6. Quantum Algorithms for Applications

Quantum Computing

Finding the period of a periodic function

FT: from times to frequencies \Longrightarrow Determine the period of a periodic function f(x)!

Classical computer: we need to evaluate f(x) many times, until we find two identical values

Quantum computer:

$$\frac{1}{\sqrt{N}} \sum_{a=0}^{N-1} |a\rangle \otimes |0\rangle \rightarrow |\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{a=0}^{N-1} |a\rangle \otimes |f(a)\rangle$$
 of $f(a)$, correlated with the inputs a . Hence, the information on the period is present in such a

This register encodes all the value on the period is present in such a superposition state.

Measure the second register and find $f(a_0)$, i.e.

$$|\mathbb{I} \otimes f(a_0)\rangle\langle \mathbb{I} \otimes f(a_0)|\psi_0\rangle = [|a_0\rangle + |a_0 + T\rangle + |a_0 + 2T\rangle + \cdots] \otimes |f(a_0)\rangle$$

The first register is therefore projected onto the state $|\psi\rangle = \sqrt{\frac{T}{N}} \sum_{m=0}^{\frac{N}{T}-1} |a_0 + mT\rangle$ $0 \le a_0 \le T - 1$

6. Applications

$$0 \le a_0 \le T - 1$$

where
$$b = lN/T$$

$$U_{QFT} |\psi\rangle = \sqrt{\frac{T}{N}} \sum_{m=0}^{N-1} \frac{1}{\sqrt{N}} \sum_{b=0}^{N-1} e^{i2\pi(a_0+mT)b/N} |b\rangle = \frac{1}{\sqrt{T}} \sum_{l=0}^{T-1} e^{i2\pi a_0 l/T} |lN/T\rangle$$

Finding the period of a periodic function

$$U_{QFT}|\psi\rangle = \sqrt{\frac{T}{N}} \sum_{m=0}^{N-1} \frac{1}{\sqrt{N}} \sum_{b=0}^{N-1} e^{i2\pi(a_0 + mT)b/N} |b\rangle = \frac{1}{\sqrt{T}} \sum_{l=0}^{T-1} e^{i2\pi a_0 l/T} |lN/T\rangle$$

If we measure the first register, we get one of the values

$$b = \frac{lN}{T} \qquad l = 0, \dots, T - 1$$

If l and T are relatively prime, the simplified fraction gives the value of T

$$\frac{b}{N} = \frac{l}{T}$$

What happens if we use the QFT to find the period of a periodic function in which a value of f appears twice in a single period?

Shor's algorithm

Problem: finding prime factors of a given number N

We select a random integer y < N relatively prime to N. (If not, we have already found a factor of N). We then define

$$f(a) = y^a \bmod N$$

Note that f(0) = 1. We seek the smallest subsequent T such that f(T) = 1:

$$f(T) = y^T \bmod N = 1$$

6. Applications

T is the period of f. Having T, with some algebra we determine a factor of N:

$$(y^{T}-1) \mod N = 0$$
 Ex: $2^{0} \mod 15 = 1$ $T = 4$ $(y^{T/2}+1)(y^{T/2}-1) \mod N = 0$ $2^{1} \mod 15 = 2$ $T = 4$ $2^{2} \mod 15 = 4$ $y^{T/2}+1 = 5$ $y^{T/2}-1 = 3$ $y^{T/2}-1 = 3$ $y^{T/2}-1 = 3$

If T is not even, we must try again with a different value of y

Shor's algorithm: quantum advantage

Best known classical algorithm for factoring a large n-bit number N is **super-polynomial** in n(i.e. not bounded by any polynomial)

The hard step is the FT, which can be performed in a polynomial (rather than exponential) time on a quantum computer.

Hence, factoring using a quantum processor can also be done in a polynomial time.

6. Applications

Shor's algorithm: implementation

Use **quantum phase estimation** on the unitary operator

$$U|y\rangle = |ay \mod N\rangle$$

Repeated applications of
$$U$$
 (each time we multiply by $a \mod N$

$$U|1\rangle = |3\rangle$$
$$U^2|1\rangle = |9\rangle$$

$$a = 3, N = 14$$

$$T=6$$

 $U^3|1\rangle = |13\rangle$ (each time we multiply by $a \mod N$) $U^4|1\rangle = |11\rangle$

$$\begin{array}{c} U^{1}|1\rangle = |11\rangle \\ U^{5}|1\rangle = |5\rangle \end{array}$$

$$U^6|1\rangle = |1\rangle$$

$$|\xi_0\rangle = \frac{1}{\sqrt{6}}[|1\rangle + |3\rangle + |9\rangle + |13\rangle + |11\rangle + |5\rangle$$

$$|\xi_0\rangle = \frac{1}{\sqrt{6}}[|1\rangle + |3\rangle + |9\rangle + |13\rangle + |11\rangle + |5\rangle]$$

$$U|\xi_0\rangle = \frac{1}{\sqrt{6}}[|3\rangle + |9\rangle + |13\rangle + |11\rangle + |5\rangle + |1\rangle] = |\xi_0\rangle$$

A superposition of the states in this cycle is an eigenstate of U with eigenvalue 1

$$|\xi_0\rangle = \frac{1}{\sqrt{T}} \sum_{k=0}^{T-1} |a^k \bmod N\rangle$$

$$|\xi_1\rangle = \frac{1}{\sqrt{T}} \sum_{k=0}^{T-1} e^{-\frac{2\pi i k}{T}} |a^k \bmod N\rangle \qquad |\xi_1\rangle = \frac{1}{\sqrt{6}} \left[|1\rangle + e^{-\frac{2\pi i}{6}} |3\rangle + e^{-\frac{4\pi i}{6}} |9\rangle + e^{-\frac{6\pi i}{6}} |13\rangle + e^{-\frac{8\pi i}{6}} |11\rangle + e^{-\frac{10\pi i}{6}} |5\rangle \right]$$

$$U|\xi_{1}\rangle = e^{\frac{2\pi i}{T}}|\xi_{1}\rangle$$

$$U|\xi_{1}\rangle = e^{\frac{2\pi i}{T}}|\xi_{1}\rangle$$

$$U|\xi_{1}\rangle = e^{\frac{2\pi i}{6}}|\xi_{1}\rangle$$

Shor's algorithm: implementation

$$|\xi_{S}\rangle = \frac{1}{\sqrt{T}} \sum_{k=0}^{T-1} e^{-\frac{2\pi i s k}{T}} |a^{k} \bmod N\rangle \qquad U|\xi_{S}\rangle = e^{\frac{2\pi i s}{T}} |\xi_{S}\rangle$$

$$U|\xi_{S}\rangle = e^{\frac{2\pi is}{T}}|\xi_{S}\rangle$$

We thus get a unique eigenstate for each ingeter $s \in [0, T-1]$

$$\frac{1}{\sqrt{T}} \sum_{s=0}^{T-1} |\xi_s\rangle = |1\rangle$$

 $\frac{1}{\sqrt{T}}\sum_{s=0}^{\infty}|\xi_{s}\rangle=|1\rangle$ The computational basis state $|1\rangle$ is a superposition of these eigenstates.

Hence by **QPE** we will measure a phase s/T for a random integer $s \in [0, T-1]$

$$\frac{1}{\sqrt{T}}[|2^n 1/T\rangle + |2^n 2/T\rangle + \dots + |2^n (T-1)/T\rangle]$$

Solving linear systems (HHL)

PROBLEM: given

$$A \in \mathbb{C}^{N \times N}$$
 $\vec{b} \in \mathbb{C}^N$

$$\vec{b} \in \mathbb{C}^N$$

find $\vec{x} \in \mathbb{C}^N$

$$A\vec{x} = \vec{b}$$

The system is s-sparse if A has at most s non-zero entries per rows or column.

On a classical computer we can solve an s-sparse system of size N in $O(Nsk \log(1/\epsilon))$ time by the conjugate gradient method, being ϵ the error of the approximation and k the condition number of the system.

HHL [A. W. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009)] algorithm estimates the solution in $O(\log(N)s^2k^2/\epsilon)$ time

- **Exponential advantage**
- We do not find the full solution, but only approximate functions of the solution vector
- We assume A Hermitian and efficient oracles for loading the data

Quantum Computing

Map to quantum states

$$\vec{x} \rightarrow |x\rangle$$

$$\vec{b} \rightarrow |b\rangle$$

 $\vec{x} \rightarrow |x\rangle$ $\vec{b} \rightarrow |b\rangle$ \vec{x}, \vec{b} must be normalized

$$A|x\rangle = |b\rangle$$

$$A = \sum_{j=0}^{N-1} \lambda_j |u_j\rangle\langle u_j| \qquad \lambda_j \in \mathbb{R}$$

Spectral decomposition

$$A^{-1} = \sum_{j=0}^{N-1} \lambda_j^{-1} |u_j\rangle\langle u_j| \qquad \qquad |b\rangle = \sum_{j=0}^{N-1} b_j |u_j\rangle \qquad b_j \in \mathbb{C} \qquad \text{Representation of } |b\rangle$$
 on A eigenbasis.

$$|\dot{b}\rangle = \sum_{j=0}^{N-1} b_j |u_j\rangle$$

$$b_j \in \mathbb{C}$$

$$|x\rangle = A^{-1}|b\rangle = \sum_{j=0}^{N-1} \lambda_j^{-1} b_j |u_j\rangle$$
 Implicit normalisation

HHL algorithm

3 registers: $\begin{cases} n_l \text{: Binary representation of the eigenvalues of } A \\ n_b \text{: Vector solution. Hereafter } N = 2^{n_b}. \end{cases}$ $n_a \text{: Ancilla qubit}$

Load the data $|b\rangle \in \mathbb{C}^{\mathbb{N}} |0\rangle_{n_h} \to |b\rangle_{n_h}$

2. Apply
$$QPE$$
 to $U = e^{-iAt} = \sum_{j=0}^{N-1} e^{-i\lambda_j t} |u_j\rangle\langle u_j|$

Normalisation constant

3. Add an ancilla qubit and apply a rotation conditioned on
$$|\lambda_j\rangle \Longrightarrow \sum_{j=0}^{N-1} b_j |\lambda_j\rangle_{n_l} |u_j\rangle_{n_b} \left(\sqrt{1-\frac{c^2}{\lambda_j^2}} |0\rangle + \frac{c}{\lambda_j} |1\rangle\right)$$

Apply QPE^{\dagger} . Neglecting possible errors in the QPE

$$\sum_{j=0}^{N-1} b_j |0\rangle_{n_l} |u_j\rangle_{n_b} \left(\sqrt{1 - \frac{c^2}{\lambda_j^2}} |0\rangle + \frac{c}{\lambda_j} |1\rangle \right)$$

 $\sum_{j=0} b_j |\lambda_j\rangle_{n_l} |u_j\rangle_{n_b}$

 $\sum rac{b_j}{\lambda_j} |0
angle_{n_l} |u_j
angle_{n_b}$ Apart from a Measure ancilla. If we find $|1\rangle$ normalization

6. Applications

which corresponds (apart from a factor) to the solution.

Quantum Computing

QPE within HHL

$$QPE(U, |0\rangle_n, |\psi\rangle_m) = \left|\frac{\tilde{\theta}}{\rho}\right\rangle_n |\psi\rangle_m$$

$$U|\psi\rangle_m = e^{i2\pi\theta} |\psi\rangle_m$$

Binary approximation to $2^n\theta$

Within HHL

$$U = e^{iAt} = \sum_{j=0}^{N-1} e^{i\lambda_j t} |u_j\rangle\langle u_j|$$

6. Applications

$$QPE(e^{iAt}, |0\rangle_{n_l}, |u_j\rangle_{n_b}) = |\widetilde{\lambda}_j\rangle_{n_l} |u_j\rangle_{n_b}$$

 $\widetilde{\lambda_j}$ is a n_l -bit binary approximation to $2^{n_l} \frac{\lambda_j t}{2\pi}$

If λ_i can be represented exactly with n_l bits

$$QPE\left(e^{iA2\pi}, \sum_{j=0}^{N-1} b_j |0\rangle_{n_l} |u_j\rangle_{n_b}\right) = \sum_{j=0}^{N-1} b_j |\lambda_j\rangle_{n_l} |u_j\rangle_{n_b}$$

Otherwise we obtain an approximation

Example: HHL on 4 qubits

$$A = \begin{pmatrix} 1 & -1/3 \\ -1/3 & 1 \end{pmatrix} \qquad |b\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|b\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 $n_b = 1$ to represent $|b\rangle$ and then the solution $n_l = 2$ qubits to store the eigenvalues of A $n_a = 1$ to store if the conditional rotation (and hence the algorithm) was successful

QPE gives a binary approximation (on an n_l -bit string) to $2^{n_l} \frac{\lambda_j t}{2\pi}$. Hence, if we set $t = 2\pi \frac{3}{8}$ we get

$$\lambda_1 = \frac{2}{3} \qquad \lambda_2 = \frac{4}{3}$$

$$\frac{\lambda_1 t}{2\pi} = \frac{1}{4}$$
$$|01\rangle_{n_l}$$

$$\frac{\lambda_2 t}{2\pi} = \frac{1}{2}$$
$$|10\rangle_{n_l}$$

 $\frac{\lambda_1 t}{2\pi} = \frac{1}{4}$ Rescaled eigenvalues. We choose this value of t to simplify the $|01\rangle_{n_l}$ problem and get the exact result Rescaled eigenvalues. We choose from *QPE*.

Eigenvectors of
$$A$$
: $|u_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $|u_2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$|b\rangle = |0\rangle = \frac{1}{\sqrt{2}}(|u_1\rangle + |u_2\rangle)$$

Note that we do not need to know eigenvalues and eigenvectors $[\mathcal{O}(N)]$ problem

Initial state

Example: HHL on 4 qubits
$$|\psi\rangle = |0\rangle_{n_l}|0\rangle_{n_b}|0\rangle_a = |0\rangle_{n_l}\frac{1}{\sqrt{2}}(|u_1\rangle_{n_b} + |u_2\rangle_{n_b})|0\rangle_a$$

$$QPE \downarrow$$

$$\frac{1}{\sqrt{2}}(|01\rangle_{n_l}|u_1\rangle_{n_b} + |10\rangle_{n_l}|u_2\rangle_{n_b})|0\rangle_a$$

Conditioned rotation of the ancilla (c = 3/8 to compensate rescaling of the eigenvalues)

$$\frac{1}{\sqrt{2}}|01\rangle_{n_{l}}|u_{1}\rangle_{n_{b}}\left(\sqrt{1-\frac{(3/8)^{2}}{(1/4)^{2}}}|0\rangle_{a}+\frac{(3/8)}{(1/4)}|1\rangle_{a}\right)+\frac{1}{\sqrt{2}}|10\rangle_{n_{l}}|u_{2}\rangle_{n_{b}}\left(\sqrt{1-\frac{(3/8)^{2}}{(1/2)^{2}}}|0\rangle_{a}+\frac{(3/8)}{(1/2)}|1\rangle_{a}\right)$$

$$\frac{1}{\sqrt{2}}|00\rangle_{n_{l}}|u_{1}\rangle_{n_{b}}\left(\sqrt{1-\frac{9}{4}}|0\rangle_{a}+\frac{3}{2}|1\rangle_{a}\right)+\frac{1}{\sqrt{2}}|00\rangle_{n_{l}}|u_{2}\rangle_{n_{b}}\left(\sqrt{1-\frac{9}{16}}|0\rangle_{a}+\frac{3}{4}|1\rangle_{a}\right)$$
Project onto $|1\rangle_{a}$

6. Applications

$$\propto |00\rangle_{n_l} \left(2|u_1\rangle_{n_h} + |u_2\rangle_{n_h}\right) |1\rangle_a = |00\rangle_{n_l} \left(3|0\rangle_{n_h} + |1\rangle_{n_h}\right) |1\rangle_a$$

Which is the correct solution

Hybrid algorithms: VQE

Findind the minimum or maximum eigenvalue is important in many problems: e.g. determine the results of internet search engines, designing new materials and drugs, calculating physical properties.

This problem is very hard for a classical computer.

QPE: exponential speed-up, but to estimate the eigenvalue with precision ϵ it requires $\mathcal{O}(1/\epsilon)$ noiseless operations, during which the QC must remain **coherent**.

The hybrid algorithm Variational Quantum Eigensolver (VQE) provides an interesting alternative, offering an exponential speedup in evaluating the expectation value of a given Hamiltonian, compared to classical exact diagonalization.

The algorithm is hybrid because it combines a quantum and a classical part. This reduces the coherence requirements and allows us to implement it efficiently on NISQs.

6. Applications

Variational theorem

We consider a Hamiltonian H and its spectral decomposition:

$$H = \sum_{k} E_{k} |\phi_{k}\rangle\langle\phi_{k}|$$

The expectation value of H on an arbitrary state $|\psi\rangle$ is given by $\langle H\rangle_{\psi}=\langle \psi|H|\psi\rangle$

Which can be re-written as

$$\langle H \rangle_{\psi} = \langle \psi | H | \psi \rangle = \sum_{k} E_{k} \langle \psi | \phi_{k} \rangle \langle \phi_{k} | \psi \rangle = \sum_{k} E_{k} |\langle \phi_{k} | \psi \rangle|^{2}$$

Hence, the expectation value of H on a given state $|\psi\rangle$ is a linear combination of its eigenvalues with **POSITIVE** weights.

$$E_{min} \le \langle H \rangle_{\psi} = \sum_{k} E_{k} |\langle \phi_{k} | \psi \rangle|^{2}$$

We can use this result to obtain an **approximation** of the **ground state** of a given Hamiltonian

And this value is minimized by $|\psi_{min}\rangle$ such that $H|\psi_{min}\rangle=E_{min}|\psi_{min}\rangle$

QUANTUM HARDWARE

CLASSICAL

Variational Quantum Eigensolver

Generate a variational ansatz depending on $|\psi(\{\theta_k\})\rangle$ a set of parameters

- Evaluate the expectation value of the Hamiltonian as a linear combination of Pauli products (local measurements)
- Combine measurement results and optimize using a classical algorithm to explore the $E(\{\theta_k\})$ energy surface

 θ_1

Repeat until convergence (energy variation below a threshold)

$$E(\{\theta_k\}) = \frac{\langle \psi(\{\theta_k\}) | H | \psi(\{\theta_k\}) \rangle}{\langle \psi(\{\theta_k\}) | \psi(\{\theta_k\}) \rangle}$$
$$= \sum_{j} \frac{\langle \psi(\{\theta_k\}) | H_j | \psi(\{\theta_k\}) \rangle}{\langle \psi(\{\theta_k\}) | \psi(\{\theta_k\}) \rangle}$$

Any hermitian Hamiltonian can be expressed as a combination of tensor products of Paulis.

Since the expectation value is linear, we can evaluate all terms separately, these by local measurements on each qubit performed in parallel.

Variational Quantum Eigensolver

6. Applications

A. Peruzzo et al., Nature Commun. 5, 4213 (2014)

$$H = H_1 + H_2 + \cdots + H_N \Rightarrow \langle H \rangle = \langle H_1 \rangle + \langle H_2 \rangle + \cdots \langle H_N \rangle$$

Preparation of the variational ansatz

Uses layers of rotations (depending on some parameters) and entangling gates to generate the variational ansatz

Generate ansatz $|\psi(\{\theta_k\})\rangle$

A. Kandala et al., Nature **242**, 549 (2017)

Example: VQE on a spin dimer

Spin systems are an ideal test-bed for a quantum hardware

$$H = J_x X_1 X_2 + J_y Y_1 Y_2 + J_z Z_1 Z_2 + b(Z_1 + Z_2)$$

The Hamiltonian (and hence its expectation value) is already a sum of products of Paulis

$$\langle \psi | H | \psi \rangle$$

$$= J_x \langle \psi | X_1 X_2 | \psi \rangle + J_y \langle \psi | Y_1 Y_2 | \psi \rangle + J_z \langle \psi | Z_1 Z_2 | \psi \rangle$$

$$+ b \langle \psi | Z_1 | \psi \rangle + b \langle \psi | Z_2 | \psi \rangle$$

In this simple example we can compare the solution by exact diagonalization with that found using the VQE algorithm and calculate the final **fidelity** (i.e. 'closeness' of two states)

$$\mathcal{F} = \left| \left\langle \psi_0 \middle| \psi(\{\tilde{\boldsymbol{\theta}}_{\boldsymbol{k}}\}) \right\rangle \right|$$

We can also compute some **observables** (e.g. magnetization) on the **final ground state**

$$\langle \psi(\{\tilde{\theta}_k\})|M_z|\psi(\{\tilde{\theta}_k\})\rangle = \langle \psi(\{\tilde{\theta}_k\})|(Z_1 + Z_2)|\psi(\{\tilde{\theta}_k\})\rangle/2$$

Example: VQE on a spin dimer

```
\langle \psi(\{\tilde{\theta}_k\})|M_z|\psi(\{\tilde{\theta}_k\})\rangle = \langle \psi(\{\tilde{\theta}_k\})|(Z_1 + Z_2)|\psi(\{\tilde{\theta}_k\})\rangle/2
  |\psi(\{\tilde{\theta}_k\})\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle
 \langle \psi(\{\tilde{\theta}_k\})|(Z_1 + Z_2)|\psi(\{\tilde{\theta}_k\})\rangle = \langle \psi(\{\tilde{\theta}_k\})|Z_1|\psi(\{\tilde{\theta}_k\})\rangle + \langle \psi(\{\tilde{\theta}_k\})|Z_2|\psi(\{\tilde{\theta}_k\})\rangle
 = |\alpha_{00}|^2 \langle 00|Z_1|00\rangle + |\alpha_{01}|^2 \langle 01|Z_1|01\rangle + |\alpha_{10}|^2 \langle 10|Z_1|10\rangle + |\alpha_{11}|^2 \langle 11|Z_1|11\rangle
 + |\alpha_{00}|^2 \langle 00|Z_2|00 \rangle + |\alpha_{01}|^2 \langle 01|Z_2|01 \rangle + |\alpha_{10}|^2 \langle 10|Z_2|10 \rangle + |\alpha_{11}|^2 \langle 11|Z_2|11 \rangle
 = |\alpha_{00}|^2 \langle 0|Z_1|0\rangle + |\alpha_{01}|^2 \langle 0|Z_1|0\rangle + |\alpha_{10}|^2 \langle 1|Z_1|1\rangle + |\alpha_{11}|^2 \langle 1|Z_1|1\rangle
 + |\alpha_{00}|^2 \langle 0|Z_2|0 \rangle + |\alpha_{01}|^2 \langle 1|Z_2|1 \rangle + |\alpha_{10}|^2 \langle 0|Z_2|0 \rangle + |\alpha_{11}|^2 \langle 1|Z_2|1 \rangle
 = |\alpha_{00}|^2 + |\alpha_{01}|^2 - |\alpha_{10}|^2 - |\alpha_{11}|^2 + |\alpha_{00}|^2 - |\alpha_{01}|^2 + |\alpha_{10}|^2 - |\alpha_{11}|^2
 =2(|\alpha_{00}|^2-|\alpha_{11}|^2)
```


Example: spin dimer

If $J_x = J_y = J_z = J$ (isotropic exchange interaction) the solution is analytic, but it requires a bit of Quantum Mechanics.

We can rewrite $H = H_1 + H_2$, with

$$H_1 = J(X_1X_2 + Y_1Y_2 + Z_1Z_2) = 2J \ 2\vec{s}_1 \cdot \vec{s}_2 = 2J(S^2 - s_1^2 - s_2^2)$$

$$H_2 = b(Z_1 + Z_2) = 2b \ S_Z$$

$$[H_1, H_2] = 0 S^2 |S, M\rangle = S(S+1)|S, M\rangle$$
$$S_Z |S, M\rangle = M|S, M\rangle$$

$$H_1|S,M\rangle$$

= $2J[S(S+1) - s_1(s_1+1) - s_2(s_2+1)]|S,M\rangle$
= $2J[S(S+1) - 3/2]|S,M\rangle$

$$(H_1+H_2)|S,M\rangle = [2bM + 2JS(S+1) - 3J]|S,M\rangle$$

$$\vec{S} = \vec{s}_1 + \vec{s}_2$$

 $s_1 = s_2 = 1/2$
 $S = |s_1 - s_2|$,
..., $s_1 + s_2$
 $M = -S$, ..., S

$$H_2|S,M\rangle = 2bM|S,M\rangle$$

$$\begin{vmatrix} |S = 1, M = 1 \rangle & J + 2b & S = 1 \\ |S = 1, M = 0 \rangle & J & \text{split by } b \\ |S = 1, M = -1 \rangle & J - 2b & \text{Two multiplets separated by } 4 \end{vmatrix}$$

Quantum Simulation

S. Lloyd, Science **273**, 1073 (1996)

F. Tacchino et al., https://arxiv.org/pdf/1907.03505.pdf Adv. Quant. Technol. 1900052 (2019)

Optimizing the digitalization

In the **NISQ** (noisy-intermediate scale quantum computing) era each operation is error-prone

By increasing the circuit depth we increase the error probability.

Trade-off

Targeted error mitigation strategies

N Trotter steps

Too many noisy gates

Coarse discretization

Good simulation

Simulator fails

Quantum Simulation: Hadamard test

Compute observables and/or correlation functions using an ancilla for the Hadamard test:

$$P_0 - P_1 = \operatorname{Re}\langle U \rangle_{\psi}$$

Check this identity

R. Somma et al., Phys. Rev A 65, 042323 (2002).

Quantum Simulation: correlation functions

It is often useful in Physics to compute dynamical correlation functions, i.e.

$$\langle \psi | A(t)B(0) | \psi \rangle = \langle \psi | T^{\dagger}ATB | \psi \rangle$$

As before, with $U^{\dagger} = T^{\dagger}A$ and V = TB

$$T = e^{-i\mathcal{H}t}$$

$$P_0 - P_1 = \text{Re}\langle A(t)B\rangle_{\psi}$$

R. Somma et al., Phys. Rev A 65, 042323 (2002).

A. Chiesa et al., Nature Phys. 15, 455 (2019).

Quantum Approximate Optimization

Goal: minimize or maximize a function C(x) subject to $x \in S$

Cost, distance, length of a trip, weight, processing time, energy consumption, number of objects Profit, yield, efficiency, utility, capacity, number of results

Binary combinatorial problems

$$C(x) = \sum_{(Q,\bar{Q})\subset[n]} w_{(Q,\bar{Q})} \prod_{i\in Q} x_i \prod_{j\in\bar{Q}} (1-x_j)$$

n bit strings $x \in \{0,1\}^n$

$$x_i \in \{0,1\} \qquad \qquad w_{(Q,\bar{Q})} \in \mathbb{R}$$

Map to diagonal Hamiltonian in the computational basis
$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle\langle x| \quad |x\rangle \in \mathbb{C}^{2^n}$$

If C(x) only has at most weight k terms (terms with at most k bits), this diagonal Hamiltonian is the sum of weight k Z operators.

Quantum Approximate Optimization

$$H = \sum_{(Q,\overline{Q}) \subset [n]} w_{(Q,\overline{Q})} \frac{1}{2^{|Q| + |\overline{Q}|}} \prod_{i \in Q} (1 - Z_i) \prod_{j \in \overline{Q}} (1 - Z_j)$$

$$H = \sum_{k=0}^{m} C_k$$

We assume only a m (polynomial in n) w are non-zero

$$B = \sum_{i=1}^{n} X_{i} \qquad \left| \psi_{p} \left(\vec{\gamma}, \vec{\beta} \right) \right\rangle = e^{-i\beta_{p}B} e^{-i\gamma_{p}H} \cdots e^{-i\beta_{1}B} e^{-i\gamma_{1}H} |+\rangle^{n}$$

Ansatz obtained by combining p alternating evolutions of H and B

$$F_{p}\left(\vec{\gamma},\vec{\beta}\right) = \left\langle \psi_{p}\left(\vec{\gamma},\vec{\beta}\right) \middle| H \middle| \psi_{p}\left(\vec{\gamma},\vec{\beta}\right) \right\rangle = \sum_{k} \left\langle \psi_{p}\left(\vec{\gamma},\vec{\beta}\right) \middle| C_{k} \middle| \psi_{p}\left(\vec{\gamma},\vec{\beta}\right) \right\rangle \qquad \text{To be minimized,}$$
 as in VQE

6. Applications

E. Farhi, J. Goldstone, and S. Gutmann, <u>arXiv:1411.4028</u> (2014)

Quantum Image Processing

Various applications:

- Visual recognition
- Video analysis
- Optical character recognition (OCR)
- Movement detection

We focus on:

- Image encoding
- Edge detection

- Efficiency decreases by:
 - Increasing image size
 - Increasing image resolution (dpi: dots per inch, ppi: pixels per inch)

Quantum Computing

Flexible Representation of Quantum Images

$|I(\theta)\rangle = \frac{1}{2^n} \sum_{i=0}^{2^{2n}-1} (\cos \theta_i |0\rangle + \sin \theta_i |1\rangle) \otimes |i\rangle$ $\theta_i \in \left[0, \frac{\pi}{2}\right], i = 0, 1, \dots, 2^{2n} - 1$

• Created for black and white images is easily generalised for color images.

Requirements:

2n+1 qubits are needed to encode a square $2^n \times 2^n$ gray tones image. Gray tones must be encoded from 0 to $\frac{\pi}{2}$.

Superposition state:

$$|H\rangle = \frac{1}{2^n} |0\rangle \otimes H^{\otimes 2n} |0\rangle$$

Encoding gray tones: Applying Multi Control Ry gates (MCRY)

$$C^{2n}\left(R_y(2\theta_i)\right)|H\rangle = |I(\theta)\rangle$$

Flexible Representation of Quantum Images

Novel Enhanced Quantum Representation

$$|I\rangle = \frac{1}{2^n} \sum_{Y=0}^{2^{2n}-1} \sum_{X=0}^{2^{2n}-1} |\bigotimes_{i=0}^{q-1}\rangle |C_{XY}^i\rangle |YX\rangle$$

$$i = 0,1,\cdots,7$$

- Quadradic speedup of the time complexity to prepare the NEQR quantum image with respect to FRQI.
- Accurate retrieval after image measurement, as opposed to probabilistic as for FRQI
- Complex operations can be achieved

Requirements:

2n + m qubits are needed to encode a square $2^n \times 2^n$ image. The various shades of gray intensity must be encoded in m bits.

Superposition state:

$$|H\rangle = \frac{1}{2^n} |0\rangle \otimes H^{\otimes 2n} |0\rangle$$

Encoding gray tones: Applying Multi Control X gates (MCX)

$$C^{2n}(X) |H\rangle = |I\rangle$$

$$120 = 2^6 + 2^5 + 2^4 + 2^3$$

$$65 = 2^6 + 2^0$$

$$2 = 2^1$$

Edge detection

An edge is a change on image intensity, and it is usually gradual on a certain number of pixels

 $c_{N-1} - c_0$ Gradient

Add an ancilla

Decrement gate

Phys. Rev. X **7**, 031041 (2017)

 c_{N-1}

 $\lfloor c_{N-1}
floor$

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.031041

6. Applications

10

 c_2

11

 c_3