

## **KNN** Imputation

#### **Christian Werner**

(Quantitative geneticist and biostatistician) EiB, CIMMYT, Texcoco (Mexico)

#### Filippo Biscarini



(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

#### Oscar González-Recio



(Computational biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)



### Why KNN imputation?

Mol Breeding (2016)36:69 DOI 10.1007/s11032-016-0490-y



## Marker imputation efficiency for genotyping-by-sequencing data in rice (*Oryza sativa*) and alfalfa (*Medicago sativa*)

Nelson Nazzicari · Filippo Biscarini · Paolo Cozzi · E. Charles Brummer · Paolo Annicchiarico





## One-minute k-nearest neighbors (KNN)!



- 1. We collect data on temperature, humidity and rain, for a number of days
- 2. New day: will it rain?



#### k-nearest neighbors (KNN): a bit of math





#### One-minute k-nearest neighbors (KNN)!

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

$$Pr(Y=j|X=x_0)$$





#### KNN: more than 3-D

- We saw a simple example with few datapoints and only 2 dimensions
- When we have (typically) many dimensions (e.g. many SNPs) and many datapoints (e.g. many samples) we need the machine to do it! (and we can no longer visualize it)







 K-neighborhood → majority!



### KNN: K?



- K-neighborhood  $\rightarrow$  majority!
- majority?



#### KNN: Euclidean distance?



- similarity↔dissimilarity
- **-** [0, +∞]
- many possible
   distance metrics
   (Hamming,
   Chebyshev, Jaccard etc.) → see here



## KNN: a few things to tweak

- size of neighborhood (K)
- type of distance
- type of assignment metric (majority, average, weighted metrics, etc.)



- KNN assumes that similar (close) points share similar labels/target
- unfortunately, in high dimensional spaces points tend to never be close together







 increasing the number of dimensions (parameters) of the problem increases and complicates the identification of k neighbors which are close enough to the data point to be classified/predicted







$$l=\left(rac{k}{n}
ight)^{1/d}$$

- I: side of the hypercube that include the k neighbours
- **n**: sample size
- d: n. of dimensions

 increasing the number of dimensions (parameters) of the problem increases and complicates the identification of k neighbors which are close enough to the data point to be classified/predicted







$$l = \left(rac{k}{n}
ight)^{1/d}$$

- I: side of the hypercube that include the k neighbours
- **n**: sample size
- d: n. of dimensions

 with n constant (data size), the hypercube in which the k neighbors lie gets bigger as d increases







$$l=\left(rac{k}{n}
ight)^{1/d}$$

- I: side of the hypercube that include the k neighbours
- **n**: sample size
- **d**: n. of dimensions

 with n constant (data size), the hypercube in which the k neighbors lie gets bigger as d increases





$$l=\left(rac{k}{n}
ight)^{1/d}$$

- **n** = 1000
- **k** = 5

| d    | 1     |
|------|-------|
| 2    | 0.071 |
| 10   | 0.588 |
| 50   | 0.899 |
| 100  | 0.948 |
| 1000 | 0.994 |





- when  $d \gg 1$  almost the entire space is needed to find the k NN
- this breaks down the KNN assumptions, because the k NN are not particularly closer (and therefore more similar) than any other data points in the dataset
- why would the test point share the label with those k-nearest neighbors, if they are not actually similar to it?

| d    | 1     |
|------|-------|
| 2    | 0.071 |
| 10   | 0.588 |
| 50   | 0.899 |
| 100  | 0.948 |
| 1000 | 0.994 |





distributions of all pairwise distances between randomly drawn points within d-dimensional unit hypercubes: as the number of dimensions *d* grows, all distances concentrate within a very small range ("the night where all cows are black")







distributions of all pairwise distances between randomly drawn points within d-dimensional unit hypercubes: as the number of dimensions *d* grows, all distances concentrate within a very small range ("the night where all cows are black")

increase the number of samples *n* (data size)?

$$n=rac{k}{I^d}=k\cdot 10^d$$

- exponential growth
- for d > 100 we would need more data points than there are electrons in the universe!



From: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02\_kNN.html



#### KNN: as lazy as it gets

- KNN is a **lazy algorithm**: each time new datapoints are added (e.g. to be predicted) pairwise distances with all existing datapoints (over all dimensions) must be calculated
- calculations are slow
- However:
  - when new data are available, there's no need to retrain the model (no parameters to estimate or fine-tune) → excellent for applications where data are added incrementally (e.g. on-line learning, update predictions)





#### What about imputation?

- Ok, we learnt about KNN, but imputation?
- The **imputation of missing SNP genotypes** is a type of prediction (slightly "*sui generis*"), where non-missing values can be considered as training observations and missing values as the test observations



#### **NEXT LECTURE**

# Genotype imputation with KNN: a demonstration (R code)