

# Data-driven modeling of cooling demand in a commercial building

AQSA NAEEM, SALLY BENSON, , JACQUES A. DE CHALENDAR

DEPARTMENT OF ENERGY RESOURCES ENGINEERING, STANFORD UNIVERSITY

#### Overview





#### Motivation



Heating, ventilation and air conditioning systems (HVAC) -  $^{\sim}30\%$  of energy<sup>1</sup>

Extreme climates – demand increases

#### (a) Typical Energy Consumption



#### Source: [2]

3

#### (b) Relationship between cooling demand and outside air temperature



Source: [3]

<sup>[1]</sup> Manjarres et al. (2017), 'An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression technique'

<sup>[2]</sup> Online. (2018) https://energy.stanford.edu/sites/g/files/sbiybj9971/f/energy seminar march 28 final.pdf s

### Background



- **Identification** of the thermal response of the building to relevant control inputs
- Integral components of HVAC: AHUs and VAVs characterize the thermal dynamics
- Data-driven modeling approach
- System identification model
  - Control variables: zone-level temperature setpoints
  - Cooling demand across AHU is a function of
    - Temperature setpoints (TSPs)
    - Outside Air Temperature (OAT)
    - Return Air Temperature (RAT)



### Cooling System Design



Inputs to AHU: Outside air (OA) and Return air (RA)

Output of AHU: Chilled supply air

**Assumption:** Cooling demand is a function of

Temperature setpoints (TSPs) and input air

temperature



#### Modeling Approach





- Challenges and proposed solutions
  - RAT measurements for the future are not available – Estimate them first
  - OAT forecasts from a local weather station – treated as exogenous variable
  - TSPs are collinear variables dimensionality reduction

# Modeling Approach





- RAT Estimator
  - Future RAT values are a function of past RAT measurements, current OAT and current TSPs
- Dimensionality Reduction Technique
  - Principal component analysis (PCA)
  - Extracted PCs from TSPs
- ARX models

### Modeling RAT





### **Modeling Cooling Demand**





#### Data



#### George Havas Building

- Two AHUs
- Multiple zones (15, 18)
- Time resolution: 5 min
- Period: June October
- Three sets for training (30<sup>th</sup> June – 15<sup>th</sup> Oct)
- Prediction: 16<sup>th</sup> 18 Oct



### Data Preparation and Analysis – Dimension Reduction (PCA)



Reduce dimensionality

Principal components capture the underlying structure

Linear transformation

AHU-1



AHU-2



### RAT Estimation Prediction Errors (3 days)



Table 1: RAT1 Estimation (Exogenous: OAT1 and TSPs)

|          | ME    | RMSE  | MAE   | MPE   | MAPE  |
|----------|-------|-------|-------|-------|-------|
| Test set | 1.807 | 2.412 | 1.931 | 2.253 | 2.418 |

Table 2: RAT2 Estimation (Exogenous: OAT2 and TSPs)

|          | ME    | RMSE  | MAE   | MPE   | MAPE  |
|----------|-------|-------|-------|-------|-------|
| Test set | 0.991 | 2.101 | 1.759 | 1.294 | 2.335 |

#### **Experimental Data**



#### Specifications

- Operating hours:9am 6pm
- Time resolution: 5 min to 1 hour interval

#### **Scenarios**

- A) Exclude the night time period from analysis
- B) Replace low demand by a constant
- C) Forecast using a rolling window



#### (A) Cooling Demand – removal of low demand periods



• RMSE = 9.23





### (B) Cooling Demand – low demand periods set to 2 ton





#### (B) Cooling Demand – low demand periods set to 2 ton



RMSE = 5.323969





### (C) Cooling Demand – rolling window forecast



• Roll period: 10<sup>th</sup> July – 20<sup>th</sup> July

Prediction horizon: 1<sup>st</sup> Aug: 11<sup>th</sup> Aug

Training window: three weeks



# (C) Cooling Demand – rolling window forecast



• Roll period: 10<sup>th</sup> July – 20<sup>th</sup> July

Prediction horizon: 1<sup>st</sup> Aug: 11<sup>th</sup> Aug

Training window: three weeks



### (C) Cooling Demand – rolling window forecast for August 2020









Table 1: RMSE variations on each day of Aug

| Day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| RMSE | 4.542 | 3.773 | 2.915 | 6.564 | 3.758 | 5.418 | 6.102 | 1.375 | 3.773 | 6.151 | 5.917 |



#### **Takeaways**



- 1. Testing/prediction horizon: Dynamic models are more accurate but may suffer from discontinuities in the data
- 2. Physical constraints: Buildings are shut down at night
- 3. Discarding the cooling demand and RAT values measured during the night may have a negative impact on the prediction of the demand for the first few minutes in the morning

#### 4. Scalability

Campus wide

Building's thermal response

Occupancy mode

Occupancy behavior

Indoor environment

Outside air temperature





# Thank you!