Introducció als Computadors

Tema 6: Circuits Lògics Seqüencials (CLS's) http://personals.ac.upc.edu/enricm/Docencia/IC/IC6b.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) (3)

Tres formes de representar un CLS

GRAF D'ESTATS

Tabla de transición

ESQUEMA LÒGIC

TAULES DE B-RITAT

0000	0	0	
0001	0	1	
0010	1	0	Tabla de sali
0011	0	1	10010 00 0011
0 1 0 0	0	0	q1 q0 W1
0 1 0 1	0	1	41 40 11
0 1 1 0	1	0	0 0 0
0 1 1 1	0	1	0 1 0
1000	0	0	1 0 1
1001	0	1	1 1 x
1010	1	0	
1011	1	0	
1 1 0 0	х	х	
1 1 0 1	x	×	

[1]

Índex

Introducció

- Síntesi en 3 passos de CLS's
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

Introducció

- Circuits Lògics Seqüencials (CLS's) síncrons
 - La sortida depèn de l'entrada i de l'estat emmagatzemat al CLS
 - L'estat s'emmagatzema a uns components denominats biestables
 - Cada biestable pot emmagatzemar un bit
 - Un senyal de rellotge indica els moments en que s'actualitza l'estat
 - ullet Actualització en flanc ascendent d'un senyal periòdic amb període T_c
- Implementarem els CLS's amb 2 CLC's i biestables
 - Un CLC actualitzarà l'estat i l'altre calcularà les sortides
 - A un CLS amb n senyals d'entrada, m de sortida i k bits d'estat
 - ullet CLC que actualitza l'estat: n+k senyals d'entrada i k de sortida
 - CLC que calcula sortida:
 Model de Mealy: n + k senyals d'entrada i m de sortida
 Model de Moore: k senyals d'entrada i m de sortida
 - k biestables \implies fins a 2^k estats differents
- Representarem el comportament dels CLS amb 2 TV's o amb un graf
 - Cal saber fer les conversions entre ambdues representacions

Estructura CLS's: Mealy versus Moore

Els dos models tenen la mateixa potència

 $W = \mathcal{H}(Q, X)$

- Diferències:
 - Moore pot necessitar més estats que Mealy per fer la mateixa tasca
 - Moore triga, com a mínim, un cicle en propagar a la sortida un canvi a l'entrada

 $W = \mathcal{H}(Q)$

Índex

- Introducció
- Síntesi en 3 passos de CLS's
 - De la descripció funcional al graf d'estats
 - Del graf d'estats a les taules de transicions i sortides
 - De les taules a l'esquema lògic
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

Índex

- Introducció
- Síntesi en 3 passos de CLS's
 - De la descripció funcional al graf d'estats
 - Del graf d'estats a les taules de transicions i sortides
 - De les taules a l'esquema lògic
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

De la descripció funcional al graf

- Donada la descripció funcional del CLS com a text, pseudocodi, expressions algebraiques,... determinar el graf d'estats del CLS
 - També ens poden aportar un cronograma simplificat que mostri el comportament desitjat a alguns casos
- No existeix un mètode sistemàtic
 - És el pas més difícil a la síntesi del CLS
- La solució pot no ser única

Exemple 1: el biestable D

- Determinar el graf d'estats del CLS més senzill, el biestable D.
- L'encapsulament i un cronograma simplificat d'exemple seria:
 - n = m = 1

Núm. Ciclo	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
Entrada d	1	1	0	1	0	0	0	1	0	1	0	0	0	1	0
Salida q	0	1	1	0	1	0	0	0	1	0	1	0	0	0	1

- Graf d'estats resultant:
 - Dos estats perquè el biestable pot emmagatzemar els valors "0" i "1"
 Leyenda:

• En concordància amb el cronograma, l'estat inicial seria E0

Exemple 2: reconeixedor de 011 (CLS-011)

 Dibuixeu el graf d'estats d'un CLS que reconegui la seqüència 011 com mostra el cronograma simplificat.

Núm. Ciclo	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
Entrada y	1	1	0	1	1	1	1	0	1	1	0	1	1	0	0
Salida W	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0

• De l'encapsulament deduïm n = m = 1

Exemple 2 CL-011: primera aproximació

- L'estat del CLS-011 serà el valor de l'entrada els tres darrers cicles
 - N = (y(t-3)y(t-2)y(t-1))
 - 8 estats possibles $(k = \lceil log_2 8 \rceil = 3 \text{ bits d'estat})$
 - {"000", "001", "010", "011", "100", "101", "111"}
 - Decidim que l'estat inicial sigui "000"

Exemple 2 CL-011: primera aproximació

- L'estat del CLS-011 serà el valor de l'entrada els tres darrers cicles
 - N = (y(t-3)y(t-2)y(t-1))
 - 8 estats possibles $(k = \lceil log_2 8 \rceil = 3 \text{ bits d'estat})$
 - {"000", "001", "010", "011", "100", "101", "111"}
 - Decidim que l'estat inicial sigui "000"

- I si l'entrada comença per "11"?
 - Tenim un "fals positiu" (false positive)

Exemple 2 CLS-011: segona aproximació

- L'estat del CLS-011 serà el valor de l'entrada els tres darrers cicles, tenint en compte que als primers tres cicles no disposem d'aquesta informació
 - 15 estats possibles $(k = \lceil log_2 15 \rceil = 4 \text{ bits d'estat})$

 - "...", "..0", "..1", ".00", ".01", ".10", ".11"}
 - L'estat inicial serà "..."
- Fragment del graf (cal completar-lo amb el graf anterior)

Exemple 2 CLS-011: tercera aproximació

- Tornem a la primera aproximació del CLS-011 modificant l'estat inicial
 - Decidim que l'estat inicial sigui "111" en comptes de "000"
 - Fa que desaparegui el fals positiu causat per l'entrada"11"

Exemple 2 CLS-011: quarta aproximació

- Intentarem reduir el nombre d'estats del CLS-011 a 4
 - L'estat indicarà la porció de "011" reconeguda els tres darrers cicles
 - "..." (res), "..0" (el darrer cicle hem rebut "0"), ".01" (els dos darrers cicles hem rebut "01") i "011" (seqüència detectada)
 - L'estat inicial serà "..."

Leyenda:

- Es pot demostrar que 4 estats és l'òptim per a aquest problema
 - $k = \lceil log_2 4 \rceil = 2$ bits de estat
 - La implementació només necessitarà dos biestables

Exemple 3: CLS-1101

- Dibuixeu el graf d'estats d'un CLS que reconegui la següència 1101 com mostra el cronograma simplificat.
 - Considerarem dues variants:
 - Sense solapament
 - Amb solapament
 - a) Sin solapamiento

Núm. Ciclo	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
Entrada y	0	1	0	1	1	0	1	1	0	1	1	1	0	1	1
Salida W	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1

b) Con solapamiento

Núm. Ciclo	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
Entrada y	0	1	0	1	1	0	1	1	0	1	1	1	0	1	1
Salida W	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1

- De l'encapsulament deduïm n = m = 1
- Al cas "amb solapament", l'"1" del cicle 6 pertany a dues seqüències

2020-21, 1^{er} quad.

Exemple 3: CLS-1101

- Graf d'estats en cada cas
 - Utilitzant la quarta aproximació de l'exemple 2
 - Sense solapament
 - Amb solapament

Representació de Don't Care al graf

- Si alguna combinació d'entrades és impossible quan el CLS està a algun estat, ho indicarem amb un arc que no vagi a parar a cap node
 - Exemple: el reconeixedor de "1101" amb solapament però ara ens garanteixen que a l'entrada mai apareixeran tres "1" seguits
 - Si estem a l'estat "..11", no podrà arribar un nou "1"

Índex

- Introducció
- Síntesi en 3 passos de CLS's
 - De la descripció funcional al graf d'estats
 - Del graf d'estats a les taules de transicions i sortides
 - De les taules a l'esquema lògic
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

Del graf a taules de transicions i sortides

- Ja hem vist com fer el pas invers
 - Nodes del graf representen estats
 - Un arc representa el canvi d'estat que provoca un valor de l'entrades
- Nombre de biestables? (k)
 - $k = \lceil log_2 nombre \ estats \rceil$
 - Amb 13 estats $\implies k = \lceil log_2 13 \rceil = 4$
- Mida de les taules (model de Moore):
 - \mathcal{G} (transicions): n + k bits d'entrada, k bits de sortida
 - Taula de veritat de 2^{n+k} files $\times k$ columnes
 - \mathcal{H} (sortides): k bits d'entrada, m bits de sortida
 - Taula de veritat de 2^k files $\times m$ columnes

Exemple 1: el biestable D

Leyenda:

- Per la llegenda ja sabem que n = m = 1
- Com tenim dos estats $\implies k = \lceil log_2 2 \rceil = 1$
- Cal codificar cada estat amb un vector de k bits
 - Identificador d'estat
 - Si no ens la imposen, tenim plena llibertat per fer la codificació
 - Algunes codificacions simplificaran la generació de les sortides
 - Codificació triada:
 - E0 = "0"
 - E1 = "1"

Exemple 1: el biestable D

Leyenda:

- n = m = k = 1
 - E0 és Q = 0, E1 és Q = 1
- Construïm les taules
 - Per conveni, l'identificador d'estat té més pes que les entrades del CLS

Q	d	Q^+
0	0	0
0	1	1
1	0	0
1	1	1
	Q 0 0 1 1	0 0 0 1

ortides:	Q	q
	0	0
	1	1

- Ens adonem que l'estat futur és independent de l'estat actual
- Amb aquesta codificació d'estats, la funció de sortida és trivial

Exemple 2

• Obtenir les taules de transicions i sortides del graf:

- Per la llegenda ja sabem que n = m = 2
- Com tenim tres estats $\implies k = \lceil log_2 3 \rceil = 2$
- Un cop codificats els estats amb *k* bits el graf queda:

Exemple 2: obtenir taules

Ei	q ₁ q ₀
E0	00
E1	01
E2	10

Tabla de transición

$q_1q_0x_1x_0$	q ₁ *	q ₀ *
0000	0	0
0001	0	1
0 0 1 0	1	0
0 0 1 1	0	1
0 1 0 0	0	0
0 1 0 1	0	1
0 1 1 0	1	0
0 1 1 1	0	1
1000	0	0
1001	0	1
1010	1	0
1011	1	0
1 1 0 0	х	х
1 1 0 1	х	Х
1 1 1 0	х	х
1111	х	х

Tabla de salida

q_1	q_0	W ₁	w ₀
0	0	0	0
1	0	1 x	1 x

Índex

- Introducció
- Síntesi en 3 passos de CLS's
 - De la descripció funcional al graf d'estats
 - Del graf d'estats a les taules de transicions i sortides
 - De les taules a l'esquema lògic
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

De les TV's a l'esquema lògic

- Ja sabem com sintetitzar un CLC
 - Suma de *minterms*
 - Decodificador
 - ROM
- Ho aplicarem a cada CLC del CLS
- També veurem com sintetitzar els dos CLC's amb una única ROM i multiplexors de busos

Exemple

- Obtenir l'esquema lògic corresponent a un CLS amb aquestes taules de transicions i sortides (n = m = k = 2)
 - Sintetitzarem un CLC amb una ROM i l'altre amb un descodificador

Tabla de transición

Tabla de salida

q ₁	q_0	W ₁	W ₀	
0	0	0	0	\Rightarrow
0	1	0	1	
1	0	1	1	
1	1	x	X	

Exemple

- Obtenir l'esquema lògic corresponent a un CLS amb aquestes taules de transicions i sortides (n = m = k = 2)
 - Sintetitzarem un CLC amb una ROM i l'altre amb un descodificador

Tabla de transición

Síntesi amb ROM i multiplexor de busos

- Sintetitzarem els dos CLC's amb una única ROM
 - Reorganitzem el contingut de les dues TV's en una de sola

Síntesi amb ROM i multiplexor de busos

- La quantitat d'informació és la mateixa tant si es sintetitza amb una ROM com si es fa amb dues
 - CLC's sintetitzats amb dues ROMs
 - $2^{k+n} \times k + 2^k \times m$ bits
 - CLC's sintetitzats amb una única ROM
 - $2^k \times (2^n \times k + m) = 2^{k+n} \times k + 2^k \times m$ bits

Índex

- Introducció
- Síntesi en 3 passos de CLS's
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

Síntesi ad-hoc del reconeixedor de 011

- Implementació amb shift register de tres bits
 - Asummim biestables inicialitzats a "1" per a evitar el fals positiu

- És el que obtindríem si sintetitzem (i minimitzem amb Karnaugh) el graf amb 8 estats proposat
- No és la solució òptima, hem vist que es podia fer amb 2 biestables

Síntesi ad-hoc del reconeixedor de 1101

• Implementació amb shift register de quatre bits

- Reconeix la seqüència 1101 amb solapament o sense solapament?
- Per a l'altre cas, sintetitzeu un CLS basat també en un shift register

Índex

- Introducció
- Síntesi en 3 passos de CLS's
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

Graf d'estats: dau electrònic

- Es vol dissenyar un CLS que permeti gestionar un dau electrònic
 - L'entrada del CLS (jugar) serà generada per un polsador
 - Les sortides estaran connectades a un component electrònic amb 7 entrades (una per a cada punt del dau); cada entrada regula un led

- Descripció:
 - Mentre el senyal d'entrada jugar valgui "1", el CLS mostrarà cíclicament els 6 resultats possibles (començant per l'1) a raó d'un per cicle
 - Mentre jugar valgui 0, la combinació mostrada al display no variarà
- Dibuixeu el graf d'estats del CLS
 - Inicialment, es mostrarà el valor 1

Graf d'estats: dau electrònic

- Interfície del CLS: entrada jugar d'1 bit, sortida W de 7 bits
- Nombre d'estats: 6 (un estat per a cada valor a visualitzar al dau)
 - $\{E1, E2, E3, E4, E5, E6\}$, E1 és l'estat inicial
- Transicions entre estats:
 - Si *jugar*="1", canviarà d'estat cíclicament
 - Si jugar="0", no canviarà d'estat
- Sortides:
 - A cada estat, activar els leds necessaris per a visualitzar el nombre
 - Comono caben als nodes deligraf, les posarem a taula adjacent

	<i>w</i> ₆	<i>W</i> ₅	W4	W3	<i>w</i> ₂	w_1	w ₀
S1	0	0	0	1	0	0	0
S2	1	0	0	0	0	0	1
S3	1	0	0	1	0	0	1
S4	1	1	0	0	0	1	1
S5	1	1	0	1	0	1	1
S6	1	1	1	0	1	1	1

Graf d'estats: dau electrònic

- Variants sobre el graf anterior (són independents):
 - Modifiqueu el graf d'estats de forma que el display mostri el valor únicament quan jugar valgui "0"; mentre valgui "1", el CLS també actualitzarà cíclicament el valor però no es mostrarà al display.
 - Modifiqueu el graf d'estats de forma que quan jugar passi a valdre "1", si el valor actual del comptador és parell, el CLS passarà a generar la seqüència de valors cíclicament en ordre descendent (6,5,...,1,6,...) a partir del valor actual. Si el valor actual és senar, passarà a generar la seqüència cíclicament en ordre ascendent (1,2,...,6,1,...) a partir del valor actual.
 - Modifiqueu el graf d'estats de forma que el CLS tingui una segona entrada anomenada sentit. Si val "0", el CLS generarà la seqüència de valors en ordre ascendent i si val "1" la generarà en ordre descendent; el canvi de sentit s'aplicarà a partir del valor actual.
 - Modifiqueu el graf d'estat de forma que el CLS garanteixi que quan jugar val "0" el valor actual es mostri, com a mínim, tres cicles consecutius. Un cop transcorreguts, en el moment que jugar passi a valdre "1", el CLS tornarà a generar la seqüència de valors.

Síntesi CLS (E2 Q1 12/<u>13)</u>

Ompliu la taula de sortides i un fragment de la de transicions

q2	q1	q0	x1	x0	q2⁺	q1 ⁺	q0⁺
0	1	1	0	0			
0	1	1	0	1			
0	1	1	1	0			
0	1	1	1	1			
1	0	0	0	0			
1	0	0	0	1			
1	0	0	1	0			
1	0	0	1	1			

q2	q1	q0	w1	w
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Ompliu el següent cronograma simplificat

Cicle	0	1	2	3	4	5	6	7	8
X ₁ X ₀	00	10	01	11	00	10	01	00	11
q ₂ q ₁ q ₀	000								
W ₁ W ₀									

• El sintetitzem amb una ROM i un multiplexor de bussos, quants biestables calen?, quantes paraules tindrà la ROM?, quants bits per paraula?, quantes entrades tindrà el multiplexor?, quants bits per bus?

Síntesi CLS (E2 Q1 12/13)

• Ompliu la taula de sortides i un fragment de la de transicions

q2	q1	q0	x1	x0	q2+	q1 ⁺	q0+
0	1	1	0	0	0	0	1
0	1	1	0	1	0	1	0
0	1	1	1	0	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	0	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	0	0	1	1
1	0	0	1	1	0	0	1

q2	q1	q0	w1	w0
0	0	0	1	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	×	x
1	1	0	×	x
1	1	1	×	x

Ompliu el següent cronograma simplificat

Cicle	0	1	2	3	4	5	6	7	8
X ₁ X ₀	00	10	01	11	00	10	01	00	11
q ₂ q ₁ q ₀	000	100	011	010	100	011	100	001	011
W ₁ W ₀	11	11	00	01	11	00	11	10	00

- El sintetitzem amb una ROM i un multiplexor de bussos, quants biestables calen?, quantes paraules tindrà la ROM?, quants bits per paraula?, quantes entrades tindrà el multiplexor?, quants bits per bus?
 - 3 biestabes, 8 paraules, 14 bits/paraula, 4 entrades, 3 bits per bus

Índex

- Introducció
- Síntesi en 3 passos de CLS's
- Síntesi ad-hoc de CLS's
- Exercicis
- Conclusions

Conclusions

- Hem vist la síntesi de CLS's en tres passos:
 - Construir el graf d'estats a partir de la descripció funcional
 - 2 Definir les TV's dels CLC's a partir del graf d'estats
 - Sintetitzar el CLS a partir de les TV's dels CLC's
- Tenim la possibilitat de sintetitzar els dos CLC's d'un CLS utilitzant una única ROM i un multiplexor de busos

No oblideu fer l'ET6b a Atenea abans de la propera classe

Referències I

Llevat que s'indiqui el contrari, les figures, esquemes, cronogrames i altre material gràfic o bé han estat extrets de la documentació de l'assignatura elaborada per Juanjo Navarro i Toni Juan, o corresponen a enunciats de problemes i exàmens de l'assignatura, o bé són d'elaboració pròpia.

- [1] [Online]. Available: http://cherryblossom-books.com/index.php/godel-escher-bach-an-eternal-golden-braid.html.
- [2] [Online]. Available: https://www.sparkfun.com/products/10212.
- [3] [Online]. Available: https://commons.wikimedia.org/wiki/File:Dice.png.

Introducció als Computadors

Tema 6: Circuits Lògics Seqüencials (CLS's) http://personals.ac.upc.edu/enricm/Docencia/IC/IC6b.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) & (2)

