Applied Data Science Capstone

The Battle of Neighborhoods

1 Introduction

- Attempt to give protentional stakeholders a better description of the Toronto, Canada neighborhoods.
- For the purpose of recognizing which area/neighborhood is the best for opening a new restaurant.
- Utilized by using data mining technique k-mean clustering in Python.

2 Data description

- Information about the areas in Toronto were extracted from different sources.
- Each entry consist of:
 - Postal code unique identifier
 - Borough name
 - Neighborhood name
 - Latitude
 - Longitude
- Total of 103 locations.

	Postcode	Borough	Neighborhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Harbourfront, Regent Park	43.654260	-79.360636
3	M6A	North York	Lawrence Heights, Lawrence Manor	43.718518	-79.464763
4	M7A	Queen's Park	Queen's Park	43.662301	-79.389494

2 Data description

- Next, using the Foursquare API, information about nearby food venues were obtained and saved in a data frame together with neighborhood information.
- Venues were then grouped in a data frame and relative frequencies computed.

```
venue freq
Latin American Restaurant 0.25
Sandwich Place 0.25
Chinese Restaurant 0.25
Breakfast Spot 0.25
Afghan Restaurant 0.00
```

```
venue freq
Restaurant 0.08
Café 0.08
Sandwich Place 0.06
Asian Restaurant 0.06
American Restaurant 0.05
```

3 Methodology

- K-means clustering algorithm was used to separate our data.
- Number of clusters was determined by performing clustering for multiple values of *k* and computing sum of squares error (SSE).
- Elbow method was then used to determine the final number of
 - clusters.
- We used k = 3, three clusters, for our analysis.

4 Results

- Most of the data were assigned to the cluster 1, precisely 83% of locations. Other two clusters 0 and 2 represent 10.5% and 6.5%, respectively.
- We examined the separate clusters and determine the discriminating venue categories that distinguish each cluster:
 - Cluster 0: "Pizza and Fast Food venues" cluster,
 - Cluster 1: "Premium location and high-end places" cluster,
 - Cluster 2: "Ethnic restaurants" cluster.
- We created a map of Toronto with the marked neighborhoods allocated to their clusters.

Map of Toronto with clustered neighborhoods

5 Discussion

- Different clustering algorithms could be used for this study and could potentially yield different results due to the differences between the neighborhoods.
- Different number of clusters could be used. However, using more clusters seemed unnecessary since when 4 or more clusters were used some clusters only consisted of one location.

6 Conclusion

- We were able to cluster Toronto's neighborhoods and derive some characteristics of their food venues.
- Since cluster 1 consisted of majority of locations, further analysis of these neighborhoods would be beneficial for protentional investors in these areas.