Definition: A function $\Psi: X \to [0, \infty)$ is said to be simple if there exists $n \in \mathbb{N}$, $A:3_{i=1}^n \subseteq A$ nonempty pairwise disjoint, and with union X and $(a:)_{i=1}^n \subseteq [0, \infty)$ distinct such that $\Psi = \sum_{i=1}^n a_i \chi_{A_i}$

Egrof's Theorem

Theorem: Let μ be a finite measure, let $(fn)_{n=1}^{\infty}$ be a sequence of measurable functions, Assume that $f: X \to K$ is measurable and $fn \to f$ pointwise. Then for any f>0 there exists $B \in A$ such that

(i) µ(B) < 8

(ii) $fn \rightarrow f$ uniformly on B^c .

Proof: Let 8>0. For all m, k e 1k, let

$$B_{m,k} = \bigcup_{n=m}^{\infty} \left\{ x \in X : |f_n(x) - f(x)| > \frac{1}{K} \right\}.$$

where $B_{m,k}$ is measurable and $B_{m+1}, k \leq B_{m,k}$ for all $m \in IN$, and $\bigcap_{m=1}^{\infty} B_{m,k} = \emptyset$. By the Monotone Convergence

Theorem, as μ is finite,

lim M (Bmik) = 0.

Thus there exists $m_k \in IN$ such that $\mu(Bm_k, m) < \frac{\delta}{2^n}$

Let $B = \bigcup_{k=1}^{\infty} B_{m_k, m} \in A$, so by subadditivity,

$$\mu(B) = \mu\left(\bigcup_{k=1}^{\infty} B_{m_k,m}\right) \leq \sum_{k=1}^{\infty} \mu(B_{m_k,m}) < \sum_{k=1}^{\infty} \frac{s}{2^n} = s$$

proving (i).

To see (ii), let $\varepsilon > 0$, and choose $K \in IN$ such that $\frac{1}{K} < \varepsilon$. Note that $B_{m_{\kappa},m} \subseteq B$, so $B^c \subseteq B_{m_{\kappa},m}^c$. Thus, if $n \ge m_{\kappa}$ and $x \in B^c$, then $x \in B_{m_{\kappa},\kappa}$ so $|f_n(x) - f(x)| < \frac{1}{K} < \varepsilon$.

Therefore, we have uniform convergence on B^c .

Remark: We can replace pointwise convergence with a.e. pointwise convergence.

Indeed, if $A \in A$ such that $\mu(A^c) = 0$, and $f_n(x) \to f(x)$ for all $x \in A$. Then $f_n(x) \to f(x)$ pointwise on X. So the proof gives us $B \in A$ such that $\mu(B) < \delta$ and $f_n(x) \to f(x)$ uniformly on B^c . Let $D = B \cup A^c \in A$. Then

 $\mu(D) \leq \mu(B) + \mu(A^c) < \delta + D = \delta$ Moreover, on $D^c = B^c \wedge A$, for $x_A = f$ and $f x_A = f$, so $f_n \rightarrow f$ uniformly on D^c .

Remark: We cannot remove the condition that " μ is finite". Indeed, let $\mu = \lambda$ on IR and $f_n = \chi_{[n_1\infty)}$ then $f_n \to 0$ pointwise.

We claim that these fail the conclusions of Egrof's Theorem. Assume for a contradiction they do not fail. Then there exists $B \in \mathcal{M}(IR)$ such that $\lambda(B) < I$ and $fn \rightarrow f$ uniformly on B^c . With $\epsilon = I$, there exists $N \in IN$

such that

 $|f_N(x)| = |f_N(x) - 0| < \varepsilon = 1 \quad \forall x \in B^c$

Thus, $x \notin [N, \infty)$, so $X \in (-\infty, N)$, for all $x \in B^c$ and so $B^c \subseteq (-\infty, N)$. Therefore, $[N, \infty) \subseteq B$, i.e. $\lambda(B) = \infty$.

Littlewood's First Principle

Definition: Let (X_1d) be a metric space and let μ be a measure on a σ -algebra $\mathcal A$ of X containing the Borel sets.

(i) We say μ is outer regular if $\mu(A) = \inf \{ \mu(u) : U \text{ is open and } A \subseteq u \}.$

(ii) We say μ is inner regular if $\mu(A) = \sup \{\mu(K) : K \text{ is compact and } K \subseteq A\}$.

(iii) We say μ is regular if μ is both outer and inner regular.

Example: (Assignment 1) λ is regular.

Theorem: Let μ be an outer regular measure on IR and let $A \in \mathcal{A}$ be a measurable set with $\mu(A) < \infty$. Then for every E > 0, there exists $n \in \mathbb{N}$ and $I_1, ..., I_n$ pairwise disjoint open intervals Such that $U = \bigcup_{i=1}^n I_i$ then $\mu(U \triangle A) < E$,

(where $A \triangle B = (A \setminus B) \cup (B \setminus A)$ is the symmetric difference).

Proof: Let E>0 be arbitrary. By outer regularity, there exists U open such that $A \subseteq U$ and $\mu(u) < \lambda(A) + \frac{\varepsilon}{2}$. Because $\mu(u) < \infty$ and $\mu(A) < \infty$, then $\mu(u \mid A) < \frac{\varepsilon}{2}$ Since U is open, then U is the union of a collection $2 \operatorname{In} 3_{n=1}^{\infty}$ of pairwise disjoint open intervals. Let Vn = Ü I; € A. Then Vn ⊆ Vn+, for all ne in, so by the Monotone Convergence Theorem, there exists NEIN Such that $\mu(u) < \mu(V_N) + \frac{\varepsilon}{2}$, where $U = \bigcup_{n=1}^{\infty} V_n$. Note that $\mu(V_N \setminus A) = \mu(V_n) - \mu(A)$ $\leq \mu(U) - \mu(A)$ < 5 m also $\mu(A \mid V_N) \leq \mu(u \mid V_N)$ < 2. There fore, $\mu(V_N \triangle A) = \mu((V_N \backslash A) + (A \backslash V_N))$ < \(\(\lambda \lambda \lambda \) + \(\lambda \lambda \lambda \) \(\lambda \la

< \frac{\xi}{2} + \frac{\xi}{2}

 $= \mathcal{E}$

Lusin's Theorem

Theorem: Let μ be a regular measure on IR such that $\mu([a_1b]) < \infty$ for some $a < b \in IR$. Let $f: [a_1b] \rightarrow IK$ be measurable. Then

(i) for all E>0, there exists $F\subseteq IR$ closed such that $\mu([a,b]) \in E$ and $f|_F$ is continuous,

(ii) there exists $g: [a_1b] \rightarrow 1K$ continuous such that g = f on F, $\mu(i \times g(x) \neq f(x)i) < \epsilon$ and $\sup_{x \in [a_1b]} |g(x)| \leq \sup_{x \in [a_1b]} |f(x)|$

Note: (ii) immediately follows from Tietz Extension Theorem

Theorem: (Tietz) If $F \subseteq IR$ is closed and $h: F \to IK$ is

Continuous, there exists $g: IR \to IK$ continuous, $g|_F = h$ and $\sup_{x \in IR} |g(x)| \leq \sup_{x \in F} |h(x)|$

Proof: Because F is closed, $F^c = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}_{n=1}^{\infty}$ are painwise disjoint open intervals. Write $I_n = (a_{n1}b_n)$ with $a_n < b_n$ $a_n \in \mathbb{R} \cup \{\infty 3, b_n \in \mathbb{R} \cup \{-\infty \}\}$. Then

$$g(x) = \begin{cases} h(x) & \text{if } x \in F \\ h(bn) & \text{if } an = -\infty \\ h(an) & \text{if } bn = \infty \\ \frac{x-an}{bn-an} (h(bn)-h(an)) + h(an) & \text{if } an \neq \infty \\ h(an) & \text{if } an \neq \infty \end{cases}$$

Lemma: Lusin's Theorem holds for simple functions.

Proof: Assume f = \frac{7}{i=1} ai \(\chi_{Ai}\) where \frac{1}{4} Ai \(\chi_{i=1}\) are pairwise

disjoint with union [aib] and $a_i \in [0,\infty]$ for all i.

Fix $\epsilon > 0$, By inner regularity, there exists closed $\{F_i\}_{i=1}^n$.

Such that $F_i \in A_i$ $\forall i$ and $\mu(A_i) < \mu(F_i) + \frac{e}{n}$ Let $F = \bigcup_{i=1}^n F_i$. Then F_i is closed, so $\mu([a_ib] \setminus F) = \mu\left(\bigcup_{i=1}^n A_i \setminus F_i\right)$ $= \mu\left(\bigcup_{i=1}^n A_i \setminus F_i\right)$ $\leq \sum_{i=1}^n \mu(A_i \setminus F_i)$ $\leq \epsilon$.

Now we show $f|_F$ is continuous. Let $(xm)_{n=1}^{\infty}$ be a sequence in F such that $xn \to x$ for some $x \in F$. Then $\exists k_x$ such that $x \in F_{k_x}$. Since $\{A_i\}_{i=1}^n$ are pairwise disjoint and $F_i \subseteq A_i$ $\forall i$, k_x is unique, so there exists $N \in IN$ such that $xm \in F_{xm} \ \forall \ m \ge N$. Since otherwise, there exists an infinite number of xm are in F_k , so $x \in F_k$, as F is closed. Hence, $xm \in F_{k_x} \ \forall m > N$, so f is continuous at $x \in F_k$.

Proof of Lusin: Let $f: [a_1b] \to \mathbb{C}$ measurable. Considering the positive and negative portions of the real and imaginary parts of f: by the fact nonnegative measurable functions are pointwise limits of simple functions and Lusin's Theorem holds for simple functions, there

exists a sequence $(g_n)_{n=1}^{\infty}$ of measurable functions and {Fn } closed such that (i) gn → f pointwise (ii) galfa is continuous Liii) µ[[a,b] \ Fn) < Entre C[a,b] By Egrof, there exists $B \in A$ such that $\mu(B) < \frac{\varepsilon}{4}$ and gn -> f uniformly on B. By outer regularity, there exists U open such that $B \subseteq U$ and $\mu(U) < \frac{\varepsilon}{2}$. Let $F' = [a,b] \setminus U$. Then $\mu([a_1b]\setminus F') = \mu(u) < \xi$