Dados Intransitivos

Joao V. A. Pimenta & Joao P. C. de Paula & Lael V. Lima & Luis G. C. Bueno

Guilherme L. F. Silva & Daniel Ungaretti & Tertuliano Franco

Universidade De Sao Paulo

joaovictorpimenta@usp.br

Resumo

Intransitividade em um jogo de dados é um conceito muitas vezes pouco intuitivo. Afinal, se existem dados A, B, C tais que $A \triangleright B$ e $B \triangleright C$, é pouco natural imaginar que seja possível $C \triangleright A$. Fato é, escolhendo devidamente seus dados, esse fenômeno é possível e alguns resultados seguem desde que um bom modelo seja definido. No primeiro momento, exploraremos uma representação dos dados como *palavras* que nos possibilita definir a existência de conjuntos intransitivos para todas configurações de número de dados (m) e faces (n). Em um segundo modelo, no qual as faces dos dados são dadas por uma distribuição uniforme [0, 1], note, sem repetição e por isso, ligado as palavras. Por fim, exploramos um pouco a razão de conjuntos de dados ordenados intransitivos (\mathcal{I}) sobre o conjunto total de dados possível (\mathcal{D}) . Analisando a assintótica em relação a *n* simulamos o modelo e conjecturamos, levados por resultados computacionais e uma análise algébrica que $L=3\log 3$ em $|\mathcal{I}_n| = e^{nL(1+o(1))}$.

Palavras

Construiremos um modelo sem repetição baseado em palavras onde cada letra é associada à um dado. Na tabela representamos *abccabbcaabc*.

 $A\rhd B$ se, na palavra, a contagem dos b's na direita de todos a's for menor que a recíproca. Seja S_m^n uma palavra de m tipos de letras com n repetições, notamos:

Lema 1. Se existe uma palavra $S_{m,n}$ intransitiva, então existe uma palavra $S_{m+1,n}$ que também é intransitiva.

Lema 2. Se existe $S_{m,n}$ intransitiva, então existe uma palavra $S_{m,n+2}$ que também é intransitiva.

Lema 3. Uma palavra $S_{3,2}$ não pode ser intransitiva.

Teorema 4. Para todo $n \geq 3$ e $m \geq 3$ existem palavras intransitivas de característica m e ordem n.

m	2	3	4	5	6	7	• • •
3	X	\checkmark	√	√	√	√	• • •
4	X	√	√	√	√	√	• • •
5	X	\checkmark	√	√	√	√	• • •
6	X	√	√	√	√	√	• • •
7	X	√	√	√	√	√	• • •
•	:	:	:	:	:	:	• • •

É possível mostrar para um modelo enviesado de dados que para todo $m \geq 3$ e $n \geq 4$, existem m dados enviesados de n faces que são intransitivos.

Dados Aleatórios

A e B possuem n faces (A_1, A_2, \ldots, A_n) , variáveis aleatórias i.i.d assumindo valores em [0,1] com distribuição uniforme. O número de vitórias de A sobre B é dado por

$$N_{A>B} = \sum_{i=1}^{n} \sum_{j=1}^{n} \chi_{A_i>B_j}$$

e podemos explorar a probabilidade como a razão relacionado com as triplas de dados com n faces (A_n, B_n, C_n)

$$\mathbb{P}((A_n,B_n,C_n)\in\mathcal{I}_n)=rac{|\mathcal{I}_n|}{|\mathcal{D}_n|},$$

 \mathcal{I}_n é o conjunto de trios ordenados de dados intransitivos e \mathcal{D}_n todos trios ordenados possíveis. Pela expansão de Stirling

$$|\mathcal{D}_n| = rac{(3n)!}{(n!)^3} \sim rac{\sqrt{3}}{2\pi n} 3^{3n}.$$

Proposição 5. Se $r\in\mathcal{I}_n$ e $s\in\mathcal{I}_m$, então a concatenação $rs\in\mathcal{I}_{n+m}$

Corolário 6. Sejam m e n inteiros positivos, então $|\mathcal{I}_{(m+n)}| \geq |\mathcal{I}_m||\mathcal{I}_n|$

Teorema 7. $|\mathcal{I}_n| = e^{nL(1+o(1))}$. para alguma constante $L \in (2.5, 3\log 3]$

Prova. Por ser subaditivo, pelo lema de Fekete, existe $m{L}$ tal que

$$\lim_{n o\infty}rac{\log|\mathcal{I}_n|}{n}=\sup_nrac{\log|\mathcal{I}_n|}{n}=L. \ \Longrightarrow |\mathcal{I}_n|=\mathrm{e}^{\,nL(1+o(1))}$$

Podemos afirmar pelos resultados computacionais

$$L \geq rac{\log |\mathcal{I}_{11}|}{11} pprox 2.5.$$

E, como $|\mathcal{I}_n| \leq |\mathcal{D}_n|$,

$$L = \lim_{n o \infty} rac{\log |\mathcal{I}_n|}{n} \leq \lim_{n o \infty} rac{\log |\mathcal{D}_n|}{n} = 3 \log 3.$$

Validando para o espaço já conhecido de palavras podemos escolher os parâmetros de uma busca aleatória. Tomamos a média de **100** experimentos para cada ponto.

Estenderemos nossa busca realizando 10^2 experimentos para $5 \cdot 10^5$ amostras. Sabemos que nosso erro é da ordem de $\pm 5 \cdot 10^{-5}$.

Até o momento, com $n=1000, 3\log 3-0.01 \le L \le 3\log 3$. Conjectura $8.L=3\log 3$.

Conclusão

Dados Intransitivos instigam a intuição e fornecem uma plataforma interessante de desenvolvimento matemático. Neste trabalho, demonstrou-se para os modelos considerados a existência de conjuntos de dados intransitivos para todas configurações para os modelos. A discussão da razão para o limite de número de faces culminou em uma exploração numérica e algébrica que culmina na Conjectura 8. Também mostramos posteriormente que $|\mathcal{I}_n|/|\mathcal{D}_n| \to 0$, e provamos Teorema do Limite Central para $N_{a>b}$

Referências

- [1] D. H. J. Polymath. The probability that a random triple of dice is transitive, 2022. arXiv:2211.16156.
- [2] Calyampudi Radhakrishna Rao. *Linear Statistical Inference and its Applications*. John Wiley & Sons, Inc, 2 edition, 1973.

Agradecimentos

Pesquisa desenvolvida com utilização dos recursos computacionais do Centro de Ciências Matemáticas Aplicadas à Indústria (CeMEAI) financiados pela FAPESP.