Kriging and Radial Basis Functions

Hans Bruun Nielsen & Kristine Frisenfeldt Thuesen DTU, IMM, Scientific Computing Section

- Introduction, definitions
- Kriging
- General RBFs
- Unified approach
- Examples
- Plans for future work

Kriging and RBFs

2

Introduction

 $Y: \mathbb{R}^d \mapsto \mathbb{R}$ given by design points $\{(\underline{x}_i, \ y_i = Y(\underline{x}_i))\}_{i=1}^m$

Surrogate model: $s(\underline{x}) = \underline{\alpha}^T \underline{\phi}(\underline{\theta}, \underline{x}) + \underline{\beta}^T \underline{f}(\underline{x})$

Regression (polynomial) part: $\underline{f}(\underline{x}) = (f_1(\underline{x}), \dots, f_q(\underline{x}))^T, \quad f_j : \mathbb{R}^d \mapsto \mathbb{R}$

Correlation (radial) part: $\underline{\phi}(\underline{\theta}, \underline{x}) = (\phi_1(\underline{\theta}, \underline{x}), \dots, \phi_m(\underline{\theta}, \underline{x}))^T$

where $\phi_i(\underline{\theta},\underline{x}) = \phi(\|\Theta(\underline{x}-\underline{x}_i)\|_2), \quad \phi: \mathbb{R}_+ \mapsto \mathbb{R}$. scaling $\Theta = \operatorname{diag}(\theta_1,\ldots,\theta_d)$

Examples

Name	$\phi(r), r \ge 0$
Gaussian	e^{-r^2}
inverse multiquadric	$(r^2+1)^{-1/2}$
multiquadric	$(r^2+1)^{1/2}$
thin plate spline	$r^2 \log r$

4

 $SIAM\ OP05$

$$\Phi \underline{\alpha} + F \underline{\beta} = \underline{y}, \quad \Phi_{ij} = \phi_j(\underline{\theta}, \underline{x}_i), \quad F_{i,:} = \underline{f}(\underline{x}_i)^T$$

m equations with m+q unknowns.

Both in Kriging and general RBF approach: supply with $F^T\underline{\alpha} = \underline{0}$

$$\begin{pmatrix} \Phi & F \\ F^{\top} & 0 \end{pmatrix} \begin{pmatrix} \underline{\alpha} \\ \underline{\beta} \end{pmatrix} = \begin{pmatrix} \underline{y} \\ \underline{0} \end{pmatrix} \tag{*}$$

 $\Phi \in \mathbb{R}^{m \times m}$ is symmetric. Full rank if the \underline{x}_i are distinct.

 $F \in \mathbb{R}^{m \times q}, \ q < m$, is assumed to have rank q.

(*) has a unique solution.

Kriging and RBFs

• Kriging

$$Y(\underline{x}) \ = \ \underline{\beta}^T \underline{f}(\underline{x}) + \zeta(\underline{x}) \ , \qquad \underline{y} \ = \ F\underline{\beta} + \underline{z} \ , \ z_i = \zeta(\underline{x}_i)$$

$$\zeta(\underline{x})$$
 stochastic, $\mathbb{E}[\zeta(\underline{x})] = 0$, $\mathbb{E}[\zeta(\underline{x})^2] = \sigma^2$, $\mathbb{E}[z_i \zeta(\underline{x})] = \sigma^2 \phi_i(\underline{\theta}, \underline{x})$, $\mathbb{E}[\underline{z} \ \underline{z}^T] = \sigma^2 \Phi$

Assumptions $\phi(0) = 1$ and Φ is positive definite.

The approximation $s(\underline{x})$ is a linear combination of the y_i , $s(\underline{x}) = \gamma(\underline{x})^T y$

Minimize Ω^2 under the constraint $F^T\underline{\gamma}(\underline{x})-\underline{f}(\underline{x})=\underline{0}$

Estimated variance
$$\widetilde{\sigma}^2 = \frac{1}{m} (\underline{y} - F\underline{\beta})^T \Phi^{-1} (\underline{y} - F\underline{\beta})$$

Assume Gaussian process: $\underline{\theta}^* = \operatorname{argmin}_{\theta} \left\{ \det \Phi(\underline{\theta}) \cdot \widetilde{\sigma}^{2m}(\underline{\theta}) \right\}$

• General RBFs

Φ is not necessarily definite, but Powell¹ shows that a number of popular RBFs satisfy

$$\operatorname{sign}\left(\underline{v}^T \Phi \underline{v}\right) = (-1)^{\mu}$$

for all $\underline{v} \in \mathbb{V}_{\mu}, \ \underline{v} \neq \underline{0}$

$$\mathbb{V}_{\mu} = \{\underline{v} \in \mathbb{R}^m : \sum_{i=1}^m v_i p(\underline{x}_i) = 0$$
 for any $p \in \Pi_{\mu-1}\}$

We assume that $\{f_j\}$ comprises a basis of $\Pi_{\mu-1}$. Then $\mathbb{V}_{\mu} \subseteq \mathcal{N}(F^T)$, the nullspace of F^T . An orthonormal basis of \mathcal{N} can be found as N in the complete QR factorization of F,

$$F = \left(Q \ N\right) \begin{pmatrix} R \\ 0 \end{pmatrix} = QR$$

Name	$\phi(r), r \ge 0$	μ
Gaussian	e^{-r^2}	0
inverse multiquadric	$(r^2+1)^{-1/2}$	0
linear	r	1
multiquadric	$(r^2+1)^{1/2}$	1
thin plate spline	$r^2 \log r$	2
cubic	r^3	2

SIAM OP05

Kriging and RBFs

6

$$s(\underline{x}) \ = \ \underline{\alpha}^T \underline{\phi}(\underline{\theta}, \underline{x}) + \underline{\beta}^T \underline{f}(\underline{x}) \ . \qquad \Phi \, \underline{\alpha} + F \, \underline{\beta} \ = \ \underline{y}$$

Seek $\underline{\alpha} \in \mathbb{V}_{\mu} \subseteq \mathcal{N}(F^T)$: $\underline{\alpha} = N \underline{\alpha}_N$

$$N^T \Phi \, N \, \underline{\alpha}_N + N^T F \, \beta \; = \; N^T y \; , \qquad (-1)^\mu \, \widetilde{\Phi} \, \underline{\alpha}_N \; = \; y_N \,$$

The matrix $\widetilde{\Phi} = (-1)^{\mu} N^T \Phi N$ is symmetric and positive definite.

The regression coefficients are found from

$$R\beta = Q^T \left(y - \Phi N \underline{\alpha}_N \right)$$

M.J.D. Powell: 5 lectures on radial basis functions. Report IMM-REP-2005-03, IMM, DTU, 2005.

8

• Unified approach

$$\underline{a} \in \mathbb{R}^m$$
. $\underline{a} = Q\underline{a}_R + N\underline{a}_N$, $\underline{a}_R = Q^T\underline{a}$, $\underline{a}_N = N^T\underline{a}$

Assume that $y = F\beta + \underline{z}, \quad \underline{z} = N\underline{z}_N$

$$E[\underline{z}\ \underline{z}^T] = \sigma^2 N A N^T, \quad A = D\widetilde{\Phi}D, \quad D = \operatorname{diag}(\widetilde{\Phi}_{ii}^{-1/2})$$

A is symmetric, positive definite, and $A_{ii}=1$. Valid correlation matrix. $A=D\,C^TC\,D$

BLUE:
$$\min_{\underline{v},gb} \|\underline{v}\|_2^2$$
 s.t. $F\underline{\beta} + NDC^T\underline{v} = \underline{y}$ Solution: $C^T\underline{v} = (-1)^{\mu}D^{-1}N^T\underline{y}$

$$\underline{v} \in \mathbb{R}^{m-q}$$
 has variance $\sigma^2 I$. Estimate: $\overline{\sigma}^2 = \|\underline{v}\|_2^2/(m-q)$

$$\text{Assume Gaussian process:} \quad \underline{\theta}^* = \operatorname{argmin}_{\underline{\theta}} \left\{ \Gamma(\underline{\theta}) \equiv \det A(\underline{\theta}) \cdot \overline{\sigma}^{2(m-q)}(\underline{\theta}) \right\}$$

 $Kriging\ and\ RBFs$

Theorem: For $\phi(r) \in \{r, r^3, r^2 \log r\}, \ \omega \in \mathbb{R}_+$:

$$s(\omega \underline{\theta}, \underline{x}) = s(\underline{\theta}, \underline{x}), \qquad \Gamma(\omega \underline{\theta}) = \Gamma(\underline{\theta})$$

Remarks:

"Scalar" θ has no effect.

"Full" $\underline{\theta}$: Finding $\underline{\theta}^*$ reduces to a problem in \mathbb{R}^{d-1}_+ instead of \mathbb{R}^d_+

• Examples

$$Y(\underline{x}) = \prod_{k=1}^{d} e^{kx_k} \cos(2k x_k)$$

Educated guess: $\underline{\theta}^* = (1, 2, \dots, d)^T$

Test regions \mathcal{T} of sizes 2^2 , 2^3 , 0.5^4

Successively insert new design point at

$$\mathrm{argmax}_{\underline{x} \in \mathcal{T}} |s(\underline{x}) - Y(\underline{x})|$$

Kriging and RBFs

11

Data: First 25 points from Gaussian example.

Use thin plate spline. $\underline{\theta}^* = (1, \theta_2^*)^T$

$$\underline{\theta}^* = (1, 2)^T$$
 (as expected)

DTU SIAM OP05

Kriging and RBFs

12

MSE: under progress.

Assume $\phi(0) \in \{0, 1\}$.

$$\Omega^{2}(\underline{x}) = (-1)^{\mu} \sigma^{2} \left\{ \phi(0) + \underline{\gamma}(\underline{x})^{T} \left[\underline{\Phi} \underline{\gamma}(\underline{x}) - 2\underline{\phi}(\underline{\theta}, \underline{x}) \right] \right\}$$
 (?)

• Plans for future work

- Verifying (improving?) the expression for $\Omega^2(\underline{x})$
- \bullet Large scale: can explicit computation of N be avoided ?
- \bullet Update the Matlab DACE package 2 to allow for general RBFs

See http://www2.imm.dtu.dk/~hbn/dace/