Rhenium

From Wikipedia, the free encyclopedia

Rhenium is a chemical element with symbol **Re** and atomic number 75. It is a silvery-white, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. The free element has the third-highest melting point and highest boiling point of any element at 5873 K. Rhenium resembles manganese and technetium chemically and is mainly obtained as a by-product of the extraction and refinement of molybdenum and copper ores. Rhenium shows in its compounds a wide variety of oxidation states ranging from -1 to +7.

Discovered in 1925, rhenium was the last stable element to be discovered. It was named after the river Rhine in Europe.

Nickel-based superalloys of rhenium are used in the combustion chambers, turbine blades, and exhaust nozzles of jet engines. These alloys contain up to 6% rhenium, making jet engine construction the largest single use for the element, with the chemical industry's catalytic uses being next-most important. Because of the low availability relative to demand, rhenium is expensive, with an average price of approximately US\$2,750 per kilogram (US\$85.53 per troy ounce) as of April 2015; it is also of critical strategic military importance, for its use in high performance military jet and rocket engines.^[3]

Characteristics

Rhenium is a silvery-white metal with one of the highest melting points of all elements, exceeded by only tungsten and carbon. It also has one of the highest boiling point of all elements. It is also one of the densest, exceeded only by platinum, iridium and osmium. Rhenium has a hexagonal close-packed crystal structure, with lattice parameters a = 276.1 pm and c = 445.6 pm.^[13]

Its usual commercial form is a powder, but this element can be consolidated by pressing and sintering in a vacuum or hydrogen atmosphere. This procedure yields a compact solid having a density above 90% of the density of the metal.

Rhenium, 75Re

General properties

Name, symbol rhenium, Re
Appearance silvery-grayish

Rhenium in the periodic table

Atomic number (Z) 75

Group, block group 7, d-block

Period period 6

Element category

| transition metal

Standard atomic weight (\pm) (A_r)

 $186.207(1)^{[1]}$

Electron configuration

[Xe] 4f¹⁴ 5d⁵ 6s²

per shell 2, 8, 18, 32, 13, 2

Physical properties

Phase solid

Melting point 3459 K (3186 °C, 5767 °F)

Boiling point 5903 K (5630 °C,

10,170 °F)

Density near r.t. 21.02 g/cm³

When annealed this metal is very ductile and can be bent, coiled, or rolled. Rhenium-molybdenum alloys are superconductive at 10 K; tungsten-rhenium alloys are also superconductive at 1.697 \pm 0.006 K. Abenium metal superconducts at 1.697 \pm 0.006 K.

In bulk form and at room temperature and atmospheric pressure, the element resists alkalis, sulfuric acid, hydrochloric acid, dilute (but not concentrated) nitric acid, and aqua regia.

Isotopes

Rhenium has one stable isotope, rhenium-185, which nevertheless occurs in minority abundance, a situation found only in two other elements (indium and tellurium). Naturally occurring rhenium is only 37.4% 185 Re, and 62.6% 187 Re, which is unstable but has a very long half-life ($\approx 10^{10}$ years). This lifetime can be greatly affected by the charge state of rhenium atom. [18][19] The beta decay of 187 Re is used for rhenium-osmium dating of ores. The available energy for this beta decay (2.6 keV) is one of the lowest known among all radionuclides. The isotope rhenium-186m is notable as being one of the longest lived metastable isotopes with a half-life of around 200,000 years. There are twenty-five other recognized radioactive isotopes of rhenium. [20]

Compounds

Rhenium compounds are known for all the oxidation states between -3 and +7 except -2. The oxidation states +7, +6, +4, and +2 are the most common.^[21] Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds.^[22]

Halides and oxyhalides

when liquid, at m.p. 18.9 g/cm³

Heat of fusion 60.43 kJ/mol
Heat of 704 kJ/mol

vaporization

Molar heat 25.48 J/(mol·K) capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	3303	3614	4009	4500	5127	5954

Atomic properties

Oxidation states 7, 6, 5, **4**, 3, 2, 1, 0, -1, -3

(a mildly acidic oxide)

Electronegativity Pauling scale: 1.9

Ionization 1st: 760 kJ/mol energies 2nd: 1260 kJ/mol 3rd: 2510 kJ/mol

(more)

Atomic radius empirical: 137 pm

Covalent radius 151±7 pm

Miscellanea

Crystal structure hexagonal close-packed

(hcp)

Speed of sound 4700 m/s (at 20 °C)

thin rod

Thermal 6.2 μ m/(m·K)

expansion

Thermal $48.0 \text{ W/(m\cdot K)}$

conductivity

Electrical 193 n Ω ·m (at 20 °C)

resistivity

Magnetic ordering paramagnetic^[2]

The most common rhenium chlorides are $ReCl_6$, $ReCl_5$, $ReCl_4$, and $ReCl_3$.^[23] The structures of these compounds often feature extensive Re-Re bonding, which is characteristic of this metal in oxidation states lower than VII. Salts of $[Re_2Cl_8]^{2-}$ feature a quadruple metal-metal bond. Although the highest rhenium chloride features Re(VI), fluorine gives the d^0 Re(VII) derivative rhenium heptafluoride. Bromides and iodides of rhenium are also well known.

Like tungsten and molybdenum, with which it shares chemical similarities, rhenium forms a variety of oxyhalides. The oxychlorides are most common, and include $ReOCl_4$, $ReOCl_3$.

Oxides and sulfides

Perrhenic acid adopts an unconventional structure.

The most common oxide is the volatile colourless Re_2O_7 . Rhenium trioxide ReO_3 adopts a perovskite-like structure. Other oxides include Re_2O_5 , ReO_2 , and Re_2O_3 . The sulfides are ReS_2 and Re_2S_7 . Perrhenate salts can be converted to tetrathioperrhenate by the action of ammonium hydrosulfide. [24]

Other compounds

Rhenium diboride (ReB₂) is a hard compound having the hardness similar to that of tungsten carbide, silicon carbide, titanium diboride or zirconium diboride.^[25]

Organorhenium compounds

Dirhenium decacarbonyl is the most common entry to organorhenium chemistry. Its reduction with sodium amalgam gives $Na[Re(CO)_5]$ with rhenium in the formal oxidation state -1.^[26] Dirhenium decacarbonyl can be oxidised with bromine to bromopentacarbonylrhenium(I):^[27]

$$Re_2(CO)_{10} + Br_2 \rightarrow 2 Re(CO)_5 Br$$

Young	's mod	ulus 463 GPa						
Shear	moduli	us 178 GPa						
Bulk m	nodulus	370 GPa						
Poisso	n ratio	0.30						
Mohs I	hardne	ss 7.0						
Vicker	s hardı	ness 1350-7850 MPa						
Brinell	hardn	ess 1320-2500 MPa						
CAS N	umber	7440-15-5						
History								
Namin	g	after the river Rhine (German: <i>Rhein</i>)						
Discov	ery	Masataka Ogawa (1908)						
First is	solatio	n Masataka Ogawa (1919)						
Named	d by	Walter Noddack, Ida Noddack, Otto Berg (1925)						
Most stable isotopes of rhenium								
iso	NA	half-life DM DE (MeV) DP						
¹⁸⁵ Re	37.4%	is stable with 110 neutrons						
187 _R	62.6%	4 12×10 ¹⁰ v g- 0.0026 1870s						

Reduction of this pentacarbonyl with zinc and acetic acid gives pentacarbonylhydridorhenium: [28]

$$Re(CO)_5Br + Zn + HOAc \rightarrow Re(CO)_5H + ZnBr(OAc)$$

Methylrhenium trioxide ("MTO"), CH₃ReO₃ is a volatile, colourless solid has been used as a catalyst in some laboratory experiments. It can be prepared by many routes, a typical method is the reaction of Re_2O_7 and tetramethyltin:

$$Re_2O_7 + (CH_3)_4Sn \rightarrow CH_3ReO_3 + (CH_3)_3SnOReO_3$$

Analogous alkyl and aryl derivatives are known. MTO catalyses for the oxidations with hydrogen peroxide. Terminal alkynes yield the corresponding acid or ester, internal alkynes yield diketones, and alkenes give epoxides. MTO also catalyses the conversion of aldehydes and diazoalkanes into an alkene. [29]

Nonahydridorhenate

A distinctive derivative of rhenium is nonahydridorhenate, originally thought to be the *rhenide* anion, Re⁻, but actually containing the ReH_0^{2-} anion in which the oxidation state of rhenium is +7.

Occurrence

Molybdenite

Rhenium is one of the rarest elements in Earth's crust with an average concentration of 1 ppb; [23] other sources quote the number of 0.5 ppb making it the 77th most abundant element in Earth's crust. [30] Rhenium is probably not found free in nature (its possible natural occurrence is uncertain), but occurs in amounts up to 0.2%^[23] in the mineral molybdenite (which is primarily

molybdenum disulfide), the major commercial source, although single molybdenite samples with up to 1.88% have been found. [31] Chile has the world's largest rhenium reserves, part of the copper ore deposits, and was the leading producer as of 2005. [32] It was only recently that the first rhenium mineral was found and described (in 1994), a rhenium sulfide mineral (ReS₂)

Structure of

 ReH_0^{2-} .

condensing from a fumarole on Russia's Kudriavy volcano, Iturup island, in the Kuril Islands.[33]

Kudryavy discharges up to 20-60 kg rhenium per year mostly in the form of rhenium disulfide. [34][35] Named rheniite, this rare mineral commands high prices among collectors.[36]

Source

Wikipedia: Rhenium (https://en.wikipedia.org/wiki/Rhenium)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Rhenium&oldid=755651398"