裂相(分相)电路的设计与仿真研究

9161040G0734 许晓明

摘要

裂相(分相)电路是一种将单相电源分裂成二相或二相以上的电源的电路。在获得旋转磁场、增加整流滤波效果、获取三相电源等方面有着一定的应用。

本文通过RC桥式电路,借助multisim仿真软件,探究裂相电路的形成条件以及裂相电路下,各负载与其两端电压、功率之间的数值、趋势关系,来研究裂相电路的相关特性。

通过相量图原理分析,本文给出了用单相电源分相成二相、三相电源的一种电路及参数设置方案,并给出具体的参数值。借助对多种负载情况下的电压及功率情况的测量,得到电压、功率与负载间的特性关系,并给出部分裂相电源的具体用途。

关键词: multisim仿真 裂相电路 电压-负载特性 负载功耗

目录

0	引言		3
	0.1	问题的背景	3
	0.2	文献综述	3
	0.3	需要解决的问题	3
1	裂相	电路的建立	4
	1.1	单向交流电源分裂为相位差为90°的两相电源的裂相原理	4
	1.2	单向交流电源分裂为相位差为120°的对称三相电源的裂相原理	6
2	二相	裂相电路相关数据的测量	9
	2.1	电压-负载特性的数据测量与曲线绘制	9
		2.1.1 电阻性负载的电压-负载特性	9
		2.1.2 容性负载的电压-负载特性	11
		2.1.3 感性负载的电压-负载特性	15
	2.2	功率-负载特性的数据测量与曲线绘制	15

3	三相] 裂相电路相关数据的测量	17
	3.1	电压-负载特性的数据测量与曲线绘制	17
		3.1.1 电阻性负载的电压-负载特性	17
		3.1.2 容性负载的电压-负载特性	17
		3.1.3 感性负载的电压-负载特性	23
	3.2	功率-负载特性的数据测量与曲线绘制	23
4	结论		25
	4.1	二相裂相电路实验结论	25
	4.2	三相裂相电路实验结论	25
	4.3	裂相电路的用途举例	26
参	考文繭	太	26

0 引言

0.1 问题的背景

裂相(分相)电路是一种将单相电源分裂成二相或二相以上的电源的电路。在获得旋转磁场、增加整流滤波效果等方面有着一定的应用。尤其是在获得三相电源方面,常见的三相正弦交流电是由三相交流发电机产生的,但在有些场合许多民用及教学演示等场合,往往没有三相电源。裂相电路在一定条件下可以在单相电源的作用下获得对称的三相电源,从而,使仅有单相电源供电的场合,能够运用需要三相电源的设备。

那么,如何将单相电源裂相成具有特定相位差的多相电源,以及在裂相电路中,各种情况的负载与其电压、功率的关系就成了需要研究的内容。

0.2 文献综述

张继和,刘宗等在裂相电路的研究中推导出了裂相电路总电流与负载电流之间的关系、裂相电路总功率因数与负载功率因数的关系 [1],也推导出了强感性和强容性负载所对应的裂相电路 [3];刘正生,夏敦柱等则从L-C裂相电路出发,深入研究了三相对称负载性质、参数与裂相电路结构、参数之间的关系 [2];林道同则相应的研究中提供了两种比较简单、可输出一定功率的裂相电路 [4]。

参考以上文献并结合课本和相关所学知识,借助multisim仿真进行裂相实验。

0.3 需要解决的问题

- 1) 将单相交流电源(220V/50Hz)分裂成相位差为90°×(1 ± 2%)的两相电源。
 - (a) 两相输出空载时电压有效值相等,为 $150 \times (1 \pm 4\%)V$;相位差为 $90^{\circ} \times (1 \pm 2\%)$ 。
 - (b) 测量并作电压-负载(两负载相等,且为电阻性)特性曲线,到输出电压 $150 \times (1-10\%)V$,相位差为 $90^{\circ} \times (1-5\%)$ 为止。
 - (c) 测量并证明设计的电路在空载时功耗最小。
- 2) 将单相交流电源(220V/50Hz)分裂成相位差为 $120^{\circ} \times (1 \pm 2\%)$ 对称的三相电源。
 - (a) 两相输出空载时电压有效值相等,为 $110 \times (1 \pm 4\%)V$;相位差为 $120^{\circ} \times (1 \pm 2\%)$ 。

- (b) 测量并作电压-负载(两负载相等,且为电阻性)特性曲线,到输出电压 $110 \times (1-10\%)V$,相位差为 $120^{\circ} \times (1-5\%)$ 为止。
- (c) 测量并证明设计的电路在空载时功耗最小。
- 3) 若负载分别为感性或容性时,讨论电-负载特性。
- 4) 论述分相电路的用途,并举一例详细说明。

1 裂相电路的建立

1.1 单向交流电源分裂为相位差为90°的两相电源的裂相原理

将电源 U_s 分裂成 U_1, U_2 两个输出电压,图1为RC桥式分相电路相量图原理的一种,它可以将输入电压路 U_s 分裂成 U_1, U_2 两个输出电压,且使得 U_1, U_2 相位差成90°。

图 1 RC桥式分相电路裂二相相量图原理

图中, U_1, U_2 为输出电压, U_s 为输入电压,满足

$$\begin{cases}
\frac{U_1}{U_s} = \frac{1}{\sqrt{1 + (\omega R_1 C_1)^2}} \\
\frac{U_2}{U_s} = \frac{1}{\sqrt{1 + \left(\frac{1}{\omega R_2 C_2}\right)^2}}
\end{cases} (1)$$

对输入电压 U_s 而言,输出电压 U_1, U_2 的相位为

$$\begin{cases}
\varphi_1 = -arctan\omega R_1 C_1 \\
\varphi_1 = arctan\frac{1}{\omega R_2 C_2}
\end{cases}$$
(2)

或

$$\cot \varphi_2 = \omega R_2 C_2 = -\tan(\varphi_2 + 90^\circ) \tag{3}$$

由此

$$\varphi_2 + 90^\circ = -\arctan\omega R_2 C_2 \tag{4}$$

若

$$R_1 C_1 = R_2 C_2 = RC (5)$$

则必有

$$\varphi_1 - \varphi_2 = 90^{\circ} \tag{6}$$

一般而言, φ_1 和 φ_2 与角频率 ω 无关,但为使 U_1 和 U_2 数值相等,可令

$$\omega R_1 C_1 = \omega R_2 C_2 = 1 \tag{7}$$

而 $U_s = 220V, \omega = 50Hz$,将(7)带入(1)(2),理论上因有

$$\begin{cases}
U_1 = \frac{1}{2}U_s \\
U_2 = \frac{1}{2}U_s \\
\varphi_1 = -45^{\circ} \\
\varphi_1 = 45^{\circ}
\end{cases} \tag{8}$$

取 $R_1 = R_2 = 1k\Omega, C_1 = C_2 = 3.183 \mu F$ 得到如图2电路。 从中可以看出,空

图 2 multisim二项裂相电路仿真图

载输出电压分别为 $U_1 = 155.558V$, $U_2 = 155.553V$,在误差允许范围内可以认为 $U_1 = U_2 \in \{150 \times (1 \pm 4\%)\}$;借助示波器测量输出电压波形情况如图3,计算可得相位差为 $2 \times 180^\circ \times 50Hz \times 5.076ms = 91.368^\circ \in \{90^\circ \times (1 \pm 2\%)\}$,二相电路裂相完成。

图 3

1.2 单向交流电源分裂为相位差为120°的对称三相电源的裂相原理

将单相电源 U_s 分裂成三相 U_1, U_2, U_3 互成120°的对称电压,其相量图原理如图4所示。 电路的关键是元件参数。从相量图中可见,B和C的轨迹在圆周上

图 4 RC桥式分相电路裂三相相量图原理

变化。只要使得 I_2 , I_1 相位差为 60° ; I_3 , I_1 相位差为 30° ,则可以使电压成对称三相电压。利用

$$\begin{cases} \frac{X_{C2}}{R_2} = tan60^{\circ} \\ \frac{X_{C3}}{R_3} = tan30^{\circ} \end{cases}$$

$$(9)$$

取 $R_1 = R_2 = R_3 = 1k\Omega, C_2 = 1.838\mu F, C_3 = 5.513\mu F$ 得到如图5电路。从中可以看出,空载输出电压分别为 $U_1 = 110.000V, U_2 = 109.992V, U_3 =$

图 5 multisim三项裂相电路仿真图

109.997V,在误差允许范围内可以认为 $U_1 = U_2 = U_3 \in \{110 \times (1 \pm 4\%)\}$; 借助示波器测量输出电压波形情况如图6,计算可得相位差分别为 $2 \times 180^{\circ} \times 50Hz \times 6.667ms = 120.006^{\circ} \in \{120^{\circ} \times (1 \pm 2\%)\}, 360^{\circ} - 2 \times 180^{\circ} \times 50Hz \times 13.368ms = 119.376^{\circ} \in \{90^{\circ} \times (1 \pm 2\%)\}, 2 \times 180^{\circ} \times 50Hz \times 6.702ms = 120.636^{\circ} \in \{120^{\circ} \times (1 \pm 2\%)\},$ 误差允许范围内认为相位差相同,三相电路裂相完成。

图 6

2 二相裂相电路相关数据的测量

2.1 电压-负载特性的数据测量与曲线绘制

2.1.1 电阻性负载的电压-负载特性

按图7连接线路,不断调节可变电阻参数,记录相应的数据见表1。从表中可以看出,无论负载的变化,二相相位差总大致相等。事实上,由于各相负载等值(对称),所以相位差不变,在之后的仿真中,不再单独测量、计算相位差。实验的仿真截图见图8,此时负载电阻取 $1k\Omega$ 。

图 7

图 8

表 1 二相裂相电路电压、功率随电阻变化关系

序号	$R(\Omega)$	$U_1(V)$	$U_2(V)$	$P_1(W)$	$P_2(W)$	$P_{all}(W)(=P_1+P_2)$	T(ms)	$\Delta \varphi(^{\circ})$
1	100	19.918	19.917	3.967	3.967	7.934	5.057	91.026
2	200	36.167	36.166	6.540	6.540	13.08	5.019	90.342
3	300	49.468	49.467	8.157	8.157	16.314	4.943	88.974
4	400	60.437	60.435	9.132	9.131	18.263	5.038	90.684
5	500	69.568	69.566	9.679	9.679	19.358	4.962	89.316
6	600	77.245	77.243	9.945	9.944	19.889	5.000	90.000
7	800	89.348	89.345	9.979	9.978	19.957	4.981	89.658
8	1000	98.384	98.381	9.679	9.679	19.358	5.000	90.000
9	1500	113.156	113.152	8.541	8.540	17.081	5.038	90.684
10	2000	122.030	122.026	7.446	7.445	14.891	5.038	90.684
11	2500	127.830	127.864	6.540	6.540	13.080	5.076	91.368
12	3000	131.995	131.947	5.808	5.807	11.615	5.057	91.026
13	3500	135.062	135.058	5.212	5.212	10.424	5.095	91.710
14	4000	137.428	137.424	4.722	4.721	9.443	5.019	90.342
15	4500	139.280	139.303	4.313	4.312	8.625	4.905	88.290
16	5000	140.799	140.831	3.967	3.967	7.934	5.076	91.368
17	5500	142.102	142.098	3.671	3.670	7.341	4.924	88.632
18	6000	143.169	143.165	3.416	3.416	6.832	5.019	90.342
19	6500	144.043	144.038	3.194	3.193	6.387	5.038	90.684
20	7000	144.866	144.861	2.998	2.998	5.996	5.057	91.026
21	7500	145.511	145.547	2.825	2.825	5.650	4.962	89.316
22	8000	146.155	146.150	2.670	2.670	5.340	5.000	90.000
23	8500	146.690	146.685	2.532	2.531	5.063	4.943	88.974
24	9000	147.167	147.162	2.406	2.406	4.812	4.924	88.632
25	9500	147.596	147.591	2.293	2.293	4.586	5.019	90.342
26	10000	147.983	147.978	2.190	2.190	4.380	5.057	91.026
27	10500	148.288	148.329	2.096	2.095	4.191	5.038	90.684
28	11000	148.654	148.612	2.009	2.009	4.018	4.981	89.658
29	11500	148.947	148.943	1.929	1.929	3.858	5.019	90.342
30	12000	149.216	149.212	1.855	1.855	3.710	5.057	91.026
31	12500	149.464	149.460	1.787	1.787	3.574	5.000	90.000
32	13000	149.694	149.689	1.724	1.724	3.448	4.962	89.316
33	13500	149.907	149.902	1.665	1.664	3.329	4.981	89.658
34	14000	150.066	150.100	1.609	101.609	3.218	5.076	91.368
35	∞	155.558	155.553	24.197n	0	24.197n	5.076	91.368

由得到的数据,借助EXCEL可以绘制电压-负载特性曲线,其结果如图9。 从中可以看出, U_1, U_2 的曲线几乎完全重合,且随着负载电阻值增加,电 压值不断增大,最终趋近于空载电压。

图 9 电阻性负载电压-负载特性曲线

2.1.2 容性负载的电压-负载特性

当负载为容性时,按图10连接线路,同样不断调节可变电容参数,记录相应的数据见表2,实验的仿真截图见图11,此时负载容抗取 $0.8\mu F$ 。

图 10

图 11

图 12 容性负载电压-负载特性曲线

由表中的数据,借助EXCEL绘制电压-负载特性曲线,其结果如图12。 从中可以看出, U_1,U_2 的曲线同样几乎完全重合,而随着负载容值增加, 电压值不断减小。

表 2 二相裂相电路电压随电容变化关系 表 3 二相裂相电路电压随电感变化关系

序号	$C(\mu F)$	$U_1(V)$	$U_2(V)$
1	0.2	150.750	150.746
2	0.4	146.108	146.103
3	0.6	141.637	141.632
4	0.8	137.341	137.336
5	1	133.220	133.216
6	2	115.129	115.126
7	3	100.696	100.396
8	4	89.130	89.128
9	5	79.755	79.753
10	7	65.637	65.635
11	9	55.613	55.594
12	12	45.129	45.140
13	17	34.264	34.272
14	24	25.587	25.586
15	41	15.809	15.808
16	100	6.784	6.783

<u> </u>	- />	/\	
序号	L(mH)	$U_1(V)$	$U_2(V)$
1	50	3.510	3.510
2	100	7.132	7.132
3	200	14.717	14.716
4	250	18.684	18.677
5	350	26.974	26.973
6	450	35.741	35.740
7	500	40.303	40.302
8	550	44.982	44.969
9	650	54.680	54.679
10	750	64.784	64.783
11	850	75.307	75.305
12	950	86.120	86.118
13	1000	91.594	91.591
14	1500	146.326	146.360
15	2000	189.334	189.329
16	2500	212.199	212.193
17	2700	216.481	216.474
18	2800	217.947	217.940
19	2900	218.937	218.930
20	3000	219.569	219.506
21	3100	219.899	219.892
22	3200	219.975	219.968
23	3300	219.840	219.834
24	3400	219.532	219.469
25	3500	219.083	219.076
26	4500	211.127	211.120
27	5000	206.755	206.749
28	6000	199.131	199.125
29	7500	190.659	190.653
30	10000	181.771	181.765
31	15000	172.807	172.802
32	20000	168.378	168.331
33	40000	161.864	161.860
34	100000	158.053	158.048

2.1.3 感性负载的电压-负载特性

当负载为感性时,按图13连接线路,同样不断调节可变电感参数,记录相应的数据见表4,实验的仿真截图见图14,此时负载感抗取950mH。

图 13

图 14

由表中的数据,借助EXCEL绘制电压-负载特性曲线,其结果如图15。 从图中可以看出, U_1, U_2 基本相等,而随着负载电感值的增加,电压值先 快速增加,在L=3200mH时达到最大,之后逐渐减小到空载电压。

2.2 功率-负载特性的数据测量与曲线绘制

事实上,在测量电阻的电压负载特性时,也同步测量了其功率。按如图7所示电路连接,测得的数据见表1,实验的仿真截图见图16,此时负载电阻取 $1k\Omega$ 。

图 15 感性负载电压-负载特性曲线

图 16

图 17 功率-负载特性曲线

通过表中的数据,借助EXCEL绘制功率-负载特性曲线,其结果如图17。 从图中可以看出, P_1 , P_2 大致相等。随着负载电阻值的增加, P_1 , P_2 , P_{all} 功率 均先快速增加,在 $R=800\Omega$ 左右时达到最大,之后逐渐减小。

借助功率-负载曲线图可以推断,当R无限大时,功率将变为0。即证明电路在空载时功耗最小。

3 三相裂相电路相关数据的测量

3.1 电压-负载特性的数据测量与曲线绘制

3.1.1 电阻性负载的电压-负载特性

按图18连接线路,不断调节可变电阻参数,记录相应的数据见表4。实验的仿真截图见图19,此时负载电阻取500Ω。

由得到的数据,借助EXCEL可以绘制电压-负载特性曲线,其结果如图20。

从图中可以看出, U_1, U_2, U_3 的曲线开始时几乎完全重合,到某一电阻值逐渐分离,在 $R = 5050\Omega$ 左右时达到最大差距位置,之后三者皆靠近空载电压,且随着负载电阻值增加,电压值不断增大。

3.1.2 容性负载的电压-负载特性

当负载为容性时,按图21连接线路,同样不断调节可变电容参数,记录相

图 20 电阻性负载电压-负载特性曲线

表 4 三相裂相电路电压、功率随电阻变化关系

片号									
2 100 40.534 18.024 26.949 16.430 3.249 7.269 26.948 3 150 50.322 24.709 35.297 18.251 4.070 8.306 30.627 4 200 61.083 30.343 41.882 18.565 4.604 8.770 31.939 5 210 62.568 31.367 43.043 18.662 4.685 8.822 32.149 6 220 63.978 32.361 44.161 18.606 4.760 8.865 32.231 7 230 65.320 33.325 45.239 18.551 4.829 8.898 32.278 8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517	序号	$R(\Omega)$	$U_1(V)$	$U_2(V)$	$U_3(V)$	$P_1(W)$	$P_2(W)$	$P_3(W)$	$P_{all}(W) = P_1 + P_2 + P_3$
3 150 50.322 24.709 35.297 18.251 4.070 8.306 30.627 4 200 61.083 30.343 41.882 18.565 4.604 8.770 31.939 5 210 62.568 31.367 43.043 18.642 4.685 8.822 32.149 6 220 63.978 32.361 44.161 18.606 4.760 8.865 32.231 7 230 65.320 33.325 45.239 18.551 4.829 8.898 32.278 8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308	1	50	24.034	9.937	15.805	11.553	1.975	4.996	18.524
4 200 61.083 30.343 41.882 18.565 4.604 8.770 31.939 5 210 62.568 31.367 43.043 18.642 4.685 8.822 32.149 6 220 63.978 32.361 44.161 18.606 4.760 8.865 32.231 7 230 65.320 33.325 45.239 18.551 4.829 8.898 32.278 8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.295 9 250 67.815 35.174 47.252 18.396 4.949 8.942 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308	2	100	40.534	18.024	26.949	16.430	3.249	7.269	26.948
5 210 62.568 31.367 43.043 18.642 4.685 8.822 32.149 6 220 63.978 32.361 44.161 18.606 4.760 8.865 32.231 7 230 65.320 33.325 45.239 18.551 4.829 8.898 32.278 8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.295 9 250 67.815 35.174 47.252 18.396 4.949 8.942 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175	3	150	50.322	24.709	35.297	18.251	4.070	8.306	30.627
6 220 63.978 32.361 44.161 18.606 4.760 8.865 32.231 7 230 65.320 33.325 45.239 18.551 4.829 8.898 32.278 8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.295 9 250 67.815 35.174 47.252 18.396 4.949 8.942 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266	4	200	61.083	30.343	41.882	18.565	4.604	8.770	31.939
7 230 65.320 33.325 45.239 18.551 4.829 8.898 32.278 8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.295 9 250 67.815 35.174 47.252 18.396 4.949 8.942 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590	5	210	62.568	31.367	43.043	18.642	4.685	8.822	32.149
8 240 66.598 34.263 46.278 18.480 4.891 8.924 32.295 9 250 67.815 35.174 47.252 18.396 4.949 8.942 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040	6	220	63.978	32.361	44.161	18.606	4.760	8.865	32.231
9 250 67.815 35.174 47.252 18.396 4.949 8.942 32.287 10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431	7	230	65.320	33.325	45.239	18.551	4.829	8.898	32.278
10 300 73.133 39.373 51.839 17.828 5.168 8.957 31.953 11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870	8	240	66.598	34.263	46.278	18.480	4.891	8.924	32.295
11 400 80.961 46.346 59.195 16.387 5.370 8.760 30.517 12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427	9	250	67.815	35.174	47.252	18.396	4.949	8.942	32.287
12 500 86.411 51.928 64.941 14.934 5.939 8.435 29.308 13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 <td>10</td> <td>300</td> <td>73.133</td> <td>39.373</td> <td>51.839</td> <td>17.828</td> <td>5.168</td> <td>8.957</td> <td>31.953</td>	10	300	73.133	39.373	51.839	17.828	5.168	8.957	31.953
13 650 92.002 58.520 71.586 13.022 5.269 7.884 26.175 14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054<	11	400	80.961	46.346	59.195	16.387	5.370	8.760	30.517
14 1000 99.152 68.958 81.734 9.831 4.755 6.680 21.266 15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.987 106.852 108.854 0.483 0.4	12	500	86.411	51.928	64.941	14.934	5.939	8.435	29.308
15 1500 103.715 77.852 89.820 7.171 4.041 5.378 16.590 16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483	13	650	92.002	58.520	71.586	13.022	5.269	7.884	26.175
16 2000 105.894 83.423 94.489 5.607 3.480 4.464 13.551 17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	14	1000	99.152	68.958	81.734	9.831	4.755	6.680	21.266
17 2500 107.106 87.281 97.489 4.589 3.040 3.802 11.431 18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	15	1500	103.715	77.852	89.820	7.171	4.041	5.378	16.590
18 4500 108.927 95.500 103.111 2.637 2.027 2.363 7.027 19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	16	2000	105.894	83.423	94.489	5.607	3.480	4.464	13.551
19 5000 109.110 96.689 103.828 2.381 1.870 2.156 6.407 20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	17	2500	107.106	87.281	97.489	4.589	3.040	3.802	11.431
20 7000 109.516 99.962 105.664 1.713 1.427 1.595 4.735 21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	18	4500	108.927	95.500	103.111	2.637	2.027	2.363	7.027
21 7500 109.574 100.542 105.968 1.601 1.348 1.497 4.446 22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	19	5000	109.110	96.689	103.828	2.381	1.870	2.156	6.407
22 10000 109.751 102.656 107.022 1.205 1.054 1.145 3.404 23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	20	7000	109.516	99.962	105.664	1.713	1.427	1.595	4.735
23 12500 109.837 103.994 107.644 0.965 0.865 0.926 2.756 24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	21	7500	109.574	100.542	105.968	1.601	1.348	1.497	4.446
24 25000 109.957 106.852 108.854 0.483 0.456 0.473 1.412 25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	22	10000	109.751	102.656	107.022	1.205	1.054	1.145	3.404
25 50000 109.989 108.384 109.436 0.241 0.234 0.239 0.714	23	12500	109.837	103.994	107.644	0.965	0.865	0.926	2.756
	24	25000	109.957	106.852	108.854	0.483	0.456	0.473	1.412
26 110 100,000 100,007 0 0 0	25	50000	109.989	108.384	109.436	0.241	0.234	0.239	0.714
$20 \infty 110 109.992 109.997 0 0 0 0$	26	∞	110	109.992	109.997	0	0	0	0

应的数据见表5,实验的仿真截图见图22,此时负载容抗取 $10\mu F$ 。

图 21

由表中的数据,借助EXCEL绘制电压-负载特性曲线,其结果如图23。 从中可以看出, U_1,U_2,U_3 的曲线同样开始时几乎重合,从某一电容值开

从中可以有出, U_1, U_2, U_3 的曲线问样开始时几乎里台,从某一电谷值开始逐渐分离,在 $C = 50\mu F$ 左右时达到最大差距位置,之后三者皆靠近空载电压,且随着负载电容值增加,电压值不断减小。

图 23 容性负载电压-负载特性曲线

表 5 三相裂相电路电压随电容变化关系

序号	$C(\mu F)$	$U_1(V)$	$U_2(V)$	$U_3(V)$
1	0.5	110.257	101.319	103.745
2	3	102.079	65.362	89.009
3	5	93.034	51.504	79.380
4	5.5	90.986	49.030	77.170
5	8.5	80.372	38.535	65.800
6	10	75.936	35.017	61.192
7	15	64.034	27.246	49.481
8	20	55.213	22.549	41.444
9	30	43.073	16.943	31.181
10	40	35.186	13.623	24.935
11	50	29.690	11.403	20.748
12	60	25.655	9.808	17.754
13	100	16.572	6.291	11.231
14	150	11.468	4.343	7.686
15	200	8.763	3.316	5.840
16	300	5.951	2.251	3.943
17	450	4.017	1.519	2.651
18	600	3.031	1.146	1.997
19	900	2.033	0.769	1.337
20	1000	1.832	0.693	1.204

表 6 三相裂相电路电压随电感变化关系

	L(mh)	$U_1(V)$	$U_2(V)$	$U_3(V)$
1	50	9.646	3.650	6.198
2	100	20.302	7.710	12.790
3	150	31.913	12.195	19.692
4	200	44.323	17.090	26.761
5	250	57.252	22.334	33.790
6	300	70.299	27.822	40.520
7	350	82.979	33.405	46.676
8	400	94.803	38.920	52.011
9	450	105.367	44.215	56.358
10	500	114.418	49.177	59.662
11	550	121.884	53.751	61.977
12	650	132.461	61.748	64.232
13	800	140.539	71.577	64.461
14	1000	144.429	82.622	64.867
15	1500	147.340	105.316	81.270
16	2000	147.959	118.935	104.217
17	2500	145.804	124.053	119.760
18	3000	142.135	124.743	128.047
19	3500	138.179	121.674	134.071
20	4000	134.492	122.716	133.640
21	4500	131.238	121.674	134.071
22	5000	128.430	120.847	133.856
23	5500	126.029	120.220	133.297
24	6000	123.983	119.749	132.556
25	7000	120.753	119.111	130.867
26	10000	115.358	118.075	126.150

3.1.3 感性负载的电压-负载特性

当负载为感性时,按图24连接线路,同样不断调节可变电感参数,记录相应的数据见表6,实验的仿真截图见图25,此时负载感抗取5000*mH*。

图 24

由表中的数据,借助EXCEL绘制电压-负载特性曲线,其结果如图26。

从图中可以看出, U_1, U_2, U_3 总体趋势大致相同,均为先增大后减小并趋于空载电压。但在低电感区,三者的电压差距较大;高电感区,电压差距逐渐减小。

3.2 功率-负载特性的数据测量与曲线绘制

在测量电阻的电压负载特性时,同样同步测量其功率。按如图18所示电路

图 26 感性负载电压-负载特性曲线

连接,测得的数据见表4,实验的仿真截图见图27,此时负载电阻取500Ω。

通过表中的数据,借助EXCEL绘制功率-负载特性曲线,其结果如图28。 从图中可以看出, P_1 , P_2 开始时数值有一定差异,但变化趋势大致相同; $10k\Omega$ 后, P_1 , P_2 , P_3 曲线几乎重合。随着负载电阻值的增加, P_1 , P_2 , P_{all} 功率均先快速增加,在 $R=240\Omega$ 左右时达到最大,之后不断减小。

借助功率-负载曲线图可以推断,当R无限大时,功率将变为0。即证明电路在空载时功耗最小。

图 28 功率-负载特性曲线

4 结论

4.1 二相裂相电路实验结论

- (1). 在裂成的两相电源中,若接入电阻且电阻阻值相同,则每相获得的电压与功率相等。电压值随电阻值增大而增大,最终趋近空载时的电压;功率则先增大到某一最大值后逐渐减小,直至为0。在空载时,功耗最小。
- (2). 在裂成的两相电源中,若接入电容且电容容值相同,则每相获得的电压相等。电压值随电容值增加而降低,直至趋近于0。
- (3). 在裂成的两相电源中,若接入电感且电感值相同,则每相获得的电压相等。电压值随电感值的增加,先增加到某一最大值;继续增大电感值,电压减小并逐渐趋于空载电压。

4.2 三相裂相电路实验结论

- (1). 在裂成的三相电源中,若接入电阻且电阻阻值相同,则每相获得的电压在低电阻 区差距较大,在高电阻区大致趋于空载电压。这是与二相裂相电路不同的。而电 压值随电阻值增大而增大,最终趋近空载时的电压;功率则先增大到某一最大值 后逐渐减小,直至为0。在空载时,功耗最小。
- (2). 在裂成的三相电源中,若接入电容且电容容值相同或接入电感且电感值相同,则 改变容值或电感值获得的电压趋势与二项时大致相同,但具体到每相的电压值,则 三相之间在低值区有较大差异,在高值区差异变小。

(3). 与二相裂相电路相比,三相裂相电路有相似的趋势,但也有不同之处。

4.3 裂相电路的用途举例

裂相电路的核心是将单相的电源分裂成具有特定相位差的多相电源。基于这一特定,在获得旋转磁场、增加整流滤波效果等方面有着一定的应用。

尤其是在三相电源的获取上,对于民用及教学演示等三相电源的场合。裂相电路在一定条件下可以在单相电源的作用下获得对称的三相电源,从而,使仅有单相电源供电的场合,能够运用需要三相电源的设备。(当然事实上,由于裂相电路的输出电压会随着所接负载大小的变化而变化,且在低阻值区这种现象越发明显。对于负载经常变动的大功率的用电器,一般来说,使用这种裂相电路是不适宜的。)

裂相电路也可应用在单相异步电动机的启动中。在单相异步电动机中,由于采用的电源是单相的,因此正、反电磁转矩的叠加是无启动转矩的,如不采取其他措施,电动机不能启动,因此需要不同的相位以形成移进磁场或者旋转磁场,,借助裂相电路,使两绕组电流 I_1 , I_2 相位差约为90°,从而产生旋转磁场,电机得以转起来。

参考文献

- [1] 张继和,刘宗.L-C裂相电路元件参数的计算方法[J].电工技术学报,1996(04):58-61+35.
- [2] 刘正生,夏敦柱,翁凌.单相电源变为三相电源的裂相电路的研究[J].大学物理,2000(06):25-28+45.
- [3] 张继和,刘宗,付维胜.裂相电路参数与负载性质的关系[J].大连铁道学院学报,1995(03):35-40.
- [4] 林道同.单相电源用于三相负载的裂相电路[J].电工技术杂志,1984(09):5-9.
- [5] 马鑫金.电工仪表与电路实验技术[M].北京:机械工程出版社,2007.