

Econ 2250: Stats for Econ

Fall 2022

Source for pic stats above.

- Today
 - Intro in linear regression
 - Variance
 - Covariance
 - Slope of line
 - Predicted value
 - **■** Error term
 - Examples

Variance

$$V(X) = E((X - E(X))^2)$$

From the example above

$$\sigma^2 = \frac{1}{n} \sum (x_i - \mu_x)^2$$

Sum of demean_sq = 11.1 + 32.1 + 5.4 = 48.6

х	mu	demean	demean_sq
3	6.3	-3.3	11.1
12	6.3	5.7	32.1
4	6.3	-2.3	5.4

48.6/3 = 16.2

But, notice our deviations (-3.3, 5.7, -2.3), 16.2 is an awful absolute value estimate. That is because we squared the errors, and x is in levels (not squared).

Standard Deviation = square root of σ^2 , sqrt(16.2) = 4.02

Covariance

$$Cov(X, Y) = E[(X-E(X)(Y-E(Y))]$$

Covariance

$$Cov(x, y) = E[(X - E(X))(Y - E(Y))]$$

= $\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n - 1}$

Example covariance

$$\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n-1}$$

x	у		demean_x	demean_y	demean_x*demean_y
	3	6	-2.4	1.6	-3.84
	5	9	-0.4	4.6	-1.84
	2	2	-3.4	-2.4	8.16
	8	1	2.6	-3.4	-8.84
	9	4	3.6	-0.4	-1.44

mean_y 4.4 mean_x 5.4

Correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Example

$$\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})$$

$$\sqrt{\sum\limits_{i=1}^{n}(x_{i}-ar{x})^{2}\sum\limits_{i=1}^{n}(y_{i}-ar{y})^{2}}$$

x	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y	
3	6	-2.4	5.76	1.6	2.56	-3.84	
5	9	-0.4	0.16	4.6	21.16	-1.84	
2	2	-3.4	11.56	-2.4	5.76	8.16	
8	1	2.6	6.76	-3.4	11.56	-8.84	
9	4	3.6	12.96	-0.4	0.16	-1.44	
	92	-00	37.2		41.2	-7.8	sum
mean_y	4.4			.5		-1.95	sum/(n-1

mean_y	4.4
mean_x	5.4

numerator denom

-1.95	-1.95	-0.22	correlation	
sqrt(37.2 + 41.2)	8.85		NA.	

Linear Regression

$$y_i = a + b * x_i + u_i$$

y = mx + b

$$y_i = a + b * x_i + ??$$

$$y_i = a + b * x_i + error_i$$

$$\hat{y}_i = \text{best guess intercept} + \text{best guess slope} * x_i$$

$$\hat{a} = \text{best guess intercept}$$

$$\hat{b} = \text{best guess slope}$$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$y_i = a + b * x_i + error_i$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$$\hat{b} = \frac{\text{cov}(x,y)}{\text{var}(x)} = \frac{\sum (x_i - \bar{x}) \sum (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

 $\hat{a} = \bar{y} - \hat{b} * \bar{x}$

$$\hat{y}_i = \hat{a} + \hat{b} * x_i$$

$$\hat{u}_i = y_i - \hat{y}_i$$

Sum of Squared Residuals

$$SSR = \sum (y_i - \hat{y}_i)^2 = \sum u_i^2$$

Look at excel

mean_x

x	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y	
3	6	-2.4	5.76	1.6	2.56	-3.84	
5	9	-0.4	0.16	4.6	21.16	-1.84	
2	2	-3.4	11.56	-2.4	5.76	8.16	
8	1	2.6	6.76	-3.4	11.56	-8.84	
9	4	3.6	12.96	-0.4	0.16	-1.44	
		_	37.2		41.2	-7.8	sum
mean_y	4.4			•		-1.95	sum/(n-1)

numerator denom

5.4

-1.95	-1.95	-0.22	correlation
sqrt(37.2 + 41.2)	8.85		

slope

-0.05241935484

Look at Colab

```
df = pd.DataFrame({'x': x, 'y':y})
df['x_minus_xbar'] = df['x'] - mean_x
df['y_minus_ybar'] = df['y'] - mean_y
df['demaned_x_and_y'] = df['x_minus_xbar'] * df['y_minus_ybar']
df['demaned_x_sq'] = df['x_minus_xbar']**2
df.head()
```

	ж	y	x_minus_xbar	y_minus_ybar	demaned_x_and_y	demaned_x_sq
0	2.912054	1.320250	1.773713	4.257710	7.551954	3.146056
1	5.665337	7.127269	4.526996	10.064729	45.562987	20.493692
2	5.035918	4.597814	3.897577	7.535275	29.369309	15.191103
3	2.852957	0.649218	1.714616	3.586678	6.149775	2.939907
4	4.842881	6.043560	3.704540	8.981020	33.270548	13.723617

End of class form

https://forms.gle/My9wHi2QFKNLedGC7