AMM E2637

Tristan Shin

14 July 2019

Prove that for any integers a_1, a_2, \ldots, a_n the number

$$\prod_{1 \le i < j \le n} \frac{a_i - a_j}{i - j}$$

is an integer.

We will apply Ostrowski's Theorem. This theorem states the following: Let P be a polynomial in x_1, \ldots, x_n . For $i = 1, \ldots, n$, let e_i be the largest exponent of x_i to appear in P. Suppose there exist $a_1, \ldots, a_n \in \mathbb{Z}$ such that $P(x_1, \ldots, x_n) \in \mathbb{Z}$ whenever $x_i \in \{a_i, a_i + 1, \ldots, a_i + e_i\}$ for $i = 1, \ldots, n$. Then $P(x_1, \ldots, x_n) \in \mathbb{Z}$ whenever $x_1, \ldots, x_n \in \mathbb{Z}$.

Let

$$P(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} \frac{x_i - x_j}{i - j}$$

as a polynomial, then we have that $e_i = n - 1$ for i = 1, ..., n. Now, if we choose $a_i = 1$ for i = 1, ..., n, we must show that $P(x_1, ..., x_n) \in \mathbb{Z}$ whenever $x_i \in \{1, ..., n\}$ for i = 1, ..., n.

- If there are indices $1 \leq i < j \leq n$ such that $x_i = x_j$, then $P(x_1, \ldots, x_n) = 0$ by definition.
- Otherwise, (x_1, \ldots, x_n) is a permutation of $(1, \ldots, n)$. Let $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ be the permutation with $\pi(i) = x_i$ for $i = 1, \ldots, n$; define π^{-1} as its inverse. Then

$$|P(x_1,...,x_n)| = \prod_{1 \le i < j \le n} \frac{|\pi(i) - \pi(j)|}{|i - j|}.$$

Now we exhibit a bijection between ordered pairs (i,j) with i < j and (a,b) with a < b such that $|i-j| = |\pi(a) - \pi(b)|$. This bijection is just to take $i = \min\{\pi(a), \pi(b)\}$ and $j = \max\{\pi(a), \pi(b)\}$, equivalently $a = \min\{\pi^{-1}(i), \pi^{-1}(j)\}$ and $b = \max\{\pi^{-1}(i), \pi^{-1}(j)\}$. Because of this bijection, the product of the numerators equals the product of the denominators and thus $|P(x_1, \ldots, x_n)| = 1$.

In all cases, $P(x_1, ..., x_n) \in \mathbb{Z}$ whenever $x_i \in \{1, ..., n\}$ for i = 1, ..., n. So by Ostrowski's Theorem, $P(x_1, ..., x_n) \in \mathbb{Z}$ whenever $x_1, ..., x_n \in \mathbb{Z}$. It follows that

$$\prod_{1 \le i < j \le n} \frac{a_i - a_j}{i - j}$$

is an integer for any integers a_1, \ldots, a_n .