VECTOR

Question: \vec{P} and \vec{Q} are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that, $ar(\triangle APB) = ar(\triangle BQC)$. **Figure:**

Figure 1

Solution:

Using formulas:

1. Area of a parallelogram with vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$ is $= \frac{1}{2} \times \left| \left[(x_1 y_2 - x_2 y_1) + (x_2 y_3 - x_3 y_2) + (x_3 y_4 - x_4 y_3) + (x_4 y_1 - x_1 y_4) \right] \right|$ square units.

- 2. Area of a triangle with vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is $= \frac{1}{2} \times |x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)|$ square units.
- 3. If a triangle and a parallelogram are on the same base and between the same parallels, then area of the triangle is equal to half the area of the parallelogram.

From figure 1, considering $\triangle BQC$ and parallelogram ABCD, having same base BC and, AD is parallel to BC.

$$\implies \triangle BQC = \frac{1}{2} \times arABCD. \tag{1}$$

Considering $\triangle APB$ and parallelogram ABCD , having same base AB and DC is parallel to DC is para

$$\implies \triangle APB = \frac{1}{2} \times arABCD. \tag{2}$$

By comparing equation (1) and equation (2) we obtain that,

$$ar(\triangle APB) = ar(\triangle BQC).$$
 (3)

Hence proved.

Proof by the help of diagram :(figure 1,table 1)

Symbols	Description	Value
AB	vertex	a = 6(unit)
AD	vertex	$d = \sqrt{29}$
θ	$\angle BAD$	$\sin^{-1}(\frac{5}{\sqrt{29}})$
$ec{A}$	vertex	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
$ec{B}$	vertex	$\begin{pmatrix} a \\ 0 \end{pmatrix}$
$ec{D}$	vertex	$b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
\vec{C}	vertex	$ec{B} + ec{D}$
$ec{P}$	$vertex(\triangle APB)$	$\begin{pmatrix} \frac{8m_1+2n_1}{m_1+n_1} \\ 5 \end{pmatrix}$
$ec{Q}$	$vertex(\triangle BQC)$	$\begin{pmatrix} \frac{2m_2}{m_2 + n_2} \\ \frac{5m_2}{m_2 + n_2} \end{pmatrix}$

Table 1: Table of input parameters

Let the points \vec{P} and \vec{Q} divide AD and CD by $m_1:n_1$ and $m_2:n_2$ ratio respectively.

So, the coordinates of \vec{P} will be $(\frac{8m_1+2n_1}{m_1+n_1}, \frac{5m_1+5n_1}{m_1+n_1}) = (\frac{8m_1+2n_1}{m_1+n_1}, 5)$ and, the

coordinates of
$$\vec{Q}$$
 will be $(\frac{2m_2}{m_2+n_2}, \frac{5m_2}{m_2+n_2})$.
For the $\triangle APB$, the vertices of the triangle are $\vec{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \vec{P} = \begin{pmatrix} \frac{8m_1+2n_1}{m_1+n_1} \\ 5 \end{pmatrix}, \vec{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

$$\implies \triangle APB = \frac{1}{2} \times \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|$$

$$= \frac{1}{2} \times \left| 0(5-0) + \frac{8m_1+2n_1}{m_1+n_1}(0-0) + 6(0-5) \right|$$

$$= \frac{1}{2} \times \left| 0 + 0 - 30 \right|$$

$$= \frac{1}{2} \times 30$$

= 15 square units.

For the
$$\triangle BQC$$
, the vertices of the triangle are $\vec{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}, \vec{Q} = \begin{pmatrix} \frac{2m_2}{m_2+n_2} \\ \frac{5m_2}{m_2+n_2} \end{pmatrix}, \vec{C} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}$

$$\implies \triangle BQC = \frac{1}{2} \times \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|$$

$$= \frac{1}{2} \times \left| 6(\frac{5m_2}{m_2+n_2} - 5) + \frac{2m_2}{m_2+n_2} (5 - 0) + 8(0 - \frac{5m_2}{m_2+n_2}) \right|$$

$$= \frac{1}{2} \times \left| \frac{30m_2 + 10m_2 - 40m_2}{m_2+n_2} - 30 \right|$$

$$=\frac{1}{2}\times30$$

= 15 square units.

For parallelogram ABCD, the vertices are

$$\vec{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \vec{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}, \vec{C} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}, \vec{D} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\implies arABCD = \frac{1}{2} \times \left| \left[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + (x_3y_4 - x_4y_3) + (x_4y_1 - x_1y_4) \right] \right|$$

$$= \frac{1}{2} \times \left| \left[(0.0 - 6.0) + (6.5 - 8.0) + (8.5 - 2.5) + (2.0 - 0.5) \right] \right| = \frac{1}{2} \times \left| 30 + 30 \right|$$

$$= \frac{1}{2} \times 60$$

=30 square units.

Or, By another method the area of the parallelogram ABCD will be = $a \times b \times \sin \theta$

$$=6 \times \sqrt{29} \times \sin \left(\sin^{-1} \frac{5}{\sqrt{29}}\right)$$

$$=6 \times \sqrt{29} \times \frac{5}{\sqrt{29}}$$

=30 square units.

Therefore, $arABCD = \frac{1}{2} \times ar\triangle APB = \frac{1}{2} \times ar\triangle BQC$ (proved).