

Checklist of Insects Associated with *Salvinia minima* Baker in Louisiana, USA

Katherine A. Parys 1,2*, Matthew L. Gimmel 1,3 and Seth J. Johnson 1

- 1 Louisiana State University, Department of Entomology, LSU AgCenter, 404 Life Sciences Building, Baton Rouge, LA 70803, USA.
- 2 USDA Agricultural Research Service, Southern Insect Research Management Unit, 141 Experiment Station Road, Stoneville, MS 38776, USA.
- 3 Department of Biology, Faculty of Education, Palacký University, Purkrabská 2, CZ-77140 Olomouc, Czech Republic.
- * Corresponding author. Email: katherine.parys@ars.usda.gov

ABSTRACT: This study presents a list of adult insects (excluding Diptera and Lepidoptera) collected from an infestation of an invasive aquatic weed, common salvinia (*Salvinia minima* Baker), in southern Louisiana, USA. Insects were sampled from May – November of 2009 and 2010 using floating pitfall traps. A total of 7,933 specimens were collected, representing seven orders, 70 families, and 235 species. Species of note include three currently undescribed species of Coleoptera, one previously undescribed braconid wasp, two new state records of Curculionidae, a new state generic record for the family Limnichidae, and a new record for the United States.

Introduction

Aquatic macrophytes contribute to the structure and function of wetlands in a variety of ways, including positively affecting diversity among associated groups and providing shelter from predation (Brown 1998, Olson *et al.* 1994, Batzer 1998). Many species of invertebrates show distinct preferences for aquatic plants based on their physical structure (Dvorak and Best 1982, Cyr and Downing 1988, Dvorak 1996). However, invasive plants threaten wetland community structure and integrity by forming monotypic stands, changing available habitat, altering diversity, and modifying food webs (Zedler and Kercher 2004). As more non-native plants such as *Salvinia* species invade waterways, the ecosystem functions that macrophytes provide are likely to change (Luken and Thieret 1997).

Older studies examining insects associated with *Salvinia* species focused on identifying potential biological control agents for *S. molesta* Mitchell by examining the *S. auriculata* complex (*S. auriculata* Aubl., *S. molesta*, *S. herzogii* de la Sota, and *S. biloba* Raddi) (Bennett 1966, Forno and Bourne 1984). Several recent studies have examined macroinvertebrates associated with *Salvinia* from a conservation standpoint within its native range (Herrera *et al.* 2000, Albertoni and Palma-Silva 2006, Poi de Neiff and Neiff 2006). Studies sampling insect diversity associated with *Salvinia* species have returned results ranging from 10 insect species (with *S. biloba*; Forno and Bourne 1984) to 113 insect species (with *S. molesta*; Pelli and Barbosa 1998).

No investigations have been carried out to document diversity of invertebrates associated with either *S. minima* or *S. molesta* in the United States. Pelli and Barbosa (1998) suggested that a rich fauna associated with *Salvinia* in Brazil is possibly a side effect of a rich endemic aquatic fauna that uses *Salvinia* incidentally. Unfortunately, while the habitat is commonly found in the southeastern United States, few studies that compared invertebrates from swamps and flooded woodlands to other wetland

types (Batzer and Wissinger 1996). Even fewer studies are available from Louisiana to provide baseline surveys for non-impacted communities (Ziser 1978, Sklar 1983, 1985).

MATERIALS AND METHODS

This survey was conducted from May – November during 2009 and 2010 on a privately owned tract of land just north of Gramercy, Louisiana (30°09'48" N, 90°48'38" W) bordered by Interstate 10 and US-61. This site is classified as a cypress-tupelo-blackgum freshwater swamp, and the landscape is dominated by baldcypress (*Taxodium distichum* L.). Common salvinia (*Salvinia minima* Baker) has colonized the open water and formed solid dense mats of plant material. Other invasive aquatic plants encountered in smaller patches at the study site included water hyacinth (*Eichhornia crassipes* (Martius) Solms) and pennywort (*Hydrocotyle* spp.).

One hundred aquatic pitfall traps were built and used to sample insects (see Parys and Johnson 2011 for trap design). Each trap's location was marked with neon plastic flagging tied to the 2 m landscape stake used to anchor the trap. Traps were deployed from 18 May 2009 – 02 November 2009 and again the following year from 07 May 2010 – 08 November 2010. The traps were serviced biweekly for a total of 13 sampling periods each year. Catches were labeled with the trap location and service date, and preserved in the lab in ethylene glycol until processed. Specimens were sorted in the lab and all adult insects except Diptera and Lepidoptera were pinned or pointed and labeled with full locality information. Plant material, amphibian, and crustacean bycatch were discarded. Residual unidentifiable adult taxa and all immature insects were preserved in 95% ethanol and deposited at Louisiana State Arthropod Museum, Louisiana State University, Baton Rouge, Louisiana (LSAM). All preserved specimens were identified to the lowest taxonomic level feasible, using relevant literature and help from taxonomic specialists (Arnett and Thomas

2000, Arnett et al. 2002, Epler 2006, Merritt et al. 2008, Epler 2010). Voucher specimens of all species listed in Table 1 are deposited at LSAM. Additional specimens are deposited with: CWOB - the personal collection of Charles W. O'Brien, Green Valley, Arizona (Coleoptera: Curculionidae), MEM - Mississippi Entomological Museum, Mississippi State University, Starkville, MS (Hymenoptera: Formicidae), EMUS - Entomological Museum at Utah State, Logan, Utah (Hymenoptera: Pompilidae), HIC - Hymenoptera Institute Collection, Department of Entomology, University of Kentucky, Lexington, Kentucky (Hymenoptera: Ichneumonidae), FSCA – Florida State Collection of Arthropods, Gainesville, Florida (Hymenoptera: Ichneumonidae), and USNM -National Museum of Natural History, Washington, D.C. (Hymenoptera: Ichneumonidae). As these specimens were not collected in protected geographic areas or exported outside the USA, no permits or licenses were required to collect them.

RESULTS AND DISCUSSION

A total of 7,933 adult insects were collected (excluding Diptera and Lepidoptera), representing at least 235 species within 70 families and seven orders (Table 1). Coleoptera were the most species-rich order (169), followed by Hymenoptera (38), Hemiptera (20), Orthoptera (four), Odonata (two), and Psocoptera/Blattaria (one each). Staphylinidae were the most species-rich family (37), followed closely by Carabidae (30), Formicidae (26), and Curculionidae (21). In addition to being the most speciesrich order, Coleoptera were also the most abundant order (4355), followed again by Hymenoptera (2355), Hemiptera (1041), Orthoptera (172), Odonata (10), and Psocoptera/Blattaria (one each). The most abundant families were Scirtidae (1244), followed by Carabidae (1212), Ichneumonidae (928), Hydrophilidae (922), and Formicidae (862). The five most abundant species were Scirtes tibialis Guérin-Méneville (1101) (Scirtidae), Apsilops hirtifrons (Ashmead) (926) (Ichneumonidae), Enochrus ochraceus (Melsheimer) (562) (Hydrophilidae), Hydrometra australis Say (548) (Hydrometridae), and Stenocrepis duodecimstriata (Chevrolat) (470) (Carabidae).

Infrequently collected species (<5 individuals) made up 64.7% of our identified species (151/235) with the majority of those that were rare being singletons (105/152). While singletons made up 44.7% of the richness observed, they only accounted for 1.3% of our total abundance. This situation is commonly observed in arthropod surveys; on average 32% of specimens collected in tropical areas are singletons (Coddington *et al.* 2009). Many hypotheses have been presented in the literature to account for rare species including insufficient sampling efforts, genuinely low populations, edge effects, and tourist species (Novotny and Basset 2000, Coddington *et al.* 2009).

As part of this research we collected three currently undescribed species of Coleoptera (located in the families Staphylinidae, Scirtidae, and Ptiliidae) and one previously undescribed braconid wasp. An unidentified genus (near *Nephanes*) in the family Ptiliidae has been observed from dung and fermenting organic material across the eastern coast of the United States and does not currently match

any established name (M. Sörensson, pers. com.). The undescribed staphylinid, which belongs to Hoplandria (Genosema), is known from only one specimen; the other Nearctic species of this subgenus (H. pulchra Kraatz) is collected from feces and organic material (J.-S. Park pers. com.). The undescribed species of Cyphon (Scirtidae) is conspecific with Epler's (2010) "C. sp.2." Its range encompasses much of the Atlantic and Gulf coasts (Tetrault unpublished dissertation 1967, Epler 2010). The braconid wasp was described as Neothlipsis parysae Sharkey in conjunction with researchers at the Hymenoptera Institute at the University of Kentucky (Sharkey et al. 2011). Other species of note included two new Louisiana state records of Curculionidae (Bagous hydrillae O'Brien, [see Center et al. 2013] and *Onychylis texanus* Burke), a new state generic record for the family Limnichidae (Limnichites punctatus (LeConte)), and a new country record for Pyramica epinotalis (Weber) (see Chen et al. 2012).

Evaluating β-diversity and comparing our results with other studies associating invertebrates with *Salvinia* species has been difficult due to differences in native fauna between study locations, taxonomic resolution, and sampling strategies. Several of the studies only identified invertebrates to family level (Pelli and Barbosa 1998, Albertoni and Palma-Silva 2006, Mfundisi *et al.* 2008). Junk (1977) identified specimens only to order, and Gopalan and Nair (1975) only identified invertebrates to class. Of the papers that provide taxonomic resolution, Bennett (1966) and Forno and Bourne (1984) both focus solely on herbivorous insects, eliminating some of the larger taxonomic groups we sampled.

Several other *Salvinia* invertebrate association studies also report Coleoptera as their most species-rich and/or abundant group (Pelli and Barbosa 1998, Herrera *et al.* 2000, Poi de Neiff and Neiff 2006). Coleoptera represent one of the largest "aquatic" groups in the world (Jäch and Balke 2008). Both Mfundisi *et al.* (2008) and Albertoni and Palma-Silva (2006) reported larval Chironomidae as the most abundant macroinvertebrates, but we did not collect these due to our sampling design. Differences in taxa collected across these studies are almost certainly a result of differences in sampling method (Meyer *et al.* 2011). Our sampling effort for associated insects was much more intensive (2600 samples over two years) than other published studies and focused solely on adult insects.

Sklar's (1983) unpublished dissertation provided one of two inventories available for macroinvertebrates associated with floating vegetation in Louisiana (*Lemna* species, prior to *Salvinia* invasion). His list contains 48 taxa of insects (mostly identified to genus, though some to the species level). Ziser (1978) evaluated wetlands adjacent to our field site and collected 55 taxa of insects (mostly larvae and nymphs). Our study shows much higher levels of richness than Sklar's (1983, 1985) or Ziser's (1978) works.

While Pelli and Barbosa's (1998) hypothesis that invertebrates that already exist in a habitat will use invasive vegetation incidentally would account for some increase in richness and abundance, we would expect values to be similar to other studies in similar habitats. We observed over triple the number of taxa documented in Sklar (1983) or Ziser (1978), including many predaceous

terrestrial Coleoptera and parasitic Hymenoptera. Either these groups are collected preferentially by a floating pitfall trap as opposed to removing whole plant samples, or the mat of *S. minima* may be supporting a community of arthropods exploring a formerly unavailable habitat.

To examine these ideas more closely, we consulted relevant literature for taxa collected during our study (Arnett and Thomas 2000, Arnett et al. 2002, Epler 2006, Jäch and Balke 2008, Epler 2010). Habitat associations and lifestyles for the taxa for which information was available are presented in Table 1. For the Coleoptera, Jäch (1998) defined six ecological groups based on familial associations with water: True Water Beetles (1), False Water Beetles (2), Phytophilous Water Beetles (3), Parasitic Water Beetles (4), Facultative Water Beetles (5), and Shore Beetles (6). These classifications are roughly associated with the amount of time spent in contact with the water and presented in the habitat column of Table 1 as "A1-6." Out of the 169 species of Coleoptera we collected, 89 were listed as hygrophilic or riparian in one of the references (Jäch 1998, Arnett and Thomas 2000, Arnett et al. 2002). Intriguingly, many of them were also noted as being crepuscular or nocturnal which could also explain

their absence from lists created from other (diurnal-only) collection methods. Most of the Hemiptera collected were aquatic in nature or known to feed on aquatic plants (Epler 2006). While many parasitic Hymenoptera are semi-aquatic in nature, we refrained from indicating habitat associations in our taxa list without genus- or species-level identifications. The exception is *Anoplius depressipes* Banks which is known to hunt the semi-aquatic spiders of the genus *Dolomedes* (Roble 1985). A number of the listed species are hypogenic and are likely exploiting previously unavailable habitats (Parys and Johnson 2012).

Despite gaps in our knowledge of the identity and natural history of some of our sampled taxa, we conclude that most taxa collected in our study are either hydro- or hygrophilous through examination of relevant literature. This suggested that most species that occured in the list were already present in the broader habitat prior to invasion by *S. minima* and are likely using the mat to exploit new, adjacent microhabitats. Utilizing new collection methods resulted in different taxa collected than expected (Meyer *et al.* 2011) and the use of a long term non-destructive collection method produced crepuscular and nocturnal insects that are not collected by traditional collecting methods.

TABLE 1. Insects collected from a mat of *Salvinia minima* (excluding Diptera and Lepidoptera) between 15 May and 02 November 2009, and between 07 May and 08 November 2010. Lifestyle/food associations are as follows: D= detritus, F= fungus, C= carnivorous/predaceous, H= herbivorous, and P= Parasitic. Habitat associations are as follows: T=terrestrial, A= aquatic. Habitat associations for Coleoptera follow Jäch (1998), representing a range of 6 ecological affiliations with water: A1 (completely aquatic) - A6 (riparian). Voucher refers to a representative specimen deposited at LSAM, the number presented is the LSAM specimen number.

ORDER/FAMILY	GENUS/SPECIES	2009	2010	TOTAL	FOOD	HABITAT	VOUCHE
BLATTARIA							
Blattidae	Blattella germanica (Linnaeus)	1	1	2	D	T	250451
COLEOPTERA							
Aderidae	Ganascus ventricosus (LeConte)		1	1		T	244784
Anthicidae	Sapintus pubescens (Laferté-Sénectère)	27	31	58	C/D	A6	244749
Buprestidae	Buprestis rufipes (Olivier)		1	1	Н	T	251614
Cantharidae	Malthodes sp.		1	1	C	T	251615
Carabidae	Agonum (Olisares) moerens Dejean	107	1	108	C	A5	244182
	Ardistomis obliquata Putzeys	1	1	2	C	A6	251619
	Ardistomis schaumii LeConte	9		9	C	A6	251617
	Badister reflexus LeConte	1		1	C	A6	251626
	Bembidion (Furcacampa) affine Say	3		3	C	A5	251627
	Bembidion (Notaphus) sp.	1		1	C	A5	251630
	Bradycellus (Stenocellus) sp.	1		1	C	A6	251631
	Calleida viridipennis (Say)	1		1	C	T	251632
	Chlaenius (Agostenus) niger Randall	96	1	97	C	A5	251676
	Chlaenius (Chlaeniellus) circumcinctus Say	1		1	C	A5	251674
	Chlaenius (Chlaeniellus) impunctifrons Say	2		2	C	A5	251675
	Chlaenius (Chlaeniellus) oxygonus Chaudoir	1		1	С	A5	251673
	Chlaenius (s. str.) erythropus Say	1		1	C	A5	251672
	Chlaenius (s. str.) laticollis Say	28		28	C	A5	244370
	Clivina (Leucocara) americana Dejean	1		1	C	A5	251634
	Clivina (Semiclivina) dentipes Dejean	1		1	С	A5	251633
	Diplocheila major (LeConte)	6		6	С	A6	251688
	Elaphropus sp.	13	2	15	C	A5	251635
	Loxandrus sp.1	1		1	C	A6	251646
	Loxandrus sp.2	1		1	С	A6	251647
	Loxandrus sp.3	1		1	C	A6	251648
	Oodes amaroides Dejean	93		93	C	A6	247747
	Oodes americanus Dejean	268	10	278	C	A6	247843
	Philodes rectangulus (Chaudoir)	1		1	C	A6	251616

TABLE 1. CONTINUED.

ORDER/FAMILY	GENUS/SPECIES	2009	2010	TOTAL	FOOD	HABITAT	VOUCHE
	Pterostichus (Melanius) ebeninus (Dejean)	61	2	63	С	A6	244419
	Scarites quadriceps Chaudoir	1		1	С	A6	251662
	Scarites subterraneus Fabricius	1		1	С	A6	251663
	Stenocrepis duodecimstriata (Chevrolat)	468	2	470	С	A6	248654
	Stenolophus ochropezus (Say)	3	1	4	Н	A6	251664
	Tachys (Paratachys) sp.	16	2	18	С	A6	251654
erambycidae	Elaphidion mucronatum (Say)	1		1	Н	T	254613
	Parandra polita Say	1		1	Н	T	254612
	Styloleptus biustus (LeConte)	1		1	Н	T	254614
hrysomelidae	Chaetocnema sp.	1		1	Н	T	254616
	Colaspis sp.	2		2	Н	A3	254619
	Epitrix sp.	1		1	Н	T	254615
	Myochrous sp.	1		1	Н	T	254617
	Nesaecrepida infuscata (Schaeffer)	1		1	Н	T	254620
	Pseudolampis guttata (LeConte)	7		7	Н	A3	254624
iidae	Cis sp.		1	1	F	T	244785
leridae	Ababa tantilla LeConte	1		1	С	T	254861
occinellidae	Diomus terminatus (Say)	2	4	6	С	T	254626
orylophidae	Clypastraea sp.	2		2	F	T	254628
	Orthoperus sp.	2	2	4	F	T	254630
urculionidae	Ambrosiodmus sp.		1	1	Н	T	244791
	Bagous hydrillae O'Brien	2		2	Н	A3	251678
	Bagous obliquus LeConte	1	1	2	Н	A3	251679
	Coccotrypes distinctus (Motschulsky)	3		3	Н	Т	254657
	Cyrtobagous salviniae Calder and Sands	3		3	Н	A3	251683
	Elleschus ephippiatus (Say)		1	1	Н	Т	251681
	Euplatypus compositus (Say)	1		1	Н	T	254653
	Hypothenemus sp.	2	4	6	Н	T	244794
	Lissorhoptrus simplex (Say)		1	1	Н	A3	251682
	Neochetina bruchi Hustache	12		12	Н	A3	254640
	Neochetina eichhorniae Warner	6	2	8	Н	A3	254636
	Onychylis nigrirostris (Boheman)	1	3	4	Н	A3	251687
		2			н Н	A3	
	Onychylis texanus Burke		10	2			251686
	Stenopelmus rufinasus Gyllenhal	76	19	95	Н	A3	251319
	Tanysphyrus lemnae (Fabricius)	45	44	89	Н	A3	251397
	Xyleborinus saxeseni (Ratzeburg)	40	1	1	Н	T	244790
	Xyleborus affinis Eichhoff	18		18	Н	T —	254674
	Xyleborus ferrugineus (Fabricius)	3		3	Н	T	254672
	Xylosandrus crassiusculus (Motschulsky)	2		2	Н	Т	254660
	Xylosandrus sp.	5		5	Н	T	254648
ytiscidae	Prodaticus bimarginatus (Say)	2	1	3	С	A1	254692
	Thermonectus sp.	14	2	16	С	A1	254684
lateridae	Conoderus suturalis (LeConte)		2	2	С	T	244779
ndomychidae	Rhymbomicrus sp.	1		1	F	T	254696
rotylidae	Ischyrus quadripunctatus (Olivier)		1	1	F	T	254698
	Triplax flavicollis Lacordaire	1		1	F	T	254697
	Tritoma angulata Say		1	1	F	T	244786
ucinetidae	Eucinetus morio LeConte	4		4	F	T	254695
ucnemidae	Dirrhagofarsus lewisi (Fleutiaux)	1	1	2	F	T	254699
aliplidae	Peltodytes sp.	1		1	С	A1	254701
eteroceridae	Heterocerus mollinus Kiesenwetter	1		1	D	A6	254706
	Heterocerus texanus (Pacheco)	1		1	D	A6	254702
	Tropicus sp.	1		1	D	A6	254884
listeridae	Euspilotus assimilis (Paykull)	1		1	D	A6	254703
lydraenidae	Hydraena sp.	4		4		A2	254705
lydrophilidae	Cercyon praetextatus (Say)	14	31	45	D	A6	247516
-) Primado	Cercyon sp.	1		1	D	A6	247526
		1			D		
	Derallus altus (LeConte)		4	4	1.7	A1	246376

TABLE 1. CONTINUED.

ORDER/FAMILY	GENUS/SPECIES	2009	2010	TOTAL	FOOD	HABITAT	VOUCHER
	Enochrus consortus Green	17	50	67	D	A1	247431
	Enochrus interruptus Gundersen	4	7	11	D	A1	247414
	Enochrus ochraceus (Melsheimer)	520	42	562	D	A1	246698
	Hydrobiomorpha casta (Say)	33	1	34	D	A1	247391
	Hydrochus callosus LeConte	1		1	D	A1	247378
	Paracymus sp.	12	21	33	D	A1	247498
	Phaenonotum exstriatum (Say)	141	12	153	D	A1	247314
	Tropisternus blatchleyi d'Orchymont	5	6	11	D	A1	247365
	Tropisternus collaris (Fabricius)		1	1	D	A1	247364
Laemophloeidae	Placonotus sp.	1		1	F	T	254740
Latridiidae	Corticarina sp.	1	6	7	F	T	254779
	Enicmus sp.	1	28	29	F	T	254780
	Melanophthalma sp.	7	1	8	F	T	254745
Limnichidae	Eulimnichus sp.	20		20	Н	A6	254790
	Limnichites punctatus (LeConte)	1		1	Н	A6	254793
	Limnichoderus sp.	11	1	12	Н	A6	254812
Melandryidae	Dircaea liturata (LeConte)	1		1	F	T	254814
701411	Microscapha clavicornis (LeConte)	3		3	F	T	254817
Mordellidae	Mordellistena andreae LeConte	3	4	7	Н	T	254821
Nitidulidae	Carpophilus dimidiatus (Fabricius)	1		1	Н	T	254827
TIMAMIAAC	Stelidota coenosa Erichson		2	2	Н	T	254825
	Stelidota geminata (Say)		1	1	Н	T	244781
	Stelidota octomaculata (Say)	1			Н	T	254824
Notoridoo				1 15			
Noteridae	Hydrocanthus sp.	10	5	15	C	A1	254838
	Suphisellus bicolor (Say)	3	1	4	С	A1	254843
Phalacridae	Stilbus sp.	1		1	F	T	254847
Ptiliidae	Smicrus americanus Casey	2	1	3		A6	254849
	Unidentified genus (near <i>Nephanes</i>) sp.	1		1		A6	254848
Ptilodactylidae	Ptilodactyla sp.	1		1	D	A2	254851
Ptinidae	<i>Byrrhodes</i> sp.	2	1	3	F	T	251610
	Tricorynus spp.		1	1	Н	T	251613
Scarabaeidae	Dyscinetus morator (Fabricius)	61	9	70	Н	A5	249820
	Euphoria sepulcralis (Fabricius)	1		1	Н	T	254852
	Onthophagus sp.		2	2	D	T	254853
Scirtidae	Cyphon sp.	138	5	143	D	A2	249940
	Scirtes tibialis Guérin-Méneville	658	443	1101	D	A2	244804
Sphindidae	Sphindus sp.	1		1	F	T	254855
Staphylinidae	Acylophorus sp.	12	22	34	С	A6	251735
	Adinopsis sp.	6		6	С	A6	251777
	Aleocharinae gen. sp.	5	3	8			251785
	Anaquedius sp.	5	1	6	С	A6	244138
	Anotylus sp.	7	3	10	С	A6	244128
	Atanygnathus sp.	1		1	C	A6	251693
	Athetini gen. sp.	1		1			251716
	Baeocera sp.	3	1	4	F	Т	251713
	Bibloplectus sp.	1		1	C	T	244124
	Carpelimus sp.	155	15	170	C	A6	251487
	Coproporus sp.	2	1	3	C	T	251709
	Eugesthetus sp.	10	9	19	C	A6	241299
	Euconnus (Psomophora) sp.	10		10	С	T	244161
	Euconnus (s. str.) sp.	1		1	С	T	244169
	Gabrius sp.		1	1	С		251715
	Homaeotarsus sp.	1		1	С	A6	244126
	Hoplandria sp.		1	1	C		251783
	Hoplandria (Genosema) pulchra Kraatz	10		10	C	T	251791
	Hoplandria (Genosema) sp.	1		1	C	T	251784
	Lathrobium sp.		1	1	С		251763
	Lobrathium sp.		1	1	C		251756
	<i>Myllaena</i> sp.	25	2	27	С	A6	251799

TABLE 1. CONTINUED.

ORDER/FAMILY	GENUS/SPECIES	2009	2010	TOTAL	FOOD	HABITAT	VOUCHER
	Neobisnius sp.	3		3	С	A6	244139
	Phanerota sp.		1	1			251768
	Philonthus sp.	3	2	5	С	A6	251690
	Pinophilus sp.	1		1	С	T	244123
	Pselaphinae gen. sp.		1	1	С		244125
	Scopaeus sp.	6	3	9	С	A6	244118
	Scydmaeninae gen. sp.	4	1	5	C	T	244165
	Sepedophilus sp.		1	1			251764
	Staphylininae gen. sp.	1		1	C		251692
	Stenus sp.	14	13	27	C	A6	251698
	Tachinus sp.	1		1	C	T	251711
	Tachyporus sp.	1		1	C	A6	251708
	Thinobius sp.	1		1	C	A6	251717
	Thoracophorus sp.	1		1	С	T	244116
	Toxidium sp.		1	1	F		251773
Tenebrionidae	Haplandrus ater (LeConte)		1	1			244778
	Lobopoda sp.	1		1	F/H	T	254856
	Platydema sp.	1		1	F	T	254859
	Rhipidandrus paradoxus (Palisot de Beauvois)	1		1	F		254858
	Tribolium sp.	1		1			254857
Tetratomidae	Eustrophopsis bicolor (Fabricius)	1		1	F	T	254860
Throscidae	Trixagus horni Blanchard	1		1	F	T	254862
Zopheridae	Endeitoma granulata (Say)		1	1	F	T	254863
HEMIPTERA	Endercoma grandida (Say)	-	1	1	1	1	234003
Anthocoridae	Anthocoridae gen. sp.	1		1	С	Т	254734
Belostomatidae	Belostoma lutarium (Stål)	24	39	63	C	A	250036
Deiostomatidae							
	Belostoma testaceum (Leidy)	5	6	11	C	A	250097
C	Lethocerus uhleri (Montandon)	1	3	4	С	A	250105
Cercopidae	Cercopidae gen. sp.	1	40	1	Н	T	254882
Cicadellidae	Draeculacephala sp.	58	18	76	Н	T	250109
Delphacidae	Delphacidae gen. sp.	7	1	8	Н	T	254877
Gelastocoridae	Gelastocoris oculatus (Fabricius)	1		1	С	A	254733
Gerridae	Gerris sp.		1	1	С	A	254869
	Limnoporus canaliculatus (Say)	1	21	22	С	Α	254723
Hebridae	Hebrus consolidus Uhler	134	24	158	C	A	250296
	Merragata brunnea Drake		1	1	C	Α	250637
Hydrometridae	Hydrometra australis Say	248	300	548	C	Α	248128
	Hydrometra hungerfordi Torre-Bueno	4	5	9	C	Α	254708
Mesoveliidae	Mesovelia mulsanti White	26	1	27	C	A	250571
Naucoridae	Pelocoris femoratus (Palisot de Beauvois)	43	3	46	C	Α	250193
Nepidae	Curicta scorpio Stål	6	6	12	C	A	250636
Saldidae	Micracanthia husseyi Drake and Chapman	27	3	30	C	Α	250611
	Salda lugubris (Say)		4	4	С	Α	250592
Veliidae	Microvelia sp.	1	17	18	С	Α	250673
HYMENOPTERA	•						
Braconidae	Acrophasmus sp.	1		1	P		244799
	Doryctinae gen. sp.	1		1	P		244796
	Neothlipsis parysae Sharkey	102	5	107	P		230039
	Spathius sp.	1		1	P		244797
Chalcidoidea		365	52	417	•		
Inaicidoidea Formicidae	Chalcidoidea gen. sp.				P	 Т	254890
roimiciuae	Aphenogaster sp.	1	1	1	C	Т	244678
	Camponotus (Colobopsis) sp.	1	1	1	C	T	244724
	Camponotus (Colobopsis) impressus (Roger)	1		1	С	T	244699
	Camponotus (s. str.) pennsylvanicus (DeGeer)	19		19	С	T	244451
	Crematogaster sp.	83	57	140	С	T	244677
	Crematogaster ashmeadi Mayr	12		12	С	T	244511
	Crematogaster cerasi Fitch	29	3	32	C	T	244478
	Crematogaster obscurata Emery		2	2	C	T	244500
	Crematogaster vermiculata Emery	188	93	281	C	T	251027

TABLE 1. CONTINUED.

ORDER/FAMILY	GENUS/SPECIES	2009	2010	TOTAL	FOOD	HABITAT	VOUCHER
	Cyphomyrmex rimosus (Spinola)	1		1	С	Т	244566
	Hypoponera opaciceps (Mayr)	3		3	С	T	244568
	Hypoponera opacior (Forel)	19	1	20	С	T	244588
	Pheidole sp.	13	20	33	С	T	244597
	Pheidole dentata (Mayr)	36	1	37	С	T	244636
	Pheidole floridana Emery		1	1	С	T	244687
	Pheidole metallescens Emery	3		3	С	T	244625
	Pheidole moerens Wheeler	56	3	59	C	T	244525
	Pseudomyrmex ejectus Smith	3	4	7	C	T	244563
	Pseudomyrmex gracilis (Fabricius)		2	2	С	T	254887
	Pyramica epinotalis (Weber)	1		1	C	T	244684
	Solenopsis carolinensis Forel	1		1	C	T	254894
	Solenopsis invicta Buren	134	42	176	C	T	250765
	Solenopsis picta Emery	13	8	21	С	T	254900
	Strumigenys louisianae Roger	2		2	C	T	244569
	Strumigenys silvestrii Emery	1	2	3	C	T	244683
	Temnothorax schaumii (Roger)		3	3	C	T	244667
Ichneumonidae	Apsilops hirtifrons (Ashmead)	926	9	935	P		245808
	Ichneumonidae gen. sp.1	1		1	P		244798
	Ichneumonidae gen. sp.2	1		1	P		254604
Platygastridae	Baeus sp.	1		1	P		250562
Pompilidae	Anoplius depressipes Banks	23	3	26	C	A	250550
Sphecidae	Sceliphron caementarium (Drury)	1		1	C	T	254889
Vespidae ODONATA	Polistes sp.		1	1	С	T	254888
Coenagrionidae	Coenagrionidae gen. sp.	7		7	С	A	250686
Libellulidae	Libellulidae gen. sp.	2	1	3	C	A	250693
ORTHOPTERA							
Gryllidae	Acheta sp.	2		2	Н	T	250450
	Gryllodes sp.	10		10	Н	T	250457
Tetrigidae	Tettigidea armata Morse	109	17	126	Н	T	250477
	Tettigidea lateralis (Say)	33	1	34	Н	T	250380
PSOCOPTERA							
	Psocoptera gen. sp.	1		1	F	T	254885
TOTAL		6224	1709	7933			

ACKNOWLEDGMENTS: Thank you to Anna Mészáros, Jordan Fryoux, J. C. Claviere, Tiffany Pasco, Megan Aucoin, Lukas Thompson, and Leigh-Anne Lawton for field help and technical assistance. Robert Anderson, Victoria Bayless, Stephanie Clutts, John Epler, Michael Ferro, Stephanie Gil, Joe MacGown, Charles W. O'Brien, Jong-Seok Park, Michael Sharkey, Mikael Sörensson, Igor Sokolov, Rachel Strecker, Alexey Tishechkin, and Cecilia Waichert provided additional taxonomic expertise. Mr. James Boyce graciously allowed us access to and use of his property. Gordon Snodgrass and Chris Carlton reviewed this manuscript and provided valuable suggestions. This project was funded in part by Louisiana Department of Wildlife and Fisheries Contracts #673252, #686647, and #696303. This publication was approved by the Director, Louisiana Agricultural Experiment Station as manuscript number 2013-234-9379.

LITERATURE CITED

- Albertoni, E.F. and C. Palma-Silva. 2006. Macroinvertebrates associated with floating macrophytes in urban channels (Balneário Cassino, Rio Grande, RS, Brazil). *Neotropical Biology and Conservation* 1(1):90-100.
- Arnett, R.H., JR., M.C. Thomas, P.E. Skelley and J.H. Frank. 2002. *American Beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea*. Boca Raton: CRC Press. 861 p.
- Arnett, R.H., JR. and M.C. Thomas. 2000. *American Beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia*. Boca Raton: CRC Press. 443 p.
- Batzer, D.P. 1998. Trophic interactions among detritus, benthic midges, and predatory fish in a freshwater marsh. *Ecology* 79(5): 1688-1698. Batzer, D.P. and S.A. Wissinger. 1996. Ecology of insect communities in nontidal wetlands. *Annual Review of Entomology* 41: 75-100.

- Bennett, F.D. 1966. Investigations on the insects attacking the aquatic ferns *Salvinia spp* in Trinidad and northern South America. *Proceedings of the Southern Weed Conference* 19:497-504.
- Brown, C.L., T.P. Poe, J.R.P. French III and D.W. Schlosser. 1988. Relationships of phytomacrofauna to surface area in naturally occuring macrophyte stands. *Journal of the North American Benthological Society* 7(2): 129-139.
- Center, T.D., K.A. Parys, M. Grodowitz, G.S. Wheeler, F.A. Dray, C.W. O'Brien, S.J. Johnson and A. Cofrancesco. 2013. Evidence of establishment of *Bagous hydrillae* O'Brien (Coleoptera: Curculionidae), a biological control agent of *Hydrilla verticillata* (Hydrocharitaceae) in North America? *Florida Entomologist* 96(1): 180-186
- Chen, X., J.A. MacGown, B.J. Adams, K.A. Parys, R.M. Strecker and L. Hooper-Bui. 2012. First Record of *Pyramica epinotalis* (Hymenoptera: Formicidae) for the United States. *Psyche* Article ID#850893: 1-7.
- Coddington, J.A., I. Agnarsson, J.A. Miller, M. Kuntner and G. Hormiga. 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. *Journal of Animal Ecology* 78(3): 573-584.
- Cyr, H. and J.A. Downing. 1988. The abundance of phytophilous invertebrates on different species of submerged macrophytes. *Freshwater Biology* 20(3): 365-374.
- Dvorak, J. 1996. An example of relationships between macrophytes, macroinvertebrates, and their food resources in a shallow eutrophic lake. *Hydrobiologia* 339(1-3): 27-36.
- Dvorak, J. and E.P.H. Best. 1982. Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. *Hydrobiologia* 95(1): 115-126.
- Epler, J.H. 2006. Identification Manual for the Aquatic and Semi-aquatic

- Heteroptera of Florida (Belostomatidae, Corixidae, Gelastocoridae, Gerridae, Hebridae, Hydrometridae, Mesoveliidae, Naucoridae, Nepidae, Notonectidae, Ochteridae, Pleidae, Saldidae, Veliidae). Tallahassee: State of Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration. 195 p.
- Epler, J.H. 2010. The Water Beetles of Florida: an identification manual for the families Chrysomelidae, Curculionidae, Dryopidae, Dytiscidae, Elmidae, Gyrinidae, Haliplidae, Helophoridae, Hydraenidae, Hydrochidae, Hydrophilidae, Noteridae, Psephenidae, Ptilodactylidae and Scirtidae. Tallahassee: State of Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration. 414 p.
- Forno, I.W. and A.S. Bourne. 1984. Studies in South America of arthropods on the *Salvinia auriculata* complex of floating ferns and their effects on *S. molesta. Bulletin of Entomological Research* 74(4): 609-621.
- Gopalan, U.K. and S.R. Nair. 1975. Ecological studies on the floating weed *Salvinia auriculata* in Cochin backwaters and adjacent areas, I. Associated fauna. *Bulletin from the Department of Marine Science University of Cochin* 7(2): 367-375.
- Herrera, K., A.C. Bailey, M. Callisto and J. Ordonez. 2000. The aquatic habitats of Laguna del Tigre National Park, Peten, Guatemala: water quality, phytoplankton populations, and insects associated with the plant *Salvinia auriculata*. p. 26-34 *In* B. T. Bestelmeyer and L. E. Alonso (ed.). *A Biological Assessment of Laguna del Tigre National Park, Petén, Guatemala*, RAP Bulletin of Biological Assessment 16. Washington, DC: Conservation International.
- Jäch, M.A. 1998. Annotated check list of aquatic and riparian/littoral beetle families of the world. p. 25-42 *In* M.A. Jäch and L. Ji (ed.). *Water Beetles of China*, Volume II. Vienna: Zoologisch-Botanische Gesellschaft.
- Jäch, M.A. and B. Balke. 2008. Global diversity of water beetles (Coleoptera) in freshwater. *Hydrobiologia* 595(1): 419-442.
- Junk, W. 1977. The invertebrate fauna of the floating vegetation of Bung Borapet, a reservoir in central Thailand. *Hydrobiologia* 53(3): 49-61.
- Luken, J.O. and J.W. Thieret. 1997. *Assessment and management of plant invasions*. New York: Springer. 324 p.
- Merritt, R.W., K.W. Cummings and M.B. Berg. 2008. *An Introduction to the Aquatic Insects of North America*. Fourth edition. Dubuque: Kendall/Hunt Publishing. 441 p.
- Meyer, C.K., S.D. Peterson and M.R. Whiles. 2011. Quantitative assessment of yield, precision, and cost-effectiveness of three wetland invertebrate sampling techniques. *Wetlands* 31(1): 101-112.
- Mfundisi, K.B., R. Thobosi and B. Mosepele. 2008. A rapid assessment of macroinvertebrates associated with *Salvinia molesta* in Moremi Game Reserve, Okavango Delta. *Tropical Freshwater Biology* 17(1):13-23.
- Novotny, V. and Y. Basset. 2000. Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. *Oikos* 89(3): 564-572.

- Olson, E.J., E.S. Engstrom, M.R. Doringsfield and D.R. Bellig. 1995. Abundance and distribution of macroinvertebrates in relation to macrophyte communites in a prarie marsh, Swan Lake, Minnesota. *Journal of Freshwater Ecology* 10(4): 325-335.
- Parys, K.A. and S.J. Johnson. 2011. Collecting insects associated with wetland vegetation: an improvied design for a floating pitfall trap. *The Coleopterists Bulletin* 65(4): 341-344.
- Parys, K.A. and S.J. Johnson. 2012. Impact of the Red Imported Fire Ant, *Solenopsis invicta* (Hymenoptera: Formicidae), on Biological Control of *Salvinia minima* (Hydropteridales: Salviniaceae) by *Cyrtobagous salviniae* (Coleoptera: Curculionidae). *Florida Entomologist* 95(1): 136-142.
- Pelli, A. and F.A.R. Barbosa. 1998. Insect fauna associated with *Salvinia molesta* Mitchell in a lake of Lagoa Santa Plateau, Minas Gerais, Brazil. Verhandlungen des Internationalen Verein Limnologie 26: 2125-2127.
- Poi de Neiff, A. and J.J. Neiff. 2006. Species richness and similarity between invertebrates living on floating plants in the Parana River floodplain. *Interciencia* 31(3): 220-225.
- Roble, S.M. 1985. Submergent capture of *Dolomedes triton* (Araneae, Pisauridae) by *Anoplius depressipes* (Hymenoptera, Pompilidae). *Journal of Arachnology* 13(3): 391-392.
- Sharkey, M.J., K.A. Parys and S.A. Clutts. 2011. A new genus of Agathidinae with the description of a new species parasitic on *Samea multiplicalis* (Guenee). *Journal of Hymenoptera Research* 23(2011):43-53.
- Sklar, F.H. 1983. *Water budget, benthological characterization and simulation of aquatic material flows in a Louisiana freshwater swamp.* Ph.D. dissertation. Baton Rouge: Louisiana State University and Agricultural and Mechanical College. 120 p.
- Sklar, F.H. 1985. Seasonality and community structure of the backswamp invertebrates in a Louisiana cypress-tupelo wetland. *Wetlands Ecology and Management* 5(1): 69-86.
- Tetrault, R.C. 1967. *A revision of the family Helodidae (Coleoptera) north of Mexico*. Ph.D. dissertation Madison: University of Wisconsin. 160 p.
- Zedler, J.B. and S. Kercher. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. *Critical Reviews in Plant Sciences* 23(5): 431-452.
- Ziser, S.W. 1978. Seasonal variations in water chemistry and diversity of the phytophylic macroinvertebrates of three swamp communities in southeastern Louisiana. *The Southwestern Naturalist* 23(4): 545-562.

RECEIVED: April 2013 ACCEPTED: October 2013

Published online: November 2013

Editorial responsibility: Rodrigo M. Feitosa

