Кусочек итоговорого отчета

Каглинская Мария, БПМИ141 2016

1 Модуль численного интегрирования

Был реализован модуль, осуществляющий численное вычисление интеграла с помощью формулы трапеций. Простая формула трапеций:

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2} \left(f(a) + f(b) \right)$$

Составная формула трапеций:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f_0 + 2(f_1 + f_2 + \dots + f_{N-1}) + f_N \right)$$

Предполагаем, что сетка равнмерная с шагом $h=\frac{b-a}{N}$ Для данного метода можно аналитически оценить порядок точности как:

$$|Error| \le \frac{b-a}{12} * ||f^{(2)}||_{[a;b]}$$

Результаты сравнения метода с модулем интегрирования scipy.integrate.quad:

	x^2 ,	$100*\tfrac{\cos(x*3pi)}{x^2+1}$	$x = \begin{cases} 3 & \text{при x} < 1 \\ 1 & \text{Иначе} \end{cases}$
	$x \in [0, 5], n = 50$	$x \in [-5, 5], n = 50$	$x \in [-5, 5], n = 50$
scipy.	41.666667	0.058502	22.000000
my module	41.675344	0.070983	22.040816
Difference	0.008677	0.012481	0.040816

Видим, что метод гораздо сильнее ошибается на осцилирующих и разрывных функциях.

Проверим порядок точности экспериментально, построив график зависимости погрешности от количества сегментов в сетке:

При использовании scipy.optimize.curve_fit получаем, что порядок аппроксимации k=2.00, а оценка константы C=7.64, то есть $Error \leq 7.64h^2.$