Worksheet 2 – More Asymptotic Notation

Big Ω (Asymptotic Lower Bound): Big O Flipped

Idea. Want a function g(n) such that for

- big enough n,
- $0 \le b \cdot g(n) \le f(n)$
- where b is a constant.

"Big Omega." Let $g \in \mathcal{F}$. $\Omega(g)$ is the *set* of functions $f \in \mathcal{F}$ such that

$$\exists b \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \rightarrow f(n) \geq b \cdot g(n) \geq 0$$

To show that an algorithm has a tight bound we need to prove that the worst case complexity is bounded from above ("big Oh") and from below ("big Omega"). We think of $T(n) \in \Omega(g(n))$ as the algorithms complexity T(n) growing at least as fast as g(n).

Consider INSERTION SORT again:

```
def IS (A):
    i = 1
2
    while (i < len(A))
3
        t = A[i];
4
        j = i;
        while (j > 0 \text{ AND A}[j-1] > t)
5
           A[j] = A[j-1];
6
7
           j = j - 1;
8
        A[i] = t;
9
        i = i+1;
```

If we think about an input A that $forces \ IS (A)$ to take as many steps as possible, then we are proving a lower bound on the number of steps IS must take $in \ the \ worst \ case$.

Q. What is an example of a *bad* input to IS?

A.

If we assume each line takes at least 1 step, then we can determine a lower bound on the number of steps ${\tt IS}$ must take on A of length n. Fill in the table to the right to determine the minimum number of steps that A forces ${\tt IS}$ to make.

i	A[0i]	inner loop steps
	after outer loop	
1	n-2,n-1	loops 1 time, so $\geq 1 \cdot 3+1$ for exit
2		
3		
:		
k		

Q. $T_{IS}(n)$ is at least how big? I.e., in the worst case, at least how many steps must IS (A) take?

Worksheet 3 – Augmented AVL Trees

Augment the tree Take 2

Q: How can we *augment the nodes* of AVL trees so that we can perform all our *queries* efficiently?

Q: What *property of subtrees* could help us with questions about *rank*?

A.

Q: How is this related to 'rank'?

A.

Relative Rank

Q: Now with respect to the *left subtree* rooted at x, what is the *relative* RANK (x)?

A.

For example, add size fields to each node and then calculate the rank of 62.

So the rank of a node is related to the size of the subtrees rooted at neighbouring nodes.

Computing RANK (k): Given key k, do a

- SEARCH(k) keeping track of the rank of the current node.
- Each time you go down a level you must:

• Think of this as the "relative" rank of the key to the left of the subtree you are exploring.

Computing Rank as we Search

Worksheet - MST

Recall Kuskal's Algorithm:

Find an MST by repeatedly adding the least weight edge that does not induce a cycle.

- 1. At first, each vertex is its own small cluster (tree/set in textbook).
- 2. Find an edge of minimum weight, use it to merge two clusters into one.
- 3. Do it again...
- 4. In general, find an edge of minimum weight that crosses two clusters; merge them into one.

Perform Kruskal's algorithm on the following graph:

Proof of Correctness of Kruskal's

Proof by Contradiction.

Let *O* be an optimal minimum spanning tree.

- Since O is connected, there must exist a *unique path* p from u to v and an edge e' on p that is not in K.
- Since K did not select e' (but had the option to), $w(e') \geq w_i$.

Case 1.
$$w(e') = w_i$$
.

Case 2.
$$w(e') > w_i$$
.

Complexity of Kruskals

Kruskal(E, V)

```
S := new container() for chosen edges
PQ := min priority queue of edges and weights
for each vertex v:
    v.cluster := {v}
while not PQ.is_empty():
    {u,v} = PQ.extract_min():
    if u.cluster ≠ v.cluster:
        S.add({u,v})
        union(u.cluster, v.cluster)
return S
```