Schemat podpisu cyfrowego z wykorzystaniem heurystyki Fiata Shamira

Temat polega na wybraniu problemu NP i następnie wykorzystanie go w schemacie podpisu cyfrowego. Należy znaleźć dowód o wiedzy zerowej dla danego problemu, a następnie zastosować heurystykę Fiata-Shamira. W tej pracy został wybrany problem znadywania pierwiastka reszty kwadratowej modulo złożona liczba. Pierwiastkiem kwadratowym jest liczba całkowita x, dla której istnieje całkowite rozwiazanie równania kongruencyjnego:

 $x^2 \equiv a \pmod{n}$, gdzie n = p * q, dla liczb pierwszych p oraz q.

Problem znajdywania pierwiastka kwadratowego modulo liczba złożona n, uznawany jest za równoważny problemowi faktoryzacji liczby n, który jest w klasie NP.

1 Podpisy cyfrowe

Podpisy cyfrowe są matematycznym sposobem zapewnienia autentyczności przesyłanych wiadomości oraz dokumentów. Mają na celu:

- uwierzytelnienie oraz potwierdzenie tożsamości autora wiadomości,
- zapewnienie niezaprzeczalności, że to dany autor nadał wiadomość,
- zapewnienie integralności danych, przez co jakakolwiek modyfikacja wiadomości zostanie wykryta.

Schemat podpisu cyfrowego zwykle składa się z 3 algorytmów:

- generacji kluczy, prywatnego i publicznego,
- algorytmu podpisującego, który produkuje podpis na podstawie wiadomości oraz klucza prywatnego,
- algorytmu weryfikującego, który za pomocą klucza publicznego i wiadomości potwierdza, bądź odrzuca autentyczność wiadomości.

2 Dowody o wiedzy zerowej

Dowód o wiedzy zerowej jest jest procedurą, w której jedna ze stron jest w stanie udowodnić drugiej, że posiada pewną tajną informację, bez zdradzania jakichkolwiek informacji, które mogłyby wpłynąć na ujawnienie treści sekretu. Każdy dowód o wiedzy zerowej musi spełniać trzy własności:

- kompletność: jeżeli zdanie jest prawdziwe, uczciwy weryfikator będzie przekonany tym faktem przez uczciwą osobę udowadniającą.
- solidność: jeżeli zdanie jest fałszywe, weryfikator akceptuje zdanie z prawdopodobieństwem ≤ 1/2.
- wiedza zerowa: jeżeli zdanie jest prawdziwe, weryfikator nie dowie się niczego poza tym, że osoba udowadniająca mówi prawdę. Możliwe jest stworzenie symulatora, który potrafi sporządzić transkrypt interakcji między uczciwą osobą udowadniającą, a weryfikatorem.

2.1Schemat dowodu o wiedzy zerowej

Publiczne dane: x, n.

Prywatne dane (Alicji): s, takie że $x = s^2 \pmod{n}$.

- $\mathbf{P} \to \mathbf{V}$: Alicja wybiera losową liczbę $\mathbf{r} \in \mathbb{Z}_n^*$ i wysyła $\mathbf{y} = r^2 \pmod{\mathbf{n}}$ do Boba.
- $\mathbf{P} \leftarrow \mathbf{V}$: Bob wybiera losowo $\mathbf{b} \in \{0,1\}$ i wysyła do Alicji.
- $\mathbf{P} \to \mathbf{V}$: Jeżeli b = 0, Alicja wysyła r do Boba, jeżeli b = 1 wysyła $w * r \pmod{n}$.

Weryfikacja: Niech z oznacza liczbe wysłana przez Alicję w ostatnim kroku. Bob akceptuje dowód w przypadku b = 0, jeśli $z^2 = y \pmod{n}$. W przypadku b = 1, Bob akceptuje dowód, jeśli $z^2 = xy \pmod{n}$.

1. Kompletność.

Jeżeli $x \in QR_n$, a Alicja posiada s, takie, że $x = s^2 \pmod{n}$ oraz Alicja i Bob postępują zgodnie z protokołem, to Bob zaakceptuje dowód z prawdopodobieństwem 1.

2. Solidność.

Jeżeli x $\notin QR_n$, wtedy niezależnie od tego co zrobi Alicja, Bob odrzuci dowód z prawdopodobieństwem przynajmniej 1/2.

Załóżmy, że x $\notin QR_n$. Wtedy nie jest możliwe, aby y oraz y*x były naraz resztami kwadratowymi. Jeżeli $y = u^2 \pmod{n}$ oraz $w^2 = y *x$, wtedy $x = w^2(y^{-1})^2 \pmod{n}$. Sprzeczność.

3. Wiedza zerowa.

Można stworzyć następującą symulację:

- 1. Dane wejściowe: x, n takie, że $x \in QR_n$.
- 2. Wybranie losowo b' $\in \{0, 1\}$.
- 3. Wybranie losowo $z \in QR_n$.
- 4. Jeżeli b' = 0, obliczenie y = z^2 . W przeciwnym wypadku obliczenie y = z^2x^{-1} .
- 5. Symulacja losowości weryfikatora. Wybranie losowo $b \in \{0, 1\}$.
- 6. Jeżli b = b' to zwrócenie $\langle y, z \rangle$. W przeciwnym przypadku powrót do punktu 2.

Podpis cyfrowy z heurystyka Fiata-Shamira 3

Niech I - identyfiaktor Alicji (np. jej nazwisko), m - wiadomość do podpisania, f - funkcja hashujaca.

Generowanie sekretu s, takiego że $x = s^2 \pmod{n}$ 3.1

- 1. Obliczenie wartości $v_i = f(I, j)$ dla małych wartości j.
- 2. Wybranie k różnych wartości j
, dla których v_j jest resztą kwadratową (mod n) i obliczenie najm
niejszego pierwiastka kwadratowego s_j z liczby v_j^{-1} (mod n), gdzie v_j^{-1} to odwrotność v_j modulo n. Odwrotność v_j modulo n, można obliczyć przy pomocy rozszerzonego algorytmu Euklidesa, o ile NWD(v_j ,

n) = 1.

Znając rozkład $n = p^*q$, gdzie p, q to liczby pierwsze, możliwe jest wyznaczenie najmniejszego pierwiastka kwadratowego $s_j \pmod{n}$. Załóżmy, że p = 3 (mod 4). Wtedy liczba a $\in \mathbb{Z}_p^*$ jest resztą kwadratową, jeśli 1 $=J_p(a)=a^{\frac{p-1}{2}}$ mod p. $J_p(a)$ jest symbolem Legendre'a. Jeśli $J_p(a)=1$, to liczba a jest resztą kwadratową, jeśli 0 to a jest wielokrotnościa p, jeśli -1 to to nie istnieje żadne b, takie że $b^2 = a \pmod{p}$.

Jeśli powyższe warunki są spełnione można obliczyć pierwiastki kwadratowe a, za pomocą formuły s_{p1} $= SQR(a) = a^{\frac{p+1}{4}} \mod p$. Drugi pierwiastek posiada przeciwny znak. Analogicznie należy postępować, aby znaleźć pierwiastki kwadratowe a mod g.

Posiadajac równania:

- $x \equiv s_{p1} \pmod{p}$
- $x \equiv s_{p2} \pmod{p}$
- $x \equiv s_{q1} \pmod{q}$
- $x \equiv s_{a2} \pmod{q}$

Przy pomocy chińskiego twierdzenia o resztach możliwe jest wyznaczenie najmniejszego pierwiastka kwadratowego mod n.

Podpis wiadomości m 3.2

- 1. Alicja wybiera losowe $r_1,...,r_t \in [0,n)$ i oblicza $x_i = r_i^2 \pmod{\mathbf{n}}$.
- 2. Alicja oblicza f(m, $x_1,...,x_t$) i używa pierwsze kt bitów hashu jako wartości e_{ij} , gdzie $(1 \le i \le t,$ $1 \leqslant j \leqslant k$).
 - 3. Alicja oblicza $y_i = r_i \prod_{e_{ij} = 1} s_j \pmod{\mathrm{n}}$ dla i = 1, ..., t i publikuje I, m, e_{ij} , y_i .

3.3 Weryfikacja wiadomości m

- 1. Bob oblicza $v_j={\bf f}({\bf I},\,{\bf j})$ dla ${\bf j}=1,\,...,\,{\bf k}.$ 2. Bob oblicza $z_i=y_i^2\prod_{e_{ij}=1}v_j\pmod{\bf n}$ for ${\bf i}=1,\,...,\,{\bf t}.$
- 3. Bob weryfikuje że pierwsze kt bitów $f(m, z_1, ..., z_t)$ to e_{ij} .
- Z definicji:

$$z_i = y_i^2 \prod_{e_{ij}=1} v_j = r_i^2 \prod_{e_{ij}=1} (s_j^2 v_j) = r_i^2 = x_i \pmod{n}, \text{ wiec } f(m, z_1, ..., z_t) = f(m, x_1, ..., x_t).$$

4 Atak na protokół

Możliwy jest atak na protokół, poprzez losowe wygenerowanie macierzy y oraz v, a następnie zgadywanie kolejnych możliwych macierzy e_{ij} . Atak działa dla dowolnej wiadomości m. Prawdopodobieństwo podrobienia podpisu wynosi T * 2^{-kt} , gdzie T to ilość prób zgadniecia odpowiedniej macierzy e_{ij} .

Wynik ataku dla przykładowych parametrów:

Dla parametrów t = 3, k = 4 oraz 1000 pełnych przeszukań wszystkich możliwości macierzy e_{ij} dla losowo wygenerowanych macierzy y oraz v, algorytmowi udało się podrobić podpis w 62.5% przypadków, średnia potrzebna ilość zgadnięć macierzy e_{ij} w przypadku poprawnego podrobienia podpisu wynosiła: 979 na 4096 możliwych.