Problem set 8 Social Network Analysis

Excercise 1

For the graph shown in Figure 1, compute the highest

- degree centrality, - closeness centrality, and - betweenness centrality.

The nodes that take on these highest values are already marked in the figure.

Figure 1: Caption

Solution Using the formula for the degree centality of a node i

$$C_D(i) = \frac{\deg(i)}{n-1}$$

we find out that $C_D(1) = \frac{\deg(1)}{17-1} = \frac{7}{16}$. 2. We use the formula for the closeness centrality of a node i

$$C_C(i) = \frac{1}{\text{AvDist}(i)},$$

where $\text{AvDist}(i) = \frac{\sum_{j=1}^{n} \text{dist}(i,j)}{n-1}$ is the average distance of shortest paths starting

 $\frac{39}{16}$ and

$$C_C(3) = \frac{16}{39}$$

We use the formula for the betweenness centrally of a node i

$$C_B(i) = \frac{\sum_{j < k} f_{jk}(i)}{\binom{n}{2}},$$

where $f_{jk}(i) = \frac{q_{jk}(i)}{q_{jk}}$, and q_{jk} is the number of shortest paths between nodes j and k, and $q_{jk}(i)$ is the number of shortest paths between nodes j and k that pass through node i.

The shortest path from 4 to any other node will always go through 4. There are 16 such paths.

Any shortest path from $\{6,7,8,9,3,10,11,1,2\}$ to $\{17,16,12,15,14,5,13\}$ will go through 4. There are 9*7=63 such paths.

Similarly any shortest path between $\{17, 16, 12\}$ will also go through 4. There are 3 such paths. Any shortest path between $\{5, 15, 14, 13\}$ and $\{17, 16, 12\}$ will also go through 4. There are 4*3=12 such paths.

Hence the total number of shortest paths going through 4 is 16+63+3+12=94. Betweenness centrality=94/136

Excercise 2

For every vertex of the graph shown in Figure 2, compute its degree prestige.

Figure 2: Graph 1

Solution Using the formula $P_D(i) = \frac{\deg_+(i)}{n-1}$ we find

i	$P_D(i)$
1	3/6
2	0
3	0
4	1/6
5	1/6
6	1/6
7	0

Excercise 3

For every vertex of the graph shown in Figure 2, compute its proximity prestige.

Solution

$$\operatorname{AvDist}(i) = \frac{\sum_{j \in \operatorname{Influence}(i)} \operatorname{dist}(j, i)}{|\operatorname{Influence}(i)|}.$$

i	Influence(i)	AvDist(i)	InfluenceFraction (i)	$P_{\mathcal{D}}(i)$
1	1	5/4	2/3	8/15
2	0	0/4	2/3	0/10
2	0	0	0	0
3	0	0	5 /0	U = /10
4	5	2	5/6	5/12
5	5	2	5/6	5/12
6	1	1	1/6	1/6
7	0	0	0	0