

Representation Form of Perceptual Average

MyoungAh Kim¹ & Sang Chul Chong^{1, 2}

¹Graduate Program in Cognitive Science, ²Department of Psychology, Yonsei University

Is mean size represented as a single size?

CONCLUSIONS

Mean size estimation with different set-size/variance/distributional shape ensembles yields conversion cost (bias).

Ensemble is **not** simply represented **as a single mean but a population summary**that subsumes numerosity, variance, &
shape of distribution.

EXPERIMENT 1: Set size difference > mean size estimation

► Larger overestimation of the mean with larger set size differences between test & probe. Response variance was the largest when the probe set size was 1

EXPERIMENT 2: Variance difference > mean size estimation

For high variance test, using a probe with incongruent variance yielded significant bias, but using a probe with the same variance reduced bias. Incongruent variance increased response variance.

EXPERIMENT 3: Distribution shape difference > mean size estimation

For positively skewed test, using a probe with incongruent skewness produced positive bias.

