Aula 01 - Conjuntos

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}$, operações, intervalos e desigualdades.

Números Naturais

Sua notação é $\mathbb{N} = \{0,1,2,\ldots\}$.

Quando não se considera o elemento zero, a notação utilizada é

$$\mathbb{N}^* = \mathbb{N} - \{0\} = \{1, 2, 3, \ldots\}$$

Números Inteiros

A notação utilizada para representar os números inteiros é

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$
.

Quando o elemento zero não pertence ao conjunto, denotamos:

$$\mathbb{Z}^* = \mathbb{Z} - \{0\}$$

Outras notações

$$\mathbb{Z}_{+} = \mathbb{N}$$

(inteiros não negativos)

$$\mathbb{Z}_{+}^{*}=\mathbb{N}^{*}$$

(inteiros positivos)

$$\mathbb{Z}_{-} = \{\ldots, -2, -1, 0\}$$

(inteiros não positivos)

$$\mathbb{Z}_{-}^{*} = \{..., -3, -2, -1\}$$

(inteiros negativos)

Alguns números racionais

- a) 2
- b) -7
- c) $\frac{2}{5}$
- d) 0,6
- e) 1,37
- f) 0,333...
- g) 1,123123123...

Exemplo

$$\frac{1}{8} + \frac{1}{8} = \frac{2}{8} = \frac{1}{4}$$

Números racionais

$$\mathbb{Q} = \left\{ \frac{p}{q} / p \in \mathbb{Z} \text{ e } q \in \mathbb{Z}^* \right\}$$

São todos os números que podem ser escritos sob forma de fração de números inteiros.

Têm representação decimal finita ou periódica.

Soma de frações

$$\frac{1}{5} + \frac{3}{5} = ?$$

$$\frac{1}{5} + \frac{3}{5}$$

$$= \frac{4}{5}$$

Soma de frações

$$\frac{1}{4} + \frac{1}{6} = ?$$

$$\frac{10}{24} = \frac{5}{12}$$

Operações

Sejam $\frac{a}{b}$ e $\frac{c}{d}$ duas frações quaisquer.

A *soma* e o *produto* destas frações são obtidos da seguinte forma:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Números irracionais (I=Q')

São os números cuja representação decimal não é exata nem periódica, consequentemente não pode ser escrita sob a forma de fração de inteiros.

Exemplos:

- a) $\sqrt{2} = 1,4142135624...$
- b) $\pi = 3,14159265...$
- c) e = 2,718281828...

Números reais (R)

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$
, onde $\mathbb{Q} \cap \mathbb{I} = \emptyset$

$$\mathbb{Z}$$

$$\mathbb{R}$$

Adição e multiplicação

A operação que a cada par de números associa sua soma denomina-se *adição*, e a que associa a o produto denomina-se *multiplicação*.

Um número racional $\frac{a}{b}$ se diz positivo se $a \cdot b \in \mathbb{N}$; Se $a \neq 0$ e $a \cdot b \in \mathbb{N}$, então $\frac{a}{b}$ se diz estritamente positivo.

Propriedades

Fechamento

Se $a,b \in \mathbb{R}$ então $a+b \in \mathbb{R}$ e $ab \in \mathbb{R}$.

Comutativa

$$a+b=b+a$$
 e $ab=ba$

Associativa

$$a + (b + c) = (a + b) + c$$
 e $a(bc) = (ab)c$

distributiva

$$a(b+c) = ab + ac$$

Propriedades

Elemento neutro da adição

$$\exists \ 0 \in \mathbb{R}; 0 + a = a + 0 = a \quad \forall a \in \mathbb{R}$$

Elemento neutro da multiplicação

$$\exists 1 \in \mathbb{R}; 1 \cdot a = a \cdot 1 = a \quad \forall a \in \mathbb{R}$$

Existência do simétrico ou oposto

$$\forall a \in \mathbb{R}, \exists (-a) \in \mathbb{R}; a + (-a) = 0 \forall a \in \mathbb{R}$$

• Existência do inverso ou recíproco

$$\forall a \in \mathbb{R}^*, \exists \frac{1}{a} \in \mathbb{R}; a \cdot \frac{1}{a} = 1$$

Subtração e divisão

Subtração

$$a-b=a+(-b)$$
 onde $(-b)$ é o simétrico de b .

Divisão

$$\frac{a}{b} = a \cdot \frac{1}{b}$$
 onde $\frac{1}{b}$ é o inverso de b .

$$Obs: -\frac{a}{b} = \frac{a}{-b} = \frac{-a}{b}$$

Ordenação dos reais

No conjunto dos números reais, existe um subconjunto denominado números positivos, tal que:

- Se *a* for um número real, então exatamente uma das três afirmativas será verdadeira.
 - a = 0;
 - a é positivo;
 - (−*a*) é positivo;

Definições

- O número real a é **negativo** se, e somente se, (-a) for positivo.
- O símbolo < significa é menor que.
 - a < b se, e somente se, b a for positivo.
- O símbolo > significa é maior que.
 - a > b se, e somente se, a b for positivo.
- O símbolo ≤ significa é menor ou igual a.
 - $a \le b$ se, e somente se, a < b ou a = b.

Intervalos numéricos

Existe uma correspondência biunívoca (um a um entre o conjunto dos números reais e o conjunto dos pontos da reta numerada.

Algumas propriedades

1)
$$a = b \Leftrightarrow a \pm c = b \pm c$$

2)
$$a = b \Leftrightarrow ac = bc$$

3)
$$ab = 0 \Leftrightarrow a = 0$$
 ou $b = 0$

$$4) c(a+b) = ca + cb$$

5)
$$a < b \in b < c \Rightarrow a < c$$

6)
$$a < b \iff a \pm c < b \pm c$$

7)
$$a < b \in c < d \implies a + c < b + d$$

Algumas propriedades

7)
$$a < b \in c > 0 \Rightarrow ac < bc$$

8)
$$a < b \in c < 0 \Rightarrow ac > bc$$

9)
$$a > 0 \Rightarrow \frac{1}{a} > 0$$

10)
$$ab > 0 \Leftrightarrow (a > 0 e b > 0)$$
 ou $(a < 0 e b < 0)$

11)
$$ab < 0 \Leftrightarrow (a > 0 e b < 0)$$
 ou $(a < 0 e b > 0)$

12)
$$0 < b < a \Leftrightarrow 0 < \frac{1}{a} < \frac{1}{b}$$

Intervalos

São subconjuntos de \mathbb{R} , determinados por desigualdades.

• Intervalo *aberto* de a a b denotado por (a,b) é o conjunto de todos os números reais, tais que a < x < b.

$$(a,b) = \left\{ x \in \mathbb{R} \, / \, a < x < b \right\}$$

Intervalos fechados

• Intervalo *fechado* de a a b denotado por [a,b] é o conjunto de todos os números reais, tais que $a \le x \le b$.

$$\begin{bmatrix} a,b \end{bmatrix} = \left\{ x \in \mathbb{R} / a \le x \le b \right\}$$

Intervalos semi-abertos

• Intervalo *semi-aberto* à esquerda de a a b denotado por (a,b] é o conjunto de todos os números reais, tais que $a < x \le b$.

Intervalos semi-abertos

• Intervalo *semi-aberto* à direita de a a b denotado por [a,b) é o conjunto de todos os números reais, tais que $a \le x < b$.

Outros intervalos

$$\mathbb{R}_{+} = [0, +\infty) = [0, +\infty[$$

$$\mathbb{R}_{+}^{*}=(0,+\infty)=]0,+\infty[$$

$$\mathbb{R}_{-}=(-\infty,0]=]-\infty,0]$$

$$\mathbb{R}_{-}^{*}=(-\infty,0)=]-\infty,0[$$

$$\mathbb{R} = (-\infty, +\infty) =]-\infty, +\infty[$$

Outros intervalos

$$[a, +\infty) = \left\{ x \in \mathbb{R} \mid x \ge a \right\}$$

$$(-\infty, a] = \left\{ x \in \mathbb{R} \mid x \le a \right\}$$

$$(a, +\infty) = \left\{ x \in \mathbb{R} \mid x > a \right\}$$

$$(-\infty, a) = \left\{ x \in \mathbb{R} \mid x < a \right\}$$

União de intervalos

Sejam I_1 e I_2 intervalos da reta.

Definimos

$$I_1 \cup I_2 = \{x \in \mathbb{R} \mid x \in I_1 \text{ ou } x \in I_2\}$$

Interseção de intervalos

Sejam I_1 e I_2 intervalos da reta.

Definimos

$$I_1 \cap I_2 = \{x \in \mathbb{R} \mid x \in I_1 \text{ e } x \in I_2\}$$

$$I_1$$
 a b
 I_2 c d
 $I_1 \cap I_2$ a d

Obrigado!

Esta aula está disponível em

http://www.mat.ufam.edu.br/