Algorithm 2 Newton's method

Input:

 x_0 , vector of length N with initial approximation

tol, tolerance: stop if $\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\| < \text{tol}$

 k_{max} , maximum number of iterations: stop if $k > k_{\text{max}}$

Output:

 \boldsymbol{x}_k , approximation of solution of $F(\boldsymbol{x}) = \boldsymbol{0}$ within tolerance tol or with $k = k_{\text{max}}$ steps.

Steps:

$$k \leftarrow 0$$

while $k \leq k_{\text{max}} do$

Calculate $F(\boldsymbol{x}_k)$ and $N \times N$ matrix $J(\boldsymbol{x}_k)$

Solve the $N \times N$ linear system $J(\boldsymbol{x}_k) \boldsymbol{z} = -F(\boldsymbol{x}_k)$

 $oldsymbol{x}_{k+1} \leftarrow oldsymbol{x}_k + oldsymbol{z}$

if ||z|| < tol then

break

end if

 $k \leftarrow k + 1$

end while