Design & Analysis of Algorithms [Asymptotic Notations]

Soharab Hossain Shaikh
BML Munjal University

The O-Notation

Definition:

Let f(n) and g(n) be two functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be O(g(n)) (or f(n) = O(g(n))) if there exists a natural number n_0 and a constant c > 0 such that $\forall n \ge n_0$, $f(n) \le cg(n)$.

Example:

Let
$$f(n) = 10n^2 + 20n$$
. Since $\forall n \ge 1$

$$f(n) = 10n^2 + 20n$$
$$\leq 30n^2$$

Therefore, $f(n) = O(n^2)$ as there exists a natural number $n_0 = 1$ and a constant c = 30 > 0 such that $\forall n \ge n_0$, $f(n) \le cg(n)$.

Growth of function

The O-notation

Alternative definition of O-notation

The O-notation (continued)

The definition for O-notation is also equivalent to the following:

if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq \infty$ implies $f(n) = O(g(n))$.

Example

$$f(n) = 10n^2 + 20n$$
 and $g(n) = n^2$.

Since
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{10n^2 + 20n}{n^2}$$

$$= \lim_{n\to\infty} \left(\frac{10n^2}{n^2} + \frac{20n}{n^2} \right) = \lim_{n\to\infty} \left(10 + \frac{20}{n} \right)$$

$$= 10 + \lim_{n\to\infty} \left(\frac{20}{n} \right)$$

$$= 10 \neq \infty \text{ Hence, } f(n) \text{ is } O(n).$$

Note that f grows no faster than some constant times g.

The Ω -Notation

Definition

Let f(n) and g(n) be two functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be $\Omega(g(n))$ if there exists a natural number n_0 and a constant c > 0 such that $\forall n \ge n_0$, $f(n) \ge c g(n)$.

Example

Let
$$f(n) = 10 n^2 + 20n$$
. Since $\forall n \ge 1$,
 $f(n) = 10 n^2 + 20n$
 $\ge 10 n^2$

Therefore, $f(n) = \Omega(n^2)$ as there exists a natural number $n_0 = 1$ and a constant c = 10 > 0 such that $\forall n \ge n_0$, $f(n) \ge c g(n)$.

Growth of function

The Ω -notation

Alternative definition of Ω -notation

The Ω -Notation (Cont.)

The definition for Ω -notation is also equivalent to the following:

if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0$ implies $f(n) = \Omega(g(n))$.

Example

Consider the same problem as $f(n) = 10n^2 + 20n$ and $g(n) = n^2$.

Since
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 10 \neq \infty$$
.

Hence, f(n) is $\Omega(n^2)$.

It can be noted that f grows at least as fast as some constant times g. It is clear from the definition that $f(n) = \Omega(g(n))$ if and only if g(n) = O(f(n))

The ⊕-Notation

Definition

Let f(n) and g(n) be two functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be $\Theta(g(n))$ if there exists a natural number n_0 and two positive constants c_1 and c_2 such that $\forall n \ge n_0$, $c_1g(n) \le f(n) \le c_2g(n)$.

Example

Let
$$f(n) = 10n^2 + 20n$$
.

Then,
$$f(n) = O(n^2)$$
 since $\forall n \ge 1$, $f(n) \le 30n^2$.

Similarly, we have
$$f(n) = \Omega(n^2)$$
 since $\forall n \ge 1$, $f(n) \ge n^2$

Thus, one can find,

$$n_0 = 1$$
, $c_1 = 1$, and $c_2 = 30$,

such that

$$\forall n \ge 1, n^2 \le f(n) \le 30n^2.$$

Growth of function

The **Θ-Notation** (Cont.)

Demonstration: A graphic representation when $f(n) = \Theta(g(n))$.

Alternative definition of Θ-notation

The ⊕-Notation (Cont.)

The definition for Θ -notation is also equivalent to the following:

if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ implies $f(n) = \Theta(g(n))$, where c is a constant strictly greater than 0.

Example Consider the same problem as $f(n) = 10n^2 + 20n$ and $g(n) = n^2$.

Since
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{10n^2 + 20n}{n^2}$$

$$= \lim_{n \to \infty} \left(\frac{10n^2}{n^2} + \frac{20n}{n^2} \right) = \lim_{n \to \infty} \left(10 + \frac{20}{n} \right)$$

$$= 10 + \lim_{n \to \infty} \left(\frac{20}{n} \right) = 10$$

Hence, f(n) is $\Theta(n^2)$.

The o-Notation

Definition

Let f(n) and g(n) be two functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be o(g(n)) if, for every constant c > 0, there exists a positive integer n_0 such that $f(n) < cg(n) \forall n \ge n_0$.

Example

Let
$$g(n) = n^3 + 10n^2 + 20n$$
 and $f(n) = n^2 + 20n$. Then $f(n) = o(g(n))$ since $\forall n \ge 1$, $f(n) < g(n)$.

Alternative definition of o-notation

The o-Notation (cont.)

The definition for o-notation is also equivalent to the following:

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$
 exists, then $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ implies $f(n) = o(g(n))$.

Example Let $f(n) = 10n^2 + 20n$ and $g(n) = n^3$. Since

$$\lim_{n \to \infty} \frac{10n^2 + 20n}{n^3} = \lim_{n \to \infty} \left(\frac{10}{n} + \frac{20}{n^2} \right)$$
$$= \lim_{n \to \infty} \frac{10}{n} + \lim_{n \to \infty} \frac{20}{n^2} = 0,$$

we see that f(n) is o(g(n)).

Example Consider the same problem as $f(n) = 10n^2 + 20n$

and $g(n) = n^2$. Since

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{10n^2 + 20n}{n^2} = 10.$$

Hence, f(n) is $\Theta(n^2)$ but not $o(n^2)$.

End of Lecture