

Spherical Functions and a q-Analogue of Kostant's Weight Multiplicity Formula

Shin-ichi Kato*

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo, 113 Japan

The purpose of this paper is to give a q-analogue of Kostant's weight multiplicity formula for irreducible representations of complex semisimple Lie algebras, conjectured by Lusztig [6] quite recently. To prove this, we use the theory of spherical functions on p-adic groups (or on Hecke algebras) developed by Satake, Macdonald et al. extensively. In the course of the proof of the above result, we give a short proof of the theorem of Lusztig [6] which describes the weight multiplicities in terms of intersection homology (or Kazhdan-Lusztig polynomials $P_{y,w}$).

1. Statement of Results

Let V be a finite dimensional real vector space with a positive definite inner product $\langle \ , \ \rangle$. Let R be a root system in V. We fix R^+ , a set of positive roots of R (with respect to some ordering). Denote by P the weight lattice of R, i.e., $P = \{x \in V \mid \langle x, \alpha^{\vee} \rangle \in \mathbb{Z} \ (\forall \alpha \in R)\}$ where $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$. We say $\lambda \geq \mu$ $(\lambda, \mu \in P)$ if $\lambda - \mu = \sum_{\alpha > 0} n_{\alpha} \cdot \alpha$ $(n_{\alpha} \in \mathbb{Z}_{+} = \mathbb{N} \cup \{0\})$. This ' \geq ' is a partial order on P. Put $P^{++} = \{\lambda \in P \mid \langle \lambda, \alpha^{\vee} \rangle \geq 0 \ (\forall \alpha \in R^+)\}$ (the set of dominant weights). Since we shall mainly argue in $\mathbb{Z}[P]$, the group ring of P over \mathbb{Z} , we use a multiplicative notation: $\mathbb{Z}[P] = \bigoplus_{\lambda \in P} \mathbb{Z} \cdot e^{\lambda}$ and $e^{\lambda} e^{\mu} = e^{\lambda + \mu}$. Let W be the Weyl group of R. Then W naturally acts on R, P and V.

Let q be an indeterminate. Following Lusztig [6], we define a q-analogue of Kostant's partition function $\widehat{\mathcal{P}}$:

(1.1)
$$\widehat{\mathscr{P}}(\kappa;q) = \sum_{\substack{(n_1, \dots, n_N) \in \mathbb{Z}_+^N \\ n_1 \alpha_1 + \dots + n_N \alpha_N = \kappa}} q^{n_1 + \dots + n_N} \qquad (\kappa \in P)$$

^{*} Supported in part by Grant-in-Aid for Scientific Research

where $\{\alpha_1, ..., \alpha_N\} = R^+$. For $\lambda, \mu \in P$, we put

(1.2)
$$K_{\lambda,\mu}(q) = \sum_{w \in W} \operatorname{sgn}(w) \widehat{\mathscr{P}}(w(\lambda + \rho) - (\mu + \rho); q)$$

where $2\rho = \sum_{\alpha>0} \alpha$ and sgn: $W \to \{\pm 1\}$ is the sign character.

Let $\chi_{\lambda}(\lambda \in P^{++})$ be the 'irreducible character with highest weight λ ' of a complex semisimple Lie algebra, say g, of type R, i.e.,

$$\chi_{\lambda} = \sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda + \rho)} / \sum_{w \in W} \operatorname{sgn}(w) e^{w\rho}.$$

For $\mu \in P^{++}$, we put $W_{\mu}(q) = \sum_{w \in W_{\mu}} q^{\ell(w)}$, the Poincaré polynomial of W_{μ} (the stabilizer of μ in W). Now we can state the following

Theorem 1.3. For $\lambda \in P^{++}$, we have

(1.4)
$$\chi_{\lambda} = \sum_{\substack{\mu \in P^{++} \\ \mu \le \lambda}} K_{\lambda, \mu}(q) W_{\mu}(q)^{-1} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q e^{-w\alpha}}{1 - e^{-w\alpha}}.$$

If we put q=1 in the above, then (1.4) becomes Kostant's weight multiplicity formula. On the other hand, if we put q=0, then (1.4) becomes a well known identity

$$\chi_{\lambda} = \sum_{w \in W} e^{w\lambda} \prod_{\alpha > 0} (1 - e^{-w\alpha})^{-1}.$$

When R is of type A_n , the identity (1.4) is proved in [8; p. 131]. The proof of Theorem 1.3 requires Macdonald's formulas for spherical functions and Plancherel measures, and is given in Sect. 3.

But we can calculate the coefficients $K_{\lambda,\mu}(q)$ in (1.4) in another way: Let E be the affine space whose underlying vector space is V. For $\lambda \in P$, we denote by t_{λ} the translation by λ on E. We put $T = \{t_{\lambda} | \lambda \in P\}$ and $\tilde{W} = W \bowtie T$ (semidirect product of W by T). Both are subgroups of the affine transformation group of E. Though \tilde{W} is not a Coxeter group in general, we can define the length function ℓ , Bruhat ordering \geq on \tilde{W} , and Kazhdan-Lusztig polynomials $P_{y,w}(q) \in \mathbb{Z}[q]$ ([4]) for $y,w \in \tilde{W}$ (see Sect. 2 and 4). For $\lambda \in P^{++}$, let w_{λ} be the longest element in $Wt_{\lambda}W$. Put $2\rho^{\vee} = \sum_{i=0}^{\infty} \alpha^{\vee}$.

Theorem 1.5. 1 For $\lambda \in P^{++}$, we have

(1.6)
$$\chi_{\lambda} = \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} q^{\langle \lambda - \mu, \rho^{\vee} \rangle} P_{w_{\mu}, w_{\lambda}}(q^{-1}) W_{\mu}(q)^{-1} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q e^{-w\alpha}}{1 - e^{-w\alpha}}$$

When R is of type A_n , this formula (1.6) is due to Lusztig [5; Theorem 2]. If we put q=1, then (1.6) shows

After writing this paper, I was informed by G. Lusztig that the way of my proof of Theorem 1.5 is similar to his method used in the first version of [6], and that this theorem can be obtained easily from the results of [6]. I am grateful to G. Lusztig for his comments.

Corollary 1.7. ([6; Theorem 6.1]). If $\lambda, \mu \in P^{++}$ with $\lambda \ge \mu$,

 $P_{w_{\mu}, w_{\lambda}}(1) = the multiplicity of \mu in the irreducible representation of g with highest weight <math>\lambda$.

Moreover, the uniqueness of the expression like (1.4) and (1.6) (see (2.7)) implies that Lusztig's conjecture [6; (9.4)] is true. Namely we get

Theorem 1.8. For $\lambda, \mu \in P^{++}$ with $\lambda \ge \mu$, we have

$$K_{\lambda,\mu}(q) = q^{\langle \lambda - \mu, \rho^{\vee} \rangle} P_{w_{\mu},w_{\lambda}}(q^{-1}).$$

The proof of Theorem 1.5 goes along similar lines as the proof of [5; Theorem 2] (we use spherical functions (resp. irreducible characters) instead of Hall-Littlewood functions (resp. Schur functions)) and will be given in Sect. 4.

2. Spherical Functions on Hecke Algebras

- 2.1. Let $\tilde{W} = W \ltimes T$ be the group defined in Sect. 1. (This is the modified affine Weyl group of a simply-connected complex semisimple group of type R, in the sense of [3].) For simplicity, we henceforth assume that R is irreducible. Let S be the set of simple reflections of W (relative to R^+). Let $\tilde{\alpha}$ be the element of R such that $-\tilde{\alpha}^\vee \in R^\vee$ is maximal, and put $s_0 = w_{\tilde{\alpha}} t_{\tilde{\alpha}}$ where $w_{\tilde{\alpha}}$ is the reflection corresponding to $\tilde{\alpha}$. The element s_0 is a reflection and its reflection hyperplane is given by $\{x \in E \mid \langle x, \tilde{\alpha}^\vee \rangle + 1 = 0\}$. We denote by T_{root} the subgroup of T generated by $t_{\alpha}(\alpha \in R)$. The subgroup of \tilde{W} , $W_{\text{aff}} = W \cdot T_{\text{root}}$ (affine Weyl group of type R^\vee) is generated by $S_{\text{aff}} = S \cup \{s_0\}$ as a Coxeter group. Let Ω be the normalizer of S_{aff} in \tilde{W} . Then \tilde{W} is the semidirect product of Ω by W_{aff} . We extend the length function $\ell \colon W_{\text{aff}} \to \mathbb{Z}_+$ (with respect to S_{aff}) to \tilde{W} by $\ell(xw) = \ell(w)$ $(x \in \Omega, w \in W_{\text{aff}})$.
- 2.2. We introduce an indeterminate $q^{1/2}$ satisfying $(q^{1/2})^2 = q$. Let $H(\tilde{W},q)$ be the Hecke algebra of \tilde{W} over $\mathbb{Q}(q^{1/2})$. Namely, $H(\tilde{W},q)$ is a $\mathbb{Q}(q^{1/2})$ -vector space with a basis $\{T_w\}_{w\in \tilde{W}}$ and their multiplication law is given by

$$\begin{split} T_s^2 = & (q-1) \; T_s + q \; T_e \qquad (s \in S_{\rm aff}); \\ T_w \; T_{w'} = & T_{ww'} \qquad (\ell(w) + \ell(w') = \ell(ww')). \end{split}$$

Let $\phi_0 = W(q)^{-1} \sum_{w \in W} T_w$ be an idempotent of $H(\tilde{W},q)$. Here $W(q) = W_0(q) = \sum_{w \in W} q^{\ell(w)}$. We define the subalgebra of $H(\tilde{W},q)$ by $H(\tilde{W},q;W) = \phi_0 \cdot H(\tilde{W},q) \cdot \phi_0$ (with unit element ϕ_0). Put $\phi_\lambda = W(q)^{-1} \sum_{w \in Wt_{-\lambda}W} T_w$ for $\lambda \in P^{++}$. Since $W = \coprod_{\lambda \in P^{++}} Wt_{-\lambda}W$ (disjoint union), the set $\{\phi_\lambda\}_{\lambda \in P^{++}}$ forms a basis of $H(\tilde{W},q;W)$, i.e., $H(\tilde{W},q;W) = \bigoplus_{\lambda \in P^{++}} \mathbb{Q}(q^{1/2}) \cdot \phi_\lambda$. It is known that $H(\tilde{W},q;W)$ is semisimple and commutative. More precisely, as will be seen

464 S. Kato

below, $H(\tilde{W},q;W)$ is isomorphic to $\mathbb{Q}(q^{1/2})[P]^W = \mathbb{Q}(q^{1/2}) \otimes \mathbb{Z}[P]^W$ under the Satake isomorphism, where $\mathbb{Z}[P]^W$ is the subalgebra of $\mathbb{Z}[P]$ consisting of all W-invariants: We define $\delta^{1/2} \in \operatorname{Hom}(T,\mathbb{Q}(q^{1/2})^\times)$ by $\delta^{1/2}(t_\lambda) = q^{\langle \lambda, \rho^\times \rangle}$ ($\lambda \in P$; recall $2\rho^\vee = \sum_{\alpha>0} \alpha^\vee$). Let $\eta \in \operatorname{Hom}(T,\mathbb{Q}(q^{1/2})[P]^\times)$ be the 'identity' map, i.e., $\eta(t_\lambda)$

 $=e^{\lambda}$ $(\lambda \in P)$. Incidentally we note here that W canonically acts on $\operatorname{Hom}(T,\mathbb{Q}(q^{1/2})[P]^{\times})$ (e.g., we have $(w \cdot \eta)(t_{\lambda}) = e^{w^{-1}\lambda}$ for $w \in W$, $\lambda \in P$). Now we define M_{η} the space of 'generic' principal series representation of $H(\tilde{W},q)$ over $\mathbb{Q}(q^{1/2})[P]$ as in [3; 2.8]. That is,

$$M_{\eta} = \{ f \colon \tilde{W} \to \mathbb{Q}(q^{1/2})[P] | f(wt) = (\eta \delta^{1/2})(t) f(w) \ (w \in \tilde{W}, \ t \in T) \}$$

and $H(\tilde{W},q)$ acts on M_{η} exactly as in [3,9]. Using this representation, we can state the following well-known result [9, 10].

Theorem 2.3 (Satake). The map $\gamma \colon H(\tilde{W},q;W) \to \mathbb{Q}(q^{1/2})[P]$ defined by $\gamma(\phi) = \operatorname{Tr}(\phi|M_{\eta})$ $(\phi \in H(\tilde{W},q;W))$ induces an isomorphism of $H(\tilde{W},q;W)$ onto $\mathbb{Q}(q^{1/2})[P]^W$.

We denote the above isomorphism (called the Satake isomorphism) by the same letter γ .

Theorem 2.4 (Macdonald). For $\lambda \in P^{++}$, we have

(2.5)
$$\gamma(\phi_{\lambda}) = \frac{q^{\langle \lambda, \rho^{\vee} \rangle}}{W_{\lambda}(q^{-1})} \sum_{w \in W} e^{w\lambda} \prod_{\alpha > 0} \frac{1 - q^{-1} e^{-w\alpha}}{1 - e^{-w\alpha}}$$

For our later use, we sketch the proof of the above theorem along the lines as [1].

2.6. Proof of Theorem 2.4. First we note that

$$\phi_{\lambda} = W(q)^{-1} \sum_{w \in W_{t-\lambda}W} T_w = \frac{W(q^{-1})}{W_{\lambda}(q^{-1})} \phi_0 \cdot T_{t-\lambda} \cdot \phi_0.$$

Let 1_{η} be the element of M_{η} defined by $1_{\eta}(w) = 1$ for all $w \in W$. Then $\phi_0 \cdot M_{\eta} = \mathbb{Q}(q^{1/2})[P] \cdot 1_{\eta}$ and $\phi_0 \cdot 1_{\eta} = 1_{\eta}$. On the other hand, by [3; Proposition 2.9], we have

$$1_{\eta} = \sum_{w \in W} \prod_{\substack{\alpha > 0 \\ \text{opp}}} \left(\frac{1 - q^{-1} e^{-\alpha}}{1 - e^{-\alpha}} \right) A(w^{-1}, w \cdot \eta) f_{w \cdot \eta}$$

where $A(w^{-1}, w \cdot \eta) \in \operatorname{Hom}_{H(\widetilde{W}, q)}(M_{w \cdot \eta}, M_{\eta}) \otimes \mathbb{Q}(q^{1/2})(P)$ ($\mathbb{Q}(q^{1/2})(P)$ is the quotient field of $\mathbb{Q}(q^{1/2})[P]$) and $f_{w \cdot \eta} \in M_{w \cdot \eta}$ with $f_{w \cdot \eta}(e) = 1$ and $f_{w \cdot \eta}(y) = 0$ ($y \in W$; $y \neq e$). Since

$$\begin{split} T_{t_{-\lambda}} \cdot f_{w \cdot \eta} &= (w \cdot \eta) (t_{\lambda}) \, \delta^{1/2} (t_{\lambda}) f_{w \cdot \eta} \\ &= e^{w^{-1} \, \lambda} \, q^{\langle \lambda, \rho^{\vee} \rangle} f_{w \cdot \eta} \\ \phi_0 \cdot f_{w \cdot \eta} &= W(q^{-1})^{-1} \, 1_{w \cdot \eta} \end{split} \tag{[9; (4.1.9)])}$$

and

$$A(w^{-1}, w \cdot \eta) 1_{w \cdot \eta} = \prod_{\substack{\alpha > 0 \\ w^{-1} \alpha < 0}} \left(\frac{1 - q^{-1} e^{-w^{-1} \alpha}}{1 - e^{-w^{-1} \alpha}} \right) 1_{\eta} \quad \text{(cf. [3; (1.20.2)])},$$

we finally obtain

$$\phi_0 \cdot T_{t_{-\lambda}} \cdot 1_{\eta} = \frac{q^{\langle \lambda, \rho^{\vee} \rangle}}{W(q^{-1})} \sum_{w \in W} e^{w\lambda} \prod_{\alpha > 0} \left(\frac{1 - q^{-1} e^{-w\alpha}}{1 - e^{-w\alpha}} \right) 1_{\eta}.$$

Hence we get (2.5).

Let χ_{λ} be the 'irreducible character with highest weight λ ' for $\lambda \in P^{++}$ as in Sect. 1. Then it is well-known that the set $\{\chi_{\lambda}\}_{\lambda \in P^{++}}$ forms a basis of $\mathbb{Q}(q^{1/2})[P]^W$. As $\gamma \colon H(\tilde{W},q;W) \stackrel{\sim}{\longrightarrow} \mathbb{Q}(q^{1/2})[P]^W$, we can expand χ_{λ} by $\{\gamma(\phi_{\mu})\}_{\mu \in P^{++}}$ in a unique way.

Lemma 2.7. There exist $L_{\lambda,\mu} \in \mathbb{Q}(q^{1/2})$ for $\lambda, \mu \in P^{++}$ with $\lambda \geq \mu$ such that

$$\chi_{\lambda} = \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} L_{\lambda, \mu} \gamma(\phi_{\mu}),$$

and above $L_{\lambda,\mu}$ are uniquely determined.

This follows from [9; (4.4.9)]. We note here that

$$W_{\mu}(q^{-1})^{-1} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q^{-1} e^{-w\alpha}}{1 - e^{-w\alpha}} \in \mathbb{Z}[q^{-1}][P]^{W} \quad \text{(cf. [9; (3.3.8)(iii)])}.$$

3. Proof of Theorem 1.3

3.1. We first recall Macdonald's result on the Plancherel measure. Let $\hat{P} = \operatorname{Hom}(P, U(1))$, the Pontrjagin dual of P. Here $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$. Let ds be the normalized Haar measure on \hat{P} , Regard $e^{\lambda}(\lambda \in P)$ as a character on \hat{P} by $e^{\lambda}(s) = s(\lambda)$. Hence $\int_{\hat{P}} e^{\lambda}(s) \, e^{\mu}(s) \, ds = \delta_{\lambda,\mu}$ (Kronecker's delta) for $\lambda, \mu \in P$, where e^{μ} is the complex conjugate of e^{μ} (i.e., $e^{\mu}(s) = e^{-\mu}(s)$ for $s \in \hat{P}$).

From now on, we shall assume $q \in \mathbb{R}$ and q > 1 in the rest of this section. We define the measure $d\mu(s)$ on \hat{P} by

$$d\mu(s) = \frac{W(q^{-1})}{|W|} \prod_{\alpha > 0} \left| \frac{1 - e^{\alpha}(s)}{1 - q^{-1} e^{\alpha}(s)} \right|^{2} ds = \frac{W(q^{-1})}{|W|} \prod_{\alpha \in R} \frac{1 - e^{\alpha}(s)}{1 - q^{-1} e^{\alpha}(s)} ds.$$

Let us define the inner product on $C(\hat{P})$, the space of continuous functions on \hat{P} by

$$\langle f, g \rangle = \int_{\hat{P}} f(s)\overline{g(s)} \ d\mu(s) \quad (f, g \in C(\hat{P})).$$

The following is a reformulation of [7; (5.1.2)].

Theorem 3.2 (Macdonald). For $\lambda, \mu \in P^{++}$, we have

$$\langle \gamma(\phi_{\lambda}), \gamma(\phi_{\mu}) \rangle = \begin{cases} q^{2\langle \lambda, \rho^{\vee} \rangle} \, W(q^{-1}) / W_{\lambda}(q^{-1}) & \text{if } \lambda = \mu; \\ 0 & \text{otherwise}. \end{cases}$$

466 S. Kato

Now we calculate $L_{\lambda,\mu}$ in (2.7) by using (3.2). For $\lambda, \mu \in P^{++}$ with $\lambda \ge \mu$, (3.2) asserts that

(3.3)
$$\langle \chi_{\lambda}, \gamma(\phi_{\mu}) \rangle = L_{\lambda, \mu} q^{2\langle \mu, \rho^{\vee} \rangle} W(q^{-1}) / W_{\mu}(q^{-1}).$$

On the other hand,

$$\langle \chi_{\lambda}, \gamma(\phi_{\mu}) \rangle = \frac{W(q^{-1})}{|W|} \int_{\hat{P}} \chi_{\lambda}(s) \overline{\gamma(\phi_{\mu})(s)} \prod_{\alpha \in \mathbb{R}} \frac{1 - e^{\alpha}(s)}{1 - q^{-1} e^{\alpha}(s)} ds.$$

But, by the well-known identity

$$\chi_{\lambda} = \sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda + \rho) - \rho} / \prod_{\alpha > 0} (1 - e^{-\alpha})$$

and by (2.5),

$$\begin{split} \langle \chi_{\lambda}, \gamma(\phi_{\mu}) \rangle &= \frac{q^{\langle \mu, \rho^{\vee} \rangle} W(q^{-1})}{|W| \ W_{\mu}(q^{-1})} \int_{\hat{P}} (\sum_{w \in W} \operatorname{sgn}(w) \, e^{w(\lambda + \rho) - \rho}(s)) \\ & \cdot (\sum_{e \in W} \operatorname{sgn}(y) \, e^{-y(\mu + \rho) + \rho}(s) \prod_{\alpha > 0} (1 - q^{-1} \, e^{-y\alpha}(s))^{-1}) \, ds \\ &= q^{\langle \mu, \rho^{\vee} \rangle} \frac{W(q^{-1})}{W_{\mu}(q^{-1})} \int_{\hat{P}} \sum_{w \in W} \operatorname{sgn}(w) \, e^{w(\lambda + \rho) - (\mu + \rho)}(s) \\ & \cdot \prod_{\alpha > 0} (1 - q^{-1} \, e^{-\alpha}(s))^{-1} \, ds. \end{split}$$

By the definition (1.1) of $\hat{\mathscr{P}}$.

$$e^{w(\lambda+\rho)-(\mu+\rho)}(s) \prod_{\alpha>0} (1-q^{-1}e^{-\alpha}(s))^{-1} = \sum_{\kappa\in P} \widehat{\mathcal{P}}(\kappa;q^{-1}) e^{w(\lambda+\rho)-(\mu+\rho)-\kappa}(s)$$

(the right hand side converges by virtue of the assumption on q). Therefore we have

(3.4)
$$\langle \chi_{\lambda}, \gamma(\phi_{\mu}) \rangle = q^{\langle \mu, \rho^{\vee} \rangle} \frac{W(q^{-1})}{W_{\mu}(q^{-1})} K_{\lambda, \mu}(q^{-1}).$$

Hence (3.3) and (3.4) show that

(3.5)
$$L_{\lambda,\mu} = q^{-\langle \mu, \rho^{\vee} \rangle} K_{\lambda,\mu}(q^{-1}).$$

Combining (2.5), (2.7), (3.5) and replacing q^{-1} by q, we get (1.4) for 0 < q < 1. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.5

4.1. Let \leq denote the Bruhat ordering on W_{aff} with respect to S_{aff} . We extend this ordering to \tilde{W} by

$$x y \le x' w \Leftrightarrow x = x'$$
 and $y \le w$ $(x, x' \in \Omega, y, w \in W_{aff}).$

Let $P_{y,w}(q) \in \mathbb{Z}[q]$ $(y, w \in \tilde{W}; y \leq w)$ be Kazhdan-Lusztig polynomials [4] of \tilde{W} . (In [4], only Coxeter groups are considered, but we extend them to our case by $P_{xy,xw}(q) = P_{y,w}(q)$ for $x \in \Omega$ and $y, w \in W_{aff}$ with $y \leq w$; see [6].) There is a unique ring automorphism $\psi \mapsto \bar{\psi} (\psi \in H(\tilde{W}, q))$ of $H(\tilde{W}, q)$ such that $q^{1/2} = q^{-1/2}$ and $T_w = (T_{w^{-1}})^{-1}$. Note that $H(\tilde{W}, q; W)$ is stable under '—'-operation because $\bar{\phi}_0 = \phi_0$. The polynomials $P_{y,w}(q)$ are characterized by the following properties (4.2)–(4.4):

(4.2)
$$\overline{q^{-\ell(w)/2} \sum_{y \le w} P_{y,w}(q) T_y} = q^{-\ell(w)/2} \sum_{y \le w} P_{y,w}(q) T_y.$$

(4.3) $P_{v,w}(q)$ is a polynomial in q of degree $(\ell(w) - \ell(y) - 1)/2$ if $y \le w$.

(4.4)
$$P_{w,w}(q) = 1$$
.

We let i be the automorphism of \tilde{W} defined by $i(wt_{\lambda}) = w_0 w w_0 t_{-w_0(\lambda)}$ $(w \in W, \lambda \in P)$. Here w_0 is the longest element of W. Then i stabilizes S and $\{s_0\}$. Hence we have

(4.5)
$$P_{i(y), i(w)}(q) = P_{y, w}(q) \qquad (y, w \in \tilde{W}; \ y \leq w).$$

Let w_{λ} be the longest element of $Wt_{\lambda}W(\lambda \in P^{++})$. It is known that $w_{\lambda} = w_0 t_{\lambda}$ and $\ell(w_{\lambda}) = \ell(w_0) + 2\langle \lambda, \rho^{\vee} \rangle$ (see [2; Proposition 1.23]). We note the following (which is easily checked):

$$(4.6) y \leq w_{\lambda} \Leftrightarrow y \in Wt_{\mu}W \quad (\exists \mu \in P^{++}; \mu \leq \lambda).$$

As in [5], we consider the element

$$q^{-\langle \lambda, \rho^{\vee} \rangle} \sum_{\substack{\mu \in P^{+} + \\ \mu \leq \lambda}} P_{w_{\mu}, w_{\lambda}}(q) \phi_{\mu}.$$

By virtue of (4.5), (4.6) and the fact $P_{yw_{\mu}z, w_{\lambda}}(q) = P_{w_{\mu}, w_{\lambda}}(q)$ for all $y, z \in W$ ([4; (2.3.g)]), (4.2) implies

$$(4.7) \qquad \overline{q^{-\langle \lambda, \rho^{\vee} \rangle} \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} P_{\mathbf{w}_{\mu}, \mathbf{w}_{\lambda}}(q) \, \phi_{\mu}} = q^{-\langle \lambda, \rho^{\vee} \rangle} \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} P_{\mathbf{w}_{\mu}, \mathbf{w}_{\lambda}}(q) \, \phi_{\mu}.$$

Let us apply the Satake isomorphism γ on the both sides of (4.7). Then we have

$$(4.8) q^{\langle \lambda, \rho^{\vee} \rangle} \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} P_{\mathbf{w}_{\mu}, \mathbf{w}_{\lambda}}(q^{-1}) \gamma(\overline{\phi_{\mu}}) = q^{-\langle \lambda, \rho^{\vee} \rangle} \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} P_{\mathbf{w}_{\mu}, \mathbf{w}_{\lambda}}(q) \gamma(\phi_{\mu}).$$

Now we calculate the value $\gamma(\overline{\phi_{\mu}}) = \operatorname{Tr}(\overline{\phi_{\mu}}|M_{\eta})$. As

$$\phi_{\mu} = (W(q^{-1})/W_{\mu}(q^{-1})) \phi_0 \cdot T_{t-\mu} \cdot \phi_0,$$

we have

$$\overline{\phi_{\mu}} = (W(q)/W_{\mu}(q)) \phi_0 \cdot T_{tw-(\mu)}^{-1} \cdot \phi_0$$

468 S. Kato

Since $-w_0(\mu) \in P^{++}$, the same argument as in (2.6) shows that

$$\begin{split} \operatorname{Tr}(\phi_0 \cdot T_{t_{w_0(\mu)}}^{-1} \cdot \phi_0 | M_{\eta}) &= W(q^{-1})^{-1} \, q^{-\langle \mu, \rho^{\vee} \rangle} \sum_{w \in W} e^{ww_0 \mu} \prod_{\alpha > 0} \frac{1 - q^{-1} \, e^{-w\alpha}}{1 - e^{-w\alpha}} \\ &= W(q)^{-1} \, q^{-\langle \mu, \rho^{\vee} \rangle} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q \, e^{-w\alpha}}{1 - e^{-w\alpha}}. \end{split}$$

Thus we have

(4.9)
$$\gamma(\overline{\phi_{\mu}}) = q^{-\langle \mu, \rho^{\vee} \rangle} W_{\mu}(q)^{-1} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q e^{-w\alpha}}{1 - e^{-w\alpha}}.$$

Applying (2.5) and (4.9) to (4.8), we get

$$\begin{split} & \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} q^{\langle \lambda - \mu, \rho^{\vee} \rangle} P_{w_{\mu}, w_{\lambda}}(q^{-1}) W_{\mu}(q)^{-1} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q e^{-w\alpha}}{1 - e^{-w\alpha}} \\ &= \sum_{\substack{\mu \in P^{++} \\ \mu \leq \lambda}} q^{-\langle \lambda - \mu, \rho^{\vee} \rangle} P_{w_{\mu}, w_{\lambda}}(q) W_{\mu}(q^{-1})^{-1} \sum_{w \in W} e^{w\mu} \prod_{\alpha > 0} \frac{1 - q^{-1} e^{-w\alpha}}{1 - e^{-w\alpha}}. \end{split}$$

Since $\deg P_{w_{\mu},w_{\lambda}}(q) \leq (\ell(w_{\lambda}) - \ell(w_{\mu}) - 1)/2 = \langle \lambda - \mu, \rho^{\vee} \rangle - 1/2$ if $\mu < \lambda$, the right hand side is a polynomial (with coefficients in $\mathbb{Z}[P]^{W}$) in q^{-1} and the left hand side is a polynomial in q. The constant terms are equal to

$$\sum_{w \in W} e^{w\lambda} \prod_{\alpha > 0} (1 - e^{-w\alpha})^{-1} = \chi_{\lambda}.$$

Therefore we have proved (1.6).

References

- Casselman, W.: The unramified principal series of p-adic reductive groups. I. The spherical function. Compositio Math. 40, 387-406 (1981)
- Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke ring of p-adic Chevalley groups. Publ. Math. I.H.E.S. 25, 5-48 (1965)
- Kato, S.: Irreducibility of principal series representations for Hecke algebras of affine type. J. Fac. Sci. Univ. Tokyo 28 (1982) (in press)
- Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165-184 (1979)
- Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. in Math. 42, 169– 178 (1981)
- Lusztig, G.: Singularities, character formulas, and a q-analogue of weight multiplicities. preprint, M.I.T., 1981
- Macdonald, I.G.: Spherical functions on a group of p-adic type. Publ. Ramanujan Institute. No. 2. Madras (1971)
- 8. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press 1979
- Matsumoto, H.: Analyse harmonique dans les systemes de Tits bornologiques de type affine.
 Lecture Notes in Math., vol. 590. Berlin Heidelberg New York: Springer 1977
- Satake, I.: Theory of spherical functions on reductive algebraic groups over p-adic fields. Publ. Math. I.H.E.S. 18, 5-69 (1963)