Задача 1.4. Задана система керування

$$\begin{cases} \frac{dx_1(t)}{dt} = 2x_1(t) + x_2(t) + u(t), \\ \frac{dx_2(t)}{dt} = 3x_1(t) + 4x_2(t), \end{cases} x_1(0) = 1, x_2(0) = -1.$$

Тут  $x=(x_1,x_2)^*$  – вектор фазових координат з  $\mathbb{R}^2,\,t\in[0,2]$ . Керування задане у вигляді

$$u(t) = \begin{cases} 0, & \text{якщо } t \in [0, 1], \\ 1, & \text{якщо } t \in (1, 2]. \end{cases}$$

- 1. Знайти траєкторію системи, яка відповідає цьому керуванню.
- 2. Чи буде ця траєкторія неперервно диференційовною?
- 3. Чи буде таке керування кращим в порівнянні з керуванням

$$u(t) = 0, t \in [0, 2]$$

за умови, що критерій якості має вигляд

$$\mathcal{J}(u) = x_1^2(2) + x_2^2(2) \to \min.$$

**Розв'язок.** 1. При  $t \in [0, 1]$  маємо

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Характеристичне рівняння

$$\begin{vmatrix} 2 - \lambda & 1 \\ 3 & 4 - \lambda \end{vmatrix} = \lambda^2 - 6\lambda + 5 = (\lambda - 1)(\lambda - 5) = 0,$$

звідки  $\lambda_1 = 1, \ \lambda_2 = 5.$ 

З курсу диференційних рівнянь відомо, що тоді загальний розв'язок має вигляд

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^t + c_2 v_2 e^{5t},$$

де  $v_1, v_2$  – власні вектори, що відповідають  $\lambda_1$  та  $\lambda_2$  відповідно.

Нескладно бачити, що

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{5t}.$$

Підставляючи t = 0 отримуємо  $c_1 = 1, c_2 = 0.$ 

При  $t \in (1,2]$  маємо

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^t + c_2 v_2 e^{5t} + \begin{pmatrix} c_3 \\ c_4 \end{pmatrix},$$

де  $c_3, c_4$  задовольняють систему

$$\begin{cases} 2c_3 + c_4 + 1 &= 0\\ 3c_3 + 4c_4 &= 0 \end{cases},$$

звідки  $c_3 = -4/5$ ,  $c_4 = 3/5$  і

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 v_1 e^t + c_2 v_2 e^{5t} + \begin{pmatrix} -4/5 \\ 3/5 \end{pmatrix},$$

Підставляючи t=1 отримуємо  $c_1=\left(1+\frac{3}{4e}\right),\,c_2=\frac{1}{20e^5}.$ 

Остаточно маємо

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{cases} \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t, & t \in [0, 1] \\ \left(1 + \frac{3}{4e}\right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t + \frac{1}{20e^5} \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{5t} + \begin{pmatrix} -4/5 \\ 3/5 \end{pmatrix}, & t \in (1, 2] \end{cases}.$$

2.

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1-) = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1-) \\ x_2(1-) \end{pmatrix}$$

З неперервності  $x_1, x_2$  маємо:

$$\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1-) \\ x_2(1-) \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix}$$

З іншого боку,

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1+) = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1+) \\ x_2(1+) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Нескладно бачити, що

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1-) \neq \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} (1+),$$

тобто траєкторія не є неперервно диференційовною в точці 1.

3. Просто підставимо t=2 в розв'язки для обох керувань (попутно зауваживши, що для нового керування розв'язок ми вже знаємо, це просто продовження вже знайденого розв'язку для  $t \in [0,1]$ ):

$$\left(e^2 + \frac{3}{4}e + \frac{e^5}{20} - \frac{4}{5}\right)^2 + \left(-e^2 - \frac{3}{4}e + \frac{3e^5}{20} + \frac{3}{5}\right)^2 \vee (e^2)^2 + (-e^2)^2$$

Після обчислень знаходимо, що права частина менше, тобто нове керування  $\epsilon$  кращим за початкове.