Feuille d'exercices nº 8 : correction

Exercice 1. Pour chacun des nombres complexes a suivants, résoudre l'équation $z^3 = a$.

1.
$$a = e^{i\frac{5\pi}{12}}$$

2.
$$a = -8i$$

3.
$$a = \frac{\sqrt{3} + i}{1 + i}$$

Solution. On rappelle que les racines cubiques de l'unité sont 1, j et j^2 où $j = e^{i\frac{2\pi}{3}}$ (et $\bar{j} = j^2$).

- 1. On résout : $z^3 = e^{i\frac{5\pi}{12}}$. On pose $b = e^{i\frac{5\pi}{36}}$. On obtient alors trois solutions : b, bj et $b\bar{j}$. Donc $\mathcal{S} = \{e^{i\frac{5\pi}{36}}, e^{i\frac{29\pi}{36}}, e^{-i\frac{19\pi}{36}}\}$.
- 2. On résout : $z^3 = 8e^{i\frac{3\pi}{2}}$. On pose $b = 8^{\frac{1}{3}}e^{i\frac{\pi}{2}} = 2i$. On obtient alors trois solutions : b, bj et $b\bar{j}$. Donc $\mathcal{S} = \{2i, -\sqrt{3} i, \sqrt{3} i\}$.
- 3. On met a sous forme géométrique : $\sqrt{3} + i = 2e^{i\pi/6}$ et $1 + i = \sqrt{2}e^{i\pi/4}$ et $a = \frac{2e^{i\pi/6}}{\sqrt{2}e^{i\pi/4}} = \sqrt{2}e^{-i\frac{\pi}{12}}$. On résout : $z^3 = \sqrt{2}e^{-i\frac{\pi}{12}}$. On pose $b = \sqrt{2}^{\frac{1}{3}}e^{-i\frac{\pi}{36}}$. On obtient alors trois solutions : b, bj et $b\bar{j}$. Donc $\mathcal{S} = \{2^{1/6}e^{-i\frac{\pi}{36}}, 2^{1/6}e^{i\frac{23\pi}{36}}, 2^{1/6}e^{-\frac{25\pi}{36}}\}$.

Exercice 2. Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$iz^2 + 2z - 5i = 0$$

2.
$$\frac{1}{2}z^2 + (1+i)z - i = 0$$

3.
$$z^2 + (2+3i)z - 5 + 5i = 0$$

4.
$$iz^2 + (8+2i)z - 8 - 3i = 0$$
. (indication : il y a une solution évidente)

5.
$$z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0.$$

6.
$$z^2 - 2z\cos(a) + 1 = 0$$
.

7.
$$z^6 - (1-i)z^3 - i = 0$$
.

8.
$$\begin{cases} z_1 z_2 = i \\ z_1 + z_2 = \sqrt{3} \end{cases}$$

9.
$$z^3 - 2(1+i)z + (2+4i)z - 4i = 0$$
, sachant qu'une des racines est imaginaire pure.

Solution. Pour trouver une racine carrée du discriminant, on notera "méthode 1" si Δ est sous forme géométrique et "méthode 2" si Δ est sous forme algébrique.

1.
$$\Delta = -16 < 0$$
. Une racine carré est : $\delta = 4i$. $\mathcal{S} = \{2+i, -2+i\}$

2.
$$\Delta = 4i = 4e^{i\pi/2}$$
. Par la méthode 1, une racine carré est : $\delta = 2e^{i\pi/4} = \sqrt{2} + \sqrt{2}i$. $S = \{-1 + \sqrt{2} + i(\sqrt{2} - 1), -1 - \sqrt{2} - i(\sqrt{2} + 1)\}$

3.
$$\Delta = 15 - 8i$$
. Par la méthode 2, une racine carré est : $\delta = 4 - i$. $\mathcal{S} = \{1 - 2i, -3 - i\}$

4. 1 est racine évidente. L'autre racine est :
$$\frac{-8-3i}{i}$$
. $S = \{1, -3+8i\}$

5. On pose
$$Z=z^2$$
. On résout : $Z^2-(5-14i)Z-2(5i+12)=0$. $\Delta=25(-3-4i)$. Par la méthode 2, on cherche une racine carré de $-3-4i$. On obtient une racine de $\Delta:\delta=5(1-2i)$. On obtient : $Z_1=-2i$ ou $Z_2=5-12i$. Reste à résoudre $z^2=Z_1$ (méthode 1) puis $z^2=Z_2$ (méthode 2)
$$\mathcal{S}=\{-1+i,1-i,-3+2i,3-2i\}$$

6.
$$\Delta = 4\cos^2 a - 4 = -4\sin^2 a$$
. Une racine carré est : $\delta = 2i\sin a$. $\mathcal{S} = \{e^{ia}, e^{-ia}\}$

7. On pose
$$Z=z^3$$
. On résout $Z^2-(1-i)Z-i=0$.
$$\Delta=2i=2e^{i\pi/2}. \text{ Par la méthode 1, une racine carré est : } \delta=1+i. \text{ Donc } Z_1=1 \text{ ou } Z_2=-i.$$
 Reste à résoudre les équations $z^3=1$ et $z^3=-i=e^{-i\pi/2}.$ On trouve :
$$\boxed{\mathcal{S}=\left\{1,e^{2i\pi/3},e^{4i\pi/3},e^{-i\pi/6},e^{-i\pi/6+2i\pi/3},e^{-i\pi/6+4i\pi/3}\right\}}$$
 ou encore
$$\boxed{\mathcal{S}=\left\{1,i,\frac{1}{2}+i\frac{\sqrt{3}}{2},\frac{1}{2}-i\frac{\sqrt{3}}{2},-\frac{1}{2}+i\frac{\sqrt{3}}{2},-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right\}}$$

8. Comme on connait la somme et le produit des racines,
$$z_1$$
 et z_2 sont solutions de l'équation : $Z^2 - \sqrt{3}Z + i = 0$.

$$\Delta = 3-4i$$
. Par la méthode 2, une racine carrée est : $\delta = 2-i$. D'où $\mathcal{S} = \{\frac{\sqrt{3}}{2} + 1 - i/2, \frac{\sqrt{3}}{2} - 1 + i/2\}$

9. On cherche une racine de la forme :
$$z = ai$$
 avec $a \in \mathbb{R}$. On ré-injecte : $-ia^3 + 2(1+i)a^2 + (2+4i)ia - 4i = 0$. Par identification partie réelle/imaginaire, c'est équivalent à : $2a^2 - 4a = 0$ et $-a^3 + 2a^2 + 2a - 4 = 0$. La première équation donne $a = 0$ ou $a = 2$. Puisque 0 n'est pas solution de la deuxième équation mais que 2 l'est, on obtient que $\boxed{z = 2i \text{ est une solution}}$. On peut donc diviser $z^3 - 2(1+i)z + (2+4i)z - 4i$ par $z - 2i$. On trouve : $z^3 - 2(1+i)z + (2+4i)z - 4i = (z-2i)(z^2 - 2z + 2)$. Reste à résoudre : $z^2 - 2z + 2 = 0$. On trouve : $1+i$ et $1-i$. D'où $\boxed{\mathcal{S} = \{2i, 1-i, 1+i\}}$

Exercice 3. Résoudre dans \mathbb{C} en utilisant les racines nièmes :

$$(E_1): (z-2)^4 = (2z-1)^4$$
 $(E_2): 27(z+i)^6 + (z-i)^6 = 0$ $(E_3): (z+1)^n = (z-1)^n$

Indication: Se ramener à une équation du type $Z^4 = 1$ que l'on sait résoudre.

Solution.

1.
$$z = \frac{1}{2}$$
 n'est pas solution. Donc on peut diviser : $(E_1) \Leftrightarrow \left(\frac{z-2}{2z-1}\right)^4 = 1$. On pose : $Z = \frac{z-2}{2z-1}$. On résout : $Z^4 = 1$. On trouve : $Z = e^{2ik\pi/4}$ avec $k = 0, 1, 2, 3$, donc $Z = 1, i, -1$ ou $-i$. On revient à $z : Z = \frac{z-2}{2z-1} \Leftrightarrow z-2 = Z(2z-1) \Leftrightarrow z = \frac{2-Z}{1-2Z}$ (car Z ne vaut jamais $\frac{1}{2}$). On obtient 4 solutions : $\frac{2-1}{1-2}$, $\frac{2-i}{1-2i}$, $\frac{2+i}{1+2i}$ autrement dit : -1 , $\frac{4}{5} + \frac{3}{5}i$, 1 , $\frac{4}{5} - \frac{3}{5}i$
$$S = \left\{-1, \frac{4}{5} + \frac{3}{5}i, 1, \frac{4}{5} - \frac{3}{5}i\right\}$$

2.
$$z = -i$$
 n'est pas solution. Donc on peut diviser : $(E_2) \Leftrightarrow \left(\frac{z-i}{z+i}\right)^6 = -27$. On pose : $Z = \frac{z-i}{z+i}$. On résout : $Z^6 = -27 = 27e^{\pi}$. On pose $b = 27^{\frac{1}{6}}e^{i\frac{\pi}{6}}$. On a donc $Z = be^{i\frac{2k\pi}{6}} = \sqrt{3}e^{i\frac{(2k+1)\pi}{6}}$ avec $k \in [0,5]$.

On revient à
$$z: Z = \frac{z-i}{z+i} \Leftrightarrow (z+i)Z = z-i \Leftrightarrow z = i\frac{1+Z}{1-Z}$$
 (car Z ne vaut jamais 1) Donc
$$S = \left\{i\frac{1+\sqrt{3}e^{i\frac{(2k+1)\pi}{6}}}{1-\sqrt{3}e^{i\frac{(2k+1)\pi}{6}}} \mid k \in \llbracket 0, 5 \rrbracket \right\}$$

3.
$$z=1$$
 n'est pas solution. Donc on peut diviser : $(E_3) \Leftrightarrow \left(\frac{z+1}{z-1}\right)^n = 1$. On pose : $Z=\frac{z+1}{z-1}$. On résout : $Z^n=1 \Leftrightarrow Z=e^{2ik\pi/n}$ avec $k \in \llbracket 0,n-1 \rrbracket$. On revient à $z:Z=\frac{z+1}{z-1} \Leftrightarrow z=\frac{Z+1}{Z-1}$. Attention, il faut retirer $Z=1$ qui est dans les valeurs de Z (pour $k=0$).
$$z=\frac{e^{2ik\pi/n}+1}{e^{2ik\pi/n}-1} \text{ pour } k \in \llbracket 1,n-1 \rrbracket.$$
 On obtient $n-1$ solutions et en factorisant par l'arc moitié on obtient même $z=\frac{2\cos(k\pi/n)}{2i\sin(k\pi/n)}=\frac{\cos(k\pi/n)}{i\sin(k\pi/n)}=-i\cot(k\pi/n)$.

Exercice 4. Soit
$$P(z) = z^4 + z^3 + z^2 + z + 1$$
, et $Q(z) = \frac{P(z)}{z^2} = z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2}$ (si $z \neq 0$).

- 1. On pose $u=z+\frac{1}{z}$. Calculer u^2 et utiliser ce résultat pour ramener l'équation Q(z)=0, à une équation du second degré en u.
- 2. Déterminer les racines de P.
- 3. Montrer, sans utiliser la question précédente, que : ($P(z)=0\Longrightarrow z^5=1$).
- 4. Déduire de ces deux questions, en utilisant les racines cinquièmes de l'unité, $\cos \frac{2\pi}{5}$ et $\sin \frac{2\pi}{5}$.

Solution.

1.
$$u^2 = z^2 + \frac{1}{z^2} + 2$$
.
 $Q(z) = z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2} = u^2 - 2 + u + 1 = u^2 + u - 1$.

2. Comme
$$z=0$$
 n'est pas racine de $P:P(z)=0\Leftrightarrow Q(z)=0\Leftrightarrow u^2+u-1=0$
On résout : $u^2+u-1=0\Leftrightarrow u_1=\frac{-1+\sqrt{5}}{2}$ et $u_2=\frac{-1-\sqrt{5}}{2}$.
On revient à $z:z+\frac{1}{z}=u\Leftrightarrow z^2-uz+1=0$

$$\Delta=u^2-4=1-u-4=-u-3. \text{ Dans les deux cas } (u_1\text{ et }u_2), -u-3<0.$$
Donc : $z=\frac{u_j+i\sqrt{u_j+3}}{2}$ ou $z=\frac{u_j-i\sqrt{u_j+3}}{2}$ pour $j=0$ ou 1 (on obtient 4 solutions.)

3. Pour
$$z \neq 1$$
, $P(z) = \frac{1-z^5}{1-z} = 0 \Leftrightarrow z^5 = 1 \Leftrightarrow z = e^{2ik\pi/5}$ pour $k \in [1, 4]$ (il faut retirer $z = 1$).

4. On obtient deux façons d'écrire les racines de
$$P$$
.
$$z = e^{i2\pi/5} = \cos 2\pi/5 + i \sin 2\pi/5 \text{ est racine de } P.$$
 Par identification, $\cos 2\pi/5$ est la partie réelle de $\frac{u_j \pm i \sqrt{u_j + 3}}{2}$, donc $\cos 2\pi/5 = \frac{u_j}{2}$ pour un certain j . Comme $u_2 < 0$ et que $\cos 2\pi/5 > 0$, nécessairement : $\boxed{\cos \frac{2\pi}{5} = u_1/2 = \frac{-1 + \sqrt{5}}{4}}$.

De même, on obtient
$$\sin \frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$$
.