期末考试题答案

一、单选题

1, D 2, C 3, A 4, B 5, C 6, C 7, C8, B

- 二、多选题
- 9. AC 10. ABC 11.AB 12. ABC
- 二、填空题
- 13 题 $(\sqrt{3},3)$ 14 题 <u>3 个</u> 15 题 <u>6、12、18</u> 16 题 $4\sqrt{2}$; $\frac{338}{5}\pi$
- 三、解答题

17、(1) 设等差数列 $\{a_n\}$ 的公差为d,则由 a_2 , a_3+2 , a_8 成等比数列及 $a_1=2$,

得
$$(a_3+2)^2 = a_2a_8$$
,即 $(4+2d)^2 = (2+d)(2+7d)$,解得 $d=\pm 2$.

当 d=2 时, $a_2=4$, $a_3+2=8$, $a_8=16$ 构成等比数列, 符合条件;

当d=-2时, $a_2=0$, $a_3+2=0$, $a_8=-12$ 不能构成等比数列,不符合条件.

因此d=2,于是数列 $\{a_n\}$ 的通项公式为 $a_n=2n$;

(2) 由 (1) 知 $a_n = 2n$, 故 $b_n = 2^{2n} + 8$, 所以

$$S_n = b_1 + b_2 + b_3 + \dots + b_n = \frac{4}{3} (4^n - 1) + \frac{8n}{3}$$

18 【解析】(1)当 $\frac{PF}{PB} = \frac{1}{3}$ 时,CF//平面 PDE.

理由如下:

过点 C 作 $CH \perp ED$, 垂足为 H,

又因为 CF C 平面 PDE. HM C 平面 PDE. 所以 CF // 平面 PDE: 5 分

19、(1) 证明: 由题知
$$\frac{\sin(A-B)}{\cos B} = \frac{\sin(A-C)}{\cos C}$$
,所以 $\sin(A-B)\cos C = \sin(A-C)\cos B$,

所以 $\sin A \cos B \cos C - \cos A \sin B \cos C = \sin A \cos C \cos B - \cos A \sin C \cos B$,

所以 $\cos A \sin B \cos C = \cos A \sin C \cos B$. 因为 A 为锐角,即 $\cos A \neq 0$,

所以 $\sin B \cos C = \sin C \cos B$, 所以 $\tan B = \tan C$, 所以B = C.

(2) 由 (1) 知: B=C, 所以 $\sin B = \sin C$, 因为 $a \sin C = 1$,

所以 $\frac{1}{a} = \sin C$,因为由正弦定理得: $a = 2R \sin A$, $\sin B = \frac{b}{2R}$,

所以 $a \sin C = 2R \sin A \cdot \frac{b}{2R} = b \sin A = 1$,所以 $\frac{1}{b} = \sin A$, 因为 $A = \pi - B - C = \pi - 2C$,

$$\frac{1}{b} = \sin A = \sin 2C$$
所以 $\frac{1}{a} + \frac{1}{b} = \sin C + \sin 2C$, $C \in (\frac{\pi}{4}, \frac{\pi}{2})$, $= \frac{1}{a} + \frac{1}{c} = 1 + \frac{\sqrt{2}}{2}$ 时, $C = \frac{\pi}{4}$,所以不存在。

20. 解: (I) 设事件 C 为 "一天中甲员工午餐和晚餐都选择 A 餐厅就餐",事件 D 为 "乙员工午餐

和晚餐都选择 B餐厅就餐"因为 100 个工作日中甲员工午餐和晚餐都选择 A餐厅就餐的天数为

30, 乙员工午餐和晚餐都选择 B 餐厅就餐的天数为 40, 所以 $P(C) = \frac{30}{100} = 0.3$,

(II) 由题意知, 甲员工午餐和晚餐都选择 B 餐厅就餐的概率为0.1,

乙员工午餐和晚餐都选择A餐厅就餐的概率为0.2,

记X为甲、乙两员工在一天中就餐餐厅的个数,则X的所有可能取值为1、2,

所以
$$P(X=1) = 0.3 \times 0.2 + 0.1 \times 0.4 = 0.1$$
, $P(X=2) = 1 - P(X=1) = 0.9$,

所以X的分布列为:

X	1	2
P	0.1	0.9

所以 X 的数学期望 $E(X) = 1 \times 0.1 + 2 \times 0.9 = 1.9$.

-----8分

(III) 由题知
$$P(N|M) > P(N|\overline{M})$$
, 即 $\frac{P(NM)}{P(M)} > \frac{P(N\overline{M})}{P(\overline{M})} = \frac{P(N) - P(NM)}{1 - P(M)}$, 即

$$P(NM) > P(N) \cdot P(M)$$
,

 $\mathbb{P}(NM) - P(N)P(NM) > P(N) \cdot P(M) - P(N)P(NM),$

$$\mathbb{H} P(NM) \cdot P(\overline{N}) > P(N)P(\overline{N}M), \ \mathbb{H} \frac{P(NM)}{P(N)} > \frac{P(\overline{N}M)}{P(\overline{N})},$$

$$\mathbb{P}\left(M\mid N\right) > P\left(M\mid \overline{N}\right).$$

.....19 分

21. (1)
$$\frac{3^{2}-\frac{12}{2}}{3}=1$$

(2) $\begin{cases} x^{2}-y^{2}=2\\ y=kx+m \end{cases} \Rightarrow (1-k^{2})x^{2}-2kmx-m^{2}-2=0$

$$\Delta = 4k^{2}m^{2}+4(1-k^{2})(m^{2}+2)=0 \quad \chi_{A}=\frac{km}{1-k^{2}}=-\frac{2k}{m}$$

$$\therefore m^{2}+2=2k^{2} \quad A(-\frac{2k}{m},-\frac{2m}{m})$$

OFI AMPRE $A = \frac{1}{1+k^{2}}$ $A = \frac{1}{1+k^{2}$

22. (1) 对
$$f(x)$$
 求导得 $f'(x) = a \cdot \frac{2xe^x - x^2 \cdot e^x}{\left(e^x\right)^2} = a \cdot \frac{x(2-x)}{e^x}$.

设直线
$$y = \frac{1}{e}x$$
 与曲线 $y = f(x)$ 切于点 $P(x_0, y_0)$,则 {
$$\frac{1}{e}x_0 = \frac{ax_0^2}{e^{x_0}}$$
 解得 $a = x_0 = 1$, 所以 a 的值为 1 .