Aula 1

História da Computação

Computadores Analógicos

Versão para impressão das aulas de Introdução a Ciência da Computação

apresentado por Ygor Canalli , Colégio Pedro II - Curso Técnico em Informática - Duque de Caxias

Sumário

1	Rudimentos	1
2	O Ábaco	2
3	Calculadora Mecânica de Leonardo da Vinci	4
4	Ossos de Napier	5
5	Régua de Cálculo	6
6	Pascaline	7
7	Tear de Jacquard	9
8	A Álgebra de Boole	9
9	Máquinas de Rabbage	10

1 Rudimentos

Rudimentos

- A necessidade humana de *contar* remonta à própria existência da humanidade
 - Uso de pedras, conchas e bastões para representar unidades
 - Utilizado como sistema de controle do gado
- Sistemas de escrita e numeração nas pinturas rupestres
- Por volta de 1700 a.C. os babilônios já utilizavam tabuadas
 - Sistema de numeração posicional em cunei forme
 - Formato sexagesimal (base 60): origem das nossas unidades de tempo

1.1

Figura 1: Números babilônicos representados simbologicamente

2 O Ábaco

Oriente Médio, Egito, Grécia e Roma

- Aumento da complexidade e quantidade de cálculos
- O homem passa a criar mecanismos para facilitar o cálculo
- O Ábaco é uma das grandes invenções da antiguidade
 - Versões primitivas eram utilizadas no Oriente Médio desde 2500 a.C.
 - O registro mais antigo de um ábaco foi feito pelo historiador grego Heródoto (480 a 425 a.C)
 - Este mesmo registro menciona o uso de ábacos pelos egípcios antigos
 - Os romanos utilizavam um ábaco similar ao Grego

Oriente Médio, Egito, Grécia e Roma

Figura 2: Registro histórico do Ábaco Grego

1.3

Figura 3: Réplica de um ábaco romano do século 1 d.C

China e Japão

- Na Ásia utilizava-se um ábaco diferente, e muito mais poderoso
- No século 4 a.C. os chineses utilizavam *quadros de contagem*, protótipos do ábaco
 - Primeiro a utilizar o sistema decimal
 - O mais famoso texto sobre matemático da China mostra detalhes de como operar o quadro
 - Datado da Dinastia Han (206 a.C. a 220 d.C)
 - Capaz de resolver problemas complexos, como sistemas de \boldsymbol{n} equações
- Desenvolveu-se gradualmente até se tornar o Ábaco Chinês (Suanpan) no século 2 d.C, utilizado até hoje
- Foi levado para o Japão no século 16, onde sofreu modificações

(a) Ábaco Chinês (Suanpan)

(b) Ábaco Japonês (Soroban)

Figura 4: Abácuses Chinês e Japonês

3 Calculadora Mecânica de Leonardo da Vinci

Calculadora Mecânica de Leonardo da Vinci

- A primeira calculadora mecânica conhecida data da Idade Média
- Leonardo da Vinci é talvez a pessoa com talentos mais diversos que já viveu
- Trabalho notável como pintor, engenheiro, anatomista, matemático, arquiteto, escultor, músico, etc
- Os manuscritos com ilustrações detalhadas foram compilados em 20 cadernos chamados códices, com aproximadamente 6 mil páginias
- O Códice Madrid I foi compilado por Leonardo em 1493, sendo o primeiro e mais completo texto sobre engenharia da Idade Média
 - No Códice há o projeto de uma máquina mecânica de calcular
 - A máquina funciona com engrenagens numeradas com 10 digitos
 - Ao atingir o número 10 a engrenagem zera e incrementa uma unidade na próxima engrenagem

Calculadora Mecânica de Leonardo da Vinci

Figura 5: Verso da página 16 do Códice Madrid I, esboço e anotações sobre a calculadora mecânica

Calculadora Mecânica de Leonardo da Vinci

1.8

Figura 6: Réplica da calculadora mecânica, contruida pelo Dr. Guatelli

4 Ossos de Napier

Ossos de Napier

- John Napier foi um matemático escocês que viveu de 1550 a 1617
- Conhecido como o descodificador do logaritmo natural, ou *logaritmo neperi*ano (devido a seu nome)
- Motivado por suas dificuldades em calcular tabelas logaritmicas, inventou diversos dispositivos de multiplicação
- Construiu um dispositivo simples baseado no procedimento tabular dos árabes, conhecido Ossos de Naiper

Figura 7: Ossos de Naiper

Ossos de Napier

1.10

Figura 8: Ilustração dos Ossos de Naiper

Ossos de Napier

Figura 9: Funcionamento básico dos Ossos de Naiper

Figura 10: Multiplicação de números multidígitos

5 Régua de Cálculo

Régua de Cálculo

- Edmund Gunter desenvolveu uma escala logarítmica deslisante logo após o trabalho de Naiper
- Em 1622 o padre e matemático inglês William Oughtred aprimorou o trabalho de Gunter para criar os Círculos de Proporção e a Régua de Cálculo
- Trata-se de um dispositivo capaz de transformar multiplicações em somas e divisões em subtrações, através de propriedades logarítmicas

Figura 11: Régua de Cálculo de William Oughtred

Régua de Cálculo

1.14

Figura 12: Círculos de Proporção de William Oughtred

Régua de Cálculo

- Em 1775 Isaac Newton adicionou um cursor, presente nas réguas de cálculo modernas
- No século 18 Thomas Watt, inventor da máquina a vapor, adicionou um parte deslisante à regua de cálculo
- A régua de cálculo foi utilizada até a década de 1970, quando foi substituida pelas calculadoras eletrônicas

Figura 13: Régua de Cálculo de William Oughtred

6 Pascaline

Pascaline

- Em 1642 o jovem Blaise Pascal inventou uma calculadora mecânica conhecida como Pascaline
- A motivação da invenção foi auxiliar o pai no trabalho de contabilidade

Figura 14: Pascaline

- Possuia dois conjuntos de discos: entrada e saída
 - Funcionava com o sistema decimal
 - Quando um disco passa do 9 torna ao 0 e move o seguinte
 - Exemplo de funcionamento: $1246 \cdot 56$
 - 1. Digite 1246 seis vezes
 - 2. Digite 1246 cinco vezes
 - 3. Puxe a manivela!
- Não prosperou devido ao funcionamento não confiável, impedido pelas limitações de engenharia da época

7 Tear de Jacquard

Tear de Jacquard

- Joseph Marie Jacquard (1752 a 1834) era filho de tecelões e desde os 10 anos aprendia o ofício
- Tendo vivido uma vida conturbada, em 1800 começou a inventar diversos dispositivos relacionados à tecelagem, todos sem sucesso
- Em 1806 obteve sucesso com uma Máquina de Tear Programável Automática
 - Capaz de criar tecidos com padrões complexos com algoritmos rudimentares
 - Por este fato Jacquard é considerado por muitos o primeiro programador
 - A programação da máquina era feita através de cartões perfurados
 - Em 1812 já haviam mais de 11 mil teares de Jacquard na França

Tear de Jacquard

Figura 15: Tear de Jacquard em exibição no Museu de Ciência e Indústria, em Manchester, Inglaterra

8 A Álgebra de Boole

A Álgebra de Boole

- Em 1857 o matemático inglês George Boole (1815 a 1864) publicou sua obra prima Uma Investigação das Leis do Pensamento
- A lógica era objeto de estudo apenas da filosofia
- O objetivo de seu trabalho foi formalizar matematicamente a maneira de pensar lógica
- O resultado de seu trabalho ficou conhecido como Álgebra de Boole

1.19

- Fundamental para a computação como conhecemos
- Converteu a lógica em um tipo de álgebra fácil e simples.
- Seu trabalho foi desprezado por alguns matemáticos eminentes até 1910
 - O famoso trabalho Principa Matematica de Whitehead e Bertrand Russel convence os matemáticos do valor da Álgebra de Boole

1.21

9 Máquinas de Babbage

Máquina de Diferenças de Babbage

- Em 1822 Charles Babbage (1791 a 1871) começou a trabalhar no que chamou Máquina de Diferenças, projetada para calcular polinômios automaticamente
- Após receber muitos recursos e não obter êximo, em 1831 seu primeiro projeto faliu
- Entre 1847 e 1849 projetou detalhadamente uma segunda versão, mas não obteve investimentos
- Seu projeto foi apenas contruído entre 1989 e 1991
 - Executou seus primeiros cálculos no Museu de Ciência de Londres
 - Apenas 9 anos depois a impressora projetada por Babbage foi construída

1.22

Máquina de Diferenças de Babbage

Figura 16: Desenhos da Máquina de Diferenças de 1830

Figura 17: Partes da Máquina de Diferenças nº 1

Máquina de Diferenças de Babbage

Figura 18: Máquina de Diferenças nº 2

Máquina de Analítica de Babbage

• Após a tentativa de construir sua primeira Máquina de Diferenças, Babbage trabalhou num projeto ainda mais reveolucionário

1.24

- Seu objetivo era criar uma máquina que fosse *programável*, capaz de realizar qualquer computação
- Continuou aprimorando seu projeto visionário até sua morte
- Introduziu conceitos utilizados nos computadores modernos:
 - Uso de cartões perfurados (Jacquard)
 - Registradores
 - Subrotinas
 - Impressão de resultados
- A máquina nunca foi construído devido à inexistência da tecnologia necessária
- Máquinas similares só puderam ser construídas mais de 100 anos depois!
- Sua grande contribuição faz com que muitos o considerem como Pai da Computação

A primeira programadora

- Augusta Ada King (1815 a 1852), Condessa de Lovelace, ou simplemente *Ada Lovelace* foi uma matemática e escritora inglesa
- Se correspondia com Babbage durante o desenvolvimento da Máquina Analítica
- Criou o que é reconhecido o primeiro algoritmo
- Devido à sua grande contribuição, é tida como a Primeira Programadora

Figura 19: Ada Lovelace

1.27