Channel Mismatch Adaptation for DNNs

Graduate Research Proposal Animesh Prasad Advisor: Khe Chai SIM

Statistical Automatic Speech Recognition (ASR) Formulation

Noisy Channel Model

$$\hat{W} = \underset{W \in L}{\operatorname{argmax}} P(O \mid W) P(W)$$

Statistical ASR Formulation

ASR Pipeline

$$\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} P(O | W) P(W)$$

Feature Extraction

Acoustic Modelling

Hidden Markov Model

Modelling State

Gaussian Mixture Model (GMMs)

$$b_j(x_j) = \sum_{k=1}^K c_{jk} N(x_t; \mu_{jk}, \Sigma_{jk})$$

Deep Neural Network (DNNs)

$$b_j(x_j) = p(x_t|s_t = s) = \frac{p(s_t = s|x_t)p(x_t)}{p(s)}$$
Likelihood

Need of Adaptation

Training and testing condition mismatch

Speaker, speaking rate, background noise, reverberation, channel (speaker microphone distance), etc.

Either bring model close to test condition or vice versa

Adaptation Schema

Prior Work

Adaptation Techniques	Compensation	Applicable On	Applied For
MAP	Model	GMM	Speaker
MLLR, cMLLR	Model	GMM	Speaker
fMLLR, SAT	Feature	GMM/DNN	Speaker
CMV, CVN, CMVN	Feature	GMM/DNN	Speaker, Noise
VTLN	Feature	GMM/DNN	Speaker
VTS	Model	GMM	Noise
			Noise,
RASTA Filtering	Feature	GMM/DNN	Reverberation,
			Channel
LIN, LON, LHN	Model	DNN	Speaker
			Speaker,
Retraining	Model	DNN	Noise,
			Channel
Regularization	Model	DNN	Speaker
Dropout	Model	DNN	Noise
Low Rank Approximation	Model	DNN	Speaker
			Speaker,
Condition Aware Training	Model	DNN	Noise,
			Channel

Channel (Speaker Microphone Distance) Adaptation

Need

Natural interfaces (HCI), application like smart houses

Current Strategy

Feature Space(eg. Beam-forming)

Scope

Word Error Rate (WER): Close talk ASR approx. 10-20, far field ASR approx. 30-40

Consideration

During testing the source distance might be know or unknown,

Data Preparation

Basic features of data

Multichannel version of WSJ0

7128 training, 330 test utterances

83 speakers in train, 12 speaker in te

8 times the original data

New features of data

Inter Channel Variation over large distance

Device characteristic Nullified

Precise distance sampling of speech w.r.t human speaker

Baseline Systems

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_0$	20.61	22.49	31.66	39.25	44.38	46.84	43.93	38.8
$Model_1$	22.59	21.86	27.7	34.58	30.68	39.66	41.6	32.93
$Model_2$	44.22	30.1	26.55	32.71	30.14	34.48	35.66	30.15
$Model_3$	59.03	38.2	28.3	29.91	26.03	35.34	35.92	30.67
$Model_4$	71.44	45.84	29.24	31.78	26.85	35.63	34.88	30
$Model_5$	65.05	39.98	29.7	29.91	27.4	32.18	36.95	31.5
$Model_6$	71.9	46.5	30.23	29.91	26.58	37.07	32.82	30.52
$Model_7$	45.34	36.17	29.87	31.78	27.95	36.21	32.56	29.76

Table 3.1: GMM speaker independent model

standard deviation 10.22

Baseline Systems

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_0$	17.82	22.34	44.85	66.49	72.76	77.1	63.42	43.68
$Model_1$	20.72	18.76	27.03	39.31	43.21	46.35	39.31	34.62
$Model_2$	31.66	23	21.58	25.39	26.27	25.89	25.18	24.4
$Model_3$	32.67	26.64	22.6	23.5	24.66	23.97	23.8	24.34
$Model_4$	48.76	29.72	22.81	23.73	23.33	23.54	23.39	24.15
$Model_5$	53.6	30.58	23.84	25.41	24.92	24.1	24.1	24.64
$Model_6$	55.54	32.62	24.25	24.94	24.36	24.45	23.2	23.3
$Model_7$	31.81	26.96	24.55	26.81	25.89	27.16	24.86	22.9

Table 3.3: DNN model after borrowing the clustering tree form $Model_0$

standard deviation 12.82

Adaptation

Canonical Model Selection

Our Approach: Representational Mixing

Figure 3.2: Level of abstraction for mixing the DNNs $Model_i(x) = \alpha Representation_A(x) + \beta Representation_B(x)$

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40}$	19.39	22.70	23.00	24.36	24.01	24.53	24.27	24.75

Table 3.5: Model trained with $Data_0$ and $Data_4$ pooled together

Lattice Mixing

Links get re-weighted for better probability score

- + Only 1 parameter to estimate
- + No distance information required

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40} \ Model_{62}$								

Table 3.4: Lattice Interpolation

Utterance/Frame Oracle

Select best shot text/posterior per utterance/frame

- + No parameters, No distance information required
- Realtime pseudo-transcript required from another canonical model

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40}$	23.33	24.62	26.74	26.90	25.75	27.16	27.40	25.03

Table 3.6: Model selecting decoded utterance from Model₀ and Model₄

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40}$	26.88	25.65	32.86	28.38	33.44	29.37	34.34	29.18

Table 3.7: Model selecting posterior per frame from $Model_0$ and $Model_4$

Product of Experts

Instead of selecting the posteriors learn weights to interpolate the posteriors unseen condition

+ One parameters per expert, No distance information required

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{23} \ Model_{40}$								

Table 3.8: Product of Experts

Cluster Adaptive Training

 CAT or Multi-basis training is motivated by the representation learning capabilities of DNN.

$$z_x^L = W^L \left(\sum_{k=1}^K \lambda_k h_k^L(x) \right) + b^L = W^L H(x) \lambda + b^L$$

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40}$	19.45	23.12	23.70	25.36	25.32	23.11	25.32	24.98

Table 3.9: Cluster Adaptive Training using $Model_0$ and $Model_4$ as basis

Multitask Training

 Instead of specifying the explicit nature of mixing of representation, the mixing is controlled by the secondary task

$$J_{Multitask}(W, b) = J_{Primarytask}(W, b) + \lambda J_{Secondarytask}(W, b)$$

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40}$	21.93	22.45	22.55	22.75	22.16	23.02	22.40	22.72

Table 3.10: Multitask Training

Analysis: Representational Mixing

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_{40}$	19.39	22.70	23.00	24.36	24.01	24.53	24.27	24.75

Table 3.5: Model trained with $Data_0$ and $Data_4$ pooled together

Data ₀ and Data ₄	23.38	
Lattice interpolation	Model ₄₀ 25.5 Model ₆₂ 24.86	
Frame selection	Model ₄₀ 30	
Utterance selection	Model ₄₀ 25.86	
PoE	Model ₄₀ 39.72 Model ₂₃ 24.95	
CAT	Model ₄₀ 24.39	
Multitask learning	Model ₄₀ 22.5	

Multitask Learning: Variance 0.10

Feature Space Normalisation

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_0$	17.82	19.88	26.60	31.81	32.36	32.36	29.52	28.10
$Model_1$	$\overline{18.57}$	18.76	23.30	28.47	29.11	27.98	26.94	26.17
$Model_2$	21.22	20.85	21.58	24.30	25.16	25.16	24.40	23.30
$Model_3$	22.08	21.99	22.64	23.50	24.42	24.06	23.39	23.91
$Model_4$	22.42	21.78	22.32	23.22	23.33	23.58	22.73	23.69
$Model_5$	23.78	23.50	23.65	24.72	24.88	24.10	24.19	24.47
$Model_6$	22.38	22.55	23.48	24.19	23.78	24.64	23.20	23.31
$Model_7$	21.97	22.83	23.67	25.52	25.01	25.46	24.04	22.90

Table 3.11: DNN after applying the exact transform from correct Relative Position

Feature Space Normalisation

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_0$	18.64	20.31	28.13	31.87	32.17	33.64	31.40	28.97
$Model_1$	18.57	20.27	25.44	29.20	31.29	30.92	29.82	28.13
$Model_2$	23.03	22.68	24.72	26.86	28.19	28.02	28.12	27.07
$Model_3$	24.23	24.30	25.31	27.33	27.87	28.02	28.26	27.65
$Model_4$	25.18	25.50	25.67	27.78	27.54	28.53	28.81	27.57
$Model_5$	26.06	26.45	27.74	28.23	29.25	28.94	29.01	28.73
$Model_6$	25.46	25.76	26.43	27.89	28.26	28.30	28.15	27.22
$Model_7$	23.59	24.08	26.23	28.13	28.58	28.69	28.94	26.27

Table 3.12: DNN after applying the estimated transform per utterance

Feature Space Normalisation

DNN	$Data_0$	$Data_1$	$Data_2$	$Data_3$	$Data_4$	$Data_5$	$Data_6$	$Data_7$
$Model_0$	18.18	19.82	26.99	30.54	30.36	31.35	29.83	27.46
$Model_1$	18.23	19.32	23.25	27.89	29.45	28.64	27.6	27.22
$Model_2$	22.21	21.54	24.02	24.73	25.45	25.12	24.87	24.13
$Model_3$	22.45	22.33	23.42	24.64	24.26	24.72	24.46	24.17
$Model_4$	23.37	23.15	23.74	24.42	24.55	23.97	24.58	24.86
$Model_5$	23.7	23.34	24.61	24.59	24.78	24.18	25.06	24.38
$Model_6$	23.32	22.89	24.54	23.91	24.39	24.85	24.56	24.25
$Model_7$	22.19	21.63	24.38	24.35	24.48	24.62	24.14	23.97

Table 3.13: DNN after trained on per utterance CMVN

Summary: Feature Space Normalisation

Table 3.14: Summary of the Results

Technique	WER	Variance	Min WER
Global CMVN(In Train & Test)	30.89	12.82	17.82
Global CMVN(Train) & Known Stats(Test)	24.14	8.01	17.82
Global CMVN(Train) & Per Utterance(Test)	27.08	8.43	18.57
Per Utterance(Train & Test)	24.5	6.43	18.18

Per Utterance Trained Model: Variance 6.43

Conclusion

A new corpus

HMM-GMM systems vs the GMM-DNN systems

Demonstrate the difficulty in adapting to the channel mismatch

We introduce the Multitask learning and CAT as adaptation technique (1% Absolute Improvement)

We identify that the reason of degradation of performance in case of mismatch

We propose per utterance CMVN normalised training for better adaptation for channel (6% Absolute Improvement)

Future Work

Per-utterance normalisation solve the problem of inability of mixing

Improvement on the WER on unseen data by applying per-utterance CMVN normalisation, vs degradation on WER for seen data.

If we can model this as a Linear Input Network where the CMVN transform is learned and adapted in the case of mismatch.

Per frame fast adaptation and speaker tracking using model mixing.

Decreasing number of parameters of CAT DNN and improving its performance.

Considering reverberation (noise/speaker maybe on different data) and analysing joint effect on normalisation.

Question?

Thank You