HOMEWORK 2: PRODUCTS AND CONTINUITY DUE: FRIDAY, SEPTEMBER 21

- 1) Show that if $A \subseteq X$ and $B \subseteq Y$ are topological subspaces, then $A \times B$ with the product topology is equivalent to $A \times B \subseteq X \times Y$ with the subspace topology. That is to say, a product of subspaces is the subspace of the product.
- 2) Let a_i be a sequence of positive real numbers, and b_i be a sequence of real numbers. Show that the map

$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}: (x_1, x_2, \ldots) \mapsto (a_1 x_1 + b_1, a_2 x_2 + b_2, \ldots)$$

is a homeomorphism in the product topology. Is the same true in the box topology?

- 3) Consider $X = \mathbb{R}^{\mathbb{N}}$, the space of sequences of real numbers with the product topology. Inside it is a subset Y given by all sequences that are eventually zero. What is the closure of Y within X?
- 4) Show that if X, Y are two topological spaces, then for a fixed $y_0 \in Y$, the map

$$i: X \to X \times Y: x \mapsto (x, y_0)$$

is continuous.¹

- 5) Suppose that X_{α} with $\alpha \in \Lambda$ is a collection of subsets of X for which $X = \bigcup_{\alpha} X_{\alpha}$. Let $f: X \to Y$ be a map such that $f|_{X_{\alpha}}: X_{\alpha} \to Y$ is continuous for each α .
 - \circ Suppose that X_{α} are closed and Λ is a finite set. Show f is continuous.
 - \circ Show the same is not true if we relax the finiteness of Λ .
 - We call the X_{α} a **locally finite** collection if for any $x \in X$, there is a neighborhood U_x of x such that are only finitely many $\alpha_1, \alpha_2, \ldots, \alpha_n$ for which $U \cap X_{\alpha_i} \neq \emptyset$. Show that if X_{α} are a closed and locally finite collection of subsets, then f is continuous.
- 6) Find a function $f: \mathbb{R} \to \mathbb{R}$ (Euclidean topologies) continuous at only a single point.

¹An injective continuous map is called an embedding.