BikeShare Demand Forecasting

Tom Yedwab & Adam Spitzig & Chris Murray

Overview of the problem

- Bike sharing is a popular solution for commuters in cities
- Check out a bike from one station and return to another
- However, problems can occur if:
 - Bikes are not available at a station (station is empty)
 - Docks are not available for bike return (station is full)
- Bike demand potentially correlated with weather
- ⇒ Predict bike sharing demand based on weather forecast

Acquisition and organization of data

Bike sharing data (CSV format):

http://www.bayareabikeshare.com/open-data

2 years \rightarrow 2.6 GB (trip data only 77 MB)

Weather data (JSON format):

https://developer.forecast.io/docs/v2

2 years \rightarrow 30 MB

Example bike sharing data

			Start		End		Subscription	
Trip ID	Duration	Start Date	Terminal	End Date	Terminal	Bike #	Туре	Zip Code
		8/29/2013 14:		8/29/2013 14:				
4576	63	13:00	66	14:00	66	520	Subscriber	94127
		8/29/2013 14:		8/29/2013 14:				
4607	70	42:00	10	43:00	10	661	Subscriber	95138
		8/29/2013 10:		8/29/2013 10:				
4130	71	16:00	27	17:00	27	48	Subscriber	97214
		8/29/2013 11:		8/29/2013 11:				
4251	77	29:00	10	30:00	10	26	Subscriber	95060
		8/29/2013 12:		8/29/2013 12:				
4299	83	02:00	66	04:00	67	319	Subscriber	94103

Station				Dock		
ID	Name	Lat	Long	count	Landmark	Installation
66	South Van Ness at Market	37.774814	-122.418954	19	San Francisco	8/23/2013
67	Market at 10th	37.776619	-122.417385	27	San Francisco	8/23/2013
	Yerba Buena Center of the Arts (3rd					
68	@ Howard)	37.784878	-122.401014	19	San Francisco	8/23/2013

Example weather data

```
"time": 1421049600.
"summary": "Clear throughout the day.",
"icon": "clear-day",
"sunriseTime": 1421076352,
"sunsetTime": 1421111525.
"moonPhase": 0.73,
"precipType": "rain",
"temperatureMin": 49.31,
"temperatureMinTime": 1421082000,
"temperatureMax": 58.94,
"temperatureMaxTime": 1421103600,
"apparentTemperatureMin": 48.66,
"apparentTemperatureMinTime": 1421071200,
"apparentTemperatureMax": 58.94,
"apparentTemperatureMaxTime": 1421103600,
"windSpeed": 1.12,
"windBearing": 126,
"pressure": 1<u>02</u>2.<u>4</u>7
```

Initial bike share data analysis

Overall architecture of the solution

Visualization of results

Results

- Settled on data sources
 - Pivoted away from problematic public transportation data
- Data extraction code finished
- Data analysis complete
- Basic prediction modeling using Spark complete
 - Support Vector Machine regression model used
 - Predict when no bikes are available

Roadmap for improving the solution

How to scale the solution

- Station status data is huge (2+ GB)
 - Pre-filtering can dramatically reduce size
- Aggregate trip data and station data over time to reduce size

How to evolve the project

- Use streaming weather data to provide real-time demand forecasting
- Include more cities

Additional data sources

- Stadium event data
 - Do people ride more bikes when there is a major public event?
- Road construction / Traffic data
- Data from other public transit systems
 - Is availability in different systems correlated?