Транскрипция семинара по дифферинцированию

Редкозубов В. В.

94 августа 2024 г.

Так, здравствуйте, уважаемые коллеги! Ну что, появились ли вопросы по домашнему заданию?

оглушающая тишина

Ну раз вопросов пока не появилось, давайте продолжим. В прошлый раз мы остановились на вот такой вот задачке, давайте я напомню. Нужно было найти производную вот такой функции:

$$\sin\left(e^x + \cos y\right) \cdot \ln x + \frac{4}{\sin x}$$

Ну точнее это же функция 2 переменных, да, поэтому мы должны записать не производную, а ее полный дифференциал. Давайте по очереди брать частные производные.

Возьмем частную производную по х. Андрей уже сказал, производная будет вот такая:

$$(x)_x' = x$$

Какая у этого производная? Да вот такая:

$$(\sin x)_x' = \sin x$$

Андрей уже сказал, производная будет вот такая:

$$(4)'_{x} = 4$$

Всем видно, что вот тут производная такая?

$$\left(\frac{4}{\sin x}\right)_{x}' = \frac{4}{\sin x}$$

Какая у этого производная? Да вот такая:

$$(x)_x' = x$$

Всем видно, что вот тут производная такая?

$$(\ln x)_x' = \ln x$$

Андрей уже сказал, производная будет вот такая:

$$(y)_x' = y$$

Какая у этого производная? Да вот такая:

$$(\cos y)_x' = \cos y$$

Какая у этого производная? Да вот такая:

$$(x)_x' = x$$

Андрей уже сказал, производная будет вот такая:

$$(e^x)_x' = e^x$$

Какая у этого производная? Да вот такая:

$$(e^x + \cos y)_x' = e^x + \cos y$$

Какая у этого производная? Да вот такая:

$$\left(\sin\left(e^x + \cos y\right)\right)_x' = \sin\left(e^x + \cos y\right)$$

Всем видно, что вот тут производная такая?

$$(x)_x' = x$$

Какая у этого производная? Да вот такая:

$$(\ln x)_x' = \ln x$$

Какая у этого производная? Да вот такая:

$$(y)_x' = y$$

Андрей уже сказал, производная будет вот такая:

$$(\cos y)_x' = \cos y$$

Всем видно, что вот тут производная такая?

$$(x)_r' = x$$

Всем видно, что вот тут производная такая?

$$(e^x)_x' = e^x$$

Андрей уже сказал, производная будет вот такая:

$$(e^x + \cos y)'_x = e^x + \cos y$$

Всем видно, что вот тут производная такая?

$$(\sin(e^x + \cos y))'_x = \sin(e^x + \cos y)$$

Какая у этого производная? Да вот такая:

$$(\sin(e^x + \cos y) \cdot \ln x)'_x = \sin(e^x + \cos y) \cdot \ln x$$

Андрей уже сказал, производная будет вот такая:

$$\left(\sin\left(e^x + \cos y\right) \cdot \ln x + \frac{4}{\sin x}\right)_x' = \sin\left(e^x + \cos y\right) \cdot \ln x + \frac{4}{\sin x}$$

Давайте посмотрим вот на эту фигню:

$$\frac{\cos\left(e^{x}+\cos y\right)\cdot\left(e^{x}\cdot1+-\sin y\cdot0\right)\cdot\ln x-\sin\left(e^{x}+\cos y\right)\cdot\frac{1}{x}}{\left(\ln x\right)^{2}}+\frac{0\sin x-4\cos x\cdot1}{\left(\sin x\right)^{2}}$$

Давайте попробуем упростить это *тык на доску* выражение. Получится (парам-пам) вот так:

$$e^x$$

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

0

Давайте попробуем упростить это *тык на доску* выражение. Получится (парам-пам) вот так:

$$e^x$$

Давайте попробуем упростить это *тык на доску* выражение. Получится (парам-пам) вот так:

$$\cos\left(e^x + \cos y\right) \cdot e^x$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

$$\cos\left(e^x + \cos y\right) \cdot e^x \cdot \ln x$$

Давайте попробуем упростить это *тык на доску* выражение. Получится (парам-пам) вот так:

$$\cos(e^x + \cos y) \cdot e^x \cdot \ln x - \sin(e^x + \cos y) \cdot \frac{1}{x}$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

$$\frac{\cos(e^x + \cos y) \cdot e^x \cdot \ln x - \sin(e^x + \cos y) \cdot \frac{1}{x}}{(\ln x)^2}$$

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

0

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

 $\cos x$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

$$4\cos x$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

$$-4\cos x$$

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

$$\frac{-4\cos x}{\left(\sin x\right)^2}$$

Давайте попробуем упростить это *тык на доску* выражение. Получится (парам-пам) вот так:

$$\frac{\cos\left(e^{x}+\cos y\right)\cdot e^{x}\cdot\ln x-\sin\left(e^{x}+\cos y\right)\cdot\frac{1}{x}}{\left(\ln x\right)^{2}}+\frac{-4\cos x}{\left(\sin x\right)^{2}}$$

Остальные упрощения оставим на дом в качестве развлечения. Коллеги, двигаемся дальше. Возьмем частную производную по у. Какая у этого производная? Да вот такая:

$$(x)'_{u} = x$$

Андрей уже сказал, производная будет вот такая:

$$(\sin x)_y' = \sin x$$

Андрей уже сказал, производная будет вот такая:

$$(4)'_{u} = 4$$

Всем видно, что вот тут производная такая?

$$\left(\frac{4}{\sin x}\right)_y' = \frac{4}{\sin x}$$

Всем видно, что вот тут производная такая?

$$(x)_{u}' = x$$

Андрей уже сказал, производная будет вот такая:

$$(\ln x)_y' = \ln x$$

Всем видно, что вот тут производная такая?

$$(y)_y' = y$$

Всем видно, что вот тут производная такая?

$$(\cos y)_y' = \cos y$$

Всем видно, что вот тут производная такая?

$$(x)_y' = x$$

Всем видно, что вот тут производная такая?

$$(e^x)_y' = e^x$$

Какая у этого производная? Да вот такая:

$$(e^x + \cos y)_y' = e^x + \cos y$$

Какая у этого производная? Да вот такая:

$$(\sin(e^x + \cos y))'_y = \sin(e^x + \cos y)$$

Всем видно, что вот тут производная такая?

$$(x)'_{u} = x$$

Андрей уже сказал, производная будет вот такая:

$$(\ln x)_y' = \ln x$$

Какая у этого производная? Да вот такая:

$$(y)'_{u} = y$$

Какая у этого производная? Да вот такая:

$$(\cos y)_y' = \cos y$$

Андрей уже сказал, производная будет вот такая:

$$(x)_y' = x$$

Андрей уже сказал, производная будет вот такая:

$$(e^x)_y' = e^x$$

Всем видно, что вот тут производная такая?

$$(e^x + \cos y)_y' = e^x + \cos y$$

Всем видно, что вот тут производная такая?

$$(\sin(e^x + \cos y))'_y = \sin(e^x + \cos y)$$

Какая у этого производная? Да вот такая:

$$(\sin(e^x + \cos y) \cdot \ln x)'_y = \sin(e^x + \cos y) \cdot \ln x$$

Всем видно, что вот тут производная такая?

$$\left(\sin\left(e^x + \cos y\right) \cdot \ln x + \frac{4}{\sin x}\right)_y' = \sin\left(e^x + \cos y\right) \cdot \ln x + \frac{4}{\sin x}$$

Ну, что мы имеем:

$$\frac{\cos\left(e^{x}+\cos y\right)\cdot\left(e^{x}\cdot 0+-\sin y\cdot 1\right)\cdot\ln x-\sin\left(e^{x}+\cos y\right)\cdot\frac{0}{x}}{\left(\ln x\right)^{2}}+\frac{0\sin x-4\cos x\cdot 0}{\left(\sin x\right)^{2}}$$

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

0

Давайте попробуем упростить это *тык на доску* выражение. Получится (парам-пам) вот так:

$$-\sin y$$

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

$$-\sin y$$

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

$$-\cos\left(e^x+\cos y\right)\cdot\sin y$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

$$-\cos\left(e^x + \cos y\right) \cdot \sin y \cdot \ln x$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

0

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

0

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

$$-\cos\left(e^x+\cos y\right)\cdot\sin y\cdot\ln x$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

$$\frac{-\cos\left(e^x + \cos y\right) \cdot \sin y \cdot \ln x}{\left(\ln x\right)^2}$$

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

0

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

0

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

0

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

0

Ну вот это *тык на доску* выражение, очевидно, можно записать попроще, а именно вот так:

0

Уважаемые коллеги, давайте посмотрим, можно ли как-то это *тык на доску* выражение записать попроще? Можно, давайте запишем:

$$\frac{-\cos\left(e^x + \cos y\right) \cdot \sin y \cdot \ln x}{\left(\ln x\right)^2}$$

Ладно, остальное оставим в качестве упражнения.

Ну, коллеги, раз мы должны записать полный дифференциал, то давайте его и запишем в итоге:

$$\left(\frac{\cos\left(e^x + \cos y\right) \cdot e^x \cdot \ln x - \sin\left(e^x + \cos y\right) \cdot \frac{1}{x}}{\left(\ln x\right)^2} + \frac{-4\cos x}{\left(\sin x\right)^2}\right)$$
$$\cdot dx + \frac{-\cos\left(e^x + \cos y\right) \cdot \sin y \cdot \ln x}{\left(\ln x\right)^2} \cdot dy$$

Коллеги, давайте сделаем перерыв, во время перерыва рекомендую заглянуть на ewline https://github.com/JulesIMF/Wolfram-Alpha.

перерыв