

Trabajo Práctico Número 2

Algoritmos y Estructuras de Datos II

Grupo: 21

Integrante	LU	Correo electrónico
Langberg, Andrés	249/14	andreslangberg@gmail.com
Walter, Nicolás	272/14	nicowalter25@gmail.com
Sticco, Patricio Bernardo	337/14	pbsticco@hotmail.com
Len, Julián	467/14	julianlen@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (54 11) 4576-3359

http://www.fcen.uba.ar

1. Diseño del Tipo RASTRILLAJE

1.1. Especificación

Se usa el TAD CAMPUSSEGURO especificado por la cátedra.

1.2. Aspectos de la interfaz

1.2.1. Interfaz

Se explica con especificación de CampusSeguro

Género rastr

Operaciones básicas de Rastrillaje

```
Campus(in r: rastr) \longrightarrow res: campus
 Pre \equiv \{ true \}
 Post \equiv \{ res =_{obs} campus(r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve el campus.
ESTUDIANTES(in r: rastr) \longrightarrow res : conj(nombre)
 Pre \equiv \{ true \}
 Post \equiv \{ res =_{obs} estudiantes(r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve el conjunto de estudiantes presentes en el campus.
Hippies(in \ r: rastr) \longrightarrow res : conj(nombre)
 Pre \equiv \{ true \}
 Post \equiv \{ res =_{obs} hippies(r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve el conjunto de hippies presentes en el campus.
Agentes(in r: rastr) \longrightarrow res: conj(agente)
 Pre \equiv \{ true \}
 Post \equiv \{ res =_{obs} agentes(r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve el conjunto de agentes presentes en el campus.
PosestudianteYHippie(in r: rastr, in id: nombre) \longrightarrow res: posicion
 Pre \equiv \{ id \in (estudiantes(r) \cup hippies(cs)) \}
 Post \equiv \{ res =_{obs} posEstudianteYHippie(id, r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve la posición del estudiante/hippie pasado como parámetro.
PosAgente(in r: rastr, in a: agente) \longrightarrow res: posicion
 Pre \equiv \{ a \in posAgente(a,r) \}
 Post \equiv \{ res =_{obs} posAgente(a, r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve la posición del agente pasado como parámetro.
CantSanciones(in r: rastr, in a: agente) \longrightarrow res: nat
 Pre \equiv \{ a \in cantSanciones(a,r) \}
 Post \equiv \{ res =_{obs} cantSanciones(a, r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve la cantidad de sanciones recibidas por el agente pasado como parámetro.
CanthippiesAtrapados(in r: rastr, in a: agente) \longrightarrow res: nat
 Pre \equiv \{ a \in agentes(r) \}
```

```
Post \equiv \{ res =_{obs} cantHippiesAtrapados(a, r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve la cantidad de hippies atrapados por el agente pasado como parámetro.
COMENZARRASTRILLAJE(in c: campus, in d: dicc(agente, posicion)) \longrightarrow res : rastr
 \mathsf{Pre} \equiv \{ (\forall \ a : agente)(\mathsf{def}?(\mathsf{a},\mathsf{d}) \Rightarrow_\mathsf{L} (\mathsf{posValida}?(\mathsf{obtener}(\mathsf{a},\mathsf{d}))) \land \neg \mathsf{ocupada}?(\mathsf{obtener}(\mathsf{a},\mathsf{d}),\mathsf{c})) \land (\forall \ \mathsf{a}, \mathsf{d}) \} \}
 a_2: agente)((def?(a,d) \land def?(a_2,d) \land a \neq a_2) \Rightarrow_{\text{L}} obtener(a,d)\neq obtener(a_2,d))}
 Post \equiv \{ res =_{obs} comenzarRastrillaje(c, d) \}
 Complejidad: O(1)
 Descripción: Crea un Rastrillaje.
IngresarEstudiante(in/out r: rastr, in e: nombre, in p: posicion) \longrightarrow
 \mathbf{Pre} \equiv \{ r = r_0 \land e \notin (\operatorname{estudiantes}(r) \cup \operatorname{hippies}(r)) \land \operatorname{esIngreso}(p, \operatorname{campus}(r)) \land \neg \operatorname{estaOcupada}(p,r) \} 
 Post \equiv \{ r =_{obs} ingresarEstudiante(e, p, r_0) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Modifica el rastrillaje, ingresando un estudiante al campus.
IngresarHippie(in/out r: rastr, in h: nombre, in p: posicion) \longrightarrow
 \mathbf{Pre} \equiv \{ r = r_0 \land h \notin (\operatorname{estudiantes}(r) \cup \operatorname{hippies}(r)) \land \operatorname{esIngreso}(p, \operatorname{campus}(r)) \land \neg \operatorname{estaOcupada}(p,r) \}
 Post \equiv \{ r =_{obs} ingresarHippie(h, p, r_0) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Modifica el rastrillaje, ingresando un hippie al campus.
MoverEstudiante(in/out r: rastr, in e: nombre, in dir: direction) -
                                                                  estudiantes(r)
                                                                                               (seRetira(e,dir,r)
                                     =\mathbf{r}_0
                                             \wedge e
                                                           \in
                                                                                                                                 (pos-
 Valida?(proxPosicion(posEstudianteYHippie(e,r),dir,campus(r)),campus(r))
 \neg estaOcupada?(proxPosicion(posEstudianteYHippie(e,r),dir,campus(r)),r)))
 Post \equiv \{ r =_{obs} moverEstudiante(e, d, r_0) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Modifica el rastrillaje, al mover un estudiante del campus.
MoverHippie(in/out r: rastr, in h: nombre) \longrightarrow
 Pre \equiv \{ r = r_0 \land h \in hippies(r) \land \neg todasOcupadas?(vecinos(posEstudianteYHippie(h,r),campus(r)),r) \} 
 Post \equiv \{ r =_{obs} moverHippie(r, r_0) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Modifica el rastrillaje, al mover un hippie del campus.
MoverAgente(in/out r: rastr, in a: agente) \longrightarrow
                      \{ r \}
                                    =r_0
                                             \wedge
                                                    a \in agentes(r)
                                                                                    \wedge_{\scriptscriptstyle 
m L}
                                                                                           cantSanciones(a,r)
                                                                                                                        \leq
                                                                                                                               3
 \neg todasOcupadas?(vecinos(posAgente(a,r),campus(r)),r)
 Post \equiv \{ r =_{obs} moverAgente(a, r_0) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Modifica el rastrillaje, al mover un agente del campus.
MasVigilante(in \ r: \ rastr) \longrightarrow res: \ agente
 Pre \equiv \{ true \}
 Post \equiv \{ res =_{obs} masViligante(r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve el agente con mas capturas.
ConkSanciones(in r: rastr, in k: nat) \longrightarrow res : conj(agente)
 Pre \equiv \{ true \}
 Post \equiv \{ res =_{obs} conKSanciones(k, r) \}
 Complejidad: \mathcal{O}(1)
 Descripción: Devuelve el agente con mas capturas.
ConMismasSanciones(in r: rastr, in a: agente) \longrightarrow res: conj(agente)
```

```
\begin{array}{l} \mathbf{Pre} \equiv \ \{ \ a \in \mathrm{agentes}(\mathbf{r}) \} \\ \mathbf{Post} \equiv \ \{ \ res =_{\mathrm{obs}} conMismasSanciones(a,r) \ \} \\ \mathbf{Complejidad:} \ \mathcal{O}(1) \\ \mathbf{Descripción:} \ \mathrm{Devuelve} \ \mathrm{el} \ \mathrm{conjunto} \ \mathrm{de} \ \mathrm{agentes} \ \mathrm{con} \ \mathrm{la} \ \mathrm{misma} \ \mathrm{cantidad} \ \mathrm{de} \ \mathrm{sanciones} \ \mathrm{que} \ \mathrm{a}. \end{array}
```

1.3. Pautas de implementación

1.3.1. Estructura de representación

```
campus se representa con estr
 donde estr es
  tupla(
   campo: campus \times
   agentes: diccPromedio(placa; datosAg) \times
   hippies: conjLineal(datosHoE) \times
   estudiantes: conjLineal(datosHoE) \times
   posCiviles: diccString(nombre; posicion) \times
   posRapida: diccLineal(nombre; posicion) \times
   quienOcupa: vector(vector(posicion; datosPos)) \times
   mas Vigilante: itConj(placa) \times
   agregoEn1: lista(datosK)) \times
   buscoEnLog: vector(datosK)
 donde datosAg es
  tupla(
   QSanciones: nat \times
   premios: nat \times
   posActual: posicion \times
   grupoSanciones: itConj(placa) \times
   verK: itLista(nat)
 donde datosHoE es
  tupla(
   ID: nombre \times
   itDicc(nombre; posicion): posActual
 donde datosAg es
  tupla(
   QSanciones: nat \times
   premios: nat \times
   posActual: posicion \times
   grupoSanciones: itConj(placa) \times
   verK: itLista(nat)
   )
 donde datosPos es
  tupla(
   ocupada?: bool \times
   quien
Ocupa: {\it clases} \times
   hayCana: itDicc(placa) \times
   hayHoE: itLista(nombre)
 donde clases es enum{agente,estudiante,hippie,obstaculo}
 donde datosK es
  tupla(
   K: nat \times
   grupoK: conjLineal(placa)
```

1.3.2. Justificación

1.3.3. Invariante de Representación

Informal

1. El mapa debe tener tantas filas como indica la estructura, lo mismo con las columnas.

Formal

```
\begin{aligned} &\operatorname{Rep}:\operatorname{estr} \longrightarrow \operatorname{boolean} \\ &(\forall \ e:\operatorname{estr}) \\ &\operatorname{Rep}(e) \equiv (\operatorname{true} \Longleftrightarrow \\ &(1) \text{ e.filas} = \operatorname{longitud}(\operatorname{e.mapa}) \wedge_{\scriptscriptstyle L} (\forall \ i:\operatorname{nat}) (i \leq \operatorname{e.filas} \ \Rightarrow \ \operatorname{longitud}(\operatorname{e.mapa}[i]) = \operatorname{e.columnas})) \end{aligned}
```

1.3.4. Función de Abstracción

```
\begin{aligned} & \text{Abs: estr } e \longrightarrow \text{campus} \\ & (\forall \ e \text{:estr}) \ \text{Abs}(e) =_{\text{obs}} c : \text{campus} \ / \\ & \left( \text{filas}(c) = \text{e.filas} \land \text{columnas}(c) = \text{e.columnas} \land_{\text{L}} \ (\forall \ p : \text{posicion})(p.X \le \text{e.filas} \land \\ & \text{p.Y} \le \text{e.columnas} \Rightarrow_{\text{L}} \text{ocupada?}(p,c) \Leftrightarrow (\text{e.mapa[f]})[c] \right) \end{aligned}
```

1.3.5. Algoritmos

1: f	function i CrearCampus(in c : nat , in f : nat) \longrightarrow res : estr	$\triangleright \mathcal{O}(f^2 * c^2)$
2:	$var vector(vector(bool)) mapa \leftarrow vacia(vacia())$	$\triangleright \mathcal{O}(1)$
3:	$var nat i \leftarrow 0$	$\triangleright \mathcal{O}(1)$
4:	while i≤f do	$ hd \mathcal{O}(f)$
5:	$var vector(bool) nuevo \leftarrow vacia()$	$\triangleright \mathcal{O}(1)$
6:	$var nat j \leftarrow 0$	$\triangleright \mathcal{O}(1)$
7:	$\mathbf{while} \ \mathbf{j} \leq c \ \mathbf{do}$	$\triangleright \mathcal{O}(c)$
8:	AgregarAtras(nuevo, false)	$ hinspace \mathcal{O}(c)$
9:	j++	$\triangleright \mathcal{O}(1)$
10:	end while	
11:	AgregarAtras(mapa, nuevo)	$ hd \mathcal{O}(f)$
12:	i++	$\triangleright \mathcal{O}(1)$
13:	end while	
14:	$res \leftarrow < f, c, mapa >$	$\triangleright \mathcal{O}(1)$
15: e	end function	