

NBIS Omics Integration and Systems Biology workshop Oct 2024, Lund University

Rasool Saghaleyni

National Bioinformatics Infrastructure Sweden (NBIS) Science for Life Laboratory (SciLifeLab) Chalmers University of Technology rasool.saghaleyni@scilifelab.se

Metabolism provides the energy and building blocks necessary to sustain life.

~20,000 genes

(protein-coding)

>100,000 metabolites

We can generally measure metabolite concentrations

...but what is often important is the flow or **flux** of metabolites through the reactions.

Assume that we want to know the production rate of **B**, but can only measure the concentration of **A**

$$\frac{dA}{dt} = -v_1$$

$$\frac{dB}{dt} = v_1$$

The Stoichiometric Matrix

Reactions

		r1
es	G6P	-1
bolit	F6P	1
	FBP	0
eta	DHAP	0
\geq	G3P	0

The Stoichiometric Matrix

Reactions **r**2 G6P F6P

FBP DHAP

G₃P

The Stoichiometric Matrix

Genome-scale model (GEM)

Chemical formula Charge InChI code **Other external IDs**

Other IDs

Name

KEGG ID	Compartment	Name	Symbol	r1	r2	r3	r4	r5	Symbol
C00668	cytosol [c]	glucose 6-phosphate	G6P	-1	0	0	0	0	
C00085	cytosol [c]	fructose 6-phosphate	F6P	1	-1	1	0	0	
C00354	cytosol [c]	fructose-1,6-bisphosphate	FBP	0	1 -	-1	-1	0	
C00111	cytosol [c]	dihydroxyacetone phosphate	DHAP	0	0	0	1	-1	
C00118	cytosol [c]	glyceraldehyde 3-phosphate	G3P	0	0	0	1	1	

Genome-scale model (GEM)

GPI

P06744

GO Terms
Orthologs

P09467, O00757

`

ALDOA, ALDOB, ALDOC

P04075, P05062, P09972

Proteins (UniProt ID)

TPI1

P60174

Symbol

G6P -1 0 0 0 0

F6P 1 -1 1 0 0

FBP 0 1 -1 -1 0

DHAP 0 0 0 1 -

G3P 0 0 0 1 1

Reactions are linked to genes that encode the enzymes that catalyze the reaction.

These associations are often called "gene-protein rules" (GPR rules)

GPR Rules

GPR Rules enable more accurate simulation of gene inactivation/knock-out

Knockout	Effect					
E1	none					
E2	none					
E1 + E2	rA inactive					
E3a	rB inactive					
E3b	rB inactive					
E3a + E3b	rB inactive					

GEMs as an integrative tool

FBA seeks to calculate the reaction **fluxes** (**v**) of a network

The calculation is based on the conservation of mass: it cannot be created or destroyed

$$\frac{dX}{dt} = v_{produce} - v_{consume}$$

dG6P/dt

dF6P/dt

dFBP/dt

$$\frac{d[G6P]}{dt} = -v_1 + v_{in}$$

$$\frac{d[G3P]}{dt} = v_4 + v_5 - v_{out}$$

A key assumption to FBA is **steady state**: metabolite concentrations are **constant** with respect to time!

$$\frac{dX}{dt} = v_{produce} - v_{consume} = 0$$

This assumption allows us to **ignore enzyme kinetics**, thus eliminating **many** unknown parameters

We can further constrain the solution space by limiting reaction fluxes based on their reversibility:

Since the problem is still **under-defined**, FBA uses linear **optimization** to identify a solution that maximizes (or minimizes) some **objective**

Exercise: COBRApy

COBRApy (COnstraint-Based Reconstruction and Analysis) is a package that facilitates the use of GEMs in python

The exercise will walk through the basics of GEM structure, functionality, flux balance analysis, and gene knockouts.

