Number Theory

vici

 $March\ 13,\ 2013$

Contents

1	基本	公理 5
	1.1	良序原则(Well Ordering Principle)
	1.2	有限归纳原则(Finite Induction)
2	整除	性和约数 5
	2.1	定义 5
	2.2	性质 5
	2.3	举例 5
3	唯一	分解定理 6
	3.1	带余除法定理 6
	3.2	唯一分解定理 6
	3.3	举例 6
4	几个	数论函数 6
	4.1	函数 $[x]$
		4.1.1 性质
		4.1.2 举例(求100!最后连续0的个数) 6
	4.2	函数 $d(n)$
		4.2.1 举例(72的因子个数)
	4.3	欧拉函数 $\varphi(n)$
		4.3.1 举例(1-1999中与2000互素的数的个数)
5	同余.	及其基本性质 7
	5.1	定义 7
	5.2	举例
	5.3	性质1
		5.3.1 举例: (将整除关系转变为同余式)
	5.4	性质2
	5.5	性质3
		5.5.1 推论
		5.5.2 结论
	5.6	性质4
		5.6.1 举例
	5.7	性质58
	5.8	性质6
	5.9	性质78
	5.10	性 盾 Q

6	公约	数、公倍数及互素 9			
	6.1	定义 9			
	6.2	性质 9			
	6.3	定理 9			
		6.3.1 推论			
	6.4	最大公约数			
		6.4.1 GCD递归定理			
		6.4.2 证明			
_		TI (PM)			
7	欧儿	里得算法 10			
8	扩展	欧几里得算法 10			
	8.1	证明			
_	13.14	An CL 1			
9		朗日定理及子群 11			
	9.1	有限群			
	0.0	9.1.1 性质			
	9.2	交换群			
	9.3	有限可交换群			
	9.4	子群			
	0.5	9.4.1 性质			
	9.5	拉格朗日定理			
	0.6	9.5.1 推论			
	9.6	$a^{(k)}$ 运算			
	9.7	举例			
10 求解模线性方程					
	10.1	定义			
	10.2	定理1			
		10.2.1 举例			
		10.2.2 证明			
	10.3	定理1 推论			
		10.3.1 证明			
	10.4	定理2			
		10.4.1 证明			
	10.5	定理3			
		10.5.1 证明			
	10.6	求解模线性方程 15			

11	中国剩余定理	15
	11.1 定义	15
	11.2 求解思路	15
	11.3 举例	15
12	欧拉定理和费马定理	16
	12.1 欧拉定理	16
	12.1.1 举例	16
	12.2 费马定理	16
13	反复平方法	16
	13.1 定义	16
	13.2 求解	16
14	素数的Eratosthenes筛法	17
15	素数判定法	17
	15.1 素数定理	17
	15.1.1 素数判定	18
16	素数扩充知识	18
	16.1 高斯素数	18
	16.1.1 举例	18
	16.2 梅森素数	18
	16.2.1 举例	18

1 基本公理

1.1 良序原则(Well Ordering Principle)

每个自然数集合中都有一个最小值。

1.2 有限归纳原则(Finite Induction)

N是自然数集合,设S为N的一个子集合。 如果S符合以下两点:

- 1. S中包含0。
- 2. 如果数字k属于S,那么k+1也属于S。

那么S = N

2 整除性和约数

2.1 定义

 $d \mid a$ 表示对某个整数k,有a = kd。 $d \mid a$ 表示对任意整数k,无a = kd。 如果 $d \mid a$ 并且 $d \geq 0$,则我们说d是a的约数。 每个整数a都可以被其平凡约数1和a整除,a的非平凡约数也称为a的因子。

2.2 性质

- 1. 0可被任何(非0)整数整除。
- 2. 若*b* | *a*, 则±*b* | ±*a*。
- 3. 若a | b, b | c, 则a | c。
- 4. 若 $a \mid a_i, i = 1, 2, ..., k$,则 $a \mid (c_1a_1 + c_2a_2 + ... + c_ka_k)$, $c_{1...k}$ 为任意整数。
- 5. 若p为素数且 $p \mid ab$,则 $p \mid a$ 或 $p \mid b$ 。

2.3 举例

20的因子有2, 4, 5, 10。

3 唯一分解定理

3.1 带余除法定理

设 $a,b \in Z, b \neq 0$,则存在唯一的整数对q和r,使a = qb + r, $0 \leq r < |b|$,r称为b除a所得的最小剩余。

3.2 唯一分解定理

任一自然数n皆可唯一表为素数之积 $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k} p_1 < p_2 < \dots < p_k$ 为素数, a_1, a_2, \dots, a_k 为自然数。

3.3 举例

 $1620 = 2^2 \cdot 3^4 \cdot 5$

4 几个数论函数

4.1 函数[x]

设x是实数,不大于x的最大整数称为x的整数部分,记为[x];x-[x]称为x的小数部分,记为{x}。

4.1.1 性质

若
$$p^a \parallel n!$$
,则 $a = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots$

4.1.2 举例(求100!最后连续0的个数)

由于100!中2的个数大于5的个数,所以100!中5的次数即为结果 $a=\left[\frac{100}{5}\right]+\left[\frac{100}{5^2}\right]+\ldots=20+4=24$

4.2 函数d(n)

正整数n的正因数个数称为**除法函数**。若n的标准分解式为 $n=p_1^{a_1}p_2^{a_2}...p_s^{a_s}$,则利用乘法原理得: $d(n)=(a_1+1)(a_2+1)...(a_n+1)$

4.2.1 举例(72的因子个数)

$$d\left(72\right) = d\left(2^{3} \cdot 3^{2}\right) = \left(3+1\right)\left(2+1\right) = 12$$

4.3 欧拉函数 $\varphi(n)$

正整数n与1,...,n-1互素的数的个数称为n的**欧拉函数**,记为 $\varphi(n)$ 。若n的标准分解式为 $n=p_1^{a_1}p_2^{a_2}...p_s^{a_s}$,则 $\varphi(n)$ 的计算公式为: $\varphi(n)=p_1^{a_1-1}p_2^{a_2-1}...p_s^{a_s-1}(p_1-1)(p_2-1)...(p_s-1)$

4.3.1 举例(1-1999中与2000互素的数的个数)

$$\varphi(2000) = \varphi(2^4 \cdot 5^3) = 2^3 \cdot 5^2(2-1)(5-1) = 800$$

5 同余及其基本性质

同余的概念是高斯(Gauss)在1800年左右给出的

5.1 定义

设m是正整数,若用m去除整数a, b, 所得余数相同,则称a与b关于模m同余,记作 $a \equiv b \pmod{m}$; 否则称a与b关于模m不同余,记作 $a \not\equiv b \pmod{m}$ 。

5.2 举例

 $34 \equiv 4 \pmod{15}$ $1000 \equiv -1 \pmod{7}$

 $34 \not\equiv 4 \pmod{8}$

5.3 性质1

 $a \equiv b \pmod{m}$ 的充要条件是 $a = b + mt, t \in \mathbb{Z}$, 也即 $m \mid a - b$

5.3.1 举例: (将整除关系转变为同余式)

 $a \equiv b \pmod{m} \leftrightarrow a - b \equiv 0 \pmod{m} \leftrightarrow m \mid a - b$ $7 \equiv 4 \pmod{3} \leftrightarrow 3 \mid (7 - 4)$

5.4 性质2

同余关系满足下列规律:

- 1. **自反律:** 对任何模m都有 $a \equiv a \pmod{m}$
- 2. 对称律: 若 $a \equiv b \pmod{m}$, 则 $b \equiv a \pmod{m}$
- 3. 传递律: 若 $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$, 则 $a \equiv c \pmod{m}$

5.5 性质3

若 $a_i \equiv b_i \pmod{m}, i = 1, 2, ..., s$,则 $a_1 + a_2 + ... + a_s \equiv b_1 + b_2 + ... + b_s \pmod{m}$

5.5.1 推论

设k是整数,n是正整数

- 2. 若 $a \equiv b \pmod{m}$, 则 $a + mk \equiv a \pmod{m}$, $ak \equiv bk \pmod{m}$, $a^n \equiv b^n \pmod{m}$

5.5.2 结论

性质3及推论表明,对于加、减、乘及乘方而言,同余式与等式的运算规律是一致的:可以移项,可以同乘一整数,也可以乘方

5.6 性质4

设f(x)是系数全为整数的多项式, 若 $a+b \equiv c \pmod{m}$, 则 $f(a) \equiv f(b) \pmod{m}$

5.6.1 举例

试求(257³³+46)²⁶被50除所得的余数

$$(257^{33} + 46)^{26} \equiv (7^{33} + 46)^{26} \equiv ((7^2)^{16} \times 7 + 46)^{26} \equiv ((-1)^{16} \times 7 + 46)^{26}$$

$$\equiv 3^{26} \equiv (3^5)^5 \times 3 \equiv (-7^5) \times 3 \equiv -(7^2)^2 \times 7 \times 3 \equiv -21 \equiv 29 \pmod{50}$$
注意到0 $\leq 29 < 50$,所以29就是所求余数

5.7 性质5

若 $ad \equiv bd \pmod{m}$, 且(d, m) = 1, 则 $a \equiv b \pmod{m}$

5.8 性质6

若 $a \equiv b \pmod{m}$, 且 $d \mid a$, $d \mid b$, $d \mid m$, 则 $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$

5.9 性质7

若 $a \equiv b \pmod{m}$,且 $m_1 \mid m$,则 $a \equiv b \pmod{m_1}$

5.10 性质8

6 公约数、公倍数及互素

6.1 定义

公约数,亦称"公因数"。如果一个整数同时是几个整数的约数,称这个整数为它们的 公约数。

公约数中最大的称为最大公约数 (Greatest Common Divisor, GCD)。

如果两个整数a与b仅有公约数1,即如果gcd(a,b)=1,则a与b称为**互质数**。

两个或两个以上的数公有的倍数叫做这几个数的**公倍数**,其中最小的一个叫做这几个数的**最小公倍数**(Least Common Multiple,LCM)。

6.2 性质

- 1. 对任意的若干个正整数,1总是它们的公约数。
- 2. 对任意整数a, b和p, 如果gcd(a,p) = 1且gcd(b,p) = 1, 则gcd(ab,p) = 1。
- 3. gcd(a, 0) = gcd(a, ka) = |a|
- 4. gcd(a, 1) = |1|
- 5. gcd(a, b) = gcd(b, a) = gcd(-a, b)
- 6. $gcd(a,b) \cdot lcm(a,b) = ab$
- 7. 两个整数的最大公约数和最小公倍数中存在分配律: gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)) lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c))

6.3 定理

如果a和b是不都为0的任意整数,则 $d = \gcd(a, b)$ 是a与b的线性组合集合{ $ax + by : x, y \in \mathbb{Z}$ },有d = ax + by。

6.3.1 推论

- 1. 对任意整数a和b,如果 $d \mid a$ 并且 $d \mid b$,则 $d \mid \gcd(a,b)$ 。
- 2. 对所有整数a和b以及任意非负整数n, $gcd(an,bn) = n \cdot gcd(a,b)$ 。
- 3. 对所有正整数n, a和b, 如果 $n \mid ab$ 并且gcd(a,n) = 1, 则 $n \mid b$ 。

6.4 最大公约数

- 1. 两数各分解质因子, 然后取出相同的项乘起来
- 2. 辗转相除法

6.4.1 GCD递归定理

对任意非负整数a和任意正整数b有 $gcd(a,b) = gcd(b,a \mod b)$

6.4.2 证明

```
1. \gcd(a,b) \mid \gcd(b, a \mod b)
设d = \gcd(a,b), \ \mathbb{M}d \mid a \mathbb{E}d \mid b
设q = \left[\frac{a}{b}\right], \ \mathbb{M}a \mod b = a - qb
由d \mid ax + by, \ \mathcal{F}d \mid (a \mod b)
所以d \mid \gcd(b, a \mod b)

2. \gcd(b, a \mod b) \mid \gcd(a, b)
设d = \gcd(b, a \mod b)
则d \mid b \mathbb{E}d \mid (a \mod b)
则d \mid b \mathbb{E}d \mid (a \mod b)
设q = \left[\frac{a}{b}\right], \ \mathbb{M}a = qb + (a \mod b)
得d \mid a
所以d \mid \gcd(b, a \mod b)
因此 \gcd(a, b) = \gcd(b, a \mod b)
```

7 欧几里得算法

欧几里德(约公元前300年古希腊著名数学家)的《几何原本》描述了下列GCD算法。

复杂度约O(log b)

```
EUCLID (a, b)
if b = 0
then return a
else return EUCLID (b, a mod b)
```

8 扩展欧几里得算法

根据 $d = \gcd(a, b) = ax + by$,那么Extended-Euclid算法将通过一对非负整数返回一个三元式(d, x, y)。

复杂度与ECULID基本相同

```
\begin{aligned} & \text{EXTENDED-EUCLID}(a, b) \\ & \text{if } b = 0 \\ & \text{then return}(a, 1, 0) \\ & (d', x', y') = \text{EXTENDED-EUCLID}(b, a \text{ mod } b) \\ & (d, x, y) = (d', y', x' - [a / b] \cdot y') \\ & \text{return}(d, x, y) \end{aligned}
```

8.1 证明

1. 若
$$b = 0$$

令 $x = 1, y = 0$, 则满足 $a = 1 \cdot a + 0 \cdot b$
2. 若 $b \neq 0$
则 $\begin{cases} d' = \gcd(b, a \mod b) \\ d' = bx' + (a \mod b) y' \end{cases}$
 $d = \gcd(a, b) = d' = \gcd(b, a \mod b)$
 $d = bx' + (a - [a/b] b) y' = a y' + b(x' - [a/b] y')$
令 $\begin{cases} x = y' \\ y = x' - [a/b] y' \end{cases}$
则满足 $d = ax + by$

9 拉格朗日定理及子群

9.1 有限群

群(S, ⊕)是一个集合S和定义在S上的二进制运算⊕。

9.1.1 性质

- 1. **封闭性:** 对所有 $a,b \in S$, 有 $a \oplus b \in S$ 。
- 2. **单位元**:存在一个元素 $e \in S$,称为群的单位元,满足对所有 $a \in S$, $e \oplus a = a \oplus e = a$ 。
- 3. 结合律: 对所有 $a,b,c \in S$,有 $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ 。
- 4. **逆元**: 对每个 $a \in S$, 存在唯一的元素 $b \in S$, 称为a的逆元, 满 足 $a \oplus b = b \oplus a = e$ 。

9.2 交换群

如果群 (S,\oplus) 满足交换律,对所有 $a,b\in S$,有 $a\oplus b=b\oplus a$,则它是一个**交换群**。

9.3 有限可交换群

定义模加法群 $(Z_n, +n)$,规模为 $|Z_n| = n$ 。 定义模乘法群 $(Z_n^*, \cdot n)$,该群元素为 Z_n 中与n互素的元素组成的集合 Z_n^* : $Z_n^* = \big\{ [a]_n \in Z_n : \gcd(a,n) = 1 \big\}$ Z_n 与 Z_n^* 都是有限可交换群。

9.4 子群

一个有限群的非空封闭子集是一个子群。

9.4.1 性质

如果 (S, \oplus) 是一个有限群,S'是S的一个任意非空子集,并满足对所有 $a, b \in S$,有 $a \oplus b \in S'$,则 (S', \oplus) 是 (S, \oplus) 的一个子群。

9.5 拉格朗日定理

如果 (S,\oplus) 是一个有限群, (S',\oplus) 是 (S,\oplus) 的一个子群,则|S'|是|S|的一个约数。

• 对一个群S的子群S', 如果 $S' \neq S$, 则子群S'称为群S的**真子**群。

9.5.1 推论

如果S.是有限群S的真子群,则 $|S'| \leq \frac{|S|}{2}$ 。

9.6 $a^{(k)}$ 运算

对 $k \ge 1$ 定义 $a^{(k)}$ 如下:

$$a^{(k)} = \underbrace{a \oplus a \oplus \dots \oplus a}_{k}$$

在群 Z_n 中,有 $a^{(k)} = ka \mod n$; 在群 Z_n^* 中,有 $a^{(k)} = a^k \mod n$ 。由a生成的子群用 $\langle a \rangle$ 或($\langle a \rangle$, \oplus)表示,其定义如下:

$$\langle a \rangle = \left\{ a^{(k)} : k \ge 1 \right\}$$

群S中a的价用ord(a)表示,定义为满足 $a^{(t)} \equiv e$ 的最小整数t。

9.7 举例

- ◆ 在群{0,2,4,6.....}中一个子群为{0,4,.....}
- 在Z₆中

$$\langle 0 \rangle = \{0\}, \ \langle 1 \rangle = \{1, 2, 3, 4, 5\}, \ \langle 2 \rangle = \{0, 2, 4\}$$

在Z*中

$$\langle 1 \rangle = \{1\}$$
 , $\langle 2 \rangle = \{1,2,4\}$, $\langle 3 \rangle = \{1,2,3,4,5,6\}$

10 求解模线性方程

10.1 定义

考虑求解下列方程的问题: $ax \equiv b \pmod{n}$ (其中a > 0, n > 0)

10.2 定理1

对任意正整数a和n,如果 $d = \gcd(a, n)$,则 在 $Z_n + \langle a \rangle = \langle d \rangle = \{0, d, 2d, ..., \left(\frac{n}{d} - 1\right)d\}$,因此有 $|\langle a \rangle| = \frac{n}{d}$ 。

10.2.1 举例

$$\langle 3 \rangle = \langle \gcd(3,5) \rangle = \langle 1 \rangle = 1^{(x)} \mod 5 (x = 0, 1, 2, 3, 4) = \{0, 1, 2, 3, 4\}$$

10.2.2 证明

1. $\langle d \rangle \subseteq \langle a \rangle$

因为ax' + ny' = d

则 $ax' \equiv d \pmod{n}$

所以 $d \in \langle a \rangle$, 同时 $(kd \mod n) \in \langle a \rangle$ 。

 $\mathbb{P}\langle d\rangle\subseteq\langle a\rangle$

2. $\langle a \rangle \subseteq \langle d \rangle$

设 $m \in \langle a \rangle$

 $m=ax \bmod n$

则有m = ax + ny

因为 $d \mid a$ 且 $d \mid n$,则有 $d \mid m$

所以 $m \in \langle d \rangle$, 进而 $\langle a \rangle \subset \langle d \rangle$

10.3 定理1 推论

- 1. 方程 $ax \equiv b \pmod{n}$ 对于未知量x有解,当且仅当 $\gcd(a, n) \mid b$ 。
- 2. 方程 $ax \equiv b \pmod{n}$ 或者有d个不同的解,其中 $d = \gcd(a, n)$;或者无解。

10.3.1 证明

1. 对于 $ax \equiv b \pmod{n}$ 若有解,则 $b \in \langle a \rangle$ 序列 $a_i \mod n$ 具有周期性,周期为 $|\langle a \rangle| = \frac{n}{d}$ 则b在 $a_i \mod n$ 中出现d次。

10.4 定理2

设 $d = \gcd(a, n)$,假定对整数x'和y',有d = ax' + ny'。如果 $d \mid b$,则 $ax_0 \equiv ax' \left\lceil \frac{b}{d} \right\rceil (\bmod n) \equiv d \left\lceil \frac{b}{d} \right\rceil (\bmod n)$ 。

10.4.1 证明

对于
$$x_0 = x'\left(\frac{b}{d}\right) \mod n$$
, $d = \gcd(a, n)$
则有 $d \mid b, d = ax' + ny'$
令 $x_0 = x'\left[\frac{b}{d}\right] \mod n$
 $ax_0 \equiv ax'\left[\frac{b}{d}\right] \mod n \equiv d\left[\frac{b}{d}\right] \mod n \equiv b \mod n$
则 x_0 为方程的一个解。

10.5 定理3

假设方程 $ax \equiv b \pmod{n}$ 有解(即有 $d \mid b, d = \gcd(a, b)$), x_0 是该方程的任意一个解,则该方程对模n恰有d个不同的解,分别为:

$$x_i = x_0 + i \cdot \left(\frac{n}{d}\right) (i = 0, 1, 2, ..., d - 1)$$

- 1. 对任意n > 1, 如果 $\gcd(a, n) = 1$, 则方程 $ax \equiv b \pmod{n}$ 有唯一解。
- 2. 对任意n > 1, 如果gcd(a, n) = 1, 则方程 $ax \equiv 1 \pmod{n}$ 有唯一解或无解。

10.5.1 证明

因为 x_0 已经是方程的一个解,由定理1推论,那么其他解都在 $\langle a \rangle$ 中,所以通过加周期后去模依次寻找即可。

10.6 求解模线性方程

下列算法可以输出该方程的所有解。输入a和n为任意正整数,b为任意整数。

```
\begin{aligned} & \text{MODULAR-LINEAR-EQUATION-SOLVER}(a,\,b,\,n) \\ & (d,\,x',\,y') = \text{EXTENDED-EUCLID}(a,\,n) \\ & \text{if } d \mid b \\ & \text{then } x0 = x' \cdot (b \mid d) \text{ mod } n \\ & \text{for } i = 0 \text{ to } d - 1 \\ & \text{do print}(x0 + i \cdot (n \mid d)) \text{ mod } n \\ & \text{else print "no solution"} \end{aligned}
```

11 中国剩余定理

11.1 定义

```
设n=n_1\cdot n_2\cdot ...\cdot n_k,其中因子n_i两两互质。有以下对应关系: a\leftrightarrow (a_1,a_2,...,a_k) 其中a\in Z_n,a_i\cdot n\in Z_{n_i},而且对i=1,2,...,k: a_i=a\bmod n_i 对Z_n中元素所执行的运算可以等价的作用于对应的k元组,即在适当的系统中独立的对每个坐标的位置执行所需的运算。 如果 \begin{cases} a\leftrightarrow (a_1,a_2,...,a_k) \\ b\leftrightarrow (b_1,b_2,...,b_k) \end{cases} 则 \begin{cases} (a+b)\bmod n\leftrightarrow ((a_1+b_1)\bmod n_1,...,(a_k+b_k)\bmod n_k) \\ (a-b)\bmod n\leftrightarrow ((a_1-b_1)\bmod n_1,...,(a_k-b_k)\bmod n_k) \end{cases} 的 (a\cdot b)\bmod n\leftrightarrow ((a_1\cdot b_1)\bmod n_1,...,(a_k\cdot b_k)\bmod n_k)
```

11.2 求解思路

```
己知a \equiv a_i \pmod{n_i}, i = 0, 1, ..., k
求得m_i = n_1 \cdot n_2 \cdot ... \cdot n_{i-1} \cdot n_{i+1} \cdot ... \cdot n_k
令b_i m_i \equiv 1 \pmod{n_i}
解模线性方程,求得b_i
令c_i = b_i m_i,则
a \equiv a_1 c_1 + a_2 c_2 + ... + a_k c_k \pmod{n_1 \cdot n_2 \cdot ... \cdot n_k}
```

11.3 举例

今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二。问物几何?

```
此题可化为同余方程组 \begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \\ \text{则进一步得} \\ \begin{cases} lcm (5,7) \cdot k \equiv 1 \pmod{3} \to 70 \equiv 1 \pmod{3} \\ lcm (3,7) \cdot k \equiv 1 \pmod{5} \to 21 \equiv 1 \pmod{5} \\ lcm (3,5) \cdot k \equiv 1 \pmod{7} \to 15 \equiv 1 \pmod{7} \\ \text{所以} 70 \cdot 2 + 21 \cdot 3 + 15 \cdot 2 \equiv x \pmod{(lcm (3,5,7))} \\ 233 \equiv x \pmod{105} \end{cases}
得到x = 23 + 105k (k \in \mathbb{Z})
```

12 欧拉定理和费马定理

12.1 欧拉定理

对于任意整数n>1, $a^{\varphi(n)}\equiv 1\,(\bmod n)$ 对所有 $a\in Z_n^*$ 都成立。

12.1.1 举例

因为 $4 \in \mathbb{Z}_9^*$,所以 $4^{\varphi(9)} \equiv 1 \pmod{9}$

12.2 费马定理

如果p是素数,则 $a^{p-1} \equiv 1 \pmod{p}$ 对所有 $a \in \mathbb{Z}_p^*$ 都成立。

• 当p为素数时,有 $\varphi(p) = p - 1$,所以费马定理是欧拉定理的特殊情况。

13 反复平方法

13.1 定义

计算 $a^b \mod n$ 的值,其中a n b是非负整数,n是正整数。

13.2 求解

• 当用二进制表示b时,采用反复平方法,可以有效地解决这个问题。

```
MODULAR-EXPONENTIATION(a, b, n)
c = 0, d = 1
let \langle b_k, b_{k-1}, ..., b_0 \rangle \text{ be the binary representation of } b
for i = k \text{ downto } 0
do c = 2c
d = (d \cdot d) \text{ mod } n
if b_i = 1
then c = c + 1
d = (d \cdot a) \text{ mod } n
return d
```

14 素数的Eratosthenes筛法

```
        2
        3
        4
        5
        6
        7
        8
        Primes:

        9
        10
        11
        12
        13
        14
        15
        16
        2, 3, 5, 7,

        17
        18
        19
        20
        21
        22
        23
        24
        11, 13, 17,

        25
        26
        27
        28
        29
        30
        31
        32
        19, 23, 29,

        33
        34
        35
        36
        37
        38
        39
        40
        31, 37, 41,

        41
        42
        43
        44
        45
        46
        47
        48
        43, 47, 53,

        49
        50
        51
        52
        53
        54
        55
        56
        59, 61

        57
        58
        59
        60
        61
        62
        63
        64
```

枚举所有整数m = 2...n

- 1. 如果加未被标记
 - (a) 将m加入素数表
 - (b) 将所有m的倍数 (小于等于n) 标记
- 2. 如果m已被标记,则m为合数

15 素数判定法

15.1 素数定理

 $\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1 \, (\pi(n))$ 为不大于x的素数个数)

15.1.1 素数判定

- 1. 试除法:将该数N用小于等于它的所有素数去试除,若均无法整除,则N为素数。
- 2. Miller-Rabin随机性素数测试方法。

```
WITNESS(a, n)  \begin{aligned} &\det \ n-1=2^t u, \text{ where } t\geq 1 \text{ and } u \text{ is odd} \\ &x_0=\text{MODULAR}-\text{EXPONENTIATION}(\text{a, u, n}) \\ &\text{for } \text{i}=1 \text{ to t} \\ &\text{do } x_i=x_{i-1}^2 \text{ mod } n \\ &\text{if } x_i=1 \text{ and } x_{i-1}\neq 1 \text{ and } x_{i-1}\neq n-1 \\ &\text{then return true} \\ &\text{if } x_{i-1}\neq 1 \\ &\text{then return true} \end{aligned}
```

16 素数扩充知识

16.1 高斯素数

高斯素数是不能表现为1、i或本身除外的两个复整数的乘积的复整数。高斯素数是把素数在复数范围内的扩展。

16.1.1 举例

- 1. (1+2i)是高斯素数
- 2. 有的数在实数范围内是素数,但在复数范围内不是素数。 例如 $13 = (3 - 2i) \cdot (3 + 2i)$

16.2 梅森素数

梅森数是指形如 2^n-1 的数,记为 M_n 。如果一个梅森数是素数,那么称它为梅森素数。

16.2.1 举例

$$M_2 = 2^2 - 1 = 3$$
, $M_3 = 2^3 - 1 = 7$

References

- [1] (美)Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest, Clifford Stein 《Interoduction To Algorithms》
- [2] (美)Ronald L.Graham, Donald E.Knuth, Oren Patashnik 《Concrete Mathematics》
- [3] 裴定一,祝跃飞《算法数论》
- [4] 李胜宏, 李明德《高中数学竞赛培优教程》