PROJECT REPORT TEMPLATE

1. INTRODUCTION

1.1 OVERVIEW

Agricultural crop production analysis during 1997-2021 involving utilizing various technologies, including GIS and remote sensing, to assess land use, crop yields, and environmental impact.

1.1 PURPOSE

Analysing agricultural crop production helps optimize resource allocation and enhance crop yields for sustainable foos security and economic growth.

2. PROBLEM DEFINITION & DESIGN THINKING

2.1 EMPATHY MAP

2.2 IDEATION & BRAINSTORMING MAP

3. RESULT

Dashboard 3

4.ADVANTAGES & DISADVANTAGES

ADVANTAGES:

Analysing agricultural crop production from 1997-2021 allows for data-driven insights to improve farming practices, mitigates risks, and ensure efficient resource management.

DISADVANTAGES:

Potential disadvantages of analysing agricultural crop production form 1997-2021 include outdated data and limited insights into emerging modern technologies and changing strategies, and changing climate patterns.

5. APPILICATIONS

Agricultural crop production analysis includes forming policy decisions optimizing planting strategies, and enhancing overall farm productivity.

6. CONCLUSION

In conclusion, agricultural crop production analysis is a critical tool for informed decision-making, sustainable farming practices, and global food security.

7. FUTURE SCOPE

The future of agricultural crop production analysis lies in leveraging AI, precision farming, and big data for sustainable, data-driven agricultural systems.

8. APPENDIX

A. SOURCE CODE

https://public.tableau.com/app/profile/gowsalya.k/vizzes