# Data Analytics TMDB Movie

# **Data Set**

Alka Patel - CEBD 1260



## **Problem Definition**

## **Revenue Prediction**

The goal of this project was to determine the revenue of the movie based on the it's:

- Budget
- Production Country
- Original Production Language
- Genre



# **Dataset Description**

#### **TMDB** and **Grouplens**



- Movie Details
- Movie Keywords
- 45,000 Movies
- Released on or before 2017 (not complete data for 2017.



Movie ratings



## **Movie Details**



## Movie Details R

Languages

Took only the top 10 Languages out of 92:

| en | 32269 |
|----|-------|
| fr | 2438  |
| it | 1529  |
| ja | 1350  |
| de | 1080  |
| es | 994   |
| ru | 826   |
| hi | 508   |
| ko | 444   |
| zh | 409   |





## **Movie Details**

Status

Took only movies with status released:

| Released        | 41450 |
|-----------------|-------|
| Rumored         | 200   |
| Post Production | 87    |
| In Production   | 18    |
| Planned         | 15    |
| Canceled        | 2     |



## **Movie Keywords**

```
Column Names
Index(['id', 'keywords'], dtype='object')
```



## **Movie Ratings**

```
Column Names
Index(['userId', 'movieId', 'rating', 'timestamp'], dtype='object')
```



## Solution

## We all know where this image was borrowed from...





## Solution

## We all know where this image was borrowed from...





# **Solution - Random Forest 100**

## **Feature Engineering**

Normalized Budget and Revenue that are over 1000 (dropped the rest).





# **Solution - Random Forest 100**

## **Feature Engineering**

- Dummies Dataframes for :
  - ◆ Genre
  - Production Countries
  - **♦** Language
  - Production Company



# Solution - Choosing X Colums

X\_columns = ['budget\_log','vote\_count','popularity']+ list(df\_language.columns) + list(df\_prod\_country.columns) + list(df\_genres.columns)

|              | budget | movield | popularity | revenue | runtime | vote_average | vote_count |
|--------------|--------|---------|------------|---------|---------|--------------|------------|
| budget       | 1.00   | -0.00   | 0.30       | 0.73    | 0.20    | -0.00        | 0.58       |
| movield      | -0.00  | 1.00    | 0.13       | 0.02    | -0.01   | -0.02        | 0.07       |
| popularity   | 0.30   | 0.13    | 1.00       | 0.44    | 0.10    | 0.17         | 0.48       |
| revenue      | 0.73   | 0.02    | 0.44       | 1.00    | 0.20    | 0.18         | 0.77       |
| runtime      | 0.20   | -0.01   | 0.10       | 0.20    | 1.00    | 0.33         | 0.21       |
| vote_average | -0.00  | -0.02   | 0.17       | 0.18    | 0.33    | 1.00         | 0.33       |
| vote count   | 0.58   | 0.07    | 0.48       | 0.77    | 0.21    | 0.33         | 1.00       |





# **Solution - Random Forest 100**

## **Best Model**

|   | model                    | mae   | rmse  |
|---|--------------------------|-------|-------|
| 2 | RandomForestRegressor100 | 0.967 | 1.434 |
| 1 | RandomForestRegressor10  | 1.013 | 1.501 |
| 0 | LinearRegression         | 1.069 | 1.548 |
| 3 | KNeighborsRegressor      | 1.153 | 1.639 |
| 4 | DecisionTreeRegressor    | 1.330 | 1.988 |





# **Results - Random Forest 100**

## **Best Model**

| Feature Importance |            |       |  |  |
|--------------------|------------|-------|--|--|
|                    | 0          | 1     |  |  |
| 1                  | vote_count | 0.497 |  |  |
| 0                  | budget_log | 0.232 |  |  |
| 2                  | popularity | 0.078 |  |  |
| 93                 | 'Comedy'   | 0.012 |  |  |
| 96                 | 'Drama'    | 0.011 |  |  |
| 107                | 'Thriller' | 0.011 |  |  |
| 35                 | 'France'   | 0.009 |  |  |
| 90                 | 'Action'   | 0.008 |  |  |
| 104                | 'Romance'  | 0.008 |  |  |
| 94                 | 'Crime'    | 0.008 |  |  |





## **Results - Random Forest 100**

#### Mean Absolute Error and Root Mean Square Error after Shuffling







# Discussion

#### **Error Analysis - Where were the highest Errors on the Model?**

- → Huge Difference between the Mean & Median Profits of that category
  - Ex. Drama Genre
- → Huge Difference between the Highest Profits and Lowest Profits
  - Ex. Italy as a Production Country; Foreign Genre
- Very few records on the dataset
  - Ex. Croatia (Just 1 record with a huge loss)



# Discussion

#### **Conclusive Thoughts**

- → Need very large datasets that has many, many examples of all scenarios to have accurate models.
- → As a personal afterthought, it would be nice to try and create a recommendation system using the GroupLens Dataset.
- → App:
  - https://movie-revenue-prediction.herokuapp.com/





#### My Heroku App

Movie Revenue Prediction Home

| Movie Revenue            | Predicti | 011 1001 |  |
|--------------------------|----------|----------|--|
| Budget                   |          |          |  |
| 60 000                   |          |          |  |
| Production Country       |          |          |  |
| United States of America |          |          |  |
| Original Language        |          |          |  |
| Enalish                  |          |          |  |
| Genre                    |          |          |  |
| Adventure                |          |          |  |
| Submit                   |          |          |  |

#### **Predicted Movie Revenue**

60000 BUDGET

'UNITED STATES OF AMERICA'

EN 'ADVENTURE'

\$89,322



## Thank you!!!

#### References:

https://www.themoviedb.org/documentation/api https://grouplens.org/datasets/movielens/latest/

https://www.kaggle.com/rounakbanik/the-movies-dataset/home https://www.themoviedb.org/talk/5141d424760ee34da71431b0



## Extra (personal) Notes

# Popular Genres for the highest 100 grossing movies.

adventure: 80
action: 55
fantasy: 44
family: 35
science: 31
fiction: 31
animation: 20
comedy: 18
thriller: 15
drama: 12
romance: 8

crime : 6
mystery : 3





## Extra (personal) Notes

My class assignment was done on the Movielens data set from kaggle. This data set is a mix of data from TMDB and Grouplens. The dataset contained metadata of the movies, and also the TMDB popularity, voting average, and count of votes. Additionally, from Grouplens, the rating data of 26, 000, 000 records was available. However, due to computing powers on my end, I used the smaller sample of 100, 000 records. For exploratory purposes, many data fields represented the movie, some of the columns were: Genres, movield (that linked back to the movield of a keyword dataset for the movies and the rating dataset from Grouplens), original language, original title, Production Company, release date, spoken languages, production languages and the runtime. The numerical attributes of revenue, budget, average TMDB vote, TMDB vote count, TMDB popularity, revenue, and budget was also given. To further explain some of the parameters, the TMDB voting system is on a scale of 10, the higher the vote, the better the movie. So the average vote is sum of all the votes divided by the number of votes (provided in another column). The popularity represents how many people saved this movie to watch later, put it in their favorites, or page views etc. It can be from 0 to infinity. The Grouplens rating on the other hand, is on a scale of 0 to 5. The higher the rate, the better liked the movie.