Abstract

El Modelo Electromagnético Toroidal de Forzamiento Interno (METFI) propone que la dinámica geofísica de la Tierra no obedece a un núcleo fundido convectivo, sino a un sistema toroidal resonante alimentado por flujos electromagnéticos externos e internos. Este enfoque habilita una reinterpretación radical de fenómenos climáticos, tectónicos y biológicos como manifestaciones de oscilaciones toroidales moduladas por campos resonantes. A partir de esta hipótesis, es posible diseñar una serie de proyectos STEM que integren simulaciones electromagnéticas, diseño de antenas, prototipos toroidales, análisis de nubes artificiales y estudios sobre la interacción biosfera-atmósfera. El presente trabajo ofrece una sistematización preliminar de tales proyectos, útiles tanto en entornos educativos como en contextos de investigación autónoma y crítica.

Palabras clave Toroide electromagnético, modelo METFI, resonancia geodinámica, STEM, atmósfera artificial, nieblas EM, núcleo plano, simulaciones toroidales.

Introducción al Modelo METFI

El METFI plantea una arquitectura de resonancia electromagnética a gran escala en la Tierra, caracterizada por:

- •Un núcleo plano y estático (no esférico ni fundido),
- •Un sistema toroidal de flujos internos modulados,
- •Una interacción resonante con un Sol cercano, que actúa como oscilador externo,
- •Un desacoplamiento periódico entre manto y núcleo inducido por acumulación de entropía electromagnética.

Esta visión redefine el paradigma geodinámico convencional y se proyecta hacia aplicaciones didácticas, experimentales y tecnológicas.

Ejes conceptuales para proyectos STEM

Los proyectos pueden clasificarse en cinco ejes:

Eje Foco principal
A Simulación de toros electromagnéticos

Áreas STEM involucradas

Física, programación, electrónica

Eje	Foco principal	Areas STEM involucradas
В	Antenas resonantes y medición de campos locales	Ingeniería, física aplicada
C	Interacción atmósfera-biosfera bajo condiciones resonantes	Biología, meteorología, biofísica
D	Nubes artificiales y nieblas electromagnéticas	Química, atmósfera, fotónica
E	Prototipado de núcleos toroidales	Mecatrónica, modelado 3D, energías libres

Proyectos modelo por eje

A. Simulación de toros electromagnéticos

Objetivo: Modelar el comportamiento de campos toroidales internos usando software de código abierto (p. ej., COMSOL, Elmer, OpenEMS).

Variables clave:

- •Inducción vs. resonancia,
- •Topología de líneas de flujo,
- •Oscilaciones armónicas internas.

Producto esperado: visualización 3D de flujos internos resonantes que permitan correlacionarse con patrones sísmicos o climáticos.

B. Diseño de antenas resonantes

Objetivo: Construir y calibrar antenas de banda ancha o selectiva que detecten variaciones de frecuencia electromagnética asociadas a fenómenos METFI.

Aplicaciones:

- •Medición de nieblas EM,
- •Correlación con nubes anómalas o lluvias localizadas,
- •Interferencia de redes 5G como amplificadores no deseados.

Herramientas sugeridas:

- •NanoVNA para análisis de frecuencia,
- •Arduino + sensores EM,
- •Shielding selectivo.

C. Interacción atmósfera-biosfera

Hipótesis: Los cambios en campos resonantes afectan directamente a la biología humana y animal, incluyendo procesos hormonales, migratorios y de crecimiento celular.

Proyecto tipo:

- •Cría de plantas bajo jaulas de Faraday vs. ambientes expuestos,
- •Registro de tasa de crecimiento, orientación foliar, respuesta a campos externos.

Ampliación: análisis en humanos mediante HRV (variabilidad de ritmo cardíaco) y correlación con variabilidad del campo geomagnético local.

D. Formación de nubes artificiales

Objetivo: Reproducir en laboratorio (o en campo reducido) condiciones que simulen la formación de nubes anómalas como las observadas en entornos METFI activos.

Parámetros:

- •Emisión puntual de frecuencias en bandas específicas (VLF o ELF),
- •Control de presión y humedad,
- •Introducción de sales higroscópicas.

Observación: configuración que dispare condensación sin gradientes térmicos evidentes.

E. Prototipado de núcleo toroidal

Modelo base: Estructura sólida toroidal con materiales ferromagnéticos dopados, rotación por levitación magnética y control de corrientes inducidas.

Aplicaciones:

- •Visualización de autoinducción,
- •Análisis de entropía acumulada,
- •Detección de puntos críticos de forzamiento interno.

Nota: este proyecto puede escalarse como base para "reactores educativos" tipo tokamak plano o Helmholtz híbrido.

Aplicaciones educativas y extrapolación crítica

Estos proyectos no solo permiten replicar las condiciones que el modelo METFI describe, sino que también abren la posibilidad de:

- •Detectar anomalías atmosféricas en tiempo real,
- •Correlacionar fenómenos biológicos con cambios geomagnéticos,
- •Estimular el pensamiento crítico sobre la física de la Tierra,
- •Fomentar desarrollos energéticos alternativos.

Se sugiere implementarlos en contextos escolares, universidades tecnológicas y laboratorios ciudadanos (makerspaces).

Recomendaciones metodológicas

- •Enfoque iterativo: comenzar por simulaciones, luego escalar a hardware.
- •Registro continuo: utilizar bitácoras y seguimiento longitudinal.
- •Correlación de datos externos: mapas solares, resonancia Schumann, red Blitzortung.
- •Evitar fuentes con conflicto de interés: optar por literatura libre y observación directa.

Conclusión

La hipótesis METFI no solo propone una relectura de los procesos geodinámicos, sino que sirve como punto de partida fértil para el diseño de proyectos STEM integradores, creativos y críticos. La implementación de estos proyectos puede permitir a estudiantes, investigadores y ciudadanos avanzar en la comprensión práctica de fenómenos que los modelos oficiales ignoran o descartan.

- •El METFI postula un núcleo plano con resonancia toroidal inducida.
- •Se proponen 5 ejes de proyectos STEM aplicables.
- •Se incluyen simulaciones, antenas, atmósfera y prototipos físicos.

- •Estos proyectos estimulan una educación crítica y experimental.
- •Se evita el uso de fuentes con conflictos de interés.