Teoremas de decomposição de Weyl e de Levi

Vitor Emanuel Gulisz *
Bacharelado em Matemática - UFPR

vitorgulisz@gmail.com

Professora Tanise Carnieri Pierin (Orientadora) Departamento de Matemática - UFPR

tanise@ufpr.br

Palavras-chave: álgebras de Lie, teoremas de Weyl e Levi, cohomologia.

Resumo:

Neste trabalho iremos apresentar os teoremas de decomposição de Weyl e de Levi para álgebras de Lie, e algumas de suas consequências. Com o objetivo de provar tais teoremas, iremos introduzir conceitos preliminares, como a definição destas álgebras, o que são suas representações e o que é uma representação completamente redutível. Apresentaremos ainda o conceito de cohomologia de álgebras de Lie, e em seguida demonstraremos os lemas de Whitehead sobre a cohomologia de álgebras semissimples. Finalmente, os teoremas de Weyl e de Levi serão obtidos como consequências destes lemas.

O teorema de Weyl enuncia que, se $\mathfrak g$ é uma álgebra de Lie semissimples de dimensão finita, e ρ é uma representação de $\mathfrak g$ em um espaço vetorial V de dimensão finita, então ρ é completamente redutível, ou seja, V se decompõe como $V=V_1\oplus\cdots\oplus V_k$, com cada V_i invariante e irredutível.

O teorema de Levi garante que podemos decompor uma álgebra de Lie $\mathfrak g$ qualquer, de dimensão finita, como soma direta de uma álgebra semissimples e uma álgebra solúvel. Mais precisamente, neste caso teremos que $\mathfrak g$ é o produto semidireto do seu radical solúvel $\mathfrak r(\mathfrak g)$ com uma subálgebra $\mathfrak s$ semissimples de $\mathfrak g$.

Referências:

SAN MARTIN, L. Álgebras de Lie. Campinas: Editora Unicamp, 2010.

^{*}Bolsista do Programa PET-Matemática