### **Experiment Design**

Design the synchronous sequential counter circuit that counts periodically as  $1 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow \text{ using T flip flop?}$ 

### 1. State Diagram:

A state diagram visually represents a system's states and transitions triggered by specific events or conditions.



#### 2. State Table:

A State Table is a tabular representation of a sequential circuit that shows all possible states, inputs, next states, and outputs.

| Present State |          |                    | Next State   |            |            | Flip-Flops Input |       |    |
|---------------|----------|--------------------|--------------|------------|------------|------------------|-------|----|
| $Q_{C}(n)$    | $Q_B(n)$ | Q <sub>A</sub> (n) | $Q_{C}(n+1)$ | $Q_B(n+1)$ | $Q_A(n+1)$ | Tc               | $T_B$ | TA |
| 0             | 0        | 1                  | 0            | 1          | 1          | 0                | 1     | 0  |
| 0             | 1        | 1                  | 1            | 1          | 0          | 1                | 0     | 1  |
| 1             | 1        | 0                  | 1            | 1          | 1          | 0                | 0     | 1  |
| 1             | 1        | 1                  | 0            | 0          | 0          | 1                | 1     | 1  |
| 0             | 0        | 0                  | 0            | 1          | 0          | 0                | 1     | 0  |
| 0             | 1        | 0                  | 1            | 0          | 0          | 1                | 1     | 0  |
| 1             | 0        | 0                  | 1            | 0          | 1          | 0                | 0     | 1  |
| 1             | 0        | 1                  | 0            | 0          | 1          | 1                | 0     | 0  |

#### 3. Excitation Table of T Flip-Flop:

| Q(n) | Q(n+1) | T |
|------|--------|---|
| 0    | 0      | 0 |
| 0    | 1      | 1 |
| 1    | 0      | 1 |
| 1    | 1      | 0 |

## 4. Simplified Boolean Function of Flip Flop Input:

For T<sub>A</sub>:



#### Equation 1:

For T<sub>B</sub>:



Equation 2:

$$T_A = Q'_C Q'_B + Q'_C Q'_A + Q_C Q_B Q_A \dots (2$$

For T<sub>C</sub>:



Equation 3:

## 5. Schematic Diagram From Circuitverse:



Figure 1: Schematic Diagram

# 6. Timing Diagram:

