最佳化與決策

期中專題 李奕承 611121212

一. 問題描述

我的母親在菜市場裡的糕餅店工作,每到重大節日前總是要預先準備 大量的產品來面對人潮。在人力跟材料的限制下,老闆總是需要花很 多時間估算才能決定到底要分別生產多少量。

也因為每樣商品都是依靠專業的師傅手工製作,相當的辛苦,而師父 們年紀也大了,無法頻繁的加班。因此我以這個機會將這項議題作為 專題來操作,試著練習如何在多種限制級目標下做出較好的決策。

二.模型設計

我從店裡主打的商品中選出五項, 他們分別是:水晶餃、綠豆糕、 椪餅、蛋黃酥、杏仁豆腐。並且 列出主要會用到的材料。

水晶餃

樹薯粉: 200克 糯米粉: 100克 絞肉: 300克

綠豆糕

綠豆仁: 300克 奶油: 100克 白砂糖: 50克

椪餅

低筋麵粉:120克 中筋麵粉:120克 熟糯米粉:60克 黑糖粉:100克

蛋黄酥

低筋麵粉: 200克 中筋麵粉: 150克 鹹蛋黃: 15顆 紅豆: 300克 白砂糖: 25克

奶油: 75克

杏仁豆腐

吉利丁片: 42克

杏仁 : 300克 鮮奶 : 250 cc

決策變數:

水晶餃:X1 綠豆糕:X2 椪餅:X3 蛋黄酥:X4 杏仁豆腐:X5

為了能讓收益越高越好,第一個目標方程式是以每一項產品的利潤作為係數。

目標方程式 1: 利潤

MAX $160X_1 + 170X_2 + 150X_3 + 250X_4 + 150X_5$

每位師傅一天正常工作時間是8小時,最多加班2小時,一週工作 6天,共有5位師傅,以下用每個產品每份製作所需消耗的時間 (分鐘)來作為係數。如果可以的話盡量不加班。

目標方程式 2: 工作時數

 $MIN ext{ } 40X_1 + 20X_2 + 10X_3 + 50X_4 + 30X_5$

每樣商品受顧客歡迎的程度不同,如果可以的話盡量生產顧客最常買的商品,減少在倉庫中滯銷的產品量。於是將每樣商品的購買頻率做評分,並以此作為係數。

目標方程式3:購買率評分

MAX $5X_1 + X_2 + 2X_3 + 4X_4 + 3X_5$

限制式1:

倉庫空間有限,最多只能擺放500份不同的商品 $X_1 + X_2 + X_3 + X_4 + X_5 <= 500$

限制式2:

五位師傅一週最多的工作時數總和為18000 分鐘 $40X_1 + 20X_2 + 10X_3 + 50X_4 + 30X_5 \le 18000$

限制式3:

五位師傅一週正常的工作時數總和為14400 分鐘 $40X_1 + 20X_2 + 10X_3 + 50X_4 + 30X_5 >= 14400$

店裡某些材料每週能取得的量有限,因此設定以下的限制 式。

限制式4:

蛋黄酥跟椪餅用到的低筋麵粉加起來不能超過20公斤

 $120X_3 + 200X_4 \le 20000(g)$

限制式5:

蛋黄酥跟椪餅用到的中筋麵粉加起來不能超過20公斤

 $120X_3 + 150X_4 \le 20000(g)$

限制式6:

綠豆糕跟蛋黃酥用到的白砂糖加起來不能超過5公斤

 $50X_2 + 25X_4 \le 5000(g)$

限制式7:

每樣商品至少要生產50份備用

 $X_1 >= 50 X_2 >= 50 X_3 >= 50 X_4 >= 50 X_5 >= 50$

三. 解題步驟

1. 我先將目標方程式以及限制式輸入到lingo中,另外設定每個 決策變數只能是整數(因為產品都是完整的一份)。

```
VINGO Model - 4
                                                            - - ×
!目標一: 利潤;
q1 = 160*X1 + 170*X2 + 150*X3 + 250*X4 + 150*X5;
!目標二:工時;
g2 = 40*X1 + 20*X2 + 10*X3 + 50*X4 + 30*X5;
!目標三: 購買率;
q3 = 5*X1 + X2 + 2*X3 + 4*X4 + 3*X5;
!倉庫空間;
X1 + X2 + X3 + X4 + X5 \le 500;
!最大工時和最小工時;
40*X1 + 20*X2 + 10*X3 + 50*X4 + 30*X5 <= 18000;
40*x1 + 20*x2 + 10*x3 + 50*x4 + 30*x5 >= 14400;
!材料上限;
120*X3 + 200*X4 <= 20000;
120*X3 + 150*X4 <= 20000;
50*X2 + 25*X4 <= 5000;
!最小生產量;
x1 >=50;
x2 >=50;
x3 >= 50;
x4 >= 50;
x5 >= 50;
!產品必須是整數;
@gin(x1);
@gin(x2);
@gin(x3);
@gin(x4);
@gin(x5);
```

2. 分別求各個目標的最大及最小結果

結果:利潤最大化為:85950 最小化為:71660

結果:工時最大化為:17700分鐘 最小化為:14400

結果:購買率評分最大化為:2000 最小化為:1406

為了使三個目標都能得到較好的解,將三個目標以它們各自最大和最小值為範圍,將結果除以範圍來得到百分比,將它們相加來求最大值。

```
■ LINGO Model - 最終模型

max = 1/3*(g12 + g22 + g32);

! 目標一達成率;
g12 <= 1/14290*(160*X1 + 170*X2 + 150*X3 + 250*X4 + 150*X5 - 71660);
! 目標二達成率;
g22 <= 1/3300*(18000 - 40*X1 - 20*X2 - 10*X3 - 50*X4 - 30*X5);
! 目標三達成率;
g32 <= 1/594*(5*X1 + X2 + 2*X3 + 4*X4 +3*X5 - 1406);
```

Market Solution Report - 最終模型 Global optimal solution found. 0.7086520 Objective value: 0.7086520 Objective bound: 0.000000 Infeasibilities: Extended solver steps: 0 Total solver iterations: 11 Variable Value Reduced Cost 0.8579426 0.000000 G12 G22 0.6030303 0.000000 0.6649832 0.000000 X1 242.0000 -0.2497646E-02 X2 75.00000 -0.2506442E-02 X3 83.00000 -0.3611184E-02 X4 50.00000 -0.3025748E-02 X5 50.00000 -0.2152149E-02 G1 83920.00 0.000000 G2 16010.00 0.000000 G3 0.000000 1801.000

結果: 利潤為:83920 工時為:16010 購買率評分為:1801

各目標達成率: 利潤:0.85 工時:0.60 購買率評分:0.66

總達成率:0.70

水晶餃:242份 綠豆糕:75份 椪餅:83份 蛋黄酥:50份 杏仁豆腐:50份

最終模型

```
Market Lingo Model - 最終模型
                                                         - - X
 \max = 1/3*(g12 + g22 + g32);
 !目標一達成率;
 g12 <= 1/14290*(160*X1 + 170*X2 + 150*X3 + 250*X4 + 150*X5 - 71660);
 !目標二達成率;
 g22 <= 1/3300*(18000 - 40*X1 - 20*X2 - 10*X3 - 50*X4 - 30*X5);
 !目標三達成率;
 g32 <= 1/594* (5*X1 + X2 + 2*X3 + 4*X4 +3*X5 - 1406);
 ! 目標一: 利潤;
 q1 = 160*X1 + 170*X2 + 150*X3 + 250*X4 + 150*X5;
 !目標二: 工時;
 q2 = 40*x1 + 20*x2 + 10*x3 + 50*x4 + 30*x5;
 !目標三: 購買率;
 q3 = 5*X1 + X2 + 2*X3 + 4*X4 + 3*X5;
 ! 倉庫空間;
x1 + x2 + x3 + x4 + x5 \le 500;
 !最大工時和最小工時;
 40*X1 + 20*X2 + 10*X3 + 50*X4 + 30*X5 <= 18000;
 40*X1 + 20*X2 + 10*X3 + 50*X4 + 30*X5 >= 14400;
 !材料上限;
 120*X3 + 200*X4 <= 20000;
 120*X3 + 150*X4 <= 20000;
 50*X2 + 25*X4 <= 5000;
 !最小生產量;
x1 >=50;
x2 >= 50;
x3 >= 50;
x4 >= 50;
x5 >= 50;
 !產品必須是整數;
 @gin(x1);
 @gin(x2);
 @gin(x3);
 @gin(x4);
 @gin(x5);
```

最終報告結果

Solution Report - 最終模型		
Global optimal solution found.	0.700	5520
Objective value:	0.7086520	
Objective bound: Infeasibilities:	0.7086520	
	0.000000	
Extended solver steps: Total solver iterations:	.0	
Total solver Iterations:		11
Variable	Value	Reduced Cost
G12	0.8579426	0.000000
G22	0.6030303	0.000000
G32	0.6649832	0.000000
X1	242.0000	-0.2497646E-02
X2	75.00000	-0.2506442E-02
Х3	83.00000	-0.3611184E-02
X4	50.00000	-0.3025748E-02
X5	50.00000	-0.2152149E-02
G1	83920.00	0.00000
G2	16010.00	0.000000
G3	1801.000	0.000000
Row	Slack or Surplus	Dual Price
1	0.7086520	1.000000
2	0.000000	0.3333333
3	0.000000	0.3333333
4	0.000000	0.3333333
5 6	0.000000	0.000000
6	0.000000	0.000000
7	0.000000	0.000000
8	0.000000	0.00000
9	1990.000	0.000000
10	1610.000	0.00000
11	40.00000	0.00000
12	2540.000	0.00000
13	0.000000	0.00000
14	192.0000	0.00000
15	25.00000	0.00000
16	33.00000	0.00000
17	0.000000	0.00000
18	0.000000	0.00000

四. 結果與討論

如果只單純求最大利潤,並且不考慮購買率的話,竟然不需要加班加滿,這項結果告訴我們,盲目的努力不一定有用。

如果只求最大化時間,也無法加班加滿,原因是因為倉庫空間用盡了。所以如果希望能夠充分運用人力,將空間事先準備足夠的量也是關鍵之一。

如果只求最大化購買機率,則會產生只專注生產某一項產品的結果。

結論:因此多目標規劃的意義在於,可以在各個目標之間取得一個平衡點並符合各種限制。在最後的結果中同時兼顧了少加班,高利潤以及高購買率。