7. Digital quantum circuits (pictorial)

7A. Basic elements

Quantum wire Quantum wire bundle (n qubits) Quantum wire bundle (alternate)	$\stackrel{-}{{=}}$
Classical wire Entangled bit (ebit; Bell pair)	=
Quantum gate \hat{U}	- U $-$
Control gate U (control on $ 1\rangle$)	
Control gate U (control on $ 0\rangle$)	
Control-X (cNOT)	
Control-Z $(cZ)^1$	
Swap gate	
Swap gate (alternate)	
Measurement in basis ${\it B}$	B
Measurement in basis B (alt)	\overline{B}

 $^{^{-1}}$ controlled-Z operation is "symmetric" in the roles of control and target; hence the circuit representation by two dots.

7B. Circuit identities

Proofs and checks: See (C69) and Mathematica/2021 RC Learn experiment/2022-11.1 circuit identities basic.nb

Pauli operator basis change

$$H$$
 Z H $=$ X

$$H$$
 Y H \simeq Y $(-1 \text{ global phase})$

$$S$$
 X S \simeq X $(i \text{ global phase})$

$$S + Z + S = I$$

$$S - Y - S - \simeq Y$$
 (*i* global phase)

Basic and super useful

Pauli decomposition

$$-P_a = \underbrace{i^{a_x a_z}}_{Z^{a_z}} - \underbrace{Z^{a_z}}_{X^{a_x}} - \underbrace{Z^{a_z}}_{Z^{a_z}} - \underbrace{Z^{a_z}}_{Z^{a_x}} - \underbrace{Z^{a_z}$$

Pauli decomposition $P_a=i^{a_xa_z}X^{a_x}Z^{z_z}$ with $a=(a_x,a_z)$, see Sec. 3C. Note that for gates $P_a\cdot P_a^\dagger$, the $i^{a_xa_z}$ drops out. The global phase $i^{a_xa_z}$ for non control Pauli P_a can be ignored. It only applied to $a=(1\ 1)$ for $P_a=Y$ (C70-4)

$$P_a = \begin{array}{c} S^{a_x \cdot a_z} \\ \hline Z^{a_z} & X^{a_x} \end{array}$$
 Note that the phase kickback from the Y Pauli P_a

shows up as a i phase on the control 1 state. Not this S gate only shows up for Y, ie $a=(1\ 1)$. (C70-4)

cX + X

$$\begin{array}{c} X \\ \hline X \\ \hline \end{array} = \begin{array}{c} X \\ \hline \end{array} = \begin{array}{c} X \\ \hline \end{array} (C69-1)$$

"X travels forwards" from control to target (C69-2)

cX + H (Control-Z cZ gate)

Multiple cNOTs

$$= \frac{1}{2} \left(\text{C69-3} \right) \text{ Note that } cX_{12}cX_{13} = \left| 0 \right\rangle \left\langle 0 \right|_{1} I + \left| 1 \right\rangle \left\langle 1 \right|_{1} X_{2}X_{3}. \text{ Think of } X_{12}cX_{13} = \left| 0 \right\rangle \left\langle 0 \right|_{1} I + \left| 1 \right\rangle \left\langle 1 \right|_{1} X_{2}X_{3}. \text{ Think of } X_{12}cX_{13} = \left| 0 \right\rangle \left\langle 0 \right|_{1} I + \left| 1 \right\rangle \left\langle 1 \right|_{1} X_{2}X_{3}.$$

having to push through the X on the control-2 only when control-1 is $|1\rangle\langle 1|$, then pushing X through cX₂₃ yields X travels forwards and gives an X on each of the 2-3 wires.

Controlled-NOT Gate (cNOT, cX)

cX + Z

"Z travels backwards" from target to control (C69-5 / see above)

$$\overline{Z} = \overline{Z}$$

$$\overline{Z} = \overline{Z}$$

$$\overline{Z} = \overline{Z}$$

cX + S (Control-Y cY gate)

$$S = Y$$
 Control-Y cY gateMaslov