```
In [ ]: #%% Import libraries and Load data
        from PIL import Image
        import matplotlib.pyplot as plt
        import deeptrack as dt
        import numpy as np
        import torch
        from matplotlib.patches import Rectangle
        import deeplay as dl
        import scipy, tqdm
        import scipy.spatial
        import scipy.optimize
        optics = dt.Fluorescence(
            wavelength=600 * dt.units.nm, NA=0.9, magnification=1,
            resolution=0.1 * dt.units.um, output_region=(0, 0, 50, 50),
        particle = dt.PointParticle(position=(25, 25), intensity=1.2e4, z=0)
        sim_im_pip = optics(particle) >> dt.Add(30) >> np.random.poisson >> dt.Add(82)
        sim_im_pip.update()
        sim_crop = sim_im_pip()
        plt.plot()
        plt.imshow(sim_crop, cmap="gray", vmin=100, vmax=250)
        plt.title("Simulated particle", fontsize=16)
        plt.show()
        optics = dt.Fluorescence(
            wavelength=600 * dt.units.nm, NA=0.9, magnification=1,
            resolution=0.1 * dt.units.um, output_region=(0, 0, 128, 128),
        particle = dt.PointParticle(
            position=lambda: np.random.uniform(0, 128, size=2),
            intensity=lambda: np.random.uniform(6e3, 3e4),
            z=lambda: np.random.uniform(-1.5, 1.5) * dt.units.um,
        postprocess = (dt.Add(lambda: np.random.uniform(20, 40)) >> np.random.poisson
                        >>> dt.Add(lambda: np.random.uniform(70, 90)))
        normalization = dt.AsType("float") >> dt.Subtract(110) >> dt.Divide(250)
        particles = particle ^ (lambda: np.random.randint(10, 20))
        sim_im_pip = (optics(particles)
                      >> dt.Add(lambda: np.random.uniform(20, 40))
                      >> np.random.poisson
                      >> dt.Add(lambda: np.random.uniform(70, 90))
                      >> dt.Clip(0, 255)
                      >> dt.Divide(255) * 255) # Ensure similar scale
        sim_mask_pip = (particles
                        >>> dt.SampleToMasks(lambda: lambda particle: particle > 0,
                                             output_region=optics.output_region,
                                             merge_method="or")
                        >>> dt.AsType("int") >> dt.OneHot(num_classes=2))
        sim_im_mask_pip = ((sim_im_pip & sim_mask_pip) >> dt.MoveAxis(2, 0)
                            >>> dt.pytorch.ToTensor(dtype=torch.float))
        sim_im, sim_mask = sim_im_mask_pip.update().resolve()
```

```
plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
plt.imshow(sim_im.squeeze(), cmap="gray")
plt.title("Simulated image", fontsize=16)

plt.subplot(1, 2, 2)
plt.imshow(sim_mask[1], cmap="gray")
plt.title("Localization map", fontsize=16)

plt.tight_layout()
plt.show()
```

c:\Users\Green\AppData\Local\Programs\Python\Python311\Lib\site-packages\deeptrac
k__init__.py:14: UserWarning: TensorFlow is detected in your environment. DeepTr
ack2 version 2.0++ no longer supports TensorFlow. If you need TensorFlow support,
please install the legacy version 1.7 of DeepTrack2:

```
pip install deeptrack==1.7
```

For more details, refer to the DeepTrack documentation. warnings.warn(

WARNING:pint.util:Redefining '[magnetic_flux]' (<class 'pint.delegates.txt_defpar
ser.plain.DerivedDimensionDefinition'>)

Simulated particle


```
In [ ]: # %% Prepare training dot
        image_of_particles = Image.open("frame_with_qdots.tif")
        x0, y0, crop\_size = 178, 271, 50
        crop = image_of_particles.crop((x0, y0, x0 + crop_size, y0 + crop_size))
        crop = np.array(crop)[..., np.newaxis]
        plt.figure(figsize=(15, 10))
        plt.subplot(1, 2, 1)
        plt.imshow(image_of_particles, vmin=100, vmax=200, cmap="gray")
        plt.gca().add_patch(Rectangle((x0, y0), crop_size, crop_size,
                                      linewidth=1, edgecolor="r", facecolor="none"))
        plt.subplot(1, 2, 2)
        plt.imshow(crop, vmin=100, vmax=200, cmap="gray")
        plt.show()
        train_pip = (dt.Value(sim_crop) #Use sim_crop for simulated or crop for real
                     >>> dt.Multiply(lambda: np.random.uniform(0.9, 1.1))
                     >> dt.Add(lambda: np.random.uniform(-0.1, 0.1))
                     >>> dt.MoveAxis(-1, 0) >> dt.pytorch.ToTensor(dtype=torch.float32))
        train_dataset = dt.pytorch.Dataset(train_pip, length=400, replace=False)
        dataloader = dl.DataLoader(train_dataset, batch_size=8, shuffle=True)
```


In []: #%% Training

lodestar = dl.LodeSTAR(n_transforms=4, optimizer=dl.Adam(lr=1e-4)).build()
trainer = dl.Trainer(max_epochs=200)
trainer.fit(lodestar, dataloader)

c:\Users\Green\AppData\Local\Programs\Python\Python311\Lib\site-packages\lightnin g\pytorch\trainer\configuration_validator.py:70: You defined a `validation step` but have no `val_dataloader`. Skipping val loop. c:\Users\Green\AppData\Local\Programs\Python\Python311\Lib\site-packages\lightnin g\pytorch\utilities\model_summary\model_summary.py:477: The total number of param eters detected may be inaccurate because the model contains an instance of `Unini tializedParameter`. To get an accurate number, set `self.example_input_array` in your LightningModule. INFO:

Name	Type	Params	Mode
0 model	ConvolutionalNeuralNetwork	251 K	train
1 between_loss	L1Loss	0	train
2 within loss	L1Loss	0	train
3 train_metrics	MetricCollection	0	train
4 val_metrics	MetricCollection	0	train
5 test_metrics	MetricCollection	0	train
6 optimizer	Adam	0	train
251 K Trainable params			
0 Non-trainable params			
251 K Total params			
1.004 Total estimated model params size (MB)			
39 Modules in train mode			
0 Modules in eval mode			
INFO:lightning.pyt	orch.callbacks.model_summary:		
<pre>INFO:lightning.pyt</pre>	orch.callbacks.model_summary: Type	Params	Mode
Name	Type		Mode train
Name 0 model	. — — — — — — — — — — — — — — — — — — —		'
Name 0 model 1 between_loss	Type ConvolutionalNeuralNetwork	251 K	train
Name 0 model 1 between_loss 2 within_loss	Type ConvolutionalNeuralNetwork L1Loss	251 K 0	train
Name	Type ConvolutionalNeuralNetwork L1Loss L1Loss	251 K 0 0	train train train
Name 0 model 1 between_loss 2 within_loss 3 train_metrics 4 val_metrics	Type ConvolutionalNeuralNetwork L1Loss L1Loss MetricCollection	251 K 0 0 0	train train train train
Name 0 model 1 between_loss 2 within_loss 3 train_metrics 4 val_metrics	Type ConvolutionalNeuralNetwork L1Loss L1Loss MetricCollection MetricCollection	251 K 0 0 0	train train train train train
Name	Type ConvolutionalNeuralNetwork L1Loss L1Loss MetricCollection MetricCollection MetricCollection Adam	251 K 0	train train train train train train
Name	Type ConvolutionalNeuralNetwork L1Loss L1Loss MetricCollection MetricCollection MetricCollection Adam params	251 K 0	train train train train train train
Name 0 model 1 between_loss 2 within_loss 3 train_metrics 4 val_metrics 5 test_metrics 6 optimizer	Type ConvolutionalNeuralNetwork L1Loss L1Loss MetricCollection MetricCollection MetricCollection Adam params nable params	251 K 0	train train train train train train
Name	Type ConvolutionalNeuralNetwork L1Loss L1Loss MetricCollection MetricCollection MetricCollection Adam params nable params	251 K 0	train train train train train train

Modules in train mode Modules in eval mode

c:\Users\Green\AppData\Local\Programs\Python\Python311\Lib\site-packages\lightnin g\pytorch\trainer\connectors\data_connector.py:425: The 'train_dataloader' does n ot have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=15` in the `DataLoader` to improve pe rformance.

| 0/? [00:00<?, ?it/s] Training: |

```
In [ ]: # %% PLot
        image np = np.array(image of particles)
        image_np = image_np[..., np.newaxis]
        torch_image = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).float()
        prediction = lodestar(torch_image)[0].detach().numpy()
        x, y, rho = prediction[0], prediction[1], prediction[-1]
        plt.figure(figsize=(15, 10))
        plt.subplot(1, 3, 1)
```

```
plt.imshow(image_np, vmin=100, vmax=200, cmap="gray")
plt.title("Input image", fontsize=14)
plt.axis("off")
plt.subplot(1, 3, 2)
plt.imshow(rho,cmap="gray")
plt.title("Probability channel", fontsize=14)
plt.axis("off")
plt.subplot(1, 3, 3)
plt.imshow(image_np, vmin=100, vmax=200,cmap="gray")
plt.scatter(y.flatten(), x.flatten(), alpha=rho.flatten() / rho.max(), s=5)
plt.title("Displacement channel", fontsize=14)
plt.axis("off")
plt.xlim(0, image_np.shape[1])
plt.ylim(image_np.shape[0], 0)
plt.tight_layout()
plt.show()
```



```
In [ ]: # %% Evaluate performance
        alpha = 0.05
        beta = 1 - alpha
        cutoff = 0.01
        mode = "constant"
        plt.figure(figsize=(15, 10))
        for plot idx in range(6):
            # Get a new synthetic image and mask
            sim_im, sim_mask = sim_im_mask_pip.update().resolve()
            torch_image = sim_im.unsqueeze(0).float()
            detections = lodestar.detect(torch image, alpha=alpha, beta=beta,
                                              mode=mode, cutoff=cutoff)[0]
            image_np = torch_image.squeeze().numpy()
            mask_np = sim_mask[1].numpy()
            # Plot
            plt.subplot(1, 6, plot_idx + 1)
            plt.imshow(image_np, cmap="gray", vmin=100, vmax=200)
            plt.scatter(detections[:, 1], detections[:, 0], s=5, color="red")
            plt.title(f"Sim {plot_idx + 1}", fontsize=12)
            plt.axis("off")
```

```
plt.tight_layout()
plt.show()
```



```
In [ ]: # %% F1
        distance_th = 30
        TP, FP, FN = 0, 0, 0
        for _ in tqdm.tqdm(range(100)):
            sim_im, sim_mask = sim_im_mask_pip.update().resolve()
            torch_image = sim_im.unsqueeze(0).float()
            detections = lodestar.detect(torch_image, alpha=alpha, beta=beta,
                                          mode="constant", cutoff=cutoff)[0]
            # Get ground truth centroids from mask
            centroids = np.argwhere(sim_mask[1].numpy() > 0)[:, [1, 0]] # (x, y)
            distance_matrix = scipy.spatial.distance_matrix(detections, centroids)
            row_idx, col_idx = scipy.optimize.linear_sum_assignment(distance_matrix)
            filtered_row_ind = row_idx[distance_matrix[row_idx, col_idx] < distance_th]</pre>
            filtered_col_ind = col_idx[distance_matrix[row_idx, col_idx] < distance_th]</pre>
            TP += len(filtered_row_ind)
            FP += len(detections) - len(filtered_row_ind)
            FN += len(centroids) - len(filtered_col_ind)
        F1 = 2 * TP / (2 * TP + FP + FN + 1e-8)
        print(f"TP: {TP}, FP: {FP}, FN: {FN}, F1: {F1:.4f}")
```

```
100%| 100/100 [00:10<00:00, 9.86it/s]
TP: 739, FP: 263, FN: 702, F1: 0.6050
```