Projet 7

Prédire la consommation d'électricité

Sommaire

Préparation des données 01

Programmes 02

Résultats 03

Préparation des données

Présentation des données

Consommation électrique

Fichier csv téléchargé depuis le site du Réseau de Transport d'Électricité français

Température

100 fichiers xlsx téléchargé depuis le site d'expertise energétique Cegibat

Variables

Préparation des données

```
import csv
for fich in os.listdir('C:/Users/gormt/P09/gedi/'):
    path = 'C:/Users/gormt/P09/gedi/'
    read = pd.read_excel(os.path.join(path,fich), header=None)
    df = read.iloc[11:,:]
    fich2 = fich.split('.xlsx')[0]+'.csv'
    df.to_csv(fich2,index=False)
```

Conversion des fichiers xlsx en fichier csv

Sélection de l'ensemble des fichiers csv dans une liste

```
import os, sys
import openpyxl
x = 0
df_list = []
path = 'C:/Users/gormt/P09/gedi_csv/'
for fich in os.listdir(path):
    df = pd.read_csv(os.path.join(path,fich),sep=',')
    df.columns = list(df.iloc[0,:])
    df = df.iloc[1:,:]
    df_list.append(df)
```

```
for i in range(1,100):
    df_list[0].loc[1:,'JAN':'Total'] = df_list[0].loc[1:,'JAN':'Total'].add(df_list[i].loc[1:,'JAN':'Total'], fill_value=0)
```

Fusion de l'ensemble des données

Régression linéaire

But du modèle

Annuler l'effet des températures sur la consommation électrique

Critère d'évaluation du modèle

Coefficient de détermination

Représente la qualité de représentation des données

Les points et la courbe suivent la même tendance

Résidus

Régression linéaire avant/après

Il y a effectivement une grosse différence entre avant et après la régression linéaire

Moyennes mobiles

But du modèle

Annuler les événements aléatoires et la saisonnalité la série temporelle

Critère d'évaluation du modèle

Stationnarité de la série

La série ne varie pas en fonction du temps

Avant désaisonnalisation

Après désaisonnalisation

Fonction d'Autocovariance

La fonction d'autocovariance tend vers O sans l'attendre

Désaisonnalisation avant/après

Après désaisonnalisation la série est très stable

Stationnarité avant/après

Modèles

Méthode Holt-Winters

- Est une fonction linéaire de la série temporelle
- Va servir de référence à notre modèle final

Modèle SARIMA

Modèle permettant de modéliser une série temporelle présentant une saisonnalité

Méthode Holt-Winters

La méthode prédit des chiffres moins élevés que les années précédentes

Modèles

Critères d' évaluation du modèle Critères

AIC BIC

Évaluent le modèle selon les paramètres du modèle et sa taille Significativité des paramètres

Nombre de paramètres non significatifs

Modèle Auto-Regressive Moving Average (ARMA)

Critères d' évaluation du modèle

Modèle SARIMA

Critères d' évaluation du modèle

La prédiction présente la tendance et la saisonnalité de la série

Merci pour votre attention!

