Review of some probability concepts: random variables

(A quick tour)

R. Bellio & N. Torelli

Spring 2018

University of Udine & University of Trieste

Random variables

Discrete distributions

Continuous distributions

C.d.f. and quantile functions

Random variables

Random variables

Statistics is about the extraction of information from data that contain an *unpredictable* component.

Random variables (r.v.) are the mathematical device employed to build *models* of this variability.

A r.v. takes a different value at random each time is observed.

Distribution of a r.v.

The main tools used to describe the **distribution** of values taken by a r.v. are:

- 1. Probability functions
- 2. Density functions
- 3. Cumulative distribution functions
- 4. Quantile functions

Discrete distributions

1. Probability functions

Discrete r.v. take values in a discrete set.

The **probability (mass) function** of a discrete r.v. X is the function f(x) such that

$$f(x) = \Pr(X = x).$$

with
$$0 \le f(x) \le 1$$
 and $\sum_i f(x_i) = 1$.

The probability function defines the **distribution** of X.

Mean and variance of a discrete r.v.

For many purposes, the first two moments of a distribution provide a useful summary.

The **mean (expected value)** of a discrete r.v. X is

$$E(X) = \sum_{i} x_i f(x_i),$$

and the definition is extended to any function g of X

$$E\{g(X)\} = \sum_i g(x_i) f(x_i).$$

The special case $g(X) = (X - \mu)^2$, with $\mu = E(X)$, is the **variance** of X

$$var(X) = E\{(X - \mu)^2\} = E(X^2) - \mu^2.$$

The **standard deviation** is just given by $\sqrt{\operatorname{var}(X)}$.

Notable discrete random variables

Discrete r.v. often used in applications:

- Binomial distribution
- Poisson distribution
- Negative binomial distribution
- Geometric distribution
- Hypergeometric distribution

The fist two deserve some further attention.

The binomial distribution

Consider n independent binary trials each with success probability p, 0 . The r.v. <math>X that counts the number of successes has **binomial distribution** with probability function

$$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, ..., n.$$

The notation is $X \sim \mathcal{B}_i(n, p)$, and E(X) = n p, var(X) = n p (1 - p).

The case when n = 1 is known as **Bernoulli distribution**.

R lab: the binomial distribution

```
par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dbinom(0:20, 20, 0.2), xlab = "x", ylab = "f(x)")
plot(0:50, dbinom(0:50, 50, 0.5), xlab = "x", ylab = "f(x)")
```


The Poisson distribution

The special case the binomial distribution with $n \to \infty$ and $p \to 0$, while their product is held constant at $\lambda = n p$, yields the **Poisson distribution**.

The probability function is

$$\Pr(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \qquad x = 0, 1, 2, \dots$$

with $\lambda > 0$.

The notation is $X \sim \mathcal{P}(\lambda)$, and $E(X) = \text{var}(X) = \lambda$.

R lab: the Poisson distribution

```
par(mfrow=c(1,2), pty="s", pch = 16)
plot(0:20, dpois(0:20, 5), xlab = "x", ylab = "f(x)")
plot(0:50, dpois(0:50, 10), xlab = "x", ylab = "f(x)")
```


Continuous distributions

2. Density functions

Continuous r.v. take values from intervals on the real line.

The **(probability) density function** (p.d.f.) of a continuous r.v. X is the function f(x) such that, for any constants $a \le b$

$$\Pr(a \le X \le b) = \int_a^b f(x) dx.$$

Note that $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$.

The probability density function defines the **distribution** of X.

Mean and variance of a continuous r.v.

The definitions given in the discrete case are readily extended.

The **mean (expected value)** of a continuous r.v. X is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx,$$

and the definition is extended to any function g of X

$$E\{g(X)\} = \int_{-\infty}^{\infty} g(x) f(x) dx.$$

This includes the variance as a special case.

Two results, quite useful for continuous r.v., apply to a *linear* transformation a + b X, with a, b constants:

$$E(a+bX) = a+bE(X)$$
$$var(a+bX) = b^2 var(X).$$

Notable continuous random variables

Important continuous distributions include:

- Normal distribution
- χ^2 distribution
- F distribution
- t and Cauchy distributions
- Beta distribution
- Gamma, Weibull and exponential distributions

The normal distribution has a major role in statistics. The χ^2 , t and F distributions are *relative* of the normal distribution.

The normal distribution

A r.v. X has a normal (or Gaussian) distribution if it has p.d.f.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}, \qquad -\infty < x < \infty.$$

The notation is $X \sim \mathcal{N}(\mu, \sigma^2)$, and $E(X) = \mu$ and $var(X) = \sigma^2$, $\sigma^2 > 0$, $\mu \in \mathbb{R}$.

An important property is that for any constants a, b

$$a + b X \sim \mathcal{N}(a + b \mu, b^2 \sigma^2),$$

so that $Z = (X - \mu)/\sigma \sim \mathcal{N}(0, 1)$, the **standard normal distribution**.

Finally, $Y = e^X$ has a **lognormal distribution**, useful for asymmetric variables with occasional right-tail outliers.

R lab: the normal distribution

```
xx <- seq(-10, 10, l=1000)
plot(xx, dnorm(xx, 0, 0.5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dnorm(xx, 5, 1), col = 2)
lines(xx, dnorm(xx, 0, 1), col = 3)
lines(xx, dnorm(xx, 0, 2), col = 4)</pre>
```


The χ^2 distribution

Let Z_1, \ldots, Z_k be a set of independent $\mathcal{N}(0,1)$ r.v., then $X = \sum_{i=1}^k Z_i^2$ is a r.v. with a χ^2 distribution with k degrees of freedom.

The notation is $X \sim \chi_k^2$, E(X) = k and var(X) = 2k.

It is a special case of the Gamma distribution.

It plays an important role in the theory of hypothesis testing in statistics.

R lab: the χ^2 distribution

```
xx <- seq(0, 40, l=1000)
plot(xx, dchisq(xx, 5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dchisq(xx, 10), col = 2)
lines(xx, dchisq(xx, 20), col = 3)</pre>
```


21

The *F* distribution

Let $X \sim \chi_n^2$ and $Y \sim \chi_m^2$, independent, then the r.v.

$$F = \frac{X/n}{Y/m}$$

has an F distribution with n and m degrees of freedom.

The notation is $F \sim \mathcal{F}_{n,m}$, and E(F) = m/(m-2) provided that m > 2.

The distribution is almost never used as a model for observed data, but it has a central role in hypothesis testing involving linear models.

R lab: the F distribution

```
xx <- seq(0, 10, l=1000)
plot(xx, df(xx, 10, 10), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, df(xx, 5, 2), col = 2)
lines(xx, df(xx, 10, 5), col = 3)</pre>
```


X 23

The t and Cauchy distributions

Let $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_n^2$, independent, then the r.v.

$$T = \frac{Z}{\sqrt{\frac{X}{n}}}$$

has an t distribution with n degrees of freedom.

The notation is $T \sim t_n$, and E(T) = 0 provided that n > 1, whereas var(T) = n/(n-2) provided that n > 2.

 t_{∞} is $\mathcal{N}(0,1)$, while for n finite the distribution has heavier tails than the standard normal distribution.

The case t_1 is the **Cauchy distribution**.

The distribution has a central role in statistical inference; at times it is used for modelling phenomena presenting *outliers*.

R lab: the t and Cauchy distributions

```
xx <- seq(-5, 5, l=1000)
plot(xx, dnorm(xx, 0, 1), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dt(xx, 30), col = 2)
lines(xx, dt(xx, 5), col = 3)
lines(xx, dt(xx, 1), col = 4)</pre>
```


C.d.f. and quantile functions

3. Cumulative distribution functions

The **cumulative distribution function** (c.d.f.) of a r.v. X is the function F(x) such that

$$F(x) = \Pr(X \le x)$$
,

and it can be obtained from the probability function or the density function: the c.d.f. *identifies* the distribution.

From the definition of F it follows that $F(-\infty) = 0$, $F(\infty) = 1$, F(x) is monotonic.

A useful property is that if F is a continuous function then U = F(X) has a uniform distribution.

R lab: uniform transformation

```
x <- rnorm(10^5) ### simulate values from N(0,1)
xx <- seq(min(x), max(x), l = 1000)
hist.scott(x, main = "") ### from MASS package
lines(xx, dnorm(xx), col = "red", lwd = 2)</pre>
```


R lab: uniform transformation (cont'd.)

```
u <- pnorm(x) ### that's the uniform transformation
hist.scott(u, prob = TRUE, main="")
segments(0, 1, 1, 1, col = 2, lwd = 2)</pre>
```


u

The quantile function

The inverse of the c.d.f. is defined as

$$F^{-}(p) = \min(x|F(x) \ge p)$$
, $0 \le p \le 1$.

This is the usual inverse function of F when F is continuous.

Another useful property is that if $U \sim \mathcal{U}(0,1)$, namely it has a *uniform distribution* in [0,1], then the r.v. $X = F^-(U)$ has c.d.f. F.

This provides a simple method to generate random numbers from a distribution with known quantile function: it is the **inversion sampling method**, that only requires the ability to simulate from a uniform distribution.

Example: normal cdf and quantile functions

Let us consider the case of $X \sim \mathcal{N}(5, 2^2)$, with c.d.f. and quantile functions given by pnorm and qnorm

R lab: inversion sampling

```
u <- runif(10<sup>4</sup>); y <- qnorm(u, m = 5, s = 2)
par(pty = "s", cex = 0.8)
qqnorm(y, pch = 16, main = "")
qqline(y)</pre>
```


Side note: quantile-quantile plot

The previous slide demonstrated the usage of the quantile function to build a tool for **model goodness-of-fit**.

The quantile-quantile plot visualizes the plausibility of a theoretical distribution for a set of observations $y = (y_1, \dots, y_n)$.

This is done by comparing the quantile function of the assumed model with the sample quantiles, which are the points that lie on the inverse of the **empirical distribution function**

$$\widehat{F}_n(t) = \frac{\text{number of elements of } y \leq t}{n}$$
 .

If the agreement between the data and the theoretical distribution is good, the points on the plot would approximately lie on a line.