SCHEMA NORMALIZATION

CS 564- Fall 2015

How To Build a DB Application

- Pick an application
- Figure out what to model (ER model)
 - Output: ER diagram
- Transform the ER diagram to a relational schema
- Refine the relational schema (normalization)
- Now ready to implement the schema and load the data!

MOTIVATING EXAMPLE

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

- What is the primary key?
 - (SSN, PhoneNumber)
- What is the problem with this schema?

MOTIVATING EXAMPLE

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

Problems:

- redundant storage
- update: change the age of Paris?
- insert: what if a person has no phone number?
- delete: what if Arun deletes his phone number?

SOLUTION: DECOMPOSITION

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

SSN	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

SSN	phoneNumber
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

GENERAL SOLUTION

- identify "bad" schemas
 - functional dependencies (FDs)
- decompose the tables (normalize) using the FDs specified
- decomposition should be used judiciously:
 - normal forms (BCNF, 3NF) guarantee against some forms of redundancy
 - does decomposition cause any problems?
 - Lossless join
 - Dependency preservation

FUNCTIONAL DEPENDENCIES

FD: DEFINITION

- FDs are a form of constraint
- generalize the concept of keys

If two tuples agree on the attributes

$$A_1, A_2, \ldots, An$$

then they must agree on the attributes

$$B_1, B_2, ..., B_m$$

Formally:

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

FD: EXAMPLE 1

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

- $SSN \rightarrow name, age$
- SSN, $age \rightarrow name$
- SSN → phoneNumber

FD: EXAMPLE 2

studentID	semester	courseNo	section	instructor
124434	4	CS 564	1	Paris
546364	4	CS 564	2	Arun
999492	6	CS 764	1	Anhai
183349	6	CS 784	1	Jeff

- $courseNo, section \rightarrow instructor$
- $studentID \rightarrow semester$

How Do We Infer FDs?

- What FDs are valid for a relational schema?
 - think from an application point of view
- An FD is
 - an inherent property of an application
 - not something we can infer from a set of tuples
- Given a table with a set of tuples
 - we can confirm that a FD seems to be valid
 - to infer that a FD is definitely invalid
 - we can **never** prove that a FD is valid

EXAMPLE 3

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supplies	59

To confirm whether $name \rightarrow department$

- erase all other columns
- check that the relationship name-department is manyone!

WHY FDS?

- keys are special cases of FDs
- more integrity constraints for the application
- having FDs will help us detect that a table is "bad", and how to decompose the table

More on FDs

- If the following FDs hold:
 - $-A \longrightarrow B$
 - $-B \longrightarrow C$
- then the following FD is also true:
 - $-A \longrightarrow C$
- This means that there are more FDs that can be found! How?
 - Armstrong's Axioms

ARMSTRONG'S AXIOMS: 1

Reflexivity

For any subset
$$X \subseteq \{A_1, ..., A_n\}$$
:
 $A_1, A_2, ..., A_n \longrightarrow X$

Examples

$$-A, B \longrightarrow B$$

$$-A,B,C \longrightarrow A,B$$

$$-A,B,C \longrightarrow A,B,C$$

ARMSTRONG'S AXIOMS: 2

Augmentation

For any attribute sets X, Y, Z: if $X \rightarrow Y$ then X, $Z \rightarrow Y$, Z

Examples

- $-A \longrightarrow B$ implies $A, C \longrightarrow B, C$
- $-A, B \rightarrow C$ implies $A, B, C \rightarrow C$

ARMSTRONG'S AXIOMS: 3

Transitivity

For any attribute sets X, Y, Z: if $X \longrightarrow Y$ and $Y \longrightarrow Z$ then $X \longrightarrow Z$

Examples

- $-A \longrightarrow B$ and $B \longrightarrow C$ imply $A \longrightarrow C$
- $-A \longrightarrow C, D$ and $C, D \longrightarrow E$ imply $A \longrightarrow E$

APPLYING ARMSTRONG'S AXIOMS

Product(name, category, color, department, price)

- $name \rightarrow color$
- $category \rightarrow department$
- $color, category \rightarrow price$

Inferred FDs:

- $name, category \rightarrow price$
 - (1) Augmentation, (2) Transitivity
- $name, category \rightarrow color$
 - (1) Reflexivity, (2) Transitivity

APPLYING ARMSTRONG'S AXIOMS

FD Closure

If F is a set of FDs, the closure F^+ is the set of all FDs logically implied by F

Armstrong's axioms are:

- **sound**: any FD generated by an axiom belongs in F^+
- **complete**: repeated application of the axioms will generate all FDs in F^+

CLOSURE OF ATTRIBUTE SETS

Attribute Closure

If *X* is an attribute set, the closure *X*⁺ is the set of all attributes *B* such that:

$$X \longrightarrow B$$

In other words, X^+ includes all attributes that are functionally determined from X

EXAMPLE

Product(name, category, color, department, price)

- $name \rightarrow color$
- $category \rightarrow department$
- $color, category \rightarrow price$

Attribute Closure:

- $\{name\}^+ = \{name, color\}$
- {name, category}⁺ =
 {name, color, category, department, price}

WHY IS CLOSURE NEEDED?

- Does $X \longrightarrow Y$ hold?
 - check if $Y \subseteq X^+$
- Compute the closure F^+ of FDs
 - for each subset of attributes X, compute X^+
 - for each subset of attributes $Y \subseteq X^+$, output the FD $X \longrightarrow Y$

CLOSURE ALGORITHM

Let
$$X = \{A_1, A_2, ..., A_n\}$$

Until X doesn't change **repeat**:
if $B_1, B_2, ..., B_m \longrightarrow C$ is a FD **and**
 $B_1, B_2, ..., B_m$ are all in X
then add C to X

EXAMPLE

R(A, B, C, D, E, F)

- $A, B \rightarrow C$
- $A, D \longrightarrow E$
- $B \longrightarrow D$
- $A, F \longrightarrow B$

Compute:

- $\{A, B\}^+ = \{A, B, C, D, E\}$
- $\{A, F\}^+ = \{A, F, B, D, E, C\}$

KEYS & SUPERKEYS

Relation R

• **superkey:** a set of attributes $A_1, A_2, ..., A_n$ such that for any other attribute B

$$A_1, A_2, \dots, A_n \longrightarrow B$$

- key: a minimal superkey
 - none of its subsets functionally determines all attributes of R

COMPUTING KEYS & SUPERKEYS

- Compute X⁺ for all sets of attributes X
- If $X^+ = all \ attributes$, then X is a superkey
- If no subset of X is a superkey, then X is also a key

EXAMPLE

Product(name, category, price, color)

- $name \rightarrow color$
- $color, category \rightarrow price$

Superkeys:

{name, category}, {name, category, price}{name, category, color}, {name, category, price, color}

Keys:

• {name, category}

MANY KEYS?

Q: Is it possible to have many keys in a relation **R**?

YES!! Take relation **R**(A, B, C)with FDs

- $A, B \rightarrow C$
- $A, C \rightarrow B$

RECAP

- FDs and (super)keys
- Reasoning with FDs:
 - given a set of FDs, infer all implied FDs
 - given a set of attributes *X*, infer all attributes
 that are functionally determined by *X*
- Next we will look at how to use them to detect that a table is "bad"

BCNF DECOMPOSITION

BOYCE-CODD NORMAL FORM (BCNF)

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

Equivalent definition: for every attribute set *X*

- either $X^+ = X$
- or $X^+ = all \ attributes$

BCNF EXAMPLE 1

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

 $SSN \rightarrow name, age$

- $\mathbf{key} = \{SSN, phoneNumber\}$
- $SSN \rightarrow name$, age is a "bad" dependency
- The above relation is **not** in BCNF!

BCNF EXAMPLE 2

SSN	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

 $SSN \rightarrow name, age$

- **key** = $\{SSN\}$
- The above relation is in BCNF!

BCNF EXAMPLE 3

SSN	phoneNumber
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

- $\mathbf{key} = \{SSN, phoneNumber\}$
- The above relation is in BCNF!
- **Q**: can we have a binary relation that is not in BCNF?

BCNF DECOMPOSITION

Find an FD that violates the BCNF condition

$$A_1, A_2, ..., A_n \longrightarrow B_1, B_2, ..., B_m$$

• Decompose \mathbf{R} to \mathbf{R}_1 and \mathbf{R}_2 :

Continue until no BCNF violations are left

DECOMPOSITION EXAMPLE

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

- The FD $SSN \rightarrow name, age$ violates BCNF
- Split into two relations R_1 , R_2 as follows:

DECOMPOSITION EXAMPLE

 $SSN \rightarrow name, age$

SSN	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

SSN	phoneNumber
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

BCNF EXAMPLE

Person(SSN, name, age, canDrink, phoneNumber)

- $SSN \rightarrow name, age$
- $age \rightarrow canDrink$

DECOMPOSITION PROPERTIES

DECOMPOSITION IN GENERAL

Let $\mathbf{R}(A_1, ..., A_n)$. To decompose, create:

- $\mathbf{R_1}(B_1, ..., B_m)$
- $\mathbf{R}_{2}(C_{1},...,C_{l})$
- where $\{B_1, ..., B_m\} \cup \{C_1, ..., C_l\} = \{A_1, ..., A_n\}$

Then:

- $\mathbf{R_1}$ is the projection of \mathbf{R} onto $\mathbf{B_1}$, ..., $\mathbf{B_m}$
- $\mathbf{R_2}$ is the projection of \mathbf{R} onto $\mathbf{C_1}$, ..., $\mathbf{C_l}$

PROPERTIES

- 1. minimize redundancy
- 2. avoid information loss
- 3. preserve functional dependencies
- 4. ensure good query performance

Information Loss Example

name	age	phoneNumber
Paris	24	608-374-8422
John	24	608-321-1163
Arun	20	206-473-8221

Decompose into:

- R_1 (name, age)
- **R**₂(age, phoneNumber)

name	age
Paris	24
John	24
Arun	20

age	phoneNumber	
24	608-374-8422	
24	608-321-1163	
20	206-473-8221	

Can we put it back together?

LOSSLESS-JOIN DECOMPOSITION

The decomposition is lossless-join if **R'** is the same as **R**

FD PRESERVING

- Given a relation R and a set of FDs F, decompose R into R₁ and R₂
- Suppose
 - $-\mathbf{R_1}$ has a set of FDs F_1
 - $-\mathbf{R_2}$ has a set of FDs F_2
 - $-F_1$ and F_2 are computed from F

The decomposition is dependency preserving if by enforcing F_1 over $\mathbf{R_1}$ and F_2 over $\mathbf{R_2}$, we can enforce F over \mathbf{R}

GOOD EXAMPLE

Person(SSN, name, age, canDrink)

- $SSN \rightarrow name, age$
- $age \rightarrow canDrink$

Decomposes into:

- R₁(SSN, name, age)
 - $-SSN \rightarrow name, age$
- **R**₂(age, canDrink)
 - $-age \rightarrow canDrink$

BAD EXAMPLE

R(A, B, C)

- $A \longrightarrow B$
- $B, C \longrightarrow A$

Decomposes into:

- $\mathbf{R_1}(A, B)$
 - $-A \longrightarrow B$
- $\mathbf{R}_2(A, C)$
 - no FDs here!!

 R_1

A	В
a_1	b
a_2	b

 $\mathbf{R_2}$

A	С
a_1	С
a_2	С

recover

A	В	С
a_1	b	С
a_2	b	С

The recovered table violates $B, C \rightarrow A$

DECOMPOSITION

- When decomposing a relation R, we want to achieve good properties
- These properties can be conflicting
- BCNF decomposition achieves some of these:
 - removes certain types of redundancy
 - is **lossless-join**
 - is not always dependency preserving

WHY IS BCNF LOSSLESS-JOIN?

Example:

 $\mathbf{R}(A, B, C)$ with $A \rightarrow B$ decomposes into: $\mathbf{R_1}(A, B)$ and $\mathbf{R_2}(A, C)$

- Suppose tuple (a,b,c) is in the recovered R'
- Then, (a,b) in $\mathbf{R_1}$ and (a,c) in $\mathbf{R_2}$
- But then (a,b',c) is in **R**
- Since $A \longrightarrow B$ it must be that b' = b
- So (a,b,c) is also in R!

WHY IS BCNF NOT FD PRESERVING?

R(A, B, C)

- $A \longrightarrow B$
- $B, C \longrightarrow A$

The BCNF decomposition is:

- $\mathbf{R_1}(A, B)$ with FD $A \rightarrow B$
- $\mathbf{R}_2(A, C)$ with no FDs

There may not exist any BCNF decomposition that is FD preserving!

NORMAL FORMS

BCNF is what we call a normal form

Other normal forms exist:

- 1NF: flat tables (atomic values)
- 2NF
- 3NF
- BCNF
- 4NF

• ...

more restrictive

THIRD NORMAL FORM (3NF)

3NF DEFINITION

A relation **R** is in **3NF** if whenever $X \rightarrow A$, one of the following is true:

- $A \in X$ (trivial FD)
- X is a superkey
- A is part of some key of R (prime attribute)

BCNF implies 3NF

3NF CONTINUED

- Example: $\mathbf{R}(A, B, C)$ with $A, B \rightarrow C$ and $C \rightarrow A$
 - is in 3NF. Why?
 - is not in BCNF. Why?

- Compromise used when BCNF not achievable: aim for BCNF and settle for 3NF
- Lossless-join and dependency-preserving decomposition of R into a collection of 3NF relations is always possible!

3NF DECOMPOSITION

- The algorithm for BCNF decomposition can be used to get a lossless-join decomposition into 3NF
- We can typically stop earlier!
- To ensure dependency preservation as well, instead of the given set of FDs F, we use a minimal (or canonical) cover for F

MINIMAL COVER FOR FDS

- minimal cover *G* for a set of FDs *F*:
 - $-G^{+}=F^{+}$
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes
 - The LHS of each FD is unique
- The minimal cover gives a lossless-join and dependency-preserving decomposition algorithm!

EXAMPLE

Example:

- $\bullet A \longrightarrow B$
- $A, B, C, D \rightarrow E$
- $E, F \rightarrow G, H$
- $A, C, D, F \rightarrow E, G$

The minimal cover is the following:

- $\bullet A \longrightarrow B$
- $\cdot A, C, D \rightarrow E$
- $E, F \rightarrow G, H$

3NF ALGORITHM

- 1. Find a lossless-join 3NF decomposition (that might violate some FDs)
- 2. Compute a minimal cover *F*
- 3. Find the FDs in *F* that are not preserved
- 4. For each non-preserved FD $X \rightarrow A$ add a new relation R(X, A)

IS NORMALIZATION ALWAYS GOOD?

- Example: suppose A and B are always used together, but normalization says they should be in different tables
 - decomposition might produce unacceptable performance loss
- Example: data warehouses
 - huge historical DBs, rarely updated after creation
 - joins expensive or impractical
- Everyday DBs: aim for BCNF, settle for 3NF!

RECAP

- Bad schemas lead to redundancy
 - redundant storage, update, insert, and delete anomaly
- To "correct" bad schemas: decompose relations
 - must be a lossless-join decomposition
 - would like dependency-preserving decompositions
- Desired normal forms
 - BCNF: only superkey FDs
 - 3NF: superkey FDs + dependencies with prime attributes on the RHS