Eq. (5)

Quantum SVM

Construct $|\vec{x}_i\rangle$ from training data

Create matrix
$$K = \vec{x}_i^T \cdot \vec{x}_j$$

Create matrix
$$J = \begin{pmatrix} 0 & \vec{1}^T \\ \vec{1} & 0 \end{pmatrix}$$

Construct matrix
$$\hat{F} = (J + K + \gamma^{-1}I)/trF$$
 (Eq. (5))

Write $|\tilde{y}\rangle$ as a function of \hat{F} eigenvectors

Eq. (6)

Find the state $|\mathbf{b},\vec{\alpha}\rangle=\hat{F}^{-1}|\tilde{y}\rangle$ with HHL algorithm

Schuld program

Construct $|\vec{u}\rangle$ from the parameters of (7)

Eq. (8)

Construct $|\vec{x}\rangle$ from data to be tested

Eq. (9)

Construct states $|\psi
angle$ and $|\phi
angle$

Calculate $P = |\langle \psi | \phi \rangle|^2$

- If $P > \frac{1}{2}$, $|\vec{x}\rangle$ is in -1
 - If $P < \frac{1}{2}$, $|\vec{x}\rangle$ is in 1

Equations: https://arxiv.org/pdf/1307.0471.pdf

Schuld program: https://github.com/mariaschuld/phdthesis