31920
20	CGCTGACGAT	CGACACGGCC	TGCTCCTCGT	CGCTGGTGGC	ACTGCACCTG	GCGGTGCAGT	31980
	CACTGCGCCG	GGCCGAGTGC	GACCTCGCAC	TGGCGGGGGG	CGCCACGGTC	ATCGCCGACT	32040
	TCGCGCTCTT	CACCCAGTTC	TCCCGGCAGC	GCGGGCTCGC	CCCCGACGGG	CGCTGCAAGG	32100
25	CCTTCGGTGA	GACGGCCGAC	GGCTTCGGCC	CCGCCGAGGG	CGCGGGGATG	CTGCTGGTCG	32160
	AGCGGCTGTC	GGACGCCCGC	CGCAACGGGC	ACCCGGTGCT	GCCGCTGCTG	CGGGGCAGTG	32220
30	CCGTCAACCA	GGACGGTGCG	AGCAATGGGC	TGACGGCGCC	GAGTGGTCCT	GCGCAGCAGC	32280
30	GGGTGATCCG	TGAGGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	32340
	AGGCGCACGG	CACCGGCACG	CCGCTCGGCG	ACCCCATCGA	GCCCGCCGC	CTCATGGCGA	32400
35	CGTACGGGCA	CGAACGGACG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	32460
	GGCACACCCA	GCCGCCGCC	GCCGTCCCCG	GGGTGATCAA	GATGGTGCTG	GCGCTGCGCC	32520
	ACGGTGAGCT	GCCGCGCACC	CTGCACGCGT	CGACGCCGTC	CTCCAGGATC	GAATGGGACG	32580
40	CGGGCGCCGT	GGAGTTGCTG	GACGAGGCCA	GGCCCTGGCC	CCGCCGTGCC	GAGGGGCCGC	32640
	CCCCCCCCC	CATCTCCTCG	TTCGGCATCA	GCGGCACCAA	CCCCACCTC	GTCATCGAGG	32700
	AGGAGCCGCC	cecceecce	GAGCCCGAGG	AGGCCGCGCA	cccccccc	CCGGCCACCA	32760
45	CCGTCCTCCC	GCTGTCGGCC	ecceccecec	GATCCCTGCG	CGAGCAGGCC	CGCAGGCTCG	32820
	CCGCGCACCT	GGCCGGCCAC	GAGGAGATCA	CCGCCGCCGA	cecceccec	TCCGCCGCCA	32880
50	CCACCCGTGC	CCCCCTCTCC	CACCGGGCCT	CGGTCCTGGC	CGACGACCGG	CCCCCTGA	32940
50	TCGACAGGCT	GACCGCGCTG	GCGGAGGACA	GGAAGGACCC	CGGCGTCACC	CTCCGCGAGG	33000
	CGGGCAGCGG	cccccccc	CTCTTCCTCT	TCCCGGGACA	GGGCTCCCAG	TOGACGGGCA	33060
55	TGGGCGCCGA	ACTCCTGGAC	AGGGCACCGG	TCTTCCGCGC	CAAGGCCGAG	GAGTGCGCGC	33120

	GGGCCCTCGC	GCCCACCTC	GACTGGTCGG	TCCTCGACGT	CCTGCGCGAC	ccccccccc	33180
5	CCCCGCCGAT	CGACCGCGCG	GACGTCGTCC	AGCCGACCCT	GTTCACCATG	ATGGTCTCCC	33240
J	TCGCGGCGCT	GTGGGAGTCC	CACGGTGTAC	GCCCGCCGC	CGTGGTCGGC	CACTCCCAAG	33300
	GCGAGATCGC	CGCCGCCCAC	CCCCCCCTC	CCCTGTCCCT	CGACGACGCG	GCCCGCGTGA	33360
10	TCGCCGAGCG	CAGCAGGCTC	TGGAAGCGGC	TGGCCGGAAA	CGGCGGCATG	CTCTCCGTGA	33420
	TGGCCCCGGC	CGACCGGGTC	CGCGAACTGA	TGGAGCCCTG	GGCGGAGCGG	ATGTCCGTGG	33480
	CCGCCGTCAA	CCCCCCCC	TCGGTCACCG	TGGCCGGTGA	CGCGCGGGGG	CTGGAGGAGT	33540
15	TCGGCGGCCG	GCTCTCCGCC	GCCGGGGTGC	TGCGCTGGCC	CCTCGCCGGC	GTCGACTTCG	33600
	CCGGACACTC	ACCCCAGGTG	GAGCAGTTCC	GCGCCGAGCT	CCTCGACACG	CTGGGCACCG	33660
	TCCGCCCGAC	CCCCCCCC	CTGCCCTTCT	TCTCCACCGT	GACCGCCGCG	GCGCACGAGC	33720
20	CCGAAGGCCT	GGACGCCGCG	TACTGGTACC	GGAACATGCG	CGAACCCGTG	GAGTTCGCGT	33780
	CCACCCTGCG	GACGCTGCTG	CGCGAGGGCC	ACCGCACCTT	CGTCGAGATG	GCCCGCACC	33840
25	CCCTGCTGGG	CGCCGCGATC	GACGAGGTCG	CCGAGGCCGA	GGGCGTGCAC	GCCACCGCCC	33900
	TCGCCACCCT	CCACCGCGGC	TCCGGCGGCC	TGGACCGGTT	CCGCTCCTCG	GTGGGCGCCG	33960
	CGTTCGCCCA	CGGAGTACGG	GTCGACTGGG	ACGCCCTCTT	CGAGGGCTCC	GCCCCCCCC	34020
30	GGGTCCCGCT	GCCCACCTAC	GCCTTCAGCC	GGGACCGGTA	CTGGCTGCCC	ACCGCCATCG	34080
	GCCGGCGCGC	CGTCGAGGCG	GCCCCCGTCG	ACGCGTCCGC	ccccccccc	TACCGCGTCA	34140
	CCTGGACACC	CGTGGCATCC	GACGACTCCG	GCCGGCCCTC	CGGCCGCTGG	CTGCTGGTGC	34200
35	AGACCCCCGG	CACCGCGCCG	GACGAGGCGG	ACACCGCGGC	GTCGGCCCTC	CCTCCCGCCC	34260
	GGGTGGTCGT	GGAGCGCTGC	CTGCTGGATC	CCACCGAGGC	CGCGCGCGTC	ACGCTCACCG	34320
40	AGCGACTGGC	CGAACTGGAC	GCGCAGCCGG	AGGCCTGGC	CGGCGTGCTG	GTGCTGCCCG	34380
40	GCCGTCCGCA	GAGCACCGCA	CCGGCCGACG	CCTCCCCGCT	CGACCCGGGG	ACGCCCCCC	34440
	TCCTGCTCGT	GGTCCAGGCC	GTGCCGGACG	CCGCTCCGAA	GGCCCGGATC	TGGGTGGTGA	34500
45	CGCGGGGTGC	CCTCCCCCTC	CCCTCCCCTC	AGGTGCCGTG	TGCGGTGGGT	CCCCCCCTCT	34560
	GGGGTCTGGG	GCGGGTGGCT	GCGTTGGAGG	TGCCGGTGCA	CTCCCCTCCC	TTGGTGGATG	34620
	TGGCGGTGGG	GCCGCGTGTG	CGTGAGTGGC	GTCGTGTGGT	GGGTGTGGTT	GCGGGGGGTG	34680
50	GTGAGGATCA	GCTGGCGGTG	CGTGGTGGGG	CTCTCTTCCC	TCGTCGTCTC	CTCCCTCTCC	34740
	GCGTGCGGG	TGGTTCGGGG	GTGTGGCGTG	CGCGGGGGTG	TCTCCTCCTC	ACCCCTCCCT	34800
	TGGGTGGTGT	GGGGGTCAT	GTGGCGCGGT	GGTTGGCGCG	TTCGGGTGCG	GAGCATGTGG	34860
55	TGTTGGCGGG	GCGTCGGGGT	GCTCGCGTTG	TGGGGGCGGT	GGAGTTGGAG	CGGGAGTTGG	34920

	TGGGGTTGGG	GGCGAAGGTG	ACGTTCGTTT	COTOTGATGI	GGGGGATCG	GCGTCGATCG	34980
5	TGGGGTTGTT	CCCTCTCCTC	GAGGGGTTCG	CCCTCCCCTT	CCCTCCTCTC	TTTCATGCGG	35040
•	CGGGGGTGGC	TCAGGTGTCG	GGGTTGGGTG	AGGTGTCGTI	, ecceevecco	GCTCGTGTCT	35100
	TGGGGGGTAA	GGCGGTGGGG	GCTGAGTTGT	TGGACGAGTT	GACGCCGCG1	CTGGAGCTGG	35160
10	ATGCGTTCGT	GTTGTTCTCG	TCGGGTGCTG	GCCTCTCCCC	GAGTGGGGG	CAGTCGGTGT	35220
	ATGCGGCGGC	CAATGCGCAT	CTGGATGCGT	TGGCGGAGCG	TCGTCGTGCG	CAGGGGGGTC	35280
15	CCGCGACCTC	CGTCGCCTGG	GCCTGTGGG	GCGGCGAGGG	CATGGGAGCG	GACGAAGGCG	35340
	TCACGGAGTT	CTACGCCGAG	CGCGGCCTCG	CCCCCATGCG	GCCCGAGTCG	GCATCGAGG	35400
	CACTGCACAC	GGCACTGAAC	GAGGGCGACA	CCTGCGTCAC	GGTCGCCGAC	ATCGACTGGG	35460
20	AACACTTCGT	CACCGGGTTC	ACCGCCTACC	GCCCAGCCC	GCTGATCTCC	GACATCCCCC	35520
	AGGTCCGCGC	GTTGCGCACG	CCCGAACCCA	CCGTGGACGC	CTCGGACGGA	CTGCGCCGGC	35580
•	GCGTCGACGC	CGCCCTCACC	CCGCGCGAGC	GCACCAAGGT	CCTGGTCGAC	CTGGTCCGCA	35640
25	CGCTGGCGGC	GGAGGTCCTC	GGTCACGACG	GGATCGGCGG	CATCGGCCAC	GACGTGGCCT	35700
	TCCGGGACCT	CGGCTTCGAC	TCGCTGGCCG	CGGTGCGGAT	GCGCGGCCGG	CTGGCCGAGG	35760
20	CGACCGGACT	CGTACTGCCC	GCGACGGTCA	TCTTCGACCA	CCCCACCGTG	GACCGGCTCG	35820
30	GCGGCGCGCT	GCTGGAGCGG	CTGTCCGCGG	ACGAACCCGC	ccccccccc	GCGCCGGAGC	35880
	CCGCCGGGG	GAGGCCCGCG	ACCCCACCGC	CCGCACCGGA	GCCGGCCGTC	CACGACGCCG	35940
35	ACATCGACGA	ACTCGACGCG	GACGCCCTGA	TCCGGCTGGC	CACGGGAACC	GCCGGACCGG	36000
	CCGACGGCAC	GCCGGCCGAC	GCCGGCCCG	ACGCGGCGGC	GACCGCCCCC	GACGGAGCAC	36060
	CGGAGCAGTA	CCCCCCCTC	ACCGGCGCGC	CGACCGGCGG	AGCGCCGTAC	CGCCGACGCC	36120
40	CCCCACAGCC	AGCGAGCAGA	CGAGGAAGCC	GAAGATGTCA	CCGTCCATGG	ACGAAGTGCT	36180
	GGGTGCGCTG	CGCACCTCCG	TCAAGGAGAC	CGAGCGGCTG	CGCCGGCACA	ACCGGGAGCT	36240
	CCTGGCCGGC	GCGCACGAGC	CGGTCGCCAT	CGTGGGCATG	GCCTGCCGCT	ACCCCGGTGG	36300
45	CGTGAGCACC	CCGGACGACC	TGTGGGAGCT	CGCCGCGGAC	GCCTCCACG	CGATCACCCC	36360
	CTTCCCGGCC	GACCGGGGCT	GGGACGAGGA	CGCCGTCTAC	TCGCCCGACC	CCGACACCCC	36420
50	CGGCACCACC	TACTGCCGTG	AGGGCGGCTT	CCTCACCGGC	GCCGGGGACT	TCGACGCGGC	36480
	CTTCTTCGGC	ATCTCGCCGA	ACGAGGCGCT	GGTGATGGAC	CCGCAGCAGC	GCTGTTGCT	36540
	GGAGACGTCG	TGGGAGACGT	TGGAGCGGGC	CGGCATCGTC	CCCGCGTCGC	TGCGCGGCAG	36600
55	CCGTACCGGT	GTCTTCGTCG	GAGCCGCGCA	CACGGGATAC	GTCACCGACA	CCGCGCGAGC	36660

	GCCCGAGGC ACCGAGGCT ATCTGCTGAC GGGCAACGCC GATGCCGTCA TGTCCGGCCG	36720
5	GATCGCCTAC TCCCTGGGTC TGGAGGGGCC GGCGCTGACG ATCGGGACGG CCTGCTCGTC	36780
	GTCGTTGGTG GCGTTGCATC TGGCGGTGCA GTCGTTGCGG CGGGGGAGT GCGACCTGGC	36840
	CTTCGCCCGC GGCGTCGCGG TCATGCCCGA CCCGACGGTG TTCGTCGAGT TCTCGCGGCA	36900
10	GCGGGGGCTG GCGGTGGACG GGCGTGCAA GGCGTTCGCG GAGGGTGCGG ACGGGACGGC	36960
	GTGGGCGGAG GGAGTGGGTG TGCTGCTGGT GGAGCGGCTT TCCGACGCGC GCCGCAATGG	37020
	CCATCGGGTG CTGGCGGTGG TGCGGGCAGTCAAT CAGGACGGG CGAGCAATGG	37080
15	GCTGACGCG CCGAGTGGTC CTGCGCAGCA GCGGGTGATC CGTGAGGCGC TGGCTGATGC	37140
	GGGGCTGACG CCCGCCGACG TGGATGTGGT GGAGGCGCAC GGTACGGGGA CGCCGTTGGG	37200
20	TGATCCGATC GAGGCGGGTG CGTTGCTGGC CACGTACGGG CGGGAGCGGG TCGGTGATCC	37260
20	TTTGTGGTTG GGGTCGTTGA AGTCGAACAT CGGGCATGCG CAGGCGGCTG CGGGTGTGGG	37320
	TGGTGTGATC AAGGTGGTGC AGGCGATGCG GCATGGGTCG TTGCCGCGGA CGCTGCATGT	37380
25	GGATGCGCCG TCGTCGAAGG TGGAGTGGGC TTCGGGTGCG GTGGAGCTGC TGACCGAGGG	37440
	CCGGTCGTGG CCGCGGGGG TGGAGCGGGT GCGGCGGGCC GCGGTGTCGG CGTTCGGGGT	37500
	GAGCGGGACC AACGCCCATG TGGTCCTGGA GGAAGCACCG GTCGAGGCCG GGAGCGAGCA	37560
30	CGGGGACGGC CCCGGACCCG ACCGGCCCGA CGCCGTGACG GGTCCGCTCC CCTGGGTGCT	37620
	CTCGGCACGC TCGCGGGAGG CGCTGCGCGG CCAGGCCGGA CGACTCGCCG CTCTCGCCCG	37680
	CCAGGGGGC ACGGAGGCA CCGGCGGCGG CAGCGGACTC GTCGTCCCCG CGGCCGACAT	37740
35	CGGATACTCC CTGGCCACCA CCAGGGAGAC CCTGGAGCAC CGGGCGGTGG CGCTGGTGCA	37800
	GGAGAACCGG ACGGCCGGGG AGGACCTCGC CGCGCTGGCC GCCGGCCGCA CACCGGAGAG	37860
40	CCTGGTCACG GGTGTCGCGC GACGTGGCCG CGGGATCGCC TTCCTCTGCT CGGGCAGGG	37920
,,	CGCCCAGCGG CTCGGCGCCG GTCGGGAGCT CCGCGGCAGG TTCCCCGTCT TCGCCGACGC	37980
	CCTCGACGAG ATCGCGCGG AGTTCGACGC CCACCTCGAA CGCCCTCTCC TGTCGGTGAT	38040
45	GTTCGCCGAG CCCGCCACGC CGGACGCCGC ACTCCTCGAC CGCACCGACT ACACCCAGCC	38100
	GGCCCTCTTC GCGGTGGAGA CCGCGCTCTT CCGGCTCCTG GAGAGCTGGG GCCTGGTCCC	38160
	GGACGTCCTC GTGGGCCACT CGATCGGCGG TCTGGTGGCG GCTCACGTGG CGGGCGTCTT	38220
50	CTCTGCGGCC GACGCGGCCC GGCTGGTCTC CGCACGCGGC CGGCTCATGC GGGCCCTGCC	38280
	CGAGGGGGG GCGATGGGGG CCGTGCAGGC CACCGAGCGG GAGGCCGCCG CGCTGGAGCC	38340
	CGTCGCCGCC GGCGGCGCGC TGGTCGCCCCC GGTCAACGGC CCGCAGGCCC TCGTGCTCTC	38400
55	CGGGGACGAG GCGGCCGTAC TGGCGCCCC CCCTCAACTC CCCCCCCCC	38460

	CAAGCGCCTG	AGGGTGAGCC	ACCCCTTCCA	CTCACCCCGT	ATGGACGCCA	TGCTCGCCGA	38520
5	CTTCCGCGCG	GTGGCGGACA	CGGTCGACTA	CCACGCCCCC	CGGCTGCCGG	TCGTCTCCGA	38580
	AGTGACCGC	GACCTCGCCG	ACCCCCCCA	GCTGACCGAC	CCCGGCTACT	GGACCCGCCA	38640
	GGTGCGGCAG	CCGGTGCGCT	TCGCCGACGC	CGTGCGCACC	GCGAGCGCCC	GGGACGCCGC	38700
10	GACCTTCATC	GAGCTCGGGC	CCGACGCCGT	CCTGTGCGGC	ATGGCGGAGG	AGTCCCTGGC	38760
	CGCGGAGGCC	GACGTCGTGT	TCGCCCCCGC	ACTGCGCCGC	GGGCGCCCGG	AGGCGACAC	38820
15	CCTCCTCCGG	GCCGCCGCGA	GCGCGTACGT	ccccccccc	GGCCTCGACT	GGGCCGCGCT	38880
	CTACGCCGC	ACGGGAGCCC	GCCGCACCGA	CCTGCCCACC	TACGCCTTCC	AGCACAGCCG	38940
	CTACTGGCTC	GCCCCCCCCT	CGCCGCGGT	ceccccccc	ACGGCCGCCC	CCTCCGTCCG	39000
20	ATCCGTGCCG	GAAGCCGAGC	AGGACGGGGC	GCTGTGGGCC	GCCGTGCACG	CCGGTGACGT	39060
	CGCCTCGGCC	GCGGCGCGAC	TGGGCGCCGA	CGACGCCGGT	ATCGAACACG	AACTGCGCGC	39120
	GCTCCTGCCG	CACCTGGCCG	CCTGGCACGA	CCGCGACCGC	GCGACCGCGC	GGACCGCGGG	39180
25	CCTGCACTAC	CGCGTCACCT	GGCAGGCGAT	CGAGGCAGAC	GCTGTCAGGT	TCAGCCCCTC	39240
	GGATCGCTGG (CTGATGGTCG	AGCATGGGCA	GCACACGGAA	TGCGCGGACG	CCGCGGAACG	39300
	GGCGCTGCGC (SCGGCCGGCG	CGGAGGTCAC	CCGCCTGGTG	TGGCCGCTGG	AGCAGCACAC	39360
30	CGGATCACCG (CGGACGGAGA	CCCCGGACCG	CGGCACCCTG	GCGGCCCGGC	TGGCCGAGCT	39420
	CGCACGGAGC (CCGGAGGGCC	TGGCCGGCGT	GCTGCTGCTC	CCCGACTCGG	GCGGTGCCGC	39480
35	GGTCGCCGGG (CACCCCGGGC	TGGACCAGGG	AACGGCGGCG	GTGCTGCTGA	CGATCCAGGC	39540
	ACTGACCGAC (SCCGCGGTGC	GGCACCGCT	GTGGGTGGTG	ACGCGGGGTG	CGGTGGCGGT	39600
	GGGGTCGGGT (SAGGTGCCGT	GTGCGGTGGG	TGCGCGGGTG	TGGGGTCTGG	GCCGGTGGC	39660
40	TGCGTTGGAG G	GTGCCGGTGC	AGTGGGGTGG	GTTGGTGGAT	GTGGCGGTGG	GCCCCCTCT	39720
	GCGTGAGTGG	CCTCCTCTCC	TCCCTCTCCT	TGCGGGGGGT	GGTGAGGATC	AGGTGGCGGT	39780
	GCCTGGTGGG	GTGTGTTCG	GTCGTCGTCT	CCTCCCTCTC	GGGGTGCGGG	CTCCTTCCCC	39840
45	GGTGTGGCGT G	CCCCCCCCT (GTGTGGTGGT	GACGGGTGGG	TTGGGTGGTG	TGGGGGGTCA	39900
	TCTCCCCCC I	TEGTTEGECCC (GTTCGGGTGC	GGAGCATGTG	GTGTTGGCGG	GCCTCGGG	39960
	TGGTGGGGTT G						40020
50	GACGTTCGTT T						40080
	GGAGGGGTTG G						40140
55	GGGGTTGGGT G						40200
33							44500

	CCCTGACTTC TTGGACGACT TGACGGCGCC TGTGGAGCTG GA	ATGCGTTCG TGTTGTTCTC	40260
5	CTCCCCTCCT CCCCTCTCCC CCACTCCCCC TA	TGCGGCGG CCAATGCGCA	40320
	TCTGGATGCG TTGGCGGAGC GTCGTCGTGC GCAGGGGGGT CC	CCCCACCT CCCTCCCCTC	40380
	CCCCCCTGG GACGCCGACG GCATGGGCGA GATGGCGCCC GA	GGGCTACT TCGCCCGCCA	40440
10	CGGCGTGGCC CCGCTCCACC CCGAGACGGC GCTCACCGCC CT	GCACCAGG CCATCGACGG	40500
	CCCCGAAGCC ACGGTCACCG TGGCGGACAT CGACTGGGAA CG	GTTCGCCC CCGCCTTCAC	40560
	CGCCTTCCGT CCCAGCCCCC TGATCGCCGG CATCCCCGCG GC	CCGTACGG CGCCGCCGC	40620
15	CCCCCGCCC GCCGAGGACA CCCCCACCGC CCCCGGCCTC CTC	GCGGGCC GCCCGAGGA	40680
	CCGCCGCGG CTCGCCCTGG ACCTGGTGCT CCGCCACGTC GC	GGCGGTCC TCGGCCACTC	40740
20	CGAGGACGCC CGGGTCGACG CCCGGGCCCC CTTCCGGGAC CT	CGGCTTCG ACTCGCTCGC	40800
20	CGCGGTGCGG CTGCGCCGCC GGCTGGCCGA GGACACCGGG CTG	CGACCTGC CCGGCACCCT	40860
•	CGTCTTCGAC CACGAGGACC CCACCGCGCT GGCCCACCAC CTC	GGCCGGCC TCGCCGACGC	40920
25	GGGGACCCCC GGCCCCCAGG AGGGCACGGC TCGGGCCGAG AGG	CGGGCTGT TCGCCTCCTT	40980
	CCGCGCCGCC GTCGAACAGC GCAGGTCGAG CGAGGTCGTG GAC	GCTGATGG CCGACCTGGC	41040
30	GCCCTTCCGG CCCGCCTACT CCCGGCAGCA CCCCGGCTCC GGC	CCGCCCG CGCCCGTACC	41100
	CCTCGCGACC GGACCGGCGA CGCGTCCCAC GCTGTACTGC TGC	CGCCGGCA CCGCGGTCGG	41160
	CTCCGGGCCC GCCGAGTACG TCCCGTTCGC CGAAGGACTG CGC	CGGCGTCC GGGAGACGGT	41220
	CGCCCTTCCC CTGTCCGGCT TCGGCGACCC CGCGGAACCG ATC	GCCCGCAT CGCTCGACGC	41280
35	GCTGATCGAG GTCCAGGCCG ACGTCCTCCT GGAGCACACC GCC	GGGCAAGC CCTTCGCCCT	41340
	CGCCGGCCAC TCCGCCGGCG CGAACATCGC CCACGCCCTG GCC	CGCCCGGC TGGAGGAACG	41400
40	COGCTCGGGC CCCGCAGCCG TCGTACTGAT GGACGTCTAC CGT	ICCCGAGG ACCCCGGTGC	41460
	GATGGGCGAG TGGCGCGACG ACCTGCTCAG CTGGGCGCTC GAA	ACGCAGCA COGTGCCCCT	41520
	GGAGGACCAC CGGCTCACCG CCATGGCCGG CTATCAGCGG CTG	GTGCTCG GAACCCGGCT	41580
45	CACCGCCCTC GAAGCCCCCG TCCTGCTGGC CCGGGCGTCC GAA	ACCCCTGT GCGCGTGGCC	41640
	GCCCGCGGC GGGCGCGGG GCGACTGGCG GTCCCAGGTC CCG	GTTCGCAC GGACCGTCGC	41700
	CGACGTGCCC GGCAACCACT TCACCATGCT CACCGAACAC GCC	CCGCCACA CCGCGTCCCT	41760
50	GGTGCACGAA TGGCTGGACA GCCTCCCGCA CCAGCCCGGT CCC	CGCCCCGC TCACCGGAGG	41820
	GAAACACTGA TGTACGCCGA CGACATCGCG GCCGTCTACG ACC	CTGGTCCA CGAGGGGAAG	41880
	GGGAAGGACT ACCGGCAGGA GGCCGAGGAG ATCGCCGCAC TCG	CTCCCCCT CCACCCCCCC	41940
55	GCGCCCGGA CCCTGCTCGA CGTGGCCTGC GGCACCGGCC AGC	CACCTGCA CCACCTGGAC	42000

	GGCCTCTTCG	ACCACGTCGA	GGGCCTGGAA	CTCTCCGCCG	ACATGCTGGC	CCTCGCGACC	42060
5	GCCCGGAACC	CCGGTGTCAC	CTTCCACCAA	GGGGACATGC	GCTCGTTCTC	CCTCCCACCC	42120
	CGGTTCGACG	CGGTGACCTG	CATGTTCAGC	TCCATAGGCC	ACCTGCGGAC	CACCGACGAA	42180
10	CTCGACAGCA	CGCTGCGGGC	CTTCACCGAC	CACCTCGAAC	CGTCCGGCGT	CATCGTCGTC	42240
70	GAACCCTGGT	GGTTCCCCGA	GTCCTTCACC	CCCGGTTACG	TCGGCGCCAG	CATCACGGAG	42300
	GCGGGCGAGC	GCACCGTCTG	CCGGGTCTCG	CACTCCGTAC	GGGAGGGGAA	CCCACCCCC	42360
15	ATCGAGGTGC	ACTACCTCCT	CGCCGGACCC	GCCGCCGTCC	GTCACCTGAC	CGAGGACCAC	42420
	ACCATCACCC	TGTTCCCGCG	CGCCGACTAC	GAGGCGGCCT	TCGAGCGCGC	CGGCTGCGAC	42480
	GTGGTCTACC	AGGAAGGCGG	CCCGTCCGGT	CGCGGGCTGT	TCATCGGCAC	CCCCCCCTGA	42540
20	CCCGGTGCCG	ACGCGGACCG	ccccccccc	GAGGCGGGTT	GCCCCGACCC	ACCCGGCACA	42600
	CCCGGGTCCC	CCGATCGTGC	GAGCGCCCCC	ATCGACCCGA	GAAGAAAGGC	AGGGCAGCCA	42660
	TGCCCACCCT	TGCCACGGAA	ACGCCCCCG	CGAGCACGAG	CACGAGCGCG	GGCACGAGCA	42720
25	CGGGCGTCCG	TGCGCTCGGC	CGTCGGCTCC	AGCTGACCCG	GCCGCACAC	TOGTGCGCCG	42780
	GCAACCAGGG	CGACCCGTAC	GCGCTGATCC	TGCGCGCCGT	CGCCGACCCC	GAGCCGTTCG	42840
30	AACGGGAGAT	CCGGGCCCGC	GGACCGTGGT	TCCGCAGCGA	ACAGCTGGAC	GCCTGGGTGA	42900
	CCGCGGACCC	CGAGGTGGCG	GCGGCCGTCC	TGGCCGACCC	GCGCTTCGGC	ACGCTGGACC	42960
	GGGCCGGACG	CCGCCCGGAC	GAGGAACTGC	TGCCCCTCGC	CGAGGCGTTC	CCCCACCACG	43020
35	AACGCGCGGA	GCTCGTACGC	CTGCGGGCGC	TGGCCGCCCC	GGTGCTCAGC	CGGTACGCCC	43080
	CGGCCCAGGC	GCCCTGCGCG	GCGCGCACCA	CCGCCCGCAG	AGTGCTCGGC	CCCCTCCTCC	43140
	CCACCGGTGA	CGCCGGGTTC	GACCTTGTCG	GCGAGGTCGC	CCGGCCCTAC	GCCGTCGAGC	43200
40	TGATGCTCAG	GCTCCTCGGA	GTGCCGGGCC	GCGACCGCGC	CACCGCCGCG	CGGCCACTCG	43260
	CCCCCTCCGG	CCCCCAGCTC	GACGCCCGGA	TGGCCCCGCA	ACTGCTGACC	C1CCCCCCCC	43320
	AGTCCGCCGA	CGCCGTCCGC	ACACTGGCCG	ACCTGGTCCC	CGAGCTCGTC	GCGGAGAAGT	43380
45	CCCGGGGCCT	CGGGAACGCC	GAGCCCCGGC	CCGACGACGT	GCTCGCCCTC	CTCCTCCACG	43440
	ACGGCGTCGC	CCCCGGCGAC	GTCGAGCGCA	TCGCGCTGCT	CCTCGCGGTC	GCCCACCCG	43500
50	AACCCGTCGT	CACCGCCGTC	GCGCACACGG	TCCACCGGCT	GCTCGGCCGG	CCGGGGGAGT	43560
	GGGAGAGGGC	CCGCCGGACG	ccecceces	CGAACGCCGT	CGACCAGGTG	CTGCGCGAGC	43620
	GCCCCCGGC	CCGGCTGGAG	AACCGGGTCG	CGCACACCGG	CCTCGAACTC	GCCGCCCCCC	43680
55	GGATCACCGC	CGACGAGCAC	GTCGTGGTGC	TGGCCGCCGC	CGGACGGGAG	ATCCCCCCCCC	43740

	CGGAGCCGCT CGGGGGCGCC GACGGACCGC ACCTGGCGCT CGCCCTCCCG CTGATCCGCC	43800
5	TEGCCECCAC CACCECEGTC CAGGTCACGE CCGGCCCT GCCCGGCCTG CGGGCCGAGG	43860
	GACCGCCCCT GACCCGGCCG CGGTCACCGG TCCTGGGCGC CTGCGCCCGC CTCCGGGTCC	43920
	ACCCGGGATG ACCCCGCCGT CCGTACGCCC CCTCCCAGAC CGGAGCCGCT CTGCGCGTCC	43980
10	TGCTGACATC CCTCGCCCAC AACACCCACT ACTACAGTCT GGTGCCCCTC GCCTGGGCGC	44040-
	TECECECCEC CEGECACEAE GTACECETTES CEAGCCCECC CTCCCTCACC GACETCATCA	44100
	CCTCCACCGG TCTGACCGCC GTACCGGTGG GCGACGACCG ACCGGCCGCG GAGCTGCTCG	44160
15	CCGAGATGGG CAGAGACCTC GTCCCCTACC AGAGGGGCTT CGAGTTCGGT GAGGTGCAGA	44220
	3GCGAGGAGGA GACCACCTGG GAGTACCTGC TCGGCCAGCA GAGCATGATG GCCGCCCTGT	44280
20	GCTTCGCCCC GTTCAACGGC GCCGCCACGA TGGACGAGAT CGTCGACTTC GCCCGTGGCT	44340
20	GGCGGCCCGA CCTGGTCGTG TGGGAACCCT GGACCTA	44377
	(2) INFORMATION FOR SEQ ID NO:2:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 4550 amino acids	
	(B) TYPE: amino acid (D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: peptide	
	(vi) SPOURNOR PROGRAMME	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	-
35	Met Ser Gly Glu Leu Ala Ile Ser Arg Ser Asp Asp Arg Ser Asp Ala 1 5 10 15	
	Val Ala Val Val Gly Met Ala Cys Arg Phe Pro Gly Ala Pro Gly Ile	
40	25 30	
40	Ala Glu Phe Trp Lys Leu Leu Thr Asp Gly Arg Asp Ala Ile Gly Arg 35 40 45	
	Asp Ala Asp Gly Arg Arg Gly Met Ile Glu Ala Pro Gly Asp Phe	
45	55 60	
	Asp Ala Ala Phe Phe Gly Met Ser Pro Arg Glu Ala Ala Glu Thr Asp 65 70 75 80	
	Pro Gln Gln Arg Leu Met Leu Glu Leu Gly Trp Glu Ala Leu Glu Asp	
50	90 95	
	Ala Gly Ile Val Pro Gly Ser Leu Arg Gly Glu Ala Val Gly Val Phe	
	Val Gly Ala Met His Asp Asp Tyr Ala Thr Leu Leu His Arg Ala Gly	
55	115 120 125 Arg Ala Gly	

		130	!				135					140)			Leu
5	Ala 145	Asn	Arg	Leu	Ser	Тух 150	Val	Leu	Gly	Thr	155		Pro	Ser	Leu	Ala 160
	Val	Asp	Thr	Ala	Gln 165	Ser	Ser	Ser	Leu	Val 170		Val	Ala	Leu	Ala 175	Val
10	Glu	Ser	Leu	Arg 180	Ala	Gly	Thr	Ser	Arg 185		λla	Val	Ala	Gly 190		Val
	Asn	Leu	Val 195	Leu	Ala	Asp	Glu	Gly 200	Thr	Ala	Ala	Met	Glu 205		Leu	Gly
15	Ala	Leu 210	Ser	Pro	Asp	Gly	Arg 215	Cys	His	Thr	Phe	Asp 220	Ala	Arg	Ala	Asn
20	Gly 225	Tyr	Val	Arg	Gly	Glu 230	Gly	Gly	Ala	Ala	Val 235		Leu	Lys	Pro	Leu 240
	Ala	Asp	Ala	Leu	Ala 245	Asp	Gly	Asp	Pro	Val 250	Tyr	Cys	Val	Val	Arg 255	Gly
25	Val	Ala	Val	Gly 260	Asn	Asp	Gly	Gly	Gly 265	Pro	Gly	Leu	Thr	Ala 270	Pro	Asp
	Arg	Glu	Gly 275	Gln	Glu	Ala	Val	Leu 280	Arg	Ala	Ala	Суѕ	Ala 285	Gln	Ala	Arg
30	Val	Asp 290	Pro	Ala	Glu	Val	Arg 295	Phe	Val	Glu	Leu	His 300	Gly	Thr	Gly	Thr
	Pro 305	Val	Gly	Asp	Pro	Val 310	Glu	Ala	His	Ala	Leu 315	Gly	Ala	Val	His	Gly 320
35	Ser	Gly	Arg	Pro	Ala 325	Asp	Asp	Pro	Leu	Leu 330	Val	Gly	Ser	Val	Lys 335	Thr
	naA	Ile	Gly	His 340	Leu	Glu	Gly	Ala	Ala 345	Gly	Ile	Ala	Gly	Leu 350	Val	Lys
40	Ala	Ala	Leu 355	Суа	Leu	Arg	Glu	Arg 360	Thr	Leu	Pro	Gly	Ser 365	Leu	Asn	Phe
45	Ala	Thr 370	Pro	Ser	Pro	Ala	Ile 375	Pro	Leu	Asp	Gln	Leu 380	Arg	Leu	Lys	Val
45	Gln 385	Thr	Ala	Ala	Ala	Glu 390	Leu	Pro	Leu	Ala	Pro 395	Gly	Gly	Ala		Leu 400
50	Leu	Ala	Gly	Val	Ser 405	Ser	Phe	Gly	Ile	Gly 410	Gly	Thr	Asn		His 415	Val
	Val	Leu	Glu	His 420	Leu	Pro	Ser	Arg	Pro 425	Thr	Pro	Ala		Ser 430	Val	Ala
55	Ala	Ser	Leu 435	Pro	Asp '	Val	Pro	Pro :	Leu	Leu	Leu		Ala 445	Arg	Ser	Glu

	Gly	Ala 450	Leu	Arg	Ala	Gln	Ala 455		λrg	Leu	Gly	Glu 460		Val	Glu	Arg
5	Val 465	Gly	Ala	Asp	Pro	Arg 470	qsA	Val	λla	Tyr	Ser 475		Ala	Ser	Thr	Arg 480
	Thr	Leu	Phe	Glu	His 485	Arg	λla	Val	Val	Pro	Сув	Gly	Gly	Arg	Gly 495	Glu
10	Leu	Val	Ala	Ala 500	Leu	Gly	Gly	Phe	Ala 505	Ala	Gly	Arg	Val	Ser 510	Gly	Gly
	Val	Arg	Ser 515	Gly	Arg	Ala	Val	Pro 520	Gly	Gly	Val	Gly	Val 525		Phe	Thr
15	Gly	Gln 530	Gly	Ala	Gln	Trp	Val 535	Gly	Met	Gly	Arg	Gly 540	Leu	Tyr	Ala	Gly
20	Gly 545	Gly	Val	Phe	Ala	Glu 550	Val	Leu	Asp	Glu	Val 555	Leu	Ser	Met	Val	Gly 560
20	Glu	Val	Хsр	Gly	Arg 565	Ser	Leu	Arg	Asp	Val 570	Met	Phe	Gly	Asp	Val 575	Asp
25	Val	Asp	Ala	Gly 580	Ala	Gly	Ala	Asp	Ala 585	Gly	Ala	Gly	Ala	Gly 590	Ala	Gly
	Val	Gly	Ser 595	Gly	Ser	Gly	Ser	Val 600	Gly	Gly	Leu	Leu	Gly 605	Arg	Thr	Glu
30	Phe	Ala 610	Gln	Pro	Ala	Leu	Phe 615	Ala	Leu	Glu	Val	Ala 620	Leu	Phe	Arg	Ala
	Leu 625	Glu	Ala	Arg	Gly	Val 630	Glu	Val	Ser	Val	Val 635	Leu	Gly	His	Ser	Val 640
35	Gly	Glu	Val	Ala	Ala 645	Ala	Tyr	Val	Ala	Gly 650	Val	Leu	Ser	Leu	Gly 655	Asp
	Ala	Val	Arg	Leu 660	Val	Val	Ala	Arg	Gly 665	Gly	Leu	Met	Gly	Gly 670	Leu	Pro
40	Val	Gly	Gly 675	Gly	Met	Trp	Ser	Val 680	Gly	Ala	Ser	Glu	Ser 685	Val	Val	λrg
_	Gly	Val 690	Val	Glu	Gly	Leu	Gly 695	Glu	Trp	Val	Ser	Val 700	Ala	Ala	Val	λsn
45	Gly 705	Pro	Arg	Ser	Val	Val 710	Leu	Ser	Gly		Val 715	Gly	Val	Leu	Glu	Ser 720
50	Val	Val	Ala	Ser	Leu 725	Met	Gly	Asp	Gly	Val 730	Glu	Суз	Arg	Arg	Leu 735	Asp
	Val	Ser	His	Gly 740	Phe	His	Ser	Val	Leu 1 745	Met	Glu	Pro		Leu 750	Gly	Glu
55	Phe	Arg	Gly 755	Val	Val (Glu	Ser	Leu 760	Glu	Phe (Gly		Val 765	Arg	Pro	Gly

	Val	Val 770	Val	Val	Ser	Gly	Val 775	Ser	Gly	Gly	Val	Val 780	Gly	Ser	Gly	Glu
5	Leu 785		Ąsp	Pro	Gly	Tyr 790	Trp	Val	Arg	His	Ala 795	Arg	Glu	Ala	Val	Arg 800
10	Phe	Ala	Asp	Gly	Val 805	Gly	Val	Val	Arg	Gly 810	Leu	Gly	Val	Gly	Thr 815	Leu
	Val	Glu	Val	Gly 820	Pro	His	Gly	Val	Leu 825	Thr	Gly	Met	Ala	Gly 830	Glu	Cys
45	Leu	Gly	Ala 835	Gly	Asp	Asp	Val	Val 840	Val	Val	Pro	Ala	Met 845	Arg	Arg	Gly
15	Arg	Ala 850	Glu	Arg	Glu	Val	Phe 855	Glu	Ala	Ala	Leu	Ala 860	Thr	Val	Phe	Thr
20	Arg 865	Asp	Ala	Gly	Leu	Asp 870	Ala	Thr	Ala	Leu	His 875	Thr	Gly	Ser	Thr	Gly 880
	Arg	Arg	Ile	Asp	Leu 885	Pro	Thr	Tyr	Pro	Phe 890	Gln	Arg	Arg	Thr	His 895	Trp
25	Ser	Pro	Ala	Leu 900	Ser	Arg	Pro	Val	Thr 905	Ala	Asp	Ala	Gly	Ala 910	Gly	Val
	Thr	Ala	Thr 915	Asp	Ala	Val	Gly	His 920	Ser	Val	Ser	Pro	Asp 925	Pro	Glu	Ser
30	Thr	Glu 930	Gly	Thr	Ser	His	Arg 935	Asp	Thr	Asp	Asp	Glu 940	Ala	Asp	Ser	Ala
	Ser 945	Pro	Glu	Pro	Met	Ser 950	Pro	Glu	Asp	Ala	Val 955	Arg	Leu	Val	Arg	Glu 960
35	Ser	Thr	Ala	Ala	Val 965	Leu	Gly	His	Asp	А зр 970	Pro	Gly	Glu	Val	Ala 975	Leu
	Asp	Arg	Thr	Phe 980	Thr	Ser	Gln	Gly	Met 985	Asp	Ser	Val	Thr	Ala 990	Val	Glu
40	Leu	Суз	Asp 995	Leu	Leu	Lys	Gly	Ala 1000		Gly	Leu	Pro	Leu 1005		Ala	Thr
45	Leu	Val 1010	Tyr	Asp	Leu	Pro	Thr 1015		Arg	Ala	Val	Ala 1020		His	Ile	Val
45	Glu 1025	Ala	Ala	Gly	Gly	Pro 1030		Asp	Ser	Val	Ala 1035		Gly	Pro	Gly	Val 1040
50	Leu	Ser	Ser	Ala	Ala 1045	Val	Gly	Val	Ser	Asp 1050		Arg	Gly	Gly	Ser 1055	
	Asp	Asp	Asp	Asp 1060	Pro	Ile	Ala		Val 1065		Val	Gly	Cys	Arg 1070		Pro
55	Gly	Gly	Val 1075	Asp	Ser	Arg	Ala	Ala 1080		Trp	Glu	Leu	Leu 1085		Ser	Gly

	Ala Asp Ala 1090	Ile Ser Ser	r Phe Pro Thr Asp 1095	Arg Gly Trp Asp	p Leu Asp
5	Gly Leu Tyr 1105	Asp Pro Glu	Pro Gly Thr Pro 10	Gly Lys Thr Ty 1115	r Val Arg 1120
10	Glu Gly Gly	Phe Leu His	S Ser Ala Ala Glu 113		Phe Phe
	Gly Ile Ser	Pro Arg Glu 1140	Ala Thr Ala Met 1145	Asp Pro Gln Gli 119	
15	Leu Leu Glu 1155	Ala Ser Trp	Glu Ala Leu Glu 1160	Asp Ala Gly Val	Leu Pro
	Glu Ser Leu 1170	Arg Gly Gly	Asp Ala Gly Val	Phe Val Gly Ala 1180	Thr Ala
20	1185	119		1195	1200
	Tyr Leu Leu	Thr Gly Thr 1205	Thr Ala Ser Val		Ile Ala 1215
25	Tyr Thr Leu	Gly Thr Gly 1220	Gly Pro Ala Leu 1225	Thr Val Asp Thr 123	
	Ser Ser Ser 1235	Leu Val Ala	Leu His Leu Ala 1240	Val Gln Ala Leu 1245	Arg Arg
30	Gly Glu Cys 1250	Gly Leu Ala	Leu Ala Gly Gly 1255	Ala Thr Val Met 1260	Ser Gly
	Pro Gly Met 1265	Phe Val Glu 127	Phe Ser Arg Gln	Arg Gly Leu Ala 1275	Pro Asp 1280
35	Gly Arg Cys	Met Pro Phe 1285	Ser Ala Asp Ala 1290		Trp Ser 1295
	Glu Gly Val	Ala Val Leu 1300	Ala Leu Glu Arg 1305	Leu Ser Asp Ala 131	
40	Ala Gly His . 1315	Arg Val Leu	Gly Val Val Arg 1320	Gly Ser Ala Val 1325	Asn Gln
_	Asp Gly Ala : 1330	Ser Asn Gly	Leu Thr Ala Pro 1335	Asn Arg Ser Ala 1340	Gln Glu
45	Gly Val Ile 2 1345	Arg Ala Ala 135	Leu Ala Asp Ala O	Gly Leu Ala Pro 1355	Gly Asp 1360
50	Val Asp Ala	Val Glu Ala 1365	His Gly Thr Gly	Thr Ala Leu Gly	Asp Pro 1375
	Ile Glu Ala S	Ser Ala Leu 1380	Leu Ala Thr Tyr 1385	Gly Arg Glu Arg 139	
55	Asp Pro Leu 1 1395	Trp Leu Gly	Ser Leu Lys Ser 1400	Asn Val Gly His 1405	Thr Gln

	Ala	Ala 141	Ala .0	Gly	Ala	λla	Gly 141	Val	l Val	Lys	Met	Leu 142		Ala	Leu	Glu
<i>5</i>	His 142	Gly 5	Thr	Leu	Pro	Arg 143	Thr 0	Leu	ı His	Ala	Asp		Pro	Ser	Thr	His 1440
10	Val	Asp	Trp	Ser	Ser 144	Gly 5	Thr	Va]	Ala	Leu 145		Ala	Glu	Ala	Arg 145	
	Trp	Pro	Arg	Arg 146	Ser 0	Asp	Arg	Pro	Arg 146		Ala	Ala	Val	Ser 147		Phe
15			147	5				148	0				Glu 148	5		
	Trp	Val 149	Glu 0	Asp	Ile	Asp	Gly 149	Val 5	Ala	Ala	Pro	Asp 150	Arg 0	Gly	Thr	Ala
20	Asp 150	Ala 5	Ala	Ala	Pro	Ser 151	Pro 0	Leu	Leu	Leu	Ser 151		Arg	Ser	Glu	Gly 1520
	Ala	Leu	Arg	Ala	Gln 152	Ala 5	Val	Arg	Leu	Gly 153		Tyr	Val	Glu	Arg 1535	
25				1540)				154	5			Ser	1550)	
	Leu	Phe	Glu 1555	His	Arg	Ala	Val	Val 156	Pro 0	Cys	Gly	Gly	Arg 1565		Glu	Leu
30	Val	Ala 1570	Ala)	Leu	Gly	Gly	Phe 157	Ala 5	Ala	Gly	Arg	Val 1580	Ser)	Gly	Gly	Val
	Arg 1585	Ser	Gly	Arg	Ala	Val 1590	Pro	Gly	Gly	Val	Gly 1595		Leu	Phe	Thr	Gly 1600
35	Gln	Gly	Ala	Gln	Trp 1605	Val	Gly	Met	Gly	Arg 1610	Gly	Leu	Tyr	Ala	Gly 1615	
	Gly	Val	Phe	Ala 1620	Glu	Val	Leu	λ sp	Glu 1625	Val	Leu	Ser	Met	Val 1630		Glu
40	Val	qeA	Gly 1635	Arg	Ser	Leu	Arg	Asp 1640	Val	Met	Phe		Asp 1645		Asp	Val
45	Asp	Ala 1650	Gly	Ala	Gly	Ala	Asp 1655	Ala	Gly	Ala		Ala 1660	Gly	Ala	Gly	Val
	Gly 1665	Ser	Gly	Ser	Gly	Ser 1670	Val	Gly	Gly		Leu 1675	Gly	λrg	Thr		Ph e 1680
50	Ala	Gln	Pro .	Ala	Leu 1685	Phe	Ala	Leu		Val 1690		Leu	Phe .		Ala 1 1695	Leu
	Glu .	Ala	Arg (Gly ' 1700	Val (Glu '	Val	Ser	Val 1705	Val	Leu (Gly	His :	Ser '	Val (Gly
5 <i>5</i>	Glu '	Val.	Ala 1 1715	Ala i	Ala '	Tyr '	Val .	Ala 1720	Gly	Val :	Leu :		Leu (1725	Gly :	Asp i	Ala

	Val Arg Leu Val 1730	Val Ala Arg Gly 1735	Gly Leu Met Gly 174	Gly Leu Pro Val
5	Gly Gly Gly Met 1745	Trp Ser Val Gly 1750	Ala Ser Glu Ser 1755	Val Val Arg Gly 1760
10	Val Val Glu Gly	Leu Gly Glu Trp 1765	Val Ser Val Ala 1770	Ala Val Asn Gly 1775
	Pro Arg Ser Val 178	_	Asp Val Gly Val	Leu Glu Ser Val 1790
15	Val Ala Ser Leu 1795	Met Gly Asp Gly 180		Arg Leu Asp Val 1805
	Ser His Gly Phe 1810	His Ser Val Leu 1815	Met Glu Pro Val 182	Leu Gly Glu Phe
20	Arg Gly Val Val 1825	Glu Ser Leu Glu 1830	Phe Gly Arg Val 1835	Arg Pro Gly Val 1840
	Val Val Val Ser	Gly Val Ser Gly 1845	Gly.Val Val Gly 1850	Ser Gly Glu Leu 1855
25	Gly Asp Pro Gly 186		His Ala Arg Glu 1865	Ala Val Arg Phe 1870
	Ala Asp Gly Val 1875	Gly Val Val Arg 188		Gly Thr Leu Val 1885
30	Glu Val Gly Pro	His Gly Val Leu 1895	Thr Gly Met Ala	Gly Glu Cys Leu
	Gly Ala Gly Asp 1905	Asp Val Val Val 1910		Arg Arg Gly Arg 1920
35	Ala Glu Arg Glu	Val Phe Glu Ala 1925	Ala Leu Ala Thr 1930	Val Phe Thr Arg 1935
	Asp Ala Gly Leu 194		Leu His Thr Gly 1945	Ser Thr Gly Arg 1950
40	Arg Ile Asp Leu 1955	Pro Thr Tyr Pro 196		Arg Tyr Trp Leu 1965
45	Asp Pro Val Arg 1970	Thr Ala Val Thr 1975	Gly Val Glu Pro 198	Ala Gly Ser Pro
	Ala Asp Ala Arg 1985	Ala Thr Glu Arg 1990	Gly Arg Ser Thr 1995	Thr Ala Gly Ile 2000
50	Arg Tyr Arg Val	Ala Trp Gln Pro 2005	Ala Val Val Asp 2010	Arg Gly Asn Pro 2015
	Gly Pro Ala Gly 202		Leu Ala Pro Asp 2025	Glu Asp Thr Ala 2030
. 55	Asp Ser Gly Leu 2035	Ala Pro Ala Ile 204		Ala Val Arg Gly 2045

	Ala	Glu 2050		His	Thr	Val	Ala 2055		Pro	Val	Gly	Thr 2060		Arg	Glu	λla
5	Ala 2065		qeÁ	Leu	Leu	Arg 207(Ala	Gly	Asp	Gly 2075		Ala	Arg	Ser	Thr 2080
10	Arg	Val	Leu	Trp	Leu 2085		Pro	Ala	Glu	Pro 2090	ds v	Ala	Ala	Asp	Ala 2095	
	Ala	Leu	Val	Gln 2100		Leu	Gly	Glu	Ala 2105		Pro	Glu	Ala	Pro 2110		Trp
15	Ile	Thr	Thr 2115	_	Glu	Ala	Ala	Ala 2120		Arg	Pro	Asp	Glu 2125		Pro	Ser
	Val	Gly 2130		Ala	Gln	Leu	Trp 2135		Leu	Gly	Gln	Val 2140		Ala	Leu	Glu
20	Leu 2149	_	Arg	Arg	Trp	Gly 2150	-	Leu	Ala	Asp	Leu 2155		Gly	Ser	Ala	Ser 2160
	Pro	Ala	Val	Leu	Arg 2165		Phe	Val	Gly	Ala 2170	Leu	Leu	Ala	Gly	Gly 2175	
25	Asn	Gln	Phe	Ala 2180		Arg	Pro	Ser	Gly 2185		His	Val	Arg	Arg 2190		Val
	Pro	Ala	Pro 2195		Pro	Val	Pro	Ala 2200		Ala	Arg	Thr	Val 2205		Thr	Ala
30	Pro	Ala 2210		Ala	Val	Gly	Glu 2215		Ala	Arg	Asn	Asp 2220		Ser	λ sp	Val
	Val 2225		Pro	Asp	qeA	Arg 2230		Ser	Ser	Gly	Thr 2235		Leu	Ile	Thr	Gly 2240
35	Gly	Thr	Gly	Ala	Leu 2245		Ala	Gln	Val	Ala 2250	λrg	Arg	Leu	λla	Arg 2255	
	Gly	Ala	Ala	Arg 2260		Leu	Leu	Val	Gly 2265		Arg	Gly		Ala 2270		Pro
40	Gly		Gly 2275		Leu	Val	Glu	Glu 2280		Thr	λla	Leu	Gly 2285		Glu	Val
<i>45</i>	Ala	Val 2290									ζsp			Ala	λlα	Leu
	Leu 2305		Gly	Leu	Pro	Glu 2310		Arg	Pro	Leu	Val 2315		Val	Leu	His	Ala 2320
50	Ala	Gly	Val	Leu	Азр 2325		Gly	Val	Leu	Asp 2330	Ser	Leu	Thr		Asp 2335	-
	Val	Ąsp	Ala	Val 2340		Àrg	Ąsp	Lys	Val 2345		Ala	Ala	Arg	His 2350		qsA
55	Glu	Leu	Thr 2355		Asp	Leu	Pro	Leu 2360		Ala	Phe	Val	Leu 2365		Ser	Ser

	Ile	Val 237	Gly 0	Val	Trp	Gly	Asn 237	Gly	Gly	Gln	Ala	Val 238		: Ala	Ala	Ala
5	A sn 238	Ala 5	Ala	Leu	yab	Ala 239	Leu 0	Ala	Gln	Arg	Arg 239		Ala	Arg	, Gly	Ala 2400
10	Arg	Ala	Ala	Ser	Ile 240	Ala 5	Trp	Gly	Pro	Trp 241		Gly	Ala	Gly	Met 241	Ala 5
	Ser	Gly	Thr	Ala 242	Ala O	Lys	Ser	Phe	Glu 242		λ sp	Gly	Val	Thr 243		Leu
15	Asp	Pro	Glu 243	Arg 5	Ala	Leu	Asp	Val 244		Asp	yab	Val	Val 244		Ala	Gly
	Gly	Thr 245	Ser 0	Ala	Ala	Gly	Thr 245	His 5	Ala	Ala	Gly	Glu 246		Ser	Leu	Leu
20	246	•				2470)				2479	5				Arg 2480
				Ser	2485	•				2490)				249	5
25				Ala 2500	,				250	5				251	0	
			251:	•				2520)				252	5		Gly
30		2531	,	Leu			2535	5				2540)			
35	2343	,		Leu		2550					2555					2560
				Ala	2565	•				2570					2575	5
40				Thr 2580	,				2585	;				2590)	
	Ser	Leu	2595 Ala	Ser	His	Leu :	His	2600 Asp)				2605	:		
45	Ala	2610 Glu	1			•	2615					2620	١			
	2625 Glu					2630					2635					2640
50	Ala :				2645					2650					2655	
	Leu :			2660					2665					2670		
55			2675					2680	J.Y		י עבר		2685		ren ,	ıyr

	Asp	Pro 269		Pro	Gly	Val	Pro 269		Lys	Ser	Tyr	Val 270		Glu	Gly	Gly
5	Phe 2705		Arg	Ser	Ala	Ala 271		Phe	yab	Ala	Glu 271		Phe	Gly	Ile	Ser 2720
10	Pro	Arg	Glu	Ala	Thr 272		Met	Asp	Pro	Gln 273		Arg	Leu	Leu	Leu 273!	Glu _.
	Thr	Ser	Trp	Glu 2740	Ala)	Leu	Glu	Arg	Ala 274		Ile	Val	Pro	A sp 2750		Leu
15	Arg	Gly	Thr 2755		Thr	Gly	Val	Phe 276		Gly	Ile	Ser	Gln 276	Gln S	qeA	Tyr
	Ala	Thr 2770	Gln)	Leu	Gly	yab	Ala 2779		Asp	Thr	Tyr	Gly 2780		His	Val	Leu
20	Thr 2785	Gly	Thr	Leu	Gly	Ser 2790		Ile	Ser	Gly	Arg 2799		Ala	Tyr	Ala	Leu 2800
	Gly	Leu	Glu	Gly	Pro 2805		Leu	Thr	Val	Asp 2810		Ala	Суз.	Ser	Ser 2815	
25	Leu	Val	Ala	Leu 2820	His	Leu	Ala	Val	Gln 2829		Leu	Arg	Arg	Gly 2830		Cys
	Asp	Leu	Ala 2835	Leu	Ala	Gly	Gly	Val 2840		Val	Met	Ala	Thr 2845	_	Thr	Val
30	Phe	Val 2850	Glu	Phe	Ser	Arg	Gln 2855		Gly	Leu	Ala	Ala 2860		Gly	Arg	Суз
35	Lys 2865	Ala	Phe	Ala	Glu	Gly 2870		qeA	Gly	Thr	Ala 2875		Ala	Glu	_	Val 2880
	Gly	Val	Leu	Leu	Val 2885	Glu	Arg	Leu	Ser	Asp 2890		Arg	Arg		Gly 2895	
40	Arg	Val	Leu	Ala 2900	Val	Val	Arg	Gly	Ser 2905		Val	Asn	Gln	Asp 2910		Ala
	Ser	Asn	Gly 2915	Leu	Thr	Ala		Ser 2920		Pro	Ala		Gln 2925		Val	Ile
45	Arg	G1u 2930	Ala	Leu	Ala	узр	Ala 2935	Gly	Leu	Val	Pro	Ala 2940	yab	Val .	Asp	Val
	Val (2945					2950					2955					2960
50	Gly .				2965					2970					2975	
	Trp			2980					2985					2990		
5 <i>5</i>	Gly '	Val	Gly 2995	Gly	Val'	Ile	Lys	Val 3000	Val	Gln	Gly i		Arg 3005		Gly :	Ser

	Leu Pro Arg Thr 3010	Leu His Val Asp 3	Ala Pro Ser Ser 302	
5	Ala Ser Gly Ala 3025	Val Glu Leu Leu 1 3030	Thr Glu Thr Arg 3035	Ser Trp Pro Arg 3040
10	Arg Val Glu Arg	Val Arg Arg Ala A 3045	ala Val Ser Ala 3050	Phe Gly Val Ser 3055
	3060	•	065	3070
15	Ser Glu His Gly 3075	Asp Gly Pro Glu F 3080	ro Glu Arg Pro	Asp Ala Val Thr 3085
	Gly Pro Leu Ser 3090	Trp Val Leu Ser A 3095	la Arg Ser Glu 310	
20	Ala Gln Ala Val 3105	Arg Leu Arg Glu C 3110	ys Val Glu Arg 3115	Val Gly Ala Asp 3120
	Pro Arg Asp Val	Ala Gly Ser Leu V 3125	al Val Ser Arg 3130	Ala Ser Phe Gly 3135
25	Glu Arg Ala Val 3140	Val Val Gly Arg G 3	ly Arg Glu Glu 145	Leu Leu Ala Gly 3150
	Leu Asp Val Val . 3155	Ala Ala Gly Ala P 3160	ro Val Gly Val	Ser Ser Gly Ala 3165
30	Gly Ala Val Val . 3170	Arg Gly Ser Ala V 3175	al Arg Gly Arg 3180	
25	Leu Phe Thr Gly (Gln Gly Ala Gln T 3190	rp Val Gly Met 3195	Gly Arg Gly Leu 3200
35	Tyr Ala Gly Gly	Gly Val Phe Ala G 3205	lu Val Leu Asp 3210	Glu Val Leu Ser 3215
40	Val Val Gly Glu v 3220	Val Asp Gly Arg So	er Leu Arg Asp 225	Val Met Phe Ala 3230
	Asp Ala Asp Ser V	Val Leu Gly Gly L 3240	eu Leu Gly Arg	Thr Glu Phe Ala 3245
45	Gln Pro Ala Leu I 3250	Phe Ala Leu Glu Va 3255	al Ala Leu Phe 3260	
	Ala Arg Gly Val (3265	Glu Val Ser Val Va 3270	al Leu Gly His 3275	Ser Val Gly Glu 3280
50	Val Ala Ala Ala 3	Tyr Val Ala Gly Va 3285	al Leu Ser Leu 3290	Gly Asp Ala Val 3295
	Arg Leu Val Val 3	Ala Arg Gly Gly Le	eu Met Gly Gly	Leu Pro Val Gly 3310
55	Gly Gly Met Trp S 3315	Ser Val Gly Ala Se 3320	er Glu Ser Val	Val Arg Gly Val 3325

	Val Glu (3330	Gly Leu Gly	Glu Trp Va 3335	l Ser Val Ala	Ala Val Asn 3340	Gly Pro
5	Arg Ser \ 3345	Val Val Leu	Ser Gly As 3350	p Val Gly Val 335	Leu Glu Ser 5	Val Val 3360
10	Val Thr 1	Leu Met Gly 336		l Glu Cys Arg 3370	Arg Leu Asp	Val Ser 3375
	His Gly 1	Phe His Ser 3380	Val Leu Me	t Glu Pro Val 3385	Leu Gly Glu 339	_
15	-	Val Glu Ser 3395	Leu Glu Pho	• •	Arg Pro Gly 3405	Val Val
	Val Val 3 3410	Ser Gly. Val	Ser Gly Gly 3415	y Val Val Gly	Ser Gly Glu 3420	Leu Gly
20	Asp Pro 0 3425	Gly Tyr Trp	Val Arg Hi: 3430	s Ala Arg Glu 343	Ala Val Arg 5	Phe Ala 3440
	Asp Gly \	Val Gly Val 344		y Leu Gly Val 3450	Gly Thr Leu	Val Glu 3455
25	Val Gly i	Pro His Gly 3460	Val Leu Th	r Gly Met Ala 3465	Gly Gln Cys 347	
	_	Asp Asp Val 8475	Val Val Va 348		Arg Arg Gly 3485	Arg Pro
30	Glu Arg (3490	Glu Val Phe	Glu Ala Ala 3495	a Leu Ala Thr	Val Phe Thr 3500	Arg Asp
	Ala Gly I 3505	Leu Asp Ala	Thr Thr Lev 3510	His Thr Gly 351	Ser Thr Gly	Arg Arg 3520
35	Ile Asp I	Leu Pro Thr 352		e Gln His Asn 3530	Arg Tyr Trp	Ala Thr 3535
40	Gly Ser \	al Thr Gly 3540	Ala Thr Gly	Thr Ser Ala 3545	Ala Ala Arg 3550	-
		rp Lya Asp 3555	His Pro Phe		Ala Thr Pro 3565	Ile Ala
45	Gly Ser 0 3570	Sly Ala Leu	Leu Leu Thi 3575	Gly Arg Val	Gly Leu Ala 3580	Ala His
	Pro Trp I 3585	Leu Ala Asp	His Ala Ile 3590	e Ser Gly Thr 359	Val Leu Leu 5	Pro Gly 3600
50	Thr Ala 1	lle Ala Asp 360		a Arg Ala Val 3610	Glu Glu Val	Gly Ala 3615
	Gly Gly V	/al Glu Glu 3620	Leu Thr Leu	His Glu Pro 3625	Leu Leu Leu 3630	
55		Gly Leu His 1635	Val Gln Val		Ala Ala Asp 3645	Glu Gln

5		3650)				3655	5	Ala			3660)			
	3665 38p	_	Glu	Glu	Gln	Glu 367(Thr	Arg	His	Ala 3679		Gly	Val	Leu	Thr 3680
10	Ser	Thr	Glu	Thr	Ala 3685		Pro	Asp	Met	Gly 3690		Ala	λla	Gly	Ala 3699	
	Pro	Pro	Pro	Gly 3700		Glu	Pro	Ile	Asp 3705		Glu	Glu	Leu	Tyr 3710	-	Ala
15	Phe	Ala	Ala 3719		Gly	Tyr	Gly	Tyr 3720	Gly)	Pro	λla	Phe	Thr 3729		Leu	Ser
	Gly	Val 3730	-	Arg	Leu	Gly	Asp 3735		Leu	Phe	λla	Glu 3740		Arg	Arg	Pro
20	Ala 3745		Gly	Ala	Gly	Thr 3750		Gly	yab	Gly	Phe 3755		Val	His	Pro	Ala 3760
	Leu	Phe	yab	Ala	Ala 3765		His	Pro	Trp	Arg 3770		Gly	Gly	Leu	Leu 3775	
25	Asp	Thr	Gly	Gly 3780		Thr	Trp	Ala	Pro 3785		Ser	Trp	Gln	Gly 3790		Ala
	Leu	His	Thr 3799		Gly	Ala	Glu	Thr 3800		Arg	Val	Arg	Leu 3809		Pro	Ala
30	Ala	Gly 3810		Thr	Glu	Ser	Ala 3815		Ser	Val	Gln	Ala 3820		Asp	Pro	Ala
35	Gly 3825		Pro	Val	Leu	Thr 3830		yab	Ala	Leu	Leu 3835		Arg	Pro	Val	Thr 3840
	Leu	Gly	Arg	Ala	Asp 3845		Pro	Gln	Pro	Leu 3850		Arg	Val	yab	Trp 3855	
40	Pro	Val	Gly	Gln 3860		Thr	Glu	Ala	Ser 3865		Ala	Gln	Gly	Trp 3870		Val
	Leu	Gly	Gln 3879		Ala	Ala	Glu	Thr 3880		Ala	Gln	Pro	Ala 3885		His	Ala
45	Asp	Leu 3890		Ala			Thr 3895		Val	Ala		Ala 3900		Thr	Pro	Val
	Pro 3905		Leu	Val	Val	Val 3910		Pro	Val	yab	Thr 3919		Leu	λ sp	Glu	Gly 3920
50	Pro	Val	Leu	Ala	Asp 3925		Glu	Ala	Arg	Ala 3930	-	Ala	Gly	Asp	Gly 3935	-
	Asp	Yab	Asp	Pro 3940		Arg	Val	Ala	Leu 3945		Arg	Gly	Leu	Thr 3950		Val
55	Arg	Glu	Trp 3955		Glu	qzA	Glu	Arg 3960		Ala	Aap	Ser	Arg 3965		Val	Val

5	Leu Ti	r Arg 70	Gly	λla	Val	Ala 397		Gly	Pro	Gly	398 y ab		Pro	λ sp	Leu
	Thr G1 3985	y Ala	λla	Leu	Trp 399		Leu	Leu	Arg	Ser 399	Ala 5 .	Gln	Ser	Glu	Tyr 4000
10	Pro As	p Arg	Phe	Thr		Ile	Дзр	Val	Asp 4010		Ser	Pro	Glu	Ser	_
	Ala Al	a Leu	Pro 402	Arg	_	Leu	Gly	Ser 402	Ala		Arg	Gln	Leu 403	Ala	
15	Arg Th	r Gly 4035		Val	Leu	Ala	Pro 404		Leu	Val	Pro	Met 404!		Thr	Arg
	Pro Al	a Glu 50	Thr	Thr	Pro	Ala 405		Ala	Val	λla	Ser 4060		Thr	Thr	Gln
20	Thr G1 4065	n Val	Thr	Ala	Pro 407		Pro	yab	Asp	Pro 4075		Ala	Дзр	Ala	Val 4080
	Phe As	p Pro	Ala	Gly 4085	Thr	Val	Leu	Ile	Thr 4090		Gly	Thr	Gly	Ala 4099	
25	Gly Ar	g Arg	Val 4100	Ala)	Ser	His	Leu	Ala 4105		Arg	Tyr	Gly	Val 4110		His
	Met Le	u Leu 4115		Ser	Arg	Arg	Gly 4120		Авр	Ala	Pro	Glu 4125		Gly	Pro
30	Leu Gl 41	u Arg 30	Glu	Leu	Ala	Gly 4135	Leu	Gly	Val	Thr	Ala 4140		Phe	Leu	Ala
35	Cys As 4145	p Leu	Thr	Asp	Ile 4150	Glu)	Ala	Val	Arg	Lys 4155		Val	Ala	Ala	Val 4160
	Pro Se	r Asp	His	Pro 4165	Leu	Thr	Gly	Val	Val 4170		Thr	Ala		Val 4175	
40	Asp As	p Gly	Ala 4180	Leu	Thr	Gly	Leu	Thr 4185		Gln	Arg	Leu	Asp 4190		Val
	Leu Ar	Pro 4195	Lys	λla	Asp	Ala	Val 4200		Asn	Leu	His	Glu 4205		Thr	Leu
45	Asp Ar	g Pro 10	Leu	Arg	Ala	Phe 4215	Val	Leu	Phe		Ala 4220		Ala	Gly	Leu
	Leu Gl: 4225	/ Arg	Pro	Gly	Gln 4230	Ala	Ser	Tyr		Ala 4235		Asn	Ala		Leu 4240
50	Asp Ala	a Leu	Ala	Gly 4245	Ala	Arg	Arg	Ala	Ala 4250		Leu	Pro		Val 4255	
	Leu Ala	a Trp	Gly 4260	Leu	Trp	Asp		Gln 42 _, 65		Gly :	Met		Gly 4270	-	Leu
55	Asp Gl	Met 4275	Ala	Leu	Arg	Val	Leu 4280		Arg	qeA		Ile 4285		Ala i	Met

5	Pro	Pro 429	Glu 0	Gln	Gly	Leu	Glu 429	Leu 5	Leu	λзр	Leu	Ala 430		Thr	Gly	His
	Arg 430	yab Yab	Gly	Pro	Ala	Val 431	Leu 0	Val	Pro	Leu	Leu 431		Asp	Gly	Ala	Ala 4320
10	Leu	Arg	Arg	Thr	Ala 432	Lys 5	Glu	λrg	Gly	Ala 433		Thr	Met	Ser	Pro 433	Leu 5
	Leu	Arg	Ala	Leu 434	Leu)	Pro	Ala	λla	Leu 434		Arg	Ser	Gly	Gly 435		Gly
15			4355	5				436	0				436	5		Ala
	Gly	Arg 437(Leu)	Ala	Gly	Met	Val 4379		Leu	Glu	Ala	Ala 4380		Arg	Ser	Ala
20	Ala 4385	Val	Leu	Glu	Leu	Val 4390	Thr 0	Glu	Gln	Val	Ala 4395		Val	Leu	Gly	Tyr 4400
	Ala	Ser	Ala	Ala	Glu 4405	Ile	Glu	Pro	Glu	Arg 4410	Pro	Phe	Arg	Glu	Ile 4415	
25	Val	Asp	Ser	Leu 4420	Ala)	Ala	Val	Glu	Leu 4425		Asn	Arg	Leu	Ser 4430	-	Leu
	Val	Gly	Leu 4435	Arg	Leu	Pro	Thr	Thr 4440	Leu)	Ser	Phe	Asp	His 4449		Thr	Pro
<i>30</i>	Lys	Asp 4450	Met	Ala	Gln	His	Ile 4455	Asp	Gly	Gln	Leu	Pro 4460		Pro	Ala	Gly
35	Ala 4465	Ser	Pro	Ala	Yap	Ala 4470	Ala	Leu	Glu	Gly	Ile 4475		qeA	Leu		Arg 4480
	λla	Val	Ala	Leu	Leu 4485	Gly	Thr	Gly	Asp	Ala 4490		Arg	Ala	Glu	Val 4495	-
40	Glu	Gln	Leu	Val 4500	Gly	Leu	Leu	Ala	Ala 4505	Lou	λsp	Pro		Gly 4510		Thr
	Gly	Thr	Ala 4515	Ala	Pro	Gly		Pro 4520		Gly	Ala		Gly 4525		Glu	Pro
45	Thr	Val 4530	Thr	Asp	Arg	Leu	Asp 4535		Ala	Thr		Asp 4540		Ile	Phe	Ala
	Phe 4545		yab (Glu		Leu 4550										
50	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:3:								
		(i)	(A) LE	e ch Ngth	: 19	96 a	mino		ds						
55					PE: POLO						•					

(ii) MOLECULE TYPE: peptide

5		(xi)) SE(QUENK	CE DI	escr:	PTIC	ON:	SEQ :	ID N	0:3:					
	Met 1	Thr	Ala	Glu	Asn 5	Дsp	Lys	Ile	Arg	Ser 10	Tyr	Leu	Lys	Arg	Ala 15	Thr
10	Ala	Glu	Leu	His 20	Arg	Thr	Lys	Ser	Arg 25	Leu	Ala	Glu	Val	Glu 30	Ser	Ala
15	Ser	Arg	Glu 35	Pro	Ile	Ala	Ile	Val 40	Gly	Met	Ala	Суз	Arg 45	Tyr	Pro	Gly
15	Gly	Val 50	Ala	Ser	Pro	Asp	Asp 55	Leu	Trp	Asp	Leu	Val 60	Ala	Ala	Gly	Thr
	Asp 65	λla	Val	Ser	Ala	Phe 70	Pro	Val	Yab	Arg	Gly 75	Trp	Asp	Val	Glu	Gly 80
20	Leu	Tyr	Asp	Pro	Asp 85	Pro	Glu	Ala	Val	Gly 90	Arg	Ser	Tyr	Val	Arg 95	Glu
25	Gly	Gly	Phe	Leu 100	His	Ser	Ala	Ala	Glu 105	Phe	qeA	Ala	Glu	Phe 110	Phe	Gly
20	Ile	Ser	Pro 115	Arg	Glu	Ala	Ala	Ala 120	Met	A sp	Pro	Gln	Gln 125	Arg	Leu	Leu
30	Leu	Glu 130	Thr	Ser	Trp	Glu	Ala 135	Leu	Glu	Arg	Ala	Gly 140	Ile	Val	Pro	Ala
	Ser 145	Leu	Arg	Gly	Thr	Arg 150	Thr	Gly	Val	Phe	Thr 155	Gly	Val	Met	Tyr	Asp
35	Дsp	Tyr	Gly	Ser	Arg 165	Phe	Asp	Ser	Ala	Pro 170	Pro	Glu	Tyr	Glu	Gly 175	Tyr
	Leu	Val	Asn	Gly 180	Ser	Ala	Gly	Ser	Ile 185	Ala	Ser	Gly	Arg	Val 190	Ala	Tyr
40	Ala	Leu	Gly 195	Leu	Glu	Gly	Pro	Ala 200	Leu	Thr	Val	Asp	Thr 205	Ala	Cys	Ser
	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220	Leu	Arg	Arg	Gly
45	G1u 225		Asp	Leu	Ala	Leu 230		Gly	Gly	Val	Thr 235		Met	Ala	Thr	Pro 240
	Thr	Val	Leu	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Ala	Asp 255	Gly
50	Arg	Cys	Lys	Ala 260	Phe	Ala	Glu	Gly	Ala 265	yab	Gly	Thr	Ala	Trp 270	Ala	Glu
55	Gly	Val	Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	A rg	Asn
	Gly	His	Arg	Val	Leu	Ala	Val	Val	Arg	Gly	Ser	Ala	Val	Asn	Gln	Yab

		290					295					300				
5	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	λla	Pro	Ser	Gly 315	Pro	λla	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	λla	Дsp	λla	Gly 330	Leu	Thr	Pro	Ala	Л ар 335	Val
10	qeA	Ala	Val	Glu 340	λla	His	Gly	Thr	Gly 3 45	Thr	Pro	Leu	Gly	Asp 350	Pro	Ile
_	Glu	Ala	G1y 355	Ala	Leu	Leu	λla	Thr 360	Tyr	Gly	Ser	Glu	Arg 365	Gln	Gly	Gln
15	Gly	Pro 370	Leu	Trp	Leu	Gly	Ser 375	Leu	Lys	Ser	Asn	Ile 380	Gly	His	Ala	Gln
20	Ala 385	Ala	Ala	Gly	Val	Gly 390	Gly	Val	Ile	Lys	Val 395	Val	Gln	Ala	Met	Arg 400
	His	Gly	Ser	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ser 415	Lys
25	Val	Glu	Trp	Ala 420	Ser	Gly	λla	Val	Glu 425	Leu	Leu	Thr	Glu	Thr 430	Arg	Ser
	Trp	Pro	Arg 435	Arg	Val	Glu	λrg	Val 440	Arg	Arg	Ala	Ala	Val 445	Ser	Ala	Phe
30 .	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Val	Leu	Glu 460	Glu	Ala	Pro	Ala
	Glu 465	Ala	Gly	Ser	Glu	His 470	Gly	узÞ	Gly	Pro	Glu 475	Pro	Glu	Arg	Pro	Asp 480
35	Ala	Val	Thr	Gly	Pro 485	Leu	Ser	Trp	Val	Leu 490	Ser	Ala	Arg	Ser	Glu 495	Gly
	Ala	Leu	Arg	λla 500	Gln	Ala	Val	Arg	Leu 505	Arg	Glu	Суз	Val	Glu 510	Arg	Val
40	Gly	λla	Asp 515	Pro	λrg	Asp	Val	Ala 520	Gly	Ser	Leu	Val	Val 525	Ser	Arg	Ala
	Ser	Phe 530	Gly	Glu	λrg	Ala	Val 535	Val	Val	Gly	Arg	Gly 540	Arg	Glu	Glu	Leu
45	Leu 545	Ala	Gly	Leu	λs p	Val 550	Val	Ala	Ala	Gly	Ala 555	Pro	Val	Gly	Val	Ser 560
	Gly	Gly	Val	Ser	Ser 565	Gly	Ala	Gly	Ala	Val 570	Val	Arg	Gly	Ser	Ala 575	Val
50	Arg	Gly	Arg	Gly 580	Val	Gly	Val	Leu	Phe 585	Thr	Gly	Gln	Gly	Ala 590	Gln	Trp
55	Val	Gly	Met 595	Gly	λrg	Gly	Leu	Tyr 600	Ala	Gly	Gly	Gly	Val 605	Phe	Ala	Glu
	Val	Leu	Asp	Glu	Val	Leu	Ser	Val	Val	Gly	Glu	Val	Gly	Gly	Trp	Ser

			610	·				615					620				
5		Leu 625	Arg	Asp	Val	Met	Phe 630	Gly	Asp	Val	Asp	Val 635		Ala	Gly	Ala	Gly 640
		Ala	ДЗÞ	Ala	Gly	Val 645	Gly	Ser	Gly	Val	Gly 650	Val	Gly	Gly	Leu	Leu 655	Gly
10		Arg	Thr	Glu	Phe 660	Ala	Gln	Pro	Ala	Leu 665	Phe	Ala	Leu	Glu	Val 670		Leu
15		Phe	Arg	Ala 675	Leu	Glu	Ala	Arg	Gly 680		Glu	Val	Ser	Val 685		Leu	Gly
		His	Ser 690	Val	Gly	Glu	Val	Ala 695	Ala	Ala	Tyr	Val	Ala 700	Gly	Val	Leu	Ser
20		Leu 705	Gly	Asp	Ala	Val	Arg 710	Leu	Val	Val	Ala	Arg 715	Gly	Gly	Leu	Met	Gly 720
		Gly	Leu	Pro	Val	Gly 725	Gly	Gly	Met	Trp	Ser 730	Val	Gly	Ala	Ser	Glu 735	Ser
25		Val	Val	Arg	Gly 740	Val	Val	Glu	Gly	Leu 745	Gly	Glu	Trp	Val	Ser 750	Val	Ala
		Ala	Val	Asn 755	Gly	Pro	Arg	Ser	Val 760	Val	Leu	Ser	Gly	A sp 7 65	Val	Gly	Val
30			//0					Ser 775					780				
		785	Leu	Asp	Val	Ser	His 790	Gly	Phe	His	Ser	Val 795	Leu	Met	Glu	Pro	Val 800
35		Leu	Gly	Glu	Phe	Arg 805	Gly	Val	Val	Glu	Ser 810	Leu	Glu	Phe	Gly	Arg 815	Val
		Arg	Pro	Gly	Val 820	Val	Val	Val	Ser	Ser 825	Val	Ser	Gly	Gly	Val 830	Val	Gly
40		Ser	Gly	Glu 835	Leu	Gly	Двр	Pro	Gly 840	Tyr	Trp	Val	Arg	His 845	Ala	Arg	Glu
		Ala	Val 850	Arg	Phe	Ala	Asp	Gly 855	Val	Gly	Val	Val	Arg 860	Gly	Leu	Gly	Val
45	1	Gly 865	Thr	Leu	Val	Glu	Val 870	Gly	Pro	His	Gly	Val 875	Leu	Thr	Gly	Met	Ala 880
50	•	Gly	Glu	Cys	Leu	Gly 885	Ala	Gly	Asp	Asp	Val 890	Val	Val	Val	Pro	Ala 895	Met
30		Arg	Arg	Gly	Arg 900	Ala	Glu	Arg	Glu	Val 905	Phe	Glu	Ala	Ala	Leu 910	λla	Thr
<i>55</i>	•	Val	Phe	Thr 915	Arg	Asp	Ala	Gly	Leu 920	Asp	Ala	Thr	Thr	Leu 925	His	Thr	Gly
	:	Ser	Thr	Gly	Arg	Arg	Ile	Asp	Leu	Pro	Thr	Tyr	Pro	Phe	Gln	His	Asp

		930					935	i				940	•			
5	Arg 945	Tyr	Trp	Leu	Ala	Ala 950		Ser	Arg	Pro	A rg 955		Asp	Gly	Leu	Ser 960
	Ala	Ala	Gly	Leu	Arg 965	Glu	Val	Glu	His	Pro 970		Leu	Thr	λla	Ala 975	Val
10	Glu	Leu	Pro	Gly 980	Thr	Asp	Thr	G1u	Val 985		Thr	Gly	Arg	Ile 990		Ala
	Ala	Yab	Leu 995	Pro	Trp	Leu	Ala	Asp 100	His O	Leu	Val	Trp	Asp		Gly	Val
15	Val*	Pro 101	Gly 0	Thr	Ala	Leu	Leu 101		Thr	Val	Leu	Gln 102		Gly	Ser	Arg
20	Ile 1025	Gly 5	Leu	Pro	Arg	Val 103		Glu	Leu	Val	Leu 103		Thr	Pro	Leu	Thr 1040
	Trp	Thr	Ser	Asp	Arg 104	Pro 5	Leu	Gln	Val	Arg 105		Val	Val	Thr	Ala 105	
25	Ala	Thr	Ala	Pro 106	Gly 0	Gly	Ala	Arg	Glu 106		Thr	Leu	His	Ser 107	-	Pro
	Glu	Pro	Val 1079	Ala	Ala	Ser	Ser	Ser 108		Pro	Ser	Pro	Ala 108		Pro	Arg
30	His	Leu 109	Thr)	Ala	Gln	Glu	Ser 109	g Aap	yab	Asp	Trp	Thr 110		His	Ala	Ser
	Gly 1105	Leu	Leu	Ala	Pro	Ala 111	Ala O	Gly	Leu	Ala	Asp 1119		Phe	Ala	Glu	Leu 1120
35	Thr	Gly	Ala	Trp	Pro 1125	Pro	Val	Gly	Ala	Glu 1130		Leu	Yab	Leu	Ala 1135	
	Gln	Tyr	Pro	Leu 1140	Phe		Ala	Ala	Gly 1149	Val		Tyr	Glu	Gly 1150	Ala	Phe
40	Arg	Gly	Leu 1155	Arg	Ala	Ala	Trp	Arg 1160		Gly	qeA	Glu	Val 1165		Ala	Asp
	Val	Arg 1170	Leu)	Pro	yab	Ala	His 1175	Ala	Val	Asp	Ala	Asp 1180		Tyr	G1y	Val
45	His 1185	Pro	Ala	Leu	Leu	Asp 1190	Ala)	Val	Leu	His	Pro 1195		Ala	Ser		Asp 1200
	Pro	Leu	Gly	Asp	Gly 1205	Gly	His	Gly	Leu	Leu 1210		Phe	Ser	Trp	Thr 1215	_
50	Val	Gln	Gly	His 1220	Gly	Ala	Gly	Gly	His 1225		Leu	Arg		Arg 1230		Ala
55	Ala '	Val	Asp 1235	Gly	Gly	Ala	Val	Ser 1240	Val	Thr	Ala	Ala	Asp 1245		Ala	Cly
	Asn	Pro	Val	Leu	Ser	Ala	Arg	Ser	Leu	Ala	Leu	Arg	Arg	Ile	Thr .	Ala

	1250		1255	1260	
5	Asp Arg Leu 1265	Pro Ala Ala 127		Leu Tyr Arg Val A	sp Trp 1280
	Leu Pro Phe	Pro Gly Pro 1285	Val Pro Val Ser 129	Ala Gly Gly Arg T	rp Ala 295
10	Val Val Gly	Pro Glu Ala 1300	Glu Ala Thr Ala 1305	Ala Gly Leu Arg Al	la Val
	Gly Leu Asp		His Ala Leu Pro 1320	Leu Gly Glu Pro Le 1325	eu Pro
15	Pro Gln Ala 1330	Gly Thr Asp	Ala Glu Val Ile 1335	Ile Leu Asp Leu Ti 1340	hr Thr
20	Thr Ala Ala 1345	Gly Arg Thr		Gly Arg Leu Ser Le 1355	eu Leu 1360
	Asp Glu Val	Arg Ala Thr 1365	Val Arg Arg Thr 137	Leu Glu Ala Val G	ln Ala 375
25	Arg Leu Ala	Asp Thr Glu 1380	Thr Ala Pro Asp 1385	Val Asp Val Arg Th	hr Ala
	Ala Arg Pro 139		Ala Arg Thr Ser 1400	Pro Arg Val Asp Th	hr Arg
30	Thr Gly Ala 1410	Arg Thr Ala	Asp Gly Pro Arg 1415	Leu Val Val Leu Ti 1420	hr Arg
	Gly Ala Ala 1425	Gly Pro Glu 1430		Asp Pro Ala Gly Al 1435	la Ala 1440
35	Val Trp Gly	Leu Val Arg 1445	Val Ala Gln Ala 1450	Glu Gln Pro Gly Ar	rg Phe
	Thr Leu Val	Asp Val Asp 1460	Gly Thr Gln Ala 1465	Ser Leu Arg Ala Le 1470	u Pro
40	Gly Leu Leu 147		Ala Gly Gln Ser 1480	Ala Val Arg Asp Gl 1485	ly Arg
	Val Thr Val 1490	Pro Arg Leu		Asp Pro Val Pro Hi 1500	is Gly
45	Gly Gly Thr 1505	Ala Ala Asp 1510		Gly Glu Pro Ser Al 1515	la Thr 1520
	Leu Asp Pro	Glu Gly Thr 1525	Val Leu Ile Thr 1530	Gly Gly Thr Gly Al	la Leu 535
50	Ala Ala Glu	Thr Ala Arg 1540	His Leu Val Asp 1545	Arg His Lys Val Ar 1550	g His
55	Leu Leu Leu 1559	Val Gly Arg	Arg Gly Pro Asp 1560	Ala Pro Gly Val As 1565	p Arg .
	Leu Val Ala	Glu Leu Thr	Glu Ser Gly Ala	Glu Val Ala Val Ar	g Ala

	1570	15	75	1580
5	Cys Asp Val T 1585	hr Asp Arg As 1590	p Ala Leu Arg Ar 15	g Leu Leu Asp Ala Leu 95 1600
	Pro Asp Glu H	is Pro Leu Th 1605	r Cys Val Val Hi 1610	s Thr Ala Gly Val Leu 1615
10		al Leu Ser Al 620	a Gln Thr Ala Gl 1625	u Arg Ile Asp Thr Val 1630
15	Leu Arg Pro Ly 1635	ys Ala Asp Ala	a Ala Val His Le 1640	u Asp Glu Leu Thr Arg 1645
15	Glu Ile Gly An 1650	rg Val Pro Lei 169		r Ser Val Ser Ala Thr 1660
20	Leu Gly Ser Al 1665	la Gly Gln Ala 1670	a Gly Tyr Ala Ala 16'	a Ala Asn Ala Phe Met 75 1680
	Asp Ala Leu Al	la Ala Arg Arg 1685	g Cys Ala Ala Gly 1690	y His Pro Ala Leu Ser 1695
25	Leu Gly Trp Gl	ly Trp Trp Sei 700	r Gly Val Gly Let 1705	ı Ala Thr Gly Leu Asp 1710
	Gly Ala Asp Al 1715	la Ala Arg Val	l Arg Arg Ser Gly 1720	/ Leu Ala Pro Leu Asp 1725
<i>30</i> .	Ala Gly Ala Al 1730	la Leu Asp Leu 173	u Leu Asp Arg Ala 35	Leu Thr Arg Pro Glu 1740
	Pro Ala Leu Le 1745	eu Pro Val Arç 1750	g Leu Asp Leu Arg 179	y Ala Ala Ala Gly Ala 1760
<i>35</i>	Thr Ala Leu Pr	o Glu Val Leu 1765	ı Arg Asp Leu Ala 1770	Gly Val Pro Ala Asp 1775
	Ala Arg Ser Th	r Pro Gly Ala 80	a Ala Ala Gly Thr 1785	Gly Asp Glu Asp Gly 1790
40	Ala Val Arg Pr 1795	o Ala Pro Ala	Pro Ala Asp Ala 1800	Ala Gly Thr Leu Ala 1805
45	Ala Arg Leu Al 1810	a Gly Arg Ser 181		Thr Ala Leu Leu Leu 1820
	Asp Leu Val Ar 1825	g Thr Glu Val 1830	Ala Ala Val Leu 183	Gly His Gly Asp Pro
	Ala Ala Ile Gl	y Ala Ala Arg 1845		Ala Gly Phe Asp Ser 1855
50	Leu Thr Ala Va	l Asp Leu Arg	J Asn Arg Leu Asn 1865	Thr Arg Thr Gly Leu 1870
55	Arg Leu Pro Al	a Thr Leu Val	Phe Asp His Pro	Thr Pro Leu Ala Leu 1885
-	Ala Glu Leu Le	u Leu Asp Gly	Leu Glu Ala Ala	Gly Pro Ala Glu Pro

		189	0				189	5				190	0			
5	Ala 190	Ala 5	Glu	Val	Pro	Asp		Ala	Ala	Gly	Ala 191		Thr	Leu	Ser	Gly 1920
	Val	Ile	Ąsp	λrg	Leu 192	Glu 5	Arg	Ser	Leu	Ala 193		Thr	A sp	ysb	Gly 193	Asp 5
10	Ala	Arg	Val	A rg 194	Ala O	Ala	Arg	Arg	Leu 194		Gly	Leu	Leu	Asp 195		Leu
	Pro	Ala	Gly 195	Pro 5	Gly	Ala	Ala	Ser 196		Pro	As p	Ala	Gly 196		His	Ala
15	Pro	Gly 197	Arg 0	Gly	Asp	Val	Val 197	Ile 5	Asp	Arg	Leu	Arg 198		Ala	Ser	Asp
20	Азр 198	Asp 5	Leu	Phe	Asp	Leu 199		Ąsp	Ser	Asp	Phe 199					
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO : 4	:							
25		(i)	(1	A) L1 B) T1	engti (Pe :	4: 3'	CTER 724 a no ac unki	amino cid	CS: o ac	ids						
30							pep									
							IPTI									
35	Met 1	Ser	Ala	Thr	Asn 5	Glu	Glu	Lys	Leu	Arg 10	Glu	Tyr	Leu	Arg	Arg 15	Ala
	Met	Ala	Азр	Leu 20	His	Ser	Ala	Arg	Glu 25	Arg	Leu	λ rg	Glu	Val 30	Glu	Ser
40	Ala	Ser	Arg 35	Glu	Pro	Ile	Ala	Ile 40	Val	Gly	Met	λla	Cys 45	λrg	Tyr	Pro
	Gly	Gly 50	Val	Ala	Ser	Pro	Glu 55	Glu	Leu	Trp	Asp	Leu 60	Val	Ala	λla	Gly
45	Thr 65	Asp	Ala	Ile	Ser	Pro 70	Phe	Pro	Val	Asp	Arg 75	Gly	Trp	Asp	Ala	Glu 80
	Gly	Leu	Tyr	Asp	Pro 85	Glu	Pro	Gly	Val	Pro 90	Gly	Lys	Ser	Tyr	Val 95	Arg
		Gly		100					105					110		
	GIÀ	Ile	Ser 115	Pro	Arg	Glu	Ala	Ala 120	Ala	Met	Asp	Pro	Gln 125	Gln	λrg	Leu
55	Leu	Leu 130	Glu	Thr	Ser	Trp	Glu 135	Ala	Leu	Glu	Arg	Ala 140	Gly	Ile	Val	Pro

_	Ala 145		Leu	Arg	Gly	Thr 150	λrg	Thr	Gly	Val	Phe 155	Thr	Gly	Val	Met	Tyr 160
5	His	A sp	Tyr	Gly	Ser 165	His	Gln	Val	Gly	Thr 170	Ala	Ala	Дз р	Pro	Ser 175	Gly
10	Gln	Leu	Gly	Leu 180	Gly	Thr	Ala	Gly	Ser 185	Val	Ala	Ser	Gly	Arg 190	Val	Ala
	Tyr	Thr	Leu 195	Gly	Leu	Gln	Gly	Pro 200	Ala	Val	Thr	Met	Asp 205	Thr	Ala	Сув
15	Ser	Ser 210	Ser	Leu	Val	Ala	Leu 215	His	Leu	Ala	Val	Gln 220	Ser	Leu	Arg	Arg
	Gly 225	Glu	Сув	Asp	Leu	Ala 230	Leu	Ala	Gly	Gly	Ala 235	Thr	Val	Leu	Ala	Thr 240
20	Pro	Thr	Val	Phe	Va1 245	Glu	Phe	Ser	Arg	Gln 250	Arg	Gly	Leu	Ala	Ala 255	Asp
	Gly	Arg	Сув	Lys 260	Ala	Phe	Ala	Glu	Gly 265	Ala	Asp	Gly	Thr	Ala 270	Trp	Ala
25	Glu	Gly	Ala 275	Gly	Val	Leu	Leu	Val 280	Glu	Arg	Leu	Ser	Asp 285	Ala	Arg	Arg
	Asn	Gly 290	His	Arg	Val	Leu	Ala 295	Val	Val	Arg	Gly	Ser 300	Ala	Val	Asn	Gln
30	Asp 305	Gly	Ala	Ser	Asn	Gly 310	Leu	Thr	Ala	Pro	Ser 315	Gly	Pro	Ala	Gln	Gln 320
35	Arg	Val	Ile	Arg	Asp 325	Ala	Leu	Ala	Asp	Ala 330	Gly	Leu	Thr	Pro	λla 335	Asp
	Val	Asp	Ala	Val 340	Glu	Ala	His	Gly	Thr 345	Gly	Thr	Pro	Leu	Gly 350	As p	Pro
40	Ile	Glu	Ala 355	Gly	Ala	Leu	Met	Ala 360	Thr	Tyr	Gly	Ser	Glu 365	λrg	Val	Gly
	Asp	Pro 370	Leu	Trp	Leu	Gly	Ser 375	Leu	Lys	Ser	Asn	11e 380	Gly	His	Thr	Gln
45	Ala 385	Ala	Ala	Gly	Ala	Ala 390	Gly	Val	Ile	Lys	Met 395	Val	Gln	Ala	Leu	Arg 400
	Gln	Ser	Glu	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ala 415	Lys
50	Val	Glu	Trp	Asp 420	Ala	Gly	Ala	Val	Gln 425	Leu	Leu	Thr	Gly	Val 430	Arg	Pro
	Trp	Pro	Arg 435	Arg	Glu	His	Arg	Pro 440	λrg	Arg	Ala	Ala	Val 445	Ser	λla	Phe
55	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Ile	Ile	Glu 460	Glu	Pro	Pro	Ala

_	Ala 465	Gly	Asp	Thr	Ser	Pro 470	Ala	Gly	λsp	Thr	Pro 475	Glu	Pro	Gly	Glu	Ala 480
5	Thr	Ala	Ser	Pro	Ser 485	Thr	λla	λla	Gly	Pro 490	Ser	Ser	Pro	Ser	Ala 495	Val
10	Ala	Gly	Pro	Leu 500	Ser	Pro	Ser	Ser	Pro 505	Ala	Val	Val	Trp	Pro 510	Leu	Ser
	Ala	Glu	Thr 515	Ala	Pro	Ala	Leu	A rg 520	Ala	Gln	Ala	Ala	Arg 525	Leu	Arg	Ala
15	His	Leu 530	Glu	Arg	Leu	Pro	Gly 535	Thr	Ser	Pro	Thr	Asp 540	Ile	Gly	His	Ala
	Leu 545	Ala	Ala	Glu	λrg	Ala 550	Ala	Leu	Thr	Arg	Arg 555	Val	Val	Leu	Leu	Gly 560
20	yab	Ąsp	Gly	Ala	Pro 565	Val	уар	λla	Leu	Ala 570	Ala	Leu	Ala	Ala	Gly 575	G1u
	Thr	Thr	Pro	Asp 580	Ala	Val	His	Gly	Thr 585	Ala	Ala	Yab	Ile	Arg 590	Arg	Val
25	Ala	Phe	Val 595	Phe	Pro	Gly	Gln	Gly 600	Ser	Gln	Trp	Ala	Gly 605	Met	Gly	Ala
	Glu	Leu 610	Leu	Asp	Thr	Ala	Pro 615	Ala	Phe	Ala	Ala	Glu 620	Leu	Asp	Arg	Cys
30	Gln 625	Gly	Ala	Leu	Ser	Pro 630	Tyr	Val	Авр	Trp	Asn 635	Leu	Ala	Asp	Val	Leu 640
35	Arg	Gly	Ala	Pro	Ala 645	Ala	Pro	Gly	Leu	Asp 650	Arg	Val	Asp	Val	Val 655	Gln
	Pro	Ala	Thr	Phe 660	Ala	Val	Met	Val	Gly 665	Leu	Ala	Ala	Leu	Trp 670	Arg	Ser
40	Leu	Gly	Val 675	Glu	Pro	λla	Ala	Val 680	Ile	Gly	His	Ser	Gln 685	Gly	Glu	Ile
·	Ala	Ala 690	Ala	Сув	Val	Ala	Gly 695	Ala	Leu	Ser	Leu	Glu 700	yab	Ala	Ala	Arg
45	11e 705	Va1	Ala	Leu	Arg	Ser 710	Gln	Val	Ile	Ala	Arg 715	Glu	Leu	Ala	Gly	Arg 720
	Gly	Gly	Met	λla	Ser 725	Val	Ala	Leu	Pro	Ala 730	Ala	Glu	Val	Glu	Ala 735	Arg
50	Leu	Ala	Gly	Gly 740	Val	Glu	Ile	Ala	Ala 745	Val	Asn	Gly	Pro	Gly 750	Ser	Thr
	Val	Val	Cys 755	Gly	Glu	Pro	Gly	Ala 760	Leu	Glu	Ala	Leu	Leu 765	Val	Thr	Leu
55	Glu	Ser 770	Glu	Gly	Thr	Arg	Val 775	Arg	Arg	Ile	Asp	Val 780	Asp	Tyr	Ala	Ser

5	His S 785	Ser His	Tyr	Val	Glu 790	Ser	Ile	Arg	Ala	Glu 795	Leu	Ala	Thr	Val	Leu 800
		ro Val		805					810					815	
10	Glu A	la Ala	Leu 820	Leu	yab	Thr	Ala	Thr 825	Leu	ysb	Ala	Asp	Tyr 830	Trp	Tyr
	Arg A	sn Leu 835	Arg	Leu	Pro	Val	Arg 840	Phe	Glu	Pro	Thr	Val 845	Arg	Ala	Met
15		sp Asp	Gly	Val	yab	Ala 855	Phe	Val	Glu	Суз	Ser 860	Ala	His	Pro	Val
	Leu 1 865	hr Val	Gly	Val	Arg 870	Gln	Thr	Val	Glu	Ser 875	Ala	Gly	Gly	Ala	Val 880
20	Pro A	la Leu	Ala	Ser 885	Leu	Arg	Arg	Asp	Glu 890	Gly	Gly	Leu	Arg	Arg 895	Phe
	Leu T	hr Ser	Ala 900	Ala	Glu	Ala	Gln	Val 905	Val	Gly	Val	Pro	Val 910	Ąsp	Trp
25	Ala T	hr Leu 915	Arg	Pro	Gly	Ala	Gly 920	Arg	Vạl	Asp	Leu	Pro 925	Thr	Tyr	Ala
	Phe G	ln Arg 30	G1u	Arg	His	Trp 935	Val	Gly	Pro	Ala	Arg 940	Pro	λ sp	Ser	Ala
30	Ala T 945	hr Ala	Ala	Thr	Thr 950	Gly	Asp	Asp	Ala	Pro 955	Glu	Pro	Gly	Asp	Arg 960
0.5	Leu G	ly Tyr	His	Val 965	Ala	Trp	Lys	Gly	Leu 970	Arg	Ser	Thr	Thr	Gly 975	Gly
35	Trp A	rg Pro	Gly 980	Leu	Arg	Leu	Leu	Ile 985	Val	Pro	Thr	Gly	As p 990	Gln	Tyr
40	Thr A	la Leu 995	Ala	λsp	Thr	Leu	Glu 1000		Ala	Val	Ala	Ser 1005		Gly	Gly
		al Arg 010	Arg	Val	Ala	Phe 1015		Pro	Ala	Arg	Thr 1020		Arg	Ala	Glu
45	Leu P 1025	he Gly	Leu	Leu	Glu 1030		Glu	Ile	Asn	Gly 1039		Thr	Ala	Val	Thr 1040
	Gly V	al Val	Ser	Leu 1045		Gly	Leu	Суз	Thr 1050		Gly	Arg	Pro	As p 1055	
50	Pro A	la Val	Pro 1060		Ala	Val	Thr	Ala 1065		Leu	Ala	Leu	Val 1070		Ala
	Leu A	la Asp 1075	Leu	Gly	Ser	Thr	Ala 1080		Leu	Trp	Thr	Val 1085		Cys	Gly
55		al Ala 090	Thr	Ala	Pro	Asp 1095		Leu	Pro	Cys	Thr 1100		Gly	Ala	Gln

5	Leu Trp Gly Leu Gly Arg Val Ala Ala Leu Glu Leu Pro Glu Val Trp 1105 1110 1115 1120
	Gly Gly Leu Ile Asp Leu Pro Ala Arg Pro Asp Ala Arg Val Leu Asp 1125 1130 1135
10	Arg Leu Ala Gly Val Leu Ala Glu Pro Gly Gly Glu Asp Gln Ile Ala 1140 1145 1150
	Val Arg Met Ala Gly Val Phe Gly Arg Arg Val Leu Arg Asn Pro Ala 1155 1160 1165
15	Asp Ser Arg Pro Pro Ala Trp Arg Ala Arg Gly Thr Val Leu Ile Ala 1170 1175 1180
	Gly Asp Leu Thr Thr Val Pro Gly Arg Leu Val Arg Ser Leu Leu Glu 1185 1190 1195 1200
20	Asp Gly Ala Asp Arg Val Val Leu Ala Gly Pro Asp Ala Pro Ala Gln 1205 1210 1215
	Ala Ala Ala Gly Leu Thr Gly Val Ser Leu Val Pro Val Arg Cys 1220 1225 1230
25	Asp Val Thr Asp Arg Ala Ala Leu Ala Ala Leu Leu Asp Glu His Ala 1235 1240 1245
	Pro Thr Val Ala Val His Ala Pro Pro Leu Val Pro Leu Ala Pro Leu 1250 1255 1260
30	Arg Glu Thr Ala Pro Gly Asp Ile Ala Ala Ala Leu Ala Ala Lys Thr 1265 1270 1275 1280
35	Thr Ala Ala Gly His Leu Val Asp Leu Ala Pro Ala Ala Gly Leu Asp 1285 1290 1295
	Ala Leu Val Leu Phe Ser Ser Val Ser Gly Val Trp Gly Gly Ala Ala 1300 1305 1310
40	Gln Gly Gly Tyr Ala Ala Ala Ser Ala His Leu Asp Ala Leu Ala Glu 1315 1320 1325
	Arg Ala Arg Ala Ala Gly Val Pro Ala Phe Ser Val Ala Trp Ser Pro 1330 1340
45	Trp Ala Gly Gly Thr Pro Ala Asp Gly Ala Glu Ala Glu Phe Leu Ser 1345 1350 1355 1360
	Arg Arg Gly Leu Ala Pro Leu Asp Pro Asp Gln Ala Val Arg Thr Leu 1365 1370 1375
50	Arg Arg Met Leu Glu Arg Gly Ser Ala Cys Gly Ala Val Ala Asp Val 1380 1385 1390
	Glu Trp Ser Arg Phe Ala Ala Ser Tyr Thr Trp Val Arg Pro Ala Val 1395 1400 1405
55	Leu Phe Asp Asp Ile Pro Asp Val Cln Arg Leu Arg Ala Ala Glu Leu 1410 1415 1420

	Ala Pro 1425	Ser Thr Gly	Asp Ser 1430	Thr Thr Se	er Glu Leu 1435	Val Arg Glu	Leu 1440
5	Thr Ala	Gln Ser Gly 140			la Thr Leu 150	Leu Arg Leu 1455	
	Arg Ala 1	His Ala Ala 1460	Ala Val	Leu Gly Gl 1465	ln Ser Ser	Gly Asp Ala 1 1470	Val
10	Ser Ser	Ala Arg Ala 1475	Phe Arg	Asp Leu Gl 1480	ly Phe Asp	Ser Leu Thr 1 1485	Ala
15	Leu Glu 1 1490	Leu Arg Asp	Arg Leu 149		er Thr Gly 1500	Leu Lys Leu i	Pro
	1505		1510		1515	Leu Ala Arg I	1520
20	Leu Gly (31u Glu Leu 152	Leu Gly		sp Thr Ala 330	Asp Arg Ala (1535	31y
	Pro Asp 1	Thr Pro Val 1540	Arg Thr	Asp Glu Pr 1545	o Ile Ala	Ile Ile Gly P 1550	let
25		Arg Leu Pro 1555	Gly Gly	Val Gln Se 1560		Asp Leu Trp / 1565	/sp
	Leu Leu 1 1570	Mhr Gly Gly	Thr Asp 157		or Pro Phe 1580	Pro Thr Asn A	Arg
30	Gly Trp # 1585	Asp Asn Glu	Thr Leu 1590	Tyr Asp Pr	o Asp Pro . 1595	Asp Ser Pro G	1y 600
	His His T	Thr Tyr Val 160	Arg Glu 5		e Leu His . 510	Asp Ala Ala G 1615	lu
35	Phe Asp F	Pro Gly Phe 1620	Phe Gly	Ile Ser Pro 1625	o Arg Glu	Ala Leu Ala M 1630	let
	Asp Pro G	ln Gln Arg .635	Leu Ile	Leu Glu Th 1640		Glu Ser Phe G 1645	lu
40	Arg Ala G 1650	ly Ile Asp	Pro Val 1655		g Gly Ser 1 1660	Arg Thr Gly V	'al
45	Phe Val G 1665	ly Thr Asn	Gly Gln 1670	His Tyr Va	1 Pro Leu 1 1675	Leu Gln Asp G 1	ly 680
	Asp Glu A	sn Phe Asp 168	Gly Tyr 5	Ile Ala Th		Ser Ala Ser V 1695	al
50	Met Ser G	ly Arg Leu 1700	Ser Tyr	Val Phe Gly 1705	y Leu Glu (Gly Pro Ala V 1710	al
	Thr Val A	sp Thr Ala 715	Cys Ser	Ala Ser Lei 1720		Leu His Leu A 1725	la
55	Val Gln S 1730	er Leu Arg	Arg Gly 1735	Glu Cys Ası	p Tyr Ala I 1740	Leu Ala Gly G	ly

	Ala Thr Val Met 1745	Ser Thr Pro 1750	Glu Met Leu Val 175		Arg Gln 1760
5	Arg Ala Val Ser	Pro Asp Gly 1765	Arg Ser Lys Ala 1770	Phe Ala Glu	Ala Ala 1775
	Asp Gly Val Gly 178		Gly Ala Gly Met 1785	Leu Leu Val 1790	_
10	Leu Ser Glu Ala 1795	Gln Lys Lys	Gly His Pro Val 1800	Leu Ala Val 1805	Val Arg
15	Gly Ser Ala Val 1810	Asn Gln Asp 1815		Gly Leu Thr 1820	Ala Pro
	Ser Gly Pro Ala 1825	Gln Gln Arg 1830	Val Ile Arg Glu 183		Asp Ala 1840
20	Gly Leu Thr Pro	Ala Asp Val 1845	Asp Ala Val Glu 1850	Ala His Gly	Thr Gly 1855
	Thr Pro Leu Gly		Glu Ala Gly Ala 1865	Leu Leu Ala 1870	_
25	Gly Arg Asp Arg 1875	Arg Asp Gly	Pro Leu Trp Leu 1880	Gly Ser Leu 1885	Lys Ser
	Asn Ile Gly His 1890	Thr Gln Ala 1895		Ala Gly Val 1900	Ile Lys
30	Met Val Leu Ala 1905	Leu Arg His 1910	Gly Glu Leu Pro 191		His Ala 1920
	Ser Thr Ala Ser	Ser Arg Ile 1925	Asp Trp Asp Ala 1930	Gly Ala Val	Glu Leu 1935
35	Leu Asp Glu Ala 1940	Arg Pro Trp	Leu Gln Arg Ala 1945	Glu Gly Pro 1950	
	Ala Gly Ile Ser 1955		Ile Ser Gly Thr 1960	Asn Ala His 1965	Leu Val
40	Ile Glu Glu Pro 1970	Pro Glu Pro 1975		Leu Leu Ala 1980	Pro Glu
45	Pro Ala Ala Asp 1985	Gly Asp Val 1990	Trp Ser Glu Glu 199!		Glu Val 2000
	Thr Val Pro Leu	Met Met Ser 2005	Ala His Asn Glu 2010	Ala Ala Leu	Arg Asp 2015
50	Gln Ala Arg Arg 2020	Leu Arg Ala	Asp Leu Leu Ala 2025	His Pro Glu 2030	
	Pro Ala Asp Val 2035		Leu Ile Thr Thr 2040	Arg Thr Arg 2045	Phe Glu
55	Gln Arg Ala Ala 2050	Val Val Gly 2055		Glu Leu Ile 2060	Ala Ala

	Leu 206		Asp	Leu	Val	Glu 207		Arg	Pro	His	Pro 207		Val	Leu	Arg	Gly 2080
5	Thr	Ala	Gly	Thr	Ser 208		Gln	Val	Val	Phe 209		Phe	Pro	Gly	Gln 209	_
	Ser	Gln	Trp	Pro 210		Met	Ala	qeA	Gly 210		Leu	Ala	λrg	Ser 211		Gly
10	Ser	Gly	Ser 211		Leu	Glu	Thr	Ala 212		Ala	Cys	уар	Leu 212		Leu	Arg
15	Pro	His 213		Gly	Trp	Ser	Val 213		Asp	Val	Leu	Arg 214	_	Glu	Pro	Gly
	Ala 214		Ser	Leu	Asp	Arg 215		Asp	Val	Val	Gln 215		Val	Leu	Phe	Thr 2160
20	Met	Met	Val	Ser	Leu 216		Glu	Thr	Trp	Arg 217		Leu	Gly	Val	Glu 217	
	Ala	Ala	Val	Val 2180		His	Ser	Gln	Gly 218		Ile	Ala	Ala	Ala 219	-	Val
25	Ala	Gly	Ala 219	Leu 5	Thr	Leu	Asp	Asp 220		Ala	Arg	Ile	Val 220		Leu	Arg
	Ser	Gln 2210	Ala	Trp	Leu	λrg	Leu 221		Gly	Lys	Gly	Gly 2220		Val	λla	Val
30	Thr 222	Leu 5	Ser	Glu	Arg	Asp 223		Arg	Pro	Arg	Leu 2235	Glu		Trp	Ser	Asp 2240
	Arg	Leu	Ala	Val	Ala 2245		Val	Asn	Gly	Pro 2250		Thr	Сув	Ala	Val 2259	
35	Gly	Asp	Pro	Asp		Leu	Ala	Glu	Leu 2265		Ala	Glu	Leu	Gly 2270		Glu
40	Gly	Val	His 2275	Ala	Arg	Pro	Ile	Pro 2280		Val	Asp	Thr	Ala 2289		His	Ser
40	Pro	Gln 2290	Val	yab	Thr	Leu	Glu 2295		His	Leu	Arg	Lys 2300		Leu	Ala	Pro
45	Val 230	Ala 5	Pro	Arg	Thr	Ser 2310		Ile	Pro	Phe	Tyr 2315		Thr	Val	Thr	Gly 2320
	Gly	Leu	Ile	yab	Thr 2325	Ala	Glu	Leu	qeA	Ala 2330		Tyr	Trp	Tyr	A rg 2335	
50	Met	Arg	Glu	Pro 2340		Glu	Phe	Glu	Gln 2345		Thr	Arg	Ala	Leu 2350		Ala
	Asp	Gly	His 2355	Asp	Val	Phe		Glu 2360		Ser	Pro	His	Pro 2365		Leu	Ala
55	Val	Ser 2370	Leu	Gln	Glu	Thr	Ile 2375		Asp	Ala		Ser 2380		Ala	Ala	Val

	238		Thr	Leu	Arg	Arg 239	Gly 0	Gln	Gly	Gly	Pro 239	_	Trp	Leu	Gly	Val 2400
5	Ala	Leu	Суз	Arg	Ala 240		Thr	His	Gly	Leu 241		Ile	qeA	Ala	Glu 241	
**	Ile	Phe	Gly	Pro 2420		Ser	Arg	Gln	Val 2429		Leu	Pro	Thr	Tyr 243		Phe
10	Gln	Arg	Glu 243		Tyr	Trp	Tyr	Ser 2440		Gly	His	Arg	Gly 2449		qeń	Pro
15	Ala	Ser 245		Gly	Leu	Asp	Ala 245		Asp	His	Pro	Leu 246		Gly	Ser	Gly
	Val 246	Glu 5	Leu	Pro	Glu	Ser 247	Gly 0	Asp	Arg	Met	Tyr 2475		Ala	Arg	Leu	Gly 2480
20	Ala	Asp	Thr	Thr	Pro 2489		Leu	Ala	yab	His 2490		Leu	Leu	Gly	Ser 2495	
	Leu	Leu	Pro	Gly 2500	Ala)	Ala	Phe	Ala	Asp 2505		Ala	Leu	Trp	Ala 2510		Arg
25	Gln	Ala	Gly 2515	Thr	Gly	Arg	Val	Glu 2520		Leu	Thr	Leu	Ala 2525		Pro	Leu
	Val	Leu 2530	Pro)	Gly	Ser	Gly	Gly 2535		Arg	Leu	Arg	Leu 2540		Val	Gly	Ala
30	Pro 2549	Gly 5	Thr	qeA	As p	Ala 2550	Arg)	Arg	Phe	Ala	Val 2555		Ala	Arg	Ala	Glu 2560
					2565	5	Leu			2570)				2575	•
35	Asp	Thr	Ala	Asp 2580		Pro	Asp	Ala	Ser 2585		λla	Thr	Pro	Pro 2590		Gly
40			2595	•			Gly	2600					2605			
	Gly	Tyr 2610	Gly	Tyr	Gly	Pro	Phe 2615		Arg	Gly	Leu	Val 2620		Ala	His	Arg.
45	Cys 2625	Gly	Pro	yab	Ile	His 2630	Ala	Glu	Val		Leu 2635		Val	Gln		Gln 2640
	Gly	Asp	Ala	Ala	Arg 2645	Phe	Gly	Ile		Pro 2650		Leu	Leu	_	Ala 2655	
50	Leu	Gln	Thr	Met 2660	Ser	Leu	Gly		Phe 2665		Pro	Glu		Gly 2670		Val
,	Arg	Met	Pro 2675	Phe	Ala	Leu	Arg	Gly 2680		Arg	Leu		Arg 2685		Gly	Ala
55	Asp	Arg 2690	Leu	His	Val	Arg	Val 2695		Pro	Val		Glu 2700		Ala '	Val.	Arg

	Ile Arg Cys Ala 2705	Asp Gly Glu 2710	Gly Arg Pro Val		Glu Ser 2720
5	Phe Ile Met Arg	Pro Val Asp 2725	Pro Gly Gln Let 2730	Leu Gly Gly	Arg Pro 2735
	Val Gly Ala Asp 274		Arg Ile Ala Trp 2745	Arg Glu Leu 2750	
10	Gly Pro Gly Thr 2755	Arg Thr Gly	Asp Gly Thr Pro	Pro Pro Val 2765	Arg Trp
15	Val Leu Ala Gly 2770	Pro Asp Ala 2775		Glu Ala Ala 2780	Asp Ala
	His Leu Pro Ala 2785	Val Pro Gly 2790	Pro Asp Gly Ala 279		Pro Thr 2800
20	Gly Arg Pro Ala	Pro Asp Ala 2805	Val Val Phe Ala 2810	Val Arg Ala	Gly Thr 2815
	Gly Asp Val Ala 282	Ala Asp Ala 0	His Thr Val Ala 2825	Cys Arg Val 2830	
25	Leu Val Gln Arg 2835		Ala Pro Glu Gly 2840	Pro Asp Gly 2845	Ala Arg
	Leu Val Val Ala 2850	Thr Arg Gly 2855		Arg Asp Asp 2860	Ala Glu
30	Val Asp Asp Pro 2865	Ala Ala Ala 2870	Ala Ala Trp Gly 287		Ser Ala 2880
<i>35</i>	Gln Ala Glu Glu	Pro Gly Arg 2885	Phe Leu Leu Val 2890		Asp Asp 2895
	Pro Ala Ser Ala 2900		Thr Asp Ala Leu 2905	Ala Ser Gly 2910	
40	Gln Thr Ala Val 2915		Thr Val Tyr Val 2920	Pro Arg Leu 2925	Glu Arg
	Ala Ala Asp Arg 2930	Thr Asp Gly 2935		Pro Asp Asp	Gly Ala
45	Trp Arg Leu Gly 2945	Arg Gly Thr 2950	Asp Leu Thr Leu 295		Ala Leu 2960
	Val Pro Ala Pro	Asp Ala Glu . 2965	Ala Pro Leu Glu 2970		Val Arg 2975
50	Val Ala Val Arg 2980		Val Asn Phe Arg 2985	Asp Ala Leu 2990	Ile Ala
	Leu Gly Met Tyr 2995		Ala Glu Met Gly 3000	Thr Glu Gly 3005	Ala Gly
55	Thr Val Val Glu 3010	Val Gly Pro 6 3015	Gly Val Thr Gly	Val Ala Val (3020	Gly Asp

	Arg Val Leu Gly Leu Trp Asp Gly Gly Leu Gly Pro Leu Cys Val Ala 3025 3030 3035 304	
5	Asp His Arg Leu Leu Ala Pro Val Pro Asp Gly Trp Ser Tyr Ala Gli 3045 3050 3055	n
	Ala Ala Ser Val Pro Ala Val Phe Leu Ser Ala Tyr Tyr Gly Leu Val 3060 3065 3070	i
10	Thr Leu Ala Gly Leu Arg Pro Gly Glu Arg Val Leu Val His Ala Ala 3075 3080 3085	1
15	Ala Gly Gly Val Gly Met Ala Ala Val Gln Ile Ala Arg His Leu Gly 3090 3095 3100	,
	Ala Glu Val Leu Ala Thr Ala Ser Pro Gly Lys Trp Asp Ala Leu Arg 3105 3110 3115 312	
20	Ala Met Gly Ile Thr Asp Asp His Leu Ala Ser Ser Arg Thr Leu Asp 3125 3130 3135)
	Phe Ala Thr Ala Phe Thr Gly Ala Asp Gly Thr Ser Arg Ala Asp Val 3140 3145 3150	•
25	Val Leu Asn Ser Leu Thr Lys Glu Phe Val Asp Ala Ser Leu Gly Leu 3155 3160 3165	l
	Leu Arg Pro Gly Gly Arg Phe Leu Glu Leu Gly Lys Thr Asp Val Arg 3170 3175 3180	!
30	Asp Pro Glu Arg Ile Ala Ala Glu His Pro Gly Val Arg Tyr Arg Ala 3185 3190 3195 320	
35	Phe Asp Leu Asn Glu Ala Gly Pro Asp Ala Leu Gly Arg Leu Leu Arg 3205 3210 3215	
••	Glu Leu Met Asp Leu Phe Ala Ala Gly Val Leu His Pro Leu Pro Val 3220 3225 3230	
40	Val Thr His Asp Val Arg Arg Ala Ala Asp Ala Leu Arg Thr Ile Ser 3235 3240 3245	
	Gln Ala Arg His Thr Gly Lys Leu Val Leu Thr Met Pro Pro Ala Trp 3250 3260	
45	His Pro Tyr Gly Thr Val Leu Val Thr Gly Gly Thr Gly Ala Leu Gly 3265 3270 3275 3286	
	Ser Arg Ile Ala Arg His Leu Ala Ser Arg His Gly Val Arg Arg Leu 3285 3290 3295	
50	Leu Ile Ala Ala Arg Arg Gly Pro Asp Gly Glu Gly Ala Ala Glu Leu 3300 3305 3310	
	Val Ala Asp Leu Ala Ala Leu Gly Ala Ser Ala Thr Val Val Ala Cys 3315 3320 3325	
55	Asp Val Ser Asp Ala Asp Ala Val Arg Gly Leu Leu Ala Gly Ile Pro 3330 3340	

	Ala Asp His Pro L 3345	Leu Thr Ala Val Va 3350	l His Ser Thr Gly V 3355	Val Leu Asp 3360
5		Pro Gly Leu Thr Pro 3365	o Glu Arg Met Arg i 3370	Arg Val Leu 3375
	Arg Pro Lys Val G 3380	Glu Ala Ala Val His 33	s Leu Asp Glu Leu 1 85	Thr Arg Asp 3390
10	Leu Asp Leu Ser A 3395	Ala Phe Val Leu Pho 3400	e Ser Ser Ser Ala (3405	Gly Leu Leu
15	Gly Ser Pro Ala G 3410	Gln Gly Asn Tyr Ala 3415	a Ala Ala Asn Ala 9 3420	Thr Leu Asp
	Ala Leu Ala Ala A 3425	Arg Arg Arg Ser Let 3430	Gly Leu Pro Ser \ 3435	Val Ser Leu 3440
20		Trp Ser Asp Thr Sei 1445	r Arg Met Ala His A 3450	Ala Leu Asp 3455
	Gln Glu Ser Leu G 3460	In Arg Arg Phe Ala 346	Arg Ser Gly Phe E	Pro Pro Leu 3470
25	Ser Ala Thr Leu G 3475	Sly Ala Ala Leu Phe 3480	Asp Ala Ala Leu A 3485	Arg Val Asp
	Glu Ala Val Gln Va 3490	al Pro Met Arg Phe 3495	e Asp Pro Ala Ala I 3500	eu Arg Ala
30	Thr Gly Ser Val Pr 3505	ro Ala Leu Leu Ser 3510	: Asp Leu Val Gly S 3515	Ser Ala Pro 3520
35	Ala Thr Gly Ser A	la Ala Pro Ala Ser 525	Gly Pro Leu Pro A 3530	Ala Pro Asp 3535
	Ala Gly Thr Val G	ly Glu Pro Leu Ala 354	Glu Arg Leu Ala G 5 3	Sly Leu Ser 1550
40	Ala Glu Glu Arg Hi 3555	is Asp Arg Leu Leu 3560	Gly Leu Val Gly G 3565	lu His Val
	Ala Ala Val Leu Gi 3570	ly His Gly Ser Ala 3575	Ala Glu Val Arg P 3580	ro Asp Arg
45	Pro Phe Arg Glu Va 3585	al Gly Phe Asp Ser 3590	Leu Thr Ala Val G 3595	lu Leu Arg 3600
	Asn Arg Met Ala Al	la Val Thr Gly Val 605	Arg Leu Pro Ala T 3610	hr Leu Val 3615
50	3620	362		630
	Leu Ala Pro Ala Gl 3635	ln Pro Val Thr Thr 3640	Thr Pro Leu Leu S 3645	er Glu Leu
55	Asp Arg Ile Glu Gl 3650	lu Ala Leu Ala Ala 3655	Leu Thr Pro Glu H 3660	is Leu Ala

	G1u 366	Leu 5	Ala	Pro	Ala	Pro 367	Asp 0	Asp	Arg	Ala	G1u 367		Ala	Leu	Arg	Leu 3680
5	yab	Ala	Leu	Ala	89£	A rg 5	Trp	Arg	Ala	Leu 369		Asp	Gly	Ala	369	Gly 5
10	Ala	A sp	yab	370	Ile O	Thr	A sp	Val	Leu 370		Ser	λla	Asp	Asp 371		Glu
10	Ile	Phe	Ala 371		Ile	Asp	Glu	Arg 372		Gly	Thr	Ser				
15	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:5	:					١		
		i)	()	A) L B) T	CE CI ENGT YPE: OPOLA	H: 1 ami:	580 no a	amin cid		ids						
		(ii) MO	LECU	LE T	YPE:	pep	tide								
25		(xi) SE	QUEN	CE DI	ESCR:	IPTI	ON:	SEQ	ID N	0:5:					
10	Met 1	Ala	neA	Glu	Glu 5	Lys	Leu	Arg	Ala	Tyr 10	Leu	Lys	Arg	Val	Thr 15	Gly
30	Glu	Leu	His	Arg 20	Ala	Thr	Glu	Gln	Leu 25	Arg	Ala	Leu	Asp	Arg 30	Arg	Ala
	His	Glu	Pro 35	Ile	Ala	Ile	Val	Gly 40	Ala	Ala	Суз	Arg	Leu 45	Pro	Gly	Gly
35	Val	Glu 50	Ser	Pro	Asp	Asp	Leu 55	Trp	Glu	Leu	Leu	His 60	Ala	Gly	Ala	Asp
	Ala 65	Val	Gly	Pro	Ala	Pro 70	Ala	Asp	Arg	Gly	Trp 75	Asp	Val	Glu	Gly	Arg 80
40	Tyr	Ser	Pro	Asp	Pro 85	Asp	Thr	Pro	Gly	Thr 90	Ser	Tyr	Суз	Arg	Glu 95	Gly
	Gly	Phe	Val	Gln 100	Gly					Asp		Ala	Leu	Phe 110	Gly	Ile
45	Ser	Pro	Asn 115	Glu	Ala	Leu	Thr	M et 120	Asp	Pro	Gln	Gln	Arg 125	Leu	Leu	Leu
50	Glu	Thr 130	Ser	Trp	Glu	Ala	Leu 135	Glu	Arg	Ala	Gly	Leu 140	Asp	Pro	Gln	Ser
	Leu 145	Ala	Gly	Ser	Arg	Thr 150	Gly	Val	Phe	Ala	Gly 155	Ala	Trp	Glu	Ser	Gly 160
55		Gln			165					170					175	
	Leu	Ala	Gly	Ile	Val	Ser	Phe	Thr	Ala	Gly	Arg	Val	Ala	Tyr	Ala	Leu

				180)				18	5				19	0	
5	Gly	/ Let	1 Glu 195	ı Gly	Pro	Ala	Lev	Th: 200	r Il	leÆ e	Thi	c Ala	20:	s Sei	r Se	r Ser
	Leu	210	l Ala	Leu	His	Leu	Ala 215	Val	Gli	n Sei	Leu	220	y Arg	g Gly	y Gl	и Сув
10	Asp 225	Leu	ı Ala	Leu	Ala	Gly 230	Gly	Ala	Thi	Val	11e 235	Ala	ı Ası	Phe	≥ Ala	240
	Phe	Thr	Gln	Phe	Ser 245	Arg	Gln	Arg	Gly	Leu 250	Ala	Pro	yat	Gly	/ Ar g	Cys
15	Lya	Ala	Phe	Gly 260	Glu	Thr	Ala	Asp	Gly 265	Phe	Gly	Pro	Ala	Glu 270		/ Ala
	Gly	Met	Leu 275	Leu	Val	Glü	Arg	Leu 280	Ser	yab	Ala	Arg	Arg 285		Gly	His
	Pro	Val 290	Leu	Ala	Val	Val	Arg 295	Gly	Ser	Ala	Val	Asn 300	Gln	Asp	Gly	Ala
25	303					310					315					Ile 320
					163					330					335	
30				340					345					350		Ala
			,,,					360		Glu			365			
35							3/3			Gly		380				
						330				Leu	395					400
40	Leu				405					410					415	
45	Asp			420					425					430		
45	Arg	Ala	Glu 435	Gly	Pro .	Arg	Arg	Ala 440	Gly	Ile	Ser	Ser	Phe 445	Gly	Ile	Ser
50	Gly	Thr 450	Asn	Ala	His :	Leu	Val 455	Ile	Glu	Glu	G1u	Pro 460	Pro	Ala	Arg	Pro
	Glu 465	Pro	Glu	Glu .	Ala i	Ala (Gln .	Pro	Pro	Ala	Pro . 475	Ala '	Thr	Thr	Val	Leu 480
55	Pro	Leu	Ser .	Ala i	Ala (185	Gly /	Ala i	Arg :	Ser	Leu . 490	Arg (Glu (Gln .		A rg 4 95	Arg

	Leu	Ala	Ala	His 500	Leu	Ala	Gly	His	G1u 505		Ile	Thr	Ala	Ala 510	Asp	Ala
5			515					520					525			Ser
	Val	Leu 530	Ala	ysb	Asp	Arg	Arg 535	Ala	Leu	Ile	Asp	Arg 540		Thr	Ala	Leu
10	Ala 545	Glu	Asp	Arg	Lys	Asp 550	Pro	Gly	Val	Thr	Val 555	Gly	Glu	Ala	Gly	Ser 560
	Gly	Arg	Pro	Pro	Val 565	Phe	Val	Phe	Pro	Gly 570	Gln	Gly	Ser	Gln	Trp 575	
15	Gly	Met	Gly	Ala 580	Glu	Leu	Leu	Asp	Arg 585	Ala	Pro	Val	Phe	Arg 590	Ala	Lys
	Ala	Glu	Glu 595	Cys	Ala	Arg	Ala	Leu 600	Ala	Ala	His	Leu	Asp	Trp	Ser	Val
20	Leu	Asp 610	Val	Leu	Arg	Asp	Ala 615	Pro	Gly	Ala	Pro	Pro 620	Ile	Дзр	Arg	Ala
25	Asp 625	Val	Val	Gln	Pro	Thr 630	Leu	Phe	Thr	Met	Met 635	Val	Ser	Leu	Ala	Ala 640
23	Leu	Trp	Glu	Ser	His 645	Gly	Val	Arg	Pro	Ala 650	Ala	Val	Val	GJA	His 655	Ser
30	Gln	Gly	Glu	11e 660	Ala	Ala	Ala	His	Ala 665	Ala	Gly	Ala	Leu	Ser 670	Leu	Asp
	Asp	Ala	Ala 675	Arg	Val	Ile	Ala	Glu 680	Arg	Ser	Arg	Leu	Trp 685	Lys	Arg	Leu
35	Ala	Gly 690	Asn	Gly	Gly	Met	Leu 695	Ser	Val	Met	Ala	Pro 700	Ala	Asp	Arg	Val
	Arg 705	Glu	Leu	Met	Glu	Pro 710	Trp	Ala	Glu	Arg	Met 715	Ser	Val	Ala	Ala	Val 720
40	Asn	Gly	Pro	Ala	Ser 725	Val	Thr	Val	Ala	Gly 730	Asp	Ala	Arg	Ala	Leu 735	Glu
	Glu	Phe	Gly	Gly 740	Arg	Leu	Ser	Ala	Ala 745	Gly	Val	Leu	λrg	Trp 750	Pro	Leu
45	Ala	Gly	Val 755	Asp	Phe	Ala	Gly	His 760	Ser	Pro	Gln	Val	Glu 765	Gln	Phe	Arg
50	Ala	Glu 770	Leu	Leu	Asp	Thr	Leu 775	Gly	Thr	Val	Arg	Pro 780	Thr	Ala	Ala	Arg
	Leu 785	Pro	Phe	Phe	Ser	Thr 790	Val	Thr	Ala		Ala 795	His	Glu	Pro	Glu	Gly 800
55	Leu	Asp	Ala	Ala	Tyr 805	Ттр	Tyr	Arg		Met 810	Arg	Glu	Pro		Glu 815	Phe

	Ala	Ser	Thr	Leu 820	Arg	Thr	Leu	Leu	Arg 825	Glu	Gly	His	Arg	Thr 830	Phe	Val
5	Glu	Met	Gly 835	Pro	His	Pro	Leu	Leu 840	Gly	Ala	Ala	Ile	Asp 845	Glu	Val	Ala
	Glu	Ala 850	Glu	Gly	Val	His	Ala 855	Thr	Ala	Leu	Ala	Thr 860	Leu	His	Arg	Gly
10	865	_	-	Leu	=	870					875	Ī				880
	His	Gly	Val	Arg	Val 885	Asp	Trp	Asp	Ala	Leu 890	Phe	Glu	Gly	Ser	G1y 895	Ala
15	Arg	Arg	Val	Pro 900	Leu	Pro	Thr	Tyr	Ala 905	Phe	Ser	Arg	Asp	Arg 910	Tyr	Trp
	Leu	Pro	Thr 915	Ala	Ile	Gly	Arg	Arg 920	Ala	Val	Glu	Ala	Ala 925	Pro	Val	Asp
	Ala	Ser 930	Ala	Pro	Gly	Arg	Tyr 935	Arg	Val	Thr	Trp	Thr 940	Pro	Val	Ala	Ser
25	Asp 945		Ser	Gly	Arg	Pro 950	Ser	Gly	Arg	Trp	Leu 955	Leu	Val	Gln	Thr	Pro 960
	Gly	Thr	Ala	Pro	Asp 965	Glu	Ala	Asp	Thr	Ala 970	Ala	Ser	λla	Leu	Gly 975	Ala
30	Ala	Gly	Val	Val 980	Val	Glu	Arg	Cys	Leu 985	Leu	Asp	Pro	Thr	Glu 990	Ala	Ala
·	Arg	Val	Thr 995	Leu	Thr	Glu	Arg	Leu 1000		Glu	Leu	Asp	Ala 1009		Pro	Glu
35	Gly	Leu 101		Gly	Val	Leu	Val 101		Pro	Gly	Arg	Pro 1020		Ser	Thr	Ala
	Pro 102		Asp	Ala	Ser	Pro 103		Asp	Pro	Gly	Thr 103		Ala	Val	Leu	Leu 1040
40	Val	Val	Gln	Ala	Val 104		Asp	Ala	Ala	Pro 105		Ala	Arg	Ile	Trp 105	
	Val	Thr	Arg	Gly 106		Val	Ala	Val	Gly 106		Gly	Glu	Val	Pro 1076		Ala
45	Val	Gly	Ala 107	Arg 5	Val	Trp	Gly	Leu 108		Arg	Val	Ala	Ala 108		Glu	Val
50	Pro	Val 109		Trp	Gly	Gly	Leu 109		Asp	Val	Ala	Val 110	_	Ala	Gly	Val
	Arg 110		Trp	Arg	Arg	Val 111		Gly	Val	Val	Ala 111		Gly	Gly	Glu	Asp 1120
55	Gln	Val	Ala	Val	Arg 112		Gly	Gly	Val	Phe 113	Gly 0	Arg	Arg	Leu	Val 113	_

4.~

Val Val Thr Gly Gly Leu Gly Gly Val Gly Gly His Val Ala A 1155 1160 1165 Leu Ala Arg Ser Gly Ala Glu His Val Val Leu Ala Gly Arg A 1170 1175 1180 Gly Gly Val Val Gly Ala Val Glu Leu Glu Arg Glu Leu Val Gly Ala Lys Val Thr Phe Val Ser Cys Asp Val Gly Asp Arg A 1205	lrg Trp
Gly Gly Val Val Gly Ala Val Glu Leu Glu Arg Glu Leu Val Gli 1185 1190 1195 Gly Ala Lys Val Thr Phe Val Ser Cys Asp Val Gly Asp Arg A	
Gly Ala Lys Val Thr Phe Val Ser Cys Asp Val Gly Asp Arg A	urg Gly
Gly Ala Lys Val Thr Phe Val Ser Cys Asp Val Gly Asp Arg	ly Leu 1200
	la Ser 215
Met Val Gly Leu Leu Gly Val Val Glu Gly Leu Gly Val Pro I 1220 1225 1230	·=
Gly Val Phe His Ala Ala Gly Val Ala Gln Val Ser Gly Leu G 1235 1240 1245	
Val Ser Leu Ala Glu Ala Gly Gly Val Leu Gly Gly Lys Ala V 1250 1255 1260	al Gly
Ala Glu Leu Leu Asp Glu Leu Thr Ala Gly Val Glu Leu Asp A 1265 1270 1275	la Phe 1280
Val Leu Phe Ser Ser Gly Ala Gly Val Trp Gly Ser Gly Gly G	ln Ser 295
Val Tyr Ala Ala Ala Asn Ala His Leu Asp Ala Leu Ala Glu A 1300 1305 1310	rg Arg
Arg Ala Gln Gly Arg Pro Ala Thr Ser Val Ala Trp Gly Leu T 1315 1320 1325	rp Gly
Gly Glu Gly Met Gly Ala Asp Glu Gly Val Thr Glu Phe Tyr A 1330 1335 1340	la Glu
Arg Gly Leu Ala Pro Met Arg Pro Glu Ser Gly Ile Glu Ala Lo 1345 1350 1355	eu His 1360
40 Thr Ala Leu Asn Glu Gly Asp Thr Cys Val Thr Val Ala Asp I 1365 1370 1	le Asp 375
Trp Glu His Phe Val Thr Gly Phe Thr Ala Tyr Arg Pro Ser Pr 1380 1385 1390	co Leu
Ile Ser Asp Ile Pro Gln Val Arg Ala Leu Arg Thr Pro Glu Pr 1395 1400 1405	o Thr
Val Asp Ala Ser Asp Gly Leu Arg Arg Arg Val Asp Ala Ala Le 1410 1415 1420	eu Thr
Pro Arg Glu Arg Thr Lys Val Leu Val Asp Leu Val Arg Thr Val 1425 1430 1435	1 Ala 1440
Ala Glu Val Leu Gly His Asp Gly Ile Gly Gly Ile Gly His As 1445 1450 14	p Val 55

	λla	Phe	e Arg	Asp 146	Leu 0	Gly	Phe	yab	Ser 146	Leu 5	Ala	Ala	Val	147		Arg
5	Gly	Arg	Leu 147	Ala 5	Glu	Ala	Thr	Gly 148	Leu 0	Val	Leu	Pro	Ala 148		Val	Ile
	Phe	149	His 0	Pro	Thr	Val	Asp 149	Arg 5	Leu	Gly	Gly	Ala 150		Leu	Glu	Arg
10	Leu 150	Ser 5	Ala	Asp	Glu	Pro 151	Ala O	Pro	Gly	Gly	Ala 151		Glu	Pro	Ala	Gly 1520
15	Gly	Arg	Pro	Ala	Thr 152	Pro 5	Pro	Pro	Ala	Pro 153		Pro	Ala	Val	His 153	_
15	Ala	Asp	Ile	Asp 154	Glu 0	Leu	Asp	Ala	Asp 154	Ala 5	Leu	Ile	Arg	Leu 155		Thr
20	Gly	Thr	Ala 155	Gly 5	Pro	Ala	Asp	Gly 156	Thr 0	Pro	Ala	Asp	Gly 156		Pro	Asp
	Ala	Ala 157	Ala O	Thr	Ala	Pro	Asp 157		Ala	Pro	Glu	Gln 158				
25	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:6	:							
30		(i	()	A) L1 B) T	engti Ype:		891 a	amino cid	CS: D &C:	ids						
30		(ii) MOI													
35		(xi)	SE	QUEN	CE DI	ESCR]	[PTI	ON: S	SEQ 1	ID NO	0:6:					
	Met 1	Ser	Pro	Ser	Met 5	Asp	Glu	Val	Leu	Gly 10	Ala	Leu	Arg	Thr	Ser 15	Val
40	Lys	Glu	Thr	Glu 20	Arg	Leu	Arg	Arg	His 25	Asn	Arg	G1u	Leu	Leu 30	Ala	Gly
	Ala	His	G1u 35	Pro	Val	Ala	Ile	Val 40	Gly	Met	Ala	Сув	Arg 45	Tyr	Pro	Gly
45	Gly	Val 50	Ser	Thr	Pro	Asp	Д зр 55	Leu	Trp	Glu	Leu	Ala 60	Ala	Asp	Gly	Val
	Азр 65	Ala	Ile	Thr	Pro	Phe 70	Pro	Ala	Asp	Arg	Gly 75	Trp	Asp	Glu	λsp	Ala 80
50	Val	Tyr	Ser	Pro	Asp 85	Pro	Asp	Thr	Pro	Gly 90	Thr	Thr	Tyr	Суз	A rg 95	Glu
	Gly	Gly	Phe	Leu 100	Thr	Gly	Ala	Gly	Asp 105	Phe	Asp	Ala	Ala	Phe 110	Phe	Gly
55	Ile	Ser	Pro	Asn	Glu	Ala	Leu	Val	Met	Asp	Pro	Gln	Gln	Arg	Leu	Leu

			11	5		٠		12	0				12	5		
5	Le	u Gl: 13	u Th O	r Se	r Trj	p Gl	u Thi	r Lei	ı Gl	u Ar	g Ala	Gl;		e Va	l Pr	o Al
	Ser 14	r Lei	u Ar	g Gl	/ Sea	r Arg	g Thi 0	r Gly	/ Va	l Ph	Va:		/ Al	a Al	a Hi	s Th
10	Gly	ү Туі	r Va	l Thi	165	Thi	r Ala	a Arg	J Ala	17(G1(ı Gly	/ Thi	r Gl	u G1 17	
	Lev	ı Lev	ı Thi	r Gly 180	Asr	a Ala	a Asp	Ala	Va 189	l Met	: Ser	Gly	/ Arg	11 i		а Ту
15	Ser	: Leu	1 Gly	/ Leu 5	Glu	Gly	/ Pro	200	Leu	1 Thr	Ile	Gly	Thi 205		a Cy:	s Sei
	Ser	Ser 210	Let	ı Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220		ı Arç) Ar	g Gly
	Glu 225	Cys	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Ala 235	Val	Met	Pro) Ası	Pro 240
25				• Val	245					250					255	i
				Ala 260					/h>					274		
	Gly	Val	G1y 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
30	Gly	His 290	Arg	Val	Leu	Ala	Val 295	Val	Arg	Gly	Ser	Ala 300	Val	Asn	Gln	A sp
<i>35</i>	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	Ala	Asp	Ala	Gly 330	Leu	Thr	Pro	Ala	Asp	Val
40	Asp	Val	Val	Glu 340	Ala	His	Gly	Thr	Gly 345	Thr	Ala	Leu	Gly	Asp 350	Pro	Ile
	Glu	Ala	Gly 355	Ala	Leu	Leu	Ala	Thr 360	Tyr	Gly	λrg	Glu	Arg 365	Val	Gly	Дзр
45	Pro	Leu 370	Trp	Leu	Gly	Ser	Leu 375	Ľуз	Ser	λsn	Ile	Gly 380	His	Ala	Gln	Ala
	Ala 385	Ala	Gly	Val	Gly	Gly 390	Val	Ile	Lys	Val	Va1 395	Gln	Ala	Met	Arg	His 400
50	Gly	Ser	Leu	Pro	Arg 405	Thr	Leu	His	Val	Asp 410	Ala	Pro	Ser	Ser	Lys 415	Val
	Glu	Trp	Ala	Ser 420	Gly	Ala	Val	Glu	Leu 425	Leu	Thr	Glu	Gly	Arg 430	Ser	Trp
55	Pro	Arg	Arg	Val	Glu	Arg	Val	Arg	λrg	Ala .	Ala	Val	Ser	Ala	Phe	Gly

			435					440)				445	;		
5	Val	Ser 450	Gly	Thr	Asn	Ala	His 455		Val	Leu	Glu	Glu 460		Pro	Val	Glu
	Ala 465	Gly	Ser	Glu	His	Gly 470	yab	Gly	Pro	Gly	Pro 475		Arg	Pro) Asp	Ala 480
10	Val	Thr	Gly	Pro	Leu 485	Pro	Trp	Val	Leu	Ser 490		Arg	Ser	Arg	Glu 495	Ala
				500					505					510		Arg
15			515					520					525			Asp
20		.530					535					540				Ala
	545					550					555					Ala 560
25				Gly	565					570					575	_
				Gly 580					585					590		
30			595	Gly				600					605			_
		610		Glu Val		Phe	615				Thr	620				
35		Asp	Arg	Thr	Asp 645	630 Tyr	Thr	Gln	Pro		635 Leu	Phe	Ala	Val		640 Thr
40	Ala	Leu	Phe	Arg 660		Leu	Glu	Ser	Trp 665	650 Gly	Leu	Val	Pro		655 Val	Leu
70	Val	Gly	His 675	Ser	Ile	Gly	Gly	Leu 680		Ala	Ala	His	Val 685	670 Ala	Gly	Val
45	Phe	Ser 690		Ala	Asp	Ala	Ala 695		Leu	Val	Ser	Ala 700		Gly	Arg	Leu
	Met 705	Arg	Ala	Leu	Pro	Glu 710		Gly	Ala	Met	Ala 715		Val	Gln	Ala	Thr 720
50	Glu	Arg	Glu	Ala	Ala 725		Leu	Glu	Pro	Val 730		Ala	Gly	Gly	Ala 735	
	Val	Ala	Ala	Val 740		Gly	Pro	Gln	Ala 745		Val	Leu	Ser	Gly 750		Glu
55	Ala	Ala	Val	Leu	Ala	Ala	Ala	Gly		Leu	Ala	Ala	Arg		Arg	Arg

			755	;				760)				769	5		
5	Thr	Lys 770	Arg	Leu	Arg	Va]	Ser 775	His	s Ala	a Phe	e His	Ser 780		Arg	j Met	asp.
	Ala 785	Met	Leu	Ala	qeA	Phe 790	Arg	Ala	va]	Ala	Asp 795		: Va]	Asp	Туг	His 800
10	Ala	Pro	Arg	Leu	Pro 805	Val	Val	Ser	Glu	Va) 810		Gly	yap	Leu	Ala 815	Asp
	Ala	Ala	Gln	Leu 820	Thr	Asp	Pro	Gly	7 Tyr 825	Trp	Thr	Arg	Gln	Val 830		Gln
15	Pro	Val	Arg 835	Phe	Ala	Asp	Ala	Val 840	Arg	Thr	Ala	Ser	Ala 845		A sp	Ala
	Ala	Thr 850	Phe	Ile	Glu	Leu	Gly 855	Pro) Asp	Ala	Val	Leu 860		Gly	Met	Ala
	Glu 865	Glu	Ser	Leu	Ala	Ala 870	Glu	Ala	Asp	Val	Val 875		Ala	Pro	Ala	Leu 880
25	Arg	Arg	Gly	Arg	Pro 885	Glu	Gly	Asp	Thr	Val 890		Arg	Ala	Ala	Ala 895	Ser
	Ala	Tyr	Val	Arg 900	Gly	Ala	Gly	Leu	Asp 905	Trp	Ala	Ala	Leu	Tyr 910	Gly	Gly
30	Thr	Gly	Ala 915	Arg	Arg	Thr	Хзр	Leu 920	Pro	Thr	Tyr	Ala	Phe 925	Gln	His	Ser
	Arg	Tyr 930	Trp	Leu	Ala	Pro	Ala 935	Ser	Ala	Ala	Val	Ala 940	Pro	Ala	Thr	Ala
35	Ala 945	Pro	Ser	Val	Arg	Ser 950	Val	Pro	Glu	Ala	Glu 955	Gln	Asp	Gly	Ala	Leu 960
					965					970	Ser Leu				975	
40				980					985					990		
			995					100	0				100	5		Ala
45		1010	,				1015	5				1020)			Val
	A rg 1025	Phe	Ser	Pro	Ser	Asp 1030	Arg)	Trp	Leu	Met	Val 1035		His	Gly	Gln	His 1040
· ·	Thr	Glu	Суѕ	Ala	Asp 1045	Ala	Ala	Glu	Arg	Ala 1050	Leu)	Arg	Ala	Ala	Gly 1055	
55	Glu	Val	Thr	Arg 1060	Leu	Val	Trp	Pro	Leu 1065	Glu ;	Gln	His	Thr	Gly 1070		Pro
~	λrg	Thr	Glu	Thr	Pro	qeA	Arg	Gly	Thr	Leu	Ala	Ala	Arg	Leu	Ala	Glu

		1075	10	80	1085
5	Leu Ala 1090	Arg Ser Pro	Glu Gly Le 1095		eu Leu Leu Pro Asp 100
	Ser Gly 1105	Gly Ala Ala	Val Ala Gl 1110	y His Pro Gly L 1115	eu Asp Gln Gly Thr 1120
10	Ala Ala	Val Leu Leu 112	Thr Ile Gl	n Ala Leu Thr As 1130	sp Ala Ala Val Arg 1135
	Ala Pro	Leu Trp Val 1140	. Val Thr Ar	g Gly Ala Val Ai 1145	la Val Gly Ser Gly 1150
15	Glu Val	Pro Cys Ala 1155	Val Gly Al 11	a Arg Val Trp G 60	ly Leu Cly Arg Val 1165
	Ala Ala 1 1170	Leu Glu Val	Pro Val Gl 1175		eu Val Asp Val Ala 180
20	Val Gly 2 1185	Ala Gly Val	Arg Glu Tr	p Arg Arg Val Va 1195	al Gly Val Val Ala 1200
. 25	Gly Gly	Gly Glu Asp 120	Gln Val Ala	a Val Arg Gly Gl 1210	y Gly Val Phe Gly 1215
	Arg Arg I	Leu Val Gly 1220	Val Gly Va	l Arg Gly Gly Se 1225	er Gly Val Trp Arg 1230
30	Ala Arg (Gly Cys Val 1235	Val Val The	r Gly Gly Leu Gl 40	y Gly Val Gly Gly 1245
	His Val 1 1250	Ala Arg Trp	Leu Ala Arg 1255		u His Val Val Leu 60
35	Ala Gly 1 1265	Arg Arg Gly	Gly Gly Val	l Val Gly Ala Va 1275	l Glu Leu Glu Arg 1280
	Glu Leu V	al Gly Leu 128	Gly Ala Lys	Val Thr Phe Va 1290	l Ser Cys Asp Val 1295
40	Gly Asp A	Arg Ala Ser 1300	Val Val Gly	Leu Leu Gly Va 1305	l Val Glu Gly Leu 1310
		.312	132	.0	y Val Ala Gln Val 1325
45	1330		1335	13	
	Gly Lys A 1345	la Val Gly	Ala Glu Leu 1350	Leu Asp Glu Le 1355	u Thr Ala Gly Val 1360
50	Glu Leu A	sp Ala Phe 1365	Val Leu Phe	Ser Ser Gly Ala 1370	a Gly Val Trp Gly 1375
55	Ser Gly G	ly Gln Ser 1380	Val Tyr Ala	Ala Ala Asn Ala 1385	his Leu Asp Ala 1390
~	Leu Ala G	lu Arg Arg	Arg Ala Gln	Gly Arg Pro Ala	Thr Ser Val Ala

		1395	140	00	1405
5	Trp Gl 14	y Pro Trp Asp 10	Gly Asp Gly 1415	Met Gly Glu Met 142	Ala Pro Glu Gly
	Tyr Ph 1425	e Ala Arg His	Gly Val Ala 1430	Pro Leu His Pro 1435	Glu Thr Ala Leu 1440
10	Thr Al	a Leu His Gln 144	Ala Ile Asp 5	Gly Gly Glu Ala	Thr Val Thr Val
	Ala As	p Ile Asp Trp 1460	Glu Arg Phe	Ala Pro Gly Phe	Thr Ala Phe Arg
15	Pro Se	r Pro Leu Ile 1475	Ala Gly Ile 148	Pro Ala Ala Arg O	Thr Ala Pro Ala 1485
	Ala Gl ₃ . 149	y Arg Pro Ala 90	Glu Asp Thr 1495	Pro Thr Ala Pro	Gly Leu Leu Arg
20	Ala Arç 1505	J Pro Glu Asp	Arg Pro Arg 1510	Leu Ala Leu Asp 1515	Leu Val Leu Arg 1520
25	His Val	Ala Ala Val 152	Leu Gly His 5	Ser Glu Asp Ala 1530	Arg Val Asp Ala 1535
	Arg Ala	Pro Phe Arg 1540	Asp Leu Gly	Phe Asp Ser Leu 1545	Ala Ala Val Arg 1550
30	Leu Arg	Arg Arg Leu 1555	Ala Glu Asp 1560	Thr Gly Leu Asp	Leu Pro Gly Thr 1565
	Leu Val 157	Phe Asp His	Glu Asp Pro 1575	Thr Ala Leu Ala 1580	His His Leu Ala
35	Gly Leu 1585	Ala Asp Ala	Gly Thr Pro 1590	Gly Pro Gln Glu 1595	Gly Thr Ala Arg 1600
	Ala Glu	Ser Gly Leu 1605	Phe Ala Ser	Phe Arg Ala Ala 1610	Val Glu Gln Arg 1615
40	Arg Ser	Ser Glu Val 1620	Val Glu Leu	Met Ala Asp Leu 1625	Ala Ala Phe Arg 1630
	Pro Ala	Tyr Ser Arg 1635	Gln His Pro 1640	Gly Ser Gly Arg	Pro Ala Pro Val 1645
45	Pro Leu 1650	Ala Thr Gly	Pro Ala Thr . 1655	Arg Pro Thr Leu 1660	Tyr Cys Cys Ala
50				Ala Glu Tyr Val 1675	
00		1003		Val Ala Leu Pro 1 1690	Leu Ser Gly Phe 1695
55		1,00	•	Ala Ser Leu Asp ; 1705	1710
	Val Gln	Ala Asp Val 1	Leu Leu Glu I	His Thr Ala Gly I	ys Pro Phe Ala

1720

1725

1715

5			Leu	Ala 1730	Gly 0	His	Ser	Ala	Gly 173	Ala	Asn	Ile	Ala	His 1740		Leu	Ala	Ala
			Arg 174		Glu	Glu	Arg	Gly 175		Gly	Pro	Ala	Ala 175		Val	Leu	Met	Asp 1760
10			Val	Tyr	Arg	Pro	Glu 176		Pro	Gly	Ala	Met 1770		Glu	Trp	Arg	Asp 1775	-
			Leu	Leu	Ser	Trp 1780		Leu	Glu	Arg	Ser 178		Val	Pro	Leu	Glu 1790	Asp 0	His
15			Arg	Leu	Thr 1799		Met	Ala	Gly	Tyr 1800		Arg	Leu	Val	Leu 1809	_	Thr	Arg
			Leu	Thr 1810		Leu	Glu	Ala	Pro 181		Leu	Leu	Ala	Arg 1820		Ser	Glu	Pro
20			Leu 182		Ala	Trp	Pro	Pro 1830		Gly	Gly	Ala	Arg 1839		Asp	Trp	Arg	Ser 1840
25			Gln	Val	Pro	Phe	Ala 1849		Thr	Val	Ala	Д зр		Pro	Gly	Asn	His 1855	
			Thr	Met	Leu	Thr 1860		His	Ala	Arg	His 1869		Ala	Ser	Leu	Val 1870	His	Glu
30			Trp	Leu	Asp 1875	Ser	Leu	Pro	His	Gln 1880		Gly	Pro	Ala	Pro 1885		Thr	Gly
			Gly	Lys 1890				••										
35	Cla	ims																
	1.	An iso								tide se	equen	ce tha	t encc	des a	pojyp	eptide	where	ein said polypep-
40	2.	r	nucleo	tides 3	392 to	1603,	1922	to 29	95, 31	73 to	3424,	3527	to 479	98, 51	35 to (6208,	7043	up consisting of: to 7597, 7946 to
45		16844 24484	, 1691 to 24 , 3142	14 to 1 678, 2 28 to 3	17510, 14742 12696,	1861 to 260 3302	2 to 1 16, 26 4 to 3	9166, 6371 t 4022,	19479 o 2739 34779	9 to 19 31, 27 0 to 3	9730, 442 to 5327,	20215 2796 35586	5 to 2 66, 286 6 to 3	1486, 343 to 5837,	21889 2989	to 22 2, 299	2872, 1 905 to	15422, 15789 to 23638 to 24159, 30462, 30760 to 37898 to 38905,
50	3.	A poly domai		le cons	sisting	of an	amino	acid	seque	nce w	hereir	n said	polyp	eptide	consi	sts of	a plate	enolide synthase

2641 to 3064, 3184 to 3520, 3546 to 3727, 4083 to 4268, and 4374 to 4457 all in SEQ ID NO: 2; (b) amino acids 35 to 459, 582 to 933, 957 to 1155, 1523 to 1707, and 1812 to 1895 all in SEQ ID NO: 3; (c) amino acids 36 to 459, 594 to 921, 1177 to 1350, 1459 to 1523, 1545 to 1969, 2088 to 2424, 2445 to 2619,

(a) amino acids 15 to 418, 525 to 882, 942 to 1025, 1060 to 1483, 1596 to 1953, 2232 to 2416, 2533 to 2616,

4. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:

2912 to 3261, 3266 to 3451, and 3551 to 3631 all in SEQ ID NO: 4;

55

- (d) amino acids 34 to 456, 566 to 898, 1148 to 1333, and 1420 to 1503 all in SEQ ID NO: 5; and (e) amino acids 35 to 458, 582 to 917, 1233 to 1418, 1502 to 1585, 1715 to 1747 all in SEQ ID NO: 6.
- The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 392 to 3424, 3527 to 8197, 8270 to 13720, 14148 to 19730, 20215 to 24678, 24742 to 31002, 31428 to 35837, and 36257 to 41395 all in SEQ ID NO: 1.
 - 6. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:
 - (a) amino acids 15 to 1025, 1060 to 2616, and 2641 to 4457 all in SEQ ID NO: 2;
 - (b) amino acids 35 to 1895 in SEQ ID NO: 3;
 - (c) amino acids 36 to 1523, and 1545 to 3631 all in SEQ ID NO: 4;
 - (d) amino acids 34 to 1503 in SEQ ID NO: 5; and
 - (e) amino acids 35 to 1747 in SEQ ID NO: 6.

15

5

10

- 7. The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 350 to 14002, 14046 to 20036, 20110 to 31284, 31329 to 36071, and 36155 to 41830 all in SEQ ID NO: 1.
- A homogenous preparation of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 3, 4, 5, and 6.
 - 9. An isolated DNA molecule consisting of nucleotide sequence of SEQ ID NO: 1
- 25 10. A recombinant DNA vector comprising the DNA molecule of claim 1.
 - 11. A recombinant DNA vector comprising the DNA molecule of claim 2.
 - 12. A recombinant DNA vector comprising the DNA molecule of claim 5.

30

- 13. A recombinant DNA vector comprising the DNA molecule of claim 7.
- 14. A recombinant DNA vector comprising the DNA molecule of claim 9.
- 35 15. A host cell transformed with a recombinant DNA vector of Claim 10.
 - 16. A host cell transformed with a recombinant DNA vector of Claim 11.
 - 17. A host cell transformed with a recombinant DNA vector of Claim 12.

40

- 18. A host cell transformed with a recombinant DNA vector of Claim 13.
- 19. A host cell transformed with a recombinant DNA vector of Claim 14.
- 45 20. The recombinant DNA vector deposited under accession number NRRL B-21500.
 - 21. The recombinant DNA vector deposited under accession number NRRL B-21499.

50

55

Fig. 1

rmG ~44kh

^	Module 7	KS-6 AT DH KR ACP	Module 6	ORF 4
KS-4 AT KR ACP KS-5 AT DH ER KR ACP	Module 4 Module 5 ORF 3	KS-3 AT DH KR ACP	Module 3	ORF 2
KS AT ACP KS-1 AT KR ACP KS-2 AT DH KR ACP	Module 2	KS-3 AT D	Mod	OR
P KS-1 AT KR ACP	Module 1 ORF1			
KS AT AC	Starter Module			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.