直流电桥测电阻实验报告

实验者姓名: 李昭阳 学号: 2021013445 实验日期: 2022/10/13 实验台号: 15

实验目的

- 1、了解单电桥测电阻的原理,掌握单电桥测电阻的方法
- 2、利用单电桥测量铜丝温度电阻系数,学习作图和直线拟合的方法
- 3、用电桥组装数字温度计,学习桥路的应用分析设计

实验仪器

QJ-23型携带式单电桥、直流稳压电源DC 5V、磁力搅拌器、电子温度计、数字调压器、万用表

数据处理及结果

惠斯通电桥测电阻

仪器组号	21	电桥型号	Q)	1-23

		2	2		
电阻标称值(Ω)	12052	IKs	IIKN	360KD	
比率臂读数 C	0.	D.	10	100	
电桥准确度等级指数α	0.2	0.2	0.5	0.5	
平衡时测量盘读数 $R(\Omega)$	1131	9900	1093	3600	
平衡后将检流计调偏Δd(格)	2.3	2.0	1.5	1.1	
与 Δd 对应的测量盘的示值变化 ΔR (Ω)		10		100	
测量值 CR (Ω)	119,1	990	10.33k	360.0K	
$\Delta_{\text{fix}} = \alpha \% \cdot (CR + 500C) (\Omega)$	0.3382	2.08	78,65	2050	
$\Delta_s = 0.2 C \Delta R / \Delta d \ (\Omega)$	0.0069	0.1	1.33	1818.2	
$\Delta_{R_x} = \sqrt{\left(\Delta_{f\chi}\right)^2 + \Delta_S^2} (\Omega)$	0.3328	2.082	79.66	2740.13	
$R_{x} = CR \pm \Delta_{R_{x}} (\Omega)$	119.1±0.3329	98012.082	10830 ± 78.66	360 0001 2740.1	٠ ځ

单电桥测铜丝的电阻温度系数

21 20.5 20 20 21 19.5 19.5 19.5 19.5 18.5 18.5

温度/℃

铜丝电阻与温度关系图

温度/℃	铜丝电阻/Ω
38.35	17.95
43.65	18.31
48.58	18.63
53.7	18.97
59.18	19.35
65.12	19.73
70.58	20.07
75.73	20.42
80.33	20.73

由图中数据可得, $R_0 = 15.427$ Ω ,代入计算参数可得,

$$lpha_R = rac{R_t - R_0}{R_0 t} = rac{k}{R_0} = rac{0.066}{15.427} = 0.00428 \ \Omega$$

同时由图像可以分析得,金属电阻随着温度递增而线性递增。

铜电阻数字温度计的设计组装及校验

对于电路设置参数,取定C = 0.01,有

$$E = rac{(1+C)^2}{10Clpha_R} = rac{(1+0.01)^2}{10 imes 0.01 imes 0.00428} = 2383.4 \ \ mV$$
 $R = rac{R_0}{C} = rac{15.427}{0.01} = 1542.7 \ \ \Omega$

$$\Delta U = -E rac{(Clpha_R t)^2}{(1+C)^3} = -2383.4 imes rac{(0.01 imes 0.00428 t)^2}{(1+0.01)^3} = -2313.9 imes (4.28 imes 10^{-5} t)^2 \ mV$$

拟合出变化曲线如下,

Ut / mv	温度/℃
67.12	6.77
71.07	7.15
74.97	7.51
79.03	7.92
83.16	8.31

则曲线可以近似认为Ut与t是线性关系,其关系式为

$$U_t = 0.0962t + 0.3132 \ (mV)$$

由于 $t \leq 100$ \mathbb{C} ,故在误差允许的范围内可以认为拟合曲线近似为 $U_t = \frac{1}{10}t + \Delta U$,即认为组装的温度计满足设计要求。

思考题

为什么用单电桥测电阻一般比伏安法测量的准确度高?单电桥中检流计的准确度对实验中所用的平衡电桥法测量有无影响?

伏安法在电压的变化中有电源的内阻作用,造成了检测的误差。单电桥测电阻则是以 桥路的平衡来检测,虽然也含有内阻的电源,但电桥消除了电源内阻对检测回路的影响。 检流计的准确度对测量有影响。因为当电桥不够"灵敏"时, ΔS 会增加,引起 $\Delta R_x = \sqrt{(\Delta_{(\!\!\!\ Q)})^2 + \Delta S^2}$ 增加,即使得测量结果的不确定度增加。

用惠斯通电桥测量电阻时,如果发现检流计的指针总是向一边偏转,请分析可能的原因。

- 1、在实验开始前未进行机械调零或电源、检流计接错或出现故障;
- 2、电桥C值过大或过小,导致在四位有效数字内均无法检出匹配的 R_x ;
- 3、被测电阻 R_x 过大或过小,超出电桥法测电阻的量程。

原始数据记录

