

MATEMATIKA TEKNIK JTE UNTIRTA

LINIER TIME INVARIANT (LTI)

- Apa itu Sinyal ?
 - merupakan fungsi dari satu atau lebih variabel bebas (independent)
- Apa itu variabel independent dan variabel devendent?
 - → Variabel independent : variable yang mempengaruhi atau menjadi penyebab perubahan variable lainnya
 - → Variabel dependent : variabel yang keberadaannya dipengaruhi oleh variabel lain.

Contoh: Arus AC merupakan sinyal

• Perhatikan ilustrasi berikut :

• Perhatikan ilustrasi berikut :

Sinyal Waktu Kontinu dan Waktu Diksrit

- Sinyal kontinu : sinyal yang memiliki nilai riil pada keseluruhan rentang waktu t yang ditempatinya.
- Lambang : x(t)
- Perhatikan ilustrasi berikut :

(b) Sinyal output rangkainn RLC

(b) Sinyal output perekaman

Bagaimana dengan ini?

Sinyal Waktu Diskrit

- Sinyal yang memiliki nilai hanya pada potongan-potongan waktu yang diskrit
- Penulisan \rightarrow x [n], dengan n bernilai integer.
- Sinyal waktu kontinu dapat dirubah menjadi sinyal waktu diskrit dengan melakukan pencuplikan, atau sebaliknya sinyal waktu diskrit dikonversi menjadi sinyal waktu kontinu, misalkan menggunakan DAC

Sinyal Waktu Diskrit

Pencuplikan Sinyal Analog

Apakah Sistem itu?

- Sistem → Sekumpulan komponen yang saling berinteraksi dan bekerjasama untuk mencapai tujuan yang sama.
- Dalam keteknikan: perangkat yang beroperasi berdasarkan sinyal masukan (input), mengikuti aturan tertentu (biasanya berbentuk persamaan matematis), dan menghasilkan sinyal keluaran (output) atau respon sistem.
- Secara visual dapat digambarkan :

Apakah Sistem itu?

Sistem Waktu Diskret:

$$y[n] = H[x(n)]$$

Sistem Waktu Kontiunyu:

$$y(t) = H(x(t))$$

Linieritas Sistem

- Sebuah Sistem linier, dalam waktu kontinu dan waktu diskrit, merupakan sistem yang memiliki sifat penting yaitu superposisi.
- Jika masukan terdiri dari jumlah beban dan beberapa sinyal, maka keluaran adalah superpoisi, yaitu jumlah beban dari tanggapan sistem setiap sinyal itu.
- Perhatikan...!, anggaplah $y_1(t)$ menjadi tanggapan waktu kontinu pada masukan $x_1(t)$, dan anggaplah $y_2(t)$ menjadi keluaran yang sesuai dengan $x_2(t)$, maka sistem adalah linier jika :
 - 1. Tanggapan pada $x_1(t) + x_2(t)$ adalah $y_1(t) + y_2(t) \rightarrow$ aditivitas
 - 2. Tanggapan pada a $x_1(t)$ adalah a $y_1(t)$, dimana a adalah setiap konstanta bilangan kompleks \rightarrow homogenitas

Linieritas Sistem

Contoh:

Misalkan kita memiliki sebuah sistem S dengan masukan x(t) dan keluaran y(t) yang dihubungkan oleh y(t) = tx(t), tentukan apakah sistem linier atau tidak? Jawab:

Cek aditivitas

Kita misalkan masukan sembarang $x_1(t)$ dan $x_2(t)$.

$$y_1(t) = tx_1(t)$$

 $y_2(t) = tx_2(t)$
 $y_1(t) + y_2(t) = tx_1(t) + tx_2(t)$

$$x_1(t) + x_2(t) \rightarrow sistem \rightarrow y'(t)$$

 $y'(t) = t(x_1(t) + x_2(t))$
 $= tx_1(t) + tx_2(t)$

2. Cek homogenitas

$$k y(t) = k (tx_1(t) + tx_2(t)) = k.t (x_1(t) + x_2(t))$$

 $k x(t) = k (x_1(t) + x_2(t)) . t = k.t (x_1(t) + x_2(t))$

Linieritas Sistem

Contoh:

Bagaimana dengan $y(t) = x^2(t)$, apakah linier atau tidak linier?

Bagaimana dengan sistem diskrit berikut:

y[n] = 2x[n]+3, apakah linier atau tidak linier?

Time Invariant

Suatu sistem dianggap time invariant bila memenuhi:

$$y(t-t_0) = x(t-t_0)$$

$$atau$$

$$y[n-n_0] = x[n-n_0]$$

- Klasifikasi ini berhubungan dengan respon sistem yang digeser (apakah delay atau dipercepat)
- Masukan yang digeser (shifted) harus menghasilkan keluaran yang bergeser juga

Time Invariant

LTI Diskrit

Metode analisis.

- Konvolusi
- Persamaan beda

Konvolusi pada sinyal diksrit

- Dua sinyal diskrit x[n] dan h[n] $x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
- Jika semua x[n] dan h[n] memiliki nilai 0 untuk semua integer pada n<0, maka

$$x[n]*h[n] = \begin{cases} 0, n = -1, -2, -3 \dots \\ \sum_{k=1}^{n} x[k]h[n-k], n = 0,1,2,3 \dots \end{cases}$$

Mekanisme Konvolusi

1. Operasi pembalikan (folding)

$$h[k] \rightarrow h[-k]$$

2. Operasi pergeseran (shifting)

$$h[-k] \rightarrow h[n-k]$$

3. Operasi perkalian

$$x[k] \cdot h[n-k]$$

4. Operasi penjumlahan

$$\sum_{k=-\infty}^{\infty} x[k]h[n,k]$$

- Contoh, tentukan keluaran dari sistem LTI dengan :
- Input : x[k] = 123
- Respon impuls : h[k] = 213

- Contoh, tentukan keluaran dari sistem LTI dengan :
- Input : $x[k] = 1\vec{2} 3$
- Respon impuls : $h[k] = \overrightarrow{2} \cdot 1 \cdot 3$

Sistem LTI Persamaan Beda

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

Dimana a_k dan $b_k \rightarrow$ parameter konstanta tidak tergantung pada x(n) dan y(n)

Contoh:

Nyatakan dalam unit impuls untuk sinyal dengan durasi terbatas berikut :

$$X(n) = \{3, 2, \overrightarrow{1}, 0, 5\}$$

Sifat-sifat LTI

Sifat Komutatif

Sifat dasar dari konvolusi baik pada waktu kontinu maupun waktu diskrit adalah operasi komutatif, artinya dalam waktu diskrit :

$$x[n]*h[n] = h[n]*x[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

Dalam waktu kontinu:

$$x(t)*h(t) = h(t)*n(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$

Sifat Distributif

Konvolusi juga mengatur penambahan, dalam waktu diskrit:

$$x(n)*(h_1[n] + h_2[n]) = x(n)*h_1[n] + x[n]*h_2[n]$$

Dalam waktu kontinu

$$x(t)*[h_1(t) + h_2(t)] = x(t)*h_1(t) + x(t)*h_2(t)$$

Buktikan dengan diagram sederhana!

Sifat-sifat LTI

 Sifat Asosiatif Dalam waktu diskrit: $X[n]*(h_1[n] * h_2[n]) = (x[n]*h_1[n])$ * $h_2[n]$ Dalam waktu kontinu $x(t)*[h_1(t)*h_2(t)] = [x(t)*h_1(t)]*h_2(t)$

Buktikan dengan diagram sederhana!