HMMT February 2015

Saturday 21 February 2015

Geometry

1. Let R be the rectangle in the Cartesian plane with vertices at (0,0),(2,0),(2,1), and (0,1). R can be divided into two unit squares, as shown.

Pro selects a point P uniformly at random in the interior of R. Find the probability that the line through P with slope $\frac{1}{2}$ will pass through both unit squares.

2. Let ABC be a triangle with orthocenter H; suppose that AB = 13, BC = 14, CA = 15. Let G_A be the centroid of triangle HBC, and define G_B , G_C similarly. Determine the area of triangle $G_AG_BG_C$.

3. Let ABCD be a quadrilateral with $\angle BAD = \angle ABC = 90^{\circ}$, and suppose AB = BC = 1, AD = 2. The circumcircle of ABC meets \overline{AD} and \overline{BD} at points E and F, respectively. If lines AF and CD meet at K, compute EK.

4. Let ABCD be a cyclic quadrilateral with AB=3, BC=2, CD=2, DA=4. Let lines perpendicular to \overline{BC} from B and C meet \overline{AD} at B' and C', respectively. Let lines perpendicular to \overline{AD} from A and D meet \overline{BC} at A' and D', respectively. Compute the ratio $\frac{[BCC'B']}{[DAA'D']}$, where $[\varpi]$ denotes the area of figure ϖ .

5. Let I be the set of points (x, y) in the Cartesian plane such that

$$x > \left(\frac{y^4}{9} + 2015\right)^{1/4}$$

Let f(r) denote the area of the intersection of I and the disk $x^2 + y^2 \le r^2$ of radius r > 0 centered at the origin (0,0). Determine the minimum possible real number L such that $f(r) < Lr^2$ for all r > 0.

6. In triangle ABC, AB = 2, $AC = 1 + \sqrt{5}$, and $\angle CAB = 54^{\circ}$. Suppose D lies on the extension of AC through C such that $CD = \sqrt{5} - 1$. If M is the midpoint of BD, determine the measure of $\angle ACM$, in degrees.

7. Let ABCDE be a square pyramid of height $\frac{1}{2}$ with square base ABCD of side length AB=12 (so E is the vertex of the pyramid, and the foot of the altitude from E to ABCD is the center of square ABCD). The faces ADE and CDE meet at an acute angle of measure α (so that $0^{\circ} < \alpha < 90^{\circ}$). Find $\tan \alpha$

8. Let S be the set of **discs** D contained completely in the set $\{(x,y):y<0\}$ (the region below the x-axis) and centered (at some point) on the curve $y=x^2-\frac{3}{4}$. What is the area of the union of the elements of S?

9. Let ABCD be a regular tetrahedron with side length 1. Let X be the point in triangle BCD such that [XBC] = 2[XBD] = 4[XCD], where $[\varpi]$ denotes the area of figure ϖ . Let Y lie on segment AX such that 2AY = YX. Let M be the midpoint of BD. Let Z be a point on segment AM such that the lines YZ and BC intersect at some point. Find $\frac{AZ}{ZM}$.

10. Let \mathcal{G} be the set of all points (x,y) in the Cartesian plane such that $0 \le y \le 8$ and

$$(x-3)^2 + 31 = (y-4)^2 + 8\sqrt{y(8-y)}.$$

There exists a unique line ℓ of **negative slope** tangent to \mathcal{G} and passing through the point (0,4). Suppose ℓ is tangent to \mathcal{G} at a **unique** point P. Find the coordinates (α, β) of P.