(A)
$$H_0$$
: $G_M = G_F$, H_1 : $G_M \neq G_F$

$$G_M^2 = \frac{423}{n_{M-K}} = \frac{97 [61, 9174]}{273} = 169.567$$
 $G_0 = \frac{6_M^2}{G_F^2} = \frac{169.567}{(12.024)^2} = 1.1729$, $F_0 = 1.196$, $G_0 = 1.1729$ $= 1.196$

- (C) $NR^2 = \Sigma9.03$, $NR^2 = 9.489$, $NR^2 > NR^2 >$
- 1d) test statistic=78.82, $df = P + p^2 + C_2^P = 4 + 2 + C_2^4 = 12$ (dummy variable 平方項相同) $\chi^2_{0.95,12} = 21.026$ We reject $H_{0.95}$
- (e) Narrower : EXPER METRO, FEMALE, Wider: EDUC. The result are inconsistent
- (f) It is compatible. Because White test is robust it could use in both homo/heteroskedusticity

```
Q16
```

(a)

Call:

lm(formula = miles ~ income + age + kids, data = vacation)

Residuals:

Min 1Q Median 3Q Max -1198.14 -295.31 17.98 287.54 1549.41

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -391.548 169.775 -2.306 income 14.201 1.800 7.889 2.10e-13 *** age 15.741 3.757 4.189 4.23e-05 *** kids -81.826 27.130 -3.016 0.0029 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 452.3 on 196 degrees of freedom Multiple R-squared: 0.3406, Adjusted R-squared: 0.3305 F-statistic: 33.75 on 3 and 196 DF, p-value: < 2.2e-16

(b)

Income 的殘差有隨 income 增加而變大的趨勢, AGE 則無明顯趨勢

40

AGE

45

50

55

60

(c)

H0: 殘差變異數相等, H1: 高收入的殘差變異數大於低收入組

35

Goldfeld-Quandt test

30

data: miles \sim income + age + kids GQ = 3.1041, df1 = 86, df2 = 86, p-value = 1.64e-07 alternative hypothesis: variance increases from segment 1 to 2

p-value < 0.05, we reject H0

25

(d)

t test of coefficients:

Kids 的係數與 part (a)相同,標準誤增加。更加保守

```
2.5 % 97.5 % (Intercept) -672.883378 -110.21263 income 10.377633 18.02503 age 7.919934 23.56191 kids -139.322973 -24.32986
```

信賴區間相比(a),變得更寬

(e)

conventional GLS (使用權重=1/income^2,讓低收入者有較大權重)

```
Call:
lm(formula = miles ~ income + age + kids, data = vacation, weights = weights)
Weighted Residuals:
Min 1Q Median 3Q Max
-15.1907 -4.9555 0.2488 4.3832 18.5462
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -424.996 121.444 -3.500 0.000577 ***
                      1.481 9.420 < 2e-16 ***
3.025 5.527 1.03e-07 ***
income
             13.947
age
             16.717
kids
            -76.806 21.848 -3.515 0.000545 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.765 on 196 degrees of freedom
Multiple R-squared: 0.4573, Adjusted R-squared: 0.449
F-statistic: 55.06 on 3 and 196 DF, p-value: < 2.2e-16
                        2.5 %
                                     97.5 %
(Intercept) -664.50116 -185.49119
income
                   11.02744
                                 16.86718
                   10.75260
                                   22.68240
age
                -119.89450 -33.71808
kids
```

robust GLS

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                     95.8035 -4.4361 1.526e-05 ***
(Intercept) -424.9962
                       1.3470 10.3545 < 2.2e-16 ***
income
            13.9473
                       2.7974 5.9761 1.061e-08 ***
22.6186 -3.3957 0.0008286 ***
             16.7175
age
kids
            -76.8063
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                       2.5 %
                                     97.5 %
(Intercept) -613.93428 -236.05807
income
                   11.29086
                                 16.60376
age
                   11.20062
                                 22.23438
kids
                -121.41339 -32.19919
```

信賴區間變得更窄,更為精準

```
Q18
(a)
\mathbf{H}_{\mathbf{n}}: \sigma^2 \mathbf{M} = \sigma^2 \mathbf{F} (男性與女性的誤差變異相等)
H_1: \sigma^2_M ≠ \sigma^2_F (不相等)
df: 5415 & 4366
F-test statistic: 1.05076
5% thres: 0.9452566 and 1.058097
test statistic = 1.05076
we don't reject H0, no enough evidence support \sigma^2 M \neq \sigma^2 F
(b)
H0: homoscedasticity, H1: heteroskedasticity
> qchisq(0.99, df = 3)
[1] 11.34487
> LM1
[1] 23.55681
                        Use METRO, FEMALE, BLACK
NR^2 = 23.55681 > 11.34487, we reject H0
METRO, FEMALE, BLACK 存在異質變異性
> qchisq(0.99, df = 9)
[1] 21.66599
> LM2
[1] 109.4243
                            Use all explanatory variables
NR^2= 109.4243 > 21.66599, we reject H0
使用所有解釋變數時,存在更顯著的異質變異性
(c)
            studentized Breusch-Pagan test
          model ols
data:
```

BP = 194.44, df = 44, p-value < 2.2e-16

H0: homoscedasticity, H1: heteroskedasticity

test statistic = 194.44, p-value < 0.05, reject H0

模型中的異質變異性,和解釋變數本身、平方項、交乘項有關

(d)

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2014e+00 3.2777e-02 36.6527 < 2.2e-16 ***
             1.0123e-01 1.9048e-03 53.1431 < 2.2e-16 ***
             2.9622e-02 1.3142e-03 22.5391 < 2.2e-16 ***
exper
I(exper^2) -4.4578e-04 2.7583e-05 -16.1615 < 2.2e-16 ***
            -1.6550e-01 9.4834e-03 -17.4517 < 2.2e-16 ***
female
            -1.1153e-01 1.6085e-02 -6.9333 4.371e-12 ***
black
            1.1902e-01 1.1576e-02 10.2814 < 2.2e-16 ***
metro
            -4.5755e-02 1.3895e-02 -3.2931 0.0009946 ***
-6.3943e-02 1.3717e-02 -4.6615 3.180e-06 ***
south
midwest
            -6.5891e-03 1.4549e-02 -0.4529 0.6506470
west
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

> confint(main_model)

> confint_robust

```
[,1]
                  2.5 %
                               97.5 %
(Intercept) 1.1384302204 1.2643338265 (Intercept) 1.1371382559 1.2656257910
                                             0.0974961106 0.1049631162
            0.0977830603 0.1046761665 educ
                                                 0.0270457914 0.0321976003
           0.0270727569 0.0321706349 exper
I(exper^2) -0.0004974407 -0.0003941203 I(exper^2) -0.0004998427 -0.0003917182
female
           -0.1841810529 -0.1468229075 female
                                                 -0.1840894784 -0.1469144820
                                                -0.1430527905 -0.0799977092
           -0.1447358548 -0.0783146449 black
black
           0.0948966363 0.1431441846 metro
                                                 0.0963309747 0.1417098462
metro
          -0.0723384657 -0.0191724010 south
                                                -0.0729887326 -0.0185221340
south
midwest
          -0.0915893895 -0.0362971859 midwest
                                                -0.0908291013 -0.0370574741
west
           -0.0348207138  0.0216425095 west
                                                -0.0351059530 0.0219277486
```

變化方向

(Intercept)	變寬
educ	變寬
exper	變寬
I(exper^2)	變寬
female	變窄
black	變窄
metro	變窄
south	變寬
midwest	變窄
west	變寬

- CI 變寬,表示原本可能低估不確定性,Robust 下更保守。
- CI 變窄,表示原本可能高估不確定,Robust 下更精確。

不存在不一致性, Robust OLS 是一致性估計

FGLS 結果

```
Call:
lm(formula = log(wage) \sim educ + exper + I(exper^2) + female +
    black + metro + south + midwest + west, data = cps5, weights = weights
Weighted Residuals:
            1Q Median
                             30
   Min
                                    Max
-4.7199 -0.6168 -0.0112 0.6182 6.1542
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.196e+00 3.184e-02 37.571 < 2e-16 ***
             1.015e-01 1.761e-03 57.604 < 2e-16 ***
educ
             2.986e-02 1.299e-03 22.988 < 2e-16 ***
exper
I(exper^2) -4.510e-04 2.657e-05 -16.971 < 2e-16 ***
            -1.658e-01 9.505e-03 -17.446
                                          < 2e-16 ***
black
            -1.112e-01 1.697e-02 -6.553 5.91e-11 ***
            1.184e-01 1.186e-02
                                   9.979 < 2e-16 ***
metro
            -4.527e-02 1.354e-02 -3.343 0.000833 ***
-6.355e-02 1.405e-02 -4.524 6.13e-06 ***
south
midwest
            -6.060e-03 1.439e-02 -0.421 0.673671
west
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.948 on 9789 degrees of freedom
                               Adjusted R-squared: 0.3187
Multiple R-squared: 0.3193,
F-statistic: 510.2 on 9 and 9789 DF, p-value: < 2.2e-16
```

SE、CI 比較

```
FGLS_SE SE_Change OLS_Robust_Width FGLS_Width
            OLS_Robust_SE
                                                      0.1284875351 0.124843079
            3.277743e-02 3.184437e-02
                                          smaller
(Intercept)
educ
             1.904848e-03 1.761461e-03
                                          smaller
                                                      0.0074670055 0.006905656
exper
             1.314237e-03 1.298873e-03
                                          smaller
                                                      0.0051518089 0.005092118
                                                      0.0001081245 0.000104173
I(exper^2)
             2.758278e-05 2.657195e-05
                                          smaller
             9.483417e-03 9.505454e-03
                                           larger
                                                      0.0371749964 0.037265303
female
             1.608548e-02 1.696582e-02
                                           larger
                                                      0.0630550813 0.066513034
black
             1.157624e-02 1.186360e-02
                                          larger
                                                      0.0453788716 0.046510222
metro
             1.389454e-02 1.354227e-02
                                          smaller
                                                      0.0544665986 0.053091297
south
midwest
             1.371725e-02 1.404549e-02
                                          larger
                                                      0.0537716271 0.055064111
west
             1.454941e-02 1.438967e-02
                                          smaller
                                                      0.0570337016 0.056413445
            CI_Change
(Intercept)
            narrower
educ
             narrower
exper
             narrower
I(exper^2)
             narrower
female
                wider
black
                wider
metro
                wider
south
             narrower
midwest
                wider
west
             narrower
```

係數的估計值變化不大。

(f)

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1964e+00 3.2561e-02 36.7443 < 2.2e-16 ***
educ 1.0147e-01 1.8986e-03 53.4432 < 2.2e-16 ***
exper 2.9858e-02 1.3097e-03 22.7982 < 2.2e-16 ***
I(exper^2) -4.5096e-04 2.7508e-05 -16.3934 < 2.2e-16 ***
female -1.6583e-01 9.4550e-03 -17.5388 < 2.2e-16 ***
black -1.1118e-01 1.5986e-02 -6.9548 3.757e-12 ***
metro 1.1838e-01 1.1575e-02 10.2279 < 2.2e-16 ***
south -4.5266e-02 1.3857e-02 -3.2667 0.001092 **
midwest -6.3548e-02 1.3705e-02 -4.6369 3.582e-06 ***
west -6.0599e-03 1.4522e-02 -0.4173 0.676472
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

CI比較

	OLS.Robust	FGLS.Normal	FGLS.Robust	Compare_FGLS_Norm	Compare_FGLS_Rob
(Intercept)	0.1285	0.1163	0.1508	narrower	wider
educ	0.0075	0.0064	0.0094	narrower	wider
exper	0.0052	0.0047	0.0054	narrower	wider
I(exper^2)	0.0001	0.0001	0.0001	narrower	wider
female	0.0372	0.0368	0.0379	narrower	wider
black	0.0631	0.0628	0.0664	narrower	wider
netro	0.0454	0.0458	0.0452	wider	narrower
south	0.0545	0.0531	0.0569	narrower	wider
nidwest	0.0538	0.0551	0.0554	wider	wider
west	0.0570	0.0568	0.0590	narrower	wider

(g)

選擇 FGLS Robust,因為 part (c)中得出數據存在異質變異性,一般 OLS 估計不可靠。

FGLS Robust 同時具備效率與穩健性,是最可靠的呈現方式