RNA-Seq Assembly and Analysis

Dr. Jung Soh MOL.923 SS 2018

What is RNA-seq?

- An experimental protocol that uses next-generation sequencing technologies to sequence the RNA molecules within a biological sample in an effort to determine the primary sequence and relative abundance of each RNA
 - Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet. 12(10):671-682

Why RNA-seq?

- Some studies not possible with DNA sequences
 - Novel transcript discovery
- To study functions based on gene expression changes
 - Drug treatment vs. no treatment
 - Patients vs. healthy people
 - Wild type vs. knock-out
- Some features available only at RNA level
 - Alternative isoforms, transcript fusion

RNA sequencing

Challenges of RNA-seq

- Difficulty with sampling
 - More fragile than DNA
 - Different sizes of RNA
- Relative abundance of RNAs hard to control
 - Can vary by orders of magnitude
 - Uneven coverage
 - Many reads from a small number of highly expressed genes
- Computational analysis challenges

De novo transcriptome assembly and analysis

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., ... Regev, A. (2013). *De novo* transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. *Nature Protocols*, 8(8)

Differential expression (DE) analysis

Normalizing counts

- Why normalize?
 - Longer features have more reads mapped
 - Deeper sequencing produces more reads
- RPKM (or FPKM) most commonly used
 - Reads (Fragments) per Kilobase per Million reads
 - Defined as C/(LN)
 - C = number of reads mapped to a feature
 - L = length of the feature (in kilobases)
 - N = total number of reads from the sample (in millions)

RPKM examples

Detecting DE features

- Compare quantification values across samples or across features
 - Which features are more expressed (up-regulated) or less expressed (down-regulated) under one condition vs another?
- DE analysis tools summarize/normalize counts and suggest DE features
 - Cufflinks/Cuffdiff, R packages (DESeq, edgeR, baySeq, TSPM), Trinity
- Downstream analysis of DE features
 - Cluster analysis
 - Correlation analysis

Lab overview

