

Universidade de Coimbra

Faculdade de Ciências e Tecnologia Departamento de Engenharia Informática

Estratégias Algorítmicas Exame Normal – 5 de junho de 2023

Nº de estudante:

Nome:

13 pontos no total, 2 horas, sem consulta.	
um número x ocupa numa lista S ou retorna - a sua resposta recorrendo ao Teorema Mestr	inte algoritmo recursivo que retorna o índice que -1 se não encontrar esse número na lista. Justique e. Assuma que $S = (S[1],, S[n])$ é uma lista de cente, que a primeira chamada deste algoritmo é ticas demoram tempo constante. (2 pontos)
Function $Tsearch(S, \ell, r, x)$ if $r \ge \ell$ then $i = \ell + \lfloor r - \ell \rfloor / 3 \rfloor$ $j = r - \lfloor r - \ell \rfloor / 3 \rfloor$ if $S[i] = x$ then return i if $S[j] = x$ then return j if $S[i] > x$ then return $Tsearch(S, \ell, i - 1, x)$ else if $S[j] < x$ then return $Tsearch(S, j + 1, r, x)$ else return $Tsearch(S, i + 1, j - 1, x)$ return -1	Teorema Mestre (versão geral): $\operatorname{Seja} a \geq 1, b > 1, d \geq 0.$ $T(n) = \begin{cases} aT(n/b) + n^c & \text{if } n > 1 \\ d & \text{if } n = 1 \end{cases} \Rightarrow$ $T(n) = \begin{cases} \Theta(n^c) & \text{if } \log_b a < c \\ \Theta(n^c \log n) & \text{if } \log_b a = c \\ \Theta(n^{\log_b a}) & \text{if } \log_b a > c \end{cases}$

- 2. Considere o problema de encontrar um caminho mais curto do vértice s ao vértice t num grafo G=(V,A), em que V e A correspondem ao conjunto de vértices e ao conjunto de arcos, respetivamente, e em que w(u,v) denota a distância entre o vértice u e o vértice v, $(u,v) \in A$. Se o grafo for acíclico, então é possível encontrar o valor do caminho mais curto entre s e t em tempo O(|V|+|E|) com a seguinte abordagem.
 - 1. Seja d(s) = 0 e seja $d(v) = \infty$, para todo o vértice $v \in V \setminus \{s\}$
 - 2. Ordenar os vértices em V por ordenação topológica
 - 3. Para cada vértice $u \in V$, de acordo com a ordem topológica
 - 3.1 Para cada vértice v tal que $(u, v) \in A$ 3.1.1 Se d(v) > d(u) + w(u, v), então d(v) = d(u) + w(u, v)
 - 4. Retorna d(t)
 - a) Encontre um caminho mais próximo entre o vértice *s* e o vértice *t* no seguinte grafo à esquerda, com base no algoritmo descrito acima. Para o passo 2, indique, em baixo, a ordem dos vértices de acordo com a ordenação topológica. No passo 3, indique os arcos que pertencem ao caminho mais curto e os valores finais de *d* em cada vértice no grafo à direita. (2 pontos)

Ordem topológica dos vértices:

b) Demonstre que o passo 3 consiste de programação dinâmica, utilizando o argumento de subestrutura ótima. (2 pontos)

3. Considere o seguinte grafo.

a) Desenhe a árvore geradora mínima (à esqueda) e o grafo da estrutura de dados *union-find*, sem o passo de compressão de caminho (à direita), recorrendo ao algoritmo de Kruskal. Quando necessário, ligue a raiz da árvore com menor altura à raiz da árvore com maior altura e, em caso de empate, escolha, como raiz, o vértice que apresentar a etiqueta com o menor valor. (2 pontos)

b) Qual seria a representação do grafo da estrutura de dados *union-find* se efetuasse o passo de compressão de caminho na última ligação efetuada pelo algoritmo de Kruskal? (1 ponto)

4. Um *corte* numa cadeia de caracteres consiste em dividir essa cadeia em duas sub-cadeias não-vazias. Dada uma cadeia $s = s_1 \dots s_n$, pretende-se calcular o menor número de cortes em s tal que cada sub-cadeia resultante seja um palíndromo (um palíndromo é uma palavra que pode ser lida da esquerda para a direita ou da direita para a esquerda). Por exemplo, na cadeia "ananas" o menor número de cortes é um: "anana", "s". É possível calcular o menor número de cortes pela seguinte recorrência:

$$C(s,i,j) = \begin{cases} 0 & \text{se } s_i \dots s_j \text{ \'e um pal\'indromo} \\ \min_{i \leq k < j} \{C(s,i,k) + 1 + C(s,k+1,j)\} & \text{caso contr\'ario} \end{cases}$$

Com base na recorrência, apresente o pseudo-código de um algoritmo de programação dinâmica ascendente (bottom-up) para resolver o problema e discuta a sua complexidade computacional. Assuma a existência de uma função Palindrome(s[i:j]) que retorna True se a (sub-)cadeia s_i, \ldots, s_j é um palíndromo, ou False, caso contrário. (2 pontos)

	Nome:	Nº de estudante:
5.	 Responda unicamente a uma das duas questões práticos de Estruturas Algorítmicas. Uma versão problemas está disponível nas páginas seguintes (2) 	o mais compacta dos enunciados destes dois
	Indique de seguida qual a questão que é considerado	da para avaliação (A ou B):
A)	A) Problema A – QR Code decoder! Considere a fulinha do QRcode (<i>row</i> : array unidimensional de ta de transições de cor da linha (t), o número de célu(t). Atribua a cada célula da linha a cor preta (1 seguinte: t) t t t t	manho N), o tamanho da linha (N) , o número ulas pretas (p) e o número de células brancas (n)) ou a cor branca (n) 0) para o caso específico
		1-
	Explique o seu raciocínio e apresente o código da	função preprocessRow.
	Raciocínio:	
	Pseudo-código:	
	Function $preprocessRow(row, N, t, p, b)$	
	I .	

B)	Problema B – Expanding a Trading Portfolio Considere a matriz bidimensional M que para cada linha $i \in \{1, \dots, D\}$, onde D é o número de dias de acordo com o enunciado do problema, e coluna $j \in \{0,1\}$, guarda o valor ótimo que é possível obter até ao dia i (inclusive) tendo exatamente 0 ações nesse dia $(j=0)$, ou exatamente K ações nesse dia $(j=1)$.
	Dada a matriz M já preenchida e os parâmetros do problema D e K , implemente o pseudo-código do método $getTradingScheme(M,D,K,S)$ que deve preencher o vetor S (indexado de 1 a D) com um "trading scheme" ótimo para a segunda tarefa do problema B .
	Pseudo-código:
	Function $getTradingScheme(M,D,K,S)$