CSF 432: Intro to Network and System Security

Week 02 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

Unicasts, Broadcasts, and Multicasts Unicast Broadcast Multicast

Unicasts, Broadcasts, and Multicasts Unicast Multicast ☑ One station sending information to ☑ Delivery of information to interested another station systems ☑ One to many systems exchanges ☑ Does not scale optimally for ☑ Difficult to scale across large streaming media networks

Protocol Data Units

Protocol Data Units

PDU (Protocol Data Unit)

- MA unit of transmission
 - A different group of data at different OSI layers
- ☑ Ethernet operates on a frame of data
 - ☑ It has no idea what's inside
- ☑IP operates on a packet of data
 - ☑ Inside is TCP or UDP, but IP doesn't know that
- TCP or UDP PDU TCP segment, UDP datagram

Protocol Data Units

Maximum Transmission Unit (MTU)

- ☑ Maximum IP packet to transmit but not fragment
- - Losing a fragment loses an entire packet
 - Requires overhead along the path
- ☑ Difficult to know the MTU all the way through the path
 - Automated methods are often inaccurate, especially when ICMP is filtered

Protocol Data Units

Troubleshooting MTU

- MTU sizes are usually configured once
 - Based on the network infrastructure and don't change often
- ☑A significant concern for tunneled traffic
 - The tunnel may be smaller than your local Ethernet segment
- ✓ What if you send packets with Don't Fragment (DF) set?

- Routers will respond back and tell you to fragment
- Hope you get the ICMP message!
- - Ping with DF and force a maximum size of 1472 bytes
 - 1500 bytes 8 byte ICMP header - 20 bytes IP address = 1472 bytes

Windows terminal command: ping -f -l 1472 8.8.8.8

Network Segmentation Broadcast Domain Broadcast Domain Domain

Domain

Broadcast Domain

Spanning Tree Protocol

Spanning Tree Protocol

Loop protection

- Connect two switches to each other
 - They'll send traffic back and forth forever
 - There's no "counting" mechanism at the MAC layer
- - And somewhat difficult to troubleshoot
 - ☑ Relatively easy to resolve
- ☑ IEEE standard 802.1D to prevent loops in bridged (switched) networks (1990)

Switching Operation

- Forwarding decisions made by MAC address
 - Keeps a big table of MAC address that have been seen
 - All forwarding decisions are filtered through this list
- ☑ If the destination MAC is unknown, the frame is flooded
 - Sent to every switch port in the local subnet/VLAN
 - Hopefully the destination station will respond
- - Directed traffic resumes when the MAC is seen

Protocol Data Units

STP port states

- ☑ Blocking Not forwarding to prevent a loop
- ☑Listening Not forwarding and cleaning the MAC table
- ✓ Learning Not forwarding and adding to the MAC table
- Forwarding Data passes through and is fully operational
- ✓ Disabled Administrator has turned off the port

RSTP (802.1w)

- ☑ Rapid Spanning Tree Protocol (802.1w)

 - This is the latest standard
- Faster convergence
 - From 30 to 50 seconds to 6 seconds
- ☑ Backwards-compatible with 802.1D
 STP
 - You can mix both in your network
- ✓ Very similar process
 - An update, not a wholesale change

14

Switch Interface Properties

Switch Interface Properties

Basic Interface Configuration

- - ☑ Speed: 10 / 100 /1,000
 - ☑ Duplex: Half/Full
 - Automatic and manual
 - Needs to match on both sides
- IP address management
 - ☑ Laver 3 interfaces

 - IP address, subnet mask/CIDR block, default gateway, DNS (optional)

VLANs

- **VLAN** assignment
 - Each device port should be assigned a VLAN
- ☑ Trunking
 - Connecting switches together -Multiple VLANs in a single link
- - A non-tagged frame is on the default VLAN (Also called the native VLAN)
- ☑ Trunk ports will tag the outgoing frames
 - And remove the tag on incoming frames

15

Switch Interface Properties

Powering devices

- ☑ Power provided on an Ethernet cable
 - One wire for both network and electricity
 - Phones, cameras, wireless access points
- Power provided at the switch
 - ☑ Built-in power Endspans
 - ☑ In-line power injector Midspans
- ☑ Power modes
 - Mode A Power on the data pairs
 - Mode B Power on the spare pairs

PoE and POE+

- ☑ PoE: IEEE 802.3af-2003

 - ☑ Now part of 802.3-2012
 - ₫ 15.4 watts DC power
 - Maximum current of 350 mA
- ☑ POE+: IEEE 802.3at-2009

 - ☑ Now also part of 802.3-2012
 - ₫ 25.5 watts DC power
 - Maximum current of 600 mA

Switch Interface Properties

DMZ

- ☑ Demilitarized zone
 - An additional layer of security between the Internet and you

Port mirroring

- ☑ Examine a copy of the traffic
 - Port mirror (SPAN), network tap
- ✓ No way to block (prevent) traffic

7

Static and Dynamic Routing

Routing

- ☑ Send IP packets across the network
 - Forwarding decisions are based on destination IP address
- ☑ Each router only knows the next step
 - The packet asks for directions every hop along the way
 - ☑ The list of directions is held in a routing table
- ☑Different topologies use different data link protocols
- ☑ Each router rewrites the frame to add its own data-link header
 - ☑ The IP packet remains intact

Static and Dynamic Routing

Static and Dynamic Routing

Static routing

Madministratively define the routes - You're in control

☑ Advantages

- Easy to configure and manage on smaller networks
- ☑ No overhead from routing protocols (CPU, memory, bandwidth)
- More secure no routing protocols to analyze

☑ Disadvantages

- Difficult to administer on larger networks
- No automatic method to prevent routing loops
- If there's a network change, you have to manually update the routes
- No automatic rerouting if an outage occurs

Static and Dynamic Routing

Dynamic routing

- ☑ Routers send routes to other routers
 - Routing tables are updated in (almost) real-time
- - ☑ No manual route calculations or management
 - ☑ New routes are populated automatically
- ☑ Disadvantages

 - Requires some initial configuration to work properly protocols to analyze

21

Static and Dynamic Routing

Default route

- ☑ A route when no other route matches
 - ☑ The "gateway of last resort"
- ☑ A remote site may have only one route
- ☑ Can dramatically simplify the routing process
 - Works in conjunction with all other routing methods

IGP and EGP

22

IGP and EGP

AS (Autonomous System)

- **M**Autonomous
 - Existing as an independent entity
- Group of IP routes under common control
- ☑RFC 1930, Section 3: Definitions
 - "An AS is a connected group of one or more IP prefixes run by one or more network operators which has a SINGLE and CLEARLY DEFINED routing policy."
- ✓ Important point of reference for discussing Interior Gateway Protocols and Exterior Gateway Protocols

IGP and EGP

IGP (Interior Gateway Protocol)

- ☑ Used within a single autonomous system (AS)

 - ☑ That's why there's Exterior Gateway Protocols (EGPs)
- ☑ IPv4 dynamic routing
 - OSPFv2 (Open Shortest Path First)
 - ☑ RIPv2 (Routing Information Protocol version 2)
 - ☑ EIGRP (Enhanced Interior Gateway Routing Protocol)
- ☑ IPv6 dynamic routing
 - ☑ OSPFv3

 - ☑ RIPng (RIP next generation)

IGP and EGP

EGP (Exterior Gateway Protocol)

- ☑ Used to route between autonomous systems
- ☑ Leverages the IGP at the AS to handle local routing
- ☑ BGP (Border Gateway Protocol)
- Many organizations use BGP as their EGP

Dynamic Routing Protocols

Dynamic Routing Protocols

Dynamic routing protocols

- ✓ Listen for subnet information from other routers
 - Sent from router to router
- ☑ Provide subnet information to other routers
 - ☑ Tell other routers what you know
- ☑ Determine the best path based on the gathered information
 - Every routing protocol has its own way of doing this
- - ☑ Different convergence process for every dynamic routing protocol

Dynamic Routing Protocols

Which routing protocol to use?

- - ☑ Is it based on the state of the link?
 - ☑ Is it based on how far away it is?
- - Some formula is applied to the criteria to create a metric
 - Rank the routes from best to worst
- ☑ Recover after a change to the network
 - Convergence time can vary widely between routing protocols
- - OSPF and RIP are standards, some functions of EIGRP are Cisco proprietary

20

Dynamic Routing Protocols

Distance-vector routing protocols

- ☑ Information passed between routers contains routing tables

 - The deciding "vector" is the "distance"
- ☑ Usually automatic
 - ✓ Very little configuration
- ☑ Good for smaller networks
 - Doesn't scale well to very large networks
- ☑ RIP, RIPv2, EIGRP

Dynamic Routing Protocols

Link-state routing protocols

- ✓ Information passed between routers is related to the current connectivity
 - ✓ If it's up, you can get there
- ☑ Consider the speed of the link
- ✓ Very scalable
 - Used most often in large networks

30

Dynamic Routing Protocols

Hybrid routing protocols

- ☑ A little link-state, a little distance-vector
 - ✓ Not many examples of a hybrid routing protocol
- ☑ BGP (Border Gateway Protocol)
 - Determines route based on paths, network policies, or configured rulesets

CSF 432: Intro to Network and System Security

Week 02 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes