0. 写在前面

1本课程总体结构

章节		教学内容		
第一章 引言 (刘均, 2)		概念与研究背景;主要任务;挑战与研究方向;相关资源		
第二章: 自然语言的 统计特性(刘均,1)		Zipf定律、Heaps定律、Benford 定律。		
	词袋模型 (刘均, 3)	语言模型;词袋模型(BoW);TF-IDF。 NLU任务:情感分析、文本聚类。		
第三章:	概率语言模型 (李辰, 6)	概率语言模型; n-gram 模型; 最大似然估计; 平滑技术。 NLU任务: 分词、语义关系抽取。		
语言模型	主题模型	生成模型;主题模型的图表示; LSA、PLSA、LDA; NMF等。		
	(刘均, 6)	NLU 任务: 话题检测、推荐。		
	神经网络语言模型 (李辰, 6)	分布式表示; C&W、CBOW、Skip-Gram、Glove等。 NLU任务: 对话、实体消歧。		
	概述 (李辰, 1)	面临的挑战;发展历程;方法类别及特点;MT评估。		
第四章: 机器翻译	统计机器翻译 (李辰, 3)	统计MT; Noisy Channel模型; IBM模型。		
	神经网络机器译 与大语言模(刘均.4)	RNN与LSTM简介: Encoder-Decoder框架: Attention模型:		

- 这门课由于由两门老师授课,个人感觉结构比较混乱
- 由于时间紧任务重经费无,所以笔记还是按PPT内容和以上结构展开,即使有很多不合理的 地方

2 考试有关事项

1. 基于矩阵分解的主题模型

1.0. 概述

1. 主题分布: 每篇文档由若干主题按一定比例构成

2. 词语分布:每个主题包含一组特定的词语,每个词具有不同的出现概率

2 概率模型

1. 公式:
$$p(w|\text{Doc}) = \sum_{i=1}^{n} p(w|T_i) \cdot p(T_i|\text{Doc})$$

2. 含义: 将文档的内容视为不同主题的组合→由每主题的词语概率预测文档中词语的分布

1.1. LSA(SVD)模型

1 奇异值分解

1. 含义:对任意 $A_{m \times n}$ 可将其分解为三个矩阵 $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$

矩阵类型	描述	
左奇异矩阵 $U_{m \times m}$	为正交矩阵即 $U_{m imes m}U_{m imes m}^T{=}I_{m imes m}$	
奇异值矩阵 $\Sigma_{m imes n}$	为对角矩阵(对角为是奇异值),如 $\begin{bmatrix} \alpha_1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \alpha_2 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \alpha_3 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \alpha_m & \cdots & 0 \end{bmatrix}_{m \times n}$	
右奇异矩阵 $V_{n imes n}$	为正交矩阵即 $V_{n imes n}V_{n imes n}^T{=}I_{n imes n}$	

- 2. Eckart-Young-Mirsky定理: $A_k = U_k \Sigma_k V_k^T$ 奇异值的截断
 - 。 U_k 和 V_k 分别是 U 和 V 的前 k 列
 - \circ Σ_k 是奇异值矩阵 Σ 中前 k 个最大的奇异值组成的 $k \times k$ 子矩阵

2 LSA模型步骤: 原始 $^{\phi F}$ 原始 $^{\phi F}$ 其近似的低阶矩阵

1. Word-Doc矩阵:

$$\circ \ \ A_{t \times d} = \begin{bmatrix} \operatorname{Doc}_1 \rightarrow \operatorname{Word}_{11} & \operatorname{Doc}_2 \rightarrow \operatorname{Word}_{12} & \cdots & \operatorname{Doc}_n \rightarrow \operatorname{Word}_{1d} \\ \operatorname{Doc}_1 \rightarrow \operatorname{Word}_{21} & \operatorname{Doc}_2 \rightarrow \operatorname{Word}_{22} & \cdots & \operatorname{Doc}_n \rightarrow \operatorname{Word}_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Doc}_1 \rightarrow \operatorname{Word}_{t1} & \operatorname{Doc}_2 \rightarrow \operatorname{Word}_{t2} & \cdots & \operatorname{Doc}_n \rightarrow \operatorname{Word}_{td} \end{bmatrix}$$

- 。 $Doc_i \rightarrow Word_{ij}$ 可为词 $Word_{ij}$ 的词频或者TF-IDF值
- 2. $A_{t \times d}$ 奇异分解: $A_{t \times d} = T_{t \times n} S_{n \times n} D_{d \times n}^T$

矩阵类型	描述
$S_{n imes n}$	奇异值按降序排列,代表重要的 <mark>潜在语义的强度</mark>
$T_{t imes n}$	词汇矩阵,每列蕴含一个隐含概念(主题)
$D_{d imes n}$	文档矩阵,每列蕴含一个隐含概念(主题)

3. 低秩近似: $A{
ightarrow}A_k$

 \circ 降噪: $A_{t \times d} = T_{t \times n} S_{n \times n} D_{d \times n}^T \xrightarrow{S_{n \times n}} A_{t \times d} = T_{t \times k} S_{k \times k} D_{d \times k}^T$, 滤掉不重要的主题

3 文档与词汇的表示

1. 词汇: $T_{t \times k} S_{k \times k}$ 的行向量,且 $\hat{w}_n = u_n \times \mathbf{S}$

2. 文档: $D_{d imes k} S_{k imes k}$ 的行向量 $(S_{k imes k} D_{d imes k}^T$ 的列向量),且 $\hat{d}_m =$ $\mathbf{S} imes v_m^T$

1.2. MNF建模

1建模过程

1. 对 \mathbf{V} 寻找非负矩阵 $\mathbf{H}\mathbf{W}$ 使 \mathbf{V} pprox $\mathbf{W}\mathbf{H}$

2. 使得代价函数
$$\|V-WH\|=\sqrt{\sum_{i,j}\left(V_{i,j}-(WH)_{i,j}
ight)^2}$$
 尽可能小

2 建模的意义

1. 非负: 使分解结果更有意义

2. 示例: **(文档-单词)** (文档-主题)×(主题-单词)

2. 基于概率的主题模型

2.0. 概率模型概述

1符号:其中K为话题数, $K \ll M$ 且为预先定义的超参数

集合	含义	随机变量
文本集 $D{=}\{d_1,d_2,\ldots d_N\}$	包含所有文本, N 为文本总数	<i>d</i> (观测变 量)
话题集 $Z{=}\{z_1,z_2,\ldots z_K\}$	包含所有可能的话题, K 为 <mark>预设</mark> 话题 总数	z(隐藏变 量)
词汇集 $W = \{w_1, w_2, \dots w_M\}$	所有可能的单词, M 为单词总数	w(观测变 量)

 ${\bf 2}$ 三类分布: P(d)为可观测参数,如何估计P(z|d)和P(w|z)两参数派生了pLAS和LDA方法

分布	表示	含义
文档分 布	$P(d)\sim$ 多项分布	生成文本 d 的概率
主题分布	$P(z d) \sim$ 多项分布	文本 d 生成话题 z 的概率,每个文本都有其主题分布
单词分 布	$P(w z) \sim$ 多项分布	话题 z 生成单词 w 的概率,每个主题都有其单词分布

3 观测表征

1. 观测数据:文本-单词共现矩阵,其中n(单词i,文本j)表示单词i在文本j中出现的次数

共现矩阵 T	文 d_1	$\mathbf{\dot{x}}d_{2}$	•••	文 d_N
词 w_1	n (词 w_1 , 文 d_1)	$n(词w_1, 文d_2)$		n (词 w_1 ,文 d_N)
词 w_2	n (词 w_2 , 文 d_1)	$n(词w_2, 文d_2)$	• • •	n (词 w_2 ,文 d_N)
•••	•••			
词 w_M	$n(词w_M, 文d_1)$	$n(词w_M, 文d_2)$	• • •	$n(词w_M, 文d_N)$

2. 生成概率:假设每个单词分布独立,则有 $P(T) = \prod_{(w,d)} P(w,d)^{n(w,d)}$

⁴LDA与pLSA

模型	思想	对于两 $P(z \mid d)$ 和 $P(w \mid z)$ 待估参数
pLSA	频率学	视作固定值(即均匀分布),用最大似然估计解出来
LDA	贝叶斯	视作服从Dirichlet分布的随机变量,先验分布——)最终分布

2.1 pLSA模型

1生成模型:

1. 定义: 对生成概率 $P(w,d)=P(d)\sum_{z}P(z|d)P(w|z)$ 形式的拆解

2. 概率依赖: 文本→话题→单词

选 择	描述	备注
文本	从 D 中,按 $P(d)$ 选择文本 $d \xrightarrow{ \mathbb{E} g N \wedge}$ 生成 N 个文本	N为文本数量
话题	对每个文本,按 $P(z d)$ 选择话题 z 一	<i>L</i> 为文本(定/变) 长
单词	对每个话题,按 $P(w z)$ 选择一单词	N/A

2 共现模型:

1. 定义:对生成概率 $P(w,d) = \sum_{z \in Z} P(z) P(w|z) P(d|z)$ 形式的拆解

2. 概率依赖: 话题→单词, 话题→文本

选择	描述	备注
话题	从 Z 中,按 $P(z)$ 选择话题 $z^{ ext{ iny $\pm 0}L}$ 全成 L 个话题	<i>L</i> 为文本(定/变)长
单词	对每个话题,按 $P(w z)$ 选择一单词	单词/文本的选择独立
文本	从 D 中,按 $P(d z)$ 选择文本 $d $	N为文本数量

2.2. LDA模型简述

☆別看PPT了那就是一坨屎,以下内容来自维基百科

1 LDA模型要素

1. 三种分布:

分布	维度	元素	隐藏/观测
主题分布Θ	文档数×主题数	$ heta_{i,j}$ 为文档 i 中主题 j 的比例	隐藏
词汇分布β	主题数×词汇数	$eta_{i,j}$ 为主题 i 中词汇 j 的频次	隐藏
主题分布w	文档数×词汇数	$\mathbf{w}_{i,j}$ 为文档 i 中词汇 j 的频次	观测

2. 两种超参数:

超参数	描述	功能
α	文档集级参数, Dirichlet分布参数	生成文档的主题Θ
η	文档集级参数, Dirichlet分布参数	生成每个主题的β

2 LDA的生成:分布

$$p\left(w_{i}, z_{i}, heta_{i}, \Phi \mid lpha, eta
ight) = \prod_{j=1}^{N} p\left(heta_{i} \mid lpha
ight) p\left(z_{i, j} \mid heta_{i}
ight) p\left(\Phi \mid eta
ight) p\left(w_{i, j} \mid \phi_{z_{i, j}}
ight)$$

1. 第一部分:

- 。 从先验Dirichlet分布 α 中抽样 \rightarrow 生成某一文档i的主题(多项式)分布 θ_i

2. 第二部分:

- 从先验Dirichlet分布 η 中抽样 \rightarrow 生成主题 $z_{i,j}$ 的词语分布 $\beta_{z_{i,j}}$
- 。 从 $\beta_{z_{i,j}}$ 分布中抽样ightarrow生成词语 $w_{i,j}$

⁴ LDA的求解(训练): 我也不信考试会考这B玩意儿

- 1. EM算法(Old-Fashioned)
- 2. Gibbs采, MCMC(Markov Chain Monte Carlo)算法

3.2.3. 番外: pLSA的EM求解

0 总体思路

1. 极大似然估计:找到时P(T)最大的参数

2. EM算法: 直接最大化对数似然函数非常困难,从而通过EM迭代的方式实现

1 极大似然函数

1. 似然函数推导

。 给定共现数据
$$\mathbf{T} = \{n(w_i,d_j)\}$$
 →要让 $P(T) = \prod_{i,j} P(w_i,d_j)^{n(w_i,d_j)}$ 最大

○ 取对数+引入隐含变量:

2. 似然函数分析:

 \circ 已知值: $n(w_i,d_j)$ 在 \mathbf{T} 向量中就有之, $p(d_j)$ 可由真实大量文本集得到

。 参数値:
$$\log\left(\sum_z p(z_k|d_j)p(w_i|z_k)\right)$$
, 其中 $\log\sum$ 形式适合用EM算法解决

2 极大似然函数的下界

1. Jensen不等式

情况	E(f(x)) $=$ $f(E(x))$
f(x)为凸函数	$E(f(x)) \geq f(E(x))$
f(x)为凹函数	$E(f(x)) \leq f(E(x))$
$x{=}C$	E(f(x)) = f(E(x))

2.
$$\log\left(\sum_{z}p(z_{k}|d_{j})p(w_{i}|z_{k})\right)$$
的处理:构建方差 $+$ 应用 J ensen不等式

$$\circ \quad \sum_{z} p(z_k|d_j) p(w_i|z_k) \xrightarrow{z$$
的分布 $Q(z)$ $} \sum_{z} Q(z) \frac{p(z_k|d_j) p(w_i|z_k)}{Q(z)} \xrightarrow{X = \frac{p(z_k|d_j) p(w_i|z_k)}{Q(z)}} E(X)$

$$\circ$$
 原始 $=\log(E(X))$ $\xrightarrow{\log(x)$ 为凹函数 原式 $\supseteq E(\log(X)) = \sum_{z} \left(\log \frac{p(z_k|d_j)p(w_i|z_k)}{Q(z)}\right)Q(z)$

3. 下界与极大似然:提升下界
$$\sum_z \left(\log rac{p(z_k|d_j)p(w_i|z_k)}{Q(z)}
ight)Q(z)$$
的最大值 \to 最大化似然函数

3 EM算法: 详细步骤就不写了, 我不信考试会考这B玩意儿

1. ${
m E5}$: 确定 ${
m Q}$ 函数ightarrow表示当前参数估计下<mark>完全数据(观测数据+隐含变量)</mark>的对数似然的期望

$$\circ$$
 此处 $Q = Q(z) = p(z_k|w_i,d_j)$

2. M步: 迭代Q函数,不断更新参数→使当前参数估计靠近最优值

 \circ 此处需要更新的参数为文档-主题分布P(z|d), 主题-词汇分布P(w|z)

。 最终使
$$\sum_{z} \left(\log \frac{p(z_k|d_j)p(w_i|z_k)}{Q(z)} \right) Q(z)$$
最大,从而使 $P(T)$ 最大