ECON312 Problem Set 1B: question 5

Futing Chen, Hongfan Chen, Will Parker

05/14/2020

Contents

```
A: Pre-test estimator
                                          1
 5
 В
                                          7
 C: Bayesian approach
                                          14
library(tidyverse)
library(knitr)
library(readxl)
Load in data
sheets <- excel_sheets("PS1_Q5_Data.xlsx")</pre>
dataset_list <- list()</pre>
for (s in seq(1:length(sheets))) {
dataset_list[[s]] <- readxl::read_excel("PS1_Q5_Data.xlsx", sheet = s) %>%
 mutate(dataset_num = s) %>%
  select(Y, X1, X2, dataset_num)
}
```

A: Pre-test estimator

```
sample_params <- function(df){

dataset_num <- filter(df, row_number() ==1)$dataset_num

n <- df %>% nrow()

mu_1 <- mean(df$X1)</pre>
```

```
mu_2 \leftarrow mean(df$X2)
sigma2_1 \leftarrow var(df$X1)
sigma2_2 \leftarrow var(df$X2)
rho <- cov(df$X1, df$X2)/sqrt(sigma2_1*sigma2_2)</pre>
m_1 \leftarrow lm(data = df, formula = formula(Y \sim X1 + X2))
sigma2_epsilon <- mean(m_1$residuals^2)</pre>
beta_1_hat <- m_1$coefficients[["X1"]]</pre>
beta_1 <- 1
beta_2 <- 1
if (is.na(m_1$coefficients[["X2"]]) == FALSE){
      t_beta_2 <- summary(m_1)$coefficients[["X2", "t value"]]</pre>
} else { t_beta_2 <- 0}</pre>
m_2 <- lm(data = df, formula = formula(Y ~ X1))</pre>
beta_1_tilda <- m_2$coefficients[["X1"]]</pre>
if (abs(t_beta_2) > 1.964) {
      beta_1_star <- beta_1_hat</pre>
      Q_xx <- matrix(nrow =2, c(sigma2_1, sqrt(sigma2_1*sigma2_2)*rho, sqrt(sigma2_1*sigma2_2)*rho, sigma
      std_err_beta_1_star <- sqrt(sigma2_epsilon*solve(Q_xx)[[1,1]]/n)</pre>
      analytic_bias <- 0
} else {
      beta_1_star <- beta_1_tilda</pre>
      analytic_bias <- (1)*(rho*sqrt(sigma2_2/sigma2_1))</pre>
      std_err_beta_1_star <- sqrt((1/n)*((beta_2^2*(1-rho^2)*sigma2_2)/sigma2_1 + sigma2_epsilon/sigma2_1)/sigma2_1 + sigma2_epsilon/sigma2_1 + sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsilon/sigma2_epsil
output <- tibble(dataset_num,</pre>
                                                   mu_1,
                                                   mu_2,
                                                   sigma2_1,
                                                   sigma2_2,
                                                   rho,
                                                   sigma2_epsilon,
                                                   t_beta_2,
                                                   beta_1_hat,
                                                   beta_1_tilda,
                                                   beta_1_star,
```

Test that function is working

```
summary(lm("Y~ X1 + X2", dataset_list[[2]]))
##
## Call:
## lm(formula = "Y~ X1 + X2", data = dataset_list[[2]])
## Residuals:
##
      Min
               1Q Median
                              3Q
## -2.2904 -0.6041 -0.0148 0.5814 2.1644
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97843 0.88558
                                  1.105 0.2720
## X1
               0.95717
                          0.08796 10.882
                                           <2e-16 ***
## X2
               0.17665
                          0.08065
                                  2.190
                                           0.0309 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8824 on 97 degrees of freedom
## Multiple R-squared: 0.564, Adjusted R-squared: 0.555
## F-statistic: 62.75 on 2 and 97 DF, p-value: < 2.2e-16
summary(lm("Y~ X1", dataset_list[[2]]))
##
## Call:
## lm(formula = "Y~ X1", data = dataset_list[[2]])
##
## Residuals:
##
       Min
                     Median
                 1Q
                                  3Q
## -2.28018 -0.66271 -0.08795 0.53837 2.14983
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.90289 0.90189
                                  1.001
## X1
               0.96544
                         0.08956 10.779 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8993 on 98 degrees of freedom
## Multiple R-squared: 0.5425, Adjusted R-squared: 0.5378
## F-statistic: 116.2 on 1 and 98 DF, p-value: < 2.2e-16
```

```
## # A tibble: 1 x 14
##
                                mu_2 sigma2_1 sigma2_2
      dataset num mu 1
                                                                 rho sigma2 epsilon t beta 2
##
              <int> <dbl>
                              <dbl>
                                          <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                                             <dbl>
                                                                                  <dbl>
## 1
                   2 10.0 0.0412
                                           1.02
                                                       1.21 0.0429
                                                                                  0.755
                                                                                               2.19
## #
      \dots with 6 more variables: beta_1_hat <dbl>, beta_1_tilda <dbl>,
        beta_1_star <dbl>, std_err_beta_1_star <dbl>, analytic_bias <dbl>,
## #
## #
         empiric bias <dbl>
results <- map_dfr(dataset_list, sample_params)
results %>%
  kable(col.names = c("Dataset", "$\\mu_1$", "$\\mu_2$", "$\\sigma^2_1$", "$\\sigma_2^2$", "$\\rho$", "
                              \sigma_1^2
                                                       \sigma_e^2
                                                                        \hat{\beta}_1
                                                                                             se(\beta_1^*)
Dataset
                                      \sigma_2^2
                                                                                \beta_1
                                                                                        \beta_1^*
                                                                                                       analytic
                                                                                                                   empiric
                                                               t_{\beta_2}
              \mu_1
                      \mu_2
                                               \rho
                             1.18
                                           -0.14
      1
            0.10
                   -0.16
                                    1.00
                                                      0.75
                                                              0.38
                                                                      0.92
                                                                              0.91
                                                                                      0.91
                                                                                                0.12
                                                                                                          -0.13
                                                                                                                     -0.09
      2
           10.02
                    0.04
                             1.02
                                    1.21
                                            0.04
                                                      0.76
                                                              2.19
                                                                      0.96
                                                                              0.97
                                                                                      0.96
                                                                                                0.09
                                                                                                           0.00
                                                                                                                     -0.04
      3
            0.00
                                    0.93
                                                                              1.59
                                                                                                          -0.14
                                                                                                                      0.59
                   -0.10
                             0.10
                                           -0.05
                                                      0.84
                                                             -0.44
                                                                      1.58
                                                                                      1.59
                                                                                                0.41
      4
           10.02
                   -0.04
                             0.09
                                    1.01
                                           -0.04
                                                      0.80
                                                              1.09
                                                                      0.98
                                                                              0.97
                                                                                      0.97
                                                                                                0.45
                                                                                                          -0.12
                                                                                                                     -0.03
           -0.57
      5
                   -0.07
                             9.47
                                    1.09
                                            0.12
                                                      0.83
                                                              1.00
                                                                      0.94
                                                                              0.94
                                                                                      0.94
                                                                                                0.04
                                                                                                           0.04
                                                                                                                     -0.06
      6
            9.27
                   -0.02
                             8.14
                                    1.60
                                           -0.02
                                                      1.01
                                                              0.32
                                                                      1.02
                                                                              1.02
                                                                                      1.02
                                                                                                0.06
                                                                                                          -0.01
                                                                                                                      0.02
      7
            0.03
                   -0.19
                             0.92
                                    0.88
                                            0.01
                                                      9.51
                                                             -0.63
                                                                      1.18
                                                                              1.17
                                                                                      1.17
                                                                                                0.34
                                                                                                           0.01
                                                                                                                      0.17
      8
                             0.95
                                                                                                           0.00
                                                                                                                      0.24
            9.93
                   -0.01
                                    0.98
                                            0.01
                                                      9.90
                                                             -2.00
                                                                      1.24
                                                                              1.24
                                                                                      1.24
                                                                                                0.32
      9
           -0.02
                    0.11
                             0.10
                                    1.08
                                           -0.04
                                                     10.86
                                                             -1.37
                                                                      0.72
                                                                              0.78
                                                                                      0.78
                                                                                                1.09
                                                                                                          -0.13
                                                                                                                     -0.22
           10.01
                   -0.09
                             0.12
                                    0.86
                                            0.09
                                                      9.52
                                                              0.59
                                                                      0.13
                                                                              0.18
                                                                                      0.18
                                                                                                0.91
                                                                                                           0.24
                                                                                                                     -0.82
      10
            0.08
                    0.09
                            9.61
                                    1.05
                                           -0.01
                                                      9.38
                                                             -0.03
                                                                      1.00
                                                                                                0.10
                                                                                                           0.00
                                                                                                                      0.00
      11
                                                                              1.00
                                                                                      1.00
                           11.27
     12
            9.89
                    0.05
                                    0.82
                                           -0.02
                                                      9.89
                                                              1.47
                                                                      1.06
                                                                              1.06
                                                                                      1.06
                                                                                                0.10
                                                                                                          -0.01
                                                                                                                      0.06
      13
            0.08
                    0.02
                            1.11
                                    1.10
                                            0.02
                                                   102.48
                                                             -0.78
                                                                      1.00
                                                                              0.99
                                                                                      0.99
                                                                                                0.96
                                                                                                           0.02
                                                                                                                     -0.01
           10.15
                    0.13
                             1.10
                                    1.25
                                            0.04
                                                   134.33
                                                             -0.26
                                                                      2.44
                                                                              2.43
                                                                                      2.43
                                                                                                1.11
                                                                                                           0.05
                                                                                                                      1.43
      14
                                    1.07
      15
            0.04
                    0.03
                             0.10
                                           -0.03
                                                    92.24
                                                              0.58
                                                                      5.45
                                                                              5.40
                                                                                      5.40
                                                                                                3.06
                                                                                                          -0.10
                                                                                                                      4.40
                                                     99.28
     16
            9.99
                   -0.12
                             0.09
                                    1.38
                                           -0.05
                                                             -0.67
                                                                      0.25
                                                                              0.36
                                                                                      0.36
                                                                                                3.42
                                                                                                          -0.19
                                                                                                                     -0.64
                                                   110.50
     17
            0.63
                   -0.08
                           10.44
                                    0.89
                                            0.00
                                                             -0.88
                                                                      1.08
                                                                              1.08
                                                                                      1.08
                                                                                                0.33
                                                                                                           0.00
                                                                                                                      0.08
           10.69
                    0.02
                            9.17
                                    1.35
                                           -0.12
                                                   105.48
                                                              0.11
                                                                      0.52
                                                                                      0.51
                                                                                                0.34
                                                                                                          -0.05
      18
                                                                              0.51
                                                                                                                     -0.49
     19
           -0.06
                   -0.06
                            1.18
                                    1.18
                                            1.00
                                                      1.29
                                                              0.00
                                                                      1.08
                                                                              1.08
                                                                                      1.08
                                                                                                0.10
                                                                                                           1.00
                                                                                                                      0.08
     20
            9.92
                             1.14
                                                                      0.88
                                                                              0.88
                                                                                      0.88
                                                                                                           1.00
                                                                                                                     -0.12
                   -0.08
                                    1.14
                                            1.00
                                                      1.48
                                                              0.00
                                                                                                0.11
     21
            0.04
                    0.14
                             0.09
                                    0.95
                                            1.00
                                                      0.98
                                                              0.00
                                                                      0.73
                                                                              0.73
                                                                                      0.73
                                                                                                0.32
                                                                                                           3.16
                                                                                                                     -0.27
      22
           10.03
                            0.08
                                    0.85
                                                      0.98
                                                                                                           3.16
                    0.09
                                            1.00
                                                              0.00
                                                                      1.09
                                                                              1.09
                                                                                      1.09
                                                                                                0.34
                                                                                                                      0.09
     23
            0.11
                    0.04
                           11.04
                                    1.10
                                            1.00
                                                      1.09
                                                              0.00
                                                                      0.97
                                                                              0.97
                                                                                      0.97
                                                                                                0.03
                                                                                                           0.32
                                                                                                                     -0.03
                           11.22
     24
            9.60
                   -0.13
                                    1.12
                                            1.00
                                                      0.86
                                                              0.00
                                                                      0.98
                                                                              0.98
                                                                                      0.98
                                                                                                0.03
                                                                                                           0.32
                                                                                                                     -0.02
     25
                            1.03
                                    1.03
                                                      9.34
                                                                                                0.30
            0.01
                    0.01
                                            1.00
                                                              0.00
                                                                      1.15
                                                                              1.15
                                                                                      1.15
                                                                                                           1.00
                                                                                                                      0.15
      26
            9.97
                   -0.03
                             1.14
                                    1.14
                                            1.00
                                                      9.13
                                                              0.00
                                                                      1.03
                                                                              1.03
                                                                                      1.03
                                                                                                0.28
                                                                                                           1.00
                                                                                                                      0.03
```

sample_params(dataset_list[[2]])

27

28

29

30

31

32

33

34

35

36

37

38

-0.01

9.94

0.08

9.75

0.08

10.10

-0.05

9.96

-0.80

10.06

0.08

10.10

-0.04

-0.19

0.02

-0.08

0.08

0.10

-0.17

-0.12

-0.25

0.02

0.13

0.11

0.12

0.13

9.13

6.65

0.92

0.75

0.09

0.10

9.99

9.56

1.21

1.17

1.19

1.32

0.91

0.66

0.92

0.75

0.86

1.00

1.00

0.96

1.05

1.15

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.54

0.65

11.85

10.15

8.70

7.76

107.84

96.66

104.87

102.50

102.70

82.33

1.09

0.92

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.71

-1.41

-0.02

0.87

0.94

1.06

1.01

-1.39

1.12

0.06

1.03

0.82

0.97

1.12

-0.02

0.87

0.94

1.06

1.01

-1.39

1.12

0.06

1.03

0.82

1.02

1.01

-0.02

0.87

0.94

1.06

1.01

-1.39

1.12

0.06

1.03

0.82

1.02

1.01

1.00

0.88

0.10

0.11

1.08

1.13

3.48

3.21

0.32

0.29

0.12

0.12

3.16

3.16

0.32

0.32

1.00

1.00

3.16

3.16

0.32

0.32

0.50

0.64

-1.02

-0.13

-0.06

0.06

0.01

-2.39

0.12

-0.94

0.03

-0.18

0.02

0.01

-													
Dataset	μ_1	μ_2	σ_1^2	σ_2^2	ρ	σ_e^2	t_{eta_2}	\hat{eta}_1	$ ilde{eta}_1$	β_1^*	$se(\beta_1^*)$	analytic	empiric
39	0.02	0.08	0.13	1.23	0.64	1.01	0.81	0.52	0.71	0.71	0.37	2.01	-0.29
40	10.01	0.03	0.10	1.02	0.59	0.82	-0.27	0.90	0.84	0.84	0.38	1.83	-0.16
41	0.32	-0.18	9.49	0.82	0.47	1.06	0.44	0.95	0.96	0.96	0.04	0.14	-0.04
42	10.24	-0.02	9.36	0.79	0.39	1.14	-1.04	1.01	1.00	1.00	0.04	0.11	0.00
43	0.14	0.03	0.95	0.97	0.47	9.38	-1.03	1.30	1.12	1.12	0.33	0.48	0.12
44	9.91	0.06	1.10	0.96	0.55	6.45	-1.47	1.53	1.28	1.28	0.25	0.52	0.28
45	0.03	0.15	0.10	1.02	0.47	9.51	-0.29	1.43	1.27	1.27	1.01	1.50	0.27
46	10.01	0.03	0.10	0.99	0.62	9.48	0.01	0.20	0.21	0.21	1.01	1.94	-0.79
47	0.06	-0.04	9.65	0.84	0.49	11.00	1.17	0.98	1.05	1.05	0.11	0.14	0.05
48	9.55	-0.10	11.89	1.32	0.64	10.18	0.39	1.05	1.08	1.08	0.10	0.21	0.08
49	0.00	0.16	0.89	0.96	0.51	112.69	-0.15	0.13	0.03	0.03	1.13	0.53	-0.97
50	10.13	0.02	1.04	0.69	0.45	79.51	0.71	-0.29	0.02	0.02	0.88	0.36	-0.98
51	0.04	0.01	0.09	1.16	0.37	80.31	-0.40	1.92	1.43	1.43	2.99	1.33	0.43
52	10.00	-0.16	0.09	1.00	0.33	134.49	-0.50	4.77	4.07	4.07	3.97	1.11	3.07
53	-0.31	-0.12	7.32	0.91	0.39	109.05	-1.17	0.88	0.69	0.69	0.39	0.14	-0.31
54	10.38	0.09	11.73	1.06	0.47	104.18	0.07	1.23	1.24	1.24	0.30	0.14	0.24
55	0.02	-0.04	0.76	0.86	-0.52	0.90	1.92	1.18	1.05	1.05	0.14	-0.55	0.05
56	10.01	-0.06	1.00	0.82	-0.48	1.04	-0.67	1.11	1.15	1.15	0.13	-0.43	0.15
57	0.04	-0.08	0.11	1.12	-0.53	0.92	2.05	1.59	1.20	1.59	0.35	0.00	0.59
58	10.02	-0.13	0.11	1.00	-0.52	0.76	0.22	1.58	1.55	1.55	0.37	-1.57	0.55
59	0.05	-0.08	11.28	1.16	-0.44	0.91	-0.51	0.98	0.99	0.99	0.04	-0.14	-0.01
60	10.13	0.00	10.28	0.88	-0.45	1.07	-0.30	1.00	1.00	1.00	0.04	-0.13	0.00
61	-0.13	0.10	0.86	0.74	-0.37	10.73	-0.18	0.21	0.24	0.24	0.36	-0.34	-0.76
62	10.05	-0.11	0.87	0.82	-0.48	10.22	-0.09	0.75	0.77	0.77	0.35	-0.47	-0.23
63	0.08	-0.11	0.11	0.80	-0.45	9.32	-1.68	2.94	3.72	3.72	0.95	-1.20	2.72
64	9.99	-0.02	0.10	1.03	-0.39	13.47	-0.44	1.74	1.97	1.97	1.23	-1.30	0.97
65	0.43	-0.05	8.14	0.93	-0.47	8.02	-0.32	0.91	0.93	0.93	0.10	-0.16	-0.07
66	10.34	0.06	9.43	0.98	-0.52	9.48	-0.99	1.01	1.07	1.07	0.10	-0.17	0.07
67	-0.12	0.10	1.30	1.08	-0.66	99.34	-0.25	1.16	1.36	1.36	0.88	-0.60	0.36
68	10.12	0.00	1.12	0.87	-0.48	86.29	-1.89	-0.24	0.68	0.68	0.88	-0.42	-0.32
69	-0.06	0.15	0.10	0.87	-0.54	96.46	0.10	-1.51	-1.72	-1.72	3.17	-1.61	-2.72
70	10.01	-0.14	0.11	1.02	-0.47	89.17	1.33	5.16	3.08	3.08	2.92	-1.45	2.08
71	-0.31	0.21	8.23	0.99	-0.55	101.82	0.60	1.28	1.14	1.14	0.35	-0.19	0.14
72	10.10	-0.03	10.83	0.98	-0.59	89.17	0.48	1.02	0.92	0.92	0.29	-0.18	-0.08

Distribution of β_1^* across the 72 samples

```
results %>%
  ggplot(aes(x = beta_1_star)) +
  geom_histogram()
```


Sampling distribution for the pre-test estimator

If $|t|_{\hat{\beta_2}} > 1.96$, then β_1^* has the typical OLS asymptomic variance, i.e. for $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)$

$$\sqrt{n}(\hat{\beta}_n - \beta) \stackrel{d}{\to} N(0, \sigma_{\epsilon}^2 * E[X'X]^{-1})$$

In terms of the model parameters, we can write

$$E[X'X] = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

$$\sqrt{N}(\hat{\beta} - \beta) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{1}{(1 - \rho^2)\sigma_1^2 \sigma_2^2} \begin{pmatrix} \sigma_2^2 & -\rho \sigma_1 \sigma_2 \\ -\rho \sigma_1 \sigma_2 & \sigma_1^2 \end{pmatrix} \sigma_{\varepsilon}^2 \right). \tag{1}$$

Thus, we obtain that

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma_{\varepsilon}^2}{N(1-\rho^2)\sigma_1^2}\right)$$
 (2)

If $|t|_{\hat{\beta}_2} \leq 1.96$, then asymptomic variance of $\tilde{\beta}_1$ is more complex Note that since $Var(X_1X_2) = (1 - \rho^2)\sigma_1^2\sigma_2^2$. We obtain that

$$Var(\tilde{\beta}_{1}) = \frac{1}{N} Var(X_{1})^{-1} Var(X_{1}(X_{2}\beta_{2} + \varepsilon)) Var(X_{1})^{-1}$$

$$= \frac{1}{N} Var(X_{1})^{-1} \left[Var(X_{1}X_{2}\beta_{2}) + Var(X_{1}\varepsilon) \right] Var(X_{1})^{-1}$$

$$= \frac{1}{N} \left[\frac{\beta_{2}^{2}(1 - \rho^{2})\sigma_{2}^{2}}{\sigma_{1}^{2}} + \frac{\sigma_{\varepsilon}^{2}}{\sigma_{1}^{2}} \right].$$
(3)

Thus, we obtain that

$$\tilde{\beta}_1 \sim \mathcal{N}\left(\beta_1 + \frac{\rho \sigma_2}{\sigma_1} \beta_2, \frac{1}{N} \left[\frac{\beta_2^2 (1 - \rho^2) \sigma_2^2}{\sigma_1^2} + \frac{\sigma_{\varepsilon}^2}{\sigma_1^2} \right] \right) \tag{4}$$

 \mathbf{B}

Analytic Bias of β_1^*

If $|t|_{\hat{\beta}_2} > 1.96$, then $\beta_1^* = \hat{\beta}_1$ which is unbiased, i.e.

$$E[\hat{\beta}_1] = \beta_1$$

If $|t|_{\hat{\beta}_2} \leq 1.96$, then $\beta_1^* = \tilde{\beta}_1$ which has the standard missing variable bias

$$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \frac{Cov(X_1, X_2)}{Var(X_1)}$$

based on the data geneterating process we know

$$Cov(X_1, X_2) = \rho \sigma_1 \sigma_2$$

 $Var(X_1) = \sigma_1^2$

So by solving we have the bias

$$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \frac{\rho \sigma_2}{\sigma_1}$$

So then the $E[\beta_1^*]$

$$E[\beta_1^*] = P(|t|_{\hat{\beta}_2} > 1.96) * \beta_1 + P(|t|_{\hat{\beta}_2} \le 1.96) * (\beta_1 + \beta_2 \frac{\rho \sigma_2}{\sigma_1})$$

The expected bias is then

$$E[\beta_1^* - \beta_1] = P(|t|_{\hat{\beta}_2} \le 1.96) * (\beta_2 \frac{\rho \sigma_2}{\sigma_1})$$

Relationship of parameters to observed bias

Based on our dervied expressions, higher values of σ_{ϵ}^2 , σ_2^2 , and ρ should be correlated with higher bias of the pre-test estimator. Lower values of σ_1^2

are correlated with lower bias of the pre-test estimator. We made several plots to illustrate this.

Parameter distribution in the datasets

```
results %>%
  ggplot(aes(x = rho)) +
  geom_histogram()
```



```
results %>%
  ggplot(aes(x = sigma2_epsilon)) +
  geom_histogram()
```


results %>%
 ggplot(aes(x = sigma2_1)) +
 geom_histogram()

results %>%
 ggplot(aes(x = sigma2_2)) +
 geom_histogram()


```
results %>%
  ggplot(aes(x = sigma2_epsilon, y = abs(empiric_bias))) +
  geom_point() + labs(x = "sigma2_epsilon", y = "|bias|")
```


fixing $\rho=1$ and estimating bias as a function of σ_ϵ^2

```
results %>%
  filter(rho ==1) %>%
  ggplot(aes(x = sigma2_epsilon, y = abs(empiric_bias))) +
  geom_point() + labs(x = "sigma2_epsilon", y = "|bias|")
```


fixing $\rho=1$ and estimating bias as a function of σ_ϵ^2

```
results %>%
  ggplot(aes(x = rho, y = sigma2_2/sigma2_1, color = abs(empiric_bias))) +
  geom_point() + labs(x = "p", y = "var(X2)/var(X1)", color = "|observed bias in beta1|") +
  scale_color_distiller()
```


C: Bayesian approach

A bayesian would assume a prior distribution for $\theta = (\beta_0, \beta_1, \beta_2)$, e.g.

$$P(\theta) = N(0, \Sigma)$$

Then compute the posterior distribution of $P(\theta|(\mathbf{X},\mathbf{Y}))$ via bayes formula

$$P(\theta|(\mathbf{X},\mathbf{Y})) = \frac{1}{Z} f(\theta|(\mathbf{X},\mathbf{Y})) * P(\theta)$$

Where

$$Z = \int_X \int_Y f(\theta|(\mathbf{X},\mathbf{Y})) dY dX$$

Then the Bayesian could do testing of any specific hypothesis on β_1 or β_2 with corresponding posterior marginal probability distribution, e.g. for the hypothesis that β_1 is greater than 1

$$P(\beta_1 > 1) = \int_1^\infty P(\beta_1 | (\mathbf{X}, \mathbf{Y})) dX_1$$