M378K Introduction to Mathematical Statistics

Problem Set #18

Consistency.

Definition 18.1. $\hat{\theta}_n$ is said to be a consistent estimator of θ if

$$\hat{\theta}_n \to \theta$$
 in probability as $n \to \infty$,

i.e., if for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left[|\hat{\theta}_n - \theta| > \varepsilon \right] = 0.$$

Theorem 18.2. Let $\hat{\theta}_n$ be unbiased and such that

$$\operatorname{Var}\left[\hat{\theta}_{n}\right] \xrightarrow{n \to \infty} 0.$$

Then, $\hat{\theta}_n$ is a consistent estimator.

Problem 18.1. Let Y_1, Y_2, \ldots, Y_n be a random sample from any distribution with finite first and second moments. Propose a consistent estimator for the population mean μ and **prove** that it is, indeed, consistent.

Solution: An obvious choice is the sample mean

$$\bar{Y}_n = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n).$$

We have already verified earlier in class that \bar{Y} is *unbiased* for μ . According to the theorem above, it suffices to show that

$$\operatorname{Var}[\bar{Y}_n] \xrightarrow{n \to \infty} 0.$$

However, we know that

$$\operatorname{Var}[\bar{Y}_n] = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

which completes our proof.

Problem 18.2. Consider a random sample Y_1, Y_2, \dots, Y_n from a power distribution with the density of the form

$$f_Y(y) = \theta y^{\theta - 1} \mathbf{1}_{(0,1)}(y).$$

What is a consistent estimator for $\frac{\theta}{\theta+1}$? **Prove** that your choice is indeed consistent.

Solution: The expression $\frac{\theta}{\theta+1}$ stands for the population mean. Indeed,

$$\mathbb{E}[Y_1] = \int_0^1 y f_Y(y) \, dy = \int_0^1 \theta y^{\theta} \, dy = \frac{\theta}{\theta + 1} \, .$$

So, a sensible choice for a consistent estimator is \bar{Y}_n . It's evidently unbiased. Let's try to use the previous criterion in terms of the vanishing variance. We know that

$$\operatorname{Var}[\bar{Y}_n] = \frac{\operatorname{Var}[Y_1]}{n}$$
.

So, it suffices to verify that the variance of Y_1 is finite. We have

$$\operatorname{Var}[Y_1] = \mathbb{E}[Y_1^2] - \left(\frac{\theta}{\theta+1}\right)^2.$$

On the other hand,

$$\mathbb{E}[Y_1^2] = \int_0^1 y^2 (\theta y^{\theta-1}) dy = \theta \int_0^1 y^{\theta+1} dy = \frac{\theta}{\theta+2}.$$

Clearly, $Var[Y_1]$ is finite and the theorem applies. Hence, \bar{Y}_n is, indeed, consistent.