UE Mathematics for Computer Science

Homework 1, October 2015

I understand what plagiarism entails and I declare that this report is my own, original work.

Alisa Patotskaya, 20.10.2015

Task 1.

According to the statement of the problem:

 $f: N \to K$, where N is n-set, i.e. $N = \{a_1, a_2, ..., a_n\}$, $K = \{x_1, x_2, ..., x_k\}$.

It means that, if there are no restrictions for f, $f(a_i)$ takes any value from $\{x_1, x_2, ..., x_k\}$, i.e. k possibilities. As to input (parameter) of f can be given any of the variables $\{a_1, a_2, ..., a_n\} =$ number of functions equals k^n .

Task 2.

If n > k, this is not possible to construct injective function on such sets, as there will be a, b \in { a_1 , a_2 , ..., a_n } such that $a \neq b$ and f(a) = f(b), as the number of function values is less than the number of parameters.

If n <= k, than by definition of injection, if f(x) = f(y) => x = y. This implies that if $x \neq y => f(x) \neq f(y)$. So different values from $\{a_1, a_2, ..., a_n\}$ should take different function values.

 $f(a_1)$ can take any of k possible values $\{x_1, x_2, ..., x_k\}$,

 $f(a_2)$ can take any of k - 1 possible values $\{x_1, x_2, ..., x_k\} / f(a_1)$,

 $f(a_3)$ can take any of k - 2 possible values $\{x_1, x_2, ..., x_k\} / \{f(a_1), f(a_2)\},\$

. . .

 $f(a_n)$ can take any of k - n + 1 possible values $\{x_1, x_2, ..., x_k\} / \{f(a_1), f(a_2), ..., f(a_{n-1})\}$. Thus, the number of such function equals k * (k-1) * (k - n + 1) = k! / (k - n)!.

Task 3.

We denote the number of surjective functions $f: N \to K$ as $S_{n,k}$. Us we proved before, the number of functions with no restrictions is equal to k^N . Let's suppose that surjection take place only for one x_i from $K = \{x_1, x_2, ..., x_k\}$, so $x_i = f(a_i)$. The number of such functions equals the

number of ways to pick x_i (C_K^1) multiply by the number of functions without restrictions on $K' = \{x_1, x_2, ..., x_k\} / \{x_i\}$ equal to $(k-1)^N$ for the rest values, and equals C_K^{1*} ($(k-1)^N$). Now let's suppose that surjection takes place only for x_i , x_j from $K = \{x_1, x_2, ..., x_k\}$, so $x_i = f(a_k)$, $x_j = f(a_m)$. The number of such functions equals the number of ways to pick x_i , x_j (C_K^2) multiply by the number of functions $(k-2)^n$ for the rest values, and equals C_K^{2*} ($(k-2)^N$). Continuing in the same and applying Inclusion-exclusion principle, we will get that the number of surjective functions equals:

$$S_{n,k} = k^n - C_k^{1*} (k-1)^n + C_k^{2*} (k-2)^n - \dots \pm C_k^{k-1} 1^n = \sum_{i=0}^{k-1} (-1)^i C_k^{i*} (k-i)^n$$

Task 4.

By definition of a bijection $f: N \rightarrow K$ is bijection if:

1)
$$\forall a \in N, b \in N(f(a) = f(b) \Rightarrow a = b)$$

2)
$$\forall y \in K$$
, $\exists x \in N \text{ such that } f(x) = y$

It can be obtained that $\forall y \in K$, $\exists only one x \in N \text{ such that } f(x) = y$, as

if \exists only one $x1 \in N$ such that $f(x1) = y \Rightarrow x1 = x$. So it means that to every value from K corresponse only one value from N and vice versa. That is why for a bijection the number of elements in set N equals number of elements in set K, i.e. k = n. We could notice that:

 $f(a_1)$ can take any of k possible values $\{x_1, x_2, ..., x_k\}$,

 $f(a_2)$ can take any of k - 1 possible values $\{x_1, x_2, ..., x_k\} / f(a_1)$,

 $f(a_3)$ can take any of k - 2 possible values $\{x_1, x_2, ..., x_k\} / \{f(a_1), f(a_2)\}$,

. . .

 $f(a_n)$ can take any of k - n + 1 = k - k + 1 = 1 possible values $\{x_1, x_2, ..., x_k\} / \{f(a_1), f(a_2), ..., f(a_{n-1})\}$.

Thus, the number of bijective function equals k * (k-1) * 1 = k! = n!