Linear Algebra: Map of theorems

Tan Wee Han

December 10, 2020

Contents

1	Bili	near Forms and Inner Product	1
	1.1	Vector inequalities	1
	1.2	Orthogonal and Orthonormal basis	1
	1.3	Orthogonal complement and projection	1
	1.4	Adjoint of linear operator	2

1 Bilinear Forms and Inner Product

1.1 Vector inequalities

Cauchy-Schwarz Inequality: $\|\langle u, v \rangle\| \le \|u\| \|v\|$ Triangle Inequality: $\|u + v\| \le \|u\| + \|v\|$ Pythagoras Theorem: $\|u + v\|^2 = \|u\|^2 + \|v\|^2$

1.2 Orthogonal and Orthonormal basis

Theorem 1.2.1 An orthogonal set of nonzero vectors is linearly independent.

Corollary 1.2.1.1 If V is a finite dimensional inner product space and n = dimV, then any orthogonal set of nonzero vectors in V is finite and contains at most n vectors.

Lemma 1.2.2 Let $\mathcal{B} = v_1, ..., v_n$ be an orthonormal basis of V. Then for any $v \in V$,

$$V = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n$$

Corollary 1.2.2.1 Let $\mathcal{B} = v_1, ..., v_n$ be an orthonormal basis of $V, T : V \to V$ a linear operator and $[T]_{\mathcal{B}} = (a_{ij})$ Then for all i, j

$$a_{ij} = \langle T(v_j), v_i \rangle$$

Theorem 1.2.3 Every finite dimensional inner product space has an orthonormal basis.

1.3 Orthogonal complement and projection

Theorem 1.3.1 If W is a subspace of an inner product space V, then its orthogonal complement W^{\perp} is a subspace of V. In addition, we have

$$W \cap W^{\perp} = \{\mathbf{0}\}$$

Theorem 1.3.2 If W is a finite dimensional subspace of an inner product space V, then

$$V = W \oplus W^{\perp}$$

Theorem 1.3.3 If $\{w_1,...,w_k\}$ is an orthonormal basis of W then

$$\mathbf{proj}_{W}(v) = \sum_{j=1}^{k} \langle v, w_{j} \rangle w_{j}$$

Theorem 1.3.4 Best Approximation: If W a finite dimensional subspace of an inner product space V and $v \in V$, then

$$||v - \mathbf{proj}_W(v)|| < ||v - w||$$

for every vector w in W different from $\mathbf{proj}_W(v)$.

Theorem 1.3.5 Least Square Solution: For any real linear system $A\mathbf{x} = \mathbf{b}$ the associated normal system

$$(A^t A)\mathbf{x} = A^t \mathbf{b}$$

is consistent, and all its solutions are least square solutions of $A\mathbf{x} = \mathbf{b}$

1.4 Adjoint of linear operator