MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2014 SOLUTION KEY

Team Round

A) Four blocks have a total of 24 faces, but, after gluing, 6 exposed faces are lost. Thus, the maximum number of exposed faces is 18, if a stable position with exactly 2 edges in contact with the table top exists (which is the case for *B*, *C* and *D*).

A is stable resting on 1 or 4 faces, resulting in 17 or 14 exposed faces.

B is stable resting on 0, 1, 3 or 4 faces, resulting in 18, 17, 15 or 14 exposed faces.

C is stable resting on 0, 1, 2, 3 or 4 faces, resulting in 18, 17, 16, 15 or 14 exposed faces.

D is stable resting on 0, 1, 2 or 4 faces, resulting in 18, 17, 16, or 14 exposed faces.

Thus, we have 31 + 64 + 80 + 65 = 240 exposed faces.

В

D

2x

2x

2x

2x

G

 \boldsymbol{x}

Ε

B) Let AB = DE = x, BC = CD = EF = FA = 2x

Let G denote the intersection of \overline{AE} and \overline{FC}

Let FG = a and AG = b. Then:

$$FC = AE + 1 \Rightarrow (1)$$
 $x + 2a = 2b + 1$

(2)
$$a^2 + b^2 = 4x^2$$

(3)
$$area(\Delta AFE) = ab = 2.875 = \frac{23}{8}$$

$$(1) \Rightarrow \frac{x-1}{2} = b - a \Rightarrow (x-1)^2 = 4(a^2 + b^2) - 8ab \ (***)$$

Substituting, using (2) and (3) in (***),

$$(x-1)^2 = 4(4x^2) - 23 \Leftrightarrow 15x^2 + 2x - 24 = (5x-6)(3x+4) = 0$$

Thus,
$$AB = x = \frac{6}{5}$$
 (or 1.2).

C) Since a:b=4:7, let a=4c, b=7c. Since $\begin{cases} x+ay=b^2 \\ x-by=a^2 \end{cases}$, after subtracting, we have

$$(a+b)y = b^2 - a^2 = (b+a)(b-a) \Rightarrow y = b-a = 3c$$
 [$a+b \ne 0$]

Substituting in the first equation,

$$x + a(b-a) = b^2 \Rightarrow x = a^2 + b^2 - ab = 16c^2 + 49c^2 - 28c^2 = 37c^2$$
.

Thus,
$$\frac{x}{y} = \frac{37c^2}{3c} \Rightarrow x = \frac{37c}{3}y$$
 (Recall: x, y and c are all positive integers.)

To minimize both x and y, we take $c = 1 \Rightarrow a = 4$, b = 3 and $x = \frac{37}{3}$ y \Rightarrow

$$(x, y) = (37,3) \Rightarrow x + y = \underline{40}$$
. Check: $37 + 4 \cdot 3 = 49 = 7^2$, $37 - 7 \cdot 3 = 16 = 4^2$