Incertidumbre

SCALAB

Universidad Carlos III de Madrid

Incertidumbre

Confianza que tenemos deun suceso.

En este tema

Incertidumbre

Razonamiento Probabilístico

Introducción

Razonamiento Probabilístico

Probabilidades

Razonamiento en IA

Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

En este tema

Incertidumbre

Razonamiento Probabilístico

Introducción

Razonamiento Probabilístico

Probabilidades

Razonamiento en IA

Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Incertidumbre en IA

- ► En lógica clásica expresamos certeza absoluta: verdadero o falso
 - ► Maria trabaja en Google → trabaja(Maria, Google)
 - En los Sistemas de Producción los hechos en la BH son ciertos
- Incertidumbre
 - tiempo de mañana, tráfico esta tarde, posición de un vehículo
- Soluciones simples
 - Omitir la incertidumbre
 - Representar los diferentes resultados con una disyunción.
 - buen tiempo OR mal tiempo
 - Necesitaríamos nuevos algoritmos
 - ► SI buen tiempo ENTONCES jugar al tenis → ???
- Es ésto suficiente?

Representación de la incertidumbre

Probabilidades

- Con una probabilidad del 90% mañana lloverá
- Razonamiento probabilístico, redes bayesianas

Conceptos vagos

- Juan es bajo, hace frío
- Lógica borrosa

Razonamiento con incertidumbre

Historia

- ► Teorema de Bayes (1763)
- Lógica borrosa (Zadeh, 1965)
- ► Factores de certeza en sistemas expertos: MYCIN (1976), PROSPECTOR (1979)
- Teoría Dempster-Shafer (1976)
- Redes bayesianas (Pearl, 1986)
- Secuencias de decisiones: MDPs, HMMs, POMDPs

En este tema

Incertidumbre

Razonamiento Probabilístico Introducción

Razonamiento Probabilístico

Probabilidades

Razonamiento en IA

Redes Bayesianas Razonamiento Probabilístico en el tiempo Lógica Borrosa

En este tema

Incertidumbre

Razonamiento Probabilístico Introducción

Razonamiento Probabilístico

Probabilidades

Razonamiento en IA

Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Interpretación de las probabilidades

La probabilidad puede interpretarse como una medida de:

- la proporción de veces en que algo es cierto.
 - ▶ De 22 estudiantes, 20 aprobaron el examen
 - Suele referirse a propiedades físicas
 - que se pueden medir experimentalmente
- el grado de creencia en que algo es cierto
 - ► Tengo una certeza del 80% de que el Real Madrid ganará la liga
 - Puede variar dependendiendo de la persona o sistema inteligente

Interpretación de las probabilidades

La probabilidad puede interpretarse como una medida de:

- la proporción de veces en que algo es cierto.
 - ► De 22 estudiantes, 20 aprobaron el examen
 - Suele referirse a propiedades físicas
 - que se pueden medir experimentalmente
- el grado de creencia en que algo es cierto
 - ► Tengo una certeza del 80% de que el Real Madrid ganará la liga
 - Puede variar dependendiendo de la persona o sistema inteligente

El cálculo de probabilidades no depende de la interpretación

- Una probabilidad toma valores en [0,1]
- ightharpoonup Probabilidad = 0 \rightarrow falso
- ▶ Probabilidad = 1 → verdadero

Variables aleatorias

Lógica proposicional

- Los estados se describen como conjuntos de variables booleanas: p, q, r
- Una interpretación es una asignación de valores de verdad (verdadero, falso) a las variables p = V, q = F, r = V.

Variables aleatorias

Lógica proposicional

- Los estados se describen como conjuntos de variables booleanas: p,q,r
- ▶ Una interpretación es una asignación de valores de verdad (verdadero, falso) a las variables p = V, q = F, r = V.

Teoría de probabilidades

▶ Usamos un conjunto definido de variables aleatorias $X, Y \dots$, que pueden tomar valores en un dominio:

$$X \in \{1, 2, 3\}, Y \in \{\text{azul}, \text{rojo}\}$$

- ► El valor asociado a una variable aleatoria es desconocido
- Podemos asignar una probabilidad a cada valor posible

$$P(X = 1) = 0.2, P(X = 2) = 0.5, P(X = 3) = 0.3$$

Estas probabilidades definen una distribución de probabilidad

Ejemplo

Se tienen dos dados equilibrados. Indique las variables aleatorias, con sus dominios, y la distribución de probabilidad. ¿Cuál es la probabilidad de que la suma de ambos dados sea 3?

Ejemplo

Se tienen dos dados equilibrados. Indique las variables aleatorias, con sus dominios, y la distribución de probabilidad. ¿Cuál es la probabilidad de que la suma de ambos dados sea 3?

- Variables aleatorias
 - $ightharpoonup D_1 \in \{1, 2, 3, 4, 5, 6\}$
 - $D_2 \in \{1, 2, 3, 4, 5, 6\}$

Eventos

► El espacio muestral, Ω , es el conjunto de todos los posibles resultados de un experimento aleatorio

$$\Omega = \{(1,1), (1,2), (1,3), \dots, (2,1), (2,2), \dots (6,6)\}$$

▶ Un evento (o suceso) es cualquier subconjunto del espacio muestral, $e \subseteq \Omega$:

Los dos dados suman 3
$$\rightarrow \{(1,2),(2,1)\}$$
 Comohay 2 no es alomico

▶ Un evento atómico $e \in \Omega$ es un evento de un único elemento y define completamente de un estado del mundo

El primer dado tiene un 1 y el segundo dado tiene un 2 \rightarrow (1,2)

Como salohay

Distribución de probabilidad conjunta => P(0,02) Day Oz toma unvolor.

Representa la proba de que ouvra.

▶ Una distribución de probabilidad asigna a cada evento $e \in \Omega$, un valor que representa la probabilidad, P(e), de que ese evento ocurra

Hay une probabilidad para coda evento del espacio muestral. Para haller P(e) debemos tener datos de e.

Propiedades

$$ightharpoonup 0 \le P(e) \le 1$$

$$0 \le P(e) \le 1$$

$$\sum_{e \in \Omega} P(e) = 1$$

- ▶ Una distribución de probabilidad asigna a cada evento $e \in \Omega$, un valor que representa la probabilidad, P(e), de que ese evento ocurra
- Propiedades
 - ▶ $0 \le P(e) \le 1$
 - $\triangleright \sum_{e \in \Omega} P(e) = 1$
- ► Ejemplo (dados equilibrados)

$$P(D_1 = 1, D_2 = 1) = P(D_1 = 1, D_2 = 2) = \dots = P(D_1 = 1, D_2 = 6) = P(D_1 = 2, D_2 = 1) = \dots = P(D_1 = 6, D_2 = 6) = \frac{1}{36}$$
.

La probabilidad de un evento no atómico es la suma de las probabilidades de todos los eventos atómicos que lo componen

Le suman los posibles.

$$P(A) = \sum_{e \in A} P(e)$$

Teoreme de la probabilidad botal:

Kegla del producto:

La probabilidad de un evento no atómico es la suma de las probabilidades de todos los eventos atómicos que lo componen

$$P(A) = \sum_{e \in A} P(e)$$

Probabilidad de que los dos dados sumen 3

$$P(D_1 + D_2 = 3) = P(D_1 = 1, D_2 = 2) + P(D_1 = 2, D_2 = 1) = \frac{2}{36} = \frac{1}{18}$$

Probabilidad a posteriori: Sobrema observación (evidencia)

Tras ver nubes regras

Probabilidad a priori

Probabilido que algo carra wando no tenemos información.

- La probabilidad a priori representa el grado de creencia en algo en cuando no se cuenta con ninguna otra información
 - Pelluria 10 mareo) = 0'3

► Ejemplo (dado)

$$P(D_1 = 1) = P(D_1 = 2) = \dots = P(D_1 = 6) = \frac{1}{6}$$

La distribución de probabilidad de una variable se suele representar con un vector

$$P(D_1) = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

Distribución de probabilidad conjunta

- La distribución de probabilidad conjunta define la distribución de probabilidad de un conjunto de variables
- ► Ejemplo (2 dados)

$$P(D_1, D_2)$$

 Dada una distribución conjunta, la probabilidad de una variable se obtiene marginando

$$P(D_1 = 1) = \sum_{\{e \text{ tal que } D_1 = 1\}} P(D_1, D_2)$$

$$P(D_1 = 1) = P(D_1 = 1, D_2 = 1) + \ldots + P(D_1 = 1, D_2 = 6)$$

$$P(D_1 = 1) = \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{6}{36} = \frac{1}{6}$$

Ejemplo distribución conjunta D: dolor & dienko silm E: enquela P(D.E.C)

De los registros de pacientes de un odontólogo obtenemos la siguiente tabla, sobre un total de 1000 casos, que relaciona síntoma observado (si tiene o no dolor de dientes) y resultado de la exploración (la sonda dental se engancha o no), con el diagnóstico final del mismo (tiene o no caries).

	dolorDeDientes		¬ dolorDeDientes	
	engancha – engancha		engancha	\neg engancha
caries	108	12	72	8
¬ caries	16	64	144	576

- ¿Cuál es la distribución de probabilidad conjunta?
- ¿Cuál es la probabilidad de que un paciente tenga caries, P(caries)?
- ¿Cuál es la probabilidad de que la sonda se enganche pero el paciente no tenga dolor de dientes $P(\neg dolor De Dientes, engancha)$?

Ejemplo distribución conjunta

De los registros de pacientes de un odontólogo obtenemos la siguiente tabla, sobre un total de 1000 casos, que relaciona síntoma observado (si tiene o no dolor de dientes) y resultado de la exploración (la sonda dental se engancha o no), con el diagnóstico final del mismo (tiene o no caries).

	dolorDeDientes		¬ dolorDeDientes	
	engancha – engancha		engancha	¬ engancha
caries	0.108	0.012	0.072	0.008
¬ caries	0.016	0.064	0.144	0.576

- ► Cuál es la distribución de probabilidad conjunta? P($\mathfrak{D}, \mathcal{E}, \mathcal{C}$) P(Caries, DolorDeDientes, Engancha)
- P(c=si)

 ➤ ¿Cuál es la probabilidad de que un paciente tenga caries, P(caries)?
- ightharpoonup ¿Cuál es la probabilidad de que la sonda se enganche pero el paciente no tenga dolor de dientes $P(\neg dolor De Dientes, engancha)$?

Ejemplo distribución conjunta

De los registros de pacientes de un odontólogo obtenemos la siguiente tabla, sobre un total de 1000 casos, que relaciona síntoma observado (si tiene o no dolor de dientes) y resultado de la exploración (la sonda dental se engancha o no), con el diagnóstico final del mismo (tiene o no caries).

	dolorDeDientes		\neg dolorDeDientes	
	engancha – engancha		engancha	¬ engancha
caries	0.108	0.012	0.072	800.0
¬ caries	0.016	0.064	0.144	0.576

¿Cuál es la distribución de probabilidad conjunta? P(Caries, DolorDeDientes, Engancha)

Alnosur atomico

► ¿Cuál es la probabilidad de que un paciente tenga caries, P(caries)?

$$P(\text{caries}) = \sum_{caries} P(\text{Caries}, \text{DolorDeDientes}, \text{Engancha}) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

ightharpoonup ¿Cuál es la probabilidad de que la sonda se enganche pero el paciente no tenga dolor de dientes $P(\neg dolor De Dientes, engancha)$?

Ejemplo distribución conjunta

De los registros de pacientes de un odontólogo obtenemos la siguiente tabla, sobre un total de 1000 casos, que relaciona síntoma observado (si tiene o no dolor de dientes) y resultado de la exploración (la sonda dental se engancha o no), con el diagnóstico final del mismo (tiene o no caries).

	dolorDeDientes		¬ dolorDeDientes	
	engancha – engancha		engancha	¬ engancha
caries	0.108	0.012	0.072	0.008
¬ caries	0.016	0.064	0.144	0.576

- ¿Cuál es la distribución de probabilidad conjunta?
 P(Caries, DolorDeDientes, Engancha)
- ightharpoonup ¿Cuál es la probabilidad de que un paciente tenga caries, P(caries)?

$$P(\text{caries}) = \sum_{caries} P(\text{Caries}, \text{DolorDeDientes}, \text{Engancha}) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

> ¿Cuál es la probabilidad de que la sonda se enganche pero el paciente no tenga dolor de dientes $P(\neg \text{dolorDeDientes}, \text{engancha})$? Suma de la pretion de la pretion

Probabilidad a posteriori (condicional)

- Se utiliza cuando se ha obtenido alguna evidencia que modifica el conocimiento sobre el dominio, de manera que la probabilidad a priori no es aplicable.
- Se calcula en términos de probabilidades condicionadas

$$P(A|B) = \frac{P(A \land B)}{P(B)}$$
 siempre que $P(B) > 0$

Compavar probabilidades condicionadas. Aveles no es necesorio

$$P(A=Si/B=b1) = \frac{P(A=Si,B=b1)}{P(B=b1)} = \frac{P(A=Si,B=b1)}{P(B=b1)} = \frac{P(A=Si,B=b1)}{P(B=b1)} = \frac{P(A=Si,B=b1)}{P(B=b1)} = \frac{P(A=no,B=b1)}{P(B=b1)}$$

Constanted hornoclitación.

$$P(A=no/B=b1) = \frac{P(A=no,B=b1)}{P(B=b1)} = \frac{P(A=no,B=b1)}{P(B=b1)}$$

$$\alpha 0'6 + \alpha 0'7 = 1$$
; $\alpha = \frac{1}{RB = 4} = \frac{1}{0'6 + 0'7} = P(B = 61) = 0'6 + 0'7$

Probabilidad a posteriori (condicional)

- ➤ Se utiliza cuando se ha obtenido alguna evidencia que modifica el conocimiento sobre el dominio, de manera que la probabilidad a priori no es aplicable.
- Se calcula en términos de probabilidades condicionadas

$$P(A|B) = \frac{P(A \land B)}{P(B)}$$
 siempre que $P(B) > 0$

- ightharpoonup P(A|B) puede interpretarse como la probabilidad actualizada de A, una vez que B ha sido observado
- Regla del producto

$$P(A \wedge B) = P(A/B)P(B)$$

$$P(A \wedge B) = P(B/A)P(A)$$

Probabilidad Condicional (a posteriori)

 Una distribución de probabilidad condicional se puede representar como una matriz o tabla n-dimensional (n es el número de variables)

$$P(X \mid Y) = \begin{pmatrix} P(X = x_1 \mid Y = y_1) & P(X = x_1 \mid Y = y_2) & \dots & P(X = x_1 \mid Y = y_n) \\ P(X = x_2 \mid Y = y_1) & P(X = x_2 \mid Y = y_2) & \dots & P(X = x_2 \mid Y = y_n) \\ \dots & \dots & \dots & \dots \\ P(X = x_m \mid Y = y_1) & P(X = x_m \mid Y = y_2) & \dots & P(X = x_m \mid Y = y_n) \end{pmatrix}$$

Las columnas de esta matriz suman uno (son distribuciones de probabilidad!)

	dolorDeDientes		eg dolorDeDientes	
	engancha - engancha		engancha	\neg engancha
caries	0.108	0.012	0.072	800.0
¬ caries	0.016	0.064	0.144	0.576

Se observa que un paciente tiene dolor ¿Cuál es la probabilidad de que tenga caries?

	dolorDeDientes		¬ dolorDeDientes	
	engancha	¬ engancha	engancha	\neg engancha
caries	0.108	0.012	0.072	800.0
¬ caries	0.016	0.064	0.144	0.576

Se observa que un paciente tiene dolor ¿Cuál es la probabilidad de que tenga caries?

$$P(\text{caries/dolorDeDientes}) = \frac{P(\text{caries,dolorDeDientes})}{P(\text{dolorDeDientes})} = \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

	dolorDeDientes		¬ dolorDeDientes	
	engancha – engancha		engancha	¬ engancha
caries	0.108	0.012	0.072	0.008
¬ caries	0.016	0.064	0.144	0.576

Se observa que un paciente tiene dolor ¿Cuál es la probabilidad de que tenga caries?

$$P(\text{caries/dolorDeDientes}) = \frac{P(\text{caries, dolorDeDientes})}{P(\text{dolorDeDientes})} = \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

ightharpoonup Normalización: no es necesario conocer P(dolorDeDientes)!!

	dolorDeDientes		¬ dolorDeDientes	
	engancha – engancha		engancha	eg engancha
caries	0.108	0.012	0.072	800.0
¬ caries	0.016	0.064	0.144	0.576

Se observa que un paciente tiene dolor ¿Cuál es la probabilidad de que tenga caries?

$$P(\text{caries/dolorDeDientes}) = \frac{P(\text{caries,dolorDeDientes})}{P(\text{dolorDeDientes})} = \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

Normalización: no es necesario conocer P(dolorDeDientes)!!

$$P(\text{Caries/dolorDeDientes}) = \alpha P(\text{Caries, dolorDeDientes})$$

= $\alpha [P(\text{Caries, dolorDeDientes, engancha}) + P(\text{Caries, dolorDeDientes, \neg engancha})]$
= $(0.6, 0.4)$

Distribución conjunta: razonamiento

► ¡La distribución conjunta en forma tabular permite contestar en términos probabilísticos a cualquier pregunta sobre variables discretas!

Distribución conjunta: razonamiento

¡La distribución conjunta en forma tabular permite contestar en términos probabilísticos a cualquier pregunta sobre variables discretas!

- ¡Pero... no escala!
 - En problemas reales puede haber cientos o miles de variables
 - Es imposible definir todas las probabilidades y trabajar con ellas

Distribución conjunta: razonamiento

► ¡La distribución conjunta en forma tabular permite contestar en términos probabilísticos a cualquier pregunta sobre variables discretas!

- ► ¡Pero... no escala!
 - En problemas reales puede haber cientos o miles de variables
 - Es imposible definir todas las probabilidades y trabajar con ellas
- ¡Pero es la base teórica para otras aproximaciones que escalan mejor!

Probabilidad Condicional (Regla de la cadena)

Regla del producto

$$P(A \wedge B) = P(A|B)P(B)$$

Regla de la cadena: aplicación sucesiva de la regla del producto

$$P(X_1, \dots, X_n) = P(X_1, \dots, X_{n-1}) P(X_n | X_1, \dots, X_{n-1})$$

$$= P(X_1, \dots, X_{n-2}) P(X_{n-1} | X_1, \dots, X_{n-2}) P(X_n | X_1, \dots, X_{n-1})$$

$$= \dots$$

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$

Probabilidad Condicional (Regla de la cadena)

► Regla del producto

$$P(A \wedge B) = P(A|B)P(B)$$

▶ Regla de la cadena: aplicación sucesiva de la regla del producto

$$P(X_1, \dots, X_n) = P(X_1, \dots, X_{n-1}) P(X_n | X_1, \dots, X_{n-1})$$

$$= P(X_1, \dots, X_{n-2}) P(X_{n-1} | X_1, \dots, X_{n-2}) P(X_n | X_1, \dots, X_{n-1})$$

$$= \dots$$

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1})$$

P(Caries, DolorDeDientes, Engancha) = P(Caries/DolorDeDientes, Engancha)P(DolorDeDientes, Engancha) = P(Caries/DolorDeDientes, Engancha)P(DolorDeDientes/Engancha)P(Engancha)

Probabilidad Condicional (Regla de la cadena)

Regla del producto

$$P(A \wedge B) = P(A|B)P(B)$$

▶ Regla de la cadena: aplicación sucesiva de la regla del producto

$$P(X_1, \dots, X_n) = P(X_1, \dots, X_{n-1}) P(X_n | X_1, \dots, X_{n-1})$$

$$= P(X_1, \dots, X_{n-2}) P(X_{n-1} | X_1, \dots, X_{n-2}) P(X_n | X_1, \dots, X_{n-1})$$

$$= \dots$$

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|X_1,...,X_{i-1})$$

¡Podemos definir la distribución conjunta mediante probabilidades condicionales!

Teorema de Bayes

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)} = \alpha P(B/A)P(A)$$

Thomas Bayes 1702 - 1761

Teorema de Bayes

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)} = \alpha P(B/A)P(A)$$

¡Podemos calcular unas condicionales a partir de otras!

Thomas Bayes 1702 - 1761

A veces obtener P(B/A) es más sencillo que obtener P(A/B)

$$P(Causa \mid Efecto) = \frac{P(Efecto \mid Causa)P(Causa)}{P(Efecto)}$$

Ejemplo

- Probabilidades a priori
 - ► P(Enfermo = si) = 0.008
 - P(Enfermo = no) = 0.992
- Probabilidades condicionadas: $P(\text{Test_laboratorio} \mid \text{Paciente_enfermo})$

	Enfermo = si	Enfermo = no
Test = ⊕	0.98	0.03
$Test = \ominus$	0.02	0.97

- Observación: un nuevo paciente tiene un resultado positivo en el test de laboratorio
 - > ¿P(Enfermo = si/Test = +)?= P(@.si)P(si) = a o' 98.0008
 - $P(\text{Enfermo} = \text{no/Test} = \oplus)? = \frac{P(\theta, \text{no)} R(\theta)}{P(\theta)} = \frac{1}{\lambda} = 0.03.0932 + 0.98.0008 = 0.0008$

Ejemplo

- ► Probabilidades a priori
 - ightharpoonup P(Enfermo = si) = 0.008
 - ► P(Enfermo = no) = 0.992
- ightharpoonup Probabilidades condicionadas: $P(\text{Test_laboratorio} \mid \text{Paciente_enfermo})$

	Enfermo = si	Enfermo = no
Test = ⊕	0.98	0.03
$Test = \ominus$	0.02	0.97

- Observación: un nuevo paciente tiene un resultado positivo en el test de laboratorio
 - \triangleright $\&P(\text{Enfermo} = \text{si/Test} = \oplus)?$
 - \triangleright $\dot{c}P(\text{Enfermo} = \text{no}/\text{Test} = \oplus)$?

Independencia

- ► A y B son independientes si y sólo la ocurrencia de uno de ellos no afecta a la ocurrencia del otro
 - $ightharpoonup P(A|B) = P(A), \acute{o}$
 - P(B|A) = P(B), ó
 - ightharpoonup P(A,B) = P(A)P(B)
- ► Ejemplo

$$P(\text{DolorDeDientes, Caries, Engancha}, D_1) = P(\text{DolorDeDientes, Caries, Engancha})P(D_1)$$

Reducción de tamaño de distribución

de
$$2^3 \cdot 6 = 48$$
 probabilidades a $8 + 6 = 14$

Independencia

- ► A y B son independientes si y sólo la ocurrencia de uno de ellos no afecta a la ocurrencia del otro
 - P(A|B) = P(A), \acute{o}
 - $ightharpoonup P(B|A) = P(B), \acute{o}$
 - $\triangleright P(A,B) = P(A)P(B)$
- Ejemplo

$$P(\text{DolorDeDientes, Caries, Engancha}, D_1) = P(\text{DolorDeDientes, Caries, Engancha})P(D_1)$$

Reducción de tamaño de distribución

$$de_{23 \cdot 6} = 48$$
 probabilidades a $8+6=14$

- Menor tamaño implica
 - Algoritmos más eficientes
 - Menos datos (probabilidades) a especificar

Mejor suma que producto.

Incertidumbre

Razonamiento Probabilístico Introducción

Razonamiento Probabilístico

Probabilidades

Razonamiento en IA

Redes Bayesianas Razonamiento Probabilístico en el tiempo Lógica Borrosa

Uso de probabilidades en Inteligencia Artificial

Tareas típicas: toma de decisiones, clasificación, predicción, ...

- ► ¿Que es cierto?
 - ► Uso de lógica clásica: satisfacción proposicional, verificación de circuitos, sistemas de producción, . . .
- ▶ vs. ¿Qué es más probable?
 - Uso de probabilidades: redes bayesianas, predicción de secuencias (reconocimiento de voz), clasificación (de idioma), ...

Uso de probabilidades en Inteligencia Artificial

Tareas típicas: toma de decisiones, clasificación, predicción, ...

- ▶ ¿Que es cierto?
 - ► Uso de lógica clásica: satisfacción proposicional, verificación de circuitos, sistemas de producción, . . .
- ▶ vs. ¿Qué es más probable?
 - Uso de probabilidades: redes bayesianas, predicción de secuencias (reconocimiento de voz), clasificación (de idioma), ...
- ¿Qué pasa si el modelo elegido es incorrecto?
 - ► En lógica clásica
 - ▶ Modelo incompleto → ok
 - Modelo con errores → problemático
 - ► En probabilidades
 - Interesa más la relación entre probabilidades que los números exactos: $\dot{\epsilon}P(e)>P(e')$?
 - Podría ser más robusto

Inferencia

Principal tarea:

Calcular la probabilidad de eventos dada cierta evidencia

lacktriangle Calcular la distribución a posteriori dada cierta evidencia P(X|e)

- ightharpoonup Calcular la distribución a posteriori dada cierta evidencia P(X|e)
 - ► **Predicción**: ej. determinar si una zona se inundará según la situación meteorológica actual

P(Inundacion/Meteorologia)

- ightharpoonup Calcular la distribución a posteriori dada cierta evidencia P(X|e)
 - Predicción: ej. determinar si una zona se inundará según la situación meteorológica actual

P(Inundacion/Meteorologia)

Diagnosis: ej. determinar si una persona tiene una enfermedad según unos resultados de pruebas

 $P(\text{Enfermedad/Resultados_pruebas})$

- ightharpoonup Calcular la distribución a posteriori dada cierta evidencia P(X|e)
 - Predicción: ej. determinar si una zona se inundará según la situación meteorológica actual

Diagnosis: ej. determinar si una persona tiene una enfermedad según unos resultados de pruebas

$$P(\text{Enfermedad/Resultados_pruebas})$$

► Clasificación: determinar a qué clase pertenecen unas observaciones. Ej. dada una imagen determinar si contiene un gato o un perro:

$$P(\text{clase} = \text{gato/caracteristicas_imagen})$$

$$P(\text{clase} = \text{perro}/\text{caracteristicas_imagen})$$

- ightharpoonup Calcular la distribución a posteriori dada cierta evidencia P(X|e)
 - Predicción: ej. determinar si una zona se inundará según la situación meteorológica actual

▶ **Diagnosis**: ej. determinar si una persona tiene una enfermedad según unos resultados de pruebas

► Clasificación: determinar a qué clase pertenecen unas observaciones. Ej. dada una imagen determinar si contiene un gato o un perro:

$$P(\text{clase} = \text{gato/caracteristicas_imagen})$$

 $P(\text{clase} = \text{perro/caracteristicas_imagen})$

► Toma de decisiones: elegir acciones más útiles (maximizan la utilidad esperada)

$$UtilidadEsperada(Accion = j)$$

Resumen

- Las probabilidades son un formalismo adecuado para el manejo de incertidumbre
- La distribución de probabilidad conjunta es adecuada para tareas de razonamiento, pero no escala
- Se necesitan mecanismos que permitan un razonamiento eficiente
- Es este aspecto los siguientes conceptos son cruciales
 - Regla de la cadena
 - ▶ Teorema de Bayes
 - Concepto de independencia

Créditos

Material basado en:

- Material de años anteriores en la UC3M.
- Libro y notas docentes de *Artificial Intelligence: A Modern Approach*. Por Russell&Novig. 2da edición.
- Material docente por Héctor Geffner.

Incertidumbre

Razonamiento Probabilístico Introducción Razonamiento Probabilístico Probabilidades Razonamiento en IA

Redes Bayesianas

Razonamiento Probabilístico en el tiempo Lógica Borrosa

Incertidumbre

Razonamiento Probabilístico Introducción Razonamiento Probabilístico Probabilidades Razonamiento en IA

Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Incertidumbre

Razonamiento Probabilístico Introducción Razonamiento Probabilístico Probabilidades Razonamiento en IA Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa