

Studierendentreffen WS18

Department of Informatics – Institute for Anthropomatics and Robotics - Intelligent Process Control and Robotics (IAR-IPR)

Studierendentreffen WS18

- Begrüßung
- Vorträge
- Vernetzung im Sozialraum

Name	Stelle	Betreuer
Alexander Heilig	Hiwi	Hosam Alagi
Hendrik Wörner	Hiwi	Hosam Alagi
Michael Möck	ВА	Hosam Alagi
Demian Hartmann	Hiwi	David Puljiz
Florian Ziebert	ВА	llshat Mamaev
Paul Brinkmeier	Hiwi	Christian Marzi
Oliver Heinz	MA	Christian Marzi
Firat Görünmez	ВА	Mende & Hartmann
Pascal Köhne	ВА	Michael Mende

HiWi – Alexander Heilig (Multi-Modal-Sensor)

- ■UR 5 Setup
- Movelt! Trajectory control
- ■ROS Control

- **C++**
- Python
- ROS

https://www.universal-robots.com/products/ur5-robot/

HiWi – Hendrik Wörner (Platinenbestückung)

Designator	Comment	Footprint	Center-X(mm)	Center-Y(mm)	Rotation	Layer
B1	100R	[1608]0603	10.775	33.25	0	Тор
B2	100R	[1608]0603	10.975	27.5	90	Тор
C1	100nF	[1608]0603	6.675	4.95	90	Тор
C10	100nF	[1608]0603	24.3	7.775	180	Тор
C11	100nF	[1608]0603	4.4	9.825	0	Тор
C12	1uF	[1608]0603	21.9	4.85	270	Тор
C14	10uF	[1608]0603	9.625	27.5	270	Тор
C15	100nF	[1608]0603	9.35	4.375	270	Тор
C17	10nF	[1608]0603	3.8	14.475	90	Тор
C18	1nF	[1608]0603	5.15	14.475	90	Тор
C19	1nF	[1608]0603	5.75	12.375	180	Тор
C2	100nF	[1608]0603	5.35	4.95	90	Тор
C3	100nF	[1608]0603	8	4.675	90	Тор
C4	10uF	[1608]0603	11.425	35.25	270	Тор
C42	1uF	[1608]0603	23	35.9	180	Тор
C43	100nF	[1608]0603	17.225	34.4	0	Тор
C44	1uF	[1608]0603	32	35.1	270	Тор
C45	1uF	[1608]0603	34.1	34.25	180	Тор
C46	100nF	[1608]0603	34.5	32.25	270	Тор
C47	100nF	[1608]0603	35.625	26.85	90	Тор
C48	1uF	[1608]0603	34.3	25.85	90	Тор
C49	100nF	[1608]0603	17.1	18.7	0	Тор

Einarbeitung

- Erstellung von Bestückungs-Zeichung (Assembly)
- Erstellung von Bauteillisten (Bill of Materials / BOM)

Implementierung + Werkzeuge (Hardware/Software)

- Altium Designer => Erstellung eines Besrückungs-Layers
- Micrsoft Excel => Vervollständigung der BOM

Ausarbeitung (Bericht)

 Recht hoher Aufwand lohnt sich erst ab gewissen Stückzahlen

01.02.2018

Einarbeitung

Implementierung + Werkzeuge (Hardware/Software)

Ausarbeitung (Bericht)

- Beschaffung der Datenblätter und Bauteile
- Einführungstutorial Altium Designer (bisher EAGLE)
- Altium Designer (Platinenlayout IDE)
 - Ordentliche Auto-Route-Funktion
 - Schöne 3D-Darstellung (=> Gehäuseeinpassung)
- Größter Aufwand: Erstellung von "eigenen" Bauteilen

DA – Michael Möck (Aufbau Endeffektor, automatische Positionsprüfung)

Aufgabenstellung

Aufbau Endeffektor

Automatische Positionsprüfung

Fehlerkennung

Implementierung + Werkzeuge (Hardware/Software) ROS

TNS Sensoren

DA – Michael Möck (Aufbau Endeffektor, automatische Positionsprüfung)

Aufgabenstellung

Bild von Endeffektor

Automatische Positionsprüfung

Fehlerkennung

Implementierung + Werkzeuge (Hardware/Software) ROS

TNS Sensoren

DA – Michael Möck (Aufbau Endeffektor, automatische Positionsprüfung)

Problembeschreibung

Konkrete Fragestellung 2D Tracking

- 1D -> 2 Freiheitsgrade, 2D -> 8 FG und nur Signalstärke als Parameter
- Relative und Absolute Positionsbestimmung
- Schwierigkeiten mit Initialisierung
- Freiheitsgrade eindämmen über "geschickte" Vorgehensweise
- Andere Möglichkeiten der Fehlererkennung

3	1	4
6	5	7
8	0	2

HiWi – Demian Hartmann (Hololens Steuerung)

Aufgabenstellung

Steuerung des KR5 mit der Hololens

Implementierung + Werkzeuge (Hardware/Software) Unity, Visual Studio, Hololens

HiWi – Demian Hartmann (Hololens Steuerung)

Problembeschreibung

- Zuletzt gemacht: Verbindung über ROS mit dem echten Roboter hergestellt, Code aufgeräumt, Mit Aktualisierungen gekämpft
- Zukunft: Kollisionserkennung, Implementierung von ROS Sharp von Siemens – aktuell in Kommunikation

Konkrete Fragestellung Physik kann nicht auf den virtuellen Roboter angewandt werden. Eventuell muss die Joint bestimmung wenn er über ROS integriert wird verändert werden

BA - Nils Florian Ziebert - Greiferfinger

Aufgabenstellung

- Konstruktion eines Modularen Greiferfingers
- Implementierung der Regelung
- Erstellen eines ROS-Knotens
- Verifizierung und Validierung der Konstruktion

Implementierung + Werkzeuge Hardware/Software)

- CAD: Autodesk Inventor
- Matlab/Simulink
- C++
- CANopen

BA - Nils Florian Ziebert - Greiferfinger

Problembeschreibung

- Konstruktion fertigstellen zur Fertigung
- Entwurf Regelung

Konkrete Fragestellung

- CNC-Fräse (hier am Institut) wohl nicht mehr die genaueste → teilweise SLS-Druck statt fräsen?
- Ansatz zur Regelung: Simulation mit 3D-CAD-Dateien sowie Motordaten in Simscape, darauf aufbauend Reglerentwurf

HiWi – Paul Brinkmeier (Infrastruktur Megilabor)

Aufgabenstellung

- Dokumentation und Pflege bestehender Infrastruktur
- Verteilung von Updates
- Integration neuer Knoten

- Implementierung + Werkzeuge (Hardware/Software)
- ROS
- Viele kleine Scripts

HiWi – Paul Brinkmeier (Infrastruktur Megilabor)

Problembeschreibung

- Hardware-Uhren von Kinect-Servern laufen auseinander
- Insgesamt vier Server
- Visualisierungstool (Rviz) gibt Fehler aus und friert ein

Konkrete Fragestellung

- Synchronisation der Uhren über das Labornetzwerk (NTP)
- Problem tritt immer noch auf
- Vermutung: Windows verträgt sich nicht mit Linux NTP Server

HiWi – Paul Brinkmeier (Infrastruktur Megilabor)

Problembeschreibung

- Ältere Hard- und Software
- Wenig Dokumentation

Konkrete Fragestellung

- Alles so gut es geht dokumentieren
- Backups
- Software updaten/Altsysteme virtualisieren
- Wenn das nicht klappt: Backups wieder einspielen

vmware.com

Oliver Heinz - Knochensäge (Masterthesis)

Aufgabenstellung

- Problem: zur Knochenresektion eingesetztes Werkzeug (oszillierende Säge) verläuft
- Entwicklung eines alternativen Werkzeugs zur Knochenresektion

Implementierung + Werkzeuge (Hardware/Software) Simulation des Sägeblatts mit Ansys

Oliver Heinz – Knochensäge (Masterthesis)

Problembeschreibung Mögliche Lösung: Ultraschallwerkzeug

Konkrete Fragestellung

- Entwicklung einer möglichen Schneidengeometrie
- Dimensionierung der Piezoaktoren und Elektronik
- Umgebungskonstruktion

BA - Sensorbasierte Bahnplanung für nicht modellierte statische Bauteile und Szenen

Aufgabenstellung

Ausgangsbasis: Liste von 6D-Punkten

- Erstellen eines Dreiecks-Meshs der Arbeitsfläche durch Sensor
- Bahnplanung und Ausführung
- Anschließende Planung in bisher nicht erfasste Bereichen

Implementierung + Werkzeuge (Hardware/Software)

- Ansatz: incremental construction of a probabilistic roadmap
- Hardware: KUKA, Intel Realsense Camera SR300
- Software: ROS, PCL, Movelt!

Sensorbasierte Bahnplanung für nicht modellierte statische Bauteile und Szenen

Problempeschreibung

- Physischer Raum $P = P_{free} \cup P_{obs} \cup P_{unknown}$
- Sensoraufnahme ΔP
- Bestimme: $P_{new} = P_{old} \cup \Delta P$

Konkrete -ragestellung

- $ightharpoonup \Delta P_{obs}$ durch Mesh gegeben
- $ightharpoonup \Delta P_{unkown}$ durch geometrische Erweiterung
- **Roboter** $R \in \Delta P$?

BA – Pascal Köhne (Optimal surface coverage for polishing processes with industrial robots)

- poliere beliebige Objekte (nach einem 3D-Scan) optimiert oberflächendeckend mit einem Industrieroboter
- Scan → Segmentierung → Pfad-/Trajektoriengenerierung/
 -optimierung → Ausführung unter Normalenkraftregelung
- Realsense 3D-Depth Camera, evtl. Laserscanner
- Kuka R5 mit Poliertool
- Point Cloud Library
- ROS

BA – Pascal Köhne (Optimal surface coverage for polishing processes with industrial robots)

Segmentierung des Objekts in einzelne Oberflächen für die dann eine optimale Teilbearbeitung berechnet werden kann

- Anwendung eines Region Growing Verfahrens nach Winkel zwischen Oberflächennormalen, Krümmung und Punktabstand
- weitere Segmentierung durch LineSweep Verfahren
- Probleme: Verrauschte Aufnahmen, schwer nachvollziehbare schlechte/fehlerhafte Ergebnisse durch PCL-Algorithmen

21

BA – Dynamische Verfolgung von Beinen eines Menschen mit einem 2D Laserscanner

- Extraktion und Berechnung der Bewegunsparameter der Menschen
- Robuste und effiziente Methode, Menschen zu verfolgen
- Visualisierung der zu verfolgenden Menschen
- Hardware:
 - Mobile Plattform die man über Joystick und KMS Steuern kann
 - Laser Scanner auf einer mobilen Plattform Software:
- Software: ROS

Mobile Plattform SR2

BA – Dynamische Verfolgung von Beinen eines Menschen mit einem 2D Laserscanner

- Laserscan -> Positionen der potentiellen Beine (Clustering)
- Ungenauigkeiten und nicht "sichtbare" Beine (Kalman Filter)
- Data association measurement to track (Global Nearest Neighbor)
- Beine -> Personen (Maximum matching mit Beinhistorie)
- Wie kann man "data association" verbessern?
- Wie ordnet man die Beine zu den richtigen Personen?
- Welche Logik verwendet man für Initiation und Löschen von Tracks?

HiWi – Jianfeng Gao (Kraftregler für ROS-Control)

- Hybrid Impedanz Regler für KUKA Roboter
- Kraftregler mit Online-Trajektorienerzeugung
- Verallgemeinerung der Kraftreglern für andere Roboter

- Software: ROS-Control, KUKA RSI Hardware Interface (sim/fts), KDL, Reflexxes, real-time tools, usw.
- Hardware: KUKA r5 Roboter, Force-Torque Sensor

Kraftregler

Schunk → KUKA

Roboter

HiWi – Jianfeng Gao (Kraftregler für ROS-Control)

- Jetzt: Hybrid Impedanz Regler mit Reflexxes Funktionen auf dem simulierten kr5 Roboter
- Weiter: Kraftreglern auf dem realen kr5 Roboter

- KUKA rsi (sim/fts) hardware interface mit force_torque_interface
- Neuer Regler mit Reflexxes Funktionen vererbt dem Schunk Hybrid Impedanzregler
- Problem: Parameter für Regler passen nicht zum KUKA Roboter

Kraftregler

Schunk → KUKA

Roboter

HiWi – Timo Leitritz (Weiterentwicklung kraftmomenten-gesteuerter Flaschenöffner)

Aufgabenstellung

- Optimierung des in einem Praktikum implementierten ROS-Knotens
- Umstrukturierung mithilfe von finite state machines

Implementierung + Werkzeuge Hardware/Software)

- C++/ROS
- Movelt!
- Force-Position-Controller
- Schunk LWA4P Powerball

01.02.2018

HiWi – Timo Leitritz (Kraft-Momentengesteuerter Flaschenöffner)

Problembeschreibung

- Flaschenöffner rutscht ab
- Singularität bei Posen verursacht ruckartige, undefinierte Bewegungen

Konkrete Fragestellung

- Zusätzliche Kraft in Richtung Flaschenhals
- Änderung an der IK oder neue Position der Flasche

BA-Alexander Mayer (Der Entwurf eines rekonfigurierbaren mobilen Trainingssystems)

Aufgabenstellung

Implementierung + Werkzeuge (Hardware/Software)

- Mechanikkonstruktion eines optimierten Prototyps für neuromuskuläres Training
 - Werkzeuglose Anpassbarkeit an Statur der Testpersonen
 - Effizienzsteigerung
- Inventor 2016
- Ansys AIM 17.2

BA-Alexander Mayer (Der Entwurf eines rekonfigurierbaren mobilen Trainingssystems)

Problembeschreibung

- Formoptimierung durch FEM-Analyse
- Zeichnungsableitungen
- Aufbau und Test

Konkrete Fragestellung

- Selbststützende Struktur bei Spurweitenverstellung
- Integration der Radmodule

BA – Pascal Köhne (Optimal surface coverage for polishing processes with industrial robots)

- poliere beliebige Objekte (nach einem 3D-Scan) optimiert oberflächendeckend mit einem Industrieroboter
- Scan→Segmentierung→ Pfad-/Trajektoriengenerierung/optimerung→Ausführung unter Normalenkraftregelung
- Realsense 3D-Depth Camera, evtl. Laserscanner
- Kuka R5 mit Poliertool
- Point Cloud Library
- ROS

30

BA – Pascal Köhne (Optimal surface coverage for polishing processes with industrial robots)

 Segmentierung des Objekts in einzelne Oberflächen für die dann eine optimale Teilbearbeitung berechnet werden kann

- Anwendung eines Region Growing Verfahrens nach Winkel zwischen Oberflächennormalen, Krümmung und Punktabstand
- weitere Segmentierung durch LineSweep Verfahren
- Probleme: Verrauschte Aufnahmen, schwer nachvollziehbare schlechte/fehlerhafte Ergebnisse durch PCL-Algorithmen

31

BA – Peter Wern (Kraftregelungskonzepte für ein roboter-basiertes Trainingssystem)

Peter Wern, High-Level Kraftregelungskonzepte für ein roboter-basiertes

Aufgabenstellung

Hardware/Software) Implementierung .

- Kraft-Momenten-gesteuerter Geh-Trainingsroboter
- Es sollen Konzepte zur Unterstützung und Herausforderung des Patienten erarbeitet und implementiert werden: Virtuelle Kräfte/Wände, Pfadverfolgung
- Ziel: Rehabilitation von Patienten mit altersbedingter Demenz
- Robotrainer: SR2-Plattform (rob@work, IPA) mit Kraft-Momenten-Sensor
- ROS: pluginlib, dynamic_reconfigure, rosparam_handler

Trainingssystem

BA – Peter Wern (Kraftregelungskonzepte für ein roboter-basiertes Trainingssystem)

Problembeschreibung

- Aktuelle Herausforderung: Einbindung der virtuellen Kräfte in die bestehende Regelschleife als Plugin
- Anschließend: Implementierung der restlichen Funktionalitäten

Konkrete Fragestellung

- Wie muss das Plugin in den bestehenden Regler eingebunden werden?
- Testen der bisherigen Implementierung
- Wie verhält sich der Roboter im Einflussbereich der virtuellen Kräfte? Wie müssen die Parameter eingestellt werden?

Virtuelle Kräfte - Vereinfachter Ablauf in pro Zeitschritt:

Roboter innerhalb Einflussgebiet einer virtuellen Kraft?

Resultierende Kraft entsprechend Entferungsfunktion?

resultierender Geschwindigkeits-Vektor? (Masse-Dämpfer-System)

HiWi – Daniel Zumkeller (Cartesian controllers)

- Implementierung von Controllern zum Fahren nach:
 - Joint-Zielwerten
 - kartesischen Koordinaten (TCP- und Basissystem)
 - kartesischen Geschwindigkeiten für festgelegte Zeitdauer (TCP- und Basissystem)
- Aufbau als eigenständige, modular über das Controller-Interface ladbare Controller in ROS-C++
- Benutzung von custom IKFast für KR5, ur5 (verwendete IK parametrisierbar)
- Testen der Controllerfunktionalität in Simulation und Real

HiWi – Daniel Zumkeller (Cartesian controllers)

Problempeschreibung

- Testen der neuen Änderungen auf echtem Roboter
- Implementierung eines weiteren Controllers zum zeitgesteuerten Anfahren einer Zielposition und anschließendes Abfahren einer Trajektorie (Intercept-and-Follow), Steuerung über Action-Goal

Konkrete Fragestellung Ansteuerung über Action-Goal mit controller als Action-Server aktuell fehlerhaft (findet gesendete Action nicht)

Bachelorarbeit – Robert Zimmermann (Skeleton Tracking)

Aufgabenstellung

Lagebestimmung des Oberkörpers in der Mensch-Roboter-Interaktion

- Open Source Detektor in PCL
- Eingabedaten per ROS Topic
- Ausgabe: 3D Punkte der Körperteile
- Asus Xtion Pro Live & NVIDIA Geforce GTX 1050Ti
- zu 27 Körperteile
- System erkennt bis 8-10 FPS (bei ca. 2-3 m Entfernung)
 - 1-3 FPS (bei ca. 1-1,5 m Entfernung)
- System verarbeitet Punktwolken oder Tiefenbilder (mit RGB Bildern)

Bachelorarbeit – Robert Zimmermann (Skeleton Tracking)

Problempeschreibung

- Tracking der Körperteile mit Hilfe von Kalman Filtern
- Verschiedene Ansätze testen, um das System zu beschleunigen

Konkrete Fragestellung

- Ansatz: Mehrere Instanzen ausführen
- Ansatz: Eingabedaten verändern
 - Skalierung des Tiefenbildes und Addition eines Offsets
 - Dem System einen Menschen zeigen, der weiter von der Kamera entfernt ist
 - Problem: Transformation invertieren
 - Punktwolke verändern
 - Problem: System muss Punktwolke verarbeiten können