Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2033 - Teoría de Conjuntos - Catedrático: Nancy Zurita 14 de agosto de 2021

HT 4

1. Ejercicios

Para A y B conjuntos:

Problema 1.1. $\cup \{A, B\} = A \cup B$

Demostración. Sean $A, B \ y \ C$ conjuntos. Supóngase que $x \in \cup \{A, B\} \iff (\exists C)(x \in C \land C \in \{A, B\}) \iff [x \in C \land (C = A \lor C = B)] \iff [(x \in C \land C = A) \lor (x \in C \land C = B)] \iff x \in A \lor x \in B \iff x \in A \cup B$. Por lo tanto, $\cup \{A, B\} = A \cup B$.

Problema 1.2. $\cup (A \cup B) = (\cup A) \cup (\cup B)$

Demostración. Sean $A, B \neq C$ conjuntos. Supóngase que $x \in \cup (A \cup B) \iff (\exists C)(x \in C \land C \in A \cup B) \iff [x \in C \land (C \in A \lor C \in B)] \iff [(x \in C \land C \in A) \lor (x \in C \land C \in B)] \iff x \in (\cup A) \cup (\cup B)$. Por lo tanto, $\cup (A \cup B) = (\cup A) \cup (\cup B)$.

Problema 1.3. $(A \subseteq B) \Rightarrow (\cup A \subseteq \cup B)$

Demostración. Sean $A, B \neq C$ conjuntos. Por hipótesis, $A \subseteq B \implies (C \in A \implies C \in B)$. Supóngase $x \in \cup A \implies (\exists C)(x \in C \land C \in A) \implies (x \in C \land C \in B) \implies x \in \cup B$. Por lo tanto, $(A \subseteq B) \Rightarrow (\cup A \subseteq \cup B)$.

Problema 1.4. $\cap \langle x, y \rangle = \{x\}$

Demostración. Sea B un conjunto. Supóngase $c \in \cap \langle x, y \rangle \iff (\forall B)(B \in \langle x, y \rangle \implies c \in B) \wedge (\exists B)(B \in \langle x, y \rangle) \iff (\forall B)(B \in \langle x, y \rangle) \implies c \in B) \wedge (B \in \{\{x\}, \{x, y\}\}\}) \iff (\forall B)(B \in \langle x, y \rangle) \implies c \in B) \wedge (B = \{x\} \vee B = \{x, y\}) \iff (c \in B \wedge B = \{x\}) \vee (c \in B \wedge B = \{x\}) \wedge (c \in B \wedge B = \{x\})$

Problema 1.5. $(A \in B) \Rightarrow (A \subseteq \cup B)$

Demostración. Sean A y B conjuntos. Supóngase $x \in A$ y por hipótesis $A \in B$ y por la definición de la unión de un conjunto $\cup B$.

Problema 1.6. $\cup \langle x, y \rangle = \{x, y\}$

Demostración. Sea B un conjunto. Supóngase $c \in \bigcup \langle x, y \rangle \iff (\exists B)(c \in B \land B \in \langle x, y \rangle) \iff (c \in B) \land (B \in \{\{x\}, \{x, y\}\}) \iff (c \in B) \land (B = \{x\} \lor B = \{x, y\}) \iff (c \in \{x\}) \lor (x \in \{x, y\})$. Por lo tanto, $\bigcup \langle x, y \rangle = \{x, y\}$.

Problema 1.7. $\cup \cup \langle A, B \rangle = A \cup B$

Demostración. Sean A, B y C. Supóngase $x \in \cup \cup \langle A, B \rangle \iff (\exists C)(x \in C \land C \in \cup \langle A, B \rangle) \iff x \in C \land \underbrace{C \in \{A, B\}}_{\text{Problema 1.6}} \iff x \in C \land (C = A \lor C = B) \iff x \in A \lor x$

 $B \iff x \in A \cup B$. Por lo tanto, $\cup \cup \langle A, B \rangle = A \cup B$.

Problema 1.8. $\cap \{A\} = A$

Demostración. Sean A y B conjuntos. Supóngase $x \in \cap \{A\} \iff (\forall B)(B \in \{A\}) \implies x \in B) \land (\exists B)(B \in \{A\}) \iff x \in B \land B = A \iff x \in A.$

Problema 1.9. $\cap \{A, B\} = A \cap B$

Demostración. Sean $A \ y \ B$ conjuntos. Supóngase $x \in \cap \{A, B\} \iff (\forall C)(C \in \{A, B\}) \implies x \in C) \land (\exists C)(C \in \{A, B\}) \iff (\forall C)(C \in \{A, B\}) \implies x \in C) \land (C = A \lor C = B) \iff x \in A \land x \in B \iff x \in A \cup B$. Por lo tanto, $\cap \{A, B\} = A \cap B$.

Problema 1.10. $\cap \cap \langle A, B \rangle = A$

Demostración. Sean $A, B \ y \ C$ conjuntos. Supóngase $c \in \cap \cap \langle A, B \rangle \iff (\forall C)(C \in \cap \langle A, B \rangle) \implies x \in (\forall A, B) \land (\exists C)(C \in (A, B) \land (A, B) \land (C = A) \land (C = A)$

Problema 1.11. $\cap A \subseteq \cup A$

Demostración. Sean A y B conjuntos. Supóngase que $x \in \cap A \iff (\forall B)(B \in A \implies x \in B) \land (\exists B)(B \in A) \iff x \in B \land B \in A \iff \cup A$. Por lo tanto, $\cap A \subseteq \cup A$.

Problema 1.12. $Si \varnothing \in A \ entonces \cap A = \varnothing$.

Demostración. Sean A y B conjuntos. Supóngase que $x \in \cap A \iff (\emptyset \in A \implies x \in \emptyset)$. Por lo tanto, $\cap A = \emptyset$.