MATH 263: Homework #6

Jesse Farmer

10 May 2005

- 1. Let $H^2 = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0\}$ and X be a surface with boundary.
 - (a) Show that no point of H^2 of the form (x,0) has a neighborhood in H^2 that is homeomorphic to an open set of \mathbb{R}^2 .

This follows from the connectedness properties of H^2 and open subsets of \mathbb{R}^2 , respectively. We may assume without loss of generality that any neighborhood of $(x,0) \in H^2$ is connected, since otherwise there exists an open connected subset of the neighborhood which is a refinement of the original. So, for any connected neighborhood U of a point (x,0) we can remove a point, e.g., (x,0), and U will remain simply connected. However, no point can be removed from any open set in \mathbb{R}^2 without it ceasing to be simply connected (viz., a small loop around the removed point will no longer be nullhomotopic).

- (b) Show that $x \in \partial X$ if and only if there is a homeomorphism h mapping a neighborhood of x onto an open set of H^2 such that $h(x) \in \mathbb{R} \times \{0\}$.
 - Let $x \in \partial X$. Then any neighborhood U of x is homeomorphic to an open subset of H^2 , but not an open subset of \mathbb{R}^2 . If $h(x) \notin \mathbb{R} \times \{0\}$ then there would exist a ε -neighborhood of h(x) homeomorphic to an open subset of \mathbb{R}^2 via inclusion whose preimage is a neighborhood of x, contradicting the hypothesis that $x \in \partial X$. Therefore $h(x) \in \mathbb{R} \times \{0\}$ if $x \in \partial X$.

Assume there is a homeomorphism h mapping a neighborhood U of x onto an open set of H^2 such that $h(x) \in \mathbb{R} \times \{0\}$. Then h(U) is homeomorphic to a neighborhood V of a point of the form (y,0), which, from the first part, implies that V is not homeomorphic to an open subset of \mathbb{R}^2 . Hence U is not homeomorphic to an open subset of \mathbb{R}^2 and $x \in \partial X$.

- (c) Show that ∂X is a 1-manifold.
- 2. Show that the closed unit ball in \mathbb{R}^2 is a 2-manifold with boundary.

Let D be the closed unit ball in \mathbb{R}^2 . If $U \subset D$ is a neighborhood of the point x contained in the interior of D then U is homeomorphic to an open subset of \mathbb{R}^2 by inclusion. Assume that U intersects the boundary of D. Then define a map $U \to H^2$ that fixes all interior points and sends elements of the boundary to their projection along the secant line defined by where U intersects D. This is a homeomorphism, though not with an open subset of H^2 . However, we can create a second homeomorphism which takes the image of U and translates and rotates it so that the secant line defined above resides on the line $\mathbb{R} \times \{0\}$. The composition of these two homeomorphisms is the homeomorphism for which are are looking.

- 3. Let X be a 2-manifold and let $\{U_1, \ldots, U_k\}$ be a collection of disjoint open sets in X. Suppose that for each i there is a homeomorphism h_i of the open unit ball B^2 with U_i . Let $\varepsilon = \frac{1}{2}$ and B_{ε} be the open ball of radius ε . Show that the space $Y = X \setminus \bigcup h_i(B_{\varepsilon})$ is a 2-manifold with boundary and that ∂Y has k components.
 - Let $x \in Y$. Then either $x \in \partial h_i(B_{\varepsilon})$ or not. If not then since X is a 2-manifold there exists a sufficiently small neighborhood U of x such that U is homeomorphic to \mathbb{R}^2 . If $x \in \partial h_i(B_{\varepsilon})$ for some i

then there exists a neighborhood V of x such that V does not intersect $\partial h_j(B_{\varepsilon})$ for $i \neq j$, again since X is a 2-manifold, and such that V is homeomorphic to a subspace of \mathbb{R}^2 . Treating V and $h_i(B_{\varepsilon})$ as their corresponding subspaces in \mathbb{R}^2 , then, we see that as a subset of \mathbb{R}^2 (not subspace), we can produce a homeomorphism of V with an open subset of H^2 by projecting the boundary of V in \mathbb{R}^2 onto the secant line defined by the points where V intersects $h_i(B_{\varepsilon})$ and then composing it with a homeomorphism that rotates and translates this secant line onto $\mathbb{R} \times \{0\}$. Hence X is a 2-manifold with boundary.

The only points of Y which have neighborhoods not homeomorphic to an open subset of \mathbb{R}^2 are those in $\partial h_i(B_{\varepsilon})$, for each i. However, each $h_i(B_{\varepsilon})$ is connected and $h_i(B_{\varepsilon}) \cap h_j(B_{\varepsilon}) = \emptyset$ for $i \neq j$. Hence if $x, y \in \partial Y$ then x and y are in the same component if and only if they are in $\partial h_i(B_{\varepsilon})$. Since there are k of these there are precisely k components.

4. Given a compact connected triangulable 2-manifold Y with boundary such that ∂Y has k components show that Y is homeomorphic to X-with-k-holes, where X is either S^2 or the n-fold torus T_n or the m-fold projective plane P_m .

Since each component of ∂Y is homeomorphic to a circle, Y can be written as the quotient space of a polygonal region in the plane with pairs of edges identified containing k holes. From the classification theorem, however, it follows that the polygonal region must be homeomorphic to S^2 , T_n , or P_m , and hence Y is homeomorphic to one of these with k disjoint neighborhoods homeomorphic to B^2 removed from their surface.

- 5. Let T be the torus.
 - (a) Find a covering space of T corresponding to the subgroup $\mathbb{Z} \times \mathbb{Z}$ generated by the element $m \times \{0\}$, where $m \in \mathbb{Z}_+$.

This subgroup is precisely $m\mathbb{Z} \times \{0\} \cong m\mathbb{Z}$. Define $p: S^1 \times \mathbb{R}_+ \to T$ by

$$p(z,x) = z^m \times (\cos 2\pi x, \sin 2\pi x)$$

where S^1 is viewed as residing in the complex plane. This induces an injection of fundamental groups p_* , and the image is $p_*(\pi_1(S_1 \times \mathbb{R}_+)) = p_*(\pi_1(S^1)) \times p_*(\pi_1(\mathbb{R}_+)) = p_*(\pi_1(S^1)) \times \{0\} = m\mathbb{Z} \times 0 = \langle m \times 0 \mid m \in \mathbb{Z}_+ \rangle$ since \mathbb{R}_+ is simply connected.

- (b) Find a covering space of T corresponding to the trivial subgroup of $\mathbb{Z} \times \mathbb{Z}$. Let $p: \mathbb{R}_+ \to S^1$ be the usual covering map defined by $x \mapsto (\cos 2\pi x, \sin 2\pi x)$. Then $p \times p: \mathbb{R}_+^2 \to T$ is a covering map, and the image of $\pi_1(\mathbb{R}_+^2)$ under p_* must be trivial since \mathbb{R}_+^2 is simply connected.
- (c) Find a covering space of T corresponding to the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by $m \times \{0\}$ and $\{0\} \times n$, where $m, n \in \mathbb{Z}_+$.

Define a map $p: T \to T$ by $p(z,w) = z^m \times z^n$. Since this is the (Cartesian) product of two covering maps it is a covering map, and the corresponding subgroup is isomorphic to the image of $\pi_1(T)$ under p_* , which, in turn, is isomorphic to the Cartesian product of the fundamental group of S^1 under the image of the respective component monomorphisms of p_* . In other words, $p_*(\pi_1(T)) \cong m\mathbb{Z} \times n\mathbb{Z} = \langle m \times 0, 0 \times n \mid m, n \in \mathbb{Z}_+ \rangle$.

- 6. Let G be a topological group with multiplication $m: G \times G \to G$ and identity element e. Let $p: \widetilde{G} \to G$ is a covering map. Show that given \widetilde{e} with $p(\widetilde{e}) = e$ there is a unique multiplication operation on \widetilde{G} that makes it into a topological group such that \widetilde{e} is the identity element and p is a homomorphism.
- 7. Let $p: \widetilde{G} \to G$ be a homomorphism of topological groups that is a covering map. Show that if G is abelian then so is \widetilde{G} .