Министерство науки высшего образования Республики Казахстан Казахский Национальный Университет имени аль-Фараби

Факультет: «Географии и природопользования»

Кафедра: «Метеорологии и <u>Гидрологии</u>»

Лабораторная работа №2

На тему: <u>Определение средних и крайних дат гидрометеорологических</u> элементов и явлений

Выполнила: Розакулова П.С.

Проверил: Ердесбай А. Н.

ОП: Гидрология 1 курс

Алматы 2024

ТЕМА: Определение средних и крайних дат гидрометеорологических элементов и явлений (на примере характерных расходов воды за многолетний период)

1. Общие положения.

Определение средних и крайних (ранних и поздних) да наступления различных гидрологических и метеорологических элементов Н явлений имеет большое теоретическое практическое значение.

Без знания указанных дат замерзания и вскрытия водоемов. перехода температур воздуха через $0^{\circ}\mathrm{C}$. дат установления и схода снежного покрова, наступления максимальных и особенности минимальных расходов воды И уровней невозможно изучать гидрометеорологического режима территорий. невозможно построить типовые графики колебания уровней и расходов воды, расчетные гидрографы различной обеспеченности, невозможны разработки гидрологических и метеорологических прогнозов, а также навигационного определение отопительного сезона. резко на периода сокращаются реках, возможности использования различных видов гидрометеорологической других информации.

2. Содержание задания.

Дано: Таблица характерных расходов воды за многолетний период из «Основных гидрологических характеристик» конкретному гидрологическому посту. по

Требуется: Определить средние и крайние значения максимальных и минимальных расходов воды, средние и крайние даты их наступления.

3. Ход выполнения работы

- 3.1 Необходимо выбрать пункт со сроком наблюдений не менее 20 лет. Данные наблюдений выписываются в таблицу 2. в которой помещают наибольшие и наименьшие за год, наименьшие зимние и наименьшие летние расходы воды и их даты за каждый год. Крайние значения расходов воды (наибольший из наибольших)и наименьший из наименьших за весь многолетний период) и крайние даты (самые ранние и самые поздние за многолетний период) выбираются из таблицы 2 исходных данных.
- 3.2 Для средних нахождения максимальных расходов за многолетний период определяют среднее арифметическое из значений их за каждый год.
- 3.3 Средние даты следующим образом. за многолетний период находят следующим образом.

1) Выбираем начало отсчета. За начало отсчета можно принимать начало года, раннюю дату за многолетний период или 1 число какого-либо месяца с расчетом, чтобы все отклонения от Ода начала отсчета (в днях) были положительные. /5.6.7.8/. В данной ых работе за начало отсчета берется 1-е число того месяца, когда наблюдалась самая ранняя многолетний за период дата сти наступления минимального (или максимального) расхода воды. Затем находим отклонения дат от начала отсчета за каждый ды год. Определяем среднее отклонение как среднеарифметическое за ны многолетний период. Прибавив среднее отклонение к началу отсчета получим за дату среднюю многолетний ах период (см. таблицу 2) Так, например, при расчете средней даты максимального расхода за начало отсчетов необходимо взять 1/IV. ой Отклонения включают и день, который принят за начало отсчета.

Характерные расходы воды по г/посту р. Ертис-с Буран за период 2002-2021 гг.

	Годы	Наибольший расход			Наименьшие									
		Q, (M3/c)	Дата	Отклонения	За год			Летний			Зимний			
					Q, (M3/c)	Дата	Отклонения	Q, (м3/c)	Дата	Отклонения	Q, (м3/c)	Дата	Отклонения	
1	2002	1880	6.06	67	61.8	31.12	365	135	12.09	104	56.3	29.11.2001	328	
2	2003	1260	13.06	74	57.5	15.02	46	113	3.09	95	57.5	15.02.	46	
3	2004	1380	24.05	54	48.5	28.11	332	121	08.09	100	55.5	08.02	39	
4	2005	1440	23.06	84	66.2	31.12	365	169	25.09- 30.09	117-122	48.5	28.11	327	
5	2006	1300	31.05	61	62.4	24.01	24	109	03.09	95	62.4	24.01	24	
6	2007	1030	08.06	69	57.1	06.02	37	136	07.09	99	56.5	29.11.06	328	
7	2008	1160	26.05	56	52.3	30.01	30	106	23.07	53	52.3	30.01	30	
8	2009	778	27.06	88	44.1	01.03	60	109	24.08	85	43.7	27.02	57	
9	2010	1720	14.06	75	53.0	14. 02	45	143	29.09	121	53.0	14.02	44	
10	2011	672	25.04	25	35.4	10.12	344	116	16.09	108	53.4	14.01	14	
11	2012	451	01.09	154	40.6	04.02	35	129	28.08	89	40.6	04.02	34	
12	2013	1430	08.06	69	50.4	5-6.08	217/218	241	30.09	122	50.4	5-6.02	35-36	
13	2014	1180	02.06	63	44.0	04.03	62	96.2	22.09	114	44.0	04.03	62	
14	2015	1110	13.06	74	46.3	03.02	34	112	16.09	107	39.0	04.12	333	
15	2016	1800	15.06	76	64.6	25.02	56	117	22.09	114	64.6	25.02	56	
16	2017	1820	05.06	66	74.6	23.01	23	126	8.09- 9.09	100/101	74.6	23.01	23	
17	2018	1620	22.06	83	66.9	12.12	346	149	28.09	119	95.9	06.02	37	
18	2019	1320	18.06	79	70.1	28.01	28	134	30.09	122	66.9	12.12	342	
19	2020	443	03.05	33	166	22.11	326	213	30.06	30	195	17.11	316	
20	2021	1320	08.06	69	106	01.11	305	115	27.09	119	50.8	18.01	18	
	Средний расход, Q (м3/c)	1253,9			63,39			134,46			63,045			

Наименьший расход, Q (м3/c)	443			35.4			96.2			39.0		
Наибольший расход, Q (м3/c)	1880			166			241			195		
Средняя Дата		9.06			2.06			9.09			5.05	
Ранняя Дата		25.04			23.01			30.06			14.01	
Поздняя Дата		01.09			31.12			30.09			12.12	
Среднее												
отклонение за многлетний			70			154			101			125
период												

Вывод: заполняя таблицу мы вычислили даты расходов в период 2002-2021 гг. реки Черный Ертис- с. Боран. По статистике мы можем увидеть, что самый большой расход был 2002 году. С каждым годом расход колебался, но не превышал 1880 м³/с. А также 2020 году был самый наименьший расход значимостью 443 м³/с. Также информация, которая извлечена — это то, что средняя дата происходит с мая по сентябрю, то есть в летнее время.