Solución del examen 27 de Diciembre de 2007.

Ejercicio 1.(40 puntos)

- 1. Claramente $x_0=3,y_0=8$ es una solución particular, por lo tanto todas las parejas que verifican la primer condición vienen dadas por: $\begin{cases} x=3+5t \\ y=8+17t \end{cases} \text{ con } t \in \mathbb{Z}. \text{ Luego } 100 \leq x+y=11+22t \leq 142 \Rightarrow t=5 \text{ así que } x=28 \text{ e } y=93.$
- 2. Con los cambios de variable sugeridos, las primeras ecuaciones se escriben como $\begin{cases} 17m 5d = 11 \\ 100 \le m + d \le 142 \end{cases}$ luego por la parte anterior m = 28 y d = 93 (así que a = md = 2604). Por otra parte como $d = 93|b \text{ se tiene que} \begin{cases} b \equiv 3 \pmod{5} \\ b \equiv 1 \pmod{7} \text{ tenemos que } 1023 \text{ verifica el sistema, luego por el} \\ b \equiv 0 \pmod{93} \end{cases}$ teorema del resto chino, las soluciones del sistema son los b tales que $b \equiv 1023 \pmod{3255}$.

teorema del resto chino, las soluciones del sistema son los b tales que $b \equiv 1023 \pmod{3255}$ La cuarta ecuación implica $b < 3000 \Rightarrow b = 1023 \pmod{a,b} \cdot mcm(a,b) = ab$. La única solución es a = 2604 y b = 1023.

Ejercicio 2.(40 puntos)

1. Es claro que el neutro del grupo e pertenece a $N_G(H)$ y $C_G(H)$ así que ambos conjuntos son no vacíos.

Si g_1 y $g_2 \in N_G(H)$ tenemos que $g_1g_2H(g_1g_2)^{-1} = g_1(g_2Hg_2^{-1})g_1^{-1} = g_1Hg_1^{-1} = H$ (en el segundo igual se usó que $g_2 \in N_G(H)$ y en la última que $g_1 \in N_G(H)$) por lo tanto $g_1g_2 \in N_G(H)$. Finalmente tomemos un $g \in N_G(H)$ y veamos que $g^{-1} \in N_G(H)$, en efecto $gHg^{-1} = H \Leftrightarrow Hg^{-1} = g^{-1}H \Leftrightarrow H = g^{-1}Hg$.

Si g_1 y $g_2 \in C_G(H)$ entonces para todo $h \in H$ tenemos que $hg_1g_2 = g_1hg_2 = g_1g_2h \Rightarrow g_1g_2 \in C_G(H)$ (en el primer igual se usó que $g_1 \in C_G(H)$ y en el segundo que $g_2 \in C_G(H)$). Finalemente sea $g \in C_G(H)$, para todo $h \in H$ tenemos que $hg = gh \Rightarrow g^{-1}hg = h \Rightarrow g^{-1}h = hg^{-1}$ luego $g^{-1} \in C_G(H)$.

- 2. Tomamos $G = S_3, H = \{e, (1\ 2\ 3), (1\ 3\ 2)\}$ y sea g = (23). Como $g(1\ 2\ 3)g^{-1} = (g(1)\ g(2)\ g(3)) = (1\ 3\ 2)$ tenemos que $g \notin C_G(H)$, pero como $g(1\ 2\ 3)g^{-1} = (1\ 3\ 2) \in H$ y $g(1\ 3\ 2)g^{-1} = (1\ 2\ 3) \in H$ tenemos que $g \in N_G(H)$.
- 3. Comenzemos observando que $g_1Hg_1^{-1}=g_2Hg_2^{-1}\Leftrightarrow g_2^{-1}g_1Hg_1^{-1}g_2=H\Leftrightarrow g_2^{-1}g_1\in N_G(H)\Leftrightarrow g_1N_G(H)=g_2N_G(H)$. Si denotamos por $cl(H)=\{gHg^{-1}:g\in G\}$ el conjunto de las clases de conjugación de H, por lo anteriormente probado tenemos que la función $\varphi:G/N_G(H)\to cl(H)/gN_G(H)\mapsto gHg^{-1}$ está bien definida y es inyectiva. La sobreyectividad de φ es clara por lo tanto φ es una biyección asì que $\#cl(H)=\#G/N_G(H)=[G:N_G(H)]$.

4. Primero calculemos $N_{S_5}(H)$ que está compuesto por aquellos $g \in G$ tales que $gHg^{-1} = \{geg^{-1}, g(1\ 2)g^{-1}\} = \{e, (g(1)\ g(2))\} = H \Leftrightarrow \{g(1), g(2)\} = \{1, 2\}$. Por lo tanto el normalizador está formado por aquellas funciones $g \in S_5$ tales que $\{g(1), g(2)\} = \{1, 2\}$ como g es biyectiva también se tiene que $\{g(3), g(4), g(5)\} = \{3, 4, 5\}$ y hay $2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 = 12$ de tales funciones y por lo tanto $\#N_{S_5}(H) = 12$. Luego

$$#cl(H) = [G: N_{S_5}(H)] = \frac{#G}{#N_{S_5}(H)} = \frac{5!}{12} = 10$$

por lo tanto hay 10 clases de conjugación distintas para H.

Ejercicio 3.(20 puntos)

1. El código de verificación de paridad tiene distancia 2, detecta un error y no corrige errores. El de triple repetición tiene distancia 3, detecta hasta 2 errores y corrige hasta 1 error.

2.	Palabra recibida	Palabra corregida	Palabra decodificada
	010010010	010010010	010
	101100101	101101101	101
	111111110	111111111	111
	100000100	100100100	100

3. i)
$$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- ii) El síndromes de 100000 es 110 y el de 010000 es 011 (fueron escritos en forma de fila por razones de espacio).
- iii) Para rellenar la tabla calculamos los síndromes de las palabras recibidas, observando que las palabras 100000 y 010000 son líderes de clase puesto que están en distintas coclases (pues tienen distinto síndrome) y tienen peso mínimo dentro de su coclase (tienen peso 1). La primera y la última tienen síndrome 000 así que fueron trasmitidas correctamente, la segunda tiene síndrome 110 así que por lo anteriormente dicho se corrige a 100110 = 000110+100000, la tercera tiene síndrome 011 cuyo lider de clase que posee ese síndrome es justamente 010000 así que se corrige a 010011 = 000011+010000. Para ver la palabra decodificada nos quedamos con las tres primeras entradas de la palabra.

Palabra recibida	Palabra corregida	Palabra decodificada
100110	100110	100
000110	100110	100
000011	010011	010
010011	010011	010