

2.1A charging 2.4A discharging integrated DCP function mobile power SOC

1 Features

Synchronous switch charge

and discharge 2.4A synchronous boost conversion, 2.1A synchronous switch charging boost efficiency up to 95% Charging efficiency up to 96%

Built-in power path management, support charging and

discharging Adaptive charging current adjustment, matching all adapters

Charging voltage accuracy: ±0.5%; Support

4.20V, 4.30V, 4.35V and 4.4V batteries Support NTC temperature protection Power display Support

4/3/2/11FF

power display Battery power curve can be set, the display light is more uniform Function-rich built-in lighting driver Automatic

detection of

mobile phone insertion and
removal Integrated mobile phone charging
current intelligent identification DCP low power consumption

Intelligent

identification of load, automatic standby Standby power consumption is less than 50

μA **BOM** minimalist

power MOS built-in, single inductor to achieve charging and discharging 500K switching frequency, can support 1uH

inductor Multiple protections, high

reliability Output overcurrent, overvoltage, short circuit protection Input overvoltage, overcharge, overdischarge, overcurrent discharge protection Whole machine overtemperature

2 Applications

Mobile power/power bank

mobile phones, tablets and other portable devices

3 Introduction

IP5209T is a multifunctional power management SOC that integrates boost converter, lithium battery charge management, and battery level indication, providing a complete power solution for mobile power.

The high integration and rich functions of IP5209T require only a few peripheral devices when applied, effectively reducing the size of the overall solution and lowering the BOM cost.

IP5209T only needs one inductor to realize buck and boost functions.

The DC-DC converter operates at 500KHz and can support low-cost inductors and capacitors.

The IP5209T 's synchronous boost system provides 2.4A output current.

The conversion efficiency is as high as 95%. When no load, it automatically enters the sleep state and the quiescent current drops to **50uA**.

IP5209T adopts switch charging technology, provides 2.1A current, and has a charging efficiency of up to 96%. The built-in IC temperature and input voltage intelligently adjust the charging current.

IP5209T can customize the battery charge curve and accurately display the battery charge. It supports 4, 3, 2, and 1 LED charge display and lighting functions.

IP5209T adopts QFN24 package.

protection ESD

4KV, instant withstand voltage 11V Deeply customized I2C interface, flexible and low-cost customized solutions

Figure 1 Simplified application schematic (4 LEDs indicating power)

4 Pin Definition

Figure 2 **IP5209T** pin diagram

Pinout		Description
Serial number	name	
1	L2/SDA Battery inc	licator driving pin L2, SDA for I2C function
2	L3 Power light	drive pin L3
3	VREG chip 3.1V v	oltage output
4	VTHS cell platforr	n selection
5	RSET Battery inter	nal resistance compensation, can fine-tune the power curve
6	NTC thermistor of	letection pin
7	AGND Analog gro	und
8	KEY key input p	n
9	VBAT boost input p	n, connected to the positive electrode of the lithium battery.
10	NC	NC
11	ICHG external re	sistor adjusts charging current
12	PGND Power Gro	und
13ÿ14ÿ15	LX	DCDC switch node, connect inductor
16ÿ17	VOUT	5V boost output pin
18	DM	USB D-
19	DP	USB D+
20ÿ21	COME	DC5V charging input pin
22	LIGHT Lighting dr	ve pin, open drain output
23	VSET Battery typ	e setting
24	L1/SCK The batter	y indicator drive pin L1, SCK for I2C function
25(EPAD)	GND Power grou	nd and heat dissipation ground, need to maintain good contact with GND

5 IP Series Mobile Power **IC** Model Selection Table

	Discha	arge			m	ain feat	ure			Encapsulati	on
IC Model	Discharge a	and charge	LED Number of lights	Light buttor	I2C DCP	Type-C	QC certif	ication specif	cation compatit	ole	
IP5303	1.0A 1.2/	4	1,2	ÿ	ÿ					eSOP8	
IP5305	1.0A 1.2/	1,2,3,4		ÿ	ÿ				-	eSOP8	2PIN PIN
IP5306	2.4A 2.1 <i>F</i>	1,2,3,4		ÿ	ÿ					eSOP8	PIN
IP5108	2.0A 2.0A	3,4,5		ÿ	ÿ	ÿ-				eSOP16	
IP5207T	1.2A 1.2/	4 3,4,5		ÿ	ÿ	ÿÿ				QFN24	
IP5109	2.1A 2.1A	3,4,5		ÿ	ÿ	ÿ-				QFN24	
IP5209	2.4A 2.1 <i>F</i>	3,4,5		ÿ	ÿ	ÿÿ				QFN24	PIN2PIN
IP5209T 2.4	A 2.1A 1,2,3,	4		ÿ	ÿ	ÿÿ				QFN24	
IP5219	2.4A 3A 1	,2,3,4		ÿ	ÿ	ÿÿ		ÿ		QFN24	
IP5312 15W	4A 2,3,4,5			ÿ	ÿ	ÿÿ			ÿ	QFN32	
IP5318Q 18\	V 4.8A 2,3,4,	5		ÿ	ÿ	ÿÿ			ÿ	QFN40	
IP5318 18W	4.8A 2,3,4,5			ÿ	ÿ	ÿÿ		ÿ	ÿ	QFN40	PIN2PI

6 Limit parameters

	symbol	value	unit
Parameter port input voltage range	COME	-0.3 ~ 5.5	IN
Junction temperature range	TJ	-40 ~ 150	ÿ
Storage temperature range	Tstg	-60 ~ 150	ÿ
Thermal resistance (junction to ambient)	ÿJA	40	ÿ/W
Human Body Model (HBM)	ESD	4	KV

^{*} Stresses above those listed under the Absolute Maximum Ratings section may cause permanent damage to the device.

Excessive exposure time may affect the reliability and service life of the device

7 Recommended working conditions

parameter	symbol	Minimum	Typical Value	Maximum	unit
Input voltage	COME	4.75	5	5.5	IN
Load current	1	0	2.4		А

^{*}Device operational characteristics are not guaranteed outside these operating conditions.

8 Electrical characteristics

Unless otherwise specified, TA=25ÿ, L=1uH

parameter	symbol	Test Conditions	Minimum	typical value	maximum value	unit
Charging System	Charging System					
Input voltage	COME		4.75	5	5.5	IN
Input operating current		VIN=5Vÿfs=750KHz			2 mA	
Input Quiescent Current	EVEN	VIN=5VÿDevice not switching		100		uA
Charging target voltage	VTRGT			4.2		IN
recharging current	ICHRG			2.1		А
Trickle charge current	ITRKL	VIN=5vÿBAT=2.7v		100		mA
Trickle cut-off voltage	VTRKL			3		IN
Recharge Threshold	TOP			4.1		IN
Charging deadline	TEND			24		Hour
Input undervoltage protection	VUVLO rising v	oltage		4.5		IN

Undervoltage protection hysteresis	VUVLO			200		mV
Boost system						
Battery operating voltage	VBAT		3.0		4.4	IN
Switching battery input		VBAT=3.7VÿVOUT=5.1Vÿfs=750KHz		3		mA
Current	DIFFERENT	VIN=5VÿDevice not switching		100		uA
DC output voltage	VOUT VBAT	=3.7V		5.0		IN
Output voltage ripple	ÿVOUT VBAT:	=3.7VÿVOUT=5.0Vÿfs=500KHz		50		mV
Boost system supply current IU	SB			2.4		Α
Load overcurrent detection time	e TUVD output volta	age continues to be lower than 4.4V		30		ms
Load short circuit detection time	e TOCD output curi	ent continues to be greater than 3.5A	150		200	us
Control System	Control System					
On-off level	fs			500		KHz
PMOS on-resistance				25		mÿ
NMOS on-resistance	rDSON			15		mÿ
VREG output voltage VREG V	BAT=3.5V			3.1		IN
Battery input standby current I	STB	VIN=0VÿVBAT=3.7V		50		uA
LDO Output Current	IN LINE			50		mA
LED lighting drive current llight				25		mA
LED display driving current	IL1 IL2 IL3 IL4			10		mA
Load automatic detection time	TloadD Load currer	nt is continuously less than 45mA		32		s
Short key wake-up time TOnDe	bounce			50		ms
Turn on the light time	TKeylight			2		s
Thermal shutdown temperature	TOTP Rising	Temperature		125		ÿ
Thermal shutdown temperature hy	steresis ÿTOTP			40		ÿ

9 Functional Description

Boost

IP5209T integrates a boost DCDC converter with an output of 5V and a load capacity of 2.4A. The switching frequency is 500KHz and the

Input, 5V/1A efficiency is 94%. Built-in soft start function to prevent malfunction caused by excessive inrush current at startup.

Output over-current, short circuit, over-voltage, over-temperature and other protection functions ensure stable and reliable operation of the system.

Charge

IP5209T has a constant current and constant voltage lithium battery charger with synchronous switching structure. When the battery voltage is less than 3V, a 100mA trickle current Charging; When the battery voltage is greater than 3V, it enters constant current charging, and the VIN input current limiting loop takes effect; When the battery voltage is greater than 4.2V, it enters constant voltage charging Charge. After charging is completed, if the battery voltage is lower than 4.1V, restart the battery charging.

IP5209T adopts switching charging technology, with a switching frequency of 750KHz, a maximum charging current of 2.1A, and a charging efficiency of up to 96%, which can shorten 3/4 of the charging time.

Adaptive power path management, supporting charging and discharging at the same time.

The IP5209T charger will automatically adjust the charging current to accommodate adapters with different load capacities, ensuring that the adapter is not hung.

IP5209T supports external ICHG PIN external resistor to adjust charging current

Figure 3 External resistor to adjust charging current

Typical current recommended resistance:

ICHG terminal resistance Kohm corresponds	to the charging input current
120K	1A
100K	1.2A
82K	1.5A
51K	2.4A
NC	Default value 1.9A

button

Figure 4 KEY button

The key connection method is shown in Figure 3, which can identify long key press and short key press operations.

If the button is pressed for longer than 60ms but less than 2s, it is a short press action. A short press will turn on the power indicator light and boost output.

If the button is pressed for longer than 2 seconds, it is considered a long press, which will turn the lighting LED on or off.

Key presses shorter than 60ms will not have any response.

Pressing the button twice within 1 second will turn off the boost output, power display and lighting LED.

Light display mode

Figure 5 Light display mode

4 light modes

Discharge

Electricity C (%)	D1	D2	D3	D4
Сÿ75%	Bright	Bright	Bright	Bright
50%ÿCÿ75%	Bright	Bright	Bright	Destroy
25%ÿCÿ50%	Bright	Bright	Destroy	Destroy
3%ÿCÿ25%	Bright	Destroy	Destroy	Destroy
0%ÿСÿ3%	1.5Hz Flashing (off	Destroy	Destroy

Charge

Electricity C (%)	D1	D2	D3	D4
full	Bright	Bright	Bright	Bright
75%ÿC	Bright	Bright	On 1.5Hz F	lashing
50%ÿCÿ75%	Bright	On 1.5Hz F	ashing Off	
25%ÿCÿ50%	On 1.5Hz F	lashing Off		Destroy
Cÿ25%	1.5Hz Flashing (off	Destroy	Destroy

3 light modes

The three-light display method is similar to the four-light display method. The battery power corresponding to each light is as follows:

	D1	D2	D3	D4
Three lights	3%	66%	100%	none
Four lights	25%	50%	75%	100%

2 Light Mode

	state	D1	D2
Charging Fla	shing during charging pro	cess	
	Full of light and dark		
Normal disch	arge, off		
	Low power off fla	shing	

1 Light Mode

	Status	D1
Charging Fla	cess	
	Full and bright	
Normal disch	arge, bright	
	Low battery flashing	

Battery internal resistance setting

IP5209T can set the battery internal resistance through the RSET pin, thereby adjusting the uniformity of the LED power display.

The set battery internal resistance is shown in the following table

RSET terminal resistance Kohm corresponds to the battery set internal resistance (mOhm)			
10K	45		
43K	67.5		
120K	112.5		
200K	90		
NC	22.5		

Battery Platform Selection

IP5209T can set the battery level through the VTHS pin. When VTHS is connected to VREG, it is set to a high level 3.7V battery; VTHS When connected to GND, it is set to a low platform 3.6V battery.

Automatic detection of mobile phone insertion

IP5209T automatically detects when a mobile phone is inserted, wakes up from standby mode immediately, and turns on the 5V boost to charge the phone, eliminating the need for keystrokes.

Supports buttonless mold solution. If you do not need the automatic power-on function when the phone is inserted, you need to specify it when ordering the IC and set it to VOUT.

Pull down 1k resistor to GND.

Smart identification of mobile phone charging current DCP

IP5209T integrates the intelligent recognition function of mobile phone charging current, automatically switching the D+ and D- line connections for the connected mobile phone device, making the mobile phone

The charging current is adapted to the maximum value to speed up the charging of the mobile phone.

IP5209T supports D+, D- switching of Apple, Samsung and BC1.2 interface specifications.

Supports USB dedicated charging port with D+D- short circuit

Supports Apple 1.0A charging port with 2.0V voltage for D+ and 2.7V voltage for D-

Supports Apple 2.0A charging port with 2.7V voltage for D+ and 2.0V voltage for D-

Supports Samsung 2.0A charging port with 1.2V voltage applied to D+ and 1.2V voltage applied to D-

Supports Apple 2.4A charging port with 2.7V voltage for D+ and 2.7V voltage for D-

Battery Type Selection

IP5209T can set the battery type through the VSET pin. When VSET is left floating, it is set to a 4.2V battery; when VSET is connected to GND,

Set to 4.35V battery; when VSET is connected to VBAT, set to 4.4V battery.

V1.02 http://www.injoinic.com/

10 / 14

Copyright © 2016, Injoinic

NTC function

IP5209T integrates NTC function, which can detect battery temperature; when IP5209T is working, NTC PIN outputs 20uA

The current is measured and the voltage of the NTC PIN is detected to determine the current battery temperature.

Figure 6 Battery NTC comparison

When the NTC detects that the temperature is within the range of -10 to 45 degrees, the charging and discharging will be normal. When the temperature is higher than 45 degrees, the charging current is reduced by half.

When the temperature is higher than 55 degrees, stop charging and discharging. When the temperature is lower than -10 degrees, stop charging and discharging.

If the solution does not require NTC, the NTC pin needs to be connected to GND. The NTC pin cannot be left floating, otherwise it may cause abnormal charging and discharging.

LIGHTLighting

IP5209T has built-in MOS tube for lighting driver. LIGHT PIN can directly drive lighting LED with maximum driving current of 100mA.

Press the KEY key for more than 2 seconds to turn the LED lighting on or off.

When the solution does not have the lighting function, connect the LIGHT PIN to GND, and IP5209T will automatically detect that there is no LIGHT lighting function.

VREG

VREG is a 3.1V LDO. When the IC is in working state, VREG outputs 3.1V. In sleep state, there is no output. The load capacity is 5mA.

10 Typical application schematic diagram

IP5209T only needs inductors, capacitors, and resistors to realize a fully functional mobile power solution.

Figure 6 4LED power display typical application schematic

Recommended inductor model

SPM70701R0

DARFON PIN	Inductance (uH)	Tolerance	DC Resistance (mÿ)		Heat Rating Current	Saturation Current	Measuring
					DC Amp.	DC Amps.	Condition
			Type.	Max.	Idc(A)Max.	Isat(A)Max.	
SPM70701R0	1.0	±20%	8.5	8	12	15	

Lithium battery IC recommended models

INJOINIC Pack age		Overcharge Detection Overdischarge Detection		Overcurrent	
l mooning Pa	Pack age	Voltage [VCU] (V)	Voltage [VDL] (V)	Detection Current [IOV] (A)	
IP3005A	ESOP8	4.28V	2.5V	7A	

12 Packaging Information

CVMDOI	MILLIMETER				
SYMBOL	MIN	NAME	MAX		
А	0.70	0.75	0.80		
A1		0.02	0.05		
b	0.18	0.25	0.30		
С	0.18	0.20	0.25		
D	3.90	4.00	4.10		
D2	2.40	2.50	2.60		
lt is	0.50BSC				
Yes	2.50BSC				
Nd	2.50BSC				
AND	3.90	4.00	4.10		
E2	2.40	2.50	2.60		
L	0.35	0.40	0.45		
h	0.30	0.35	0.40		

Liability and Copyright Statement

Yingjixin Technology Co., Ltd. reserves the right to make corrections, modifications, enhancements, improvements or other changes to the products and services provided.

Before placing an order, you should obtain the latest relevant information and verify that the information is complete and up to date. All products are sold subject to the terms and conditions of the order.

Terms and conditions of sale as provided at the time of purchase.

Ingenics Technologies Ltd. assumes no responsibility for application assistance or customer product design. Customers shall be responsible for their use of Ingenics products and applications.

To minimize the risks associated with customer products and applications, customers should provide adequate design and operational safety verification.

Customers acknowledge and agree that, although any application-related information or support may still be provided by Ingenics, they will be solely responsible for satisfying any

All legal, regulatory and safety-related requirements related to the products and the use of Ingenics products in their applications. Customers declare and agree that they have the

All the expertise and knowledge required to implement safety measures, including foreseeing the dangerous consequences of failures, monitoring failures and their consequences, and reducing the risk of

The customer will fully indemnify the customer for any use of any Inset in such critical applications.

any losses caused to Yingjixin and its agents due to the use of Yingjixin products.

For the product manuals or data sheets of Ingenic, only if the contents are not tampered with and with the relevant authorizations, conditions, restrictions and statements

Reproduction is permitted only if the information has been altered. Ingenics assumes no responsibility or liability for such altered documents.

Additional restrictions apply.

Yingjixin will update the content of this document from time to time. The actual parameters of the product may vary due to different models or other factors. This document does not

for any express or implied warranty or

When reselling an Ingenic product, if the description of the product parameters is different from or false to the parameters indicated by Ingenic,

All express or implied warranties for the relevant Ingenics products will be lost, and this is an unfair and fraudulent business practice. Ingenics will not be liable for any such false

No liability or responsibility is assumed for any statement.