## Standard Optimized protocol pr











| D | Amplification | r,    | r <sub>2</sub> | r <sub>a</sub> | r <sub>4</sub> |
|---|---------------|-------|----------------|----------------|----------------|
|   | 10 µg         | 0.740 | 0.735          | 0 746          | 0.737          |
|   | 200 ng        | 0.754 | 0 733          | 0 730          | 0 753          |
|   | 10 ng         | 0.751 | 0.767          | 0.735          | 0.718          |



Alkaline Electrophoresis