

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE ESTADÍSTICA

Primer semestre de 2019

Ayudante: Hernán Robledo (harobledo@uc.cl)

Inferencia Estadística / Métodos Estadísticos EYP2114/EYP2405 Ayudantía 8

Problema 1

Sea $X_1, ..., X_n$ una muestra iid perteneciente a una distribución Bernoulli(p).

- Defina el estimador $T = X_1$ insesgado para p. Encuentre un mejor estimador que T para p y muéstrelo comparando los ECM.
- Determine el EIVUM para $\tau(p) = p(1-p)$ sin utilizar el EMV y sus propiedades.

Problema 2

Sea $X_1, ..., X_n$ una muestra iid perteneciente a una distribución Poisson(λ). Muestre que la Rao-Blackwellización del estimador insesgado $T = X_1$ condicionado a $U = \sum_{i=1}^n X_i$ entrega el estimador $\phi(X) = \bar{X}$.

Problema 3

Sean $X_1,...,X_n$ $iid \sim N(\mu,\sigma^2)$, con σ^2 conocido.

- Se desea hallar un estimador para $\tau(\mu) = 2\mu$. Considere el estimador $T = X_1^2 + 2X_3 X_4^2$. Muestre que es insesgado y encuentre un mejor estimador que T para $\tau(\mu)$.
- Se desea hallar un estimador para $\tau(\mu) = \mu^2$. Considere el estimador $T = X_1^2 \sigma^2$. Muestre que es insesgado y encuentre un mejor estimador que T para $\tau(\mu)$. Ayuda: Si $U = \bar{X}$, entonces $T|U \sim N(u, \sigma^2(1-1/n))$.
- Se desea hallar un estimador para $\tau(\lambda) = 4\mu^2 + 2\sigma^2$. Considere el estimador $T = (X_1 + X_2)^2$. Halle la expresión de $E(T|\bar{X})$.

Problema 4

Sea $X_1, ... X_{10}$ una población proveniente de una distribución Gamma(3, v). Determine un pivote y construya un intervalo de confianza al 90 %.

Problema 5

Sea X_1 una observación perteneciente a una población exponencial de parámetro β .

- Muestre que la función $Y = \sqrt{2\beta X}$ es un pivote para esta distribución.
- Calcule el coeficiente de confianza para β en el intervalo [Y/3,2Y]. Comente. Ayuda: Si $Z \sim f(z) = z \exp(-z^2/2)$, entonces $F(z) = 1 \exp(-z^2/2)$
- Construya un intervalo de confianza al $100(1-\alpha)$ % para β .