National University of Computer and Emerging Sciences 0108

Lahore Campus

Theory of Automata (CS3005)

Final- Exam

Total Time (Hrs):

Total Marks: 80

Total Questions:

4

3

Dr. Sobia Tariq Javed Dr. Tahir Ejaz

Mr. Hamad ul Qudous

Date: Dec 31st 2024

Course Instructor(s)

Mr. Fraz Yousaf

Roll No Section

Student Signature

Do not write below this line

- Attempt all the questions. No marks without working.
- In case of confusion or ambiguity make a reasonable assumption.
- Solve Q3, Q4 and Q5 on the question paper. Show working on the answer sheet (MUST).
- Provide only one final solution to each question. Submitting multiple solutions will result in cancellation, and no marks will be awarded. Attach of working paper with answer book.

CLO	1	2		3	, d	4	
Question#	Q1	Q3(a)	Q3(b)	Q4	Q2	Q5	Total
Marks (total)	10	10	10	10	20	20	80
Marks (obtained)		A A WATER OF	e Grand grade	Balange her			OF PERSONS

CLO #1: Identify formal language classes and prove language membership properties.

Question#1: Pumping Lemma

[marks 10]

Tell whether the following Language is context-free (CFL) or non- context-free (non- CFL). If it is CFL provide PDA else prove it using Pumping Lemma.

$$L = \{a^{2^k} \mid k \ge 0\}$$

CLO #4: Differentiate and manipulate formal descriptions of languages, automata, and grammars with a focus on non-context-free languages using Turing Machines

Question #2: Multi-tape TM: String Left Rotation Check

[marks 20]

Design a deterministic 2-tape TM to check if one string Y is a left rotation of another string X. You can assume X is on tape 1 and Y is on tape 2.

For example, "waterbottle" is a rotation of "erbottlewat". X = waterbottle and Y = erbottlewat For your simplicity, we have reduced the input alphabet set to $\Sigma = \{a, b\}$

National University of Computer and Emerging Science Lahore Campus

Accepting examples

٨	a alt	Total Mai	b	a	b	Δ
	tenojte	nu D lateT				
Δ	b	b	a	b	a	Δ

						Lizuo Y
Δ	a	b	b	8	D	Δ
Δ	a	b	a	b	b	Δ

Non-accepting examples

Exam	ple	#	3

Δ	a	b	b	a a	b b	Δ
Δ	b	b	anis word words	do la grotten	de de de de	A

Δ	a	b	b	a	b	Δ	
Δ	a 80	b	a 40	(a) 80	b) E Ø	Δ	

CLO #2: Differentiate and manipulate formal descriptions of languages, automata and grammars with focus on non-regular and regular using automata (DFA, NFA, NFA-Null)

Question#3 (a): NFA-NULL to NFA Conversion

[marks 10]

Convert the following NFA-NULL into an equivalent NFA by eliminating all Null transitions. Show your work step-by-step (on the answer sheet), including the computation of Null-closures for each state and the new transition table for NFA (fill in the table on the question paper).

States	δ (q,a)	δ (q,a)
1		
2		
3		Company or a
4	1 ygea lein ki	Emile 1992
5		
6		
7		

Question#3 (b): Minimization of DFA

[marks 10]

Find a minimum-state DFA recognizing the same language. Show complete working. Use only the method discussed in your respective class. Show working on answer booklet.

CLO #3: Differentiate and manipulate formal descriptions of languages, automata, and grammar. with a focus on context-free languages using automata (PDA and NPDA).

Question#4: CYK

[marks 10]

For the following grammar, use the CYK algorithm to determine whether the string "abccba" is in the language of the grammar.

S → AB | BB

A > BA | c | b | CC

 $B \rightarrow BB | a | b | c$

 $C \rightarrow AA$

Circle the correct option:

Acceptable / Unacceptable

		0.0		b		3
					AB	SB
		C		AB	ABCS	SB
	,		AB	ABCS	ADCS	SB
2		AB	ABCS	ABCS	A865	SB
	B	ASB	ASCS	ABUS	ABCS	38

National University of Computer and Emerging Sciences Lahore Campus

CLO #4: Differentiate and manipulate formal descriptions of languages, automata, and grammars with a focus on non-context-free languages using Turing Machines

& mostonio	To be a second of the second o	
Perform a	dry run of the single-tape Turing machine on the next pa	age and provide the tape's fina
content after	er the machine halts. Additionally describe the machine's	function or nurnose

Question#5: Dry Run Turing Machine

A h									0	0		1	0	Δ
110	ead/p	ointer												
inal ta	ape's o	content	:											
\$	0	0	1	Δ	0	0	1	0	Δ	Δ	Δ	Δ	Δ	Δ
1												1		
o mar	k whe	ere will	be the	e head	poin	ter.								
Vorkin	g (be l	brief an	d to t	he poi	nt)									

Imarks 201

Spring 2024

Department of Computer Science

Page 5 of 5