AC – Aprendizagem Computacional / Machine Learning

Project

Jorge Henriques

jh@dei.uc.pt

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia

▲ Problem – Stratification of COVID patients

- Individuals with suspected COVID are admitted to the hospital emergency room
- At the time of admission, several variables/parameters are acquired (low cost and simple to acquire)
- Based on these variables, the health professional must decide whether the individual remains hospitalized for additional examinations or should return home.

▲ Stratification of COVID patients

Objectivo

■ Data set

N=600

Two independent datasets

COVID_numerics.csv

■ Numeric: — 8 variables (scalars) + Target (NO, YES)

COVID_IMG.csv

■ Matrix: - (21,21)

Objectivo

■ Data set

N=600

COVID	■ X1	Gender	{0,1} = { Female, Male}
numerics	• X2	Age	[31 108]
	• X3	Marital status	{0,1} = { single, married}
	• X4	Vaccinated	$\{0,1\} = \{ No, Yes \}$
	• X5	Breathing difficulty	{0,1,2,3} = { none, some, moderate, high}
	■ X6	Heart Rate	[38 272]
	• X7	Blood pressure	[115 164]
	■ X8	Temperature	[35.84 39.12]
	• T	Decision	Final clinical decision
			{0,1} = { return home, stay at hospital }

COVID IMG

IMG

Image - ECG

Phase space plot / time delay plot Binary matrix (21x21 pixels)

▲ 1 | COVID_numerics.csv

Screening

1 | Gender

2 | Age

3 | Marital status

4 | Vaccinated

5 | Breathing difficulty

Measurements

6 | Heart rate

Blood pressure

8 | Temperature

Stay at hospital

Knowledge

IF breathing difficulty >= moderate AND Temperature > 37.8 **THEN**

2 COVID_IMG.csv

ECG - Phase space plot

- Matrix (21,21)
- Binary values {0,1}

 These plot/image can reveal patterns in the ECG data, such as periodicity or anomalies

▲ Image

▲ Image

▼ Machine learning model

Historical, measurements, clinical knowledge (guidelines), Images

▲ Main goals

- Design a machine learning model to address this issue:
 - Decide whether the individual should remain hospitalized for additional examinations or be discharged to return home.
- Questions to consider:
 - 1 | Which techniques can/should be applied?
 - Clustering?
 - Decision Trees?
 - Neural Networks?
 - Deep Learning (e.g., CNNs)?
 - Fuzzy Systems?
 - Other you consider relevant
 - 2 | Are the the classifier(s) acceptable?
 - 3 | Should all available information (inputs/variables) be used?
 - 4 Other you consider relevant!

Components for evaluation

1 | Report

- The report is the most important component for the final evaluation
- Short (maximum 5/6 pages)
- Explain the important decisions and conclusions !!
- Results should be discussed in detail
- Do not explain what was taught during the course.
 - e.g., Steps to build K-means or any basic implementation details).
 - E.g. Do not include the theoretical advantages or disadvantages of a method unless directly relevant to the conclusions.

2 | Code

- All code should be provided
- 3 Defense
 - Mandatory (data to be defined)
- 4 Deadline for submission
 - ?? January 2025