SECTION 7.3: POLAR COORDINATES (DAY 2)

- (1) The points below are in polar coordinates. Convert them to rectangular coordinates.
 - (a) $(5, 5\pi/3)$

 $(\frac{5}{2}, \frac{513}{2})$

(b)
$$(-0.5, -5\pi/6) = (\frac{1}{2}, \frac{\pi}{6})$$

 $X = \frac{1}{2} \cos(\frac{\pi}{6}) = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}$
 $Y = \frac{1}{2} \sin(\frac{\pi}{6}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

- (2) The points below are in rectangular coordinates. Convert them to polar coordinates.
 - (a) (-8,8)

- r= 182+82 = 812
- $(8\sqrt{2}, 3\pi/4)$

(b)
$$(2\sqrt{3},2) = (4(\frac{5}{2}),4(\frac{1}{2}))$$

 $(2, \pi/6)$

(13/4, 14)

- (3) Describe the graph of each polar equation below and convert it to a rectangular equation.
 - (a) r = 4

$$r^2 = 16$$

 $x^2 + y^2 = 16$

(b)
$$r = 5\csc(\theta)$$
 2 5 SIN θ

$$rsin\theta = 5$$

(4) Convert the equations below from rectangular equations to polar equations.

(a)
$$x^2 + y^2 = 20$$

or
$$sin\theta = 5 r \omega s\theta$$

or $r = \frac{1}{5} tan\theta$

(5) Sketch the graph of the polar equations below.

(a)
$$r = 3 - 2\sin(\theta)$$

