厦门大学《微积分 III-2》课程期末试卷

试卷类型: (经管类 A 卷) 考试日期 2016.6.15

- 一、计算题(每小题7分,共14分):
- 1. 计算 $\int_{L} xy dx$, 其中 L 为抛物线 $y^2 = x$ 从点 A(1,-1) 到 B(1,1) 的一段弧。

解: 视 y 为参数,则 $\int_I xy dx = \int_{-1}^1 y^2 y \cdot 2y dy = 2 \int_{-1}^1 y^4 dy = 4/5$.

2. 计算 $\int_{\Gamma} (x^2 + 2y^2) ds$, 其中曲线 Γ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 z = y 所截得的圆周 (a > 0) 。

解:法一:由曲线 Γ 方程,简化曲线积分为: $\iint_L (x^2+2y^2) ds = a^2 \int_\Gamma ds \, (\dots 5 \, \mathcal{G}) = 2\pi a^3$ 。

法二: 曲线参数化为: $x = a\cos t, y = \frac{a}{\sqrt{2}}\sin t, z = \frac{a}{\sqrt{2}}\sin t, t \in [0, 2\pi)$, 则

 $\iint_{0} (x^{2} + 2y^{2}) ds = a^{3} \int_{0}^{2\pi} (\cos^{2} t + \sin^{2} t) \sqrt{\sin^{2} t + \sin^{2} t} dt \ (\dots 6 \ \%) = 2\pi a^{3} \ .$

- 二、解答题(每小题7分,共14分):
- 1. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{\left[\ln(n+1)\right]^n}$ 的敛散性。

解: 利用根植判别法, $\lim_{n\to\infty} \sqrt[n]{\frac{1}{\left[\ln(n+1)\right]^n}} = \lim_{n\to\infty} \frac{1}{\ln(n+1)} = 0$,则级数收敛。

2. 已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x - e^{-x}$, $y_3 = xe^x - e^{-x} + e^{2x}$ 是某二阶线性非齐次微分方程的三个特解,请写出此微分方程的通解。

解:由于 y_1, y_2, y_3 是非齐次线性方程的特解,故 $y_1 - y_2 = e^{2x} + e^{-x}, y_1 - y_3 = e^{-x}$ 是相应齐次方程的两个线性无关的解。又由于 $y_1 - y_3 + y_2 = xe^x$ 为非齐次方程的特解,则其通解为 $Y = C_1 e^{2x} + C_2 e^{-x} + xe^x$ (... 7分)。

三、计算曲线积分 $\int_L (e^x \cos y - 2y) dx - (e^x \sin y - 2) dy$,其中 L 为上半圆周 $(x-1)^2 + y^2 = 1 (y \ge 0)$,沿 逆时针方向。(8分)

解:补上曲线 $l:y=0,x:0\rightarrow 2$,记L和l所围成的闭区域为D。由格林公式,得

$$\int_{L+l} (e^x \cos y - 2y) \, dx - (e^x \sin y - 2) \, dy - \int_l (e^x \cos y - 2y) \, dx - (e^x \sin y - 2) \, dy$$
$$= 2 \iint_D dx \, dy - \int_0^2 e^x \, dx \, (\dots 7 / T) = \pi - e^2 + 1_o$$

四、求无穷级数 $\sum_{n=1}^{\infty} (-1)^n n(n+1)x^n$ 的和函数,并指出其收敛域。(10 分)

解: $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{\left(-1\right)^{n+1}(n+1)(n+2)}{\left(-1\right)^n n(n+1)} = 1$, 当 $x = \pm 1$, 通项不趋近于 0, 级数发散,所以收敛域是 (-1,1)。

法一:

$$S(x) = \sum_{n=1}^{\infty} (-1)^n n(n+1)x^n = \sum_{n=1}^{\infty} (-1)^n n(x^{n+1})' (5 \%) = \left[\sum_{n=1}^{\infty} (-1)^n nx^{n+1}\right]' = \left[x^2 \sum_{n=1}^{\infty} (-1)^n nx^{n-1}\right]'$$

$$= \left[x^2 \sum_{n=1}^{\infty} (-1)^n (x^n)' \right]' = \left[x^2 \left(\sum_{n=1}^{\infty} (-1)^n x^n \right)' \right]' = \left[x^2 \left(\frac{-x}{1+x} \right)' \right]' = \left[-\frac{x^2}{(1+x)^2} \right]' = -\frac{2x}{(1+x)^3}$$

法二:

$$S(x) = x \sum_{n=1}^{\infty} (-1)^n \left(x^{n+1} \right)^n = -x \left[\sum_{n=1}^{\infty} (-1)^{n+1} x^{n+1} \right]^n = -x \left[\frac{x^2}{1+x} \right]^n = -\frac{2x}{(1+x)^3}$$

五、求下列方程的通解: (每小题 8 分, 共 16 分)

1. 求差分方程 $y_{t+1} - y_t = (t+1) \cdot 3^t + 6$ 的通解。

解: 对应齐次差分方程的通解为: $y_t = C$,分别计算 $y_{t+1} - y_t = (t+1) \cdot 3^t$ 和 $y_{t+1} - y_t = 6$ 的特解,对前一个方程,令 $y_t = z_t 3^t$,则方程变为: $3z_{t+1} - z_t = t+1$,设特解为 $z_t = at+b$,则有 3(a(t+1)+b)-(at+b)=t+1 ,于是, 2a=1,3a+2b=1 ,则有 a=1/2,b=-1/4 ,对应的特解为 $z_t = \frac{1}{4}(2t-1)$ 。对第二个方程,设特解为 $y_t^1 = ct$,则有 c(t+1)-ct=6 ,于是, c=6 。则原 方程的通解为 $y_t = C + \frac{1}{4}(2t-1)3^t + 6$ 。

2. 求微分方程 $(y^3-4x)y'+2y=0$ 的通解。

解: 方程变形为: $\frac{y^2}{2} - \frac{2}{y}x + \frac{dx}{dy} = 0$, 即 $\frac{dx}{dy} - \frac{2}{y}x = -\frac{y^2}{2}$, 这是一阶线性非齐次微分方程,由解的

公式, 有
$$x = e^{\int_{y}^{2} dy} \left[\int -\frac{y^2}{2} e^{-\int_{y}^{2} dy} dy + C \right] = y^2 \left(-\frac{1}{2} y + C \right)$$
。

六、将函数 $f(x) = \arctan \frac{1-2x}{1+2x}$ 展开成 x 的幂级数, 指出其收敛域,并求 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$ 的和。(10 分)

解:
$$f'(x) = -\frac{1}{1+4x^2} = -2\sum_{n=0}^{\infty} (-1)^n 4^n x^{2n}, x \in (-1,1), \ \forall \ f(0) = \frac{\pi}{4}$$

$$\therefore f(x) = f(0) + \int_0^x f'(x) dx = \frac{\pi}{4} - 2 \int_0^x \sum_{n=0}^\infty (-1)^n 4^n x^{2n} dx = \frac{\pi}{4} - 2 \sum_{n=0}^\infty \frac{(-1)^n 4^n}{2n+1} x^{2n+1} \quad x \in (-\frac{1}{2}, \frac{1}{2})$$

$$\therefore \quad \exists \ x = \frac{1}{2} \text{ 时, } \text{由} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \text{ 收敛...} f(x) = \frac{\pi}{4} - 2\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{2n+1} x^{2n+1} \quad x \in (-\frac{1}{2}, \frac{1}{2}]$$

七、设 f(x) 具有二阶连续导数,已知 $\left[x^2 - f(x)\right]y dx + \left[f'(x) + x\right] dy = 0$ 为一阶全微分方程,且 f(0) = 0,f'(0) = 1,求 f(x) 及此全微分方程的通解。(12 分)

解: 已知 $\begin{bmatrix} x^2 - f(x) \end{bmatrix} y dx + \begin{bmatrix} f'(x) + x \end{bmatrix} dy = 0$ 为一阶全微分方程,则有 $f''(x) + 1 = x^2 - f(x)$,这是一个二阶常系数线性微分方程,对应齐次方程的特征方程为 $r^2 + 1 = 0$,特征根为 $r = \pm i$,齐次方程的通解为 $c_1 \cos x + c_2 \sin x$ 。 非齐次方程特解设为 $a_0 x^2 + a_1 x + a_2$,代入非齐次方程, $2a_0 + a_0 x^2 + a_1 x + a_2 = x^2 - 1$,于是 $a_0 = 1, a_1 = 0, 2a_0 + a_2 = -1$, $a_0 = 1, a_1 = 0, a_2 = -3$,于是非齐次方程 的 通 解 为 $c_1 \cos x + c_2 \sin x + x^2 - 3$, 由 f(0) = 0 ,f'(0) = 1 , 得 到 $c_1 = 3, c_2 = 1$, $f(x) = 3\cos x + \sin x + x^2 - 3$ 。 全 微 分 方 程 的 通 解 为 : $u(x,y) = \int_0^x 0 dx + \int_0^y (-3\sin x + \cos x + 3x) dy$,即 $(-3\sin x + \cos x + 3x) y = C$ 。

八、已知 $u_n > 0$, $\alpha > 0$,且 $\lim_{n \to \infty} n^{\alpha} [\ln(1+n) - \ln n] u_n = 3$,试讨论级数 $\sum_{n=1}^{\infty} u_n$ 的敛散性。(10 分)

解: $\lim_{n\to\infty} n^{\alpha} [\ln(1+n) - \ln n] u_n = 3$ 知, $\lim_{n\to\infty} n^{\alpha} [\ln(1+n) - \ln n] u_n = \lim_{n\to\infty} n^{\alpha} \ln(1+\frac{1}{n}) u_n = \lim_{n\to\infty} \frac{u_n}{\frac{1}{n^{\alpha-1}}} = 3$, 则

 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha-1}}$ 有相同的敛散性,于是, $\alpha-1>1$,即 $\alpha>2$, $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha-1}}$ 收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

 $\alpha-1\leq 1$,即 $0<\alpha\leq 2$, $\sum_{n=1}^{\infty}\frac{1}{n^{\alpha-1}}$ 发散,则级数 $\sum_{n=1}^{\infty}u_n$ 发散。

九、求极限 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{3^k} \left(1 + \frac{1}{k} \right)^{k^2}$ 。(6 分)

解: 法一,考虑级数
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{1}{n}\right)^{n^2}$$

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{3^n} \left(1 + \frac{1}{n}\right)^{n^2}} = \lim_{n \to \infty} \frac{1}{3} \left(1 + \frac{1}{n}\right)^n = \frac{e}{3} < 1$$

:. 由根值判别法知,级数 $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{1}{n}\right)^{n^2}$ 收敛.

其部分和
$$s_n = \sum_{k=1}^n \frac{1}{3^k} \left(1 + \frac{1}{k} \right)^{k^2}$$
 数列收敛,从而 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{3^k} \left(1 + \frac{1}{k} \right)^{k^2} = \lim_{n \to \infty} \frac{s_n}{n} = 0$

法二,由
$$0 < \frac{1}{3^k} \left(1 + \frac{1}{k} \right)^{k^2} < \frac{e^k}{3^k}$$
 及, $\lim_{n \to \infty} \sum_{k=1}^n \left(\frac{e}{3} \right)^k = \frac{1}{1 - \frac{e}{3}}$,则 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left(\frac{e}{3} \right)^k = 0$,夹逼准则,有

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{3^k} \left(1 + \frac{1}{k} \right)^{k^2} = 0$$