Exercice 1

Soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente linéaire à coefficients constants définie par :

$$u_0 = 1, \quad u_1 = 1, \quad u_2 = 1$$

 $\forall n \in \mathbb{N}, \quad u_{n+3} = 45u_n - 39u_{n+1} + 11u_{n+2}$

Le but de cet exercice est de trouver une expression de u_n en fonction de n.

Soit
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 45 & -39 & 11 \end{pmatrix}$$
.

- 1. Calculer le polynôme caractéristique de A, trouver les valeurs propres et les espaces propres.
- 2. Justifier que A est trigonalisable et déterminer P inversible telle que $T=P^{-1}AP$ avec $T=\begin{pmatrix}3&1&0\\0&3&0\\0&0&5\end{pmatrix}$
- 3. Calculer T^n pour tout $n \in \mathbb{N}$.
- 4. En déduire l'expression de u_n en fonction de n.

Exercice 2

Soit
$$A = \begin{pmatrix} 0 & a & a \\ a & 0 & a \\ a & a & 0 \end{pmatrix}$$
 avec $a \in \mathbb{R}^*$. Calculer e^A .

Exercice 3

Soient E un \mathbb{K} -espace vectoriel , F et G deux sous-espaces vectoriels de E et $u \in \mathcal{L}(E)$. Montrer que si F et G sont stables par u alors F + G et $F \cap G$ le sont aussi.

Exercice 4

Soient E un \mathbb{K} -espace vectoriel et $u, v \in \mathcal{L}(E)$.

Montrer que si u et v commutent alors Im(v) et Ker(v) sont stables par u.

Exercice 5

Montrer qu'un endomorphisme f d'un \mathbb{K} -espace vectoriel E commute avec un projecteur p si et seulement si les espaces $\operatorname{Im} p$ et $\operatorname{Ker} p$ sont stables par f.

Exercice 6

On considère l'endomorphisme u de \mathbb{R}^4 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 3 & -5 & 3 & -5 \\ 2 & -3 & -2 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 5 & -1 \end{pmatrix}$$

- 1. u est-il diagonalisable? trigonalisable?
- 2. On considère le polynôme $P = (X^2 + 1)(X^2 + 4)$. Déterminer Ker(P(u)).
- 3. En déduire deux sous-espaces vectoriels F et G supplémentaires dans \mathbb{R}^4 et stables par u.
- 4. Déterminer une base de \mathbb{R}^4 dans laquelle la matrice de u est diagonale par blocs.