CS727 HW6

Zhili Feng

December 5, 2018

- 1. (8.2.5)
 - (a) Let f(x) = |x|. Then $f : \mathbb{R} \to \overline{\mathbb{R}}$ is a proper closed convex function. Let $x_0 = 0$, then it is clear that x_0 is a unique global minimizer of f, and we have $\partial f(x_0) = [-1, 1]$. Let's pick any $x_0^* \in \partial f(x_0)$ that is non-zero, say $x_0^* = -1/2$. Then according to the statement, $-x_0^* = 1/2$ should be a descent direction, i.e:

$$\exists \mu < 0$$
, such that for all small $t > 0, f(t/2) \le f(0) + \frac{\mu t}{2} = \frac{\mu t}{2}$

But OTOH, $f(t/2) = t/2 > \frac{\mu t}{2}$ for any $\mu < 0$. Therefore we reach to a contradiction.

- (b) We first show that the min norm solution is attained (notice that closest to the origin in Euclidean metric means this point has the smallest Euclidean norm)
 - We are trying to pick x_0^* such that:

$$\min_{x} ||x||$$
s.t. $x \in \partial f(x_0)$

According to proposition 8.1.2, $\partial f(x_0)$ is closed and convex. We claim that the above minimum is actually attained. Since $x_0 \in \text{ridom} f$, by proposition 8.1.3, we know that $\text{ridom} f \subset \text{dom} \partial f$, so $\partial f(x_0)$ is non-empty and we can pick any $x \in \partial f(x_0)$, let $||x|| = t < \infty$. Consider the following auxiliary optimization problem:

$$\min_{x} \quad ||x||$$
s.t. $x \in \partial f(x_0)$,
$$||x|| \le t$$

The feasible set is compact because it's closed and bounded. Since $\|\cdot\|$ is a continuous function, we know it attains its minimum on the feasible set at some point x_0^* . Note that x_0^* also minimizes the original optimization problem. Since x_0 does not minimize f (globally), we know that $0 \notin \partial f(x_0)$. So we know that $x_0^* \neq 0$. Therefore the question's statement "one chooses the element x_0^* closest to the origin in the Euclidean norm" makes sense.

Claim 1. The directional derivative of convex f can be written as:

$$f'(x;v) = \sup_{g \in \partial f(x)} \langle g, v \rangle$$

Proof. By proposition 8.2.2, since f is convex and $x \in \text{ridom} f$, f'(x;v) is closed and proper, specifically we have f'(x;v) = cl f'(x;v). Then by theorem 8.2.3, we have that cl f'(x;v) is a support function of $\partial f(x)$. By definition, that means:

$$f'(x;v) = \operatorname{cl} f'(x;v) = \sup_{g \in \partial f(x)} \langle g, v \rangle$$

Substitute $x = x_0$ and $v = -x_0^*$ we get:

$$f'(x_0; -x_0^*) = \inf_{t>0} \frac{1}{t} [f(x_0 - tx_0^*) - f(x_0)] = \sup_{g \in \partial f(x_0)} \langle g, -x_0^* \rangle = -\inf_{g \in \partial f(x_0)} \langle g, x_0^* \rangle$$

Now, we show that $\inf_{g \in \partial f(x_0)} \langle g, x_0^* \rangle$ is attained. In fact, the infimum is attained at $g = x_0^*$. Assume otherwise that the infimum is attained at $y \in \partial f(x_0)$ and $\langle y, x_0^* \rangle < ||x_0^*||^2$. By proposition 8.1.2, $\partial f(x_0)$ is convex. Hence for any $\lambda \in [0, 1]$, we have $h = x_0^* + \lambda(y - x_0^*) \in \partial f(x_0)$. Then:

$$||h||^2 = ||x_0^*||^2 + \lambda^2 ||y - x_0^*||^2 + 2\lambda \langle x_0^*, y - x_0^* \rangle$$

Based on how we define y, we have $\langle x_0^*,y\rangle < \langle x_0^*,x_0^*\rangle$, so $\langle x_0^*,y-x_0^*\rangle < 0$. Then for small enough λ , we would have $\lambda\|y-x_0^*\|^2+2\langle x_0^*,y-x_0^*\rangle < 0$ therefore $\lambda^2\|y-x_0^*\|^2+2\lambda\langle x_0^*,y-x_0^*\rangle < 0$. This leads to $\|h\|^2<\|x_0^*\|^2$, which contradicts the fact that $x_0^*\in\partial f(x_0)$ has the smallest norm. Hence we conclude

$$f'(x_0; -x_0^*) = \inf_{t>0} \frac{1}{t} [f(x_0 - tx_0^*) - f(x_0)] = -\|x_0^*\|^2$$

Note that $\frac{1}{t}[f(x_0 - tx_0^*) - f(x_0)]$ is non-decreasing in t (lemma 7.2.3 and definition 8.2.1). Pick $\epsilon = \frac{1}{2}||x_0^*||^2$. Then by definition of infimum, $\exists t' > 0$ such that

$$t'^{-1}[f(x_0 - t'x_0^*) - f(x_0)] \le -\|x_0^*\|^2 + \frac{1}{2}\|x_0^*\|^2 \Longrightarrow f(x_0 - t'x_0^*) \le f(x_0) - \frac{t}{2}\|x_0^*\|^2$$

and due to the monotonicity of the difference quotient in t, we have $\forall t \leq t'$:

$$t^{-1}[f(x_0 - tx_0^*) - f(x_0)] \le -\|x_0^*\|^2 + \frac{1}{2}\|x_0^*\|^2 \Longrightarrow f(x_0 - tx_0^*) \le f(x_0) - \frac{t}{2}\|x_0^*\|^2$$

Let $\mu = -\frac{\|x_0^*\|}{2}$, the above inequality then proves the statement.