A linear transformation is a *mapping* (or a *function*) which preserves the structure of a vector space. It respects linearity (essentially, it takes "flat" objects to "flat" objects.)

Definition

Let V, W be vector spaces. A function $T: V \to W$ is said to be a linear transformation if

$$(c) \quad T(v+w) = T(v) + T(w), \quad \forall v, w \in V$$

$$(c) \quad T(cv) = cT(v) \quad \forall v \in V, c \in \mathbb{R}$$

$$(ii) T(cv) = cT(v) \quad \forall v \in V, c \in \mathbb{R}$$

Example

If A is an $m \times n$ matrix then the matrix transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T(\mathbf{x}) = A\mathbf{x}$$

 $r(\lambda) = r \lambda$

(6) If
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
 then $T(\mathbf{x} + \mathbf{y}) = A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = T(\mathbf{x}) + T(\mathbf{y})$

If
$$\mathbf{x} \in \mathbb{R}^n$$
 and $c \in \mathbb{R}$ then $T(c\mathbf{x}) = A(c\mathbf{x}) = cA\mathbf{x} = cT(\mathbf{x})$.

If the structure of a vector space is to be preserved, then at the very least, we need to preserve the identity.

Proposition

Let V and W be vector spaces. Let $T: V \to W$ be a linear transformation.

$$T(0) = 0.$$

Proof:

$$0 = 0 + 0$$

in V

$$T(0) = T(0+0) = T(0) + T(0)$$
.

in

If we subtract T(0) from both sides we get

$$T(0) = 0.$$

Coordinates with respect to a Basis

respect to a Basis
$$2(1,0)$$

 $-(1,0)$
 $-(1,0)$
 $-(2,-1)$
 $-(2,-1)$
 $-(2,-1)$

Theorem (Unique Representation Theorem)

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ be a basis for a vector space V. Then for each $x \in V$, there exists a unique ordered n-tuple of scalars (c_1,\ldots,c_n) such that

$$\underbrace{x = c_1 b_1 + \ldots + c_n b_n}$$

$$(n,y) = n(1,0) + y(0,1)$$

 $(n,y) = -n(-1,0) + ty(0,1)$

Suppose if possible that $n = (b_1 + \cdots + (b_n - 0)$ n = d, b, + · - - · - | dybn-(2) where c1, ---, dn E1K.

subtracting () from 2) $0 = \chi - \chi = (d_1 - c_1)b_1 + \cdots + (d_n - c_n)b_n$ $d_{j}-q=d_{2}-c_{2}-\cdots-d_{n}-c_{n}=0 \text{ welficients}.$ $d_{j}-q=d_{2}-c_{2}-\cdots-d_{n}-c_{n}=0 \text{ well}$ $d_{j}-c_{j}=0 \text{ for every } j=1,\ldots,r.$ $=) \quad (j = dj, \ldots, n$

Definition

Suppose $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V and $x \in V$. The coordinates of x relative to \mathcal{B} (or the \mathcal{B} -coordinates of x) are the weights c_1, \ldots, c_n such that

$$x = c_1b_1 + \ldots + c_nb_n.$$

The vector $(c_1, \ldots, c_n) \in \mathbb{R}^n$ is denoted by $[x]_{\mathcal{B}}$, and is called the coordinate vector of x relative to \mathcal{B} or the \mathcal{B} -coordinate vector of x. The mapping

$$(x \to [x]_{\mathcal{B}})$$

is called the *coordinate mapping* (determined by \mathcal{B}).

Definition

Let V and W be vector spaces. A linear transformation $T:V\to W$ is said to be invertible if T is 1-1 and onto.

In other words, if a linear transformation also happens to be a bijection, it is called invertible.

Proposition

The inverse of any invertible linear transformation $T:V\to W$ is a linear transformation.

Prof. Let T: V-> W be Timan transformation which is 1-1 and ento. let T: W->V be-) he inverse lain: Tisa linear transfortin \mathcal{C} \mathcal{A} $\mathcal{W}_1, \mathcal{W}_2 \in \mathcal{W}$.

Let
$$T^{-1}(W_1) = V_1 \in V$$
. — 2
and $T^{-1}(W_2) = V_2 \in V$. 3
=) $T(V_1) = W_1$, $T(V_2) = W_2$.
=) $T(V_1 + V_2) = T(V_1) + T(V_2)$

$$\rightarrow T = (w_1 + w_2) = v_1 + v_2 = 0$$

From (1), (2) 2 (3), wo obtain $T-1(W_1+W_2)=T-(W_1)+T(W_2)$ Spe Wi, we were antitrary, T Satisfield In 1st condition of Me definition of transfermation on Inverse

Let
$$W \in W$$
, and $C \in \mathbb{R}$.

(vart: $T^{-1}(W) = (T^{+}(W))$.

(vor)

 $\frac{1}{2}$

Me do not multiply by a linear transpormation. A inean transformation 15 on thin thom

Theorem

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ be a basis for a vector space V. The coordinate mapping

$$x \to [x]_{\mathcal{B}}$$

is an invertible linear transformation from V to \mathbb{R}^n .

 $\mathcal{H}, \mathcal{H}_{2} \in \mathcal{V}.$ 3 — and $(M_2)_{\beta} = (d_1, \ldots, d_n)_{\epsilon R}$ $\mathcal{M}_{1} = C_{1}b_{1} + \cdots + C_{N}b_{N} - (4)$ $M_2 = d_1b_1 + \dots + d_nb_n = S$ From (1, 2) $b_1, 3$, C_1, \dots, C_n = (d_1, \dots, d_n)

· · · / / / / • [M]B=y=) y is in the the The mapping nimapping.

The mapping is onh. Any linear transformation can be completely determined by what is does to a fixed basis, in the sense that,

Proposition

If $\mathcal{B} = \{b_1, \dots, b_n\}$ is a basis for a vector space V, and if $S, T: V \to W$ are linear transformations, then S = T iff

$$S(b_i) = T(b_i)$$
 $\forall i = 1, \ldots, n.$

Let's assume that $S(b_i) = T(b_i)$,

Let's assume that $S(b_i) = T(b_i)$,

Let \mathcal{H} \mathcal{H} MT: S(n) = T(n)Let N=C,b,+...+(nbn, Where (,, ..., Ch E K. Then S(n) = S(n)+ · · · · + (nbn)

Other divection:

WIUM

S(bi) = T(bi) + i=1,...,n

Proposition

Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation. In other words, there exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

A is called the standard matrix for the linear transformation T.

Proposition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the coordinate transformation which sends

$$\mathsf{x}\mapsto [\mathsf{x}]_\mathcal{B}.$$

The change-of-coordinates matrix $P_{\mathcal{B}}$ is the standard matrix of the inverse T^{-1} of the coordinate transformation.

The standard matrix of the coordinate transformation T is $P_{\mathcal{B}}^{-1}$.