## Lecture B1. Newsvendor 1

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr





- I. Problem and Solution
- II. Exercises
- Oiscussion

## I. Problem and Solution

### Motivation

Your brother will start part time job of selling newspapers at subway station in the morning. You are asked how many he should prepare for selling.

• What are the kind of information that you need in order to give him a good advice?

Distribution How many customer?
sen (wholesale)
salvoje (salvoje)
tzm (yeta:1)

Deak time

### The information

- (demand) How many customer?
- ② (retail price) How much do you sell a copy at?
- (material cost) How much do you pay to the wholesaler?
- (salvage value) How much do you sell an unsold copy back to the wholesaler?

- Suppose your brother gave you the following information.
  - **1**1, 12, 13, 14, or 15, equally likely.
  - 2 \$2 per copy
  - \$1 per copy
  - **1** \$0.5 per copy

Assume that D follows the following discrete distribution.

| _ , _ ,                   |     |     |     |     |
|---------------------------|-----|-----|-----|-----|
| d                         | 20  | 25  | 30  | 35  |
| $\boxed{\mathbb{P}[D=d]}$ | 0.1 | 0.2 | 0.4 | 0.3 |
| $30 \wedge d$             |     |     |     |     |
| $(30 - d)^+$              |     |     |     |     |
| $24 \wedge d$             |     |     |     |     |
| $(24-d)^{+}$              |     |     |     |     |
|                           |     |     |     |     |

Answer the followings.

- $\bullet \ \mathbb{E}[30 \wedge D] =$
- $\bullet \ \mathbb{E}[(30-D)^+] =$
- $\bullet \ \mathbb{E}[24 \wedge D] =$
- $\mathbb{E}[(24 D)^+] =$

# Optimal economic decision

- Your brother's goal is to earn as much money as possible.
- In other words, the newsvendor wants to make an optimal decision that maximizes his expected profit.
- In some settings, the optimal decision is related to minimize expected cost.
- In this case, profit, the objective function, is composed in the following way.

```
Profit = Revenue - Cost v

= Sales Rev. + Salvage Rev. - Material Cost
= (from Reg. Sale) + (from unsold item) - (for preparation)
```

| Solution - tabular method |          |             |                | 7  | A Stock ( Demand<br>"lost sale" "understock" |                    |  |
|---------------------------|----------|-------------|----------------|----|----------------------------------------------|--------------------|--|
| demand                    | 11       | 12          | 13             | 14 | 15                                           | Expected<br>Profit |  |
| l)                        | -11.1=11 | -11.1 = 11  | 11             | (t | U                                            | 11x0.2411x0.2      |  |
| 12                        |          |             |                |    |                                              |                    |  |
| 13                        |          |             |                |    |                                              | 12.1.              |  |
| 14                        | 11x2+3x0 | .5          | 12.5           | 14 | 14                                           | 2.5x0.2+10x0.2     |  |
| 15                        |          |             |                |    | "+1                                          | Bhr on "           |  |
|                           |          | Stock > Dem | ep" "overstock | Ť, |                                              |                    |  |

# Economic cost around decision making

- Your brother wants to the prepared **stock** to exactly match the customer **demand**.
- If Stock > Demand,
  - Overstock cost occurs.
  - In other words, prepared too much, excessive items, or over-prepared.
  - Overstock by how many?
  - Ex) holding cost, items lose its economic potential value



- Understock cost occurs.
- In other words, prepared too less, lost opportunity, or lost sales.
- Understock by how many?
- Ex) stock-out, reputation loss, cancellation reward
- Newsvendor wants to find a optimal balance between overstock cost and understock cost.
- Just as all of the retail store you can think of.



# Mathematical representation

- (number of units) If demand D is random and you prepare X unit, then
  - # of unit for sales: min (D.X)
  - # of unit for overstock: (x-0,0) = (x-0)
  - # of unit for understock: mex (0-x.0) = (0-x)
- $\geq$  . (unit cost) If retail price is p, material cost is  $\langle r \rangle$ , and salvage price is s, then
  - unit cost for overstock:
  - unit cost for understock: ;\_\_\_\_
- 3. Cost = (# of units)  $\times$  (cost per unit)
  - overstock cost: (x-0)+
  - understock cost:

C"=[(-1) (D-x), @



4. Frommie Cost = (meleustrale) + (overstock)



### Formal treatment

#### Remark 1

Newsvendor problem aims to find the optimal number of preparation that maximizes the expected profit formulated as:

 $\checkmark$   $\mathbb{E}[\text{profit}] = \mathbb{E}(\text{sale rev.}) + \mathbb{E}(\text{salvage rev.}) - \mathbb{E}(\text{material cost})$   $\checkmark$ 

### Theorem 1

In newsvendor problem, maximizing the expected profit is equivalent to minimizing the expected economic cost (sum of the expected overstock cost and the expected understock cost).

• Two problems being mathematically equivalent to each other implies that a solution that solves the one problem solves the other problem, and vice versa.

### Problem and Solution

#### Remark 2

By the above remark and theorem, newsvendor model is to find optimal  $x^*$  that minimize total expected economic cost. That is,

$$(x^*) = argmin_x C_0 \mathbb{E}[(X-D)^+] + C_0 \mathbb{E}[(D-X)^+]$$

Theorem 2

The solution to the above problem can be found as:

- - If D is a continuous r.v, with  $cdf(F(\cdot))$ , then find y s.t. F(y)
  - If D is a discrete r.v, with cdf  $F(\cdot)$  then find smallest y such that F

## II. Exercises

•00000

Find your brother's optimal stock level by the above Theorem 2. Then, find his expected profit using the Remark 1.

$$(Co = 0.5)$$
 $(Cn = 1)$ 
 $(Cn$ 

Your brother is now selling milk. The customer demands follow U(20,40) gallons. Retail price is \$2 per gallon, material cost is \$1 per gallon, and salvage cost is \$0.5 per gallon. Find optimal stock level and expected profit.

Lemonade sells for \$18 per gallon but only costs \$3 per gallon to make. If we run out of lemonade, it will be impossible to get more. On the other hand, leftover lemonade has a value of \$1. Express the following quantity using sale as X and demand as D.

- c<sub>u</sub>
- ullet  $c_o$
- Expected economic cost
- Expected profit

Prove Theorem 1. (Hint: you may use formulation from Exercise 4)

B1-13027. Pdf &

2. AIZAZ NOTE CHA.

⊕ some problems from Dailark.

0712

3. 1784 case - 422 4500m.

## Discussion

## On the nature of newsvendor

- What does  $F(y) = \frac{c_u}{c_o + c_w}$  imply?
  - •
  - •
  - 0
  - •
  - •
- Buying a suit department store vs outlet

# Newsvendor in a big picture

- Newsvendor is characterized as an *optimal decision making* problem.
- Newsvendor is characterized as a "baby model" for a decision making under uncertainty.
- Since it is decision making under uncertainty, a random variable is involved.
- It can be viewed as *decision making at time 0*, then *results come out at time 1*. It is thus called as *one-period problem*.
- Stochasticity is the combined notion of time and randomness.
- In sum, newsvendor is one-period stochastic decision making problem, where
  - one-period specifies its time domain.
    - 2 stochastic tells that we make decision considering future randomness.
  - **1** *decision making* obviously includes optimization aspect of the problem.

"Man can learn nothing unless he proceeds from the known to the unknown. - Claude Bernard"