emata

Don't Get Lost in the Random Forests: A Beginner's Guide

Moses Bomera, Emata

April 29th, 2021

Moses Bomera Data Scientist Emata (& Laboremus)

Works on alternative credit scoring for microfinance institution Emata, a spin-off of fintech company Laboremus.

Prior to joining Laboremus, worked on research in computer vision and natural language processing at netLabs!UG Research Centre, Makerere University.

We are on a mission to provide affordable digital loans to millions of farmers in East Africa

What does Emata do?

1. Digitise agricultural cooperatives to get data

2. Turn data into credit scoring

3. Offer digital and affordable loans to farmers

Agenda

- What is a Random Forest?
- Principal component A Decision Tree
- Calculating the gini value
- The CART Training Algorithm
- Regression
- Gini impurity or Entropy?
- How does it work?
- Regularization Hyperparameters
- TLDR
- Reference Material
- Tutorial

What is a Random Forest?

What is a Random Forest?

It is an ensemble of decision trees.

What have Random Forests been used for?

Classification, regression, time series forecasting etc.

Random Forests

A decision tree (1/3)

Random Forests

A decision tree (2/3)

^{*}For tutorial purpose only.

Random Forests

A decision tree (3/3)

Dataset

petal length	petal width	target
1.4	0.2	setosa
1.3	0.2	setosa
5.1	1.8	virginica

<u>Iris dataset</u>

Left; Iris setosa, Top; Iris virginica, Bottom; Iris veriscolor

The Theory

Node Features

Samples: the number of training instances that particular node applies to.

Gini: measures how pure (or impure) a node is.

Class: the target represented by a given node.

p_{i,k} is the ratio of class k instances to all the training instances in ith node.

gini = 0.043 samples = 46 value = [0, 1, 45] class = virginica

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

Calculating the gini value

gini = ?? samples = 54 value = [0, 49, 5] class = versicolor

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

$$1 - \left(\frac{0}{54}\right)^2 - \left(\frac{49}{54}\right)^2 - \left(\frac{5}{54}\right)^2 =$$

Classification and Regression Tree (CART) Algorithm

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$
 where
$$\begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases}$$

- 1. CART splits the training set into two subsets using a single feature, k and a threshold purity, t_k .
- 2. The selection process involves minimizing the cost function
- 3. 1 and 2 are repeated recursively for each subset until the maximum depth is reached.

Regression

- Similar to the classification approach.
- The prediction is the average of the samples associated with the leaf node.
- For the gini impurity split, the regression tree uses mean squared error i.e. attempts to minimize the mse.

Gini impurity or Entropy?

- While gini is the go-to impurity measure, you can also use entropy as a measurement.
- Entropy is based on the same concept from thermodynamics.
- Entropy approaches zero when molecules are still and well ordered.
- In machine learning, entropy is zero when a set contains instances of only one class.

$$H_{i} = -\sum_{\substack{k=1\\p_{i,k} \neq 0}}^{n} p_{i,k} \log_{2} (p_{i,k})$$

What is a Random Forest?

It is an ensemble of decision trees.

How does it work? (1/2)

- A random forest is an ensemble of decision trees.
- Trained usually through the bagging method (or pasting).
- Each tree in a random forest gives a prediction, for classification, the class with the majority of votes is the prediction.
- In regression, the average of each tree's prediction is the prediction.

How does it work? (2/2)

- RF introduces randomness when growing trees.
- Doesn't make a split using the very best feature, instead it selects the best feature among a random subset of features.
- Results in greater tree diversity.
- Trading a higher bias with lower variance yielding a better model than an individual decision tree.

Regularization Hyperparameters

- *n_estimators* the number of trees to use.
- max_depth the depth of the tree.
- min_samples_split the minimum number of samples an internal node must have before it can be split.
- min_samples_leaf the minimum number of samples required to be at a leaf node
- max_leaf_nodes the maximum number of leaf nodes.
- max_features the maximum number of features that are evaluated for splitting at each node.

Increasing *min_** hyperparameters or reducing *max_** hyperparameters will regularize the model.

TLDR;

PROS of using Random Forests

- Random Forests can be used for both classification and regression.
- Can handle large datasets with high dimensionality, (can be used for dimensionality reduction).
- Works well with unscaled datasets.

CONS of using Random Forests

- It is a high variance model, so it is important to regularize the model when training.
- Given the numerous hyper-parameters, and the number of trees, the decision process becomes a bit of a black box.

Tutorial

Tutorial Notebook

Reference Material

- Chapter 6, 7 Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
- 2. https://ieeexplore.ieee.org/abstract/document/598994 Random Forest academic paper.
- 3. https://towardsdatascience.com/understanding-random-forest-58381e0602d2
- 4. https://github.com/kjw0612/awesome-random-forest Projects that have used Random Forests to achieve amazing solutions.
- 5. https://www.quora.com/What-are-the-advantages-and-disadvantages-for-a-random-forest-algorithm Discussions on the advantages and disadvantages of Random Forests
- 6. https://www.youtube.com/watch?v=7VeUPuFGJHk StatQuest: Decision Trees
- 7. https://www.youtube.com/watch?v=J4Wdy0Wc_xQ StatQuest: Random Forests Part 1 Building, Using and Evaluating

Thank you!

Questions?

emata

The future of farmer financing www.emata.ug