® BUNDESREPUBLIK DEUTSCHLAND

., .

PATENTAMT

© Offenlegungsschrift© DE 196 46 016 A 1

(1) Aktenzeichen:(2) Anmeldetag:

(4) Offenlegungstag: 20. 5.98

⑤ Int. Cl.⁶:

H 04 L 12/56

H 04 L 12/26 H 04 L 29/14 H 04 B 7/005 H 04 B 1/74 H 04 B 7/204 H 04 B 10/24

DE 19646016A

7 Anmelder:

Siemens AG, 80333 München, DE

(72) Erfinder:

196 46 016.6

7. 11. 96

Klink, Joachim, Dipl.-Ing., 81369 München, DE

56 Entgegenhaltungen:

DE 41 28 938 C2 US 52 39 537 EP 06 45 918 A2 WO 94 28 646 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

Werfahren zum Ersatzschalten von Übertragungseinrichtungen zur bidirektionalen Übertragung von ATM-Zellen

(5) Verfahren zum Ersatzschalten von Übertragungseinrichtungen zur bidirektionalen Übertragung von ATM-Zellen

Die Ersatzschaltung von ATM-Zellen birgt beim Stand der Technik das Problem von Fehlschaltungen in sich. Das erfindungsgemäße Verfahren schafft hier Abhilfe, indem bei Störung einer Betriebsstrecke nach Maßgabe von Prioritätskriterien und logischer Verbindungsinformation eine Ersatzschaltung auf lediglich eine Ersatzstrecke gesteuert wird.

Beschreibung

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.

Ein derartiges Verfahren ist bereits aus der internationalen Patentanmeldung WO94/28646 bekannt.

Dieses bekannte Verfahren bezieht sich auf Übertragungseinrichtungen der synchronen digitalen Hierarchie (SDH). Dabei ist eine Übertragungseinrichtung zur bidirektionalen Ubertragung von Digitalsignalen vorgesehen, bei der zwei als Endstellen fungierende Vermittlungseinrichtungen über eine Betriebsstrecke und eine Ersatzstrecke miteinander verbunden sind. Die beiden Endstellen enthalten jeweils eine Uberwachungsvorrichtung zur Feststellung von Übertragungsstörungen. Eine durch die Überwachungsvorrichtung steuerbare Schaltvorrichtung verbindet eine Empfangsvorrichtung in einen ersten Schaltzustand mit der Betriebsstrecke und in einem zweiten Schaltzustand mit der Ersatzstrecke. Zwischen den Steuervorrichtungen der beiden Endstellen werden Steuerinformationen ausgetauscht. Die Schaltvorrichtung wird jeweils durch die örtliche Überwachungsvorrichtung in Abhängigkeit von örtlichen und in den von der Gegenstelle empfangenen Steuerinformationen enthaltenen Steuerkriterien gesteuert.

Nachteilig hieran ist, daß dieses bekannte Verfahren sich 25 auf Übertragungseinrichtungen der synchronen digitalen Hierarchie bezieht und nicht auf Übertragungseinrichtungen des asynchronen Transfermodus (ATM) übertagen werden kann. Weiterhin gelangt dieses bekannte Verfahren auf 1+1 bzw. 1:1 Strukturen zur Anwendung. Bei komplexeren 30 Strukturen wie beispielsweise 1:n Strukturen kann es hier allerdings zu Fehlverbindungen kommen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art derart weiterzubilden, daß Zellen, die nach einem asynchronen Transfermodus übertragen 35 werden, mit großer Sicherheit über eine Mehrzahl von Netzknoten übertragen werden können.

Die Erfindung wird ausgehend von den im Oberbegriff des Patentanspruchs 1 angegebenen Merkmale durch dessen kennzeichnende Merkmale gelöst.

Vorteilhaft an der Erfindung ist insbesondere, daß lediglich eine Ersatzstrecke vorgesehen wird, die einer Mehrzahl von Betriebsstrecken zugeordnet ist. Über diese Ersatzstrecke werden die ATM-Zellen der gestörten Betriebsstrecke übertragen nach Maßgabe von Prioritäten übetragen. Die Durchschaltung durch die empfangende Vermittlungseinrichtung erfolgt dann unter zu Hilfenahme einer logischen Verbindungsnummer. Damit ist der Vorteil verbunden, daß die Verbindung im Fehlerfall ohne Einschränkung aufrechterhalten werden kann.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert.

Es zeigen:

Fig. 1 das erfindungsgemäße Verfahren zur bidirektionalen Übertragung von ATM-Zellen in einer 1: n-Struktur,

Fig. 2 eine spezielle Ausgestaltung des erfindungsgemäßen Verfahrens in einer 1:1-Struktur,

Fig. 3 eine weitere spezielle Ausgestaltung des erfin- 60 dungsgemäßen Verfahrens in einer 1+1-Struktur.

Fig. 4 die verwendeten Prioritäten, nach deren Maßgabe die Ersatzschaltung erfolgt.

Gemäß Fig. 1 sind zwei Knoten eines ATM-Netzes aufgezeigt, welche jeweils als Vermittlungseinrichtung W, E ausgebildet sind. In vorliegendem Ausführungsbeispiel wird davon ausgegangen, daß es sich bei diesen Vermittlungseinrichtungen um Cross Connect Vermittlungseinrichtungen

handelt. Die Verwendung derart ausgebildeter Vermittlungseinrichtungen bedeutet jedoch keine Einschränkung der Erfindung, andere Vermittlungseinrichtungen sind ebenso verwendbar. In Fig. 1a ist die Übertragung von ATM-Zellen von der Vermittlungseinrichtung W zur Vermittlungseinrichtung E hin aufgezeigt, während in Fig. 1b die Rückrichtung dieser Verbindung offenbart ist.

Die Vermittlungseinrichtungen W, E sind über Betriebsstrecken WE₁, ..., WE_n (WORKING ENTITY) sowie lediglich eine Ersatzstrecke PE (PROTECTION ENTITY) miteinander verbunden sind. Weiterhin sind Schaltereinrichtungen S_0, \ldots, S_n (BRIDGE) aufgezeigt, über die die ankommenden ATM-Zellen und die zugehörigen Betriebsstrecken WE₁,..., WE_n zur Vermittlungseinrichtung E hin übertragen werden. Die ATM-Zellen werden nach einem asynchronen Transfermodus übertragen und weisen jeweils einen Kopfteil sowie einen Informationsteil auf. Der Kopfteil dient der Aufnahme von Verbindungsinformation während der Informationsteil der Aufnahme von Nutzinformation dienlich ist. Die im Kopfteil enthaltene Verbindungsinformation ist als logische Information ausgebildet und wird in der Regel als virtuelle Pfadnummer VPI bzw. virtuelle Kanalnummer VCI ausgebildet.

Weiterhin sind Fig. 1 Selektionseinrichtungen SN entnehmbar, deren Aufgabe darin besteht, die über die Betriebsstrecken WE₁, ..., WE_n übertragenen ATM-Zellen dem Ausgang der Vermittlungseinrichtung E zuzuführen. Gemäß vorliegendem Ausführungsbeispiel sind die Selektionseinrichtungen SN als ATM-Koppelfeld ausgebildet. Das ATM-Koppelfeld SN ist sowohl in der Vermittlungseinrichtung W als auch der Vermittlungseinrichtung E enthalten.

Weiterhin sind in beiden Vermittlungseinrichtungen W, E Überwachungsvorrichtungen ÜE₀, ..., ÜE_n (PROTECTION DOMAIN SINK, PROTECTION DOMAIN DOMAIN SOURCE) aufgezeigt, die den Zustand bzw. die Qualität der über die Betriebstrecken WE1, ..., WEn übertragenen ATM-Zellen überwachen. Beispielsweise werden die ATM-Zellen der Verbindung mit der Nummer 1 WT₁ bevor sie über die Betriebsstrecke WE1 zur Vermittlungseinrichtung E hin übertragen werden, in der Überwachungseinrichtung ÜE, der Vermittlungseinrichtung W mit Steuerinformation versehen, die die Überwachungseinrichtung ÜE1 der empfangenden Vermittlungseinrichtung E entnimmt und überprüft. Anhand dieser Steuerinformation kann dann ermittelt werden, ob die Übertragung der ATM-Zelle korrekt erfolgt ist oder nicht. Insbesondere kann hier ein Totalausfall (SI-GNAL FAIL FOR WORKING ENTITY) einer der Betriebsstrecken WE_1, \ldots, WE_n ermittelt werden. Ebenso sind aber auch unter Verwendung bekannter Verfahren Verschlechterungen in der Übertragungsqualität (SIGNAL DE-GRADE) ermittelbar.

Die Überwachungsvorrichtungen $\ddot{U}E_1,\ldots,\ddot{U}E_n$ schließen die Betriebsstrecken WE_1,\ldots,WE_n auf beiden Seiten ab. Weitere Überwachungsvorrichtungen $\ddot{U}E_0$ sind auf beiden Enden der Ersatzstrecke PE angeordnet. Diese soll im Fehlerfall als Übertragungsstrecke für die außer Betrieb genommene Betriebsstrecke WE_X dienen. Weiterhin werden hierüber Ersatzschalteprotokolle ES übertragen, so daß die Intaktheit der Ersatzstrecke oberste Priorität hat.

In jeder der Vermittlungseinrichtungen W, E sind ferner zentrale Steuereinrichtungen ZST angeordnet. Diese beinhalten jeweils Prioritätstabellen PG, PL. Bei den Prioritätstabellen PL handelt es sich um lokale Prioritätstabellen, in denen der Zustand und Priorität der lokalen Vermittlungscinrichtung abgespeichert ist. Bei den Prioritätstabellen PG handelt es sich um globale Prioritätstabellen, in den Zustand und Priorität der lokalen aber auch verbleibenden Vermittlungseinrichtung ist. Durch die Einführung der Prioritäten

wird erreicht, daß beim gleichzeitigen Auftreten mehrerer Ersatzschalteanforderungen festgelegt ist, welche Betriebsstrecke ersatzgeschaltet wird. Ebenso sind in den Prioritätstabellen die Ersatzschalteanforderungen priorisiert. So besteht beispielsweise eine hochpriore Anforderung von einem Anwender. Da dieser Ersatzschalteanforderung eine hohe Priorität zugewiesen ist, wird sie somit bevorzugt gesteuert. Eine von einer der Betriebsstrecken gesteuerte Ersatzschalteanforderung wird somit zurückgewiesen. Die einzelnen Prioritäten sind in Fig. 4 aufgezeigt.

Die zentralen Steuereinrichtungen ZST der Vermittlungseinrichtungen W, E tauschen Informationen in einem Ersatzschalteprotokoll ES aus. Dieses Protokoll wird über die Ersatzstrecke PE übertragen und von der zugeordneten Überwachungseinrichtung ÜE $_0$ der jeweils empfangenden Vermittlungseinrichtung entnommen, und der betreffenden zentralen Steuereinrichtung ZST zugeführt. Weiterhin wird in der zentralen Steuervorrichtung ZST dafür Sorge getragen, daß im Fehlerfall die Schaltvorrichtungen S_0, \ldots, S_n in entsprechender Weise gesteuert werden.

Im Protokoll ES sind Informationen K2 abgelegt. Dabei handelt es sich um Informationen bezüglich der momentanen Zustände der Schaltvorrichtungen. Weiterhin sind noch Informationen K1 abgelegt. Dabei handelt es sich um Informationen bezüglich der generierten Ersatzschalteanforderung. Das Protokoll wird jeweils bei Generierung der Ersatzschalteanforderung zwischen den beiden Vermittlungseinrichtungen ausgetauscht. In einer speziellen Ausgestaltung der Erfindung wird vorgesehen, das Protokoll ES zyklisch zwischen beiden Vermittlungseinrichtungen zu übertragen.

Im folgenden wird nun die Durchführung des erfindungsgemäßen Verfahrens anhand Fig. 1 näher erläutert. Dabei ist gemäß Fig. 1a die Übertragung der ATM-Zellen von der Vermittlungseinrichtung W zur Vermittlungseinrichtung E 35 über die Betriebsstrecken WE₁, ..., WE_n aufgezeigt. In Fig. 1b ist die zugehörige Gegenrichtung (bidirektionale Übertragung) erläutert. Gemäß dem vorliegenden Ausführungsbeispiel wird nun zunächst davon ausgegangen, daß die Betriebstrecken WE₁, ..., WE_n noch intakt sind und die ankommenden ATM-Zellen korrekt übertragen.

Gemäß Fig. 1a werden die ATM-Zellen der Vermittlungseinrichtung W zugeführt. Die ATM-Zellen gehören dabei einer Vielzahl von Verbindungen WT_1, \ldots, WT_n an. Die einzelnen Verbindungen werden anhand der im Kopfteil der ATM-Zellen eingetragenen logischen Verbindungsnummer VPI unterschieden.

Die Schaltvorrichtungen S_1,\ldots,S_n der Vermittlungseinrichtung W sind in diesem (noch intakten) Betriebsfall derart geschaltet, daß die ATM-Zellen den Überwachungseinrichtungen ÜE $_1,\ldots,$ ÜE $_n$ unmittelbar zugeführt werden. In letzteren werden die ATM-Zellen mit den bereits angesprochenen Steuerinformationen beaufschlagt und über die in Frage kommende Betriebsstrecke WE $_1,\ldots,$ WE $_n$ den Überwachungseinrichtungen ÜE $_1,\ldots,$ ÜE $_n$ der empfangenden Steuerinformation überprüft und gegebenenfalls ein Fehlerfall ermittelt. Ist die Übertragung korrekt erfolgt, werden die ATM-Zellen dem ATM-Koppelfeld SN zugeführt. Hier wird die logische Verbindungsinformation VPI ausgewertet und nach Maßgabe dieser Auswertung die ATM-Zelle über dem in Frage kommenden Ausgang des Koppelfeldes SN in das ATM Netz weitergeleitet.

Die Ersatzstrecke PE kann während dieser Zeit ungenutzt bleiben. Gegebenenfalls können aber auch während dieser 65 Zeit Sonderdaten (EXTRA TRAFFIC) der Vermittlungseinrichtung E zugeführt werden. Die Schaltvorrichtung S₀ der Vermittlungseinrichtung W nimmt also die Stellungen 1

oder 3 ein. Die Übertragung der Sonderdaten erfolgt ebenfalls in ATM-Zellen. Die Überwachungseinrichtung Ü E_0 der der Vermittlungseinrichtung W beaufschlagt die ATM-Zellen in gleicher Weise mit Steuerinformationen wie dies im Falle der über die Betriebsstrecken W E_1, \ldots, WE_n bereits geschildert wurde. Ebenso erfolgt die Überwachung der Strecke.

Im folgenden wird nun davon ausgegangen, daß die Betriebsstrecke WE_2 ausgefallen ist. Dies wird von der dieser zugeordneten Überwachungseinrichtung Ü E_2 der empfangenden Vermittlungseinrichtung E ermittelt. Die Ersatzschalteanforderung K1 wird nun zur betreffenden zentralen Steuereinrichtung ZST übermittelt, und dort in der lokalen Prioritätstabelle PL sowie der globalen Prioritätstabelle PG abgelegt.

Nach Maßgabe der in der globalen Prioritätstabelle PG abgespeicherten Prioritäten wird nun ermittelt, ob noch höher priore Anforderungen anstehen. Dies könnte beispielsweise die bereits angesprochene Umschalteanforderung des Anwenders (FORCED SWITCH FOR WORKING ENTITY) sein. Auch bei gleichzeitigem Auftreten anderer Störungsfalle wie beispielsweise der Betriebsstrecke WE₁ wäre die Ersatzschaltung dieser Betriebsstrecke bevorzugt zu behandeln, da dieser Betriebsstrecke eine höhere Priorität zugewiesen ist. In diesem Fall wird eine höher priorisierte Anforderung zuerst behandelt. Die in der lokalen und globalen Prioritätstabelle PL, PG gespeicherten Prioritäten sind in Fig. 4 aufgezeigt.

Sind keine höher priorisierte Anforderungen vorhanden, wird die Schaltvorrichtung S_2 der Vermittlungseinrichtung E in den verbleibenden Betriebszustand gesteuert, wie in Fig. 1b aufgezeigt. Im folgenden wird nun das Ersatzschalteprotokoll Es über die Ersatzstrecke PE der Vermittlungseinrichtung W zugeführt. In diesem Ersatzschalteprotokoll sind die bereits angesprochenen Informationen K1 und K2 enthalten. Wesentlich ist, daß die lokale Prioritätslogik die Ausgestaltung der Information K1 definiert, und die globale Prioritätslogik die Stellung der Schaltvorrichtung S_0 .

Von der Überwachungseinrichtung ÜE₀ der Vermitt40 lungseinrichtung E wird nun das Ersatzschalteprotokoll ES
übernommen und der zentralen Steuereinrichtung ZST der
Vermittlungseinrichtung W zugeführt. Liegen auch hier in
der globalen Prioritätstabelle PG keine weiteren höherpriorisierten Anforderungen an, so wird auch hier die Schaltvor45 richtung S₂ in entsprechender Weise angesteuert und eingestellt. Weiterhin wird die Schaltvorrichtung S₀ der Vermittlungseinrichtung W ebenfalls umgelegt. Der neue Status der
beiden Schaltvorrichtungen S₀, S₂ wird der Vermittlungseinrichtung E quittiert, und in der dortigen globalen Prioritätstabelle PG aktualisiert. Die ATM-Zellen der Verbindung
WT₂ werden somit über die Ersatzstrecke PE der Vermittlungseinrichtung E zugeführt.

Die Selektionseinrichtung SN der Vermittlungseinrichtung E ist als ATM Koppelfeld ausgebildet. Die über die Ersatzstrecke PE geleiteten ATM-Zellen werden diesem Koppelfeld zugeführt. Hier wird nun die logische Pfadnummer VPI dem Zellenkopf entnommen und ausgewertet und durch das Koppelfeld durchgeroutet. Das Ansteuern von Schalteinrichtungen entfällt somit in diesem Fall.

Da es sich bei diesen Verbindungen um eine bidirektionale Verbindung handelt, muß auch für die Übertragung der ATM-Zellen der Rückwärtsrichtung Sorge getragen werden. Dies erfolgt gemäß Fig. 1b in gleicher Weise, wie soeben für die Übertragung der ATM-Zellen von der Vermittlungseinrichtung W zur Vermittlungserinrichtung E hin geschildert wurde

Gemäß dem soeben beschriebenen Ausführungsbeispiel wurde von einer 1:n Struktur ausgegangen. Dies bedeutet,

daß für n Betriebsstrecken lediglich eine Ersatzstrecke zur Verfügung steht. Ein Spezialfall ist also dann gegeben, wenn n=1 gilt. In diesem Fall wird also eine 1:1 Struktur verwendet. Die entsprechenden Verhältnisse sind in Fig. 2 aufgezeigt.

Auch in diesem Fall ist die Selektionseinrichtung als ATM-Koppelgeld ausgebildet, so daß ein Durchschalten nach Maßgabe der VPI Nummer erfolgt. In den Vermittlungseinrichtungen gemäß Fig. 2 sind ebenso – nicht aufgezeigte – zentrale Steuereinrichtungen mit lokalen und globalen Prioritätstabellen enthalten.

Eine weitere Ausgestaltung der Erfindung ist in Fig. 3 aufgezeigt. Dabei handelt es sich um eine 1+1 Struktur. Diese Struktur ergibt sich aus der 1: n Struktur, indem die Schaltvorrichtungen S fest eingestellt werden und nicht 15 mehr über die zentralen Steuervorrichtungen ZST steuerbar sind. Damit werden die ATM-Zellen auch im störungsfreien Betriebsfall sowohl über die Betriebsstrecke WE als auch die Ersatzstrecke PE geleitet. Die Selektionseinrichtung SN ist hier nicht als ATM-Koppelfeld ausgebildet, sondern als 20 Schaltvorrichtung. Das Ersatzschalteprotokoll ES nimmt in diesem Fall eine einfachere Form an. Die Informationen K2 beschreiben hier den Zustand der Selektionsvorrichtung. Immer dann, wenn im Falle der 1: n Struktur die Schaltvorrichtungen S₀, ..., S_n gesteuert wurden, wird im Falle der 25 1+1 Strukur statt dessen die Selektionsvorrichtung SN gesteuert.

Patentansprüche

1. Verfahren zum Ersatzschalten von Übertragungseinrichtungen zur bidirektionalen Übertragung von ATM-Zellen, mit zwei Vermittlungseinrichtungen (W, E) die jeweils einen aus einer Mehrzahl von Betriebsstrecken (WE₁, ..., WE₀) gebildeten Übertragungsab- 35 schnitt abschließen, und die Informationen in ATM-Zellen über die Mehrzahl von Betriebsstrecken (WE1, .., WEn) der jeweils empfangenden Vermittlungseinrichtung (W, E) zuführen sowie mit Überwachungseinrichtungen (ÜE₁, ..., ÜE_n), die jeweils am Ende einer 40 Betriebsstrecke angeordnet sind und von der eine Störung der Betriebsstrecke ermittelt wird dadurch gekennzeichnet, daß zusätzlich eine Ersatzstrecke (PE) zwischen den beiden Vermittlungseinrichtungen (W, E) vorgesehen wird, über die im Falle einer Störung auf 45 einer der Betriebsstrecken (WE₁, ..., WE_n) die hierüber übertragen ATM-Zellen nach Maßgabe von Prioritätskriterien sowie von im Zellenkopf der ATM-Zellen enthaltenen logischen Verbindungsinformationen übertragen und den weiteren Einrichtungen des ATM- 50 Netzes zugeführt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß den Betriebsstrecken (WE_1, \ldots, WE_n) sowie der Ersatzstrecke (PE) eine Priorität zugewiesen wird.

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Ersatzschaltefall eine Ersatzschalteanforderung (K1) generiert wird, der weitere Prioritäten zugewiesen werden.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die logische Verbindungsinformation die 60 Nummer des virtuellen Pfades (VPI) ist.
- 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß Prioritätstabellen (PL, PG) vorgesehen werden, in der die Prioritäten festgelegt werden.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ersatzschaltung durch Ansteuern einer in der sendenden Vermittlungseinrichtung enthaltenden Schaltvorrichtung (S_0, \ldots, S_n) sowie

unter Verwendung einer in der empfangenden Vermittlungseinrichtung angeordneten Selektionseinrichtung (SN) erfolgt.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Selektionseinrichtung (SN) als ATM-Koppelfeld ausgebildet ist.

- 8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß über die Ersatzstrecke (PE) in betriebsstörungsfreien Zeiten Sonderdaten übertragen wird.
- 9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß bei Eintreffen einer Ersatzschalteanforderung in der empfangenden Vermittlungseinrichtung ein Ersatzschalteprotokoll (ES) generiert wird, das lediglich einmal über die Ersatzstrecke (PE) der verbleibenden Vermittlungseinrichtung zugeführt wird.
- 10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Totalausfall und Verschlechterung einer Betriebsstrecke in der Überwachungseinrichtung der empfangenden Vermittlungseinrichtung ermittelt werden.
- 11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Schaltvorrichtung fest einstellbar ist.
- 12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Vermittlungseinrichtungen als Crossconnect-Schalteinrichtungen ausgebildet sind.

Hierzu 7 Seite(n) Zeichnungen

- Leerseite -

FIG 4

TABLE 1

K1 Byte Coding: Bits 1 2 3 4	Request (i.e. automatically initiated command, state, or externally initiated command)	Order of Priority
1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0101 0010 0001	Lockout of Protection (Note 1) Signal Fail for Protection Entity (Note 1) Forced Switch for Working Entity #n (Note 5) Signal Fail for Working Entity #n Signal Degrade Unused (Note 2) Unused (Note 2) Manual Switch Unused (Note 2) Wait to Restore for Working Entity #n (Note 3) Unused (Note 2) Do Not Revert for Working Entity #1 (Note 4) No Request (Note 1)	Highest I I I I I I I I I I I I I I I I I I I

Notes:

Note that in the case that more than one request of the same priority listed in Table 1 is simultaneously active, the request with the lowest entity number takes precedence. Therefore, a request (e.g. Signal Degrade) for the protection entity (#0) overrides the same request for any working entity (#1 to #n), and a request for a working entity #k overrides the same request for any working entity with an entity number greater than k.

- Note 1: Only K1 bit 4-8 coding of "0000" is allowed with No Request, Lockout of Protection and Signal Fail for Protection Entity.
- Note 2: These codes are ignored by the receiver.
- Note 3: Wait to Restore for Working Entity #n is only applicable for revertive operation.
- Note 4: Do Not Revert for Working Entity #1 is only applicable for nonrevertive operation; only K1 bit 4-8 coding of "0001" is allowed.
- Note 5: Forced Switch for Protection Entity (#0) is not defined because this funktion may be achieved via a Lockout of Protection command.