Ejercicios Análisis Numérico 2022-1

Semana 1.

Ejercicio 1.1. Demuestre que $\| \cdot \|_p$ es una norma en \mathbb{C}^n para $p \geq 1$.

Ejercicio 1.2. Demuestre que $\lim_{p\to\infty}\|x\|_p=\|x\|_\infty$

Ejercicio 1.3. Probar que el producto hermitiano $||u|| = \sqrt{\langle u, u \rangle}$ es una norma.

Ejercicio 1.4. Demuestre que $\| \ \|_p$ viene del producto interno $\Leftrightarrow p=2.$

Ejercicio 1.5. Sea $T: V \to V$ una transformación con V espacio vectorial con producto interno, con $T^* = T$.

- 1. Demuestre que todo valor propio es real.
- 2. Demuestre que dos vectores propios de valores propios distintos son ortogonales.
- 3. Teorema Espectral Demuestre que T es diagonalizable (Existe una base de V constituida por vectores propios de T).

Ejercicio 1.6. S es skew-hermitian si $S^* = -S$.

- 1. Demuestre que todo valor propio de S es puramente imaginario.
- 2. Demuestre que S-I es invertible.
- 3. Demuestre que $(S-I)^{-1}(S+1)$ es unitaria.

Semana 2.

Ejercicio 2.1. 1. Si D es diagonal $||D||_{op,p} = \max_{1 \le u \le m} |D_{i,j}|_1$

2. Si
$$A = \begin{pmatrix} | & | & | \\ a_1 & \dots & a_n \\ | & | & | \end{pmatrix}$$
, entonces $||A||_{op,p} = \max_{1 \le u \le m} |a_j|_1$

3. Si
$$A = \begin{pmatrix} - & a_1^* & - \\ - & \vdots & - \\ - & a_n^* & - \end{pmatrix}$$
, entonces $||A||_{op,p} = \max_{1 \le u \le m} ||a_j^*||_1$

Ejercicio 2.2. Submultiplicatividad. Demuestre que $A, B, C : \mathbb{C}^n \to \mathbb{C}^n$

- 1. $||AB||_{op} \le ||A||_{op} \cdot ||B||_{op}$.
- $2. \ \|AB\|_{fb} \leq \|A\|_{fb} \cdot \|B\|_{fb}$
- 3. Demuestre que $\|\cdot\|_{fb}$ no es una norma inducida.

Ejercicio 2.3. Radio Espectral. Sea $A: \mathbb{C}^n \to \mathbb{C}^n$. $\rho(A) = \max\{|\lambda| : \lambda \text{ es valor propio de } A\}$. Demuestre que $\rho(A) \leq \|A\|_{op}$ para toda norma en \mathbb{C}^n .

Ejercicio 2.4. Sea $x \in \mathbb{C}^m$, $A \in \mathbb{C}^{m \times n}$

- 1. $||x||_{\infty} \leq ||x||_2$
- 2. $||x||_2 \le \sqrt{m} \, ||x||_{\infty}$
- 3. $||A||_{op,\infty} \le \sqrt{n} \, ||A||_{op,2}$
- 4. $||A||_{op,2} \leq \sqrt{m} \, ||A||_{op,\infty}$

Semana 3.

Ejercicio 3.1. Si $A \in \mathbb{R}^{m \times n}$ entonces tiene un SVD real (Existen U, V ortogonales con $A = U\Sigma V^t$)

Ejercicio 3.2. Sea

$$A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix}$$

- 1. Encuentre un SVD para a A (a mano)
- 2. Calcule $||A||_q$ para $q \in \{1, 2, \infty, Fb\}$
- 3. Encuentre A^{-1} y los valores propios de A a partir del primer inciso.
- 4. ¿Cuál es el área de la imágen del disco unitario bajo A?

Ejercicio 3.3. Si $A = U\Sigma V^*$ Encuentre una diagonalización ortogonal de

$$\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}.$$

Ejercicio 3.4. Sea $F = \left\{ \pm \left(\frac{m}{2^{53}} \right) 2^e; \ 0 \le m \le 2^5 3 \\ 0 \le e \le M \right\}, \ N^* = \min\{n \in \mathbb{N} : n \notin F\}.$ Encuentre N^* en Python.

Ejercicio 3.5 (Ortonormalización triangular $\sim QR$). Demuestre que la factorización QR mediante Gram-Schmidt puede codificarse así:

$$AR_1R_2\cdots R_n = \hat{Q}$$

Donde \hat{Q} es una matriz con columnas ortonormales , R_i es una matriz triangular $\forall i \in \{1, 2, \dots, n\}$. Si definimos $\hat{R} := R_n^{-1} R_{n-1}^{-1} \cdots R_1^{-1}$, la factorización $A = \hat{Q}\hat{R}$ recibe el nombre de Factorización QR reducida.

Ejercicio 3.6. Teorema: F_b : Matrices triangulares superioresnxn con $det \neq 0$ \rightarrow \mathbb{C}^n donde \mapsto $R^{-1}b$

$$\hat{F}_b(R) = \begin{bmatrix} \hat{R}_{11} & \hat{R}_{12} & \cdots & \hat{R}_{1n} \\ & \hat{R}_{12} & \cdots & \hat{R}_{2n} \\ & & \ddots & \vdots \\ & & & \hat{R}_{12} \end{bmatrix}, \ \hat{b} \mapsto \hat{x}_n = \hat{b_n}/\hat{R_{nn}}, \ \hat{x}_{n-1} = R_{n-1n}\hat{X}_n/\hat{R_{n-1n-1}}$$

es backward stable. Pruebe el teorema para matrices 2x2

Ejercicio 3.7. Sea $x \in \mathbb{R}^m$. Dado x con $x_1 \neq 0$, si $y = sgn(x_1)||x||e_1 + x$ entonces

$$||y|| > ||x||$$

evitando cancelacion.

$$\begin{pmatrix} \pm ||x|| \\ 0 \\ \vdots \\ 0 \end{pmatrix} = sgn(x_1)||x||e_1$$