▼ Name : Vasu Kalariya

Roll: PE29

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

ds = pd.read_csv('credit.csv')
ds.head()
```

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	ONEOFF_PURCHASES_FREQUENCY	PURCHASES_INSTALLMENTS_FREQUENCY	
0	C10001	40.900749	0.818182	95.40	0.00	95.4	0.000000	0.166667	0.000000	0.083333	
1	C10002	3202.467416	0.909091	0.00	0.00	0.0	6442.945483	0.000000	0.000000	0.000000	
2	C10003	2495.148862	1.000000	773.17	773.17	0.0	0.000000	1.000000	1.000000	0.000000	
3	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	205.788017	0.083333	0.083333	0.000000	
4	C10005	817.714335	1.000000	16.00	16.00	0.0	0.000000	0.083333	0.083333	0.000000	

ds.isnull().sum()

```
CUST_ID
BALANCE
BALANCE_FREQUENCY
PURCHASES
ONEOFF_PURCHASES
INSTALLMENTS_PURCHASES
CASH ADVANCE
PURCHASES_FREQUENCY
ONEOFF_PURCHASES_FREQUENCY
PURCHASES_INSTALLMENTS_FREQUENCY
CASH_ADVANCE_FREQUENCY
CASH_ADVANCE_TRX
PURCHASES_TRX
CREDIT_LIMIT
PAYMENTS
                                     0
                                   313
MINIMUM_PAYMENTS
PRC_FULL_PAYMENT
                                     0
TENURE
                                     0
dtype: int64
```

X = ds.loc[:,["CREDIT_LIMIT","MINIMUM_PAYMENTS"]].values
print(X)

```
[[1000.
                    139.509787]
      [7000.
                   1072.340217]
      [7500.
                    627.284787]
      [1000.
                     82.418369]
                     55.755628]
       <sup>500</sup>.
      [1200.
                     88.288956]]
from sklearn.impute import SimpleImputer
si1 = SimpleImputer(missing_values=np.nan,strategy='mean')
si1.fit(X)
X = si1.transform(X)
X = pd.DataFrame(X,columns = ["CREDIT_LIMIT", "MINIMUM_PAYMENTS"])
X.head()
         CREDIT_LIMIT MINIMUM_PAYMENTS
               1000.0
     0
                             139.509787
               7000.0
                            1072.340217
     1
     2
               7500.0
                             627.284787
     3
               7500.0
                             864.206542
      4
               1200.0
                             244.791237
ds =ds.drop(['CUST_ID','CREDIT_LIMIT','MINIMUM_PAYMENTS'],axis = 1)
ds = pd.concat([ds, X], axis=1)
from sklearn.preprocessing import StandardScaler, normalize
scaler = StandardScaler()
ds = scaler.fit_transform(ds)
ds = normalize(ds)
print(ds)
     [[-0.31193826 -0.10629684 -0.1810716 ... 0.15370408 -0.40928997
       -0.13251924]
      [ 0.21992533  0.03753859 -0.13122171 ... 0.10079608  0.19244815
        0.02495877]
      [ 0.12668203  0.14678317 -0.03050449 ...  0.10218749  0.23403927
       -0.02880315]
      [-0.1569743 -0.03932355 -0.085222 ... -0.87408185 -0.20362471
       -0.07112317]
      [-0.15431961 - 0.03841074 - 0.09724043 \dots - 0.85379209 - 0.22735718
       -0.07184155]
```


ac4 = AgglomerativeClustering(n_clusters = 4)

