Фигуры Лиссажу

Моделирование в хсоѕ

Абу Сувейлим Мухаммед Мунифович

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Вывод	14
6	Библиография	15

Список иллюстраций

4.1	Scilab	7
4.2	Схема модели в Xcos	8
4.3	График прямой	8
	Параметры второго источника GENSEN_f	9
4.5	График прямой в обратную сторону	9
4.6	Параметры второго источника GENSEN_f	10
4.7	График эллипса	10
4.8	Параметры первого источника GENSEN_f	11
	<u> </u>	11
4.10	График при $\frac{\pi}{2}$ и соотношении $4:2\ldots\ldots\ldots$	12
4.11	Параметры первого источника GENSEN_f	12
4.12	Параметры второго источника GENSEN_f	13
4.13	График при $\frac{\pi}{2}$ и соотношении $3:2$	13

1 Цель работы

• Приобретение навыков математического моделирования в хсоз.

2 Задание

Построить с помощью xcos фигуры Лиссажу с различными значениями параметров.

3 Теоретическое введение

Лиссажу фигуры, замкнутые плоские кривые, описываемые точкой, движение которой является суперпозицией двух взаимно перпендикулярных колебаний с отношением частот, равным рациональному числу. Впервые были подробно изучены франц. математиком Ж. А. Лиссажу в 1857–58. Л. ф. описываются системой параметрических уравнений (параметр – время t)

$$x=A_1\cos\omega_1t+\phi$$
 , $y=A_2\cos\omega_2t+\phi$ [1]

4 Выполнение лабораторной работы

- 1. Во-первых, я открыл scilab.
- 2. Далее, я открыл, через инструменты, Визуальное моделирование Хсоз.

Рис. 4.1: Scilab

3. В Xcos я добавыл регистратор CSCOPXY, два источника сигналов и воздействия GENSEN_f и CLOCK_c. Ниже на рис. 1 показано как это выглядит:

Рис. 4.2: Схема модели в Хсоѕ

4. Получнный график это прямая:

Рис. 4.3: График прямой

5. Если изменить параметры второго источника GENSEN_f так:

Рис. 4.4: Параметры второго источника GENSEN_f

Рис. 4.5: График прямой в обратную сторону

7. Давайте создадим эллипс/овал используя следующие параметры второго источника GENSEN_f:

Рис. 4.6: Параметры второго источника GENSEN_f

Рис. 4.7: График эллипса

9. Если менять параметры двух источников GENSEN_f таким способом:

Рис. 4.8: Параметры первого источника GENSEN_f

Рис. 4.9: Параметры второго источника GENSEN_f

Рис. 4.10: График при $\frac{\pi}{2}$ и соотношении 4:2

11. А если менять параметры двух источников GENSEN_f таким способом:

Рис. 4.11: Параметры первого источника GENSEN_f

Рис. 4.12: Параметры второго источника GENSEN_f

Рис. 4.13: График при $\frac{\pi}{2}$ и соотношении 3:2

5 Вывод

• Изучали как работать с Xcos. [2]

6 Библиография

- 1. И. Б.М. ЛИССАЖУ ФИГУРЫ [Электронный ресурс]. Большая российская энциклопедия, 2017. URL: https://old.bigenc.ru/physics/text/2175554.
- 2. Korolkova A., Kulyabov D. Моделирование информационных процессов. 2014.