metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena-Poly[[diaqua[μ_2 -4-(4-carboxy-phenoxy)benzoato](μ_2 -4,4'-oxydibenzoato)praseodymium(III)] monohydrate]

Ping Li, Duo-Meng Su and Chang-Ge Zheng*

School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China Correspondence e-mail: cgzheng@jiangnan.edu.cn

Received 4 September 2013; accepted 24 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.025; wR factor = 0.059; data-to-parameter ratio = 13.0.

In the title compound, $\{[\Pr(C_{14}H_8O_5)(C_{14}H_9O_5)(H_2O)_2]\cdot H_2O\}_n$, the \Pr^{III} cation is eight-coordinated by six carboxyl O atoms from both a monoanionic 4-(4-carboxyphenoxy)-benzoate and a dianionic 4,4'-oxydibenzoate ligand (four bridging with two from a bidentate chelate interaction), and two O-atom donors from water molecules. A single water molecule of solvation is also present. The complex units are linked through carboxyl O:O' bridges giving a two-dimensional sheet polymer lying parallel to (001). An overall three-dimensional network structure is generated through intermolecular carboxylic acid and water $O-H\cdots O$ hydrogen bonds and weak $C-H\cdots O$ interactions.

Related literature

For the potential properties of metal-organic complexes involving polycarboxylate ligands, see: Li *et al.* (2011); Wang *et al.* (2004, 2005); Lin *et al.* (2010); Sun *et al.* (2009); Xu *et al.* (2011); Łyszczek & Mazur (2012). For similar structures, see: Thirumurugan & Natarajan (2004); Zhang *et al.* (2005).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\min} = 0.704$, $T_{\max} = 0.774$

20449 measured reflections 4972 independent reflections 4498 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.025 & 381 \ {\rm parameters} \\ WR(F^2) = 0.059 & {\rm H-atom\ parameters\ constrained} \\ S = 1.08 & \Delta\rho_{\rm max} = 0.59\ {\rm e\ \mathring{A}^{-3}} \\ 4972\ {\rm reflections} & \Delta\rho_{\rm min} = -0.51\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Selected bond lengths (Å).

Pr1-O9i	2.3983 (18)	Pr1-O11	2.4719 (18)
Pr1-O5	2.4105 (19)	Pr1-O10	2.5152 (19)
Pr1-O12 ⁱⁱ	2.412(2)	Pr1-O1	2.5163 (19)
Pr1-O8 ⁱⁱⁱ	2.4692 (19)	Pr1-O7 ⁱⁱⁱ	2.6534 (19)

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y, -z; (iii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z.

Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ \cdots A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O3-H3···O1 ^{iv}	0.82	2.02	2.822 (3)	166
$O10-H10B\cdots O2^{v}$	0.85	2.09	2.880 (3)	154
$O11-H11A\cdots O4^{vi}$	0.84	1.84	2.683 (3)	176
$O11-H11B \cdot \cdot \cdot O8^{vii}$	0.84	1.89	2.707 (3)	163
C9−H9···O3 ^{vi}	0.93	2.48	3.337 (4)	153
C25-H25···O13 ⁱⁱⁱ	0.93	2.59	3.454 (7)	155

Symmetry codes: (iii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (iv) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (v) x, -y + 1, $z - \frac{1}{2}$; (vi) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Research Institute of Element-Organic Chemistry of the East China Institute of Technology

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2278).

References

doi:10.1107/\$1600536813026421

Bruker (1997). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, X. X., Wei, Z. Q., Yue, S. T., Wang, N., Mo, H. H. & Liu, Y. L. (2011). J. Chem. Crystallogr. 41, 757–761.

metal-organic compounds

Lin, Y. W., Jian, B. R., Huang, S. C., Huang, C. H. & Hsu, K. F. (2010). *Inorg. Chem.*, 49, 2316–2324.

Łyszczek, R. & Mazur, L. (2012). Inorg. Chem. Commun. 15, 121–125.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sun, C. Y., Zheng, X. B., Li, L. C. & Jin, L. P. (2009). Inorg. Chim. Acta, 362, 325–330.

Thirumurugan, A. & Natarajan, S. (2004). Eur. J. Inorg. Chem. pp. 762–770.

Wang, Y. B., Sun, C. Y., Zheng, X. J., Gao, S., Lu, S. Z. & Jin, L. P. (2005). Polyhedron, 24, 823–830.

Wang, Y. B., Wang, Z. M., Yan, C. H. & Jin, L. P. (2004). J. Mol. Struct. 692, 177–186.

Xu, J., Su, W. P. & Hong, M. C. (2011). *Inorg. Chem. Commun.* 14, 1794–1797.
Zhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S., Li, Y. M., Zhang, H. S. & Wu, X. T. (2005). *J. Mol. Struct.* 748, 129–136.

Acta Cryst. (2013). E69, m586–m587 [doi:10.1107/S1600536813026421]

catena-Poly[[diaqua[μ_2 -4-(4-carboxyphenoxy)benzoato](μ_2 -4,4'-oxydibenzoato)praseodymium(III)] monohydrate]

Ping Li, Duo-Meng Su and Chang-Ge Zheng

1. Comment

Metal–organic frameworks (MOFs) with lanthanides have attracted much attention because of their abundant structural chemistry and valuable optical and magnetic properties (Lin *et al.*, 2010). In contrast to coordination polymers with other transition metals, the architecture of lanthanide coordination polymers is hard to control owing to large coordination numbers and flexible coordination geometries of the lanthanide atom. The ligand 4-(4-carboxyphenoxy)benzoic acid (H₂oba) can be deprotonated, giving Hoba⁻ or oba²⁻ species and as *V*-shaped ligands, they can offer more many coordination modes compared to a linear ligand. Owing to the nonlinear flexibility around the etheric oxygen, this ligand can readily generate helical coordination polymers (Łyszczek & Mazur, 2012).

In the title praseodymium(III) complex with 4-(4-carboxyphenoxy)benzoic acid, {[Pr(C₁₄H₁₁O₆)(C₁₄H₁₀O₆)(H₂O)₂]. H₂O}_n, the Pr^{III} cations have irregular eight-coordinate stereochemistry, the asymmetric unit comprising one Pr^{III} cation, an an Hoba⁻ ligand, an oba²⁻ ligand, two monodentate water molecules (O10 and O11) and one water molecule of solvation (O13) (Fig. 1). There are two types of coordination modes with the oba²⁻ and Hoba⁻ ligands: (*a*) two carboxylate groups of the oba²⁻ ligand adopt a bridging bidentate mode (O5, O12ⁱⁱ) and a bidentate chelate mode (O7ⁱⁱⁱ, O8ⁱⁱⁱ), respectively, connecting three Pr^{III} atoms; (*b*) one carboxylate group of the Hoba⁻ ligand adopts a bridging bidentate (O1, O9ⁱ) mode, connecting two Pr^{III} atoms. For symmetry codes, see Table 1. The carboxylic acid group (O4, O3) is uncoordinated. The Pr—O bond lengths [range 2.3983 (18)–2.6534 (19) Å] (Table 1) are comparable with those in similar Pr^{III} complexes (Thirumurugan & Natarajan, 2004; Zhang *et al.*, 2005). A two-dimensional coordination polymer is generated, lying parallel to (0 0 1). Adjacent layers are joined into a three-dimensional framework structure (Fig. 2) through intermolecular carboxylic acid and water O—H···O hydrogen bonds and weak C—H···O hydrogen-bonding interactions (Table 2).

2. Experimental

A mixture of 4-(4-carboxyphenoxy)benzoic acid (0.026 g, 0.1 mmol), $Pr(NO_3)_3$ 6H₂O (0.15 mmol, 62.2 mg), and deionized water (8 ml) was sealed in a teflon-lined stainless steel vessel (25 ml) and heated at 433 K for 72 h. The vessel was then cooled slowly to room temperature. Green block-like crystals were obtained by filtration and washed with water. Yield: 50.4 mg (47.5%, based on Pr). Elemental analysis: calcd. for $C_{28}H_{23}O_{13}Pr$, C 47.59%, H 3.25%. Found: C 47.48%, H 3.19%.

3. Refinement

C-Bound H atoms were were placed in calculated positions and were treated as riding, with C—H = 0.93 Å, with $U_{iso}(H)$ = 1.2 $U_{eq}(C)$. O-Bound H-atoms were also placed in calculated positions (O—H = 0.82–0.85 Å) and were allowed to ride with $U_{iso}(H)$ = 1.2–1.5 $U_{eq}(O)$.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1
The asymmetric unit of the title complex showing 30% probability displacement ellipsoids and the atom-numbering scheme. For symmetry codes: (i) -x, -y +1, -z; (ii) -x, -y, -z; (iii) x -1/2, y +1/2, z.

Figure 2 A packing diagram for the three-dimensional structure formed through O—H···O and C—H···O hydrogen-bonding interactions. Hydrogen bonds are indicated by dashed lines.

catena-Poly[[diaqua[μ_2 -4-(4-carboxyphenoxy)benzoato](μ_2 -4,4'-oxydibenzoato)praseodymium(III)] monohydrate]

Crystal data

$[Pr(C_{14}H_8O_5)(C_{14}H_9O_5)(H_2O)_2]\cdot H_2O$	F(000) = 2832
$M_r = 708.37$	$D_{\rm x} = 1.669 \; {\rm Mg} \; {\rm m}^{-3}$
Monoclinic, <i>C</i> 2/ <i>c</i>	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -C 2yc	Cell parameters from 9984 reflections
a = 27.3970 (17) Å	$\theta = 2.4-27.6^{\circ}$
b = 9.5764 (6) Å	$\mu = 1.80 \text{ mm}^{-1}$
c = 21.6754 (14) Å	T = 296 K
$\beta = 97.433 (1)^{\circ}$	Block, green
$V = 5639.1 (6) \text{ Å}^3$	$0.21 \times 0.16 \times 0.15 \text{ mm}$
Z=8	

D

4498 reflections with $I > 2\sigma(I)$	$h = -32 \rightarrow 27$
$R_{\rm int} = 0.026$	$k = -11 \rightarrow 11$
$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$	$l = -25 \rightarrow 25$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.059$	neighbouring sites
S = 1.08	H-atom parameters constrained
4972 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0163P)^{2} + 15.8309P]$
381 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\text{max}} = 0.59 \text{ e Å}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\min} = -0.51 \text{ e Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$	
Pr1	0.014443 (5)	0.250000 (14)	0.008512 (7)	0.02218 (6)	
C1	0.08267 (9)	-0.0154(3)	0.06113 (13)	0.0281 (6)	
C2	0.12798 (9)	-0.0851(3)	0.09282 (12)	0.0257 (6)	
C3	0.05948 (9)	0.5746 (3)	0.17173 (12)	0.0258 (6)	
C4	0.04362 (9)	0.5108(3)	0.10933 (12)	0.0254 (6)	
C5	0.21188 (10)	-0.2111 (3)	0.15102 (14)	0.0341 (7)	
C6	0.26088 (11)	0.8308(3)	0.39077 (15)	0.0377 (7)	
C7	0.33610 (11)	-0.3437(3)	0.18593 (14)	0.0397 (7)	
H7	0.3323	-0.3976	0.2207	0.048*	
C8	0.09428 (10)	0.6972(3)	0.28360 (13)	0.0327 (6)	
C9	0.15967 (11)	-0.0134 (3)	0.13644 (16)	0.0418 (8)	
Н9	0.1527	0.0785	0.1459	0.050*	
C10	0.08283 (12)	0.4950(3)	0.22016 (14)	0.0401 (7)	
H10	0.0867	0.3995	0.2148	0.048*	
C11	0.10043 (13)	0.5567 (4)	0.27647 (14)	0.0447 (8)	
H11	0.1162	0.5033	0.3089	0.054*	
C12	0.34745 (11)	-0.1805(3)	0.08407 (14)	0.0378 (7)	
H12	0.3513	-0.1246	0.0500	0.045*	
C13	0.29695 (11)	-0.2675(3)	0.15686 (14)	0.0324 (7)	
C14	0.05244 (12)	0.7155 (3)	0.18124 (14)	0.0365 (7)	
H14	0.0355	0.7690	0.1496	0.044*	
C15	0.31376 (12)	0.8545 (3)	0.41214 (17)	0.0430 (8)	
C16	0.17743 (11)	0.8314 (4)	0.41406 (14)	0.0432 (8)	

H16	0.1548	0.8484	0.4417	0.052*
C17	0.16187 (11)	0.7811 (3)	0.35461 (14)	0.0333 (7)
C18	0.13862 (12)	-0.2214 (3)	0.07976 (17)	0.0437 (8)
H18	0.1172	-0.2720	0.0513	0.052*
C19	0.20161 (12)	-0.0762(4)	0.16618 (16)	0.0459 (8)
H19	0.2225	-0.0279	0.1960	0.055*
C20	0.18108 (13)	-0.2837 (4)	0.10883 (18)	0.0492 (9)
H20	0.1884	-0.3754	0.0994	0.059*
C21	0.30232 (11)	-0.1854(4)	0.10597 (15)	0.0413 (8)
H21	0.2759	-0.1340	0.0866	0.050*
C22	0.38089 (11)	-0.3398(3)	0.16320 (14)	0.0357 (7)
H22	0.4071	-0.3926	0.1823	0.043*
C23	0.24464 (12)	0.7818 (4)	0.33152 (15)	0.0414 (8)
H23	0.2672	0.7660	0.3037	0.050*
C24	0.22675 (12)	0.8557 (4)	0.43135 (15)	0.0452 (8)
H24	0.2374	0.8894	0.4710	0.054*
C25	0.07024 (12)	0.7778 (3)	0.23706 (14)	0.0396 (7)
H25	0.0660	0.8730	0.2430	0.048*
C26	0.38714 (10)	-0.2577(3)	0.11215 (14)	0.0284 (6)
C27	0.19530 (12)	0.7562 (3)	0.31339 (15)	0.0404 (8)
H27	0.1847	0.7224	0.2737	0.048*
C28	0.43485 (10)	-0.2515 (3)	0.08701 (13)	0.0273 (6)
O1	0.05551 (7)	0.3854 (2)	0.10037 (9)	0.0348 (5)
O2	0.11178 (8)	0.7623 (2)	0.34028 (10)	0.0405 (6)
O3	0.34277 (8)	0.8348 (3)	0.36883 (12)	0.0494 (6)
H3	0.3715	0.8454	0.3840	0.074*
O4	0.32852 (9)	0.8911 (3)	0.46497 (12)	0.0614 (7)
O5	0.08076 (8)	0.1151 (2)	0.06299 (11)	0.0446 (6)
O6	0.25350 (8)	-0.2782(3)	0.18227 (11)	0.0452 (6)
O7	0.46781 (7)	-0.3427(2)	0.10035 (9)	0.0312 (4)
O8	0.44170 (7)	-0.1528 (2)	0.04974 (10)	0.0350 (5)
O9	0.01975 (7)	0.5838 (2)	0.06788 (9)	0.0328 (4)
O10	0.04446 (8)	0.1241 (2)	-0.08121 (10)	0.0385 (5)
H10A	0.0200	0.0888	-0.1040	0.058*
H10B	0.0591	0.1815	-0.1024	0.058*
O11	0.08179 (7)	0.38020 (19)	-0.03119 (9)	0.0326 (4)
H11B	0.0752	0.4617	-0.0446	0.039*
H11A	0.1106	0.3833	-0.0120	0.039*
O12	0.04866 (7)	-0.0880 (2)	0.03345 (10)	0.0393 (5)
O13	0.5392 (3)	0.6238 (7)	0.2092 (3)	0.251 (4)
H13B	0.5098	0.5933	0.2009	0.377*
H13A	0.5419	0.6668	0.1755	0.377*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.01793 (9)	0.02186 (9)	0.02589 (10)	0.00108 (5)	-0.00048 (6)	0.00062 (5)
C1	0.0228 (14)	0.0318 (16)	0.0294 (15)	0.0028 (12)	0.0028 (11)	0.0000 (12)
C2	0.0199 (13)	0.0250 (14)	0.0317 (15)	0.0013 (11)	0.0016 (11)	0.0019 (11)
C3	0.0234 (14)	0.0281 (14)	0.0245 (14)	-0.0003 (11)	-0.0014 (11)	-0.0007 (11)

C4	0.0202 (13)	0.0269 (14)	0.0289 (14)	-0.0007 (11)	0.0020 (11)	-0.0017 (11)
C5	0.0213 (15)	0.0440 (17)	0.0377 (17)	0.0088 (13)	0.0071 (12)	0.0143 (14)
C6	0.0304 (16)	0.0357 (17)	0.0446 (18)	-0.0017(13)	-0.0044 (13)	0.0023 (14)
C7	0.0328 (16)	0.0498 (19)	0.0375 (17)	0.0124 (14)	0.0086 (13)	0.0182 (15)
C8	0.0258 (15)	0.0468 (18)	0.0249 (15)	-0.0038(13)	0.0009 (11)	-0.0083(13)
C9	0.0391 (18)	0.0255 (15)	0.056(2)	0.0058 (13)	-0.0112 (15)	-0.0054 (14)
C10	0.054(2)	0.0275 (16)	0.0357 (17)	0.0031 (14)	-0.0073 (14)	0.0014 (13)
C11	0.056(2)	0.0457 (19)	0.0278 (16)	0.0031 (16)	-0.0100 (14)	0.0035 (14)
C12	0.0316 (16)	0.0418 (18)	0.0407 (17)	0.0061 (13)	0.0074 (13)	0.0163 (14)
C13	0.0248 (15)	0.0407 (17)	0.0322 (16)	0.0070 (12)	0.0053 (12)	0.0079 (13)
C14	0.0419 (18)	0.0323 (16)	0.0322 (16)	0.0088 (13)	-0.0073 (13)	-0.0025 (13)
C15	0.0335 (17)	0.0340 (17)	0.058(2)	0.0008 (14)	-0.0056 (16)	0.0016 (15)
C16	0.0330 (17)	0.064(2)	0.0319 (16)	-0.0041 (15)	0.0032 (13)	-0.0085 (15)
C17	0.0280 (16)	0.0407 (17)	0.0298 (16)	-0.0009(13)	-0.0012 (12)	-0.0018 (13)
C18	0.0370 (18)	0.0334 (17)	0.057(2)	0.0043 (14)	-0.0082 (15)	-0.0103 (15)
C19	0.0370 (18)	0.0427 (19)	0.053(2)	0.0028 (15)	-0.0151 (15)	-0.0004 (16)
C20	0.046(2)	0.0336 (17)	0.065(2)	0.0169 (15)	-0.0038 (17)	-0.0079 (16)
C21	0.0266 (16)	0.052(2)	0.0455 (19)	0.0139 (14)	0.0052 (13)	0.0185 (16)
C22	0.0276 (15)	0.0398 (17)	0.0395 (17)	0.0119 (13)	0.0040 (13)	0.0103 (14)
C23	0.0320 (18)	0.052(2)	0.0402 (18)	-0.0020 (14)	0.0054 (14)	-0.0041 (15)
C24	0.0392 (18)	0.058(2)	0.0354 (17)	-0.0057 (16)	-0.0077 (14)	-0.0089(15)
C25	0.048(2)	0.0332 (16)	0.0358 (17)	0.0049 (14)	-0.0032 (14)	-0.0105(13)
C26	0.0241 (15)	0.0284 (15)	0.0328 (16)	0.0021 (11)	0.0042 (12)	-0.0008(11)
C27	0.0337 (18)	0.057(2)	0.0291 (16)	-0.0031 (14)	-0.0003 (13)	-0.0080(14)
C28	0.0264 (15)	0.0236 (14)	0.0320 (15)	-0.0001 (11)	0.0036 (12)	-0.0045 (11)
O1	0.0362 (11)	0.0281 (11)	0.0372 (11)	0.0063 (9)	-0.0059(9)	-0.0082(9)
O2	0.0262 (11)	0.0669 (16)	0.0277 (11)	-0.0045 (10)	0.0008 (9)	-0.0187 (10)
O3	0.0271 (12)	0.0528 (15)	0.0660 (16)	-0.0030(11)	-0.0029 (11)	-0.0014 (12)
O4	0.0358 (13)	0.0807 (19)	0.0625 (17)	-0.0016 (13)	-0.0140 (12)	-0.0126 (14)
O5	0.0427 (13)	0.0291 (12)	0.0562 (14)	0.0126 (9)	-0.0158 (11)	-0.0028 (10)
O6	0.0261 (12)	0.0661 (15)	0.0452 (13)	0.0183 (10)	0.0115 (10)	0.0271 (11)
O7	0.0251 (10)	0.0284 (10)	0.0404 (11)	0.0060(8)	0.0058 (8)	0.0038 (9)
O8	0.0313 (11)	0.0269 (10)	0.0490 (13)	0.0038 (8)	0.0139 (9)	0.0085 (9)
O9	0.0336 (11)	0.0345 (11)	0.0276 (10)	0.0028 (9)	-0.0064(8)	0.0035 (9)
O10	0.0444 (13)	0.0315 (11)	0.0424 (12)	-0.0071 (9)	0.0161 (10)	-0.0033 (9)
O11	0.0248 (10)	0.0259 (10)	0.0462 (12)	0.0007 (8)	0.0009 (9)	0.0057 (9)
O12	0.0240 (11)	0.0488 (13)	0.0428 (12)	-0.0061 (9)	-0.0045 (9)	-0.0011 (10)
O13	0.354 (10)	0.169 (6)	0.185 (6)	0.015 (6)	-0.141(6)	0.009 (5)

Geometric parameters (Å, °)

Pr1—O9i	2.3983 (18)	C12—C26	1.389 (4)
Pr1—O5	2.4105 (19)	C12—H12	0.9300
Pr1—O12 ⁱⁱ	2.412 (2)	C13—C21	1.378 (4)
Pr1—O8iii	2.4692 (19)	C13—O6	1.379 (3)
Pr1—O11	2.4719 (18)	C14—C25	1.380 (4)
Pr1—O10	2.5152 (19)	C14—H14	0.9300
Pr1—O1	2.5163 (19)	C15—O4	1.216 (4)
Pr1—O7 ⁱⁱⁱ	2.6534 (19)	C15—O3	1.320 (4)
C1—O5	1.252 (3)	C16—C24	1.375 (4)

C1—O12	1.252 (3)	C16—C17	1.390 (4)
C1—C2	1.496 (4)	C16—H16	0.9300
C2—C18	1.375 (4)	C17—O2	1.379 (4)
C2—C9	1.381 (4)	C17—C27	1.380(4)
C3—C14	1.382 (4)	C18—C20	1.384 (5)
C3—C10	1.385 (4)	C18—H18	0.9300
C3—C4	1.497 (4)	C19—H19	0.9300
C4—O9	1.254 (3)	C20—H20	0.9300
C4—O1	1.266 (3)	C21—H21	0.9300
C5—C20	1.353 (5)	C22—C26	1.386 (4)
C5—C19	1.371 (5)	C22—H22	0.9300
C5—O6	1.404 (3)	C23—C27	1.380 (5)
C6—C24	1.385 (5)	C23—H23	0.9300
C6—C23	1.386 (4)	C24—H24	0.9300
C6—C15	1.480 (4)	C25—H25	0.9300
C7—C22	1.381 (4)	C26—C28	1.481 (4)
C7—C13	* /		0.9300
	1.381 (4)	C27—H27	
C7—H7	0.9300	C28—O7	1.262 (3)
C8—C11	1.367 (5)	C28—O8	1.273 (3)
C8—C25	1.369 (4)	O3—H3	0.8200
C8—O2	1.406 (3)	O10—H10A	0.8499
C9—C19	1.381 (4)	O10—H10B	0.8500
С9—Н9	0.9300	O11—H11B	0.8444
C10—C11	1.385 (4)	O11—H11A	0.8444
C10—H10	0.9300	O13—H13B	0.8542
C11—H11	0.9300	O13—H13A	0.8500
C12—C21	1.381 (4)		
O9i—Pr1—O5	153.69 (8)	O6—C13—C7	116.0 (3)
O9 ⁱ —Pr1—O12 ⁱⁱ	88.26 (7)	C25—C14—C3	120.8 (3)
O5—Pr1—O12 ⁱⁱ	107.34 (7)	C25—C14—H14	119.6
O9i—Pr1—O8iii	74.83 (7)	C3—C14—H14	119.6
O5—Pr1—O8 ⁱⁱⁱ	128.11 (7)	O4—C15—O3	123.6 (3)
O12 ⁱⁱ —Pr1—O8 ⁱⁱⁱ	78.82 (7)	O4—C15—C6	122.1 (3)
O9 ⁱ —Pr1—O11	70.57 (6)	O3—C15—C6	114.2 (3)
O5—Pr1—O11	83.78 (7)	C24—C16—C17	118.9 (3)
O12 ⁱⁱ —Pr1—O11	136.39 (7)	C24—C16—H16	120.5
O8 ⁱⁱⁱ —Pr1—O11	127.57 (6)	C17—C16—H16	120.5
O9 ⁱ —Pr1—O10	85.53 (7)	O2—C17—C27	123.8 (3)
O5—Pr1—O10	79.66 (7)	O2—C17—C16	115.5 (3)
O12 ⁱⁱ —Pr1—O10	71.94 (7)	C27—C17—C16	120.7 (3)
O8 ⁱⁱⁱ —Pr1—O10	145.13 (7)	C2—C18—C20	120.2 (3)
O11—Pr1—O10	68.85 (6)	C2—C18—H18	119.9
O9i—Pr1—O1	107.40 (6)	C20—C18—H18	119.9
05—Pr1—01	69.94 (7)	C5—C19—C9	118.9 (3)
O12"—Pr1—O1	148.79 (7)	C5—C19—C9	120.6
08 ⁱⁱⁱ —Pr1—01	` '	C9—C19—H19	120.6
	79.55 (7)		
011—Pr1—01	74.82 (7)	C5—C20—C18	120.0 (3)
O10—Pr1—O1	134.54 (7)	C5—C20—H20	120.0

O9 ⁱ —Pr1—O7 ⁱⁱⁱ	123.84 (6)	C18—C20—H20	120.0
O5—Pr1—O7 ⁱⁱⁱ	81.88 (7)	C13—C21—C12	119.2 (3)
O12 ⁱⁱ —Pr1—O7 ⁱⁱⁱ	71.13 (7)	C13—C21—H21	120.4
O8 ⁱⁱⁱ —Pr1—O7 ⁱⁱⁱ	50.58 (6)	C12—C21—H21	120.4
O11—Pr1—O7 ⁱⁱⁱ	152.06 (6)	C7—C22—C26	120.5 (3)
O10—Pr1—O7 ⁱⁱⁱ	131.07 (6)	C7—C22—H22	119.7
O1—Pr1—O7 ⁱⁱⁱ	77.77 (6)	C26—C22—H22	119.7
O5—C1—O12	122.6 (3)	C27—C23—C6	120.6 (3)
O5—C1—C2	117.8 (2)	C27—C23—H23	119.7
O12—C1—C2	119.7 (2)	C6—C23—H23	119.7
C18—C2—C9	118.8 (3)	C16—C24—C6	121.2 (3)
C18—C2—C1	121.0 (3)	C16—C24—H24	119.4
C9—C2—C1	120.2 (2)	C6—C24—H24	119.4
C14—C3—C10	118.9 (3)	C8—C25—C14	118.9 (3)
C14—C3—C4	120.3 (2)	C8—C25—H25	120.5
C10—C3—C4	120.8 (2)	C14—C25—H25	120.5
O9—C4—O1	122.7 (2)	C22—C26—C12	118.8 (3)
O9—C4—C3	118.9 (2)	C22—C26—C28	121.5 (3)
O1—C4—C3	118.4 (2)	C12—C26—C28	119.7 (3)
C20—C5—C19	121.1 (3)	C23—C27—C17	119.5 (3)
C20—C5—O6	119.2 (3)	C23—C27—H27	120.3
C19—C5—O6	119.6 (3)	C17—C27—H27	120.3
C24—C6—C23	119.0 (3)	O7—C28—O8	119.9 (3)
C24—C6—C15	119.3 (3)	O7—C28—C26	121.8 (2)
C23—C6—C15	121.7 (3)	O8—C28—C26	118.2 (2)
C22—C7—C13	119.8 (3)	O7—C28—Pr1 ^{iv}	64.72 (15)
C22—C7—H7	120.1	O8—C28—Pr1 ^{iv}	56.40 (14)
C13—C7—H7	120.1	C26—C28—Pr1 ^{iv}	166.2 (2)
C11—C8—C25	121.7 (3)	C4—O1—Pr1	120.84 (17)
C11—C8—O2	120.2 (3)	C17—O2—C8	118.1 (2)
C25—C8—O2	118.1 (3)	C15—O3—H3	109.5
C19—C9—C2	121.0 (3)	C1—O5—Pr1	123.47 (18)
C19—C9—H9	119.5	C13—O6—C5	117.6 (2)
C2—C9—H9	119.5	C28—O7—Pr1 ^{iv}	89.80 (16)
C3—C10—C11	120.5 (3)	C28—O8—Pr1 ^{iv}	98.18 (16)
C3—C10—H10	119.8	C4—O9—Pr1 ⁱ	170.37 (18)
C11—C10—H10	119.8	Pr1—O10—H10A	109.2
C8—C11—C10	119.0 (3)	Pr1—O10—H10B	109.2
C8—C11—H11	120.5	H10A—O10—H10B	109.4
C10—C11—H11	120.5	Pr1—011—H11B	116.8
C10—C11—I111 C21—C12—C26	121.1 (3)	Pr1—011—H11A	122.6
C21—C12—C20 C21—C12—H12	119.5	H11B—011—H11A	106.3
C26—C12—H12			
C21—C13—O6	119.5 123.3 (3)	C1—O12—Pr1 ⁱⁱ H13B—O13—H13A	172.3 (2) 99.7
	` '	П13В—013—П13А	99.1
C21—C13—C7	120.7 (3)		
O5—C1—C2—C18	-163.0 (3)	C7—C22—C26—C12	-0.5(5)
O12—C1—C2—C18	16.2 (4)	C7—C22—C26—C28	179.8 (3)
O5—C1—C2—C9	17.7 (4)	C21—C12—C26—C22	-0.4(5)
	` /		` /

Acta Cryst. (2013). E69, m586–m587

012 C1 C2 C0	-163.1 (3)	C21 C12 C26 C28	170 2 (2)
O12—C1—C2—C9 C14—C3—C4—O9	* *	C21—C12—C26—C28 C6—C23—C27—C17	179.2 (3)
C10—C3—C4—O9	-6.8 (4) 175.4 (3)	O2—C17—C27—C23	0.7 (5)
C14—C3—C4—O1	` '	C16—C17—C27—C23	178.2 (3)
C10—C3—C4—O1	172.3 (3)		-0.1 (5)
	-5.6 (4)	C22—C26—C28—O7	17.2 (4)
C18—C2—C9—C19	0.6 (5)	C12—C26—C28—O7	-162.4 (3)
C1—C2—C9—C19	179.9 (3)	C22—C26—C28—O8	-164.6 (3)
C14—C3—C10—C11	-2.3 (5)	C12—C26—C28—O8	15.7 (4)
C4—C3—C10—C11	175.5 (3)	C22—C26—C28—Pr1 ^{iv}	131.9 (7)
C25—C8—C11—C10	1.5 (5)	C12—C26—C28—Pr1 ^{iv}	-47.8 (9)
O2—C8—C11—C10	180.0 (3)	09—C4—01—Pr1	-16.0 (4)
C3—C10—C11—C8	0.2 (5)	C3—C4—O1—Pr1	165.01 (17)
C22—C7—C13—C21	-1.1 (5)	O9 ⁱ —Pr1—O1—C4	21.5 (2)
C22—C7—C13—O6	179.5 (3)	O5—Pr1—O1—C4	173.8 (2)
C10—C3—C14—C25	2.9 (5)	O12 ⁱⁱ —Pr1—O1—C4	-95.6 (2)
C4—C3—C14—C25	-175.0(3)	O8 ⁱⁱⁱ —Pr1—O1—C4	-48.8 (2)
C24—C6—C15—O4	2.3 (5)	O11—Pr1—O1—C4	85.0 (2)
C23—C6—C15—O4	-176.4(3)	O10—Pr1—O1—C4	122.68 (19)
C24—C6—C15—O3	-176.6(3)	O7 ⁱⁱⁱ —Pr1—O1—C4	-100.5(2)
C23—C6—C15—O3	4.7 (5)	C28 ⁱⁱⁱ —Pr1—O1—C4	-74.6(2)
C24—C16—C17—O2	-178.6(3)	C27—C17—O2—C8	8.6 (4)
C24—C16—C17—C27	-0.2(5)	C16—C17—O2—C8	-173.0(3)
C9—C2—C18—C20	-1.7(5)	C11—C8—O2—C17	73.5 (4)
C1—C2—C18—C20	179.0 (3)	C25—C8—O2—C17	-108.0(3)
C20—C5—C19—C9	-1.6(5)	O12—C1—O5—Pr1	-4.2 (4)
O6—C5—C19—C9	-177.9(3)	C2—C1—O5—Pr1	174.99 (17)
C2—C9—C19—C5	1.0 (5)	O9 ⁱ —Pr1—O5—C1	-115.7 (2)
C19—C5—C20—C18	0.6 (5)	O12 ⁱⁱ —Pr1—O5—C1	8.3 (3)
O6—C5—C20—C18	176.9 (3)	O8 ⁱⁱⁱ —Pr1—O5—C1	97.6 (2)
C2—C18—C20—C5	1.1 (6)	O11—Pr1—O5—C1	-128.5 (2)
O6—C13—C21—C12	179.5 (3)	O10—Pr1—O5—C1	-58.9(2)
C7—C13—C21—C12	0.2 (5)	O1—Pr1—O5—C1	155.5 (3)
C26—C12—C21—C13	0.6 (5)	O7 ⁱⁱⁱ —Pr1—O5—C1	75.6 (2)
C13—C7—C22—C26	1.3 (5)	C28 ⁱⁱⁱ —Pr1—O5—C1	82.5 (2)
C24—C6—C23—C27	-0.9(5)	C21—C13—O6—C5	5.7 (5)
C15—C6—C23—C27	177.9 (3)	C7—C13—O6—C5	-175.0(3)
C17—C16—C24—C6	-0.1(5)	C20—C5—O6—C13	92.8 (4)
C23—C6—C24—C16	0.6 (5)	C19—C5—O6—C13	-90.9 (4)
C15—C6—C24—C16	-178.2 (3)	O8—C28—O7—Pr1 ^{iv}	-12.0 (3)
C11—C8—C25—C14	-1.0 (5)	C26—C28—O7—Pr1 ^{iv}	166.1 (2)
O2—C8—C25—C14	-179.5 (3)	O7—C28—O8—Pr1 ^{iv}	13.1 (3)
C3—C14—C25—C8	-1.2 (5)	C26—C28—O8—Pr1 ^{iv}	-165.1 (2)

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z; (iii) x-1/2, y+1/2, z; (iv) x+1/2, y-1/2, z.

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
O3—H3···O1 ^v	0.82	2.02	2.822 (3)	166
O10—H10 <i>B</i> ····O2 ^{vi}	0.85	2.09	2.880(3)	154

O11—H11 <i>A</i> ···O4 ^{vii}	0.84	1.84	2.683 (3)	176	
O11—H11 <i>B</i> ···O8 ^{viii}	0.84	1.89	2.707 (3)	163	
C9—H9···O3 ^{vii}	0.93	2.48	3.337 (4)	153	
C25—H25···O13 ⁱⁱⁱ	0.93	2.59	3.454 (7)	155	

Symmetry codes: (iii) x-1/2, y+1/2, z; (v) -x+1/2, y+1/2, -z+1/2; (vi) x, -y+1, z-1/2; (vii) -x+1/2, y-1/2, -z+1/2; (viii) -x+1/2, -z+1/2; (viii) -x+1/2; (viiii) -x+1/2; (viii) -x+1/2; (viiii) -x+1/2; (viii) -x+1/2; (viiii) -x+1/2; (viiii) -x+1/2; (viiii) -x+1/2; (