# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

#### Лабораторная работа 3.2.6

Изучение гальванометра

Автор: Черниенко Владислав Антонович Группа Б01-110 **Цель работы:** изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

#### Теоретические сведения

*Баллистическим гальванометром* называют электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом колебаний подвижной системы (рамки).

### А. Определение динамической постоянной гальванометра Экспериментальная установка

Схема для исследования гальванометра в стационарном режиме представлена на рис. 1. Постоянное напряжение U снимается с блока питания и измеряется вольтметром V. Ключ  $K_3$  позволяет менять направление тока через гальванометр  $\Gamma$ , делитель напряжения — менять величину тока в широких пределах. Ключ  $K_2$  служит для включения гальванометра, кнопка  $K_1$  — для его успокоения. Магазин сопротивлений R позволяет менять режим работы гальванометра от колебательного до апериодического.



Рис. 1: Схема установки для работы гальванометра в стационарном режиме

При  $R_1 \ll R, R_0, R_2$  сила тока, протекающего через гальванометр, может быть вычислена как

$$I = \frac{R_1}{R_2} \frac{U_0}{R + R_0},$$

где  $U_0$  — показания вольтметра,  $R_1/R_2$  — положение делителя, R — сопротивление магазина,  $R_0$  — внутреннее сопротивление гальванометра.

Угол отклонения рамки от положения равновесия измеряется с помощью осветителя, зеркальца, укреплённого на рамке, и шкалы, на которую отбрасывается луч света от зеркальца. Координата x светового пятна на шкале связана с углом  $\varphi$  отклонения рамки формулой

$$x = a \arctan(2\varphi),$$

где a — расстояние от шкалы до зеркальца. При малых углах можно считать, что  $\varphi=x/2a$ . Динамическую постоянную

$$C_I = \frac{I}{\varphi} = \frac{2aI}{x},$$

как правило, выражают в единицах  $\left[\frac{A}{\text{мм/м}}\right]$  (ток I измеряется в амперах, x – в миллиметрах, a – в метрах).

#### Б. Определение критического сопротивления гальванометра

Критическим сопротивлением баллистического гальванометра называется сопротивление его электрической цепи  $R_{\rm kp}$ , при котором после начального толчка подвижная система почти экспоненциально возвращается к нулю. На практике критический режим, требующий строгого выполнения условия  $\gamma = \omega_0$ , не может быть точно реализован и имеет значение как пограничный между режимом затухающих колебаний ( $\gamma < \omega_0$ ) и режимом апериодического затухания ( $\gamma > \omega_0$ ).

Измерение критического сопротивления гальванометра можно выполнить с помощью той же схемы (рис. 1).

При больших R свободное движение рамки имеет колебательный характер. С уменьшением R затухание увеличивается, и колебательный режим переходит в апериодический.

В качестве характеристики процесса затухания колебаний рамки гальванометра воспользуемся представленным формулой логарифмическим декрементом затухания:

$$\Theta = \gamma T_1 = \ln \frac{x_n}{x_{n+1}},$$

где  $x_n$  и  $x_{n+1}$  — два последовательные отклонения колеблющейся величины в одну сторону. Измеряя зависимость  $\Theta(R)$  логарифмического декремента затухания от сопротивления внешней цепи R, можно найти критическое сопротивление  $R_{\rm kp}$ 

$$R_{\rm kp} = \frac{R + R_0}{\sqrt{\left(\frac{2\pi}{\Theta}\right)^2 + 1}} - R_0,$$

или

$$\sqrt{\frac{4\pi^2}{\Theta^2} + 1} = \frac{R + R_0}{R_{\kappa p} + R_0}.$$

## В. Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме

Для изучения работы гальванометра в режиме измерения заряда (в баллистическом режиме), используется схема, представленная на рис. 2.

Система ключей устроена так, что нормально ключ  $K_2$  замкнут, а ключи  $K_3$  и  $K_4$  разомкнуты. При нажатии на кнопку  $K_0$  сначала размыкается ключ  $K_2$ , затем замыкается  $K_3$  и через некоторое время —  $K_4$ . При нормальном положении кнопки  $K_0$  конденсатор C заряжается до напряжения  $U_C$  и получает заряд q:

$$U_C = \frac{R_1}{R_2} U_0,$$
  $q = CU_C = \frac{R_1}{R_2} U_0 C.$ 

При нажатии на ключ  $K_0$  конденсатор отключается от источника постоянного напряжения (размыкается ключ  $K_2$ ) и подключается к гальванометру (замыкается ключ  $K_3$ ).

Ёмкость конденсатора выбрана так, что к моменту замыкания ключа  $K_4$  весь заряд успевает пройти через гальванометр, и рамка получает начальную скорость  $\dot{\varphi}(\tau)$ . При этом можно считать, что отклонение рамки, происходящее за время, протекающее между замыканием ключей  $K_3$  и  $K_4$ , равно нулю.

Первый отброс зайчика  $\varphi_{max}$  после нажатия на кнопку  $K_0$  зависит от сопротивления внешней цепи, подключённой к гальванометру. Для определения  $R_{\rm kp}$  используется то обстоятельство,



Рис. 2: Схема установки для определения баллистической постоянной

что в критическом режиме максимальное отклонение зайчика в e раз меньше, чем у гальванометра без затухания.

Следует помнить, что наблюдать колебания рамки при полном отсутствии затухания, конечно, невозможно, так как даже при разомкнутой внешней цепи  $(R=\infty)$  остаётся трение в подвеске и трение рамки о воздух. Величину максимального отклонения рамки гальванометра без затухания  $\varphi_{max}^{\rm cb}$  можно, однако, рассчитать, если при разомкнутой цепи тах измерить реальное максимальное отклонение рамки  $\varphi_0$  и логарифмический декремент затухания  $\Theta_0$  (при  $R=\infty$  величина  $\Theta_0$  определяется только внутренним трением в рамке). Из уравнений движения рамки при  $\gamma \ll \omega_0$  вытекают равенства

$$\varphi_0 = \varphi(T_1/4) = \varphi_{max}^{\text{CB}} e^{-\Theta_0/4},$$

так что максимальное отклонение рамки гальванометра без затухания

$$\varphi_{max}^{\text{\tiny CB}} = \varphi_0 e^{\Theta_0/4} \approx \varphi_0 \left( 1 + \frac{\Theta_0}{4} \right).$$

Баллистическая постоянная гальванометра  $C_q^{\text{кр}}\left[\frac{\text{Кл}}{\text{мм/м}}\right]$  определяется при критическом сопротивлении  $(R=R_{\text{кр}})$ :

$$C_q^{\text{kp}} = \frac{q}{\varphi_{max}^{\text{kp}}} = 2a \frac{R_1}{R_2} \frac{CU_0}{x_{max}^{\text{kp}}},$$

где  $x_{max}^{\text{кр}}$  — величина первого отброса в критическом режиме, выраженная в делениях шкалы (мм), a — расстояние от зеркальца до шкалы, выраженное в метрах, произведение  $CU_0$  — заряд, выраженный в кулонах.