Se ha hecho un trabajo considerable en el squeduling deterministico, durante este tiempo una notación a evolucionado para poder caputar la estructura de la mayoria de los problemas.

2.1 Framework y notación

Los siguientes datos representan estan asociados a una tarea, denotado como j.

Se ha hecho un trabajo considerable en el squeduling deterministico, durante este tiempo una notación a evolucionado para poder caputar la estructura de la mayoria de los problemas.

2.1 Framework y notación

Los siguientes datos representan estan asociados a una tarea, denotado como *j*.

2

Modelos deterministicos: preeliminares

Un problema de Squeduling es descrito por el triplete α, β, γ

- β Provee detalles de las caracteristicas de los procesos y restricciones, puede no tener entrada alguna.
- λ Describe el objetivo a minimizar y a menudo contiene una única entrada.

Los posibles casos para el ambiente de máquinas en la entrada lpha son:

Una sola máquina / Single machine

1

Es el caso más simple de todos los posibles ambientes máquina y es un caso especial para otros más complicados.

Máquinas indenticas en paralelo / Identical machines in parallel

Pm

Existen m máquinas identicas en paralelo, el trabajo j requiere una única operación y puede ser procesada en cualquiera de las m máquinas. Si solo puede ser procesado un subconjunto de máquinas la entrada M_j aparecera en la entrada β .

Máquinas indenticas en paralelo con diferentes velocidades / machines in parallel with different speeds

Qm

Existen m máquinas en paralelo con diferentes velocidades. La velocidad de una máquina i es denotada como V_i .

El tiempo P_{ij} que el trabajo j gasta en la máquina i es de $rac{P_j}{V_i}$

2

Modelos deterministicos: preeliminares

Las posibles restricciones de proceso para el campo β pueden ser:

Tiempos de lanzamiento / Release dates

 r_{j}

Si r_j aparece en la entrada β , entonces el trabajo j no puede empezar a procesarce antes de su tiempo de lanzamiento r_j .

Si r_j no aparece en β , el trabajo j puede empezar en cualquier momento.

Apropiaciones / Preemtions

prmp

Las preferencias implican que no es necesario mantener un trabajo en una máquina, hasta su finalización.

Se esta permitido interrumpir el proceso de un trabajo en cualquier momento y asigar tal trabajo en una máquina diferente.

Cuando no esten incluidos en el campo β las apropiaciones no son permitidas.

Cualquier otra entrada que aparezca en el campo eta es autoexplicada, por ejemplo $P_j=P$ implica que todos los tiempos

de proceso son iguales y $d_j=d$ implica que todas las fechas de vencimiento son iguales.

Un problema de Squeduling es descrito por el triplete

Describe el ambiente de la	as máquinas y ti	iene solo una	entrada

Provee detalles de las caracteristicas de los procesos y restricciones, puede no tener entrada alguna.

Describe el objetivo a minimizar y a menudo contiene una única entrada.

Los posibles casos para el ambiente de máquinas en la entrada lpha son:

Una sola máquina /

Es el caso más simple de todos los posibles ambientes máquina y es un caso especial para otros más complicados.

Máquinas indenticas en paralelo /

Existen m máquinas identicas en paralelo, el trabajo j requiere una única operación y puede ser procesada en cualquiera de las m máquinas. Si solo puede ser procesado un subconjunto de máquinas la entrada M_j aparecera en la entrada β .

Máquinas indenticas en paralelo con diferentes velocidades /

Existen m máquinas en paralelo con diferentes velocidades.

La velocidad de una máquina i es denotada como V_i .

El tiempo P_{ij} que el trabajo j gasta en la máquina i es de $rac{P_j}{V_i}$

2

Modelos deterministicos: preeliminares

Las posibles restricciones de proceso para el campo β pueden ser:

Tiempos de lanzamiento /

Si r_j aparece en la entrada β , entonces el trabajo j no puede empezar a procesarce antes de su tiempo de lanzamiento r_j .

Si r_i no aparece en β , el trabajo j puede empezar en cualquier momento.

Apropiaciones /

Las preferencias implican que no es necesario mantener un trabajo en una máquina, hasta su finalización.

Se esta permitido interrumpir el proceso de un trabajo en cualquier momento y asigar tal trabajo en una máquina diferente.

Cuando no esten incluidos en el campo β las apropiaciones no son permitidas.

Cualquier otra entrada que aparezca en el campo eta es autoexplicada, por ejemplo $P_j=P$ implica que todos los tiempos

de proceso son iguales y $d_j=d$ implica que todas las fechas de vencimiento son iguales.

El objetivo a minimizar es siempre una función de los tiempos de termino de los trabajos, la cual, claro depende del horario.

El tiempo para completar el trabajo J en la máquina i es denotado como C_{ij} .

El tiempo que requiere el trabajo j para salir del sistema o completarse es \mathcal{C}_{ij} .

El tiempo que requiere el trabajo j para salir del sistema o completarse es C_{j} .

El objetivo puede ser también una función de las fechas de vencimiento.

Retraso / Lateness

El retraso de un trabajo esta definido como:

$$L_j = C_j - d_j$$

El cual es positivo cuando el trabajo j es completado tarde y negativo cuando es completado temprano.

Tardanza / Tardiness

La tardanza de un trabajo j es definido como:

$$au_j = max(C_j - d_j, 0) = max(L_j, 0)$$

Unidad de penalidad / Unity penalty

La penalidad de un trabajo esta dada por:

$$U_j = egin{cases} 1 & if & C_j > d_j \ 0 & otherwise \end{cases}$$

Modelos deterministicos: preeliminares

El retraso, la tardanza y la unidad de penalidad son las tres funciones basicas de la fecha de lanzamiento (due date), la forma de estas funciones son mostradas a continuación.

Makespan

 C_{max}

El makespan, definido como $max(C_1, \ldots, C_n)$, es el equivalente a el tiempo de termino del último trabajo que deja el sistema.

Tiempo de finalización total ponderado

 $\sum w_j C_j$

Es la suma de los tiempos de terminación ponderados de los n trabajos, usualmente es referido como el flujo del tiempo (flow time).

Número ponderado de trabajos tardados

 $\sum w_j U_j$

El número ponderado de trabajos tardados.

El objetivo a minimizar es siempre una función de los tiempos de termino de los trabajos, la cual, claro depende del horario.

El tiempo para completar el trabajo J en la máquina i es denotado como C_{ij} .

El tiempo que requiere el trabajo j para salir del sistema o completarse es \mathcal{C}_{ij} .

El tiempo que requiere el trabajo j para salir del sistema o completarse es C_{j} .

El objetivo puede ser también una función de las fechas de vencimiento.

Retraso /

El retraso de un trabajo esta definido como:

El cual es positivo cuando el trabajo j es completado tarde y negativo cuando es completado temprano.

Tardanza /

La tardanza de un trabajo j es definido como:

$$\tau_j = max(C_j - d_j, 0) =$$

Unidad de penalidad / Unity penalty

La penalidad de un trabajo esta dada por:

$$U_j = \left\{egin{array}{ccc} if & C_j > d_j \ otherwise \end{array}
ight.$$

Modelos deterministicos: preeliminares

El retraso, la tardanza y la unidad de penalidad son las tres funciones basicas de la fecha de lanzamiento (due date), la forma de estas funciones son mostradas a continuación.

El makespan, definido como $max(C_1,\ldots,C_n)$, es el equivalente a el tiempo de termino del último trabajo que deja el sistema.

Es la suma de los tiempos de terminación ponderados de los n trabajos, usualmente es referido como el flujo del tiempo (flow time).

El número ponderado de trabajos tardados.

