Design and Analysis of Algorithms

Lecture 09: Flow Networks

Ahmed Hamdy

Agenda

- What is a flow network?
- Ford-Fulkerson method
- Residual network
- Augmenting paths
- Min-cut
- Edmonds-Karp algorithm

Real life application

 Find max water rate flowing from source (Vancouver) to sink (Winnipeg) in the shown pipe network based on the shown capacities.

- Can you guess an upper-bound for what we can get from just looking?
- Iteratively how do you come up with the best solution?
- Between iterations, how to simplify and prepare the network for the next iteration?

What is a flow network?

- Flow network is a directed graph G(V, E)
- Each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$. No self-loops.
- If there is $(u, v) \in E$, then there is no edge (v, u) in reverse direction, and c(v, u) = 0.
- Typically, there is source s and sink t.

What is a flow?

- Flow is a real-valued function $f: V \times V \to \mathbb{R}$ that satisfies:
 - Capacity constraint: For all $u, v \in E$, we require

$$0 \le f(u, v) \le c(u, v)$$

- For all $u, v \in V - \{s, t\}$, we require that for u:

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

Modeling with antiparallel edges

Antiparallel edge:

Edges (v_1, v_2) and (v_2, v_1) are called antiparallel

Workaround:

Split one of the edges using a new vertex

Modeling with multiple sources/sinks

- Add a new source
 s and sink t.
- Connect s to all sources with infinite capacity edges.
- Connect all sinks to
 t with infinite
 capacity edges.
- Solve for s and t instead.

Ford-Fulkerson method

- Method not algorithm because it has several implementations with different complexities
- Greedy, greedy, greedy!!!
- Main ideas
 - Residual networks
 - Augmenting paths
 - Cuts FORD-FULKERSON-METHOD (G, s, t)1 initialize flow f to 0

 2 **while** there exists an augmenting path p in the residual network G_f 3 augment flow f along p4 **return** f

Residual network

- Residual network G_f contains the residual capacities from G
- It may contain extra edges to allow for decreasing previously-allocated flows
- Kind of similar to a flow network, except it allows for reversed edges
- Now, why there is no reversed edges in flow networks??

If
$$(u, v)$$
 is an edge in E, then the edge capacity should be reduced to $c_f(u, v) = c(u, v) - f(u, v)$.

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E, \\ f(v, u) & \text{if } (v, u) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

If (v, u) is an edge in E, then the reversed edge should have capacity $c_f(u, v) = f(v, u)$.

Augmenting paths

Augmenting path p is a simple path from s to t in the residual A path is simple if network G_f all the vertices on the path are distinct. 12/12 11/14 (a) (b) Residual networks Flow networks 11/14

Figure 26.4 (a) The flow network G and flow f of Figure 26.1(b). (b) The residual network G_f with augmenting path p shaded; its residual capacity is $c_f(p) = c_f(v_2, v_3) = 4$. Edges with residual capacity equal to 0, such as (v_1, v_3) , are not shown, a convention we follow in the remainder of this section. (c) The flow in G that results from augmenting along path p by its residual capacity 4. Edges carrying no flow, such as (v_3, v_2) , are labeled only by their capacity, another convention we follow throughout. (d) The residual network induced by the flow in (c).

Cuts of flow networks

- How to know when the algorithm terminates??
- A cut (S, T) of flow network G(V, E) is a partition of V into two sets S and T = V S
- Net flow f(S,T) across the cut (S,T) is defined as

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Summation of all flows on edges starting from nodes in S and crossing to nodes in T.

In the shown example, it is 12 + 11.

Summation of all flows on edges starting from nodes in T and going back to nodes in S.

In the shown example, it

is 4.

All cuts result in net flow = 19 (not optimal)

Cuts of flow networks

The capacity of the cut (S, T) is

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

 A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network

Max-flow min-cut

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Basic Ford-Fulkerson algorithm

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

- Path-finding is performed using either BFS or DFS, thus O(V + E) = O(E)
- The while loop is executed $|f|^*$ (if every iteration just adds on unit value), where f^* is the maximum flow
- Overall complexity is O(E | f * |)

FFA

Figure 26.6 The execution of the basic Ford-Fulkerson algorithm. (a)–(e) Successive iterations of the **while** loop. The left side of each part shows the residual network G_f from line 3 with a shaded augmenting path p. The right side of each part shows the new flow f that results from augmenting f by f_p . The residual network in (a) is the input network G.

FFA

Worst case for FFA

• | f * | in this case is 2,000,000

Edmonds-Karp algorithm

Uses BFS for augmenting path (shortest path)

• Total number of flow augmentations is O(VE), thus overall complexity $O(VE^2)$

How does it perform with the worst case for FFA?