

Minimum Loss

Link submit: https://www.hackerrank.com/contests/womens-codesprint-2/challenges/minimum-loss

Solution:

C++	http://ideone.com/Z0dA7V
Java	https://ideone.com/BAyQhh
Python	https://ideone.com/bk6Fln

Tóm tắt đề: Bạn có một ngôi nhà và giá của ngôi nhà được thay đổi qua từng năm. Cụ thể năm thứ i sẽ có giá là p_i . Bạn cần phải chọn ra một thời điểm x để mua ngôi nhà, rồi chọn một thời điểm y để bán lại ngôi nhà (y > x, $p_v < p_x$) sao cho hiệu $p_x - p_v$ là nhỏ nhất có thể.

Input

- Dòng đầu tiên gồm một số nguyên dương n là số lượng năm mà ngôi nhà có thể bán hoặc mua được (1 <= n <= 2.10⁵).
- Dòng thứ hai gồm n số nguyên dương cách nhau bởi một dấu khoảng trắng, số nguyên dương thứ i thể hiện giá tiền của căn nhà ở năm thứ i. $(1 \le p_i \le 10^{16})$

Output

- Yêu cầu in ra hiệu nhỏ nhất có thể khi ban mua rồi bán lai trong năm sau.

3	2
5 10 3	

Giải thích ví dụ: Bạn mua ngôi nhà vào năm thứ 1, bạn được 5 đồng. Sau đó vào năm thứ 3, bạn bán lại ngôi nhà với giá 3 đồng. Như vậy bạn chịu 10.5 - 3 = 2 đồng.

Hướng dẫn giải:

Với mỗi ngôi nhà i, bạn gọi x là giá tiền của ngôi nhà có giá trị nhỏ nhất nhưng lớn hơn x trong các năm từ năm 1 đến năm i-1. Nếu như bạn tìm được x thì bạn cập nhật lại res = min(res, x-a[i]). Để có thể thực hiện được việc tìm x, bạn bỏ các phần tử từ phần tử 1 đến phần tử i-1 vào một set, sau đó với mỗi phần tử a[i], bạn gọi hàm upper_bound(a[i]) để tìm ra được x.

Đánh giá độ phức tạp: O(N * logN) với N là số lượng ngôi nhà.