Python Framework for Design and Analysis of Integer-N ADPLLs

Specialization Project Progress - 12th Week

Cole Nielsen
Department of Electronic Systems, NTNU
15 November 2019 (Calendar week 46)

Timeline

Week	Dates	Tasks	Outcomes	
36	2.9 - 8.9	Review PLL Design	Refreshed Knowledge	
37	9.9 - 15.9	Modeling/simulation (set up)	-	
38	16.9 - 22.9	Modeling/simulation	TDC/DCO Requirements	
39	23.9 - 29.9	Modeling/simulation	Loop Filter/Digital Algorithms	
40	30.9 - 6.10	Modeling/simulation	Loop filter, DCO, TDC, calibration	
41	7.10 - 13.10	Circuit Research	DCO/Divider topologies	
42	14.10 - 20.10	Circuit Research	TDC/other topologies	
43	21.10 - 27.10	Spur analysis, filter automation		
44	28.10 - 3.11	Filter automation, SNR estimation		
45	4.11 - 10.11	Variation analysis, flicker noise	Histograms/yield estimates	
46	11.11 - 17.11 Real DCO sensitivity, TDC/divider jitter Si		Simlate ring-DCO in Virtuoso	
47	18.11 - 24.11 PLL + Radio simulation		BER estimate	
48	25.11 - 1.12 Agglomerate into cohesive framework		(I have an Exam on 30.11)	
49	2.12 - 8.12 Finish framework, report writing			
50	9.12 - 15.12	Report writing	Complete before 15.12	

Legend: Done Current Revised

Timeline Tasks

This week

- Include more sources of phase noise in PLL model:
 - Added divider jitter, LF quantization noise, DCO quantization noise.
- Simulation of Ring oscillator in 22FDX:
 - Extracted values/variation for V_{th} and body effect coefficient γ for RVT/SLVT devices in various conditions.
 - Extracted data for frequency and current consumption for varied L, (W/L), load capacitance, temperature, supply voltage and RVT/SLVT devices.
 - Simulated variance of ring oscillator for comparison to model.

Phase noise model

Adding more components

- New loop filter optimizer is based on phase noise minimization, it is good to have a more complete phase noise model.
 - Previously only TDC noise and DCO noise (non-quantization) were considered.
- New phase noise components that were added:
 - · Loop filter quantization noise.
 - DCO quantization noise
 - Divider jitter.
- These added components will allow for a more accurate estimate of the oscillator phase noise, and thus better loop filter optimization (i.e. phase noise minimization).

Phase noise model

Adding more components

 Loop filter/DCO quantization noise, where Q_{DCO} and Q_{LF} are the DCO and loop filter quantization noise signals. The noise transfer function is:

$$\frac{\Phi_{out}}{Q_{DCO}} = \frac{\Phi_{out}}{Q_{LF}} = 2\pi \frac{N_{DIV}}{M_{TDC}} \frac{G(s)}{H_{LF}(s)} \tag{1}$$

The PLL output phase noise spectral density from DCO quantization is as follows:

$$S_{\Phi_{out}Q_{DCO}} = \frac{1}{12f_{Clk}} \left| 2\pi \frac{N_{DIV}}{M_{TDC}} \frac{G(s)}{H_{LF}(s)} \right|^2 \tag{2}$$

The PLL output phase noise spectral density from loop filter quantization is as follows, where $\sigma^2_{Q_{LF}}$ is average power (in LSB²) of the quantization noise. This is implementation dependent.

$$S_{\Phi_{out}Q_{LF}} = \sigma_{Q_{LF}}^2 \left| 2\pi \frac{N_{DIV}}{M_{TDC}} \frac{G(s)}{H_{LF}(s)} \right|^2$$
 (3)

Phase noise model

Adding more components

Divider jitter, where the noise transfer function is:

$$\frac{\Phi_{out}}{\Phi_{div}} = -N \cdot G(s) \tag{4}$$

If the divider is subject to jitter in time with variance $\sigma^2_{jit,div}$, the corresponding PLL output phase noise spectrum is:

$$S_{\Phi_{OUt}\Phi_{jit,div}} = \left| 2\pi f_{clk} N_{DIV} \sigma_{jit,div} G(s) \right|^2 \tag{5}$$

This has the same dependence on G(s) as TDC quantization noise. To make divider noise less than TDC-related noise, we set $S_{\Phi_{out}\Phi_{fit},div} < S_{\Phi_{out}\Phi_{QTDC}}$, this results in:

$$\sigma_{jit,div} < \frac{1}{M \cdot f_{clk}^{3/2}} \tag{6}$$

Extracting FET parameters

- Extracted V_{th} and body effect coefficient to use with model for comparison with simulation.
- Extracted for RVT and SLVT devices with L in {20n 100n, 500n}, W/L in {1, 10}.
- Short channel effects noticable in 20nm, >= 100 nm it becomes less significant.
- For L=500nm, the below parameters were found. $\sigma_{V_{th}} < 0.036 V_{th}$, $\sigma_{\gamma} < 0.024 \gamma$ (via Monte Carlo samping at T=-40, 25, 85).

Parameter	NFET	SLVTNFET	PFET	SLVTPFET
V _{th} [mV]	390-0.69T	340-0.67T	-387+0.88T	-312+0.77T
γ [V/V]	-0.072	-0.083	0.082	0.069

Ring oscillator model - assumptions

- Model ring oscillator with inverters modeled with ideal switches and lumped R and C components. The R is equivalent to the average channel resistance for the FETs.
- Square law ($L >> L_{min}$) and in saturation during period of propagtion delay. Requires $0.25 \, V_{DD} < V_{th} < 0.5 \, V_{DD}$.

Ring oscillator model - equations

$$f_{osc} = \frac{\mu_n C_{ox}}{4 \ln 2NC} \left(\frac{W}{L}\right)_n \left[V_{DD} \left(\frac{7}{8 \ln 2} - 1\right) - V_{f0} \left(\frac{1}{\ln 2} - 1\right) + \gamma V_{BG} \left(\frac{1}{\ln 2} - 1\right)\right]$$
(7)

$$\Delta f_{osc}(V_{BG}) = \gamma V_{BG} \frac{\mu_n C_{ox}}{4 \ln 2NC} \left(\frac{W}{L}\right)_n \left[\frac{1}{\ln 2} - 1\right]$$
 (8)

If backgate voltage is limited to the range of V_{DD}

$$f_{c} = \frac{\mu_{n} C_{ox}}{4 \ln 2NC} \left(\frac{W}{L}\right)_{n} \left[V_{DD} \left(\frac{7}{8 \ln 2} - 1 + \frac{\gamma}{2 \ln 2} - \frac{\gamma}{2}\right) - V_{t0} \left(\frac{1}{\ln 2} - 1\right)\right]$$
(9)

$$\Delta f = \frac{\gamma V_{DD}}{2} \frac{\mu_n C_{ox}}{4 \ln 2NC} \left(\frac{W}{L}\right)_n \left[\frac{1}{\ln 2} - 1\right]$$
 (10)

$$\frac{\Delta f}{f_c} = \frac{1}{2} \cdot \frac{\gamma V_{DD} (1 - \ln 2)}{V_{DD} (\frac{7}{8} - \ln 2 + \frac{\gamma}{2} - \frac{\gamma}{2} \ln 2) - V_{t0} (1 - \ln 2)}$$
(11)

Ring oscillator simulation - schematic

- Simulated simple 5 stage ring oscillator with $V_{DD} = 0.8$.
- Used RVT/SLVT devices, varied temp in {-40, 25, 85}, L in {100n, 500n}, W/L in {1, 10}, C_{load} in {0, 1f, 10f}, V_{BB} in {0, 0.8}

Ring oscillator simulation - variation

- Simulated simple 5 stage ring oscillator with $V_{DD} = 0.8$.
- Used RVT/SLVT devices, varied temp in $\{-40, 25, 85\}$, L in $\{100n, 500n\}$, W/L in: $\{1, 10\}$, C_{load} in $\{0, 1f, 10f\}$, V_{BB} in $\{0, 0.8\}$
- Also performed Monte-Carlo at 25C with L=500nm and W/L=1:
- Standard deviation for RVT is 4.7% of nominal value, for SLVT it is 4.5% of nominal.

Specification (unchanged)

System Performance Targets

Parameter	Value Unit		Notes	
Frequency	2.4-2.4835	GHz	2.4G ISM Band	
Ref. frequency	16	MHz	Yields 6 channels	
Power	≤ 100	μW		
FSK BER	≤ 1e-2		2FSK with f_{dev} = \pm 250 KHz	
Initial Lock Time	≤ 50	μ S	Upon cold start	
Re-lock Time	≤ 5	μS	Coming out of standby	
Bandwidth	50	kHz	(nominally), tunable	

Additionally: PLL output should support IQ sampling at LO frequency.

Specification (unchanged)

PLL Component Performance Targets

Parameter	Value	Unit	Notes
DCO LSB Resolution	≤ 50	kHz	Determined from quantization noise.
DCO DNL	< 1	LSB	Ensures monotonicity
TDC Resolution	0.95	ns	
TDC Resolution (bits)	6	bits	

Architecture (updated)

Block Diagram

Power Targets

DCO	TDC	Divider	Other	SUM
70 μW	20 μW	10 μW	$<<$ 1 μ W	100 μW

Project Phases

Autumn 2019

- System modeling and simulation.
 - Learn PLL theory in detail
 - Evaluate feasability of PLL architectures (counter, TDC-based)
 - Determine requirements for TDC/DCO/Divider/logic (bits of resolution, accuracy etc) to meet PLL performance specifications.
 - Determine digital logic for loop filter, validate stability and lock time performance.
- Research ultra-low power circuit topologies to implement system components that will meet determined requirements.
- Translate component-level specifications into schematic-level circuit designs.
 - Try, fail, try again until functional at schematic level.
 - I expect the TDC to be difficult.

Project Phases (continued)

Spring 2020

- Finalize schematic-level design.
- Estabilish thorough tests for PLL performance (automated?) to help in layout.
- Layout of PLL.
 - Design iteration until design specs met.
 - · Probably very time consuming.
- Full characterization/validation of design performance.
 - Comprehensive Corners/Monte-Carlo testing (time consuming??)
 - More design iteration if new issues crop up...
- Thesis paper writing.

References

[1] "Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks", N. Pletcher, J.M Rabaey, 2008.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-59.html