Statistics: Homework 2

6.3 Given $\hat{\theta} = 2\overline{X}_n$ and $X_1, \dots, X_n \sim \text{Uniform}(0, \theta)$,

$$\begin{aligned} \operatorname{bias}(\hat{\theta}) &= \mathbb{E}(2\overline{X}_n) - \theta \\ &= 2n^{-1}\mathbb{E}\left(\sum_{i=1}^n X_i\right) - \theta \\ &= 2n^{-1}\sum_{i=1}^n\mathbb{E}\left(X_i\right) - \theta \\ &= 2n^{-1}\frac{n\theta}{2} - \theta = 0 \\ \operatorname{se}(\hat{\theta})^2 &= \mathbb{V}(2\overline{X}_n) \\ &= 4\mathbb{V}(\overline{X}_n) \\ &= 4n^{-2}\mathbb{V}\left(\sum_{i=1}^n X_i\right) \\ &= 4n^{-2}\sum_{i=1}^n\mathbb{V}\left(X_i\right) \\ &= 4n^{-2}\frac{n\theta^2}{12} = \frac{\theta^2}{3n} \\ \operatorname{MSE}(\hat{\theta}) &= \operatorname{bias}(\hat{\theta})^2 + \operatorname{se}(\hat{\theta})^2 = \frac{\theta^2}{3n} \end{aligned}$$

7.2 For $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ plug-in estimator for p is

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and the estimated standard error is given by

$$\hat{\mathsf{se}}_p = \sqrt{\mathbb{V}(\hat{p})} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

As the X_i 's are iid, by Central Limit Theorem, \hat{p} is asymptotically normal with mean p and variance $\hat{\mathfrak{se}}_p^2$. Thus an approximate 90% confidence interval for p is $(\hat{p}-1.645\mathsf{se},\hat{p}+1.645\mathsf{se})$.

For $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ and $Y_1, \ldots, Y_n \sim \text{Bernoulli}(q)$ plug-in estimator for p-q is

$$\hat{p} - \hat{q} = \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{m} \sum_{i=1}^{m} Y_i$$

with estimated standard error

$$\hat{\mathsf{se}}_{p-q} = \sqrt{\mathbb{V}(\hat{p} - \hat{q})} = \sqrt{\mathbb{V}(\hat{p}) + \mathbb{V}(\hat{q})} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{\hat{q}(1-\hat{q})}{m}}$$

Since the Y_i 's are iid, by Central Limit Theorem \hat{q} is asymptotically normal with mean q and variance $\hat{\mathsf{se}}_q^2$. The difference of two asymptotically normal random variables is asymptotically normal, thus p - q is asymptotically normal with mean p - q and variance se_{p-q}^2 . An approximate 90% confidence interval is

$$(\hat{p} - \hat{q} - 1.645 \text{se}_{p-q}, \hat{p} - \hat{q} + 1.645 \text{se}_{p-q})$$

7.9 An estimate for $p_1 - p_2$ is 0.9 - 0.85 = 0.05 with standard error

$$\sqrt{\frac{0.9(1-0.9)}{100} + \frac{0.85(1-0.85)}{100}} = 0.0466368953$$

with 80% and 90% confidence intervals given by

$$\begin{array}{ll} 80\%: & (\hat{p}-\hat{q}-1.282 {\rm se}_{p-q}, \hat{p}-\hat{q}+1.282 {\rm se}_{p-q}) = (-0.0097885, 0.1097885) \\ & 90\%: & (\hat{p}-\hat{q}-1.96 {\rm se}_{p-q}, \hat{p}-\hat{q}+1.96 {\rm se}_{p-q}) = (-0.041408315, 0.141408315) \end{array}$$

8.7

9.2

9.6

Zhangsheng Lai

Last modified: February 10, 2017

2