Ideals (continued)

From last time...

Definition. An ideal in a ring R is a subset $I \subset R$ such that

- (1) $\langle I, + \rangle$ is a subgroup of $\langle R, + \rangle$, and
- (2) $rI \subseteq I$ and $Ir \subseteq I$ for all $r \in R$. (Here $rI = \{ra : a \in I\}$, $Ir = \{ar : a \in I\}$.)

Therefore the kernel of a ring homomorphism $R \to R'$ is an ideal in R.

Definition. An ideal I in a ring R is **proper** if $I \neq R$.

Definition. Let R be a commutative ring with unity. Then an ideal I in R is **principal** if $I = \langle a \rangle$ for some $a \in R$ (recall that $\langle a \rangle = Ra = \{ra : r \in R\}$).

Remark. Let R be a commutative ring with unity, let I be an ideal in R, and let $a \in R$. Then $a \in I \iff \langle a \rangle \subseteq I$, so $\langle a \rangle$ is the smallest ideal of R that contains a.

Definition. Let R be a commutative ring with unity, and let $a_1, \ldots, a_n \in R$. Then $\langle a_1, \ldots, a_n \rangle = \{r_1 a_1 + \cdots + r_n a_n : r_1, \ldots, r_n \in R\}$. It is an ideal in R.

With the above notation, let I be an ideal in R. Then

$$\{a_1,\ldots,a_n\}\subseteq I\iff \langle a_1,\ldots,a_n\rangle\subseteq I$$
.

Ideals in \mathbb{Z}

Let I be an ideal in \mathbb{Z} . Then it's an additive subgroup of \mathbb{Z} , so it equals $n\mathbb{Z}$ for some (unique) $n \in \mathbb{N}$.

Conversely, for all $n \in \mathbb{N}$, we have $n\mathbb{Z} = \langle n \rangle$, which is an ideal in \mathbb{Z} .

Therefore the set of all ideals in \mathbb{Z} is $\{n\mathbb{Z} : n \in \mathbb{N}\}$, and each ideal is defined by a unique such n.

Moreover, from group theory, we know that if an ideal in \mathbb{Z} is not the zero ideal, then n is the smallest positive element in that ideal.

Proposition. Let R be a ring with unity 1.

- (a). Let I be an ideal in R that contains a unit u. Then I = R.
- (b). Assume that R is commutative. Then, for all $a \in \mathbb{R}$, $\langle a \rangle = R$ if and only if a is a unit.

Proof. (a). For all $a \in R$ we have $u \in I$ and $u^{-1}a \in R$, therefore $a = u(u^{-1}a) \in I$.

(b). If a is a unit then $\langle a \rangle$ contains a unit, so $\langle a \rangle = R$ by the first part. Conversely, if $\langle a \rangle = R$ then $1 \in \langle a \rangle$, so there is a $b \in R$ such that ab = 1, and therefore a is a unit.

Definition. In a ring R with unity, the ideal I = R is called the **unit ideal**.

Corollary. In a field F, the only ideals are $\{0\}$ and the unit ideal (and they're different).

Proof. Let I be a nonzero ideal of F. Let u be a nonzero element of I. Then u is a unit, so I is the unit ideal.

Corollary. Any nonzero ring homomorphism from a field to a ring is injective.

Proof. Look at its kernel. \Box

Quotient (Factor) Rings

Theorem. Let I be an ideal in a ring R. Then the rules

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = (ab) + I$

give well-defined binary operations on the set R/I of (left) cosets of I in R (under addition), and with these operations R/I is a ring.

Proof. From group theory + (as above) is well defined, and $\langle R/I, + \rangle$ is a group.

To show that multiplication is well defined, suppose a'+I=a+I and b'+I=b+I. Then a'=a+h and b'=b+k for some $h,k\in I$, and

$$a'b' - ab = (a+h)(b+k) - ab = ab + ak + h(b+k) - ab = ak + h(b+k) \in I$$

so a'b' + I = ab + I.

Multiplication is associative because

$$((a+I)(b+I))(c+I) = (ab)c + I = a(bc) + I = (a+I)((b+I)(c+I)).$$

A similar argument gives the distributive laws, so R/I is a ring.

Also the canonical map $\gamma \colon R \to R/I$ is a (surjective) ring homomorphism.

Corollary. All ideals of R occur as kernels of ring homomorphisms.

Therefore, a subring I of a ring R is an ideal if and only if I is the kernel of a ring homomorphism from R to some other ring.

Also, we have dissection of a ring homomorphism: Let $\phi: R \to R'$ be a ring homomorphism and let $I = \ker \phi$.

Then ϕ factors as

$$R \xrightarrow[\text{surj.}]{\gamma} R/I \xrightarrow[\sim]{\mu} \phi[R] \xrightarrow[\text{inj.}]{i} R'$$
.

Proof. We know already that γ is a surjective ring homomorphism. From group theory we know that μ is a bijective group homomorphism, and it is clear that it i is an injective ring homomorphism. Finally, we have

$$\mu((a+I)(b+I)) = \mu(ab+I) = \phi(ab) = \phi(a)\phi(b) = \mu(a)\mu(b)$$
,

so μ is a ring homomorphism, hence an isomorphism of rings.

Other Facts

- If R is commutative, then so is R/I.
- If R has unity 1, then R/I has unity 1+I.
- R/I may have zero divisors even if R does not (example: $R = \mathbb{Z}$, $I = 6\mathbb{Z}$).

Key Example: Let $m \in \mathbb{Z}^+$ and apply "dissection" to the map $\phi \colon \mathbb{Z} \to \mathbb{Z}_m$ in the recent handout. Since ϕ is surjective (and has kernel $m\mathbb{Z}$), μ gives an isomorphism $\mathbb{Z}/m\mathbb{Z} \xrightarrow{\sim} \mathbb{Z}_m$. (Here $\mu(n) = r$, where n = qm + r as in the division algorithm.)

Clicker Questions!

Maximal Ideals

Definition. An ideal M in a ring R is **maximal** if it is proper $(M \neq R)$ and there is no ideal N of R such that $M \subsetneq N \subsetneq R$ (so it is maximal among proper ideals).

Examples.

- $2\mathbb{Z}$, $3\mathbb{Z}$, $5\mathbb{Z}$, etc. are maximal ideals in \mathbb{Z} (an ideal N with $p\mathbb{Z} \subsetneq N \subsetneq \mathbb{Z}$ would have to be $a\mathbb{Z}$ with 1 < a < p, but $p\mathbb{Z} \subset N$ would require $a \mid p$).
- $\langle 0 \rangle$ is a maximal ideal in any field.

Theorem. Let R be a commutative ring with unity. An ideal M in R is maximal if and only if R/M is a field.

Proof (uses Ex. 26.22).

Case 1: M = R. Then M is not maximal, and R/M = (0) is not a field.

Case 2: $M \neq R$. Then R/M is commutative with $1 \neq 0$.

If R/M is not a field then there is an element $a \in R/M$ such that $a \neq 0$ and a is not a unit. Therefore $\langle 0 \rangle \subsetneq \langle a \rangle \subsetneq R/M$. Letting $\gamma \colon R \to R/M$ be the canonical map (which is surjective), we then have ideals $M = \gamma^{-1}[\langle 0 \rangle] \subsetneq \gamma^{-1}[\langle a \rangle] \subsetneq \gamma^{-1}[R/M] = R$ in R. This implies that M is not maximal.

Conversely, assume that M is not maximal. Then there is an ideal N of R such that $M \subsetneq N \subsetneq R$. Then we have $\gamma[M] \subseteq \gamma[N] \subseteq \gamma[R]$, and these are ideals in R/M.

Pick $a \in N$ such that $a \notin M$. Then $a \notin \ker \gamma$, so $\gamma(a) \neq 0$, which gives $\gamma(a) \notin \gamma[M] = \{0\}$. Therefore $\gamma[M] \neq \gamma[N]$.

Also, if $\gamma[N] = \gamma[R]$ then $\gamma[N]$ contains the element 1+M, so 1=n+m with $n \in N$ and $m \in M$. Since $M \subseteq N$ we have $m \in N$, so $1 \in N$ and therefore N=R. This is a contradiction, so $\gamma[N] \neq \gamma[R]$.

In conclusion, we have $\langle 0 \rangle = \gamma[M] \subsetneq \gamma[N] \subsetneq \gamma[R] = R/M$, Therefore R/M is not a field (it has too many ideals).

[Revisit the set of maximal ideals in \mathbb{Z} .]

Prime Ideals

Definition. Let R be a commutative ring. An ideal N in R is **prime** if $N \neq R$ and $ab \in N$ implies $a \in N$ or $b \in N$.

Examples. In \mathbb{Z} the prime ideals are $\langle p \rangle$ with p prime, and $\langle 0 \rangle$.

Theorem. Let R be a commutative ring with 1. Then an ideal N in R is prime if and only if R/N is an integral domain.

Proof. First of all, R/N is always commutative and always has unity.

Next, $N \neq R$ if and only if $R/N \neq (0)$, if and only if R/N has $1 \neq 0$. Finally, we show that the condition

(*)
$$ab \in N \text{ implies } a \in N \text{ or } b \in N$$

is equivalent to R/N not having zero divisors.

" \Leftarrow ": Suppose that R/N has no zero divisors. Let $a,b\notin N$. Then a+N and b+N are nonzero in R/N, so $(a+N)(b+N)\neq 0$ in R/N, and therefore $ab\notin N$. This shows the contrapositive of (*).

" \Longrightarrow ": We show the contrapositive. Suppose that R/N has zero divisors. Then there are $a,b\in R$ such that a+N and b+N are nonzero in R/N but (a+N)(b+N)=0 in R/N. Then $a,b\notin N$ but $ab\in N$, showing that (*) is false.

In conclusion, N is prime if and only if $N \neq R$ and (*) holds, if and only if R/N has $1 \neq 0$ and R/N has no zero divisors, if and only if R/N is an integral domain (since R/N is commutative by assumption).

Corollary. Let R be a commutative ring with 1. Then all maximal ideals in R are prime.

Proof. Let M be an ideal in R. Then

$$M$$
 is maximal $\iff R/M$ is a field $\implies R/M$ is an integral domain $\iff M$ is prime .

Prime Subfields

Proposition. The characteristic of a field F is either 0 or a prime number, and the field contains a subfield isomorphic to either \mathbb{Q} or \mathbb{Z}_p , depending on whether char F equals 0 or a prime p, respectively.

Proof. (This was done in the blackboard in class, but I typed it in later for completeness.)

From class on Oct. 29, we have the following.

Let R be a ring with unity 1.

- (a). Let $\gamma \colon \langle \mathbb{Z}, + \rangle \to \langle R, + \rangle$ be the unique group homomorphism for which $\gamma(1) = 1$. Then γ is a ring homomorphism $\gamma \colon \mathbb{Z} \to R$.
- (b). The characteristic of R is the unique $n \in \mathbb{N}$ such that $\ker \gamma = n\mathbb{Z}$.

Continuing with the proof of the proposition let $n = \operatorname{char} F$. We have two possibilities.

Case 1: n = 0. In this case $\gamma \colon \mathbb{Z} \to F$ is injective, so F contains a subring $\gamma[\mathbb{Z}]$ isomorphic to \mathbb{Z} . By Theorem 21.6, it follows that F contains a subfield isomorphic to the fraction field of \mathbb{Z} , which is \mathbb{Q} .

Case 2: $n \neq 0$. In this case (from "dissection of a ring homomorphism" applied to the above map γ), F contains a subring isomorphic to $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$, namely $\gamma[\mathbb{Z}]$. We have $n \neq 1$ (because n = 1 would imply 1 = 0 in F) and n is not composite (because in that case \mathbb{Z}_n would have zero divisors, which F does not). Therefore n is a prime number p, and F contains a subring isomorphic to \mathbb{Z}_p . Since \mathbb{Z}_p is a field, that subring is a subfield, and we are done.

Definition. The fields \mathbb{Q} and \mathbb{Z}_p are **prime fields**, and the **prime subfield** of a field F is the (unique) subfield of F as in the above proposition.

Theorem. Let F be a field. Then every ideal in F[x] is principal.

Proof. Let N be an ideal in F[x].

Case 1. $N = \{0\}$. Then $N = \langle 0 \rangle$, which is principal.

Case 2. $N \neq \{0\}$. Let g(x) be a nonzero element of N of smallest degree. We claim that $N = \langle g \rangle$. Since $g \in N$, $\langle g \rangle \subseteq N$.

To show $N\subseteq \langle g\rangle$, let $f\in N$ and write f=qg+r with $q,r\in F[x]$ and $\deg r<\deg g$. Then $r=f-qg\in N$, so r=0 (by the assumption on g). Therefore $f=qg\in \langle g\rangle$, so $N\subseteq \langle g\rangle$.

Thus $N = \langle g \rangle$, and therefore N is principal.

[Compare with the proof for \mathbb{Z} (Theorem 6.6).]