1 Определение задачи оптимального управления

Пусть имеется некоторая динамическая система, состояние которой в каждый момент времени t описывается вектор-функцией $\mathbf{x}(t) \in \mathbb{R}^n$. На состояние системы можно воздействовать, изменяя управляемые параметры $\mathbf{u}(t) \in \mathbf{U}_t \subseteq \mathbb{R}^r$. Будем рассматривать класс кусочно-непрерывных управлений $\mathbf{u}(t)$.

При заданном управлении $\mathbf{u}(t)$ состояние системы изменяется во времени согласно закону:

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}, \mathbf{u}) \tag{1}$$

Рассмотрим задачу оптимального управления данной системой: определить управление $\mathbf{u}^*(t)$, доставляющее экстремум критерию качества вида:

$$J(\mathbf{x}, \mathbf{u}) = \int_{t_0}^{t_1} F(t, \mathbf{x}(t), \mathbf{u}(t)) dt + F_0(t_0, t_1, \mathbf{x}(t_0), \mathbf{x}(t_1)) \to \max$$
(2)

При этом первое слагаемое (интегральная часть критерия) характеризует качество функционирования системы на всем промежутке управления $[t_0,t_1]$, тогда как второе слагаемое (терминальный член) — только конечный результат воздействия управления, определяемый начальным $\mathbf{x}(t_0)$ и конечным $\mathbf{x}(t_1)$ состояниями и, возможно, моментами начала и окончания управления t_0 и t_1 . В зависимости от физического смысла задачи интегральная или терминальная часть критерия может быть равна нулю.

На процесс функционирования системы могут накладываться дополнительные ограничения в форме краевых условий:

$$F_i(t_0, t_1, \mathbf{x}(t_0), \mathbf{x}(t_1)) = 0, i = 1..m,$$
 (3)

задающие множества допустимых начальных и конечных состояний системы и моментов начала и окончания управления. Важным частным случаем (2.3) являются условия вида:

$$\mathbf{x}(t_k) = \mathbf{x}_k, k = 1, 0, \tag{4}$$

соответствующие закрепленному левому или правому концу фазовой траектории.

Моменты времени начала и окончания управления, t_0 и t_1 , могут полагаться как известными, тогда говорят о задаче с фиксированным временем управления, или неизвестными (задача с нефиксированным моментом начала или окончания управления).

Необходимые условия оптимальности в данной задаче, точнее, необходимые условия сильного локального максимума даются принципом максимума Понтрягина.

Теорема. Пусть ($\mathbf{x}^*(t)$, $\mathbf{u}^*(t)$, t_0^* , t_1^*) — оптимальный процесс в предыдущей задаче. Тогда найдутся одновременно не равные нулю множители $\lambda = (\lambda_0, \dots, \lambda_m), \lambda_0 \geq 0$ и $\psi(t) = (\psi_1(t), \dots, \psi_n(t))$ такие, что выполнены следующие условия:

- 1. Функция Понтрягина задачи $H(t, \mathbf{x}, \mathbf{u}, \psi, \lambda_0) = \lambda_0 F(t, \mathbf{x}, \mathbf{u}) + (\psi, \mathbf{f}(t, \mathbf{x}, \mathbf{u}))$ при каждом $t \in [t_0, t_1]$ достигает максимума по \mathbf{u} в точке $\mathbf{u}^*(t)$, когда $\mathbf{x} = \mathbf{x}^*(t)$.
- 2. Вектор-функция $\psi(t)$ удовлетворяет сопряженной системе дифференциальных уравнений:

$$\dot{\psi}_i(t) = -\frac{\partial H(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \psi(t), \lambda_0)}{\partial x_i}, i = 1..n,$$

с краевыми условиями (условия трансверсальности):

$$\psi_i(t_0^*) = -(\lambda, \frac{\partial F_0(t_0^*, t_1^*, \mathbf{x}(t_0), \mathbf{x}(t_1))}{\partial x_i(t_0)});$$

$$\psi_i(t_1^*) = -(\lambda, \frac{\partial F_0(t_0^*, t_1^*, \mathbf{x}(t_0), \mathbf{x}(t_1))}{\partial x_i(t_1)}).$$

3. Выполнены условия на подвижные концы:

$$H(t, \mathbf{x}, \mathbf{u}, \psi, \lambda_0)|_{t=t_0} = (\lambda, \frac{\partial F_0(t_0^*, t_1^*, \mathbf{x}(t_0), \mathbf{x}(t_1))}{\partial t_0});$$

$$H(t, \mathbf{x}, \mathbf{u}, \psi, \lambda_0)|_{t=t_1} = -(\lambda, \frac{\partial F_0(t_0^*, t_1^*, \mathbf{x}(t_0), \mathbf{x}(t_1))}{\partial t_1}).$$

Замечания.

- 1. Множитель Лагранжа λ_0 определяет чувствительность оптимального решения задачи к виду интегральной части функционала. В вырожденном случае совокупность ограничений задачи такова, что оптимальное управление $\mathbf{u}^*(t)$ не зависит от вида интеграла $F(t, \mathbf{x}(t), \mathbf{u}(t))$. При этом из условий принципа максимума следует, что $\lambda_0 = 0$. В невырожденном случае $\lambda_0 > 0$, поэтому ее можно положить равной 1 (разделив функцию H на 0). При этом условия принципа максимума не изменятся.
- 2. Для задачи с закрепленными концами сопряженная функция $\psi(t)$ имеет свободные концы, т.е. соответствующие условия трансверсальности отсутствуют. Обратно, для задачи со свободными концами сопряженная функция имеет закрепленные концы, определяемые соотношениями:

$$\psi_i(t_0) = -\frac{\partial F_0(t_0^*, t_1^*, \mathbf{x}(t_0), \mathbf{x}(t_1))}{\partial x_i(t_0)};$$

$$\psi_i(t_1) = \frac{\partial F_0(t_0^*, t_1^*, \mathbf{x}(t_0), \mathbf{x}(t_1))}{\partial x_i(t_1)}.$$