

IEEE International Conference on Cluster Computing

High Performance Computing and Trends

Jack Dongarra
Innovative Computing Laboratory
University of Tennessee

http://www.cs.utk.edu/~dongarra/

Sutton Place Hotel, Newport Beach Oct. 8-11, 001

Outline

- + Trends
 - >Through the "eyes" of the Top500
- Self Adapting Numerical Software (SANS) Effort
 - >Software Technology to aid in high performance on clusters and commodity processors.

TOP500

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

TPP perfor<u>manc</u>e

Ax=b, dense problem

- Updated twice a year

SC'xy in the States in November

Meeting in Mannheim, Germany in June

- All data available from www.top500.org

Architectures

What's new with the TOP500?

- Benchmark Implementation HPL:
 High Performance Linpack
 - > http://icl.cs.utk.edu/hpl/
 - > Needs only
 - > MPI
 - > BLAS or VSIPL
 - > Highly scalable and efficient
- ◆ Top Clusters
 - > List by peak performance today
 - > Information given on processors, interconnect, etc
 - > http://clusters.top500.org

- Interconnect, processors, memory, OS, application area, ...
- http://clusters.top500.org
- Benchmark results to follow in the coming months

Self-Adapting Numerical Software (SANS) Effort

- The complexities of modern processors or clusters makes it difficult to analytically predict or model by hand the performance.
- Operations as simple as the BLAS require many manhours / platform
 - Software lags far behind hardware introduction
 - Only done if financial incentive is there
- Hardware, compilers, and software have a large design space w/many parameters
 - > Blocking sizes, loop nesting permutations, loop unrolling depths, software pipelining strategies, register allocations, and instruction schedules.
 - > Complicated interactions with the increasingly sophisticated micro-architectures of new microprocessors.
- Need for quick/dynamic deployment of optimized routines.

18

Software Generation

- Strategy ATLAS BLAS
- Parameter study of the hw
- Generate multiple versions of code, w/difference values of key performance parameters
- Run and measure the performance for various versions
- Pick best and generate library
- Level 1 cache multiply optimizes for:
 - > TLB access
 - > L1 cache reuse
 - > FP unit usage
 - > Memory fetch
 - > Register reuse
 - > Loop overhead minimization

- ◆ Takes ~ 20 minutes to run.
- "New" model of high performance programming where critical code is machine generated using parameter optimization.
- Designed for RISC arch
 - > Super Scalar
 - Need reasonable C compiler
- Today ATLAS in use by Matlab, Mathematica, Octave, Maple, Debian, Scyld Beowulf, SuSE, ...

Related Tuning Projects

- ◆ PHiPAC
 - Portable High Performance ANSI C www.icsi.berkeley.edu/~bilmes/phipac initial automatic GEMM generation project
- FFTW Fastest Fourier Transform in the West
 - > www.fftw.org
- UHFFT
 - > tuning parallel FFT algorithms
 - > rodin.cs.uh.edu/~mirkovic/fft/parfft.htm
- + SPIRAL
 - Signal Processing Algorithms Implementation Research for Adaptable Libraries maps DSP algorithms to architectures
- Sparsity
 - Sparse-matrix-vector and Sparse-matrix-matrix multiplication www.cs.berkeley.edu/~ejim/publication/ tunes code to sparsity structure of matrix more later in this tutorial
 - > University of Tennessee

ScaLAPACK

- ScaLAPACK is a portable distributed memory numerical library
- Complete numerical library for dense matrix computations
- Designed for distributed parallel computing (MPP & Clusters) using MPI
- One of the first math software packages to do this
- Numerical software that will work on a heterogeneous platform
- In use today by IBM, HP-Convex, Fujitsu, NEC, Sun, SGI, Cray, NAG, IMSL, ...
 - > Tailor performance & provide support

23

How ScaLAPACK Works

- To use ScaLAPACK a user must:
 - Download the package and auxiliary packages (like PBLAS, BLAS, BLACS, & MPI) to the machines.
 - > If heterogeneous collection of machines, make sure proper versions available.
 - > Write a SPMD program which
 - > Sets up the logical 2-D process grid
 - > Places the data on the logical process grid
 - > Calls the library routine in a SPMD fashion
 - > Collects the solution after the library routine finishes
 - > The user must allocate the processors and decide the number of processes the application will run on
 - > The user must start the application
 - > "mpirun -np N user_app"
 - > Note: the number of processors is fixed by the user before the run
 - > Upon completion, return the processors to the pool of resources

Self Adapting Numerical Library

- Want to relieve the user of some of the tasks
- Make decisions on which machines to use based on the user's problem and the state of the system
 - Optimize for the best time to solution dynamically
 - Optimization problem involves: resources, problem size, software, ...
 - Distribute the data on the processors and collections of results
 - > Start the SPMD library routine on all the platforms
 - Check to see if the computation is proceeding as planned
 - >If not perhaps migrate application

Machine-Assisted Application Development and Adaptation

- * Communication libraries
 - >Optimize for the specifics of one's configuration.
- + Algorithm layout and implementation
 - >Look at the different ways to express implementation

Futures for Numerical Algorithms and Software on Clusters and Grids

- Numerical software will be adaptive, exploratory, and intelligent
- Determinism in numerical computing will be gone.
 - > After all, its not reasonable to ask for exactness in numerical computations.
 - Auditability of the computation, reproducibility at a cost
- Importance of floating point arithmetic will be undiminished.
 - > 16, 32, 64, 128 bits and beyond.
- * Reproducibility, fault tolerance, and auditability
- Adaptivity is a key so applications can effectively use the resources.

29

Contributors

Contributors

- ◆ Top500
 - > Erich Strohmaier, NERSC
 - > Hans Meuer, Mannheim U
 - > http://www.top500.org
- ♦ SANS-Effort
 - > Victor Eijkhout, UTK
 - > Antoine Petitet, Sun France
 - > Kenny Roche, UTK
 - > Sathish Vadhiyar, UTK
 - > Clint Whaley, UTK

For additional information see...

www.netlib.org/top500/

www.netlib.org/atlas/

icl.cs.utk.edu/grads/

www.cs.utk.edu/~dongarra/

Many opportunities within the group at Tennessee