Computational and Numerical Methods

Sub Code: CS374, Lab 1 BTech(CS), 5th Semester

- 1. Let α be a smallest positive root of $f(x)=1-x+\sin x=0$. Find the interval [a,b] containing α and for which the bisection method will converge to α . Then estimate the number of iterates needed to find α with an error tolerance of 5×10^{-8} . Write MATLAB codes to solve this problem.
- 2. Approximate $f(x) = e^{-x}$ using Taylor polynomials of a given degree n (Where n is input) on the interval $-1 \le x \le 1$; a = 0. Calculate your approximation at 21 evenly spaced points in the interval [-1,1]. The Taylor polynomial of degree n is

$$p_n(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^n}{n!}f^n(a)$$

Then find the error approximation $f(x) - p_n(x)$ in [-1, 1] with error tolerance of 10^{-9} . Graph the error approximation using those points in [-1, 1]. Find the value of n in [-1, 1] for which $|f(x) - p_n(x)| \le 10^{-9}$. Write a MATLAB code to solve the problem.

Check your result whether you get the same value of n from the Taylor's remainder term

$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

for $-1 \le x \le 1$ and c an unknown between 0 and x.