```
In [1]: print("hello welcome to the iBM skillsbuild project")

hello welcome to the iBM skillsbuild project

In [2]: import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns
```

Read the dataset

In [4]:	df=pd.read_csv("DoctorVisits - DA.csv")												
In [7]:	df.head(15)												
Out[7]:		Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	freerepat	
	0	1	1	female	0.19	0.55	1	4	1	yes	no	nc	
	1	2	1	female	0.19	0.45	1	2	1	yes	no	nc	
	2	3	1	male	0.19	0.90	3	0	0	no	no	nc	
	3	4	1	male	0.19	0.15	1	0	0	no	no	nc	
	4	5	1	male	0.19	0.45	2	5	1	no	no	nc	
	5	6	1	female	0.19	0.35	5	1	9	no	no	nc	
	6	7	1	female	0.19	0.55	4	0	2	no	no	nc	
	7	8	1	female	0.19	0.15	3	0	6	no	no	nc	
	8	9	1	female	0.19	0.65	2	0	5	yes	no	nc	
	9	10	1	male	0.19	0.15	1	0	0	yes	no	nc	
	10	11	1	male	0.19	0.45	1	0	0	no	no	nc	
	11	12	1	male	0.19	0.25	2	0	2	no	no	yes	
	12	13	2	male	0.19	0.55	3	13	1	no	no	nc	
	13	14	1	male	0.19	0.45	4	7	6	no	no	nc	
	14	15	1	male	0.19	0.25	3	1	0	yes	no	nc	
					_								

Display complete information about the columns of the dataset such as Column name, Count, Data type and overall memory usage

```
In [8]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5190 entries, 0 to 5189
Data columns (total 13 columns):
# Column
            Non-Null Count Dtype
---
             _____
0 Unnamed: 0 5190 non-null
                           int64
1 visits 5190 non-null int64
            5190 non-null object
2 gender
3 age
            5190 non-null float64
4 income
            5190 non-null float64
  illness
             5190 non-null int64
5
             5190 non-null int64
6
   reduced
7 health
             5190 non-null int64
8 private
             5190 non-null object
9 freepoor 5190 non-null object
10 freerepat 5190 non-null object
11 nchronic
             5190 non-null
                           object
             5190 non-null
12 lchronic
                           object
dtypes: float64(2), int64(5), object(6)
memory usage: 527.2+ KB
```

Find out the total no:of people based on their count of illeness

```
In [9]: df["illness"].value_counts()
              1638
 Out[9]:
              1554
         2
               946
         3
               542
               274
               236
         Name: illness, dtype: int64
In [10]: df["gender"].value_counts()
                    2702
         female
Out[10]:
                    2488
         male
         Name: gender, dtype: int64
```

Visualize and analyse the maximum, minimum and medium income

```
In [11]: y=list(df.income)
    plt.boxplot(y)
    plt.show()
```


Find out the no of days of reduced activity of male and female seperatly due to illenes

```
In [12]: df.groupby(['gender', 'reduced']).mean()
```

		Unnamed: 0	visits	age	income	illness	health
gender	reduced						
female	0	2524.038512	0.229322	0.465755	0.482735	1.462144	1.115098
	1	1985.768421	0.400000	0.325684	0.542105	2.242105	1.610526
	2	1622.618182	0.672727	0.391455	0.560182	2.236364	1.781818
	3	997.311111	1.333333	0.403111	0.516000	2.733333	1.733333
	4	1237.740741	0.851852	0.458889	0.466667	2.222222	2.074074
	5	1169.055556	1.444444	0.401667	0.614444	2.222222	2.500000
	6	1382.545455	1.363636	0.426364	0.622727	2.363636	1.363636
	7	1034.846154	1.384615	0.436154	0.473462	2.653846	2.230769
	8	1883.090909	1.090909	0.471818	0.404545	2.181818	4.000000
	9	1349.000000	0.500000	0.570000	0.825000	3.000000	1.000000
	10	1099.428571	2.142857	0.512857	0.421429	2.571429	2.000000
	12	1661.000000	2.000000	0.720000	0.250000	3.500000	5.500000
	13	906.000000	4.000000	0.720000	0.300000	4.500000	3.500000
	14	1392.112069	1.543103	0.551724	0.427586	2.534483	4.112069
male	0	3008.911019	0.136007	0.344703	0.694398	1.099585	0.924850
	1	2485.158537	0.304878	0.286220	0.676341	1.743902	1.256098
	2	2007.679245	0.471698	0.343585	0.653019	2.358491	1.547170
	3	1909.068966	0.724138	0.334138	0.741379	2.137931	1.689655
	4	1424.000000	0.722222	0.309444	0.869444	2.055556	2.000000
	5	1437.272727	1.136364	0.331818	0.570455	2.272727	2.818182
	6	562.000000	0.833333	0.340000	0.591667	2.500000	2.000000
	7	1716.750000	0.750000	0.314167	0.655000	2.583333	4.333333
	8	680.666667	1.333333	0.365000	0.833333	2.666667	2.000000
	9	1375.400000	2.200000	0.310000	0.392000	2.400000	2.000000
	10	1543.200000	1.800000	0.480000	0.590000	2.600000	4.600000
	11	355.500000	5.000000	0.320000	1.000000	1.500000	0.500000
	12	781.500000	2.000000	0.370000	0.515000	1.500000	1.000000

Out[12]:

Visualize is there is any missing values in the dataset based on a heat map

508.666667 4.000000 0.510000 0.350000 3.333333

14 1236.069444 1.555556 0.476806 0.598611 2.375000 3.527778

2.333333

Find out the correlation between variables in the given dataset correlation between different variables

```
In [14]: plt.figure(figsize=(10,10))
    sns.heatmap(df.corr(),cbar=True,annot=True,cmap='Blues')
Out[14]: <AxesSubplot:>
```


Analyse how the income of a patient effects the no of visits to the hospital

```
In [15]: #relation between income and visits
    plt.figure(figsize=(10,10))
    plt.scatter(x='income',y='visits',data=df)
    plt.xlabel('income')
    plt.ylabel('visits')
Out[15]: Text(0, 0.5, 'visits')
```


Count and visualize the number of males and females effected by illness

```
In [16]: #No: of male and female effected by illness
sns.histplot(df.gender,bins=2)
```

Out[16]: <AxesSubplot:xlabel='gender', ylabel='Count'>

Visualize the percentage of people getting govt health Insurance due to low income, due to old age and also the percentage of people having private health insurance

```
In [17]: # % of people getting govt Insurance due to low income
         label=['yes','no']
         Y=df[df['freepoor']=='yes']
         N=df[df['freepoor']=='no']
         x=[Y.shape[0],N.shape[0]]
         plt.figure(figsize=(5,5))
         plt.pie(x,labels=label)
         plt.title("% of people getting govt Insurance due to low income ")
         plt.show()
         # % of people having private Insurance
         Y=df[df['private']=='yes']
         N=df[df['private']=='no']
         x=[Y.shape[0],N.shape[0]]
         plt.figure(figsize=(5,5))
         plt.pie(x,labels=label)
         plt.title("% of people having private Insurance ")
         plt.show()
         # % of people getting govt Insurance due to old age, disability or veteram status
         Y=df[df['freerepat']=='yes']
         N=df[df['freerepat']=='no']
         x=[Y.shape[0],N.shape[0]]
         plt.figure(figsize=(5,5))
         plt.pie(x,labels=label)
         plt.title("% of people getting govt Insurance due to old age, disability or veterar
         plt.show()
```

% of people getting govt Insurance due to low income

% of people having private Insurance

% of people getting govt Insurance due to old age, disability or veteram status

Plot a horizontal bar chart to analyze the reduced days of activity due to illness based on Gender

```
In [19]: db=df.groupby('gender')['reduced'].sum().to_frame().reset_index()
    #Creating the bar chart
    plt.barh(db['gender'],db['reduced'],color=['cornflowerblue','lightseagreen'])
#Adding the aesthetics
    plt.title('Bar Chart')
    plt.xlabel('Reduced activity')
    plt.ylabel('gender')
#Show the plot
    plt.show()
```


In []: