Лабораторная работа №1

Отчёт

Александр Денисович Мосолов

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Домашнее задание	19
5	Контрольные вопросы	22
6	Выводы	24
Список литературы		25

Список иллюстраций

3.1	Запуск виртуальной машины с диска	8
3.2	Настройка оборудования	8
3.3	Настройка памяти	9
3.4	Выбор языка	9
3.5	Пользователь almos05	9
3.6	root пользователь	10
3.7	Запускаем терминал	10
3.8	Режим root	10
3.9	Обновление пакетов	11
3.10	Установка программного обеспечения для удобства	11
	Запускаем таймер	11
3.12	Открываем файл /etc/selinux/config	11
3.13	Замена значения	12
3.14	Перезапускаем виртуальную машину	12
3.15	Запускаем терминальный мультиплексор	12
	Установка средств разработки	12
3.17	Установка пакет DKMS	13
3.18	Подключение образа диска дополнений гостевой ОС	13
3.19	Подмонтируйте диск	13
	Устанавливаем драйвера	13
3.21	Открываем конфигурационный файл	14
	Редактируем конфигурационный файл	14
3.23	Открываем файл /etc/X11/xorg.conf.d/00-keyboard.conf	14
3.24	Редактируем файл /etc/X11/xorg.conf.d/00-keyboard.conf	14
3.25	Устанавливаем имя хоста	15
3.26	Создаем папку work	15
3.27	Подключаем разделяемую папку	15
	Запуск tmux	16
3.29	Установка pandoc	16
3.30	Выбор версии	17
	Проверяем загрузки	17
	Распаковываем и перемещаем	17
3.33	Подключаем разделяемую папку	18
4.1	Linux version	19
4.2	Detected Mhz processor	19
43	CPLIO	19

4.4	Memory available	20
	Hypervisor detected	
4.6	Тип файловой системы корневого раздела	21

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов. [1]

2 Задание

Научиться устанавливать Fedora Sway, настроить ее для дальнейшей работы.

3 Выполнение лабораторной работы

Скачиваем с официального сайта Fedora Sway, прикрепляем файл с расширением .iso в поле (рис. 3.1)

Рис. 3.1: Запуск виртуальной машины с диска

Задаём настройки оборудования виртуальной машины (рис. 3.2)

Рис. 3.2: Настройка оборудования

Задаём размер жесткого диска - 80 Гб (рис. 3.3):

Рис. 3.3: Настройка памяти

Выбираем язык (рис. 3.4)

Рис. 3.4: Выбор языка

Настраиваем пользователя almos05 (рис. 3.5):

Рис. 3.5: Пользователь almos05

Настраиваем гоот пользователя (рис. 3.6):

Рис. 3.6: root пользователь

Используя Win + D находим Foot и открываем терминал (рис. 3.7):

```
combi: Type to filter 2245/2245

drun Bluetooth менеджер

drun Firefox (Web Browser)

drun Foot (Terminal)

drun Foot Client (Terminal)

drun Foot Server (Terminal)
```

Рис. 3.7: Запускаем терминал

Переходим в режим суперпользователя (рис. 3.8):

```
[almos85010 ~]$ sudo -1

Nы полагаем, что ваш системный администратор изложил вам основы безопасности. Как правило, всё сводится к трём следующим правилам:

№1) Уважайте частную жизнь других.

№2) Думайте, прежде чем что-то вводить.

№3) С большой властью приходит большая ответственность.
```

Рис. 3.8: Режим root

Обновляем все пакеты (рис. 3.9):

```
[root@10 ~]# dnf -y update
edora 39 - x86_64
```

Рис. 3.9: Обновление пакетов

Программы для удобства работы в консоли:

dnf -y install tmux mc

При необходимости можно использовать автоматическое обновление.

Установка программного обеспечения (рис. 3.10):

```
[root@10 ~]# dnf install dnf-automatic
```

Рис. 3.10: Установка программного обеспечения для удобства

Запускаем таймер (рис. 3.11):

```
[root@10 ~]# systemetl emable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer - /usr/lib/systemd/system/dnf-automatic.timer.
```

Рис. 3.11: Запускаем таймер

Открываем файл /etc/selinux/config с помощью nano (рис. 3.12):

Рис. 3.12: Открываем файл /etc/selinux/config

В файле /etc/selinux/config замените значение

SELINUX=enforcing

на значение

SELINUX=permissive (рис. 3.13):

Рис. 3.13: Замена значения

Перезапускаем виртуальную машину с помощью команды reboot (рис. 3.14):

Рис. 3.14: Перезапускаем виртуальную машину

Запускаем терминальный мультиплексор tmux (рис. 3.15):

Рис. 3.15: Запускаем терминальный мультиплексор

Установливаем средства разработки (рис. 3.16):

```
almos85@10;~$ sudo -1
[sudo] пароль для almos85:
root@10:~# dnf -y group install "Development Tools"
```

Рис. 3.16: Установка средств разработки

Установливаем пакет DKMS (рис. 3.17):

Рис. 3.17: Установка пакет DKMS

В меню виртуальной машины подключаем образ диска дополнений гостевой ОС. (рис. 3.18):

Рис. 3.18: Подключение образа диска дополнений гостевой ОС

Подмонтируйте диск (рис. 3.19):

```
root@10:~# mount /dev/sr0 /media
```

Рис. 3.19: Подмонтируйте диск

Устанавливаем драйвера (рис. 3.20):

Рис. 3.20: Устанавливаем драйвера

Перегрузите виртуальную машину:

reboot

Запускаем терминальный мультиплексор tmux:

tmux

Создаём конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf и открываем его (рис. 3.21):

```
almos85@10:-$ mkdir ~/.config/sway/config.d
almos85@10:-$ touch ~/.config/sway/config.d/95-system-keyboard-config.co
nf
almos85@10:-$ mane ~/.config/sway/config.d/95-system-keyboard-config.con
f
```

Рис. 3.21: Открываем конфигурационный файл

Редактируем конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf (рис. 3.22):

```
foot
.../alnos05/.config/sway/config.d/95-system-keyboard-config.conf Изменён
exec_always /usr/libexec/sway-systemd/localel-xkb-config --oneshot
```

Рис. 3.22: Редактируем конфигурационный файл

Открываем файл /etc/X11/xorg.conf.d/00-keyboard.conf (рис. 3.23):

```
root@10:-# mano /etc/X11/xorg.conf.d/00-keyboard.conf
```

Рис. 3.23: Открываем файл /etc/X11/xorg.conf.d/00-keyboard.conf

Редактируем конфигурационный файл /etc/X11/xorg.conf.d/00-keyboard.conf (рис. 3.24):

Рис. 3.24: Редактируем файл /etc/X11/xorg.conf.d/00-keyboard.conf

Устанавливаем имя хоста (рис. 3.25):

```
almos85010:-$ sudo -1
[sudo] пароль для almos@5:
root@10:~# hostnamectl set-hostname almos@5
root@10:-# hostnamectl
    Static hostname: almos05
          Icon name: computer-vm
            Chassis: vm 📾
         Machine ID: 8e1a6b897b434c17b16a75d66e393514
            Boot ID: 186c85de41d64d78b4784862837ed4b5
     Virtualization: oracle
   Operating System: Fedora Linux 39 (Sway)
        CPE OS Name: cpe:/o:fedoraproject:fedora:39
     OS Support End: Tue 2024-11-12
OS Support Remaining: Bmonth 2w
             Kernel: Linux 6.7.5-200.fc39.x86_64
       Architecture: x86-64
    Mardware Vendor: innotek GmbH
     Hardware Model: VirtualBox
   Firmware Version: VirtualBox
      Firmware Date: Fri 2006-12-01
       Firmware Age: 17y 2month 3w 6d
root@10:-#
```

Рис. 3.25: Устанавливаем имя хоста

Создаем в хостовой системе на диске C: папку work (рис. 3.26):

Рис. 3.26: Создаем папку work

Подключаем разделяемую папку (рис. 3.27):

Рис. 3.27: Подключаем разделяемую папку

Перезагружаем виртуальную машину.

Установливаем программное обеспечение для создания документации. Запускаем терминальный мультиплексор tmux (рис. 3.28):

Рис. 3.28: Запуск tmux

Переключаемся на роль супер-пользователя, устанавливаем с помощью менеджера пакетов - средство pandoc для работы с языком разметки Markdown (рис. 3.29):

```
root@almos05:~# dnf -y install pandoc
Последняя проверка окончания срока действия метаданных:
т 27 фев 2024 20:53:30.
Зависимости разрешены.
```

Рис. 3.29: Установка pandoc

Версия 3.16.0а нам подходит (пакет уст. pandoc-crossref) (рис. 3.30):

Рис. 3.30: Выбор версии

Проверяем загрузки (рис. 3.31):

```
[almos05@almos05 Загрузки]$ 1s
pandoc-crossref-Linux.tax.xz
```

Рис. 3.31: Проверяем загрузки

Распаковываем архив и перемещаем файл в /usr/local/bin (рис. 3.32):

```
[almos85@almos85 Загрузки]$ tar -xvf pandoc-crossref-Linux.tar.xz
pandoc-crossref
pandoc-crossref.1
[almos85@almos85 Загрузки]$ ls
pandoc-crossref pandoc-crossref.1 pandoc-crossref-Linux.tar.xz
[almos85@almos85 Загрузки]$ mv pandoc-crossref /usr/local/bin
nv: невозможно создать обычный файл '/usr/local/bin/pandoc-crossref': От
казано в доступе
[almos85@almos85 Загрузки]$ sudo nv pandoc-crossref /usr/local/bin
[sudo] пароль для almos85:
```

Рис. 3.32: Распаковываем и перемещаем

Установим дистрибутив TeXlive (рис. 3.33):

[root@almos05 ~]# dnf -y install texlive-scheme-full

Рис. 3.33: Подключаем разделяемую папку

4 Домашнее задание

Версия ядра Linux (рис. 4.1):

```
[1]+ Остановлен dmesg | less

[root@almos05 ~] W dmesg | grep -i "Linux version

...

[ 0.000000] Linux version 6]7.5-200.fc39.x86_

64 (mockbuild@573e1365bd134026ad8ec26beb31ee89)

(gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), G

NU 1d version 2.40-14.fc39) #1 SMP PREEMPT_DYNAM

IC Sat Feb 17 17:20:08 UTC 2024

[root@almos05 ~]#
```

Рис. 4.1: Linux version

Частота процессора (рис. 4.2):

```
[root@almos05 ~]# dnesg | grep -1 "Mhz processor"

[ 0.000015] tsc: Detected 2495.996 MHz processor

sox
[root@almos05 ~]# dnesg | grep -i "Detected Mhz
processor"
```

Рис. 4.2: Detected Mhz processor

Модель процессора (рис. 4.3):

```
[root@almos05 ~]# dmesg | grep -i "CPU0"

[ 0.411242] smpboot: CPU0: 11th Gen Intel(R)

Core(TM) 15-1155G7 0 2.50GHz (family: 0x6, model

: 0x8c, stepping: 0x2)
```

Рис. 4.3: СРU0

Объём доступной оперативной памяти (рис. 4.4):

```
[root@almos05 ~]# dmesg | grep -i "available"
    0.009974] On node 0, zone DMA: 1 pages in u
     lable ranges
     0.009997] On node 0, zone DMA: 97 pages in
unavailable ranges
    0.145433] On node 0, zone Normal: 16 pages
in unavailable ranges
     0.145488] On node 0, zone Normal: 6912 page
s in unavailable ranges
    0.145951] [mem 0xe00000000-0xfebfffff] avail
  le for PCI devices
    0.155872] Booted with the nomodeset paramet
er. Only the system framebuffer will be avail
     0.260077] Memory: 4831704K/5083704K availab
  (20480K kernel code, 3276K rwdata, 14748K rod
ata, 4588K init, 4892K bss, 251740K reserved, 0K
cna-reserved)
[root@almos05 ~]#
```

Рис. 4.4: Memory available

Тип обнаруженного гипервизора (рис. 4.4):

```
[root@almos05 ~]# dmesg | grep -i "Hypervisor de tected"
[ 0.000000] Hypervisor detected: KVM
[root@almos05 ~]# [
```

Рис. 4.5: Hypervisor detected

Тип файловой системы корневого раздела (рис. 4.6):

```
[root@almos05 ~]# dmesg | grep -i "filesystem"
[ 3.462909] BTRFS info (device sda3): first mount of filesystem 7979326f-2378-4a18-8228-88665 94c4de2
[ 7.225335] EXT4-fs (sda2): mounted filesystem 52c34b9c-e9fd-4c92-a208-a38a8fc5d3b5 r/w with ordered data mode. Quota mode: mone.
[root@almos05 ~]# dmesg | grep -1 "]
```

Рис. 4.6: Тип файловой системы корневого раздела

5 Контрольные вопросы

Учётная запись пользователя включает в себя следующую информацию:

Для получения справки по команде: Вы можете использовать команду man, например: man useradd.

Для перемещения по файловой системе: Для перемещения по файловой системе используется команда cd. Например, для перехода в домашний каталог пользователя: cd ~.

Для просмотра содержимого каталога: Для просмотра содержимого каталога используется команда ls. Например: ls -l.

Для определения объёма каталога: Для определения объёма каталога можно использовать команду du. Haпример: du -sh /path/to/directory.

Для создания / удаления каталогов / файлов:

Для создания каталога используется команда mkdir. Например: mkdir new_directory. Для удаления каталога используется команда rm -r. Например: rm -r old_directory. Для создания файла используется команда touch. Например: touch new_file.txt. Для удаления файла используется команда rm. Например: rm old_file.txt. Для задания определённых прав на файл / каталог: Для задания прав на файл или каталог используется команда chmod. Например: chmod 755 file.txt.

Для просмотра истории команд: Для просмотра истории команд используется команда history. Haпример: history | less.

Файловая система - это способ организации данных на носителе. Примеры файловых систем включают ext4, NTFS, FAT32 и другие. Они имеют разные ха-

рактеристики и поддерживают различные функции.

Для просмотра подмонтированных файловых систем в ОС, вы можете использовать команду df -Th.

Для удаления зависшего процесса в Linux можно использовать команду kill. Найдите PID (идентификатор процесса) зависшего процесса с помощью команды ps aux | grep и используйте команду kill -9, чтобы принудительно завершить процесс.

6 Выводы

В ходе работы мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

1. Kulyabov. Архитектура компьютеров и операционные системы. Раздел "Операционные системы" (09.03.03, НПИбд).