KRASH DYNAMICS ANALYSIS MODELING - TRAMSPORT AIRPLANE CONTROLLED IMPACT D. (U) LOCKHEED AIRCRAFT CORP BURBANK CALIF G MITTLIN ET AL. MAR 86 LR-38776 DOT/FAA/CT-85/9 1/7 AD-A168 975 DTFR83-84-C-99994 UNCLASSIFIED F/G 1/2 NL

DOT/FAA/CT-85/9

KRASH Dynamics Analysis Modeling — Transport Airplane Controlled Impact Demonstration Test

Gil Wittlin Bill LaBarge

Prepared by Lockheed-California Company Burbank, California

May 1985 (Revised March 1986) Final Report

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation

Federal Aviation Administration

Technical Center Atlantic City Airport, N.J. 08405

38

ე 🤰 6

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

1. Report No. DOT/FAA/CT-85/9	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle KRASH DYNAMICS ANALYSIS MODELING — TRANSPORT AIRPLANE CONTROLLED IMPACT			5. Report Date May 1985 (Revised March 1986) 6. Performing Organization Code	
7. Author(s) G. Wittlin, W.L. LaBarge			8. Performing Organiz LR 30776	ation Report No.
o. wittiii, w.b. Labarge		·	10. Work Unit No.	
9. Performing Organization Name and Address				
Lockheed-California Company Burbank, CA 91520			11. Contract or Grant DTFA03-84-C-	
			13. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address U.S. Department of Transport	ation			
Federal Aviation Administrat Technical Center			 Sponsoring Agency Fina 	
Atlantic City Airport, NJ 08 15. Supplementary Notes	405		Jan. 1984 -	Sept. 1984
with program KRASH. Prior to modeling the test condition, supporting analysis of both narrow-body and wide-body transport airplane frame segments were modeled with KRASH and compared to existing test results. The results of the analysis are utilized as input data for the KRASH CID model. Prior to the CID test a narrow-body transport airplane was impacted with the ground, via a free fall drop, to obtain structure crush and damage data. KRASH modeling of this test was used to refine the CID KRASH model. The CID KRASH model is exercised to obtain anticipated floor accelerations, underside crush, fuselage forces, and deflections. All KRASH modeling is performed utilizing current enhancement features. The latest KRASH85 input-output format is described in a separate report. Contained in this report			ted SH 5	
are descriptions of the				
 Recent KRASH85 coding changes to enhance its usage KRASH models and results for both narrow-body and wide-body transport airplane frame section drop tests 				
• KRASH model and	results for a narr	ow-body transport air	plane drop test	
KRASH model and	results for a CID	test to be performed.		
• Conclusions based on the CID pre-test analysis results				,
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
KRASH, crashworthiness, crash dynamics computer simulation, controlled impact demonstration, CID, analytical predictions transport airplane This document is available to the U.S public through the National Technical Information Services, Springfield, VA			Cechnical	
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21, No. of Pages	22. Price*
UNCL.	UNCL	•	173	1

FOREWORD

This report was prepared by the Lockheed-California Company, under contract DTFA03-84-C-00004, sponsored by the Federal Aviation Administration Technical Center. This report describes the analytical modeling effort performed from January 1984 through September 1984. The latest KRASH input-output format incorporated during the same time period are described in report DOT/FAA/CT-85-10. The work was administered under the direction of L. Neri and C. Caiafa of the FAA.

The Lockheed-California Company effort was performed by Gil Wittlin with support from M. A. Gamon and W. L. LaBarge. The Lockheed effort was performed within the Flutter and Dynamics Department.

Acces	ion For	
NTIS	GRA&I	X (
DTIC :	rab	
	ounced	
Justi	fication	
Ву		
Distr	ibution/	
Avai	lability	Codes
	Avail a	nd/or
Dist	Spec 1	al
l	1	
10.	1	•
W-I	1	
	<u> </u>	

TABLE OF CONTENTS

Section		Page
	FOREWORD	iii
	EXECUTIVE SUMMARY	v
	LIST OF FIGURES	ix
	LIST OF TABLES	xv
1	INTRODUCTION	1-1
1.1	BACKGROUND	1-1
1.2	PROGRAM OBJECTIVE	1-1
2	KRASH ENHANCEMENTS	2-1
2.1	BACKGROUND	2-1
2.2	KRASH85 MODIFICATIONS	2-1
2.2.1	Revised Plastic Hinge Moment	2-1
2.2.2	Gear-Oleo Element Metering Pin	2-5
2.2.3	Load-Interaction Curves	2-5
2.2.4	Expanded Initial Condition (IC) Subroutine	2-9
2.2.5	Comprehensive Energy Balance Code	2-9
2.2.6	c.g. Time Histories	2-9
2.2.7	Arbitrary Mass Numbering	2-11
3	FUSELAGE SECTION TESTS AND ANALYSES	3-1
3.1	NARROW BODY AIRPLANE FUSELAGE SECTIONS	3-1
3.2	WIDEBODY AIRPLANE FUSELAGE SECTION TEST	3-7
4	PRELIMINARY KRASH ANALYSIS	4-1
4.1	GEARS-RETRACTED ANALYSIS	4-1
4.2	COMPARISONS WITH GEARS-EXTENDED AND SLOPE IMPACTS	4-11
4.3	SEAT/OCCUPANT RESPONSE TO A LONGITUDINAL PULSE	4-17
4.4	TEST IMPACT CONDITION SELECTION	4-23
5	NARROW-BODY AIRPLANE IMPACT DATA	5-1
5 :	A LDDI AVE IMDACT TECT	E 1

TABLE OF CONTENTS (Continued)

Section		Page
5.2	KRASH MODELING OF IMPACT TEST	5-14
5.3	REVISED CID STICK MODEL RESULTS	5-18
6	CID PRE-TEST ANALYSIS	6-1
6.1	KRASII MODEL	6-1
6.2	KRASH ANALYSIS RESULTS	6-8
6.3	SUMMARY OF CID PRE-TEST ANALYSIS RESULTS	6-16
7	CONCLUSIONS	7-1
	REFERENCES	
	AFPENDICES	
	A. KRASH DATA SET ECHOES	
	A.1 NARROW-BODY AIRPLANE KRASH FRAME MODÉL	A-1
	A.2 WIDE-BODY AIRPLANE KRASH FRAME MODEL	A-4
	A.3 KRASH CID AIRPLANE STICK MODEL	A-7
	A.4 KRASH CID AIRPLANE EXPANDED MODEL	A-13
	B. KRASH TIME HISTORY RESPONSES - EXPANDED MODEL	B-1
	C. DISTRIBUTION LIST	C-1

TABLE OF CONTENTS

Section		Page
	FOREWORD	iii
	SUMMARY	v
	LIST OF FIGURES	íx
	LIST OF TABLES	ix
1	INTRODUCTION	1-1
2	USER'S GUIDE	2-1
2.1	OVERALL KRASH85 ANALYSIS SYSTEM	2-1
2.2	KRASH85 INPUT	2-8
2.3	OUTPUT AND SAMPLE CASE	2-93
2.3.1	KRASHIC Output	2-93
2.3.1.1	Echo of Input Data	2-93
2.3.1.2	Formatted Print-Out of Input Data	2-94
2.3.1.3	Miscellaneous Calculated Data	2-122
2.3.1.3.1	Model Parameters	2-123
2.3.1.3.2	Ream Loads and Deflections Corresponding to Yielding	2-123
2.3.1.3.3	Overall Vehicle Forces/Accelerations at Time Zero	2-123
2.3.1.3.4	Individual Mass Forces/Accelerations At Time Zero	2-124
2.3.2	MSCTRAN Output	2-125
2.3.2.1	Executive Control Deck Echo	2-125
2.3.2.2	Case Control Deck Echo	2-125
2.3.2.3	Input Bulk Data Deck Echo	2-125
2.3.2.4	Sorted Bulk Data Deck Echo	2-144
2.3.2.5	Displacement Vector	2-144
2 2 2 6	Land Wooter	2-145

Figure		Page
3-16	Passenger Cabin Floor Acceleration Time History	3-14
3-17	DC-10 Frame Model (Revised)	3-16
3-18	Passenger Cabin Floor Acceleration Time History(Revised Model)	3-16
3-19	Comparison of Widebody Frame Section Analysis and Test Results	3~18
3-20	Results of Narrow-Body Airplane Fuselage Center Section Test	3-18
3-21	Acceleration Time Histories Measured in Anthropomorphic Dummies Located in Fuselage Center Section	3-19
4-1	Outline of Analytical Approach	4-2
4-2	CID KRASH Stick Model	4-3
4-3	CID Model Frame Crush Springs	4-5
4-4	CID Model Hard Point Springs	4-6
4-5	Combined Load Ratios, for Fuselage Underside Load-Deflection Variations	4-8
4-6	Combined Load Ratios, Comparisons for 'No Lift' and Reduced Fuselage Stiffness	4-8
4-7	Combined Shear-Moment Loads as a Function of MLG Bulkhead Load Deflection Representation	4-9
4-8	Model Hard Point Load-Deflection Variations	4-9
4-9	Fuselage Damage as Function of Sink Speed, KRASH Analysis, 1 ⁰ Nose-Up Impact	4-10
4-10	Duplication of Known Test Load-Deflection Curve Using Metering Pin Coding in KRASH85	4-12
4-11	Oleo Metering Pin Damping Constant Versus Gear Compression	4-12
4-12	Single Gear Model Analysis Results	4-14
4-13	Initial Impact Conditions; Ramp Versus Air-to-Ground Impact	4-15
4-14	KRASH Results, Air-To-Ground Versus Ground-To-Ground Impacts	4-16
4-15	KRASH CID Model Accelerations at FS960 (Mass 6)	4-18
4-16	Effect of Different Floor Longitudinal Pulse Representations on Occupant Response	/_1 q

Figure		Page
4-17	KRASH CID Model Accelerations at FS620 (Mass 4)	4-20
4-18	KRASH CID Model Accelerations at FS820 (Mass 5)	4-21
4-19	KRASH Seat - Occupant Longitudinal Pulse Analysis Results	4-22
5-1	Pre-Test Setup - B707 Impact Test	5-2
5-2	Post-Test View - B707 Impact Test	5-2
5- 3	Forward Lower Fuselage Damage - Left Side Looking Aft	5-3
5-4	Wing Root Fairing - Right Hand Trailing Edge	5-3
5-5	Left Wing Inboard Pylon Failure	5-4
5-6	Left Hand Inboard Pylon - Upper Longeron Fracture	5-4
5-7	Left Hand Landing Gear Well - View Looking Aft - Vertical Keel to FS960 Bulkhead	5-5
5~8	Close Up View of Vertical Keel and FS960 Bulkhead Intersection	5-5
5-9	Left Hand Landing Gear Wheel Well - FS820 Bulkhead, Looking Forward	5-6
5-10	Left Hand Landing Gear Wheel Well - FS820 Bulkhead - Tracing Web Crack	5-6
5-11	Left Hand Landing Gear Wheel Well - FS820 Bulkhead - Tracing Web Crack to Floor	5-7
5-12	Left Hand Landing Gear Wheel Well - FS820 Bulkhead - Floor Intersection	5 - 7
5-13	Centerline Frame Fracture Forward of FS620 Bulkhead - Forward Cargo Bay	5~₿
5-14	Sidewall Frame Damage Aft Region of Forward Cargo Bay (Just Forward of FS620)	5-8
5-15	Aft Cargo Bay Looking Forward to FS960 Bulkhead	5-9
5-16	Close Up View of Stringer/Doubler Failure at FS96() Bulkhead	5-9
5-17	FS1010 - 1040 Frame Damage	5-10
5-18	FS1100 - 1120 Frame Damage	5-10
5-19	Lower Wing Box and Keel Left Hand Side View Shows Crushed Ducting	5-11
5~20	Cabin Floor Looking Aft - Center Decking Removed FS820 to	5_10

Figure		Page
5-21	Cabin Floor Transverse Beams - Looking Aft from FS820	5-12
5-22	Looking at Left Hand Side of FS820 Bulkhead	5-13
5-23	Fractures at FS820 Bulkhead and Cabin Floor Interface - Right Hand Side View	5-13
5-24	Fracture at FS820 Bulkhead and Cabin Floor Interface - Close-Up View	5-14
5-25	Revisions to CID Model Frame Crush Springs	5-16
5-26	Revisions to CID Model Hard Point Springs	5-17
5-27	Maximum Allowable Moment and Shear Envelope - Negative Bending	5-20
5-28	Maximum Allowable Moment and Shear Envelope - Negative Bending	5-21
5-29	Maximum Allowable Moment and Shear Envelope - Negative Bending	5-22
5-30	Comparison of Pre-CID KRASH Stick Model Accelerations for Planned Symmetrical Impact Condition - Original Versus Revised Load Deflection Curves	5-24
5-31	Comparison Pre-CID DRASH Stick Model LIC and Fuselage Crush for the Planned Impact Condition - Original Versus Revised Load-Deflection Curves	5-25
5-32	Acceleration Response at FS300, Condition No. 3	5-27
5-33	Acceleration Response at FS460, Condition No. 3	5-28
5-34	Acceleration Response at FS620, Condition No. 3	5-29
5-35	Acceleration Response at FS820, Condition No. 3	5-30
5-36	Acceleration Response at FS960, Condition No. 3	5-31
5-37	Acceleration Response at FS1040, Condition No. 3	5-32
5-38	Acceleration Response at FS1200, Condition No.3	5-33
5-39	Acceleration Response at FS1400 Condition No. 3	5-34

Figure		Page
6-1	Expanded CID KRASH Model	6-2
6-2	KRASH Models Parameters	6-4
6-3	CID Pre-Test Analysis - Vertical Acceleration Pulses, 17 Ft/Sec, +1 Nose-Up	6-18
6-4	CID Pre-Test Peak Acceleration Versus Fuselage Station Obtained from KRASH Analysis	6-20
6-5	Comparison of PRE-CID KRASH Stick Model Analyses Versus Expanded Model Results for Planned Symmetrical Impact Condition	6-21
6-6	Comparison of Pre-CID KRASH Stick and Expanded Models Analyses Results for Planned Symmetrical Impact Condition	6-22
6-7	Pre-CID Tests KRASH Analysis Results for Planned Symmetrical Impact Condition	6-23

LIST OF TABLES

Table		Page
2-1	Previous Modifications to Program KRASH (Reference 8)	2-2
2-2	The Features Unique to KRASH83	2-3
2-3	KRASH85 Enhancement Features	2-4
4-1	KRASH Model Fuselage Mass Point Locations	4-4
4-2	Gear-Up Versus Gear Extended Analysis Results	4-13
5-1	Qualitative Comparison of KRASH Stick Model and B707 Airplane Impact Test	5-15
5-2	Comparison of Analysis Results	5-19
6-1	Static Deflections	6-3
n-2	Comparison of Beam Initial LIC Ratios	6-6
6-3	CID Model Mass Description	6-6
6-4	CID Model Beam Description	6-7
6-5	Analysis Results, Fuselage Crush	6-9
3-6	Impact Sequence	6-10
6-7	Analysis Results, Yield/Rupture Sequence	6-11
6-8	Analysis Results, Beam Deflection	6-12
6-9	Analysis Results, Peak Vertical Acceleration	6-13
6-10	Summary of Fuselage Peak Shear and Moment Loads and LIC Ratios	6-13
6-11	Comparison of Peak Acceleration With and Without Fuselage Shell Shear Representation	6-14
6-12	Comparison of Peak Crushing With and Without Fuselage Shell Shear Representation	6-14
6-13	Comparison of Beam Deflections for Modeling With and Without Fuselage Shell Shear Representation	6-15
6-14	Summary of Ream Poak Deflection Range	6-17

EXECUTIVE SUMMARY

The analysis of a Controlled Impact Demonstration (CID) test using program KRASH is described. In support of the CID test, several frame segments as well as a complete narrow-body airplane were impacted and responses such as underside fuselage crush, mass accelerations and/or reaction loads were obtained. KRASH model results were compared to the results obtained from supporting tests. The test data were used to refine the KRASH CID models. The revised KRASH models were used to predict the responses from the planned CID conditions impact. The predicted responses indicate that at the planned impact condition the floor peak vertical accelerations will vary from 8 to 12 g's throughout the length of the passenger floor, and that the fuselage underside crushing magnitude and distribution will be approximately the same as was noted in the supporting narrow-body full airplane impact test. Similarly, the predicted response indicates that the peak longitudinal acceleration range between 3 to 6 g's throughout the cabin floor under the same impact condition. The airframe structural integrity as depicted by the fuselage moment/shear distribution was shown to be marginal at the wing center section and satisfactory at the other locations.

STOCKE STATES

Improvements were made to the KRASH coding. A KRASH85 release has been documented in report DOT/FAA/CT-85/10.

SECTION 1

INTRODUCTION

1.1 BACKGROUND

The major domestic transport airplane manufacturers, under FAA and NASA sponsorship, reviewed jet transport accidents for the period 1959 to 1978. The results of these studies are presented in references 1, 2, and 3 and are summarized in reference 4. The data contained in these reports form the basis for developing candidate crash scenarios for FAR 25 narrow- and wide-body jet powered transport (reference 5) category airplanes. Analytical modeling of transport airplanes crash scenarios has been performed previously (reference 6). However, insufficient test data were available to validate the results of that study. To fully evaluate the appropriateness of crash scenarios for design considerations, it is necessary to predict airframe structure dynamic responses with a reasonable degree of accuracy. To achieve confidence in analytical procedures, it is necessary for predictions to compare favorably with test data. Where predictions differ from test data it is important to identify changes in modeling techniques and/or applied methodology. Program KRASH, developed under U.S. Army (reference ?) and FAA (reference 8) sponsorship, is used in this study to determine airframe response for an impact test involving a narrow-body jet transport.

1.2 PROGRAM OBJECTIVE

The major objective of this effort is the development of modeling techniques for future application to a wide range of impact conditions. The overall task effort flow diagram is shown in figure 1-1. The thrust of the effort described in this report is the application of program KRASH to a Controlled Impact Demonstration (CID) test involving a narrow-body jet transport airplane. Frame segment tests, as well as a preliminary narrow-body airplane impact test, provided quantitative and qualitative data which were useful in assessing the KRASH

ACCOUNTS NO DESCRIPTION OF SEC.

PRODUCES TRACTICES

1-2

models and methodology. The Task effort involved the use of updated features of KRASH85 as they became available. The comparison of results and potential modifications to KRASH or the modeling techniques are to be included in a subsequent Task effort.

property officers appropriate contracts

SECTION 2

KRASH ENHANCEMENTS

2.1 BACKGROUND

KRASH79 was released to the public after having been validated under FAA sponsorship (reference 8) for general aviation airplane modeling application. A summary of modifications, incorporated into KRASH79, is pro ided in table 2-1. Subsequent to KRASH79 release, additional enhancement features were incorporated into the program. This updated version designated KRASH83 was provided to the FAA at the onset of the study described in this report. A summary of these features is provided in table 2-2. In addition, several improvements were identified to be incorporated into KRASH during the course of the current effort. These features are shown in table 2-3. The more significant improvements to create the current KRASH85 version are briefly described in the following section and in detail in reference 9.

2.2 KRASH85 MODIFICATIONS

2.2.1 Revised Plastic Hinge Moment

This feature corrects a deficiency in the previous KRASH79 coding involving unloading of an element when the plastic hinge option was used. The plastic hinge coding now properly models unloading and reloading, allowing the formation of hysteresis loops representing the growth of element strain energy during cyclic loading. Figure 2-1 illustrates typical hysteresis loops obtained in KRASH85 for a test case that forces cyclic bending of a plastic hinge beam. This change provides an alternative to the use of the stiffness reduction factor (KR) tables when modeling nonlinear bending. The KR table formulation was not sufficiently rigorous to guarantee that negative values for strain energy (which is not physically possible) will not occur. This capability is

TABLE 2-1. PREVIOUS MODIFICATIONS TO PROGRAM KRASH (REFERENCE 8)

- Sloped impact surface (rigid or flexible)
- Cabin volume change
- Member directional stress
- Element linear stiffness computations
- Nonlinear curve computations
- Member frequency, yield forces and loads computations
- External spring force and compression data
- Separation of crushing and friction energy
- Symmetrical airplane modeling
- Massless node representations
- More stable stiffness and damping formulation
- Flexible ground
- Unsymmetrical axial load-deflection curves, including deadband allowance
- Expanded beam end-fixity combinations
- Plastic hinge element
- Shock strut element
- Expanded force and deflection for rupture of beams
- Energy tolerance cutoffs
- Mass impulse calculations
- Low-pass filtering of acceleration data
- Beam structural damping forces
- External spring damping
- Increased program size to 150 beam elements and 180 beam nonlinear degrees of freedom
- Mass location plots
- Acceleration pulse input
- Restart

MANAGER (SAME IN TONION OF THE PARTY IN

- Summaries
 - (a) beam element rupture and yield
 - (b) external spring loads and deflections
 - (c) plastic hinge occurrence
 - (d) time history plots of mass responses and impulses, beam forces, deflections, stresses, strain energy and damping energy, external spring force and deflections, occupant DRI's, and cg translational velocities.

TABLE 2-2. THE FEATURES UNIQUE TO KRASH83

- Revised plastic hinge unloading/reloading algorithm (eliminates instabilities caused by coupled bending motions with KR coding)
- Inclusion of metering pin in oleo model
- Saving of mass displacement data for post-processing
- Addition of rational aerodynamic force/moment calculations for each mass
- Provision for input of force or moment time histories for each mass
- Addition of label cards in input format
- Provision for overriding run termination due to energy growth
- Revised input and output formats to accommodate additional features
- Corrections of minor coding errors
 - Elimination of DRI mass from cg velocity calculation
 - Corrections of plot array dimension errors in PREPLOT
 - Corrections in GENMOD for acceleration input tables
 - Correction of internal beam lateral deflection print/plot output
 - Provision for user input specification for vertical beams
 - Capability to run case with NSP = 0, no external springs
 - External spring load truncation altered to avoid premature cutoff

TABLE 2-3. KRASH85 ENHANCEMENT FEATURES

Modification Expand IC subroutine to compute balanced beam loads (interfaces with NASTRAN) G Provide for failure criteria based on approximate combined loading 0 o Recode energy balance to include effects of input forces or accelerations for specified masses Correct KR unloading/reloading so that loads are limited in both directions (uncoupled X, ϕ directions) C • Calculation of CG forces, accelerations, velocities and displacements time histories Develop user-independent beam orientation algorithm Saving of acceleration and forces for data transmittal Printout and/or plot of beam forces in mass axis Addition of tire vertical spring coding Compute total moment and shear distribution at any station Input masses in arbitrary numbering scheme

FIGURE 2-1. THE FORMATION OF HYSTERESIS LOOPS FOR LATERAL BENDING OF PLASTIC HINGE ELEMENTS FROM KRASH85

important for modeling frame segments. The program prints out a summary which provides the following information on plastic hinge moment formation:

- Beam number and end (i th and/or j th)
- Time of occurrence
- Direction

As in the previous coding the user still identifies beams that can form plastic hinge moments by an end fixity (pinned) designation and beam shape factor.

2.2.2 Gear-Oleo Element Metering Pin

Since a metering pin is such a common feature in a transport airplane landing gear, the ability to model the varying damping characteristics is necessary to properly analyze transport airplane landing gears. This is particularly true because of the high sink rates involved in crash landings, which yield high strut closure velocities wherein the damping force is predominant. The KRASH coding has been organized so as to determine the metering pin damping versus stroke characteristics needed to match a given load-deriection curve. In effect, the program can be run in an "inverted mode," in which the user inputs a known load-deflection curve (from drop test data), and the program calculates the metering pin characteristics (damping constant versus stroke) required to achieve the input load-deflection curve. The output metering pin curve can then be used in subsequent analyses of the gear for other conditions. The feature is useful when the actual profile of the metering pin is not available, but drop test data are available. Figure 2-2 illustrates a comparison of results of test and analysis for a transport airplane main gear drop test at 12 ft/sec, using KRASH with a metering pin derived as described above. The degree of correlation evident in figure 2-2 represents an order of magnitude improvement over what was obtainable using a trial and error procedure to try to deduce the proper metering pin characteristics, without the "inverted mode" provision.

2.2.3 Load-Interaction Curves

KRASH85 includes load interaction curve (LIC) data for failure prediction. Figure 2-3 shows a typical set of interaction curves for fuselage bending and

FIGURE 2--2. DUPLICATION OF KNOWN TEST-LOAD-DEFLICTION CURVE USING METERING PIN CODING IN KRASH85

FIGURE 2-3. MAXIMUM ALLOWABLE MOMENT AND SHEAR ENVELOPE - NEGATIVE BENDING

shear at a particular airplane fuselage station. Figure 2-4 identifies the stringers at a representative frame location. The user can specify interaction curves at a maximum of 40 locations which can be anywhere. The user is not restricted to using the end points of the beam. Up to 20 straight line segments can be used to define each load-interaction curve.

At each location the program calculates the following:

- The internal beam loads, in KRASH sign convention, at the load interaction point.
 - o These loads are transformed to correspond to the standard structural load sign convention employed by the Lockheed-California Company (Calac).
 - o The Calac-convention loads are then transformed to a user-specified sign convention. One of six such sign conventions may be selected by the user. If no convention is specified, the loads are left in the Calac sign convention.
 - The two interaction loads are selected from the six loads calculated.

FIGURE 2-4. TYPICAL CROSS SECTION WITH STIFFENER LOCATIONS - REAR VIEW

 A load ratio for each load interaction line. A ratio greater than one indicates that a load interaction curve has been exceeded, signifying that at least one element has failed in some manner. KRASH85 is coded to allow complete rupture of a beam element if an input maximum load ratio is exceeded.

At the conclusion of the computer run the following is printed:

- Time histories of the following quantities for each load interaction curve.
 - o X Load (fuselage vertical shear in figure 2-3)
 - o Y Load (Tuselage vertical bending in figure 2-3)
 - o Maximum load ratio at each time
 - o input load interaction line number corresponding to the maximum load ratio at that time.
- A summary which shows the peak maximum load ratio for each interaction curve and the overall maximum load ratio.

The user has the option of saving the load-interaction curve time history data in an output file, which can be used for subsequent post-processing. A post-processing program has been developed (independent of KRASH85) to generate load interaction curve x-y plots. These data can be plotted to show the time-varying path of the calculated x-y loads, superimposed on the load-interaction curve (as illustrated by the dashed line in figure 2-3).

While the load interaction data output provides a great deal of useful information not previously available, considerable caution must be exercised by the oser in its interpretation. A maximum load ratio greater than one does not, by itself, indicate complete failure of the corresponding fuselage section. The output data have been used in conjunction with the actual manufacturer-terminated interaction diagrams to assess the extent of damage at each location. For example, suppose that the computed combined loads were as shown by points in the figure 2-3. For point A stringers S27 through S30 could tail. For making several additional stringer elements could fail (S-9 through S-15 and s-1, through S-30). Usually the input data for running KRASH is the minimum decessary to define the inner boundary in figure 2-3. The current KRASH85 coding does not define which stringers fail.

2.2.4 Expanded Initial Condition (IC) Subroutine

The expanded IC subroutine allows for interfacing with NASTRAN (MSC version) to obtain a statically balanced set of loads and displacements. The overall flow diagram is shown in figure 2-5. For a complete analysis, including the determination of balanced initial conditions, steps 1, 2, and 3 are all executed. Each step involves a separate computer program, and the runs are performed sequentially. A single submittal is adequate to accomplish all 3 steps. The vehicle is properly balanced at time zero. The masses are deflected from their original positions to be compatible with the forces acting. The forces considered in the balance equations include: gravity, externally applied forces, aerodynamic lift, inertia relief loads, and mass accelerations.

2.2.5 Comprehensive Energy Balance Code

The energy balance equations in KRASH79 did not account for externally applied loads; i.e., force, aerodynamic lift, mass accelerations. As a result, while the total energy could deviate substantially from 100 percent, the solution was stable. However, the growth in energy caused confusion in interpreting analysis results. The effect of all externally applied forces are now accurately accounted for. Thus, growth of total energy in excess of I percent would be considered suspect with regard to model validity.

2.2.6 c.g. Time Histories

KRASH79 contains a summary of c.g. velocity versus time, which is plotted at the end of each run. This feature is still retained. However, KRASH85 in addition contains a summary print of the following quantities:

- Time
- External forces in x, y, z directions
- Accelerations in x, y, z directions
- Velocities in x, y, z directions
- Displacements in x, y, z directions

A cross plot of force versus deflection yields a load-deflection curve. When using KRASH85 to model a substructure; i.e., frame section, this output could be used to develop an equivalent load-deflection curve as input into a larger model.

2.2.7 Arbitrary Mass Numbering

exercise existing which which is

KRASH85 accepts user supplied mass point identification numbers. The modification can be thought of conceptually as a mass point number preprocessor and a mass point number post-processor. The pre-processor converts external mass point numbers to internal mass point numbers. The external mass point numbers are supplied by the user as part of the input while the internal mass point numbers are defined by the program. The internal mass numbers are consistent with the numbering system previously used in earlier versions of program KRASH. After conversion program KRASH85 is executed using the internal mass point numbers. After execution is completed the post-processor converts the internal mass point numbers to external mass point numbers for output. In the modification, two new subroutines (INPT and INPTPL) were added. In these subroutines, two arrays (MASS and IMASS) are defined which cross reference the external mass point numbers to internal mass point numbers and vice versa.

The external mass point identification numbers are input in columns 71 and 72 on Card 200 (MASS POINT DATA). The identification numbers cannot be less than zero or greater than 99. If they are, program execution will be halted. If any of the numbers are left blank or set equal to zero, the program will automatically assign sequential identification numbers to all mass points in the order of input. This option accommodates previously developed input data sets.

When the RUNMOD=2 option is used, the program automatically assigns an external mass point identification number to the image mass point generated under this option. The identification number assigned is 100 greater than the identification number of the mass point used in defining the image mass point. For example, if the input mass point identification number is 96 then the image mass point identification number will be 196.

SECTION 3

FUSELAGE SECTION TESTS AND ANALYSES

3.1 NARROW BODY AIRPLANE FUSELAGE SECTIONS

Two narrow-body fuselage forward sections were subjected to a vertical impact. The first test was conducted at that NASA-Langley test facility. The results of the test are reported in reference 10. The Pre and post impact conditions are shown in figures 3-1 and 3-2. The 120-inch long (six-bay) specimen was subjected to a 20 ft/sec vertical velocity impact. The weight, including seats and occupant representations, is approximately 5100 pounds. A two-dimensional KRASH model was established to represent a typical frame. The post impact configuration predicted by the analytical model is shown in figure 3-3.

FIGURE 3-1. TRANSPORT SECTION SUSPENDED IN VERTICAL TEST APPARATUS

-BENDING FAILURES

FIGURE 3-2. POST-TEST VIEW OF TRANSPORT AIRPLANE SECTION

FIGURE 3-3. TRANSPORT AIRPLANE FRAME TEST SECTION AND ANALYTICAL MODEL

The KRASH symmetrical model, representing a typical frame, consists of 11 masses and 12 beams. An echo of the KRASH model is provided in Appendix A, Section A-1. The comparison of the analysis and test results is shown in figure 3-4 for three airframe and one occupant location. The KRASH model assumes that the mass associated with each frame is the same and that the weight on the port (left) side is also equal to weight on the starboard (right) side. The actual weight distribution between port and starboard sides for the test article was closer to 60/40. The frame designations for the test specimen are 600, 600D, 600E, 600F, 600G, 600H and 600J, each of which are 20 inches apart.

Figure 3-4 shows that for measurement locations several frames apart (40 to 80 inches), the responses do not differ substantially. The same is true when comparing starboard and portside responses (floor beam/inboard seat rail). Even the lighter mass roof peak responses, located 40 inches apart, are within 20 percent and 10 milliseconds of their acceleration and time of occurrence, respectively.

The analysis results, at all comparative locations, approximate the measured response peaks generally within 20 percent in amplitude and within 20 milliseconds with respect to the occurrence of the peak response. Thus, the representation of a single frame, while not exact at every location, approximates the segment response. This indicates that, while failure modes can vary along the length and width of the structure, a simplified representation can satisfactorily predict the responses "on the average". More detailed modeling would not necessarily predict the response more accurately or reliably and most likely would require significantly more time and computer cost. The analogy of predicting failures "on the average" for this model, is similar to the conclusions obtained in a previous study (reference 11) in which crush behavior of fuselage underfloor segments were determined, using simplified approximate procedures.

As noted earlier, program KRASH was modified to compute c.g. forces, accelerations, velocities, and displacements versus time. With this algorithm a load-versus-time deflection curve characteristic of the overall structure behavior was obtained directly from the analysis results. Since the test setup did not include load cells from which reaction loads could be measured directly, no comparison can be made for this parameter. A three-dimensional plot of the analysis generated load, deflection and time parameters is shown in figure 3-5.

SERVED TO SERVED

FIGURE 3-4. KRASH FRAME ANALYSIS VERSUS TEST RESULTS

FIGURE 3-5. B707 FRAME (NO CARGO) LOAD-DEFLECTION TIME HISTORY

For inputs into a larger KRASH airframe model the load deflection curve is approximated by the dashed line in figure 3-6. The energy, as computed by the area under the load-deflection curve, agrees with the amount of energy to be dissipated based on the mass, velocity and crush distance involved. The approximately 20 inches of crush obtained in the analysis is consistent with the measured results.

The second test of a B707 fuselage section (reference 12) was performed at the FAA Technical Center test facility in Pomona, N.J. The 120 inch long instrumented, forward fuselage section was impacted at a velocity of 20 ft/sec. The section was representative of stations 460 through 580. The NASA section was representative of stations 600 through 600J. The total weight for the FAA 6 bay segment was 6440 pounds, of which 1860 pounds was cargo luggage. The post test configuration for the FAA test is shown in figure 3-7. Of interest in the FAA test, was the presence of luggage on the cargo floor which minimized the extent to which a cusp was formed at the extreme lower centerline. The KRASH representation for

FIGURE 3-6. FRAME LOAD-DEFLECTION OBTAINED BY KRASH ANALYSIS

FIGURE 3-7. POST-TEST VIEW OF TRANSPORT AIRPLANE SECTION WITH CARGO

this test is the same model as shown in figure 3-3, except for added mass representing the luggage at locations 1 and 7.

The results of the KRASH analysis are compared to FAA test data in figures 3-8 through 3-11. Figure 3-8 shows the c.g. displacement versus time for analysis and test. The test data are obtained via double integration of midcenter vertical acceleration data. The peak displacements occur very close in time and differ by approximately 1.5 inches or less than 10 percent.

Figure 3-9 compares load cell force versus vertical displacement for analysis and test. The force from the analysis is based on scaling up the weight of the frame model to that of the total weight of the test article. Figure 3-10 shows the force versus time comparisons. The comparisons in figures 3-9 and 3-10 show good agreement with peak values, as well as with the time of occurrence. Figure 3-11 compares passenger floor vertical accelerations for test and analysis. The test data are from the midspan of the floor and were filtered at 60 Hz. The location for the analysis acceleration is at the inboard seat-floor attachment BL24.8 and was filtered at 50 Hz. The primary peak acceleration is within 10 percent in magnitude but occurs later in the analysis than shown in the test. The second deceleration peaks are in phase and approximately 20 percent apart in peak value. Both the test and analysis show a third peak deceleration value at -0.150 msec. The analysis peak deceleration for the third peak is -9g as compared to -4g for the test. Thereafter both analysis and test show a substantial decrease in response.

3.2 WIDEBODY AIRPLANE FUSELAGE SECTION TEST

A wide-body aft fuselage section was subjected to an impact having a 20 ft/sec vertical velocity in the same manner as were the narrow-body fuselage sections noted earlier. The weight, including one partial row of occupants, was approximately 5000 pounds. The pre- and post-impact configurations are shown in figure 3-12. The major damage was failure of the vertical supports for the cargo floor structure.

The frame model developed for use in program KRASH is illustrated in figure 3-13. It is a symmetric, half frame representation of a single bay of the DC-10 fuselage section used in the drop test. The model consists of fourteen

the stranger managery addresses to

FIGURE 3-8. COMPARISON OF FAA TEST AND KRASH ANALYSIS, VERTICAL DISPLACEMENT VERSUS TIME

FIGURE 3-9. COMPARISON OF FAA TEST AND KRASH ANALYSIS.
FORCE VERSUS DISPLACEMENT

FIGURE 3-10. COMPARISON OF FAA TEST AND KRASH ANALYSIS, FORCE VERSUS TIME

FIGURE 3-11. COMPARISON OF FAA TEST AND KRASH ANALYSIS, PASSENGER FLOOR VERTICAL ACCELERATION

(a) Pre-test

Overview

Close-Up of Cargo Floor Vertical Supports

(b) Post-test

FIGURE 3-12. DC-10 FUSELAGE SECTION TEST

FIGURE 3-13. DC-10 FRAME MODEL

mass elements interconnected by sixteen beams elements. Three crushing springs are provided to transfer the impact load to the frame model. The frame model represents a portion of the test section with a weight of 1235.0 pounds. An echo of the KRASH frame model is shown in the Appendix, Section A-2.

Plastic hinges are allowed in the cargo floor region as noted by the arrows in figure 3-13. Plastic hinge moments are allowed about both beam y and beam x axes except for the cargo floor post (beam 2-14) for which a plastic hinge moment is allowed about the beam z axis only. Rupture produced by a moment about the beam y axis, equivalent to the allowable plastic hinge moment, is also allowed at the mass 2 end of the cargo floor post.

The frame model was used to simulate a flat (zero pitch) impact having a 20 ft/sec drop velocity. The resulting load deflection time history of the frame c.g. is shown in figure 3-14. The analysis results indicate that during the drop a maximum displacement of 6.3 inches is reached approximately 0.045 seconds after impact. A maximum load of approximately 37,000 pounds

RECEDED ASSESSED BY THE TOTAL CONTROL TOTAL CONTROL OF THE PARTY CONTROL

FIGURE 3-14. DC-10 FRAME LOAD-DEFLECTION TIME HISTORY

occurs approximately 0.0125 second prior to the occurrence of the peak displacement. After reaching maximum displacement, the frame rebounds and leaves the ground at approximately 0.085 second after impact.

During impact an exchange of energy takes place as shown in figure 3-15. At impact the total energy is divided between gravitational potential energy* and kinetic energy. At the time of maximum c.g. displacement all of the kinetic energy and a small percentage of the potential energy has been converted into strain energy and crushing energy. The strain energy is associated with the deflection of the beam elements and the crushing energy is associated with the deflection of the crushing springs. Note that at the time the frame leaves the ground (time - 0.085 sec) the potential energy has been restored to its original value while part of the kinetic energy has been permanently transformed into strain and crushing energy. This permanent transfer results in

^{*}The potential energy is based on a selected reference plane.

FIGURE 3-15. ENERGY DISTRIBUTION - PERCENT OF TOTAL

the plastic deformation of some of the beam elements and permanent set of the crushing springs. The resultant "permanent set" of the c.g. is approximately 1.8 to 2.0 inches.

In the time period following ground contact the structure below the cargo floor deforms. A plastic hinge is formed about the frame x axis at the attachment of the cargo floor post (beam 2-14) and the frame beam element. In addition, plastic hinges are formed at masses 1 and 3. The frame's y and z axes are defined in figure 3-13. The frame x axis is normal to the plane containing the y and z axes.

Passenger vertical acceleration time histories (masses 12 and 13) are shown in figure 3-16. Maximum vertical accelerations of approximately 33 g's and 51 g's, respectively, are experienced by the two masses. The base duration associated with the peak accelerations at the floor are < 50 milliseconds.

Data available from the test consisted of personal observations, photos, and a video tape record of the test. The analysis was performed prior to the

FIGURE 3-16. PASSENGER CABIN FLOOR ACCELERATION TIME HISTORY

availability of acceleration response data. A post-test inspection indicated that there was apparent damage to the regular aircraft seats. An onboard experimental seat suffered a slightly bent frame. The weight of the section is considered to be relatively light, which most likely accounts for the slight damage (all of which occurs below the cargo floor) and the high floor accelerations. Comparison of the predicted response of local structure in the region of the cargo floor with the observed post-test results reveals the following:

Prodicted Results

Cargo floor post plastic hinge formed about the frame x axis - probable rivet failure.

No plastic hinge formation of cargo floor post about the frame y axis.

Obscrved Results

No apparent frame x axis plastic hinge formed in cargo floor post - no rivet failure.

Cargo floor post plastic hinge formed about frame y axis - rupture of posts at attachment to frame.

Predicted Results

Plastic hinge formed in lower frame at center line of frame model.

No plastic hinge allowed in the passenger cabin floor beam.

Maximum c.g. deflection occurs at 0.045 second after impact.

Observed Results

Plastic hinge formed in lower frame at center line of frame model.

Plastic hinge appears to form in the passenger cabin floor beam near the frame center line (mass point 8 in figure 3-13).

Maximum crushing of structure in cargo floor region occurs approximately 0.05-0.06 second after impact.

After review of the photos and video tape, the frame model was modified as follows:

• Cargo floor post beam connecting mass 2 to mass 14. Massless nodes were introduced to simulate the offset of neutral axes at the attachment of the cargo floor post to the frame and to the cargo floor beam.

The frame x axis plastic hinge was removed. Rupture is allowed at a moment equivalent to the frame y axis plastic hinge moment.

 Passenger cabin floor beam connecting mass 7 to mass 8. A plastic hinge is allowed at the attachment of the beam to mass 8.

The revised model is shown in figure 3-17.

Using the revised model two cases were run. Each of the runs simulated a drop velocity of 20 ft/sec. One of the runs was at a zero pitch angle while the second is at a 2 degree nose down pitch angle. With the new model, failure of the cargo floor post due to bending about the frame y axis was duplicated during the 2 degree pitch case but not during the zero pitch case. Thus this failure mode appears to be sensitive to the pitch angle of the frame at the time of impact. The large moments about the frame x axis observed in the earlier run are still prevalent in both runs using the revised model.

Results of the two runs using the revised frame model show that the maximum vertical acceleration response levels of the passenger cabin floor (masses 7 and 8) are sensitive to the degree of plastic hinge formation in the cabin floor beam. The acceleration levels for masses 7 and 8 are shown in figure 3-18 for the 2 degree pitch case. The maximum acceleration levels are 34 g's and 33 g's for masses 7 and 8, respectively. For the zero degree impact case the maximum acceleration levels are 36 g's and 33 g's, respectively.

FIGURE 3-17. DC-10 FRAME MODEL (REVISED)

FIGURE 3-18. PASSENGER CABIN FLOOR ACCELERATION TIME HISTORY (REVISED MODEL)

The c.g. loads and displacements predicted during the zero pitch and 2 degree pitch cases using the revised model were not significantly different than those obtained using the original frame model. The maximum c.g. loads and deflections are 39,000 pounds, 6.2 inches and 38,000 pounds, 6.4 inches for the zero pitch and 2 degree pitch cases, respectively.

Kraceraca junicacera provincia possensi possensi popo

Subsequent to revising the frame model, test acceleration response data were reported in reference 13. Figure 3-19 shows a comparison between the analysis and test results at two passenger cabin floor locations. In both instances the peak levels are in good agreement. However, the time of occurrence of the peak response or the duration differs between the test and analysis results. The assumption of a plastic hinge at the floor centerline for the analytical model could tend to result in a more plastic (longer duration) response than is observed in the test data.

The discussion to this point has been confined to frame segment tests and analyses. Frame sections are considered soft compared to stiff bulkheads, and as such the passenger cabin floor responses tend to be muted. The DC-10 section responses are high in magnitude compared to the B707 frame sections due to 1) low test mass loading and 2) the type of construction (i.e., floor posts which provide an alternate load path). Hard points, such as those located at major bulkheads, are more likely to transmit high magnitude, short duration pulses to the passenger cabin floor. A test of a B707 fuselage center section is reported in reference 14. The post-test results including floor time history responses are shown in figure 3-20. The test specimen which weighed approximately 8000 lbs., including anthropomorphic dummies, exhibited little deformation and floor vertical peak responses between 60g to 90g, with a pulse base duration of around 20 milliseconds. A section more fully loaded and with wing mass might exhibit more crushing and lower broader response levels.

The occupant vertical responses for a location in proximity to the floor responses (figure 3-20) is shown in figure 3-21. From the curves in figure 3-21 it can be observed that the pelvic peak vertical response is around 36g to 44g for a nearly triangular pulse with a base duration of 40 milliseconds. Thus the dummy response is lower and broader than that exhibited at

connection appropriate properties assessed assessed

FIGURE 3-19. COMPARISON OF WIDEBODY FRAME SECTION ANALYSIS AND TESTS RESULTS

FIGURE 3-20. RESULTS OF NARROW-BODY AIRPLANE FUESLAGE CENTER SECTION TEST

FIGURE 3-21. ACCELERATION TIME HISTORIES MEASURED IN ANTHROPOMORPHIC DUMMIES LOCATED IN FUSELAGE CENTER SECTION

the floor. By contrast a corresponding dummy response for the B707 drop test is closer to 8g peak, 100 millisecond base duration and between triangular and trapezoidal in shape (figure 3-4). To what degree the occupant could be exposed to a serious injury due to vertical loading depends on how injury criteria are specified and measured. For combined loading (vertical-longitudinal or longitudinal-lateral) the criteria can get more difficult to define.

SECTION 4

PRELIMINARY KRASH ANALYSIS

4.1 GEARS-RETRACTED ANALYSIS

The flow diagram, shown in figure 4-1, outlines the procedure being followed to assess the effect of sink speed on airframe structural integrity using the available structural data and state-of-the-art analysis. A KRASH stick model was established to facilitate providing inputs into the Controlled Impact Demonstration (CID) test plan with regard to a desirable test impact condition. The stick model is shown in figure 4-2. The model consists of 27 masses and 26 beam elements. For the analysis a symmetrical half-airplane model consisting of 19 masses and 18 beam elements is used. The beam stiffness and mass properties are derived from manufacturer provided data. The model accounts for lower fuselage crushing and major bulkhead loads through the use of external (ground contact) springs along the fuselage. The frame crushing characteristics are developed from separate KRASH model analyses of narrow-body fuselage section tests, as described in Section 3. Bulkhead load-deflection characteristics are obtained from results of a narrow-body bulkhead segment test and previous widebody airplane analyses (reference 7). The fuselage mass point locations and designations are identified in table 4-1. The difference between the KRASH model fuselage station and airplane body station designations is due to three extra frames in the forebody between station 600 and 620 and two less frames in the aftbody between station 960 and 1020. The fuselage frame and bulkhead loaddeflection curves used with the stick model are shown in figures 4-3 and 4-4, respectively. The load range investigated is between the solid and dashed lines. The objective of this initial effort is to obtain overall fuselage shears, moments and accelerations. Preliminary estimates of fuselage shear and moment capability were obtained from manufacturer provided data. The data are in the form of moment versus shear at several locations. A typical momentshear interaction curve was shown earlier in figure 2-3. For each interaction curve the stringers, whose locations are shown in figure 2-4, can be identified.

FIGURE 4-1. OUTLINE OF ANALYTICAL APPROACH

Envel | 1988 | 1988 | 1988 | 1988 | 1988 | 1988 | 1988 | 1988 | 1988 | 1988 | 1888 | 1

FIGURE 4-2. CID KRASH STICK MODEL

novasiasa kaadaaan kassassaa kaasaassa hassassaa hassassaa

TABLE 4-1. KRASH MODEL FUSELAGE MASS POINT LOCATIONS

dedestes recessed because paragraph

MASS NO.	KRASH FUSELAGE STATION	AIRPLANE BODY STATION	LOCATION REPRESENTATION		
1	199	259	Nose Gear Wheel Well, forward bulkhead		
2	300	360	Nose Gear Wheel Well, rear bulkhead		
3	460	520	Forward fuselage frames		
4	620 620		Wing center section, forward		
5	820	820	Wing center section, rear		
6	960	960	Main landing gear rear bulkhead Mid fuselage frames Mid-aft fuselage frames		
7	1040	1080			
8	1200	1240			
9	1400	1440	Aft pressure bulkhead		
10	1570 1610		Empennage		
AIRPLANE	460 360 259 277 8.S.		1676 1592 1597 1440 1360 1280 1200 1120 1120 1040		
KRASH F.S.	300 199 118	820	1636 1552 1467 1400 1320 17240 1080		

The lower stringers are subject to failure due to compression and crushing loads. The middle stringers (S9 through S20) are vulnerable to high shear loads. The upper stringers would most likely fail under high bending tensile loads. The results of the load-interaction analysis are used in a qualitative sense to determine the relative sensitivity of regions of the airframe with gears-up to a range of impact velocities from 8 to 17 ft/sec, for a 155 knot forward velocity and one-degree nose-up attitude condition. The revised IC subroutine, in which KRASH-NASTRAN combined usage provides a static balance for an assumed lg aerodynamic loading distribution, was used. As part of this initial study a sensitivity analysis was performed to ascertain how the results are affected by changes in the input data parameters. The solid and dotted lines in figures 4-3 and 4-4 indicate the range in load variation investigated. Figures 4-5 and 4-6 present results in the form of normalized LIC ratios for changes in fuselage underside load-deflection characteristics as noted in figures 4-3 and 4-4, as well as changes with regard to fuselage stiffness or plasticity and initial aerodynamic loading. Lower loads are experienced for a softer fuselage, increased plasticity and for a no lift condition, as can be observed in figures 4-5 and 4-6.

Figure 4-7 shows results in the form of normalized LIC ratio as a function of changes in hard point load-deflection characteristics as noted in figure 4-8. The variations noted in figure 4-8 differ from those previously described in figure 4-4 in that the spring bottoming characteristics are affected. The response of the airframe is very sensitive to the hard point inputs, more so than to the soft frames. For the case analyzed, the aft fuselage loads increase substantially as a result of "bottoming" on hard points.

A qualitative assessment of the gear-up condition is shown in figure 4-9. The structure damage obtained from the stick model analysis is shown for a range of impact velocity conditions from 10 ft/sec to 17 ft/sec. The darkened regions in figure 4-9 indicate areas where potentially severe damage could occur. It is difficult to determine the degree of damage (i.e., separation) using the model and data described. An interpretation given to these results indicates a potential for aft fuselage separation to occur at a 17 ft/sec impact velocity. The stick model approach provides an overview of trends and an

dependent teachests marked transfer teacher popular

FIGURE 4-5. COMBINED LOAD RATIOS, FOR FUSELAGE UNDERSIDE LOAD-DEFLECTION VARIATIONS

FIGURE 4-6. COMBINED LOAD RATIOS, COMPARISONS FOR 'NO LIFT' AND REDUCED FUSELAGE STIFFNESS

RESPONSE SENSISITIVITY STUDY SINK SPEED=12FT/SEC

FIGURE 4-7. COMBINED SHEAR-MOMENT LOADS AS A FUNCTION OF MLG BULKHEAD LOAD-DEFLECTION REPRESENTATION

FIGURE 4-8. MODEL HERD POINT LOAD-DEFLECTION VARIATIONS

SINK SPEED - 10 FT/SEC

STATE OF THE PROPERTY OF THE P

SINK SPEED - 12 FT/SEC

SINK SPEED - 14 FT/SEC

SINK SPEED - 17 FT/SEC

FIGURE 4-9. FUSELAGE DAMAGE AS FUNCTION OF SINK SPEED, KRASH ANALYSIS, 1º NOSE-UP IMPACT

insight into potentially critical regions. However, the approach has limitations with regard to 1) incorporating the effects of local plasticity, 2) the sensitivity to representation of fuselage underside structure, particularly hard points, and 3) the accuracy of available airframe structural capability data.

4.2 COMPARISONS WITH GEARS-EXTENDED AND SLOPE IMPACTS

Comparisons were also made between the gear-up and gear-extended configurations. The procedure for performing gear-extended analysis was as follows:

- 1. The manufacturer-provided main gear load-stroke drop test data at 12 ft/sec was matched, using the KRASH oleo metering pin coding. The comparison is shown in figure 4-10. The tests were conducted at a landing weight, with an equivalent single gear weight of 48100 pounds.
- 2. Based on the matching of the test data with a simulated oleo metering pin, the damping (C_D) versus stroke characteristic of the metering pin is derived (see figure 4-11).
- 3. Using the metering pin characteristics, shown in figure 4-11, high sink speed conditions are then run with the KRASH stick model including landing gears.

The results of the gear-extended analysis, following the approach outlined above, are compared to the gear-up analysis results in table 4-2. From table 4-2, it can be observed that a full gear stroke is anticipated up to a 20 ft/sec vertical sink speed impact. However, at 20 ft/sec impact sink speed, while the gear may not fail, the combined load ratio (>1.0) could result in fuselage failure at the MLG bulkhead (BS 960). Based on the stick model analysis, the gear-extended condition in the impact velocity range of 18 to 20 ft/sec appears to be comparable to a gears-up impact velocity of 8 to 12 ft/ sec. The analysis results indicate that the fuselage average overall accelerations are lower for the gears-extended than for the gears-up condition. To ascertain the validity of the above-noted comparison, a single gear model was run for impact sink speeds of 10, 20 and 30 ft/sec. The results of these analyses are shown in figure 4-12. A takeoff weight is used for these results, with an equivalent single gear weight of 92,335 pounds. These simple model results illustrate that up to an impact velocity of 20 ft/sec, one might expect to obtain a large percentage of the stroking capability of the gear. At a 30 ft/sec sink rate the stroke, based on a MLG load capability of 350 to

PERSONAL PERSONAL INVESTIGATION CARRESTS.

FIGURE 4-10. DUPLICATION OF KNOWN TEST LOAD-DEFLECTION CURVE USING METERING PIN CODING IN KRASH85

FIGURE 4-11. OLEO METERING PIN DAMPING CONSTANT VERSUS GEAR COMPRESSION

TABLE 4-2. GEAR-UP VERSUS GEAR EXTENDED ANALYSIS RESULTS

CONFIGURATION	IMPACT SINK SPEED FT/SEC	AVERAGE VERTICAL ACCELERATION "G's"	COMBINED MOMENT-SHEAR LOAD RATIO	
			BS 620	BS 960
Gears-Retracted	8	8,1	.89	.93
	10	9.9	1.3	1.05
	12	12.8	1.4	1.08 (
	14	14.3	1.4	1.21
	17	18.7	1.4	1.88
Gears-Down	18*	6.6	.48	.84
	20**	7.8	.72	1.13

⁺¹⁰ Nose-Up Attitude, 186,000 Lb. Airplane

***These values are high. Subsequent airplane drop test data (see Section 5) indicates that hardpoint springs at FS 620, 820 960 do not 'bottom out' at the deflections used in this analysis.

430 KIPS, might reduce to ≈35 percent of its maximum stroke. Based on airplane taxi design considerations, one could anticipate a MLG for the CID airplane to be capable of 360 to 420 KIPS vertical load. Current widebody airplane Main Landing Gears are designed for a vertical load in excess of 600 KIPS/Gear.

Since previous transport airplane crash tests were of the ground-to-ground variety the question of "how the planned CID air-to-ground impact compares with a ground-to-ground (ramp) impact?" is of interest. Figure 4-13 illustrates the ramp initial impact conditions (representative of ground-to-ground) that are comparable to air-to-ground initial impact conditions with regard to initial velocities and contact points. Using KRASH, a comparison of results was made for a ramp impact such as the L1649 test (reference 15) versus the planned air-to-ground impact. For both impacts, it was assumed that the forward velocity and sink speed, respectively, were equal. The two impact conditions are depicted as conditions IIA and V, in figure 4-13. The results, shown in figure 4-14, indicate that the combined shear-moment load as depicted by the LIC ratio normalized to the peak value is lower for the ground-to-ground impact, except at the forward end. The LIC ratios for the air-to-ground

^{* 18.8} Inch Stroke, No Gear Failure

^{** 19.0} Inch Stroke, No Gear Failure

FIGURE 4-12. SINGLE GEAR MODEL ANALYSIS RESULTS

RAMP IMPACT

$$V = 262 \text{ FT/SEC}, \ \theta_S = 6^{\circ}$$

 $V_N = V_{SIN} \ \theta_S \cong 27.4 \text{ FT/SEC}$
 $V_H = V_{COS} \ \theta_S \cong 260 \text{ FT/SEC}$

AIR-TO-GROUND IMPACT

A)
$$V = 262 \text{ FT/SEC}, \ \theta_S = 3.7^{\circ}$$

 $V_H = V_{COS} \ \theta_S \cong 261.5 \text{ FT/SEC}$
 $V_N = V_{SIN} \ \theta_S = 17 \text{ FT/SEC}$

B)
$$V = 162 \text{ FT/SEC}, \ \theta_S = 6^{\circ}$$
 $V_H = V_{COS} \ \theta_S \cong 161 \text{ FT/SEC}$
 $V_N = V_{SIN} \ \theta_S = 17 \text{ FT/SEC}$

- A) V = 262 FT/SEC $\theta = 1^{\circ} \text{ NOSE-UP}$ $\gamma = 3.7 \text{ (NEGATIVE IN DIVE)}$ $V_X = V_{COS} \gamma = 261.5 \text{ FT/SEC}$ $V_Z = V_{SIN} \gamma = 17 \text{ FT/SEC}$
- B) $V = 162 \text{ FT/SEC}, \ \gamma = 3.7^{\circ}$ $V_X = V_{COS} \ \gamma \cong 161.5 \text{ FT/SEC}$ $V_Z = V_{SIN} \ \gamma = 10.5 \text{ FT/SEC}$

AIRPLANE IMPACTS SLOPE AT RELATIVE ANGLE = ($\theta + \theta_S$) TO FLAT GROUND

 θ = 1° NOSE UP γ = 3.7° (NEGATIVE IN DIVE) V_X = V_{COS} γ = 261.5 FT/SEC

= 262 FT/SEC

 $V_Z = V_{SIN} \gamma 17 FT/SEC$

FIGURE 4-13. INITIAL IMPACT CONDITIONS; RAMP VERSUS AIR-TO-GROUND IMPACT

CONTROL CONTRO

KRASH RESULTS, AIR-TO-GROUND VERSUS GROUND-TO-GROUND IMPACTS FIGURE 4-14.

1

condition are high in the aftbody due to 'slapdown' as the airplane rotates onto the aft section after initial impact. Since both analyses are for a rigid ground one would anticipate longitudinal accelerations to be low and comparable for both conditions. As can be observed from figure 4-13 a ramp impact similar to that shown in condition III would be a closer approximation of the planned air-to-ground impact (condition V).

4.3 SEAT/OCCUPANT RESPONSE TO A LONGITUDINAL PULSE

Seat-occupant analyses were performed with the KRASH model developed under a previous transport airplane crash dynamics study (reference 6). A review of the KRASH stick model results shows that the responses, at any particular location, can possibly be described in several ways. For example, for the gears-up impact condition (V_x = 155 kts, V_v = 17 ft/sec, 1° nose-up) figure 4-15 shows that the longitudinal pulse shape at FS 960, can be described as:

- A. Triangular, 5.9g peak acceleration, 0.010 second base
- B. Sawtooth, increasing to the 5.9g peak acceleration, 0.07 second duration
- C. ≈sinusoidal, with a 3g peak acceleration, 0.065 second duration.

For each of these pulses the occupant would respond differently. Figure 4-16 shows the results of an analysis using the KRASH occupant-seat model developed and correlated with CAMI-seat longitudinal pulse test data (reference 6). The data provided in figure 4-16 demonstrate that for the half sine and sawtooth pulses, the occupant could experience 4.9g to 5.3g accelerations at the pelvis. For the 0.0l second triangular pulse the same response would be barely over 1g. For lap belt only restraints, the occupant rotations are shown to be 4.5°, 27.2° and 25°, for cases A, B, and C, respectively.

The analytically determined pulses at FS 620 (wing leading edge) and FS 820 (wing trailing edge) are shown in figures 4-17 and 4-18). They can be characterized as trapezoidal with a peak acceleration of 3.2g to 3.3g and a base duration of 0.050 to 0.055 seconds. The corresponding pelvic responses from the KRASH seat model, shown as case G in figure 4-19, indicate a 5.8g acceleration response and occupant rotation of 29.5 degrees. Cases D, E, F, in figure 4-18, illustrate response as a functions of other pulses. Case D

XACCF = Longitudinal Accel.
YACCF = Lateral Accel.
ZACCF = Vertical Accel.

FIGURE 4-15. KRASH CID MODEL ACCELERATIONS AT FS960 (MASS 6)

PSCOPERE DECEMBER

POSSOCIAL INCOME OF COMMERCIAL INCOMESSAGE INCOME.

FIGURE 4-16. EFFECT OF DIFFERENCE FLOOR LONGITUDINAL PULSE REPRESENTATIONS ON OCCUPANT RESPONSE

the decision responds beforest moderate respective

MASS & FILTERED ACCELERATIONIG'SI, FS620, 50 HZ. FILTER

resolven resident executive

SCALE FACTOR # 3.314E 00	3.2g, .050 SECOND DURATION TRAPEZOIDAL PULSE	
ZACCF	0.0 3.1066-02 1.2446 00 -1.5026-01 -5.5536 00 -5.5536 00 -5.5546 00 -1.5046 00 -1.5046 00 -1.0566 00 4.3766 00 4.3766 00 6.6736 00 6.6736 00 6.6736 00 6.6736 00 6.6736 00 -1.5136 00 -2.6616 00	
XACCF *	1.369F-02 1.369F-02 1.149F-02 1.149F-02 1.351F-02 1.351F-02 1.351F-02 1.351F-02 1.254F-00 1.254F-00 2.2516F-00 2.354F-00 2.356F-00 2.356F-00 2.358F-00 1.650F-00 2.365F-00 1.052F-00 1.052F-00 1.052F-00 1.052F-00 1.052F-00 1.052F-00 1.052F-00 1.052F-00 2.365F-00 2.365F-00 2.311F-00	
ME(SEC)	00000000000000000000000000000000000000	

XACCF = Longitudinal Accel.
YACCF = Lateral Accel.
ZACCF = Vertical Accel.

FIGURE 4-17. KRASH CID MODEL ACCELERATIONS AT FS620 (MASS 4)

XACCF = Longtitudinal Accel.
YACCF = Lateral Accel.
ZACCF = Vertical Accel.

FIGURE 4-18. KRASH CID MODEL ACCELERATIONS AT FS820 (MASS 5)

PERSONAL INCLUSIONS

W. C. C. C. C. C. C.

CONTRACTOR OF THE PARTY OF THE

CH RESERVE CONTROL BESTEREN RECESSES

FIGURE 4-19. KRASH SEAT - OCCUPANT LONGITUDINAL PULSE ANALYSIS RESULTS

represents the condition which was tested at CAMI and with which KRASH results were compared in reference 6.

From the results shown in figures 4-16 and 4-18, it is clear that when defining pulses, it is important to consider the total pulse and not a segment of the pulse. Furthermore, the subjective interpretation of the pulse could lead to different conclusions with regard to occupant response. The KRASH obtained longitudinal pulses for the condition described could result in 5g to 6g pelvic responses for lap-belt only restrained occupant and rotations up to 30 degrees.

4.4 TEST IMPACT CONDITION SELECTION

Since the CID test involves combined Crashworthiness and Antimisting Kerosene (AMK) objectives it was recognized that the test impact conditions could be compromised. The responsible agencies selected a 17 ft/sec sink speed at impact with the airplane in a 1 degree nose-up attitude and a flight path speed of 155 knots. From the results of the preliminary analysis presented, this condition indicated the evidence of loads severe enough to challenge the structural integrity of the airframe. The extent to which damage would occur appeared to be very dependent on the hard point load-deflection characteristics and the amount of initial aft fuselage down bending provided by the aerodynamics. The CID test as described is expected to provide relatively high vertical but low longitudinal floor pulses. The previously performed L1649 test (reference 15) provided both moderate/high vertical and longitudinal impact forces. The extreme of a high longitudinal combined with a low vertical impact force is not covered in either this or the previous L1649 test. However, it is reasonable to expect that an analysis whose results have been correlated for the other combinations of loading will be satisfactory for this latter condition. Improved methodology, via KRASH, for future applications, is a major goal of this test program. With the successful acquisition of data relating input and output responses, failure modes and airframe deformation, it will be possible to achieve such a goal.

SECTION 5

NARROW-BODY AIRPLANE IMPACT DATA

5.1 AIRPLANE IMPACT TEST

A B707-131 airplane weighing 195,000 pounds and with a c.g. at FS855.14, was used in the performance of a drop test at Laurinburg, N.C. on 29 June 1984. The purpose of the test was to evaluate the airframe strength characteristics for an aircraft similar to the CID test article under comparable impact conditions $(+1)^{\circ}$ nose up, 17 ft/sec impact sink speed). The B707-131 airplane is 100 inches longer (20 inches forward of FS620, 80 inches aft of FS960) than the CID test article, but, basically of the same construction and design. High speed film coverage was provided. Pre- and post-test views of the test configuration are shown in figures 5-1 and 5-2, respectively. Damage to the aircraft was reviewed immediately after the impact and several weeks later, after the test vehicle had been lifted off the ground. Figures 5-3 through 5-24 show the damage that was sustained by the airplane as a result of the impact. Figures 5-3 and 5-4 show damage to the fuselage underside. It was estimated that the crush was about 2 inches, aft of the nose gear bulkhead; 4 inches, forward of the wing leading edge (FS620); and 11 to 13 inches, aft of the MLG Rear Bulkhead (FS960). The inboard wing engine pylons failed noticeably at the upper strut attach points from the pylon to the wing. Figures 5-5 and 5-6 depict the engine pylon failure. Figures 5-7 through 5-12 show damage to the vertical centerline keel and FS960 bulkhead. The bulkhead web crack is traced from the lower section up through to the floor in figures 5-9 through 5-12. Damage to the forward cargo bay at or forward of FS620 is shown in figures 5-13 and 5-14. The lower fuselage has been crushed and frame failures are noted on the centerline and along the sidewall. Figures 5-15 through 5-18 shows damage that occurred in the aft cargo bay from FS60 to FS1120. The extent of damage is

FIGURE 5-1. PRE-TEST SETUP - B707 IMPACT TEST

FIGURE 5-2. POST-TEST VIEW - B707 IMPACT TEST

FIGURE 5-3. FORWARD LOWER FUSELAGE DAMAGE - LEFT SIDE LOOKING AFT

FIGURE 5-4. WING ROOT FAIRING - RIGHT HAND TRAILING EDGE

FIGURE 5-5. LEFT WING INBOARD PYLON FAILURE

FIGURE 5-6. LEFT HAND INBOARD PYLON - UPPER LONGERON FRACTURE

FIGURE 5-7. LEFT HAND LANDING GEAR WELL- VIEW LOOKING AFT - VERTICAL KEEL TO FS960 BULKHEAD

FIGURE 5-8. CLOSE UP VIEW OF VERTICAL KEEL AND FS960 BULKHEAD INTERSECTION

7 d 🗷 55555557 - 74,277,276

FIGURE 5-9. LEFT HAND LANDING GEAR WHEEL WELL - FS820 BULKHEAD, LOOKING FORWARD

FIGURE 5-10. LEFT HAND LANDING GEAR WHEEL WELL-FS820 BULKHEAD - TRACING WEB GRACK

FIGURE 5-11. LEFT HAND LANDING GEAR WHEEL WELL - FS820 TRACING WEB CRACK TO FLOOR

ececeses with property property.

FIGURE 5-12. LEFT HAND LANDING GEAR WHEEL WELL - FS820 BULKHEAD - FLOOR INTERSECTION

COOL SERVICES CONTRACTOR CONTRACTOR CONTRACTOR

FIGURE 5-13. CENTERLINE FRAME FRACTURE OF FS620 BULKHEAD - FORWARD CARGO BAY

FIGURE 5-14. SIDEWALL FRAME DAMAGE AFT REGION OF FORWARD CARGO BAY (JUST FORWARD OF FS620)

FIGURE 5-15. AFT CARGO BAY LOOKING FORWARD TO FS960 BULKHEAD

FIGURE 5-16. CLOSE UP VIEW OF STRINGER/DOUBLER FAILURE AT FS960 BULKHEAD

THE STATE OF THE PARTY OF THE P

FIGURE 5-17. FS1010 - 1040 FRAME DAMAGE

FITURE 5-18. FRITOU - 1100 FRAME DAMAGE

more severe in the aft region as compared with the forward cargo bay. The relative severity of damage in the forward and aft region based on the analysis is consistent with the amount of crushing measured along the fuselage. From figure 5-19 it can be seen that the crushed ducting along the wing box keel (FS620-820) indicates that the structure had deflected at least 6 inches. Interior passenger floor damage is depicted in figures 5-20 through 5-24. The bulkhead at the wing trailing edge (FS820) ruptured and pushed the floor at that point up at least 4 inches at the center. The transverse beams and seat tracks have been severed. The frames between FS820 and 960 exhibit damage and an outboard bulge of the fuselage above the floor was noticeable after the impact. Since the onboard seats were not attached, but piled on the floor prior to the test, and no floor accelerations were recorded, it is difficult to ascertain the potential for seat failure throughout the airplane.

The test, conducted at Laurinburg, provided results with regard to structural damage and failure modes for a severe impact. Since the test lacked forward velocity and initial aerodynamic loading, there may be differences in responses when compared to the CID test. Bearing this fact in mind, the results were used to help refine the CID model prior to its planned test. The

endiction someone

FIGURE 5-19. LOWER WING BOX AND KEEL LEFT HAND SIDE VIEW SHOWS CRUSHED DUCTING

Recover parameter escapes escapes escapes escapes escapes escaped escape escape

FIGURE 5-20. CABIN FLOOR LOOKING AFT - CENTER DECKING REMOVED FS820 TO FS940

Figure 5-21. CABIN FLOOR TRANSVERSE BEAMS - LOOKING AFT FROM FS820

FIGURE 5-22. LOOKING AT LEFT HAND SIDE OF FS820 BULKHEAD

FIGURE 5-23. FRACTURES AT FS820 BULKHEAD AND CABIN FLOOR INTERFACE - RIGHT HAND SIDE VIEW

FIGURE 5-24. FRACTURE AT FS820 BULKHEAD AND CABIN FLOOR INTERFACE - CLOSE-UP VIEW

procedure, by which the results were incorporated into the modeling, is described in the following section.

5.2 KRASH MODELING OF IMPACT TEST

THE PROPERTY OF THE PARTY OF TH

The CID KRASH stick model, shown in figure 4-2, was modified to reflect the longer 3707 airplane. The appropriate weight and c.g. and the available shear and moment interaction curves were modified to reflect strength consistent with the increased size. The crush springs were modified to reflect both the appropriate crushing distribution, as well as the loads that might be experienced, as related to the damage shown in figures 5-3 through 5-24. The stick model results are compared to the test results in table 5-1.

One discrepancy noted in the analysis results versus that of the test is the extremely high moment-shear interaction curve values in the forward fuselage from FS460 to 620. The curves are based on compression failures and, thus, the high ratio exaggerates the damage. Nevertheless the analysis indicates more

TABLE 5-1. QUALITATIVE COMPARISON OF KRASH STICK MODEL AND B707 AIRPLANE IMPACT TEST

KRASH ANALYSIS RESULTS	TEST RESULTS		
1. High Shear Loads in FS 820-960 Region	Keel damage FS 820-960 Bulkhead Damage at FS 820 and 960. See Figures 5-7 through 5-12 and 5-20 through 5-24.		
2. No significant Bending Moment as evidence by low interaction curve levels, particularly in aft fuselage	Cargo Floor damage show evidence of crushing in lower region and frame failures. See Figures 5-13 through 5-18		
3. Severe crushing of fuselage aft of MLG bulkhead FS 960 (5" to 6") crush forward of wing leading edge	Damage aft of FS 960 much more extensive than fwd of FS 620. See Figure 5-13 through 5-18, Figure 5-3 and 5-4		
4. Approximately 6" to 9" inches of crush in wheel well region	6" Ducting in wheel well region shows evidence of complete crush. See Figure 5-19		
 Shows engine crushing accounts for approximately 10% of the total energy. Outboard engine also contacts ground and contributes to energy absorption 	While the inboard engine fails at its upper attach points it remains lodged between wing and ground. See Figures 5-5 and 5-8		

damage than is observed from a review of the post-test configuration. The stick model has limitations with regard to matching the level of detail damage experienced during the test. Since the fuselage is represented by only several mass points in the region of interest (FS 300-1200), the overall accelerations are lower than one might anticipate from the nature of abrupt failures noted. Local failures, such as shearing of webs, cannot be represented. Since one beam represents connectivity between major regions of structure, it is difficult for the input data to represent the overall nonlinearities. For example, major floor disruption locally, as occurred at FS820 during the test, would have to be represented by a beam rupture or highly nonlinear behavior. In the math model, this could result in separation of sections. In the test the upper fuselage shell maintains its integrity even though the floor has failed. The expanded CID model has more opportunity to represent discrete failures. However, even that model will have limitations for local failures. The contribution of the B707 impact test results is that it allows for a refinement to the crush representation of the fuselage frames and hard points. These refinements are shown in figures 5-25 and 5-26, respectively. The refinements evolved from several iterations using the KRASH stick model (figure 4-2). The purpose of the

KENDON KRREKON KARAKAI MARKETI KAR

FICURE 5-25. REVISIONS TO CID MODEL FRAME CRUSH SPRINGS

The process of the second

FIGURE 5-26. REVISIONS TO CID MODEL HARD POINT SPRINGS

computer runs was to match the observed fuselage crushing from the test. The most noticeable changes involved the hard point locations. The revised load-deflection curves for these locations (figure 5-26) allow for more deformation and energy absorption prior to restiffening. The frame springs, except for a minor modification in the forward fuselage region, were unchanged. It can be deduced from figures 5-25 and 5-26, that the most significant influence on the results comes from representation of hard point behavior. In particular, the bulkhead springs at FS960, 820 and 620 appear to be the driving forces which influence the damage results.

5.3 REVISED CID STICK MODEL RESULTS

PARTOR NAMED AND AND ASSESSED ASSESSED ASSESSED

regresses appropriate processes becauses accounted by

Using the revised springs (figures 5-25 and 5-26) the CID stick model shown in figure 4-2, was rerun in the following conditions and sequence:

	Sink Speed Ft/Sec	Forward Velocity (Kts)	Lift
1.	17	0	0
2.	17	0	wing upload, tail download
3.	17	155	wing upload, tail download

The results for conditions one through three are similar to the B707 stick model results, but overall slightly higher. The addition of aerodynamic loading which induces an initial high tail down load and significant wing lift changes the characteristics of the responses somewhat. The most significant change is that the aft fuselage bending increases, while the contribution of shear loads from wing loading is lessened around the wing center box region. A comparison of analysis results for fuselage load-interaction curve (LIC) ratios, acceleration, and fuselage underside crush are shown in table 5-2. LIC values above one indicate that a potential for combined shear moment failure exists. These values are substantially lower than the preliminary results presented in Section 4. The LIC envelopes used in this analysis have higher allowables than those used in Section 4. The LIC envelopes are shown in figures 5-27 through 5-29. The dashed lines indicate the envelopes used in the KRASH

TABLE 5-2. COMPARISON OF ANALYSIS RESULTS \triangle

		CID CONDITIONS			
FS	B707*	1	2	3	
Load Interaction Cur	ve (LIC) Ratios 🖄				
350	0.81	0.79	0.69	0.84	
620	0.81	0.85	0.83	1.10	
960	0.54	0.51	0.68	0.79	
990	0.55	0.55	0.80	0.97	
1080	0.64	0.58	0.95	1.02	
1160	0.72	0.67	0.94	1.05	
1240	• 0.50	0.55	0.70	0.85	
1320	0.56	0.53	0.68	0.74	
1400	0.74	0.70	0.83	0.89	
Peak Vertical Acceler	rations - g's 🖄				
300	15. (20.)	16. (19)	18.3 (18.6)	12.5 (17)	
460	10.5 (12.7)	10.4 (13)	11.2 (12.8)	12.6 (12)	
620	9.2 (9.8)	9.2 (9.8)	10.3 (9.6)	12.1 (9)	
820	6.9 (8.0)	6.0 (8.0)	7.4 (8.2)	7.8 (8.5)	
960	6.3 (7.6)	6.4 (7.5)	7.2 (8.4)	8. (8.6)	
1040	6.5 (7.4)	5.6 (7.4)	6.6 (8.4)	8.6 (8.6)	
1200	6.6 (7.8)	6.8 (7.2)	8. (8.2)	9.6 (10)	
1400	10.2 (8.2)	9.4 (7.8)	9.5 (9.2)	14. (10)	
Maximum Crushing -	inches				
300	5.7	5.2	4.	5.9	
460	5.4	5.2	3.7	4.9	
620	6.6	6.7	4.8	5.4	
820	9.2	9.9	7.3	7.2	
960	12.1	12.9	10.2	9.0	
1040	14.5	13.5	11.	10.2	
1200	7.1	5.7	3.4	2.3	
. 17 ft/sec sink spee	d, no aero, no fwd. velocity	1 Maximum	n analysis time = 0.160 sec	onds	
. 17 ft/sec sink spee	d, aero, no fwd, velocity	2 Based on	revised LIC curves (Figure	s 5-27 through 5-29	
. 17 ft/sec sink spee	17 ft/sec sink speed, aero, fwd. velocity 3 50 Hz filtered data				
17 ft/sec, no aero,	no fwd, velocity	() Triangula	r Pulse Peak $\sim \frac{Impluse \times 2}{\Delta t}$		

RESERVAT RECEGERAL INFORMATION INFORMATION AND SERVER

FIGURE 5-27. MAXIMUM ALLOWABLE MOMENT AND SHEAR ENVELOPE - NEGATIVE BENDING

FIGURE 5-28. MAXIMUM ALLOWABLE MOMENT AND SHEAR ENVELOPE - NEGATIVE BENDING

Contract Providence business of the second

FIGURE 5-29. MAXIMUM ALLOWABLE MOMENT AND SHEAR ENVELOPE - NEGATIVE BENDING

analysis to obtain LIC ratios. The rationale behind the selection of the allowables was as follows:

- Critical failure would most likely occur due to tension at the fuselage upper crown (stringer 1) and due to shear at the side (S15-20), or due to some combination of moment and shear.
- Failure at the lower extremities of the fuselage (S30) is due to compression and thus not critical with regard to loss of fuselage structural integrity. Impact with the ground could easily account for crushing of several lower stringers without seriously jeopardizing the shell's protective capability.
- Where test results indicated a strength increase over analysis results, such data were used.

Figures 5-30 and 5-31 show comparisons of the KRASH stick model results between the use of the original load-deflection curves and LIC's (Section 4 Analysis) versus the revised load-deflection and LIC data described earlier in this section. The data envelope plotted includes the B707 Laurinburg drop test analysis as well as the three B720 conditions noted in Table 5-2. Figure 5-30 shows the peak vertical acceleration for the equivalent triangular pulse. As noted earlier the equivalent triangular pulse is obtained by integrating the acceleration data over the time period of interest. This yields an average acceleration, which when multiplied by two provides the equivalent peak for a triangular shaped pulse for the duration of the interval being considered. The presentation of the data in this form provides for a more consistent interpretation of the response. If only peaks are used then the question of whether the peak was plotted has to be resolved as well as how long the peak value is sustained. If filtered acceleration data is used then the filter characteristics (i.e., cut-off frequency and decay rate) can influence the results. From Figure 5-30 it can be observed that the revised loaddeflection curve produce lower acceleration values. Since the revised curves tend to have lower peak forces, the aforementioned results appear to be consistent. The longitudinal pulse for condition no. 3 (Table 5-2) is also shown in Figure 5-30, since that is the only case run which included a forward velocity. The peak longitudinal acceleration is approximately 4g throughout the fuselage. Figure 5-31 compares the LIC ratios and crush distances. The results from the use of revised load-deflection data show lower LIC ratios and greater crush distances, both of which are consistent with the "Laurinburg" test results.

FIGURE 5-30. COMPARISON OF PRE-CID KRASH STICK MODEL ANALYSES ACCELERATION RESULTS - FOR PLANNED SYMMETRICAL IMPACT CONDITION, ORIGINAL VERSUS REVISED LOAD DEFLECTION CURVES

SYMMETRICAL IMPACT CONDITIONS

FORWARD VELOCITY - 155 KNOTS SINK SPEED - 17 FT/SEC PITCH ATTITUDE - 1° NOSE-UP

(a) LIC RATIO

(b) FUSELAGE CRUSH

FIGURE 5-31. COMPARISON PRE-CID KRASH STICK MODEL LIC AND FUSELAGE CRUSH FOR THE PLANNED IMPACT CONDITION — ORIGINAL VERSUS REVISED LOAD-DEFLECTION CURVES

Figures 5-32 through 5-39 show representative KRASH analysis acceleration responses along the fuselage for condition no. 3, Table 5-2. From the data presented in these figures it can be observed that for the KRASH model results:

- differences exist in the peak acceleration values between unfiltered and filtered (50 Hz) data,
- at a particular location the pulse that is observed cannot always be described as a standard shape (i.e. triangular, trapezoidal),
- the plot interval selected may not provide the maximum value, and
- the impulse data provides a better indication of the overall pulse definition, and is independent of plot interval and/or filter characteristics.

Using the data at FS820 (figure 5-35), for example, the difference between plotted peak acceleration values is 7.753 g filtered vs 9.037 g unfiltered (~14 percent). The time history response indicates two or three acceleration peaks. However, from the mass impulse data an average acceleration of ~4 g for a duration of .150 seconds can be surmised. An equivalent triangular pulse value of 8 g with a .150 second base duration is representative of the vertical pulse. Correspondingly, a 3.8 g triangular pulse of .150 second base duration is representative of longitudinal acceleration at this location. The response of the seat/occupant system is best evaluated in the manner described in Section 4.3, since the airframe pulse is not a definitive sinusoidal, trapezoidal or triangular shape.

FIGURE 5-32. ACCELERATION RESPONSE AT FS300, CONDITION NO. 3

CONTROL OF THE CONTRO

FIGURE 5-33. ACCELERATION RESPONSE AT FS460, CONDITION NO. 3

KRASH DYNAMICS ANALYSIS MODELING - TRANSPORT RIRPLAME CONTROLLED IMPACT D. (U) LOCKHEED RIRCRAFT CORP BURBANK CALIF G MITTLIN ET AL. MAR 86 LR-30776 DOT/FAA/CT-85/9 DTFA03-04-C-00004 F/G 1/2 2/2 AD-A168 975 UNCLASSIFIED NL

12.20 11 MARKAGO, 12660

FIGURE 5-34. ACCELERATION RESPONSE AT FS620, CONDITION NO. 3

MARKET () DOUGHALL

FIGURE 5-35. ACCELERATION RESPONSE AT FS820, CONDITION NO. 3

מפמפן המפנפנים) המתמנינים (ממנינימים) המממנים

לכי למסמנים . היההרכיההי

COUNTY CORRESPONDED TO CONTRACT

FIGURE 5-36. ACCELERATION RESPONSE AT FS960, CONDITION NO. 3

XXXXXXXX | XXX

100 miles

STATES SAIDINGS APPRACE

FIGURE 5-37. ACCELERATION RESPONSE AT FS1040, CONDITION NO. 3

12444666 JAKESEE 110450861

FIGURE 5-38. ACCELERATION RESPONSE AT FS1200, CONDITION NO. 3

SEASOND TOURS SEASONS TOURSES WHILE INVOCATE WHICH IN

FIGURE 5-39. ACCELERATION RESPONSE AT FS1400, CONDITION NO. 3

SECTION 6

CID PRE-TEST ANALYSIS

6.1 KRASH MODEL

THE RESERVED IN THE PERSON OF THE PERSON OF

The expanded KRASH model for the CID test, shown in figure 6-1, is a symmetrical half-airplane representation consisting of 48 masses and 137 beam elements. The overall weight, c.g., and stiffnesses are compared with similar characteristics for the 19 mass 18 beam stick model (figure 4-2). The initial static deflections were obtained using the IC coding (via NASTRAN) for both the stick and expanded models. A comparison of these results is shown in table 6-1. The expanded model shows approximately 2.4 inches more deflection at the extreme forward fuselage station as compared to the stick model which is attributed to differences in stiffness and/or initial loading between the two models. At the wing and aft fuselage locations the initial static deflections for both the stick and expanded models are in good agreement. Subsequent expanded model changes to improve the fuselage stiffness representation and wing representation shows better agreement with regard to static deflections (<1.0 inch difference), as noted in parentheses in Table 6-1. Since these changes were incorporated after the study was concluded, the analysis results described in this section are based on the more flexible model. A comparison of model parameters for the stick and expanded models is shown in figure 6-2. The models show good agreement with regard to weight, cg, mass inertia and overall vehicle forces. The overall vehicle forces and accelerations show the six net loads at the airplane e.g., and the resulting six rigid body accelerations. In KRASH those e.g. accelerations are used to calculate the rigid body accelerations at each mass point in the model. These mass point accelerations yield inertia relief loads at each mass point. When these inertia relief loads are calculated in KRASH and included in the total airplane force moment balance, the net c.g. loads and accelerations should ideally be zero. For both models they are

FIGURE 6-1. EXPANDED CID KRASH MODEL

TABLE 6-1. STATIC DEFLECTIONS

	DEFLE	DEFLECTION, in.		
LOCATION	STICK Model Fig. 4-1	CID Model Fig. 6-1	DIFFERENCE IN inches	
FUSELAGE				
FS 199	-1.07	-3.42 (-1.90)	2.35 (0.83)	
FS 300	-0.83	-2.99 (-1.71)	2.09 (0.88)	
FS 460	-0.45	-2.25 (-1.35)	1.80 (0.90)	
FS 620	-0.16	-1,32 (-0.80)	1.16 (0.64)	
FS 820	0	0 (0)	0 (0)	
FS 960	-0.21	-0.03 (-0.09)	0.18 (0.12)	
FS 1040	-0.49	-0.16 (-0.23)	0.33 (0.26)	
FS 1200	-1.25	-0.94 (-0.99)	0.31 (0.26)	
FS 1400	·2.65	-2.54 (-2.57)	0.11 (0.08)	
FS 1570	-4.07	4.03 (-4.10)	0.04 (0.03)	
WING				
Root	+0.81	+0.61 (+0.65)	0.20 (0.18)	
Tip	+40.5	+41.2 (+39.9)	0.70 (0.60)	

upward displacement

(XXX) REVISED MODEL RESULTS

downward displacement

extremely small, which is satisfactory. The analysis results using the KRASH stick model have been presented in Section 5.0. The pre-CID analysis results using the expanded KRASH model are described in this section. The variations in allowing failure as opposed to yielding that were investigated using the expanded model are summarized in the following table:

	Condition	Number of Masses	Number of Beams	Number of Nonlinear Beams	Aerodynamic Loading
	ì	48	137	44	Yes
 	2	48	137	19	Yes
	3	48	137	19	No

PARAMA TERRESOLUTION TONIONE SIGNICAN

MODEL PARAMETERS	VEHICLE MT = 1.924746D+05	VENICLE CG POSITION X (FS) = 8.44131D+02 Y (BL) = 0.0 Z (ML) = 2.13005D+02	VEHICLE INERTIAS (IN-LB-SEC*#2) I(XX) = 3.43320+07 I(YY) = 3.823810+07 I(ZZ) = 7.179850+07 I(XX) = 0.0 I(YZ) = 0.0 I(XZ) = 1.672030+06	VEHICLE CG INITIAL GROUND COORDINATES XCG IS THE DISTANCE FROM SLOPE/GROUND INTERSECTION TO VEHICLE CG,+FORMARD ZCG IS THE DISTANCE FROM GROUND PLANE TO VEHICLE CG,+DOWN XCG = 0.0 ZCG = -7,94658D+01	OVERALL VEHICLE FORCES AND ACCELSIG-S), A/P AXES	FX= 2.518210+03 AX= 1.30833D-02 FY= 0.0 AY= 0.0 FZ= -5.07993D+03 AZ= -2.63927D-02 HX= 0.0 PDT= 0.0 HY= 2.42083D+05 QDT= 6.33095D-03 HZ= 0.0 RDT= 0.0	OVERALL VEHICLE FORCES AND ACCELS(G-S), INCLUDING INERTIA RELIEF, A/P AXES FX= 1.762150-12 AX= 9.155210-18 FY= 0.0 AY= 0.0 FZ= 1.364240-11 AZ= 7.087910-17 MX= 0.0 PDT= 0.0 MY= 1.338780-09 QDT= 3.501160-17 HZ= 0.0
HODEL PARAHETERS	VEHICLE MT = 1.924740D 05	VEHICLE CG POSITION X (FS) = 8.447280 02 Y (BL) = 0.0 Z (ML) = 2.183120 02	VEHICLE INERIIAS (IN-LB-SEC**2) I(XX) = 3.546220 07 I(YY) = 3.927830 07 I(ZZ) = 7.320310 07 I(XY) = 0.0 I(XZ) = 0.0 I(XZ) = 2.314230 06	VEHICLE CG INITIAL GROUND CDORDINATES XCG IS THE DISTANCE FROM SLOPE/GROUND INTERSECTION TO VEHICLE CG,+FORMARD ZCG = 0.0 ZCG = -8.555050 01	OVERALL VEHICLE FORCES AND ACCELSIG-S), A/P AXES	FX= 1.66961D 03 AX= 8.6746D-03 FY= 0.0 AY= 0.0 FZ= -5.17204D 03 AZ= -2.68714D-02 HX= 0.0 PDT= 0.0 HY= 7.50458D 05 QDT= 1.91062D-02 HZ= 0.0 RDT= 0.0	OVERALL VEHICLE FORCES AND ACCELSIG-S), INCLUDING INERTIA RELIEF, A/P AXES FX= 4.121150-13 AX= 2.141150-18 FX= 1.762150-12 AX= 9.155210-18 FY= 0.0 FY= 0.0 FX= 1.364240-11 AZ= 7.087910-17 FX= 0.0

KRASH MODELS PARAMETERS FIGURE 6-2.

The echo of input data for the CID model is provided in Appendix Section A-4 for condition I which considers an initial aerodynamic lift distribution.

The load interaction curves described in Section 5.3 were used to compare static (time = 0) internal beam loading for both the stick and expanded model. These results are presented in table 6-2. With the exception of the ratios at the wing leading (FS 620) and trailing edge (FS 820) attachments to the fuse-lage, all the ratios are in excellent agreement. As in the comparison of static deflections the subsequent revised expanded, not used in the analysis, showed some improvement as noted by the numbers in parentheses in Table 6-2. The major contributor to the LIC ratio difference is the manner in which the wing attaches to the fuselage for each model. In the stick model, one beam connects the wing root to the fuselage centerline. In the expanded model, the wing root is represented as a box beam which connects at two locations to the fuselage at FS 620 and with two more beams at FS 820. The effect of these modeling differences will be pursued in the post-CID analyses.

The stick and expanded models also show comparable pertinent wing and fuselage fundamental frequencies and mode shapes, which are also in agreement with published airplane data (Reference 16). A summary of pertinent freefree modal frequencies is noted in the following table.

	Frequency, Hz					
Mode	Stick Model	Expanded Model	Reference (16) Data			
Wing vertical bending	1.03	1.04	1.09			
Fuselage vertical bending	3.37	3.29	3.19 - 3.40			

Each Model contains the same mass and beam designations, but differ either in external force loading or treatment of post-failure loads. Each of the analyses was performed to a simulated .160 second impact, which encompasses the time for peak responses to occur. A description of the masses and beams for

TABLE 6-2. COMPARISON OF BEAM INITIAL LIC RATIOS

OUDLE		LOAD INTERACTION CURVE RATIO		
CURVE NO.	FUSELAGE Station	STICK Model	EXPANDED MODEL	
1	300	0.011	0.009 (0.009)	
2	350	0.061	0.062 (0.062)	
3	450	0.058	0.052 (0.052)	
4	480	0.122	0.120 (0.118)	
5	540	0.122	0.120 (0.118)	
6	600	0.124	0.121 (0.121)	
7	620	0.151	0.258 (0.233)	
8	820	0.209	0.360 (0.326)	
9	820	0.426	0.431 (0.429)	
10	960	0.203	0.205 (0.204)	
11	960	0.203	0.205 (0.204)	
12	1000	0.249	0.251 (0.250)	
13	1080	0.245	0.248 (0.247)	
14	1160	0.273	0.276 (0.275)	
15	1240	0.190	0.192 (0.191)	
16	1320	0. 158	0.163 (0.162)	
17	1400	0.199	0.203 (0.202)	
18	1400	0.177	0.181 (0.181)	

the CID models is shown in tables 6-3 and 6-4, respectively. The diagonal beams (beam numbers 90-137) are tension only members to account for shear loads between frames and m bulkheads.

TABLE 6-3. CID MODEL MASS DESCRIPTION

MASS NO.	REPRESENTATION
1 - 19, 20, 30, 40	Floor, occupant and lower fuselage
21 - 29, 31 - 39	Upper Fuselage shell and cabin
41 - 46	Wing
47, 48	Inboard, outboard engines

TABLE 6-4. CID MODEL BEAM DESCRIPTIONS

BEAM NO.	BEAM CONNECTIVITY	REPRESENTATION
1.9	1-11, 2-12, , 9-19	Floor transverse beams
10-27	11-21, , 19-29, 21-31, , 29-39	Upper shell frames
28, 29, 30	13-20, 17-30, 18-40	Lower shell vertical beams
31-38	21-22, , 28-29	Upper shell longitudinal beams
39-46	31-32,, 38-39	Upper shell longitudinal beams
47-54	1-2, , 8-9	Inboard floor longitudinal beams
55-62	11-12, 18-19	Outboard floor longitudinal beams
63	9-10	Horizontal stabilizer - cabin
64-68	12-20,, 19-40	Lower fuselage longitudinal beams
69,70	43 ² -47 ¹ , 45 ² -48 ¹	Inboard, outboard engine rear attach points
71-74	15-41 ¹ , 14-42 ² , 41 ³ -0, 41 ⁴ -0	Wing root attachments to fuselage
75,76	43 ¹ -47, 45 ¹ -48	Inboard, outboard engine forward attach points
77-81	41-42,, 45-46	Wing inboard to outboard members
82-89	$\frac{1^{2} \cdot 2^{3}}{8^{1} \cdot 9^{1}}, 2^{3} \cdot 3^{1}, 3^{1} \cdot 4^{1}, \dots,$	Lower fuselage longitudinal members
90-93	2-12 ¹ , 4-14 ¹ , 5-15 ¹ , 6-16 ¹	Bulkhead diagonals
94, 95	16 ¹ -17, 16-30	FS 960-1040 lower diagonals
96, 97	17-40 ¹ , 18-30	FS 1040-1200 lower diagonals
98, 99	12-20 ¹ , 12 ¹ -13	FS 300-460 lower diagonals
100, 101	14-20 ¹ , 14 ¹ -13	FS 460-620 lower diagonals
102-115	12-23, , 18-29, 13-22, , 19-28	FS 300-1400, upper diagonals, WL 205-270
116-129	22-33, , 28-39, 23-32, , 29-38	FS 300-1400, upper diagonals WL 270-293
130-137	5 ¹ .15,, 2 ³ .12	FS 300, 620, 820 and 960 Bulkhead shear web diagonals
Prime designates Mass	less node.	

y program industry (control program) has been also and become the program of the

6.2 KRASH ANALYSIS RESULTS

The analytical results based on the three cases noted in Section 6.1 are summarized in tables 6-5 through 6-10. Table 6-5 shows the amount of crush between FS300 to FS1200. For the most part the large deformation at FS300 is accompanied by an extremely low load level, as can be observed from the external spring description provided in figure 5-26. The amount of deflection noted in the forward fuselage may be exaggerated since the expanded model appears to be more flexible in that region (table 6-1). The impact sequence is shown in table 6-6. There are variations in impact sequence between the three cases as might be expected. Contact all along the fuselage occurs within the 60 milliseconds after impact. Peak deflections occur at all locations within 160 msec. after impact. Table 6-7 shows the yield and rupture sequence for the analytical cases that were run. The yield and rupture values used were those calculated in program KRASH for the respective beams, based on beam and material properties. The values are printed in the section of the output denoted "Model Parameter Data". For all the nonlinear beams a yield type 5 (load remains constant after a yield deflection is reached) was used. Each of the cases run contained 33 force rupture cutoff values. Case Number 1 contains 44 nonlinear beams. The "rupture allowable" cases (No's 2 and 3) contain 19 nonlinear beams, thus allowing for a rupture rather than a yield to occur for selected beams. Table 6-8 presents the beam deflections for the three cases analyzed. The three cases show a lateral deflection of up to 4.0 inches for the upper shell above the floor at FS960. This can be interpreted potentially as a bulge in that area. A floor maximum vertical deflection of 5.9 inches is noted in the FS620-820 region.

Table 6-9 shows the vertical acceleration values obtained from the analysis. Both the plotted peak and the equivalent triangular pulse peak values are noted in Table 6-9. The manner in which the equivalent triangular pulse is obtained and the reasons for showing it have been described in

TABLE 6-5. ANALYSIS RESULTS, FUSELAGE CRUSH

FUSELAGE		PEAK DEFLECTION, in.		
STATION	MASS NUMBER	1	2	3
300	2, 12	7.8, 7.6	9.4, 9.6	9.7, 9.8
460	20	5.0	6.9	7.5
620	4, 14	4.8, 5.1	5.7,6.0	6.2, 7.1
820	5, 15	7.7, 8.2	7.3, 8.0	10.2, 11.0
960	6, 16	9.0, 9.8	6.0, 8.1	12.2, 12.6
1040	30	9.1	7.5	11.8
1200	40	3.4	4.1	4.9

Section 5. The higher peak values are associated with relatively short pulse durations as can be observed in the data presented in figure 6-3. The peak values tend to be higher than the values associated with an equivalent triangular pulse.

Program KRASH has provisions for printing and plotting mass axis component forces for selected beams. It also has provisions for internally summing up forces and moments at a particular station. Using this feature the mass axis component forces were determined for the condition I analysis. Table 6-10 summarizes the peak shear, moment and LIC ratios along the fuselage for condition 1. The input shear-moment envelope, representing the capability of the region of overall fuselage section, is not exceeded. At and aft of the MLG bulkhead the LIC ratios reach .820 (approximately 18% margin). The maximum shear and moment values obtained in the expanded model are 205,000 lb. and 55.2×10^{9} in-lb.. respectively. The stick model showed both higher peak shear (225,000 lb) and higher peak moments (75 x 10^{6} in-1b.) in the region between FS960-1000. Whether these differences are attributable to the manner in which structure is detailed or to differences in responses associated with more detail or some combination of both can only be determined when the test results are evaluated. The analysis results presented herein indicate that a CID test impacting at the conditions noted will most likely experience accelerations and structural damage similar to that sustained by the B707 airplane tested at Laurinburg, N.C. and described in Section 5. The results of the expanded model incorporating structural response information from the B707 airplane drop indicate that the results of the CID

TABLE 6-6. IMPACT SEQUENCE

CASE	INITIAL CONTACT TIME, MSEC ⁽¹⁾	PEAK DEFLECTION OCCURS TIME, MSEC ⁽¹⁾
No. 1		
Aft fuselage sta. 960	0	112.8 ⁽²⁾ , 105.1 ⁽³⁾
MLG bulkhead, sta. 1040	4.3	108.1
Inboard engine	9.0	86.4
Wing center section T.E., sta. 820	10.6	100.9 ⁽²⁾ , 97.6 ⁽³⁾
Wing center section L.E., sta. 620	27.7	90.5 ⁽²⁾ , 93.9 ⁽³⁾
Forward fuselage sta. 460	36.5	114.1
NLG bulkhead sta. 300	40.7	105.3 ⁽²⁾ , 11 1.5 ⁽³⁾
Aft fuselage, sta. 1200	50.	108.
No. 2		
Aft fuselage sta. 960	0	76.7
MLG bulkhead sta. 1040	4.3	51.4 ⁽²⁾ , 70.9 ⁽³⁾
Inboard engine	9.0	85.8
Wing center section T.E., sta. 820	10.6	87.2 ⁽²⁾ , 87 ⁽³⁾
Wing center section L.E. sta. 620	27.0	98.7 ⁽²⁾ , 102.3 ⁽³⁾
Forward fuselage, sta. 460	36.5	127
NLG bulkhead, sta. 300	40.7	123.4 ⁽²⁾ , 124 ⁽³⁾
Aft fuselage sta. 1200	50.0	160.
No. 3		
Inboard engine	0	77
Fuselage sta. 960	3.6	124.7 ⁽²⁾ , 117.4 ⁽³⁾
MLG bulkhead sta. 1040	8.6	123.1
Wing center section T.E., sta. 820	13.9	108.5 ⁽²⁾ , 109.3 ⁽³⁾
Wing center section L.E., sta. 620	35.8	107.7 ⁽²⁾ , 116.5 ⁽³⁾
Forward fuselage sta. 460	47.9	136.5
NLG bulkhead sta. 300	54.5	155.1 ⁽²⁾ , 150.6 ⁽³⁾
Outbd engine	114.8	-
NLG bulkhead sta. 199	114.9	147.9
Aft fuselage sta. 1200	55.3	141.

⁽¹⁾ Time after impact

CHAIR PROBLEM CONSIDER CONSIDER CONTRACT CONTRACT

⁽²⁾ Inboard location

⁽³⁾ Outboard location

TABLE 6-7. ANALYSIS RESULTS, YIELD/RUPTURE SEQUENCE

TIME AFTER		CONDITION		
IMPACT sec	1	2	3	
0-0.015	16 ¹ -30 Y	16 ¹ -30 Y	43 ¹ -47 R	
0.015-0.030	43 ¹ -47 R	43 ¹ -47 R		
0.030-0.045	5 ¹ -6 ¹ Y	6 ¹ -7 ¹ R		
0.045-0.060	7 ¹ .8 ¹ Y	30-40 Y 16-17 R		
0.060-0.075 14	19-40 Y 14 ¹ -20 Y 4 ¹ -5 ¹ Y	6-7 R 14 ¹ -20 R	43 ² -47 ¹ R	
0.075-0.090			14 ¹ -20 Y	
0.090-0.120	8 ¹ .9 ¹ Y 13-14 Y 3 ¹ .4 ¹ Y 3-4 Y		13-14 R 4 ¹ -5 ¹ R 5-15 R 14-41 ¹ R 15-41 ² R 14-15 R 4-5 R	
0.120 -0.150			45 ¹ -48 R 45 ² -48 ¹ R	

Y - YIELD

R - RUPTURE

SUPERSCRIPT DENOTES NODE POINT DESIGNATION

TABLE 6-8. ANALYSIS RESULTS, BEAM DEFLECTIONS

LOCATION	BEAM		DEFLECTIONS, in. CONDITIONS		
DIRECTION	NO.	MASS _i -MASS _j	1	2	3
Floor-Vertical	49	34	2.46	1.71	2.1
	50	4-5	2.36	1.81	5.9 R
	51	5-6	0.37	0.86	0.78
	52	6-7	0.32	3.1 R	0.33
	53	7-8	2.1	1.81	1.7
	57	13-14	0.69	1.44	0.83 R
	58	14-15	0.54	0.5	2.18 R
	59	15-16	0.95	0.98	0.91
	60	16-17	0.83	0.88 R	0.62
Upper Shell -	20	16-26	1.22	4.0	1.74
Lateral	21	26-36	1.17	1.7*	0.66
Floor transverse -	4	4-14	0.61	0.64	1,27
Vertical	5	5-15	1.05	0.84	1.6 R
	6	6-16	1.1	3.0	1.42
Cabin longerons -	33	23-24	0.67	0.93	1.06
Vertical	34	24-25	0.64	0.73	2.87
	35	25-26	0.56	0.78	0.58
	36	26-27	0.26	1.16	0.18
	37	27-28	1.34	2.7*	1.02
	41	33-34	0.52	0.34	0.69*
	42	34-35	0.81	0.76	1.9*
	43	35-36	0.40	1.04*	0.69*
	44	36-37	0.15	0.55	0.14
	45	37-38	0.62	1.69	0.36

^{*} Increasing at end of analysis

production of the production o

test will not be as damaging to the aircraft as noted in the pretest analysis presented in Section 4.

Subsequent to the analysis for the cases described in Section 6.1 a KRASH model was run in which all diagonal tension members representing fuselage shear webs were removed. This resulted in a 48 mass 101 beam representation. A comparison of peak accelerations and fuselage crushing and beam deflections are shown in tables 6-11, 6-12 and 6-13 respectively. The results are comparable because either 1) the beam properties selected didn't influence the response or 2) the shear loads do not significantly influence the overall airplane response. Unless

R Beam rupture occurred

TABLE 6-9. ANALYSIS RESULTS, PEAK VERTICAL ACCELERATIONS

FUSELAGE STATION	MASS NO.	1	2	3
. 300	2, 12	26.0 (16), 17.2 (15.2)	21.2 (12.6), 13.4 (12.4)	24 (11.4), 15.7 (11.4)
460	3, 13	16.4 (12), 18.1 (13)	15.8 (10.6), 17.5 (12.0)	14.5 (13.9), 16.1 (14.0)
620	4, 14	17.8 (12), 13.1 (11.8)	17.9 (12.6), 13.1 (11.8)	18.2 (14.4), 12.4 (11.6)
820	5, 15	12.0 (10.6), 8.2 (9.4)	12.1 (11.2), 10.0 (9.5)	12.2 (12.9), 19.4 (13.0)
960	6, 16	14.7 (8.8), 11.2 (9.2)	29.4 (11.6), 14.6 (11.6)	16.2 (10.6), 14.0 (8.5)
1040	7, 17	16.7 (9.2), 17.3 (9.4)	16.7 (11.6), 17.3 (10.4)	17.0 (13.0), 13.1 (8.5)
1200	8, 18	11.4 (10.2, 11.5 (8.8)	11.5 (8.6), 12.6 (9.7)	9.8 (9.3), 8.9 (8.2)

> 50 Hz Filter

2 Upward Diraction

3 A(B); A = plotted peak acceleration, (B) Equivalent Triangular Pulse = IMPULSE x 2

Table 6-10. SUMMARY OF FUSELAGE PEAK SHEAR AND MOMENT LOADS AND LIC RATIOS

CURVE NUMBER	FUSELAGE STATION	MAXIMUM SHEAR X E4	MAXIMUM MOMENT X E6	MAXIMUM LIC RATIO	
1	300	3.5	3.7	0.248***	
2	350	14.3	13.5	0.864***	
3	450	14.4	18.0	0.760***	
4	480	9.2	31.0	0.620*	
5	540	9.3	34.1	0.684*	
6	600	9.3	37.3	0.60*	
7	620	9.5	39.2	0.63*	
8/9	820	8.3	42.2	0.68*	
10/11	960	20.5	55.2	0.65**	
12	990	20.5	52.1	0.82**	
13	1080	16.7	41.2	0.82**	
14	1160	16.7	32.9	0.80*	
15	1210	11.5	28.8	0.58*	
16	1320	11.5	19.1	G.64**	
17/18	1400	11.5	13.2	0.81**	

*Maximum Load Ratio Associated with Occurrence of Peak Moment

**Maximum Load Ratio Associated with Occurrence of Peak Shear

***Maximum Load Ratio Associated With Occurrence of Peak Shear and Peak Moment

TABLE 6-11. COMPARISON OF PEAK ACCELERATION WITH AND WITHOUT FUSELAGE SHELL SHEAR REPRESENTATION

MASS NO.	NO FUSELAGE SHELL SHEAR*	FUSELAGE SHELL SHEAR*
3,13	16.9 (12.0), 20.5 (13.2)	14.5 (13.9), 16.1 (14)
4,14	18.2 (14.0), 12.9 (12.2)	19.2 (14.4), 12.4 (11.6)
5,15	12.2 (11.5), 8.5 (11.0)	12.2 (12.9), 19.4 (13.0)
6,16	33.6 (11.0), 14.8 (11.5)	10.2 (10.6), 14.0 (8.5)
7,17	17.7 (10.0), 18.3 (11.0)	17.0 (13.0), 13.1 (8.5)
8,18	10.7 (8.2), 13.6 (9.6)	19.8 (9.3), 8.9 (8.2)

() Equivalent triangular pulse = Impulse x2

deed secrete contract and the second bibliograph

TABLE 6-12. COMPARISON OF PEAK CRUSHING WITH AND WITHOUT FUSELAGE SHELL SHEAR REPRESENTATION

MASS NO. INBD/OUTBD	NO FUSELAGE SHELL SHEAR*	FUSELAGE SHELL SHEAR*		
2/12	9.9/9.9	9.4/9.6		
20	6.0	6.9		
4/14	5.2/5.2	5.7/6.0		
5/15	7.2/7.7	7.3/8.0		
6/16	6.2/8.4	6.0/8.1		
30	7.6	7.5		
40	3.9	4.1		

the test results prove otherwise, the model might be simplified by eliminating some beam members. The fuselage region below the passenger floor is most likely in compression in which case diagonal tension members in this region are not functional. Thus if diagonal tension members will be needed to better represent fuselage web shear the upper fuselage shell would be the preferred locations.

TABLE 6-13. COMPARISON OF BEAM DEFLECTIONS FOR MODELING WITH AND WITHOUT FUSELAGE SHELL SHEAR REPRESENTATION

LOCATION	BEAM		DEFLECTI CONDIT	
DIRECTION	NO.	MASS _i -MASS _j	(a)	(b)
Floor-Vertical	49	3-4	1.71	2.3
	50	4-5	1.81	2.2
	51	5-6	0.86	0.78
	52	6-7	3.16	5.5 F
	53	7-8	1.81	2.9
	57	13-14	1.44	1.0 F
	58	14-15	0.50	0.73
	59	15-16	0.98	1.08
	60	16-17	0.88 R	1.2 F
Upper Sheli -	20	16-26	4.0	3.6
Lateral	21	26-36	1.7*	1.4
Floor transverse -	4	4-14	0.64	0.59
Vertical	5	5-15	0.84	0.91
	6	6-16	3.0	3.0
Cabin longerons -	33	23-24	0.93	1.17
Vertical	34	24-25	0.73	0.75
	35	25-26	0.78	0.79
	36	26-27	1.16	1.04
	37	27-28	2.7*	2.3*
	41	33-34	0.34	0.66
	42	34-35	0.76	0.96
	43	35-36	1.04*	0.88
	44	36-37	0.55	0.551
	45	37-38	1.69	1.98*

^{*} Increasing at end of analysis

R Beam rupture occurred

⁽a) Fuselage shell shear

⁽b) No fuselage shell shear

6.3 SUMMARY OF CID PRE-TEST ANALYSIS RESULTS

The aft fuselage (FS960 and aft) could crush from 6 to 12 inches. The wing center section may experience 5 to 8 inches of crush. The midforward fuselage (FS460) shows 5 to 7 inches of crush. The fuselage underside adjacent to the nose gear aft bulkhead at FS300 shows nearly 10 inches of deflection. However, this value may be misleading because 1) the load-deflection curve allows deflection to occur with little accompanying load after about 2 inches, and 2) the flexibility of the model may contribute some additional deflection in the extreme forward region.

Table 6-14 shows a range of deflections for beams. Floor peak vertical deflection of up to 6 inches occurs along the centerline. Along the outboard region of the floor deflections range up to 2 inches. Transverse floor beam vertical displacements of up to 3.0 inches occur at stations between FS620 and FS960. These peak deflections occur for a condition in which rupture occurs. Lateral displacement of the upper cabin fuselage structure at around station 960 is between 1.4 and 3.6 inches.

The CID pre-test analysis was performed using the two models described; a stick model consisting of 17 masses and 16 beam elements (figure 4-2), and an expanded model consisting of 48 masses and 137 beam elements (figure 6-1). The stick model due to its coarseness tends to provide lower frequency acceleration responses than the finer expanded model. It is not uncommon to see substantially higher peak acceleration responses obtained from the expanded model than from the stick model. However, the higher peaks are generally associated with shorter duration pulses than the lower peaks. The triangular pulse shape equivalent responses obtained from the analysis are plotted in figure 6-3. Also shown in figure 6-3 is a curve depicting a constant ΔV

TABLE 6-14. SUMMARY OF BEAM PEAK DEFLECTION RANGE

DESCRIPTION	LOCATION	DEFLECTION, inches
Upper Shell Lateral	station 960 WL 205-271	1.22 to 4.0
Upper Sheli Lateral	station 960 WL 271-290	0.66 to 1.7
Transverse Floor Beams-Vertical	station 620 station 820 station 960	0.61 to 1.27 0.84 to 1.6 1.1 to 3.0
Upper Cabin Longeron Vertical	station 460-620 WL 205-271/WL 271-290	0.67 to 1.06/0.34 to 0.69
	station 620-820 WL 205/271/WL 271-290	0.64 to 2.87/0.76 to 1.09
	station 820-960 WL 205-271/WL 271-290	0.56 to 0.78/0.40 to 1.04
	station 960-1040 WL 205-271/WL 271-290	0.26 to 1.16/0.15 to 0.55
	station 1040-1200 WL 205-271/WL 271-290	1.02 to 2.7/0.36 to 1.69
Floor Vertical Inboard	station 460-620 station 620-820 station 820-960 station 960-1040 station 1040-1200	1.71 to 2.46 1.81 to 5.9 0.37 to 0.86 0.33 to 3.1 1.7 to 2.1
Outboard	station 460-620 station 620-820 station 820-960 station 960-1040	0.69 to 1.44 0.50 to 2.18 0.91 to 0.98 0.62 to 0.88

of 17 ft/sec. The ensemble of data presented shows the inverse relationship between pulse amplitude and duration. The data cluster about the constant ΔV curve. The stick model results tend to be of a lower amplitude and broader in duration than the refined model for 50 Hz filtered data. As the data are filtered lower to 25 Hz, the points shift to the right and lower. Lower filtering to 10 Hz (not shown) shifts the responses more to the right and lower and tends to show better agreement between the two models. The aforemended observations are based on earlier models with the original load-deflection curves. While the results vary somewhat with the refined curves, the same relationship will hold, as can be observed from the response data in Tables 5-2 and 6-9.

CACCOUNTY TO SECURE THE SECURE TO SECURE THE SECURE TO SECURE THE SECURE T

CID PRE-TEST ANALYSIS - VERTICAL ACCELERATION PULSES, 17 FI/SEC, +1° MOST-UP

A representative KRASH analysis result for the expanded model (condition 1) is shown in Figure 6-4. Unfiltered and filtered (50 Hz) accelerations, as well as impulse (g-sec) response data for FS820 (wing-center section) floor centerline is presented. The unfiltered peak acceleration values are 13.3 g and 2.8 g for the vertical and longitudinal directions, respectively. The corresponding filtered data shows 12.04 g and 2.5 g respectively. Two vertical pulses are detectable in the filtered data. A 12.05 g, .060 sec duration and a 8.78 g, 060 sec. duration. However from the impulse data a broader 120 second pulse can be deduced with an average acceleration value of 5.3 g, which translates to a 10.6 g peak for a triangular pulse of equal duration. The corresponding longitudinal triangular would be approximately 2.7 g for a .140 second duration. The floor responses at fuselage stations 300 to 1400, along both the centerline and at the floor/frame intersection for the expanded model, condition 1, are provided in Appendix B.

A comparison of the stick and expanded models for the ranges of conditions described in Section 5 and 6, based on impulse data is shown in Figure 6-5. The corresponding acceleration data for the two cases (stick model, condition 3 and expanded model, condition 1) which most resemble each other is shown in Figure 6-6. The predicted responses based on these two conditions are shown in Figure 6-7 for LIC ratios, accelerations and crush for the planned impact.

Based on the structural damage noted in the B707 airplane drop test at maurinourg, N.C. (Seccion 5 discussion), the peak vertical acceleration would be expected to occur closer to FS820. If the test results substantiate this then the modeling of the center wing box region and its attachment to the wing should be further evaluated.

Based on the analysis results shown in Table 6-10 the highest potential for falleres is from fuselage station 990 to 1080. However, from the model results it is doubtful that fuselage shell strength would be exceeded, unless the marapoint springs at FS620, 820 and 960 bottom out (restiffen) at a lower crush deflection than used in the analysis.

१३५३ । १३७१८३३व । १३३३३५३ । १४७१५५३

FIGURE 6-4. ACCELERATION RESPONSE AT FS820 CENTERLINE, EXPANDED MODEL CONDITION 1

FIGURE 6-5. COMPARISON OF PRE-CID KRASH STICK MODEL ANALYSES VERSUS EXPANDED MODEL RESULTS FOR PLANNED SYMMETRICAL IMPACT CONDITION

the assessment contracts expenses assessment

FIGURE 6-6. COMPARISON OF PRE-CID KRASH STICK AND EXPANDED MODELS ANALYSES RESULTS FOR PLANNED SYMMETRICAL IMPACT CONDITION

FIGURE 6-7. PRE-CID TESTS KRASH ANALYSIS RESULTS FOR PLANNED SYMMETRICAL IMPACT CONDITION

The analysis results are particularly sensitive to:

See property artificial appearant account arterior

- The representation of the hard point load-deflection characteristics.
 Bottoming out loads could easily result in localized failures and subsequent disruption of structural integrity.
- Extent to which structure yields or fails. This is difficult to model because a large segment of structure, consisting of several frames and stringers, is defined by only a few beam elements.
- The expanded model results in higher frequency responses than the stick model. This is evidenced in the peak responses. The lower acceleration peaks with longer time durations obtained from the stick model results (Section 5) are probably more realistic than the expanded model results.

SECTION 7

CONCLUSIONS

CONCLUSIONS

connected assessment behaviored between the second popular

- 1. The CID pre-test analysis indicates responses and structural damage similar to that experienced for the B707 airplane drop test conducted in Laurinburg N.C., for a symmetrical 17 ft/sec impact and the airplane at a l degree nose-up attitude.
- 2. Analysis of frame sections subjected to vertical impact loading can be performed to obtain overall section load-deflection behavior for use in larger airframe mathematical models.
- 3. The hard point load-deflection behavior is the most significant parameter which influences the potential for loss of structural integrity and cause of severe injury to occupants in a crash.
- 4. Analytical modeling results are influenced by the representation of yield and/or rupture allowables. Representation of large regions of structure by simpler elements will be enhanced with additional methodology development.

REFERENCES

- 1. Wittlin, G., Gamon, M. A., and Shycoff, D. L., "Transport Aircraft Crash Dynamics," Lockheed-California Company, NASA CR 165851, FAA Report, DOT/FAA/CT-82/69, March 1982.
- 2. Widmayer, E. and Brende, O. B., "Commercial Jet Transport Crashworthiness," Boeing Airplane Company, NASA CR 65849, FAA Report DOT/FAA/CT-82/68 March 1982.
- 3. Cominsky, A., "Transport Aircraft Accident Dynamics," McDonnell Douglas Corp., NASA CR 165850, FAA Report DOT/FAA/CT-82/70 March 1982.
- 4. Thomson, R. G. and Caiafa, C., "Structural Response of Transport Airplanes in Crash Situations," NASA TM 85654, June 1983.
- 5. Federal Aviation Regulations, "FAR 25-Airworthiness Standards: Transport Category Airplanes," June 1974 (Amendments through April 1982).
- 6. Wittlin, G. and Lackey, D., "Analytical Modeling of Transport Aircraft Crash Scenarios to Obtain Floor Pulses," Lockheed-California Company, NASA-CR 166089, FAA Report DOT/FAA/CT 83/23, April 1983.
- 7. Wittlin, G. and Gamon, M. A., "Experimental Program for the Development of Improved Helicopter Structural Crashworthiness Analytical and Design Techniques," Lockheed-California Company, USAAMRDL-TR-72-72, May 1973.
- 8. Wittlin, G. and Gamon, M. A., "Development, Verification, and Application of Program KRASH to General Aviation Airplane Crash Dynamics," Lockheed-California Company, FAA Report FAA-RD-77-188, February 1978.
- 9. Gamon, M.A., Wittlin G., LaBarge, W.L., "KRASH85 User's Manual" Lockheed-California Company, DOT/FAA/CT-85-10, Sept. 1984

and an interest the second of the second of the

- 10. Hayduk, R., Williams, S., "Vertical Drop Test of Transport Fuselage Section Located Forward of the Wing," NASA Tech Memo 85679, August 1983.
- 11. Park, K. C. and Wittlin, G., "Development and Experimental Verification of Procedures to Determine Nonlinears Load-Deflection Characteristics of Helicopter Substructures Subjected to Crash Forces," Lockheed-California Company, USAAMRDL-TR-74-12, May 1974.
- 12. B707 Fuselage Drop Test Report, Calspan Report No. 7252-1, March 1984.

- 13. DC-10 Fuselage Drop Test Report, Calspan Report No. 7251-1, September 1984.
- 14. Williams, S. A., Hayduk, R. J., "Vertical Drop Test of a Transport Fuselage Center Section Including the Wheel Wells," NASA TM 85706, October 1983.
- 15. Reed, W. H., et al, "Full-Scale Dynamic Crash Test of a Lockheed Constellation Model 1649 Aircraft," Aviation Safety Engineering and Research, FAA Technical Report ADS-38, Washington, D.C., October 1965.
- 16. Fuller, J.R., et al, "Contributions to the Development of a Power Spectral Gust Design Procedure For Civil Aircraft," The Boeing Company, FAA-ADS-54, January, 1966.

DODDOOD ODDOODD ECCERCIC ANDDOODD ADDODDOO ASSESSOR REFERENCY DECERCIC FEETERS TO SEE APPENDIX A

A.1 NARROW-BODY AIRPLANE KRASH FRAME MODEL

Š						COITO	OF 11	1 LI	-O1 01		· CARD	TITAL	e rom	THE T	
8			1		2		3		4		5		6	7	7 8
CARD	NO.	1234567	8901	234567	78 9 01	23456	7890	12345	67890	123456	578901	23456	78901	234567890	1234567890
B I															
	1														00000010
	2	B707 SE											5E-51		00000020
Ĭ	4		NSP	23439 <i>1</i> NB	NLB		NPIN		9709U. NDRII						1200000030
8	5	11	113F	12	2	3	MPIN	mus 0	UNITED ATT	*OLEO	NACC 0	0	NVCH I	NMTL NI 0 :	
Í	6	NVBM N	•		_	NKM	NHI	-	TOL1	_	-	NSC	-	AERONBOME	
Š	7	0	0	1	1	0	1411	0		1000			1		L 00000070
<u>.</u>	8	NSCV N	-	_	_	-	CITR	•	1000	1000	1000	·	•	•	00000070
Ş	9														00000072
1	10	GRAPHIC	: AND	DATA	TRAN	SFER	CARDS	5							08000000
į.	11			_,,,,,,	.,,,,										00000090
<u>.</u> 3	12	1													00000100
5	13	ONE STA	ART A	ND ON	E RES	START	CARD								00000110
=	14														00000120
5	15														00000130
ā	16	IPE	TNIS	DELTA	r		TMAX	1	PLOWT		FCUT	R	MOD		00000140
Š	17		100	0.0000	05		.000				40.		1.0		00000150
8 ÷	18	BLAN	CAR	D FOL	LONS										00000160
ij	19														00000170
;	20	NSF	NTF	NDE I		NED	NS	NRP		: PRI	VT DAT	•			00000180
	21	0	0	. 0	0	0	0	0	-						00000190
ŧ	22					NSTP					MPFCT:	PLOT	DATA		00000200
Ē	23	5	. 0	7	7	0	4	. 0	0	1	10				00000210
5	24	INITIA	1)_ (1)		וט אט			5							00000220
ļ	25 26	0.0		0.0		240									00000230
ý	27	0.0		0.0). 3.	0			٥.	٥.			00000240 00000250
ĺ	28	MASS I	TATA:		Pne	`	J .	·	•	,	٠.	٥.			00000250
ş	29		18.0	ITI CA	0.0		-20.		4.		4.		4.	4	
ž	30		18.0		0.0		-37.		12.		4.		4.	4	
į,	31		18.0		0.0		-52.		25.		4.		4.	4	
# 9	32		51.		0.0		-70.		69.		16.		16.	16	
	33		51.		0.0		-45.4		69.		16.		16.	16	
5	34		51.		0.		-24.8		69.		16.		16.	16	. 00000320
	35	1	18.		0.		0.		1.		4.		4.	4	. 00000330
ý	36	45	50.		٥.		-35.1		89.		125.		125.	125	. 00000340
	37		27.		Ο.		-72.		110.		8.		8.	8	. 00000350
	38	-	32.		Ο.		-60.		140.		8.		8.	8	. 00000360
	39		¥0.		٥.		٥.		176.		10.		10.	10	
	40		PT.DA	TA: N	NP C	ARDS	_		_						00000380
	41	1	1		0.		0.		1.						00000390
	42	1	8		0.		-45.4		89.						00000400
	43	2 EXTER	8	PRING	0.		-24.8		89.						00000410
	44			PRING		A: 2XN			0000		_				00000420
	45 46	1 7	3		1.0		0. 0.	_	0000. 0000 .		0. 0.		0. 0.		00000430
	47	2	3		1.0		0. 0.	_	0000.		0. 0.		0. 0.		00000440 00000450
	48	3	3		1.0		0.	_	0000.		U.		U.		00000450
	49	3	0.6		0.65		. 66	•	0.9		4000.		4000.	.0000	
	50		0.6		0.65		. 66		0.9		4000.		4000.	0.0000	
	-		- · -												

						Marie Non Authorities	Maria Maria abbas abbas delikarias		
V.	S. L. B. S.	htia (mining anns)		tal tal de de de de de de	edeli ilizak	****	rist, mama richi	*:	
ace passassas									
₽									
13	1		E	CHO OF THE	INPUT DAT	A IN CARD 3	MAGE FORMAT		
15	Ĭ	1	2	3	4	5	6	7	8
B	ECARD NO.						-		_
I R		• •				4000			000004.00
\$	51 5 52	0.6 0.6	0.65 0.65	. 66 . 66	0.9 0.9	4000. 4000.	4000. 4000.	.00001	00000490 00000500
	53	INTERNAL BE			0.7	4000.	4000.	. 00001	00000510
<u> १८५५५</u>	54	1 7	1.2		1.4	1.4	1.00	1.0	400000520
8 2	§ 55	1 2	1.20		1.4	1.4	1.00		400000530
	56	2 3	1.20		1.4	1.4	1.00		400000 54 0 400000550
()	§ 57 \$ 58	3 4 4 5	1.20 0.90		1.4 8.8	1.4 .16	1.00 5.00		400000550
	59	5 6	0.90		8.8	.16	5.	1.	400000570
4	60	6 0	0.90		8.8	.16	5.	1.	400000580
	į 61	4 9	1.1		1.2	1.2	1.0	1.	400000590
	62 63 64	9 10	1.2		1.4	1.4	1.0	1.	400000600
þ	63	10 11 5 1 8	1.2 0.28		1.4 .04	1.4 .04	1.0 .5	1. .5	400000610
*	65	628	0.28		.04	.04	.5	.5	100000630
	*	BEAM END FI		NPIN CARDS				••	00000640
ي ا	§ 66	1 2	1 1	0 0	1.00	1.00	0.00	0.00	00000650
	. 68	2 3	1 1	0 0	1.00	1.00	0.00	0.00	00000660
₹.	69	3 4	1 1	0 0	1.00	1.00	0.00	0.00	00000670
\sim	70 71	1 7 4 9	0 0	1 1	0.00 0.0	0.00 0.	0.60 1.0	0.60 1.0	00000680 00000690
€.	72	9 10	ŏŏ	î î	0.	Ö.	1.0	1.0	00000700
5 %	73	10 11	0 0	1 1	0.	o.	1.0	1.0	00000710
	š 74	DAMPC CARD							00000720
	75	0.10000	BANDTHOLL	D 04000					00000730
	76	NONSTO BEAM	DAMPING:N .00001	D CARDS					00000740 00000750
7.	78	518	.10						00000751
C -	79	628	. 10						00000752
	80	NONLINEAR B		ILB CARDS					00000760
. .	81	518	1 10 1 10						00000820
, ·	82	628 0.	1 10 1.0						00000830 00000840
	84	1.	1.0						00000850
	85	1.5	1.0						00000860
· ·	į 86	2.	1.0						00000870
L i	87	2.5	1.0						00000880
	88 89	3. 3.1	1.0 1.0						00000890 00000900
	90	3.2	1.0						00000910
.	91	3.4	1.0						00000920
	92	3.5	1.0						00000930
55	93	0.	1.0						00000940
435 W Y Y	94 95	1. 1.5	1.0 1.0						00000950 00000960
	95 96	1.5 2.	1.0						00000970
	97		1.0						00000980
	98	3.	1.0						00000990
	99		1.0						00001000
	100		1.0						00001010
-	101	3.4	1.0						00001020

SERVICE SECRETARION CONTRACTOR SECRETARION SECRETARION SECRETARION DESCRIPTION

5.67 C-11		30745	1		2		3	74 F / 7 4	4		5	6	7	8
SUAR	D NO.	123450	7890	123456	183019	3456/6	39012	345670	3 7 012	23450	/6701/	23456789012	3456/6701	23456/070
•	102	3	. 5	1.0										00001030
į	103	BEAM	NEG.	DEFL.C	UTOFF	: NVBM	CAR	DS						00001040
3	104	1	7	I.	E+10	1.E	-10	10	00.	1.1	E+10	1.E+10	1.E+10	00001050
į	105	BEAM	NEG.	FORCE	CUTOFI	NFBM	N CAR	DS						00001060
3	106	1	7	1.	E+10	1.E	10	1.E	+10	1.0	E+10	1.E+10	1.E+10	00001070
Ĭ	107	POSI	TION	PLOT D	ATA: 2)	CAPLT (CARDS	;						00001080
Ř	108	3	11	. 3		10	.0	30	.0					00001090
5 2	109	1	2	3	4	5	6	7	8	9	10	11		00001100
3	110	MASS	PLOT	DATA:	NMEP	CARDS								00001110
à	111	4	1	0	1			1	1	0				00001140
į	112	5	1	. 0	1			1	1	0				00001150
ž	113	6	1	. 0	1			1	1	G				00001160
-	114	8	1	. 0	1			1	1	0				00001180
Ŷ	115	11	1		1			1	1					00001210
5	116	BEAM	FORC	E PLOT	DATA	NBFP (CARDS	;						00001220
à	117	1	1	. 1	1									00001235
ğ	118	4	1	. 1	1									00001240
В	119	5	1	. 1	1									00001250
ŝ	120	6	1	. 1	1									00001260
•	121	7	1	. 1	1									00001270
į	122	11	1	. 1	1									00001310
2	123	12	1	. 1	1									00001320
8	124	BEAM	DEFL	ECTION	PLOT	DATA:	NBDP	CARDS						00001330
\$	125	1	1	. 1	1									00001335
į	126	4	1	. 1	1									00001350
ž	127	5	1	. 1	1									00001360
2 3	128	6	1	. 1	1									00001370
å	129	7	1	. 1	1									00001380
2	130	11	1	. 1	1									00001420
ANNOCATO NAS DELL'EN REGIONALION CONTANTO NINTRE BLODO PROCEDO CLUMANOLICE CONTANTEN DELL'ANTONIO DELL'ANTORNA COMPA	131	12	1	. 1	1									00001430
ţ	132	EXTE	RNAL	SPRING	DATA	:NSEP	CARDS	\$						00001440
ŝ	133	1		1	1									00001450
	134	2		1	1									00001460
ï	135	3		1	1									00001470
CREATE PARTY DOCUMENTS	136	7		1	1									00001480
ŗ	137	END												00001490

A.2 WIDE-BODY AIRPLANE KRASH FRAME MODEL

PROPERTY AND MANAGES SERVICES INVESTOR IN THE PROPERTY IN THE

CARD NO		1 2 01234567890	3 12345678901	4 12345678901	5 .2345678901	6 2345678901:	7 2345678901	8 234567890
1		7.DATA 8-21						00000010
2		SECTION 14						00000020
3		01234567890						
4	NM NS		NINP NPIN		OLEO NACC	MVP NVCH I		00000040
5		3 16 0	2 4	0 0	0 0	0 0	0 0	00000050
6		INVERNINFBIEN	NKM NHI		TOL2 TOL3		AERONBOMB	00000060
7		1 0 0	0 0	0 1000	1000 1000	0 1	0 1	00000070
8		CNHRGR NBAL	ICD					0800000
9		0 0	0					00000090
10	GRAPHIC AP	ND DATA TRAI	NSFER CARDS	j				00000100
11								00000110
12								00000120
13	UNE START	AND ONE RES	START CARD					00000130
14								00000140
15				DI 00.00				00000150
16		T DELTAT	TMAX	PLOWT	FCUT	RUNMOD		00000160
17		0.00001	.100		50.	1.0		00000170
18	BLANK U	ARD FOLLOWS						00000180
19	NCE NE		MED ME	NOD NITHO	DDT117 D17			00000190
20	NSF NT		NED NS		PRINT DAT			00000200
21			-	1 0	NDI TABECT	0107 0474		00000210
22		P NBFP NBDP 2 16 16			NPLTNPFCT:	PLUI DATA		00000220
23 24		2 16 16 CONDITION D		0 0	1 4			00000230
25	0.0	0.0	240.	•				00000240
26	0.0	0.0	240. 0.					00000250
27	0.0	0.0	0. 0.	0.	0.	0.		00000260 00000270
28		A:NM CARDS	υ.	U.	٥.	0.		00000270
29	20.	0.	٥.	2.0	2.0	2.0	2.0	00000290
30	25.00		17.0	3.24	4.00	4.00	4.00	00000290
31	35.00		55.00	15.00	6.00	6.00	6.00	00000310
32	30.00		83.00	36.00	6.00	6.00	6.00	00000310
33	30.	0.	100.	65.	6.	6.	6.	00000320
34	75.00		110.00	93.00	24.00	24.00	24.00	00000340
35	75.0		83.00	93.00	24.00	24.00	24.00	00000350
36	75.00		0.00	93.00	24.00	24.00	24.00	00000360
37	40.0		92.00	162.00	12.00	12.00	12.00	00000370
38	45.0			203.00	12.00	12.00	12.00	00000380
39	60.0		0.00	220.00	15.00	15.00	15.00	00000390
40	165.	0.	0.	113.	47.25	47.25	47.25	00000400
41	82.5	0.	83.	113.	23.63	23.63	23.63	00000410
42	20.	0.	17.0	15.	4.	4.	4.	00000420
43	MASSLESS	NODE POINT	DATA: NNP			• •	• •	00000430
44		2 0.3	17.0	3.24				00000440
45			17.0	15.0				00000450
46	-	SPRING DAT						00000460
47		3 2.00	0.00	20000.00	0.00	0.00		00000470
48		3 2.00	0.00	20000.00	0.00	0.00		00000480
49		3 2.00	0.00	20000.00	0.00	0.00		00000490
50	0.4	0 0.75	0.85	1.00	4000.00	5000.00	0.00001	00000500

CARD	NO.	123456	1 789012	34567	2 789012	34567	3 8901	2345678	4 1901	.234567	5 8901	L2345678	6 39012	34567	7 8901	8 .234567890
	51		0.40		0.75	0	.85	7	00	4000		5000.	00	0.00	001	00000510
	52		0.40).75		.85		00	4000		5000.		0.00		00000520
	53				TA:NB			**	••	4000		5000.		0.00		00000530
	54	3	14		3.47		.5	1.	3	1	1.3		1.0	n	1.0	400000540
	55	2	3		2.32		.0		34		3.34		3.6			400000550
	56	4	71		3.39	_			77	_	3.77		1.9	-		400000560
	57	3	4		2.28				30		3.30		1.			400000570
	58	4	Š		2.38			4.			5		2.		1.	400000580
	59	5	6		2.48			5.			5.0		2.		ī.	400000590
	60	6	7		0.75			15.			5.20		5.	-		400000600
	61	7	8		0.75			15.			5.20		5.			400000610
	62		9		2.27				20		.20		2.			400000620
	63	9	10		2.11				90		3.90		2.			400000630
	64	10	11		1.90				60		.60		1.	80		400000640
	65	8	121	_	0.80				04	_	0.04		0.			100000650
	66	7	131		0.80			-	04		0.04		0.	-		100000660
	67		1 141		. 328			0.01			537			57	1.7	400000670
	68	ī	z		2.28	3	.0	3.	. 95		3.95		3	. 0	1.5	400000680
	69	14	ō		0.47		-	1.	. 3		1.3		1	. 0	1.0	400000690
	70		END F	YTIXI	DATA:	NPIN	i CAI	RDS								00000700
	71	1	2	1	1	0		0.75		0.75		0.0	0	.0		00000710
	72	2	3	1	1	0	0	0.75		C.75		0.0	0	.0		00000720
	73	3	4	1	1	0	8	1.0		1.6		0.0	0	. 0		00000730
	74	7	8	0	Ō	1	1	0.0		0.0		1.0	1	. 0		00000740
	75	DAMPC	CARD													00000770
	76	0.010	00													00000780
	77			AM CA	X BEAM	I ELEN	1ENT	POS LO	AD:	NFBM (CARD					00000790
	78	1 2	1 14	1.0	0E10	1.0	E10	1.0	E10	1.0	DE10	1500.0		1.0	E10	00000800
	79	POSIT	ION P	LOT DA	ATA:2X	NPLT	CAR	DS								00000810
	80	3	14	3		20	0.0	40	. 0							00000820
	81	1	2	3	4	5	6	7	8	9	10	11	12	13	14	00000830
	82	MASS	PLOT I	DATA:	NMEP	CARDS	•									00000840
	83	1	1	1	1				1							00000850
	84	2	1	1	1				1							00000860
	85	3	1		1				1							00000870
	86	4	1		7				1							08800000
	87	5	1		1				1							00000890
	88	6	1		1				1							00000900
	89	7	1		1				1							00000910
	90	8	1						1							00000920
	91	9	1						1							00000930
	92	10	1						1							00000940
	93	11	1						1							00000950
	94	12	1						1							00000960
	95	13	1	_	_				:							00000970
	96	14	1	1	1				1							00000980
	97				OINT [BATA:	NNE	P CARDS								00000990
	98	1	2	1												00001000
	99	1	14	1												00001010
	100				DATA:	NBFP	CAR	U\$								00001020
	101	1	1	1	1											00001030

CARD NO.	1234567	1 789012	2345678	2 901	3 23456789012345	4 67890123	5 456789012345	6 678901234	7 8 5678901234567890
102	•								00001040
102	2 3	1	1	1					00001040
104	4	i	ì	i					00001050
105	5	ì	i	i					00001070
106	6	i	î	î					00001070
107	7	î	î	î					00001090
108	8	î	ī	î					00001100
109	9	î	î	î					00001110
110	10	ī	ī	ī					00001120
iii	11	ī	ī	ī					00001130
112	12	ī	ī	ī					00001140
113	13	ī	ī	ī					00001150
114	14	ī	1	ī					00001160
115	15	1	1	ī					00001170
116	16	ī	1	ī					00001180
117	BEAM	DEFLE	CTION P	LOT	DATA: NBDP CAR	DS			00001190
118	1	1	1	1					00001200
119	2	1	1	1					00001210
120	3	1	1	1					00001220
121	4	1	1	1					00001230
122	5	1	1	1					00001240
, 123	6	1	1	1					00001250
124	7	1	1	1					00001260
125	8	1	1	1					00001270
126	9	1	1	1					00001280
127	10	1	1	1					00001290
, 128	11	1	1	1					00001300
3 167	12	1	1	1					00001310
130	13	1	1	1					00001320
131	14	1	1	1					00001330
132	15	1	1	1					00001340
, 133	16	1	1	1					00001350
; 134	EXTER	NAL S			:NSEP CARDS				00001360
135	1		1	1					00001370
, 136	2		1	1					00001380
£ 137	3		1	1					00001390
138	END								00001400

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

A.3 KRASH CID STICK MODEL

ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT

```
B720.NASTI.LICK.DATA 8-07-84 1E-4DT ELKD 100%A,I.MOM.80%STR. 193K 00000010 155 KTS. 01 PTCH GYM.17 ROD-RIG.GRD MU=.35RAT.AERO DAMPC=.100 TMAX=.16 00000020 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890120000030
                                                    NUB NDRINGLEO NACC MVP NVCH NMTL ND 00000040 0 0 0 17 0 0 0 00000050 NPH TOL1 TOL2 TOL3 NSC NICHAERONBOMB 00000060
               NM HSP HB NLB HNP HPIN
                            16
                                         11
                                                 6
                                    O
                                        NKM NHI
             NVBM NEBMNVBMNNEBMN
                                                        0 1000 1000 1000
                                                                                               0
                                                                                                         00000070
                                          0
                                                                                  0
                                                                                        0
                             0
                                                 0
                       ۵
             NSCV NLICHWRGR NBAL
                                        ICDICITA
                                                                                                          00000080
                                                                                                          00000090
                              0
                      16
           GRAPHICS
                                                                                                          00000100
                                                                                                          00000110
                                                                                                         00000120
                                                                                                          00000130
           ONE RESTART AND ONE SAVE CARD FOLLOWS
                                                                                                          00000140
                                                                                                          00000150
       15
                                                                                                          00000160
                  IPRINT DELTAT
                                        TMAX
                                                    PLOWT
                                                                 FCUT
                                                                              RUNMOD
                                                                                                          00000170
                      50
                           .000100
                                        0.160
                                                    0.000
                                                                 50.
                                                                               1.
                                                                                                          00000180
            BLANK CARD FOLLOWS
                                                                                                          00000190
                                                                                                          00000200
                   NTF
                                               NS NRP NIMP : PRINT DATA
              NSF
                          NDE NSPD
                                        NED
                                                                                                          00000210
                 Û
                       ٥
                              Ω
                                    n
                                          Ω
                                                 0
                                                        Ω
                                                              a
      21
22
23
24
25
26
27
             NMEP NNEP NBEP NBDP NSTP NSEP NENP NDRP NPLTNPFCT : PLOT DATA
                                                                                                          00000220
                                                                                                          00000230
            11 0 16 16 0 9
INITIAL CONDITION DATA: 3 CARDS
                                                 9
                                                        0
                                                              ۵
                                                                     0
                                                                           ٥
                                                                                                          00000240
                                                                                                          00000250
                             000.00
                                           204.00
               3140.00
                                           000.00
                                                                                                          00000260
                 000.08
                              000.00
                                                        000.00 000000.
                                                                                     0.001.1463E-07
                                                                                                          00000270
                 000.00 0.01745
                                           000.00
            MASS DATA : NM CARDS
                                                                                                          00000280
       28
                                                         219.0.11514E+05.4 E+05.15 E+05
217.9.89080E+05.3 E+06.99 E+05
208.3.16278E+06.96935E+05.10309E+06
205.8.19627E+06.66715E+05.79389E+05
200.0.49106E+06.12567E+06.14651E+06
                               199.0
                                               0.0
                                                                                                          00000290
      29
30
31
32
33
                 1585.0
                               300.0
                                               0.0
                                                                                                          00000300
                10064.5
                                               0.0
                                                                                                          00000310
                15318.1
                               460.0
               13096.0
21752.6
7901.5
9190.7
                               620.0
820.0
                                                                                                          00000320
                                               0.0
                                               0.0
                                                                                                          00000330
       34
35
                                                         211.9.81383E+05.12 E+06.2
206.6.87536E+05.14 E+06.2
222.6.88098E+05.18 E+06.3
                                                                                                          00000340
                               960.0
                                               0.0
                                                                                                  E+06
                                                                                                          00000350
                              1043.5
                                               0.0
       36
37
                              1201.1
                                                         222.4.88098E+05.18
                                                                                     E+06.3
                                                                                                  E+06
                                                                                                          00000360
                 9938.4
                                               0.0
                              1400.0
                                                         255.8.96249E+05.41788E+05.26039E+05
                                                                                                          00000370
                 5702.0
                                               0.0
       38
                 6175.2
                              1570.0
                                                          297.0.21530E+06.10798E+06.15863E+06
                                                                                                          0820000
                                               0.0
                                            118.3
       39
                               801.3
                                                          189.0.15213E+05.13858E+06.36 E+06
                                                                                                          00000390
                 9670.6
                                                         208.3.19510E+05.12263E+06.3
234.3.72715E+04.52619E+05.11
272.0.44083E+04.25823E+05.60
                               852.3
                                                                                                  E+06
                                                                                                          00000400
       40
                15065.6
                                            271.8
       41
                 5286.5
                               943.5
                                            430.7
                                                                                                  E+06
                                                                                                          00000410
       42
43
                 3759.0
                              1045.8
                                            583.5
                                                                                                  E+05
                                                                                                          00000420
                 1542.3
                              1112.6
                                            740.6
                                                         300.4.16708E+04.90137E+04.18
                                                                                                  E+05
                                                                                                          00000430
                                                         169.3 3651.56
                                                                                                          00000440
                 5400.0
                               719.0
                                             321.6
                                                                              25746.
                                                                                           29374.6
                                                                              24588.2
                                                                                                          00000450
                 5151.0
                               902.8
                                            551.6
                                                                                           28178.
                                                                                                          00000460
            NODE POINT DATA : NNP
                                        CARDS
                                                                                                          00000470
       47
                 1
                       5
                               820.0
                                             48.0
                                                          181.0
                                                                                                          00000480
       48
                 1
                      11
                               773.9
                                            118.3
                                                         187.0
                                                                                                          00000490
       49
                               887.0
                                            131.6
                                                          180.4
                                                                                                          00000500
                               811.8
                                            321.6
                                                         204.8
```

AND THE SECRECAL SYSTEMS OF THE PARTY OF THE

			1	2	3	4	5	6		7 8
CARD	NO.	12345678	B90123	45678901	234567890	1234567890	1234567890	1234567890	12345678	901234567890
	51	1	14	994.5	551.6					00000510
	52	1	15	1148.0	740.6					00000520
	53	1	16	735.7	321.6	203.1				00000530
	54	1	17	918.4	551.6	249.0				00000540
	55	1	2	279.0	0.0	146.5				00000550
	56	2	2	380.	0.	217.9				00000560
	57	1	3	530.	٥.	207.				00000570
	58	EXTERNAL	L SPRI	NG DATA	: 2 X NSP	CARDS				00000580
	59	1	3	74.2	0.50	100000.0				00000590
	60		3	82.1	0.50	100000.0				00000600
	61	2 3 4	3	72.2	0.50	100000.0				00000610
	62	4	3	70.0	0.50	300000.0				00000620
	63	5	3	64.2	0.50	300000.0				00000630
	64	6	3	76.1	0.50	300000.0				00000640
	65	7	3	69.3	0.50	100000.0				00000650
	66	8	3	72.6	0.50	100000.0				00000660
	67	9	3	62.0	0.50					00000670
	68	10	3 3 3 3 3 3 3 3 3	82.0	0.40	300000.0				00000680
	69	16	3	38.3	0.50	272000.				00000690
	70	17	3	28.0	0.50					00000700
	71	1.1	1.5	4	.0		100000.	5000.	0.00	00000710
	72	1.1	3.3	4	.4	18.	200000.	5000.	0.00	00000720
	73	4.0	5.0	6	. 0	24.0	128000.	128000.	0.00	00000730
	74	1.1	3.3	9	. 9	10.	200000.	200000.	0.00	00000740
	75	1.1	3.3		. 9		250000.	200000.	0.00	00000750
	76	1.1	3.3	9	. 9	18.	250000.	200000.	0.00	00000760
	77	4.0	5.0	5	.5	24.0	55000.	55000.	0.00	00000770
	78	4.0	5.0	5	.5	24.	75000.	75000.	0.00	00000780
	79	1.0	1.1	2	. 0	3.0	300000.	30000.	0.00	00000790
	80	1.0	1.1		. 0	3.0	300000.	30000.	0.00	00000800
	81	1.	8.0	9	•	16.		100000.		00000810
	82	1.	8.0	9	•	16.0	50000.	100000.	0.00	00000820
	83	INTERNAL		DATA :						00000830
	84	1	2	32.00	0.00			0.00		6. 500000840
	85	2	3	36.00	0.00			0.00		9. 500000850
	86	3	4	36.00	0.00			0.00		6. 500000860
	87	4	5	59.00	0.00			0.00		6. 500000870
	88	5 6	6	59.00	0.00			0.00		6. 500000880
	89		7	57.00	0.00			0.00		8. 500000890
	90	7	8	48.00	0.00			0.00		1. 500000900
	91	8	9	37.00	0.00			0.00		1. 500000910
	92	9	10	25.00	0.00			0.00		0.500000920
	93		11		4.800E+04			0.00		.0 500000930
	94	1 11	12		2.600E+04			0.00		.0 500000940
	95	12	13		1.000E+04			0.00		.0 500000950
	96	13	14		4.800E+03		2.10E+04	0.00		.0 500000960
	97		15	20.	2.700E+03			0.00		.0 500000970
	98	1 12 1	16	8.0	2.208E+02	7.32E+02		0.00		.0 400000980
	99		17	8.0	2.208E+02	7.32E+02	1.00E+02	0.00	1.0 1	.0 400000990
	100				: NPIN CA		_			00001000
	101	1	2	0 0	1 1	0.	٥.	1.55	1.55	00001010

MI GEORGE IN MANAGEM ACCORDE TO MANAGEM

properties acceptable medical reservation

		1		2		3	4	5	6	7	8
CARD NO.	12345678	901	.23456789	9011	3456	7890	12345678901	234567890.	1234567890	12345678901	234567890
102	•	3	0	0	1	1	0.	٥.	1.65	1.65	00001020
103	2 3	4	Ö	Ö	1	i	o.	ö.	1.15	1.15	00001020
103	5	7	ĭ	1	ô	Ď	1.6	1.6	0.00	0.00	00001030
105	7	8	i	i	ă	ő	1.5	1.5	0.00	0.00	00001050
106	8	9	i	i	ă	ő	1.35	1.35	0.00	0.00	00001050
107	DAMPC CA	•	•	*	U	U	1.35	1.35	0.00	0.00	00001000
108	.100	עאו									00001070
109	NEG BEAM		ITOEE - NET	MMS	y o	CARD	e				00001090
110		16	30000			.E10	1.E10	1.E10	1.E10	1.E10	00001100
111	1 14 1		30000			.E10	1.E10	1.E10	1.E10	1.E10	00001110
112									1.610	1.510	00001120
113											00001130
114	LOAD INT	FR		-			รกรา:				00001140
115	1	3	5	ï	٥		300.			1000.	00001150
116	•	•	-	•	•		166000.	32.5F+06	-166000.	-32.5E+06	00001160
117	1	1	215000.	-	12.5	E+06				J2.JC 40	00001170
118	ż	3	5	1	0		350.			1000.	00001180
119	•	•	-	•	•		188000.	39.0F+06	-188000.	-39.0E+06	00001190
120	1	1	260000.	7	7n . n	E+06		• • • • • • • • • • • • • • • • • • • •		5 ,. 52 55	00001200
121	ż	3	5	1	۵		450.			1000.	00001210
122	_	•	•	•	•		210000.	45.0E+06	-210000.	-45.0E+06	00001220
123	1	1	300000.	1	100.	E+06	•••••		••••		00001230
124	3	3	5	1	٥	-	480.			1000.	00001240
125		-	-	-	-		210000.	50.0E+0€	-210000.	-50.0E+06	00001250
126	1	1	400000.		80.	E+06				-	00001260
127	3	3	5	1	0		540.			1000.	00001270
128							210000.	50.0E+06	-210000.	-50.0E+06	00001280
129	1	1	400000.			E+06					00001290
130	3	3	5	2	0		600.			1000.	00001300
131							280000.	62.5E+06	-280000.	-62.5E+66	00001310
132	1		318000.			E+06					00001320
133	1	1	422400.		38.7	E+06					00001330
134	4	3	5	2	0		620.			1000.	00001340
135							280000.	62.5E+06	-280000.	-62.5E+06	00001350
136	1	_	318000.			E+06					00001360
137	1	1	422400.			E+06					00001370
138	5	3	5	2	1		960.			1000.	00001380
139	_	_					315000.	96.0E+06	-315000.	-96.0E+06	00001390
140	1		5.7617E			E+06					00001400
141	1	1	521500.			E+06					00001410
142	6	3	5	2	1		960.			1000.	00001420
143		_					315000.	96.UE+U6	-315000.	-96.0E+06	00001430
144	1	- 7	5.7617E			E+06					00001440
145	1	1	521500.			E+06	000			1000	00001450
146	6	3	5	2	1		990.	0/ 05+0/	-270000	1000.	00001460
147		,	701000		100 7	F-0/	270000.	04.05.06	-270000.	-84.0E+06	00001470
148 149	1		301000. .3581E (E+06					00001480
150	7	3	5 5	3	1	+06	1090.			1000.	00001490 00001500
151	•	J	9	•	4		270000.	75 0F+04	-270000.	-75.0E+06	00001510
152	٥	1	210000.	_6	555.8	8E06	2.000,		2,000.	13.02.00	00001510
	•	•		-							30001320

CARD NO.	12345	1 67890	12345678	2 90123	456789	3 012345678 ⁹	4 901234!	5 567890123456789	6 7 01234567890	8 1234567890
153	1									
154	i	j			7.75E0					00001530
		1			4.0 E06	-				00001540
155	7	3	5	3	1	1160.			1000.	00001550
156	_					270000.	66.	.0E+06 -270000.	-66.0E+06	00001560
157	0	1		-26	5.64E06	5			***************************************	00001570
158	1	1	372214.	8	5.0E 06	5				00001570
159	1	1	804840.	5	0.0E 06	•				
160	8	3	5	1	1	1210.			1000	00001590
161						235000.	50.0	E 06 -235000.	1000.	00001600
162	٥	1	200000.	-21	7.32E06		20.0	L 00 -235000.	-50.0E06	00001610
163	8	3		1	1	1320.				00001620
164	_	_	•	•	•	180000.	40.0	E 8/ 100000	1000.	00001630
165	0	1	148000.	_01	.818E06		40.0	E 06 -180000.	-40.0E06	00001640
166	8	ż	5	2	1					00001650
167	Ū	•	3	4	•	1400.	** *		1000.	00001660
168	0	,	125000	- /	000504	160000.	30.0	E+06 -160000.	-30.0E+06	00001670
169	_	1	125000.		.998E06					00001680
	1	1	260000.		5.0E 06					00001690
170	9	3	5	2	1	1400.			1000.	00001700
171	_					160000.	30.0	E+06 -160000.	-30.0E+06	00001710
172	0	1	125000.	-54	.998E06				*******	00001720
173	1	1	260000.	4	5.0E 06					00001720
174	FORCE	TIME	HISTORY	DATA	: NACC	+ CARDS				
175	1	3	2	1						00001740
176	2	3	2	1						00001750
177	3	3	2	ĭ						00001760
178	4	3		ī						00001770
179	5	3	5	i						00001780
180	6	3	5	i						00001790
181	7	3	Š	i						00001800
182	8	3	5	i						00001810
183	9	3	<u> </u>							00001820
184		3	ξ.	1						00001830
185	10	3	2	1						00001840
	11		2	1						00001850
186	12	3	2	1						00001860
187	13	3	2	1						00001870
188	14	3	2	1						00001880
189	15	3		1						00001890
190	16	3		1						00001900
191	17	3		1						
192	0.		-95.							00001910
193	1.		-95.							00001920
194	٥.		-624.	5						00001930
195	i.		-624.							00001940
196	õ.		~1861.	-						00001950
197	ĭ.		-1861.							00001960
198	ō.		-4715.							00001970
199	1.		-4715.							00001980
200	ó.		-7901.							00001990
201										00002000
202	1.		~7901.							00002010
	o.		-1991.							00002020
203	1.		-1991.							00002030

CARD NO.	1234567	1 89012	234567	2 89012	34567	3 8901:	234567	4 8901:	234567	5 7890]	6 7 23456789012345678901	8 234567890
204	٥.		. 471	,								
205			-231									00002040
	1.		~231									00002050
206	0.		-78	5.4								00002060
207	1.		-78	5.4								00002070
208	٥.		-45									
209	1.			0.0								00002080
210	ö.											00002090
211			1744									00002100
	1.		1744									00002110
212	٥.		-2312	9.2								00002120
213	1.		-2312	9.2								00002130
214	0.		-2818	8.2								00002140
215	1.		-2818	8.2								
216	Ö.		-2139									00002150
217	i.											00002160
218			-2139									00002170
	Õ.		-1781									00002180
219	1.		-1781									00002190
220	0.		-624	0.9								00002200
221	1.		-624	0.9								00002210
222	٥.		-27									
223	1.		-27									00002220
224	õ.		-25									00002230
225	ĭ.											00002240
		~~ ~.	-25	8.3								00002250
226	MASS PL				NMEP							00002260
227	1	1	0	0	٥	0	1	1	0	1		00002270
228	2	1	0	0	0	0	1	1	C	1		00002280
229	3	1	0	0	0	Ó	ī	ī	Ğ	ī		00002280
230	4	1	Ô	ō	Ď	ŏ	ī	ī	ŏ	i		
231	5	ī	ĭ	ĭ	ĭ	ĭ	î	i	ĭ			00002300
232	6	i	â	å	ô	ò				1		00002310
233	7	î	ŏ				1	1	0	1		00002320
234				0	0	0	1	1	0	1		00002330
	8	1	0	0	0	0	1	1	0	1		00002340
235	9	1	0	0	0	٥	1	1	0	1		00002350
236	16	1		0	0		C	1		ī		00002360
237	17	1		0	٥		Õ	ī		ī		
238	BEAM EL	EMENT	LOAD	PLOT	PARA	MFTFD	S:NBF	P PLC	Te.	•		00002370
239	1	1	1	1					,,,			00002380
240	2	ī	i	i								00002390
241	3	i										00002400
242			1	1								00002410
	4	1	1	1								00002420
243	5	1	1	1								00002430
244	6	1	1	1								00002440
245	7	1	1	1								
246	8	1	ī	ī								00002450
247	9	ī	ī	î								00002460
248	1ó	i	î	î								00002470
249	11	i										00002480
			1	1								00002490
250	12	1	1	1								00002500
251	13	1	1	1								00002510
252	14	1	1	1								00002520
253	15	1	1	1								
254	16	ĩ	ī	i								0000251.
•		•	•	•								00002540

the second second interest and the second interest of the second seconds and second seconds and seconds are seconds and seconds and seconds and seconds are seconds are seconds and seconds are seconds are seconds and seconds are seconds are seconds are seconds and seconds are seconds are seconds are seconds are seconds and seconds are second

CARD NO.	12345678	1 90123	2 4567890	2345678	3 9012345678	4 19012345678	5 1901234567	6 89012345678	7 8 8901234567890
25.5	DE 44 EL E	MF4.1 T	DET: EAT		D.10.14676				
255	BEAM ELE	MENI	DEPLECT	ON PLOT	PARAMETER	(2: MRDA			00002550
256	i		1 1						00002560
257	2	Ţ	, į						00002570
258	3	i	1 1						00002580
259	4	ţ	1 1						00002590
260	5	1	1 1						00002600
261	6	1	1 1						00002610
262	/	Ţ	1 1						00002620
263	8	1	1 1						00002630
264	9	1	0 1						00002640
265	10	1	1 1						00002650
266	11	i	1 1						00005660
267	12	1	1 1						00002670
268	13	1	1 1						00002680
269	14	1	1 1						00002690
270	15	1	0 1						00002700
271	16	1	0 1						00602710
272	EXTERNAL		NG LOAD-	DEFLECT	ION PLOT F	ARAMETERS:	NSEP		00002720
273	2	D	1 1						00002730
274	3	0	1 1						00002740
275	4	0	1 1						00002750
276	5	0	1 1						00002780
277	<u>6</u>	0	1 1						00002790
278	7	0	1 1						00002800
279	. 8	_	1 1						00002810
280	16	0	1 1						00002820
281	17		1 1						00002830
282	END								00002840

seems and and the second

STANDE LECTURES ESSESSED BUILDERE BOSTONES LA COLOR DE LA COLOR DE

A.4 KRASH CID AIRPLANE EXPANDED MODEL ECHO

ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT

Necessary (Necessary) Necessary according

550 500000

1 2 3 4 5 6 7 8 CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 NNP NPIN NUB NDRINGLEO NACC MVP NVCH NMTL ND 00000040 NM NSP NB NLB 18 137 48 0 0 48 NPH TOL1 TOL2 TOL3 34 48 66 0 0 00000050 NVBM NFBMNVBMNNFBMN NKM **NICNAERONBOMB** NHI NSC 00000060 31 0 0 0 1000 1000 1000 12 0 00000070 NSCV NLICHWRGR NBAL ICDICITA 00000080 18 0 00000090 GRAPHICS 10 00000100 00000110 12 00000120 ONE RESTART AND ONE SAVE CARD FOLLOWS 13 00000130 00000140 14 00000150 15 16 17 IPRINT DELTAT TMAX PLOWT **FCUT** RUNMOD 00000160 50 .000100 0.160 0.000 50. 00000170 BLANK CARD FOLLOWS 18 00000180 00000190 20 NSF NTF NDE NSPD NED NS NRP NIMP NBC : PRINT DATA 00000200 0 0 0 0 0 0 0 0 0 0 0 NMEP NBEP NBEP NERP NDEP NPTT : PLOT DATA 21 00000210 00000220 23 ٥ 20 0 0 0 ٥ C O 0 ٥ 00000230 INITIAL CONDITION DATA : 3 CARDS 24 00000240 204.00 25 00000250 3140.00 000.00 26 27 000.00 000.00 000.00 00000260 000.00 000.00 0.001.1463E-07 000.00 000.00 00000270 MASS DATA : NM CARDS 28 00000280 29 33 525.6 199.0 0.0 205.0.37996E+":.13200E+04.49500E+03 00050290 4476.0 205.0.29396E+04.99000E+04.32670E+04 300.0 0.0 00000300 31 6418.0 460.0 0.0 205.0.53717E+04.31989E+04.34020E+04 00000310 32 5745.0 620.0 0.0 205.0.64769E+04.22016E+04.26198E+04 00000320 9438.0 33 820.0 205.0.16205E+05.41471E+04.48348E+04 00000330 0.0 34 3585.0 205.0.26856E+04.39600E+04.66000E+04 00000340 960.0 0.0 35 3759.0 1040.0 0.0 205.0.28887E+04.46200E+04.660002+04 00000350 36 4083.0 1200.0 0.0 205.0.29072E+04.59400E+04.99000E+04 00000360 205.0.31762E+04.13790E+04.85929E+03 37 2505.0 1400.0 0.0 00000370 6175.0 277.5 2238.0 297.0.21530E+06.10798E+06.15863E+06 1570.0 38 0.0 00000380 39 40 205.0.51468E+03.17880E+04.67050E+03 199.0 46.0 00000390 205.0.39819E+04.13410E+05.44253E+04 300.0 00000400 66.0 41 42 43 205.0.72763E+04.43330E+04.46081E+04 205.0.87733E+04.29822E+04.35487E+04 3352.0 70.0 00000410 460.0 2994.0 620.0 00000420 205.0.21950E+05.56174E+04.65490E+04 4920.0 820.0 00000430 70.0

205.0.36378E+04.53640E+04.89400E+04

205.0.39129E+04.62580E+04.89400E+04

205.0.39380E+04.80460E+04.13410E+05

205.0.43023E+04.18679E+04.11639E+04

181.0.36516E+04.25746E+05.29375E+05

240.0.47207E+03.16400E+04.61500E+03

264.0.36523E+04.12300E+04.40590E+04

00000440

00000450

00000460

00000470

00000480

00000490

00000500

70.0

70.0

70.0

46.0

70.0

40.0

65.0

44

45

46

47

48

49

1864.0

1968.0

2133.0

1307.0

430.0

410.0

65.0

960.0

1040.0

1200.0

1400.0

460.0

199.0

300.0

	1	2	3	4	5	6	7	8
CARD NO.	1234567890	12345678901;	234567890123	45678901234	56789012	345678901	2345678901	234567890
51	594.0	460.0	65.0			9743E+04.		00000510
52	505.0	620.0	65.0			7353E+04.		00000520
53	837.0	820.0	65.0			1525E+04.		00000530
54	305.0	960.0	65.0			9200E+04.		00000540
55	356.0	1040.0	65.0			7400E+04.		00000550
56	383.0	1200.0	65.0			3800E+04.		00000560
57	221.0	1400.0	40.0			7133E+04.		00000570
58	260.0	1040.0	70.0			5746E+05.		00000580
59	48.0	199.0	0.0			2120E+04.		00000590
60	304.0	300.0	0.0			0900E+04.		00000600
61 62	440.0 374.0	460.0 620.0	0.0 0.0			9371E+04.		00000610 00000620
63	620.0	820.0	0.0			8078E+04.		00000620
64	226.0	960.0	0.0			6360E+04.		00000640
65	264.0	1040.0	0.0			2420E+04.		00000650
66	284.0	1200.0	0.0			4540E+04.		00000660
67	164.0	1400.0	0.0			2662E+04.		00000670
68	277.0	1200.0	70.0			5788E+05.		00000680
69	9786.0	801.3	118.3			9387E+05.		00000690
70	4835.0	825.3	176.8			9387E+05.		00000700
71	10065.0	852.3	271.8			2387E+06.		00000710
72	5286.0	943.5	430.7			2619E+05.		00000720
73	3759.0	1045.8	583.5	243.5.440	83E+04.2	5823E+05.	60000E+05	00000730
74	1542.0	1112.6	740.6	255.0.167	08E+04.9	0137E+04.	18000E+05	00000740
75	5400.0	719.0	321.6	169.3.365	16E+04.2	5746E+05.	29375E+05	00000750
76	5151.	902.8	551.6	188.1.371	20E+04.2	4588E+05.	28178E+05	00000760
77	NODE POINT	DATA : NNP	CARDS					00000770
78	1 14	620.	70.	181.				00000780
79	1 16	960.	70.	181.				00000790
80	1 12	300.	66.	181.				000000800
81	1 15	820.	70	181.				00000810
82	1 41	650.0	118.3	205.				00000820
83	2 41 3 41	833.0	118.3	205.				00000830
84	3 41	650.	118.3	171.6				00000840
85	4 41	833.	118.3	171.6				00000850
86	1 42	770.0	176.8	195.7				00000860
87	2 42 1 43	900.0	176.8	195.7				00000870
88 89		790.0	271.8 271.8	203.1				00000880
90	2 43 1 44	919.0 893.0	430.7	203.1 219.9				00000870
91	2 44	993.0	430.7	219.9				00000910
92	1 45	1010.0	583.5	243.5				00000920
93	2 45	1080.0	583.5	243.5				00000930
94	1 46	1087.0	740.0	255.0				00000940
95	2 46	1137.0	740.0	255.0				00000950
96	1 47	735.7	321.6	199.6				00000960
97	1 48	918.4	551.6	220.5				00000970
98	1 2	300.0	0.0	205.0				00000980
99	2 2	279.0	0.0	147.5				00000990
100	$\bar{1}$ $\bar{1}$	199.0	0.0	205.0				00001000
101	1 11	199.	46.0	205.				00001010

CARD NO.	12345678	1 9012 3 4	2 15678901234	3 567890.	4 1234567890			6 901	23456	7 7890	8 1234567890
102	2	1	199.	0.0	150.						00001020
102	2 3		300.	0.0	150.						00001030
104	ì	÷	460.	6.0	150.						00001040
105	i	2 3 4	620.	0.0	140.						00001050
		5			140.						00001050
106	1	6	820.	0.0							00001070
107	1	7	960.	0.0	140. 150.						00001070
108			1040.0	0.0							
109	j	8	1200.	0.0	150.						00001090
110 111	1 2	9	1400.	0.0	150. 253.1						00001100
112	EXTERNAL		1400. NG DATA : 2	0.0	CARDS	•					00001120
	-	3 2 K 1 L		0.35	100000.0	1					00001120
113 114	1 2	3	60.2 69.2	0.35	100000.0						00001130
115	20	3	44.2	0.35	100000.0						00001150
116	4		68.2	0.35	300000.0						00001160
117	5	3	69.4	0.35	300000.0						00001170
118	5 6	3	69.1	0.35	300000.0						00001170
119	30	3	42.7	0.35	100000.0						00001190
120	40	************	32.2	0.35	100000.0						00001200
121	9	3	13.0	0.35	300000.0						00001210
122	10	3	82.0	0.35	300000.0						00001210
123	12	3	69.2	0.35	100000.	•					00001230
124	14	3	68.2	0.35	100000.						00001230
125	15	3		0.35	1000000.						00001250
126	16	3	69.4 69.1	0.35	100000.						00001260
127	42	3	14.0	0.35	100000.0	,					00001270
128	41	3	28.0	0.35	100000.0						00001270
129	47	3	38.3	0.35	272000.0						00001290
130	48	3	28.0	0.35	272000.0						00001300
131	1.1	1.5			10.	50000.	2500.		0.00		60001310
132	1.1	3.3	4.0 4.4		18.0	180000.	2500.		0.00		00001320
133	4.C	5.0	6.0		24.0	64000.	64000.		6.00		00001320
134	1.1	3.3	6.6		10.	100000.	100000.		0.00		00001340
135	1.1	3.3	6.6		10.	125000.	100000.		0.00		00001350
136	1.1	3.3	6.6		18.	125000.	1000000.		0.00		00001350
137	4.0	5.0	6.0		18.0	27500.	27500.		0.00		00001370
138	4.0	5.0	6.0		18.0	37500.	37500.		0.00		00001370
139	1.0	1.1	2.0		3.0	150000.	15000.		0.00		00001390
140	1.0	1.1	2.0		3.0	150000.	15000.		0.00		00001400
141	1.1	3.3	4.4		18.	50000.	1250.		0.00		00001410
142	1.1	3.3	6.6		10.	50000.	50000.				00001420
143	1.1	3.3	6.6		10.	62500.	50000.				00001430
144	1.1	3.3	6.6		18.	62500.	50000.				00001440
145	1.	1.5	2.		7.	330000.	330000.				00001450
146	i.	1.5	2.		, . 7 .	330000.	330000.		0.00		00001460
147	i.	8.	9.		16.	50000.	100000.		0.00		00001470
148	i.	8.	9.		16.	50000.	100000.				00001480
143	INTERNAL		DATA : NB			20000.	130000.				00001480
150	1	11	4.35	840.0	53.00	1000.0	n	3	1	1	500001500
151		îż	6.30	1200.0	74.00			3 3	i	i	
152		13	7.20	1380.0	84.00			3	î		500001520

CARD NO.	1234567	1 78901:	2 234567890123	3 456789012	4 23456789012	5 234567890123	6 84567890123	345678	7 8 1901234567890
153	4	14	8.10	1560.0	95.00	6000.0	3	1	1 500001530
154	5	15	8.10	1560.0	95.00	6000.0	3	1	1 500001540
155	6	16	5.40	1018.0	64.00	1500.0	3	1	1 500001550
156	7	17	5.40	1018.0	64.00	1500.0	3	1	1 500001560 1 500001570
157	8	18	8.10	1560.2	95.00	6000.0	3 3	1	1 500001570
158	. 9	19	4.50	840.0	53.00	1000.0		1.8	1 500001590
159	11	21	6.60	250.0	400.0	9.0 400.0		1.8	1 500001590
160	21	31	6.60	250.0 334.0	9.00 1000.0	12.6		1.8	1 500001610
161	12 22	22	8.75 8.75	334.0	12.60	1000.0		1.8	1 500001620
162 163	13	32 23	10.0	383.0	1600.	14.4		1.8	1 500001630
164	23	33	10.0	383.0	14.40	1600.0		1.8	1 500001640
165	14	24	11.3	432.0	2400.	16.2		1.8	1 500001650
166	24	34	11.3	432.0	16.20	2400.0		1.8	1 500001660
167	15	25	11.3	432.0	2400.	16.2		1.8	1 500001670
168	25	35	11.3	432.0	16.20	2400.0		1.8	1 500001680
169	16	26	7.50	285.0	600.	10.8		1.8	1 500001690
170	26	36	7.50	285.0	10.80	600.0	1.8	1.8	1 500001700
171	17	27	7.50	285.0	600.0	10.8	1.8	1.8	1 500001710
172	27	37	7.50	285.0	10.80	600.0	1.8	1.8	1 500001720
173	18	28	11.2	432.0	2000.	16.2	1.8	1.8	1 500001730
174	28	38	11.2	432.0	16.20	2000.0		1.8	1 500001740
175	19	29	6.30	250.0	400.	9.0		1.8	1 500001750
176	29	39	6.30	250.0	9.00	400.0		1.8	1 500001760
177	13	20	10.0	383.0	1600.0	14.4		1.8	1 500001770
178	17	30	7.50	285.0	600.0	10.8		1.8	1 500001780
179	18	40	11.2	432.0	2000.0	16.2	1	1	1 500001790
180	21	22	3.10	0.0	982.00	20.00	1	1	1 500001800
181	22	23	3.86	0.0	1228.00	24.70	1	1	1 500001810 1 500001820
182	23	24	5.53	0.0	1763.00	35.50	1	1	1 500001820
183	24	25	5.53	0.0	1763.00	35.50	i	i	1 500001830
184	25	26	5.55	0.0	1763.00	35.50 33.20	i	i	1 500001850
185	26	27	5.18	0.0	1650.00 592.00	11.90	i	i	1 500001860
186	27 28	28 29	4.23 3.10	0.0	434.00	8.70	î	i	1 500001870
187 18 8	31	32	8.02	0.0	874.00	11092.0	î	î	1 500001880
189	32	33	10.1	0.0	1012.00	13865.0	i	i	1 500001890
190	33	34	12.86	0.0	1307.00	17616.0	ī	ĩ	1 500001900
191	34	35	12.86	0.0	1307.00	17616.0	ī	ĩ	1 500001910
192	35	36	14.02	0.0	1511.00	19616.0	ī	ī	1 500001920
193	36	37	12.75	0.0	1375.00	17462.0	ĭ	ī	1 500001930
194	37	38	12.00	0.0	1296.00	16453.0	ī	1	1 500001940
195	38	39	10.32	0.0	1116.00	14172.0	1	1	1 500001950
196	ì	ź	2.32	500.	8.25	1000.00	4	1	1 500001960
197	2	3	2.54	750.	8.25	4000.00	4	1	1 500001970
198	3	4	2.54	800.	8.25	4000.00	4	1	1 500001980
199	4	5	4.35	800.	16.50	8000.00	4	1	1 500001990
200	5	6	4.35	800.	16.50	8000.00	4	1	1 500002000
201	6	7	4.00	800.	16.50	8000.00	4	1	1 500002010
202	7	8	3.40	700.	12.75	6000.00	4	1	1 500002020
203	8	9	2.54	500.	8.25	4000.00	4	1	1 500002030

CARD NO.	1 1234567890123	2 3456789012	3 345678901	4 2345678901	5 23456789012	6 3456789012	345671	7 8 3901234567890
CARD NO. 204 205 206 207 208 207 208 207 208 207 208 207 208 207 208 207 208 207 208 207 208 208 208 208 208 208 208 208 208 208	1234567890123 11	2012 2012 2012 2013 2013 2013 2013 2013	3345678901 100. 1000. 2000. 2000. 1000. 0.00 0.00	11.80 8.20 5.90 12.70 16.30 8.30 5.90 1.4E05 6.50 5.70 22.85 183.00 183.00 3200.00 3200.00 183.00 1403.00 8100.00 4700.00 2000.00 1403.00 8100.00 1403.00 8100.00 1403.00 8100.00 1200.00	500.00 347.00 243.00 535.00 687.00 250.00 1.4E04 6.60 6.40 25.00 25.00 .29E04 .29E	23456789012 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1	345678 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8 89901234567890 1 500002040 1 500002050 1 500002070 1 500002070 1 500002100 1 500002100 1 500002100 1 500002100 1 500002130 1 500002140 1 500002140 1 500002140 1 500002140 1 500002140 1 500002170 1 400002180 1 400002100 1 500002200 1 500002340 1 500002340 1 500002340 1 500002440 400002440 400002440
244 245	16 30 17 40	5.0 5.						400002430 400002440 400002450

CARD NO.	123456	1 578901	2 1234567890	234567	3 890123	45671	4 3901234	567890	5 0123456	6 789012345678	7 8 3901234567890
255	14	25	5.								400002550
256	15	24	5.								400002550
257	15	26									400032580
258			5.								400002580
	16	25	5.								
259	16	27	5.0								400002590
260	17	26	5.0								400002600
261	17	28	5.								400002610
262	18	27	5.								400002620
263	18	29	5.								400002630
264	19	58	5.								400002640
265	22	33	5.								400002650
266	23	32	5.								400002660
267	23	34	5.								400002670
268	24	33	5.								400002680
269	24	35	5.								400002690
270	25	34	5.								400002700
271	25	36	5.								400002710
272	26	35	5.								400002720
273	26	37	5.0								400002730
274	27	36	5.0								400002740
275	27	38	5.								400002750
276	28	37	5.								400002760
277	28	39	5.								400002770
278	29	28	5.								400002780
279	1 5	15	7.2								400002790
280	1 4	14	5.6								400002800
281	1 6	16	4.4								400002810
282	1 4	5	4.								400002820
283	4	1 5	4.								400002830
284	15	6	4.								400002840
285	5	1 6	4.								400002850
286	3 2	12	4.								400002860
287		END F		: NPIN							00002870
288	21	31	0 0	1	0	٥.		0.	1.0	0.0	00002880
289	22	32	0 0	1	0	٥.		0.	1.0	0.0	00002890
290	23	33	0 0	1	0	0.		0.	1.0	0.0	00002900
291	24	34	0 0	1	Q	ο.		0.	1.0	0.0	00002910
292	25	35	0 0	1	Ō	٥.		Q.	1.0	0.0	00002920
293	26	36	0 0	1	0	Ο.		0.	1.0	0.0	00002930
294	27	37	0 0	1	0	О.		0.	1.0	0.0	00002940
295	28	38	0 0	1	0	Ο.		٥.	1.0	0.0	00002950
296	29	39	0 0	1	0	ο.		٥.	1.0	0.0	00002960
297	11	21	0 1	0	1	С.		1.	0.0	1.0	00002970
298	12	22	0 1	٥	1	٥.		1.	0.0	1.0	00002980
299	13	23	0 1	0	1	٥.		1.	0.0	1.0	00002990
300	14	24	0 1	0	1	٥.		1.	0.0	1.0	00003000
301	15	25	0 1	Ō	1	٥.		1.	0.0	1.0	00003010
302	16	26	0 1	0	1	Ο.		1.	0.0	1.0	00003020
303	17	27	0 1	0	1	٥.		1.	0.0	1.0	00003030
304	18	28	0 1	Q	1	٥.		1.	0.0	1.0	00003040
305	19	29	0 1	0	1	٥.		1.	0.0	1.0	00003050

		1	2	3	4	5	6	7 8
CARD NO.	1234567	890	12345678901234	4567890123	4567890123456	7890123456789	9012345678	901234567890
306		12	1 1	1 1				00003060
307	4 1		1 1	1 1				00003070
308	5 1		1 1	1 1				00003080
309	6 1		1 1	1 1				00003090
310	1 4	5	1 1	1 1				00003100
311	4 1	5	1 1	1 1				00003110
312	1 5	6	1 1	1 1				00003120
313	5 1	6	1 1	1 1				00003136
314	3 2	12	1 1	1 1				00003140
315	1 6	16	1 1	1 1				00003150
316	1 5	15	1 1	1 1				00003160
317	: 4	14	1 1	1 1				00003170
318	1 16	17	1 1	1 1				00003180
319	16	30	1 1	1 1				00003190
320	17	40	1 1	1 1				00003200
321	18	30	1 1	1 1				00003210
322	12	20	1 1	1 1				00003220
323	1 12	13	1 1	1 1				00003230
324	14	20	1 1	1 1				00003240
325	13 1		1 1	1 1				00003250
326	12	23	1 1	1 1				00003260
327	13	22	1 1	1 1				00003270
328	13	24	1 1	1 1				00003280
329	14	23	1 1	1 1				00003290
330	14	25	1 1	1 1				00003300
331	15	24	1 1	1 1				00002310
332	15	26	1 1	1 1				00003320
333	16	25	1 1	1 1				00003330
334	16	27	1 1	1 1				00003340
325	17	26	1 1	1 1				00003350
336	17	28	1 1	1 1				00003360
337	18	27	1 1	1 1				00003370
338	18	29	1 1	1 1				00003380
339	19	28	1 1	1 1				00003390
340 341	22 23	33 32	1 1	1 1				00003400
342	23	34		1 1				00003410 00003420
343			1 1	1 1				00003420
343 344	24 24	33 35	1 1	1 1				00003430
345	25	34		1 1				00003450
346	25	36						00003450
347	26	35	1 1	$\begin{array}{cccc} 1 & 1 \\ 1 & 1 \end{array}$				00003480
348	26	37	1 1					00003470
349 350	27 27	36 38	1 1	1 1				00003490 00003500
350 351	28	37	1 1	1 1				00003510
352	28 28	39	1 1	1 1				00003510
352 353	29	38	1 1	1 1				00003520
354	UNSYM.B			CARDS				00003546
354 355	2 1		1	CMNDO				00003550
356		14	i					00003560
3,0	٠.	. 4	•					00003360

CARD NO.	1234567890		2 901234567890	5 012345678901234567890123456789	6 7 8 012345678901234567890
357	5 1 15	5 1			00003570
358	6 1 16				00003570
359	1 16 17				00003590
360	16 30				00003600
361	17 40				00003610
362	18 30				00003620
363	12 20				00003630
364	1 12 13				00003640
365	14 20				00003650
366	13 1 14				00003660
367	12 23				00003670
368	13 22				00003680
369	13 24				00003690
370	14 23				00003700
371	14 25				00003710
372	15 24				00003720
373	15 26				00003730
374	16 25	5 1			00003740
375	16 27	7 1			00003750
376	17 26				00003760
377	17 28				00003770
378	18 27				00003780
379	1 5 15				00003790
380	1 4 14				00003800
381	1 6 16				00003810
382	1 4 5				00003820
383	415				00003830
384	15 6				00003840
385 707	5 1 6 3 2 12				00003850
386 387	3 2 12 18 29				00003860 00003870
388	19 28				00003870
389	22 33				00003890
390	23 32				00003900
391	23 34				00003910
392	24 33				00003920
393	24 35	•			00003930
394	25 34				00003940
395	25 36				00003950
396	26 35				00003960
397	26 37	7 1			00003970
398	27 36	1			00003980
399	27 38	3 1			00003990
400	28 37				00004000
401	28 39				00004010
402	29 38				00004020
403	DAMPC CARD)			00004030
404	.10				00004040
405	NONLINEAR				00004050
406	21 22		5 .32		00004060
407	22 23	3 1	5 .48		00004070

CARD NO.	123456	1 67890	2 12345678901:	3 23456789012	4 :3456789012	5 3456789012:	6 34567890123	7 845678901.	8 234567890
400	27	21	, .	40					0000/000
408	23	24	1 5	.48					00004080
409	24	25	1 5	. 6					00004090
410	25	26	1 5	.4					00004100
411	26	27	1 5	.24					00004110
412	27	28	1 5	.48					00004120
413	31	32	1 8	.39					00004130
414	32	33	1 8	.59					00004140
415	33	34	1 8	.59					00004150
416	34	35	i 8	.75					00004160
417	35	36	i 8	.52					00004170
418	36	37	1 8	.3					00004180
419	37	38	i 8	.59					00004190
420	1	2	1 5	.32					00004200
421	2	3	1 5	.48					00004210
422	3	4	1 5	.48					00004220
423	4	5	1 5 1 5	.60					00004230
424	5	6		.40					00004240
425	6	7	1 5	.24					00004250
426	7	8	1 5	.48					00004260
427	11	12	1 5 1 5	.32					00004270
428	12	13	1 5	.48					00004280
429	13	14	1 5 1 5	.48					00004290
430	14	15	ī 5	.60					00004300
431	15	16	î ŝ	.40					00004310
432	16	17	i š	.24					00004320
433	17	18	is	.48					00004320
434	1 12	20	1 5	.48					00004330
435	1 14	20	1 5	.48					00004350
436	1 16	30	1 5	.24					00004360
437	30	40	1 5 1 5	. 48					00004370
438	19	40	1 5	.6					00004380
439	2 1	3 2 1 3	1 5 1 5	.32					00004390
440	3 2		1 5	.48					00 004400
441	1 3	1 4	1 5	.48					00004410
442	1 4	1 5	1 5 1 5	.60					00004420
443	15	1 6	1 5	. 4					00004430
444	1 6	1 7	1 5	.24					00004440
445	1 7	1 8	1 5 1 5	.48					00004450
446	1 8	1 9	i š	.48					00004460
447	- 6	16	i 5	.2					00004470
448	7	17	i š	.2					00004480
449	8	18	i š	.2					00004490
450									
					7 250/	1 510	1 = 10	1 510	00004500
451	ş	12	2.10E5	7.2E04	7.2E04	1.E10	1.E10	1.E10	00004510
452	3	13	2.44E5	8.2E04	8.2E04	1.E10	1.E10	1.E10	00004520
453	4	14	2.75E5	9.2E04	9.2E04	1.E10	1.E10	1.E10	00004530
454	5	15	2.7565	9.2E04	9.2E04	1.E10	1.E10	1.E10	00004540
455	6	16	1.80E5	6.2E04	6.2E04	1.E10	1.E10	1.E10	00004550
456	7	17	1.83E5	6.2E04	6.2E04	1.E10	1.E10	1.E10	00004560
457	2 9	10	8.50E5	1.0E10	1.5E05	1.E10	2.E07	1.E10	00004570
458	1 3	1 4	134000	1.0E10	4.3E04	1.E10	1.E10	1.E10	00004580

		1	2		3	4	5	6	7	8
CARD NO.	1234567	890	1234567890	123456	7890	2345678901	234567890	1234567890	2345678901	234567890
459	15 2		4.60E5		5E05	1.5E05	1.E10	1.E10	1.E10	00004590
460		41	4.60E5		5E05	1.5E05	1.E10	1.E10	1.E10	00004600
461	3 41	٥	4.60E5		5E05	1.5E05	1.E10	1.E10	1.E10	00004610
462	4 41	0	4.60E5		5E05	1.5E05	1.E10	1.E10	1.E10	00004620
463			UTOFF: NFBM							00004630
464		47	30000.		.E10	1.25E5	1.E10	1.E10	1.E10	00004640
465	1 43	47	30000.		.E10	1.25E5	1.E10	1.E10	1.E10	00004650
466	2 45 1		30000.		.E10	1.25E5	1.E10	1.E10	1.E10	00004660
467	1 45	48	30000.	1	.E10	1.25E5	1.E10	1.E10	1.E10	00004670
468	1 3 1		134000.		.E10	4.3E4	1.E10	1.E10	1.E10	00004680
469	1 4 1		134000.		.E10	4.354	1.E10	1.E10	1.E10	00004690
470	1 5 1		210000.		.E10	6.854	1.E10	1.E10	1.E10	00004700
471	1 6 1		265000.		.E10	1.1E5	1.E10	1.E10	1.E10	00004710
472	1 7 1		231000.		.E10	7.1E4	1.E10	1.E10	1.E10	00004720
473	181		183000.		.2E4	6.2E4	1.E10	1.610	1.E10	00004730
474		10	8.5E5		.E10	1.5E5 2.9E4	1.E10	2.E07	1.E10 1.E10	00004740
475 476	3 4	4	1.265		.E10	4.9E4	1.E10 1.E10	1.E10 1.E10	1.E10	00004750 00004760
477	5	5 6	1.5E5 1.5E5		.E10	4.9E4	1.E10	1.E10	1.E10	00004780
478	6	7	1.4E5		.E10	4.5E4	1.E10	1.E10	1.E10	00004770
479	7	8	1.255		.E10	3.9E4	1.E10	1.E10	1.E10	00064790
480	13	14	4.084		.E10	1.5E4	1.E10	1.E10	1.E10	00004800
481	14	15	4.4E4		.E10	1.5E4	1.E10	1.E10	1.E10	00004810
482	15	16	9.6E4		.E10	3.2E4	1.E10	1.E10	1.E10	00004820
483	16	17	1.0E5		.E10	3.4E4	1.E10	1.E10	1.E10	00004830
484	17	18	1.E10		.E10	1.E10	1.E10	1.E10	1.E10	00004840
485	2	12	2.1E5		.2E4	7.2E4	1.E10	1.E10	1.E10	00004850
486	3	13	2.4E5		.2E4	8.2E4	1.E10	1.E10	1.E10	00004860
487	4	14	2.7E5		.2E4	9.284	1.E10	1.E10	1.E10	00004870
488	5	15	2.755	ģ	.2E4	9.2E4	1.E10	1.E10	1.E10	00004880
489	6	16	1.8E5	6	.2E4	6.2E4	1.E10	1.E10	1.E10	00004890
490	7	17	1.8E5	6	.2E4	6.2E4	1.E10	1.E10	1.E10	00004900
491	15 2	41	4.6E5	1	.5E5	1.5E5	1.E10	1.E10	1.E10	00004910
492	14 1	41	4.6E5	1	.5E5	1.5E5	1.E10	1.E10	1.E10	00004920
493	3 41	0	4.6E5	1	.5E5	1.5E5	1.E10	1.E10	1.E10	00004930
494	4 41	0	4.6E5		.5ES	1.5E5	1.E10	1.E10	1.E10	00004940
495						DNS(NSCV CA	RDS):			00004950
496	1	2	-3 4	5	6					00004960
497			ACTION DATA							00004970
498	47	3	5 1	0	5	300.			1000.	00004980
499						166000.	32.5E+06	-166000.	-32.5E+06	00004990
500	1	, 1	215000.	42.5	E+06					00005000
501	216.		215.7	0.0						00005010
502	31	39	47 55	82		750			1000	00005020
503	48	3	5 1	0	10	350.	70 05.04	144000	1000.	00005030
504 506	,	,	240000	70.0	E+0/	166000.	39.0E+06	-100000.	-39.0E+06	00005040
505 506	1 215.		260000. 206.4	70.0	E+06					00005050 00005060
507	32	40	206.4 48 56	64	83	102 103	116 117			00005070
508	32 48	3	5 1	0	10	450.	110 117		1000.	00005080
509	70	•	, ,	J	10	210000.	45.0E+06	-210000	-45.0E+06	00005090
207						£10000.	-J. UL. UU	210000.	42.05.00	55005070

The second of th

SOCIAL SECTION SECTIONS INCLUDED INTERCOM RESERVED INVESTIGATION OF THE SECTION O

	1		3	4	5	6	7	8
CARD NO.	1234567890	12345678901	2345678901	2345678901	2345678901	2345678901	12345678901	234567890
510	1 1	300000.	100. E+06					00005100
511	215.7	206.4						00005110
512	32 40		64 83	102 103	116 117			00005120
513	49 3		0 10	480.			1000.	00005130
514	~,	•	•	210000.	50.0F+06	-210000.		00005140
515	1 1	400000.	80.0 E+06		30.02.00	210000	30.02 00	00005150
516	206.4	204.7	JU.U C.UU					00005160
517	33 41		65 84	104 105	118 119			00005170
518	49		0 10	540.	•••		1000.	00005180
519	~·	, , ,	• .0	210000.	50 0F+06	-210000.		00005190
52Ó	1 1	400000. 1	00.0 E+06	210000.	20.02.00	210000.	- 50.02.00	00005200
521	206.4	204.7						00005210
522	33 41		65 84	104 105	118 119			00005220
523	49 3		0 10	600.			1000.	00005230
524	~/ •	, ,	• .•	280000.	62 SE+06	-280000.		00005240
525	1 1	318000. 2	06.6 E+06	200000.	02.36.00	20000.	02,52,00	00005250
526			B8.7 E+06					00005260
527	206.4	204.7	00.7 E.UU					00005270
528	33 41		65 84	104 105	118 119			00005280
529	50 3		0 11	620.	***		1000-	00005290
530	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	280000.	42 EE+04	-280000.		00005300
531	1 1	318000. 2	06.6 E+06	200000.	42.32.00	-200000.	- 02.56.00	00005210
532			B8.7 E+06					00005320
533	204.7	202.0	00.7 E-00					00005330
534	34 42		85 106	107 120	121 133	134		00005340
535	50 3		1 11	820.	121 100		1000.	00005350
536		•		288000.	62.5E+06	-288000.	-62.5E+06	00005360
537	1 0	-5.2317E06	71.5E+06	200000	***************************************	200000		00005370
538			152.8E+06					00005380
539	204.7	202.0						00005390
540	34 42		85 106	107 120	121 133	134		00005400
541	51 3		1 11	820.			1000.	00005410
542				288000.	62.5E+06	-288000.	-62.5E+06	00005420
543	1 0	-5.2317E06	71.5E+06					00005430
544			152.8E+06					00005440
545	202.0	212.4						00005450
546	35 43		86 108	109 122	123 135	136		00005460
547	51 3		1 11	960.			1000.	00005470
548					96.0E+06	-315000.	-96.0E+06	00005480
549	1 0	3-5.7617E06	96.5E+06					00005490
550			200.8E+06					00005500
551	202.0	212.4						00005510
552	35 43		86 108	109 122	123 135	136		00005520
553	52 3		1 10	960.			1000.	00005530
554				315000.	96.0E+06	-315000.	-96.0+06	00005540
555	1 0	-5.7617E06	96.5E+06					00005550
556	1 1		200.8E+06					00005560
557	202.0	207.7						00005570
558	36 44	52 60	66 87	124 125	110 111			00005580
559	52 3		1 10	990.			1000.	00005590
560				270000.	84.0E+06	-270000.	-84.0E+06	00005600

	1	2	3	4	•	5 6	7	8
CARD NO.	1234567890		1234567890	1234567890	12345678	901234567890	12345678901	234567890
561		301000.	228.7E+06					00005610
562		11.3581E_06	84.2E+06					00005620
563	202.0	207.7						00005630
564	36 44		66 87	124 125	5 110 1	11		00005640
565	53 3	5 3	1 10	1090.			1000.	00005650
566				270000.	75.0E+	06 -270000.	~75.0E+06	00005660
567			-555.88E06					00005670
568		327700.	107.75E06					00005680
569 570	1 1 207.7	1.5738E06	64.D E06					00005690
571	37 45	224.2 53 61	67 88	112 113	3 126 1	27		00005700 00005710
572	53 3			112 113	120 1	41	1000.	00005720
573	55 3	, , ,	1 10	270000.	SE DES	06 -270000.	-66.0E+06	00005730
574	0 1	239000	-265.64E06	270000.	46.0L*	00 -270000.	-86.02.00	00005740
575		372214.	85.0E 06					00005750
576		804840.	50.0E 06					00005760
577	207.7	224.2	30.02 00					00005770
578	37 45		67 88	112 113	126 1	27		00305780
579	54 3			1210.			1000.	00005790
580				235000.	50.0 E	06 -235000.	-50.0E06	00005800
581	0 1	200000	-217.32E06					00005810
582	224.2	257.5						00005820
583	38 46		68 89	114 115	128 1	29		00005830
584	54 3	5 1	1 10	1320.			1000.	00005840
585				180000.	40.0 E	06 -180000.	-40.0E06	00005850
586			-91.818E06					00005860
587	224.2	257.5						00005870
588	38 46		68 89	114 115	3 128 13	29		00005880
589	54 3	5 2	1 10	1400.			1000.	00005890
590				160000.	30.0 E	06 -160000.	~30.0E06	00005900
591			-54.998E06					00005910
592		350720.	24.ZE 06					00005920
593	224.2	257.5						00005930
594	38 46		68 89	114 115	5 128 1	29		00005940
595	63 3	5 5 2	1 1	1400.	** * 5		1000.	00005950
596 597	0 1	127500	E/ 000E0/	160000.	30.0 E	06 -160000.	-30.0E06	00005960
598	•	123500 350720.	-54.998E06 24.2E 06					00005970 00005980
599	257.2	298.	24.25 00					00005990
600	63	270.						00006000
601		HISTORY D	ATA. NACC	CARDS				00006010
602	1 3		HIN: MACC	CARDS				00006020
603	11 3							00006030
604	21 3							00006040
605	31 3							20006050
606	2 3	ž i						00006060
607	12 3	\bar{z} \bar{z}						00006070
608	22 3							08020000
609	32 3	2 1						00006090
610	3 3							00006100
611	13 3	3 2 1						00006110

		1		2	3	4	5	6	7 8
CARD NO.	1234567	8901:	2345678	9012	345678901234	56789012345	67890123456	78901234567	8901234567890
612	23	7	,	1					00006120
613	33	3 3	NN	i					00006130
614	34	3	2	ī					00006140
615	14	3	2	ī					00006150
616	24	***************************************	Ž	ī					00006160
617	34	3	ž	ī					00006170
618	5	3	Ž	ì					00006180
619	15	3	Ž	ī					00006190
620	25	3	Ž	ì					00006200
621	35	3	2	1					00006210
622	6	3	2	1					00006320
623	16	3	2	1					00006230
624	26	3	2	1					00006240
625	36	3	2	1					00006250
626	7	3	2	1					00006260
627	17	3	2	1					00006270
628	27	3	2	1					00006280
629	37	3	2	1					00006290
630	8	3	2	1					00006300
631	18	3	2	1					00006310
632	28	3	2	1					00006320
633	38	3	2	1					00006330
634	9	3	2	1					00006340 00006350
635	19	3	2	1					
636	29	3	2	1					00006360
637	39	3	2	1					00006370 00006380
638	10	3	2	1					00006390
639	20	3 3 3 3 3 3 3 3 3 3	2	1					00006390
640	30	3	2	1					00006410
641	40	3	2	1					00006420
642	41	3	2	1					00006430
643	42	2	2	ļ					00006440
644	43	3	2	1					00006450
645	44	3	2	ì					00006460
646 647	45 46	2	2	i					00006470
648	47	3	2	i					00006480
649	48	3	2	i					00006490
650	0.	•	-31.						00006500
65 l	1.		-31.						00006510
652	Ô.		-16.						00006520
653	1.		-16.						00006530
654	ô.		-3.9						00006540
655	1.		-3.9						00006550
656	ô.		-3.9						00006560
657	1.		-3.9						00006570
658	Ġ.		-282	. 0					00006580
659	1.		-282						00006590
660	ō.		-131						00006600
661	i.		-131						00006610
662	ō.		-25.						00006620

CARD NO.	12345678	1 9012345678901234!	3 4 5 6 7 8 5678901234567890123456789012345678901234567890
663	1.	-25.44	00006630
664	ō.	-18.86	00006640
665	i.	-18.86	00006650
666	ö.	-780.	00006660
667	ĭ.	-780.	00006670
668	õ.	-408.	00006680
669	i.	-408.	00006690
670	õ.	-72.16	00006700
671	ĭ.	-72.16	00006710
672	ö.	-53.46	00006720
673	ĭ.	-53.46	00006730
674	ō.	-2066.	00006740
675	ĭ.	-2066.	00006750
676	ō.	-1068.	00006760
677	ī.	-1068.	00006770
678	ō.	-181.8	00006780
679	i.	-181.8	00006790
680	ō.	-134.7	0006800
681	i.	-134.7	00006810
682	ō.	-3428.6	00006820
683	i.	-3428.6	00006830
684	õ.	-1786.8	00006840
685	i.	-1786.8	00006850
686	Ö.	- 304.0	00006860
687	1.	- 304.0	00006870
688	ō.	-228.2	00006880
689	ĩ.	-228.2	00006890
690	õ.	-1012.0	00006900
691	i.	-1012.4	00006910
692	õ.	-438.6	00006920
693	i.	-438.6	90006930
694	Ó.	- 76.8	00006940
695	1.	- 76.8	00006950
696	٥.	- 57.0	00006960
697	1.	- 57.0	00006970
698	0.	-948.2	00006980
699	1.	-948.2	00006990
700	0.	-496.5	00007000
701	1.	-496.5	00007010
702	0.	- 89.7	00007020
703	1.	- 89.7	00007030
704	٥.	- 66.5	00007040
705	1.	- 66.5	00007050
706	Ο.	-322.5	00007060
707	1.	-322.5	00007070
708	ο.	-168.5	00007080
709	1.	-168.5	00007090
710	o.	-30.2	00007100
711	1.	-30.2	00007110
712	o.	-13.9	00007120
713	1.	-13.9	00007130

Serve received personal property appropriate account account to account the server assessed

CARD NO.	12345678	1 9012345678901234567	3 89012345678	4 39012	345678	5 19012	6 345678901234567890123456	8 67890
714	٥.	-202.					0000	07140
715	ĭ.	-202.						07150
716	ò.	-103.						07160
717	i.	-103.						07170
718	ô.	-17.4						07180
719	ĭ.	-17.4						07190
720	ô.	-12.9						07200
721	1.	-12.9						07210
722	å.	17545.6						07220
723	i.	17545.6						07230
724	ô.	-52.8						07240
725	i.	-52.8						07250
726	ô.	-65.5						07260
727	i.	-65.5						07270
728	ó.	-21.9						07280
729	1.	-21.9						07290
730	ō.	-15420.						07300
731	ĭ	-15420.						07310
732	ŏ.	-7710.						07320
733	i.	-7710.						07330
734	Ŏ.	-28190.					=	07340
735	ĩ.	-28190.						07350
736	Ö.	-21390.						07360
737	1.	-21390.						07370
738	ō.	-17820.					0000	07380
739	i.	-17820.					0000	07390
740	٥.	-6240.					1000	07400
741	1.	-6240.					0000	07410
742	0.	-270.8					0000	07420
743	1.	-270.8					0000	07430
744	0.	-258.					0004	07440
745	1.	-258.					0000	07450
746	MASS PLO	TS:NMEP CARDS					0001	07460
747	1		1	1	1	1		07470
748	2		1	1	1	ļ		07480
749	3		1	1	1	1		07490
750	4		1	1	1	1		07500
75]	5		1	1	1	1		07510
752	6		1	1	1	1		07520
753	7		1	1	1	1		07530
754	8		1	1	1	1		07540
755	9		i	1	1	1		07550
756	11		1	1	1	1		07560
757	12		ĩ	1	1	1		07570
758	13		į	1	1	1		07580
759	14		1	1	ļ	j		07590
760	15		1	1	1	1		07600
761	16		1	ļ	1	1		07610
762	17		1	1	1	1		07620
763	18		į	1	j	1		07630
764	19		1	1	1	1	0000	07640

CARD NO.	1	2	3	4	5	6	7	8
	1234567890123	456789012345	678901234567	1890123	34567890123456	789012345	6789012345:	67890
765 766 767	47 48 END		1	1	1		0000	07650 07660 08400

BOOK TOOLSES TOOLSES

APPENDIX B

APPENDIX B: KRASH TIME HISTORY RESPONSES - EXPANDED MODEL

abol kindonen (byzasach koepeepe) (eeeseese

MASS 2 UNFILTERED	ACCELERATION(G'S)	
* TIME(SEC) XACC YACC	ZACC	SCALE FACTOR = 4.903E+00
0.0 1.308E-02 0.0 0.005 -7.743E-02 0.0	-3.538E-02 -1.896E-02	UNFILTERED ACCELERATION
0.010 -2.583E-02 0.0 0.015 -5.297E-01 0.0	-2.016E-02 B.688E-02	ON INCIDENTAL PROPERTY OF THE
0.020 ~1.029E+00 0.0 0.025 ~1.532E+00 0.0 0.030 ~3.634E+00 0.0	1.070E-01 2.423E-01 6.569E-01	<i>→</i> /:\
0.035 ~4.648E*00 0.0 0.040 ~4.071E*00 0.0	1.247E+00 2.545E+00	
0.045 ~6.110E+00 0.0 0.050 ~3.050E+00 0.0	~1.500E+01 ~1.548E+01	
0.055 -2.623E+00 0.0 0.060 -5.536E-01 0.0 0.065 4.421E+00 0.0	~1.080E+01 -7.713E+00 4.735E+00	
0.070 5.009£+00 0.0 0.075 -5.149£+00 0.0	1.164E+01 4.457E+00	
0.080 -5.951E+00 0.0 0.085 -4.124E+00 0.0	-3.668E+00 -2.955E+01	
0.090 2.398E+00 0.0 0.095 -2.936E+00 0.0 0.100 -6.814E+00 0.0	-2.494E+01 -1.11(E+00 -7.874E+00	
0.105 -2.434E+00 0.0 0.110 3.691E+00 0.0	-2.772E+01 -1.001E+01	
3.115 7.436E+00 0.0 0.120 1.202E+00 0.0	-1.301E+00 -2.328E+00	
0.125 -3.869E-01 0.0 0.130 -1.286E+00 0.0 0.135 -2.431E+00 0.0	-3.966E+00 -9.723E+00 -7.909E+00	
0.140 -1.058E+00 0.0 0.145 -6.731E-01 0.0	-2.179E+00 -3.834E+00	
0.150 9.075E-01 0.0 0.155 1.300E+00 0.0	-1.219E+01 -1.380E+01	
0.160 1.787E+00 0.0	-3.0296.00	
MASS 2 FILTERED A TIME(SEC) XACCF YACCF	CCELERATION(G'S) ZACCF	
# ±	• • • • • • • • • • • • • • • • • • • •	\$CALE FACTOR = 4.0146.00
0.0 0.0 0.0 0.005 -1.795E-02 0.0 0.010 -7.156E-02 0.0	D.O ~2.646E-02 ~1.485E-02	FILTERED ACCELERATION
0.015 -1.695E-01 0.0 0.020 -7.769E-01 0.0	1.2596-02	. \$
0.025 ~1.144E+00 0.0 0.030 ~2.437E+00 0.0	1.480E-01 4.095E-01	أن المراجعة المر
0.035	8.785E-01 1.863E-00 -5.618E-00	سنسنه
0.050 -4.334E+00 0.0 0.055 -3.114E+00 0.0	~1.456E+01 ~1.290E+01	
0,060 ~1.885E •00 0.0 0,065 1.921E •00 0.0	~9.582E+00 ~1.875E+00	
0.070 4.873E+00 0.0 0.075 8.106E-01 0.0 0.080 -5.786E+00 0.0	7.907E+00 7.492E+00 9.283E-01	
0.085 -4.807E+00 0.0 0.040 -8.990E-G1 0.0	-1.627E+01 -2.596E+01	
0.095 -2.419E-01 0.0 0.100 -4 966E-00 0.0 0.105 -4.522E-00 0.0	~1.567E+01 ~3.533E+00 ~1.755E+01	
0.113 1.0.cf-01 0.0 0.115 5.432E+00 0.0	-1.902E+01 -5.575E+00	
0.120 4.124E+00 0.0 0.125 5.548E-01 0.0	-2.567E+00 -3.28+E+00	> :
0.130 -4.185E-01 0.0 0.135 -1.462E+00 0.0 0.140 -1.645E+00 0.0	~5.974E+00 ~9.153E+00 ~4.594E+00	
0.145 -9.9652-51 0.0 0.153 2.548E-62 0.0	-2.141E+00 -8.244E+00	
0.155 1.055: 00 0.0 0.160 1.342E+00 0.0	~1.300E • 01 ~8.588E • 00	
MASS 2 MAGS IMPULS	ES	
TIME (SEC) XIME YIMP	ZIMP	SCALE FACTOR = 1.104E-01
0.0 0.0 0.0 0.005 2.8%E-0# 0.0	0.0 -1.020E-04	MASS IMPULSE
0.010 +3.023E+04 0.0 0.015 +6.207E+04 0.0	~1.940E-04 ~2.563E-04	MAGG IMPULGE
0.020 -3.1288~03 0.0 0.025 -7.873E~02 0.0	9.029E-05 6.521E-04	. :
0.030 -1.626E-02 0.0 0.035 -3.297E-02 0.0 0.040 -5.438E-02 0.0	1.966E-03 5.153E-03 1.178E-02	
0.045 ~7.76CE+02 0.0 0.050 ~1.034E-01 0.0	9.579E-03 ~4.832E-02	*
0.055 -1.213E-01 0.0 0.060 -1.344E-01 0.0 0.065 -1.346E-01 0.0	~1.187E~01 ~1.745E-01 ~2.059E-01	
0.065 -1.346E-01 0.0 0.070 -1.162E-01 0.0 0.075 -9.824E-02 0.0	~1.889E-01 ~1.461E-01	
0.080 +1.1577-01 0.0 0.085 +1.4277-01 0.0	-1.244E-01 -1.563E-C1	• • •
0.090 -1.5848-01 0.0 0.095 -1.5498-01 0.0 0.100 -1.7098-01 0.0	~2.724E-01 ~3.848E-01 ~4.183E-01	
0.100 -1,7098-01 0.0 0.105 -1,9738-01 0.0 0.110 -2,0898-01 0.0	~4.675E-01 ~5.726E-01	
0.115 -1.95%E-01 0.0 0.120 -1.665E-21 0.0	-6.285E-01 -6.460E-01	
0.125 -1.55*F-01 0.0 0.130 -1.56.E-01 0.0 0.135 -1.623E-01 0.0	-6.601E-01 -6.809E-01 -7.225E-01	
0.140 -1.770E-01 0.0 0.145 -1.787E-01 0.0	-7.572E-01 -7.752E-01	
0.150 ~1.8105-01 0.0 0.155 ~1.776 =11 6.0	-8.010E-01 -8.575E-01	
0.160 -1.7202-0. 0.5	-9.155E-01 ·	• :

MASS 3 UNFILTERED ACCELERATION(G'S)

SCALE FACTOR = 8.6946		21MP	V;MP	* IMP	TIPE(SEC)
······································	MANO IMPULGE	0.0	0.0	0.0	
•	MASS IMPULSE	~9.0842-05		1.311E-05	
••		-1.124E-04		\$.711E-64	
••		-4.427E-00		1.14.2-03	
• •		7.710E-04		4848-62	0.0.0 -
• •		1.901E-03			
• •		3.U84E-03			
• •		4.0318-03		3.7H8L-02	
• •		2.117E-03		5.433E-02	
• •:		-5.7051-03		6 924E-02	
• • •		-2.532E-02		8.7058-02	
• • •		-6.2438-02		1.0675-6:	
•		-1.182E-01		1.204E-01	
• •		-1.901F-01		1.2468-01	
• • •		-2.711E-01		1.1825-01	
•	•	-3.50eE-01		1.079E-01	
• ,	•	-4.200E-01			
•	•	-4.725E-01		9.8685-02	
•	•	-5.112E-01		1.2385-01	
•	•	-5.3778-0;		1.6148-01	
•	•	-5.575E-01		1.86.E-01	
•	•	-5.71eE-01		1.9398-01	
•	•	-5.827E-01		1.8946-01	
•	•	-5.978E-01		1.9125-61	
•	•	-6.15/E-01		1.9375-01	
•	•	-6.380E-01		1.893E-01	
•	•	-6.627E-01		1.7726-61	
•	•	-6.86°L-01		1.657E-01	
•		-7.079E-31		1.6358-31	
•		-7.218E-01 ·		1.684E-01	
•		-7.264F-01 ·		1.7425-01	
•		-7.222E-01 •		1.7cit-81	
•		-7.135E-01	0.0	1.7500-01	0.160 -

SON ESTESSES ISSUEDED EXCESSES ESSESSES

second property of the second

carrenges postages volument responses in

PROGRAM (SECRECAS PROGRAMS) RECOGNIS

was received pressure

MASS 7 UNFILTERED ACCELERATION(G'S)

TIME (SEC)	XACC	YACC	ZACC	SCALE FACTOR & 2.709E+06
0.0	1.334E-02		-2.314E-02	
	-2.783E+00		-6.028E+00	UNFILTERED ACCELERATION
	-3.181E+00		-1.479E+01	
0.015	-6.711E-01		-1.863E+01	
0.020	6.956E-01		-1.417E+01	
0.025	3.421E+00		-2.970E+00	
0.030	1.310E+00		2.668E+00	
	-1.958E+00		6.915E-01	
	-1.554E+00		-6.347E-01	
	-1.0.3E+00	0.0	-1.472E+00	
0.050	-2.265E+00	0.0	-2.958E+00	
	-3.299E+00		-4.061E+00	
0.060	-3.765E+00		-4.308E+00	<i>1</i> / .
	-3.618E+00		-5.057E+QQ	
	-2.403E+00		-4.294E+00	
	-1.556E+00		-3.183E+00	, , , , , , , , , , , , , , , , , , ,
	-I.837E•00		-5.129E+00	((.
	-6.631E-01		-2.761E+00	
0.090	6.043E-01		-1.620E+00	
0.095	6.547E-01		-9.400E-01	المؤيد المراجع
	-1.521E+00		-2.424E+00	The state of the s
	-2.597E+00		-4.136E+00	· · · · · · · · · · · · · · · · · · ·
	-3.560E+00		-6.005E+00	
	-3.063E+00		-7.374E+00	
	-1.678E+30		-7.650E+00	
0.125	-7.491E-01		-6.720E+00	
0.130	7.913E-01		-4.393E+00	
0.135	7.190E-01		-1.342E+00	
0.140 0.145	3.180E-01 5.757E-01		1.866E+00	
	-2.737E-01		3.935E+00 4.124E+00	· · · · · · · · · · · · · · · · · · ·
0.155	-5.231E-01		3.215E+00	
	-1.460E-01		2.178E+00	
0.100	-1.4605-01	0.0	2.1786*00	

Section 5

ADDITION ASSESSED RELACIONAL DEPOSITOR PREFEREN

7 FILTERED ACCELERATION(G'S)

MASS 7 MASS IMPULSES

TIME (SEC)	XIMP B	YIMP *	21MP		SCALE FACTO	R = 7.563E-02
0.0	0.0	0.0	0.0	MAAGO IMBIU OF		.1
	-3.009E-03		-3.402E-03	MASS IMPULSE		•
	-1.501E-02		-3.421E-02			
	-2.765E-02		-1.004E-01		•	• •
	3.228E-02		-1.855E-01		•	
	2.848E-02		-2.516E-01	•		
	-1.604E-02		-2.742E-01	•		* *
	-1.035E-02		-2.705E-01	•		
	1.539E-02		-2.679E-01	•		
	-2.196E-02		-2.702E-01	•		• •
	-2.829E-02		-2.774E-01	•		
	-3.924E-02		-2.912E-01	•		
	-5.448E-0:		-3.102E-01	•		
	-7.228E-02		-3.319E-01	•		=
	-8.98GE-02		-3.559E-01	•		=
	-1.025E-01		-3.770E-01	•		
	-1.119E-01		-3.942E-01	•		
	-1.200E-01		-4.100E-01	•	•	
	-1.239E-01		-4.235E-01	•	•	
	-1.221E-01		-4.322E-01	•	-	
	-1.20/c-0!		-4.389E-01	•		=
	-1.248E-01		-4.508E-01	•	•	
	-1.390E-01		-4.70BE-01	•		
	·1.557E-0.		-4.995E-01	•		
0.120	1.698E-01	0.0	-5.347E-01	•		
0.125	-1.791E-01	6.0	-5.717E C1	•	•	
0.130	1.8298-01	0.0	-6.047E-01	•		
	1.8096-01	0.0	-6.271E-01	•		
	-1.786E-01	5.0	-6.353E-01	•		
	-1.759E-01		-6.285E-01	•	•	=
	-1.7385-01	0.0	-6.115E-01	•		
	-1.74 bE-0;	0.0	-5.923E-01	•	4	
	-1.764E-01		-5.762E-01	•		
			2522 01			

ASSESS SERVICES CANSESS CANSES CONTRACTOR SERVICES

MODUL SPENDED FORGOOD FORDER

ASSERTAL PROPERTY (MARKEDON) (MARKEDON) (MARKEDON) (MARKEDON)

12:00:00

STEEDS PAYMENT TANNONS OF THE STATE

AND SECTION ASSESSMENT

A RECESSOR RESIDENCE PROPERTY FREEZESSE

APPENDIX C

STANDARD DISTRIBUTION LIST

Region Libraries		Headquarters (Wash. DC)
Alaska Central Eastern Great Lakes New England Northwest-Mountain Western-Pacific Southern	AAL-64 ACE-66 AEA-62 AGL-60 ANE-40 ANM-60 AWP-60 ASO-63d ASW-40	ADL-1 ADL-32 (North) APM-1 APM-13 (Nigro) ALG-300 APA-300 API-19 AT-1 AWS-1 AWS-1 AWS-3
Center Libraries		OST Headquarters Library
Technical Center Aeronautical Center	ACT-64 AAC-44.4	M-493.2 (Bldg. 10A)
Civil Aviation Autho Aviation House 129 Kingsway London WC2B 6NN Engl		University of California Sers Dpt Inst of Trsp Std (2.1) 412 McLaughlin Hall Berkely, CA 94720
Embassy of Australia Civil Air Attache 1601 Mass Ave. NW Washington, D. C. 2		British Embassy Civil Air Attache ATS 3100 Mass Ave. NW Washington, DC 20008
Scientific & Tech. Attn: NASA Rep. P.O. Box 8757 BWI A Baltimore, Md. 212	prt	Dir. DuCentre Exp DE LA Navigation Aerineene 941 Orly, France
DOT-FAA AEU-500 American Embassy APO New York, N. Y.	09667	Northwestern University Trisnet Repository Transportation Center Lib Evanston, Ill. 60201

Government Activities	No. of Copies
FAA, Washington, DC 20591 (Attn: Harold W. Becker, ASF-300; Thomas McSweeny, AWS-100)	(2)
FAA, 4344 Donald Douglas Drive, Long Beach, CA 90808 (Attn: Stephen Soltis, ANW-102N)	(1)
FAA, Mike Monroney Aeronautical Center, P.O. Box 25082, Oaklohoma City, OK 73125 (Attn: Richard Chandler, AAM-119)	(1)
NASA, Langley Research Center, Hampton, VA 23365 (Attn: Emilio Alfaro-Bou, MA-495; Huey Cardin, MS-495)	(2)
U.S. Army Aviation Applied Technology Directorate, USAARTA, (AVSCONFORT Eustis, VA 23604 (Attn: Roy Burrows, Code SAVRT-TY-ASV)	4), (2)
U.S. Navy Naval Air Development Center, Warminister, PA 18974 (Attn: Leon Domzalski, Code 60322)	(1)
NTSB, 800 Independence Ave. S.E., Washington, DC 20594 (Attn: John C. Clark, TE 60)	(1)
Non-Government Activities	
Beech Aircraft Corp., P.O. Box 85, Wichita, KS 67201 (Attn: Dayton L. Hartley; James E. Terry; William Schultz)	(3)
Bell Helicopter Co., P.O. Box 482, Fort Worth, TX 76101 (Attn: James Cronkite, MS 11; Roy G. Fox)	(2)
Boeing Airplane Co., P.O. Box 3707, Seattle, WA 98124 (Attn: Edward Widmayer, MC-9W-22)	(1)
Boeing Co., Vertol Division, P.O. Box 16858, Philadelphia, PA 919 (Attn: Denise Vassilakos, MS P30-27)	42 (1)
Cessna Aircraft Co., P.O. Box 7704, Wichita, KS 67277 (Attn: John Berwick; Robert Held; Richard Soloski)	(3)
Fairchild Aircraft Corp., P.O. Box 3246, San Antonio, TX 78284 (Attn: Walt Dwyer)	(1)
General Dynamics/Convair, P.O. Box 80847, San Diego, CA 92138 (Attn: L. Mastny, MA 80-6030)	(1)
Grumman Aerospace Corp., So. Oyster Bay Road,, Bethpage, L.I., NY 11714	(2)
(Attn: Robert Winter, A08-35; Allan B. Difko, A08-35)	

Gulfstream Aerospace Corp., P.O. Box 2206, Savannah, GA 31402 (Attn: George Westphal)	(1)
Guifstream Aerospace Corp., P.O. Box 22500, Oklhoma City, OK 73123 (Attn: Richard Southard)	(1)
Lockheed-California Co., Burbank, CA 91503 (Attn: Gil Wittlin, D 76-12, B 63G, PLT A-1)	(1)
McDonnell Douglas Corp., 3855 Lakewood Drive, Long Beach, CA 90846 (Attn: J. Webster; John L. Galligher)	(2)
McDonnell Douglas Helicopter, 4645 S. Ash Ave., Tempe, AZ 85182 (Attn: Lyndon Landborne; J.K. Sen)	(2)
Piper Aircraft Corp., 2925 Piper Drive, Vero Beach, FL 32960 (Attn: Marion Dees)	(1)
Sikorsky Aircraft, North Maint Street, Stratford, CT 06601	(2)

3.5