Algoritmos e Estruturas de Dados Aula 1

Prof Dr Tanilson Dias dos Santos

Universidade Aberta do Brasil – UAB Universidade Federal do Tocantins - UFT

Quem sou eu?

- Graduação em Ciência da Computação - UFT;
- Mestrado em Sistemas e Computação - IME;
- Doutorado em Engenharia de Sistemas e Computação -COPPE/PESC - UFRJ;
- Currículo Lattes:
 http://lattes.cnpq.br/28122444638444
 31
- Contato: <u>tanilson.dias@uft.edu.br</u>

Quem são vocês?

- Vamos Criar uma mini-bio no Canva;
- Postar no Fórum da Aula 1:
- Coloquem uma foto;
- Nome;
- Idade;
- Cidade;
- Uma curiosidade sobre você;
- O que você espera aprender nesta disciplina.

Plano de Ensino

Plano de Curso - Algoritmos e Estruturas de Dados

• Ementa: Análise de algoritmos. Estruturas de dados lineares: pilhas, filas e listas encadeadas. Estrutura de dados não lineares: árvores. Fila de prioridade e Heaps. Dicionário de dados. Classificação de dados. Balanceamento em árvores.

Dinâmica da Disciplina

 10 aulas síncronas/ assíncronas;

- Ambiente Ava Moodle;
- Tutor On-line:Denis S. Passos

Aulas Online -ConfWeb RNP

Tutores Presenciais

Polo	Tutor(a)
Ananás	Veruska
Araguaína	Jefté
Arraias	Deusmar
Gurupi	Itamar Júnior
Miracema	Juscimar

Forma de Avaliação

- 10 aulas, sendo a última Exame Final;
- Semanalmente, há uma atividade avaliativa, valendo 1 ponto, para os 7 encontros;
- A participação nos fóruns da disciplina vale 1 ponto;
- Seminário valendo 2 pontos.

- Se Nota Aluno (NA)
 - >= 7,0 APROVADO DIRETO;
 - < 4,0 REPROVADO DIRETO;
 </p>
 - 4,0 <= NA <= 6,9
 então EXAME FINAL

Forma de Avaliação

- Como funciona o Exame Final (EF) ?
- Uma prova valendo 10 pontos;
- Toma-se a Nota Final (NF):NF = (NA+EF)/2
- Se NF maior ou igual a 5 o aluno está APROVADO COM EXAME, caso contrário está REPROVADO COM EXAME.

Bibliografia e Metodologia

Básica

- 1 PREISS, Bruno R. Estrutura de dados e algoritmos: padrões de projetos orientados a objetos com java. Rio de Janeiro: Elsevier, 2001.
- 2 EDELWEISS, N; GALANTE, R. Estrutura de Dados. Volume 18 da Série Livros Didáticos Informática UFRGS. Bookman, 2009.
- 3 CORMEN, T. H. Algoritmos: Teoria e Prática. Campus, 2002.

Bibliografia e Metodologia

Complementar

- 1 SZWARCFTTER, J.L.; MAKENZON, L. Estruturas de Dados e seus Algoritmos. Rio de Janeiro: LTC, 2004.
- 2 AGUILAR, Luis Joyanes. Programação em C++: algoritmos, estruturas de dados e objetos. 2a. ed. São Paulo: McGraw-Hill, 2008.
- 3 PREISS, Bruno R. Estrutura de Dados e Algoritmos Padrões de Projetos orientados a objetos com Java. Rio de Janeiro: Campus, 2000.

O que são Estruturas de Dados?

- Uma estrutura de dados é uma maneira de armazenar e relacionar conjuntos de informações de forma organizada em um computador de modo que possam ser usados eficientemente, facilitando sua busca e modificação;
- Existe um conjunto de estruturas de dados que vamos chamar de "clássicas".

Estruturas de Dados Clássicas

- Vetores;
- Listas;
- Pilhas;
- Filas;
- Árvores.

Col. 0	Col. 1	Col. 2	Col. 3	Col. 4
(0,0)	(0,1)	(0,2)	(0,3)	(0,4)
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
	(0,0)	(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)	(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)	Col. 0 Col. 1 Col. 2 Col. 3 (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3)

Estruturas de Dados no Mundo Real

Onde podemos observar essas estruturas de dados no nosso dia-a-dia?

Estruturas de Dados no Mundo Real

Onde podemos observar essas estruturas de dados no nosso dia-a-dia?

Pilha

Fila

Estruturas de Dados no Mundo Real

Onde podemos observar essas estruturas de dados no nosso dia-a-dia?

COMPUTAÇÃO

Árvore

Estruturas de Dados

- Cada uma dessas estruturas de dados é útil para uma situação particular;
- Cada estrutura possui uma política (regras de controle, inserção/remoção) distinta das outras;
- Entender, manter e aplicar essas políticas são úteis para muitas aplicações;
- Por exemplo, o uso de pilhas tem grande aplicação na construção de compiladores;
- Por exemplo, ainda, algoritmos de árvores tem um dos melhores desempenhos entre os algoritmos de busca;

Vamos pôr a mão na massa?

- Em primeiro lugar vamos nos ambientar:
- Vamos implementar todas as estruturas que formos estudar em Python. Portanto, instale Python em sua máquina!

Google Colab

PyCharm

Ciclo de Desenvolvimento de um Programa

- Por enquanto acessem o Colab do Google enquanto escolhem sua IDE de desenvolvimento.
- https://colab.google/

Introdução às Listas

Listas em Python

O que são Listas?

- Uma lista é uma estrutura de dados organizada de forma sequencial;
- A lista difere do vetor que é estático (e tem tamanho definido na sua criação), enquanto a lista pode ter seu tamanho modificado dinamicamente;

Características das Listas em Python

- A lista é identificada por um único nome;
- Cada elemento da lista é referenciado por um índice;
- Os elementos da lista podem ser modificados;
- O nome da lista é uma referência (ponteiro) para o primeiro elemento;

Notas→	6.1	2.3	9.4	5.1	8.9	9.8	10	7.0	6.3	4.4
Posição:		1	2	3	4	5	6	7	8	9

Características das Listas em Python

- A lista é uma estrutura de dados que possui uma política bem flexível, permitindo efetuar inserções no seu começo, no final ou até mesmo alterar de um elemento arbitrário no interior da lista;
- A seguir apresentaremos algumas funções úteis para manipulação de listas em Python.

 Para criar uma lista é necessário declarar uma variável e passar os elementos da lista entre parênteses, por exemplo.

ListNum = [75, 93, 25, 17, 42]

Esse comando resultará na seguinte lista:

ListNum =

75	93	25	17	42

- list.append(x) Adiciona um item ao fim da lista.
 - Exemplo de uso:

ListNum.append(55)

- 1. Como fica a lista **ListNum** depois da execução desta operação?
- 2. Adicione mais um elemento e mostre como ficou a lista **ListNum**.

- list.insert(i, x)
- Insere um item em uma dada posição. O primeiro argumento é o índice do elemento antes do qual será feita a inserção.
 - Exemplo de uso:

ListNum.insert(2,85)

- 1. Como fica a lista **ListNum** depois da execução desta operação?
- 2. Adicione mais elementos nas posições 3 e 4 e apresente ListNum.

- len(list) Retorna o tamanho da lista
 - Exemplo de uso:

len(ListNum)

1. Adicione elementos em **ListNum** e veja como o tamanho varia.

 list.remove(x) - Remove o primeiro item encontrado na lista cujo valor é igual a x. Se não existir valor igual, uma exceção ValueError é levantada.

Exemplo de uso:

ListNum.remove (75)

1. Adicione elementos 18, 93 e 24 ao final de **ListNum**, após isso, remova o elemento 93. Como ficou ListNum?

- list.count(x) Devolve o número de vezes em que x aparece na lista.
 - Exemplo de uso:

ListNum.count(75)

 list.index(x[, start[, end]]) - Devolve o índice base-zero do primeiro item cujo valor é igual a x, levantando ValueError se este valor não existe.

Exemplo de uso:

ListNum = 28 93 22 17 22

ListNum.index(22)

Escreva o código abaixo

fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple')

```
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
#fruits.count('apple')
fruits.count('tangerine')
```

```
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
#fruits.count('apple')
#fruits.count('tangerine')
fruits.index('banana')
```

```
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
#fruits.count('apple')
#fruits.count('tangerine')
#fruits.index('banana')
fruits.index('banana', 4)
```

```
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
#fruits.count('apple')
#fruits.count('tangerine')
#fruits.index('banana')
#fruits.index('banana', 4)
fruits.append('grape')
```

```
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
#fruits.count('apple')
#fruits.index('tangerine')
#fruits.index('banana')
#fruits.index('banana', 4)
#fruits.append('grape')
fruits.insert(2, 'melon')
```

Exercício 1

Considere as seguintes listas:

$$L1 = [2, 3, 8, 10]$$

$$L2 = [1, 0, 56, 29]$$

$$L3 = L1 + L2$$

COMPUTAÇÃO

Pergunta, qual a configuração da lista L3?

Exercício 2

Considere o código abaixo:

$$L1 = [2, 3, 8, 10]$$

$$L2 = L1$$

$$L2[1] = 5$$

$$L2[2] = 5$$

COMPUTAÇÃO

print(L1)

Pergunta, qual é a saída apresentada pelo comando print?

Tarefas Semanais

- Refazer Exercícios da Aula;
- Responder Questionário Avaliativo (vale 1.0 ponto);
- Responder Fórum;
- Fazer leitura recomendada;
- Estudar Listas, Filas e Pilhas em Python.

Conclusão e Próxima Aula

- Aula de Hoje:
 - Apresentação da Disciplina;
 - Conceitos Básicos de Estruturas de Dados;
 - Prática de Programação.
- Próxima Aula:
 - Pilhas em Python;
 - Listas como Pilhas.

Algoritmos e Estruturas de Dados Aula 1

Prof Dr Tanilson Dias dos Santos

Universidade Aberta do Brasil – UAB Universidade Federal do Tocantins - UFT

