САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Отчет по дисциплине «Функциональная схемотехника» Лабораторная работа №2 Комбинационные схемы Вариант 3

Выполнили: Тищук Б.Ю. Группа Р3210 Шульгин И.В. Группа Р3210

Преподаватель: Денисов А. К

Цели работы:

- · Получить базовые знания о принципах построения и функционирования цифровых схем комбинационного типа
- · Изучить схемотехнику базовых операционных элементов цифровых схем комбинационного типа.

Задание:

- 1. С использованием произвольных вентилей реализовать БОЭ согласно варианту задания. Оформить БОЭ как иерархический элемент для библиотеки, задав ему стандартное условное графическое обозначение.
- 2. Построить таблицу истинности полученной схемы. Для схемы, у которой более пяти входов, допускается таблицу истинности приводить не полностью.
- 3. Измерить максимальную и минимальную задержку распространения сигнала через схему.
- 4. Разработать реализацию заданной функции в виде комбинационной схемы с применением различных стандартных БОЭ и, в случае необходимости, дополнительных вентилей. Применяемые БОЭ должны быть построены из вентилей. Все переменные в функции четырехразрядные, беззнаковые. Используемый в функциях сдвиг является циклическим. В случае переполнения необходимо отбрасывать выходящие за разрядную сетку старшие разряды.
- 5. Для построенной схемы требуется:
- (а) проверить работу схемы на нескольких наборах аргументов, включая граничные случаи (переполнения и пр.);
- (b) измерить задержку распространения сигнала через схему.
- 6. Подготовить отчет по проделанной работе.

Γ	3	Схема мажоритарного контроля с пятью входами	i f ((X1 + X2) == 0) Y = X1 - X2;
			e1seY = X2 + 2;

Таблица 1

1 - Схема мажоритарного контроля с пятью входами

Рисунок 1 – оформление элемента

Рисунок 2 – принципиальная схема

2 – Таблица истинности

№	IN1	IN2	IN3	IN4	IN5	OUT
0	0	0	0	0	0	0
1	0	0	0	0	1	0
2	0	0	0	1	0	0
3	0	0	0	1	1	0
4	0	0	1	0	0	0
5	0	0	1	0	1	0
6	0	0	1	1	0	0
7	0	0	1	1	1	1
8	0	1	0	0	0	0
9	0	1	0	0	1	0
10	0	1	0	1	0	0
11	0	1	0	1	1	1
12	0	1	1	0	0	0
13	0	1	1	0	1	1
14	0	1	1	1	0	1
15	0	1	1	1	1	1
16	1	0	0	0	0	0
17	1	0	0	0	1	0
18	1	0	0	1	0	0
19	1	0	0	1	1	1
20	1	0	1	0	0	0
21	1	0	1	0	1	1
22	1	0	1	1	0	1

23	1	0	1	1	1	1
24	1	1	0	0	0	0
25	1	1	0	0	1	1
26	1	1	0	1	0	1
27	1	1	0	1	1	1
28	1	1	1	0	0	1
29	1	1	1	0	1	1
30	1	1	1	1	0	1
31	1	1	1	1	1	1

3 – измерение минимальной и максимальной задержки

Рисунок 3 – временная диаграмма

Рисунок 4 - задержка выходной сигнал – верхний

Как видно из диаграммы, в данном случае задержка практически отсутствует по фронту и по спаду, так как использовались стандартные компоненты (меньше техпроцесс, соответственно меньше входная ёмкость

), отсутствуют нагрузочные емкости (или индуктивности вместе с емкостями) и по выходу нет разветвления.

4 – разработанная схема

В данном случае можно разработать несколько вариантов схем

5а – тестирование схемы

1 – Временная диаграмма х1

Рисунок 6

Временная диаграмма х2

Рисунок 7

 $C\ 0$ до 1 ns $x1 = 1101_2$, $x2 = 0011_2$, x1+x2 = 0 (случай переполнения), out $= 1010_2$

C 1 до 2 ns $x1 = 0010_2$, $x2 = 0_2$, x1+x2 != 0, out $= 0010_2$

Временная диаграмма out

Рисунок 8 Как видно из диаграммы, результат логически корректен

2 – Тест2 Временная диаграмма x1

Рисунок 9 Временная диаграмма x2

Рисунок 10 С 0 до 1 ns x1 = 11112, x2 = 00012, x1+x2 = 0 (случай переполнения), out = 11102 С 1 до 2 ns x1 = 00002, x2 = 00102, x1+x2 != 0, out = 01002 Временная диаграмма out

Рисунок 11 Как видно из диаграммы, результат логически корректен

3 – тест 3

Временная диаграмма х1

Рисунок 12 Временная диаграмма x2

Рисунок 13 С 0 до 1 ns x1 = 1010₂, x2 = 0110₂, x1+x2 = 0 (случай переполнения), out = 0100₂ С 1 до 2 ns x1 = 0101₂, x2 = 1000₂, x1+x2 != 0, out = 1010₂

Рисунок 14 Как видно из диаграммы, результат логически корректен

Рисунок 15 верхние 3 сигнала –out, нижние – x2

 $T_{pd \ min} = 0.09 Hc.$

 $T_{pd \ max} = 0.11 Hc.$

Можно заметить, что сами по себе иерархические элементы библиотеки имеют малую задержку, однако так как длительность фронта и спада отличаются: фронт - зарядка внутренних ёмкостей $U=U_0(1\text{-}e^-\text{-}t/\tau)$, спад — разрядка $U=U_0(e^-\text{-}t/\tau)$ и в силу того, что в многовыходных схемах задержка измеряется от момента изменения входного сигнала до момента, когда все выходы примут установившееся значение задержку дает в основном дает длительность фронта. Вывод:

1- Мажоритарный вентиль можно было бы реализовать по другому, а именно так как нам важно значение только 3 переменных, то схема реализует дизьюнкцию всех конъюнкций комбинаций из 3 переменных. Однако, таких конъюнций было бы $C_5^3 = 10$. Схема имела бы 40 входов, хотя имела бы меньшую задержку.

2- Мажоритарный вентиль может быть чувствителен к импульсным помехам

0	00	01	11	10		1	00	01	11	10
00	0	0	0	0		00	0	0	1	0
01	0	0	1	0		01	0	1	1	1
11	0	1	1	1		11	1	(1)	1	1
10	0	0	1	0		10	0	1 -	1▶	1

По карте Карно видно несколько переходов между импликантами, в этих переходах могут возникать импульсные помехи. Эта проблема решается введением подолнительных импликант, покрывающих переход.

3- По временной диаграмме разработанной схемы оказалось, что она чувствительна к импульсным помехам.