EE315 - Electronics Laboratory

Experiment - 7 Simulation **BJT Amplifier Frequency Response**

Preliminary Work

- **1. Common emitter amplifier** is characterized by high voltage gain (A_v) and current gain (A_i) . A typical amplifier has a relatively high input resistance $(1-10k\Omega)$ and a fairly high output resistance. Therefore it is generally used to drive medium to high resistance loads. It is used in applications where a small voltage signal needs to be amplified to a larger voltage signal. Since the amplifier cannot drive low resistance loads, it is usually cascaded with a buffer that serves as a high-current driver.
- a) Calculate the values of R_C, R_E, R₁ and R₂ in Figure 1 that will be used in the procedure according to the following requirements:
- V_{CEQ} ≈ 5 V
- > I_{CQ} ≈ 5 mA
- $ightharpoonup R_1//R_2$ between 5 k Ω and 10 k Ω
- ➤ No-load (without R_L) voltage gain is ~50.

Figure 1: Common emitter amplifier

Hint: Voltage drop on R_C + R_E should be 5 V when I_{CQ} = 5 mA. First, choose a couple of standard resistor values for R_C and R_E that will give R_C + R_E ≈ 1 kΩ. Afterwards, set R_2 = 10 kΩ and calculate R_1 to obtain I_{EQ} ≈ I_{CQ} = 5 mA.

- **b)** Calculate the cut-off frequency due to each capacitor.
- 2. The common collector amplifier (also called emitter-follower) is a unity voltage gain, high current gain amplifier. The input resistance for this type of amplifier is usually $1 \ k\Omega$ to $100 \ k\Omega$. Because the amplifier has a voltage gain of one, it is useful as a buffer amplifier, providing isolation between two circuits while providing driving capability for low resistance loads.
- a) Calculate the values of R_C, R_E, R₁ and R₂ in Figure 2 that will be used in the procedure according to the following requirements:
- V_{CEQ} ≈ 5 V
- > I_{CQ} ≈ 5 mA
- $ightharpoonup R_1//R_2$ between 5 k Ω and 10 k Ω

Figure 2: Common collector amplifier

b) Calculate the cut-off frequency due to each capacitor.

Procedure

1.a) Build the circuit given in Figure 1 using the values calculated in the preliminary work. Set the input voltage to **20 mV**peak. Record the values of v_{in} , v_{out} and calculate $A_V = 20 \log |v_{out}/v_{in}|$, sweeping the input frequency from **50 Hz** to **100 kHz**.

f (Hz)	v _{in} (V)	v _{out} (V)	A _V (dB)
50			
100			
200			
500			
1000			
2000			
5000			
10000			
20000			
50000			
100000			

- **1.b)** Increase the input signal level until output voltage clipping occurs. Record the maximum input and output levels of undistorted sine wave signal.
- **1.c)** Note the phase shift between output and input. Is your amplifier inverting or noninverting?
- **1.d)** Is the bandwidth of your common emitter amplifier suitable for an audio amplifier? Which one of the three capacitors (C_{Ci} , C_{Co} , or C_{bp}) is the component that limits the bandwidth? What should be done to cover the frequency range required for an audio amplifier?
- **1.e)** What will be the voltage gain of your common emitter amplifier, if $R_L = 8\Omega$ (input resistance of a common speaker)?
- **1.f)** Right-click on the ν_{in} source, select "(none)" as the source function and set **AC amplitude** to **1.0** in the **Small signal AC analysis (.AC)** section. Right-click on the ".tran....." simulation command, select the **AC analysis** tab, select "**Decade**" sweep type with **100** points per decade resolution and set the frequency range from **50 Hz** to **100 kHz**. Run simulation and observe ν_{out} as a function of frequency. Compare the AC analysis results with the **A**_V values found in **1.a**.
- **1.g)** Increase stop frequency to **100Meg** in the **.AC** simulation command. Run simulation and record the **-3 dB** high frequency cut-off point.

FHEC	=					

İYTE - Department of Electrical and Electronics Engineering

1.h) Typically there is a 10 pF capacitance between two neighboring slots of a
breadboard. In order to simulate the transistor behavior on a breadboard, connect a
10 pF capacitor between base and collector pins of the transistor and connect
another 10 pF capacitor between base and emitter pins. Run simulation and record
the -3 dB high frequency cut-off point with the added capacitors.

⊢ HFC	=	
Explain th	e change in the high cut-off frequenc	ÿ.

2.a) Build the circuit given in Figure **2** using the values computed in the preliminary work. Set the input voltage to **100 mV**peak. Record the values of v_{in} , v_{out} and calculate $A_V = 20 \log |v_{out}/v_{in}|$, sweeping the input frequency from **50 Hz** to **100 kHz**.

f (Hz)	v _{in} (V)	v _{out} (V)	A _V (dB)
50			
100			
200			
500			
1000			
2000			
5000			
10000			
20000			
50000			
100000			

- **2.b)** Set input frequency to **10 KHz** and increase the input signal level until output voltage clipping occurs. Record the maximum input and output levels of undistorted sine wave signal.
- **2.c)** Is your amplifier inverting or noninverting?
- **2.d)** Is the bandwidth of your common collector amplifier suitable for an audio amplifier?
- **2.e)** What will be the voltage gain of your common collector amplifier, if $R_L = 8\Omega$? How will this change affect the bandwidth? What can be done to restore the bandwidth?
- **2.f)** What is the main purpose of using the emitter follower?