Sardar Vallabhbhai National Institute of Technology, Surat

Mid-Exam-2025 (B. Tech IIIrd year, Vth Sem)

Department of Chemical Engineering

SUBJECT: DATA SCIENCE FOR CHEMICAL ENGINEERS (CH 374)

Roll No. Max. Marks: 30

NOTE: Solve Any Three Questions

Q. 1: Write Short Notes on 1. Computational Fluid Dynamics (CFD); 2. Life Cycle Assessment (LCA) (10)

Q. 2: A straight, uniform fin of length L=0.1 m is attached to a heated surface at temperature T_b =373 K. The fin is exposed to ambient air at T_{∞} =293 K and loses heat by convection along its surface.

The governing steady-state temperature distribution in the fin is: $\frac{d^2T}{dx^2} - m^2(T - T_{\infty}) = 0$

where:
$$m = \sqrt{\frac{hP}{kA}}$$
 Analytical Solution: $\theta(x) = \frac{\cosh(m(L-x))}{\cosh(mL)}$ $\theta(x) = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}}$

Convection coefficient (h)=100 W/m²K; Cross-sectional area (A)= 1×10^{-4} m²; perimeter (P) = 0.02 m; Thermal conductivity of two materials: (k₁) = 200 W/m.K, (k₂) = 400 W/m.K

Write a **Python program** to **compute and plot** temperature profiles T(x) along the fin for both materials with labels, legend and two curves showing temperature distribution for both the material. (10)

Q. 3: Explain in detail: Solution of Boundary Value Problems of 2nd order ordinary differential equation using SCILAB & Python (10)

Q 4: Develop and Explain Algorithm for Newton Forward/Backward & Langrange's Method of interpolation in SCILAB (10)

Sardar Vallabhbhai National Institute of Technology, Surat

Mid-Exam-2025 (B. Tech IIIrd year, Vth Sem)

Department of Chemical Engineering

SUBJECT: DATA SCIENCE FOR CHEMICAL ENGINEERS (CH 374)

Roll No. Max. Marks: 30

NOTE: Solve Any Three Questions

Q. 1: Write Short Notes on 1. Computational Fluid Dynamics (CFD); 2. Life Cycle Assessment (LCA) (10)

Q. 2: A straight, uniform fin of length L=0.1 m is attached to a heated surface at temperature T_b =373 K. The fin is exposed to ambient air at T_{∞} =293 K and loses heat by convection along its surface.

The governing steady-state temperature distribution in the fin is: $\frac{d^2T}{dx^2} - m^2(T - T_{\infty}) = 0$

where:
$$m = \sqrt{\frac{hP}{kA}}$$
 Analytical Solution: $\theta(x) = \frac{\cosh(m(L-x))}{\cosh(mL)}$ $\theta(x) = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}}$

Convection coefficient (h)=100 W/m²K; Cross-sectional area (A)= 1×10^{-4} m²; perimeter (P) = 0.02 m; Thermal conductivity of two materials: (k₁) = 200 W/m.K, (k₂) = 400 W/m.K

Write a **Python program** to **compute and plot** temperature profiles T(x) along the fin for both materials with labels, legend and two curves showing temperature distribution for both the material. (10)

Q. 3: Explain in detail: Solution of Boundary Value Problems of 2nd order ordinary differential equation using SCILAB & Python (10)

Q 4: Develop and Explain Algorithm for Newton Forward/Backward & Langrange's Method of interpolation in SCILAB (10)

Sardar Vallabhbhai National Institute of Technology, Surat

Mid-Exam-2025 (B. Tech IInd year, IIIrd Sem)

Department of Chemical Engineering

SUBJECT: INTRODUCTION TO MACROMOLECULES (CH 252)		
Roll No. Max. Max. Max. Max. Max. Max. Max. Max	Max. Marks: 30	
NOTE: Solve Any Three Questions		
 Q 1: Explain in detail: Step Growth polymerization & Chain Growth polymerization Q 2: Explain in detail: Visco-elasticity and its models & Significance Q 3: Explain in detail: Atomic Force Microscopy (AFM) & Dynamic Light Scattering Q 4: Explain in detail: Flory-Huggins Theory 	(10) (10) Equipment (DLS) (10) (10)	
Sardar Vallabhbhai National Institute of Techno Mid-Exam-2025 (B. Tech II nd year, III rd Sem) Department of Chemical Engineering	ology, Surat	
SUBJECT: INTRODUCTION TO MACROMOLECULES	(CH 252)	
Roll No. Max. Max. Max. Max. Max. Max. Max. Max	Max. Marks: 30	
NOTE: Solve Any Three Questions		
 Q 1: Explain in detail: Step Growth polymerization & Chain Growth polymerization Q 2: Explain in detail: Visco-elasticity and its models & Significance Q 3: Explain in detail: Atomic Force Microscopy (AFM) & Dynamic Light Scattering 	• •	
Q 4: Explain in detail: Flory-Huggins Theory	(10) (10)	
Sardar Vallabhbhai National Institute of Techno	ology, Surat	
Mid-Exam-2025 (B. Tech II nd year, III rd Sem)		
Department of Chemical Engineering <u>SUBJECT: INTRODUCTION TO MACROMOLECULES</u>	(CH 252)	
Roll No. Max. Max. Max. Max. Max. Max. Max. Max	arks: 30	
NOTE: Solve Any Three Questions		
 Q 1: Explain in detail: Step Growth polymerization & Chain Growth polymerization Q 2: Explain in detail: Visco-elasticity and its models & Significance Q 3: Explain in detail: Atomic Force Microscopy (AFM) & Dynamic Light Scattering 	* * · ·	
Q 4: Explain in detail: Flory-Huggins Theory	(10) (10)	