MATRIKS

AN R PACKAGE FOR THE AUTOMATIC GENERATION OF RAVEN-LIKE MATRICES

Ottavia M. Epifania, Andrea Brancaccio, Debora de Chiusole, Pasquale Anselmi, Luca Stefautti

Universty of Padova, IT

Meeting of European Mathematical Psychology Group, 2023

- 1 Introduction
- **2** Generating rules
- 3 The matRiks package
- 4 Why?
- **5** Final remarks

Assessment of fluid intelligence or abstract reasoning Job recruitment, clinical assessment

An example

An example

An example

An example: The matrix

An example: The matrix

An example: The matrix

Repetition

Repetition of a cell adjacent to the blank space

Repetition

Repetition of a cell adjacent to the blank space

Difference

Different in appearance from every element of the matrix

Repetition

Repetition of a cell adjacent to the blank space

Difference

Different in appearance from every element of the matrix

Wrong Principle

Copy of a cell or combination of cells

Repetition Repetition of a cell **adjacent** to the blank space

Difference Different in appearance from every element of the ma-

trix

Wrong Principle Copy of a cell or combination of cells

- 1 Introduction
- **2** Generating rules
- 3 The matRiks package
- 4 Why?
- **5** Final remarks

Rules Cate- gory	Rule name	Definition
Visuospatial	Object addi-	Visually merge two elements
	tion/subtraction	, 0
	Movement	With a steady background, the movement is created by changing the position of an object across the cells
	Rotation	The spatial orientation of the figure changes across the cells
	Mental transformation	The third cell results from the application of the characteristics in the second cell to the figures in the first cell.
	Numeric progression	Quantitative increase or decrease in the number of features from cell to cell
	Changes in shape	The figures change across cells
	Changes in shade	The shading of the figures changes across cells
	Changes in size	The size of the figures changes across cells
	Changes in margins	The margins of the figures change across cells
Logical	AND	The third cell contains ONLY the elements that appeared in both the first and second cells
	OR	The third cell contains ALL the elements in the first and second cells
	XOR	The third cell contains the elements in the first cell not present in the second cell and viceversa

- 1 Introduction
- **2** Generating rules
- 3 The matRiks package
- 4 Why?
- **5** Final remarks

devtools::install_github("https://github.com/OttaviaE/matRiks")

- Generates 2 × 2 or 3 × 3 Raven-like matrices
- Generates the response list associated with the matrix (1 correct response + 10 distractors)
- Core elements:

Objects Rules Matrix generator Response options generator

Object

Object

Rule

rotate

The matRiks architecture: Response options generator

Sq1 Sq2 Sq3Sq4 Sq5 Sq6Sq7 Sq8 Sq9

The matRiks architecture: Response options generator

The matRiks architecture: Response options generator

(Some) of the available figures

Rotate

Shade

Shape

Size

. .

Logical rules

$XOR(\Delta)$

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?
- **5** Final remarks

PsycAssist

PsycAssist

Sample

n = 600 children aged 4-11, recruited in Italian schools

F = 48%

30% preschoolers

PsycAssist

Sample

n = 600 children aged 4-11, recruited in Italian schools

F = 48%

30% preschoolers

Stimuli

40 Raven-like matrices:

- 5 Mono images
- 2 × 2 matrices
- 3 × 3 matrices

Rasch validation

- Monotonicity check
- Fit the Rasch model:
 - 1 Item infit and outfit
 - 2 Local dependence

Rasch validation

- Monotonicity check
- Fit the Rasch model:
 - Item infit and outfit
 - 2 Local dependence

Note

- 2 matrices were eliminated because of technical issues
- 4 matrices were eliminated because a lack of monotonicity

Starting model

The starting model included 34 matrices:

Madcov	SRMR	SRMSR	MADaQ3	<i>p</i> -value
0.97	0.06	0.08	0.05	< 0.001

Oufit statistic suggested the underfit of one matrix (item 21) ightarrow removed and refitted the model

- ullet Check for infit/outfit o no matrices were identified as underfitting
- Check for local dependence:
 - Matrix $37 36 \rightarrow Matrix 37$ eliminated
 - Matrix 28 − 40 → Matrix 40 eliminated

The final model

Madcov	SRMR	SRMSR	MADaQ3	<i>p</i> -value
0.96	0.06	0.08	0.05	< 0.001

The final model

Madcov	SRMR	SRMSR	MADaQ3	<i>p</i> -value
0.96	0.06	0.08	0.05	< 0.001

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why
- **5** Final remarks

- Generate similar but different matrices \rightarrow parallel forms
- Formalization of the matrix generation and response options generation processes
- Reproducibility of the stimuli
- Ease of use (for useR)

- ullet Generate similar but different matrices o parallel forms
- Formalization of the matrix generation and response options generation processes
- Reproducibility of the stimuli
- Ease of use (for useR)

matRiks

https://github.com/OttaviaE/matRiks

Slides

matRiks

https://github.com/OttaviaE/matRiks

Slides

Thank you!

