CSE 4125: Distributed Database Systems Chapter – 6 (Part – C)

Optimization of Access Strategies.

Topics to be discussed -

- Query Optimization
- Data Transmission
- Comparison between different Query Optimization Strategies

Query Optimization

Permutation of the ordering of operations within a query can provide many equivalent **strategies** to execute it.

- Finding an "optimal" ordering of operations for a given query is important.
 - -Done by query optimization layer(or optimizer for short).

Data Transmission

Data transmission requirement can be evaluated by –

> Transmission cost

-i.e. cost to initiate a transmission, routing cost etc.

> Transmission delay

-i.e. elapse time between activation and completion of an app.

Data Transmission (cont.)

Data transmission requirement can be evaluated by –

> Transmission cost

$$TC(x) = C_0 + x * C_1$$

> Transmission delay

$$TD(x) = D_0 + x * D_1$$

x = Transmitted data

C's and D's are system dependent constants.

 C_0 = initialization fixed cost

 C_1 = network wide unit cost

 D_0 = connection initialization fixed time

 D_1 = network wide unit transfer rate

Data Transmission (cont.)

 Data transmission requirement can be evaluated by (more detailed characterization)—

> Transmission cost

$$TC(x) = C_0^{ij} + x * C_1^{ij}$$

Total amount of data

> Transmission delay

TD (x) =
$$D_0^{ij} + x * D_1^{ij}$$

i and *j* denote source and destination respectively.

Total / Longest amount of data (Total = Not parallel, Longest = Parallel execution)

Comparison between different strategies

✓ We will see different versions of a query.

✓ Measure their cost and delay to see which one is better.

Example

- You will be given a query with fragmentation schema and their database profile.
- Draw operator tree for the query.
- Apply strategy 1 as per the question
- Apply strategy 2 as per the question
- Compare between strategies

Scenario

For the following query compare strategy 1 and strategy 2 based on the TC and TD at site 2.

Assume that SUPPLY has two horizontal fragments and DEPT has three horizontal fragments. The database profiles of SUPPLY₁ and SUPPLY₂ are similar. Also, profiles of DEPT₁, DEPT₂ and DEPT₃ are identical. The database profiles are shown on the next slide.

Determine the transmission delay for the above strategy when network-wide transfer rate is 10000 bits/second. Note that, the system provides the benefit of parallel processing and the initial delay is 0.

Scenario

Profiles of SUPPLY₁ and SUPPLY₂:

card
$$(SUPPLY_1) = 30000$$

card $(SUPPLY_2) = 20000$

$$site(SUPPLY_1) = 1$$

 $site(SUPPLY_2) = 4$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

Profiles of DEPT₁, DEPT₂ and DEPT₃:

$$site(DEPT_1) = 2$$

$$site(DEPT_2) = 3$$

$$site(DEPT_3) = 5$$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Given Scenario

Input Query (Operator Tree):

Strategy – 1 No simplification

Strategy – 1

- \Box Let us execute the query at site 2.
 - -We need to collect all the fragments there (in parallel).

- \Box Let us execute the query at site 2.
 - -We need to collect all the fragments there (in parallel).

$$X_{SUPPLY1} = ?$$

$$card (SUPPLY_1) = 30000$$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

- \Box Let us execute the query at site 2.
 - -We need to collect all the fragments there (assume in parallel).

$$X_{SUPPLY1} = card(SUPPLY_1) \times size(SUPPLY_1) \times 8 \text{ bits}$$

= $30000 \times (6+7+2+10) \times 8 \text{ bits}$
= $30000 \times 25 \times 8 \text{ bits}$
= 6000000 bits

☐ Transmitted amount for other fragments:

$$X_{SUPPLY2} = ?$$

$$X_{DEPT1} = ?$$

$$X_{DEPT2} = ?$$

$$X_{DEPT3} = ?$$

card (SUPPLY₂) = 20000

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

☐ Transmitted amount for other fragments:

$$X_{SUPPLY2} = 20000 \times 25 \times 8 \text{ bits} = 4000000 \text{ bits}$$

$$X_{DEPT1} = 0$$
 bits

$$X_{DEPT2} = 20 \times 25 \times 8 \text{ bits} = 4000 \text{ bits}$$

$$X_{DEPT3} = 20 \times 25 \times 8 \text{ bits} = 4000 \text{ bits}$$

Assume $C_0 = 0$ and $D_0 = 0$

$$TC(x) = C_0 + (sum of all the amount) \times C_1$$
$$= (X_{SUPPLY1} + ... + X_{DEPT3}) \times C_1 = 10008000 \times C_1$$

$$TD(x) = D_0 + (largest amount) \times D_1$$
$$= 6000000 \times D_1$$

If $D_1 = 10000$ bit/second,

Transmission Delay = $6000000 \times (1/10000)$ s = 600 s = 10 mins

Strategy – 2 Simplification applied (Rules & Criterion -1 and 2).

Strategy – 2

Strategy - 2

- ☐ Performing local processing on fragments.
 - -Fragment reducers.
- ☐ Then sending reduced fragments to the executing site (i.e. site 2) in parallel.


```
X_{SUPPLY1} = card(SUPPLY_1) \times \{size(snum) + size(deptnum)\} \times 8 bits
```

- $= 30000 \times (6+2) \times 8 \text{ bits}$
- = 1920000 bits

☐ Transmitted amount for other fragments:

$$X_{SUPPLY2} = 20000 \times 8 \times 8 \text{ bits} = 1280000 \text{ bits}$$

$$X_{DEPT1} = 0$$
 bits

$$X_{DEPT2} \approx 0$$
 bits Try to investigate why

$$X_{DEPT3} = X_{DEPT2} \approx 0$$
 bits

2	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Assume $C_0 = 0$ and $D_0 = 0$

$$TC(x) = C_0 + (sum of all the amount) \times C_1$$

= $3200000 \times C_1$

$$TD(x) = D_0 + (largest amount) \times D_1$$
$$= 1920000 \times D_1$$

If $D_1 = 10000$ bit/second,

Transmission Delay = $1920000 \times (1/10000)$ s = 192 s ≈ 3 mins

Comparisons

Strategy	Description	
(very bad)	 No simplification, no optimization. All fragments are brought to one site to execute the query. 	10 m
2 (bad)	 Simplification applied (Criterion -1 and 2). No optimization. Processing on fragments are done on the site locally. Then, all fragments are brought to one site to execute the query. 	3 m

Questions

What will happen for strategy - 1 if the data collection from all the fragments are done sequentially, instead of in parallel?

Exercise

4. Consider the following global relational schemata.

EMP (ID, NAME, SAL, AGE, MGRNUM, DEPTNUM)
DEPT (ID, AREA, DEPTNUM, MGRNUM)

Corresponding fragmentation schemata:

 $EMP_1 = SL_{SAL \le 25K} EMP$

 $EMP_2 = SL_{SAL > 25K} EMP$

 $DEPT_1 = SL_{AREA = "North"} DEPT$

 $DEPT_2 = SL_{AREA = "South"} DEPT$

Also consider the following global query.

 $Q = PJ_{NAME, AREA}(((SL_{SAL > 25K}EMP JN_{ID=ID}SL_{AREA = "North"}DEPT)DF (SL_{SAL \le 25K}EMP JN_{ID=ID}SL_{AREA = "North"}DEPT))NJN (SL_{AREA = "North"}(EMP JN_{ID=ID}DEPT)))$

Profiles of EMP1 and EMP2:

Card(EMP1) = 1800Card(EMP2) = 1500

Site(EMP1) = 3

Site(EMP2) = 5

	ID	NAME	SAL	AGE	MGRN.	DEPTN.
Size	3	4	3	3	2	2
Val	1000	900	50	30	200	200

Profiles of DEPT1 and DEPT2:

Card(DEPT1) = 1300

Card(DEPT2) = 2000

Site(DEPT1) = 2

Site(DEPT2) = 4

	ID	AREA	MGRN.	DEPTN.
Size	2	4	2	2
Val	2000	30	200	200

Compare strategy 1 and 2 followed by assembling all the data at site 3 and execution of the given query Q.

Assume that the database profiles of EMP₁, EMP₂ are similar. Also, profiles of DEPT₁ and DEPT₂ are identical. Determine the transmission delay for both the strategy when network-wide transfer rate is 20 bytes/second. Note that, the system does not provide any benefit of parallel processing and the initial delay is 0.