УДК: 65.011.56

АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ ПРОЦЕССОМ УЧЁТА МЕДИАФАЙЛОВ «МЕДИАТЕКА»

О.В. Рычка, А.С. Полятыкин

Донецкий национальный технический университет кафедра программной инженерии, E-mail: axpltkn@yandex.ru

Рычка О.В., Полятыкин А.С. Автоматизация управления процессом учёта медиафайлов «Медиатека». Работа посвящена разработке клиент-серверной системы ведения учёта медиафайлов с возможностью оценки и комментирования. Целью работы является проектирование и разработка данной системы.

Rychka O.V., Polyatykin A.S. Automation of management of the process of accounting for media files "Mediatek". The work is devoted to the development of a client-server system for keeping records of media files with the ability to evaluate and comment. The aim of the work is to design and develop this system.

Общая постановка проблемы

Ведение учёта медиафайлов с возможностью оценивания широким кругом пользователей позволяет проследить динамику изменения популярности медиафайлов разного рода и ответить на такие вопросы как «какой музыкальный жанр самый популярный?», «какой художник написал наибольшее количество картин?», «в скольких фильмах сыграл тот или иной актёр?» т.д. Автоматизация учёта этого процесса с сопровождением хорошо спроектированной базы данных повышает эффективность учёта, в том числе благодаря исключению непреднамеренных и преднамеренных внесений неправильны данных людьми, уменьшению объема записей благодаря структуре реляционной базы данных и т.д. Также можно выделить такие преимущества автоматизации учёта как: перенесение части работы на машины, что позволяет работать удаленно, и это позволяет получать в любой момент времени оперативные данные с сервера.

В границах темы данной работы пользователи получают информацию о фильмах, музыке, картинах/фотографиях, текстах/книгах, каждый из них может прокомментировать любой из медиафайлов и поставить оценку от 1 до 5, таким образом на основании всех оценок пользователей система выведет среднюю оценку и постепенно можно будет сделать вывод о популярности каждого медиа-элемента. Естественно, если есть база данных, к которой есть возможность доступа у большого числа людей, то настоятельно рекомендуется организовать разграничение прав доступа для каждой из ролей, коих в данной системе шесть, о которых будет рассказано ниже.

Для уменьшения требований со стороны клиентских машин и повышения безопасности большинство логических операций над данными выполняется на сервере с помощью языков SQL и PL/pgSQL.

Исследования

1. Обзор существующих систем учёта и оценивания мультимедиа

На сегодняшний день существует множество систем учёта мультимедиа. Но в большинстве своём они охватывают только один тип медиаданных. Чаще всего это фильмы, реже – музыка, а картины, фото, книги встречаются ещё реже.

Зачастую это сайты, которые помимо информации позволяют посмотреть фильм или прослушать музыку.

KinoGo[1] – популярный сайт для просмотра фильмов. Здесь собраны разные фильмы, приведено и описание, оценки, комментарии. Поиск фильмов очень гибкий благодаря системе фильтров по широкому спектру критериев.

Крупнейший в мире портал Internet Movie Database (IMDB)[2], которой владеет компания Amazon.com предоставляет функционал по теме данной работы. Здесь собраны данные о нескольких миллионах разных кинопродуктов. Пользователи могут оценивать фильмы, на чём строятся рейтинги, которые позволят пользователям быстро найти интересующие их фильмы или сериалы.

Muzter[3] — сервис, который составляет рейтинг музыкальных произведений. Здесь нет возможности комментирования произведений, а рейтинг строится не на основании оценок, а на количестве прослушиваний отдельных песен. Есть информация об альбоме песен, дате релиза и жанрах.

35photo[4] — портал, где фотографы выкладывают свои работы для оценивания пользователями. Как и в большинстве подобных порталов — здесь есть возможность комментирования фотографий и поиск по жанрам.

Книгопоиск[5] — рейтинговый портал книг, который позволяет пользователям оценивать книги и искать их по жанрам и другим критериям.

2. Общие требования к системе

Разрабатываемая система рассчитана на большое количество пользователей для комментирования, обсуждения и оценивания фильмов, музыки, книг и картин/фотографий. Должны быть распределены роли в системе, такие как администратор, модератор, контентменеджер и простой пользователь.

Система должна быть спроектирована на основе клиент-серверной архитектуры. Серверная часть может быть распределённой или централизованной и представлять собой СУБД. Модель клиента должна соответствовать «тонкому клиенту», а большую часть вычислений должен брать на себя сервер. Учитывая модель тонкого клиента, клиентское приложение должно иметь небольшой размер, небольшие системные требования.

Так как система предполагает удалённое взаимодействие клиента и сервера — необходимо интернет соединение, а для меньшей нагрузки на сеть, количество передаваемой информации должно быть уменьшено до необходимого минимума.

Предупреждение исключительных ситуаций настоятельно рекомендуется для повышения устойчивости к сбоям и надёжности системы.

Учитывая вышеперечисленные требования, программный продукт должен соответствовать следующим требованиям:

- система должна иметь клиент-серверную архитектуру;
- сервер представляет собой СУБД;
- клиентская часть ПО должна легко устанавливаться на ПК или вообще быть переносной и не требовать установки;
 - клиентская часть должна иметь доступ к интернету для связи с сервером;
- должно быть минимизировано количество информации, передаваемое от сервера к клиенту и наоборот;
 - желательны обработки исключительных ситуации;
 - серверная часть должна брать на себя большую часть вычислительных операций.

3. Общая структура приложения

В основе работы системы будет лежать так называемая модель взаимодействия клиент-сервер, которая позволяет разделять функционал и вычислительную нагрузку между клиентскими приложениями и серверным приложением. Между собой клиент и сервер взаимодействую в сети Интернет или в любой другой компьютерной сети при помощи

различных сетевых протоколов.

Данная система имеет двухзвенную архитектуру, то есть клиент и сервер напрямую между собой взаимодействуют, без посредников.

В роли серверной части будет выступать СУБД PostgreSQL, а в роли клиентских приложений – приложения, написанные на языке С# с применением технологии WPF.

Такая архитектура позволяет хранить и использовать сложные связи между таблицами данных в БД, предоставляя пользователю просто для понимания интерфейс.

В качестве СУБД для реализации серверной части был выбран PostgreSQL[7]. Данная СУБД была выбрана по причине широких возможностей для реализации решения различных задач, не только выборки данных, но и других процедур над данными. PostgreSQL имеет набор инструментов, который расширяет стандарты SQL. Реляционная модель данных поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных, а также поддерживает манипулирования отношениями. PostgreSQL предоставляет множество различных возможностей, хорошие характеристики достаточно надежна И имеет производительности. Данная СУБД выгодно отличается среди многих других. Она обладает практически всеми возможностями, которые есть в других базах данных (коммерческих или Open Source), а также некоторыми дополнительными.

PostgreSQL обеспечивает ссылочную целостность сам, без необходимости реализации этого вручную, т.е. если есть запись в таблице, которая должна ссылаться на запись из другой таблицы, то программисту не нужно явно проверять наличие записи, на которую пытается сослаться первая запись — СУБД сама проверит и предпримет соответствующие действия, которые уже можно настроить под свои нужды.

Немаловажной особенностью этой СУБД является поддержка некоторых языков программирования, которые могут не только облегчить, но и вообще дать возможность к реализации некоторых функций. Например, поддержка PL/pgSQL позволяет объявлять переменные в функциях и использовать условные операторы if...else.

Выбор языка и технологий для написания клиентской стороны обоснован гибкостью настроек пользовательского интерфейса и наличием эффективных средств для реализации связи с СУБД PostgreSQL. Взаимосвязь клиентских приложений и базы данных будет осуществлено с помощью сторонней библиотеки Npgsq1[8].

Использующийся в WPF язык разметки XAML, являющийся подмножеством XML позволяет использовать создавать декларативный пользовательский интерфейс. Хотя весь пользовательский интерфейс можно описать на языке С# (или другом языке .Net), технология WPF использует другой подход, следуя которому интерфейс описывается на языке XAML, а поведение программы записывается в коде. Это позволяет более эффективно разделять логику и интерфейс приложения что очень положительно сказывается на модифицируемости программы и возможности разделения её на модули.

WPF берет на себя компоновку элементов интерфейса подстраивая его под разные разрешения. Это происходит благодаря тому, что элементы интерфейса могут привязываться не к размерам в пикселях, а к относительному размеру экрана.

Ну и наконец инструменты привязки данных в WPF приложениях имеют широкие возможности, что существенно уменьшает количество строк кода и упрощает его анализ.

Выводы

Система позволяет содержать базу данных медиа-элементов, комментировать и оценивать большому количеству людей, и на основе этих оценок выстраивать рейтинги. При современной популярности и разнообразии фильмов, музыки, графических данных и книг такая существует множество подобных популярных систем.

Перед разработкой данной программной системы был проведён анализ предметной

области и подтверждена целесообразность такой системы.

Созданная программная система полностью соответствует, выдвинутым на этапе проектирования, требованиям.

В перспективе в систему может быть добавлена дополнительная информация, например, файлы-изображения, являющиеся логотипами фильмов, или изображения обложек альбомов, это может положительно повлиять на популярность системы, так как разнообразие в графическом интерфейсе поддерживает интерес пользователей и легче воспринимается глазом. Также может быть реализована возможность редактирования комментариев и изменение оценки медиа-элемента.

Рисунок 1 – Страница просмотра фильмов

Литература

- 1. KinoGo URL: https://kinogo.by/ (дата обращения: 25.04.2020).
- 2. IMDB URL: https://www.imdb.com/ (дата обращения: 25.04.2020).
- 3. Muzter URL: https://muzter.net/ (дата обращения: 25.04.2020).
- 4. 35photo URL: https://ru.35photo.pro/ (дата обращения: 25.04.2020).
- 5. Knigopoisk URL: https://knigopoisk.org/ (дата обращения: 25.04.2020).
- 6. Описание структуры клиент-серверной архитектуры URL: https://studopedia.ru/3_194267_arhitektura-klient--server.html (дата обращения: 03.05.2020)
 - 7. PostgreSQL URL: https://www.postgresql.org. (дата обращения: 03.05.2020)
- 8. Документация к сторонней библиотеке Npgsql URL: https://www.npgsql.org (дата обращения: 03.05.2020).
- 9. Документация PostgreSQL: Процедурный язык PL/pgSQL URL: https://postgrespro.ru/docs/postgresql/9.6/plpgsql-overview#plpgsql-advantages (дата обращения: 03.05.2020).