DBSCAN. Clustering by unmasking. Hierarchical Clustering.

Radu Ionescu, Prof. PhD. raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Reminder: Unsupervised Learning

- There are no labels for the training phase
- Our goal is to discover structure in data

Canonical forms of unsupervised learning problems

Clustering

- K-means
- DBSCAN
- Hierarchical Clustering
- . . .

Dimensionality Reduction

- Principal Component Analysis
- t-SNE
- ..

DBSCAN

DBSCAN

- DBSCAN stands for Density-based Spatial Clustering of Applications with Noise
- DBSCAN is data clustering algorithm that groups points which are closely packed together in feature space
- It was introduced in 1996:

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of KDD, pp. 226–231, 1996

- Unlike k-means, it does not require the number of clusters to be known in advance
- It has other hyperparameters that define the density of the formed clusters

- Let X be a data set of points
- The ε -neighborhood of a point p is the set of points within an area of radius ε around the point p:

$$N_{\varepsilon}(p) = \{ q \in X | \Delta(p, q) \le \varepsilon \},$$

where is a distance function, e.g. the Euclidean distance

• A point p is a **core point** if its ε -neighborhood has at least m points:

$$|N_{\varepsilon}(p)| \ge m$$

- A point q is a **border point** if it is in the ε -neighborhood of a core point p, such that $q \neq p$
- All points which are neither core points nor border points are called noise points

• A point q is a **directly density-reachable** from a point p, if p is a core point and q is in the ε -neighborhood of p:

$$|N_{\varepsilon}(p)| \ge m \text{ and } q \in N_{\varepsilon}(p)$$

- A point q is **density-reachable** from a point p, if there is a chain of points $p_1, p_2, ..., p_n \in X$ with $p_1 = p$ and $p_n = q$, such that p_{i+1} is **directly density-reachable** from p_i
- Two points p and q are density-connected if there is a point $r \in X$, such that both p and q are density-reachable from r
- A **cluster** $C \subset X$ is a set of points that satisfies the following conditions:
 - ightharpoonup Maximality: $\forall p, q \in X$, if $p \in C$ and q is density-reachable from $p \Longrightarrow q \in C$
 - \triangleright Connectivity: $\forall p, q \in C$, p and q are density-connected
- A cluster contains both core and border points!

p and q are density-connected

DBSCAN Algorithm (Python)

```
current id = 1
for p in X:
   C[p] = -1 \# initialize clustering assignments
for p in X:
   if is core point(p) == True:
      C[p] = current id # label p with a unique cluster ID
      for q in X:
         if is density reachable (p,q) and p is not q:
            C[q] = current id # label q with the same cluster ID as p
      current id += 1
   else if C[p] == -1: # p has no label
      C[p] = 0 + label p as noise for now (might get relabeled later)
```

DBSCAN Algorithm in more details (Python)

```
def DBSCAN(X, \varepsilon, m):
    c = 1
                                                   # cluster index
    for p in X:
        if p.label is not None:
                                                  # previously processed
             continue
        neighbors = find neighborhood(p, X, \varepsilon) # find points in \varepsilon-neighborhood
        if len(neighbors) < m:
              p.label = "noise"
                                                  # if not core point label as 'noise' (for now)
             continue
        c = c + 1
                                                  # increment cluster
        p.label = c
                                                  # label first point in the new cluster
        S = neighbors - \{p\}
                                                   # \varepsilon-neighbors of p that we add to the cluster and try to expand
        for a in S:
             if q.label == "noise":
                                                    # it was labeled as noise, but it is actually a border point
                  q.label = c
             if q.label is not None:
                  continue
                                                    # either border point or in some other cluster
                                                    # add the point to the cluster
             q.label = c
             neighbors = find neighborhood(q, X, \varepsilon) # find \varepsilon-neighborhood
             if len(neighbors) >= m: # check if also core point
                  S = S U neighbors
```

DBSCAN results

- DBSCAN can handle non-convex clusters of various shapes
- It does not require the number of clusters to be given as input
- The distance metric can also be considered as a hyperparameter
 - Euclidean distance is the most commonly used

- DBSCAN is very sensitive to the hyperparameters ε and m
- Heuristic for choosing ε and m:
 - Choose a number k (e.g. around 4)
 - > For each point p_i , compute the distance Δ_{ik} to its k-th nearest neighbor
 - > Sort the points by Δ_{ik} and plot the corresponding curve

- DBSCAN is very sensitive to the hyperparameters ε and m
- Heuristic for choosing ε and m:
 - Choose a number k (e.g. around 4)
 - > For each point p_i , compute the distance Δ_{ik} to its k-th nearest neighbor
 - > Sort the points by Δ_{ik} and plot the corresponding curve
 - > Set $\varepsilon \approx \Delta_{ik}$ for an i for which the curve has large change in slope
 - \triangleright Set m = k
- All points under this threshold will be core points
- It does not work very well for clusters with varying densities

- DBSCAN is very sensitive to the hyperparameters ε and m
- Heuristic for choosing ε and m:
 - Choose a number k (e.g. around 4)
 - \succ For each point p_i , compute the distance Δ_{ik} to its k-th nearest neighbor
 - \triangleright Sort the points by Δ_{ik} and plot the corresponding curve
 - > Set $\varepsilon \approx \Delta_{ik}$ for an *i* for which the curve has large change in slope
 - \triangleright Set m = k
- All points under this threshold will be core points
- It does not work very well for clusters with varying densities

- DBSCAN is very sensitive to the hyperparameters ε and m
- Heuristic for choosing ε and m:
 - Choose a number k (e.g. around 4)
 - For each point p_i , compute the distance Δ_{ik} to its k-th nearest neighbor
 - > Sort the points by Δ_{ik} and plot the corresponding curve
 - > Set $\varepsilon \approx \Delta_{ik}$ for an i for which the curve has large change in slope
 - \triangleright Set m = k
- All points under this threshold will be core points
- It does not work very well for clusters with varying densities

Summary

- DBSCAN is a density-based clustering algorithm which groups points that are closely packed together and marks as noise (outliers) points that are in low-density regions
- DBSCAN defines a cluster as a group of points that are density-connect to each other
 - > It means that for any pair of points, there is a chain of core points (i.e. points with enough neighbors around them) connecting them
- Different from k-means, DBSCAN:
 - Can find clusters of arbitrary (non-convex) shapes
 - Does not require the number of clusters to be known in advance
- DBSCAN has two hyperparameters, ε (the neighborhood radius around core points) and m (the minimum number of neighbors that define a core point)
 - These parameters are not easy to tune!

Clustering by unmasking

Clustering by unmasking

- Clustering by unmasking is a novel agglomerative clustering method based on unmasking
- It was introduced in 2019:

Mariana-Iuliana Georgescu, Radu Tudor Ionescu. Clustering Images by Unmasking – A New Baseline. Proceedings of ICIP, pp. 1580–1584, 2019.

 Unmasking is a technique that was previously used for authorship verification of text documents:

Moshe Koppel, Jonathan Schler, Elisheva Bonchek-Dokow. Measuring Differentiability: Unmasking Pseudonymous Authors. Journal of Machine Learning Research, 8:1261–1276, 2007.

Unmasking for authorship verification

Unmasking for authorship verification

 Unmasking [Koppel et al., JMLR07]: iteratively remove the best features useful for distinguishing between two documents to measure the degradation rate of the crossvalidation accuracy

Unmasking for authorship verification

- At first, a bit hard to think of, but consider this:
- Accuracy stays high if objects are different to their core!

Unmasking – Loop 1.1.

	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	l_i		
\boldsymbol{x}_1	1	5	0	1	2	0	7	1	+1		
x_2	2	4	0	2	3	1	5	0	+1	4	<u> </u>
x_3	3	0	3	5	2	1	1	0	-1	ac\	
x_4	2	1	4	4	3	0	0	2	-1	Accura	
									•	Aco	
	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8		_	
W	+0.5	+6.0	-5.0	-3.0	+0.1	-0.1	+4.0	-0.1			Iteration

• Given a set of training samples $\{x_1, x_2, ..., x_n\}$, a linear classifier learns a set of weights w, b such that:

$$sign(w \cdot x + b) = sign(w_1x_1 + \dots + w_nx_n + b) = l_i$$

We evaluate the model and compute the accuracy

Unmasking – Loop 1.2.

We eliminate the features with the highest weights in absolute value

Unmasking – Loop 2.1.

	f_1	${f}_4$	f_5	f_6	f_7	f_8	l_i
x_1	1	1	2	0	7	1	+1
x_2	2	2	3	1	5	0	+1
x_3	3	5	2	1	1	0	-1
x_4	2	4	3	0	0	2	-1
	w_1	w_4	w_5	w_6	w_7	w_8	_
W	-1.5	-4.0	+0.1	-0.1	+5.0	-0.5	

• Given a set of training samples $\{x_1, x_2, ..., x_n\}$, a linear classifier learns a set of weights w, b such that:

$$sign(w \cdot x + b) = sign(w_1x_1 + \dots + w_nx_n + b) = l_i$$

We evaluate the model and compute the accuracy

Unmasking – Loop 2.2.

	f_1	f_4	f_5	f_6	f_7	f_8	l_i
\boldsymbol{x}_1	1	1	2	0	7	1	+1
x_2	2	2	3	1	5	0	+1
x_3	3	5	2	1	1	0	-1
x_4	2	4	3	0	0	2	-1
	w_1	w_4	w_5	w_6	w_7	w_8	
W	-1.5	-4.0	+0.1	-0.1	+5.0	-0.5	

• We eliminate the features with the highest weights in absolute value

Unmasking – Loop 3.1.

	f_1	f_5	f_6	f_8	l_i
x_1	1	2	0	1	+1
x_2	2	3	1	0	+1
x_3	3	2	1	0	-1
x_4	2	3	0	2	-1
	w_1	w_5	w_6	w_8	
w	-1.5	+0.1	-0.1	-0.5	

And so on...

Clustering by unmasking (Algorithm)

- Input data and parameters:
 - $\rightarrow m$ number of training samples
 - $\succ k$ the number of clusters
 - \triangleright n the number of unmasking iterations
 - \gt s the number of features to be removed at each iteration

Clustering by unmasking (Algorithm)

- The algorithm starts with K clusters $(K \gg k)$ and executes the following steps:
- 1. For each pair of clusters i and j, we assume that the samples in cluster i belong to a different class than the samples in cluster j and compute a score that indicates the likelihood of the statement "clusters i and j should be joined" = **true**
- 2. Randomly split the samples in each cluster into a training set and a testing set
- 3. Train a linear SVM on the training set (until convergence) and evaluate it on the test set, retaining the accuracy rate
- 4. Sort the weights of the SVM by their absolute values in descending order, take the first *s* indexes of the sorted list, then remove the corresponding features
- 5. Repeat steps 3 and 4 for n iterations, retaining the accuracy rate at each iteration
- 6. Merge each cluster i with the cluster j (using a Greedy approach), such that the score of joining clusters i and j is maximum, $\forall j \in \{1, 2, ..., K\}$, with $j \neq i$
- 7. If the number of clusters k is reached at any point during the merging process, halt the execution and return the current cluster assignments
- 8. Otherwise, continue by computing the merging scores for the newly-formed clusters

Results on MNIST

Method	ACC	NMI	
Random chance	10.00%	-	
SVM	94.40%	-	
K-means	55.82%	$\boxed{52.18\%}$	
IDEC [6]	71.45%	$\mid 69.40\% \mid$	
Unmasking (n=1)	72.58%	64.99%	
Unmasking	81.40%	$\mid 69.76\% \mid$	

Results on MNIST

Results on UIUCTex and Oxford Flowers

Features	Method	UIU	CTex	Oxford Flowers		
		ACC	NMI	ACC	NMI	
-	Random chance	4.00%	-	6.67%	-	
	SVM	97.20%	-	95.50%	-	
VGG-f	K-means	48.20%	70.15%	60.35%	69.55%	
	Unmasking (n=1)	19.80%	54.81%	45.50%	62.98%	
	Unmasking	61.40%	74.94%	67.50%	75.82%	
	SVM	94.60%	-	80.83%	-	
BOVW	K-means	25.40%	46.83%	22.10%	22.83%	
	Unmasking (n=1)	35.20%	55.30%	12.83%	14.64%	
	Unmasking	44.60%	58.81%	25.00%	25.37%	
	SVM	96.20%	-	81.00%	-	
AlexNet	K-means	36.80%	58.52%	26.89%	30.43%	
	Unmasking (n=1)	34.20%	62.07%	9.80%	18.19%	
	Unmasking	48.60%	69.78%	33.33%	38.00%	

Hierarchical Clustering

Hierarchical Clustering

- Hierarchical Clustering is a set of clustering methods that aim at building a hierarchy of clusters
 - > A cluster is composed of smaller clusters
- There are two strategies for building the hierarchy of clusters:
 - Agglomerative (bottom-up): we start with each point in its own cluster and we merge pairs of clusters until only one cluster is formed
 - Divisive (top-down): we start with a single cluster containing the entire set of points and we recursively split until each points is in its own cluster
- The most popular strategy in practical use is bottom-up (agglomerative)!

Each point starts as its own cluster

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged
- We can cut at any level to get a clustering

- Each point starts as its own cluster
- At each step, the two most similar clusters are merged
- We can cut at any level to get a clustering

Agglomerative Hierarchical Clustering (Python)

```
def agglomerative clustering (X = \{x_1, x_2, ..., x_n\}) (:
     \mathcal{C} = \{\mathcal{C}_1 = \{x_1\}, \mathcal{C}_2 = \{x_2\}, \dots, \mathcal{C}_n = \{x_n\}\} # each point as its own cluster
     steps = [] # steps to recreate the dendrogram
     while len(C) > 1:
          i^*, j^* = \underset{i,j}{\operatorname{argmax}}[\Delta(\mathcal{C}_i, \mathcal{C}_j)] # distance between clusters
          C = C - \{C_{i^*}, C_{i^*}\}
          C = C + \{C_{i^*} \cup C_{i^*}\}
           steps.append (i^*, j^*)
     return steps
```

Linkage criterion

 We need to define a way to measure the distance (linkage criterion) between clusters:

$$\Delta(C_i, C_j) = \min_{x \in C_i, y \in C_i} \{\Delta(x, y)\}\$$

We can use any distance metric

Not all distance metrics have centroids

Average linkage

$$\Delta(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C} \sum_{x \in C} \Delta(x, y)$$

Complete linkage

$$\Delta(C_i, C_j) = \max_{x \in C_i, y \in C_j} \{\Delta(x, y)\}\$$

Centroid linkage

$$\Delta(C_i, C_j) = \Delta\left(\frac{\sum_{x \in C_i} x}{|C_i|}, \frac{\sum_{y \in C_j} y}{|C_j|}\right)$$

Linkage criterion

- Ward's criterion is given by the increase in variance due to the merging of two clusters
 - We link the clusters with the smallest increase in variance!

$$\Delta(C_i, C_j) = \frac{1}{\left|C_i \cup C_j\right|} \sum_{x \in C_i \cup C_j} \Delta(x, \mu_{C_i \cup C_j}) - \frac{1}{\left|C_i\right|} \sum_{y \in C_i} \Delta(y, \mu_{C_i}) - \frac{1}{\left|C_j\right|} \sum_{z \in C_j} \Delta(z, \mu_{C_j})$$

$$= Var(C_i \cup C_j) - Var(C_i) - Var(C_j)$$

Comparing linkage criteria

Single linkage:

- > Tends to produce long, chain-like clusters
- > The distance between the two farthest elements in a cluster can be large
- > Can handle non-convex clusters
- Sensitive to noise

• Complete linkage:

- > Keeps the points in a cluster close together
- > Tends to produce spherical and compact clusters
- Less sensitive to noise than single linkage

Average linkage:

- Compromise between single and complete linkages
- > Produces results more similar to complete linkage

Ward's linkage:

- Similar results to complete linkage
- > Handles clusters with various densities better than complete linkage

Comparing linkage criteria

Case study: Clustering DNA

sequences with Local Rank Distance

Local Rank Distance

- Local Rank Distance (LRD) is a new distance measure for strings introduced in [R.T. lonescu, 2013]
- LRD is inspired from Rank Distance (RD) [L. Dinu & F. Manea, 2006]
- RD measures the global non-alignment score between two sequences
- Example with RD:
 - ightharpoonup Let x = ABAB, y = BABB be two strings from $\{A, B\}^*$
 - > Characters are annotated with indexes in order to eliminate duplicates:

$$\bar{x} = A_1 B_1 A_2 B_2$$
, $\bar{y} = B_1 A_1 B_2 B_3$

Position offsets of identical characters are summed up:

$$\Delta_{RD}(x,y) = |1-2| + |2-1| + 3 + |4-3| + 3 = 9$$

> Does it seem right to match B_2 in \bar{x} with B_2 in \bar{y} instead of B_3 ?

Local Rank Distance

- LRD is based on more generic principles than RD:
 - Characters are no longer annotated
 - > Substrings (k-mers or n-grams) are used instead of single characters
- LRD measures the local non-alignment score between two sequences

Local Rank Distance

Rank Distance

Efficient Algorithm for LRD

- Given two strings $s, t \in \Sigma^*$, the efficient algorithm to compute $\Delta_{LRD}(s, t)$ works as follows:
 - 1. Store n-gram positions from t in a hash (inverted index) table h
 - 2. Search for each n-gram x from s in the inverted index table
 - 3. Do a binary search in the positional array corresponding h(x) to find the nearest position of x in t
 - 4. Repeat steps 1–3 by swapping *s* and *t* for symmetry, i.e. to make sure that:

$$\Delta_{LRD}(s,t) = \Delta_{LRD}(t,s)$$

- What is the time complexity?
 - $> O(|s| \cdot \log|t| + |t| \cdot \log|s|)$, where |s| and |t| are the lengths of s and t, respectively

Efficient Algorithm for LRD

- Example with LRD:
 - \triangleright Let s = ABAB, t = BABBABA be two strings from $\{A, B\}^*$
 - > The inverted index table with 3-grams from t is:

$$h = \{BAB \to [1,4]; ABB \to [2]; BBA \to [3]; ABA \to [5]\}$$

- \triangleright We now take the 3-grams from s and look them up in h:
 - 1. We find ABA at position 5 in h, so we add |1-5| to the distance
 - 2. We find BAB at positions [1,4] in h
 - 3. We do a binary search in [1, 4] to find the closest position to 2
 - 4. We find 1 and we add |2 1| to the distance

Summary

- Agglomerative clustering is a hierarchical clustering algorithm that produces a dendrogram of clusters
- It works by starting with each point in its own cluster and by iteratively selecting the two closest clusters and merging them
- The linkage criterion (distance between clusters) can be defined in different ways:
 - > single linkage: considers the distance between closest points
 - > complete linkage: considers the distance between farthest points
 - average linkage: considers the average distance between all pairs of points
 - > Ward's linkage: considers the increase in variance
- The selected **distance metric** between points and the **linkage criterion** have an impact on the shapes and sizes of the produced clusters!