```
Архітектура......5
Логічні елементи......9
Асемблер
 1.
   Якій математичній операції еквівалентна наведена програма?
fld[x]
fld[y]
fld[x]
fsubp
fld
st(0)
fmulp
fxch
fsart
ST(0) = (y - x) ^2 / sqrt(x)
   Чому буде рівне fred після виконання коду:
 2.
__int joe = 0, fred;
_asm{
mov eax, joe
and eax, '0'
mov fred, eax
};
Помилка у коді
 3.
   Чому буде piвне fred після виконання коду
__int16 joe = 5, fred;
_asm{
mov eax, joe
and eax, 15
mov fred, eax
};
5
```

4. Чому буде рівне fred після виконання коду

```
int joe = 0, fred;
_asm{
mov eax, joe
add eax, '0'
mov fred,eax
};
```

5. Чому буде рівне fred після виконання коду

```
int joe = 15, fred;
_asm{
mov eax, joe
add eax, 2
mov fred, joe
};
```

6. Чому буде рівне fred після виконання коду

```
int joe = 5, fred;
_asm{
mov eax, joe
and eax, 14
mov fred,eax
};
```

7. Чому буде рівне fred після виконання коду

```
int joe = 5, fred;
__asm{
mov eax, joe
xor eax, 10
mov fred, eax
};
```

8. Чому буде рівне fred після виконання коду?

```
int joe = 5, fred;
_asm{
mov eax, joe
xor eax, 14
mov fred, eax
};
```

9. Чому буде рівне fred після виконання коду

```
__int16 joe = 5, fred;
__asm{
```

```
mov eax, joe
and eax, 5
mov fred, eax
};
5
```

10. Чому буде рівне fred після виконання коду

```
int joe = 5, fred;
_asm{
mov eax, joe
or eax, 9
mov fred, eax
};
```

11. Чому буде рівне fred після виконання коду

```
int joe = 5, fred;
_asm{
mov eax, joe
and eax, 12
mov fred, eax
};
```

12. Чому буде рівне fred після виконання коду

```
int joe = 5, fred;
_asm{
mov eax, joe
xor eax, 15
mov fred, eax
};
```

13. Чому буде рівне fred після виконання коду

```
int joe = 5, fred;
_asm{
mov eax, joe
xor eax, 8
mov fred, eax
};
```

Логічні операції

14. Яку функцію Y виконує вузол мікропроцесора, який описується такою таблицею істинності:

B 0 1 0 1 Y 0 1 1 0

напівсуматор;

15. Яку функцію Y виконує вузол мікропроцесора, який описується такою таблицею істинності:

A 0 0 1 1 B 0 1 0 1 Y 0 0 0 1

Логічне множення;

16. Яку функцію Y виконує вузол мікропроцесора, який описується такою таблицею істинності:

A 0 0 1 1 B 0 1 0 1 Y 0 1 1 1

Логічне додавання;

17. Яку функцію Y виконує вузол мікропроцесора, який описується такою таблицею істинності:

A 0 0 1 1 B 0 1 0 1 Y 1 0 0 0

Інверсію диз'юнкції;

18. Яку функцію Y виконує вузол мікропроцесора, який описується такою таблицею істинності:

A 0 0 1 1 B 0 1 0 1 Y 1 1 1 0

Інверсію кон'юнкції;

Конвеєр операцій

19. Конвеєр операцій з шести позицій дозволяє скоротити час виконання 5 машинних команд з 30 тактів до:

10 тактів = шести + 5 - 1

20. Конвеєр операцій з шести позицій дозволяє скоротити час виконання 6 машинних команд з 36 тактів до

11 тактів

21. Конвеєр операцій з 6 позицій дозволяє скоротити час виконання 7 машинних команд з 42 тактів до:

12 тактів

22. Конвеєр операцій з шести позицій дозволяє скоротити час виконання 8 машинних команд з 48 тактів до

13 тактів

23. Конвеєр операцій з шести позицій дозволяє скоротити час виконання 9 машинних команд з 54 тактів до:

14 тактів

Архітектура

24. Принцип відкритої архітектури полягає в наступному;

Регламентуються і стандартизуються тільки опис принципу дії комп'ютера і його конфігурація.

25. Який тип архітектури обчислювальних систем згідно до класифікації Флінна передбачає побудову конвеєра?

MISD

26. Який тип архітектури обчислювальних систем згідно до класифікації Флінна передбачає, створення структур векторного або матричного опрацювання даних?

SIMD

27. Який тип архітектури обчислювальних систем згідно до класифікації Флінна передбачає, що всі процесори працюють зі своїми потоками команд і власними потоками даних?

MIMD

28. Множинний потік даних і одиночний потік команд –це архітектура:

SIMD

29. Множинний потік команд і множинний потік даних -це архітектура

MIMD

30. Множинний потік команд і одиничний потік даних -це архітектура

MISD

31. Що означає термін VLIW-архітектура?

VLIW -архітектура характерна для процесорів з декількома обчислювальними пристроями, де одна інструкція процесора містить декілька операцій, які повинні виконуватись паралельно.

32. Що таке CISC- архітектура комп'ютерних систем?

CISC архітектура комп'ютера передбачає наявність повного набору команд, які виконує мікропроцесор. До цього типу належить сімейство ПЕОМ на базі мікропроцесорів х86.

33. Що означає термін MISC-архітектура?

MiSC-архітектура характерна для ЕОМ які мають мінімальний набір інструкцій

- 34. Що таке RISC- архітектура комп'ютерних систем. Вкажіть правильні відповіді.
- a) RISC-архітектуру характеризує те, що всі команди мають однаковий формат, працюють з операндами. Які розташовані у регістрах процесора.
- b) Архітектура RISC використовує порівняно невеликий (скорочений) набір найуживаніших команд.
 - 35. Які з перелічених відповідей відповідають особливостям архітектури Nehalem?
- 1) Техпроцес 45 нм, підтримка пам'яті DDRS, всі ядра розміщені на одному кристалі
- 2) На самому процесорі розташований двоканальний або триканальний контролер оперативної пам'яті DDRS
- 3) Містить загальну для всіх ядер кеш-пам'ять третього рівня
- 4) В процесор інтегрована системна шина QPI або DMI, в чіп можу бути вбудована графічне ядро
 - 36. Які з перелічених відповідей відповідають особливостям архітектури Intel Haswell?
- 1) Додано інструкції Advanced Vector Extension 2, зокрема FMA(Fused Multiply Add)
- 2) Розширення команди TSX для апаратної підтримки трансакційної пам'яті
- 3) Повністю новий дизайн кеша, покращений механізм енергозбереження
- 4) Підтримка технології Thunderbolt, можливий інтегрований векторний співпроцесор
 - 37. У чому суть архітектури симетричного мультипроцесування (SMP)?

Пам'ять системи сприймається як загальна для усіх пристроїв чи ядер і усі процесори мають цілком рівноправний доступ до загальної оперативної пам'яті

це архітектура багатопроцесорних комп'ютерів, в якій два або більше однакових процесорів підключаються до загальної пам'яті, і за належної підтримки операційною системою, SMP системи можуль легко переміщувати завдання між процесорами, ефективно розподіляючи навантаження.

- 2. доступ до спільної пам'яті ускладений тим, що тільки один процесор може звертатись до пам'яті в певну одиницю часу.
 - 38. Які з перелічених відповідей відображають особливості архітектури Skylake?
- 1) Дизайн кеша, що передбачає 4 рівні: 128 кб L1, 512 кб L2, 12 мб L3, 128 мб L4
- 2) Техпроцес 14 нм, підтримка пам'яті DDR4 SDRAM
- 3) Підтримка технології Thunderbolt 3, підтримка 20 PCI Express 3.0 та PCI Express 4.0
 - 39. У чому суть архітектури з неоднорідним доступом до пам'яті (NUMA)?

- 1) На рівні програмної організації (архітектури) пам'ять системи сприймається як загальна для усіх процесів, чи ядер
- 2) Організації пам'яті в паралельних архітектурах ЕОМ, в якій над фізично розподіленою між окремими обчислювальними блоками пам'яттю створюється спільний адресний простір

Розмірність

40. Скільки бітів у пам'яті процесора займає Чотирикратне беззнакове ціле?

64

41. Яка розрядність адресної шини у 32-мікропроцесорах Intel Pentium Pro і пізніших моделях?

36

42. Яка довжини вказівника (в байтах) у архітектурі ІА64?

8

43. Яка довжина вказівника у 64-розрядних мікропроцесорах?

8 байт

44. Яке максимальне натуральне число може бути представлено беззнаковим ціпим?

65536

45. Скільки рівнів кеш-пам'яті застосовують у сучасних процесорах?

1-4

46. Який теоретичний максимум ятя загального віртуального адресного простору на 32розрядннх операційних системах?

4 Гб

47. Скільки рівнів захисту сторінки має 32-розрядний процесор?

2

48. Який розмір пам'яті введення/виведення І за допомогою яких команд реалізовано ввід/вивід у процесорах Intel?

64 К. команда введення IN виведення OUT

49. Скільки 16-бітових портів може мати 32 розрядний процесор?

32766

50. Скільки прямо доступних сегментів пам'яті містить базова архітектура 32-розрядного мікропроцесора Intel?

шість, кожний розміром до 4 Гбайт

51. Яка розрядність адресної шини у мікропроцесорі Intel 8086?

20

52. Який розмір сторінки можливий у архітектурі х86_64?

4K, 2M;

53. Скільки розрядів відводиться для зберігання довгого подвійного дійсного числа з плаваючою комою у регістрах 32-розрядного мікропроцесора фірми Intel?

80

54. Скільки можливих слів можна скласти з 4-х бітів?

16

55. Який розмір віртуальної пам'яті можливий для використання програмістом у 32-розрядному процесорі?

64 терабайти

56. Який розмір може мати таблиця глобального дескриптора(GDT) у 32-розрядних мікропроцесорах?

від 8 байт до 64К

57. Скільки розрядів містить сегментний регістр у 32-розрядному мікропроцесорі фірми Intel?

64

58. Кожен дескриптор сегмента займає у пам'яті:

8 байт

59. У сегментному регістрі під індекс таблиці сегментних дескрипторів відводиться?

3 біт

60. Яка гранулярність розподілу пам'яті в реальному режимі для DOS?

16 байт

61. Яка формула є правильною для визначення максимального розміру віртуальної пам'яті на 32-розрядному процесорі?

2^14*2^32=2^46 = 64Тбайти

62. Скільки байт у пам'яті персонального комп'ютера на базі 64-розрядного мікропроцесора займає розширене дійсне число з подвійною точністю?

10 байт

63. Скільки байт у памяті персонального комп'ютера на базі 64-розрядного мікропроцесора займає дійсне число з подвійною точністю?

8 байт

64. Типова швидкість опрацювання команд у ЕОМ 1-го покоління?

100 - 20К операцій за секунду.

65. Який розмір стекового сегмента у 32-розрядннх мікропроцесорах Intel?

64K

Логічні елементи

66. Яке максимальне число імпульсів порахує двійковий 10-розряднии лічильник?

1024

67. Яке максимальне число імпульсів порахує двійковий 8-розряднии лічильник?

256

68. Яке максимальне число імпульсів порахує двійковий 4-розряднии лічильник?

16

69. Що таке суматор?

Суматор - пристрій, що виконує сумування чисел на підставі правил порозрядного додавання з урахуванням переносів, які спрямовують у старші розряди

70. Скільки однорозрядних виходів містить дешифратор на 4 входи?

16

71. Що таке RS-тригер?

RS-тригери - логічні пристрої, які мають два стійкі стани а для перемикання тригерів з одного стану інший використовують вхідні логічні схеми з роздільним установленням 0 і 1.

72. Скільки однорозрядних виходів містить дешифратор на 3 входи?

8

73. Яка з відповідей правильно описує роботу Јк-тригера?

тригер змінює свій стан у разі надходження імпульсу на вхід синхронізації при ј=k=1

74. Яка з відповідей правильно описує роботу Т-тригера?

Тригер змінює свій стан у разі надходження кожного вхідного імпульсу.

75. У чому полягає суть роботи лічильного тригера?

Цей тригер змінює свій стан у разі надходження кожного вхідного імпульсу.

76. Як оптимально побудувати десятковий лічильник?

Увести обернені зв'язки у двійковому лічильнику зі старших розрядів.

Асемблер

77. Які функції регістрів і які типи регістрів використовують у побудові ЕОМ?

а) Регістр - це вузол ЕОМ. який виконує тимчасове збереження та перетворення інформації.

Регістри є послідовні і паралельні, одно- і двотактні, зсувні І перетворювальні.

78. Які головні функції виконує регістр?

Регістр — це вузол ЕОМ, який виконує тимчасове збереження та перетворення інформації

79. Які категорії регістрів доступні програмісту у 32-розрядному процесорі?

Регістри доступні у таких категоріях:

Загального призначення(EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP)(AX, BX, CX, DX, SI, DI, BP, SP)(AL, BL, CL, DL) (AH, BH, CH, DH)

Сегментування (CS, SS, DS, ES, FS, GS)

Ознак(CF, AF, PF, ZF, TF,SF, IF,OF,DF,IOPL,NT,RF, VM, AC, VIF, VIP, ID)

Керування(CR0, (CR1 — резервний) ,CR2, CR3)

Системної адреси(GDTR, IDTR, LDTR, TR)

Тестів(TR6, TR7)

Налагодження(DR0, DR1, DR2, DR3, DR6, DR7)

80. Яка пара регістрів характеризує рядок-джерело?

DS, SI

81. Яка пара регістрів характеризує рядок приймача?

ES, DI

82. Які функції DMі вузла у сучасних мікропроцесорах?

послідовна шина розроблена фірмою intei для з'єднання південного моста материнської плати

- 83. У чому полягає спеціальне призначення базових (ВХ, ВР) та індексних (SI, DI) регістрів в реальному режимі роботи процесора?
- 1) Тільки ці регістри можуть використовуватись для адресації масивів даних з використанням зміщення
- 2) Базові регістри використовують в більшості базових математичних операції, індексні для зберігання індексів без даних

84. Установка та скидання якого біта регістра ознак забезпечує покрокове виконання програми?

TF

85. Які регістри виконують універсальні функції у мікропроцесорі?

EAX, EBX, ECX, EDX

86. Яка з наступних команд виконує арифметичний зсув ліворуч:

SHL

87. Яка команда виконує дію додавання за модулем 2?

XOR

88. До якого режиму адресації відноситься наступний запис: MOV AX, BX?

Регістрова адресація

89. Який з наступних регістрів є вказівником стеку?

SP

90. Скільки регістрів для чисел з плаваючою комою мають процесори з архітектурою ІА-64?

128

91. Скільки універсальних цілочислових регістрів мають процесори з архітектурою ІА-64?

128

- 92. Для чого потрібні регістри DR?
- 1) Для забезпечення режиму налагодження
- 2) для відображення точок зупинки програми
 - 93. Ви зберігаєте у стеку регістри АХ, ВХ, СХ, DХ. У якому порядку необхідно витягати їх з стека?

DX, CX, BX, AX

94. Які біти і в яких регістрах відповідають за вминання сторінкового режиму доступу до пам'яті?

31 біт регістра CRO

95. Які регістри визначають у мікропроцесор» поточні сегменти даних?

DS, ES, FS, GS

96. Необхідно адресувати велику кількість даних, що знаходяться в стеку. Які два регістри доведеться використовувати найбільш часто, оскільки вони за замовчуванням пов'язані з сегментним регістром SS?SI

- 1) BP
- 2) SP
 - 97. Для чого використовується сегментний регістр CS?

Сегментний регістр CS завжди вказує сегментну адресу сегменту коду програми.

98. Регістр процесора АХ, використовуваний у більшості математичних операцій для зберігання, як аргументу, так і результату часто називається...

акумулятором

99. Яку дію виконує команда out dx, ax?

Виводить два байти регістра АХ в 16-бітний порт з номером, зазначеним в регістрі DX

100. Для чого потрібні регістри TR?

Для забезпечення режиму тестування

101. Який сегментний регістр за замовчанням використовується при посиланнях на дані, що знаходяться в стекові?

SS

102. Які регістри зберігаються у стеку перед опрацюванням переривання?

Регістр ознак, регістр команд, сегментний регістр коду.

- 103. Що означає увімкнення 14-го біта регістра ознак (NT) в «1»?
- а) сегмент стану TSS поточного завдання забезпечує зворотний зв'язок з TSS попередньої задачі;
- b) поточне завдання «вкладене» в іншу, перервану задачу;
 - 104. За непрямого адресування адреса пам'яті міститься:

в одному з базових регістрів

105. Якщо адреса порту уведення-виведення буде більшою за 256, то вона міститься у регістрі:

DX

1 Тема

106. Хто вперше і коли (серед відомих історичних фактів) побудував електромеханічну обчислювальну машину?

Конрад Цузе, 1941

107. Кому з вчених належить ідея виготовлення мікросхем?

Джеку Кілбі, 1958

108. Як називається сукупність засобів і правил, що забезпечують взаємодію пристроїв обчислювальної системи?

інтерфейс

109. У чому полягає суть роботи дешифратора?

Дешифратор – пристрій який виконує перетворення n-розрядного двійкового коду в однорозрядний з основою p=2n;

110. Який тип даних називаємо символом?

Символ – це байтове подання керівних та алфавітно-цифрових символів у кодуванні ASCII.

111. Шина, яка служить для визначення адреси (номера) пристрою, з яким процесор обмінюється Інформацією в даний момент:

Шина адреси

112. Що означає термін « системна магістраль»?.

Інформаційна шина, яку використовують для організації передавання даних між вузлами ЕОМ.

113. Основна шина, яка використовується для передачі інформаційних кодів між усіма пристроями мікропроцесора, називається:

Шина даних

114. Чому дорівнює 1 мегафлоп?

мільйону операцій з плаваючою комою за секунду

115. Згідно до принципів фон-Неймана комп'ютер повинен містити:

арифметико-логічний пристрій, пристрій керування, пам'ять, зовнішні пристрої для введення і виведення інформації

116. Хто очолював роботу зі створення першої в Україні ЕОМ і як вона називалася?

О.С.Лебедєв. МЕСМ

117. Яке десяткове число записане у регістрі АХ=000000100001111

271

118. Де найчастіше реалізують тип взаємодії потоку команд і потоку даних ОКБД?

Для реалізації технології ММХ

119. Які типи даних використовує технологія ММХ?

а) почетверене слово

b) упаковані 8-байтові структури

120. Згідно до принципів фон-Неймана комп'ютер повинен бути організований так. що:

- а) програма розташовується у пам'яті двох типів швидка (оперативна) та повільніша (зовнішня):
- b) для відображення інформації необхідно застосовувати двійкову систему числення
- с) програмне керування виконанням завдань і наявність команд умовного переходу
 - 121. Результат додавання двох двійкових чисел 1011,11 + 11,11 дорівнює:

1111,10

122. Яким способом і зякою швидкістю передають інформацію за допомогою інтерфейсу USB2.0?

Послідовно біт за бітом з максимально можливою швидкістю 480 Мбіт/с

123. На базі яких схем функціонує динамічна пам'ять сучасного комп'ютера?

схем на базі конденсаторів

124. На базі яких схем функціонує статична пам'ять сучасного комп'ютера?

тригерних схем

125. Що означає тип даних вказівник?

Вказівник – це особливий тип даних, значення якого є адреса певного байта оперативної памяті.

2 Тема

- 126. Які дії виконує центральний процесор у разі появи сигналу в лінії RESET?
- 1) Встановлює у регістрі ознак біт IF = 0
- 2) Занулює вказівник команд ІР
- 3) Засилає шістнадцятко вий код FFFF у регістр сегмента команд
 - 127. Які з наведених нижче відповідей відповідають переліку функцій, які виковує операційна система сучасного комп'ютера?
- а) Забезпечення можливості доступу до стандартних системних засобів (програм, драйверів. Інформації про конфігурації тощо).
- b) Збереження конфіденційності Інформації у системах, де працює багато користувачів.
- с) Реакція на помилки та аварійні ситуації: контроль за нормальним функціонуванням обладнання.
 - 128. Які з наведених нижче відповідей відповідають переліку функцій, які виконує операційна система сучасного комп'ютера?
- а) Організація обміну із зовнішніми пристроями; зберігання інформації та забезпечення доступу до неї, надання довідок.
- b) Організація узгодженого виконання всіх процесів у комп'ютері; планування робіт, розподіл ресурсів.

129. Тактова частота процесора - це:

число імпульсів за одну секунду, які виробляє високоточний генератор для синхронізації;

130. Оперативна пам'ять має наступну структуру:

Складається з комірок, кожна комірка має адресу і вмістиме.

- 131. Для того, щоб інформація зберігалася після вимикання комп'ютера, її треба записати:
- а) в ПЗП.
- b) на жорсткий диск;
 - 132. Як називають роз'єми на материнській платі для під'єднання додаткових пристроїв?

слоти

- 133. Ключовими особливостями захищеного режиму є
- 1) багатозадачність
- 2) захист пам'яті
 - 134. Що таке вектор переривання?

Вектор переривання – це вказівник на відповідну програму обслуговування.

135. Скільки є типів сегментів оперативної пам'яті у ІВМ-подібному ПК і яких?

3 типи: сегменти команд, даних і стеку.

136. Для чого потрібна GDT у 32-розрядних мікропроцесорах?

Де зберігаються вказівники на їх поточні значення? Таблиця глобального дескриптора (GDT) містить дескриптори, доступні для всіх задач у системі. Вказівники на їх поточні значення зберігаються в регістрі GDTR.

137. Для чого потрібна LDT у 32-розрядних мікропроцесорах? Де зберігаються вказівники на їх поточні значення?

Таблиця локального дескриптора (LDT) містить дескриптори, які асоціюються (співвідносяться) з заданою задачею і забезпечують механізм для ізоляції коду і сегмента даних заданої задачі від решти операційної системи. Вказівники на їх поточні значення зберігаються у регістрі LDTR.

138. Які типи адресних просторів у ІВМ-подібних ПК Ви знаєте?

Логічний, лінійний і фізичний.

139. Які типи архітектур кеш-пам'яті маємо залежно від способу відображення блоку основної пам'яті на рядок кешу?

Розрізняють три типи: кеш прямого відображення, повністю асоціативний кеш, набірно-асоціативний кеш.

140. Як може змінній рівень привілеїв даних або процедур 32-розряднин процесор?

За допомогою спеціальних пристроїв - шлюзів або вентилів.

141. Яку інформацію містить регістр вказівника команд EIP 32-розрядного мікропроцесора Intel?

змішення наступної команди, яку потрібно виконати

142. КЕШ пам'ять, в якій будь-який рядок основної пам'яті може розміщуватися в будьякому рядку буферної пам'яті, це -

повністю асоціативна кеш-пам'ять

143. Як розрізняють переривання залежно від причини їхньої появи?

Залежно від природи їх появи переривання розрізняють внутрішні і зовнішні

144. Векторний процесор - це:

процесор, в якому операндами деяких команд можуть виступати впорядковані масиви данихвектори

- 145. Після вимикання комп'ютера вся інформація стирається з:
- а) оперативної пам'яті
- b) КЕШ-пам'яті
 - 146. Яка відмінність між перериванням і винятком?

Відмінності між перериваннями і винятками полягають в тому, що переривання опрацьовують асинхронні зовнішні умови, тоді як винятки – помилки команд

147. Як називається область пам'яті певного призначення, всередині якої підтримується лінійна адресація?

Сегмент

148. Що означає віртуальний 8086-режим роботи 32-розрядного процесора?

Віртуальний режим 32-розрядного процесора (V86) дає змогу скористатися всіма перевагами цього процесора і крім того, виконувати в ньому програми, як і в реальному режимі

149. Як розрізняють переривання залежно від способу реагування на їхню появу?

Залежно від способу реагування на їх появу розрізняють переривання масковані і немасковані

150. Де зберігається селектор і що це таке?

селектор - це вміст сегментного регістра і відіграє роль вказівника дескриптора сегменту.

151. Процес пошуку та усунення помилок у програмі, вироблений за результатами її прогону на комп'ютері, має назву

налагодження

152. З якими пристроями забезпечує роботу процесора південний міст чіпсета?

із зовнішніми пристроями

- 153. КЕШ пам'ять призначена для:
- 1) Тимчасового використання часто використовуваних даних
- 2) Підвищення ефективності процесора
 - 154. Які функції виконує BIOS?

BIOS - базова система вводу-виводу, призначена для зняття залежності операційної системи від апаратних особливостей конкретної системної плати.

155. У захищеному режимі роботи процесора початкові адреси сегментів отримують:

вибиранням адреси з таблиць сегментних дескрипторів, вхід до яких задається вмістами сегментних регістрів

156. Чому у захищеному режимі роботи процесора 80386 і вище не використовуються поняття базових та індексних регістрів?

У захищеному режимі роботи для адресації масивів даних можуть використовуватись будь-які регістри загального призначення.

157. Які з наведених операційних систем належать до категорії багатокористувацьких?

UNIX. Windows NT.

158. Як називають виняток, який виявляється й опрацьовується відразу після виконання команди з помилкою?

Пастка

159. За якими адресами (молодшими чи старшими) зберігається байт молодшого порядку у подвійному слові?

16-бітове слово уводиться у пам'ять так, що старший байт міститься у комірці з більшим номером

160. Яка відмінність між скалярним і суперскалярним процесором?

Скалярним називають процесор з єдиним конвеєром виконання команд а суперскалярний процесор має більше одного конвеєра, які здатні опрацьовувати інструкції паралельно

- 161. Формат мікрокоманд включає наступні поля:
- а) Поле адреси наступної мікрокоманди
- b) Поле коду виконуваної команди
 - 162. Протокол наскрізного запису WT використовується

для запису безпосередньо в пам'ять і кеш одночасно

163. Скільки і які компоненти використовують для формування виконавчої адреси у 32розрядних процесорах?

4. База, Зміщення, Індекс, Масштаб

164. Що відбувається з покажчиком стека (регістром SP) при переміщенні даних у стек?

Він зменшується

165. Протокол зворотного запису WB використовується

для оновлення вмісту кешу а потім запису в пам'ять

166. Постійний запам'ятовуючий пристрій служить для

зберігання програм початкового завантаження комп'ютера і тестування його вузлів

167. Що таке переривання і з якою метою їх застосовують у мікропроцесорах?

3)Переривання — це тимчасове припинення виконання поточної програми, яке відбувається апаратно.

Використовують переривання з такою метою:

- для збільшення ефективності роботи центрального процесора;
- для доступу до апаратних засобів і програм, які контролює операційна система;
- для виконання операцій уведення виведення незалежно від процесора (унаслідок різної швидкості виконання).
 - 168. Вкажіть найшвидший вид пам'яті при обміні данними

кеш пам'ять 1 рівня

169. Чи підтримує 32-розрядний процесор одночасну роботу зі сторінками і сегментами?

так

170. Що таке обчислювальний кластер?

декілька незалежних обчислювальних вузлів(серверів), що використовуються спільно і працюють, як одна система переважно для збільшення швидкості обрахунків за допомогою паралельних обчислень.

171. Для чого використовують у сучасних мікропроцесорах режим системного керування SMM?

набір команд для реалізації системи керування енергоспоживанням.

172. Як можна дізнатися процесору, де подивитися інформацію про сегмент, грунтуючись на інформації з селектора?

проаналізувавши поля дескриптора сегменту, використавши селектор(вміст сегментного регістра від 2 до 15 розряду) у ролі вказівника дескриптора.

173. Яка відмінність між перериваннями внутрішніми і зовнішніми?

Внутрішні і зовнішні переривання розрізняють залежно від природи їх появи

174. У чому суть базового індексного масштабного режиму адресування 32-розрядного мікропроцесора Intel?

Вміст індексного регістра множиться на коефіцієнт масштабу і результат додається до вмісту базового регістру

175. Який тип адреси визначає положення даних у кеш-пам'яті?

Положення даних у кеш-пам'яті визначає фізична адреса

176. Які з наведених нижче відповідей не належать до переліку функцій, які виконує операційна система сучасного комп'ютера?

Організацію обміну даними із оперативної пам'яті до кеш-пам'яті

177. Що розуміють під терміном переривання у 32-розрядних процесорах?

Переривання— це припинення виконання поточної програми для опрацювання асинхронних зовнішніх умов (апаратні помилки)

178. У чому суть технології HyperThreading (віртуальна багато поточність)?

Технологія, яка дозволяє виконувати одному ядру два потоки інструкцій одночасно, що дозволяє збільшити продуктивність

179. Які функції DMA-контролера у сучасних мікропроцесорах?

це своєрідний периферійний процесор, котрий займається в чіпсеті обробкою «фонових» завдань, що формуються периферією.

- 180. Які функції АРІС-контролера у сучасних мікропроцесорах?
- 1) Невелика схема у чіпсеті, що займається збиранням і обробкою переривань, що виникають у комп'ютері, регулярно опитуючи кожний пристрій
- 2) Контролер, крім апаратних опрацьовує також програмні переривання, які генерує периферійний пристрій, а саме процесор у разі виникнення будь-якої позаштатної ситуації
 - 181. Які функції GART-контролера у сучасних мікропроцесорах?

це невеличка схема, що забезпечує графічному прискорювачу доступ до системної пам'яті процесора. Її завдання — реалізація механізму віртуальної пам'яті для GPU, тобто відображення «лінійного» адресного простору, з яким працює прискорювач, на «реальний», довільним чином «перетягуваний» з «звичайними даними». Дозволяє сучасним 3D-прискорювачам використовувати як «набортну» відеопамять, так і «основну» системну пам'ять комп'ютера.

182. Як називається таблиця векторів переривань в захищеному режимі?

Таблиця векторів переривань (IVT), яка забезпечує механізм опрацювання 256 векторів переривань Вказівники на їх поточні значення зберігаються у регістрі IVTR

- 183. З якимим пристроями забезпечує роботу процесора північний міст чіпсета
- 1) з пам'яттю та відео системою
- 2) із інтерфейсом РСІе
 - 184. У чому суть масштабного режиму адресування 32-розрядного мікропроцесора Intel?

вміст індексного регітра множиться на коефіцієнт масштабу і результат додається до вмісту Базового регістра

185. Які функції виконує конвеєр процесора ЕОМ?

Конвеєр— це пристрій, у якому в процесі виконання команд програми відбувається суміщення етапів (стадій) виконання для декілької команд.

186. Яка інформація зберігається в стеку при виклику обробника переривань?

адреса повернення (сегменту і зсув)

187. З якою метою у процесорі запроваджено розширення ММХ?

Розширення MMX застосовують для організації мультимедійної роботи та опрацювання 2D і 3D-графічних файлів

188. Чому в захиженному режимі роботи процесора 80086 і вище не використовується поняття базових та індекснів регістрів?

У захищеному режимі роботи для адресації масивів даних можуть використовуватися будь-які регістри загального призначення.

- 189. У чому суть множинно-акумулюючих команд в процесорах з архітектурою ІА-64?
- а) це команди призначені для роботи з числами з плаваючою комою
- b) множинні операції дають змогу виключити одну операцію округлення тому точність операції в точність при використанні двох стандартних операцій множення і додавання
 - 190. До внутрішньої пам'яті комп'ютера не відносяться
- 1) Жорсткий диск
- 2) ?Постійна пам'ять (але мені зарахував)

X3

- 191. Що означає термін мультиядерність у розумінні Intel?
- а) незалежні процесорні ядра, кожне зі своєю кеш-пам'ятю, розташовані на одному кристалі і використовують загальну системну шину

?b) ядра можуть бути тісно переплетені між собою на одному кристалі і використовувати деякі загальні ресурси кристала (наприклад шину чи кеш-пам'ять)

коли кілька однакових ядер розташовані на різних кристалах, але об'єднані разом в одному корпусі процесора (багаточіповий процесор).

- 192. Які з перелічених відповідей можливі у архітектурі Broadwell?
- 1)техпроцес -14 нм, наявність команд для попереднього вибору рядка кеш пам'яті
- 2)наявність команд для генерації випадкового числа розміром 16, 32 або 64 біта.
- (?) наявність команд для роботи з числами довільної точності
 - 193. Для чого застосовується мультиплексування шин?
 - 194. Ви організуєте плоску модель пам'яті в захищеному режимі роботи процесора. Яку мінімальну кількість заданих сегментних дескрипторів необхідно для вирішення поставленого завдання? (1,2,3,4,5)
 - 195. У яких випадках деякі команди використовують певні регістри неявно
- 3) операції з рядками(регістри SI, DI)(не зарахував комп)
 - 196. Що називають виконавчою адресою у ІВМ-подібних ПК?

Виконавча адреса — це переміщувана адреса всередині сегмента пам'яті, яка обчислюється за певними правилами