

Université Pierre et Marie Curie Parcours MSA Processus Stochastiques

Année 2013-2014

TD N°1 : Lois discrètes et fonctions génératrices

I - Fonction génératrice : définition

Soit X une variable aléatoire (v.a.) discrète ne prenant que des valeurs entières positives ou nulles (i.e. t.q. $X(\Omega) \subset \mathbb{N}$). On appelle fonction génératrice de la v.a. X la fonction G_X définie par :

$$G_X(z) = \mathrm{E}(z^X)$$
.

Montrer que la distribution de probabilité de X est complètement déterminée par la donnée de G_X .

II - Calculs d'espérances et variances de lois discrètes classiques

Soient X une v.a. discrète t.q. $X(\Omega) \in \mathbb{N}$ et G_X sa fonction génératrice.

- 1- Calculer $G_X'(1)$ et $G_X''(1)$. En déduire l'espérance $\mathrm{E}(X)$ et la variance $\mathrm{V}(X)$ de la v.a. X en fonction de $G_X'(1)$ et $G_X''(1)$.
- **2-** En appliquant le résultat précédent, calculer $\mathrm{E}(X)$ et $\mathrm{V}(X)$ pour les distributions suivantes :
- a) X suit une loi de Bernoulli de paramètre p, i.e.

$$X(\Omega) = \{0, 1\}, \quad P(X = 1) = p, \quad P(X = 0) = q = 1 - p.$$

b) X suit une loi binomiale de paramètres n et p (notée B(n,p)), i.e.

$$X(\Omega) = [0, n], \quad \text{et} \quad \forall k \in \mathbb{N} : P(X = k) = C_n^k p^k q^{n-k}.$$

c) X suit une loi géométrique (loi du temps d'attente du premier succès) de paramètre p, i.e.

$$X(\Omega) = \mathbb{N}^*, \quad \text{et} \quad \forall k \in \mathbb{N}^* : P(X = k) = pq^{k-1}.$$

d) X suit une loi de Pascal (loi du temps d'attente du r-ième succès) de paramètres r et p (notée P(r,p)), i.e.

$$X(\Omega)=[r,\infty],\quad \text{et}\quad \forall k\in[r,\infty]\ :\ P(X=k)=C_{k-1}^{r-1}\ p^rq^{k-r}.$$

e) X suit une loi de Poisson de paramètre λ , *i.e.*

$$X(\Omega) = \mathbb{N}, \quad \text{et} \quad \forall k \in \mathbb{N} : P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

III. Somme de deux variables aléatoires indépendantes

Soient X_1 et X_2 2 v.a. discrètes indépendantes t.q. $X_1(\Omega) \subset \mathbb{N}$ et $X_2(\Omega) \subset \mathbb{N}$, et soit $S = X_1 + X_2$.

- 1- Montrer que la fonction génératrice de S s'écrit $G_S = G_{X_1}G_{X_2}$, où G_{X_1} et G_{X_2} désignent respectivement les fonctions génératrices associées à X_1 et X_2 .
- 2- En appliquant le résultat précédent, montrer que :
- a) la somme de n v.a. de Bernoulli de paramètre p est une v.a. binomiale dont les paramètres sont à préciser.
- b) la somme de 2 v.a. binomiales $B(n_1, p)$ et $B(n_2, p)$ est une v.a. binomiale dont les paramètres sont à préciser.
- c) la somme de 2 v.a. géométriques de même paramètre p n'est pas une v.a. géométrique.
- d) la somme de 2 v.a.de Pascal P(r,p) et P(r',p) est une v.a. de Pascal dont les paramètres sont à préciser.
- e) la somme de 2 v.a. de Poisson de paramètres λ et λ' respectivement est une v.a. de Poisson dont le paramètre est à préciser.

IV. Somme d'un nombre aléatoire de variables aléatoires indépendantes

1- Soit (X_n) une suite de v.a. à valeurs dans \mathbb{N} , indépendantes et équidistribuées. Soit N une v.a. à valeurs dans \mathbb{N}^* , indépendante de la suite (X_n) . On définit la v.a. Z par :

$$Z = \sum_{i=1}^{N} X_i.$$

- a) Calculer la fonction génératrice de Z en fonction de celle de N et de celle des X_i .
- b) En déduire E(Z) et V(Z).
- 2- Application. Le nombre d'accidents en une semaine dans une usine est une v.a. de moyenne μ et de variance σ^2 . Le nombre d'individus blessés dans un accident est une v.a. de moyenne ν et de variance τ^2 . Les nombres d'individus blessés dans les différents accidents sont indépendants entre eux et indépendants du nombre d'accidents.

Donner la moyenne et la variance du nombre d'individus blessés en une semaine.

V. Convergence en loi

On montre que l'étude de la convergence en loi d'une suite de v.a. $(X_n \to X)$ se ramène à l'étude de la convergence simple de la suite de fonctions génératrices associées $(G_{X_n}(z) \to G_X(z))$. En utilisant ce résultat, montrer qu'une suite de v.a. binomiales X_n de lois respectives $B(n, p_n)$ t.q. $np_n \to \lambda$ quand $n \to +\infty$, converge en loi vers une v.a. de Poisson de paramètre λ .