Cálculo 2

Módulo 01 - Lista Extra

Temas abordados: Análise de estabilidade, Pêndulo Invertido, Raízes características

Considere uma EDO com solução de equilíbrio y = 0. Dizemos que essa EDO é:

- (i) Estável se **todas** soluções y(t) são limitadas para $t \ge 0$.
- (ii) Assintoticamente estável se todas soluções y(t) satisfazem $\lim_{t\to\infty} y(t) = 0$.
- 1) Considere a equação do pêndulo simples

$$L\theta'' = -q \operatorname{sen}(\theta)$$

e seja
$$\omega_0 = \sqrt{g/L}$$
.

a) Para ângulos θ próximos de 0, o pêndulo simples pode ser aproximado pela equação do movimento harmônico simples com frequência natural ω_0 , dada por

$$\alpha'' = -\omega_0^2 \alpha$$

Mostre que essa EDO é estável, mas não é assintoticamente estável.

b) Para ângulos θ próximos de π , o pêndulo simples pode ser aproximado pela equação do pêndulo invertido

$$\beta'' = +\omega_0^2 \beta$$

Mostre que essa EDO não é estável.

2) Podemos tentar estabilizar o pêndulo invertido introduzindo uma força de feedback restauradora $-k\beta$, cuja constante k>0 podemos ajustar na EDO

$$\beta'' = +\omega_0^2 \beta - k\beta$$

diferentemente da constante ω_0 que, para um determinado pêndulo, está fixa.

Obtendo as possíveis soluções em cada caso, mostre que:

- a) Se $k < \omega_o^2$, a EDO não é estável
- b) Se $k = \omega_o^2$, a EDO não é estável
- c) Se $k > \omega_o^2$, a EDO é estável, mas não é assintoticamente estável.
- d) Para nenhum valor de k a EDO é assintoticamente estável.
- 3) Podemos tentar estabilizar assintoticamente o pêndulo invertido introduzindo uma força de feedback amortecedora $-c\beta'$, cuja constante c>0 podemos ajustar na EDO

$$\beta'' = +\omega_0^2 \beta - k\beta - c\beta'$$

Obtendo as possíveis soluções em cada caso, mostre que:

- a) Se $k < \omega_o^2$, a EDO não é estável
- b) Se $k = \omega_o^2$, a EDO é estável, mas não é assintoticamente estável.
- c) Se $k > \omega_o^2$, a EDO é assintoticamente estável. Quando obtemos retorno ao equilíbrio com amortecimento supercrítico, crítico e subcrítico?

RESPOSTAS

1) a) A equação característica é

$$r^2 = -\omega_o^2$$

Portanto, as raízes características são $r = \pm \omega_0 i$.

Assim, temos as soluções fundamentais $e^{0t}\cos(\omega_0 t) = \cos(\omega_0 t)$, $e^{0t}\sin(\omega_0 t) = \sin(\omega_0 t)$.

Portanto a solução geral é $\alpha(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$, que é limitada pois cos e sen são limitados, mostrando que essa EDO é estável.

Uma vez que temos uma solução $\cos(\omega_0 t)$ tal que $\lim_{t\to\infty}\cos(\omega_0 t)\neq 0$ (de fato, esse limite não existe, logo é diferente zero), temos que essa EDO não é assintoticamente estável.

b) A equação característica é

$$r^2 = +\omega_o^2$$

Portanto, as raízes raízes características são $r = \pm \omega_0$.

Assim, temos as soluções fundamentais $e^{+\omega_0 t}$, $e^{-\omega_0 t}$.

Portanto, temos uma solução $e^{+\omega_o t}$ que não é limitada para $t \ge 0$, mostrando que essa EDO não é estável.

c) A equação característica é

$$r^2 = \omega_o^2 - k$$

Portanto, as raízes raízes características são $r=\pm\sqrt{\omega_o^2-k}$.

a) Se
$$k < \omega_o^2 \Longrightarrow \omega_o^2 - k > 0 \Longrightarrow r_1 = +\sqrt{\omega_o^2 - k}$$
 e $r_2 = -\sqrt{\omega_o^2 - k}$.

Assim, temos as soluções fundamentais $e^{+\sqrt{\omega_o^2-k}t}$, $e^{-\sqrt{\omega_o^2-k}t}$.

Portanto, temos uma solução $e^{+\sqrt{\omega_o^2-k}\,t}$ que não é limitada para $t\geq 0$, mostrando que a EDO não é estável nesse caso.

b) Se
$$k = \omega_o^2 \implies \omega_o^2 - k = 0 \implies r_1 = r_2 = 0$$
.

Assim, temos as soluções fundamentais $e^{0t} = 1$, $te^{0t} = t$.

Portanto, temos uma solução t que não é limitada para $t \geq 0$, mostrando que a EDO não é estável nesse caso.

c) Se
$$k > \omega_o^2 \Longrightarrow \omega_o^2 - k < 0 \Longrightarrow r = \pm \sqrt{\omega_o^2 - k} = \pm \sqrt{k - \omega_o^2} i = \pm * i$$
.

Assim, temos as soluções fundamentais cos(*t), sen(*t).

Portanto a solução geral é $\beta(t) = c_1 \cos(*t) + c_2 \sin(*t)$, que é limitada pois cos e sen são limitados, mostrando que a EDO é estável nesse caso.

Uma vez que temos uma solução $\cos(*t)$ tal que $\lim_{t\to\infty}\cos(*t)\neq 0$ (de fato, esse limite não existe, logo é diferente zero), temos que a EDO não é assintoticamente estável nesse caso.

- d) Se EDO é assintoticamente estável, então em particular ela é estável, o que exclui os casos dos itens (a) e (b), sobrando apenas o caso do item (c), que já mostramos não ser assintoticamene estável.
- d) A equação característica é

$$r^2 + cr + (k - \omega_0^2) = 0$$

Portanto, as raízes características são $r = (-c \pm \sqrt{\Delta})/2$, com $\Delta = c^2 + 4(\omega_0^2 - k)$.

a) Se $k<\omega_o^2\Longrightarrow \Delta>c^2\Longrightarrow$ temos duas raízes reais

$$r_1 = \frac{-c - \sqrt{\Delta}}{2} < 0$$
 $r_2 = \frac{-c + \sqrt{\Delta}}{2} > \frac{-c + \sqrt{c^2}}{2} = 0$

Assim, temos as soluções fundamentais e^{r_1t} , e^{r_2t} .

Portanto, temos uma solução e^{r_2t} que não é limitada para $t \geq 0$, uma vez que $r_2 > 0$, mostrando que a EDO não é estável.

b) Se $k = \omega_o^2 \Longrightarrow \Delta = c^2 \Longrightarrow$ temos duas raízes reais

$$r_1 = \frac{-c - \sqrt{\Delta}}{2} = -2c < 0$$
 $r_2 = \frac{-c + \sqrt{\Delta}}{2} = 0$

Assim, temos as soluções fundamentais e^{r_1t} , $e^{0t} = 1$.

Portanto a solução geral é $\beta(t) = c_1 e^{r_1 t} + c_2$, que é limitada para $t \ge 0$ pois $r_1 < 0$, mostrando que essa EDO é estável.

Por outro lado, temos uma solução constante $\beta_2(t) = 1$ tal que $\lim_{t\to\infty} \beta_2(t) = 1 \neq 0$, mostrando que essa EDO não é assintoticamente estável.

c) Se $k>\omega_o^2$ então a EDO do pêndulo invertido

$$\beta'' + c\beta' + (k - \omega_0^2)\beta = 0$$

tem todos coeficientes positivos, logo é a EDO do MMA livre, sem forçamento, com $\Delta = c^2 + 4(\omega_0^2 - k)$.

Já vimos (e agora é um bom momento para revisar essas vídeo-aulas) que o MMA livre é assintoticamente estável e que retorna ao equilíbrio com amortecimento:

- (i) supercrítico quando $\Delta > 0$, logo quando $c > 2\sqrt{k \omega_0^2}$.
- (ii) crítico quando $\Delta = 0$, logo quando $c = 2\sqrt{k \omega_0^2}$.
- (iii) subcrítico quando $\Delta < 0$, logo quando $c < 2\sqrt{k \omega_0^2}$.