Image processing Task 1

Course title	Computer Applications
Student code	20812018100295
Student Name	علي عادل محمد علي
Student Level	Level 400

Under supervision/ DR. Mahmoud Mohammed Atta

Task Requirements (by using MATLAB):

- 1. Change the most common color in the image to black.
- 2. Change the color of a specific part of the image into any other color.

The original image:

The first requirement:

Step1: Identifying the most common color in the image

 \rightarrow It's clear that the most common color in the above image is White.

Step2: Reading the image from my device and storing it on a Matrix to be capable to access its pixels and modifying them

 \rightarrow We can do that by identifying the right path of the image working directory

→ Then calling the function imread('faces.jpg') and passing the image name to it as an input argument, then storing it in a variable like that: fig1 = imread('faces.jpg');

 \rightarrow **Result:** \blacksquare fig1 150x300x3 uint8

Step3: Showing the pixel region of the image to know their RGB percentage

- \rightarrow We do that by calling this function: impixelregion ()
- → And passing our image matrix as an input argument to this function: impixelregion(imshow(fig1))
- \rightarrow Result:

 \rightarrow After we know the RGB percentage of the colors of the image, now we can move forward to the next step.

Step4: Building an Algorithm to change the color of the white to black

- \rightarrow <u>Firstly:</u> We need to search on all the image matrix
- \rightarrow Then: Make a condition using The RGB percentage from step2 to turn the percentage of the white RGB into [0,0,0]

After that: We should handle the condition if of the other colors beside the white one, we should store the original RGB percentages of the image.

<u>Then:</u> We should store these changes on the original image matrix to a new one, to be able to show it and compare it with the original one.

After that: End the condition and the looping on the image matrix.

<u>Finally:</u> Showing the new image after these changes.

Step5: Converting this Algorithm into a MATLAB code

```
>> for r = 1:150

for c = 1:300

if( fig1(r,c,1) > 250 )

    fig2(r,c,1:3) = 0 ;

else

fig2(r,c,1:3) = fig1(r,c,1:3) ;

end

end

end
```

\rightarrow Result:

The second requirement: (Changing the color of عجوه from pink to green)

Step1: Building an Algorithm to change the color of وجوه from pink to green:

- \rightarrow <u>Firstly:</u> We need to search on all the image matrix
- → <u>Then:</u> Make a condition using The RGB percentage to turn the percentage of the Pink RGB into the Green one.

After that: We should handle the condition if of the other colors beside the white one, we should store the original RGB percentages of the image.

Then: We should store these changes on the original image matrix to a new one, to be able to show it and compare it with the original one.

After that: End the condition and the looping on the image matrix.

Finally: Showing the new image after these changes.

Step2: Converting this Algorithm into a MATLAB code

```
>> for r = 1:150

for c = 1:300

if( fig1(r,c,1) < 240 && fig1(r,c,1) > 200 )

    fig3(r,c,1:3) = [ 9 249 17 ] ;

else

fig3(r,c,1:3) = fig1(r,c,1:3) ;

end
end
```

end

 \rightarrow Result:

