Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая работа

Исследование колебаний нелинейной пружины Вариант №22

Выполнил:	
студент гр. В3530904/80021	И. С. Томилин
Преподаватель: доцент кафедры ВШПИ	С. П. Воскобойников
	«»202 г.

1. Постановка задачи

Задание N 22.

Исследование колебаний нелинейной пружины.

Колебания массы, соединенной с нелинейной пружиной, описываются уравнением Дюффинга:

$$\frac{d^2U}{dt^2} + (1 + EU^2)U = 0,$$

$$U(0) = A,$$

$$U'(0) = B.$$

Построить график U(t) и оценить погрешность результата и влияние на точность погрешности исходных данных.

Значения A, B, E задаются преподавателем. Рекомендуемое время наблюдения T=16 с. Шаг печати H=0.4 с.

Вариант N 22C.

$$\epsilon = 0.497286 \cdot \int\limits_0^1 \frac{dt}{\sqrt{\left(t^2+1\right)\left(3t^2+4\right)}} \; ; \qquad A = 1.213399 \cdot x^*, \quad \text{где} \quad x^*\text{-} \quad \text{положительный корень}$$
 уравнения: $x^2 = \cos x \; ; \; B = 0.$

2. Текст программы

```
real function function_e( t )
    real :: t
    function_e = 1.0 / sqrt((t ** 2 + 1) * (3 * t ** 2 + 4))
    return
end
real function function_a( x )
    real :: x
    function_a = x ** 2 - cos(x)
    return
end
subroutine duffing( t, &
    real :: t, w( 2 ), f( 2 ), e
    e = 0.200000
    ! Два уравнения первого порядка
    f(1) = w(2) - (e * w(2) ** 3)
f(2) = w(1)
    return
end
program coursework
    external function_e, &
             function_a, &
             duffing
    integer :: NOFUN = 0
    real :: b = 0.0
    ! QUANC8 vars
                         = 0.0, &
    real :: result_e
            lower \overline{b}ound = 0.0, &
            upper bound = 0.0, &
                         = 0.0, &
            relerr
                         = 0.0, &
            abserr
            flag
                         = 0.0, \&
                         = 0.0, &
            errest
            quanc_output = 0.0
    real, parameter :: const_value_e = 0.497286
    ! ZEROIN vars
    real :: result_a
                       = 0.0, &
                       = 0.0, \&
            ax
                       = 0.0, \&
            bx
                       = 0.0, \&
            tol
            zeroin
```

```
real, parameter :: const value a = 1.213399
! RKF45 vars
real :: rwork( 15 ), &
       w(2),
       t,
                   &
       tout,
                   'n
       tfinal,
                   &
       tprint
integer :: iwork( 5 ), &
          iflag, &
          neqn
! ------ CALC_QUANC8 -----
lower bound = 1.e-06
upper_bound = 1.0
relerr
        = 1.e-06
abserr
           = 0.0
call quanc8( function_e,
            lower_bound, &
            upper bound, &
            abserr,
            relerr,
                         &
            quanc_output, &
            errest,
                         &
            NOFUN,
                         &
            flag )
result_e = const_value_e * quanc_output
write ( *, '( A, F8.6 )' ) "E = ", result_e
! ------ CALC_ZEROIN -----
ax = -0.1
bx = 0.90000
tol = 1.e-06
result_a = zeroin( ax, bx, function_a, tol )
result_a = result_a * const_value_a
write ( *, '( A, F9.6 )' ) "A = ", result_a
! -----
! ------ CALC RKF45 ------
neqn = 2
w( 1 ) = result_a
w( 2 ) = b
  = 0.000001
t
tfinal = 16
iflag = 1
tout = t
tprint = 0.4
10 call RKF45( duffing, &
              neqn,
                      &
                      &
              W,
              t,
              tout,
              relerr, &
```

```
abserr, &
                   iflag,
                              &
                   rwork,
                              &
                   iwork )
write ( *, 11 ) t, w( 1 ), w( 2 )
go to (80, 20, 30, 40, 50, 60, 70, 80), iflag
20 \text{ tout} = \text{tprint} + \text{t}
if (t.lt.tfinal) go to 10
     stop
30 write ( *, 31 ) relerr, abserr
    go to 10
40 write ( *, 41 )
    go to 10
50 abserr = 0.1e-06
write ( *, 31 ) relerr, abserr
    go to 10
60 relerr = relerr * 10.0 write ( *, 31 ) relerr, abserr
iflag = 2
go to 10
70 print 71
iflag = 2
go to 10
80 write ( *, 81 )
.
11 format( '(', f10.2, 2x, '; ', f10.6, 2x, '; ', E14.6, ')')
31 format( 'ГРАНИЦЫ ПОГРЕШНОСТЕЙ ИЗМЕНЕНЫ '/' RELERR=', E10.3, 2X, &
             'ABSERR=', E10.3 )
41 format( ' МНОГО ШАГОВ ' )
71 format( ' МНОГО ВЫХОДОВ ' )
81 format( ' НЕПРАВИЛЬНЫЙ ВЫЗОВ ' )
```

end program coursework

3. Результаты

3.1 Вычисление числа Е

$$\epsilon = 0.497286 \cdot \int_{0}^{1} \frac{dt}{\sqrt{\left(t^{2} + 1\right)\left(3t^{2} + 4\right)}}$$

Для вычисления числа E, нужно найти определенный интеграл с помощью функции **QUANC8**, затем умножить полученный результат на константу.

3.2 Вычисление числа А

$$x^2 = \cos x$$

Для вычисления числа A, нужно найти нули функции с помощью **ZEROIN**. Находим корни $x^2 - \cos(x) = 0$ уравнения, по заданию нас интересует только положительный корень. Положительный корень равен ~ 0.8 .

Для функции **ZEROIN** нужен интервал в который входит корень. Левая и правая часть интервала должна иметь разные знаки, поэтому был выбран следующий интервал (ax = -0.1; bx = 0.9). После выполнения функции zeroin, получаем возвращаемое значечение и умножаем его на константу, чтобы получить число A.

Были получены следующие значения:

E = 0.200000

A = 1.0

B = 0 (дано по заданию)

Решение дифференциального уравнения выполняется с помощью функции **RKF45.** Исходное дифференциальное уравнение II порядка, приводится к системе из двух уравнений I порядка. Для хранения переменных используем вектор из двух компонентов w1 и w2. Преобразованное уравнение II порядка, для **RKF45**

$$f' = (1 + Ey^2) y$$

$$y'=f$$

Таблица результатов вычисления функции **RKF45**

Т (время)	dU/dt (w1)	U (w2)
0.00	1.000001	0.000000E+00
0.40	1.079717	0.410646E+00
0.80	1.311778	0.884248E+00
1.20	1.643347	0.147398E+01
1.60	1.869531	0.218621E+01
2.00	1.535358	0.289489E+01
2.40	0.316054	0.329106E+01
2.80	-1.136514	0.311437E+01
3.20	-1.832309	0.248886E+01
3.60	-1.768365	0.175184E+01
4.00	-1.441153	0.110798E+01
4.40	-1.156917	0.592236E+00
4.80	-1.013234	0.163397E+00
5.20	-1.028140	-0.239550E+00
5.60	-1.200528	-0.680188E+00
6.00	-1.504422	-0.121790E+01
6.40	-1.814212	-0.188561E+01
6.80	-1.773505	-0.262361E+01
7.20	-0.903490	-0.319069E+01
7.60	0.596303	-0.325692E+01
8.00	1.664307	-0.277526E+01
8.40	1.853256	-0.204716E+01
8.80	1.580081	-0.135366E+01
9.20	1.258136	-0.788356E+00
9.60	1.052826	-0.331083E+00
10.00	1.002801	0.747246E-01
10.40	1.112041	0.492429E+00
10.80	1.369317	0.984312E+00
11.20	1.703831	0.159896E+01
11.60	1.866352	0.232582E+01
12.00	1.372045	0.300364E+01
12.40	0.026115	0.330387E+01
12.80	-1.339229	0.302175E+01
13.20	-1.863431	0.235073E+01
13.60	-1.714188	0.162179E+01
14.00	-1.379971	0.100267E+01
14.40	-1.118388	0.507324E+00
14.80	-1.003891	0.881225E-01
15.20	-1.048595	-0.317055E+00
15.60	-1.248995	-0.771622E+00
16.00	-1.568626	-0.133265E+01
16.40	-1.848592	-0.202246E+01

График функции U(t)

График функции dU/dt(t)

4. Влияние числа Е на результаты

Зеленый график – число Е = 0.18

Синий график – число Е = 0.20

Красная график – число Е = 0.22

5. Вывод

Исходя из исследования графика можно сделать вывод, что от изменения значения числа Е зависит амплитуда колебания пружины. При уменьшении числа Е, график возрастает и колебания пружины становятся с большей амплитудой. При увеличении числа Е, график угасает и амплитуда колебания уменьшается.