Matemática Atuarial II

Aula 5

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

- Um "status" pode ser entendido como a entidade ao qual se associa a variável aleatória tempo de vida adicional.
 - Por exemplo, podemos dizer que estávamos estudando status composto por uma única vida.
 - Uma condição (estado)
- O status composto por várias vidas (independentes), onde se trabalha com a regra pré-definida de que ele irá "falhar" com o primeiro sinistro é chamado de Status vida conjunta.
 - A variável aleatória associada ao Status vida conjunta corresponde aquela ao mínimo de um vetor aleatório.

O status composto por várias vidas (independentes), que "falha" com o primeiro sinistro é chamado de *Status vida conjunta*.

O status composto por várias vidas (independentes), onde se trabalha com a regra pré-definida de que ele irá "falhar" com o primeiro sinistro é chamado de *Status vida conjunta*.

Considere o vetor aleatório $\{T_{x_1}, T_{x_2}, T_{x_3}, \dots, T_{x_n}\}$ composto pelas variáveis aleatórias das sobrevidas de n pessoas, então a sobrevida resultante do *status vida conjunta* relacionado a esse vetor é dada por:

$$T_{x_{(1)}} = min\{T_{x_1}, T_{x_2}, T_{x_3}, \dots, T_{x_n}\}$$

 $T_{\chi_{(1)}}$ representa a sobrevida (v,a.) daquele indivíduo que menos tempo viverá dentro o conjunto.

Em particular daremos mais atenção a seguros sobre duas vidas (x e y), assim:

$$T_{x,y} = min\{T_x, T_y\}$$

Por definição $F_{T_{x,y}}(t)$ implica na probabilidade de que aquele que viver menos entre x ou y não sobreviver a t, ou seja:

$$F_{T_{x,y}}(t) = P(T_{x,y} \le t) = P(\min\{T_x, T_y\} \le t) = t q_{x,y}$$

*A notação $T_{x,y}$ é usada para representar as idades que compõem o estados, assim $T_{x,y}=T_{(1)}$

$$F_{T_{x,y}}(t) = P(T_{x,y} \le t) = P(\min\{T_x, T_y\} \le t) = t q_{x,y}$$

Se o mínimo entre T_x e T_y é menor que t, então:

$$t q_{x,y} = P(T_x \le t \text{ ou } T_y \le t) = (t q_x t p_y + t q_x t q_y + t p_x t q_y)$$

$$t q_{x,y} = P(T_x \le t \text{ ou } T_y \le t)$$

$$= (t q_x t p_y + t q_x t q_y + t p_x t q_y + t q_x t q_y) - t q_x t q_y$$

$$_{t}q_{x,y} = _{t}q_{x} + _{t}q_{y} - _{t}q_{x} _{t}q_{y}$$

Probabilidade da falha do status ocorrer em um período menor ou igual a t.

$$S_{T_{x,y}}(t) = P(T_{x,y} > t) = P(\min\{T_x, T_y\} > t) = {}_t p_{x,y}$$

 ${}_t p_{x,y} = P(T_{x,y} > t) = P(T_x > t e T_y > t)$
 ${}_t p_{x,y} = P(T_x > t e T_y > t) = {}_t p_{x,t} p_y$

O status em questão sobrevive à t anos \Leftrightarrow (x) e (y) também sobrevivem.

$$S_{T_{x,y}}(t) = {}_t p_x {}_t p_y = {}_t p_{x,y}$$

Probabilidade da sobrevivência do status ao período t

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_{t} p_{x} {}_{t} p_{y} = {}_{t} p_{x,y}$$

$${}_{t} q_{x,y} = 1 - {}_{t} p_{x,y}$$

EXEMPLO 1: Seja o tempo de vida futuro T_{45} e T_{50} independentes, obtenha as expressões pedidas (utilizando a notação utilizada para o status x, y):

- a) A probabilidade de que a primeira morte ocorra entre 5 e 10 anos.
- b) A probabilidade de que ambos vivam pelo menos mais 10 anos.

c) A probabilidade de que ao menos um esteja morto ao fim de 30 anos.

EXEMPLO 1:

a) A probabilidade de que a primeira morte ocorra entre 5 e 10 anos.

$$P(5 < T_{45,50} \le 10) = P(T_{45,50} > 5) - P(T_{45,50} > 10)$$

$$P(5 < T_{45,50} \le 10) = {}_{5}p_{45,50} - {}_{10}p_{45,50}$$

$$P(5 < T_{45,50} \le 10) = ({}_{5}p_{45})({}_{5}p_{50}) - ({}_{10}p_{45})({}_{10}p_{50})$$

b) A probabilidade de que ambos vivam pelo menos mais 10 anos.

$$S_{T_{45,50}}(10) = P\big(T_{45,50} > 10\big)$$

$$_{10}p_{45,50} = (_{10}p_{45})(_{10}p_{50})$$

EXEMPLO 1:

c) A probabilidade de que ao menos um esteja morto ao fim de 30 anos.

$$F_{T_{45,50}}(30) = P(T_{45} \le 30 \text{ ou } T_{50} \le 30) = {}_{30} q_{45,50}$$

$$_{30}q_{45,50} = _{30}q_{45} + _{30}q_{50} - _{30}q_{45} + _{30}q_{50}$$

Ou

$$_{30}q_{45,50} = 1 - _{30}p_{45} \times _{30}p_{50}$$

A probabilidade de que o número de anos completados pelo status seja t é dada por $t \mid q_{x,y}$:

$$_{t|}q_{x,y}=P\big(T_{x,y}=t\big)$$

$$t \mid q_{x,y} = P(t < T_{x,y} \le t+1) = P(T_{x,y} > t) - P(T_{x,y} > t+1)$$

$$t | q_{x,y} = t p_{x,y} - t | p_{x,y} = t p_{x,y} - t p_{x,y} (p_{x+t,y+t})$$

$$t | q_{x,y} = t p_{x,y} (1 - p_{x+t,y+t})$$

$$t|q_{x,y} = (t_t p_{x,y}) (q_{x+t,y+t})$$

A probabilidade de que o número de anos completados pelo status seja t é dada por $t \mid q_{x,y}$:

$$t|q_{x,y} = (tp_{x,y}) (q_{x+t,y+t})$$

$$q_{x,y} = (p_x)(p_y)(q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

$$q_{x,y} = (p_x)(p_y)(1 - p_{x+t} p_{y+t})$$

EXEMPLO 2: Considere o trecho da tabela de mortalidade (AT-49).

Idade	q_x	p_x	l_x
104	0,60271	0,39729	114,992
105	0,63896	0,36104	45,6853
106	0,67514	0,32486	16,4942
107	0,71090	0,28910	5,35831
108	0,74582	0,25418	1,54909
109	1	0,00000	0,39375

Calcule $_{1|}q_{104,107}$ e $_{2|}q_{104,107}$

Calcule $_{1|}q_{104,107}$ e $_{2|}q_{104,107}$

$$_{1|}q_{104,107} = (p_{104})(p_{107})(q_{105} + q_{108} - q_{105} q_{108})$$

$$_{2|}q_{104,107} = (_{2}p_{104})(_{2}p_{107})(q_{106} + q_{109} - q_{106}q_{109})$$

A probabilidade de que o status sobreviva a t anos e falhe antes de t+u anos é dada por $t|q_{x,y}$:

$$_{t|u}q_{x,y} = P(t < T_{x,y} \le t + u)$$

$$t|u q_{x,y} = P(T_{x,y} > t) - P(T_{x,y} > t + u)$$

$$t|uq_{x,y} = t p_{x,y} - t + u p_{x,y} = t p_{x,y} - t p_{x,y} (up_{x+t,y+t})$$

$$t|u q_{x,y} = t p_{x,y} (1 - u p_{x+t,y+t})$$

$$_{t|u}q_{x,y} = (_{t}p_{x,y})(_{u}q_{x+t,y+t})$$

A probabilidade de que o status sobreviva a t anos e falhe antes de t+u anos é dada por $t|q_{x,y}$:

$$_{t|u}q_{x,y} = (_{t}p_{x,y})(_{u}q_{x+t,y+t})$$

$$t|u q_{x,y} = (tp_x)(tp_y)(uq_{x+t} + uq_{y+t} - uq_{x+t} \times uq_{y+t})$$

$$t|uq_{x,y} = (tp_x)(tp_y)(1 - up_{x+t} \times up_{y+t})$$

EXEMPLO 3: Seja o tempo de vida futuro T_{45} e T_{50} independentes, então obtenha a probabilidade de que a primeira morte ocorra entre 5 e 10 anos.

$$P(5 < T_{45,50} \le 10) = {}_{5} p_{45,50} - {}_{10} p_{45,50}$$

$$P(5 < T_{45,50} \le 10) = ({}_{5}p_{45})({}_{5}p_{50}) - ({}_{10}p_{45})({}_{10}p_{50})$$

EXEMPLO 3: Seja o tempo de vida futuro T_{45} e T_{50} independentes, então obtenha a probabilidade de que a primeira morte ocorra entre 5 e 10 anos.

$$P(5 < T_{45,50} \le 10) = {}_{5} p_{45,50} - {}_{10} p_{45,50}$$

$$P(5 < T_{45,50} \le 10) = ({}_{5}p_{45})({}_{5}p_{50}) - ({}_{10}p_{45})({}_{10}p_{50})$$

$$_{5|5}q_{45,50} = (_{5}p_{45})(_{5}p_{50})(1 - _{5}p_{50} \times _{5}p_{55})$$

$$_{5|5}q_{45,50} = (_{5}p_{45})(_{5}p_{50}) - (_{5}p_{45})(_{5}p_{50})(_{5}p_{50} \times _{5}p_{55})$$

$$_{5|5}q_{45,50} = (_{5}p_{45})(_{5}p_{50}) - (_{10}p_{45})(_{10}p_{50})$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R.
 Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Matemática Atuarial II

Aula 6

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_{t} p_{x} {}_{t} p_{y} = {}_{t} p_{x,y}$$

$${}_{t} q_{x,y} = 1 - {}_{t} p_{x,y}$$

$$t|q_{x,y} = (tp_{x,y}) (q_{x+t,y+t})$$

$$_{t|u}q_{x,y} = (_{t}p_{x,y})(_{u}q_{x+t,y+t})$$

Status vida conjunta (Seguros Vitalício)

- Nessa modalidade de seguro, o benefício é pago assim que o Status falhar.
- O valor presente atuarial de um seguro de vida vitalício com efeito imediato, e benefício pago ao final do ano de falha do status vida conjunta, com sobrevida caracterizada pela variável aleatória $T_{x,y}$, é dada por:

$$A_{x,y} = \sum_{t=0}^{\infty} v^{t+1} |_{t|} q_{x,y}$$

Status vida conjunta (Seguros)

$$A_{x,y} = \sum_{t=0}^{\infty} v^{t+1} |_{t|} q_{x,y} = \sum_{t=0}^{\infty} v^{t+1} |_{t} (p_{x,y}) (q_{x+t,y+t})$$

Consequentemente,

$$A_{x,y} = \sum_{t=0}^{\infty} v^{t+1}(tp_x)(tp_y) (1 - p_{x+t} p_{y+t})$$

Ou

$$A_{x,y} = \sum_{t=0}^{\infty} v^{t+1}(t_t p_x)(t_t p_y) (q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

Universidade Federal de Alfenas

EXEMPLO 1: Considere o trecho da tabela de mortalidade (AT-49).

Idade	q_x	\boldsymbol{p}_{x}	l_x
104	0,60271	0,39729	114,992
105	0,63896	0,36104	45,6853
106	0,67514	0,32486	16,4942
107	0,71090	0,28910	5,35831
108	0,74582	0,25418	1,54909
109	1	0,00000	0,39375

A seguradora irá pagar um benefício de 1 u.m. (ao fim do ano de morte) caso pelo menos um dos segurados (x = 104, y = 107 anos,) faleça ao longo do tempo. Utilize i = 5%.

$$A_{104,107} = v^1 P \big(T_{104,107} = 0 \big) + v^2 P \big(T_{104,107} = 1 \big) + v^3 P \big(T_{104,107} = 2 \big) + \cdots$$

$$A_{104,107} = v^1_{0|}q_{104,107} + v^2_{1|}q_{104,107} + v^3_{2|}q_{104,107} + \cdots$$

$$A_{104,107} = v^1 {}_0p_{104,107}q_{104,107} + v^2p_{104,107}q_{105,108} + v^3 {}_2p_{104,107}q_{106,109} + \cdots$$

$$A_{104,107} = \sum_{t=0}^{\infty} v^{t+1} \,_{t} p_{104,107} q_{104+t,107+t}$$

A duração máxima do status no seguro vitalício embora esteja representada por " ∞ ", corresponde a $\omega - max(x,y)$, caso T_x e T_y pertençam a mesma tábua.

Universidade Federal de Alfenas

$$A_{104,107} = \sum_{t=0}^{\infty} v^{t+1} \,_{t|} q_{104,107}$$

$$A_{104,107} = \sum_{t=0}^{\infty} v^{t+1} (t p_{104}) (t p_{107}) (1 - p_{104+t} p_{107+t})$$

Ou

$$A_{104,107} = \sum_{t=0}^{\infty} v^{t+1} (_t p_{104}) (_t p_{107}) (q_{104+t} + q_{107+t} - q_{104+t} \ q_{107+t})$$

????

EXEMPLO 2: A seguradora irá pagar um benefício de 1 u.m. por um seguro vitalício, caso pelo menos um dos segurados faleça (T_{112} e T_{114}). Considere uma taxa de juros de 4% ao ano e tabua At-2000 unissex. Calcule o prêmio puro:

$$A_{112,114} = \sum_{t=0}^{\infty} v^{t+1} _{t} p_{112,114} q_{112+t,114+t}$$

$$A_{112,114} = \sum_{t=0}^{\infty} v^{t+1} ({}_{t}p_{112} {}_{t}p_{114}) (1 - p_{112+t} p_{114+t})$$

$$A_{112,114} = \sum_{t=0}^{\infty} v^{t+1} t^{t} p_{112} t^{t} p_{114} (q_{112+t} + q_{114+t} - q_{112+t} q_{114+t})$$

????

Status vida conjunta (Seguros Temporário)

Caso seguro contratado pelo status tenha período de cobertura definida, então temos um seguro temporário, tal que

$$A_{u^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} P(T=t) = \sum_{t=0}^{n-1} v^{t+1} {}_{t|} q_{x,y} = \sum_{t=0}^{n-1} v^{t+1} ({}_{t} p_{x,y}) (q_{x+t,y+t})$$

$$A_{u^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} {}_{t} p_{y} (1 - p_{x+t} p_{y+t}) = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} {}_{t} p_{y} (q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

EXEMPLO 3: Calcule $A_{u^1:\overline{5}|}$, com u=(x=37,y=1). Considere i=5% ao ano e que T_{37} e T_1 possam ser modelados pela tábua de vida AT-49 masculina.

$$A_{u^{1}:\overline{5}|} = \sum_{t=0}^{4} v^{t+1} (t_{237,1}) q_{37+t,1+t}$$

$$A_{u^{1}:\overline{5}|} = vq_{37,1} + v^{2}(p_{37,1})q_{38,2} + v^{3}(p_{37,1})q_{39,3} + v^{4}(p_{37,1})q_{40,4} + v^{5}(p_{37,1})q_{41,5}$$

EXEMPLO 3: Calcule $A_{u^1:\overline{5}|}$, com u=(x=37,y=1). Considere i=5% ao ano e que T_{37} e T_1 possam ser modelados pela tábua de vida AT-49 masculina.

$$A_{u^{1}:\overline{5}|} = \sum_{t=0}^{4} v^{t+1} (t_{t}p_{37,1}) q_{37+t,1+t}$$

$$A_{u^1:\overline{5}|} = vq_{37,1} + v^2(p_{37,1})q_{38,2} + v^3(p_{37,1})q_{39,3} + v^4(p_{37,1})q_{40,4} + v^5(p_{37,1})q_{41,5}$$

...

$$v^{3}({}_{2}p_{37,1})q_{39,3} = \left(\frac{1}{1+0.05}\right)^{3}({}_{2}p_{37})({}_{2}p_{1})(1-p_{39}p_{3})$$

$$v^{3}(_{2}p_{37,1})q_{39,3} = \left(\frac{1}{1+0,05}\right)^{3}(_{2}p_{37})(_{2}p_{1})(q_{39}+q_{3}-q_{39}q_{3})$$

•

Unifal Suniversidade Federal de Alfenas

 $A_{u^1:\overline{5}|} \approx 0.01195$

Status vida conjunta (Seguro vitalício)

$$A_{x,y} = \sum_{t=0}^{\infty} v^{t+1}(t_t p_x)(t_t p_y) (1 - p_{x+t} p_{y+t})$$

$$A_{x,y} = \sum_{t=0}^{\infty} v^{t+1}(t_t p_x)(t_t p_y) (q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

Status vida conjunta (Seguro temporário)

$$A_{u^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} P(T=t) = \sum_{t=0}^{n-1} v^{t+1} |_{t|} q_{x,y} = \sum_{t=0}^{n-1} v^{t+1} (_{t} p_{x,y}) (q_{x+t,y+t})$$

$$A_{u^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} {}_{t} p_{y} (1 - p_{x+t} p_{y+t}) = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} {}_{t} p_{y} (q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

Status vida conjunta (Seguro vitalício)

$$var(Z_{x,y}) = {}^{2}A_{x,y} - (A_{x,y})^{2}$$

$${}^{2}A_{x,y} = \sum_{t=0}^{\omega} v^{2t+2} |_{t|} q_{x,y}$$

Status vida conjunta (Seguro temporário)

$$var(Z_{x,y}) = {}^{2}A_{u^{1}:\overline{n|}} - (A_{u^{1}:\overline{n|}})^{2}$$

$${}^{2}A_{u^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{2t+2} {}_{t|} q_{x,y}$$

Status vida conjunta (Seguro Dotal puro)

O dotal puro aplicado ao status vida conjunta se caracteriza por pagar o benefício somente se todos os indivíduos do status sobreviverem ao período contratado. Sendo assim, para o status formado por x e y, temos:

$$Z_{t_u} = \begin{cases} v^n & T_u > 0\\ 0 & \text{caso contrário} \end{cases}$$

$$A_{u:\bar{n}|^1} = v^n \,_n p_{x,y} = v^n \,_n p_x \,_n p_y$$

EXEMPLO 4: Um casal deseja contratar um seguro que irá pagar \$100000,00 caso ambos estejam vivos ao final de 6 anos. Qual o valor do prêmio pago por eles? Considere x = 20, y = 25 e i = 5% ao ano e que não será acrescido ao prêmio valores adicionais ao que se espera gastar com sinistros.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8
29	0,00095	0,99905	977766
30	0,00100	0,99900	976837,1
31	0,00107	0,99893	975860,3
32	0,00114	0,99886	974816,1

$$Z_{t_u} = \begin{cases} 10^5 v^6 & T_u > 0 \\ 0 & caso\ contr\'ario \end{cases}$$

Em que
$$u = \{20,25\}$$

EXEMPLO 4: Um casal deseja contratar um seguro que irá pagar \$100000,00 caso ambos estejam vivos ao final de 6 anos. Qual o valor do prêmio pago por eles? Considere $x=20,\ y=25$ e i=5% ao ano e que não será acrescido ao prêmio valores adicionais ao que se espera gastar com sinistros.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8
			977766
			976837,1
			975860,3
			974816,1

Para $u = \{20,25\}$ temos:

$$10^{5}A_{u:\overline{6}|^{1}} = 10^{5}v^{6} {}_{6}p_{20,25} = 10^{5}v^{6} {}_{6}p_{20} {}_{6}p_{25}$$

$$10^{5}A_{u:\overline{6}|^{1}} = 10^{5}v^{6}\frac{l_{26}}{l_{20}}\frac{l_{31}}{l_{25}} \approx $73921,63$$

Status vida conjunta (Seguro Dotal Misto)

O seguro dotal misto garante que o benefício será pago caso o status falhe dentro do período de cobertura n, ou todos os indivíduos sobrevivam a esse período. Logo,

$$A_{u:\bar{n}|} = A_{u:\bar{n}|^1} + A_{u^1:\bar{n}|}$$

EXEMPLO 5: Um casal busca contratar um seguro que garantirá um benefício de 1 em caso de sobrevivência de ambos ao final de 2 anos. Em caso de falecimento de um dos cônjuges durante esse período, o sobrevivente também receberá um benefício igual a 1. Qual o valor do prêmio pago por eles? Considere x = 20, y = 25 e i = 3% ao ano e que não será acrescido ao prêmio valores adicionais ao que se espera gastar com sinistros.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8
29	0,00095	0,99905	977766
30	0,00100	0,99900	976837,1
31	0,00107	0,99893	975860,3
32	0,00114	0,99886	974816,1

$$A_{u:\overline{2}|} = A_{u:\overline{2}|^1} + A_{u^1:\overline{2}|}$$

em que
$$u = \{20,25\}$$

EXEMPLO 5: Um casal busca contratar um seguro que garantirá um benefício de 1 em caso de sobrevivência de ambos ao final de 2 anos. Em caso de falecimento de um dos cônjuges durante esse período, o sobrevivente também receberá um benefício igual a 1. Qual o valor do prêmio pago por eles? Considere x = 20, y = 25 e i = 3% ao ano e que não será acrescido ao prêmio valores adicionais ao que se espera gastar com sinistros.

X	qx	рх	lx
20	0,00062	0,99938	984341,5
21	0,00065	0,99935	983731,2
22	0,00067	0,99933	983091,8
23	0,00070	0,99930	982433,1
24	0,00073	0,99927	981745,4
25	0,00077	0,99923	981028,7
26	0,00081	0,99919	980273,3
27	0,00085	0,99915	979479,3
28	0,00090	0,99910	978646,8
29	0,00095	0,99905	977766
30	0,00100	0,99900	976837,1
31	0,00107	0,99893	975860,3
32	0,00114	0,99886	974816,1

$$A_{u:\overline{2}|} = A_{u:\overline{2}|^{1}} + A_{u^{1}:\overline{2}|}$$

$$A_{u^{1}:\overline{2}|} = \sum_{t=0}^{1} v^{t+1} ({}_{t}p_{20,25}) q_{20+t,25+t}$$

$$A_{u:\overline{2}|^{1}} = v^{2} {}_{2}p_{20,25}$$

Status vida conjunta (Seguros diferidos)

Seguro diferido vitalício

$$_{m|}A_{x,y} = (v^m _m p_{x,y})A_{x+m,y+m}$$

EXEMPLO 6: Calcule $_{3|}A_{101,104}$, para isso considere i=5% ao ano e a tábua de vida AT-49 masculina.

Resp.:

$$_{3|}A_{101,104} = (v^3 _3p_{101,104})A_{104,107}$$

$$_{3|}A_{101,104} = v^3 _3p_{101,104} = v^3 _3p_{101} \times _3 p_{104}$$

$$A_{104,107} = \sum_{t=0}^{\infty} v^{t+1} \left(p_{104} \right) \left(p_{107} \right) \left(1 - p_{104+t} p_{107+t} \right)$$

Status vida conjunta (Seguros diferidos)

Seguro diferido temporário

$$_{m|}A_{u^{1}:\overline{n|}} = (v^{m}_{m}p_{x,y})A_{w^{1}:\overline{n|}}$$

em que
$$u = \{x, y\}$$
 e $w = \{x + m, y + m\}$.

EXEMPLO 7: Dois irmãos decidem contratar um seguro que garantirá um benefício de 1u.m. em caso de ao menos uma morte dentro de um período de 2 anos, contudo esse seguro tem uma carência de 3 anos. Qual o valor do prêmio pago por eles? Considere x = 17, y = 22 e i = 3% ao ano e que não será acrescido ao prêmio valores adicionais ao que se espera gastar com sinistros.

Resp.:

$$_{3|}A_{u^{1}:\overline{2}|} = (v^{3} _{3}p_{17,22})A_{w^{1}:\overline{2}|}$$

$$u = \{17,22\}$$
 e $w = \{20,25\}$.

$$A_{u:\overline{3}|^1} = v^3 \,_3 p_{17,22} = v^3 \,_3 p_{17} \,_3 p_{22}$$

$$A_{w^{1}:\overline{2}|} = \sum_{t=0}^{1} v^{t+1} (_{t}p_{20,25}) (q_{20+t} q_{25+t})$$

Universidade Federal de Alfenas

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

