We call the support of an r.v. X the set $X(\Omega)$. This support comes in several forms:

We call the support of an r.v. X the set $X(\Omega)$. This support comes in several forms:

• If $X(\Omega)$ is finite or infinite countable X is said to be a discrete (or discontinuous) random variable, denoted d.r.v.

We call the support of an r.v. X the set $X(\Omega)$. This support comes in several forms:

- If X (Ω) is finite or infinite countable X is said to be a discrete (or discontinuous) random variable, denoted d.r.v.
- If $X(\Omega)$ is infinite uncountable X is said to be a continuous random variable, denoted c.r.v.

We call the support of an r.v. X the set $X(\Omega)$. This support comes in several forms:

- If X (Ω) is finite or infinite countable X is said to be a discrete (or discontinuous) random variable, denoted d.r.v.
- If X (Ω) is infinite uncountable X is said to be a continuous random variable, denoted c.r.v.
 Moreover a c.r.v. is said to be absolutely continuous if it admits a continuous and derivable distribution function (except possibly at some points).

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Notation: When the r.v. X takes the value x we write $\{X=x\}$ to describe the event $\{\omega\in\Omega,X\left(\omega\right)=x\}$.

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Notation: When the r.v. X takes the value x we write $\{X=x\}$ to describe the event $\{\omega\in\Omega,X\left(\omega\right)=x\}$.

Example

In the example of tossing a coin twice X = 0

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Notation: When the r.v. X takes the value x we write $\{X=x\}$ to describe the event $\{\omega \in \Omega, X(\omega)=x\}$.

Example

In the example of tossing a coin twice X=0 correspond to the case where there is no tail P, this means that $\{X=0\}=\{FF\}$.

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Notation: When the r.v. X takes the value x we write $\{X=x\}$ to describe the event $\{\omega \in \Omega, X(\omega)=x\}$.

Example

In the example of tossing a coin twice X=0 correspond to the case where there is no tail P, this means that $\{X=0\}=\{FF\}$. In the same way we have $\{X=1\}=\{PF,FP\}$

Definition

The random variable X is said to be discrete if it takes a finite or infinite countable number of values.

Notation: When the r.v. X takes the value x we write $\{X=x\}$ to describe the event $\{\omega \in \Omega, X(\omega)=x\}$.

Example

In the example of tossing a coin twice X=0 correspond to the case where there is no tail P, this means that $\{X=0\}=\{FF\}$. In the same way we have $\{X=1\}=\{PF,FP\}$ and $\{X=2\}=\{PP\}$.

Probability distribution of a discrete random variable

Probability distribution of a discrete random variable

Definition

Let X be a d.r.v. one calls probability distribution or mass function of the r.v. X the application

$$p : \mathbb{R} \longrightarrow [0, 1]$$

$$x \longmapsto p(x) = \mathbb{P}(X = x).$$

Probability distribution of a discrete random variable

Definition

Let X be a d.r.v. one calls probability distribution or mass function of the r.v. X the application

$$p : \mathbb{R} \longrightarrow [0, 1]$$

$$x \longmapsto p(x) = \mathbb{P}(X = x).$$

Properties:

Probability distribution of a discrete random variable

Definition

Let X be a d.r.v. one calls probability distribution or mass function of the r.v. X the application

$$\rho : \mathbb{R} \longrightarrow [0,1]$$
$$x \longmapsto \rho(x) = \mathbb{P}(X = x).$$

Properties:

1.
$$\forall x \in \mathbb{R}, p(x) \geq 0$$
;

Probability distribution of a discrete random variable

Definition

Let X be a d.r.v. one calls probability distribution or mass function of the r.v. X the application

$$\rho : \mathbb{R} \longrightarrow [0,1]$$
$$x \longmapsto \rho(x) = \mathbb{P}(X = x).$$

Properties:

- $\mathbf{1.}\forall x \in \mathbb{R}, p(x) \geq 0;$
- **2.** $\sum_{x \in \mathbb{R}} p(x) = 1$.

Example. When we throw a coin twice, we have

Example. When we throw a coin twice, we have $p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{FF\}) = \frac{1}{4}$;

Example. When we throw a coin twice, we have $p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{FF\}) = \frac{1}{4}$; $p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{PF, FP\}) = \frac{2}{4} = \frac{1}{2}$;

Example. When we throw a coin twice, we have $p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{FF\}) = \frac{1}{4}$; $p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{PF, FP\}) = \frac{2}{4} = \frac{1}{2}$; $p(2) = \mathbb{P}(X = 2) = \mathbb{P}(\{PP\}) = \frac{1}{4}$.

Example. When we throw a coin twice, we have $p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{FF\}) = \frac{1}{4}$; $p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{PF, FP\}) = \frac{2}{4} = \frac{1}{2}$; $p(2) = \mathbb{P}(X = 2) = \mathbb{P}(\{PP\}) = \frac{1}{4}$. The distribution is usually written in the following form

Example. When we throw a coin twice, we

have
$$p(0) = \mathbb{P}(X = 0) = \mathbb{P}(\{FF\}) = \frac{1}{4}$$
; $p(1) = \mathbb{P}(X = 1) = \mathbb{P}(\{PF, FP\}) = \frac{2}{4} = \frac{1}{2}$; $p(2) = \mathbb{P}(X = 2) = \mathbb{P}(\{PP\}) = \frac{1}{4}$.

The distribution is usually written in the following form

X	0	1	2	$\sum_{x=0}^{x=2} p(x)$
$\mathbb{P}\left(X=x\right)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

Cumulative distribution function

1. If X is a discrete r.v. then

$$F_X(x) = \sum_{x_i \le x} \mathbb{P}(X = x_i) = \sum_{x_i \le x} p(x_i).$$

Cumulative distribution function

1. If X is a discrete r.v. then

$$F_X(x) = \sum_{x_i \le x} \mathbb{P}(X = x_i) = \sum_{x_i \le x} p(x_i).$$

2. The cumulative distribution function allows to determine the probability law of the r.v. X.

Cumulative distribution function

1. If X is a discrete r.v. then

$$F_X(x) = \sum_{x_i \leq x} \mathbb{P}(X = x_i) = \sum_{x_i \leq x} p(x_i).$$

2. The cumulative distribution function allows to determine the probability law of the r.v. X. Indeed, $\forall x_i \in X (\Omega)$

$$\mathbb{P}(X = x_{j}) = \sum_{i=1}^{j} \mathbb{P}(X \le x_{i}) - \sum_{i=1}^{j-1} \mathbb{P}(X \le x_{i}) = F_{X}(x_{j}) - F_{X}(x_{j-1}).$$

Example

We throw 3 dice and define the r.v. X as the number of 6 obtained.

Example

We throw 3 dice and define the r.v. X as the number of 6 obtained.

The probability law of X is

Example

We throw 3 dice and define the r.v. X as the number of 6 obtained.

The probability law of X is

X	0	1	2	3	$\sum_{x=0}^{x=2} p(x)$
$\mathbb{P}\left(X=x\right)$	$\frac{5^3}{6^3}$	$\frac{3.5^2}{6^3}$	$\frac{3.5}{6^3}$	$\frac{1}{6^3}$	1

Example

We throw 3 dice and define the r.v. X as the number of 6 obtained.

The probability law of X is

X	0	1	2	3	$\sum_{x=0}^{x=2} p(x)$
$\mathbb{P}\left(X=x\right)$	$\frac{5^3}{6^3}$	$\frac{3.5^2}{6^3}$	$\frac{3.5}{6^3}$	$\frac{1}{6^3}$	1

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{125}{216} & \text{if } 0 \le x < 1\\ \frac{200}{216} & \text{if } 1 \le x < 2\\ \frac{215}{216} & \text{if } 2 \le x < 3\\ 1 & \text{if } 3 \le x \end{cases}$$

Definition

A real random variable X is said to be absolutely continuous if its cumulative distribution function $F_X(\cdot)$ satisfy the two following conditions:

Definition

A real random variable X is said to be absolutely continuous if its cumulative distribution function $F_X(\cdot)$ satisfy the two following conditions:

1. F_X is continuous on \mathbb{R} ;

Definition

A real random variable X is said to be absolutely continuous if its cumulative distribution function $F_X(\cdot)$ satisfy the two following conditions:

- 1. F_X is continuous on \mathbb{R} ;
- 2. F_X is derivable in every point $x \in \mathbb{R}$ except perhaps on a finite set D.

Theorem

Theorem

1.
$$\mathbb{P}(X = a) = 0$$
.

Theorem

- 1. $\mathbb{P}(X = a) = 0$.
- 2. $\mathbb{P}(X \in]a, b]) = \mathbb{P}(X \in]a, b[) = \mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b]) = F_X(b) F_X(a)$.

Theorem

- 1. $\mathbb{P}(X = a) = 0$.
- 2. $\mathbb{P}(X \in]a, b]) = \mathbb{P}(X \in]a, b[) = \mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b]) = F_X(b) F_X(a)$.
- 3. $\mathbb{P}(X \in]a, \infty[) = \mathbb{P}(X \in [a, \infty[) = 1 F_X(a))$.

Theorem

- 1. $\mathbb{P}(X = a) = 0$.
- 2. $\mathbb{P}(X \in]a, b]) = \mathbb{P}(X \in]a, b[) = \mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b]) = F_X(b) F_X(a)$.
- 3. $\mathbb{P}(X \in]a, \infty[) = \mathbb{P}(X \in [a, \infty[) = 1 F_X(a))$.
- 4. $\mathbb{P}(X \in]-\infty, b]) = \mathbb{P}(X \in]-\infty, b[) = F_X(b).$

Definition

Definition

1.
$$f_X(x) \ge 0$$
; $\forall x \in \mathbb{R}$;

Definition

- 1. $f_X(x) \geq 0$; $\forall x \in \mathbb{R}$;
- 2. f_X is continuous on \mathbb{R} , except perhaps on a finite number of points where it has a finite left limit and finite right limit.

Definition

- 1. $f_X(x) \geq 0$; $\forall x \in \mathbb{R}$;
- 2. f_X is continuous on \mathbb{R} , except perhaps on a finite number of points where it has a finite left limit and finite right limit.
- 3. The integral $\int_{-\infty}^{+\infty} f_X(x) dx$ exists and is equal to 1.

Definition

- 1. $f_X(x) \geq 0$; $\forall x \in \mathbb{R}$;
- 2. f_X is continuous on \mathbb{R} , except perhaps on a finite number of points where it has a finite left limit and finite right limit.
- 3. The integral $\int_{-\infty}^{+\infty} f_X(x) dx$ exists and is equal to 1.
- 4. The cumulative distribution function F_X can be written, for all $x \in \mathbb{R}$ in the form

$$F_X(x) = \int_{-\infty}^x f_X(s) ds.$$

Definition

A function f that satisfies the four previous conditions is called a probability density function or distribution function of an absolutely continuous random variable X.

Example

Let X be a random variable with cumulative distribution function F_X given by

$$F_X\left(x\right) = \left\{ \begin{array}{ll} 0 & \text{if } x < 0 \\ 1 - \frac{1}{2}\left(x + 2\right)e^{-\frac{x}{2}} & \text{if } x \geq 0 \end{array} \right.$$

- 1. Show that the random variable X is absolutely continuous.
- 2. Find the constant C such that the function f defined by

$$f(x) = \begin{cases} Cxe^{-\frac{x}{2}} & \text{if } x \ge 0\\ 0 & \text{elsewhere} \end{cases}$$

be the probability density of the random variable X.

3. Verify that

$$F_{X}(x) = \int_{-\infty}^{x} f(s) ds.$$

Solution

1. F_X is continuous on $]-\infty$, 0[and on $]0, +\infty[$ show that it is continuous in 0. We have $\lim_{x\to 0}\left(1-\frac{1}{2}\left(x+2\right)e^{-\frac{x}{2}}\right)=0$ hence F_X is continuous in 0.

 F_X is derivable on $]-\infty,0[$ and on $]0,+\infty[$ show that it is derivable in 0. We have $\lim_{x\to 0}\left(\frac{F_X(x)-F_X(0)}{x}\right)=0$

 F_X is derivable on \mathbb{R} , hence X is an absolutely continuous variable.

Solution

2. To show that f is a density function we determine first the constant C using the condition 3 of the definition i.e. $\int_{-\infty}^{+\infty} f(x) \, dx = 1$, then we verify the other conditions. We have

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{+\infty} Cx e^{-\frac{x}{2}} dx = C \left(\left[-2x e^{-\frac{x}{2}} \right]_{0}^{\infty} + 2 \int_{0}^{+\infty} e^{-\frac{x}{2}} dx \right)$$
$$= C \left[-4e^{-\frac{x}{2}} \right]_{0}^{\infty} = 4C = 1.$$

hence $C = \frac{1}{4}$ and

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{x}{4}e^{-\frac{x}{2}} & \text{if } x \ge 0 \end{cases}$$

We have $f_X(x) \ge 0$; $\forall x \in \mathbb{R}$.

It is a continuous fuction in 0 and then continuous on \mathbb{R} .

Then f is a probability density function of the random variable X

Solution

3. If x < 0, $\int_{-\infty}^{x} f(s) ds = 0$ since on $]-\infty, 0[$, $F_X(x) = 0$ If $x \ge 0$,

$$\begin{split} \int_{-\infty}^{x} f(s) \, ds &= \int_{-\infty}^{0} f(s) \, ds + \int_{0}^{x} f(s) \, ds = 0 + \int_{0}^{x} \frac{s}{4} e^{-\frac{s}{2}} ds \\ &= \frac{1}{4} \left(\left[-2se^{-\frac{s}{2}} \right]_{0}^{x} + 2 \int_{0}^{x} e^{-\frac{s}{2}} ds \right) \\ &= \frac{1}{4} \left(-2xe^{-\frac{x}{2}} - 4 \left[e^{-\frac{s}{2}} \right]_{0}^{x} \right) \\ &= \frac{1}{4} \left(-2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + 4 \right) = 1 - \frac{1}{2} (x+2) e^{-\frac{x}{2}} \end{split}$$

hence $F_X(x) = \int_{-\infty}^x f(s) ds$.

Definition

Let X be a d.r.v. with possible values x_1, x_2, \cdots and mass function p(x).

Definition

Let X be a d.r.v. with possible values x_1, x_2, \cdots and mass function p(x). The mathematical expectation of X is

$$\mathbb{E}\left[X\right] = \sum_{i \geq 1} x_i p\left(x_i\right) = \sum_{i \geq 1} x_i \mathbb{P}\left(X = x_i\right)$$

provided that the above serie is absolutely convergent, otherwise we will say that X does not have a mathematical expectation.

Definition

Let X be a d.r.v. with possible values x_1, x_2, \cdots and mass function p(x). The mathematical expectation of X is

$$\mathbb{E}\left[X\right] = \sum_{i \geq 1} x_i p\left(x_i\right) = \sum_{i \geq 1} x_i \mathbb{P}\left(X = x_i\right)$$

provided that the above serie is absolutely convergent, otherwise we will say that X does not have a mathematical expectation.

Remark

If X has a finite number of values then $\mathbb{E}[X]$ exists.

Definition

Let X be a c.r.v. with distribution function f,

Definition

Let X be a c.r.v. with distribution function f, the mathematical expectation of X is

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} xf\left(x\right) dx$$

provided that the above integral is absolutely convergent, otherwise we will say that X does not have a mathematical expectation.

Definition

Let X be a c.r.v. with distribution function f, the mathematical expectation of X is

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} xf\left(x\right) dx$$

provided that the above integral is absolutely convergent, otherwise we will say that X does not have a mathematical expectation.

Example

Let T be a c.r.v. with distribution function f defined by

$$f\left(t
ight) = \left\{ egin{array}{ll} rac{1}{t^2} & ext{if } t > 1 \ 0 & ext{elswhere} \end{array}
ight.$$

Determine $\mathbb{E}\left[T\right]$.

Solution: We have

Solution: We have

$$\int_{-\infty}^{+\infty} |tf(t)| dt = \int_{1}^{+\infty} \left| \frac{1}{t} \right| dt$$

$$= \lim_{x \to \infty} \int_{1}^{x} \left| \frac{1}{t} \right| dt = \lim_{x \to \infty} \log x - \log 1 = +\infty$$

hence the expectation doesn't exist.

Solution: We have

$$\int_{-\infty}^{+\infty} |tf(t)| dt = \int_{1}^{+\infty} \left| \frac{1}{t} \right| dt$$
$$= \lim_{x \to \infty} \int_{1}^{x} \left| \frac{1}{t} \right| dt = \lim_{x \to \infty} \log x - \log 1 = +\infty$$

hence the expectation doesn't exist.

Definition

Let G be a function of a random variable X, the expectation of $G\left(X\right)$ is given by

$$\mathbb{E}\left[G\left(X\right)\right] = \left\{\begin{array}{ll} \sum_{x \in \mathbb{R}} G\left(x\right) p\left(x\right) \text{ if } X \text{ is discrete} \\ \int_{-\infty}^{+\infty} G\left(x\right) f\left(x\right) dx & \text{if } X \text{ is continuous} \end{array}\right.$$

provided that the above serie and integral are absolutely convergent.

Theorem
Let X be a random variable, then

Theorem

Let X be a random variable, then

1. $\mathbb{E}[c] = c$ where c is a constant,

Theorem

Let X be a random variable, then

- 1. $\mathbb{E}[c] = c$ where c is a constant,
- 2. $\mathbb{E}\left[\alpha H(X) + \beta G(X)\right] = \alpha \mathbb{E}\left[H(X)\right] + \beta \mathbb{E}\left[G(X)\right]$ where H and G are functions of X and α , β are reals. Provided that the different expectations exist.

Theorem

Let X be a random variable, then

- 1. $\mathbb{E}[c] = c$ where c is a constant,
- 2. $\mathbb{E}\left[\alpha H(X) + \beta G(X)\right] = \alpha \mathbb{E}\left[H(X)\right] + \beta \mathbb{E}\left[G(X)\right]$ where H and G are functions of X and α , β are reals. Provided that the different expectations exist.

Definition

Let X be a random variable, we call moment of order k $(k \in \mathbb{N})$ the following value

$$\mathbb{E}\left[X^{k}\right] = \left\{\begin{array}{l} \sum_{x \in \mathbb{R}} x^{k} p\left(x\right) \text{ if } X \text{ is discrete} \\ \int_{-\infty}^{+\infty} x^{k} f\left(x\right) dx \text{ if } X \text{ is continuous} \end{array}\right.$$

provided that the above serie and integral are absolutely convergent.

Definition

Let X be a random variable, the variance of X, noted σ_X^2 or $Var\left(X\right)$ is

$$\sigma_{X}^{2} = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \mathbb{E}\left[X^{2}\right] - \mathbb{E}\left[X\right]^{2}.$$

Definition

Let X be a random variable, the variance of X, noted σ_X^2 or $Var\left(X\right)$ is

$$\sigma_X^2 = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2.$$

We call standard deviation of X the number

$$\sigma_{X}=\sqrt{\mathit{Var}\left(X\right)}.$$

Definition

Let X be a random variable, the variance of X, noted σ_X^2 or $Var\left(X\right)$ is

$$\sigma_X^2 = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2.$$

We call standard deviation of X the number

$$\sigma_X = \sqrt{Var(X)}.$$

If $\mathbb{E}[X] = 0$ we say that the random variable is centrend.

Definition

Let X be a random variable, the variance of X, noted σ_X^2 or $Var\left(X\right)$ is

$$\sigma_X^2 = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2.$$

We call standard deviation of X the number

$$\sigma_{X}=\sqrt{\mathit{Var}\left(X\right)}.$$

If $\mathbb{E}[X] = 0$ we say that the random variable is centrend. If Var(X) = 1 we say that the random variable is reduced.

Theorem

Let X be a random variable with expectation $\mathbb{E}\left[X\right]$ and variance σ_X^2 . If $Y=\mathsf{a}X+\mathsf{b}$ where a and b are real constants, then

$$\mathbb{E}\left[Y\right] = a\mathbb{E}\left[X\right] + b$$

Theorem

Let X be a random variable with expectation $\mathbb{E}\left[X\right]$ and variance σ_X^2 . If Y=aX+b where a and b are real constants, then

$$\mathbb{E}\left[Y\right] = a\mathbb{E}\left[X\right] + b \text{ and } \sigma_Y^2 = a^2\sigma_X^2.$$

Discrete uniform distribution

Definition

The r.v. X has the discrete uniform distribution on the set of real numers $\{x_1, \dots, x_n\}$

Discrete uniform distribution

Definition

The r.v. X has the discrete uniform distribution on the set of real numers $\{x_1, \dots, x_n\}$ if \mathbb{P}_X is the equiprobability on this set i.e.:

$$X \in X(\Omega) = \{x_1, \cdots, x_n\}$$
 and $\forall k \in \Omega, \mathbb{P}(X = k) = \frac{1}{n}$

Discrete uniform distribution

Definition

The r.v. X has the discrete uniform distribution on the set of real numers $\{x_1, \cdots, x_n\}$ if \mathbb{P}_X is the equiprobability on this set i.e.:

$$X \in X(\Omega) = \{x_1, \cdots, x_n\}$$
 and $\forall k \in \Omega, \mathbb{P}(X = k) = \frac{1}{n}$

We note $X \rightsquigarrow \mathcal{U}(n)$.

Discrete uniform distribution

Definition

The r.v. X has the discrete uniform distribution on the set of real numers $\{x_1, \dots, x_n\}$ if \mathbb{P}_X is the equiprobability on this set i.e.:

$$X \in X(\Omega) = \{x_1, \cdots, x_n\}$$
 and $\forall k \in \Omega, \mathbb{P}(X = k) = \frac{1}{n}$

We note $X \rightsquigarrow \mathcal{U}(n)$.

$$\mathbb{E}(X) = \frac{n+1}{2}$$
; $Var(X) = \frac{n^2-1}{12}$.

Discrete uniform distribution

Definition

The r.v. X has the discrete uniform distribution on the set of real numers $\{x_1, \dots, x_n\}$ if \mathbb{P}_X is the equiprobability on this set i.e.:

$$X \in X(\Omega) = \{x_1, \cdots, x_n\}$$
 and $\forall k \in \Omega, \mathbb{P}(X = k) = \frac{1}{n}$

We note $X \rightsquigarrow \mathcal{U}(n)$.

$$\mathbb{E}(X) = \frac{n+1}{2}; Var(X) = \frac{n^2-1}{12}.$$

Example

When we throw a dice, the number obtained follow the uniforme distribution on $\{1, \dots, 6\}$ with $\mathbb{P}_X(x) = \frac{1}{6}$, $\forall x \in \{1, \dots, 6\}$.

Bernoulli distribution

Definition

The r.v. X follow the Bernoulli distribution of parameter p, $(p \in [0,1])$ if it takes only two values 0 and 1

Bernoulli distribution

Definition

The r.v. X follow the Bernoulli distribution of parameter p, $(p \in [0,1])$ if it takes only two values 0 and 1 with $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p=q$ (with: p+q=1).

Bernoulli distribution

Definition

The r.v. X follow the Bernoulli distribution of parameter p, $(p \in [0,1])$ if it takes only two values 0 and 1 with $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p=q$ (with: p+q=1). We note $X \leadsto \mathcal{B}(p)$.

Bernoulli distribution

Definition

The r.v. X follow the Bernoulli distribution of parameter p, $(p \in [0,1])$ if it takes only two values 0 and 1 with $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p=q$ (with: p+q=1). We note $X \rightsquigarrow \mathcal{B}(p)$. $\mathbb{E}(X)=p$; Var(X)=p(1-p)=pq.

Bernoulli distribution

Definition

The r.v. X follow the Bernoulli distribution of parameter p, $(p \in [0,1])$ if it takes only two values 0 and 1 with $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p=q$ (with: p+q=1). We note $X \rightsquigarrow \mathcal{B}(p)$.

$$\mathbb{E}(X) = p$$
; $Var(X) = p(1-p) = pq$.

Example

In the toss of an unbalanced coin, the probability of getting "heads" is $p \neq \frac{1}{2}$. X the r.v. defined by X=1 if we get "heads" and X=0 if we get "tails". $X \rightsquigarrow \mathcal{B}(p)$ with the probability distribution

$$\mathbb{P}(X=x) = \begin{cases} p, & \text{if } x = 1\\ q, & \text{if } x = 0 \end{cases}$$

Binomiale distribution

Let be an urn containing:

- white balls W in proportion p;

Let be an urn containing:

- white balls W in proportion p;
- red balls R in proportion q = 1 p.

Let be an urn containing:

- white balls W in proportion p;
- red balls R in proportion q = 1 p.

One carries out n successive draws of a ball with delivery.

Binomiale distribution

Let be an urn containing:

- white balls W in proportion p;
- red balls R in proportion q = 1 p.

One carries out n successive draws of a ball with delivery. We define the r.v. X as the number of white balls obtained during the n draws (It can take the values: $0, 1, \dots, n$).

Binomiale distribution

Let be an urn containing:

- white balls W in proportion p;
- red balls R in proportion q = 1 p.

One carries out n successive draws of a ball with delivery. We define the r.v. X as the number of white balls obtained during the n draws (It can take the values: $0, 1, \dots, n$).

Remark

The r.v. X can be defined as a sum of n independent Bernoulli r.v. X_1, X_2, \cdots, X_n $(X = X_1 + X_2 + \cdots + X_n)$. Such that $\mathbb{P}(X_i = 1) = p$.

Binomiale distribution

Definition

A r.v. X follows a binomial distribution of parameters (n,p) where $n \geq 0$ and $(p \in [0,1])$ if $X(\Omega) = \{0,1,\cdots,n\}$ and $\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}$, $\forall k=0,1,\cdots$, n (with: p+q=1).

Binomiale distribution

Definition

A r.v. X follows a binomial distribution of parameters (n,p) where $n \geq 0$ and $(p \in [0,1])$ if $X(\Omega) = \{0,1,\cdots,n\}$ and $\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}, \forall k=0,1,\cdots,n$ (with: p+q=1).

We note $X \rightsquigarrow \mathcal{B}(n, p)$.

Binomiale distribution

Definition

A r.v. X follows a binomial distribution of parameters (n,p) where $n \geq 0$ and $(p \in [0,1])$ if $X(\Omega) = \{0,1,\cdots,n\}$ and $\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}, \forall k=0,1,\cdots,n$ (with: p+q=1).

We note $X \rightsquigarrow \mathcal{B}(n, p)$.

$$\mathbb{E}(X) = np; Var(X) = np(1-p).$$

Binomiale distribution

Definition

A r.v. X follows a binomial distribution of parameters (n,p) where $n \geq 0$ and $(p \in [0,1])$ if $X(\Omega) = \{0,1,\cdots,n\}$ and $\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}$, $\forall k=0,1,\cdots$, n (with: p+q=1).

We note $X \rightsquigarrow \mathcal{B}(n, p)$.

$$\mathbb{E}(X) = np; Var(X) = np(1-p).$$

Example

Let $X \rightsquigarrow \mathcal{B}(n, p)$.

- 1. Determine *n* such that $\mathbb{P}(X=0) \leq 0,01$;
- 2. Determine *n* such that $\mathbb{P}(X \ge 1) \ge 0,90$.

Hypergeometric distribution

One carries out n successive drawings of a ball, without handing-over, which is the same as when one takes a sample of n balls in only one blow, in an urn containing N balls of two categories:

Hypergeometric distribution

One carries out n successive drawings of a ball, without handing-over, which is the same as when one takes a sample of n balls in only one blow, in an urn containing N balls of two categories:

- N_p white balls W in proportion p;

Hypergeometric distribution

One carries out n successive drawings of a ball, without handing-over, which is the same as when one takes a sample of n balls in only one blow, in an urn containing N balls of two categories:

- N_p white balls W in proportion p;
- N_q red balls R in proportion q = 1 p.

Hypergeometric distribution

One carries out n successive drawings of a ball, without handing-over, which is the same as when one takes a sample of n balls in only one blow, in an urn containing N balls of two categories:

- N_p white balls W in proportion p;
- N_q red balls R in proportion q = 1 p.

Let be the r.v. X, representing the number of balls W obtained.

Let be the r.v. X, representing the number of balls W obtained.

Remark

The possible values of X are $\max(0, n - N_q) \le k \le \min(n, N_p)$

Hypergeometric distribution

Definition

The r.v. X follows the hypergeometric distribution of parameters N, n, p, where $n \leq N$,

Hypergeometric distribution

Definition

The r.v. X follows the hypergeometric distribution of parameters N, n, p, where $n \leq N$, if $X(\Omega) = \{0, 1, \cdots, n\}$ we have $\forall k \in X(\Omega)$, $\mathbb{P}(X = k) = \frac{C_{N_p}^k C_{N_q}^{n-k}}{C_N^n}$

Hypergeometric distribution

Definition

The r.v. X follows the hypergeometric distribution of parameters N, n, p, where $n \leq N$, if $X(\Omega) = \{0, 1, \cdots, n\}$ we have

$$orall k \in X(\Omega)$$
, $\mathbb{P}(X=k) = rac{C_{N_p}^k C_{N_q}^{n-k}}{C_N^n}$

We note $X \rightsquigarrow \mathcal{H}(N, n, p)$, with $p = \frac{N_p}{N}$, p + q = 1. The a.v. X follows the hypergeometric law of parameters

$$\mathbb{E}(X) = np; Var(X) = npq \frac{N-n}{N-1}.$$

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

-
$$X(\Omega) = \mathbb{N}^*$$
;

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

-
$$X(\Omega) = \mathbb{N}^*$$
;

-
$$\mathbb{P}(X = k) = pq^{k-1}$$
 with $p + q = 1$.

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

A r.v. X follows a geometric distribution of parameter p, where $0 \le p \le 1$ if

-
$$X(\Omega)=\mathbb{N}^*;$$

- $\mathbb{P}(X=k)=pq^{k-1}$ with $p+q=1.$

We note $X \rightsquigarrow \mathcal{G}(p)$.

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

-
$$X(\Omega)=\mathbb{N}^*$$
;
- $\mathbb{P}(X=k)=pq^{k-1}$ with $p+q=1$.

We note
$$X \rightsquigarrow \mathcal{G}(p)$$
. $\mathbb{E}(X) = \frac{1}{p}$; $Var(X) = \frac{q}{p^2}$.

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

A r.v. X follows a geometric distribution of parameter p, where $0 \le p \le 1$ if

-
$$X(\Omega)=\mathbb{N}^*;$$

- $\mathbb{P}(X=k)=pq^{k-1}$ with $p+q=1.$

We note
$$X \rightsquigarrow \mathcal{G}(p)$$
.
 $\mathbb{E}(X) = \frac{1}{p}$; $Var(X) = \frac{q}{p^2}$.

Example

We play heads or tails with a rigged coin such that the probability of getting tails is $\frac{1}{3}$. Let X be the r.v. representing the number of

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

-
$$X(\Omega) = \mathbb{N}$$
;

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

-
$$X(\Omega) = \mathbb{N}$$
;

-
$$\mathbb{P}(X=k) = C_{k+r-1}^k p^r (1-p)^k$$
 with $p+q=1$.

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

A r.v. X follows a Pascal distribution of parameters r and p, where $0 \le p \le 1$ if

-
$$X(\Omega) = \mathbb{N}$$
;

-
$$\mathbb{P}(X = k) = C_{k+r-1}^k p^r (1-p)^k$$
 with $p + q = 1$.

We note $X \rightsquigarrow \mathcal{BN}(r, p)$.

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

-
$$X(\Omega) = \mathbb{N}$$
;
- $\mathbb{P}(X = k) = C_{k+r-1}^k p^r (1-p)^k$ with $p+q=1$.

We note
$$X \rightsquigarrow \mathcal{BN}(r, p)$$
. $\mathbb{E}(X) = \frac{rq}{p}$; $Var(X) = \frac{rq}{p^2}$.

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

-
$$X(\Omega) = \mathbb{N}$$
;
- $\mathbb{P}(X = k) = C_{k+r-1}^k p^r (1-p)^k$ with $p+q=1$.

We note
$$X \rightsquigarrow \mathcal{BN}(r, p)$$
. $\mathbb{E}(X) = \frac{rq}{p}$; $Var(X) = \frac{rq}{p^2}$.

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

- The probability of realization in a small period Δt is proportional to Δt .

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

- The probability of realization in a small period Δt is proportional to Δt .
- It is independent of what has happened previously.

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

- The probability of realization in a small period Δt is proportional to Δt .
- It is independent of what has happened previously.

Definition

X follows a Poisson Distribution of parameter $\lambda(\lambda>0)$, noted $\mathcal{P}(\lambda)$ if its values are in $\mathbb N$ and if:

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

- The probability of realization in a small period Δt is proportional to Δt .
- It is independent of what has happened previously.

Definition

X follows a Poisson Distribution of parameter $\lambda(\lambda>0)$, noted $\mathcal{P}(\lambda)$ if its values are in $\mathbb N$ and if:

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

We note $X \rightsquigarrow \mathcal{P}(\lambda)$.

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

- The probability of realization in a small period Δt is proportional to Δt .
- It is independent of what has happened previously.

Definition

X follows a Poisson Distribution of parameter $\lambda(\lambda>0)$, noted $\mathcal{P}(\lambda)$ if its values are in $\mathbb N$ and if:

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

We note
$$X \rightsquigarrow \mathcal{P}(\lambda)$$
.
 $\mathbb{E}(X) = \lambda$; $Var(X) = \lambda$.

