

# Chapitre 9: Grammaires non contextuelles

January 22, 2025

# 1 Grammaire non contextuelle

## 1.1 Vocabulaire

**Définition 9.1** - grammaire au sens général, grammaire de type 0

Une grammaire est défini par un quadruplet  $(\Sigma, V, P, S)$  où :

- $\bullet$   $\Sigma$ est un alphabet fini de symboles terminaux, dit aussi alphabet terminal
- V est un alphabet fini de symboles non terminaux (ou variables), dit aussi alphabet non terminal
- $P \subset (\Sigma \cup V)^* \times (\Sigma \cup V)^*$  est un ensemble de *règles de production*. Une règle de production  $(w_1, w_2) \in P$ , notée  $w_1 \to w_2$  est un couple de mots écrits avec des symboles terminaux et non terminaux.
- $S \in V$  est un symbole non terminal avec un statut particulier de symbole initial (ou axiome, variable initiale)

Une grammaire sans propriété particulière est dite  $type \ \theta$ .

## Remarque 9.2 - grammaires

On note usuellement par des majuscules les symboles non terminaux, et en minuscule les terminaux.

Exemple 9.3 - de grammaire de type 0

Pour  $\Sigma = \{a\}$  et  $V = \{S, D, F, X, Y, Z\}$  et  $P = \{S \to DXaD, Xa \to aaX, XF \to YF, aY \to Ya, DY \to DX, XZ \to Z, aZ \to Za, DZ \to \epsilon\}, G = (\Sigma, V, P, S)$  est une grammaire de type 0.

#### Définition 9.4 - dérivation immédiate

Soit  $G = (\Sigma, V, P, S)$  une grammaire. On dit que  $\alpha \in (\Sigma \cup V)^*$  se dérive immédiatement en  $\beta \in (\Sigma \cup V)^*$  lorsqu'il existe  $(\alpha_2, \beta_2) \in P$  tel que :

$$\exists (\alpha_1, \alpha_3) \in \left( (\Sigma \cup V)^* \right)^2, \begin{cases} \alpha = \alpha_1 \alpha_2 \alpha_3 \\ \beta = \alpha_1 \beta_2 \alpha_3 \end{cases}$$

Le cas échéant, on note  $\alpha \Rightarrow \beta$ . On parle de dérivation immédiate. Moralement, le facteur  $\alpha_2$  est remplacé par le facteur  $\beta_2$ .

## Définition 9.5 - clôture reflexive et transitive

On note  $\Rightarrow^*$  la clôture reflexive et transitive de la relation  $\Rightarrow$  de dérivabilité immédiate.

 $\Rightarrow^*$  est définie comme la plus petite relation au sens de l'inclusion tel que :

- $\forall \alpha \in (\Sigma \cup V)^*, \ \alpha \Rightarrow^* \alpha$
- $\forall (\alpha, \beta) \in ((\Sigma \cup V)^*)^2, (\alpha \Rightarrow \beta) \implies (\alpha \Rightarrow^* \beta)$
- $\bullet \ \forall (\alpha,\beta,\gamma) \in \left( (\Sigma \cup V)^* \right)^3, \ (\alpha \Rightarrow^* \beta \text{ et } \beta \Rightarrow^* \gamma) \implies (\alpha \Rightarrow^* \gamma)$

Autrement dit,  $\alpha \Rightarrow^* \beta$  lorsqu'il existe  $(\alpha = \alpha_0, \ldots, \alpha_k = \beta)$  une suite de mots dans  $(\Sigma \cup V)^*$  telle que :

$$\forall i \in [0, k-1], \alpha_i \Rightarrow \alpha_{i+1}$$

#### Exemple 9.6 - de dérivation

Dans la grammaire précédemment introduite :

Pour  $\Sigma = \{a\}$  et  $V = \{S, D, F, X, Y, Z\}$  et  $P = \{S \to DXaD, Xa \to aaX, XF \to YF, aY \to Ya, DY \to DX, XZ \to Z, aZ \to Za, DZ \to \epsilon\}, G = (\Sigma, V, P, S)$  est une grammaire de type 0.

 $S\Rightarrow \mathtt{DXaF}$ 

 $\Rightarrow$  DaaXF

 $\Rightarrow$  DaaYF

 $\Rightarrow$  DaYaF

 $\Rightarrow$  DYaaF

 $\Rightarrow \mathtt{DXaaF}$ 

 $\Rightarrow$  DaaXaF

 $\Rightarrow$  DaaaaXF

 $\Rightarrow$  DaaaaZ

 $\Rightarrow$  DaaaZa

 $\Rightarrow$  DaaZaa

 $\Rightarrow$  DaZaaa

 $\Rightarrow$  DZaaaa

 $\Rightarrow$  aaaa

D'où  $S \Rightarrow^*$  aaaa

# Définition 9.7 - langage engendré par une grammaire depuis un mot

Soit  $G = (\Sigma, V, S)$  une grammaire et  $\alpha \in (\Sigma \cup V)^*$ .

On définit le langage engendré par G depuis  $\alpha$  comme l'ensemble des mots de  $\Sigma^*$  que l'on peut obtenir par dérivation depuis  $\alpha$  en utilisant les règles de production de G.

$$\mathcal{L}_G = \{ u \in \Sigma^*, \, \alpha \Rightarrow^* u \}$$

Le langage élargi engendré par G depuis  $\alpha$  est :

$$\widehat{\mathcal{L}_G(\alpha)} = \{ \beta \in (\Sigma \cup V)^*, \, \alpha \Rightarrow^* \beta \}$$

Le langage engendré par G désigne  $\mathcal{L}_G(S)$  le langage engendré par G depuis le symbole initial.

## Exemple 9.8

Pour la grammaire de l'exemple, on pourrait montrer que  $\mathcal{L}_G(S) = \{a^{2^n}, n \in \mathbb{N}^*\}$  On montre que ce langage n'est pas régulier (absurde + lemme de l'étoile tmtc)

## Définition 9.9 - langage de type 0

On dit qu'un langage est de type 0 s'il peut être engendré par une grammaire de type 0.

## Théorème 9.10 - de Chomsky (HP)

Les langages de type 0 sont exactement les langages récursivement énumérables, c'est-à-dire les langages reconnaissables par une machine de Turing.