Real Analysis

Measure Theory, Integration, & Hilbert Spaces¹

-TW-

2024年6月9日

1参考书籍:

《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》— Elias M. Stein 《Real Analysis – – Modern Techniques and Their Applications》— Gerald B. Folland 《实变函数论 (第三版)》— 周民强

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 6 月 9 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第一章	Measure Theory				
1.1	Preliminaries				
1.2	The Exterior Measure				
1.3	Measurable sets and the Lebesgue measure	9			
	1.3.1 Measurable sets	9			
	1.3.2 Lebesgue measure	13			
1.4	σ – algebras and Borel sets	17			
	1.4.1 σ – algebra	17			
	1.4.2 Borel sets	18			
1.5	Non – measurable sets	19			
第二章	Measurable Functions 22				
2.1	Measurable Functions	22			
2.2	Measurable functions are nearly simple	27			
第三章	Integration Theory 3:				
3.1	The Lebesgue integral	33			
	3.1.1 Simple functions	33			
	3.1.2 Non – negative measurable functions	39			
	3.1.3 General case	49			
	3.1.4 The Dominated Convergence Theorem	53			
	3.1.5 Complex – Valued Functions	55			
3.2	\mathcal{L}^1 空间的完备性	56			
	3.2.1 范数, 度量	56			
	3.2.2 The Space $\mathcal{L}^1(\mathbb{R}^d)$	57			

	3.2.3	\mathcal{L}^1 空间的完备性	59
	3.2.4	\mathcal{L}^1 的稠密子空间	61
3.3	Lebes	gue 积分的平移不变性	62
3.4	Lebes	gue 可积函数的 \mathcal{L}^1 连续性	64
3.5	Fubini	:定理	65
	3.5.1	Fubini 定理的证明	66
	3.5.2	Fubini 定理的应用	72
3.6	Lebes	gue 积分与 Riemann 积分的联系	77
3.7	Lebes	gue 积分的伸缩变换	78
3.8	Littleu	vood 三原则	79
	3.8.1	Egorov 定理	79
	3.8.2	Lusin 定理	82
第四章	Differe	entiation and Integration	83
4.1) – Littlewood 极大函数 (非球心)	84
4.2	_	gue 微分定理 (非球心)	87
	4.2.1	Chebyshev's Inequality	87
	4.2.2	The Lebesgue Differentiation Theorem	88
4.3	Hardy	ı – Littlewood 极大函数 & Lebesgue 微分定理 (球心)	91
	4.3.1	Hardy – Littlewood 极大函数	91
	4.3.2	Lebesgue 微分定理	96
4.4	有界变	芝差函数	99
	4.4.1	有界变差函数的概念	100
	4.4.2	有界变差函数的刻画	105
	4.4.3	有界变差函数的全变差的性质	109
4.5	升阳引	理 & Dini 导数	112
	4.5.1	Rising Sun Lemma	112
	4.5.2	Dini 导数	116
4.6	连续有	可界变差函数的可微性	119
	4.6.1	连续有界变差函数的可微性	119
	4.6.2	Weak Newton – Leibniz Formula	124
4.7	绝对连	医续函数与微积分基本定理	126
	4.7.1	绝对连续函数	126

4.7.2	Vitali Covering Lemma	128
4.7.3	微积分基本定理	130

第一章 Measure Theory

1.1 Preliminaries

定义 1.1.1. A (closed) rectangle R in \mathbb{R}^d is given by of d one-dimensional closed and bounded intervals

$$R = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_d, b_d]$$
 (1.1)

where $a_j \le b_j$ are real numbers, $j = 1, 2, \dots, d$. In other word, we have

$$R = \{(x_1, \dots, x_d) \in \mathbb{R}^d \mid a_i \le x_i \le b_i, \ \forall j = 1 \sim d\}$$
 (1.2)

The **volume** of *R* is

$$|R| = (b_1 - a_1) \cdots (b_d - a_d)$$
 (1.3)

An open rectangle is the product of open intervals, and the interior of the rectangle R is

$$(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_d, b_d) \tag{1.4}$$

Also, a <u>cube</u> is a rectangle for which $b_1 - a_1 = \cdots = b_d - a_d$.

定义 1.1.2. A union of rectangles is said to be **almost disjoint** if the interiors of them are disjoint.

引理 **1.1.1.** If a rectangle is the almost disjoint union of finitely many rectangles , say $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k| \tag{1.5}$$

注. 本质上即指的是对于方体的任意的垂直划分可转化为"十字形"划分.

引理 **1.1.2.** If R, R_1, \cdots, R_N are rectangles , and $R \subset \bigcup\limits_{k=1}^{U} R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k| \tag{1.6}$$

注. 此即对 Lemma 1.1.1 的 slight modification,即各方体之间不一定再为 almost disjoint.

Now we can give a description of the strcture of open sets in terms of cubes. Begin with the case of \mathbb{R} .

定理 **1.1.3.** Every open subset O of \mathbb{R} can be written uniquely as countable union of disjoint open intervals.

证明. For each $x \in O$, let I_x be the largest open interval containing x and contained in O.

Step 1 : Construct I_x :

O is open $\Rightarrow x$ is contained in some small open interval contained in O.

Let

$$a_x = \inf\{a < x \mid (a, x) \subset O\} \tag{1.7}$$

$$b_x = \sup\{b > x \mid (x, b) \subset O\}$$
 (1.8)

Let $I_x = (a_x, b_x)$, then $O = \bigcup_{x \in O} I_x$.

Step 2 : Suppose $I_x \cap I_y \neq \emptyset$.

 $I_x \cup I_y$ is an open interval s. t. $\begin{cases} x \in I_x \cup I_y \\ I_x \cup I_y \subset O \end{cases}$

Since I_x is maximal, $I_x \cup I_y \subset I_x$. Similarly, $I_x \cup I_y \subset I_y$.

$$\Rightarrow I_x = I_y$$

 \Rightarrow if $I_x \neq I_y$, then $I_x \cap I_y = \emptyset$.

 $\Rightarrow Z = \{I_x\}_{x \in O}$ is a disjoint famliy of sets.

Step 3: Since every I_x contains at least a $a_x \in \mathbb{Q}$, construct a map f

$$f: Z \longrightarrow \mathbb{Q} \tag{1.9}$$

$$I_{x} \longmapsto a_{x}$$
 (1.10)

f is an injective. $\Rightarrow \{I_x\}_{x \in O}$ is countable. $\Rightarrow O = \bigcup_{j=1}^{\infty} (a_j, b_j)$.

定理 **1.1.4.** Every open set O of \mathbb{R}^d , $d \ge 1$, can be written as a countable union of almost disjoint closed cubes.

证明. Let

$$Q_k := grid \ of \ 2^{-k} \mathbb{Z}^d, \ k \ge 0 \tag{1.11}$$

$$A(O, k) := \{ Q \in Q_k \mid Q \subset O \} \tag{1.12}$$

$$\overline{A}(O, k) := \{ Q \in Q_k \mid Q \cap O \neq \emptyset \}$$
(1.13)

Since $\forall Q \in \underline{A}(O, k), \exists q \in Q^{\circ}, \text{ s. t. } q \in \mathbb{Q}^{d},$

According to the Axiom of Choice , \exists the map $f_k : \underline{A}(O, k) \longrightarrow \mathbb{Q}^d$, which is an injection.

Hence A(O, k) is countable.

Let

$$\underline{A}(O) := \bigcup_{k=1}^{\infty} (\underline{A}(O, k) \setminus \underline{A}(O, k-1)) \cup \underline{A}(O, 0)$$
 (1.14)

Then $\underline{A}(O)$ is also countable. Similarly define $\overline{A}(O)$.

 $\forall x \in O$, let $\delta_x := \inf\{|y - x| \mid y \notin O\}$. Since O is open, $\Rightarrow \delta_x > 0$.

$$\exists N_x \in \mathbb{N}, \text{ s. t. } 2^{-k} \sqrt{d} \le \frac{\delta_x}{2} < \delta_x, \forall k \ge N_x$$
 (1.15)

$$\Rightarrow \forall Q \in \overline{A}(O, N_x), \text{ s. t. } |s - t| \le 2^{-N_x} \sqrt{d} < \delta_x, \forall s, t \in Q$$
 (1.16)

$$\Rightarrow Since \ O \subset \overline{A}(O), \ \exists Q_x \in \overline{A}(O, N_x) \subset \overline{A}(O), \ \text{s.t.} \ x \in Q_x$$
 (1.17)

$$\Rightarrow x \in Q_x \subset O \tag{1.18}$$

$$\Rightarrow x \in Q_x \in \underline{A}(O, N_x) \subset \underline{A}(O) \tag{1.19}$$

$$\Rightarrow O \subset \underline{A}(O) \tag{1.20}$$

Obviously $A(O) \subset O$, so

$$O = \underline{A}(O) = \bigcup_{k=1}^{\infty} (\underline{A}(O, k) \setminus \underline{A}(O, k-1)) \cup \underline{A}(O, 0)$$
 (1.21)

which is a countable union of almost disjoint closed cubes.

1.2 The Exterior Measure

Definition The exterior measure attempts to describe the volume of a set *E* by approximating it from the outside.

Loosely speaking, the exterior measure m_* assigns to any subset of \mathbb{R}^d a first notion of size.

定义 1.2.1. If E is a subset of \mathbb{R}^d , the exterior measure of E is

$$m_*(E) := \inf \left\{ \sum_{j=1}^{\infty} |Q_j| \mid E \subset \bigcup_{j=1}^{\infty} Q_j, \ Q_j \text{ is a closed cube} \right\}$$
 (1.22)

- 注. Well definition: $\forall E \subset \mathbb{R}^d$, $E \subset \bigcup_{n=1}^{\infty} Q_n$, $Q_n = [-n, n]^d \subset \mathbb{R}^d$, which means m_* can be defined on every subset of \mathbb{R}^d .
- It is immediate from the definition that: For every $\epsilon > 0$, there exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$, s.t.

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon \tag{1.23}$$

• It is important to note that it would **not suffice** to allow **finite sums** in the definition of $m_*(E)$. If one considered only coverings of E by finite unions of cubes , the quantity is **in general larger** than $m_*(E)$.

(In fact, it is defined as the **outer Jordan content** $J_*(E)$.)

- 例 1.2.1. Consider the set $\mathbb{Q} \cap [0, 1]$.
 - For the outer Jordan content , since it's obvious that $J_*(\overline{E}) = J_*(E), \ \forall E \subset \mathbb{R}^d,$ $J_*(\mathbb{Q} \cap [0,1]) = J_*(\overline{\mathbb{Q} \cap [0,1]}) = J_*([0,1]) = 1$
 - For the exterior measure, since $\mathbb{Q} \cap [0, 1]$ is countable, let $\mathbb{Q} \cap [0, 1] = \{x_1, x_2, \cdots\}$. Since for all $\epsilon > 0$,

$$\mathbb{Q} \cap [0,1] \subset \bigcup_{j=1}^{\infty} \left[x_j - \frac{\epsilon}{2^j}, x_j + \frac{\epsilon}{2^j} \right]$$
 (1.24)

Hence $m_*(\mathbb{Q} \cap [0, 1]) \le \epsilon$. For ϵ is arbitrary, $m_*(\mathbb{Q} \cap [0, 1]) = 0$.

Examples Let's check that whether the exterior measure matches our intuitive idea of volume.

Example 1. The exterior measure of a point is zero.

证明. It's clear that a point is a cube with $a_j = b_j$, $\forall j = 1 \sim d$ and which covers itself.

Example 2. The exterior measure of a closed cube is equal to its volume.

证明.

- Let $Q \subset \mathbb{R}^d$ be a closed cube. Since $Q \subset Q$, $m_*(Q) \leq |Q|$.
- Suppose $Q \subset \bigcup_{j=1}^{\infty} Q_j$ by closed cubes. For fixed $\epsilon > 0$, $\forall j \in \mathbb{N}$, choose an open cube S_j ,

s. t.
$$\begin{cases} S_j \supset Q_j \\ \left| S_j \right| = (1 + \epsilon) \left| Q_j \right| \end{cases}$$
 (1.25)

Then $Q \subset \bigcup_{j=1}^{\infty} S_j$. Since Q is compact, $\exists S_1, \dots, S_n \in \{S_j\}_{j=1}^{\infty}$, s. t. $Q \subset \bigcup_{j=1}^n S_j$.

Therefore, according to Lemma 1.1.2

$$|Q| \le \sum_{j=1}^{n} \left| S_{j} \right| = (1 + \epsilon) \sum_{j=1}^{n} \left| Q_{j} \right| \le (1 + \epsilon) \sum_{j=1}^{\infty} \left| Q_{j} \right|$$

$$(1.26)$$

For $\epsilon > 0$ is arbitrary, we get

$$|Q| \le \sum_{j=1}^{\infty} |Q_j| \tag{1.27}$$

$$|Q| \le \inf \sum_{j=1}^{\infty} |Q_j| = m_*(Q)$$
 (1.28)

Example 3. If Q is an open cube, then $m_*(Q) = |Q|$.

证明.

- Since $Q \subset \overline{Q}$, $m_*(Q) \leq |\overline{Q}| = |Q|$.
- We note that for all closed cubes Q_0 contained in Q, then $m_*(Q_0) = |Q_0| \le m_*(Q)$. For fixed $\epsilon > 0$ which is suffice small, choose a closed cube Q_0 contained in Q with a volume $|Q_0| = (1 - \epsilon)|Q|$, then we have

$$|Q_0| = (1 - \epsilon)|Q| \le m_*(Q)$$
 (1.29)

For ϵ is arbitrary, $|Q| \leq m_*(Q)$.

Example 4. The exterior measure of a rectangle R is equal to its volume.

Example 5. $m_*(\mathbb{R}^d) = \infty$.

证明. Since any covering of \mathbb{R}^d is also a covering of any cube $Q \subset \mathbb{R}^d$, $m_*(\mathbb{R}^d) \geq m_*(Q)$

$$\forall N > 0, \ \exists Q \subset \mathbb{R}^d, \ \text{s. t. } |Q| > N \text{ , so } m_*(\mathbb{R}^d) = \infty.$$

Properties

Observation 1. (Monotonicity)

If $E_1 \subset E_2$, then $m_*(E_1) \leq m_*(E_2)$.

Observation 2. (Countable sub – additivity)

If
$$E \subset \bigcup_{j=1}^{\infty} E_j$$
, then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$.

证明. For a fixed $\epsilon > 0$, for all E_j , there exists a covering $\{Q_{j_k}\}_{k=1}^{\infty}$, $E \subset \bigcup_{k=1}^{\infty} Q_{j_k}$, s. t.

$$\sum_{k=1}^{\infty} m_*(Q_{j_k}) \le m_*(E_j) + \frac{\epsilon}{2^j}$$
 (1.30)

Since $E \subset \bigcup_{j=1}^{\infty} E_j \subset \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} Q_{j_k}$, $\bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} Q_{j_k}$ covers E, then

$$m_*(E) \le \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} m_*(Q_{j_k}) \le \sum_{j=1}^{\infty} m_*(E_j) + \epsilon$$
 (1.31)

Since
$$\epsilon$$
 is arbitrary, $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$

Observation 3. If $E \subset \mathbb{R}^d$, then $m_*(E) = \inf \{ m_*(O) \mid E \subset O, O \text{ is an open set} \}$.

证明.

• By monotonicity , $m_*(E) \le m_*(O)$, for all O covers E. Then take the infimum.

• For a fixed $\epsilon > 0$, \exists covering $E \subset \bigcup_{i=1}^{\infty} Q_i$, s. t.

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \frac{\epsilon}{2} \tag{1.32}$$

For all Q_j , choose an open set \widetilde{Q}_j containing Q_j with a volume $\left|\widetilde{Q}_j\right| \leq \left|Q_j\right| + \frac{\varepsilon}{2^{j+1}}$. Let $O = \bigcup_{j=1}^{\infty} \widetilde{Q}_j$, then by Observation 2,

$$m_*(O) \le \sum_{j=1}^{\infty} m_*(\widetilde{Q}_j) = \sum_{j=1}^{\infty} \left| \widetilde{Q}_j \right| \le \sum_{j=1}^{\infty} \left| Q_j \right| + \frac{\epsilon}{2} \le m_*(E) + \epsilon \tag{1.33}$$

Since ϵ is arbitrary, $m_*(O) \le m_*(E)$, so inf $m_*(O) \le m_*(E)$.

Observation 4. If $E = E_1 \cup E_2$, and $d(E_1, E_2) > 0$, then

$$m_*(E) = m_*(E_1) + m_*(E_2)$$
 (1.34)

证明. For a fixed $\epsilon > 0$, \exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$, s.t.

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon \tag{1.35}$$

Subdevide the cubes Q_j and assume that $diam(Q_j) <= \frac{d(E_1, E_2)}{3}$. Then each Q_j can intersect at most one of the two sets E_1 or E_2 . Devide $\{Q_j\}_{j=1}^{\infty}$ into two subsets $\{Q_j\}_{j\in J_1}$, $\{Q_j\}_{j\in J_2}$, s. t.

$$E_1 \subset \bigcup_{j \in J_1} Q_j, \ E_2 \subset \bigcup_{j \in J_2} Q_j \tag{1.36}$$

 J_1 and J_2 are both countable. $J_1 \cap J_2 = \emptyset$. Then

$$m_*(E_1) \le \sum_{j \in J_1} m_*(Q_j), \ m_*(E_2) \le \sum_{j \in J_2} m_*(Q_j)$$
 (1.37)

Therefore

$$m_*(E_1) + m_*(E_2) \le \sum_{j \in J_1} m_*(Q_j) + \sum_{j \in J_2} m_*(Q_j) \le \sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon$$
 (1.38)

Since ϵ is arbitrary, $m_*(E_1) + m_*(E_2) \le m_*(E)$.

Observation 5. If a set E is the countable union of almost disjoint cubes $E = \bigcup_{j=1}^{\infty} Q_j$, then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|$$
 (1.39)

证明. For a fixed $\epsilon > 0$, for all Q_j , choose a closed cube \widetilde{Q}_j strictly contained in Q_j with its volume $\left|\widetilde{Q}_j\right| \geq \left|Q_j\right| - \frac{\epsilon}{2^j}$. Then for every $N \in \mathbb{N}$, the cubes $\widetilde{Q}_1, \cdots, \widetilde{Q}_N$ are disjoint with a finite distance from one another. By Observation 4,

$$m_*(\bigcup_{j=1}^N \widetilde{Q}_j) = \sum_{i=1}^N \left| \widetilde{Q}_j \right| \ge \sum_{j=1}^N \left| Q_j \right| - \epsilon$$
 (1.40)

Since $\bigcup_{j=1}^{\infty} \widetilde{Q}_j \subset E$, we conclude that for every N

$$m_*(E) \ge \sum_{j=1}^N |Q_j| - \epsilon$$
 (1.41)

Let $N \to \infty$, we deduce

$$m_*(E) \ge \sum_{j=1}^{\infty} |Q_j| - \epsilon$$
 (1.42)

Since
$$\epsilon$$
 is arbitrary, $\sum_{j=1}^{\infty} |Q_j| \leq m_*(E)$.

1.3 Measurable sets and the Lebesgue measure

1.3.1 *Measurable sets*

Definition

定义 **1.3.1.** A subset E of \mathbb{R}^d is (Lebesgue) measurable, if for any $\epsilon > 0$ there exists an open set O with $E \subset O$ and $m_*(O \setminus E) \le \epsilon$.

If *E* is measurable, we define its (*Lebesgue*) measurable m(E) by $m(E) = m_*(E)$.

 $\dot{\mathbf{L}}$. • 可用映射的观点来理解外测度 m_* 与测度 m 的关系 (Folland). 即

$$m_*: \mathcal{P}(\mathbb{R}^d) \longrightarrow \overline{\mathbb{R}}_+ = [0, +\infty]$$
 (1.43)

$$m: \mathcal{M} \longrightarrow \overline{\mathbb{R}}_+ = [0, +\infty]$$
 (1.44)

$$m = m_* \Big|_{M} \tag{1.45}$$

其中 $\mathcal{M} \subset \mathcal{P}(\mathbb{R}^d)$ 为 \mathbb{R}^d 中所有 (*Lebesgue*) *measurable sets* 构成的集合.

类比于抽象代数中各代数结构的性质,比如群 (group) 对加法 / 乘法封闭,我们下面探讨集合族 M 对于可数个集合的运算 (countable unions, countable intersections, complement)
 是否封闭. 即通过此引出代数结构 σ – algebra.

Properties 下面开始探讨 (Lebesgue) measure 的部分性质.

Property 1. Every open set in \mathbb{R}^d is measurable.

Property 2. If $m_*(E) = 0$, then *E* is measurable.

证明. By Observation 3 in §1.2, for a fixed $\epsilon > 0$, $\exists E \subset O$ open, s. t.

$$m_*(O) \le m_*(E) + \epsilon = \epsilon$$
 (1.46)

Since $O \setminus E \subset O$, then $m_*(O \setminus E) \leq m_*(O) \leq \epsilon$.

Property 3. Let $\{E_j\}_{j=1}^{\infty}$ be a family of measurable sets, then $\bigcup_{j=1}^{\infty} E_j$ is measurable.

注. 即说明集合族 M 对 countable unions 封闭.

证明. Since E_j is measurable, for a fixed $\epsilon > 0$, $\exists E_j \subset O_j$ open, s. t.

$$m_*(O_j \backslash E_j) \le \frac{\epsilon}{2^j}$$
 (1.47)

Let $O = \bigcup_{j=1}^{\infty} O_j \subset_{open} \mathbb{R}^d$, then

$$O \setminus \bigcup_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} O_j\right) \cap \left(\bigcap_{j=1}^{\infty} E_j^c\right)$$
(1.48)

$$= \bigcup_{j=1}^{\infty} \left(O_j \cap \left(\bigcap_{k=1}^{\infty} E_k^c \right) \right) \subset \bigcup_{j=1}^{\infty} \left(O_j \cap E_j^c \right) = \bigcup_{j=1}^{\infty} \left(O_j \backslash E_j \right)$$
 (1.49)

Therefore

$$m_* \left(O \setminus \bigcup_{j=1}^{\infty} E_j \right) \le m_* \left(\bigcup_{j=1}^{\infty} \left(O_j \setminus E_j \right) \right) \le \sum_{j=1}^{\infty} m_* \left(O_j \setminus E_j \right) \le \epsilon$$
 (1.50)

So
$$\bigcup_{j=1}^{\infty} E_j$$
 is measurable.

Property 4. Closed sets are measurable.

为了证明该性质, 先证明如下的分离定理.

引理 **1.3.1.** If F is closed, K is compact, and $K \cap F = \emptyset$, then d(F, K) > 0.

证明. 反证法.Suppose d(F, K) = 0, then for any fixed $n \in \mathbb{N}$, $\exists x_n \in F, y_n \in K$, s. t.

$$|x_n - y_n| \le \frac{1}{n} \tag{1.51}$$

Since K is compact, $\{y_n\}_{n=1}^{\infty}$ is bounded. Then there exists a subsequence $\{y_{n_k}\}_{k=1}^{\infty}$, s.t.

$$y_{n_k} \to y_0 \in K$$
, as $k \to \infty$ (1.52)

Since $\left|x_{n_k} - y_{n_k}\right| \le \frac{1}{n_k}$, then

$$|x_{n_k} - y_0| \le |x_{n_k} - y_{n_k}| + |y_{n_k} - y_0| \to 0, \text{ as } k \to \infty$$
 (1.53)

So
$$x_{n_k} \to y_0 \in F$$
, $y_0 \in F \cap K \neq \emptyset$ 矛盾.

下面证明 Property 4.

证明.

• Suppose *F* is bounded, then *F* is compact.

By Observation 3 in §1.2, for a fixed $\epsilon > 0$, $\exists F \subset O$ open, s. t.

$$m_*(O) \le m_*(F) + \epsilon \tag{1.54}$$

Since F is closed, $O \setminus F = O \cap F^c$ is open. By Thm1.1.4, $\exists \{Q_j\}_{j=1}^{\infty}$, s.t.

$$O\backslash F = \bigcup_{i=1}^{\infty} Q_i \tag{1.55}$$

For a fixed $N \in \mathbb{N}$, let $K = \bigcup_{j=1}^{N} Q_j$, then K is compact. By Lemma 1.3.1, d(K, F) > 0. Since $K \cup F \subset O$, by Observation 4 in §1.2,

$$m_*(K) + m_*(F) = m_*(K \cup F) \le m_*(O)$$
 (1.56)

So for each fixed $N \in \mathbb{N}$,

$$\sum_{j=1}^{N} |Q_{j}| = m_{*}(K) \le m_{*}(O) - m_{*}(F) \le \varepsilon$$
 (1.57)

Let $N \to \infty$, we get

$$m_*(O \backslash F) = \sum_{j=1}^{\infty} |Q_j| \le \epsilon$$
 (1.58)

Therefore, F is measurable.

• For the general situation, since $\mathbb{R}^d = \bigcup_{j=1}^{\infty} B_j$, then

$$F = F \cap \mathbb{R}^d = \bigcup_{j=1}^{\infty} \left(F \cap B_j \right)$$
 (1.59)

Since B_k is compact and F is closed, then $F \cap B_j$ is compact.

Due to the previous proof, $F \cap B_i$ is measurable. By Property 3 in §1.3.1,

$$F = \bigcup_{j=1}^{\infty} (F \cap B_j) \text{ is measurable.}$$
 (1.60)

Property 5. If E is measurable, then E^c is measurable.

注. 即说明集合族 M 对集合的补运算 complement 封闭.

证明. Since E is measurable, then for all fixed $n \in \mathbb{N}$, $\exists E \subset O_n$ open, s. t. $m_*(O_n \setminus E) \leq \frac{1}{n}$. Let $S = \bigcup_{j=1}^{\infty} O_j^c \subset E^c$. Since O_j^c is closed, O_j^c is measurable. Then S is measurable.

$$E^{c}\backslash S = E^{c} \cap \left(\bigcap_{j=1}^{\infty} O_{j}\right) = \bigcap_{j=1}^{\infty} \left(E^{c} \cap O_{j}\right) \subset E^{c} \cap O_{n} = O_{n}\backslash E, \ \forall n \in \mathbb{N}$$

$$(1.61)$$

Then, $m_*(E^c \setminus S) \le m_*(O_n \setminus E) \le \frac{1}{n}$, $\forall n \in \mathbb{N}$. So $E^c \setminus S$ is measurable.

Therefore, $E^c = (E^c \setminus S) \cup S$ is measurable.

Property 6. If $\{E_j\}_{j=1}^{\infty}$ is a family of measurable sets, then $\bigcap_{j=1}^{\infty} E_j$ is measurable.

注. 即说明集合族 M 对 countable intersections 封闭.

证明. Since

$$\bigcap_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} E_j^c\right)^c \tag{1.62}$$

Then, E_j^c is measurable and so $\bigcap_{j=1}^{\infty} E_j$ is measurable.

综上,本节介绍了 (*Lebesgue*) measurable sets 的性质,并且证明了 *Lebesgue* measurable sets 构成的集合族 M 对 countable unions, countable intersections, complement 运算封闭. 从而 $(M, \cup, \cap, complement)$ 构成代数结构,即为后续介绍的 σ – algebra.

1.3.2 Lebesgue measure

下面着重来介绍一下 Lebesgue measure 的 properties.

可数可加性 首先便是可数可加性 countable additivity.

定理 **1.3.2.** If E_1, E_2, \cdots are disjoint measurable sets, then

$$m(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} m(E_j)$$
(1.63)

证明. Since $m(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} m(E_j)$ always holds, we then proof the reverse inequality.

• Suppose that E_i is bounded.

Since E_j^c is measurable, for any fixed $\epsilon > 0$, there exists an closed subset $F_j \subset E_j$, s. t.

$$m(E_j \backslash F_j) \le \frac{\epsilon}{2^j}$$
 (1.64)

Since E_j is bounded, F_j is compact.

Let $K = \bigcup_{j=1}^{N} F_j$ be a disjoint union of compact sets for some fixed N, then

$$K \subset \bigcup_{j=1}^{\infty} E_j \tag{1.65}$$

$$m(K) = \sum_{j=1}^{N} m(F_j) \le m(\bigcup_{j=1}^{\infty} E_j)$$
 (1.66)

Since

$$m(E_j) \le m(E_j \backslash F_j) + m(F_j) \le m(F_j) + \frac{\epsilon}{2^j}$$
 (1.67)

Therefore

$$\sum_{j=1}^{N} m(E_j) - \epsilon \le \sum_{j=1}^{N} m(F_j) \le m(\bigcup_{j=1}^{\infty} E_j)$$
(1.68)

Let $N \to \infty$, for ϵ is arbitrary, we get

$$\sum_{j=1}^{\infty} m(E_j) \le m(\bigcup_{j=1}^{\infty} E_j)$$
(1.69)

• In the general case, we choose the sequence of cubes $\{Q_k\}_{k=1}^{\infty}$, $Q_k = [-k, k]^d \subset \mathbb{R}^d$. Let $S_1 = Q_1$, $S_k = Q_k - Q_{k-1}$, $\forall k \geq 2$. Then $\{S_k\}_{k=1}^{\infty}$ are disjoint and bounded. Since $\{S_k\}_{k=1}^{\infty}$ covers \mathbb{R}^d ,

$$E_j = \bigcup_{k=1}^{\infty} (E_j \cap S_k) \tag{1.70}$$

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} (E_j \cap S_k)$$
(1.71)

Since $E_j \cap S_k$ is bounded and disjoint, by the previous case,

$$m(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} m(E_j \cap S_k) = \sum_{j=1}^{\infty} m(E_j)$$
 (1.72)

单调连续性 下面我们可以给出单调可测集合列的连续性.continuity from below/above

定理 1.3.3. Let E_1, E_2, \cdots be measurable sets in \mathbb{R}^d .

- (i) If $E_k \nearrow E$, then $m(E) = \lim_{n \to \infty} m(E_n)$.
- (ii) If $E_k \setminus E$ and $m(E_1) < \infty$, then $m(E) = \lim_{n \to \infty} m(E_n)$.

注. • 事实上即可写为

$$m(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} m(E_n)$$
 (1.73)

即单调可测集合列可交换极限与测度顺序.

• (ii) 中条件 $m(E_1)$ finite 不可省略,下面给出一个反例.

例 1.3.1. If
$$E_n=(n,+\infty)$$
, then $m(E_n)=\infty$ and $E=\bigcap_{j=1}^{\infty}E_j=\emptyset$. So

$$m(E) = m(\lim_{n \to \infty} E_j) = 0, \ \lim_{n \to \infty} m(E_j) = \infty$$
 (1.74)

证明.

(i) Let $S_1 = E_1$, $S_k = E_k - E_{k-1}$, $\forall k \ge 2$. Then $\{S_k\}_{k=1}^{\infty}$ are disjoint and measurable. Since $E = \bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} S_k$, by Thm1.3.2,

$$m(E) = \sum_{k=1}^{\infty} m(S_k) = \lim_{N \to \infty} \sum_{k=1}^{N} m(S_k) = \lim_{N \to \infty} m(\bigcup_{k=1}^{N} S_k) = \lim_{N \to \infty} m(E_N)$$
 (1.75)

(ii) Let $S_1 = E_1$, $S_k = E_k - E_{k+1}$, $\forall k \ge 2$. Then $\{S_k\}_{k=1}^{\infty}$ are disjoint and measurable. Since $E_1 = E \cup \left(\bigcup_{k=1}^{\infty} S_k\right)$, then

$$m(E_1) = m(E) + \sum_{k=1}^{\infty} m(S_k) = m(E) + \lim_{N \to \infty} m(\bigcup_{k=1}^{N} S_k) = m(E) + \lim_{N \to \infty} m(E_1 - E_N)$$
 (1.76)

For $E_1 = (E_1 - E_N) \sqcup E_N$ is a disjoint union,

$$m(E_1 - E_N) = m(E_1) - m(E_N)$$
(1.77)

Thus

$$m(E_1) = m(E) + \lim_{N \to \infty} m(E_1 - E_N) = m(E) + m(E_1) - \lim_{N \to \infty} m(E_N)$$
 (1.78)

$$m(E) = \lim_{N \to \infty} m(E_N) \tag{1.79}$$

Geometric insight of measurable sets 最后我们来给出 (Lebesgue) measurable sets 的几何性质 (与开集、闭集、紧集等之间的关系).

定理 1.3.4. Lebesgue 测度的正则性.

Suppose $E \subset \mathbb{R}^d$ is measurable, then $\forall \epsilon > 0$:

- (i) \exists open $O \supset E$ with $m(O \setminus E) \le \epsilon$.
- (ii) \exists closed $F \subset E$ with $m(E \backslash F) \leq \epsilon$.
- (iii) If $m(E) < \infty$, \exists compact $K \subset E$ with $m(E \setminus K) \le \epsilon$.
- (iv) If $m(E) < \infty$, $\exists F = \bigcup_{j=1}^{N} Q_j$, $\{Q_j\}_{j=1}^{\infty}$ are closed cubes, s. t. $m(E \triangle F) \le \epsilon$.

证明.

- (i) It's just the definition of measurability.
- (ii) Since E_j^c is measurable, \exists open $O_j \supset E_j^c$, s. t.

$$m(O_j \backslash E_i^c) \le \epsilon$$
 (1.80)

Since $O_j^c \subset E_j$ is closed and $E_j \setminus O_j^c = O_j \setminus E_j^c$, let $F = O_j^c$ closed, then

$$m(E_i \backslash F) = m(O_i \backslash E_i^c) \le \epsilon$$
 (1.81)

(iii) By (ii), \exists closed $F \subset E$, s. t. $m(E \setminus F) \leq \frac{\epsilon}{2}$.

Let B_n denote the closed ball centered at the origin of radius n, then B_n is compact.

$$F = \bigcup_{j=1}^{\infty} (F \cap B_k) \tag{1.82}$$

Let $K_n = \bigcup_{k=1}^n (F \cap B_k)$, then K_n is compact and $K_n \nearrow F \Rightarrow E \setminus K_n \nearrow E \setminus F$.

Since $m(E \setminus K_1) \le m(E)$ is finite, by Thm1.3.3(ii)

$$\lim_{n \to \infty} m(E \backslash K_n) = m(E \backslash F) \tag{1.83}$$

As for $\epsilon > 0$, $\exists N \in \mathbb{N}$, s. t. for all $n \geq N$

$$|m(E \backslash K_n) - m(E \backslash F)| \le \frac{\epsilon}{2} \tag{1.84}$$

$$m(E \backslash K_n) \le m(E \backslash F) + \frac{\epsilon}{2} \le \epsilon$$
 (1.85)

Therefore, $m(E \setminus K_N) \le \epsilon$, where $K_N \subset E$ is compact.

(iv) \exists open $O \supset E$, s. t. $m(O \setminus E) \le \frac{\epsilon}{2}$. By Thm1.1.4, $\exists \{Q_j\}_{j=1}^{\infty}$, s. t.

$$E \subset O = \bigcup_{j=1}^{\infty} Q_j \tag{1.86}$$

So

$$m(O) = \sum_{j=1}^{\infty} |Q_j| \le m(O \setminus E) + m(E) \le \frac{\epsilon}{2} + m(E)$$
 (1.87)

Since m(E) is finite, $\sum_{j=1}^{\infty} |Q_j|$ converges. Then $\exists N \in \mathbb{N}$, s. t.

$$\sum_{j=N+1}^{\infty} \left| Q_j \right| \le \frac{\epsilon}{2} \tag{1.88}$$

Let $F = \bigcup_{j=1}^{N} Q_j$. Since $E \triangle F = (E \backslash F) \sqcup (F \cap E)$, then

$$m(E\triangle F) = m(E\backslash F) + m(F\backslash E) \tag{1.89}$$

$$\leq m(\bigcup_{j=N+1}^{\infty} Q_j) + m(\bigcup_{j=1}^{\infty} Q_j \backslash E)$$
 (1.90)

$$= \sum_{j=N+1}^{\infty} |Q_j| + \sum_{j=1}^{\infty} |Q_j| - m(E)$$
 (1.91)

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \tag{1.92}$$

1.4 σ – algebras and Borel sets

1.4.1 σ – algebra

首先给出 \mathbb{R}^d 中 algebra 的定义.

定义 **1.4.1.** Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R}^d)$. \mathcal{A} is called an *algebra* if

- (1) If $A_1, \dots, A_n \in \mathcal{A}$, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$.
- (2) If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.

注. 容易证明, 若 \mathcal{A} 为 \mathbb{R}^d 中 algebra, 则其对 finite intersections 也封闭, 同时 \emptyset , $\mathbb{R}^d \in \mathcal{A}$.

下面给出 \mathbb{R}^d 中 σ – algebra 的定义.(将 algebra 中的 finite 条件加强为 countable)

定义 **1.4.2.** Let $\mathcal{M} \subset \mathcal{P}(\mathbb{R}^d)$. \mathcal{M} is a σ – *algebra* if

- (1) If $A_1, A_2, \dots \in \mathcal{M}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$.
- (2) If $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$.

注. 容易证明 M 对 countable intersections 同样封闭, \emptyset , $\mathbb{R}^d \in M$.

例 1.4.1. All Lebesgue measurable sets forms a σ – algebra \mathcal{M} .

类比线性空间、拓扑空间中 (拓扑) 基的概念,下面给出生成 σ – algebra 的概念.

定义 1.4.3. Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R}^d)$, then the σ – algebra generated by \mathcal{A} is the smallest σ – algebra containing \mathcal{A} .

注. 即为 the intersection of all σ – *algebras* containing \mathcal{A} ,这也说明了对于任一给定的集族 \mathcal{A} ,其生成的 σ – *algebra* 必存在且唯一.

1.4.2 Borel sets

下面给出 Borel σ – algebra \mathcal{D} Borel sets 的定义.

定义 **1.4.4.** The <u>Borel σ – algebra</u> is the σ – algebra generated by all open sets in \mathbb{R}^d , denoted by $\mathcal{B}_{\mathbb{R}^d}$.

Elements of this σ – algebra are called Borel sets.

注. 事实上, *Borel σ-algebra* 为 Lebesgue countable sets 的一个真子集, 后续会利用 Cantor 集证明.

为了方便研究 Borel σ – algebra 的结构,我们把其中较为复杂 (非平凡) 的元素单独拎出来并称为 G_{δ} , F_{σ} .

定义 **1.4.5.** 1. The countable intersections of open sets are called G_{δ} sets.

2. The countable unions of closed sets are called F_{σ} sets.

下面我们可给出 $\mathcal{B}_{\mathbb{R}^d}$ 与 Lebesgue 可测集 \mathcal{L} 之间的关系.(\mathcal{L} 只比 $\mathcal{B}_{\mathbb{R}^d}$ 多了一些零测集)

定理 1.4.1. Lebesgue 测度的正规性.

 $E \subset \mathbb{R}^d$ is \mathcal{L} – measurable

- (i) if and only if $E = G_{\delta} \backslash N_1$, for some G_{δ} , $m(N_1) = 0$.
- (ii) if and only if $E = F_{\sigma} \backslash N_2$, for some F_{σ} , $m(N_2) = 0$.

证明. Clearly E is measurable whenever it satisfies either (i) or (ii).

(i) Since *E* is measurable, \exists open sets $O_n \supset E$, s. t.

$$m(O_n \backslash E) \le \frac{1}{n} \tag{1.93}$$

Let $O = \bigcap_{j=1}^{\infty} O_j$, then

$$m(O \backslash E) \le \frac{1}{n}, \ \forall n \in \mathbb{N}$$
 (1.94)

Let $n \to \infty$, we get $m(O \setminus E) = 0$. Let $G_{\delta} = O$, $N_1 = O \setminus E$. Then $E = G_{\delta} \setminus N_1$.

(ii) Similarly, we can easily proof it by Thm1.3.4(ii).

1.5 Non – measurable sets

在这一节我们将介绍 \mathbb{R} 上一个经典的不可测集 $Vitali\ set$,并说明 \mathbb{R} 上每个正测度集都有不可测子集.

Vitali set Let $x, y \in [0, 1]$. Write $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$.

- ⇒ 容易验证 ~ 为 an equivalence relation.
- \Rightarrow ~ partions [0,1]. 记 [0,1] 上等价类为 ε_a ,则

$$[0,1] = \bigsqcup_{a} \varepsilon_{a}, \ \{\varepsilon_{a}\}_{a} \ are \ disjoint$$
 (1.95)

- \Rightarrow By the Axiom of Choice, we can choose exactly one element x_a from each ε_a .
- \Rightarrow Let $\mathcal{N} = \{x_a\}_a$. Then \mathcal{N} is the Vitali set.

定理 1.5.1. N is not measurable.

证明. Assume that \mathcal{N} is measurable. Let $\{r_k\}_{k=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap [-1, 1]$. Define

$$\mathcal{N}_k := N + r_k = \{x_a + r_k\}_a \tag{1.96}$$

Then we shall proof that $\{\mathcal{N}_k\}_{k=1}^{\infty}$ are disjoint, and $[0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1,2]$.

• If $\mathcal{N}_k \cap \mathcal{N}_m \neq \emptyset$, then $\exists x_a, x_\beta \in \mathcal{N}, \ r_k, r_m \in \mathbb{Q} \cap [-1, 1], \text{ s. t.}$

$$x_a + r_k = x_\beta + r_m \tag{1.97}$$

Then $x_a - x_\beta = r_m - r_k \in \mathbb{Q} \Rightarrow x_a \sim x_\beta \Rightarrow x_a, x_\beta \in \varepsilon_a \text{ or } x_a, x_\beta \in \varepsilon_\beta \Rightarrow x_a = x_\beta \text{ and } r_k = r_m.$ Therefore, $\mathcal{N}_k = \mathcal{N}_m$.

• Since $r_k \in [-1, 1]$, $\mathcal{N}_k \in [-1, 2]$, $\forall k$. Therefore,

$$\bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1, 2] \tag{1.98}$$

• $\forall x \in [0, 1]$. Since $\{\varepsilon_a\}_a$ partions [0, 1], there exists a_0 , s. t.

$$x \in \varepsilon_{a_0}, \ x \sim x_{a_0}$$
 (1.99)

which means $x - x_{a_0} \in \mathbb{Q} \cap [-1, 1]$. Then $\exists k_0 \in \mathbb{N}$, s. t.

$$x - x_{a_0} = r_{k_0} \implies x \in \mathcal{N}_{k_0} \tag{1.100}$$

Therefore,

$$[0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \tag{1.101}$$

Since $\{\mathcal{N}_k\}_{k=1}^{\infty}$ are disjoint, we get

$$m([0,1]) \le \sum_{k=1}^{\infty} m(\mathcal{N}_k) \le m([-1,2])$$
 (1.102)

Since \mathcal{N}_k is a translate of \mathcal{N} , we have $m(\mathcal{N}) = m(\mathcal{N}_k)$ for each k. Then

$$1 \le \sum_{k=1}^{\infty} m(\mathcal{N}) \le 3 \implies \text{Neither } m(\mathcal{N}) = 0 \text{ nor } m(\mathcal{N}) > 0 \text{ is possible.}$$
 (1.103)

Therefore, it's a contradiction. N is non-measurable.

正测度集必有不可测子集 下面要证明一个结论,即 \mathbb{R} 上任一正测度集必有不可测子集. 这 实际上为书 Exercises of Chapter 1 的第 32 题 (b).

命题 **1.5.1.** Let N denote the non-measurable subset of [0, 1] constructed in Thm1.5.1.

- (a) If E is a measurable subset of N, then m(E) = 0.
- (b) If $G \subset \mathbb{R}$ with $m_*(G) > 0$, then there exists a subset of G is non-measurable.

证明.

(a) Note $\mathcal{N} = \{x_a\}_{a \in \mathcal{A}}$, then $E = \{x_\beta\}_{\beta \in \mathcal{B} \subset \mathcal{A}}$. Similarly, we can proof

$$\bigcup_{k=1}^{\infty} E_k \subset [-1, 2] \tag{1.104}$$

Since $\{E_k\}_{k=1}^{\infty}$ are disjoint, and E_k is a translate of E, we get

$$\sum_{k=1}^{\infty} m(E) \le 3 \implies m(E) = 0$$
 (1.105)

(b) Let $\mathbb{Q} = \{r_k\}_{k=1}^{\infty}$, $\mathcal{N}_k = \mathcal{N} + r_k$, then

$$\mathbb{R} = \bigsqcup_{k=1}^{\infty} \mathcal{N}_K \tag{1.106}$$

¹参考书籍:《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》— Elias M. Stein

Suppose G is measurable. Then

$$G = G \cap \mathbb{R} = \bigsqcup_{k=1}^{\infty} (G \cap \mathcal{N}_k)$$
 (1.107)

If $G \cap \mathcal{N}_k$ is measurable, then $G \cap \mathcal{N}_k \subset \mathcal{N}_k$ is a subset of a non-measurable set \mathcal{N}_k . By the previous (a), we get

$$m(G \cap \mathcal{N}_k) = 0 \tag{1.108}$$

Therefore, there exists $k_0 \in \mathbb{N}$, s. t. $G \cap \mathcal{N}_{k_0} \subset G$ is a non-measurable subset of G. (otherwise m(G) = 0 contradicts)

第二章 Measurable Functions

2.1 *Measurable Functions*

定义 下面给出 \mathbb{R}^d 上可测函数的定义.(注意值域为扩充实数系 $\overline{\mathbb{R}}$)

定义 **2.1.1.** A function defined on a measurable subset $E \subset \mathbb{R}^d$ is <u>measurable</u> if for all $a \in \mathbb{R}$,

$$f^{-1}([-\infty, a)) = \{x \in E \mid f(x) < a\}$$
 (2.1)

is measurable.

 $\dot{\mathbf{L}}$. • $f^{-1}([-\infty, a))$ 常简记作 $\{f < a\}$.

- 下面给出几条等价定义.
 - (1) $\{f < a\}$ is measurable. $\Leftrightarrow \{f \le a\}$ is measurable.
 - (2) $\Leftrightarrow \{f > a\}$ is measurable $\Leftrightarrow \{f \ge a\}$ is measurable.
 - (3) If f is finite-valued, then

$$f$$
 is measurable \Leftrightarrow $\{a < f < b\}$ is measurable, $\forall a, b \in \mathbb{R}$ (2.2)

证明.

(1) Since the collection of measurable sets is closed under countable intersections and unions,

$$\{f \le a\} = \bigcap_{n=1}^{\infty} \{f < a + \frac{1}{n}\}\$$
 (2.3)

$$\{f < a\} = \bigcup_{n=1}^{\infty} \{f \le a - \frac{1}{n}\}$$
 (2.4)

Therefore, $\{f < a\}$ is measurable. $\Leftrightarrow \{f \le a\}$ is measurable.

(2) Since the collection of measurable sets is closed under complements, easily proof by (1).

(3) Since f is finite-valued,

$$\{f < a\} = \bigcup_{n=1}^{\infty} \{-n < f < a\}$$
 (2.5)

$$\{a < f < b\} = \{f > a\} \cap \{f < b\} \tag{2.6}$$

Therefore, by (2), f is measurable $\Leftrightarrow \{a < f < b\}$ is measurable.

Property 下面给出可测函数的一些性质.

Property 1. Let $-\infty < f(x) < +\infty$ (finite-valued), then

$$f$$
 is measurable $\Leftrightarrow f^{-1}(O)$ is measurable \forall open set O (2.7)

$$\Leftrightarrow f^{-1}(F)$$
 is measurable \forall closed set F (2.8)

证明. $\forall O \subset_{open} \mathbb{R}$, there exists $\{(a_n, b_n)\}_{n=1}^{\infty}$, s. t.

$$O = \bigcup_{n=1}^{\infty} (a_n, b_n)$$
 (2.9)

Then

$$f^{-1}(O) = f^{-1}(\bigcup_{n=1}^{\infty} (a_n, b_n)) = \bigcup_{n=1}^{\infty} f^{-1}((a_n, b_n))$$
 (2.10)

Since f is finite-valued and measurable, then $f^{-1}(a_n, b_n)$ is measurable.

Therefore, $f^{-1}(O)$ is measurable.

Property 2. {continuous functions} \subset {measurable functions}

- (a) (a) If f is continuous on \mathbb{R}^d , then f is measurable.
- (b) If f is measurable, finite-valued and Φ is continuous on \mathbb{R} , then $\Phi \circ f$ is measurable.

证明.

(a) Since f is continuous, $\forall O \subset \mathbb{R}, f^{-1}(O) \subset \mathbb{R}^d$. By Property 1, f is measurable.

(b) $\forall O \subset_{open} \mathbb{R}$. Since Φ is continuous, then $\Phi^{-1}(O)$ is open. Since f is finite-valued and measurable, then $(\Phi \circ f)^{-1}(O) = f^{-1}(\Phi^{-1}(O))$ is open. Therefore, by Property 1, $\Phi \circ f$ is measurable.

Property 3. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions. Then

$$\sup_{n} f_{n}(x), \inf_{n} f_{n}(x), \limsup_{n \to \infty} f_{n}(x), \liminf_{n \to \infty} f_{n}(x)$$
(2.11)

are measurable.

注. 类比数列的上下极限, 此处

$$\lim \sup_{n \to \infty} f_n(x) := \lim_{k \to \infty} \sup_{n \ge k} \{ f_n(x) \} = \inf_k \sup_{n \ge k} \{ f_n(x) \}$$
 (2.12)

$$\liminf_{n \to \infty} f_n(x) := \lim_{k \to \infty} \inf_{n \ge k} \{ f_n(x) \} = \sup_{k} \inf_{n \ge k} \{ f_n(x) \} \tag{2.13}$$

证明. Since

$$\{x \mid \sup_{n} f_{n}(x) > a\} = \bigcup_{n=1}^{\infty} \{x \mid f_{n}(x) > a\}$$
 (2.14)

$$\{x \mid \inf_{n} f_{n}(x) < a\} = \bigcup_{n=1}^{\infty} \{x \mid f_{n}(x) < a\}$$
 (2.15)

Then $\sup f_n(x)$, $\inf_n f_n(x)$ is measurable.

Since $\sup_{n\geq k} f_n(x)$, $\inf_{n\geq k} f_n(x)$ are measurable, by the previous conclusion, then

$$\lim_{n\to\infty} \sup_{n\to\infty} f_n(x) = \inf_k \sup_{n\geq k} \{f_n(x)\}$$
 (2.16)

$$\liminf_{n \to \infty} f_n(x) = \sup_{k} \inf_{n \ge k} \{ f_n(x) \}$$
(2.17)

are measurable.

Property 4. If $\{f_n\}_{n=1}^{\infty}$ is a collection of measurable functions and

$$\lim_{n \to \infty} f_n(x) = f(x) \tag{2.18}$$

then f is measurable.

注. • 与数列上下极限相同,

$$\lim_{n \to \infty} f_n(x) = f(x) \iff \limsup_{n \to \infty} f_n(x) = \liminf_{n \to \infty} f_n(x) = f(x)$$
 (2.19)

• 此 Property 即说明**可测函数列对极限运算封闭**. 注意到连续函数列对极限运算并不 具备封闭性.(下面给出经典范例)

例 2.1.1.

$$\lim_{n \to \infty} x^n = \begin{cases} 0, & 0 \le x < 1\\ 1, & x = 1 \end{cases}$$
 (2.20)

证明. Since $\{f_n\}_{n=1}^{\infty}$ are measurable, $f(x) = \limsup_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x)$, then according to Property 3, f is measurable.

Property 5. If f and g are measurable, then

- (i) f^k , $k \in \mathbb{N}$ are measurable.
- (ii) f + g and fg are measurable if both f and g are finite-valued.

证明.

(i) Since

$${f^k > a} = {f > a^{\frac{1}{k}}}, \ \forall k \text{ is odd}$$
 (2.21)

$$\{f^k > a\} = \{f > a^{\frac{1}{k}}\} \cup \{f < -a^{\frac{1}{k}}\}, \ \forall k \text{ is even and } a > 0$$
 (2.22)

Therefore, f^k , $k \in \mathbb{N}$ are measurable.

(ii) Since1

$$\{f + g > a\} = \bigcup_{r \in \mathbb{O}} \{f > a - r\} \cap \{g > r\}$$
 (2.23)

¹即必 $\exists r \in \mathbb{Q}$, s. t. $\{f + g > a\}$ ⊃ $\{f > a - r\}$ ∩ $\{g > r\}$. (另一侧包含关系 \subset 显然易证) (反证. $\forall r \in \mathbb{Q}$ 上式不成立,则对于 $r = 0 \in \mathbb{Q}$, $\exists x_0$, s. t. $f(x_0) > a$, $g(x_0) > 0$, 且 $f(x_0) + g(x_0) \le a$, 矛盾.)

then f + g is measurable.

By the previous results in (i) and (ii), since

$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2]$$
 (2.24)

Therefore, fg is also measurable.

下面给出数学分析中曾介绍过的几乎处处的定义.

定义 **2.1.2.** A property or statement is said to hold <u>almost everywhere (a.e.)</u> if it is true except on a set of measure zero.

例 2.1.2.

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$
 (2.25)

We say f is continuous a.e. on [0, 1] since $D(f) = \{1\}$ has measure zero.

下面说明几乎处处相等可保持函数可测性.

命题 **2.1.1.** If f is measurble and f = g a.e., then g is measurable.

证明. Since f is measurable and

$$g = (g - f) + f (2.26)$$

then we shall proof that g - f is measurable.

Let $A := \{x \mid g(x) - f(x) \neq 0\}$, then m(A) = 0. We get

$$\forall a \ge 0, (g-f)^{-1}((-\infty, a]) = (\mathbb{R}^d \backslash A) \cup N, \text{ where } N \subset A$$
 (2.27)

Since m(A) = 0, then N is measurable and m(N) = 0. So $(g - f)^{-1}((-\infty, \alpha])$ is measurable.

Therefore, g - f is measurable. Then g is measurable.

2.2 Measurable functions are nearly simple

本节来介绍一个非常重要的定理. 即可测函数可由简单函数逼近.

特征函数 下面先来介绍特征函数的定义.

定义 2.2.1. If $E \subset \mathbb{R}$, the characteristic / indicator function $\chi_E/\mathbb{1}_E$ of E is defined by

$$\chi_{E}(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E \end{cases}$$
 (2.28)

下面给出可测集与其对应特征函数的关系.

命题 **2.2.1.** χ_E is measurable $\Leftrightarrow E$ is measurable

证明. Since

$$\chi_E^{-1}((-\infty, a]) = \begin{cases} \emptyset, & a < 0 \\ E^c, & 0 \le a < 1 \end{cases}$$

$$\mathbb{R}^d, & a \ge 1$$

$$(2.29)$$

Then *E* is measurable $\Rightarrow \chi_E$ is measurable.

 χ_E is measurable $\Rightarrow \chi_E^{-1}((-\infty, a]) = E^c$ is measurable. $\Rightarrow E$ is measurable.

下面给出特征函数的基本性质.

命题 **2.2.2.** [Property].

(1) If $A \cap B = \emptyset$, then

$$\chi_{A \cup B} = \max \left\{ \chi_A, \chi_B \right\} = \chi_A + \chi_B \tag{2.30}$$

(2) $\chi_{A \cap B} = \min \{ \chi_A, \chi_B \} = \chi_A \cdot \chi_B$.

Simple functions 对特征函数做线性组合,即可得到简单函数.

定义 2.2.2. A simple function on \mathbb{R}^d is a finite linear combination

$$f(x) = \sum_{i=1}^{n} a_{i} \chi_{E_{i}}(x)$$
 (2.31)

where each E_j is measurable and $m(E_j) < \infty$.

注. 此处定义中并未要求 $\{E_j\}_{j=1}^n$ disjoint. 而事实上这便引出了下面介绍的标准形式.

下面的命题说明了每个简单函数都可写为标准形式 ($\{E_j\}_{j=1}^n$ disjoint).

命题 **2.2.3.** Every simple function f has a **standard representation**

$$f = \sum_{k=1}^{N} a_k \chi_{E_k}, \text{ where } \{E_j\}_{k=1}^{N} \text{ are disjoint}$$
 (2.32)

证明. Suppose $f = \sum_{k=1}^{N} b_k \chi_{E_k}$, $\{E_j\}_{k=1}^{N}$ may not be disjoint.

Since $\{E_j\}_{k=1}^N$ is finite, the number of elements of range f is also finite. Suppose

range
$$f = \{a_1, \cdots, a_M\}$$
 (2.33)

Then let $F_k = f^{-1}(\{a_k\})$, then $\{F_k\}_{k=1}^M$ are disjoint. Therefore, we get the standard representation

$$f = \sum_{k=1}^{M} a_k \chi_{F_k} \tag{2.34}$$

简单函数逼近可测函数 下面给出一个定理,说明任一可测函数可由简单函数列逼近.

定理 **2.2.1.** Suppose $f: \mathbb{R}^d \longrightarrow [-\infty, \infty]$ is measurable.

Then there exists a sequence $\{\varphi_n\}$ of simple functions, s. t.

$$0 \le |\varphi_1| \le |\varphi_2| \le \dots \le |f| \tag{2.35}$$

$$\lim_{k \to \infty} \varphi_k(x) = f(x), \text{ for all } x$$
 (2.36)

and $\varphi_k \to f$ uniformly on any set on which f is bounded.

证明. 下面从两方面分类讨论,即非负函数 & 变号函数, f 有界 & 无界.

(1) 非负函数 $f: \mathbb{R}^d \longrightarrow [0, \infty]$.

1° f is bounded. Assume $|f(x)| \le M$.

Let²

$$E_n^k = f^{-1}((\frac{k}{2^n}, \frac{k+1}{2^n}]), k = 0, \dots, N_n$$
 (2.37)

$$\varphi_n(x) = \frac{k}{2^n}, \quad \text{if } x \in E_n^k \tag{2.38}$$

Then

$$\varphi_n(x) = \sum_{k=0}^{N_n} \frac{k}{2^n} \chi_{E_n^k}(x)$$
 (2.39)

Therefore³

$$|\varphi_n(x) - f(x)| \le \frac{1}{2^n} \to 0 \text{ (independent of } x)$$
 (2.40)

 $\Rightarrow \varphi_n \to f$ uniformly.

图 2.1: 对 f 值域进行分划

 $^{{}^{2}}E_{n}^{k}$ 表示第 n 次对值域进行分划后产生的第 k 个值域区间,其中 $\frac{N_{n}+1}{2^{n}} \geq M$. ${}^{3}|\varphi_{n}(x)-f(x)|$ 小于等于第 n 次分划后两个相邻值域区间的步长值,即 $\frac{1}{2^{n}}$.

 2° f is unbounded. (idea: truncation,将 f 截断为一列有界函数列,并逐点收敛于 f)
Let

$$f_k(x) = \begin{cases} f(x), & \text{if } f(x) \le k \\ k, & \text{if } f(x) > k \end{cases}$$
 (2.41)

Then $f_k(x) \to f(x)$, $\forall x \in \mathbb{R}^d$.

Since f_k is bounded, by the previous result in 1°,

For each k, \exists a sequence of simple functions $\{\psi_{kn}\}_{n=1}^{\infty}$, s. t.

$$\psi_{kn}(x) \to f_k(x), \ \forall x$$
 (2.42)

So we get

$$\psi_{11} \quad \psi_{12} \quad \psi_{13} \quad \cdots \quad \rightarrow \quad f_1 \\
\psi_{21} \quad \psi_{22} \quad \psi_{23} \quad \cdots \quad \rightarrow \quad f_2 \\
\psi_{31} \quad \psi_{32} \quad \psi_{33} \quad \cdots \quad \rightarrow \quad f_3 \\
\cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
f$$

$$(2.43)$$

From the previous results in 1°, we get

$$|\psi_{kn}(x) - f_k(x)| \le \frac{1}{2^n}$$
 (2.44)

Let n = k, then $|\psi_{kk}(x) - f_k(x)| \le \frac{1}{2^k}$. Let $\varphi_k = \psi_{kk}$, then

$$|\varphi_k(x) - f(x)| \le |\varphi_k(x) - f_k(x)| + |f_k(x) - f(x)|$$
 (2.45)

Since $f_k(x) \to f(x)$, we get $\varphi_k(x) \to f(x)$, $\forall x$, where $\{\varphi_k = \psi_{kk}\}_{k=1}^{\infty}$ are simple functions.

(2) 变号函数 $f: \mathbb{R}^d \longrightarrow [-\infty, \infty]$.

We denote that

$$f^{+}(x) := \max\{f(x), 0\}$$
 (2.46)

$$f^{-}(x) := \max\{-f(x), 0\}$$
 (2.47)

By the previous results in (1), there exist sequences of simple functions $\{\varphi_k\}_{k=1}^{\infty}, \{\psi_k\}_{k=1}^{\infty}, s.t.$

$$\varphi_k \to f^+ \text{ and } \psi_k \to f^- \text{ pointwisely}$$
 (2.48)

We can observe that $f = f^+ - f^-$ and $|f| = f^+ - f^-$.

Let $\phi_k(x) = \varphi_k(x) - \psi_k(x)$, then ϕ_k is a simple function with $\phi_k \to f$ pointwisely.

阶梯函数逼近可测函数 在证明了可测函数可由简单函数逼近后,我们更进一步,来说明可测函数可由更加简单的**阶梯函数**来逼近.

先给出阶梯函数的定义.

定义 2.2.3. A step function is a finite sum

$$f = \sum_{k=1}^{N} a_k \chi_{R_k}, \text{ where } R_k \text{ is a rectangle}$$
 (2.49)

下面的定理说明了 measurable functions are almost step functions.

定理 **2.2.2.** Suppose f is measurable on \mathbb{R}^d . Then there exists a sequence of step functions $\{\psi_k\}_{k=1}^{\infty}$, s. t.

$$\lim_{k \to \infty} \psi_k(x) = f(x), \ a.e. \ x \tag{2.50}$$

注. 首先介绍函数列收敛点集的几种不同的等价表述:

$$\{x \mid \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |f_n(x) - f(x)| < \epsilon\}$$
 (2.51)

$$\Leftrightarrow \{x \mid \forall n \in \mathbb{N}, \exists N \in \mathbb{N}, \forall k \ge N, |f_k(x) - f(x)| < \frac{1}{n}\}$$
 (2.52)

$$\Leftrightarrow \bigcap_{n=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{k=N}^{\infty} \{x \mid |f_k(x) - f(x)| < \frac{1}{n}\}$$
(2.53)

从而可以得到函数列发散点集 (Negation):

$$\{x \mid \exists n \in \mathbb{N}, \forall N \in \mathbb{N}, \exists k \ge N, |f_k(x) - f(x)| \ge \frac{1}{n}\}$$
 (2.54)

$$\Leftrightarrow \bigcup_{n=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{x \mid |f_k(x) - f(x)| \ge \frac{1}{n}\}$$
 (2.55)

$$\Leftrightarrow \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{x \mid f_k(x) \neq f(x)\}$$
 (2.56)

证明. (证明思路: 先用阶梯函数逼近简单函数,再用简单函数逼近可测函数.)

It suffices to show that χ_E can be approximated by step functions, for any measurable set E.

According to Thm1.3.4 (iv)

Let $f = \chi_E$, then $\forall \epsilon > 0$, \exists cubes $\bigcup_{i=1}^N Q_i$, s. t.

$$m(E \triangle \bigcup_{j=1}^{N} Q_j) \le \epsilon$$
 (2.57)

By considering the grid formed by extending the sides of these cubes, there exists almost disjoint rectangles $\{\widetilde{R}_j\}_{j=1}^M$, s. t.

$$\bigcup_{j=1}^{N} Q_j = \bigcup_{j=1}^{M} \widetilde{R}_j \tag{2.58}$$

By taking ranctangles R_j contained in \widetilde{R}_j , we can find a collection of disjoint rectangles $\{R_j\}_{j=1}^M$, s. t.

$$m(E \triangle \bigsqcup_{j=1}^{M} R_j) \le 2\epsilon \tag{2.59}$$

For every $k \in \mathbb{N}$, there exists disjoint rectangles $\{R_j\}_{j=1}^M$, s. t.

$$m(E \triangle \bigsqcup_{j=1}^{M} R_j) \le \frac{1}{2^{k+1}} \tag{2.60}$$

There also exists a step function ψ_k

$$\psi_k(x) := \chi_{\bigcup_{j=1}^M R_j}(x) = \sum_{i=1}^M \chi_{R_j}(x)$$
 (2.61)

Let

$$E_k := \{x \mid f_k(x) \neq f(x)\} \tag{2.62}$$

Since $E_k \subset E \triangle \bigsqcup_{j=1}^M R_j$, then $m(E_k) \leq \frac{1}{2^k}$. Let⁴

$$F_j = \bigcup_{j=k+1}^{\infty} E_j, \quad F = \bigcap_{k=1}^{\infty} F_k \tag{2.63}$$

Then $\psi_k(x) \to f(x)$, $\forall x \in F^c$. Since

$$m(F) \le m(F_k), \ \forall k \in \mathbb{N}$$
 (2.64)

$$m(F_k) = m(\bigcup_{j=k+1}^{\infty} E_j) \le \sum_{j=k+1}^{\infty} m(E_j) \le \frac{1}{2^k}$$
 (2.65)

Therefore,
$$m(F) = 0$$
. $\lim_{k \to \infty} \psi_k(x) = f(x)$, a.e. x .

 $^{^4}$ 根据<mark>注</mark>中式 (2.56), F 即为函数列 $\{\psi_k\}_{k=1}^{\infty}$ 的发散点集,从而 $\psi_k(x) \to f(x)$ 在 F^c 上收敛.

第三章 Integration Theory

3.1 The Lebesgue integral

Lebesgue Integral 的构造可以分为三步,分别为构造下列函数的积分:

- 1. Simple functions
- 2. Non-negative measurable functions

$$\int f := \sup \{ \int \varphi \mid \varphi \text{ simple, } 0 \le \varphi \le f \}$$
 (3.1)

3. General case

$$f = f^{+} - f^{-} \tag{3.2}$$

$$\int f := \int f^+ - \int f^- \tag{3.3}$$

3.1.1 Simple functions

定义 下面先给出非负简单函数在标准形式下的积分定义.

定义 3.1.1. If φ is a non-negative simple function with standard representation

$$\varphi(x) = \sum_{k=1}^{M} a_k \chi_{E_k}(x) \tag{3.4}$$

We define the **Lebesgue integral** of φ by

$$\int_{\mathbb{R}^d} \varphi(x) dx = \sum_{k=1}^M a_k m(E_k)$$
(3.5)

If *E* is a measurable subset of \mathbb{R}^d with finite measure, then

$$\varphi(x)\chi_{E}(x) = \sum_{k=1}^{M} a_{k}\chi_{E_{k}}(x)\chi_{E}(x) = \sum_{k=1}^{M} a_{k}\chi_{E_{k}\cap E}(x)$$
(3.6)

is also a simple function, and define

$$\int_{E} \varphi(x)dx = \int_{\mathbb{R}^{d}} \varphi(x)\chi_{E}(x)dx \tag{3.7}$$

- **注.** 此处仅对**标准形式**定义了积分. 事实上,此处定义的积分与简单函数的表达形式无关(即**Property 1.**).
- 关于记号, 当测度非常明确时, 大多数情况下可简写, 如

$$\int_{E} \varphi(x) dx \Rightarrow \int_{E} \varphi \tag{3.8}$$

$$\int_{\mathbb{R}^d} \varphi(x) dx \Rightarrow \int \varphi \tag{3.9}$$

当为了强调我们选择了何种测度 μ 时,还可用以下的记号:

$$\int_{E} \varphi(x) d\mu(x) \tag{3.10}$$

Property 下面给出简单函数积分的性质.

Property 1. Independence of the representation.

If $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ is any representation of φ , then

$$\int \varphi = \sum_{k=1}^{N} a_k m(E_k)$$
 (3.11)

在证明这个性质之前, 先来证明一条引理.(书¹Exercises Of Chapter 2 的第 1 题)

引理 **3.1.1.** Given a collection of sets $\{F_k\}_{k=1}^n$, there exists another collection $\{\widetilde{F}_j\}_{j=1}^N$ with $N=2^n-1$, so that

(i).
$$\bigcup_{k=1}^{n} F_k = \bigcup_{j=1}^{N} \widetilde{F}_j$$
 (3.12)

(ii).
$$\{\widetilde{F}_j\}_{j=1}^N$$
 are disjoint (3.13)

$$(iii). F_k = \bigcup_{\widetilde{F}_j \subset F_k} \widetilde{F}_j (3.14)$$

证明. Consider the collection

$$\mathcal{F} := \{ \bigcup_{k=1}^{n} G_k - \bigcap_{k=1}^{n} F_k^c \mid G_k \text{ denotes } F_k \text{ or } F_k^c \}$$
 (3.15)

1参考书籍:《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》— Elias M. Stein

下面来证明原命题.

证明. According to Lemma 3.1.1, there exists another decomposition of $\bigcup_{k=1}^{N} E_k$, i.e.

$$\bigcup_{j=1}^{M} \widetilde{E}_{j} = \bigcup_{k=1}^{N} E_{k} \tag{3.16}$$

where $\{\widetilde{E}_j\}_{j=1}^M$ are disjoint, and for each $1 \le k \le M$,

$$E_k = \bigcup_{\widetilde{E}_j \subset E_k} \widetilde{E}_j \tag{3.17}$$

Let

$$\widetilde{a}_j := \sum_{\widetilde{E}_i \subset E_k} a_k \tag{3.18}$$

Then clearly

$$\varphi = \sum_{j=1}^{M} \widetilde{a}_{j} \chi_{\widetilde{E}_{j}}$$
 (3.19)

Since $\{\widetilde{E}_j\}_{j=1}^M$ are disjoint, we get

$$\int \varphi = \sum_{j=1}^{M} \widetilde{a}_{j} m(\widetilde{E}_{j}) = \sum_{j=1}^{M} \sum_{\widetilde{E}_{j} \subset E_{k}} a_{k} m(\widetilde{E}_{j}) = \sum_{k=1}^{N} a_{k} m(E_{k})$$
(3.20)

Property 2. Linearity.

If φ and ψ are non-negative simple, and $a, b \ge 0$, then

$$\int (a\varphi + b\psi) = a \int \varphi + b \int \psi$$
 (3.21)

证明. 下面分为两步来证明.

(a) $\forall c \geq 0, \int c\varphi = c \int \varphi$. Suppose $\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}$, where $\{E_k\}_{k=1}^{M}$ are disjoint. Then

$$c\varphi = \sum_{k=1}^{M} ca_k \chi_{E_j} \tag{3.22}$$

is also a non-negative simple function. Therefore,

$$\int c\varphi = \sum_{k=1}^{M} ca_k m(E_k) = c \sum_{k=1}^{M} a_k m(E_k) = c \int \varphi$$
 (3.23)

(b)
$$\int (\varphi + \psi) = \int \varphi + \int \psi$$
.

Suppose

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}, \ \psi = \sum_{j=1}^{N} b_j \chi_{F_j}$$
 (3.24)

where both $\{E_k\}_{k=1}^M$ and $\{F_j\}_{j=1}^N$ are disjoint and $\mathbb{R}^d = \bigcup_{k=1}^M E_k = \bigcup_{j=1}^N F_j$. Since

$$E_k = E_k \cap \mathbb{R}^d = E_k \cap \bigsqcup_{j=1}^N F_j = \bigsqcup_{j=1}^N (E_k \cap F_j)$$
(3.25)

Then

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k} = \sum_{k=1}^{M} a_k \chi_{\bigsqcup_{j=1}^{N} (E_k \cap F_j)} = \sum_{k=1}^{M} \sum_{j=1}^{N} a_k \chi_{E_k \cap F_j}$$
(3.26)

Similarly

$$\psi = \sum_{j=1}^{N} b_j \chi_{F_j} = \sum_{j=1}^{N} b_k \chi_{\bigsqcup_{k=1}^{M} (E_k \cap F_j)} = \sum_{j=1}^{N} \sum_{k=1}^{M} b_k \chi_{E_k \cap F_j}$$
(3.27)

Therefore

$$\varphi + \psi = \sum_{j,k} (a_k + b_j) \chi_{E_k \cap F_j}$$
(3.28)

$$\int (\varphi + \psi) = \sum_{j,k} (a_k + b_j) m(E_k \cap F_j)$$
(3.29)

$$= \sum_{j,k} a_k m(E_k \cap F_j) + \sum_{j,k} b_j m(E_k \cap F_j)$$
(3.30)

$$= \int \varphi + \int \psi \tag{3.31}$$

Property 3. Monotonicity.

If $\varphi \leq \psi$ are non-negative and simple, then

$$\int \varphi \le \int \psi \tag{3.32}$$

证明. Suppose

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}, \ \psi = \sum_{i=1}^{N} b_j \chi_{F_j}$$
 (3.33)

where both $\{E_k\}_{k=1}^M$ and $\{F_j\}_{j=1}^N$ are disjoint. Similar to the proof in Property 2, we get

$$\psi - \varphi = \sum_{j,k} (b_j - a_k) \chi_{E_k \cap F_j}$$
(3.34)

Since $\varphi(x) \leq \psi(x)$, $\forall x \in \mathbb{R}^d$, then $\psi - \varphi$ is non-negative and simple. Therefore,

$$\int (\psi - \varphi) = \sum_{j,k} (b_j - a_k) m(E_k \cap F_j) \ge 0 \implies \int \varphi \le \int \psi$$
 (3.35)

Property 4. Additivity.

If $\{E_k\}_{k=1}^{\infty}$ are disjoint subsets of \mathbb{R}^d with finite measure, then

$$\int_{\bigcup_{k=1}^{\infty} E_k} \varphi = \sum_{k=1}^{\infty} \int_{E_k} \varphi \tag{3.36}$$

注. 首先回顾 abstract measure 的定义.

定义 3.1.2. Let X be a set and let M be a σ – algebra on X.

A **measure** on \mathcal{M} is a function $\mu : \mathcal{M} \longrightarrow [0, \infty]$, s. t.

- (i) $\mu(\emptyset) = 0$.
- (ii) If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ are disjoint, then

$$\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$$
(3.37)

回到我们积分的性质上来. 下面我们将说明,对于任一给定的非负简单函数 φ ,将 φ 在任一可测集 A 上的积分看作 Lebesgue σ – algebra \mathcal{L} 上的映射,则该映射为定义在 \mathcal{L} 上的测度.(从而 Property 4. 作为测度的必要条件自然成立)

命题 3.1.1. For any fixed non-negative and simple function φ , the map

$$\mu: \mathcal{L} \longrightarrow [0, \infty]$$
 (3.38)

$$A \longmapsto \int_{A} \varphi \tag{3.39}$$

is a measure on \mathcal{L} .

证明. Suppose $\{A_j\}_{j=1}^{\infty} \subset \mathcal{L}$ are disjoint, and

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}, \text{ where } \{E_k\}_{k=1}^{M} \text{ are disjoint}$$
 (3.40)

Let $A = \bigcup_{j=1}^{\infty} A_j$, then

$$\int_{\bigcup_{j=1}^{\infty} A_j} \varphi = \int_A \varphi = \int \varphi \chi_A = \int \left(\sum_{k=1}^M a_k \chi_{E_k \cap A}\right)$$
 (3.41)

$$=\sum_{k=1}^{M}a_{k}m(E_{k}\cap A)$$
(3.42)

$$=\sum_{k=1}^{M}a_{k}m(E_{k}\cap(\bigcup_{j=1}^{\infty}A_{j}))$$
(3.43)

$$=\sum_{k=1}^{M}a_{k}m(\bigsqcup_{j=1}^{\infty}(E_{k}\cap A_{j}))$$
(3.44)

$$= \sum_{k=1}^{M} a_k \sum_{j=1}^{\infty} m(E_k \cap A_j)$$
 (3.45)

$$= \sum_{k=1}^{M} \sum_{j=1}^{\infty} a_k m(E_k \cap A_j)$$
 (3.46)

Since positive series always converges in $[0, \infty]$, then

$$\int_{A} \varphi = \sum_{k=1}^{M} \sum_{j=1}^{\infty} a_{k} m(E_{k} \cap A_{j}) = \sum_{j=1}^{\infty} \sum_{k=1}^{M} a_{k} m(E_{k} \cap A_{j}) = \sum_{j=1}^{\infty} \int_{A_{j}} \varphi$$
 (3.47)

Therefore, the integral on any non-negative simple function is accually a measure on \mathcal{L} . \Box

3.1.2 Non – negative measurable functions

为了讨论的方便, 先给出非负可测函数的一个记号.

$$\mathcal{M}^+ := \{all\ non - negative\ measurable\ functions\}$$
 (3.48)

定义 下面给出非负可测函数的积分的定义.

定义 3.1.3. For $f \in \mathcal{M}^+$, we define

$$\int f(x)dx := \sup \{ \int \varphi(x)dx \mid 0 \le \varphi \le f, \ \varphi \ simple \}$$
 (3.49)

注. 此处对 Non-negative measurable function 积分的定义兼容定义 3.1.1 中对 Non-negative simple function 积分的定义,具体表现为: ∀*ϕ*₀ non-negative and simple,

$$\sup \left\{ \int \varphi(x) dx \mid 0 \le \varphi \le \varphi_0, \ \varphi \ simple \right\} = \int \varphi_0(x) dx \tag{3.50}$$

性质 下面来验证定义 3.1.3 中定义的积分满足几条基本性质.

Property 1. Monotonicity.

Let $f, g \in \mathcal{M}^+$. Then

$$\int f \le \int g \quad \text{if} \quad f \le g \tag{3.51}$$

证明. Let

$$A = \{ \varphi \text{ simple } | \ 0 \le \varphi \le f \}$$
 (3.52)

$$B = \{ \psi \text{ simple } | 0 \le \psi \le g \}$$
 (3.53)

Then for all $\varphi \in A$, $0 \le \varphi \le f \le g \Rightarrow \varphi \in B \Rightarrow A \subset B$. Since

$$\int f = \sup_{\varphi \in A} \{ \int \varphi \}, \quad \int g = \sup_{\psi \in B} \{ \int \psi \}$$
 (3.54)

Therefore

$$\int f \le \int g \tag{3.55}$$

Property 2. 齐次性.

Let $f \in \mathcal{M}^+$. If $c \ge 0$, then

$$\int cf = c \int f \tag{3.56}$$

证明. Assume c > 0. Then

$$\int cf = \sup \{ \int \varphi \mid 0 \le \varphi \le cf, \ \varphi \ simple \}$$
 (3.57)

$$= \sup \left\{ \int \varphi \mid 0 \le \frac{\varphi}{c} \le f, \ \varphi \ simple \right\}$$
 (3.58)

$$\stackrel{\psi = \frac{\varphi}{c}}{=} \sup \left\{ \int c\psi \mid 0 \le \psi \le f, \ \psi \ simple \right\}$$
 (3.59)

$$= c \sup \{ \int \psi \mid 0 \le \psi \le f, \ \psi \ simple \}$$
 (3.60)

$$=c\int f \tag{3.61}$$

单调收敛定理 下面我们正式迈入实分析的"大门",介绍第一个收敛定理.

定理 3.1.2. The Monotone Convergence Theorem.

If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+, f_j \leq f_{j+1}$ for all j, and $\lim_{n \to \infty} f_n = f$, then

$$\int f = \lim_{n \to \infty} \int f_n \tag{3.62}$$

注. • 此即为"单调收敛定理",这个定理说明了对于单调递增的非负可测函数列, 其积分与极限可交换次序. 具体表现为

$$\int f = \int \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int f_n \tag{3.63}$$

• 该定理还说明了,我们可以给出非负可测函数的另一个更自然的等价定义,即用非负简单函数列的积分逼近非负可测函数的积分.

定义 **3.1.4.** For $f \in \mathcal{M}^+$, we can also define

$$\int f := \lim_{n \to \infty} \int \varphi_n \tag{3.64}$$

where $\varphi_n \to f$ and $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$ by Thm 2.2.1.

并且该定理说明了该积分定义的唯一性及 well-defined.

在证明定理前, 先来证明一个引理 (将定理 1.3.3 (i) 拓展到一般的抽象测度上).

引理 **3.1.3.** Let X be a set, \mathcal{M} be a σ – algebra on X, $\mu : \mathcal{M} \longrightarrow [0, \infty]$ be a measure on \mathcal{M} . If $\{E_n\}_{n=1}^{\infty} \subset \mathcal{M}$, $E_n \nearrow E$, then

$$\lim_{n \to \infty} \mu(E_n) = \mu(E) \tag{3.65}$$

证明. 证明过程与 Thm 1.3.3 完全一致 (仅用到了测度的可数可加性).

Let $S_1 = E_1$, $S_k = E_k - E_{k-1}$, $\forall k \ge 2$. Then $\{S_k\}_{n=1}^{\infty} \subset \mathcal{M}$ are disjoint.

Since $E = \bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} S_k$, then

$$\mu(E) = \mu(\bigsqcup_{k=1}^{\infty} S_k) = \sum_{k=1}^{\infty} \mu(S_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(S_k) = \lim_{n \to \infty} \mu(\bigsqcup_{k=1}^{n} S_k) = \lim_{n \to \infty} \mu(E_n)$$
 (3.66)

下面证明原定理.

证明.

• $\lim_{n\to\infty} \int f_n \leq \int f$.

Since $f_n \leq f$, $\forall n$, then

$$\int f_n \le \int f, \ \forall n \tag{3.67}$$

Since $\{\int f_n\}_{n=1}^{\infty}$ always converges in $[0, \infty]$, then let $n \to \infty$, we get

$$\lim_{n \to \infty} \int f_n \le \int f \tag{3.68}$$

• $\lim_{n\to\infty} \int f_n \ge \int f$.

Fix 0 < a < 1, for any $0 \le \varphi \le f$ simple, let

$$E_n = \{ x \mid f_n(x) \ge a\varphi(x) \} \tag{3.69}$$

Then since $\forall x \in E_n$, we have $f_{n+1}(x) \ge f_n(x) \ge a\varphi(x) \Rightarrow x \in E_{n+1} \Rightarrow E_n \subset E_{n+1}$.

Then $E_n \nearrow$. Since

$$\int_{\mathbb{R}^d} f_n \ge \int_{E_n} f_n \ge \int_{E_n} a\varphi, \ \forall n$$
 (3.70)

Let $n \to \infty$, we get

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \ge \lim_{n \to \infty} \int_{E_-} a\varphi \tag{3.71}$$

Then we have to calculate $\lim_{n\to\infty}\int_{E_n} a\varphi$:

- Since $\alpha\varphi$ is non-negative and simple, by Prop 3.1.1, the map

$$\mu: \mathcal{L} \longrightarrow [0, \infty]$$
 (3.72)

$$E \longmapsto \int_{E} a\varphi \tag{3.73}$$

is a measure on the collection of Lebesgue measurable sets £. (将积分视作测度)

Since $\{E_n\}_{n=1}^{\infty} \subset \mathcal{L}$ and $E_n \nearrow$, by Lemma 3.1.3, we get

$$\lim_{n \to \infty} \mu(E_n) = \mu(\bigcup_{n=1}^{\infty} E_n)$$
(3.74)

i.e.

$$\lim_{n \to \infty} \int_{E_n} a\varphi = \int_{\bigcup_{n=1}^{\infty} E_n} a\varphi \tag{3.75}$$

For all $x \in \mathbb{R}^d$, since $a\varphi(x) < f(x)$ and $f_n \to f$, there exists $N_x \in \mathbb{N}$, s. t.

$$f_n(x) \ge a\varphi(x), \ \forall n \ge N_x$$
 (3.76)

which indicates $x \in E_{N_x}$ for some N_x . Therefore

$$\bigcup_{n=1}^{\infty} E_n = \mathbb{R}^d \implies \lim_{n \to \infty} \int_{E_n} a\varphi = \int_{\bigcup_{n=1}^{\infty} E_n} a\varphi = \int_{\mathbb{R}^d} a\varphi$$
 (3.77)

Therefore, we get

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \ge \lim_{n \to \infty} \int_{E_-} a\varphi = \int_{\mathbb{R}^d} a\varphi \tag{3.78}$$

Let $a \rightarrow 1$, then

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \ge \int_{\mathbb{R}^d} \varphi \tag{3.79}$$

Since φ is arbitratry, taking the supremum over φ , we get

$$\lim_{n \to \infty} \int_{\mathbb{D}^d} f_n \ge \sup \left\{ \int_{\mathbb{D}^d} \varphi \mid 0 \le \varphi \le f, \ \varphi \ simple \right\} = \int f \tag{3.80}$$

函数项级数的可数可加性 接下来我们将给出**单调收敛定理**在**函数项级数**上的表达形式,它 说明了对于**非负可测函数项级数**,其**积分与求和可交换次序**.

在此之前, 先来证明有限项的情况.

(此也可视作非负可测函数积分的Property 线性性的一部分.)

命题 3.1.2. Linearity.

If $f, g \in \mathcal{M}^+$, then

$$\int (f+g) = \int f + \int g \tag{3.81}$$

证明. By Thm 2.2.1 and Thm 3.1.2, there exists sequences of non-negative and simple functions $\{\varphi_n\}_{n=1}^{\infty}$ and $\{\psi_n\}_{n=1}^{\infty}$, $\varphi_n \to f$ and $\psi_n \to g$, s. t.

$$\int f = \lim_{n \to \infty} \int \varphi_n, \quad \int g = \lim_{n \to \infty} \int \psi_n \tag{3.82}$$

Since $\varphi_n + \psi_n$ is still non-negative and simple, then

By the Linearity of integral on non-negative and simple functions, (**Property 2.** in §3.1.1)

$$\int (\varphi_n + \psi_n) = \int \varphi_n + \int \psi_n \tag{3.83}$$

Let $n \to \infty$, by Thm 3.1.2, we get (极限与积分交换次序)

$$\int (f+g) = \int f + \int g \tag{3.84}$$

根据 Prop 3.1.2,由归纳法,容易得到其对任意有限项函数项级数都成立.

下面给出函数项级数上的单调收敛定理.

定理 3.1.4. Monotone Convergence Theorem (MCT, series version).

If
$$\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+$$
 and $f = \sum_{n=1}^{\infty} f_n$, then

$$\int f = \sum_{n=1}^{\infty} \int f_n \tag{3.85}$$

注. 该定理说明了对于非负可测函数项级数,其积分与求和可交换次序.

证明. Let $F_n = \sum_{k=1}^n f_k$, then $F_n \nearrow \sum_{k=1}^\infty f_k = f$. By MCT (Thm 3.1.2),

$$\lim_{n \to \infty} \int F_n = \int f \tag{3.86}$$

i.e.

$$\lim_{n \to \infty} \int \sum_{k=1}^{n} f_k = \int f \tag{3.87}$$

By the **Linearity** of integral on non-negative functions (Prop 3.1.2),

$$\lim_{n \to \infty} \int \sum_{k=1}^{n} f_k = \lim_{n \to \infty} \sum_{k=1}^{n} \int f_k = \sum_{k=1}^{\infty} \int f_k = \int f$$
 (3.88)

积分的唯一性 在实分析中,我们并不关心零测集上的各种性质,进而常常忽略函数在零测集上的情况. 在给出**单调收敛定理**的更一般版本前,我们先来给出**几乎处处**意义下,函数**积分的唯一性**.

下面的命题说明了,若两个非负可测函数几乎处处相等,则其积分相等.

命题 3.1.3. Uniqueness.

If $f \in \mathcal{M}^+$, then

$$\int f = 0 \iff f = 0 \text{ a.e.}$$
 (3.89)

注. 根据该命题,对于任意非负可测函数 f, q

$$\int f = \int g \iff \int (f - g) = 0 \iff f - g = 0 \text{ a.e.} \iff f = g \text{ a.e.}$$
 (3.90)

证明.

• 充分性 "←": If *f* = 0 a.e.

 $\forall 0 \le \varphi \le f \text{ simple}, \ \varphi = 0 \text{ a.e.} \ . \ \text{Let } E = \{x \mid \varphi(x) = 0\}, \text{ then } m(E^c) = 0.$

$$\int \varphi = \int_{\mathbb{R}} \varphi + \int_{\mathbb{R}^c} \varphi = 0 + 0 = 0 \tag{3.91}$$

Taking the supremum of φ , we get

$$\int f = \sup \{ \int \varphi \mid 0 \le \varphi \le f, \ \varphi \ simple \} = 0$$
 (3.92)

• 必要性 " \Rightarrow " : If $\int f = 0$, let

$$E_n := \{ x \mid f(x) > \frac{1}{n} \} \tag{3.93}$$

Then

$$\bigcup_{n=1}^{\infty} E_n = \{ x \mid f(x) > 0 \} = \{ f \neq 0 \}$$
 (3.94)

Suppose $m(\bigcup_{n=1}^{\infty} E_n) > 0$, then there exists $N \in \mathbb{N}$, s. t. $m(E_N) > 0$. Then

$$\int f \ge \int_{E_N} f > \frac{1}{N} m(E_N) > 0 \tag{3.95}$$

which is a contradiction to $\int f = 0$.

Therefore, $m(\bigcup_{n=1}^{\infty} E_n) = m(\{f \neq 0\}) = 0, f = 0$ a.e.

"几乎处处"版 MCT 根据积分的唯一性 (命题 3.1.3),下面说明在"几乎处处收敛"条件下,单调收敛定理成立 (积分与极限仍可交换次序).

推论 3.1.5. a.e. MCT.

If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+, f \in \mathcal{M}^+, f_n \nearrow f$ a.e. , then

$$\int f = \lim_{n \to \infty} \int f_n \tag{3.96}$$

证明. Let $f_n \nearrow f$ on E, then $m(E^c) = 0$ and $f_n - f_n \chi_E = 0$ a.e.

By Prop 3.1.3, we get

$$\int f_n = \int f_n \chi_E \tag{3.97}$$

Since $f_n\chi_E \nearrow f\chi_E$, then by **MCT** (Thm 3.1.2, 单调收敛定理)

$$\lim_{n \to \infty} \int f_n = \lim_{n \to \infty} \int f_n \chi_E = \int f \chi_E = \int_E f$$
 (3.98)

Since $m(E^c) = 0$, then

$$\int f = \int_{E} f = \lim_{n \to \infty} \int f_n \tag{3.99}$$

 $(\forall 0 \le \varphi \le f \text{ simple, } \int \varphi = \int_E \varphi + \int_{E_c} \varphi = \int_E \varphi. \text{ Taking the supremum of } \varphi \Rightarrow \int f = \sup \{ \int \varphi \} = \int_E f)$

Fatou's Lemma 我们首先来考虑一个问题,若我们将单调收敛定理 (MCT) 中的"单调"条件去掉,结论是否仍然成立 (积分与极限是否仍可交换次序)?即

Suppose
$$f_n \to f$$
 a.e., do we have $\int f_n \to \int f$?

事实上答案为 absolutely no. 下面给出一个反例.

例 3.1.1. Consider $f_n = n\chi_{(0,\frac{1}{n})}$. Then $f_n \to 0$ a.e. on [0, 1]. However,

$$\int f_n = n \cdot \frac{1}{n} = 1, \ \forall n \in \mathbb{N} \neq 0$$
 (3.100)

事实上,将"单调收敛"条件整个去除,我们将得到如下的更一般的 Fatou's Lemma.

定理 3.1.6. Fatou's Lemma.

If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+$, then

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n \tag{3.101}$$

注. • 回顾函数列下极限的定义.

$$\liminf_{n \to \infty} f_n = \lim_{n \to \infty} \left(\inf_{k \ge n} f_k \right) \tag{3.102}$$

即对定义域上每一点 x,取数列 $\{f_n(x)\}_{n=1}^{\infty}$ 的下极限,再将所有的 x 所对应的下极限拼成一个函数,即定义为函数列 $\{f_n\}_{n=1}^{\infty}$ 的下极限.

(上式右侧作用在固定的 x 上, 即为数列 $\{f_n(x)\}_{n=1}^{\infty}$ 下极限的定义.)

• Fatou's Lemma 告诉我们,对于任意一列非负可测函数列,其函数列的下极限的积分,要小于每个函数积分后得到的积分数列的下极限.

证明. Since

$$\liminf_{n \to \infty} f_n = \lim_{n \to \infty} (\inf_{k \ge n} f_k) \tag{3.103}$$

Let $g_n = \inf_{k \ge n} f_k$, then $g_n \nearrow \lim_{n \to \infty} g_n$. By **MCT** (Thm 3.1.2, 单调收敛定理),

$$\int \lim_{n \to \infty} g_n = \lim_{n \to \infty} \int g_n \tag{3.104}$$

i.e.

$$\int \liminf_{n \to \infty} f_k = \lim_{n \to \infty} \left(\int \inf_{k \ge n} f_k \right) \tag{3.105}$$

For each n, since $\inf_{k \ge n} f_k \le f_j$, $\forall j \ge n$, then

$$\int \inf_{k \ge n} f_k \le \int f_j, \ \forall j \ge n \tag{3.106}$$

Taking the infimum of $\{\int f_j\}_{j=n}^{\infty}$, then

$$\int \inf_{k \ge n} f_k \le \inf_{j \ge n} \int f_j, \ \forall n \in \mathbb{N}$$
 (3.107)

For *n* is arbitrary, let $n \to \infty$, we get

$$\lim_{n \to \infty} \left(\int \inf_{k \ge n} f_k \right) \le \lim_{n \to \infty} \left(\inf_{k \ge n} \int f_k \right) = \liminf_{n \to \infty} \int f_n \tag{3.108}$$

Therefore

$$\int \liminf_{n \to \infty} f_k = \lim_{n \to \infty} \left(\int \inf_{k \ge n} f_k \right) \le \liminf_{n \to \infty} \int f_n$$
 (3.109)

3.1.3 General case

可积函数 跟 Riemann 积分类似,对于 Lebesgue 积分,我们也有可积函数的概念.

下面先让我们回到非负可测函数,定义非负可测函数中可积的概念.

定义 3.1.5. For $f \in \mathcal{M}^+$, if

$$\int f < \infty \tag{3.110}$$

Then we say f is **Lebesgue integrable** or simply **integrable**.

下面扩展到一般的可测函数,给出其 Lebesgue 积分及可积的定义.

定义 **3.1.6.** For any f measurable on \mathbb{R}^d

$$f^+(x) := \max\{f(x), 0\}, f^-(x) := \max\{-f(x), 0\}$$
 (3.111)

If at least one of $\int f^+$ and $\int f^-$ is finite, we define the **integral of** f

$$\int f := \int f^+ - \int f^- \tag{3.112}$$

We say that f is (Lebesgue) integrable if |f| is integrable.

注. • 注意到

$$f = f^+ - f^- \tag{3.113}$$

$$|f| = f^+ + f^- \tag{3.114}$$

• 根据定义,对于任意可测函数f,

$$f \text{ integrable } \Leftrightarrow |f| \text{ integrable } \Leftrightarrow \int |f| = \int f^+ + \int f^- < \infty$$
 (3.115)

$$\Leftrightarrow f^+ \text{ and } f^- \text{ integrable}$$
 (3.116)

即f可积 $\Leftrightarrow \int f^+ \pi \int f^-$ 均有界.

性质 下面我们将说明,定义在任一集合 X 上的**实可积函数**构成的空间 \mathcal{L}^1 为**线性空间**,以 $\mathcal{D}_{f} \in \mathcal{L}^1$ 时的一些性质.

在此之前, 先给出上述定义的一般的可测函数的积分的基本性质.

命题 **3.1.4.** Suppose $f, g \in \mathcal{L}$, then

- 1. **Linearity**: $\int (af + bg) = a \int f + b \int g$.
- 2. Finite Additivity:

$$\int_{\bigsqcup_{j=1}^{n} A_{j}} f = \sum_{j=1}^{n} \int_{A_{j}} f$$
 (3.117)

where $\{A_j\}_{j=1}^n$ are disjoint.

- 3. **Monotonicity**: If $f \le g$, then $\int f \le \int g$.
- 4. Triangle inequality: $\left| \int f \right| \le \int |f|$.

证明.

2. : We shall show that $\int_{\bigcup_{j=1}^n A_j} f^+ = \sum_{j=1}^n \int_{A_j} f^+$ and $\int_{\bigcup_{j=1}^n A_j} f^- = \sum_{j=1}^n \int_{A_j} f^-$. By **Thm 2.2.1**, there exists simple $\varphi_n \nearrow f^+$, then by **MCT (Thm 3.1.2**, 单调收敛定理),

$$\int_{\bigsqcup_{j=1}^{n} A_j} f^+ = \lim_{n \to \infty} \int_{\bigsqcup_{j=1}^{n} A_j} \varphi_n \tag{3.118}$$

Since φ_n are simple, by the **countable additivity** (简单函数的可数可加性), we have

$$\int_{\bigsqcup_{j=1}^{n} A_{j}} f^{+} = \lim_{n \to \infty} \int_{\bigsqcup_{j=1}^{n} A_{j}} \varphi_{n} = \lim_{n \to \infty} \sum_{j=1}^{n} \int_{A_{j}} \varphi_{n} = \sum_{j=1}^{n} \lim_{n \to \infty} \int_{A_{j}} \varphi_{n}$$
(3.119)

$$\stackrel{\text{MCT}}{=} \sum_{i=1}^{n} \int_{A_j} f^+ \tag{3.120}$$

4. 根据实数域上的三角不等式, we have

$$\left| \int f \right| = \left| \int f^+ - \int f^- \right| \le \left| \int f^+ \right| + \left| \int f^- \right| = \int f^+ + \int f^- = \int |f| \tag{3.121}$$

现在我们便可以来说明,定义在任一集合 X 上的**实可积函数**构成的空间 \mathcal{L}^1 为**线性空间**.

命题 **3.1.5.** The set of integrable real-valued functions on X is a real vector space.

证明. $\forall f, g \in \mathcal{L}^1$, if $a \in \mathbb{R}$,

$$\int |f+g| \le \int (|f|+|g|) = \int |f| + \int |g| < \infty$$

$$\int |af| = |a| \int |f| < \infty$$
(3.122)

Therefore, f + g, $af \in \mathcal{L}^1$. $\Rightarrow \mathcal{L}^1$ is a real vector space.

对于可积函数,我们往往是在整个 \mathbb{R}^d 空间上讨论其可积性,类比 **Riemann** 可积函数,合理地猜测其在 \mathbb{R}^d 平面上 "较远" 的地方的积分值应当较小. 这就是下面我们要给出的 \mathcal{L}^1 可积函数的性质.

命题 **3.1.6.** Suppose $f \in \mathcal{L}^1(\mathbb{R}^d)$. Then $\forall \epsilon > 0$

(i) \exists a set of finite measure B such that

$$\int_{\mathbb{R}^c} |f| < \epsilon$$

(ii) [Absolutely Continuity].

 $\exists \delta > 0$ such that

$$\int_{E} |f| < \epsilon, \ \forall m(E) < \delta$$

- 注. (i) 和 (ii) 共同说明了,若 $f \in \mathcal{L}^1(\mathbb{R}^d)$,则 f 的积分主要集中在一个**有限测度**区域内,且在很小的区域内 f 的积分值趋于零.
- (ii) 本质为测度的绝对连续性 (正测度关于正测度的绝对连续性). 此处令正测度

$$\mu: \mathcal{L} \longrightarrow [0, \infty]$$
 (3.124)

$$E \longmapsto \mu(E) = \int_{E} |f| \tag{3.125}$$

则命题 (ii) 可表示为: $\forall \epsilon > 0$, $\exists \delta > 0$, s.t.

$$\mu(E) < \epsilon$$
, $\forall m(E) < \delta$

证明.

(i):对定义域做截断.

Suppose $f \ge 0$. Let $B_n = B(0, n)$, $f_n = f\chi_{B_n}$, then $f_n \nearrow f$.

By MCT (Thm 3.1.2, 单调收敛定理),

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.126}$$

Then $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\left| \int f - \int f_N \right| = \int f - \int f_N = \int f(1 - \chi_{B_N}) = \int f\chi_{B_N^c} = \int_{B_N^c} f < \epsilon$$
 (3.127)

Therefore, let $B = B_N = B(0, N)$, the desired result follows.

(ii):同样是做截断. 不过此处是对f 的取值做截断.

Let $B_n = \{x \in \mathbb{R}^d \mid f(x) \le n\}, f_n = f\chi_{B_n}$. Then $f_n \nearrow f, f_n \le n$.

同 (i), By MCT (Thm 3.1.2, 单调收敛定理),

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.128}$$

 $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\left| \int f - \int f_N \right| = \int (f - f_N) < \frac{\epsilon}{2} \tag{3.129}$$

Pick $\delta > 0$, s. t. $N\delta < \frac{\epsilon}{2}$. Then for all $m(E) < \delta$,

$$\int_{E} f = \int_{E} (f - f_{N}) + \int_{E} f_{N} \le \int_{E} (f - f_{N}) + N \cdot m(E)$$
 (3.130)

$$<\frac{\epsilon}{2} + N\delta$$
 (3.131)

$$<\epsilon$$
 (3.132)

图 3.1: Prop 3.1.6 (i)

图 3.2: Prop 3.1.6 (ii)

3.1.4 *The Dominated Convergence Theorem*

下面我们来介绍实分析中最最有用的定理——

控制收敛定理 (The Dominated Convergence Theorem).

在 Riemann 积分中,对于函数列交换极限与积分的次序的条件太过于奇怪与繁琐,而在 Lebesgue 积分中,控制收敛定理则很完美地解决了这一问题. 它对于交换极限与积分的次序的条件十分简洁. 下面便来介绍这一定理.

定理 3.1.7. The Dominated Convergence Theorem (DCT).

Suppose $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+, f_n \to f \text{ a.e.. If } |f_n| \leq g, \text{ where } g \in \mathcal{L}^1(\mathbb{R}^d), \text{ then }$

$$\int |f_n - f| \to 0, \ n \to \infty \tag{3.133}$$

and consequently

$$\int f_n \to \int f, \ n \to \infty \tag{3.134}$$

证明. 分别对 $g + f_n$ 和 $g - f_n$ 利用 Fatou's Lemma (Thm 3.1.6) 即可得证.

• Since $g + f_n \ge 0$, then by **Fatou's Lemma (Thm 3.1.6)**,

$$\int \liminf_{n \to \infty} (g + f_n) \le \liminf_{n \to \infty} \int (g + f_n)$$
 (3.135)

Since $f_n \to f$, we have

$$\int g + \int f \le \int g + \liminf_{n \to \infty} \int f_n \tag{3.136}$$

$$\int f \le \liminf_{n \to \infty} \int f_n \tag{3.137}$$

• Since $g - f_n \ge 0$, then by **Fatou's Lemma (Thm 3.1.6)**,

$$\int \liminf_{n \to \infty} (g - f_n) \le \liminf_{n \to \infty} \int (g - f_n)$$
 (3.138)

$$\int g - \int f \le \int g + \liminf_{n \to \infty} \left(- \int f_n \right) \tag{3.139}$$

$$= \int g - \limsup_{n \to \infty} \int f_n \tag{3.140}$$

Then

$$\int f \ge \limsup_{n \to \infty} \int f_n \tag{3.141}$$

Therefore

$$\limsup_{n \to \infty} \int f_n \le \int f \le \liminf_{n \to \infty} \int f_n \tag{3.142}$$

which means $\lim_{n\to\infty} \int f_n$ exists, and

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.143}$$

3.1.5 Complex – Valued Functions

下面我们将实值函数上的 Lebesgue 积分推广至复值函数.

先来规定一些记号:

• Let $f : \mathbb{R}^d \to \mathbb{C}$, write f(x) = u(x) + iv(x).

下面给出复值函数可测以及可积的定义.

定义 **3.1.7.** Suppose $f: \mathbb{R}^d \to \mathbb{C}$, f = u + iv, then we say

- f is **measurable** if u and v are both measurable.
- f is Lebesgue integrable if |f| is Lebesgue integrable.

注. 事实上,根据此处定义,f 可积 \Leftrightarrow u and v 都可积. 证明.

• f is integrable $\Rightarrow \int \sqrt{u^2 + v^2} < \infty \Rightarrow \int |u|, \int |v| \le \int \sqrt{u^2 + v^2} < \infty \Rightarrow u$ and $v \exists m$.

• u and v 可积 $\Rightarrow \int |u|, \int |v| < \infty \Rightarrow \int \sqrt{u^2 + v^2} \le \int |u| + \int |v| < \infty \Rightarrow f$ 可积.

下面对命题 3.1.5 的结论进行推广,即由复值可积函数构成的空间为线性空间.

命题 **3.1.7.** $\mathcal{L}^1(\mathbb{R}^d, \mathbb{C})$ is a vector space.

证明. Trivial.

3.2 \mathcal{L}^1 空间的完备性

引入 在讲 Riemann 积分时,我们称 Riemann 可积函数构成的空间是不完备的 (not complete). 在提及完备这个概念之前,我们需要先引入衡量"距离"的工具,即范数和度量.

3.2.1 范数, 度量

下面给出范数和度量的严格定义.

定义 **3.2.1.** Let X be a vector space over \mathbb{F} , a **norm** is a function:

$$X \longrightarrow \mathbb{R}_{>0} \tag{3.144}$$

$$f \longmapsto ||f|| \tag{3.145}$$

satisfying the following properties:

- (i) $||f|| \ge 0, \forall f \in X$. ($||f|| = 0 \iff f = 0 \text{ a.e.}$)
- (ii) $||af|| = |a| ||f||, \forall a \in \mathbb{F}, f \in X.$
- (iii) $||f + g| \le ||f|| + ||g||, \forall f, g \in X$.
 - 注. (i) 中的 " $||f|| = 0 \Leftrightarrow f = 0$ a.e." 的 "a.e." 是对于 X 取函数空间时的条件,在 实分析的取等条件中基本为默认叙述,在后续定义中往往省略. 在对 \mathcal{L}^1 空间的定义 (定义 3.2.4) 中可以看到其合理性.
 - **范数**实际上是对 ℝⁿ 空间中 "与原点之间的距离"这一概念的推广. 将函数视作向量,则 其范数即为到原点的距离,即模长.
 - 若一个线性空间 *X* 上配备了一个范数,则称其为赋范向量空间(赋范线性空间).

将函数视作向量,就有其**到原点的距离为范数**.但若是想要衡量**任意两个函数之间的距 离**,则需要引入下面**度量**的概念.

定义 3.2.2. A metric on X is a map

$$d: X \times X \longrightarrow \mathbb{R}_{>0} \tag{3.146}$$

$$(x, y) \longmapsto d(x, y) \tag{3.147}$$

satisfying

- (i) $d(x, y) \ge 0, \forall x, y \in X$. $(d(x, y) = 0 \Leftrightarrow x = y)$
- (ii) $d(x, y) = d(y, x), \forall x, y \in X$.
- (iii) $d(x, y) + d(y, z) \ge d(x, z), \forall x, y, z \in X$.
 - 注. 若 X 为函数空间,则 (i) 中 "d(x,y) = 0" 等价条件默认为 "x = y a.e.".
 - 度量可看作将两个函数 (向量) 的起点均平移至原点后,其两个终点之间的距离.

3.2.2 The Space $\mathcal{L}^1(\mathbb{R}^d)$

范数 下面先在所有 Lebesgue 可积函数构成的空间上定义范数.

定义 3.2.3. For any integrable function f on \mathbb{R}^d , we define the **norm** of f,

$$||f|| = \int_{\mathbb{R}^d} |f| \, dx \tag{3.148}$$

- 注. 由命题 3.1.3 可知,此处 $||f|| = 0 \Leftrightarrow f = 0$ a.e.
- 容易证明,如此定义的范数满足范数应当满足的三条公理. (定义 3.2.1)

Space $\mathcal{L}^1(\mathbb{R}^d)$ 由于**定义 3.2.3**中 " $||f|| = 0 \Leftrightarrow f = 0$ a.e.",而我们对零测集上的函数性质并不关心,因而引出了如下关于 \mathcal{L}^1 空间的定义.

定义 3.2.4. 我们在所有 Lebesgue 可积函数构成的空间上定义一个等价关系 "~":

$$f \sim g \Leftrightarrow f = g \text{ a.e.}$$

 $\mathcal{L}^1(\mathbb{R}^d)$ is the space of equivalences classes of integrable functions.

注. 由定义可知, $\mathcal{L}^1(\mathbb{R}^d)$ 空间中的元素实际上为函数的等价类 (集合)

$$[f] = \{g \text{ integrable } | g \sim f\}$$

而在实际中,我们还是习惯性地当作单独的函数进行运算,这在几乎处处的意义下时等价的.

度量 下面我们说明,根据定义 3.2.3 中所定义的范数可诱导出 $\mathcal{L}^1(\mathbb{R}^d)$ 上的一个度量.

命题 3.2.1.

$$d: \mathcal{L}^{1}(\mathbb{R}^{d}) \times \mathcal{L}^{1}(\mathbb{R}^{d}) \longrightarrow \mathbb{R}_{\geq 0}$$
(3.149)

$$(f,q) \longmapsto d(f,q) := ||f - q|| \tag{3.150}$$

defines a **metric** on $\mathcal{L}^1(\mathbb{R}^d)$.

证明. 下面即来逐一验证定义 3.2.2 中的三条公理.

• 根据范数的非负性, $\forall f, g \in \mathcal{L}^1(\mathbb{R}^d), \ d(f,g) = ||f - g|| \ge 0.$

$$d(f, q) = 0 \Leftrightarrow f - q = 0 \text{ a.e. } \Leftrightarrow f = q \text{ in } \mathcal{L}^1(\mathbb{R}^d)$$

• 可交换性. $\forall f, g \in \mathcal{L}^1(\mathbb{R}^d)$,

$$d(f,g) = |f - g|| = \int_{\mathbb{R}^d} |f - g| = \int_{\mathbb{R}^d} |g - f| = ||g - f|| = d(g,f)$$
 (3.151)

• 根据范数的三角不等式, $\forall f,g,h\in\mathcal{L}^1(\mathbb{R}^d)$,

$$d(f,g) + d(g,h) = ||f - g|| + ||g - h|| \ge ||(f - g) + (g - h)|| = ||f - h|| = d(f,h)$$

3.2.3 \mathcal{L}^1 空间的完备性

定义 在得到了范数、度量的定义后,我们下面给出完备空间的定义.

定义 3.2.5. A metric space X is complete if every Cauchy Sequence $\{x_k\}_{k=1}^{\infty}$ has a limit in X.

注. • 完备空间即指空间中的任一柯西列都有收敛到自身的极限.

• 下面给出一个不完备的度量空间的例子.

例 3.2.1. 取一维实数域 \mathbb{R} 的子空间 $(0,1) \subset \mathbb{R}$,考虑其上的 Cauchy Sequence $\{\frac{1}{n}\}_{n=2}^{\infty} \subset (0,1)$.

由于 $\frac{1}{n} \to 0 \notin (0,1)$, 因此度量空间 (0,1) 不完备.

 \mathcal{L}^1 空间的完备性 下面我们将给出本小节最重要的结论,即 \mathcal{L}^1 空间的完备性,这也是其比 **Riemann 可积函数**所构成的空间的优越性之所在.

定理 3.2.1. (Riesz - Fischer).

 \mathcal{L}^1 is complete in its metric.

证明. Let $\{f_n\}_{n=1}^{\infty}\subset \mathcal{L}^1(\mathbb{R}^d)$ be a Cauchy Sequence in \mathcal{L}^1 , then

$$\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}, \forall n, m \ge N(\epsilon), \text{ s. t. } ||f_n - f_m|| \le \epsilon$$

Tacking $\epsilon = 2^{-k}$, then $\exists N(2^{-k}) \ge N^{2^{-(k-1)}}$, s. t. for $n_k = N(2^{-k})$, $n_{k+1} = N(2^{-(k+1)})$,

$$||f_{n_k} - f_{n_{k+1}}|| \le 2^{-k}$$

下面分为三步进行证明.

• 构建 f(x) 并利用 g(x) 证明 $f \in \mathcal{L}^1$,证明子列 $\{f_{n_j}\}_{j=1}^{\infty}$ 收敛到 f. Let

$$f = f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i})$$
 (3.152)

$$g = \left| f_{n_1} \right| + \sum_{j=1}^{\infty} \left| f_{n_{j+1}} - f_{n_j} \right|$$
 (3.153)

Then by MCT (Thm 3.1.2, 控制收敛定理)

$$\int g = \int |f_{n_1}| + \int \sum_{j=1}^{\infty} |f_{n_{j+1}} - f_{n_j}| = \int |f_{n_1}| + \sum_{j=1}^{\infty} \int |f_{n_{j+1}} - f_{n_j}|$$
(3.154)

$$= \int |f_{n_1}| + \sum_{i=1}^{\infty} ||f_{n_{j+1}} - f_{n_j}||$$
 (3.155)

$$\leq \int |f_{n_1}| + \sum_{j=1}^{\infty} 2^{-j} < \infty$$
 (3.156)

Therefore g is integrable, $g \in \mathcal{L}^1$. Since $|f| \leq g$, then $\int |f| < \infty$. f is integrable.

Let

$$S_k = f_{n_1} + \sum_{j=1}^k (f_{n_{j+1}} - f_{n_j}) = f_{n_{k+1}}, \quad k = 1, 2, \cdots$$
 (3.157)

f is integrable $\Rightarrow f < \infty$ a.e. $\Rightarrow S_k$ converges a.e. $\Rightarrow S_k = f_{n_{k+1}} \to f$ a.e.

So we find

$$f_{n_k} \to f$$
 a.e.

• 将逐点收敛性转化为 \mathcal{L}^1 收敛性,即证 $||f - f_{n_k}|| \to 0$.

We note that

$$\left| f - f_{n_k} \right| = \left| \left(f_{n_1} + \sum_{j=1}^{\infty} \left(f_{n_{j+1}} - f_{n_j} \right) \right) - \left(f_{n_1} + \sum_{j=1}^{k-1} \left(f_{n_{j+1}} - f_{n_j} \right) \right) \right|$$
(3.158)

$$= \left| \sum_{j=k}^{\infty} (f_{n_{j+1}} - f_{n_j}) \right| \le g \tag{3.159}$$

By **DCT** (**Thm 3.1.7**, 控制收敛定理), since $|f - f_{n_k}| \to 0$ a.e., $|f - f_{n_k}| \le g$, g integrable,

$$\lim_{k \to \infty} ||f - f_{n_k}|| = \lim_{k \to \infty} \int |f - f_{n_k}| \stackrel{\mathbf{DCT}}{=} \int \lim_{k \to \infty} |f - f_{n_k}| = 0$$
 (3.160)

Therefore, $||f - f_{n_k}|| \to 0$. 即 f_{n_k} 依 \mathcal{L}^1 范数收敛到 f.

• 利用子列 $\{f_{n_k}\}_{k=1}^{\infty}$ 作为"桥梁",证明 f_n 依 \mathcal{L}^1 范数收敛到 f,即 $||f_n - f|| \to 0$. $\forall \epsilon > 0$,由于 $\{f_n\}_{n=1}^{\infty}$ 为 \mathcal{L}^1 中 Cauchy Sequence, 因此 $\exists N \in \mathbb{N}$, s. t.

$$||f_n-f_m||<rac{\epsilon}{2}, \ \ \forall n,m>N$$

Since $||f_{n_k} - f|| \to 0$, then for $\epsilon > 0$, pick $n_k > N$ which s. t.

$$||f_{n_k}-f||<\frac{\epsilon}{2}$$

Then

$$||f_n - f|| \le ||f_n - f_{n_k}|| + ||f_{n_k} - f|| < \epsilon, \ \forall n > n_k > N$$
(3.161)

Therefore $||f_n \to f|| \to 0$ with $f \in \mathcal{L}^1$. \mathcal{L}^1 is complete in its metric.

根据上述定理的证明过程,可以得到下面的推论.

推论 3.2.2. If $\{f_n\}_{n=1}^{\infty}$ converges to f in \mathcal{L}^1 , then there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ such that

$$f_{n_k}(x) \to f(x)$$
 a.e.

 \dot{L} . 即在 \dot{L} 范数收敛的函数序列中,总存在"几乎处处收敛"意义的子列.

3.2.4 \mathcal{L}^1 的稠密子空间

下面说明 \mathcal{L}^1 空间中以下的函数集合是**稠密的**.

定理 **3.2.3.** The following families of functions are dense in $\mathcal{L}^1(\mathbb{R}^d)$:

- (i) The simple functions.
- (ii) The step functions.
- (iii) The continuous functions of compact support.

证明. 详情可见视频Urysohn 引理与 \mathcal{L}^1 的稠密子空间.

3.3 Lebesque 积分的平移不变性

首先给出平移算符及函数平移的符号表达.

定义 **3.3.1.** The <u>translation</u> by a vector h on \mathbb{R}^d is denoted by the map $t_h : x \mapsto x - h$. If f is a function defined on \mathbb{R}^d , the <u>translation</u> of f by $h \in \mathbb{R}^d$ is the function f_h , defined by

$$f_h(x) = (f \circ \tau_h)(x) = f(x - h)$$

下面给出 Lebesgue 积分的平移不变性.

定理 **3.3.1.** If $f \in \mathcal{L}^1(\mathbb{R}^d)$, then $\forall h \in \mathbb{R}^d$, $f_h \in \mathcal{L}^1(\mathbb{R}^d)$ and

$$\int_{\mathbb{R}^d} f(x - h) dx = \int_{\mathbb{R}^d} f(x) dx$$
 (3.162)

证明. 下面按 Lebesque 积分的构造过程来证明,即特征函数 \Rightarrow 简单函数 \Rightarrow 非负可测.

• Characteristic Function.

Suppose $f = \chi_E$, where $E \subset \mathbb{R}^d$ is measurable. Then

$$f_h(x) = f(x - h) = \chi_E(x - h) = \begin{cases} 1, & \text{if } x - h \in E \\ 0, & \text{if } x - h \notin E \end{cases} = \begin{cases} 1, & \text{if } x \in E + h = E_h \\ 0, & \text{if } x \in (E + h)^c = E_h^c \end{cases}$$
(3.163)

根据 Lebesgue 测度的平移不变性,

$$\int_{\mathbb{R}^d} f_h = m(E_h) = m(E) = \int_{\mathbb{R}^d} f$$
 (3.164)

• Simple Function.

 $\forall \varphi = \sum_{k=1}^{n} a_k \chi_{E_k}$ simple, by the **linearity of integration**,

$$\int_{\mathbb{R}^d} \varphi_h = \sum_{k=1}^n \int_{\mathbb{R}^d} \chi_{(E_k)_h} = \sum_{k=1}^n \int_{\mathbb{R}^d} \chi_{E_k} = \int_{\mathbb{R}^d} \varphi$$
 (3.165)

• Non-negative Function.

 $\forall f$ non-negative, $\exists \{\varphi_n\}_{n=1}^{\infty}$ simple, s. t. $\varphi \nearrow f$ and $\varphi \ge 0$. Then by **MCT** (**Thm 3.1.2**),

$$\int_{\mathbb{R}^d} \varphi_n \to \int_{\mathbb{R}^d} f \text{ as } n \to \infty$$
 (3.166)

Since $(\varphi_n)_h \nearrow f_h$ and $\int \varphi_n = \int (\varphi_n)_h$, then by **MCT** (**Thm 3.1.2**),

$$\int_{\mathbb{R}^d} \varphi_n = \int_{\mathbb{R}^d} (\varphi_n)_h \to \int_{\mathbb{R}^d} f_h \text{ as } n \to \infty$$
 (3.167)

Therefore

$$\int_{\mathbb{R}^d} f_h = \int_{\mathbb{R}^d} f \tag{3.168}$$

• General Case.

 $\forall f \in \mathcal{L}^1(\mathbb{R}^d), f = f^+ - f^-$, where f^+ and f^- are non-negative.

Then by the linearity of integration,

$$\int_{\mathbb{R}^d} f_h = \int_{\mathbb{R}^d} f_h^+ - \int_{\mathbb{R}^d} f_h^- = \int_{\mathbb{R}^d} f^+ - \int_{\mathbb{R}^d} f^- = \int_{\mathbb{R}^d} f$$
 (3.169)

3.4 Lebesgue 可积函数的 \mathcal{L}^1 连续性

引入 Recall 数学分析中连续的等价定义:

$$f$$
 is continous at $x \Leftrightarrow f(x) - f(x - h) \to 0$ as $h \to 0$ (3.170)

$$\Leftrightarrow |f_h(x) - f(x)| \to 0 \text{ as } h \to 0$$
 (3.171)

即可大致视作 Riemann 可积函数关于 2-范数的连续性.

Lebesgue 可积函数的 \mathcal{L}^1 连续性 在 \mathcal{L}^1 空间中,**Lebesgue** 可积函数也有类似的关于 \mathcal{L}^1 范数的连续性. 这就是下面的定理.

定理 **3.4.1.** Suppose $f \in \mathcal{L}^1(\mathbb{R}^d)$, then

$$||f_h - f||_{\mathcal{L}^1} \to 0 \text{ as } h \to 0$$
 (3.172)

证明. 详见视频积分的平移不变性与可积函数的 \mathcal{L}^1 连续性. 其中需要用到如下的引理.

引理 **3.4.2.** ² If $f \in C_c(\mathbb{R}^d)$, then f is uniformly continuous.

²此为书:《Real Analysis – – Modern Techniques and Their Applications》— Gerald B. Folland **P238 Lemma 8.4**

3.5 Fubini 定理

为了讨论的方便,下面先给出函数及集合的切片的定义.

定义 3.5.1. If f is a function on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, the <u>slice</u> of f w.r.t. $y \in \mathbb{R}^{d_2}$ is the function

$$f^y: \mathbb{R}^{d_1} \longrightarrow \overline{\mathbb{R}} \tag{3.173}$$

$$x \longmapsto f(x, y) \tag{3.174}$$

Similarly, the <u>slice</u> of f for a fixed $x \in \mathbb{R}^{d_1}$ is

$$f_{x}: \mathbb{R}^{d_{2}} \longrightarrow \overline{\mathbb{R}} \tag{3.175}$$

$$y \longmapsto f(x, y) \tag{3.176}$$

Let $E \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, we define its <u>slices</u> by

$$E^{y} := \{ x \in \mathbb{R}^{d_1} \mid (x, y) \in E \}, \ E_x := \{ y \in \mathbb{R}^{d_2} \mid (x, y) \in E \}$$
 (3.177)

下面给出 Fubini 定理.

定理 3.5.1. Fubini.

Suppose f(x, y) is **integrable** on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for a.e. $y \in \mathbb{R}^{d_2}$:

- (i) The slice f^y is integrable on \mathbb{R}^{d_1} .
- (ii) The function $y \mapsto \int_{\mathbb{R}^{d_1}} f^y(x) dx$ is integrable on \mathbb{R}^{d_2} .
- (iii) Moreover,

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y(x) dx \right) dy = \int_{\mathbb{R}^d} f$$
 (3.178)

3.5.1 Fubini 定理的证明

证明. Let $\mathcal{F} = \{ f \in \mathcal{L}^1(\mathbb{R}^d) \mid f \text{ satisfies } (i) \sim (iii) \}$. It suffices to show that $\mathcal{L}^1(\mathbb{R}^d) \subset \mathcal{F}$. 下面仍按照构造 *Lebesque* 积分的顺序思路进行证明,即**特征函数** \Rightarrow 简单函数 \Rightarrow 非负可测.

(其中**特征函数**部分 (Step 3 ~ 5) 最为复杂繁琐,后续的证明则是水到渠成)

在此之前,还要先证明 F 对**函数的线性组合**及单调函数列的极限封闭.

• Step 1: Any finite linear combination of functions in $\mathcal F$ also belongs to $\mathcal F$.

Suppose $\{f_k\}_{k=1}^N \subset \mathcal{F}$. By the condition, $\forall k, \exists A_k \subset \mathbb{R}^{d_2}, m(A_k) = 0, \text{ s. t.}$

$$f_k^y(x)$$
 is integrable on \mathbb{R}^{d_1} , $\forall y \in A_k^c$.

Let
$$A = \bigcup_{k=1}^{N} A_k$$
, then $m(A) = 0$ and

 $f_k^y(x)$ is integrable on \mathbb{R}^{d_1} , $\forall y \in A^c$, $\forall k$.

下面对定理结论逐条验证. By the linearity of integration, $\forall a_k \in \mathbb{R}$,

$$\left(\sum_{k=1}^{N} a_k f_k\right)^y = \sum_{k=1}^{N} a_k f_k^y \text{ is integrable on } \mathbb{R}^{d_1}$$
(3.179)

$$\int_{\mathbb{R}^{d_1}} \sum_{k=1}^{N} (a_k f_k)^y(x) dx = \sum_{k=1}^{N} a_k \int_{\mathbb{R}^{d_1}} f_k^y(x) dx \text{ is integrable on } \mathbb{R}^{d_2}$$
 (3.180)

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} \sum_{k=1}^{N} (a_k f_k)^y(x) dx \right) dy = \sum_{k=1}^{N} a_k \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f_k^y(x) dx \right) dy$$
(3.181)

$$= \sum_{k=1}^{N} a_k \int_{\mathbb{R}^d} f_k$$
 (3.182)

$$= \int_{\mathbb{R}^d} \sum_{k=1}^N a_k f_k$$
 (3.183)

(3.184)

Therefore, $\sum_{k=1}^{N} a_k f_k \in \mathcal{F}$, $\forall a_k \in \mathbb{R}$.

• Step 2: \mathcal{F} 对单调函数列的极限封闭,即 $\forall \{f_k\}_{k=1}^{\infty}, f_k \nearrow f$, f integrable $\Rightarrow f \in \mathcal{F}$. Suppose $f_k \geq 0$. By the condition, $\forall k, \exists A_k \subset \mathbb{R}^d, m(A_k) = 0$, s. t.

$$f_k^y(x)$$
 is integrable on \mathbb{R}^{d_1} , $\forall y \in A_k^c$.

Let $A = \bigcup_{k=1}^{\infty} A_k$, then m(A) = 0 and

 $f_k^y(x)$ is integrable on \mathbb{R}^{d_1} , $\forall y \in A^c$, $\forall k$.

Since $f_k^y(x) \nearrow f^y(x)$, by MCT (Thm 3.1.2)

$$\int_{\mathbb{R}^{d_1}} f_k^y(x) dx \to \int_{\mathbb{R}^{d_1}} f^y(x) dx \text{ as } k \to \infty$$
 (3.185)

Let

$$g_k(y) = \int_{\mathbb{R}^{d_1}} f_k^y(x) dx, \ g(y) = \int_{\mathbb{R}^{d_1}} f^y(x) dx$$
 (3.186)

Then we have $g_k(y) \nearrow g(y)$ and $g_k \ge 0$. By MCT (Thm 3.1.2)

$$\int_{\mathbb{R}^{d_2}} g_k(y) dy \to \int_{\mathbb{R}^{d_2}} g(y) dy \text{ as } k \to \infty$$
 (3.187)

i.e.

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f_k^y(x) dx \right) dy \to \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y(x) dx \right) dy \tag{3.188}$$

By the condition (iii), we have

$$\int_{\mathbb{R}^d} f_k \to \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y(x) dx \right) dy \tag{3.189}$$

Since $f_k \nearrow f$, $f_k \ge 0$, by MCT (Thm 3.1.2)

$$\int_{\mathbb{R}^d} f_k \to \int_{\mathbb{R}^d} f \tag{3.190}$$

Therefore

$$\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y(x) dx \right) dy = \int_{\mathbb{R}^{d_2}} g(y) dy$$
 (3.191)

Since f is integrable, $g(y) = \int f^y(x) dx$ is integrable on $\mathbb{R}^{d_2} \implies \int g < \infty$.

Then we have

$$g(y) = \int_{\mathbb{R}^{d_1}} f^y(x) dx < \infty \text{ for a.e. } y \in \mathbb{R}^{d_2}$$
 (3.192)

Therefore $f^y(x)$ is integrable for a.e. $y \in \mathbb{R}^{d_2}$.

Then $f \in \mathcal{F}$.

- Step 3: Any characteristic function of a set E of type G_δ with finite measure belongs to \mathcal{F} . 下面对 E 进行讨论,分 $a \sim e$ 五种情况来证明:
 - (a) $E \subset \mathbb{R}^d$ is a bounded open cube.

Suppose $E = Q_1 \times Q_2$, where $Q_1 \subset \mathbb{R}^{d_1}$ and $Q_2 \subset \mathbb{R}^{d_2}$ are open cubes.

 $\forall y \in \mathbb{R}^{d_2}$, $\chi_E(x, y)$ is measurable in x, and integrable with

$$g(y) = \int_{\mathbb{R}^{d_1}} \chi_E(x, y) dx = \begin{cases} |Q_1|, & \text{if } y \in Q_2 \\ 0, & \text{if } y \notin Q_2 \end{cases} = |Q_1| \chi_{Q_2}(y)$$
 (3.193)

Since $g(y) = |Q_1| \chi_{Q_2}(y)$ is measurable and integrable with

$$\int_{\mathbb{R}^{d_2}} g(y)dy = |Q_1| |Q_2| = |E| = \int_{\mathbb{R}^d} \chi_E$$
 (3.194)

i.e.

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} \chi_E(x, y) dx \right) dy = \int_{\mathbb{R}^d} \chi_E$$
 (3.195)

Therefore, $\chi_E \in \mathcal{F}$.

(b) $E \subset \mathbb{R}^d$ is a subset of the boundary of some closed cube.

Since m(E) = 0, we have

$$\int_{\mathbb{R}^d} \chi_E = m(E) = 0 \tag{3.196}$$

After an investigation of various possibilities, we note that (此处细节证明暂且留疑)

 \forall a.e. $y \in \mathbb{R}^{d_2}$, $E^y = \{x \in \mathbb{R}^{d_1} \mid (x, y) \in E\}$ has measure 0 in \mathbb{R}^{d_1} .

Then \forall a.e. $y \in \mathbb{R}^{d_2}$, $\chi_E^y(x)$ is integrable on \mathbb{R}^{d_1} with

$$g(y) = \int_{\mathbb{R}^{d_1}} \chi_E^y(x) dx = \int_{\mathbb{R}^{d_1}} \chi_E(x, y) dx = 0, \ \forall \ a.e. \ y \in \mathbb{R}^{d_2}$$
 (3.197)

So g(y) is integrable on \mathbb{R}^{d_2} with

$$\int_{\mathbb{R}^{d_2}} g(y)dy = 0 = \int_{\mathbb{R}^d} \chi_E$$
 (3.198)

i.e.

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} \chi_E(x, y) dx \right) dy = \int_{\mathbb{R}^d} \chi_E$$
 (3.199)

Therefore, $\chi_E \in \mathcal{F}$.

(c) $E \subset \mathbb{R}^d$ is a finite union of almost disjoint closed cubes.

Suppose $E = \bigcup_{k=1}^{N} Q_k$, where $\{Q_k^{\circ}\}_{k=1}^{N}$ are disjoint.

Let $A_k = Q_k - Q_k^{\circ}$ be the boundary of closed cube Q_k . Then $\chi_{A_k} \in \mathcal{F}$. (by **Step 3 (b)**)

 χ_E is a linear combination of χ_{Q_k} and χ_{A_k} , $k = 1 \sim N$.

Since χ_{Q_k} , $\chi_{A_k} \in \mathcal{F}$, $k = 1 \sim N$, then by **Step 1**, $\chi_E \in \mathcal{F}$.

(d) $E \subset \mathbb{R}^d$ is open and of finite measure.

Since $E \subset \mathbb{R}^d$ is open, by **Thm 1.1.4**, \exists alomst disjoint closed cubes $\{Q_k\}_{k=1}^{\infty}$, s. t.

$$E = \bigcup_{k=1}^{\infty} Q_k, \text{ where } \{Q_k^{\circ}\}_{k=1}^{\infty} \text{ are disjoint}$$
 (3.200)

Let

$$f_k = \chi_{\bigcup_{j=1}^k Q_j} \tag{3.201}$$

Then by **Step 3** (c), $f_k \in \mathcal{F}$, and $f_k \nearrow f = \chi_E, f_k \ge 0$. By **Step 2**, we have $f = \chi_E \in \mathcal{F}$.

(e) $E \subset \mathbb{R}^d$ is a G_δ of finite measure.

By the **definition of** G_{δ} (**Def 1.4.5**),

$$E = \bigcap_{k=1}^{\infty} \widetilde{Q}_k, \text{ where } \widetilde{Q}_k \subset \mathbb{R}^d$$
 (3.202)

Since *E* has finite measure, $\exists \widetilde{O_0} \subset \mathbb{R}^d$ open, s. t. $E \subset \widetilde{O_0}$.

Let

$$O_k = O_0 \cap \bigcap_{j=1}^k \widetilde{O}_j \tag{3.203}$$

Then $O_1 \supset O_2 \supset \cdots$ and $E = \bigcap_{k=1}^{\infty} O_k$. Let $f_k = \chi_{O_k}$, then $f_k \in \mathcal{F}$. (By **Step 3 (d)**) Since $f_k \searrow f = \chi_E, f_k \in \mathcal{F}$, then by **Step 2**, $f = \chi_E \in \mathcal{F}$.

• Step 4: If $E \subset \mathbb{R}^d$ has measure 0, then $\chi_E \in \mathcal{F}$.

By **Thm 1.4.1**, \exists a set $G \subset \mathbb{R}^d$ of type G_δ with $E = G \setminus N$, where m(N) = 0. Then

$$E \subset G$$
, $m(G) = m(E) + m(G \setminus E) = 0$.

By **Step 3**, $\chi_G \in \mathcal{F}$, then

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} \chi_G(x, y) dx \right) dy = \int_{\mathbb{R}^d} \chi_G = 0$$
 (3.204)

Then

$$\int_{\mathbb{R}^{d_1}} \chi_G(x, y) dx = 0 \text{ for a.e. } y \in \mathbb{R}^{d_2}$$
 (3.205)

Since

$$\int_{\mathbb{R}^{d_1}} \chi_G(x, y) dx = \int_{\mathbb{R}^{d_1}} \chi_G^y(x) dx = \int_{\mathbb{R}^{d_1}} \chi_{G^y}(x) dx = m(G^y)$$
 (3.206)

Therefore

$$G^{y} = \{x \in \mathbb{R}^{d_1} \mid (x, y) \in G\} \text{ has measure 0 for a.e. } y \in \mathbb{R}^{d_2}$$
 (3.207)

Since $E^y \subset G^y$, then E^y has measure 0 for a.e. $y \in \mathbb{R}^{d_2}$.

$$\Rightarrow \int_{\mathbb{R}^{d_1}} \chi_E(x, y) dx = m(E^y) = 0 \text{ for a.e. } y \in \mathbb{R}^{d_2}$$
 (3.208)

$$\Rightarrow \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} \chi_E(x, y) dx \right) dy = 0 = \int_{\mathbb{R}^d} \chi_E$$
 (3.209)

$$\Rightarrow \chi_E \in \mathcal{F} \tag{3.210}$$

• Step 5: If E is any measurable subset of \mathbb{R}^d with finite measure, then χ_E belongs to \mathcal{F} .

By **Thm 1.4.1**, \exists a finite measure G of type G_{δ} with $E \subset G$ and m(G - E) = 0.

Since $\chi_E = \chi_G - \chi_{G-E}$, by **Step 4**, χ_G , $\chi_{G-E} \in \mathcal{F}$, then by **Step 1**, $\chi_E \in \mathcal{F}$.

• Step 6: If f is integrable, then $f \in \mathcal{F}$.

不妨 Suppose
$$f$$
 non-negative. By **Step 1 and Step 5**, $\forall \varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ simple, $\varphi \in \mathcal{F}$. By **Thm 2.2.1**, $\exists \{\varphi_k\}_{k=1}^{\infty}$ simple, $\varphi_k \nearrow f$, $\varphi_k \ge 0$. Then by **Step 2**, $f \in \mathcal{F}$.

Therefore,

$$\mathcal{L}^1(\mathbb{R}^d)\subset\mathcal{F}$$

3.5.2 Fubini 定理的应用

Tonelli 定理 下面给出一个 Fubini 定理的延伸形式,就是 Tonelli 定理,常与 Fubini 定理一起使用,用于判断函数的可积性.

定理 3.5.2. Tonelli.

Suppose f(x, y) is a **non-negative measurable** function on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for a.e. $y \in \mathbb{R}^{d_2}$:

- (i) The slice f^y is **measurable** on \mathbb{R}^{d_1} .
- (ii) The function defined by $y \mapsto \int_{\mathbb{R}^{d_1}} f^y(x) dx$ is **measurable** on \mathbb{R}^{d_2} .
- (iii) Moreover,

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^d} f \in [0, \infty]$$
 (3.211)

注. 在尚未知晓 f 的可积性时,可先用 **Tonelli 定理**计算 |f| 的可积性,从而得到 f 的可积性,再去考虑使用 **Fubini 定理**.

证明. Consider the truncations

$$f_k(x,y) = \begin{cases} f(x,y), & \text{if } |(x,y)| < k \text{ and } f(x,y) < k \\ 0, & \text{otherwise} \end{cases}$$
 (3.212)

Since

$$\int_{\mathbb{R}^d} f_k \le k^{d+1} < \infty \tag{3.213}$$

 f_k is integrable for all k. Then by **Fubini** (**Thm 3.5.1**), $\exists E_k \subset \mathbb{R}^{d_2}$, $m(E_k) = 0$, s. t.

 $f_k^y(x)$ is integrable on \mathbb{R}^{d_1} , $\forall y \in E_k^c$.

$$g_k(y) = \int_{\mathbb{R}^{d_1}} f_k^y(x) dx \text{ is integrable on } \mathbb{R}^{d_2} \text{ a.e.}$$
 (3.214)

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f_k(x, y) dx \right) dy = \int_{\mathbb{R}^d} f_k$$
 (3.215)

下面开始验证 f 满足定理中的各条结论.

• Let $E = \bigcup_{k=1}^{\infty} E_k$, then m(E) = 0 and

$$f_k^y(x)$$
 is integrable on \mathbb{R}^{d_1} , $\forall y \in E^c$, $\forall k$.

 $\forall y \in E^c$, since $f_k^y(x) \nearrow f^y(x)$, $f_k^y(x)$ integrable on \mathbb{R}^{d_1} , specifically measurable Then $\forall y \in E^c$ $f^y(x)$ is measurable. i.e. f^y measurable for a.e. $y \in \mathbb{R}^{d_2}$.

• Since $f_k^y(x) \nearrow f^k(x)$, $\forall y \in E^c$, then by MCT (Thm 3.1.2)

$$g_k(y) = \int_{\mathbb{R}^{d_1}} f_k^y(x) dx \nearrow \int_{\mathbb{R}^{d_1}} f^y(x) dx = g(y) \text{ for a.e. } y \in \mathbb{R}^{d_2}$$
 (3.216)

Since $g_k(y)$ is integrable on \mathbb{R}^{d_2} a.e., specifically measurable,

Then g(y) is measurable on \mathbb{R}^{d_2} a.e.

• Since $g_k(y) \nearrow g(y)$, \forall a.e. $y \in \mathbb{R}^{d_2}$, then by MCT (Thm 3.1.2)

$$\int_{\mathbb{R}^{d_2}} g_k(y) dy \to \int_{\mathbb{R}^{d_2}} g(y) dy \tag{3.217}$$

i.e.

$$\int_{\mathbb{R}^d} f_k = \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f_k(x, y) dx \right) dy \to \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy \tag{3.218}$$

Since $f_k \nearrow f$, by MCT (Thm 3.1.2)

$$\int_{\mathbb{R}^d} f_k \to \int_{\mathbb{R}^d} f \tag{3.219}$$

Therefore

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^d} f \in [0, \infty]$$
 (3.220)

乘积测度 下面给出乘积测度在 Lebesgue 测度下的一些表现性质. 具体证明可见书3P82~85,基本都是 Trivial 的.

推论 3.5.3. If E is a measurable set in $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, then for a.e. $y \in \mathbb{R}^{d_2}$, the slice

 $E^y = \{x \in \mathbb{R}^{d_1} \mid (x, y) \in E\}$ is a measurable subset of \mathbb{R}^{d_1} .

Moreover, $m(E^y)$ is a measurable function of y and

$$m(E) = \int_{\mathbb{R}^{d_2}} m(E^y) dy$$
 (3.221)

注. • 该命题为 Tonelli 定理 (Thm 3.5.2) 的推论,考虑 $f = \chi_E$ 即可轻松得证.

• 该推论说明了对于任一可测集 E,其切片 E^y 都是几乎处处可测的.

有了推论 3.5.3, 我们自然会去思考一般情况下其逆命题是否成立,即

 E_y measurable for a.e. $y \in \mathbb{R}^{d_2} \implies E \subset \mathbb{R}^d$ measurable ?

然而答案是否定的. 下面给出一个反例.

例 3.5.1. Let N denote a non-measurable subset \mathbb{R} (正测度集必有不可测子集, **Prop 1.5.1**). Then define

$$E = [0, 1] \cap \mathcal{N} \subset \mathbb{R} \times \mathbb{R}$$

We see that

$$E^{y} = \begin{cases} [0,1], & \text{if } y \in \mathcal{N} \\ 0, & \text{if } y \notin \mathcal{N} \end{cases}$$

Thus E^y is measurable for every $y \in \mathbb{R}$. However, if E is measurable, then by Cor 3.5.3,

$$E_{x} = \{y \in \mathbb{R} \mid (x, y) \in E\} = \begin{cases} \mathcal{N}, & \text{if } x \in [0, 1] \\ 0, & \text{if } x \notin [0, 1] \end{cases}$$

which is a contradiction for N is non-measurable.

³ 《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》 — Elias M. Stein

下面对推论 3.5.3进行一定程度的推广,得到如下命题.

命题 **3.5.1.** If $E = E_1 \times E_2$ is a measurable subset of \mathbb{R}^d , and $m_*(E_2) > 0$, then E_1 is measurable.

而我们接下来将说明,若两个集合均可测,则他们的 **Descartes 积也是可测集**. 而这事实上就是抽象测度中**乘积测度**的定义. 在此之前,先来说明一个证明时需要用到的引理.

引理 **3.5.4.** If $E_1 \subset \mathbb{R}^{d_1}$ and $E_2 \subset \mathbb{R}^{d_2}$, then

$$m_*(E_1 \times E_2) \le m_*(E_1) m_*(E_2)$$

下面便给出**乘积测度**在 Lebesgue 测度下的定义.

命题 **3.5.2.** Suppose E_1 and E_2 are measurable subsets of \mathbb{R}^{d_1} and \mathbb{R}^{d_2} , respectively. Then $E = E_1 \times E_2$ is a measurable subset of \mathbb{R}^d . Moreover,

$$m(E) = m(E_1)m(E_2)$$

几何联系 在 **Riemann** 积分中我们都熟知积分 $\int f$ 即代表 f 下方所围成区域的 "体积". 而下面我们将说明,在 **Lebesgue** 积分中,积分与**几何直观**之间的联系. (Stein P85~86)

在此之前先给出一个命题,此为命题 3.5.2的推论.

推论 3.5.5. Suppose f is a measurable function on \mathbb{R}^{d_1} . Then the function \widetilde{f} defined by

$$\widetilde{f}(x, y) = f(x)$$

is measurable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$.

图 3.3: Prop 3.5.5

下面给出 Lebesgue 积分与几何直观之间的联系.

推论 3.5.6. Suppose f(x) is a non-negative function on \mathbb{R}^d , and let

$$\mathcal{A} = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} \mid 0 \le y \le f(x)\}$$

Then:

- (i) f is measurable on \mathbb{R}^d iff \mathcal{A} is measurable on \mathbb{R}^{d+1} .
- 1. If the conditions in (i) hold, then

$$\int_{\mathbb{R}^d} f = m(\mathcal{A}) \tag{3.222}$$

图 3.4: Prop 3.5.6

3.6 Lebesgue 积分与 Riemann 积分的联系

下面我们将说明,Lebesgue 积分可视作 Riemann 积分的延拓,它很好地囊括了 Riemann 积分的定义.

在此之前, 先来给出 MCT (Thm 3.1.2, 单调收敛定理) 在单调递减函数列上的表述.

定理 3.6.1. Monotone Convergence Theorem (decreasing).

Let $\{f_n\}_{n=1}^{\infty}$ be non-negative, $f_n \setminus f$, $\int f_1 < \infty$, then

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.223}$$

证明. Let $g_n = f_1 - f_n$, $n \in \mathbb{N}$. Then $g_n \ge 0$ and $g_n \nearrow g = f_1 - f$. By MCT (Thm 3.1.2)

$$\int g_n \to \int g \text{ as } n \to \infty \tag{3.224}$$

i.e.

$$\int (f_1 - f_n) \to \int (f_1 - f) \text{ as } n \to \infty$$
 (3.225)

Therefore

$$\int f_n \to \int f \tag{3.226}$$

下面说明 Riemann 可积函数的积分即为其 Lebesgue 积分.

定理 **3.6.2.** Suppose f is Riemann integrable, then

$$\int_{[a,b]}^{\mathcal{R}} f(x)dx = \int_{[a,b]}^{\mathcal{L}} f(x)dx \tag{3.227}$$

证明. 详细证明可见书4§4.4 或视频 Lebesgue 积分与 Riemann 积分的联系.

^{4《}实变函数论(第三版)》——周民强

3.7 Lebesgue 积分的伸缩变换

下面我们给出 Lebesgue 积分的伸缩变换公式. 这实质上为一般的抽象测度的变量替换公式在 Lebesgue 测度下的特例,而此处我们的证明方法为 Lebesgue 测度下的方法,依赖于 \mathbb{R}^d 中的几何直观,较为枯燥繁琐,不具有一般性. 在后续学习抽象测度时会给出一般性的方法论.

命题 3.7.1. Lebesgue 积分的伸缩变换公式.

- $m(\delta E) = |\delta| m(E), \, \delta \in \mathbb{R}, \, E \subset \mathbb{R}.$
- $\int f(x)dx = |\delta| \int f(\delta x)dx$, $\delta \in \mathbb{R}$, $f \in \mathcal{L}^1(\mathbb{R})$.
- $\int f(x)dx = \delta_1 \cdots \delta_d \int f(\delta x)dx$, $\delta \in \mathbb{R}^d$, $\delta_j > 0$, $f \in \mathcal{L}^1(\mathbb{R}^d)$.
- $m(\delta E) = \delta_1 \cdots \delta_d m(E), \, \delta_i > 0, \, E \subset \mathbb{R}^d.$

证明. 可见视频 积分的伸缩变换 或参考书5P73~74.

⁵ 《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》 — Elias M. Stein

3.8 Littlewood 三原则

Motivation 尽管我们建立起了围绕 **Lebesgus 测度**为中心的新的理论体系,但我们仍应当重视其与数学分析中概念的联系. 而 **Littlewood** 便总结归纳出了这样三条 principles:

- (i) Every (measurable) set is **nearly** a finite union of intervals.
- (ii) Every function (of class $\mathcal{L}^{\hat{n}}$) is **nearly** continuous.
- (iii) Every convergent sequence is **nearly** uniformly convergent.

不难发现其叙述显得并不太严谨,其中的 nearly 一词需要我们给予严格的数学定义.

Littlewood 三原则告诉了我们可测函数与连续函数之间的联系,包括收敛函数列与一致收敛的关系. 其中第一条原则即为定理 1.3.4 (iv).

下面我们从后往前依次给出第三、二条原则,即 Egorov 定理与 Lusin 定理. 这在抽象测度中仍然起着重要作用.

3.8.1 *Egorov* 定理

关于 Littlewood 三原则中的(iii),实际上在数学分析中已不陌生.下面给出一个经典例子.

例 3.8.1. Consider the sequence $f_n(x) = x^n$, $x \in [0, 1]$. Then f_n converges on [0, 1] to f:

$$f(x) = \begin{cases} 0, & \text{if } x \in [0, 1) \\ 1, & \text{if } x = 1 \end{cases}$$

So $f_n \to f$ but not uniformly on [0, 1].

However, if we consider the closed interval $[0, 1 - \epsilon]$ or any closed interval [a, b] except 1, then

$$f_n \Rightarrow f$$
 uniformly on $[0, 1 - \epsilon]$ or $[a, b]$.

which implies "convergent sequence is nearly uniformly convergent".

下面给出 Egorov 定理的表述.

定理 3.8.1. Egorov (Almost Uniform Convergence, 近一致收敛).

Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions on a measurable set A with $m(A) < \infty$, and $f_k(x) \to f(x)$ on A a.e. Given $\epsilon > 0$, we can find a set $E \subset A$ s. t.

$$m(E) < \epsilon$$
 and $f_k \Rightarrow f$ uniformly on E^c .

- 注. 此处若将 Lebesgue 测度 m 换为一般的抽象测度 μ ,即可得到抽象测度下的 Egorov 定理. (可见书 6 P62 Thm 2.33)
- 在证明定理前, 先回顾一下函数列收敛点集 & 发散点集的表述.
 - 收敛点集.

$$x \in$$
收敛点集 $\Leftrightarrow \forall \epsilon > 0, \exists N, \forall n \ge N, |f_n(x) - f(x)| < \epsilon$ (3.228)

离散
$$\forall k \in \mathbb{N}, \exists N, \forall n \ge N, |f_n(x) - f(x)| < \frac{1}{k}$$
 (3.229)

$$\Rightarrow C(f) = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \left\{ x \mid |f_n(x) - f(x)| < \frac{1}{k} \right\}$$
 (3.230)

- 发散点集.

$$x \in$$
 发散点集 $\Leftrightarrow \exists \epsilon > 0, \forall N, \exists n \ge N, |f_n(x) - f(x)| \ge \epsilon$ (3.231)

离散
$$\exists k \in \mathbb{N}, \forall N, \exists n \ge N, |f_n(x) - f(x)| \ge \frac{1}{k}$$
 (3.232)

$$\Rightarrow D(f) = \bigcup_{k=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \left\{ x \mid |f_n(x) - f(x)| \ge \frac{1}{k} \right\}$$
 (3.233)

⁶ 《Real Analysis – – Modern Techniques and Their Applications》 — Gerald B. Folland

证明. Let

$$E_{m}(k) = \bigcup_{n=m}^{\infty} \left\{ x \mid |f_{n}(x) - f(x)| \ge \frac{1}{k} \right\}$$
 (3.234)

Then $E_m(k) \setminus \text{in } m$.

Since $f_k(x) \to f(x)$ on A a.e., then m(D(f)) = 0. Since

$$\bigcap_{m=1}^{\infty} E_m(k) \subset D(f) = \bigcup_{k=1}^{\infty} \left(\bigcap_{m=1}^{\infty} E_m(k) \right)$$
 (3.235)

Then $m\left(\bigcap_{m=1}^{\infty} E_m(k)\right) = 0$. Then by **Thm 1.3.3**,

$$m\left(\bigcap_{m=1}^{\infty} E_m(k)\right) = m\left(\lim_{N \to \infty} \bigcap_{m=1}^{N} E_m(k)\right) = \lim_{N \to \infty} m\left(\bigcap_{m=1}^{N} E_m(k)\right) = 0$$
(3.236)

即得到数列 $\left\{\bigcap_{m=1}^{N} E_m(k)\right\}_{N=1}^{\infty}$ 极限为 0. Then for any fixed $\epsilon > 0$, $\exists N_k \in \mathbb{N}$, s. t.

$$m\left(\bigcap_{m=1}^{N_k} E_m(k)\right) = m\left(E_{N_k}(k)\right) < \frac{\epsilon}{2^k}$$
(3.237)

Let $E = \bigcup_{k=1}^{\infty} E_{N_k}(k)$, then $m(E) < \epsilon$ and

$$E^{c} = \bigcap_{k=1}^{\infty} E_{N_{k}}^{c}(k) = \bigcap_{k=1}^{\infty} \bigcap_{n=N_{k}}^{\infty} \left\{ x \mid |f_{n}(x) - f(x)| < \frac{1}{k} \right\}$$
(3.238)

Then we get for a fixed $k_0 \in \mathbb{N}$, $\exists N_{k_0}$, $\forall n \geq N_{k_0}$, s. t.

$$|f_n(x)-f(x)|<\frac{1}{k_0} \text{ for all } x\in E^c.$$

Therefore, $f_n \Rightarrow f$ uniformly on E^c with $m(E) < \epsilon$.

3.8.2 Lusin 定理

下面给出 Littlewood 三原则中的第 (ii) 点,可测函数 nearly 连续,即 Lusin 定理.

定理 3.8.2. Lusin.

Suppose $f: E \to \mathbb{R}$ is measurable and finite-valued on E with $m(E) < \infty$. Then for every $\epsilon > 0$, there exists a compact set $F \subset E$, s. t.

 $m(F^c) < \epsilon$ and $f|_F$ is continuous.

证明. 可见书7P34 Thm 4.5 或视频 可测函数与连续函数的联系.

 $^{^7}$ \langle Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces \rangle — Elias M. Stein

第四章 Differentiation and Integration

Motivation 在 **Riemann** 积分的框架下,我们知道积分和微分可以视作一对互逆的运算. 而在这一章,我们将在全新的 **Lebesgue** 测度的框架下重新审视积分和微分之间的关系.

下面先来描述一下想要解决的问题.

- Let $f \in \mathcal{L}^1(\mathbb{R}^d)$. 对于变上限积分 $F(x) = \int_a^x f(y) dy$,我们知道根据 **Riemann** 积分下的微积分基本定理,对 F 求导就会回到被积函数 f 本身. 那么我们就会好奇:
 - 在 Lebesgue 积分的框架下,这个结论是否还成立?
 - 如果成立的话,又对哪些x成立呢?

此时回顾求导的定义,即对于差商(此处改写为更具一般性的符号 I = (x, x + h))

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(y) dy = \frac{1}{|I|} \int_{I} f(y) dy$$
 (4.1)

对差商中的增量 $h \to 0$,即得到导数的定义. 那么我们的问题就转化为了

$$\lim_{\substack{|I| \to 0 \\ I \ni x}} \frac{1}{|I|} \int_{I} f(y) dy = f(x) \text{ holds for which } x?$$
 (4.2)

更一般地,将上述问题从一维实直线 \mathbb{R} 推广至 \mathbb{R}^d 空间上,将区间 I 用开球 B 替换,得

$$\lim_{\substack{m(B)\to 0\\B\geqslant x}} \frac{1}{m(B)} \int_B f(y)dy = f(x) \text{ holds for which } x? \tag{4.3}$$

- 注. 此处看似是随着开球 B 的测度减小, $x \in B$ 在跟着 B "跑",但实际上则相反: 对于每个固定的 x,让包含着 x 的球 $B \ni x$ 不断减小其测度,最后取极限而这也就是此处极限条件写为 " $B \ni x$ " 而非 " $x \in B$ " 的原因,逻辑更清晰.
 - 事实上该结论对于**几乎处处的** x 都成立 (若 f **Lebesgue 可积**),这就是后面要讲的 **Lebesgue 微分定理**.

4.1 Hardy - Littlewood 极大函数 (非球心)

定义 下面我们给出 Hardy-Littlewood 极大函数的定义.

定义 **4.1.1.** If $f \in \mathcal{L}^1(\mathbb{R}^d)$, we define its **maximal function** Mf by

$$Mf(x) = \sup_{B \ni x} \frac{1}{m(B)} \int_{B} |f(y)| \, dy$$
 (4.4)

注. 我们目前并不知道球面测度的具体数值与计算方法,但事实上我们也并不需要知道 其具体数值,具体表现在:

设 \mathbb{R}^d 中单位球 B(0,1) 的测度为 $m(B(0,1)) = v_d$. $\forall B(x,r) \subset \mathbb{R}^d$,根据 **Lebesgue** 测度的平移不变性和伸缩变换公式 (**Prop 3.7.1**)

$$B(0,r) = rB(0,1) \implies m(B(x,r)) = m(B(0,r)) = r^d m(B(0,1)) = r^d v_d$$

性质 下面来说明 Hardy-Littlewood 极大函数的三条性质.

命题 **4.1.1.** Suppose $f \in \mathcal{L}^1(\mathbb{R}^d)$. Then:

- (i) Mf is measurable.
- (ii) $Mf(x) < \infty$ for a.e. x.
- (iii) weak-type inequality.

Mf satisfies

$$m(\{x \in \mathbb{R}^d \mid Mf(x) > a\}) \le \frac{A}{a} ||f||_{\mathcal{L}^1}, \ \forall a > 0$$
 (4.5)

where $A = 3^d$.

证明.

(i) Let $E_a = \{x \in \mathbb{R}^d \mid Mf(x) > a\}$. 下面证明 E_a open.

 $\forall x \in E_a$, by the **definition of** Mf (**Def 4.1.1**), $\exists B_x \ni x$, s. t.

$$\frac{1}{m(B_x)} \int_{B_x} |f| > a \tag{4.6}$$

Then $\forall y \in B_x$, B_x is also an open ball containing y, so we have $y \in E_a$. i.e. $B_x \subset E_a$.

Therefore, E_a is open, specifically measurable for all a. Then Mf is measurable.

(ii) 下面说明 (iii) ⇒ (ii):

Let $E_a = \{x \in \mathbb{R}^d \mid Mf(x) > a\}$. Then $E_n \setminus E = \{x \in \mathbb{R}^d \mid Mf(x) = \infty\}$.

Since $f \in \mathcal{L}^1(\mathbb{R}^d)$, $||f||_{\mathcal{L}^1}$ is finite. Then by (iii), $m(E_1) < \infty$.

Then by **Thm 1.3.3**,

$$m(E) = \lim_{n \to \infty} m(E_n) \le \lim_{n \to \infty} \frac{A}{n} \|f\|_{\mathcal{L}^1} = 0$$

$$(4.7)$$

Therefore m(E) = 0. i.e. $Mf(x) < \infty$ for a.e. x.

(iii) 在证明(iii)之前, 先来介绍 Vitali 覆盖引理.

引理 4.1.1. Vitali Covering Lemma (Elementary Version).

Suppose $\mathcal{B} = \{B_1, B_2, \dots, B_N\}$, $B_i \subset \mathbb{R}^d$ are open balls, then there is a disjoint subcollection B_{i_1}, \dots, B_{i_k} that satisfies

$$m\left(\bigcup_{l=1}^{N} B_{l}\right) \le 3^{d} \sum_{j=1}^{k} m(B_{i_{j}})$$
 (4.8)

注. 这是 Vitali 覆盖引理的初等版本 (有限版本),更一般的版本是对一列球结论成立.

证明. 详见视频(非球心)Hardy-Littlewood 极大函数 23:10 (类似贪心算法的迭代步骤) 口

图 4.1: Lemma 4.1.1

下面继续来证明 (iii):

Fix a > 0, $\forall x \in B_a$, \exists open ball B_x , s. t.

$$\frac{1}{m(B_x)} \int_{B_x} |f| > a \tag{4.9}$$

So we have $E_a \subset \bigcup_{x \in E_a} B_x$.

Since E_a is measurable (by (i)), then by Thm 1.3.4 (Lebesgue 测度的内正则性),

 $\forall \epsilon > 0, \exists \text{ compact } K_{\epsilon} \subset E_a, \text{ s. t.}$

$$m(E_a \backslash K_{\epsilon}) \leq \epsilon$$

i.e.

$$m(E_a) - m(K_{\epsilon}) \le \epsilon$$

Since K_{ε} is compact, $K_{\varepsilon} \subset \bigcup_{x \in K_{\varepsilon}} B_x$, there exists a subcollection B_{x_1}, \dots, B_{x_N} , s. t.

$$K_{\epsilon} \subset \bigcup_{l=1}^{N} B_{x_{l}}$$

Then by **Vitali Covering Lemma (Lemma 4.1.1**), there exists a subcollection $B_{x_{i_1}}, \dots, B_{x_{i_k}}$, s. t.

$$m\left(\bigcup_{l=1}^{N} B_{x_l}\right) \leq 3^d \sum_{j=1}^{k} m(B_{x_{i_j}})$$

Therefore

$$m(K_{\epsilon}) \le m\left(\bigcup_{l=1}^{N} B_{x_{l}}\right) \le 3^{d} \sum_{i=1}^{k} m(B_{x_{i_{i}}})$$
 (4.10)

$$= \frac{3^d}{a} \sum_{j=1}^k a \cdot m(B_{x_{i_j}})$$
 (4.11)

$$\leq \frac{3^d}{a} \int_{\bigcup_{i=1}^k B_{x_{i_i}}} |f| \tag{4.12}$$

$$\leq \frac{3^d}{a} \int_{\mathbb{R}^d} |f| \tag{4.13}$$

$$= \frac{3^d}{a} \|f\|_{\mathcal{L}^1} \tag{4.14}$$

Then

$$m(E_a) \le m(K_{\epsilon}) + \epsilon \le \frac{A}{a} \|f\|_{\mathcal{L}^1} + \epsilon$$
 (4.15)

where $A = 3^d$, $\epsilon > 0$.

Since ϵ is arbitrary, let $\epsilon \to 0$, we have

$$m(E_a) \le \frac{A}{a} \|f\|_{\mathcal{L}^1}, \ A = 3^d, \ \forall a > 0$$
 (4.16)

4.2 Lebesgue 微分定理 (非球心)

在这一节我们将利用 Hardy-Littlewood 极大函数来证明 Lebesgue 微分定理.

4.2.1 Chebyshev's Inequality

在此之前,我们先来证明一个非常有用的不等式,即切比雪夫不等式.

定理 4.2.1. Chebyshev's Inequality.

If $g \in \mathcal{L}^1(\mathbb{R}^d)$, then

$$m(\{x \in \mathbb{R}^d \mid |g(x)| > a\}) \le \frac{1}{a} ||g||_{\mathcal{L}^1}, \ \forall a > 0$$
 (4.17)

证明. Let $E_a = \{x \in \mathbb{R}^d \mid |g(x)| > a\}$. Then

$$||g||_{\mathcal{L}^1} = \int_{\mathbb{R}^d} |g| \ge \int_{E_a} |g| \ge \int_{E_a} a = a \cdot m(E_a)$$
 (4.18)

4.2.2 The Lebesgue Differentiation Theorem

下面我们就来给出 Lebesgue 微分定理.

定理 **4.2.2.** If $f \in \mathcal{L}^1(\mathbb{R}^d)$, then

$$\lim_{\substack{m(B) \to 0 \\ B \ni x}} \frac{1}{m(B)} \int_{B} f(y) dy = f(x) \text{ for a.e. } x$$
 (4.19)

- 注. Lebesgue 微分定理说明了对于几乎处处的 x,当包含 x 的球体 B 的测度趋于 0 时, f 在球体 B 上积分的平均值就会收敛到 f(x).
- 定理左侧实际上是关于集合 B 的函数的一个极限过程,用 $\epsilon \delta$ 语言叙述如下: $\forall \epsilon > 0, \exists \delta > 0, \text{ s. t. for all } B \ni x \text{ and } m(B) < \delta, \text{ we have}$

$$\left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| \le \epsilon \tag{4.20}$$

• 要证明该定理,首先需要说明等式左侧**极限的存在性**,但这并不好说明.为了跳过说明 其存在性的问题,我们需要引入类似"上极限"的函数,即:

If suffices to show

$$\lim_{\delta \to 0} \sup_{m(B) < \delta} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| = 0 \quad \text{for a.e. } x$$
 (4.21)

由于极限内的函数随着 δ 递减而单调递减,又存在下界 0,因此在 $\delta = 0$ 处必存在右极限. 这样就跳过了原极限是否存在的问题.

• 事实上此处极限 "怪异"的本质原因在于开球 B 的选取的任意性,若将其定义为以 x 为 球心,r 为半径的球,则可直接令 $r \to 0$ 变为正常的函数极限,即

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy = f(x)$$
 (4.22)

在下一节我们会从 Hardy-Littlewood 极大函数开始,以此方法重新说明 Lebesgue 微分定理.

证明. Let

$$E_{a} = \left\{ x \in \mathbb{R}^{d} \mid \lim_{\delta \to 0} \sup_{\substack{m(B) < \delta \\ B \ni x}} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| > 2a \right\}$$

$$(4.23)$$

Then we **WTS** (want to show):

$$m(E_a) = 0, \forall a \ge 0$$

Fix $a \ge 0$. By **Thm 3.2.3**, $C_c(\mathbb{R}^d)$ is dense in $\mathcal{L}^1(\mathbb{R}^d)$ (有紧支集的连续函数), then $\forall \epsilon > 0$, $\exists g \in C_c(\mathbb{R}^d)$, s. t.

$$||f-g||_{\mathcal{L}^1}<\epsilon$$

Since g is uniformly continuous, then $\exists \delta > 0$, s. t.

$$\left|\frac{1}{m(B)}\int_{B}g(y)dy-g(x)\right| \leq \frac{1}{m(B)}\int_{B}\left|g(y)-g(x)\right|dy < \frac{1}{m(B)}\int_{B}\epsilon dy = \epsilon \tag{4.24}$$

for all $B \ni x$ and $m(B) < \delta$.

下面对 $m(E_a)$ 进行估计. $\forall x \in E_a$,

$$\left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| \le \left| \frac{1}{m(B)} \int_{B} (f(y) - g(y)) dy \right| + \left| \frac{1}{m(B)} \int_{B} g(y) dy - g(x) \right| + \left| g(x) - f(x) \right|$$
(4.25)

对上述不等式中的开球 $B \ni x$ 取上确界 \sup ,得

$$\sup_{B\ni x} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| \leq \sup_{B\ni x} \left| \frac{1}{m(B)} \int_{B} (f(y) - g(y)) dy \right| + \sup_{B\ni x} \left| \frac{1}{m(B)} \int_{B} g(y) dy - g(x) \right| + |g(x) - f(x)|$$
(4.26)

再令 $m(B) \to 0$,由于根据式 (4.24),

$$\lim_{\delta \to 0} \sup_{\substack{m(B) < \delta \\ B \ni x}} \left| \frac{1}{m(B)} \int_{B} g(y) dy - g(x) \right| = 0$$

$$(4.27)$$

因此

$$\lim_{\delta \to 0} \sup_{\substack{m(B) < \delta \\ B \ni x}} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| \le \lim_{\delta \to 0} \sup_{\substack{m(B) < \delta \\ B \ni x}} \left| \frac{1}{m(B)} \int_{B} (f(y) - g(y)) dy \right| + 0 + |g(x) - f(x)|$$
(4.28)

下面对<mark>红色部分</mark>进行估计. 根据对 δ 的单调性可知,

$$\lim_{\delta \to 0} \sup_{\substack{m(B) < \delta \\ B \ni x}} \left| \frac{1}{m(B)} \int_{B} (f(y) - g(y)) dy \right| \le \sup_{B \ni x} \frac{1}{m(B)} \int_{B} |f(y) - g(y)| \, dy = M(f - g)(x) \tag{4.29}$$

又因为对于 $\forall x \in E_a$,

$$\lim_{\delta \to 0} \sup_{\substack{m(B) < \delta \\ Bay}} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| > 2a \tag{4.30}$$

所以

$$M(f - g)(x) + |g(x) - f(x)| > 2a$$
(4.31)

$$\Rightarrow M(f - g)(x) > a \text{ or } |g(x) - f(x)| > a$$

$$\tag{4.32}$$

$$\Rightarrow E_a \subset \{x \in \mathbb{R}^d \mid M(f - g)(x) > a\} \cup \{x \in \mathbb{R}^d \mid |g - f| > a\}$$

$$\tag{4.33}$$

下面分别来估计 the purple one 和 the orange one 的测度.

• 由于 $|f-g| \in \mathcal{L}^1\mathbb{R}^d$,因此根据 Chebyshev's Inequality (Thm 4.2.1),

$$m(\{x \in \mathbb{R}^d \mid |g - f| > a\}) \le \frac{1}{a} \|f - g\|_{\mathcal{L}^1}$$
 (4.34)

• 根据 Hardy-Littlewood 极大函数的 weak-type inequality (Prop 4.1.1 (iii)),

$$m(\{x \in \mathbb{R}^d \mid M(f-g)(x) > a\}) \le \frac{A}{a} \|f-g\|_{\mathcal{L}^1}$$
 (4.35)

从而根据 $||f - g||_{\mathcal{L}^1} < \epsilon$,

$$m(E_a) \le m(\{x \in \mathbb{R}^d \mid M(f - g)(x) > a\}) + m(\{x \in \mathbb{R}^d \mid |g - f| > a\})$$
 (4.36)

$$\leq \frac{A+1}{a} \|f - g\|_{\mathcal{L}^1} \tag{4.37}$$

$$<\frac{A+1}{a}\epsilon, \ \forall a \ge 0$$
 (4.38)

Since $\epsilon > 0$ is arbitrary, let $\epsilon \to 0$, we get

$$m(E_a) = 0, \ \forall a \ge 0 \tag{4.39}$$

4.3 Hardy - Littlewood 极大函数 & Lebesgue 微分定理 (球心)

4.3.1 Hardy – Littlewood 极大函数

本节的重点是给出 Hardy-Littlewood 极大函数 (centered) 的定义并证明其连续性.

Premilinaries 在此之前, 先来给出一些记号与命题.

We define 开球 & 球面

$$B(x, r) := \{ y \in \mathbb{R}^d \mid |y - x| < r \}$$

$$S(x, r) := \{ y \in \mathbb{R}^d \mid |y - x| = r \}$$

下面说明球面为零测集.

命题 **4.3.1.** $m(S(x,r)) = 0, \forall x \in \mathbb{R}^d, r \geq 0.$

证明. 根据 Lebesgue 测度的平移不变性和伸缩变换公式 (Prop 3.7.1), it suffices to show

$$m(S(0,1)) = 0$$

反证法. Suppose m(S(0,1)) > 0. By **Prop 3.7.1**,

$$m(rS(0,1)) = r^d m(S(0,1)) \geq m(S(0,1)), \forall r \geq 1.$$

Consider the compact set $\{x \in \mathbb{R}^d \mid 1 \le |x| \le 2\}$. We have

$$\bigcup_{k=1}^{\infty} S(0, 1 + \frac{1}{k}) = \bigcup_{k=1}^{\infty} (1 + \frac{1}{k}) S(0, 1) \subset \{ x \in \mathbb{R}^d \mid 1 \le |x| \le 2 \}$$
 (4.40)

However

$$m\left(\bigcup_{k=1}^{\infty} S(0, 1 + \frac{1}{k})\right) = \sum_{k=1}^{\infty} m\left(S(0, 1 + \frac{1}{k})\right) \ge \sum_{k=1}^{\infty} m\left(S(0, 1)\right) = \infty$$
 (4.41)

which is a contradiction for $\{1 \le |x| \le 2\}$ is compact.

下面我们给出当**球心收敛时,开球的特征函数的收敛性**.

命题 **4.3.2.** $\forall (x_j, r_j) \rightarrow (x, r)$ on $\mathbb{R}^d \times \mathbb{R}$,

$$\chi_{B(x_j,r_j)}(y) \to \chi_{B(x,r)}(y) \text{ on } \mathbb{R}^d \backslash S(x,r)$$

注. 该命题在开球 $B(x_j, r_j)$ 的边界,即 S(x, r) 上不一定成立. 下面给出一个反例.

例 4.3.1. In \mathbb{R} , take $x_j = 0$, $r_j = 1 + \frac{1}{j+1}$. Then $(x_j, r_j) \to (0, 1)$.

$$\chi_{B(x_j,r_j)} = \chi_{(-1-\frac{1}{i+1},1+\frac{1}{i+1})} \longrightarrow \chi_{[-1,1]}$$

and $\chi_{[-1,1]}(x) \neq \chi_{(-1,1)}(x)$, for x = -1 or 1.

证明. 下面分别对 |y| < r = |y - x| > r 两种情况进行讨论.

(i) |y - x| < r. WTS

$$|x_j - y| < r_j, \forall j > N \text{ for some } N$$

Since $|x_j - y| < |x_j - x| + |x - y|$, it suffices to show

$$\left|x_{j}-x\right|+\left|x-y\right|< r_{j}$$

Suppose $|x - y| = r - \epsilon$, $\epsilon > 0$. Then

$$\Leftrightarrow |x_j - x| + r - \epsilon < r_j$$

$$\Leftrightarrow |x_j - x| + r - r_j < \epsilon$$

It suffices to show

$$|x_j-x|+|r_j-r|<\epsilon$$

Since $(x_i, r_i) \to (x, r)$, then $\exists N \in \mathbb{N}$, s. t.

$$\left|x_{j}-x\right|<rac{\epsilon}{3},\left|r_{j}-r\right|<rac{\epsilon}{3},\,orall j>N$$

Then $|x_j - y| < r_j, \forall j > N$.

(ii) |y-x|>r. 同理 Suppose $|x-y|=r+\epsilon$, $\epsilon>0$. WTS $\left|x_j-y\right|>r_j$, $\forall j>N$ for some N. It suffices to show

$$|x_j - y| > |x - y| - |x_j - x| = r + \epsilon - |x_j - x| > r_j$$

 $\Leftrightarrow |x_j - x| + r_j - r < \epsilon$

Average Value of f on B(x,r) 在说明 f 的连续性之前,先来说明去掉 sup 的函数的连续性.

定义 4.3.1. We define the average value of f on B(x, r)

$$A_{r}f(\mathbf{x}) = \frac{1}{m(B(\mathbf{x}, \mathbf{r}))} \int_{B(\mathbf{x}, \mathbf{r})} f(y) dy$$
 (4.42)

下面给出局部可积的概念.

定义 **4.3.2.** A measurable function $f: \mathbb{R}^d \to \mathbb{C}$ is called **locally integrable** if

$$\int_{K} |f| < \infty \text{ for every bounded measurable set } K \subset \mathbb{R}^{d}$$
 (4.43)

We write $f \in \mathcal{L}^1_{loc}(\mathbb{R}^d)$.

例 4.3.2. $f(x) = e^x$ is locally integrable but not integrable on \mathbb{R} .

下面给出 $A_r f(x)$ 的**连续性**.

引理 **4.3.1.** If $f \in \mathcal{L}^1_{loc}(\mathbb{R}^d)$, then

 $A_r f(x)$ is jointly continuous in r and x (r > 0, $x \in \mathbb{R}^d$).

证明. 下面分为两步进行证明.

• $\int_{B(x,r)} f(y) dy$ is continuous.

$$\int_{B(0,r)} f(y) dy = \int_{\mathbb{R}^d} f(y) \chi_{B(x,r)}(y) dy$$
 (4.44)

Fix $(x, r) \in \mathbb{R}^d \times \mathbb{R}$, $\forall (x_j, r_j) \rightarrow (x, r)$, by **Prop 4.3.2**,

$$\chi_{B(x_j,r_j)}(y) \to \chi_{B(x,r)}(y) \text{ on } \mathbb{R}^d \backslash S(x,r)$$

Since by **Prop 4.3.1**, m(S(x, r)) = 0, we have

$$\chi_{B(x_j,r_j)}(y) \to \chi_{B(x,r)}(y)$$
 for a.e. y

$$\Rightarrow f(y)\chi_{B(x_i,r_i)}(y) \to f(y)\chi_{B(x,r)}(y)$$
 for a.e. y

Since $(x_j, r_j) \to (x, r)$, $\exists N$, s. t. $B(x_j, r_j) \subset B(x, 100r)$, $\forall j > N$. Then

$$|f(y)\chi_{B(x_i,r_i)}(y)| \le |f(y)\chi_{B(x,100r)}(y)| \in \mathcal{L}^1 \text{ for a.e. } y$$

Therefore, by DCT (Thm 3.1.7, 控制收敛定理)

$$\int_{\mathbb{R}^d} f(y) \chi_{B(x_j, r_j)}(y) dy \to \int_{\mathbb{R}^d} f(y) \chi_{B(x, r)}(y) dy \tag{4.45}$$

i.e.

$$\int_{B(x_j,r_j)} f(y)dy \to \int_{B(x,r)} f(y)dy, \ \forall (x_j,r_j) \to (x,r)$$
 (4.46)

Then by **Heine** 归结原理, $\int_{B(x,r)} f(y) dy$ is continuous.

• $A_r f(x)$ is continuous. Since $m(B(x, r)) = r^d m(B(0, 1)) = r^d v_d$, then

$$A_r f(x) = v_d^{-1} r^{-d} \int_{B(x,r)} f(y) dy \text{ is continuous}$$
 (4.47)

Hardy-Littlewood 极大函数 下面先给出 Hardy-Littlewood 极大函数 (球心) 的定义.

定义 **4.3.3.** If $f \in \mathcal{L}^1_{loc}$, we define its **Hardy-Littlewood maximal function** Hf by

$$Hf(x) = \sup_{r>0} A_r |f|(x) = \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y)| \, dy$$
 (4.48)

下面说明 Hardy-Littlewood 极大函数的连续性.

推论 4.3.2. Hf is continuous.

证明. $\forall (a, \infty) \subset \mathbb{R}$, by **Lemma 4.3.1**, $A_r |f|$ is continuous, then

$$(Hf)^{-1}((a,\infty)) = \bigcup_{r>0} (A_r |f|)^{-1}((a,\infty)) \text{ is open, } \forall a \in \mathbb{R}$$
 (4.49)

Therefore *Hf* is continuous.

此版本的 Hardy-Littlewood 极大函数同样有 weak-type inequality.

命题 4.3.3. weak-type inequality.

If $f \in \mathcal{L}^1$, then

$$m(\{x \in \mathbb{R}^d \mid Hf(x) > a\}) \le \frac{A}{a} \|f\|_{\mathcal{L}^1}, \ \forall a > 0$$
 (4.50)

where $A = 3^d$.

证明. 与命题 4.1.1 (iii) 证明类似.

4.3.2 Lebesgue 微分定理

函数的上极限 首先来回顾一下函数的上极限的定义.

定义 4.3.4. \forall 函数 $f: E \subset \mathbb{R}^d \to \mathbb{R}$, x_0 为 E 的聚点, 定义 f 在 x_0 的上极限 为

$$\lim_{x \to x_0} \sup f(x) = \lim_{\delta \to 0^+} \sup_{0 < |x - x_0| < \delta} f(x)$$
 (4.51)

同理可定义函数 f 在 x_0 点的下极限.

注. 不难证明,该定义与通常数学分析书1上的定义等价,即

$$\lim_{x \to x_0} \sup f(x) = \sup \{ l \in \mathbb{R} \mid \exists \{x_n\}_{n=1}^{\infty} \subset E, \ x_n \to x_0, \ \text{s. t. } f(x_n) \to l \}$$
 (4.52)

下面利用函数的上极限给出函数极限的等价定义.

命题 **4.3.4.** ∀ 函数 $f: E \subset \mathbb{R}^d \to \mathbb{R}$, x_0 为 E 的聚点,则

$$\lim_{x \to x_0} f(x) = c \iff \limsup_{x \to x_0} |f(x) - c| = 0$$

证明. 此处证明采用数学分析中的定义更方便. 根据 Heine 归结原理,

$$\lim_{x \to x_0} f(x) = c \iff \forall \{x_j\}_{j=1}^{\infty}, \ x_j \to x_0, \ \text{s. t.} f(x_j) \to c$$

$$\tag{4.53}$$

$$\Leftrightarrow E = \{l \in \mathbb{R} \mid \exists \{x_n\}_{n=1}^{\infty} \subset E, \ x_n \to x_0, \ \text{s. t. } |f(x_n) - c| \to l\} = \{0\}$$
 (4.54)

$$\Leftrightarrow \limsup_{x \to x_0} |f(x) - c| = \sup E = 0 \tag{4.55}$$

下面给出 Lebesgue 微分定理 (球心). Lebesgue 微分定理

定理 4.3.3. Lebesgue Differentiation Theorem.

If $f \in \mathcal{L}^1_{loc}$, then

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy = f(x) \text{ for a.e. } x \in \mathbb{R}^d$$
 (4.56)

证明. Since $f \in \mathcal{L}^1_{loc}$, then for all $x \in \mathbb{R}^d$, $\exists N$, s. t. |x| < N and

$$A_r f(x) = \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy \text{ depends only on } f(y) \text{ for } |y| \le N + 1.$$

$$(\text{with } r \le 1 \text{ and } |x| < N)$$

Then we can replace f with $f\chi_{B(0,N+1)} \in \mathcal{L}^1$. 于是我们不妨设 $f \in \mathcal{L}^1$. 根据 **Prop 4.3.4**, 要证

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy = \lim_{r \to 0} A_r f(x) = f(x) \text{ for a.e. } x \in \mathbb{R}^d$$
 (4.58)

即证

$$\lim_{r \to 0} \sup |A_r f(x) - f(x)| = 0 \text{ for a.e. } x \in \mathbb{R}^d$$
 (4.59)

下面来估计 $\limsup_{r\to 0} |A_r f(x) - f(x)|$. Fix $\epsilon > 0$, 根据 **Thm 3.2.3**, $\exists g \in C_c(\mathbb{R}^d)$, s. t.

$$||f - g||_{\mathcal{L}^1} < \epsilon$$

Since $A_r g(x)$ is continuous (by **Lemma 4.3.1**), we have

$$|A_r g(x) - g(x)| = |A_r g(x) - A_0 g(x)| < \epsilon$$
 for all small r.

Then

$$\lim_{r \to 0} \sup_{x \to 0} |A_r f(x) - f(x)| = \lim_{r \to 0} \sup_{x \to 0} |A_r (f - g)(x) + (A_r g - g)(x) + (g - f)(x)| \tag{4.60}$$

$$\leq \lim_{\delta \to 0^+} \sup_{0 < r < \delta} |A_r(f - g)(x)| + 0 + |g(x) - f(x)| \tag{4.61}$$

Since

$$\sup_{0 < r < \delta} |A_r(f - g)(x)| \le \sup_{r > 0} |A_r(f - g)(x)| = \sup_{r > 0} \left| \frac{1}{m(B(x, r))} \int_{B(x, r)} f(y) - g(y) dy \right|$$
(4.62)

$$\leq \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - g(y)| \, dy \tag{4.63}$$

$$= H(f - g)(x), \ \forall \delta > 0 \tag{4.64}$$

Let $\delta \to 0^+$, we have

$$\lim_{r \to 0} \sup |A_r f(x) - f(x)| \le \lim_{\delta \to 0^+} \sup_{0 < r < \delta} |A_r (f - g)(x)| + |g(x) - f(x)| \tag{4.65}$$

$$\leq H(f - g)(x) + |g(x) - f(x)| \tag{4.66}$$

后续证明与 Thm 4.2.2一致, 即定义 E_a , 并分别对 H(f-g)(x) 与 |g-f| 运用 weak-type inequality (Prop 4.3.3) 与 Chebyshev's Inequality (Thm 4.2.1), 即可证明 $m(E_a) = 0$, $\forall a \geq 0$. 从而得证. \Box

4.4 有界变差函数

引入 在 Riemann 积分中,我们知道对于一阶连续可微函数,我们有微积分基本定理

$$F(b) - F(a) = \int_{a}^{b} F'(x)dx$$
 (4.67)

而对于 **Lebesgue** 积分,我们也想要得到该命题成立的条件,且最好为**充要条件**. 可以举例证明,仅仅 F 连续并不能保证 F 可导 (可见视频 a continuous but nowhere differentiable function). 同时仅仅要求 F 导数存在也可能出现 F' 不可积的情况,如下反例.

例 4.4.1. (书² P147 Ex 12).

Consider the function $F(x) = x^2 \sin \frac{1}{x^2}$, $x \ne 0$, with F(0) = 0. Show that F'(x) exists for every x, but F' is not integrable on [-1, 1].

证明, 详细证明可见视频 微积分基本定理: 问题引入.

为了解决上述问题,我们在这一节将引入一种新类型的函数,叫做有界变差函数.

² 《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》 — Elias M. Stein

4.4.1 有界变差函数的概念

引入 为了便于理解,我们将**有界变差函数与平面上的曲线**相联系. 首先来回顾数学分析中有 关**平面上的曲线**的相关概念.

定义 **4.4.1.** Let γ be a <u>parametrized curve</u> in the plane given by z(t) = (x(t), y(t)), where $a \le t \le b$. Here x(t) and y(t) are continuous real-valued functions on [a, b].

The curve is <u>rectifiable</u> if $\exists M < \infty$, s. t. for any partition $a = t_0 < t_1 < \cdots < t_N = b$ of [a, b],

$$\sum_{j=1}^{N} \left| z(t_j) - z(t_{j-1}) \right| \le M \tag{4.68}$$

The Length $L(\gamma)$ of the curve is defined as

$$L(\gamma) = \sup_{\text{all partitions}} \sum_{j=1}^{N} \left| z(t_j) - z(t_{j-1}) \right|$$
 (4.69)

图 4.2: rectifiable curve

注. 为了表述的方便,后续我们常将 z 的值域视作复平面,即 z(t) = x(t) + iy(t).

在定义了曲线可求长的概念后,我们自然要问,在什么情况下曲线可求长?即

What condition on x(t) and y(t) guarantees rectifiability of γ ?

为了解决这个问题,下面我们给出**有界变差函数**的定义,并会在后续给出这个问题的**充要条** 件,即

y rectifiable $\Leftrightarrow x(t), y(t)$ 均为有界变差函数.

定义 下面给出有界变差函数的定义.

定义 **4.4.2.** Suppose $F:[a,b] \to \mathbb{C}$, and \mathcal{P} is a partition $a=t_0 < t_1 < \cdots < t_N = b$. The **variation** of F on this partition \mathcal{P} is defined by

$$V_{\mathcal{P}}(F) = \sum_{i=1}^{N} \left| F(t_j) - F(t_{j-1}) \right|$$
 (4.70)

F is said to be of **bounded variation** (BV) if $V_{\mathcal{P}}(F)$ is bounded over all partitions.

注. 有界变差函数不要求函数**连续**,而在考虑**平面曲线**时默认函数**连续**.

下面就能够来回答"引入"中提到的问题,即平面曲线可求长的充要条件.

定理 **4.4.1.** A curve parametrized by F(t) = x(t) + iy(t), $a \le t \le b$, is rectifiable \Leftrightarrow both x(t) and y(t) are of BV.

证明. \forall partition \mathcal{P} : $a = t_0 < t_1 < \cdots < t_N = b$, we have

$$V_{\mathcal{P}}(F) = \sum_{i=1}^{N} \left| F(t_j) - F(t_{j-1}) \right|$$
 (4.71)

Since $|a + bi| \le |a| + |b| \le 2 |a + bi|$,

$$\left| F(t_j) - F(t_{j-1}) \right| = \left| x(t_j) - x(t_{j-1}) + i \left(y(t_j) - y(t_{j-1}) \right) \right| \tag{4.72}$$

Then

• \Leftarrow : $|F(t_j) - F(t_{j-1})| \le |x(t_j) - x(t_{j-1})| + |y(t_j) - y(t_{j-1})|$, then $\exists M < \infty$, s. t.

$$V_{\mathcal{P}}(F) = \sum_{j=1}^{N} \left| F(t_j) - F(t_{j-1}) \right|$$
 (4.73)

$$= \sum_{j=1}^{N} \left| x(t_j) - x(t_{j-1}) \right| + \sum_{j=1}^{N} \left| y(t_j) - y(t_{j-1}) \right|$$
(4.74)

$$\leq 2M$$
, $\forall partition \mathcal{P}$ (4.75)

Therefore, the curve F(t) = x(t) + iy(t) is rectifiable.

• \Rightarrow : $\left| x(t_{j}) - x(t_{j-1}) \right| + \left| y(t_{j}) - y(t_{j-1}) \right| \le 2 \left| F(t_{j}) - F(t_{j-1}) \right|$, then $\exists M < \infty$, s. t. $\sum_{i=1}^{N} \left| x(t_{j}) - x(t_{j-1}) \right| + \sum_{i=1}^{N} \left| y(t_{j}) - y(t_{j-1}) \right| \le 2 \sum_{i=1}^{N} \left| F(t_{j}) - F(t_{j-1}) \right| = 2V_{\mathcal{P}}(F) \le 2M \qquad (4.76)$

Therefore, both x(t) and y(t) are of BV.

例子 下面来给出一些有界变差函数的例子.

例 4.4.2. • x, x^2 is of BV on $[a, b], \forall [a, b] \subset \mathbb{R}$.

证明. \forall partition \mathcal{P} : $a = x_0 < x_1 < \cdots < x_N = b$, since x is strictly increasing, then

$$V_{\mathcal{P}}(x) = \sum_{j=1}^{N} \left| x_j - x_{j-1} \right| = \sum_{j=1}^{N} x_j - x_{j-1} = b - a < \infty$$
 (4.77)

Also for x^2 ,

$$V_{\mathcal{P}}(x^{2}) = \sum_{j=1}^{N} \left| x_{j}^{2} - x_{j-1}^{2} \right| = \sum_{j=1}^{N} \left| x_{j} + x_{j-1} \right| \left| x_{j} - x_{j-1} \right| \le 2b \sum_{j=1}^{N} \left| x_{j} - x_{j-1} \right| = 2b(b-a) < \infty$$

$$(4.78)$$

Therefore, both x and x^2 are of BV on [a, b], $\forall [a, b] \subset \mathbb{R}$.

• If F is real-valued, monotonic, and bounded, then F is of BV.

证明. \forall partition \mathcal{P} : $\alpha = t_0 < t_1 < \cdots < t_N = b$.

Since F is bounded, $\exists M < \infty$, s. t. $|F| \leq M$. 不妨设 F 单调递增,

$$V_{\mathcal{P}}(F) = \sum_{i=1}^{N} \left| F(t_j) - F(t_{j-1}) \right| = F(b) - F(a) \le 2M, \quad \forall partition \, \mathcal{P}$$

$$(4.79)$$

So F is of BV.

• (书³ P147 Ex 11).

If a, b > 0, let

$$f(x) = \begin{cases} x^a \sin(x^{-b}), & 0 \le x \le 1\\ 0, & x = 0 \end{cases}$$
 (4.80)

Then

f is of BV in [0, 1]
$$\Leftrightarrow a > b$$

证明.

- 先来考虑简单情形, 即 $f(x) = \sin \frac{1}{x}$.

根据直觉,随着 $x \to 0^+$, $\sin \frac{1}{x}$ 的震荡越剧烈,当分划足够密时,其变差中应当会出现各项为 1 的无穷级数,从而发散. 下面取一个特殊分划进行证明.

对于 \forall 奇数 $k \in \mathbb{N}$. 取

$$\frac{1}{x_k} = 2k\pi + \frac{\pi}{2}, \frac{1}{x_{k+1}} = 2k\pi + \pi$$

于是

$$V_{\mathcal{P}}(f) = \sum_{i=1}^{N} \left| \sin \frac{1}{x_j} - \sin \frac{1}{x_{j-1}} \right| = \sum_{i=1}^{N} 1 = N, \text{ which is related to } \mathcal{P}$$
 (4.81)

故 $\forall M < \infty$, 当分划 \mathcal{P} 足够密时, $V_{\mathcal{P}}(f) > M$. 故 $f \ddagger BV$.

- 对于一般情况,下面先讨论一种特殊分划 \mathcal{P} . 即 (Monotonic Partition, 单调划分)

$$\left[\frac{1}{x_{4k+1}^b}, \frac{1}{x_{4k+2}^b}\right] = \left[2k\pi + \frac{\pi}{2}, 2k\pi + \pi\right], \ \left[\frac{1}{x_{4k+3}^b}, \frac{1}{x_{4k+4}^b}\right] = \left[2k\pi + \frac{3\pi}{2}, 2k\pi + 2\pi\right] \ (4.82)$$

则以上述第一种的 $[x_{4k+1}, x_{4k+2}]$ 举例,

$$\left| x_{k+1}^a \sin \frac{1}{x_{k+1}^b} - x_k^a \sin \frac{1}{x_k^b} \right| = \left| x_{k+1}^a \sin \frac{1}{x_{k+1}^b} \right| = \frac{1}{(2k\pi + \frac{\pi}{2})^{\frac{a}{b}}} = O(\frac{1}{k^{\frac{a}{b}}})$$
(4.83)

同理对于 $[x_{4k+2}, x_{4k+3}], [x_{4k+3}, x_{4k+4}], [x_{4k+4}, x_{4k+5}],$ 均可得到

$$\left| x_{k+1}^a \sin \frac{1}{x_{k+1}^b} - x_k^a \sin \frac{1}{x_k^b} \right| = O(\frac{1}{k^{\frac{a}{b}}})$$
 (4.84)

³ 《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》 — Elias M. Stein

于是

$$\sum_{k=0}^{N} \left| x_{k+1}^{a} \sin \frac{1}{x_{k+1}^{b}} - x_{k}^{a} \sin \frac{1}{x_{k}^{b}} \right| = O\left(\sum_{k=1}^{N} \frac{1}{k^{\frac{a}{b}}}\right)$$
(4.85)

根据 **p-级数** $\sum_{n}^{\infty} \frac{1}{n^p}$ 的收敛性 (收敛 $\Leftrightarrow p > 1$) 可得,

$$\sum_{k=0}^{N} \left| x_{k+1}^{a} \sin \frac{1}{x_{k+1}^{b}} - x_{k}^{a} \sin \frac{1}{x_{k}^{b}} \right| < \infty \tag{4.86}$$

$$\Leftrightarrow \frac{a}{b} > 1 \Leftrightarrow a > b \tag{4.87}$$

由于对于任一分划 ρ ,有:

"加密分割,变差不减"

因此对于 \forall 分割,我们可以在其中加入如上节点,其变差不减,但因为上述节点中, $\sin \frac{1}{x^b}$ 在每个区间 [x_k, x_{k+1}] 均单调,所以在各区间 [x_k, x_{k+1}] 中的变差可直接去除绝对值,并得到

$$V_{\mathcal{P}}(f) = O\left(\sum_{k=1}^{N} \frac{1}{k^{\frac{a}{b}}}\right) \tag{4.88}$$

于是

$$f \text{ is of BV} \iff \frac{a}{b} > 1 \iff a > b$$

4.4.2 有界变差函数的刻画

介绍 本小节将给出有界变差函数的一个刻画,即

任一有界变差函数可差分为两个有界递增函数之差.

同时还将研究函数的全变差的性质. 而这一切都是为了后续研究微积分基本定理做准备.

定义 回顾函数的变差的概念 (Def 4.4.2). 在此基础上, 我们下面给出全变差的定义.

定义 **4.4.3.** Suppose $f:[a,b]\to\mathbb{C}$. The **total variation** of f on [a,x] $(a \le x \le b)$ is defined by

$$V_f([a, x]) = \sup_{\text{all partitions}} \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|$$
 (4.89)

In particular, if f is real-valued, i.e. $f : [a, b] \to \mathbb{R}$. Then the **positive variation** of f on [a, x] is

$$P_{f}([a, x]) = \sup_{\text{all partitions}} \sum_{(+)} f(t_{j}) - f(t_{j-1})$$
(4.90)

Also the **negative variation** of f on [a, x] is

$$N_f([a, x]) = \sup_{\text{all partitions}} \sum_{(-)} -\left[f(t_j) - f(t_{j-1})\right]$$

$$\tag{4.91}$$

- **注. 全变差对任一复值函数**均可定义,而**正变差和负变差**则只对**实值函数**有定义. 在 后续的讨论中基本默认 *f* 为**实值函数**.
- 下面对定义中的符号(+)和(-)进行说明,即

$$(+) := \{ j \mid f(t_j) \ge f(t_{j-1}) \} \tag{4.92}$$

$$(-) := \{ j \mid f(t_i) \le f(t_{i-1}) \} \tag{4.93}$$

• 常常将**全变差** $V_f([a,b])$ 简记为 $V_a^b(f)$.

有界变差函数的刻画 在刻画有界变差函数之前,先来给出一个引理. 它说明了对于实值有界变差函数 f,其全变差与正、负变差之间的关系,以及 f 与正、负变差的关系.

引理 **4.4.2.** Suppose f is real-valued and of BV on [a, b]. Then for all $x \in [a, b]$, we have

$$f(x) - f(a) = P_f([a, x]) - N_f([a, x])$$

and

$$V_f([a, x]) = P_f([a, x]) + N_f([a, x])$$

证明.

• $f(x) - f(a) = P_f([a, x]) - N_f([a, x])$:

 $\forall \epsilon > 0, \exists$ a partition \mathcal{P} : $\alpha = t_0 < t_1 < \cdots < t_N = b, \text{ s. t.}$

$$\left| P_f - \sum_{(+)} f(t_j) - f(t_{j-1}) \right| \le \epsilon \text{ and } \left| N_f - \sum_{(-)} - \left[f(t_j) - f(t_{j-1}) \right] \right| \le \epsilon$$
 (4.94)

Then

$$-\epsilon + \sum_{(+)} f(t_j) - f(t_{j-1}) \le P_f \le \sum_{(+)} f(t_j) - f(t_{j-1}) + \epsilon$$
 (4.95)

$$-\epsilon + \sum_{(-)} - \left[f(t_j) - f(t_{j-1}) \right] \le N_f \le \sum_{(-)} - \left[f(t_j) - f(t_{j-1}) \right] + \epsilon \tag{4.96}$$

Since

$$f(x) - f(a) = \left(\sum_{(+)} f(t_j) - f(t_{j-1})\right) - \left(\sum_{(-)} - \left[f(t_j) - f(t_{j-1})\right]\right)$$
(4.97)

Then

$$P_f - N_f \in [f(x) - f(a) - 2\epsilon, f(x) - f(a) + 2\epsilon]$$

$$\tag{4.98}$$

$$\Rightarrow \left| (P_f - N_f) - (f(x) - f(a)) \right| \le 2\epsilon, \ \forall \epsilon > 0$$
 (4.99)

Since ϵ is arbitrary, letting $\epsilon \to 0$, we get $f(x) - f(\alpha) = P_f - N_f$.

• $V_f([a, x]) = P_f([a, x]) + N_f([a, x])$:

 \forall partition \mathcal{P} : $a = t_0 < t_1 < \cdots < t_N = b$, s. t.

$$V_{\mathcal{P}}(f) = \sum_{j=1}^{N} \left| f(t_j) - f(t_{j-1}) \right| = \left(\sum_{(+)} f(t_j) - f(t_{j-1}) \right) + \left(\sum_{(-)} - \left[f(t_j) - f(t_{j-1}) \right] \right)$$
(4.100)

- $V_f([a, x]) \le P_f([a, x]) + N_f([a, x])$:

分别对右侧两项取上确界 through all partitions, we have

$$\sum_{j=1}^{N} \left| f(t_j) - f(t_{j-1}) \right| \le P_f([a, x]) + N_f([a, x]) \tag{4.101}$$

再对左侧取上确界 through all partitions, then

$$V_f([a, x]) \le P_f([a, x]) + N_f([a, x]) \tag{4.102}$$

- $P_f([a, x]) + N_f([a, x]) \le V_f([a, x])$:

Similarly, 先对左侧取上确界,再对右侧分别取上确界,得到

$$P_f([a, x]) + N_f([a, x]) \le V_f([a, x]) \tag{4.103}$$

综上, $V_f([a,x]) = P_f([a,x]) + N_f([a,x])$.

下面我们说明,任一有界变差函数可差分为两个有界递增函数之差.

定理 **4.4.3.** A real-valued function $f:[a,b] \to \mathbb{R}$ on [a,b] is of BV

 \Leftrightarrow f is the difference of two increasing bounded functions.

证明.

• \Leftarrow : Suppose $f = f_1 - f_2$, where f_j is increasing and bounded on [a, b], j = 1, 2. Then by **Example 4.4.2**, f_j is of BV on [a, b], j = 1, 2.

 \forall partition \mathcal{P} : $a = t_0 < t_1 < \cdots < t_N = b$, since

$$\left| f(t_j) - f(t_{j-1}) \right| \le \left| f_1(t_j) - f_1(t_{j-1}) \right| + \left| f_2(t_j) - f_2(t_{j-1}) \right|, \ \forall j - 1 \sim N$$
 (4.104)

Then since both f_1 and f_2 are of BV, $\exists M < \infty$, s. t.

$$\sum_{j=1}^{N} \left| f(t_j) - f(t_{j-1}) \right| \le \sum_{j=1}^{N} \left| f_1(t_j) - f_1(t_{j-1}) \right| + \sum_{j=1}^{N} \left| f_2(t_j) - f_2(t_{j-1}) \right| \le 2M \tag{4.105}$$

Therefore, f is of BV on [a, b].

⇒: By Lemma 4.4.2, f(x) - f(a) = P_f([a, x]) - N_f([a, x]), ∀x ∈ [a, b].
 It's trivial to show that P_f([a, x]) is increasing in x.
 Similarly, we get N_f([a, x]) is increasing in x. Therefore

$$f(x) = (P_f([a, x]) + f(a)) - N_f([a, x])$$

where $P_f([a, x]) + f(a)$ and $N_f([a, x])$ are increasing and bounded.

4.4.3 有界变差函数的全变差的性质

在本小节的最后,我们来讨论一下实值有界变差函数的全变差的性质.

命题 **4.4.1.** Let $f \in BV([a, b])$ and be real-valued. Then

- (i) $\forall c \in (a, b), V_f([a, b]) = V_f([a, c]) + V_f([c, b]).$
- (ii) $V_f([a, x])$ and $U(x) = V_f([a, x]) f(x)$ are both increasing in x on [a, b].
- (iii) $V_f([a, x])$ is continuous at $x_0 \Leftrightarrow f$ is continuous at x_0 .

证明.

(i) 不难证明, $\forall c \in (a, b)$,

$$V_f([a,b]) = \sup \left[\sum_{j=1}^k \left| f(t_j) - f(t_{j-1}) \right| + \sum_{j=k+1}^N \left| f(t_j) - f(t_{j-1}) \right| \right]$$
(4.106)

The sup is taken over all partitions with $a = t_0 < t_1 < \cdots < t_k = c < \cdots < t_N = b$. Since

$$\sum_{j=0}^{N} |f(t_j) - f(t_{j-1})| = \sum_{j=1}^{k} |f(t_j) - f(t_{j-1})| + \sum_{j=k+1}^{N} |f(t_j) - f(t_{j-1})|$$
(4.107)

Then 先对左侧取上确界 over all partitions on [a, b], we have

$$V_f([a,b]) \ge \sum_{j=1}^k \left| f(t_j) - f(t_{j-1}) \right| + \sum_{j=k+1}^N \left| f(t_j) - f(t_{j-1}) \right|$$
(4.108)

再对左侧两项分别取上确界 over all partitions on [a, c] and [c, b], we have

$$V_f([a, b]) \ge V_f([a, c]) + V_f([c, b]) \tag{4.109}$$

Similarly, 改变两侧取上确界次序,可得

$$V_f([a,b]) \le V_f([a,c]) + V_f([c,b]) \tag{4.110}$$

Therefore, $V_f([a, b]) = V_f([a, c]) + V_f([c, b]), \forall c \in (a, b).$

(ii) Since $P_f([a, x])$ and $N_f([a, x])$ are both increasing, then by **Lemma 4.4.2**,

$$V_f([a, x]) = P_f([a, x]) + N_f([a, x])$$
 is increasing in x on $[a, b]$.

 $\forall x \ge y$, we have

$$V(x) - V(y) = V_f([a, x]) - V_f([a, y])$$
(4.111)

$$= V_y^x(f) \ge |f(x) - f(y)| \ge f(x) - f(y) \tag{4.112}$$

Therefore $V(x) - f(x) \ge V(y) - f(y)$, $\forall x \ge y$. i.e.

$$U(x) \ge U(y), \forall x \ge y$$

(iii) • ⇒: 根据 (ii) 的证明过程 (式 (4.111)), we get

$$|V(x) - V(y)| \ge V(x) - V(y) \ge |f(x) - f(y)|, \forall x, y \in [a, b]$$

Suppose V(x) is continuous at x_0 , then $\forall \epsilon > 0$, $\exists \delta > 0$, s. t.

$$|f(x) - f(x_0)| \le |V(x) - V(x_0)| \le \epsilon, \forall |x - x_0| < \delta$$

Then f(x) is continuous at x_0 .

• \Leftarrow : Suppose f(x) is continuous at x_0 . Fix $\epsilon > 0$, then $\exists \delta_0 > 0$, s. t.

$$|f(x_0+h)-f(x)|<\frac{\epsilon}{2},\,\forall\,|h|<\delta_0$$

It suffices to show

$$|V(x_0+h)-V(x)|<\epsilon, \forall \text{ small } h$$

考虑**全变差** $V_a^{x_0}(f)$ and $V_{x_0}^b(f)$, for fixed $\epsilon > 0$, \exists partitions

$$a = t_0 < t_1 < \dots < t_n = x_0 \tag{4.113}$$

$$x_0 = s_0 < s_1 < \dots < s_m = b \tag{4.114}$$

s. t.

$$\left| V_{f}([a, x_{0}]) - \sum_{j=1}^{n} \left| f(t_{j}) - f(t_{j-1}) \right| < \frac{\epsilon}{2}$$

$$\left| V_{f}([x_{0}, b]) - \sum_{j=1}^{m} \left| f(s_{j}) - f(s_{j-1}) \right| < \frac{\epsilon}{2}$$

$$(4.115)$$

$$\left| V_f([x_0, b]) - \sum_{j=1}^m \left| f(s_j) - f(s_{j-1}) \right| \right| < \frac{\epsilon}{2}$$
 (4.116)

Now update h with $|h| < h_0 = \min \{ \delta_0, x_0 - t_{n-1}, s_1 - x_0 \}$.

下面先对 h > 0 的情况讨论.

$$V(x_0 + h) - V(x_0) = V_{x_0}^b(f) - V_{x_0 + h}^b(f)$$
(4.117)

$$\leq \sum_{j=1}^{m} \left| f(t_j) - f(t_{j-1}) \right| + \frac{\epsilon}{2} - V_{x_0+h}^b(f) \tag{4.118}$$

$$= |f(s_0) - f(s_1)| + \sum_{j=2}^{m} |f(t_j) - f(t_{j-1})| + \frac{\epsilon}{2} - V_{x_0+h}^b(f)$$
 (4.119)

$$\leq |f(x_0+h) - f(x_0)| + |f(s_1) - f(x_0+h)| + \sum_{j=2}^{m} |f(t_j) - f(t_{j-1})| + \frac{\epsilon}{2} - V_{x_0+h}^{b}(f)$$

$$(4.120)$$

Since $x_0 + h < s_1 < \cdots < s_m = b$ is a partition of $[x_0 + h, b]$, then

$$|f(s_1) - f(x_0 + h)| + \sum_{j=2}^{m} |f(t_j) - f(t_{j-1})| \le V_{x_0 + h}^b(f)$$
(4.121)

Therefore

$$V(x_0 + h) - V(x_0) \le |f(x_0 + h) - f(x_0)| + \frac{\epsilon}{2}$$
(4.122)

$$<\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \ \forall |h| < h_0$$
 (4.123)

Similarly, 对于 h < 0 的情况,我们可同样估计 $V(x_0) - V(x_0 + h) = V_a^{x_0}(f) - V_a^{x_0 + h}(f)$, 从而得出结论.

综上, V(x) is continuous at x_0 .

 \mathbb{Z} 4.3: Partitions on $[a, x_0]$ and $[x_0, b]$

4.5 升阳引理 & Dini 导数

在后面一节我们会证明**有界变差函数几乎处处可微**. 但在此之前,需要给出本节的 **Rising Sun Lemma** 和 **Dini 导数**的相关内容作为铺垫.

4.5.1 Rising Sun Lemma

这里直接给出升阳引理的内容.

引理 4.5.1. Rising Sun Lemma.

Suppose G is real-valued and continuous on \mathbb{R} . Let

$$E = \{x \in \mathbb{R} \mid G(x+h) > G(x) \ for \ some \ h = h_x > 0\}$$

If E is nonempty, then it must be open, and hence can be written as

$$E = \bigcup_{k=1}^{\infty} (a_k, b_k) \tag{4.124}$$

If (a_k, b_k) is finite, then

$$G(a_k) = G(b_k)$$

图 4.4: Rising Sun Lemma

证明. Suppose E is nonempty. 下面分三个部分证明.

• E is open.

From the definition of E, we get

$$E = \{ x \in \mathbb{R} \mid G(x+h) > G(x) \text{ for some } h > 0 \}$$
 (4.125)

$$= \bigcup_{h>0} \{x \in \mathbb{R} \mid G(x+h) - G(x) > 0\}$$
 (4.126)

Let $\widetilde{G}_h(x) = G(x+h) - G(x)$, then G_h is continuous. 根据连续函数开集的原象为开集,

$$\left\{x \in \mathbb{R} \mid \widetilde{G}_h(x) > 0\right\}$$
 is open, $\forall h > 0$

Then

$$E = \bigcup_{h>0} \left\{ x \in \mathbb{R} \mid \widetilde{G}_h(x) > 0 \right\} \text{ is open}$$
 (4.127)

• $E = \bigcup_{k=1}^{\infty} (a_k, b_k)$. By **Thm 1.1.3** (开集构成定理), it's trivial.

- If (a_k, b_k) is finite, then $G(a_k) = G(b_k)$.
 - $G(b_k) \leq G(a_k)$:

Since $a_k \notin E$, then

$$G(a_k + h) \leq G(a_k), \forall h > 0$$

Since $b_k > a_k$, then $G(b_k) \le G(a_k)$.

- $G(b_k) = G(a_k)$: (排除 $G(b_k)$ 严格小于 $G(a_k)$ 的情况)

反证法. Suppose $G(b_k) < G(a_k)$.

Since G is continuous, $[a_k, b_k] \subset \mathbb{R}$ is connected,

then by Intermediate Value Thm (介值定理),

$$A = \left\{ x \in [a_k, b_k] \mid G(x) = \frac{G(a_k) + G(b_k)}{2} \right\} \neq \emptyset$$
 (4.128)

Since b_k 为 A 的上界, then by 确界原理, $\exists c = \sup A$.

下面证明 $c \in A$, 即 $c = \sup A = \max A$.

* 反证法. Suppose $c \notin A$, i.e.

$$G(c) \neq \frac{G(a_k) + G(b_k)}{2}$$

Since $c = \sup A$, then $\exists \{x_j\}_{j=1}^{\infty} \subset A$, s. t.

$$x_j \to c$$
 and $G(x_j) = \frac{G(a_k) + G(b_k)}{2}$, $\forall j$

Since G is continuous, then for $\epsilon = \left| G(c) - \left(\frac{G(a_k) + G(b_k)}{2} \right) \right| / 2 > 0$, $\exists \delta > 0$, s. t.

$$G(x) \neq \frac{G(a_k)+G(b_k)}{2}, \forall x \in (c-\delta, c+\delta) \cap [a_k, b_k]$$

which is a contradiction for $x_j \to c$ and $G(x_j) = \frac{G(a_k) + G(b_k)}{2}$.

综上, $c = \max A$. 下面根据 E 的性质给出矛盾.

Since $c \in E$, $\exists h_c > 0$, s. t.

$$G(c+h_c) > G(c) = \frac{G(a_k)+G(b_k)}{2}$$

Then $c + h_c < b_k$ (otherwise $b_k \in E$ for $G(c + h_c) > G(b_k)$ with $c + h_c > b_k$).

Then by **Intermediate Value Thm** (介值定理), $\exists c + h_c < d < b_k$, s. t.

$$G(d) = \frac{G(a_k) + G(b_k)}{2}$$
 with $d > c + h_c > c$

which is a contradiction with $c = \max A$.

Therefore, $G(a_k) = G(b_k)$.

图 4.5: Case $G(a_k) > G(b_k)$

下面给出升阳引理定义在闭区间上的推论.

推论 **4.5.2.** Suppose $G:[a,b] \to \mathbb{R}$ is continuous and let

$$E = \{x \in (a, b) \mid G(x + h) > G(x) \ for \ some \ h = h_x > 0\}$$

then E is either empty or open. In the latter case,

$$E = \bigcup_{k=1}^{\infty} (a_k, b_k) \text{ and } G(b_k) = G(a_k)$$
 (4.129)

except possibly when $a_k = a$, in which case we only have

$$G(a_k) \leq G(b_k)$$

证明. 与 Rising Sun Lemma (Lemma 4.5.1) 证明过程一致.

Suppose $a_k = a$. 下用反证法. Suppose $G(a_k) = G(a) > G(b_k)$. 同理, \exists biggest $c \in (a, b_k)$, s. t.

$$G(c) = \frac{G(a) + G(b_k)}{2}$$

But $c \in E \implies \exists d \in (c, b_k)$, s. t. G(d) = G(c), a contradiction for c is the biggest.

Dini 导数 4.5.2

引入 探讨函数的可微性,即探讨如下极限的存在性:

$$\lim_{h \to 0} \Delta_h(f)(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(4.130)

而我们又知道,上述**极限存在** ⇔ 下述极限**存在**, i.e.

$$\Rightarrow \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h}$$
(4.131)

$$\Leftrightarrow \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h}$$

$$\Leftrightarrow \lim_{h \to 0^{+}} \sup \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

$$(4.131)$$

$$= \limsup_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h} = \liminf_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h}$$
(4.133)

i.e.

$$\lim_{h \to 0^+} \sup_{h \to 0^+} \Delta_h(f)(x) = \lim_{h \to 0^+} \inf_{h \to 0^+} \Delta_h(f)(x)$$
(4.134)

$$= \limsup_{h \to 0^{-}} \Delta_{h}(f)(x) = \liminf_{h \to 0^{-}} \Delta_{h}(f)(x)$$

$$(4.135)$$

而上述四个极限即为下面要定义的 Dini 导数.

下面给出 Dini 导数的定义 / 记号. 定义

定义 **4.5.1.** Suppose F is real-valued. The four **Dini numbers** at x is defined by

$$D^{+}(F)(x) = \limsup_{h \to 0^{+}} \Delta_{h}(F)(x)$$
 (4.136)

$$D_{+}(F)(x) = \liminf_{h \to 0^{+}} \Delta_{h}(F)(x)$$

$$(4.137)$$

$$D^{-}(F)(x) = \lim_{h \to 0^{-}} \sup_{h \to 0^{-}} \triangle_{h}(F)(x)$$
 (4.138)

$$D_{-}(F)(x) = \liminf_{h \to 0^{-}} \Delta_{h}(F)(x)$$
 (4.139)

性质 下面说明,连续函数的 Dini 导数可测.

引理 **4.5.3.** ⁴ Suppose F is continuous on [a, b], then

$$D^{+}(F)(x) = \lim_{h \to 0^{+}} \sup_{h \to 0^{+}} \Delta_{h}(F)(x)$$
 (4.140)

is measurable.

证明.(证明的重点是将各种连续型的极限转化为离散型,再利用可测函数列对极限的封闭性得证)

根据函数上极限的定义 (Def 4.3.4),

$$D^{+}(F)(x) = \limsup_{h \to 0^{+}} \Delta_{h}(F)(x) = \lim_{\delta \to 0^{+}} \sup_{0 < h < \delta} \frac{F(x+h) - F(x)}{h}$$
(4.141)

下面先将最外层的 $\delta \to 0^+$ 过程**离散化**. Let

$$G(\delta) = \sup_{0 < h < \delta} \frac{F(x+h) - F(x)}{h}$$

$$(4.142)$$

Then $G \nearrow as \delta \nearrow$. 由于单调函数必存在极限 (包含 $\pm \infty$), 因此根据 **Heine** 归结原理,

$$\limsup_{h \to 0^+} \Delta_h(F)(x) = \lim_{n \to \infty} \sup_{0 < h < \frac{1}{n}} \frac{F(x+h) - F(x)}{h}$$
(4.143)

Since 可测函数列对极限封闭, it suffices to show for each $n \in \mathbb{N}$,

$$\sup_{0 < h < \frac{1}{n}} \Delta_h(F)(x) \text{ is measurable}$$
 (4.144)

为了证明上述函数可测,我们的思路还是一样,即用**可测函数列逼近**. 但上述 sup 过程 $0 < h < \frac{1}{n}$ 仍为**连续型**过程,下面通过说明该过程与 $h \in (0, \frac{1}{n}) \cap \mathbb{Q}$ 的等价性,来将 sup 过程**离** 散化,从而方便利用**可测函数列来逼近**.

Claim: Fix $x \in [a, b)$. Let $f(h) = \Delta_h(F)(x)$, then

$$\sup_{0 < h < \frac{1}{n}} f(h) = \sup_{h \in (0, \frac{1}{n}) \cap \mathbb{Q}} f(h)$$
 (4.145)

⁴ (Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces) — Elias M. Stein P147 Ex 14.

• 证明. Let $A = \sup_{0 < h < \frac{1}{n}} f(h)$, $B = \sup_{h \in (0, \frac{1}{n}) \cap \mathbb{Q}} f(h)$. 显然 $A \ge B$. 下证 $A \le B$.

Since $A = \sup_{0 < h < \frac{1}{n}} f(h), \exists \{x_j\}_{j=1}^{\infty} \subset (0, \frac{1}{n}) \text{ s. t.}$

$$f(x_i) \to A$$

由于对于 $\forall j \in \mathbb{N}, x_j$ 可由有理数列 $\{y_{kj}\}_{k=1}^{\infty} \subset (0, \frac{1}{n}) \cap \mathbb{Q}$ 逼近, i.e.

$$y_{kj} \to x_j$$
 as $k \to \infty$

Since $f(h) = \Delta_h(F)(x)$ is continuous in h, then

 $h \in (0, \frac{1}{n}) \cap \mathbb{Q}$

$$f(y_{ki}) \to f(x_i), \forall j \in \mathbb{N} \text{ as } k \to \infty$$

Now take $\{y_{kk}\}_{k=1}^{\infty} \subset (0, \frac{1}{n}) \cap \mathbb{Q}$, we have

$$f(y_{kk}) \to \lim_{k \to \infty} f(x_k) = A \text{ as } k \to \infty$$

Therefore, $A \leq B$. 综上 A = B.

因为 $\sup_{h \in (0,\frac{1}{n}) \cap \mathbb{Q}} \Delta_h(F)(x)$ 为一列可测函数 $\Delta_h(F)(x)$, $h \in (0,\frac{1}{n}) \cap \mathbb{Q}$ 的上确界,而可测函数列对上确界封闭,所以 $\sup_{h \in (0,\frac{1}{n}) \cap \mathbb{Q}}$

Therefore,

$$\sup_{0< h<\frac{1}{n}} \triangle_h(F)(x) = \sup_{h\in (0,\frac{1}{n})\cap \mathbb{Q}} \triangle_h(F)(x) \text{ measurable, } \forall n\in \mathbb{N}$$

从而得证.

连续有界变差函数的可微性 4.6

引入 本节我们来研究一类特殊的有界变差函数的可微性,即连续有界变差函数.

4.6.1 连续有界变差函数的可微性

下面我们给出连续有界变差函数几乎处处可微的结论.

定理 **4.6.1.** If F is continuous and of BV on [a, b], then

F is differentiable a.e.

注. 这里给出该定理的等价描述,并作为证明的结论:

- It suffices to show
 - (i) $D^+(F)(x) < \infty$ for a.e. x.
 - (ii) $D^+(F)(x) \le D_-(F)(x)$ for a.e. x.

证明. 下面说明其与原定理的等价性. 只需证 (i) + (ii) \Rightarrow Thm 4.6.1 (另一侧显然).

If (ii) holds, then since -F is also continuous and of BV on [a, b], we have

$$D^{+}(-F)(x) \le D_{-}(-F)(x)$$
 for a.e. x.

Since

$$D^{+}(-F)(x) = \limsup_{h \to 0^{+}} \frac{(-F)(x+h) - (-F)(x)}{h} = \limsup_{h \to 0^{+}} -\frac{F(x+h) - F(x)}{h}$$
(4.146)

$$= -\liminf_{h \to h^+} \frac{F(x+h) - F(x)}{h}$$
 (4.147)

$$= -D_{+}(F)(x) \tag{4.148}$$

$$D_{-}(-F)(x) = \liminf_{h \to 0^{-}} \frac{(-F)(x+h) - (-F)(x)}{h} = \liminf_{h \to 0^{-}} -\frac{F(x+h) - F(x)}{h}$$

$$= -\limsup_{h \to 0^{-}} \frac{F(x+h) - F(x)}{h}$$
(4.149)

$$= -\limsup_{h \to 0^{-}} \frac{F(x+h) - F(x)}{h}$$
 (4.150)

$$= -D^{-}(F)(x) \tag{4.151}$$

Then we have $D_{+}(F)(x) \geq D^{-}(F)(x)$ for a.e. x. 结合 (ii) 及上下极限大小关系,得

$$D_{-} \leq D^{-} \leq D_{+} \leq D^{+} \leq D_{-} \implies D_{-} = D^{-} = D_{+} = D^{+}$$

故 a.e. 导数存在. 又因为 (i), F 各点导数有限, 从而几乎处处可微.

证明.

(i) $D^+(F)(x) < \infty$ for a.e. x.

Let

$$E_{\nu} = \{x \in (a, b) \mid D^{+}(F)(x) > \gamma\}, \forall \gamma > 0$$

Then by **Lemma 4.5.3**, $D^+(F)$ is measurable $\Rightarrow E_{\gamma}$ is measurable. It suffices to show

$$m(\{x \in [a, b] \mid D^+(F)(x) = \infty\}) = 0$$

Since

$$E_{\gamma} = \{ x \in (a, b) \mid D^{+}(F)(x) > \gamma \}$$
(4.152)

$$= \left\{ x \in (a, b) \mid \limsup_{h \to 0^+} \frac{F(x+h) - F(x)}{h} > \gamma \right\}$$
 (4.153)

$$\subset \{x \in (a, b) \mid F(x+h) - F(x) > \gamma h \text{ for some } h > 0\}$$
 (4.154)

$$= \{x \in (a, b) \mid F(x+h) - \gamma(x+h) > F(x) - \gamma x \text{ for some } h > 0\}$$
 (4.155)

Let $G(x) = F(x) - \gamma x$, then G is continuous.

By Rising Sun Lemma (Cor 4.5.2),

$$E_{v} \subset E = \{x \in (a, b) \mid G(x + h) > G(x) \text{ for some } h > 0\}$$
 (4.156)

$$=\bigcup_{k=1}^{\infty} (a_k, b_k) \tag{4.157}$$

and $G(b_k) \geq G(a_k)$. i.e.

$$F(b_k) - F(a_k) \ge \gamma(b_k - a_k)$$

Since F is of BV on [a, b], then by **Thm 4.4.3**, F is the difference of 2 increasing bounded functions. i.e.

 $F = F_1 - F_2$, where both F_1 and F_2 are increasing and bounded.

Then it suffices to show that $D^+(F_1)(x) < \infty$ and $D^+(F_2)(x) < \infty$ for a.e. x.

因此不妨设 F increasing & bounded. Then by $F(b_k) - F(a_k) \ge \gamma(b_k - a_k)$, we have

$$m(E_{\gamma}) \le m(E) = \sum_{k=1}^{\infty} m((a_k, b_k)) \le \frac{1}{\gamma} \sum_{k=1}^{\infty} F(b_k) - F(a_k) \le \frac{1}{\gamma} (F(b) - F(a))$$
 (4.158)

Thus $m(E_{\gamma}) \to 0$ as $\gamma \to \infty$. Therefore

$$m(x \in [a, b] \mid D^{+}(F)(x) = \infty) = m\left(\bigcap_{N=1}^{\infty} E_{N}\right) = \lim_{N \to \infty} m(E_{N}) = 0$$
 (4.159)

这就证明了 $D^+(F)(x) < \infty$ for a.e. x.

(ii) $D^+(F)(x) \le D_-(F)(x)$ for a.e. x.

与上一问同样的思路,即证明 $D^+ > D_-$ 的 x 为零测集. 但还需要进行一些形式的转化. $\forall R, r \in \mathbb{Q}, R > r$, let

$$E_{R,r} = \{ x \in [a, b] \mid D^{+}(F)(x) > R > r > D_{-}(F)(x) \}$$
(4.160)

$$= [a, b] \cap \{x \in \mathbb{R} \mid D^{+}(F)(x) > R\} \cap \{x \in \mathbb{R} \mid D_{-}(F)(x) < r\}$$
(4.161)

Since both $D^+(F)$ and $D_-(F)$ are measurable, then $E_{R,r}$ is measurable.

Since

$$m\left(\bigcup_{\substack{R>r\\R,r\in\mathbb{Q}}}E\right) = m\left(\left\{x\in[a,b]\mid D^{+}(F)(x)>D_{-}(F)(x)\right\}\right) \tag{4.162}$$

Then it suffices to show

$$m(E_{R,r})=0$$
 for all $R,r\in\mathbb{Q},R>r.$

Fix $R, r \in \mathbb{Q}, R > r$. 记 $E = E_{R,r} \setminus \{a, b\}$. 不妨设 F increasing & bounded. 下面证明 m(E) = 0. 反证法. Suppose m(E) > 0. Then by **Thm 1.3.4 (Lebesgue 测度的 (外) 正则性)**, $\exists O \subset (a, b)$ open, s. t.

$$E \subset O \subset (a, b), m(O) < \frac{R}{r}m(E)$$

根据 Thm 1.1.3 (开集构造定理), we have

$$O = \bigcup_{n=1}^{\infty} I_n, \ I_n = (a_n, \beta_n) \ disjoint$$
 (4.163)

Fix $n \in \mathbb{N}$. Let G(x) = F(-x) + rx. Then

$$-x \in I_n \iff x \in -I_n = (-\beta_n, -a_n)$$

Thus by **Rising Sun Lemma** (Cor 4.5.2), we have E_G open, where

$$E_G = \{ x \in (-\beta_n, -a_n) \mid G(x+h) > G(x) \text{ for some } h > 0 \}$$
 (4.164)

$$= \bigcup_{k=1}^{\infty} (-b_k, -a_k)$$
 (4.165)

and

$$G(-b_k) \le G(-a_k) \implies F(b_k) - rb_k \le F(a_k) - ra_k \tag{4.166}$$

$$\Rightarrow F(b_k) - F(a_k) \le r(b_k - a_k) \tag{4.167}$$

上述估计式将会用于后面对于测度的估计.

Let $\widetilde{G}(x) = F(x) - Rx$. Apply **Rising Sun Lemma (Cor 4.5.2)** on (a_k, b_k) , $\forall k \in \mathbb{N}$

$$E_{\widetilde{G}} = \left\{ x \in (a_k, b_k) \mid \widetilde{G}(x+h) > \widetilde{G}(x) \text{ for some } h > 0 \right\}$$
 (4.168)

$$= O_{n,k} = \bigcup_{j=1}^{\infty} (a_{k,j}, b_{k,j}) \subset (a_k, b_k)$$
(4.169)

图 4.6:
$$E_{\widetilde{G}} = O_{n,k}$$
 on (a_k, b_k)

and $\widetilde{G}(b_{k,j}) \geq \widetilde{G}(a_{k,j})$. i.e.

$$F(b_{k,j}) - F(a_{k,j}) \ge R(b_{k,j} - a_{k,j})$$

此时将视线缩放回整个 I_n 区间上. Let

$$O_n := \bigcup_{k=1}^{\infty} O_{n,k} = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} (a_{k,j}, b_{k,j})$$
 (4.170)

图 4.7: O_n on I_n

下面估计 O_n 的测度.

By $F(b_k) - F(a_k) \le r(b_k - a_k)$ and $F(b_{k,j}) - F(a_{k,j}) \ge R(b_{k,j} - a_{k,j})$, we have

$$m(O_n) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} (b_{k,j} - a_{k,j}) \le \frac{1}{R} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} F(b_{k,j}) - F(a_{k,j})$$
(4.171)

Since *F* is increasing, then

$$m(O_n) \le \frac{1}{R} \sum_{k=1}^{\infty} (F(b_k) - F(a_k)) \le \frac{r}{R} \sum_{k=1}^{\infty} (b_k - a_k) \le \frac{r}{R} m(I_n)$$
 (4.172)

下面先给出一个断言.

• Claim : $E \cap I_n \subset O_n$.

证明. Since

$$E = (a, b) \cap \{x \in \mathbb{R} \mid D^{+}(F)(x) > R\} \cap \{x \in \mathbb{R} \mid D_{-}(F)(x) < r\}$$
(4.173)

$$\subset \left\{ x \in (a,b) \mid \limsup_{h \to 0^+} \frac{F(x+h) - F(x)}{h} > R \right\}$$
 (4.174)

$$= \{x \in (a, b) \mid F(x+h) - F(x) > Rh \text{ for some } h > 0\}$$
(4.175)

$$= \left\{ x \in (a, b) \mid \widetilde{G}(x+h) > \widetilde{G}(x) \text{ for some } h > 0 \right\}$$
 (4.176)

Therefore

$$E \cap I_n \subset \left\{ x \in I_n \mid \widetilde{G}(x+h) > \widetilde{G}(x) \text{ for some } h > 0 \right\}$$
 (4.177)

$$= \bigcup_{k=1}^{\infty} \left\{ x \in (a_k, b_k) \mid \widetilde{G}(x+h) > \widetilde{G}(x) \text{ for some } h > 0 \right\}$$
 (4.178)

$$= \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} (a_{k,j}, b_{k,j})$$
 (4.179)

$$= O_n \tag{4.180}$$

Since $E \subset O = \bigcup_{n=1}^{\infty} I_n$, then

$$E = \bigsqcup_{n=1}^{\infty} (E \cap I_n) \tag{4.181}$$

Therefore, by Claim

$$m(E) = \sum_{n=1}^{\infty} m(E \cap I_n) \le \sum_{n=1}^{\infty} m(O_n) \le \frac{r}{R} \sum_{n=1}^{\infty} m(I_n) = \frac{r}{R} m(O) < m(E)$$
 (4.182)

which is a contradiction that m(E) < m(E). Thus m(E) = 0.

4.6.2 Weak Newton – Leibniz Formula

作为 Thm 4.6.1的推论,下面我们来给出弱 Newton-Leibniz 公式.

推论 4.6.2. Weak Newton-Leibniz Formula.

If $F:[a,b]\to\mathbb{R}$ is increasing, continuous and bounded on [a,b], then F' exists a.e. on [a,b]. Moreover, F' is measurable, nonnegative and

$$\int_{a}^{b} F'(x)dx \le F(b) - F(a) \tag{4.183}$$

In particular, if F is bounded on \mathbb{R} , then F' is integrable on \mathbb{R} .

注. 至于结论中的"≤"为何不能取"=",下面给出了经典反例,即**严格小于**的例子.

例 4.6.1. Cantor-Lebesgue Function.

$$F\left(\sum_{k=1}^{\infty} \frac{a_k}{3^k}\right) = \sum_{k=1}^{\infty} \frac{b_k}{2^k}, \ b_k = \frac{a_k}{2}, \ a_k \in \{0, 2\}$$
 (4.184)

可以证明 F'(x) = 0 for a.e. $x \in [0, 1]$. Then

$$\int_{0}^{1} F'(x)dx = 0 < 1 = F(1) - F(0)$$
 (4.185)

具体证明可见书5 P 125-127 或视频 连续有界变差函数的可微性.

⁵ 《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》 — Elias M. Stein

证明. Since F is increasing and bounded on [a, b], then by **Example 4.4.2**, F is of BV.

Thus F is continous and of BV on [a, b], by **Thm 4.6.1**, F' exists a.e. on [a, b].

Let

$$G_n(x) = \frac{F(x + \frac{1}{n}) - F(x)}{\frac{1}{n}}$$
(4.186)

Then $G_n \to F'$ for a.e. $x \in [a, b]$.

Since G_n is continuous, especially measurable, and $G_n \to F'$ for a.e. x,

then F' is measurable (可测函数列对极限封闭). We also have $G_n \geq 0$, $F' \geq 0$.

Apply Fatou's Lemma (Thm 3.1.6),

$$\int_{a}^{b} \liminf_{n \to \infty} G_{n}(x) dx \le \liminf_{n \to \infty} \int_{a}^{b} G_{n}(x) dx$$
(4.187)

i.e.

$$\int_{a}^{b} F'(x)dx \le \liminf_{n \to \infty} \int_{a}^{b} G_{n}(x)dx \tag{4.188}$$

Since

$$\int_{a}^{b} G_{n}(x)dx = n \int_{a}^{b} F(x + \frac{1}{n})dx - n \int_{a}^{b} F(x)dx$$
 (4.189)

根据 Thm 3.6.2, 闭区间上 Lebesgue 积分可转化为 Riemann 积分, 因此

$$\int_{a}^{b} G_{n}(x) = n \int_{a+\frac{1}{n}}^{b+\frac{1}{n}} F(y)dy - n \int_{a}^{b} F(x)dx$$
(4.190)

$$= n \int_{b}^{b+\frac{1}{n}} F(x)dx - n \int_{a}^{a+\frac{1}{n}} F(x)dx \qquad (4.191)$$

根据积分中值定理,

$$\int_{a}^{b} G_{n}(x)dx = n \int_{b}^{b+\frac{1}{n}} F(x)dx - n \int_{a}^{a+\frac{1}{n}} F(x)dx$$
 (4.192)

$$= F(\xi_n) - F(\eta_n) \to F(b) - F(a)$$
 (4.193)

where
$$\xi_n \in [b, b + \frac{1}{n}], \ \eta_n \in [a, a + \frac{1}{n}]$$
 (4.194)

Therefore

$$\int_{a}^{b} F'(x)dx \le \liminf_{n \to \infty} \int_{a}^{b} G_{n}(x)dx = F(b) - F(a)$$
 (4.195)

4.7 绝对连续函数与微积分基本定理

4.7.1 绝对连续函数

下面我们给出绝对连续的概念,它和连续的概念不太一样,甚至比一致连续还要强.

定义 **4.7.1.** A function F on [a, b] is **absolutely continuous** if $\forall \epsilon > 0$, $\exists \delta > 0$, s. t.

$$\forall \sum_{k=1}^{N} (b_k - a_k) < \delta, \ (a_k, b_k) \ disjoint \ \Rightarrow \ \sum_{k=1}^{N} |F(b_k) - F(a_k)| < \epsilon$$
 (4.196)

注. 下面给出几条绝对连续函数的性质.

1. Absolutely Continuous ⇒ Uniformly Continuous (绝对连续 ⇒ 一致连续).

证明. 取
$$N=1$$
, 则 $|F(x)-F(y)|<\epsilon$, $\forall |x-y|<\delta$.

2. $f \in AC([a, b]) \Rightarrow f \in BV([a, b]) (\Rightarrow f 几乎处处可微).$

证明. For $\epsilon = 1, \exists \delta > 0, s.t.$

$$\sum_{i=1}^{n} \left| f(\widetilde{b_i}) - f(\widetilde{a_i}) \right| < 1 \text{ whenever if } \sum_{i=1}^{n} (\widetilde{b_i} - \widetilde{a_i}) < \delta$$
 (4.197)

Let P^* : $a = a_0 < a_1 < \cdots < a_n = b$ be a partition with

$$a_i - a_{i-1} = \frac{\delta}{2}$$
 for $i = 1 \sim n-1$ and $a_n - a_{n-1} \le \frac{\delta}{2}$

Then $n = \left\lceil \frac{2(b-a)}{n} \right\rceil + 1$.

Let P be any partition of [a, b], and let

$$P^{'} = P \cup P^{*} \tag{4.198}$$

$$P': a = x_0 < x_1 < \dots < x_m = a_n = b$$
 (4.199)

$$P'_{i} = \left\{ x_{i_{k}} \in P' \mid x_{i_{k}} \in [a_{i-1}, a_{i}] \right\}, \quad i = 1 \sim n$$
(4.200)

Suppose $|P_i'| = n_i$. Since

$$\sum_{k=1}^{n_i} (x_{i_k} - x_{i_{k-1}}) = a_i - a_{i-1} \le \frac{\delta}{2}$$
(4.201)

Then

$$\sum_{k=1}^{n_i} \left| f(x_{i_k}) - f(x_{k-1}) \right| < 1 \tag{4.202}$$

Thus for any partition P,

$$V_f(P) \le V_f(P') = \sum_{i=1}^n \sum_{k=1}^{n_i} \left| f(x_{i_k}) - f(x_{i_{k-1}}) \right| \le n = \left[\frac{2(b-a)}{\delta} \right] + 1 \tag{4.203}$$

Therefore, $f \in BV([a, b])$.

3. If f is integrable and $F(x) = \int_a^x f(y)dy$, then $F \in AC([a, b])$.

证明. Since f is integrable, 根据 **Prop 3.1.6** (ii) (Lebesgue 积分的绝对连续性), $\forall \epsilon > 0, \exists \delta > 0, s.t.$

$$\forall m(E) < \delta \implies \int_{E} |f| < \epsilon \tag{4.204}$$

Then

$$\forall \sum_{k=1}^{N} (b_k - a_k) = m \left(\bigcup_{k=1}^{N} (a_k, b_k) \right) < \delta, \ (a_k, b_k) \ disjoint$$
 (4.205)

We have

$$\sum_{k=1}^{N} |F(b_k) - F(a_k)| = \sum_{k=1}^{N} \left| \int_{a}^{b_k} f - \int_{a}^{a_k} f \right| \le \sum_{k=1}^{N} \int_{[a_k, b_k]} |f| = \int_{\bigcup_{k=1}^{N} [a_k, b_k]} |f| < \epsilon$$
 (4.206)

Therefore, $F \in AC([a, b])$.

4.7.2 Vitali Covering Lemma

在引理 **4.1.1** 中,我们已经给出过 **Vitali** 覆盖引理的初等版本. 而在这一小节,我们将给出更一般的 **Vitali** 覆盖引理.

首先先来给出 Vitali 覆盖的定义.

定义 **4.7.2.** A collection \mathcal{B} of balls $\{B\}$ is said to be a <u>Vitali Covering</u> of a set E if $\forall x \in E, \forall \eta > 0, \exists B \in \mathcal{B}, \text{ s. t.}$

$$x \in B$$
 and $m(B) < \eta$

下面给出一般形式的 Vitali 覆盖引理.

引理 4.7.1. Vitali Covering Lemma.

Suppose *E* is a set of finite measure and \mathcal{B} is a Vitali Covering of *E*. Then $\forall \delta > 0$, we can find finitely many balls $B_1, \dots, B_N \in \mathcal{B}$, s. t.

- (1) B_1, \dots, B_N are disjoint.
- $(2) \sum_{i=1}^{N} m(B_i) \ge m(E) \delta$

证明. 详细证明可见视频 绝对连续函数与微积分基本定理.

图 4.8: Vitali Covering Lemma

根据 Vitali 覆盖引理 (Lemma 4.7.1), 我们可马上得到推论.

推论 **4.7.2.** Suppose E is a set of finite measure and \mathcal{B} is a Vitali Covering of E. Then $\forall \delta > 0$, we can find finitely many balls $B_1, \dots, B_N \in \mathcal{B}$, s. t.

$$m\left(E\setminus\bigcup_{i=1}^{N}B_{i}\right)<2\delta\tag{4.207}$$

证明. 根据 Thm 1.3.4 (Lebesgue 测度的 (外) 正规性), $\exists E \subset O$ open, s. t.

$$m(O \setminus E) < \delta$$

By Vitali Covering Lemma (Lemma 4.7.1), $\exists B_1, \cdots, B_N \in \mathcal{B}$ disjoint, s. t.

$$\sum_{i=1}^{N} m(B_i) \ge m(E) - \delta \tag{4.208}$$

Then since

$$\left(E \setminus \bigcup_{i=1}^{N} B_{i}\right) \sqcup \bigcup_{i=1}^{N} B_{i} = E \subset O$$

$$(4.209)$$

We have

$$m\left(E\setminus\bigcup_{i=1}^{N}B_{i}\right)\leq m(O)-m\left(\bigcup_{i=1}^{N}B_{i}\right)$$
 (4.210)

$$\leq m(O) + \delta - m(E) \tag{4.211}$$

$$= m(O \backslash E) + \delta \tag{4.212}$$

$$< 2\delta$$
 (4.213)

4.7.3 微积分基本定理

在介绍微积分基本定理之前,先来给出一个结论.

定理 **4.7.3.** If F is absolutely continuous on [a, b], then F'(x) exists for a.e. $x \in [a, b]$. In particular, if F'(x) = 0 for a.e. $x \in [a, b]$, then

F is constant.

注. 事实上,利用该定理即可说明,Cantor-Lebesgue Function (Example 4.6.1) 不是绝对连续函数.

证明. 根据绝对连续函数的性质 2, $F \in AC([a, b]) \Rightarrow F \in BV([a, b])$ and continuous. Then by **Thm 4.6.1** (连续有界变差函数几乎处处可微),

$$F'(x)$$
 exists for a.e. $x \in [a, b]$.

If F'(x) = 0 for a.e. $x \in [a, b]$, then it suffices to show

$$F(a) = F(b)$$

(因为如果这条结论成立,则对于 $\forall x \in [a, b]$,都有 $F \in AC([a, x])$,从而 F(a) = F(x))

Let $E = \{x \in (a, b) \mid F'(x) = 0\}$, then m(E) = m([a, b]) = b - a. $\forall x \in E$, we have

$$\lim_{h \to 0} \left| \frac{F(x+h) - F(x)}{h} \right| = 0 \tag{4.214}$$

 $\Leftrightarrow \forall \epsilon > 0, \exists \widetilde{\delta} > 0, s. t.$

$$|F(x+h) - F(x)| < \epsilon |h|, |h| < \widetilde{\delta}$$
(4.215)

Then for all $0 < \eta < \widetilde{\delta}, \exists 0 < h_1, h_2 < \widetilde{\delta}, s.t.$

$$h_1 + h_2 < \eta$$

Let $a_x = x - h_1 \in (x - \widetilde{\delta}, x)$ and $b_x = x + h_2 \in (x, x + \widetilde{\delta})$. Then $b_x - a_x = h_1 + h_2 < \eta$ and

$$|F(x+h_2) - F(x)| < \epsilon \cdot h_2 \tag{4.216}$$

$$|F(x) - F(x - h_1)| < \epsilon \cdot h_1 \tag{4.217}$$

Thus

$$|F(b_x) - F(a_x)| \le |F(x + h_2) - F(x)| + |F(x) - F(x - h_1)| \tag{4.218}$$

$$<\epsilon(h_1+h_2) \tag{4.219}$$

$$= \epsilon(b_x - a_x) \tag{4.220}$$

Therefore, for all $x \in E$, $\forall 0 < \eta < \widetilde{\delta}$, $\exists I_x = (a_x, b_x) \subset (a, b)$ containing x, s. t.

$$|F(b_x) - F(a_x)| < \epsilon(b_x - a_x) \text{ and } b_k - a_k < \eta \tag{4.221}$$

Then the collection of open intervals

$$\mathcal{B} = \{ (a_x, b_x) \mid x \in (a, b) \}$$
 (4.222)

is a vitali covering of E.

Since $F \in AC([a, b])$, then for $\epsilon > 0$, $\exists \delta > 0$, s. t.

$$\forall \sum_{k=1}^{N} (b_k - a_k) < \delta, \ (a_k, b_k) \ disjoint \ \Rightarrow \ \sum_{k=1}^{N} |F(b_k) - F(a_k)| < \epsilon$$
 (4.223)

By Vitali Covering Lemma (Lemma 4.7.1), for $\delta > 0$, \exists disjoint $\{(a_i, b_i) \mid 1 \le i \le N\} \subset \mathcal{B}$, s. t.

$$\sum_{i=1}^{N} m((a_i, b_i)) \ge m(E) - \delta = (b - a) - \delta$$
(4.224)

根据式 (4.221) 可知,

$$|F(b_i) - F(a_i)| \le \epsilon(b_i - a_i) \tag{4.225}$$

$$\Rightarrow \sum_{i=1}^{N} |F(b_i) - F(a_i)| \le \epsilon \cdot \sum_{i=1}^{N} (b_i - a_i) \le \epsilon (b - a)$$

$$(4.226)$$

 $\[\] \]$ 4.9: Collection $\{(a_i,b_i)\}_{i=1}^N$ on [a,b]

显然,[a,b] 去除这有限个开区间 $\{(a_i,b_i)\}_{i=1}^N$ 后,剩下有限个闭区间,即

$$[a,b]\setminus \bigcup_{i=1}^{N} (a_i,b_i) = \bigcup_{k=1}^{M} (a_k,\beta_k)$$
 (4.227)

并且根据 $\sum_{i=1}^{N} m((a_i, b_i)) \ge m(E) - \delta = (b - a) - \delta$ 可知

$$\sum_{k=1}^{M} (\beta_k - a_k) \le \delta \tag{4.228}$$

而这再结合 $F \in AC([a,b])$, 根据绝对连续函数的定义, 可以得到

$$\sum_{k=1}^{M} |F(\beta_k) - F(a_k)| \le \epsilon \tag{4.229}$$

综上所述, $\{(a_i,b_i)\}_{i=1}^N$ 和 $\{(a_k,\beta_k)\}_{k=1}^M$ 共同构成了 [a,b] 的一个分划.

$$|F(b) - F(a)| \le \sum_{i=1}^{N} |F(b_i) - F(a_i)| + \sum_{k=1}^{M} |F(\beta_k) - F(a_k)|$$
(4.230)

$$\leq \epsilon(b-a) + \epsilon, \ \forall \epsilon > 0$$
 (4.231)

Since $\epsilon > 0$ is arbitrary, letting $\epsilon \to 0$, we have

$$F(b) = F(a) \tag{4.232}$$

最后我们来给出微积分基本定理.

定理 4.7.4. Fundamental Theorem of Calculus.

Suppose F is absolutely continuous on [a, b]. Then F' exists a.e. and integrable. Moreover,

$$F(x) - F(a) = \int_{a}^{x} F'(y)dy, \ x \in [a, b]$$
 (4.233)

Conversely, if $f \in \mathcal{L}^1([a, b])$, then for the function

$$F(x) = \int_{a}^{x} f(y)dy \tag{4.234}$$

It satisfies F'(x) = f(x) for a.e. $x \in [a, b]$.

证明. 根据绝对连续函数的性质 2, $F \in AC([a, b]) \Rightarrow F \in BV([a, b])$ and continuous. Then by **Thm 4.6.1** (连续有界变差函数几乎处处可微),

$$F'(x)$$
 exists for a.e. $x \in [a, b]$.

同时可证明,对 Weak Newton-Leibniz Formula (Cor 4.6.2)的条件改为 BV + continuous, 仍有

$$\int_{a}^{b} F'(x)dx \le F(b) - F(a) < \infty \tag{4.235}$$

这样就说明 F' is integrable.

Let

$$G(x) = \int_{a}^{x} F'(y)dy \tag{4.236}$$

Then $G \in AC([a, b])$. So is H(x) = G(x) - F(x). (可以证明绝对连续函数对加减运算封闭) Since G' exists a.e.

$$H'(x) = G'(x) - F'(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} F'(y) dy - F'(x) = F'(x) - F'(x) = 0$$
 (4.237)

Thus H'(x) = 0 for a.e. $x \in [a, b]$. By **Thm 4.7.3**, H = G - F is constant.

Therefore

$$H(a) = H(x)$$
, for a.e. $x \in [a, b]$ (4.238)

$$\Rightarrow -F(a) = \int_{a}^{x} F'(y)dy - F(x) \tag{4.239}$$

i.e.

$$\int_{a}^{x} F'(y)dy = F(x) - F(a) \text{ for a.e. } x \in [a, b]$$
 (4.240)