第六章 样本及抽样分布

【内容预览】

基本概念
$$\begin{cases} \dot{\mathbb{R}} \& - \mathbf{k} \\ \dot{\mathbb{R}} & \mathbf$$

【知识清单】

6.1、基本概念

1.总体、个体、样本

总体——试验的全部可能观察值.

个体——每一可能的观察值.

样本——设X 是具有分布函数F 的随机变量,若 X_1, X_2, \cdots, X_n 是具有同一分布函数F 的,相互独立的随机变量,则称 X_1, X_2, \cdots, X_n 为从分布函数F 得到的容量为n 的简单随机样本,简称样本,它们的观察值 x_1, x_2, \cdots, x_n 称为样本值,又称为X 的n 个独立的观察值.

2.统计量及常用的统计量

(1) 统计量——设 X_1, X_2, \dots, X_n 是来自总体X 的一个样本, $g(X_1, X_2, \dots, X_n)$ 是 X_1, X_2, \dots, X_n 的函数,若g中不含未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 是一统计量.

注: 统计量是一个随机变量

(2) 常见的统计量

1) 样本均值——
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

2) 样本方差——
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
; 样本标准差—— $S = \sqrt{S^2}$;

3) **样本的***k* 阶原点矩——
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \dots;$$

4) **样本的**
$$k$$
阶中心距—— $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 2, 3 \cdots$.

注: 样本均值及样本方差依概率收敛于总体均值及总体方差(大数定律),即

1)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} EX = \mu$$
;

2)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 \xrightarrow{P} DX = \sigma^2, S \xrightarrow{P} \sqrt{DX} = \sigma;$$

3)
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} EX^k$$
.

例 6-1: 设 (X_1, X_2, X_3) 为取自总体 $N(0, \sigma^2)$ 的样本, σ^2 为未知参数, $T_1 = X_1 + X_2 + X_3$, $T_2 = \frac{X_3 - X_1}{2}$,

$$T_3 = \sum_{i=1}^n X_i / \sigma$$
 和 $T_4 = \max\{X_1, X_2, X_3\}$ 中不是统计量的为().

A,
$$T_1$$

B,
$$T_2$$

$$C$$
, T_3

D,
$$T_4$$

解: 由题意, σ^2 未知,故 σ 未知,而 $T_3 = \sum_{i=1}^n X_i/\sigma$,即 T_3 中有未知的参数,故 T_3 不是统计量.

6.2、三个重要的抽样分布

 $1.\chi^2$ 分布——设 X_1, X_2, \cdots, X_n 相互独立且都服从标准正态分布N(0,1),令 $Z = X_1^2 + X_2^2 + \cdots + X_n^2$,称Z 服从的分布为 $\chi^2(n)$ 分布,记为 $Z \sim \chi^2(n)$.

- (1) $E\chi^2(n) = n, D\chi^2(n) = 2n$;
- (2) (可加性) 若 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$ 且X, Y 相互独立,则 $X + Y \sim \chi^2(m+n)$.

例 6-2: 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的样本,令 $Y = (X_1 + X_2)^2$

解:
$$X_1 + X_2 \sim N(0,8), X_3 - X_4 \sim N(0,8), \frac{X_1 + X_2}{\sqrt{8}} \sim N(0,1), \frac{X_3 - X_4}{\sqrt{8}} \sim N(0,1)$$
, 由 χ^2 分布 的 定 义,

$$\left(\frac{X_1 + X_2}{\sqrt{8}}\right)^2 + \left(\frac{X_3 - X_4}{\sqrt{8}}\right)^2 \sim \chi^2(2) \Rightarrow C = \frac{1}{8}$$

- 2.t 分布——若 $X\sim N(0,1),Y\sim\chi^2(n)$,且X,Y相互独立,令 $Z=\frac{X}{\sqrt{Y/n}}$,称Z 服从的分布为t 分布,记为 $Z\sim t(n)$.
 - (1) t 分布近似服从标准正态分布;
 - (2) 若 $Z\sim t(n)$,则EZ=0, $DZ=\frac{n}{n-2}$;
 - (3) *n* 越大, *t* 分布越"瘦", 越"高".
- 3.**F** 分布——设 $X \sim \chi^2(m), Y \sim \chi^2(n)$ 且X, Y 独立, 令 $F = \frac{X/m}{Y/n}$,称F 服从F 分布,记为 $F \sim F(m, n)$.
- (1) 若 $F \sim F(m,n)$, 则 $\frac{1}{F} \sim F(n,m)$;
- (2) 自由度为n的t分布的平方: $t^2 \sim F(1,n)$.

分布	条件	形式	期望	方差	可加性	对称性
$N(\mu,\sigma^2)$	/	$X extstyle\sim N(\mu,\sigma^2)$	μ	σ^2	是	是
$\chi^2(n)$	X_1, X_2, \cdots, X_n 相互独 立且同分布于 $N(0,1)$	$(X_1^2 + X_2^2 + \dots + X_n^2) \sim \chi^2(n)$	n	2n	是	否
t(n)	$X \sim N(0,1), Y \sim \chi^2(n),$ 且 X, Y 相互独立	$\frac{X}{\sqrt{Y/n}} \sim t(n)$	0	$\frac{n}{n-2}$	否	是
F(m,n)	$X\sim\chi^2(m),Y\sim\chi^2(n)$ 且 X,Y 相互独立	$rac{X/m}{Y/n}$ ~ $F(m,n)$	/*	/*	否	否

注: "*"内容表示不要求掌握,但不代表其不存在

6.3、分布的分位点

◆注意:由于不同学校的教材对分位点的定义不同,因此本节中将对两种定义均做描述,并分别以分位点¹与分位点²进行标识,请大家对应自己使用的教材中的分位点的定义,选择1或者2进行复习.

1.分位点¹

定义——设X是随机变量, $0 ,若实数<math>a_p$ 满足 $F(a_p) = P(X > a_p) = p$,则称 a_p 为X(或X所服从的分布)的p分位点.

则三个重要的抽样分布的 α 分布点为:

- 1. χ^2 分布分位点—— $P\{\chi^2 > \chi^2_\alpha(n)\} = \alpha$;
- 2. t 分布分位点—— $P\{t > t_{\alpha}(n)\} = \alpha$; $t_{1-\alpha}(n) = -t_{\alpha}(n)$
- 3. F 分布分位点—— $P\{F>F_{lpha}(m,n)\}=lpha\,;\;F_{_{1-rac{lpha}{2}}}(m,n)=rac{1}{F_{_{rac{lpha}{2}}}(n,m)}$

2.分位点²

定义——设X是随机变量, $0 ,若实数<math>a_p$ 满足 $F(a_p) = P(X \le a_p) = p$,则称 a_p 为X(或X所服从的分布)的p分位点.

则三个重要的抽样分布的 α 分布点为:

- 1. χ^2 分布分位点—— $P\{\chi^2 \leq \chi^2_\alpha(n)\} = \alpha$;
- 2. t分布分位点—— $P\{t \leq t_{\alpha}(n)\} = \alpha; t_{1-\alpha}(n) = -t_{\alpha}(n)$
- 3. F 分布分位点—— $P\{F \leq F_{\alpha}(m,n)\} = \alpha; \ F_{\frac{\alpha}{2}}(m,n) = \frac{1}{F_{1-\frac{\alpha}{2}}(n,m)}$

6.4、正态总体下常用的抽样分布

1.定理一: 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自总体X的样本,则

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \quad \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1), \quad \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n).$$

2.定理二: 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是来自总体X的样本, \overline{X},S^2 分别是样本均值与方差,则有:

$$a.rac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(rac{X_i-\overline{X}}{\sigma}
ight)^2 \sim \chi^2(n-1);$$

 $b.\overline{X}$ 与 S^2 相互独立.

(注意:该定理的证明涉及到矩阵的知识,不需要掌握,但是该性质一定要牢记,考试常考)

少技巧:因为 $\frac{(n-1)S^2}{\sigma^2}$ ~ $\chi^2(n-1)$,又因为自由度为n-1的卡方分布的期望为n-1,方差为2(n-1),所以我们可以得到 S^2 的期望为 σ^2 ,方差为 $\frac{2\sigma^4}{n-1}$

3.定理三: 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是来自总体X的样本, \overline{X},S^2 分别是样本均值与方差,则有:

$$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t(n-1).$$

我们尝试结合定理一和定理二证明这个结论:

我们先对这个式子变形可得:
$$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\frac{\sigma}{\sqrt{n}}}{\frac{S}{\sqrt{n}}} = \left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\right) / \sqrt{(n-1)\frac{S^2}{\sigma^2}/(n-1)}$$

因为
$$\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$$
~ $N(0,1), \frac{(n-1)S^2}{\sigma^2}$ ~ $\chi^2(n-1), \overline{X}$ 与 S^2 相互独立,所以 $\frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}}$ ~ $t(n-1)$

4.定理四: 设总体 $X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2)$, X_1,X_2,\cdots,X_{n_1} 是来自总体X 的样本, Y_1,Y_2,\cdots,Y_{n_2} 是来自总体Y 的样本, \overline{X},S_1^2 分别是 X_1,X_2,\cdots,X_{n_1} 的样本均值与方差, \overline{Y},S_2^2 分别是 Y_1,Y_2,\cdots,Y_{n_2} 的样本均值方差,则有: $a.\frac{S_1^2/S_2^2}{\sigma^2/\sigma^2}\sim F(n_1-1,n_2-1);$

推导: 由条件可得:
$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1),$$
进一步的有: $\frac{\chi^2(n_1-1)/(n_1-1)}{\chi^2(n_2-1)/(n_2-1)} \sim F(n_1-1,n_2-1).$
 $b. = \sigma_1^2 = \sigma_2^2 = \sigma^2$ 时, $\frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1+n_2-2),$
其中 $S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}, S_w = \sqrt{S_w^2}$

$$\frac{1}{4} \oplus : \overline{X} - N\left(\mu_1, \frac{\sigma^2}{n_1}\right), \overline{Y} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right), \overline{y} : \left[\overline{X} - \overline{Y} - (\mu_1-\mu_2)\right] \sim N\left(0, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}\right)$$

$$(n_1-1)S_1^2 + (n_2-1)S_1^2 = \sum_{i=1}^{n_1} \left(X_1 - \overline{X}\right)^2 + \sum_{i=1}^{n_1} \left(Y_1 - \overline{Y}\right)^2,$$

$$\frac{\sum_{i=1}^{n_1} \left(X_1 - \overline{X}\right)^2}{\sigma^2} \sim \chi^2(n_1-1), \frac{\sum_{i=1}^{n_1} \left(Y_1 - \overline{Y}\right)^2}{\sigma^2} \sim \chi^2(n_2-1),$$

$$\mathbb{P}: \frac{(n_1-1)S_1^2 + (n_2-1)S_1^2}{\sigma^2} \sim \chi^2(n_1+n_2-2).$$

$$\mathbb{P}: \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}{\sqrt{\frac{S_w^2}{\sigma^2}}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1+n_2-2)$$

$$\mathbb{P}: \frac{(\overline{X} - \overline{Y}) \sim (\mu_1 - \mu_2)}{\sqrt{\frac{S_w^2}{\sigma^2}}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}} \sim t(n_1+n_2-2)$$

【重要题型】

题型 1:统计量的定义

注意:统计量中绝对不会出现未知的变量,因此抓住这一点后问题就会迎刃而解.

例 6-3: 设总体X 服从正态分布 $N(\mu,\sigma^2)$,其中 μ 未知, σ^2 已知, X_1,X_2,X_3 是总体X的一个简单随机样本,则 下列表达式中不是统计量的是(

A,
$$X_1 + X_2 + X_3$$

A,
$$X_1 + X_2 + X_3$$
 B, $\min(X_1, X_2, X_3)$ C, $\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$

$$C \cdot \sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$$

D,
$$X+2\mu$$

 \mathbf{M} : 选项 \mathbf{D} 中 μ 未知, 所以 \mathbf{D} 选项不是统计量

例 6-4: 设 (X_1, X_2, X_3) 为取自总体 $N(0, \sigma^2)$ 的样本, σ^2 为未知参数, $T_1 = X_1 + X_2 + X_3$, $T_2 = \frac{X_3 - X_1}{2}$,

 $T_3 = \sum_{i=1}^n X_i / \sigma$ 和 $T_4 = \max\{X_1, X_2, X_3\}$ 中不是统计量的为().

A,
$$T_1$$

$$B$$
, T_2

$$C$$
, T_3

D,
$$T_4$$

 \mathbf{M} : 选项 \mathbf{C} 中 σ 未知, 所以 \mathbf{C} 选项不是统计量

题型 2: t 分布

题目中如果出现带有根号的分式,则多半是t分布,对于t分布的自由度一定要小心,有一部分题目察t分布 是利用公式 $\frac{X-\mu}{\frac{S}{\sqrt{s}}} \sim t(n-1)$ 的变形.

例 6-5: 设 X_1, X_2, \cdots, X_n 为来自正态分布 $N(\mu, \sigma^2)$ 的一组简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差, 又设 $X_{n+1}\sim N(\mu,\sigma^2)$,且与 X_1,X_2,\cdots,X_n 相互独立,则统计量 $\frac{X_{n+1}-\overline{X}}{S}\sqrt{\frac{n}{n+1}}$ 服从____ 分布(请注明自由度).

解: 因为
$$\overline{X}\sim N\left(\mu,\frac{\sigma^2}{n}\right)$$
, $X_{n+1}\sim N(\mu,\sigma^2)$, 且与 X_1,X_2,\cdots,X_n 相互独立

那么根据正态分布的可加性可得:
$$X_{n+1} - \overline{X} \sim N\left(0, \frac{n+1}{n}\sigma^2\right) \Rightarrow \frac{X_{n+1} - \overline{X}}{\sqrt{\frac{n+1}{n}\sigma^2}} \sim N(0, 1)$$

由于
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,则 $\frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}} = \frac{\frac{X_{n+1} - X}{\sqrt{\frac{n+1}{n}\sigma^2}}}{\sqrt{\frac{\frac{(n-1)S^2}{\sigma^2}}{n-1}}} \sim t(n-1)$.

题型 3: 卡方分布

如果统计量中出现了平方和的项,则多半考虑卡方分布,注意,卡方分布具有可加性,这是一个考点;另外 题目也容易考察 $\frac{(n-1)S^2}{\sigma^2}$ ~ $\chi^2(n-1)$ 这个性质,最后卡方分布的期望和方差也容易出题.

例 6-6: 设 X_1, X_2, \cdots, X_n 是总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,其中 \overline{X} 为样本均值,则下列结论正确的是().

A.
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

B.
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

C.
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n-1)$$
 D. $\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n)$

D.
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n)$$

解:
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$
,所以选择 A 选项

6-7: 设总体 $X\sim N(1,4)$, X_1,X_2,\cdots,X_n 为来自总体X的一个样本, \overline{X} 为样本均值,则 $E\left(\sum_{i=1}^n\left(X_i-\overline{X}\right)^2\right)=$).

A,
$$4n$$

B,
$$4(n-1)$$

D,
$$2(n-1)$$

解:
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

因为自由度为n-1的卡方分布的期望为n-1

那么
$$E\left(\frac{1}{\sigma^2}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2\right)=n-1\Rightarrow E\left(\sum_{i=1}^n\left(X_i-\overline{X}\right)^2\right)=4(n-1)$$

题型 4: F 分布

如果统计量中出现分式,且分子分母中都有平方项,则该统计量很有可能是 F 分布,需要注意的是 F 分布的分子分母还都除以的平方项的个数. F 分布的性质也是考试中常考的知识点.

例 6-8: 设
$$X_1 \sim X_4$$
相互独立,均服从 $N(0,1)$. $Z = c \times \frac{{X_1}^2/1}{{X_2}^2 + {X_3}^2 + {X_4}^2}$ 服从 F 分布,则常数 $c = ($

A, 3 B,
$$\frac{1}{3}$$
 C, $\frac{2}{3}$ D, 1

解:
$$X_1^2 \sim \chi^2(1), X_2^2 + X_3^2 + X_4^2 \sim \chi^2(3), 则 Z = \frac{X_1^2/1}{(X_2^2 + X_3^2 + X_4^2)/3} \sim F(1,3)$$
,故 $c = 3$.

例 6-9: 设随机变量 $T\sim t(15)$,则 T^2 服从的分布为______.

解:自由度为n的t分布的平方: $t^2 \sim F(1,n)$,那么 T^2 的分布为F(1,15)

题型 5: 统计量的分位数

这类题目主要考察我们对分位数的理解,解题方法一般是画图分析,因此我们脑海中要记住正态分布、t分布、卡方分布和 F 分布的图形(前两者图形是关于 y 轴对称的).请根据书本分位点的定义选择分位点 1 或者分位点 2。

1.分位点1

例 6-10: 设总体 $X\sim N(\mu,16)$, X_1,X_2,\cdots,X_{10} 是取自 X 的样本, S^2 为样本方差,求常数 a=(),使

$$P(S^2 \geqslant a) = 0.1$$
成立.

A.
$$\frac{16}{9}\chi_{0.1}^2(9)$$
 B. $\frac{16}{9}\chi_{0.05}^2(10)$ C. $\chi_{0.1}^2(10)$ D. $\chi_{0.05}^2(9)$

#: $(n-1)\frac{S^2}{\sigma^2}\sim\chi^2(n-1)\Rightarrow 9\frac{S^2}{16}\sim\chi^2(9)$,
$$P(S^2\geqslant a)=P\Big(\frac{9}{16}S^2\geqslant\frac{9}{16}a\Big)=0.1\Rightarrow\frac{9}{16}a=\chi_{0.1}^2(9)\Rightarrow a=\frac{16}{9}\chi_{0.1}^2(9)$$

解:根据分位数的定义可得 $y = \chi_{0.02}^2(2)$,又因为P(x < X < y) = 0.95,P(X > y) = 0.02,

所以
$$P(X>x)=0.97$$
, 那么 $x=\chi_{0.97}^2(2)$.

2. 分位点2

例 6-12: 设随机变量x 服从自由度为 24 的 χ^2 分布,用 $\chi^2_{\alpha}(2)$ 表示自由度为 24 的 χ^2 分布的 α 分位数,已知 $P\{\chi^2(24)<13.75\}=0.05$, $P\{13.75\leqslant\chi^2(24)\leqslant36.25\}=0.90$,则 $\chi^2_{0.05}(24)=$

$$\text{\textit{pt}: } P\{\chi^2(24) > 36.25\} = 1 - P\{\chi^2(24) < 13.75\} - P\{13.75 \leqslant \chi^2(24) \leqslant 36.25\} = 0.05$$

故
$$\chi^2_{0.05}(24) = 36.25$$

解:
$$P(X \le y) = 1 - P(X > y) = 0.98$$
, 根据分位数的定义可得 $y = \chi_{0.98}^2(2)$

又因为
$$P(x < X < y) = 0.95, P(X > y) = 0.02$$

所以
$$P(X \le x) = 1 - P(x < X < y) - P(X > y) = 0.03$$

那么
$$x = \chi_{0.03}^2(2)$$

题型 6: 抽样分布统计量的判断

这一类题目考察我们对四个定理的理解,题目多为选择题,选项中的统计量多为定理中结论或结论的简单变形,因此一定要牢记这四个定理中的结论.

○技巧: 1. 利用常用的抽样分布(宝典 6.3)来排除一些选项.

2. 利用定义来判断其形式是否正确,顺序为正态分布 $\rightarrow \chi^2$ 分布 $\rightarrow \begin{cases} t$ 分布 F 分布

例 6-14: 设随机变量 $X\sim N(0,1)$, X_1,X_2,\cdots,X_n 是取自 X 的样本, X 为样本均值, S^2 为样本方差.则 ().

A.
$$\overline{X} \sim N(0,1)$$
;

B.
$$n\overline{X} \sim N(0,1)$$
;

C.
$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$$
;

D.
$$\frac{\overline{X}}{S} \sim t(n-1)$$
.

解:
$$A: E\overline{X} = \mu, D\overline{X} = D\left(\frac{1}{n}\sum_{i=1}^n x_i\right) = \frac{\sigma^2}{n}$$
 , $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow \overline{X} \sim N\left(0, \frac{1}{n}\right)$, A 错误

$$B:E\left(n\overline{X}
ight)=n\mu, D\left(n\overline{X}
ight)=D\left(\sum_{i=1}^{n}x_{i}
ight)=n\sigma^{2}\;,\; n\overline{X}$$
 ~ $N(n\mu,n\sigma^{2})\Rightarrow n\overline{X}$ ~ $N(0,n)$, B 错误

C: 由卡方分布的定义即可得.

D: 显然不符合 t 分布的定义; 所以选择 C 选项

例 6-15: (哈工大 2013) 设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim N(0, 1)$ 的简单随机样本,则下列统计量的分布不正确的是()

A.
$$\sum_{i=1}^{n} X_{i}^{2} \sim \chi^{2}(n)$$

$$\mathsf{B} \cdot \frac{\sqrt{n-1}\,X_n}{\sqrt{\sum_{i=1}^{n-1}X_i^{\,2}}} \sim t(n-1)$$

C.
$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0, 1)$$

D.
$$\frac{\left(\frac{n}{2}-1\right)\sum_{i=1}^{2}{X_{i}^{2}}}{\sum_{i=3}^{n}{X_{i}^{2}}} {\sim} F(2,n-2)$$

解: 选项 A:
$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$$
成立

选项 B:
$$X_n \sim N(0,1)$$
, $\sum_{i=1}^{n-1} X_i^2 \sim \chi^2(n-1) \Rightarrow \frac{\sqrt{n-1} X_n}{\sqrt{\sum_{i=1}^{n-1} X_i^2}} = \frac{X_n}{\sqrt{\sum_{i=1}^{n-1} X_i^2}/(n-1)} \sim t(n-1)$ 正确

选项 C:
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\sim N\left(0,\frac{1}{n}\right)$$
错误

选项 D:
$$S_1^2 = \frac{1}{2} \sum_{i=1}^2 X_i^2$$
, $S_2^2 = \frac{1}{n-2} \sum_{i=3}^n X_i^2 \Rightarrow \frac{\frac{1}{2} \sum_{i=1}^2 X_i^2}{\frac{1}{n-2} \sum_{i=3}^n X_i^2} = \frac{\left(\frac{n}{2} - 1\right) \sum_{i=1}^2 X_i^2}{\sum_{i=3}^n X_i^2} \sim F(2, n-2)$

【精选习题】

基础篇

1.设 (X_1,X_2,X_3) 为取自总体的样本, σ^2 已知, μ 未知,则 $T_1=X_1+X_2+X_3,T_2=(X_3-\mu)/2$,

$$T_3 = \sum_{i=1}^3 X_i$$
和 $T_4 = \max\{X_1, X_2, X_3\}$ 中不是统计量的是()

A, T_1 ;

B, T_2 ;

 $C, T_3;$

D, T_4

2. 设 X_1, X_2 是 取 自 正 态 总 体 $N(\mu, \sigma^2)$ 的 简 单 随 机 样 本 , $Y_1 = X_1 + X_2$, $Y_2 = X_1 - X_2$, 则 协 方 差 $Cov(Y_1, Y_2) =$ ______,已知 (Y_1, Y_2) 服从二维正态分布,如果c 为非零常数,则当c = ______时, $\frac{c(Y_1 - 2\mu)}{|Y_2|}$ 服从自由度为______的_____分布. 3.设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的样本,令 $Y = (X_1 + X_2)^2 + (X_3 - X_4)^2$,则当C = ______时, $CY \sim \chi^2(2)$.

4.设 $(X_1, X_2 \cdots, X_{10})$ 是取自正态总体 N(0,4)的一个样本, $\frac{1}{X}$ 为样本均值, $\frac{2\sigma^4}{n-1}$ 为样本方差,则

5.设随机变量 $X \sim t(n)$,对给定的实数 $\alpha(0 < \alpha < 1)$,实数 $t_{\alpha}(n)$ 满足 $P\{X > t_{\alpha}(n)\} = \alpha$,若 $P\{|X| > x\} = \alpha$,则x等于().(此题请学习分位点 1 的同学做)

A.
$$t_{1-\frac{\alpha}{2}}(n)$$

B,
$$t_{1-\alpha}(n)$$

C.
$$t_{rac{lpha}{2}}(n)$$

D,
$$t_{\frac{1-\alpha}{2}}(n)$$

6.设 X_1,X_2,\cdots,X_n 是来自总体 $X\sim N(\mu,\sigma^2)$ 的简单随机样本, \overline{X} 与 S^2 分别为其样本均值和样本方差,则下列结论 正确的是(

A.
$$2X_2 - X_1 \sim N(\mu, \sigma^2)$$

B.
$$\frac{n\left(\overline{X}-\mu\right)^2}{S^2} \sim F(1,n-1)$$

$$C, \frac{S^2}{\sigma^2} \sim \chi^2(n-1)$$

D,
$$\frac{\overline{X} - \mu}{S} \sqrt{n-1} \sim t(n-1)$$

7. 设 X_1, X_2, \cdots, X_8 是来自正态总体N(0,4)的简单随机样本,则常数c=_____时,统计量

8. 设总体 $X\sim N(1,\sigma^2)$, X_1,X_2,\cdots,X_6 是取自 X 的简单随机样本, \overline{X},S 分别为样本均值与样本标准差,则 $P(\overline{X} > 1) = \underline{\hspace{1cm}}, P(\overline{X} < 1, S^2 < 1.8472\sigma^2) = \underline{\hspace{1cm}}. (\chi_{0.1}^2(5) = 9.236)$

9. 设随机变量 $X \sim t(n)$ (n > 1),则 $Y = \frac{1}{X^2}$ 服从的分布为(

A,
$$\chi^2(n)$$

B,
$$\chi^{2}(n-1)$$
 C, $F(n,1)$

10.设 X_1, X_2, \dots, X_n 是总体N(0,1)的简单随机样本,则a =________.

提高篇

11.设 $(X_1, X_2, \cdots, X_{10})$ 与 $(Y_1, Y_2, \cdots, Y_{15})$ 分别是来自正态N(0, 1)的总体X, Y的样本,

$$Z = \sum_{i=1}^{10} \left(X_i - \overline{X} \right)^2 + \sum_{i=1}^{15} \left(Y_i - \overline{Y} \right)^2$$
,则 $EZ =$ ______.

12. 设总体X服从正态分布 $N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是取自X的简单随机样本,记 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$,

$$S^{\,2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{^{2}} \, , \; T = \overline{X}^{\,2} - \frac{1}{n} S^{\,2} \, .$$

(1) 证明 $E(T) = \mu^2$; (2) 当 $\mu = 0, \sigma = 1$ 时, 求T的方差.

(部分习题讲解视频: 关注公众号"学解",回复"概率论讲解"获取)

关注后回复"概率论讲解"