Postulates of Quantum Mechanics¹

I. The physical state of the system is described by a wave function as completely as possible. The wave function is derived from an orthonormal set of eigenfunctions of the Hamiltonian.

Example: Particle-in-a-Box: $\Psi_n(x) = (2/a)^{\frac{1}{2}} \sin(n\pi x/a)$ are the solutions to $\mathcal{H}\Psi = E\Psi$

II. Any observable may be represented by a linear operator. The results should be a real number. The <u>least</u> restrictive requirement is that the operator must be Hermitian:

$$\int \Psi_i^* \stackrel{\circ}{o} \Psi_i dx = \int \Psi_i \stackrel{\circ}{o} \Psi_i^* dx = \int \Psi_i \stackrel{\circ}{o}^* \Psi_i^* dx$$

The observable operator is constructed from the following table:

<u>Classical</u>	Quantum Operator
X	X
p	$\frac{\hbar}{\mathrm{i}} \left(\frac{\partial}{\partial \mathrm{x}} \right) = - \mathrm{i} \hbar \left(\frac{\partial}{\partial \mathrm{x}} \right)$
t	î
E vs. time	$\mathbf{\hat{E}}=i\hbar\left(\frac{\partial}{\partial t}\right)$

III. If the wave function is an eigenfunction of the observable, then repeated measurements of the observable always give the same result, the eigenvalue:

if $\hat{o} \Psi = o \Psi$ then each measurement gives the result, o.

Example: Free Particle: e^{ikx} is an eigenfunction of the momentum operator $\frac{\hbar}{i} \left(\frac{d}{dx} \right)$, so the momentum of the particle is constant, $p = \hbar k$.

IV. If the wave function is not an eigenfunction of the observable, the measurement gives a different result each time. So, you need to find the "average," or expectation value.

$$\langle o \rangle = \frac{\int_{-\infty}^{\infty} \Psi^* \circ \Psi \, dx}{\int_{-\infty}^{\infty} \Psi^* \Psi \, dx}$$

Example: Particle-in-a-Box: $\Psi_n = (2/a)^{\frac{1}{2}} \sin(n\pi x/a)$ is not an eigenfunction of the momentum operator, so to find the average momentum you must find the expectation value:

$$\begin{split} <\!p_x> &= \frac{\int_o^a \Psi_n^* \, \hat{p}_x \, \Psi_n \, dx}{\int_o^a \Psi_n^* \, \Psi_n \, dx} \, = \, \int_o^a \Psi_n \, \frac{\hbar}{i} \! \left(\frac{d}{dx} \right) \Psi_n \, dx \, = \, \left(\frac{2}{a} \right) \int_o^a \sin(n\pi x/a) \, \frac{\hbar}{i} \left(\frac{d}{dx} \right) \sin(n\pi x/a) \, dx \\ &= \frac{\hbar}{i} \left(\frac{2}{a} \right) \! \left(\frac{n\pi}{a} \right) \int_o^a \sin(n\pi x/a) \, \cos(n\pi x/a) \, dx = 0 \end{split}$$

V. The wave function evolves in time according to $\hat{\mathcal{H}}\Psi(x,t)=i\hbar\left(\frac{\partial\Psi(x,t)}{\partial t}\right)$

II'. Commuting observables can be simultaneously specified with arbitrary precision.

$$\sigma_A \sigma_B \ge \left| \frac{1}{2i} \int \Psi^* [\hat{A}, \hat{B}] \Psi \, dx \right|$$
 where $| | \text{ is the absolute value}$

Example: Position and momentum: $[\hat{x}, \hat{p}_x] = -(\hbar/i)$, giving $\sigma_x \sigma_p \ge \hbar/2$.

1. See Hanna Section 3-3, McQuarrie & Simon Ch. 4, Winn Section 11.2