THE UNIVERSITY OF SYDNEY MATH1901/06 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Short answers to exam questions

2010

- 1. (a) Ellipse and its interior. Horizontal semiaxis a = 5/2, vertical semiaxis b = 3/2.
 - (b) Factorisation: $P(z) = (z^2 4z + 5)(z^2 + 2z + 2)$.
 - (c) Surjective because $z \mapsto z^3$ maps the 120° closed sector to the full complex plane. Not injective because points x and $xe^{2\pi i/3}$, x > 0, on the sides of the sector, map to the same image point x^3 in the codomain.
- 2. (a) (i). $f(x,y) = \tan^{-1}(x^2 + 3y^2)$, $\nabla f = \frac{2x \,\mathbf{i} + 6y \,\mathbf{j}}{1 + (x^2 + 3y^2)^2}$, $\nabla f(2,1) = \frac{2 \,\mathbf{i} + 3 \,\mathbf{j}}{25}$. Directional derivative: $D_{\mathbf{u}}f(2,1) = \nabla f \cdot \hat{\mathbf{u}} = 1/(5\sqrt{17})$.
 - (ii). Tangent plane: $z = (2x + 3y 7)/25 + \tan^{-1}(7)$.
 - (b) (i). Taylor series $(T_7(x) \text{ plus dots})$: $\sin x = x x^3/3! + x^5/5! x^7/7! + \dots$, $\sinh x = x + x^3/3! + x^5/5! + x^7/7! + \dots$, divide both by x, then let $x \to \sqrt{x}$, $x \ge 0$, in first series, $x \to \sqrt{-x}$, x < 0, in second series. Result: $g(x) = 1 x/3! + x^2/5! x^3/7! + \dots$ (two-sided).
 - (ii). g'(0) = -1/6, g''(0) = 2!/5! = 1/60, g'''(0) = -3!/7! = -1/840.
- **3**. (a) (i). Limit is 5/6. (Cancel fraction to $\frac{x+3}{x+4}$ or use l'Hôpital's rule twice.)
 - (ii). Limit is 2. (L'Hôpital's rule or comparison with $(2 \ln x)/(\ln 2x)$.)
 - (iii). No limit. (Let $y = x + \lambda x^2$ or $x + \lambda x^3$, limit depends on path.)
 - (iv). Limit is 0. (Use polar coordinates.)
 - (b) By MVT, $\frac{f(x) f(a)}{x a} = f'(x_1)$ for some $x_1, a < x_1 < x$. But $f'(x) \to L$ forces $f'(x_1) \to L$ as $x \to a^+$, and so $f'_+(a)$ exists and equals L.
- 4. (a) (i). Answer $f'(x) = -\sqrt{a^2 x^2}/x$ given, use chain rule and simplify.
 - (ii). Slope of tangent: $-\sqrt{a^2-c^2}/c$. Equation of tangent: $y=a\cosh^{-1}(a/c)-x\sqrt{a^2-c^2}/c$.
 - (iii). y-intercept of tangent is $a \cosh^{-1}(a/c)$. Distance to P is a, indep of c.
 - (b) Substituting $T_3(y)$ for f(y) about y = x, leaving f(x) as is, gives $G(x,y) = f'(x) + f''(x)(y-x)/2 + f'''(x)(y-x)^2/6 + \dots$, $G_y(x,y) = f''(x)/2 + f'''(x)(y-x)/3 + \dots$, and so $G_y(x,x) = f''(x)/2$. Alternatively: use l'Hôpital on (G(x,y) G(x,x))/(y-x) or on $G_y(x,y)$. Quick method (assuming answer exists): $G_x(x,x) + G_y(x,x) = f''(x)$ by chain rule, but symmetry $G_x(a,b) = G_y(b,a)$ implies $G_x(x,x) = G_y(x,x)$.