

Eyegaze

- Control interface by eye gaze direction
 - e.g. look at a menu item to select it
- Uses laser beam reflected off retina
 - ... a very low power laser!
- Mainly used for evaluation
 - potential for hands-free control
 - high accuracy requires headset
 - cheaper and lower accuracy devices available sit under the screen like a small webcam

Eyegaze

DANS, KÖN OCH JAGPROJEKT

På jakt efter ungdomars kroppsspråk och den "synkretiska dansen", en sammansmältning av olika kulturers dans har jag i mitt fältarbete under hösten rört mig på olika arenor inom skolans värld. Nordiska, afrikanska, syd- och östeuropeiska ungdomar gör sina röster hörda genom sång, musik skrik, skratt och gestaltar känslor och uttryck med hjälp av kroppsspråk och dans.

Den individuella estetiken franträder i kläder, frisyrer och symboliska tecken som förstärker ungdomarnas "jagprojekt" där också den egna stilen kroppsrörelserna spelar en betydande roll i identitetsprövningen. Uppehållsrummet fungerar som offentlig arena där ungdomarna spelar upp sina performanceliknande kroppsspower

Display Devices

bitmap screens
large & situated displays
digital paper

Bitmap Displays

Screen is vast number of colored dots

Resolution and Color Depth

- Resolution ... used (inconsistently) for
 - **number** of pixels on screen (width x height)
 - •e.g. UHD 3840 x 2160, PDA perhaps 240x400
 - density of pixels (in pixels or dots per inch dpi)
 - typically between 72 and 96 dpi

Aspect ratio

- ration between width and height
- 4:3 for most screens, 16:9 for wide-screen TV

Color depth:

- How many different colors for each pixel?
- Black/white or greys only
- 256 from a palette
- 8 bits each for red/green/blue = millions of colors

Cathode Ray Tube (CRT)

 Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows

Liquid Crystal Displays (LCD)

- Smaller, lighter, and ... no radiation problems.
- Found on PDAs, portables and notebooks,
 ... on desktop and even for home TV
- Also used in dedicated displays: digital watches, mobile phones, HiFi controls
- How it works ...
 - Top plate transparent and polarized, bottom plate reflecting.
 - Light passes through top plate and crystal, and reflects back to eye.
 - Voltage applied to crystal changes polarization and hence color.
 - N.B. light reflected not emitted => <u>less eye strain</u>

Large Displays

- Used for meetings, lectures, etc
- Technology:

Plasma - usually wide screen;

Video walls - lots of small screens together

- -hand/body obscures screen
- -may be solved by 2 projectors + clever software

Back-projected

-frosted glass + projector behind

Situated Displays

• Displays in 'public' places

- Large or small
- Very public or for small group

Display only

- For information relevant to location

Or interactive

- Use stylus, touch sensitive screen

In all cases ... the location matters

 Meaning of information or interaction is related to the location, the context of operation.

Hermes a situated display

Small displays beside office doors

Office owner reads notes using web interface

Handwritten notes left using stylus

Digital/Interactive Paper

• What?

- Thin flexible sheets
- Updated electronically
- But retain display

• How?

- Small spheres <u>rotated</u>
- Or channels with colored liquid and contrasting spheres
- Rapidly developing area

Virtual Reality and 3D Interaction

positioning in 3D space moving and grasping seeing 3D (helmets and caves)

Positioning in 3D space

Cockpit and virtual controls

Steering wheels, knobs and dials... just like real!

The 3D mouse

Six-degrees of movement: x, y, z+ roll, pitch, yaw

Data glove

Fibre optics used to detect finger position

VR helmets

 Detect head motion and possibly eye gaze

Whole body tracking

 Accelerometers strapped to limbs or reflective dots and video processing

Positioning in 3D space

Whole body tracking

Accelerometers strapped to limbs or reflective dots and video processing

Simulators and VR caves

- Scenes **projected** on walls
- Realistic environment
- Hydraulic rams!
- Real controls
- Interact with **other** people

e.g. A380 Virtual Cockpit

Augmented Reality

It is a created environment that mixes **virtual** and **effective reality** elements, creating so a mixed environment in real time.

Augmented Reality

It is a created environment that mixes **virtual** and **effective reality** elements, creating so a mixed environment in real time.

Augmented Reality

It is a created environment that mixes **virtual** and **effective reality** elements, creating so a mixed environment in real time.

DIX **FINLAY** ABOWD BEALE

Chapter 3

The Interaction

The Interaction

Figure 1.1: The nature of Human-Computer Interaction. Adapted from Figure 1 of the ACM SIGCHI Curricula for Human-Computer Interaction [Hewett et al., 2002]

What is interaction?

Communication

User

System

Task language

Core language

Some terms of interaction

Domain: The area of work under study

e.g. graphic design

Goal: What you want to achieve

e.g. create a solid red triangle

Task: How you go about doing it

ultimately in terms of operations or actions

e.g. ... select fill tool, click over triangle

Seven stages

- 1. User establishes the goal
- 2. Formulates intention
- 3. Specifies actions at interface
- 4. Executes action
- 5. Perceives system state
- 6. Interprets system state
- 7. Evaluates system state with respect to goal

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal

- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal

Using Norman's Model

Some systems are harder to use than others

Why?

Gulf of Execution

user's formulation of actions

actions allowed by the system

Gulf of Evaluation

user's expectation of changed system state

actual presentation of this state

Using Norman's Model

Human error —> Slips and Mistakes

Slip

- understand system and goal
- correct formulation of action
- incorrect action

Mistake

may not even have right goal!

Fixing things?

Slip: better interface design

Mistake: better understanding of system

Abowd and Beale framework

The Interaction Framework

Extension of Norman's Model their interaction framework has **4 parts**

- User
- **I**nput
- -**S**ystem
- Output

Each has its own unique language

Interaction ⇒ Translation between languages

Problems in interaction == Problems in translation

Using Abowd & Beale's Model

User intentions

- → translated into actions at the interface
 - → translated into alterations of system state
 - → reflected in the output display
 - → interpreted by the user

General framework for understanding interaction

- not restricted to electronic computer systems
- identifies all major components involved in interaction
- allows comparative assessment of systems
- an abstraction

The Ergonomics of Interaction

- Study of the physical characteristics of interaction (ex: how controls are designed)
- Also known as human factors but this can also be used to mean much of HCI!
- Ergonomics good at defining standards and guidelines for constraining the way we design certain aspects of systems

The Ergonomics of Interaction

Examples:

Arrangement of controls and displays

e.g. controls grouped according to function or frequency of use, or sequentially

Surrounding environment

e.g. seating arrangements adaptable to cope with all sizes of user

Health issues

e.g. physical position, environmental conditions (temperature, humidity), lighting, noise,

Use of color

e.g. use of red for warning, green for okay, awareness of color-blindness and culture etc.

The Ergonomics of Interaction

Arrangement of controls and displays

e.g. controls grouped according to function or frequency of use, or sequentially

Industrial interfaces

MULTIVAC Marking & Inspection

Office interface vs. industrial interface?

Context matters!

	office	industrial
type of data	textual	numeric
rate of change	slow	fast
environment	clean	dirty

Glass interfaces

Industrial interface:

- traditional ... dials and knobs
- now ... screens and keypads

Glass interface

- + cheaper, more flexible, multiple representations, precise values
- not physically located, loss of context, complex interfaces
- May need both

Multiple representations of same information

Direct & Indirect Manipulation

- Office direct manipulation
 - User interacts
 with an artificial world

- Industrial indirect manipulation
 - User interacts
 with the real world, but
 through an interface
- Issues ...
 - Feedback
 - Delays

HUMAN-COMPUTER INTERACTION

THIRD EDITION

DIX FINLAY ABOWD BEALE

Chapter 5

Interaction Design Basics

Interaction Design Basics

Design:

- What is it? Interventions, goals, constraints;

The design process

- What happens when

Users

- Who they are, what they are like ...

Scenarios

- Rich stories of design

Navigation

- Finding your way around a system

Iteration and prototypes

- Never get it right first time!

Interactions and Interventions

Design interactions not just interfaces

not just the immediate interaction

e.g. stapler in office - technology changes interaction style

• Electric: write, print, write, print, ..., staple

Designing interventions not just artifacts

not just the system, but also ...

- documentation, manuals, tutorials
- what we say and do as well as what we make

Interaction Design Basics

What is design?

What is design?

Achieving goals within constraints

- Goals purpose
 - who is it for, why do they want it
- Constraints
 - materials, platforms
- Trade-offs
 - Good vs. optimum!

Golden rule of design

Understand your materials!

For Human-Computer Interaction

Understand your materials

- Understand computers
 - limitations, capacities, tools, platforms
- Understand people
 - psychological, social aspects
 - human error
- and their interaction ...

To err is human

Accident reports ...

- air-crash, industrial accident, hospital mistake
- enquiry ... blames ... 'human error'

• but ...

- concrete lintel breaks because too much weight
- blame 'lintel error'?
 ... no design error
 we know how concrete behaves under stress

human 'error' is normal!

- we know how users behave under stress
- so design for it!
- treat the user at least as well as physical materials!

Central message ...

the user

The Process of Design

Steps ...

Requirements

- What is there (user context) and what is wanted ...

Analysis

- Ordering and understanding

Design

- What to do and how to decide; guidelines; heuristics <= cognitive models.

Iteration and prototyping

- Getting it right ... and finding what is really needed!

Implementation and deployment

- Making it and getting it out there.

... but how can I do it all!!

Limited time ⇒ design trade-off

- Finding problems and fixing them?
 this is easy!
- Deciding what to fix?

- Attention: "A perfect system is badly designed"
 - too good ⇒ too much effort in design

Know your user

A Commandment!

• Who are they?

- more than one
- artifacts used.

Probably <u>not</u> like you!

old ≠ new. (e.g. triangle exercise)

Watch them

- what they doing it? (introspection difficulty!)

Talk to them

- why they do!

Use your imagination

- participation design.

Cultural Probes

Direct observation

- sometimes hard
 - in the home
 - psychiatric patients, ...

Probe packs

- items to prompt responses
 - e.g. glass to listen at wall, camera, postcard
- given to people to open in their own environment they record what is meaningful to them

Used to ...

- inform interviews, prompt ideas, en-culture designers

- Description of a user type
 - not necessarily a real person
- Use as surrogate user
 - example: what would Betty think ...
- Details matter
 - makes her 'real'

Persona - an example:

Betty is 37 years old, She has been Warehouse Manager for five years and worked for Simpkins Brothers Engineering for twelve years. She didn't go to university, but has studied in her evenings for a business diploma. She has two children aged 15 and 7 and does not like to work late. She did part of an introductory in-house computer course some years ago, but it was interrupted when she was promoted and could no longer afford to take the time. Her vision is perfect, but her right-hand movement is slightly restricted following an industrial accident 3 years ago. She is enthusiastic about her work and is happy to delegate responsibility and take suggestions from her staff. However, she does feel threatened by the introduction of yet another new computer system (the third in her time at SBE).

Persona - an example:

Betty is 37 years old, She has been Warehouse Manager for five years and worked for Simpkins Brothers Engineering for twelve years. She didn't go to university, but has studied in her evenings for a business diploma. She has two children aged 15 and 7 and does not like to work late. She did part of an introductory in-house computer course some years ago, but it was interrupted when she was promoted and could no longer afford to take the time. Her vision is perfect, but her right-hand movement is slightly restricted following an industrial accident 3 years ago. She is enthusiastic about her work and is <u>happy to delegate responsibility</u> and <u>take</u> suggestions from her staff. However, she does feel threatened by the introduction of yet another new computer system (the third in her time at SBE).