
NOTAS DA AULA :Autovalores e Autovetores Prof: Iva Zuchi Siple

*Autovalor e Autovetor associado a um Operador Linear

Introdução

Sejam V um espaço vetorial e T um operador linear sobre V. Podemos fazer a colocação seguinte problema: Quais são os elementos $v \in V$, não nulos, que são levados pelo operador T em um múltiplo de si mesmo, isto é, estamos procurando elementos $v \in V$, não nulos, e escalares $\lambda \in \mathbb{R}$ tais que $T(v) = \lambda v$?

Dado um operador linear $T:V\to V$, estamos interessados em saber quais vetores são levados em um múltiplo de si mesmo; isto é, procuramos um vetor $v\in V$ e um escalar $\lambda\in\mathbb{R}$ tais que $T(v)=\lambda v$. Neste caso T(v) será um vetor de mesma direção que v. Por vetor de mesma direção estaremos entendendo vetores sobre a mesma reta suporte. Como $v=\overrightarrow{0}$ satisfaz a equação para todo λ , estaremos interessados em determinar vetores $v\neq\overrightarrow{0}$ satisfazendo a condição acima.

Definição 1. Seja $T: V \to V$, um operador linear. Se existirem $v \in V$, $v \neq \overrightarrow{0}$, $e \lambda \in \mathbb{R}$ tais que $T(v) = \lambda v$, λ é um autovalor de T e v é um autovetor de T associado a λ .

Observe que λ pode ser o número 0, embora v não possa ser o vetor nulo.

Exemplo 1. $T: V \to V$ dado por T(v) = kv, onde k é uma constante

Resolução

Neste caso todo vetor de V é um autovetor associado ao autovalor $\lambda = k$

Exemplo 2. Seja $T: \mathbb{R}^2 \Rightarrow \mathbb{R}^2$

$$T(x,y) = (x, -y)$$

Resolução

T(x,y)=(x,-y) é uma reflexão em torno do eixo x Neste caso observamos que os vetores que serão levados em múltiplos dele mesmo serão os vetores que estão no eixo x, pois $v_1=(x,0)\Rightarrow T(v_1)=T(x,0)=(x,0)=v$. Os vetores que estão no eixo y também serão levados em múltiplos de si mesmo pois estes vetores tem a forma $v_2=(0,y)\Rightarrow T(v_2)=T(0,y)=(0,-y)=-1(0,y)$. Podemos concluir então que os vetores do tipo $v_1=(x,0)$ são autovetores associados ao autovalor $\lambda_1=1$ e os vetores da forma $v_2=(0,y)$ são autovetores associados a $\lambda_2=-1$, da transformação linear reflexão no eixo x.

Exemplo 3.

$$R_{rac{\pi}{2}}: \mathbb{R}^2 o \mathbb{R}^2$$
 (Rotação de um ângulo $rac{\pi}{2}$) $R_{rac{\pi}{2}}(x,y)=(-y,x)$

Resolução

Observe que na rotação de $\frac{\pi}{2}$ nenhum vetor é levado em um múltiplo de si mesmo, a direção de todos vetores de \mathbb{R}^2 são alterados pela rotação. Portanto a rotação de um ângulo $\frac{\pi}{2}$ não possui autovetores e autovalores.

Teorema 1. Dada uma transformação linear $T: V \to V$ e um autovetor v associado a um autovalor λ , qualquer vetor $w = \alpha v \ (\alpha \neq 0)$ também é um autovetor de T associado a λ .

Demonstração

Considerando que λ é um autovalor associado ao autovetor v do operador linear, isto é, $T(v) = \lambda v$ e que $w = \alpha v$ temos que

$$T(w) = T(\alpha v) = \alpha T(v) = \alpha(\lambda v) = \lambda(\alpha v) = \lambda w$$

Observação 1. Note que se um vetor v é autovetor de uma transformação T associado ao autovalor λ então todos os múltiplos de v também serão autovetores associados a λ . O Conjunto formado por todos os autovetores associados a um mesmo autovalor é um conjunto infinito.

Observação 2. Podemos observar que o autovalor λ é unicamente determinado pelo operador T e pelo autovetor v. De fato, considere que λ e λ_1 são autovalores do operador T associados ao autovetor v, isto é,

$$T(v) = \lambda v$$

e

$$T(v) = \lambda_1 v.$$

Assim, temos que:

$$\lambda v - \lambda_1 v = 0 \Longrightarrow (\lambda - \lambda_1)v = 0 \Longrightarrow \lambda = \lambda_1,$$

pois $v \neq 0$. Assim, temos somente um autovalor λ associado ao autovetor v.

Definição 2. Sejam V um espaço vetorial e $T:V\longrightarrow V$ um operador linear. Fixando um autovalor λ do operador T, o subconjunto

$$V_{\lambda} = \{ v \in V / T(v) = \lambda v \}$$

é denominado subespaço associado ao autovalor λ .

Observação 3. Esse subespaço V_{λ} recebe o nome de auto-espaço associado a λ . O auto-espaço V_{λ} contém todos os autovetores de T associados ao autovalor λ , mais o vetor nulo $\overrightarrow{0}$ de V, já que o vetor $\overrightarrow{0}$ satifaz a relação $T(\overrightarrow{0}) = \lambda \overrightarrow{0}$. O conjunto V_{λ} pode ser escrito como $V_{\lambda} = \{ Todos \ os \ autovetores \ de \ T \ associados \ a \ \lambda \} \cup \left\{ \overrightarrow{0} \right\}$.

Teorema 2. Seja $T: V \longrightarrow V$ um operador linear e sejam $\lambda_1; \lambda_2; ... \lambda_r$ autovalores distintos de T. Se $v_1; v_2; ..., v_r$ são autovetores associados aos autovalores $\lambda_1; \lambda_2; ... \lambda_r$, respectivamente, então $\{v_1, v_2, ..., v_r\}$ é linearmente independente.

Demonstração

prova é feita por indução matemática sobre r. Para r=1 o resultado é obtido trivialmente. De fato, como $v_1 \neq 0$, pois v_1 é um autovetor, temos que v_1 é linearmente independente. Agora supomos que o resultado seja válido para r-1 e vamos demonstrar que vale para $r,r\geqslant 2$ autovalores distintos. Para isso, consideramos a combinação linear nula

$$a_1v_1 + a_2v_2 + \dots + a_rv_r = 0$$
[1]

Aplicando o operador T na equação acima e usando o fato que $T(v_i) = \lambda_i v_i$, obtemos:

$$a_1\lambda_1v_1 + a_{22}v_2 + \dots + a_r\lambda_rv_r = 0$$
[2]

T possuí pelo menos um autovalor não nulo. Supomos que $\lambda r \neq 0$. Multiplicamos a equação, por λr , obtendo:

$$a_1\lambda rv_1 + a_2\lambda rv_2 + \dots + a_r\lambda rv_r = 0$$
[3]

Subtraíndo (2) e (3) temos:

$$a_1(\lambda_r - \lambda_1)v_1 + a_2((\lambda_r - 2)v_2 + \dots + a_{r-1}((\lambda_{r-1} - \lambda_r)v_{r-1}) = 0$$

Pela hipótese de indução, temos que $v_1, v_2, ..., v_{r-1}k$ são linearmente independentes, portanto, $a_i(\lambda_i - \lambda_r) = 0$ para i = 1, 2, ..., r-1. Como os autovalores são distintos, isto é, temos que $a_i = 0$ para i = 1, 2, ..., r-1. Substituíndo esses valores em (1), concluímos que $a_r = 0$ também, já que $v_r \neq 0$, provando que os autovetores $v_1, v_2, ..., v_r$ são linearmente independentes em V.

Se $T:V\to V$ é um operador linear tal que dim V=n e T possui n autovalores distintos. Então T é diagonalizável. Em outras palavras, se conseguirmos encontrar tantos autovalores distintos quanto for a dimensão do espaço, podemos garantir a existência de uma base de autovetores.

Demonstração

Considerando que T possui n autovalores distintos $\lambda_1, \lambda_2, ..., \lambda_n$. Sejam $v_1, v_2, ..., v_n$ os respectivos autovetores associados. Pela $?=v_1, ..., v_n$ é linearmente independente em V. Como dim(V)=n, temos que o conjunto ? de autovetores é uma base para V. Como $T(v_i)=?_iv_i$, temos que a matriz do operador T com relação à base ordenada de autovetores é a matriz diagonal $D=diag(\lambda_1,\lambda_2,...,\lambda_n)$, o que completa a demonstração.

Exemplo 4. Os autovalores de um operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ são $\lambda_1 = 1$, $\lambda_2 = 2$ e $\lambda_3 = -1$, sendo $v_1 = (1, 1, 1)$, $v_2 = (0, 1, 1)$ e $v_3 = (-1, 1, 0)$ os respectivos autovalores associados. Determine T(x, y, z)

Autovalores e autovetores de uma matriz

Introdução

Sejam V um espaço vetorial de dimensão finita, digamos que $\dim(V) = n$, e T um operador linear sobre V. O problema de encontrar os autovalores do operador T será resolvido através do cálculo de determinantes. Queremos encontrar escalares $\lambda \in \mathbb{R}$ de modo que a equação $T(v) = \lambda v$ tenha solução $v \in V$, não nula. A equação $T(v) = \lambda v$ pode ser escrita na forma: $(T - \lambda I)(v) = 0$.

Mas de que forma podemos fazer?

Dada uma matriz quadrada, A, de ordem n, estaremos entendendo por autovalor e autovetor de A o autovalor e autovetor da transformação $T_A: \mathbb{R}^n \to \mathbb{R}^n$, associada a matriz A em relação a base canônica de \mathbb{R}^n , isto é $T_A(v) = A \cdot v$ (na forma coluna). Assim, um autovalor $\lambda \in \mathbb{R}$ de A, e um autovetor $v \in \mathbb{R}^n$, são soluções da equação $A \cdot v = \lambda v$, $v \neq \overrightarrow{0}$.

0.1 Polinômio Característico

Seja a matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad e \qquad v = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Para encontrar os autovalores e autovetores de A, devemos resolver a equação:

$$Av = \lambda v$$

$$Av = \lambda Iv$$

$$Av - \lambda Iv = \overrightarrow{0}$$

$$(A - \lambda I)v = \overrightarrow{0}$$

Escrevendo esta equação explicitamente, temos

$$\begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Fazendo

$$B = \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} - \lambda \end{bmatrix}$$

temos o sistema

$$B \cdot v = \overrightarrow{0}$$

Este sistema é um sistema homogêneo e possui ao menos a solução $v = \overrightarrow{0}$. Mas como estamos procurando autovetores, queremos encontrar vetores $v \neq \overrightarrow{0}$ que satisfaçam a equação $B \cdot v = \overrightarrow{0}$. Sendo assim queremos que o sistema $B \cdot v = \overrightarrow{0}$ seja compatível e indeterminado (tenha além da solução trivial, outras soluções não triviais).

Desse modo, a matriz $(A - \lambda I) = B$ deve ser singular, isto é $\det B = 0$, então o sistema homogêneo terá infinitas soluções. Assim, a única maneira de encontrarmos autovetores v (soluções não nulas da equação $B \cdot v = \overrightarrow{0}$) é termos $\det B = 0$, ou seja,

$$\det(A - \lambda I) = 0$$

Impondo esta condição determinamos primeiramente os autovalores λ que satisfazem a equação e depois os autovetores a eles associados. Observamos que

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} - \lambda \end{vmatrix}$$

 \acute{e} um polinômio em λ de grau n.

Definição 3. O polinômio $p(\lambda) = \det(A - \lambda I)$ é chamado polinômio característico da matriz A

Observe que as raízes do polinômio característico são os autovalores da matriz A. Note também que o autovalor pode ser o número zero (quando o polinômio característico tem raízes zero), embora o autovetor v associado a λ não possa ser o vetor nulo.

Exemplo 5. Considere o Operador linear $T: \mathbb{R}^2 \to R^2$ dado por T(x,y) = (2x + 3y, y). Determine os autovalores e autovetores associados a T

Exemplo 6. Vamos agora calcular os autovetores e autovalores da matriz $A = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$.

Resolução

Temos que:
$$p(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} -3 - \lambda & 4 \\ -1 & 2 - \lambda \end{bmatrix} = (2 - \lambda)(-3 - \lambda) + 4 = \lambda^2 + \lambda - 2$$

 $p(\lambda) = 0 \Rightarrow \lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = 1 \ e \ \lambda_2 = -2.$

Necessitamos calcular os autovetores de A e para isso basta resolvermos o sistema:

$$Av = \lambda v$$

onde
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 e λ é cada um dos autovalores já encontrados.

Para $\lambda_1 = 1 \ temos$

$$\begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1 \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} -3 - 1 & 4 \\ -1 & 2 - 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Temos um sistema homogêneo cuja matriz ampliada é

$$\begin{bmatrix} -4 & 4 & | & 0 \\ -1 & 1 & | & 0 \end{bmatrix} \xrightarrow{escalonando} \begin{bmatrix} -4 & 4 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$-4x + 4y = 0 \Rightarrow y = x$$

Portando os autovalores associados ao autovalor $\lambda_1=1$ são da forma v=(x,x)=x(1,1) e assim podemos concluir que o subespaço associado ao autovalor $\lambda_1=1$ é $V_1=[(1,1)]$.

 $Para \lambda_1 = -2 \ temos$

$$\begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -2 \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} -3 - (-2) & 4 \\ -1 & 2 - (-2) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 4 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Temos um sistema homogêneo cuja matriz ampliada é

$$\begin{bmatrix} -1 & 4 & | & 0 \\ -1 & 4 & | & 0 \end{bmatrix} \xrightarrow{escalonando} \begin{bmatrix} -1 & 4 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$-x + 4y = 0 \Rightarrow y = \frac{x}{4}$$

Portando os autovalores associados ao autovalor $\lambda_1 = -2$ são da forma $v = (x, \frac{x}{4}) = x(1, \frac{1}{4})$ e assim podemos concluir que o subespaço associado ao autovalor $\lambda_2 = -2$ é $V_2 = \left\lceil (1, \frac{1}{4}) \right\rceil$.

Exemplo 7.

Que vetores não nulos do plano, quando dilatados na direção x em 3 unidades e em seguida cisalhados na direção y por um fator $\alpha = \frac{2}{3}$ ficam ampliados/reduzidos na mesma direção ? Em quantas vezes? Represente geometricamente os vetores encontrados e suas respectivas imagens.

Resolução

Seja T o cisalhamento na direção de y, então temos:

$$T = \begin{pmatrix} 1 & 0 \\ \frac{2}{3} & 1 \end{pmatrix}$$

Seja S a dilatação na direção de x, então temos:

$$S = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

Logo temos que

$$T \circ S = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$$

Portanto os autovalores associados a essa transformação são $\lambda_1=3$ e $\lambda_2=1$

Logo temos os seguintes autovetores:

Para $\lambda_1 = 3$ o autovetor $v_1 = (1,1)$, ou seja, graficamente é a reta y = x

Para $\lambda_2 = 1$ o autovetor $v_2 = (0,1)$, ou seja, graficamente é o eixo do y

Exemplo 8. Encontre os autovalores e autovetores da transformação linear que a cada vetor $v \in \mathbb{R}^3$ associa a sua projeção ortogonal no plano x + y - z = 0.

Resolução

Devemos encontrar a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(v) = projeção de v no plano x + y - z = 0.

Para obtermos a projeção sobre o plano devemos inicialmente fazer a projeção do vetor v na direção do vetor normal p para obter o vetor $p = proj_n v$. Com isso temos,

$$T(v) + p = v$$

$$T(v) = v - p$$

$$T(v) = v - proj_n v$$

 $Um\ vetor\ normal\ do\ plano\ x+y-z=0\ \'e\ n=(1,1,-1),\ logo,\ como\ v=(x,y,z)\ temos$

$$\begin{array}{rcl} p & = & proj_n v \\ p & = & \left(\frac{v \cdot n}{n \cdot n}\right) n \\ p & = & \left(\frac{(x, y, z) \cdot (1, 1, -1)}{(1, 1, -1) \cdot (1, 1, -1)}\right) (1, 1, -1) \\ p & = & \left(\frac{x + y - z}{3}\right) (1, 1, -1) \\ p & = & \left(\frac{x + y - z}{3}, \frac{x + y - z}{3}, -\frac{x + y - z}{3}\right) \end{array}$$

$$\begin{array}{rcl} T(v) & = & v-p \\ T(x,y,z) & = & (x,y,z) - \left(\frac{x+y-z}{3},\frac{x+y-z}{3},-\frac{x+y-z}{3}\right) \\ T(x,y,z) & = & \left(\frac{2x-y+z}{3},\frac{-x+2y+z}{3},\frac{x+y+2z}{3}\right) \end{array}$$

Para calcular os autovalores de T devemos encontrar a matriz de T. Neste caso,

$$[T] = \begin{bmatrix} \frac{2}{3} & \frac{-1}{3} & \frac{1}{3} \\ \frac{-1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
$$p(\lambda) = \det([T] - \lambda I) = 0$$
$$\det\begin{bmatrix} \frac{2}{3} - \lambda & \frac{-1}{3} & \frac{1}{3} \\ \frac{-1}{3} & \frac{2}{3} - \lambda & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} - \lambda \end{bmatrix} = 0$$
$$p(\lambda) = -\lambda^3 + 2\lambda^2 - \lambda = 0$$

As raizes de $p(\lambda)$ são $\lambda_1 = 0$ e $\lambda_2 = \lambda_3 = 1$.

Para $\lambda_1 = 0$ vamos calcular os autovalores associados resolvendo o sistema.

$$\begin{bmatrix} \frac{2}{3} & \frac{-1}{3} & \frac{1}{3} \\ \frac{-1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

cuja matriz ampliada é,

$$\begin{bmatrix} \frac{2}{3} & \frac{-1}{3} & \frac{1}{3} & | & 0 \\ \frac{-1}{3} & \frac{2}{3} & \frac{1}{3} & | & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & | & 0 \end{bmatrix} \xrightarrow{escalonando} \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} & | & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\begin{cases} \frac{2}{3}x - \frac{1}{3}y + \frac{1}{3}z = 0\\ \frac{1}{2}y + \frac{1}{2}z = 0\\ 2x - y + z = 0\\ y + z = 0 \end{cases}$$

e então:

$$y = -z$$
$$x = -z$$

Portanto os autovalores associados ao autovalor $\lambda_1 = 0$ são da forma v = (-z, -z, z).

Observação 4. Note que acima damos a forma geral dos autovetores, no caso acima temos v = z(-1, -1, 1) assim um autovetor é v = (-1, -1, 1) como todo autovetor é um múltiplo de v = (-1, -1, 1) temos que $V_1 = [(-1, -1, 1)]$, isto é, o subespaço associado ao autovalor $\lambda_1 = 0$ é gerado pelo vetor v = (-1, -1, 1). Note que geometricamente o subespaço $V_0 = [(-1, -1, 1)]$ é formado pelos vetores que são múltiplos do vetor normal ao plano, ou seja, por todos os vetores ortogonais ao plano.

Para $\lambda_{2,3} = 1$ vamos calular os autovalores associados resolvendo o sistema.

$$\begin{bmatrix} \frac{2}{3} - 1 & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} - 1 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} - 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$

$$escalonando$$

$$\Rightarrow$$

$$\begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$-\frac{1}{3}x - \frac{1}{3}y + \frac{1}{3}z = 0 \rightarrow x = -y + z$$

Portanto os autovalores associados aos autovalores $\lambda_2 = \lambda_3 = 1$ são da forma v = (-y + z, y, z) = y(-1, 1, 0) + z(1, 0, 1). Logo $V_2 = [(-1, 1, 0)]$ e $V_3 = [(1, 0, 1)]$.

Exemplo 9. Encontre todos os autovalores e autovetores do operador linear $T: P_2 \to P_2$ definido por $T(a+bx+cx^2) = -2c + (a+2b+c)x + (a+3c)x^2$.

Resolução

A matriz que representa o operador T é dada por:

$$[T] = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Para encontrar os autovetores resolver $([T] - \lambda I)v = 0$, isto é,

$$\begin{bmatrix} 0 - \lambda & 0 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Para obtermos uma solução não nula para este sistema devemos impor:

$$\det([T] - \lambda I) = -\lambda(2 - \lambda)(3 - \lambda) + 2(2 - \lambda) = 0$$

Obtemos então os autovalores $\lambda_1 = 1$ e $\lambda_2 = \lambda_3 = 2$.

Vamos agora encontrar os autovetores associados aos autovalores $\lambda_1=1$ e $\lambda_2=\lambda_3=2$.

Para
$$\lambda_1 = 1$$
:

$$\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad Escalonando \quad \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \quad \overrightarrow{p} = (-2c, c, c)$$

Portanto, $\overrightarrow{p} = -2c + cx + cx^2$ é autovetor associado a $\lambda_1 = 1$

Para $\lambda_2 = \lambda_3 = 2$:

$$\begin{bmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} Escalonando \Rightarrow \begin{bmatrix} -2 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \overrightarrow{p} = (-c, b, c)$$

Portanto $\overrightarrow{p} = -c + bx + cx^2$ é autovetor associado a $\lambda_2 = \lambda_3 = 2$.

Exemplo 10. Encontre os autovalores e autovetores:

a)
$$\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$

b) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$

c) $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 5 & -1 \\ 0 & 0 & 7 \end{pmatrix}$

d) $\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$

e) $\begin{pmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{pmatrix}$

Exemplo 11. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador dado por T(x,y) = (4x+4y,x+4y). Determine os autovetores e autovalores.

Multiplicidade Algébrica e Geométrica

Definição

Definimos a multiplicidade algébrica de um autovalor λ como sendo a quantidade de vezes que ele aparece como raiz do polinômio característico.

Definimos a multiplicidade geométrica de um autovalor λ como sendo a dimensão do subespaço v_{λ} associado ao autovalor λ

Exemplo 12. Considere a matriz $A \in M_3$ dada por

$$A = \left(\begin{array}{ccc} 2 & -1 & 1\\ 0 & 3 & -1\\ 2 & 1 & 3 \end{array}\right)$$

Determine os autovalores e autovetores dessa matriz.

Seja T o operador linear sobre \mathbb{R}^3 associado a matriz A, isto \acute{e} ,

$$T(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$$

Assim, $A = [T]^{\beta}_{\beta}$ onde β a base canônica do \mathbb{R}^3 . Desse modo, os autovalores da matriz A são os autovalores do operador linear T, e os autovetores são os autovetores do operador T, representados como matriz coluna.

Temos que o polinômio característico da matriz $A = [T]^{\beta}_{\beta}$ é dado por:

$$p(\lambda) = \det(A - \lambda I) = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

Os autovalores do operador T são $\lambda=2$ com multiplicidade algébrica igual a 2, e $\lambda_2=4$ com multiplicidade algébrica igual a 1. Portanto, os autovetores associados ao autovalor $_1=2$ são do tipo $v_1=(x,-x,-x)$. Desse modo, o autovalor $\lambda_1=2$ tem multiplicidade geométrica igual a 1. De modo análogo, obtemos que os autovetores associados ao autovalor $\lambda_2=4$ são do tipo $v_2=(x,-x,x)$. Note que o autovalor $\lambda_2=4$ tem multiplicidade geométrica igual a 1.

Portanto, podemos escolher os seguintes autovetores para a matriz A $v_1 = (1, -1, -1)$ e $v_2 = (1, -1, 1)$ associados a $\lambda_1 = 2$ e $\lambda_2 = 4$, respectivamente.

1 Matrizes Semelhantes

Definição 4. Sejam $A, B \in M_n$. Dizemos que a matriz B é similar ou semelhante a matriz A, se existe uma matriz invertível $P \in M_n$ de maneira que $B = P^{-1}AP$.

Note que matrizes similares possuem a seguinte propriedade:

$$\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \det(A).$$

Esta propriedade nos leva ao seguinte resultado, que é muito importante no estudo de autovalores

Teorema 3. Matrizes similares possuem o mesmo polinômio característico.

Demonstração. Considerando que a matriz B é similar à matriz A, isto é, existe uma matriz P invertível tal que $B = P^{-1}AP$. Consideramos inicialmente o polinômio característico da matriz B, obtemos

$$p(\lambda) = \det(B - \lambda I)$$

$$= \det(P^{-1}AP - \lambda P^{-1}P)$$

$$= \det(P^{-1}(A - \lambda I)P)$$

$$= \det(P^{-1}\det(A - \lambda I)\det(P)$$

$$= \det(A - \lambda I)$$

 $\blacksquare \ O \ pr\'oximo \ teorema \ nos \ permite \ definir \ o \ polin\^omio \ caracter\'istico \ do \ operador \ linear \ T \ como \ sendo \ o \ polinomio \ caracter\'istico \ da \ matriz \ [T]^{\beta}_{\beta}, \ que \ \'e \ a \ representaç\~ao \ matricial \ do \ operador \ T \ em \ relaç\~ao \ a \ qualquer \ base \ ordenada \ \beta \ de \ V \ . \ Para \ isso, \ vamos \ precisar \ do \ seguinte \ resultado.$

Teorema 4. Seja $T: V \to V$ um operador linear. Sejam α e β bases de V e $[T]^{\alpha}_{\alpha}$, $[T]^{\beta}_{\beta}$ matrizes de T em relação as bases α e β respectivamente, então:

$$[T]^{\beta}_{\beta} = [I]^{\alpha}_{\beta} [T]^{\alpha}_{\alpha} [I]^{\beta}_{\alpha}$$

Lembrando que $[I]_{\alpha}^{\beta}=\left([I]_{\beta}^{\alpha}\right)^{-1}$ temos que

$$[T]^{\beta}_{\beta} = [I]^{\alpha}_{\beta} [T]^{\alpha}_{\alpha} ([I]^{\alpha}_{\beta})^{-1}$$

 ${\it Chamando} \ [I]^{\alpha}_{\beta} = A:$

$$[T]^{\beta}_{\beta} = A [T]^{\alpha}_{\alpha} A^{-1}$$

Pelo conceito de matriz de uma transformação linear podemos escrever:

$$[T(v)]_{\alpha} = [T]_{\alpha}^{\alpha}[v]_{\alpha} \tag{I}$$

e

$$[T(v)]_{\beta} = [T]_{\beta}^{\beta}[v]_{\beta} \tag{II}$$

Sendo $[I]^{\alpha}_{\beta}$ a matriz mudança de base de α para β , tem-se:

$$[v]_{\alpha} = [I]_{\alpha}^{\beta}[v]_{\beta} \ e \ [T(v)]_{\alpha} = [I]_{\alpha}^{\beta}[T(v)]_{\beta}$$

Substituindo $[v]_{\alpha}$ e $[T(v)]_{\alpha}$ em (I), resulta:

$$[I]^{\beta}_{\alpha}[T(v)]_{\beta} = [T]^{\alpha}_{\alpha}[I]^{\beta}_{\alpha}[v]_{\beta}$$

ou,

$$[T(v)]_{\beta} = ([I]_{\alpha}^{\beta})^{-1} [T]_{\alpha}^{\alpha} [I]_{\alpha}^{\beta} [v]_{\beta}$$

Comparando essa igualdade com (II), tem-se

$$[T]^{\beta}_{\beta} = ([I]^{\beta}_{\alpha})^{-1} [T]^{\alpha}_{\alpha} [I]^{\beta}_{\alpha}$$

ou, como $[I]^{\alpha}_{\beta} = \left([I]^{\beta}_{\alpha}\right)^{-1}$, podemos escvrever

$$[T]^{\beta}_{\beta} = [I]^{\alpha}_{\beta} [T]^{\alpha}_{\alpha} ([I]^{\alpha}_{\beta})^{-1}$$

As matrizes $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ são chamadas **semelhantes**.

2 Diagonalização de Operadores

Nosso objetivo aqui será encontrar uma base do espaço vetorial V na qual a matriz de um determinado operador linear $T:V\to V$ seja a mais simples possível. Veremos que a melhor situação possível é aquela em que conseguimos uma matriz diagonal associada a um operador.

Dado um operador linear $T: V \to V$, nosso objetivo é conseguir uma base β , para V, na qual a matriz do operador nesta base $([T]^{\beta}_{\beta})$ seja uma matriz diagonal. Esta é a forma mais simples de se representar um operador e a base β , nesse caso, é uma base cujos vetores são autovetores de T.

Teorema

Um operador linear $T:V\to V$ admite uma base β em relação à qual a matriz $[T]^{\beta}_{\beta}$ é diagonal se, e somente se, essa base β for formada por autovetores de T.

Demonstração

Suponhamos que $\beta = \{v_1, v_2, ..., v_n\}$ é uma base de V tal que $[T]^{\beta}_{\beta}$ é diagonal, dada por

$$T(v_i) = 0v_1 + 0v_2 + \dots + \lambda_i v_i + \dots + 0v_n = \lambda_i v_i$$

para todo $\forall 1 \leq j \leq n$. Segue que Λ_j é um autovalor de T e v_j é um autovetor de T associado a λ_J . Portanto, β é uma base formada de autovetores de T. Suponhamos agora que $\beta = \{u_1, u_2, ..., u_n\}$ é uma base de V formada po autovetores de T. Existem então, números reais b_i , com $1 \le i \le n$, tais que $T(u_j) = b_j u_j$. Observamos que os $b \not \Delta$

não são necessariamente todos distintos. Pela definição de $[T]^{\beta}_{\beta}$, temos $\begin{bmatrix} \begin{bmatrix} 1^{2} & 1\beta & - & 1 \\ 0 & b_{2} & \dots & 0 \\ & \ddots & & \ddots & \dots \\ 0 & 0 & 0 & b_{n} \end{bmatrix}$

Ou seja, $[T]^{\beta}_{\beta}$ é uma matriz diagonal

Observação 5 Se T tem uma representação por uma matriz diagonal $[T]^{\beta}_{\beta}$, então as entradas da diagonal principal de $[T]^{eta}_{eta}$ são dadas pelos autovalores de T. Mais ainda, a ordem em que os autovalores aparecem na diagonal principal da matriz é a mesma em que seus respectivos autovetores são dados na base β

- Se T é um operador linear em um espaço V de dimensão n, então T é diagonalizável se, e somente se, T tem n autovetores linearmente independentes.
- Se T tem n autovalores distintos, então T é diagonalizável.

Exemplo 13. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear definido por T(x,y) = (-3x+4y, -x+2y), cuja matriz, em relação à base canônica é $[T] = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$. Determine, se existir, $T]_{\beta}^{\beta}$.

Resolução

Seus autovalores são $\lambda_1=1$ e $\lambda_2=-2$ com autovetores associados $v_1=(1,1)$ e $v_2=(4,1)$, respectivamente. Notemos que os autovetores formam uma base de \mathbb{R}^2 . Seja, então, $\beta = \{(1,1),(4,1)\}$ a base de \mathbb{R}^2 formada pelos autovetores de T e encontremos $[T]^{\beta}_{\beta}$. Para tal, aplicamos T em cada vetor da base β e escrevemos a imagem obtida como combinação linear dos vetores da base β :

$$T(1,1) = (1,1) = a(1,1) + b(4,1) = 1(1,1) + 0(4,1)$$

$$T(4,1) = (-8,-2) = c(1,1) + d(4,1) = 0(1,1) - 2(4,1)$$

Assim,

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}.$$

Notemos que $[T]^{\beta}_{\beta}$ é uma matriz diagonale representa o operador T na base β de autovetores.

Na verdade, quando a base de autovetores existe, a matriz que representa um operador linear nesta base será sempre uma matriz diagonal que, como já citado, é a forma mais simples de se representar o operador. O problema, então, é saber em que condições a base de autovetores existe, pois veremos adiante que em muitos casos tal base não existe.

Consideremos, para elucidar o problema citado, as propriedades que seguem:

Propriedades 1.

Definição 5. Seja $T: V \to V$ um operador linear. Dizemos que T é um operador diagonalizável se, e somente se, existe uma base β de V cujos elementos são autovetores de T.

Neste caso, a matriz que representa T na base β é uma matriz diagonal cujos elementos são autovalores de T, ou seja,

$$[T]_{\beta}^{\beta} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Aqui supomos que $\dim V = n$.

Exemplo 14. Considere o operador linear T sobre \mathbb{R}^3 definido por T(x,y,z)=(2y,2x,2z) Mostre que T é um operador diagonalizável.

Exemplo 15. Considere o operador linear T sobre P_2 definido por T(p(x)) = (1+x)p'(x) + p''(x). Determine uma base ordenada β para P_2 tal que $[T]^{\beta}_{\beta}$ seja uma matriz diagonal.

Exemplo 16. Considere o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dado por T(x,y,z) = (x+y,y,z). Mostre que T não é diagonalizável.

Exemplo 17. Observemos os autovalores e respectivos autovetores associados a um operador linear T, representados pela

$$matriz \ A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}.$$

Resolução

Os Autovalores e autovetores de A são:

$$\lambda_1 = 1 \Rightarrow v_1 = (-z, 4z, z) = z(-1, 4, 1)$$

$$\lambda_2 = -2 \Rightarrow v_2 = (-y, y, y) = y(-1, 1, 1)$$

$$\lambda_3 = 3 \Rightarrow v_3 = (x, 2x, x) = x(1, 2, 1)$$

Logo o conjunto $\beta = \{(-1,4,1), (-1,1,1), (1,2,1)\}$ é uma base do \mathbb{R}^3 , pela propriedade e, portanto o operador T representado pela matriz A, é diagonalizável. Então, como a base β é formada pelos autovetores de A ou de T,

o operador T é representado por uma matriz diagonal D que é a matriz $[T]^{\beta}_{\beta}$. A construção da matriz D pode ser acompanhada conforme segue:

$$T(v_1) = Av_1 = (-1, 4, 1)$$

 $T(v_2) = Av_2 = (2, -2, -2)$
 $T(v_3) = Av_3 = (3, 6, 3)$

Então:

$$(-1,4,1) = a(-1,4,1) + b(-1,1,1) + c(1,2,1)$$

$$(2,-2,-2) = d(-1,4,1) + e(-1,1,1) + f(1,2,1)$$

$$(3,6,3) = g(-1,4,1) + h(-1,1,1) + i(1,2,1)$$

Dessa forma, temos

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = [T]_{\beta}^{\beta}$$

Exemplo 18. Considere agora o operador $T: \mathbb{R}^3 \to \mathbb{R}^3$, representado pela matriz $A = \begin{bmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

Resolução

 $Autovalores\ e\ autovetores\ de\ A:$

$$\lambda_1 = \lambda_2 = 2 \Rightarrow v_1 = (0, 0, z) = z(0, 0, 1)$$

$$\lambda_3 = 3 \Rightarrow v_3 = (-2, 1, 1)$$

Observe que A não pode ser diagonalizada, pois não é possível encontrar uma base de autovetores para o \mathbb{R}^3 ; só é possível obter dois autovetores L.I.

Exemplo 19. Considere o operador linear T sobre $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por T(x, y, z) = (x + 3y + 3z, -3x - 5y - 3z, 3x + 3y + z) Verifique se T é um operador diagonalizável.

2.1 Matriz Diagonalizadora

2.2 Introdução

Já vimos que toda matriz A_{mxn} define uma transformação linear $T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$. Em particular, se A é uma matriz de ordem n, então A define um operador linear T_A em \mathbb{R}^n . Dizemos que A é diagonalizável quando T_A é diagonalizável. No caso de A ser diagonalizável então existe uma base β de \mathbb{R}^n formada de autovetores de T_A . Ou seja, existe uma representação diagonal $D = [T]^{beta}_{\beta}$ para o operador T_A . Como $[T]^{\alpha}_{\alpha} = A$, onde é a base canônica de \mathbb{R}^n . As matrizes A e D são semelhantes, pois representam o mesmo operador T em bases diferentes. Logo, a relação de matrizes semelhantes ?? permite escrever:

$$D = P^{-1}AP$$

onde P é a matriz mudança da base β para a base canônica α , isto é, $P = [I]_{\alpha}^{\beta}$.

Note que, pela definição da matriz P, podemos concluir que ela é uma matriz cujas colunas são os autovetores do operador T. Observamos que a matriz D é obtida pela "atuação" da matriz P, quando ela existe, sobre a matriz A. Dizemos então que a matriz P diagonaliza A ou que P é a matriz diagonalizadora.

Teorema

Uma matriz $A \in M_n$ é diagonalizável se, e somente se, existe uma matriz P invertível de ordem n tal que $P^{-1}AP$ é uma matriz diagonal. $[P = [I]_{\alpha}^{\beta}]$

Exemplo 20. Sendo possível, encontre a matriz que diagonaliza
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
.

Temos que determinar uma matriz inversível P e uma matriz diagonal D tal que $D = P^{-1}AP$. Vamos seguir os seguintes passos:

Passo 1 - Determinar aos autovalores de A

$$\det(A - \lambda I) = 0 \Rightarrow \det \begin{bmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{bmatrix} = -\lambda^3 - 3\lambda^2 + 4 = 0$$

Os autovalores são $\lambda_1 = \lambda_2 = -2$ e $\lambda_3 = 1$

Passo 2 - Determinar os autovetores

 $Ser\~ao$ necessários três autovetores porque a matriz é 3×3 , caso contrário a matriz n $\~ao$ poderá ser diagonalizada.

Calculando os autovetores por meio do sistema homogêneo:

$$\begin{bmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

obteremos:

- Para $\lambda = -2$ uma base para o subespaço associado é $v_1 = (-1, 1, 0)$ e $v_2 = (-1, 0, 1)$.
- Para $\lambda = 1$ uma base para o subespaço associado é $v_3 = (1, -1, 1)$.

Note que $\{v_1, v_2, v_3\}$ é linearmente independente. (Verifique)

Passo 3 - Monte P a partir dos vetores do passo 2

$$P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

 ${\bf \it Passo 4-Monte\ D\ a\ partir\ dos\ autovalores\ associados}$

 $ec{E}$ essencial que a ordem dos autovalores seja igual à ordem escolhida para as colunas de P.

$$D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Passo 5 - Verifique que $D = P^{-1}AP$ ou que AP = PD

$$AP = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 \\ -2 & 0 & -1 \\ 0 & -2 & 1 \end{bmatrix}$$

$$PD = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 \\ -2 & 0 & -1 \\ 0 & -2 & 1 \end{bmatrix}$$

Teorema

Se A é uma matriz $n \times n$ com n autovalores distintos entre si, então A é diagonalizável.

Exemplo 21. A matriz $A = \begin{bmatrix} 2 & -3 & 7 \\ 0 & 5 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ tem autovalores $\lambda_1 = 2, \lambda_2 = 5$ e $\lambda_3 = -1$. Como esses são três autovalores

distintos de uma matriz 3×3 , A é diagonalizável.

Definição 6. i) Se λ é autovalor de uma matriz A de tamanho $n \times n$, então a dimensão do subespaço associado a λ é chamada multiplicidade geométrica de λ .

ii) O número de vezes que λ aparece como autovalor de A é chamado de multiplicidade algébrica de λ .

Teorema

Se A é uma matriz quadrada, então:

- i) Para cada autovalor de A, a multiplicidade geométrica é menor do que ou igual à multiplicidade algébrica.
- ii) A é diagonalizável se, e somente se, para cada autovalor, a multiplicidade geométrica é igual a multiplicidade algébrica.

Exemplo 22. Diagonalize a sequinte matriz, se possível.

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$

Vamos calcular $det(A - \lambda I) = 0$ para encontrar os autovalores de A.

$$\det \begin{bmatrix} 5 - \lambda & 0 & 0 & 0 \\ 0 & 5 - \lambda & 0 & 0 \\ 1 & 4 & -3 - \lambda & 0 \\ -1 & -2 & 0 & -3 - \lambda \end{bmatrix} = 0 \Rightarrow \begin{cases} \lambda_1 = \lambda_2 = 5 \\ \lambda_3 = \lambda_4 = -3 \end{cases}$$

 $\lambda = 5 \ e \ \lambda = -3$, ambos tem multiplicidade 2.

Calculando os autovetores por meio do sistema homogêneo

$$\begin{bmatrix} 5 - \lambda & 0 & 0 & 0 \\ 0 & 5 - \lambda & 0 & 0 \\ 1 & 4 & -3 - \lambda & 0 \\ -1 & -2 & 0 & -3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

obtemos:

- Para $\lambda = 5$ uma base para o subespaço associado é $v_1 = (-8, 4, 1, 0)$ e $v_2 = (-16, 4, 0, 1)$.
- Para $\lambda = -3$ uma base para o subespaço associado é $v_3 = (0,0,1,0)$ e $v_4 = (0,0,0,1)$.

Note que para ambos os autovalores a multiplicidade algébrica é igual a multiplicidade geométrica, logo pelo teorema anterior, concluímos que A é diagonalizável.

$$Ent\tilde{a}o\ existe\ P\ tal\ que\ A=P^{-1}DP,\ onde\ P=\begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}\ e\ D=\begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}.$$

3 Calculando potências de uma matriz

O Cálculo de potência de matrizes é uma tarefa de custo computacional muito elevado, pois é necessário calcular m-1 produtos de matrizes para calcular A^m . Entretanto, se soubermos que A é uma matriz diagonalizável, o cálculo de A^m fica bastante simplificado.

Teorema

eja A é uma matriz quadrada $n \times n$ e k um número inteiro. Se v é autovetor de A associado ao autovalor λ então v também é autovetor de A^k associado ao autovalor λ^k .

Demonstração

or definição, se v é autovetor de A associado ao autovalor λ então $Av = \lambda v$.

 $Multiplicando\ por\ A\ ambos\ os\ lados\ da\ igualdade,\ tem\text{-}se$

$$A^2v = A\lambda v = \lambda(Av) = \lambda^2 v$$

Novamente, multiplicando por A ambos os lados

$$A^3v = A\lambda^2v = \lambda^2(Av) = \lambda^3v$$

Generalizando esta idéia para k vezes, obtemos

$$(\underbrace{A \cdot A \cdot \ldots \cdot A}_{k-1 \ vezes}) A v = (\underbrace{A \cdot A \cdot \ldots \cdot A}_{k-1 \ vezes}) \lambda v \Rightarrow A^k v = \lambda^k v$$

concluindo assim nossa demonstração.

Assim, todo autovetor de A é também autovetor de A^k e portanto, se a matriz A é diagonalizável, A e A^k possuem a mesma matriz diagonalizadora P. O próximo teorema nos diz como obter a matriz A^k para todo k inteiro.

Teorema

Seja A é uma matriz quadrada $n \times n$ diagonalizável então existe uma matriz invertível P e uma matriz diagonal D tais que $A^k = PD^kP^{-1}$, para todo k inteiro.

Demonstração

Se A é diagonalizável, então existe uma matriz invertível P e uma matriz diagonal D tais que $A = PDP^{-1}$. Assim,

$$A^{k} = A.A.A...A$$

$$= (PDP^{-1}).(PDP^{-1}).(PDP^{-1})...(PDP^{-1})$$

$$= PD(P^{-1}P)D(P^{-1}P)DP^{-1} = PD^{k}P^{-1}$$

Isso sugere que para calcularmos A^k podemos diagonalizar A, obtendo P e D, depois calcular D^k , e o resultado será igual a PD^kP^{-1} . Como D é diagonal e sua diagonal é formada pelos autovalores de A, pelo teorema anterior tem-se

$$D^k = \begin{bmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{bmatrix}$$

Exemplo 23. Calcule
$$A^{20}$$
 onde $A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

Exemplo 24. Em uma determinada cidade, 30% das mulheres casadas se divorciam a cada ano e 20% das mulheres solteiras se casam a cada ano. Existem 8000 mulheres casadas, 2000 mulheres solteiras ou divorciadas e a população permanece constante. Encontre o número de mulheres casadas e o número de mulheres solteiras ou divorciadas após 5 anos. Quais as perspectivas a longo prazo se esses percentuais de casamento e divórcios continuarem indefinidamente no futuro?

Resolução

Observem que T(x,y) = (0,7x+02y,0,3x+0,8y) onde x representam o número de mulheres casadas e y representam o número de mulheres solteiras ou divorciadas. Asssim

$$\begin{bmatrix} 0, 7 & 0, 2 \\ 0, 3 & 0, 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0, 7x + 0, 2y \\ 0, 3x + 0, 8y \end{bmatrix}$$

Para encontrar o número de mulheres casadas e o de solteira ou divorciadas depois de um ano, multiplicamos a matriz A pelo vetor v^T , sendo v = (80000, 2000), ou seja:

$$\begin{bmatrix} 0, 7 & 0, 2 \\ 0, 3 & 0, 8 \end{bmatrix} \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} = \begin{bmatrix} 6000 \\ 4000 \end{bmatrix}$$

Ou seja, após 1 ano teremos 6 mil mulheres casadas e 4 mil mulheres solteiras ou divorciadas.

Assim, se quisermos saber o número de mulheres casadas e o de solteiras ou divorciadas depois de 5 anos teremos que encontrar A^5v . Se A for uma matriz diagonalizável, o cálculo de A^5 pode ser simplificado. Assim, se A for diagonalizável, podemos encontrar uma matriz D semelhante a A tal que $D^n = P^{-1}A^nP$ que é equivalente a $A^n = PD^nP^{-1}$.

Calculando os autovalores associados a matriz A encontramos $\lambda_1 = 1$ e $\lambda_2 = \frac{1}{2}$ Como temos dois valores distintos e a dim V = 2 a matriz A é diagonalizável, tendo como autovetores associados os vetores $v_1 = (2,3)$ e $v_2 = (1,-1)$ Logo, temos:

 $A = PDP^{-1} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} A^5v = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}^5 \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} = \begin{bmatrix} 4125 \\ 5875 \end{bmatrix} Após 5 anos,$ $4125 \ estarão \ casadas \ e \ 5875 \ estarão \ solteiras \ ou \ divorciadas. \ Após \ n \ anos, \ o \ número \ de \ mulheres \ casadas \ e \ o \ de \ solteiras \ ou \ divorciadas \ serão \ dadas \ pelo$

$$\lim_{n \to \infty} A^n v = \lim_{n \to \infty} P D^n P^{-1}$$

Observem que quando

$$n \to \infty, D^n \to \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Portanto,

$$\lim_{n \to \infty} A^n v = \lim_{n \to \infty} \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}^n \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 8000 \\ 2000 \end{bmatrix} = \begin{bmatrix} 4000 \\ 6000 \end{bmatrix}$$

A longo prazo, 40% das mulheres estarão casadas, enquanto 60% estarão solteiras ou divorciadas.

4 Referências

LEON, S. Álgebra Linear com aplicações. Tradução Valéria de Magalhães Iório. Rio de Janeiro:LTC, 2008. ANTON, H. e RORRES, C. Álgebra linear com aplicações. São Paulo: Ed. Bookman, 2001.

POOLE, David. Algebra linear. Rio de Janeiro: Pioneira Thomson Learning, 2004.

HEFEZ, A.; FERNANDES, C. Introdução à Álgebra Linear. Rio de Janeiro: SBEM, 2012.

BEAN, S.E.P.C; KOZAKEVICH, D. Álgebra Linear I. 2. ed.Florianópolis: UFSC/EAD/CED/CFM, 2011.

PULINO, P. Álgebra Linear e suas aplicações. Notas de aula. Disponível em http://www.ime.unicamp.br/ pulino/ALESA/Texto/>
Acesso em 10/10/2017.