Basics of Linear Algebra for Machine Learning

Code at https://github.com/MaxwellJChen/Basics_for_Linear_Algebra_for_Machine_Learning

Part II: Foundations

1: Introduction to Linear Algebra

- Mathematics of data
- Numerical linear algebra (with computers)
 - GPU = good bc it can do linear algebra calcs fast
 - Implemented by many open source numerical linear algebra libraries (FORTRAN, LAPACK, etc.)
- Important in statistics
- Numerous practical mathematical applications (computer graphics, Fourier series, statistics LSRL, etc.)

2: Linear Algebra and Machine Learning

- Don't learn LA if you're a beginner
- Reasons to learn:
 - Notation = important to read, write, and execute efficiently in code
 - Necessary for statistics
 - Must know how to factorize matrices
 - Learn least squares regressions (plays a wider role in ML besides LSRL)

3: Examples of LA in ML

- Datasets and data files are matrices (X) and vectors (y)
- Images/photos are matrices
- One-hot encoding
- Linear regression based on matrix factorization
- Regularization (reduce magnitude of model coefficients) minimize vector norm
- Principal component analysis: common way to identify most relevant features in data
- Singular value decomposition based in LA, used in feature selection, visualization, noise reduction, etc.
- Latent semantic analysis: frequency distribution of words, matrix factorization (SVD) to reduce
- Recommender systems use LA (e.g. calculate similarity between predictions and user activity)
- Deep learning: representing algs, made up of LA calcs

Part III: NumPy

- 4: Introduction to NumPy
- 5: Index, Slice, and Reshape NumPy Arrays
- 6: NumPy Array Broadcasting

Part IV: Matrices

7: Vectors and Vector Arithmetic

- Vectors: tuple of one or more values (scalars)
- Direction and magnitude
- Can represent direction in space, but best as a floating point for high dim ML applications
- Dot product: sum of products of paired terms in vectors (a.dot(b)) where a and b are equal length NumPy vectors

8: Vector Norms

- Norms calculate magnitude/length of vector; always positive except for vector of zeros
- L^1 norm: $||v||_1 = |a_1| + |a_2| + |a_3| + ...$, sum of abs values of scalars (taxicab or Manhattan norm)
- L^2 norm: $||v||_2 = \sqrt{(a_1^2 + a_2^2 + a_3^2 + ...)}$, (Euclidean norm bc distance from origin to vector coord)
 - Most commonly used norm for machine learning applications by far
- L¹ and L² used to minimize size of model coefficients for regularization
- Max norm L^{inf} or L^{∞} : $||v||_{inf}$ = max $|a_1|$, $|a_2|$, $|a_3|$, ..., scalar with largest magnitude in vector

9: Matrices and Matrix Arithmetic

- 2D array of scalars represented by uppercase letter
 - Index with a_{i,j} where i = row # and j = column #
- Hadamard product (element-wise matrix multiplication): $C = A \circ B$
- Matrix-matrix multiplication (matrix dot product)
 - # of columns in first matrix A = # of rows in second matrix B
 - C(m,k) = A(m,n) * B(n,k)
 - Calculate dot product between each row in A with each column in B
- Matrix-vector multiplication

10: Types of Matrices

- Square: order of matrix = # of rows/columns
- Symmetric: symmetric across main diagonal from top left to bottom right
- Triangular: values only in upper right or lower left (the main diagonal is also nonzero)

- Diagonal: only main diagonal is nonzero
- Identity (Iⁿ): 1s along main diagonal
- Orthogonal (Q): a square matrix whose rows are mutually orthonormal and whose columns are mutually orthonormal (dot products of 0 and lengths of 1)
 - $Q^T * Q = Q * Q^T = I$
 - $O^{T} = O^{-1}$

11: Matrix Operations

- Transpose: flipping across the main diagonal (inverting row and columns)
- Inverse: finds a matrix that when multiplied with given matrix produces Iⁿ
 - Invertible: has an inverse
 - Singular: square matrix that is not invertible
 - Solve systems of matrix equations (e.g., linear regression)
- Trace: sum of values on main diagonal
- Determinant (det(A) or |A|): describes relative geometry of vectors in the matrix, the volume of the box with sides given by rows of A
 - If 0, matrix cannot be inverted
- Rank: estimate of number of linearly independent rows or columns in matrix
 - Number of dimensions spanned by all vectors within a matrix

12: Sparse Matrices

- Mostly zero matrices = sparse (vs. dense matrices)
 - sparsity = # of non-zero elements/total elements
- Problems
 - Space: most large matrices are sparse, wasted space from allocating 32-bit or even 64-bit memory to each 0
 - Increased time complexity working with 0s
- Appears often in data, data prep methods (e.g. one-hot encoding, TF-IDF, and count encoding), and fields like NLP, computer vision, and recommender systems
- Dictionary of keys, list of lists, coordinate list, compressed sparse row/column

13: Tensors and Tensor Arithmetic

- Tensor: an array of numbers arranged on a regular grid with a variable number of axes
 - Generalization of vectors and matrices (n-dimensional array)
 - Widely used in physics, engineering, and ML
- Element-wise addition, subtraction, multiplication, and division
- Tensor product (np.tensordot)
 - Order of product is equal to sum of orders of factors

Represented by ⊗ symbol

Part V: Factorization

14: Matrix Decompositions

- Matrix decomposition: reduce a matrix into constituent parts (also called factorization, like taking the "factors" of a matrix)
- LU decomposition: decompose *square* matrix into L and U components
 - A = L U where A is the square matrix to decompose and L (lower triangle matrix) and U (upper triangle matrix)
 - Can fail for specific matrices
 - LUP decomposition: more numerically stable version of LU with partial pivoting
 - A = L U P
 - A is reordered to simplify decomposition while P specifies how to reorder to obtain original
 - Solve systems of linear equations, linear regression, or calculate determinant + inverse of a matrix
- QR decomposition: applies to non-square matrice A with shape (m, n)
 - A = Q R, where Q has shape (m, m) and R (upper triangle matrix) has shape (m, n)
 - Can fail for specific matrices
 - Usually for solving systems of linear equations
- Cholesky decomposition: for positive definite matrices (square, symmetric matrices where all values greater than 0)
 - $A = L \cdot L^{T}$, where L is a lower triangular matrix or $A = U^{T} \cdot U$ where U is an upper triangular matrix
 - Least squares linear regression, simulation, optimization
 - For symmetric matrices, ~2x as fast as LU

15: Eigendecomposition

- Decompose a square matrix in to eigenvectors and eigenvalues
- A vector is an eigenvector of a matrix if $A \cdot v = \lambda \cdot v$
 - A is the vector being decomposed, v is the eigenvector, λ is the eigenvalue scalar
 - v does not change direction when multiplied by A but may change length by eigenvalue
- Matrix can have one eigenvector + eigenvalue for each dimension, some square matrices cannot be decomposed (may need complex numbers)
- $A = Q \cdot \Lambda \cdot Q^T$
 - Q is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues
- Similar to decomposing an integer into prime factors
- Simplify more complex matrix operations (e.g., compute power of matrix), PCA

- Eigenvector: unit vector or right vector (column vector)
- Eigenvalue: coefficients applied to eigenvector that give them length/magnitude
 - Only positive eigenvalues = positive definite matrix
 - Only negative eigenvalues = negative definite matrix

16: Singular Value Decomposition

- Works with all matrices (but could result in complex numbers)
- Compressing, denoising, data reduction, other matrix calculations (inverse), LSLR
- Matrix decomposition method for reducing a matrix to constituents parts to make certain matrix calculations simpler
- $A = U \cdot \Sigma \cdot V^T$, where A has shape (m, n), U has shape (m, m), Σ is an (m, n) diagonal matrix, and V^T is (n, n)
- Diagonal values in ∑ are singular values of A, columns of U are left-singular vectors of A, and columns of V are right-singular vectors of A
 - When $m \neq n$, then \sum with have 0s in the lower rows
- Pseudoinverse (Moore-Penrose Inverse): generalized inverse for when matrix is not square
 - $A^+ = V \cdot D^+ \cdot U^T$ where A^+ is the pseudoinverse of A and D^+ is the pseudoinverse of the diagonal matrix Σ
 - V, D^+ , and U^T can be obtained from SVD: $A = U \cdot \Sigma \cdot V^T$
 - Solve linear regression equations
- Dimensionality reduction
 - Use SVD and select the most significant (largest) values in Σ and V^T
 - $B = U \cdot \sum_{k} \cdot V_{k}^{T}$, where B is an approximation of the original matrix A
 - Used in NLP on matrices of word occurrences Latent Semantic Analysis/Latent
 Semantic Indexing
 - $T = U \cdot \sum_{k} \text{ or } T = A \cdot V_{k}^{T}$ where T is a dense summary of the matrix

Part VI: Statistics

17: Introduction to Multivariate Statistics

- Expected value: E[x] the average of a random variable
 - $E[x] = \sum x_1^* p_1 + x_2^* p_2 + x_3^* p_3 + \dots + x_n^* p_n$
- Mean: average value calculated from a sample
 - $\mu = P(x) * \sum x$ where P(x) is the calculated probability for each value
 - x-bar when calculated for a specific variable x
- Variance: how much a random variable X changes from its mean
 - $Var[X] = E[(X E[X])^2]$ the expected value/average of the squared difference
 - $Var[X] = \sum (x_1 E[X])^{2*} p_1 + (x_2 E[X])^{2*} p_2 + (x_3 E[X])^{2*} p_3 + \dots + (x_n E[X])^{2*} p_n$
 - For a single sample, $\sigma^2 = 1/(n-1) * \sum (x_i \mu)^2 \text{divide by n-1 to account for bias}$

- Standard deviation: $s = \sqrt{(\sigma^2)}$, divide by n-1 as well for unbiased sample estimate
- Covariance: joint probability for two random variables
 - cov(X, Y) = E[(X E[X]) * (Y E[Y])]
 - $cov(X, Y) = 1/n * \sum (x E[X]) * (y E[Y])$
 - Sample covariance: $cov(X, Y) = 1/(n-1) * \Sigma(x E[X]) * (y E[Y])$
 - Magnitude difficult to interpret
 - Positive when samples increase together and negative when samples do not
 - 0 when both variables are completely independent
 - Can be formatted in a square covariance matrix
- Correlation: normalized covariance
 - $r = cov(X, Y)/(s_X * s_Y) r$ is the correlation coefficient or Pearson correlation coefficient
 - Can be returned in correlation matrix
 - From -1 to 1
- Covariance matrix: square and symmetric matrix describing covariance between ≥2 random variables
 - Diagonal: variances of each random variable
 - $\Sigma = E[(X E[X] * (Y E[Y])], \Sigma_{i,j} = cov(X_i, X_j)$
 - Key component in principal component analysis (PCA)
- Multivariate analysis: intersection of linear algebra and statistics

18: Principal Component Analysis

- PCA: method for reducing dimensionality, projection where m-columns (features) are projected into a space with ≤m columns while retaining the essence of the original
- Steps (covariance method)
 - Original matrix A
 - Calculate mean of each column M
 - Center each column at 0 by subtracting the mean column value C = M A
 - Calculate covariance matrix between columns V = cov(C.T)
 - Find eigenvalues and eigenvector from the covariance matrix
 - Select *k* eigenvectors (principal components)/eigenvalues (singular values) based on which eigenvalues have the largest values
 - Similarly large eigenvalues = data is already reasonably compressed
 - Small eigenvalue = value that can be discorded
 - Project the original, centered data into the subspace vectors.T C.T

19: Linear Regression

- Method to model relationship between two scalar values: input x and output y
 - y is a linear fx/weighted sum of x where $y = b_0 + b_1^*x_1$

- Multivariate linear regression: $y = b_0 + b_1 x_1 + b_2 x_2 + ...$
- Find coefficients b that minimize the error in the prediction for y
- Matrix formulation: y = X * b

$$X = egin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \ x_{2,1} & x_{2,2} & x_{2,3} \ x_{3,1} & x_{3,2} & x_{3,3} \ x_{4,1} & x_{4,2} & x_{4,3} \end{pmatrix}, b = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}, y = egin{pmatrix} y_1 \ y_2 \ y_3 \ y_4 \end{pmatrix}$$

- Columns are features in X and rows are examples
- Multiple possible values for coefficients b, but always some error
- Find solution that minimizes the squared error (linear least squares)

- Error:
$$||X \cdot b - y||^2 = \sum_{i=1}^m \sum_{j=1}^n X_{i,j} (b_j - y_i)^2 \text{ or } X^T \cdot X \cdot b = X^T \cdot y$$

- $b = (X^T \cdot X)^{-1} \cdot X^T \cdot y$ the normal equation
- Solving methods
 - Use normal equation and inverses to directly calculate b computationally expensive and numerically unstable
 - Use QR decomposition with $b = R^{-1} \cdot Q^{T} \cdot y$ more computationally efficient and numerically stable, but does not work for all matrices
 - $A = Q \cdot R$
 - SVD and pseudoinverse more stable (all matrices have SVD decomposition) and favored
 - $b = X^+ \cdot y$ where pseudoinverse $X^+ = U \cdot D^+ \cdot V^T$
 - Standard approach