6 A battery of electromotive force (e.m.f.) 12 V and negligible internal resistance is connected to a network of two lamps and two resistors, as shown in Fig. 6.1.

Fig. 6.1

The two lamps in the circuit have equal resistances. The two resistors have resistances R and $28\,\Omega$. The lamps are connected at junction X and the resistors are connected at junction Y. The current in the battery is $0.50\,\text{A}$ and the current in the lamps is $0.20\,\text{A}$.

- (a) Calculate:
 - (i) the resistance of each lamp

resistance =
$$\Omega$$
 [2]

(ii) resistance R.

$$R = \dots \Omega$$
 [2]

(b) Determine the potential difference $V_{\rm XY}$ between points X and Y.

$$V_{XY} = \dots V [3]$$

	total power dissipated by the lamps total power produced by the battery
	ratio =[2]
(d)	The resistor of resistance R is now replaced by another resistor of lower resistance.
	State and explain the effect, if any, of this change on the ratio in (c).
	[2]
	[Total: 11]

(c) Calculate the ratio