Lezione 19 caratterizzazione di NP

Lezione del 15/05/2024

Da una condizione sufficiente...

- Abbiamo visto che tutti i problemi decisionali tali che
 - ▶ 1) il predicato ha la forma $\pi(x, S(x)) =$ esiste $y \in S(x)$ tale che $\eta(x,y)$
 - 2) la scelta di un elemento y di S(x) richiede tempo non deterministico polinomiale in |x|
 - \blacksquare 3) la verifica che y soddisfi il predicato η , richiede tempo polinomiale in |x|
- appartengono ad NP
- Ossia: 1), 2) e 3) sono condizioni sufficienti per poter affermare che un problema appartiene ad NP
- Sono condizioni facili da verificare
 - certo, più facili che non verificare l'esistenza di un algoritmo non deterministico che operi in tempo polinomiale
- Però, è chiaro, non è mica detto che tutti i problemi in NP soddisfino queste 3 condizioni!
 - Ossia, magari esiste un problema che **non** soddisfa 1) e 2) e 3)
 - e che, tuttavia, appartiene ad NP! ... Sarà forse così?!
- In effetti no: non è così! Infatti, c'è un teorema che...

... ad una nuova caratterizzazione ...

- **Teorema 9.1**: Un linguaggio L \subseteq Σ* appartiene ad NP se e soltanto se
 - esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
- Ma che vuol dire?!
 - Tipico caso di teorema più difficile da enunciare che da dimostrare...

... di cui capire il significato

- **Teorema 9.1**: Un linguaggio L ⊆ Σ^* appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - $\mathbf{x} \in \mathbf{L} \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land \mathsf{T}(x,y_x)$ accetta \land dtime $(\mathsf{T},x,y_x) \in \mathsf{O}(|x|^h)$.
- Ma che vuol dire?!
- Intanto, osserviamo che il teorema è una condizione necessaria e sufficiente per poter dire "L appartiene ad NP"
- E, siccome è una condizione necessaria e sufficiente, dobbiamo scomporlo in due parti
- Se partiamo dall'ipotesi che L appartiene a NP, il teorema, ci indica una condizione necessaria e sufficiente per poter affermare che che x ∈ L :
 - **▶** per ogni $x \in \Sigma^*$, $x \in L \leftrightarrow ...$ ecc. ecc.

Che vuol dire?

- **Teorema 9.1**: Un linguaggio L ⊆ Σ^* appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - $\blacksquare x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x) \text{ accetta } \land \text{ dtime}(T,x,y_x) \in O(|x|^h)$.
- Se partiamo dall'ipotesi che Lappartiene a NP, il teorema, ci indica una condizione **necessaria e sufficiente** per poter affermare che $x \in L$: per ogni $x \in \Sigma^*$, $x \in L \leftrightarrow ...$ ecc. ecc.
- Cerchiamo, ora, di capire qual è questa condizione!
- a) $\exists y_x \in \{0,1\}^*$:
- \rightarrow b) $|y_x| \leq |x|^k$
- \rightarrow c) \land T(x, y_x) accetta

- ci dice che, per poter affermare che x ∈ L, dobbiamo trovare una parola da associare ad x ...
 - ... che non sia troppo lunga ...
 - ... e che induca una certa macchina deterministica T ad accettare...
- d) \wedge dtime(T, x, y_x) \in O(|x|^h) ... e ad accettare in tempi brevi!
 - MA CHI È QUESTA CERTA MACCHINA DETERMINISTICA T????

"Se avessi un piccolo aiuto"

- **Teorema 9.1**: Un linguaggio L ⊆ Σ^* appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime $(T,x,y_x) \in O(|x|^h)$.
- Se partiamo dall'ipotesi che appartiene ad NP, il teorema, ci indica una condizione necessaria e sufficiente per poter affermare che $x \in L$: per ogni $x \in \Sigma^*$, $x \in L \leftrightarrow ...$ ecc. ecc.
- Meglio: il teorema ci dice che se L ∈ NP allora esiste una macchina deterministica T tale che,
 - se le do in input due parole x e y, con y scelta da me e non troppo lunga,
 - T(x,y), in tempo polinomiale in |x|, accetta se e soltanto se $x \in L$ e io ho scelto la y giusta
 - perché, mi dice il teorema, una parola y_x che possa convincere T ad accettare riesco a trovarla se x ∈ L, ma non riesco a trovarla se x ∉ L
- ightharpoonup Allora, se trovo qualcuno in grado di suggerirmi, per ogni $x \in L$, la parola y_x giusta
- io le parole di L riesco ad accettarle in tempo deterministico polinomiale!

Il ritorno del Genio

- **Teorema 9.1:** Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - \blacksquare $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime $(T,x,y_x) \in O(|x|^h)$.
- Mi dice il teorema che, se L ∈ NP, se trovo qualcuno in grado di suggerirmi, per ogni x ∈ L, la parola y_x giusta, io le parole di L riesco ad accettarle in tempo deterministico polinomiale!
- Ma, a pensarci bene, questo già lo sapevamo...
- Se al Genio, invece di chiedere una quintupla alla volta, chiedo: "Ehilà, Genio! Ho questa parola x che potrebbe appartenere ad un linguaggio L ∈ NP che è accettato da una macchina non deterministica NT; mi dici la sequenza di quintuple di NT che costituiscono una computazione accettante di NT(x)?"
- quello, il Genio, mi comunica una certa parola chiamiamola yx
 - che descrive la sequenza di quintuple che egli afferma costituire una computazione accettante di NT(x)
- Ma, io, del Genio mica mi fido! Devo verificare che mi abbia detto la verità ...

Un Genio con i suoi limiti

- **Teorema 9.1:** Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ▶ $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime $(T,x,y_x) \in O(|x|^h)$.
- Se al Genio, invece di chiedere una quintupla alla volta, chiedo: "mi dici la sequenza di quintuple di NT che costituiscono una computazione accettante di NT(x)?"
- quello, il Genio, mi comunica una certa parola chiamiamola yx
- Ma, io, del Genio mica mi fido! Devo verificare che mi abbia detto la verità
 - devo verificare, innanzi tutto, che y_x sia una sequenza di quintuple di NT
 - poi che y_x sia una sequenza di quintuple che NT può eseguire su input x ossia, che corrisponda ad una computazione deterministica di NT(x)
 - infine, devo verificare che y_x corrisponda ad una computazione accettante.
 - Se tutte e tre le prove hanno esito positivo, allora posso concludere che x ∈ L
 - il Genio mi ha detto la verità!
- Che seccatura questa verifica, però!

Dalla verifica al verificatore

- **Teorema 9.1**: Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ► $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$.
- Quasi quasi, costruisco una macchina deterministica T che esegua la verifica al posto mio!
 - E, poiché T mi serve a far verifiche, la chiamo verificatore
- \blacksquare E quanto impiega T(x, y_x) ad eseguire la verifica?
 - innanzi tutto, poiché L ∈ NP, se x ∈ L allora esiste una computazione deterministica accettante di NT lunga |x|^k passi - dove ntime(NT,z) ≤ |z|^k per ogni z ∈ L
 - perciò, $|y_x| \le |x|^k$ (in realtà $O(|x|^k)$, ma facciamola facile...)
 - **per verificare** che y_x sia una sequenza di quintuple di NT, T impiega $O(|y_x|)$ passi
 - per verificare che y_x corrisponda ad una computazione accettante di NT(x), T deve simulare l'esecuzione delle quintuple descritte in y_x (un po' come farebbe la macchina universale!) e, dunque, simula $|x|^k$ passi di NT e impiega $O(|x|^k \cdot |y_x|) \subseteq O(|x|^{2k})$ passi
- Ossia, T impiega tempo polinomiale in |x| per verificare che il genio mi ha detto la verità

Una caratterizzazione ... geniale

- **Teorema 9.1**: Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ▶ $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime $(T,x,y_x) \in O(|x|^h)$.
- Ricapitoliamo:
- se L \in NP e, quindi, è accettato da una macchina non deterministica NT tale che, per ogni x \in L, ntime(NT,x) \leq $|x|^k$
- se ho un Genio in grado di suggerirmi, per ogni $x \in L$, la parola y_x che corrisponde ad una computazione accettante di NT(x),
- allora posso costruire un verificatore deterministico T tale che,
 - se do in input a T una parola x e la parola y_x che mi ha suggerito il Genio,
 - T(x,yx) accetta se e solo se x \in L e il Genio mi ha comunicato la parola yx corretta
 - e lo fa in tempo polinomiale in |x|
- **ATTENZIONE**: Tè in grado di verificare che il Genio non ha mentito solo se $x \in L!$

Una caratterizzazione ... geniale

- **Teorema 9.1**: Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ► $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$.
- Se L \in NP e, quindi, è accettato da una macchina non deterministica NT tale che, per ogni $x \in L$, $ntime(NT,x) \le |x|^k$
- **se** ho un Genio in grado di suggerirmi, per ogni $x \in L$, la parola y_x che corrisponde ad una computazione accettante di NT(x),
- allora posso costruire un verificatore deterministico T che, per ogni x ∈ L, accetta (x,yx) solo se il Genio non ha mentito
- <u>ATTENZIONE</u>: T è in grado di verificare che il Genio non ha mentito solo se x ∈ L!
- Se x ∉ L, non c'è verso: il povero Genio una parola che corrisponda ad una computazione accettante di NT(x) non può trovarla!
- Ma, per come abbiamo costruito T,
 se x ∉ L, qualunque parola y ci venga indicata dal Genio, T(x,y) rigetta

- **Teorema 9.1**: Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ▶ $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$.
- Ri-Ri-capitoliamo
- Se L \in NP e, quindi, è accettato da una macchina non deterministica NT tale che, per ogni $x \in L$, $ntime(NT,x) \le |x|^k$
- allora posso costruire un **verificatore deterministico T** che prende due input: per ogni $x \in \Sigma^*$, accetta (x, y_x) se e solo se y_x è la codifica di una computazione accettante di NT(x)
- Quindi: se $x \in L$ allora esiste una parola y_x tale che $T(x,y_x)$ accetta
- Ma se $x \notin L$ non esiste alcuna parola y tale che T(x,y) accetta
- Infine, siccome per ogni $x \in L$, $ntime(NT,x) \le |x|^k$, allora posso fare in modo che, per ogni $x \in L$ e per ogni y tale che $|y| \le |x|^k$, $dtime(T,x,y) \le |x|^{hk}$

- **Teorema 9.1**: Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ▶ $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$.
- E così, ridendo e scherzando

... e giocando col Genio

- abbiamo seriamente dimostrato la prima parte del teorema:
- se L ∈ NP allora esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che, per ogni x ∈ Σ*,

 $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime $(T,x,y_x) \in O(|x|^h)$.

- e questa parte la trovate (più formalizzata) alle pag. 8 e 9 (fino al riga 11) della dispensa 6
- Prima di passare alla dimostrazione della seconda parte, una paio di questioncine...

Un paio di precisazioni

- Prima di passare alla dimostrazione della seconda parte, paio di questioncine:
- 1) Intanto, nell'enunciato del teorema si parla dell'esistenza di una " $y_x \in \{0,1\}^*$ ", ma la y_x che abbiamo tirato fuori nella dimostrazione mica è una parola in $\{0,1\}^*$
 - ma questa cosa la sappiamo gestire: abbiamo parlato un sacco di volte di codifiche (binarie)!
 - e di come trasformare una macchina di Turing definita su un alfabeto generico in una macchina di Turing definita sull'alfabeto {0,1}
 - e in modo tale che le due macchine siano polinomialmente correlate
 - ed è quello che si dice alle righe 12-18 a pag. 9
- 2) Poi, in effetti, quel che chiediamo al Genio è: "x appartiene ad L?"
- \blacksquare E, se x \in L, il Genio risponde: "sì!".
- Ma noi non gli crediamo... E, allora, il poverino, per dimostrarci che ha detto il vero, ci comunica la parola yx – che poi noi verifichiamo
- Per questo, se $x \in L$, y_x prende il nome di dimostrazione o di certificato per x

- **Teorema 9.1**: Un linguaggio $L \subseteq \Sigma^*$ appartiene ad NP se e soltanto se
 - esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - ▶ $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$.
- Dobbiamo dimostrare la seconda parte del teorema:
- dato un linguaggio L
 - se esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - \blacksquare $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$
- dobbiamo dimostrare che L ∈ NP
 - ossia, dobbiamo dimostrare che esistono una macchina di Turing non deterministica NT e un intero a tale che
 - per ogni $x \in L$, NT(x) accetta e ntime(NT,x) $\in O(|x|^{\alpha})$
 - per ogni x ∉ L, NT(x) non accetta

- Dato un linguaggio L, sappiamo che
 - \blacksquare esistono una macchina di Turing deterministica T e due costanti h,k $\in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - $\blacksquare x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime $(T,x,y_x) \in O(|x|^h)$
- dobbiamo dimostrare che esistono una macchina di Turing non deterministica NT e un intero a tale che, per ogni $x \in L$, NT(x) accetta e ntime(NT,x) \in O($|x|^{\alpha}$)
- E come facciamo a dimostrare che esistono NT e a?
 - 1) costruiamo NT
 - sfruttando quello che sappiamo sulle parole in L e usando T
 - 2) dimostriamo che NT accetta L
 - 3) dimostriamo che, sulle parole di L, NT opera in tempo polinomiale
- Ed è più semplice di quanto si possa pensare!

- 1) costruiamo NT
 - sfruttando quello che sappiamo sulle parole in L e usando T
- Cosa sappiamo sulle parole di L?
 - ▶ $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x, y_x)$ accetta \land dtime $(T, x, y_x) \in O(|x|^h)$
 - dove T, h e k li conosciamo
 - infatti, le nostre ipotesi sono: "dato L, esistono una macchina di Turing deterministica T e due costanti h,k ∈ N tali che ..."
- Allora, costruiamo una macchina NT che opera in due fasi: con input x
 - FASE 1: NT sceglie non deterministicamente una parola binaria y di lunghezza $|y| \le |x|^k$
 - ► FASE 2: NT invoca T(x,y) e, se T(x,y) accetta entro $O(|x|^h)$ passi allora NT accetta
- Vediamo, ora, in dettaglio le due fasi

- 1) costruiamo NT sfruttando quello che sappiamo sulle parole in L e usando T
- NT opera in due fasi: con input x
 - FASE 1: NT sceglie non deterministicamente una parola binaria y di lunghezza $|y| \le |x|^k$
 - ► FASE 2: NT invoca T(x,y) e, se T(x,y) accetta entro $O(|x|^h)$ passi allora NT accetta
- OSSERVAZIONE: $f(n)=n^k$ è una funzione time-constructible sia T_f il trasduttore che la calcola, in unario, con dtime $(T_f, n) \in O(n^k)$
- Vediamo, ora, in dettaglio la FASE 1: con (ricordiamo) input x

```
\begin{split} B \leftarrow T_f(\mid x \mid); & \text{calcola la lunghezza della parola che deve scegliere} \\ i \leftarrow 1; & \text{while (} i \leq B \text{ ) do begin} \\ & \text{scegli } y[\text{ i ] nell'insieme } \{0,1\}; \\ & \text{ } i \leftarrow i+1; \\ \text{end} \\ & y \leftarrow y[1]y[2] \dots y[B]; \end{split}
```

- 1) costruiamo NT sfruttando quello che sappiamo sulle parole in L e usando T
- NT opera in due fasi: con input x
 - FASE 1: NT sceglie non deterministicamente una parola binaria y di lunghezza $|y| \le |x|^k$
 - ► FASE 2: NT invoca T(x,y) e, se T(x,y) accetta entro $O(|x|^h)$ passi allora NT accetta
- Assumiamo che, se $x \in L$, T accetti entro $c|x|^h \in O(|x|^h)$ passi anche $g(n) = c n^h$ è una funzione time-constructible sia T_g il trasduttore che la calcola, in unario, con dtime $(T_a, n) \in O(c n^h)$
- Vediamo, ora, in dettaglio la FASE 2: con input x e y

```
    A ← T<sub>g</sub>(|x|); calcola la lunghezza della computazione che deve simulare i ← 1;
    while (i ≤ A) do begin simula l'esecuzione della i-esima istruzione eseguita da T(x,y); if (T è entrata in q<sub>A</sub>) then accetta e termina; else i ← i+1;
    end
```

- 2) dimostriamo che NT accetta L
- Sappiamo che $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime(T, x, y_x) $\in O(|x|^h)$
- Se $x \in L$ allora esiste $y_x \in \{0,1\}^* : |y_x| \le |x|^k \wedge T(x, y_x)$ accetta
 - allora, esiste una sequenza di scelte nella FASE 1 che genera proprio yx
 - \rightarrow allora, nella FASE 2, T(x, y_x) accetta entro c $|x|^h$ passi
 - allora, anche la computazione deterministica di NT(x) corrispondente alla sequenza di scelte che ha generato y_x accetta
- **Questo dimostra che, se x \in L, allora NT(x) accetta**
- Se $x \notin L$ allora non esiste alcuna $y_x \in \{0,1\}^* : |y_x| \le |x|^k$ $\land T(x, y_x)$ accetta
 - allora, qualunque sia la sequenza di scelte nella FASE 1 per generare una parola y
 - nella FASE 2, T(x, y) non accetta
 - questo significa che nessuna computazione deterministica di NT(x) (corrispondente ciascuna ad una diversa sequenza di scelte nella FASE 1) accetta
- ightharpoonup Questo dimostra che, se x \notin L, allora NT(x) non accetta

- 3) dimostriamo che, sulle parole di L, NT opera in tempo polinomiale
- FASE 1: $B \leftarrow T_f(|x|)$; calcola la lunghezza della parola che deve scegliere $i \leftarrow 1$; while $(i \leq B)$ do begin scegli y[i] nell'insieme $\{0,1\}$; $i \leftarrow i+1$; end $y \leftarrow y[1]y[2] \dots y[B]$;
- \rightarrow calcolare B richiede O($|x|^k$) passi come già osservato
- il ciclo while esegue |x|^k iterazioni, in ciascuna delle quali
 - sceglie un valore in un insieme di dimensione costante e, quindi, impiega un numero costante di operazioni
 - incrementa di 1 una variabile e possiamo assumere che questo abbia costo costante
 - anche se non è proprio così
- quindi, complessivamente, il ciclo while esegue O(B) = O($|x|^k$) operazioni
- e la FASE 1 termina in $O(|x|^k)$ operazioni

- 3) dimostriamo che, sulle parole di L, NT opera in tempo polinomiale
- FASE 2: A ← T_g(|x|); calcola la lunghezza della computazione che deve simulare i ← 1;
 while (i ≤ A) do begin simula l'esecuzione della i-esima istruzione eseguita da T(x,y); if (T è entrata in q_A) then accetta e termina; else i ← i+1;
 end
- calcolare A richiede O(|x|h) passi come già osservato
- il ciclo while esegue c | x | h iterazioni, in ciascuna delle quali
 - simula l'esecuzione di una istruzione della computazione T(x,y) e questo richiede un numero costante di operazioni
 - \blacksquare confronta lo stato in cui è entrata T con q_A e questo ha costo costante
 - e, se non è q_A, incrementa di 1 una variabile e possiamo assumere che questo abbia costo costante
- quindi, complessivamente, il ciclo while esegue O(|x|^h) operazioni
- ightharpoonup e la FASE 2 termina in $O(|x|^h)$ operazioni

- Riassumendo:
- Partendo dall'ipotesi
 - ightharpoonup esistono una macchina di Turing deterministica T e due costanti $h,k \in \mathbb{N}$ tali che,
 - ightharpoonup per ogni $x \in \Sigma^*$,
 - lacktriangledown $x \in L \leftrightarrow \exists y_x \in \{0,1\}^* : |y_x| \le |x|^k \land T(x,y_x)$ accetta \land dtime(T, x, y_x) \in O(|x|^h)
- abbiamo costruito una macchina NT
 - che accetta L
 - tale che, per ogni $x \in L$, ntime(NT, x) $\in O(|x|^k + |x|^h)$
- Ossia, partendo dall'ipotesi abbiamo dimostrato che L ∈ NP
- Il teorema 9.1 è completamente dimostrato

Due definizioni equivalenti

- Il Teorema 9.1 è una caratterizzazione alternativa della classe NP
 - come stiamo ripetendo dall'inizio della lezione
- Una caratterizzazione alternativa che, a seguito della discussione che abbiamo portato avanti dimostrando il Teorema 9.1, possiamo esprimere nel modo seguente

un problema (decisionale) Γ è in NP se e soltanto se le sue istanze sì ammettono certificati verificabili in tempo polinomiale

- Ma che significa caratterizzazione alternativa?
- Significa che possiamo dimostrare che un problema (decisionale) Γ è in NP in due modi differenti
- MODO 1) progettiamo un algoritmo non deterministico che accetta Γ e dimostriamo che quell'algoritmo accetta le istanze sì di Γ in tempo polinomiale
- MODO 2) dimostriamo che le istanze sì di Γ ammettono certificati di lunghezza polinomiale nella loro dimensione, e che quei certificati sono verificabili in tempo polinomiale

Come si usa la caratterizzazione alternativa

- Lo abbiamo già visto! Nel primo lucido di questa lezione ...
- Ogni problema
 - il cui predicato ha la forma $\pi(x, S(x)) = esiste y \in S(x)$ tale che $\eta(x,y)$
 - in cui la lunghezza di un elemento y di S(x) è polinomiale in |x|
 - in cui la verifica che y soddisfi il predicato η, richiede tempo deterministico polinomiale in |x|
- appartiene ad NP
- Utilizzando la notazione che abbiamo imparato in questa lezione, un elemento y di S(x) è un certificato per l'istanza x del problema
- e dire che sceglierlo richiede tempo non deterministico polinomiale in |x| è
 equivalente a dire che ha lunghezza polinomiale in |x|
 - infatti, ricordate la FASE 1 della macchina NT che decide un linguaggio che soddisfa le ipotesi del Teorema 9,1 (lucido 18):
 - dobbiamo scegliere non deterministicamente ciascuno dei suoi bit
 - e se il loro numero fosse più che polinomiale in |x| non ce la faremmo in tempo polinomiale!

Come si usa la caratterizzazione alternativa

- Ogni problema
 - il cui predicato ha la forma $\pi(x, S(x)) = esiste y \in S(x)$ tale che $\eta(x,y)$
 - in cui la lunghezza di un elemento y di S(x) è polinomiale in [x]
 - in cui la verifica che y soddisfi il predicato η, richiede tempo deterministico polinomiale in |x|
- appartiene ad NP
- <u>ATTENZIONE</u>: è fondamentale che la verifica che il certificato soddisfi il predicato η, richieda tempo deterministico polinomiale in |x|
- se questo non è vero, non possiamo affermare che il problema appartenga ad NP!!!
- E, se non controllate che questa seconda condizione sia soddisfatta, potete incorrere in errori clamorosi!
 - come andiamo ad illustrare ...

ATTENZIONE!!!

- Consideriamo il seguente problema che assomiglia a SAT
- dati due insiemi X₁ e X₂ di variabili booleane ed un predicato f, in forma congiuntiva normale, definito sulle variabili in X₁ U X₂, decidere se esiste una assegnazione a₁ di valori in {vero, falso} alle variabili in X₁ tale che per ogni assegnazione a₂ di valori in {vero, falso} alle variabili in X₂, risulti f(a₁(X₁),a₂(X₂))=vero
- Questo problema prende il nome di 2QBF, ed è così formalizzato:
 - $\mathfrak{Z}_{2QBF} = \{ \langle X_1, X_2, f \rangle : X_1 \cup X_2 \text{ è un insieme di variabili booleane}$ $\land f \text{ e un predicato in CNF su } X_1 \cup X_2 \}$
 - **S**_{20BF}(X_1, X_2, f) = { $a_1: X_1 \rightarrow \{\text{vero, falso}\}\}$
 - π_{2QBF} (X₁, X₂, f, S_{3SAT} (X₁, X₂, f))= ∃ α₁ ∈ $S(X_1, X_2, f)$: \forall α₂: X₂ → {vero, falso} [f(α₁(X₁), α₂(X₂)) = vero]
- Un certificato per una istanza (X₁, X₂, f) è una assegnazione di verità a₁ per le variabili in X₁ ed ha lunghezza |X₁|
 - tranquillamente polinomiale in | ⟨ X₁, X₂, f ⟩ | !
- Allora, possiamo concludere che 2QBF appartiene ad NP?

ATTENZIONE!!!

- Il problema 2QBF è così formalizzato:
 - $\mathfrak{F}_{2QBF} = \{ \langle X_1, X_2, f \rangle : X_1 \cup X_2 \text{ è un insieme di variabili booleane}$ $\land f \text{ e un predicato su } X_1 \cup X_2 \}$
 - **S**_{20BF}(X_1, X_2, f) = { $a_1: X_1 \rightarrow \{\text{vero, falso}\}\}$
 - π_{2QBF} (X₁, X₂, f, \mathbf{S}_{3SAT} (X₁, X₂, f))= ∃ α ∈ \mathbf{S} (X₁, X₂, f) : ∀ α₂: X₂ → {vero, falso} [f(α₁(X₁), α₂(X₂)) = vero]
- Un certificato per una istanza $\langle X_1, X_2, f \rangle$ è una assegnazione di verità a_1 per le variabili in X_1 ed ha lunghezza polinomiale in $|\langle X_1, X_2, f \rangle|$
- Allora, possiamo concludere che 2QBF appartiene ad NP?
- COL CAVOLO!
- In questo caso, il predicato η è: \forall α_2 : $X_2 \rightarrow \{vero, falso\}$ [$f(\alpha_1(X_1), \alpha_2(X_2)) = vero$]
- Quindi, verificare che una assegnazione di verità a₁ per le variabili in X₁ soddisfi η significa verificare che, comunque scegliamo a₂: X₂ → {vero, falso}, risulta f(a₁(X₁), a₂(X₂)) = vero
- E il numero di assegnazioni di verità a_2 alle variabili in X_2 è $2^{\mid X_2\mid}$
- **Col cavolo** che riusciamo a verificare η in tempo polinomiale in $|\langle X_1, X_2, f \rangle|$!