


```
GA
                                   SCR +
              + 5C = 5CR + 1 + 5CR + 5CR + 5CR = 5CR + 35CR + 1
                     R(SRC+1)
                                             SCR2+R
       5RC +1
Entonces:
                      SCR +35CR+1
                                              5°CR2+35CR+1
 V1. 50
                V1
                       SCR2 + R
   5CR+1
                                               SCR2 + R
                + RA
                                      1+RB
                                         RA
            5CR + 35CR + 1
                              = /5c R2 + 35CR+ 1
    SC
               + RA) (5CR2+R)
   SCR+1
                                 1+RB (5CR2+R)
 5c (1+ R4)R-(52c2 R2+35CR+1)
                                SCR + SCR (RA) - SC2 R2 - 35CR -
                                (1+ RA) (SCR +1)R
  11+ RA) (5CR+1) R
  -522R2+5CR (RB-2)-1
   (1 + RA) (5CR2+R)
Fin almen te
                               1+ RB) (SCR2+R)
    = -5°CZRZ+5CR (RB-2)-1
 V2
V1
       11+ RA \ (50122+R)
                              5c2R2 + 35CR + 1
                               / RA
                  52c2R2+35CR+1
                         RA/RB = 5.
   Reemplazamos
                   CON
                                                1-522R+35CR
                SCR
                                                 52C2R2+35CR
       52C2R2+35CR
  VA
```

V2 -	1-1	1/5	5°C2R	2	3 5 C	R+	1	12 1	ASA	- 2	+ 1-	- 44	6	-	1	-	14 15	1
VA	5	1 15	2c2R	2 + 3	35C	R+	1		7	- 4	4	+	1		- A		/44	/
					1										7. 6	1		
e for	ma	m	ioni	ca:														
, /	11/	52 - 3	3/cR	+ 1	102	22	7											
V2 = (5		3/CR											į.				3.1
							9											
eem p	Para				aml	Pero		1	2 -	14,	1,	М	0		14.			
11	0			7	1000							7			1			
V2 =	1-1	15	_		+ 10	_			1 1					8				
V ₁	5	15	+ 3a	005	+ 10	26/											56	
Diag	aan	20	de	P	olos	L	,	wie	90.									
0				1	11	C						AB	-			N. I	1 - 3	
				1							0.	1 .	38	1, 4	966			
						7			179		0	2 ;	261	18	034	4		1
								T			XA	6	38	1	966	5		
		2	1		1		2								034	4		
					i													
				-														
									2			8-	0.00		A. 10.		1	- 6
Mool	ulo	: V2	(5)	5=10	= (1)	1-1	5)	(Jw		0000		A Section	-)=	(-1 5	-	0	1+(11	
,		- Electrical Control		0					2	0						0		
V2 (10)	2 =-	(106-1		_		_	. /	- 1										
V1	5	(100-	wzjz	- (30	χχω 	1	63	21			- 33			4 3				11/
Tana	th.	(,,,)	m (tp-1	w	+ 3	2	- 3	Co-	1 (v t	BP	1573	7.	53 -d			V
+ and	Ψ,		1	7	0	12		1	0		af							
\$(w)	= /t	7 /	ω	+4	3-1/0	<u>u</u>)	-	709	1/0			+ 0	9-1	1-	W	-)		N
	Lo	3	81,966	4	126	181	1 1	2 8	-50	31,70	6		200	- 2	5 0	17		The same of
							In the second		7	-	- 1 - 3		1-	23	2			
						11 -	100	-	+ +		AND THE	Staffs have been	-		10	-	-	
					70		5				4 5	20 a	+	5	7 3 3	2	- 1	

B) Normalización: 52c2R2+35CR+1 En Conces: Adoptamos: huego, muestra quencion normalizada en prumencia: $V_{2}(5) = (-1) \cdot (5^{2} - 35 + 1)$ $V_{1}(5) = (-1) \cdot (5^{2} + 35 + 1)$ La interpretación vircuital es que es la pulsa-ción de resonancia del vircuito. El Este viruetto podrio ser util si la que se busca es un rotados de pase de 180° que a su vez atènce a un 20%. a la señal de en trada Market and the second s and the second s

Ejercicio 7) Circuito A) Punto c.

• Simule la función transferencia normalizada (Python, Matlab, etc.).

Ejercicio 7) Circuito B) Punto c.

• Simule la función transferencia normalizada (Python, Matlab, etc.).

