Konstrukcje ekwiwariantne

Definicja 1 (skręcony produkt). Niech G działa z prawej na X, z lewej na Y. Wtedy $X \times_G Y = X \times Y / \sim$, gdzie $(xg, y) \sim (x, gy)$, albo $= X \times Y / G$, gdzie $g(x, y) = (xg^{-1}, gy)$.

Definicja 2 (przestrzeń z indukowanym działaniem). $H \subset G, X$ to H-przestrzeń, wtedy $G \times_H X$ to G-przestrzeń.

Uwaga3. Xlewa G-przestrzeń, prawa H-przestrzeń, Ylewa H-przestrzeń, to $X\times_H Y$ ma strukturę G-przestrzeni.

Definicja 4 (produkt włóknisty).
$$\begin{array}{c} Y \times_X Z \to Y \\ \downarrow g \quad \ \downarrow f \\ Z \stackrel{}{\longrightarrow} X \end{array}, Y \times_X Z = \{(y,z) \in Y \times Z : f(y) = g(z)\}. \end{array}$$

Jeśli X, Y, Z to G-przestrzenie, a odwzorowania sa ekwiwariantne, to $Y \times_X Z$ ma naturalne działanie.

Definicja 6 (G-wiązki główne). G działa na E z prawej, działanie jest wolne, a $E \to E/G = B$ jest lokalnie trywialnym rozwłóknieniem, to $E \to B$ to G-wiązka główna.

Twierdzenie (bez dowodu) 7. E normalna, G zwarta, to $E \to E/G$ jest lokalnie trywialne.

Definicja 8 (lokalnie trywialne rozwłóknienie). $E \to B$ lokalnie trywialne rozwłóknienie, jeśli istnieje pokrycie U_i bazy B takie, że $E|_{U_i} = E \times_B U_i \approx U_i \times G$.

Uwaga 9. Zauważmy, że w takiej sytuacji jak wyżej,

$$E|_{U_{i}} \hookrightarrow E|_{U_{i} \cap U_{j}} \longleftrightarrow E|_{U_{j}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$U_{i} \times G \hookrightarrow (U_{i} \cap U_{j}) \times G \rightarrow (U_{i} \cap U_{j}) \times G \longleftrightarrow U_{j} \times G$$

$$(u,g) \longmapsto (u,g_{ij}g)$$

Definicja 10 (kocykl definiujący). Kocykl definiujący to $(i,j) \mapsto g_{i,j}$, gdzie $g_{ij}: U_i \cap U_j \to G$.

Stwierdzenie 11. $\{g_{ij}\}$ spełniają warunek kocyklu $g_{ij}g_{jk}=g_{ik}$.

Uwaga 12. Kocykl daje G-wiązkę.

Uwaga 13. $U_i \subset B$, $E|_{U_i}$ trywialna $\simeq U_i \times G$, to zamiana trywializacji $U_i \times G \to U_i \times G$ to po prostu $(u,g) \mapsto (u,h_ig)$, gdzie $h_i: U_i \to G$. Zmiana trywializacji na inną daje nowy kocykl $g'_{ij} = h_i^{-1}g_{ij}h_j$.

Stwierdzenie 14. Klasy izomorfizmu G-wiązek głównych odpowiadają granicy po pokryciach z kocykli podzielonych przez relację kobrzegowości, a to jest izomorficzne z $H^1(B, C(B, G))$, ale to wszystko tak na boku.

Definicja 15 (przekształcenie wiązek głównych). G-niezmiennicze f, $E \xrightarrow{f} F$

Stwierdzenie 16. Każde przekształcenie wiązek głównych jest izomorfizmem.

Lemat 17. $E, F \to B \times I$ wiązki główne, B parazwarte, jeśli $E|_{B \times \{0\}} \simeq F|_{B \times \{0\}}$, to $E \simeq F$.

W dowodzie powyższego założyliśmy, że B to CW-kompleks.

Twierdzenie 19. $f \simeq g: Y \to X \implies f^*E \simeq g^*E$.

Wniosek 20. Przyporządkowanie $X \mapsto$ zbiór klas izomorfizmu wiązek jest funktorem kontrawariantnym $hTop \to Set$.

Twierdzenie (bez dowodu) 21. Ten funktor jest "prawie" reprezentowalny, tzn. istnieje przestrzeń BG (typu CW-kompleks, jeśli G Lie) taka, że klasy homotopii [X, BG] = klasy izomorfizmu G-wiązek głównych dla zwartego CW-kompleksu X.

Przykład 22.
$$BS^1 = \mathbb{CP}^{\infty}$$

 $BU(n) = \operatorname{Grass}_n(\mathbb{C}^{\infty}) = \bigcup_N \operatorname{Grass}_n(\mathbb{C}^N)$

Lokalna struktura G-przestrzeni

Definicja 23 (tuba, slajs). $x \in X$, tubq wokół orbity nazywamy stoczenie $U \supset Gx$ homeomorficzne z $G \times_{G_x} S$, gdzie $S \subset X$, $x \in S$ i S jest G_x -niezmiennicze. S nazywamy slajsem.

Twierdzenie 24 (Mostov, Wasserman). Jeśli X normalna, G zwarta Lie, to każda orbita ma tubę i slajs.

Lemat 25. Niech $V \to G/H$ wiązka wektorowa z działaniem G, która jest liniowa na włóknach (tj. G-wiązka wektorowa), wtedy istnieje reprezentacja grupy H na W taka, że $V \approx G \times_H W \to G/H$.

Twierdzenie (bez dowodu) 26 (o otoczeniu tubularnym). $Y \subset X$ podrozmaitość zwarta, to istnieje $\varepsilon > 0$ taki, że $exp : NY \to X$ jest homeomorfizmem na wiązce dysków $D_{\varepsilon} \subset NY = TY^{\perp} \subset TX|_{Y}$.