

Trabalho Dia dos Namorados

Data do visto em sala dia 16 de junho de 2025

Manuscrita em folha separada, de maneira
organizada (em sequência), com nome e
matrícula, se não cumprir, será DESCONTADO

5 VISTOS!!!

VALOR 38 VISTOS, §

SUMÁRIO

PARTE I - REVISÃO (0,2 CADA)

- POTENCIAÇÃO 1-4
- LOGARITMO 5-21
- PROPRIEDADE DISTRIBUTIVA 22
- MÍNIMO MÚLTIPLO COMUM 23
- PA PG 24-40

PARTE II - RELAÇÕES (0,3 CADA)

41-60

PARTE III - GERÊNCIA DE PROJETOS (0,3 CADA)

61-69

PARTE IV - RECORRÊNCIA (0,5 CADA)

70-101

PARTE V - SOMAS (0,3 CADA)

102-105

PARTE VI - FUNÇÕES (0,3 CADA)

106-119

Parte I- revisão

POTENCIAÇÃO

1. Exercício

calcule as seguintes potências:

- a) 3⁴=
- b) 2⁵ =
- c) 1 ⁴ =
- d) $0^{6} =$
- e) $(-2)^4 =$

$$\left(\frac{3}{4}\right)^3 =$$

$$\left(-\frac{2}{3}\right)^3 =$$

- g) (3)
- h) $5^{0} =$
- i) $(2,43)^0 =$
- j) $(-0,5)^0 =$
- k) 17¹ =
- I) $(1,45)^{1} =$
- m) $(-5)^1 =$

$$\left(-\frac{4}{7}\right)^1$$

- p) (-3) -2 =
- q) $2^{-4} =$

r)
$$\left(\frac{2}{3}\right)^{-2}$$

s)
$$\left(-\frac{2}{3}\right)^{-1}$$

t)
$$\left(\frac{-3}{4}\right)^{-3}$$

$$u) \quad \left(\frac{1}{5}\right)^{-1} =$$

$$\left(\frac{1}{3}\right)^{-2}$$

w)
$$(-0.75)^{-2}$$
 =

Simplifique as expressões, usando sempre que possível as propriedades da potência:

a)
$$(2xy^2)^3 =$$

b)
$$(3xy^2) \cdot (2x^2y^3) =$$

c)
$$(5ab^2)^2 \cdot (a^2b)^3 =$$

$$9x^2y^3$$

$$-3xy =$$

e)
$$\left(\frac{16ab^4}{-8a^2b^7}\right)^{-3}$$

3. Exercício

Simplifique as expressões:

Dica: use as propriedades de forma inversa e a fatoração do tipo fator comum em evidência.

$$3^{n+2} - 3^n$$
a) $3^{n+1} + 3^{n-1} =$

$$\frac{2^{2n+1}-4^n}{2^{2n}} =$$

$$\frac{2^{n+1}-2^{n-2}}{2^n} =$$

4. Exercício

Transforme em radical:

a)
$$9^{\frac{3}{2}} =$$

b)
$$16^{\frac{3}{4}} =$$

c)
$$1024^{0.4} =$$

e)
$$4^{\frac{-1}{2}} =$$

f)
$$64^{\frac{-2}{3}} =$$

LOGARITMO

5. Exercício

Calcule:

a)
$$\log_3 27$$

$$\log_{\frac{1}{5}} 125$$

c)
$$\log_4 \sqrt{32}$$

c)
$$\log_4 \sqrt{32}$$
 d) $\log_{\frac{2}{3}} \frac{8}{27}$

6. Exercício

Calcule o valor de x:

a)
$$\log_x 8 = 3$$

a)
$$\log_x 8 = 3$$
 b) $\log_x \frac{1}{16} = 2$ c) $\log_2 x = 5$ d) $\log_9 27 = x$ e) $\log_{\frac{1}{2}} 32 = x$

c)
$$\log_2 x = 5$$

d)
$$\log_9 27 = x$$

$$\log_{\frac{1}{2}} 32 = x$$

7. Exercício

Calcule:

a)
$$\log_2 2^{-1}$$

a)
$$\log_2 2^{-3}$$
 b) $\log_7 \sqrt{7}$ c) $5^{\log_5 7}$

$$c)$$
 $5^{\log_5 7}$

d)
$$2^{\log_2 7 + \log_2 3}$$
 e) $2^{2 + 2\log_2 5}$

$$2^{2+2\log_2 5}$$

8. Exercício

 $\log\left(\frac{a.b^2}{c}\right)$ Dados $\log a = 5$, $\log b = 3 e \log c = 2$, calcule

9. Exercício

Sendo $\log_x 2 = a$, $\log_x 3 = b$ calcule $\log_x \sqrt[3]{12}$

Exercício 10.

Sendo $\log_a 2 = 20$, $\log_a 5 = 30$ calcule $\log_a 100$

11. Exercício

Resolva as seguintes equações:

a)
$$\log_{x-3} 9 = 2$$

b)
$$\log_4(2x+10) = 2$$

c)
$$\log_2(\log_3(x-1)) = 2$$

$$\log_{x+1}(x^2 + 7) = 2$$

$$\log_2 3 + \log_2 (x - 1) = \log_2 6$$

$$\log_3 2 + \log_3 (x+1) = 1$$

$$2\log x = \log 2 + \log x$$

h)
$$\log_2(x^2 + 2x - 7) - \log_2(x - 1) = 2$$

Determine a solução da equação: $\log_2(x-2) + \log_2(x-3) = 1 + \log_2(2x-7)$

13. **Exercício**

Encontrar um número x > 0 tal que: $\log_5 x + \log_5 2 = 2$:

14. **Exercício**

Calcule o valor dos logaritmos:

$$\log_6 36 =$$

a)
$$\log_6 36 =$$
 d) $\log_5 0,000064 =$

$$\log_{\frac{1}{4}} 2\sqrt{2} =$$
b)
$$\log_{49} \sqrt[3]{7} =$$

$$\log_{49} \sqrt[3]{7} =$$

c)
$$\log_2 \sqrt[3]{64} =$$
 f) $\log_2 0.25 =$

$$\log_2 0.25 =$$

Exercício **15**.

Resolva as equações:

$$\log_3 \frac{x+3}{x-1} = 1$$

$$\log_3 x = 4$$

$$\log_{\frac{1}{3}}(x-1) = -2$$

$$\log_x \frac{1}{9} = 2$$

e)
$$\log_{x} 16 = -2$$

16. **Exercício**

4) Determine o conjunto solução da equação:

$$\log_{12}(x^2 - x) = 1$$

Sabendo-se que: $\log_x a = 8$, $\log_x b = 2$ e $\log_x c = 1$, calcular:

$$\log_x \frac{a^3}{b^2 \cdot c^4}$$

$$\log_x \frac{\sqrt[3]{ab}}{c}$$

18. Exercício

Sendo $\log 2 = x$ e $\log 3 = y$, calcular:

a)
$$\log 24$$
 b) $\log 9\sqrt{8}$

19. Exercício

Calcule o valor:

a)
$$\log_3(3.81) =$$
 b) $\log_2 \frac{512}{64} =$

c)
$$\log_2(2 \cdot 4 \cdot 8 \cdot 64) = \log_7\left(\frac{49 \cdot 343}{7}\right)$$

20. Exercício

Sendo $\log 2 = 0.3$; $\log 3 = 0.4$ e $\log 5 = 0.7$, calcule:

a)
$$\log_2 50$$
 b) $\log_3 45$

c)
$$\log_9 2$$
 d) $\log_8 600$

e)
$$\log_5 3$$
 f) $\log_6 15$

21. Exercício

O resultado da equação

$$\log_3 (2x + 1) - \log_3 (5x - 3) = -1 \text{ \'e}$$
:

Propriedade Distributiva

22. Exercício

Aplique a propriedade distributiva nos exercícios de número 30 à 50, mostrando o desenvolvimento da resposta

a)
$$(4xy) \cdot (12x^3y^2 - 26xy + 13x^2y^3) =$$

b)
$$(3a^3 + 2a^2b - 2ab^2).(5a^2b - 3ab^2) =$$

c)
$$(5x^2 - 7x + 2) \cdot (2x^2 + 3x + 5) =$$

d)
$$(6x^2 + 3x - 8) \cdot (2x - 3) =$$

e)
$$(x+1).(2x-1).4x^2 =$$

f)
$$(2x-3y).4xy =$$

g)
$$(3x^2-4x+5).(x^2-6x+4) =$$

h)
$$(x^2 - 6x + 4 + 2x^3).(2 - 3x^2) =$$

i)
$$(3u-6v).(u^2-v^2)=$$

j)
$$(x^4 + x^3 + x^2 + x + 1).(x - 1) =$$

k)
$$2x.(x^2-x+3) =$$

$$y^2.(2y^2+3y-4) =$$

$$m)-3u.(4u-1) =$$

n)
$$(2-x-3x^2).(5x) =$$

o)
$$(x^2 + x - 3)(x^2 + x + 1) =$$

p)
$$(2x^2 - 3x + 1).(x^2 - x + 2) =$$

q)
$$(x^{\frac{1}{2}} - y^{\frac{1}{2}}).(x^{\frac{1}{2}} + y^{\frac{1}{2}}) =$$

r)
$$(\sqrt{u} + \sqrt{v}) \cdot (\sqrt{u} - \sqrt{v}) =$$

s)
$$(x^2 - \sqrt{3}).(x^2 + \sqrt{3}) =$$

t)
$$(x-2).(x^2+2x+4) =$$

u)
$$(x+1).(x^2-x+1) =$$

Resposta:
$$48x^4y^3 - 104x^2y^2 + 52x^3y^4$$

Resposta:
$$15a^5b + a^4b^2 - 16a^3b^3 + 6a^2b^4$$

Resposta:
$$10x^4 + x^3 + 8x^2 - 29x + 10$$

Resposta:
$$12x^3 - 12x^2 - 25x + 24$$

Resposta:
$$8x^4 + 4x^3 - 4x^2$$

Resposta:
$$8x^2y - 12xy^2$$

Resposta:
$$3x^4 - 22x^3 + 41x^2 - 46x + 20$$

Resposta:
$$-6x^5 - 3x^4 + 22x^3 - 10x^2 - 12x + 8$$

Resposta:
$$3u^3 - 3uv^2 - 6u^2v + 6v^3$$

Resposta:
$$x^5 - 1$$

Resposta:
$$2x^3 - 2x^2 + 6x$$

Resposta:
$$2y^4 + 3y^3 - 4y^2$$

Resposta:
$$-12u^2 + 3u$$

Resposta:
$$-15x^3 - 5x^2 + 10x$$

Resposta:
$$x^4 + 2x^3 - x^2 - 2x - 3$$

Resposta:
$$2x^4 - 5x^3 + 8x^2 - 7x + 2$$

Resposta:
$$x - y$$

Resposta:
$$x^4 - 3$$

Resposta:
$$x^3 - 8$$

Resposta:
$$x^3 + 1$$

Mínimo Múltiplo Comum (MMC)

23. Exercício

1. Resolva as equações a seguir, sendo o conjunto-universo R. Escreva o conjunto solução e a condição de existência de cada uma.

a)
$$\frac{2}{x-2} + \frac{3}{x+2} = \frac{18}{x^2-4}$$

b)
$$\frac{6}{x} + \frac{x+3}{2x} = 3$$

c)
$$\frac{4}{3x-2} - \frac{3}{3x+2} = \frac{6x+13}{9x^2-4}$$

$$d) \ \frac{3}{25-x^2} = \frac{1}{x+5} - \frac{1}{x-5}$$

$$e) \ \frac{8x - \frac{1}{3}}{3x - 7} = \frac{3}{4}$$

$$f) \frac{x+3}{x^2-1} - \frac{5}{x+1} = \frac{2}{x-1}$$

$$(g)\frac{2}{x+2} - \frac{5}{x-3} + \frac{3}{x+4} = 0$$

PAEPG

24. Exercício

Quantos termos tem a PA (5, 10, ..., 785)?

A) 157 B) 205 C) 138 D) 208

Letra A

25. Exercício

Um professor de educação física organizou seus 210 alunos para formar um triângulo. Colocou um aluno na primeira linha, dois na segunda, três na terceira, e assim por diante. O número de linhas é:

A) 10 B) 15 C) 20 D) 30 E) NRA

Letra C

	(Unitau) Seja f(n) uma função, definida para todo inteiro n, tal que f(0)=0 e f(n)=f(n-1)+1, p/ n > 0. Então o valor de f(200) é:
	a) 200.
	b) 201.
	c) 101.
	d) 202.
	e) 301.
	Letra A
	27. Exercício
(P	ucmg) Na sequência (1/2, 5/6, 7/6, 3/2,), o termo de ordem 30 é:
a)	29/2
b)	61/6
c) :	21/2
d)	65/6

28. Exercício

Se cada coelha de uma colônia gera três coelhas, qual o número de coelhas da 7ª geração que serão descendentes de uma única coelha?

A) 3000

e) 67/6

Letra B

B) 1840

C) 2187

D) 3216

Letra C

29. Exercício

Numa PG de quatro termos, a razão é 5 e o último termo é 375. O primeiro termo dessa PG é:

A) 1 B) 2 C) 3 D) 4

(Fei) Dada a progressão geométrica 1, 3, 9, 27, se a sua soma é 3280, então ela apresenta:

- a) 9 termos
- b) 8 termos
- c) 7 termos
- d) 6 termos
- e) 5 termos

Letra B

31. Exercício

Numa PG $a_1 + a_2 = 3 e a_4 + a_5 = 24$, a razão da PG é :

- a) 2
- b) 3
- c) 4
- d) 5
- e) 6

32. Exercício

A soma de três números em PG é 26 e o produto é 216. Então, o termo médio é igual a:

- a) 2
- b) 6
- c) 18
- d) 5
- e) nda.

33. Exercício

 $5x + \frac{x}{2} + \frac{x}{4} + \frac{x}{8} + \dots = 60$ Calcule x, sendo:

- a) 45
- b) 50
- c) 10
- d) 9
- e) 4

34. Exercício

O produto dos 25 primeiros termos da PG : (2, 4, 8, 16, 32, ...) é melhor representado pela alternativa:

- a) 2³²⁵
- b) 2²⁵
- c) 2⁵⁰
- d) 2¹⁰⁵
- e) nda

A sequência (1, a, ...) é uma progressão geométrica. O 9º termo é 256. Encontre um possível valor para a.

36. Exercício

(MACK-2000) – O sétimo termo da P.G. de números reais e positivos dada por $(x-2,\sqrt{x^2+11},2x+2,...)$ vale:

- a) 96
- b) 192
- c) 484
- d) 252
- e) 384

37. Exercício

CALCULE A SOMA DOS DEZ TERMOS DA PG (1, ½. ¼)

38. Exercício

Calcule a soma dos 25 primeiros termos da P.A(1;3;5;...)

39. Exercício

Calcule a soma dos 7 primeiros termos da P.G(8;4;2;1;1/2;...)

40. Exercício

Calcular o limite da soma dos termos da P.G(1; 1/2; 1/4; 1/8;...)

Parte II

Relações

41. Exercício

Indique quais pares ordenados pertencem a cada uma das relações binárias R em $\mathbb N$ abaixo:

a) $x R y \Leftrightarrow x + y < 7$;

(1,3), (2,5), (3,3), (4,4)

b) $x R y \Leftrightarrow x = y + 2$;

- (0,2), (4,2), (6,3), (5,3)
- c) $x R y \Leftrightarrow 2x + 3y = 10$;
- (5,0), (2,2), (3,1), (1,3)

Para cada uma das relações binárias R a seguir, definidas em \mathbb{N} , decida quais dos pares ordenados dados pertencem a R.

```
a. xRy \leftrightarrow x + y < 7;1,3), (2,5), (3,3), (4,4)
b. xRy \leftrightarrow x = y + 2; (0,2), (4,2), (6,3), (5,3)
c. xRy \leftrightarrow 2x + 3y = 10; (5,0), (2,2), (3,1), (1,3)
d. xRy \leftrightarrow y é um quadrado perfeito; (1,1) (4,2), (3,9), (25,5)
```

43. Exercício

Determine quais dos pares dados satisfazem a relação em questão:

a) R é a relação em \mathbb{Z} , x R y \Leftrightarrow x = - y;

- (1,-1), (2,2), (-3,3), (-4,-4)
- b) R é a relação unária em \mathbb{N} , $x \in \mathbb{R} \Leftrightarrow x$ é primo
- 19, 21, 33, 41
- c) R é a relação ternária em \mathbb{N} , $(x, y, z) \in R \Leftrightarrow x^2 + y^2 = z^2$ (1,1,2), (3,4,5), (0,5,5), (8, 6, 10)

44. Exercício

Classifique cada relação em S x T, onde S = T = \mathbb{N} , como um-para-um, um-para-vários, vários-para-um ou vários-para-vários.

- a) $R = \{ (1,2), (1,4), (1,6), (2,3), (4,3) \}$
- b) $R = \{ (9,7), (6,5), (3,6), (8,5) \}$
- c) $R = \{ (12,5), (8,4), (6,3), (7,12) \}$
- d) $R = \{ (2,7), (8,4), (2,5), (7,6), (10,1) \}$

45. Exercício

Sejam R e S relações binárias definidas em $\mathbb N$ por x R y \Leftrightarrow "x divide y" e xSy \Leftrightarrow 5x \leq y. Determine quais dos pares ordenados satisfazem às relações dadas:

- a) $R \cup S$; (2,6), (3,17), (2,1), (0,0)
- b) $R \cap S$; (3,6), (1,2), (2,12)
- c) R'; (1,5), (2,8), (3,15)
- d) S'; (1,1), (2,10), (4,8)

Seja S = {0, 1, 2, 4, 6}. Verifique se as relações binárias em S são reflexivas, simétricas, anti-simétricas e transitivas:

a)
$$R = \{ (0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (2,6) \}$$

b)
$$R = \{ (0,1), (1,0), (2,4), (4,2), (4,6), (6,4) \}$$

c)
$$R = \{ (0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2) \}$$

$$d) \ R = (0,0), \, (1,1), \, (2,2), \, (4,4), \, (6,6), \, (4,6), \, (6,4)$$

47. Exercício

Classifique as relações binárias abaixo como reflexivas, simétricas, anti-simétricas e transitivas:

- a) $S = \mathbb{Q}$; $x R y \Leftrightarrow |x| \le |Y|$;
- b) $S = \mathbb{Z}$; $x R y \Leftrightarrow x y \notin \text{multiplo de } 3$
- c) $S = \mathbb{N}$; $x R y \Leftrightarrow x.y \acute{e} par$
- d) $S = \mathbb{N}$; $x R y \Leftrightarrow x \in \text{impar}$

48. Exercício

Encontre os Fechos reflexivos, simétricos e transitivos das relações :

- a) $R = \{ (0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (2,6) \}$
- b) $R = \{ (0,1), (1,0), (2,4), (4,2), (4,6), (6,4) \}$
- c) $R = \{ (0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2) \}$
- d) R = (0,0), (1,1), (2,2), (4,4), (6,6), (4,6), (6,4)

49. Exercício

Seja $A = \{2,4\}$ e $B = \{6,8,10\}$ e defina as relações binárias R e S como:

$$\forall (x,y) \in A \times B, xRy \Leftrightarrow x|y,$$

$$\forall (x, y) \in A \times B, xSy \Leftrightarrow y - 4 = x.$$

Liste os pares ordenados que estão em $A \times B$, R, S, $R \cup S$, $R \cap S$.

50. Exercício

Mostre se a relação binária D é reflexiva, simétrica, transitiva. Seja a relação D definida sobre \mathbb{R} como:

$$x, y \in \mathbb{R}, xDy \Leftrightarrow xy \ge 0.$$

Quais das seguintes relações sobre o conjunto $S=\{1;\,2;\,3;\,4\}$ são reflexivas, simétricas, anti-simétricas outransitivas?

```
(a) (1; 3); (2; 4); (3; 1); (4; 2)

(b) (1; 3); (2; 4)

(c) (1; 1); (2; 2); (3; 3); (4; 4); (1; 3); (2; 4); (3; 1); (4; 2)

(d) (1; 1); (2; 2); (3; 3); (4; 4)

(e) (1; 1); (2; 2); (3; 3); (4; 4); (1; 2); (2; 3); (3; 4); (4; 3); (3; 2); (2; 1)
```

52. Exercício

Dado o seguinte diagrama de Venn,

Figure 2.2: Diagrama de Venn

Determine:

- (a) Os conjuntos A, B e C em forma de extensão.
- (b) A relação $R:A\longrightarrow B$
- (c) A relação $S: B \longrightarrow C$

53. Exercício

Descreva o conjunto R, sendo R a relação \leq em A, sendo $A = \{0, 1, 2, 3, 4, 5\}$.

54. Exercício

Sejam dados os conjuntos $A = \{a, b, c\}, B = \{1, 2\}$ e $C = \{4, 5, 6\}$.

Calcule $A \times B$, $B \times A$ e $A \times C$.

55. Exercício

Quais das relações que se seguem são equivalências? Considere que são relações em A, definido como $A = \{1,2,3,4\}$?

```
(a) R = \{(1,1), (2,2), (3,3), (4,4), (1,3), (3,1)\}
```

(b)
$$S = \{(1,2), (2,2), (3,3), (4,4)\}$$

(c)
$$T = \{(1,1), (2,2), (1,2), (2,1), (3,3), (4,4)\}$$

Determine os fechos reflexivos, simétricos e transitivos da relação $R = \{(1,2), (2,2), (2,3), (5,4)\}$ em $A = \{1,2,3,4,5\}$.

57. Exercício

Desenhe o diagrama de Hasse para a ordem parcial "x divide y" no conjunto {3,6,9,18,54,72,108,162}. Encontre (se existirem) os elementos mínimo, minimais, máximo e maximais.

58. Exercício

Desenhe o diagrama de Hasse para as seguintes ordens parciais:

a.
$$S = \{a, b, c\}$$

 $\rho = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$
b. $S = \{a, b, c, d\}$
 $\rho = \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c)\}$

59. Exercício

Para o exercício anterior, encontre (se existirem) os elementos mínimo, minimal, máximo e maximal

60. Exercício

Desenhe o diagrama de Hasse para a ordem parcial "x divide y" no conjunto {2,3,5,7,21,42,105,210}. Encontre (se existirem) os elementos mínimos, minimais, máximo e maximais.

Parte III

Relações gerência de projetos

61. Exercício

Desenhe a rede de precedência. Determine o caminho crítico. Quais são as folgas de cada atividade.

Atividade	Precedência	Duração
Início		0
A	Início	6
В	Início	2
С	Início	3
D	A	10
Е	A	3
F	В	2
G	С	4
Н	Е	5
J	F,G	8
K	J	4
L	G	6
M	L	2
Término	D,H,K,M	0

62. Exercício

Atividade	Precedência	Duração
1 - Aperto da estrutura	0	10
2 - Colocação do guidom	1	5
3 - Colocação do mecanismo de marcha	1	6
4 - Montagem dos pneus nas rodas	0	2

5 - Colocação das rodas na estrutura	1,4	3
6 - Instalação do mecanismo de freio	2,3,5	5
7 - Colocação dos pedais	6	2
8 - Colocação do assento	1	1
9 - Ajuste da altura do assento	7,8	1

Desenhe a rede de precedência. Determine o caminho crítico. Quais são as folgas de cada atividade.

Atividade	Precedência	Duração
А	E	3
В	C,D	5
С	А	2
D	А	6
E	Nenhum	2
F	A,G	4
G	E	4
Н	B,F	1

64. Exercício

Atividade	Precedência	Duração
1	2	4
2	3	2
3	8	5
4	3	2
5	4,7	2
6	5	1
7	3	3
8	0	5

Atividade	Precedência	Duração
1 - Picar cebola	9	2
2 Lavar a alface	11	1
3 - Fazer o molho	11	1
4 - Fazer a fritura, mexendo	10	3
5 - Misturar o molho na salada	2,3	1
6 - Cortar a galinha	0	4
7 - Ralar o gengibre	9	3
8 - Cortar o repolho bem fininho	9	3
9 - Marinar a galinha	6	4
10 - Aquecer o waoka	1,7,8,11	2

11 - Preparar o arroz	0	3

Desenhe a rede de precedência. Determine o caminho crítico. Quais são as folgas de cada atividade.

Atividade	Precedência	Duração
1	2,3,7	10
2	0	5
3	0	20
4	1,3,9	20
5	0	10
6	2,3,7	10
7	0	10
8	1,4,6	10
9	5	5

67. Exercício

Desenhe a rede de precedência. Determine o caminho crítico. Quais são as folgas de cada atividade.

Atividade	Precedência	Duração (dias)
A - Movimento de terra	0	3
B - Fundação	A	4
C - Estrutura	В	3
D - Paredes	С	5
E - Laje	С	2
F - Telhado	Е	5
G - Elétrica	D,E	3
H - Hidráulica	D,E	5
I - Habite - se	F,G,H	3

68. Exercício

Desenhe a rede de precedência. Determine o caminho crítico.

Quais são as folgas de cada atividade.

Atividade	Precedência	Duração (horas)
А	Nenhum	10
В	A	12
С	A	8
D	С	14
Е	B,C	23
F	D,E	16

69. Exercício

Atividade	Precedência	Duração (dias)
А	Nenhum	1
В	A	4

С	A	3
D	A	7
Е	В	6
F	C,D	2
G	E,F	7
н	D	9
I	G,H	4

Parte IV

recorrência (acrescentar todas as recorrências do caderno)

PARAS OS EXERCICIOS DE 70 A 74, ESCREVA OS 6 PRIMEIROS VALORES DAS SEQUÊNCIAS DADAS:

70. Exercício

$$S(1) = 2$$
 $S(n) = 1/(S(n-1) para n \ge 2$

$$B(1) = 1$$
 $B(n) = B(n-1) + n^2 para n \ge 2$

$$S(1) = 1$$
 $S(n) = S(n-1) + 1/n$ para $n \ge 2$

73. Exercício

$$A(1) = 1$$
 $A(n) = n*A(n-1)$ para $n \ge 2$

74. Exercício

$$M(1) = 2$$
 $M(2) = 2 M(n) = 2*M(n-1) + M(n-2) para n > 2$

75. Exercício

Definimos recursivamente a seguinte função :

$$f(1) = 2$$

f(n) = 2.f(n-1), se n é maior ou igual à 2.

Calcule o valor de f(f(2)).

76. Exercício

A sequência de Fibonacci é definida recursivamente:

$$a_n = \begin{cases} 1 & se \quad n=1\\ 1 & se \quad n=2\\ a_{n-2} + a_{n-1} & se \quad n \geq 2 \end{cases}$$

Determine o oitavo termo da sequência de Fibonacci.

77. Exercício

Uma função é definida recursivamente por: F(1) = 1; F(2) = 1 e F(n) = F(n - 1) + F(n - 2), se n é maior que dois. Qual é o valor de F(8) + F(13)?

A sucessão dos números triangulares:

cuja definição por recorrência é
$$\begin{cases} t_1 = 1 \\ t_n = t_{n-1} + n, \text{ para } n > 1 \end{cases}$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

79. Exercício

DADA A RECORRÊNCIA ABAIXO:

F(1)=1

$$F(n) = F(n/2) + 3$$
.

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

80. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = T(n-1) + 1.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

81. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = T(n/2) + 1.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = 2.T(n-1) + 1.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

83. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = 2.T(n/2) + 1.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

84. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = T(n-1) + n.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

85. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = T(n/2) + n.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

86. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = 2.T(n-1) + n.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = 2.T(n/2) + n.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

88. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

T(n) = 2 T(n/2) + 7n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

89. Exercício

DADA A RECORRÊNCIA ABAIXO:

F(1)=1

F(n) = 4 F(n/2) + n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

90. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = 2.T(n/2) + n.logn.$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

91. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=2

T(n) = T(n-1) + 2n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

92. Exercício

DADA A RECORRÊNCIA ABAIXO:

```
F(1)=1

F(n)=3T(n/2)+n
```

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

93. Exercício

DADA A RECORRÊNCIA ABAIXO:

F(1)=1F(n)=3T(n/3)+1

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

94. Exercício

DADA A RECORRÊNCIA ABAIXO:

P(1)=2

 $P(n)=2P(n-1)+n.2^{n}$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

95. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

T(n) = 2T(n/2) + n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

96. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

T(n) = 16T(n/4) + n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

97. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

T(n) = 9T(n/3) + n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

98. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

T(n) = 25T(n/5) + n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

99. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

T(n) = 2T(n/2) + c. n

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

100. Exercício

DADA A RECORRÊNCIA ABAIXO:

$$T(1)=1$$

 $T(n)= 2T(n/2) + . n/2$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

101. Exercício

DADA A RECORRÊNCIA ABAIXO:

T(1)=1

$$T(n) = 2T(n/4) + ... \sqrt{n}$$

FAÇA COMO FOI FEITO EM SALA DE AULA, ENCONTRE A FÓRMULA FECHADA E PROVE POR INDUÇÃO

PARTE V

SOMAS

102. Exercício

Quais são os valores destas somas?

a)
$$\sum_{k=1}^{5} (k+1)$$

b)
$$\sum_{i=0}^{4} (-2)^{i}$$

c)
$$\sum_{i=1}^{10} 3$$

d)
$$\sum_{j=0}^{8} (2^{j+1} - 2^j)$$

103. Exercício

(Rosen-seção 2.4-ex.14) Quais são os valores destas somas, aonde S={1,3,5,7}?

$$a)\quad \sum_{j\in S}j$$

b)
$$\sum_{j \in S} j^2$$

c)
$$\sum_{j \in S} (1/j)$$

d)
$$\sum_{j \in S} 1$$

104. Exercício

(Rosen-seção 2.4-ex.15) Qual é o valor de cada uma destas somas de termos de uma PG?

a)
$$\sum_{i=0}^{8} 3.2^{i}$$

b)
$$\sum_{j=1}^{8} 2^{j}$$

c)
$$\sum_{i=2}^{8} (-3)^{i}$$

d)
$$\sum_{i=0}^{8} 2 \cdot (-3)^{i}$$

105. Exercício

(Rosen-seção 2.4-ex.17) Compute cada uma destas somas duplas.

a)
$$\sum_{i=1}^{2} \sum_{j=1}^{3} (i + j)$$

a)
$$\sum_{i=1}^{2} \sum_{j=1}^{3} (i + j)$$
 b) $\sum_{j=0}^{2} \sum_{j=0}^{3} (2i + 3j)$ c) $\sum_{j=1}^{3} \sum_{j=0}^{2} i$

c)
$$\sum_{i=1}^{3} \sum_{j=0}^{2} i$$

d)
$$\sum_{i=1}^{2} \sum_{j=1}^{3} i.j$$

PARTE VI

FUNÇÕES

106. Exercício

O diagrama de flechas representa uma função f de A em B. Determine:

- a) D(f)
- b) CD (f)
- c) Im (f)

- d) f(3)
- e) f(5)
- f) x | f(x) = 4

107. Exercício

Abaixo estão indicadas algumas aplicações de E = {a, b, c, d} em F = { 0, 1, 2, 3, 4}. Quais são as injetoras?

a)
$$f_1 = \{(a,0), (b,1), (c,2), (d,4)\}$$

b)
$$f_2 = \{(a,1), (b,2), (c,3), (d,1)\}$$

c)
$$f_3 = \{(a,2), (b,4), (c,3), (d,0)\}$$

d)
$$f_4 = \{(a,3), (b,0), (c,0), (d,4)\}$$

108. Exercício

Quais das seguintes aplicações de E = {a, b, c} em F = {0, 1} são sobrejetoras?

a)
$$g_1 = \{(a,0), (b,0), (c,0)\}$$

b)
$$g_2 = \{(a,0), (b,0), (c,1)\}$$

c)
$$g_3 = \{(a,1), (b,0), (c,1)\}$$

d)
$$g_4 = \{(a,1), (b,1), (c,1)\}$$

Exercício 109.

Quais das funções de $E = \{a, b, c, d, e\}$ em $F = \{0,1,2,3,4,5\}$ são injetoras?

i.
$$f_1 = \{(a, 1), (b, 2), (c, 3), (d, 4), (e, 5)\}$$

ii.
$$f_2 = \{(a,5), (b,4), (c,2), (d,1), (e,0)\}$$

iii.
$$f_3 = \{(a,0), (b,1), (c,2), (d,0), (e,3)\}$$

iv.
$$f_4 = \{(a,5), (b,5), (c,5), (d,5), (e,5)\}$$

110. Exercício

Sejam as funções f (x) = $x^2 - 2x + 1$ e g (x) = 2x + 1. Calcule: a) f (g (1))

b) g (f(2))

c) f (f(1))

111. Exercício

Quais das funções de $E = \{a, b, c, d, e\}$ em $F = \{1,2,3,4\}$ são injetoras?

i.
$$f_1 = \{(a, 1), (b, 2), (c, 3), (d, 1), (e, 3)\}$$

ii.
$$f_2 = \{(a, 2), (b, 1), (c, 3), (d, 3), (e, 4)\}$$

iii.
$$f_3 = \{(a,3), (b,3), (c,1), (d,2), (e,1)\}$$

iv.
$$f_4 = \{(a,4), (b,4), (c,2), (d,3), (e,1)\}$$

112. Exercício

Quais das funções abaixo são injetoras, sobrejetoras ou bijetoras?

113. Exercício

Sejam os conjuntos $S = \{1, 2, 3, 4\}, T = \{1, 2, 3, 4, 5, 6\}$ e $U = \{6, 7, 8, 9, 10\}$ e as funções

f: S \rightarrow T com f = {(1, 2), (2, 4), (3, 3), (4, 6)} e

g: $T \rightarrow U$ com $g = \{(1, 7), (2, 6), (3, 9), (4, 7), (5, 8), (6, 10)\}.$

- a. Defina a função g o f
- b. Mostre quais das funções f, g e g o f são injetivas e/ou sobrejetivas.

114. Exercício

Seja a função f:S \rightarrow R dada por f(x) = x^2 diga se ela é injetiva ou sobrejetiva e dê o conjunto imagem f(S) para S=Z; S=N .

115. Exercício

Sendo $f(x) = 2x - 3 e g(x) = 4 - x^2$, determine: a) f(g(x)) b) g(f(x)).

116. Exercício

Sabendo que f(4x - 1) = 8x + 5, determine: a) f(x) b) f(2)

117. Exercício

Sabendo que $f(3x - 2) = x^2 + 1$, determine f(4).

118. Exercício

Classifique cada uma das funções como sobrejetora, injetora ou bijetora:

Faça um resumo de todas as fórmulas utilizadas nesta lista de Exercícios

Feliz dia dos namorados ⊕)))

Nenhum obstáculo é tão grande se a sua vontade de vencer for maior. (autor desconhecido)