Repetytorium z JFiZO

Jakub Michaliszyn

Zadania 23 i 25

Zadanie 23. Niech $\mathcal L$ będzie językiem regularnym. Wtedy język

$$\mathcal{L}_* = \{ w \mid \exists n \in \mathbb{N}. w^n \in \mathcal{L} \}$$

jest regularny.

Zadanie 23. Niech ${\mathcal L}$ będzie językiem regularnym. Wtedy język

$$\mathcal{L}_* = \{ w \mid \exists n \in \mathbb{N}. w^n \in \mathcal{L} \}$$

jest regularny.

Rozgrzewka

$$\{w \mid \exists n \in \mathbb{N}. w^n \in \mathcal{L}\} = \{w \mid \exists n \leq i_{\mathcal{L}}. w^n \in \mathcal{L}\}$$

Zadanie 23. Niech $\mathcal L$ będzie językiem regularnym. Wtedy język

$$\mathcal{L}_* = \{ w \mid \exists n \in \mathbb{N}. w^n \in \mathcal{L} \}$$

jest regularny.

Rozgrzewka

$$\{w \mid \exists n \in \mathbb{N}. w^n \in \mathcal{L}\} = \{w \mid \exists n \leq i_{\mathcal{L}}. w^n \in \mathcal{L}\}$$

(w zasadzie do niczego nam się nie przyda)

Niech $A=(\Sigma,Q,q_0,Q_F,\delta)$ będzie DFA takim, że $\mathcal{L}_A=\mathcal{L}$.

Niech $T_x: Q \to Q$ będzie taka, że $T_x(q) = \hat{\delta}(q, x)$.

Obserwacja

Niech $A = (\Sigma, Q, q_0, Q_F, \delta)$ będzie DFA takim, że $\mathcal{L}_A = \mathcal{L}$. Niech $T_x : Q \to Q$ będzie taka, że $T_x(q) = \hat{\delta}(q, x)$.

Obserwacja

Jeśli $T_x = T_y$ oraz $T_z = T_y$, to $T_{xz} = T_{yy}$.

Szkic dowodu:

$$T_{xz}(q) = \hat{\delta}(q, xz) = \hat{\delta}(\hat{\delta}(q, x), z) = \hat{\delta}(\hat{\delta}(q, y), v) = T_{yv}(q).$$

Niech $A=(\Sigma,Q,q_0,Q_F,\delta)$ będzie DFA takim, że $\mathcal{L}_A=\mathcal{L}.$ Niech $T_x:Q\to Q$ będzie taka, że $T_x(q)=\hat{\delta}(q,x).$

Obserwacja

Jeśli $T_x = T_y$ oraz $T_z = T_v$, to $T_{xz} = T_{yv}$.

Szkic dowodu:

$$T_{xz}(q) = \hat{\delta}(q, xz) = \hat{\delta}(\hat{\delta}(q, x), z) = \hat{\delta}(\hat{\delta}(q, y), v) = T_{yv}(q).$$

Twierdzenie

Dla dowolnych słów x, y, jeśli $T_x = T_y$, to dla dowolnego v mamy $xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*$ (czyli $x \sim_{\mathcal{L}_*} y$).

Niech $A=\left(\Sigma,Q,q_0,Q_F,\delta\right)$ będzie DFA takim, że $\mathcal{L}_A=\mathcal{L}.$

Niech $T_x: Q \to Q$ będzie taka, że $T_x(q) = \hat{\delta}(q, x)$.

Obserwacja

Jeśli $T_x = T_y$ oraz $T_z = T_y$, to $T_{xz} = T_{yy}$.

Szkic dowodu:

$$T_{xz}(q) = \hat{\delta}(q, xz) = \hat{\delta}(\hat{\delta}(q, x), z) = \hat{\delta}(\hat{\delta}(q, y), v) = T_{yv}(q).$$

Twierdzenie

Dla dowolnych słów x, y, jeśli $T_x = T_y$, to dla dowolnego v mamy $xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*$ (czyli $x \sim_{\mathcal{L}_*} y$).

Wniosek: \mathcal{L}_* ma skończony indeks, więc jest regularny.

 $\forall x, y, v. T_x = T_y \Rightarrow (xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*).$

Obserwacja

Jeśli $T_x = T_y$ oraz $T_z = T_v$, to $T_{xz} = T_{yv}$.

• Weźmy dowolne x, y takie, że $T_x = T_y$ i dowolne $v \in \Sigma^*$.

$$\forall x, y, v. T_x = T_y \Rightarrow (xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*).$$

Obserwacja

- Weźmy dowolne x, y takie, że $T_x = T_y$ i dowolne $v \in \Sigma^*$.
- Z obserwacji wynika, że $T_{xv} = T_{yv}$.

$$\forall x, y, v. T_x = T_y \Rightarrow (xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*).$$

Obserwacja

- Weźmy dowolne x, y takie, że $T_x = T_y$ i dowolne $v \in \Sigma^*$.
- Z obserwacji wynika, że $T_{xv} = T_{yv}$.
- Podobnie, $T_{xvxv} = T_{yvyv}$. I dla każdego k, $T_{(xv)^k} = T_{(yv)^k}$.

$$\forall x, y, v. T_x = T_y \Rightarrow (xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*).$$

Obserwacja

- Weźmy dowolne x, y takie, że $T_x = T_y$ i dowolne $v \in \Sigma^*$.
- Z obserwacji wynika, że $T_{xv} = T_{yv}$.
- Podobnie, $T_{xvxv} = T_{yvyv}$. I dla każdego k, $T_{(xv)^k} = T_{(yv)^k}$.
- Zauważny, że jeśli $T_w = T_{w'}$, to $w \in \mathcal{L} \Leftrightarrow w' \in \mathcal{L}$, bo $T_w(q_0) \in Q_F \Leftrightarrow T_{w'}(q_0) \in Q_F$.

$$\forall x, y, v. T_x = T_y \Rightarrow (xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*).$$

Obserwacja

- Weźmy dowolne x, y takie, że $T_x = T_y$ i dowolne $y \in \Sigma^*$.
- Z obserwacji wynika, że $T_{xv} = T_{yv}$.
- Podobnie, $T_{xvxv} = T_{yvyv}$. I dla każdego k, $T_{(xv)^k} = T_{(yv)^k}$.
- Zauważny, że jeśli $T_w = T_{w'}$, to $w \in \mathcal{L} \Leftrightarrow w' \in \mathcal{L}$, bo $T_w(q_0) \in Q_F \Leftrightarrow T_{w'}(q_0) \in Q_F$.
- Zatem dla każdego n mamy $(xv)^n \in \mathcal{L}$ wtedy i tylko wtedy, gdy $(yv)^n \in \mathcal{L}$. Stąd $xv \in \mathcal{L}_* \Leftrightarrow yv \in \mathcal{L}_*$.

Zadanie 25. Niech $\mathcal L$ będzie językiem regularnym. Wtedy język

$$\mathcal{L}/2 = \{ w \mid \exists v. |v| = |w| \land vw \in \mathcal{L} \}$$

jest regularny.

Niech $A = (\Sigma, Q, q_0, Q_F, \delta)$ będzie DFA takim, że $\mathcal{L}_A = \mathcal{L}$.

Zadanie 25. Niech \mathcal{L} będzie językiem regularnym. Wtedy język

$$\mathcal{L}/2 = \{ w \mid \exists v. |v| = |w| \land vw \in \mathcal{L} \}$$

jest regularny.

Niech $A = (\Sigma, Q, q_0, Q_F, \delta)$ będzie DFA takim, że $\mathcal{L}_A = \mathcal{L}$. Niech $T_x: Q \to Q$ będzie jak wcześniej, oraz

Niech
$$T_x: Q \to Q$$
 będzie jak wcześniej, oraz $R_x = \{ q \in Q \mid \exists y. |y| = |x| \land \hat{\delta}(q_0, y) = q \}.$

Zadanie 25. Niech $\mathcal L$ będzie językiem regularnym. Wtedy język

$$\mathcal{L}/2 = \{ w \mid \exists v. |v| = |w| \land vw \in \mathcal{L} \}$$

jest regularny.

Niech $A = (\Sigma, Q, q_0, Q_F, \delta)$ będzie DFA takim, że $\mathcal{L}_A = \mathcal{L}$. Niech $T_x : Q \to Q$ będzie jak wcześniej, oraz $R_x = \{ g \in Q \mid \exists y. |y| = |x| \land \hat{\delta}(g_0, y) = g \}$.

$R_{\mathsf{x}} = \{q \in \mathsf{Q} \mid \exists y. |y| = |\mathsf{x}| \land o(q_0, y) = q\}$

Twierdzenie

Dla każdych x, y, jeśli $T_x = T_y$ i $R_x = R_y$, to $x \sim_{L/2} y$.

Wniosek: L/2 jest regularny.

Dla każdych x, y, jeśli $T_x = T_y$ i $R_x = R_y$, to $x \sim_{L/2} y$.

Weźmy dowolne x, y, z takie, że $T_x = T_y$ i $R_x = R_y$.

Zauważmy, że $T_{xz} = T_{yz}$ i $R_{xz} = R_{yz}$.

Dla każdych x, y, jeśli $T_x = T_y$ i $R_x = R_y$, to $x \sim_{L/2} y$.

Weźmy dowolne x, y, z takie, że $T_x = T_y$ i $R_x = R_y$.

Zauważmy, że $T_{xz} = T_{yz}$ i $R_{xz} = R_{yz}$.

Pokażemy, że $xz \in \mathcal{L}/2$ jest równoważne $yz \in \mathcal{L}/2$, czyli: $\exists v. |v| = |xz| \land vxz \in \mathcal{L}$ w.t.w., gdy $\exists v'. |v'| = |yz| \land v'yz \in \mathcal{L}$

Dla każdych x, y, jeśli $T_x = T_y$ i $R_x = R_y$, to $x \sim_{L/2} y$.

Weźmy dowolne x, y, z takie, że $T_x = T_y$ i $R_x = R_y$.

Zauważmy, że $T_{xz} = T_{yz}$ i $R_{xz} = R_{yz}$.

Pokażemy, że $xz \in \mathcal{L}/2$ jest równoważne $yz \in \mathcal{L}/2$, czyli: $\exists v. |v| = |xz| \land vxz \in \mathcal{L}$ w.t.w., gdy $\exists v'. |v'| = |yz| \land v'yz \in \mathcal{L}$

- Niech v będzie takie, że |v| = |xz| i $vxz \in \mathcal{L}$.
- Wtedy $\hat{\delta}(q_0, v) \in R_{xz}$. Skoro $R_{xz} = R_{yz}$, to istnieje v' takie, że |v'| = |yz| i $\hat{\delta}(q_0, v) = \hat{\delta}(q_0, v')$.

Dla każdych x, y, jeśli $T_x = T_y$ i $R_x = R_y$, to $x \sim_{L/2} y$.

Weźmy dowolne x, y, z takie, że $T_x = T_y$ i $R_x = R_y$.

Zauważmy, że $T_{xz} = T_{yz}$ i $R_{xz} = R_{yz}$.

Pokażemy, że $xz \in \mathcal{L}/2$ jest równoważne $yz \in \mathcal{L}/2$, czyli: $\exists v. |v| = |xz| \land vxz \in \mathcal{L}$ w.t.w., gdy $\exists v'. |v'| = |yz| \land v'yz \in \mathcal{L}$

- Niech v będzie takie, że |v| = |xz| i $vxz \in \mathcal{L}$.
- Wtedy $\hat{\delta}(q_0, v) \in R_{xz}$. Skoro $R_{xz} = R_{yz}$, to istnieje v' takie, $\dot{z}e |v'| = |yz| i \hat{\delta}(q_0, v) = \hat{\delta}(q_0, v')$.
- ullet Zauważmy, że $T_{xz}(\hat{\delta}(q_0,v))=\hat{\delta}(\hat{\delta}(q_0,v),xz)\in Q_F.$
- Skoro $T_{xz}=T_{yz}$, to $T_{xz}(\hat{\delta}(q_0,v))=T_{yz}(\hat{\delta}(q_0,v'))$, wiec $\hat{\delta}(q_0,v'yz)\in\mathcal{L}$.

