学籍番号と氏名は丁寧に記載すること

「離散数学・オートマトン」確認テスト

2024/12/16

問1 式 (1) で定義される非決定性有限オートマトン $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ を考える。 Let us consider a nondeterministic finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ defined by Eq. (1).

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_3\}$$
(1)

遷移関数は図 1 に示す。同じ文字列を受理する決定性有限オートマトン $M'=\langle Q', \Sigma, \delta', [q_0], F' \rangle$ を構成しなさい。

The transition function is shown in Fig. 1. Construct a deterministic finite automaton $M' = \langle Q', \Sigma, \delta', [q_0], F' \rangle$ that accepts the same language as M.

 $\boxtimes 1$ NFA M

解答例 $M' = \langle Q', \Sigma, \delta', [q_0], F' \rangle$ を構成するために、Q' と δ' をアルゴリズムに従って構成する。First, we build Q' and δ' according to the algorithm for constructing $M' = \langle Q', \Sigma, \delta', [q_0], F' \rangle$.

• $[q_0]$ を起点とする遷移: Transition from $[q_0]$

$$\delta'([q_0], \mathbf{a}) = [q_1, q_2]$$

• $[q_1,q_2]$ を起点とする遷移: Transition from $[q_1,q_2]$

$$\delta'([q_1, q_2], b) = [q_0, q_3]$$

• $[q_0,q_3]$ を起点とする遷移: Transition from $[q_0,q_3]$

$$\delta'([q_0, q_3], \mathbf{a}) = [q_1, q_2, q_3]$$

 $\delta'([q_0, q_3], \mathbf{b}) = [q_3]$

• $[q_1,q_2,q_3]$ を起点とする遷移: Transition from $[q_1,q_2,q_3]$

$$\delta'([q_1, q_2, q_3], \mathbf{a}) = [q_3]$$

 $\delta'([q_1, q_2, q_3], \mathbf{b}) = [q_0, q_3]$

• $[q_3]$ を起点とする遷移: Transition from $[q_3]$

$$\delta'([q_3], a) = [q_3]$$

 $\delta'([q_3], b) = [q_3]$

以上より、以下を得る:From the results shown above, we obtain

$$Q' = \{[q_0], [q_1, q_2], [q_0, q_3], [q_1, q_2, q_3], [q_3]\}$$

$$F' = \{[q_1, q_2, q_3], [[q_0, q_3], q_3]\}$$

状態遷移図は、以下のようになる。:The state transition diagram is shown below.

