Guide of Basics

内容概要: 数学建模算法

创建时间: 2022/4/7 13:41 **更新时间:** 2022/4/17 15:27

作者: TwinkelStar

最小二乘法拟合 least square fit

1、操作系统相关环境

- 1) 硬件环境:
 - ▶ 电脑
- 2) 软件环境:
 - ▶ Python3.7(向下兼容 Python3)(程序设计语言)
 - ➤ Numpy1.19.5(兼容大部分版本)(科学计算库)
- 3) 操作系统(2选1):
 - ➤ Windows7
 - ➤ Windows10
 - ➤ Windows11

2、最小二乘法

我们知道,用作图法求出直线的斜率 a 和截据 b,可以确定这条 直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较 大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同 的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求 出的 a 和 b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率 a 和截据 b 是唯一的。

最小二乘法就是将一组符合 Y=a+bX 关系的测量数据,用计算的方法求出最佳的 a 和 b。显然,关键是如何求出最佳的 a 和 b。

1) 求回归方程

设直线方程的表达式为:

$$y = a + bx \tag{1}$$

要根据测量数据求出最佳的 a 和 b。对满足线性关系的一组等精度测量数据(x_i , y_i),假定自变量 x_i 的误差可以忽略,则在同一 x_i 下,测量点 y_i 和直线上的点 $a+bx_i$ 的偏差 d_i 如下:

$$d_{1} = y_{1} - a - bx_{1}$$

$$d_{2} = y_{2} - a - bx_{2}$$

$$\vdots$$

$$d_{n} = y_{n} - a - bx_{n}$$
(2)

显然最好测量点都在直线上(即 $d_0=d_2=\cdots=d_n=0$),求出的 a 和 b 是最理想的,但测量点不可能都在直线上,这样只有考虑 d_1 、 d_2 、……、 d_n 为最小,也就是考虑 $d_1+d_2+\cdots=d_n$ 为最小,但因 d_1 、 d_2 、……、 d_n 有正有负,加起来可能相互抵消,因此不可取;而 $|d_1|+|d_2|+\cdots=|d_n|$ 又不好解方程,因而不可行。现在采取一种等效方法:当 $d_{12}+d_{22}+\cdots=d_{n2}$ 对 a 和 b 为最小时, d_1 、 d_2 、……、 d_n 也为最小。取($d_1^2+d_2^2+\cdots=d_n^2$)为最小值,求 a 和 b 的方法叫最小二乘法。

�:

$$D = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} [y_i - a - b_i]^2$$
 (3)

D对 a 和 b 分别求一阶偏导数为:

$$\frac{\partial D}{\partial a} = -2\left[\sum_{i=1}^{n} y_i - na - b\sum_{i=1}^{n} x_i\right] \tag{4}$$

$$\frac{\partial D}{\partial b} = -2\left[\sum_{i=1}^{n} x_{i} y_{i} - a \sum_{i=1}^{n} x_{i} - b \sum_{i=1}^{n} x_{i}^{2}\right]$$
 (5)

再求二阶偏导数为:

$$\frac{\partial^2 D}{\partial a^2} = 2n\tag{6}$$

$$\frac{\partial^2 D}{\partial b^2} = 2\sum_{i=1}^n x_i^2 \tag{7}$$

显然:

$$\frac{\partial^2 D}{\partial a^2} = 2n \ge 0 \tag{8}$$

$$\frac{\partial^2 D}{\partial b^2} = 2\sum_{i=1}^n x_i^2 \ge 0 \tag{9}$$

满足最小值条件,令一阶偏导数为零:

$$\sum_{i=1}^{n} y_i - na - b \sum_{i=1}^{n} x_i = 0$$
 (10)

$$\sum_{i=1}^{n} x_{i} y_{i} - a \sum_{i=1}^{n} x_{i} - b \sum_{i=1}^{n} x_{i}^{2} = 0$$
 (11)

引入平均值:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \; ; \quad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \; \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \; ; \quad \overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \; ;$$
 (12)

则:

$$\overline{y} - a - b\overline{x} = 0 \tag{13}$$

$$\overline{xy} - a\overline{x} - b\overline{x^2} = 0 \tag{14}$$

解得:

$$a = \overline{y} - b\overline{x} \tag{15}$$

$$b = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{16}$$

将 $a \times b$ 值带入线性方程y = a + bx,即得到回归直线方程。

2) y、a、b 的标准差

在最小二乘法中,假定自变量误差可以忽略不计,是为了方便推导回归方程。操作中函数的误差大于自变量的误差即可认为满足假定。实际上两者均是变量,都有误差,从而导致结果 y、a、b 的标准差(n≥6)如下:

$$\sigma_{y} = \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - bx_{i} - a)^{2}}{n-2}}$$
(17)

3) 相关系数

相关系数是衡量一组测量数据 x_i、y_i线性相关程度的参量,其定义为:

$$r = \frac{\overline{xy} - \overline{xy}}{\sqrt{(\overline{x^2} - \overline{x}^2)(\overline{y^2} - \overline{y}^2)}}$$
(17)

r 值在 $0 < |r| \le 1$ 中。 |r|越接近于 1,x 、y 之间线性好; r 为正,直线斜率为正,称为正相关; r 为负,直线斜率为负,称为负相关。 |r|接近于 0,则测量数据点分散或 xi、yi 之间为非线性。不论测量数据好坏都能求出 a 和 b,所以我们必须有一种判断测量数据好坏的方法,用来判断什么样的测量数据不宜拟合,判断的方法是 $|r| < r^\circ$ 时,测量数据是非线性的. r° 称为相关系数的起码值,与测量次数 n 有关,如下表 1 所示:

表 1.r 实验数据 table1.r experimental data

n	r ₀	n	r_0	n	r ₀
3	1.000	9	0.798	15	0.641
4	0.990	10	0.765	16	0.623
5	0.959	11	0.735	17	0.606
6	0.917	12	0.708	18	0.590
7	0.874	13	0.684	19	0.575
8	0.834	14	0.661	20	0.561

在进行一元线性回归之前应先求出 \mathbf{r} 值,再与 \mathbf{r}_0 比较,若 $|\mathbf{r}| > \mathbf{r}_0$,则 \mathbf{x} 和 \mathbf{y} 具有线性关系,可求回归直线,否则反之。

3、例题

灵敏电流计的电流常数 Ki 和内阻 Rg 的测量公式为:

$$R_2 = \frac{R_s}{K_i R_1 d} U - R_g \tag{17}$$

其中间处理过程如下,试用最小二乘法求出 K_i 和 R_g ,并写出回归方程的表达式。

解:测量公式与线性方程表达式 y=a+bx 比较:

$$y = R_2; \quad x = U; \quad b = \frac{R_s}{K_i R_1 d}; \quad a = -R_g;$$

数据处理如表 2 所示:

表 2.实验数据 table 1.experimental data

i	1	2	3	4	5	6	7	8	平均值
$R_2(\Omega)$	400.0	350.0	300.0	250.0	200.0	150.0	100.0	50.0	225.0
U (V)	2.82	2. 49	2. 15	1.82	1.51	1. 18	0.84	0. 56	1. 67125
$R_2^2 (10^4 \Omega^2)$	16.00	12. 25	9.000	6. 250	4.000	2.250	1.000	0.250	6. 375
$U^2(V^2)$	7. 95	6. 20	4. 62	3. 31	2.28	1. 39	0.71	0.31	3. 34625
$R_2U(10^2\Omega V)$	11.3	8. 72	6. 45	4. 55	3.02	1. 77	0.84	0. 28	4. 615625

中间过程可多取位,通过计算可知:

$$\overline{x} = 1.67125$$
; $\overline{y} = 225.0$; $\overline{x^2} = 3.34625$; $\overline{y^2} = 6.375 \times 10^4$; $\overline{xy} = 461.5625$

相关系数 r:

$$r = \frac{\overline{xy} - \overline{xy}}{\sqrt{(\overline{x^2} - \overline{x}^2)(\overline{y^2} - \overline{y}^2)}} = 0.998$$

查表得知,当 n=8 时, $r_0=0.834$,两者比较 $r>r_0$,说明 x、y(即 U、 R_2)之间线性相关,可以求回归直线:

$$b = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}} = 154.6192304$$

$$a = \overline{y} - b\overline{x} = -33.4$$

代换可得:

$$R_g = -a = 33.4\Omega$$

$$\frac{R_s}{K_i R_i d} = b = 154.6192304$$

$$K_i = \frac{R_s}{bR_i d} = 3.7170 \times 10^{-9} A/mm$$

计算标准差为:

 σ_y = 2. 64561902; σ_a = 2. 300545589; σ_b = 1. 257626418 计算不确定度:

$$\Delta R_{\rm g} = \sigma_a = 2\Omega; \quad \frac{\Delta K_i}{K} = \frac{\sigma_b}{b} = 0.81\%; \quad \Delta K = 0.03 \times 10^{-9} \text{A/mm}$$

电流计内阻:

$$R_g = (33\pm 2)\Omega; \frac{\Delta R_g}{R_g} = 6.1\%$$

电流常数:

K =
$$(3.72\pm0.03)\times10^{-9}$$
A/mm; $\frac{\Delta K_i}{K} = 0.81\%$

求解出回归方程:

$$R_2 = 155U - 33$$