

Sense Me on the Ride:

Accurate Mobile Sensing over a LoRa Backscatter Channel

Haotian Jiang, Jiacheng Zhang, Xiuzhen Guo, and Yuan He Tsinghua University

Wireless Sensing

 Wireless Sensing has become a key enabling technology for ubiquitous Internet of Things applications.

Wireless Sensing

motion and activity sensing

mobility measurement

environmental sensing

material sensing

Long-Range Mobile Target

Dackground Interfetical Model Challenges System Design Evaluation Conclusion	Background	Theoretical Model	Challenges	System Design	Evaluation	Conclusion
--	------------	-------------------	------------	---------------	------------	------------

6

CSS modulation of LoRa

Background Theoretical Model Challenges System Design Evaluation Conclusion

^{*} Fusang Zhang, Zhaoxin Chang, Kai Niu, Jie Xiong, Beihong Jin, Qin Lv, and Daqing Zhang. 2020. Exploring LoRa for Long-range Through-wall Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2, Article 68 (June 2020), 27 pages

Background Theoretical Model Challenges System Design Evaluation Conclusion

^{*} Binbin Xie and Jie Xiong. 2020. Combating interference for long range LoRa sensing. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems (SenSys '20).

Background Theoretical Model Challenges System Design Evaluation Conclusion

Palantir: LoRa Backscatter-Based Sensing

Palantir: LoRa Backscatter-Based Sensing

Sensing with Side-Channel

• 100-Meter Sensing Range

Battery-Free Tag

Condition of Mobile Target

Palantir: Overview

OOK-modulation

Two states in the time domain

OOK modulation of Backscatter

Palantir: Overview

- OOK-modulation
 - Two states in the time domain
- Stabilization
 - Remove the modulation of CSS

OOK modulation of Backscatter

Palantir: Overview

- OOK-modulation
 - Two states in the time domain
- Stabilization
 - Remove the modulation of CSS
- Sensing
 - OFF State acts as a reference

Palantir: Theoretical Sensing Model

Stabilization : Conjugate multiplication

Palantir: Theoretical Sensing Model

Sensing : OFF State acts as a reference

Palantir: Theoretical Sensing Model

Sensing : Movement of target

Rotation of backscatter signal $\Delta heta$

$$\Delta d = rac{c}{2\pi f_{\it Carrier}} \Delta heta$$
 Movement of target Δd

Sensing sets higher requirements on channel quality than communication

Background Theoretical Model Challenges System Design Evaluation Conclusion

Amplitude Instability

Amplitude Instability

State changes are submerged.

Amplitude Instability

State changes are submerged.

Offset and Drift

Carrier Frequency Offset

Sample Time Offset

- Amplitude Instability
 - State changes are submerged.
- Offset and Drift
 - Phases are distorted.

Amplitude Instability

State changes are submerged.

- Offset and Drift
 - Phases are distorted.
- Spectrum Leakage
 - Signal are broken into pieces.

- Amplitude Instability
 - State changes are submerged.
- Offset and Drift
 - Phases are distorted.
- Spectrum Leakage
 - Signal are broken into pieces.
- Multiplicative Noise

- Amplitude Instability
 - State changes are submerged.
- Offset and Drift
 - Phases are distorted.
- Spectrum Leakage
 - Signal are broken into pieces.
- Multiplicative Noise
 - Clustering algorithm is disturbed.

Background	Theoretical Model	Challenges	System Design	Evaluation	Conclusion
------------	-------------------	------------	---------------	------------	------------

Amplitude Envelope

Impact of Offset and Drift

$$\Delta \varphi_{baseband}(t) = 2\pi (a_0 t^2 + a_1 t + a_2)$$

• a_0 , a_1 and a_2 are determined by offsets and drifts.

Multiplicative Noise

$$S_{sample} = AA_{noise}e^{j2\pi(\theta + \theta_{noise})}$$

 $Logarithm\ of\ Amplitude:\ logA + logA_{noise}$

 $phase: \theta + \theta_{noise}$

Logarithm of Amplitude-Phase

Cluster Identification

 The movement between the adjacent sensing units is small

Direct Path Signal — Composite Signal — Backscatter Signal

Background	Theoretical Model	Challenges	System Design	Evaluation	Conclusion
------------	-------------------	------------	---------------	------------	------------

Palantir : Settings

Receiver

• USRP N210

Transmitter

Semtech SX1276 chip

• Carrier Frequency: 902MHz

Bandwidth: 500KHz

Backscatter

• WISP 5.0

Palantir: Settings

Receiver

USRP N210

Transmitter

Semtech SX1276 chip

Carrier Frequency: 902MHz

Bandwidth: 500KHz

Backscatter

• WISP 5.0

Palantir: Evaluation

• What we sense?

- Motion period
 - How fast a cyclist breaths?
- Motion amplitude
 - How deep a cyclist breaths?
- Metrics
 - Motion period deviation
 - Motion amplitude deviation

Motion period deviation

Motion amplitude deviation

Palantir: Evaluation

• Motion period deviation of Palantir in different ...

Motion Amplitude

Motion Frequency

Interference

Mobile Scenario

Palantir: Case Study

- Receiver:
 - Stationary
- Transmitter
 - Attached on a sharing bicycle
- Backscatter
 - Attached to a volunteer

Palantir: Case Study

36

Background	Theoretical Model	Challenges	System Design	Evaluation	Conclusion
------------	-------------------	------------	---------------	------------	------------

20

15

Time (s)

10

Time (s)

Palantir: Conclusion

- Present a first-of-its-kind long-range sensing system based on the LoRa backscatter.
 - Extends the sensing range to 100 m.
 - Applied to both stationary and mobile targets.
- Separate the coupled challenges and design a complete signal processing scheme.
 - Fill the gaps between sensing and communication.
- Evaluate the performance of Palantir by performing comprehensive benchmark experiments.
- Build a prototype and conduct a case study of respiration monitoring.

Thanks for Listening

Backup

Cluster Identification

 The movement between the adjacent sensing units is small

