### **PCT**

(51) International Patent Classification 6:

## WORLD INTELLECTUAL PROPERTY ORGANIZATION



WO 99/65884

#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 6: |    | (11) International Publication Number | r: WO 99/65884              |
|---------------------------------------------|----|---------------------------------------|-----------------------------|
| C07D 277/48                                 | A1 | (43) International Publication Date:  | 23 December 1999 (23.12.99) |

PCT/US99/13034 (21) International Application Number:

(22) International Filing Date:

11 June 1999 (11.06.99)

(30) Priority Data:

60/089,747

18 June 1998 (18.06.98)

US

- (71) Applicant: BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, Princeton, NJ 08543-4000 (US).
- (72) Inventors: RAWLINS, David, B.; 219 Vernon Road, Morrisville, PA 19067 (US). KIMBALL, S., David; 13 Charred Oak Lane, E. Windsor, NJ 08520 (US). MISRA, Raj, N.; 12 Eaton Place, Hopewell, NJ 08525 (US). KIM, Kyoung, S.; 13A Lincoln Place, North Brunswick, NJ 08902 (US). WEBSTER, Kevin, R.; 804 Roeloffs Road, Yardley, PA 19066 (US).
- (74) Agents: MARENBERG, Barry, J. et al.; Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543-4000 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

(I)

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CARBON SUBSTITUTED AMINOTHIAZOLE INHIBITORS OF CYCLIN DEPENDENT KINASES

(57) Abstract

The compounds of formula (I) are protein kinase inhibitors and are useful in the treatment of proliferative diseases, for example, cancer, inflammation and arthritis. They may also be useful in the treatment of Alzheimer's disease, and cardiovascular disease.



### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES   | Spain               | LS | Lesotho               | SI   | Slovenia                 |
|----|--------------------------|------|---------------------|----|-----------------------|------|--------------------------|
| AM | Armenia                  | FI   | Finland             | LT | Lithuania             | SK   | Slovakia                 |
| ΑT | Austria                  | FR   | France              | LU | Luxembourg            | SN   | Senegal                  |
| ΑU | Australia                | GA   | Gabon               | LV | Latvia                | SZ   | Swaziland                |
| ΑZ | Azerbaijan               | GB   | United Kingdom      | MC | Monaco                | TD   | Chad                     |
| BA | Bosnia and Herzegovina   | GE   | Georgia             | MĎ | Republic of Moldova   | TG   | Togo                     |
| BB | Barbados                 | GH   | Ghana               | MG | Madagascar            | TJ   | Tajikistan               |
| BE | Belgium                  | GN   | Guinea              | MK | The former Yugoslav   | TM   | Turkmenistan             |
| BF | Burkina Faso             | GR   | Greece              |    | Republic of Macedonia | TR   | Turkey                   |
| BG | Bulgaria                 | HU   | Hungary             | ML | Mali                  | TT   | Trinidad and Tobago      |
| BJ | Benin                    | IE   | Ireland             | MN | Mongolia              | UA . | Ukraine                  |
| BR | Brazil                   | IL   | Israel              | MR | Mauritania            | UG   | Uganda                   |
| BY | Belarus                  | IS   | Iceland             | MW | Malawi                | US   | United States of America |
| CA | Canada                   | IT   | Italy               | MX | Mexico                | UZ   | Uzbekistan               |
| CF | Central African Republic | JР   | Japan               | NE | Niger                 | VN   | Viet Nam                 |
| CG | Congo                    | KE   | Kenya               | NL | Netherlands           | YU   | Yugoslavia               |
| CH | Switzerland              | . KG | Kyrgyzstan          | NO | Norway                | zw   | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP   | Democratic People's | NZ | New Zealand           |      |                          |
| CM | Cameroon                 |      | Republic of Korea   | PL | Poland                |      | -                        |
| CN | China                    | KR   | Republic of Korea   | PT | Portugal              |      |                          |
| CU | Cuba                     | KZ   | Kazakstan           | RO | Romania               |      |                          |
| CZ | Czech Republic           | LC   | Saint Lucia         | RU | Russian Federation    |      | •                        |
| DE | Germany                  | LI   | Liechtenstein       | SD | Sudan                 |      |                          |
| DK | Denmark                  | LK   | Sri Lanka           | SE | Sweden                |      |                          |
| EE | Estonia                  | LR   | Liberia             | SG | Singapore             |      |                          |



# CARBON SUBSTITUTED AMINOTHIAZOLE INHIBITORS OF CYCLIN DEPENDENT KINASES

This application claims priority benefit under Title 35 §119(e) of United States Provisional Application No. 60/089,747, filed June 18, 1998, and entitled Carbon Substituted Aminothiazole Inhibitors of Cyclin Dependent Kinases, the entire contents of which are incorporated herein by reference.

### **Brief Description of the Invention**

The present invention is directed to compounds of the formula

and pharmaceutically acceptable salts thereof. As used in formula I, and throughout the specification, the symbols have the following meanings:

15  $R^1 = R^2$ , COR<sup>3</sup>, CONH<sub>2</sub>, CONR<sup>2</sup>R<sup>3</sup>, COOR<sup>2</sup>, or SO<sub>2</sub>R<sup>2</sup>;

R<sup>2</sup> = alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl;

20 R³ = H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl;

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ C \\ R^6 \end{pmatrix}_n - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$

10

, where n = 0,1,2; m = 1,2 but both n and m cannot be 2, or

$$\mathsf{R}^4 = \begin{pmatrix} \mathsf{R}^5 \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{R}^6 \end{pmatrix}_{j} \mathsf{Y} = \begin{pmatrix} \mathsf{R}^7 \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{R}^8 \end{pmatrix}_{j}$$

, where i, j = 0 or 1 but cannot both be 1, and Y = optionally substituted alkene, alkyne, or any 2 adjacent carbon atoms of a cycloalkyl or cycloheteroalkyl ring of 3-7 atoms;

R<sup>4</sup> = alkyl with two or more carbon atoms, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl,

heteroarylalkyl, or  $R^9$ , with the proviso that when  $R^1$  is acetyl or propionyl and Y = alkene, then  $R^4$  cannot be nitrofuryl or 2-quinolinyl;

5 R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup> = independently H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, halo, or

hydroxy, alkoxy, amino, NR<sup>12</sup>R<sup>13</sup>, thio, or alkylthio, with the proviso that only one such heteroatom group is bonded to any one carbon atom;

$$R^9 = \sum_{N=1}^{Z} R^{10}$$
 where  $Z = 0$ ,  $NR^{14}$ , S;

25

30

35

BNSDOCID: <WO\_\_\_9965884A1\_I\_>

R<sup>10</sup>, R<sup>11</sup> = independently H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, halo, hydroxy, alkoxy, alkylcarbonyloxy, carboxy, alkyloxycarbonyl, amino, NR<sup>15</sup>R<sup>16</sup>, carbamoyl, ureido, thio, or alkylthio;

R<sup>12</sup>, R<sup>13</sup>, R<sup>14</sup>, R<sup>15</sup>, R<sup>16</sup> = independently H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl.

The compounds of formula I are protein kinase inhibitors and are useful in the treatment of proliferative diseases, for example, cancer, inflammation and arthritis. They may also be useful in the treatment of Alzheimer's disease, and cardiovascular disease.

## **Description of the Invention**

The present invention provides for compounds of formula I, pharmaceutical compositions employing such compounds, and for methods of using such compounds.

Listed below are definitions of various terms used to describe the compounds of the instant invention. These definitions apply to the terms as they are used throughout the specification (unless they are otherwise limited in specific instances) either individually or as part of a larger group.

It should be noted that any heteroatom with unsatisfied valances is assumed to have the hydrogen atom to satisfy the valances.

Carboxylate anion refers to a negatively charged group -COOT.

The term "alkyl" or "alk" refers to a monovalent alkane (hydrocarbon) 5 derived radical containing from 1 to 12 carbon atoms unless otherwise defined. An alkyl group is an optionally substituted straight, branched or cyclic saturated hydrocarbon group. When substituted, alkyl groups may be substituted with up to four substituent groups, R as defined, at any available point of attachment. When the alkyl group is said to be substituted with an 10 alkyl group, this is used interchangeably with "branched alkyl group". Exemplary unsubstituted such groups include methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, and the like. Exemplary substituents may include but are not limited to one or more of the 15 following groups: halo (such as F, Cl, Br, I), haloalkyl (such as CCl3 or CF3), alkoxy, alkylthio, hydroxy, carboxy (-COOH), alkyloxycarbonyl (-COOR), alkylcarbonyloxy (-OCOR), amino (-NH2), carbamoyl (-NHCOOR- or -OCONHR-), urea (-NHCONHR-), amidinyl (-CNHNHR or -CNRNH<sub>2</sub>), or thiol (-SH). Alkyl groups as defined may also comprise one or 20 more carbon to carbon double bonds or one or more carbon to carbon triple bonds.

The term "alkenyl" refers to a hydrocarbon radical straight, branched or cyclic containing from 2 to 12 carbon atoms and at least one carbon to carbon double bond.

The term "alkynyl" refers to a hydrocarbon radical straight, branched or cyclic containing from 2 to 12 carbon atoms and at least one carbon to carbon triple bond.

Cycloalkyl is a specie of alkyl containing from 3 to 15 carbon atoms, without alternating or resonating double bonds between carbon atoms. It may contain from 1 to 4 rings. Exemplary unsubstituted such groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclobexyl, etc. Exemplary substituents

25

include one or more of the following groups: halogen, alkyl, alkoxy, alkyl hydroxy, amino, nitro, cyano, thiol and/or alkylthio.

The terms "alkoxy" or "alkylthio", as used herein, denote an alkyl group as described above bonded through an oxygen linkage (-O-) or a sulfur linkage (-S-), respectively.

Sulfoxide and sulfone denote groups bonded by -SO- or -SO<sub>2</sub>-linkages, respectively.

The term "alkyloxycarbonyl", as used herein, denotes an alkoxy group bonded through a carbonyl group. An alkoxycarbonyl radical is represented by the formula: -C(O)OR, where the R group is a straight or branched  $C_{1-6}$  alkyl group.

The term "alkylcarbonyl" refers to an alkyl group bonded through a carbonyl group.

The term "alkylcarbonyloxy", as used herein, denotes an alkylcarbonyl group which is bonded through an oxygen linkage.

The term "arylalkyl", as used herein, denotes an aromatic ring bonded to an alkyl group as described above.

The term "aryl" refers to monocyclic or bicyclic aromatic rings, e.g. phenyl, substituted phenyl and the like, as well as groups which are fused, e.g., napthyl, phenanthrenyl and the like. An aryl group thus contains at least one ring having at least 6 atoms, with up to five such rings being present, containing up to 22 atoms therein, with alternating (resonating) double bonds between adjacent carbon atoms or suitable heteroatoms. Aryl groups may optionally be substituted with one or more groups including, but not limited to halogen, alkyl, alkoxy, hydroxy, carboxy, carbamoyl, alkyloxycarbonyl, nitro, trifluoromethyl, amino, cycloalkyl, cyano, alkyl S(O)<sub>m</sub> (m=O, 1, 2), or thiol.

The term "heteroaryl" refers to a monocyclic aromatic hydrocarbon group having 5 or 6 ring atoms, or a bicyclic aromatic group having 8 to 10 atoms, containing at least one heteroatom, O, S, or N, in which a carbon or nitrogen atom is the point of attachment, and in which one or two additional carbon atoms is optionally replaced by a heteroatom selected from O or S,

5

10

15

20

25

and in which from 1 to 3 additional carbon atoms are optionally replaced by nitrogen heteroatoms, said heteroaryl group being optionally substituted as described herein. Exemplary heteroaryl groups include the following: thienyl, furyl, pyrrolyl, pyridinyl, imidazolyl, pyrrolidinyl, piperidinyl, thiazolyl, oxazolyl, triazolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyrazinyl, tetrazolyl, pyridazinyl, pyrimidinal, triazinylazepinyl, indolyl, isoindolyl, quinolinyl, isoquinolinyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, benzoxadiazolyl, benzofurazanyl and tetrahydropyranyl. Exemplary substituents include one or more of the following: halogen, alkyl, alkoxy, hydroxy, carboxy, carbamoyl, alkyloxycarbonyl, trifluoromethyl, cycloalkyl, nitro, cyano, amino, alkylS(O)<sub>m</sub> (m=0, 1, 2), or thiol.

The term "heteroarylium" refers to heteroaryl groups bearing a quaternary nitrogen atom and thus a positive charge.

The term "heterocycloalkyl" refers to a cycloalkyl group (nonaromatic) in which one of the carbon atoms in the ring is replaced by a heteroatom selected from O, S or N, and in which up to three additional carbon atoms may be replaced by said heteroatoms.

The term "quaternary nitrogen" refers to a tetravalent positively charged nitrogen atom including, e.g. the positively charged nitrogen in a tetraalkylammonium group (e.g. tetramethylammonium, N-methylpyridinium), the positively charged nitrogen in protonated ammonium species (e.g. trimethylhydroammonium, N-hydropyridinium), the positively charged nitrogen in amine N-oxides (e.g. N-methyl-morpholine-N-oxide, pyridine -N-oxide), and the positively charged nitrogen in an N-amino-ammonium group (e.g. N-aminopyridinium).

The term "heteroatom" means O, S or N, selected on an independent basis.

The term "halogen" or "halo" refers to chlorine, bromine, fluorine or iodine.

When a functional group is termed "protected", this means that the group is in modified form to preclude undesired side reactions at the protected site. Suitable protecting groups for the compounds of the present invention will be recognized from the present application taking into account the level of skill in the art, and with reference to standard textbooks, such as Greene, T. W. et al., *Protective Groups in Organic Synthesis*, Wiley, N.Y. (1991).

Suitable examples of salts of the compounds according to the invention with inorganic or organic acids are hydrochloride, hydrobromide, sulfate, phosphate. Salts which are unsuitable for pharmaceutical uses but which can be employed, for example, for the isolation or purification of free compounds I or their pharmaceutically acceptable salts, are also included.

All stereoisomers of the compounds of the instant invention are contemplated, either in admixture or in pure or substantially pure form. The definition of the compounds according to the invention embraces all possible stereoisomers and their mixtures. It very particularly embraces the racemic forms and the isolated optical isomers having the specified activity. The racemic forms can be resolved by physical methods, such as, for example, fractional crystallization, separation or crystallization of diastereomeric derivatives or separation by chiral column chromatography. The individual optical isomers can be obtained from the racemates by conventional methods, such as, for example, salt formation with an optically active acid followed by crystallization.

All configurational isomers of compounds of the present invention are contemplated, either in admixture or in pure or substantially pure form. The definition of compounds of the present invention very particularly embraces both cis (Z) and trans (E) alkene isomers, as well as cis and trans isomers of cycloalkyl or heterocycloalkyl rings.

It should be understood that solvates (e.g. hydrates) of the compounds of formula I are also within the scope of the present invention. Methods of solvation are generally known in the art. Accordingly, the

5

10

15

20

25

compounds of the instant invention may be in the free or hydrate form, and may be obtained by methods exemplified by the following schemes.

The synthesis of compounds of formula I can proceed through the known aldehyde of formula II (Scheme 1) which was prepared according to the procedures set forth in *II Farmaco* 44, 1011, (1989) and the references therein. Treatment of II with either (R<sup>2</sup>CO)<sub>2</sub>O or R<sup>1</sup>-L, where L is a leaving group such as a halogen or sulfonate ester, yields compounds of formula III. Condensation of formula III with phosphorus-stabilized anions such as the phosphonate of formula IV or a Wittig reagent in the presence of base yields compounds of formula V (that is, compounds of formula I where A contains an alkene present as either the cis or trans isomer). Alternatively, compounds of formula V may be prepared by first reacting formula II with the phosphonate of formula IV or a Wittig reagent in the presence of base, and then treating the resulting product with (R<sup>2</sup>CO)<sub>2</sub>O or R<sup>1</sup>-L.

15

10

5

#### Scheme 1

20

25

Compounds of formula V may be converted into other compounds of formula I as shown in Scheme 2. For example, treatment of compounds of formula V with agents such as  $H_2$  on Pd/C yields the saturated compounds of formula VI (which is a compound of formula I. Alternatively compounds of formula V may be epoxidized with agents such as dimethyldioxirane or *m*-chloroperbenzoic acid to yield epoxides of formula VII (which are compounds of formula I where Y = the carbon atoms of oxirane). Cyclopropanation of the olefin with agents such as  $ZnCuCH_2$  or diazomethane may yield cyclopropanes of formula VIII (which are compounds of formula I where Y = cyclopropane).

35

#### Scheme 2

Aldehydes of formula III may also be converted into compounds of formula I which have  $R^7$  or  $R^8$  groups containing oxygen (Scheme 3). For example, addition of organometallic reagents of formula  $R^*$ -M, where  $R^* = R^4(R^5R^6C)_i$ - or  $R^4(R^5R^6C)_i$ -Y- and M = a metal, would yield compounds of formula IX (that is, compounds of formula I where  $R^7$  = hydroxy and  $R^8$  = H). Alkylation of the hydroxyl group in compounds of formula IX using W-L, where W = alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl, and L is a leaving group such as a halogen or sulfonate ester, would yield ethers of formula X (that is, compounds of formula I with  $R^7$  = alkoxy).

15

10

5

#### Scheme 3

Scheme 4 outlines a procedure that may be used for the solid phase synthesis of compounds of formula I. A benzyl chloride resin, such as that depicted by formula XII, may be alkylated by an aminothiazole of formula III (where R¹ = CF₃CO) to give a compound of formula XII. Coupling with phosphorus stabilized anions such as compounds of formula IV will yield

alkenes of formula XIII which may be deprotected by a reducing agent such as sodium borohydride, or a base such as sodium hydroxide, to give amines of formula XIV. The amines of formula XIV may react with R¹-L or (R²CO)₂O to give compounds of formula XV, which may be cleaved from the resin with trifluoroacetic acid to give compounds of formula V (which are compounds of formula I where Y is an alkene). Compounds of formula IX or X may also be synthesized on solid phase using analogous chemistry to that shown in Scheme 3 by starting with aldehyde XII.

10

15

20

#### Scheme 4

Resino

Resino

(III. 
$$R^1 = CF_3CO$$
)

(XII)

$$R^4 \longrightarrow P(O)(OEt)_2$$

(XIII)

(XIIV)

Compounds of formula I wherein  $R^4$ = $R^9$  may be synthesized from aldehydes of formula III (Scheme 5). These aldehydes may be reduced with agents such as sodium borohydride to give alcohols of formula XVI which may be converted into a compound of formula XVII, where L is a leaving group such as a halogen or sulfonate ester, by treatment with agents such as p-toluenesulfonyl chloride and base or thionyl chloride. The anion of

-9-

dialkylmaionate esters of formula XVIII may be alkylated by compounds of formula XVII to form diesters of formula XIX, where W = alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl. These diesters may be saponified and decarboxylated to form acids of formula XX which may be coupled with amines of formula XXI to give amides of formula XXII. These amides may be cyclized upon exposure to dehydrating agents such as POCl<sub>3</sub> to form compounds of formula VI which are compounds of formula I where Z = O.

10

15

20

25

#### Scheme 5

Compounds of formula I wherein R4=R9 and Y = alkynyl or Z-alkenyl may be prepared from halomethyl oxazoles such as XXIII (Scheme 6). Displacement of the chlorine to give the acetate XXIV, followed by basic hydrolysis and oxidation provides a 2-oxazolyl aldehyde XXVI. The aldehyde may be treated with a reagent such as carbon tetrabromide and triphenylphosphine to give a dibromo olefin XXVII. Elimination of HBr by strong base, followed by lithiation and quenching the acetylenic anion with tributyltin chloride gives an acetylenic stannane XXVIII, which may be coupled with a 2-iodo aminothiazole XXIX, to give XXX, which is a compound of formula I wherein R4=R9 and Y is alkynyl. The acetylenic compounds of formula XXX may be hydrogenated to provide cis olefins XXXI and XXXIII, which are compounds of formula I wherein R4=R9 and Y is Z-alkenyl.

#### Schem 6

$$R^{10} \xrightarrow{O} OH \xrightarrow{(COCI)_2, DMSO} R^{10} \xrightarrow{O} CHO \xrightarrow{CBr_4, Ph_3P} R^{10} \xrightarrow{O} Br$$

$$(XXVI) \qquad (XXVII)$$

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

5

10

Compounds of formula I wherein R1 = R2 may be prepared by the methods shown in Scheme 7. 5-Formyl-2-aminothiazole II is reacted with a nitrosating agent such as tBuONO and CuBr2 to form the 2-bromo derivative XXXIV. Following procedures as described in Scheme I, the aldehyde is reacted with a phosphonate of formula IV or a Wittig reagent in the presence

of base to provide an olefin of formula XXXV. Reaction of the 2-bromo olefin of formula XXXV with a compound of formula R2NH2 in the presence of a base such as sodium hydride gives compounds of formula, which is a compound of formula I wherein R1 = R2 and Y is alkenyl.

5

### Scheme 7

Alternatively, compounds of formula XXXVI where  $R^1 = R^2$  and Y is alkenyl may be prepared according to Scheme 8. The amino group of compound II may be protected with a reagent such as di-t-butyl dicarbonate to give XXXVII, followed by reaction with a phosphonate of formula IV or a Wittig reagent in the presence of base such as an alkoxide or sodium hydride to give a compound of formula XXXVIII. Treatment of XXXVIII with  $R^2L$  where L is a leaving group such as halo or sulfonate, in the presence of base, followed by removal of the protecting group gives a compound of formula XXXVI, which is a compound of formula I where  $R^1 = R^2$  and Y is alkenyl.

20

15

10

#### Scheme 8

Compounds of formula  $R^4CH_2P(O)(OEt)_2$  may be prepared from compounds of formula  $R^4CH_2L$ , where L is a leaving group such as halogen or sulfonate ester, by heating with triethylphosphite. Compounds of formula  $R^9$ -L, where Z = O, may be prepared from  $LCH_2CN$  and  $R^{11}C(N_2)COR^{10}$ , according to part E of Example 2.

The starting compounds of Schemes 1-7 are commercially available or may be prepared by methods known to one of ordinary skill in the art.

All compounds of formula I may be prepared by modification of the procedures described herein.

Preferred compounds of formula I are those where:

$$R^1 = R^2$$
, COR<sup>3</sup>, or CONR<sup>2</sup>R<sup>3</sup>;

5

 $R^2$  = alkyl, aryl, or heteroaryl;

15 R<sup>3</sup> = H, alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl;

A = 
$$R^4 - \begin{pmatrix} R^5 \\ c \\ R^6 \end{pmatrix} n - \begin{pmatrix} R^7 \\ c \\ R^8 \end{pmatrix} m$$
, where n = 0, 1, 2; m = 1, 2, or

 $R^4$  = alkyl with two or more carbon atoms, aryl, heteroaryl, or  $R^9$ ;

20  $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

$$R^9 = \sum_{N=11}^{Z} R^{10}$$
 where  $Z = 0$ ;

 $R^{10}$ ,  $R^{11}$  = independently H, or alkyl.

The compounds according to the invention have pharmacological properties; in particular, the compounds of formula I are inhibitors of protein kinases such as the cyclin dependent kinases (cdks), for example, cdc2 (cdk1), cdk2, and cdk4. The novel compounds of formula I are expected to be useful in the therapy of proliferative diseases such as cancer.

inflammation, arthritis, Alzheimer's disease and cardiovascular disease. These compounds may also be useful in the treatment of topical and systemic fungal infections.

More specifically, the compounds of formula I are useful in the treatment of a variety of cancers, including (but not limited to) the following:

-carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin;

-hematopoietic tumors of lymphoid lineage, including acute lymphocytic leukemia, B-cell lymphoma, and Burkett's lymphoma; -hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; -tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma; and

-other tumors, including melanoma, seminoma, teratocarcinoma, osteosarcoma, neuroblastoma and glioma.

Due to the key role of cdks in the regulation of cellular proliferation in general, inhibitors could act as reversible cytostatic agents which may be useful in the treatment of any disease process which features abnormal cellular proliferation, e.g., neuro-fibromatosis, atherosclerosis, pulmonary fibrosis, arthritis, psoriasis, glomerulonephritis, restenosis following angioplasty or vascular surgery, hypertrophic scar formation, inflammatory bowel disease, transplantation rejection, angiogenesis, and endotoxic shock.

Compounds of formula I may also be useful in the treatment of Alzheimer's disease, as suggested by the recent finding that cdk5 is involved in the phosphorylation of tau protein (*J. Biochem*, 117, 741-749 (1995)).

Compounds of formula I may also act as inhibitors of other protein kinases, e.g., protein kinase C, her2, rafl, MEK1, MAP kinase, EGF receptor, PDGF receptor, IGF receptor, PI3 kinase, wee1 kinase, Src, AbI, and thus be effective in the treatment of diseases associated with other protein kinases.

5

10

15

20

25

The compounds of this invention may also be useful in combination with known anti-cancer treatments such as radiation therapy or with cytostatic and cytotoxic agents, such as for example, but not limited to, DNA interactive agents, such as cisplatin or doxorubicin; inhibitors of farnesyl protein transferase, such as those described in pending U.S. Application Serial No. 08/802,239 which was filed on February 20, 1997; topoisomerase II inhibitors, such as etoposide; topoisomerase I inhibitors, such as CPT-11 or topotecan; tubulin stabilizing agents, such as paclitaxel, docetaxel or the epothilones; hormonal agents, such as tamoxifen; thymidilate synthase inhibitors, such as 5-fluorouracil; and antimetabolites, such as methoxtrexate; antiangiogenic agents, such as angiostatin; and kinase inhibitors, such as her2 specific antibodies.

If formulated as a fixed dose, such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent within its approved dosage range. For example, the cdc2 inhibitor olomucine has been found to act synergistically with known cytotoxic agents in inducing apoptosis (*J. Cell Sci.*, 108, 2897 (1995)). Compounds of formula I may be used sequentially with known anti-cancer or cytotoxic agents when a combination formulation is inappropriate.

## cdc2/cyclin B1 Kinase Assay

cdc2/cyclin B1 kinase activity was determined by monitoring the incorporation of  $^{32}\text{P}$  into histone HI. The reaction consisted of 50 ng baculovirus expressed GST-cdc2, 75 ng baculovirus expressed GST-cyclin B1, 1 µg histone HI (Boehringer Mannheim), 0.2 µCi of  $^{32}\text{P}$   $_{\gamma}$ -ATP and 25 µM ATP in kinase buffer (50 mM Tris, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 0.5 mM DTT). The reaction was incubated at 30 °C for 30 minutes and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes. The reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate

10

15

20

25

Universal harvester, and the filters were counted on a Packard TopCount 96-well liquid scintillation counter (Marshak, D.R., Vanderberg, M.T., Bae, Y.S., Yu, I.J., *J. of Cellular Biochemistry*, 45, 391-400 (1991), incorporated by reference herein).

5

10

15

### cdk2/cyclin E Kinase Assay

cdk2/cyclin E kinase activity was determined by monitoring the incorporation of  $^{32}\mathrm{P}$  into the retinoblastoma protein. The reaction consisted of 2.5 ng baculovirus expressed GST-cdk2/cyclin E, 500 ng bacterially produced GST-retinoblastoma protein (aa 776-928), 0.2  $\mu$ Ci  $^{32}\mathrm{P}$   $_{\gamma}$ -ATP and 25  $\mu$ M ATP in kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 5 mM EGTA, 2 mM DTT). The reaction was incubated at 30 °C for 30 minutes and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes. The reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate Universal harvester, and the filters were counted on a Packard TopCount 96-well liquid scintillation counter.

## cdk 4/cyclin D1 Kinase Activity

20 cdk4/cyclin D1 kinase activity was determined by monitoring the incorporation of <sup>32</sup>P in to the retinoblastoma protein. The reaction consisted of 165 ng baculovirus expressed as GST-cdk4, 282 ng bacterially expressed as S-tag cyclin D1, 500 ng bacterially produced GST-retinoblastoma protein (aa 776-928), 0.2  $\mu \text{Ci}\ ^{32}\text{P}\ \gamma\text{-ATP}$  and 25  $\mu \text{M}$  ATP in kinase buffer (50 mM 25 Hepes, pH 8.0, 10 mM MgCl<sub>2</sub>, 5 mM EGTA, 2 mM DTT). The reaction was incubated at 30°C for 1 hour and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes. The reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate Universal harvester, and the filters were counted on a Packard TopCount 96-well liquid scintillation counter (Coleman, 30 K.G., Wautlet, B.S., Morissey, D. Mulheron, J.G., Sedman, S., Brinkley, P., Price, S., Wedster, K.R. (1997) Identification of CDK4 Sequences involved in

cyclin D, and p16 binding. *J. Biol. Chem.* 272,30:18869-18874, incorporated by reference herein).

The following examples and preparations describe the manner and process of making and using the invention and are illustrative rather than limiting. It should be understood that there may be other embodiments which fall within the spirit and scope of the invention as defined by the claims appended hereto.

#### Example 1

## Ethyl 3-((E)-2-acetamido-thiazol-5-yl)-acrylate

5

10

15

25

### A. Preparation of 2-acetamido-5-bromothiazole

To a solution of 2-amino-5-bromothiazole (22.3 g, 85.9 mmol) in methylene chloride (100 mL) and pyridine (60 mL) was added acetic anhydride (11 mL) slowly with stirring. The mixture was allowed to stir for 2.5 hours, warmed to room temperature, and stirred for an additional 4 hours. Most of the solvent was removed *in vacuo* and the residue was washed with ethyl acetate and aqueous HCl. The organic solution was then washed with water, dried over MgSO<sub>4</sub> and concentrated to give a crude solid. This solid was triturated with Et<sub>2</sub>O, filtered, washed with Et<sub>2</sub>O, and dried to give 2-acetamido-5-bromothiazole as a solid (15.1 g, 80%, C<sub>5</sub>H<sub>5</sub>BrN<sub>2</sub>OS, MS m/e 222 (M+H)<sup>+</sup>).

## 20 B. Preparation of ethyl 3-((E)-2-acetamido-thiazol-5-yl)-acrylate

A mixture of acetamido-5-bromothiazole (440 mg, 2.0 mmol), ethyl acrylate (400 mg, 4 mmol) and triethylamine (3 mL) in DMF (3 mL) was stirred at 90 °C under argon in the presence of  $Pd(tol_3P)_2Cl_2$  (150.0 mg) for 24 h. The mixture was concentrated and the residue was dissolved in methylene chloride (100 mL), washed with water and dried over MgSO<sub>4</sub>. The solution was concentrated and the residue was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>:MeOH / 100:5) to afford ethyl 3-((E)-2-acetamido-thiazol-5-yl)-acrylate (100 mg, 21%) as a solid (m.p. 239-240 °C,  $C_{10}H_{12}N_2O_3S$ , MS m/e 240.9 (M+H)†).

#### Example 2

## N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide

H N S

## A. Preparation of 2-amino-thiazol-5-ylcarboxaldehyde

2-Amino-thiazol-5-ylcarboxaldehyde was synthesized according to the procedure set forth in *Il Farmaco* 44, 1011, (1989) and the references therein.

## B. Preparation of 2-acetamido-thiazol-5-ylcarboxaldehyde

To a suspension of 2-amino-thiazol-5-ylcarboxaldehyde (5.0 g, 39 mmol) in toluene (500 mL) was added acetic anhydride (11.0 mL, 117 mmol).

The mixture was heated to 110 °C for 5 hours. Upon cooling to room temperature, a solid precipitated out of the solution. The reaction mixture was concentrated under vacuum to give 2-acetamido-thiazol-5-ylcarboxaldehyde as a light brown colored solid (6.5 g, 98%, C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O<sub>2</sub>S, MS m/e 171 (M+H)\*).

#### 20 C. Preparation of diazomethane

5

25

30

Caution: diazomethane is potentially explosive. Care should be taken to use plastic containers, or glassware free of scratches. Solid KOH (60 g) was dissolved in water to make 150 mL of a 40% KOH solution. This solution was cooled at 0 °C and ether (500 mL) was added. To this cooled mixture was added 1-methyl-3-nitro-1-nitrosoguanidine (50 g, 0.34 mol) in portions over 45 minutes. After addition was complete, the ether layer was decanted and to give a solution of diazomethane which was used directly.

## D. Preparation of 1-diazo-3,3-dimethyl-2-butanone

To the diazomethane solution was added a solution of trimethylacetyl chloride (15 mL, 0.12 mol) in ether (100 mL) dropwise over 40 minutes. After addition was complete, the solution was allowed to warm slowly overnight to room temperature. The solution was purged with a flow of nitrogen gas to

remove any excess diazomethane and the resulting solution was concentrated to give 1-diazo-3,3-dimethyl-2-butanone as a yellow oil which was used directly in the next step.

## 5 E. Preparation of 2-(chloromethyl)-5-t-butyloxazole

To a stirred solution of chloroacetonitrile (40 mL) and boron trifluoride etherate (20 mL, 0.16 mmol) at 0 °C was added 1-diazo-3,3-dimethyl-2-butanone in chloroacetonitrile (40 mL) dropwise over a period of 20 minutes. After addition was complete, the mixture was stirred at 0 °C for one hour and then partitioned between saturated NaHCO<sub>3</sub> solution (700 mL) and CH<sub>2</sub>Cl<sub>2</sub> (500 mL). The aqueous solution was extracted with CH<sub>2</sub>Cl<sub>2</sub> (500 mL) and the combined organic layers were washed with brine (400 mL) and dried over MgSO<sub>4</sub>. After filtration, the solution was concentrated and then distilled under vacuum using an oil bath temperature of 40 °C. The 2-(chloromethyl)-5-t-butyloxazole (9.2 g, 44% overall from the acid chloride, C<sub>8</sub>H<sub>12</sub>CINO, MS m/e 174 (M+H)\*) was obtained as a light yellow oil.

# F. Preparation of (5-t-butyl-oxazol-2-ylmethyl)-phosphonic acid diethyl ester

A solution of 2-(chloromethyl)-5-*t*-butyloxazole (8.00 g, 46.1 mmol) in triethylphosphite (15.3 g, 92.0 mmol) was heated at 120 °C for 18 hours. After cooling the mixture to room temperature, toluene (30 mL) was added and the solution was concentrated *in vacuo* with a bath temperature of 70 °C. This procedure was repeated three times and the resulting brown oil was dried *in vacuo* at 90 °C for 30 minutes to give (5-*t*-butyl-oxazol-2-ylmethyl)-phosphonic acid diethyl ester (12.4 g, 98%, C<sub>12</sub>H<sub>22</sub>NO<sub>4</sub>P, MS m/e 276 (M+H)\*) as a red-orange liquid.

30

10

## G. Preparation of N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide

To a solution of (5-t-butyl-oxazol-2-ylmethyl)-phosphonic acid diethyl ester (195 mg, 0.708 mmol) in tetrahydrofuran (10 mL) was added potassium t-butoxide (2.2 mL, 1 M in THF) via syringe. After 10 minutes, a solution of 2acetamido-thiazo-5-ylcarboxaldehyde (100 mg, 0.587 mmol) in THF (6 mL) was added via syringe. Over the course of a half-hour, a precipitate formed in the solution. Methanol (1.5 mL) was added to dissolve the precipitate, and after an additional half-hour, the reaction was concentrated under reduced pressure to form a slurry. This was diluted with CHCl<sub>3</sub> (50 mL) and guenched with water (25 mL). The solution was extracted with CHCl<sub>3</sub> (3x50 mL) and ethyl acetate (3x50 mL) until all the formed solid was in solution. The combined organic layers were washed with water (50 mL) and dried over brine followed by MgSO, and then concentrated to give a yellow solid. The crude solid was purified by chromatography (SiO2, 5% MeOH/CHCl3) to afford N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide (118 mg, 69%, m.p. 275 °C, C<sub>14</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub>S, MS m/e 292 (M+H)<sup>+</sup>) as a light yellow solid. HPLC-HI 100% at 3.95 min (YMC S5 ODS coulm 4.6 x 50 mm, 10 - 90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

10

15

5

25

## Example 3

N-[5-(2-(5-t-butyl-oxazol-2-yl)-ethyl)-thiazol-2-yl]-acetamide

# A. Preparation of N-[5-(2-(5-t-butyl-oxazol-2-yl)-ethyl)-thiazol-2-yl]-acetamide

A solution N-[(E)-5-(2-(5-*t*-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl] acetamide (67 mg, 0.23 mmol) in ethyl acetate (10 mL) was added to a suspension of pre-reduced Pd/C (10%) in ethyl acetate (5 mL). The reaction flask was fitted with a hydrogen balloon and stirred for 24 hours. The reaction was filtered, and the mixture was resubmitted to hydrogenation using the same conditions as above. After an additional 24 hours, the reaction was filtered through a plug of celite, concentrated, and purified by chromatography (SiO<sub>2</sub>, 5% MeOH/CHCl<sub>3</sub>) to give *N*-[5-(2-(5-*t*-butyl-oxazol-2-yl)-ethyl)-thiazol-2-yl]-acetamide as a white solid (3.5 mg, 5%, C<sub>14</sub>H<sub>19</sub>N<sub>3</sub>O<sub>2</sub>S, MS m/e 294 (M+H)\*). HPLC-HI 91% at 6.75 min (Zorbax SB C18 column 4.6 x 75 mm, 10 - 90% aqueous methanol over 8 minutes containing 0.1% TFA, 2.5 mL/min, monitoring at 220 nm).

### Example 4

N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide

# A. Preparation of [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-carbamic acid t-butyl ester

A sample of [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-carbamic acid t-butyl ester could be prepared according to the methods described in Example 2.

## B. Preparation of 2-amino-5-[(E)-2-(5-t-butyl-oxazol-2-yl)-vinyl]-thiazole

To a suspension of [5-(2-(5-*t*-butyl-oxazol-2-yl)-vinyl)-thiazo-2-yl]-carbamic acid *t*-butyl ester (1.5 g, 4.3 mmol) in tetrahydrofuran (30 mL) and water (3 mL) was added concentrated HCl (3 mL) dropwise. After addition was complete, the mixture was heated at 60 °C overnight. The solution was concentrated in vacuo to give a slurry, which was neutralized with saturated aqueous NaHCO<sub>3</sub> solution. The resulting solid was filtered and washed with water and dried to give the free base (732 mg, 68%, C<sub>12</sub>H<sub>15</sub>N<sub>3</sub>OS, MS m/e 250 (M+H)\*).

# C. Preparation of *N*-[5-(2-(5-*t*-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide

To a solution of 2-amino-5-[(E)-2-(5-t-butyl-oxazol-2-yl)-vinyl]-thiazole (20 mg, 0.08 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (1 mL) was added dry DMF (0.1 mL) and N, N-diisopropylethylamine (28  $\mu$ L, 0.16 mmol). The resulting solution was cooled to 0 °C and phenyl acetyl chloride (21  $\mu$ L, 0.16 mmol) was added via syringe. The reaction mixture was allowed to warm to room temperature over two hours and then concentrated. Chromatography (SiO<sub>2</sub>, 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) provided a N-[5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide as a mixture of Z and E isomers which were separated by reverse-phase HPLC to give the Z isomer (3 mg, 10%, MS m/e 368 (M+H)\*) as a light yellow solid, and the E isomer (3 mg, 10%, C<sub>20</sub>H<sub>21</sub>N<sub>3</sub>O<sub>2</sub>S, MS m/e 368 (M+H)\*) as a yellow solid. (Z)-isomer: HPLC-HI 86% at 4.05 min (YMC S5 ODS column 4.6 x 50 mm, 10 - 90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 254 nm). (E) -isomer: HPLC-HI 84% at 4.18

5

10

15

20

25

min (YMC S5 ODS column 4.6 x 50 mm, 10 - 90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 254 nm).

### Example 5

## N-[5-(2-(5-t-butyl-oxazol-2-yl)-ethynyl)-thiazol-2-yl]-acetamide

## A. Preparation of 2-hydroxymethyl-5-t-butyloxazole

To a mixture of 2-chloromethyl-5-t-butyloxazole (13.0 g, 75.1 mmole), Cs<sub>2</sub>CO<sub>3</sub> (36.0 g, 110.5 mmole) and acetic acid (10.5 mL, 192.6 mmole) in acetonitrile (120 ml) was heated at 65 deg C overnight. All the solvent was removed under reduced pressure, the residue was partitioned between water (60 mL) and EtOAc (100 mL) and the aqueous layer was extracted with ethyl acetate (2 x 100 mL). The combined EtOAc solution was dried over MgSO<sub>4</sub> and concentrated to an oil.

The oil was dissolved in methanol (30 mL) and added with a solution of NaOH (6.50 g, 163 mmole) in 30 ml of water, and stirred at room temperature overnight. MeOH was removed under reduced pressure, and the aqueous layer was extracted with EtOAc (3 x 80mL). The combined EtOAc solution was dried over MgSO<sub>4</sub> and concentrated to give 2-hydroxymethyl-5-*t*-butyloxazole as oil (11.76 g, 100%).

# B. Preparation of 1,1-dibromo-2-(5'-t-butyloxazol-2-yl) ethylene

To a stirred solultion of oxalyl chloride (45 mL, 90 mmole) at -78 deg C under argon was added dropwise dimethyl sulfoxide (8.80 mL, 124 mmole). The reaction mixture was stirred at -78 deg C for 10 min., and was treated with a solution of 2-hydroxymethyl-5-t-butyloxazole (11.7 g, 75.1 mmole) in anhydrous methylene chloride (30 mL) over 20 min.. The mixture was stirred at this temperature for 1 hour, then triethylamine was added slowly (31.0 mL,

5

222 mmole), during which the reaction mixture became a yellowish slurry. After stirring at -78 deg C for 20 min, the reaction mixture was warmed to room temperature, added with methylene chloride (100 mL) and stirred for 1 hour. The solid was filtered off and washed with EtOAc. The filtrate was washed with 5% aqueous citric acid (100 mL) and brine (50 mL), dried over MgSO<sub>4</sub>. Concentration and column chromatography (silica gel, EtOAc/hexane 1:4) afforded 2-formyl-5-t-butyloxazole as a light yellow oil (10.1 g)

To a stirred solution of carbon tetrabromide (24.0 g, 72.4 mmole) in methylene chloride (200 mL) at 5-10 deg C under argon atmosphere was added triphenylphosphine (37.0 g, 141 mmole) in portions. The reaction mixture was stirred for 5 min and treated with a solution of 2-formyl-5-*t*-butyloxazole in methylene chloride (60 mL). The reaction mixture was stirred at room temperature for 2 hours, while a white solid precipitated out of the solution. The solid was filtered off, the filtrate concentrated and purified (silica gel, EtOAc/hexane 1:4) to give 1,1-dibromo–2-(5-*t*-butyl-oxazol-2-yl)ethylene as a pale solid (9.13 g, 39 %).

# C. Preparation of N-[5-(2-(5-t-butyl-oxazol-2-yl)-acetelenyl)-thiazol-20 2-yl]-acetamide

To a stirred solution of 1,1-dibromo–2-(5-*t*-butyl-oxazol-2-yl)ethylene (6.0 g, 19 mmole) in anhydrous THF (80 mL) at –78 deg C under argon atmosphere, was added with 1.6 *M* n-butyllithium (32 mL, 51 mmole) in hexane dropwise over 20 min., the reaction mixture, stirred at –78 deg C for 30 min and treated with tributyltin chloride (5.5 mL, 20 mmole). The reaction mixture was stirred for 30 min, warmed to 0 deg C, stirred at 0 deg C for 30 min, and then at room temperature for 45 min. The mixture was passed through a short column of silica gel (deactivated with 2% triethylamine in hexane), and eluted with 10% EtOAc in dichloromethane to obtain crude product of 1-tributylstannyl-2-(5-*t*-butyl-oxazol-2-yl)acetylene as a brown oil (9.10 g).

10

15

25

30 °

argon and 2-*N*-acetylamino-5-iodothiazole (4.65 g, 17.3 mmole) in anhydrous THF (100 mL) at room temperature was added solid tris(dibenzylideneacetone)dipalladium(0) (1.40 g, 1.53 mmole), followed by trifurylphosphine (2.0 g, 8.6 mmole). The reaction mixture was stirred at room temperature for 10 min., then heated at 65 deg C for 2.5 hours. The catalyst was filtered off, the filtrate concentrated and purified by column silica gel chromatography (EtOAc/hexane 1:2 to 2:1) to give N-[5-(2-(5-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-butyl-oxazol-2-t-bu

To a stirred solution of above crude product of tin compound under

yl)-ethynyl)-thiazol-2-yl]-acetamide as a light brown solid (2.60 g, 46%). C14H15N3O2S, MS m/e 290 (M+H)+. HPLC-HI 100% at 4.02 min (YMC S5 ODS column 4.6 x 50 mm, 10 - 90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

15

10

## Example 6

N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-aminopyridine

20

25

30

Preparation of N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-aminopyridine

To a solution of 2-aminopyridine (238 mg, 2.56 mmol) in THF (8 mL) under argon was added sodium hydride (100 mg of 60% oil dispersion, 2.5 mmol) and the reaction stirred at 60 deg C for 15 minutes, cooled to room temperature and 2-bromo-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazole] (200 mg, 0.64 mmol) was added in one portion. The reaction mixture was stirred for 20 minutes, quenched with hydrochloric acid, washed with water and extracted with ethyl acetate. The organic layers were separated and concentrated to give a crude product which was heated with ethyl acetate:

hexanes (1:1), cooled, filtered, and dried under vacuum to give the desired product.  $C_{17}H_{18}N_4OS$ , MS m/e 327 (M+H) $^+$ . HPLC-HI 100% at 4.24 min (YMC S5 ODS column 4.6 x 50 mm, 10 - 90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

5

Using the procedures described herein or by modification of the procedures described herein as known to one or ordinary skill in the art, the following additional compounds have been prepared:

Table 1

| Example | Structure                                              | Molecular<br>Formula                                                           | $MS (M+H)^+$ | Procedure of<br>Example |
|---------|--------------------------------------------------------|--------------------------------------------------------------------------------|--------------|-------------------------|
| 7       | H <sub>3</sub> C N N N N N N N N N N N N N N N N N N N | C <sub>10</sub> H <sub>14</sub> N <sub>2</sub> O <sub>3</sub> S                | 243          | 3                       |
| 8       | H <sub>3</sub> C CH <sub>3</sub>                       | C <sub>14</sub> H <sub>17</sub> N <sub>3</sub> O <sub>2</sub> S                | 292          | 2                       |
| 9       | H <sub>2</sub> C CH <sub>3</sub>                       | C <sub>16</sub> H <sub>21</sub> N <sub>3</sub> O <sub>3</sub> S                | 336          | 2                       |
| 10      | H <sub>3</sub> C-C <sub>H<sub>3</sub></sub>            | $C_{18}H_{18}N_4O_2S$                                                          | 355          | 4                       |
| 11      | H <sub>3</sub> C-CH <sub>3</sub>                       | C <sub>13</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub> S                | 278          | 4                       |
| 12      | F CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>      | C <sub>19</sub> H <sub>18</sub> F <sub>2</sub> N <sub>4</sub> O <sub>2</sub> S | 405          | 4                       |

-27-SUBSTITUTE SHEET (RULE 26)

| Example | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molecular<br>Formula                                                           | MS<br>(M+H)* | Procedure of Example |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|----------------------|
| 13      | F N N S CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>19</sub> H <sub>18</sub> F <sub>2</sub> N <sub>4</sub> O <sub>2</sub> S | 405          | · 4                  |
| 14      | N TS H3C CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>2</sub> S                | 369          | 4                    |
| 15      | H <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>2</sub> S                | 369          | 4                    |
| 16      | The Table of the Constitution of the Constitut | C <sub>24</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> S                | 419          | 4                    |
| 17      | H <sub>2</sub> C CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>24</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> S                | 419          | 4                    |
| 18      | N, S C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>20</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                | 368          | 4                    |
| 19      | H <sub>3</sub> C <sub>C</sub> CH <sub>3</sub><br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>20</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                | 368          | 4                    |
| 20      | H <sub>3</sub> C N S N N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>11</sub> H <sub>16</sub> N <sub>6</sub> O S                             | 281          | 3                    |
| 21      | H <sub>3</sub> C N N S CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>14</sub> H <sub>14</sub> N <sub>2</sub> O S                             | 259          | 2                    |
| 22      | H <sub>3</sub> C N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>13</sub> H <sub>12</sub> N <sub>2</sub> O S                             | 245          | 2                    |
| 23      | H <sub>3</sub> C N S CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>17</sub> H <sub>20</sub> N <sub>2</sub> O S                             | 301          | 2                    |

-28-SUBSTITUTE SHEET (RULE **26**)

| Example | Structure                              | Molecular<br>Formula                                               | MS<br>(M+H) <sup>+</sup> | Procedure of Example |
|---------|----------------------------------------|--------------------------------------------------------------------|--------------------------|----------------------|
| 24      | H <sub>3</sub> C N S CI                | $C_{13}H_{11}C1N_2OS$                                              | 280                      | 2                    |
| 25      | H <sub>3</sub> C CH <sub>3</sub>       | C <sub>13</sub> H <sub>14</sub> Br N <sub>3</sub> O <sub>2</sub> S | 357                      | 2                    |
| 26      | H <sub>3</sub> C CH <sub>3</sub>       | C <sub>13</sub> H <sub>13</sub> N <sub>3</sub> O <sub>2</sub> S    | 276                      | 5                    |
| 27      | H <sub>3</sub> C N S                   | C <sub>13</sub> H <sub>14</sub> N <sub>2</sub> O S                 | 247                      | 3                    |
| 28      | H <sub>3</sub> C N N S CH <sub>3</sub> | C <sub>16</sub> H <sub>18</sub> N <sub>2</sub> O S                 | 287                      | 2                    |
| 29      | H <sub>3</sub> C J N S CH <sub>3</sub> | C <sub>16</sub> H <sub>20</sub> N <sub>2</sub> O S                 | 289                      | 3                    |
| 30      | S I N CH3                              | C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> O S                 | 246                      | 2                    |
| 31      | N-N CH <sub>3</sub> CH <sub>3</sub>    | C <sub>12</sub> H <sub>18</sub> N <sub>6</sub> O S                 | 295                      | 3                    |
| 32      | H <sub>3</sub> C N S                   | C <sub>13</sub> H <sub>12</sub> N <sub>2</sub> O S                 | 245                      | 4                    |
| 33      | S N CH3                                | C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> O S                 | 246                      | 4                    |

-29-

| Example | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Molecular<br>Formula                                            | $MS (M+H)^+$ | Procedure of Example |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|----------------------|
| 34      | H <sub>3</sub> C-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{18}H_{16}F_2N_4O_2S$                                        | 391          | 4                    |
| 35      | H <sub>3</sub> C CH <sub>3</sub> N O H <sub>3</sub> C H <sub>3</sub> C N N O N O N O N O N O N O N O N O N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C <sub>16</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S | 320          | 4                    |
| 36      | H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>9</sub> H <sub>10</sub> N <sub>2</sub> O <sub>3</sub> S  | 227          | 2                    |
| 37      | H <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>19</sub> H <sub>22</sub> N <sub>4</sub> O <sub>2</sub> S | 371          | 3                    |
| 38      | N S N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> OS               | 246          | 2                    |
| 39      | SIN CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> O S              | 246          | 2                    |
| 40      | S N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> O S              | 246          | 2                    |
| 41      | S N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> O S              | 246          | 2                    |
| 42      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>23</sub> H <sub>33</sub> N <sub>5</sub> O <sub>4</sub> S | 477          | 4                    |
| 43      | H,CC CI CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>19</sub> H <sub>27</sub> N <sub>5</sub> O <sub>2</sub> S | 391          | 4                    |
| 44      | H <sub>3</sub> C<br>H <sub>3</sub> C | C <sub>18</sub> H <sub>24</sub> N <sub>4</sub> O <sub>3</sub> S | 377          | 4                    |

-30-

## SUBSTITUTE SHEET (RULE 26)

| Example | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Molecular<br>Formula                                              | MS<br>(M+H)+ | Procedure of<br>Example |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|-------------------------|
| 45      | H <sub>3</sub> C<br>H <sub>3</sub> C<br>N<br>S<br>N<br>N<br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_{15}H_{21}N_3O_2S$                                             | 308          | 3                       |
| 46      | н,с<br>н,с<br>н,с<br>н,с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>15</sub> H <sub>17</sub> N <sub>3</sub> O <sub>2</sub> S   | 304          | 5                       |
| 47      | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>14</sub> H <sub>16</sub> F N <sub>3</sub> O <sub>2</sub> S | 310          | 2                       |
| 48      | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>S<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>17</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S   | 358          | 4                       |
| 49      | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{18}H_{25}N_5O_2S$                                             | 377          | 4                       |
| 50      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>22</sub> H <sub>23</sub> N <sub>3</sub> O <sub>5</sub> S   | 443          | 4                       |
| 51      | mic with the contraction of the | C <sub>20</sub> H <sub>28</sub> N <sub>4</sub> O <sub>3</sub> S   | 406          | 4                       |
| 52      | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>14</sub> H <sub>12</sub> N <sub>4</sub> O S                | 285          |                         |
| 53      | Cho ST N CHo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>16</sub> H <sub>13</sub> N <sub>3</sub> O <sub>2</sub> S   | 312          | 2                       |
| 54      | H <sub>3</sub> C<br>H <sub>3</sub> C<br>N<br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>16</sub> H <sub>23</sub> N <sub>3</sub> O S                | 306          | 6                       |
| 55      | H,C N S N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C <sub>20</sub> H <sub>23</sub> N <sub>3</sub> O S                | 354          | 6                       |
| 56      | M <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> O <sub>2</sub> S   | 376          | 4                       |
| 57      | M <sub>3</sub> C CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>20</sub> H <sub>21</sub> N <sub>5</sub> O <sub>3</sub> S   | 412          | 4                       |

-31-

| Example | Structure                                                                                                       | Molecular<br>Formula                                                            | $MS \\ (M+H)^+$ | Procedure of<br>Example |
|---------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|-------------------------|
| 58      | H,C CH,                                                                                                         | C <sub>24</sub> H <sub>29</sub> N <sub>5</sub> O <sub>2</sub> S                 | 453             | 4                       |
| 59      | H,C CH,                                                                                                         | C <sub>20</sub> H <sub>20</sub> N <sub>4</sub> O <sub>4</sub> S                 | 413             | 4                       |
| 60      | H <sub>3</sub> C CH <sub>3</sub>                                                                                | C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>3</sub> S                 | 385             | 4                       |
| 61      | H,C, CH,                                                                                                        | C <sub>20</sub> H <sub>20</sub> Cl <sub>2</sub> N <sub>4</sub> O <sub>3</sub> S | 468             | 4                       |
| 62      | H <sub>3</sub> C CH <sub>3</sub>                                                                                | C <sub>18</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S                 | 370             | 4                       |
| 63      | H <sub>3</sub> C CH <sub>3</sub>                                                                                | C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>3</sub> S                 | 385             | 4                       |
| 64      | M <sub>3C</sub> C <sub>H<sub>3</sub></sub> N <sub>S</sub> N <sub>H<sub>2</sub></sub> N <sub>H<sub>2</sub></sub> | C <sub>20</sub> H <sub>21</sub> N <sub>5</sub> O <sub>3</sub> S                 | 412             | 4                       |
| 65      | H <sub>3</sub> C CH <sub>3</sub>                                                                                | C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>3</sub> S                 | 385             | 4                       |
| 66      | H,C CH,                                                                                                         | C <sub>21</sub> H <sub>23</sub> N <sub>5</sub> O <sub>3</sub> S                 | 427             | 4                       |
| 67      | N CH <sub>3</sub> N CH <sub>3</sub> N CH <sub>3</sub> N CH <sub>3</sub>                                         | C <sub>24</sub> H <sub>29</sub> N <sub>5</sub> O <sub>4</sub> S                 | 485             | 4                       |

| Example | Structure                             | Molecular<br>Formula                                            | MS<br>(M+H) <sup>+</sup> | Procedure of<br>Example |
|---------|---------------------------------------|-----------------------------------------------------------------|--------------------------|-------------------------|
| 68      | M,C CH,                               | C <sub>22</sub> H <sub>25</sub> N <sub>5</sub> O <sub>3</sub> S | 441                      | 4                       |
| 69      | H,C CH,                               | $C_{22}H_{26}N_6O_3S$                                           | 456                      | 4                       |
| 70      | Hyc CH,                               | C <sub>25</sub> H <sub>29</sub> N <sub>5</sub> O <sub>5</sub> S | 513                      | 4                       |
| 71      | H,C CH,                               | $C_{18}H_{19}N_5O_2S$                                           | 370                      | 4                       |
| 72      | H,C CH,                               | C <sub>20</sub> H <sub>28</sub> N <sub>4</sub> O <sub>2</sub> S | 390                      | 4                       |
| 73      | H <sub>2</sub> C CH,                  | C <sub>18</sub> H <sub>24</sub> N <sub>4</sub> O <sub>3</sub> S | 377                      | 4                       |
| 74      | H <sub>3</sub> C CH <sub>3</sub>      | C <sub>20</sub> H <sub>28</sub> N <sub>4</sub> O <sub>3</sub> S | 406                      | 4                       |
| 75      | H <sub>3</sub> C CH <sub>1</sub>      | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> O <sub>2</sub> S | 376                      | 4                       |
| 76      | H <sub>3</sub> C CH <sub>3</sub>      | C <sub>20</sub> H <sub>28</sub> N <sub>4</sub> O <sub>2</sub> S | 390                      | 4                       |
| 77      | N N N N N N N N N N N N N N N N N N N | C <sub>20</sub> H <sub>29</sub> N <sub>5</sub> O <sub>2</sub> S | 405                      | 4                       |

| Example | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Molecular<br>Formula                                                         | $MS (M+H)^+$ | Procedure of Example |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------|----------------------|
| 78      | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>17</sub> H <sub>22</sub> N <sub>4</sub> O <sub>3</sub> S              | 363          | 4                    |
| 79      | н <sub>э</sub> с сн <sub>э</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>18</sub> H <sub>25</sub> N <sub>5</sub> O <sub>2</sub> S              | 377          | 4                    |
| 80      | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> O <sub>3</sub> S              | 392          | 4                    |
| 81      | M,C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>20</sub> H <sub>28</sub> N <sub>4</sub> O <sub>3</sub> S              | 406          | 4                    |
| 82      | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>20</sub> H <sub>20</sub> N <sub>4</sub> O <sub>4</sub> S              | 413          | 4                    |
| 83      | H <sub>2</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>19</sub> H <sub>25</sub> N <sub>5</sub> O <sub>3</sub> S              | 405          | 4                    |
| 84      | H,C CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>18</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S              | 370          | 4                    |
| 85      | HICK THE STATE OF | C <sub>21</sub> H <sub>21</sub> N <sub>3</sub> O <sub>5</sub> S              | 428          | 4                    |
| 86      | HSC CM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>20</sub> H <sub>19</sub> N <sub>5</sub> O <sub>5</sub> S <sub>2</sub> | 475          | 4                    |
| · 87    | H,C CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> O <sub>3</sub> S              | 392          | 4                    |
| 88      | H,C CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>19</sub> H <sub>19</sub> Cl N <sub>4</sub> O <sub>3</sub> S           | 420          | 4                    |

-34-

## SUBSTITUTE SHEET (RULE 26)

| Example | Structure                                                 | Molecular<br>Formula                                            | $MS (M+H)^+$ | Procedure of Example |
|---------|-----------------------------------------------------------|-----------------------------------------------------------------|--------------|----------------------|
| 89      | MC CM,                                                    | C <sub>24</sub> H <sub>30</sub> N <sub>6</sub> O <sub>2</sub> S | 468          | 4                    |
| 90      | H,C CH <sub>3</sub>                                       | C <sub>20</sub> H <sub>22</sub> N <sub>4</sub> O <sub>2</sub> S | 383          | ·4                   |
| 91      | N OH N OH                                                 | C <sub>17</sub> H <sub>18</sub> N <sub>6</sub> O <sub>4</sub> S | 403          | 4                    |
| 92      | H <sub>2</sub> C <sub>C</sub> C <sub>H</sub> <sub>2</sub> | C <sub>21</sub> H <sub>20</sub> N <sub>6</sub> O <sub>4</sub> S | 454          | 4                    |
| 93      | N N N N N N N N N N N N N N N N N N N                     | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> O <sub>3</sub> S | 392          | 4                    |
| 94      |                                                           | C <sub>22</sub> H <sub>30</sub> N <sub>4</sub> O <sub>4</sub> S | 448          | 4                    |
| 95      | H <sub>3</sub> C CH <sub>3</sub>                          | C <sub>20</sub> H <sub>26</sub> N <sub>4</sub> O <sub>4</sub> S | 420          | 4                    |
| 96      | H <sub>3</sub> C CH <sub>3</sub>                          | C <sub>19</sub> H <sub>24</sub> N <sub>4</sub> O <sub>4</sub> S | 405          | 4                    |
| 97      | H <sub>3</sub> C CH <sub>3</sub>                          | $C_{19}H_{17}F_3N_4O_2S$                                        | 423          | 4                    |
| 98      | No. Cons                                                  | C <sub>19</sub> H <sub>26</sub> N <sub>4</sub> O <sub>2</sub> S | 376          | 4                    |

-35-

| Example | Structure                                                                                                                                | Molecular<br>Formula                                                           | $MS (M+H)^+$ | Procedure of Example |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|----------------------|
| 99      | H <sub>2</sub> C CH <sub>3</sub>                                                                                                         | C <sub>20</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S                | 394          | 4                    |
| 100     | H,C CH,                                                                                                                                  | C <sub>18</sub> H <sub>18</sub> Cl N <sub>5</sub> O <sub>2</sub> S             | 405          | 4                    |
| 101     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                         | C <sub>17</sub> H <sub>25</sub> N <sub>3</sub> O <sub>3</sub> S                | 352          | 3                    |
| 102     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                         | C <sub>15</sub> H <sub>19</sub> N <sub>3</sub> O <sub>2</sub> S                | 306          | Scheme 2             |
| 103     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C | C <sub>14</sub> H <sub>19</sub> N <sub>3</sub> O <sub>3</sub> S                | 310          | Scheme 3             |
| 104     | H <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub>                                                                                         | C <sub>18</sub> H <sub>20</sub> N <sub>4</sub> O S                             | 341          | 6                    |
| 105     | H <sub>3</sub> C CH,                                                                                                                     | C <sub>19</sub> H <sub>19</sub> F <sub>3</sub> N <sub>4</sub> O <sub>2</sub> S | 425          | 3                    |
| 106     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                         | C <sub>19</sub> H <sub>19</sub> N <sub>5</sub> O <sub>4</sub> S                | 414          | 4                    |
| 107     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                         | C <sub>19</sub> H <sub>20</sub> N <sub>6</sub> O <sub>3</sub> S                | 413          | 4                    |
| 108     | H <sub>3</sub> C N CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                       | C <sub>15</sub> H <sub>19</sub> N <sub>3</sub> O <sub>2</sub> S                | 306          | Scheme 2             |
| 109     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>N<br>N<br>N<br>OH                                                            | C <sub>15</sub> H <sub>19</sub> N <sub>3</sub> O <sub>3</sub> S                | 322          | 4                    |

-36-

| Example | Structure                                                                                                               | Molecular<br>Formula                                                               | MS<br>(M+H) <sup>+</sup> | Procedure of<br>Example |
|---------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------|-------------------------|
| 110     | H <sub>3</sub> C CH <sub>3</sub>                                                                                        | C <sub>20</sub> H <sub>28</sub> N <sub>4</sub> O <sub>2</sub> S                    | 390                      | 4                       |
| 111     |                                                                                                                         | C <sub>26</sub> H <sub>34</sub> N <sub>4</sub> O <sub>3</sub> S                    | 484                      | 4                       |
| 112     | H <sub>3</sub> C S N N N N N N N N N N N N N N N N N N                                                                  | C <sub>19</sub> H <sub>19</sub> N <sub>3</sub> O <sub>2</sub> S                    | 354                      | 4                       |
| 113     |                                                                                                                         | C <sub>18</sub> H <sub>17</sub> Cl <sub>2</sub> N <sub>5</sub> O <sub>2</sub><br>S | 439                      | 4                       |
| 114     | N <sub>S</sub> N <sub>N</sub> | C <sub>19</sub> H <sub>16</sub> F <sub>2</sub> N <sub>4</sub> O <sub>2</sub> S     | 403                      | 5                       |
| 115     | H <sub>3</sub> C CH <sub>3</sub> N OH                                                                                   | C <sub>14</sub> H <sub>17</sub> N <sub>3</sub> O <sub>3</sub> S                    | 308                      | 6                       |
| 116     | H <sub>3</sub> C CH <sub>3</sub> N <sub>2</sub> C N NH <sub>2</sub>                                                     | C <sub>14</sub> H <sub>18</sub> N <sub>4</sub> O <sub>2</sub> S                    | 307                      | 6                       |
| 117     | H <sub>2</sub> C <sub>C</sub> CH <sub>3</sub>                                                                           | C <sub>15</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                    | 308                      | 6                       |
| 118     | H <sub>3</sub> C CH <sub>3</sub><br>H <sub>3</sub> C C CH <sub>3</sub><br>N F F                                         | C <sub>14</sub> H <sub>16</sub> F <sub>3</sub> N <sub>3</sub> O S                  | 332                      | 6                       |
| 119     | H <sub>3</sub> C CH <sub>3</sub>                                                                                        | C <sub>13</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub> S                    | 278                      | 4                       |
| 120     | H <sub>3</sub> C CH <sub>3</sub>                                                                                        | C <sub>17</sub> H <sub>22</sub> N <sub>4</sub> O <sub>4</sub> S                    | 379                      | 4                       |

| Example | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Molecular<br>Formula                                            | $MS  (M+H)^+$ | Procedure of Example |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|----------------------|
| 121     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{18} H_{26} N_6 O_2 S$                                       | 392           | 4                    |
| 122     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>20</sub> H <sub>29</sub> N <sub>5</sub> O <sub>2</sub> S | 405           | 4                    |
| 123     | H <sub>2</sub> C<br>H <sub>2</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>18</sub> H <sub>25</sub> N <sub>3</sub> O <sub>3</sub> S | 364           | 6                    |
| 124     | H <sub>2</sub> C<br>H <sub>2</sub> C | C <sub>15</sub> H <sub>19</sub> N <sub>3</sub> O <sub>3</sub> S | 322           | 6                    |
| 125     | H <sub>3</sub> C O S I N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>14</sub> H <sub>16</sub> N <sub>4</sub> O S              | 289           | 6                    |
| 126     | H <sub>3</sub> C C N C N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>17</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S | 358           | 4                    |
| 127     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>18</sub> H <sub>19</sub> N <sub>3</sub> O S              | 326           | 6                    |
| 128     | 0<br>N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>18</sub> H <sub>21</sub> N <sub>5</sub> O <sub>2</sub> S | 372           | 4                    |
| 129     | 1, C 1, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>20</sub> H <sub>24</sub> N <sub>6</sub> O <sub>3</sub> S | 430           | 4                    |

| Example | Structure                                                                                                    | Molecular<br>Formula                                            | MS<br>(M+H) <sup>+</sup> | Procedure of Example |
|---------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------|
| 130     | H <sub>3</sub> C CH <sub>3</sub>                                                                             | C <sub>23</sub> H <sub>25</sub> N <sub>5</sub> O <sub>2</sub> S | 437                      | 4                    |
| 131     | H <sub>3</sub> C CH <sub>3</sub> 0<br>H <sub>3</sub> C CH <sub>3</sub> N N N N N N N N N N N N N N N N N N N | C <sub>24</sub> H <sub>32</sub> N <sub>6</sub> O <sub>4</sub> S | 502                      | 4                    |
| 132     | H <sub>3</sub> C CH <sub>3</sub>                                                                             | C <sub>18</sub> H <sub>22</sub> N <sub>6</sub> O <sub>2</sub> S | 387                      | 4                    |
| 133     | H <sub>3</sub> C N N N N N N N N N N N N N N N N N N N                                                       | C <sub>19</sub> H <sub>24</sub> N <sub>6</sub> O <sub>2</sub> S | 402                      | 4                    |

| Example | Structure                                                                                                                           | Molecular<br>Formula                                            | $MS \\ (M+H)^+$ | Procedure of<br>Example |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|-------------------------|
| 134     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                    | C <sub>19</sub> H <sub>24</sub> N <sub>6</sub> O <sub>2</sub> S | 402             | 4                       |
| 135     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>N                                                                       | C <sub>14</sub> H <sub>19</sub> N <sub>3</sub> O <sub>2</sub> S | 294             | 6                       |
| 136     | H <sub>3</sub> C N OH                                                                                                               | C <sub>16</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> S | . 322           | 6                       |
| 137     | H <sub>3</sub> C                                                                                                                    | C <sub>16</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> S | 322             | 6                       |
| 138     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>CH <sub>3</sub>                                     | C <sub>17</sub> H <sub>25</sub> N <sub>3</sub> O <sub>2</sub> S | . 336           | 6                       |
| 139     | CHeH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> OH                                                                                | $C_{15} H_{21} N_3 O_2 S$                                       | 308             | 6                       |
| 140     | H <sub>2</sub> C CH <sub>3</sub> CH <sub>4</sub> CH <sub>5</sub>                                                                    | C <sub>19</sub> H <sub>30</sub> N <sub>4</sub> O S              | 364             | 6                       |
| 141     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                    | $C_{18}H_{22}N_6O_3S$                                           | 403             | 6                       |
| 142     | H <sub>3</sub> C CH <sub>3</sub> H <sub>3</sub> C CH <sub>3</sub>                                                                   | C <sub>17</sub> H <sub>23</sub> N <sub>3</sub> O <sub>3</sub> S | 350             | 4                       |
| 143     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | C <sub>20</sub> H <sub>23</sub> N <sub>3</sub> O S              | 354             | 6                       |

-40-

| Example | Structure                                                                                           | Molecular<br>Formula                                            | MS<br>(M+H) <sup>+</sup> | Procedure of Example |
|---------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------|
| 144     | H <sub>3</sub> C                                                                                    | C <sub>19</sub> H <sub>21</sub> N <sub>3</sub> O S              | 340                      | 6                    |
| 145     | H <sub>3</sub> C CI                                                                                 | C <sub>18</sub> H <sub>18</sub> Cl N <sub>3</sub> O S           | 361                      | 6                    |
| 146     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>CH <sub>3</sub> C<br>CH <sub>3</sub> C<br>CH <sub>3</sub> C | C <sub>19</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S | 356                      | 6                    |
| 147     | H <sub>3</sub> C                                                                                    | C <sub>17</sub> H <sub>18</sub> N <sub>4</sub> O S              | 327                      | 6                    |
| 148     | N-CH <sub>3</sub>                                                                                   | C <sub>19</sub> H <sub>27</sub> N <sub>5</sub> O <sub>2</sub> S | 391                      | 4                    |
| 149     | H <sub>3</sub> C                                                                                    | C <sub>16</sub> H <sub>17</sub> N <sub>5</sub> O S              | 328                      | 6                    |
| 150     | H <sub>3</sub> C                                                                                    | C <sub>17</sub> H <sub>18</sub> N <sub>4</sub> O S              | 327                      | . 6                  |
| 151     | H <sub>3</sub> C S N S N S N N N N N N N N N N N N N N                                              | C <sub>18</sub> H <sub>18</sub> Cl N <sub>3</sub> O S           | 361                      | 6                    |
| 152     | H <sub>2</sub> C CH <sub>3</sub>                                                                    | C <sub>20</sub> H <sub>22</sub> N <sub>4</sub> O <sub>2</sub> S | 383                      | 4                    |
| 153     | H <sub>3</sub> C CH <sub>3</sub>                                                                    | C <sub>17</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S | 358                      | 4                    |
| 154     | H <sub>3</sub> C CH <sub>3</sub>                                                                    | C <sub>20</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S | 368                      | 4                    |

| Example | Structure                                                                                                                                                            | Molecular<br>Formula                                                           | MS<br>(M+H)+ | Procedure of<br>Example |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|-------------------------|
| 155     | H <sub>3</sub> C CH <sub>3</sub>                                                                                                                                     | C <sub>16</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                | 320          | 4                       |
| 156     | H,C N N N N N N N N N N N N N N N N N N N                                                                                                                            | C <sub>16</sub> H <sub>17</sub> N <sub>5</sub> OS                              | 328          | 6                       |
| 157     | H <sub>3</sub> C <sub>1</sub> | C <sub>19</sub> H <sub>18</sub> F <sub>2</sub> N <sub>4</sub> O <sub>2</sub> S | 405          | 4                       |
| 158     | H <sub>2</sub> C C <sub>H</sub> ,                                                                                                                                    | C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>3</sub> S                | 385          | 4                       |
| 159     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>S N<br>O<br>CH <sub>3</sub>                                                                                                  | C <sub>19</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                | 356          | 6                       |
| 160     | H <sub>3</sub> C S N S N O-CH                                                                                                                                        | C <sub>19</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                | 356          | 6                       |
| 161     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>N                                                                                                        | C <sub>21</sub> H <sub>20</sub> N <sub>4</sub> O S                             | 377.         | . 6                     |
| 162     | H,C 0 5 1 N N N N N N N N N N N N N N N N N N                                                                                                                        | C <sub>16</sub> H <sub>17</sub> N <sub>5</sub> O S                             | 328          | 6                       |
| 163     | Hyc STN N-CH.                                                                                                                                                        | C <sub>23</sub> H <sub>29</sub> N <sub>5</sub> O S                             | 425          | 6                       |
| 164     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>N                                                                                                        | C <sub>17</sub> H <sub>18</sub> N <sub>4</sub> O <sub>2</sub> S                | 343          | 6                       |
| 165     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>S<br>NH <sub>3</sub>                                                                                                         | C <sub>18</sub> H <sub>20</sub> N <sub>4</sub> O S                             | 341          | 6                       |
| 166     | H <sub>3</sub> C                                                                                                                                                     | C <sub>17</sub> H <sub>18</sub> N <sub>4</sub> O <sub>2</sub> S                | 343.         | 6                       |

-41/1-

# SUBSTITUTE SHEET (RULE 26)

| Example | Structure                                                        | Molecular<br>Formula                                            | MS<br>(M+H) <sup>+</sup> | Procedure of<br>Example |
|---------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|-------------------------|
| 167     | MIC CHI                                                          | C <sub>26</sub> H <sub>32</sub> N <sub>6</sub> O <sub>3</sub> S | 510                      | 4                       |
| 168     | N CH <sub>3</sub> C CH <sub>3</sub>                              | C <sub>20</sub> H <sub>22</sub> N <sub>4</sub> O <sub>2</sub> S | 383                      | 4                       |
| 169     | MC CH,                                                           | C <sub>25</sub> H <sub>31</sub> N <sub>5</sub> O <sub>3</sub> S | 483                      | 4                       |
| 170     |                                                                  | C <sub>26</sub> H <sub>32</sub> N <sub>4</sub> O <sub>3</sub> S | 482                      | 4                       |
| 171     | H <sub>3</sub> C S N N N N N N N N N N N N N N N N N N           | C <sub>16</sub> H <sub>17</sub> N <sub>5</sub> O S              | 328                      | 6                       |
| 172     | H,C CM.                                                          | C <sub>21</sub> H <sub>24</sub> N <sub>4</sub> O <sub>2</sub> S | 398                      | 4                       |
| 173     | H <sub>2</sub> C S T N N NH <sub>2</sub>                         | C <sub>17</sub> H <sub>19</sub> N <sub>5</sub> O S              | 342                      | 6                       |
| 174     | H <sub>2</sub> C<br>H <sub>3</sub> C                             | C <sub>15</sub> H <sub>19</sub> N <sub>3</sub> O S              | 290                      | 6                       |
| 175     | H,C H,C N,-CH,                                                   | C <sub>20</sub> H <sub>23</sub> N <sub>4</sub> O <sub>2</sub> S | 385                      | 4                       |
| 176     | H <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | C <sub>16</sub> H <sub>19</sub> N <sub>3</sub> O <sub>2</sub> S | 318                      | 5                       |
| 177     | H <sub>2</sub> C CH <sub>3</sub>                                 | C <sub>20</sub> H <sub>19</sub> N <sub>2</sub> O <sub>2</sub> S | 366                      | 5                       |
| 178     | H <sub>3</sub> C CH <sub>3</sub> 2 S N Î N N N                   | C <sub>17</sub> H <sub>17</sub> N <sub>5</sub> O <sub>2</sub> S | 356                      | 5                       |

-41/2-

## SUBSTITUTE SHEET (RULE 26)

| Example | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Molecular<br>Formula                                                               | MS<br>(M+H)+ | Procedure of Example |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------------------|
| 179     | H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>17</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S                    | 358          | 4                    |
| 180     | M <sub>3</sub> CC CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>17</sub> H <sub>17</sub> Cl <sub>2</sub> N <sub>5</sub> O <sub>2</sub><br>S | 427          | 4                    |
| 181     | Hyc N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>19</sub> H <sub>17</sub> N <sub>7</sub> O <sub>2</sub> S                    | 408          | 4                    |
| 182     | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>18</sub> H <sub>21</sub> N <sub>5</sub> O <sub>2</sub> S                    | 372          | 4                    |
| 183     | N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>17.</sub> H <sub>16</sub> N <sub>4</sub> O S                                | 325          | 5                    |
| 184     | S CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>17</sub> H <sub>18</sub> N <sub>4</sub> O S                                 | 327          | 6                    |
| 185     | SIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>15</sub> H <sub>13</sub> N <sub>3</sub> S                                   | 268          | 6                    |
| 186     | H,C CH, H,C S N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>1</sub> , H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S                   | 358          | 6                    |
| 187     | H <sub>3</sub> C CH <sub>3</sub> H <sub>3</sub> C CH <sub>3</sub> N  OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>19</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S                    | 356          | 6                    |
| 188     | H <sub>3</sub> C CH <sub>3</sub> H <sub>3</sub> C | C <sub>18</sub> H <sub>20</sub> N <sub>4</sub> O S                                 | 341          | 6                    |

-41/3-

| Example | Structure                                                            | Molecular<br>Formula                               | $MS \over (M+H)^+$ | Procedure of Example |
|---------|----------------------------------------------------------------------|----------------------------------------------------|--------------------|----------------------|
| 189     | H <sub>3</sub> C CH <sub>3</sub><br>H <sub>3</sub> C CH <sub>3</sub> | C <sub>18</sub> H <sub>20</sub> N <sub>4</sub> O S | 341                | 6                    |

#### Claims

We claim:

5

### 1. A compound of the formula:

$$A \longrightarrow N \longrightarrow N \longrightarrow R^1$$

$$(I)$$

and pharmaceutically acceptable salts thereof wherein:

10  $R^1 = R^2$ , COR<sup>3</sup>, CONH<sub>2</sub>, CONR<sup>2</sup>R<sup>3</sup>, COOR<sup>2</sup>, or SO<sub>2</sub>R<sup>2</sup>;

 $R^2$  = alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl;

15 R³ = H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl;

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix} n - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix} m$$

, where n = 0,1,2; m = 1,2 but both n and m cannot be 2, or

$$R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}} Y \xrightarrow{\begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}} j$$

, where i, j = 0 or 1 but cannot both be 1, and Y = optionally substituted alkene, alkyne, or any 2 adjacent carbon atoms of a cycloalkyl or cycloheteroalkyl ring of 3-7 atoms;

R<sup>4</sup> = alkyl with two or more carbon atoms, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, or R<sup>9</sup> with the proviso that when R<sup>1</sup> is acetyl or propionyl and Y = alkene, then R<sup>4</sup> cannot be nitrofuryl or 2-quinolinyl;

R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup> = independently H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, halo, or

hydroxy, alkoxy, amino, NR<sup>12</sup>R<sup>13</sup>, thio, or alkylthio with the proviso that only one such heteroatom group is bonded to any one carbon atom;

$$R^9 = \sum_{N=1}^{Z} R^{10}$$
 where  $Z = 0$ ,  $NR^{14}$ , S;

R<sup>10</sup>, R<sup>11</sup> = independently H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, halo, hydroxy, alkoxy, alkylcarbonyloxy, carboxy, alkyloxycarbonyl, amino, NR<sup>15</sup>R<sup>16</sup>, carbamoyl, ureido, thio, or alkylthio;

R<sup>12</sup>, R<sup>13</sup>, R<sup>14</sup>, R<sup>15</sup>, R<sup>16</sup> = independently H, alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl.

- 2. The compound as recited in claim 1, wherein  $R^1 = R^2$ ,  $COR^3$ , or  $CONR^2R^3$ ;
- 15 R<sup>2</sup> = alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl;

 $R^3 = H$ , alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl;

A = 
$$R^4 = \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_n \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$
, where n = 0, 1, 2; m = 1, 2, or

$$R^{4} = \begin{pmatrix} R^{5} \\ C \\ R^{6} \end{pmatrix}_{i} Y = \begin{pmatrix} R^{7} \\ C \\ R^{8} \end{pmatrix}_{j}$$
, where

, where i, j = 0 or 1 but cannot both be 1, and Y = optionally substituted alkene, alkyne, or any two adjacent carbon atoms of a cycloalkyl ring:

20 R<sup>4</sup> = alkyl with two or more carbon atoms, aryl, heteroaryl, or R<sup>9</sup> with the proviso that when R<sup>1</sup> is acetyl or propionyl and Y = alkene, then R<sup>4</sup> cannot be nitrofuryl or 2-quinolinyl;

R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup> = independently H, or alkyl;

$$R^9 = Z R^{10}$$
 where  $Z = O$ 

R<sup>10</sup>, R<sup>11</sup> = independently H, alkyl or cycloalkyl.

25

3. The compound as recited in claim 1, wherein:

 $R^1 = COR^3$ :

 $R^3 = H$ , alkyl, heteroaryl, arylalkyl, or heteroarylalkyl,

5

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_n - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$

, where n = 0,1; m = 1, or

$$R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}} Y \xrightarrow{\begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}} j$$

, where i, j = 0 or 1 but cannot both be 1, and Y = an optionally substituted alkene;

 $R^4 = R^9$ ;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl.

10

$$R^9 = \sqrt{\frac{Z}{N}} R^{10}$$
 where  $Z = 0$ ; and

R<sup>10</sup>, R<sup>11</sup> = independently H, alkyl or cycloalkyl.

15

4. The compound as recited in claim 1, wherein:  $R^1 = COR^3$ :

 $R^3$  = alkyl, arylalkyl, heteroaryl, or heteroarylalkyl,

A = 
$$R^4 = \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix} n \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$
, where n = 0,1; m = 1

 $R^{5}$ ,  $R^{6}$ ,  $R^{7}$ ,  $R^{8}$  = independently H, or alkyl; 20

 $R^4 = R^9$ :

R<sup>10</sup> = alkyl or cycloalkyl, and 25

 $R^{11} = H$ .

5. The compound as recited in claim 1, wherein:

 $R^1 = COR^3$ :

 $R^3$  = alkyl, arylalkyl, heteroaryl, or heteroarylalkyl;

10

$$R^{4} \xrightarrow{\begin{pmatrix} R^{5} \\ C \\ R^{6} \end{pmatrix}} Y \xrightarrow{\begin{pmatrix} R^{7} \\ C \\ R^{8} \end{pmatrix} j}$$

, where i, j=0 or 1 but cannot both be 1, and Y= an optionally substituted alkene or alkyne;

 $R^4 = R^9$ ;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

15

$$R^9 = \sum_{N=1}^{Z} R^{10}$$
 where  $Z = 0$ ;

R<sup>10</sup> = alkyl or cycloalkyl,; and

 $R^{11} = H$ 

20

6. The compound as recited in claim 1, wherein:

 $R^1 = COR^3$ ;

R<sup>3</sup> = alkyl, arylalkyl, heteroaryl, or heteroarylalkyl;

25

30

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ C \\ R^6 \end{pmatrix}_n - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$

 $\frac{\binom{R^7}{C}}{\binom{C}{R^8}_{m}}$  , where n = 0,1; m = 1, or

$$R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_i} Y \xrightarrow{\begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_j}$$

, where i, j = 0 or 1 but cannot both be 1, and Y = an optionally substituted alkene;

 $R^4$  = alkyl with two or more carbon atoms, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl with the proviso that when  $R^1$  is acetyl or propionyl and Y = alkene, then  $R^4$  cannot be nitrofuryl or 2-quinolinyl;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl.

7. The compound as recited in claim 1, wherein:

5 
$$R^1 = R^2$$
;

 $R^2$  = alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl;

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_n - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$
, where n = 0,1; m = 1, or

$$\mathsf{R}^4 - \left( \begin{matrix} \mathsf{R}^5 \\ \mathsf{C} \\ \mathsf{R}^6 \end{matrix} \right)_i \left( \begin{matrix} \mathsf{R}^7 \\ \mathsf{C} \\ \mathsf{R}^8 \end{matrix} \right)_j$$

, where i, j = 0 or 1 but cannot both be 1, and Y = an optionally substituted alkene;

10  $R^4 = R^9$ :

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl.

$$R^9 = \bigvee_{N=1}^{Z} R^{10}$$
 where Z = O; and

R<sup>10</sup>, R<sup>11</sup> = independently H, alkyl or cycloalkyl.

8. The compound as recited in claim 1, wherein:  $R^1 = R^2$ :

 $R^2$  = alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl; 20

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_n - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$
, where n = 0,1; m = 1;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

$$R^4 = R^9$$
:

25

15

R<sup>10</sup> = alkyl or cycloalkyl,; and

 $R^{11} = H$ .

5

9. The compound as recited in claim 1, wherein:

 $R^1 = R^2$ :

 $R^2$  = alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl; 10

$$A = R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}} Y \xrightarrow{\begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}}$$

, where i, j = 0 or 1 but cannot both be 1, and Y = an optionally substituted alkene or alkyne;

 $R^4 = R^9$ ;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

$$R^9 = \sum_{N=1}^{Z} R^{10}$$
 where  $Z = 0$ ;

R<sup>10</sup> = alkyl or cycloalkyl; and

 $R^{11} = H$ .

20

10. The compound as recited in claim 1, wherein:

 $R^1 = R^2$ ;

 $R^2$  = alkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl,

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ C \\ R^6 \end{pmatrix} n \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$
, where n = 0,1; m = 1, or,

$$R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}} Y \xrightarrow{\begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}} j$$

, where i, j = 0 or 1 but cannot both be 1, and Y =an optionally substituted alkene;

R<sup>4</sup> = alkyl with two or more carbon atoms, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl;

- $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl.
  - 11. The compound as recited in claim 1, wherein:

 $R^1 = CONR^2R^3$ :

10

 $R^2$  = alkyl, heteroaryl, arylalkyl, or heteroarylalkyl;

 $R^3 = H$ , alkyl, heteroaryl, arylalkyl, or heteroarylalkyl;

$$A = R^4 - \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_{n} - \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_{m}$$

$$\mathsf{R}^4 - \left(\begin{matrix} \mathsf{R}^5 \\ \overset{\cdot}{\mathsf{C}} \\ \overset{\cdot}{\mathsf{R}^6} \end{matrix}\right)_{i} \mathsf{Y} + \left(\begin{matrix} \mathsf{R}^7 \\ \overset{\cdot}{\mathsf{C}} \\ \overset{\cdot}{\mathsf{R}^8} \end{matrix}\right)_{j}$$

, where i, j = 0 or 1 but cannot both be 1, and Y = an optionally substituted alkene;

15

$$R^4 = R^9$$
;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

$$R^9 = Z R^{10}$$
 whe

- R<sup>10</sup>, R<sup>11</sup> = independently H, alkyl or cycloalkyl. 20
  - 12. The compound as recited in claim 1, wherein:

 $R^1 = CONR^2R^3$ :

25

 $R^2$  = alkyl, arylalkyl, heteroaryl, or heteroarylalkyl;

 $R^3 = H$ , alkyl, heteroaryl, arylalkyl, or heteroarylalkyl;

A = 
$$R^4 = \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix} \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m$$
, where n = 0,1; m = 1;

$$R^4 = R^9$$
:

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

$$R^9 = \sum_{N=1}^{Z} R^{10}$$
 where  $Z = 0$ ;

5  $R^{10}$  = alkyl or cycloalkyl; and  $R^{11}$  = H.

10 13. The compound as recited in claim 1, wherein:

 $R^1 = CONR^2R^3$ ;

 $R^2$  = alkyl, arylalkyl, heteroaryl, or heteroarylalkyl;

 $R^3 = H$ , alkyl, heteroaryl, arylalkyl, or heteroarylalkyl;

A = 
$$R^4 - \begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}_i \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_i$$
, where i, j = 0 or 1 but cannot both be 1, and Y = an optionally substituted alkene or alkyne;

 $R^4 = R^9$ :

20  $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl;

$$R^9 = Z R^{10}$$
 where  $Z = O$ 

R<sup>10</sup> = alkyl or cycloalkyl, and

25  $R^{11} = H$ .

14. The compound as recited in claim 1, wherein:

 $R^1 = CONR^2R^3$ ;

 $R^2$  = alkyl, arylalkyl, heteroaryl, or heteroarylalkyl;

 $R^3 = H$ , alkyl, heteroaryl, arylalkyl, or heteroarylalkyl;

$$A = R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ R^6 \end{pmatrix}} \begin{pmatrix} R^7 \\ C \\ R^8 \end{pmatrix}_m \qquad \text{, where } n = 0,1; \, m = 1, \, \text{or,}$$
 
$$R^4 \xrightarrow{\begin{pmatrix} R^5 \\ C \\ C \\ R^6 \end{pmatrix}} \begin{pmatrix} R^7 \\ C \\ C \\ R^8 \end{pmatrix}_j \qquad \text{, where } i, \, j = 0 \, \text{or } 1 \, \text{but cannot both be 1, and}$$
 
$$Y = \text{an optionally substituted alkene;}$$

R<sup>4</sup> = alkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl;

 $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  = independently H, or alkyl.

15. A compound selected from the group consisting of:

10

5

Ethyl 3-((E)-2-acetamido-thiazol-5-yl)-acrylate;

N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide;

N-[5-(2-(5-t-Butyl-oxazol-2-yl)-ethyl)-thiazol-2-yl]-acetamide;

N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide;

- N-[5-(2-(5-t-Butyl-oxazol-2-yl)- ethynyl)-thiazol-2-yl]-acetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-aminopyridine;
  Ethyl 3-(2-acetamido-thiazol-5-yl)-propionate;
  N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide;
  - [(E)-5-(2-(5-Isopropyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-carbamic acid *t*-butyl ester;
- N-[(E)-5-(2-(5-Isopropyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-pyridin-3-yl-acetamide;
  N-[(E)-5-(2-(5-Isopropyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide;
  1-(2,6-Difluorophenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  1-(2,6-Difluorophenyl)-3-[(Z)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-pyridin-3-yl-acetamide;
- N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-pyridin-3-yl-acetamide;
  N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-naphthalen-2-yl-acetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-naphthalen-2-yl-acetamide;
  N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide;
- 30 N-[5-(2-(2-lsopropyl-tetrazol-5-yl)-ethyl)-thiazol-2-yl]-acetamide;

```
N-[(E)-5-(2-(3-Methylphenyl)-vinyl)-thiazol-2-yl]-acetamide;
```

- N-[(E)-5-(2-Phenyl)-vinyl)-thiazol-2-yl]-acetamide;
- N-[(E)-5-(2-(4-t-Butyl-phenyl)-vinyl)-thiazol-2-yl]-acetamide:
- N-[(E)-5-(2-(3-Chlorophenyl)-vinyl)-thiazol-2-yl]-acetamide;
- 5 N-[(E)-5-(2-Bromo-2-(5-isopropyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide;
  - N-[5-(2-(5-Isopropyl-oxazol-2-yl)-ethynyl)-thiazol-2-yl]-acetamide:
  - N-[5-(2-Phenyl)-ethyl)-thiazol-2-yl]-acetamide;
  - N-[(E)-5-(2-(3-Isopropylphenyl)-vinyl)-thiazol-2-yl]-acetamide;
  - N-[5-(2-(3-Isopropylphenyl)-ethyl)-thiazol-2-yl]-acetamide;
- 10 N-[(E)-5-(2-(3-Pyridinyl)-vinyl)-thiazol-2-yl]-acetamide;
  - N-[5-(2-(2-1-Butyl-tetrazol-5-yl)-ethyl)-thiazol-2-yl]-acetamide;
  - N-[(Z)-5-(2-Phenyl)-vinyl)-thiazol-2-yl]-acetamide;
  - N-[(Z)-5-(2-(3-Pyridinyl)-vinyl)-thiazol-2-yl]-acetamide:
  - 1-(2,6-Difluorophenyl)-3-[(E)-5-(2-(5-isobutyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
- 15 N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-isobutyramide;
  - Ethyl 3-((Z)-2-acetamido-thiazol-5-yl)-acrylate;
  - N-[5-(2-(5-t-Butyl-oxazol-2-yl)-ethyl)-thiazol-2-yl]-2-pyridin-3-yl-acetamide;
  - N-[(E)-5-(2-(4-Pyridinyl)-vinyl)-thiazol-2-yl]-acetamide;
  - N-[(E)-5-(2-(2-Pyridinyl)-vinyl)-thiazol-2-yl]-acetamide;
- 20 N-[(Z)-5-(2-(4-Pyridinyl)-vinyl)-thiazol-2-yl]-acetamide;
  - N-[(Z)-5-(2-(2-Pyridinyl)-vinyl)-thiazol-2-yl]-acetamide;
  - 4-[(E)-5-(2-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylcarbamoylmethyl]-piperazine-l-carboxylic acid *t*-butyl ester:
  - 1-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylcarbamoylmethyl]-4-
- 25 methylpiperazine;
  - N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-morpholin-4-yl-acetamide;
  - N-[5-(3-(5-t-Butyl-oxazol-2-yl)-propyl)-thiazol-2-yl]-acetamide:
  - N-[5-(3-(5-t-Butyl-oxazol-2-yl)-propynyl)-thiazol-2-yl]-acetamide:
  - N-[(Z)-5-(2-Fluoro-2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide;
- N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(3H-imidazol-4-yl)-acetamide;

N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-piperazin-1-yl-acetamide; Methyl 4-N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-carbamoylmethoxy-benzoate;

N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-(1-methyl-piperidin-4-vinyl)-thiazol-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2-yl]-2

- 5 yloxy)-acetamide:
  - N-[5-(5-Phenyl-3H-imidazol-4-yl)-thiazol-2-yl]-acetamide; N-[(E)-5-(2-(5-phenyloxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide; Isobutyl-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amine; [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenethylamine;
- 1-Cyclohexyl-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  1-(4-Carbamoylphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  1-(4-Piperidinylphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  1-(Benzo[1.3]dioxol-5-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
- 1-(2-Hydroxyphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea; 1-(2,6-Dichloro-4-methoxyphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  - $1-(2-\mathrm{Pyridinyl})-3-[(E)-5-(2-(5-t-\mathrm{butyl-oxazol-2-yl})-\mathrm{vinyl})-\mathrm{thiazol-2-yl}]-\mathrm{urea};$   $1-(3-\mathrm{Hydroxyphenyl})-3-[(E)-5-(2-(5-t-\mathrm{butyl-oxazol-2-yl})-\mathrm{vinyl})-\mathrm{thiazol-2-yl}]-\mathrm{urea};$
- 1-(3-Carbamoylphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  1-(4-Hydroxyphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  1-(3-Carbamoyl-4-methylphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  - $2- Dimethylamino-ethyl \ 4-\{3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl\}-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl\}-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl\}-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-1-(2-(5-t-butyl-oxazol-2-yl)-vinyl-oxazol-2-(5-t-butyl-oxazol-2-yl)-1-(5-t-butyl-oxazol-2-yl)-vinyl-oxazol-2-(5-t-butyl-oxazol-2-yl)-vinyl-oxazol-2-(5-t-butyl-o$
- 25 ureido}-benzoate;
  - 1-[4-(N,N-Dimethylcarbamoyl)phenyl]-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  - 1-(2-Morpholinylpyridin-5-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
- 30 Methyl 5-{3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-ureido}-2-N-morpholino-benzoate;

```
1-(3-Pyridinyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
1-(2-Methylcyclohexyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
4-Hydroxy-piperidine-1-carboxylic acid [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
```

- 5 2-(2-Hydroxyethyl)-piperidine-1-carboxylic acid [(E)-5-(2-(5-*t*-butyl-oxazol-2-**yl)**-vinyl)-thiazol-2-yl]-amide;
  - 2-Methyl-piperidine-1-carboxylic acid [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
  - 1-Cyclohexyl-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-methyl-urea;
- 3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-methyl-1-(1-methyl-piperidin-4-yl)-urea;
  - 3-Hydroxy-pyrrolidine-1-carboxylic acid [(E)-5-(2-(5-*t*-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
  - 4-Methyl-piperazine-1-carboxylic acid [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-
- 15 thiazol-2-yl]-amide
  - 4-Hydroxymethyl-piperidine-1-carboxylic acid [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
  - 4-(2-Hydroxyethyl)-piperidine-1-carboxylic acid [(E)-5-(2-(5-*t*-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
- 20 1-[4-carboxyphenyl]-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  Piperidine-1,4-dicarboxylic acid 4-amide 1-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
  - 1-(4-Pyridinyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea; 4-N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]- carbamoylmethoxy-
- 25 benzoic acid;
  - 6-{3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-ureido}-1,1-dioxo-1,2,3a,7a-tetrahydro-1 $\lambda$ 6-benzo[d]isothiazol-3-one;
  - 3-Hydroxymethyl-piperidine-1-carboxylic acid [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;
- 30 1-(2-Chloro-4-hydroxyphenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;

```
1-[4-(4-Methyl-piperazin-1-yl)phenyl]-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
```

- 3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-methyl-1-phenyl-urea;
- 1-(2,6-Dihydroxy-pyrimidin-4-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-vinyl)-thiazol-2-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-vinyl-yl-
- 5 2-yl]-urea;
  - 1-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3-(2,3-dihydro-phthalazine-1,4-dion-6-yl)-urea;
  - $\label{eq:control} $$1-[(1S,2S)-2-Hydroxycyclohexyl]-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;$
- 10 (1R,2S)-2-{3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-ureido}-cyclohexanecarboxylic acid ethyl ester;
  - (1R,2S)-2-{3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-ureido}-cyclohexanecarboxylic acid:
  - 1-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-2-fluoro-vinyl)-thiazol-2-yl] carbamoyl-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine-piperidine
- 15 4-carboxylic acid;
  - 1-(2,6-Difluorophenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-2-fluoro-vinyl)-thiazol-2-yl]-urea;
  - 2-Piperidin-4-yl- N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-acetamide; 1-(4-cyanophenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
- 20 1-(2-Chloro-pyridin-5-yl)-3-[(E)-5-(2-(5-*t*-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
  - [5-(2-(5-t-Butyl-oxazol-2-yl)-ethyl)-thiazol-2-yl]-carbamic acid t-butyl ester;
  - N-[5-((S)-2-(5-1-Butyl-oxazol-2-yl)-cyclopropyl)-thiazol-2-yl]-acetamide;
  - N-[5-(2-(5-t-Butyl-oxazol-2-yl)-2-hydroxyethyl)-thiazol-2-yl]-acetamide;
- 25 [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-pyridin-3-ylmethyl-amine; 1-(2,6-Difluorophenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-2-fluoro-ethyl)-thiazol-2-yl]-urea;
  - 1-(5-Carboxy-pyridin-2-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
- 30 1-(5-Carbamoyl-pyridin-2-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;

N-[5-((R)-2-(5-t-Butyl-oxazol-2-yl)-cyclopropyl)-thiazol-2-yl]-acetamide; N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(3-hydroxy)-propionamide; N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(N-methylpiperidin-4-yl)-acetamide;

- N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-((4-(2-diethylamino)ethoxy)phenyl)-acetamide;
  N-[(E)-5-(2-(5-Isopropyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-phenyl-acetamide;
  1-(3,5-Dichloro-pyridin-4-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea;
- 10 1-(2,6-Difluorophenyl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-ethynyl)-thiazol-2-yl]-urea;
  - [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-acetic acid:
  - 2-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-acetamide;
  - 3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-propan-1-ol;
- 15 (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(2,2,2-trifluoroethyl)-amine;

  N-[(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-formamide:

  (3R.4R)-3.4-Dihydroxy-pyrrolidine-1-carboxylic acid [(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amide;

  1-(4-methylpiperizin-1-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-
- 20 urea:
  - 1-(2.6-Dimethylpiperidin-1-yl)-3-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-urea:
  - [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-acetic acid, t-butyl ester; [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-acetic acid, methyl ester;
- 25 (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(cyanomethyl)-amine;

  N-{(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(imidazol-1-yl)-acetamide;

  N-{(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-aniline;

  N-{(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(1-methyl-imidazol-4-yl)-acetamide;
- 30 N-[(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3[(imidazol-4-yl)]-2-(N'-acetylamino)-propionamide;

N-[(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-[3-(1-methyl-benzimidazol-2-yl)]-propionamide;

- (S)-*N*-[(E)-5-(3-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3[(1-methyl-imidazol-4-yl)]-2-(*N*-*t*-butoxyacetylamino)-propionamide;
- 5 (S)-N-[(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3[(1-methyl-imidazol-4-yl)]-2-(N-t-butoxyacetylamino)-propionamide;
  - (S)-*N*-[(E)-5-(3-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3-(imidazol-4-yl)-2-amino-propionamide;
  - (S)-N-[(E)-5-(3-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-5-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(1-methyl-imidazol-2-yl]-3-(
- 10 yl)-2-amino-propionamide:
  - (S)-*N*-[(E)-5-(3-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3-(1-methyl-imidazol-4-yl)-2-amino-propionamide:
  - 2-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-ethanol;
  - (E)-5-(2-(5-1-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(4-hydroxy-butyl)-amine;
- (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(3-methoxypropyl)-amine; (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(3-hydroxy-3-methyl-butyl)-amine;
  - (Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(3-hydroxy-propyl)-amine; N'-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-N,N-dimethyl-pentane-1,5-
- 20 diamine;
  - 6-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-ylamino]-4-propoxy-[1,3,5]triazin-2-ol;
  - [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-carbamic acid t-butyl ester;
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(2,6-dimethylphenyl)-amine;
- 25 (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(2-methylphenyl)-amine;
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(4-chlorophenyl)-amine;
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(4-methoxyphenyl)-amine;
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(pyridyl-3-yl)-amine;
  - 3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-(1-methyl-piperidin-4-yl)-vinyl)-thiazol-2-yl]-1-(1-methyl-piperidin-4-yl)-vinyl)-thiazol-2-yl]-1-(1-methyl-piperidin-4-yl)-vinyl)-vinyl)-thiazol-2-yl]-1-(1-methyl-piperidin-4-yl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(vinyl)-vinyl(viny
- 30 urea:
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(pyrazine-2-yl)-amine;

```
(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(pyridyl-4-yl)-amine;

(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(3-chloro-phenyl)-amine;

N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(2-methylpyridin-3-yl)-acetamide:
```

- 5 N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(imidazol-1-yl)-acetamide;
  N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-phenylacetamide;
  N-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-isobutyramide;
  (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(pyrimidin-2-yl)-amine;
  1-[(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-3-(2,6-difluorophenyl)-urea;
- 10 *N*-[(E)-5-(2-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(1-oxy-pyridin-3-yl)-acetamide:
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(2methoxyphenyl)-amine;
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(3methoxyphenyl)-amine;
  - (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(isoquinolin-3-yl)-amine;
- 15 (E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl-(pyrimidin-4-yl)-amine;

  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-[4-(4-methyl-piperazin-1-yl)-phenyl]-amine;
  - [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(1-oxy-pyridin-2-yl)-amine; N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-benzene-1,3-diamine;
- [(E)-5-(2-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(1-oxy-pyridin-4-yl)-amine; 3-[(E)-5-(2-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-(4-(*N*-pyrrolidin-1-ylethyl-carbamoyl)phenyl)-urea; *N*-[(E)-5-(2-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(pyridin-3-yl)-
- 3-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-1-[4-(pyrrolidin-1-ylethoxy)-phenyl)-urea;

propionamide;

- N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-[4-(pyrrolidin-1-ylethoxy)-phenyl]-acetamide;
- [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-pyridazin-3-yl-amine;
- 30 *N*-[(E)-5-(2-(5-*t*-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(2-methyl-pyridin-3-yl)-propionamide;

N-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-pyridine-2.6-diamine; Cyclopropyl-[(E)-5-(2-(5-t-butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-amine; 3-(N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-carbamoyl-methyl)-1-methyl-pyridinium iodide;

- N-[5-(5-t-Butyl-oxazol-2-yl)-ethynyl)-thiazol-2-yl]-isobutyramide;
  [5-(5-t-Butyl-oxazol-2-yl)-ethynyl)-thiazol-2-yl]-2-phenylacetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-imidazol-1-yl-acetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-pyrazol-1-yl-acetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(4,5-dichloro-imidazol-1-yl-acetamide)
- yl)-acetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(4,5-dicyano-imidazol-1-yl)-acetamide;
  N-[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-2-(2-methyl-imidazol-1-yl)-

acetamide;

20

25

- [5-(5-t-Butyl-oxazol-2-yl)-ethynyl)-thiazol-2-yl]-(pyridin-2-yl)-amine:
  [(Z)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(pyridin-2-yl)-amine;
  (5-Benzyl-thiazol-2-yl)-pyridin-2-yl-amine;
  [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(6-methoxy-pyrimidin-4-yl)-amine;
- amine;
  [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(4-methyl-pyridin-2-yl)-amine;
  [(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(6-methyl-pyridin-2-yl)-amine.

[(E)-5-(2-(5-t-Butyl-oxazol-2-yl)-vinyl)-thiazol-2-yl]-(3-hydroxymethyl-phenyl)-

- 16. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
- 17. A pharmaceutical composition comprising a compound of Claim 1
   30 in combination with pharmaceutically acceptable carrier and an anti-cancer agent formulated as a fixed dose.

18. A method of inhibiting protein kinases which comprises administering to a mammalian specie in need thereof an effective protein kinase inhibiting amount of a compound of Claim 1.

- 19. A method of inhibiting cyclin dependent kinases which comprises administering to a mammalian specie in need thereof an effective cyclin dependent kinase inhibiting amount of a compound of Claim 1.
- 20. A method of inhibiting cdc2 (cdk1) which comprises administering to a mammalian specie in need thereof an effective cdc2 inhibiting amount of a compound of Claim 1.
  - 21. A method of inhibiting cdk2 which comprises administering to a mammalian specie in need thereof an effective cdk2 inhibiting amount of a compound of Claim 1.
  - 22. A method of inhibiting cdk3 which comprises administering to a mammalian specie in need thereof an effective cdk3 inhibiting amount of a compound of Claim 1.

20

15

- 23. A method of inhibiting cdk4 which comprises administering to a mammalian specie in need thereof an effective cdk4 inhibiting amount of a compound of Claim 1.
- 24. A method of inhibiting cdk5 which comprises administering to a mammalian specie in need thereof an effective cdk5 inhibiting amount of a compound of Claim 1.
- 25. A method of inhibiting cdk6 which comprises administering to a
   30 mammalian specie in need thereof an effective cdk6 inhibiting amount of a compound of Claim 1.

26. A method of inhibiting cdk7 which comprises administering to a mammalian specie in need thereof an effective cdk7 inhibiting amount of a compound of Claim 1.

5

- 27. A method of inhibiting cdk8 which comprises administering to a mammalian specie in need thereof an effective cdk8 inhibiting amount of a compound of Claim 1.
- 28. A method for treating proliferative diseases comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.
- 29. A method for treating cancer comprising administering to a
   15 mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.
  - 30. A method for treating inflammation, inflamatory bowel disease, or transplantation rejection, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.
  - 31. A method for treating arthritis comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.

25

20

32. A method for treating proliferative diseases comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.

33. A method for treating cancer comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.

- 34. A method for treating inflammation, inflammatory bowel disease, or transplantation rejection, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.
- 35. A method for treating arthritis comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/13034

| r <del></del>                 |                                                                                                                                    |                                                                                                                   |                                                               |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| A. CLA                        | SSIFICATION OF SUBJECT MATTER                                                                                                      |                                                                                                                   |                                                               |
| IPC(6)                        | :C07D 277/48                                                                                                                       |                                                                                                                   |                                                               |
|                               | :548/194<br>to International Patent Classification (IPC) or to both                                                                | national classification and IPC                                                                                   |                                                               |
|                               | LDS SEARCHED                                                                                                                       | nauonai ciussincadon ano 11 C                                                                                     |                                                               |
|                               |                                                                                                                                    | the also Gastian auchala)                                                                                         |                                                               |
|                               | ocumentation searched (classification system followed                                                                              | by classification symbols)                                                                                        |                                                               |
| U.S. :                        | 548/194                                                                                                                            |                                                                                                                   |                                                               |
| Documenta                     | tion searched other than minimum documentation to the                                                                              | extent that such documents are included                                                                           | in the fields searched                                        |
| ,                             | data base consulted during the international search (na<br>LINE and APS                                                            | me of data base and, where practicable                                                                            | , search terms used)                                          |
| C. DOC                        | UMENTS CONSIDERED TO BE RELEVANT                                                                                                   |                                                                                                                   |                                                               |
| Category*                     | Citation of document, with indication, where app                                                                                   | propriate, of the relevant passages                                                                               | Relevant to claim No.                                         |
| A                             | US 4,782,162 A (BOBERG ET AL.) 01 see entire document, especially column                                                           |                                                                                                                   | 15                                                            |
|                               |                                                                                                                                    |                                                                                                                   |                                                               |
|                               |                                                                                                                                    |                                                                                                                   |                                                               |
| Furt                          | ner documents are listed in the continuation of Box C                                                                              | See patent family annex.                                                                                          |                                                               |
| • Si                          | pecial categories of cited documents:                                                                                              | *T* later document published after the int                                                                        | ternational filing data or priority                           |
| "A" do                        | ocument defining the general state of the art which is not considered                                                              | date and not in conflict with the app<br>the principle or theory underlying th                                    | lication but cited to understand                              |
|                               | be of particular relevance                                                                                                         | "X" document of particular relevance; the                                                                         |                                                               |
|                               | rher document published on or after the international filing date  beament which may throw doubts on priority claim(s) or which is | considered novel or cannot be considered novel or cannot be considered when the document is taken alone           |                                                               |
| ci                            | ted to establish the publication date of another citation or other secial reason (as specified)                                    | "Y" document of particular relevance; the                                                                         | ne claimed invention cannot be                                |
| •O• do                        | ocument referring to an oral disclosure, use, exhibition or other eans                                                             | considered to involve an inventive<br>combined with one or more other suc<br>being obvious to a person skilled in | s step when the document is<br>th documents, such combination |
|                               | ocument published prior to the international filing date but later than<br>e priority date claimed                                 | *&* document member of the same pater                                                                             | nt family                                                     |
| Date of the                   | actual completion of the international search                                                                                      | Date of mailing of the international se                                                                           | arch report                                                   |
| 09 SEPT                       | EMBER 1999                                                                                                                         | 19 OCT 199                                                                                                        | 99                                                            |
| Commission Box PCT Washington | mailing address of the ISA/US oner of Patents and Trademarks on, D.C. 20231                                                        | Authorized officer LAURA LATOCKTON                                                                                | <u> </u>                                                      |
| Facsimile 1                   | Vo (703) 305-3230                                                                                                                  | Telephone No. (703) 308-1235                                                                                      |                                                               |

Form PCT/ISA/210 (second sheet)(July 1992)\*

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/13034

| Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                              |
| 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                   |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
| 2. X Claims Nos.: 1-14 and 16-35 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: |
| Please See Extra Sheet.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                |
| 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                        |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
| 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                                    |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                        |
| 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                                        |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
| 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:                            |
|                                                                                                                                                                                                                                                |
| Remark on Protest The additional search fees were accompanied by the applicant's protest.                                                                                                                                                      |
| No protest accompanied the payment of additional search fees.                                                                                                                                                                                  |

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)\*

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/13034

BOX I. OBSERVATIONS WHERE CLAIMS WERE FOUND UNSEARCHABLE

2. Where no meaningful search could be carried out, specifically:

The multitude of variables and their permutations and combinations (e.g. A, i, j, m, n, R(1), R(2), R(3), R(4), Y, R(5), R(6), R(7), etc.) result in claimed subject matter that is so broad in scope that it is rendered virtually incomprehensible and thus no meaningful search can be given. Note also that the claimed subject matter lacks a significant structural element qualifying as the special technical feature that clearly defines a contribution over the art. The subject matter claimed contains a 2-amino-thiazole moiety which does not define a contribution over the prior art. Therefore, the first discernable invention as found in Example 1, which is the first compound listed in claim 15, has been searched.

Form PCT/ISA/210 (extra sheet)(July 1992)\*