Homework 9: Linear Transformations

- 1. Show that each of the following transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear by finding a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$. Describe geometrically what each transformation does.
 - (a) $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$
 - (b) $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$
 - (c) $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$
 - (d) $T(\mathbf{x}) = -\mathbf{x}$
 - (e) $T(\mathbf{x}) = \frac{1}{2}\mathbf{x}$
- 2. Determine whether each of the following transformations T is linear. Prove your answers.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 4x_1 2x_2 \\ 3|x_2| \end{bmatrix}$.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 2x_2 \\ x_1 + 3x_2 \\ 3x_1 4x_2 \end{bmatrix}$.
 - (c) $T: P_2 \to P_2$ defined by $T(a + bx + cx^2) = a + b(x+1) + b(x+1)^2$.
- 3. Let $T: V \to W$ be a linear transformation, and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a set of vectors that spans V. Prove that if

$$T(\mathbf{v}_1) = T(\mathbf{v}_2) = \dots = T(\mathbf{v}_n) = \mathbf{0},$$

then $T(\mathbf{u}) = \mathbf{0}$ for all vectors \mathbf{u} in V.

Hint. Use Theorem 2.1.

4. Let $T: V \to W$ be a linear transformation. Suppose that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a linearly dependent set of vectors in V. Using the definition of linear dependence and Theorem 2.1, prove that $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ is linearly dependent in W.

Hint. Begin the proof as follows:

"Since $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent, there exist scalars c_1, \dots, c_p which are not all zero for which $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$."

- 5. Let V and W be vector spaces, and define $T: V \to W$ by $T(\mathbf{v}) = \mathbf{0}$ for every \mathbf{v} in V. Use the definition of linear transformation to prove that T is linear.
- 6. Draw the following: (a) $\operatorname{Span}\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}\}$, (b) $\operatorname{Span}\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}\}$, (c) $\operatorname{Span}\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}\}$, (d) $\operatorname{Span}\{\begin{bmatrix} 0\\0 \end{bmatrix}\}$, (e) $\operatorname{Span}\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}\}$.