Modelli probabilistici

Jacopo Tissino

27 marzo 2017

1 Basi

Definizione 1.1. Esperimento aleatorio: osservazione su un fenomeno il cui esito non è determinabile a priori.

Definizione 1.2. Spazio di probabilità: terna di

- 1. Spazio campionario Ω : l'insieme degli esiti possibili;
- 2. Evento: elemento di $\mathcal{P}(\Omega)$;
- 3. Probabilità: $\mathbb{P}: \mathcal{P}: \Omega \to [0,1]$ tale che:
 - (a) $\mathbb{P}(\Omega) = 1$;
 - (b) σ -additività: \forall successione di eventi $(A_n)_{n \in \mathbb{N}}$:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$
 (1.1)

Le operazioni logiche fra eventi sono equivalenti a quelle insiemistiche fra sottoinsiemi di Ω . Valgono i teoremi di De Morgan, anche per insiemi numerabili.

Eventi "disgiunti" hanno intersezione nulla. Dalla σ -additività deriva l'additività finita.

Proprietà immediate: $\forall A, B \in \mathcal{P}(\Omega)$:

- 1. $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(B \cap A);$
- 2. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B) \le \mathbb{P}(A) + \mathbb{P}(B)$.

Definizione 1.3. La funzione $p:\Omega\to[0,1]$ è una densità di probabilità se:

- 1. $\forall \omega \in \Omega : p(\omega) > 0$;
- 2. $\sum_{\omega \in \Omega} p(\omega) = 1.$

Teorema 1.1. Data la funzione $p:\Omega\to[0,1]$, la funzione $\mathbb{P}:\mathcal{P}(\Omega)\to[0,1]$ tale che $\forall A\subseteq\Omega:\mathbb{P}(A)=\sum_{\omega\in A}p(\omega)$ è una probabilità.

Vale anche il viceversa: data $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ la funzione $p: \Omega \to [0,1]$ tale che $p(\omega) = \mathbb{P}(\{\omega\})$ è una densità di probabilità.

Esempi di spazi discreti Per uno spazio uniforme, per il quale $|\Omega| \in \mathbb{N}$, $\forall \omega \in \Omega : p(\omega) = 1/|\Omega|$.

Richiami di combinatoria Scegliamo k elementi da n:

- 1. Disposizioni con ripetizione: n^k ;
- 2. Disposizioni semplici: $\prod_{i=n-k+1}^{n} i = n!/(n-k+1)!;$
- 3. Combinazioni semplici: $C_{n,k} = \binom{n}{k} = n!/(k!(n-k)!)$.

Coefficienti multinomiali Vogliamo dividere n elementi in k gruppi, di cardinalità (n_i) , con $\sum_i n_i = n$. Si può fare in un numero di modi pari a:

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{\prod_{i=1}^k n_i!}$$
 (1.2)

2 Modello di Ising

Dato lo spazio finito Ω e data la funzione Hamiltoniana $H:\Omega\to\mathbb{R}$ (energia) con parametro $\beta\geq 0$. Definiamo $\forall\omega\in\Omega$ la Misura di Gibbs:

$$p_{\beta} = \frac{e^{-\beta H(\omega)}}{z_{\beta}} = \frac{e^{-\beta H(\omega)}}{\sum_{\omega \in \Omega} e^{-\beta H(\omega)}}$$
 (2.1)

è una ddp. Interpretazione fisica: $\beta^{-1} = k_B T$. La misura dà la probabilità di osservare un certo stato all'equilibrio.

Casi limite: $\beta \approx 0$ densità uniforme, $\beta \to \infty$ densità zero ovunque, uniforme nel minimo

Un grafo è un insieme di vertici e spigoli: $G=(V,E), E\subseteq V\times V$. Definiamo quindi lo spazio:

$$\mathbb{Z}^n = (\mathbb{Z}^n, (x, y) \in \mathbb{Z}^n : d(x, y) = 1)$$
(2.2)

Un sottografo finito $\Lambda \subset \mathbb{Z}^n$ è considerato con tutti i suoi spigoli: $E(\Lambda) = \{(x,y) : x,y \in \Lambda, (x,y) \in E(\mathbb{Z}^n)\}.$

Ogni vertice assume valore ± 1 . Lo spazio è dunque $\Omega = \{\pm 1\}^{|\Lambda|}$; σ è uno stato, ovvero $\sigma \in \Omega \implies \sigma = (\sigma_k)_{k \in \Lambda}$.

Per comodità, $d(x, y) = 1 \iff x \sim y$.

Definiamo $\partial \Lambda = \{x \in \Lambda : \exists y \in \Lambda^C : x \sim y\}$. Sia quindi $\tau = \{\pm 1\}^{|\Lambda^C|}$ l'esterno del reticolo. Definiamo l'Hamiltoniana

$$H_{\Lambda}^{\tau}(\sigma) = -\frac{1}{2} \sum_{\substack{x,y \in \Lambda \\ x \sim y}} \sigma_x \sigma_y - \sum_{\substack{x \in \partial \Lambda \\ y \in \Lambda^C \\ x \sim y}} \sigma_x \tau_y$$
 (2.3)

Consideriamo solo reticoli "quadrati": $\Lambda_n = \{-n, \dots, n\}^d \subset \mathbb{Z}^d$. Poniamo $\tau = +1$.

3 Passeggiata aleatoria semplice unidimensionale

Dato $n \in \mathbb{N}$, $S_n \in \mathbb{Z}$ è la posizione assunta al passo n. Le regole sono:

- 1. $S_0 = 0$;
- 2. $S_n = k \implies S_n + 1 \in \{k+1, k-1\}.$

 $\mathbb{P}(S_{n+1} = k+1 | S_n = k) := p$. La passeggiata aleatoria, quindi, è la successione $(S_n)_{n \in \mathbb{N}}$. Se p = 1/2, la passeggiata è simmetrica.

Possiamo trovare una biiezione fra le $(S_n)_{n\in\mathbb{N}}$ e le successioni $(X_n)_{n\in\mathbb{N}}$, con X_i iid e tali che $\mathbb{P}(X_k=1)=p, \mathbb{P}(X_k=-1)=1-p$:

$$S_n = \sum_{i=1}^n X_i \tag{3.1}$$

Sia $\Omega = \{-1, +1\}^{\mathbb{N}}$ l'insieme delle possibili successioni $(X_n)_{n \in \mathbb{N}}$. La nostra probabilità \mathbb{P} tiene conto di tutte queste. Possiamo, chiaramente, calcolarla anche per un certo evento A_n dipendente dalle $(X_i)_{i=1...n}$.

Troviamo quindi alcuni valori:

$$\mathbb{E}(S_n) = n(2p-1) \tag{3.2}$$

$$varS_n = 4pn(1-p) = \sigma^2$$
(3.3)

3.1 Legge di S_n

Vogliamo trovare $\mathbb{P}(S_n = j)$. Chiamiamo n_+ il numero di k per cui $X_k = 1$, e $n_- = n - n_+$. Quindi $\{S_n = j\} = \{n_+ = (j+n)/2\}$.

Dunque $(j+n)/2 \notin \mathbb{N} \implies \mathbb{P}(S_n=j)=0$.

$$\mathbb{P}(S_n = j) = \binom{n}{\frac{n+j}{2}} p^{\frac{n+j}{2}} (1-p)^{\frac{n-j}{2}}$$
(3.4)

3.2 Transienza

$$R = \lim_{n \to \infty} \mathbb{P}(\exists k \in \mathbb{N} \setminus \{0\}, k \le n : S_k = 0)$$
(3.5)

Il limite esiste ed è ≤ 1 . Dimostriamo che $p=1/2 \iff R=1$. $u_{2n}=\mathbb{P}(S_{2n}=0)$ e $f_{2n}=\mathbb{P}(S_{2n}=0, \forall k<2n: S_k\neq 0)$.

Dimostriamo che

$$R_{2n} = \sum_{k=0}^{n} f_{2k} \tag{3.6}$$

3.2.1 Lemma 1

$$\sum_{r=1}^{\infty} f_{2r} = 1 \iff \sum_{n=0}^{\infty} u_{2n} = +\infty$$
(3.7)

Primo passo:

$$u_{2n} = \sum_{k=1}^{n} f_{2k} u_{2(n-k)} \tag{3.8}$$

$$\sum_{n=0}^{\infty} u_{2n} = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{2k} u_{2(n-k)} = 1 + \sum_{k=1}^{\infty} f_{2k} \sum_{m=0}^{\infty} u_{2m}$$
 (3.9)

$$\sum_{n=0}^{\infty} u_{2n} = \frac{1}{1 - \sum_{n=1}^{\infty} f_{2n}}$$
 (3.10)

Ovvero

$$\sum_{n=0}^{\infty} u_{2n} = +\infty \iff \sum_{k=1}^{\infty} f_{2k} = 1 \tag{3.11}$$

Quindi ci basta studiare la somma degli u_{2n} . Se p=1/2:

$$u_{2n} = \binom{2n}{n} \frac{1}{2^{2n}} = \frac{1 + o(1)}{\sqrt{\pi n}} \tag{3.12}$$

Quindi la passeggiata è ricorrente. Se invece $p \neq 1/2$:

$$u_{2n} = {2n \choose n} p^n (1-p)^n = \frac{(4p(1-p))^n (1+o(1))}{\sqrt{\pi n}}$$
 (3.13)

Che converge, in quanto 4p(1-p) < 1.

La probabilità che $S_{2n}=0$ per infiniti n è 1 sse $\sum_{i=1}^{\infty} f_{2i}=1$

Indice

1	Basi		1
		Esempi di spazi discreti	2
		Richiami di combinatoria	2
2	Modelle d	i Icing	9

3	Passeggiata aleatoria semplice unidimensionale				
	3.1	Legge di S_n	٠		
		Transienza			
		3.2.1 Lemma 1	2		