Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Белгородский государственный технологический университет им. В.Г. Шухова»

(БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Индивидуальное домашнее задание №1

По дисциплине: «Математический анализ»

Вариант №3

Выполнил: студент группы ВТ-231

Борченко Александр Сергеевич

Проверил:

Хлопов Андрей Михайлович

to 2 zaueraterbrowy gregery: $\lim_{x\to\infty} (1+x)^{x} = e \Rightarrow \lim_{x\to0} \lim_{x\to0} \sin 3x = 3 \lim_{x\to0} \sin 3$
(4) $\lim_{x\to 0} 3x^2 - 5x = \lim_{x\to 0} 3x^2 - 5x = 3x \cdot \sin 3x$
$= \frac{3x-5!}{3} = \frac{3\cdot0.5}{3} = \frac{-5!}{3}$ $\sqrt{6} f(x) = \frac{3x}{1-x} \varphi(x) = \frac{x}{4+x}$
$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $-3 \neq 0 \Rightarrow f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3x(y+x)}{(1-x)x} = -3$
0.607: $9000000000000000000000000000000000000$

$\lim_{x \to \infty} f(x) = f(x)$
$X_1=3 \Rightarrow \lim_{X\to 3} \frac{x+5}{x-3} = \frac{2}{6} = \infty$, B to the $x_1=3$ county us the entrepresenta $\Rightarrow f(3)$ the scalaries theorems.
\Rightarrow f(3) the subsect then perturbed $x_2 = 4 \Rightarrow \lim_{x \to 4} \frac{x+5}{x-3} = 9$
B toure $x_2=4$ f(4) Ibiseros herrepublica Other: B toure $x_1=3$ opyrkuluse the shisters temperubnosis. B toure $x_2=4$ opyrkuluse Ibiseros temperubnosis
$f(x) = \begin{cases} 3x+4 & x \leq -4 \\ x^2-2 & -1 < x < 2 \\ x & x \geq 2 \end{cases}$
Demenue: Demenue: Demenue: Demenue: Demenue: Bornare: Bornare: Demenue: Bornare: Bornar
$\lim_{x \to -1+0} f(x) = \lim_{x \to -1-0} 3 \cdot (-1-0) + 4 = 1$ $\lim_{x \to -1+0} f(x) = 3 \cdot (-1+0) + 4 = 1$
Tregen robbit, confunción no rabbioliny orrabion a curation.

