

Fig.3.10a-Caracteristica de transfer

Fig.3.10b-Caracteristicile de ieșire

Fig.3.13 - TEC-J Generator de curent

Fig.3.14 - Regimul dinamic

Cele patru figuri de mai sus reprezinta schemele realizate in programul de simulare TINA-TI pentru determinarile aferente tabelelor din fisa de rezultate.

FIȘĂ REZULTATE LUCRARE L5 TEC-J_SOFT-HARD

1. Caracteristica de transfer

5p. Tabelul 3.1 (fig.3.10a)

(=8:5:=3:	7									
$ m V_{GS}\left[V ight]$	0	-0,5	-1	-2	-2,2	-2,5	-2,7	-3	-3,01	-3,1
$ m V_{DD} m V$	15	15	15	15	15	15	15	15	15	15
V _{DS} V	2.11	4.75	8.21	13.1	13.72	14.43	14.75	14.98	14.99	15
$R_D=R_{12}[K\Omega]$	1k	1k	1k	1k	1k	11k	11k	11k	11k	11k
I _D [mA]	12.89	10.25	6.79	1.9	1.28	0.57	0.25	0.02	0.01	0

Curentul $I_D = (V_{DD} - V_{DS}) / R_D$

VDS

T1-2p. Inserați graficul caracteristicii de transfer $I_D = f(V_{GS})$ a tranzistorului TEC-J.

T2-1p. Determinați pe simulări tensiunea de prag la 10μA a tranzistorului TEC-J.

Tensiunea de prag la 10 μ A este VGS = -3.0212 V.

2. Caracteristica de ieșire

5p. Tabelul 3.2 (Fig.3.10b)

V	V _{DS} [V]	0	0.5	0.6	0.8	1	1.5	2	4
	$\overline{\mathbf{V}_{\mathrm{DS,măs}}}$ [V]	0	0.5	0.6	0.8	1	1.5	2	<mark>4</mark>
V _0 [X/]	V _{DD} [V]	0	4,71	5.57	7.2	8.71	12	14.54	18.51
$V_{GS}=0$ [V]	$R_{12}+R_{J22}$ [K Ω]	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D = [mA]$	0	4.21	4.97	6.4	7.71	10.5	12.54	14.51
	$V_{DS,măs}[V]$	0	0.5	0.6	0.8	1	1.5	2	4
V _{GS} =-0,5	$V_{DD}[V]$	0	3.99	4.7	6.03	7.25	9.78	11.59	14.22
[V]	$R_{12}+R_{J22}$ [K Ω]	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D=[mA]$	0	3.49	4.1	5.23	6.25	8.28	9.59	10.22
	$\overline{\mathbf{V}_{\mathrm{DS,măs}}}$ [V]	0	0.5	0.6	0.8	1	1.5	2	<mark>4</mark>
V _ 1 [V]	V _{DD} [V]	0	3.25	3.81	4.85	5.77	7.56	8.58	10.68
V _{GS} =-1 [V]	$R_{12}+R_{J22}$ [K Ω]	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D=[mA]$	0	2.75	3.21	4.05	4.77	6.06	6.58	6.68
	V _{DS,măs} [V]	0	0.5	0.6	0.8	1	1.5	2	<mark>4</mark>
V _{GS} =-2 [V]	V _{DD} [V]	0	1.77	2.03	2.47	2.8	3.32	3.83	5.84
	$R_{12}+R_{J22}$ [K Ω]	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D=[mA]$	0	1.27	1.43	1.67	1.8	1.82	1.83	1.54
	V _{DS,măs} [V]	0	0.5	0.6	0.8	1	1.5	2	4
V_{GS} =-2,2	V _{DD} [V]	0	11.22	12.48	14.01	14.41	14.93	15.46	17.56
[V]	$R_{12}+R_{J22}$ [K Ω]	11k	11k	11k	11k	11k	11k	11k	11k
	$I_D=[mA]$	0	0.974	1.08	1.2	1.219	1.22	1.223	1.232
	$V_{DS,măs}[V]$	0	0.5	0.6	0.8	1	1.5	2	<mark>4</mark>
V _{GS} =-2,5	V _{DD} [V]	0	6.26	6.49	6.75	6.97	7.48	7.99	10.04
[V]	$R_{12}+R_{J22}$ [K Ω]	11k	11k	11k	11k	11k	11k	11k	11k
	$I_D=[mA]$	0	0.523	0.535	0.54	0.542	0.543	0.544	0.549
	V _{DS,măs} [V]	0	0.5	0.6	0.8	1	1.5	2	4
V _ 2 (V)	V _{DD} [V]	0	0.667	0.767	0.967	1.17	1.67	2.17	4.17
V _{GS} =-3 [V]	$R_{12}+R_{J22}$ [K Ω]	11k	11k	11k	11k	11k	11k	11k	11k
	$I_D=[mA]$	0	0.015	0.015	0.015	0.0154	0.0154	0.0154	0.0154

 $R_{12}+R_{J22}$ este RD din circuit, iar in tabel $V_{DS,mas} = V_{DS}$; $I_D = (V_{DD} - V_{DS}) / R_D$

T3-3p. Inserați graficul caracteristicii de ieșire $I_D = f(V_{DS}, V_{GS})$; V_{GS} - parametru.

3. TEC-J ca generator de curent

5p. Tabelul 3.4 (Fig.3.13)

$R_{S}\left[\Omega ight]$	10	100	300	500	700	900	1k
$V_{D}[V]$	14,91	14,98	15.13	15.28	15.42	15.69	16.23
$V_{S}[V]$	0,151	1,5	4.46	7.36	10.2	12.88	13.77
V _{DD} [V]	30	30	30	30	30	30	30
V _{DS} [V]	14,76	13,48	10.67	7.92	5.22	2.81	2.46
V _{GS} [V]	0	0	0	0	0	0	0
I _D [mA]	15,09	15,02	14.87	14.72	14.58	14.31	13.77

 $I_D = (V_{DD} - V_D) / R_D \text{ si } V_{DS} = V_D - V_S$

T4-2p. Inserați graficul variației lui I_D funcție de V_{DS} ($I_D = f(V_{DS})$ - caracteristica curent-tensiune).

4.1 Măsurători in regim dinamic

5p Tabelul 3.6 (Fig.3.14) condiția de cc: $V_{DS} = 5V$ (Vout in circuitul din figura)

$V_{GS}[V]$	0	-0.5	-1	-1,5	-2	-2.5
I _D [mA]	14.57	10.26	6.9	4.06	1,94	0.5794
V _{out} [mV]	88,73	76.89	63.86	49.78	34.83	19.24
$V_{gs}[mV]$	10	10	10	10	10	10
I _d [μA]	88,73	76.89	63.86	49.78	34.83	19.24
A_{V}	8.873	7.689	6.836	4.978	3.483	1.924
g_{ms} [mA/V]	-8.873	-7.689	-6.836	-4.978	-3.483	-1.924

$$A_V = \frac{v_o}{v_i} = -g_{ms} \cdot R_D$$
 (in c.a. $v_o = V_{out}$ iar $v_i = V_{gs}$); Vgs -semnal sinusoidal, $A = 10mV$, $f = 1kHz$

T5-2p. Inserați simularea amplificatorului sursă comună pentru o valoare V_{GS} aleasa din tabelul 3.6, Vgs=10mV și $V_{DS}=5$ V și calculați amplificarea si g_{ms} , apoi înserați graficele: $A_V=f(V_{GS})$ si $A_V=f(I_D)$.

VGS = -0.5 V

 $A_v = 7,69$ $g_m = -7,69$ mA/V

4.2 Măsurători rezistenta dinamica în saturație r_{d,sat} (Atenție!! Cond. în cc: V_{DS} = Vout = 5V cu VGS = -2V valoare fixa, pt ambele valori ale lui RD)

5p Tabel 3.5 (Fig.3.14)

RD	11k	22k			
I _D [mA]	1.85	1.85			
$V_{ds} = V_{out}[mV]$	342,61	640.26			
$V_{gs}[mV]$	<mark>10</mark>	10			
$r_{ m d,sat}$	156.69kΩ				

$V_{DD} \\$

 $I_{D} \\$

$V_{ds} \\$

Se calculează apoi:
$$r_{d,sat} = \frac{1}{g_{d,sat}} = \frac{R_{D2} - R_{D1}}{\frac{R_{D2} \times V_{ds1}}{R_{D1} \times V_{ds2}} - 1}$$

$$T_{d}, \text{ soft} = \frac{Ro_2 - Ro_1}{Ro_2 \cdot V_{doA}} = \frac{(22-11) \cdot 10^{23}}{22 \cdot 842, 61} = \frac{22 \cdot 842, 61 - 1}{11 \cdot 640, 26}$$

$$= \frac{11}{2534, 42} = \frac{11}{2042, 86} = \frac{156, 69}{2042, 86} \times 12.$$