

21.07.2023

Part Contents

1 Suggester for Privacy-related Model Fields

Section Contents

1 Suggester for Privacy-related Model Fields Introduction

One-Class Text Classification

Introduction

- Our first use case is, given a meta-model (e.g. person.ecore) provide warnings and suggestions on fields and/or combination of fields that might constitute a privacy risk under a certain regulation (e.g. GDPR) or that have to obey to certain open data standards;
- We can see the problem as a one-class text classification problem, where our only class is the category of privacy-related terms, while all the other terms have to be identified as outliers;
- We can then train a model on a set of terms which we consider privacy-related, and then test it over some other examples.

Section Contents

1 Suggester for Privacy-related Model Fields Introduction

One-Class Text Classification

Training Set

- I built an initial training set, with all the terms I could think of and that may constitute a privacy concern, namely terms which can potentially be associated with personal information, as so, that might result in identifying an individual;
- The terms are written as I would expect to encounter them as a model field (e.g. "first name" is firstname), all in lower case and singular, to avoid useless repetitions.
- I assigned these terms a label IDENTITY, meaning that they are terms that might be associated with the identity of an individual.

Training Set

366]: # load dataset with privacy-related fields for training prf df = pd.read excel("../tests/model-driven-privacy/data/train.ods", engine="odf")

367]: prf df.head(10)

367]:		label	text
	0	IDENTITY	name
	1	IDENTITY	firstname
	2	IDENTITY	lastname
	3	IDENTITY	username
	4	IDENTITY	user
	5	IDENTITY	familyname
	6	IDENTITY	surname
	7	IDENTITY	givenname
	8	IDENTITY	secondname
	9	IDENTITY	socialsecurity

Test Set

- For testing I build another set of terms, this time containing both terms that I would expect to be suggested as privacy-related and terms that should have nothing to do with privacy-related matters;
- I also used some of the terms I put for training, but written in a slightly different manner (plural, snake_case, synonyms);
- It would be the task of the preprocessing to get rid of such minor differences and of the model itself to identify similar terms as well.

Test Set

load data set for testing
no_prf_df = pd.read_excel("../tests/model-driven-privacy/data/test.ods", engine="odf")

85]: no_prf_df.head(10)

185]:		label	text
	0	NO-RELATED	animal
	1	NO-RELATED	tree
	2	NO-RELATED	golf
	3	NO-RELATED	sport
	4	NO-RELATED	window
	5	IDENTITY	first_name
	6	IDENTITY	house
	7	IDENTITY	profile
	8	NO-RELATED	size
	9	NO-RELATED	door

Data Pre-processing

- The input text is first stripped, all the new lines and carriage return characters are removed;
- Then, if text is in snake_case, it is converted in camelCase;
- Special symbols are removed;
- The text is divided into lower case parts based on the camelCase definition (e.g. firstName □> first, name);
- ► Each part is then lemmatized (e.g. names □> name);
- The parts are then put back together to form just a single term.

Data Pre-processing

```
print(cleanText("first_name"))
print(cleanText("surnames"))
print(cleanText("workingPlace")
```

firstname surname workingplace

The Model

- Then the data has to be "vectorized", meaning from text we have to pass to a mathematical vector that the algorithm is able to understand;
- For that I used an HashingVectorizer (there are others, so more research here might be needed), which has one hyper-parameter (n_features) to set;
- ▶ I then trained a OneClassSVM model, using the scikit □learn python library, which requires other 3 hyper-parameters;
- I built a function that loops over a set of values for each hyper-parameter, and for each combination fits the model and computes the accuracy on the training set;
- I then picked the set of hyper-parameters that gave me the best accuracy.

The Model

```
def hyperParamSelection():
     bestAccuracv = 0.
     bestHyperParams = []
     for n features in range(5.25):
        vectorizer = HashingVectorizer(n features=n features)
        features = vectorizer.fit transform(train text).toarray()
        for i in range(1,10):
            nu = 0.1*i
            for j in range(1,11):
                gamma = 0.1*i
                clf = OneClassSVM(nu=nu, kernel="rbf", gamma=gamma)
                pipe clf = Pipeline([('cleanText', CleanTextTransformer()), ('vectorizer', vectorizer), ('clf', clf)])
                    pipe clf.fit(train text, train labels)
                    preds train = pipe clf.predict(train text)
                     accuracy = accuracy score(train labels, preds train)
                     if accuracy > bestAccuracy:
                        print("n features: " + str(n features) + " - nu: " + str(nu) + " - gamma: " + str(gamma) + " - acc: " + str(accuracy))
                        bestAccuracy = accuracy
                        bestHyperParams = [n features, nu, gamma]
                except:
                     print("Error with set of params [n feautres, nu, gamma]: " + str(n features) + " " + str(nu) + " " + str(gamma))
     return bestHyperParams
#Determine the optimal choice of hyperparameter
 bestHyperParams = hyperParamSelection()
 n features: 5 - nu: 0.1 - gamma: 0.1 - acc: 0.532608695652174
 n features: 5 - nu: 0.1 - gamma: 0.5 - acc: 0.75
 n features: 6 - nu: 0.2 - gamma: 0.1 - acc: 0.7608695652173914
 n features: 7 - nu: 0.1 - gamma: 0.4 - acc: 0.7717391304347826
In features: 7 - nu: 0.4 - gamma: 0.4 - acc: 0.8478260869565217
```


The Results

- After the model was trained I tested it on the test set, and compute precision and recall for both categories (privacy-related terms and non);
- Precision is computed as the ratio between the relevant retrieved instances and all the retrieved instances (e.g. how many privacy-related terms are correctly identified over the total number of terms identified as privacy-related terms);
- Recall is computed as the ratio between the relevant retrieved instances and all the relevant instances (e.g. how many privacy-related terms are correctly identified over the total number of privacy-related terms).

The Results

Category	Precision	Recall
Privacy-related terms NON privacy-related terms	0.32 1.00	1.00
TOTT PITTED TOTAL COLUMN	1.00	0.20

The Results

- All privacy-related terms are properly identified as such (recall 1.0 for that category);
- Of course, also some non-related terms are mis-identified as privacy-related;
- This is not too bad, as we just want a suggestion mechanism, so it's better that we find all the relevant ones, plus some more, than the other way around.

Further Steps

- There are some additional steps for pre-processing data that I would like to explore (e.g. stemming);
- I have not spent too much time into the different ways of vectorizing text, so it might be I am not using the fancier one for our purposes;
- The training set could probably be enriched with more terms.

Conclusion

Useful Links

OSGi Working Group

Working Group: www.osgi.org WG Blog: www.osgi.org/blog

Twitter: @osgiwg

Bndtools: bndtools.org

Data In Motion

Web: www.datainmotion.com Blog: datainmotion.com/blog

Twitter: @motion_data

Jürgen Albert

Email: j.albert@data-in-motion.biz

Mark Hoffmann

Email:

m.hoffmann@data-in-motion.biz