

THE UNIVERSITY OF BRITISH COLUMBIA

Bidirectional monotonic and cyclic shear testing of soils: State of Knowledge

Ming Yang Mahdi Taiebat Yogi Vaid

Theoretical & Applied Geomechanics (TAG) Group Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada

Vancouver, BC, Canada. October 3, 2016

ACKNOWLEDGEMENT:

National Science and Engineering Research Council of Canada

Motivation

Nanbu earthquake, 1995 (Matsuda et al., 2012)

Modified from Bebamzadeh et al. (2014); Rahmani et al. (2014)

Outline

- Bidirectional shear test
- Initial stress state
- Undrained shearing
 - Monotonic shear test
 - Cyclic shear test
- Summary and ongoing research

Laboratory bidirectional shear test

Fig. 1.1 Bidirectional shear device (Kammerer, 2002)

Fig. 1.2 Modified from GDS instruments

Initial stress state

Level ground

Fig. 2.1 Initial stress conditions: (a) isotropic condition; (b) K_o condition; (c) K_α condition. (modified from Boulanger et al. (1991))

Monotonic shear test

- Initial stress state: CK_{α}
- Angle between $\tau_{\rm c}$ and $\tau_{\rm mono}$: θ

Tab. 1 Bidirectional monotonic shear tests on soils

Data source	Material	$\sigma_{ m vc}^{\prime}$ [kPa]	$ au_{ m c}/\sigma_{ m vc}'$	θ [$^{\circ}$]	Shear rate[%/hr]
DeGroot (1989)	Boston blue clay	294.2	0.2	0, 30, 60, 90, 120, 150, 180	5
Li et al. (2016)	Leighton Buzzard sand	200	0.05, 0.1	0, 30, 60, 90, 120, 150, 180	3.53

Cyclic shear test - loading paths

Fig. 3.1 Illustration

Fig. 3.2 Loading paths (modified from Kammerer (2002))

Cyclic shear test - database

Tab. 2 Bidirectional cyclic shear tests on soils: database

Data source	Material	Initial State	$oldsymbol{\sigma_{vc}'}[kPa]$	α	Test Type	$\mathbf{f}[Hz]$	$\mathbf{CSR}_{\mathbf{x}}$	$\mathbf{CSR}_{\mathrm{y}}$
Ishihara and Yamazaki (1980)	Fuji River sand	CI	200	0	Oval	0.25	0.092	0.081
			200	0	Alternate	0.25	0.144	0.143
Ishihara and Nagase (1988)	Fuji River sand	CI	196	0	Irregular	-	-	-
Boulanger et al. (1991)	Sacramento River sand	CK_{lpha}	206	0.1	Linear	0.2	0	0.1,0.15,0.118 0.141,0.16,0.18 0.082,0.1,0.109 0.124,0.125
			206	0.2	Linear	0.2	0	0.135,0.139,0.15 0.15,0.157,0.187 0.187 0.05,0.08,0.082
			206	0.3	Linear	0.2	0	0.082,0.1,0.1 0.11,0.115,0.131 0.131,0.143,0.15 0.15,0.15,0.163 0.17,0.21,0.211 0.218
Kammerer (2002)	Monterey 0/30 sand	CK_o	87	0	Oval	0.1	0.24	0.239
	54.14		79 83	0 0	Oval Oval	0.1 0.1	0.274 0.133	0.26 0.124
		CK_{α}	87 83	0.02	Oval Oval	0.1	0.134	0.227 0.185

Summary and ongoing research

Summary

- Experimental data about bidirectional shear test is available within two categories
 - Monotonic shearing on specimens with CK_{lpha}
 - ullet Cyclic shearing on specimens with CI, ${
 m CK_o}$ and ${
 m CK_{lpha}}$
- A comprehensive database is collected in a well organized way

Ongoing research

- Simulate element tests with complex loading paths to evaluate numerical models
- Model boundary value problems

Thank you!

Figure-8 path

Fig. 4.1 Figure-8 from Kammerer (2002) Bidirectional shear test of soils

11 / 13

References I

- Bebamzadeh, A., Rahmani, A. and Taiebat, M. (2014), 'Performance-based seismic design of bridges using high performance computing tools', *Tenth U.S. National Conference on Earthquake Engineering*.
- Boulanger, R. W., Seed, R. B., Chan, C. K., Seed, H. B. and Sousa, J. (1991), Liquefaction behavior of saturated sands under uni-directional and bi-directional monotonic and cyclic simple shear loading, PhD thesis, Geotechnical Engineering Report No. UCB/GT/91-08, University of California, Berkeley.
- DeGroot, D. J. (1989), The multidirectional direct simple shear apparatus with application to design of offshore arctic structures, PhD thesis, Massachusetts Institute of Technology.
- Ishihara, K. and Nagase, H. (1988), 'Multi-directional irregular loading tests on sand', *Soil Dynamics and Earthquake Engineering* **7**(4), 201–212.
- Ishihara, K. and Yamazaki, F. (1980), 'Cyclic simple shear tests on saturated sand in multi-directional loading', *Japanese Society of Soil Mechanics and Foundation Engineering* **20**(1), 45–59.
- Kammerer, A. M. (2002), Undrained response of monterey 0/30 sand under multidirectional cyclic simple shear loading conditions, PhD thesis, University of California, Berkeley.
- Li, Y., Yang, Y., Yu, H.-S. and Roberts, G. (2016), 'Monotonic direct simple shear tests on sand under multidirectional loading', *International Journal of Geomechanics* p. 04016038.

References II

- Matsuda, H., Nhan, T. T., Ishikura, R., Inazawa, T. and Andre, P. H. (2012), New criterion for the liquefaction resistance under strain-controlled multi-directional cyclic shear, *in* '15th World Conference on Earthquake Engineering', Lisbon, Portugal.
- Matsuda, H., Shinozaki, H., Okada, N. and Takamiya, K. (2004), Effects of multi-directional cyclic shear on the post-earthquake settlement of ground, *in* '13th World Conference on Earthquake Engineering', Vancouver.
- Nie, Y., Fan, H., Wang, Z. and He, Z. (2015), 'The influence of cyclic shear direction on static and dynamic characteristics of saturated soft clay', *Chinese Journal of Rock Mechanics and Engineering* **34**(x).
- Rahmani, A., Taiebat, M. and Finn, W. D. L. (2014), 'Nonlinear dynamic analysis of Meloland Road Overpass using three-dimensional continuum modeling approach', *Soil Dynamics and Earthquake Engineering* **57**(C), 121–132.
- Rudolph, C., Grabe, J. and Albrecht, I. (2014), 'Simple shear tests with a varying shearing direction during cyclic shearing', *Géotechnique Letters* 4, 102–107.
- Rutherford, C. J. (2012), Development of a multi-directional direct simple shear testing device for characterization of the cyclic shear response of marine clays, PhD thesis, Texas A&M University.