

考试科目: 高 等 代 数 1 考试时长: 120 分钟

开课单位: 命题教师:

数学系

题	号	1	2	3	4	5	6	7	8
分	值	32 分	12 分	8分	10 分	12 分	14 分	6分	6分

本试卷共 (8) 大题, 满分 (100) 分.

考生答卷应使用中文.

答卷要求书写规范,字迹清晰易辨认. 解题过程要求语句完整、逻辑通顺,数学符号和术语使用规范.

以下总设 K 为 $\mathbb C$ 的子域, m, n, s 表示正整数. 数学记号与课程讲义相同, 有疑问可以询问监考 老师.

第一部分 (共 44 分)

对于这一部分的每一个问题, 考生只需直接写出每道题的答案, 而不必做任何解释.

第 1 大题 (本题共 32 分) 请直接写出以下问题的答案. (不需要做进一步解释.)

- 1. 令 $X = \{0, 1, \pi, -\frac{\pi}{2}, -\pi\}, Y = \mathbb{R}, A = \{0, -\frac{\pi}{2}\} \subseteq X$. 定义映射 $f: X \to Y$; $x \mapsto \sin(x)$. 则 $f^{-1}(f(A)) = \underline{\hspace{1cm}}$.
- 2. 设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 8 \end{pmatrix}$, $a \in K$. 假设存在非零向量 $X \in K^{3 \times 1}$ 使得 AX = aX. 则 a 的所有可能取值有_____.
- 3. 设 $a, b, c, d \in K$ 满足 $ad bc \neq 0$. 则矩阵 $\begin{pmatrix} a & -b \\ c & -d \end{pmatrix}$ 的逆矩阵为 _____.
- 4. 写出两个相同大小的方阵 A, B, 它们均不可逆, 但 A+B 可逆.

 $\mathcal{D}(X,Y)$ 为两个集合,|X|=3,|Y|=4. 则定义域为 X 且陪域为 Y 的单射共有 ______个.

6.
$$\Rightarrow A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
. $\emptyset A^n = \underline{\qquad}$

- 7. 写出一个映射 $f: \mathbb{Z} \to \mathbb{Z}$, 要求它是满射但不是单射.
- 8. 对于 i=1, 2, 设 $a_i, b_i, c_i, d_i \in \mathbb{R}$. 为了使方程组 $\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$ 是空间中经过原点的一条直线的方程, 常数 a_i, b_i, c_i, d_i 应满足的充分必要条件是 _____.

第 2 大题 (本题共 12 分) 对下面每个论断, 说明其正确与否, 正确的可标记为 T, 错误的可标记为 F. (不需要解释理由.)

)设 $f: X \to Y$ 和 $g: Y \to Z$ 均为非空集合之间的映射. 如果 $g \circ f$ 有左逆, 且 Y 是有限集,则 Z 一定是有限集.

设 $A \in \mathbf{M}_{m \times n}(K)$. 如果齐次线性方程组 AX = 0 没有非零解,则对于任意 $b \in K^{m \times 1}$,线性方程组 AX = b 最多只有一个解,

设 $A, B \in \mathbf{M}_{m \times n}(K)$. 则 $\mathrm{rank}(A) = \mathrm{rank}(B)$ 当且仅当存在可逆矩阵 $P \in \mathbf{M}_n(K)$ 使得 B = AP

- 4. 设 $B \in \mathbf{M}_{3\times 4}(K)$, $A = B^T B$. 则齐次线性方程组 AX = 0 一定有非零解.
- 5. 设 V 是 K^n 的子空间, v_1, v_2, v_3, v_4, v_5 是 V 的一组基. 则向量组 v_1, v_3, v_4 线性无关.
- 6. 设 $V \in K^n$ 中的 4 维子空间, v_1 , v_2 , v_3 , v_4 , v_5 是 V 中的向量组. 如果 v_1 , v_2 , v_3 线性无关, v_3 , v_4 , v_5 也线性无关, 那么 v_1 , v_2 , v_4 , v_5 一定线性相关.

第二部分 (共 56 分)

对于下面的每一个问题, 考生需要尽可能详尽地写出答题细节, 以使每道题的解答清晰完整.

第 3 大题 (本题共 8 分) 设 $t \in \mathbb{R}$. 假设 \mathbb{R}^3 中的向量组 α , β , γ 线性相关, 其中

$$\alpha = (t, 1, 0), \beta = (1, t, 1), \gamma = (0, 1, t).$$

求 t 的所有可能取值.

第 4 大题 (本题共 10 分)

设
$$A \in \mathbf{M}_{m \times n}(K), B \in \mathbf{M}_{m \times s}(K), C \in \mathbf{M}_{n \times s}(K), M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}.$$

- 1. 证明 $rank(M) \ge rank(A) + rank(C)$, 并举例说明 > n = 的情况均有可能出现.
- 2. 证明: 如果 $\mathscr{C}(B) \subseteq \mathscr{C}(A)$, 则 $\operatorname{rank}(M) = \operatorname{rank}(A) + \operatorname{rank}(C)$.

第 5 大题 (本题共 12 分) 假设 4 阶方阵 A 的秩为 2. 假设线性方程组 AX=b 有三个解 η_1,η_2,η_3 线性无关,且满足

$$\eta_1 + \eta_2 = \begin{pmatrix} -1 \\ 2 \\ 5 \\ 1 \end{pmatrix}, \quad \eta_2 - 2\eta_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \\ -3 \end{pmatrix}, \quad 3\eta_1 + 5\eta_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ -1 \end{pmatrix}$$

- 1. 求零化空间 $\mathcal{N}(A)$ 的维数.
- 2. 求 η1, η2, η3.
- 3. 求 AX = 0 的一个基础解系.
- 4. 求 AX = b 的通解.

第 6 大题 (本题共 14 分) 设

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

设 $\mathcal{L} \subseteq \mathbf{M}_3(K)$ 是由 A_1 , A_2 , A_3 的所有 K-线性组合构成的子集.

- 1. 写出 \mathcal{L} 中包含的所有行最简形矩阵. (若 L 中没有行最简形矩阵, 回答"没有"即可.)
- 2. 证明: 集合 £ 之中的任意两个矩阵均可交换.
- 3. 证明: 如果矩阵 $D \in \mathbf{M}_3(K)$ 与 \mathcal{L} 中的矩阵均可交换, 则 $D \in \mathcal{L}$.
- 4. 用 $\mathbf{0}_{3\times3}$ 表示 3×3 的零矩阵. 在 $\mathbf{M}_3(K)$ 中是否存在矩阵 A 使得矩阵方程 $AX=\mathbf{0}_{3\times3}$ 的解集恰好等于集合 \mathcal{L} ? 为什么?

第 7 大题 (本题共 6 分) 设 $A=(a_{ij})\in \mathbf{M}_n(\mathbb{R})$ 满足以下三个条件:

- (a) A 的每一列中 n 个元素之和为 0.
- (b) A 的对角线上每个元素均大于 0. 即, 对于每个 $i \in [1, n]$, 均有 $a_{ii} > 0$.
- (c) A 的非对角线元素均小于 0. 即, 对于任意 $i,j\in [\![1,n]\!]$, 当 $i\neq j$ 时总有 $a_{ij}<0$.
- 1. 证明 A 不可逆.
- 2. 证明 rank(A) = n 1.

第 8 大题 (本题共 6 分) 设 $f: X \to Y$ 为两个非空集合间的映射.

- 1. 证明: 存在适当的集合 W 和映射 $g: X \to W, h: W \to Y$ 同时满足以下三个条件
 - (a) g 是满射;
 - (b) h 是单射;

- 2. 证明: 存在适当的集合 Z 和映射 $\alpha: X \to Z, \beta: Z \to Y$ 同时满足以下三个条件
 - (a) α 是单射;
 - (b) β 是满射;

