Простые методы решения сложных задач

04 декабря 2020 года

План лекции

- волшебные признаки
- понимание, как меняются признаки
 - использование контекста
 - утечки
 - простые алгоритмы

04 декабря 2020 1 слайд из 55

«Ford Classification Challenge» (2008)

Диагностика двигателя по сигналам датчиков

04 декабря 2020 2 слайд из 55

Задача классификации сигналов

Размеры данных: 3271×500 2 класса

Особенности данных

• Неоднородность

(средние значения в начале сигнала не коррелируют по средними в конце)

- Непериодичность
- Отсутствие заметных паттернов

04 декабря 2020 4 слайд из 55

04 декабря 2020 5 слайд из 55

04 декабря 2020 6 слайд из 55

Увеличили изображение...

класс 0 – маленькие разности

Почти идеальный признак!

$$\frac{1}{n-1} \sum_{i=1}^{n-1} I[u_{i+1} - u_i = 0] = \frac{1}{n-1} \sum_{i=1}^{n-1} I[u_{i+1} = u_i]$$

Считаем, сколько раз значения в сигнале повторяются...

Попробуем обобщить этот признак!

$$\frac{1}{n-1} \sum_{i=1}^{n-1} I[u_{i+1} - u_i = 0] = \frac{1}{n-1} \sum_{i=1}^{n-1} I[u_{i+1} = u_i]$$

обобщение №1 – сколько раз значения СЛАБО ОТЛИЧАЮТСЯ

$$\frac{1}{n-1} \sum_{i=1}^{n-1} I[|u_{i+1} - u_i| < \varepsilon]$$

обощение №2 – сколько НЕуникальных значений сигнала

$$\frac{1}{n-1} \sum_{i=1}^{n-1} I[u_{i+1}^{\text{sorted}} = u_{i+1}^{\text{sorted}}]$$

Получили идеальный признак!

04 декабря 2020 10 слайд из 55

Решение задачи

2 * (np.sum(np.diff(np.sort(train.values, axis=1), axis=1) == 0, axis=1) < 20) - 1

34 символа

2*((sum(diff(sort(X'))==0)<20)'-1)

04 декабря 2020 11 слайд из 55

Brain Computer Interface

04 декабря 2020 12 слайд из 55

Brain Computer Interface

http://www.bbci.de/competition/iii/

278 сигналов × 64 электрода × 3000 замеров (3 секунды с частотой 1000Гц)

- сигналы только с одного электрода
- хороши признаки ~ скорость изменения сигнала

04 декабря 2020 13 слайд из 55

Особенность – нестабильность признаков

два похожих признака

$$\frac{1}{n-1} \sum_{i=1}^{n-1} (u_{i+1} - u_i)^2$$

тоже 2 облака с зазором

Особенность – нестабильность признаков

в признаковых пространствах тест «смещается»

но можно понять КАК

Итоговое решение:

- сглаживание сигнала
- усреднение скачков по окрестности

решение

$$\frac{1}{n-k} \sum_{i=1}^{n-k} (\max[u_{i:i+k}] - \min[u_{i:i+k}]) \ge c$$

$$u_{i:i+k} = \{u_i, \dots, u_{i+k}\}$$

Задача определения реакции пользователя на рассылку

https://www.crowdanalytix.com/

	клие	нт		услуі	га	статист		
пол	id	регион	цена	скидка	категория	сколько предложений	СКОЛЬКО	У
M	113	12	1100	0.2	17	предложении	успешных	0
						5	4	
Ж	078	13	1100	0.2	17	5	1	0
M	112	09	1200	0.0	16	7	0	0
M	111	07	1200	0.0	16	9	2	1

04 декабря 2020 16 слайд из 55

Изучаем признаки

идентифицируем клиента (регион, id) сортируем по числу предложений

пол	id	регион	цена	скидка	категория	сколько	сколько	У
						предложений	успешных	
	113	09				0	0	0
	113	09				1	0	0
	113	09				2	0	1
	113	09				3	1	1
	113	09				4	2	0
	113	09				5	2	?

Для одного клиента – все значения целевого признака (кроме последнего) определяются со 100% точностью!

04 декабря 2020 17 слайд из 55

Изучаем признаки

80% меток известно

55 участников

Замечена утечка – 3 на первой стадии Замечена утечка – 5 всего

04 декабря 2020 18 слайд из 55

Олимпиада ВикиМарта

http://olymp.wikimart.ru/ (сейчас недоступен)

Покинет ли человек сессию!

id	сколько страниц в сессии	Номер текущей страницы		У
76	3	1		0
76	3	2		0
76	3	3		1
77	4	1		0
77	4	2		0
77	4	3		0
77	4	4		1

качество около 0.99 AUROC

04 декабря 2020 19 слайд из 55

Поиск хороших признаков в виде:

$$f = B(A_k(...A_2(A_1(s))))$$

Операторы первого типа

Подсигнал

Сглаживание

Операторы второго типа

04 декабря 2020 20 слайд из 55

Задача

Дано: m, n, k, характеристики ЭВМ Целевой признак: Время перемножения матриц размеров m×k и k×n

В контроле: ~5000 Записей, ~950 признаков В тесте: =*=

Прагматика: прогнозирование времени вычислений

Простая логика: результат произведения – mn элементов, вычисление каждого – k умножений, общее число умножений = m×n×k

Функционал качества: МАРЕ

04 декабря 2020 21 слайд из 55

Загружаем данные – смотрим


```
test = pd.read csv('x test.csv') #
train = pd.read csv('x train.csv') #
y = pd.read_csv('y_train.csv') #
y2 = y.values[:,0]
# основной признак
train['mnk'] = train.m * train.n * train.k
f = train.mnk.values
plt.scatter(f,y2)
```

Основная гипотеза: время перемножения ~ mnk

04 декабря 2020 22 слайд из 55

Загружаем данные – смотрим

	m	k	n	cacheL1IsShared	cacheL1Size	cacheL2Is Shared	cacheL2Size	memType	memtRFC	memtCL	memtRCD	memtRP	memtRAS	os	cpuFull	cpuArch
(250	350	5000	0	32	0	256	DDR3- SDRAM PC3- 12800	1023	31	31	15	63	Windows 7 Professional Professional Media Cent	Intel(R) Core (TM) i7- 3820 CPU @ 3.60GHz	Sandy Bridge-E
	1 250	400	4500	0	32	0	256	DDR3- SDRAM PC3- 12800	1023	31	31	15	63	Windows 7 Professional Professional Media Cent		Sandy Bridge-E
;	2 250	400	5000	0	32	0	256	DDR3- SDRAM PC3- 12800	1023	31	31	15	63	Windows 7 Professional Professional Media Cent	Intel(R) Core (TM) i7- 3820 CPU @ 3.60GHz	Sandy Bridge-E

04 декабря 2020 23 слайд из 55

Логарифмируем основной и целевой признаки


```
plt.scatter(np.log(f),np.lo
g(y2))
plt.xlabel('log(m*n*k)')
plt.ylabel('log(y)')
```

Теперь чётко видны линии... что на них?!

04 декабря 2020 24 слайд из 55

Гипотеза: разные процессоры

Вроде, так оно и есть...

04 декабря 2020 25 слайд из 55

Идея бенчмарка

Для каждого процессора оценить средний уровень – его и предсказывать!

Такое тестирование нечестное (см. ниже).

Почему?

04 декабря 2020 26 слайд из 55

Честный бенчмарк

```
from sklearn.base import BaseEstimator, ClassifierMixin
# наш регрессор
class mybench(BaseEstimator, ClassifierMixin):
    def init (self):
        self.lst = []
        pass
    def fit(self, X, y):
        self.lst = []
        k = np.max(X.tmp.values) + 1
        for t in range(k):
            self.lst.append(np.median(np.log(y[X.tmp.values==t])-np.log(X.mnk.values[X.tmp.values==t])))
        return self
    def predict(self, X):
        a = np.zeros(X.shape[0])
        k = np.max(X.tmp.values) + 1
        for t in range(k):
            a[X.tmp.values==t] = np.exp(self.lst[t] + np.log(X.mnk.values[X.tmp.values==t]) )
        return a
    def coef(self):
        return (self.clf.coef )
```

04 декабря 2020 27 слайд из 55

Честный бенчмарк

```
# тут в tmp-признак заносим номера...
train['tmp'] = train.cpuFull # строковый признак
encoder = LabelEncoder()
encoder.fit(train.tmp)
train['tmp'] = encoder.transform(train.tmp) # нумеруем признак
from sklearn.cross validation import KFold
from sklearn.cross validation import cross val score
import time
# пишем свой скорер
def my accuracy scoring(est, X, y):
    return np.mean((np.abs(est.predict(X) - y)/y))
# схема тестирования
cv = KFold(n=len(y), n folds=20, shuffle=True, random state=1)
# тестирование
tm = time.time()
model = mybench()
cvresult = cross val score(model, train, y2, scoring=my accuracy scoring, cv=cv)
print (cvresult, np.mean(cvresult))
print (time.time() - tm)
```

Продолжение идеи...

разные winPerfIndex (индекс производительности) на одинаковом процессоре

04 декабря 2020 29 слайд из 55

Ещё продолжение идеи...

Вроде, больше групп точек, но эти две группы не отличаются по другим признакам...

04 декабря 2020 30 слайд из 55

Тестирование

Усредняем по	mean	median	mymean минимизируем
			напрямую
по процессору	0.089	0.076	0.073
по процессору +	0.075	0.063	0.061
winPerfIndex			
по процессору + os	0.068	0.061	0.059
по процессору + os + RAM			0.059
			0,055 LB (+trunc)

самописная регрессия = 0.055, 0.0525 LB (+trunc)

04 декабря 2020 31 слайд из 55

Разберёмся с функционалом

Некоторое новое среднее (больше похоже на медиану) [100, 100, 100, 100, 104, 105, 106, 106, 107, 107, 107]

04 декабря 2020 32 слайд из 55

Как действовать на практике

Итак, если надо

$$f(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{|a - y_i|}{y_i} \rightarrow \min_{a}$$

Можно просто посмотреть значения $f(y_1),...,f(y_n)$ и выбрать наименьшее

Как действовать на практике

Если приближаем не константой, а линейной функцией (см. дальше картинки)

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} \frac{|ax_i + b - y_i|}{y_i} \to \min_{a,b}$$

Можно устроить интеллектуальный перебор (a,b) по сетке от константного решения $(0,b_{\mathrm{opt}})$ до решения обычной регрессией $(a_{\mathrm{ridge}},b_{\mathrm{ridge}})$

Что интересно

n	900	1000	1500	2000	2500	3000	3500	4000	4500	5000
m										
300	1									
500	1									
700	3									
900	2									
1000		2	6	16	29	62	70	125	155	222
1500			7	23	38	81	108	154	217	273
2000				20	35	84	113	194	211	294
2500					35	76	104	163	215	270
3000						44	83	120	176	243
3500							50	90	137	178
4000								43	86	149
4500									53	91
5000										41

как часто встречаются комбинации размеров время максимально, когда матрицы квадратные!!!

04 декабря 2020 35 слайд из 55

Что интересно

выделенные объекты ничем не отличаются (кроме размеров перемножаемых матриц)

насколько разные ОС: win8 и win 8.1

04 декабря 2020 36 слайд из 55

Что означает наш регрессионный метод

$$\log(y) \approx w_1 \log(mnk) + w_0$$

Ответ алгоритма:

$$a = e^{w_0} \cdot (mnk)^{w_1}$$

(деформированное произведение размеров)

Если решаем не регрессией, а константой, то какое решение?

Разработка рекомендательной системы

Международное соревнование «VideoLectures.Net Recommender System Challenge (ECML/PKDD Discovery Challenge 2011)»

http://tunedit.org/challenge/VLNetChallenge?m=summary

Опишем лучший алгоритм из 62

Creativity: The Mind, Machines, and Mathematics: Public
Debate

suther: Ray Kucawell, Kurnwell Technologies, Inc.
suther: Dould Gelernier, Vale University
suther: Rolling of Gelernier, Vale University
suther: Ray Kucawell, Kurnwell Technologies, Inc.
suther: Double of Gelernier, Vale University
suther: Ray Kucawell, Kurnwell Technologies, Inc.
suther: Charles of Gelernier, Vale University
suther: Ray Kucawell, Kurnwell Technologies, Inc.
suther: Charles of Gelernier, Vale University
suther: Ray Kucawell, Kurnwell Technologies, Inc.
suther: Charles of Gelernier, Vale University
suther: Ray Kucawell, Kurnwell Technologies, Inc.
suther: Charles of Gelernier, Vale University
suther: Charles

Дано: статистика популярности (+ описания лекций)

Надо: дать рекомендацию пользователю

предложить лекции для просмотра

04 декабря 2020 38 слайд из 55

Обычно: матрица «пользователи – ресурсы»

Методы коллаборативной фильтрации ~ похожие пользователи – похожие ресурсы

Новое направление в анализе данных – правильное обезличивание и усреднение

Pooled sequences

Формирование пост-троечных последовательностей

$$102 o 33 o 2 o 34 o 35 o 2 o 102 o 17 o 36$$
, удаляем из неё повторы: $102 o 33 o 2 o 34 o 35 o 17 o 36$ после тройки $\{2,33,35\}$ смотрел $\{17,36\}$

$$7 \times \{2,33,35\}$$
: 2×9, 5×13, 3×17, 1×30, 1×36

$$102 \rightarrow 33 \rightarrow 2 \rightarrow 34 \rightarrow 35 \rightarrow 17 \rightarrow 36$$

$$35 \rightarrow 33 \rightarrow 100 \rightarrow 2 \rightarrow 9 \rightarrow 13 \rightarrow 17$$

$$2 \rightarrow 7 \rightarrow 103$$

$$2 \rightarrow 35 \rightarrow 33 \rightarrow 13 \rightarrow 9 \rightarrow 17$$

$$2 \rightarrow 100 \rightarrow 35 \rightarrow 33 \rightarrow 13 \rightarrow 30$$

$$100 \rightarrow 2 \rightarrow 35 \rightarrow 7 \rightarrow 33$$

$$35 \rightarrow 10 \rightarrow 33 \rightarrow 13$$

$$33 \rightarrow 107 \rightarrow 2 \rightarrow 35 \rightarrow 13$$

$$98 \rightarrow 2 \rightarrow 99 \rightarrow 35 \rightarrow 33 \rightarrow 13$$

Дано: некоторые пост-троечные последовательности (109044 шт.)

Найти: другие пост-троечные последователности (точнее: 10 первых членов в нужном порядке)

```
7x {2, 33, 35}: 5×13, 3×17, 2×9, 1×30, 1×36
5x {2, 20, 21}: 3×1, 2×13, 2×30, 2×33, 2×40
8x {33, 20, 35}: 4×9, 4×13, 4×30, 2×7, 2×8
2x {1, 3, 35}: 2×7, 1×8, 1×13
...
?x {3, 20, 8} ?, ?, ?, ?, ...
рекомендации!
```

04 декабря 2020 41 слайд из 55

Качество

$$rac{1}{|Z|} \sum_{z \in Z} rac{|\{r_1, \dots, r_{\min(S,R,z)}\} \cap \{s_1, \dots, s_{\min(S,R,z)}\}|}{\min(S,R,z)}$$
 r_1, \dots, r_R – рекомендации s_1, \dots, s_S – правильные ответы

 $Z = \{5,10\}$

Обозначения

Пост-троечная последовательность – вектор

$$v(\{a,b,c\}) = (v_1(\{a,b,c\}),...,v_L(\{a,b,c\})),$$

L – число лекций, $v_{_i}(\{a,b,c\})$ – сколько раз была просмотрена j-я лекция после тройки

Как решать?

Объединение и пересечение множеств

(отдельная лекция по Fuzzy Sets)

мультимножества и нечёткие множества

$$\{1,2,2,3\} \cup \{2,3,4,4\} = \{1,2,2,2,3,3,4,4\}$$

(1,2,1,0, ...) сложение характеристических

векторов

= (1,3,3,2,...)

или

$$\{1,2,2,3\} \cup \{2,3,4,4\} = \{1,2,2,3,3,4,4\}$$

(1,2,1,0, ...)

если у элементов есть цвета, то

max (0,1,2,2, ...)

можем гарантировать, что в

= (1,2,2,2,...)

объединение войдёт максимум элементов...

«Объединение информации»

04 декабря 2020 45 слайд из 55

«Объединение информации»

Объединяем с помощью суммирования:

$$s(\{a,b\}) = \sum_{d} v(\{a,b,d\}),$$

$$s(\{a,c\}) = \sum_{d} v(\{a,c,d\}),$$

$$s(\{b,c\}) = \sum_{d} v(\{b,c,d\}).$$

Получили информацию по парам

«Пересечение информации»

$$s(\{a,b\}) \cdot s(\{b,c\}) \cdot s(\{a,c\})$$

$$(s(\lbrace a,b\rbrace)+\varepsilon)\cdot(s(\lbrace b,c\rbrace)+\varepsilon)\cdot(s(\lbrace a,c\rbrace)+\varepsilon)$$

но предварительно использовались нормировки...

Пример нормировки

Аналог IDF

$$v'(\{a,b,c\}) = \left(\frac{v_1(\{a,b,c\})}{\log(|\{\tilde{t} \in T \mid v_1(\tilde{t}) > 0\}| + 2)} \cdots \frac{v_L(\{a,b,c\})}{\log(|\{\tilde{t} \in T \mid v_L(\tilde{t}) > 0\}| + 2)}\right)$$

 $|\{ ilde{t}\in T\,|\,v_j(ilde{t}\,)>0\}\,|$ – число троек из обучения, .

в пост-троечные последовательности которых входит \dot{J} -я лекция.

Как формировались итоговые оценки

$$\gamma = \log(s(\{a,b\}) \cdot s(\{b,c\}) \cdot s(\{a,c\}))$$

$$\gamma = \log(s(\{a,b\})) + \log(s(\{b,c\})) + \log(s(\{a,c\}))$$

$$(s(\{a,b\}) + \varepsilon) \cdot (s(\{b,c\}) + \varepsilon) \cdot (s(\{a,c\}) + \varepsilon)$$
 не происходит зануления большинства элементов вектора (и потери информации)
$$\gamma = \frac{\log(s(\{a,b\}) + 0.02)}{\operatorname{std}(\omega(s(\{a,b\}))) + 0.5} + \frac{\log(s(\{b,c\}) + 0.02)}{\operatorname{std}(\omega(s(\{b,c\}))) + 0.5} + \frac{\log(s(\{a,c\}) + 0.02)}{\operatorname{std}(\omega(s(\{a,c\}))) + 0.5}$$

 ω ~ множество ненулевых элементов вектора

Как формировались итоговые оценки

γ (вид выражения)	качество
$(s(\{a,b\}) + \varepsilon) \cdot (s(\{b,c\}) + \varepsilon) \cdot (s(\{a,c\}) + \varepsilon), \varepsilon = 0$	57.27%
$(s(\{a,b\}) + \varepsilon) \cdot (s(\{b,c\}) + \varepsilon) \cdot (s(\{a,c\}) + \varepsilon), \varepsilon = 0.01$	62.11%
$(s(\{a,b\})+\varepsilon)\cdot(s(\{b,c\})+\varepsilon)\cdot(s(\{a,c\})+\varepsilon)$, $\varepsilon=0.1$	61.60%
$(s(\{a,b\})+\varepsilon)\cdot(s(\{b,c\})+\varepsilon)\cdot(s(\{a,c\})+\varepsilon)$, $\varepsilon=1$	58.84%
$(s(\lbrace a,b\rbrace) + s(\lbrace b,c\rbrace) + \varepsilon) \cdot (s(\lbrace b,c\rbrace) + s(\lbrace a,c\rbrace) + \varepsilon) \cdot$	58.63%
$ \cdot (s(\{a,c\}) + s(\{a,b\}) + \varepsilon), \ \varepsilon = 0 $	
$(s(\{a,b\}) + s(\{b,c\}) + \varepsilon) \cdot (s(\{b,c\}) + s(\{a,c\}) + \varepsilon)$	59.87%
$\cdot (s(\{a,c\}) + s(\{a,b\}) + \varepsilon), \ \varepsilon = 0.001$	

РП второго места:

$$\gamma = s(\{a,b\})\log(s(\{a,b\})) + s(\{b,c\})\log(s(\{b,c\})) + s(\{a,c\})\log(s(\{a,c\}))$$

04 декабря 2020 50 слайд из 55

Идея алгоритма

А так... всё просто

nk	Team	Preliminary Result	Final Result
1	+ D'yakonov Alexander	0.62102	0.62415
2	meridion	0.60791	0.61172
3	UniQ	0.58727	0.59063
4	+ Haibin Liu	0.47384	0.47507
5	+ barney	0.47060	0.47243
6	vyatka	0.45149	0.45553
7	+ Saul Delabrida	0.44343	0.44571
8	+ Inner Peace	0.28096	0.28282
9	+ DMIR	0.27137	0.27439
10	dddnnn	0.25921	0.26185
	1 2 3 4 5 6 7 8 9	2 meridion 3 UniQ 4 + Haibin Liu 5 + barney 6 vyatka 7 + Saul Delabrida	nk Team Result 1 + D'yakonov Alexander 0.62102 2 meridion 0.60791 3 UniQ 0.58727 4 + Haibin Liu 0.47384 5 + barney 0.47060 6 vyatka 0.45149 7 + Saul Delabrida 0.44343 8 + Inner Peace 0.28096 9 + DMIR 0.27137

04 декабря 2020 51 слайд из 55

Если известно хорошее статистическое описание объекта, то признаковое описание бесполезно

Автор, область, кратность (в п-т посл-ти)	Название	
Anastasia Krithara	Active, Semi-Supervised Learning for Textual Information Access	
Text Mining		
Isabelle Guyon	Introduction to Machine Learning	
Machine Learning		
Mikaela Keller	Basics of probability and statistics	
Statistics		
Ulrike von Luxburg,	Lectures on Clustering	
Clustering, 5×		
William Cohen,	Text Classification	
Text Mining, 4×		
John Shawe-Taylor,	Statistical Learning Theory	
Statistical Learning, 3×		
Cynthia Rudin,	The Dynamics of AdaBoost	
Boosting, 3×		

04 декабря 2020 52 слайд из 55

Итог

Как и раньше, визуализация помогает

Сначала делайте простой метод!

Можно решать задачи с агрегированной информацией (например, с пост-троечными последовательносьями)

04 декабря 2020 53 слайд из 55

Литература

Лекция «Шаманство в анализе данных» http://alexanderdyakonov.narod.ru/lpotdyakonov.pdf

Дьяконов, А. Г. Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (практикум на эвм кафедры математических методов прогнозирования). — МАКСПресс, 2010. — 278 с.

http://www.machinelearning.ru/wiki/images/7/7e/Dj2010up.pdf

Дьяконов А.Г. Алгоритмы для рекомендательной системы: технология LENKOR // Бизнесинформатика, 2012, 1 (19) https://bijournal.hse.ru/2012--1(19)/53535879.html

04 декабря 2020 54 слайд из 55