Corrigé de l'envoi 1

1 Exercices groupe B

Exercice 1 Prouver qu'il n'existe qu'un nombre fini de nombres premiers s'écrivant sous la forme $n^3 + 2n + 3$ avec $n \in \mathbb{N}$.

Solution de l'exercice 1: Remarquons que $n^3 - n = n(n-1)(n+1)$ est un produit de trois entiers consécutifs. Puisque parmi trois entiers consécutifs il y a toujours un multiple de 3, on obtient que $n^3 - n$ est divisible par 3, c'est-à-dire $n^3 \equiv n \pmod{3}$. (On peut le voir aussi en utilisant le petit théorème de Fermat.) On a donc $n^3 + 2n + 3 \equiv n + 2n + 3 \equiv 3n + 3 \equiv 0 \pmod{3}$, donc $n^3 + 2n + 3$ est toujours divisible par 3. D'autre part, il ne peut être égal à 3 que pour un nombre fini de valeurs de n.

Exercice 2 Résoudre $x^4 - 6x^2 + 1 = 7 \times 2^y$ pour x et y entiers.

Solution de l'exercice 2: L'équation se réécrit $(x^2-3)^2=7\times 2^y+8$. Si $y\geq 3$, alors le côté droit s'écrit $8(7\times 2^{y-3}+1)$. Le côté gauche étant un carré, sa valuation 2-adique est paire. Ainsi, $7\times 2^{y-3}+1$ doit être pair, donc y=3. Dans ce cas $x^2-3=8$ donc $x^2=11$, impossible. Donc $y\leq 2$. Si y=2, on trouve $x=\pm 3$. Pour y<0, ainsi que pour y=0 ou y=1 il n'y a pas de solution. Les seuls couples de solutions sont donc (x,y)=(3,2) et (-3,2).

Exercice 3 Trouver le plus petit entier positif qui ne s'écrit pas sous la forme $\frac{2^a-2^b}{2^c-2^d}$ pour $a,b,c,d\in\mathbb{N}$.

Solution de l'exercice 3: Soit E l'ensemble des entiers strictement positifs s'écrivant sous cette forme. Commençons par remarquer que

$$\frac{2^a - 2^b}{2^c - 2^d} = 2^{b-d} \frac{2^{a-b} - 1}{2^{c-d} - 1}.$$

Ainsi, si x > 0 s'écrit $x = \frac{2^a - 2^b}{2^c - 2^d}$, alors $b - d = v_2(x)$ et si on appelle y l'entier impair tel que $x = 2^{v_2(x)}y$, alors y s'écrit sous la forme $\frac{2^n - 1}{2^m - 1}$. En particulier, l'entier que nous cherchons est nécessairement impair. D'autre part, on peut tout de suite exclure les entiers de la forme $2^n - 1$, atteints avec m = 1.

Il est classique que si $2^m - 1$ divise $2^n - 1$, alors m divise n. Ainsi, en écrivant n = md, y est de la forme

$$y = \frac{2^{md} - 1}{2^m - 1} = 2^{(d-1)m} + 2^{(d-2)m} + \dots + 2^m + 1.$$

Autrement dit, en notant $u = \underbrace{0 \dots 0}_{m-1 \text{ zéros}} 1$, l'écriture en base 2 de y est de la forme $\overline{1u \dots u}^2$, avec u apparaissant

d-1 fois. Les entiers impairs appartenant à E sont exactement ceux ayant une telle écriture binaire pour m et d bien choisis. Les écritures binaires des premiers entiers impairs qui ne sont pas de la forme 2^n-1 sont

$$5 = \overline{101}^2$$
, $9 = \overline{1001}^2$, $11 = \overline{1011}^2$.

D'après le critère ci-dessus, le plus petit entier cherché est 11.

Remarque : cet exercice peut aussi se faire en trouvant des manières d'écrire les entiers 1 à 10 sous cette forme, puis en montrant que 11 ne s'écrit pas sous cette forme : en effet, vu que 11 est impair, on peut supposer b = d = 1. Ensuite

$$(2^a - 1) = 11(2^c - 1)$$

se réécrit

$$10 = 2^c \times 11 - 2^a$$
.

Puisque $10 = 2 \times 5$, nous avons a = 1 ou c = 1. Si a = 1, on trouve $2^c \times 11 = 12$, qui n'a pas de solution, et si c = 1, on trouve $2^a = 12$, qui n'a pas de solution non plus. Donc 11 est l'entier cherché.

$\mathbf{2}$ Exercices communs

Exercise 4 Trouver tous les triplets de nombres premiers (p,q,r) tels que (p+1)(q+2)(r+3) = 4pqr.

Solution de l'exercice 4: Si p=2 alors on a 3(q+2)(r+3)=8qr ce qui implique q=3 ou r=3. On a alors la solution (2,3,5).

Si q=2 et p,r>2 alors on a (p+1)(r+3)=2pr. Puisque p et r sont impairs, le membre de gauche est divisible par 4, alors que le membre de droite est divisible par 2, mais pas par 4, contradiction. Donc p ou rvaut 2 mais aucune solution valide n'en découle.

Si r=2 alors 5(p+1)(q+2)=8pq et donc p ou q vaut 5. On obtient la solution (7,5,2).

Sinon, (p+1) est pair et (r+3) est pair. Donc on se ramène à

$$\left(\frac{p+1}{2}\right)(q+2)\left(\frac{r+3}{2}\right) = pqr.$$

Nous avons donc écrit pqr comme un produit de trois facteurs strictement plus grands que 1. On en déduit que $(\frac{p+1}{2}, q+2, \frac{r+3}{2})$ est une permutation de (p, q, r).

Clairement, $p \neq \frac{p+1}{2}$ puisque $p > \frac{p+1}{2}$.

Si $p = \frac{r+3}{2}$, alors puisque $q \neq q+2$, nous avons nécessairement $q = \frac{p+1}{2} = \frac{r+5}{4}$. Alors $r = q+2 = \frac{r+13}{4}$, et donc r n'est pas entier.

Si p=q+2, alors il y a deux cas à considérer : $-r=\frac{p+1}{2}=\frac{q+3}{2} \text{ et } q=\frac{r+3}{2}=\frac{q+9}{4}. \text{ Donc } q=3 \text{ et on obtient la solution } (5,3,3).$ $-r=\frac{r+3}{2} \text{ et } q=\frac{p+1}{2}=\frac{q+3}{2}, \text{ ce qui donne } r=q=3. \text{ On obtient alors cette même solution } (5,3,3).$

Finalement, les seules solutions sont (2,3,5), (7,6,2) et (5,3,3).

Exercice 5 Trouver tous les entiers strictement positifs n tels que $2^{n-1}n+1$ soit un carré parfait.

Solution de l'exercice 5: On veut résoudre $2^{n-1}n+1=m^2$, c'est-à-dire $2^{n-1}n=(m-1)(m+1)$. Puisque n=1 n'est pas solution, on a $n\geq 2$, et donc m est nécessairement impair, et m-1 et m+1 sont pairs (en particulier $n \ge 3$). On pose $k = \frac{m-1}{2}$. Il suffit alors de résoudre $2^{n-3}n = k(k+1)$. Parmi les entiers k et k+1 exactement un est pair, et donc ils sont de la forme $2^{n-3}d$ et $\frac{n}{d}$ avec d un diviseur de n. Or un diviseur de n ne peut pas être à distance 1 d'un entier supérieur à 2^{n-3} si n est trop grand. Plus précisément, on a $2^{n-3}d \ge 2^{n-3} \ge n+2$ si $n \ge 6$, donc on a nécessairement $n \le 5$. Pour n=5, on trouve $2^4 \times 5 + 1 = 9^2$, donc 5 est solution. On vérifie que 2, 3, 4 ne sont pas solutions. Donc n = 5 est la seule solution.

Exercice 6 Soient x > 1 et y des entiers vérifiant $2x^2 - 1 = y^{15}$. Montrer que x est divisible par 5.

Solution de l'exercice 6: L'entier y est clairement impair et strictement plus grand que 1. On factorise l'équation sous la forme

$$x^{2} = \left(\frac{y^{5} + 1}{2}\right)(y^{10} - y^{5} + 1).$$

Remarquons que

$$y^{10} - y^5 + 1 \equiv 3 \pmod{y^5 + 1},$$

et que donc $pgcd(y^5+1, y^{10}-y^5+1)$ est égal à 1 ou à 3. S'il valait 1, alors $y^{10}-y^5+1$ serait un carré. Or pour y > 0 nous avons

$$(y^5 - 1)^2 = y^{10} - 2y^5 + 1 < y^{10} - y^5 + 1 < y^{10} = (y^5)^2,$$

c'est-à-dire que $y^{10}-y^5+1$ est strictement compris entre deux carrés consécutifs, et ne peut pas être lui-même un carré. Donc $pgcd(y^5 + 1, y^{10} - y^5 + 1) = 3$, de sorte qu'il existe des entiers a et b tels que

$$y^5 + 1 = 6a^2$$
 et $y^{10} - y^5 + 1 = 3b^2$.

On peut factoriser $(y+1)(y^4-y^3+y^2-y+1)=6a^2$. Puisque $y^5\equiv -1\pmod 3$, on a nécessairement $y\equiv -1$ $\pmod{3}$, donc y+1 est divisible par 6. De même que plus haut, on a

$$y^4 - y^3 + y^2 - y + 1 \equiv 5 \pmod{y+1}$$
,

et donc $pgcd(y+1, y^4-y^3+y^2-y+1)$ est égal à 1 ou à 5. S'il vaut 5, alors a est divisible par 5 et donc x aussi, et nous avons terminé. Supposons donc qu'il vaut 1. Alors $y^4 - y^3 + y^2 - y + 1$ est un carré. Dans ce cas, $4(y^4 - y^3 + y^2 - y + 1)$ est aussi un carré, ce qui est impossible, car pour y > 1, on a

$$(2y^2 - y)^2 = 4y^4 - 4y^3 + y^2 < 4(y^4 - y^3 + y^2 - y + 1) < 4y^4 - 4y^3 + 5y^2 - 2y + 1 = (2y^2 - y + 1)^2.$$

3 Exercices groupe A

Exercice 7 Caractériser les entiers $n \ge 2$ tels que pour tout entier a on ait $a^{n+1} = a \pmod{n}$.

Solution de l'exercice 7: Voici les n vérifiant cette propriété : 2, $2 \cdot 3$, $2 \cdot 3 \cdot 7$, $2 \cdot 3 \cdot 7 \cdot 43$.

Pour prouver que c'est exhaustif on procède de la façon suivante : on commence par remarquer que n n'a pas de facteur carré. En effet, si p^2 divise n, alors $p^{n+1}-p$ est divisible par p^2 , ce qui n'est pas possible. Ainsi, n est forcément un produit $p_1 \dots p_k$ de nombres premiers distincts. Par conséquent, par le lemme chinois la condition de l'énoncé est équivalente à $a^{n+1} \equiv a \pmod{p}$ pour tout entier a et tout $p \in \{p_1, \dots, p_k\}$. En choisissant a d'ordre p-1 modulo p, on obtient que cela est équivalent à ce que p-1 divise n pour tout $p \in \{p_1, \dots, p_k\}$.

En résumé : n est produit de premiers distincts p_1, \ldots, p_k , et $p_i - 1$ divise n pour tout i. On en déduit que pour tout i, $p_i - 1$ est sans facteur carré et $p_i - 1 = q_1 \ldots q_m$ où les q_j sont des nombres premiers pris parmi les p_r , $r \neq i$.

Quitte à re-numéroter les p_i , on peut supposer que $p_1 < p_2 < \ldots < p_k$. D'après la condition ci-dessus, nous avons nécessairement $p_1 = 2$. Si k = 1, cela nous donne l'entier n = 2. Si k > 1, alors $p_2 - 1$ est nécessairement égal à 2, donc $p_2 = 3$. Si k = 2, cela nous donne la solution n = 6. Si k > 2 on continue en disant que $p_3 - 1$ ne peut être égal à 2 ou 3, donc il est égal à $p_1p_2 = 6$, d'où $p_3 = 7$. Si k = 3, cela donne la solution $n = 2 \cdot 3 \cdot 7 = 42$. Si k > 3, on voit que de même la seule valeur possible pour p_4 est $2 \times 3 \times 7 + 1 = 43$. Pour k = 4, cela donne la solution $n = 2 \cdot 3 \cdot 7 \cdot 43$. Enfin, supposons que k > 4. Alors $p_5 - 1$ doit être pair et strictement supérieur à 43, donc les seules valeurs possibles sont $2 \cdot 43$, $2 \cdot 3 \cdot 43$, $2 \cdot 7 \cdot 43$, $2 \cdot 3 \cdot 7 \cdot 43$. On vérifie qu'aucune de ces possibilités ne fournit un p_5 premier. Ainsi on a nécessairement $k \le 4$ et les solutions que nous avons trouvées sont les seules.

Exercice 8 Soit $k \geq 3$ un entier. On définit la suite $(a_n)_{n \geq k}$ par $a_k = 2k$, et

$$a_n = \begin{cases} a_{n-1} + 1 & \text{si pgcd}(a_{n-1}, n) = 1\\ 2n & \text{sinon.} \end{cases}$$

Montrer que la suite $(a_{n+1} - a_n)_{n \geq k}$ a une infinité de termes qui sont des nombres premiers.

Solution de l'exercice 8: Partons d'un entier n tel que $a_n = 2n$. Montrons par récurrence que si p est le plus petit facteur premier de n-1, alors pour tout $i \in \{0, \ldots, p-2\}$, $a_{n+i} = 2n+i$. En effet, c'est vrai pour i = 0, et si c'est vrai pour un certain i < p-2, alors

$$pgcd(n+i+1,2n+i) = pgcd(n+i+1,n-1) = pgcd(i+2,n-1) = 1$$

car i+2 < p, et donc i+2 est premier avec n-1 par définition de p, ce qui conclut la récurrence. De même, $pgcd(n+p-1,2n+p-2) = pgcd(p,n-1) = p \neq 1$, et donc $a_{n+p-1} = 2(n+p-1)$. En particulier,

$$a_{n+p-1} - a_{n+p-2} = 2n + 2p - 2 - (2n + p - 2) = p$$

est premier.

Puisque $a_k = 2k$, avons donc montré qu'il existe une infinité de n satisfaisant $\operatorname{pgcd}(a_{n-1}, n) \neq 1$, et que pour de telles valeurs de n, $a_n - a_{n-1}$ est premier.

Exercice 9 Soit t un entier naturel non-nul. Montrer qu'il existe un entier n > 1 premier avec t tel que pour tout entier $k \ge 1$, l'entier $n^k + t$ ne soit pas une puissance (c'est-à-dire qu'il ne soit pas de la forme m^r avec $m \ge 1$ et $r \ge 2$).

Solution de l'exercice 9: Pour que n soit premier avec t, on va le chercher sous la forme 1+ts où s est entier. On aura alors $n^k+t\equiv 1+t\pmod s$. En particulier, si s est divisible par (t+1), alors n^k+t l'est également.

On va d'abord traiter le cas où t+1 n'est pas une puissance. Dans ce cas, il suffirait de s'assurer qu'on peut choisir s de telle sorte que $n^k + t$ soit divisible par t+1, et que le quotient soit premier avec t+1. Pour cela, prenons $s = (t+1)^2$. Alors $n = 1 + t(t+1)^2$, et

$$n^{k} + t = \sum_{i=1}^{k} {k \choose i} t^{i} (t+1)^{2i} + 1 + t = (t+1)(a(t+1)+1)$$
termes divisibles par $(t+1)^{2}$

pour un certain entier a, donc on a gagné.

Supposons maintenant que t+1 soit une puissance : $t+1=m^r$ avec m qui n'est pas une puissance. Si on garde le même n que ci-dessus, on voit que si $n^k+t=b^d$ est une puissance (avec $d\geq 2$), alors t+1 est nécessairement une puissance d-ième, et donc d divise r. Ainsi, nous avons une borne sur les d tels que n^k+t est puissance d-ième pour un certain k. On constate alors qu'en remplaçant n par sa puissance r-ième, c'est-à-dire en posant $n=n_0^r$ où $n_0=1+t(t+1)^2$ (ce qui ne change pas le fait que t+1 divise n^k+t , que le quotient soit premier avec t+1, et que donc $n^k+t=b^d$ implique d|r comme ci-dessus), on arrive à écrire t comme une différence de deux puissances d-ièmes :

$$t = b^d - (n_0^{ke})^d$$

où e est l'entier naturel tel que r=de. Cela n'est pas possible car n_0 est grand par rapport à t. Plus précisément, nous avons :

$$t = b^{d} - (n_0^{ke})^{d} = (b - n_0^{ke})(b^{d-1} + b^{d-2}n_0^{ke} + \dots + bn_0^{ke(d-2)} + n_0^{ke(d-1)}) \ge n_0 > t,$$

contradiction. Donc pour tout k et pour tout d, $n^k + t$ n'est pas une puissance d-ième et nous avons terminé.