

数字图像处理 Digital Image Processing

信息工程学院

School of Information Engineering

5.2 基于直方图处理的图像增强

黄朝兵 主讲

1. 灰度图像的直方图

- 灰度级直方图是图像的一种统计表达,它反映了该图中不同灰度级出现的统计概率。
- 设图像具有L个灰度级,图像中像素点的个数为n,它的第k个灰度级 n_k 出现的次数为 (k=0,1,2,...,L-1)

$$h(k) = n_k$$

则概率

$$P_r(k) = n_k / n$$

1. 灰度图像的直方图

1	2	3	4	5	6
6	4	3	2	2	1
1	6	6	4	6	6
3	4	5	6	6	6
1	4	6	6	2	3
1	3	6	4	6	6

1	2	3	4	5	6
5	4	5	6	2	14

1. 灰度图像的直方图

通过直方图可以看出图像整体的性质

2. 直方图均衡化-思想

基本思想:

- 把原始图像的直方图变换为均匀分布的形式, 从而增加图像灰度的动态范围,达到增强图像 对比度的效果。
- 经过均衡化处理的图像,其灰度级出现的概率相同,此时图像的熵最大,图像所包含的信息量最大。

2. 直方图均衡化-方法推导

- 假设原始图像灰度级r归一化在0~1之间,p_r(r)为原始图像灰度分布的概率密度函数
- 直方图均衡化实际上是:

寻找灰度变换函数T,使变换后的灰度值满足

$$s=T(r)$$

s归一化在0~1之间,

要求处理后图像灰度分布的概率密度函数 $p_s(s)=1$ --在[0,1]上的均匀分布。

2. 直方图均衡化-方法推导

- 变换函数T(r)应满足下列条件:
- (1) 在0≤r ≤1, T(r)单值单调递增;
- (2)对于0≤r≤1,有0≤T(r)≤1。
- 条件1保证了变换后图像的灰度级从黑到白的次序不变。
- 条件2保证了变换前后图像灰度范围一致。

反变换r=T-1(s)也满足类似条件。

随机变量 ξ 的概率密度函数 $p_r(r)$, $\eta = T(\xi)$ 的概率密度函数为 $p_s(s)$, 可以求得 η 的分布函数:

$$F_{\eta}(s) = p(\eta < s) = p(\xi < r) = \int_{-\infty}^{r} p_{r}(x) dx$$

2. 直方图均衡化-方法推导

$$F_{\eta}(s) = p(\eta < s) = p(\xi < r) = \int_{-\infty}^{r} p_r(x) dx$$

两边求导,可得随机变量 η 的概率密度函数 $p_s(s)$

$$p_s(s) = \left[p_r(r) \cdot \frac{dr}{ds}\right]_{r=T^{-1}(s)}$$

若 $p_s(s)=1$,则:ds=p(r)dr,对其两边积分得:

$$S = T(r) = \int_{0}^{r} p_{r}(x) dx$$

离散情况下,用频率近似代替概率,有:

$$S_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$

2. 直方图均衡化-方法

(1)统计原始图像的直方图:

$$p_r(r_k) = \frac{n_k}{n}$$

其中 P_k 是归一化的输入图像灰度级。

(2)计算直方图累积直方图

$$S_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$

(3)用累积直方图作变换函数进行图像灰度变换:

与归一化灰度等级 r_k 比较,寻找最接近的一个作为原灰度级k 变换后的新灰度级 s_k 。

2. 直方图均衡化-示例

原象灰级↓	归一化灰	第 條 像素级	$n_r(r_k) \in$	$s = \sum_{k} \kappa(r) d$	变换后↵
k₽	级↩	像素个数₽		$s_k = \sum_{j=0}^n n_r(r_k) e^{-jt}$	灰度级₽
	$(r_k)_{\ell^2}$			-	
0₽	0/7=0₽	790₽	0.19₽	0. 19₽	S1₽
1₽	1/7=0.14	1023₽	0. 25₽	0. 44₽	S3₽
	28₽				
2₽	2/7=0.28	850₽	0. 21₽	0. 65₽	S5₽
	56₽				
3₽	3/7=0.42	656₽	0.16₽	0.81₽	S6₽
	85₽				
4₽	4/7=0.57	329₽	0. 08₽	0. 89₽	S6₽
	14₽				
5₽	5/7=0.71	245₽	0.06₽	0. 95₽	S7₽
	42₽				
6₽	6/7=0.85	122₽	0. 03₽	0. 98₽	S7₽
	71₽				
7₽	7/7=1₽	81.₽	0. 02₽	1₽	S7₽

2. 直方图均衡化

$$s_k' = int[(L-1)s_k + 0.5]$$

r_k	n_k	$p(r_k)$	S_k \mathcal{A}	S_{k}	$\boldsymbol{s_k}$	n_{sk}	$p(s_k)$
$r_0 = 0$	790	0.19	0.19	1/7	s_1	790	0.19
$r_1 = 1/7$	1023	0.25	0.44	3/7	s_3	1023	0.25
$r_2 = 2/7$	850	0.21	0.65	5/7	S_5	850	0.21
$r_3 = 3/7$	656	0.16	0.81	6/7-	$-S_6$	985	0.24
$r_4 = 4/7$	329	0.08	0.89	6/7/			
$r_5 = 5/7$							0.11
$r_6 = 6/7$ $r_7 = 1$	122	0.03	0.98	1/			
$r_7 = 1$	81	0.02	1.00	1'			

2. 直方图均衡化-示例

2. 直方图均衡化-方法特点

直方图均衡化是一种适应性 很强的增强工具

对于具有相同内容而具有不同直方图的图像,经过直方 图均衡化处理后可以得到视 觉上相似的结果

