What is claimed is:

1. A method of controlling proliferative cells in a subject, comprising administering a therapeutically effective amount of at least one compound having the formula:

$$A^2$$
 A^3
 A^4

5

10

15

20

wherein

---- is an optional double bond;

 A^1 and A^2 are independently H, Z_m -OR 6 , oxo, halo, Z_m -CN, Z_m -NO $_2$, azido, Z_m -NR 6 R 7 , Z_m -COOR 6 , Z_m -CONR 6 R 7 , Z_m -C(=O)R 6 , Z_m -OC(=O)R 6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, thiol, thioalkyl, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted;

 A^3 and A^4 are independently alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkynyl, alkoxy, heteroalkoxy, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, Z_m -Ar, Z_m -O-R⁶, Z_m -SR⁶, Z_m -NR⁶R⁷, Z_m -C(=O)R⁶, Z_m -OC(=O)R⁶, Z_m -C(=O)OR⁶, Z_m -(C=O)NR⁶R⁷, or Z_m -NHC(=O)R⁶, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted and wherein at least one of A^3 or A^4 is at least three atoms in length;

25

or A³ and A⁴ together with the atoms to which they are both attached form a substituted or unsubstituted saturated or partially unsaturated ring or a substituted or unsubstituted aromatic ring having at least five atoms, wherein one or more of the atoms is optionally a heteroatom;

 R^6 and R^7 are independently H, Z_m -OR 6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted;

X is OR⁶, oxo, heteroalkoxy, O-glucosyl, thiol, thioalkyl, NR⁶R⁷, halo, CN, NO₂, or azido;

10 Ar is aryl or heteroaryl;

Z is CH₂; and

m is an integer between 0 and 10.

2. The method of claim 1, wherein A³ and A⁴ are independently

15 and

20

25

5

wherein

n is 3, 4, 5, 6, 7, 8, 9, or 10;

 D_1 , D_2 and D_3 are independently H, Z_m -OR⁶, Z_m -O-glucosyl, heteroalkoxy, thiol, thioalkyl, Z_m -NR⁶R⁷, halo, Z_m -CN, Z_m -NO₂, or azido;

 D_4 is H, Z_m -OR⁶, O-glucosyl, imino, halo, Z_m -CN, Z_m -NO₂, azido, Z_m -C(=O)H, Z_m -NR⁶R⁷, Z_m -COOR⁶, Z_m -CONR⁶R⁷, Z_m -C(=O)R⁶, Z_m -OC(=O)R⁶, alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, thiol, thioalkyl, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar¹, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, and Z_m -Ar¹ may be substituted or unsubstituted;

or D₄ and X, or D₄ and D₃ together form a lactone; and

m is an integer between 0 and 10.

3. The method of claim 1, wherein A³ and A⁴ are independently

or

5

4. The method of claim 1, wherein the compound is

- 5. The method of claim 1, wherein A³ and A⁴ together form a six-member ring.
- 6. The method of claim 5, wherein said six-member ring contains at least one carbon-carbon multiple bond.
 - 7. The method of claim 5, wherein said six-member ring is aromatic.
 - 8. The method of claim 5, wherein said six-member ring contains at least one additional substituent group.
- 9. The method of claim 8, wherein said at least one additional substituent group is selected from the group of H, OR⁶, oxo, halo, CN, NO₂, azido, NR⁶R⁷, COOR⁶, CONR⁶R⁷, C(=O)R⁶, OC(=O)R⁶, alkyl, alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, thiol, thioalkyl, Z_m-cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m-heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m-Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroallyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, Z_m-cycloalkyl, Z_m-heterocycloalkyl, and Z_m-Ar may be substituted or unsubstituted.

32

10. The method of claim 1, wherein the compound is

$$A^2$$
 A^1
 A^1
 A^1
 A^1
 A^2
 A^3

5

10

15

20

wherein R¹ is

 R^2 , R^3 , R^4 and R^5 are independently H, Z_m -OR 6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -NR $^6R^7$, Z_m -COOR 6 , Z_m -CONR $^6R^7$, Z_m -C(=O)R 6 , Z_m -OC(=O)R 6 , Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_n -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted,

or R³ and R⁴ together with the atoms to which they are both attached form a saturated or partially unsaturated ring, wherein said saturated ring or partially unsaturated ring may be substituted or unsubstituted; and

 Y^1 , Y^2 , and Y^3 are independently H, Z_m -OR⁶, alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, Z_m -NR⁶R⁷, Z_m -COOR⁶, Z_m -CONR⁶R⁷, Z_m -C(=O)R⁶, Z_m -OC(=O)R⁶, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said

heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_n -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted.

- 5 11. The method of claim 10, wherein R¹ is a substituted or unsubstituted natural or unnatural amino acid.
 - 12. The method of claim 11, wherein R¹ is alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.
- 13. The method of claim 11, wherein R¹ is 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, cirtulline, homocysteine, homoserine, ornithine and methionine sulfone.
 - 14. The method of claim 10, wherein the compound is

$$A^2$$
 A^1
 A^1
 A^2
 A^1
 A^1

15

15. The method of claim 14, wherein said compound is

The method of claim 10, wherein said compound is 16.

$$A^2$$
 A^1
 A^1
 A^2
 A^3

5

The method of claim 16, wherein said compound is 17.

18.

The method of claim 1, wherein said subject has cancer.

- 19. The method of claim 1, wherein said cancer is ovarian cancer.
- 20. The method of claim 1, wherein said cancer is breast cancer.
- 21. The method of claim 1, wherein said cancer is lung cancer.
- 22. The method of claim 1, wherein said cancer is lymphoma.
- 5 23. The method of claim 1, wherein said method of treatment further comprises at least one of an hourly administration, a daily administration, a weekly administration, or a monthly administration of said at least one composition.
 - 24. The method of claim 1, wherein said administration comprises oral administration of said at least one composition.
- 10 25. The method of claim 1, wherein said administration comprises injection of said at least one composition.
 - 26. The method of claim 1, wherein said administration comprises intravenous administration of said at least one composition.
 - 27. The method of claim 1, wherein said subject is an animal.
- 15 28. The method of claim 1, wherein said subject is a human.
 - 29. A method for controlling proliferative cells in a subject, comprising supplying to said subject at least one compound of the formula:

30. A method for controlling proliferative cells in a subject, comprising supplying to said subject a compound of the formula:

31. A method for controlling proliferative cells in a subject, comprising supplying to said subject a compound of the formula:

5 32. A method for conducting a clinical trial comprising supplying to a subject at least one compound of the formula:

$$R^1$$

wherein said composition contains at least one additional carbon-carbon multiple bond; and

wherein one or both of R¹ and R² define a structure selected from the group consisting of (a) at least one substituent selected from the group of hydrogen, alkyl, alkynyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, alkoxy, heteroalkoxy and (b) a second ring structure of at least five atoms.

33. The method of claim 1, wherein A⁴ is

n is 3, 4, 5, 6, 7, 8, 9, or 10; and

D₄ is H, Z_m-OR⁶, O-glucosyl, imino, halo, Z_m-CN, Z_m-NO₂, azido, Z_m-C(=O)H, Z_m-NR⁶R⁷, Z_m-COOR⁶, Z_m-CONR⁶R⁷, Z_m-C(=O)R⁶, Z_m-OC(=O)R⁶, alkyl, alkynyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, thiol, thioalkyl, Z_m-cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m-heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m-Ar¹, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m-cycloalkyl, Z_m-heterocycloalkyl, and Z_m-Ar¹ may be substituted or unsubstituted.

34. A method of controlling proliferative cells in a subject, comprising administering a therapeutically effective amount of at least one compound having the formula:

$$Y^2$$

20

5

35. The method of claim 34, wherein R¹ is alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.

- 36. The method of claim 34, wherein R¹ is 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, cirtulline, homocysteine, homoserine, ornithine and methionine sulfone.
- 5 37. A pharmaceutical composition for controlling proliferative cells in a subject, comprising a therapeutically effective amount of a compound having the formula:

and a pharmaceutically acceptable carrier.

38. A pharmaceutical composition for controlling proliferative cells in a subject, comprising a therapeutically effective amount of a compound having the formula:

and a pharmaceutically acceptable carrier.

39. A pharmaceutical composition for controlling proliferative cells in a subject, comprising a therapeutically effective amount of a compound having the formula:

and a pharmaceutically acceptable carrier.

40