Predicting Flu Vaccinations:

Using survey questions to predict which respondents will receive a seasonal flu vaccine or novel flu vaccine

The Problem

 Hard to predict vaccination status based off demographics alone

- Spread of misinformation/conspiracies
- Not enough clean data on COVID
- Public health efforts not targeted with precision
- Herd immunity has only been a reality for a few viruses
 - Virus eradication even less common

The Data

- CDC's National Center for Health Statistics (NCHS) and National Center for Immunization and Respiratory Diseases (NCIRD)
 - O The National 2009 H1N1 Flu Survey (October 2009 and June 2010)
 - O 35 questions:
 - 13 yes/no questions about behaviors, health and demographics
 - 8 opinion questions rated 0-5
 - 14 demographic questions with categorical answers

Data Cleaning

- Relatively clean raw data
- Missing values addressed by using mode of that particular column/feature
 - Non-Normal distributions
 - For all but 3 features
- 3 columns given additional categorical response of "unknown"
 - o Due to large proportion of missing values

Data Exploration

- Target variables were binary:
 - o 0/1 for no/yes
 - H1N1 vaccine and
 - Seasonal flu vaccine
 - Relatively balanced
 - H1N1 less so

Data Exploration: Heatmaps

- Heatmaps of binary data and ordinal data used to visualize correlations
- Few strong correlations seen
- Good candidate for machine learning instead of simple correlation study

Strongest Correlations

- Highest 3 correlation coefficients were 0.58, 0.56 and -0.43
- Above scores for behavioral, opinion and demographic features respectively

household children = 3.0

Modeling Overview/Steps

- 1. Data Preprocessing:
 - a. One Hot Encoding of categorical variables
 - i. Results in ~60 additional columns
 - b. Splitting data into train and test sets
 - i. 70/30 split
 - c. Scaling only necessary for certain models
 - d. Data is already relatively well balanced
- 2. Hyperparameter Tuning:
 - a. Used scikit-learn's GridSearchCV
 - i. 5 fold cross validation
 - ii. Evaluation metric = ROC_AUC
- 3. Train models on 70% of data (train set)
 - a. Evaluate model performance on remaining 30% (test set)

Model Comparisons

- ROC_AUC used to choose best of 3 most accurate models
- Cross validated accuracy, roc_auc and CPU time also compared

Seasonal ROC_AUC curves shown to right

9.0

0.87478

GradientBoostingClassifier

0.825408

False Positive Rate (1 - Specificity)

Random Forest Feature Importances

Gradient Boosting Feature Importances

Using the GBC Model

- The GradientBoostingClassifier model was shown to be most accurate and displayed the highest ROC_AUC
- ROC_AUC was the metric of choice for the contest being entered
- First submission to contest resulted in a ROC_AUC of 0.8535 which placed 490th among 4000 entries
 - With minor tweaks I was able to increase ROC_AUC to 0.8572, placing 410th out of 4000
- My model submission scored better than 90% of all other competing user's submissions

Conclusions and Future

- Any of these 3 models provide reasonable results
 - These 3 were compared after KNN, GNB and others were deemed least accurate
- Choice between these 3 depends on what health officials find most important
 - Lowest CPU time → Logistic Regression
 - Feature reduction → Random Forest
 - Simplest tuning → Random Forest
 - Highest accuracy/roc_auc → Gradient Boosting
 - Most complex/fine tuned → Gradient Boosting
- Future questionnaires may want to increase number of opinion questions and experience questions as opposed to demographic questions
- My Recommendation: Random Forest Classifier
 - Extremely close to GBC in accuracy but requires less tuning
 - Allows for large reduction in features/questions on questionnaire