Prova QFL 605 Química Geral - Noturno

Nome: Pedro Gigeck Freire

nUSP: 10737136

INSTRUÇÕES

- Solicito encarecidamente que vocês façam a prova individualmente sem discutir ou obter respostas dos colegas. Esta é uma boa oportunidade de vocês poderem na verdade se autoavaliarem.
- Responda cada questão em uma página ou mais se for o caso, mas se sobrar espaço na página, comece a próxima questão na página subsequente.
- Para as questões numéricas, mostre o desenvolvimento da resolução do problema.
- Caso a resolução for manuscrita, fotografe a resolução e cole como imagem no arquivo Word no item correspondente. Não serão aceitas resoluções de foto/imagem da página inteira da questão. Lembrem de converter o arquivo word em pdf (vide abaixo)
 - Entreguem a prova em um único arquivo pdf.
- A entrega da prova no edisciplinas deverá ocorrer até a próxima segunda-feira (04/10).

1) Escreva as equações iônicas balanceadas das reações de precipitação resultante da mistura das soluções indicadas na primeira coluna. Escreva a equação da reação do precipitado (ppto) segundo as condições indicadas na segunda coluna e classifique o tipo de reação química.

Reação de Precipitação	Reação com o Precipitado (ppto)
i) Pb(NO ₃) ₂ (aq) + HCl(aq) (diluído)	ia) ppto + HCl(aq) (concentrado)
ii) AgNO₃(aq) + Na₂CO₃(aq)	iia) ppto + aquecimento
	iib) ppto + HCl(aq)
iii) AgNO ₃ (aq) + Na ₂ CrO ₄ (aq)	iiia) ppto + NH₃(aq) (sol. hidróxido de
	amônio)

Respostas:

i) Pb
$$(NO_3)_{2 \text{ (aq)}} + 2 \text{ HCl}_{\text{ (aq)}} \rightarrow \text{PbCl}_{2 \text{ (s)}} + 2 \text{ HNO}_3$$
 (forma precipitado de PbCl₂)

ia)
$$PbCl_{2(s)} + HCl_{(aq)} \rightarrow [PbCl_3]^-_{(aq)} + H^+_{(aq)}$$
 (dilui o precipitado por conta da formação do íon $[PbCl_3]^-$)

ii)
$$2 \text{ AgNO}_{3 \text{ (aq)}} + \text{Na}_2 \text{CO}_{3 \text{ (aq)}} \rightarrow \text{Ag}_2 \text{CO}_{3 \text{ (s)}} + 2 \text{ NaNO}_{3 \text{ (aq)}}$$

iia)
$$2 Ag_2CO_{3(s)} \rightarrow 2 Ag_{2(s)} + 2 CO_{2(g)} + O_{2(g)}$$

iii)
$$AgNO_{3(aq)} + Na_2CrO_{4(aq)} \rightarrow Ag_2CrO_{4(s)} + 2 NaNO_{3(aq)}$$

iiia)
$$Ag_2CrO_{4(s)} + 2NH_{3(aq)} \rightarrow 2[Ag(NH_3)]^+_{(aq)} + CrO_{4(aq)}$$
 (formação de íon complexo)

2) Uma das características dos compostos de coordenação é a possibilidade de troca de ligantes que pode ser parcial ou total.

Nitrato férrico ($Fe(NO_3)_3$) foi dissolvido em 300 mL de água (béquer **A**) originando o aquo-complexo ($Fe^{3+}_{(aq)}$) que possui 6 águas de coordenação.

Esta solução foi distribuída em três béqueres (**B, C, D**) cada um deles contendo 100 mL.

A cada um destes béqueres (**B, C, D**) foi adicionada solução de cianeto de potássio (KCN) em proporções que resultaram:

B: um complexo com 3 águas de coordenação e 3 ligantes cianeto.

C: um complexo com 2 águas de coordenação e 4 ligantes cianeto.

D: um complexo com 6 ligantes cianeto.

i) Escreva as fórmulas dos complexos formados em cada caso (A, B, C, D) indicando o contra-íon.

Legenda: Complexos - Contra-íons

A: $[Fe (H_2O)_6]^{3+} + \frac{3 NO_3^{-}}{(aq)}$

B: $[Fe (H_2O)_3 (CN)_3]^0 + 3 KNO_{3 (aq)}$

C: $[Fe (H_2O)_2 (CN)_4]^- + \frac{4K^+_{(aq)} + 3NO_3^-_{(aq)}}{4K^+_{(aq)} + 3NO_3^-_{(aq)}}$

D: $[Fe (CN)_6]^{3-} + \frac{6K^+_{(aq)} + 3NO_3^-_{(aq)}}{}$

ii) Em qual destes béqueres deve ser observada a formação de um precipitado após a adição de KCN(aq)? Justifique.

No béquer D, porque o composto de ferro já não apresenta águas de coordenação, dissossiando a água do composto. Assim, o íon $[Fe\ (CN)_6]^{3-}$ formado vai se precipitar em estado sólido.

iii) Ao se adicionar íons chumbo (Pb²⁺)* os ligantes cianeto são retirados do complexo ocorrendo: **a)** precipitação de Pb(CN)₂; e **b)** o aquo-complexo é restabelecido.

Escreva a equação iônica que representa este processo, para o caso da adição de Pb^{2+} ao béquer D.

*Íons $Pb^{2+}(aq)$ podem ser gerados no meio de reação, por exemplo, através da adição de $Pb(NO_3)_2(s)$ que é muito solúvel ou uma solução concentrada deste sal.

$$[Fe (CN)_6]^{3-} + 3 Pb^{2+}_{(aq)} \rightarrow 3 Pb(CN)_{2(s)} + [Fe(H_2O)_6]^{3+}$$

3A) Para uma amostra de 153,00 g de Cloridrato de Cocaína (C₁₇H₂₁NO₄-HCl):

i) Calcule o número de mols.

Calculando a Massa Molar:

Carbono: $12 \cdot 17 = 204$

Hidrogênio: $1 \cdot (21+1) = 22$

Nitrogênio: 14·1=14

Oxigênio: 16·4=64

Cloro: $17 \cdot 1 = 17$

Total: $204+22+14+64+17=321 \ g/mol$

Calculando a proporção:

1 mol equivale a 321 q

xmol equivale a 153 $q \rightarrow x=0,4766$

Logo, o número de mols da amostra é de aproximadamente 0,48 mol.

ii) Calcule o número de mols de átomos de oxigênio contidos nesta amostra.

Como em cada molécula de Cloridrato de Cocaína há 4 átomos de oxigênio, então em cada mol de Cloridrato de Cocaína teremos 4 mols de átomos de oxigênio.

Vimos que há 0,48 mol de Cloridrato na amostra, portanto concluímos que na amostra há 0,48·4=1,9 mols de átomos de oxigênio.

iii) Calcule a massa de HCl presente na amostra e a sua porcentagem em massa.

Sabemos que a massa molar de HCl é 1+17=18 g/mol.

E, como a massa molar do Cloridrato de Cocaína é 321g/mol , calculamos que a porcentagem da massa que corresponde ao HCl é $\frac{18}{321}$ =0,056=5,6% .

Assim, em 153 gramas de amostra, sabemos que há 5,6% de 153g = **8,58 gramas de HCl**.

3B) Cloridrato de cocaína pode ser convertido em *crack* (cocaína "base livre") pela reação com bicarbonato de potássio (KHCO₃), segundo a equação iônica:

$$C_{17}H_{21}NO_{4}\text{-}HCI \ + \ HCO_{3}\text{-} \ \rightarrow \ C_{17}H_{21}NO_{4} \ + \ CO_{2} \ + \ H_{2}O \ + \ CI\text{-}$$

Calcule a massa de bicarbonato de potássio necessária para neutralizar completamente o cloridrato de cocaína desta amostra de 153,00g.

Calculamos no item A) que nessa amostra há 0,48 mol de Cloridrato de Cocaína.

Assim, como a proporção na reação é de 1 para 1 (para cada molécula de Cloridrato, consome-se um íon HCO_3^-), serão necessário 0,48 mol de bicarbonato de potássio para a neutralização completa.

Vamos calcular a massa em 0,48 mol de KHCO₃

Massa molar:

Potássio: 39,1

Hidrogênio: 1

Carbono: 12

Oxigênio: 16·3=48

Total: 39,1+1+12+48=100,1 g/mol

Número de mols: 0,48 *mol*

Massa: $100,1\cdot0,48=48,05\,g$

Portanto, serão necessários 48,05 gramas de bicarbonato de potássio para neutralizar a amostra de 153 gramas de Cloridrato de Cocaína.

4) Óxido de Alumínio (Al_2O_3 - Alumina) reage com ácidos fortes sendo convertido no respectivo sal e liberando água. Abaixo é mostrada a equação da reação de Alumina com Ácido Bromídrico (Hbr):

$$AI_2O_3 \ + \ 6 \ HBr \quad \rightarrow \quad 2 \ AIBr_3 \ + \ 3 \ H_2O$$

Uma solução contendo 0,5 g de HBr foi adicionada a 1,0 g de Al₂O₃:

i) Nesta reação qual é o reagente limitante? Justifique.

Vamos calcular o número de mols de cada reagente:

• HBr

Número de mols:
$$\frac{0.5}{80.9} = 0.0062 = 6.2 \cdot 10^{-3} mol$$

Mas, como precisamos de 6 moléculas de HBr para produzir a reação, então temos que dividir o número de mols disponível por 6, obtendo $\frac{6,2\cdot10^{-3}}{6}$ =1,03·10⁻³mol de reagente disponível.

Al₂O₃

Massa Molar:
$$2 \cdot 27 + 3 \cdot 16 = 102 \ g/mol$$

Número de mols:
$$\frac{1}{102} = 0,0098 = 9,8 \cdot 10^{-3} mol$$

Logo, o reagente limitante (aquele que limita a produção da reação por possuir menor número de mols) é o **Ácido Bromídrico**. Ou seja, o HBr "esgotaria" primerio, e ainda "sobraria" Alumina como solvente.

ii) Calcule o número de mols de sal (Al Br_3) que é formado neste procedimento. Mostre os cálculos.

Como o Ácido Bromídrico é o reagente limitante, vamos considerar como quantidade de reagente os $6.2 \cdot 10^{-3} mol$ de HBr (calculados no item i).

Temos que para cada 6 moléculas de HBr são formadas 2 moléculas de AlBr₃, analogamente, para cada 6 mols de HBr são produzidos 2 mols do sal.

Assim, podemos calcular a proporção:

6*mol* de HBr produz 2*mol* de AlBr₃

 $6.2 \cdot 10^{-3} mol$ de HBr produz x mol de AlBr₃ \rightarrow $x=2.07 \cdot 10^{-3}$

Portanto, neste procedimento são formados $2,07 \cdot 10^{-3}$ mols do sal AlBr₃.

5) Íons sulfito reagem com íons permanganato em meio ácido segundo a equação:

$$5SO_3^{2-} + MnO_4^{-} + 6H^+ \rightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O_4^{-}$$

A)

Uma solução contendo 1,0 g de Na₂SO₃ foi adicionada a uma solução contendo 0,5 g de KMnO₄, sendo o meio reacional a seguir acidificado com H₂SO₄.

i) Nesta reação qual é o reagente limitante? Justifique.

Vamos calcular o número de mols de cada reagente:

Na₂SO₃

Massa Molar: $2 \cdot 23 + 32,1 + 3 \cdot 16 = 126,1 \ g/mol$

Massa: 1*g*

Número de mols: $\frac{1}{126,1} = 0,0079 = 7,9 \cdot 10^{-3} mol$

Mas, como precisamos de 5 moléculas de Na₂SO₃ para produzir a reação, então temos que dividir o número de mols disponível por 5, obtendo

$$\frac{7,9\cdot10^{-3}}{5} = 1,59\cdot10^{-3} mol \text{ de reagente disponível.}$$

• KMnO₄

Massa Molar: $39,1+54,9+4\cdot 16=158 g/mol$

Massa: **0,5***g*

Número de mols: $\frac{0.5}{158} = 0.0032 = 3.2 \cdot 10^{-3} mol$

Portanto, como o número de mols dos 5 íons SO_3^{2-} é menor que o número de mols do íon MnO_4^- , então o reagente limitante é o íon sulfito, presente no reagente Na_2SO_3 .

ii) Calcule o número de mols de Mn²⁺ que é formado.

Calculamos que há $7.9 \cdot 10^{-3}$ mols de íon sulfito, que é o reagente limitante.

Além disso, sabemos que cada 5 mols de SO_3^{2-} produzem 2 mols de Mn^{2+} . Assim, podemos calcular o número de íons Mn^{2+} produzidos com base na proporção:

5*mol* de SO₃²⁻ produz 2*mol* de Mn²⁺

7,9·10⁻³ *mol* de SO₃²⁻ produz *xmol* de Mn²⁺ → $x=3,16\cdot10^{-3}$

Portanto, são formados $3,16\cdot10^{-3}$ mol de Mn^{2+} .

B) 100,00 mL de uma solução de Na₂SO₃ foram diluídos à 250,00 mL em balão volumétrico.

Alíquotas de 25,00 mL desta solução diluída de Na_2SO_3 foram tituladas com solução de KMnO₄ padrão de concentração 4,00 x 10^{-3} M, sendo consumidos 12,50 mL (média de 3 titulações) para a obtenção do ponto de equivalência.

Determine a concentração da solução inicial de Na₂SO₃.

Vamos calcular o número de mols de KMnO₄ que foram consumidos:

Foram consumidos 12,5 mL = 0,0125 L

Em cada litro, há 4 . 10⁻³ mol de KMnO₄

Portanto, foram consumidos $0.0125 \cdot 4 \cdot 10^{-3} = 0.05 \cdot 10^{-3} = 5 \cdot 10^{-5}$ mols de KMnO₄

Sabemos que para cada mol de KMnO₄ são consumidos 5 mols de Na₂SO₃, logo, na alíquota titulada haviam $5.5 \cdot 10^{-5} = 2,5 \cdot 10^{-4}$ mols de Na₂SO₃.

Assim, como haviam $2,5\cdot10^{-4}$ mols de Na₂SO₃ em uma alíquota de 25 mL, então na solução diluida (de 250 mL) há $2,5\cdot10^{-3}$ mols de Na₂SO₃, pois o volume é 10 vezes maior.

Logo, na solução inicial tínhamos $2,5\cdot10^{-3}$ mols de solvente e 100mL, resultando na

concentração de
$$\frac{2,5\cdot 10^{-3}(mol)}{0,01(L)} = 0,25\frac{mol}{L}$$
.