

1204.44 more points to get your next star!

Rank: **55159** | Points: **995.56/2200**

Problem

Submissions

Leaderboard

Editorial

Topics

RATE THIS CHALLENGE

Flipping bits \(\frac{1}{2} \)

公公公公公

You will be given a list of 32 bit unsigned integers. Flip all the bits ($1 \to 0$ and $0 \to 1$) and print the result as an unsigned integer.

For example, your decimal input $n=9_{10}=1001_2$. We're working with 32 bits, so:

 $0000000000000000000000000001001_2 = 9_{10}$

Function Description

Complete the *flippingBits* function in the editor below. It should return the unsigned decimal integer result.

flippingBits has the following parameter(s):

• n: an integer

Input Format

The first line of the input contains q, the number of queries.

Each of the next $oldsymbol{q}$ lines contain an integer, $oldsymbol{n}$, to process.

Constraints

 $1 \le q \le 100$ $0 \le n < 2^{32}$

Output Format

Output one line per element from the list with the decimal value of the resulting unsigned integer.

Sample Input 0

3 2147483647 1 0

Sample Output 0

2147483648 4294967294 4294967295

Explanation 0

```
Sample Input 1
 2
 123456
Sample Output 1
 4294967291
 4294843839
Explanation 1
00000000000000011110001001000000_2 = 123456_{10}
1111111111111111110000111101101111111_2 = 4294843839_{10}
Sample Input 2
 3
 802743475
 35601423
```

Sample Output 2

4294967295 3492223820 4259365872

Explanation 2