Probability Theory Exercise 7

Issued: 2020/5/22 Due: 2020/6/7

Total points: 45

Each of your first 6 homework has total points 10, and each of your last two homework has total points 45 (including this one). In total, the full score of your homework will be $6 \times 10 + 45 \times 2 = 150$. Your final grade of this course will be 70+(your homework grade)/5.

- 2. Let X_1, X_2, \ldots be i.i.d. Cauchy random variables with PDF $f(x) = \frac{1}{\pi(1+x^2)}$. Let $S_n = X_1 + X_2 + \cdots + X_n$.
- (i) (2 points) Does $\{S_n/n\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If the answer is yes, what is the limit distribution?
- (ii) (1 point) Does $\{S_n/n^2\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If the answer is yes, what is the limit distribution?
- (iii) (1 point) Does $\{S_n/\sqrt{n}\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If the answer is yes, what is the limit distribution?
- 1. (5 points) Consider a branching process whose offspring distribution has expectation μ and variance σ^2 (see the definition of branching process and offspring distribution in the lecture slides). For n = 0, 1, 2, ..., let X_n be the number of individuals in the nth generation. Assume that $X_0 = 1$. What is $Var(X_n)$? Please express it in terms of n, μ and σ^2 .
- 3. Let X_1, X_2, X_3, \ldots be independent random variables with distribution $P(X_i = i) = P(X_i = -i) = 1/2$ for all i. (Note that the distribution of each X_i is **different**!!) Define $S_n = X_1 + X_2 + \cdots + X_n$ for every positive integer n.
- (i) (3 points) Does $\{S_n/n^2\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If the answer is yes, what is the limit distribution?
- (ii) (4 points) Does $\{S_n/n^{3/2}\}_{n=1}^{\infty}$ converge in distribution? Please explain why. If the answer is yes, what is the limit distribution?
- (iii) (2 points) For every real number $x \in \mathbb{R}$, find the limit $\lim_{n\to\infty} P\left(\frac{S_n}{n} \le x\right)$.
- 4. (9 points) Let X_1, X_2, \ldots, X_{2n} be i.i.d. random variables with the distribution $P(X_i = 1) = P(X_i = -1) = 1/2$ for all $1 \le i \le 2n$. For every $1 \le i \le 2n$, define $S_i = X_1 + X_2 + \cdots + X_i$. What is the conditional probability $P(S_i \ge 0 \text{ for all } 1 \le i \le 2n \mid S_{2n} = 0)$?
- 5. (9 points) Let X_1, X_2, X_3, \ldots be i.i.d. Bernoulli-p random variables, i.e., $P(X_i = 1) = p \in (0,1)$ and $P(X_i = 0) = 1 p$ for all i. Define another sequence $\{L_n\}_{n=1}^{\infty}$ of integer-valued random variables as follows: If $X_n = 0$, then we define $L_n = 0$. If $X_n = 1$, then we define L_n as the unique positive integer such that $X_n = X_{n+1} = X_{n+2} = \cdots = X_{n+L_n-1} = 1, X_{n+L_n} = 0$. Prove that there is a function of p, which we denote as f(p), such that

$$\limsup_{n \to \infty} \frac{L_n}{\log(n)} = f(p) \quad \text{with probability } 1.$$

Also solve the exact expression of f(p). (We use natural logarithm in this problem.)

6. Let X_1, X_2, X_3, \ldots be i.i.d. random variables with distribution $P(X_i = 1) = P(X_i = 1/2) = 1/2$ for all i. For all positive integer n, define $Y_n = \prod_{i=1}^n X_i$ and $S_n = \sum_{i=1}^n Y_i$.

- (i) (6 points) Does $\{S_n\}_{n=1}^{\infty}$ converge almost surely to some limit random variable? Please explain why. If the answer is yes, find the mean and variance of the limit random variable.
- (ii) (3 points) Now suppose that the distribution of X_i is $P(X_i = 2) = P(X_i = 1/4) = 1/2$ for all i, and the definition of Y_n and S_n remain the same. In this case, does $\{S_n\}_{n=1}^{\infty}$ converge almost surely to some limit random variable? Please explain why.