1. 2D Vectors (20.05.17, 20)

① What is Vector?

A quantity having direction as well as magnitude, -> the starting point is meaningless escpecially as *determining the position of one point space relative to anaother.*

② Sum of vectors

③ Vector scalar

Scale the vector

$$\mathsf{K} \underset{V}{\star} \underset{=}{\longrightarrow} = \begin{bmatrix} K & * & Vx \\ K & * & Vy \end{bmatrix} \text{ (K is the scalar value)}$$

Double x and y => Double the length

4 Update position function by using 2D vector

Earlier code

Modified code

posX += velX * dt (delta time)

pos += vel * dt

posY += velY * dt

(pos is starting position vector, vel is velocity vector)

5 Subtraction of vectors

 \overrightarrow{b} - \overrightarrow{a} means what is the **delta** from \overrightarrow{a} to \overrightarrow{b} (how do I get to \overrightarrow{b} from \overrightarrow{a})

- ① B A = delta from A to B ② A B = delta from B to A
- 3 \xrightarrow{b} \xrightarrow{a} = \xrightarrow{b} + $(\xrightarrow{a}$ * -1) So, the delta in ① is same as in 3
- **6** The length of vector

Legnth of
$$\underset{v}{\rightarrow} = |\underset{v}{\rightarrow}|$$

Legnth of
$$\overrightarrow{v} = |\overrightarrow{v}|$$
 $|\overrightarrow{v}|^2 = x^2 + y^2$ so, $|\overrightarrow{v}| = \sqrt{x^2 + y^2}$

7) Normalize the vector

Scale the length of vector to 1. so, it just describes a direction and don't care about the length.

normalized
$$\underset{v}{\rightarrow} = \underset{v}{\rightarrow}^{*} \frac{1}{|_{\vec{v}}|}$$

Sum of vectors	Vector scalar	Subtraction of vectors	Length of vectors
$\overrightarrow{V}_{V1} + \overrightarrow{V}_{V2} = \begin{bmatrix} V1x + V2x \\ V1y + V2Y \end{bmatrix}$	$K \star_{V} = \begin{bmatrix} K & * & Vx \\ K & * & Vy \end{bmatrix}$	$ \overrightarrow{v_2} - \\ \xrightarrow{V_2} = \begin{bmatrix} V2x - V1x \\ V2y - V1y \end{bmatrix} $	$ \overrightarrow{v} = \sqrt{Vx^2 + Vy^2}$
Normalized vector			
$\hat{V} = \underset{v}{\rightarrow} * \frac{1}{ \cdot }$			

® How to make the object move at same velocity?

We want to move the object in x, y space at same velocity.

But, if we pressed both up and right arrow (up = y, right = x), the object gets a speed boost.

So, just get the direction of the velocity vector by normalizing it, and multiply the direction, speed and delta time and add the result to position vector.

```
350 void Dude::Update( const Keyboard & kbd,float
                                                      350 void Dude::Update( const Keyboard& kbd,float
                                                              Vec2 vel( 0.0f,0.0f );
        if( kbd.KeyIsPressed( VK_RIGHT ) )
                                                              if( kbd.KeyIsPressed( VK_RIGHT ) )
            pos.x += speed * dt;
                                                                  vel.x += 1.0f;
        if( kbd.KeyIsPressed( VK_LEFT ) )
                                                              if( kbd.KeyIsPressed( VK_LEFT ) )
            pos.x -= speed * dt;
                                                                  vel.x -= 1.0f;
        if( kbd.KeyIsPressed( VK_DOWN ) )
                                                              if( kbd.KeyIsPressed( VK_DOWN ) )
                                                    ⇒362
            pos.y += speed * dt;
                                                                  vel.y += 1.0f;
        if( kbd.KeyIsPressed( VK_UP ) )
                                                              if( kbd.KeyIsPressed( VK_UP ) )
            pos.y -= speed * dt;
                                                                  vel.y -= 1.0f;
                                                              pos += vel.GetNormalized() * speed * dt;
```

▲ example code by ChiliTomatoNoodle