1. Problem:

It is generally accepted that a population's proportion is 0.523. However, you think that maybe the population proportion is under 0.523, so you decide to run a one-tail hypothesis test with a significance level of 0.025 with a sample size of 600.

Then, when you collect the random sample, you find its proportion is 0.482. Do you reject or retain the null hypothesis?

- (a) What type of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.

Solution: A left-tail proportion test is appropriate. State the hypotheses.

$$H_0$$
 claims $p = 0.523$

$$H_A$$
 claims $p < 0.523$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.523(1 - 0.523)}{600}} = 0.0204$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.482 - 0.523}{0.0204} = -2.01$$

Make a sketch of the null's sampling distribution. The *p*-value is a left area.

To determine that left area, we use the z table.

$$p$$
-value = $P(\hat{p} < 0.482)$
= $P(Z < -2.01)$
= 0.0222

Compare *p*-value to α (which is 0.025).

p-value
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

- (a) A left-tail (one-tail) proportion test is appropriate.
- (b) Hypotheses: H_0 claims p = 0.523 and H_A claims p < 0.523.
- (c) The *p*-value is 0.0222
- (d) We reject the null hypothesis.

2. Problem:

A new virus has been devastating corn production. When exposed, 17.4% of common seedlings die within a week. We are trying to develop a resistant strain of corn.

When we expose 500 seedlings of our strain to the virus, 14.8% die within a week. Using a significance level of 0.1, can we conclude that our strain is significantly more resistant?

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we think our strain is significantly more resistant?

Solution: This is a left-tail (one-tail) proportion test because we only care whether a lower percentage of seedlings will die.

State the hypotheses.

$$H_0$$
 claims $p = 0.174$
 H_Δ claims $p < 0.174$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.174(1-0.174)}{500}} = 0.017$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.148 - 0.174}{0.017} = -1.53$$

Make a sketch of the null's sampling distribution. The *p*-value is a left area.

To determine that left area, we use the z table.

$$p$$
-value = $P(\hat{p} < 0.148)$
= $P(Z < -1.53)$
= 0.063

Compare *p*-value to α (which is 0.1).

p-value
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

We think our strain is more resistant than common corn.

- (a) Left-tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.174 and H_A claims p < 0.174.
- (c) The *p*-value is 0.063
- (d) We reject the null hypothesis.
- (e) We think our strain is more resistant than common corn.

3. Problem:

It is generally accepted that a population's proportion is 0.628. However, you think that maybe the population proportion is over 0.628, so you decide to run a one-tail hypothesis test with a significance level of 0.1 with a sample size of 3000.

Then, when you collect the random sample, you find its proportion is 0.64. Do you reject or retain the null hypothesis?

- (a) What type of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.

Solution: A right-tail proportion test is appropriate. State the hypotheses.

$$H_0$$
 claims $p = 0.628$

$$H_A$$
 claims $p > 0.628$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.628(1-0.628)}{3000}} = 0.00882$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.64 - 0.628}{0.00882} = 1.36$$

Make a sketch of the null's sampling distribution. The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.64)$
= $P(Z > 1.36)$
= $1 - P(Z < 1.36)$
= 0.0869

Compare *p*-value to α (which is 0.1).

p-value
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

- (a) A right-tail (one-tail) proportion test is appropriate.
- (b) Hypotheses: H_0 claims p = 0.628 and H_A claims p > 0.628.
- (c) The *p*-value is 0.0869
- (d) We reject the null hypothesis.

4. Problem:

A student is taking a multiple choice test with 700 questions. Each question has 5 choices. You want to detect whether the student does better than random guessing, so you decide to run a hypothesis test with a significance level of 0.025.

Then, the student takes the test and gets 158 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we think the student did significantly better than random guessing?

Solution: This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{5} = 0.2$$

State the hypotheses.

$$H_0$$
 claims $p = 0.2$

$$H_A$$
 claims $p > 0.2$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.2(1-0.2)}{700}} = 0.0151$$

Determine the sample proportion.

$$\hat{p} = \frac{158}{700} = 0.226$$

Determine a z score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.226 - 0.2}{0.0151} = 1.72$$

Make a sketch of the null's sampling distribution. The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.226)$
= $P(Z > 1.72)$
= $1 - P(Z < 1.72)$
= 0.0427

Compare *p*-value to α (which is 0.025).

$$p$$
-value $> \alpha$

Make the conclusion: we retain the null hypothesis.

We think the student might just be guessing.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.2 and H_A claims p > 0.2.
- (c) The *p*-value is 0.0427
- (d) We retain the null hypothesis.
- (e) We think the student might just be guessing.

5. Problem:

It is generally accepted that a population's proportion is 0.606. However, you think that maybe the population proportion is different than 0.606, so you decide to run a two-tail hypothesis test with a significance level of 0.2 with a sample size of 900.

Then, when you collect the random sample, you find its proportion is 0.624. Do you reject or retain the null hypothesis?

- (a) What type of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.

Solution: State the hypotheses.

$$H_0$$
 claims $p = 0.606$

$$H_A$$
 claims $p \neq 0.606$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.606(1 - 0.606)}{900}} = 0.0163$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.624 - 0.606}{0.0163} = 1.1$$

Make a sketch of the null's sampling distribution. The *p*-value is a two-tail area.

To determine that two-tail area, we use the z table.

$$p$$
-value = $P(|Z| > 1.1)$
= $2 \cdot P(Z < -1.1)$
= 0.2714

Compare *p*-value to α (which is 0.2).

p-value
$$> \alpha$$

Make the conclusion: we don't reject the null hypothesis.

- (a) A two-tail proportion test is appropriate.
- (b) Hypotheses: H_0 claims p = 0.606 and H_A claims $p \neq 0.606$.
- (c) The *p*-value is 0.2714
- (d) We don't reject the null hypothesis.

6. Problem:

A fair coin should have a 50% chance of landing on either side. Someone is mildly suspicious that a coin is unfair.

You are asked to judge the fairness of the coin by flipping it 600 times and counting how many heads are flipped. You are told to use a significance level of 0.04.

Then, you actually flip the coin 600 times and get 327 heads. Should we conclude this coin is unfair?

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do you think the coin is unfair?

Solution: We should use a two-tail proportion test.

State the hypotheses.

$$H_0$$
 claims $p = 0.5$
 H_A claims $p \neq 0.5$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.5(1-0.5)}{600}} = 0.0204$$

Determine the sample proportion.

$$\hat{p} = 0.545$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.545 - 0.5}{0.0204} = 2.2$$

Make a sketch of the null's sampling distribution. The *p*-value is a two-tail area.

To determine that two-tail area, we use the z table.

$$p$$
-value = $P(|Z| > 2.2)$
= $2 \cdot P(Z < -2.2)$
= 0.0278

Compare *p*-value to α (which is 0.04).

$$p$$
-value $< \alpha$

Make the conclusion: we reject the null hypothesis.

We conclude the coin is unfair.

- (a) Two-tail proportion test
- (b) Hypotheses: H_0 claims p = 0.5 and H_A claims $p \neq 0.5$.
- (c) The *p*-value is 0.0278
- (d) We reject the null hypothesis.
- (e) We conclude the coin is unfair.

7. Problem:

A null hypothesis claims a population has a mean $\mu=220$ and a standard deviation $\sigma=35$. You decide to run one-tail test on a sample of size n=83 using a significance level $\alpha=0.1$ to detect if the actual population mean is less than 220. You then collect the sample and find it has mean $\bar{x}=214.35$.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.

Solution: We should use a left-tail test of population mean.

State the hypotheses:

$$H_0$$
 claims $\mu = 220$

$$H_A$$
 claims $\mu < 220$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{35}{\sqrt{83}} = 3.842$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{y}}} = \frac{214.35 - 220}{3.842} = -1.47$$

Find the *p*-value (using formula for left-tail test of mean).

$$p$$
-value = $P(Z < -1.47)$
= 0.0708

Compare the *p*-value and the significance level (α = 0.1).

$$\emph{p} ext{-value} < \alpha$$

Yes, we reject the null hypothesis.

- (a) Left-tail single mean test
- (b) Hypotheses: H_0 claims μ = 220 and H_A claims μ < 220.
- (c) p-value = 0.0708
- (d) Yes, we reject the null hypothesis.

8. Problem:

A fair 20-sided die has a discrete uniform distribution with an expected value of μ = 10.5 and a standard deviation σ = 5.77.

You are told to check if a 20-sided die has an expected value less than 10.5. You are told to roll the die 206 times and do a one-tail significance test with a significance level of 0.01.

You then roll the die 206 times and get a mean of 9.587. Should we conclude the die is unfair?

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we conclude the die is unfair?

Solution: We should use a left-tail test of population mean.

State the hypotheses:

$$H_0$$
 claims $\mu = 10.5$

$$H_A$$
 claims $\mu < 10.5$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{5.77}{\sqrt{206}} = 0.402$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$Z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{9.587 - 10.5}{0.402} = -2.27$$

Find the *p*-value (using formula for left-tail test of mean).

$$p$$
-value = $P(Z < -2.27)$
= 0.0116

Compare the *p*-value and the significance level ($\alpha = 0.01$).

$$\emph{p} ext{-value} > \alpha$$

No, we do not reject the null hypothesis.

We conclude the die might be fair.

- (a) Left-tail single mean test
- (b) Hypotheses: H_0 claims μ = 10.5 and H_A claims μ < 10.5.
- (c) p-value = 0.0116
- (d) No, we do not reject the null hypothesis.
- (e) We conclude the die might be fair.

9. Problem:

A null hypothesis claims a population has a mean $\mu=180$ and a standard deviation $\sigma=26$. You decide to run one-tail test on a sample of size n=294 using a significance level $\alpha=0.02$ to detect if the actual population mean is more than 180. You then collect the sample and find it has mean $\bar{x}=183.03$.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.

Solution: We should use a right-tail test of population mean.

State the hypotheses:

$$H_0$$
 claims $\mu = 180$

$$H_A$$
 claims $\mu > 180$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{26}{\sqrt{294}} = 1.516$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{183.03 - 180}{1.516} = 2$$

Find the *p*-value (using formula for left-tail test of mean).

$$p$$
-value = $P(Z > 2)$
= 1 - $P(Z < 2)$
= 1 - 0.9772
= $\boxed{0.0228}$

Compare the *p*-value and the significance level ($\alpha = 0.02$).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

- (a) Right-tail single mean test
- (b) Hypotheses: H_0 claims μ = 180 and H_A claims μ < 180.
- (c) p-value = 0.0228
- (d) No, we do not reject the null hypothesis.

10. Problem:

A fair 4-sided die has a discrete uniform distribution with an expected value of μ = 2.5 and a standard deviation σ = 1.12.

You are told to check if a 4-sided die has an expected value higher than 2.5. You are told to roll the die 189 times and do a one-tail significance test with a significance level of 0.02.

You then roll the die 189 times and get a mean of 2.689. Should we conclude the die is unfair?

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we conclude the die is unfair?

Solution: We should use a right-tail test of population mean.

State the hypotheses:

$$H_0$$
 claims $\mu = 2.5$

$$H_A$$
 claims $\mu > 2.5$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{1.12}{\sqrt{189}} = 0.081$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$Z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{2.689 - 2.5}{0.081} = 2.32$$

Find the *p*-value (using formula for left-tail test of mean).

$$p$$
-value = $P(Z > 2.32)$
= $1 - P(Z < 2.32)$
= $1 - 0.9898$
= 0.0102

Compare the *p*-value and the significance level ($\alpha = 0.02$).

p-value
$$< \alpha$$

Yes, we reject the null hypothesis.

We conclude the die is unfair, with a higher than fair expected value.

- (a) Right-tail single mean test
- (b) Hypotheses: H_0 claims μ = 2.5 and H_A claims μ > 2.5.
- (c) p-value = 0.0102
- (d) Yes, we reject the null hypothesis.
- (e) We conclude the die is unfair, with a higher than fair expected value.

11. Problem:

A null hypothesis claims a population has a mean $\mu = 180$ and a standard deviation $\sigma = 30$. You decide to run two-tail test on a sample of size n = 278 using a significance level $\alpha = 0.025$. You then collect the sample and find it has mean $\bar{x} = 183.72$.

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

Solution: Find the standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{30}{\sqrt{278}} = 1.799$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{183.72 - 180}{1.799} = 2.07$$

Find the *p*-value.

$$p$$
-value = $P(|Z| > 2.07)$
= $2 \cdot P(Z < -2.07)$
= 0.0384

Compare the *p*-value and the significance level.

p-value
$$> \alpha$$

No, we do not reject the null hypothesis.

- (a) p-value = 0.0384
- (b) No, we do not reject the null hypothesis.

12. Problem:

A fair 12-sided die has a discrete uniform distribution with an expected value of μ = 6.5 and a standard deviation σ = 3.45.

You are told to check if a 12-sided die has an expected value different than 6.5. You are told to roll the die 244 times and do a significance test with a significance level of 0.05.

You then roll the die 244 times and get a mean of 6.051. Should we conclude the die is unfair?

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we conclude the die is unfair?

Solution: We should use a two-tail test of population mean.

State the hypotheses:

$$H_0$$
 claims $\mu = 6.5$

$$H_A$$
 claims $\mu \neq 6.5$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3.45}{\sqrt{244}} = 0.221$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$Z = \frac{\bar{X} - \mu_0}{\sigma_{\bar{Y}}} = \frac{6.051 - 6.5}{0.221} = -2.03$$

Find the *p*-value (using formula for left-tail test of mean).

$$p$$
-value = $P(|Z| > 2.03)$
= $2 \cdot P(Z < -2.03)$
= 0.0424

Compare the *p*-value and the significance level (α = 0.05).

$$p$$
-value $< \alpha$

Yes, we reject the null hypothesis.

We conclude the die is unfair.

- (a) Right-tail single mean test
- (b) Hypotheses: H_0 claims μ = 6.5 and H_A claims $\mu \neq$ 6.5.
- (c) p-value = 0.0424
- (d) Yes, we reject the null hypothesis.
- (e) We conclude the die is unfair.

13. **Problem:**

A null hypothesis claims a population has a mean $\mu = 140$. You decide to run two-tail test on a sample of size n = 326 using a significance level $\alpha = 0.05$. You then collect the sample and find it has mean $\bar{x} = 143.76$ and standard deviation s = 31.47.

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 140$

$$H_A$$
 claims $\mu \neq 140$

Determine the degrees of freedom.

$$df = 326 - 1 = 325$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{31.47}{\sqrt{326}} = 1.743$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{143.76 - 140}{1.743} = 2.16$$

Find the *p*-value.

p-value =
$$P(|T| > 2.16)$$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 325.)

$$P(|T| > 2.34) = 0.02$$

$$P(|T| > 2.06) = 0.04$$

Basically, because t is between 2.34 and 2.06, we know the p-value is between 0.02 and 0.04.

$$0.02 < p$$
-value < 0.04

Compare the *p*-value and the significance level ($\alpha = 0.05$).

p-value
$$< \alpha$$

Yes, we reject the null hypothesis.

- (a) 0.02 < p-value < 0.04
- (b) Yes, we reject the null hypothesis.

14. Problem:

A null hypothesis claims a population has a mean μ = 240. You decide to run two-tail test on a sample of size n = 11 using a significance level α = 0.05.

You then collect the sample:

243.4	245	243	244.1	238.3
244	241.3	236.6	239.1	244.6
241				

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 240$

$$H_A$$
 claims $\mu \neq 240$

Find the mean and standard deviation of the sample.

$$\bar{x} = 241.855$$

$$s = 2.822$$

Determine the degrees of freedom.

$$df = 11 - 1 = 10$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{2.822}{\sqrt{11}} = 0.851$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{241.855 - 240}{0.851} = 2.18$$

Find the *p*-value.

p-value =
$$P(|T| > 2.18)$$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 10.)

$$P(|T| > 2.23) = 0.05$$

$$P(|T| > 1.81) = 0.1$$

Basically, because t is between 2.23 and 1.81, we know the p-value is between 0.05 and 0.1.

$$0.05 < p$$
-value < 0.1

Compare the *p*-value and the significance level ($\alpha = 0.05$).

p-value
$$> \alpha$$

No, we do not reject the null hypothesis.

- (a) 0.05 < p-value < 0.1
- (b) No, we do not reject the null hypothesis.