

Contexte et objectif du projet

Données fournies :

•1500 billets au total : 1000 vrais, 500 faux

Chaque billet est décrit par 6 mesures physiques :

- diagonal
- •height_left, height_right
- ·margin_low, margin_up
- ·length

Le projet consiste à :

•Tester différents algorithmes de classification

·Créer une application fonctionnelle pour prédire de nouveaux billets

44	

Modèles de classification testés

Modèle	Type	Description rapide	
Régression logistique	Linéaire supervisé	Classifieur probabiliste, adapté aux données séparables	
KNN	Non paramétrique supervisé	Classe selon les échantillons les plus proches	
Random Forest	Arbre supervisé	Agrégation de plusieurs arbres de décision aléatoires	
K-Means	Non supervisé	Regroupe en k culsters selon distance aux centroïdes	

Résultats	des modèles	- Évaluation	comparée	
Modèle	Accuracy	F1-score	Observations cl	
\$ Régression logistique	0.99	0.99	Excellente performance, très bon équilibre précision/rappel	(32)
KNN	0.98	0.98	Bon modèle mais légèrement moins performant, 5 faux billets non détectés	
Random Forest	0.99	0.99	Très robuste, aussi performant que la régression logistique	69
K-Means	0.99	0.99	Très bonne séparation malgré l'absence d'étiquettes à l'entraînement	

- Chargement du modèle final (Random Forest) et du scaler
- Prédiction à partir d'un fichier CSV contenant les dimensions des billets
- Affichage de la prédiction et de la probabilité : vrai ou faux billet

Objectif atteint : un outil simple pour les équipes de l'ONCFM

Conclusion et recommandations

- Plusieurs modèles testés :
 régression logistique, KNN, Random Forest, K-means
- Random Forest retenu : meilleur compromis entre performance et robustesse
- Analyse complète des dimensions des billets
- → signal exploitable
- Application fonctionnelle prête à l'emploi (fichier CSV en entrée)
- •Objectif du projet atteint : assistance rapide à la détection de faux billets

