Vorlesung Computational Intelligence:

Teil 2: Fuzzy-Logik Inferenz, Defuzzifizierung

Ralf Mikut, Wilfried Jakob, Markus Reischl

Karlsruher Institut für Technologie, Institut für Angewandte Informatik E-Mail: ralf.mikut@kit.edu, wilfried.jakob@kit.edu

jeden Donnerstag 14:00-15:30 Uhr, Nusselt-Hörsaal

Gliederung

2	Fuzzy-Logik
2.1	Von der scharfen Logik zur Fuzzy-Logik
2.2	Fuzzy-Mengen
2.3	Fuzzifizierung
2.4	Fuzzy-Operatoren
2.5	Inferenz
2.6	Defuzzifizierung
2.7	Fuzzy-Regelungen
2.8	Praktische Empfehlungen

Implikation

Implikation: WENN A DANN B mit $\mu_A(u)$

- bei Verknüpfung mit modus ponens $\mu_B(u) = \mu_A(u)$
- ACHTUNG! ergibt sich nicht direkt aus Verallgemeinerung, weil es Fehlschluss zulässt (wenn nicht A, dann nicht B), richtige Semantik erst durch zusätzliche Regeln gesichert!

In Regelbasen liegen Regeln dann oft so vor:

$$R_r: {\sf WENN}$$
 $\underbrace{x_1 = A_{1,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{r_1}}$ UND \cdots UND $\underbrace{x_s = A_{s,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{r_s}}$ DANN $y = C_r$

Beispiel: Suche nach einem geeigneten Weg

- Kriterium:
 - WENN Strecke=kurz UND Fahrzeit=gering DANN Weg=geeignet
- Zugehörigkeitsfunktionen
 - Kurz = Trapez $[m_1=0, m_2=0, b_1=0, b_2=10]$, Einheit: km
 - Gering = Trapez $[m_1=0, m_2=0, b_1=0, b_2=30]$, Einheit: min
- mehrere Wege zur Auswahl : (* Semantikproblem)

	Minimum	Produkt	Beschränkte Differenz
A: 5 km (0.5), 21 min (0.3)	0.3	0.15	0*
B: 5 km (0.5), 15 min (0.5)	0.5*	0.25	0*
C: 3 km (0.7), 15 min (0.5)	0.5*	0.35	0.2

- Semantische Probleme:
 - Minimum: keine (Teil-) Kompensation
 - beschränkte Differenz: Summe Wahrheitswerte <1
- EMPFEHLUNG: Produkt als UND-Operator

Weitere wünschenswerte Eigenschaften

Die folgenden wünschenswerten Eigenschaften gelten leider nicht für alle Operatoren

 $\cap(\mu_1,\mu_1)=\mu_1$ (Idempotenz bei UND-Verknüpfungen)

 $\cup(\mu_1,\mu_1)=\mu_1$ (Idempotenz bei ODER-Verknüpfungen)

 $\cap(\mu_1,\overline{\mu_1}) = 0$ (Satz vom ausgeschlossenen Widerspruch)

 $\cup(\mu_1,\overline{\mu_1})=1$ (Satz vom ausgeschlossenen Dritten)

	Mini- mum	Produkt	Beschr. Differenz		Alg. Summe	Beschr. Summe	Summe
Verkn. mit Eins-Element:	X	X	X	X	X	X	-
Verkn. mit Null-Element:	X	X	X	X	X	X	X
Satz vom ausgeschlos- senen Widerspruch/Dritten	-	-	X	-	-	X	X
Idempotenz	X	-	-	X	-	-	-
Kommutativität	X	X	X	X	X	X	X
Assoziativität	X	X	X	X	X	X	X
Semantik Wegbeispiel	-	X	-				

Fuzzy-Modelle (Struktur)

Notwendige Informationen für ein Fuzzy-System

- Beschreibung des Fuzzy-Systems:
 - strukturelle Festlegung Ein- und Ausgangsgrößen
 - Zugehörigkeitsfunktionen für Ein- und Ausgangsgrößen
 - Regelbasis (Art der Konklusionen beschreibt auch den Regeltyp)
 - optional: Regelplausibilitäten (meist nicht verwendet, dann als Wahr bzw. 1)
 - Fuzzy-Operatoren für UND/ODER (t-Norm und t-Konorm)
- Zur Berechnung der Ausgangsgröße müssen alle reellwertigen Eingangsgrößen bekannt sein
- Auswertung:
 - Fuzzifizierung (siehe letzte Vorlesung)
 - Inferenz (heute)
 - Defuzzifizierung (heute)

Beispiel Temperaturregelung: ZGFs

Zwei Eingangsgrößen $x_1 = T$, $x_2 = DT$

Beispiel für alle folgenden Folien:

$$T = 17.5$$
°C:

$$DT = -0.3 \text{ K/min}$$
:

gesucht:

Eine Ausgangsgröße y = DU in 2 Varianten Singletons (oben), Dreieck (unten)

Ventilpositionsänderung DU in Positionsänderung/Minute

Ventilpositionsänderung DU in Positionsänderung/Minute

$$\begin{array}{l} \mu_{ZU~WARM}=0.0,~\mu_{ANGENEHM}=0.5,~\mu_{ZU~KALT}=0.5\\ \mu_{POS}=0.0,~\mu_{NULL}=0.7,~\mu_{NEG}=0.3\\ DU \end{array}$$

Beispiel Temperaturregelung: Regelbasis

Zwei wichtige Formen am Beispiel Temperaturregelung mit T: Temperatur,

DT: Temperaturänderung, DU: Öffnung Heizventil (Richtung der Änderung!!)

LISTE: 1. WENN T=ZU WARM UND DT=POS

2. WENN T=ANGENEHM UND DT=POS

3. WENN T=ZU KALT UND DT=POS

4. WENN T=ZU WARM UND DT=NULL

5. WENN T=ANGENEHM UND DT=NULL

6. WENN T=ZU KALT UND DT=NULL

7. WENN T=ZU WARM UND DT=NEG

8. WENN T=ANGENEHM UND DT=NEG

9. WENN T=ZU KALT UND DT=NEG

DANN DU=WEIT ZU

DANN DU=ZU

DANN DU=GLEICH

DANN DU=ZU

DANN DU=GLEICH

DANN DU=AUF

DANN DU=GLEICH

DANN DU=AUF

DANN DU=WEIT AUF

TABELLE:

	T	ZU WARM	ANGENEHM	ZU KALT
DT				
POS		WEIT ZU	ZU	GLEICH
NULL		ZU	GLEICH	AUF
NEG		GLEICH	AUF	WEIT AUF

Typen von Fuzzy-Regeln: Konklusionen

In Regelbasen liegen Regeln meist so vor:

$$R_r: {\sf WENN}$$
 $\underbrace{x_1 = A_{1,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{r_1}}$ UND \cdots UND $\underbrace{x_s = A_{s,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{rs}}$ DANN $y = C_r$

Konklusionen:

- Mamdani-Systeme:
 linguistische Terme y = C_r = B_c (häufigster Fall, wie im Beispiel)
 ... DANN DU=WEIT ZU
- Takagi-Sugeno-Systeme (TS) (Synonyme: Takagi-Sugeno-Kang-Systeme, TSK): $y = C_r = f_r(\mathbf{x})$... DANN $y = DU = a (T_{soll}-T) + b (DT)^2$ mit Konstanten a, b und zusätzlichem Eingang T_{soll}
- Singleton-Systeme (Sonderfall von Mamdani-Systemen mit Singletons als ZGF und Sonderfall vom Takagi-Sugeno-System mit Konstanten als Funktionen):
 y= y_r, y_r reellwertig

```
... DANN y = DU = -1 \text{ min}^{-1}
```

Typen von Fuzzy-Regeln: Teilprämissen

In Regelbasen liegen Regeln standardmäßig so vor:

$$R_r: {\sf WENN}$$
 $\underbrace{x_1 = A_{1,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{r_1}}$ UND \cdots UND $\underbrace{x_s = A_{s,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{rs}}$ DANN $y = C_r$

Typen von Teilprämissen V_{rl}, Welche linguistischen Terme pro Eingangsgröße:

- genau ein Term (häufigster Fall) $A_{l,Rr} = A_{l,i}$ Beispiel: WENN T = ZU WARM UND ...
- mehrere (benachbarte) Terme $A_{l,Rr} = A_{l,r_s} \cup \cdots \cup A_{l,r_e}, \quad 1 \leq r_s < r_e \leq m_l$ Beispiel: WENN (T = ANGENEHM ODER ZU WARM) UND ...
- alle Terme $A_{l,Rr} = A_{l,1} \cup A_{l,2} \cdots \cup A_{l,m_l}$

Beispiel: WENN (T = ZU KALT ODER ANGENEHM ODER ZU WARM) UND ...

In diesem Fall kann bei geeigneten ZGFs und Operatoren (z.B. Standardpartition, ODER mit beschränkter Summe) der Term komplett weggelassen werden!

Sonderfälle

- Kaskadierte Fuzzy-Systeme
 - Fuzzy-(Teil)Systeme, wo schon die Eingangsgrößen nicht reellwertig, sondern Fuzzy-Mengen sind (hier nicht betrachtet)
 - Fuzzy-(Teil)Systeme, wo nur Zugehörigkeitswerte der Ausgangsgrößen gesucht werden (Systeme ohne Defuzzifizierung)
- Kompliziertere UND/ODER-Verknüpfungen in der Regelprämisse, z.B. so WENN (T=ZU KALT UND DT=NULL) ODER (T=ANGENEHM UND DT=NEG) DANN DU=AUF
- Regeln können mit Regelplausibilitäten (Synonym: Wichtungsfaktoren) versehen werden, die eine graduelles Maß für die Glaubwürdigkeit der Regel (z.B. 0.5 für 50%) angeben (ohne Angabe: Regelplausibilität 1) ... DANN DU=WEIT ZU (μ_r = 0.5)
- Regeln mit negativen Empfehlungen (erfordern Hyperinferenz, hier nicht behandelt)
 ... DANN DU= NICHT WEIT ZU

Inferenz

- Prämissenauswertung (Synonym: Aggregation)
 Bestimmung des Zugehörigkeitsgrades der Prämisse einer linguistischen Regel durch Verknüpfung der Zugehörigkeitsgrade aller linguistischer Teilprämissen mittels Fuzzy-Operatoren
- Aktivierung (Synonym Komposition)
 Bestimmung des Zugehörigkeitsgrades der Konklusion einer linguistischen Regel aus dem Zugehörigkeitsgrad der Prämisse und einer eventuell vorhandenen Regelplausibilität
- Akkumulation (nur bei Mamdani-Fuzzy-Systemen)
 Zusammenfassen der Zugehörigkeitsgrade der Konklusionen aller (linguistischen)
 Regeln zu einer Fuzzy-Menge der Ausgangsgröße

Anmerkungen:

 in der Literatur z.T. abweichende Bezeichnungen (Aggregation für Akkumulation usw.)

Prämissenauswertung

Operation:

UND - Verknüpfung der Zugehörigkeitsgrade aller s Teilprämissen einer Regel R_r (evtl. unterlagertes ODER innerhalb der Teilprämissen)

$$\mu_{V_r}(\mathbf{x}) = \bigcap_{l=1}^{s} \mu_{V_{r,l}}(x_l) \text{ mit } \mu_{V_{r,l}}(x_l) = \bigcup_{i \text{ mit } A_{l,i} \in V_{r,l}} \mu_{A_{l,i}}(x_l)$$

- Ausgangsgröße: ein Zugehörigkeitsgrad der Prämisse pro Regel
- Bemerkung: Zugehörigkeitsgrad der Prämisse als s-dimensionale Zugehörigkeitsfunktion interpretierbar

Prämissenauswertung (Beispiel)

• Beispiel (Regel 5, Produkt-Operator):

WENN T=ANGENEHM UND DT=NULL

DANN ...

•
$$\mu_{V5} = (\mu_{ANGENEHM}(x_1)=0.5)$$
 * $(\mu_{NULL}(x_2)=0.7) = 0.35$

Aktivierung

Aufgabe:

Bestimmung des Zugehörigkeitsgrades der Konklusion einer linguistischen Regel aus dem Zugehörigkeitsgrad der Prämisse und einer eventuell vorhandenen Regelplausibilität

$$R_r: {\sf WENN}$$
 $\underbrace{x_1 = A_{1,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{r1}}$ UND \cdots UND $\underbrace{x_s = A_{s,Rr}}_{\sf Teilpr\"{a}misse} \underbrace{V_{rs}}$ DANN $y = C_r$

Operation:

Implikation: Zuweisung des Zugehörigkeitsgrad der Prämisse und einer eventuell vorhandenen Regelplausibilität zum Zugehörigkeitsgrad der Konklusion

$$\mu_{C_r}(\mathbf{x}) = \mu_{V_r}(\mathbf{x}) \cap \mu_r$$

Ergebnis:

ein Zugehörigkeitsgrad der Konklusion pro Regel

Aktivierung: Beispiel

• Beispiel (Regel 5) ohne Regelplausibilitäten:

WENN T = ANGENEHM UND DT = NULL DANN DU = GLEICH ---- (
$$\mu_{V5}$$
 = 0.35) ----- (μ_{C5} = 0.35)

• Beispiel (Regel 5) mit Regelplausibilität μ_5 =0.5:

WENN T = ANGENEHM UND DT = NULL DANN DU = GLEICH
---- (
$$\mu_{V5}$$
 = 0.35) ------ (μ_{C5} = 0.35 * 0.5 = 0.175)

Umsetzung der Akkumulation

Zwei Rechenwege für Aktivierung und Akkumulation:

- 1. Variante:
 - Überlagerung der Zugehörigkeitsfunktionen der Regelkonklusionen
 - steht fast immer so in der Literatur
 - hoher Rechenaufwand (Rechnen mit r Funktionen)
- 2. Variante:
 - Zergliederung in Teilschritte mit Akkumulation I-III
 - Akkumulation I
 (Zusammenfassung der Zugehörigkeitsgrade der Konklusionen aller Regeln mit gleichen Konklusionen)
 - Akkumulation II
 (Berechnung der Fuzzy-Mengen der linguistischen Terme der Ausgangsgröße)
 - Akkumulation III
 (empfohlener Zugehörigkeitsgrad für alle Werte der Ausgangsgröße)
 - niedriger Rechenaufwand (Rechnen mit m_y < r Funktionen, sinnvoll bei vielen Regeln mit gleichen Konklusionen)

1. Variante: Akkumulation

Aufgabe:

Zusammenfassen der Zugehörigkeitsgrade der Konklusionen aller (linguistischen) Regeln zu einer Fuzzy-Menge der Ausgangsgröße

Operation:

- 1. UND-Verknüpfung der Zugehörigkeitsgrade der Regelkonklusion mit der Zugehörigkeitsfunktion des linguistischen Terms der Ausgangsgröße $C_r = B_c$
- 2. ODER-Verknüpfung der Ergebnisse von 1. (Verknüpfung von Funktionen!)

$$\mu_{y}(y,\mathbf{x}) = \bigcup_{r=1}^{r_{max}} \mu_{B_c}(y) \cap \mu_{C_r}(\mathbf{x})$$

• Ergebnis:

empfohlener Zugehörigkeitsgrad für alle Werte der Ausgangsgröße

Bemerkung:

nur für Mamdani-Systeme notwendig, wird für Takagi-Sugeno-Systeme und für Singleton-Systeme mit der Defuzzifizierung kombiniert

1. Variante: Akkumulation (Beispiel)

Ergebnis Aktivierung

- Regeln r=1-4, 7: $\mu_{Cr} = 0$
- Regel 5: $\mu_{C5} = 0.35$... DANN DU = GLEICH
- Regel 6: $\mu_{C6} = 0.35$... DANN DU = AUF
- Regel 8: μ_{C8} = 0.15
 ... DANN DU = AUF
- Regel 9: $\mu_{C9} = 0.15$... DANN DU = WEIT AUF

Akkumulation mit Produkt/Beschränkter Summe

2. Variante: Idee zum Umformen der Regeln

Interpretation als ODER-Verknüpfung:

- Regel 1: WENN T=ZU WARM UND DT=POS DANN DU=WEIT ZU
- Regel 2,4
 WENN (T=ANGENEHM UND DT=POS) ODER (T=ZU WARM UND DT=NULL) DANN DU=ZU
- Regel 3,5,7:
 WENN (T=ZU KALT UND DT=POS) ODER (T=ANGENEHM UND DT=NULL) ODER (T=ZU WARM UND DT=NEG) DANN DU=GLEICH
- Regel 6,8:
 WENN (T=ZU KALT UND DT=NULL) ODER (T=ANGENEHM UND DT=NEG)
 DANN DU=AUF
- Regel 9: WENN T=ZU KALT UND DT=NEG DANN DU=WEIT AUF

Kommentare:

Interpretation ist Grundidee f
ür Akkumulation I

2. Variante: Akkumulation I

Aufgabe:

Zusammenfassung der Zugehörigkeitsgrade der Konklusionen aller Regeln mit gleichen Konklusionen

Operation:

ODER-Verknüpfung der Zugehörigkeitsgrade derjenigen Konklusionen mit Term B_c

$$\mu_{B_c,AkI}(\mathbf{x}) = \bigcup_{r \text{ mit } C_r = B_c} \mu_{C_r}(\mathbf{x})$$

Ergebnis:

empfohlener Zugehörigkeitsgrad für alle linguistischen Terme der Ausgangsgröße

2. Variante: Akkumulation I: Beispiel

• Ergebnis Aktivierung (Regeln 1-4, 7: $\mu_{Cr} = 0$)

Regel 5: ... DANN Öffnung Heizventil = GLEICH

----- ($\mu_{C5} = 0.35$) -----

Regel 6: ... DANN Öffnung Heizventil = AUF

----- ($\mu_{C6} = 0.35$) -----

Regel 8: ... DANN Öffnung Heizventil = AUF

----- ($\mu_{C8} = 0.15$) -----

Regel 9: ... DANN Öffnung Heizventil = WEIT AUF

----- ($\mu_{C9} = 0.15$) -----

• bei Verwendung der Beschränkten Summe:

$$\mu_{AUF} = \mu_{C6} + \mu_{C8} = 0.50$$

$$\mu_{GLEICH} = \mu_{C5} = 0.35$$

$$\mu_{WEIT AUF} = \mu_{C9} = 0.15$$

2. Variante: Akkumulation II

Aufgabe:

Berechnung der Fuzzy-Mengen der linguistischen Terme der Ausgangsgröße

Operation:

UND-Verknüpfung der Wahrheitswerte der linguistischen Terme (aus Akkumulation I) mit den Zugehörigkeitsfunktionen der jeweiligen Terme der Ausgangsgröße (punktweise Anwendung des UND-Operators)

$$\mu_{B_c,AkII}(y,\mathbf{x}) = \mu_{B_c}(y) \cap \mu_{B_c,AkI}(\mathbf{x})$$

Eingangsgrößen:

- Zugehörigkeitsfunktion (unabhängig von den Eingangsgrößen) eine Funktion
- Wahrheitswert des linguistischen Terms der Ausgangsgröße aus den Regeln (abhängig von Eingangsgröße des Fuzzy-Systems u) - ein Wert

Ausgangsgröße:

Fuzzy-Menge des linguistischen Terms der Ausgangsgröße (modifizierte Zugehörigkeitsfunktion) - eine *Funktion*

2. Variante: Akkumulation II: Beispiel

Ergebnisse aus Akkumulation I:

 $\mu_{\text{GLEICH}} = 0.35$

 $\mu_{AUF} = 0.50$

 $\mu_{\text{WEIT AUF}} = 0.15$

Ventilpositionsänderung DU in Positionsänderung/Minute

2. Variante: Akkumulation III

Aufgabe:

Berechnung der vereinigten Fuzzy-Mengen der Ausgangsgröße

Operation:

ODER-Verknüpfung der Fuzzy-Mengen (modifizierte Zugehörigkeitsfunktionen) aller linguistischen Terme

$$\mu_{y}(y,\mathbf{x}) = \bigcup_{c=1}^{m_{y}} \mu_{B_{c},AkII}(y,\mathbf{x})$$

• Eingangsgrößen:

Fuzzy-Mengen der linguistischen Terme der Ausgangsgröße (modifizierte Zugehörigkeitsfunktion) - m_v (Anzahl der linguistischen Terme) *Funktionen*

Ausgangsgröße:

Fuzzy-Menge der Ausgangsgröße - eine *Funktion* Interpretation als "Grad der Empfehlung" für einen bestimmten Wert von y

2. Variante: Akkumulation III: Beispiel

Gliederung

2	Fuzzy-Logik
2.1	Von der scharfen Logik zur Fuzzy-Logik
2.2	Fuzzy-Mengen
2.3	Fuzzifizierung
2.4	Fuzzy-Operatoren
2.5	Inferenz
2.6	Defuzzifizierung
2.7	Fuzzy-Regelungen
2.8	Praktische Empfehlungen

Defuzzifizierung

Operation: Berechnung eines scharfen Wertes aus der Fuzzy-Menge der Ausgangsgröße (Ergebnis der Akkumulation)

Mehrere Varianten:

- 1. Maximum-Methode (Wert mit der höchsten Zugehörigkeit)
- 2. Schwerpunkt Methode (COG Center of Gravity)
- 3. Schwerpunkt -Methode für Singleton-Systeme (COGS Center of Gravity for Singletons) und Takagi-Sugeno-Systeme (COGTS)

Weitere Methoden existieren (hier nicht behandelt):

- Flächenmedianmethode
- Hyperdefuzzifizierung (Umgang mit negativen Empfehlungen)

Maximum-Methode

 Operation: Berechnung eines scharfen Wertes aus der Fuzzy-Menge der Ausgangsgröße (Ergebnis der Akkumulation bei Mamdani-Systemen, sonst Ergebnis der Aktivierung)

```
y = \operatorname{argmax}_{y} \mu_{y}(y, \mathbf{x}) (Mamdani-Systeme)

y = \operatorname{argmax}_{C_{r}} \mu_{C_{r}}(\mathbf{x}) (Singleton- und Takagi-Sugeno-Systeme)
```

- Auflösung des Konfliktes, wenn mehrere Maxima existieren (z.B. bei Verwendung von Minimum als UND-Operator)
 - linkes Maximum (LM)
 - rechtes Maximum (RM)
 - mittleres Maximum (Mean of Maxima MOM)
- Kommentare:
 - erzeugt Sprünge im Ein-Ausgangs-Verhalten
 - besonders geeignet, wenn die Ausgangsterme wertediskret sein müssen (Beispiel Gänge im Schaltgetriebe, Fehlertypen usw.)

Defuzzifizierung mit Schwerpunktmethode

 Operation: Berechnung eines scharfen Wertes aus der Fuzzy-Menge der Ausgangsgröße (Ergebnis von Akkumulation)

$$\hat{y} = \frac{\int y \cdot \mu_y(y, \mathbf{x}) \cdot dy}{\int \mu_v(y, \mathbf{x}) \cdot dy}$$

- Bemerkungen:
 - geeignet, wenn stetiges Ein-Ausgangs-Verhalten gewünscht ist
 - Trapezfunktionen als Randzugehörigkeitsfunktionen unzulässig (defuzzifizierter Wert unendlich)
 - asymmetrische Dreieckfunktionen am Rand u.U. problematisch
 (z.B. m₁=m₂=0, b₁=0, b₂=1: defuzzifizierter Wert kann Maximum der ZGF nicht erreichen)
 - Reparatur durch "erweiterte Schwerpunktmethode", die dann ohne Rücksicht auf wirkliche ZGF b₁=b₂ setzt, so dass alle Werte aus dem Definitionsbereich im Ergebnis der Defuzzifizierung auftreten können

COGS und COGTS

 COGS: Verwendung von Singletons als Ausgangs-ZGF oder Umwandlung von dreieckförmigen ZGF in Singletons in der Berechnung der Defuzzifizierung, entweder auf den Ergebnissen der Aktivierung oder der Akkumulation I:

$$\hat{y} = \frac{\sum_{r=1}^{r_{max}} y_r \cdot \mu_{C_r}(\mathbf{x})}{\sum_{r=1}^{r_{max}} \mu_{C_r}(\mathbf{x})} \qquad \qquad \hat{y} = \frac{\sum_{c=1}^{m_y} b_c \cdot \mu_{B_c,AkI}(\mathbf{x})}{\sum_{c=1}^{m_y} \mu_{B_c,AkI}(\mathbf{x})}$$

COGTS: jede Regel hat eine Funktion als Konklusion

$$\hat{y} = \frac{\sum_{r=1}^{r_{max}} f_r(\mathbf{x}) \cdot \mu_{C_r}(\mathbf{x})}{\sum_{r=1}^{r_{max}} \mu_{C_r}(\mathbf{x})}$$
 (Takagi-Sugeno-Systeme)

- Bemerkungen:
 - ersetzt Akkumulation
 - sehr geringer Rechenaufwand und gute Ergebnisse

Beispiel Defuzzifizierung

Oberes Bild:

y= 0.4 (COG-Methode)

y= 0.4 (COGS-Methode)

y= 0.5 (Maximum-Methode)

Unteres Bild

y= 0.25 (LM-Methode)

y= 0.4 (COGS-Methode)

y= 0.5 (MOM-Methode)

y= 0.75 (RM-Methode)

y= ? (COG-Methode)

HAUSAUFGABE

ACHTUNG! In beiden Bildern y = DU wegen des Namens der Ausgangsgröße im Beispiel!