# 2 DÉTERMINATION DE L'ÉTAT D'ÉQUILIBRE

Nous allons maintenant utiliser la méthode de la réaction prépondérante pour déterminer l'état final de différentes solutions aqueuses classiques mettant en jeu des réactions de complexation.

### 2.1 Solution contenant un seul complexe

Envisageons le cas d'une solution contenant un complexe ML introduit à la concentration  $c_0$ . Le seul **équilibre de contrôle** pouvant engager le complexe est sa dissociation :

$$ML = M + L$$

Pour trouver l'état final de la réaction, on écrit le tableau d'avancement de la réaction en introduisant l'avancement volumique x:

Ainsi la constante d'équilibre de la réaction de dissociation s'exprime :

$$K_d = \frac{x^2}{c_0 - x}$$

Déterminer l'état d'équilibre revient à calculer la valeur de x. On peut, si la valeur de  $K_d << 1$ , faire l'hypothèse que le complexe est faiblement dissocié ( $[L] = x < \frac{c_0}{10}$ ), dans ce cas, on trouve :

$$[L] = x = \sqrt{K_d c_0}$$

Il faut vérifier ensuite que l'on a bien p $L \leq pK_d - 1$ . Sinon, l'hypothèse est fausse, il faut alors résoudre le polynôme suivant :

$$x^2 + K_d x - c_0 K_d = 0$$

On a donc la solution:

$$x = \frac{1}{2} \left( -K_d + \sqrt{K_d^2 + 4c_0 K_d} \right)$$

**Exemple :** L'ion  $\mathrm{Hg}^{2+}$  forme avec l'ion  $Y^{4-}$  le complexe  $[\mathrm{Hg}Y]^{2-}$  ( $\beta=10^{22,1}$ ). On introduit ce complexe  $[\mathrm{Hg}Y]^{2-}$  à la concentration  $c_0=1,0\times 10^{-2}$  mol·L<sup>-1</sup>. Quelle est la concentration de  $Y^{4-}$  à l'équilibre?

L'équilibre de contrôle s'écrit :

$$[{
m Hg}Y]^{2-} = {
m Hg}^{2+} + Y^{4-}$$
  $K_d = \frac{1}{\beta} = 10^{-22,1}$ 

On introduit l'avancement volumique  $[Y^{4-}] = x$ , et puisque la constante  $K_d$  est très faible, on se place dans le cadre de l'hypothèse d'un complexe faiblement dissocié. On trouve :  $[Y^{4-}] = x = 8,9 \times 10^{-13} \text{ mol} \cdot \text{L}^{-1}$ , ce qui vérifie bien p $Y \leq pK_d - 1$ .

#### 2.2 Complexe amphotère

Considérons un complexe ML introduit à concentration  $c_0$  susceptible d'accepter et de donner un ligand L. ML intervient donc dans deux couples :  $ML/ML_2$  (ML accepte un ligand L) caractérisé par  $pK_{d2}$  et ML/M (ML donne un ligand L) caractérisé par  $pK_{d1}$ 

Traçons une échelle de p $K_d$ :



Il n'y a aucune réaction prépondérante quantitative, l'équilibre de contrôle est donc le suivant :

$$2ML = M + ML_2$$

Pour trouver l'état final de la réaction, on écrit le tableau d'avancement de la réaction en introduisant l'avancement volumique x:

En considérant l'état final, on peut écrire la constante d'équilibre de cette réaction :

$$K^{0} = \frac{K_{d1}}{K_{d2}} = \frac{[M][ML_{2}]}{[ML]^{2}} = \frac{x^{2}}{(c_{0} - 2x)^{2}}$$

Dans le cas où  $K^0 \ll 1$ , il est raisonnable de considérer que  $x \ll c_0$ . On peut donc écrire :

$$K^0 = \frac{x^2}{c_0^2} = > x = c_0 \sqrt{\frac{K_{d1}}{K_{d2}}}$$

On a donc, dans le cadre de cette approximation :  $[ML_2] = [M] = c_0 \sqrt{\frac{K_{d1}}{K_{d2}}}$  et  $[ML] = c_0$ . Si l'hypothèse n'est pas vérifiée, on résout l'équation :

$$\sqrt{K^0} = \frac{x}{c_0 - x} \Longrightarrow x = c_0 \left( 2 + \frac{1}{\sqrt{K^0}} \right)^{-1}$$

**Exemple :** L'ion  $Cu^{2+}$  forme avec le ligand malonate (noté  $Mal^{-}$ ) les complexes stables  $[CuMal]^{+}$  et  $[CuMal_{2}]$  avec les **constantes globales de formation**  $\beta(1) = 10^{5,4}$  et  $\beta(2) = 10^{7,8}$ . Le complexe  $[CuMal]^{+}$  est introduit à la concentration  $c_{0} = 0.1 \text{ mol} \cdot L^{-1}$ . Déterminer l'état de la solution à l'équilibre.

La réaction prépondérante est un équilibre de contrôle :

$$2[CuMal]^{+} = [CuMal_{2}] + Cu^{2+}$$

Calculons les constantes successives de formation  $\beta_1$  et  $\beta_2$  des deux complexes :

$$--\beta_1 = \beta(1) = 10^{5,4}$$

$$-\beta_2 \times \beta_1 = \beta(2)$$
, soit  $\beta_2 = 10^{7,8-5,4} = 10^{2,4}$ 

Ainsi, la constante d'équilibre de l'équilibre de contrôle est :

$$K^0 = \frac{\beta_2}{\beta_1} = 10^{2,4-5,4} = 10^{-3}$$

Pour trouver l'état final de la réaction, on écrit le tableau d'avancement de la réaction en introduisant l'avancement volumique x:

On a donc

$$K^0 = 10^{-3} = \frac{x^2}{c_0 - 2x}$$

soit

$$x = c_0 \left( 2 + \frac{1}{K^0} \right)^{-1}$$

On trouve donc  $x = 3.0 \times 10^{-3} \, \text{mol} \cdot \text{L}^{-1} = [[\text{Cu}Mal_2]] = [\text{Cu}^{2+}], \text{ et } [[\text{Cu}Mal]^+] = 9.4 \times 10^{-2} \, \text{mol} \cdot \text{L}^{-1} \,$  à l'équilibre.

#### 2.3 Mélange d'un complexe et d'un centre métallique conjugué

Considérons un mélange d'un complexe ML (concentration initiale  $c_{0,1}$ ) et de son centre métallique conjugué M (concentration initiale  $c_{0,2}$ ).

Traçons une échelle d'acidité:



Il n'y a aucune réaction prépondérante quantitative, l'équilibre de contrôle est donc le suivant :

$$ML + M = M + ML$$

Cet équilibre ne modifie pas les concentrations. Donc les concentrations de chaque espèce à l'équilibre sont les mêmes qu'à l'état initial.

## 2.4 Mélange d'un complexe et d'un centre métallique non conjugué

Considérons un mélange d'un complexe  $M_1L$  (concentration initiale  $c_{0,1}$ ) et d'un centre métallique nonconjugué  $M_2$  (concentration initiale  $c_{0,2}$ ). Le couple  $M_1L/M_1$  est caractérisé par p $K_{d1}$  et le couple  $M_2L/M_2$ est caractérisé par p $K_{d2}$ . Pour ce type de mélange, on peut avoir deux cas :

— Si p $K_{d2} > pK_{d1}$ , la réaction prépondérante est quantitative :

$$M_1 L + M_2 = M_1 + M_2 L$$

la réaction provoque la disparition du réactif limitant, et aboutit à une solution équivalente. On doit alors poursuivre la recherche de réactions prépondérantes jusqu'à atteindre un équilibre de contrôle.

— Si p $K_{d2} < pK_{d1}$ , la réaction prépondérante envisagée est un **équilibre de contrôle**, un calcul du produit des constantes d'acidité est nécessaire pour déterminer l'état d'équilibre. On considère ce pas par la suite.

L'équilibre de contrôle est donc :

$$M_1L + M_2 = M_1 + M_2L$$

Pour trouver l'état final de la réaction, on écrit le tableau d'avancement de la réaction en utilisant l'avancement volumique x:

En considérant l'état final, on peut écrire la constante d'équilibre de cette réaction :

$$K^{0} = \frac{K_{d1}}{K_{d2}} = \frac{x^{2}}{(c_{0,1} - x)(c_{0,2} - x)}$$

Dans le cas où  $K^0 << 1$ , il est raisonnable de considérer que  $x << c_{0,1}$  et  $x << c_{0,2}$ . On peut donc écrire :

$$K^0 = \frac{x^2}{c_{0.1}c_{0.2}} = > x = \sqrt{\frac{K_{A2}}{K_{A1}}c_{0,1}c_{0,2}}$$

On a donc, dans le cadre de cette approximation :  $[M_2L] = [M_1] = \sqrt{\frac{K_{d1}}{K_{d2}}} c_{0,1} c_{0,2}$  et  $[M_1L] = c_{0,1}$ ;  $[M_2] = c_{0,2}$  .

**Exemple:** Envisageons une solution dans laquelle on introduit le complexe  $[NiY]^{2-}$  à la concentration  $c_{0,1} = 1,0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$  et l'ion  $\text{Ca}^{2+}$  à la concentration  $c_{0,2} = 1,0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$ .

- $[NiY]^{2-}/Ni^{2+} pK_d(Ni) = 18,6$
- $[CaY]^{2-}/Ca^{2+}$  p $K_d(Ca) = 10, 8$

La réaction prépondérante à considérer est l'équilibre de contrôle suivant :

$$[\mathrm{Ni}Y]^{2^-} + \mathrm{Ca}^{2^+} = [\mathrm{Ca}Y]^{2^-} + \mathrm{Ni}^{2^+} \qquad \qquad K^0 = \frac{K_d(\mathrm{Ni})}{K_d(\mathrm{Ca})} = 10^{-18,6+10,8} = 10^{-7,8}$$

Pour trouver l'état final de la réaction, on écrit le tableau d'avancement de la réaction en utilisant l'avancement volumique x:

En supposant x faible devant les concentrations initiales, on trouve  $x = 1.3 \times 10^{-6} \,\mathrm{mol \cdot L^{-1}}$ , donc x est bien négligeable par rapport aux concentrations initiales. L'état d'équilibre est donc :  $[[\mathrm{Ca}Y]^{2^-}] = [\mathrm{Ni}^{2^+}] = 1.3 \times 10^{-6} \,\mathrm{mol \cdot L^{-1}}$ ;  $[[\mathrm{Ni}Y]^{2^-}] = [\mathrm{Ca}^{2^+}] = 1.0 \times 10^{-2} \,\mathrm{mol \cdot L^{-1}}$ .

#### 2.5 Polycomplexation

On considère le mélange suivant :

- $100\,\mathrm{mL}$  de solution de nitrate d'argent AgNO<sub>3</sub> à la concentration  $c_{0,1}=1,0\times10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ .
- 10 mL de solution de thiosulfate de sodium  $Na_2S_2O_3$  à la concentration  $c_0$ ,  $2 = 1,0 \times 10^{-1}$  mol·L<sup>-1</sup>.

Il s'agit de déterminer la composition du système à l'équilibre sachant que l'ion  $Ag^+$  forme avec l'ion  $S_2O_3^{2-}$  les complexes  $[AgS_2O_3]^ (pK_{d1}=7,4)$ ;  $[Ag(S_2O_3)_2]^{3-}$   $(pK_{d2}=5,4)$ ;  $[Ag(S_2O_3)_3]^{5-}$   $(pK_{d3}=0,8)$ . Ces grandeurs sont relatives à des réactions de complexation **successives**.

À l'état initial, les concentrations sont :

- $[Ag^+]_0 = \frac{c_{0,1}*100}{110} = 9.1 \times 10^{-3} \text{ mol} \cdot L^{-1}$
- $--\left[S_2O_3^{\ 2^-}\right]_0 = \frac{c_{0,2}*10}{110} = 9.1 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$

La première réaction considérée est celle de la formation du complexe dont la constante successive de formation  $\beta_i$  est la plus grande (soit le  $\mathbf{p}_{di}^K$  le plus grand). C'est une **réaction prépondérante quantitative** :

$$Ag^{+} + S_{2}O_{3}^{2-} = [AgS_{2}O_{3}]^{-}$$

Cette RPQ conduit à la disparition des réactifs limitants. Donc ici, les ions sont complètement consommés, et on obtient une solution équivalente ne contenant que le complexe  $[AgS_2O_3]^-$  à la concentration  $c_1 = 9.1 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$ .

Traçons une échelle de p $K_d$ :



On se retrouve dans la situation d'un complexe amphotère. L'équilibre de contrôle s'écrit :

$$2[{\rm AgS_2O_3}]^- = [{\rm Ag(S_2O_3)_2}]^{3-} + {\rm Ag}^+ \qquad \qquad K^0 = \frac{K_{d1}}{K_{d2}} = 10^{-7,4+5,4} = 10^{-2}$$

Pour trouver l'état final de la réaction, on écrit le tableau d'avancement de la réaction en introduisant l'avancement volumique x:

En considérant l'état final, on peut écrire la constante d'équilibre de cette réaction :

$$K^0 = \frac{K_{d1}}{K_{d2}} = \frac{x^2}{(c_1 - 2x)^2}$$

Si l'on considère que 2x est négligeable devant  $c_1$ , on obtient :

$$K^0 = \frac{K_{d1}}{K_{d2}} = \frac{x^2}{(c_1)^2}$$

donc

$$x = c_1 \sqrt{K^0}$$

On trouve donc  $x = 9.1 \times 10^{-4} \, \mathrm{mol} \cdot \mathrm{L}^{-1}$ . Donc  $[\mathrm{Ag}^+] = [[\mathrm{Ag}(\mathrm{S}_2\mathrm{O}_3)_2]^{3-}] = 9.1 \times 10^{-4} \, \mathrm{mol} \cdot \mathrm{L}^{-1} \, \mathrm{et} \, [[\mathrm{Ag}\mathrm{S}_2\mathrm{O}_3]^-] = 9.1 \times 10^{-3} \, \mathrm{mol} \cdot \mathrm{L}^{-1}$ 

**Remarque :** On peut considérer que ce résultat n'est pas très satisfaisant, car x est tout juste 10 fois inférieur à  $c_1$ . Il est alors difficile de négliger 2x devant  $c_1$  (2x n'est pas inférieur à un dixième de  $c_1$ ). Dans ce cas, il faut résoudre l'équation sans faire cette approximation :

$$x^2(1 - 4K^0) + 4K^0c_1x - c_1^2K^0$$

On a donc:

$$x = \frac{-4K^0c_1 + \sqrt{(4K^0c_1)^2 + 4c_1^2K^0(1 - 4K^0)}}{2(1 - 4K^0)}$$

On trouve finalement  $x=7.6\times 10^{-4}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ . Donc  $[\mathrm{Ag^+}]=[[\mathrm{Ag(S_2O_3)_2}]^{3-}]=7.6\times 10^{-4}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$  et  $[[\mathrm{AgS_2O_3}]^-]=7.6\times 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ .