

Общероссийский математический портал

Ю. Г. Басов, С. А. Болдырев, Л. И. Гаврилова, А. С. Дойников, Г. Е. Цвилюк, Коротковолновое излучение импульсных ламп с микросекундными длительностями разряда, Квантовая электроника, 1975, том 2, номер 8, 1840–1844

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 93.175.1.171

20 мая 2023 г., 16:23:51

- 3. А. Н. Теренин. Фотоника молекул красителей и родственных органических соединений. Л., «Наука», 1967.
- 4. А. С. Давыдов. Квантовая механика. М., «Наука», 1973.
- Ю. А. Ильинский, В. Д. Таранухин. «Квантовая электроника», 1, 1500 (1974).
 Р. Брюэр, Дж. Лифшиц. В сб.: Действие лазерного излучения. Под ред. Ю. П. Райзера. М., «Мир», 1968.

Институт тепло- и массообмена АН БССР

Поступило в редакцию 21 марта 1975 г.

УДК 621.327:535.33

Ю. Г. Басов, С. А. Болдырев, Л. И. Гаврилова, А. С. Дойников, Г. Е. Цвилюк

КОРОТКОВОЛНОВОЕ ИЗЛУЧЕНИЕ ИМПУЛЬСНЫХ ЛАМП С МИКРОСЕКУНДНЫМИ ДЛИТЕЛЬНОСТЯМИ РАЗРЯДА

Для накачки лазеров на органических соединениях используются импульсные лам пы с длительностью разряда 0,5—10 мкс. Импульсный разряд таких длительностей в инертных газах является источником мощного коротковолнового излучения, которое начинается с 165 нм, что приближается к границе пропускания кварцевой оболочки лампы. В известных до сих пор работах по исследованию световых и спектральных характеристик импульсных ламп с короткой длительностью разряда [1—4] измерения проводились в условиях, когда между лампой и приемником находился слой воздуха, поглощающий излучение до 185 нм. В то же время знание абсолютных значений энергии излучения в области 165—185 нм необходимо по нескольким причинам. Во-первых, для оценки эффективности накачки органических соединений, полосы поглощения которых соответствуют указанному диапазону длин волн. Во-вторых, для учета отрицательного влияния коротковолнового излучения вследствие возможного необратимого фотораспада соединений, полосы поглощения которых соответствуют более длинноволновому участку спектра. И, в-третьих, для определения энергетического баланса, необходимого при теоретическом расчете систем накачки лазеров. В последнем случае важно также знать энергию излучения в видимом и инфракрасном диапазонах спектра.

В связи с этим в данном сообщении описаны результаты измерений энергетических характеристик импульсных ламп, наполненных некоторыми инертными газами и их смесями, в УФ- и ВУФ-областях спектра при короткой длительности разряда.

Методика эксперимента

В работе исследовалась спектральная плотность энергии излучения в единичный телесный угол (энергетическое освечивание) импульсных ламп типа ИФП-800 с размерами разрядного промежутка \varnothing 7×80 мм при энергиях 48 и 188 Дж с длительностью импульса разрядного тока ~3 мкс. Удельная электрическая мощность составляла 6 и 24 МВт/см³, плотность тока — 58 и 98 кА/см². Лампы наполнялись ксеноном до давлений (p) 20, 50, 100 и 400 мм рт. ст., криптоном до 50 мм рт. ст. и 50%-ными смесями Xe—Ne, Xe—He, Kr—Ne до давления 50 мм рт. ст. Малоиндуктивный разрядный контур с двумя конденсаторами типа K-75-30 и разрядником с твердым диэлектриком имел следующие параметры: C=0.94 мк Φ , L=0.2 мк Γ н, U=10 и 20 кВ. Энергетические потери в разрядном контуре определялись по декременту затухания разрядного тока и для указанных напряжений не превышали 10%.

Исследование интегральных за вспышку КПД импульсных ламп проводилось методом фотоэлектрической спектрорадиометрии. Для измерения спектральных КПД излучения (η_{λ}) в интервале длин волн 165—250 нм использовался вакуумный монохроматор ВМР-2, а в спектральном интервале 250—1100 нм — монохроматор ЗМР-3. Результаты измерений приводились к одному масштабу по перекрываемому обоими приборами спектральному интервалу 220—250 нм.

При исследовании на ВМР-2 использовалась вакуумная камера, в которой лампа устанавливалась вертикально на расстоянии 12 см от входной щели прибора, что приводило к полному заполнению излучением поверхности дифракционной решетки. В камере и монохроматоре в процессе измерений поддерживалось давление 10^{−5} мм рт. ст. Выходящее измонохроматора излучение попадало на пластинку из салицилата натрия с постоянным квантовым выходом. Люминесценция пластинки регистрировалась фотоумножителем ФЭУ-38 со светофильтром СС-5 и микроамперметром М-95. Поскольку недостатком ВМР-2, как и всех монохроматоров однократного разложения, является высокий уровень интенсивности

Параметры ламп, КП Π и энергия излучения в спектральных интервалах 165-185 и 185 — 250 нм

	η _{165—185} , %	^w 165—185, Дж	η _{185—250} , %	^ш 185—250, Дж
20	0,7	0,3	5,6 14	2,7
50	5,7	2.7	30	14 43
100	14	6,7	- 55	26 77
400	1,8	0,9	26	12 65
50	0,8	0,4	10	4,8 49
50	1,8	0,9	28	14 67
50	0,6	0,3	22	10 36
50	0,7	$0,2 \\ 0,3 \\ 1.5$	11	5,2
	50 100 400 50 50	50	50 0,2 0,4 5,7 2,7 0,7 1,3 100 14 6,7 1,5 2,8 400 1,8 0,9 4,5 8,5 50 0,8 0,4 0,6 1,1 50 1,8 0,9 1,4 2,6 50 0,6 0,3 0,1 0,2 50 0,7 0,3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Примечание. Значения $\eta_{\lambda_1-\lambda_2}$ и $w_{\lambda_1-\lambda_2}$ для каждой лампы приведены для $W==CU^2/2=48$ Дж в верхней строке и для 188 Дж — в нижней.

рассеянного излучения, то в нашем случае эта интенсивность на различных длинах волн определялась с помощью стеклянных светофильтров (СС-5 и БС-4) и учитывалась при обработке результатов измерений. Наложения порядков интерференции не было из-за отсутствия излучения с длиной волны короче коротковолновой границы пропускания плавленого кварца.

Спектральная чувствительность монохроматора ВМР-2 с регистрирующей системой определялась в интервале 165—250 нм по излучению дейтериевой лампы ДДС-160. Спектральное распределение этого излучения с поправкой на пропускание выходного окна лампы

принималось таким же, как у дугового разряда в водороде [5].

Измерение спектральной плотности энергии излучения ламп в относительных единицах в интервале 220—1100 нм проводилось по методике, описанной в [6]. Установка состояла из монохроматора ЗМР-3 и фотоумножителей ФЭУ-18А и ФЭУ-22. Щирина входной и выходной щелей монохроматора бралась одинаковой и была равна 0,04 мм. Спектральная чувствительность установки определялась по водородной лампе ДВС-25 и лампе накаливания СИ10-300У с известным спектральным распределением излучения. Определение коэффициента перехода от относительных единиц к абсолютным осуществлялась путем измерения освечивания лампы ИФП-800 с начальным давлением ксенона 50 мм рт. ст. и энергией разряда 48 Дж.

Результаты измерений и их обсуждение

В таблице приведены значения КПД $(\eta_{\lambda_1 _ \lambda_2})$ и энергии $(w_{\lambda_1 _ \lambda_2})$ излучения в спектральных интервалах 165—185 и 185—250 нм. При расчете указанных величин эквивалентный телесный угол для лампы ИФП-800 принимался равным 10 ср [7].

Видно, что за некоторым исключением увеличение энергии разряда приводит к непропорциональному росту энергии излучения в двух интервалах длин волн. Повышение начального давления ксенона увеличивает интенсивность излучения разряда, что отчетливо заметно из сравнения рис. 1, a и δ .

Еще большее повышение $p_{\mathbf{Xe}}$, например до 400 мм рт. ст. (рис. 1, ϵ), приводит к уменьшению выходящего излучения. Здесь, по-видимому, как и для вспышек длительностью в сотни микросекунд, объяснение следует искать в увеличении роли тепловых потерь, связанном с повышением числа столкновений частиц плазмы со стенкой лампы.

При рассмотрении значений КПД ламп в указанных спектральных интервалах нужно отметить, что полученных данных недостаточно для установления определенных зависи-

мостей от начального давления газа, состава наполнения и энергии разряда.

Характер спектральных распределений КПД ламп, заполненных ксеноном, криптоном и их смесями с другими инертными газами, указанными в таблице, практически одинаков. Некоторые отличия можно найти лишь в интенсивности линий излучения, которые для всех наполнений расположены на одних и тех же длинах волн и принадлежат атомам

Рис.1. Спектральное распределение КПД лампы при начальном давлении ксенона 20 (a), 100 (б) и 400 (e) мм рт. ст. и энергиях разряда 48 Дж (———) и 188 Дж (———).

Рис. 2. Спектральное распределение КПД лампы, наполненной 50% -ной смесью Xe—He, при давлении 50 мм рт. ст. и энергиях разряда 48 Дж (_____) и 188 Дж (______).

кремния. Это видно, например, из сравнения рис. 1 и 2, на последнем из которых приведено спектральное распределение КПД лампы, наполненной смесью Хе-Не. Уменьшение атомного веса инертного газа-наполнителя приводит к увеличению температуры плазмы, но снижает ее излучательную способность [8]. Рост температуры плазмы способствует интенсификации испарения кварца и повышению концентрации излучающих атомов кремния. При подборе соответствующего наполнения можно добиться того, чтобы не очень сильно уменьшалась излучательная способность разряда при некотором росте его температуры, приводящем к увеличению интенсивности излучения атомов кремния. Как видно из таблицы, таким наполнением является смесь ксенона с гелием, дающая превышение энергии излучения по сравнению с ксеноновым наполнением (при таком же давлении). На рис. 3 показано спектральное распределение КПД лампы в интервале 165—

Рис. 3. Спектр альное распределение КПД лампы при $p_{\mathrm{Xe}} = 50$ мм рт. ст. и ₩=48 Дж.

1100 нм. Графическим интегрированием приведенной на рисунке кривой было получено, что в области 165—250 нм излучается ~36% электрической энергий разряда, а в области 250-1100 HM - 26%.

Такое довольно большое значение КПД (62%) в интервале длин волн 165—1100 нм предположительно можно объяснить несколькими причинами. Поскольку процесс теплопередачи инерционен, то в разряде короткой длительности может быть уменьшена доля тепловых потерь. Этому способствует также отсутствие теплового обмена между лампой и средой в вакуумной камере. Кроме того, возможно, что ошибка измерений завышает истинное значение КПД лампы. Погрешности измерений спектральных КПД составляют [6] в видимой области до 20, в УФ- и ИК-областях до 30%. Поэтому с учетом частичной компенсации ошибок при интегрировании погрешность определения суммарного КПД в интервале 165--1100 нм можно оценить в 15-20%.

Отметим, что при систематизации спектральных характеристик излучения импульсных ламп с длительностью вспышки в сотни микросекунд пользуются значениями средней за время разряда удельной электрической мощности [9], определяемой отношением энергии разряда к его длительности и объему разрядной зоны. Удельная мощность разряда в этом случае может однозначно характеризовать спектральное распределение излучения. Для разряда короткой длительности, когда в излучении плазмы большую роль играют атомы кремния, указанное положение может не выполняться по нескольким причинам, а именно, при одинаковой удельной мощности на процессы испарения кремния будут влиять геометрия разрядного промежутка, явления, связанные с динамикой перемещения плазмы в объеме лампы, и нестационарность разряда.

- В. Г. Игнатьев, В. М. Подгаецкий. «Квантовая электроника», под ред. Н. Г. Басова, № 4, 121 (1971).
 В. Н. Будник, Н. А. Козлов, В. А. Малашенков. ЖПС, 13, 979 (1970).
- 3. В. Н. Будник, Н. А. Козлов, В. А. Малашенков. ЖПС, 15, 617 (1971).
- 4. Л. И. Гаврилова, А. С. Дойников, С. Г. Жигач, М. К. Молчанов. *«Све*тотехника», № 5, 14 (1971).
- 5. А. Н. Зайдель, Е. Я. Шрейдер. Спектроскопия вакуумного ультрафиолета. М., «Наука», 1967.
- 6. В. И. Булыков, А. С. Дойников, В. Г. Игнатьев. *«Светотехника»,* № 10, 21 (1967).
- 7. А. С. Дойников, Е. А. Еремин, Ю. А. Қалинин, В. Қ. Пахомов. В сб. «Импульсная фотометрия». Л., «Машиностроение», в. 2, 126 (1972).
- 8. И. С. Маршак. Импульсные источники света. М., ГЭИ, 1963.
- 9. Л. И. Гаврилова, А. С. Дойников, В. К. Пахомов. В сб. «Импульсная фотометрия». М., «Машиностроение», в. 3, 105 (1973).

Поступило в редакцию 8 октября 1974 г., после доработки — 12 декабря 1974 г.

УДК 533.9+621.039.66+523.035.33+621.375.826

Г. В. Перегудов, Е. Н. Рагозин, В. А. Чирков

СВЕТОСИЛЬНЫЙ ФОКУСИРУЮЩИЙ РЕНТГЕНОВСКИЙ СПЕКТРОГРАФ для исследования лазерной плазмы

Исследование рентгеновских спектров, излучаемых лазерной плазмой, в последнее время приобретает большую актуальность в связи с возможностью определения по ним таких важных параметров плазмы, как температура и плотность электронов [1—2]. Наиболее просто температура и плотность электронов могут быть получены при изучении спектров Н- и Не-подобных ионов. Так, по относительным интенсивностям резонансных линий и их сателлитов Н- и Не-подобных ионов можно определить температуру электронов [3], а по относительным интенсивностям резонансной и интеркомбинационной линий Не-подобных ионов — плотность электронов [4, 5].

В работе [6] излучение лазерной плазмы в диапазоне 2-9 А регистрировалось рентгеновским спектрографом с выпуклым кристаллом слюды. Спектры регистрировались на фотопленку, причем для получения спектров в области нормальных почернений в зависимости от заряда ядра исследуемых ионов и вида мишени требовалось от 1 до 24 вспышек лазера. Это обстоятельство существенным образом сказывается как на точности измеряе-

мых величин, так и на анализе наблюдаемых данных.