题目	甲、乙、丙三人各向目标射击一发子弹,以 A 、 B 与 C 分别表示甲、乙、丙命中目标,以下表示不多于两人命中目标的是 ()。
A	\overline{ABC}
В	$\overline{A \cup B \cup C}$
С	$AB \cup AC \cup BC$
D	$A \cup B \cup C$

题目	将 n 个相互独立且可靠性为 p 的元件相互并联起来组成系统 S ,则
	系统 S 的可靠性为 $($
A	p^n
В	$1-(1-p)^n$
С	$1-p^n$
D	$(1-p)^n$

题目	设连续型随机变量 X 的密度函数满足 $f(x) = f(-x)$,则当 $x > 0$
	时, 分布函数 <i>F(x)</i> 一定有 ()
A	$F(-x) = \frac{1}{2} - \int_0^x f(u) du$
В	$F(-x) = 1 - \int_0^x f(u) du$
С	F(x) = F(-x)
D	F(-x) = 2F(x) - 1

题目	二维随机变量 (X,Y) 服从单位圆盘上的均匀分布,则下面结论正确的是()
A	X 与Y 是独立同分布的随机变量
В	X 与Y 是独立但分布不同的随机变量
С	X 与Y 是不独立但同分布的随机变量

$\mid D \mid X \Rightarrow Y$ 是不独立也不同分布的随机变量
--

题目	对任意两个独立且发生概率均大于零的事件 $A和B$,不正确的是()
A	$ar{A}$ 与 $ar{B}$ 一定独立
В	A与 B 一定互不相容
С	A 与 $ar{B}$ 一定独立
D	$ar{A}$ 与 B 一定独立

0	
题目	如果两个独立的随机变量 X_1 和 X_2 的分布函数分别为 $F_1(x)$ 和
	$F_2(x)$,那么 $X = \min\{X_1, X_2\}$ 的分布函数是()
A	$F_1(x)F_2(x)$
В	$(1-F_1(x))(1-F_1(x))$
С	$1 - F_1(x)F_2(x)$
D	$1 - (1 - F_1(x))(1 - F_2(x))$

题目	两个盒子中各放了十只球,球颜色都是一只红球九只黑球。
	现从第一个盒中随机取出两球放入第二个盒中,然后再从第
	二个盒中随机抽取两球。则"第二次抽出的球是一红一黑"
	的概率"和"第二次抽出的球是一红一黑条件下,第一次抽
	取的球也是一红一黑"的概率是()
A	$\frac{15}{32}$ π $\frac{25}{146}$
В	$\frac{5}{24} \pi \frac{47}{120}$
С	$\frac{32}{165}$ $\pi \frac{5}{16}$
D	$\frac{63}{125}$ $\frac{7}{15}$
	14J 1J

题目	设离散型随机变量 X 与 Y 独立,且都服从相同的分布律。则一定成
	立的是()

A	$P(X=Y) = \frac{1}{2}$
В	P(X=Y)=1
С	$P(X > Y) = P(X < Y) = \frac{1}{2}$
D	P(X > Y) = P(X < Y)

题目	设随机变量 X 的密度函数 $f_{X}(x)$ 。令 $Y = -2X$,则 Y 的密度函数
	$f_{Y}(y)$ 为()。
A	$2f_X(-2y)$
В	$2f_X\left(-rac{y}{2} ight)$
С	$\frac{1}{2}f_{X}\left(-\frac{y}{2}\right)$
D	$-\frac{1}{2}f_{X}\left(-\frac{y}{2}\right)$

题目	设随机变量 X 服从参数为 p 的 0-1 分布,则
	E(X)= ()
A	p
В	2p
С	1
D	0

11	
题目	对任意随机变量 X, 若 E(X)存在, 则
	$E\{E[E(X)]\}=(\)$
A	0
В	E(X)
С	1
D	不能确定

题目	设随机变量X的概率密度为

	$f(x) = \begin{cases} 1 - 1 - x , & 0 < x < 2 \\ 0, & 其它 \end{cases}$ 则 E(X)= ()
A	0
В	2
С	1
D	0.5

题目	设随机变量 X 服从泊松分布,且 P{X=1}=P{X=2},则D(X)=()
A	1
В	0.5
С	0.75
D	2

题目	设(X,Y)服从二维正态分布,则下列条件中不
	是 X, Y 相互独立的充要条件是()
A	X,Y 不相关
В	E(XY)=E(X)E(Y)
С	cov(X,Y)=0
D	E(X)=E(Y)=0

15	
题目	设随机变量(X,Y)具有概率密度
	$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2\\ 0, & \text{!!} \\ \vdots \end{cases}$
	则 $\rho_{XY} = ()$
A	1
	11
В	1
С	_1
	11
D	0.5

设总体 X 服从参数为 $\frac{1}{2}$ 的指数分布,
X_1, X_2, \cdots, X_n 为来自总体 X 的一个样本,则
当 $n \to \infty$ 时,由大数定理可得 $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$
依概率收敛于 ()
0.5
0
2
1

题目	对于给定的正数 $\alpha(0<\alpha<1)$, 设 z_{α} ,
	$\chi^2_{lpha}(n)$, $t_{lpha}(n)$, $F_{lpha}(n_1,n_2)$ 分别是标准正态
	分布, $\chi^2(n)$, $t(n)$, $F(n_1,n_2)$ 分布的上 α 分位点,则下面的结论中不正确的是()
A	$z_{1-\alpha} = -z_{\alpha}$
В	$\chi_{1-\alpha}^2(n) = -\chi_{\alpha}^2(n)$
С	$t_{1-\alpha}(n) = -t_{\alpha}(n)$
D	$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

题目	设总体 X 服从正态分布 N(10,32),
	X_1, X_2, \cdots, X_6 是它的一个样本,
	$\overline{X} = \frac{1}{6} \sum_{i=1}^{6} X_{i}$, 则由中心极限定理可得
	$P\{\overline{X} > 11\} = ()$

A	$1-\varphi(\frac{\sqrt{6}}{3})$
В	$\varphi(\frac{\sqrt{6}}{3})$
С	$\varphi(\frac{\sqrt{2}}{3})$
D	$1-\varphi(\frac{\sqrt{2}}{3})$

题目	做点估计时,下述哪些是我们对估计量的要
	求 ()
A	估计是渐近相合估计
В	估计是相合估计
С	估计是无偏估计
D	以上都对

题目	设 X 服从 $b(1,p)$ 分布。令 $X_1, X_2,, X_n$ 为简单样本,则 p 的矩估计,最佳选项是()
A	\overline{X}
В	$\frac{1+\sqrt{1-4S^2}}{2}$
С	$\frac{1-\sqrt{1-4S^2}}{2}$
D	X ₁

题目	设随机变量 $X \sim \pi(\lambda)$,这里 $\lambda > 0$ 。 $X_1,, X_n$ 是简单样本,则 λ 的最大似然估计为()
A	\overline{X}
В	S
С	$\sqrt{B_2}$,这里 B_2 是样本二阶中心矩
D	以上都对

题目	设随机变量 X 方差存在且有限,则对均值μ
	以及 σ^2 的估计,下述说法不正确的是()
A	X̄是μ的无偏估计

В	S ² 是σ ² 的无偏估计
С	S是σ的无偏估计
D	矩法估计与最大似然估计都是相合估计

题目	设 $X \sim N(\mu, 100^2)$,随机抽取一组容量为 25
	的样本。在显著性水平 $\alpha = 0.05$ 下,检验问题
	H: $\mu \ge 100$ vs. K: $\mu < 100$ 的拒绝域是()
A	$W = (-\infty, 100 - 20u_{0.025})$
	$\cup (100 + 20u_{0.025}, \infty)$
В	$W = \left(-\infty, 100 - 20t_{0.025}\right)$
	$\cup \left(100+20t_{0.025},\infty\right)$
С	$W = (-\infty, 100 - 20t_{0.05})$
D	$W = (-\infty, 100 - 20u_{0.05})$

24	
题目	某牛奶厂生产一种盒装牛奶,其容量 $X \sim N(100, \sigma^2)$, μ 的单位是 ml , σ^2 的单位是 ml^2 。根据经验,总体方差不超过 3^2 。某日,为了检验产品是否合格,质检部门随机抽取了 16 盒牛奶进行检验,检验结果是平均容量为 $103~ml$,样本方差为 $13.84ml^2$ 。在显著性水平 0.05 下,检验问题 H_0 : $\sigma^2 \leq 9~vs$. H_1 : $\sigma^2 > 9~$ 的拒绝域为 ()。
A	$S^2 \in \left(\frac{3}{5}\chi_{0.05}^2(15), \infty\right)$
В	$S^2 \in \left(\frac{9}{16}\chi_{0.05}^2(16), \infty\right)$
С	$S^2 \in \left(\frac{3}{5}\chi_{0.025}^2(15), \infty\right)$
D	$S^2 \in \left(\frac{9}{16}\chi_{0.025}^2(16), \infty\right)$

23	
题目	用铂球测万有引力常数值(单位: 10^{-11} m³/(kg·s²))。所得观察数据为 6.661,6.661,6.667,6.667,6.664。设测定值总体X ~ N(μ , σ ²),其中 σ ²未知。则 μ 的置信水平为 0.95 的置信区间()
A	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.05}(5), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.05}(5)\right)$
В	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.025}(5), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.025}(5)\right)$
С	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.05}(4), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.05}(4)\right)$

D	/ 21/5 21/5	
ש	$\left(6.664 - \frac{3\sqrt{5}}{10000} t_{0.000}(4), 6.664 + \frac{3\sqrt{5}}{10000} t_{0.000}(4)\right)$	
	$\left[\begin{array}{c} 0.004 - \frac{1}{5000} \iota_{0.025}(4), 0.004 + \frac{1}{5000} \iota_{0.025}(4) \end{array}\right]$	
	\	