MACS30000_Assignment2_JunhoChoi

October 17, 2018

1 Assignment 2, MACS 30000 (Dr. Evans)

1.0.1 Submitted by Junho Choi

Due Wednesday, Oct. 17 at 11:30 AM

This file contains the coding work that was used in completing this assignment. Please refer to the .pdf file for more detailed answers.

```
In [279]: # Import packages
    import numpy as np
    import pandas as pd
    import statsmodels.api as sm
    import matplotlib.pyplot as plt
    import math
    plt.style.use('seaborn')
```

1.0.2 **Problem 1**

Problem 1-(b)

```
In [280]: # Reading in the datasets
         header1 = ["labinc", "capinc", "height", "weight"]
         header2 = ["totinc", "weight", "age", "female"]
         besty = pd.read_csv('BestIncome.txt', sep = ",", header = None, names = header1)
         survy = pd.read_csv('SurvIncome.txt', sep = ",", header = None, names = header2)
         # Creating total income in BestIncome
         totinc_impu = besty["labinc"] + besty["capinc"]
         besty["totinc_impu"] = totinc_impu
         print(besty.head())
        labinc
                      capinc
                                 height
                                             weight
                                                     totinc_impu
0 52655.605507
                 9279.509829 64.568138 152.920634 61935.115336
1 70586.979225
                 9451.016902 65.727648 159.534414 80037.996127
2 53738.008339
                 8078.132315 66.268796 152.502405 61816.140654
3 55128.180903 12692.670403 62.910559 149.218189 67820.851305
4 44482.794867
                 9812.975746 68.678295 152.726358 54295.770612
```

```
In [281]: # Regression analysis (no. 1, OLS) with SurvIncome
        # dependent variable: age
        # explanatory variable: totinc, weight
        # Setting up the regression variables
        exp_vars = survy[["totinc", "weight"]]
        exp vars = sm.add constant(exp vars, prepend=False)
        dep_var = survy["age"]
        # Running the aforementioned regression
        m1 = sm.OLS(dep_var, exp_vars)
        result = m1.fit()
        print(result.summary())
        # Extracting and saving the regression coefficients
        coeff = result.params
                      OLS Regression Results
______
                            age R-squared:
Dep. Variable:
                                                            0.001
                            OLS Adj. R-squared:
Model:
                                                           -0.001
            Least Squares F-statistic: 0.6326
Wed, 17 Oct 2018 Prob (F-statistic): 0.531
00:59:10 Log-Likelihood: -3199.4
Method:
Date:
Time:
No. Observations:
                           1000 AIC:
                                                            6405.
Df Residuals:
                            997 BIC:
                                                            6419.
Df Model:
Covariance Type: nonrobust
______
             coef std err t P>|t| [0.025 0.975]
______
         2.52e-05 2.26e-05
                              1.114 0.266 -1.92e-05 6.96e-05

      -0.0067
      0.010
      -0.686
      0.493
      -0.026
      0.013

      44.2097
      1.490
      29.666
      0.000
      41.285
      47.134

weight
______
Omnibus:
                         2.460 Durbin-Watson:
                                                            1.921
                         0.292 Jarque-Bera (JB):
Prob(Omnibus):
                                                            2.322
Skew:
                        -0.109 Prob(JB):
                                                           0.313
                          3.092 Cond. No.
                                                         5.20e+05
Kurtosis:
```

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.2e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
+ coeff[1] * besty["weight"]
         besty["age_impu"] = age_impu
         # Presenting the "head" of SurvIncome after height imputation
         print(besty.head())
        labinc
                    capinc height
                                        weight totinc_impu age_impu
0 52655.605507 9279.509829 64.568138 152.920634 61935.115336 44.742614
1 70586.979225 9451.016902 65.727648 159.534414 80037.996127 45.154387
2 53738.008339 8078.132315 66.268796 152.502405 61816.140654 44.742427
3 55128.180903 12692.670403 62.910559 149.218189 67820.851305 44.915836
4 44482.794867 9812.975746 68.678295 152.726358 54295.770612 44.551391
In [283]: '''
         Regression analysis (no. 2, logistic) with SurvIncome
         dependent variable: female
         explanatory variable: totinc, weight, age
         # Setting up the regression variables
         exp_vars2 = survy[["totinc", "weight"]]
         exp_vars2 = sm.add_constant(exp_vars2)
         dep_var2 = survy["female"]
         # Running the aforementioned regression
         m2 = sm.Logit(dep_var2, exp_vars2)
         result2 = m2.fit()
         print(result2.summary2())
         # Extracting and saving the regression coefficients
         coeff2 = result2.params
Optimization terminated successfully.
        Current function value: 0.036050
        Iterations 11
                     Results: Logit
______
                                No. Iterations:
Model:
                  Logit
                                                  11.0000
Dependent Variable: female Pseudo R-squared: 0.948
Date:
                 2018-10-17 00:59 AIC:
                                                 78.1009
                         BIC: 92.8242
Log-Likelihood: -36.050
No. Observations: 1000
Df Model:
                997
                                LL-Null:
Df Residuals:
                                                 -693.15
                          Scale:
Converged:
                 1.0000
```

Coef. Std.Err. z P>|z| [0.025 0.975]

```
In [284]: # Manually calculating the probability has led to a math range error,
         # and therefore I will be relying on scikit-learn.
         from sklearn.linear model import LogisticRegression
         lr = LogisticRegression(fit_intercept = True, C = 1e9)
         exp_vars2 = survy[["totinc", "weight"]]
         # scikit-learn's LogisticRegression has different configurations
         # in comparison to statsmodel.api; therefore, the coefficients
         # and intercept are different.
         result2_2 = lr.fit(exp_vars2, dep_var2)
         print(result2_2.intercept_, result2_2.coef_)
         # Imputing the variable 'female' in BestIncome
         fem_impu = result2_2.predict(besty[["totinc_impu", "weight"]])
         besty["female_impu"] = fem_impu
         # Presenting the "head" of SurvIncome after height imputation
         print(besty.head())
[0.03294246] [[ 9.22210066e-05 -4.17849763e-02]]
        labinc
                                height
                                            weight totinc_impu age_impu \
                      capinc
0 52655.605507 9279.509829 64.568138 152.920634 61935.115336 44.742614
1 70586.979225 9451.016902 65.727648 159.534414 80037.996127 45.154387
2 53738.008339 8078.132315 66.268796 152.502405 61816.140654 44.742427
3 55128.180903 12692.670403 62.910559 149.218189 67820.851305 44.915836
4 44482.794867 9812.975746 68.678295 152.726358 54295.770612 44.551391
  female_impu
          0.0
0
          1.0
1
2
          0.0
3
          1.0
4
          0.0
```

7.2659 0.0000 56.0781 97.5077

0.0618 -7.2185 0.0000 -0.5672 -0.3249

-0.0002 0.0000 -3.6602 0.0003 -0.0002 -0.0001

Problem 1-(c)

76.7929

-0.4460

const

totinc

weight

10.5690

```
descStat2 = survy[["totinc", "age", "female"]].describe()
print(descStat2)
```

	totinc_impu	age_impu	female_impu
count	10000.000000	10000.000000	10000.000000
mean	67038.723697	44.890828	0.471700
std	8294.497996	0.219150	0.499223
min	33651.691815	43.976495	0.000000
25%	61452.517672	44.743776	0.000000
50%	67042.751487	44.886944	0.000000
75%	72636.874684	45.038991	1.000000
max	98996.053756	45.703819	1.000000
	totinc	age	female
count	1000.000000	1000.000000	1000.00000
mean	64871.210860	44.839320	0.50000
std	9542.444214	5.939185	0.50025
min	31816.281649	25.741333	0.00000
25%	58349.862384	41.025231	0.00000
50%	65281.271149	44.955981	0.50000
75%	71749.038000	48.817644	1.00000
max	92556.135462	66.534646	1.00000

Problem 1-(d)

```
In [286]: # Correlation matrix code and output
```

```
wout_tot = ["labinc", "capinc", "height", "weight", "age_impu", "female_impu"]
besty_wout_tot = besty[wout_tot]
print(besty_wout_tot.corr())
```

```
labinc
                  capinc height
                                weight age_impu female_impu
labinc
         1.000000 0.005325 0.002790 0.004507 0.924053
                                                0.677675
         0.005325 1.000000 0.021572 0.006299 0.234159
capinc
                                                0.176901
height
         0.002790 0.021572 1.000000 0.172103 -0.045083
                                               -0.066972
weight
         -0.382659
         0.784260
age_impu
female_impu 0.677675 0.176901 -0.066972 -0.382659 0.784260
                                               1.000000
```

1.0.3 **Problem 2**

Problem 2-(a)

```
In [287]: # Dataset read-in: IncomeIntel.txt
          head = ["gradyr", "greqnt", "salary"]
          iintel = pd.read_csv('IncomeIntel.txt', sep = ",", header = None, names = head)
```

```
# Declaring variables
gradyr = iintel[head[0]]
greqnt = iintel[head[1]]
salary = iintel[head[2]]

# Setting up the regression variables
exp_vars = sm.add_constant(greqnt, prepend=False)

# Running the aforementioned regression
m_q2 = sm.OLS(salary, exp_vars)
result_q2 = m_q2.fit()
print(result_q2.summary())

# Extracting and saving the regression coefficients
coeff_q2 = result_q2.params
```

OLS Regression Results

Dep. Variable:	sala	ry F	R-squ	ared:		0.263
Model:	0	LS A	Adj.	R-squared:		0.262
Method:	Least Squar	es F	F-sta	tistic:		356.3
Date:	Wed, 17 Oct 20	18 F	Prob	(F-statistic)	:	3.43e-68
Time:	01:01:	37 I	Log-L	ikelihood:		-10673.
No. Observations:	10	00 A	AIC:			2.135e+04
Df Residuals:	9	98 E	BIC:			2.136e+04
Df Model:		1				
Covariance Type:	nonrobu	st				
=======================================			====	========		========
coe	f std err		t	P> t	[0.025	0.975]
greqnt -25.763	2 1.365	-18.8	875	0.000	-28.442	-23.085
const 8.954e+0	4	101.8	895	0.000	8.78e+04	9.13e+04
Omnibus:	9.1	.18 I	 Durbi	n-Watson:		1.424
<pre>Prob(Omnibus):</pre>	0.0	10 3	Jarqu	e-Bera (JB):		9.100
Skew:	0.2	30 F	Prob(JB):		0.0106
Kurtosis:	3.0	77 (Cond.	No.		1.71e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.71e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Problem 2-(b)

```
plt.xlabel("Graduation Year")
plt.ylabel("GRE Quantitative Score")
plt.show()
```



```
# scores between 151 to 166
greqnt_conversion = greqnt.tolist()[:]
def conversion_gre(old_score):
    check1 = old score >= 200 and old score <= 800
    check2 = old_score >= 130 and old_score <= 170</pre>
    assert check1 or check2, ("The input should either "
                              "be a pre-2011 GRE score "
                               "(200-800), or a post-2011 "
                               "GRE score (130-170).")
    new_score = 0
    if old_score >= 200 and old_score <= 800:</pre>
        if old_score == 800:
            new_score = 166
        elif old_score < 800 and old_score >= 790:
            new_score = 164
        elif old_score < 790 and old_score >= 780:
            new_score = 163
        elif old_score < 780 and old_score >= 770:
            new_score = 161
        elif old_score < 770 and old_score >= 760:
            new_score = 160
        elif old_score < 760 and old_score >= 750:
            new_score = 159
        elif old_score < 750 and old_score >= 740:
            new_score = 158
        elif old_score < 740 and old_score >= 730:
            new\_score = 157
        elif old_score < 730 and old_score >= 720:
            new_score = 156
        elif old_score < 720 and old_score >= 700:
            new score = 155
        elif old_score < 700 and old_score >= 690:
            new score = 154
        elif old_score < 690 and old_score >= 680:
            new\_score = 153
        elif old_score < 680 and old_score >= 660:
            new_score = 152
        elif old_score < 660 and old_score >= 640:
            new_score = 151
        # the list can go on, but for convenience's sake
        # I will stop here
        return new_score
    else:
        return old_score
```

```
for i in range(0, len(greqnt_conversion)):
              greqnt_conversion[i] = conversion_gre(greqnt_conversion[i])
          iintel["greqnt_conv"] = greqnt_conversion
          print(iintel[["greqnt", "greqnt_conv"]].head())
655.7025368703108 799.7155331839259
       greqnt greqnt_conv
0 739.737072
                     157.0
1 721.811673
                     156.0
2 736.277908
                     157.0
3 770.498485
                     161.0
4 735.002861
                     157.0
In [290]: ## Checking whether the conversion is more or less valid
          ## via describe() and scatterplot
          print(iintel["greqnt_conv"].describe())
          plt.scatter(x = gradyr, y = greqnt_conversion)
          plt.xlabel("Graduation Year")
          plt.ylabel("GRE Quantitative Score, post-conversion")
          plt.show()
         1000.000000
count
mean
          156.195657
std
            3.169308
min
          141.261398
25%
          155.000000
50%
          156.000000
75%
          158.000000
          170.000000
max
Name: greqnt_conv, dtype: float64
```


Problem 2-(c)


```
In [292]: # Finding the average growth rate of income
          avg_sal_yr = iintel.groupby(['gradyr'])['salary'].mean()
          avg_sal_yr_list = avg_sal_yr.tolist()
          avg_sal_g_rate = []
          for i, sal in enumerate(avg_sal_yr_list):
              if i == len(avg_sal_yr_list) - 1:
                  break
              else:
                  next_yr = avg_sal_yr_list[i+1]
                  g_rate = (next_yr - sal) / sal
                  avg_sal_g_rate.append(g_rate)
          def find_mean_list(some_list):
              adder = 0
              for i in some_list:
                  adder = adder + i
              arith_mean = adder / len(some_list)
              return arith_mean
          # Value of the average growth rate of income
          g_overall = find_mean_list(avg_sal_g_rate)
          print(g_overall)
```

0.030835347092883603

```
In [293]: # For the de-trending of income
          newsal_list = []
          salcopy = iintel["salary"].tolist()[:]
          for i, sal in enumerate(salcopy):
              newsal = sal
              for t in range(2002, 2014):
                  j = t - 2001
                  if iintel["gradyr"][i] == t:
                      detrend_rate = (1 / (1 + g_overall)) ** j
                      newsal = sal * detrend_rate
              newsal_list.append(newsal)
          iintel["salary_detrend"] = newsal_list
In [294]: ## Checking whether the de-trending is more or less valid
          ## via scatterplot
          print(iintel["salary_detrend"].describe())
          plt.scatter(x = gradyr, y = newsal_list)
          plt.xlabel("Graduation Year")
          plt.ylabel("Salary (in USD), de-trended")
          plt.show()
          1000.000000
count
mean
        61419.808910
std
         7135.610865
        41164.726530
min
25%
        56616.517414
50%
        61467.616002
75%
        66218.595876
         84516.856633
max
Name: salary_detrend, dtype: float64
```


Problem 2-(d)

```
In [295]: # Setting up the regression variables
    dep_var = iintel["salary_detrend"]
    exp_vars = iintel["greqnt_conv"]
    exp_vars = sm.add_constant(exp_vars, prepend=False)

# Running the regression after making the necessary changes
    m_q2_1 = sm.OLS(dep_var, exp_vars)
    result_q2_1 = m_q2_1.fit()
    print(result_q2_1.summary())
```

OLS Regression Results

Dep. Variable:	salary_detrend	R-squared:	0.001
Model:	OLS	Adj. R-squared:	-0.000
Method:	Least Squares	F-statistic:	0.6590
Date:	Wed, 17 Oct 2018	Prob (F-statistic):	0.417
Time:	01:02:22	Log-Likelihood:	-10291.
No. Observations:	1000	AIC:	2.059e+04
Df Residuals:	998	BIC:	2.060e+04
Df Model:	1		
Covariance Type:	nonrobust		

=========			========	:=======	========	========
	coef	std err	t	P> t	[0.025	0.975]
greqnt_conv const	-57.8359 7.045e+04	71.246 1.11e+04	-0.812 6.330	0.417	-197.644 4.86e+04	81.972 9.23e+04
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	0.77° 0.673 0.059 3.05	8 Jarque- 9 Prob(JE	•		2.026 0.684 0.710 7.71e+03
=========	=========		========	:======:	========	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.71e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [296]: # Setting up the regression variables for one with time trend
          dep_var = iintel["salary"]
          years = iintel["gradyr"].tolist()[:]
          time = []
          for y in years:
              t = y - 2001
              time.append(t)
          iintel["time"] = time
          exp_vars = iintel[["time", "greqnt_conv"]]
          exp_vars = sm.add_constant(exp_vars, prepend=False)
          # Running the regression after making the necessary changes
          m_q2_2 = sm.OLS(dep_var, exp_vars)
          result_q2_2 = m_q2_2.fit()
          print(result_q2_2.summary())
```

OLS Regression Results

===========			
Dep. Variable:	salary	R-squared:	0.490
Model:	OLS	Adj. R-squared:	0.489
Method:	Least Squares	F-statistic:	478.8
Date:	Wed, 17 Oct 2018	Prob (F-statistic):	1.78e-146
Time:	01:02:25	Log-Likelihood:	-10489.
No. Observations:	1000	AIC:	2.098e+04
Df Residuals:	997	BIC:	2.100e+04
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
time greqnt_conv const	2265.4860 -86.9987 7.418e+04	74.503 87.932 1.38e+04	30.408 -0.989 5.370	0.000 0.323 0.000	2119.286 -259.552 4.71e+04	2411.686 85.555 1.01e+05
========	========					=======
Omnibus:		2.45	3 Durbin-	-Watson:		2.056
Prob(Omnibus	:):	0.29	3 Jarque-	Bera (JB):		2.373
Skew:		0.076	6 Prob(JE	3):		0.305
Kurtosis:		3.18	4 Cond. N	lo.		7.85e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.85e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [297]: ## Splitting the dataset (pre-2011 vs. post-2011)
          ## and running similar regressions
          ## Where to split?
          for i, yr in enumerate(gradyr):
              if yr == 2011.0:
                  split = i
                  break
          ## Pre-2011
          dep_var = iintel["salary_detrend"][0:split]
          exp_vars = iintel["greqnt_conv"][0:split]
          exp_vars = sm.add_constant(exp_vars, prepend=False)
          m_q2_sp = sm.OLS(dep_var, exp_vars)
          result_q2_sp = m_q2_sp.fit()
          print(result_q2_sp.summary())
          ## In-and-Post-2011
          dep_var = iintel["salary_detrend"][split:]
          exp_vars = iintel["greqnt_conv"][split:]
          exp_vars = sm.add_constant(exp_vars, prepend=False)
          m_q2_sp2 = sm.OLS(dep_var, exp_vars)
          result_q2_sp2 = m_q2_sp2.fit()
          print()
          print(result_q2_sp2.summary())
```

OLS Regression Results

Dep. Variable: salary_det		.lary_detren	d	R-sq	uared:			0.000	
Model:			OL	OLS Adj. R-squared:			-0.001		
Method:		L	Least Squares		F-statistic:				0.3201
Date:		Wed,	17 Oct 201	8	Prob	<pre>Prob (F-statistic):</pre>		:	0.572
Time:			01:02:2	9	Log-	Likelihoo	od:		-7916.7
No. Observat	ions:		77	0	AIC:				1.584e+04
Df Residuals	:		76	8	BIC:				1.585e+04
Df Model:				1					
Covariance T	ype:		nonrobus	t					
========	======	=====	=======	===		=======			========
	со		std err					_	_
greqnt_conv									
const	7.229e+	04	1.92e+04	;	3.775	0.0	000	3.47e+04	
Omnibus:	======	=====	1.21	=== : 8	===== :Durb	====== in-Watsor			1.968
<pre>Prob(Omnibus):</pre>			0.544 Jarque-Bera (JB):			1.074			
Skew: 0.079		9	-			0.585			
Kurtosis:			3.09	2	Cond	. No.			1.18e+04
========	======	=====	=======	===	=====				=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.18e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variable:	salary_detren	d R-squared:		0.002
Model:	OL	S Adj. R-squared:		-0.002
Method:	Least Square	s F-statistic:		0.4616
Date:	Wed, 17 Oct 201	8 Prob (F-statistic):	0.498
Time:	01:02:2	9 Log-Likelihood:		-2373.9
No. Observations:	23	O AIC:		4752.
Df Residuals:	22	8 BIC:		4759.
Df Model:		1		
Covariance Type:	nonrobus	t		
=======================================				========
Co	oef std err	t P> t	_	0.975]
greqnt_conv -63.75		-0.679 0.498		
const 7.118e-	+04 1.45e+04	4.894 0.000	4.25e+04	9.98e+04
Omnibus:	0.00	======================================	=======	2.194
<pre>Prob(Omnibus):</pre>	0.99	8 Jarque-Bera (JB):		0.066
Skew:	0.00	4 Prob(JB):		0.968
Kurtosis:	2.91	8 Cond. No.		4.63e+03
=======================================	=========	=======================================	=======	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.