"Notes of Shanto" & "Notes of Promí" Presents

(MAT-105W)

ALL QUESTIONS

Written By

Ariful Islam Shanto

Software Engineering Department, Batch: 2019-2020, SUST.

Contact Info

Email: mailto:ariful29@student.sust.edu
Github Webpage: https://shanto-swe029.github.io
Follow on Github: https://github.com/shanto-swe029
Facebook Profile: https://facebook.com/shanto3585

Promi Mojumder

Software Engineering Department, Batch: 2019-2020, SUST.

Contact Info

Email: mailto:promi38@student.sust.edu
Facebook Profile: https://facebook.com/promi.118

Written On November 2020.

Contents

- ➤ Limit And Continuity
- Graph Of A Function
- Derivative
- Maxima Minima
- > Rolle's Theorem
- Mean Value Theorem
- > Euler's Theorem
- Taylor And Maclaurin's Polynomial
- ➤ Integration : As An Inverse Process Of Differentiation
- Definite Integral As The Limit Of A Sum
- Reduction Formula
- Improper Integral

Limit and Continuity

(1) If
$$f(x) = \begin{cases} x ; 0 \le x \le \frac{1}{2} \\ 1 - x ; \frac{1}{2} \le x \le 1 \end{cases}$$

Show that f(x) is continuous at $x = \frac{1}{2}$ but f(x) is not differentiable at that point.

(2) Discuss the continuity and differentiability at x = 0 and $x = \frac{\pi}{2}$ of the function

$$f(x) = \begin{cases} 1 & ; x < 0 \\ 1 + \sin(x) & ; 0 \le x \le \frac{\pi}{2} \\ 2 + \left(x - \frac{\pi}{2}\right)^2 & ; x > \frac{\pi}{2} \end{cases}$$

(3) Discuss the continuity and differentiability at x = 0 and x = 1 of the function

$$f(x) = \begin{cases} x^2 + 1 \ ; & x \le 0 \\ x & ; & 0 < x < 1 \\ \frac{1}{x} & ; & x \ge 1 \end{cases}$$

Graph of a function

(1) Sketch the graphs of the following functions:

(i)
$$f(x) = \begin{cases} x ; & x < 1 \\ e^{x} ; & 1 \le x \le 2 \\ 2 ; & x > 2 \end{cases}$$
(ii)
$$f(x) = \begin{cases} \sin(x) ; & x < \frac{\pi}{2} \\ 0 ; & x = \frac{\pi}{2} \\ x ; & x > \frac{\pi}{2} \end{cases}$$

Derivative

(1)
$$\sin y = x \cdot \sin(a + y)$$
; $\frac{dy}{dx} = ?$

Formula

$$\frac{d}{dx}(u^{v}) = u^{v} \cdot \frac{d}{dx} \{v \cdot \ln(u)\}$$

(2)
$$y = (\sin x)^{\cos x} + (\cos x)^{\sin x}$$
; $\frac{dy}{dx} = ?$

(3)
$$y = (\tan x)^{\cot x} + (\cot x)^{\tan x}$$
; $\frac{dy}{dx} = ?$

(4)
$$e^x + e^y = xy$$
; $\frac{dy}{dx} = ?$

(5) If
$$y = e^{-x} \cdot \sin x$$
, show that $y_4 + 4y = 0$.

(6) If
$$y = a^{bx+c}$$
, show that

$$y_n = a^{bx+c} \cdot \{\ln(a)\}^n \cdot b^n$$

(7) If $y = \ln(ax + b)$, show that

$$y_n = (-1)^{n-1} \cdot (n-1)! \cdot (ax+b)^{-n} \cdot a^n$$

Leibnitz's Theorem

$$(uv)_n = u_nv + n_{c_1} \cdot u_{n-1}v_1 + \dots + n_{c_r} \cdot u_{n-r}v_r + \dots + uv_n$$

(8) If
$$y = \tan^{-1}(x)$$
, show that

$$(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$$

(9) If
$$\ln y = \tan^{-1} x$$
, show that

$$(1+x^2)y_{n+2} + (2nx + 2x - 1)y_{n+1} + n(n+1)y_n = 0$$

(10) If $y = \sin(m \sin^{-1} x)$, prove that

$$(1-x^2)y_{n+2} - (2n+1)x \cdot y_{n+1} + (m^2 - n^2)y_n = 0$$

Maxima - Minima

(1) Investigate for what values of x,

$$f(x) = 5x^6 - 18x^5 + 15x^4 - 10$$

is minimum or maximum.

(2) Find for what values of x, the following expression is maximum or minimum respectively

$$2x^3 - 21x^2 + 36x - 20$$

Find out the maximum and minimum values of the expression.

Rolle's Theorem

- (1) Verify Rolle's theorem for $f(x) = x^3 12x$ in the interval $0 \le x \le 2\sqrt{3}$.
- (2) Does Rolle's theorem apply to the function

$$f(x) = 1 - (x - 3)^{\frac{2}{3}}$$

Mean Value Theorem

(No Math Found)

Euler's Theorem

$$x \cdot \frac{\delta F}{\delta x} + y \cdot \frac{\delta F}{\delta y} + \dots = nF$$

(1) If
$$u = \tan^{-1} \frac{x^3 + y^3}{x + y}$$
, show that

$$x \cdot \frac{\delta u}{\delta x} + y \cdot \frac{\delta u}{\delta y} = \sin(2u)$$

(2) If
$$u = \cos^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, show that

$$x \cdot \frac{\delta u}{\delta x} + y \cdot \frac{\delta u}{\delta y} + \frac{1}{2}(\cot u) = 0$$

(3) If
$$u = \tan^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, show that

$$x \cdot u_x + y \cdot u_y = \frac{1}{4} \sin 2u$$

Taylor & Maclaurin's Polynomial

- (1) Find Maclaurin's series for e^x .
- (2) Find Maclaurin's series for
 - (i) e^{mx}
 - (ii) $\sin 2x$
- (3) Find Taylor series for $f(x) = \ln x$ at x = 2.

Integration: As An Inverse Process Of Differentiation

- Find the anti-derivative of
 - (1) $\sin 2x + e^{5x}$
 - (2) $\frac{8^{1+x}+4^{1-x}}{2^x}$
- Find the Indefinite Integrals -
 - $(1) \quad \int \frac{\sin^8 x \cos^8 x}{1 2\sin^2 x \cos^2 x} \ dx$
 - (2) $\int \frac{dx}{x\{10 + 7\ln(x) + (\ln x)^2\}}$
 - (3) $\int \frac{e^x dx}{e^{2x} + 2e^x + 5}$ (4) $\int \frac{dx}{(x^2 16)\sqrt{x + 1}}$

 - (5) $\int \frac{dx}{3+2\cos x}$
- Fundamental theorem of integral calculus and its application to definite integrals -
 - $(1) \quad \int \frac{dx}{(a^2+x^2)^{\frac{3}{2}}}$
 - (2) $\int \frac{x\sqrt{2-x^2}}{\sqrt{1+x^2}} dx$

Definite Integral As The Limit Of A Sum

- (1) $\lim_{n\to\infty} \left[\frac{n}{n^2} + \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+(n-1)^2} \right]$
- (2) $\lim_{n\to\infty} \left[\frac{1}{n} + \frac{\sqrt{n^2-1^2}}{n^2} + \cdots + \frac{\sqrt{n^2-(n-1)^2}}{n^2}\right]$
- (3) $\lim_{n\to\infty} \left[\frac{1}{\sqrt{2n-1^2}} + \frac{1}{\sqrt{4n-2^2}} + \cdots + \frac{1}{n} \right]$

Reduction Formula

(1) Apply reduction formula for $\int cos^n x \, dx$ and then evaluate $\int cos^8 x \, dx$.

Improper Integral

- (1) Is the area under the curve $y = \frac{1}{\sqrt{x}}$ from x = 0 to x = 1 finite? If so, what is it?
- (2) Evaluate $\int_{2}^{\alpha} \frac{x+3}{(x-1)(x^2+1)} dx$

~-~-~ The End ~-~-~