Strategie e analisi dell'errore per problemi di ottimizzazione vincolati regolati da equazioni di evoluzione

Claudia Bonomi Edoardo Arbib

POLITECNICO DI MILANO

Progetto per il corso di Analisi Numerica per le Equazioni a Derivate Parziali II

Contenuti

- Problema continuo
- Problema discreto
 - Equazioni di stato e aggiunta
 - Discretizzazione variazionale
- 3 Algoritmi risolutivi
- 4 Implementazione
- Sisultati
- 6 Conclusioni e Lavori Futuri

Setting

dominio
$$\Omega \times I$$
, $\Omega \subset \mathbb{R}^n$, $I = (0, T)$, $U_{ad} \subset U = L^2(I, \mathbb{R}^D)$

$$\min_{y \in Y, u \in U_{ad}} J(y, u) = \frac{1}{2} ||y - y_d||^2_{L^2(I, L^2(\Omega))} + \frac{\alpha}{2} ||u||^2_U$$
s.t.
$$y = S(Bu, y_0)$$
(1)

Equazione di stato

Condizione di ottimalità

$$\begin{array}{ll} \partial_t \overline{y} - \triangle \overline{y} = f & \text{in I} \times \Omega \\ \overline{y} = 0 & \text{in I} \times \Omega \\ \overline{y}(0) = \kappa & \text{in } \Omega \end{array} \qquad \overline{u} = P_{U_{ad}} \left(-\frac{1}{\alpha} B' \overline{p} \right)$$

 \overline{p} è la soluzione del problema aggiunto

$$\begin{aligned}
&-\partial_t \overline{p} - \triangle \overline{p} = \overline{y} - y_d & \text{in } I \times \Omega \\
&\overline{p} = 0 & \text{in } I \times \partial \Omega \\
&\overline{p}(T) = 0 & \text{su } \Omega
\end{aligned} \tag{2}$$

Spazio e operatore di controllo

Spazio di controllo

$$U_{ad} = \{ u \in U | a_i \le u_i(t) \le b_i \forall i = 1 : d \}$$

$$\tag{3}$$

con $a_i, b_i \in \mathbb{R}$ t.c. $a_i < b_i \ \forall i = 1 : d$ Operatore di controllo

$$B: U \to L^2(I, H^{-1}(\Omega)), \ u \mapsto \left(t \mapsto \sum_{i=1}^d u_i(t)g_i\right)$$
 (4)

con funzionali noti $g_i \in H^{-1}(\Omega)$

Discretizzazione temporale

Partizione di [0,T) in sottointervalli $I_m = [t_{m-1},t_m)$, dove $0 = t_0 < t_1 < \cdots < t_M = T \longrightarrow \text{griglia primale}$ Seconda partizione di [0,T) in intervalli $I_m^* = [t_{m-1}^*,t_m^*)$, con $0 = t_0^* < t_1^* < \cdots < t_M^* = T$ e $t_m^* = \frac{t_{m-1} + t_m}{2}$ per $m = 1, \ldots, M \longrightarrow \text{griglia duale}$ Ambientazione funzionale

$$P_{k} := \left\{ v \in C([0, T], H_{0}^{1}(\Omega)) \middle| v \middle|_{I_{m}} \in \mathcal{P}_{1}(I_{m}, H_{0}^{1}(\Omega)) \right\},$$

$$P_{k}^{*} := \left\{ v \in C([0, T], H_{0}^{1}(\Omega)) \middle| v \middle|_{I_{m}^{*}} \in \mathcal{P}_{1}(I_{m}^{*}, H_{0}^{1}(\Omega)) \right\},$$

$$Y_{k} := \left\{ v : [0, T] \to H_{0}^{1}(\Omega) \middle| v \middle|_{I_{m}} \in \mathcal{P}_{0}(I_{m}, H_{0}^{1}(\Omega)) \right\}.$$

Operatori di interpolazione

$$\bullet \ \mathcal{P}_{Y_k}: L^2(I, H^1_0(\Omega)) \to Y_k$$

$$\mathcal{P}_{Y_k}v|_{I_m}:=rac{1}{k_m}\int_{t_{m-1}}^{t_m}vdt \ ext{for} \ m=1,\ldots,M, \ ext{e} \ \mathcal{P}_{Y_k}v(\mathcal{T}):=0$$

$$\begin{array}{c} \exists \ \Pi_{Y_k}: \mathsf{C}([0,\ \Gamma], H_0^-(\Omega)) \to Y_k \\ \\ \Pi_{Y_k} v|_{I_m} := v(t_m^*) \quad \text{per } m = 1, \ldots, M, \quad \Pi_{Y_k} v(T) := v(T) \end{array}$$

$$\pi_{P_k^* V | I_1^* \cup I_2^*} := v(t_1^*) + \frac{t - t_1}{t_2^* - t_1^*} (v(t_2^*) - v(t_1^*)),$$

$$\pi_{P_k^* V | I_m^*} := v(t_{m-1}^*) + \frac{t - t_{m-1}^*}{t_m^* - t_{m-1}^*} (v(t_m^*) - v(t_{m-1}^*)),$$

$$v_{m-1}^* V | t_{m-1}^* = v(t_m^*) + \frac{t - t_M^*}{t_m^* - t_{m-1}^*} (v(t_m^*) - v(t_m^*)),$$

Operatori di interpolazione

$$\mathcal{P}_{Y_k}: L^2(I, H^1_0(\Omega)) \to Y_k$$

$$\mathcal{P}_{Y_k} v|_{I_m} := \frac{1}{k_m} \int_{t_{m-1}}^{t_m} v dt \text{ for } m = 1, \dots, M, \text{ e } \mathcal{P}_{Y_k} v(T) := 0$$

②
$$\Pi_{Y_k} : C([0, T], H_0^1(\Omega)) \to Y_k$$

 $\Pi_{Y_k} v|_{I_m} := v(t_m^*) \text{ per } m = 1, \dots, M, \quad \Pi_{Y_k} v(T) := v(T)$

$$\pi_{P_{k}^{*}} v|_{I_{1}^{*} \cup I_{2}^{*}} := v(t_{1}^{*}) + \frac{t - t_{1}^{*}}{t_{2}^{*} - t_{1}^{*}} (v(t_{2}^{*}) - v(t_{1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{m}^{*}} := v(t_{m-1}^{*}) + \frac{t - t_{m-1}^{*}}{t_{m}^{*} - t_{m-1}^{*}} (v(t_{m}^{*}) - v(t_{m-1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{M}^{*} \cup I_{M+1}^{*}} := v(t_{M-1}^{*}) + \frac{t - t_{M-1}^{*}}{t_{M}^{*} - t_{M-1}^{*}} (v(t_{M}^{*}) - v(t_{M-1}^{*})),$$

Operatori di interpolazione

$$\mathcal{P}_{Y_k}: L^2(I, H^1_0(\Omega)) \to Y_k$$

$$\mathcal{P}_{Y_k} v|_{I_m} := \frac{1}{k_m} \int_{t_{m-1}}^{t_m} v dt \text{ for } m = 1, \dots, M, \text{ e } \mathcal{P}_{Y_k} v(T) := 0$$

②
$$\Pi_{Y_k} : C([0, T], H_0^1(\Omega)) \to Y_k$$

 $\Pi_{Y_k} v|_{I_m} := v(t_m^*) \text{ per } m = 1, \dots, M, \quad \Pi_{Y_k} v(T) := v(T)$

$$\pi_{P_{k}^{*}} : C([0,T], H_{0}^{1}(\Omega)) \cup Y_{k} \to P_{k}^{*}$$

$$\pi_{P_{k}^{*}} v|_{I_{1}^{*} \cup I_{2}^{*}} := v(t_{1}^{*}) + \frac{t - t_{1}^{*}}{t_{2}^{*} - t_{1}^{*}} (v(t_{2}^{*}) - v(t_{1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{m}^{*}} := v(t_{m-1}^{*}) + \frac{t - t_{m-1}^{*}}{t_{m}^{*} - t_{m-1}^{*}} (v(t_{m}^{*}) - v(t_{m-1}^{*})),$$

$$\pi_{P_{k}^{*}} v|_{I_{M}^{*} \cup I_{M+1}^{*}} := v(t_{M-1}^{*}) + \frac{t - t_{M-1}^{*}}{t_{M}^{*} - t_{M-1}^{*}} (v(t_{M}^{*}) - v(t_{M-1}^{*})).$$

Equazione di stato

Formulazione debole trovare $y_k \in Y_k$ tale che

$$\int_{0}^{T} \langle \partial_{t} v(t), y(t) \rangle_{H^{-1}H_{0}^{1}} dt + \int_{0}^{T} a(y(t), v(t)) dt + (y(T), v(T))_{L^{2}}
= \int_{0}^{T} \langle f(t), v_{k}(t) \rangle_{H^{-1}H_{0}^{1}} dt + (\kappa, v_{k}(0))_{L^{2}} \, \forall v_{k} \in P_{k}. \quad (5)$$

⇒ variante di CN con passo di Rannacher. Lo schema è consistente, stabile, convergente.

Analisi errore

 $y_k \in Y_k \Rightarrow$ ordine $\mathcal{O}(k)$, ma $\pi_{P_k^*} y_k$ converge con ordine due

Lo studio dell'equazione aggiunta è analogo, solo con spazi di soluzione e test scambiati. Lo schema risultante è una variante di CN.

Discretizzazione variazionale

Problema di controllo ottimo discretizzato

$$\min_{\substack{y_k \in Y_k, u \in U_{ad} \\ \text{s.t.}}} J(y_k, u) = \frac{1}{2} \|y_k - y_d\|_{L^2(I, L^2(\Omega))}^2 + \frac{\alpha}{2} \|u\|_U^2 \qquad (\mathbb{P}_k)$$

dove S_k è la discretizzazione di S tramite lo schema di PG.

Osservazioni

- Il metodo si basa sulla discretizzazione dei soli spazi di stato e aggiunto, utilizzando implicitamente le condizioni di ottimalità del primo ordine per la discretizzazione del controllo.
- 2 Il metodo permette di disaccoppiare l'approssimazione dell'active set dalla scelta della griglia temporale
- 3 Il metodo è ben posto e convergente con ordine 2 rispetto a

Discretizzazione variazionale

Problema di controllo ottimo discretizzato

$$\min_{\substack{y_k \in Y_k, u \in U_{ad} \\ \text{s.t.}}} J(y_k, u) = \frac{1}{2} \|y_k - y_d\|_{L^2(I, L^2(\Omega))}^2 + \frac{\alpha}{2} \|u\|_U^2 \qquad (\mathbb{P}_k)$$

dove S_k è la discretizzazione di S tramite lo schema di PG.

Osservazioni

- Il metodo si basa sulla discretizzazione dei soli spazi di stato e aggiunto, utilizzando implicitamente le condizioni di ottimalità del primo ordine per la discretizzazione del controllo.
- 2 Il metodo permette di disaccoppiare l'approssimazione dell'active set dalla scelta della griglia temporale
- 3 Il metodo è ben posto e convergente con ordine 2 rispetto a controllo *u*.

Discretizzazione variazionale

Problema di controllo ottimo discretizzato

$$\min_{\substack{y_k \in Y_k, u \in U_{ad} \\ \text{s.t.}}} J(y_k, u) = \frac{1}{2} \|y_k - y_d\|_{L^2(I, L^2(\Omega))}^2 + \frac{\alpha}{2} \|u\|_U^2 \qquad (\mathbb{P}_k)^2$$

dove S_k è la discretizzazione di S tramite lo schema di PG.

Osservazioni

- Il metodo si basa sulla discretizzazione dei soli spazi di stato e aggiunto, utilizzando implicitamente le condizioni di ottimalità del primo ordine per la discretizzazione del controllo.
- 2 Il metodo permette di disaccoppiare l'approssimazione dell'active set dalla scelta della griglia temporale
- **3** Il metodo è ben posto e convergente con ordine 2 rispetto al controllo *u*.

Punto fisso

La CNES di ottimalià del problema discreto è sempre $\bar{u}_k = P_{U_{ad}} \left(-\frac{1}{\alpha} B' \bar{p}_k \right)$. Le iterazioni di punto fisso si applicano proprio a quest'equazione \Rightarrow

Algoritmo

- 1 Inizializzare $u_h^0 \in U_{ad}$, n := 0.
- 2 Ripetere fino a convergenza
 - calcolare Bu_h^n ,
 - 2 calcolare $y_h^n = S_h(y_0, Bu_h^n)$,

 - a calcolare $u_h^{n+1} = P_{U_{ad}} \left(-\frac{1}{\alpha} B' p_h^n \right)$,
 - \bullet porre n=n+1.

Criterio di arresto: $\|B'(p_h^{n+1}-p_h^n)\|_{L^{\infty}(\Omega\times I)}<\epsilon$

Non converge per α piccoli

Semi-Newton

Metodo di Newton con minimizzazione monodimensionale (Armijo) ⇒ formulazione del problema tramite Lagrangiana primale e duale

$$\phi(w) = -\inf_{u,y \in L^{2}(I,L^{2})} \left(\underbrace{\frac{1}{2} \|y - y_{d}\|^{2} + \frac{\alpha}{2} \|u\|^{2} + \chi_{U_{ad}}(u) - (w, y - S_{h}u)}_{\mathcal{L}(u,y,w)} \right)$$
(6)

che diventa quindi un caso di minimizzazione non vincolata $\min_{w \in L^2(I, L^2(\Omega))} \phi(w)$. Qual è la CNES di ottimalità? Si può applicare un metodo di Newton? Risponde il seguente

Semi-Newton II

Lemma

La funzione $\phi: L^2(I, L^2(\Omega)) \to \mathbb{R}$ è fortemente convessa e Frechet-differenziabile con gradiente lipschitziano

$$\nabla \phi(\mathbf{w}) = y(\mathbf{w}) - S_h u(\mathbf{w}), \tag{7}$$

dove $y_h(w) = w + y_d$ e $u(w) = P_{U_{ad}}(-\frac{1}{\alpha}S_h^*w)$ sono gli unici punti di minimo della lagrangiana $\mathcal{L}(u,y,w)$ per ogni $w \in L^2(I,L^2(\Omega))$ data.

Ma allora calcolato l'Hessiano generalizzato di ϕ , ogni iterazione di Newton risolve

$$\left(I + \frac{1}{\alpha} S_h \mathbb{1}_{S_h^* w} S_h^* \right) \delta w = -(w + y_d) + S_h P U_{ad} \left(-\frac{1}{\alpha} S_h^* w \right). \tag{8}$$

Ecco quindi l'algoritmo promesso

Semi-Newton III

Algoritmo

- Inizializzare $w^0 \in L^2(I, L^2(\Omega)), \beta \in (0, 1), k = 0$,
- 2 Ripetere fino a convergenza
 - Risolvere l'equazione (8) per δw^k tramite CG,

 - **9** Finché risulta vera la condizione $\phi(w^k + \lambda \delta w^k) > \phi(w) + \frac{1}{3}\lambda(\nabla \phi(w^k), \delta w^k)_{L^2(I, L^2(\Omega))}$, porre $\lambda := \beta \lambda$,

 - **6** Porre k := k + 1.

criterio di arresto: $\|\nabla \phi(w^k)\| \le t_0$

L'algoritmo converge e il criterio di arresto è plausibile.

Significato della simbologia

$\chi_{U_{ad}}$

Indica la funzione caratteristica dell'insieme U_{ad} nel senso dell'analisi convessa, ovvero

$$\chi_{U_{ad}} = \begin{cases} 0, & \text{su } U_{ad}, \\ \infty & \text{su } L^2(I, L^2(\Omega)) \setminus U_{ad}. \end{cases}$$
 (9)

$\mathbb{1}_{p_h(v)}$

Introdotto l'*inactive set* della funzione p_h come l'insieme $\mathcal{I}(p_h) = \left\{ \ \omega \in \Omega \times [0,T] \ \middle| \ \left(-\frac{1}{\alpha} p_h(v) \right) (\omega) \in (a(\omega),b(\omega)) \ \right\}$ e $\mathbb{1}_{\mathcal{I}(p_h)}$ come la funzione indicatrice di tale insieme con $\mathbb{1}_{p_h(v)}$ si denota l'endomorfismo auto-aggiunto in $L^2(I,L^2(\Omega))$ dato dalla moltiplicazione puntuale con $\mathbb{1}_{\mathcal{I}(p_h)}$.

Gli strumenti di sviluppo utilizzati sono Freefem++ e GitHub

Test Case 01 Punto fisso \overline{u} e u_k

Test Case 01 Punto fisso

Tabella: Punto fisso per Test case 01: errori e EOC

		11 - 11		
	$\ \bar{u}-u_{kh}\ _{L^2(L^2)}$	$\ \bar{y}-y_{kh}\ _{L^2(L^2)}$	EOC_u	EOC_y
1	0.31667	0.981285	_	_
2	0.0835064	0.496296	2.60937	1.33449
3	0.0209608	0.248822	2.35165	1.17464
4	0.00500916	0.124494	2.25065	1.08882
5	0.00109219	0.0622586	2.29624	1.04473
6	0.000497644	0.0311327	1.15957	1.02236

Test Case 01 Punto fisso

Tabella: Punto fisso per Test case 01: errori e EOC

	$\ \bar{y} - \pi_{P_k^*} y_{kh}\ _{L^2(L^2)}$	$\ \bar{p} - p_{kh}\ _{L^2(L^2)}$	$EOC_{\pi y}$	EOC_p
1	0.520894	0.00660747	_	_
2	0.15134	0.00173155	2.41965	2.6216
3	0.0393476	0.00043334	2.29181	2.35673
4	0.00970087	0.000103613	2.20164	2.24982
5	0.00221619	0.000022824	2.2259	2.28078
6	0.000432024	0.000010724	2.41203	1.11429

Test Case 01 Semi-Newton