- Consider the three-dimensional normal distribution $p(\mathbf{x}|\omega) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \frac{1}{0} & 0 & 0 \\ 0 & \frac{5}{2} & \frac{2}{5} \end{pmatrix}$.
 - (a) Find the probability density at the point $\mathbf{x}_0 = (.5, 0, 1)^t$.
 - (b) Construct the whitening transformation \mathbf{A}_w . Show your $\mathbf{\Lambda}$ and $\mathbf{\Phi}$ matrices. Next, convert the distribution to one centered on the origin with covariance matrix equal to the identity matrix, $p(\mathbf{x}|\omega) \sim N(\mathbf{0}, \mathbf{I})$.
 - (c) Apply the same overall transformation to \mathbf{x}_0 to yield a transformed point \mathbf{x}_w .
 - (d) By explicit calculation, confirm that the Mahalanobis distance from \mathbf{x}_0 to the mean $\boldsymbol{\mu}$ in the original distribution is the same as for \mathbf{x}_w to $\mathbf{0}$ in the transformed distribution.
 - (e) Does the probability density remain unchanged under a general linear transformation? In other words, is $p(\mathbf{x}_0|N(\boldsymbol{\mu},\boldsymbol{\Sigma})) = p(\mathbf{T}^t\mathbf{x}_0|N(\mathbf{T}^t\boldsymbol{\mu},\mathbf{T}^t\boldsymbol{\Sigma}\mathbf{T}))$ for some linear transform \mathbf{T} ? Explain.
 - (f) Prove that a general whitening transform $\mathbf{A}_w = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$ when applied to a Gaussian distribution insures that the final distribution has covariance proportional to the identity matrix \mathbf{I} . Check whether normalization is preserved by the transformation.
- 6 Suppose we have three categories with $P(\omega_1) = 1/2$, $P(\omega_2) = P(\omega_3) = 1/4$ and the following distributions
 - $p(x|\omega_1) \sim N(0,1)$
 - $p(x|\omega_2) \sim N(.5,1)$
 - $p(x|\omega_3) \sim N(1,1)$,

and that we sample the following four points: x = 0.6, 0.1, 0.9, 1.1.

- (a) Calculate explicitly the probability that the sequence actually came from $\omega_1, \omega_3, \omega_3$ Be careful to consider normalization.
- (b) Repeat for the sequence $\omega_1, \omega_2, \omega_2, \omega_3$.
- (c) Find the sequence having the maximum probability.