Amendments to the Claims

Please amend the claims as follows:

1	[C1]	(currently amended) A process for preparing syngas, comprising:
2		partially oxidizing a first hydrocarbon portion with oxygen in a partial
3		oxidation reactor to produce a first reactor effluent;
4		cooling the first reactor effluent to a temperature from 650° to 1000°C, said
5		cooling including direct heat exchange with water introduced into the
6		first reactor effluent as a quench fluid;
7		supplying the cooled first reactor effluent to a reforming exchanger;
8		passing a second hydrocarbon portion with steam through a catalyst zone in
9		the reforming exchanger to form a second reactor effluent, wherein the
10		first and second hydrocarbon portions are supplied in a weight ratio of
11		from 40:60 to 60:40;
12		discharging the second reactor effluent from the catalyst zone to form an
13		admixture with the first reactor effluent;
14		passing the admixture across the catalyst zone in indirect heat exchange
15		therewith to cool the admixture and heat the catalyst zone; and
16		collecting the cooled admixture from the reforming exchanger.
1	[C2]	(canceled)

- 1 [C3] (currently amended) The process of claim $\underline{1}$ [[2]], wherein the first reactor
- 2 effluent cooling further comprises indirect heat exchange <u>downstream from</u>
- 3 the direct heat exchange and upstream from the reforming exchanger.
- 1 [C4] (currently amended) The process of claim 3, wherein the first reactor
- effluent cooling by indirect heat exchange comprises heating the second
- 3 hydrocarbon portion <u>upstream from the catalyst zone</u> in a cross exchange.
- 1 [C5] (canceled)
- 1 [C6] (canceled)
- 1 [C7] (original) The process of claim 1, wherein the catalyst zone comprises
- 2 catalyst tubes.
- 1 [C8] (currently amended) The process of claim $\underline{4}$ [[5]], wherein the second
- 2 hydrocarbon portion is supplied to a tube side of the reforming exchanger
- and passed through the catalyst tubes.
- 1 [C9] (currently amended) The process of claim 8 [[5]], wherein the cooled first
- 2 reactor effluent is supplied to a shell side inlet of the reforming exchanger.
- 1 [C10] (currently amended) The process of claim 9 [[7]], wherein the shell side
- 2 inlet is adjacent an outlet end of the catalyst tubes.
- 1 [C11] (canceled)
- 1 [C12] (canceled)
- 1 [C13] (canceled)

1	[C14] (currently amended) An apparatus for producing syngas, comprising:
2	partial oxidation reactor means for partially oxidizing a first hydrocarbon
3	portion with oxygen to produce a first reactor effluent;
4	means for cooling the first reactor effluent to a temperature from 650° to
5	1000°C, said cooling means including means for introducing water into
6	the first reactor effluent as a quench fluid for direct heat exchange;
7	means for supplying the cooled first reactor effluent to a reforming
8	exchanger;
9	means for passing a second hydrocarbon portion with steam through a
10	catalyst zone in the reforming exchanger to form a second reactor
11	effluent, wherein the first and second hydrocarbon portions are supplied
12	in a weight ratio of from 40:60 to 60:40;
13	means for discharging the second reactor effluent from the catalyst zone to
14	form an admixture with the first reactor effluent;
15	means for passing the admixture across the catalyst zone in indirect heat
16	exchange therewith to cool the admixture and heat the catalyst zone;
17	means for collecting the cooled admixture from the reforming exchanger;
18	<u>and</u>
19	means for shift converting the collected admixture to increase hydrogen
20	content.

8	direct heat exchange with water introduced into the first reactor
9	effluent as a quench fluid; and
10	indirect heat exchange in a cross exchange downstream from the
11	direct heat exchange and upstream from the reforming
12	exchanger comprising heating the second hydrocarbon portion
13	upstream from the catalyst zone;
14	supplying the cooled first reactor effluent to a reforming exchanger;
15	passing a second hydrocarbon portion with steam through a catalyst zone in
16	the reforming exchanger to form a second reactor effluent, wherein the
17	first and second hydrocarbon portions are supplied in a weight ratio of
18	from 40:60 to 60:40;
19	discharging the second reactor effluent from the catalyst zone to form an
20	admixture with the first reactor effluent;
21	passing the admixture across the catalyst zone in indirect heat exchange
22	therewith to cool the admixture and heat the catalyst zone; and
23	collecting the cooled admixture from the reforming exchanger.
1	[C26] (canceled)
1	[C27] (canceled)
1	[C28] (canceled)
1	[C29] (canceled)

- 1 [C30] (canceled)
- 1 [C31] (previously presented) The process of claim 25, wherein the catalyst zone
- 2 comprises catalyst tubes.
- 1 [C32] (currently amended) The process of claim 31 [[29]], wherein the second
- 2 hydrocarbon portion is supplied to a tube side of the reforming exchanger
- and passed through the catalyst tubes.
- 1 [C33] (currently amended) The process of claim <u>32</u> [[29]], wherein the cooled first
- 2 reactor effluent is supplied to a shell side inlet of the reforming exchanger.
- 1 [C34] (currently amended) The process of claim 33 [[31]], wherein the shell side
- 2 inlet is adjacent an outlet end of the catalyst tubes.
- 1 [C35] (canceled)
- 1 [C36] (canceled)
- 1 [C37] (canceled)
- 1 [C38] (new) The process of claim 1, wherein the partial oxidation reactor,
- 2 <u>catalytic reactor and the cooling of the first reactor effluent are operated to</u>
- 3 <u>favor hydrogen production over carbon monoxide production.</u>
- 1 [C39] (new) The process of claim 1, further comprising shift converting the
- 2 <u>collected admixture to increase hydrogen content.</u>

- 1 [C40] (new) The process of claim 1, wherein the cooled first reactor effluent
- 2 supplied to the reforming exchanger has a water content in excess of
- 3 <u>stoichiometric for shift conversion of CO.</u>

Respectfully submitted,

/Daniel N. Lundeen/

Daniel N. Lundeen Reg. No. 31,177 Lundeen & Dickinson, L.L.P. 1916 Baldwin Houston, Texas 77002 (713) 652-2555 (713) 652-2556 Fax ATTORNEY FOR APPLICANT