Shor's Algorithm Implementation Using Quantum Rings

Overview

This project implements **Shor's Algorithm** using the **Quantum Rings simulator** to factor semiprime numbers. The algorithm is a **quantum approach to integer factorization**, leveraging **modular exponentiation**, **Quantum Fourier Transform (QFT)**, and **period finding** to determine the prime factors of a given integer **N**.

In cases where quantum computation takes too long, the program also uses the **Greatest Common Divisor (GCD) fallback method** to quickly extract factors when possible.

Implementation Details

- The program is written in **Python** using the **QuantumRingsLib** library.
- The quantum circuit consists of:
 - o Hadamard gates to create superposition.
 - Modular exponentiation to encode periodicity.
 - o Inverse Quantum Fourier Transform (IQFT) to extract the period.
 - Measurement operations to retrieve results.
- The program runs five attempts per number to increase the probability of success.
- **Optimization:** Before running quantum computation, the algorithm first checks for common factors using the **GCD method**, which significantly reduces execution time for some inputs.

Scalability & Challenges

Why Quantum?

- o Classical computers take **exponential time** to factorize large numbers (e.g., RSA-2048).
- Shor's Algorithm theoretically achieves polynomial-time factorization, making RSA encryption vulnerable in the future.

Challenges Faced:

- Execution Time: The Quantum Rings simulator takes time for circuit execution, especially for larger numbers.
- Resource Limits: Larger N values require more qubits, increasing computational overhead.
- Quantum Noise: On real quantum hardware, gate errors and decoherence affect accuracy.

• Solutions & Future Improvements:

- o Implement parallelized modular exponentiation for speed.
- Use **optimized quantum compilers** to reduce gate depth.
- o Transition to **real quantum hardware** once available.

Results

The table below summarizes the factorization results from the Quantum Rings simulator:

(Note: Execution times may vary based on system load.)

BIT	Semiprime (N)	Prime	Time of
		Factors	execution
8-bit	143	(11,13)	20s
10-	899	(29,31)	3m
bit			
12-	3127	(47,67)	18m
bit			

Submission Details

• Quantum Rings Email: fatma_h00197@cic-cairo.com

• **GitHub Repository:** [Your GitHub Link Here]

• **Documentation Author:** Fatma H.