CME 307 / MS&E 311: Optimization Optimality conditions and convexity

Professor Udell

Management Science and Engineering
Stanford

January 29, 2024

Solution of an optimization problem

minimize
$$f(x)$$

for $f: \mathcal{D} \to \mathbf{R}$. x^* is a

- ▶ global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$.
- ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \geq f(x^*)$ for all $x \in \mathcal{N}$.
- **isolated local minimizer** if the neighborhood \mathcal{N} contains no other local minimizers.
- unique minimizer if it is the only global minimizer.

Solution of an optimization problem

minimize
$$f(x)$$

for $f: \mathcal{D} \to \mathbf{R}$. x^* is a

- ▶ global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$.
- ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \geq f(x^*)$ for all $x \in \mathcal{N}$.
- **isolated local minimizer** if the neighborhood \mathcal{N} contains no other local minimizers.
- unique minimizer if it is the only global minimizer.

pictures!

First order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$.

First order optimality condition

Theorem

If $x^* \in \mathbf{R}^n$ is a local minimizer of a differentiable function $f: \mathbf{R}^n \to \mathbf{R}$, then $\nabla f(x^*) = 0$.

proof: suppose by contradiction that $\nabla f(x^*) \neq 0$. consider points of the form $x_{\alpha} = x^* - \alpha \nabla f(x^*)$ for $\alpha > 0$. by definition of the gradient,

$$\lim_{\alpha \to 0} \frac{f(x_{\alpha}) - f(x^{\star})}{\alpha} = -\nabla f(x^{\star})^{\top} \nabla f(x^{\star}) = -\|\nabla f(x^{\star})\|^{2} < 0$$

so for any sufficiently small $\alpha > 0$, we have $f(x_{\alpha}) < f(x^{*})$, which contradicts the fact that x^{*} is a local minimizer.

Second order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, then $\nabla^2 f(x^*) \succeq 0$.

Second order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla^2 f(x^*) \succeq 0$.

proof: similar to the previous proof. use the fact that the second order approximation

$$f(x_{\alpha}) \approx f(x^{\star}) + \nabla f(x^{\star})^{\top} (x_{\alpha} - x^{\star}) + \frac{1}{2} (x_{\alpha} - x^{\star})^{\top} \nabla^{2} f(x^{\star}) (x_{\alpha} - x^{\star})$$

is accurate locally to show a contradiction unless $\nabla^2 f(x^*) \succeq 0$: if not, there is a direction v such that $v^T \nabla^2 f(x^*) v < 0$. then $f(x + \alpha v) < f(x^*)$ for α arbitrarily small, which contradicts the fact that x^* is a local minimizer.

Outline

Convex sets

Definition

A set $S \subseteq \mathbf{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

Convex sets

Definition

A set $S \subseteq \mathbf{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

Q: Which of these are convex? ellipsoid, half moon

a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff

a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

▶ Epigraph. epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex

a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

- **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex
- **First order condition.** if *f* is differentiable,

$$f(v) - f(w) \ge \nabla f(w)^{\top} (v - w) \qquad \forall w, v \in \mathbf{R}^n$$

a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

- **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex
- **First order condition.** if *f* is differentiable,

$$f(v) - f(w) \ge \nabla f(w)^{\top} (v - w) \qquad \forall w, v \in \mathbf{R}^n$$

► **Second order condition.** If *f* is twice differentiable, its Hessian is always psd:

$$\lambda_{\min}(\nabla^2 f(x)) \ge 0$$
 for all $x \in \mathbf{R}^n$

a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

- **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex
- **First order condition.** if *f* is differentiable,

$$f(v) - f(w) \ge \nabla f(w)^{\top} (v - w) \qquad \forall w, v \in \mathbf{R}^n$$

► **Second order condition.** If *f* is twice differentiable, its Hessian is always psd:

$$\lambda_{\min}(\nabla^2 f(x)) \ge 0$$
 for all $x \in \mathbf{R}^n$

Q: Which of these are convex? quadratic, abs, pwl, step, jump, logistic, logistic loss

Convex optimization

an optimization problem is convex if:

- ► **Geometrically:** the feasible set and the epigraph of the objective are convex
- ► **NLP:** the objective and inequality constraints are convex functions, and the equality constraints are affine

Convex optimization

an optimization problem is convex if:

- ► **Geometrically:** the feasible set and the epigraph of the objective are convex
- ► **NLP:** the objective and inequality constraints are convex functions, and the equality constraints are affine

why convex optimization?

- relatively complete theory
- efficient solvers
- conceptual tools that generalize

duality, stopping conditions, ...

Convex optimization

an optimization problem is convex if:

- ► **Geometrically:** the feasible set and the epigraph of the objective are convex
- ► **NLP:** the objective and inequality constraints are convex functions, and the equality constraints are affine

why convex optimization?

- relatively complete theory
- efficient solvers
- conceptual tools that generalize

duality, stopping conditions, ...

- ightharpoonup a function f is concave if -f is convex
- concave maximization results in a convex optimization problem

Local minima are global for convex functions

Theorem

If x^* is a local minimizer of a convex function f, then x^* is a global minimizer.

Local minima are global for convex functions

Theorem

If x^* is a local minimizer of a convex function f, then x^* is a global minimizer.

proof: suppose by contradiction that another point x' is a global minimizer, with $f(x') < f(x^*)$. draw the chord between x' and x^* . since the chord lies above f, every convex combination $x = \theta x^* + (1-\theta)x'$ of x' and x^* for $\theta \in (0,1)$ has a value $f(x) < f(x^*)$. this is true even for $x \to x^*$, contradicting our assumption that x^* is a local minimizer.

Corollary

Corollary

If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Corollary

Corollary

If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Q: Is a global minimizer of a convex function always unique?

Corollary

Corollary

If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Q: Is a global minimizer of a convex function always unique?

A: No. Picture.

Definition

 $x^{\star} \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f: \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$.

Q: Can a global minimum have a non-zero gradient?

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Q: ... for convex functions?

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Q: ... for convex functions?

A: Yes.

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Q: ... for convex functions?

A: Yes.

 $\nabla f(x^*) = 0$ is the **first-order (necessary) condition** for optimality.

Invex function

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **invex** if for some vector-valued function $\eta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$,

$$f(x) - f(u) \ge \eta(x, u)^{\top} \nabla f(u)$$
 $\forall u \in \mathbf{R}^n, x \in \operatorname{dom} f$

Theorem (Craven and Glover, Ben-Israel and Mond)

A function is invex iff every stationary point is a global minimum.