FPT UNIVERSITY

Chapter 2: Basic Structures: Sets, Functions, Sequences, and Sum

DISCRETE MATHEMATIS

Lecture: Dr. Nguyen Kieu Linh

Hanoi, 2020

Content

- 1 2.1 Sets
- 2 2.2 Set operations
- 3 2.3 Functions, Mapping, Transformation Ánh Xạ
- 4 2.4 Sequences and Summations

Content

- **1** 2.1 Sets
- 2 2.2 Set operations
- 3 2.3 Functions, Mapping, Transformation Ánh Xạ
- 4 2.4 Sequences and Summations

2.1 Sets

- An unordered collection of objects
- The objects in a set are called the elements, or members. A set is said to contain its elements.
- Some important sets in discrete mathematics

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

$$\mathbb{Q} = \left\{r = \frac{p}{q} : p \in \mathbb{Z}, 0 \neq \in \mathbb{Z}\right\}$$

$$\mathbb{R} = \text{the set of real numbers}$$

$$V = \{o, e, u, a, i\}$$

2.1 Sets

Definition

- Finite set: Set has n element, n is a nonnegative interger.
- A set is an **infinite** set if is not finite
- Cardinality of a set |S|: Number of elements of S.
- \emptyset : **empty set** (**null set**), the set with no element.
- Two sets are **equal** if and only if they have the same elements A = B if and only if $\forall x (x \in A \leftrightarrow x \in B)$
- $A \subseteq B$: The set A is a **subset** of the set B $A \subseteq B$ if and only if $\forall x (x \in A \to x \in B)$
- $A \subset B$: The set A is a **proper subset** of the set B $A \subset B$ if and only if $(A \subseteq B) \land (A \neq B)$.

Power set

• Given a set S, power set P(S) of S is a set of all subsets of the set S.

Power set

- Given a set S, power set P(S) of S is a set of all subsets of the set S.
- Exemple: $S = \{1, 2, 3\}$

Power set

- Given a set S, power set P(S) of S is a set of all subsets of the set S.
- Exemple: $S = \{1, 2, 3\}$
- Then $P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\} \{2, 3\}, \{1, 2, 3\}\}.$

- The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its n^{th} element.
- Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$,

$$A \times B = \{(a,b) | a \in A, b \in B\}$$

• Exemple 1: $A = \{a, b\}; B = \{1, 2, 3\}$

- The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its n^{th} element.
- Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$,

$$A \times B = \{(a,b) | a \in A, b \in B\}$$

- Exemple 1: $A = \{a, b\}; B = \{1, 2, 3\}$
- Then $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}.$

- The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its n^{th} element.
- Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$,

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

- Exemple 1: $A = \{a, b\}; B = \{1, 2, 3\}$
- Then $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}.$
- The Cartesian product of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \ldots A_n$, is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) ,

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) | a_i \in A_i, i = 1, 2, \ldots, n\}$$

• Exemple 2: $A = \{a, b\}; B = \{1, 2, 3\}, C = \{@, *\}$

- The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its n^{th} element.
- Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$,

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

- Exemple 1: $A = \{a, b\}; B = \{1, 2, 3\}$
- Then $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}.$
- The Cartesian product of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \ldots A_n$, is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) ,

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) | a_i \in A_i, i = 1, 2, \ldots, n\}$$

- Exemple 2: $A = \{a, b\}; B = \{1, 2, 3\}, C = \{@, *\}$
- Then $A \times B \times C = \{(a, 1, @), (a, 1, *), (a, 2, @), (a, 2, *), (a, 3, @), (a, 3, *), (b, 1, @), (b, 1, *), (b, 2, @), (b, 2, *), (b, 3, @), (b, 3, *)\}.$

Content

- 1 2.1 Sets
- 2 2.2 Set operations
- 3 2.3 Functions, Mapping, Transformation Ánh Xạ
- 4 2.4 Sequences and Summations

2.2 Set operations

• The Union of sets A and B, denoted by $A \cup B$

$$A \cup B = \{x | x \in A \lor x \in B\}$$

• The difference of A and B, denoted by A - B

$$A-B=\{x|x\in A \land x\notin B\}$$

2.2 Set operations

• The symmetric difference of A and B, denoted by $A \oplus B$

$$A \oplus B = A \cup B - A \cap B = \{x | (x \in A \lor x \in B) \land (x \notin A \cap B)\}$$

 \bullet The intersection of A and B

$$A \cap B = \{x | x \in A \land x \in B\}$$

2.2 Set operations

• U is the universal set, complement of A is denoted by \bar{A}

$$\bar{A} = U - A = \{x | x \notin A\}$$

Set Identities

Identity - See proofs: pages 125, 126		Name
$A \cup \emptyset = A$	$A \cap U = A$	Identity laws - Luật đồng nhất
$A \cup U = U$	$A \cap \emptyset = \emptyset$	Domination laws - Luật thống trị
$A \cup A = A$	A∩A=A	Idempotent laws – Luật bất biến
$\stackrel{=}{A} = A$		Complementation law – Luật bù đôi
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Commutative laws – Luật giao hoán
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$		Associative laws – Luật kết hợp
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		Distributive laws Luật phân phối
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A \cup B}$	De Morgan laws
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Absorption – Luật hấp phụ
$A \cup \overline{A} = U$	$A \cap \overline{A} = \emptyset$	Complement laws – Luật bù

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\}$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\}$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- \bullet $A \cup B$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10 = 1010\ 1011\ 10$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10 = 1010\ 1011\ 10$ $\to A \cup B = \{1, 3, 5, 7, 8, 9\}$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10 = 1010\ 1011\ 10$ $\rightarrow A \cup B = \{1, 3, 5, 7, 8, 9\}$
- \bullet $A \cap B$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10 = 1010\ 1011\ 10$ $\rightarrow A \cup B = \{1, 3, 5, 7, 8, 9\}$
- $A \cap B = 1010 \ 1010 \ 10 \wedge 1000 \ 0001 \ 10$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10 = 1010\ 1011\ 10$ $\rightarrow A \cup B = \{1, 3, 5, 7, 8, 9\}$
- $A \cap B = 1010 \ 1010 \ 10 \wedge 1000 \ 0001 \ 10 = 1000 \ 0000 \ 10$

- Use bit string $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A = \{1, 3, 5, 7, 9\} \rightarrow A = "1010\ 1010\ 10"$
- $B = \{1, 8, 9\} \rightarrow B = "1000\ 0001\ 10"$
- $A \cup B = 1010\ 1010\ 10 \lor 1000\ 0001\ 10 = 1010\ 1011\ 10$ $\rightarrow A \cup B = \{1, 3, 5, 7, 8, 9\}$
- $A \cap B = 1010\ 1010\ 10 \land 1000\ 0001\ 10 = 1000\ 0000\ 10$ $\to A \cap B = \{1, 9\}.$

Content

- 1 2.1 Sets
- 2 2.2 Set operations
- 3 2.3 Functions, Mapping, Transformation Ánh Xạ
- 4 2.4 Sequences and Summations

2.3 Functions, Mapping, Transformation - Ánh Xa

- $f: A \to B$ function f from A to B (or function f maps A to B)
- A: domain of f
- B: codomain of f

Chapter 2: Basic Structures: Sets, Functions, Sequences, and Sum

2.3 Functions, Mapping, Transformation

What are functions?

•
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2$$

•
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{1}{(x-1)^2} + 5x$$

•
$$f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{(2x+5)}{7}$$

•
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{(2x+5)^2}{7-2x}$$

• Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: $\lfloor 4, 3 \rfloor$

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: [4,3] = 4,

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: [4,3] = 4, [-4,3]

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: [4,3] = 4, [-4,3] = -5

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: $\lfloor 4, 3 \rfloor = 4, \lfloor -4, 3 \rfloor = -5$
- Ceiling function: $f : \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lceil x \rceil = \text{smallest}$ integer that greater than or equal to x.

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: [4,3] = 4, [-4,3] = -5
- Ceiling function: $f : \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lceil x \rceil = \text{smallest}$ integer that greater than or equal to x.
- Example: $\lceil 4, 3 \rceil$

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: |4,3| = 4, |-4,3| = -5
- Ceiling function: $f : \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lceil x \rceil = \text{smallest}$ integer that greater than or equal to x.
- Example: [4,3] = 5,

- Floor function: $f : \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: [4,3] = 4, [-4,3] = -5
- Ceiling function: $f : \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lceil x \rceil = \text{smallest}$ integer that greater than or equal to x.
- Example: [4,3] = 5, [-4,3]

- Floor function: $f: \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lfloor x \rfloor = \text{largest integer}$ that less than or equal to x.
- Example: |4,3| = 4, |-4,3| = -5
- Ceiling function: $f : \mathbb{R} \to \mathbb{Z}$ such that $f(x) = \lceil x \rceil = \text{smallest}$ integer that greater than or equal to x.
- Example: [4,3] = 5, [-4,3] = -4

One-to-One/ Injective functions (don anh)

- Function f is one-to-one (or injective) if and only if $a \neq b \rightarrow f(a) \neq f(b)$ for all a, b in the domain f.
- Example: $f: \mathbb{Z} \to \mathbb{Z}: f(x) = x^2$

One-to-One/ Injective functions (don anh)

- Function f is one-to-one (or injective) if and only if $a \neq b \rightarrow f(a) \neq f(b)$ for all a, b in the domain f.
- Example: $f: \mathbb{Z} \to \mathbb{Z}: f(x) = x^2$ is not one-to-one.

Onto Functions - Ánh xạ trên (toàn ánh)

- A function f from A to B is called onto, or surjective, iff for every element b in B there is an element a in A with f(a) = b.
- Example: $f: \mathbb{Z} \to \mathbb{Z}: f(m) = m-1$

Onto Functions - Ánh xạ trên (toàn ánh)

- A function f from A to B is called onto, or surjective, iff for every element b in B there is an element a in A with f(a) = b.
- Example: $f: \mathbb{Z} \to \mathbb{Z}: f(m) = m-1$ is onto because $\forall y \in \mathbb{Z}, y = f(m) = m-1$, where m = y+1.

One-to-one correspondent/Bijective function (song ánh)

• Function f is a one-to-one correspondence or a bijection if it is both one-to-one and onto.

Inverse Functions

• Let f is a bijection from A to B. The inverse function, denoted by f^{-1} , of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. Hence $f^{-1}(b) = a$ when f(a) = b.

Composition of Functions – Ánh xạ hợp

• Let $g: A \to B; f: B \to C$. The composition of f and g, denoted by $f \circ g$, is defined by:

$$(f \circ g)(x) = f(g(x))$$

Composition of Functions – Ánh xạ hợp

- Let $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x+1$
- Let $g: \mathbb{Z} \to \mathbb{Z}, g(x) = x^2$
- $(f \circ g)(x) = f(g(x)) = f(x^2) = x^2 + 1$.
- $(g \circ f)(x) = g(f(x)) = g(x+1) = (x+1)^2$.

Exercise 1

Let A, B be sets. The statement

$$A \cup (B \cap \bar{A}) = A \cup B$$

is True of False?

Select one:

- A. True
- B. False

Exercise 1

Let A, B be sets. The statement

$$A \cup (B \cap \bar{A}) = A \cup B$$

is True of False?

Select one:

- A. True
- B. False

Exercise 2

Find the cardinality of the set $\{a, \{a\}, \{a, \{a\}\}\}\$.

A. 3

B. 4

C. 5

D. 6

Exercise 2

Find the cardinality of the set $\{a, \{a\}, \{a, \{a\}\}\}\$.

A. **3**

B. 4

C. 5

D. 6

Exercise 3

Let $A = \{1, 2, 4, 6, 7, 9, 8\}, B = \{3, 1, 5, 7, 6\}$. Which set has the maximum cardinality?

Select one:

A.
$$B-A$$

B.
$$A \cup B$$

$$\mathbf{C}$$
. $A-B$

D.
$$A \cap B$$

Exercise 4

Let $A = \{0, a\}, B = \{0, b\}$. Determine $B \times A$. Select one:

- A. $\{(0,0),(a,b)\}$
- B. $\{(0,0),(0,b),(a,0),(a,b)\}$
- C. $\{(0,0),(0,b),(a,0),(a,b),(b,a),(0,a),(b,0)\}$
- D. $\{(0,0),(b,a),(0,a),(b,0)\}$

Exercise 5

Let f(X) = 5X + 4, g(X) = 4X + 3. Suppose that $g \circ f(X) = aX + b$. Find b.

Exercise 5

Let f(X) = 5X + 4, g(X) = 4X + 3. Suppose that $g \circ f(X) = aX + b$. Find b.

Exercise 6

Let f(X) = 5X + 4, g(X) = 4X + 3. Suppose that $f \circ g(X) = aX + b$. Find a + b.

Exercise 5

Let f(X) = 5X + 4, g(X) = 4X + 3. Suppose that $g \circ f(X) = aX + b$. Find b.

Exercise 6

Let f(X) = 5X + 4, g(X) = 4X + 3. Suppose that $f \circ g(X) = aX + b$. Find a + b.

Exercise 7

Compute

$$\lfloor \frac{3}{2} - \lceil 3 + \frac{5}{4} \rceil \rfloor$$
 and $\lfloor \left(\frac{3}{2} \right)^2 \rfloor - \left(\lfloor \frac{7}{2} \rfloor \right)^2$

Exercise 8

Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, f(m, n) = n + 1. Choose correct answer:

- A. f(x) is neither one-to-one nor onto
- B. f is onto but not one-to-one
- \mathbf{C} . f is a bijection
- D. f is one-to-one but not onto.

Content

- 1 2.1 Sets
- 2 2.2 Set operations
- 3 2.3 Functions, Mapping, Transformation Ánh Xạ
- 4 2.4 Sequences and Summations

Definition

A sequence is a function from a subset of the set of integers to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

- We use the notation $\{a_n\}$ to describe the sequence.
- a_n is called the general term of $\{a_n\}$.

Example

Consider the sequence $\{a_n\}$, where $a_n = \frac{1}{n}$. The list of the terms of this sequence, beginning with a_1 , namely,

$$a_1 = 1; a_2 = \frac{1}{2}; a_3 = \frac{1}{3}, \dots$$

Definition

A *geometric progression* is a sequence of the form $a, ar, ar^2, ..., ar^n, ...$ where the *initial term* a and the *common ratio* r are real numbers.

Example

Consider the sequence $\{b_n\}$, where $b_n = 2\left(\frac{1}{3}\right)^n$.

Definition

A geometric progression is a sequence of the form $a, ar, ar^2, ..., ar^n, ...$ where the *initial term* a and the common ratio r are real numbers.

Example

Consider the sequence $\{b_n\}$, where $b_n = 2\left(\frac{1}{3}\right)^n$.

 $\{b_n\}$ is a geometric progression, beginning with $b_0 = 2$ and the common ratio is $r = \frac{1}{3}$.

Definition

An arithmetic progression is a sequence of the form a, a+d, a+2d, ..., a+nd, ... where the *initial term* a and the *common difference* d are real numbers.

Example

Consider the sequence $\{c_n\}$, where $c_n = -1 + 4n$.

Definition

An arithmetic progression is a sequence of the form a, a+d, a+2d, ..., a+nd, ... where the *initial term* a and the *common difference* d are real numbers.

Example

Consider the sequence $\{c_n\}$, where $c_n = -1 + 4n$. $\{c_n\}$ is a arithmetic progression, beginning with $c_0 = -1$ and the common ratio is d = 4.

2.4.2. Recurrence Relations (quan hệ truy hồi)

Definition

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

Example

• Consider the sequence $\{a_n\}$, where $a_n = a_{n-1} + 3$ with n = 1, 2, ... and $a_0 = 2$.

2.4.2. Recurrence Relations (quan hệ truy hồi)

Definition

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

- Consider the sequence $\{a_n\}$, where $a_n = a_{n-1} + 3$ with n = 1, 2, ... and $a_0 = 2$.
- Consider the sequence $\{f_n\}$, where $f_n = f_{n-1} + f_{n-2}$ with n = 2, 3, 4... and $f_0 = 0, f_1 = 1$. (Fibonacci sequence)

2.4.2. Recurrence Relations (quan hệ truy hồi)

Definition

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

- Consider the sequence $\{a_n\}$, where $a_n = a_{n-1} + 3$ with n = 1, 2, ...and $a_0 = 2$.
- Consider the sequence $\{f_n\}$, where $f_n = f_{n-1} + f_{n-2}$ with n = 2, 3, 4... and $f_0 = 0, f_1 = 1.$ (Fibonacci sequence)
- Consider the sequence $\{l_n\}$, where $l_n = l_{n-1} + l_{n-2}$ with n = 2, 3, 4... and $l_0 = 1, l_1 = 3.$ (Lucas sequence)

Example

• Are there runs of same value?

Example

• Are there runs of same value? 1 2 2 3 3 3 4 4 4 4.....

- Are there runs of same value? 1 2 2 3 3 3 4 4 4 4.....
- Are terms obtained from previous term by adding/ multiplying by a particular amount?

- Are there runs of same value? 1 2 2 3 3 3 4 4 4 4.....
- Are terms obtained from previous term by adding/ multiplying by a particular amount?
 - $1\ 5\ 9\ 13\ 17\ \dots \qquad \qquad 2\ 6\ 18\ 54\ \dots$

- Are there runs of same value? 1 2 2 3 3 3 4 4 4 4......
- Are terms obtained from previous term by adding/ multiplying by a particular amount?
 1 5 9 13 17 ...
 2 6 18 54
- Are terms obtained by combining previous terms in a certain way?

- Are there runs of same value? 1 2 2 3 3 3 4 4 4 4
- Are terms obtained from previous term by adding/multiplying by a particular amount? 1 5 9 13 17 ... 2 6 18 54
- Are terms obtained by combining previous terms in a certain way? 1 1 2 3 5 8 13 ...
- Are they cycles among terms?

- Are there runs of same value? 1 2 2 3 3 3 4 4 4 4.....
- Are terms obtained from previous term by adding/ multiplying by a particular amount?
 1 5 9 13 17 ...
 2 6 18 54
- Are terms obtained by combining previous terms in a certain way? 1 1 2 3 5 8 13 ...
- Are they cycles among terms? 1 -1 1 -1 1 -1 1 -1 ...

Example

• 1 1/2 1/4 1/8 1/16 ...

Example

• 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9 $\rightarrow a_n = 2n + 1, n = 0, 1, 2, 3, ...$

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9 $\rightarrow a_n = 2n + 1, n = 0, 1, 2, 3, ...$
- 4 -1 -6 -11 -16

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9 $\rightarrow a_n = 2n + 1, n = 0, 1, 2, 3, ...$
- 4 -1 -6 -11 -16 $\rightarrow a_n = 4 5n, n = 0, 1, 2, 3, ...$

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9 $\rightarrow a_n = 2n + 1, n = 0, 1, 2, 3, ...$
- 4 -1 -6 -11 -16 $\rightarrow a_n = 4 5n, n = 0, 1, 2, 3, ...$
- 1 7 25 79 241 727

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9 $\rightarrow a_n = 2n + 1, n = 0, 1, 2, 3, ...$
- 4 -1 -6 -11 -16 $\rightarrow a_n = 4 5n, n = 0, 1, 2, 3, ...$
- 1 7 25 79 241 727 $\rightarrow a_n = 3^n 2, n = 0, 1, 2, 3, ...$
- 3 4 6 9 13 18 24

- 1 1/2 1/4 1/8 1/16 ... $\rightarrow a_n = 1/2^n, n = 0, 1, 2, 3, ...$
- 1 3 5 7 9 $\rightarrow a_n = 2n + 1, n = 0, 1, 2, 3, ...$
- 4 -1 -6 -11 -16 $\rightarrow a_n = 4 5n, n = 0, 1, 2, 3, ...$
- 1 7 25 79 241 727 $\rightarrow a_n = 3^n 2, n = 0, 1, 2, 3, ...$
- 3 4 6 9 13 18 24 $\rightarrow a_n = \frac{n^2 n + 6}{2}, n = 1, 2, 3, ...$

Summation notation

• $a_m + a_{m+1} + a_{m+2} + ... + a_n = \sum_{j=m}^n a_j = \sum_{j=m}^n a_j = \sum_{m \leq j \leq n} a_j$, where a: Sequence; j: Index of summation; m: Lower limit; n: Upper limit.

$$\sum_{1 \le j \le 5} j^2$$

Summation notation

• $a_m + a_{m+1} + a_{m+2} + ... + a_n = \sum_{j=m}^n a_j = \sum_{j=m}^n a_j = \sum_{m \leq j \leq n} a_j$, where a: Sequence; j: Index of summation; m: Lower limit; n: Upper limit.

$$\sum_{1 \le j \le 5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 =$$

Summation notation

• $a_m + a_{m+1} + a_{m+2} + ... + a_n = \sum_{j=m}^n a_j = \sum_{j=m}^n a_j = \sum_{m \leq j \leq n} a_j$, where a: Sequence; j: Index of summation; m: Lower limit; n: Upper limit.

$$\sum_{1 \le j \le 5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.$$

Sum	Closed Form	
$\sum_{k=0}^{n} ar^k (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=0}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

2.4.5. Cardinality – Lực Lượng

 \bullet *Cardinality* = number of elements in a set.

2.4.5. Cardinality – Luc Luong

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.

2.4.5. Cardinality – Lực Lượng

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.
- A set that is either finite or has the same cardinality as the set of positive integers is called *countable*.

2.4.5. Cardinality – Luc Lucng

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.
- A set that is either finite or has the same cardinality as the set of positive integers is called *countable*.
- A set that is not countable is called *uncountable*.
- When a infinite set S is countable, we denote the cardinality of S is \aleph_0 (aleph null, luc lượng của các số tự nhiên).

2.4.5. Cardinality – Luc Lucng

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.
- A set that is either finite or has the same cardinality as the set of positive integers is called *countable*.
- A set that is not countable is called *uncountable*.
- When a infinite set S is countable, we denote the cardinality of S is \aleph_0 (aleph null, lực lượng của các số tự nhiên).
- For example, $|\mathbb{N}| = \aleph_0$ because \mathbb{N} is countable and infinite but \mathbb{R} is uncountable and infinite, and we say $|\mathbb{R}| = 2^{\aleph_0}$.

2.4.5. Cardinality – Lực Lượng

sets	countable	uncountable	cardinality
{a, b,, z}, {x $x^5 - 3x^2 - 11 = 0$ },	✓	×	< × ₀
{0, 2, 4,, }	✓	×	× ₀
N, Z+, Z, Q,	✓	×	ℵ ₀
$\{x \mid 0 < x < 1\}, R,$	×	✓	2 ⁸ 0