苏州大学 <u>物理化学下(一)</u>课程期末试卷 A 共 7 页

序号

考试形式 闭 卷 2015年7月(2012级应化、师范、化学专业)

院系: 姓名:	材料与化学化工学部	年级: 学号:		专业: 成绩:		
一、 送 1. 2 %	选择题(共 10 题 20 分)				
p [⊖] 和 29	98 K 下,把 Pb 和 Cu(Ac) ₂ 溶	ទ 液发生的反应安	非为电池,当	获得可逆电	功	
(A	91.84 kJ 时,电池同时吸热) Δ _r U>0, Δ _r S>0) Δ _r U>0, Δ _r S<0	213.6 kJ,因此该 (B) Δ _r U<0 (D) Δ _r U<0), $\Delta_{\rm r} S > 0$		()
2. 2 分 下	分 列两电池的电动势之间的关	系为:			()
(1) Pt	$\mid H_2(p^{\ominus}) \mid HCl(0.001 \text{ mol } \bullet \text{ k})$	g ⁻¹) HCl(0.01 mo	$1 \cdot kg^{-1}$) $H_2(p)$	o [⊕]) Pt		
(2) Pt	$\mid \mathrm{H}_2(p^\ominus) \mid \mathrm{HCl}(0.001 \; \mathrm{mol} \; \bullet \; \mathrm{k})$	g^{-1}) $\operatorname{Cl}_2(p^{\ominus})$ - $\operatorname{Cl}_2($	<i>p</i> [⊕]) HCl(0.01	l mol • kg ⁻¹)	$\mid H_2(p^{\ominus})$) Pt
,	A) $E_1 = E_2$ C) $E_1 < E_2$		E ₁ > E ₂ 无法判断			
	分 补偿法(对消法)测定可逆 (A) 消除电极上的副反应 (B) 减少标准电池的损耗 (C) 在可逆情况下测定电池 (D) 简便易行		主要为了:		())
4. 2 3	分					
1-	1 级对峙反应 $A \stackrel{k_1}{\smile k_2} B$	由纯 A 开始反	反应,当进行至	到 A 和 B	浓度相等	拿的时
间为:	(正、逆向反应速率常数分别	引为 k_1 , k_2)			()
	$(A) t = \ln \frac{k_1}{k_2}$		(B) t	$= \frac{1}{k_1 - k_2} \ln \frac{1}{k_1 - k_2}$	$1\frac{k_1}{k_2}$	
	(C) $t = \frac{1}{k_1 + k_2} \ln \frac{2k_1}{k_1 - k_2}$		(D) t =	$=\frac{1}{k_1+k_2}\ln$	$\frac{k_1}{k_1 - k_2}$	

	2 分 某双分子反应的速率常数 5很小。则说明:	b 为 k ,根据阿仑尼乌斯公式 $k=A\exp(-E_a/RT)$,若指前		的实)	
	(A) 表观活化能很大	(B) 活化熵有绝对值较大的负值 值 (D) 活化焓有绝对值较大的负值		,	
6.	2 分 Lindemann 单分子反应标 (A) 立即分解 (C) 发出辐射		()	
7.	2分 设某基元反应在500K时	「实验活化能为 83.14 kJ•moΓ ¹ ,则此反应的临界能为	J:		
	(A) 81.06 kJ • moΓ ¹ (C) 162.1 kJ • moΓ ¹		()	
8.	2 分过渡态理论的速率常数的	可公式为 $k = (k_B T / h)(q^{\neq} / q_A q_B) \exp(-\Delta E_0 / RT)$,下这	戈说法 正	E确的是 ()
	(A) <i>q</i> [≠] 不是过渡态的全面	己分函数			
	(B) q _A , q _B 是任意体积中分	子的配分函数			
	$(C)q_A, q_B, q^{\neq}$ 均是分子	在基态时的配分函数			
	$(D)(k_{\rm B}T/h)$ 是过渡态 M	1 [≠] 中任一个振动自由度配分函数			
9.	2 分 对于有过量 KI 存在的 A (A) K ₃ [Fe(CN) ₆] (B) MgSO ₄ (C) FeCl ₃ (D) NaCl	AgI 溶液,电解质聚沉能力最强的是: ()	
10.	2 分 使用瑞利 (Reyleigh) 散射 (A) 溶胶粒子的大小 (B) 溶胶粒子的形状 (C) 测量散射光的波长 (D) 测量散射光的振幅)		

11.	2 分
	无限稀释 LiCl 水溶液的摩尔电导率为 $115.03 \times 10^{-4}~{ m S\cdot m^2\cdot mol^{-1}}$,在 298 K 时,测得 LiCl 稀溶液
中I	i [†] 的迁移数为 0.3364,则 CΓ离子的摩尔电导率λ _m (CΓ)为:
	2分 在其他条件不变时,电解质溶液的摩尔电导率随溶液浓度的增加而(填入增大、、、、先增后减)。
13.	2 分
	将反应 $Ag_2O(s) = 2Ag(s) + \frac{1}{2}O_2(g)$ 设计成电池的表示式为:。
14.	1 分 298 K 时分子能量大于 20 kJ·mol¹的百分数为。
15.	2 分
	对于摩尔熵,用统计力学方法可计算不同运动形式的典型值如下, $S_{\mathrm{m}}^{\ominus}(\mathbf{T})=150\ \mathrm{J}\cdot\mathrm{K}^{^{1}}\cdot\mathrm{mol}^{^{1}}$,转动及
振动	物毎个自由度相应有 $S_{\mathfrak{m}}^{\Theta}$ (转) =30 $\mathbf{J} \cdot \mathbf{K}^{1} \cdot mol^{1}$, $S_{\mathfrak{m}}^{\Theta}$ (振) =1 $\mathbf{J} \cdot \mathbf{K}^{1} \cdot mol^{1}$,反应 A+BC 生成非线性过渡
态时	ர,其Δ [≠] S [⊖] _m =。
16.	2 分
	$K_3[Fe(C_2O_4)_3]$ 溶液,经光作用可使 Fe^{3+} 被还原,而 $C_2O_4^{2-}$ 被氧化, 已知 λ
=3	13 nm, ϕ =1.24 则欲使在 36.5 min 内产生 1.3×10^{-5} mol Fe ²⁺ ,吸收光强 I_a 应为。
17.	2 分 25℃时,水的表面张力为 0.071 97 N•m ⁻¹ ,将一玻璃管插入水中,水面上升 5 cm,此毛细管半径为 。
18.	2 分 用化学凝聚法制成 Fe(OH) ₃ 胶体的反应如下: FeCl ₃ +3H ₂ O =Fe(OH) ₃ (溶胶) +3HCl 溶液中一部分 Fe(OH) ₃ 有如下反应: Fe(OH) ₃ +HCl =FeOCl +2H ₂ O FeOCl =FeO ⁺ +Cl

二、填空题(共8题 15分)

则 Fe(OH)3 溶胶的胶团结构为_____。

三、计算题(共5题 45分)

19. 5分

下列电池在 298 K 时, E=0.3394 V, m=0.134 $mol \cdot kg^{-1}$, $E^{\ominus}=0.2224$ V,试计算 HCl 在该浓度时的 \mathfrak{L} 。

Pt $\mid H_2(p^{\ominus}) \mid HCl(m) \mid AgCl(s) \mid Ag(s)$

20.10 分

我们试验成功用电解法生产氧化亚铜, 其工艺条件如下:

电解液为 15% NaCl + 1-3 g • dm⁻³ NaOH 溶液, 阳极为电解铜, 阴极为紫铜, 电流密度为 $5 \, \text{A} \cdot \text{dm}^{-2}$, 电解液温度为 $70 \, ^{\circ} \text{C}$ 。外加电压为 $1.5 \, \text{V}$,通入电解槽的电流强度为 $95 \, \text{A}$,电解 $7 \, \text{h}$,得到 $1.66 \, \text{kg}$ 氧化亚铜。

- (1) 写出阳极、阴极反应和电解反应
- (2) 计算电流效率(Cu 的相对原子量为 63.55)
- (3) 计算电解反应的平衡常数。(已知 Cu_2O 和 $H_2O(1)$ 的 $\Delta_iG_{m}^{\ominus}$ 分别为 -142.26 和 -237.23 $kJ \cdot mo\Gamma^1$)

21.10 分

对某一特定的一级反应在 27℃反应时,经过 $5\,000\,\mathrm{s}$ 后,反应物的浓度减少到初始值的一半,在 $37\,\mathrm{℃}$ 时,经过 $1\,000\,\mathrm{s}$,浓度就减半,计算:

- (1)27℃时的反应速率常数
- (2) 在 37℃反应时, 当反应物浓度降低到其初始值的四分之一时所需的时间
- (3) 该反应的活化能

22.10 分

650 K 时,双分子气相反应,A=0.0100 $\mathrm{mol}^{-1} \bullet \mathrm{dm}^3 \bullet \mathrm{s}^{-1}$ (指前因子)且 $\Delta^{\neq}S_{\mathrm{m}}$ =79.20 $\mathrm{J} \bullet \mathrm{K}^{-1} \bullet \mathrm{mol}^{-1}$ 。若选取压力为标准态压力 p^\ominus ,则求 $\Delta^{\neq}S_{\mathrm{m}}^{\ominus}$ 。

23.10 分

水在 40°C下若以半径为 $r=1\times10^3$ m 的小液滴存在,试计算其饱和蒸气压增加的百分率。已知液滴的附加压力 $p_s=1.39\times10^7$ N·m⁻²,水在 40°C的摩尔体积 $V_m=1.84\times10^{-5}$ m³·mol⁻¹。

四、问答题(共2题 20分)

24. 10 分

从 Langmuir 吸附等温式出发,证明当覆盖度很小时,将 $\ln (\theta/p)$ 对 θ 作图应得一直线,直线的斜率为 -1。如果在表面覆盖度很小时,将 $\ln (V/p)$ 对 V 作图也应得一直线,此直线的斜率等于什么? (V 为气体吸附的体积,p 为吸附平衡时的压力)(数学提示:因为 x<<1 时, $\ln(1-x)=-x$)

25.10 分

汞蒸气存在下的乙烯加氢反应

$$C_2H_4+H_2 \xrightarrow{Hg} C_2H_6$$

按下反应历程进行:

Hg + H₂
$$\xrightarrow{k_1}$$
 Hg+2H
H+C₂H₄ $\xrightarrow{k_2}$ C₂H₅
C₂H₅+H₂ $\xrightarrow{k_3}$ C₂H₆+H
H+H+Hg $\xrightarrow{k_4}$ H₂+Hg

求 C_2H_6 之生成速率表示式、表观活化能 E_a 与各元反应活化能的关系。