Lecture 27

fast time we déd multistep formula

 $\frac{dy}{dx} = f(x,y)$ $y(x_0) = y_0$ $a = x_0 \le x \le b$

Adam-Bershforth method of order 4

 $y_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$

 $h \rightarrow step size$ $f_i = f(x_i, y_i)$

Lord error = $45 \% (5) \frac{251}{720}$

Note that AB method requires that yo, 2, 4, 42, 3 to be known.

Usually 91, 92, 93 are computed by RK-method

f f(n,y)dr m + f(x,47 dr approximating the integral by Trapervide $y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \right]$ Emr = - 43 y"(=)

Algorithin (Seems order predictor corrector)

des = f(2,7) y(20) = 20 ynti = yn + h f(xn, m) 2) compute ynote until satisfied by y(k) = yn + h[f(xn, yn) + f(xnx, ynt)] for k=1,2,- . 3) If yner is satisfactory then set and nepeat 1,2,3

Today we do Adam - Moulton method (This is used as a corrector for Adam - Bash forth method) $\frac{dy}{dx} = f(x,y) \qquad y(x_0) = y_0$ $\int_{a}^{x} \frac{dv}{dx} = \int_{x}^{x} f(x, y) dx$ $y_{n+1} = y_n + \int_{-\infty}^{\infty} f(x,y) dx$ we use polynomial which interpolates f(xi, x(x)) at the point muti, 2, m, 2, ..., 2n-m an integer m>0 The Newton backward diff from which interpolates at there m+2 points in terms of $s = \frac{x - x_n}{1}$ is

$$P_{m+1}(3) = \sum_{k=0}^{m+1} (-1)^k {l-s \choose k} \nabla^k f_{n+1}$$

$$k = 0$$

$$S = \frac{x-x_n}{h}$$

$$So ds = \frac{dx}{h}$$

$$y_{n+1} = y_n + h \int_{\delta}^{\infty} \left(\sum_{k=0}^{m+1} (1-s) \nabla^k f_{k+1} \right) ds$$

$$\gamma_{k}^{\prime} = (-1)^{k} \int_{0}^{1} \left(\frac{1-3}{k} \right) ds$$

$$k = 0, 1, -, m+1$$

The first few values of
$$\gamma_{\ell}$$
 are

$$\gamma_0' = 1, \quad \gamma_1' = -\frac{1}{2}, \quad \gamma_2' = -\frac{1}{12}, \quad \gamma_3' = -\frac{1}{24}$$

$$\gamma_4' = -\frac{19}{720} \quad \left(\text{in your text brok} \right)$$

$$\gamma_4' = -\frac{10}{720} \quad \text{is wrow.}$$

Error E = 7/ 1 m+3 (m+3)

(x) The case m=2 is frequently used (Adam-Moulton Formula) (x) yn=1 = yn + 1 (9fn+1 + 19fn-5fn++fn-2) $E = -\frac{19}{700}h^{5}\sqrt{5}(\xi)$ This is a corrector formula of dozed type Stace for = f(xn+1, yn+1) involves the Unknown quartity m+1 Rnedictor used is Adam-Bash for h order formule

Algorithim The Adam - Moulton predictor-corrector method) For the diff equation y'=f(x,y) with h fixed and $x_n = x_0 + nh$ and with $(y_0, f_0), (y_1, f_1), (y_n, f_2), (y_3, f_3)$ given for n= 3, 4, . - - . 1. Compute ynt, using the formule $y_{n+1}^{(0)} = y_n + \frac{h}{24} \left[55f_n - 59 - f_{n-1} + 37 f_{n-2} - 9f_{n-3} \right]$ here fi = f(xi, xi) d. Compute until satisfied ynt, = yn + h [9f(2nt, 2nt)) +19fn-5fn-tfn-1] 3) If satisfied with your then set yn+1 = yn+1.

Exercise: Show that the iteration (*) converge if $\frac{9h}{24} | \frac{2f}{24} | < 1$

Step-size control

Besides yielding improved accuracy the Corrector formula seems another useful function. It provides an estimate of the local error which can be used to decide whether the step h is adequate for the required accuracy.

Local ever of A-B method EAB = $\frac{251}{720}$ h 5 (E,)

Lord even 9 A-M method Em = -19 h 5 5 (5) (Ez)

Let yn+1 reprent value 1 yn+1 oftained and cy (1) the result obtained by AM metho? Thus $y(2n+1) - y_{n+1} = \frac{251}{720}h^5y^{(5)}(\xi_1)$ (x_n) $y(2n+1) - y_{n+1} = \frac{-19}{720}h^5y^{(5)}(\xi_2)$ In general ξ , $\pm \xi_z$. But we assume that for χ_{n+1} due to χ_n , $\xi_n = \xi_z$ By (xx) we oftain $h^5y(\xi) = \frac{720}{320} (mti - mti)$ Substituty this in second equation above me $y(\chi_{n+1}) - \chi_{n+1}^{(1)} = -\frac{19}{270} \left(\chi_{n+1}^{(1)} - \chi_{n+1}^{(0)} \right) \\ \approx -\frac{1}{12} \left(\chi_{n+1}^{(1)} - \chi_{n+1}^{(0)} \right) = D_{n+1}$

Thus the error of the corrected value
•
is approximately - I of the difference
between the corrected and predicted value
It is advisable to use corrector only
once. If accuracy of Done, is not
once. If accuracy of Dn+, is not sufficient, it is better to reduce the step sir than to correct more than once
then to correct more than once
The error estimate is used in the following
The error estimate is used in the following manner.
Let us assume that we wish to keep
Let us assume that we wish to temp
Le local error per unit step bounded a
E ₁ \leq \frac{\int_{n+1}}{h} \leq \frac{\frac{1}{2}}{2}
4
we proued as follows

1) Use A-B formule to compute ynti 2) Use A-M formula to compute ynti Compute $D_{n+1} = -\frac{1}{14} \left(y_{n+1}^{(1)} - y_{n+1}^{(0)} \right)$ 4) 9 E1 5 [Dn+1] 5 Ez then proceed to the next integration step, using the same 5) of 1 month > Ex then the step size h is two large and should be reduced to $\frac{h}{2}$. (6.) I I Duti / EI, note acomecy is being obtained then necessary. Hence we can sew

computer time by replace to by 2t.

Simple différence épations
A difference equation of orda N is a
relation between the differences
$\omega = \lambda^0 \omega$ $\lambda^1 \omega$ $\lambda^2 \omega$ λ^{*0}
$y_n = \Delta^0 m$, $\Delta^1 m$, $\Delta^2 m$,, $\Delta^N y_n$
of a number seguere i'e.,
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(*) $\Delta^{N} = f(n, m, \Delta m,, \Delta^{N-1} m)$
Recall $\Delta m = m + 1 - m$ $\Delta^k m = \Delta (\Delta^{k-1} m) + m + 2 \lambda$.
$\frac{1}{\sqrt{\lambda^{k-1}}} + \frac{1}{\sqrt{\lambda^{k-1}}} + \frac{1}{\sqrt{\lambda^{k-1}}} + \frac{1}{\sqrt{\lambda^{k-1}}} = \frac{1}{\sqrt{\lambda^{k-1}}} + \frac{1}{\sqrt{\lambda^{k-1}}} = \frac{1}{\lambda^{k$
Dy = Dis mi
A solution to (x) is a sequence man, mm+1,: of numbers such that (x) holds
: of numbers such that (x) holds
^
tw n=m, m+1, m+2,
of (x) is a linear difference equation then
y (x) is a linear difference equation then (x) can be unitten emplish in terms of y's as
$\frac{1}{2}$
$y_{n+N} + a_{n,N-1} y_{n+N-1} + \cdots + a_{n,0} y_n = b_n$
0.1.210

Eno	imples of linear différence equation
	$\gamma_{m+1} - \gamma_m = 1$ all n
	yn+1-yn=n all nzo
	m+1 - (n+1) m = 0 all nz o
	m+2 - (ausy) yn+1 + m = 0 all n
By	direct substitution, these egn's have
ડન	
	yn = n+c all n
	$\frac{4n = n(n-1)}{2} + c \text{all } n > 0$
	yn = cn! all nzo
	$y_n = c \cos \gamma n$ all n
w	ith c an artitary constant.

We consider in detail a homogeneous linear difference equation with constant welficent men + an- ynen- + ... + a yn = 0 We seek solutions of the form yn = B" for all n Substituting in (*) we ger pn+N+ an+1 pn+N-1 pn = 0 dividing by B, we obtain the characteristic P(B) = B + and B + --- + ao The characteristic polynomial is of degree N. We first assume that its zeros $\beta_1, \beta_2, --, \beta_N$ are dishinct. Then $\beta_1, \beta_2, --, \beta_N$ are all solution of (x), and by linearly it follows that (x) and (x) and (x) are all (x) are all (x) and (x) are all (x) are

for arbitary contact is, is also a solution of (x) It can be shown that (xx) is the general solution 8 (X) Example yn+3-23n+2-3n+1+23n=0 char- polynomia B3-2B2-B+2=0 roots of this polynomial equation is 1,-1, 2 So general solution is $y_n = c_1(1)^n + c_2(-1)^n + c_3(2^n)$ = G + C2 (-1)" + 2"C3 If the fist N-1 values of yn one given then we can solve (*) emplishy for all

succeeding values of n.

m+3 - 2 m+2 - m+1 + 2m = 0 3f 3=0, 3=1, 2=1 Then y = 2-(17+1-0=3 y = 5, y=11 etc This does not give closed formula for m. general solution is m = C1 + (-1) (2 + 2)(3 using withat value 30=0, 4=1, 2=1 0= 442+63 1 = 01-02+203 1 = 4 - 4 - 4 - 4 - 13 Solution is 4=0, 62=-1, 63=3. So to Mored form of sol of inhal-value problem is m= -1 (-1) + 2

If the characteristic polynomial has a pairs of enjugate - complex zeros, the solution can still be expressed in real form. Thus if B, = d+iB, B= d-iB we enforen B, B, in polar form $\beta_1 = \lambda e^{i\theta}$ $\beta_2 = \lambda e^{-i\theta}$ when $\Lambda = \sqrt{a^2 + \beta^2}$ $\theta = \tan^{-1}(\beta/\alpha)$ Then the solution of (x) corresponding to this pair of zeros is C, B, + C, B = 4 1 e + C, n e - 100 = 17 (G (wond + i sin no) + G (wo no - i sin no) $= n^n (C_1 \omega n \theta + C_2 s n n \theta)$ where $C_1' = C_1 + C_2$, $C_2' = i(C_1 - C_2)$.

char. polynomial B2-2B+2=0 B, = 1+i B2 = 1-i not 九= 「2 , 0= 下/4. So general solution is $\gamma_n = (\sqrt{2})^n \left(\zeta \cos \frac{n \pi}{u} + (2 \sin \frac{n \pi}{4}) \right)$ men + and men + char polynomial p(p) = p+ ap+ p+-- + ao = 0 Suppore 13 is a double root of p (3)

Then seemed solution of UKI is n B.
To verify this, we note that if β_i is a double noot of $p(\beta)$ then $p(\beta) = 0$ and
double noot of $p(\beta)$ then $p(\beta) = 0$ and
p'(p) = 0
Substituting yn = n B, in (x) we go
$(n+N)^{n+N} + a_{N+1}(n+N-1)^{n+N-1} + a_0 n \beta^n$
γ
= P, In (Pi+ 9m+1 13, + + a0)
$= P_{1} \left\{ n \left(\beta_{1} + \alpha_{N+1} \beta_{1} + \cdots + \alpha_{0} \right) \right\}$ $= \left\{ n \left(\beta_{1} + \alpha_{N+1} \beta_{1} + \cdots + \alpha_{0} \right) \right\}$ $= \left\{ n \left(\beta_{1} + \alpha_{N+1} \beta_{1} + \cdots + \alpha_{0} \right) \right\}$
= P, [np(p,)+ p, p'(p,)]
_ 0
It can also be shown that the two
It can also be shown that the two solutions β_1^n and $n \beta_1^n$ are linearly
independent.

Example yn+3-5yn+2+8yn+1-4yn= 0 char poly. $\beta^3 - 5\beta^2 + 8\beta - 4 = 8$ rusts 2,2,1. so general $y_n = c_1 \frac{2^n}{2^n} + c_2 \cdot n \cdot 2^n + c_3 \cdot 1^n$ = 2" ((1+n(2) + C3 Non-homogenerors linear diff equation with constant welficients The general solution of the ego - ao In = bn (xx) Yners + any meny t -can be written in the form In = In + In where you is the general solution of

homogener system (xx) and yn is
a particular solution of (**)
· · · · · · · · · · · · · · · · · · ·
Special care bon = b is a constant
a partiuler solution of (**) den te obtained
· · · · · · · · · · · · · · · · · · ·
by setting m= A (a constact).
Substitute in (xx) we get
ho bo
$A = \frac{1}{1 + 1}$
$A = \frac{bo}{1 + a_{N-1} + \cdots + a_n}$
(provided denominata #0).
Evangle
Evample ynt2 - 2 mm, + 2m = 1
yo = A gets
1-2+2
So $Sp = 1$. (. [a) ((m) In + (sin In) + 1
so $sp = 1$. Sureal sol is $y_n = (\sqrt{2})^n (4 \cos \frac{\pi}{4} n + (2 \sin \frac{\pi}{4} n) + 1)$

