Trabajo Práctico Nro 9

Sistema Formal L – Cheatsheet

Axiomas del sistema L

```
• L1: A → (B → A)
• L2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))
• L3: ((¬A → ¬B) → (B → A))
```

Regla de Inferencia

 Modus Ponens (MP) Si A y A \rightarrow B, entonces B.

Teoremas Utilizables

- Silogismo Hipotético (SH) De $A \rightarrow B y B \rightarrow C$, se deduce $A \rightarrow C$. Metateorema de la Deducción
- Si $\Gamma \cup \{A\} \vdash L B$, entonces $\Gamma \vdash L (A \rightarrow B)$.

Ejercicio 1. Dada la siguiente demostración sintáctica válida en L:

```
1. (((\neg p) \rightarrow (\neg (q \rightarrow r))) \rightarrow ((q \rightarrow r) \rightarrow p))
2. ((\neg p) \rightarrow (\neg (q \rightarrow r)))
3. ((q \rightarrow r) \rightarrow p)
```

a) Identificar el conjunto Γ con menor cantidad de fórmulas bien formadas (fbfs) y la fórmula A tal que Γ | . Indicar, si es posible, que axioma, hipótesis o regla de L A inferencia fue aplicado en cada paso de la demostración.

```
1. (((\neg p) \rightarrow (\neg (q \rightarrow r))) \rightarrow ((q \rightarrow r) \rightarrow p))
    Axioma en mi opinión
```

- A := p
- $B := (q \rightarrow r)$

L3: ((¬A) → (¬B)) → (B → A)
 Literalmente un paso, lo usa para modus poens en el paso 3.

$$2. ((\neg p) \rightarrow (\neg (q \rightarrow r)))$$

Acá habría que sumar una FBF porque tiene que ser una hipótesis.

3. $((q \rightarrow r) \rightarrow p)$ modus poens, el paso 2 es A y el paso 1 es B en el modus poens.

b) ¿Es A un teorema de L? Justificar.

A priori no porque se uso una hipótesis en la demostración no es un teorema.

c) ¿Es A tautología? Justificar.

No. Como A no es un teorema entonces no es una tautologia.

Ejercicio 2. Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

Ayuda: es posible utilizar, si es necesario, propiedades ya demostradas en el libro de Hamilton, como por ejemplo, metateorema de la Deducción, silogismo hipotético (SH), y otros teoremas ya demostrados en el libro (ver prop 2.11a y prop 2.11b).

I.
$$\downarrow L (((\neg A) \rightarrow A) \rightarrow A)$$

Es un ejemplo del libro 2.11b y ya esta demostrado. Usando el meta teorema de la deducción. Pero los pasos para hacerlo son:

Demostración: ((a) apareció en el ejemplo 2.7, pero lo incluimos aquí para ilustrar la simplificación resultante del uso de la nueva regla SH.) Ad (a):

$$(1) \quad (\sim \mathcal{B} \rightarrow (\sim \mathcal{A} \rightarrow \sim \mathcal{B})) \qquad (I1)$$

$$(2) \quad (\sim \mathcal{A} \rightarrow \sim \mathcal{B}) \rightarrow (\mathcal{B} \rightarrow \mathcal{A}) \qquad (I3)$$

$$(3) \quad (\sim \mathcal{B} \rightarrow (\mathcal{B} \rightarrow \mathcal{A})) \qquad (1), (2) SH$$
Ad (b):
$$(1) \quad (\sim \mathcal{A} \rightarrow \mathcal{A}) \qquad \text{hipótesis}$$

$$(2) \quad (\sim \mathcal{A} \rightarrow (\sim \sim (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{A})) \qquad (L1)$$

$$(3) \quad (\sim \sim (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{A}) \rightarrow (\mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A})) \qquad (L3)$$

$$(4) \quad (\sim \mathcal{A} \rightarrow (\mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A}))) \rightarrow ((\sim \mathcal{A} \rightarrow \mathcal{A})) \qquad (2), (3) SH$$

$$(5) \quad (\sim \mathcal{A} \rightarrow (\mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A}))) \rightarrow ((\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A}) \rightarrow (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow (\sim \mathcal{A} \rightarrow \mathcal{A})) \qquad (L2)$$

$$(6) \quad (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow (\sim \mathcal{A} \rightarrow \mathcal{A})) \rightarrow (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A}) \qquad (1), (6) MP$$

$$(7) \quad (\sim \mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A})) \rightarrow ((\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A}) \qquad (1), (6) MP$$

$$(1), (6)$$

Entonces se prueba que $(\neg A) \rightarrow A) \mid L A$ y por teorema de la deducción $\mid L ((\neg A) \rightarrow A) -> A)$

II. $orange L (((\neg B) \rightarrow (\neg A)) \rightarrow (((\neg B) \rightarrow A) \rightarrow B))$

Paso	Resultado	Aplicación	
1	$((\neg B) \to (\neg A))$	Hipotesis	
2	$(((\neg B) \rightarrow (\neg A)) \rightarrow (A \rightarrow B))$	Axioma L3	
3	(A → B)	MP 1 y 2	
4	$((\neg B) \to A)$	Hipotesis	
5	$((\neg B) \rightarrow B)$	SH entre 3 y 4	
6	((((¬B)->B)->B)	Teorema 2.11b	
7	В	MP 5 y 6	Objetivo 2

Explicación:

- 1. Hipótesis $((\neg B) \rightarrow (\neg A))$
 - Agarramos el cachito que esta al lado izquierdo del entonces, suele ser algo util.
- 2. L3 $(((\neg B) \rightarrow (\neg A)) \rightarrow ((A \rightarrow B)))$
 - Reescribimos el axioma para que B este en el lugar de A y viceversa, esto hacer que L3 tenga la hipótesis de (1) este al inicio
- 3. MP entre 1 y 2, $A \rightarrow B$

- Modus ponens, tomamos que $A = ((\neg B) \to (\neg A))$ y $A \to B = (((\neg B) \to (\neg A)) \to ((A \to B)))$.
- 4. Hipótesis $((\neg B) \rightarrow A)$
 - Acá no podes hacer nada más así que tomas la siguiente parte a la izquierda del entonces pero de la derecha.
- 5. Silogismo entre 4 y 3, $(\neg B) \rightarrow B$
 - Si de $(\neg B) \rightarrow A$ y de $A \rightarrow B$ entonces $(\neg B) \rightarrow B$
- 6. Propiedad libro $((\neg B \rightarrow B) \rightarrow B)$
 - Los teoremas ya probados son instanciados como los axiomas.
- 7. MP entre 5 y 6, B

$$-*A=(\neg B) \rightarrow B \text{ y A->B}=((\neg B \rightarrow B) \rightarrow B)*$$

Con esto nos queda $\{((\neg B) \rightarrow (\neg A)), ((\neg B) \rightarrow A)\}L$ B

Aplicamos 2 veces Teorema de la deducción y queda el resultado pedido

III. $\{((A \rightarrow B) \rightarrow C), B\} \vdash L (A \rightarrow C)$

Paso	Resultado	Aplicación	
1	В	Hipotesis	Ya que la tengo la pongo
2	$((A \to B) \to C)$	Hipótesis	Ya que la tengo la pongo
3	Α	Hipótesis	Después la saco con teorema de deducción
4	$(B \rightarrow (A \rightarrow B))$	L1	L1 pero con B y A intercambiados
5	(A → B)	MP 4 y 1	Como tengo B por hipotesis, tengo A -> B por el L1 reescrito
6	С	MP 5 y 2	Como tengo $(A \rightarrow B)$ y $((A \rightarrow B) \rightarrow C)$ entonces por MP C se consigue
7	(A → C)	Teorema	Teorema de la deducción

No es cierto, por contra ejemplo:

- $\bullet \quad \Gamma = \{P \rightarrow Q, \, P\}$
- A = Q

No se puede probar A, ya que para hacer modus poens con P -> Q necesito P, y viceversa.

Ejercicio 4. Sea A una fbf y Γ un conjunto de fbfs. Si se cumple $\Gamma \mid LA$, ¿Es cierto que vale $\mid LA$ para todo A y

para todo Γ? Justificar.

Si se cumple que $\Gamma
mathbb{|} L A$ eso no implica que $\mbox{|} L A$ (que sea teorema), contra ejemplo: Si Γ = P entonces se cumple por identidad Γ -LP, sin embargo Γ ={} y \mathbb{|} LP no se cumple porque no hay información, no es teorema.

Ejercicio 5. Determinar si las siguientes afirmaciones son válidas o no en el sistema formal L. Justificar en cada caso.

$$\mathsf{I.}\ \{q\} \,\big|\, L\ (p \to q)$$

Paso	Resultado	Aplicación
1	q	Hipotesis
2	р	Hipotesis
3	(q -> (p -> q))	L1
4	p -> q	MP 1 y 3
5	q	MP 2 y 4
6	p -> q	Teorema de la deducción

II. $\{p \rightarrow q\} \mid L(q)$

Por intuición no se puede resolver porque no hay con que hacer MP a simple vista para sacar q, falta p en las hipótesis.

Ejercicio 6. Sean A, B y C fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \cup \{A, B\} \mid L C$ y también se sabe que . $\Gamma \mid L A$.

I. ¿Es cierto que $\Gamma \mid L (C \rightarrow B)$? Justificar.

Si aplicamos teorema de la deducción entonces sacaremos que $\Gamma \mid L (C \rightarrow B)$ es equivalente a $\{C\} \cup \Gamma \mid L (B)$, como esto no es equivalente a $\Gamma \cup \{A, B\} \mid L C$ o a $\Gamma \mid L A$ no podemos afirmar que es cierto.

II. ¿Es cierto que \vdash (A) ? Justificar.

No se podría afirmar porque no sabemos si el $\Gamma \mid L$ A se refiere a conjunto vacío, si Γ fuera conjunto vacío ahí entonces si sería cierto \mid (A). Probado el en punto 4.

Ejercicio 7. ¿Es el sistema formal L decidible? Justificar. Ayuda: si es decidible, debería ser posible determinar (decidir) para cada fbf, si es o no teorema de L.

El sistema formal L es decidible:

- Decidible en cuanto a si una formula es teorema o no.
- Si una formula es teorema entonces es tautologia.
- Usando tablas de verdad, podemos en una cantidad limitada de pasos y siempre terminar resolviendo de una fórmula es una tautologia y por lo tanto un teorema del sistema.
 Por otro lado:
- No sé si se puede aplicar lo de hacer axiomas y eso de forma mecánica en una serie de pasos, eso se ve más difícil.