

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Arquitecturas Avançadas de Computadores

Descrição do processador $\mu { m Risc}$ a funcionar em pipeline

Guilherme Branco Teixeira n.º 70214 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

${\rm \acute{I}ndice}$

1	Introdução	1			
2	Métodos de resolução para dependências e conflitos				
	2.1 Conflitos de dados: data hazards	1			
	2.2 Conflitos de dados, data hazards	1			
	2.3 Conflitos de controlo: control hazards	1			
	2.4 Conflitos de controlo, control hazards	2			
3	Estrutura do Processador	2			
4	Testes de Performance				
5	Conclusões	3			
6	Anexos	4			

1 Introdução

Com este trabalho laboratorial pretende-se projectar um processador μ Risc com funcionamento em pipeline. O processador possui 4 andares de pipelining: no primeiro andar é feito o instruction fetch (IF), no segundo andar é feito o instruction decode (ID) e o operand fetch (OF), no terceiro andar são executadas operações da ALU (EX) e de acesso à memória de dados (MEM) e, por fim, no quarto é feita a escrita no banco de registos, o write back (WB). Com o funcionamento em pipelining podem ocorrer dois tipos de conflitos - de dados (data hazards) e de controlo (control hazards).

2 Métodos de resolução para dependências e conflitos

Em primeiro lugar apresentam-se os métodos e técnicas de resolução dos conflitos de controlo e dados. Em segundo lugar quais as técnicas que foram de facto utilizadas.

2.1 Conflitos de dados: data hazards

Um conflito de dados surge quando uma instrução depende dos resultados da instrução anterior, de forma a afectar o resultado obtido pela linha de processamento.

referir que no nosso caso so ha conflitos do tipo RAW

2.2 Conflitos de dados, data hazards

Conflito que surge quando uma instrução depende dos resultados de uma instrução anterior, de forma a afectar o resultado obtido pela linha de processamento.

- Solução 1: Bloqueio dos andares do pipeline, stall, até que os dados correctos estejam disponíveis;
- Solução 2: Se o dado correcto existir algures no *pipeline*, estabelece-se um *bypass* para o andar correcto, aplicando a técnica de *forwarding*;
- **Solução 3**: Escalonar/reordenar as instruções, se a ordenação for feita pelo compilador, tem-se um escalonamento estático, se for feita pelo *hardware*, escalonamento dinâmico;

2.3 Conflitos de controlo: control hazards

Um conflito de controlo surge quando uma instrução de controlo condicional depende dos resultados de uma instrução anterior, de uma forma a impedir um predição correcta. Analisando as soluções apresentadas verificou-se que o escalonamento estático e dinâmico não seria a solução desejada devido a complexidade para um processador de 4 andares comparativamente às outras anteriores. Ponderou-se inicialmente a utilização de stalls devido à facilidade de implementação mas devido ao inconveniente de reduzir o número médio de instruções por ciclo, optou-se pela segunda solução de forma a aumentar o número médio de instruções por ciclo como também a complexidade de implementação.

nao impede a

2.4 Conflitos de controlo, control hazards

Conflito que surge quando uma instrução de controlo condicional depende dos resultados de uma instrução anterior, de uma forma a impedir um predição correcta.

- Solução 1: BTB, foi construída uma BTB com 9 bits de largura e apenas um bit de predição (BPB);
- Solução 2: forwarding de flags, após se obter o resultado necessário para a predição, establece-se um bypass para verificar a condição do salto;

explicar o que é uma BTB, explicar BPB

3 Estrutura do Processador

4 Testes de Performance

Tabela 1: Diversas topologias do processador que foram testadas.

Processador #1	com forwarding de dados e BTB
Processador #2	sem forwarding de dados, com NOPS e com BTB
Processador #3	com forwarding de dados e sem BTB
Processador #4	sem forwarding de dados e sem BTB

Tabela 2: Resultados obtidos para o teste#1.

Teste #1	Frequência [MHz]	Número de Ciclos de Execução	Número de Predicções Falhadas	Tempo de Excução [μs]
Processador #1	211,338	57	0	0,2697
Processador #2	211,338	114	0	0,5394
Processador #3	285,608	57	0	0,1996
Processador #4	285,608	114	0	0,3991

Tabela 3: Resultados obtidos para o teste#2.

Teste #2	Frequência [MHz]	Número de Ciclos de Execução	Número de Predicções Falhadas	Tempo de Excução [μs]
Processador #1	211,338	2358	108	11,1575
Processador #2	211,338	3044	108	14,4035
Processador #3	285,608	2705	463	9,4710
Processador #4	285,608	3323	463	11,6348

Tabela 4: Resultados obtidos para o teste#3.

Teste #3	Frequência [MHz]	Número de Ciclos de Execução	Número de Predicções Falhadas	Tempo de Excução [μs]
Processador #1	211,338	1058	122	5,0062
Processador #2	211,338	1582	122	7,4856
Processador #3	285,608	1123	187	3,9320
Processador #4	285,608	1647	187	5,7666

5 Conclusões

6 Anexos

Todo list

referir que no nosso caso so ha conflitos do tipo RAW	1
nao impede a prediccao	1
explicar o que é uma BTB, explicar BPB	2