Thermal properties of frams

- · closed cell foans widely used for thermal insulation
- · only materials with lover conductivity are aerogels (tend to be brittle + wach + vacuum insulation parels
- · low thermal conductivity of forms arises from:
 - · low volume fraction of solid
 - · high volume fraction of gas with low 2
 - · small cell size Suppresses convection + radiation (through repeated absorption+ reflection)
- · applications: buildings, refrigerated vehicles, LNG tankers
- · foams also have good thermal shock resistance since coeff. of thermal expansion of foam equal to that of the solid + modulus much lower ($E = \alpha \Delta T$ $\sigma = E \alpha \Delta T = \sigma_F$)
 - = nsed as heat shields
- · ceramic focus used as fire brick ceramic has high Im
 focus low 2 low heat loss
 low heat capacity lowers energy to heat
 - good thermal shock resistance resists spalling

Thermal conductivity, 2

· steady state conduction (T constant with time)

ID:
$$q = -\lambda \frac{dT}{dx}$$

· non - steady heat conduction (T varies with time, T)

$$\frac{\partial T}{\partial \tau} = a \frac{\partial^2 T}{\partial x^2}$$

· values for 2, a Table 7.1

Table 7.1 Thermal conductivities and diffusivities

Material	Thermal conductivity $\lambda(W/m K)$	Thermal diffusivity $a \text{ (m}^2/\text{s)}$
Copper (solid)	384 ^a	8.8×10^{-5} a
Aluminium (solid)	230 ^a	$8.9 \times 10^{-5} \text{ a}$
Alumina (solid)	25.6 ^a	8.2×10^{-6} a
Glass (solid)	1.1 ^a	4.5×10^{-7} 8
Polyethylene (solid)	0.35^{a}	1.7×10^{-7} a
Polyurethane (solid)	0.25 ^e	
Polystyrene (solid)	0.15 ^a	1.0×10^{-7} a
Air	0.025^{a}	-
Carbon dioxide	0.016^{a}	_
Trichlorofluoromethane (CCl ₃ F)	0.008^{a}	-
Oak $(\rho^*/\rho_s = 0.40)$	0.150^{a}	-
White pine $(\rho^*/\rho_s = 0.34)$	0.112 ^a	_
Balsa $(\rho^*/\rho_s = 0.09)$	0.055^{a}	_
$\operatorname{Cork}\left(\rho^*/\rho_{\mathrm{s}}=0.14\right)$	0.045^{a}	_
Polystyrene foam $(\rho^*/\rho_s = 0.025)$	$0.040^{\rm b}$	1.1×10^{-6}
Polyurethane foam $(\rho^*/\rho_s = 0.02)$	0.025 ^b	9.0×10^{-7}
Polystyrene foam ($\rho^*/\rho_s = 0.029-0.057$)	$0.029 - 0.035^{d}$	
Polyisocyanurate foam, (CFC-11) ($\rho^* = 32 \text{ kg/m}^3$)	$0.020^{\rm d}$	
Phenolic foam, (CFC-11, CFC-113) ($\rho^* = 48 \text{ kg/m}^3$)	0.017 ^d	
Glass foam $(\rho^*/\rho_s = 0.05)$	0.050 ^d	
Glass wool $(\rho^*/\rho_s = 0.01)$	0.042^{d}	
Mineral fibre ($\rho^*/\rho_s = 4.832 \text{ kg/m}^3$)	0.046 ^d	

Data for thermal conductivity and thermal diffusivity

All values for room temperature.

References

^aHandbook of Chemistry and Physics, 66th edn (1985–6) Chemical Rubber Co. ed. R. C. Weast.

^bPatten, G. A. and Skochdopole, R. E. (1962) Mod. Plast., 39, 149.

^cSchuetz, M. A. and Glicksman, L. R. (1983) *Proc. SPI 6th International Technical/Marketing Conference*, pp. 332–40.

^dGlicksman, L. R. (1994) Heat transfer in foams, in *Low Density Cellular Plastics* ed. Hilyard, N. C. and Cunningham, A. Chapman and Hall.

thermal diffusivity, a

· materials with a high value of a rapidly adjust their temp. to that of surroundings, because they conduct heat rapidly in comparison to their volumetric heat capacity; do not require much energy to reach thermal equilibrium

e. g. a = 112 × 10⁻⁶ m²/s

nybr a = 0.082 × 10⁻⁶ m²/s

wood a = 0.082 × 10⁻⁶ m²/s

Thermal conductivity of a foam, 2*

2* - contributions from - conduction through solid, 2,

" gas, 25

- Convection within cells, 2%

- radiation through cell walls + across voids, 2,

 $\lambda^* = \lambda_s^* + \lambda_5^* + \lambda_c^* + \lambda_r^*$

· conduction through solid: $\lambda_s^* = \eta \lambda_s (p^*/p_s)$ $\eta = efficiency factor ~ 2/3$

· conduction through gas: $\lambda_5^* = \lambda_g (1-p^*|p_s)$

For example, 2.5% derve closed - cell polystyrene from $\lambda^* = 0.040 \, \text{Wlmk}$ $\lambda_s = 0.15 \, \text{Wlmk}$ $\lambda_g = 0.025 \, \text{Wlmk}$ (air) $\lambda_s^* + \lambda_g^* = \frac{2}{3} (0.15) (0.025) + (0.025) (0.975)$ = 0.003 + 0.024 = 0.027 $\, \text{Wlmk}$

- · most of conductivity comes from conduction through gas
- · foans for insulation blown with low 25 gars
- · problem with aging low 25 gases diffux out of form over time, air diff. in, 251

convection within the cell

hot

- · gas rises + falls due to density changes with temperature
- · density changes buoyancy forces
- · also have viscous forus from drag of gas as it mores past celluals
- · convection important if Rayleigh number 7 1000

OTc = temp. diff. acoss

g = glaviacein l = cellsize

B = volume expansion M = dynamic viscosity from
for a sas = V+ (ign baric) a = thermal diffusivity

(5)

convection

for
$$P = 1000$$
 $P = Patm$ $T = 10000 temp$ $P = 1/T = 1/300$ $P = 1/T = 1/300$

- · Convection important if cell size > 20 mm
- · most focus: cell size clim => convection negligible

radiation

· heat flux passing by radiation, qi, from a surface at lemperature Ti to one at a lower temp. To, with a vacuum between them, is:

B. = constant (<1) Lescribing emissivity of the surfaces

(emitted radiant flux perunit are of sample relative to black
body radiator at some temp. + conditions; black body absorbs

all energy; black body emissivity =1)

radiation

- · If put foan between two surfaces, heat flux is reduced, since radiation is absorbed by the solid + reflected by cell walls
- · a Hernatian $q_v = q_v^* \exp(-k^*t^*)$ Beer's law $k^* = \text{extinction coeff. for form}$ $t^* = \text{thickness of form}$

- · for optically thin walls + struts (+ < 10 mm) (transporent to radiation)

 K* = 67ps) ks
- . heat flux by radiation then

· obtain 2; using some approximations:

approximations:

$$\frac{dT}{dx} \approx \frac{T_1 - T_0}{t^*} = \frac{\Delta T}{t^*}$$

$$T_1^4 - T_0^4 \approx 4 \Delta T T^3 \quad \overline{T} = \left(\frac{T_1 + T_0}{2}\right)$$

$$q_V = \beta_1 \sigma \quad 4\Delta T T^3 \quad \exp\left[-\left(\rho^* \beta_0\right) K_s t^*\right] = \lambda_1^* \quad \Delta T$$

$$\lambda_V^* = 4\beta_1 \sigma \quad \overline{T}^3 \quad t^* \quad \exp\left[-\left(\rho^* \beta_0\right) K_s t^*\right]$$
as $\rho^* \beta_0 \downarrow \lambda_1^* \uparrow$

Thermal conductivity

- · relative contributions of 25, 25, 2, shown in Fig 7.1 · largest contribution 25
- · 2" plotted against relative density Fig 7.2
 - · Minimum @ between pt/s of 0.03 \$ 0.07
 - · at which point 2* only slightly larger than 25
 - · at low p*/ps, 2* increases increasing transporting to radiation (also, walls may rupture)
 - · tradeoff: as plp + , 2 & + but 2 t

Thermal Conductivity

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cond. Vs. Relative Density

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cond. vs. Cell Size

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

- 2* plotted against cell size Fig 7.3
 - · 2* increases with cell size
 - · radiation reflected less often

Note: aerogel

- · pare size < loann
- · mean free path of air at ambient pressur = 68 nm avg. distance molecules more before cillisian with another note molecule. aerogels pore size < mean free path of air reduces conduction through gas.

Specific heat Cp

· specifiz heat = energy regist to raise temp. of unit wass by unit temp $Cp^* = Cps \qquad [J/kg \cdot k]$

Thermal expansion coefficient

x = 25 (consider foam as framework)

(but if cloxed-cell from cooled dramatically - gas can freeze, collapsing the cells; of if heated - gas expands, increasing the internal pressur + strains

Thermal shock resistance

- · If material subjected to sudden change in surface temp. induces thermal stresses at surface + cracking + spelling.
- · Consider material at T, dropped into water at T2 (T, 7T2)
 - · Surface temp. drops to Tz, contracting surface layers
 - · Hermal strain & = & DT
- · If surface bonded to underlying block of material constrained to original dimensions

· cracking / spalling when == of

$$\Delta T_c = \sigma_f (1-v) = critical \Delta T to just course coaching$$

· for fram: (open cells)

$$\Delta T_{c}^{*} = \frac{0.2 \, \sigma_{fs} \, (\rho^{*}/\rho_{s})^{3/2} \, (1-v^{*})}{E_{s} \, (\rho^{*}/\rho_{s})^{2} \, \alpha_{s}} = \frac{0.2}{(\rho^{*}/\rho_{s})^{1/2}} \, \frac{\sigma_{fs} \, (1-v)}{E_{s} \, \alpha_{s}} = \frac{0.2}{(\rho^{*}/\rho_{s})^{1/2}} \, \Delta T_{cs}$$

· as from density & DT * 1 fire brick - porons ceramic

Case study: optimization of from density for thermal insulation

- · there is an optimal foam density for a given thermal insulation problem
- · already saw A* has a minimum as a f (p*/s)
- · typically, have a constraint on the foan thickness, t^* t^* constant $\lambda^* = \frac{2}{3} (\rho^*/\rho_0) \lambda_3 + (1-\rho^*/\rho_0) \lambda_5^* + 4\beta_1 \sigma \bar{\tau}^3 t^* \exp[-k_5 (\rho^*/\rho_0) t^*]$
- What is optimum $p^*|_{ps}$ for a given t^* ? $\frac{d\lambda^*}{d(p^*|_{b})} = 0 = p \left(p^*|_{s}\right)_{opt} = \frac{1}{k_s t^*} ln \left[\frac{4 k_s \beta_s \sigma \bar{\tau}^3 t^{*2}}{\frac{3}{3} \lambda_s \lambda_s}\right]$
- · as given thickness to increases, (polys) opt decreases
- · as I increases, (p+/ps) opt increases

e.g. coffee cup
$$t^* = 3mn (p^*/p)_{opt} = 0.08$$

refrigerator $t^* = 50mn (p^*/p)_{opt} = 0.02$

(see PP slide Table 7.3 for Later und in calculation).

Case Study: Optimization of Relative Density

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Case Study: Optimum Relative Density

Extinction coefficient of solid polymer, K_s	$5.67 \times 10^4 \mathrm{m}^{-1}$
Emissivity factor, β_1	0.5
Conductivity of solid polymer, λ_s	$0.22\mathrm{W/m}\mathrm{K}$
Conductivity of gas, $\lambda_{\rm g}$	$0.02\mathrm{W/m}\mathrm{K}$
Mean temperature, \bar{T}	300°K
Stefan's constant, σ	$5.67 \times 10^{-8} \text{W/m}^2 \text{K}^4$

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. **Table** courtesy of Lorna Gibson and Cambridge University Press.

Case study: insulation for refrigerators

- · insulation reduces energy cost, but has a cost itself
- · total cost = cost of insulation + cost of energy lost by heat transfer through wells
- · Objective function: minimize total cost
- · given: X = thickness of insulation

 AT = lemp. Lift. across insulation

 te = design life of refrigerator

CM = cost of msulation/mass CE = " energy/jonle CT = total cost/arca

$$G = x p^* C_M + \lambda \Delta T t_k C_E \qquad (heat flux q = \lambda \Delta T \frac{T}{x})$$

$$define M_1 = \frac{1}{p^* C_M} \qquad M_2 = \frac{1}{\lambda}$$

$$\frac{CT}{x} = \frac{1}{M_1} + \left[\frac{\Delta T}{x^2} t_k C_E\right] \frac{1}{M_2}$$

· two terms are equal when:

6 coupling constant

- · family of parallel straight lines of constant value AT to CE
- · Fig 13.11 DT = 200 X = 10mm CE = \$0.01/MJ

two lines for te= 10 years & te= 1 month (note error in book te= 10 yrs line should be mired over)

- · also plotted a set of curved contows plots of G/x
 · as move up + to right of plot, the value of G/x +
- for $t_k = 10 \text{ years} = P$ phenolic foam $p^* = 0.035 \text{ Mg/m}^3$ $t_k = 1 \text{ menth} = P$ EPS $p^* = 0.02 \text{ Hg/m}^3$ $PP p^* = 0.02 \text{ Hg/m}^3$

Case Study: Insulation for Refrigerators

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications $\mbox{Spring 2015}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.