

EnvirolVonitor

Controlla l'ambiente, migliora la qualità della vita.

- Giosuè iaccarino
- I Diego Giusti
- Matteo Monino
- I Alberto Luciani
- Vanina Barbonini

Raccolta Dati Ambientali con Arduino

Il progetto Envirol Monitor ha lo scopo di raccogliere dati ambientali in tempo reale, come movimento, umidità, suono, luce e rumore ambientale, utilizzando sensori connessi a una scheda Arduino. I dati ottenuti possono essere impiegati per migliorare la qualità della vita, ottimizzare il consumo energetico e fornire avvisi in caso di anomalie.

Componenti Utilizzati

1. Arduino (scheda di controllo)

 Il cuore del sistema, gestisce i sensori e processa i dati raccolti.

3. Sensore di umidità (DHT11/DHT22)

 Monitora il livello di umidità nell'aria, utile per la gestione degli spazi in ambienti sensibili come serre.

5. Fotoresistenza (LDR)

 Misura l'intensità della luce ambientale, utilizzata per ottimizzare l'illuminazione in base alle condizioni esterne e interne.

2. Sensore di movimento (PIR)

• Rileva la presenza di movimento nelle vicinanze, utile per il controllo della sicurezza o per l'automazione delle luci.

4. Sensore di rilevamento del suono (Microfono analogico)

 Rileva variazioni nei livelli di rumore ambientale,
 applicabile per monitorare inquinamento acustico o come trigger per altre azioni.

Flusso di lavoro del sistema

Rilevamento dati:

 I sensori misurano variabili ambientali: movimento, umidità, suono, luce e decibel ambientali.

• Elaborazione dei dati:

 Arduino acquisisce e processa i dati dai sensori, preparandoli secondo lo standard JSOn.

• Comunicazione e visualizzazione:

- I dati vengono recepiti da un gateway, il quale salva i dati nel cloud.
 Tramite una piattaforma web è possibili visualizzare i vari storici e gli andamenti dei vari dati.

Descrizione dell'interfaccia:

- L'interfaccia utente consente di monitorare in tempo reale i dati provenienti dai sensori:
 - Grafici in tempo reale:
 - Visualizzazione delle variazioni di movimento, umidità, suono e luce.
 - Riassunti dei dati in base al periodo temporale selezionato.

L'interfaccia può essere visualizzata tramite una pagina web, permettendo l'accesso remoto ai dati, sia da mobile che desktop.

• Sviluppi futuri:

- Notifiche automatiche
 - Invio automatico di notifiche in caso di rilevazionidi situazioni anomale.
- Aggiunta di nuovi sensori:
 - Monitoraggio della qualità dell'aria, temperatura, gas per un sistema ancora più completo.
- Ottimizzazione dell'automazione:
 - Utilizzo dei dati per creare logiche più avanzate, come il controllo automatico di climatizzazione e luci in base alla presenza e alle condizioni ambientali.

Conclusioni:

Il progetto EnviroMonitor offre una soluzione semplice ed efficace per raccogliere dati ambientali tramite sensori economici e compatibili con Arduino, utilizzabili in contesti come l'automazione domestica e il monitoraggio ambientale.

PORDENONE

DIGITAL SOLUTION 4.0

Grazie per la vostra attenzione!

PRESENTATION CREATED BY:

A LBERTO LUCIANI