포트 폴리오

20190717 조나영

- 1. AI 개요
- 2. 인공지능, 머신러닝, 딥러닝
- 3. 인공신경망 개요
- 4. GPU
- 5. 텐서플로
- 6. MNIST 데이터 셋
- 7. 딥러닝 구현 순서
- 8. 예측
 - 예제
- 9. 주요용어
- 10. 인공신경망 퍼셉트론
- 11. 논리게이트
- 12. 회귀와 분류
 - -가설
 - -손실함수
 - -최적화과정
 - -학습률

13. 예제

선형회귀 y=2x 예측
선형회귀 y=2x 예측
2018년 대한민국 인구증가율과 고령인구비율
케라스 모델 미사용 텐서플로 프로그래밍
보스톤 주택 가격 예측
자동차 연비 데이터(auto mpg)로 회귀 분석

14. 이항 분류 및 다항 분류

이항 분류 : 레드 와인과 화이트 와인 구분

다항 분류 : 와인 품질 분류

다항 분류: 패션 MNIST

인공지능과 딥러닝 개요

AI 시작

- 앨런 튜링
 - 。 1950 년, 논문 <Computing machinery and intelligence>을 발표
 - → 생각하는 기계의 구현 가능성에 대한 내용
 - 。 인공지능 실험, '튜링 테스트'
 - → 텍스트로 주고받는 대화에서 기계가 사람인지 기계인지 구별할 수 없을 정도로 대화를 잘 이끌어 간다면, 이것은 기계가 "생각"하고 있다고 말할 충분한 근거가 된다 (지금의 챗봇)
- 인공지능(Artificial Intelligence)의 처음 사용
 - 。 1956 년 다트머스대 학술대회
 - 세계 최초의 AI 프로그램인 논리 연산기(Logic Theorist)를 발표

•

AI 와 딥러닝 역사

1940 년 시작 → (두번의 혹한기) → 2010 년(최고의 전성기)

• AI 의 첫번째 암흑기 (1969-1980) — 마빈 민스키(Marvin Minsky)의 인공 신경망(Artificial Neural Network)인 퍼셉트론 (Perceptron)에 대한 비판으로 촉발 • AI 의 두번째 암흑기 (1987-1993) — 규칙 기반의 전문가시스템의 의구심과 한계

딥러닝이 인기인 이유

2000년 이후의 문제가 해결이 되기 때문

→ 빅데이터 ↑, 컴퓨터 속도↑(계산 속도↑), 알고리즘

인공지능, 머신러닝, 딥러닝

인공지능 (AI: Artificial Intelligence)

• 컴퓨터가 인간처럼 지적 능력을 갖게 하거나 행동하도록 하는 모든 기술

머신러닝(machine learning)

• 기계가 스스로 학습할 수 있도록 하는 인공지능의 한 연구 분야

• SVM(Support Vector Machine): 수학적인 방식의 학습 알고리즘

딥러닝

• 다중 계층의 신경망 모델(뉴런네트워크)을 사용하는 머신러닝의 일종 **특징, 데이터가 많을 수록 딥러닝에 적합

머신러닝(machine learning)(=기계학습)

- 주어진 데이터를 기반으로 기계가 스스로 학습하여 성능을 향상시키거나 최적의 해답을 찾기 위한 학습 지능 방법
- 스스로 데이터를 반복적으로 학습하여 기술을 터득하는 방식
 - 명시적으로 프로그래밍(explicit programming)을 하지 않아도 컴퓨터가 학습을 할 수 있도록 해주는 인공지능의 한 형태
 - 더 많은 데이터가 유입되면, 컴퓨터는 더 많이 학습을 하고, 시간이 흐르면서 더 스마트 해져서 작업을 수행하는 능력과 정확도가 향상
 - 。 분류
 - 지도학습(supervised learning) [정답의 훈련데이터로 학습]
 - 올바른 입력과 출력의 쌍으로 구성된 정답의 훈련 데이터(labeled data)로부터 입출력 간의 함수를 학습시키는 방법
 - k-최근접 이웃 (k-Nearest Neighbors)
 - 선형 회귀 (Linear Regression)
 - 로지스틱 회귀 (Logistic Regression)
 - 서포트 벡터 머신 (Support Vector Machines (SVM))
 - 결정 트리 (Decision Tree)와 랜덤 포레스트 (Random Forests)
 - 비지도학습(자율학습)(unsupervised learning) [정답이 없는 훈련데이터로 학습]
 - 정답이 없는 훈련 데이터(unlabeled data)를 사용하여 데이터
 내에 숨어있는 어떤 관계를 찾아내는 방법
 - 군집 (Clustering)
 - k-평균 (k-Means)
 - 계층 군집 분석 (Hierarchical Cluster Analysis (HCA))
 - 기댓값 최대화 (Expectation Maximization)

- 시각화 (Visualization)와 차원 축소(Dimensionality reduction)
- 주성분 분석 (Principal Component Analysis (PCA))
- 커널 (kernel PCA)
- 지역적 선형 임베딩 (Locally-Linear Embedding (LLE)) 연관 규칙 학습 (Association rule learning)
- 어프라이어리 (Apriori)
- 이클렛 (Eclat)
- 강화학습(reinforcement learning) [잘하면 상, 못하면 벌]
 - 잘한 행동에 대해 보상을 주고 잘못한 행동에 대해 벌을 주는
 경험을 통해 지식을 학 습하는 방법
 - 딥마닝의 알파고
 - 자동 게임분야

머신러닝 흐름

Train Data \rightarrow 머신러닝알고리즘 훈련 \rightarrow 모델 \rightarrow 알고리즘 \rightarrow 예측 \rightarrow 평가 (\rightarrow 머신러닝알고리즘 훈련)

**머신러닝 알고리즘 훈련 : 딥러닝인경우 인공신경망(ANN) 사용

머신 러닝과 딥 러닝의 차이점

	딥 러닝
서 탁월한 성능	큰 데이터 세트에서 뛰어난 성능
하십시오.	GPU가있는 강력한 기계가 필요합니다. DL은 상당한 양의 행렬 곱셈을 수행합니다.
능을 이해해야 함	데이터를 나타내는 최고의 기능을 이해할 필요가 없 습니다
	최대 몇 주. 신경망은 상당한 수의 가중치를 계산해 야합니다.
-	능을 이해해야 함

인공신경망에서 시작된 딥러닝

퍼셉트론(perceptron)

세계 최초의 인공신경망을 제안

- 1957 년 코넬대 교수, 심리학자인 프랭크 로젠블랫(Frank Rosenblatt)
- 신경망에서는 방대한 양의 데이터를 신경망으로 유입
- 데이터를 정확하게 구분하도록 시스템을 학습시켜 원하는 결과를 얻어냄

인공신경망 (ANN)

인공신경망(ANN: Artificial Neural Network) 사용

- 인간의 뇌는 1000 억개의 뉴런으로 구성
- 뇌를 구성하는 신경세포 뉴런(Neuron)의 동작원리에 기초한 기술
- 인간의 신경세포인 뉴런(neuron)을 모방하여 만든 가상의 신경
- 뇌와 유사한 방식으로 입력되는 정보를 학습하고 판별하는 신경 모델

MLP(Multi Layer Perceptron)

- 입력층(input layer)과 출력층(output layer)
- 다수의 신호(input)를 입력 받아서 하나의 신호(output)를 출력
- 중간의 은닉층(hidden layer)
- 여러 개의 층으로 연결하여 하나의 신경망을 구성

DNN(deep neural network)

심층신경망(deep neural network)

- 다중 계층인 심층신경망(deep neural network)을 사용
- 학습 성능을 높이는 고유 특징들만 스스로 추출하여 학습하는 알고리즘
- 입력 값에 대해 여러 단계의 심층신경망을 거쳐 자율적으로 사고 및 결론 도출

GPU

- 그래픽 처리 장치 GPU(Graphics Processing Unit)
 - 그래픽 연산 처리를 하는 전용 프로세서
 - GPU 란 용어는 1999 년 엔비디아(Nvidia)에서 처음 사용
- GPGPU(General Purpose Graphic Processing Unit)
 - 일반 CPU 프로세서를 돕는 보조프로세서(coprocessor)로서의 GPU
 - 중앙 처리 장치(CPU)가 맡았던 응용 프로그램들의 계산에 GPU를 사용하는 기술 (계산속도 ↑)
 - GPU 컴퓨팅이란 GPGPU를 연산에 참여
 - 고속의 병렬처리로 대량의 행렬과 벡터를 다루는 데 뛰어난 성능을 발휘
 - 딥러닝의 심층신경망에서 빅데이터를 처리하기 위해 대량의 행렬과 벡터를 사용
 - GPU 사용이 매우 효과적 GPU(12 개) == CPU(2,000 개) [계산 능력]

CUDA(Compute Unified Device Architecture)

GPU 업체인 NVIDIA 의 GPU를 사용하기 위한 라이브러리 소프트웨어

**PC 에서 GPU를 이용해서 DNN을 사용하기 위해서는 CUDA Driver, CuDNN를 설치해야 사용가능

구글의 TPU

2016 년 텐서 처리 장치(Tensor Processing Unit)를 발표

- 텐서란 벡터·행렬 을 의미
- TPU는 데이터 분석 및 딥러닝용 칩으로서 벡터·행렬연산의 병렬처리에 특화
- 텐서플로(TensorFlow) TPU 를 위한 소프트웨어
- ⇒ GPU 보다 빠른 계산장치용 CPU를 만듬(판매용 X)

텐서플로 개요

딥러닝 라이브러리: 텐서플로, 케라스, 파이토치 (적합언어: 파이썬)

케라스(Keras) 개요

독자적인 고수준 라이브러리

- 엔진으로 텐서플로, 씨아노, CNTK 등을 사용 현재는 Tensorflow의 고수준 API 로도
 사용
- 동일한 코드로 CPU와 GPU에서 실행 가능
- 사용하기 쉬운 API를 가지고 있어 딥러닝 모델의 프로토타입을 빠르게 생성 텐서플로(TensorFlow) 개요

구글(Google)에서 만든 라이브러리 - 연구 및 프로덕션용 오픈소스 딥러닝 라이브러리

• 딥러닝 프로그램을 쉽게 구현할 수 있도록 다양한 기능을 제공 • 데스크톱, 모바일, 웹, 클라우드 개발용 API를 제공 – 구현 및 사용

- Python, Java, Go 등 다양한 언어를 지원 텐서플로 자체는 기본적으로 C++로 구현 파이썬을 최우선으로 지원 대부분의 편한 기능들이 파이썬 라이브러리로만 구현 Python 에서 개발하는 것이 편함
- 텐서보드(TensorBoard) 브라우저에서 실행 가능한 시각화 도우미 – 딥러닝 학습 과정을 추적하는데 유용하게 사용

텐서 개요

Tensor(텐서): 모든 데이터 (딥러닝에서 데이터를 표현하는 방식)

- 0-D 텐서 : 스칼라 (차원이 없는 텐서) ex) 10
- 1-D 텐서: 벡터 (1 차원 텐서) ex) [10, 20]
- 2-D 텐서 : 행렬 등 (2 차원 텐서) ex) [[1,2],[3,4]]
- n 차원 행렬(배열) ex) [[[1,2],[2,3]],[2,4],[4,3]]]
- 텐서는 행렬로 표현할 수 있는 n 차원 형태의 배열을 높은 차원으로 확장

TensorFlow 계산 과정

모두 그래프(Graph)라고 부르는 객체 내에 저장되어 실행 – 그래프를 계산하려면외부 컴퓨터에 이 그래프 정보를 전달하고 그 결과값을 받아야 함

session

```
x = tf.constant(3)
y = x**2

sess = tf.Session()
print(sess.run(x))
print(sess.run(y))
sess.close()
```

- 세션 생성
 - Session 객체 생성
- 세션 사용
 - run 메서드에 그래프를 입력하면 출력 값을 계산하여 반환
- 세션 종료
- close 메서드
- with 문을 사용하면 명시적으로 호출 불필요
- ** 텐서 1.0 만 해당/ 19.6 월에 나온 2.0 부분은 생략가능(아예 사용불가능 sess)

TensorFlow API 계층

- TensorFlow 딥 러닝 모델 구축 작업은 서로 다른 API 수준을 사용하여 해결
- 고급 API Keras 나 TF-Slim 과 같은 추상화 라이브러리를 제공하여 저수준 텐서플로 라이브러리에 대해 손쉽게 고수준 접근이 가능하게 해줌
- 중급 API
- 하위 수준 API
- ** 케라스, 텐서플로 뭐가 좋아요? 텐서플로 안에 케라스가 있음

개발환경

구글의 Colab (Google Drive + Jupyter Notebook) - 파이썬과 머신러닝, 딥러닝 개발 클라우드 서비스

- 구글 계정 필요(구글 드라이브를 기본 저장소로 사용)
- 클라우드 기반의 무료 Jupyter 노트북 개발 환경
 - 주피터 노트북을 지원하는 머신러닝, 딥러닝 클라우드 개발환경
 - 파이썬 뿐만 아니라 판다스, 멧플롯리브의 시각화 및 텐서플로우나 케라스 등 딥러닝 라이브러리도 쉽게 사용
- 구글 계정 전용의 가상 머신 지원 GPU, TPU 지원
- Google drive 문서와 같이 링크만으로 접근 / 협업 가능

장점: 구글 드라이브, 깃허브랑 연계

사양 : 일반 개인 pc 보다 성능우수 , CPU 사용, 딥러닝시 GPU,TPU 사용 아나콘다 (자신의 PC 에 설치해 활용가능)

• 데이터과학에 관련된 것

https://github.com/chonayoung/2020-2-Al/blob/main/code/01_tf_basic.ipynb

코랩 버전 바꾸기

%tensorflow_version 1.x → 1.x 를 실행 %tensorflow_version 2.x → 2.x 를 실행

import 하기 전에 '런타임 다시 시작'를 누르고 해당 버전을 실행을 하면, 버전 바꿀 수
 있음

버전 보기

import tensorflow as tf tf.version

텐서플로 2.0 에서 즉시 실행은 기본으로 활성화 tf.executing_eagerly()

텐서 정보 출력

- 1.0 일 때 세션 사용
- 2.0 일 때 값만 보려면 numpy()를 이용

a = tf.constant([1,2,3])

a.shape() #행렬 알려줌

TensorShape([3])

조건연산 tf.cond()

tf.cond(pred, true_fn=None, false_fn=None, name=None)

⇒ (조건, 정답, 오류, name=None) – pred 를 검사해 참이면 true_fc 반환 – pred 를 검사해 거짓이면 false_fc 반환

배열 텐서 연산

텐서의 브로드캐스팅 (중간고사 문제)

• Shape 이 다르더라도 연산이 가능하도록 가지고 있는 값을 이용하여 Shape 을 맞춤

import numpy as np

x = tf.constant((np.arange(3))) y = tf.constant([5], dtype=tf.int64) print((x+y).numpy())

x = tf.constant((np.ones((3, 3)))) y = tf.constant(np.arange(3), dtype = tf.double) print((x+y).numpy())

x = tf.constant(np.arange(3).reshape(3, 1)) y = tf.constant(np.arange(3)) print((x+y).numpy())

[1. 2. 3.]] [[0 1 2]

[1 2 3]

[2 3 4]]

np.arange(3) + 5

np.ones((3,3)) + np.arange(3)

np.arange(3).reshape((3, 1)) + np.arange(3)

https://github.com/chonayoung/2020-2-AI/blob/main/code/02_tf_interm.ipynb

행렬 곱셈;

행렬 곱(내적)

A B A * B
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 6 + 2 \cdot 5 + 3 \cdot 4 & 1 \cdot 3 + 2 \cdot 2 + 3 \cdot 1 \\ 4 \cdot 6 + 5 \cdot 5 + 6 \cdot 4 & 4 \cdot 3 + 5 \cdot 2 + 6 \cdot 1 \end{pmatrix}$$

$$C_{ij} = \sum_{k} A_{ik} B_{kj} = A_{ik} B_{kj}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 10 & 8 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 7 & 10 \end{bmatrix}$$

Numpy: • np.dot(a, b) • a.dot(b)

Tf • tf.matmul()

텐서 연산

tf.add(): 더하기

tf.multiply(): 곱하기

tf.pow(): a 의 b tf.reduce_mean(): 평균 tf.reduce_sum(): 합

tf.rank(): 행렬의 차수반환

tf.zeros(): 0 으로 행렬 만듬 ex) tf.zeros([2,5,5,3]) 2.55*3 인 행렬임

tf.shape(): 현재 행렬 상태 보여줌

tf.reshape(): 해당 행렬로 형태 변경

• ex) tf.reshape(rank_three_tensor, [6, 10]) ⇒rank_three_tensor 를 6*10 행렬 형태변경

• ex) tf.reshape(matrix, [3, -1])

⇒ 기존 내용을 3x20 행렬로 형태 변경

⇒ -1 은 차워 크기를 계산하여 자동으로 결정하라는 의미

**형태가 변경된 텐서의 원소 개수 == 원래 텐서의 원소 개수

tf.cast: tf.Tensor 의 자료형을 다른 것으로 변경

변수 Variable

텐서플로 그래프에서 tf.Variable 의 값을 사용하려면 이를 단순히 tf.Tensor 로 취급

- 메소드 assign, assign_add 값을 변수에 할당
- 메소드 read_value 현재 변수값 읽기

https://github.com/chonayoung/2020-2-AI/blob/main/code/03_tf_random.ipynb

텐서플로 난수

균등 분포 난수 : tf.random.uniform([1], 0, 1) ⇒ 배열형태, [시작, 끝)

정규 분포 난수 : tf.random.normal([4],0,1) ⇒ 크기, 평균, 표준편차

섞는 것: tf.random.shuffle(a)

https://github.com/chonayoung/2020-2-Al/blob/main/code/04_tf_mnist_basic.ipynb

MNIST 데이트셋

딥러닝 손글씨 인식에 사용되는 데이터셋(손으로 쓴 자릿수에 대한 데이터 집합)

- MNIST((Modified National Institute of Standards and Technology)
- 미국 국립 표준 기술원(NIST)
- "필기 숫자 이미지"와 정답인 "레이블" 의 쌍으로 구성 (지도학습)
 - 숫자의 범위는 0에서 9까지, 총 10개의 패턴을 의미
 - 필기 숫자 이미지784 픽셀(회색조 이미지) 28 X 28 내부 값은 0~255 이 값을 0~1 로 수정해서 사용
 - 레이블(Label)이미지의 정답: 필기 숫자 이미지가 나타내는 실제 숫자, 0 에서 9

케라스 딥러닝 구현

- 1. 딥러닝 모델 만듬 (define)
- 2. 주요 훈련 방법 설정 (compile)
 - 최적화 방법(optimizers), 손실 함수(losses), 훈련 모니터링 지표(metrics)
- 3. 훈련 (fit)
- 4. 테스트 데이터 평가 (evaluate)
- 5. 정답 예측 (predict)

MNIST 데이터

훈련 데이터 손글씨 : 총 6 만개 ⇒ x_train(훈련) , y_train(정답)

테스트 데이터 손글씨 : 총 1 만개 \Rightarrow x_test(테스트) , y_test (정답)


```
# 랜덤하게 20개의 훈련용 자료를 그려 보자.
from random import sample
nrows, ncols = 4, 5 #츨력 가로 세로 수
# 출력할 첨자 선정
idx = sorted(sample(range(len(x_train)), nrows * ncols))
#print(idx)
count = 0
plt.figure(figsize=(12, 10))
for n in idx:
      count += 1
plt.subplot(nrows, ncols, count)
tmp = "Index: " + str(n) + " Label: " + str(y_train[n])
plt.title(tmp)
plt.imshow(x_train[n], cmap='Greys')
plt.tight_layout()
plt.show()
```


MNIST 데이터 셋을 위한 딥러닝

- 0 에서 9 까지의 분류(classification) Number of classes: 10 (클래스 10 개)
- 딥러닝 과정
 - 1. 모델 구성(개발)
 - 2. 블랙 박스(black box)
 - 2. 모델 훈련 (train)

- 모델이 문제를 해결하도록 훈련 ⇒ 어린 아이가 부모에게 훈련 받는 것에 비유
- 학습 방법 및 모니터링 지표 설정
- 경사하강법(내리막 경사 따라 가기)
- 손실 함수(Loss Function)
- 모니터링 지표 metrics
 - 3. 예측 (inference, prediction)

딥러닝 구현 순서

- 0) 필요 모듈 임포트
- 1) 훈련과 정답 데이터 지정 MNIST 데이터셋을 로드하여 준비
 - 전처리
 - 샘플 값을 정수에서 부동소수로 변환
 - 한 비트의 값을 255로 나눔
- 1-1) 데이터 전처리(옵션)
 - 정규화 결과 (수치데이터) 픽셀 값은 0에서 1사이의 값
- 2) 모델 구성
 - 층을 차례대로 쌓아 tf.keras.models.Sequential 모델을 생성 (신경망 구성)
 - o Neural Networks : 입력층, 중간층(은닉층), 출력층
 - 2 차원 그림 → 1 차원 평탄화
 - Flatten(input_shape=(28, 28)), 60000 개의 (28, 28) 크기를 가진 배열 [60000 개의 (28 * 28) 크기의 배열로 수정]

- 단순 신경망 모델 (중간은닉층이 없는 구조)(입력층과 출력층만 존재)
- Dense(): 완전연결층 (입력, 은닉, 출력 있음)
- 3) 학습에 필요한 최적화 방법과 손실 함수 등 설정
- 옵티마이저: 입력된 데이터와 손실 함수를 기반으로 모델(w 와 b)을 업데이트하는 메커니즘
- 손실 함수: 훈련 데이터에서 신경망의 성능을 측정하는 방법 (모델이 옳은 방향으로 학습될 수 있도록 도와주는 기준 값)
- 훈련과 테스트 과정을 모니터링할 지표
 - 여기에서는 정확도(정확히 분류된 이미지의 비율)만 고려
- 3-1) 구성된 모델 요약(옵션)
 - model.summary() 각 층의 구조와 패라미터 수 표시
 - 가중치(weights)와 편향(biases) 총 패라미터 수
 - 모델이 구해야 할 수(가중치, 편향) 의 개수
 - 4) 생성된 모델로 훈련 데이터 학습
 - model.fit()
 - 훈련 횟수 epochs 에 지정
 - fit() 메서드 호출 (모델의 매개변수를 정하는 과정)
 - 훈련 데이터에 모델을 학습
 - 5) 테스트 데이터로 성능 평가
 - 테스트 세트에서도 모델이 잘 작동하는지 확인
 - model.evaluate() (손실 값과 예측 정확도 반환) [loss, accuracy]
- 5-1) 테스트 데이터 또는 다른 데이터로 결과 예측(옵션)

import tensorflow as tf

#mnist 모듈 준비

mnist = tf.keras.datasets.mnist

MNIST 데이터셋을 훈련과 테스트 데이터로 로드하여 준비

(x_train, y_train), (x_test, y_test) = mnist.load_data()

샘플 값을 정수(0~255)에서 부동소수(0~1)로 변환

 x_{train} , $x_{test} = x_{train} / 255.0$, $x_{test} / 255.0$

#층을 차례대로 쌓아 tf.keras.models.Sequenmtial 모델을 생성

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)) #입력층, tf.keras.layers.Dense(128, activation='relu') #은닉층, tf.keras.layers.Dropout(0.2) #드롭아웃, tf.keras.layers.Dense(10, activation='softmax') #출력층

])
#훈련에 사용할 옵티마이저(optimizer)와 손실 함수, 출력정보를 모델에 설정
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy']) # metrics=['accuracy', 'mse'])
#모델 요약 표시
Model.summary()
#모델을 훈련 데이터로 총 5 번 훈련
model.fit(x_train, y_train, epochs=5)
#모델을 테스트 데이터로 평가
model.evaluate(x_test, y_test)

예측

**모델 구성후 사용해야 함

model.predict(input)

- input : 모델의 fit(), evaluate()에 입력과 같은 형태가 필요 (28*28 이미지가 여러개인 3 차원)
 - 。 슬라이스 이용 ex) pred_result = model.predict(x_test[:1])
 - 정답으로 나오는 10 개의 실수는 확률의 값 (0 일 확률값, 1 일 확률값...)** 10 개의 실수를 더하면 1 이 나옴.
- One hot encoding 하나의 자리만 1, 나머지는 모두 0
 - 데이터가 취할 수 있는 모든 단일 범주에 대해 하나 의 새 열을 생성
- argmax() 로 가장 큰 수의 위치 첨자를 반환
 - np.argmax()

1 차원 : 그대로 ⇒ 결과 : 첨자 (스칼라)

2 차원 : axis=1(인자)를 넣어줘야함 ⇒ 결과 : 1 차원(벡터)

- tf.argmax(): 텐서로 나옴

활성화 함수 softmax()

층을 차례대로 쌓아 tf.keras.models.Sequential 모델을 생성

```
model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu') #은닉층, tf.keras.layers.Dropout(0.2) #드롭아웃 (20%) 끊기, tf.keras.layers.Dense(10, activation='softmax') ])
```

- 평탄화 메소드 flatten (ary.flatten())
- 드롭 아웃

```
from random import sample import numpy as np
#x_test 로 직접 결과 처리
pred_result = model.predict(x_test)
print(pred_result.shape)
print(pred_result[0])
print(np.argmax(pred_result[0]))
#원핫 인코딩을 일반 데이터로 변환
pred_labels = np.argmax(pred_result, axis=1)
#예측한 답 출력
print(pred_labels)
#실제 정답 출력
print(y_test)
```

예측이 맞는 소스

#예측이 틀린 것은 파란색으로 그리기

cmap = 'Greys' if (pred_labels[n] == y_test[n]) else 'Blues'
plt.imshow(x_test[n].reshape(28, 28), cmap=cmap, interpolation='nearest')
tmp = "Label:" + str(y_test[n]) + ", Prediction:" + str(pred_labels[n]) plt.title(tmp)
plt.tight_layout()
plt.show()

예측이 틀린 소스

<<예측이 잘못된 20개 그리기 소스>> from random import sample import numpy as np

#예측 틀린 것 첨자를 저장할 리스트 mispred = []

```
#예측한 softmax 의 확률이 있는 리스트 pred result
pred result = model.predict(x test)
#실제 예측한 정답이 있는 리스트 pred_labels
pred_labels = np.argmax(pred_result, axis=1)
for n in range(0, len(y_test)): if pred_labels[n] != y_test[n]: mispred.append(n)
print('정답이 틀린 수', len(mispred))
#랜덤하게 틀린 것 20 개의 첨자 리스트 생성
samples = sample(mispred, 20) print(samples)
#틀린 것 20개 그리기
count = 0
nrows, ncols = 5, 4
plt.figure(figsize=(12,10))
for n in samples: count += 1
plt.subplot(nrows, ncols, count)
plt.imshow(x_test[n].reshape(28, 28), cmap='Greys', interpolation='nearest')
tmp = "Label:" + str(y_test[n]) + ", Prediction:" + str(pred_labels[n])
plt.title(tmp)
plt.tight_layout()
plt.show()
```


<예제>

- 중간층 2개, 출력층 128개 뉴런, 64개 뉴런, 10개 출력
- 훈련 횟수 20회 epochs=20

#층을 차례대로 쌓아 tf.keras.Sequential 모델을 생성

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(.2), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(.2), tf.keras.layers.Dense(10, activation='softmax')])

#훈련에 사용할 옵티마이저(optimizer)와 손실 함수, 출력정보를 선택

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

#모델 요약 표시

model.summary()

#모델을 훈련 데이터로 총 5 번 훈련

model.fit(x_train, y_train, epochs=20)

```
<flatten 미사용 가능>
      -> reshape()으로 평탄화 작업을 수행한 후 Dense() 층 사용
import tensorflow as tf
mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data()
#샘플 값을 정수(0~255)에서 부동소수(0~1)로 변환
x train, x test = x train / 255.0, x test / 255.0
#먼저 reshape()로 평탄화 작업을 수행한 후
x_{train} = x_{train.reshape}((60000, 2828)) x_{test} = x_{test.reshape}((10000, 2828))
#층을 차례대로 쌓아 tf.keras.models.Sequential 모델을 생성
model = tf.keras.models.Sequential([ #tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu', input_shape=(28 * 28,)),
tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ])
#모델 요약 표시
model.summary()
#훈련에 사용할 옵티마이저(optimizer)와 손실 함수, 출력정보를 모델에 설정
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy']) #metrics=['accuracy', 'mse'])
#모델을 훈련 데이터로 총 5 번 훈련
model.fit(x_train, y_train, epochs=5)
#모델을 테스트 데이터로 평가
model.evaluate(x_test, y_test)
```

<주요용어>

- 데이터셋 훈련용과 테스트용
 - Train data set, Test data set
 - x(입력, 문제), y(정답, 레이블) 전처리
- 모델 딥러닝 핵심 신경망, 여러 층 구성
 - 완전연결층 [Dense(): '중간층이 없는 구조']
 - 1 차원 배열로 평탄화 [Flatten(): 784 개의 긴 배열로 변환]
- 학습 방법의 여러 요소들
 - 옵티마이저(optimizer), 최적화 방법
 - 경사하강법: 내리막 경사 따라 가기
 - 손실 함수(Loss Function)
 - Cross entropy(크로스엔트로피), MSE(Mean Square Error 평균제곱오차)
- 딥러닝 훈련
 - Epochs
 - 총 훈련 횟수, 훈련 데이터를 한번 모두 훈련시키는 것이 1 에폭
- 전체 연결 (모두 연결)(Dense)
- 부분 연결 (Sparse)

- 드롭 아웃 (2012 년 토론토 대학의 힌튼 교수)
 - => 층에서 결과 값을 일정 비율로 제거하는 방법
 - 뉴런의 수 ↑, 화살표 ↑, 예측 ↓ → 모델을 단순히하자!

• 오버피팅(overfitting) 문제를 해결하는 정규화(regularization) 목적을 위해서 필요

**과적합문제(overfitting): 학습 데이터에 지나치게 집중해 실제 Test 에서는 결과가 더 나쁘게 나오는 현상

- 훈련 중 페센테이지 만큼 중간에 끊은 후 학습
- tf.keras.layers.Dropout(0.2) 훈련 중에 20%를 0으로 지정 확률 값은
 0.2~0.5 주로사용
- 예측할 때는 모두 사용(어떤 유닛도 드롭아웃하지 않음)

- 활성화함수(activation function)
 - o ReLU, Sigm, Tanh

인공신경망 퍼셉트론

인공 신경 세포(Artificial Neuron)

뉴런 (입력[input] / 편향[Bias])

- 편향 : 편향을 조정하여 출력을 맞출 수 있음
- 식 : σ = w*x + b (w: 가중치, b:편향)

행렬의 곱 연산

식 : $\sigma = w^*x + b = [w \ b] [x \ 1] (행렬의 곱)$

행렬의 곱을 하는 이유 : 입력이 여러개, 출력이 여러개일 경우 있기 때문

일반화된 인공신경망

- 활성화 함수 (뉴런의 출력값을 정하는 함수)
- 결과 값이 임계 값 역할
 - 결과가 임계 값 이상이면 활성화
 - 결과가 임계 값 미만이면 비활성화

- 동일함수(identity)
 - \circ f(x) = x
- ReLU (정류(수정)된 선형함수)(Rectified Linear Unit)
 - 。 값의 왜곡이 적어짐
 - o max(x, 0) [양수만 사용][0 이하는 모두 0 으로 한 함수]

- Sigmoid (시그모이드)
 - 。 s 자 형태의 곡선이라는 의미
 - 출력 값이 (0~1 사이)

입력의 특징

2 차원의 입력값 [x1, x2, x3 ... ,xn] ⇒ z(스칼라)

3 차원의 입력값 [[x11, x12, x13 ... ,x1n], ... [xs1, xs2, xs3 ... ,xsn]] ⇒ [z1, z2, z3 ... zn] (벡터)

** 뉴런층 : 히든층 ~ 출력층

- 행렬의 다른 표현
 - 。 입력을 오른쪽 행렬에 배치
 - 。 가중치는 왼쪽 행렬에 배치
 - 。 곱의 순서도 변환

활성화 함수 그리기

자연수(오일러 수): e, 2.71828

• 시그모이드 함수

$$h(x) = \frac{1}{1 + e^{-x}}$$

• ReLU 함수

$$h(x) = \begin{cases} 0 & (x \le 0) \\ x(x > 0) \end{cases}$$

<소스>

import numpy as np import matplotlib.pylab as plt

#ReLU(Rectified Linear Unit

#(정류된 선형 유닛) 함수

def relu_func(x): return np.maximum(0, x) #return (x>0)*x # same

def sigm_func(x): # sigmoid 함수

return 1 / (1 + np.exp(-x))

#그래프 그리기

plt.figure(figsize=(8, 6))

x = np.linspace(-4, 4, 100)

y = np.linspace(-0.2, 2, 100)

```
plt.plot(x, relu_func(x), linestyle=':', label="ReLU")
plt.plot(x, sigm_func(x), linestyle='--', label="sigmoid")
plt.legend(loc='upper left')
```


<다양한 활성화 함수>

```
import numpy as np import matplotlib.pylab as plt def identity_func(x): # 항등함수
```

return x

def linear_func(x): # 1 차함수

return 1.5 * x + 1 # a 기울기(1.5), Y 절편 b(1) 조정가능

def tanh_func(x): # TanH 함수

return np.tanh(x)

def relu_func(x): # ReLU(Rectified Linear Unit, 정류된 선형 유닛) 함수 return

np.maximum(0, x) #return (x>0)*x # same

def sigm_func(x): # sigmoid 함수

return 1 / (1 + np.exp(-x))

#그래프 그리기

```
plt.figure(figsize=(12, 8)) x = np.linspace(-2, 4, 100)
plt.plot(x, identity_func(x), linestyle='--', label="identity")
plt.plot(x, linear_func(x), linestyle=':', label="linear")
plt.plot(x, tanh_func(x), linestyle='--', label="tanh")
plt.plot(x, relu_func(x), linestyle='--', label="ReLU")
plt.plot(x, sigm_func(x), linestyle='--', label="sigmoid")
plt.legend(loc='upper left')
```


논리게이트

AND 게이트

구조 : 입력 2개, 편향, 출력 1개 구할 값 : 가중치 2개, 편향 1개

XOR 게이트

하나의 퍼셉트론으로는 불가능 \rightarrow 뉴런 3개의 2층으로 가능 (구해야 할 총 매개변수 : 3 * 2 + 3 * 1 = 9 개)

Sequential 모델

• 패러미터 수 : (입력측 뉴런수 + 1)*(출력측 뉴런 수

• param : 가중치, 편향

회귀와 분류

회귀(regresson): 연속적인 값을 예측 ex)사용자가 광고 클릭 확률?

• 회귀 분석 : 통계언어

- 관찰된 연속형 변수들에 대해 두 변수 사이의 모형을 구한 뒤 적합도를 측정해 내는 분석 방법
- 회귀분석은 시간에 따라 변화하는 데이터나 어떤 영향, 가설적 실험, 인과 관계의 모델링 등의 통계적 예측에 이용
- 어원 : 프랜시스 골턴 "평균으로의 회귀"

분류(classification): 불연속적인 값을 예측 ex) email 이 스팸메일인지? 아닌지?

** 클러스팅링(군집화)와 구분해야 함.

선형회귀

데이터의 경향성을 가장 잘 설명하는 하나의 직선을 예측하는 방법 [Y = aX + b][기울기a 와 절편인 b를 구하는 것]

단순 선형 회귀분석(Simple Linear Regression Analysis)

○ 입력 : 특징 1 / 출력 : 하나의 값

$$H(x) = Wx + b$$

• 다중 선형 회귀분석(Multiple Linear Regression Analysis)

○ 입력 : 특징 여러개 / 출력 : 하나의 값

$$y = W_1x_1 + W_2x_2 + \dots W_nx_n + b$$

- ** 로지스틱 회귀(Logistic Regression)
- ⇒ 회귀가 아니고, 연속적인 값을 예측하는 것이 아님
 - 이진 분류 (클래스가 2개인 것)
 - 입력: 하나 or 여러개 / 출력: 0 or 1

인공지능

가중치 w 와 편향 b 를 구하기 (w,b 가 매개변수[parameter])

가설

머신러닝에서 y와 x간의 관계를 유추한 식를 가설

- → w,b 를 찾아는 일
 - 인공지능 in 가중치 == 일차함수 in 기울기
 - 인공지능 in 편향 == 일차함수 in 절편

손실함수

실제 값과 가설로부터 얻은 예측 값의 오차를 계산하는 식(실제 값과 예측 값에 대한 오차에 대한 식)[낮은 값이 좋음]

- → 머신러닝은 w,b 를 찾기위해 손실함수를 정의
 - MSE(Mean Square Error 평균제곱오차)

$$rac{1}{n}\sum_{i}^{n}\left[y_{i}-H(x_{i})
ight]^{2}$$

오차는 실제 데이터(빨간 점)와 예측 선(파란 선)의 차이의 제곱의 합

→ 제곱을 하는 이유 : 오차 중에는 마이너스가 있으니 그냥 더하면 0 이 된다. ⇒ 마이너스를 플러스로!

평균 제곱 오차를 W와 b에 의한 비용 함수(Cost function)로 재정의

$$cost(W,b) = rac{1}{n} \sum_{i}^{n} \left[y_i - H(x_i)
ight]^2$$

- 모든 점 들과의 오차가 클수록 평균 제곱 오차는 커지며,
 - 오차가 작아질수록 평균 제곱 오차는 작아짐

평균 제곱 오차

- cost(W, b)를 최소가 되게 만드는 W와 b를 구하면
 - 결과적으로 y와 x의 관계를 가장 잘 나타내는 직선을 그릴 수 있게 됨

$$W,b o minimize\ cost(W,b)$$

- Categorical crossentropy
- Sparse Categorical crossentropy

최적화과정 (옵티마이저: Optimizer)

w,b 를 잘 구하는 것 (최적화 알고리즘)

- ⇒ 최적화 과정의 알고리즘 : 경사하강법(Gradient Descent)
 - 경사하강법

비용 함수(Cost Function)의 값을 최소로 하는 W 와 b 를 찾는 방법 [경사 따라 내려 오기]

손실과 가중치를 대응한 그림

- 1. 시작 값(시작점)선택
- 2. 시작점 별로 중요 $x \rightarrow 0$ 으로 설정, 임의의 값 in 많은 알고리즘
- 3. 시작점에서 손실곡선의 기울기 계산 (미분 값)
- 2. 기울기가 0인 지점 향해 이동

*현재 기울기가 음수 \to 다음 가중치값은 현재보다 크게 조정

。 다음 가중치 결정 방법

- 기울기 * 학습률 ex)w = w - (-2.5 x 0.01) = w + 0.025
- 학습률 : 시작점에서 다음시작점으로 얼만큼 이동할지 결정 (0.001 ~ 0.1)
- 학습률의 값
 - 작게 설정 → 오랜 시간
 - 크게 설정 → 최저점을 무질서하게 이탈 위험

학습률

• 다양한 학습률로 실험 - 이러한 학습률이 손실 곡선의 최저점에 도달하는 데 필요한 단계 수에 어떤 영향을 미치는지 확인

실험, 경험의 의해 사람이 정하는 것 : 하이퍼 패러미터

가중치, 편향: 일반매개변수(패러미터)

오차역전파

• 순전파 : 새로운 w 를 구해 결과를 봄

- 역전파 : 오차 결과값 이용해 역으로 input 방향으로 오차 적어지게 다시 보내 가중치 수정 → 처리속도 ↑
 - 1986, 제프리 힌튼

케라스로 예측 순서

- ① 케라스 패키지 임포트
- import tensorflow as tf
- import numpy as np
- ② 데이터 지정
- -x = numpy.array([0, 1, 2, 3, 4])
- -y = numpy.array([1, 3, 5, 7, 9]) #y = x * 2 + 1
- ③ 인공신경망 모델 구성
- model = tf.keras.models.Sequential()
- model.add(tf.keras.layers.Dense(출력수, input_shape=(입력수,)))
- ④ 최적화 방법과 손실 함수 지정해 인공신경망 모델 생성
- model.compile(' SGD ' , ' mse ')
- ⑤ 생성된 모델로 훈련 데이터 학습
- model.fit(...)
- ⑥ 성능 평가
- model.evaluate(...)
- ⑦ 테스트 데이터로 결과 예측
- model.predict(...)

<예제>

[3.5, 5, 5.5, 6]

[선형회귀 y=2x 예측]

훈련 데이터 : x_train=[1,2,3,4] y_train=[2,4,6,8] 테스트 데이터 : x_test = [1.2, 2.3, 3.4, 4.5] y_test = [2.4, 4.6, 6.8, 9.0] 예측, 다음 x 에 대해 예측되는 y 를 출력

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense

- ① 문제와 정답 데이터 지정 x_train = [1, 2, 3, 4] y_train = [2, 4, 6, 8]
- ② 모델 구성(생성)
 model = Sequential([Dense(1, input_shape=(1,), activation='linear') #Dense(1, input_dim=1)])
- ③ 학습에 필요한 최적화 방법과 손실 함수 등 지정
 # 훈련에 사용할 옵티마이저(optimizer)와 손실 함수, 출력정보를 선택
 # Mean Absolute Error, Mean Squared Error
 model.compile(optimizer='SGD', loss='mse', metrics=['mae', 'mse'])
 # 모델을 표시(시각화)
 model.summary()
- ④ 생성된 모델로 훈련 데이터 학습 model.fit(x_train, y_train, epochs=1000)
- ⑤ 테스트 데이터로 성능 평가

 x_test = [1.2, 2.3, 3.4, 4.5] y_test = [2.4, 4.6, 6.8, 9.0] print('정확도:', model.evaluate(x_test, y_test)) print(model.predict([3.5, 5, 5.5, 6]))

[선형회귀 y=2x 예측]

import tensorflow as tf import numpy as np #훈련과 테스트 데이터 x = np.array([0, 1, 2, 3, 4]) y = np.array([1, 3, 5, 7, 9]) #y = x * 2 + 1

#인공신경망 모델 사용 model = tf.keras.models.Sequential()

#은닉계층 하나 추가 model.add(tf.keras.layers.Dense(1, input_shape=(1,)))

#모델의 패라미터를 지정하고 모델 구조를 생성 #최적화 알고리즘: 확률적 경사 하강법(SGD: Stochastic Gradient Descent) #손실 함수(loss function): 평균제곱오차(MSE: Mean Square Error) model.compile('SGD', 'mse')

#생성된 모델로 훈련 자료로 입력(x[:2])과 출력(y[:2])을 사용하여 학습 #키워드 매개변수 epoch(에퐄): 훈련반복횟수 #키워드 매개변수 verbose: 학습진행사항 표시 model.fit(x[:3], y[:3], epochs=1000, verbose=0)

#테스트 자료의 결과를 출력 print('Targets(정답):', y[3:])

#학습된 모델로 테스트 자료로 결과를 예측(model.predict)하여 출력 print('Predictions(예측):', model.predict(x[3:]).flatten())

[2018년 대한민국 인구증가율과 고령인구비율]

인구증가율과 고령인구비율

X = [0.3, -0.78, 1.26, 0.03, 1.11, 0.24, -0.24, -0.47, -0.77, -0.37, -0.85, -0.41, -0.27, 0.02, -0.76, 2.66]

Y = [12.27, 14.44, 11.87, 18.75, 17.52, 16.37, 19.78, 19.51, 12.65, 14.74, 10.72, 21.94, 12.83, 15.51, 17.14, 14.42]

활성화 함수 tanh(하이퍼볼릭 타젠트) [S 자 곡선][-1,1]

$$\tanh(z) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad \sigma(x) = \frac{1}{1 + e^{-x}}.$$

중간층: 6개, 출력층: 1개

4.7 딥러닝 네트워크를 이용한 회귀 import tensorflow as tf import numpy as np

인구증가율과 고령인구비율

X = [0.3, -0.78, 1.26, 0.03, 1.11, 0.24, -0.24, -0.47, -0.77, -0.37, -0.85, -0.41, -0.27, 0.02, -0.76, 2.66]

Y = [12.27, 14.44, 11.87, 18.75, 17.52, 16.37, 19.78, 19.51, 12.65, 14.74, 1 0.72, 21.94, 12.83, 15.51, 17.14, 14.42]

model = tf.keras.Sequential([tf.keras.layers.Dense(units=6, activation='tanh',
input_shape=(1,)), tf.keras.layers.Dense(units=1)])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1), loss='mse') model.summary()

#4.8 딥러닝 네트워크의 학습 model.fit(X, Y, epochs=10)

#4.9 딥러닝 네트워크의 Y측 예측

```
model.predict(x)
```

```
#4.10 딥러닝 네트워크의 회귀선 확인
Import matplotlib.pyplot as plt

line_x = np.arange(min(X), max(X), 0.01)
line_y = model.predict(line_x)

plt.plot(line_x, line_y, 'r-')
plt.plot(X,Y,'bo')

plt.xlabel('Population Gowth Rate (%)')
plt.ylabel('Elderly Population Rate (%)')
```

plt.show()

```
Epoch 1/10
   1/1 [-----
               -----] - Os 1ms/step - loss: 256.3840
   Epoch 2/10
   1/1 [-----] - Os 824us/step - Loss: 116.0593
   Epoch 3/10
   1/1 [-----
             -----] - Os 926us/step - Loss: 9.6935
   Epoch 4/10
               -----] - Os 952us/step - Ioss: 9.3609
   1/1 [=====
   Epoch 5/10
   1/1 [----
                 -----] - Os 2ms/step - loss: 9.2970
   Epoch 6/10
   1/1 [=====
               -----] - Os 963us/step - Ioss: 9.2382
   Epoch 7/10
   1/1 [-----
              ======== - Os 991us/step - loss: 9.1770
   Epoch 8/10
   1/1 [-----
              -----] - Os 908us/step - Loss: 9.1145
   Epoch 9/10
   1/1 [-----
               -----] - Os 911us/step - Loss: 9.0526
   Epoch 10/10
   1/1 [=======] - Os 899us/step - loss: 8.9924
   <tensorflow.python.keras.callbacks.History at 0x7f9ab36daa58>
   array([[16.27147],
          [15.190466],
          [15.10627],
          [16.290047],
          [15.327049],
          [16.291916],
          [16.117289],
          [15.818182],
          [15.214785],
          [15.965492],
          [15.012625],
          [15.909767],
          [16.086227],
          [16.287073],
          [15.238832],
          [13.875053]], dtype=float32)
```


[케라스 모델 미사용 텐서플로 프로그래밍]

optimizer - 최적화 과정(복잡한 미분 계산 및 가중치 수정)을 자동으로 진행

• SGD, adam

학습률(learning rate) - 보통 0.1 ~ 0.0001

**변수 Variables

- ▶ 프로그램에 의해 변화하는 공유된 지속 상태를 표현하는 가장 좋은 방법
 - 하나의 텐서를 표현
 - 텐서 값은 텐서에 연산을 수행하여 변경 가능
- 모델 파라미터를 저장하는데 tf.Variable 을 사용
- 변수 생성 : 초기값을 설정
- #a와 b를 랜덤한 값으로 초기화합니다.
- # a = tf.Variable(random.random())
- # b = tf.Variable(random.random())
- a = tf.Variable(tf.random.uniform([1], 0, 1))
- b = tf.Variable(tf.random.uniform([1], 0, 1))

** minimize()

▶ 첫번째 인자 : 최소화할 손실 함수

▶ 두번째 인자 : 학습할 변수 리스트, 가중치와 편향

#1000 번의 학습을 거쳐서 잔차의 제곱 평균을 최소화하는 적절한 값 a, b 에 도달 for i in range(1000): # 잔차의 제곱의 평균을 최소화(minimize)합니다. optimizer.minimize(compute_loss, var_list=[a,b])

```
# 4.4 텐서플로를 이용해서 회귀선 구하기
import tensorflow as tf
import numpy as np
# import random
X = [0.3, -0.78, 1.26, 0.03, 1.11, 0.24, -0.24, -0.47, -0.77, -0.37, -0.85, -0.41, -0.27, 0.02, -0.41, -0.27, 0.02, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.41, -0.
0.76, 2.661
Y = [12.27, 14.44, 11.87, 18.75, 17.52, 16.37, 19.78, 19.51, 12.65, 14.74, 10.72, 21.94,
12.83, 15.51, 17.14, 14.42]
#a와 b를 랜덤한 값으로 초기화합니다.
# a = tf.Variable(random.random())
# b = tf.Variable(random.random())
a = tf.Variable(tf.random.uniform([1], 0, 1))
b = tf.Variable(tf.random.uniform([1], 0, 1))
# 잔차의 제곱의 평균을 반환하는 함수입니다.
def compute_loss():
                      y_pred = a * X + b
                      loss = tf.reduce_mean((Y - y_pred) ** 2)
                      return loss
optimizer = tf.keras.optimizers.Adam(lr=0.07)
for i in range(1000): # 잔차의 제곱의 평균을 최소화(minimize)합니다.
                      optimizer.minimize(compute_loss, var_list=[a,b])
                      if i \% 100 == 99:
                                             print(i, 'a:', a.numpy(), 'b:', b.numpy(), 'loss:', compute_loss().numpy())
```

[보스톤 주택 가격 예측]

- 주요 활성화 함수 : ReLU, Sigmoid, Tanh
- 1978 년 보스톤 지역 주택 가격 데이터 셋
 [타운의 주택 가격 중앙 값, 천 달러 단위, 범죄율, 방 수, 고속도로까지 거리 등]
 [13 가지 특성]
- 506 개 : 학습 데이터 [404 개] / 테스트 데이터 [102 개]
- **정규화가 필요 (why? 특성의 단위가 다르기 때문) 정규화 방법
- 학습 데이터: (train_Xi 학습데이터평균) / 학습데이터 표준편차 [정규 분포를 가정] 테스트 데이터 : (test_Xi 학습데이터평균) / 학습데이터 표준편차 [테스트데이터가 정규 분포를 가정할 수 없음]
- 중간층 : 3 개 층
- 출력층 : 1 개 층[회귀 모델, 주택 가격이므로]
- 최적화 학습률 [lr=0.07] , 손실 함수 [mse]
- 훈련 데이터 404개 중 일부를 검증 데이터로 사용

- ** validation split: 검증 용 데이터의 비율
- ** 훈련:검증 == 80%:20% 비중
- ** batch size : 훈련에서 가중치와 편향의 패러미 터를 수정하는 데이터 단위 수
- ** train size : 훈련 데이터 수

검증 데이터 손실 : 일반적으로 loss 는 꾸준히 감소

[val_loss : 일반적으로 loss 보다 높음(항상 감소하지 않음)]

평가 결과 : 손실값(작을수록 좋은 결과)

검증 손실(val_loss)가 적을수록 테스트 평가의 손실도 적음) 검증 데이터에 대한 성적이 좋게 유도

-> 과적합에 의해 검증 손실 ↑ ⇒ 학습이 중단되도록 지정 (callbacks 사용) history = model.fit(train_X, train_Y, epochs=25, batch_size=32, validation_split=0.25, callbacks=[tf.keras.callbacks.EarlyStopping(patience=3, monitor='val_loss')])

일찍 멈춤 기능

- tf.keras.callbacks.EarlyStopping
 - monitor='val_loss' 지켜볼 기준 값이 검증 손실
 - patience=3:3회의 epochs를 실행하는 기준 값이 동안 최고 기록을 갱신하지 못하면(더 낮아지지 않으면) 학습을 멈춤

[자동차 연비 데이터(auto mpg)로 회귀 분석]

** 회귀 v/s 분류

회귀 : 가격 or 확률 같이 연속적인 출력값을 예측하는 것이 목적 분류 : 여러 개의 클래스 중 하나의 클래스를 선택하는 것이 목적

자동차 연비를 예측하는 모델

- Auto MPG 데이터 셋을 사용
- 1970 년대 후반과 1980 년대 초반의 데이터
- 이 기간에 출시된 자동차 정보를 모델에 제공
- 실린더 수, 배기량, 마력(horsepower), 공차 중량 같은 속성
- 이 예제는 tf.keras API 를 사용
- Mpg Mile per gallon, 연비, km/l

데이터 셋 (속성 8개)

1. mpg: continuous

2. cylinders: multi-valued discrete

3. displacement: continuous

4. horsepower: continuous

5. weight: continuous

6. acceleration: continuous

7. model year: multi-valued discrete

- 8. origin: multi-valued discrete
- 9. car name: string (unique for each instance): 없음 시본의 산점도
- 대각선 diag_kind (커널밀도추정곡선)
 - kde : Kernel Density Estimation
- 색상: palette='bright' [pastel, bright, deep, muted, colorblind, dark] sns.pairplot(train_dataset[["MPG", "Cylinders", "Displacement", "Weight"]], diag_kind="kde")

**데이터 정규화

- 특성의 스케일과 범위가 다르면 정규화(normalization)하는 것이 권장
- 의도적으로 훈련 세트만 사용하여 통계치를 생성
- 테스트 세트를 정규화할 때에도 훈련 데이터의 평균과 표준편차 사용 훈련데이터의 평균과 표준편차를 사용하는 Why? 테스트 세트를 모델이 훈련에 사용했던 것과 동일한 분포로 투영하기 위해서

**옵티마이저 발전 과정

**콜백

학습 과정의 한 에폭마다 적용할 함수의 세트

- 학습의 각 단계에서 콜백의 적절한 메서드가 호출
- 모델의 내적 상태와 통계자료를 확인
- 키워드 인수 callbacks
 - Sequential 이나 Model 클래스의 .fit() 메서드에 전달이 가능
- ** EarlyStopping 콜백(callback)
- model.fit 메서드를 수정하여 검증 점수가 향상 되지 않으면 자동으로 훈련을 멈춤
- 지정된 에포크 횟수 동안 성능 향상이 없으면 자동으로 훈련이 멈춤
- 옵션 monitor, patience 손실 val loss 가 10 회 초과해 감소하지 않으면 중단

** 메소드 axis()

x,y 축의 범위를 설정할 수 있게 하는 것과 동시에 여러 옵션을 설정할 수 있는 함수

필요 모듈 가져오기

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

데이터 가져오기 (UCI 머신러닝 저장소에서 다운로드)

dataset_path = keras.utils.get_file("auto-mpg.data",

"http://archive.ics.uci.edu/ml/machine-learning-databases/autompg/auto-mpg.data") print(dataset path)

데이터 읽어 dataset 에 저장 (판다스를 사용하여 데이터 읽기)

col_names = ['MPG','Cylinders','Displacement','Horsepower','Weight', 'Acceleration',
'Model Year', 'Origin']

raw_data = pd.read_csv(dataset_path, names=col_names, na_values = "?", comment='\text{\psi}t', sep=" ", skipinitialspace=True)

#comment: 특정문자가 있는 행은 주석으로 간주하고 읽지 않고 건너뜀 dataset = raw_data.copy() dataset.tail(10)

dataset.shape #데이터 정제, 비어있는 열의 행의 수 알아내기 dataset.isna().sum()

#비어있는 열이 하나라도 있는 행을 제거 dataset = dataset.dropna() dataset.shape

#열 'Origin'을 빼내 origin 에 저장 origin = dataset.pop('Origin')

#새로운 열 3개 추가
#생산국(미국, 유럽, 일본)에 따른 열 추가
"Origin"열은 수치형이 아니고 범주형이므로 원-핫 인코딩으로 변환
dataset['USA'] = (origin == 1) *1.0
dataset['Europe'] = (origin == 2) *1.0
dataset['Japan'] = (origin == 3) *1.0
dataset.tail()

데이터셋을 훈련 세트와 테스트 세트로 분할
전체 자료에서 80%를 훈현 데이터로 사용
train_dataset = dataset.sample(frac=0.8, random_state=0)
print(train_dataset)
전체 자료에서 나머지 20%를 테스트 데이터로 사용
test_dataset = dataset.drop(train_dataset.index)
print(test_dataset)

#전반적인 통계도 확인 train_stats = train_dataset.describe()

```
print(train stats)
train_stats.pop("MPG")
train_stats = train_stats.transpose()
train_stats.head(9)
#정답인 MPG 추출
#레이블을 만들고 원 데이터 집합에서 제거
train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')
# 정규화된 데이터를 사용하여 모델을 훈련 — 입력 데이터를 정규화하기 위해 사용한
통계치(평균과 표준편차)는 원-핫 인코딩과 마찬가지로 모델에 주입되는 모든 데이터에
적용
def norm(x):
      return (x - train_stats['mean']) / train_stats['std']
normed_train_data=norm(train_dataset)
normed test data=norm(test dataset)
normed_train_data.tail()
#모델 구성
#두 개의 완전 연결(densely connected) 은닉층으로 Sequential 모델
#출력 층은 하나의 연속적인 값을 반환
#나중에 두 번째 모델을 만들기 쉽도록 build model 함수로 모델 구성 단계를 감쌈
def build_mode():
      model = keras.Sequent([
            layers.Dense(64,activation='relu',input_shape=[len(train_dataset.keys())]),
            layers.Dense(64,activation='relu'),
            layers.Dense(1)
      ])
      optimizer=tf.keras.optimizers.RMSprop(0.001)
      model.compole(loss='mse', optimizer=optimizer, metrics=['mae','mse'])
      return model
```

```
model=build model()
model.summary()
#모델을 한번 실행
#훈련 세트에서 10 샘플을 하나의 배치로 만듬 (model.predict 메서드를 호출)
example_batch = normed_train_data[:10]
example_result = model.predict(example_batch)
print(example_result)
#모델 훈련
# 1,000 번의 에포크(epoch) 동안 훈련 - 훈련 정확도와 검증 정확도는 history 객체에
기록
# 에포크 중간중간에 점을 출력해 훈련 진행과정을 표시
# 에포크가 끝날 때마다 점(.)을 출력, 100 번마다 다음 줄로 이동해 훈련 진행 과정을
표시
Class PrintDot(keras.callbacks.Callback)"
      def on epoch end(self,epoch,logs):
            if epoch % 100 == 0 : print(")
            print('.', end ='')
EPOCHS = 1000
history = model.fit(normed_train_data, train_labels, epochs =EPOCHS, validation_split =
0.2, verbose=0, callbacks=[PrintDot()])
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail(10)
#검증 손실이 계속 감소하는 것이 중요
#patience 매개변수는 성능 향상을 체크할 에포크 횟수
early_stop=keras.callbacks.EarlyStopping(monitor='val_loss',patience=10)
```

history = model.fit(normed_train_data, train_labels, epochs =EPOCHS, validation_split = 0.2, verbose=0, callbacks=[PrintDot()])

plot_history(history)

#모델성능을 확인

#테스트세트에서 모델의 성능을 확인

loss, mae, mse = model.evaluate(normd test data, test labels, verbose=2)

이항 분류 및 다항 분류

이진 분류 (로지스틱 회귀)

두 가지로 분류하는 방법 ex) PASS / FAIL , SPAM / HAM , 긍정 / 부정

- 시그모이드 함수 : 이진분류 모델의 출력층에 주로 사용되는 활성화 함수 (0 과 1 사이의 값)
- 소프트맥스 함수 : 분류의 마지막 활성화 함수로 사용 (모든 yi의 합은 1)(각각의 yi는 그 분류의 확률)

**시그모이드 함수 v/s 소프트 맥스 함수 (이진 분류 v/s 다중 분류)

대표적인 다중 분류 ex) MNIST 손글씨

분류에서의 손실 함수

크로스 엔트로피(비용함수)(Cross entropy) - 실제 데이터의 결과 값인 y

$$H(p,q) = -\sum_x p(x) \, \log q(x).$$

p(x): 실제 분류 값, q(x)는 softmax 결과값(Y)

- y=1 일 때
 - 예측 값이 1 에 가까워질수록 cost function 의 값 ↓
 - 예측 값이 0 에 가까워질수록 cost function 의 값이 ∞ ↑ => 예측이 틀림
- y= 0 일 때
 - 예측이 0으로 맞게 되면 cost function은 매우 작은 값을 가짐
 - 예측이 1로 하게 되어 예측에 실패할 경우 cost 값이 ∞ ↑ => 예측이 틀림

tf.keras.losses.categorical_crossentropy

정답: y_true = [[0, 1, 0], [0, 0, 1]]

예측 : y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]

함수 적용: loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred)

결과: loss.numpy()

일반 값 사용 크로스 엔트로피 손실 함수

tf.keras.losses.categorical_crossentropy - 정답: 원 핫 인코딩 유형 tf.keras.losses.sparse_categorical_crossentropy - 정답: 일반 유형

<이항 분류: 레드 와인과 화이트 와인 구분>

캘리포니아 어바인 대학 제공 특징 12 개

['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality']

지수승 e x 효과 : 자연수 e 를 밑으로 하는 지수 함수
-> 음수는 양수로, 작은 수는 작게, 큰 수는 더욱 크게
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2, 2, 0.01)
e_x = math.e ** x
plt.axhline(0, color='gray')
plt.axvline(0, color='gray')
plt.plot(x, x, 'b-', label='y=x')
plt.plot(x, e_x, 'g.', label='y=e^x')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

5.1 와인 데이터셋 불러오기

import pandas as pd red = pd.read_csv('http://archive.ics.uci.edu/ml/machinelearningdatabases/wine-quality/winequality-red.csv', sep=';') white = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learningdatabases/winequality/winequality-white.csv', sep=';') print(red.head()) print(white.head())

5.2 와인 데이터셋 합치기 # 레드와인 : 0, 화이트와인 : 1

```
# 열 type 추가
red['type'] = 0
white['type'] = 1
print(red.head(2))
print(white.head(2))
wine = pd.concat([red, white])
print(wine.describe())
# 5.3 레드 와인과 화이트 와인 type 히스토그램
import matplotlib.pyplot as plt
plt.hist(wine['type'])
plt.xticks([0, 1])
plt.show()
print(wine['type'].value_counts())
# 5.5 데이터 정규화
# 최소 0, 최대 1
wine_norm = (wine - wine.min()) / (wine.max() - wine.min())
print(wine_norm.head())
print(wine_norm.describe())
# 레드와인, 화이트와인 행 섞기
# 5.6 데이터 섞은 후 numpy array 로 변환
import numpy as np
wine_shuffle = wine_norm.sample(frac=1)
print(wine_shuffle.head())
wine_np = wine_shuffle.to_numpy()
print(wine_np[:5])
# 5.7 train 데이터와 test 데이터로 분리
# 특징에서 마지막 값 -> 정답 -> 원핫 인코딩
import tensorflow as tf
```

```
train idx = int(len(wine np) * 0.8)
train_X, train_Y = wine_np[:train_idx, :-1], wine_np[:train_idx, -1]
#첫번째 -1 : 정답제외 / 두번째 -1 : 정답만
test_X, test_Y = wine_np[train_idx:, :-1], wine_np[train_idx:, -1]
print(train_X[0])
print(train_Y[0])
print(test_X[0])
print(test_Y[0])
train_Y = tf.keras.utils.to_categorical(train_Y, num_classes=2)
test Y = tf.keras.utils.to categorical(test Y, num classes=2)
print(train_Y[0])
print(test_Y[0])
y = [0, 1, 2, 3]
tf.keras.utils.to_categorical(y, num_classes=4)
# 5.8 와인 데이터셋 분류 모델 생성
# 마지막 층은 소프트맥스 함수 (결과 총합=1, 큰 값을 강조, 작은 값은 약화)
import tensorflow as tf
model = tf.keras.Sequential([
       tf.keras.layers.Dense(units=48, activation='relu', input_shape=(12,)),
       tf.keras.layers.Dense(units=24, activation='relu'), tf.keras.layers.Dense(units=12,
       activation='relu'),
       tf.keras.layers.Dense(units=2, activation='softmax') ])
model.compile(optimizer = tf.keras.optimizers.Adam(lr=0.07), I
       oss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
# 5.9 와인 데이터셋 분류 모델 학습
history = model.fit(train_X, train_Y, epochs=25, batch_size=32, validation_split=0.25)
# 5.10 분류 모델 학습 결과 시각화
```

```
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], 'b-', label='loss')
plt.plot(history.history['val_loss'], 'r--', label='val_loss')
plt.xlabel('Epoch')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], 'g-', label='accuracy')
plt.plot(history.history['val accuracy'], 'k--', label='val accuracy')
plt.xlabel('Epoch')
plt.ylim(0.7, 1)
plt.legend()
plt.show()
# 5.11 분류 모델 평가
model.evaluate(test X,test Y)
```

<다항 분류: 와인 품질 분류>

와인 데이터 셋의 'quality' 등급 3~9:이 모든 등급을 예측하기에는 등급에 따른 데이터 수 차이가 큼 -> 다시 등급을 3개 정도로 나누어 예측

```
# 새로운 등급인 new_quality 를 생성
# 조건에 맞는 값을 새로운 열에 추가 df.loc[data['컬럼']조건, '새로운 컬럼명'] = '값'
# 5.14 품질을 3 개의 범주(좋음, 보통, 나쁨)로 재분류
wine.loc[wine['quality'] <= 5, 'new_quality'] = 0
wine.loc[wine['quality'] == 6, 'new_quality'] = 1
wine.loc[wine['quality'] >= 7, 'new_quality'] = 2
print(wine['new_quality'].describe())
print(wine['new_quality'].value_counts())
```

```
# 5.15 데이터 정규화 및 train, test 데이터 분리
# 정규화, 원핫 인코딩
del wine['quality']
wine_backup = wine.copy()
wine_norm = (wine - wine.min()) / (wine.max() - wine.min()) wine_norm['new_quality'] =
wine_backup['new_quality']
wine_shuffle = wine_norm.sample(frac=1)
wine_np = wine_shuffle.to_numpy()
train_idx = int(len(wine_np) * 0.8)
train X, train Y = wine np[:train idx, :-1], wine np[:train idx, -1]
test_X, test_Y = wine_np[train_idx:, :-1], wine_np[train_idx:, -1]
train_Y = tf.keras.utils.to_categorical(train_Y, num_classes=3)
test_Y = tf.keras.utils.to_categorical(test_Y, num_classes=3)
# 5.16 와인 데이터셋 다항 분류 모델 생성 및 학습
model = tf.keras.Sequential([
       tf.keras.layers.Dense(units=48, activation='relu', input shape=(12,)),
       tf.keras.layers.Dense(units=24, activation='relu'), tf.keras.layers.Dense(units=12,
       activation='relu'),
       tf.keras.layers.Dense(units=3, activation='softmax') ])
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.003),
loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_X, train_Y, epochs=25, batch_size=32, validation_split=0.25)
# 5.17 다항 분류 모델 학습 결과 시각화
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], 'b-', label='loss')
plt.plot(history.history['val_loss'], 'r--', label='val_loss')
plt.xlabel('Epoch')
```

```
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], 'g-', label='accuracy')
plt.plot(history.history['val_accuracy'], 'k--', label='val_accuracy') plt.xlabel('Epoch')
plt.ylim(0.5, 0.7)
plt.legend()
plt.show()
# 5.18 다항 분류 모델 평가
model.evaluate(test X, test Y)
<다항 분류: 패션 MNIST>
티셔츠, 부츠 등 패션의 10 개 분류 (손글씨와 구조는 비슷)
• 60000, 10000 개, 28 X 28 이미지 구조, 10 개의 분류
# 5.21 데이터 정규화
train X = \text{train } X / 255.0 \text{ test } X = \text{test } X / 255.0 \text{ print(train } X[0])
# 5.22 Fashion MNIST 분류 모델
model = tf.keras.Sequential([
       tf.keras.layers.Flatten(input_shape=(28,28)),
       tf.keras.layers.Dense(units=128, activation='relu'), tf.keras.layers.Dense(units=10,
       activation='softmax') ])
model.compile(optimizer=tf.keras.optimizers.Adam(),
       loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary()
# 5.23 Fashion MNIST 분류 모델 학습
history = model.fit(train_X, train_Y, epochs=25, validation_split=0.25)
# 5.25 Fashion MNIST 분류 모델 평가
model.ealuate(test_X, test_Y)
```

```
#Fashion-MNIST 데이터 저장
#미리 섞여진 fashoin-mnist 의 학습 데이터와 테스트 데이터 로드
# 필요 모듈 임포트 # tensorflow 와 tf.keras 를 임포트
import tensorflow as tf
from tensorflow import keras
# ① 문제와 정답 데이터 지정
fashion mnist = keras.datasets.fashion mnist (train images, train labels), (test images,
test_labels) = fashion_mnist.load_data()
# 10 개의 분류 이름 지정
class names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker',
'Bag', 'Ankle boot']
# 데이터 전처리
# 샘플 값을 정수(0~255)에서 부동소수(0~1)로 변환
train_images, test_images = train_images / 255.0, test_images / 255.0
#② 모델 구성(생성)
model = keras.Sequential([
      keras.layers.Flatten(input_shape=(28, 28)),
      keras.layers.Dense(512, activation='relu'),
      keras.layers.Dense(256, activation='relu'),
      keras.layers.Dense(128, activation='relu'),
      keras.layers.Dense(10, activation='softmax') ])
```

#③ 학습에 필요한 최적화 방법과 손실 함수 등 지정
훈련에 사용할 옵티마이저(optimizer)와 손실 함수, 출력정보를 선택
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.summary()

④ 생성된 모델로 훈련 데이터 학습 # 모델을 훈련 데이터로 총 5 번 훈련 model.fit(train_images, train_labels, epochs=8)

#⑤ 테스트 데이터로 성능 평가

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\n 테스트 정확도:', test_acc)