Amplificador Lock-in y Mediciones Homodinas

Es un INSTRUMENTO

Es una Técnica

Es una Técnica

Para que sirve?

Filtrar señal útil:

Quedarte con la frecuencia que tiene información del fenómeno que estás midiendo

Mejorar relación señal ruido

Medir cosas que normalmente el ruido no te dejaría

Medir Fase

Medir relaciones de fase fácilmente

$$\frac{2}{T} \int_0^T \cos(\omega t) \cos(n\omega t) dt = \delta_{0n}$$

$$\lim_{\tau \to \infty} \frac{2}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cos(\omega t) \cos(\omega' t) dt = \begin{cases} 1 & \text{si } \omega = \omega' \\ 0 & \text{si } \omega \neq \omega' \end{cases}$$

$$F(\omega) = \frac{1}{\tau} \int_{-\tau}^{\tau} S(t)e^{-i\omega t}dt$$

$$F(\omega) = \frac{1}{\tau} \int_{-\tau}^{\tau} S(t)e^{-i\omega t}dt =$$

$$= \underbrace{\frac{1}{\tau} \int_{-\tau}^{\tau} S(t)\cos(\omega t)dt}_{X} + i\underbrace{\frac{1}{\tau} \int_{-\tau}^{\tau} S(t)\sin(\omega t)dt}_{Y}$$

$$F(\omega) = \underbrace{\frac{1}{\tau} \int_{-\tau}^{\tau} S(t) \cos(\omega t) dt}_{X} + i \underbrace{\frac{1}{\tau} \int_{-\tau}^{\tau} S(t) \sin(\omega t) dt}_{Y}$$

$$F(\omega) = \underbrace{\frac{1}{\tau} \int_{-\tau}^{\tau} S(t) \cos(\omega t) dt}_{X} + i \underbrace{\frac{1}{\tau} \int_{-\tau}^{\tau} S(t) \sin(\omega t) dt}_{Y}$$

SR830

Otras opciones

