1 INTRODUCCIÓN, ALGORITMOS Y PROGRAMAS.

de la programación es utilizar el ordenador como herramienta para resolver problemas concretos.

Como en la vida real, la búsqueda y obtención de una solución a un problema determinado, utilizando medios informáticos, se lleva a cabo siguiendo unos pasos fundamentales. En la siguiente tabla podemos ver estas analogías:

Resolución de problemas

En la vida real	En Programación
Observación de la situación o problema.	Análisis del problema: requiere que el problema sea definido y comprendido claramente para que pueda ser analizado con todo detalle.
Pensamos en una o varias posibles soluciones.	Diseño o desarrollo de algoritmos: procedimiento paso a paso para solucionar el problema dado.
Aplicamos la solución que estimamos más adecuada.	Resolución del algoritmo elegido en la computadora: consiste en convertir el algoritmo en programa, ejecutarlo y comprobar que soluciona verdaderamente el problema.

¿Qué virtudes debería tener nuestra solución?

- Corrección y eficacia: si resuelve el problema adecuadamente.
- Eficiencia: si lo hace en un tiempo mínimo y con un uso óptimo de los recursos del sistema.

Para conseguirlo, cuando afrontemos la construcción de la solución tendremos que tener en cuenta los siguientes conceptos:

- 1. **Abstracción**: se trata de realizar un análisis del problema para descomponerlo en problemas más pequeños y de menor complejidad, describiendo cada uno de ellos de manera precisa. Divide y vencerás, esta suele ser considerada una filosofía general para resolver problemas y de aquí que su nombre no sólo forme parte del vocabulario informático, sino que también se utiliza en muchos otros ámbitos.
- 2. **Encapsulación**: consiste en ocultar la información para poder implementarla de diferentes maneras sin que esto influya en el resto de elementos.
- 3. **Modularidad**: estructuraremos cada parte en módulos independientes, cada uno de ellos tendrá su función correspondiente.

Después de analizar en detalle el problema a solucionar, hemos de diseñar y desarrollar el algoritmo adecuado. Pero, ¿Qué es un algoritmo?

Algoritmo: secuencia ordenada de pasos, descrita sin ambigüedades, que conducen a la solución de un problema dado.

Los algoritmos son independientes de los lenguajes de programación y de las computadoras donde se ejecutan. Un mismo algoritmo puede ser expresado en diferentes lenguajes de programación y podría ser ejecutado en diferentes dispositivos.

La diferencia fundamental entre algoritmo y programa es que, en el segundo, los pasos que permiten resolver el problema, deben escribirse en un determinado lenguaje de programación para que puedan ser ejecutados en el ordenador y así obtener la solución. Los lenguajes de programación son sólo un medio para expresar el algoritmo y el ordenador un procesador para ejecutarlo.

El diseño de los algoritmos será una tarea que necesitará de la creatividad y conocimientos de las técnicas de programación. Estilos distintos, de distintos programadores a la hora de obtener la solución del problema, darán lugar a algoritmos diferentes, igualmente válidos.

En esencia, todo problema se puede describir por medio de un algoritmo y las características fundamentales que éstos deben cumplir son:

- Debe ser preciso e indicar el orden de realización paso a paso.
- Debe estar definido, si se ejecuta dos o más veces, debe obtener el mismo resultado cada vez.
- Debe ser finito, debe tener un número finito de pasos.

Pero cuando los problemas son complejos, es necesario descomponer éstos en subproblemas más simples y, a su vez, en otros más pequeños. Estas estrategias reciben el nombre de diseño descendente o diseño modular (top-down design).

Para representar gráficamente los algoritmos que vamos a diseñar, tenemos a nuestra disposición diferentes herramientas que ayudarán a describir su comportamiento de una forma precisa y genérica, para luego poder codificarlos con el lenguaje que nos interese. Entre otras tenemos:

- **Diagramas de flujo**: Esta técnica utiliza símbolos gráficos para la representación del algoritmo. Suele utilizarse en las fases de análisis.
- **Pseudocódigo**: Esta técnica se basa en el uso de palabras clave en lenguaje natural, constantes, variables, otros objetos, instrucciones y estructuras de programación que expresan de forma escrita la solución del problema. Es la técnica más utilizada actualmente.
- **Tablas de decisión:** En una tabla son representadas las posibles condiciones del problema con sus respectivas acciones. Suele ser una técnica de apoyo al pseudocódigo cuando existen situaciones condicionales complejas.

Herramienta muy popular para diseñar algoritmos: http://pseint.sourceforge.net/ tanto para diagramas de flujo como pseudocódigo.

