Elementos de Matemáticas y Aplicaciones - Entrega 2

Victoria Eugenia Torroja Rubio

13 de febrero de 2025

Ejercicio 1. Grupo diédrico.

- (a) Describe los elementos del grupo diédrico D_4 . ¿Cuál es el orden de D_4 ?
- (b) Construye la tabla de D_4 , indicando todas las operaciones.
- (c) Determina todos los subgrupos de D_4 .

Solución 1. (a) Tenemos que $D_4 = \{i, \sigma, \sigma^2, \sigma^3, \tau, \sigma \circ \tau, \sigma^2 \circ \tau, \sigma^3 \circ \tau\}$, donde σ es la rotación de 90 grados respecto del centro del polígono y τ es la simetría con respecto a una recta que pasa por el centro del polígono y uno de sus vértices. Así, tenemos que σ^2 es una rotación de 180 grados y σ^3 de 270 grados, respecto al centro del polígono. El elemento i designa la identidad. En general, el orden del grupo diédrico D_n es ord $(D_n) = 2n$. Así, en este caso tenemos que ord $(D_4) = 2 \cdot 4 = 8$.

(b) La operación es la de composición de funciones.

0	i	σ	σ^2	σ^3	au	$\sigma \circ \tau$	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$
i	i	σ	σ^2	σ^3	au	$\sigma \circ \tau$	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$
σ	σ	σ^2	σ^3	i	$\sigma^3 \circ \tau$		$\sigma \circ \tau$	$\sigma^2 \circ \tau$
σ^2	σ^2	σ^3	i	σ	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$	au	$\sigma \circ \tau$
σ^3	σ^3	i	σ	σ^2	$\sigma \circ \tau$	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$	τ
au	au	$\sigma \circ \tau$	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$	i	σ	σ^2	σ^3
$\sigma \circ \tau$	$\sigma \circ \tau$	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$	au	σ^3	i	σ	σ^2
$\sigma^2 \circ \tau$	$\sigma^2 \circ \tau$	$\sigma^3 \circ \tau$	au	$\sigma \circ \tau$	σ^2	σ^3	i	σ
$\sigma^3 \circ \tau$	$\sigma^3 \circ \tau$	τ	$\sigma \circ \tau$	$\sigma^2 \circ \tau$	σ	σ^2	$\sigma^3 \circ \tau$	i

Recordamos que la composición de funciones es asociativa. La primera fila y primera columna son triviales, pues consisten en combinar los diferentes elementos con la identidad. Similarmente, si $n,m\in\mathbb{N}$, tenemos que $\sigma^n\circ\sigma^m=\sigma^{n+m\mod 4}$. También es trivial que $\tau^2=i$. Cabe recordar que $\tau\circ\sigma=\sigma^{-1}\circ\tau$ y para k=1,2,3, fue visto en clase que $\tau\sigma^{4-k}=\sigma^k\tau$. Con estas herramientas podemos resolver la tabla. Por ejemplo, si n,m=1,2,3,

$$\begin{split} &\sigma^n \circ (\sigma^m \circ \tau) = \sigma^{n+m \mod 4} \circ \tau \\ &(\sigma^n \circ \tau) \circ (\sigma^m \circ \tau) = \sigma^n \circ \sigma^{4-m} \circ \tau^2 = \sigma^{n+4-m \mod 4} = \sigma^{n-m \mod 4} \\ &\tau \circ (\sigma^n \circ \tau) = \tau \circ \tau \circ \sigma^{4-n} = \sigma^{4-n}. \end{split}$$

- (c) En primer lugar definimos lo que es un subgrupo. Dado un grupo G, se dice que H ⊂ G es un subgrupo de G (H ≤ G) si H también es un grupo. Basta con comprobar que H contiene al elemento neutro y existen los elementos inversos. Dos sugrupos triviales de D₄ son {i} y D₄. Para encontrar el resto de subgrupos vamos a hacer uso del teorema de Lagrange, que dice que, dado un grupo G, si H ≤ G entonces |H| divide a |G|. Es decir, dado que |D₄| = 8, los posibles órdenes de los subgrupos de G son 1,2,4 y 8.
 - Subgrupos con orden 1 solo puede haber uno, en concreto, $\{i\}$. En efecto, si $H = \{h\}$ con $h \neq i$, tenemos que H no contiene al elemento neutro, por lo que no puede ser subgrupo de D_4 .
 - Ahora consideramos los subgrupos de orden 2. Estos están formados por los elementos que son su propia inversa, es decir, los $x \in D_4$ tales que $x^2 = i$. Esto sólo ocurre con los elementos: $\sigma^2, \tau, \sigma \circ \tau, \sigma^2 \circ \tau$ y $\sigma^3 \circ \tau$. Es decir, otros subgrupos de D_4 serán:

$$\left\{i,\sigma^2\right\}, \ \left\{i,\tau\right\}, \ \left\{i,\sigma\circ\tau\right\}, \ \left\{i,\sigma^2\circ\tau\right\}, \ \left\{i,\sigma^3\circ\tau\right\}.$$

■ Ahora vamos a estudiar los subgrupos de orden 4. Los subgrupos que buscamos emplen que tienen al menos dos elementos distintos a la identidad. Si $i, j \in \{1, 2, 3\}$ distintos y $\sigma^i, \sigma^j \in H$, tenemos que $\{i, \sigma, \sigma^2, \sigma^3\} \subset H$. Hemos encontrado otro subgrupo de D_4 :

$$\{i, \sigma, \sigma^2, \sigma^3\}$$
.

Si consideramos que $\tau, \sigma^i \in H$ $(i \in \{1, 2, 3\})$ tenemos que $H = D_4$, pues a partir de estos dos elementos podemos generar todos los elementos de D_4 . Si $\sigma^i \circ \tau, \sigma^j \circ \tau \in H$, con $i, j \in \{0, 1, 2, 3\}$, tenemos que, según vimos en el apartado (b):

$$(\sigma^i \circ \tau) \circ (\sigma^j \circ \tau) = \sigma^{i-j \mod 4}.$$

Si $i-j\equiv 1,3\mod 4$, tenemos, nuevamente, que $\sigma,\tau\in H$, por lo que $H=D_4$. En caso de que $i-j\equiv 2\mod 4$, pueden pasar dos cosas, en primer lugar que i=0 y j=2, obteniendo que

$$\{i, \tau, \sigma^2 \circ \tau, \sigma^2\} \subset H.$$

El otro posible caso es que i=1 y j=3. Así, tenemos que

$$\{i, \tau, \sigma^3 \circ \tau, \sigma^2\} \subset H.$$

En estos últimos dos casos, como tienen estructura de grupo y tienen orden 4, debe ser que son subgrupos de D_4 .

■ Dado que $|D_4| = 8$, es trivial que cualquier $H \le D_4$ con |H| = 8 debe cumplir que $H = D_4$. Por tanto, el único subgrupo de orden 8 será el propio D_4 .

Al haber agotado todas las posibilidades, concluimos que los posibles subgrupos de D_4 son:

$$\begin{cases} i \} \\ \{i, \sigma^2\} \\ \{i, \tau\} \end{cases}$$

$$\{i, \sigma \circ \tau\}$$

$$\{i, \sigma^2 \circ \tau\} \\ \{i, \sigma^3 \circ \tau\}$$

$$\{i, \sigma, \sigma^2, \sigma^3\}$$

$$\{i, \tau, \sigma^2 \circ \tau, \sigma^2\} \\ \{i, \tau, \sigma^3 \circ \tau, \sigma^3\}$$

$$D_4.$$

Ejercicio 2. Generación de teselaciones periódicas. Grupos cristalográficos.

- (a) Realizar un cuadro-resumen de los grupos cristalogáficos.
- (b) Buscar en la arquitectura o diseñar ejemplos de al menos 10 grupos cristalográficos diferentes que incluyan todos los tipos de retículos. Considerar para los retículos cuadrados, los mosaicos de la facultad.
- (c) Justificar los ejemplos del apartado anterior, indicando las características del grupo cristalográfico.

Solución 2. (a) En esta tabla se recoge la clasificación de los grupos cristalográficos.

Tipo de retículo	Grupo cristalográfico	Características
Oblicuo	p1	El mosaico está generado únicamente por tras- laciones.
Oblicuo	p2	El grupo puntual está formado por traslaciones
		y giros de 180 grados.
Rectangular	pm	El grupo puntual contiene una reflexión de eje
		horizontal o vertical, así como traslaciones.
Rectangular	pg	Admite traslaciones y rotaciones con desliza-
		miento.
Rectanguar	p2mm	Admite traslaciones, una reflexión de eje hori-
		zontal y otra de eje vertical, lo que implica que
	_	admite también rotaciones de 180 grados.
Rectangular	p2mg	Admite traslaciones, una reflexión respecto a
		un eje pero no respecto al eje perpendicular a
		este. Por ello, admite una reflexión con desli-
		zamiento respecto al eje perpendicular.
Rectangular	p2gg	Admite traslaciones y reflexiones con desliza-
		miento con ejes horizontales y verticales.
Rectangular centrado	cm	Admite traslaciones, reflexiones y reflexiones
		con deslizamiento.
Rectangular cerrado	c2mm	Admite traslaciones, rotaciones de 180 grados,
		reflexiones (con o sin deslizamiento), respecto
		de ejes perpendiculares.
Cuadrado	p4	Admite sólamente rotaciones de 90 grados y
		traslaciones.
Cuadrado	p4mm	Admite rotaciones de 90 grados y reflexiones
		(se pueden componer).
Cuadrado	p4gm	Admite rotaciones de 90 grados y una reflexión
		con deslizamiento respecto al eje perpendicular
		a un lado del retículo.
Hexagonal	p3	Admite rotaciones de 120 grados.
Hexagonal	p3m1	Admite rotaciones de 120 grados y reflexiones
		de eje perpendicular a un generador.
Hexagonal	p31m	Admite rotaciones de 120 grados y reflexiones
		con eje paralelo a uan dirección del retículo.
Hexagonal	p6	Admite rotaciones de 60 grados.
Hexagonal	p6m	Admite rotaciones de 60 grados y reflexiones.

1

(b)

¹Los retículos rectangulares y rectangulares centrados también admiten los grupos p1 y p2. Similarmente, los retículos cuadrados, al ser casos particulares de los retículos rectángulos, también admiten los grupos de los retículos rectángulos.