

CoolMOS[™] **Power Transistor**

Features

- Lowest figure-of-merit $R_{ON} x Q_g$
- Extreme dv/dt rated
- · High peak current capability
- Qualified according to JEDEC¹⁾ for target applications
- Pb-free lead plating; RoHS compliant
- · Ultra low gate charge

CoolMOS™ 900V is designed for:

- Quasi Resonant Flyback / Forward topologies
- PC Silverbox and consumer applications
- Industrial SMPS

Product Summary

V _{DS} @ T _J =25°C	900	V
$R_{DS(on),max} @ T_J = 25^{\circ}C$	1.0	Ω
Q _{g,typ}	34	nC

PG-TO247

Туре	Package	Marking		
IPW90R1K0C3	PG-TO247	9R1K0C		

Maximum ratings, at $T_{\rm J}$ =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _C =25 °C	5.7	А
		T _C =100 °C	3.6	
Pulsed drain current 2)	I _{D,pulse}	T _C =25 °C	12	
Avalanche energy, single pulse	E _{AS}	I _D =1.1 A, V _{DD} =50 V	97	mJ
Avalanche energy, repetitive $t_{AR}^{2),3)}$	E _{AR}	I _D =1.1 A, V _{DD} =50 V	0.37	
Avalanche current, repetitive $t_{AR}^{2),3)}$	I _{AR}		1.1	А
MOSFET dv/dt ruggedness	dv/dt	V _{DS} =0400 V	50	V/ns
Gate source voltage	$V_{\rm GS}$	static	±20	V
		AC (f>1 Hz)	±30	
Power dissipation	P _{tot}	T _C =25 °C	89	W
Operating and storage temperature	$T_{\rm J},T_{\rm stg}$		-55 150	°C
Mounting torque		M3 and M3.5 screws	60	Ncm

Maximum ratings, at T_J =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous diode forward current	Is	Т _С =25 °С	3.3	Α
Diode pulse current 2)	I _{S,pulse}	7 _C -23 C	13	
Reverse diode dv/dt 4)	dv/dt		4	V/ns

Parameter	Symbol Conditions			Values		
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R _{thJC}		-	-	1.4	K/W
Thermal resistance, junction - ambient	$R_{ m thJA}$	leaded	-	-	62	
Soldering temperature, wavesoldering only allowed at leads	T sold	1.6 mm (0.063 in.)	-	-	260	°C

Electrical characteristics, at T_J =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(BR)DSS}$ V_{GS} =0 V, I_D =250 μ A		900	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	$V_{\rm DS}$ = $V_{\rm GS}$, $I_{\rm D}$ =0.37 mA	2.5	3	3.5	
Zero gate voltage drain current	I _{DSS}	V _{DS} =900 V, V _{GS} =0 V, T _j =25 °C	1	1	1	μΑ
		V _{DS} =900 V, V _{GS} =0 V, T _j =150 °C	-	10	-	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	-	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =3.3 A, T _j =25 °C	-	0.78	1	Ω
		V _{GS} =10 V, I _D =3.3 A, T _j =150 °C	-	2.1	-	
Gate resistance	R _G	f=1 MHz, open drain	-	1.3	-	Ω

Parameter	Symbol Conditions		Values			Unit	
			min.	typ.	max.		
Dynamic characteristics							
Input capacitance	C iss	V _{GS} =0 V, V _{DS} =100 V,	-	850	-	pF	
Output capacitance	C oss	f=1 MHz	-	42	-		
Effective output capacitance, energy related ⁵⁾	C o(er)	V _{GS} =0 V, V _{DS} =0 V	-	28	-		
Effective output capacitance, time related ⁶⁾	C o(tr)	to 500 V	-	100	-		
Turn-on delay time	t _{d(on)}		-	70	-	ns	
Rise time	t _r	V _{DD} =400 V, V _{GS} =10 V, I _D =3.3 A,	-	20	-		
Turn-off delay time	$t_{d(off)}$	$R_{\rm G}$ =62.4 Ω	-	400	-		
Fall time	t _f		1	35	1		
Gate Charge Characteristics							
Gate to source charge	Q _{gs}		-	4	-	nC	
Gate to drain charge	Q_{gd}	V _{DD} =400 V, I _D =3.3 A,	-	15	-	7	
Gate charge total	Q _g	V _{GS} =0 to 10 V	-	34	tbd		
Gate plateau voltage	V _{plateau}		-	4.6	-	V	
Reverse Diode							
Diode forward voltage	$V_{\rm SD}$	V _{GS} =0 V, I _F =3.3 A, T _j =25 °C	-	0.8	1.2	V	
Reverse recovery time	t _{rr}		-	340	-	ns	
Reverse recovery charge	Q _{rr}	V_R =400 V, I_F = I_S , di_F/dt =100 A/ μ s	-	4.1	-	μC	
Peak reverse recovery current	I _{rrm}		-	21	-	Α	

¹⁾ J-STD20 and JESD22

²⁾ Pulse width t_p limited by $T_{\rm J,max}$

³⁾ Repetitive avalanche causes additional power losses that can be calculated as $P_{AV} = E_{AR} * f$.

 $^{^{4)}~}I_{SD} \!\! \leq \!\! I_D,~di/dt \!\! \leq 200~A/\mu s,~V_{DClink} \!\! = \!\! 400V,~V_{peak} \!\! < \!\! V_{(BR)DSS},~T_J \!\! < \!\! T_{J,max},~identical~low~side~and~high~side~switch~the contract of the co$

 $^{^{5)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 50% V_{DSS} .

 $^{^{6)}}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 50% V_{DSS} .

1 Power dissipation

$$P_{\text{tot}}$$
=f(T_{C})

2 Safe operating area

 I_D =f(V_{DS}); T_C =25 °C; D=0

parameter: t_p

3 Max. transient thermal impedance

Z_{thJC} = $f(t_P)$

parameter: $D=t_p/T$

4 Typ. output characteristics

 I_D =f(V_{DS}); T_J =25 °C

parameter: V_{GS}

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_J = 150 °C$

parameter: $V_{\rm GS}$

8 20 V 10 V 5.5 V

6 Typ. drain-source on-state resistance

 $R_{DS(on)}$ =f(I_D); T_J =150 °C

parameter: $V_{\rm GS}$

7 Drain-source on-state resistance

 $R_{DS(on)}$ =f(T_J); I_D =3.3 A; V_{GS} =10 V

8 Typ. transfer characteristics

 I_{D} =f(V_{GS}); V_{DS} \geq 20V

parameter: $T_{\rm J}$

9 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =3.3 A pulsed

parameter: $V_{\rm DD}$

10 Forward characteristics of reverse diode

 I_{F} =f(V_{SD})

parameter: T_J

11 Avalanche energy

$$E_{AS}$$
=f(T_i); I_D =1.1 A; V_{DD} =50 V

$$V_{BR(DSS)}$$
=f(T_j); I_D =0.25 mA

13 Typ. capacitances

$C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$

14 Typ. C_{oss} stored energy

$$E_{oss} = f(V_{DS})$$

Definition of diode switching characteristics

PG-TO247 Outlines

DIM	MILLIM	ETERS	INCH	HES
DIM	MIN	MAX	MIN	MAX
A	4.90	5.16	0.193	0.203
A1	2.27	2.53	0.089	0.099
A2	1.85	2.11	0.073	0.083
b	1.07	1.33	0.042	0.052
b1	1.90	2.41	0.075	0.095
b2	1.90	2.16	0.075	0.085
b3	2.87	3.38	0.113	0.133
b4	2.87	3.13	0.113	0.123
С	0.55	0.68	0.022	0.027
D	20.82	21.10	0.820	0.831
D1	16.25	17.65	0.640	0.695
D2	1.05	1.35	0.041	0.053
E	15.70	16.03	0.618	0.631
E1	13.10	14.15	0.516	0.557
E2	3.68	5.10	0.145	0.201
E3	1.68	2.60	0.066	0.102
е	5.	44	0.2	214
N		3		3
L	19.80	20.31	0.780	0.799
L1	4.17	4.47	0.164	0.176
øΡ	3.50	3.70	0.138	0.146
Q	5.49	6.00	0.216	0.236
S	6.04	6.30	0.238	0.248

Dimensions in mm/inches

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.