CLAIMS

What is claimed is:

5.

1

1	 A system comprising:
2	a compiler to generate object code from a computer program;
3	a code optimizer to optimize the object code generated by the compiler,
4	the code optimizer including a first device to formulate regions, a second
5	device to select initial regions, a third device to apply code motion, a fourth
6	device to apply tail duplication, and a fifth device to compute UEU(E,R) and
7	DED(X,R), wherein UEU(E,R) represents a number of upward exposed
8	registers at a main entry E of a region R that are used in the region R and
9	DED(X,R) represents a number of downward exposed registers at a main exit
0	X of the region R that are defined in the region R;
1	a memory to store the compiler and the code optimizer; and
2	a central processing unit (CPU) cooperatively connected to the memory
3	to execute the compiler and the code optimizer.
1	2. The system of claim 1, wherein the second device selects initial
2	regions by selecting sub-control flow graphs as regions such that the region
3	starts execution mostly at the main entry and completes mostly at the main
4	exit.
1	3. The system of claim 1, wherein the fifth device computes
2	UEU(E,R) and DED(X,R) using local information from the region R.
1	4. The system of claim 1, wherein the third device applies code
2	motion by moving instructions outside the region R into the region R.

The system of claim 4, wherein the third device moves

- 1 6. The system of claim 5, wherein the third device moves 2 instructions outside of the region R into the main entry E and the main exit X 3 of the region R, and later moves the instructions from the main entry E and
- the main exit X of the region R to other places inside the region R.
- 1 7. The system of claim 1, wherein the fourth device applies tail 2 duplication to separate reusable instructions executed along a side entry after 3 selection of initial regions.
- 1 The system of claim 1, wherein the fourth device applies tail 2 duplication during application of code motion.
 - A method comprising:
 - selecting initial regions;
- 3 computing UEU(E,R) and DED(X,R), wherein UEU(E,R) represents a
- 4 number of upward exposed registers at a main entry E of a region R that are
- 5 used in the region R and DED(X,R) represents a number of downward
- 6 exposed registers at a main exit X of the region R that are defined in the
- 7 region R;

1

2

- 8 applying code motion; and
- 9 applying tail duplication.
- 1 10. The method of claim 9, wherein the selecting initial regions
- includes selecting sub-control flow graphs as regions such that the region
- 3 starts execution mostly at the main entry and completes mostly at the main
- exit. 4
- 1 11. The method of claim 9, wherein the computing UEU(E,R) and 2
 - DED(X,R) is performed using local information from the region R.

42390P10792 -21-PAT, APPL.

10

11

1	12. The method of claim 9, wherein the applying code motion
2	includes moving instructions outside the region R into the region R.
1	13. The method of claim 12, wherein the moving instructions
2	outside the region R into the region R includes moving instructions outside of
3	the region R into the main entry E and the main exit X of the region R.
1	14. The method of claim 13, wherein the moving instructions
2	outside of the region R into the region R further includes moving instructions
3	from the main entry \boldsymbol{E} and the main exit \boldsymbol{X} of the region \boldsymbol{R} to other places
4	inside the region R.
1	15. The method of claim 9, further comprises applying tail
2	duplication to separate reusable instructions executed along a side entry after
3	selection of initial regions.
1	16. The method of claim 1, further comprises applying tail
2	duplication during application of code motion.
1	17. A machine-readable medium comprising instructions which,
2	when executed by a machine, cause the machine to perform operations
3	comprising:
4	selecting initial regions;
5	computing UEU(E,R) and DED(X,R), wherein UEU(E,R) represents a
6	number of upward exposed registers at a main entry E of a region R that are
7	used in the region R and DED(X,R) represents a number of downward
8	exposed registers at a main exit X of the region R that are defined in the
9	region R;

42390P10792 -22- PAT. APPL.

applying code motion; and

applying tail duplication.