Network Parameters for

"Uncovering Load-Altering Attacks Against N 1 Secure Power Grids: A Rare-Event Sampling Approach"

Maldon Patrice Goodridge ^a, Subhash Lakshminaraya^b and Alessandro Zocca^c

^aGlobal Development Initiatives, UK ^bSchool of Engineering, University of Warwick, Coventry, UK ^cDepartment of Mathematics, Vrije Universiteit Amsterdam, NL

July 16, 2023

Contents

1	Automatic Voltage Regulation	1
_	Network Variable Parameters 2.1 IEEE 39 Network	3
3	KTAS Parameters	9

1 Automatic Voltage Regulation

This section is reproduced from the supplementary information for [1], from which the power system model is derived.

The AVR scheme we use in the present work is summarized in Figure 1. Using as input value the voltage of the generic bus i, through a series of transformations, this protocol determines a voltage affecting the Rotor's field $E_{f,i}$. The AVR comprises of a Sensor, which measures the voltage through a potential transformer, an Amplifier, which magnifies the deviation w.r.t. a reference value, and an Exciter, which finally produces the potential impacting the generator.

In the engineering literature [2], this sequence of transformations is usually expressed by means of transfer functions which describe the effect of each device in terms of its input/output Laplace transform. To avoid proliferation of notation, we indicate the Laplace transform of an observable by changing its argument label, for instance $E_i(z) = \mathcal{L}[E_i(t)](z)^{-1}$. In this way, having in mind the components in Figure 1, the Sensor, Amplifier, and Exciter are defined as

$$\frac{\nu_i^s(z)}{E_i(z)} \coloneqq \frac{K_i^s}{1+zT_i^s}, \quad \frac{\epsilon_i^a(z)}{z^{-1}V_i^r - \nu_i^s(z)} \coloneqq \frac{K_i^a}{1+zT_i^a}, \quad \text{and} \quad \frac{\nu(z)}{\epsilon_i^a(z)} \coloneqq \frac{K_i^e}{1+zT_i^e}, \tag{1}$$

As a quick reference for the Reader, we define the Laplace transform as $\mathcal{L}[f(t)](z) := \int_{-\infty}^{\infty} f(t)e^{-zt}dt$ where z is a complex variable and f(t) a time-varying function.

Figure 1: Diagram of the AVR scheme. The input voltage $E_i(t)$ is Laplace transformed and is then multiplied for the Sensor transfer function. The circle takes the difference between $E_i^s(t)$ and the reference value V^r (the z^{-1} prefactor is equal to 1 when inverse Laplace transformed, see (2b)). The result is used as the input of the Amplifier. The output value of the Exciter can be brought back to the time domain via the inverse Laplace transform. In the main text, we follow a different approach in which we inverse Laplace transform the action of each component of the diagram. The resulting input/output process is summarized in (2).

respectively, where the $K_i > 0$ are dimensionless quantities and the $T_i > 0$ are time constants. By bringing all the terms to the numerator, e.g. for the Sensor $\nu_i^s(z) + T_i^s z \nu_i^s(z) = K_i^s \nu_i(z)$, and then taking the inverse Laplace transform², we obtain the AVR scheme described in terms of a system of first-order differential equations

$$\left(\dot{\nu}_i^s(t) = \frac{1}{T_i^s} \left(K_i^s \nu_i(t) - \nu_i^s(t) \right) \tag{2a}\right)$$

$$\begin{cases} \dot{\nu}_i^s(t) = \frac{1}{T_i^s} \left(K_i^s \nu_i(t) - \nu_i^s(t) \right) \\ \dot{\epsilon}_i^a(t) = \frac{1}{T_i^a} \left(K_i^a \left(V_i^r - \nu_i^s(t) \right) - \epsilon_i^a(t) \right). \\ \dot{\nu}_i(t) = \frac{1}{T_i^e} \left(K_i^e \epsilon_i^a(t) - \nu(t) \right) \end{cases}$$
(2a)

$$\dot{\nu}_i(t) = \frac{1}{T_i^e} \left(K_i^e \epsilon_i^a(t) - \nu(t) \right) \tag{2c}$$

In practice, as the numerical solution of the power grid differential equation involves time discretisation, the output value of ν_i at time t is used for the evaluation of the voltage at the next time step, which generates a new E_i to be fed in the AVR.

The inverse Laplace transform is defined as $\mathcal{L}^{-1}[f(z)](t) := \frac{1}{2\pi i} \lim_{T \to \infty} \int_{\gamma - iT}^{\gamma + iT} f(z) e^{zt} dz$. The usual assumptions hold that is the integration is done along the vertical line γ chosen to be greater than the real part of all singularities of f(z)which is assumed to be bounded on this line.

2 Network Variable Parameters

This section details the parameter values implemented during the study.

Values

Scenario

Description

2.1 IEEE 39 Network

Sym.	Description	Scenario	values	
	Electrical Phase Angle (nodal; t = 0)	Night	$ \begin{bmatrix} 0.9827 & 0.9879 & 0.9992 & 1.0072 & 1.0039 & 1.0143 & 1.0236 & 1.0044 & 1.0238 & 0.9529 & 0.9578 & 0.9400 & 0.9423 & 0.9682 & 0.9631 & 0.9690 & 0.9849 & 0.9779 \\ 0.9827 & 0.9879 & 0.9879 & 0.9992 & 1.0072 & 1.0039 & 1.0143 & 1.0236 & 1.0044 & 1.0238 & 0.9529 & 0.9578 & 0.9400 & 0.9423 & 0.9682 & 0.9631 & 0.9690 & 0.9849 & 0.9779 \\ 0.9827 & 0.9879 & 0.9879 & 0.9892 & 1.0072 & 1.0039 & 1.0143 & 1.0236 & 1.0044 & 1.0238 & 0.9529 & 0.9578 & 0.9400 & 0.9423 & 0.9682 & 0.9631 & 0.9690 & 0.9849 & 0.9779 \\ 0.9827 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 \\ 0.9827 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 \\ 0.9827 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 \\ 0.9827 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 \\ 0.9827 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 & 0.9879 \\ 0.9827 & 0.9879 $	1
δ0	g : (: , :	_	$ \begin{array}{c} 0.9941,\ 0.9694,\ 0.9780,\ 0.9724\ 0.9643,\ 0.9858,\ 0.9966,\ 0.9608,\ 0.9617\] \\ [0.9107,\ 0.9389,\ 0.9974,\ 1.0366,\ 1.0194,\ 1.0734,\ 1.1210,\ 1.0214,\ 1.1215,\ 0.7598,\ 0.7843,\ 0.6936,\ 0.7052,\ 0.8375,\ 0.8111,\ 0.8413,\ 0.9226,\ 0.8866, \end{array} $	1.
0 -		Morning	0.9695, 0.8431, 0.8867, 0.8583, 0.8171, 0.9264, 0.9818, 0.7994, 0.8042	[
		Afternoon	$ \begin{bmatrix} 0.9294, \ 0.9513, \ 0.9975, \ 1.0291, \ 1.0156, \ 1.0581, \ 1.0959, \ 1.0173, \ 1.0965, \ 0.8094, \ 0.8289, \ 0.7569, \ 0.7661, \ 0.8711, \ 0.8502, \ 0.8743, \ 0.9387, \ 0.9102, \ 0.9759, \ 0.8757, \ 0.9103, \ 0.8877, \ 0.8550, \ 0.9419, \ 0.9859, \ 0.8409, \ 0.8447 \end{bmatrix} $	1
			$ \begin{array}{c} 0.9799, \ 0.8767, \ 0.9103, \ 0.8876, \ 0.8982, \ 0.8862, \ 0.8862, \ 0.8986, \ 0.8982, $	`
		Evening	0.7371, 0.5409, 0.6213, 0.5787, 0.5105, 0.6928, 0.7808, 0.4767, 0.4843	[1
$\dot{\delta}^0$	Rotor Angular Velocity (nodal; $t = 0$)	-	$[0,0,\ldots,0,0]\in\mathbb{R}^{27}orall au$] [
$\ddot{\delta}^{0}$	Rate of Change of Frequency (nodal; $t=0$)	-	$[0,0,\ldots,0,0,]\in\mathbb{R}^{27}orall au$] [
	Voltages (nodal; t= 0)	Night	$ \begin{bmatrix} 0.9582, 0.9753, 0.9914, 0.9927, 0.9907, 0.9785, 1.0066, 0.9832, 0.9720, 0.9877, 0.9862, 0.9722, 0.9765, 0.9787, 0.9773, 0.9797, 0.9744, 0.9770, 0.9826, 0.9755, 0.9817, 0.9752, 0.9704, 0.9722, 0.9784, 0.9754, 0.9715 \end{bmatrix} $] [
E^0		Morning	$ \begin{bmatrix} 0.9521, \ 0.9657, \ 0.9793, \ 0.9829, \ 0.9834, \ 0.9672, \ 0.9959, \ 0.9751, \ 0.9611, \ 0.9661, \ 0.9830, \ 0.9762, \ 0.9655, \ 0.9685, \ 0.9718, \ 0.9697, \ 0.9710, \ 0.9655, \ 0.9665, \ 0$	
_		Morning	$ \begin{bmatrix} 0.9698, 0.9670, 0.9736, 0.9685, 0.9650 0.9642, 0.9668, 0.9688, 0.9659 \\ [0.9550, 0.9694, 0.9840, 0.9867, 0.9862, 0.9715, 1.0000, 0.9782, 0.9647, 0.9848, 0.9800, 0.9681, 0.9716, 0.9745, 0.9726, 0.9743, 0.9689, 0.9705, \\ [0.9550, 0.9694, 0.9840, 0.9867, 0.9862, 0.9715, 1.0000, 0.9782, 0.9647, 0.9848, 0.9800, 0.9681, 0.9716, 0.9745, 0.9726, 0.9743, 0.9689, 0.9705, \\ [0.9550, 0.9694, 0.9840, 0.9867, 0.9867, 0.9862, 0.9715, 1.0000, 0.9782, 0.9647, 0.9848, 0.9800, 0.9681, 0.9716, 0.9745, 0.9726, 0.9743, 0.9689, 0.9705, \\ [0.9550, 0.9694, 0.9840, 0.9867, 0.9862, 0.9715, 1.0000, 0.9782, 0.9647, 0.9848, 0.9800, 0.9681, 0.9716, 0.9745, 0.9726, 0.9743, 0.9689, 0.9705, \\ [0.9550, 0.9694, 0.9860, 0.9867, 0.9862, 0.9715, 1.0000, 0.9782, 0.9647, 0.9848, 0.9800, 0.9681, 0.9716, 0.9745, 0.9726, 0.9743, 0.9869, 0.9705, 0.9862, 0.9715, 0.9862, 0.9715, 0.9862, $	1
		Afternoon	[0.9950, 0.9094, 0.9840, 0.9867, 0.9852, 0.9715, 1.0000, 0.9782, 0.9647, 0.9848, 0.9800, 0.9681, 0.9716, 0.9745, 0.9726, 0.9745, 0.9768, 0.9767, 0.9711, 0.9671, 0.9672, 0.9714, 0.9680]] [
		Evening	$ \begin{bmatrix} 0.9558, \ 0.9534, \ 0.9653, \ 0.9698, \ 0.9722, \ 0.9523, \ 0.9790, \ 0.9629, \ 0.9591, \ 0.9760, \ 0.9629, \ 0.9563, \ 0.9576, \ 0.9633, \ 0.9596, \ 0.9592, \ 0.9526, \ 0.9522, \end{bmatrix} $	1,
	G		0.9511, 0.9553, 0.9624, 0.9597, 0.9578 0.9556, 0.9562, 0.9602, 0.9584	Į.
	Generator Power (nodal; $t=0$)	Night Morning	$ \begin{bmatrix} 1.00, 1.908, 2.60, 2.528, 2.032, 2.60, 2.24, 2.16, 3.32, 4.00, 0, 0, \dots, 0, 0 \end{bmatrix} $ $ \begin{bmatrix} 2.5, 4.771, 6.5, 6.32, 5.08, 6.5, 5.6, 5.4, 8.3, 10.0, 0, 0, \dots, 0, 0 \end{bmatrix} $	q f
$\chi^{G,0}$		Afternoon	[2.125, 4.171, 0.3, 0.52, 5.372, 4.318, 5.525, 4.76, 4.59, 7.055, 8.5, 0, 0,, 0, 0]	
		Evening	$[3.25, 6.2023, 8.45, 8.216, 6.604, 8.45, 7.28, 7.02, 10.79, 13.0, 0, 0 \dots, 0, 0]$	<u>i</u>
	Loads (nodal; $t = 0$)	Night	$ \begin{bmatrix} [0, 0.0368, 0, 0, 0, 0, 0, 0, 0, 4.4160, 2.0000, 0.9352, 2.0880, 0.0300, 1.2800, 1.3160, 2.5120, 1.0960, 0.9900, 1.2344, 0.8960, 0.5560, 1.124, 0.8240, 1.1340, 1.2880, 0.6320 \end{bmatrix} $	1
$\chi^{L},0$, i f	·	$ \begin{array}{l} 1.1340, \ 1.2880, \ 0.0320 \\ [0, \ 0.0920, \ 0, \ 0, \ 0, \ 0, \ 0, \ 0, \ 0, \$	
X .		Morning	2.0600, 2.8350, 3.2200, 1.5800]	[]
		Afternoon	$ \begin{bmatrix} [0, 0.0782, 0, 0, 0, 0, 0, 0, 0, 0, 9.3840, 4.2500, 1.9873, 4.4370, 0.0638, 2.7200, 2.7965, 5.3380, 2.3290, 2.1038, 2.6231, 1.9040, 1.1815, 2.3885, 1.7510, 2.4097, 2.7370, 1.3430 \end{bmatrix} $	1
		Evening	[0, 0.1196, 0, 0, 0, 0, 0, 0, 0, 14.3520, 6.5000, 3.0394, 6.7860, 0.0975, 4.1600, 4.2770, 8.1640, 3.5620, 3.2175, 4.0118, 2.9120, 1.8070, 3.6530, 3.2175, 4.0118, 2.9120, 1.8070, 3.6530, 3.2175, 4.0118, 2.9120, 1.8070, 3.6530, 3.2175, 4.0118, 2.9120, 1.8070, 3.6530, 3.2175, 4.0118, 2.9120, 1.8070, 3.6530, 3.2175, 4.0118, 2.9120, 3.2175, 3.	١,
		_	2.6780, 3.6855, 4.1860, 2.0540]	1
D	Load Damping Factor	-		1
S	Transient Time constant (commonly denoted T_{d0})	-	[7.0000, 6.5600 , 5.7000 , 5.6900, 5.4000 , 7.3000 , 5.6600, 6.7000 , 4.7900 , 10.2000]	[:
$E_{f,i}$	Rotor Field Voltage	-	0.95	1
			Governor Parameters	
A	Governor Droop Response	-	2	N
\mathcal{W}	Governor Dead-band Frequency Range	-	[59.95, 60.05]	[
ms.	G FF: C		AVR Parameters	
K ^s	Sensor Time Constant Sensor Gain Constant		0.05 1	[:
T^a	Amplifier Time Constant	-	0.1	1
K^a	Amplifier Gain Constant	-	10	`
T ^e	Exciter Time Constant Exciter Gain Constant	-	1 10] [
K_e	Exciter Gain Constant	-	Protection Systems Parameters	
F^+	OFGS Threshold	_	62	Т.
T^{of}	OFGS Relay Delay	_	2	1 1
G+, G-	RoCoF Trip Threshold	_	-3. 3	
T^{ro}	RoCoF Relay Delay	-		j
F -	UFLS Threshold	-	<i>{</i> 59.5, 59, 58.5, 58, 57.5 <i>}</i>] [
T^{uf}	UFLS Relay Delay	-] [
P^{ϕ}	Line Trip Power Flow Deviation Threshold	-	510	[
T^{ϕ}	Line Trip Relay Delay	-	4	Ш
pmax	Maximum Generator Power	_	Two Area Generator Data [900, 900, 900, 900, 900, 1000, 1000, 1500, 1500]	_
H	Generator Inertia Constants	[[500, 500, 500, 500, 500, 900, 1000, 1000, 1000, 1500]	
X_d	Transient Reactance	-	4.05	i
X_d^{γ}	Sub-transient reactance	_	2.93	Πì
B^{a}	line susceptances	-	see below	i l

Table of parameters used in simulations conducted on the Two-Area Network.

		-42.1988	0	0	0	0	0	0	0	0	3.7656	0	0	0
		0	-35.5333	2.1965	0	0	0	0	0	0	0	20.6982	0	7.4273
	l	0	2.1965	-37.4811	0	0	0	0	0	0	0	16.4849	0	3.6444
		0	0	0	-45.8275	0	0	0	0	0	0	0	0	0
		0	0	0	0	-55.417	0	0	0	0	0	0	0	0
		0	0	0	0	0	-50.6771	0	0	0	0	0	0	0
		0	0	0	0	0	0	-36.7523	0	0	0	0	0	0
		0	0	0	0	0	0	0	-43.0746	0	0	0	0	0
		0	0	0	0	0	0	0	0	-63.9344	0	0	0	0
	l	3.7656	0	0	0	0	0	0	0	0	-28.7041	0	0	16.4592
		0	20.6982	16.4849	0	0	0	0	0	0	0	-168.9438	0	46.8403
		0	0	0	0	0	0	0	0	0	0	0	-215.7208	215.7598
		0	7.4273	3.6444	0	0	0	0	0	0	16.4592	46.8403	215.7598	-293.7623
	B =	0	2.3492	8.7981	0	0	0	0	0	0	0	17.6005	0	3.8895
		0	0.7184	4.1052	0	0	0	0	0	0	0	23.632	0	1.1832
		0	0	0	18.9558	0	0	0	0	0	0	0	0	0
		0	0	0	25.3661	54.9227	0	0	0	0	0	0	0	0
זכ		0	0	0	0	0	20.1418	0	0	0	0	0	0	0
	ļ	0	0	0	0	0	29.3615	36.7523	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0
		21.2592	0	0	0	0	0	0	42.024	0	5.8459	0	0	0
	l	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	62.375	0	0	0	0
		16.3457	0	0	0	0	0	0	0	0	4.6879	46.7741	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0

 \circ

	 0	0	0	0	0	21.2592	0	0	0	16.34	57	0]
	 0	0	0	0	0	0	0	0	0	0	0	0
	 0	0	0	0	0	0	0	0	0	0	0	0
	 18.9558	25.3661	0	0	0	0	0	0	0	0	0	0
	 0	54.9227	0	0	0	0	0	0	0	0	0	0
	 0	0	20.1418	29.3615	0	0	0	0	0	0	0	0
	 0	0	0	36.7523	0	0	0	0	0	0	0	0
	 0	0	0	0	0	42.024	0	0	0	0	0	0
	 0	0	0	0	0	0	0	0	0	62.375	0	0
	 0	0	0	0	0	5.8459	0	0	0	0	4.6879	0
	 0	0	0	0	0	0	0	0	0	0	46.7741	0
	 0	0	0	0	0	0	0	0	0	0	0	0
	 0	0	0	0	0	0	0	0	0	0	0	0
	 0	0	0	0	0	0	0	0	0	0	0	0
	 105.4166	0	0	0	0	0	0	0	0	0	0	0
	 -452.7209	19.6858	73.8149	0	169.0544	0	0	22.1387	0	0	0	46.6323
	 19.6858	-100.3665	0	0	0	0	0	0	0	0	0	0
y,	 73.8149	0	-123.7523	30.6077	0	0	0	0	0	0	0	0
	 0	0	30.6077	-124.0966	28.459	0	0	0	0	0	0	0
	 169.0544	0	0	28.459	-197.2989	0	0	0	0	0	0	0
	 0	0	0	0	0	-122.6283	30.6588	0	0	0	25.0386	0
	 0	0	0	0	0	30.6588	-133.5865	67.4157	20.9248	15.868	0	0
	 22.1387	0	0	0	0	0	67.4157	-113.2189	0	0	0	24.0033
	 0	0	0	0	0	0	20.9248	0	-86.071	65.6607	0	0
	 0	0	0	0	0	0	15.868	0	65.6607	-141.7435	0	0
	 0	0	0	0	0	25.0386	0	0	0	0	-166.5271	74.6771
	 46.6323	0	0	0	0	0	0	24.0033	0	0	74.6771	-145.0171

Generator	Rating (MVA)	X_d (pu)	$X_{d}^{'}$ (pu)	$T_{d0}^{'}$ (s)	Н (s)
G1	900	0.1	0.031	10.2	500
G2	900	0.295	0.0697	6.56	30.3
G3	900	0.2495	0.0531	5.7	35.8
G4	900	0.262	0.0436	5.69	28.6
G5	900	0.67	0.132	5.4	26
G6	900	0.254	0.05	7.3	34.8
G7	1000	0.295	0.049	5.66	26.4
G8	1000	0.29	0.057	6.7	24.3
G9	1500	0.2106	0.057	4.79	34.5
G10	1500	0.02	0.006	7	500

Table 2: Generator Data for the IEEE 39 network, Four Node Network: 1000 MVA base

From	To	\mathbf{R}	X	В
Bus	Bus	n (pu)	(pu)	(pu)
1 1	2	0.0035	0.0411	0.6987
1	39	0.0035 0.001	0.0411 0.025	0.0987 0.75
$\frac{1}{2}$	3	0.001	0.025 0.0151	0.75 0.2572
$\frac{2}{2}$	$\frac{3}{25}$	0.0013 0.007	0.0131 0.0086	0.2372 0.146
3	23 4	0.007	0.0080 0.0213	0.140 0.2214
3	18	0.0013 0.0011	0.0213 0.0133	0.2214 0.2138
3 4	10 5			0.2138 0.1342
		0.0008	0.0128	
4	14	0.0008	0.0129	0.1382
5	6	0.0002	0.0026	0.0434
5	8	0.0008	0.0112	0.1476
6	7	0.0006	0.0092	0.113
6	11	0.0007	0.0082	0.1389
7	8	0.0004	0.0046	0.078
8	9	0.0023	0.0363	0.3804
9	39	0.001	0.025	1.2
10	11	0.0004	0.0043	0.0729
10	13	0.0004	0.0043	0.0729
13	14	0.0009	0.0101	0.1723
14	15	0.0018	0.0217	0.366
15	16	0.0009	0.0094	0.171
16	17	0.0007	0.0089	0.1342
16	19	0.0016	0.0195	0.304
16	21	0.0008	0.0135	0.2548
16	24	0.0003	0.0059	0.068
17	18	0.0007	0.0082	0.1319
17	27	0.0013	0.0173	0.3216
21	22	0.0008	0.014	0.2565
22	23	0.0006	0.0096	0.1846
23	24	0.0022	0.035	0.361
25	26	0.0032	0.0323	0.513
26	27	0.0014	0.0147	0.2396
26	28	0.0043	0.0474	0.7802
26	29	0.0057	0.0625	1.029
28	29	0.0014	0.0151	0.249
12	11	0.0016	0.0435	0
12	13	0.0016	0.0435	0
6	31	0	0.025	0
10	32	0	0.02	0
19	33	0.0007	0.0142	0
20	34	0.0009	0.018	0
22	35	0	0.0143	0
23	36	0.0005	0.0272	0
25	37	0.0006	0.0232	0
2	30	0	0.0181	0
29	38	0.0008	0.0156	0
19	20	0.0007	0.0138	0

Table 2: Transmission Network Data for the IEEE 39 Test Network: 100 MVA, 60 Hz base. [3]

3 KTAS Parameters

The following susceptance matrices describe the reduce KTAS network before and after the line tripping. As explained in Section 2(a) of the main text, the susceptance matrix depends on the indicator function Ω which flips from 1 to 0 when a line tripping occurs. The difference occurs in line 5-6, which is the inter-connector line of the partially reduced network. So in the stationary regime we have

$$B(1) = \begin{bmatrix} -18.9278 & 7.8461 & 0 & 0 & 12.9499 & 0 \\ 7.8461 & -38.0413 & 0 & 0 & 32.5581 & 0 \\ 0 & 0 & -19.0178 & 7.8461 & 0 & 12.9499 \\ 0 & 0 & 7.8461 & -38.3713 & 0 & 32.5581 \\ 12.9499 & 32.5581 & 0 & 0 & -52.1891 & 9.0982 \\ 0 & 0 & 12.9499 & 32.5581 & 9.0982 & -50.6891 \end{bmatrix}$$

and after the line tripping

$$B(0) = \begin{bmatrix} -18.9278 & 7.8461 & 0 & 0 & 12.9499 & 0 \\ 7.8461 & -38.0413 & 0 & 0 & 32.5581 & 0 \\ 0 & 0 & -19.0178 & 7.8461 & 0 & 12.9499 \\ 0 & 0 & 7.8461 & -38.3713 & 0 & 32.5581 \\ 12.9499 & 32.5581 & 0 & 0 & -52.1891 & 0 \\ 0 & 0 & 12.9499 & 32.5581 & 0 & -50.6891 \end{bmatrix}$$

_
_
$\overline{}$

Sym.

3				
	Electrical Phase Angle (nodal; $t = 0$)	Night	[0.125, 0.0853, 0.0069, -0.0162, 0.0415, -0.0341]	
δ^0		Morning	[0.3672, 0.189, -0.0885, -0.2666, -0.0664, -0.5216]	
O		Afternoon	[0.1635, 0.0943, 0.0085, -0.0653, -0.0213, -0.1415]	
		Evening	[0.3519 , 0.1627 , -0.0797 , -0.2338 , -0.115 , -0.5204]	[rad]
$\dot{\delta}^0$	Rotor Angular Velocity (nodal; $t = 0$)	-	[0,0,0,0,0,0]	$[s^{-1}]$
$\ddot{\delta}^0$	Rate of Change of Frequency (nodal; $t=0$)	-	[0,0,0,0,0,0]	$[s^{-2}]$
E^0	Voltages (nodal; t=0)	-	230	kV
	Generator Power (nodal; $t=0$)	Night	$[\ 100\ ,\ 100\ ,\ 100\ ,\ 100\ ,\ 0\ ,\ 0\]$	
$\chi^{G,0}$		Morning	[783.5 , 783.5 , 733.5 , 733.5 , 0 , 0]	
X		Afternoon	[400,450,370,330,0,0]	
		Evening	[870,880,870,900,0,0]	[MW]
	Loads (nodal; $t=0$)	Night	[10 , 10 , 10 , 10 , 180 , 180]	
$\chi^{L,0}$		Morning	[100 , 100 , 50 , 50 , 967 , 1767]	
X		Afternoon	$[\ 150\ ,\ 150\ ,\ 100\ ,\ 100\ ,\ 500\ ,\ 550\]$	
		Evening	[150 , 150 , 200 , 100 , 1100 , 1820]	[MW]
D	Load Damping Factor	-	2	[%]
S	Transient Time constant	-	8	[s]
$E_{f,i}$	Rotor Field Voltage	-	20	[kV]
	Gove	rnor Paran	neters	
A	Governor Droop Response	-	2	$\mathrm{MW}/\Delta f$
\mathcal{W}	Governor Dead-band Frequency Range	-	[59.95, 60.05]	[Hz]
		Systems F	Parameters	
F^+	OFGS Threshold	-	62	[Hz]
T^{of}	OFGS Relay Delay	-	2	[s]
G^+, G^-	RoCoF Trip Threshold	-	-3, 3	$[Hzs^{-2}]$
T^{ro}	RoCoF Relay Delay	-	1	[s]
F^-	UFLS Threshold	-	{59.5, 59, 58.5, 58, 57.5}	[Hz]
T^{uf}	UFLS Relay Delay	-	2	[s]
P^{ϕ}	Line Trip Power Flow Deviation Threshold	-	510	[MW]
T^{ϕ}	Line Trip Relay Delay	-	4	[s]
		ea Generat		
P^{max}	Maximum Generator Power	-	900	[MW]
H	Generator Inertia Constant	-	6.5, 6.175	[s]
X_d	Transient Reactance	-	4.05	[ohms]
$X_{d}^{'}$	Sub-transient reactance	-	2.93	[ohms]
B	line susceptances		see below	[siemens]

Meaning

Scenario

Units

Description

Table 1: Table of parameters used in simulations conducted on the Two-Area Network.

Generator	Rating (MVA)	X_d (pu)	$X_{d}^{'}$ (pu)	$T_{d0}^{'}$ (s)	Н (s)
G1	900	1.8	0.3	8	6.5
G1	900	1.8	0.3	8	6.5
G1	900	1.8	0.3	8	6.175
G1	900	1.8	0.3	8	6.175

Table 3: Generator Data for the Two-Area, Four Node Network: 900 MVA, 20kV base

From	To	R	X	В
\mathbf{Bus}	\mathbf{Bus}	(pu)	(pu)	(pu)
1	5	0	0.15/9	0
2	6	0	0.15/9	0
3	11	0	0.15/9	0
4	10	0	0.15/9	0
5	6	25×0.0001	25×0.001	25×0.00175
10	11	25×0.0001	25×0.001	25×0.00175
6	7	10×0.0001	10×0.001	10×0.00175
9	10	10×0.0001	10×0.001	10×0.00175
7	8	110×0.0001	110×0.001	110×0.00175
7	8	110×0.0001	110×0.001	110×0.00175
8	9	110×0.0001	110×0.001	110×0.00175
8	9	110×0.0001	110×0.001	110×0.00175

Table 2: Transmission Network Data for the Two-Area, Four Node Network: 100 MVA, 230kV base. [4]

References

- [1] Maldon Patrice Goodridge, John Moriarty, and Andrea Pizzoferrato. A rare-event study of frequency regulation and contingency services from grid-scale batteries. *Philos. Trans. Royal Soc. A*, 379(2202):20190433, 2021.
- [2] K Eswaramma and G Surya Kalyan. An Automatic Voltage Regulator (AVR) system control using a P-I-DD controller. *International Journal of Advance Engineering and Research Development*, 4(6), 2017.
- [3] M.A. Pai. Energy Function Analysis for Power System Stability. Power Electronics and Power Systems. Springer US, 2012.
- [4] Prabha Kundur, Neal J Balu, and Mark G Lauby. *Power system stability and control*, volume 7. McGraw-hill New York, 1994.