Y86 Implementation Details

- Topics
 - Detailed functionality of each execution stage
- Learning outcomes
 - Based on what must happen at each stage of execution, figure out what signals are routed where in the processor.
- Reading:
 - Section 4.3 (you can skip section 4.3.4)

FETCH

- What must we do in this stage:
 - Read instruction from memory
 - How large is the instruction?
 - Break the instruction apart into various pieces.
- What parts of the processor are involved:
 - The program counter
 - Memory
 - PC-increment
 - Logic to identify invalid instruction

Implementing Fetch (1)

Implementing Fetch (1) **Processor State** (dark blue boxes) Logic (ight blue rounded rectangles) Memory (DRAM) instruction Increment PC PC: Program Counter

CPSC 313

address

Implementing Fetch (2)

Implementing Fetch (3)

Decode

- What must we do in this stage:
 - Determine what to read from the register file
 - Read those values
- What parts of the processor are involved:
 - rA, rB from the Instruction
 - Register file
 - Logic to determine which registers are used to produce valA and valB

Decode

- What must we do in this stage:
 - Determine what to read from the register file
 - Read those values
- What parts of the processor are involved:
 - rA, rB and icode from the Instruction
 - Register file
 - Logic to determine which registers are used to produce valA and valB

Execute

- What must we do in this stage:
 - Use the ALU
 - Set condition codes
- What parts of the processor are involved:
 - valA, valB from the register file
 - valC from the instruction
 - ALU
 - Condition codes
 - Logic to a) select inputs to ALU, b) set condition codes

Memory

- What must we do in this stage:
 - Read from or write to memory
- What parts of the processor are involved:
 - Memory
 - valE (address)
 - valA (data)
 - valP (from the PC Increment)

Writeback

- What must we do in this stage:
 - Write values into the register file
- What parts of the processor are involved:
 - Register file
 - valM (from memory)
 - valE (from the ALU)
 - cond (conditional moves!)

PC Update

- What must we do in this stage:
 - Identify the address of the next instruction to execute
- What parts of the processor are involved:
 - PC
 - valP (normal case)
 - valM (ret)
 - valC (call, jmp)
 - cond

