```
_____(R)
/___/ / ____/ / ____/
___/ Statistics/Data analysis
```

```
name: <unnamed>
         log: C:\Users\jamel\Dropbox\latex\PROJECTS\23-05-geopolitical-risk-pol-tension-oil-price\Data and command\lp
     log type: smcl
    opened on: 20 Aug 2023, 18:10:53
 2 . import excel .\data_svar.xlsx,/*
   > */ sheet("data") firstrow clear
   (9 vars, 759 obs)
 4 . generate Period = tm(1960m1) + _n-1
 5 . format %tm Period
 7 . drop if Period > tm(2019m12)
  (39 observations deleted)
 9 . label variable pri "Political Relationship Index"
10 . label variable pri_s "PRI Standardized"
11 . label variable gop "Global Oil Production"
12 . label variable rspri "Real Spot Price"
13 . label variable wip "World Industrial Production"
14 . label variable dinv "Variation of Inventories"
15 . label variable gprcn ///
               "Percent of Articles on China in the Bil. GPR"
16 . label variable igrea ///
               "Index of Global Real Economic Activity"
17 .
18 . rename gop pro
19 . rename wip dem
20 . rename rspri rpo
22 . capture generate lpro = log(pro)
23 . la var lpro "Natural log of PRO"
24 . capture generate lrpo = log(rpo)
25 . la var lpro "Natural log of RPO"
26 . capture generate ldem = log(dem)
27 . la var ldem "Natural log of DEM"
28 .
29 . drop t
```

```
Wednesday November 1 20:18:35 2023 Page 2
30 . order Period, first
32 . /* Another transformation for the PRI index */
33 . gen lpri = sign(pri) * log(1 + abs(pri))
35 . label variable lpri "Political Relationship Index"
36 .
37 . gen ligrea = sign(igrea) * log(1 + abs(igrea))
   (96 missing values generated)
39 . summarize lpri lpro ldem lrpo gprcn ligrea if Period>tm(2000m1)
       Variable
                         0bs
                                    Mean
                                             Std. dev.
                                                             Min
           lpri
                         239
                                .2934882
                                             .8635308
                                                      -2.054124
                                                                   1.193923
           1pro
                         239
                                4.318169
                                             .0624468
                                                       4.192786
                                                                   4.438475
           1dem
                         239
                                4.702075
                                             .1403389
                                                        4.450089
                                                                   4.904061
                                                                   4.120459
                                3.268457
           lrpo
                         239
                                             .3928032
                                                        2.388421
                                 .4806391
                                             .2381402
                                                        .1612948
                                                                   1.521136
          gprcn
                         239
         ligrea
                         239
                                 .0950085
                                             3.844319 -5.093765
                                                                   5.246595
```

Max

```
40 . /*
                using sum.doc if Period>tm(2000m1), replace sum(log) ///
   > outreg2
                keep(lpri lpro ldem lrpo gprcn) dec(3)
   > */
41 .
42 . **# Declare time series
43 .
44 . tsset Period, monthly
   Time variable: Period, 1960m1 to 2019m12
           Delta: 1 month
45 .
46 . save database_pri_gpr.dta, replace
   file database_pri_gpr.dta saved
47 .
48 . twoway (tsline lpri if Period>tm(2000m1)) ///
            (tsline gprcn if Period>tm(2000m1), yaxis(2)), ///
   >
                name(G0, replace) legend(off)
49 .
50 . graph export "G0.svg", as(svg) replace
   file GO.svg saved as SVG format
51 . graph export "G0.pdf", as(pdf) replace
  file G0.pdf saved as PDF format
52 . graph export "GO.png", as(png) width(4000) replace
   file GO.png saved as PNG format
54 . matrix A = (1,0,0,0,.,1,0,0,.,.,1,0,.,.,1)
55 . matlist A
```

c2

0

1

с3

ø

0

1

c4

ø

0

0

c1

1

r1

r2

r3

r4

56 .
57 . matrix B = (.,0,0,0\0,.,0,0\0,0,.,0\0,0,0,0)

58 . matlist B

	c1	c2	c3	c4
r1	•			
r2	0			
r3	0	0		
r4	0	0	0	

59

60 . svar lpri lpro ldem lrpo if Period>tm(2000m1), aeq(A) beq(B) ///
> lags(1/24)

Estimating short-run parameters

Iteration 0: Log likelihood = -1089.3698
Iteration 1: Log likelihood = 988.23688
Iteration 2: Log likelihood = 1255.9806
Iteration 3: Log likelihood = 1738.8122
Iteration 4: Log likelihood = 2153.2785
Iteration 5: Log likelihood = 2359.5949
Iteration 6: Log likelihood = 2436.0247
Iteration 7: Log likelihood = 2462.6683
Iteration 8: Log likelihood = 2464.6814
Iteration 9: Log likelihood = 2464.694
Iteration 10: Log likelihood = 2464.694

Structural vector autoregression

(1) $[/A]1_1 = 1$ (2) $[/A]1_2 = 0$

 $(3) [/A]1_3 = 0$

 $(4) [/A]_{-4} = 0$

(5) $[/A]2_2 = 1$

 $(6) [/A]2_3 = 0$

(7) $[/A]2_4 = 0$ (8) $[/A]3_3 = 1$

(9) [/A]3 4 = 0

(10) $[/A]4_4 = 1$

(10) [/A]4_4 = 1 (11) [/B]1_2 = 0

 $(11) [/B]1_2 = 0$ $(12) [/B]1_3 = 0$

 $(12) \quad [/B]1_3 = 0$ $(13) \quad [/B]1_4 = 0$

(14) $[/B]2_1 = 0$

 $(15) [/B]2_3 = 0$

(16) $[/B]2_4 = 0$

(17) [/B]3_1 = 0 (18) [/B]3_2 = 0

(19) [/B]3_4 = 0

 $(20) [/B]4_1 = 0$

 $(21) [/B]4_2 = 0$

 $(22) [/B]4_3 = 0$

Sample: 2000m2 thru 2019m12 Number of obs = Exactly identified model Log likelihood =

		Coefficient	Std. err.	z	P> z	[95% conf	. interval]
/A							
	1_1	1	(constraine	d)			
		0126754	.0047564	-2.66	0.008	0219977	0033531
	2_1 3_1	.0007724	.0031607	0.24	0.807	0054225	.0069673
	4 1	.0836298	.0493863	1.69	0.090	0131656	.1804253
	1_2 2_2 3_2 4_2	0	(constraine	d)			
	2_2	1	(constraine	d)			
	3_2	0649535	.0423596	-1.53	0.125	1479769	.0180698
	4_2	1.620257	.6650372	2.44	0.015	.3168079	2.923706
	1_3	0	(constraine	d)			
	1_3 2_3 3_3	0	(constraine	d)			
	3_3	1	(constraine	d)			
	4_3	-2.33248	1.010576	-2.31	0.021	-4.313173	3517882

239

2464.694

	1_4 2_4 3_4 4_4	0 0 0 1	(constrained (constrained (constrained (constrained	d) d)			
/B							
•	1_1	.0808577	.0036983	21.86	0.000	.0736091	.0881063
	2_1	0	(constrained	d)			
	3_1	0	(constrained	•			
	4 1	0	(constrained	•			
	1 2	0	(constrained	•			
	4_1 1_2 2_2	.0059456	.0002719	21.86	0.000	.0054126	.0064786
	3 2	0	(constrained	d)			
	4 2	0	(constrained	•			
	1 3	0	(constrained	•			
	2 3	0	(constrained	•			
	3_2 4_2 1_3 2_3 3_3	.0038936	.0001781	21.86	0.000	.0035445	.0042426
	4_3	0	(constrained				
	1 4	0	(constrained	,			
	1_4 2_4	0	(constrained	•			
	3 4	0	(constrained	•			
	3_4 4_4	.0608295	.0027823	21.86	0.000	.0553764	.0662827

62 . /* compute the inv(B)*A matrix */

63 . matrix A=e(A)

64 . matrix B=e(B)

65 . matrix BA = inv(B)*A

66 . /* compute reduced form epsilon_t residuals */
67 . var lpri lpro ldem lrpo if Period>tm(2000m1)

Vector autoregression

Sample: 2000m2 thru 2019m12 Number of obs = 239
Log likelihood = 2190.165 AIC = -18.02649
FPE = 1.74e-13 HQIC = -17.81547
Det(Sigma_ml) = 1.29e-13 SBIC = -17.50284

Equation	Parms	RMSE	R-sq	chi2	P>chi2
lpri	9	.113468	0.9833	14084.61	0.0000
lpro	9	.007845	0.9847	15430.2	0.0000
ldem	9	.005659	0.9984	151862.9	0.0000
lrpo	9	.080528	0.9594	5645.453	0.0000

		Coefficient	Std. err.	z	P> z	[95% conf	. interval]
lpri							
	lpri						
	L1.	1.02088	.065043	15.70	0.000	.8933984	1.148362
	L2.	0404373	.0649793	-0.62	0.534	1677943	.0869197
	lpro						
	Ĺ1.	5662178	.9375872	-0.60	0.546	-2.403855	1.271419
	L2.	.4591511	.9410169	0.49	0.626	-1.385208	2.30351
	ldem						
	L1.	2.328491	1.235075	1.89	0.059	0922117	4.749194
	L2.	-2.516937	1.222366	-2.06	0.039	-4.91273	1211443
	lrpo						
	L1.	.0197547	.0909455	0.22	0.828	1584951	.1980046
	L2.	.0561329	.0913182	0.61	0.539	1228475	.2351133
_	cons	1.092742	1.088601	1.00	0.315	-1.040876	3.22636

1pro

	lpri						
	L1.	.0046979	.0044971	1.04	0.296	0041163	.0135122
	L2.	0051903	.0044927	-1.16	0.248	0139959	.0036153
	lpro						
	L1.	.8960902	.0648256	13.82	0.000	.7690342	1.023146
	L2.	.0002203	.0650628	0.00	0.997	1273004	.127741
	ldem						
	L1.	.1852567	.0853942	2.17	0.030	.0178871	.3526264
	L2.	1393035	.0845155	-1.65	0.099	3049508	.0263439
		.2333033	.00-15255	2.05	0.055	13043300	.0205-155
	lrpo						
	L1.	.0084163	.0062881	1.34	0.181	003908	.0207407
	L1.	0104668	.0063138	-1.66	0.097	0228417	.001908
	LZ.	0104008	.0003130	-1.66	0.057	0228417	.001308
	cons	.2392245	.0752669	3.18	0.001	.0917042	.3867448
	_cons	.2332243	.0732003	3.10	0.001	.0317042	. 3807448
ldem							
±uc	lpri						
	L1.	.004107	.0032438	1.27	0.205	0022508	.0104649
	L1.	0032437	.0032438	-1.00	0.317	0095953	.0031079
	LZ.	0032437	.0032407	-1.00	0.317	0055555	.0031073
	1						
	lpro	0022044	0467506	4 07	0.040	0006373	4020245
	L1.	.0922844	.0467596	1.97	0.048	.0006372	.1839315
	L2.	0690136	.0469307	-1.47	0.141	160996	.0229688
	ldem						
	L1.	1.151338	.061596	18.69	0.000	1.030612	1.272064
	L2.	1602631	.0609622	-2.63	0.009	2797468	0407795
	_						
	lrpo						
	L1.	.0238001	.0045357	5.25	0.000	.0149103	.0326898
	L2.	0253468	.0045542	-5.57	0.000	0342729	0164206
		050000	054004	0.05	0 226	4505005	054000
	_cons	0522002	.054291	-0.96	0.336	1586086	.0542082
lnne							
lrpo	1						
	lpri	0262072	0464606	0.70	0.430	4260704	0540750
	L1.	0363973	.0461606	-0.79	0.430	1268704	.0540758
	L2.	.0459971	.0461153	1.00	0.319	0443872	.1363815
	-						
	lpro						
	L1.	476452	.6653989	-0.72	0.474	-1.78061	.8277059
	L2.	0750901	.6678329	-0.11	0.910	-1.384019	1.233838
	ldem						
	L1.	2.394223	.876524	2.73	0.006	.6762673	4.112178
	L2.	-2.102661	.8675043	-2.42	0.015	-3.802938	4023834
	lrpo						
	L1.	1.170197	.0645433	18.13	0.000	1.043694	1.2967
	L2.	232986	.0648079	-3.60	0.000	3600071	1059649
	_cons	1.209696	.772572	1.57	0.117	3045171	2.72391

^{68 .} capture drop epsilon*

^{69 .} predict double epsilon1 if Period>tm(2000m1),residual eq(#1) (481 missing values generated)

```
Wednesday November 1 20:18:36 2023 Page 6
70 . predict double epsilon2 if Period>tm(2000m1),residual eq(#2)
   (481 missing values generated)
71 . predict double epsilon3 if Period>tm(2000m1),residual eq(#3)
   (481 missing values generated)
72 . predict double epsilon4 if Period>tm(2000m1),residual eq(#4)
   (481 missing values generated)
73 . /* store the epsilon* variables in the epsilon matrix */
74 . mkmat epsilon*, matrix(epsilon)
75 . /* compute e_t matrix of structural shocks */
76 . matrix e = (BA*epsilon')'
77 . /* store columns of e as variables e1, e2, and e3 */
78 . svmat double e
80 . label variable epsilon1 "Reduced-form shocks - PRI"
81 . label variable e1 "Structural shocks - PRI"
82 .
83 . twoway (tsline e1 if Period>tm(2000m1)) (tsline epsilon1 ///
   > if Period>tm(2000m1), yaxis(1)), ///
   > name(G1, replace) legend(position(6)) graphregion(margin(r+5))
85 . graph export "G1.svg", as(svg) replace
  file G1.svg saved as SVG format
86 . graph export "G1.png", as(png) width(4000) replace
   file G1.png saved as PNG format
87 . graph export "G1.pdf", as(pdf) replace
   file G1.pdf saved as PDF format
89 . irf set comparemodels.irf, replace
   (file comparemodels.irf created)
   (file comparemodels.irf now active)
90 . quietly lpirf lpro ldem lrpo, step(48) lags(1/24) ///
  > exog(L(0/24).e1) vce(robust)
91 . irf create lpmodel
   (file comparemodels.irf updated)
93 . quietly var lpro ldem lrpo, lags(1/24)
                                                        ///
  > exog(L(0/24).e1)
94 . irf create varmodel, step(48)
   (file comparemodels.irf updated)
96 . irf graph dm, impulse(e1) response(lrpo) ///
> irf(lpmodel varmodel) level(95) name(G2, replace) ///
        xline(0 10 20 30 40 50, lcolor(blue)) yline(-.05 0 .05 .1, lcolor(blue))
```

```
Wednesday November 1 20:18:36 2023 Page 7
97 .
98 . graph export "G2.svg", replace
   file G2.svg saved as SVG format
99 . graph export "G2.png", as(png) width(4000) replace
   file G2.png saved as PNG format
100 . graph export "G2.pdf", as(pdf) replace
    file G2.pdf saved as PDF format
101 .
102 . /* GPR */
103 .
104 . matrix A = (1,0,0,0,.,1,0,0,.,1,0,.,.,1)
105 . matlist A
                         c1
                                    c2
                                               с3
                                                          с4
             r1
                          1
                                     0
                                                0
                                                           0
             r2
                                     1
                                                0
                                                           0
                          .
             r3
                                                1
                                                           0
             r4
106 .
108 . matlist B
                         c1
                                    c2
                                               с3
                                                          c4
             r1
             r2
                          0
             r3
                          0
                                     0
             r4
                          0
                                     0
                                                0
109 .
110 . svar gprcn lpro ldem lrpo if Period>tm(2000m1), aeq(A) beq(B) ///
   > lags(1/24)
   Estimating short-run parameters
   Iteration 0: Log likelihood = -1093.1299
   Iteration 1: Log likelihood = 366.84133
   Iteration 2: Log likelihood = 925.91491
   Iteration 3: Log likelihood = 1190.8535
                 Log likelihood = 1559.6293
   Iteration 4:
   Iteration 5:
                 Log likelihood = 1872.7545
   Iteration 6:
                 Log likelihood = 2176.4317
   Iteration 7:
                 Log likelihood =
                                   2281.754
   Iteration 8: Log likelihood = 2324.3724
   Iteration 9: Log likelihood = 2325.2756
   Iteration 10: Log likelihood = 2325.2767
   Iteration 11: Log likelihood = 2325.2767
   Structural vector autoregression
    (1)
          [/A]1_1 = 1
    (2)
          [/A]1_2 = 0
          [/A]1_3 = 0
    (3)
          [/A]1_4 = 0
    (4)
    (5)
          [/A]2_2 = 1
          [/A]2_3 = 0
    (6)
     (7)
          [/A]2_4 = 0
    (8)
          [/A]3_3 = 1
          [/A]3_4 = 0
     (9)
          [/A]4 4 = 1
     (10)
          [/B]1_2 = 0
     (11)
     (12)
          [/B]1_3 = 0
     (13)
          [/B]1_4 = 0
     (14)
          [/B]2_1 = 0
     (15) [/B]2_3 = 0
     (16) [/B]2_4 = 0
```

 $(17) [/B]3_1 = 0$

- $(18) [/B]3_2 = 0$
- (19) $[/B]3_4 = 0$

Sample: 2000m2 thru 2019m12 Exactly identified model Number of obs 239 2325.277 Log likelihood

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
/A						
1_1	1	(constrained)				
2_1	0049828	.0029376 -	1.70	0.090	0107404	.0007749
3_1	.0020722	.0019717	1.05	0.293	0017923	.0059367
4_1	012775	.0303738 -	0.42	0.674	0723066	.0467566
1_2	0	(constrained)				
2_2	1	(constrained)				
3_2	101516	.0431567 -	2.35	0.019	1861016	0169304
4_2	1.783492	.6709258	2.66	0.008	.4685019	3.098483
1_3	0	(constrained)				
2_3	0	(constrained)				
3_3	1	(constrained)				
4_3	-2.378802	.9941626 -	2.39	0.017	-4.327325	4302789
1 4	0	(constrained)				
2_4	0	(constrained)				
3 4	0	(constrained)				
4_4	1	(constrained)				
/B						
1 1	.1335812	.0061099 2	1.86	0.000	.1216061	.1455563
2_1	0	(constrained)				
2 1		`				
	0	(constrained)				
3_1	0 0	`				
3_1 4_1		(constrained) (constrained) (constrained)				
3_1 4_1 1_2	0	<pre>(constrained) (constrained)</pre>	21.86	0.000	.0055227	.0066104
3_1 4_1 1_2 2_2	0	<pre>(constrained) (constrained)</pre>	21.86	0.000	.0055227	.0066104
3_1 4_1 1_2 2_2 3_2	0 0 .0060665	(constrained) (constrained) .0002775 2	21.86	0.000	.0055227	.0066104
3_1 4_1 1_2 2_2 3_2 4_2	.0060665	<pre>(constrained) (constrained) .0002775 2 (constrained)</pre>	21.86	0.000	.0055227	.0066104
3_1 4_1 1_2 2_2 3_2 4_2 1_3	.0060665 0	(constrained) (constrained) .0002775 2 (constrained) (constrained) (constrained)	21.86	0.000	.0055227	.0066104
3_1 4_1 1_2 2_2 3_2 4_2 1_3 2_3	.0060665 0 0	(constrained) (constrained) .0002775 2 (constrained) (constrained) (constrained) (constrained)	21.86	0.000 0.000	.0055227	
3_1 4_1 1_2 2_2 3_2 4_2 1_3 2_3 3_3	0 0 .0060665 0 0	(constrained) (constrained) .0002775 2 (constrained) (constrained) (constrained) (constrained)				
3_1 4_1 1_2 2_2 3_2 4_2 1_3 2_3	0 0 .0060665 0 0 0 0 .0040475	(constrained) (constrained) .0002775 2 (constrained) (constrained) (constrained) (constrained) .0001851 2				
3_1 4_1 1_2 2_2 3_2 4_2 1_3 2_3 3_3 4_3	0 0 .0060665 0 0 0 0 .0040475	(constrained) (constrained) .0002775 2 (constrained) (constrained) (constrained) (constrained) .0001851 2 (constrained)				
3_1 4_1 1_2 2_2 3_2 4_2 1_3 2_3 3_3 4_3 1_4	0 0 .0060665 0 0 0 0 .0040475	(constrained) (constrained) .0002775 2 (constrained) (constrained) (constrained) (constrained) .0001851 2 (constrained) (constrained) (constrained)				.0066104

112 . /* compute the inv(B)*A matrix */

113 . matrix A=e(A)

114 . matrix B=e(B)

115 . matrix BA = inv(B)*A

116 . /* compute reduced form epsilon_t residuals */

117 . var gprcn lpro ldem lrpo if Period>tm(2000m1)

Vector autoregression

Sample: 2000m2	thr	u 2019m12	Number of obs	=	239
Log likelihood	=	2090.976	AIC	=	-17.19645
FPE	=	4.00e-13	HQIC	=	-16.98544
<pre>Det(Sigma_ml)</pre>	=	2.96e-13	SBIC	=	-16.6728

Wednesday November 1 20:18:36 2023 Page 9

Equation	Parms	RMSE	R-sq	chi2	P>chi2
gprcn	9	.16742	0.5224	261.3788	0.0000
lpro	9	.007868	0.9847	15341.54	0.0000
ldem	9	.005694	0.9984	149979.7	0.0000
lrpo	9	.080839	0.9591	5600.213	0.0000

					- 1 1	F0=0/ C	
		Coefficient	Std. err.	Z	P> z	[95% conf.	interval
gprcn							
	gprcn L1.	.4500914	.0620854	7.25	0.000	.3284062	.5717767
	L1.	.1775588	.0620725	2.86	0.004	.0558989	.2992186
	LZ.	.1773388	.0020723	2.00	0.004	.0556565	.2332180
	lpro						
	L1.	-3.200558	1.372682	-2.33	0.020	-5.890966	5101505
	L2.	3.960201	1.376321	2.88	0.004	1.262662	6.65774
	ldem	1 027062	1 022162	1 00	0 201	1 (4()71	F F0030F
	L1. L2.	1.927062 -1.9184	1.823162 1.801013	1.06 -1.07	0.291 0.287	-1.646271 -5.448321	5.500395 1.611521
	LZ.	-1.9164	1.001013	-1.07	0.207	-3.446321	1.011321
	lrpo						
	L1.	.1292757	.1330733	0.97	0.331	1315432	.3900947
	L2.	1787356	.1316673	-1.36	0.175	4367988	.0793277
	_cons	-2.978551	1.618397	-1.84	0.066	-6.15055	.1934488
lpro							
	gprcn						
	L1.	001069	.0029176	-0.37	0.714	0067874	.0046494
	L2.	.0015092	.002917	0.52	0.605	004208	.0072264
	lpro						
	L1.	.9096059	.0645068	14.10	0.000	.7831748	1.036037
	L2.	0128948	.0646778	-0.20	0.842	139661	.1138714
	LZ.	.0120540	.0040770	0.20	0.042	.155001	.1150714
	ldem						
	L1.	.1828189	.0856764	2.13	0.033	.0148963	.3507415
	L2.	1369852	.0846355	-1.62	0.106	3028678	.0288973
	lrpo	007536	0060536	4 04		0047007	0407007
	L1.	.007536	.0062536	1.21	0.228	0047207	.0197927
	L2.	0099852	.0061875	-1.61	0.107	0221124	.002142
	_cons	.2389479	.0760538	3.14	0.002	.0898853	.3880106
ldem							
Tuelli	gprcn						
	L1.	.0017658	.0021117	0.84	0.403	002373	.0059045
	L2.	000872	.0021112	-0.41	0.680	0050099	.0032659
	lpro						
	L1.	.0935613	.0466877	2.00	0.045	.002055	.1850676
	L2.	0741439	.0468115	-1.58	0.113	1658927	.017605
	ldem						
	L1.	1.16219	.0620095	18.74	0.000	1.040653	1.283726
	L2.	1734031	.0612562	-2.83	0.005	293463	0533433
	lrpo						
	L1.	.0231581	.0045261	5.12	0.000	.0142871	.0320291
	L2.	0232409	.0044783	-5.19	0.000	0320182	0144637
	_cons	0298126	.055045	-0.54	0.588	1376988	.0780736
1							
lrpo	gnrcn						
	gprcn L1.	.0054426	.0299781	0.18	0.856	0533135	.0641986
	L2.	0190787	.0299719	-0.64	0.524	0778225	.0396651
		1					

```
1pro
         -.6051497
                                -0.91
 L1.
                    .6628032
                                         0.361
                                                   -1.90422
                                                               .6939207
          .0453315
                    .6645601
                                                  -1.257182
 L2.
                                 0.07
                                         0.946
                                                               1.347845
 1dem
 L1.
         2.463921
                     .8803188
                                 2.80
                                         0.005
                                                   .7385276
                                                               4.189314
 L2.
          -2.17557
                      .869624
                                 -2.50
                                         0.012
                                                  -3.880002
                                                               -.4711387
 1rpo
         1.177965
                                                               1.303902
                     .0642548
                                 18.33
                                         0.000
                                                   1.052028
 L1.
 L2.
         -.2313584
                     .0635759
                                 -3.64
                                         0.000
                                                   -.3559649
                                                               -.1067519
          1.239634
                     .7814471
                                  1.59
                                         0.113
                                                   -.291974
                                                               2.771243
_cons
```

```
118 . capture drop epsilon *
   . predict double epsilon_1 if Period>tm(2000m1),residual eq(#1)
    (481 missing values generated)
120 . predict double epsilon 2 if Period>tm(2000m1),residual eq(#2)
    (481 missing values generated)
121 . predict double epsilon_3 if Period>tm(2000m1),residual eq(#3)
    (481 missing values generated)
122 . predict double epsilon_4 if Period>tm(2000m1),residual eq(#4)
    (481 missing values generated)
123 . /* store the epsilon* variables in the epsilon matrix */
124 . mkmat epsilon_*, matrix(epsilon_)
125 . /* compute e_t matrix of structural shocks */
126 . matrix e_ = (BA*epsilon_')'
127 . /* store columns of e as variables e1, e2, and e3 */
128 . svmat double e_
129
130 . label variable epsilon 1 "Reduced-form shocks - GPR"
131 . label variable e_1 "Structural shocks - GPR"
133 . twoway (tsline e_1 if Period>tm(2000m1)) (tsline epsilon_1 ///
   > if Period>tm(2000m1), yaxis(1)), ///
    > name(G3, replace) legend(position(6)) graphregion(margin(r+5))
135 . graph export "G3.svg", as(svg) replace
   file G3.svg saved as SVG format
136 . graph export "G3.png", as(png) width(4000) replace
   file G3.png saved as PNG format
137 . graph export "G3.pdf", as(pdf) replace
    file G3.pdf saved as PDF format
138 .
139 . irf set comparemodels1.irf, replace
    (file comparemodels1.irf created)
    (file comparemodels1.irf now active)
```

```
Wednesday November 1 20:18:36 2023 Page 11
140 . quietly lpirf lpro ldem lrpo, step(48) lags(1/24) ///
   > exog(L(0/24).e_1) vce(robust)
141 . irf create lpmodel1
   (file comparemodels1.irf updated)
142 .
143 . quietly var lpro ldem lrpo, lags(1/24)
                                                        ///
    > exog(L(0/24).e_1)
144 . irf create varmodel1, step(48)
   (file comparemodels1.irf updated)
145 .
146 . irf graph dm, impulse(e_1) response(lrpo) ///
   > irf(lpmodel1 varmodel1) level(95) name(G4, replace) ///
         xline(0 10 20 30 40 50, lcolor(blue)) yline(-.05 0 .05 .1, lcolor(blue))
148 . graph export "G4.svg", replace
   file G4.svg saved as SVG format
149 . graph export "G4.png", as(png) width(4000) replace
   file G4.png saved as PNG format
150 . graph export "G4.pdf", as(pdf) replace
    file G4.pdf saved as PDF format
151 .
152 . twoway (tsline e1 if Period>tm(2000m1)) (tsline e_1 ///
   > if Period>tm(2000m1), yaxis(1)), ///
    > name(G5, replace) legend(position(6)) graphregion(margin(r+5))
153 .
154 . graph export "G5.svg", replace
   file G5.svg saved as SVG format
155 . graph export "G5.png", as(png) width(4000) replace
   file G5.png saved as PNG format
156 . graph export "G5.pdf", as(pdf) replace
   file G5.pdf saved as PDF format
158 . pwcorr lrpo e1 e_1, obs sig listwise star(5) sidak
                      1rpo
                                 e1
                                          e 1
            1rpo
                     1.0000
                       239
                    -0.0304
              e1
                              1.0000
                     0.9536
                       239
                                239
             e_1
                    -0.0073
                              0.0693
                                       1.0000
```

239

0.6364

239

239

Log likelihood = **903.35393**

Log likelihood = 1140.2874

Log likelihood = 1141.2526

Log likelihood =

Iteration 9: Log likelihood = 1141.2566
Iteration 10: Log likelihood = 1141.2566

Iteration 5:

Iteration 6:

Iteration 7:
Iteration 8:

Structural vector autoregression

(1) [/A]1_1 = 1 (2) [/A]1_2 = 0 (3) [/A]1_3 = 0 (4) [/A]1_4 = 0 (5) [/A]2_2 = 1 (6) [/A]2_3 = 0 (7) [/A]2_4 = 0 (8) [/A]3_3 = 1 (9) [/A]4_4 = 1 (11) [/B]1_2 = 0 (12) [/B]1_3 = 0 (13) [/B]1_4 = 0 (14) [/B]2_1 = 0 (15) [/B]2_3 = 0 (16) [/B]2_1 = 0 (17) [/B]2_3 = 0 (18) [/B]2_4 = 0 (19) [/B]3_1 = 0 (19) [/B]3_1 = 0 (19) [/B]3_1 = 0 (19) [/B]3_4 = 0 (20) [/B]4_1 = 0 (21) [/B]4_2 = 0 (22) [/B]4_3 = 0

Sample: 2000m2 thru 2019m12 Number of obs = 239 Exactly identified model Log likelihood = 1141.257

	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
/A						
1_1	1	(constrained)				
2_1	0118214	.0040088	-2.95	0.003	0196785	0039643
3_1	3751618	.8868091	-0.42	0.672	-2.113276	1.362952
4_1	.097546	.0481201	2.03	0.043	.0032322	.1918597
1_2	0	(constrained)				
2_2	1	(constrained)				
3_2	14.41956	14.05586	1.03	0.305	-13.12942	41.96853
4_2	1.104209	.7640921	1.45	0.148	3933836	2.601802
1_3	0	(constrained)				
2_3	0	(constrained)				
3_3	1	(constrained)				
4_3	0052758	.0035086	-1.50	0.133	0121525	.001601
1_4	0	(constrained)				
2_4	0	(constrained)				
3_4	0	(constrained)				
4_4	1	(constrained)				
/B						
1 1	.0829924	.003796	21.86	0.000	.0755524	.0904324
2_1	0	(constrained)				
3_1	0	(constrained)				
4_1	0	(constrained)				
1 2	0	(constrained)				
2 2	.0051434	.0002353	21.86	0.000	.0046823	.0056045
3_2	0	(constrained)				
4_2	0	(constrained)				
1_3	0	(constrained)				
2_3	0	(constrained)				
3_3	1.117653	.0511203	21.86	0.000	1.017459	1.217847
	0	(constrained)				
4 3	0	(constrained)				
4_3 1 4	0					
1_4	0	(constrained)				
		<pre>(constrained) (constrained)</pre>				

184 . /* compute the inv(B)*A matrix */
185 . matrix A=e(A)

186 . matrix B=e(B)

187 . matrix BA = inv(B)*A

188 . /* compute reduced form epsilon_t residuals */

189 . var lpri lpro ligrea lrpo if Period>tm(2000m1)

Vector autoregression

Sample: 2000m2 Log likelihood FPE Det(Sigma_m1)	= =	u 2019m12 848.3584 1.31e-08 9.70e-09			Number of AIC HQIC SBIC	f obs	= = =	239 -6.797979 -6.586961 -6.274327
Equation		Parms	RMSE	R-sq	chi2	P>chi2		
lpri lpro ligrea lrpo		9 9 9 9	.114594 .008001 1.47542 .081359	0.9830 0.9841 0.8577 0.9585	13804.51 14825.52 1440.013 5525.825	0.0000 0.0000 0.0000 0.0000		

	_					
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
lpri						
lpri						
L1.	1.031543	.065542	15.74	0.000	.9030827	1.160003
L2.	0488196	.0655629	-0.74	0.456	1773204	.0796813
lpro						
L1.	543099	.9221104	-0.59	0.556	-2.350402	1.264204
L2.	.0585194	.9262575	0.06	0.950	-1.756912	1.873951
ligrea						
L1.	001409	.0050594	-0.28	0.781	0113253	.0085073
L2.	.001189	.0050561	0.24	0.814	0087207	.0110988
lrpo						
L1.	.0609772	.0891623	0.68	0.494	1137777	.2357321
L2.	0005068	.0894578	-0.01	0.995	1758408	.1748272
_cons	1.890857	.6390209	2.96	0.003	.6383992	3.143315
.pro						
lpri						
Ĺ1.	.004347	.0045763	0.95	0.342	0046224	.0133163
L2.	0048775	.0045777	-1.07	0.287	0138496	.0040947
lpro						
Ĺ1.	.9592392	.0643836	14.90	0.000	.8330497	1.085429
L2.	.0331146	.0646732	0.51	0.609	0936425	.1598716
ligrea						
L1.	.0005136	.0003533	1.45	0.146	0001788	.0012059
L2.	0003914	.000353	-1.11	0.268	0010834	.0003005
lrpo						
L1.	.0126148	.0062255	2.03	0.043	.000413	.0248165
L2.	0116823	.0062461	-1.87	0.061	0239245	.0005599
_cons	.0311188	.0446177	0.70	0.486	0563304	.1185679
igrea.						
lpri						
L1.	1.191882	.8438633	1.41	0.158	4620597	2.845824
L2.	-1.205254	.8441316	-1.43	0.153	-2.859722	.4492131

-9.122932	11.87231	-0.77	0.442	-32.39223	14.14637
6.247787	11.9257	0.52	0.600	-17.12616	29.62174
.8977231	.0651407	13.78	0.000	.7700496	1.025396
.0026164	.065098	0.04	0.968	1249734	.1302061
1.486564	1.147978	1.29	0.195	7634315	3.73656
-1.511413	1.151782	-1.31	0.189	-3.768865	.7460383
12.52106	8.227491	1.52	0.128	-3.604523	28.64665
035083	.0465331	-0.75	0.451	1262861	.0561202
.0464267					.1376588
0006364	.6546737	-0.00	0.999	-1.283773	1.2825
.1314577	.657618	0.20	0.842	-1.15745	1.420365
.0049832	.003592	1.39	0.165	0020571	.0120235
001918	.0035897	-0.53	0.593	0089536	.0051177
1.204628	.0633029	19.03	0.000	1.080557	1.328699
					1343659
3904982	.4536877	-0.86	0.389	-1.27971	.4987134
	6.247787 .8977231 .0026164 1.486564 -1.511413 12.52106 035083 .0464267 0006364 .1314577 .0049832001918 1.2046282588484	6.247787 11.9257 .8977231 .0651407 .0026164 .065098 1.486564 1.147978 -1.511413 1.151782 12.52106 8.227491 035083 .0465331 .0464267 .0465479 0006364 .6546737 .1314577 .657618 .0049832 .003592001918 .0035897 1.204628 .06330292588484 .0635126	6.247787 11.9257 0.52 .8977231 .0651407 13.78 .0026164 .065098 0.04 1.486564 1.147978 1.29 -1.511413 1.151782 -1.31 12.52106 8.227491 1.52 035083 .0465331 -0.75 .0464267 .0465479 1.00 0006364 .6546737 -0.00 .1314577 .657618 0.20 .0049832 .003592 1.39001918 .0035897 -0.53 1.204628 .0633029 19.032588484 .0635126 -4.08	6.247787 11.9257 0.52 0.600 .8977231 .0651407 13.78 0.000 .0026164 .065098 0.04 0.968 1.486564 1.147978 1.29 0.195 -1.511413 1.151782 -1.31 0.189 12.52106 8.227491 1.52 0.128 035083 .0465331 -0.75 0.451 .0464267 .0465479 1.00 0.319 0006364 .6546737 -0.00 0.999 .1314577 .657618 0.20 0.842 .0049832 .003592 1.39 0.165 001918 .0035897 -0.53 0.593 1.204628 .0633029 19.03 0.000 2588484 .0635126 -4.08 0.000	6.247787 11.9257 0.52 0.600 -17.12616 .8977231 .0651407 13.78 0.000 .7700496 .0026164 .065098 0.04 0.9681249734 1.486564 1.147978 1.29 0.1957634315 -1.511413 1.151782 -1.31 0.189 -3.768865 12.52106 8.227491 1.52 0.128 -3.604523 035083 .0465331 -0.75 0.4511262861 .0464267 .0465479 1.00 0.3190448055 0006364 .6546737 -0.00 0.999 -1.283773 .1314577 .657618 0.20 0.842 -1.15745 .0049832 .003592 1.39 0.1650020571001918 .0035897 -0.53 0.5930089536 1.204628 .0633029 19.03 0.000 1.0805572588484 .0635126 -4.08 0.0003833308

- 190 . capture drop upsilon*
- 191 . predict double upsilon1 if Period>tm(2000m1),residual eq(#1)
 (481 missing values generated)
- 192 . predict double upsilon2 if Period>tm(2000m1),residual eq(#2)
 (481 missing values generated)
- 193 . predict double upsilon3 if Period>tm(2000m1),residual eq(#3)
 (481 missing values generated)
- 194 . predict double upsilon4 if Period>tm(2000m1),residual eq(#4)
 (481 missing values generated)
- 195 . /* store the epsilon* variables in the epsilon matrix */
- 196 . mkmat upsilon*, matrix(upsilon)
- 197 . /* compute e_t matrix of structural shocks */
- 198 . matrix u = (BA*upsilon')'
- 199 . /* store columns of e as variables e1, e2, and e3 */
- 200 . svmat double u
- 201 .
- 202 . label variable upsilon1 "Reduced-form shocks PRI (Robustness)"
- 203 . label variable u1 "Structural shocks PRI (Robustness)"

```
Wednesday November 1 20:18:36 2023 Page 16
204 .
205 . twoway (tsline u1 if Period>tm(2000m1)) (tsline epsilon1 ///
   > if Period>tm(2000m1), yaxis(1)), ///
   > name(G1R, replace) legend(position(6)) graphregion(margin(r+5))
206 .
207 . graph export "G1R.svg", replace
   file G1R.svg saved as SVG format
208 . graph export "G1R.png", as(png) width(4000) replace
   file G1R.png saved as PNG format
209 . graph export "G1R.pdf", as(pdf) replace
   file G1R.pdf saved as PDF format
211 . irf set comparemodels.irf, replace
    (file comparemodels.irf created)
   (file comparemodels.irf now active)
212 . quietly lpirf lpro ligrea lrpo, step(48) lags(1/24) ///
   > exog(L(0/24).u1) vce(robust)
213 . irf create lpmodel
   (file comparemodels.irf updated)
214 .
215 . quietly var lpro ligrea lrpo, lags(1/24)
                                                         ///
   > exog(L(0/24).u1)
216 . irf create varmodel, step(48)
   (file comparemodels.irf updated)
217 .
218 . irf graph dm, impulse(u1) response(lrpo) ///
   > irf(lpmodel varmodel) level(95) name(G2R, replace) ///
         xline(0 10 20 30 40 50, lcolor(blue)) yline(-.05 0 .05 .1, lcolor(blue))
219 .
220 . graph export "G2R.svg", replace
   file G2R.svg saved as SVG format
221 . graph export "G2R.png", as(png) width(4000) replace
   file G2R.png saved as PNG format
222 . graph export "G2R.pdf", as(pdf) replace
   file G2R.pdf saved as PDF format
223 .
224 . /* GPR */
225 .
226 . matrix A = (1,0,0,0,.,1,0,0,.,1,0,.,.,1)
227 . matlist A
```

	c1	c2	c3	c4
r1	1	0	0	0
r2		1	0	0
r3		•	1	0
r4		•	•	1

230 . matlist B

```
        r1
        .

        r2
        0
        .

        r3
        0
        0
        .

        r4
        0
        0
        0
        .
```

231

232 . svar gprcn lpro ligrea lrpo if Period>tm(2000m1), aeq(A) beq(B) ///
> lags(1/24)

Estimating short-run parameters

Iteration 0: Log likelihood = -1294.2116 Iteration 1: Log likelihood = -484.18673 Iteration 2: Log likelihood = -404.56558 Log likelihood = **-194.34599** Iteration 3: Log likelihood = **187.25055** Iteration 4: Iteration 5: Log likelihood = 588.0996 Iteration 6: Log likelihood = 855.64494 Iteration 7: Log likelihood = 987.12974 Iteration 8: Log likelihood = 1005.7811 Iteration 9: Log likelihood = 1006.5395 Iteration 10: Log likelihood = 1006.5401 Iteration 11: Log likelihood = 1006.5401

Structural vector autoregression

- (1) $[/A]1_1 = 1$ (2) $[/A]1_2 = 0$
- $(3) [/A]1_3 = 0$
- $(4) [/A]1_4 = 0$
- (5) $[/A]_{2_2} = 1$
- $(6) [/A]2_3 = 0$
- $(7) [/A]2_4 = 0$
- $(8) [/A]3_3 = 1$
- $(9) [/A]3_4 = 0$
- $(10) [/A]4_4 = 1$
- (11) $[/B]1_2 = 0$
- (12) $[/B]1_3 = 0$ (13) $[/B]1_4 = 0$
- $(14) [/B]2_1 = 0$
- (15) $[/B]2_3 = 0$
- (16) $[/B]2_4 = 0$ (17) $[/B]3_1 = 0$
- $(18) [/B]3_2 = 0$
- (19) $[B]3_4 = 0$
- (20) $[/B]4_1 = 0$ (21) $[/B]4_2 = 0$
- (22) $[/B]4_3 = 0$

Sample: 2000m2 thru 2019m12 Number of obs = 239
Exactly identified model Log likelihood = 1006.54

		Coefficient	Std. err.	z	P> z	[95% conf	. interval]
/A							
	1_1	1	(constraine	d)			
		0079562	.0026317	-3.02	0.003	0131142	0027981
	2_1 3_1	3761626	.5528259	-0.68	0.496	-1.459681	.7073563
	4_1	.0054321	.0317605	0.17	0.864	0568173	.0676815
	1_2 2_2 3_2 4_2	0	(constraine	d)			
	2_2	1	(constraine	d)			
	3_2	9.810127	13.33532	0.74	0.462	-16.32662	35.94688
	4_2	1.196497	.7662548	1.56	0.118	3053345	2.698329
	1_3	0	(constraine	d)			
	2_3	0	(constraine	d)			
	3_3	1	(constraine	d)			

	4_3	0038824	.0037126 -1.05	0.296	011159	.0033942
	1_4	0	(constrained)			
	2_4	0	(constrained)			
	2_4 3_4	0	(constrained)			
	4_4	1	(constrained)			
/B						
	1_1	.1326207	.0060659 21.86	0.000	.1207317	.1445097
		0	(constrained)			
	2_1 3_1	0	(constrained)			
	4_1	0	(constrained)			
	1_2	0	(constrained)			
	2_2	.0053957	.0002468 21.86	0.000	.004912	.0058794
	3_2	0	(constrained)			
	4_2	0	(constrained)			
	1_3	0	(constrained)			
	2_3	0	(constrained)			
	3_3	1.11237	.0508786 21.86	0.000	1.01265	1.21209
	4_3	0	(constrained)			
	1_4	0	(constrained)			
	2_4	0	(constrained)			
	4_1 1_2 2_2 3_2 4_2 1_3 2_3 3_3 4_3 1_4 2_4 3_4	0	(constrained)			
	4_4	.0638452	.0029202 21.86	0.000	.0581216	.0695687

234 . /* compute the inv(B)*A matrix */

235 . matrix A=e(A)

236 . matrix B=e(B)

237 . matrix BA = inv(B)*A

238 . /* compute reduced form epsilon_t residuals */

239 . var gprcn lpro ligrea lrpo if Period>tm(2000m1)

Vector autoregression

Sample: 2000m2 thru 2019m12 Number of obs = 239
Log likelihood = 752.5675 AIC = -5.996381
FPE = 2.92e-08 HQIC = -5.785364
Det(Sigma_ml) = 2.16e-08 SBIC = -5.47273

Equation	Parms	RMSE	R-sq	chi2	P>chi2
gprcn	9	.167708	0.5207	259.6591	0.0000
lpro	9	.008019	0.9841	14758.78	0.0000
ligrea	9	1.47327	0.8581	1444.922	0.0000
lrpo	9	.08174	0.9582	5472.14	0.0000

	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
gprcn						
gprcn						
L1.	.4443778	.0622216	7.14	0.000	.3224256	.56633
L2.	.1782056	.0623994	2.86	0.004	.0559051	.3005062
lpro						
Ĺ1.	-3.018679	1.338652	-2.26	0.024	-5.642388	3949694
L2.	3.850703	1.339876	2.87	0.004	1.224594	6.476811
ligrea						
L1.	.0023119	.0074545	0.31	0.756	0122986	.0169225
L2.	0005368	.0073999	-0.07	0.942	0150402	.0139667
lrpo						
L1.	.1532182	.1293141	1.18	0.236	1002328	.4066692
L2.	2082281	.1283588	-1.62	0.105	4598068	.0433506
_cons	-3.226462	.9841889	-3.28	0.001	-5.155436	-1.297487

lpro						
gprcn						
L1.	0013264	.0029751	-0.45	0.656	0071576	.0045047
L2.	.0018845	.0029836	0.63	0.528	0039633	.0077323
lpro						
L1.	.9722475	.0640079	15.19	0.000	.8467943	1.097701
L2.	.0205195	.0640664	0.32	0.749	1050484	.1460874
14						
ligrea L1.	.0005198	.0003564	1.46	0.145	0001788	.0012184
L2.	0003138	.0003538	-1.11	0.266	0010872	.0002998
LZ.	000557	.000	-1.11	0.200	0010072	.0002338
lrpo						
L1.	.0116968	.0061832	1.89	0.059	000422	.0238156
L2.	0112313	.0061375	-1.83	0.067	0232606	.000798
cons	.0303798	.0470592	0.65	0.519	0618545	.1226141
ligrea						
gprcn						
L1.	.639055	.5465994	1.17	0.242	4322601	1.71037
L2.	.1964158	.5481607	0.36	0.720	8779594	1.270791
lpro						
L1.	-7.986964	11.75967	-0.68	0.497	-31.0355	15.06157
L2.	2.842411	11.77043	0.24	0.809	-20.2272	25.91203
ligrea						
L1.	.8883138	.0654857	13.56	0.000	.7599641	1.016664
L2.	.0047228	.0650056	0.07	0.942	1226859	.1321315
	.0047220	.0050050	0.07	0.342	.1220055	.1321313
lrpo						
L1.	1.304938	1.135987	1.15	0.251	9215566	3.531432
L2.	-1.189063	1.127596	-1.05	0.292	-3.39911	1.020984
_cons	21.442	8.645818	2.48	0.013	4.49651	38.38749
lnna						
1rpo gprcn						
L1.	0010515	.0303266	-0.03	0.972	0604906	.0583877
L2.	0183931	.0304133	-0.60	0.545	078002	.0412158
	102000					
lpro						
L1.	1172443	.6524548	-0.18	0.857	-1.396032	1.161544
L2.	.2327742	.6530515	0.36	0.722	-1.047183	1.512732
ligrea						
L1.	.005088	.0036333	1.40	0.161	0020331	.0122092
L2.	0020696	.0036067	-0.57	0.566	0091385	.0049993
lrpo						
L1.	1.214098	.0630273	19.26	0.000	1.090566	1.337629
L2.	2573826	.0625617	-4.11	0.000	3800013	134764
-2.				2.000		5 - 7 - 5 -
_cons	3469605	.4796906	-0.72	0.469	-1.287137	.5932159

^{240 .} capture drop epsilon_*

^{241 .} predict double upsilon_1 if Period>tm(2000m1),residual eq(#1)
 (481 missing values generated)

```
Wednesday November 1 20:18:37 2023 Page 20
242 . predict double upsilon_2 if Period>tm(2000m1),residual eq(#2)
    (481 missing values generated)
243 . predict double upsilon_3 if Period>tm(2000m1),residual eq(#3)
    (481 missing values generated)
244 . predict double upsilon_4 if Period>tm(2000m1),residual eq(#4)
    (481 missing values generated)
245 . /* store the epsilon* variables in the epsilon matrix */
246 . mkmat upsilon_*, matrix(upsilon_)
247 . /* compute e_t matrix of structural shocks */
248 . matrix u_ = (BA*upsilon_')
249 . /* store columns of e as variables e1, e2, and e3 */
250 . svmat double u_
252 . label variable upsilon_1 "Reduced-form shocks - GPR (Robustness)"
253 . label variable u_1 "Structural shocks - GPR (Robustness)"
254 .
255 . twoway (tsline u_1 if Period>tm(2000m1)) (tsline upsilon_1 ///
   > if Period>tm(2000m1), yaxis(1)), ///
    > name(G3R, replace) legend(position(6)) graphregion(margin(r+5))
257 . graph export "G3R.svg", as(svg) replace
   file G3R.svg saved as SVG format
258 . graph export "G3R.png", as(png) width(4000) replace
   file G3R.png saved as PNG format
259 . graph export "G3R.pdf", as(pdf) replace
   file G3R.pdf saved as PDF format
260 .
261 . irf set comparemodels1.irf, replace
    (file comparemodels1.irf created)
    (file comparemodels1.irf now active)
262 . quietly lpirf lpro ligrea lrpo, step(48) lags(1/24) ///
   > exog(L(0/24).u_1) vce(robust)
263 . irf create lpmodel1
    (file comparemodels1.irf updated)
265 . quietly var lpro ligrea lrpo, lags(1/24)
                                                          ///
   > exog(L(0/24).u_1)
266 . irf create varmodel1, step(48)
    (file comparemodels1.irf updated)
267 .
```

268 . irf graph dm, impulse(u_1) response(lrpo) ///

> irf(lpmodel1 varmodel1) level(95) name(G4R, replace) ///

xline(0 10 20 30 40 50, lcolor(blue)) yline(-.05 0 .05 .1, lcolor(blue))

Wednesday November 1 20:18:37 2023 Page 21 269 . 270 . graph export "G4R.svg", replace file G4R.svg saved as SVG format 271 . graph export "G4R.png", as(png) width(4000) replace
 file G4R.png saved as PNG format 272 . graph export "G4R.pdf", as(pdf) replace file G4R.pdf saved as PDF format 273 . 274 . twoway (tsline u1 if Period>tm(2000m1)) (tsline u $_1$ /// > if Period>tm(2000m1), yaxis(1)), ///
> name(G5R, replace) legend(position(6)) graphregion(margin(r+5)) 276 . graph export "G5R.svg", replace file G5R.svg saved as SVG format 277 . graph export "G5R.png", as(png) width(4000) replace

file G5R.png saved as PNG format

278 . graph export "G5R.pdf", as(pdf) replace file G5R.pdf saved as PDF format

280 . pwcorr lrpo u1 u_1, obs sig listwise star(5) sidak

	lrpo	u1	u_1
lrpo	1.0000		
	239		
u1	-0.0268 0.9674 239	1.0000	
u_1	-0.0059 0.9996	0.0809 0.5123	1.0000
	239	239	239

282 . twoway (scatter lrpo u1) (lfit lrpo u1), name(G6R, replace)

283 . graph export "G6R.svg", replace file GGR.svg saved as SVG format

284 . graph export "G6R.png", as(png) width(4000) replace file GGR.png saved as PNG format

285 . graph export "G6R.pdf", as(pdf) replace file GGR.pdf saved as PDF format

287 . twoway (scatter lrpo u_1) (lfit lrpo u_1), name(G7R, replace)

288 . graph export "G7R.svg", replace file G7R.svg saved as SVG format

```
Wednesday November 1 20:18:37 2023 Page 22
```

289 . graph export "G7R.png", as(png) width(4000) replace file G7R.png saved as PNG format 290 . graph export "G7R.pdf", as(pdf) replace file G7R.pdf saved as PDF format 291 . 292 . **#******* Expectations ***************** 294 . use database_pri_gpr.dta, clear 296 . merge 1:1 Period using expectations Number of obs Result Not matched 55 from master 12 (_merge==1) from using (_merge==2) 43 (_merge==3) Matched 708 297 . 298 . drop _merge 299 . 300 . // PRI ----> Expectations 301 . 302 . graph drop _all 303 . 304 . sum BCI CLI CCI lpri Variable 0bs Mean Std. dev. Max BCI 571 99.93125 1.065472 95.06452 101.863 CLI 751 100.2146 1.345907 89.72672 104.628 CCI 607 99.98832 1.177633 95.47003 101.9302 -.305086 1.281585 -2.174752 lpri 720 1.458615 306 . tvgc CCI lpri, trend window(80) sizecontrol(60) p(2) > d(1) seed(123) boot(499) robust prefix(CCI) graph pdf > notitle Time-varying LA-VAR Granger causality test including trend, 1973m1 - 2019m12 TVGC robust test statistics for H0: CCI is GC Max_Wald_rolling Max_Wald_recursive Max_Wald_forward lpri 26.479 54,477 55.587 90th percentile of test statistics [499 replications] Max_Wald_rolling Max_Wald_recursive Max_Wald_forward 5.993 5.957 lpri 6.646 95th percentile of test statistics [499 replications] Max_Wald_forward Max_Wald_rolling Max_Wald_recursive 7.781 7.628 lpri 8.686 99th percentile of test statistics [499 replications]

Max_Wald_forward

13.040

lpri

Max_Wald_rolling Max_Wald_recursive

13.507

12.582

```
307 .
308 . tvgc BCI lpri, trend window(80) sizecontrol(60) p(2)
                                                                ///
   > d(1) seed(123) boot(499) robust prefix(BCI) graph pdf
                                                                ///
      notitle
    Time-varying LA-VAR Granger causality test including trend, 1975m12 - 2019m12
    TVGC robust test statistics for H0: BCI is GC
                    Max_Wald_forward
                                         Max_Wald_rolling Max_Wald_recursive
            lpri
                               10.515
                                                   11.731
                                                                       13.227
    90th percentile of test statistics [499 replications]
                    Max Wald forward
                                         Max Wald rolling Max Wald recursive
            lpri
                                4.837
                                                    5.477
                                                                        6.138
    95th percentile of test statistics [499 replications]
                    Max_Wald_forward
                                         Max_Wald_rolling Max_Wald_recursive
            lpri
                                6.428
                                                    7.335
                                                                        7.605
    99th percentile of test statistics [499 replications]
                                         Max_Wald_rolling Max_Wald_recursive
                    Max_Wald_forward
            lpri
                               11.711
                                                   12.380
                                                                       12.440
309
310 . tvgc CLI lpri, trend window(80) sizecontrol(60) p(2)
                                                                ///
   > d(1) seed(123) boot(499) robust prefix(CLI) graph pdf
    Time-varying LA-VAR Granger causality test including trend, 1961m1 - 2019m12
    TVGC robust test statistics for H0: CLI is GC
                                         Max_Wald_rolling Max_Wald_recursive
                    Max_Wald_forward
                                                   33.829
                                                                       39.248
            lpri
                               12.812
    90th percentile of test statistics [499 replications]
                     Max_Wald_forward
                                         Max_Wald_rolling Max_Wald_recursive
            lpri
                                6.016
                                                    6.285
                                                                        6.863
    95th percentile of test statistics [499 replications]
                    Max_Wald_forward
                                         Max_Wald_rolling Max_Wald_recursive
            lpri
                                7.582
                                                    8.352
                                                                        8.953
    99th percentile of test statistics [499 replications]
                    Max_Wald_forward
                                         Max_Wald_rolling Max_Wald_recursive
            lpri
                               10.712
                                                   11.926
                                                                       12.600
```

```
311 .
```

312 . // GPRCN ----> Expectations

313 .

314 . sum BCI CLI CCI gprcn

 Variable	0bs	Mean	Std. dev.	Min	Max
BCI	571	99.93125	1.065472	95.06452	101.863
CLI	751	100.2146	1.345907	89.72672	104.628
CCI	607	99.98832	1.177633	95.47003	101.9302
gprcn	420	.3757173	.2305926	.07034	1.521136

316 . tvgc CCI gprcn, trend window(80) sizecontrol(40) p(2) > d(1) seed(123) boot(499) robust prefix(CCI) graph pdf ///

> notitle

Time-varying LA-VAR Granger causality test including trend, 1985m1 - 2019m12

TVGC robust test statistics for H0: CCI is GC

	Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive
gprcn	7.674	10.965	14.298

90th percentile of test statistics [499 replications]

	Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive
gprcn	6.100	6.586	7.129

95th percentile of test statistics [499 replications]

	Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive
gprcn	7.759	8.104	8.696

99th percentile of test statistics [499 replications]

	Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive
gprcn	11.653	11.794	12.486

318 . tvgc BCI gprcn, trend window(80) sizecontrol(40) p(2) > d(1) seed(123) boot(499) robust prefix(BCI) graph pdf ///

> notitle

Time-varying LA-VAR Granger causality test including trend, 1985m1 - 2019m12

TVGC robust test statistics for H0: BCI is GC

	Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive
gprcn	10.214	9.963	13.562

90th percentile of test statistics [499 replications]

Max_Wald_forward		Max_Wald_rolling	Max_Wald_recursive
gprcn	5.907	6.330	6.566

95th percentile of test statistics [499 replications]

M		Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive
	gprcn	7.163	7.735	8.200

99th percentile of test statistics [499 replications]

gprcn

	9 . 0 . tvgc CLI gprcn, trend window(80) sizecontrol(40) p(2) /// > d(1) seed(123) boot(499) robust prefix(CLI) graph pdf /// > notitle					
	Time-varying !	LA-VAR Granger causali	ity test including t	rend, 1985m1 - 2019m	112	
TVGC robust test statistics for H0: CLI is GC						
	ı	Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive		
-	gprcn	19.021	18.997	30.649		
	90th percenti!	le of test statistics	[499 replications]			
		Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive		
	gprcn	6.155	6.423	6.630		
	95th percenti?	le of test statistics	[499 replications]			
		Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive		
	gprcn	7.574	7.972	8.116		
	99th percenti?	le of test statistics	[499 replications]			
		Max_Wald_forward	Max_Wald_rolling	Max_Wald_recursive		
	gprcn	11.559	11.553	11.856		
	21 . 22 . save database_pri_gpr_final.dta, replace file database_pri_gpr_final.dta saved					
323 324	. 24 . log close _all 24 . name: <unnamed> 25 log: C:\Users\jamel\Dropbox\latex\PROJECTS\23-05-geopolitical-risk-pol-tension-oil-price\Data and command\lp: 26 log type: smcl 27 closed on: 20 Aug 2023, 18:48:18</unnamed>					

Max_Wald_forward Max_Wald_rolling Max_Wald_recursive

9.875

10.775