Homework 2

Michael Brodskiy

Professor: D. Wood

September 28, 2023

1. Six charges are arranged along the sides and corners of a square with sides of length L as shown. Calculate the magnitude and direction of the electric field at the origin. Use symmetry and superposition to make the calculation simple.

We know, by definition, that $\vec{F} = \vec{E}q$. Using the concepts we know about force, we know the following charges cancel out each other, as they are symmetric about the test charge at the origin:

Figure 1: The Opposite Forces Negate Each Other

Figure 2: The Opposite Forces Negate Each Other

Thus, we need only consider the effects of these charges:

Figure 3: These Charges Remain Relevant

Using superposition, we know that the two charges can be summed, and they produce a horizontal force proportional to 3q at an angle of $\frac{\pi}{4}$ radians with respect to the x-axis. Decomposing this, we know the force can be expressed, with Q as the test charge, as:

$$E_Q = \frac{(3q)}{4\pi\varepsilon_o R^2} \cos\left(\frac{\pi}{4}\right) \hat{\mathbf{x}} + \frac{(3q)}{4\pi\varepsilon_o R^2} \sin\left(\frac{\pi}{4}\right) \hat{\mathbf{y}}$$

Additionally, we know that $R = \sqrt{\left(\frac{L}{2}\right)^2 + \left(\frac{L}{2}\right)^2} = \sqrt{\frac{L^2}{2}} = \frac{L}{\sqrt{2}}$. This gives us:

$$E_Q = \frac{3\sqrt{2}q}{4\pi\varepsilon_o L^2}\hat{\mathbf{x}} + \frac{3\sqrt{2}q}{4\pi\varepsilon_o L^2}\hat{\mathbf{y}}$$

It can also be said that the field, in the direction of the -2q charge, is:

$$E_Q = \frac{3q}{2\pi\varepsilon_o L^2} - \mathbf{\hat{2}q}$$

2. A uniformly charged rod of length L and charge q is placed along the x-axis with its center at x=a. Find the x-component of the electric field at a point on the z axis. (Hint: use R as the variable of integration.) Check your expression in the following limit: z=0 and a>>L.

We know the rod is length L, with charge Q. This means the linear charge density can be defined as:

$$\lambda = \frac{Q}{L}$$

Furthermore, we can refer to the angle between the test charge and point on the rod as θ , measured in the counter-clockwise direction, and the distance from said point on the rod to the test charge can be called R. This yields us the following expression for the x-axis:

$$E_x = -\int \frac{\sin(\theta)}{4\pi\varepsilon_o R^2} \, dQ$$

We can express $dq \to \lambda dx$, which gives us:

$$E_x = -\int \frac{\lambda \sin(\theta)}{4\pi\varepsilon_o R^2} \, dx$$

Then, if we were to assume x as the horizontal distance from the test charge to the rod, and z as the vertical distance from the test charge to the rod, we may see that:

$$\tan(\theta) = \frac{x}{z}$$
$$z \tan(\theta) = x$$
$$z \sec^{2}(\theta) d\theta = dx$$

Taking R into account, we can further simplify our calculation:

$$\frac{dx}{R^2} = \frac{z \, d\theta}{R^2 \cos^2(\theta)}$$

Again referring to our set up, we know $\cos(\theta) = \frac{z}{R}$:

$$dx = \frac{d\theta}{z}$$

Finally, we can use this:

$$E_x = -\frac{\lambda}{4\pi\varepsilon_o z} \int_{\theta_{a-\frac{L}{2}}}^{\theta_{a+\frac{L}{2}}} \sin(\theta) d\theta$$
$$\frac{\lambda}{4\pi\varepsilon_o z} \left[\cos(\theta)\right] \Big|_{\theta_{a-\frac{L}{2}}}^{\theta_{a+\frac{L}{2}}}$$

We can once again refer to the set-up, finding that:

$$\begin{cases} \cos\left(\theta_{a-\frac{L}{2}}\right) = \frac{z}{\sqrt{z^2 + (a-L/2)^2}} \\ \cos\left(\theta_{a+\frac{L}{2}}\right) = \frac{z}{\sqrt{z^2 + (a+L/2)^2}} \end{cases}$$

Substituting this into our final expression, we get:

$$\frac{\lambda}{4\pi\varepsilon_o} \left(\frac{1}{\sqrt{z^2 + (a + L/2)^2}} - \frac{1}{\sqrt{z^2 + (a - L/2)^2}} \right)$$

z = 0 case:

$$\begin{split} \frac{\lambda}{4\pi\varepsilon_o} \left(\frac{1}{a+L/2} - \frac{1}{a-L/2} \right) \\ \frac{\lambda}{4\pi\varepsilon_o} \left(\frac{a-L/2 - (a+L/2)}{a^2 - (L/2)^2} \right) \end{split}$$

$$-\frac{\lambda L}{(4\pi\varepsilon_o)(a^2 - (L/2)^2)}$$
$$-\frac{Q}{(4\pi\varepsilon_o)(a^2 - (L/2)^2)}$$

a >> L case:

$$\frac{\lambda}{4\pi\varepsilon_o} \left(\frac{1}{\sqrt{z^2 + (a + L/2)^2}} - \frac{1}{\sqrt{z^2 + (a - L/2)^2}} \right); \quad a \pm L \to 0$$

$$\frac{\lambda}{4\pi\varepsilon_o} \left(\frac{1}{\sqrt{z^2 + a^2}} \sqrt{\frac{1}{\sqrt{z^2 + a^2}}} \right) = 0$$

This makes sense, as, logically, if the rod were centered at a point very far away from the test charge, there would be no significant electric field.

3. Calculate the electric potential on the z-axis due to a uniformly charged annulus in the xy-plane centered at the origin with inner radius a and outer radius b. Then find the electric field from the gradient of the potential.

Let us assume the annulus holds a charge of q, with an area A. This defines the charge density as:

$$\sigma = \frac{q}{A}$$

This gives us:

$$dq = \sigma dA$$

If we assume that i and j are the horizontal and vertical distances, respectively, to the test charge from any point on the annulus, and $r = \sqrt{i^2 + j^2}$ is the radial distance from the test charge to any point, then we can express the above as:

$$dq = \sigma(2\pi i \, di)$$

We can then define the voltage as:

$$V = \frac{q}{4\pi\varepsilon_o r}$$
$$dV = \frac{dq}{4\pi\varepsilon_o r}$$
$$dV = \frac{\sigma i \, di}{2\varepsilon_o \sqrt{i^2 + j^2}}$$

We can then integrate to find the voltage expression:

$$V = \frac{\sigma}{2\varepsilon_o} \int_a^b \frac{i}{\sqrt{i^2 + j^2}} \, di$$

Using u substitution, with $u = i^2 + j^2$, we get:

$$V = \frac{\sigma}{\varepsilon_o} \int_{a^2 + j^2}^{b^2 + j^2} \frac{1}{\sqrt{u}} du$$

$$V = \frac{\sigma}{\varepsilon_o} \left(\frac{\sqrt{u}}{2}\right) \Big|_{a^2 + j^2}^{b^2 + j^2}$$

$$V = \frac{\sigma}{2\varepsilon_o} \left(\sqrt{j^2 + b^2} - \sqrt{j^2 + a^2}\right)$$

We can then find the electric field using the gradient formula:

$$\begin{split} \vec{E} &= -\vec{\nabla} V \\ \vec{E} &= -\vec{\nabla} \left(\frac{\sigma}{2\varepsilon_o} \left(\sqrt{j^2 + b^2} - \sqrt{j^2 + a^2} \right) \right) \\ \vec{E} &= \langle 0, 0, \frac{\sigma}{4\varepsilon_o} \left(\frac{j}{\sqrt{j^2 + a^2}} - \frac{j}{\sqrt{j^2 + b^2}} \right) \rangle \end{split}$$

Because j simply indicates the z direction, and the vector above is with respect to the i, j, k vectors, we can rewrite this as:

$$\vec{E} = \frac{\sigma}{4\varepsilon_o} \left(\frac{z}{\sqrt{z^2 + a^2}} - \frac{z}{\sqrt{z^2 + b^2}} \right) \hat{\mathbf{k}}$$

- 4. Consider an infinitely long uniformly-charged solid cylinder of radius a and charge per unit volume ρ surrounded by a coaxial cylindrical shell of radius b and charge per unit area of σ . Take the axis of the cylinders as the z-axis.
 - (a) Calculate the electric field everywhere in space
 - (b) Also calculate the potential as a function of the distance from the axis, taking the potential to be zero on the z-axis.
- 5. The electric field for two charged concentric spherical shells is given by

$$\begin{cases}
0, & r < a \\
\hat{\mathbf{r}}A_1/r^2, & a < r < b \\
\hat{\mathbf{r}}A_2/r^2, & r > b
\end{cases}$$

Where $A_1 = 5 \times 10^6 \left[\frac{\text{N m}^2}{\text{C}} \right]$, $A_2 = -3 \times 10^6 \left[\frac{\text{N m}^2}{\text{C}} \right]$, a = .25[m], and b = .45[m]. Find the surface charge densities σ_a and σ_b on the two shells.