

K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 18. April 2025

Grundlagen der Geometrie und Topologie

Präsenzaufgaben 14.–17. April 2025

Stichworte: Wiederholung: Mengentheoretische Topologie

Aufgabe 1 Teilraum-Topologie

- a) Sei (M, \mathcal{O}) ein topologischer Raum. Sei $X \subset M$ eine beliebige Teilmenge und \mathcal{O}_X die Teilraum-Topologie, d.h. für eine Teilmenge $V \subset X$ gilt $V \in \mathcal{O}_X$ genau dann, wenn es ein $U \in \mathcal{O}$ gibt, so dass $V = X \cap U$. Zeigen Sie, dass dies in der Tat eine Topologie auf X definiert.
- b) Sei \mathcal{O} die gewöhnliche Topologie auf \mathbb{R}^2 . Zeigen Sie, die auf $\mathbb{R}^1 = \mathbb{R} \times \{0\} \subset \mathbb{R}^2$ induzierte Teilraum-Topologie stimmt mit der gewöhnlichen Topologie von \mathbb{R} überein.

Aufgabe 2 Kompaktheit

- a) Sei M ein kompakter topologischer Raum. Zeigen Sie, dass alle abgeschlossenen Teilmengen von M kompakt sind.
- b) Sei M ein Hausdorff-Raum. Zeigen Sie, dass alle kompakten Teilmengen von M abgeschlossen sind.
- c) Finden Sie ein Beispiel für einen topologischen Raum, welcher nicht Hausdorffsch ist, in dem nicht alle kompakten Teilmengen abgeschlossen sind.

Aufgabe 3 Z-Zusammenhang

Sei Z ein zusammenhängender topologischer Raum. Wir sagen M ist Z-zusammenhängend, falls für jedes Paar $x, y \in M$ eine stetige Abbildung $\phi : Z \to M$ mit $x, y \in \phi(Z)$ gibt.

a) Zeigen Sie, dass Z-zusammenhängende Mengen zusammenhängend sind.

Für Z = [0, 1] erhalten wir auf diese Weise den Begriff des Wegzusammenhangs zurück.

b) Gibt es ein zusammenhängendes Z, so dass Wegzusammenhang nicht dasselbe ist wie Z-Zusammenhang?