

| Report Reference ID: | 179167TRFWL                                          |  |  |
|----------------------|------------------------------------------------------|--|--|
| <b>-</b>             | T10 47 T 1                                           |  |  |
| Test specification:  | Title 47 - Telecommunication                         |  |  |
|                      | Chapter I - Federal Communications Commission        |  |  |
|                      | Subchapter A - General                               |  |  |
|                      | Part 15 - Radio Frequency Devices                    |  |  |
|                      | Subpart C - Intentional Radiators                    |  |  |
|                      | §15.247 - Operation within the bands 2400–2483.5 MHz |  |  |
|                      |                                                      |  |  |
| Applicant:           | Telsey Spa                                           |  |  |
|                      | Via Mattei,29                                        |  |  |
|                      | 31055                                                |  |  |
|                      | Quinto di Treviso TV, Italy                          |  |  |
| Apparatus:           | Set Top Box for IP television with WiFi              |  |  |
| Model:               | STNE4C7A82GDL (STME4C1A82T2M)                        |  |  |
| FCC ID:              | ZPA-TELSEY3070                                       |  |  |
| Testing laboratory:  |                                                      |  |  |
| resting laboratory.  | Nemko Spa                                            |  |  |
|                      | Via del Carroccio, 4                                 |  |  |
|                      | I 20853 Biassono (Italy)                             |  |  |
|                      | Telephone: +039 039 2201201                          |  |  |
|                      | Facsimile: +39 039 220 1221                          |  |  |
|                      |                                                      |  |  |

|              | Name and title                            | Date       |
|--------------|-------------------------------------------|------------|
| Tested by:   | Daniele Guarnone, Wireless/EMC Specialist | 2011-07-08 |
| Reviewed by: | Gabriele Curioni Wireless/EMC Specialist  | 2011-07-08 |

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report shall not be reproduced except in full without the written approval of the testing laboratory.



# Table of contents

| Section 1: Report summary                                       | 2  |
|-----------------------------------------------------------------|----|
|                                                                 |    |
| 1.1 Test specification                                          |    |
|                                                                 |    |
|                                                                 |    |
| 1.5 Test report revision history                                | 3  |
| 1.6 Limits of responsibility                                    | 3  |
| Section 2: Summary of test results                              | 4  |
| 2.1 FCC Part 15 Subpart C – Intentional Radiators, test results | 4  |
| Section 3: Equipment under test (EUT) and application details   | 5  |
| 3.1 Applicant details                                           | 5  |
| 3.2 Modular equipment                                           | 5  |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
| 1.5 Test report revision history                                |    |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
| Section 5: Test conditions                                      | 9  |
| 5.1 Power source and ambient temperatures                       | 9  |
| Section 6: Measurement uncertainty                              | 10 |
| Section 7: Test equipment                                       | 11 |
| 7.1 Test equipment list                                         | 11 |
| Section 8: Testing data                                         | 12 |
| 8.1 Clause 15.31(e) Variation of power source                   | 12 |
|                                                                 |    |
| 8.3 Clause 15.203 Antenna requirement                           | 14 |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
|                                                                 |    |
| (-,,,,,,                                                        |    |
| ·                                                               |    |
| Section 9: EUT photos                                           | 59 |



# Section 1: Report summary

| 1.1 Test specification |                                                                          |  |
|------------------------|--------------------------------------------------------------------------|--|
|                        | FCC Part 15 Subpart C, 15.247 Operation within the bands 2400–2483.5 MHz |  |

| 1.2 Statement of compliance |                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Compliance                  | In the configuration tested the EUT was found compliant Yes No This report contains an assessment of apparatus against specifications based upon tests carried out on samples submitted at Nemko Canada Inc. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15; Subpart C. Radiated tests were conducted in accordance with ANSI C63.4-2003. |  |  |

| 1.3 Exclusions |      |  |
|----------------|------|--|
| Exclusions     | None |  |
|                |      |  |

| 1.4 Registration number |        |  |
|-------------------------|--------|--|
| Test site FCC ID        | 481407 |  |
| number                  |        |  |

| 1.5 Test report revision history |                                        |  |
|----------------------------------|----------------------------------------|--|
| Revision #                       | Details of changes made to test report |  |
| TRF                              | Original report issued                 |  |
| R1TRF                            | XXX                                    |  |

# 1.6 Limits of responsibility

The date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025.

Nemko S.p.A. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko S.p.A.. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



| Section 2: Summary of test results | Product: STNE4C7A82GDL |
|------------------------------------|------------------------|
|                                    |                        |
|                                    |                        |
|                                    |                        |

# Section 2: Summary of test results

| General requirem   | nents for FCC Part 15                                                                             |         |  |  |
|--------------------|---------------------------------------------------------------------------------------------------|---------|--|--|
| Part               | Test description                                                                                  | Verdict |  |  |
| §15.31(e)          | Variation of power source                                                                         | Pass    |  |  |
| §15.31(m)          | Number of operating frequencies                                                                   | Pass    |  |  |
| §15.203            | Antenna requirement                                                                               | Pass    |  |  |
| §15.207(a)         | Conducted limits                                                                                  | Pass    |  |  |
| Specific requiren  | nents for FCC Part 15 Subpart C, 15.247                                                           |         |  |  |
| Part               | Test description                                                                                  | Verdict |  |  |
| §15.247(a)(1)(i)   | Frequency hopping systems operating in the 902–928 MHz band                                       | N/A     |  |  |
| §15.247(a)(1)(ii)  | Frequency hopping systems operating in the 5725–5850 MHz band                                     | N/A     |  |  |
| §15.247(a)(1)(iii) | Frequency hopping systems operating in the 2400–2483.5 MHz band                                   | N/A     |  |  |
| §15.247(a)(2)      | Minimum 6 dB bandwidth for systems using digital modulation techniques                            |         |  |  |
| §15.247(b)(1)      | Maximum peak output power of frequency hopping systems operating in the 2400–2483.5 MHz band      |         |  |  |
| §15.247(b)(2)      | Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band          |         |  |  |
| §15.247(b)(3)      | Maximum peak output power of systems using digital modulation in the 2400–2483.5 MHz              |         |  |  |
| §15.247(b)(4)      | Maximum peak output power                                                                         | Pass    |  |  |
| §15.247(c)(1)      |                                                                                                   |         |  |  |
| §15.247(c)(2)      | 247(c)(2) Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams |         |  |  |
| §15.247(d)         | Spurious emissions                                                                                | Pass    |  |  |
| §15.247(e)         | Power spectral density for digitally modulated devices                                            | Pass    |  |  |
| §15.247(f)         |                                                                                                   |         |  |  |

|                          | Section 3: EUT and application details | Product STNE4C7A82GDL |
|--------------------------|----------------------------------------|-----------------------|
| N Nemko                  |                                        |                       |
| Nemko Spa                |                                        |                       |
| Via del Carroccio, 4     |                                        |                       |
| l 20853 Biassono (Italy) |                                        |                       |

| Section 3: Equipment under test (EUT) and application details |                                                                                                                 |                                                                 |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| 3.1 Applicant details                                         |                                                                                                                 |                                                                 |  |
| Applicant complete                                            | Name:                                                                                                           | Telsey Spa                                                      |  |
| business name                                                 | Federal Registration Number (FRN):                                                                              | 0020969713                                                      |  |
|                                                               | Grantee code                                                                                                    | ZPA                                                             |  |
| Mailing address                                               | Address:                                                                                                        | Via Mattei 29                                                   |  |
|                                                               | City:                                                                                                           | Quinto di Treviso                                               |  |
|                                                               | Province/State:                                                                                                 | I Treviso                                                       |  |
|                                                               | Post code:                                                                                                      | 31055                                                           |  |
|                                                               | Country:                                                                                                        | Italy                                                           |  |
|                                                               |                                                                                                                 |                                                                 |  |
| 3.2 Modular equipment                                         |                                                                                                                 |                                                                 |  |
| a) Single modular                                             | Single modular approva                                                                                          |                                                                 |  |
| approval                                                      | Yes                                                                                                             | No 🗵                                                            |  |
| b) Limited single                                             | Limited single modular                                                                                          |                                                                 |  |
| modular approval                                              | Yes 🗌                                                                                                           | No 🗵                                                            |  |
|                                                               |                                                                                                                 |                                                                 |  |
| 3.3 Product details                                           |                                                                                                                 |                                                                 |  |
| FCC ID                                                        | Grantee code:                                                                                                   | ZPA                                                             |  |
| E. Lancettelland                                              | Product code:                                                                                                   | -TELSEY3070                                                     |  |
| Equipment class                                               | DTS – Digital Transmis                                                                                          |                                                                 |  |
| Description of product as it is                               | Set Top Box for IP teled Model name/number:                                                                     | STNE4C7A82GDL (STME4C1A82T2M)                                   |  |
| marketed                                                      | Serial number:                                                                                                  | NA                                                              |  |
| IIIai keteu                                                   | Denai number.                                                                                                   | INA                                                             |  |
|                                                               |                                                                                                                 |                                                                 |  |
| 3.4 Application purpose                                       |                                                                                                                 |                                                                 |  |
| Type of application                                           | <ul><li>☑ Original certification</li><li>☐ Change in identification of presently authorized equipment</li></ul> |                                                                 |  |
|                                                               | Original FCC                                                                                                    |                                                                 |  |
|                                                               |                                                                                                                 | issive change or modification of presently authorized equipment |  |
|                                                               | Olass II perilli                                                                                                | save change of modification of presently additionzed equipment  |  |
| 2.F. Composite/valetade                                       | au line ont                                                                                                     |                                                                 |  |
| 3.5 Composite/related e                                       |                                                                                                                 |                                                                 |  |
| equipment                                                     | The EUT is a composite device subject to an additional equipment authorization  Yes □  No ⊠                     |                                                                 |  |
| b) Related equipment                                          |                                                                                                                 |                                                                 |  |
| b) Itolatoa oquipilient                                       | requires an equipment                                                                                           |                                                                 |  |
|                                                               | Yes ☐ No ⊠                                                                                                      |                                                                 |  |
| c) Related FCC ID                                             | If either of the above is                                                                                       | "yes":                                                          |  |
|                                                               |                                                                                                                 | nted under the FCC ID(s) listed below:                          |  |
|                                                               |                                                                                                                 | ess of being filled under the FCC ID(s) listed below:           |  |
|                                                               |                                                                                                                 | h the FCC ID(s) listed below:                                   |  |
|                                                               | has a mix of pending and granted statues under the FCC ID(s) listed below:                                      |                                                                 |  |
|                                                               | i FCC ID:                                                                                                       |                                                                 |  |
|                                                               | ii FCC ID:                                                                                                      |                                                                 |  |

|                          | Section 3: EUT and application details | Product STNE4C7A82GDL |
|--------------------------|----------------------------------------|-----------------------|
| Nemko                    |                                        |                       |
| Nemko Spa                |                                        |                       |
| Via del Carroccio, 4     |                                        |                       |
| I 20853 Biassono (Italy) |                                        |                       |

| 3.6 Sample information |            |  |
|------------------------|------------|--|
| Receipt date:          | 2011-06-24 |  |
| Nemko sample ID        | 179167     |  |
| number:                |            |  |

| 3.7 EUT technical speci | fications                                                                                                                                                                                                                     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating band:         | 2400 MHz ÷ 2483.5 MHz                                                                                                                                                                                                         |
| Operating frequency:    | 2412 MHz ÷ 2462 MHz                                                                                                                                                                                                           |
| Modulation type:        | protocol 802.11b, use modulation technology DSSS and modulation type DBPSK; protocol 802.11g use modulation technology OFDM and modulation type BPSK protocol 802.11n use modulation technology OFDM and modulation type BPSK |
| Occupied bandwidth:     | 20 MHz                                                                                                                                                                                                                        |
| Channel spacing:        | 20 MHz                                                                                                                                                                                                                        |
| Emission designator:    | 20M00X7F                                                                                                                                                                                                                      |
| Antenna type:           | Integral, 2.5 dBi gain maximum                                                                                                                                                                                                |
| Power source:           | 120 V, 60 Hz                                                                                                                                                                                                                  |

| 3.8 Operation of the EUT during testing |                                                                                                                                                                                                                                                                                                                            |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Details:                                | Transmitting to maximum power at 2412 MHz, 2437 MHz, 2462 MHz with the following modulation: protocol 802.11b, use modulation technology DSSS and modulation type DBPSK; protocol 802.11g use modulation technology OFDM and modulation type BPSK protocol 802.11n use modulation technology OFDM and modulation type BPSK |  |

|                          | Section 3: EUT and application details | Product STNE4C7A82GDL |
|--------------------------|----------------------------------------|-----------------------|
| N Nemko                  |                                        |                       |
| Nemko Spa                |                                        |                       |
| Via del Carroccio, 4     |                                        |                       |
| I 20853 Biassono (Italy) |                                        |                       |



|                          | Section 4: Engineering considerations | Product: STNE4C7A82GDL |
|--------------------------|---------------------------------------|------------------------|
| Nemko Nemko              |                                       |                        |
| Nemko Spa                |                                       |                        |
| Via del Carroccio, 4     |                                       |                        |
| I 20853 Biassono (Italy) |                                       |                        |
|                          |                                       |                        |

| Section 4: Engineering considerations |                                                                                                                     |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
|                                       |                                                                                                                     |  |
| 4.1 Modifications incorpo             | prated in the EUT                                                                                                   |  |
| Modifications                         | Modifications performed to the EUT during this assessment  None ☑ Yes ☐, performed by Client ☐ or Nemko ☐  Details: |  |
| 4.2 Deviations from labor             |                                                                                                                     |  |
| Deviations                            | Deviations from laboratory test procedures                                                                          |  |
|                                       | None ☐ Yes ☐ - details are listed below:                                                                            |  |
|                                       |                                                                                                                     |  |
| 4.3 Technical judgment                |                                                                                                                     |  |
| Judgment                              | None                                                                                                                |  |



# Section 5: Test conditions

| 5.1 Power source and a                                                 | mbient temperatures                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal temperature,<br>humidity and air<br>pressure test<br>conditions | Temperature: 15–30 °C Relative humidity: 20–75 % Air pressure: 86–106 kPa  When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.      |
| Power supply range:                                                    | The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed. |



# Section 6: Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the Nemko Spa Technical Procedure WML1002. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.



# Section 7: Test equipment

| Equipment                              | Manufacturer | Model No.                 | Asset/Serial No. | Next ca |
|----------------------------------------|--------------|---------------------------|------------------|---------|
| Emi Test Receiver 20 Hz ÷ 5 GHz        | R&S          | ESBI                      | 828038/003       | 08/2011 |
| Spectrum Analizer 9 KHz ÷ 40 GHz       | R&S          | FSEK                      | 848255/005       | 09/201  |
| Frilog Broad Band Antenna 25 MHz÷2 GHz | Schwarzbeck  | VULB 9168                 | VULB 9168-242    | 08/2013 |
| EMI receiver 20 Hz ÷ 8 GHz             | R&S          | ESU8                      | 100202           | 08/201  |
| Semi-anechoic chamber                  | Nemko        | 10m semi-anechoic chamber | 530              | 08/2013 |
| Shielded room                          | Siemens      | 10m control room          | 1947             | 08/2013 |
| Broadband preamplifier                 | Schwarzbeck  | BBV 9718                  | 9718-137         | 05/2013 |
| Bilog antenna 1 ÷18 GHz                | Schwarzbeck  | STLP 9148-123             | 123              | 09/201  |
| Double Ridged Waveguide Horn           | RF SPIN      | DRH40                     | 061106a40        | 08/2013 |
| Wide band Amplifier 18 GHz ÷ 40 GHz    | MITEQ        | AMF-5F-18004000-<br>37-8P | 128061           | 08/201  |

Note: N/A = Not applicable, NCR = No cal required, COU = Cal on use

| (N) | Nem |  |
|-----|-----|--|
|     |     |  |

| Section 8: Testing data                              | Product: STNE4C7A82GDL |   |
|------------------------------------------------------|------------------------|---|
| Test name: Clause 15.31(e) Variation of power source |                        |   |
|                                                      |                        | _ |

Test date: 2011-06-28 Test engineer: Daniele Guarnone Verdict: Pass

Specification: FCC Part 15 Subpart A

# Section 8: Testing data

# 8.1 Clause 15.31(e) Variation of power source

§ 15.31 Measurement standards.

(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. For battery-operated equipment, the equipment tests shall be performed using a new battery.

#### Special notes

None

#### Test data

Transmit output power was measured while supply voltage was varied from 102 VAC to 138 VAC (85 % to 115 % of the nominal rated supply voltage). No change in transmit output power was observed.



| Section 8: Testing data        | Product: STNE4C7A82GDL          | Product: STNE4C7A82GDL |  |
|--------------------------------|---------------------------------|------------------------|--|
| Test name: Clause 15.31(m) Num | ber of operating frequencies    |                        |  |
| Test date: 2011-06-28          | Test engineer: Daniele Guarnone | Verdict:Pass           |  |
|                                |                                 |                        |  |

Specification: FCC Part 15 Subpart A

# 8.2 Clause 15.31(m) Number of operating frequencies

#### § 15.31 Measurement standards.

(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

| Frequency range over which device operates | Number of frequencies | Location in the range of operation          |
|--------------------------------------------|-----------------------|---------------------------------------------|
| 1 MHz and less                             | 1                     | Middle                                      |
| 1 to 10 MHz                                | 2                     | 1 near top and 1 near bottom                |
| More than 10 MHz                           | 3                     | 1 near top, 1 near middle and 1 near bottom |

# Special notes

The frequency range over which the device operates is greater than 10 MHz. The tests were performed on three operating channels (low, mid, high)

#### Test data

The frequency band is 2412 MHz (channel 1) to 2462 MHz (channel 11) MHz therefore number of operating frequencies is 3.

| Low frequency / channel 1   | 2412 MHz |
|-----------------------------|----------|
| Mid frequency / channel 6   | 2437 MHz |
| High frequency / channel 11 | 2462 MHz |



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.203 Antenna requirement

Test date: 2011-06-28 Test engineer: Daniele Gaurnone Verdict: Pass

Specification: FCC Part 15 Subpart C

# 8.3 Clause 15.203 Antenna requirement

#### § 15.203 Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

#### Special notes

None

#### Test data

The EUT uses a non-detachable antenna to the intentional radiator.

Detailed photo of RF connector:

E.U.T didn't have antenna connector but integral antenna.



| Section 8: Testing data                      | Product:         | STNE4C7A82GDL                   |                        |  |
|----------------------------------------------|------------------|---------------------------------|------------------------|--|
| Test name: Clause 15.207(a) Conducted limits |                  |                                 |                        |  |
| Test date: 2011-07-01                        |                  | Test engineer: Daniele Guarnone |                        |  |
| Verdict: Pass                                |                  | Supply input: 120 \             | /, 60 Hz               |  |
| Temperature: 24℃                             | Air pressure: 10 | 10 mbar                         | Relative humidity:53 % |  |
| Specification: FCC Part 15 Subpart C         |                  |                                 |                        |  |

# 8.4 Clause 15.207(a) Conducted limits

#### § 15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Fraguency of emission (MHz) | Conducted limit (dBµV) |           |  |  |  |
|-----------------------------|------------------------|-----------|--|--|--|
| Frequency of emission (MHz) | Quasi-peak             | Average   |  |  |  |
| 0.15–0.5                    | 66 to 56*              | 56 to 46* |  |  |  |
| 0.5–5                       | 56                     | 46        |  |  |  |
| 5–30                        | 60                     | 50        |  |  |  |

<sup>\*-</sup>Decreases with the logarithm of the frequency.

| $\sim$ |      |       |
|--------|------|-------|
| S'n    | DCI2 | notes |
| UU     | CUIA |       |

None



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.207(a) Conducted limits

 Test date: 2011-07-01
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 120 V, 60 Hz

 Temperature: 24℃
 Air pressure: 1010 mbar
 Relative humidity:53 %

 Specification: FCC Part 15 Subpart C



The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

| Receiver/Spectrum analyzer settings:                     |                                                      |  |  |  |
|----------------------------------------------------------|------------------------------------------------------|--|--|--|
| 0.15 MHz                                                 | to 30 MHz                                            |  |  |  |
| Preview measurements                                     | Final measurement                                    |  |  |  |
| Receiver: 9 kHz RBW, Peak and Average detector, max hold | Receiver: 9 kHz RBW, Quasi-peak and Average detector |  |  |  |
| Measurement time 100 ms                                  |                                                      |  |  |  |



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.207(a) Conducted limits

 Test date: 2011-07-01
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 120 V, 60 Hz

 Temperature: 24°C
 Air pressure: 1010 mbar
 Relative humidity:53 %

Specification: FCC Part 15 Subpart C

| Tabular dat | a             |            |           |         |           |            |        |        |
|-------------|---------------|------------|-----------|---------|-----------|------------|--------|--------|
| Frequency   | Quasi Peak    | Meas. time | Bandwidth | Filter  | Conductor | Correction | Margin | Limit  |
| (MHz)       | result (dBµV) | (ms)       | (kHz)     | i iitei | Conductor | (dB)       | (dB)   | (dBµV) |
| 0.17800     | 51.8          | 1000       | 120       |         | Neutral   | 10         | -12.8  | 64.6   |
| 0.18600     | 50.9          | 1000       | 120       |         | Neutral   | 10         | -13.3  | 64.2   |
| 0.23400     | 43.8          | 1000       | 120       |         | Neutral   | 10         | -18.5  | 62.3   |
| 0.30200     | 40.3          | 1000       | 120       |         | Neutral   | 10         | -19.9  | 60.2   |
| 0.39000     | 35.5          | 1000       | 120       |         | Neutral   | 10         | -22.5  | 58.1   |
| 0.47400     | 26.6          | 1000       | 120       |         | Neutral   | 10         | -29.8  | 56.4   |
| 0.58200     | 28.4          | 1000       | 120       |         | Neutral   | 10         | -27.6  | 56.0   |
| 0.73400     | 34.0          | 1000       | 120       |         | Neutral   | 10         | -22.0  | 56.0   |
| 0.82600     | 31.7          | 1000       | 120       |         | Neutral   | 10         | -24.3  | 56.0   |
| 1.23800     | 30.7          | 1000       | 120       |         | Neutral   | 10         | -25.3  | 56.0   |
| 1.28600     | 30.2          | 1000       | 120       |         | Neutral   | 10         | -25.8  | 56.0   |
| 1.79400     | 29.5          | 1000       | 120       |         | Neutral   | 10         | -26.5  | 56.0   |
| 2.31400     | 27.5          | 1000       | 120       |         | Neutral   | 10         | -28.5  | 56.0   |
| 2.79400     | 30.0          | 1000       | 120       |         | Neutral   | 10         | -26.0  | 56.0   |
| 3.49800     | 31.6          | 1000       | 120       |         | Neutral   | 10         | -24.4  | 56.0   |
| 3.84600     | 33.8          | 1000       | 120       |         | Neutral   | 10         | -22.2  | 56.0   |
| 4.49800     | 27.6          | 1000       | 120       |         | Neutral   | 10         | -28.4  | 56.0   |
| 14.72200    | 32.5          | 1000       | 120       |         | Neutral   | 10         | -27.5  | 60.0   |
| 23.87400    | 28.1          | 1000       | 120       |         | Neutral   | 10         | -31.9  | 60.0   |
| 25.31000    | 31.8          | 1000       | 120       |         | Neutral   | 10         | -28.2  | 60.0   |

Note: Correction factor includes cable loss, LISN, and attenuator.

| Tabular dat        | а                     |                    |                    |        |           |                    |                |                 |
|--------------------|-----------------------|--------------------|--------------------|--------|-----------|--------------------|----------------|-----------------|
| Frequency<br>(MHz) | Average result (dBµV) | Meas. time<br>(ms) | Bandwidth<br>(kHz) | Filter | Conductor | Correction<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
| 0.17800            | 35.4                  | 1000               | 120                |        | Neutral   | 10                 | -19.2          | 54.6            |
| 0.18600            | 35.7                  | 1000               | 120                |        | Neutral   | 10                 | -18.5          | 54.2            |
| 0.25000            | 26.9                  | 1000               | 120                |        | Neutral   | 10                 | -24.9          | 51.8            |
| 0.30200            | 27.8                  | 1000               | 120                |        | Neutral   | 10                 | -22.4          | 50.2            |
| 0.35800            | 29.7                  | 1000               | 120                |        | Neutral   | 10                 | -19.1          | 48.8            |
| 0.45400            | 20.2                  | 1000               | 120                |        | Neutral   | 10                 | -26.6          | 46.8            |
| 0.73000            | 28.8                  | 1000               | 120                |        | Neutral   | 10                 | -17.2          | 46.0            |
| 0.83400            | 22.1                  | 1000               | 120                |        | Neutral   | 10                 | -23.9          | 46.0            |
| 1.45400            | 21.4                  | 1000               | 120                |        | Neutral   | 10                 | -24.6          | 46.0            |
| 1.87800            | 21.0                  | 1000               | 120                |        | Neutral   | 10                 | -25.0          | 46.0            |
| 2.33800            | 21.7                  | 1000               | 120                |        | Neutral   | 10                 | -24.3          | 46.0            |
| 2.39800            | 21.8                  | 1000               | 120                |        | Neutral   | 10                 | -24.2          | 46.0            |
| 3.43400            | 23.4                  | 1000               | 120                |        | Neutral   | 10                 | -22.6          | 46.0            |
| 3.93400            | 23.6                  | 1000               | 120                |        | Neutral   | 10                 | -22.4          | 46.0            |
| 4.47800            | 20.9                  | 1000               | 120                |        | Neutral   | 10                 | -25.1          | 46.0            |
| 6.49800            | 18.9                  | 1000               | 120                |        | Neutral   | 10                 | -31.1          | 50.0            |
| 6.82200            | 19.9                  | 1000               | 120                |        | Neutral   | 10                 | -30.1          | 50.0            |
| 14.78200           | 24.9                  | 1000               | 120                |        | Neutral   | 10                 | -25.1          | 50.0            |
| 25.56200           | 24.8                  | 1000               | 120                |        | Neutral   | 10                 | -25.2          | 50.0            |

Note: Correction factor includes cable loss, LISN, and attenuator.



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.207(a) Conducted limits

 Test date: 2011-07-01
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 120 V, 60 Hz

 Temperature: 24℃
 Air pressure: 1010 mbar
 Relative humidity:53 %

 Specification: FCC Part 15 Subpart C



The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

| Receiver/Spectrum analyzer settings:                     |                                                      |  |  |  |  |
|----------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| 0.15 MHz to 30 MHz                                       |                                                      |  |  |  |  |
| Preview measurements                                     | Final measurement                                    |  |  |  |  |
| Receiver: 9 kHz RBW, Peak and Average detector, max hold | Receiver: 9 kHz RBW, Quasi-peak and Average detector |  |  |  |  |
| Measurement time 100 ms                                  |                                                      |  |  |  |  |



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.207(a) Conducted limits

Test date: 2011-07-01 Test engineer: Daniele Guarnone

Verdict: Pass Supply input: 120 V, 60 Hz

Temperature: 24°C Air pressure: 1010 mbar Relative humidity:53 %

| Tabular data       |                             |                    |                    |        |           |                    |                |                 |
|--------------------|-----------------------------|--------------------|--------------------|--------|-----------|--------------------|----------------|-----------------|
| Frequency<br>(MHz) | Quasi Peak<br>result (dBµV) | Meas. time<br>(ms) | Bandwidth<br>(kHz) | Filter | Conductor | Correction<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
| 0.17800            | 51.1                        | 1000               | 120                |        | Phase     | 10                 | -13.5          | 64.6            |
| 0.18600            | 50.1                        | 1000               | 120                |        | Phase     | 10                 | -14.1          | 64.2            |
| 0.25000            | 42.7                        | 1000               | 120                |        | Phase     | 10                 | -19.1          | 61.8            |
| 0.30600            | 40.5                        | 1000               | 120                |        | Phase     | 10                 | -19.6          | 60.1            |
| 0.38600            | 36.5                        | 1000               | 120                |        | Phase     | 10                 | -21.6          | 58.1            |
| 0.53400            | 29.9                        | 1000               | 120                |        | Phase     | 10                 | -26.1          | 56.0            |
| 0.65000            | 34.4                        | 1000               | 120                |        | Phase     | 10                 | -21.6          | 56.0            |
| 0.72600            | 34.4                        | 1000               | 120                |        | Phase     | 10                 | -21.6          | 56.0            |
| 0.82200            | 35.3                        | 1000               | 120                |        | Phase     | 10                 | -20.7          | 56.0            |
| 1.21800            | 35.8                        | 1000               | 120                |        | Phase     | 10                 | -20.2          | 56.0            |
| 1.28600            | 33.9                        | 1000               | 120                |        | Phase     | 10                 | -22.1          | 56.0            |
| 1.79400            | 33.9                        | 1000               | 120                |        | Phase     | 10                 | -22.1          | 56.0            |
| 2.32200            | 31.1                        | 1000               | 120                |        | Phase     | 10                 | -24.9          | 56.0            |
| 2.87400            | 31.6                        | 1000               | 120                |        | Phase     | 10                 | -24.4          | 56.0            |
| 2.92600            | 32.1                        | 1000               | 120                |        | Phase     | 10                 | -23.9          | 56.0            |
| 3.85000            | 34.2                        | 1000               | 120                |        | Phase     | 10                 | -21.8          | 56.0            |
| 4.49400            | 32.9                        | 1000               | 120                |        | Phase     | 10                 | -23.1          | 56.0            |
| 25.74600           | 31.6                        | 1000               | 120                |        | Phase     | 10                 | -28.4          | 60.0            |

Specification: FCC Part 15 Subpart C

Note: Correction factor includes cable loss, LISN, and attenuator.

| Frequency | Average       | Meas. time | Bandwidth | Filter | Conductor   | Correction | Margin | Limit  |
|-----------|---------------|------------|-----------|--------|-------------|------------|--------|--------|
| (MHz)     | result (dBµV) | (ms)       | (kHz)     |        | 00110000101 | (dB)       | (dB)   | (dBµV) |
| 0.18200   | 37.5          | 1000       | 120       |        | Phase       | 10         | -16.9  | 54.4   |
| 0.19000   | 35.7          | 1000       | 120       |        | Phase       | 10         | -18.3  | 54.0   |
| 0.25000   | 28.6          | 1000       | 120       |        | Phase       | 10         | -23.1  | 51.8   |
| 0.29800   | 28.8          | 1000       | 120       |        | Phase       | 10         | -21.5  | 50.3   |
| 0.38200   | 22.4          | 1000       | 120       |        | Phase       | 10         | -25.8  | 48.2   |
| 0.65000   | 21.9          | 1000       | 120       |        | Phase       | 10         | -24.1  | 46.0   |
| 0.73000   | 20.1          | 1000       | 120       |        | Phase       | 10         | -25.9  | 46.0   |
| 0.82600   | 23.1          | 1000       | 120       |        | Phase       | 10         | -22.9  | 46.0   |
| 1.24600   | 23.7          | 1000       | 120       |        | Phase       | 10         | -22.3  | 46.0   |
| 1.29400   | 24.5          | 1000       | 120       |        | Phase       | 10         | -21.5  | 46.0   |
| 1.75800   | 23.8          | 1000       | 120       |        | Phase       | 10         | -22.2  | 46.0   |
| 2.30600   | 26.5          | 1000       | 120       |        | Phase       | 10         | -19.5  | 46.0   |
| 2.78200   | 27.5          | 1000       | 120       |        | Phase       | 10         | -18.5  | 46.0   |
| 3.37400   | 28.3          | 1000       | 120       |        | Phase       | 10         | -17.7  | 46.0   |
| 3.86600   | 28.7          | 1000       | 120       |        | Phase       | 10         | -17.3  | 46.0   |
| 4.54200   | 26.9          | 1000       | 120       |        | Phase       | 10         | -19.1  | 46.0   |
| 6.49000   | 17.8          | 1000       | 120       |        | Phase       | 10         | -32.2  | 50.0   |
| 6.81400   | 16.3          | 1000       | 120       |        | Phase       | 10         | -33.7  | 50.0   |
| 25.62600  | 24.8          | 1000       | 120       |        | Phase       | 10         | -25.2  | 50.0   |
|           |               |            | •         | •      | •           |            |        |        |

Note: Correction factor includes cable loss, LISN, and attenuator.



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(a)(2) Minimum 6 dB bandwidth for systems using digital modulation techniques

 Test date: 2011-06-29
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 100 Vac, 60 Hz

 Temperature: 25℃
 Air pressure:1010 mbar
 Relative humidity: 55 %

 Specification: FCC Part 15 Subpart C

# 8.5 Clause 15.247(a)(2) Minimum 6 dB bandwidth for systems using digital modulation techniques

- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
  - (2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

|  | notes |
|--|-------|

None



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.247(a)(2) Minimum 6 dB bandwidth for systems using digital modulation techniques

Test date: 2011-06-29Test engineer: Daniele GuarnoneVerdict: PassSupply input: 100 Vac, 60 Hz

 Temperature: 25℃
 Air pressure:1010 mbar
 Relative humidity: 55 %

Specification: FCC Part 15 Subpart C



| Frequency<br>(MHz) | 6 dB bandwidth<br>(MHz) | Limit<br>(MHz) | Margin<br>(MHz) |
|--------------------|-------------------------|----------------|-----------------|
| 2412               | 12.8                    | > 0.5          | 12.3            |
| 2437               | 12.6                    | > 0.5          | 12.1            |
| 2462               | 12.6                    | > 0.5          | 12.1            |

- The peak detector was used with 1000 kHz/1 MHz RBW/VBW
- The span was wider than RBW.



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(a)(2) Minimum 6 dB bandwidth for systems using digital modulation techniques

 Test date: 2011-06-29
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 100 Vac, 60 Hz

 Temperature: 25℃
 Air pressure:1010 mbar
 Relative humidity: 55 %

Specification: FCC Part 15 Subpart C



- The peak detector was used with 1000 kHz/1 MHz RBW/VBW
- The span was wider than RBW.



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(a)(2) Minimum 6 dB bandwidth for systems using digital modulation techniques

 Test date: 2011-06-29
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 100 Vac, 60 Hz

 Temperature: 25℃
 Air pressure:1010 mbar
 Relative humidity: 55 %

Specification: FCC Part 15 Subpart C

# Test data Radiated measurement protocol 802.11n Low channel 6 dB bandwidth Mid channel 6 dB bandwidth **%** Ref Lv1 2 AP Date: 29.JUN.2011 17:35:17 High channel dBµV/m 110.62 dBµV/m 2.46435471 GHz 2.48435471 GHz 17.83567134 MHz 104.45 dBµV/m 2.45403407 GHz 103.13 dBµV/m 2.47106974 GHz Span 50 MHz Frequency 6 dB bandwidth Limit Margin (MHz) (MHz) (MHz) (MHz) 2412 17.9 > 0.5 17.4 2437 17.8 17.3 > 0.5 2462 17.9 > 0.5 17.4 The peak detector was used with 1000 kHz/1 MHz RBW/VBW The span was wider than RBW.



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.247(d) Spurious emissions

Test date: 2011-07-08 Test engineer: Daniele Guarnone

Verdict: pass Supply input: 120 V, 60 Hz

Temperature: 25C Air pressure: 1010 mbar Relative humidity: 55%

Specification: FCC Part 15 Subpart C

# 8.6 Clause 15.247(b) Maximum peak conducted output power

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
  - (1) For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.
  - (2) For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
  - (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
  - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
    - (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
    - (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.
    - (iii) Fixed, point-to-point operation, as used in paragraphs (b)(3)(i) and (b)(3)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

| Special notes |  |
|---------------|--|
| None          |  |
|               |  |



| Section 8: Testing data                        | Product: S | Product: STNE4C7A82GDL          |                        |  |
|------------------------------------------------|------------|---------------------------------|------------------------|--|
| Test name: Clause 15.247(d) Spurious emissions |            |                                 |                        |  |
| Test date: 2011-07-08                          |            | Test engineer: Daniele Guarnone |                        |  |
| Verdict: pass                                  |            | Supply input: 120 V, 60 Hz      |                        |  |
| Temperature: 25C Air pressure: 10              |            | 0 mhar                          | Relative humidity: 55% |  |

# Test data, continued

Section (3) Results, continued protocol 802.11b

#### Radiated measurements

Radiated measurements were performed:

- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.

Specification: FCC Part 15 Subpart C

- All measurements were performed:
  - using a peak detector with RBW 10 MHz: (\*)
- Only the worst data presented in the test report.

Notes: RBW of 10 MHz is less than the main lobe width (20 MHz).

A correction factor 20log(10M/measured 6dBbandwidth) for field strength correction factor has been applied to ensure the





|                                    | Section 8: Testing data          | Product:                        | Product: STNE4C7A82GDL |  |
|------------------------------------|----------------------------------|---------------------------------|------------------------|--|
|                                    | Test name: Clause 15.247(d) Spui | rious emissions                 |                        |  |
| Test date: 2011-07-08              |                                  | Test engineer: Daniele Guarnone |                        |  |
| Verdict: pass                      |                                  | Supply input: 120 V, 60 Hz      |                        |  |
| Temperature: 25C Air pressure: 103 |                                  | 10 mbar                         | Relative humidity: 55% |  |

# Test data, continued

Section (3) Results, continued

#### Radiated measurements

Radiated measurements were performed:

- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
  - using a peak detector with RBW 10 MHz: field level corrected according to table (see note)

Specification: FCC Part 15 Subpart C

Only the worst data presented in the test report.

| Frequency<br>(MHz) | Field strength<br>(dBµV/m) | Output power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) |
|--------------------|----------------------------|-----------------------|----------------|-----------------|
| 2412               | 121.2                      | 23.5                  | 30             | -6.5            |
| 2437               | 119.1                      | 21.4                  | 30             | -8.6            |
| 2462               | 118.1                      | 20.4                  | 30             | -9.6            |

#### Note:.

| Frequency | 6 dB<br>bandwidth | Correction factor    |
|-----------|-------------------|----------------------|
| (MHz)     | (MHz)             | 20*LOG10<br>(6dB/10) |
| 2412      | 12.8              | 2.1                  |
| 2437      | 12.6              | 2.0                  |
| 2462      | 12.6              | 2.0                  |

Theoretical conversion from Field Strength measured at 3 m to power conducted from the intentional radiator to the antenna:

$$P(W) = \frac{E^2 R^2}{30G}$$

E = Measured field strength value (V/m)

R = Measurement distance (m)

*G* = Antenna Gain (numeric)

Therefore dBW = dBV/m + 20Log(3) - 10Log(30) - 10Log(G)

From which we obtain

$$dBmW = dB\mu V/m - 120 + 20Log(3) - 10Log(30) - 10Log(G) + 30$$
  
= dB\(\mu\)V/m - 95.23 - 10Log(G)

Output power [dBm] = Field Strength [dBµV/m] - 95.23 [dB] - Antenna gain [dBi]

| Frequency<br>(MHz) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) |
|--------------------|---------------|----------------|-----------------|
| 2412               | 26.0          | 36             | -10.0           |
| 2437               | 23.9          | 36             | -12.1           |
| 2462               | 22.9          | 36             | -13.1           |

EIRP [dBm] = Output power [dBm] + Antenna gain [dBi]



| Section 8: Testing data                        | Product: STNE4C7A82GDL |                                 |                        |  |
|------------------------------------------------|------------------------|---------------------------------|------------------------|--|
| Test name: Clause 15.247(d) Spurious emissions |                        |                                 |                        |  |
| Test date: 2011-07-08                          |                        | Test engineer: Daniele Guarnone |                        |  |
| Verdict: pass                                  |                        | Supply input: 120 \             | /, 60 Hz               |  |
| Temperature: 25C                               | Air pressure: 10       | 10 mbar                         | Relative humidity: 55% |  |
| Specification: FCC Part 15 Subpart C           |                        |                                 |                        |  |

# Test data, continued

Section (3) Results, continued protocol 802.11g

#### Radiated measurements

Radiated measurements were performed:

- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
  - using a peak detector with RBW 10 MHz
- Only the worst data presented in the test report.

Notes: RBW of 10 MHz is less than the main lobe width (20 MHz).

A correction factor 20log(10M/measured 6dBbandwidth) for field strength correction factor has been applied to

ensure the whole emission bandwidth was covered





| Section 8: Testing data                        | Product: | STNE4C7A82GDL                   |                        |  |
|------------------------------------------------|----------|---------------------------------|------------------------|--|
| Test name: Clause 15.247(d) Spurious emissions |          |                                 |                        |  |
| Test date: 2011-07-08                          |          | Test engineer: Daniele Guarnone |                        |  |
| Verdict: pass                                  |          | Supply input: 120 V             | /, 60 Hz               |  |
| Temperature: 25C Air pressure: 10              |          | 10 mbar                         | Relative humidity: 55% |  |
| Specification: FCC Part 15 Subpart C           |          |                                 |                        |  |

# Test data, continued

Section (3) Results, continued

#### Radiated measurements

Radiated measurements were performed:

- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
  - using a peak detector with RBW 10 MHz
- Only the worst data presented in the test report.

| Frequency<br>(MHz) | Field strength<br>(dBµV/m) | Output power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) |
|--------------------|----------------------------|-----------------------|----------------|-----------------|
| 2412               | 125.0                      | 27.3                  | 30             | -2.7            |
| 2437               | 121.3                      | 23.6                  | 30             | -6.4            |
| 2462               | 121.2                      | 23.4                  | 30             | -6.6            |

#### Note:

| . 1010.    |                       |                      |  |  |
|------------|-----------------------|----------------------|--|--|
| Frequen cy | 6 dB<br>bandwidt<br>h | Correction factor    |  |  |
| (MHz)      | (MHz)                 | 20*Log10(6dB/<br>10) |  |  |
| 2412       | 17                    | 4.6                  |  |  |
| 2437       | 16.5                  | 4.3                  |  |  |
| 2462       | 16.9                  | 4.6                  |  |  |

Theoretical conversion from Field Strength measured at 3 m to power conducted from the intentional radiator to the antenna:

$$P(W) = \frac{E^2 R^2}{30G}$$

E = Measured field strength value (V/m)

R = Measurement distance (m)

G = Antenna Gain (numeric)

Therefore dBW = dBV/m + 20Log(3) - 10Log(30) - 10Log(G)

From which we obtain

$$dBmW = dB\mu V/m - 120 + 20Log(3) - 10Log(30) - 10Log(G) + 30$$
  
=  $dB\mu V/m - 95.23 - 10Log(G)$ 

Output power [dBm] = Field Strength [dB $\mu$ V/m] – 95.23 [dB] – Antenna gain [dBi]

| Frequency | EIRP  | Limit | Margin |
|-----------|-------|-------|--------|
| (MHz)     | (dBm) | (dBm) | (dBm)  |
| 2412      | 29.8  | 36    | -6.2   |
| 2437      | 26.1  | 36    | -9.9   |
| 2462      | 25.9  | 36    | -10.1  |

EIRP [dBm] = Output power [dBm] + Antenna gain [dBi]



| Section 8: Testing data                        | Product: S | Product: STNE4C7A82GDL          |                        |  |
|------------------------------------------------|------------|---------------------------------|------------------------|--|
| Fest name: Clause 15.247(d) Spurious emissions |            |                                 |                        |  |
| Test date: 2011-07-08                          |            | Test engineer: Daniele Guarnone |                        |  |
| Verdict: pass                                  |            | Supply input: 120 V, 60 Hz      |                        |  |
| Temperature: 25C Air pressure: 10              |            | 0 mhar                          | Relative humidity: 55% |  |

# Test data, continued

Section (3) Results, continued protocol 802.11n

#### Radiated measurements

Radiated measurements were performed:

- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.

Specification: FCC Part 15 Subpart C

- All measurements were performed:
  - using a peak detector with RBW 10 MHz
- Only the worst data presented in the test report.

Notes: RBW of 10 MHz is less than the main lobe width (20 MHz).

A correction factor 20log(10M/measured 6dBbandwidth) for field strength correction factor has been applied to

ensure the whole emission bandwidth was covered





| Section 8: Testing data                               | Product: STNE4C7A82GDL  |               |                        |
|-------------------------------------------------------|-------------------------|---------------|------------------------|
| Test name: Clause 15.247(d) Spurious emissions        |                         |               |                        |
| Test date: 2011-07-08 Test engineer: Daniele Guarnone |                         | iele Guarnone |                        |
| Verdict: pass Supply input: 120 V, 60 Hz              |                         |               | /, 60 Hz               |
| Temperature: 25C                                      | Air pressure: 1010 mbar |               | Relative humidity: 55% |

# Test data, continued

Section (3) Results, continued

#### Radiated measurements

Radiated measurements were performed:

- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.

Specification: FCC Part 15 Subpart C

- All measurements were performed:
  - using a peak detector with RBW 10 MHz
- Only the worst data presented in the test report.

| Frequency<br>(MHz) | Field strength (dBµV/m) | Output power (dBm) | Limit<br>(dBm) | Margin<br>(dBm) |
|--------------------|-------------------------|--------------------|----------------|-----------------|
| 2412               | 123.6                   | 25.8               | 30             | -4.2            |
| 2437               | 121.4                   | 23.7               | 30             | -6.3            |
| 2462               | 120.4                   | 22.6               | 30             | -7.4            |

#### Note:

| Frequen | 6 dB<br>bandwi<br>dth | Correction factor    |
|---------|-----------------------|----------------------|
| (MHz)   | (MHz)                 | 20*Log10(6dB/<br>10) |
| 2412    | 17.9                  | 5.1                  |
| 2437    | 17.8                  | 5.0                  |
| 2462    | 17.9                  | 5.1                  |

Theoretical conversion from Field Strength measured at 3 m to power conducted from the intentional radiator to the antenna:

$$P(W) = \frac{E^2 R^2}{30G}$$

E = Measured field strength value (V/m)

R = Measurement distance (m)

G = Antenna Gain (numeric)

Therefore dBW = dBV/m + 20Log(3) - 10Log(30) - 10Log(G)

From which we obtain

$$dBmW = dB\mu V/m - 120 + 20Log(3) - 10Log(30) - 10Log(G) + 30$$
  
= dB\(\mu\)V/m - 95.23 - 10Log(G)

Output power [dBm] = Field Strength [dBµV/m] - 95.23 [dB] - Antenna gain [dBi]

| Frequency | EIRP  | Limit | Margin |
|-----------|-------|-------|--------|
| (MHz)     | (dBm) | (dBm) | (dBm)  |
| 2412      | 28.3  | 36    | -7.7   |
| 2437      | 26.2  | 36    | -9.8   |
| 2462      | 25.1  | 36    | -10.9  |

EIRP [dBm] = Output power [dBm] + Antenna gain [dBi]



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

 Specification: FCC Part 15 Subpart C

# 8.7 Clause 15.247(d) Spurious emissions

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).



| Section 8: Testing data            | Product: STNE4C7A82GDL |                                 |  |
|------------------------------------|------------------------|---------------------------------|--|
| Test name: Clause 15.247(d) Spurio | us emissions           |                                 |  |
| Test date: 2011-07-08              | Test engineer: [       | Test engineer: Daniele Guarnone |  |
| Verdict: pass                      | Supply input: 12       | 20 V, 60 Hz                     |  |
| Temperature: 25C A                 | ir pressure: 1010 mbar | Relative humidity: 55%          |  |

# Special notes

§15.209 - Radiated emission limits

| Frequency   | Field strength |               | Measurement distance |
|-------------|----------------|---------------|----------------------|
| (MHz)       | (μV/m)         | (dBµV/m)      | (m)                  |
| 0.009-0.490 | 2400/F         | 67.6-20log(F) | 300                  |
| 0.490-1.705 | 24000/F        | 87.6-20log(F) | 30                   |
| 1.705–30.0  | 30             | 29.5          | 30                   |
| 30–88       | 100            | 40.0          | 3                    |
| 88–216      | 150            | 43.5          | 3                    |
| 216–960     | 200            | 46.0          | 3                    |
| above 960   | 500            | 54.0          | 3                    |

#### Notes:

- F = fundamental frequency in kHz
- In the emission table above, the tighter limit applies at the band edges.

Specification: FCC Part 15 Subpart C

 For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

§15.205 - Restricted bands of operation

| 313.203 - Nestricted barrus | 313.203 - Nestricted bands of operation |               |             |  |  |
|-----------------------------|-----------------------------------------|---------------|-------------|--|--|
| MHz                         | MHz                                     | MHz           | GHz         |  |  |
| 0.090-0.110                 | 16.42-16.423                            | 399.9–410     | 4.5–5.15    |  |  |
| 0.495-0.505                 | 16.69475-16.69525                       | 608–614       | 5.35-5.46   |  |  |
| 2.1735-2.1905               | 16.80425-16.80475                       | 960–1240      | 7.25–7.75   |  |  |
| 4.125-4.128                 | 25.5–25.67                              | 1300–1427     | 8.025-8.5   |  |  |
| 4.17725-4.17775             | 37.5–38.25                              | 1435–1626.5   | 9.0–9.2     |  |  |
| 4.20725-4.20775             | 73–74.6                                 | 1645.5–1646.5 | 9.3–9.5     |  |  |
| 6.215–6.218                 | 74.8–75.2                               | 1660–1710     | 10.6–12.7   |  |  |
| 6.26775-6.26825             | 108–121.94                              | 1718.8–1722.2 | 13.25-13.4  |  |  |
| 6.31175–6.31225             | 123–138                                 | 2200–2300     | 14.47–14.5  |  |  |
| 8.291-8.294                 | 149.9–150.05                            | 2310–2390     | 15.35–16.2  |  |  |
| 8.362-8.366                 | 156.52475-156.52525                     | 2483.5–2500   | 17.7–21.4   |  |  |
| 8.37625-8.38675             | 156.7–156.9                             | 2690–2900     | 22.01-23.12 |  |  |
| 8.41425-8.41475             | 162.0125–167.17                         | 3260–3267     | 23.6–24.0   |  |  |
| 12.29-12.293                | 167.72–173.2                            | 3332–3339     | 31.2–31.8   |  |  |
| 12.51975-12.52025           | 240–285                                 | 3345.8–3358   | 36.43–36.5  |  |  |
| 12.57675-12.57725           | 322–335.4                               | 3600–4400     | Above 38.6  |  |  |
| 13.36–13.41                 | ·                                       |               |             |  |  |

- The spectrum was searched from 30 MHz to the 10<sup>th</sup> harmonic.
- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
  - within 30–1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results

| (N) | 7 |    |   |     |              |
|-----|---|----|---|-----|--------------|
|     |   | GL | Ш | _ \ | $\mathbf{c}$ |

| Section 8: Testing data                        | Product:                                       | Product: STNE4C7A82GDL |                        |  |
|------------------------------------------------|------------------------------------------------|------------------------|------------------------|--|
| Test name: Clause 15.247(d) Spurious emissions |                                                |                        |                        |  |
| Test date: 2011-07-08                          | Test engineer: Daniele Guarnone                |                        |                        |  |
| Verdict: pass                                  | Supply input: 120 V, 60 Hz                     |                        |                        |  |
| Temperature: 25C                               | Air pressure: 1010 mbar Relative humidity: 55% |                        | Relative humidity: 55% |  |
| Specification: FCC Part 15 Subpart C           |                                                |                        |                        |  |

# Test data

Duty cycle/average factor calculations

§15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Duty cycle/average factor calculations: duty cycle =100%

$$Duty cycle / average \ factor = 20 \times \log_{10} \left( \frac{Tx_{100 ms}}{100 ms} \right) = \text{not applicable}$$



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.247(d) Spurious emissions

Test date: 2011-07-08 Test engineer: Daniele Guarnone

Verdict: pass Supply input: 120 V, 60 Hz

Temperature: 25C Air pressure: 1010 mbar Relative humidity: 55%

Specification: FCC Part 15 Subpart C

# Test data, continued

Marker-delta measurement for 2.400 GHz Band Edge: protocol 802.11n

Measured field strength for high channel in 1 MHz/3 MHz RBW/VBW = 108.4dBµV/m



Delta marker = 35.3dB

Marker-delta measurement for 2.4835 GHz Band Edge protocol 802.11n

Measured field strength for high channel in 1 MHz/3 MHz RBW/VBW = 108.55 dBµV/m



Delta marker = 49.4dB



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

(Italy) Specification: FCC Part 15 Subpart C

# Test data, continued

Marker-delta measurement for 2.400 GHz Band Edge protocol 802.11b

Measured field strength for high channel in 1 MHz/3 MHz RBW/VBW = 108.55 dBμV/m



Delta marker = 39.7dB

Marker-delta measurement for 2.4385 GHz Band Edge protocol 802.11b



Delta marker = 52 dB



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

Specification: FCC Part 15 Subpart C

# Test data, continued

Marker-delta measurement for 2.400 GHz Band Edge protocol 802.11g

Measured field strength for high channel in 1 MHz/3 MHz RBW/VBW = 108.55 dBμV/m



Delta marker = 35.7 dB

Marker-delta measurement for 2.4385 GHz Band Edge protocol 802.11g



Delta marker = 47.55 dB



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions
 Test engineer: Daniele Guarnone

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%



| ⊢ | lig | h | $\sim$ | ha | nr | ച   |
|---|-----|---|--------|----|----|-----|
| • | пg  |   | U      | Iu |    | 101 |

| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|-----------------|------------------------|------------------------|-----------------------------|-----------------------------------|-----------------------|-----------------------|
| 2352           | h           | 59.8                               | 25.0            | 74                     | -14.2                  |                             | 52.6                              | 54                    | -1.4                  |
| 2291           | h           | 58.3                               | 24.4            | 74                     | -15.7                  |                             | 50.0                              | 54                    | -4.0                  |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.

Specification: FCC Part 15 Subpart C

|                |             |                                    | ,               | ,                         | ,                      |                                |                                   |                       |                       |
|----------------|-------------|------------------------------------|-----------------|---------------------------|------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Peak<br>limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
| 2352           | h           | 59.8                               | 25.0            | 74                        | -14.2                  | -                              | 52.6                              | 54                    | -1.4                  |
| 2291           | h           | 58.3                               | 24.4            | 74                        | -15.7                  |                                | 50                                | 54                    | -4.0                  |
| 2383           | h           |                                    | 25.0            | 74                        |                        |                                | 49.3                              | 54                    | -4.7                  |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Only worst results were reported (horizontal polarization)

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30–1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

#### Test data, continued

#### Radiated measurement protocol 802.11b



| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|-----------------|------------------------|------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 2346           | h           | 58.3                               | 24.7            | 74                     | -15.7                  |                                | 50.0                              | 54                    | 4                     |
| 2376           | h           | 56                                 | 25              | 74                     | -18                    |                                |                                   |                       |                       |
| 2408           | h           |                                    | 25.4            |                        |                        |                                | 47.0                              | 54                    | 7                     |

#### Radiated Measurements

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30–1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results

Specification: FCC Part 15 Subpart C



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.247(d) Spurious emissions

Test date: 2011-07-08 Test engineer: Daniele Guarnone

Verdict: pass Supply input: 120 V, 60 Hz

Temperature: 25C Air pressure: 1010 mbar Relative humidity: 55%

| uiated mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asurement pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | Ι                     |                      |                        |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|----------------------|------------------------|-------------------------------------------|
| Ref Lv1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marker 4 [T2]<br>48.81 dBμV×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | la:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 08                                          | Ref Lvl               | Mid cha              | RBW 1 MHz<br>VBW 1 MHz | RF Att 0 dB                               |
| 90 48+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.35993988 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z SWT 7.5 me          | [T2] 48.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBμ∨∠m<br>dBμ∨∠m<br>abbo GHz                  | 90 dB+                | 2.32385774 GHz       | SHT 7.5 ms             | Unit dBµV/m  48.24 dBµV/m  2.32386774 GHz |
| D1 74 dB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 2.39000<br>[T1] 58.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dBµV/m<br>1000 GHz<br>dBµV/m                  | D1 74 d8*             |                      | V1 [T1]                | 2.39000000 GHz                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ş <sup>‡</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∀3                    | (T2) 49.8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1743 GHz<br>2 dB <sub>M</sub> V/m<br>3000 GHz | 60                    |                      | V3 [T2]                | 2.38398798 GHZ                            |
| 1MAXD2 54 d8+-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | And the same of th | Martin Martin Martin  | the state of the s | 1MA<br>2AV                                    | 1MAX<br>2MAXP2 54 d8+ | Turk on my many turk |                        |                                           |
| The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same and the same |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOF                                           | 40                    |                      | Ma wayna war           |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 30 20                 |                      |                        |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOF                                           | 20                    |                      |                        |                                           |

High channel

| Freq.<br>(MHz) | P I.<br>V/H | Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|-----------------|------------------------|------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 2390           | h           | 62                                 | 25              | 74                     | -12                    |                                | 49.9                              | 54                    | -4.1                  |
| 2359           | h           | 58.4                               | 25              | 74                     | -15.6                  |                                | 48.8                              | 54                    | -5.2                  |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.

Specification: FCC Part 15 Subpart C

| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|-----------------|------------------------|------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 2390           | h           | 56.9                               | 25              | 74                     | -17.1                  |                                | -                                 | 54                    |                       |
| 2382           | h           | 58.3                               | 25              | 74                     | -15.7                  |                                |                                   | 54                    |                       |
| 2383           | h           |                                    | 25              | -                      |                        |                                | 47.7                              | 54                    | -6.3                  |
| 2323           | h           |                                    | 24.7            |                        |                        |                                | 48.2                              | 54                    | -5.8                  |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Only worst results were reported (horizontal polarization)

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30–1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

#### Test data, continued

#### Radiated measurement protocol 802.11g



| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBμV/m) | Correction<br>(dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field strength (dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|--------------------|------------------------|------------------------|--------------------------------|-----------------------------|-----------------------|-----------------------|
| 2335           | h           | 57.3                               | 24.7               | 74                     | -16.7                  |                                | 48.9                        | 54                    | -5.1                  |
| 2412           | h           | 57.2                               | 25.4               | 74                     | -16.8                  |                                |                             |                       |                       |
| 2408           | h           |                                    | 25.4               |                        |                        |                                | 47.0                        | 54                    | -7                    |
| 2390           | h           |                                    | 25                 |                        |                        |                                | 47.4                        | 54                    | -6.6                  |

#### Radiated Measurements

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results

Specification: FCC Part 15 Subpart C



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions
 Test engineer: Daniele Guarmone

 Test date: 2011-07-08
 Supply input: 120 V, 60 Hz

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

| Pauf Lv1<br>90 dB+ | EOW<br>61.29 dBp<br>2.35871743               |                | 1 MHz<br>3 MHz           | RF Att 0 dB<br>Unlt dB 4V/m<br>81.29 dB 4V/m<br>2.35871743 GHz<br>62.69 dB 4V/m | A        | Ref Lv1<br>90 dB+ | Marker 3 (T2)<br>49.75<br>2.371963 |                 | W 1 MHz<br>W 3 MHz |                                                    | 0 d8<br>d8µV/m                                                                   |
|--------------------|----------------------------------------------|----------------|--------------------------|---------------------------------------------------------------------------------|----------|-------------------|------------------------------------|-----------------|--------------------|----------------------------------------------------|----------------------------------------------------------------------------------|
| Pef Lv! 90 dB+     | arker 2 [T1]<br>61.29 dBµ                    | RBW<br>V>m VBW | 1 MHz<br>3 MHz<br>7.5 ms | Unit dBµV/m<br>81.29 dBµV/m<br>2.35871743 GHz                                   | A        |                   | Marker 3 [T2]<br>49.75             | RB<br>dB∠v∨m VB | W 1 MHz<br>W 3 MHz |                                                    |                                                                                  |
| 0                  |                                              |                | ▼2 [T1]<br>∀1 [T1]       | 2.35871743 GHz                                                                  | A        | 90                |                                    |                 |                    |                                                    |                                                                                  |
| 50                 |                                              | 28             | ♥3 [T2]                  | 2.39000000 GHz<br>49.31 dBµVzm<br>2.39000000 GHz<br>50.68 dBµVzm                |          | -D1 74 dB*-       |                                    |                 |                    | 2.3715<br>711 59.7<br>2.3900<br>711 58.3<br>2.3166 | 5 dB 4 V / m<br>6393 GHz<br>7 dB 4 V / m<br>0000 GHz<br>4 dB 4 V / m<br>3327 GHz |
| 1MAX 2 54 d8+      | July war | # W            | am                       | 2.35993988 GHZ                                                                  | MA<br>AV | 50 1MAX 54 dl     |                                    |                 |                    | 2.3238                                             | 6774 GHZ                                                                         |
| 20                 |                                              |                |                          | -                                                                               | DF       | 30                |                                    |                 |                    |                                                    |                                                                                  |
| 0                  |                                              |                |                          |                                                                                 |          | 0                 |                                    |                 |                    |                                                    |                                                                                  |

| Freq.<br>(MHz) | P I.<br>V/H | Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|-----------------|------------------------|------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 2358           | h           | 61.3                               | 25              | 74                     | -12.7                  |                                | 50.7                              | 54                    | -3.3                  |
| 2390           | h           | 62.7                               | 25              | 74                     | -11.3                  |                                | 49.3                              | 54                    | -4.7                  |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.

Peak field Duty

Duty

Specification: FCC Part 15 Subpart C

| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBμV/m) | Correction<br>(dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|--------------------|------------------------|------------------------|------------------------|-----------------------------------|-----------------------|-----------------------|
| 2390           | h           | 59.7                               | 25                 | 74                     | -14.3                  |                        |                                   | 54                    |                       |
| 2371           | h           |                                    | 25                 | 74                     | !                      |                        | 49.5                              | 54                    | -4.5                  |
| 2316           | h           | 58.3                               | 24.7               | 74                     | -15.7                  |                        |                                   | 54                    |                       |
| 2323           | h           |                                    | 24.7               | 74                     |                        |                        | 49.1                              | 54                    | -4.9                  |
|                |             |                                    |                    |                        |                        |                        |                                   |                       |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Only worst results were reported (horizontal polarization)

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

 Specification: FCC Part 15 Subpart C



| Freq.<br>(MHz) | Pol.<br>V/H | strength<br>(dBµV/m) | Correction<br>(dB) | Peak limit<br>(dBµV/m) | margin<br>(dB) | cycle<br>corr.<br>(dB) | strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | margin<br>(dB) |
|----------------|-------------|----------------------|--------------------|------------------------|----------------|------------------------|----------------------|-----------------------|----------------|
| 2402           | h           | 58.8                 | 25.4               | 74                     | -15.2          |                        | 48.5                 | 54                    | -5.5           |
| 2340           | h           | 58.9                 | 24.7               | 74                     | -15.1          |                        | 49.5                 | 54                    | -4.5           |
|                |             |                      |                    |                        |                |                        |                      |                       |                |

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

 Specification: FCC Part 15 Subpart C



Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Only worst results were reported (horizontal polarization)

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions
 Test engineer: Daniele Guarnone

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%



Specification: FCC Part 15 Subpart C

#### **Radiated Measurements**

All measurements were performed at a distance of 3 m.

Only worst results were reported (horizontal polarization)

- All measurements performed:
  - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

 Specification: FCC Part 15 Subpart C





| Freq.<br>(MHz) | Pol.<br>V/H | Peak field<br>strength<br>(dBμV/m) | Correction (dB) | Peak limit<br>(dBµV/m) | Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------|-----------------|------------------------|------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
|                | h           |                                    |                 |                        |                        |                                |                                   |                       |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Only worst results were reported (horizontal polarization)

- All measurements were performed at a distance of 3 m.
- All measurements performed:
  - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
  - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
  - and using average detector with 1 MHz/3 MHz RBW/VBW for average results



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

Specification: FCC Part 15 Subpart C

#### Test data, continued

#### Radiated measurement protocol 802.11b, horizontal polarization, low channel



Date: 1.JUL.2011 16:59:26

| Freq.<br>(MHz) | Pol.<br>V/H | Quasi<br>Peak field<br>strength<br>(dBµV/m) | Correction (dB) | Quasi<br>Peak limit<br>(dBµV/m) | Quasi<br>Peak<br>margin<br>(dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|---------------------------------------------|-----------------|---------------------------------|---------------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 30.50000       | h           | 12.0                                        | 13.2            | 40.0                            | -28.0                           |                                |                                   |                       |                       |
| 38.25000       | h           | 11.1                                        | 13.4            | 40.0                            | -28.9                           |                                |                                   |                       |                       |
| 40.62500       | h           | 11.1                                        | 14.2            | 40.0                            | -28.9                           |                                | -                                 |                       |                       |
| 49.57500       | h           | 11.8                                        | 13.8            | 40.0                            | -28.2                           |                                | -                                 |                       |                       |
| 59.17500       | h           | 12.5                                        | 13.5            | 40.0                            | -27.5                           |                                | -                                 |                       |                       |
| 61.17500       | h           | 11.0                                        | 13.1            | 40.0                            | -29.0                           |                                | -                                 |                       |                       |
| 117.60000      | h           | 16.4                                        | 11.7            | 43.5                            | -27.1                           |                                | -                                 |                       |                       |
| 134.45000      | h           | 22.2                                        | 13.3            | 43.5                            | -21.3                           |                                | -                                 |                       |                       |
| 154.15000      | h           | 19.3                                        | 14.7            | 43.5                            | -24.2                           |                                | -                                 |                       |                       |
| 161.50000      | h           | 16.6                                        | 14.7            | 43.5                            | -26.9                           |                                | -                                 |                       |                       |
| 213.47500      | h           | 19.1                                        | 10.8            | 43.5                            | -24.4                           |                                |                                   |                       |                       |
| 240.07500      | h           | 23.4                                        | 12.4            | 46.0                            | -22.6                           |                                | -                                 |                       |                       |
| 282.97500      | h           | 33.4                                        | 13.5            | 46.0                            | -12.6                           |                                | -                                 |                       |                       |
| 285.52500      | h           | 35.3                                        | 13.5            | 46.0                            | -10.7                           |                                |                                   |                       |                       |
| 326.82500      | h           | 22.7                                        | 14.7            | 46.0                            | -23.3                           |                                | -                                 |                       |                       |
| 376.25000      | h           | 16.6                                        | 15.7            | 46.0                            | -29.4                           |                                | -                                 |                       |                       |
| 480.02500      | h           | 28.8                                        | 17.8            | 46.0                            | -17.2                           |                                | -                                 |                       |                       |
| 566.67500      | h           | 26.7                                        | 19.0            | 46.0                            | -19.4                           |                                |                                   |                       |                       |
| 600.00000      | h           | 35.8                                        | 20.0            | 46.0                            | -10.3                           |                                |                                   |                       |                       |
| 733.32500      | h           | 23.1                                        | 21.4            | 46.0                            | -23.0                           |                                | -                                 |                       |                       |
| 840.00000      | h           | 31.0                                        | 22.5            | 46.0                            | -15.0                           |                                |                                   |                       |                       |
| 959.97500      | h           | 28.0                                        | 24.0            | 46.0                            | -18.0                           |                                |                                   |                       |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Low channel radiated measured in vertical and horizontal mpolarization with protocol 802.11b



 Section 8: Testing data
 Product: STNE4C7A82GDL

 Test name: Clause 15.247(d) Spurious emissions

 Test date: 2011-07-08
 Test engineer: Daniele Guarnone

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

Specification: FCC Part 15 Subpart C

#### Test data, continued

Radiated measurement protocol 802.11b, vertical polarization, low channel



Date: 1.JUL.2011 17:26:12

| Freq.<br>(MHz) | Pol.<br>V/H | Quasi Peak<br>field strength<br>(dBµV/m) | Correction (dB) | Quasi Peak<br>limit (dBµV/m) | Quasi Peak<br>margin (dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------------|-----------------|------------------------------|---------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 30.32500       | ٧           | 20.4                                     | 13.2            | 40.0                         | -19.6                     |                                |                                   |                       |                       |
| 35.72500       | ٧           | 15.7                                     | 13.3            | 40.0                         | -24.3                     | -                              |                                   |                       |                       |
| 41.57500       | V           | 15.1                                     | 14.2            | 40.0                         | -24.9                     | -                              |                                   |                       |                       |
| 49.47500       | V           | 18.0                                     | 13.8            | 40.0                         | -22.0                     |                                |                                   |                       |                       |
| 58.37500       | V           | 17.0                                     | 13.5            | 40.0                         | -23.0                     |                                |                                   |                       |                       |
| 61.47500       | V           | 12.7                                     | 13.1            | 40.0                         | -27.3                     | -                              |                                   |                       |                       |
| 76.50000       | V           | 10.6                                     | 10.6            | 40.0                         | -29.4                     |                                |                                   |                       |                       |
| 81.20000       | V           | 10.7                                     | 9.8             | 40.0                         | -29.3                     |                                |                                   |                       |                       |
| 104.45000      | V           | 21.2                                     | 10.7            | 43.5                         | -22.3                     |                                |                                   |                       |                       |
| 106.67500      | V           | 20.1                                     | 10.7            | 43.5                         | -23.4                     |                                |                                   |                       |                       |
| 139.25000      | V           | 18.1                                     | 13.3            | 43.5                         | -25.5                     |                                |                                   |                       |                       |
| 150.27500      | V           | 17.1                                     | 14.7            | 43.5                         | -26.4                     |                                |                                   |                       |                       |
| 166.00000      | V           | 13.3                                     | 14.7            | 43.5                         | -30.2                     |                                |                                   |                       |                       |
| 201.92500      | V           | 13.6                                     | 10.6            | 43.5                         | -29.9                     |                                |                                   |                       |                       |
| 282.47500      | V           | 25.7                                     | 13.5            | 46.0                         | -20.3                     |                                |                                   |                       |                       |
| 288.95000      | V           | 30.8                                     | 13.5            | 46.0                         | -15.2                     |                                |                                   |                       |                       |
| 326.27500      | V           | 20.1                                     | 14.7            | 46.0                         | -25.9                     |                                |                                   |                       |                       |
| 410.67500      | V           | 15.1                                     | 16.2            | 46.0                         | -30.9                     |                                |                                   |                       |                       |
| 480.00000      | V           | 22.0                                     | 17.8            | 46.0                         | -24.1                     |                                |                                   |                       |                       |
| 570.12500      | V           | 19.0                                     | 19.0            | 46.0                         | -27.0                     |                                |                                   |                       |                       |
| 621.47500      | V           | 21.3                                     | 20.0            | 46.0                         | -24.7                     |                                |                                   |                       |                       |
| 733.35000      | V           | 26.1                                     | 21.4            | 46.0                         | -19.9                     |                                |                                   |                       |                       |
| 840.02500      | V           | 32.4                                     | 22.5            | 46.0                         | -13.6                     |                                |                                   |                       |                       |
| 959.67500      | V           | 32.6                                     | 24.0            | 46.0                         | -13.4                     |                                |                                   |                       |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. Low channel radiated measured in vertical and horizontal mpolarization with protocol 802.11b



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.247(d) Spurious emissions

Test data: 2014 07 09

Test date: 2011-07-08Test engineer: Daniele GuarnoneVerdict: passSupply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

Specification: FCC Part 15 Subpart C

# Test data, continued

Radiated measurement protocol 802.11g, vertical polarization, mid channel



Date: 1.JUL.2011 18:00:22

| Freq.<br>(MHz) | Pol.<br>V/H | Quasi Peak<br>field strength<br>(dBµV/m) | Correction<br>(dB) | Quasi Peak<br>limit (dBµV/m) | Quasi Peak<br>margin (dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit (dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------------|--------------------|------------------------------|---------------------------|--------------------------------|-----------------------------------|--------------------|-----------------------|
| 30.39000       | ٧           | 19.3                                     | 13.2               | 40.0                         | -20.7                     |                                |                                   |                    |                       |
| 34.80000       | ٧           | 15.9                                     | 13.2               | 40.0                         | -24.1                     |                                |                                   |                    |                       |
| 40.35000       | V           | 14.2                                     | 14.2               | 40.0                         | -25.8                     | -                              | 1                                 |                    |                       |
| 47.40000       | ٧           | 16.6                                     | 13.8               | 40.0                         | -23.4                     |                                |                                   |                    |                       |
| 57.45000       | ٧           | 16.6                                     | 13.4               | 40.0                         | -23.4                     |                                |                                   |                    |                       |
| 60.63000       | ٧           | 14.4                                     | 13.1               | 40.0                         | -25.6                     |                                |                                   |                    |                       |
| 69.63000       | ٧           | 10.1                                     | 12.3               | 40.0                         | -29.9                     |                                |                                   |                    |                       |
| 120.57000      | ٧           | 17.0                                     | 12.8               | 43.5                         | -26.5                     |                                | -                                 |                    |                       |
| 134.25000      | ٧           | 17.6                                     | 13.3               | 43.5                         | -25.9                     |                                |                                   |                    |                       |
| 151.14000      | ٧           | 16.7                                     | 14.7               | 43.5                         | -26.9                     |                                |                                   |                    |                       |
| 161.58000      | ٧           | 14.0                                     | 14.7               | 43.5                         | -29.5                     |                                |                                   |                    |                       |
| 201.18000      | ٧           | 14.1                                     | 10.6               | 43.5                         | -29.4                     |                                |                                   |                    |                       |
| 282.54000      | V           | 26.1                                     | 13.5               | 46.0                         | -19.9                     | -                              | 1                                 |                    |                       |
| 290.37000      | ٧           | 28.9                                     | 13.7               | 46.0                         | -17.1                     |                                |                                   | -                  |                       |
| 335.61000      | ٧           | 18.8                                     | 14.7               | 46.0                         | -27.2                     |                                |                                   |                    |                       |
| 480.03000      | ٧           | 19.9                                     | 17.8               | 46.0                         | -26.1                     |                                |                                   |                    |                       |
| 568.98000      | ٧           | 19.0                                     | 19.0               | 46.0                         | -27.1                     |                                |                                   |                    |                       |
| 600.00000      | ٧           | 24.4                                     | 20.0               | 46.0                         | -21.7                     |                                |                                   |                    |                       |
| 732.42000      | ٧           | 22.3                                     | 21.4               | 46.0                         | -23.7                     |                                | -                                 |                    |                       |
| 840.03000      | V           | 32.3                                     | 22.5               | 46.0                         | -13.7                     |                                |                                   |                    |                       |
| 900.00000      | V           | 29.9                                     | 23.5               | 46.0                         | -16.1                     |                                |                                   |                    |                       |
| 30.39000       | ٧           | 19.3                                     | 13.2               | 40.0                         | -20.7                     |                                |                                   |                    |                       |
| 34.80000       | ٧           | 15.9                                     | 13.2               | 40.0                         | -24.1                     |                                |                                   |                    |                       |
| 40.35000       | ٧           | 14.2                                     | 14.2               | 40.0                         | -25.8                     |                                |                                   |                    |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.

Mid channel radiated measured in vertical and horizontal mpolarization with protocol 802.11g



Section 8: Testing dataProduct: STNE4C7A82GDLTest name: Clause 15.247(d) Spurious emissionsTest engineer: Daniele GuarnoneTest date: 2011-07-08Test engineer: Daniele GuarnoneVerdict: passSupply input: 120 V, 60 Hz

Temperature: 25CAir pressure: 1010 mbarRelative humidity: 55%Specification: FCC Part 15 Subpart C

#### Test data, continued

Radiated measurement protocol 802.11g, Horizontal polarization, mid channel



Date: 1.JUL.2011 18:05:42

| Freq.<br>(MHz) | Pol.<br>V/H | Quasi Peak<br>field strength<br>(dBµV/m) | Correction (dB) | Quasi Peak<br>limit (dBµV/m) | Quasi Peak<br>margin (dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------------|-----------------|------------------------------|---------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 30.72000       | h           | 11.7                                     | 13.2            | 40.0                         | -28.3                     |                                |                                   |                       |                       |
| 35.94000       | h           | 11.1                                     | 13.3            | 40.0                         | -28.9                     |                                |                                   |                       |                       |
| 47.58000       | h           | 11.1                                     | 13.8            | 40.0                         | -28.9                     | -                              |                                   |                       | -                     |
| 57.36000       | h           | 16.1                                     | 13.4            | 40.0                         | -23.9                     |                                |                                   |                       | -                     |
| 62.40000       | h           | 11.1                                     | 13.1            | 40.0                         | -28.9                     | 1                              |                                   |                       | -                     |
| 120.00000      | h           | 22.5                                     | 12.8            | 43.5                         | -21.1                     | 1                              |                                   |                       | 1                     |
| 135.21000      | h           | 22.0                                     | 13.3            | 43.5                         | -21.5                     | ı                              |                                   |                       | 1                     |
| 141.75000      | h           | 18.8                                     | 14.1            | 43.5                         | -24.7                     | 1                              |                                   |                       | -                     |
| 226.23000      | h           | 16.7                                     | 11.5            | 46.0                         | -29.3                     | -                              |                                   |                       | -                     |
| 282.39000      | h           | 27.0                                     | 13.5            | 46.0                         | -19.0                     | I                              |                                   |                       | 1                     |
| 286.32000      | h           | 28.8                                     | 13.5            | 46.0                         | -17.2                     | 1                              |                                   |                       | -                     |
| 329.13000      | h           | 18.1                                     | 14.7            | 46.0                         | -27.9                     |                                |                                   |                       |                       |
| 480.00000      | h           | 24.4                                     | 17.8            | 46.0                         | -21.6                     |                                |                                   |                       |                       |
| 566.67000      | h           | 25.9                                     | 19.0            | 46.0                         | -20.2                     | -                              |                                   |                       | -                     |
| 600.00000      | h           | 36.5                                     | 20.0            | 46.0                         | -9.6                      | 1                              |                                   |                       | -                     |
| 750.00000      | h           | 31.4                                     | 22.1            | 46.0                         | -14.6                     | 1                              |                                   |                       | -                     |
| 840.03000      | h           | 31.4                                     | 22.5            | 46.0                         | -14.6                     | 1                              |                                   |                       | 1                     |
| 959.97000      | h           | 28.9                                     | 24.0            | 46.0                         | -17.2                     | 1                              |                                   |                       | 1                     |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.

Mid channel radiated measured in vertical and horizontal polarization with protocol 802.11g



Section 8: Testing dataProduct: STNE4C7A82GDLTest name: Clause 15.247(d) Spurious emissionsTest date: 2011-07-08Test engineer: Daniele GuarnoneVerdict: passSupply input: 120 V, 60 Hz

Temperature: 25C Air pressure: 1010 mbar Relative humidity: 55%

Specification: FCC Part 15 Subpart C

# Test data, continued

Radiated measurement protocol 802.11n, Horizontal polarization, high channel



Date: 1.JUL.2011 18:12:28

| Freq.<br>(MHz) | Pol.<br>V/H | Quasi Peak<br>field strength<br>(dBµV/m) | Correction (dB) | Quasi Peak<br>limit (dBµV/m) | Quasi Peak<br>margin (dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------------|-----------------|------------------------------|---------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 30.72000       | h           | 11.7                                     | 13.2            | 40.0                         | -28.3                     |                                |                                   |                       |                       |
| 35.94000       | h           | 11.1                                     | 13.3            | 40.0                         | -28.9                     |                                |                                   |                       |                       |
| 47.58000       | h           | 11.0                                     | 13.8            | 40.0                         | -29.0                     |                                | -                                 |                       |                       |
| 57.36000       | h           | 16.0                                     | 13.4            | 40.0                         | -24.0                     |                                |                                   |                       |                       |
| 62.40000       | h           | 11.1                                     | 13.1            | 40.0                         | -28.9                     |                                |                                   |                       |                       |
| 120.00000      | h           | 22.4                                     | 12.8            | 43.5                         | -21.1                     |                                | -                                 |                       |                       |
| 135.21000      | h           | 22.1                                     | 13.3            | 43.5                         | -21.5                     |                                | -                                 |                       |                       |
| 141.75000      | h           | 19.0                                     | 14.1            | 43.5                         | -24.6                     |                                |                                   |                       |                       |
| 226.23000      | h           | 16.7                                     | 11.5            | 46.0                         | -29.3                     |                                |                                   |                       |                       |
| 282.39000      | h           | 26.7                                     | 13.5            | 46.0                         | -19.3                     |                                |                                   |                       |                       |
| 286.32000      | h           | 28.4                                     | 13.5            | 46.0                         | -17.6                     |                                | -                                 |                       |                       |
| 329.13000      | h           | 18.2                                     | 14.7            | 46.0                         | -27.8                     |                                | -                                 |                       |                       |
| 480.00000      | h           | 24.4                                     | 17.8            | 46.0                         | -21.6                     |                                |                                   |                       |                       |
| 566.67000      | h           | 25.8                                     | 19.0            | 46.0                         | -20.2                     |                                |                                   |                       |                       |
| 600.00000      | h           | 36.4                                     | 20.0            | 46.0                         | -9.6                      |                                |                                   |                       |                       |
| 750.00000      | h           | 31.4                                     | 22.1            | 46.0                         | -14.6                     |                                | -                                 |                       |                       |
| 840.03000      | h           | 31.4                                     | 22.5            | 46.0                         | -14.6                     |                                |                                   |                       |                       |
| 959.97000      | h           | 28.9                                     | 24.0            | 46.0                         | -17.1                     |                                |                                   |                       |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators.

High channel radiated measured in vertical and horizontal mpolarization with protocol 802.11n



Section 8: Testing data Product: STNE4C7A82GDL

Test name: Clause 15.247(d) Spurious emissions

Test date: 2011-07-08 Test engineer: Daniele Guarnone

Verdict: pass Supply input: 120 V, 60 Hz

 Verdict: pass
 Supply input: 120 V, 60 Hz

 Temperature: 25C
 Air pressure: 1010 mbar
 Relative humidity: 55%

Specification: FCC Part 15 Subpart C

# Test data, continued

Radiated measurement protocol 802.11n, vertical polarization, high channel



Date: 1.JUL.2011 18:20:17

| Freq.<br>(MHz) | Pol.<br>V/H | Quasi Peak<br>field strength<br>(dBµV/m) | Correction<br>(dB) | Quasi Peak<br>limit (dBµV/m) | Quasi Peak<br>margin (dB) | Duty<br>cycle<br>corr.<br>(dB) | Avg field<br>strength<br>(dBµV/m) | Avg limit<br>(dBµV/m) | Avg<br>margin<br>(dB) |
|----------------|-------------|------------------------------------------|--------------------|------------------------------|---------------------------|--------------------------------|-----------------------------------|-----------------------|-----------------------|
| 30.72000       | ٧           | 11.7                                     | 13.2               | 40.0                         | -28.3                     |                                |                                   |                       |                       |
| 35.94000       | ٧           | 11.1                                     | 13.3               | 40.0                         | -28.9                     |                                |                                   |                       |                       |
| 47.58000       | ٧           | 11.0                                     | 13.8               | 40.0                         | -29.0                     |                                | -                                 |                       |                       |
| 57.36000       | ٧           | 16.0                                     | 13.4               | 40.0                         | -24.0                     |                                |                                   |                       |                       |
| 62.40000       | ٧           | 11.1                                     | 13.1               | 40.0                         | -28.9                     |                                |                                   |                       |                       |
| 120.00000      | ٧           | 22.4                                     | 12.8               | 43.5                         | -21.1                     | -                              | -                                 |                       | -                     |
| 135.21000      | ٧           | 22.1                                     | 13.3               | 43.5                         | -21.5                     |                                |                                   |                       |                       |
| 141.75000      | ٧           | 19.0                                     | 14.1               | 43.5                         | -24.6                     | -                              | -                                 |                       | -                     |
| 226.23000      | V           | 16.7                                     | 11.5               | 46.0                         | -29.3                     |                                | -                                 |                       |                       |
| 282.39000      | ٧           | 26.7                                     | 13.5               | 46.0                         | -19.3                     | -                              | -                                 |                       | -                     |
| 286.32000      | ٧           | 28.4                                     | 13.5               | 46.0                         | -17.6                     | -                              | -                                 |                       | -                     |
| 329.13000      | ٧           | 18.2                                     | 14.7               | 46.0                         | -27.8                     |                                |                                   |                       |                       |
| 480.00000      | ٧           | 24.4                                     | 17.8               | 46.0                         | -21.6                     | -                              | -                                 |                       | -                     |
| 566.67000      | ٧           | 25.8                                     | 19.0               | 46.0                         | -20.2                     |                                |                                   |                       |                       |
| 600.00000      | ٧           | 36.4                                     | 20.0               | 46.0                         | -9.6                      |                                | -                                 |                       |                       |
| 750.00000      | ٧           | 31.4                                     | 22.1               | 46.0                         | -14.6                     |                                | -                                 |                       |                       |
| 840.03000      | ٧           | 31.4                                     | 22.5               | 46.0                         | -14.6                     |                                |                                   |                       |                       |
| 959.97000      | V           | 28.9                                     | 24.0               | 46.0                         | -17.1                     |                                | -                                 |                       |                       |

Note: Correction factor includes antenna, cable loss, amplifier, and attenuators. High channel radiated measured in vertical and horizontal mpolarization with protocol 802.11n



| Section 8: Testing data              | Product:        | Product: STNE4C7A82GDL          |                        |  |
|--------------------------------------|-----------------|---------------------------------|------------------------|--|
| Test name: Clause 15.247(d) Spu      | rious emissions |                                 |                        |  |
| Test date: 2011-07-08                |                 | Test engineer: Daniele Guarnone |                        |  |
| Verdict: pass                        |                 | Supply input: 120 V, 60 Hz      |                        |  |
| Temperature: 25C Air pressure: 10    |                 | 10 mbar                         | Relative humidity: 55% |  |
| Specification: FCC Part 15 Subpart C |                 |                                 |                        |  |

# Setup photos







| Section 8: Testing data                        | Product: | STNE4C7A82GDL       |                        |  |  |
|------------------------------------------------|----------|---------------------|------------------------|--|--|
| Test name: Clause 15.247(d) Spurious emissions |          |                     |                        |  |  |
| Test date: 2011-07-08                          |          | Test engineer: Dan  | iele Guarnone          |  |  |
| Verdict: pass                                  |          | Supply input: 120 \ | /, 60 Hz               |  |  |
| Temperature: 25C Air pressure: 10              |          | 10 mbar             | Relative humidity: 55% |  |  |

Temperature: 25C Air pressure: 1010 mbar Specification: FCC Part 15 Subpart C

### Setup photos







| Section 8: Testing data                                                            | Product STNE4C7A82GDL   |                                 |  |  |  |
|------------------------------------------------------------------------------------|-------------------------|---------------------------------|--|--|--|
| Test name: Clause 15.247(e) Power spectral density for digitally modulated devices |                         |                                 |  |  |  |
| Test date: 2011-06-30                                                              | Test engineer: Da       | Test engineer: Daniele Guarnone |  |  |  |
| Verdict: Pass                                                                      | Supply input: 120       | Supply input: 120 Vac, 60 Hz    |  |  |  |
| Temperature: 25.5 ℃                                                                | Air pressure: 1010 mbar | Relative humidity: 52 %         |  |  |  |
| Specification: FCC Part 15 Subpart C                                               |                         |                                 |  |  |  |

## 8.8 Clause 15.247(e) Power spectral density for digitally modulated devices

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

#### Special notes

- The test was performed using guidelines of ANSI C63.10-2009, Clause 6.11.2.
- PSD option 1 was used since output power option 1 was used.
- Emission peak was located and zoomed in. RBW was set to 3 kHz, VBW was set > RBW.
   Sweep time was set to Span/3 kHz. Peak level was measured.



 Section 8: Testing data
 Product STNE4C7A82GDL

 Test name: Clause 15.247(e) Power spectral density for digitally modulated devices

 Test date: 2011-06-30
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 120 Vac, 60 Hz

 Temperature: 25.5 ℃
 Air pressure: 1010 mbar
 Relative humidity: 52 %

20853 Biassono (Italy) Specification: FCC Part 15 Subpart C



## Radiated measurement protocol 802.11b





High channel



| Frequency | PSD         | Limit       | Margin |
|-----------|-------------|-------------|--------|
| (MHz)     | (dBm/3 kHz) | (dBm/3 kHz) | (dB)   |
| 2412      | -6.47       | 8           | -14.47 |
| 2437      | -5.03       | 8           | -13.03 |
| 2462      | -6.63       | 8           | -14.63 |

Sweep time = Span/RBW

Sweep time = (300 kHz/3 kHz)

Sweep time = 100 s

Theoretical conversion from Field Strength measured at 3 m to power conducted from the intentional radiator to the antenna:

$$P(W) = \frac{E^2 R^2}{30G}$$

E = Measured field strength value (V/m/3 kHz)

R = Measurement distance (m)

G = Antenna Gain (numeric)

Therefore dBW = dBV/m + 20Log(3) - 10Log(30) - 10Log(G)

From which we obtain

$$dBmW = dB\mu V/m - 120 + 20Log(3) - 10Log(30) - 10Log(G) + 30$$
  
= dB\(\mu\)V/m - 95.23 - 10Log(G)

PSD [dBm/3 kHz] = Field Strength [dBµV/m/3 kHz] - 95.23 [dB] - Antenna gain [dBi]



 Section 8: Testing data
 Product STNE4C7A82GDL

 Test name: Clause 15.247(e) Power spectral density for digitally modulated devices

 Test date: 2011-06-30
 Test engineer: Daniele Guarnone

 Verdict: Pass
 Supply input: 120 Vac, 60 Hz

 Temperature: 25.5 ℃
 Air pressure: 1010 mbar
 Relative humidity: 52 %



Specification: FCC Part 15 Subpart C



| Frequency | PSD         | Limit       | Margin |
|-----------|-------------|-------------|--------|
| (MHz)     | (dBm/3 kHz) | (dBm/3 kHz) | (dB)   |
| 2412      | -10.47      | 8           | -18.47 |
| 2437      | -10.46      | 8           | -18.46 |
| 2462      | -12.03      | 8           | -20.03 |

Sweep time = Span/RBW

Sweep time = (300 kHz/3 kHz)

Sweep time = 100 s

Theoretical conversion from Field Strength measured at 3 m to power conducted from the intentional radiator to the antenna:

$$P(W) = \frac{E^2 R^2}{30G}$$

E = Measured field strength value (V/m/3 kHz)

R = Measurement distance (m)

G = Antenna Gain (numeric)

Therefore dBW = dBV/m + 20Log(3) - 10Log(30) - 10Log(G)

From which we obtain

$$dBmW = dB\mu V/m - 120 + 20Log(3) - 10Log(30) - 10Log(G) + 30$$
  
= dB\(\mu\)V/m - 95.23 - 10Log(G)

PSD [dBm/3 kHz] = Field Strength [dBµV/m/3 kHz] - 95.23 [dB] - Antenna gain [dBi]



Section 8: Testing dataProduct STNE4C7A82GDLTest name: Clause 15.247(e) Power spectral density for digitally modulated devicesTest date: 2011-06-30Test engineer: Daniele GuarnoneVerdict: PassSupply input: 120 Vac, 60 HzTemperature: 25.5 ℃Air pressure: 1010 mbarRelative humidity: 52 %



Specification: FCC Part 15 Subpart C

| De+e 3D IIIN 2011 15-20-30 |             |             |        |
|----------------------------|-------------|-------------|--------|
| Frequency                  | PSD         | Limit       | Margin |
| (MHz)                      | (dBm/3 kHz) | (dBm/3 kHz) | (dB)   |
| 2412                       | -10.53      | 8           | -18.53 |
| 2437                       | -11.03      | 8           | -19.03 |
| 2462                       | -12.13      | 8           | -20.13 |

Sweep time = Span/RBW

Sweep time = (300 kHz/3 kHz)

Sweep time = 100 s

Theoretical conversion from Field Strength measured at 3 m to power conducted from the intentional radiator to the antenna:

$$P(W) = \frac{E^2 R^2}{30G}$$

E = Measured field strength value (V/m/3 kHz)

R = Measurement distance (m)

G = Antenna Gain (numeric)

Therefore dBW = dBV/m + 20Log(3) - 10Log(30) - 10Log(G)

From which we obtain

$$dBmW = dB\mu V/m - 120 + 20Log(3) - 10Log(30) - 10Log(G) + 30$$
  
=  $dB\mu V/m - 95.23 - 10Log(G)$ 

PSD [dBm/3 kHz] = Field Strength [dBµV/m/3 kHz] - 95.23 [dB] - Antenna gain [dBi]



Product: STNE4C7A82GDL



# Section 8: Block diagrams of test set-ups





Section 9: EUT photos Product: STNE4C7A82GDL

# Section 9: EUT photos

# EUT







Section 9: EUT photos Product: STNE4C7A82GDL

