Sketching the Expression: Flexible Rendering of Expressive Piano Performance with Self-Supervised Learning

Seungyeon Rhyu¹, Sarah Kim², and Kyogu Lee¹

¹Music and Audio Research Group, Seoul National University, South Korea ²Krust Universe, South Korea

Introduction

Piano performance generation: Generating parameters that fit a musical piece

It aims to generate coherent parameters for loudness or timing, based on given musical scores.

Expanding musical creativity: Musical expression beyond the written guidelines

- Previous models for controlling a piano performance followed written expression guidelines or dealt with only partial attributes of musical expression.
- Performers can actively choose techniques to highlight various emotions or nuances, creating musical expressions beyond the guidelines.

Objective: Disentangling musical expression using self-supervised learning

- We propose a generative model that disentangles two representations for high-level musical expression, or *explicit planning*, and low-level structural attributes.
- We use a conditional VAE modified for sequential data and a self-supervised learning framework to regularize the representations.

Proposed Methods

I. Data Representation

Score Feature

- ✓ MIDI Pitch
- ✓ Duration (16th note)
- ✓ IOI (16th note)
- ✓ Is-top-voice
- ✓ #Note-in-Chord
- ✓ Position-in-chord
- ✓ Staff
- ✓ Is-downbeat
- ✓ Articulation Perform. Duration score Duration IOI Ratio with Next IOI

(64 3 -) Duration Prev. |O| | Next |O| ✓ MIDI Velocity (dynamics) Duration Prev. IOI | Next IOI

II. Modeling Musical Hierarchy

Representation

Performance Feature

Perform. Prev. IOI

Score **Prev.** IOI

✓ IOI Ratio (tempo)

Representation

Chordwise Representation

Notewise Representation

III. Model Architecture

Training Objective: $\mathcal{L} = \mathcal{L}_{VAE} + \lambda_{pln}\mathcal{L}_{pln} + \lambda_{str}\mathcal{L}_{str} + \lambda_{fac}\mathcal{L}_{fac} + \lambda_{reg}\mathcal{L}_{reg}$

Computing pseudo labels from input parameter

Explicit planning $(I^{(pln)})$ Polynomial regression (d = 4)

*A. Pati and A. Lerch. 2019. Latent space regularization for explicit control of musical attributes. In Proceedings of the 36th International Conference on Machine Learning.

from chordwise parameter

Structural attribute ($I^{(str)}$) **Onset Number**

Difference b/t chordwise parameter and $I^{(pln)}$

Dataset

Evaluation	Objec	Subjective	
Туре	Internal	External	External
Dataset	Yamaha e-Competition Vienna 4x22 Piano Corpus	ASAP	Online
Composer / Genre	Chopin only / Classical	10 composers / Classical	Various / Non-Classical
# of song/perform.	34 / 356	23 / 116	42 / (score only)

Evaluatio

I. Generation Quality

Dataset	Internal			External		
Metric	R _{recon}	$R_{x pln}$	$R_{x pln_0}$	R _{recon}	$R_{x pln}$	$R_{x pln_0}$
Notewise	0.870	0.392	0.203	0.875	0.479	0.177
CVAE	0.730	0.338	0.223	0.741	0.399	0.216
$L_{ m pln}$	0.627	0.357	0.229	0.687	0.414	0.220
$L_{\rm pln} + L_{\rm str}$	0.770	0.325	0.181	0.837	0.398	0.195
$w/o L_{ m fac}$	0.774	0.289	0.176	0.838	0.354	0.173
w/o $\it L_{ m reg}$	0.737	0.437	0.224	0.793	0.502	0.216
Ours	0.737	0.427	0.231	0.789	0.498	0.203

- Pearson's correlation coefficients
- R_{recon}: Reconstruction loss.
- $R_{x|pln}$: Evaluating samples with random z_S and inferred $z^{(pln)}$ from data.
- $R_{x|pln_0}$: Evaluating samples with random z_S and inferred $z_0^{(\text{pln})}$ from a zero matrix.
- Proposed architecture outperforms CVAE in most metrics.
- Proposed chordwise model generates better results with random $z^{(str)}$ than Notewise.
- Ours shows stable generation scores with random $z^{(str)}$ compared to other models.

II. Disentanglement & Controllability of Musical Expression

Dataset	Internal		Exte	rnal
Metric	MSE _P	MSE_S	MSE_P	MSE_S
Notewise	0.003	0.006	0.022	0.028
CVAE	0.034	0.045	0.085	0.092
$L_{ m pln}$	0.028	0.036	0.074	0.077
$L_{\rm pln} + L_{\rm str}$	0.012	0.015	0.022	0.027
w/o $L_{ m fac}$	0.018	0.023	0.021	0.025
w/o $L_{ m reg}$	0.002	0.004	0.014	0.022
Ours	0.001	0.002	0.012	0.020

Dataset	Internal		External			
Metric	С	R	L	С	R	L
Notewise	0.782	0.916	0.632	0.775	0.914	0.656
CVAE	0.798	0.812	0.620	0.773	0.802	0.649
$L_{ m pln}$	0.693	0.852	0.323	0.694	0.834	0.324
$L_{\rm pln} + L_{\rm str}$	0.633	0.882	0.253	0.639	0.865	0.277
w/o $L_{ m fac}$	0.831	0.846	0.789	0.832	0.831	0.847
w/o $L_{ m reg}$	0.804	0.955	0.653	0.808	0.946	0.657
Ours	0.942	0.953	0.976	0.944	0.945	0.977

- C: Consistency of the controlled attribute. / R: Restrictiveness of the uncontrolled attribute.
- L: Linearity b/t the controlled attribute and corresponding latent dimension.
- Our model shows the best scores in most metrics for disentanglement & controllability.

III. Listening Test

Metric Winning Rate (Human-likeness)			keness)	
Group		Т	UT	Overall
Notewise	1	0.317(±0.223)	0.541(±0.316)	0.493(±0.309)
CVAE		0.467(±0.356)	0.477(±0.342)	$0.475(\pm 0.338)$
Ours		0.417(±0.256)	0.555(±0.256)	0.525(±0.258)

- Winning rate: a rate of winning plain MIDI (A/B test)
- Top-ranking rate: a rate of being the highest rank in winning rate.
- T/UT: musically trained (6) / untrained (22)

III. Quantitative Results

1) Estimating explicit planning

Estimated explicit planning from $z^{(pln)}$ well fits the original values of the expressive attributes.

2) Controlling expression with "sketches"

 α : a sequence of values ("sketches") fed to a latent dimension $z^{(pln)}$ for controlling a target expressive attribute.

Baseline Methods

. Architecture

	Description
Notewise	Ours without chordwise encoding and decoding
CVAE	Variant of Notewise where $z^{(pln)}$ is substituted with the supervisory signal $I^{(pln)}$

II Ablation Study

II. Abiation Study			
	Description		
W/\mathcal{L}_{pln}	Ours only with prediction task using $z^{(pln)}$		
$W/L_{pln} + L_{str}$	Ours with prediction tasks using $z^{(pln)}$ and $z^{(str)}$		
w/o $\mathcal{L}_{ ext{fac}}$	Ours without the additional factorization loss		
w/o $\mathcal{L}_{ ext{reg}}$	Ours without regularization method* for sketch-control		

Conclusion

Piano performance rendering with flexible musical expression

- Our proposed system disentangles entire musical expression from piano performance and flexibly renders expressive piano performances in stable quality.
- Dynamics, articulation, and tempo can be independently controlled by our system while other structural attributes maintain their state.

Future work

- Deeper investigation for computing $I^{(pln)}$ with other possible methods.
- Outputs can be rendered from scratch with random $z^{(pln)}$ and $z^{(str)}$. However, the random $z^{(\text{pln})}$ does not inherit temporal dependency without given sketch. Future study is needed for inferring $z^{(pln)}$ that has temporal dependency without any specific sketch given as the input.