Question 1. Réponse E

Il faut Kad = Klim pour que l'asservissement « fonctionne », c'est-à-dire que l'écart soit nul lorsque la sortie est égale à la consigne.

Question 2. Réponse C.

$$H_{bv}(p) = \frac{\Omega_{m}(p)}{U_{c}(p)} = \frac{D(p)}{1 + D(p).R(p)} \text{ avec } D(p) = K_{am}. \frac{K_{mot}}{1 + \frac{2\xi_{mot}}{\omega_{mot}} p + \frac{1}{\omega_{mot}^{2}} p^{2}} \text{ et } R(p) = K_{cv}$$

$$Soit: H_{bv}(p) = \frac{\frac{K_{am}.K_{mot}}{1 + \frac{2\xi_{mot}}{\omega_{mot}} p + \frac{1}{\omega_{mot}^{2}} p^{2}}}{1 + \frac{K_{cv}.K_{am}.K_{mot}}{1 + \frac{2\xi_{mot}}{\omega_{mot}} p + \frac{1}{\omega_{mot}^{2}} p^{2}}} = \frac{K_{am}.K_{mot}}{1 + \frac{2\xi_{mot}}{\omega_{mot}} p + \frac{1}{\omega_{mot}^{2}} p^{2} + K_{cv}.K_{am}.K_{mot}}}$$

$$= \frac{K_{am}.K_{mot} / (1 + K_{cv}.K_{am}.K_{mot})}{1 + \frac{2\xi_{mot}}{\omega_{mot}} (1 + K_{cv}.K_{am}.K_{mot})} p + \frac{1}{\omega_{mot}^{2}} (1 + K_{cv}.K_{am}.K_{mot})} p^{2}$$

Question 3. Réponse D.

 $t_{r5\%}$ minimum pour ξ =0,69

$$\begin{split} & \omega_{bv} = \omega_{mot} \sqrt{(1 + K_{cv}.K_{am}.K_{mot})} \\ & \frac{2\xi_{mot}}{\omega_{mot} (1 + K_{cv}.K_{am}.K_{mot})} = \frac{2\xi_{bv}}{\omega_{bv}} \rightarrow \xi_{bv} = \frac{\xi_{mot}}{\sqrt{(1 + K_{cv}.K_{am}.K_{mot})}} = 0,69 \\ & \text{Soit} : \frac{\xi_{mot}^2}{1 + K_{cv}.K_{am}.K_{mot}} = 0,69^2 \rightarrow K_{am} = (\frac{\xi_{mot}^2}{0,69^2} - 1).\frac{1}{K_{cv}.K_{mot}} \\ & \text{Remarque} : \frac{\sqrt{2}}{2} \neq 0,69 \end{split}$$

Question 4. Réponse B.

La réponse B correspond à la FTBO demandée

Question 5. Réponses A et B.

La classe vaut 1 → D'après le cours, l'asservissement est précis sans perturbation.

L'intégrateur est en amont de la perturbation Xu(p) modélisée par une rampe → D'après le cours, l'erreur est non nulle mais finie.

Question 6. Réponse D.

D'après la figure 3, si on vérifie le critère marge de phase, alors la bande passante est validée.

Question 7. Réponse A.

$$Arg(FTBO(j\omega)) = -90^{\circ} - \arctan\left(\frac{2\xi_{bv}}{\omega_{bv}}\omega\right)$$

$$1 - \frac{\omega^{2}}{\omega_{bv}}$$

$$2\xi_{bv} = -1$$

$$\omega_{-135}^{2}$$

$$\omega_{-135^{\circ}}$$
 est tel que $\frac{2\xi_{bv}}{\omega_{bv}}\omega_{-135^{\circ}} = 1 - \frac{\omega_{-135^{\circ}}^2}{\omega_{bv}^2}$ soit $\omega_{-135^{\circ}}^2 + \frac{2\xi_{bv}}{\omega_{bv}}\omega_{bv}^2\omega_{-135^{\circ}} - \omega_{bv}^2 = 0$

$$\omega_{-135^{\circ}} = -\xi_{bv}\omega_{bv} + \sqrt{\left(\xi_{bv}\omega_{bv}\right)^{2} + \omega_{bv}^{2}} = \left(\sqrt{\xi_{bv}^{2} + 1} - \xi_{bv}\right)\omega_{bv}$$

Question 8. Réponse B

Exigence	Critères	Niveaux
Suivre un utilisateur à une distance imposée	Stabilité	MG ≥ 10dB en boucle ouverte
		$M\varphi = 45^{\circ}$ en boucle ouverte
	Précision	Erreur statique nulle lors d'un déplacement de l'utilisateur $\lambda(t \to +\infty) = \lambda_c$
	Rapidité	$\omega_{0db} \ge 35 \text{ rad. s}^{-1}$ de la boucle ouverte

L'expression littérale D et la valeur numérique A correspondent à un gain Kp permettant de vérifier le critère marge de phase.

Question 10. Réponse C.

Question 11. Réponse A.

$$\frac{S(p)}{E(p)} = \frac{K_p \left(\frac{K_p}{K_i} p + 1\right)}{\frac{K_p}{K_i} p} = \frac{K_p \left(T_i p + 1\right)}{T_i p}$$

$$K_p = 10^{34/20} \approx 50$$

$$\omega_{0dB} \approx 35 rad / s$$

Kp permet d'avoir une marge de phase de 45°.

Il faut choisir Ti ne modifiant pas trop cette marge de phase, c'est-à-dire 1/Ti très petit devant ⊕odв.

Le critère de marge de phase n'est pas vérifié mais elle est néanmoins positive donc le système est stable en boucle fermée.

Question 13. Réponse D.

Un correcteur de fonction $K \cdot \frac{1+aTp}{1+Tp}$ avec a>1 permettra de conserver la marge

de phase tout en augmentant la marge de gain si K, a et T sont bien choisis.

Question 14. Réponse D.

Phénomène de saturation

Question 15. Réponse C.

$$\tan(\phi) = \frac{MF}{\rho}$$

$$\tan(q\phi) = \frac{RM}{\rho}$$

$$\rightarrow RM = MF \cdot \frac{\tan(q\Phi)}{\tan(\Phi)}$$

Question 16. Réponses B et D.

$$\tan(\phi) = \frac{MF}{\rho} \quad \tan(q\phi) = \frac{RM}{\rho} \quad RM + MF = L \rightarrow MF = L \frac{\tan(\phi)}{\tan(\phi) + \tan(q\phi)} \quad et \ RM = L \frac{\tan(q\phi)}{\tan(\phi) + \tan(q\phi)}$$

$$RM = L \frac{\tan(q\phi)}{\tan(\phi) + \tan(q\phi)} = L \frac{\frac{\sin(q\phi)}{\cos(q\phi)}}{\frac{\sin(\phi)}{\cos(\phi)} + \frac{\sin(q\phi)}{\cos(q\phi)}} = L \frac{\frac{\sin(q\phi)}{\cos(q\phi)}\cos(\phi)\cos(\phi)}{\frac{\sin(q\phi)\cos(\phi) + \cos(q\phi)\sin(\phi)}{\sin(\phi) + \cos(\phi)\sin(\phi)}} = L \frac{\sin(q\phi)}{\sin(\phi)\cos(\phi)}$$

ICNA 2018 CORRIGE UPSTI

Question 17. Réponse B.

$$\tan(\phi) = \frac{MF}{\rho}$$

$$MF = L \frac{\tan(\phi)}{\tan(\phi) + \tan(\phi)}$$

$$\rightarrow \rho = L \frac{1}{\tan(\phi) + \tan(\phi)}$$

Question 18. Réponse A.

$$\tan(\Phi_{g}^{th}) = \frac{L/2}{\rho - v_{a}/2} \rightarrow \rho = \frac{v_{a}}{2} + \frac{L/2}{\tan(\Phi_{g}^{th})} \rightarrow \rho = -\frac{v_{a}}{2} + \frac{L/2}{\tan(\Phi_{d}^{th})} \rightarrow \rho = -\frac{v_{a}}{2} + \frac{L/2}{\tan(\Phi_{d}^{th})} \rightarrow \rho = -\frac{v_{a}}{2} + \frac{L/2}{\tan(\Phi_{d}^{th})} \rightarrow \theta = \frac{L/2}{2} + \frac{L/2}{\tan(\Phi_{d}^{th})} \rightarrow \theta = \frac{L/2}{2} + \frac{L/2}{\tan(\Phi_{d}^{th})} \rightarrow \theta = \frac{L/2}{2} + \frac{L/2}{\tan(\Phi_{g}^{th})} \rightarrow \theta = \frac{L/2}{2} + \frac{L$$

Question 19. Réponse B.

Question 20. Réponse B.

$$\phi_g = \gamma_g + \delta_g$$

$$\gamma_g = \phi_g - \delta_g \text{ avec } \delta_g < 0$$

$$\phi_d = \gamma_d + \delta_d$$

$$\gamma_d = \phi_d - \delta_d \text{ avec } \delta_d > 0$$

$$\phi_g = \overrightarrow{y}, \overrightarrow{y_g} = \overrightarrow{y}, \overrightarrow{y_{3g}} + \overrightarrow{y_{3g}}, \overrightarrow{y_g} = \gamma_g + \delta_g$$

$$\theta = 0 \rightarrow \phi_g = 0 \rightarrow \gamma_g = -\delta_g \text{ avec } \delta_g < 0$$

$$\phi_d = \overrightarrow{y}, \overrightarrow{y_d} = \overrightarrow{y}, \overrightarrow{y_{3d}} + \overrightarrow{y_{3d}}, \overrightarrow{y_g} = \gamma_d + \delta_d$$

$$\theta = 0 \rightarrow \phi_d = 0 \rightarrow \gamma_d = -\delta_d \text{ avec } \delta_d > 0$$

$$\phi_g = \gamma_g - 0,124$$
$$\phi_d = \gamma_d + 0,124$$

Question 21. Réponse C.

Risque de dérapage

$$\begin{cases} p_{react}ds \ \vec{z} - f p_{react}ds \ \overrightarrow{e_{\alpha}} \\ -r_{SC}p_{react}ds \ \overrightarrow{e_{\alpha}} - f p_{react}r_{SC}ds \ \vec{z} \end{cases}_{O_{SC}}$$

Question 23. Réponses B et D.

$$\begin{cases} p_{react} ds \ \vec{z} - f p_{react} ds \ \overrightarrow{e_{\alpha}} \\ -r_{SC} p_{react} ds \ \overrightarrow{e_{\alpha}} - f p_{react} r_{SC} ds \ \vec{z} \end{cases}_{O_{Sc}}$$

Modèle local :

Un calcul intégral classique sur le disque donne la réponse D ou la réponse B (réponses identiques) :

$$\begin{cases} F_{react} = p_{react} \pi R_{SC}^2 \vec{z} \\ C_{react} = -2f p_{react} \frac{R_{SC}^3}{3} \pi \vec{z} \end{cases}_{o_{SC}} \begin{cases} F_{react} = p_{react} \pi R_{SC}^2 \vec{z} \\ C_{react} = -\frac{2}{3} f R_{SC} F_{react} \vec{z} \end{cases}_{o_{SC}}$$

Question 24. Réponse D.

2*7 pivots + 2 rotules 2*7+2*3=20

Ic = 20

Question 26. Réponse C.

Question 27. Réponse B

$$h = m + 6\mu - Ic = 2 + 30 - (14 + 6) = 12$$

14 pivots + 2 rotules \rightarrow lc=14+6

Question 28. Réponses A et D.

La biellette 2d est soumise à deux glisseurs en Bd et Cd et est supposée à l'équilibre par rapport à un repère galiléen. D'après le PFS, les résultantes de ces glisseurs sont portées par la droite BdCd.

Question 29. Réponses C et D.

L'ensemble isolé est soumis à trois actions. La réponse à la question précédente donne les réponses C ou D suivant le choix du repère de projection du torseur de l'action de la biellette 2d. (F_{2z} est nul d'après la question 28)

Question 30. Réponse A

Question 31. Réponse A.

 $\overrightarrow{OI} = -r \overrightarrow{y_1}$ (Le point O est le centre de rotation de la pièce 1 par rapport au bâti) $\overrightarrow{IB_g} = -b \overrightarrow{x_1}$, $\overrightarrow{IB_d} = b \overrightarrow{x_1}$

Le rapport de transmission entre l'arbre moteur et le pignon de la pièce 1 (voir figure 7) est noté $k_{trans} < 1$. De de ce fait, $\frac{\dot{\theta}}{\omega} = k_{trans}$ avec ω vitesse de rotation du moteur et $\dot{\theta}$ vitesse de rotation de la pièce 1.

Couple induit par
$$F_2$$
 en $0: C_O = (r\cos(\beta_d) + b\sin(\beta_d))F_2$
$$\frac{C_O}{C_{rd}} = \frac{1}{k_{trans}}$$

Question 32. Réponse C

$$E = \left\{1, 2_d, 3_d, roue\right\}$$

$$\frac{dE_c(E/R_0)}{dt} = P(\overline{E} \to E/R_0) + P_i(E)$$

 $\frac{dE_c(E/R_0)}{dt} = 0 \text{ car les effets dynamiques (accélérations) sont négligeables}$

 $P_i(E) = 0$ car les liaisons sont supposées parfaites

$$k = \frac{\dot{\phi_d}}{\dot{\theta}} = \frac{\dot{\gamma_d}}{\dot{\theta}}$$

$$\frac{\dot{\theta}}{\omega} = k_{trans} \qquad \dot{\gamma}_d = k.k_{trans}.\omega$$

$$P(\overline{E} \rightarrow E / R_0) = Pmot \rightarrow 1 / R_0 + Psol \rightarrow roue / R_0 = C_{rd}.\omega + C_{react}.\dot{\gamma}_d = C_{rd}.\omega + C_{react}.k.k_{trans}.\omega$$

Question 33. Réponse D.

Les quatre moments de pivotement ramenés à l'arbre moteur s'additionnent car les quatre roues pivotent.

Question 34. Réponse C.

$$J_{eq} \frac{d\omega(t)}{dt} = k_c i(t) - C_r(t)$$

$$i(t) = \frac{u(t) - k_e \omega(t)}{R}$$

$$J_{eq} \frac{d\omega(t)}{dt} = k_c \frac{u(t) - k_e \omega(t)}{R} - C_r(t)$$

$$\omega(t) + \frac{RJ_{eq}}{k_e k_c} \frac{d\omega(t)}{dt} = \frac{k_e k_c}{R} \left(k_c \frac{u(t)}{R} - C_r(t) \right)$$
Premier ordre $\rightarrow t_{r5\%} = 3\tau = 3 \frac{RJ_{eq}}{k_e k_c} = 3 \frac{RJ_{eq}}{k_e^2}$

Question 35. Réponse D.

$$\overrightarrow{\Omega_{2d/0}} = \dot{\beta}_d \vec{z} = k \, \dot{\theta} \vec{z}$$

ICNA 2018 CORRIGE UPSTI

$$\begin{split} \overrightarrow{V_{B_d \in 2d/0}} &= \overrightarrow{V_{B_d \in 2d/1}} + \overrightarrow{V_{B_d \in 1/0}} = \overrightarrow{V_{O \in 1/0}} + \overrightarrow{B_d O} \wedge \overrightarrow{\Omega_{1/0}} \\ &= \dot{\theta} \overrightarrow{z} \wedge \left(-r \overrightarrow{y_1} + b \overrightarrow{x_1} \right) = r \dot{\theta} \overrightarrow{x_1} + b \dot{\theta} \overrightarrow{y_1} \end{split}$$

Question 36. Réponses A et B.

$$\begin{split} \overrightarrow{V_{G_2 \in 2d/0}} &= \overrightarrow{V_{B_d \in 2d/0}} + \overrightarrow{G_2 B_d} \wedge \overrightarrow{\Omega_{2/0}} \\ \text{et } \overrightarrow{\Omega_{2/0}} &= k \, ' \dot{\theta} \overrightarrow{z} \end{split}$$

Question 37. Réponse C.

$$\left\{C_{2d/0}\right\}_{G_2} = \left\{\begin{matrix} m_2 \overrightarrow{V_{G_2 \in 2d/0}} \\ \overrightarrow{\sigma_{G_2,2d/0}} \end{matrix}\right\}_{G_2} = \left\{\begin{matrix} m_2 \dot{\theta} \left(c_x \overrightarrow{x_{2d}} + c_y \overrightarrow{y_{2d}}\right) \\ \overrightarrow{I_{2d/G_2}} \overrightarrow{\Omega_{2d/0}} \end{matrix}\right\}_{G_2} = \left\{\begin{matrix} m_2 \dot{\theta} \left(c_x \overrightarrow{x_{2d}} + c_y \overrightarrow{y_{2d}}\right) \\ B_2 k' \dot{\theta} \overrightarrow{z} \end{matrix}\right\}_{G_2}$$

Question 38. Réponse A.

$$Ec_{2d/0} = \frac{1}{2} \left(m_2 \overrightarrow{V_{G_2 \in 2d/0}}. \overrightarrow{V_{G_2 \in 2d/0}} + \overrightarrow{\sigma_{G_2,2d/0}}. \overrightarrow{\Omega_{2d/0}} \right) = \frac{1}{2} \left(m_2 \dot{\theta}^2 \left(c_x^2 + c_y^2 \right) + B_2 k^{-1/2} \dot{\theta}^2 \right)$$

Question 39. Réponse A.

Question 40. Réponse C.

A la limite du basculement, (N1=N2=0)

On pourrait retenir également la proposition (T1=T2=0) mais il manque certaines hypothèses sur la répartition des actions du sol sur les 4 roues...

Question 41. Réponse D.

Propriété du centre d'inertie d'un ensemble de solides.

Question 42. Réponse A.

$$(O, \vec{y}, \vec{z})$$
 plan de symétrie $\rightarrow E_{\Sigma} = F_{\Sigma} = 0$

Question 43. Réponse D.

Propriétés des matrices vues en cours

Question 44. Réponse B.

Théorème du moment dynamique appliqué à $\{\Sigma, T\}$ en projection sur y.

Question 45. Réponse C.

$$\left\{C_{\{\Sigma,T\}/0}\right\}_{G} = \left\{\begin{matrix} \left(m_{\Sigma} + m_{T}\right) \overrightarrow{V_{G \in \{\Sigma,T\}/0}} \\ \overrightarrow{\sigma_{G,\{\Sigma,T\}/0}} \end{matrix}\right\}_{G} = \left\{\begin{matrix} \left(m_{\Sigma} + m_{T}\right) \rho \dot{\theta} \overrightarrow{y} \\ \overrightarrow{I}_{\{\Sigma,T\}/G} \overrightarrow{\Omega_{\{\Sigma,T\}/0}} \end{matrix}\right\}_{G_{2}} = \left\{\begin{matrix} \left(m_{\Sigma} + m_{T}\right) \rho \dot{\theta} \overrightarrow{y} \\ -D \dot{\theta} \overrightarrow{y} + C \dot{\theta} \overrightarrow{z} \end{matrix}\right\}_{G_{2}}$$

Question 46. Réponse B

$$\overrightarrow{\sigma_{I_3,\{\Sigma,T\}/0}} = \overrightarrow{\sigma_{G,\{\Sigma,T\}/0}} + \overrightarrow{I_3G} \wedge m\overrightarrow{V_{G\in\{\Sigma,T\}/0}} = \overrightarrow{\sigma_{G,\{\Sigma,T\}/0}} + \left(-\frac{v_a}{2}\overrightarrow{x} + (l+y_G)\overrightarrow{y} + (h+z_G)\overrightarrow{z}\right) \wedge mV\overrightarrow{y}$$

$$\overrightarrow{\sigma_{I_3,\{\Sigma,T\}/0}} = \overrightarrow{\sigma_{G,\{\Sigma,T\}/0}} - mV\left(\frac{v_a}{2}\overrightarrow{z} + (h+z_G)\overrightarrow{x}\right)$$

Question 47. Réponses A et B.

Relation du cours

Question 48. Réponse A.

$$\begin{split} & \overrightarrow{\delta_{I_3,\{\Sigma,T\}/R_0}}.\vec{u} = \frac{d\overrightarrow{\sigma_{I_3,\{\Sigma,T\}/0}}}{dt} \Bigg|_0 .\vec{u} - m\Big(\overrightarrow{V_{I_3/R_0}} \wedge \overrightarrow{V_{G/R_0}}\Big).\vec{u} = \frac{d\overrightarrow{\sigma_{I_3,\{\Sigma,T\}/0}}.\vec{y}}{dt} - \overrightarrow{\sigma_{I_3,\{\Sigma,T\}/0}}.\frac{d\overrightarrow{y}}{dt} \Bigg|_0 - m\Big(\overrightarrow{V_{I_3/R_0}} \wedge \rho \dot{\theta} \vec{y}\Big).\vec{y} \\ & = B_{Gy} \ddot{\theta} - mV \dot{\theta}(h + z_G) \end{split}$$

Question 50. Réponse D.

$$B_{Gy}\ddot{\theta} - mV\dot{\theta}(h + z_G) = v_a(N_1 + N_2 - \frac{mg}{2})$$

 $\ddot{\theta} = 0$ et $N_1 + N_2 = 0$ à la limite du basculement

Soit:
$$mV\dot{\theta}(h+z_G) = v_a \frac{mg}{2} \rightarrow z_G = -h + \frac{v_a g}{2V\dot{\theta}}$$