UTD ID: 2021220422

## **Home Work 2**

# Discrete Structures (CS 5333)

**Page 126 – Exc.32:** Let  $A = \{a, b, c\}, B = \{x, y\}, \text{ and } C = \{0, 1\}.$  Find

- a)  $A \times B \times C$ .
- c)  $C \times A \times B$ .

### Answer:

- a) {(a, x, 0), (a, x, 1), (a, y, 0), (a, y, 1), (b, x, 0), (b, x, 1), (b, y, 0), (b, y, 1), (c, x, 0), (c, x, 1), (c, y, 0), (c, y, 1)}
- c) {(0, a, x), (0, a, y), (0, b, x), (0, b, y), (0, c, x), (0, c, y) (1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y)}

**Page 136 – Exc.20:** Show that if A and B are sets with  $A \subseteq B$ , then

- **a)**  $A \cup B = B$ .
- **b)**  $A \cap B = A$ .

#### **Answer:**

- a) If  $x \in A \cup B$ , then  $x \in A$  or  $x \in B$  or both by definition, Given  $A \subseteq B$ , so if  $x \in A$  then  $x \in B$ . This proves  $A \cup B \subseteq B$ . Now if  $x \in B$ , then by definition  $x \in A \cup B$ , too, so  $x \in A \cup B$ . This proves  $B \subseteq A \cap B$ . Together this implies  $A \cup B = B$ .
- b) Given  $A \subseteq B$ , If  $x \in A \cap B$ , then  $x \in A$  and  $x \in B$  by definition, so in particular  $x \in A$ . This proves  $A \cap B \subseteq A$ . Now if  $x \in A$ , then by assumption  $x \in B$ , too, so  $x \in A \cap B$ . This proves  $A \subseteq A \cap B$ . Together this implies  $A \cap B = A$ .

**Page 136 – Exc.23.** Let A, B, and C be sets. Show that (A - B) - C = (A - C) - (B - C).

**Answer:** First we will show that (A-B)-C is a subset of (A-C)-(B-C), and then we will show that (A-C)-(B-C) is a subset of (A-B)-C. Showing these two things is equivalent to showing equality between the two sides.

1. (A-B)-C subset of (A-C)-(B-C)

To show this, we choose an arbitrary x in (A-B)-C. Now we have to show that x is in (A-C)-(B-C). Since x is in (A-B)-C, it holds that x is in A, x is not in B, and x is not in C. Therefore, it is also true that x is in A-C and x is not in B-C, so x is in (A-C)-(B-C), as well.

2. (A-C)-(B-C) subset of (A-B)-C

We proceed as in the above case. Let x be an arbitrary element in (A-C)-(B-C). From this we can conclude that x is in A-C and x is not in B-C. Since x is not in C and x is not in B-C, x is also not in B. So we know: x is in A, x is not in B, and x is not in C. Putting this together gives us that x is in (A-B)-C.

**Page 137 – Exc.48:** Let  $Ai = \{..., -2, -1, 0, 1...i\}$ . Find

- a)  $\bigcup_{i=1}^{n} A_i$
- $\bigcup_{i=1}^{n} A_i \qquad \qquad \text{b)} \qquad \bigcap_{i=1}^{n} A_i$

Answer:

- a)  $\bigcup_{i=1}^{n} A_i = A_n = \{\ldots, -2, -1, 0, 1 \ldots n\}.$
- b)  $\bigcap_{i=1}^{n} A_i = A_1 = \{..., -2, -1, 0, 1\}$

**Page 153 – Exc.10:** Determine whether each of these functions from  $\{a, b, c, d\}$  to itself is one-to-one.

- **a**) f(a) = b, f(b) = a, f(c) = c, f(d) = d
- **b**) f(a) = b, f(b) = b, f(c) = d, f(d) = c
- **c)** f(a) = d, f(b) = b, f(c) = c, f(d) = d

**Answer:** 

- a) One-to-one.
- **b**) Not one-to-one, f(a) and f(b) points to b.
- c) Not one-to-one, f(a) and f(d) points to d.

Page 153 – Exc.22: Determine whether each of these functions is a bijection from **R** to **R**.

- **a**) f(x) = -3x + 4
- **b)**  $f(x) = -3x^2 + 7$
- **c**) f(x) = (x + 1)/(x + 2)
- **d)** f(x) = x5 + 1

**Answer:** 

- a) It is a bijection; f is both one-to-one and onto.
- b) Not a bijection; f is not one-to-one. Example. f(1)=f(-1)=4.
- c) Not a bijection; f is not defined at x=-2.
- d) It is a bijection; f is both one-to-one and onto.

**Page 154** – **Exc.34.** If f and  $f \circ g$  are one-to-one, does it follow that g is one-to-one? Justify your answer.

**Answer:** Suppose g is not one-to-one; let distinct x and y be in the domain of g, such that g(x) = g(y). Then  $f(g(x)) = f(g(y)) = (f \circ g)(x) = (f \circ g)(y)$ . Thus  $(f \circ g)$  is not one-to-one. So g not one-to-one implies  $(f \circ g)$  not one-to-one. By the contrapositive,  $(f \circ g)$  is one-to-one implies g is one-to-one.

**Page 154 – Exc.38:** Let f(x) = ax + b and g(x) = cx + d, where a, b, c, and d are constants. Determine necessary and sufficient conditions on the constants a, b, c, and d so that  $f \circ g = g \circ f$ .

#### **Answer:**

$$f \circ g = a(cx + d) + b = acx + ad + b.$$

$$g \circ f = c(ax + b) + d = acx + cb + d.$$

$$f \circ g = g \circ f$$

 $\Rightarrow$  acx + ad + b = acx + cb + d

 $\Rightarrow$  ad + b = cb + d.

Therefore the condition for  $f \circ g = g \circ f$  is ad + b = cb + d.

**Page 155 – Exc.62:** Draw the graph of the function f(n) = 1 - n2 from **Z** to **Z**.

#### **Answer:**





**Page 169 – Exc.30:** What are the values of these sums, where  $S = \{1, 3, 5, 7\}$ ?

a) 
$$\sum_{i \in S} j$$

b) 
$$\sum_{j \in S} j^2$$

a) 
$$\sum_{j \in S} j$$
 b)  $\sum_{j \in S} j^2$  c)  $\sum_{j \in S} \frac{1}{j}$  d)  $\sum_{j \in S} 1$ 

d) 
$$\sum_{j \in S} 1$$

**Answer:** 

b) 
$$1^2 + 3^2 + 5^2 + 7^2 = 84$$
.

c) 
$$\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} = \frac{176}{105}$$

d) 
$$1+1+1+1=4$$

**Page 169 – Exc.46:** Find  $\prod_{i=0}^{4} j!$ .

**Answer:**  $\prod_{i=0}^{4} j! = 0! \times 1! \times 2! \times 3! \times 4! = 1 \times 1 \times 2 \times 6 \times 24 = 288.$ 

**Page 819** – Exc.36: Show that in a Boolean algebra, every element x has a unique complement  $\overline{x}$ such that  $x \vee \overline{x} = 1$  and  $x \wedge \overline{x} = 0$ .

**Answer:** Assume  $\overline{x}_1$  and  $\overline{x}_2$  are both complements of x. Then  $x \vee \overline{x}_1 = 1$ ,  $x \vee \overline{x}_2 = 1$ ,  $x \wedge \overline{x}_1 = 0$  and  $x \wedge \overline{x}_2 = 0.$ 

$$\overline{x}_1 = \overline{x}_1 \wedge 1$$

$$\Rightarrow \overline{x}_1 \wedge (x \vee \overline{x}_2)$$

$$\Rightarrow (\overline{x}_1 \land x) \lor (\overline{x}_1 \land \overline{x}_2)$$

$$\Rightarrow 0 \lor (\overline{x}_1 \land \overline{x}_2)$$

since  $x \vee \overline{x}_2 = 1$ Distributive law as  $\overline{x}_1 \wedge x = 0$  from above assumptions as  $x \wedge \overline{x}_2 = 0$ 

$$\Rightarrow (x \wedge \overline{x}_2) \vee (\overline{x}_1 \wedge \overline{x}_2)$$

$$\Rightarrow (\overline{x}_2 \land x) \lor (\overline{x}_2 \land \overline{x}_1)$$

 $\Rightarrow \overline{x}_2 \land (x \lor \overline{x}_1)$ 

Distributive law

$$\Rightarrow \overline{x}_2 \wedge 0$$

$$\Rightarrow \overline{\chi}_2$$

The two complements  $\overline{x}_1$  and  $\overline{x}_2$  of x are equal.

Therefore x has a unique complement  $\overline{x}$ .

**Page 819 – Exc.40:** Show that in a Boolean algebra, the **modular properties** hold. That is, show that  $x \land (y \lor (x \land z)) = (x \land y) \lor (x \land z)$  and  $x \lor (y \land (x \lor z)) = (x \lor y) \land (x \lor z)$ .

Answer:

1) 
$$x \wedge (y \vee (x \wedge z))$$

$$\Rightarrow$$
  $(x \land y) \lor (x \land (x \land z))$ 

Distributive law with a = x, b = y,  $c = (x \land z)$ 

Associative law

$$\Rightarrow (x \land y) \lor ((x \land x) \land z)$$
$$\Rightarrow (x \land y) \lor ((x \land z)$$

z) Associ  
as 
$$(x \land x) = x$$

2) 
$$x \lor (y \land (x \lor z))$$

$$\Rightarrow$$
 (x \text{ V y) } \Lambda (x \text{ V (x \text{ V z)})

Distributive law with a = x, b = y,  $c = (x \lor z)$ 

$$\Rightarrow$$
  $(x \lor y) \land (x \lor x) \lor z)$ 

$$\Rightarrow$$
 (x \text{ V y) \text{ } \Lambda (x \text{ V z)}

as 
$$(x \lor x) = x$$