To test software based on type I error, Power, and time&memory.

- 1. Simulate phenotype data.
 - 1.1 Table of parameters

Data Type	Quantitative	Binary		
Number of causals	1K	10K		
h2	0(Type I error, in chr 13-22)	0.1	0.5	0.9
Model	GCTA	LDAK		
Number of Individuals	10K	70K		
Replicate Phenotypes	5 phenotypes			

1.2 To make SNP list in chr 1 to 12, for –extract

In a txt file, with one column of rsXXXXXX

1.3 One example of simulation(In the batch queue now)

In this case, it will generate 5 phenotypes based on:

70K individuals, GCTA model, h2 = 0.1, 5 phenotypes, 1000 causal SNPs in chr 1 to 12(13 to 22 are non-genetic).

 $$ \{ dir \}/ software/ Idak 5. XXX \ --make-phenos $ \{ dir \}/ type_1_error/ Multi_Traits/ Trait_qt_7 Wan_GCTA_h01_K_1 \ --bfile $ \{ dir \}/ data_qc \ --ignore-weights YES \ --power -1 \ --her 0.1 \ --num-phenos 5 \ --num-causals 1000 \ --extract $ \{ dir \}/ type_1_error/ Multi_Traits/ Iist_snps_1_to_12. txt$

- 1.4 To simulate 2*2*3*2*2 = 48 phenotype files in total
- 2. Run these on different software

 Bolt-Imm, Bolt-Imm-inf, regenie, fastGWA(only for 10K individuals), plink, ldak
- 3. To compute Power based on results in chr 1 to 12;
- 4. To computer Type I error based on results in chr 13 to 22.

 Note: when computing Power and Type_I_Error, I'll use the .effects file as the real answer.