1. Uvod

- Virtualni predmet je predmet definiran u memoriji računal na takav način da ga računalo može na zaslonu prikazati korisniku uz mogućnost interakcije
- Interaktivnim prikazom smatra se prikaz prilikom kojeg korisnik u stvarnom vremenu upravlja parametrima prikaza (npr. kutom gledanja)
- 2D i 3D grafika
- Offline grafika
 - o vrijeme iscrtavanja jedne slike puno je veće nego kod grafike u stvarnom vremenu
 - o specijalni efekti i računalne animacije, CAD
- Online grafika (u stvarnom vremenu)
 - o barem 10 fps (donja granica), no poglativo iznad 30 fps
 - o virtualna okruženja/svjetovi, proširena stvarnost, virtualna stvarnost, NVE...
- primjene
 - o film i televizija
 - o igre
 - o dizajn i projektiranje
 - o simulacija
 - o vizualizacija
 - o predstave, događaji i marketing

2. Modeliranje virtualne scene

- Virtualna scena je prikaz stvarnog okruženja u memoriji računala
 - o potrebni svjetlo, promatrač i predmeti
- Opis virtualne scene
 - o Modeliranje (modeling)
 - o Iscrtavanje (rendering)
- Modeliranje
 - o Prikaz geometrije poligonima
 - vrh (*vertex*), brid (*edge*), stranica/poligon (*face*)
 - veći broj poligona bolje aproksimira zakrivljenost
 - o Konstruktivna geometrija čvrstih tijela (Constructive Solid Geometry, CSG)
 - zbrajanje, oduzimanje i presjek čvrstih tijela
 - slaganje jednostavnih oblika: kvadar, kugla, valjak, stožac, torus
 - o Parametarske krivulje i plohe
 - spline
 - Bezierova krivulja
 - NURBS *Non-uniform rational B-spline*
 - za oblikovanje prirodnih oblika
 - o Razdjelne plohe (*subdivision surfaces*)
 - omogućuje modeliranje relativno jednostavnih osnovnih modela te zatim postizanje proizvoljno glatkih oblika, uz kontrolu glatkoće pojedinih dijelova modela
 - Doo-Sabinova i Catmull-Clarkov algoritam
 - o Brišuće plohe (*sweeping surfaces*)
 - stvaraju se s povlačenjem krivulje linearno, kružno ili po drugoj krivulji
 - najčešće linearno povlačenje (ekstruzija) i rotacijsko povlačenje

- Volumenski prikazi
 - volume elements (voxels)
 - octree, quadtree
- Fraktali
 - fragmentirani, nepravilni geometrijski objekti koji pokazuju svojstvo samosličnosti
 - stvoreni rekurzivnim ponavljanjem određene funkcije
 - ponekad za modeliranje prirodnih pojava, no primjena u praksi relativno ograničena
- o Sustavi čestica (particle system)
 - simulacija velikog broja jednostavnih čestica
 - svojstvo dinamičnosti
 - uz početne parametre (položaj, boja, oblik) postoje pravila i funkcije po kojima se pojedine čestice pomiču, mijenjaju, nestaju ili nove čestice nastaju
 - za simulaciju prirodnih pojava: vodopadi, vatra, dim, međudjelovanje mnoštva predmeta
- Modeliranje zasnovano na slikama
 - Za modeliranje objekata koji zaista postoje
 - Automatski i poluautomatski postupci
 - prikupljanje podataka (point cloud)
 - o lasersko skeniranje, generiranje točaka iz niza fotografija, korištenje dubinskih kamera (npr. Microsoft Kinect)
 - generiranje geometrije (niz trokuta)
 - generiranje teksture
- Model kamere
 - o zasniva se na projekciji scena se projicira na projekcijsku plohu
 - o ortogonalna ili perspektivna projekcija (najčešće se koristi)
 - perspektivna projekcija
 - središte projekcije (center of projection, COP)
 - projekcijski prozor (view-plane window, VPW)
 - normala na projekcijsku plohu (view-plane normal, VPN)
 - bliska i daleka odrezujuća ploha (near/far clipping lane, NCP/FCP)
- Model osvjetljenja
 - o služi za računanje osvjetljenja u promatranoj točki na slici
 - o ovisi o materijalu predmeta, svjetlima i o relativnim položajima kamere, svjetala i predmeta
 - o izravno i neizravno osvjetljenje
 - o difuzno i spekularno odbijanje ulazne svjetlosti
 - o lom svjetlosti (refreakcija)
 - o pri prolasku kroz predmet rasipanje i upijanje svjetlosti (apsorpcija)
 - o unutarnje odbijanje pri izlazu
- Modeli izvora svjetlosti
 - Ambijentno svjetlo
 - definira se smjerom i intezitetom
 - koristi se u vrlo malim količinama jer daje jednoličnu boju (gubi se 3D izgled)
 - Točkasto svjetlo
 - isijava iz jedne točke u svim smjerovima jednako
 - Reflektor
 - sličan točkastvom svjetlu, ali isijava samo u smjerovima određenim njegovim stošcem
 - često se definiraju dva stošca u unutarnjem isijavanje je konstatno, a između unutarnjeg i vanjskog postupno pada na nulu
- Model odbijanja svjetlosti
 - o za računanje lokalnog osvjetljenja
 - o najčešće Phongov model
 - ambijentna komponenta
 - difuzna komponenta

spekularna komponenta

$$I = I_{a}k_{a} + I_{i}k_{d}(L \bullet N) + I_{i}k_{s}(R \bullet V)^{n}$$

- Model materijala
 - o opisuje kako materijal odbija svjetlost
 - o daje materijalu svojstva koja se manifestiraju kao boja, sjaj i prozirnost predmeta
 - o obično se uključuju i teksture

4. Iscrtavanje virtualne scene

- iscrtavanje slike rendering skup postupaka kojima se iz opisa virtualne scene proizvodi slika
- u stvarnom vremenu (online) barem 30 fps
- offline postupci do nekoliko sati po slici
- metode organizirane u grafički protočni sustav (graphics rendering pipeline, pipeline)
 - o na ulazu opis virtualne scene
 - o na izlazu slika koja se proizvodi više puta u sekundi
- najvažnije tehnike: sjenčanje, dodavanje teksture, određivanje vidljivosti, prozirnost i antialiasing
- praćenje zrake (*ray tracing*)
 - o klasična i široko upotrebljavana metoda iscrtavanja (najprije za offline grafiku)
 - o prilično izravno slijedi princip projiciranja na projekcijski prozor
 - o izvrsno prikazuje refleksije, oštre sjene i prozirnost ("previše realistično")
 - o princip praćenja zrake
 - zraku promatramo u obrnutom smjeru od promatrača prema sceni
 - za svaku točku zaslona, prati se zraka koja kroz tu točku ulazi u scenu
 - za zraku se traži presjek s predmetima u sceni
 - ako se nađe presjek, računa se osvjetljenje u točki presjeka (npr. Phongov model)
 - računaju se zrcaljena zraka i lomljena zraka
 - postupak se rekurzivno ponavlja
 - zbrajaju se doprinosi osvjetljenja svih nađenih točaka presjeka, pomnoženi s odgovarajućim koeficijentima zrcalnog odbijanja (prozirnosti)
 - o operacije:
 - računanje zrake kroz točku x,y u prozoru iscrtavanja
 - ispitivanje dubine rekurzije
 - nalaženje najbližeg presjeka zrake sa scenom
 - računanje lokalnog osvjetljenja u točki presjeka
 - ispitivanje utjecaja scene
 - računanje odbijene i lomljene zrake
 - kombiniranje lokalnog osvjetljenja i doprinosa odbijene i lomljene zrake
- grafički protočni sustav u stvarnom vremenu
 - o faze grafičkog protočnog sustava: funkcijske faze
 - aplikacijska faza (Application stage)
 - predstavlja vezu između aplikacije i ostatka protočnog sustava
 - priprema elemente za iscrtavanje (najčešće trokuti, točke i crte)
 - neposredno vezana uz pojedinu aplikaciju, nema univerzalne implementacije
 - priprema se programski i izvodi na glavnom procesoru
 - sve "pametne" stvari se rade ovdje (logika, animacija, simulacija, IO, detekcija sudara...)
 - može jako utjecati na ukupnu brzinu iscrtavanja
 - geometrijska faza
 - ulaz: 3D poligoni, svjetla, kamera

- izlaz: 2D poligoni u ekranskim koordinatama i s određenim bojama
- zahtjevna, oko 100 FP operacija po vrhu
- implementirana sklopovski, na GPU
- funkcijske faze
 - o transformacija u prostor kamere (*Model&View Transform*)
 - o sjenčanje vrhova (Vertex Shading)
 - o projekcija (Projection)
 - o pbrezivanje (*Clipping*)
 - o preslikavanje na ekran (Screen Mapping)

faza rasteriziranja

- iscrtavanje točaka (piksela) na zaslonu
- upisuje boju u pojedine točke zaslona
- obavlja teksturiranje, prozirnost, antialiasing, efekte zamućenosti
- vrlo zahtjevna, gotovo uvijek izvedba na GPU
- funkcijske faze
 - o priprema trokuta (*Triangle Setup*)
 - o prolaz trokuta (*Triangle Traversal*)
 - o sjenčanje točaka (Pixel Shading)
 - o stapanje (*Merging*)

o osnovne tehnike

- sjenčanje
- preslikavanje tekstura (*texture mapping*)
- određivanje vidljivosti (metoda Z-spremnika, *Z-buffer*)
- prozirnost (alpha blending)
- antialiasing
- programska sučelja za 3D grafiku (API)
 - o struktura programskog sustava za 3D grafiku:
 - aplikacija
 - programsko sučelje visoke razine (API)
 - programsko sučelje niske razine (API)
 - pogonski program (*driver*)
 - grafičko sklopovlje (GPU, memorija)
 - API niske razine
 - orijentirana na protočni sustav
 - ne rade na razini modela i scena, već vrhova, linija i poligona
 - funkcije:
 - stvaranje i alokacija resursa
 - konfiguracija stanja pojedinih faza protočnog sustava
 - učitavanje programa za sjenčanje
 - naredbe iscrtavanja
 - dohvat podataka iz protočnog sustava

DirectX (Direct3D)

- zatvoreni, vlasnički sustav
- objektno-orijentiran
- primarno C++, no uz COM i na .NET kroz XNA
- D3DX: skup pomoćnih klasa i funkcija, za rad s matricama, krivuljama i mrežama poligona, za animaciju i sl.
- zbog kompatibilnosti unutrag (prije DirectX 10) potrebna programska provjera *capability bits*

OpenGL

• otvoreno, višeplatformsko programsko sučelje

- pristup moguć iz raznih programskih jezika
- koristi se u vrlo širokom spektru aplikacija, od igara i simulacija do znanstvenih vizualizacija
- OpenGL ARB zadužen za daljnji razvoj (Architectura Review Board)
 - ARB donosi nove specifikacije i kontrolira implementacije kako bi se garantiralo da sustav radi jednako na svim platformama
- proceduralan, koncipiran kao stroj stanja
- pomoćna biblioteka GLU (kao D3DX)
- API visoke razine
 - sustavi za graf scene
 - primjeri: IRIS Performer, OpenSceneGraph, Java3D, OpenSG
 - sustavi za iscrtavanje (graphics rendering engine)
 - primjeri: OGRE, Crystal Space, Irrlicht Engine i Horde3D
 - pokretački sustav za igre (game engine)
 - detekcija presjeka i sudara, fizička čvrstih i mekih tijela, ulazni sustav, navigacija, 2D
 GUI, umrežavanje, skriptiranje...
 - primjeri: Unreal Engine, Source, id Tech, CryENGINE, Gamebryo
- ostale metode iscrtavanja
 - o isijavanje (radiosity)
 - zasniva se na teoriji isijavanja energije i njenog prijenosa s jedne površine na drugu
 - definirano kao količina energije koja izlazi iz jedinice površine u jedinici vremena
 - o vizualizacija volumena
 - reprezentacija podataka elementima volumena (*voxel*)
 - najpoznatija metoda odašiljanje zrake (ray casting)

5. Grafički procesor

- nVidia GeForce256, 1999. prvi grafički sklop s implementacijom geometrijske faze, naziv GPU
- jedinstvena procesorska jezgra (Common Shader Core)
 - o programiraju se u jezicima za sjenčanje sličnima C-u (HLSL, Cg, GLSL)
 - o programi se prevode u asemblerski jezik neovisan o hardveru (virtualni stroj)
 - o jedinstven model za sve procesore (od inačice Shader Model 4.0)
- 4x SIMD arhitektura
- osnovni tip podatka 4x23-bit cjelobrojni ili FP vektori
- operacije
 - o množenje i zbrajanje skalara i vektora (1 takt)
 - o sqrt, pow, log, sin, cos... (do 4 takta)
- memorija
 - o ulazni i izlazni registri
 - o registri konstanti (transformacijske matrice, svjetla...)
 - o privremeni registri (međurezultati operacija)
 - o teksture
- kontrola toka
 - o kao na CPU (if-else, for, while)
 - o statička (dobre performanse)
 - o dinamička (slabije performanse zbog granularnosti)
- procesor vrhova
 - o ulaz: vrh s pripadajućim podacima
 - o izlaz: minimalno položaj nakon projekcije
- procesor geometrije

- o ulaz: objekt (trokut, crta, točka) s pripadajućim vrhovima
- o izlaz: nula ili više objekata
- o primjeri korištenja: generiranje čestica raznih veličina i oblika, iscrtavanje siluete u efektu krzna, generiranje fraktalne geometrije
- procesor točaka (fragmenata)
 - o ulaz: fragment (točka trokuta s podacima za sjenčanje)
 - o izlaz: boja
 - o operacije: izračun modela osvjetljenja, teksturiranje, efekt magle...
- stapanje
 - o određivanje konačne boje točke (piksela) koja će se vidjeti na ekranu
 - o određivanje vidljivosti metodom Z-spremnika
 - o operacije sa spremnikom maske
- sjenčanje
 - o do SM4.0 moguće shadere pisati u assembleru
 - o HLSL, GLSL, COLLADA FX

7. Specijalni efekti

- specijalni efekti sve što nije rutinski dio grafičkog protočnog sustava
- dolaskom shadera pojam sve više gubi smisao svi efekti su sada "specijalni"
- teksel točka teksture na u,v koordinatama
- efekti preslikavanja teksture
 - poopćeno preslikavanje teksture
 - projekcija u parametarski prostor
 - funkcija korespondencije
 - dohvat teksela
 - primjena teksela
 - o teksturne projekcije
 - o uzorkovanje i filtriranje teksture
 - uvećanje teksture
 - interpolacija metodom najbližeg susjeda (nearest neighbor)
 - bilinearna interpolacija (bilinear interpolation)
 - bikubna interpolacija (bicubic interpolation)
 - umanjenje teksture
 - mipmapping
 - trilinearna interpolacija
 - kompresija teksture
 - animacija teksture
 - preslikavanje materijala
 - preslikavanje prozirnosti (alpha mapping)
 - efekt naljepnice,
 - definiranje prozirnosti predmeta
 - preslikavanje svjetlosti (*light mapping*)
 - preslikavanje okoline (environment mapping)
 - kuglasto preslikavanje (sphere mapping)
 - kockasto preslikavanje (cubic environment mapping)
 - preslikavanje neravnina (*bump mapping*) skup tehnika za simuliranje neravnih, hrapavih površina
 - preslikavanje normala
 - preslikavanje neravnina i okoline

- preslikavanje paralakse
- preslikavanje reljefa
- preslikavanje pomaka

o magla

- planarna magla
 - jednostavna linearna interpolacija između originalne boje piksela i boje magle, u ovisnosti o dubini točke koja se crta
 - konstante: dubina početka magle, dubina potpune magle
- euklidska magla (kao prethodna, skalirana po euklidskoj udaljenosti kamere i promatrane točke)

o tehnike panoa (billboard)

- služe za automatsku orijentaciju nekog predmeta prema kameri
- najčešće se ostvaruje korištenjem pravokutnika, na koji je nalijepljena 2D slika predmeta (sprite), uz često korištenje preslikavanja prozirnosti i animacije
- vrste
 - pano poravnat sa zaslonom
 - globalno orijentirani pano
 - osni pano (axial billboard)

o sustavi čestica

- animacija čestica
- iscrtavanje čestica
- o efekti obrade slike (full-screen effects, post-processing effects)
 - podrazumijevamo efekt ostvaren obradom čitave iscrtane slike
 - često se koriste za omekšavanje slike radi postizanja većeg realizma (npr. zamućenost pri gibanju)
 - posebno važni za iscrtavanje HDR slika
 - efekti:
 - preslikavanje tonova (tone mapping) i HDR
 - prelijevanje svjetlosti (*bloom*)
 - zamućenost pri gibanju (motion blur)
 - defokusiranost (depth of field)

zrcaljenje

zrcaljenje na ravnini

o sjene

- metoda prostora sjene
- metoda teksture sjena
 - osnovni algoritam
 - antialiasing sjena
 - problem samosjenčanja

8. Ubrzavanje iscrtavanja

- mjera brzine iscrtavanja broj slika u sekundi (fps)
- za interaktivnu 3D grafiku min. 20-30 fps
- napredak tehnologije nije rješenje potrebne bolje metode ubrzavanja iscrtavanja
 - o optimalan zapis poligona
 - naivan pristup u protočni sustav šaljemo svaki trokut zasebno (3 vrha po trokutu)
 - mnogi vrhovi su dijeljeni među susjednim trokutima višekratno se obrađuju
 - organiziramo trokute u spojene strukture trake, lepeze, mreže
 - trake trokuta (*triangle strip*)
 - o prosječan broj vrhova po trokutu = 1+ 2/m (m broj trokuta)
 - lepeze trokuta (triangle fan)
 - o korisno za pretvorbu n-terokuta u trokute
 - mreže trokuta
 - o najvažnija struktura za prikaz 3D geometrije
 - o GPU prilagođen radu s mrežama trokuta
 - o skup vrhova i slijed indeksa
 - o vrh koordinate, normala, teksturne koordinate, itd.
 - o slijed indeksa definira trokute
 - o dva načina predaje vrhova i indeksa
 - spremnik vrhova (vertex buffer)
 - struje vrhova (vertex streams)
 - o selektivno odbacivanje poligona (*culling*)
 - ideja: poligone koji nisu u nekom trenutku vidljivi na slici ne trebamo iscrtavati
 - metode:
 - odbacivanje stražnih poligona (backface culling)
 - o poligoni okrenuti od kamere nisu vidljivi
 - odbacivanje po projekcijskom volumenu (view-frustum culling)
 - o sve što je izvan projekcijskog volumena nije vidljivo
 - o za provjeru vidljivosti koriste se hijerarhije obujmice, BSP i oktalna stabla
 - portalno odbacivanje (portal culling)
 - o koristi se za scene arhitekture sa sobama
 - o scena se dijeli na ćelije (sobe)
 - o ćelije imaju portale (vrata) prema drugim ćelijama
 - za svaku ćeliju gradimo graf susjednosti (podaci o portalima i susjednim ćelijama)
 - o iscrtavanje je rekurzivno, a izvodi se u aplikacijskoj fazi
 - odbacivanje prekrivenih poligona (occlusion culling)
 - o predmeti često prekriveni drugim predmetima
 - o neće se vidjeti zbog Z-spremnika, no on se primjenjuje tek u fazi rasterizacije
 - o ideja: prekrivenu geometriju odbaciti što ranije
 - o sklopovska provjera prekrivenosti (hardware occlusion queries)
 - Z-odbacivanje (Z-cull)

o tehnika razina detalja

- level of detail LOD
- ideja: smanjiti razinu detalja (broj poligona) kad je predmet udaljen od kamere
- podtehnike: generiranje, odabir, zamjena
- metode pojednostavljenja mreže trokuta
 - eliminacija vrhova
 - eliminacija bridova
- dvije metrike za odabir LOD razine

- udaljenost predmeta od kamere
- površina projekcije obujmice

o optimizacija protočnog sustava

- najsporija faza stvara usko grlo (kao kod pokretne trake)
- postupak
 - pronaći usko grlo
 - ubrzati tu fazu
 - ponoviti postupak
- mjerenje performansi
- traženje uskog grla
 - aplikacijska faza
 - o 100% na CPU
 - o koristiti programe za prikaz tereta procesora
 - o koristiti paralelizam, optimizirati promjene stanja
 - geometrijska faza
 - o 100% na GPU
 - o glavne operacije dohvat i sjenčanje vrhova
 - o smanjiti količinu geometrije u g.p.s.

• faza rasterizacije

- o 100% na GPU
- o glavne operacije sjenčanje točaka i ROP
- o koristiti odbacivanje stražnjih poligona
- o isključiti Z-spremnik ako nije potreban

10. Umrežena virtualna okruženja

- UVO (*networked virtual environment*, *NVE*) raspodijeljeni je programski sustav koji korisniku omogućuje prisutnost i sudjelovanje u zajedničkom virtualnom okruženju s drugim korisnicima te interakciju sa samim okruženjem i predmetima u njemu
- provodi se sinkronizacija virtualne scene
- grafički prikaz lik korisnika u VO obično se naziva avatar
 - o d najjednostavnijih simboličkih prikaza geometrijskim tijelima do potpuno artikuliranih tijela s (relativno) realističnim gibanjima
- podrška za "prirodnu" komunikaciju među korisnicima razmjena tekstualnih poruka, zvuka (govora), gesti

• mrežne karakteristike

- o vrijeme pinga (ping time)
- o kapacitet (bandwith)
- o trenutna propusnost (throughput)
- o kašnjenje (delay, latency)
- o kolebanje kašnjenja (jitter)
- o gubici (loss)

• prilagodljivost veličini (*scalability*)

- o izražava koliko neki sustav može rasti, a da se pritom ne naruši njegova funkcija
- o za UVO dobra prilagodljivost znači da sustav može podržati veliki broj istovremenih korisnika
- razrada osnovnog modela UVO-a
 - o mrežni ulaz/izlaz (upravljanje vezom s kraja na kraj, obrada podataka)
 - o korisničko sučelje (korisnik-virualni svijet, skupina, prikaz v.s., prikaz ostalih podataka)
 - o obrada/simulacija (upravljanje virtualnim svijetom, upravljanje sjednicom)
- usklađivanje instanci UVO putem mreže

- o nije nužno slati mrežom objekte koji se ne mijenjaju (teksture, unaprijed snimljeni zvukovi, gotovi 3D objekti)
- filtriranje prema području interesa
 - o nije nužno slati poruke o osvježavanju stanja izvan područja percepcije pojedinog korisnika u VO
- upravljanje zajedničkim dinamičkim stanjem
 - o s obzirom da su korisnici raspodijeljeni, svaka promjena u virtualnom svijetu jednog korisnika mora se prenijeti putem mreže
 - o promjene su asinkrone, dinamičke i raspodijeljene
 - o dolazi do promjena zajedničkog stanja u UVO-u (skup varijabli stanja svih pojedinačnih objekata)
 - o zbog osnovnog mehanizma osvježavanja dinamičkog zajedničkog stanja razmjenom poruka, stanje na različitim instancama UVO-a u trenucima između dolaska uzastopnih poruka može se razlikovati
 - dolazi do razilaženja između instanci, odnosno narušavanja konzistentnosti UVO-a
 - o u višekorisničkom UVO-u svaki korisnik zapravo ima svoje viđenje zajedničkog stanja zbog utjecaja kašnjenja i kolebanja kašnjenja

• podatkovni modeli

- o model sa zajedničkim podacima
 - podaci od 3D virtualnom svijetu pohranjeni su u repozitoriju, "baz podataka"
 - centralizirano ili distribuirano
 - sva komunikacija se obavlja preko središnjeg repozitorija
 - sadrži sve podatke o zajedničkom stanju UVO-a
 - svi čvorovi u svakom trenutku imaju isti pogled na to zajedničko stanje
- o model s replcirianim podacima
 - više raspodijeljenih kopija stanja (replike)
 - potpuna ili djelomična replikacija
 - prednosti: smanjeni mrežni promet, vremenska neovisnost obrade na pojedinačnim instacama, odlična prilagodljivost veličini
- predikcija i algoritam mrtve procjene (*dead reckoning*)
 - o predikcija
 - o konvergencija
- kontrola pristupa i vlasništvo nad objektima
 - o poslužitelj za upravljanje zaključavanjem
 - o raspodijeljeni pristup (neovisni simulator)
- kauzalnost
 - o očuvanje uzročno-posljedičnog odnosa među događajima
- percepcija poštene igre
 - o utjecaj kašnejnaj i kolebanja kašnjenja na konzistentnost
- kompenzacija kašnjenja u vizualnom prikazu
 - o rastezanje vremena (time warp)
- oblikovanje programskog rješenja UVO-a
 - o strukturiranje virtualnog prostora
 - podijeljeni poslužitelji
 - jednolična geometrijska struktura
 - slobodna geometrijska struktura
 - o arhitektura raspodijeljene aplkacije UVO-a
 - klijent-poslužitelj
 - ravnopravni procesi
 - o vrste mrežnog prometa
 - učitavanje
 - poruke sustava
 - događaji
 - osvježavanje stanja
 - tekst

- zvuk
- video
- o način distribucije poruka
 - jednoodredišna komunikacija
 - višeodredišno razašiljanje