Cost Function

Training	Set
U	

Size in foot CA	Price(\$) in 1000; (4)
2104	460 7
1416	232
1534	315 m=47
852	178

Hypothesis: ho(x) = Qo + Q1 x linear function

Oi's: perameters

How to change O; 's?

dea: Choise Oo, O, so that ha(x) is close to y for our training examples (x,y) ho(x) meany the value we predict on implies X

that is at least close to the value 4 for the (xii); y(ii) examples in our training set minimize $\frac{1}{2}$ $\approx (h_0(x^{(i)}) - 9)^2$ m \Rightarrow # training example $h_0(x^{(i)}) = 0_0 + 0_1 \cdot x^{(i)}$ I more clear ! $J(\Theta_0, O_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_0(x^{(i)}) - y^{(i)})^2$ Minimize J(00,01) Sougred error finction 00,01 Lost Function The most commonly seed one for ryressian publishers