bpfbox: Simple Precise Process Confinement in eBPF

William Findlay¹ Anil Somayaji David Barrera

¹will@ccsl.carleton.ca

October 17, 2020

Outline of Talk

Motivation

Architecture

Policy

Performance

Conclusion

Motivation

The Status Quo

► Existing process confinement mechanisms are **complex**

► Existing process confinement mechanisms are difficult to use

► Can we do any better?

Stakeholders as Policy Authors

► **Security experts** define the policy

► Application authors and packagers define the policy

► End users define the policy

???

eBPF Changes the Game

TODO

Architecture

bpfbox Architecture

► TODO: Python3 bcc

► TODO: KRSI

► TODO: Lines of userspace code

► TODO: Lines of kernelspace code

► TODO: Compare w/ SELinux, AppArmor

bpfbox Architecture

Policy

bpfbox Policy

TODO: bpfbox policy example maybe vs snap

Performance

Performance

TODO

Conclusion

Acknowledgements

TODO

Contributions

- ► First full policy enforcement engine written in eBPF
- ► Integration of userspace and kernelspace state with LSM layer enforcement