Directions:

Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one problem.

Note: Let ln(x) denote the natural logarithm of x with base e.

01. B	07. B	13.	19. B	25. A	31.
02. A	08.	14. E	20.	26.	32. B
03. Д	09. B	15. <i>E</i>	^{21.} A	27. <u>C</u>	33. E
04.	10. A	16. E	22.	28.	34. E
05. D	11. Д	17.	^{23.} C	29.	35. <i>[</i>]
06. A	12.	18.	24.	30.	36. <u>C</u>

01

The graph in the *xy*-plane represented by $x = \cos t$ and $y = 1 - \cos 2t$ for $-\infty < t < \infty$ is

E) A straight line

ANSWER

13

If $x = t - t^2$ and $y = \sqrt{2t + 5}$, then $\frac{dy}{dx}$ at t = 2 is

(A)
$$-\frac{1}{9}$$
 $\times = 1-2t$ $Y = \frac{2}{2\sqrt{2ers}}$ $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = -\frac{1}{9}$

B) -1 $= -3$ $Y' = \frac{1}{\sqrt{2ers}}$

B)
$$-1$$
 $\frac{\chi'(2)^{\frac{1}{2}-4}}{z-3}$ $\frac{1}{\sqrt{2ers}}$

C)
$$\frac{3}{2}$$
 $\frac{1}{\sqrt{3}}$

E)
$$-\frac{1}{18}$$

ANSWER

Α

03

Two particles, Alpha and Beta, race from the y-axis to the vertical line $x = 6\pi$. Alpha's position is given by the parametric equations $x_{\alpha} = 3t - 3\sin t$ and $y_{\alpha} = 3 - 3\cos t$, while Beta's position is given by $x_{\beta} = 3t - 4\sin t$ and $y_{\beta} = 3 - 4\cos t$ for $t \ge 0$. Which statement best describes the race and its outcome?

- (A) Alpha moves slower and loses
- Beta WINS B) Alpha takes a shorter path and wins *
- C) Beta starts out in the wrong direction and loses *
- D) Beta moves faster but loses*
- E) Alpha and Beta tie *

A curve in the xy-plane is defined parametrically by the equations $x = t^2 + t$ and $y = t^2 - t$. For what value of t is the tangent line to the curve horizontal?

A)
$$t = -1$$

B)
$$t = -\frac{1}{2}$$

C)
$$t = 0$$

(D)
$$t = \frac{1}{2}$$

E)
$$t = 1$$

ANSWER

D

05

A curve is given parametrically by the equations $x = 3 - 4 \sin t$ and $y = 4 + 3 \cos t$ for $0 \le t \le 2\pi$. What are all points (x, y) at which the curve has a vertical tangent?

- A) (-1,4)
- dy -4cost
 -3 sint
- 0 3 7 -> (3.7)

 17 3 1

 26 3 7 (3,1)

B) (3,7)

- -3 sweed
- C) (-1,4) and (3,7)
- SWE=0 €=0,17,28
- (D) (3,7) and (3,1)
- E) (4,-1) and (4,7)

ANSWER

D

If $x = t^2 + 2t$ and $y = 3\ln(t+1)$, then $\frac{dy}{dx}$ at $t = \frac{1}{2}$ is

$$(A) \frac{2}{3}$$

(A)
$$\frac{2}{3}$$
 $\frac{dy}{dx} \cdot \frac{\frac{3}{\epsilon \cdot 1}}{2\epsilon \cdot 1} \cdot \frac{\frac{3}{3}}{3} \cdot \frac{\frac{1}{3}}{3} \cdot \frac{\frac{1}{3}}{3} \cdot \frac{\frac{3}{3}}{3}$

- B) $\frac{4}{5}$
- C) $\frac{3}{2}$
- D) 3
- E) $\frac{1}{2}$

ANSWER

07

The movement of a particle in the plane is $x(t) = \sin t$ and $y(t) = \cos^2 t$. If *t* is in the interval $(0, \pi)$, when is it stationary?

$$\widehat{\text{(B)}} \frac{\pi}{2}$$

C) $\frac{\pi}{4}$

D) $\frac{3\pi}{4}$

E) π

ANSWER

B

If
$$x = t^3 - 3t$$
 and $y = (t^2 + 1)^2$, then $\frac{dy}{dx}$ at $t = 2$ is

$$\bigcirc \bigcirc \frac{40}{9}$$

D)
$$\frac{9}{40}$$

ANSWER

09

The equation of a line tangent to the curve $x(t) = t^2$ and $y(t) = t^3 - 1$ at the point (4,7) is

A)
$$x - 3y = -5$$
 $x' = 0$

$$(B) 3x - y = 5$$

12=t 8=63

C)
$$4x - 7y = 0$$

D)
$$4x + 7y = 12$$

E)
$$x^2 + y^3 = 1$$

Which of the following is an equation of the line tangent to the curve with parametric equations $x = 3e^{-t}$ and $y = 6e^{t}$ at the point where t = 0?

$$(A) 2x + y - 12 = 0$$

(A)
$$2x + y - 12 = 0$$
 $x' = 3e^{-4}$ $y' = 6e^{4}$ $x(0) = 3$ $y(0) = 6$

B)
$$-2x + y - 12 = 0$$

B)
$$-2x + y - 12 = 0$$
 $x(0) = -3$ $y(0) = 6$

C)
$$x - 2y + 9 = 0$$

E) x + 2y - 15 = 0

D)
$$2x - y = 0$$

ANSWER

A

11

A curve in the plane is defined parametrically by the equations x = 2t + 3and $y = t^2 + 2t$. An equation of the line tangent to the curve at t = 1 is

$$(\widehat{A}) y = 2x - 7 \times 2.$$

B)
$$y = x - 2$$

$$y' = 2t + 7$$

$$y'(t) = 4$$

$$y = x - 1$$

C)
$$y = 2x$$

D)
$$y = 2x - 1$$

$$\frac{dy}{dx} = \frac{4}{3} = 7$$

E)
$$y = \frac{1}{2}x + \frac{1}{2}$$

If
$$x = 2t^2$$
 and $y = t^3$, then $\frac{d^2y}{dx^2}$ at $t = 3$ is

* MAKE SURE TO DIVIDE

** MAKE SURE TO DIVIDE

** ADDITIONAL display

AND ADDITIONAL display

(A)
$$\frac{1}{16}$$
 $\chi'(\xi) = 4\xi$ $\chi'(\xi) = 3\xi^2$ $\chi'(3) = 12$ $\chi'(3) = 27$

B)
$$\frac{9}{2}$$

C)
$$\frac{3}{4}$$

D)
$$\frac{1}{4}$$
 $\frac{dy}{dx} = \frac{3e^{x}}{4e^{x}} = \frac{3e}{4}$

E)
$$\frac{9}{4}$$
 $\frac{d^2y}{dx^2}$ $\frac{3(4)-0(3\epsilon)}{(4)^2}$ $\frac{12}{4^3(3)}$ $\frac{17}{192} = \frac{1}{16}$

ANSWER

A

13

If $x = \sin t$ and $y = \cos^2 t$, then $\frac{d^2y}{dx^2}$ at $t = \pi$ is

(A)
$$-2$$
 $dy = -2costsint$ $-2sint$

B) $-\frac{1}{4}$ dx $cost$

C) 0
$$\frac{d^2y}{dx} = 2\cos t$$

- D) $\frac{1}{4}$
 - E) 2

ANSWER

Δ

A particle moves in the xy-plane so that at any time t, t > 0. Its coordinates are $x = e^t \sin t$ and $y = e^t \cos t$. At $t = \pi$, its velocity vector is

A)
$$\langle e^{\pi}, -e^{\pi} \rangle$$

A)
$$\langle e^{\pi}, -e^{\pi} \rangle$$
 S(t): $\langle e^{t} \text{ sint. } e^{t} \text{ cost.} \rangle$

B)
$$\langle 0, -e^{\pi} \rangle$$

B)
$$\langle 0, -e^{\pi} \rangle$$
 $\forall (t) : \langle e^{\epsilon} sint + e^{\epsilon} cos \epsilon, e^{\epsilon} cos \epsilon - e^{\epsilon} sin \epsilon \rangle$

C)
$$\langle -e^{\pi}, e^{\pi} \rangle$$

C)
$$\langle -e^{\pi}, e^{\pi} \rangle$$
 $\vee (\mathfrak{m}) = \langle -e^{\mathfrak{m}}, -e^{\mathfrak{m}} \rangle$

D)
$$\langle e^{\pi}, e^{\pi} \rangle$$

$$\widehat{(E)}$$
 $\langle -e^{\pi}, -e^{\pi} \rangle$

ANSWER

6

15

The velocity vector of a particle moving in the xy-plane is $(3-4\cos t, 4\sin t)$ for all $t \ge 0$. When t = 0, the particle is at the point (0, -1). Which statement best describes the motion of the particle?

A) The particle moves around a circle <36-4566, 3-4cos6>

B) The particle moves along a sine graph

- C) The particle moves to the left for all t
- D) The particle moves to the right with a regular up and down motion
- (E))The particle moves generally to the right with an up and down motion, but periodically loops to the left

ANSWER

6

The velocity vector of a particle moving in the coordinate plane is $\langle 4t, -2t \rangle$ for $t \ge 0$. The path of the particle lies on

⁻E)∖A ray

Since Ezu, euopoint exists

ANSWER

É

17

The position of a particle in the xy-plane is given by $x = 4t^2$ and $y = \sqrt{t}$. At t = 4, the acceleration vector is

A)
$$(8, -\frac{1}{64})$$

$$(8, -\frac{1}{32})$$

C)
$$\langle 8, \frac{1}{32} \rangle$$

$$V = \langle 8t, \frac{1}{2}t^{2}h \rangle$$

$$A = \langle 8, -\frac{1}{4}t^{-\frac{1}{2}h} \rangle = \frac{1}{4(8)} = \frac{1}{34}$$

D)
$$(32, -\frac{1}{32})$$

E)
$$\langle 32, \frac{1}{4} \rangle$$

ANSWER

B

The position of a particle moving in the xy-plane is given by the parametric equations $x(t) = 9 \cos t$ and $y(t) = 4 \sin t$ for $t \ge 0$, then at t = 3, the acceleration vector is

B)
$$\langle -1.270, -3.960 \rangle$$

E)
$$\langle -0.564, 8.910 \rangle$$

ANSWER

C

19

A particle moves in the xy-plane so that at any time t its coordinates are $x = t^2$ and $y = 4 - t^3$. At t = 1, its acceleration vector is

A)
$$\langle 2, -3 \rangle$$

$$(\widehat{B})$$
 $\langle 2, -6 \rangle$

C)
$$\langle 1, -6 \rangle$$

E)
$$\langle 1, -2 \rangle$$

ANSWER

R

The particle moves in the xy-plane so that, at any time t, its coordinates are $x = \frac{t^3 - 2t^2}{4}$ and $y = t^2 - t$. At t = 2, its acceleration vector is

$$S = \left\langle \dot{\eta} t^3 - \dot{\overline{\eta}} t^3, t^3 - t \right\rangle$$

C)
$$\langle 2, 0 \rangle$$

$$a: \{\frac{3}{2}t - 1, 2\}$$

ANSWER

E)
$$\langle -2, -2 \rangle$$

21

A particle moves in the xy-plane so that, at any time t, its coordinates are $x = t^3 + t$ and $y = t^5 - 2t^2$. At t = 2, its acceleration vector is

$$S = \langle t^3 + t, t^5 - 2t^2 \rangle$$

A particle moves in the xy-plane so that at any time t, its coordinates are $x = \alpha \cos(\beta t)$ and $y = \alpha \sin(\beta t)$, where α and β are constants. The y-component of the acceleration of the particle at any time t is

A)
$$-\beta^2 y$$

B)
$$-\beta^2 x$$

$$Q_{\gamma}(t) = -\alpha \beta^2 \sin(\beta t)$$

C)
$$-\alpha\beta\sin(\beta t)$$

$$\widehat{(\mathrm{D})} - \alpha \beta^2 \sin(\beta t)$$

E)
$$-\alpha\beta^2\cos(\beta t)$$

ANSWER

D

23

A particle moves in the plane according to $x = t \cos t$ and $x = t \sin t$. Which of the following vectors is orthogonal (perpendicular) to the acceleration vector at $t = \pi$.

A) $\langle 1, \pi \rangle$

- B) $\langle 2, -\pi \rangle$
- a= <- sint sint + teast, cust + cust tsint>
- (c) (2,π)
- a = < 0 0 11(-1), (-1) + (-1) 11(-))
- D) $\langle \pi, 2 \rangle$
- a = < m, -2>
- E) $\langle \pi, 1 \rangle$
- an 3/10 perpon 17/4

< 2, m>

ANSWER

0

A particle moves in the xy-plane so that its velocity vector at time *t* is $v(t) = \langle t^2, \sin \pi t \rangle$ and the position vector at time t = 0 is $\langle 1, 0 \rangle$. What is the position vector of the particle when t = 3?

$$V_{x}(3) - V_{x}(0) = \int_{0}^{3} \mathcal{E}^{3} dt$$

$$V_{x}(3) = V_{x}(0) = \int_{0}^{3} t^{3} dt$$
 $V_{y}(3) = V_{y}(0) = \int_{0}^{3} SIN(\pi t) dt$

A)
$$\langle 9, \frac{1}{\pi} \rangle$$

$$V_{x}(3) = 1 = \frac{1}{3}t^{3}\Big|_{0}^{3}$$
 $V_{y}(3) = 0 = -\frac{1}{47}\cos(\pi t)\Big|_{0}^{3}$

(B)
$$\langle 10, \frac{2}{\pi} \rangle$$
 $\vee_{\times} (3) = | + 9 \rangle$

C)
$$(6, -2\pi)$$

C)
$$\langle 6, -2\pi \rangle$$
 $\vee_{\kappa} \langle 3 \rangle = 10$

D)
$$\langle 10, 2\pi \rangle$$

E) $\langle 10, 2 \rangle$

ANSWER

B

25

The velocity vector of a particle moving in the xy-[lane is given by $v = \langle 2 \sin t, 3 \cos t \rangle$ for $t \geq 0$. At t = 0, the particle is at the point (1, 1). What is the position vector at t = 2?

$$V_{x}(2) - V_{x}(0) = \int_{0}^{x} 2sint dt$$
 $V_{y}(2) - V_{y}(0) = \int_{0}^{x} 3sost dt$

B)
$$(1.832, -1.728)$$
 $V_*(2) - 1 = -2\cos(1)^2$ $V_y(2) - 1 = 3\sin(1)^2$

C)
$$(1.819, -1.248)$$
 $\sqrt{(2)} = 1 - 2 \left[\cos 2 - 1\right]$ $\sqrt{(2)} = 1 + 3 \left[\sin 2 - 0\right]$

D)
$$(1.735, -0.532)$$

D) (1.735, -0.532)
$$V_{\chi}(2) = 3 - 2\cos 2$$
 $V_{\chi}(2) = 1 + 35 \ln 2$

E)
$$\langle 0,3 \rangle$$

$$V_{x}(2) = 3.832$$

A particle moves in a plane so that its position at any time θ , $0 \le \theta \le 8$, is given by the polar equation $r(\theta) = 5(1 + \cos \theta)$. When does the particle's distance from the origin change from decreasing to increasing?

(10) = 5(1+coso)

950 : 26

('(0) = -55NO=0

A) $\theta = 0$ only

CARDIOD

0=0, 11,211

C) $\theta = 2\pi$ only

D)
$$\theta = 0$$
 and $\theta = \pi$

E) $\theta = \pi$ and $\theta = 2\pi$

0=0/1

ANSWER

B

27

The area of the region enclosed by the polar curve $r = \cos 2\theta$ for $0 \le \theta \le \frac{\pi}{2}$ is

A) $\frac{\pi}{2}$

4 Leaf ROSE

B) π

Cos 2(0) = Cos(0) =)

$$(C)^{\frac{\pi}{6}}$$

COS 2(%) = COS W = -1

 $2\left[\frac{1}{2}\int_{0}^{\pi}/4(\cos 2\theta)^{2}d\theta\right]$

 $\int_{0}^{\pi/4} (\cos 2\theta)^{2} d\theta \qquad u = 20$ $\frac{i}{2} \int_{0}^{\pi/4} \cos^{2} u du$

E) 1

7/ 1 2 + 2 cos 24 des

ANSWER

4 4 + \$ SIN Que 100

[4(=)+\$ 5w(r)]-[0+0]

DOUBLE

The area of one leaf of the rose $r = \sin 3\theta$ is

- B) $\frac{\pi}{6}$
- (C) $\frac{\pi}{4}$
- D) $\frac{\pi}{3}$
- E) $\frac{\pi}{2}$

Tipo

ANSWER

C

29

The area outside r = 1 and inside $r = 1 + \sin \theta$ is

- A) $2 + \pi$
- B) $2 + \frac{\pi}{2}$
- $\langle \widehat{C} \rangle 2 + \frac{\pi}{4}$
- D) $2 \frac{\pi}{4}$
- E) $2 \frac{\pi}{2}$

$$2\left[\frac{1}{2}\int_{0}^{\eta_{1}}(1+5\ln 0)^{2}-(1)^{2}\right]d\theta$$

$$\int_{0}^{\eta_{1}}1+25\ln 0+\sin^{2}\theta-1d\theta$$

2+1/2

ANSWER

C

The total area of the region enclosed by the polar graph of $r = \cos 3\theta$ is

- A) $\frac{\pi}{12}$
- B) $\frac{\pi}{6}$
- D) $\frac{\pi}{3}$
- E) $\frac{\pi+\sqrt{3}}{2}$

$$6 \left[\frac{1}{2} \int_{0}^{\pi} (\cos 30)^{2} d0 \right]$$

Cus(30)=0

30: 1/2

3 / (cas 30) 3 de de 3 de 76 -> 172

[# + 4 sys m] · [0 + 0] 11/4

ANSWER

31

The area of the region enclosed by the polar curve $r = \sin \theta$ for $0 \le \theta \le \pi$ equals

- A) 1
- B) $\frac{\pi}{2}$
- D) $\frac{\pi}{8}$
- E) π

Which of the following gives the area of the region enclosed by the graph of the polar curve $r = 1 + \cos \theta$?

A)
$$\int_0^{\pi} (1 + \cos^2 \theta) \, d\theta$$

$$\widehat{(B)} \int_0^{\pi} (1 + \cos \theta)^2 d\theta$$

C)
$$\int_0^{2\pi} (1 + \cos \theta) \, d\theta$$

D)
$$\int_0^{2\pi} (1 + \cos \theta)^2 d\theta$$

$$E) \frac{1}{2} \int_0^{2\pi} (1 + \cos^2 \theta) \, d\theta$$

$$\int_{a}^{\pi} (1 + \cos \theta)^{2} d\theta$$

ANSWER

B

33

The area of the region enclosed by the polar curve $r = 2(\cos \theta + \sin \theta)$ is

A) 1

B) 2

C) π

D) 2π

(E) 4π

when 0:0, 1/2,217

2 / 184 [cos 10 + 2 cos 0 sm0 + sw 10] de

2(cos 0 + smo)= 2

C050+5140 = 1

20 +45" ada

(40+0)-(0)

40

ANSWER

E

Kuj'

If the function $r = f(\theta)$ is continuous and nonnegative for $0 \le \alpha \le \theta \le \beta \le 2\pi$, then the area enclosed by the polar curve $r = f(\theta)$ and the lines $\theta = \alpha$ and $\theta = \beta$ is given by

B)
$$\frac{1}{2} \int_{\alpha}^{\beta} f(\theta) d\theta$$

C)
$$\frac{1}{2} \int_{\alpha}^{\beta} \theta f(\theta^2) d\theta$$

D)
$$\frac{1}{2} \int_{\alpha}^{\beta} \theta f(\theta) d\theta$$

$$(\widehat{E})^{\frac{1}{2}}\int_{\alpha}^{\beta} (f(\theta))^2 d\theta$$

A = \frac{1}{2} \int_{a}^{B} [\frac{1}{2} \left(\text{o}) \right] do

CUS () = 5 NO

000

ANSWER

E

35

Which of the following integrals gives the total area of the region shared by both polar curves $r=2\cos\theta$ and $r=2\sin\theta$? $2\cos\theta=2\sin\theta$

A)
$$2\int_0^{\frac{\pi}{4}} \sin^2\theta \ d\theta$$

C)
$$2\int_0^{\frac{\pi}{2}} \sin^2\theta \ d\theta$$

D)
$$4\int_0^{\frac{\pi}{4}}\cos^2\theta d\theta$$

E)
$$2\int_0^{\frac{\pi}{4}} (\cos^2 \theta - \sin^2 \theta) d\theta$$

ANSWER

B

The area enclosed by the polar curve $r=6\cos\theta+8\sin\theta$ from $\theta=0$ to $\theta=\pi$ is

- A) 28.274
- B) 50.265
- (C)) 78.540
- D) 113.097
- E) 201.062

78.540

ANSWER

C