1 Results

1.1 Uncertainty Analysis

Figure 1. Probability distribution of quantity of interest q

Figure 2. Comparison of shares of occupation decision over time between scenarios with cone plots

1.2 Qualitative Sensitivity Analysis

 ${\bf Table~1.~Mean~absolute~correlated~and~uncorrelated~elementary~effects~} \\ (based~on~150~subsamples~in~trajectory~and~radial~design)$

Parameter	$\mu_T^{*,c}$	$\mu_R^{*,c}$	$\mu_T^{*,u}$	$\mu_R^{*,u}$
General				
δ	17	23	476	415
Blue-collar				
eta^b	1	3	43	88
eta_e^b	11	14	406	443
eta^b_b	25	51	688	1169
eta^b_{bb}	871	934	15 540	17860
eta_w^b	29	48	73	143
eta^b_{ww}	389	460	869	1183
White-collar				
eta^w	1	3	50	117
eta_e^w	26	28	943	852
eta_w^w	24	47	718	1521
eta_{ww}^w	933	997	12257	18069
eta^w_b	131	127	309	356
eta^w_{bb}	120	1352	2088	2477
Education				
eta^e	0.0008	0.0002	0.001	0.003
eta^e_{he}	0.0001	0.0002	0.001	0.001
eta^e_{re}	0.0003	0.0002	0.0003	0.0006
Home				
eta^h	0.0003	0.0003	0.00002	0.00002
Lower Triangula	r Cholesky Matr	ix		
c_1	8	16	18	37
c_2	8	11	22	24
c_3	0.0004	0.0004	0.0004	0.0007
c_4	0.0004	0.00008	0.0002	0.0003
$c_{1,2}$	4	4	10	10
$c_{1,3}$	0.0005	0.0006	0.0006	0.0005
$c_{2,3}$	0.0003	0.0005	0.0006	0.001
$c_{1,4}$	0.00004	0.00005	0.0004	0.0005
$c_{2,4}$	0.0001	0.0002	0.0001	0.0002
$c_{3,4}$	0.0001	0.0001	0.00008	0.0001

Figure 3. Sigma-normalized mean absolute Elementary Effects for trajectory design

Figure 4. Sigma-normalized mean absolute Elementary Effects for radial design

References