
1. FUNCTIONS & FEATURES

Features

— Dot Matrix: 128 × 64 Dots

— LCD Mode: STN

Controller IC: ST7920or Equivalent
 Driving Method: 1/64 Duty; 1/6 Bias
 Viewing Angie: 6 O'clock direction

— 6800 family 8-Bit/4-Bit or serial MPU Interface

— Backlight: LED

Operating Temperature Range: -20 to 70°C;
Storage Temperature Range: -30 to 80°C;

Note: Color tone is slightly changed by temperature and driving voltage.

2. MECHANICAL SPECIFICATIONS

ITEM	SPECIFICATIONS	UNIT
Module Size	93.0L×70.0W×13.0 (max) H	mm
View Area	72.0×40.0	mm
Effective Area	128×64	dots
Dot Size	0.48×0.48	mm
Dot Pitch	0.52×0.52	mm

3. EXTERNAL DIMENSIONS

4. BLOCK DIAGRAM

.....

5. POWER SUPPLY

6. PIN DESCRIPTION

ITEM	SYMBOL	LEVEL	FUNCTION	- 7
1	VSS	0V	Power Ground	
2	VDD	5.0V	Power Supply For Logic	c
3	V0/NC		Contrast Adjust	
4	RS(CS)	H/L	H: Data L: Command	Chip selection signal H: enable the data transfer L: reset the serial data counter
5	R/W(SID)	H/L	H: Read L: Write	Serial data input
6	E(SCLK)	H, H->L	Enable Signal	Serial clock input
7 ~ 14	DB0 ~ DB7	H/L	Data Bus	Keep open when choosing serial bus MPU interface
15	PSB	H/L	H: parallel interface	L: serial interface
16	NC		No connection	
17	/RST	L	Reset signal	
18	Vout/NC		Power output For LCD	Driving
19	LEDK	0V	Power Supply For LED	Racklight
20	LEDA	5.0V	11.0	assist data skifting assurted It sould

Note: In serial mode, the CS is used for resetting the serial data shifting counter, It could not disable the data shifting into the LCD module.

7. MAXIMUM ABSOLUTE LIMIT (T=25°C)

Items	Symbol	Standard Value	Unit
Supply Voltage	Vdd	-0.3~7.0	V
Input Voltage	Vin	Vss~Vdd	V
Operating Temperature	Top	-20~70	$^{\circ}$ C
Storage Temperature	Tst	-30~80	$^{\circ}$ C

Note: Voltage greater than above may damage the module All voltages are specified relative to Vss=0V

8. ELECTRICAL CHARACTERISTICS

8.1 DC Characteristics (VDD=5V, Ta=25°C)

	` `				4227	
Items	Symbol	Min	TYP	Max	Unit	Condition
Operating Voltage	Vdd	4.8	5.0	5.2	V	Vdd
Supply Current	Idd		8	15	mA	except LED backlight
Input High Voltage	Vin	Vdd-1		Vdd	V	RS,RW,E,DB0-DB7
Input Low Voltage	Vil	0	_	0.6	V	K5,KW,E,DBU-DB/
Output High Voltage	Voh	Vdd-1	_	Vdd	V	Ioh=-0.1mA,DB0-DB7
Output Low Voltage	Vol	0	\ — p	0.5	V	Iol=0.1mA,DB0-DB7
LCD Driving Voltage	Vlcd	4.8	5.0	5.2	V	Vdd-V0

8.2a AC Characteristics (VDD=5V, Ta=25°C) Parallel Mode Interface

Items	Symbol	Test Condition	Min	TYP	Max	Unit
Enable cycle time	t _{PW}	Pin E	1500	_	_	nS
Enable pulse width	$t_{\rm C}$	Pin E	175	_	_	nS
Enable rise/fall time	t_R,t_F	Pin E	_	_	250	nS
Address set-up time	t _{AS}	Pin: RS,R/W,E	13	_	_	nS
Address hold time	t _{AH}	Pin: RS,R/W,E	25	_	_	nS
Data set-up time	$t_{ m DSW}$	Pin: DB0-DB7	50	_	_	nS
Data hold time	t_{H}	Pin: DB0-DB7	25	_	_	nS
Data delay time (read)	t_{DDR}	Pin: DB0-DB7		_	125	nS

Items	Symbol	Test Condition	Min	TYP	Max	Unit
Serial clock cycle	t_{SCYC}	Pin RS(SCLK)	600	_	_	nS
SCLK high pulse width	$t_{ m SHW}$	Pin RS(SCLK)	300	_	_	nS
SCLK low pulse width	$t_{\rm SLW}$	Pin RS(SCLK)	300	_	_	nS
SCLK rise/fall time	t_R, t_F	Pin RS(SCLK)	_	_	20	nS
SID data set-up time	$t_{ m SDS}$	Pin R/W(SID)	40			nS
SID data hold time	t_{SDH}	Pin R/W(SID)	40			nS
CS set-up time	t_{CSS}	Pin CS	60			nS
CS hold time	t_{CSH}	Pin CS	60	_	/	nS

MPU write timing

MPU read timing

.....

MPU read timing

9. FUNCTION SPECIFICATIONS

9.1. Resetting The LCD Module

The LCD module should be initialized by setting /RST terminal at low level when turning the power on. See the reset timing section for detail.

Items	Symbol	Min	TYP	Max	Unit
Reset pulse width	$t_{\rm rw}$	2.0		_	uS
Reset start time	t _{res}	_	_	100	nS

The initialized status is as follow:

Function	Initialized Status						
Enter Mode Set	I/D=1 cursor move to right S=0 DDRAM address counter						
Display status	D=0 display=OFF C=0 cursor=OFF						
Display status	B=0 cursor position blink=OFF						
Function Set	DL=1 8-bit interface RE=0 Basic Instruction Set						

Scroll Or RAM Address select	SR=0 CGRAM address access is enable
Reverse	R1=1,R0=0 First line normal
Extended Function Set	G=0 Graphic display OFF

9.2. Using Parallel Interface

When PSB=H, the LCD module is in parallel interface mode. 8-bit or 4-bit bus interface could be selected by FUNCTION SET instruction DL bit.

In 4-bit bus interface, every 8-bit instruction/data is separated into two parts. First, transfer the higher 4-bit(D7-D4), then transfer the lower 4-bit(D3-D0). They are transferred via DB7-DB4 terminals, where DB3-DB0 are not in used (leave open or pull high).

9.3. Using Serial Interface

When PSB=L, the LCD module is in serial interface mode (write only). In this mode, CS pin should be used. CS=H, enable the data transfer. CS=L, reset the serial data counter, terminate the data transition and clear the data buffer. As the controller IC has no instruction buffer area, it must wait for the previous instruction to finish before sending the next one. Thus transferring multiple instruction/data, execution time must be considered. Starting a transmission, a start byte is required. It consists 5 consecutive "1" follow with a "0", as RS bit (register select bit) and a "0". Then the 8-bit instruction/data should be separated into 2 groups. First group is DB7-DB4, followed by 4 consecutive "0". The second group is DB3-DB0 with 4 consecutive "0". See the follow data sequence diagram for detail:

9.4. Display Memory Map

There are 3 main memory-areas in the LCD module for display.

- Character Generator RAM (CGRAM);
- Graphic Display RAM (GDRAM);
- Display Data RAM (DDRAM).

9.4.1 Character Generator RAM (CGRAM)

Character Generator RAM is for storing the User-defined characters (a 16×16 dots font). There are only 4 characters could be defined. The User-defined character codes are 0000h, 0002h, 0004h and 0006h. They could be called into DDRAM as normal character.

	•			/ # #
User-defined	CGRAM	(CGRAM data	
Character Code	Address	D15 ~	D8 D7	~ D0
0000h	00h : 0Fh	16	x 16 dot font	
0002h	10h : 1Fh	16	x 16 dot font	
0004h	20h : 2Fh	16	x 16 dot font	
0006h	30h : 3Fh	16	x 16 dot font	

CGRAM Address Map

9.4.2 Graphic Display RAM (GDRAM)

GDRAM is for full graphics display. It could be displayed when G=1 (set by Extended Function Set in Extended instruction Set).

GDRAM Address Map

Note:

— The mapping is based on Vertical Scroll Displacement Address=0;

— Another 128×64 Graphics display RAM space is not showed. They could be displayed adjusting the Vertical Scroll Displacement Address value.

9.4.3 Display Data RAM (DDRAM)

GB character code (16-bit, A1A0h-F7FFh) could write into DDRAM for displaying the simplified Chinese character (16×16 dots font). User characters defined by user that stored in CGRAM could also be used. The display character should be on grid only.

				DDRA	M Addre	ss (Lowe	r 4bit)		
		00h	01h	02h	03h	04h	05h	06h	07h
		H L	H L	H L	H L	H L	H L	H L	H L
	80h								
DDRAM Address	90h			8 x	4 Cł	: narac	ters		
(Upper 4bit)	80h			(16	x16	dots t	font)		
	90h								-
		H L	H L	H L	H L	H L	H L	H L	H L
		08h	09h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh
				DDRA	M Addre	ss (Lowe	er 4bit)		

DDRAM Address Map with 16x16 dots font

Note:

- The mapping is based on Vertical Scroll Displacement Address=0;
- Another 8×4(characters) Display Data RAM space is not showed. They could be displayed adjusting the Vertical Scroll Displacement Address value.

Standard ASCII code (00h-7fh) could write into DDRAM for displaying the standard ASCII character (8×16 dots font). The display character should be on grid only, and 2 characters should be written in each write operation.

			DDRAM Address (Lower 4bit)														
		00h 01h		02h		03h		04h		05h		06h		07h			
		Н	L	Н	L	Н	L	Ι	L	Н	L	Н	L	Н	L	Н	L
DDRAM 90h	80h																
	90h					,	_		_				ers				
Address (Upper 4bit)	80h						(8	x1	6 c	dot	s f	on	ıt)				
	90h																
		Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L
		30	3h	09	h	0/	\h	OE	3h	00	Ch	00	Ͻh	OE	Ξh	OF	ħ
		DDRAM Address (Lower 4bit)															

DDRAM Address Map with 8x16 dots font

Note:

- The mapping is based on Vertical Scroll Displacement Address=0;
- Another 16×4(characters) Display Data RAM space is not showed. They could be displayed adjusting the Vertical Scroll Displacement Address value.

9.5. Display Control Instructions

Basic Instruction Set

RE=0, basic instruction set

	Code												
Instructions	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function		
CLEAR	0	0	0	0	0	0	0	0	0	1	Fill DDRAM with "20h", and set DDRAM address counter (AC) to "00h"		
HOME	0	0	0	0	0	0	0	0	1	Х	Set DDRAM address counter (AC) to "00h" and put cursor to origin. DDRAM content no changed.		
ENTRY MODE	0	0	0	0	0	0	0	1	I/D	S	Set cursor position and display shift when doing write or read operation I/D=1, cursor move right AC increased by 1 I/D=0, cursor move left, AC decreased by 1 S=1, toggle the shift of the entire display (based on I/D defined direction)		
DISPLAY ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1, display ON D=0, display OFF C=1, cursor ON C=0, cursor OFF B=1, blink ON B=0, blink OFF		
CURSOR DISPLAY CONTROL	0	0	0	0	0	1	S/C	R/L	Х	X	Cursor position and display shift control. DDRAM content no changed.		
FUNCTION SET	0	0	0	0	1	DL	Х	RE	X	X	DL=1, 8bit interface DL=0, 4bit interface RE=1, extended instruction RE=0; basic instruction		
SET CGRAM ADDR	0	0	0	1	AC5	AC4	АС3	AC2	AC1	AC0	Set CGRAM address to address counter (AC) Make sure that in extended instruction SR=0 (scroll or RAM address selected)		
SET DDRAM ADDR	0	0	AC7	AC6	AC5	AC4	АС3	AC2	AC1	AC0	Set DDRAM address to address counter (AC), where AC7 =1, AC6=0		
READ BF & ADDR	0	1	BF	AC6	AC5	AC4	АС3	AC2	AC1	AC0	Read busy flag (BF) for completion of the internal operation, also read out the value of AC		
WRITE RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to internal RAM (DDRAM, CGRAM,GDRAM) For 16bit data, write two byte consecutively, high byte first, then low byte		
READ RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM, CGRAM,GDRAM)		

Note:

- For the details of the display control instructions, please refer to ST7920 datashee;
- RE is the selection byte of basic and extended instruction set. Each tine altering the value of RE, it will remain. Thus, it is not necessary to set RE every time when using the same group of instruction set.

Extended Instruction Set

.....

RE=	1, extend	led ins	truction	า set
-----	-----------	---------	----------	-------

TKE-1, extended instruction set											
	Code										
Instructions	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function
SCROLL or RAM ADDR SELECT	0	0	0	0	0	0	0	0	1	SR	SR=1, enable vertical scroll position SR=0, enable CGRAM address (basic instruction)
REVERSE	0	0	0	0	0	0	0	1	R1	R0	Toggle 1 out of 4 line (in DDRAM) of the display to be reversed (initial value is R1 ,R0 = 0, 0
EXTENDED FUNCTION SET	0	0	0	0	1	DL	х	RE	G	0	DL=1, 8bit interface DL=0, 4bit interface RE=1, extended instruction RE=0; basic instruction G=1, graphics display ON G=0, graphics display OFF
SET SCROLL ADDR	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set the address of vertical scroll Make sure extended instruction SR=1, enable vertical scroll position.
SET	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set the GDRAM address to address counter (AC) Dual byte command should write consecutively
GRAPHICS RAM ADDR	0	0	1	0	0	0	AC3	AC2	AC1	AC0	First byte set the Vertical address AC6~AC0 Second byte set the Horizontal address AC3~AC0

Note:

- For the details of the display control instructions, please refer to ST7920 datashee;
- RE is the selection byte of basic and extended instruction set. Each tine altering the value of RE, it will remain. Thus, it is not necessary to set RE every time when using the same group of instruction set.

10.DESIGN AND HANDING PRECAUTION

- 10.1.The LCD panel is made by glass. Any mechanical shock (eg. Dropping form high place) will damage the LCD module. Do not add excessive force on the surface of the display, which may cause the Display color change abnormally.
- 10.2. The polarizer on the LCD is easily get scratched. If possible, do not remove the LCD protective film until the last step of installation.
- 10.3. Never attempt to disassemble or rework the LCD module.
- 10.4.Only Clean the LCD with Isopropyl Alcohol or Ethyl Alcohol. Other solvents (eg. water) may damage the LCD.
- 10.5. When mounting the LCD module, make sure that it is free form twisting, warping and distortion.
- 10.6.Ensure to provide enough space(with cushion) between case and LCD panel to prevent external force adding on it, or it may cause damage to the LCD or degrade the display result
- 10.7. Only hold the LCD module by its side. Never hold LCD module by add force on the heat seal or TAB.

2.MECHANICAL SPECIFICATIONS

ITEM	SPECIFICATIONS	ITEM	REMARK	
Modeule Size(L \times W \times H)	$93.0 \times 70.0 \times 13.0$	mm		
View Area(W×H)	72.0×40.0	mm		
Effective V/Area	66.52×33.24	mm	Reference	
Number of Characters	128×64	-	Dimensional Outline	
Dot Pitch(W×H)	0.52×0.52	mm	Guime	
Dot Size(W×H)	0.48×0.48	mm		
Weight (Reflective/Led)	-	g		

3.ABSOLUTE MAXIMUM RATINGS

ITEM	CVMDOI	CONDITION	STANDARD		
TIEM	SYMBOL	CONDITION	MIN	MAX	
Logic Voltage	Vdd		-0.3V	5.5V	
LCD Voltage	VLCD	Ta=25℃	-0.3V	7V	
Input Voltage	Vı		-0.3V	V _{DD} +0.3V	
Operation Temperature	Тор	-	-20°C	70℃	
Storage Temperature	Tst	_	-30℃	80°C	

4.BLOCK DIAGRAMMECHANICAL

5.LED BACKLIGHT SPECIFICATIONS

ITEM	SYMBOL	TYPE	MAX	UNIT						
Ta=25 ℃										
Forward Voltage	$ m V_{f}$	4.1	4.3	V						
Forward Current	If	360	_	mA						
Emission Vave Length	λ P	568	_	nm						

6. INTERFACE PIN CONNECTIONS

ITEM	SYMBOL LEVEL		FUNCTIONS			
1	VSS	0V	Power Ground			
2	VDD	+5V	Power supply for logic			
3	V0	_	Contrast adjust			
4	RS(CS)	H/L	H:data L:command			
5	RW/(SID)	H/L	H:read L:write			
6	E/(SCLK)	H.H→L	Enable signal			
7-14	DB0-DB7	H/L	Data Bus			
15	PSB	H/L	H:Paraller mode L:serial mode			
16	NC	_	No connection			
17	/REST	L	Reset signal			
18	VOUT	-	Output LCD voltage			
19	LEDA	+5V	Power supply for LED healtlight			
20	LEDK	0V	Power supply for LED backlight			

7.ELECTRICAL CHARACTERISTICS

ITEM	SYMBOL	MIN	TYPE	MAX	UNIT						
Ta=25°C											
Logic Power	Vdd	4.5	5	5.5	V						
Input High Voltage	Vih	0.7VDD	1	Vdd	V						
Input Low Voltage	VIL	-0.3	1	0.6	V						
Output High Voltage	Vон	0.8VDD	1	VDD	V						
Output Low Voltage	Vol	0	I	0.4	V						
Logic Current	Idd		3	5	mA						
Operation Voltage For LCD	V0-GND	_	5	=	V						