DA-IICT Gandhinagar SC 224, Winter 2022-2023

End Semester Exam: BTech Semester IV (ICT & ICT-CS)
Date: 09/05/2023, Duration: 120 minutes
Maximum Marks: 50

General Instructions

- · Answer all questions.
- Kindly ensure that no relevant books, notes are open during the exam duration.
- 1. We want to model traffic flow on the highway shown in Fig. 1:

Figure 1: Highway representation.

Let X_1 denotes the number of cars passing on I_1 during one minute, X_2 for I_2 and X_3 for I_3 . We assume that X_1 and X_2 are independent and follow a Poisson law with parameters λ_1 and λ_2 respectively. What can you say about X_3 ? [4 marks]

 Consider a source S which emits certain symbols (messages) with certain probabilities given as:

Symbols	<i>S</i> 1	<i>s</i> ₂	83	84	85	86	87
Probability	0.50	0.26	0.11	0.04	0.04	0.03	0.02

- (a) Using the binary Huffman coding scheme, obtain the codeword for each of the symbols of source S and calculate the efficiency of this Huffman coding scheme [8 marks] = 1.9%, 99%
- (b) Suppose the source S emits infinite messages with probability given as $P(s_i) = 2^{-i}$; $i = \{1, 2, 3 \cdots\}$. Calculate the entropy of the source. [4 marks] =2
- 3. An exam of 100 marks is conducted for a batch of 178 students where the marks obtained by the students are normally distributed. A random sample with marks of 25 students is collected with the average marks being 42 marks.
 - (a) Considering the variance of the marks of the batch to be 9 marks, estimate the average marks of the entire batch with a confidence level of (i) 95% and (ii) 98% [3 marks]

- (b) Considering the variance of the marks of the chosen sample to be 7 marks, estimate the average marks of the entire batch with a confidence level of (i) 95% and (ii) 98% [3 marks]
- (c) The course instructor conducting the exam claims that the average marks of the batch is 46 with a standard deviation of 2.5 marks. Use 95% confidence level and test for hypothesis that true average marks of the batch is 46 marks. [4 marks]

Note: Relevant z and t multiplier values: $Z_{0.025} = 1.96$, $Z_{0.01} = 2.33$, $t_{0.025,24} = 2.064$, $t_{0.01,24} = 2.492$.

4. Consider a linear regression model illustrating the scenario where output is zero corresponding to zero input, i.e.

$$y_i = \beta x_i + \epsilon_i; \quad i = 1, 2, \cdots, n \tag{1}$$

Here, x_i, y_i represent the set of input and output values for the *i*th set of data and β is the fixed value unknown parameter. The random errors ϵ_i 's are considered to be independent and identically distributed (IID) following Normal distribution where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

- (a) Derive the Least Squares estimator $\hat{\beta}$ of the parameter β . [3 marks]
- (b) Obtain the expected value $E\{\hat{\beta}\}$ and variance $Var(\hat{\beta})$ of the estimator $\hat{\beta}$. For the fitted model represented as $\hat{y}_i = \hat{\beta}x_i$, compute the variance of the residual represented as $r_i = y_i \hat{y}_i$. [3+3 marks]

The metric
$$lpha$$
 is defined as
$$lpha = \frac{Var(r_i)}{Var(\hat{eta})} - x_i^2 \tag{2}$$

Given that n=10 and $x_i=\left(\frac{1}{2}\right)^i$, obtain the value of the metric α . [4 marks]

- 5. A machine produces parts whose diameter X (in centimeters) has approximately a Gaussian distribution $N(\mu, \sigma^2 = 0.0001)$. What should the value of μ be so that no more than 1% of the parts have a diameter greater than 3 cm? Assuming $\mu = 3$, calculate the PMF of Y := |X 3|. [7 marks] $\mu \leq 2.97$
- 6. (St. Petersburg paradox:) You toss independently a fair coin and you count the number of tosses until the first tail appears. If this number is n, you receive 2ⁿ dollars. What is the expected amount that you will receive? How much would you be willing to pay to play this game? [4 marks] 1 [11] play