Assignment Project Exam Help Add WeChat powcoder

19. Caches: Direct Mapped

Assignment Project Exam Help

EECS 370 – Introduction to Computer Organization – Fall 2020

AddweChatpowcoder

EECS Department
University of Michigan in Ann Arbor, USA

© Narayanasamy 2020

The material in this presentation cannot be copied in any form without written permission

Announcements WeChat powcoder

Upcoming deadlines:

Assignment Project Exam Help

HW4

due Nov 10th
due Nov. 12th://powcoder.com Project 3

Add WeChat powcoder

Add WeChat powcoder

Assignment Project Exam Help

Recap: Cache Blockstand/Worte posticyom

Add WeChat powcoder

Review: Cache Organization Coder

Cache blocks:

Captures spatial locality (increase cache hit rate)

Reduces tag overhead (number and size of tags)

Need not store block offset in the cache line

Determine byte to be read/written from the address directly

Assignment Project Exam Help Review: How to find tag from address?

Add WeChat powcoder Cache **Memory Processor 100 110** 120 Ld R1 Amignment Project Exam Help 3
Ld R2

Ld R2

M[5] 130 140 Ld R3 ← M[1 1 **150** Ld R3 \leftarrow M[$\frac{4}{4}$ 160 Ld R2 \leftarrow M[0] 170 PARCOU 8 180 190 Addr: 0101 10 200 11 210 R0 12 110 **220** R1 Misses: 2 **150** 13 **230 R2** Hits: 14 240 **R3** 15 **250**

Review: Writes WeChat powcoder

Write-allocate vs. no-write-allocate caches

Policy that decides what to do with a cache-miss on a store instruction.

Assignment Project Exam Help

Write-allocate: First bring data from memory into the cache, then write

Add WeChat powcoder

No-write-allocate: do not bring data in the cache, just write directly to the memory, not to the cache

Review: Writes WeChat powcoder

Write-through vs. write-back caches

Policy that decides when to write to cache vs. memory vs. both

Assignment Project Exam Help

Write-through: write to both cache and memory

https://powcoder.com

Write-back: write only to cache, keep track of dirty cache line, write to memory when dirty cache line is evicted

Review: Writes WeChat powcoder

Store w No Alloc	cate Write-Back	Write-Through
Hit?	Write Cache	Write to Cache + Memory
Miss?	Write to Memory	Write to Memory
Replace block? Assignmenter hopestirt, xam Hopesthing		
write to Memory		
https://powcoder.com		

Store w Allocate Write-Back Write-Through Write to Cache + Memory Write Cache Hit? Miss? Read from Memory to Cache, Read from Memory to Cache, Allocate to LRU block Allocate to LRU block Write to Cache Write to Cache + Memory Replace block? If evicted block is dirty, Do Nothing write to Memory

Add WeChat powcoder

Assignment Project Exam Help

Direct Mapped Cathes://powcoder.com

Add WeChat powcoder

Fully-associative caches powcoder

We designed a fully-associative cache

- •A memory location can be copied to any cache line.
- •We check every cache tag to determine whether the data is in the cache.

Assignment Project Exam Help

This approach can be too slow sometimes https://powcoder.com
•Parallel tag searches are expensive and can be slow. Why?

Add WeChat powcoder

Direct mapped caches at powcoder

We can redesign the cache to eliminate the requirement for parallel tag lookups

- •Direct mapped caches partition memory into as many regions as there are cache linessignment Project Exam Help
- •Each memory region maps to a single cache line in which data can be placed https://powcoder.com
- •You then only need to check a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference with the region the reference would be a single tag the one associated with the region the reference would be a single tag the one associated with the region the reference would be a single tag the reference would be a single

Mapping memory to cache (Direct-mapped) Add WeChat powcoder

Assignment Project Exam Help Direct-mapped cache: Placement & Access

Add WeChat powcoder

Direct mapped caches powcoder

Two blocks in memory that map to the same cache index cannot be present in the cache at the same time (conflict)

One index \rightarrow one entry

Assignment Project Exam Help

Can lead to 0% hit rate if more than one block accessed in an interleaved manner map to the same index https://powcoder.com

Assume addresses A and B have the same index bits but different tag bits A, B, A, B, A, B, A, B, ... Add WeChat powcoder

All accesses are conflict misses

Assignment Project Exam Help Direct-mapped cache

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help Ld $R2 \leftarrow M[$ ptps:/powcoder.comSt $R1 \rightarrow M[7]$ WChat howcod Ld R2 ← M[4 11d] R0 R1 Misses: 0 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data 4 Ld $R2 \leftarrow M[$ ptps:/powcoder.comSt $R1 \rightarrow M[7]$ WChat howcod Ld R2 ← M[Add **R0** R1 Misses: 0 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data 4 Ld $R2 \leftarrow M[$ pt ps:/ps:/ps:/ps:/ps St $R1 \rightarrow M[7]$ Ld R2 ← M[Add DOWCOO R0 **R1** Misses: 1 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 St $R2 \leftarrow M[$ ps:/ps:/powender/80St $R1 \rightarrow M[7]$ Ld R2 ← M[Add powcod R0 R1 Misses: 1 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 St $R2 \leftarrow M[$ psSt $R1 \rightarrow M[7]$ Ld R2 ← M[Add DOWCOO R0 **R1** Misses: 2 **R2** Hits: **R3**

Assignment Project Examellely)

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 Ld R2 \leftarrow M[$\frac{5}{2}$ t]ps://povdoder/con St R1 \rightarrow M[7] Ld R2 ← M[Add DOWCOO R0 **R1** Misses: 2 **R2** Hits: **R3**

Assignment Project Examellely)

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 Ld $R2 \leftarrow M[$ pt ps:/powdoder7dom St R1 \rightarrow M[7] Ld R2 \leftarrow M[\triangle dd R0 **R1** Misses: 3 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 \Rightarrow St R1 \rightarrow M[7] Ld R2 ← M[Add R0 **R1** Misses: 3 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 7 Ld R1 ← M[1] V d tag data Ld $R2 \leftarrow M[$ 5t $PS \rightarrow M[$ 2t \rightarrow St R1 \rightarrow M[7] Ld R2 ← M[Add R0 **R1** Misses: 4 **R2** Hits: **R3**

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 Ld $R2 \leftarrow M[$ 5t PS : /POvdoder7comSt $R1 \rightarrow M[7]$ \rightarrow Ld R2 \leftarrow M[\triangle dd R0 **R1** Misses: 4 **R2** Hits: **R3**

Assignment Project Exame Help Assignment Project Exame Help Assignment Project Exame Help

Add WeChat powcoder Block Cache **Memory Processor** Assignment Project Exam Help 3
Ld R1 ← M[1] V d tag data Help 3 Ld $R2 \leftarrow M[$ 5t PS : /POvdoder7comSt $R1 \rightarrow M[7]$ \rightarrow Ld R2 \leftarrow M[\triangle dd R0 **R1** Misses: 4 **R2** Hits: **R3**

Class Problement is the state of the leaphe after executing the following instruction sequence?

Add WeChat powcoder Cache **Memory Processor 78** Direct-mapped, 29 write-allocate 120 write-back Assignment Project Exam Help 3 ← M[3] V d tag data Help 4 123 Ld R1 ← M[3] 71 Ld R2 ← M[12] ://www.coder.com **150** St $R2 \rightarrow M[$ 15 PS162 St $R1 \rightarrow M[4]$ Ld R2 M[Add WeChat nowcoder **173** 18 21 33 10 11 28 R0 12 19 R1 13 200 **R2** 14 210 **R3** 225 29

Add WeChat powcoder Cache **Memory Processor 78** Direct-mapped, 29 write-allocate 120 write-back Assignment Project Exam Help 3 ← M[3] V d tag data 4 **123** Ld R1 \leftarrow M[3] 71 Ld R2 \leftarrow M[$\frac{12}{12}$] rdo@eodep.com **150** St R2 \rightarrow M[$\frac{1}{15}$] 200 162 St $R1 \rightarrow M[4]$ nagocod **173** Ld R2 \leftarrow M[\nearrow dd 123 18 21 33 10 11 28 R0 19 123 12 R1 19 13 200 **R2** 14 210 **R3** 15 225 30

Add WeChat powcoder Cache **Memory Processor 78** Direct-mapped, 29 write-allocate 120 write-back Assignment Project Exam Help 3 ← M[3] V d tag data Help 4 **123** Ld R1 \leftarrow M[3] 71 Ld R2 \leftarrow M[12] rdoweodep.com **150** St R2 \rightarrow M[44]P 200 162 St $R1 \rightarrow M[4]$ VaChat halfooder **173** Ld R2 \leftarrow M[\nearrow dd 19 18 21 33 10 11 28 R0 19 123 12 R1 19 13 200 **R2** 14 210 **R3** 225 15 31

Add WeChat powcoder Cache **Memory Processor 78** Direct-mapped, 29 write-allocate 120 write-back Assignment Project Exam Help 3 ← M[3] V d tag data Help 4 **123** Ld R1 \leftarrow M[3] 71 Ld R2 \leftarrow M[12] 130W&od&2&om **150** St R2 \rightarrow M[45] 150 162 St R1 \rightarrow M[4] VaChat halfooder **173** Ld R2 \leftarrow M[\nearrow dd 19 18 21 33 10 11 28 R0 19 123 12 R1 19 13 200 **R2** 14 210 **R3** 225 15 32

Add WeChat powcoder Cache **Memory Processor 78** Direct-mapped, 29 write-allocate 120 write-back Assignment Project Exam Help 3 ← M[3] V d tag data Help 4 **123** Ld R1 \leftarrow M[3] **123** Ld R2 \leftarrow M[12] 130020dep.com **150** St R2 \rightarrow M[$\frac{15}{15}$] 200 162 St R1 \rightarrow M[4] Vacader **173** Ld R2 \leftarrow M[\nearrow dd 19 18 21 33 10 11 28 R0 19 123 12 **R1** 200 13 200 **R2** 14 210 **R3** 225 15 33

Add WeChat powcoder Cache **Memory Processor 78** Direct-mapped, 29 write-allocate 120 write-back Assignment Project Exam Help 3 ← M[3] V d tag data Help 4 **123** Ld R1 \leftarrow M[3] **123** Ld R2 \leftarrow M[12] 130020dep.com **150** St R2 \rightarrow M[$\frac{15}{15}$] 200 162 St R1 \rightarrow M[4] Vacoder **173** Ld R2 \leftarrow M[\nearrow dd 19 18 21 33 10 11 28 R0 19 123 12 **R1** 200 13 200 **R2** 14 210 **R3** 15 19 34

Class Problemed WeChat powcoder

How many tag bits are required for:

32-bit address, byte addressed, direct-mapped 32k cache, 128 byte block size, write-back

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What are the overheads of this cache?

35

Class Problemed WeChat powcoder

How many tag bits are required for:

32-bit address, byte addressed, direct-mapped 32k cache, 128 byte block size, write-back

```
# Bytes in blocks in block
```

Add WeChat powcoder

What is the overhead of this cache?

```
17 bits (Tag) + 1 bit (Valid) + 1 bit (Dirty) = 19 bits / line
19 bits / line * 256 lines = 4864 bits
4864 bits / 32KB = 1.9% overhead
```

What about cache for instructions?

Instructions should be cached as well

We have two choices:

- 1. Treat instruction fetches as normal data and allocate cache lines when fetched
- 2. Create a second cackers instructions only

https://powcoder.com

How do you know which cache to use?

Add WeChat powcoder
What are advantages of a separate ICache?

Integrating Caches into a Pipeline

How are caches integrated into a pipelined implementation?

Replace instruction memory with Icache

Replace data memory with Dcache

Assignment Project Exam Help

Issues:

Memory accesses now have validated at powcoder.com

Both caches may miss at the same time Add WeChat powcoder

Assignment Pelipetwith Caches Add WeChat powcoder oject Exam H<mark>elp</mark> nand 1 regB ICache 21 **75** data Dcache wcoder add lw nand EX/ ID/ Mem/ To **WB**³⁹ EX Mem mem mem

Summary: Direct mapped caches Memory **78** Cache 29 tag data **120 123** 0 Assignment Project Exam Help 4 **71 150** https://powcoder.com **162** Add WeChat powcoder 18 21 10 33 28 **Address: 12** 19 line index block offset tag 13 200 2 bits 1 bit 1 bit 14 **15 225**

Next lecture: Get the advantage of both...

Set associative caches:

Partition memory into regions

like direct mapped but fewer partitions

Associate a region to Assignmenth Project Exam Help

Check tags for all lines in a set to determine a HIT https://powcoder.com
Treat each line in a set like a small fully associative cache

LRU (or LRU-like) policy generally wed Chat powcoder

