

Universidade de Brasília Faculdade do Gama

Matemática Discreta 2

Prof. Dr. Glauco Vitor Pedrosa

Resumo do que veremos na aula de hoje...

Subgrupos

- Regras para verificar se um subconjunto H é subgrupo de G
 - O elemento neutro de H é o elemento neutro de G
 - O simétrico de h ∈ H é o mesmo simétrico de h em G
 - Seja G um grupo e H um subgrupo de G. Então a ordem de H divide a ordem de G. Em particular denotamos (G:H) = $\frac{|G|}{|H|}$

Subconjunto das potências

- $a^m = a^*a^*a^*....^*a$
- a^0 = elemento neutro
- a⁻¹ = elemento simétrico de a

Subgrupo Gerador

- $H = \langle a \rangle = \{a^0, a^1, a^2, a^3, ...\}$
- Grupo Cíclico
 - H é um grupo cíclico se H pode ser gerado por algum elemento do grupo
 - Ou seja, se existe a ∈ H, tal que H = <a>

Grupo

- Exemplo: Seja Z e x*y = x+y
- A estrutura <Z, *> é um grupo? Sim!

- É associativa? Sim, pois

- Tem elemento neutro? Tem

$$x * e = x$$
 $e * x = x$
 $x+e = x$ $e+x = x$
 $e = 0$ $e = 0$

- **Tem elemento simétrico**? Tem

$$x * x^{-1} = e$$

 $x + x^{-1} = 0$
 $x^{-1} = -x$

Grupo

- Exemplo: Seja N e x*y = x+y
- A estrutura <N, *> é um grupo? Não!

- É associativa? Sim, pois

- **Tem elemento neutro**? Tem

$$x * e = x$$
 $e * x = x$
 $x+e = x$ $e+x = x$
 $e = 0$ $e = 0$

- Tem elemento simétrico? Não

$$x * x^{-1} = e$$

 $x + x^{-1} = 0$
 $x^{-1} = -x$

Grupo

- Exemplo: Seja Z e x*y = x
- A estrutura $\langle Z, * \rangle$ é um grupo? Não!
- É associativa? Sim, pois

- Tem elemento neutro? Não

$$x * e = x$$
 $e * x = x$ $x = x$

- **Tem elemento simétrico**? Se não tem elemento neutro, não tem elemento simétrico

Subgrupo

- Seja <G,*> um grupo.
- Um subgrupo de G é uma estrutura algébrica
 <H,*> que satisfaz as seguintes condições:
- 1) H é um subconjunto **não vazio** de G
- 2) A operação * é uma operação binária interna em H

Subgrupo

- Exemplo: Seja Z e x*y = x+y
- A estrutura < Z, *> é um grupo? Vimos no 2° slide que sim, pois a operação * satisfaz as propriedades associativa, tem elemento neutro e tem elemento simétrico
- Então G = {0, 1} é um subgrupo de < Z, *>?

Não! Por que?

• Então Z_2 é um subgrupo de < Z, *>?

Sim! Por que?

Então G = {0} é um subgrupo de < Z, *>?

Sim! Por que?

Subgrupos Triviais

- Todo grupo G, tal que |G|≥2, tem pelo menos, dois subgrupos triviais:
- ele próprio
- o conjunto formado pelo elemento neutro de G

Teorema de Lagrange

- Seja G um grupo e H um subgrupo de G. Então a ordem de H divide a ordem de G. Em particular denotamos (G:H) = $\frac{|G|}{|H|}$
- Esse teorema nos diz quais **subconjuntos podem ser subgrupos** e quais podem não ser.

- Porém, este teorema não é 100% confiável!

Subgrupos Não-Triviais

• Seja $\langle Z_5, + \rangle$, então H = $\{0,1,3\}$ é um subgrupo? Não, pois 1+3=4 e 4 não está em H

Regra para verificar se um subconjunto H é subgrupo de G

- Seja G um grupo e H um subgrupo de G
 - O elemento neutro de H é o elemento neutro de G
 - O simétrico de h ∈ H é o mesmo simétrico de h em G
- Usando a regra acima, determine um subgrupo de $\langle Z_4, + \rangle$

Teorema de Lagrange

• Exemplo: Usando o teorema de Lagrange, quais dos subconjuntos abaixo é um subgrupo do grupo $\langle Z_{10}, + \rangle$

- $H_1 = \{0,2,4,8\}$
- $H_2 = \{0,2,4\}$
- $H_3 = \{0,8\}$
- $H_4=\{0,5\}$
- $H_5 = \{1, 2, 4, 8, 6\}$
- $H_6 = \{0,2,4,6\}$

Subconjunto das potências

Seja <G,*> um grupo e <u>a</u> ∈ G
 Define-se:

• Exemplo: Seja <Z, *> em que a*b = 2ab $a^2 = a*a = 2aa$ $a^3 = a*a*a = 2aa * a = 4aaa$ $a^4 = a*a*a*a = 4aaa * a = 8aaaa$ $a^0 =$ elemento neutro do grupo $a^{-1} =$ simétrico de a $a^{-2} = a^{-1}*a^{-1}$

Exercício

- Dada a tábua ao lado, determine:
- a) 1^4
- b) 2⁴
- c) 5^{-4}
- d) 5^{0}
- e) 1*1⁴
- f) $2 * 1^4$
- g) $5^4 * 2^{-2}$
- h) 1⁴ * 5⁴ * 2⁴
- i) $(1*1^{-3}*5)^3$
- j) (1*2)^(5*1)

*	1	5	2	3
1	1	5	2	3
5	5	1	5	5
2	2	5	1	1
3	3	5	1	5

Subgrupo Gerador

- Seja G um grupo e <u>a</u> ∈ G
- Um subgrupo gerador H é um subgrupo gerado pelo elemento a^m, para m ∈ Z
- Denotamos este subgrupo H por:

$$H = \langle a \rangle$$

Subgrupo Gerador

Exemplo:

Seja
$$<$$
 Z_4 , +> O subgrupo gerador H = $<$ 2> H = $<$ 2> = $\{... 2^{-3}, 2^{-2}, 2^{-1}, 2^{0}, 2^{1}, 2^{2}, 2^{3},\}$ H = $<$ 2> = $\{0, 2\}$

O subgrupo gerador H = <3>H = <3> = $\{... 3^{-3}, 3^{-2}, 3^{-1}, 3^{0}, 3^{1}, 3^{2}, 3^{3},\}$ H = <3> = $\{0, 3, 2, 1\}$

Teorema de Lagrange

• Se x é elemento de um grupo G então $x^{|G|} = e$

 Onde |G| é a ordem do grupo G, ou seja, a quantidade de elementos

Exemplo:

Seja $\langle Z_3, + \rangle$. A ordem de $|Z_3| = 3$ e o elemento neutro de Z_3 é 0

Então,
$$1^3 = 0$$
, $2^3 = 0$, $0^3 = 0$

Grupo Cíclico

- Seja G um grupo.
- Diz-se que G é um grupo cíclico se existe um elemento <u>a</u> ∈ G tal que o conjunto G coincide com o subconjunto gerado pelo elemento a
- Seja $< Z_4$, +>.

 Z_4 é um grupo cíclico?

Se sim, quais são os subgrupos geradores de Z_4 ?

Exercício

- Dada a tábua abaixo, determine:
- a) O subgrupo gerado por b
- b) A ordem de c
- c) Os geradores de G
- d) Determine $x \in G$ tal que $b*x*c = a^{-1}$

*	е	а	b	С
е	e	а	b	С
a	а	b	С	e
b	b	С	е	а
С	С	е	а	b