EL-GY-9163: Machine Learning for Cyber-security Instructor: Siddharth Garg (sg175@nyu.edu)

Class Meeting Times: Thu 5 PM - 7.30 PM Rationale: Artificial intelligence (AI) and machine learning (ML) techniques are being increasingly deployed in cyber-security settings. Examples of critical applications include *network anomaly detection*, biometric authentication, spam detection, and data analytics based financial fraud detection. At the same time, advanced ML algorithms also give attacker's an advantage, setting up a complex interplay between attackers and defenders. An important example is in the area of web privacy; it has been shown sophisticated attackers can use advanced inference techniques to compromise the identity of web users. In response, web users can intentionally add ``noise" to their online behaviors to evade advanced recognition attacks, borrowing tools from the literature on differential privacy.

At the same time, as ML techniques become more sophisticated, they themselves are vulnerable to attack. These include stealthy training data poisoning attacks, and so-called `adversarial input perturbations' which have to been shown to be particularly pernicious for deep neural networks. For these reasons, there is growing interest in techniques to develop and deploy verifiably safe and secure ML systems, adopting and adapting techniques from the software security domain. A final vulnerability involves the fact that modern ML systems and especially deep learning systems are trained and executed in the cloud, raising concerns about the privacy of the user's data. New solutions are being developed to address these privacy concerns.

Anticipated Outcome: The educational outcomes of this class are two-fold: (1) provide solid research foundations for Ph.D. students working in this area, including a number of CCS Ph.D. students; and (2) prepare M.S. students interested in cyber-security for a rapidly growing market segment, especially in New York City, for cyber-security professions with a data-analytics and ML background.

Course Structure and Evaluation: Each lecture will be supplemented with reading material in the form of an in-depth survey or technical paper by a leading expert in the respective discipline. Evaluation will be in the form of:

- 3 take-home programming exercises (individual): 15% each for a total of 45%
- Semester long research project (groups of three): 30%
- Final Programming Examination: 25%

A course outline, along with associated reading material is below.

Pre-requisites: Intro. to Machine Learning (for M.S. students), None for ECE/CS Ph.D. students but will be expected to pick up the required any background they are lacking

TENTATIVE SYLLABUS

Week	Topic	Reading Material	Comments
Sep 2	Foundations: Introduction	The first two lectures are a quick	Will be livestreamed
	and Basics I: Point	paced introduction to basic topics in	online on Zoom. No
	estimation, MLE, linear	ML. More advanced concepts will be	on-campus component.

	regression, bias-variance	introduced and applied in the context	
	trade-offs	of specific cyber-security applications	
Sep 9	Foundations: Introduction	See Above	
	and Basics II: Linear		
	classification, clustering,		
	feature selection	LAB 0: Linear Regression	
Sep	Application: Spam Filtering		
16			
Sep	Security Vulnerability:		
23	Attacks on spam filters	LAB 1: Spam Filter	
Sept	Application: Intrusion	Note: Potential change to fake news	
30	detection	and fake news detection	
Oct 7	Foundations: Deep		
	Learning		
Oct	Application: Biometrics,		
14	including face and	LAB 2: TBA	
	fingerprint recogntion		
Oct	Security Vulnerability:		
21	Training Data-poisoning		
	attacks on deep learning		
Oct	Security Vulnerability:		
28	Adversarial input attacks	Final Project Competition Released	
	on Deep Learning		
Nov 4	Privacy: Training data and		
	model reconstruction	LAB 3: TBA	
	attacks; differential privacy		
Nov	Application: Social network		
11	bot detection and attacks		
Nov	on recommender systems		
Nov 18	Societal Implications:		
10	Investigating bias and fairness concerns		
	Juilless concerns		
Nov	NO CLASS.	NO CLASS.	
25	Thanksgiving!	Thanksgiving!	
Dec 2	Security Vulnerability:	All Project Presentations Due	
	Deep fakes and fake news		
	attacks and detection.		
	Final Project Presentations		
Dec 9	Conclusions: Conclusions		
	and looking ahead		
	Final Project Presentations		

	Final Take Home	
	Programming Exam	
	Released	
Dec	Final Take-home	
16	Programming Exam Due	