Grassmann and Flag Varieties in Linear Algebra, Optimization, and Statisics

An Algebraic Perspective

Hannah Friedman

UC Berkeley

SIAM AG 2025

based on joint work with Serkan Hoşten: arXiv 2505.15969

Flag Varieties

Definition. The flag manifold or variety

$$Fl(k_1, ..., k_r; n) = \{W_1 \subseteq W_2 \subseteq \cdots \subseteq W_r \subseteq \mathbb{R}^n : \dim(W_i) = k_i, i = 1, ..., r\}$$

is the space of nested subspaces of dimension k_1, \ldots, k_r in \mathbb{R}^n .

Example. A point in F1(1,2;3).

How can we represent flags with polynomial equations?

The Many Lives of Flag Varieties: Stiefel Coordinates

Definition. The Stiefel manifold $V_{k,n}$ is the set of orthonormal k-frames

$$V_{k,n} = \{ Z \in \mathbb{R}^{n \times k} : Z^T Z = \mathrm{Id}_k \}.$$

The orthogonal group O(n) is $V_{n,n}$.

Theorem (F.-Hoşten, 2025).

$$\dim(V_{k,n}) = \binom{n}{2} - \binom{n-k}{2}$$

$$I(V_{k,n}) = \langle Z^T Z - \operatorname{Id}_k \rangle$$

The ideal $I(V_{k,n})$ is a complete intersection. When k < n, $I(V_{k,n})$ is prime.

The Many Lives of Flag Varieties: Stiefel Coordinates

Definition. The Stiefel manifold $V_{k,n}$ is the set of orthonormal k-frames

$$V_{k,n} = \{ Z \in \mathbb{R}^{n \times k} : Z^T Z = \mathrm{Id}_k \}.$$

The orthogonal group O(n) is $V_{n,n}$.

- $Gr(k, n) = V_{k,n}/O(k)$
- $Fl(k_1, ..., k_r; n) = V_{k,n}/O(k_1) \times O(k_2 k_1) \times ... \times O(k_r k_{r-1})$

Example.
$$Fl(1,2;3) \cong V_{2,3}/O(1)^2$$
 $Z = (Z_1 \ Z_2) = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \\ z_{31} & z_{32} \end{pmatrix}$

The Many Lives of Flag Varieties: Projection Coordinates

A linear subspace $W \subseteq \mathbb{R}^n$ is uniquely determined by the orthogonal projection onto W.

$$pGr(k, n) = \{P \in Sym(\mathbb{R}^n) : P^2 = P, trace(P) = k\}$$

Example. Fl(1,2;3)
$$Z = (Z_1 \ Z_2) = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \\ z_{31} & z_{32} \end{pmatrix}$$

$$P_1 = Z_1 Z_1^T \qquad \qquad P_2 = Z Z^T \qquad \qquad P_2 P_1 = P_1$$
 projects onto W_1 projects onto W_2

The Many Lives of Flag Varieties: Projection Coordinates

Theorem (F.-Hoşten, 2025). The projection flag variety $pFl(k_1, ..., k_r; n)$ is smooth and has prime ideal

$$\langle P_i P_{i-1} - P_{i-1} : 2 \le i \le r \rangle + \langle P_i^2 - P_i, \operatorname{trace}(P_i) - k_i : 1 \le i \le r \rangle$$

Here P_1, \ldots, P_r are symmetric $n \times n$ matrices. The ambient ring has $r\binom{n+1}{2}$ generators.

See also: "Optimization on Flag Manifolds" by Ye, Wong, and Lim

"The Two Lives of the Grassmannian" by Devriendt, F., Reinke, and Sturmfels

The Many Lives of Flag Varieties: Isospectral Coordinates

Goal: represent points in the flag with symmetric matrices.

Example. Fl(1,3;4)
$$\cong V_{3,4}/O(1) \times O(2) \cong O(4)/O(1) \times O(2) \times O(1)$$

 $Z = (Z_1 \ Z_2 \ Z_3) \mapsto \tilde{Z} = (Z_1 \ Z_2 \ Z_3 \ Z_4)$

Fix
$$c_1 > c_2 = c_3 > c_4$$
.

$$\left\{\tilde{z}\left[\begin{array}{c|c}c_1\\\hline c_2\\\hline c_3\\\hline c_4\end{array}\right]\tilde{z}^T:\tilde{z}\in \mathrm{O}(4)/\mathrm{O}(1)\times\mathrm{O}(2)\times\mathrm{O}(1)\right\}=\left\{Q\in\mathrm{Sym}(\mathbb{R}^n):Q\text{ has spectrum }(c_1,c_2,c_3,c_4)\right\}$$

The fact that the set of isospectral matrices parameterizes flag varieties was first observed by Ye and Lim in Simple Matrix Models for the Flag, Grassmann, and Stiefel Manifolds.

The Many Lives of Flag Varieties: Isospectral Coordinates

Theorem (F.-Hoşten, 2025). Let $\mathrm{Fl}(k_1,\ldots,k_r;n)$ be a flag variety and let X be a symmetric matrix of unknowns. Given a generic choice of c_1,\ldots,c_n satisfying $c_{k_j+1}=\cdots=c_{k_j+1}$ for $j=0,\ldots,r$, the variety $\mathrm{Fl}_{\mathbf{c}}(k_1,\ldots,k_r;n)$ is smooth and its prime ideal is

$$\langle \prod_{j=1}^{r} (X - c_{k_j} \operatorname{Id}_n), \operatorname{trace}(X) - \sum_{j=1}^{n} c_j \rangle.$$

Example. If r=1, $c_1=\dots=c_{k_1}=1$, and $c_{k_1+1}=\dots=c_n=0$, then

$$\tilde{Z}$$
diag $(1,...,0)\tilde{Z}^T = ZZ^T = P$ \rightarrow $Fl_{\mathbf{c}}(k_1;n) = pGr(k_1,n)$.

The Many Lives of Flag Varieties

list of $n \times n$ projection matrices

Figure 1: Diagram explaining how to move from one life of the flag variety to another. If $A \to B$ in the diagram, the edge label explains how to write the B coordinates in terms of the A coordinates. Two of the arrows are bidirectional, meaning that one direction comes from matrix multiplication and the other comes from a matrix factorization.

Algebraic Degree of an Optimization Problem

Optimization Problem

optimize
$$f(\mathbf{x})$$

optimize
$$f(\mathbf{x})$$
subject to $G(\mathbf{x}) = 0$

rank $\left(\operatorname{Jac}(G(\mathbf{x})) \mid \nabla f(\mathbf{x})\right) = \operatorname{rank} \operatorname{Jac}(G(\mathbf{x}))$ $G(\mathbf{x}) = 0$

$$G(\mathbf{x}) = 0$$

Definition. The algebraic degree of an optimization problem is the number of critical points.

often 0-dimensional

When the variety is not zero dimensional, its degree can still give an idea of the complexity of the problem.

The algebraic degree of a problem is a proxy for the difficulty of correctly solving the problem.

Multi-Eigenvalue Problem

Let A be real, symmetric $n \times n$ matrix.

Goal: compute an $n \times k$ matrix $Z \in V_{k,n}$ such that the columns of Z are eigenvectors of A.

 $\max_{Z \in V_{k,n}} \operatorname{trace}(Z^T A Z)$

Critical Points of the Multi-Eigenvalue Problem

The optimization problem $\max_{Z \in V_{k,n}} \operatorname{trace}(Z^T A Z)$ is invariant under the action of O(k).

Let $Q \in O(k)$.

$$trace(Q^T Z^T A Z Q) = trace(Z^T A Z Q Q^T) = trace(Z^T A Z)$$

$$Z^TZ = \mathrm{Id}_k \implies Q^TZ^TZQ = Q^TQ = \mathrm{Id}_k$$

Critical Points of the Multi-Eigenvalue Problem

Theorem (F., Hoşten 2024). Let A be a generic real symmetric $n \times n$ matrix and let $Z \in V_{k,n}$. The algebraic set of complex critical points of the eigenvalue optimization problem is

$$\left[\left[u_{i_1} u_{i_2} \cdots u_{i_k} \right] Q : Q \in \mathcal{O}(k) \right]$$

$$\{i_1, \dots, i_k\} \in \binom{[n]}{k}$$

where q_1, \ldots, q_n is an orthonormal eigenbasis of A. This algebraic set is a disjoint union of $\binom{n}{k}$ irreducible varieties isomorphic to O(k), and hence its dimension is equal to $\dim(O(k))$ and its degree is equal to $\deg(O(k)) \cdot \binom{n}{k}$.

Multi-Eigenvalue Problem in Projection Coordinates

Multi-Eigenvalue Problem in Projection Coordinates

Theorem (F.-Hoşten, 2025). Let A be a generic real symmetric $n \times n$ matrix.

The optimization problem

$$\max_{P \in pGr(k,n)} trace(AP)$$

has critical point set

$$\left\{ [u_{i_1} u_{i_2} \cdots u_{i_k}] [u_{i_1} u_{i_2} \cdots u_{i_k}]^T \mid \{i_1, \dots, i_k\} \in \binom{[n]}{k} \right\}$$

where u_1, \ldots, u_n is an orthonormal eigenbasis of A and algebraic degree $\binom{n}{t}$.

Corollary. The linear optimization degree of
$$pGr(k, n)$$
 is $\binom{n}{k}$.

The linear optimization degree of a variety was introduced in *Linear Optimization on Varieties and Chern Mather Classes* by Maxim, Rodriguez, Wang, and Wu.

Multi-Eigenvalue Problem in Isospectral Coordinates

$$P = ZZ^T = \tilde{Z} \operatorname{diag}(1, ..., 1, 0, ..., 0) \tilde{Z}^T \qquad X = \tilde{Z} \operatorname{diag}(1, ..., 1, 0, ..., 0)$$

$$\max_{P \in pGr(k,n)} trace(AP)$$

$$X = \tilde{Z} \operatorname{diag}(c_1, c_2, ..., c_n) \tilde{Z}^T$$

 $\star \max_{X \in \text{Fl}_{\mathbf{c}}(\mathbf{k};n)} \text{trace}(AX)$

Theorem (F.-Hoşten, 2025). The critical points of \star are the points in $\mathrm{Fl}_{\mathbf{c}}(\mathbf{k};n)$ representing different flag structures on the eigenspaces of A. The degree of \star is

$$\binom{n}{k_1, k_2 - k_1, \dots, n - k_r}$$
.

Corollary. The linear optimization degree of $\mathrm{Fl}_{\mathbf{c}}(\mathbf{k};n)$ is $\binom{n}{k_1,k_2-k_1,\ldots,n-k_r}$.

Heterogeneous Quadratics Minimization Problem

Problem. Fix real symmetric matrices A_1, \ldots, A_k . How many critical points does the following optimization problem have?

$$\min_{Z \in V_{k,n}} \sum_{i=1}^{k} Z_i^T A_i Z_i \qquad Z = (Z_1 \ Z_2 \ \cdots \ Z_k)$$

	n=2	n=3	n=4	n=5	n=6	n=7	n = 8	n=9
k=2	8	40	112	240	440	728	1120	1632
k=3		80	960	5536	21440	64624		
k = 4			1920	57216				

Table 1: Degrees of the heterogeneous quadratics minimization problem for small k, n.

Conjecture. The number of critical points for k=2 is $8\sum_{j=1}^{n}j^2$.

Stiefel & Projection Coordinates

$$V_{k,n} \rightarrow \text{pFl}(1,2,\ldots,k;n)$$

$$Z = (Z_1 \ Z_2 \ \cdots \ Z_k) \mapsto (Z_1 Z_1^T, \ Z_1 Z_1^T + Z_2 Z_2^T, \ \ldots, \ ZZ^T) = (P_1, P_2, \ldots, P_k)$$

$$\min_{Z \in V_{k,n}} \sum_{i=1}^k Z_i^T A_i Z_i \qquad \min_{(P_1,\ldots,P_n) \in \text{pFl}(\mathbf{k};n)} \sum_{i=1}^k \text{trace}(B_i P_i)$$

$$\min_{Z \in V_{k,n}} \sum_{i=1}^k \text{trace}(A_i Z_i Z_i^T) \qquad \mathbf{k} = (1,2,\ldots,k)$$

$$\frac{1}{2^k} \underset{Z \in V_{k,n}}{\text{Algebraic degree of}} = \underset{(P_1, \dots, P_n) \in pFl(\mathbf{k}; n)}{\text{Algebraic degree of}} = \underset{(P_1, \dots, P_n) \in pFl(\mathbf{k}; n)}{\text{Linear optimization}}$$

$$\text{degree of } pFl(\mathbf{k}; n)$$

Thank you!

arXiv 2505.15969

The Many Lives of Flag Varieties: Plücker Coordinates

Theorem. The variety $\mathrm{Fl}(k_1,\ldots,k_r;n)\subseteq\mathbb{P}^{\binom{n}{k_1}-1}\times\cdots\times\mathbb{P}^{\binom{n}{k_r}-1}$ in Plücker coordinates is defined by the prime ideal generated by the quadrics

$$x_{i_1,\ldots,i_{k_s}}x_{j_1,\ldots,j_{k_t}}-\sum x_{i',\ldots,i'_{k_s}}x_{j'_1,\ldots,j'_{k_t}}$$

for every pair $1 \le s < t \le r$ and where the sum is over all (i',j') obtained by exchange the first m of the j-subscripts with m of the i-subscripts while preserving their order.