

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5

Построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функцией от 4-х переменных

по дисциплине «ИНФОРМАТИКА»

Выполнил студент групп	ы ИКБО-09-22	Гришин А. В.
Принял Старший преподаватель	Смирнов С. С	
Практическая работа выполнена	«»2022 г.	
«Зачтено»	«»2022 г.	

Москва 2022

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ НА ПРАКТИЧЕСКУЮ РАБОТУ	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1 Построение таблицы истинности	4
2.2 Формулы СДНФ и СКНФ	5
2.3 Схемы, реализующие СДНФ и СКНФ в общем логическом базисе	6
выводы	7
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	8

1 ПОСТАНОВКА ЗАДАЧИ НА ПРАКТИЧЕСКУЮ РАБОТУ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФ и СКНФ. Построить комбинационные схемы СДНФ и СКНФ в лабораторном комплексе, используя общий логический базис. Протестировать работу схем и убедиться в их правильности. Подготовить отчет о проделанной работе и защитить ее.

 $F(a, b, c, d) = FAD2_{16}$.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Построение таблицы истинности

Функция, заданная в 16-теричной форме имеет следующий вид: $F\left(a,\,b,\,c,\,d\right)=FAD2_{16}.$

Преобразуем ее в двоичную запись: $1111\ 1010\ 1101\ 0010_2$ - получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности (см. табл.1).

Таблица 1 - Таблица истинности логической функции F

a	b	c	d	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

2.2 Формулы СДНФ и СКНФ

Запишем формулу СДНФ, для чего рассмотрим наборы значений переменных, на которых функция равна единице. Для каждого набора отвечаем на вопрос: каким образом при помощи конъюнкции переменных, принимающих значения из данного набора, можно получить единичное значение функции? Очевидно, что переменные, равные нулю, надо взять с отрицанием, а переменные, равные единице, без отрицания. В результате мы получим множество совершенных конъюнкций, объединив которые через дизъюнкцию, образуем формулу СДНФ (формула 1).

$$F_{c,dh} = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot c \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot \overline{d}$$

$$+ \overline{a} \cdot b \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot d$$

$$+ a \cdot b \cdot \overline{d}$$

$$(1)$$

Запишем формулу СКНФ, для чего рассмотрим наборы значений переменных, на которых функция равна нулю. Для каждого набора отвечаем на вопрос: каким образом при помощи дизъюнкции переменных, принимающих значения из данного набора, можно получить нулевое значение функции? Очевидно, что переменные, равные единице, надо взять с отрицанием, а переменные, равные нулю, без отрицания. В результате мы получим множество совершенных дизъюнкций, объединив которые через конъюнкцию, образуем формулу СКНФ (формула 2).

$$F_{c\kappa H\varphi} = (a + \overline{b} + c + \overline{d}) \cdot (a + \overline{b} + \overline{c} + \overline{d}) \cdot (\overline{a} + b + \overline{c} + d) \cdot (\overline{a} + \overline{b} + c + \overline{d}) \cdot (\overline{a} + \overline{b} + \overline{c} + \overline{d}) \cdot (\overline{a} + \overline{b} + \overline{c} + \overline{d})$$
(2)

2.3 Схемы, реализующие СДНФ и СКНФ в общем логическом базисе

Построим в лабораторном комплексе комбинационные схемы, реализующие СДНФ и СКНФ рассматриваемой функции в общем логическом базисе, протестируем их работу и убедимся в их правильности (рис. 1, рис. 2).

Рисунок 1 – Схема СДНФ

Рисунок 2 – Схема СКНФ

выводы

В ходе практической работы, была восстановлена таблица истинности, записаны формулы СДНФ и СКНФ. Произведено построение комбинационных схем СДНФ и СКНФ в лабораторном комплексе Logisim, протестирована их работа. Тестирование показало, что все схемы работают правильно.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Смирнов С.С., Карпов Д.А. Информатика: Методические указания по выполнению практических работ / Смирнов С.С., Карпов Д.А. Москва: МИРЭА Российский технологический университет, 2020. –102с.
- 2. Cburch: справочная система по программе «Logisim»: сайт. URL : http://www.cburch.com/logisim/docs/2.5.0/ru/ (дата обращения 09.10.2022)