Procesamiento de Imágenes Médicas Actividad 1: Manipulación de imágenes, DICOM y color

Alejandro Veloz

El siguiente documento describe las actividades a realizar durante la experiencia 1 del laboratorio. Las fechas asociadas a esta experiencia son las siguientes:

Comienzo del trabajo 17-04-2025 Entrega informe 02-05-2025

1. OBJETIVOS

Los objetivos de esta actividad son los siguientes:

- Familiarizarse con las bibliotecas NumPy, SciPy, y Matplotlib.
- Familiarizarse con el manejo básico de imágenes digitales.
- Familiarizarse con el estándar DICOM, utilizado para transmitir, almacenar, recuperar, imprimir, procesar y mostrar información relativa a las imágenes médicas.
- Aprender a utilizar la biblioteca pydicom.

2. Trabajo complementario

Las siguientes son actividades que se recomienda realizar para desarrollar las actividades del laboratorio.

- 1. Instale la plataforma de desarrollo Anaconda, disponible en forma gratuita en https://www.anaconda.com/products/individual.También puede usar Google Colab o Visual Studio Code.
- 2. Estudie y haga los ejercicios de las siguientes secciones del documento "Scipy Lecture Notes" (http://scipy-lectures.org/index.html):
 - Sección 1.4. NumPy: creating and manipulating numerical data.

- Sección 1.5. Matplotlib: plotting.
- Secciones 1.6.1, 1.6.3, 1.6.5, 1.6.6 y 1.6.10. Scipy: high-level scientific computing.
- 3. Leer el siguiente material de referencia:
 - Documento "Why Does the DICOM Standard Exist?" (https://innolitics.com/articles/dicom-i-facilitating-interoperability/).
 - Parte 1 "Introduction and Overview" del estándar DICOM (http://dicom.nema.org/medical/dicom/current/output/html/part01.html).
 - Documentación de la biblioteca PyDicom (https://pydicom.github.io/pydicom/stable/).
- 4. Instale la biblioteca PyDicom.

3. ACTIVIDADES

3.1. DICOM.

Se trabajará con dos conjunto de datos. El primero consiste en un grupo de imágenes de CT de distintos pacientes (data_1). El segundo consistente en un conjunto de imágenes de CT compuesto por cortes de un mismo paciente (data_2). Los datos están disponibles en el Google Drive, junto a este documento.

Durante el transcurso de la experiencia realice las siguientes actividades (todas las actividades tienen el mismo puntaje):

- 1. Desarrolle un programa que genere un archivo CSV con los nombres y fechas de nacimiento de los pacientes de las imágenes contenidas en el directorio data_1.
- 2. Desarrolle un programa que muestre en una sola figura todas las imágenes del directorio data_1. Cada imagen debe estar identificada por el nombre del paciente.
- 3. Desarrolle un programa que anonimice todas las imágenes del directorio data_1.
- 4. Implemente un programa que permita visualizar un corte coronal y sagital de las imágenes del directorio data_2.
- 5. Implemente un programa que permita visualizar un corte oblicuo coronal- sagital de las imágenes del directorio data_2.
- 6. El proceso de *downsampling* consiste en re-muestrear una imagen. La forma más simple de realizar este proceso es conservar uno de cada $n \in \mathbb{N}$ pixels de la imagen. La imagen p5.dcm tiene un tamaño de 512×512 pixels. Realice el proceso de *downsampling*, conservando uno de cada 4 pixeles de la imagen. Muestre la imagen original y la de tamaño reducido. Comente sobre la diferencias de estas imágenes.
- 7. Visualice las imágenes del directorio data_2 usando widgets de Matplotlib¹ o ipywidgets.² Agregue opciones para aplicar operaciones de mejora de contraste, en base a la transformación γ (Ec. 3.2-3, sección 3.2.3, página 110) y usando una función de transformación definida

https://matplotlib.org/stable/api/widgets_api.html

²https://ipywidgets.readthedocs.io/en/stable/

por tramos (Figura 3.10(a), página 116). Visualice los histogramas de las imágenes resultantes, junto a los histogramas de las imágenes de entrada. Comente en qué situaciones el contraste mejora, versus cuándo empeora.

8. Implemente la ecualización (Ec. 3.3-8, página 126) y especificación de histogramas (Ec. 3.3-12, página 130). Explique los resultados (no es necesario usar widgets).

3.2. FILTRADO ESPACIAL

1. Implemente la operación de convolución (sección 3.4.2, página 148, ecuación 3.4-1). Luego, en base a ésta, implemente los filtros de suavizado, incluyendo el filtro Gaussiano, (sección 3.5.1, página 152) y agudizado (sección 3.6, página 157). Aplique estos filtros al volumen de CT de una misma persona. Compare con el resultado obtenido usando la función scipy.ndimage.convolve (para un filtro).

Ayuda: La siguiente sentencia permite construir la versión rellenada con ceros de la imagen

donde mask es contiene la máscara del filtro (se asume que es cuadrada, con largo impar), e img es la imagen original.

- 2. Usando la implementación de la convolución del punto anterior, aplique los filtros de suavizado y agudizado de manera combinada, según se explica en la sección 3.7 (página 169), en la imagen xray . dcm. Explique la pertinencia de los pasos aplicados.
- 3. Calcule la razón señal-ruido (SNR) antes y después de aplicar un filtro de suavizado. Discuta respecto de los resultados. Utilice la siguiente fórmula para calcular la SNR:

$$SNR = \frac{\mu_{\rm sig}}{\sigma_{\rm sig}},$$

donde μ_{sig} y σ_{sig} son el promedio y la desviación estándar, respectivamente, de las intensidades de una región de interés homogénea, seleccionada manualmente.

Nota: La operación de convolución, los filtros, y los métodos de mejora de contraste debe implementarlos Ud., sin utilizar librerías específicas de procesamiento de imágenes.

3.3. VISUALIZACIÓN DE MAPAS DE ACTIVACIÓN

Desarrolle un programa que permita visualizar un mapa como el siguiente:

Dispone de los archivos *anat.nii*, *zmap_voice.nii.gz* y *zmap_nonvoice.nii.gz*. Note que los archivos están en formato .nii, los cuales pueden ser leídos usando la librería nibabel.

4. Informe

- En la fecha estipulada debe enviar su actividad al correo alejandro.veloz@uv.cl, en formato jupyter, con una descripción detallada de las actividades realizadas.
- El informe debe incluir una explicación de lo realizado, incluyendo todos los programas correspondientes.
- Los archivos subidos no deben contener datos entregados por el profesor. El archivo debe llamarlo: apellido_nombre.ipynb. El no respetar esta instrucción significará un descuento de 20 puntos.
- Suba también una versión .pdf del archivo .ipynb generado durante la experiencia (con las salidas de cada celda visibles). El no respetar esta instrucción significará un descuento de 20 puntos.
- Los informes enviados con retraso serán penalizados con 10 puntos por día de retraso.