Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

 Les	questions	peuvent	presenter	une ou	plusieurs	reponses	valides.	

- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

BON COURAGE!

* * * * * * * * * * * * * * * * * *

1.	Votre professeur de Mathématiques envoie votre moyenne au secrétariat via un courriel crypté RSA. La
	clé publique du secrétariat est $(33,3)$, où 33 correspond à n et 3 à e . Le message crypté envoyé est 3.
	Quelle est votre movenne?

 $(1) \square \quad 0 \qquad (2) \square \quad 3 \qquad (3) \square \quad 9 \qquad (4) \square \quad 12 \qquad (5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$

2. Soient $252 = 2^2 \cdot 3^2 \cdot 7$ et $1568 = 2^5 \cdot 7^2$. Nous avons :

3. Parmi les congruences suivantes, lesquelles sont vraies?

4. L'entier 3 est un inverse modulo 11 de ...?

 ${}_{(1)}\square \quad 4 \qquad {}_{(2)}\square \quad -4 \qquad {}_{(3)}\square \quad 3 \qquad {}_{(4)}\square \quad -3 \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte.}$

- 5. Quel est l'ensemble S des solutions de l'équation diophantienne 3x + 7y = 4?
 - $(1)\square$ $S = \{(-8+7k; 4-3k), k \in \mathbb{Z}\}$
 - $S = \{(4 7k; 8 + 3k), k \in \mathbb{Z}\}\$
 - $S = \{(3-4k; 8+7k), k \in \mathbb{Z}\}$
 - (4) \square $S = \varnothing$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 6. On considère l'ensemble quotient $\mathbb{Z}/7\mathbb{Z}$.
 - (1) $(\mathbb{Z}/7\mathbb{Z})^* = \{\overline{1}, \overline{5}\}$
 - (2) \square $(\mathbb{Z}/7\mathbb{Z})^* = \varnothing$
 - $\overline{3}$ est un diviseur de zéro.
 - (4)□ Cet ensemble n'a pas de diviseurs de zéro.
 - aucune des réponses précédentes n'est correcte.
- 7. On considère l'ensemble quotient $\mathbb{Z}/4\mathbb{Z}$.
 - $_{(1)}\square$ $\mathbb{Z}/4\mathbb{Z}$ a 3 éléments
 - (2) \square $\overline{3} \cdot \overline{2} = \overline{2}$
 - $(3) \Box \qquad \overline{3} + \overline{2} = \overline{1}$
 - $_{(4)}\square$ $\overline{2}$ est diviseur de zéro et inversible.
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 8. La fonction indicatrice d'Euler φ est l'application de \mathbb{N}^* dans \mathbb{N}^* définie par :
 - (1) \square $\varphi(n) = \mathbb{Z}/n\mathbb{Z}$
 - $\varphi(n) = (\mathbb{Z}/n\mathbb{Z})^*$
 - $\varphi(n) = Card((\mathbb{Z}/n\mathbb{Z})^*)$
 - $\varphi(n) = Card(\mathbb{Z}/n\mathbb{Z})$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 9. Cocher les affirmations correctes pour $\mathbb{Z}/n\mathbb{Z}$.
 - $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble de toutes les classe d'équivalence modulo n
 - (2) $y \in \mathbb{Z} : y \equiv x$
 - $_{(3)}\square$ $\overline{x}\cdot\overline{y}\equiv\overline{0}$
 - (4) \square $\overline{x} \cdot \overline{y} \equiv \overline{1}$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 10. La congruence $3a \equiv \atop n 3b$ est équivalente à ...
 - $(1) \square \quad a \equiv b \qquad (2) \square \quad 9a \equiv 9b \qquad (3) \square \quad 3a + 3 \equiv 3b + 3 \qquad (4) \square \quad 3a^2 \equiv 3b^2$

 $_{(5)}\square$ $\;$ aucune des réponses précédentes n'est correcte.

- 11. Soit $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$, cocher les affirmations correctes.
 - \overline{x} est inversible si et seulement si il existe $\overline{y} \in \mathbb{Z}/n\mathbb{Z}$ tel que $\overline{x} \cdot \overline{y} = \overline{1}$
 - \overline{x} est inversible si et seulement si $n \wedge x = 1$
 - \overline{x} est inversible si et seulement si \overline{x} est un diviseur de zéro.
 - \overline{x} est diviseur de zéro si et seulement si il existe $\overline{y} \in \mathbb{Z}/n\mathbb{Z}$ tel que $\overline{x} \cdot \overline{y} = \overline{0}$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 12. Déterminer l'ensemble S des solutions entières de $3x \equiv 14$.
 - (1) \square $S = \{ 7 + 15k, k \in \mathbb{Z} \}$
 - $(2)\square$ $S = \{5 + 7k, k \in \mathbb{Z}\}$
 - $(3)\square \qquad S = \{ 7 + 10k, k \in \mathbb{Z} \}$
 - (4) \square $S = \emptyset$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

$_{(1)}\square$ Lundi $_{(2)}\square$ Mardi $_{(3)}\square$ Mercredi $_{(4)}\square$ Dimanche $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
14. Soient $P,Q\in\mathbb{R}[X],$ alors il existe $U,V\in\mathbb{R}[X]$ tels que
$\begin{array}{lll} (1)\square & PU+QV=pgcd(P,Q) & (2)\square & PU+QV=pgcd(U,V) & (3)\square & PU+QV=1 \\ \\ (4)\square & PU+QV=\lambda, \text{ avec } \lambda \in \mathbb{R} & (5)\square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$
15. Soient $P,Q\in\mathbb{R}[X],$ on dit que Q divise P si
$_{(1)}\square$ il existe $S\in\mathbb{R}[X]$ tel que $P=QS$
$_{(4)}\square$ P est multiple de Q $_{(5)}\square$ P est divisible par Q
16. Soient $P = (X - 1)^3(X^2 + X + 1)$ et $Q = (X - 1)(X + 2)$ les décompositions en facteurs irréductibles de $P, Q \in \mathbb{R}[X]$. Cocher les affirmations correctes.
$_{(1)}\square pgcd(P,Q)=1 \qquad _{(2)}\square pgcd(P,Q)=(X-1)^3 \qquad _{(3)}\square P \wedge Q=X-1$
$_{(4)}\Box$ $P\wedge Q=(X-1)(X^2+X+1)(X+2)$ aucune des réponses précédentes n'est correcte $_{(5)}\Box$
 17. Soit P = 2X⁵ + 3X² + X et Q = 3X² - 2X + 3 ∈ R[X]. Quelles sont les assertions vraies concernant le polynôme produit P × Q? (1)□ Le coefficient dominant est 5. (2)□ Le coefficient du monôme X³ est -3. (3)□ Le coefficient du terme constant est 3. (4)□ Le degré du produit est 7. (5)□ aucune des réponses précédentes n'est correcte.
18. Soit $P = X^3 - 3X^2 + 2$ et $Q = X^3 - X + 1 \in \mathbb{R}[X]$. Quelles sont les assertions vraies?
Le polynôme $P \times Q$ est de degré 9. Le coefficient du monôme X^2 dans le produit $P \times Q$ est 3. Le polynôme $P+Q$ est de degré 3. Le polynôme $P-Q$ est de degré 3. Le polynôme $P-Q$ est de degré 3. aucune des réponses précédentes n'est correcte.
19. Soit $P = X^n + 2 \in \mathbb{R}[X]$. Cocher les affirmations correctes.
Le degré de P est $n-1$. P est unitaire. Le coefficient dominant de P est 2. Le terme dominant de P est X^n . aucune des réponses précédentes n'est correcte.
20. Soient P,Q deux polynômes, avec Q non nul. Soit $P=Q\times S+R$ la division euclidienne de P par Q . (1) \square Si $R=0$, P est multiple de Q . (2) \square On peut trouver $(S',R')\neq (S,R)$ tels que $P=Q\times S'+R'$. (3) \square On a toujours $\deg(R)<\deg(Q)$. (4) \square On a toujours $\deg(S)\leqslant\deg(P)$. (5) \square aucune des réponses précédentes n'est correcte.

13. Aujourd'hui c'est mardi. Quel jour de la semaine serons-nous dans 2008 jours?