Master Theorem

Recurrence Relations

Recurrence Relations: we've seen several different forms of recurrence relation

$$T(n) = 2T(n/2) + O(n)$$
 (MergeSort)

 $T(n) = O(n \log n)$

$$T(n) = T(n/2) + O(1)$$
 (Binary Search)

 $T(n) = O(\log n)$

$$T(n) = T(an) + O(n), a<1$$

T(n) = O(n)

Can we generalize?

Master Theorem

For recurrence relations of the form T(n) = aT(n/b) + f(n) (we'll ignore floor/ceiling functions, which don't affect asymptotic behavior)

3 special cases: (assume $a \ge 1$, and b > 1)

- (1) If $f(n) = O(n^{\log a / \log b \epsilon})$ for some constant $\epsilon > 0$
- $T(n) = \Theta(n^{\log a / \log b})$
- (2) If $f(n) = \Theta(n^{\log a / \log b})$
 - $T(n) = \Theta(n^{\log a / \log b} \log n)$
- (3) If $f(n) = \Omega(n^{\log a / \log b + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and sufficiently large n
 - $T(n) = \Theta(f(n))$

Note that $\log a / \log b = \log_b a$