COMP 160 Overview Part I: Chart of Problems & Algorithms

For Homework 13 credit, fill in all $\underline{\text{underlined}}$ cells and answer the "Other Questions". Submissions on Gradescope may be either typewritten or handwritten.

Problem	T4	0	A 1	D	Oth Oti
Problem	Input	Output	Algorithm	Runtime	Other Questions
Sorting	Unsorted Array	Sorted Array	Insertion Sort	$O(n^2)$	-
			Bubble Sort	$O(n^2)$	-
			Mergesort	$O(n \log n)$	$T(n) = 2T(\frac{n}{2}) + \Theta(n)$
			Quicksort	$O(n \log n)$	Worst = $O(n^2)$, Expected = $O(n \log n)$
			Heapsort	$O(n \log n)$	Can find k-largest/smallest elements easi
Find Minimum	Unsorted Array	Minimum Value	-	O(n)	-
	Min-heap			<u>O(1)</u>	-
	Max-heap			O(n)	-
	BST			O(n)	-
	RB Tree			$O(\log n)$	-
		Element	Select	O(n)	$Worst = O(n^2)$
	Unsorted Array		Randomized Selection	O(n)	Exepcted = $O(n)$, Worst = $O(n^2)$
	Min-heap		-	$O(k \log n)$	
	BST			O(n)	n=number of nodes
Find kth Smallest	RB Tree			$O(\log n)$	-
	RB Tree Augmentd with rank of each node			O(h)	h=height of tree
	Unsorted Array		keep track of all elements smaller than x	O(n)	-
	Min-heap			O(r)	r= rank
Find rank	BST	Integer	-	O(n)	-
or element		between $\frac{1 \text{ and } n}{1}$ 1			

Problem	Input	Output	Algorithm	Runtime	Other Questions
	RB Tree			$O(\log n)$	-
	RB Tree Augmented with ranks			$O(\log r)$	r=rank
Sorting Cont'd	Unsorted array of integers in range $\{1 \dots k\}$	Sorted Array	Counting Sort	O(n+k)	-
	Unsorted array of integers of length l using d digits		Radix Sort	O(l(n+d))	-
Enumerate how many numbers are in a given interval	Interval and list of numbers	Integer	Range-Counting	O(n)	-
MST	A tree	Tree	<u>Kruskal</u>	$O(E \log V)$	-
	A tree		Prim	$O(E \log V)$	-
SSSP	Unweighted graph + source s	Tree	BFS	O(V+E)	
	Weighted graph + source s	Tree and True/False	Bellman Ford	O(VE)	
	Weighted graph + source s	Tree	Dijkstra's	$O(E \log V)$	-
Finding cut-vertices	A tree	List of verticies	CV from handout	O(m)	-

Data Structures Comparsion - Fill out entire table with runtimes

	Insert	Delete (pointer known)	Search	Preprocessing (Build structure from unsorted array)
Unsorted array	O(1)	O(n)	O(n)	O(1)
Sorted array	O(n)	O(n)	$O(\log n)$	$O(n \log n)$
BST	O(n)	O(n)	O(n)	O(n)
RB Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(n \log n)$
Hash table w/ chaining, array size m	$O(1+\frac{n}{m})$	$O(1+\frac{n}{m})$	$O(1+\frac{n}{m})$	O(m)
Hash table w/ uniform open addressing, array size m	$O(\frac{1}{1-\frac{n}{m}})$	$O(\frac{1}{1-\frac{n}{m}})$	$O(\frac{1}{1-\frac{n}{m}})$	O(m)