

Title

rdbwselect — Bandwidth Selection Procedures for Local Polynomial Regression Discontinuity Estimators.

Syntax

```
rdbwselect depvar indepvar [if] [in] [, c(#) fuzzy(fuzzyvar [sharpbw]) deriv(#)
    p(#) q(#) covs(covars) covs_drop(covsdropoption) kernel(kernelfn)
    weights(weightsvar) bwselect(bwmethod) all scaleregul(#)
    masspoints(masspointsoption) bwcheck(bwcheck) bwrestrict(bwropt)
    stdvars(stdopt) vce(vcetype [vceopt1 vceopt2]) ]
```

Description

rdbwselect implements bandwidth selectors for local polynomial Regression
Discontinuity (RD) point estimators and inference procedures developed in
Calonico, Cattaneo and Titiunik (2014a), Calonico, Cattaneo and Farrell
(2018), Calonico, Cattaneo, Farrell and Titiunik (2019), and Calonico,
Cattaneo and Farrell (2020).

Companion commands are: $\underline{rdrobust}$ for point estimation and inference procedures, and \underline{rdplot} for data-driven RD plots (see $\underline{Calonico}$, $\underline{Cattaneo}$ and $\underline{Titiunik}$ (2015a) for details).

A detailed introduction to this command is given in <u>Calonico</u>, <u>Cattaneo and Titiunik (2014b)</u>, and <u>Calonico</u>, <u>Cattaneo</u>, <u>Farrell and Titiunik (2017)</u>. A companion <u>R</u> package is also described in <u>Calonico</u>, <u>Cattaneo and Titiunik (2015b)</u>.

Related Stata and R packages useful for inference in RD designs are described in the following website:

https://rdpackages.github.io/

Options

Estimand

- c(#) specifies the RD cutoff for indepvar. Default is c(0).
- fuzzy(fuzzyvar [sharpbw]) specifies the treatment status variable used to
 implement fuzzy RD estimation (or Fuzzy Kink RD if deriv(1) is also
 specified). Default is Sharp RD design and hence this option is not used. If
 the option sharpbw is set, the fuzzy RD estimation is performed using a
 bandwidth selection procedure for the sharp RD model. This option is
 automatically selected if there is perfect compliance at either side of the
 threshold.
- deriv(#) specifies the order of the derivative of the regression functions to be
 estimated. Default is deriv(0) (for Sharp RD, or for Fuzzy RD if fuzzy(.) is
 also specified). Setting deriv(1) results in estimation of a Kink RD design
 (up to scale), or Fuzzy Kink RD if fuzzy(.) is also specified.

Local Polynomial Regression

- p(#) specifies the order of the local polynomial used to construct the point estimator. Default is p(1) (local linear regression).
- $\mathbf{q}(\#)$ specifies the order of the local polynomial used to construct the bias correction. Default is $\mathbf{q}(2)$ (local quadratic regression).
- covs(covars) specifies additional covariates to be used for estimation and inference.

- covs_drop(covsdropoption) assess collinearity in additional covariates used for
 estimation and inference. Options pinv (default choice) and invsym drops
 collinear additional covariates, differing only in the type of inverse
 function used. Option off only checks collinear additional covariates but does
 not drop them.
- kernel(kernelfn) specifies the kernel function used to construct the
 local-polynomial estimator(s). Options are: triangular, epanechnikov, and
 uniform. Default is kernel(triangular).
- weights(weightsvar) is the variable used for optional weighting of the estimation
 procedure. The unit-specific weights multiply the kernel function.

Bandwidth Selection

bwselect(bwmethod) specifies the bandwidth selection procedure to be used.
 Options are:

mserd one common MSE-optimal bandwidth selector for the RD treatment effect
 estimator.

msetwo two different MSE-optimal bandwidth selectors (below and above the cutoff) for the RD treatment effect estimator.

msesum one common MSE-optimal bandwidth selector for the sum of regression
 estimates (as opposed to difference thereof).

msecomb1 for min(mserd, msesum).

msecomb2 for median(msetwo,mserd,msesum), for each side of the cutoff
 separately.

cerrd one common CER-optimal bandwidth selector for the RD treatment effect
 estimator.

certwo two different CER-optimal bandwidth selectors (below and above the cutoff) for the RD treatment effect estimator.

cersum one common CER-optimal bandwidth selector for the sum of regression
 estimates (as opposed to difference thereof).

cercomb1 for min(cerrd, cersum).

 ${\tt cercomb2}$ for median(${\tt certwo,cerrd,cersum}$), for each side of the cutoff separately.

Note: MSE = Mean Square Error; CER = Coverage Error Rate.

Default is **bwselect (mserd)**. For details on implementation see <u>Calonico</u>, <u>Cattaneo and Titiunik (2014a)</u>, <u>Calonico</u>, <u>Cattaneo and Farrell (2018)</u>, <u>Calonico</u>, <u>Cattaneo</u>, <u>Farrell and Titiunik (2019)</u>, and <u>Calonico</u>, <u>Cattaneo and Farrell (2020)</u>, and the companion software articles.

- all if specified, rdbwselect reports all available bandwidth selection procedures.
- scaleregul(#) specifies scaling factor for the regularization term added to the
 denominator of the bandwidth selectors. Setting scaleregul(0) removes the
 regularization term from the bandwidth selectors. Default is scaleregul(1).

masspoints(masspointsoption) checks and controls for repeated observations in the
 running variable. Options are:

off ignores the presence of mass points.

check looks for and reports the number of unique observations at each side of the cutoff.

adjust controls that the preliminary bandwidths used in the calculations
 contain a minimal number of unique observations. By default it uses 10
 observations, but it can be manually adjusted with the option bwcheck.
Default option is masspoints(adjust).

- bwcheck(bwcheck) if a positive integer is provided, the preliminary bandwidth used in the calculations is enlarged so that at least bwcheck unique observations are used.
- bwrestrict(bwropt) if set on, computed bandwidths are restricted to lie within the range of runvar. Default is on.
- stdvars(stdopt) if set on, depvar and runvar are standardized before computing the bandwidths. Default is off.

Variance-Covariance Estimation

```
vce(vcetype [vceopt1 vceopt2]) specifies the procedure used to compute the
  variance-covariance matrix estimator. Options are:
```

vce(nn [nnmatch]) for heteroskedasticity-robust nearest neighbor variance
 estimator with nnmatch indicating the minimum number of neighbors to be
 used.

vce(hc0) for heteroskedasticity-robust plug-in residuals variance estimator
 without weights.

vce(hc1) for heteroskedasticity-robust plug-in residuals variance estimator with hc1 weights.

vce (hc2) for heteroskedasticity-robust plug-in residuals variance estimator with hc2 weights.

vce (hc3) for heteroskedasticity-robust plug-in residuals variance estimator with hc3 weights.

vce(nncluster clustervar [nnmatch]) for cluster-robust nearest neighbor variance estimation using with clustervar indicating the cluster ID variable and nnmatch matches indicating the minimum number of neighbors to be used.

vce(cluster clustervar) for cluster-robust plug-in residuals variance
 estimation with degrees-of-freedom weights and clustervar indicating the
 cluster ID variable.

Default is vce(nn 3).

Example: Cattaneo, Frandsen and Titiunik (2015) Incumbency Data

```
Setup
. use rdrobust_senate.dta

MSE bandwidth selection procedure
. rdbwselect vote margin

All bandwidth bandwidth selection procedures
. rdbwselect vote margin, all
```

Stored results

Scalars

rdbwselect stores the following in e():

```
number of observations to the left of the cutoff
e(N 1)
                     number of observations to the right of the cutoff
e(N_r)
e(c)
                    cutoff value
e (p)
                     order of the polynomial used for estimation of the
                       regression function
                     order of the polynomial used for estimation of the bias of
e (q)
                      the regression function estimator
e(h_mserd)
                     MSE-optimal bandwidth selector for the RD treatment
                      effect estimator.
e(h_msetwo_1)
                      MSE-optimal bandwidth selectors below the cutoff for the
                       RD treatment effect estimator.
                     MSE-optimal bandwidth selectors above the cutoff for the
e(h_msetwo_r)
                      RD treatment effect estimator.
e(h_msesum)
                      MSE-optimal bandwidth selector for the sum of regression
                      estimates.
e(h_msecomb1)
                      for min(mserd, msesum).
e(h_msecomb2_1)
                      for median ({\tt msetwo}, {\tt mserd}, {\tt msesum})\,, below the cutoff.
e(h_msecomb2_r)
                      for median (msetwo, mserd, msesum), above the cutoff.
```

References

e(kernel)

Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2020. <u>Optimal Bandwidth Choice for Robust Bias Corrected Inference in Regression Discontinuity Designs</u>.

Econometrics Journal 23(2): 192-210.

kernel choice

- Calonico, S., M. D. Cattaneo, and M. H. Farrell. 2018. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. Journal of the American Statistical Association 113(522): 767-779.
- Calonico, S., M. D. Cattaneo, M. H. Farrell, and R. Titiunik. 2019. Regression Discontinuity Designs using Covariates. Review of Economics and Statistics, 101(3): 442-451.
- Calonico, S., M. D. Cattaneo, M. H. Farrell, and R. Titiunik. 2017. rdrobust: Stata Journal 17(2): 372-404.
- Calonico, S., M. D. Cattaneo, and R. Titiunik. 2014a. <u>Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs</u>. *Econometrica* 82(6): 2295-2326.

- Calonico, S., M. D. Cattaneo, and R. Titiunik. 2014b. <u>Robust Data-Driven</u>
 <u>Inference in the Regression-Discontinuity Design</u>. Stata Journal 14(4): 909-946.
- Calonico, S., M. D. Cattaneo, and R. Titiunik. 2015a. <u>Optimal Data-Driven Regression Discontinuity Plots</u>. Journal of the American Statistical Association 110(512): 1753-1769.
- Calonico, S., M. D. Cattaneo, and R. Titiunik. 2015b. <u>rdrobust: An R Package for Robust Nonparametric Inference in Regression-Discontinuity Designs</u>. *R Journal* 7(1): 38-51.
- Cattaneo, M. D., B. Frandsen, and R. Titiunik. 2015. <u>Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate</u>. *Journal of Causal Inference* 3(1): 1-24.

<u>Authors</u>

- Sebastian Calonico, Columbia University, New York, NY. sebastian.calonico@columbia.edu.
- Matias D. Cattaneo, Princeton University, Princeton, NJ. cattaneo@princeton.edu.
- Max H. Farrell, University of Chicago, Chicago, IL. max.farrell@chicagobooth.edu.
- Rocio Titiunik, Princeton University, Princeton, NJ. titiunik@princeton.edu.