#### **GRUP0 20**

Diogo Ferreira de Sousa (201706409) João Rafael Varela (201706072)

Tiago Candeias Verdade (201704003)

**Docente:** Ana Paula Rocha

# MAZE SOLVER

Agentes e Inteligência Artificial Distribuída

Mestrado Integrado em Engenharia Informática e Computação

## **DE**SCRIÇÃO DO PROBLEMA

O sistema pretende simular um conjunto de agentes que **procuram encontrar a saída do labirinto** o mais rapidamente possível. No entanto, ao longo do labirinto existem **portas** que apenas se encontram abertas enquanto um agente está por cima do **interruptor** correspondente.

Para que os agentes possam chegar à meta, devem comunicar entre si fornecendo informação útil sobre o labirinto e negociando a possibilidade de um agente "abrir" a porta a outro agente, colocando-se em cima do interruptor da respetiva porta.

Neste sistema existem **3 tipos de agentes**: egoístas, razoáveis e solidários. Cada um tem um tipo de comportamento diferente relativamente à forma como interage com os outros agentes.

## DESCRIÇÃO DO PROBLEMA



- **AGENTE**
- **INTERRUPTOR**





### **ESQUEMA GLOBAL**



**AGENTE** 

## **VARIÁVEIS INDEPENDENTES**

NÚMERO DE AGENTES RAZOÁVEIS

NÚMERO DE AGENTES SOLIDÁRIOS

NÚMERO DE AGENTES EGOÍSTAS

TAMANHO DO LABIRINTO

NÚMERO DE PORTAS

### **VARIÁVEIS DEPENDENTES**

### **ESFORÇO REALIZADO**

O número de movimentos que cada agente tem de fazer para encontrar a solução.

### TEMPO DE RESOLUÇÃO

O tempo que um agente demora a encontrar a solução.

### **CÉLULAS EXPLORADAS**

A quantidade de células "novas" exploradas.

## **ESPAÇO DE INTERAÇÃO**







- AGENTE
- **INTERRUPTOR** 
  - PORTA



### **GRÁFICOS CONSTRUÍDOS**



### **EXPERIÊNCIAS REALIZADAS E ANÁLISE DE RESULTADOS**

Foram realizadas várias experiências fazendo variar as variáveis independentes (resultados na informação adicional dos *slides*) - **número de portas**, **número de agentes** e **tipos de agentes** - influenciando, assim, as variáveis dependentes, devido aos diferentes comportamentos e interações entre os diferentes tipos de agentes.

Como seria de esperar, com o **aumento do número de portas** aumenta a complexidade do labirinto e, portanto, de uma forma geral, **aumenta o tempo** para que um agente encontre uma solução. Também é possível observar que a percentagem de **exploração do mapa** diminui devido à existência de mais agentes que necessitam de ficar nos botões. No entanto o **esforço realizado** mantêm-se relativamente parecido, pois os agentes que vão abrir a porta tem de fazer mais esforço para o fazer, mas fazem menos esforço a explorar o labirinto, acabando assim por se balancear no final.

Já o **aumento do número de agentes** (do tipo razoável ou solidário) leva a que um agente encontre a solução **mais rapidamente** graças ao seu comportamento cooperativo. Também é possível ver um aumento na **percentagem de labirinto explorado**, assim como no **esforço** de todos os agentes.

### **EXPERIÊNCIAS REALIZADAS E ANÁLISE DE RESULTADOS**

De uma forma geral, os **agentes egoístas** são os **primeiros** a encontrar a solução, pois estes não respondem a nenhum pedido e, por isso, focam-se apenas em encontrar a saída do labirinto. Pela mesma razão, estes agentes são os que, em média, realizam um **esforço maior**, porque nunca ficam parados em cima de um interruptor.

Por esta mesma razão, os agentes egoístas não conseguem encontrar a solução se não existir outro tipo de agentes no labirinto, e que pelo menos haja um agente solidário/razoável para cada interruptor, para garantir que todas as portas consigam ser abertas.

Na maior parte dos casos, os **agentes solidários** são os **últimos** a chegar à meta, pois estes aceitam qualquer pedido para se dirigirem ao interruptor. Desta forma, acabam por ser os agentes com **menor esforço** pois passam grande parte do tempo parados em interruptores.

### **CONCLUSÕES**

Através da **conceção e análise dos vários gráficos** gerados através das várias simulações realizadas foi possível confirmar a maior parte das teorias especuladas durante o primeiro trabalho e obter novas **conclusões relativamente ao comportamento dos agentes**, mencionadas na análise de resultados.

Consideramos que os objetivos propostos foram cumpridos com sucesso, criando-se um complexo sistema multi-agente cuja informação pode ser facilmente extraída e observável graças a tecnologias como **SaJas**, **Repast** e **JADE**, reforçando importância das mesmas.

Como trabalho futuro, o grupo propõe um tratamento de dados mais aprofundado, para além da análise visual dos vários gráficos obtidos, de forma a retirar conclusões mais precisas sobre o comportamento do sistema.

# INFORMAÇÃO ADICIONAL



## EXEMPLOS DETALHADOS DE EXECUÇÃO





| Model Parameters  |    |
|-------------------|----|
| DoorsNumber:      | 3  |
| MazeSize:         | 15 |
| ReasonableAgents: | 2  |
| SelfishAgents:    | 2  |
| SupportiveAgents: | 2  |

Doors present - Número de portas

Maze size - Tamanho do labirinto

**Selfish agents** - Número de agentes egoístas

**Reasonable agents** - Número de agentes razoáveis

**Supportive agents** - Número de agentes solidários

A Effort by Agent Type





X



A Number explored cells by agent



3.0

















- Model Parameters DoorsNumber: MazeSize:

ReasonableAgents: 2
SelfishAgents: 2

15

















Model Parameters

DoorsNumber:

ReasonableAgents: 4
SelfishAgents: 4

MazeSize:

15

















Model Parameters

DoorsNumber:

ReasonableAgents: 4

MazeSize:

15

×10<sup>3</sup>









0.0 0.2 0.4 0.6 0.8 1.0 1.2









































































## **OUTRAS OBSERVAÇÕES**

So that you can run our app in any platform, without any problems we opted to use the **Gradle** build tool. So, in order to build and run the project you only need to run the following commands in the root of the project:

- gradle build
- gradle run -q --console=plain

### **GRUP0 20**



# OBRIGADO

#### Alguma questão?

Diogo Ferreira de Sousa - (up201706409@fe.up.pt)
João Rafael Varela (up201706072@fe.up.pt)
Tiago Candeias Verdade (up201704003@fe.up.pt)

**Docente:** Ana Paula Rocha