

# **Die Hard**

Classification task report

# Team members:

Khaled Ihitt
Ousmane Assani
Amine Rhayem
Sirine Jlassi

# **Sumerry**

D'abord, nous importons les données et faisons une visualisation des données avec **pandas\_profiling** pour obtenir une vue dense des données, après nous commençons le pré-traitement des données en les étiquetant avec un simple filtre (Where) et nous supprimons la ligne dupluque.

Ci-dessous la répartition des étiquettes et la densite des mots:





de plus, nous appliquons toutes les méthodes de nettoyage de texte (Tokenizer, Lémétisation, Stop word)

La dernière étape avant d'appliquer les modèles de classification on a vectoryzer les donne et word Embeding.

# **Machine learning:**

List des model utiliser:

- Naive Bayes
- Linear Classifier avec LogisticRegression
- KNeighborsClassifier
- DecisionTreeClassifier
- SVM
- RandomForestClassifier
- Extereme Gradient Boosting

Pour chaque model on a utiliser les methode de vectorisation, Word Embeding:

- Count Vectors
- Word Level TF IDF Vectors
- ngram level tf-idf
- Character Level TF IDF Vectors

Validation Raport pour le melleur model avec les different methodes de vectorisations er Word Embeding:

Parament les différents modèles ont des résultats très proches (91% - 93%~)

| Count Vectors             | :         |        |          |         |
|---------------------------|-----------|--------|----------|---------|
|                           | precision | recall | f1-score | support |
|                           |           |        |          |         |
| 0                         | 0.99      | 0.94   | 0.96     | 5438    |
| 1                         | 0.13      | 0.54   | 0.21     | 92      |
|                           |           |        |          |         |
| accuracy                  |           |        | 0.93     | 5530    |
| macro avg                 | 0.56      | 0.74   | 0.59     | 5530    |
| weighted avg              | 0.98      | 0.93   | 0.95     | 5530    |
| WordLevel TF-IDF:         |           |        |          |         |
|                           | precision | recall | f1-score | support |
|                           | -         |        |          |         |
| 0                         | 0.99      | 0.94   | 0.96     | 5442    |
| 1                         | 0.11      | 0.47   | 0.17     | 88      |
|                           |           |        |          |         |
| accuracy                  |           |        | 0.93     | 5530    |
| macro avg                 | 0.55      | 0.70   | 0.57     | 5530    |
| weighted avg              | 0.98      | 0.93   | 0.95     | 5530    |
| Oh a ser a see 1 . Was se |           |        |          |         |
| CharLevel Vec             |           |        | £1       |         |
|                           | precision | recall | f1-score | support |
| 0                         | 0.99      | 0.94   | 0.96     | 5426    |
| 1                         | 0.12      | 0.45   | 0.19     | 104     |
| _                         | ***       | 0.00   | 0122     |         |
| accuracy                  |           |        | 0.93     | 5530    |
| macro avg                 | 0.56      | 0.69   | 0.58     | 5530    |
| weighted avg              | 0.97      | 0.93   | 0.95     | 5530    |
|                           |           |        |          |         |
|                           |           |        |          |         |
| CharLevel Vectors:        |           |        |          |         |
|                           | precision | recall | f1-score | support |
| 0                         | 0.99      | 0.94   | 0.96     | 5426    |
| 1                         | 0.12      | 0.45   | 0.19     | 104     |
|                           |           |        |          |         |
| accuracy                  |           |        | 0.93     | 5530    |
| macro avg                 |           | 0.69   | 0.58     | 5530    |
| weighted avg              | 0.97      | 0.93   | 0.95     | 5530    |

```
Xgb, Count Vectors: 93.2007233273056 %
Xgb, WordLevel TF-IDF: 92.94755877034359 %
Xgb, CharLevel Vectors: 92.875226039783 %
Xgb, CharLevel Vectors: 92.875226039783 %
```

#### \*\* Confusion matrix

```
LR, Count Vectors:
[[5094    335]
    [    52    49]]

LR, WordLevel TF-IDF:
[[5141    373]
    [    5    11]]

LR, N-Gram Vectors:
[[5144    382]
    [    2    2]]

LR, CharLevel Vectors:
[[5141    376]
    [    5    8]]
```

### **Deep learning:**

List des model utiliser:

- Recurrent Neural Network LSTM
- Recurrent Neural Network GRU
- Bidirectional RNN
- Recurrent Convolutional Neural Network

(Avec pad\_sequences on a convertir le texte en séquence de jetons et les remplir pour garantir des vecteurs de longueur égale et applique les different algorithm)

// nombre epoque 10 pour tou les model

#### Structure des models:

#### 1 - Recurrent Neural Network - LSTM:

Simple Input Layer avec les max size de phrase a chaque foit

Word embedding Layer

LSTM Layer(100 n)

Output Layers avec activation function "sigmoid"

Compile le model avec Adam pour un optimyzer

Binary crossentropy comme loss function

#### 2- Recurrent Neural Network - GRU

La meme structure avec GRU Layer en centre

#### 3- Bidirectional RNN

La meme structure avec Bidirectional GRU Layer en centre

Et un Dropout Layer

#### 4- Recurrent Convolutional Neural Network

embedding Layer avec SpatialDropout1D

recurrent layer Bidirectional GRU

convolutional Layer Convolution1D

pooling Layer GlobalMaxPool1D

output Layers (Dense, Dropout ,Dense)

Compile avec optimizers Adam et binary\_crossentropy comme lose function

# **Conclusion**

La plupart des algorithmes d'apprentissage deep learning mettent un surajustement pré 10 epoc, alors nous avons conclu que le problème est que les données ne son pas équilibrées en termes de classe (le coût de l'étiquette 0 prend la majorité).

Donc dans notre cas le meilleur résultat est d'obtenir avec un modèle de machine Leurning.