11. TWIERDZENIA RAMSEYA - WERSJA NIESKOŃCZONA

Twierdzenia Ramseya mają wersję skończoną i nieskończoną. Wersja nieskończona jest nieco łatwiejsza do wysłowienia i udowodnienia — od takiej wersji zaczniemy. W odróżnieniu od poprzednich zagadnień będziemy rozważać nieskończone zbiory, najczęściej zbiory przeliczalne (równoliczne z \mathbb{N}). Dla zbioru X i liczby naturalnej k wprowadzimy oznaczenie

$$[X]^k = \{A : A \subseteq X, |A| = k\}.$$

Na przykład symbol $[\mathbb{N}]^2$ oznacza rodzinę wszystkich dwu
elementowych podzbiorów zbioru liczb naturalnych.

Twierdzenia typu Ramseya dotyczą funkcji χ określonej na $[X]^k$ i przyjmującej skoczenie wiele wartości. Taką funkcję nazywamy plastycznie kolorowaniem; jeśli na przykład $\chi: [X]^k \to \{c_1, \ldots, c_r\}$ to wygodnie jest myśleć, że każdy k-elementowy podzbiór zbioru X został pokolorowany jednym z r kolorów. W takiej sytuacji, zbiór $A \subseteq X$ nazywamy **jednorodnym** jeżeli funkcja χ przyjmuje stałą wartość na $[A]^k$. Innymi słowy, zbiór jednorodny ma wszystkie k-elementowe podzbiory tego samego koloru.

Najprostsze nieskończone twierdzenie Ramseya brzmi następująco (wysłowimy je na dwa sposoby, aby poćwiczyć żargon).

Twierdzenie 11.1. Dla każdej funkcji $\chi : [\mathbb{N}]^2 \to \{0,1\}$ istnieje nieskończony zbiór $A \subseteq \mathbb{N}$ jednorodny.

Jeżeli pokolorujemy wszystkie dwuelementowe podzbiory $\mathbb N$ na biało lub czerwono, to istnieje nieskończony zbiór $A\subseteq \mathbb N$, którego wszystkie dwuelementowe podzbiory są tego samego koloru.

Dowód. Niech $x_1 = 1$ i $A_0 = \mathbb{N}$; dla $y > x_1$ para $\{x_1, y\}$ jest albo czerwona, albo biała. Dlatego istnieje nieskończony zbiór $A_1 \subseteq \mathbb{N} \setminus \{x_1\}$ i kolor $c_1 \in \{\text{czerwony, biały}\}$, taki że $\{x_1, y\}$ jest koloru c_1 dla wszystkich $y \in A_1$.

Drugi krok wygląda podobnie: niech x_2 będzie najmniejszym elementem A_1 . Rozważając kolory dubletonów $\{x_2, y\}$ dla $y \in A_1 \setminus \{x_2\}$, znajdziemy nieskończony $A_2 \subseteq A_1 \setminus \{x_2\}$ i kolor c_2 , takie że $\{x_2, y\}$ jest koloru c_2 dla $y \in A_2$.

W ten sposób definiujemy rosnący ciąg $x_1 < x_2 < \ldots$, ciąg nieskończonych zbiorów $\mathbb{N} = A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ i ciąg kolorów c_1, c_2, \ldots , tak że x_n jest najmniejszym elementem A_{n-1} oraz dla $y \in A_n$, dubleton $\{x_n, y\}$ jest koloru c_n .

No, ale kolory były tylko dwa: albo c_n jest biały dla nieskonczenie wielu n, albo jest czerwony dla nieskończenie wielu n. Powiedzmy, że nieskończony jest zbiór $W = \{n : c_n = \text{biały}\}$. Wtedy zbiór $A = \{x_n : n \in W\}$ ma wszystkie swoje dwuelementowe podzbiory białe.

Uwaga 11.2. Twierdzenie 11.1 (jak i pozostałe wersje twierdzenia Ramseya) pozostają prawdziwe jeżeli zbiór $\mathbb N$ zastąpić jakimkolwiek zbiorem X równolicznym z $\mathbb N$. Jeżeli $g:X\to\mathbb N$ jest bijekcją to kolorowanie $[X]^2$ definiuje kolorowanie $[\mathbb N]^2$ w oczywisty sposób itd.

Dla danego zbioru X oznaczmy przez K_X pełny graf o wierzchołkach z X, taki że każde dwa różne elementy X połączone są krawędzią. Zauważmy, że zbiór $[\mathbb{N}]^2$ to zbiór krawędzi grafu pełnego $K_{\mathbb{N}}$. W ten sposób mamy jeszcze jedno plastyczne sformułowanie 11.1:

Jeżeli krawędzie grafu $K_{\mathbb{N}}$ pokolorujemy kolorem białym i czerwonym to istnieje nieskończony zbiór $A \subseteq \mathbb{N}$, taki że graf K_A jest 'biały' (ma wszystkie krawędzie białe) lub istnieje nieskończony A, taki że graf K_A jest 'czerwony'.

Przykład 11.3. Prosty przykład zastosowania poznanego twierdzenia: każdy nieskończony ciąg różnych liczb rzeczywistych x_n zawiera podciąg rosnący lub zawiera podciąg malejący. Istotnie: nadajmy kolor biały dubletonowi $\{k, n\}$, gdzie k < n, jeżeli $x_k < x_n$; w przeciwnym razie powiedzmy, że taki dubleton jest czarny. Stosujemy Twierdzenie 11.1 i już.

Poniżej pierwsze uogólnienie twierdzenia Ramseya.

Twierdzenie 11.4. Dla każdej funkcji $\chi : [\mathbb{N}]^k \to \{0,1\}$ istnieje nieskończony zbiór jednorodny $A \subseteq \mathbb{N}$, czyli taki, że funkcja χ przyjmuje stałą wartość na $[A]^k$.

Dowód. Przeprowadzimy dowód przez indukcję po k. Dla k=1 fakt jest oczywisty, dla k=2 bylo to Twierdzenie 11.1. Krok indukcyjny naśladuje dowód tego ostatniego (mamy wprawę więc pójdzie szybciej).

Rozważmy kolorowanie $\chi: [\mathbb{N}]^{k+1} \to \{0,1\}$. Definiujemy

- (i) ciąg liczb naturalnych $1 = x_1 < x_2 < \dots$;
- (ii) ciąg nieskończonych zbiorów $\mathbb{N} = A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$;
- (iii) ciąg $c_n \in \{0, 1\};$

tak że

$$x_n = \min A_{n-1} \text{ oraz } \chi(\lbrace x_n \rbrace \cup I) = c_n \text{ dla } I \in [A_n]^k.$$

Krok indukcyjny konstrukcji przeprowadzamy na mocy założenia, że nasze twierdzenie jest prawdziwe dla kolorowań zbiorów k-elementowych. Zauważmy, że wzór $\chi'(I) = \chi(\{x_n\} \cup I)$ koloruje k-elementowe podzbiory zbioru $A_{n-1} \setminus \{x_n\}$.

Wybieramy nieskończony zbiór B, taki że c_n przyjmuje stałą wartość $\varepsilon \in \{0, 1\}$ i stwierdzamy, że wszystkie (k+1)-elementowe podzbiory zbioru $\{x_n : n \in B\}$ są koloru ε .

Uogólnienie twierdzenia Ramseya na większą ilość kolorów jest już proste.

Twierdzenie 11.5. Dla każdej funkcji $\chi : [\mathbb{N}]^k \to \{0, 1, \dots, r-1\}$ istnieje nieskończony zbiór jednorodny $A \subseteq \mathbb{N}$.

Dowód. Tym razem zastosujemy indukcję po ilości kolorów r. Dla r=2 to jest 11.4. Załóżmy, że teza zachodzi dla r kolorów i rozważmy r+1 kolorów $\{0,1,\ldots,r\}$ (to jest urok liczenia od 0).

Robimy melanż z koloru 0 i koloru 1. Formalnie, rozważamy funkcję

$$\overline{\chi}: [\mathbb{N}]^k \to \{m, 2, \dots, r\},\$$

gdzie m jest mieszanką kolorów 0 i 1. Z założenia indukcyjnego istnieje nieskończony $A \subseteq \mathbb{N}$, taki że $\overline{\chi}$ jest funkcją stałą na $[A]^k$. Jeżeli ten staly kolor ma numer większy od 1 to twierdzenie jest udowodnione; jeżeli wyszedł melanż jako kolor stały to stosujemy Twierdzenie 11.4 do kolorowania $[A]^k \to \{0,1\}$ i to daje tezę.

12. Interludium: Lemat Königa

Rozważmy zbiór częściowo uporządkowany $(P \preceq)$; tutaj P jest skończony lub nieskończony.

Definicja 12.1. Powiedzmy, że $(P \leq)$ jest drzewem jeżeli

- (i) P ma element najmniejszy $r \in P$ (zwany korzeniem);
- (ii) dla każdego $x \in P$, zbiór $\{y \in P : y \leq x\}$ jest skończony i liniowo uporządkowany.

Tutaj używamy terminu drzewo w nieco inny, sensie niż drzewa w grafach¹. Przykładem drzewa jest pełne drzewo binarne — zbiór P wszystkich skończonych ciągów $\tau = (\tau_1, \tau_2, \ldots, \tau_n)$, gdzie $\tau_i \in \{0, 1\}$; Dla dwóch takich ciągów τ, τ' długości n i n' definiujemy $\tau \leq \tau'$ jeżeli $n \leq n'$ i $\tau'_k = \tau_k$ dla $k \leq n$.

Przypomnijmy, że pozbiór C zbioru częściowo uporządkowanego $(P \leq)$ jest łańcuchem jeżeli C jest liniowo uporządkowany przez relację \leq . Nazwiązując do dendrologii, łańcuch w drzewie bywa nazywany galęzią.

Element x' nazwiemy następnikiem x jeżeli $x \prec x'$ i nie stnieje y spełniający $x \prec y \prec x'$.

Twierdzenie 12.2 (Lemat Königa). *Jeżeli* (P, \preceq) *jest nieskończonym drzewem, w którym każdy* $x \in P$ *ma skończenie wiele następników, to* P *zawiera nieskończoną gałąź.*

Dowód. Dla dowolnego $x \in P$ oznaczmy $P(x) = \{y \in P : x \leq y\}.$

Mamy P(r) = P dla korzenia r; niech a_1, \ldots, a_m będzie zbiorem następników r. Wtedy $P \setminus \{r\} = P(a_1) \cup \ldots P(a_m)$ i dlatego istnieje $x_1 \in \{a_1, \ldots, a_m\}$, taki że $P(x_1)$ jest nieskończony.

Analogicznie definiujemy ciąg $r = x_0 \prec x_1 \prec \ldots$, taki że zbiór $P(x_n)$ jest nieskończony. W n-tym kroku powtarzamy powyższe rozumowanie dla następników x_n . W ten sposób konstrukcja definiuje nieskończoną gałąź.

13. SKOŃCZONE TWIERDZENIA RAMSEYA

W poniższym twierdzeniu nieskończoność z Twierdzenia 11.5 zostaje zastąpiona dużą liczbą naturalną N. Dowód wersji skończonej można przeprowadzić, analizując poprzednie dowody. Poniżej posłużymy się jednak Lematem Königa.

Twierdzenie 13.1. Ustalmy $k, r \in \mathbb{N}$ Dla każdej liczby naturalnej n istnieje liczba naturalna N, taka że dla dowolnego kolorowania $[\{1, 2, ..., N\}]^k$ za pomocą r kolorów istnie zbiór jednorodny mocy n.

 $^{^1}$ zauważmy wszakże, że jeżeli drzewo rozpinające w grafie złapiemy za liść, tak aby zwisło, a następnie obrócimy do hóry nogami to powstanie ilustracja drzewa jako częściowego porządku

Dowód. Ustalmy n (moc szukanego zbioru jednorodnego), k (tej mocy podzbory kolorujemy) i r (liczbę kolorów). Przypuśćmy, że nie istnieje liczba N spełniająca tezę.

Rozważmy wszystkie złe kolorowania odcinków początkowych postaci $\{1, 2, ..., N\}$; 'złe', czyli takie, które nie dopuszczają jednorodnego zbioru mocy n. Dla kolorowań χ, χ' odcinków $\{1, 2, ..., N\}$ i $\{1, 2, ..., N'\}$ (odpowiednio) powiemy, że $\chi \leq \chi'$ jeżeli $N \leq N'$ oraz $\chi'(I) = \chi(I)$ dla $I \in [\{1, 2, ..., N\}]^k$.

Zauważmy, że jeżeli $\chi \leq \chi'$ i χ' jest złym kolorowaniem to χ też jest złe. Dla kolorowania χ zbioru $\{1, 2, ..., N\}$ istnieje skończenie wiele χ' kolorujących $\{1, 2, ..., N+1\}$, takich że $\chi \prec \chi'$.

Drzewo wszystkich złych kolorowań jest nieskończone i na mocy Lematu Königa posiada nieskończoną gałąź $\chi_1 \prec \chi_2 \prec \ldots$ gdzie χ_i koloruje $[\{1, 2, \ldots, N_i]^k\}$. Możemy teraz zdefiniować kolorowanie χ całego zbioru $[\mathbb{N}]^k$, jako wspólne rozszerzenie kolorowań χ_i :

$$\chi(I) = \chi_i(I) \text{ dla } I \in [\{1, 2, \dots, N_i\}]^k.$$

Z Twierdzenia 11.5 istnieje nieskończony $A \subseteq \mathbb{N}$ jednorodny względem c. Biorąc pierwsze n elementów zbioru A otrzymujemy sprzeczność.

Powyższy dowód w języku topologii jest związany ściśle z pojęciem zwartości (z ciągu złych kolorowań wybieramy podciąg zbieżny). Dowód jest oczywiście bardzo nieefektywny, nie mówi nic, jak duża musi być pierwsza taka liczba N, dla której teza jest spełniona. W istocie, jak wyjaśnimy poniżej, znalezienie konkretnych wartości liczb Ramseya bywa bardzo trudne.

Dla ilustracji przedstawimy pewne geometryczne zastosowanie twierdzenia Ramseya pochodzące od Erdősa i Szekesa. O punktach na płaszczyźnie mówimy, że są w położeniu ogólnym, jeżeli żadne trzy punkty nie są współliniowe. Powiedzmy, że skończony zbiór punktów A jest w **położeniu wypukłym** jeżeli dla każdego $x \in A$, x nie należy do wielokąta wyznaczonego przez $A \setminus \{x\}$ (mówiąć ściśle, x nie należy do otoczki wypukłej zbioru $A \setminus \{x\}$).

Każde trzy punkty w położeniu ogólnym znjadują się w położeniu wypukłym; cztery punkty w położeniu ogólnym nie musza się znajdować w położeniu wypukłym. Zauważmy jednak następujący fakt — to proste ćwiczenie z geometrii.

Lemat 13.2. Dla danych 5 punktów w położeniu ogólnym, 4 spośród nich znajdują sie w położeniu wypukłym.

Okazuje się, że trzeba mieć dane 9 punków w położeniu ogólnym, aby zawsze można było wybrać 5 wierzchołków pięciokata wypukłego.

Twierdzenie 13.3. Dla każdego n istnieje liczba w(n), taka że z każdego układu w(n) punktów w położeniu ogólnym można wybrać n punktów w położeniy wypukłym (czyli wierzchołki wypukłego n-kąta).

Dowód. Kluczowa jest następująca uwaga.

TEZA. Niech A będzie skończonym zbiorem punktów na płaszczyźnie w położeniu ogólnym. Jeżeli każdy zbiór $B \in [A]^4$ jest w położeniu wypukłym to cały zbiór A jest w położeniu wypukłym.

Istotnie, przypuśćmy, że $x \in A$ znajduje się w wielokącie wyznaczonym przez pozostałe punkty. Każdy wielokąt można podzielić na trójkąty i x musi należeć do pewnego trójkąta o wierzchołkach z $A \setminus \{x\}$; to daje cztery punkty nie znajdujące się w położeniu wypukłym.

Sprawdzimy teraz, że szukana tu liczba w(n) jest liczbą Ramseya N dla kolorowań $[\{1,2,\ldots,N\}]^4$ dwoma kolorami. Dla danego zbioru A złożonego z N punktów płaszczyzny w położeniu ogólnym kolorujemy elementy $[A]^4$ na biało jeżeli dana czwórka jest w położeniu wypukłym; kolorujemy na czarno w przeciwnym razie. Stosujemy Twierdzenie 13.1 i wystarczy teraz przypomnieć, że na mocy Lematu 13.2 nie istnieje pięcioelementowy zbiór, w którm wszystkie czwórki są czarne.

Jak już wspomnieliśmy w(5) = 9, ale sprawdzenie tego jest nieco żmudne; WIKIPEDIA twierdzi, że w(6) = 17 natomiasr wartość w(7) nie jest znana.

Przyjrzymy się na koniec liczbom Ramseya związanym kolorowaniem dubletonów na dwa kolory, czyli kolorowaniem krawędzi grafów na dwa kolory.

Definicja 13.4. Piszemy R(s,t) = N gdy N jest najmniejszą liczbą, taką że przy dowolnym kolorowaniu krawędzi grafu K_N istnieje pełny podgraf K_s pierwszego koloru lub pełny podgraf K_t koloru drugiego.

Zauważmy, że R(s,t)=R(t,s), jako że kolory można zamienić miejscami. Jak zobaczymy poniżej, liczby R(s,t) nietrudno oszacować z góry.²

Lemat 13.5. Dla dowolnych $s, t \ge 2$ zachodzi zależność $R(s, t) \le R(s - 1, t) + R(s, t - 1)$.

Dowód. Niech N = R(s-1,t) + R(s,t-1). Aby pokazać, że $R(s,t) \leq N$ sprawdzimy, że przy dowolnym kolorowaniu krawędzi grafu K_N na biało i czarno istnieje biały podgraf R_s lub czarny R_t . Ustalmy wierzchołek v w grafie K_N ; rozpatrzymy dwa przypadki.

Przypadek I. Z v wychodzi co najmniej R(s-1,t) krawędzi białych.

Jeżeli w zbiorze A połączonych z v białą krawędzią istnieje $B \subseteq A$ taki że |B| = s - 1 i graf K_B jest biały to graf $K_{B \cup \{v\}}$ też jest białym grafem na s wierzchołkach. W przeciwnym razie, z definicji liczby R(s-1,t) wynika że A zawiera zbiór B mocy t, taki że R_B jest czarny.

Przypadek II. Z v wychodzi co najwyżej R(s-1,t)-1 krawędzi białych. Ponieważ wszystkich krawędzi wychodzących z v jest N-1, oznacza to, że co najmniej R(s,t-1) tych krawędzi jest czarnych; argument jest więc symetryczny.

Twierdzenie 13.6. Dla dowolnych $s,t\geqslant 2$ zachodzi nierówność

$$R(s,t) \leqslant {s+t-2 \choose s-1}.$$

 $Dow \acute{o}d.$ Dow
ód wynika z Lematu 13.5 przez indukcję pos+t, po zastosowaniu własności symbolu Newtona:

$$R(s,t) \le R(s-1,t) + R(s,t-1) \le {s+t-3 \choose s-2} + {s+t-3 \choose s-1} = {s+t-2 \choose s-1}.$$

²poniżej dowody za opracowaniem, którego autorem jest Jacob Fox

Trudniej jest ustalić dokładne wartość R(s,t); poniższe dane cytuję za WIKIPEDIĄ):

Liczba	Wartość	Odkrywca, rok
R(3,3)	6	Greenwood i Gleason, 1955
R(3, 4)	9	Greenwood i Gleason, 1955
R(3, 5)	14	Greenwood i Gleason, 1955
R(4, 4)	18	Greenwood i Gleason, 1955
R(3, 6)	18	Kery, 1964
R(3,7)	23	Kalbfleich, 1966
R(3, 8)	28	Graver i Yachel, 1968
R(3, 9)	36	McKay i Zhang Ke Min, 1992
R(4, 5)	25	McKay i Radziszowski, 1995

Wiadomo, że $43 \leqslant R(5,5) \leqslant 49$. Dlaczego ustalenie dokładnej wartości jest trudne? Pełny graf K_{43} ma $\binom{43}{2} = 21 \cdot 43$ krawędzi i dlatego, jeśli nie mamy lepszego pomysłu, trzeba przejrzeć $2^{21\cdot 43}$ kolorowań, a to jest liczba, przy której 'liczby astronomiczne' sa znikomo małe.