MATH 1530 Problem Set 3

Tanish Makadia (Collaborated with Esmé and Kazuya)

February 2023

Problem 1. Consider U(40). Find a subgroup which is cyclic of order 4. Find a subgroup which is noncyclic of order 4.

Proof. U(40) is defined as follows:

$$U(40) = \{1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39\}$$

• Cyclic subgroup: We will create a cyclic subgroup of order 4 using 7 as the generator.

$$\langle 7 \rangle = \{7, 9, 23, 1\}$$
 (Gallian, 3.4)

• Non-cyclic subgroup: We will show that {1, 9, 11, 19} is a noncyclic subgroup.

		1		11	
	1	1	9	11	19
Cayley Table:	9	9	1	19	11
	11	11	19	1	9
Cayley Table:	19	19	11	9	1

Since $\{1, 9, 11, 19\}$ is finite and closed under multiplication mod 40, we have proven that it is subgroup of U(40). Additionally, since |9| = |11| = |19| = 2, there is no element in this group which can generate the entire group, proving that it is noncyclic.

Problem 2. If H and K are subgroups of a group G, prove that $H \cap K$ is a subgroup of G. If $H \not\subset K$ and $K \not\subset H$, prove that $H \cup K$ is never a subgroup of G.

1. $H \cap K$ is a subgroup of G.

 $ab \in K$. Thus, we have two cases:

Proof. We will use the two-step subgroup test.

- Closed over inverses: $x \in H \cap K \implies x \in H$ and $x \in K$. Since H and K are subgroups, we have the existence of $x^{-1} \in H$ and $x^{-1} \in K \implies x^{-1} \in H \cap K$.
- Closed under group operation: $a, b \in H \cap K \implies a, b \in H \text{ and } a, b \in K$. Since H and K are subgroups, we have that $ab \in H$ and $ab \in K \implies ab \in H \cap K$.

2. If $H \not\subset K$ and $K \not\subset H$, $H \cup K$ is never a subgroup of G.

Proof. We will show that $H \cup K$ is not closed under the group operation. Since neither H nor K are subsets of each other, we have the existence of some $a, a^{-1} \in H \setminus K$ and $b, b^{-1} \in K \setminus H$. If $H \cup K$ is a subgroup, it must be closed. This implies that $ab \in H \cup K \implies ab \in H$ or

- Case 1 ($ab \in H$): Since H is closed, $a^{-1} \cdot ab \in H \implies b \in H$. This is a contradiction.
- $\bullet \ {\rm Case} \ 2 \ (\mathfrak{a}\mathfrak{b} \in K) \text{: Since} \ K \ {\rm is} \ {\rm closed}, \ \mathfrak{a}\mathfrak{b} \cdot \mathfrak{b}^{-1} \in K \implies \mathfrak{a} \in K. \ {\rm This} \ {\rm is} \ {\rm a} \ {\rm contradiction}.$

Because both cases lead to a contradiction, we have proven that $H \cup K$ is not closed and therefore is not a subgroup.

Problem 3. Prove that a group G is Abelian if and only if G = Z(G).

Proof. \Rightarrow Assume G is an Abelian group. Of course, $Z(G) \subset G$ by definition. Since G is Abelian, $\alpha \in G \implies \alpha x = x\alpha$ for all $x \in G \implies \alpha \in Z(G)$. Therefore, $G \subset Z(G)$, completing the double inclusion.

 $\Leftarrow \mathrm{Assume}\ G = Z(G).\ \mathrm{Thus},\ \alpha \in G \implies \alpha \in Z(G) \implies \alpha x = x\alpha \ \mathrm{for\ all}\ x \in G.\ \mathrm{Therefore},$ $G\ \mathrm{must}\ \mathrm{be}\ \mathrm{Abelian}.$

Problem 4. Suppose G is a group with exactly 8 elements of order 3. how many subgroups of order 3 does G have?

Proof. Let $H \subset G$ be a subgroup of order 3:

$$H = \{e, a, b\}$$

Since e is unique, we have that $ab \neq a$ and $ab \neq b$. In order for H to be closed, the only remaining choice is ab = e. Thus, for any subgroup of order 3, the two elements besides the identity must be each other's inverse.

Now, we will show that |a|=|b|=3. Consider $a^2\in H$. Since identities and inverses are unique, $a^2\neq a$ and $a^2\neq e$. The only remaining choice is $a^2=b$. Therefore,

$$a^3 = a \cdot a^2$$
 $b^3 = (a^2)^3$
 $= a \cdot b$ $= (a^3)^2$
 $= e$

We have that there are exactly 8 elements of G of order 3. Because a subgroup of order 3 requires two distinct elements of order 3, we can conclude that the number of distinct subgroups of order 3 in G is 8/2 = 4.

Problem 5. Let G be a finite group with more than one element. Show that G has an element of prime order.