# Nonparametric Methods

### Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Spring 2023) http://cs182.sist.shanghaitech.edu.cn

Ch. 8 of I2ML (Secs. 8.6 - 8.7 excluded)

#### **Outline**

Introduction

Nonparametric Density Estimation

Nonparametric Classification

Nonparametric Regression

### Nonparametric Classification - I

- Classification based on density estimation:
  - **Step 1**: estimate the class-conditional densities  $p(\mathbf{x} \mid C_i)$  (parametric or nonparametric approach).
  - Step 2: use Bayes' rule to compute the posterior class probabilities and make optimal decision.
- Kernel estimator of class-conditional densities:

$$\hat{p}(\mathbf{x} \mid C_i) = \frac{1}{N_i h^d} \sum_{t=1}^{N} K\left(\frac{x - x^t}{h}\right) r_i^t$$

where

$$r_i^t = \begin{cases} 1 & \text{if } \mathbf{x}^t \text{ is in } C_i \\ 0 & \text{otherwise} \end{cases}$$

and 
$$N_i = \sum_t r_i^t$$
.

### Nonparametric Classification – II

► MLE of prior probabilities:

$$\hat{p}(C_i) = \frac{N_i}{N}$$

Discriminant functions:

$$g_i(\mathbf{x}) = \hat{p}(\mathbf{x} \mid C_i)\hat{P}(C_i) = \frac{1}{Nh^d} \sum_{t=1}^N K\left(\frac{x - x^t}{h}\right) r_i^t$$

where the common factor  $1/(Nh^d)$  can be ignored.

So each training instance votes for its class and has no effect on other classes; the weight of vote is given by the kernel function  $K(\cdot)$ , typically giving more weight to closer instances.

#### k-NN Classifier – I

► *k*-NN estimator:

$$\hat{p}(\mathbf{x} \mid C_i) = \frac{k_i}{N_i V_k(\mathbf{x})}$$

#### where

- $-k_i$  is the number of neighbors that belong to  $C_i$
- $V_k(\mathbf{x})$  is the volume of the d-dimensional hypersphere centered at  $\mathbf{x}$  with radius  $r_k = \|\mathbf{x} \mathbf{x}^{(k)}\|$  where  $\mathbf{x}^{(k)}$  is the k-th nearest observation to  $\mathbf{x}$  (among all neighbors from all classes of  $\mathbf{x}$ ).  $V_k(\mathbf{x}) = r_k^d c_d$  with  $c_d$  is the volume of the unit sphere in d dimensions, for example,  $c_1 = 2$ ,  $c_2 = \pi$ ,  $c_3 = 4\pi/3$ , and so forth.

#### k-NN Classifier – II

► Posterior class probabilities:

$$\hat{P}(C_i \mid \mathbf{x}) = \frac{\hat{p}(\mathbf{x} \mid C_i)\hat{P}(C_i)}{\sum_j \hat{p}(\mathbf{x} \mid C_j)\hat{P}(C_j)} = \frac{k_i/NV_k(\mathbf{x})}{\sum_j k_j/NV_k(\mathbf{x})} = \frac{k_i}{k}$$

▶ k-NN classifier: assigns the input  $\mathbf{x}$  to the class  $C_i$  having most examples among the k neighbors of  $\mathbf{x}$ , i.e.,

$$i = \arg\max_{j} \hat{P}(C_j \mid \mathbf{x}) = \arg\max_{j} k_j$$

## **Nearest Neighbor Classifier**

- ▶ Nearest neighbor classifier: special case of k-NN classier with k = 1.
- ► Voronoi tessellation formed in input space:



## **Condensed Nearest Neighbor**

- ▶ Time/space complexity of nonparametric methods (e.g., k-NN): O(N)
- ▶ Condensing methods: find a small (hopefully smallest) subset  $\mathcal{Z}$  of  $\mathcal{X}$  such that the error does not increase when  $\mathcal{Z}$  is used in place of  $\mathcal{X}$ .
- Condensed nearest neighbor classier: only the instances that define the discriminant need to be kept but those inside the class regions can be removed (cf. support vector machines).



#### **Outline**

Introduction

Nonparametric Density Estimation

Nonparametric Classification

Nonparametric Regression

### Nonparametric Regression

- ► Nonparametric regression is a.k.a. smoothing models.
- ► Regression problem:

$$r^t = g(\mathbf{x}^t) + \epsilon$$

where  $r^t \in \mathbb{R}$ .

- Nonparametric regression is needed when we cannot find an appropriate parametric model (e.g., polynomial) for  $g(\cdot)$ .
- ► Nonparametric regression estimators (a.k.a. smoothers):
  - Running mean smoother
  - Kernel smoother
  - Running line smoother
- ► Here we consider the univariate case, which can be extended easily to the multivariate case.

## Regressogram

Regressogram:

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} b(x, x^{t}) r^{t}}{\sum_{t=1}^{N} b(x, x^{t})}$$

where

$$b(x, x^t) = \begin{cases} 1 & \text{if } x^t \text{ is in the same bin with } x \\ 0 & \text{otherwise} \end{cases}$$

It can be written as

minimize 
$$\sum_{t=1}^{N} b(x, x^{t}) ||r^{t} - g(x)||_{2}^{2}$$

# Regressogram with Different Bin Lengths



## **Running Mean Smoother**

► To avoid the need to fix an origin, the running mean smoother (or bin smoother) defines a bin symmetric around *x*:

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} w(\frac{x-x^{t}}{h}) r^{t}}{\sum_{t=1}^{N} w(\frac{x-x^{t}}{h})}$$

where

$$w(u) = egin{cases} 1 & ext{if } |u| < 1 \ 0 & ext{otherwise} \end{cases}$$

It can be written as

minimize 
$$\sum_{g(x)}^{N} w(\frac{x-x^{t}}{h}) ||r^{t}-g(x)||_{2}^{2}$$

# Running Mean Smoother with Different Bin Lengths



#### **Kernel Smoother**

Kernel smoother:

$$\hat{g}(x) = \frac{\sum_{t=1}^{N} K(\frac{x-x^{t}}{h}) r^{t}}{\sum_{t=1}^{N} K(\frac{x-x^{t}}{h})}$$

where  $K(\cdot)$  is a kernel, such as Gaussian kernel, that gives less weight to further points.

It can be written as

minimize 
$$\sum_{g(x)}^{N} K(\frac{x-x^{t}}{h}) \|r^{t} - g(x)\|_{2}^{2}$$

 $\triangleright$  k-NN smoother: Instead of fixing h, the number of neighbors k is fixed to adapt to the density around x.

## Kernel Smoother with Different Bin Lengths



### **Running Line Smoother**

- ► Unlike the running mean smoother which has discontinuities, the running line smoother uses continuous piecewise linear fit.
- ► We can use larger bins than running mean smoother because fitting lines provide slightly more flexibility.
- ▶ It can be written as

minimize 
$$\sum_{g(x)=a_{x}x+b_{x}}^{N} w(\frac{x-x^{t}}{h}) \|r^{t}-(a_{x}x^{t}+b_{x})\|_{2}^{2}$$

which is a weighted least squares (or weighted linear regression).

Alternatively, kernel weighting  $K(x, x^t)$  may also be used to give the locally weighted running line smoother, a.k.a. locally estimated scatterplot smoothing (loess), which is given by

minimize 
$$\sum_{g(x)=a_{x}x+b_{x}}^{N} K(\frac{x-x^{t}}{h}) \|r^{t}-(a_{x}x^{t}+b_{x})\|_{2}^{2}$$

# Running Line Smoother with Different Bin Lengths



#### **How to Choose** *h* **or** *k*?

- ► Small *h* or *k* (undersmoothing): small bias but large variance.
- $\blacktriangleright$  Large h or k (oversmoothing): large bias but small variance.
- ► Regularized cost function for smoothing splines:

$$\sum_{t} \left[ r^{t} - \hat{g}(x^{t}) \right]^{2} + \lambda \int_{a}^{b} \left[ \hat{g}''(x) \right]^{2} dx$$

- First term: error of fit
- Second term: penalty for high variability, where  $\hat{g}''(x)$  is the curvature of  $\hat{g}(\cdot)$  and [a,b] is the input range
- $-\lambda$ : trades off error and variability and can also be determined by cross-validation.
- Cross-validation may be used to determine the best h or k.