5. előadás Differenciálszámítás 5.

Taylor-polinomok és Taylor-sorok

Motivávió: Függvények (pl. inverzek) közelítő értékeinek a kiszámítása, függvények közelítése polinomokkal.

Eszköz: Hatványsorok.

Emlékeztető, motiváció: Analízis I., 8. előadás.

- A $\sum \alpha_n(x-a)^n$ $(x \in \mathbb{R})$ hatványsor (polinom általánosítása), konvergenciahalmazának és öszegfüggvényének a fogalma.
- Az összegfüggvény polinomok sorozatának a határértéke, ezért a helyettesítési értékeit nem tudjuk pontosan kiszámítani. A közelítő értékeit azonban (elvileg) tetszőleges pontossággal meg tudjuk határozni a négy alapművelet véges sokszori alkalmazásával.
 - Az exp, sin, cos, sh, ch fv-ek hatványsoros definíciói.
- Az inverzeik helyettesítési értékeit tetszőleges helyen a definíció alapján nem lehet kiszámolni.

Ezért (is) fontos a következő **kérdésfelvetés**.

Probléma:

Egy adott (bonyolult) függvényt vajon elő lehet-e állítani hatványsor összegfüggvényeként? Ha igen, akkor a függvény ismeretében hogyan lehet az együtthatókat meghatározni?

Induljunk ki a hatványsor összegfüggvényének a tagonkénti deriválhatóságára vonatkozó tételből.

Tétel.

T.f.h. hogy a $\sum_{n=0}^{\infty} \alpha_n(x-a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x - a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban $f \in D\{x\}$ és

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1} \qquad (\forall x \in K_R(a)).$$

Teljes indukcióval igazolható a következő állítás:

Tétel. T.f.h. a $\sum_{k=0}^{\infty} \alpha_k(x-a)^k$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét. Ekkor minden $x \in K_R(a)$ pontban $f \in D^{\infty}\{x\}$, és bármely $n \in \mathbb{N}^+$ esetén

$$f^{(n)}(x) = \sum_{k=n}^{+\infty} k(k-1) \cdots (k-n+1) \alpha_k (x-a)^{k-n}.$$

 $Ha \ x = a, \ akkor$

(*)
$$\alpha_n = \frac{f^{(n)}(a)}{n!} \quad (n \in \mathbb{N}) .$$

A tétel tehát azt is állítja, hogy egy hatványsor együtthatói és az összegfüggvénye között a (*) alatti kapcsolat áll fenn. Ebből a formulából kiindulva minden $f \in D^{\infty}$ függvényhez egy hatványsort rendelünk.

Definíció. $Ha \ f \in D^{\infty}\{a\}, \ akkor \ a$

$$T_a f(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \quad (x \in \mathbb{R})$$

hatványsort az f függvény $a \in \text{int } \mathcal{D}_f$ ponthoz tartozó **Taylor-sorának**, a sor n-edik részletösszegét, azaz a

$$T_{a,n}f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \quad (x \in \mathbb{R})$$

polinomot az f függvény $a \in \text{int } \mathcal{D}_f$ ponthoz tartozó n-edik Taylor-polinomjának nevezzük.

Az f függvény a = 0 ponthoz tartozó Taylor-sorát f Maclaurin-sorának is nevezzük.

Megjegyzések.

- $\mathbf{1}^{o}$ Az előző tételt így is megfogalmazhatjuk: $Minden\ konvergens\ hatványsor\ az\ összegfüggvényének\ a\ Taylor-sorával\ egyenlő. Ezek szerint, ha egy <math>f$ függvény előállítható konvergens hatványsor összegfüggvényeként, akkor a szóban forgó sor szükségképpen f Taylor-sora.
- ${\bf 2^o}$ Az exp, sin, cos, sh
, ch függvények definícióiban megadott hatványsorok a szóban forgó függvények
 a=0ponthoz tartozó Taylor-sorai.
- $\mathbf{3}^{o}$ A $T_{a}f$ Taylor-sor felírása általában nem egyszerű feladat, mert ahhoz ismernünk kellene minden $n \in \mathbb{N}$ esetén az $f^{(n)}(a)$ függvényértékeket.

 ${\bf 4^o}$ Legyen $n\in\mathbb{N},$ és t.f.h. $f\in D^n\{a\}.$ Ekkor a

$$T_{a,n}f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n \quad (x \in \mathbb{R})$$

Taylor-polinomra az alábbi **interpolációs tul-ok** teljesülnek:

$$(*) T_{a,n}f(a) = f(a), (T_{a,n}f)'(a) = f'(a),$$
$$(T_{a,n}f)''(a) = f''(a), \dots, (T_{a,n}f)^{(n)}(a) = f^{(n)}(a). \checkmark$$

 $T_{a,n}f$ az **egyetlen** ilyen tulajdonságú legfeljebb n-edfokú polinom. Valóban: T.f.h. egy ilyen P polinomra (*) teljesül, és legyen $Q := P - T_{a,n}f$. Ekkor $Q(a) = Q'(a) = \cdots = Q^{(n)}(a) = 0$ \Longrightarrow az a szám Q-nak legalább (n+1)-szeres gyöke $\Longrightarrow Q \equiv 0$ $\Longrightarrow P \equiv T_{a,n}f$.

Természetes módon vethetjük fel a következő kérdéseket.

A sorfejtés problémája. T.f.h. $f \in D^{\infty}\{a\}$.

1º A konvergencia: Hol konvergens a T_af Taylor-sor?

 2^o Az előállítás: Ha a Taylor-sor konvergens egy $I \subset \mathbb{R}$ intervallumon, akkor vajon fennáll-e az

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k \quad (x \in I)$$

egyenlőség? Ha ez igaz, akkor azt mondjuk, hogy a Taylor-sor előállítja f-et az I intervallumon.

Megjegyzés. Előfordulhat, hogy egy függvény Taylor-sora \mathbb{R} en konvergens, de nem állítja elő a függvényt. **Igazolható**, hogy
ha

$$f(x) := \begin{cases} e^{-\frac{1}{x^2}}, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ 0, & \text{ha } x = 0, \end{cases}$$

akkor $f \in D^{\infty}(\mathbb{R})$ és $f^{(n)}(0) = 0$ $(n \in \mathbb{N})$. A $T_0 f$ Taylor-sor minden együtthatója 0, az összegfüggvénye az \mathbb{R} -en azonosan 0 függvény, ami f-et egyetlen $x \neq 0$ pontban sem állítja elő.

A sorfejtés problémáját néhány függvénynél "egyedi eszközökkel" vizsgálhatjuk. Ennek illusztrálására mutatunk most példákat.

Nevezetes sorfejtések

1°
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$$
 $(|x| < 1)$.

Bizonyítás. Legyen
$$f(x) := \frac{1}{1+x}$$
 $(x > -1)$. Ekkor $f \in D^{\infty}$ és $f^{(n)}(x) = (-1)^n n! (1+x)^{-n-1} (x > -1)$, így
$$f^{(n)}(0) = (-1)^n n! \quad (n \in \mathbb{N}) \implies T_0 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} (-1)^n x^n \quad (x \in \mathbb{R}).$$

Ez (-x) hányadosú geometriai sor, és konvergens $\iff |x| < 1$, és ekkor az összege:

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + x^2 - x^3 + \dots \quad (|x| < 1). \blacksquare$$

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots \quad (|x| < 1).$$

Bizonyítás. 1^o -ben x helyett x^2 -et írva kapjuk az állítást.

$$3^o$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \cdots \quad (x \in (-1,1]).$$

Ha x = 1, akkor

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Bizonyítás. (Vázlat.) Legyen $f(x) := \ln(1+x)$ (x > -1).

Ekkor
$$f \in D^{\infty}$$
 és $f^{(n)}(x) = (-1)^{n+1} \cdot (n-1)! \cdot (1+x)^{-n}$, így

$$f(0) = 0, \quad f^{(n)}(0) = (-1)^{n+1} \cdot (n-1)! \ (n \in \mathbb{N}^+) \implies$$

$$T_0 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad (x \in \mathbb{R}).$$

A sor konvergenciahalmaza a (-1,1] intervallum.

 $\underline{\text{Az előállítás}}.$ Legyen g a T_0f sor összegfüggvénye:

$$g(x) := \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} \quad (x \in (-1, 1]).$$

Ekkor $g \in D(-1,1)$ és $\forall x \in (-1,1)$ pontban

$$g'(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \cdot n \cdot \frac{x^{n-1}}{n} = \sum_{n=0}^{+\infty} (-x)^n = \frac{1}{1+x}.$$

Mivel
$$f'(x) = \frac{1}{1+x}$$
 $(x > -1) \Longrightarrow f' = g'$ $(-1,1)$ -en \Longrightarrow

$$\exists c \in \mathbb{R}: f(x) - g(x) = c \ (x \in (-1, 1)).$$
 Ugyanakkor

$$f(0) - g(0) = 0 \Longrightarrow \underbrace{c = 0}_{\cdot} \text{ Így } \forall x \in (-1, 1) \text{ pontban}$$

$$\ln\left(1+x\right) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

Az x = 1 pontban az állítás f és g folytonosságából következik.

$$\left| \operatorname{arc} \operatorname{tg} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \cdots \right| (x \in [-1, 1]) \right|.$$

Ha x = 1, akkor

$$arc tg 1 = \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Megjegyzés. Az $f(x) := \operatorname{arc} \operatorname{tg} x \ (x \in \mathbb{R})$ függvény $T_0 f$ Taylorsorának előállítása a definíció alapján nem egyszerű feladat.

Bizonyítás. (Vázlat.) Ötlet: Az $f'(x) = \frac{1}{1+x^2}$ ($x \in \mathbb{R}$) függvény sorösszeg előállítását már ismerjük (l. a **2**° példát):

$$T_0 f'(x) = 1 - x^2 + x^4 - x^6 + \cdots \quad (|x| < 1).$$

Vegyük észre azt, hogy ha

$$g(x) := x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \quad (|x| < 1), \text{ akkor}$$

$$g'(x) = 1 - x^2 + x^4 - x^6 + \dots \quad (|x| < 1).$$

A ${\bf 3}^o$ példában alkalmazott gondolatmenetet követve kapjuk, hogy

$$g(x) = f(x) = \text{arc tg } x, \text{ ha } x \in (-1, 1).$$

A ± 1 pontbeli előállítást is hasonlóan bizonyíthatjuk be.

5° A binomiális sor

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (x \in (-1,1), \ \alpha \in \mathbb{R}),$$

ahol

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} := 1 \text{ \'es } \begin{pmatrix} \alpha \\ n \end{pmatrix} := \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!}, \text{ ha } n \in \mathbb{N}^+$$

a binomiális együtthatók.

Bizonyítás. (Vázlat.) Legyen

$$f(x) := (1+x)^{\alpha} \quad (x > -1, \ \alpha \in \mathbb{R}).$$

1. lépés. Az f függvény 0 pont körüli Taylor-sora:

$$T_0 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} {\alpha \choose n} x^n \quad (x \in \mathbb{R}),$$

ui. $f^{(n)}(0) = \alpha(\alpha - 1) \cdots (\alpha - n + 1) \ (n \in \mathbb{N}^+).$

2. lépés. A T_0f sor konvergens a (-1,1) intervallumon (l. a hányadoskritériumot). Legyen

$$g(x) := \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (|x| < 1).$$

3. lépés. $f \in D^{\infty}(-1, +\infty)$ és

$$(1+x) \cdot f'(x) = \alpha \cdot f(x) \quad (x > -1).$$

 $g \in D^{\infty}(-1,1)$, és **igazolható**, hogy

$$(1+x)\cdot g'(x) = \alpha\cdot g(x) \quad (|x|<1).$$

4. lépés. Igazoljuk, hogy

$$(1+x)^{\alpha} = f(x) = g(x) = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (|x| < 1),$$

Valóban, minden $x \in (-1, 1)$ pontban

$$\left(\frac{g(x)}{(1+x)^{\alpha}}\right)' = \frac{g'(x) \cdot (1+x)^{\alpha} - g(x) \cdot \alpha (1+x)^{\alpha-1}}{(1+x)^{2\alpha}} = \frac{(1+x) \cdot g'(x) - \alpha \cdot g(x)}{(1+x)^{\alpha+1}} = 0.$$

Ezért $\exists c \in \mathbb{R} : \frac{g(x)}{(1+x)^{\alpha}} = c \ (|x| < 1).$ Mivel $g(0) = {\alpha \choose 0} = 1$, ezért c = 1, tehát

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (x \in (-1,1), \ \alpha \in \mathbb{R}). \blacksquare$$

 ${\bf 6^o}$ A binomiális sorban $\alpha=-\frac{1}{2}$ esetén xhelyett ($-x^2$)-et írva azt kapjuk, hogy

$$\boxed{\frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} (-1)^n \cdot {-\frac{1}{2} \choose n} \cdot x^{2n} \quad (|x| < 1)},$$

ahol $\binom{-\frac{1}{2}}{n} = (-1)^n \cdot \binom{2n}{n} / 4^n$.

7º Ha $f(x) := \arcsin(x) \ (x \in [-1,1])$, akkor $f \in D(-1,1)$ és

$$f'(x) = \frac{1}{\sqrt{1-x^2}} \quad (|x| < 1).$$

A 6^o példát, valamint a 3^o példa gondolatmenetét alkalmazva azt kapjuk, hogy

$$\arcsin x = \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{4^n} \cdot \frac{x^{2n+1}}{2n+1} \quad (|x| < 1).$$

Az általános eset vizsgálata

A sorfejtés problémájának a vizsgálatához az általános esetben az

$$f(x) - T_{a,n}f(x)$$

különbséget kell tekinteni.

A következő tételben a szóban forgó különbséget egy jól kezelhető alakban állítjuk elő.

Tétel: Taylor-formula a Lagrange-féle maradéktaggal.

Legyen $n \in \mathbb{N}$, és t.f.h. $f \in D^{n+1}(K(a))$. Ekkor $\forall x \in K(a)$ ponthoz \exists olyan a és x közé eső ξ szám, hogy

$$f(x) - T_{a,n}f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Bizonyítás. A Cauchy-féle középértéktételt fogjuk felhasználni. Legyen

$$F(x) := f(x) - T_{a,n}f(x) \qquad (x \in K(a)).$$

A $T_{a,n}f$ polinom definíciójából következik, hogy

$$F^{(i)}(a) = f^{(i)}(a) - (T_{a,n}f)^{(i)}(a) = 0 (i = 0, 1, ..., n).$$

Továbbá, $F^{(n+1)}(x) = f^{(n+1)}(x)$, hiszen $(T_{n,a}f)^{(n+1)} \equiv 0$, mert $T_{a,n}f$ egy legfeljebb n-edfokú polinom.

Másrészt, legyen $G(x):=(x-a)^{n+1} \ \big(x\in K(a)\big).$ Ekkor minden $x\in K(a)$ esetén

$$G'(x) = (n+1)(x-a)^n$$
, $G''(x) = n(n+1)(x-a)^{n-1}$, ...,
 $G^{(n)}(x) = (n+1)!(x-a)$,

amiből következik, hogy $G^{(i)}(a) = 0$ (i = 0, 1, ..., n), és $G^{(n+1)}(x) = (n+1)!$.

Tegyük fel, hogy $x \in K(a)$ és például x > a. (Az x < a eset hasonlóan vizsgálható.) Az F és a G függvényekre az [a, x] intervallumon alkalmazható a Cauchy-féle középértéktétel, következésképpen

$$\exists \xi_1 \in (a,x) \colon \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(x)} = \frac{f(x) - T_{a,n}f(x)}{(x-a)^{n+1}}.$$

A Cauchy-féle középértéktételt most az F' és a G' függvényekre az $[a, \xi_1]$ intervallumon alkalmazzuk:

$$\exists \xi_2 \in (a, \xi_1) \subset (a, x) \colon \frac{F''(\xi_2)}{G''(\xi_2)} = \frac{F'(\xi_1) - F'(a)}{G'(\xi_1) - G'(a)} = \frac{F'(\xi_1)}{G'(\xi_1)}.$$

Ha a fenti gondolatmenetet n-szer megismételjük, akkor a k-dik lépésben $(k=1,2\ldots,n)$:

$$\exists \xi_{k+1} \in (a, \xi_k) \subset (a, x) :$$

$$\frac{F^{(k+1)}(\xi_{k+1})}{G^{(k+1)}(\xi_{k+1})} = \frac{F^{(k)}(\xi_k) - F^{(k)}(a)}{G^{(k)}(\xi_k) - G^{(k)}(a)} = \frac{F^{(k)}(\xi_k)}{G^{(k)}(\xi_k)}.$$

Az n számú lépés során kapott egyenlőségeket egybevetve azt kapjuk, hogy

$$\frac{f(x) - T_{a,n}(f,x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F'(\xi_1)}{G'(\xi_1)} = \dots = \frac{F^{(n)}(\xi_n)}{G^{(n)}(\xi_n)} =$$

$$= \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!},$$

hiszen minden $x \in K(a)$ esetén $F^{(n+1)}(x) = f^{(n+1)}(x)$ és $G^{(n+1)}(x) = (n+1)!$. A konstrukcióból látható, hogy ξ_{n+1} az a pont és x között van, ezért a $\xi := \xi_{n+1}$ választással a bizonyítandó állítást kapjuk.

Függvények egy fontos osztályára igaz, hogy egy rögzített a helyhez tartozó Taylor-polinomok sorozata egy K(a) környezet bármely x helyén f(x)-hez tart, ha $n \to +\infty$. Az egyik legegyszerűbb, de fontos ilyen jellegű tétel a következő.

Tétel: Elégséges feltétel az előállításra.

Legyen $f \in D^{\infty}(K(a))$, és tegyük fel, hogy

$$\exists\, M>0: \quad \left|f^{(n)}(x)\right| \leq M \ \big(\forall\, x\in K(a), \ \forall\, n\in\mathbb{N}\big).$$

Ekkor f-nek az a ponthoz tartozó Taylor-sora a K(a) halmazon előállítja az f függvényt, vagyis fennáll az

$$f(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \ (x \in K(a))$$

 Bizonyítás. Legyen $x \in K(a)$ egy tetszőleges pont. Ekkor az előző tétel alapján létezik olyan ξ pont a és x között, hogy

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \right| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} \right| \le M \cdot \frac{|x-a|^{n+1}}{(n+1)!}.$$

Ebből a tétel állítása már következik, mert

$$\lim_{n \to +\infty} \frac{(x-a)^{n+1}}{(n+1)!} = 0. \blacksquare$$