

Proofs

1. Use a truth table to decide if $(A \to B) \land B$ logically implies A.

A	B	$A \to B$	$(A \to B) \land B$
\overline{T}	T	T	T
T	F	F	F
F	T	T	T
F	F	T	F

In the third line we see a problem, which is that $(A \to B) \land B$ is true, but A is false. So $(A \to B) \land B$ cannot logically imply A.

2. Find a counterexample to show that we cannot use $A \models A \lor B$ to substitute into $A \to C$. In particular, find propositions A, B and C so that $A \to C$ is true but $(A \lor B) \to C$ is false.

Solution: Before looking for a counterexample, let's look at what the conditions are. We need to have $A \to C$ be true. This works as long as we don't have A = T and C = F. We also need $(A \lor B) \to C$ to be false. So we need $A \lor B$ to be True and C to be false.

From our conditions, we can see immediately that any false C works. Let's use C = Socrates is a teapot. Next, we need $A \vee B$ to be true, but A to be false. We can do this by using any false A, and a true B. Let's use A = Pigs can fly. B = Socrates is human. So we have

A = Pigs can fly.

B =Socrates is human.

C =Socrates is a teapot.

3. Use two logical implications to prove

$$(A \wedge B) \wedge (A \rightarrow C) \models C$$

Solution:

1	$A \wedge B$	premise
2	$A \to C$	premise
3	\overline{A}	Logical implication $(p \land q) \vDash p$
4	C	Logical implication $(p \to q) \land p \vDash q$

4. (Stretch question)

(a) Prove
$$(A \to B) \models A \to (B \lor C)$$

Solution:

$A \to B$	premise
'	logical equivalence $p \to q \equiv \neg p \lor q$ logical implication $p \vDash p \lor q$
	logical equivalence $(p \lor q) \lor r \equiv p \lor (q \lor r)$ logical equivalence $p \to q \equiv \neg p \lor q$

(b) Prove $(A \to B) \land (A \lor C) \vDash B \lor C$

Solution: We'll take it for granted that we can rearrange the order and parentheses for \vee and \wedge . This can be done formally, but it's just tedious.

$\begin{array}{c} A \to B \\ A \lor C \end{array}$	premise premise
$ \neg A \lor B \neg A \lor B \lor C A \lor B \lor C (\neg A \lor (B \lor C)) \land (A \lor (B \lor C)) (B \lor C) \lor (A \land \neg A) (B \lor C) \lor F B \lor C $	logical equivalence $p \to q \equiv \neg p \lor q$ logical implication $p \vDash p \lor q$ logical implication $p \vDash p \lor q$ ANDing two true statements logical equivalence $p \lor (q \land r) \equiv (p \lor q) \land p \lor r)$ logical equivalence $p \land \neg p \equiv F$ logical equivalence $p \lor F \equiv p$
B v C	$\text{logical equivalence } p \vee 1 = p$

(c) Prove $(A \vee B) \wedge (A \to C) \wedge (B \to D) \vDash C \vee D$.

Solution: We'll take it for granted that we can rearrange the order and parentheses for \vee and \wedge . This can be done formally, but it's just tedious.

$A \lor B$	premise
$A \to C$	premise
$B \to D$	premise
$A \to (C \lor D)$	logical implication $p \to q \vDash p \to (q \lor p)$ from question above
$B \to (C \lor D)$	logical implication $p \to q \vDash p \to (q \lor r)$
$(C \vee D) \vee B$	logical implication $(p \to q) \land (p \lor r) \vDash q \lor r$ from question above
$(C \lor D) \lor (C \lor D)$	logical implication $(p \to q) \land (p \lor r) \vDash q \lor r$
$C \vee D$	logical equivalence $p \vee p \equiv p$

The last logical equivalence isn't mentioned in the slides, but it is trivial to show with a truth table.

Predicate logic

1. Determine the truth value of the following predicates with the values given:

(a)
$$p(x) = (x^2 = x)$$
 for $x \in \{0, 1, 2\}$

Solution: p(0) is $0^2 = 0$ which is true. p(1) is $1^2 = 1$ which is true. p(2) is $2^2 = 2$ which is false.

(b) $p(x) = (x^2 = 1 \land x \ge 0)$ for $x \in \{-1, 0, 1\}$

Solution: p(-1) is $(-1)^2 = 1 \land -1 \ge 0$ which is false.

- p(0) is $0^2 = 1 \land 0 \ge 0$ which is false.
- p(1) is $1^2 = 1 \wedge 1 \geq 0$ which is true.
- 2. For each predicate decide whether it is fully quantified and identify any free parameters:
 - (a) $\forall x p(x, y)$

Solution: Not fully quantified. y is a free parameter.

(b) $\exists x \, \forall y \, p(x,y)$

Solution: Fully quantified.

(c) $\exists x, y \, p(x, y, z)$

Solution: Not fully quantified. z is a free parameter.

- 3. Determine the truth value of the following fully quantified predicates, with universe $\{-1,0,1\}$:
 - (a) $\exists x (x^2 \ge 0 \land x \le 0)$

Solution: We are using \exists , so we just need to find one example. -1 works since $(-1)^2 \ge 0$ and $-1 \le 0$.

(b) $\exists x, y (xy \ge 0)$

Solution: Again, just need to find one x and one y that works. We can use x=y=1 since $1\cdot 1\geq 0$.

(c) $\forall x \,\exists y \,(x+y=0)$

Solution: Let's set p(x,y) to be x+y=0. Then we need figure out the truth values of

$$\exists y\, p(-1,y)$$

 $\exists y \, p(0,y)$

 $\exists y \, p(1,y)$

These are satisfied by p(-1,1), p(0,0) and p(1,-1). Since we made p(x,y) true for all values of x, our original proposition is true.

(d) $\exists x, \forall y (xy = 0)$

Solution: We need to find a single x which makes $\forall y \, p(x,y)$ true. With a bit of math knowledge, we make the guess that x=0 will work for us. The statement becomes $\forall y \, 0 \cdot y = 0$. We can immediately see that this will work for any value of y in our set. So our original proposition is true.

- 4. In each of the following conditions, identify the necessary and sufficient conditions:
 - (a) $\forall x \in \mathbb{Z} (x \ge 0 \to -x \le 0)$

Solution:

 $x \ge 0$ is a sufficient condition for $-x \le 0$.

 $-x \le 0$ is a necessary condition for $x \ge 0$.

(b) $\forall x \in \mathbb{Z} (x^2 = 0 \rightarrow x = 0)$

Solution:

 $x^2 = 0$ is a sufficient condition for x = 0.

x=0 is a necessary condition for $x^2=0$.

(c) If x is divisible by 6, then x is divisible by 2.

Solution: x is divisible by 6 is sufficient for x to be divisible by 2. x is divisible by 2 is necessary for x to be divisible by 6.

(d) $\forall x \in \mathbb{R} \ x > 2 \to x^2 > 4$

Solution: $x \ge 2$ is sufficient for $x^2 \ge 4$. $x^2 \ge 4$ is necessary for $x \ge 2$.

(e) If you are a mother, then you are biologically female.

Solution: Being a mother is sufficient for being biologically female. Being biologically female is necessary for being a mother.

- 5. Use logical equivalences for quantified predicates to rewrite the following statements, then determine their truth value:
 - (a) $\neg (\exists x \in \mathbb{Z} (x + x^2 \ge 0))$

Solution: Let's use the logical equivalence

$$\neg(\exists x \, p(x)) \equiv \forall x \, \neg p(x)$$

with p(x) set to $x + x^2 \ge 0$. Then our original proposition is equal to the right side in the above, and so is logically equivalent to

$$\forall x \in \mathbb{Z} (x + x^2 < 0).$$

Perhaps we suspect this is false, so we can try a few examples and see if we come up with a counterexample. We find $1+1^2=2\geq 0$, so this is enough to prove the statement false.

(b) $\neg (\forall x \in \mathbb{Z} (x^2 + 4x \ge 0))$

Solution: This time we will use the logical equivalence

$$\neg(\forall x \, p(x)) \equiv \exists x \, \neg p(x).$$

Setting p(x) to $x^2 + 4x \ge 0$, we find that our proposition is logically equivalent to

$$\exists x \in \mathbb{Z} \, (x^2 + 4x < 0).$$

We can see that this is true by setting x = -1 and observing $(-1)^2 - 4 = -3 < 0$.

- 6. Find an example that illustrates each of the following logical implications:
 - (a) $p(y) \land (y \in S) \vDash \exists y \in S \, p(y)$

Solution: Let p(y) be "y has fleas". Let y be my dog and S be the set of dogs. Then the logical statement above becomes:

"My dog has fleas, and my dog is a dog, so there exists a dog with fleas."

(b) $(\forall x \in S p(x)) \land (y \in S) \models p(y)$

Solution: Let p(x) be "x has a mother", y be me, and S be the set of mammals. Then the statement becomes

"All mammals have mothers, and I am a mammal, so I have a mother."

- 7. For each of the following quantified predicates, use a logical equivalence to give an equivalent quantified predicate using the opposite quantifier:
 - (a) $\forall x \in \mathbb{Z} \ (x^2 \ge 0)$

Solution: $\neg(\exists x \in \mathbb{Z} \ (x^2 < 0))$

(b) $\exists x \in \mathbb{Z} \ (x^2 = 4)$

Solution: $\neg(\forall x \in \mathbb{Z} \ (x^2 \neq 4))$

(c) $\neg(\forall x \in \mathbb{Z} \ (2x \ge x))$

Solution: $\exists x \in \mathbb{Z} \ (2x < x)$

(d) $\neg (\exists x \in \mathbb{Z} \ (x^2 = -1))$

Solution: $\forall x \in \mathbb{Z} \ (x^2 \neq -1)$

- 8. Use logical implications from the lecture to draw conclusions from the following:
 - (a) All cows eat grass and Betsy is a cow.

Solution: This can be written like $(\forall x \in C (E(x))) \land (b \in C)$. We can use a logical implication to derive E(b). In other words, Betsy eats grass.

(b) $\sqrt{2} \in \mathbb{R} \wedge (\sqrt{2})^2 = 2$

Solution: $\exists x \in \mathbb{R} \ (x^2 = 2)$

(c) $(\forall x \in \mathbb{R} \ (\exists y \in \mathbb{R} \ (y^3 = x))) \land (2 \in \mathbb{R})$

Solution: $\exists y \in \mathbb{R} \ (y^3 = 2).$

9. For each of the following, give a formal mathematical statement using quantified predicates:

(a) x is a factor of y (x, y are natural numbers)

```
Solution: \exists z \in \mathbb{N} \ (y = xz \land x \neq y \land x \neq 1)
```

(b) x is a composite number (x is a natural number)

```
Solution: \exists y, z \in \mathbb{N} \ (x = yz \land y \neq x \land y \neq 1)
```

(c) For every real number x, the square of x is also a real number.

```
Solution: \forall x \in \mathbb{R} \ (x^2 \in \mathbb{R})
```

(d) For every pair of even numbers x, y, x + y is also even.

```
Solution: \forall x, y \in \mathbb{N} \ ((\exists a, b \in \mathbb{N} \ (x = 2a \land y = 2b)) \rightarrow (\exists c \in \mathbb{N} \ (x + y = 2c)))
```

(e) Every natural number can be written as either 2k or 2k-1 where k is a natural number.

```
Solution: \forall x \in \mathbb{N} \ (\exists k \in \mathbb{N} \ (x = 2k \lor x = 2k - 1))
```

1 Python quantified predicates

1. Write a Python function that takes a set S and a predicate p(x) in one parameter, and outputs whether $\forall x \in S p(x)$.

```
Solution: We loop over all x \in S and if any p(x) returns false then we return false. def forall(S, p):
    for x in S:
        if not p(x):
        return False
    return True
```

2. Write a Python function which implements the predicate $p(x) = x \equiv 0 \pmod{2}$. Use it and the program from above to determine the truth value of $\forall x \in \{0, 2, 4\} \ x \equiv 0 \pmod{2}$.

```
Solution:

def p(x):
    return x % 2 == 0

print(forall({0,2,4}, p))
```

3. Write a Python function that takes a set S and a predicate p(x) in one parameter, and outputs whether $\forall x \in S p(x)$.

```
Solution: We loop over all x \in S and if any p(x) returns false then we return false. def exists(S, p):
    for x in S:
        if p(x):
        return True
    return False
```

4. Stretch question. Implement the predicate p(x,y) = x|y (i.e. x divides y). Use it and the previous functions to determine whether

$$\exists x \in \{2, 3, 4\} \, \forall y \in \{6, 8, 10\} \, x | y$$

```
Solution: This looks a bit awkward in Python, but it is much better in more purely functional
languages, such as Haskell.

def p(x,y):
    return y % x == 0

def inner(x):
    def innerp(y):
        return p(x,y)
    return forall({6,8,10}, innerp)

print(exists({2,3,4}, inner))

or with lambdas

print(exists({2,3,4}, (lambda x : forall({6,8,10}, lambda y : p(x,y)))))
```

5. Stretch question. Do the same as in the last question, but with for loops rather than using your previously defined functions.