Generalizing classifying spaces via the homotopy coherent nerve

David Martínez Carpena

Supervisors: Carles Casacuberta & Javier J. Gutiérrez

Métodos Categóricos y Homotópicos en Álgebra, Geometría, Topología y Análisis Funcional

This work is supported by the MCIN/ AEI/10.13039/501100011033/ under the I+D+i grant PID2020-117971GB-C22

June 16, 2022

Contents

Classifying spaces of topological groups

Generalizing the classifying space Simplicial nerves Homotopy coherent nerve

Application to Moore path categories

Contents

Classifying spaces of topological groups

Generalizing the classifying space Simplicial nerves Homotopy coherent nerve

Application to Moore path categories

Classifying space

Given a topological group G, a classifying space BG is the quotient of a weakly contractible space EG by a proper free action of G.

Example

- ▶ For any discrete group G, BG = K(G, 1).
- \triangleright $B\mathbb{Z} = \mathbb{S}^1, E\mathbb{Z} = \mathbb{R}.$
- \triangleright $B\mathbb{S}^1 = \mathbb{C}P^{\infty}, E\mathbb{S}^1 = \mathbb{S}^{\infty}.$

Classifying space

Given a topological group G, a classifying space BG is the quotient of a weakly contractible space EG by a proper free action of G.

Example

- ▶ For any discrete group G, BG = K(G, 1).
- \triangleright $B\mathbb{Z} = \mathbb{S}^1, E\mathbb{Z} = \mathbb{R}.$
- $\blacktriangleright B\mathbb{S}^1 = \mathbb{C}P^{\infty}, E\mathbb{S}^1 = \mathbb{S}^{\infty}.$

Some expected properties of the classifying space:

- $\pi_{n+1}(BG) \cong \pi_n(G)$
- $G \simeq \Omega BG$

What exactly the classifying space classifies?

A principal G-bundle over a topological space X is a continuous map $p:P\to X$ with a G-action $e:P\times G\to P$ such that p is locally trivial and p is isomorphic to the quotient map $P\to P/G$.

What exactly the classifying space classifies?

A principal G-bundle over a topological space X is a continuous map $p:P\to X$ with a G-action $e:P\times G\to P$ such that p is locally trivial and p is isomorphic to the quotient map $P\to P/G$.

Proposition

For any topological space X there is an natural isomorphism

$$G$$
-Bundles $(X) \cong \pi_0(\mathbf{Top}(X, BG))$

where G-Bundles(X) is the set of principal G-bundle over x up to isomorphism.

A functorial classifying space is a pair of functors

$$B: \mathbf{tGrp} \to \mathbf{Top}, \quad E: \mathbf{tGrp} \to \mathbf{Top}$$

such that EG is weakly contractible space, has a proper free action of G and $EG/G\cong BG$.

A functorial classifying space is a pair of functors

$$B: \mathbf{tGrp} \to \mathbf{Top}, \quad E: \mathbf{tGrp} \to \mathbf{Top}$$

such that EG is weakly contractible space, has a proper free action of G and $EG/G \cong BG$.

▶ Milnor (1956) first construction by
$$EG = \operatorname{colim}_n \overbrace{G * \cdots * G}^n$$
.

A functorial classifying space is a pair of functors

$$B: \mathbf{tGrp} \to \mathbf{Top}, \quad E: \mathbf{tGrp} \to \mathbf{Top}$$

such that EG is weakly contractible space, has a proper free action of G and $EG/G \cong BG$.

- ▶ Milnor (1956) first construction by $EG = \operatorname{colim}_n \overbrace{G * \cdots * G}$.
- ▶ Dold and Lashof (1959) generalize to topological monoids.

A functorial classifying space is a pair of functors

$$B: \mathbf{tGrp} \to \mathbf{Top}, \quad E: \mathbf{tGrp} \to \mathbf{Top}$$

such that EG is weakly contractible space, has a proper free action of G and $EG/G \cong BG$.

- ▶ Milnor (1956) first construction by $EG = \operatorname{colim}_n \overbrace{G * \cdots * G}$.
- ▶ Dold and Lashof (1959) generalize to topological monoids.
- ▶ Milgram (1967) and Steenrod (1968) like previous but with refinements, it is the well-known bar construction.

A functorial classifying space is a pair of functors

$$B: \mathbf{tGrp} \to \mathbf{Top}, \quad E: \mathbf{tGrp} \to \mathbf{Top}$$

such that EG is weakly contractible space, has a proper free action of G and $EG/G \cong BG$.

- ▶ Milnor (1956) first construction by $EG = \operatorname{colim}_n \overbrace{G * \cdots * G}$.
- ▶ Dold and Lashof (1959) generalize to topological monoids.
- ▶ Milgram (1967) and Steenrod (1968) like previous but with refinements, it is the well-known bar construction.
- ► Segal (1968) generalize the construction to groupoids.

Simplicial objects

The simplex category Δ is the category with objects the linearly ordered sets $[n] := \{0, 1, \dots, n\}$ for all $n \geq 0$, and morphisms all set functions $[n] \to [m]$ which are order-preserving.

Simplicial objects

The simplex category Δ is the category with objects the linearly ordered sets $[n] := \{0, 1, \ldots, n\}$ for all $n \geq 0$, and morphisms all set functions $[n] \to [m]$ which are order-preserving.

A simplicial object in a category $\mathcal C$ is a functor $X:\Delta^{\operatorname{op}}\to\mathcal C$, and together with natural transformations form a category $[\Delta^{\operatorname{op}},\mathcal C]$.

Example

Simplicial sets $\mathbf{sSet} := [\Delta^{op}, \mathbf{Set}]$ are simplicial objects in \mathbf{Set} , and simplicial spaces $\mathbf{sTop} := [\Delta^{op}, \mathbf{Top}]$ are simplicial objects in \mathbf{Top} .

Bar construction

Let G be a topological group, X a right G-space and Y a left G-space. The bar construction $\widetilde{\mathsf{B}}: \mathbf{Top} \times \mathbf{tGrp} \times \mathbf{Top} \to \mathbf{sTop}$ defines the following simplicial space

$$\widetilde{\mathsf{B}}_0(X,G,Y) = X \times Y, \quad \widetilde{\mathsf{B}}_n(X,G,Y) = X \times G^n \times Y,$$

with faces and degeneracies

$$d_{i}(x, g_{1}, \dots, g_{n}, y) = \begin{cases} (x \cdot g_{1}, g_{2}, \dots, g_{n}, y) & i = 0 \\ (x, g_{1}, \dots, g_{i} \cdot g_{i+1}, \dots, g_{n}, y) & 0 < i < n \\ (x, g_{1}, \dots, g_{n-1}, g_{n} \cdot y) & i = n \end{cases}$$

$$s_{i}(x, g_{1}, \dots, g_{n}, y) = (x, g_{1}, \dots, g_{i-1}, \mathrm{Id}, g_{i+1}, \dots, g_{n}, y)$$

Milnor's classifying space

The *geometric realization* $|\cdot|$: $\mathbf{sSet} \to \mathbf{Top}$ sends a simplicial set X to

$$|X|=\int^{[n]\in\Delta}X_n\times\Delta^n.$$

Milnor's classifying space

The geometric realization $|\cdot|$: $\mathbf{sSet} \to \mathbf{Top}$ sends a simplicial set X to

$$|X|=\int^{[n]\in\Delta}X_n\times\Delta^n.$$

There exists an analogous construction to the geometric realization, called the *topological geometric realization* $|\cdot|_t$: $\mathbf{sTop} \to \mathbf{Top}$ sends a simplicial space X to

$$|X|_t = \int_{-\infty}^{[n] \in \Delta} X_n \times \Delta^n,$$

where in this case the product is between two topological spaces.

Milnor's classifying space

The geometric realization $|\cdot|$: $\mathbf{sSet} \to \mathbf{Top}$ sends a simplicial set X to

$$|X|=\int^{[n]\in\Delta}X_n\times\Delta^n.$$

There exists an analogous construction to the geometric realization, called the *topological geometric realization* $|\cdot|_t$: $\mathbf{sTop} \to \mathbf{Top}$ sends a simplicial space X to

$$|X|_t = \int_{-\infty}^{[n] \in \Delta} X_n \times \Delta^n,$$

where in this case the product is between two topological spaces.

Let * bet the trivial topological space. Then, *Milgram's functorial classifying space* is defined by

$$BG := |\widetilde{B}(*,G,*)|_t, \quad EG := |\widetilde{B}(*,G,G)|_t$$

Simplicial groups

Instead of considering topological groups, the same problem can be studied in the case of simplicial groups $\mathbf{sGrp} := [\Delta^{op}, \mathbf{Grp}]$, i.e., simplicial objects in the category of groups.

Simplicial groups

Instead of considering topological groups, the same problem can be studied in the case of simplicial groups $\mathbf{sGrp} := [\Delta^{op}, \mathbf{Grp}]$, i.e., simplicial objects in the category of groups.

There is an equivalence of homotopy theories between **Top** and sSet, given by the geometrical realization and the *singular chain complex* Sing : **Top** \rightarrow sSet which is defined by

$$\operatorname{\mathsf{Sing}}_n(X) := \operatorname{\mathsf{Top}}(\Delta^n, X),$$

where
$$\Delta^n := \{(t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid 0 \le t_i \le 1, \sum_{i=0}^n t_i = 1\}.$$

Simplicial groups

Instead of considering topological groups, the same problem can be studied in the case of simplicial groups $\mathbf{sGrp} := [\Delta^{op}, \mathbf{Grp}]$, i.e., simplicial objects in the category of groups.

There is an equivalence of homotopy theories between **Top** and sSet, given by the geometrical realization and the *singular chain complex* Sing : **Top** $\rightarrow sSet$ which is defined by

$$\operatorname{\mathsf{Sing}}_n(X) := \operatorname{\mathsf{Top}}(\Delta^n, X),$$

where
$$\Delta^n := \{(t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid 0 \le t_i \le 1, \sum_{i=0}^n t_i = 1\}.$$

This equivalence also works in the case of topological groups and simplicial groups. Therefore, any topological group G can be seen as a simplicial one Sing(G).

Classifying complex functor

Eilenberg and Mac Lane (1953) build a functorial classifying space based on simplicial groups. The relation between this functor and the bar construction is not trivial.

Classifying complex functor

Eilenberg and Mac Lane (1953) build a functorial classifying space based on simplicial groups. The relation between this functor and the bar construction is not trivial.

The classifying complex functor $\overline{W}: \mathbf{sGrp} \to \mathbf{sSet}$ is defined for each simplicial group G as the simplicial set with one single vertex, and for all $n \geq 1$

$$(\overline{\mathsf{W}}\;\mathsf{G})_n = \mathsf{G}_{n-1} \times \mathsf{G}_{n-2} \times \cdots \times \mathsf{G}_0,$$

and with faces and degeneracies

$$d_{i}(g_{n-1},\ldots,g_{0}) = \begin{cases} (g_{n-2},\ldots,g_{0}) & i = 0\\ (d_{i}(g_{n-1}),\ldots,d_{1}(g_{n-i-1}),g_{n-i-1}d_{0}(g_{n-i}),g_{n-i-2},\ldots,g_{0}) & i > 0 \end{cases}$$

$$s_{i}(g_{n-1},\ldots,g_{0}) = \begin{cases} (1,g_{n-1},\ldots,g_{0}) & i = 0\\ (s_{i-1}(g_{n-1}),\ldots,s_{0}(g_{n-i}),1,g_{n-i-1},\ldots,g_{0}) & i > 0 \end{cases}$$

Nerve of a category

The nerve $N: \textbf{Cat} \to \textbf{sSet}$ sends any category $\mathcal C$ to the simplicial set such that $N_0(\mathcal C) := \mathsf{Obj}(\mathcal C)$ and

$$\mathsf{N}_n(\mathcal{C}) := \overbrace{\mathsf{Mor}(\mathcal{C}) \times_{\mathsf{Obj}(\mathcal{C})} \cdots \times_{\mathsf{Obj}(\mathcal{C})} \mathsf{Mor}(\mathcal{C})}^n.$$

The faces are generated by composing two morphisms, and the degeneracies by introducing identities.

Nerve of a category

The nerve N : $\textbf{Cat} \to \textbf{sSet}$ sends any category $\mathcal C$ to the simplicial set such that $N_0(\mathcal C) := \mathsf{Obj}(\mathcal C)$ and

$$\mathsf{N}_n(\mathcal{C}) := \overbrace{\mathsf{Mor}(\mathcal{C}) \times_{\mathsf{Obj}(\mathcal{C})} \cdots \times_{\mathsf{Obj}(\mathcal{C})} \mathsf{Mor}(\mathcal{C})}^n.$$

The faces are generated by composing two morphisms, and the degeneracies by introducing identities.

Given a simplicial group G, any of its groups G_n can be seen as a category with one object and the group as the only homset.

Nerve of a category

The nerve N : $\textbf{Cat} \to \textbf{sSet}$ sends any category $\mathcal C$ to the simplicial set such that $N_0(\mathcal C) := \mathsf{Obj}(\mathcal C)$ and

$$\mathsf{N}_n(\mathcal{C}) := \overbrace{\mathsf{Mor}(\mathcal{C}) \times_{\mathsf{Obj}(\mathcal{C})} \cdots \times_{\mathsf{Obj}(\mathcal{C})} \mathsf{Mor}(\mathcal{C})}^n.$$

The faces are generated by composing two morphisms, and the degeneracies by introducing identities.

Given a simplicial group G, any of its groups G_n can be seen as a category with one object and the group as the only homset.

Then, we can apply to each level of G the nerve functor, obtaining a bisimplicial set $\mathbf{bSet} := [\Delta^{\mathrm{op}}, \mathbf{sSet}]$, i.e., a simplicial object in the category of simplicial sets.

- ▶ $|\widetilde{B}(G)|_t \simeq |\operatorname{d}\operatorname{Sing}\widetilde{B}(G)|$.
- ▶ $d \operatorname{Sing} \widetilde{B}(G) \cong d \operatorname{N} \operatorname{Sing}(G)$.

- ▶ $|\widetilde{B}(G)|_t \simeq |\operatorname{d}\operatorname{Sing}\widetilde{B}(G)|$.
- ▶ d Sing $\widetilde{B}(G) \cong d N Sing(G)$.
- ▶ $\overline{\mathsf{W}}\operatorname{\mathsf{Sing}}(G)\cong T\operatorname{\mathsf{N}}\operatorname{\mathsf{Sing}}(G)$.

- ▶ $|\widetilde{B}(G)|_t \simeq |\operatorname{d}\operatorname{Sing}\widetilde{B}(G)|$.
- ▶ $d \operatorname{Sing} \widetilde{B}(G) \cong d \operatorname{N} \operatorname{Sing}(G)$.
- ▶ $\overline{\mathsf{W}}\operatorname{\mathsf{Sing}}(G) \cong T\operatorname{\mathsf{N}}\operatorname{\mathsf{Sing}}(G)$.
- $ightharpoonup T \simeq \mathsf{d}$ (Cegarra-Remedios, Stevenson)

$$\implies |\widetilde{\mathsf{B}}(\mathsf{G})|_t \simeq |\overline{\mathsf{W}}\,\mathsf{Sing}(\mathsf{G})|$$

Contents

Classifying spaces of topological groups

Generalizing the classifying space Simplicial nerves Homotopy coherent nerve

Application to Moore path categories

► What if we have a topological group-like monoid (weak inverses) instead of a topological group?

- ► What if we have a topological group-like monoid (weak inverses) instead of a topological group?
- ► What if we have a groupoid (category with all morphisms "invertible") instead of a group?

- ► What if we have a topological group-like monoid (weak inverses) instead of a topological group?
- ► What if we have a groupoid (category with all morphisms "invertible") instead of a group?

- ► What if we have a topological group-like monoid (weak inverses) instead of a topological group?
- What if we have a groupoid (category with all morphisms "invertible") instead of a group?

In this case, which functor substitutes the classifying complex \overline{W} ?

Enriched categories

Let $\mathcal M$ be a monoidal category with product \times and unit I . Define an $\mathcal M$ -enriched category $\mathcal C$ as:

A collection of objects C.

Let $\mathcal M$ be a monoidal category with product \times and unit I . Define an $\mathcal M$ -enriched category $\mathcal C$ as:

- A collection of objects C.
- ▶ For every pair of objects $X, Y \in \mathcal{C}$, the morphisms between X and Y are an object of \mathcal{M} denoted $\mathcal{C}(X, Y)$.

Let $\mathcal M$ be a monoidal category with product \times and unit I . Define an $\mathcal M$ -enriched category $\mathcal C$ as:

- A collection of objects C.
- ▶ For every pair of objects $X, Y \in C$, the morphisms between X and Y are an object of M denoted C(X, Y).
- ▶ For every triple of objects $X, Y, Z \in C$, an associative composition map

$$C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$$
.

Let $\mathcal M$ be a monoidal category with product \times and unit I . Define an $\mathcal M$ -enriched category $\mathcal C$ as:

- A collection of objects C.
- ▶ For every pair of objects $X, Y \in C$, the morphisms between X and Y are an object of M denoted C(X, Y).
- ▶ For every triple of objects $X, Y, Z \in C$, an associative composition map

$$C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$$
.

▶ For every object $X \in \mathcal{C}$, a morphism $I \to \mathcal{C}(X, X)$ of \mathcal{M} which represents the identity element.

Let $\mathcal M$ be a monoidal category with product \times and unit I . Define an $\mathcal M$ -enriched category $\mathcal C$ as:

- A collection of objects C.
- ▶ For every pair of objects $X, Y \in C$, the morphisms between X and Y are an object of M denoted C(X, Y).
- ▶ For every triple of objects $X, Y, Z \in C$, an associative composition map

$$C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$$
.

▶ For every object $X \in \mathcal{C}$, a morphism $I \to \mathcal{C}(X, X)$ of \mathcal{M} which represents the identity element.

Example

Topological categories are **Top**-enriched categories, and simplicial categories are **sSet**-enriched categories.

Generalized bar construction

Let \mathcal{C} be a small topological category, and $X:\mathcal{C}^{op}\to \mathbf{Top}$, $Y:\mathcal{C}\to \mathbf{Top}$ topologically enriched functors. The *general bar construction* $\widetilde{\mathsf{B}}(X,\mathcal{C},Y)$ as the simplicial space given by

$$\widetilde{B}_{0}(X, \mathcal{C}, Y) := \bigsqcup_{A \in \mathcal{C}} X(A) \times X(A)$$

$$\widetilde{B}_{n}(X, \mathcal{C}, Y) := \bigsqcup_{A, B \in \mathcal{C}} X(B) \times \mathcal{C}_{n}(A, B) \times Y(A)$$

where $C_n(A, B)$ is the space of *n*-tuples of morphisms (f_1, \ldots, f_n) that are composable and $f_1 \circ \cdots \circ f_n \in C(A, B)$; with boundaries and degeneracies very similar to the previous construction.

Segal's nerve

For every topological category \mathcal{C} , the homotopy category $h\mathcal{C}$ has the same objects as \mathcal{C} and $h\mathcal{C}(X,Y)=\pi_0(\mathcal{C}(X,Y))$. A topological category \mathcal{C} is an ∞ -groupoid if $h\mathcal{C}$ is a groupoid.

Segal's nerve

For every topological category \mathcal{C} , the homotopy category $h\mathcal{C}$ has the same objects as \mathcal{C} and $h\mathcal{C}(X,Y)=\pi_0(\mathcal{C}(X,Y))$. A topological category \mathcal{C} is an ∞ -groupoid if $h\mathcal{C}$ is a groupoid.

Using the previous general bar construction, we can define a functorial classifying space for any ∞ -groupoid:

$$BG := |\widetilde{B}(*, G, *)|_t$$
, $EG := |\widetilde{B}(*, G, G)|_t$.

Segal's nerve

For every topological category \mathcal{C} , the homotopy category $h\mathcal{C}$ has the same objects as \mathcal{C} and $h\mathcal{C}(X,Y)=\pi_0(\mathcal{C}(X,Y))$. A topological category \mathcal{C} is an ∞ -groupoid if $h\mathcal{C}$ is a groupoid.

Using the previous general bar construction, we can define a functorial classifying space for any ∞ -groupoid:

$$BG := |\widetilde{B}(*, G, *)|_t, \quad EG := |\widetilde{B}(*, G, G)|_t.$$

This coincides with the Segal nerve defined in 1968, but the original definition uses a modification to the nerve of categories to preserve the topological information.

Formal nerve

Given any functor $Q: \Delta \to \mathcal{C}$, define the Q-nerve $\mathbb{N}^Q: \mathcal{C} \to \mathbf{sSet}$ as mapping an object $A \in \mathcal{C}$ to the simplicial set defined for every $[n] \in \Delta$ by

$$N_n^Q(A) = \mathcal{C}(Q[n], A).$$

Formal nerve

Given any functor $Q: \Delta \to \mathcal{C}$, define the Q-nerve $\mathbb{N}^Q: \mathcal{C} \to \mathbf{sSet}$ as mapping an object $A \in \mathcal{C}$ to the simplicial set defined for every $[n] \in \Delta$ by

$$N_n^Q(A) = C(Q[n], A).$$

If $\mathcal C$ is cocomplete, there is a left adjoint to $\mathbb N^Q$, the Q-realization functor $|\cdot|_Q: \mathbf{sSet} \to \mathcal C$ defined for all $X \in \mathbf{sSet}$ as:

$$|X|_Q = \int^{[n] \in \Delta} X_n \otimes Q[n].$$

Formal nerve

Given any functor $Q: \Delta \to \mathcal{C}$, define the Q-nerve $\mathbb{N}^Q: \mathcal{C} \to \mathbf{sSet}$ as mapping an object $A \in \mathcal{C}$ to the simplicial set defined for every $[n] \in \Delta$ by

$$N_n^Q(A) = \mathcal{C}(Q[n], A).$$

If C is cocomplete, there is a left adjoint to \mathbb{N}^Q , the Q-realization functor $|\cdot|_Q : \mathbf{sSet} \to C$ defined for all $X \in \mathbf{sSet}$ as:

$$|X|_Q = \int^{[n] \in \Delta} X_n \otimes Q[n].$$

Example

- ▶ The nerve of a category N, with Q[n] = [n].
- ▶ Sing and $|\cdot|$, with $Q[n] = \Delta^n$.

Diagonal nerve

There is a functor defined for each $[n] \in \Delta$ as the simplicial category $\Delta^d[n]$ with:

- $\triangleright \ \mathsf{Obj}(\Delta^d[n]) = [n].$
- Morphisms of $\Delta^d[n]$ are freely generated by the *n*-simplices $a_i \in \text{Hom}(i-1,i)$ for all $i=1,\ldots,n$.

This functor defines a Δ^d -nerve, which we call the *diagonal* simplicial nerve \mathbb{N}^d : \mathbf{sSet} - $\mathbf{Cat} \to \mathbf{sSet}$.

Relation between diagonal nerve and bar construction

$$\left. \begin{array}{l} \mathsf{N}^d = \mathsf{d} \, \mathsf{N} \\ \mathsf{N} \, \mathsf{Sing} \cong \mathsf{Sing} \, \widetilde{\mathsf{B}} \end{array} \right\} \implies \mathsf{d} \, \mathsf{Sing} \, \widetilde{\mathsf{B}} \cong \mathsf{N}^d \, \mathsf{Sing} \,$$

Total nerve

There is a functor defined for each $[n] \in \Delta$ as the simplicial category $\Delta^T[n]$ with:

- ▶ Morphisms of $\Delta^T[n]$ are freely generated by (n-i)-simplices $g_i \in \mathsf{Hom}(i-1,i)$ for $i=1,\ldots,n$.

This functor defines a Δ^T -nerve, which we call the *total simplicial* nerve N^T : **sSet-Cat** \rightarrow **sSet**.

Equivalence between total and diagonal

Follows from the equivalence between T and d by [Stevenson, 11]:

Topological group-like monoids

Proposition

If X is a good simplicial space, then

$$|\operatorname{d}(\operatorname{Sing}(X))| \simeq |X|_t$$

which is equivalent to the commutativity up to weak equivalence of the following diagram:

Topological group-like monoids

Proposition

If X is a good simplicial space, then

$$|\operatorname{d}(\operatorname{Sing}(X))| \simeq |X|_t$$

which is equivalent to the commutativity up to weak equivalence of the following diagram:

Corollary

If M is a well-pointed monoid, $|\widetilde{B}(M)|_t \simeq |N^d \operatorname{Sing}(M)|$.

Homotopy coherent nerve

There is a functor defined for each $[n] \in \Delta$ as the simplicial category $\Delta^{\Re}[n]$ with:

- $Obj(\Delta^{\Re}[n]) = [n] = \{0, ..., n\}$
- ▶ For every $i, j \in \mathsf{Obj}(\Delta^{\Re}[n])$, $\mathsf{Hom}(i, j) = (\Delta[1])^{(j-i-1)}$

This functor defines a Δ^{\Re} -nerve, which we call the *homotopy* coherent nerve N^{\Re} : **sSet-Cat** \rightarrow **sSet**.

Model via the homotopy coherent nerve

Our goal is to prove that $|N^{\Re}\operatorname{Sing}\mathcal{M}|$ is homotopy equivalent to the classifying space $|\widetilde{B}(\mathcal{M})|_t$, for any topological group-like monoid \mathcal{M} .

Model via the homotopy coherent nerve

Our goal is to prove that $|N^{\Re}\operatorname{Sing}\mathcal{M}|$ is homotopy equivalent to the classifying space $|\widetilde{B}(\mathcal{M})|_t$, for any topological group-like monoid \mathcal{M} .

Why homotopy coherent nerve?

► The W̄ functor had good model theoretic properties, but neither N^d or N^T have similar properties.

Why homotopy coherent nerve?

- ► The W̄ functor had good model theoretic properties, but neither N^d or N^T have similar properties.
- ▶ Instead, the homotopy coherent nerve N[®] forms a Quillen equivalence between simplicial sets and simplicial categories.

Why homotopy coherent nerve?

- ► The W̄ functor had good model theoretic properties, but neither N^d or N^T have similar properties.
- ▶ Instead, the homotopy coherent nerve N[®] forms a Quillen equivalence between simplicial sets and simplicial categories.
- By forming a Quillen equivalence, the coherent nerve preserves the model theoretic structure (fibrations and weak equivalences).

Theorem

For any ∞ -groupoid \mathcal{C} , there is a weak equivalence:

$$N^{T}(C) \simeq N^{\Re}(C).$$

Theorem

For any ∞ -groupoid \mathcal{C} , there is a weak equivalence:

$$N^{\mathcal{T}}(\mathcal{C}) \simeq N^{\Re}(\mathcal{C}).$$

Idea of the proof inspired by (Hinnich, 2007).

▶ Construct an explicit map from $N^T(C)$ to $N^{\Re}(C)$.

Theorem

For any ∞ -groupoid \mathcal{C} , there is a weak equivalence:

$$N^T(\mathcal{C}) \simeq N^{\Re}(\mathcal{C}).$$

Idea of the proof inspired by (Hinnich, 2007).

- ▶ Construct an explicit map from $N^T(C)$ to $N^{\Re}(C)$.
- Use ∞-grupoidal structure to reduce to the case of a topological group-like monoid M.

Theorem

For any ∞ -groupoid \mathcal{C} , there is a weak equivalence:

$$N^T(\mathcal{C}) \simeq N^{\Re}(\mathcal{C}).$$

Idea of the proof inspired by (Hinnich, 2007).

- ▶ Construct an explicit map from $N^T(C)$ to $N^{\Re}(C)$.
- Use ∞-grupoidal structure to reduce to the case of a topological group-like monoid M.
- ▶ $N^d(\mathcal{M}) \simeq N^T(\mathcal{M})$ implies that $\pi_n(N^T(\mathcal{M})) \cong \pi_{n-1}(\mathcal{M})$.

Theorem

For any ∞ -groupoid \mathcal{C} , there is a weak equivalence:

$$N^{\mathcal{T}}(\mathcal{C}) \simeq N^{\Re}(\mathcal{C}).$$

Idea of the proof inspired by (Hinnich, 2007).

- ▶ Construct an explicit map from $N^T(C)$ to $N^{\Re}(C)$.
- Use ∞-grupoidal structure to reduce to the case of a topological group-like monoid M.
- ▶ $N^d(\mathcal{M}) \simeq N^T(\mathcal{M})$ implies that $\pi_n(N^T(\mathcal{M})) \cong \pi_{n-1}(\mathcal{M})$.
- ▶ Show that $\pi_n(N^{\Re}(\mathcal{C})) \cong \pi_{n-1}(\mathcal{M})$ by explicit calculation.

Contents

Classifying spaces of topological groups

Generalizing the classifying space Simplicial nerves Homotopy coherent nerve

Application to Moore path categories

Moore path categories

For each topological space X, define the *Moore path category* $\Pi_{\infty}^{M}(X)$ as the ∞ -grupoid such that:

ightharpoonup The objects are points of X.

Moore path categories

For each topological space X, define the *Moore path category* $\Pi_{\infty}^{M}(X)$ as the ∞ -grupoid such that:

- ▶ The objects are points of *X*.
- ▶ Each homset $\Pi_{\infty}^{M}(X)(x,y)$ is equal to

$$P_{x,y}^MX=\{(f,r)\in X^{\mathbb{R}_+}\times\mathbb{R}_+\mid f(0)=x \text{ and } f(s)=y \ \forall s\geq r\}.$$

Moore path categories

For each topological space X, define the *Moore path category* $\Pi_{\infty}^{M}(X)$ as the ∞ -grupoid such that:

- ▶ The objects are points of *X*.
- ▶ Each homset $\Pi_{\infty}^{M}(X)(x,y)$ is equal to

$$P_{x,y}^MX=\{(f,r)\in X^{\mathbb{R}_+}\times\mathbb{R}_+\mid f(0)=x \text{ and } f(s)=y \ \forall s\geq r\}.$$

The composition is defined by

$$\circ: P_{x,y}^{M} X \times P_{y,z}^{M} X \longrightarrow P_{x,z}^{M} X$$

$$((f,r),(g,s)) \longmapsto (f * g, r + s)$$

$$(f * g)(t) = \begin{cases} f(t) & \text{if } 0 \le t < r \\ g(t-r) & \text{if } t \ge r \end{cases}$$

Topological categories as a model for homotopy types

Each topological category models an ∞ -category, with the higher homotopies of the map spaces as higher morphisms.

Topological categories as a model for homotopy types

Each topological category models an ∞ -category, with the higher homotopies of the map spaces as higher morphisms.

Then, there is a zigzag of weak equivalences between spaces and topological categories

$$\mathsf{Top} \xrightarrow[\mathsf{Sing}]{|\cdot|} \mathsf{sSet}_Q \xrightarrow[k!]{k_!} \mathsf{sSet}_J \xrightarrow[\mathsf{N}^\mathfrak{R}]{\mathscr{C}} \mathsf{sSet}\text{-}\mathsf{Cat} \xrightarrow[\mathsf{Sing}]{|\cdot|_e} \mathsf{Top}\text{-}\mathsf{Cat}$$

where the functors $k_{\rm l}$ and $k^{\rm l}$ a localization adjunction between the Joyal and Quillen model structures.

Topological categories as a model for homotopy types

Each topological category models an ∞ -category, with the higher homotopies of the map spaces as higher morphisms.

Then, there is a zigzag of weak equivalences between spaces and topological categories

$$\mathsf{Top} \xleftarrow{|\cdot|}_{\mathsf{Sing}} \mathsf{sSet}_Q \xleftarrow{k_!} \mathsf{sSet}_J \xleftarrow{\mathfrak{C}}_{\mathsf{N}^{\mathfrak{R}}} \mathsf{sSet}\mathsf{-Cat} \xrightarrow{|\cdot|_e}_{\mathsf{Sing}} \mathsf{Top}\mathsf{-Cat}$$

where the functors $k_!$ and $k^!$ a localization adjunction between the Joyal and Quillen model structures.

Finally, given any topological space X, the fundamental ∞ -groupoid associated to X is $(|\cdot|_e \circ \mathfrak{C} \circ k_! \circ \mathsf{Sing})(X)$.

The fundamental ∞ -groupoid as a Moore path category

Proposition

Let $\Omega_x^M(X)$ be the topological group-like monoid $P_{x,x}^MX$. For every path-connected pointed topological space (X,x), $B\Omega_x^M(X) \simeq X$.

The fundamental ∞ -groupoid as a Moore path category

Proposition

Let $\Omega_x^M(X)$ be the topological group-like monoid $P_{x,x}^MX$. For every path-connected pointed topological space (X,x), $B\Omega_x^M(X) \simeq X$.

Theorem (Martínez Carpena)

Let (X,x) be a path-connected well-pointed topological space. The topological space $|N^{\Re}\operatorname{Sing}\Omega_x^M(X)|$ is homotopy equivalent to the classifying space for $\Omega_x^M(X)$ and, as a consequence,

$$|\mathsf{N}^{\Re}\operatorname{\mathsf{Sing}}\Omega^M(X)|\simeq X.$$

The fundamental ∞ -groupoid as a Moore path category

Proposition

Let $\Omega_x^M(X)$ be the topological group-like monoid $P_{x,x}^MX$. For every path-connected pointed topological space (X,x), $B\Omega_x^M(X) \simeq X$.

Theorem (Martínez Carpena)

Let (X,x) be a path-connected well-pointed topological space. The topological space $|N^{\Re}\operatorname{Sing}\Omega_{x}^{M}(X)|$ is homotopy equivalent to the classifying space for $\Omega_{x}^{M}(X)$ and, as a consequence,

$$|\mathsf{N}^{\Re}\operatorname{\mathsf{Sing}}\Omega^M(X)|\simeq X.$$

Corollary (McGarry-Martínez Carpena)

The ∞ -groupoid $\Pi^M_\infty(X)$ is weakly homotopy equivalent to the fundamental ∞ -groupoid $(|\cdot|_e \circ \mathfrak{C} \circ k_! \circ \mathsf{Sing})(X)$.

Bibliography

- C. Berger and J. Huebschmann. "Comparison of the geometric bar and W-constructions". Version 1. In: *Journal of Pure and Applied Algebra* 131.2 (Oct. 1998), pp. 109–123.
- A. M. Cegarra and J. Remedios. "The relationship between the diagonal and the bar constructions on a bisimplicial set". In: *Topology and its Applications* 153.1 (Aug. 2005), pp. 21–51.
- V. Hinich. "Homotopy coherent nerve in Deformation theory". In: (Apr. 19, 2007). arXiv: 0704.2503 [math.QA].
- D. Martínez Carpena. "Infinity groupoids as models for homotopy types". Director: Carles Casacuberta. Master's thesis. Universitat de Barcelona, Sept. 6, 2021.
- Danny Stevenson. "Décalage and Kan's simplicial loop group functor". In: *Theory and Applications of Categories* 26.28 (2012), pp. 768–787.

Generalizing classifying spaces via the homotopy coherent nerve

David Martínez Carpena

Supervisors: Carles Casacuberta & Javier J. Gutiérrez

Métodos Categóricos y Homotópicos en Álgebra, Geometría, Topología y Análisis Funcional

This work is supported by the MCIN/ AEI/10.13039/501100011033/ under the I+D+i grant PID2020-117971GB-C22

June 16, 2022

