Carbon emission and Asset prices

New evidence from machine learning

Feng Li, Xingjian Zheng

Shanghai Advanced Institute of Finance, SJTU

July, 2023

- 1 Background and Intro
- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- **5** Supplementary figures and tables

- 1 Background and Intro
- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- Supplementary figures and tables

000000

- Carbon emission data is one of the most important data for every Investment Company/Business entity/Government/...
- Very important data flow in the socio-economic system.

Carbon emission and Asset prices

- The risk story: higher emissions, higher returns (Bolton and Kacperczyk, 2020, 2021a, 2021b, 2022a, 2022b)(Also, the pollution premium in Hsu et al., 2023)
- Contrasting findings: higher emissions, lower returns (Garvey et al., 2018; In et al., 2017; Matsumura et al., 2014)
- Inconclusive results: Insignificant emission-return relationship (Aswani et al., 2022; Monasterolo and De Angelis, 2020)
- The problem is with a lack of emission DATA! (sampling bias for the high emission firms/fewer disclosures prior to 2016/biased estimation methods)
 - Very few firms (less than 20%) voluntarily disclose emission data.
 - The emission estimated by data vendors are largely linear interpolations and clustered at industry level.

This paper

- Estimates a large panel of scope 1 carbon emissions by US firms with XGBoost from 2002 to 2021.
 - This data set has broad coverage of 4111 firms per year as compared to 1675 firms provided by data vendors.
 - We design empirical tests and perform various ML validation tests to examine the robustness & accuracy.
- With this data set, we document the following simple facts:
 - Prior to 2016 (the Paris Agreement), there is a high carbon, high return relationship
 - Post-2016, the positive relationship drastically reversed to become negative, i.e., high carbon, low return.
 - This reversal is driven by institutional investor flows that purchase stocks of low-emission firms.

 We replicate Bolton and Kacperczyk (2021a) by running monthly pooled-OLS regressions and plotting the cumulative return premia estimated with (1) XGBoost estimated data, and (2) data provided by the data vendor.

$$RET_{i,t} = \alpha + \beta GHG_{i,t} + \gamma' X_{i,t-1} + \delta_t + \mu_j + \varepsilon_{i,t}, \tag{1}$$

Figure 1: Carbon cumulative return premia with industry FE

Related literature

000000

- Carbon emission and stock returns
 - Positive emission-return relationship: A series of works by Bolton and Kacperczyk (See Bolton and Kacperczyk, 2021a)
 - Contrasting evidence: Aswani et al. (2022); Duan et al. (2022); Choi et al. (2022); Cheema-Fox et al. (2021); which may be driven
 - Evidence on investors' raising awareness of ESG investing: P'astor et al. (2021, 2022); Pedersen et al. (2021), and van der Beck (2021)
 - Also worth noting: The pollution premium (Hsu et al., 2023)
- Boosting trees in Economics and Finance
 - XGBoost models or other basic boosting trees are used in loan approval (Tantri, 2021, Rossi and Utkus, 2020), patent classification (Zheng, 2022), and return predictions (Teng et al., 2020)
- Economic links and industrial competitions
 - Most notably on business similarity (Hoberg and Philips, 2010, 2016, 2018), or competitions (Li et al. 2013, Bernard et al., 2020, Eisdorfer et al., 2020).
 - Other links like technological linkage (Lee et al., 2019), customers (Cohen and Frazzini, 2008), common analysts (Ali and Hirshleifer, 2020), etc.

- Background and Intro
- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- Supplementary figures and tables

Methodology

- Firms that share similar business structures produce carbon emissions on a similar scale.
- We can use the emission of disclosure firms to predict the emission of similar non-disclosure firms by training a supervised model.

Figure 2: Estimation example

- We input (i) the emission data, (ii) similarity score pairs (Hoberg & Philips 10-k sim ratio), (iii) firm fundamentals, and (iv) firms' fixed identifiers into the XGBoost algorithm. We train the algorithm on a cross-sectional basis.
 - Similarity score is from the Hoberg and Philips data library(2010, 2016); emission data is obtained from Trucost; firm fundamentals and fixed identifiers are from Compustat CCM.
 - Firm fundamentals include firm sales, total assets, non-current assets, and employee numbers.
 - We link emission data and firm fundamentals by their GVKEY from the Compustat. The WRDS database provides exact matches.
 - XGBoost model is as follows:

$$\widehat{\mathit{GHG}}_f = \widehat{f}\left(\mathit{GHG}_d, \mathsf{score}_{< f, d>}, \cdots\right) = \arg\min L\left(f(X) + \widehat{\mathit{GHG}}_f\right) + R(f(\cdot)) \quad (2)$$

 Sample period: 2002-2021, with a training period from 2002-2018 and a test period from 2019 to 2021.

Background and Intro

Table 1: Number of disclosed firms in the dataset

Year	Trucost	Thomson Reuters	CDP	Aswani et al. (2022)	XGBoost Estimated
				7 Swam et al. (2022)	
2002	629	4	4		2952
2003	851	10	1		3703
2004	1026	20	12		4073
2005	1260	50	37	700	4406
2006	1275	171	54	706	4440
2007	1237	309	77	693	4367
2008	1251	367	105	690	4328
2009	1265	500	329	709	4162
2010	1258	550	564	704	4011
2011	1252	588	801	715	3938
2012	1252	597	900	727	3909
2013	1350	572	998	800	3946
2014	1372	585	1217	829	4049
2015	1377	659	1135	859	4117
2016	3265	722	1472	2369	4281
2017	3286	797	1469	2509	4228
2018	3363	895	1501	2645	4242
2019	3393	1066	1418	1992	4279
2020	3154	1110	1436		4329
2021	385	398	356		4453
Average	1675	499	694	1176	4111

Background and Intro

- Machine learning performance
- Variable importance contribution
- Summary stats (below) and Correlation matrix

	N	Mean	Std	Min	25%	50%	75%	Max
Firm-yearl leve	l observation	s						
LOGGHG	82213	9.22	4.44	0.00	8.03	10.43	12.02	15.87
GHGINTEN	80469	7.44	20.65	0.00	0.04	0.42	3.78	110.94
LOGSIZE	80955	13.36	2.05	8.53	11.90	13.41	14.83	17.19
LEVERAGE	82166	0.58	0.27	0.08	0.37	0.58	0.80	1.11
INVEST2A	81043	0.04	0.05	0.00	0.00	0.02	0.05	0.23
ROE	82015	0.00	0.42	-1.19	-0.05	0.08	0.15	1.21
HHI	82136	0.09	0.07	0.02	0.05	0.07	0.12	0.35
LOGPPE	78955	4.57	2.59	0.02	2.56	4.49	6.49	9.54
B2M	77172	1.05	1.95	0.06	0.31	0.57	0.95	11.90
SALESGR	76818	0.10	0.31	-0.54	-0.04	0.06	0.18	1.34
EPSGR	77864	-0.03	2.15	-8.50	-0.37	0.08	0.56	5.86
Firm-year-mon	th level obse	rvations						
RETX	890602	1.02	16.47	-97.22	-5.79	0.43	6.63	1988.36
MOM	890522	1.12	4.72	-44.98	-1.01	0.90	2.88	169.02
VOLAT	890531	12.61	10.69	0.27	6.69	10.00	15.31	583.47
BETA	890602	1.23	1.08	-21.13	0.59	1.09	1.70	44.39

 Overall, the estimated data set is comparable to Trucosts original emissions in magnitude after 2016, and it has high validity and complements a very large fraction of the data set prior to 2016.

Data validation

Background and Intro

- We design several tests to validate the robustness of our data set.
- We design empirical tests to examine the validity.
 - State level regulation shocks
 - Transition matrix
 - Comparison of the determinants of carbon emission
 - Carbon emission and inclusion into ESG-related fund
- We also use machine learning tests to examine the robustness.
 - Cross-validation tests with hyper-parameters
 - Different partitioning results
 - Model comparison: XGBoost versus linear models
 - Business similarity and emission similarity

- Background and Intro
- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- 5 Supplementary figures and tables

- We explore the cross-sectional properties of stock returns with firms carbon emissions.
- We first follow the pooled OLS regression model used in Bolton and Kacperczyk (2021a) as follows.

$$RET_{i,t} = \alpha + \beta GHG_{i,t} + \gamma' X_{i,t-1} + \delta_t + \mu_j + \varepsilon_{i,t},$$
 (3)

- The independent variables include three different emission measures: (i) LOGGHG, (ii) GHGGR, and (iii) GHGINTEN. The most important variable is the logarithmic value of carbon emissions LOGHG.
- We partition the sample period before and after 2016 (the Paris Agreement), and examine the emission-return relationship with different samples, i.e., the Trucost sample and the XGBoost sample.

		Т	rucost origin	al sample				
Sample period	Panel A: 2002-2016 (before the Paris agreement)							
	(1)	(2)	(3)	(4)	(5)	(6)		
LOGGHG	0.0330* (1.89)	0.0686*** (3.86)						
GHGGR	, ,	, ,	0.5783***	0.5721***				
GHGINTEN			(4.84)	(5.17)	-0.0032 (-0.44)	-0.0039 (-0.52)		
Const	Т	Т	Т	Т	Т	Т		
Controls	Т	Т	Т	Т	Т	Т		
Year-Mon FE	Т	Т	Т	Т	Т	Т		
Ind FE		Т		Т		Т		
R2	0.22	0.22	0.23	0.23	0.22	0.22		
N	215808	215808	185490	185490	215760	215760		

	Carbo	n emission	s estimat	ted by X	GBoost algor	rithm
Sample period	Panel	B: 2002-2	2016 (bet	fore the	Paris agreem	ent)
	(7)	(8)	(9)	(10)	(11)	(12)
LOGGHG	0.0142*	0.0109* (1.91)				
GHGGR	(1.84)	(1.91)	0.0082	0.0087		
GHGINTEN			(0.67)	(0.74)	-0.0089*** - (-3.69)	·0.0091*** (-4.01)
Const Controls Controls Year-Mon FE Ind FE	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T
R2 N	0.16 533001	0.17 533001	0.17 406387	0.17 406387	0.16 531136	0.16 531136
Sample period	Pane	el C: 2016-	2021 (af	ter the F	Paris agreeme	ent)
	(13)	(14)	(15)	(16)	(17)	(18)
LOGGHG	-0.0888*** (-3.32)	-0.0536** (-2.12)	:			
GHGGR	(-3.32)	(-2.12)		-0.0086		
GHGINTEN			(-0.77)	(-0.18)	-0.0368*** - (-4.69)	·0.0339*** (-5.32)
Const Controls Year-Mon FE Ind FE	T T T	T T T T	T T T	T T T	T T T	T T T T
R2 N	0.16 231149	0.17 231149	0.17 217119	0.17 217119	0.17 229777 =	0.17 229777

Cumulative carbon premia

Background and Intro

 We examine the cumulative return premia estimated from monthly cross-sectional returns from equation 3, and the independent var. of interest is LOGGHG.

Empirical results 0000000000

- Similar to regression results, there seems to be a structural mutation in carbon pricing.
- Adding industry fixed effects makes a huge difference for the Trucost data, but not that significant for XGBoost estimated data.

Figure 3: Cumulative premia

Figure 4: Cumulative premia with industry FE

Flow-based mechanism

Background and Intro

- We examine whether the change in risk premium is driven by institutional investor flow.
- Following van der Beck (2022), we estimate investor flow with equation 4, where $A_{i,t}$ is the total investor holding amount from 13F and $RET_{i,t}$ is the firms' annualized return.

$$FLOW_{i,t} = A_{i,t} - A_{i,t-1} \times (1 + RET_{i,t})$$
(4)

 We regress investor flows on an interaction term that combines firms' carbon emissions and a time dummy that denotes the date after the Paris Agreement.

Table 3: Mechanism: Carbon emission and investor flow after 2016

		LOGF	LOW		
(1)	(2)	(3)	(4)	(5)	(6)
-0.0276***	-0.0279***	0.0034	-0.0085	0.0001	0.0001
(-3.07) 0.0275*** (6.69)	(-2.81) 0.0075 (1.12)	(0.24)	(-0.57)	(1.00)	(1.17)
(5.55)	(=:==)	0.0161*	0.0118		
		(1.90)	(1.24)		
0.0234 (0.15)	0.0047 (0.03)	-0.3147** (-2.18)	-0.3037** (-2.09)	(-6.50) -0.2647* (-1.88)	(-7.33) -0.2792** (-1.98)
Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т
0.67	•	0.64	•	0.67	T
					0.65 29935
	-0.0276*** (-3.07) 0.0275*** (6.69) 0.0234 (0.15)	-0.0276*** -0.0279*** (-3.07)	(1) (2) (3) -0.0276*** -0.0279*** 0.0034 (-3.07) (-2.81) (0.24) 0.0275*** 0.0075 (6.69) (1.12) 0.0161* (1.90) 0.0234 0.0047 -0.3147*** (0.15) (0.03) (-2.18) T T T T T T T T T T T T O.667 0.65 0.64	-0.0276*** -0.0279*** 0.0034 -0.0085 (-3.07)	(1) (2) (3) (4) (5) -0.0276*** -0.0279*** 0.0034 -0.0085 0.0001 (-3.07) (-2.81) (0.24) (-0.57) (1.00) 0.0275*** 0.0075 (6.69) (1.12) -0.0161* 0.0118 (1.90) (1.24) -0.0004*** (-6.50) 0.0234 0.0047 -0.3147** -0.3037** -0.2647* (0.15) (0.03) (-2.18) (-2.09) (-1.88) T

SAIF

- We sort stocks of firms of different emission levels into 5 quintiles, and examine the flow-return relationship for each quintile portfolio.
- The flow-induced carbon premium is (more) pronounced among the low-carbon group.

Table 4: Flow-induced stock returns

Dep Var.	RET										
Portfolio type	Lo carbon		:	2		3		4		Hi carbon	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
LOGFLOW	1.7186*** (2.73)	1.6637*** (2.72)	0.6593* (1.82)	0.6448* (1.89)	0.5020 (1.25)	0.4718 (1.04)	1.1486 (1.55)			2.1667 (1.27)	
Const Controls Year-Mon FE Ind FE R2 N	T T T 0.18 14472	T T T T 0.19 14472	T T T 0.22 14469	T T T T 0.23 14469	T T T 0.30 14467	T T T T 0.31 14467	T T T 0.21 14469	T T T T 0.22 14469	T T T 0.22 14471	T T T T 0.23 14471	

Carbon premia with Trucost data sample

Table 5: Carbon emission and realized stock returns (Trucost post 2016)

Sample period	2016-202	2016-2021 (After the Paris Agreement with Trucost sample)								
	(1)	(2)	(3)	(4)	(5)	(6)				
LOGGHG	-0.0898*** (-3.66)	-0.0085 (-0.16)								
GHGGR	(5.55)	(3.23)	0.9119* (1.87)	1.0895** (2.09)						
GHGINTEN			(1.07)	(2.03)	-0.0423 (-0.86)	-0.0332 (-0.84)				
Const Controls	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ				
Year-Mon FE Ind FE	Ť	Ť T	Ť	† T	Ť	Ť T				
R2 N	0.22 116602	0.23 116602	0.23 114381	0.24 114381	0.23 116578	0.23 116578				

Supplementary evidence from XGBoost

- We provide other tests related to the carbon risks in the US equity market.
- Test (i): carbon premia and other common risk factors
- Test (ii):alternative risk stories
 - After 2016, higher emission firms are more profitable/less financially constrained/have lower product failure risk.
 - Firms need to lay off their brown business and divert to cleaner business that they are unfamiliar with and often more costly.
- Test (iii): Univariate sorting results

Conclusion

- Background and Intro
- 2 Emission estimation
- 3 Empirical results
- **4** Conclusion
- Supplementary figures and tables

Background and Intro Conclusion

- This paper estimates a large panel of scope 1 emission data for listed US firms from 2002 to 2021.
 - This dataset is robust and is better than the (i) Trucost original data and (ii) dataset estimated with linear models.
 - Prior to 2016, there is a positive emission-return relationship, and it is more pronounced with XGBoost estimated data.
 - Post-2016, stocks of firms with lower emissions earned higher returns, reflecting a shift in investors' ESG-related preferences.

Thanks!

- Background and Intro

- **5** Supplementary figures and tables

- Empirical background: States would announce ESG targets to promote sustainbale business. California pioneered sustainable operation by setting emission reduction targets in 2005.
- Until 2022, 23 states followed guickly.
- Emission policies include carbon pricing, emission limits, renewable portfolio standards, and steps to promote cleaner transportation.
- We investigate firms carbon emissions in these Green states before and after the policy shock. We expect to see a significant decrease in these firms
- Our identification strategy is very similar to a staggered DID as follow:

$$LOGGHG_{i,t} = \alpha + \beta REGU_{i,t} + \gamma' X_{i,t} + \mu_j + \lambda_s + \varepsilon_{i,t}$$
 (5)

IBACK to validation pagel

Background and Intro

Figure 5: State emission targets

[BACK to validation page]

Table 6: State regulation and firm carbon emission

		LOG	GHG	
	(1)	(2)	(3)	(4)
Regulated	-0.2317*** (-3.66)	-0.3383*** (-5.18)		
RegulateYears	, ,	, ,	-0.0136*** (-2.93)	-0.0211*** (-3.81)
Const	Т	Т	Т	Т
Controls	Т	Т	Т	Т
Ind FE	Т	Т	Т	Т
State FE		Т		Т
R2	0.11	0.11	0.10	0.09
N	61739	61739	61739	61739

[BACK to validation page]

Transition Matrix

Table 7: Transition matrix of firms in each emission quntiles

	Panel A: Transition Prob. after 1 year						Pan	el B: Tran	sition Prob	after 3 y	ears/
	Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0		Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0
Q1 L1	70.94%	14.66%	8.78%	5.37%	1.83%	Q1 L3	59.10%	19.51%	11.95%	8.34%	2.68%
Q2 L1	13.40%	65.16%	17.92%	4.93%	1.09%	Q2 L3	17.40%	52.63%	25.78%	8.42%	1.84%
Q3 L1	8.37%	14.20%	55.93%	19.13%	2.18%	Q3 L3	11.84%	17.91%	41.04%	25.33%	3.39%
Q4 L1	5.33%	4.99%	15.69%	60.75%	11.56%	Q4 L3	8.45%	7.77%	17.96%	46.70%	15.96%
Q5 L1	1.95%	0.98%	1.67%	9.82%	83.34%	Q5 L3	3.21%	2.18%	3.27%	11.21%	76.13%
N	13952	14440	14528	14733	15157	N	10391	11027	11125	11676	12509
	Pan	el C: Tran	sition Prob	after 5 y	ears/		Pan	el D: Tran	sition Prob	after 7 y	ears/
	Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0		Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0
Q1 L5	51.45%	21.03%	14.18%	9.86%	2.91%	Q1 L7	46.86%	21.33%	14.59%	10.15%	3.05%
Q2 L5	19.99%	46.58%	28.76%	12.23%	2.29%	Q2 L7	21.68%	43.36%	31.41%	14.25%	3.16%
Q3 L5	14.40%	19.48%	33.71%	26.46%	4.68%	Q3 L7	15.42%	20.23%	29.55%	27.88%	5.29%
Q4 L5	10.15%	9.85%	19.32%	38.50%	18.63%	Q4 L7	11.61%	11.20%	19.85%	34.59%	18.82%
Q5 L5	4.01%	3.06%	4.04%	12.94%	71.49%	Q5 L7	4.43%	3.87%	4.60%	13.14%	69.69%
N	7805	8356	8500	9093	10148	N	5849	6248	6463	7055	8135

[BACK to validation page]

[Supplementary auto-correlation test]

We follow Bolton and Kacperczyk (2021a) by examining the auto-correlation of carbon emissions.

Table 8: Emission persistency with auto-correlation test

	LOG	GHG _t	GHO	GGR _t	GHGII	VTEN _t
	(1)	(2)	(3)	(4)	(5)	(6)
$LOGGHG_{t-1}$ $GHGGR_{t-1}$	0.6881*** (35.21)	0.5448*** (24.15)	-0.0974***	-0.1088***		
$GHGINTEN_{t-1}$			(-13.87)	(-15.96)	0.7407*** (40.16)	0.7024*** (33.66)
Const	Т	Т	Т	Т	Т	Т
Control		Т		T		T
Year FE	T	T	T	T	T	T
R2	0.49	0.40	0.01	0.02	0.59	0.58
N	76113	63463	54499	48103	71256	63283

[BACK to validation page]

Background and Intro

Table 9: Comparison of the determinants of carbon emission

	LOG	GHG	GH	GGR	GHG_	INTEN
	(1)	(2)	(3)	(4)	(5)	(6)
LOGSIZE	0.3414***	0.3542***	-0.0038*	-0.0052	-0.3366***	-1.9057***
	(14.06)	(11.23)	(-1.86)	(-0.25)	(-5.61)	(-11.28)
B2M	0.1554***	0.177***	-0.0011	-0.0228***	-0.1300***	-0.5718***
	(12.56)	(12.47)	(-0.58)	(-3.37)	(-2.76)	(-7.30)
ROE	0.2726***	-0.0876	-0.0264***	-0.1110***	-0.1391	-5.9785***
	(5.42)	(-1.19)	(-3.52)	(-2.23)	(-1.04)	(-8.28)
LEVERAGE	0.9781*** (8.38)	1.0461*** (7.08)	0.0015 (0.17)	0.0233 (0.41)	0.1629	-6.2313*** (-7.57)
INVEST2A	-4.1697*** (-8.31)	-2.2379*** (-3.49)	0.0464	-0.2078 (-0.75)	-4.7228*** (-2.36)	5.0805 (1.08)
нні	0.4701 (0.98)	-2.3518*** (-2.38)	0.3405***	-0.6824* (-1.75)	-0.4627 (-0.56)	2.8716 (0.57)
LOGPPE	0.4958*** (19.90)	0.3356*** (11.14)	0.0009 (0.49)	0.0007	0.3357*** (7.54)	-0.8784*** (-5.18)
SALESGR	-0.0902*	-0.0275	0.8895***	0.5855***	-0.0828	-1.7184***
	(-1.71)	(-0.61)	(19.84)	(5.41)	(-0.64)	(-3.82)
EPSGR	-0.0044	0.0082	-0.0025**	-0.0001	0.0186	0.3005***
	(-1.07)	(0.98)	(-2.03)	(-0.02)	(1.30)	(5.59)
Const	T	T	T	T	T	T
Year FE	T	T	T	T	T	T
Ind FE	T	T	T	T	T	T
R2	0.56	0.13	0.28	0.01	0.01	0.12
N	29146	67912	26089	54992	29143	67720
Data sample	Trucost	XGB	Trucost	XGB	Trucost	XGB

[BACK to validation page]

SAIF

Table 10: Carbon emission and inclusion into ESG-related fund

		Total inclusion	1	Average inclusion			
	(1)	(2)	(3)	(4)	(5)	(6)	
LOGGHG	-0.0752* (-1.72)	-0.1465*** (-3.36)	-0.1336*** (-3.33)	-0.0001 (-0.08)	-0.0027* (-1.84)	-0.0025* (-1.77)	
Ю	(' '	(,	0.0700*** (7.38)	(,	(- /	0.0102** (6.01)	
Controls	Т	Т	Т	Т	Т	Т	
Ind FE	T	T	T	T	T	T	
Year FE		Т	Т		T	Т	
R2	0.50	0.52	0.57	0.68	0.71	0.72	
N	67912	67912	67912	67912	67912	67912	

[BACK to validation page]

SAIF

XGBoost training results

Machine learning performance.

Figure 6: XGBoost learning curve

Figure 7: Fitted vs. Disclosed

[BACK TO PREVIOUS PAGE]

Figure 8: Importance plot

Figure 9: SHAP value plot

[BACK TO PREVIOUS PAGE]

tree depth

mean test score

0.96

0.94 인.92 ·

Figure 10: Cross-validation test on learning rate

[BACK to validation page]

Test score by max depth

Figure 12: OOS validation (Training set: 2002-2017)

Figure 13: OOS validation (Training set: 2002-2019)

[BACK to validation page]

80 OOS R2 for Linear model

60 20 0.175 0.180 0.185 0.190 0.195 0.200 0.205

Figure 14: XGBoost model density

Figure 15: Linear model density

[BACK to validation page]

1.0

0.8

0.6 •• 005 R2 Fitted vs. disclosed 45-degree fitted line 0.5 2.0 167 Predicted GHG emission

Fitted vs. predication: out-of-sample: With random similarity score

Figure 16: Prediction only with similarity score

Figure 17: Prediction with random similarity score

[BACK to validation page]

Correlation matrix.

Table 11: Correlation matrix

	LOGGHG	GHGINTEN	LOGSIZE	LEVERAGE	INVEST2A	ROE	нні	LOGPPE	B2M	SALESGR	EPSGR
LOGGHG	1.00										
GHGINTEN	0.23	1.00									
LOGSIZE	0.32	-0.30	1.00								
LEVERAGE	-0.01	-0.09	0.07	1.00							
INVEST2A	0.25	0.03	0.08	-0.09	1.00						
ROE	0.08	-0.16	0.27	0.14	0.05	1.00					
HHI	0.00	0.02	-0.03	-0.08	-0.03	-0.04	1.00				
LOGPPE	0.47	-0.25	0.69	0.23	0.39	0.23	-0.05	1.00			
B2M	0.10	-0.03	-0.18	0.08	0.04	0.00	-0.01	0.23	1.00		
SALESGR	0.00	-0.01	0.08	-0.06	0.06	0.05	0.00	-0.04	-0.07	1.00	
EPSGR	0.02	-0.04	0.15	-0.04	-0.02	0.26	-0.02	0.05	-0.06	0.19	1.00

[BACK TO PREVIOUS PAGE]

- We examine the structural mutation of carbon premia around 2016.
- We keep the high emission and low emission quintile firms, and interact their scope 1 emission with a time dummy to examine the carbon pricing.

$$RET_{i,t} = \alpha + HI_{i,t} + After_t + HI_{i,t} \times After_t + \gamma' X_{i,t-1},$$
 (6)

 We also report regression results excluding high-emission firms, and the effect is slightly more significant.

		Panel A: XGBoost whole sample							
	LOG	GHG	GHO	GR	GHGINTEN				
	(1)	(2)	(3)	(4)	(5)	(6)			
AFTER*HIGHG	-0.8583*	-0.9313**	0.4629	0.4887	-1.1188***	-1.065**			
	(-1.93)	(-2.05)	(0.89)	(0.96)	(-3.00)	(-2.51)			
AFTER	1.0684***	1.1492***	4.1305***	4.251***	0.5041	0.5048			
	(3.38)	(3.25)	(9.21)	(8.46)	(1.52)	(1.29)			
HIGHG	0.3554*	0.4209***	0.2523**	0.2596**	-0.0238	-0.0064			
	(1.75)	(3.44)	(2.36)	(2.30)	(-0.18)	(-0.06)			
Const	T	T	T	T	T	T			
Controls	T	T	T	T	T	T			
Year FE Ind FE	Т	T T	Т	T	Т	T			
R2	0.16	0.16	0.16	0.16	0.14	0.15			
N	308838	308838	241463	241463	295656	295656			

		Panel B: X0	GBoost exclu	de high emissi	on industries	
	(7)	(8)	(9)	(10)	(11)	(12)
AFTER*HIGHG	-0.8922** (-2.00)	-0.9637** (-2.08)	0.4665 (0.90)	0.4857 (0.96)	-1.0997*** (-2.98)	-1.0445** (-2.43)
AFTER	1.1873*** (3.65)	1.237***	4.123*** (8.87)	4.2275*** (8.21)	0.4106 (1.23)	0.3976 (1.01)
HIGHG	0.3643* (1.81)	0.4503*** (3.69)	0.2457** (2.36)	0.2604** (2.37)	-0.0163 (-0.12)	0.0156 (0.14)
Const Controls	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ
Year FE Ind FE	÷	† T	÷	† T	÷	† T
R2 N	0.16 300021	0.16 300021	0.16 233743	0.16 233743	0.14 287194	0.15 287194

Table 13: Carbon emission and realized stock returns

Sample period			Panel A: 2002-2	2021 (Trucost sa	mple)	
	(1)	(2)	(3)	(4)	(5)	(6)
LOGGHG	0.0098 (0.48)	0.0536** (2.34)				
GHGGR	(0.40)	(2.54)	0.7061*** (3.72)	0.7412*** (3.81)		
GHGINTEN			(3.72)	(3.61)	-0.0081 (-0.76)	-0.0127 (-1.00)
Const Controls	T T	T T	T T	T T	T T	T T
Year-Mon FE Ind FF	Ť	Ť Ť	÷	† T	Ť	† †
R2 N	0.22 332410	0.22 332410	0.23 299871	0.23 299871	0.22 332338	0.22 332338
Sample period		F	Panel B: 2002-2	021(XGBoost Sa	ample)	
	(7)	(8)	(9)	(10)	(11)	(12)
LOGGHG	-0.0006	0.0053				
GHGGR	(-0.05)	(0.68)	-0.0067	-0.0027		
GHGINTEN			(-0.31)	(-0.13)	-0.0136*** (-4.07)	-0.0128*** (-4.54)
Const Controls	T T	T T	T T	T T	T T	Ţ
Year-Mon FE Ind FE	Т	T T	Т	T T	Т	T T
R2 N	0.16 764150	0.16 764150	0.17 623506	0.17 623506	0.16 760913	0.16 760913

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Carbon premia and common risk factors

- We estimate the following regression, where the premia are estimated from monthly cross-sectional regressions from equation 3.
- We especially examine the post-2016 period in panel B.

$$RISKPRMM_t = \alpha + \beta' FACTOR_{i,t} + \varepsilon_t$$
 (7)

Table 14: Carbon premia and common risk factors

			Panel A:	2002-20	21				Panel B: 20	16-2021		
	LOG	GHG	GHG	GR	GHGI	NTEN	LOG	GHG	GHGG	GR	GHGII	NTEN
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Intercept	-0.0209 (-1.53)	-0.0135 (-1.06)	0.0214* (1.79)	0.0158 (1.36)	-0.012*** (-4.01)	-0.0132*** (-4.35)	-0.0957*** (-8.02)	-0.0796*** (-4.85)	0.0274 (1.34)	0.0171 (0.71)	-0.0272*** (-5.68)	-0.0288*** (-6.23)
RMRF	0.0013	(1.00)	-0.0003 (-0.10)	(2.50)	-0.0006 (-1.17)	(1.55)	0.0093*** (2.95)	(1.00)	-0.0151*** (-2.81)	(0.72)	-0.0001 (-0.10)	(0.23)
SMB	-0.0079 (-1.54)		-0.0022 (-0.33)		-0.0037*** (-3.49)		-0.0218*** (-2.56)		0.0032 (0.27)		-0.0081*** (-6.05)	
HML	-0.0065 (-1.42)		-0.0146** (-2.29)		-0.0004 (-0.30)		-0.0036 (-0.53)		-0.0224*** (-3.13)		0.0004	
RMW	0.0055		-0.0064 (-1.12)		0.0003		0.0082 (1.20)		0.0131 (1.00)		-0.0023 (-1.12)	
CMA	0.0153**		-0.0146* (-1.69)		-0.0022* (-1.80)		0.0256**		-0.0166* (-1.96)		-0.0034** (-2.10)	
BAB	0.0046 (1.31)		-0.0057 (-1.23)		0.0001 (0.01)		0.0052 (0.76)		-0.0119 (-1.10)		-0.0003 (-0.17)	
LIQ	0.001		-0.0032 (-0.86)		0.0003 (0.53)		-0.0035 (-0.95)		0.0116 (1.66)		-0.0011** (-1.93)	
Mom	0.0001 (0.05)		0.0008 (0.29)		-0.0001 (-0.27)		0.0046 (1.10)		-0.0042 (-0.47)		-0.0020* (-1.89)	
R2 N	0.10	0.00 240	0.10 228	0.00 228	0.14 240	0.00 240	0.33 72	0.00 72	0.28 72	0.00 72	0.33 72	0.00 72

[BACK to previous page]

Background and Intro

《日》《問》《意》《意》

Feng Li, Xingjian Zheng Carbon emission and Asset prices

Alternative risk stories

- The structural mutation in carbon premia may not be only driven by a shift in investors' ESG preference.
- Higher emission firms may be more profitable/less financially constrained/product failure risks...etc.
 - Reasoning: Firms need to adopt ESG technologies after the Paris Agreement because of regulatory changes.
 - Firms need to lay off their brown business and divert to cleaner business that they are unfamiliar with and often more costly.
- We estimate the following regression,

$$RISK_{i,t} = \alpha + GHG_{i,t} + After_t + GHG_{i,t} \times After_t + \gamma' X_{i,t-1} + \varepsilon_{i,t},$$
 (8)

where the dependent variable includes different risks such as profitability/liquidity/solvency/innovation/valuation, and we interact with firms' carbon emissions with a time dummy after the Paris Agreement.

•	XGBoost sample								
Dep.Var	Profit	margin	Operat	ing CF	Rå	kD			
	(1)	(2)	(3)	(4)	(5)	(6)			
LOGGHG	-0.0089*** (-6.36)	0.0005 (0.33)	-0.0004* (-1.79)	-0.0002 (-1.09)	0.0009*** (6.21)	0.0003** (2.33)			
LOGGHG*POST	0.0487***	0.0366*** (5.31)	0.0049***	0.0033***	-0.0022*** (-5.44)	-0.0008*** (-3.70)			
POST	-0.5982*** (-7.31)	-0.4361*** (-6.67)	-0.0768*** (-6.66)	-0.0587*** (-5.35)	0.0250*** (5.53)	0.0095***			
LOGSIZE	-0.0445*** (-6.62)	-0.029*** (-3.86)	-0.0011 (-1.14)	0.0035***	0.0126*** (16.55)	0.0075***			
B2M	-0.0048 (-1.56)	-0.0081** (-2.54)	-0.0031*** (-5.47)	-0.0011** (-2.20)	0.0012***	0.0015***			
ROE	1.6349***	1.2696***	0.2988***	0.2585***	-0.1023*** (-20.79)	-0.0487*** (-14.81)			
LEVERAGE	0.5333*** (6.06)	0.3014*** (4.85)	-0.0292*** (-2.84)	-0.0151* (-1.96)	-0.0792*** (-23.54)	-0.0001 (-0.03)			
INVEST2A	-0.2785* (-1.76)	-0.0476 (-0.32)	0.3801*** (10.55)	0.3386*** (10.05)	-0.0209 (-1.41)	0.0575***			
нні	-0.3902***	-0.1018	0.0119	-Ò.0415*	0.0887***	-0.0058			
LOGPPE	(-3.96) 0.0546***	(-0.70) 0.0557***	(0.77) 0.0134***	(-1.79) 0.0097***	(5.12) -0.0129***	(-0.57) -0.0097***			
SALESGR	(8.85) 0.0221	(7.94) 0.1681***	(14.19) 0.0264***	(8.82) 0.0395***	(-16.94) 0.0271***	(-17.08) 0.0143***			
EPSGR	(0.80) -0.0252*** (-5.52)	(5.39) -0.0131*** (-4.52)	(4.41) -0.0047*** (-5.83)	(8.03) -0.0032*** (-5.07)	(9.33) 0.0033*** (9.51)	(10.39) 0.0017*** (8.84)			
Const Ind FE	Т	Ţ	Т	Ţ	Т	Ţ			
R2 N	0.22 67720	0.35 67720	0.39 67356	0.60 67356	0.10 67911	0.24 67911			

Table 15 Cont'd

	XGBoost sample									
Dep.Var	Solvency		Tobi	n's Q	Divid payout					
	(7)	(8)	(9)	(10)	(11)	(12)				
LOGGHG	-0.7007*** (-3.70)	-0.1924 (-1.06)	-0.001 (-0.37)	-0.0124*** (-4.41)	-0.0037*** (-2.72)	-0.0012 (-0.87)				
LOGGHG*POST	1.246**	1.0284**	-0.0121** (-2.13)	-0.0089 (-1.51)	0.0058***	0.0056***				
POST	-21.2084*** (-3.48)	-17.5476*** (-3.10)	0.2503*** (2.87)	0.1798** (2.08)	-0.1027*** (-3.33)	-0.0942*** (-3.32)				
LOGSIZE	4.7327*** (5.67)	4.2763***	0.4184***	0.4686***	0.0891***	0.0796***				
B2M	0.9898* (1.78)	0.722	0.0211**	0.0678***	0.0112***	0.0064*				
ROE	55.2045*** (18.98)	45.1487*** (15.74)	-0.3129*** (-6.40)	-0.0245 (-0.55)	0.4342*** (24.11)	0.3837***				
LEVERAGE	-105.5669*** (-11.91)	-112.1008*** (-13.43)	-0.8742*** (-10.39)	0.019	0.2578***	0.0899***				
INVEST2A	81.4961*** (4.76)	100.5752***	5.4758*** (15.90)	5.497*** (17.46)	-0.4401*** (-3.12)	-0.5383*** (-3.33)				
HHI	7.5768 (0.61)	-16.6693 (-0.79)	1.8527***	0.8196**	-0.0701 (-0.78)	-0.0173 (-0.09)				
LOGPPE	-1.8233** (-2.39)	-0.8269 (-0.98)	-0.2960*** (-19.40)	-0.3662*** (-21.30)	-0.0251*** (-4.56)	-0.008 (-1.32)				
SALESGR	3.3622** (2.04)	8.3616*** (5.13)	0.3992***	0.3027*** (11.51)	-0.2147*** (-9.01)	-0.194*** (-8.33)				
EPSGR	0.2583 (1.12)	0.6511*** (3.11)	0.0141** (2.47)	0.0062 (1.35)	0.022*** (7.39)	0.0234*** (7.67)				
Const Ind FE	Т	T T	Т	T T	Т	T				
R2 N	0.08 51379	0.16 51379	0.08 67873	0.27 67873	0.17 63766	0.20 63766				

Univariate sorting results

Table 16: Univariate sorting results

			Panel A: Sorting	g results based	I on XGBoost est	imated data		
Portfolio	VW return	EW return	LOGGHG	GHGGR	GHGINTEN	SALE	AT	LOGSIZE
Lo	0.6336*	1.1785***	3.98	-0.16	1.39	746.49	1980.58	12.55
2	(1.78) 0.8837*** (2.88)	(2.81) 1.1544*** (2.85)	9.74	0.30	6.59	1515.48	2453.22	13.11
3	0.7291**	1.0347**	10.98	0.51	9.03	2322.34	3121.30	13.35
4	(2.31) 0.7652***	(2.51) 1.0837***	12.20	0.62	9.97	5541.45	7575.81	13.88
Hi Hi-Lo	(2.92) 0.5343** (2.02) -0.0993 (-0.49)	(2.80) 0.8782** (2.36) -0.3003 (-1.41)	14.55	0.54	11.21	19320.72	27068.58	14.99
Portfolio	LEVERAGE	B2M	INVEST2A	ROE	нні	LOGPPE	SALESGR	EPSGR
Lo	0.49	0.73	0.03	-0.08	0.10	3.18	0.12	-0.13
2	0.50	0.88	0.04	-0.04	0.10	4.04	0.11	-0.12
3	0.54	0.81	0.05	0.00	0.10	4.75	0.11	-0.08
4	0.58	1.06	0.06	0.07	0.10	5.92	0.10	0.01
Hi	0.64	1.69	0.06	0.10	0.09	7.87	0.08	0.07

Table 16 Cont'd

Portfolio	VW return	EW return	LOGGHG	GHGGR	GHGINTEN	SALE	AT	LOGSIZE
Lo	0.6336* (1.78)	1.1785*** (2.81)	3.98	-0.16	1.39	746.49	1980.58	12.55
2	0.8837*** (2.88)	1.1544*** (2.85)	9.74	0.30	6.59	1515.48	2453.22	13.11
3	0.7291** (2.31)	1.0347** (2.51)	10.98	0.51	9.03	2322.34	3121.30	13.35
4	0.7652***	1.0837*** (2.80)	12.20	0.62	9.97	5541.45	7575.81	13.88
Hi Hi-Lo	0.5343** (2.02) -0.0993 (-0.49)	0.8782** (2.36) -0.3003 (-1.41)	14.55	0.54	11.21	19320.72	27068.58	14.99
Portfolio	LEVERAGE	B2M	INVEST2A	ROE	нні	LOGPPE	SALESGR	EPSGR
Lo	0.49	0.73	0.03	-0.08	0.10	3.18	0.12	-0.13
2	0.50	0.88	0.04	-0.04	0.10	4.04	0.11	-0.12
3	0.54	0.81	0.05	0.00	0.10	4.75	0.11	-0.08
4	0.58	1.06	0.06	0.07	0.10	5.92	0.10	0.01
Hi	0.64	1.69	0.06	0.10	0.09	7.87	0.08	0.07

