Discrete Mathematics

Monday, August 22, 2022 4:49 PM

Notation

~ - Not frace (n-And /VOD My shirt is gray (but)

p1~9

because there is no content

Two statements are logically equivalent if they have the same truth table

Truth Table
for ((~P) V (-a))

P	9	~P	~2	~p V-9
T	\mathcal{T}	F	F	F
5	F	1	7	T
F	T	T	F	T
F	16	1	7	

Def: A tautology t is a statement that is always true

Def: A contradiction c is a statement that is always false

$$\sim (p \lor q) \equiv (\sim p) \land (\sim q)$$
?

$$\sim (p \lor q) \equiv (\sim p) \land (\sim q)?$$
 $\longrightarrow (p \lor q) = \overline{p} ? \overline{q}$

$$\left(\sim (p \lor \sim q) \right) \land t$$

$$\equiv \left(\sim p \land \sim (\sim q) \right) \land t$$
Via DeMorgan's
$$\equiv \left(\sim p \land q \right) \right) \land t$$
Via Double Negative
$$\equiv \sim p \land q$$
Via Identity

conditioned state ment same

The Converse of a statement $p \rightarrow q$ is the statement $q \rightarrow p$

But not to scally equivalent

This is good

His Now the month