GMEAN - Results

August 21, 2016

1 Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

${ m Algorithm}$	Ranking
IRS	6.0
EUCLIDEAN	3.80000000000000003
CHEBYSHEV	6.0
KULLBACKLEIBLER	3.0
HELLINGER	1.4
TOTALVARIATION	1.799999999999998
CHISQUARE	6.0

_

freedom: 29.33333333333339.

P-value computed by Iman and Daveport Test: 6.416311197779681E-10.

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 6 and 24 degrees of

i	algorithm	$z = (R_0 - R_i)/SE$	p	Holm/Hochberg/Hommel
6	IRS	3.3668552516724395	7.603058428726023E-4	0.008333333333333333
5	CHEBYSHEV	3.3668552516724395	7.603058428726023E-4	0.01
4	CHISQUARE	3.3668552516724395	7.603058428726023E-4	0.0125
3	EUCLIDEAN	1.7566201313073602	0.0789825792637829	0.01666666666666666
2	KULLBACKLEIBLER	1.1710800875382399	0.24156658696897293	0.025
1	TOTALVARIATION	0.2927700218845599	0.7696979437812898	0.05

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.0125 .

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

Table 6. Holli / Hochberg Table for a 6.10					
i	algorithm	$z = (R_0 - R_i)/SE$	p	Holm/Hochberg/Hommel	
6	IRS	3.3668552516724395	7.603058428726023E-4	0.0166666666666666	
5	CHEBYSHEV	3.3668552516724395	7.603058428726023E-4	0.02	
4	CHISQUARE	3.3668552516724395	7.603058428726023E-4	0.025	
3	EUCLIDEAN	1.7566201313073602	0.0789825792637829	0.0333333333333333	
2	KULLBACKLEIBLER	1.1710800875382399	0.24156658696897293	0.05	
1	TOTALVARIATION	0.2927700218845599	0.7696979437812898	0.1	

Hochberg's procedure rejects those hypotheses that have a p-value < 0.025.

Nemenyi's procedure rejects those hypotheses that have a p-value < 0.002380952380952381.

 \sim

Table 4: Adjusted p-values

i	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
1	IRS	7.603058428726023E-4	0.004561835057235614	0.004561835057235614	0.003041223371490409	0.003041223371490
2	CHEBYSHEV	7.603058428726023E-4	0.004561835057235614	0.004561835057235614	0.003041223371490409	0.003041223371490
3	CHISQUARE	7.603058428726023E-4	0.004561835057235614	0.004561835057235614	0.003041223371490409	0.003041223371490
4	EUCLIDEAN	0.0789825792637829	0.4738954755826974	0.2369477377913487	0.2369477377913487	0.23694773779134
5	KULLBACKLEIBLER	0.24156658696897293	1.4493995218138376	0.48313317393794586	0.48313317393794586	0.48313317393794
6	TOTALVARIATION	0.7696979437812898	4.618187662687738	0.7696979437812898	0.7696979437812898	0.76969794378128

Table 5: Holm / Shaffer Table for $\alpha=0.05$

i	algorithms	$z = (R_0 - R_i)/SE$	p	Holm	Shaffer
21	IRS vs. HELLINGER	3.3668552516724395	7.603058428726023E-4	0.002380952380952381	0.002380952380952
20	CHEBYSHEV vs. HELLINGER	3.3668552516724395	7.603058428726023E-4	0.0025	0.0033333333333333
19	HELLINGER vs. CHISQUARE	3.3668552516724395	7.603058428726023E-4	0.002631578947368421	0.0033333333333333
18	IRS vs. TOTALVARIATION	3.07408522978788	0.0021114910066706385	0.00277777777777778	0.0033333333333333
17	CHEBYSHEV vs. TOTALVARIATION	3.07408522978788	0.0021114910066706385	0.0029411764705882353	0.0033333333333333
16	TOTALVARIATION vs. CHISQUARE	3.07408522978788	0.0021114910066706385	0.003125	0.0033333333333333
15	IRS vs. KULLBACKLEIBLER	2.1957751641342	0.028108040147151837	0.003333333333333333	0.0033333333333333
14	CHEBYSHEV vs. KULLBACKLEIBLER	2.1957751641342	0.028108040147151837	0.0035714285714285718	0.003571428571428
13	KULLBACKLEIBLER vs. CHISQUARE	2.1957751641342	0.028108040147151837	0.0038461538461538464	0.003846153846153
12	EUCLIDEAN vs. HELLINGER	1.7566201313073602	0.0789825792637829	0.0041666666666666667	0.00416666666666
11	IRS vs. EUCLIDEAN	1.6102351203650798	0.10734653699381101	0.004545454545454546	0.004545454545454
10	EUCLIDEAN vs. CHEBYSHEV	1.6102351203650798	0.10734653699381101	0.005	0.005
9	EUCLIDEAN vs. CHISQUARE	1.6102351203650798	0.10734653699381101	0.00555555555555556	0.00555555555555
8	EUCLIDEAN vs. TOTALVARIATION	1.4638501094228002	0.14323490752466958	0.00625	0.00625
7	KULLBACKLEIBLER vs. HELLINGER	1.1710800875382399	0.24156658696897293	0.0071428571428571435	0.007142857142857
6	KULLBACKLEIBLER vs. TOTALVARIATION	0.8783100656536801	0.379775474840949	0.008333333333333333	0.008333333333333
5	EUCLIDEAN vs. KULLBACKLEIBLER	0.5855400437691202	0.5581846494226572	0.01	0.01
4	HELLINGER vs. TOTALVARIATION	0.2927700218845599	0.7696979437812898	0.0125	0.0125
3	IRS vs. CHEBYSHEV	0.0	1.0	0.01666666666666666	0.01666666666666
2	IRS vs. CHISQUARE	0.0	1.0	0.025	0.025
1	CHEBYSHEV vs. CHISQUARE	0.0	1.0	0.05	0.05

Shaffer's procedure rejects those hypotheses that have a p-value $\leq 0.002380952380952381$. Bergmann's procedure rejects these hypotheses:

- IRS vs. HELLINGER
- IRS vs. TOTALVARIATION
- CHEBYSHEV vs. HELLINGER
- CHEBYSHEV vs. TOTALVARIATION
- \bullet HELLINGER vs. CHISQUARE
- $\bullet\,$ TOTALVARIATION vs. CHISQUARE

Table 6: Holm / Shaffer Table for $\alpha = 0.10$

	1001	0 0. 1101111 / 21101	101 10010 101 00 0		
i	algorithms	$z = (R_0 - R_i)/SE$	p	Holm	Shaffer
21	IRS vs. HELLINGER	3.3668552516724395	7.603058428726023E-4	0.004761904761904762	0.004761904761904762
20	CHEBYSHEV vs. HELLINGER	3.3668552516724395	7.603058428726023E-4	0.005	0.00666666666666666
19	HELLINGER vs. CHISQUARE	3.3668552516724395	7.603058428726023E-4	0.005263157894736842	0.0066666666666666
18	IRS vs. TOTALVARIATION	3.07408522978788	0.0021114910066706385	0.00555555555555556	0.00666666666666666
17	CHEBYSHEV vs. TOTALVARIATION	3.07408522978788	0.0021114910066706385	0.0058823529411764705	0.00666666666666666
16	TOTALVARIATION vs. CHISQUARE	3.07408522978788	0.0021114910066706385	0.00625	0.00666666666666666
15	IRS vs. KULLBACKLEIBLER	2.1957751641342	0.028108040147151837	0.00666666666666666	0.0066666666666666
14	CHEBYSHEV vs. KULLBACKLEIBLER	2.1957751641342	0.028108040147151837	0.0071428571428571435	0.0071428571428571435
13	KULLBACKLEIBLER vs. CHISQUARE	2.1957751641342	0.028108040147151837	0.007692307692307693	0.007692307692307693
12	EUCLIDEAN vs. HELLINGER	1.7566201313073602	0.0789825792637829	0.008333333333333333	0.008333333333333333
11	IRS vs. EUCLIDEAN	1.6102351203650798	0.10734653699381101	0.009090909090909092	0.009090909090909092
10	EUCLIDEAN vs. CHEBYSHEV	1.6102351203650798	0.10734653699381101	0.01	0.01
9	EUCLIDEAN vs. CHISQUARE	1.6102351203650798	0.10734653699381101	0.011111111111111111111111111111111111	0.011111111111111111111111111111111111
8	EUCLIDEAN vs. TOTALVARIATION	1.4638501094228002	0.14323490752466958	0.0125	0.0125
7	KULLBACKLEIBLER vs. HELLINGER	1.1710800875382399	0.24156658696897293	0.014285714285714287	0.014285714285714287
6	KULLBACKLEIBLER vs. TOTALVARIATION	0.8783100656536801	0.379775474840949	0.016666666666666666	0.01666666666666666
5	EUCLIDEAN vs. KULLBACKLEIBLER	0.5855400437691202	0.5581846494226572	0.02	0.02
4	HELLINGER vs. TOTALVARIATION	0.2927700218845599	0.7696979437812898	0.025	0.025
3	IRS vs. CHEBYSHEV	0.0	1.0	0.03333333333333333	0.03333333333333333
2	IRS vs. CHISQUARE	0.0	1.0	0.05	0.05
1	CHEBYSHEV vs. CHISQUARE	0.0	1.0	0.1	0.1

Nemenyi's procedure rejects those hypotheses that have a p-value $\leq 0.004761904761904762$.

4

- IRS vs. HELLINGER
- IRS vs. TOTALVARIATION
- CHEBYSHEV vs. HELLINGER
- CHEBYSHEV vs. TOTALVARIATION
- \bullet HELLINGER vs. CHISQUARE
- TOTALVARIATION vs. CHISQUARE

 σ

Table 7: Adjusted *p*-values

Table 11 Trajastea p Varaes						
i	hypothesis	unadjusted p	p_{Neme}	p_{Holm}	p_{Shaf}	p_{Berg}
1	IRS vs .HELLINGER	7.603058428726023E-4	0.01596642270032465	0.01596642270032465	0.01596642270032465	0.01596642270032465
2	CHEBYSHEV vs .HELLINGER	7.603058428726023E-4	0.01596642270032465	0.01596642270032465	0.01596642270032465	0.01596642270032465
3	HELLINGER vs .CHISQUARE	7.603058428726023E-4	0.01596642270032465	0.01596642270032465	0.01596642270032465	0.01596642270032465
4	IRS vs .TOTALVARIATION	0.0021114910066706385	0.04434131114008341	0.038006838120071496	0.03167236510005958	0.03167236510005958
5	CHEBYSHEV vs .TOTALVARIATION	0.0021114910066706385	0.04434131114008341	0.038006838120071496	0.03167236510005958	0.03167236510005958
6	TOTALVARIATION vs .CHISQUARE	0.0021114910066706385	0.04434131114008341	0.038006838120071496	0.03167236510005958	0.03167236510005958
7	IRS vs .KULLBACKLEIBLER	0.028108040147151837	0.5902688430901886	0.42162060220727754	0.42162060220727754	0.3091884416186702
8	CHEBYSHEV vs .KULLBACKLEIBLER	0.028108040147151837	0.5902688430901886	0.42162060220727754	0.42162060220727754	0.3091884416186702
9	KULLBACKLEIBLER vs .CHISQUARE	0.028108040147151837	0.5902688430901886	0.42162060220727754	0.42162060220727754	0.3091884416186702
10	EUCLIDEAN vs .HELLINGER	0.0789825792637829	1.658634164539441	0.9477909511653948	0.8688083719016119	0.7108432133740461
11	IRS vs .EUCLIDEAN	0.10734653699381101	2.2542772768700314	1.1808119069319212	1.1808119069319212	0.9661188329442991
12	EUCLIDEAN vs .CHEBYSHEV	0.10734653699381101	2.2542772768700314	1.1808119069319212	1.1808119069319212	0.9661188329442991
13	EUCLIDEAN vs .CHISQUARE	0.10734653699381101	2.2542772768700314	1.1808119069319212	1.1808119069319212	0.9661188329442991
14	EUCLIDEAN vs .TOTALVARIATION	0.14323490752466958	3.007933058018061	1.1808119069319212	1.1808119069319212	0.9661188329442991
15	KULLBACKLEIBLER vs .HELLINGER	0.24156658696897293	5.072898326348431	1.6909661087828105	1.6909661087828105	1.4493995218138376
16	KULLBACKLEIBLER vs .TOTALVARIATION	0.379775474840949	7.975284971659929	2.278652849045694	2.278652849045694	1.519101899363796
17	EUCLIDEAN vs .KULLBACKLEIBLER	0.5581846494226572	11.721877637875801	2.790923247113286	2.790923247113286	2.790923247113286
18	HELLINGER vs .TOTALVARIATION	0.7696979437812898	16.163656819407084	3.078791775125159	3.078791775125159	3.078791775125159
19	IRS vs .CHEBYSHEV	1.0	21.0	3.078791775125159	3.078791775125159	3.078791775125159
20	IRS vs .CHISQUARE	1.0	21.0	3.078791775125159	3.078791775125159	3.078791775125159
21	CHEBYSHEV vs .CHISQUARE	1.0	21.0	3.078791775125159	3.078791775125159	3.078791775125159