

SEQUENCE LISTING

<110> Donoho, Gregory
 Hilbun, Erin
 Scoville, John
 Turner, C. Alexander Jr.
 Friedrich, Glenn
 Abuin, Alejandro
 Zambrowicz, Brian
 Sands, Arthur T.

<120> Novel Human Enzymes and Polynucleotides
 Encoding the Same

<130> LEX-0118-USA

<150> US 60/179,000
<151> 2000-01-28

<160> 15

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 831
<212> DNA
<213> Homo sapiens

<400> 1

atgacctt	tccgcttgc	cctcatccag	cttcagattt	cttccatcaa	atcagataac	60
gtcactcg	ctttagctt	catccggag	gcagcaacgc	aaggagccaa	aatagttct	120
ttgcggat	gtttaattc	tccatatgga	gcgaaatatt	ttcctgaata	tgcagagaaa	180
attccctgg	aatccacaca	gaagcttct	gaagtagcaa	aggaatgcag	catatatctc	240
attggagg	ctatccctga	agaggatct	gggaaattat	ataacacctg	tgctgtgttt	300
gggcctgt	gaactttact	agcaaagtat	agaaagatcc	atctgttga	cattgtatgtt	360
cctggaaa	ttacatttca	agaatctaaa	acattgagtc	cgggtgatag	tttctccaca	420
tttgataact	cttactgcag	agtgggtctg	ggcatctgct	acgacatgcg	gtttgcagag	480
cttgcacaaa	tctacgcaca	gagaggctgc	cagctgttgg	tatatccagg	agcttttaat	540
ctgaccact	gaccagccc	ttgggagtt	cttcagcgaa	gccgggctgt	tgataatcag	600
gtgtatgt	ccacagcctc	tcctgccccg	gatgacaaag	cctcctatgt	tgctctggga	660
cacagcac	tggtaaccc	ttggggggag	gttctagcca	aagctggcac	agaagaagca	720
atcgtgtatt	cagacataga	cctgaagaag	ctggctgaaa	tacgccagca	aatccccgtt	780
tttagacaga	agcgatcaga	cctctatgt	gtggagatga	aaaagcccta	a	831

<210> 2
<211> 276
<212> PRT
<213> Homo sapiens

<400> 2

Met	Thr	Ser	Phe	Arg	Leu	Ala	Leu	Ile	Gln	Leu	Gln	Ile	Ser	Ser	Ile
1															
Lys	Ser	Asp	Asn	Val	Thr	Arg	Ala	Cys	Ser	Phe	Ile	Arg	Glu	Ala	Ala
20															
Thr	Gln	Gly	Ala	Lys	Ile	Val	Ser	Leu	Pro	Glu	Cys	Phe	Asn	Ser	Pro

35	40	45													
Tyr	Gly	Ala	Lys	Tyr	Phe	Pro	Glu	Tyr	Ala	Glu	Lys	Ile	Pro	Gly	Glu
50					55						60				
Ser	Thr	Gln	Lys	Leu	Ser	Glu	Val	Ala	Lys	Glu	Cys	Ser	Ile	Tyr	Leu
65					70					75					80
Ile	Gly	Gly	Ser	Ile	Pro	Glu	Glu	Asp	Ala	Gly	Lys	Leu	Tyr	Asn	Thr
															85
Cys	Ala	Val	Phe	Gly	Pro	Asp	Gly	Thr	Leu	Leu	Ala	Lys	Tyr	Arg	Lys
															100
Ile	His	Leu	Phe	Asp	Ile	Asp	Val	Pro	Gly	Lys	Ile	Thr	Phe	Gln	Glu
															115
Ser	Lys	Thr	Leu	Ser	Pro	Gly	Asp	Ser	Phe	Ser	Thr	Phe	Asp	Thr	Pro
															130
Tyr	Cys	Arg	Val	Gly	Leu	Gly	Ile	Cys	Tyr	Asp	Met	Arg	Phe	Ala	Glu
															145
Leu	Ala	Gln	Ile	Tyr	Ala	Gln	Arg	Gly	Cys	Gln	Leu	Leu	Val	Tyr	Pro
															165
Gly	Ala	Phe	Asn	Leu	Thr	Thr	Gly	Pro	Ala	His	Trp	Glu	Leu	Leu	Gln
															180
Arg	Ser	Arg	Ala	Val	Asp	Asn	Gln	Val	Tyr	Val	Ala	Thr	Ala	Ser	Pro
															195
Ala	Arg	Asp	Asp	Lys	Ala	Ser	Tyr	Val	Ala	Trp	Gly	His	Ser	Thr	Val
															210
Val	Asn	Pro	Trp	Gly	Glu	Val	Leu	Ala	Lys	Ala	Gly	Thr	Glu	Ala	
															225
Ile	Val	Tyr	Ser	Asp	Ile	Asp	Leu	Lys	Lys	Leu	Ala	Glu	Ile	Arg	Gln
															245
Gln	Ile	Pro	Val	Phe	Arg	Gln	Lys	Arg	Ser	Asp	Leu	Tyr	Ala	Val	Glu
															260
Met	Lys	Lys	Pro												275

<210> 3
<211> 480
<212> DNA
<213> Homo sapiens

<400> 3
atgtcatgga ggatttcccc tgccacacca tgctgttaggg agttaacttt tcatttgtgc 60
attttctgtt tggaaacagc ttactgcaga gtgggtctgg gcatctgcta cgacatgcgg 120
tttgcagagc ttgcacaaat ctacgcacag agaggctgcc agctgttggt atatccagga 180
gcttttaatc tgaccactgg accagcccat tgggagttac ttcagcgaag ccgggctgtt 240
gataatcagg tgtatgtggc cacagcctct cctgcccggg atgacaaaagc ctcttatgtt 300
gcctggggac acagacaccgt ggtgaaccct tggggggagg ttctagccaa agctggcaca 360
gaagaagcaa tcgtgtattc agacatagac ctgaagaagc tggctgaaat acgccagcaa 420
atccccgttt ttagacagaa gcgatcagac ctctatgctg tggagatgaa aaagccctaa 480

<210> 4
<211> 159
<212> PRT
<213> Homo sapiens

<400> 4
Met Ser Trp Arg Ile Ser Pro Ala Thr Pro Cys Cys Arg Glu Leu Thr 1 5 10 15
Phe His Leu Cys Ile Phe Cys Leu Glu Thr Ala Tyr Cys Arg Val Gly

20	25	30	
Leu Gly Ile Cys Tyr Asp Met Arg Phe Ala Glu Leu Ala Gln Ile Tyr			
35	40	45	
Ala Gln Arg Gly Cys Gln Leu Leu Val Tyr Pro Gly Ala Phe Asn Leu			
50	55	60	
Thr Thr Gly Pro Ala His Trp Glu Leu Leu Gln Arg Ser Arg Ala Val			
65	70	75	80
Asp Asn Gln Val Tyr Val Ala Thr Ala Ser Pro Ala Arg Asp Asp Lys			
85	90	95	
Ala Ser Tyr Val Ala Trp Gly His Ser Thr Val Val Asn Pro Trp Gly			
100	105	110	
Glu Val Leu Ala Lys Ala Gly Thr Glu Ala Ile Val Tyr Ser Asp			
115	120	125	
Ile Asp Leu Lys Lys Leu Ala Glu Ile Arg Gln Gln Ile Pro Val Phe			
130	135	140	
Arg Gln Lys Arg Ser Asp Leu Tyr Ala Val Glu Met Lys Lys Pro			
145	150	155	

<210> 5

<211> 366

<212> DNA

<213> Homo sapiens

<400> 5

atgcggtttg cagagcttgc acaaatctac gcacagagag gctgccagct gttggtatat	60
ccaggagctt ttaatctgac cactggacca gcccattggg agttacttca gcgaagccgg	120
gctgttata atcaggtgta tggccaca gcctcttcgt cccggatga caaagcctcc	180
tatgttgctt gggacacag caccgtggtg aacccttggg gggaggttct agccaaagct	240
ggcacagaag aagcaatcggtt atttcagac atagacctga agaagctggc tgaaaatacgc	300
cagcaaatcc ccgttttag acagaaggca tcagacctct atgctgtgga gatgaaaaag	360
ccctaa	366

<210> 6

<211> 121

<212> PRT

<213> Homo sapiens

<400> 6

Met Arg Phe Ala Glu Leu Ala Gln Ile Tyr Ala Gln Arg Gly Cys Gln			
1	5	10	15
Leu Leu Val Tyr Pro Gly Ala Phe Asn Leu Thr Thr Gly Pro Ala His			
20	25	30	
Trp Glu Leu Leu Gln Arg Ser Arg Ala Val Asp Asn Gln Val Tyr Val			
35	40	45	
Ala Thr Ala Ser Pro Ala Arg Asp Asp Lys Ala Ser Tyr Val Ala Trp			
50	55	60	
Gly His Ser Thr Val Val Asn Pro Trp Gly Glu Val Leu Ala Lys Ala			
65	70	75	80
Gly Thr Glu Glu Ala Ile Val Tyr Ser Asp Ile Asp Leu Lys Lys Leu			
85	90	95	
Ala Glu Ile Arg Gln Gln Ile Pro Val Phe Arg Gln Lys Arg Ser Asp			
100	105	110	
Leu Tyr Ala Val Glu Met Lys Lys Pro			
115	120		

<210> 7

<211> 507
 <212> DNA
 <213> Homo sapiens

<400> 7
 atgtcatgga ggatttcccc tgcccacacca tgctgttaggg agttaacttt tcatttggtgc 60
 attttctgtt tggaaaacagc ttactgcaga gtgggtctgg gcatctgcta cgacatgcgg 120
 tttgcagagc ttgcacaaat ctacgcacag agaggctgcc agctgttgtt atatccagga 180
 gcttttaatc tgaccactgg accagcccat tggagttac ttcaagcgaag ccgggctgtt 240
 gataatcagg tgtatgtggc cacagcctct cctgcccggg atgacaaagc ctccatatgtt 300
 gcctggggac acagcaccgt ggtgaaccct tggggggagg ttctagccaa agctggcaca 360
 gaagaagcaa tcgtgtattc agacatagac ctgaagaagc tggctgaaat acgcagcaa 420
 atccccgtt ttagacagaa gcgaaatatt ttccctgaata tgcagagaaa attccctggtg 480
 aatccacacca gaagcttct gaagtag 507

<210> 8
 <211> 168
 <212> PRT
 <213> Homo sapiens

<400> 8
 Met Ser Trp Arg Ile Ser Pro Ala Thr Pro Cys Cys Arg Glu Leu Thr
 1 5 10 15
 Phe His Leu Cys Ile Phe Cys Leu Glu Thr Ala Tyr Cys Arg Val Gly
 20 25 30
 Leu Gly Ile Cys Tyr Asp Met Arg Phe Ala Glu Leu Ala Gln Ile Tyr
 35 40 45
 Ala Gln Arg Gly Cys Gln Leu Leu Val Tyr Pro Gly Ala Phe Asn Leu
 50 55 60
 Thr Thr Gly Pro Ala His Trp Glu Leu Leu Gln Arg Ser Arg Ala Val
 65 70 75 80
 Asp Asn Gln Val Tyr Val Ala Thr Ala Ser Pro Ala Arg Asp Asp Lys
 85 90 95
 Ala Ser Tyr Val Ala Trp Gly His Ser Thr Val Val Asn Pro Trp Gly
 100 105 110
 Glu Val Leu Ala Lys Ala Gly Thr Glu Glu Ala Ile Val Tyr Ser Asp
 115 120 125
 Ile Asp Leu Lys Lys Leu Ala Glu Ile Arg Gln Gln Ile Pro Val Phe
 130 135 140
 Arg Gln Lys Arg Asn Ile Phe Leu Asn Met Gln Arg Lys Phe Leu Val
 145 150 155 160
 Asn Pro His Arg Ser Phe Leu Lys
 165

<210> 9
 <211> 393
 <212> DNA
 <213> Homo sapiens

<400> 9
 atgcggtttg cagagcttgc acaaattctac gcacagagag gctgccagct gttggtatat 60
 ccaggagctt ttaatctgac cactggacca gcccattggg agttacttca gcgaagccgg 120
 gctgttata atcaggtgta tgtggccaca gcctctcctg cccggatga caaaaggctcc 180
 tatgttcctt gggacacag caccgtggtg aacccttggg gggaggttct agccaaagct 240
 ggcacagaag aagcaatcgt gtattcagac atagacctga agaagctggc taaaatacgc 300
 cagcaaattcc ccgttttag acagaagcga aatatttcc tgaatatgca gagaaaattc 360

ctggtaatc cacacagaag ctttctgaag tag

393

<210> 10

<211> 130

<212> PRT

<213> Homo sapiens

<400> 10

Met Arg Phe Ala Glu Leu Ala Gln Ile Tyr Ala Gln Arg Gly Cys Gln
1 5 10 15
Leu Leu Val Tyr Pro Gly Ala Phe Asn Leu Thr Thr Gly Pro Ala His
20 25 30
Trp Glu Leu Leu Gln Arg Ser Arg Ala Val Asp Asn Gln Val Tyr Val
35 40 45
Ala Thr Ala Ser Pro Ala Arg Asp Asp Lys Ala Ser Tyr Val Ala Trp
50 55 60
Gly His Ser Thr Val Val Asn Pro Trp Gly Glu Val Leu Ala Lys Ala
65 70 75 80
Gly Thr Glu Glu Ala Ile Val Tyr Ser Asp Ile Asp Leu Lys Lys Leu
85 90 95
Ala Glu Ile Arg Gln Gln Ile Pro Val Phe Arg Gln Lys Arg Asn Ile
100 105 110
Phe Leu Asn Met Gln Arg Lys Phe Leu Val Asn Pro His Arg Ser Phe
115 120 125
Leu Lys
130

<210> 11

<211> 459

<212> DNA

<213> Homo sapiens

<400> 11

atgaccttt tccgcttggc cctcatccag ctttagattt cttccatcaa atcagataac 60
gtcaactcgcg cttagctt catccggag gcagcaacgc aaggagccaa aatagttct 120
ttgccggaat gcttaattt tccatatggc gcgaaatatt ttcttgcata tgagagaaa 180
attccctgggt aatccacaca gaagcttct gaagtagcaa aggaatgcag catatatctc 240
attggaggct ctatccctga agaggatgtt gggaaattat ataacacctg tgctgtgttt 300
gggcctgatg gaactttact agcaaagtat agaaagatcc atctgttgc cattgtatgtt 360
cctggaaaaaa ttacattca agaatctaaa acatggatc cgggtgatag tttctccaca 420
tttgatactc gtatgtacca gataagtttgc cctcttttag 459

<210> 12

<211> 152

<212> PRT

<213> Homo sapiens

<400> 12

Met Thr Ser Phe Arg Leu Ala Leu Ile Gln Leu Gln Ile Ser Ser Ile
1 5 10 15
Lys Ser Asp Asn Val Thr Arg Ala Cys Ser Phe Ile Arg Glu Ala Ala
20 25 30
Thr Gln Gly Ala Lys Ile Val Ser Leu Pro Glu Cys Phe Asn Ser Pro
35 40 45
Tyr Gly Ala Lys Tyr Phe Pro Glu Tyr Ala Glu Lys Ile Pro Gly Glu
50 55 60

Ser Thr Gln Lys Leu Ser Glu Val Ala Lys Glu Cys Ser Ile Tyr Leu
 65 70 75 80
 Ile Gly Gly Ser Ile Pro Glu Glu Asp Ala Gly Lys Leu Tyr Asn Thr
 85 90 95
 Cys Ala Val Phe Gly Pro Asp Gly Thr Leu Leu Ala Lys Tyr Arg Lys
 100 105 110
 Ile His Leu Phe Asp Ile Asp Val Pro Gly Lys Ile Thr Phe Gln Glu
 115 120 125
 Ser Lys Thr Leu Ser Pro Gly Asp Ser Phe Ser Thr Phe Asp Thr Arg
 130 135 140
 Met Tyr Gln Ile Ser Leu Pro Leu
 145 150

<210> 13

<211> 858

<212> DNA

<213> Homo sapiens

<400> 13

atgacacctt	tccgcttggc	cctcatccag	cttcagattt	cttccatcaa	atcagataac	60
gtcaactcgcg	ctttagctt	catccggag	gcagcaacgc	aaggagccaa	aatagttct	120
ttgccggaaat	gcttaattc	tccatatgg	gcgaaatatt	ttcctgaata	tgagagaaaa	180
attcctgggt	aatccacaca	gaagcttct	gaagtagcaa	aggaatgcag	catatatctc	240
attggaggct	ctatccctga	agaggatgt	gggaaattat	ataacacctg	tgctgtgttt	300
ggccctgtatg	gaactttact	agcaaagtat	agaaaagatcc	atctgttga	cattgtatgtt	360
cctggaaaaaa	ttacatttca	agaatctaaa	acattgagtc	cgggtgatag	tttctccaca	420
tttgatactc	cttactgcag	agtgggtctg	ggcatctgct	acgacatgcg	gtttgcagag	480
cttgcacaaa	tctacgcaca	gagaggctgc	cagctgttgg	tatatccagg	agcttttaat	540
ctgaccactg	gaccagccca	ttgggaggtt	cttcagcgaa	gccgggctgt	tgataatcag	600
gtgtatgtgg	ccacagcctc	tcctgcccgg	gatgacaaag	cctcctatgt	tgccctgggga	660
cacagcaccc	tggtaaccc	ttggggggag	gttctagcca	aagctggcac	agaagaagca	720
atcgtgtatt	cagacataga	cctgaagaag	ctggctgaaa	tacgccagca	aatccccgtt	780
tttagacaga	agcggaaatat	tttcctgaat	atgcagagaa	aattcctgggt	aatccacacac	840
agaagcttcc	tgaagtag					858

<210> 14

<211> 285

<212> PRT

<213> Homo sapiens

<400> 14

Met Thr Ser Phe Arg Leu Ala Leu Ile Gln Leu Gln Ile Ser Ser Ile						
1	5	10	15			
Lys Ser Asp Asn Val Thr Arg Ala Cys Ser Phe Ile Arg Glu Ala Ala						
20	25	30				
Thr Gln Gly Ala Lys Ile Val Ser Leu Pro Glu Cys Phe Asn Ser Pro						
35	40	45				
Tyr Gly Ala Lys Tyr Phe Pro Glu Tyr Ala Glu Lys Ile Pro Gly Glu						
50	55	60				
Ser Thr Gln Lys Leu Ser Glu Val Ala Lys Glu Cys Ser Ile Tyr Leu						
65	70	75	80			
Ile Gly Gly Ser Ile Pro Glu Glu Asp Ala Gly Lys Leu Tyr Asn Thr						
85	90	95				
Cys Ala Val Phe Gly Pro Asp Gly Thr Leu Leu Ala Lys Tyr Arg Lys						
100	105	110				
Ile His Leu Phe Asp Ile Asp Val Pro Gly Lys Ile Thr Phe Gln Glu						

115	120	125													
Ser	Lys	Thr	Leu	Ser	Pro	Gly	Asp	Ser	Phe	Ser	Thr	Phe	Asp	Thr	Pro
130															
Tyr	Cys	Arg	Val	Gly	Leu	Gly	Ile	Cys	Tyr	Asp	Met	Arg	Phe	Ala	Glu
145															
Leu	Ala	Gln	Ile	Tyr	Ala	Gln	Arg	Gly	Cys	Gln	Leu	Leu	Val	Tyr	Pro
165															
Gly	Ala	Phe	Asn	Leu	Thr	Thr	Gly	Pro	Ala	His	Trp	Glu	Leu	Leu	Gln
180															
Arg	Ser	Arg	Ala	Val	Asp	Asn	Gln	Val	Tyr	Val	Ala	Thr	Ala	Ser	Pro
195															
Ala	Arg	Asp	Asp	Lys	Ala	Ser	Tyr	Val	Ala	Trp	Gly	His	Ser	Thr	Val
210															
Val	Asn	Pro	Trp	Gly	Glu	Val	Leu	Ala	Lys	Ala	Gly	Thr	Glu	Glu	Ala
225															
Ile	Val	Tyr	Ser	Asp	Ile	Asp	Leu	Lys	Lys	Leu	Ala	Glu	Ile	Arg	Gln
245															
Gln	Ile	Pro	Val	Phe	Arg	Gln	Lys	Arg	Asn	Ile	Phe	Leu	Asn	Met	Gln
260															
Arg	Lys	Phe	Leu	Val	Asn	Pro	His	Arg	Ser	Phe	Leu	Lys			
275															
280															
285															

<210> 15

<211> 3093

<212> DNA

<213> Homo sapiens

<400> 15

ggatgggtgg	gcataacctgt	ggtcccagct	acataagagg	ctgagacaag	aggattgcct	60
gaactgagta	ggtcaaggct	gcagtggacc	atgtttgtgc	cactgcaactc	cagcctggc	120
gacagaacaa	ggccctgcct	caaataaaaa	aatattagct	aatggaaaat	gattatcata	180
aaagctaaaa	gggaacttta	aagaacagaa	gaaaagcaaa	tatgtatgtat	agctactacc	240
tccaggaaga	aataagcttg	gaagagcccc	caacctcctt	gctccagggc	tgacacaga	300
ccttgcagg	gctggctaca	taatttgtgg	ggcccagttc	ccttgcattcag	atagcaagag	360
aaaagtgcgt	ttagcttttc	cttctgcagt	atctcttca	acctctcatg	gtgttatttg	420
ctgtttaatg	tcatgttctc	ttggacacat	gaatacttat	gggtaaagt	cagactttta	480
gaggtgcctg	ggacccctgt	cctgtgaata	ggcatgtgt	cagctcaactg	gctgccaggt	540
tttccctctg	ccagcagcgg	gatcgatgt	ctgtgaccca	gccagtagt	gggaaaactga	600
gacagacatc	ttcccttccc	atgagctggg	cctgctcatg	ggaattatgt	gagcagcttc	660
caaggaatca	cacttctgt	gctggacat	actcaagtat	atggatttga	ggttagacgag	720
aggcccattt	aacaaacagt	aaggcacagg	accatattca	aaccctgtt	ttttacttta	780
agccatattc	ctcatttcat	tcccctacac	tgcgtatcaa	gaagctggtt	cactctagat	840
tcttgcct	ggcatggac	tttgcctatg	gatattgctc	tatctccaga	tagattttag	900
actattgaca	ttttggacag	gataattctt	cgttgttta	tggagggggt	tgtccatatgc	960
attttagat	gtttggcagt	atccttggtc	tctattcatt	agatccact	catacctcat	1020
cagttgtggc	atcaaaggta	tcttcagaca	ttgtcagatg	tccccccggg	gacataactg	1080
ccttccattt	gagaactatg	gctctgtctg	aatccagcag	ttcgatcttc	tgatagctgt	1140
tttcttttgc	ctttgttctc	agcccccccc	cccccggt	gaccgcgggt	ccgccccggatc	1200
tccagcgctc	agtccgcgcc	gcaggtgggt	cttgcctgca	gagtcatgac	ctctttccgc	1260
ttggccctca	tccagcttca	gatttcttcc	atcaaatacg	ataacgtcac	tcgcgcgttgc	1320
agcttcatcc	gggaggcagc	aacgcaggg	gccaaaatag	tttctttgc	ggaatgtttt	1380
aattctccat	atggagcgtt	atattttctt	gaatatgcag	agaaaattcc	tggtaatcc	1440
acacagaagc	tttctgaagt	agcaaaggaa	tgcagcatat	atctcatgg	aggctctatc	1500
cctgaagagg	atgctggaa	attatataac	acctgtgtctg	tgtttgggcc	tgatggaaact	1560
tttacttagcaa	agtatagaaa	gatccatctg	tttgacattt	atgttccctgg	aaaaattaca	1620
tttcaagaat	ctaaaacatt	gagtccgggt	gatagtttct	ccacatttga	tactcgtatg	1680

taccagataa gttgcctct ttagcaatct cagtagaaga caatcaggta tttatttctt 1740
ttttgtctct ctccgatttc ttcacataac ctaactgaaa gaccataagt gagaaaggca 1800
gagaatcatc acagatctgg aaagttcggg cttatttgag aactaaggat ttgacacgat 1860
tttgccttt gatttatttgc tagcttcctg ttacggctt cagagtatac ctattaggct 1920
acagttgagt acctcccattc tagataataa gcattcaatt agaatgaatt tctcatctt 1980
actccgctga tgtaaatgtat gtctttatga gatgaagtcc aagtaggaat gagcttgtaa 2040
attatctctg tcctcaggc tcgtgttaat ttatccctgt cagtgtttt tgatcattat 2100
gtcatggagg atttcccctg ccacaccatg ctgtaggag ttaacttttcc atttgtgcatt 2160
tttctgtttg gaaacagctt actgcagagt gggctggc atctgctacg acatgcgggt 2220
tgccagagtt gcacaaatct acgcacacag aggctgccag ctgttggtat atccaggagc 2280
ttttaatctg accactggac cagccccattt ggagttactt cagcgaagcc gggctgttga 2340
taatcagggtg tatgtggcca cagcctctcc tgcccggtt gacaaagcct cctatgttgc 2400
ctggggacac agcaccgtgg tgaacccttgg gggggaggtt ctagccaaag ctggcacaga 2460
agaagcaatc gtgtatttcg acatagacact gaagaagctg gctgaaatac gccagcaa 2520
ccccgtttt agacagaagc gatcagacact ctatgctgtg gagatgaaaa agccctaaag 2580
tttatgtttc taatgtgtca cagaatagga cgatatgattt ctacaacata atcaactccc 2640
tattaaattt ttaatgaag aaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaatattt ttctgtt 2700
tgccagagaaaa attccctgggtt aatccacaca gaagctttctt gaagtagcaa aggaatgcag 2760
catatatctc attggaggctt ctatccctga agaggatgtt gggaaattat ataacacctg 2820
tgctgtgtttt gggcctgtatg gaacttactt agcaaagtat agaaagatcc atctgtttga 2880
cattgatgtt cctggaaaaaa ttacatttca agaatctaaa acatttagtgc cgggtgatag 2940
tttctccaca tttgataactc cttactgcag agtgggtctg ggcattctgct acgacatgcg 3000
gtttgcagag cttgcacaaa tctacgcaca gagaggctgc cagctgttgg tatatccagg 3060
agcttttaat ctgaccactg gaccagccca ttg 3093