第二次作业

葛旭

2020年4月16日

1.

define $f: R^n \to P^{n-1}$ $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$, and $x = (a_0, a_1, \dots, a_{n-1})^T$ one - to - one:every column vector $x = (a_0, a_1, \dots, a_{n-1})^T$ uniquely pins a polynomial $a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ onto: \forall polynomial $a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$, there is a column vector $x = (a_0, a_1, \dots, a_{n-1})^T$ in R^n , fullfilling $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ Linear: $(1) f(x + y) = (a_0 + b_0) + (a_1 + b_1) x + \dots + (a_{n-1} + b_{n-1}) x^{n-1}$ $= a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + b_0 + b_1 x + \dots + b_{n-1} x^{n-1} = f(x) + f(y)$ $(2) f(kx) = ka_0 + ka_1 x + \dots + ka_{n-1} x^{n-1} = kf(x)$

so \mathbb{R}^n and \mathbb{R}^{n-1} over the same field R (the field of real numbers) are isomorphic.

suppose
$$\begin{bmatrix} a_{11}\cdots a_{1k}\\ \cdot\\ \cdot\\ \cdot\\ a_{m1}\cdots a_{mk} \end{bmatrix} \text{ as a vector of X,mk} = n$$

$$\begin{bmatrix} a_{11} + b_{11} \cdots a_{1k} + b_{1k} \\ \vdots \\ \vdots \\ a_{m1} + b_{m1} \cdots a_{mk} + b_{mk} \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ \vdots \\ a_{mk} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{12} \\ \vdots \\ \vdots \\ b_{mk} \end{bmatrix}$$

so f fulfils one - to - one and onto and linear

so the map is not unique

in a word, each finite - dimensional linear space X over field K is isomorphic to K^n , $n = \dim X$ and this isomorphism is not unique.