Лабораторная работа №3.4.2 Закон Кюри-Вейсса

Балушкин Петр Б04-302 $3 \ {\rm декабрs} \ 2024 \ {\rm r}.$

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частометр, цифровой вольтметр, LC-автогенератор, термопара медь-константин.

1 Теоретическая часть

Модель среднего поля. В качестве простейшей эмпирические модели, описывающей магнитную восприимчивость ферромагнетика, можно рассмотреть следующую модель: Пусть намагниченность среды пропорциональна некоторому эффективному полю $H_{\rm эфф}$, складывающемуся из поля H в данной точке, созданного сторонними токами, и среднего "коллективного" поля, пропорционального величине намагниченности M

$$egin{aligned} m{M} &= \chi_{
m nap} m{H}_{
m e d d} \ & \chi_{
m nap} \propto 1/T \ & m{H}_{
m e d d} &= m{H} + eta m{M} \end{aligned}$$

Отсюда можно получить закон Кюри-Вейсса

$$\chi = \frac{1}{\chi_{\text{nap}}^{-1} - \beta} \propto \frac{1}{T - \Theta} \tag{1}$$

2 Установка

Рис. 1: Установка для определения коэффициента вязкости жидкости.

Установка измеряет температуру образца и собственный период колебания LC контура, где C находится в автогенераторе, а в качестве L выступает катушка с гадолиниевым сердечником. Обозначим L_0 индуктивность катушки без сердечника. Тогда

$$L - L_0 \propto \mu - 1 = \chi$$

Так же мы знаем что

$$\tau_0 = 2\pi \sqrt{L_0 C}$$
$$\tau = 2\pi \sqrt{LC}$$

Подставляя уравнения и воспользовавшись законом Кюри-Вейсса (??) полуаем

$$\frac{1}{\chi} \propto \frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p \tag{2}$$

Измерения температуры проводим двумя частями. Термометр измеряет температуру воды в термостате, а термопара измеряет разницу температур воды и масла в пробирке, в котором находится образец с катушкой.

3 Измерения

Параметры установки

$$\tau_0 = (8.252 \pm 0.001)\mu c, \quad \kappa = 24^{\circ} C/\text{MB}$$

Температура масла в пробирке считается формулой

$$T = T_{ ext{вода}} + \Delta T$$
 где $\Delta T = \kappa U$

tтемп, C, x	преиод, мкс	0	у
14.350000	7.916000	6.872000	0.064772
16.060000	7.880000	6.872000	0.067249
18.070000	7.785000	6.872000	0.074728
20.040000	7.648000	6.872000	0.088751
22.000000	7.484000	6.872000	0.113819
24.000000	7.270000	6.872000	0.177667
26.000000	7.152000	6.872000	0.254665
28.000000	7.100000	6.872000	0.313911
30.000000	7.068000	6.872000	0.366000
32.000000	7.047000	6.872000	0.410539
34.000000	7.031000	6.872000	0.452371
36.000000	7.020000	6.872000	0.486378
38.000000	7.010000	6.872000	0.521998
40.000000	7.004000	6.872000	0.545961

Таблица 1: Данные

Ошибки сырых данных

$$\Delta T_{\rm b} = 0.01^{\circ}C, \quad \Delta U = 1 {\rm mB}, \quad \Delta P = 0.001 \mu c$$

После обработки данных получаем следующие значения, где $y=\frac{1}{\tau^2-\tau_0^2}$

Рис. 2: График зависимости y=y(T)

Из графика получаем парамагнитную точку Кюри гадолиния $\Theta_p=(20\pm1)^\circ C$. Так же из графика можем оценить ферромагнитную точку Кюри $\Theta_{\rm K}=(22\pm1)^\circ C$

4 Выводы

Из опыта получили следующие данные

$$\Theta_p = (20 \pm 0.9)^{\circ} C, \quad \Theta_K = (21 \pm 1)^{\circ} C$$
 (3)