☐ Composition of Functions

9. Worked Example: Concavity and Composition of Functions **Worked Example: Hessian and Concavity**

Multivariate concave functions

More generally for a *multivariate* function: $h:\Theta\subset\mathbb{R}^d\to\mathbb{R}$,

$$a \ge 2$$
, define the $b = a \ge 2$, define the gradient vector: $∇h(θ) = a \ge 2$, define the $b \ge 2$, define $b \ge 2$.

$$\mathbf{H}h(\theta) = \begin{pmatrix} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\boldsymbol{\ell} & \boldsymbol{\theta}) \\ \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\boldsymbol{\theta}) & \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\boldsymbol{\theta}) \end{pmatrix} \in \mathbb{R}^{d \times d}$$

$$h \text{ is concave } \Leftrightarrow x^\top \mathbf{H}h(\theta)x \leq 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta.$$

(Caption will be displayed when you start playing the video.)

$$\blacktriangleright \ \Theta = {\rm I\!R}^2$$
 , $h(\theta) = -\theta_1^2 - 2\theta_2^2$ or $h(\theta) = -(\theta_1 - \theta_2)^2$

$$\Theta = (0, \infty), h(\theta) = \log(\theta_1 + \theta_2),$$

Start of transcript. Skip to the end.

How about the second one?

Should we do the second one?

So the second one is log of theta 1 plus theta 2.

OK?

So the gradient-- so that's h of theta.

So gradient h of theta is--

well, it's 1 over theta 1 plus theta 2.

The other one is 1 over theta 1 plus theta 2.

视频

下载视频文件

下载 SubRip (.srt) file

下载 Text (.txt) file

Combination of Convex functions

2/3 points (graded)

Let f_1, f_2 be convex functions on \mathbb{R} .

Determine if the following functions are necessarily convex or concave.

Hint: Recall a function $g:I o\mathbb{R}$ is convex in the interval I is an interval, if for all pairs of real numbers $x_1< x_2\in I$

$$g\left(tx_{1}+\left(1-t\right)x_{2}
ight)\leq tg\left(x_{1}
ight)+\left(1-t
ight)g\left(x_{2}
ight) \qquad ext{ for all } 0\leq t\leq 1.$$

• $3f_1 + 2f_2$:

Concave

Convex

Cannot be determined without more information

• $-10f_1$:

Convex

● Concave □
Cannot be determined without more information
• f_2f_1 :
● Convex □
Concave
$lacksquare$ Cannot be determined without more information \Box
Solution:
Given f_1, f_2 are convex, we have
$f_{1}\left(tx_{1}+\left(1-t ight)x_{2} ight)\leq tf_{1}\left(x_{1} ight)+\left(1-t ight)f_{1}\left(x_{2} ight)\qquad ext{for all }0\leq t\leq1$
and the same holds for f_2 .
$ullet$ The same inequality holds for $g=3f_1+2f_2$:
$egin{array}{lll} g\left(tx_{1}+\left(1-t ight)x_{2} ight) &=& 3f_{1}\left(tx_{1}+\left(1-t ight)x_{2} ight)+2f_{2}\left(tx_{1}+\left(1-t ight)x_{2} ight) \ &\leq& 3\left(tf_{1}\left(x_{1} ight)+\left(1-t ight)f_{1}\left(x_{2} ight) ight)+2\left(tf_{2}\left(x_{1} ight)+\left(1-t ight)f_{2}\left(x_{2} ight) ight) \ &=& t\left(g\left(x_{1} ight)+\left(1-t ight)g\left(x_{2} ight) ight). \end{array}$
Hence $3f_1+2f_2$ is also convex.
Remark: In general, any function $c_1f_1+c_2f_2$ where $c_1,c_2>0$ is convex of f_1,f_2 are.
$ullet$ $-10 f_1$ is concave, because it is negative of a convex function.
• f_1f_2 is not necessary convex For example, is $f_1(x)=x$, and $f_2=x^2$, then $(f_1f_2)(x)=x^3$ which is neither convex nor concave. Other examples of f_1 and f_2 , e.g. $f_1=f_2=x^2$ will lead to f_1f_2 being convex.
提交 你已经尝试了1次 (总共可以尝试1次)
☐ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 9: Introduction to Maximum Likelihood Estimation / 9. Worked Example: Concavity and Composition of Functions