Class 13: Pathway Analysis from RNA-Seq Results

Duc Nguyen

Section 1. Differential Expression Analysis

Import metadata and take a look

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
head(colData)

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd</pre>
```

Import countdata and take a look

SRR493371

hoxa1_kd

```
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)
head(countData)</pre>
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0

ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
countData <- countData[rowSums(countData) > 0,]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Check to see if the samples in countData match to colData

```
all(colnames(countData) == rownames(colData))
```

[1] TRUE

Running DESeq2

```
library(DESeq2)
Warning: package 'matrixStats' was built under R version 4.2.2
  dds <- DESeqDataSetFromMatrix(countData = countData,</pre>
                                 colData = colData,
                                 design = ~condition)
  dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
```

```
res <- results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
head(res)</pre>
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns

```
baseMean log2FoldChange
                                            lfcSE
                                                         stat
                                                                  pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                               <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                    0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                  11.9798
                               0.5428105 0.5215598 1.040744 2.97994e-01
                      padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Volcano plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Cut-off lines

abline(v = c(-2,2), col = "black", lty = 2)

abline(h = -log(0.01), col = "black", lty = 2)
```


Adding gene annotation

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

```
res$symbol = mapIds(org.Hs.eg.db,
                    keys = row.names(res),
                    keytype = "ENSEMBL",
                    column = "SYMBOL",
                    multiVals = "first")
res$entrez = mapIds(org.Hs.eg.db,
                    keys = row.names(res),
                    keytype = "ENSEMBL",
                    column = "ENTREZID",
                    multiVals = "first")
res$name = mapIds(org.Hs.eg.db,
                    keys = row.names(res),
                    keytype = "ENSEMBL",
                    column = "GENENAME",
                    multiVals = "first")
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	: stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre><numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <ch< td=""><td>naracter></td><td>•</td><td><pre><character></character></pre></td></ch<></character>	naracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	na motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	ıcleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin l	nomology

${\tt PPARGC1}$ and ${\tt ESRR}$ ind	84808	PERM1	4.03379e-01	ENSG00000187642
hes family bHLH tran	57801	HES4	1.30538e-24	ENSG00000188290
ISG15 ubiquitin like	9636	ISG15	2.37452e-02	ENSG00000187608
agrin	375790	AGRN	4.21963e-16	ENSG00000188157
ring finger protein	401934	RNF223	NA	ENSG00000237330

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res <- res[order(res$pvalue),]
write.csv(res, file = "deseq_results.csv")</pre>
```

Section 2. Pathway Analysis

```
library(gage)
```

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                       "10720" "10941"
                                         "151531" "1548"
                                                            "1549"
                                                                     "1551"
 [9] "1553"
              "1576"
                       "1577"
                                "1806"
                                         "1807"
                                                            "221223" "2990"
                                                  "1890"
[17] "3251"
                       "3615"
                                "3704"
              "3614"
                                         "51733"
                                                  "54490"
                                                            "54575"
                                                                     "54576"
[25] "54577"
              "54578"
                       "54579"
                                "54600"
                                         "54657"
                                                  "54658"
                                                            "54659"
                                                                     "54963"
[33] "574537" "64816" "7083"
                                "7084"
                                         "7172"
                                                  "7363"
                                                            "7364"
                                                                     "7365"
```

```
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
                         "10606"
                                   "10621"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                 "158"
                                                                           "159"
                                                       "204"
                                                                 "205"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                                           "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                          "2984"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
                                                                 "318"
                                                                           "3251"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                             "377841"
                                                      "471"
                                                                 "4830"
                                                                          "4831"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                "5139"
                                                                          "5140"
                         "5143"
                                   "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
 [81] "5141"
                "5142"
                                                                           "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                           "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                          "6240"
[137] "6241"
                                   "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                "64425"
                         "646625"
                                                                           "84172"
[145] "84265"
                "84284"
                         "84618"
                                   "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
[153] "9061"
                "93034"
                         "953"
                                   "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
```

The 'gage()' function wants only a vector of importance input that has names in ENTREZ ID format

51232

3.201955 -2.313738 -2.059631 -1.888019 -1.649792

2034

2317

```
foldchanges <- res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)</pre>
```

Let's run the gage pathway analysis

54855

1266

-2.422719

```
# Get the results
keggres = gage(foldchanges, gsets = kegg.sets.hs)
```

1465

Look at the object returned from 'gage()' function.

```
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

Let's look at the first few down (less) pathway results:

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.geomean stat.mean
hsa04110 Cell cycle
                                     8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                     9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                     1.375901e-03 -3.028500 1.375901e-03
                                     3.066756e-03 -2.852899 3.066756e-03
hsa03440 Homologous recombination
hsa04114 Oocyte meiosis
                                     3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                           q.val set.size
                                     0.001448312
hsa04110 Cell cycle
                                                     121 8.995727e-06
hsa03030 DNA replication
                                     0.007586381
                                                     36 9.424076e-05
hsa03013 RNA transport
                                     0.073840037 144 1.375901e-03
hsa03440 Homologous recombination
                                                     28 3.066756e-03
                                     0.121861535
hsa04114 Oocyte meiosis
                                     0.121861535
                                                     102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                 53 8.961413e-03
```

Look at hsa04110 Cell cycle

```
library(pathview)

pathview(gene.data = foldchanges, pathway.id = "hsa04110")
```

Look at hsa03030 DNA replication

```
pathview(gene.data = foldchanges, pathway.id = "hsa03030")
```


Figure 1: The Cell cycle pathway with genes are colored

Figure 2: The DNA replication pathway with genes are colored

Now, focus on top 5 upregulated pathways

```
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids <- substr(keggrespathways, start = 1, stop = 8)
keggresids

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

Draw plots for all the top 5 pathways

pathview(gene.data = foldchanges, pathway.id = keggresids, species = "hsa")

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

keggrespathways_down <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string keggresids_down <- substr(keggrespathways_down, start = 1, stop = 8) keggresids_down

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"</pre>
```

pathview(gene.data = foldchanges, pathway.id = keggresids_down, species = "hsa")

Section 3. Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets <- go.sets.hs[go.subs.hs$BP]

gobpres <- gage(foldchanges, gsets = gobpsets, same.dir = TRUE)</pre>
```


Figure 3: hsa04640

Figure 4: hsa04630

Figure 5: hsa00140

Figure 6: hsa04142

Figure 7: hsa04330

Figure 8: hsa04110

Figure 9: hsa03030

Figure 10: hsa03013

Figure 11: hsa03440

Figure 12: hsa04114

lapply(gobpres, head)

\$greater

40-000-				
		p.geomean	stat.mean	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610	behavior	2.195494e-04	3.530241	2.195494e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val set	.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GD:0002009	morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GO:0007610	behavior	0.2243795	427 2.19	95494e-04
GO:0060562	epithelial tube morphogenesis	0.3711390	257 5.93	32837e-04
GO:0035295	tube development	0.3711390	391 5.9	53254e-04

\$less

p.geomean stat.mean p.val GO:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15

```
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
                                        1.729553e-10 -6.695966 1.729553e-10
GO:0000236 mitotic prometaphase
                                               q.val set.size
                                                                      exp1
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                                          352 4.286961e-15
                                        5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                                          142 2.028624e-11
                                        1.658603e-08
GO:0000236 mitotic prometaphase
                                        1.178402e-07
                                                           84 1.729553e-10
```

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GD:0007610	behavior	3.530241	3.530241
GD:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Section 4. Reactome Analysis

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Ans: The pathway has the most significant "Entities p-value" is the "Endosomal/Vacuolar pathway." No, the most significant pathways listed does not match your previous KEGG results. In my opinion, factors

that could cause differences between the two methods are due to their differences in the collection of biological information data

Section 5. GO online (OPTIONAL)

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Ans: The pathway has the most significant "Entities p-value" is the "detection of chemical stimulus involved in sensory perception." No, the most significant pathways listed does not match your previous KEGG results. In my opinion, factors that could cause differences between the two methods are due to their differences in the collection of biological information data