2018/7/13 TUOJ.查看题目

■ 题目列表

.... 提交状态

↓₹ 排行榜

4 提问和通知

思考熊的马拉松

时间限制: 1.0 秒 空间限制: 512 MB

相关文件: 题目目录 (/staticdata/publicfile.p40AFkTRxUF7TI2U.running.zip/running.zip)

题目描述

今年,n 只思考熊参加了清华大学校园马拉松比赛。马拉松的赛道是环形的,每圈的长度是 A ,完成比赛需要跑 L 圈。

比赛中,甲领先乙很长距离,绕过一圈或多圈后从后面追上了乙的现象叫做"套圈"。套圈现象非常常见,例如:跑得比谁都快的 saffah 熊可以套某些熊 L-1 圈;ufozgg 熊经常进行日常耐力训练,套圈次数和被套圈次数基本持平;而 Mulab 作为一只老年熊,则是被套 L-1 圈的那种。

与人不同的是,思考熊在跑步时都是匀速运动。 wyx 熊是这次比赛的计时员,他统计了参赛的 n 只熊的速度 v_1,v_2,\ldots,v_n (其中最大的一个是 saffah 熊的速度)。 现在 wyx 熊希望你告诉他,当速度最快的 saffah 熊到达终点时,场上**所有熊**中**总共**发生了多少次套圈现象。

注意:在 saffah 熊刚刚到达终点那一刻,如果甲恰好追上了乙,此时也算作甲将乙套圈。

输入格式

从标准输入读入数据。

输入的第一行包含 2 个整数 T,C ,分别表示这个测试点内数据的组数和这个测试点的编号。对于所有测试点,保证 T=10 。 每组数据的第一行包含 3 个正整数 n,A,L ,分别表示思考熊的只数,跑道每圈的长度和完成比赛所需要的圈数。保证 $A,L\leq 10^8$ 。 第二行包含 n 个正整数 v_1,v_2,\ldots,v_n ,表示每只思考熊的速度。保证这些数互不相同。

输出格式

输出到标准输出。

输出 T 行,分别表示每组数据中,所有熊发生的套圈总次数。

样例1输入

- 4 0
- 2 1000 15
- 2 5
- 2 1000 13
- 9 4
- 5 1000 10
- 8 10 2 5 6
- 5 1000 17
- 8 10 2 5 7

样例1输出

9

38

61

样例1解释

对于第1组数据,跑得最快的 saffah 熊到达终点的时间为 $\frac{1000 \times 15}{5} = 3000$,9次套圈分别发生在(其中位置表示从一圈的起点出发的距离):

编号	1	2	3	4	5	6	7	8	9
时间	1000 3	2000 3	1000	<u>4000</u> 3	<u>5000</u> 3	2000	<u>7000</u> 3	8000	3000

 \mathcal{Z}

编号	1	2	3	4	5	6	7	8	9
位置	$\frac{2000}{3}$	1000 3	0	$\frac{2000}{3}$	1000 3	0	2000 3	1000 3	0

对于第2组数据,跑得最快的 saffah 熊到达终点的时间为 $\frac{1000\times13}{9}=1444\frac{4}{9}$,7次套圈分别发生在:

编号	1	2	3	4	5	6	7
时间	200	400	600	800	1000	1200	1400
位置	800	600	400	200	0	800	600

样例中 C=0 ,但实际的数据中 C 会被赋值为实际的测试点编号。

样例2

见题目目录下的 2.in 与 2.ans。

样例3

见题目目录下的 3.in 与 3.ans。

样例4

见题目目录下的 4.in 与 4.ans。

样例5

见题目目录下的 5.in 与 5.ans。

子任务

各测试点分别满足下列特征:

测试点/ C	n	v_i	$\max(v_i) L$
1,2	= 1	$\leq 10^6$	否
3,4	=2		是
5,6			否
7,8	= 3,000		
9,10			是
11, 12	$=10^5$		
13,14		$\leq 10^7$	
15, 16, 17		$\leq 10^6$	否
18, 19, 20		$\leq 10^8$	

这些特征对同一个测试点中的全部 T 组数据都有效。其中 v_i 表示 n 只熊的速度都满足的条件, $\max(v_i)|L$ 表示跑的总圈数 L 是最快的 saffah 熊速度的倍数。

语言及编译选项信息

#	名称	编译器	额外参数	代码长度限制(B)
0	g++ with std98	g++	-O2 -std=c++98 -DONLINE_JUDGE	65536
1	g++ with std11	g++	-O2 -std=c++11 -DONLINE_JUDGE	65536

2018/7/13 TUOJ.查看题目

#	名称	编译器	额外参数	代码长度限制(B)
2	g++ with std14	g++	-O2 -std=c++14 -DONLINE_JUDGE	65536
3	java	javac		65536
4	gcc with std98	gcc	-O2 -std=c98 -DONLINE_JUDGE	65536
5	gcc with std11	gcc	-O2 -std=c11 -DONLINE_JUDGE	65536
6	gcc with std14	gcc	-O2 -std=c14 -DONLINE_JUDGE	65536

递交历史			
#	状态	时间	
	No da	ta available in table	

2018/7/13 TUOJ.查看题目

© 2018 清华大学 计算机科学与技术系 学生算法与竞赛协会