Math 547: Mathematical Foundations of Statistical Learning Theory

Instructor: Stas Minsker Scribe: S. Minsker

Let $X_1,...X_n$ be a sequence of random variables. How to estimate $\mathbb{E}\left[\max_{j=1,...,n} X_j\right]$?

Proposition 1. Let $X_1 \in SG(\sigma_1^2),...,X_n \in SG(\sigma_n^2)$ (not necessarily independent!). Then

$$\mathbb{E}\max_{j=1,\dots,n} X_j \le \sqrt{2}\sigma\sqrt{\log n},$$

where $\sigma = \max(\sigma_1, ..., \sigma_n)$.

Proof. Let $\lambda > 0$. Applying Jensen's inequality to the function $f(x) = e^{\lambda x}$, we get

$$\exp\left(\lambda \mathbb{E}\max_{j=1,\dots,n} X_j\right) \le \mathbb{E}\exp\left(\lambda \max_{j=1,\dots,n} X_j\right) = \mathbb{E}\max_{j=1,\dots,n} e^{\lambda X_j}$$
$$\le \mathbb{E}\sum_{j=1}^n e^{\lambda X_j} \le \sum_{j=1}^n e^{\frac{\lambda^2 \sigma_j^2}{2}} \le n e^{\frac{\lambda^2 \sigma^2}{2}}$$

Taking logarithm on both sides of the inequality, we obtain

$$\mathbb{E} \max_{j=1,\dots,n} X_j \le \frac{\log n}{\lambda} + \lambda \frac{\sigma^2}{2}.$$

Minimizing the right-hand side over λ results in the bound $\mathbb{E} \max_{j=1,\dots,n} X_j \leq \sqrt{2 \log n} \cdot \sigma$.

Corollary 1. $\mathbb{E} \max_{j=1,\dots,n} |X_j| \leq \sigma \sqrt{2 \log(2n)}$.

Proof.

$$\begin{split} \mathbb{E} \max_{j=1,\dots,n} |X_j| &= \mathbb{E} \max(\max_{j=1,\dots,n} X_j, \max_{j=1,\dots,n} (-X_j)) \\ &\leq \mathbb{E} \max_{j=1,\dots,2n} Z_j \leq \sigma \sqrt{2 \log(2n)}, \end{split}$$

where $Z_j = X_j$ when $j \le n$ and $Z_j = -X_j$ when j > n.

Remark 1. The bound is sharp up to the value of the constant. Let X_1, \ldots, X_n be i.i.d. $N(0, \sigma^2)$. Then

$$\mathbb{E}\max_{j=1,\dots,n}|X_j| \ge c\sigma\sqrt{\log(n)}$$

for some numerical constant c > 0 (exercise).

Remark 2. If the random variables instead satisfy the requirement $(\mathbb{E}|X|_j^p)^{1/p} \leq \sigma_p$, then

$$\mathbb{E} \max_{i=1,\dots,n} |X_i| \le \sigma_p n^{1/p}.$$

You will prove this fact as a part of your homework assignment.

Question. What if n is very large (or infinite)? The answer is given by the chaining method.

1.1 Generic chaining and Dudley's entropy integral

Remark 3. Results in this section of the notes are presented in a different manner than we will do in class. We will follow the paper "Tail bounds via generic chaining" by S. Dirksen that can be found here: https://arxiv.org/abs/1309.3522. In particular, we will prove Theorem 3.2 in that paper.

Let $\{X(t), t \in T\}$ be a stochastic process - a collection of random variable indexed by the set T.

Example 1. $\mathcal{F} = \{f : S \to \{\pm 1\}\}\$ a collection of functions and $(X_1, Y_1), \dots (X_n, Y_n) \in S \times \{1, -1\}$ i.i.d. from P. Define

$$Z_n(f) := \frac{1}{n} \sum_{j=1}^n \mathbb{I}_{\{Y_j \neq f(X_j)\}} - \Pr(Y \neq f(X)).$$

 $\{Z_n(f), f \in \mathcal{F}\}\$ is called the *empirical process* indexed by the set \mathcal{F} (in particular, for each $f \in \mathcal{F}$, $Z_n(f)$ is a random variable).

We want to control the size of $\mathbb{E}\sup_{t\in T}(X(t)-\mathbb{E}X(t))$. To this end, define

$$\mathbb{E} \sup_{t \in T} X(t) := \sup_{S \subseteq T, \ S \text{ is finite}} \{ \mathbb{E} \max_{t \in S} X(t) \}.$$

This definition allows to avoid potential measurability issues associated with the supremum. From now on, we can assume that T is finite (however, we are seeking for the bounds that do not depend on the cardinality of T explicitly).

Assume that T is equipped with a (pseudo)metric $d: T \times T \to \mathbb{R}$, so that (T, d) is a metric space. For $S \subset T$, $t \in T$, define

$$d(t,S) = \inf_{s \in S} d(t,s).$$

Assumption. The process $\{X(t), t \in T\}$ has sub-Gaussian increments with respect to $d(\cdot, \cdot)$, meaning that

$$\forall t_1, t_2 \in T, \quad X(t_1) - X(t_2) \in SG(d^2(t_1, t_2)).$$

Example 2. Let W(t), $t \in [0,1]$ be the usual Brownian motion (meaning that W(t) is a centered Gaussian process such that W(0) = 0 and Cov(W(t), W(s)) = min(t, s)). Then it has sub-Gaussian increments with respect to $d(s,t) = \sqrt{|t-s|}$.

Let $T_0 \subseteq T_2 \subseteq \cdots \subseteq T_k \subseteq \ldots \subseteq T$ be a sequence of subsets such that $\operatorname{card}(T_0) = 1$ and $\operatorname{card}(T_k) = 2^{2^k}$. In this case, we will say that $\{T_j\}_{j=1}^{\infty}$ is an *admissible sequence*. Cardinality growth rate of admissible sequence is motivated by the fact that $\operatorname{card}(T_k)^2 = \operatorname{card}(T_{k+1})$.

Theorem 1 (Generic Chaining Bound). Let $\{T_j\}_{j=1}^{\infty}$ be an admissible sequence such that $T_0 = \{t_0\}$. Then $\forall u > 0$,

$$\Pr\left(\sup_{t\in T} |X(t) - X(t_0)| \ge 2u \sup_{t\in T} \sum_{j=0}^{\infty} 2^{j/2} d(t, T_j)\right) \le \frac{128}{7} e^{-u^2/4}.$$

The quantity

$$\inf_{\{T_j\}_{j\geq 0}} \sup_{t\in T} \sum_{j\geq 0} 2^{j/2} d(t, T_j),$$

where the inf is taken over all admissible sequences, is called the **generic chaining complexity** that is denoted by $\gamma_2(T, d)$. Note that it depends only on the metric space (T, d) itself.

Proof. Define $\pi_j: T \to T_j$ via

$$\pi_j(t) = \arg\min_{s \in T_j} d(t, s)$$

the closest point to t in T_j . In particular, $d(t, \pi_j t) = d(t, T_j)$. Recall that $T_0 = \{t_0\}$ and note that

$$X(t) - X(t_0) = \sum_{j=0}^{\infty} (X(\pi_{j+1}t) - X(\pi_j t)).$$

This "telescoping sum" is the main idea of generic chaining. Note that the sum is in fact finite: since we assumed that T itself is finite, $T_N = T$ for some (possibly very large) N. Next, note that

$$d(\pi_j t, \pi_{j+1} t) \le d(t, \pi_j t) + d(t, \pi_{j+1} t) = d(t, T_j) + d(t, T_{j+1})$$

Given u > 0, define the "nice event"

$$\mathcal{E} = \left\{ |X(s_1) - X(s_2)| \le u2^{j/2} d(s_1, s_2), \forall s_1 \in T_j, s_2 \in T_{j+1}, \forall j \ge 0 \right\}.$$

Note that when \mathcal{E} holds,

$$\begin{split} \sup_{t} |X(t) - X(t_0)| &= \sup_{t} \left| \sum_{j=0}^{\infty} (X(\pi_{j+1}t) - X(\pi_{j}t)) \right| \leq \sup_{t} \sum_{j=0}^{\infty} |(X(\pi_{j+1}t) - X(\pi_{j}t))| \\ &\leq \sup_{t} \sum_{j=0}^{\infty} u \ 2^{j/2} \left(d(t, T_j) + d(t, T_{j+1}) \right) \leq (1 + 1/\sqrt{2}) u \sup_{t} \sum_{j=0}^{\infty} u \ 2^{j/2} d(t, T_j). \end{split}$$

Hence, it remains to control $Pr(\mathcal{E}^c)$. To this end, we use the union bound and the tail bound for sub-Gaussian random variables (Corollary ??):

$$\Pr(\mathcal{E}^c) = \Pr\left(\bigcup_{j \ge 0, s_1 \in T_j, s_2 \in T_{j+1}} |X(s_1) - X(s_2)| > u2^{j/2} d(s_1, s_2)\right)$$

$$\le \sum_{j \ge 0} \sum_{s_1 \in T_j, s_2 \in T_{j+1}} \Pr\left(|X(s_1) - X(s_2)| > u2^{j/2} d(s_1, s_2)\right)$$

$$\le \sum_{j \ge 0} \sum_{s_1 \in T_j, s_2 \in T_{j+1}} 2e^{\frac{-u^2 2^j d^2(s_1, s_2)}{2d^2(s_1, s_2)}} = \sum_{j \ge 0} \sum_{s_1 \in T_j, s_2 \in T_{j+1}} 2e^{-u^2 2^{j-1}}$$

$$\le \sum_{j \ge 0} \operatorname{card}(T_j) \operatorname{card}(T_{j+1}) \cdot 2e^{-u^2 2^{j-1}} = 2\sum_{j \ge 0} 2^{2^j + 2^{j+1}} e^{-u^2 2^{j-1}}$$

$$= 2\sum_{j \ge 0} e^{-u^2 2^{j-1} + 62^{j-1} \log 2} = 2\sum_{j \ge 0} e^{-2^{j-1} \left(u^2 - 6 \log 2\right)}.$$

Assume that $\frac{u^2}{2} > 6 \log 2$. Then

$$\Pr(\mathcal{E}^c) \le 2\sum_{j\ge 0} \exp\left(-2^j \frac{u^2}{4}\right) \le 2\sum_{j\ge 0} \exp\left(-(j+1)\frac{u^2}{4}\right)$$
$$= 2\frac{\exp\left(-\frac{u^2}{4}\right)}{1 - \exp\left(-\frac{u^2}{4}\right)} \le \frac{2}{7/8} \exp\left(-\frac{u^2}{4}\right).$$

When $u^2/2 \le 6 \log 2$, $\frac{16}{7} \exp\left(-\frac{u^2}{4}\right) \le \frac{16}{7} \frac{1}{8}$, hence $8\frac{16}{7} \exp\left(-\frac{u^2}{4}\right) \le 1$, thus the inequality

$$\Pr(\mathcal{E}^c) \le 8\frac{16}{7} \exp\left(-\frac{u^2}{4}\right)$$

holds for all u > 0.

Exercise. Show that

$$\mathbb{E}\sup_{t\in T}|X(t)-X(t_0)|\leq C\gamma_2(T,d))\tag{1.1}$$

for some numerical constant C (use the fact that for any nonnegative random variable Y, $\mathbb{E}[Y]=\int_0^\infty \mathbb{P}(Y\geq t)dt$). Moreover, demonstrate that

$$\sup_{t \in T} |X(t) - X(t_0)| - \mathbb{E} \sup_{t \in T} |X(t) - X(t_0)| \in SG(C_1 \gamma_2(T, d))$$

for some numerical constant C_1 (however, the value of the sub-Gaussian parameter can be improved).