Agenda:

• Precise statements: propositions

• Compound propositions: using conjunction

• Predicates: statements about sets

• Quantifiers: restrict the range of predicates

Statements can be ambiguous

i.e. Everyone loves someone.

2+2=4 $2+2=5 \leftarrow$ Precise but false If you study you will get an A in FOCS

Propositions

• p: You studied

 \bullet q: You got an A in FOCS

 \bullet r: Kilam is an American

• $s: y^2$ is even

Compound Propositions

Conjunction	Symbol	Example
Not	\neg	$\neg p$: You did not study
Ifthen	\rightarrow	$p \to q$: If you studied then you get an A in FOCS.
And	\wedge	$p \wedge q$: You studied and you got an A in FOCS
Or	\vee	$p \vee q$: You studied or you got an A in FOCS

Truth Tables

p	q	r	$\neg p$	$q \wedge r$
Τ	Τ	Τ	F	Τ
\mathbf{T}	${\rm T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	Τ	\mathbf{T}	\mathbf{T}	${ m T}$
\mathbf{F}	Τ	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	F	${\rm T}$	${ m T}$	\mathbf{F}
F	F	F	\mathbf{T}	F

Truth table for implications

 $p \to q$: if p then q

if $p \to q$ and p is T, then q is T. If p is F, then q can be anything

if $p \to q$ is false and p is T, then q is F

p	q	$p \to q$	$\neg(p \to q)$
Τ	Τ	Τ	F
Τ	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	Τ	\mathbf{F}
F	\mathbf{F}	Τ	\mathbf{F}

Contrapositive

$$p \to q \equiv \neg q \to \neg p$$

Note:

- $p \to q \not\equiv \neg p \to \neg q$
- $p \to q \not\equiv q \to p$ (Converse)

Algebra for Propositions

- $\bullet \ \neg (\neg p) = p$
- $\bullet \ \neg (p \land q) = \neg p \lor \neg q$
- $\bullet \ \neg (p \lor q) = \neg p \land \neg q$
- $p \to q \equiv \neg p \lor q$
- $\bullet \ \neg(p \to q) = p \land \neg q$

Example

- $(q \land \neg r) \rightarrow \neg p \equiv (p \land q) \rightarrow r$
- $q \wedge \neg r) \rightarrow \neg p \equiv \neg (q \wedge \neg r) \vee \neg p \text{ (implication)}$
 - $\equiv (\neg q \lor r) \lor \neg p \text{ (negation)}$
 - $\equiv \neg q \lor (r \lor \neg p)$ (associativity)
 - etc...

Revisit Implications

Suppose $p \to q$ is true, what can I say about q?

Statements about sets

Everyone has some gray hair

Everyone loves someone

Every even integer is a sum of two primes (Goldbach conjecture)

Someone failed FOCS

In every group of 6+ people, there are either three people who are mutual friends, or three people who are mutually not friendly

Predicates: a statement parametrized by an argument

P(x): x studied for FOCS exam $\exists x \in F : P(x)$ where $F = \{x | x \text{ is a student in FOCS spring } 2020\}$

Qualifiers

- ∃: "there exists"
- ∀: "for all"
- Q(x): x got an A in FOCS
- $\forall x \in F : P(x) \land Q(x)$

Negating Qualified Propositions

- $\neg(\forall x : P(x)) \equiv \exists x : \neg P(x)$
- $\neg(\exists x : Q(x)) \equiv \forall x : \neg Q(x)$
- $\neg(\forall x : P(x) \land Q(x)) \equiv \exists x : \neg(P(x) \land Q(x))$

$$- \equiv \exists x : \neg P(x) \lor \neg Q(x)$$

Clarify "Everyone loves someone"

 $\overline{P(a,b)}$: a loves b $\exists b : (\forall a : P(a,b))$ $\forall a : (\exists b : P(a,b))$

Falsifying statements

 $\overline{p \to q}$ is false if there exists a person who studied but failed FOCS Likewise, if there is no such case, then $p \to q$ is always true

<u>Claims</u>:

1) $\forall n: 2^{2^n} + 1 \text{ is primes}$

2)
$$\neg \exists (a, b, c) \in \mathbb{N}^3 : a^3 + b^3 = c^3$$

3)
$$\forall (a, b, c) \in \mathbb{N}^3 : a^3 + b^3 \neq c^3$$

Note: 2) and 3) above are equivalent