Roll No.

CS/EI/IT-405

B. E. (Fourth Semester) EXAMINATION, June, 2009 (Old Scheme)

(Common for CS, EI & IT Engg.)

DISCRETE STRUCTURE

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Answer all questions. All questions carry equal marks.

Unit-I

- (a) Let I be the set of all integers, and let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m-symbolised by a ≡ b (mod m) if a b is exactly divisible by m, i. e., a b is an integer multiple of m. Show that this is an equivalence relation, describe the equivalence sets.
 - (b) If *n* pigeons are assigned to *m* pigeonholes (n > m) then some pigeonhole must contain at least $\left[\left(\frac{n-1}{m}\right)\right] + 1$ pigeons, where [k] denotes the largest integer not greater than k.

Or

2. (a) (i) If A, B, C are three sets, prove that : 10 $(A - C) \cap (B - C) = (A \cap B) - C$

P. T. O.

(ii) Prove that $7^{2n} + 2^{3n-3} \cdot 3^{n-1}$ is divisible by 25 for all $n \in \mathbb{N}$. 10

(b) In a Boolean algebra (B, ∧, ∨, ') a relation "≤" is defined by $a \le b$ if $a \lor b = b$ or $a \land b = a$. Prove that the relation " \leq " is a partial order in B and (B, \leq) is a lattice.

Unit-II

3. (a) (i) What do you mean by contingency and prove that the statement. 10

$$(p \Rightarrow q) \Rightarrow (p \land q)$$

is a contingency.

(ii) Express the formula as given by:

$$(\sim p \Rightarrow r) \land (q \Leftrightarrow p)$$

in its principal conjunctive normal form.

(b) Show that the language:

10

$$L = \{a^k \mid k = i^2, i \ge 1\}$$

is not a finite state language.

Or

4. (a) (i) Prove that:

10

$$(p\Leftrightarrow q)\land (q\Leftrightarrow r)\Rightarrow (p\Leftrightarrow r)$$

is a tautology.

- If 4x 2 = 10 then x = 3. Find converse, inverse and contrapositive.
- (b) Let M be the finite state machine with state table: 10

F	A	В
S0	S2, <i>x</i>	S2, y
S1	S3, <i>y</i>	S1, z
S2	S1, z	S0, x
S3	S0, z	S2, <i>x</i>

Find the input set A, the state set S, the output set z and the initial state.

Unit-III

- 5. (a) Define graph, plannar graph and multigraph and prove that the number of edges in a simple graph is $\frac{n(n-1)}{2}$.
 - (b) Determine the minimum weight spanning tree for the following graph using Kruskal's algorithm.

Fig. 1

6. (a) Use Dijkstra's algorithm to find the shortest path from a to z for the following graph.

Fig. 2

(b) Define any two of the following:

5 each

(i) Eulerian path

PTO

- (ii) Hamiltonian circuit
- (iii) Cut-set.

Unit-IV

7. (a) Solve the following recurrence relation: $2a_r - 5a_{r-1} + 2a_{r-2} = 0$, given $a_0 = 0$, $a_1 = 1$. 10

(b) Solve:

$$y_{x+2} + y_{x+1} + y_x = x^2 + x + 1$$

Or

8. (a) Solve the recurrence relation:

e recurrence relation: 10 $a_r - 7 a_{r-1} + 10 a_{r-2} = 0$

given $a_0 = 0$, $a_1 = 3$.

(b) Solve:

$$y_{x+1} - 3y_x = 3^x \cdot x^2$$
Unit - V

9. (a) Let G be the set of the non-zero real numbers and let $a*b = \frac{ab}{2}$, then show that (G,*) is an abelian graph.

10

10

(b) Prove that every field is an integral domain. 10

10. (a) Find the orders of each element of the group $G = \{0, 1, 2, 3, 4, 5\}$, the composition in G is 'addition modulo σ '.

(b) Prove that a subgroup H of a group G is normal if and only if:

$$x H x^{-1} = H \forall x \in G$$

CS/EI/IT - 405

5,160