Time-Varying LPs and SDPs Joint work with Amirali Ahmadi

Bachir Fl Khadir

Princeton University

July 13, 2017

Outline

- Introduction
- Motivation for Polynomial Solutions
- Geometry of a TV-LP
- Continuous Solutions and Polynomials
- **TV-SDPs**

Topic

- Introduction

TV-LP

•00

$$\begin{array}{ll} \underset{x}{\text{maximize}} & \langle c, x \rangle \\ \text{subject to} & Ax \leq b \end{array} \tag{LP}$$

•00

$$\begin{array}{ll} \underset{x(t)}{\text{maximize}} & \int_{-1}^{1} \langle c(t), x(t) \rangle dt \\ \text{subject to} & A(t)x(t) \leq b(t) & \forall t \in [-1, 1] \end{array} \tag{TV-LP}$$

- A, b, c polynomials.
- Polynomials are general enough.

000

5 / 24

Contributions

- Study existence and optimality of polynomial solutions.
- Find the best polynomial solution of a given degree to a TV-LP / TV-SDP using a (non time-varying) SDP.

Contributions

- Study existence and optimality of polynomial solutions.
- Find the best polynomial solution of a given degree to a TV-LP / TV-SDP using a (non time-varying) SDP.

Are polynomials optimal to a TV-LP or TV-SDP?

- Study existence and optimality of polynomial solutions.
- Find the best polynomial solution of a given degree to a TV-LP / TV-SDP using a (non time-varying) SDP.

Are polynomials optimal to a TV-LP or TV-SDP?

Generally no!

Contributions

- Study existence and optimality of polynomial solutions.
- Find the best polynomial solution of a given degree to a TV-LP / TV-SDP using a (non time-varying) SDP.

Are polynomials optimal to a TV-LP or TV-SDP?

Generally no!

Near Optimality

 $\forall \varepsilon > 0, \ \exists x(t) \in \mathbb{R}^n[t] \text{ such that:}$

Motivation for Polynomial Solutions

- $A(t)x(t) \leq b(t)$
- $opt \int_{-1}^{1} \langle c(t), x(t) \rangle dt \leq \varepsilon$.

Topic

Introduction

- Introduction
- Motivation for Polynomial Solutions
- Geometry of a TV-LP
- 4 Continuous Solutions and Polynomials
- 5 TV-SDPs

TV-SDPs

Problems in practice:

- Deciding the transmission power of a cell tower during the day.
- Chosing the optimal control of a robotic arm.
- ...

We are interested in continuous solutions

Problems in practice:

- Deciding the transmission power of a cell tower during the day.
- Chosing the optimal control of a robotic arm.
- . . .

Introduction

We want smooth solutions!

Introduction

Positivstellensatz for TV-LPs (Polya-Szego, 1976)

Every nonnegative univariate polynomial p(t) on [-1,1] can be written as

$$p = \sigma_0 + (1-t)\sigma_1 + (1+t)\sigma_2 + (1-t^2)\sigma_3,$$

where $\sigma_i \in SOS$, i = 0, ..., 3, with degree bounded by deg(p).

Introduction

Positivstellensatz for TV-LPs (Polya-Szego, 1976)

Every nonnegative univariate polynomial p(t) on [-1,1] can be written as

$$p = \sigma_0 + (1-t)\sigma_1 + (1+t)\sigma_2 + (1-t^2)\sigma_3,$$

where $\sigma_i \in SOS$, i = 0, ..., 3, with degree bounded by deg(p).

In our case

- Constraint $A_i(t)x(t) \leq b_i(t) \quad \forall t \in [-1,1]$
- Becomes

$$b_i(t) - A_i(t)x(t) = \sigma_0(t) + (1-t)\sigma_1(t) + (1+t)\sigma_2(t) + (1-t^2)\sigma_3(t)$$

Positivstellensatz for TV-LPs (Polya-Szego, 1976)

Every nonnegative univariate polynomial p(t) on [-1,1] can be written as

$$p = \sigma_0 + (1-t)\sigma_1 + (1+t)\sigma_2 + (1-t^2)\sigma_3,$$

where $\sigma_i \in SOS$, i = 0, ..., 3, with degree bounded by deg(p).

In our case

- Constraint $A_i(t)x(t) \leq b_i(t) \quad \forall t \in [-1,1]$
- Becomes $b_i(t) - A_i(t)x(t) = \sigma_0(t) + (1-t)\sigma_1(t) + (1+t)\sigma_2(t) + (1-t^2)\sigma_3(t)$

That's a (non time-varying) SDP

$$\sigma(t) \in SOS \iff \exists Q \succeq 0, \sigma(t) = egin{pmatrix} 1 \ t \ dots \ t^{rac{n}{2}} \end{pmatrix}^T Q egin{pmatrix} 1 \ t \ dots \ t^{rac{n}{2}} \end{pmatrix}$$

Topic

Introduction

- Geometry of a TV-LP

Geometry of a TV-LP

Geometry of a TV-LP

Assumptions

The feasible set \mathcal{P}_t at time $t \in [-1, 1]$ is:

- nonempty
- bounded.

11 / 24

Geometry of a TV-LP

maximize $\int_{-1}^{1} \langle c(t), x(t) \rangle dt$ (TV-LP) subject to $A(t)x(t) \leq b(t) \ \forall t \in [-1,1]$

Assumptions

Introduction

The feasible set \mathcal{P}_t at time $t \in [-1, 1]$ is:

- nonempty
- bounded.

Theorem (Geometry of the Feasible Set)

- There exist:
 - *N* break points $-1 = t_1 < \cdots < t_N = 1$.
 - N-1 finite sets of rational functions $V_1,\ldots,V_{N-1}\subset\mathbb{R}^n(t)$.

such that:

$$\mathcal{P}_t = conv\{v(t), v \in \mathcal{V}_i\}$$

for every $i \in [N-1], t \in (t_i, t_{i+1}).$

• Every $v \in \mathcal{V}_i$ has the form $v(t) = A_{B_v}(t)^{-1}b_{B_v}(t)$.

11 / 24

TV-SDPs

- Continuous Solutions and Polynomials

TV-SDPs

Continuous Solutions: What could go wrong?

Good news

Introduction

Continuous Feasibility

Continuous Optimality.

Continuous Solutions: What could go wrong?

Good news

Continuous Feasibility

Continuous Optimality.

Example (What could go wrong?)

A "discontinuous" TV-LP $\mathcal{P}_t := \{x \in \mathbb{R}, tx \geq 0, t(x-1) \geq 0\}.$

- $\mathcal{P}_t = [1, \infty)$ when t > 0.
- $\mathcal{P}_t = (-\infty, 0]$ when t < 0. No continuous solution!

000000

Strict Feasibility

Definition (Strict Feasibility)

A TV-LP is *strictly feasible* if there exists a (not necessarily continuous) function $x^s: [-1,1] \to \mathbb{R}^n$ and a scalar $\varepsilon > 0$ such that

$$A(t)x^{s}(t) \leq b(t) - \varepsilon \mathbf{1}, \ \forall t \in [-1, 1].$$

Theorem (Strict feasibility \implies Continuous solutions)

If a TV-LP is strictly feasible, then it has a continuous near optimal solution. Futhermore, the continuous solution can be chosen to be strictly feasible.

Introduction

Optimality of continuous functions \implies Optimality of polynomials?

Example (No! A "Tight" TV-LP)

• $(1+t^2)x(t)=1$

Introduction

• Only one solution $x(t) = \frac{1}{1+t^2}$. Not polynomial.

000000

Optimality of continuous functions \implies Optimality of polynomials?

Example (No! A "Tight" TV-LP)

• $(1+t^2)x(t)=1$

Introduction

• Only one solution $x(t) = \frac{1}{1+t^2}$. Not polynomial.

Definition (Continuous Full-Dimensionality)

TV-LP is continuously full-dimensional if there exists a constant $\delta > 0$ and a continuous function $x^c : [-1,1] \to \mathbb{R}^n$ such that $B(x^c(t), \delta) \subset \mathcal{P}_t, \ \forall t \in [-1,1].$

Polynomials: What could go wrong?

Optimality of continuous functions \implies Optimality of polynomials?

Example (No! A "Tight" TV-LP)

- $(1+t^2)x(t)=1$
- Only one solution $x(t) = \frac{1}{1+t^2}$. Not polynomial.

Definition (Continuous Full-Dimensionality)

TV-LP is continuously full-dimensional if there exists a constant $\delta > 0$ and a continuous function $x^c : [-1,1] \to \mathbb{R}^n$ such that $B(x^c(t),\delta) \subset \mathcal{P}_t, \ \forall t \in [-1,1]$.

Full-Dimensionality \implies Optimality of Polynomials

• Approximate $x^c(t)$ by a polynomial.

Strict Feasibility vs Continuous Full-dimensionality

- Strict Feasibility provides slackness in the space of the constraints.
- Continuous full-dimensionality provides slackness in the space of the variables.

Full-dimensionality \implies Strict feasibility?

Strict Feasibility vs Continuous Full-dimensionality

- Strict Feasibility provides slackness in the space of the constraints.
- Continuous full-dimensionality provides slackness in the space of the variables.

Full-dimensionality ⇒ Strict feasibility?

Example (No!)

Introduction

 $t^2x \ge 0$ is continuously full-dimensional but not strictly feasible.

Strict Feasibility vs Continuous Full-dimensionality

- Strict Feasibility provides slackness in the space of the constraints.
- Continuous full-dimensionality provides slackness in the space of the variables.

Full-dimensionality \implies Strict feasibility?

Example (No!)

Introduction

 $t^2x \ge 0$ is continuously full-dimensional but not strictly feasible.

Theorem (Strict feasibility \implies Optimality of Polynomial Solutions)

Strict feasibility \implies Full dimensionality \implies Optimality of Polynomial Solutions.

Maxflow (Primal)

$$\begin{aligned} \max_{f_{ij}} & \sum_{j \sim 1} f_{1j} \\ & \sum_{j \sim i} f_{ij} - f_{ji} = 0, \quad i \in V \\ & 0 \leq f_{ij} \leq b_{ij}, \qquad i \sim j \end{aligned}$$

Live simulation.

Introduction

Mincut (Dual)

$$\min_{d_{ij}, p_{i}} \sum_{i > j} b_{ij} d_{ij}
 d_{ij} - p_i + p_j \ge 0, \quad i \sim j
 p_1 - p_n \ge 1
 p_i \ge 0, \qquad i \in V
 d_{ij} \ge 0, \qquad i \sim j$$

Application: MinCut

Maxflow (Primal)

$$\max_{f_{ij}} \int_{-1}^{1} \sum_{j \sim 1} f_{1j}(t) dt$$

$$\sum_{j \sim i} f_{ij}(t) - f_{ji}(t) = 0, \quad i \in V$$

$$0 \le f_{ij}(t) \le b_{ij}(t), \quad i \sim j$$

▶ Live simulation.

Mincut (Dual)

$$\min_{d_{ij}, p_i} \int_{-1}^{1} \sum_{i \sim j} b_{ij}(t) d_{ij}(t) dt$$
 $d_{ij}(t) - p_i(t) + p_j(t) \geq 0, \quad i \sim j$
 $p_1(t) - p_n(t) \geq 1$
 $p_i(t) \geq 0, \quad i \in V$
 $d_{ij}(t) \geq 0, \quad i \sim j$

18 / 24

Maxflow (Primal)

Introduction

$$\max_{f_{ij}} \int_{-1}^{1} \sum_{j \sim 1} f_{1j}(t) dt$$

$$\sum_{j \sim i} f_{ij}(t) - f_{ji}(t) = 0, \quad i \in V$$

$$0 \le f_{ij}(t) \le b_{ij}(t), \quad i \sim j$$

▶ Live simulation.

Mincut (Dual)

$$\min_{\substack{d_{ij}, p_i \\ d_{ij} \neq i}} \int_{-1}^{1} \sum_{i \sim j} b_{ij}(t) d_{ij}(t) dt \\
d_{ij}(t) - p_i(t) + p_j(t) \ge 0, \quad i \sim j \\
p_1(t) - p_n(t) \ge 1 \\
p_i(t) \ge 0, \quad i \in V \\
d_{ij}(t) \ge 0, \quad i \sim j$$

Simulation

- Mincut is strictly feasible.
- Find best polynomial solution to both of degree 9.
- $85.42 \le opt \le 85.52$.

Topic

Introduction

- TV-SDPs

TV-SDPs

$$\begin{array}{ll} \underset{X}{\text{maximize}} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle \leq b_i \\ & X \succ 0 \end{array} \qquad \forall i \in [m], \tag{TV-SDP}$$

• Generalisation of TV-LPs where we allow psd constraints

$$X \succ 0$$
.

TV-SDPs

maximize
$$\int_{-1}^{1} \langle C(t), X(t) \rangle dt$$
 subject to
$$\langle A_i(t), X(t) \rangle \leq b_i(t) \quad \forall i \in [m], \ \forall t \in [-1, 1]$$

$$X(t) \succeq 0 \quad \forall t \in [-1, 1]$$
 (TV-SDP)

Generalisation of TV-LPs where we allow psd constraints

$$X(t) \succeq 0 \quad \forall t \in [-1,1].$$

Approximating a spectrahedron by a polyhedron

• $N(\varepsilon)$ a ε -covering of $\{X \succeq 0, ||X|| = 1\}.$

Introduction

• Replace $X(t) \succeq 0$ by $\sum_{Y \in N(\varepsilon)} \underbrace{\alpha_Y(t)}_{\geq 0} Y$.

• $N(\varepsilon)$ a ε -covering of ${X \succeq 0, ||X|| = 1}.$

Introduction

• Replace $X(t) \succeq 0$ by $\sum_{Y \in N(\varepsilon)} \underbrace{\alpha_Y(t)}_{>0} Y$.

If a TV-SDP is strictly feasible, then polynomials are near optimal.

$$r_i^2 = (x - \bar{x}_i)^2 + (y - \bar{y}_i)^2, i = 1, 2$$

4 = 1 + 4 = 1 + 4 = 1

Results

Introduction

d	$c_1(t)$	$c_2(t)$	$\int_{-1}^{1} (c_1(t) + c_2(t)) dt$
0	31.96	21.63	107.19
1	28.97 + 4.07t	24.23 - 3.7t	106.38
2	$26.67 + 6.1t + 0.47t^2$	$25.78 - 5.82t + 0.44t^2$	105.49
7	$26.21 + 7.49t + 0.43t^2$	$26.18 + 7.16t + 0.81t^2$	
	$-3.27t^3 + 2.95t^4 - 0.15t^5$	$3.02t^3 - 3.38t^4 + 0.44t^5$	
	$-0.63t^6$	$0.63t^6$	105.42

Conclusion and Future Work

- Algorithms to optimize over polynomial solutions to TV-LPs / TV-SDPs using SOS optimization.
- Sufficient conditions under which polynomial solutions are optimal.

Possible improvements

- Strict feasibility excludes equality constraints.
- Except for TV-LPs, SOS optimization scales poorly. What about SOCP? QCQP?
- Add new dimension.