Содержание

1	Комплексная дифференцируемость. Условия Коши-Римана	3
2	Связность. Теорема о голоморфной в области функции, производная которой равна нулю.	4
3	Теорема об обратной функции	5
4	Степенные ряды. Формула Коши-Адамара	6
5	Степенные ряды. Свойства экспоненты и тригонометрических.	8
6	Первообразная и полный дифференциал в области. Условия	9
7	Лемма Гурса и теорема Коши для выпуклой области	10
8	Интеграл Коши и его свойства	12
9	Интегральная формула Коши для круга	13
10	Теорема Морера. Теорема о среднем.	14
11	Целые функции и теорема Луивилля	14
12	Ряд Тейлора и теорема единственности	15
13	Приращение аргумента вдоль кривой. Индекс точки	16
14	Общая форма теоремы Коши и интегральной формулы Коши	18
15	Разложение голоморфной функции в ряд Лорана	21
16	Изолированные особые точки	22
17	Вычеты и формулы для их вычисления. Теорема Коши о вычетах.	24
18	Лемма Жордана	2 5
19	Принцип аргумента. Теорема Руше. Основная теорема алгебры.	2 5
20	Теорема о локальной структуре отображения. Принцип сохранения области	27
21	Принцип максимума модуля и лемма Шварца	28
22	Дробно-линейные отображения	29
23	Круговое свойство и принцип симметрии	31
24	Общий вид конформных отображений	32

2 5	Теорема Римана об отображении. Доказательство единственности.	33
26	Функция Жуковского	34
27	Конформные отображения, осуществляемые степенной и экспоненциальной функциями	34
2 8	Локально равномерная сходимость и теоремы Вейерштрасса	36

1 Комплексная дифференцируемость. Условия Коши-Римана

Определение 1.1. Окрестностью назовём

$$B_r(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < r \}$$

Проколотой окрестностью назовём

$$\dot{B}_r(z_0) = \{ z \in \mathbb{C} \mid 0 < |z - z_0| < r \}$$

Замкнутой окрестностью назовём

$$\overline{B}_r(z) = \{ z_0 \in \mathbb{C} \mid |z - z_0| \leqslant r \}$$

Замечание. Введём обозначения:

$$\Delta x := x - x_0; \quad \Delta y := y - y_0; \quad \Delta z := z - z_0 = \Delta x + i \Delta y$$

$$\Delta u := u(x, y) - u(x_0, y_0); \quad \Delta v := v(x, y) - v(x_0, y_0); \quad \Delta f := f(x, y) - f(x_0, y_0) = \Delta u + i \Delta v$$

$$\text{где } f \equiv u + iv; \ u, v : \mathbb{R}^2 \to \mathbb{R}.$$

Определение 1.2. Говорят, что $f: B_r(z_0) \to \mathbb{C}$ дифференцируема в точке z_0 , если

$$\exists A \in \mathbb{C}: f(z) = f(z_0) + A(z - z_0) + o(z - z_0), |z - z_0| \to 0$$

Лемма 1.1. $f: B_r(z_0) \to \mathbb{C}$ дифференцируема в $z_0 \Leftrightarrow \exists f'(z_0), A = f'(z_0)$.

Теорема 1.1. Условие Коши-Римана.

 $f:\ B_r(z_0) o\mathbb{C}\ \partial u$ фференцируема в z_0 тогда и только тогда, когда

- u(x,y), v(x,y) дифференцируемы в (x_0,y_0)
- Выполняется условие Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

При этом

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial y}(x_0, y_0)$$

 $Доказательство. (\Rightarrow)$

Пусть

$$\exists f'(z_0) = a + ib = A \in \mathbb{C}$$

Значит, по определению дифференцируемости

$$\Delta f = A\Delta z + \alpha(\Delta z); \quad \alpha(\Delta z) := \alpha_1(\Delta x, \Delta y) + i\alpha_2(\Delta x, \Delta y)$$

Где
$$\alpha(\Delta z) = o(\Delta z), |\Delta z| \to 0$$

Тогда, раскрыв это выражение по каждой координате, получим

$$\begin{cases} \Delta u = a\Delta x - b\Delta y + \alpha_1(\Delta x, \Delta y) \\ \Delta v = b\Delta x + a\Delta y + \alpha_2(\Delta x, \Delta y) \end{cases}$$

Из того, что $|\alpha_1|\leqslant |\alpha(\Delta z)|$ и $|\alpha_2|\leqslant |\alpha(\Delta z)|\Rightarrow \alpha_1,\alpha_2=o(\Delta z), |\Delta z|\to 0.$ Значит, u дифференцируема, причём

$$\frac{\partial u}{\partial x} = a; \quad \frac{\partial u}{\partial y} = -b$$

Аналогично для v, причём

$$\frac{\partial v}{\partial x} = b; \quad \frac{\partial v}{\partial y} = a$$

Видим, что УКР выполняется.

 (\Leftarrow)

Пусть u, v дифференцируемы в (x_0, y_0) и выполняется УКР. Тогда

$$\Delta f = \Delta u + i\Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \alpha_1(\Delta z) + i\left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \alpha_2(\Delta z)\right) = \Delta u + i\Delta v = \frac{\partial u}{\partial x} \Delta x - \frac{\partial v}{\partial x} \Delta y + \alpha_1(\Delta z) + i\left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial u}{\partial x} \Delta y + \alpha_2(\Delta z)\right) = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \cdot (\Delta x + i\Delta y) + \alpha_1(\Delta z) + i\alpha_2(\Delta z)$$

Значит,

$$\exists f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

2 Связность. Теорема о голоморфной в области функции, производная которой равна нулю.

Определение 2.1. Множество $E \subseteq \overline{\mathbb{C}}$ называется **связным**, если не существует открытых G_1, G_2 :

- 1. $G_1 \cup G_2 \supseteq E$
- 2. $E \cap G_1 \cap G_2 = \emptyset$
- 3. $E \cap G_1 \neq \emptyset$ и $E \cap G_2 \neq \emptyset$

Определение 2.2. Непустое открытое связное множество в $\overline{\mathbb{C}}$ называется **областью**.

Определение 2.3. Область D называется **односвязной**, если $\overline{\mathbb{C}} \setminus D$ – связно.

Определение 2.4. Функция $u: G \to \mathbb{R}, G \subseteq \mathbb{R}^2$ – область, причём

$$u \in C^2(G), \Delta u = 0$$

где $\Delta=
abla^2=rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2},$ называется **гармонической**.

Определение 2.5. Функция $f: G \to \mathbb{C}$, где $G \subseteq \mathbb{C}$ – область, называется регулярной (голоморфной), если

$$\forall z \in G \,\exists f'(z)$$

Определение 2.6. Функция $f:G\to\mathbb{C}, G\subseteq\mathbb{C}$ называется регулярной в точке $z_0\in G,$ если

$$\exists r > 0, B_r(z_0) \subseteq G: f$$
 регулярна на $B_r(z_0)$

Теорема 2.1. Пусть f голоморфна в области D u

$$\forall z \in D: f'(z) \equiv 0$$

 $Tor\partial a \ f \equiv const$

Доказательство. Любые $(x_0, y_0) \in D$ лежат вместе с каким-то отрезком $[(x_0, y_0), (x_0, y_0 + \Delta y)]$. Тогда

$$f' = u_x + v_x i = v_y - u_y i \Rightarrow u_x \equiv v_x \equiv 0; \ u_y \equiv v_y \equiv 0$$

Применим теорему Лагранжа к u(x, y):

$$|u(x_0, y_0 + \Delta u) - u(x_0, y_0)| = \Delta u |u'(x_0, \xi)| = 0 \Rightarrow u(x_0, y_0 + \Delta u) = u(x_0, y_0)$$

Аналогично к $v(x,y) \Rightarrow f \equiv const$ на всех вертикальных отрезках.

Аналогично на горизонтальных. Тогда $f \equiv const$ на D в силу связности. \square

3 Теорема об обратной функции

Теорема 3.1. Пусть $f: G \to H \subseteq \mathbb{C}, g: H \to \mathbb{C}$ регулярны. Тогда $\zeta(z) = g(f(z))$ также регулярна, причём

$$\forall z \in G: \ \zeta'(z) = g'(f(z))f'(z)$$

Доказательство. Зафиксируем $z_0 \in G, w_0 = f(z_0) \in G$.

Из дифференцируемости

$$\Delta f = f'(z_0)\Delta z + o(\Delta z), |\Delta z| \to 0; \quad \Delta g = g'(w_0)\Delta w + o(\Delta w), |\Delta w| \to 0$$

Пусть $\Delta w = \Delta f$, тогда

$$\frac{\Delta\zeta}{\Delta z} = g'(w_0) \frac{\Delta f}{\Delta z} + \frac{o(\Delta f)}{\Delta f} \cdot \frac{\Delta f}{\Delta z} \stackrel{\Delta z \to 0}{\to} g'(w_0) f'(z_0) + 0$$

Теорема 3.2. Об обратной фнуции.

Пусть $f: G \to \mathbb{C}$ регулярная и непрерывно дифференцируема на G. Пусть $z_0 \in G, w_0 = f(z_0), f'(z_0) \neq 0$. Тогда $\exists B_{\delta}(z_0), B_{\varepsilon}(w_0), m$ акие, что

- 1. $\forall z \in B_{\delta}(z_0) : f'(z) \neq 0$
- 2. $\forall \hat{w} \in B_{\varepsilon}(w_0)$ уравнение $\hat{w} = f(z)$ имеет в $B_{\delta}(z_0)$ единственное решение \hat{z} , то есть на $B_{\varepsilon}(w_0)$ определена обратная функция $g: B_{\varepsilon}(w_0) \to B_{\delta}(z_0)$, то есть

$$\forall w \in B_{\varepsilon}(w_0): f(q(w)) = w$$

3. g регулярна на $B_{\varepsilon}(w_0)$, причём

$$\forall w \in B_{\varepsilon}(w_0) : g'(w) = \frac{1}{f'(g(w))}$$

Доказательство. Первые два пункта выполняется благодаря обычной теореме об обратной функции из матана.

Покажем, что мы имеем право применять ту самую теорему, для этого нам нужен ненулевой якобиан. Пусть f(z) = u(x,y) + iv(x,y). Имеем отображение $\mathbb{R}^2 \to \mathbb{R}^2$. В силу непрерывной дифференцируемости этих двух функций запишем якобиан и преобразуем согласно УКР:

$$J(x,y) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} u_x & -v_x \\ v_x & u_x \end{vmatrix} = (u_x)^2 + (v_x)^2 = |f'(z)|^2 \Rightarrow J(x_0, y_0) = |f'(z_0)|^2 \neq 0$$

Третий пункт выполняется благодаря предыдущей теореме:

$$g(f(z)) = z \Rightarrow g'(f(z))f'(z) = 1 \Rightarrow g'(f(z)) = \frac{1}{f'(z)} = g'(w) = \frac{1}{f'(g(w))}$$

4 Степенные ряды. Формула Коши-Адамара...

Определение 4.1. Ряд $\sum_{k=1}^{\infty} g_k(z)$ сходится, если сходится последовательность $\{\sum_{k=1}^n g_k(z)\}_{n=1}^{\infty}$. Сходимость бывает условной и абсолютной (когда сходится ряд из модулей).

Определение 4.2. Степенным рядом называется ряд вида

$$\sum_{n=0}^{\infty} a_n z^n, a_n \in \mathbb{C}$$

Теорема 4.1. Признак Вейерштрасса.

 $\Pi y cm b$

$$\forall n \, \forall z : |g_n(z)| \leqslant \alpha_n$$

причём $\sum_{n=1}^{\infty} \alpha_n < +\infty$. Тогда ряд $\sum_{n=1}^{\infty} g_n(z)$ сходится абсолютно равномерно.

Теорема 4.2. Пусть $\frac{1}{R} := \overline{\lim} \sqrt[n]{|a_n|}, R \in [0, +\infty]$. Тогда

- 1. Если $|z| \le r < R$, то степенной ряд сходится равномерно и абсолютно.
- 2. Если |z| > R, то ряд расходится
- 3. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ голоморфна npu |z| < R и её производная получается почленным дифференцированием изначального psda: $f'(z) = \sum_{n=1}^{\infty} na_n z^{n-1}$

Доказательство. 1. Пусть $\rho \in (r,R) \Rightarrow \frac{1}{R} < \frac{1}{\rho} < \frac{1}{r}$. По определению верхнего предела

$$\exists N \in \mathbb{N} \ \forall n > N : \ \sqrt[n]{|a_n|} < \frac{1}{\rho}$$

Тогда (в условиях текущего пункта):

$$\exists N \in \mathbb{N} \ \forall n > N : \ |a_n z^n| \leqslant \left(\frac{r}{\rho}\right)^n, \frac{r}{\rho} < 1$$

Тогда по теореме Вейшерштрасса мы можем ограничить рассматриваемый ряд сходящимся числовым (геометрическая прогрессия) и всё доказали.

2. Пусть |z|>R, то есть $\frac{1}{|z|}<\frac{1}{R}$. Значит по плотности действительных чисел:

$$\exists \varepsilon > 0: \ \frac{1}{|z|} \leqslant \frac{1}{R} - \varepsilon \Rightarrow |z| \geqslant \frac{1}{\frac{1}{R} - \varepsilon}$$

По определению верхнего предела:

$$\exists \{n_k\}_{k=1}^{\infty} \, \forall k : \, \sqrt[n_k]{|a_{n_k}|} > \frac{1}{R} - \varepsilon \Rightarrow |a_{n_k} z^{n_k}| \geqslant \left(\frac{1}{R} - \varepsilon\right)^{n_k} \cdot \left(\frac{1}{\frac{1}{R} - \varepsilon}\right)^{n_k} \geqslant 1$$

Получили, что не выполнено необходимое условие сходимости ряда.

3. Заметим, что у $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ радиус сходимости такой же в силу $\sqrt[n]{n} \to 1$, то есть ряд сходится при |z| < R. Причём $\exists r: |z| \leqslant r < R$. Также введём обозначения:

$$F_N(z) := \sum_{i=0}^{N-1} a_i z^i; \quad H_N(z) := \sum_{i=N}^{+\infty} a_i z^i$$

Заметим, что частичная сумма $G_n = F'_n$, то есть равна производной соответствующей частичной суммы f.

Распишем производную f через частичные суммы:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{F_N(z) - F_N(z_0)}{z - z_0} + \frac{H_N(z) - H_N(z_0)}{z - z_0} = \left(\frac{F_N(z) - F_N(z_0)}{z - z_0} - F_N'(z_0)\right) + (F_N'(z_0) - g(z_0)) + g(z_0) + \left(\frac{H_N(z) - H_N(z_0)}{z - z_0}\right)$$

Устремляя $N \to +\infty$, получим

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = g(z_0)$$

так как

$$\frac{H_N(z) - H_N(z_0)}{z - z_0} = \sum_{n=N}^{\infty} a_n \frac{z^n - z_0^n}{z - z_0} = \sum_{n=N}^{\infty} \left[a_n \sum_{k=0}^{n-1} z^k z_0^{n-1-k} \right] \Rightarrow \left| \frac{H_N(z) - H_N(z_0)}{z - z_0} \right| \leqslant \sum_{n=N}^{\infty} |a_n| \cdot n \cdot r^{n-1}$$

Проследнее выражение стремится к нулю, как остаток сходящегося ряда.

5 Степенные ряды. Свойства экспоненты и тригонометрических.

Определение 5.1. Голоморфные в С функции называют целыми.

Определение 5.2. Определим эскпоненту

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

 $R_{\text{сходимости}} = +\infty \Rightarrow e^z$ целая.

Лемма 5.1. Свойства экспоненты:

- 1. $(e^z)' = e^z$
- 2. $\forall z_1, z_2 \in \mathbb{C} : e^{z_1 + z_2} = e^{z_1} e^{z_2}$
- 3. $\forall z \in \mathbb{C} : e^z \neq 0$

Доказательство. 1. Сразу следует из пункта 3 предыдущей теоремы. (о почленном дифференцировании рядов)

2. Покажем эквивалентное свойство $e^{a-z}e^z=e^a$. Пусть

$$q(z) := e^{a-z}e^z \Rightarrow q'(z) = -e^{a-z}e^z + e^{a-z}e^z = 0$$

А это значит, что $g \equiv const$, так как голоморфна.

Посчитаем $g(0) = e^{a-0}e^0 = e^a \Rightarrow g(z) \equiv e^a$, что и требовалось доказать.

3. $\forall z \in \mathbb{C}$ выполняется:

$$e^z e^{-z} = e^0 = 1$$

Значит в выражении $e^z e^{-z}$ никто не может быть нулём.

Определение 5.3. Определим тригонометрические функции на \mathbb{C} :

$$\cos(z) := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}; \quad \sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

Лемма 5.2. Свойства тригонометрических функций:

- 1. $e^{iz} = \cos(z) + i\sin(z)$
- 2. $|e^z| = e^{Re(z)}$
- 3. Если $e^{z+T}=e^z$, то $T=2\pi i k, k\in\mathbb{Z}$

Доказательство. 1. Очевидно

- 2. Очевидно
- 3. Заметим, что

$$e^T = 1 \Leftrightarrow \text{Re } T = 0 \Leftrightarrow T = i\beta$$

Тогда

$$e^{i\beta} = \cos(\beta) + i\sin(\beta) = 1 \Leftrightarrow \beta = 2\pi k \Rightarrow T = 2\pi ki, k \in \mathbb{Z}$$

6 Первообразная и полный дифференциал в области. Условия...

Определение 6.1. Кривой γ называется класс эквивалентных параметризаций (отличающихся лишь скоростью движения параметра)

$$z(t) = x(t) + iy(t), t \in [t_0, t_1]$$

Определение 6.2. Кривая γ называется **гладкой**, если существует параметризация

$$z(t) = x(t) + iy(t), x, y \in C^{1}([t_{0}, t_{1}]); \forall t \in [t_{0}, t_{1}]: z'(t) \neq 0$$

Определение 6.3. Гладкая кривая γ называется **замкнутой**, если

$$z(t_0) = z(t_1); \ z'(t_0 + 0) = z'(t_1 - 0)$$

Определение 6.4. Кривая γ называется **кусочно-гладкой**, если

$$\exists \{\theta_i\}_{i=0}^n : t_0 = \theta_0 < \theta_1 < \dots < \theta_{n-1} < \theta_n = t_1$$

ОТР

$$\forall k = \overline{1, n} : \gamma|_{[\theta_{k-1}, \theta_k]} = z_k$$

причём

$$\forall k=\overline{1,n}:\,z_k(t),t\in[heta_{k-1}, heta_k]$$
 - это гладкая кривая

Определение 6.5. Пусть $g:G\to\mathbb{C}$, где G – область. Назовём g **первообразной** непрерывной функции $f:G\to\mathbb{C}$, если g регулярна на G и

$$\forall z \in G: \ g'(z) = f(z)$$

Определение 6.6. Выражение f(z)dz называется **полным дифференциалом** в области G, если существует первообразная g для f на G, то есть

$$f(z)dz = g'(z)dz$$

Теорема 6.1. Пусть $f: G \to \mathbb{C}$ непрерывна на области G. Тогда:

1. Если fdz — полный дифференциал на G, то для любой замкнутой $K\Gamma K \ \dot{\gamma} \subseteq G$ выполняется

$$\int_{\dot{\gamma}} f(z)dz = 0$$

2. Если для любой замкнутой ломаной кривой γ выполняется равенство выше, то fdz – полный дифференциал.

Замечание. Первый пункт выполняется для всех КУСОЧНО-ГЛАДКИХ КРИВЫХ, второй же требует выполнение лишь для ЛОМАНЫХ (класс кривых гораздо меньше чем в первом пункте).

 \square оказательство. 1. По условию $\exists g: G \to \mathbb{C}$, регулярная, такая, что g'(z) = f(z). Тогда

$$\int_{\dot{\gamma}} f(z)dz = \int_{t_0}^{t_1} g'(z(t))z'(t)dt = \int_{t_0}^{t_1} \frac{d}{dt}(g(z(t)))dt = g(z(t_1)) - g(z(t_0)) = g(z(t_0)) - g(z(t_0)) = 0$$

2. Фиксируем $a \in G$ как начальную точку ломаной γ . Тогда $\forall z \in G : \exists \gamma_{az}$ – ломаная с началом в a и концом в z.

$$g(z) = \int_{\gamma_{az}} f(z)dz$$

причём хотим показать, что этот интеграл не зависит от γ_{az} , а лишь от z.

Действительно, если $\exists \gamma_{az} \not\sim \tilde{\gamma}_{az}$, то пусть $\dot{\gamma} = \gamma_{az} \sqcup \tilde{\gamma}_{az}^{-1}$, тогда по аддитивности интеграла

$$\int_{\dot{\gamma}} f(z)dz = 0 = \int_{\gamma_{az}} f(z)dz - \int_{\tilde{\gamma}_{az}} f(z)dz$$

Докажем, что $\forall z: g'(z) = f(z)$. Рассмотрим $z_0: \exists \varepsilon > 0: B_{\varepsilon}(z_0) \subseteq G$ и приращение $\Delta z: 0 < |\Delta z| < \varepsilon$. Тогда $z_0 + \Delta z \in G$. Рассмотрим

$$\frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z} = \frac{1}{\Delta z} \int_{[z_0, z_0 + \Delta z]} f(z) dz$$

Значит

$$\left| \frac{\Delta g}{\Delta z} - f(z_0) \right| = \left| \frac{1}{\Delta z} \int_{[z_0, z_0 + \Delta z]} (f(z) - f(z_0)) dz \right|$$

В силу непрерывности f(z), найдём $r(\varepsilon)$ – радиус шара, где $|f(z)-f(z_0)|<\varepsilon$, тогда

$$\forall z \in B_{r(\varepsilon)}(z_0) \cap B_{\varepsilon}(z_0) : \left| \frac{\Delta g}{\Delta z} - f(z_0) \right| \leqslant \left| \frac{\varepsilon \min\{r(\varepsilon), \varepsilon\}}{\min\{r(\varepsilon), \varepsilon\}} \right| = \varepsilon$$

7 Лемма Гурса и теорема Коши для выпуклой области

Лемма 7.1. Гурса.

Пусть G – область, $f:G\to\mathbb{C}$ регулярна. Тогда для любого треугольника из G (то есть такого, что $\partial\triangle\subseteq G$) верно

$$\int_{\partial \triangle} f(z)dz = 0$$

Доказательство. Зафиксируем $\triangle ABC \subseteq G$. Тогда будем рассматривать

$$I := \int_{\partial \triangle ABC} f(z) dz$$

Разобьём треугольник средними линиями:

$$\triangle ABC = \bigcup_{k=1}^{4} \triangle_k$$

Тогда из аддитивности интеграла

$$I = \sum_{k=1}^{4} \int_{\partial \triangle_k} f(z) dz$$

Докажем, что

$$\exists k_0: \left| \int_{\partial \triangle_{k_0}} f(z) dz \right| \geqslant \frac{|I|}{4}$$

Очевидно от противного, так как триангуляции с ориентацией, то если бы все были меньше, то нельзя было бы набрать I.

Обозначим найдённый треугольник за $\triangle^1 := \triangle_{k_0}$, а $\triangle^0 := \triangle ABC$. Аналогично построению \triangle^1 из \triangle^0 можем построить бесконечную последовательность $\{\triangle^N\}_{N=0}^\infty$, и для них

$$\left| \int_{\partial \wedge^N} f(z) dz \right| \geqslant \frac{|I|}{4^N}$$

Теперь заметим, что $P_N = \frac{P_0}{2^N}$, где P_N – периметр N-го треугольника. В силу компактности

$$\exists z_0 \in \bigcap_{N=1}^{\infty} \triangle^N$$

Так как f дифференцируема в z_0 , то по определению:

$$\exists B_{\delta_0}(z_0) \, \forall z \in B_{\delta_0}(z_0) : f(z) = f(z_0) + f'(z_0)(z - z_0) + o(z - z_0)$$

А для о-малого верно:

$$\forall \varepsilon > 0 \ \exists \delta_1 \leqslant \delta_0 \ \forall z \in B_{\delta_1}(z_0) : \ |o(z - z_0)| \leqslant \varepsilon |z - z_0|$$

Теперь можем расписать интеграл:

$$\int_{\partial \triangle^{N}} f(z)dz = f(z_{0}) \int_{\partial \triangle^{N}} dz + f'(z_{0}) \int_{\partial \triangle^{N}} zdz - z_{0}f'(z_{0}) \int_{\partial \triangle^{N}} dz + \int_{\partial \triangle^{N}} o(z - z_{0})dz = \int_{\partial \triangle^{N}} o(z - z_{0})dz$$

Интегралы по 1 и z равны нулю, так как они, очевидно, полные дифференциалы. Причём полагаем N таким, что

$$\forall z \in \triangle^N : |z - z_0| < \delta_1$$

Тогда

$$\left| \int_{\partial \triangle^N} f(z) dz \right| \leqslant \int_{\partial \triangle^N} |o(z - z_0)| \cdot |dz| \leqslant \varepsilon \int_{\partial \triangle^N} |z - z_0| \cdot |dz| \leqslant \varepsilon P_N^2 \leqslant \varepsilon \frac{P_0^2}{4^N}$$

Получили, что

$$|I| \leqslant 4^N \left| \int_{\partial \wedge^N} f(z) dz \right| \leqslant 4^N \varepsilon \frac{P_0^2}{4^N}$$

В силу произвольности ε : I=0.

Теорема 7.1. Коши для выпуклой области.

Пусть D — выпуклая область, f — голоморфна в $D\setminus\{0\}$, f — непрерывна в D. Тогда $\forall \gamma$ — кусочно-гладкой замкнутой кривой

$$\int_{\gamma} f dz = 0$$

Доказательство. По лемме Гурса

$$\forall \triangle \subseteq D: \int_{\partial \triangle} f dz = 0$$

Тогда мы можем триангулировать любую ломаную (в силу выпуклости) \Rightarrow по одной из теорем fdz – полный дифференциал (нужны были непрерывность и нулевой интеграл по всем ломаным).

A как мы знаем, интеграл по любой замкнутой кривой от полного дифференциала нулевой. $\hfill\Box$

8 Интеграл Коши и его свойства

Определение 8.1. Пусть γ – кусочно-гладкая кривая в \mathbb{C} . Тогда $\forall \varphi \in C(\gamma)$ (непрерывная на γ функции) определим **интеграл Коши**, как

$$F_n(z,\varphi) = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n} d\xi$$

Теорема 8.1. Свойства интеграла Коши:

- 1. $F_n(z,\varphi)$ голоморфна (\Rightarrow непрерывна) в $\mathbb{C}\setminus\gamma$
- 2. $F'_n(z,\varphi) = nF_{n+1}(z,\varphi)$

Доказательство. Вначале покажем непрерывность для n = 1:

$$F_1(z,\varphi) - F_1(z_0,\varphi) = \int_{\gamma} \frac{\varphi(\xi)(z-z_0)}{(\xi-z)(\xi-z_0)} d\xi = (z-z_0) \cdot F_1\left(z, \frac{\varphi(\xi)}{\xi-z_0}\right)$$

Введём $\delta=\rho(z_0,\gamma)$. Для $z_0\in\mathbb{C}\setminus\gamma$ оно, очевидно, не равно нулю.

Тогда

$$\left| (z - z_0) \cdot F_1 \left(z, \frac{\varphi(\xi)}{\xi - z_0} \right) \right| \leqslant \frac{const}{\delta^2} |z - z_0|$$

что и гарантирует непрерывность.

Из того же тождества

$$\frac{F_1(z,\varphi) - F_1(z_0,\varphi)}{z - z_0} = F_1\left(z, \frac{\varphi(\xi)}{\xi - z_0}\right) \stackrel{z \to z_0}{\to} F_1\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) = F_2(z_0,\varphi)$$

Доказали голоморфность существованием производной.

Далее по индукции: пусть F_{n-1} голоморфна в D:

$$F'_{n-1}(z,\varphi) = (n-1)F_n(z,\varphi)$$

Распишем приращение с помощью умного нуля:

$$F_{n}(z,\varphi) - F_{n}(z_{0},\varphi) = \int_{\gamma} \left[\left(\frac{1}{(\xi - z)^{n}} - \frac{1}{(\xi - z)^{n-1}(\xi - z_{0})} \right) + \frac{1}{(\xi - z)^{n-1}(\xi - z_{0})} - \frac{1}{(\xi - z_{0})^{n}} \right] \varphi(\xi) d\xi = (z - z_{0}) \int_{\gamma} \frac{\varphi(\xi) d\xi}{(\xi - z)^{n}(\xi - z_{0})} + F_{n-1} \left(z, \frac{\varphi(\xi)}{\xi - z_{0}} \right) - F_{n-1} \left(z_{0}, \frac{\varphi(\xi)}{\xi - z_{0}} \right)$$

Сходимость к нулю первого слагаемого доказывается аналогично предыдущему пункту с непрерывностью, а последние два слагаемых дают приращение непрерывной функции, которое также стремится к нулю при $z \to z_0$.

Поделим предыдущее выражение на $z-z_0$ и посчитаем производную:

$$\frac{F_n(z,\varphi) - F_n(z_0,\varphi)}{z - z_0} = \int_{\gamma} \frac{\varphi(\xi)d\xi}{(\xi - z)^n(\xi - z_0)} + \frac{F_{n-1}\left(z, \frac{\varphi(\xi)}{\xi - z_0}\right) - F_{n-1}\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right)}{z - z_0} \xrightarrow{z \to z_0} F_n\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) + F'_{n-1}\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) = F_n\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) + (n-1)F_n\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) = n \cdot F_{n+1}(z_0, \varphi)$$

Таким образом, $F_n(z, \varphi)$ – бесконечно дифференцируемая.

9 Интегральная формула Коши для круга...

Теорема 9.1. Пусть f – голоморфна в области D, причём $\overline{O}_r(a) \subset D$. Тогда

$$\forall z \in O_r(a) : f(z) = \frac{1}{2\pi i} \int_{|\xi - a| = r} \frac{f(\xi)}{\xi - z} d\xi$$

Доказательство. Фиксируем $z \in O_r(a)$:

$$g(\xi) = \begin{cases} \frac{f(\xi) - f(z)}{\xi - z}, \xi \neq z \\ f'(z), \xi = z \end{cases}$$

 $g(\xi)$ — голоморфна в $O_r(a)\setminus\{z\}$ (как отношение голоморфных функций) и непрерывна в $O_r(a)\Rightarrow \forall \gamma_r$ — замкнутого контура по теореме Коши:

$$\int_{\gamma_r} g(\xi)d\xi = 0$$

То есть

$$\int_{\gamma_r} \frac{f(\xi) - f(z)}{\xi - z} d\xi = 0 \Leftrightarrow \int_{\gamma_r} \frac{f(\xi) d\xi}{\xi - z} = f(z) \left[\int_{\gamma_r} \frac{d\xi}{\xi - z} =: G(z) \right]$$

G(z) – голоморфна в $O_r(a), G' = \int_{\gamma_r} \frac{d\xi}{(\xi - z)^2} \equiv 0 \Rightarrow G \equiv const \Rightarrow G(a) = 2\pi i \Rightarrow G(a)$

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)d\xi}{\xi - z}$$

Следствие. 1. f – голоморфна в $D\Rightarrow f$ – интеграл $Komu\Rightarrow f'$ – голоморфна в D.

- 2. f голоморфна в $D \Rightarrow \forall n \in \mathbb{N}: f^{(n)}$ голоморфна в D.
- 3. В условии формулы Коши для круга:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|\xi - a| = r} \frac{f(\xi)d\xi}{(\xi - z)^{n+1}}$$
 (1)

10 Теорема Морера. Теорема о среднем.

Теорема 10.1. *Мореры.*

 Π усть f – непрерывна в области D u

$$\forall \overline{\triangle} \subseteq D : \int_{\partial \triangle} f(z) dz = 0$$

Tог $\partial a \ f$ – голомор ϕ на в D.

$$\forall z \in O_r(a) \exists F : F' = f$$

В этом круге по одному из следствий F голоморфна $\Rightarrow f$ – голоморфна в $O_r(a)$. Это верно $\forall a \in D \Rightarrow f$ – голоморфна в D.

Теорема 10.2. О среднем.

Пусть f – голоморфна в $\overline{O}_r(a) \subseteq D$, тогда

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}r) d\theta$$

Доказательство. Пусть $\xi = a + re^{i\theta}$. Тогда

$$f(a) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(a + re^{i\theta})ire^{i\theta}d\theta}{re^{i\theta}} = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta})d\theta$$

11 Целые функции и теорема Луивилля

Определение 11.1. f – **целая**, если f голоморфна в \mathbb{C} .

Теорема 11.1. Луивимя.

Ecлu f – целая u

$$\exists M, m, R \, \forall z, |z| > R : |f(z)| < M \cdot |z|^m$$

Тогда f(z) – полином степени $\leq m$.

Доказательство. Знаем, что

$$\forall z \in \mathbb{C} : f(z) = \sum_{n=0}^{\infty} c_n z^n, R_{\text{cx}} = \infty$$

Тогда по (12.1)

$$c_n = \frac{1}{2\pi i} \oint_{|\xi|=\rho} \frac{f(\xi)d\xi}{\xi^{n+1}}$$

Оценим сверху

$$|c_n| \leqslant \frac{1}{2\pi} \int_{|\xi|=\rho} \frac{|f(\xi)||d\xi|}{|\xi^{n+1}|} \leqslant \frac{M}{2\pi} \int_{|\xi|=\rho} \frac{|\xi|^m}{|\xi|^{n+1}} |d\xi| = \frac{M}{2\pi} \int_{|\xi|=\rho} \frac{1}{|\xi|^{n+1-m}} |d\xi| = \frac{M}{\rho^{n-m}} = M\rho^{m-n}$$

При n > m:

$$|c_n| \leqslant \frac{M}{\rho^{n-m}} \stackrel{\rho \to +\infty}{\to} 0 \Rightarrow \forall n > m : |c_n| = 0 \Rightarrow f(z) = \sum_{n=0}^{m} c_n z^n$$

12 Ряд Тейлора и теорема единственности...

Теорема 12.1. Ряд Тейлора.

Пусть f – голоморфна в $D, O_R(a) \subseteq D$. Тогда

$$\forall z \in O_R(a) : f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, c_n = \frac{f^{(n)}(a)}{n!}$$

Доказательство. Пусть r < R, f – голоморфна в $\overline{O_r(a)} \Rightarrow$

$$2\pi i f(z) = \int_{\gamma_r} \frac{f(\xi)d\xi}{\xi - z}$$

Тогда распишем

$$\frac{1}{\xi - z} = \frac{1}{(\xi - a) - (z - a)} = \frac{1}{\xi - a} \cdot \frac{1}{1 - \frac{z - a}{\xi - a}} \stackrel{|z - a| \le |\xi - a|}{=}$$

$$\frac{1}{\xi - a} \sum_{n=0}^{\infty} \left(\frac{z - a}{\xi - a}\right)^n = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\xi - a)^{n+1}}$$

Полученный ряд сходится равномерно, а значит можно умножить на $f(\xi)$ и почленно интегрировать

$$2\pi i f(z) = \sum_{n=0}^{\infty} \int_{\gamma_r} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}} (z - a)^n = \sum_{n=0}^{\infty} 2\pi i c_n (z - a)^n \Rightarrow f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

Причём по (1):

$$c_n = \frac{f^{(n)}(a)}{n!}$$

В завершение скажем

$$\forall z: |z - a| < R \,\exists r < R \,z \in O_r(a) \Rightarrow$$

формула верна во всём $O_R(a)$.

Определение 12.1. Пусть $f\not\equiv 0$ – голоморфна в $O_r(a), f(a)=0,$ тогда m – это порядок нуля в точке a. если

$$\forall k = \overline{0, m-1}: f^{(k)}(a) = 0; f^{(m)}(a) \neq 0$$

Утверждение 12.1. f имеет нуль порядка $m \Leftrightarrow \exists g(z)$ – голоморфная в $O_r(a), g(a) \neq 0$:

$$f(z) = (z - a)^m \cdot g(z)$$

Доказательство. (\Rightarrow)

БОО a=0. Тогда

$$f(z) = \sum_{n=0}^{\infty} c_n z^n = \sum_{n=m}^{\infty} c_n z^n = z^m \sum_{n=0}^{\infty} c_{n+m} z^n$$

Пусть $g(z) := \sum_{n=0}^{\infty} c_{n+m} z^n$, причём $g(0) \neq 0$, так как $c_m \neq 0$. (\Leftarrow) Пусть $f(z) = (z-a)^m g(z)$. Дифференцируя получаем

$$\forall k = \overline{0, m-1} : f^{(k)}(a) = 0, f^{(m)} \neq 0$$

Замечание. Пусть f – голоморфна в окрестности a, f(a) = 0. Тогда

$$\exists \rho > 0 \ \forall z \ |z - a| \in (0, \rho) : \ f(z) \neq 0$$

Доказательство. Очевидно следует из предыдущего утверждения.

Теорема 12.2. О единственности.

Пусть f и g – голоморфны в области $D, E \subseteq D$, причём в D есть хотя бы одна предельная точка E. Тогда если

$$\forall z \in E : f(z) = g(z)$$

mo

$$\forall z \in D: f(z) = g(z)$$

Доказательство. Пусть h=f-g,a – предельная точка $E,a\in D$. Тогда введём

$$Z = \{ z \in D \mid h(z) = 0 \}$$

Тогда по непрерывности $a \in Z$, причём a – предельная точка $Z \Rightarrow h(z) \equiv 0$ в окрестности a (12).

Пусть $G_1 := \text{int } Z$ – открытое непустое, так как $a \in G_1$. Тогда если $G_2 := D \setminus G_1$ открытое, то из-за связности $D \Rightarrow G_2$ – пустое, что доказывает теорему.

Пусть G_2 неоткрыто. Пусть $z^* \in G_2$, причём z^* – предельная точка G_1 . Тогда $\exists z_n \to z^*, z_n \in G_1$. Тогда $h(z_n) = 0 \stackrel{\text{непрерывность}}{\Rightarrow} h(z^*) = 0 \Rightarrow z^* \in G_1$ – противоречие.

13 Приращение аргумента вдоль кривой. Индекс точки...

Определение 13.1. Пусть γ – кусочно гладкая кривая в D,

$$\Gamma = f(\gamma) = \{w = f(z(t)) \mid t \in [\alpha, \beta]\}$$

Причём Γ – кусочно гладкая, $\Gamma \subseteq \mathbb{C} \setminus \{0\}$. Тогда **приращением аргумента вдоль кривой** называется

$$\Delta_{\Gamma} w := \operatorname{Im} \int_{\Gamma} \frac{dw}{w} = \operatorname{Im} \int_{\gamma} \frac{f'(z)dz}{f(z)} =: \Delta_{\gamma} f$$

Лемма 13.1. Свойства приращения аргумента:

1.
$$\Delta_{\gamma}(c \cdot f) = \Delta_{\gamma}(f), c \neq 0$$

2.
$$\Delta_{\gamma}(f_1 \cdot f_2) = \Delta_{\gamma}(f_1) + \Delta_{\gamma}(f_2)$$

3.
$$\Delta_{\gamma} \frac{1}{f} = -\Delta_{\gamma} f$$

4.
$$\Delta_{-\gamma}(f) = -\Delta_{\gamma}(f)$$

Доказательство. 1. Следует из второго пункта (приращение константы равно нулю)

2. Для доказательство достаточно заметить

$$\frac{(f_1 f_2)'}{f_1 f_2} = \frac{f_1'}{f_1} + \frac{f_2'}{f_2}$$

И воспользоваться линейностью интеграла.

- 3. Очевидно из предыдущего пункта
- 4. Очевидно

Определение 13.2. Индексом a относительно кривой γ , где γ – кусочно гладкая замкнутая кривая в $\mathbb{C}, a \in \mathbb{C} \setminus \gamma$, называется

$$J_{\gamma}(a) = \frac{\Delta_{\gamma}(z-a)}{2\pi} \in \mathbb{Z}$$

Иными словами, это количество оборотов кривой вокруг a.

Лемма 13.2. Пусть γ – замкнутая кусочно-гладкая кривая в \mathbb{C} . Тогда

- 1. $J_{\gamma}(z) \equiv const$ в кажедой компоненте связности $\mathbb{C} \setminus \gamma$
- 2. Если какая-то компонента содержит ∞ , то $J_{\gamma}(z) \equiv 0$ в ней.

Доказательство. Действительно,

$$J_{\gamma}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

интеграл Коши \Rightarrow голоморфна в $\mathbb{C}\backslash\gamma\Rightarrow$ непрерывна и, так как принимает только значения из \mathbb{Z} , постоянна в своих компонентах связности. Это следует из того, что

$$J_{\gamma}'(z)=rac{1}{2\pi i}\int_{\gamma}rac{d\xi}{(\xi-z)^2}=0\Rightarrow J_{\gamma}(a)\equiv const$$
 в компоненте связности

Для неограниченной компоненты

$$d(z) := \operatorname{dist} (\gamma, z) = \min_{\zeta \in \gamma} |z - \zeta| > 0$$

Тогда

$$|J_{\gamma}(z)| = \left|\frac{1}{2\pi i} \int_{\gamma} \frac{d\xi}{\xi - z}\right| \leqslant \frac{1}{2\pi d(z)} \int_{\gamma} |d\xi|$$

Ho $d(z) \to \infty$ при $z \to \infty \Rightarrow J_{\gamma}(z) = 0$.

14 Общая форма теоремы Коши и интегральной формулы Коши...

Лемма 14.1. Общая теорема Коши.

 $\Pi y cm \circ D$ – область в \mathbb{C}, f – голоморфна в области D. Тогда

1. Функция

$$g(\xi, z) := \begin{cases} \frac{f(\xi) - f(z)}{\xi - z}, \xi \neq z \\ f'(z), \xi = z \end{cases}$$

непрерывна в $D \times D$.

2. \forall кусочно гладкой $\gamma \subset D$:

$$h(z) = \int_{\gamma} g(\xi, z) d\xi$$

 ${\it голомор}$ ϕ на в D.

Доказательство. 1. При $\xi \neq z$ непрерывна как отношение непрерывных функций.

При $\xi = z$ зафиксируем $z_0 \in D$, по открытости $D \Rightarrow \exists \overline{O}_r(z_0) \subset D$. Тогда будем рассматривать сколь угодно близкие $z, \xi \in O_{\varepsilon}(z_0), \varepsilon < r$.

Распишем в этой окрестности ряд Тейлора для двух точек:

$$f(z) - f(z_0) = \sum_{n=1}^{\infty} c_n (z - z_0)^n$$
$$f(\xi) - f(z_0) = \sum_{n=1}^{\infty} c_n (\xi - z_0)^n$$

Далее нам понадобится следующая оценка:

$$\left| \frac{(z - z_0)^n - (\xi - z_0)^n}{z - \xi = [(z - z_0) - (\xi - z_0)]} \right| = \left| \sum_{k=0}^{n-1} (z - z_0)^{n-1-k} (\xi - z_0)^k \right| \le n\varepsilon^{n-1}$$

Рассмотрим приращение

$$|g(z,\xi) - g(z_0, z_0)| = |g(z,\xi) - f'(z_0)| \stackrel{f'(z_0) = \frac{c_1(z - z_0)}{z - z_0}}{=} \left| \sum_{n=2}^{\infty} c_n \frac{(z - z_0)^n - (\xi - z_0)^n}{z - \xi} \right| \le \sum_{n=2}^{\infty} |c_n| \cdot n \cdot \varepsilon^{n-1} \le \varepsilon \sum_{n=2}^{\infty} |c_n| \cdot n \cdot r^{n-2} = \varepsilon M$$

Где $M<\infty$ взяли из сходимости ряда Тейлора путём дифференцирования $(\exists R>r:O_R(z_0)\subseteq D\ \overline{O}_r(z_0)\subseteq D).$

Заметим, что мы доказали непрерывность, оценив приращение g.

2. Видно, что h – непрерывна в D. Тогда для $\overline{\triangle} \subset D$:

$$\int_{\partial \triangle} h(z)dz = \int_{\partial \triangle} \int_{\gamma} g(\xi, z)d\xi dz = \int_{\gamma} \int_{\partial \triangle} g(\xi, z)dz d\xi = 0$$

Это верно, так как $g(\xi_0,\cdot)$ голоморфна в $D\setminus\{\xi_0\}$, непрерывна в $D\Rightarrow$ по лемме Гурса $\int_{\partial\triangle}g(\xi,z)dz=0.$

В итоге можем применить теорему Морера, из которой будет следовать, что h – голоморфна.

Определение 14.1. Пусть $\gamma_1, \cdots, \gamma_n$ – замкнутые кусочно гладкие кривые. Тогда

$$\Gamma = k_1 \gamma_1 + \dots + k_n \gamma_n$$

где $k_i \in \mathbb{Z}$ мы будем называть **циклом**.

Определение 14.2. Пусть цикл Γ лежит в области D. Тогда говорят, что $\Gamma \sim 0 \mod D$ (Γ гомологично эквивалентна 0 в открытой области D), если

$$\forall a \in \mathbb{C} \setminus D : J_{\Gamma}(a) = 0$$

Теорема 14.1. Интегральная теорема Коши.

Пусть D — область в \mathbb{C}, f — голоморфна в D. Пусть Γ — цикл в D, причём $\Gamma \sim 0$ mod D. Тогда

1.
$$\forall z \in D \setminus \Gamma : J_{\Gamma}(z) \cdot f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

2.
$$\int_{\Gamma} f(z)dz = 0$$

Доказательство. $(1 \Rightarrow 2)$

Применим 1 к $\dot{\tilde{f}}(z) = (z-a)f(z)$. Где $a \in \mathbb{C} \setminus \Gamma$, если f(a) определена (или $a \in D \setminus \Gamma$). Тогда

$$0 = J_{\Gamma}(a)(a-a)f(a) = J_{\Gamma}(a) \cdot \tilde{f}(a) = \int_{\Gamma} \frac{\tilde{f}(\xi)d\xi}{\xi - a} = \int_{\Gamma} f(\xi)d\xi$$

Докажем первый пункт.

Введём

$$G := \{ z \in \mathbb{C} \setminus \Gamma \mid J_{\Gamma}(z) = 0 \}$$

– открытое множество. Рассмотрим две функции

$$2\pi i \cdot \tilde{h}(z) = \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

- голоморфна в G, как интеграл Коши.

$$2\pi i \cdot h(z) = \int_{\Gamma} \frac{f(\xi) - f(z)}{\xi - z} d\xi$$

— голомофрна в D, как функция из второго пункта предыдущей теоремы.

Заметим, что $\forall z \in G \cap D: \ h(z) = \tilde{h}(z),$ так как

$$\tilde{h}(z) - h(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)d\xi}{\xi - z} = f(z)J_{\Gamma}(z) = 0$$

Тогда введём новую функцию

$$F(z):=\begin{cases} h(z), z\in D\\ \tilde{h}(z), z\in \mathbb{C}\setminus D\subseteq G \text{ так как }\Gamma\sim 0\mod D \end{cases}$$

Получается, F(z) – голоморфна в \mathbb{C} . (В каждой из гладких областей они голоморфны, и совпадают на границе)

Заметим, что

$$\lim_{z \to \infty} F(z) = 0$$

Так как

$$|\tilde{h}(z)| \leqslant \frac{1}{2\pi} \int_{\Gamma} \frac{\max_{\Gamma} |f| \cdot |d\xi|}{d(z)} \stackrel{z \to \infty}{\to} 0$$

Где, $d(z) = \text{dist } (z, \Gamma) \Rightarrow d(z) \to \infty$.

Тогда по теореме Луивилля (11.1):

$$F(z) \equiv 0$$

Тогда в $D \setminus \Gamma$: h(z) = F(z) = 0, то есть

$$f(z) \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{d\xi}{\xi - z} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z} \Rightarrow$$
$$f(z) \cdot J_{\Gamma}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

Следствие. Для односвязной области.

Пусть D – односвязная область, f голоморфна в D, Γ – замкнутая кусочно гладкая кривая в D. Тогда

$$\int_{\Gamma} f(z)dz = 0$$

Доказательство. Заметим, что $\forall a \notin D: J_{\Gamma}(a) = 0$, так как a лежит в компоненте связности, содержащей $\infty \Rightarrow$ можем использовать интегральную теорему Коши.

Следствие. Коши для многосвязной области.

Пусть область D ограничена циклом Γ, f голоморфна в области $D' \supset D$. Тогда

1.
$$\forall z \in D : f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

2.
$$\int_{\Gamma} f(z)dz = 0$$

Доказательство. Имеем 0 оборотов вокруг D', а также один оборот вокруг $D \Rightarrow J_{\Gamma}(z) = 1 \Rightarrow$ по предыдущей теореме верен первый пункт, а второй выводится аналогично.

Разложение голоморфной функции в ряд Лорана... 15

Теорема 15.1. Пусть f голоморфна в $K := \{z \mid r < |z - a| < R\}$. Тогда

$$\forall z \in K : f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$$

где

$$c_n = \frac{1}{2\pi i} \cdot \int_{\gamma_a} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}}$$

где $\gamma_{
ho}$ – положительно ориентированная окружность радиуса $ho \in (r,R)$ с центром в точке а.

Доказательство. Докажем, что интегральная формула для c_n не зависит от ρ . Возьмём две окружности радиуса ρ и ρ' .

Пусть $\Gamma := \gamma_{\rho} - \gamma_{\rho'}$. Применим теорему Коши для многосвязной области к функции $\frac{f(\xi)}{(\xi-a)^{n+1}}$ (голоморфной в $K\supset K_{(\rho,\rho')}$). Тогда

$$\int_{\Gamma} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}} = 0 \Leftrightarrow \int_{\gamma_o} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}} = \int_{\gamma_{o'}} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}}$$

Рассмотрим r < r' < R' < R. Тогда $\forall z \in K'_{(r',R')}$:

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z} = \frac{1}{2\pi i} \left(\int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi - z} - \int_{\gamma_{r'}} \frac{f(\xi)d\xi}{\xi - z} \right) =: f_1(z) + f_2(z)$$

Заметим, что

$$f_1(z) = \int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi - z}$$

голоморфна в $O_{R'}(a) \Rightarrow$

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

где $c_n = \frac{f^{(n)}(a)}{n!}.$ Осталось разложить f_2 :

$$\frac{1}{z-\xi} = \frac{1}{(z-a)-(\xi-a)} = \frac{1}{z-a} \cdot \frac{1}{1-\frac{\xi-a}{z-a}} = \sum_{n=0}^{\infty} \frac{(\xi-a)^n}{(z-a)^{n+1}}$$

при $\left|\frac{\xi-a}{z-a}\right| < 1$.

$$f_2(z) = \sum_{n=0}^{\infty} \frac{1}{(z-a)^{n+1}} \cdot \left[c_{-n-1} := \frac{1}{2\pi i} \int_{\gamma_{r'}} f(\xi) (\xi - a)^n d\xi \right]$$

Получается, разложили так, что от r' и R' коэффициенты c_n не зависят.

Определение 15.1. Такие ряды называются рядами Лорана для голоморфной функции f.

Теорема 15.2. Теорема о единственности ряда Лорана.

Eсли $f(z)=\sum_{n=-\infty}^{+\infty}c_n(z-a)^n$ при $z\in K$, то f - голоморфна в кольце K, причём

$$c_n = \frac{1}{2\pi i} \cdot \int_{\gamma_\rho} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}}$$

Доказательство. f голоморфна как предел сходящегося ряда Проверим равенство коэффициентов. Вначале для n=-1

$$\int_{\gamma_{\rho}} f(z)dz = \sum_{n=-\infty}^{+\infty} c_n \cdot \int_{\gamma_{\rho}} (z-a)^n dz = 2\pi i \cdot c_{-1}$$

При $n \neq -1$ сводим к предыдущему случаю для функции $\frac{f(z)}{(z-a)^{n+1}}$

16 Изолированные особые точки

Определение 16.1. Изолированная особая точка — точка, в некоторой проколотой окрестности которой функция f(z) однозначна и голоморфна, а в самой точке либо не задана, либо недифференцируема.

Определение 16.2. *а* – устранимая особая точка, если

$$\exists A \in \mathbb{C} : \lim_{z \to a} f(z) = A$$

Определение 16.3. a – **полюс**, если

$$\lim_{z \to a} f(z) = \infty$$

Определение 16.4. а – существенная особая точка, если

$$\exists \lim_{x \to a} f(x)$$

Теорема 16.1. a – $YOT \Leftrightarrow f$ ограниченна в $\dot{O}_{\delta}(a)$ для некоторого δ .

Доказательство. (⇒) – очевидно по определению предела. (←)

Положим $M_{\rho}(f) = \max_{\gamma_{\rho}} |f|$. Тогда

$$|c_n| \leqslant \frac{1}{2\pi} \int_{\gamma_0} \frac{|f||d\xi|}{\rho^{n+1}} \leqslant \frac{M_{\rho}(f)}{2\pi\rho^{n+1}} \int_{\gamma_0} |d\xi| = \frac{M_{\rho}(f)}{\rho^n}, n \in \mathbb{Z}$$

По условию f ограничена в $\dot{O}_{\delta}(a) \Rightarrow$

$$\exists M \ \forall z \in O_{\delta}(a) : \ |f| < M$$

Тогда из неравенства для $|c_n|$ следует

$$\forall \rho > 0, \rho < \delta \Rightarrow \forall n < 0 : \frac{1}{\rho^n} \stackrel{\rho \to 0}{\to} 0 \Rightarrow \forall n < 0 : c_n = 0$$

Значит

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

она имеет предел в точке a, равный c_0 .

Теорема 16.2. Пусть a – изолированная особая точка f. Тогда a полюс \Leftrightarrow конечное число коэффициентов в главной части ряда Лорана отличны от нуля.

Доказательство. (\Leftarrow)

По условию

$$f(z) = \frac{c_{-m}}{(z-a)^m} + \dots + \frac{c_{-1}}{z-a} + h(z)$$

где h – голоморфна в окрестности a.

Значит $\varphi(z) := f(z)(z-a)^m$ – голоморфная в этой области, причём $\varphi(a) = c_{-m} \neq 0 \Rightarrow$

$$\lim_{z \to a} f(z) = \frac{\lim_{z \to a} f(z)(z-a)^m}{\lim_{z \to a} (z-a)^m} = \infty$$

 (\Rightarrow)

По условию

$$\lim_{z \to a} f(z) = \infty \Rightarrow \lim_{z \to a} \frac{1}{f(z)} = 0 \Rightarrow$$

функция $\frac{1}{f(x)}$ имеет в т.a УОТ \Rightarrow она голоморфна в окрестности a. При этом $\frac{1}{f} \neq 0 \Rightarrow$

$$\frac{1}{f(z)} = (z - a)^m h(z), h(a) \neq 0 \Rightarrow f(z) = \frac{1}{(z - a)^m} \frac{1}{h(z)}$$

Где $\frac{1}{h(z)}$ – голоморфная в окрестности $a \Rightarrow$ раскладывается в Тейлора.

Теорема 16.3. Сохоцкого.

Пусть f голоморфна в $\dot{O}(a), a$ – COT. Тогда

$$\forall A \in \overline{\mathbb{C}} \ \exists z_n \to a : \ f(z_n) \to A$$

Доказательство. 1. Для $A = \infty$ очевидно – если A – не предельная, то f ограничена ⇒ a – УОТ.

2. Если $A \neq \infty$, то введём

$$g(z) := \frac{1}{f(z) - A}$$

Пусть A – не предельная. Тогда

$$\exists \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in \dot{O}_{\delta}(a) : |f(z) - A| \geqslant \varepsilon$$

Значит g(z) голоморфна в $\dot{O}_{\delta}(a)$ как отношение голоморфных функций. Причём $g(z)\neq 0$ в $\dot{O}_{\delta}(a)$. Также $|g(z)|\leqslant \frac{1}{\varepsilon}\Rightarrow g$ — ограниченная, то есть точка a — УОТ. Тогда

$$\forall z \in \dot{O}_{\delta}(a) : f(z) = A + \frac{1}{g(z)}$$

Если $g(a) \neq 0$, то a – УОТ для f.

Если $g(a)=0\Rightarrow \frac{1}{g(z)}$ имеет полюс в точке $a\Rightarrow$ у f точка a – полюс. Противоречие. \Box

17 Вычеты и формулы для их вычисления. Теорема Koши о вычетах.

Определение 17.1. Если f голоморфна в $\dot{O}_r(a), a \neq \infty$, то определим **вычет** f, как

$$\operatorname{res}_a f = \frac{1}{2\pi i} \int_{\gamma_r} f(z) dz$$

Утверждение 17.1. Вычеты определены корректно (независят от γ).

Доказательство. Если $f(z)=\sum_{n=-\infty}^{+\infty}c_nz^n, z\in \dot{O}_r(a),$ то

$$\frac{1}{2\pi i} \int_{\gamma_{\rho}} f(z)dz = \sum_{n=-\infty}^{+\infty} \frac{1}{2\pi i} c_n \int_{\gamma_{\rho}} (z-a)^n dz = \frac{1}{2\pi i} c_{-1} 2\pi i = c_{-1}$$

Теорема 17.1. Коши о вычетах.

 $\bar{\Pi}$ усть D ограничена циклом $\Gamma = \gamma_0 - \gamma_1 - \cdots - \gamma_n$ (то есть в условиях теоремы Коши для многосвязной области).

Пусть $A = \{a_1, \dots, a_N\} \subseteq D, f$ – голоморфна в $D' \setminus A$, где $D' \supseteq D$. Тогда

$$\frac{1}{2\pi i} \int_{\Gamma} f(z)dz = \sum_{i=1}^{N} res_{a_i} f$$

Доказательство. Очевидно, что

$$\exists R > 0 \ \forall i \neq j : \ \overline{O}_R(a_i) \cap \overline{O}_R(a_j) = \varnothing$$

и $\overline{O}_R(a_i) \subseteq D$.

Обозначим за обход $\delta_k = \partial O_R(a_k)$ (обход против часовой стрелки, то есть положительно ориентировано).

Обозначим $\tilde{\Gamma} = \Gamma - \sum_{i=1}^N \delta_i, \tilde{D} = D \setminus \bigcup_{k=1}^N \overline{O}_R(a_k)$ и $\tilde{D}' = D' \setminus A$. Тогда $\partial \tilde{D} = \tilde{\Gamma}$ и f голоморфна в \tilde{D}' .

Причём $\tilde{D}'\supseteq \tilde{D}$. Более того, $\tilde{\Gamma}\sim 0\mod \tilde{D}'$, и $\forall z\not\in \tilde{D}':J_{\tilde{\Gamma}}(z)=0$. Аналогично проверим для

1.
$$z \notin D' \Rightarrow \begin{cases} J_{\Gamma}(z) = 0 \\ J_{\delta_i}(z) = 0 \end{cases} \Rightarrow J_{\tilde{\Gamma}}(z) = 0$$

2.
$$z \in A \ (z = a_i) \Rightarrow \begin{cases} J_{-\delta_i}(a_i) = -1 \\ J_{-\delta_j}(a_i) = 0 \ (i \neq j) \\ J_{\gamma_k}(a_i) = 0 \\ J_{\Gamma}(a_i) = 1 \end{cases} \Rightarrow J_{\tilde{\Gamma}}(z) = 0$$

Тогда по теореме Коши для многосвязной области \tilde{D} :

$$\int_{\tilde{\Gamma}} f(z)dz = 0 \Rightarrow \sum_{i=1}^{N} \int_{\delta_{i}} f(z)dz = \int_{\Gamma} f(z)dz \Rightarrow 2\pi i \sum_{i=1}^{N} \operatorname{res}_{a_{i}}(f) = \int_{\Gamma} f(z)dz$$

Следствие. $Ecnu\ a-YOT\Rightarrow res_af=0$

Следствие. *Если* a – *полюс* m-ого порядка \Rightarrow

$$res_a f = \frac{1}{(m-1)!} \lim_{z \to a} (f(z)(z-a)^m)^{(m-1)}$$

Доказательство. f имеет вид

$$f = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

Тогда

$$res_a f = c_{-1} = \frac{1}{(m-1)!} \lim_{z \to a} (f(z)(z-a)^m)^{(m-1)}$$

То есть по сути m-1 коэффициент функции $f(z)(z-a)^m$.

18 Лемма Жордана....

Теорема 18.1. Пусть g – непрерывная функция в $\{z \mid Im(z) \geqslant 0, |z| > R'\}$, причём $\max_{\Gamma_R} |g| \stackrel{R \to \infty}{\to} 0$, где $\Gamma_R = \{z \mid Im(z) \geqslant 0, |z| = R\}$. Тогда

$$\forall \alpha>0:\ \int_{\Gamma_R}g(z)e^{i\alpha z}dz\to 0, R\to\infty$$

Доказательство. Достаточно доказать, что $\int_{\Gamma_R} |e^{i\alpha z}||dz|$ равномерно ограничен. (то есть $\exists M>0 \ \forall R>R': \ \int_{\Gamma_R} |e^{i\alpha z}||dz|\leqslant M).$

Пусть $z = Re^{i\varphi}, \varphi \in (0,\pi)$, тогда очевидно,

$$|e^{i\alpha z}| = e^{\operatorname{Re}(i\alpha z)} = e^{-R\alpha\sin(\varphi)}$$

Теперь распишем интеграл

$$\int_{\Gamma_R} |e^{i\alpha z}| |dz| = \int_0^\pi e^{-R\alpha\sin\varphi} Rd\varphi = 2R \int_0^{\frac{\pi}{2}} e^{-R\alpha\sin\varphi} d\varphi$$

Вспомним, что $\sin \varphi$ вогнут на $\left[0,\frac{\pi}{2}\right] \Rightarrow \sin \varphi \geqslant \frac{2}{\pi} \varphi$. Продолжим цепочку неравенств

$$2R\int_0^{\frac{\pi}{2}} e^{-R\alpha\sin\varphi} d\varphi \leqslant 2R\int_0^{\frac{\pi}{2}} e^{-\frac{2}{\pi}R\alpha\varphi} d\varphi = \frac{\pi}{\alpha}\int_0^{R\alpha} e^{-t} dt \leqslant \frac{\pi}{\alpha}\int_0^{+\infty} e^{-t} dt = \frac{\pi}{\alpha}$$

19 Принцип аргумента. Теорема Руше. Основная теорема алгебры.

Теорема 19.1. Принцип аргумента.

Пусть $\Gamma = \gamma_0 - \gamma_1 - \dots - \gamma_n, D$ – область, ограниченная $\Gamma, A := \{a_1, \dots, a_k\} \subseteq D, f$ голоморфна в $D' \setminus A, D' \supset D$. a_j – полюса функции f и $\forall z \in \Gamma : f(z) \neq 0$. Тогда

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz = J_{f(\Gamma)}(0) = \frac{1}{2\pi} \Delta_{\Gamma} f = N - P$$

 $rde\ N\ u\ P$ – число нулей и полюсов $f\ b\ D\ c\ y$ чётом их кратностей соответственно.

Доказательство. Из определения f, можем её представить в виде

$$f = \frac{(z - b_1)^{n_1} \cdots (z - b_\eta)^{n_\eta}}{(z - a_1)^{p_1} \cdots (z - a_k)^{p_k}} g(z)$$

где q – голоморфна в \overline{D} и не содержит там нулей.

Тогда

$$\frac{f'}{f} = \sum_{i=1}^{\eta} \frac{n_i}{z - b_i} - \sum_{i=1}^{k} \frac{p_i}{z - a_i} + \frac{g'}{g}$$

Почему это так? Рассмотрим, например, $f(z) = (z - b_k)^{n_k} g(z)$, тогда $f'(z) = n_k(z - b_k)^{n_k} g(z)$ $(b_k)^{n_k-1}g(z)+(z-b_k)^{n_k}g'(z)$. Тогда выполнено следующее:

$$\frac{f'}{f} = \frac{n_k}{z - b_k} + \frac{g'}{g}$$

Причём после интегрирования первое слагаемое даст нам приращение, а второе ноль, так как функция голоморфная. На случай нескольких нулей и полюсов обобщается аналогично.

Значит

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz = \sum_{i=1}^{\eta} n_i J_{\Gamma}(b_i) - \sum_{i=1}^{k} p_i J_{\Gamma}(a_i) + \frac{1}{2\pi i} \int_{\Gamma} \frac{g'}{g} dz = \sum_{i=1}^{\eta} n_i - \sum_{i=1}^{k} p_i = N - P$$

так как $J_{\Gamma}(b_i) = 1, J_{\Gamma}(a_i) = 1$

Теорема 19.2. Теорема Руше.

Пусть f,g – голоморфные в \overline{D} , где D ограничивает $\Gamma=\gamma_0-\gamma_1-\cdots-\gamma_n$. Пусть |f| > |g| на Γ . Тогда

$$N_f(D) = N_{f+g}(D)$$

 $rde\ N_f(D)$ – число нулей функции f в области D.

Доказательство. Заметим, что |f| > 0 и |f+g| > 0 на Γ .

|f| по условию, $|f| > |g| \geqslant 0, |f + g|$ по неравенству треугольника.

Тогда по принципу аргументов

$$f + g = f \cdot \left(1 + \frac{g}{f}\right) : \triangle_{\Gamma}(f + g) = \triangle_{\Gamma}f + \triangle_{\Gamma}\left(1 + \frac{g}{f}\right)$$

Но |g|<|f|, то есть $\left|\frac{g}{f}\right|<1\Rightarrow \triangle_{\Gamma}\left(1+\frac{g}{f}\right)=0.$ Почему это так? Заметим, что образ этой функции находится от числа 1 на расстоянии не больше 1:

$$\left| \left(1 + \frac{g}{f} \right) - 1 \right| = \left| \frac{g}{f} \right| < 1$$

Из геометрических соображений это значит, что мы не сможем сделать ни одного оборота вокруг нуля, ну а мы знаем, что индекс функции по циклу – это количество оборотов образа вокруг нуля.

Тогда $\Delta_{\Gamma}(f+g) = \Delta_{\Gamma}(f) \Rightarrow$ по принципу аргументов (так как функции голоморфны \Rightarrow нет полюсов):

$$N_f(D) = N_{f+g}(D)$$

Теорема 19.3. Основная теорема алгебры.

Пусть p — многочлен степени n с коэффициентом из \mathbb{C} . Тогда p имеет в \mathbb{C} ровно n нулей с учётом кратности.

Доказательство. Введём для р:

$$p(z) = [f := z^n] + [g := c_{n-1}z^{n-1} + \dots + c_1z + c_0]$$

p голоморфно в $\overline{D} = \overline{O}_R(0)$ при R > 1.

Оценим

$$|g| \leqslant \sum_{i=0}^{n-1} |c_i z^i| \leqslant n \cdot \max_i |c_i| R^{n-1}$$

И возьмём

$$R > n \cdot \max_{i} |c_i|$$

тогда $|f| = R^n > n \cdot \max_i |c_i| \cdot R^{n-1} \geqslant |g|$.

Применяя теорему Руше, получим

$$N_D(p) = N_D(f) = n$$

20 Теорема о локальной структуре отображения. Принцип сохранения области....

Теорема 20.1. Пусть f голоморфна в области D. Пусть $z_0 \in D, f(z_0) = w_0$, причём $z_0 - нуль$ n-го порядка. Тогда

$$\exists O_{\rho}(w_0) \; \exists O_r(z_0) : \; \forall w^* \in \dot{O}_{\rho}(w_0)$$

уравнение $f(z)=w^*$ имеет ровно n решений в $\dot{O}_r(z_0)$.

Доказательство. Пусть сначала $w_0 = 0$. Тогда точка z_0 – изолированный ноль функции f и f', поскольку $f^{(n)}(z_0) \neq 0$ (если предположить противное, получим, что $f \equiv 0$ по теореме о единственности). Выберем $\delta > 0$ такое, что других нулей на $\overline{B_\delta}(z_0)$ у этих функций нет.

Положим $\varepsilon = \min_{|z-z_0|=\delta} |f(z)|$. Зафиксируем $\tilde{w} \in \dot{B}_{\varepsilon}(w_0)$ и проверим условие теоремы Руше для функции f и $-\tilde{w}$ на области $B_{\delta}(z_0)$:

$$|f(z)|\geqslant arepsilon>|- ilde{w}|$$
 при $|z-z_0|=\delta$

Значит уравнение $f(z) = \tilde{w}$, как и f(z) = 0, имеет n корней на $B_{\delta}(z_0)$ с учётом кратности. Очевидно, что f имеет ровно 1 корень кратности n, так как первые n-1 производные равны нулю.

Осталось доказать, что все нули функции $f(z) - \tilde{w}$ имеют порядок 1, это правда, поскольку $(f - \tilde{w})' \neq 0$ на $\dot{B}_{\delta}(z_0)$ (в силу того, что мы выбирали такую δ -окрестность, что f' не имеет в ней других нулей). Если же $w_0 \neq 0$, то доказанную часть теоремы можно применить к функции $f - w_0$.

Теорема 20.2. Принцип сохранения области или открытости.

Пусть $f \not\equiv const$ – голоморфна в области D. Тогда f(D) тоже является областью. Если $U \subseteq D$ и U – открыто, то f(U) тоже открыто

Доказательство. Докажем, что множество f(G) – открытое. Пусть $w_0 \in f(G)$ тогда $\exists z_0 \in G: f(z_0) = w_0$. Если $f'(z_0) \neq 0$, то по теореме об обратной функции $\exists \delta > 0$ и $\varepsilon > 0$ такие, что $\forall w \in B_{\varepsilon}(w_0)$ уравнение f(z) = w имеет единственное решение на $B_{\delta}(z_0)$, поэтому $B_{\varepsilon}(w_0) \subset f(G)$. Если же наоборот, $f'(z_0) = 0$, то в силу непостоянности $f, \exists n \in \mathbb{N}: n \geqslant 2$ такое, что $f^{(n)}(z_0) \neq 0$, и применима теорема о локальной структуре отображения, дающая аналогичный результат.

Теперь покажем связность множества f(G). Пусть $w_1, w_2 \in f(G)$ тогда для некоторых $z_1, z_2 \in G$ выполнено $f(z_1) = w_1, f(z_2) = w_2$. Пусть γ – кривая, соединяющая точки z_1 и z_2 , такая, что $\gamma \subset G$. Тогда кривая $\Gamma = f(\gamma)$ соединяет точки w_1 и w_2 .

Определение 20.1. f голоморфная в D называется **однолистной**, если

$$\forall z_1, z_2: z_1 \neq z_2 \Rightarrow f(z_1) \neq f(z_2)$$

Определение 20.2. f **локально однолистна**, если она однолистна в некоторой области $O(z_0)$.

Утверждение 20.1. *Если* $f'(z_0) = 0$, то она неоднолистна.

Утверждение 20.2. Найдётся достаточно малая окрестность z_0 , в которой f константа.

21 Принцип максимума модуля и лемма Шварца

Теорема 21.1. Принцип максимума модуля.

Пусть f голоморфна в D и $f\not\equiv const.$ Тогда |f| не может достигать максимума в $z\in D.$

Доказательство. От противного. Пусть $z_0 \in D$:

$$\forall z \in D: |f(z_0)| \geqslant |f(z)|$$

Рассмотрим $w_0 = f(z_0)$. Тогда

$$\forall w \in f(D): |w_0| \geqslant |w|$$

То есть $f(D) \subset \overline{O}_{|w_0|}(0)$, а $|w_0|$ лежит на его границе \Rightarrow противоречие с принципом сохранения открытости.

Лемма 21.1. Шварца.

Пусть f(z) в $D=\{z\ |\ |z|<1\}$ голоморфна, а 0 – неподвижная точка f(z) и $\forall z\in D: |f(z)|\leqslant 1$. Тогда

- 1. $\forall z \in D : |f(z)| \leq |z|; |f'(0)| \leq 1$
- 2. Если $\exists z_0$: в любом из неравенств предыдущего пункта достигается равенство, то $f(z) = ze^{i\theta}, \theta \in \mathbb{R}$

Доказательство. 1. Рассмотрим $g(z) = \frac{f(z)}{z}$, она голоморфна в $\dot{O}_1(0)$, причём точка 0 – устранимая особая. Тогда

$$g(z) = \begin{cases} \frac{f(z)}{z}, z \neq 0\\ f'(z), z = 0 \end{cases}$$

Голоморфна в D.

Тогда в $O_r(0)$ по принципу максимумов:

$$\max_{|z| \le r} |g| = \max_{|z| = r} |g| = \frac{1}{r} \max_{|z| = r} |f(z)| \le \frac{1}{r}$$

Фиксируем $z \in D$. Тогда

$$\forall r \in (|z|, 1) : |g(z)| \leqslant \frac{1}{r}$$

Перейдём к пределу $r \to 1$ и получим $|g(z)| \le 1$, тогда $|f(z)| \le |z|$. Из этого неравенства как раз следует $|f'(0)| \le 1$:

$$\left| \frac{f(0) - f(z)}{0 - z} \right| = \left| \frac{f(z)}{z} \right| \leqslant 1$$

2. Пусть $|f(z_0)| = |z_0|$ при каком-то $z_0 \neq 0, z_0 \in D$. Тогда

$$|g(z_0)| = 1 \Rightarrow g(z) \equiv const$$

по принципу максимума, причём $|g(z)|=1\Rightarrow g(z)=e^{i\theta}\Rightarrow f(z)=z\cdot e^{i\theta}$. Если $|f'(0)|=1\Rightarrow g(0)=1\Rightarrow$ аналогично берём $z_0=0$.

22 Дробно-линейные отображения. . . .

Определение 22.1. Пусть f – отображение из D в \mathbb{C} , которое переводит гладкие кривые в гладкие кривые. Оно называется **конформным** в точке z_0 , если оно сохраняет углы между кривыми в точке z_0 .

Утверждение 22.1. Если f – голоморфная функция u $f'(z_0) \neq 0$, то f конформно в точке z_0 .

Лемма 22.1. 1. Пусть $a \in \mathbb{C}$, $\lim_{z \to a} f(z) = \infty$, тогда f конформна в $a \Leftrightarrow f$ имеет полюс первого порядка.

- 2. Пусть $a=\infty, \lim_{z\to a} f(z)=A\in\mathbb{C},$ тогда f конформна в $a\Leftrightarrow \operatorname{res}_\infty f\neq 0$
- 3. Пусть $a=\infty$, $\lim_{z\to a}f(z)=\infty$, тогда f конформна в $a\Leftrightarrow f$ имеет полюс первого порядка.

Доказательство. 1. f конформна в $a \Leftrightarrow f'(a) \neq 0 \Leftrightarrow$ для $g(z) := \frac{1}{f(z)}$ выполняется

$$g'(a) \neq 0 \Leftrightarrow g(z) = g'(a)(z-a) + o(z-a) \Leftrightarrow f(z) = \frac{1}{g'(a)(z-a)}(1+o(1))$$

то есть f имеет простой полюс.

2. Знаем, что

$$\lim_{z \to \infty} f(z) = A \in \mathbb{C}$$

Определим

$$g(w) = f\left(\frac{1}{w}\right) = A + g'(0)w + o(w), |w| \to 0$$

Тогда

$$\lim_{w \to 0} \frac{g(w) - A}{w} \neq 0 \Leftrightarrow \lim_{z \to \infty} z(f(z) - A) = -\operatorname{res}_{\infty} f \neq 0$$

3. Знаем, что

$$\lim_{z \to a} f(z) = \infty$$

Тогда для

$$g(w) := \frac{1}{f(\frac{1}{w})}$$

будет верно, что w = 0 - УОТ, причём g(0) = 0.

Значит

$$g(w) = g'(0)w + o(w)$$

Тогда критерием конформности будет $g'(0) \neq 0$, то есть

$$\lim_{w \to 0} \frac{g(w)}{w} \neq 0 \Leftrightarrow \lim_{z \to \infty} \frac{z}{f(z)} \neq 0$$

то есть f имеет простой полюс (П1П).

Определение 22.2. $L(z) = \frac{az+b}{cz+d}$ – дробно линейное отображение, если $L(z) \neq const$, то есть $ad-bc \neq 0$.

Пусть \mathfrak{M} – множество всех ДЛО.

Утверждение 22.2. \mathfrak{M} – группа относительно композиции.

Доказательство. Подставим и проверим:

$$\frac{a_1 \frac{a_2 z + b_2}{c_2 z + d_2} + b_1}{c_1 \frac{a_2 z + b_2}{c_2 z + d_2} + d_1} = \frac{(a_1 a_2 + b_1 c_2)z + (a_1 b_2 + b_1 d_2)}{(c_1 a_2 + d_1 c_2)z + (c_1 b_2 + d_1 d_2)}$$

Заметим, что коэффициенты нового элемента могут быть получены перемножением матриц (это, кстати, доказывает, что сохраняется свойство ненулевого определителя):

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$$

Для поиска обратного элемента в группе, возьмём обратную матрицу (существует, так как определитель ненулевой $ad-bc\neq 0$) — это будет матрица коэффициентов искомого элемента.

Утверждение 22.3. Пусть $L \in \mathfrak{M}, L$ – биекция $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$. Тогда L – конформное отображение в любой точке.

Доказательство. Посчитаем производную

$$L'(z) = \frac{ad - bc}{(cz + d)^2}$$

Если $z\neq\infty,z\neq-\frac{d}{c},c\neq0$, то $cz+d\neq0\Rightarrow L'(z)\neq0\Rightarrow$ конформное. Пусть $c\neq0,z=\infty$. Если $c\neq0$, то в $z=\infty$ УОТ, хотим проверить $\mathrm{res}_{\infty}L\neq0$ из чего следовала бы конформность.

Считаем вычет:

$$\lim_{z \to \infty} z \left(\frac{az+b}{cz+d} - \frac{a}{c} \right) = \lim_{z \to \infty} \frac{bc-ad}{c(cz+d)} = \frac{bc-ad}{c^2} \neq 0$$

При $c \neq 0, z = -\frac{d}{c}$ — действительно, простой полюс (1 порядка). При c = 0 — линейная функция, которая, очевидно, конформная в ∞ — простой полюс.

Круговое свойство и принцип симметрии 23

Теорема 23.1. При ДЛО образом окружности или прямой будет окружность или прямая.

1. Рассмотрим афинное отображение w = az + b (когда c = 0). Доказательство.

Знаем из аналитической геометрии, что окружность переходит в окружность, а прямая в прямую.

2. При $c \neq 0$ представим отображение в виде

$$w = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{-ad+bc}{c} \cdot \frac{1}{cz+d}$$

Введём обозначения

$$w = \alpha + \beta t; \quad \alpha := \frac{a}{c}; \quad \beta := \frac{-ad + bc}{c}; \quad t := \frac{1}{\zeta}; \quad \zeta := cz + d$$

Видим, что $w(t),\zeta(t)$ – афинные, проверим выполнимость утвеждения теоремы для $z=\frac{1}{\zeta}$.

Положим $\zeta = \xi + i\eta$. Тогда наша искомая окружность или прямая могла быть описана таким уравнением:

$$A(\xi^2 + \eta^2) + B\xi + C\eta + D = 0, 4AD < B^2 + C^2$$

задаёт невырожденную окружность при $A\neq 0$ и невырожденную прямую при A=0. Полагая $t=\frac{1}{\xi}$, учитывая $\xi^2+\eta^2=\zeta\overline{\zeta}, \xi=\frac{\zeta+\overline{\zeta}}{2}, \eta=\frac{\zeta-\overline{\zeta}}{2i}$, запишем уравнение в виде

$$A\zeta\overline{\zeta} + \left(\frac{B}{2} + \frac{C}{2i}\right)\zeta + \left(\frac{B}{2} - \frac{C}{2i}\right)\overline{\zeta} + D = 0$$

и отсюда получим

$$A + \left(\frac{B}{2} + \frac{C}{2i}\right)\overline{t} + \left(\frac{B}{2} - \frac{C}{2i}\right)t + Dt\overline{t} = 0$$

что задаёт окружность при $D \neq 0$ и прямую при D = 0.

Суперпозиция преобразований, переводящих окружности и прямые в окружности и прямые, переводит окружности и прямые в окружности и прямые.

Следствие. Окружность или прямая γ переходит при ДЛО в прямую, если нуль знаменателя принадлежит γ , и в окружность иначе.

Это называется круговым свойством.

Определение 23.1. Точки z_1 и z_2 называются симметричными относительно окружности и центром в точке z_0 радиуса R>0, если они лежат на одном луче, исходящем из точки z_0 , и $|z_1-z_0|\cdot|z_2-z_0|=R^2$.

Утверждение 23.1. Следующие определения эквивалентны:

1.
$$\begin{cases} \arg(z_1 - z_0) = \arg(z_2 - z_0) \\ |z_1 - z_0| \cdot |z_2 - z_0| = R^2 \end{cases}$$

2.
$$(z_1 - z_0)\overline{(z_2 - z_1)} = R^2$$

3. Точки пересечения изначальной окружности с \forall другой проходящей через z_1, z_2 являются точками касания.

 $Доказательство. 1 \Leftrightarrow 2$ очевидно.

$$(2 \Rightarrow 3)$$
.

Пусть z' – точка принадлежащая обеим окружностям. По условию

$$|z' - z_0|^2 = R^2 = |z_1 - z_0| \cdot |z_2 - z_0|$$

Значит $z'-z_0$ — касательная к произвольной окружности.

$$(3 \Leftarrow 2)$$

 $z'-z_0$ – касательная, значит

$$|z'-z_0|^2 = |z_2-z_0| \cdot |z_1-z_0|$$

Значит $|z_2 - z_0| \cdot |z_1 - z_0| = R^2$.

Теорема 23.2. При ДЛО пара симметричных точек относительно окружности или прямой γ переходит в пару симметричных точек относительно образа γ .

Доказательство. Очевидно из 3 эквивалентного определения симметрии, так как ДЛО сохраняют углы, а значит все касательные останутся касательными. \Box

24 Общий вид конформных отображений...

Теорема 24.1. Любое конформное отображение из $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ – это ДЛУ.

Доказательство. Из предыдущих свойств, очевидно, что каждое ДЛУ обладает всеми нужными свойствами.

Если же f произвольный автоморфизм расширенной комплексной плоскости, то $\exists z_0 \in \overline{\mathbb{C}}: f(z_0) = \infty.$

1. Если $z_0 \in \mathbb{C}$, то f имеет полюс первого порядка (так как f конформно в z_0). Рассмотрим

$$h(z) := \frac{\operatorname{res}_{z_0} f}{z - z_0} - f(z)$$

Голоморфна кроме z_0 , а z_0 – её УОТ. Причём

$$\lim_{z \to \infty} h(z) = \lim_{z \to \infty} f(z) \in \mathbb{C}$$

(из-за биективности мы не можем попасть в бесконечность из двух разных точек).

Значит h – целая и ограниченная $\Rightarrow h \equiv const$ (по теореме Луивилля) $\Rightarrow f$ – ДЛУ.

2. Если $z_0 = \infty$. Тогда f в бесконечности имеет полюс первого порядка, то есть

$$f(z) = Az + h(z), h(z) = o(z), |z| \rightarrow +\infty$$

Тогда h(z) голоморфна в $\overline{\mathbb{C}}$ и $\lim_{z\to\infty}h(z)\in\mathbb{C}\Rightarrow h\equiv const$

Определение 24.1. Введём красивое обозначение для единичного открытого шара

$$\mathbb{D} := \{ z \in \mathbb{C} \mid |z| < 1 \}$$

Теорема 24.2. Общий вид конформного отображения $\mathbb{D} \mapsto \mathbb{D}$:

$$f(z) = e^{i\theta} \frac{z-a}{1-z\overline{a}}, |a| < 1, \theta \in \mathbb{R}$$

Доказательство. Очевидно, что $\exists a = f(0)$. Тогда введём

$$\varphi(w) := \frac{w-a}{1-\overline{a}w}, h := \varphi \circ f$$

Заметим, что h – конформное отображение, причём h(0) = 0.

Тогда по лемме Шварца (|h(z)| = 1 при |z| = 1) верно $|h(z)| \leq |z|$.

 h^{-1} тоже автоморфизм и переводит 0 в 0. Тогда применим лемму Шварца для неё $|h^{-1}(w)| \leqslant |w| \Rightarrow |w| \leqslant |h(w)| \leqslant |w| \Rightarrow$ равенство выполняется $\Rightarrow h$ – поворот $\Leftrightarrow h = e^{i\theta}z \Rightarrow f = \varphi^{-1} \circ (e^{i\theta}z) \in \mathfrak{M}$

25 Теорема Римана об отображении. Доказательство единственности.

Теорема 25.1. Римана. (Доказательство единственности)

Eсли D — односвязная область c границей из более одной точки, то D конформно эквивалентно \mathbb{D} .

Другими словами, $\exists f: D \to \mathbb{D}$ – конформное отображение. При этом, если потребовать, чтобы $f(z_0) = 0$ и $\arg f'(z_0) = \theta$, то такая f единтственна.

Доказательство. Единственность очевидна, так как можно рассмотреть композицию двух автоморфизмов на \mathbb{D} , причём $0 \mapsto 0 \Rightarrow$ по лемме Шварца мы знаем её вид $(e^{i\theta}z)$. Фиксирурем θ и получаем отображение единственным образом.

26 Функция Жуковского

Определение 26.1. Функцией Жуковского называется

$$w = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

В каждой точке $z \not\in \{0, \pm 1, \infty\}$ функция конформна. В точке 0:

$$g(z) := \frac{1}{w(z)} = \frac{2z}{z^2 + 1}$$

Эта функция в нуле регулярна и имеет ненулевую производную, а значит, конформна в нуле. В точке ∞ :

$$\varphi(z) := w\left(\frac{1}{z}\right) = \frac{1}{2}\left(\frac{1}{z} + z\right)$$

Заметим, что это та же w, и в силу конформности в нуле, конформность в бесконечности очевидна.

Пример. Пусть задана окружность

$$\gamma_r = \{ z \mid |z| = r, r \neq 1 \}$$

Образом под действием функции Жуковского будет $f(z) = \frac{1}{2} \left(r e^{i\varphi} + \frac{1}{r} e^{-i\varphi} \right) = \frac{1}{2} \left(r + \frac{1}{r} \right) \cos \varphi + \frac{i}{2} \left(r - \frac{1}{r} \right) \sin \varphi$

При фиксированном r преобразуем к виду $f(z) = a \cos \varphi + ib \sin \varphi =: u + iv$.

Тогла

$$\frac{u^2}{a^2} + \frac{v^2}{b^2} = 1$$

Эллипс с фокусами $a^2 - b^2 = 1 \Rightarrow$ фокусы ± 1 .

Пример. Пусть задан луч

$$l_{\varphi} = \{z \mid z = re^{i\varphi}, r > 0\}, \varphi \in [-\pi, \pi) \setminus \left\{0, \pm \frac{\pi}{2}, -\pi\right\}$$

Воспользовавшись формулой из предыдущего примера, в условиях, что теперь φ фиксирован, получим следующее:

$$\frac{u^2}{\cos^2\varphi} - \frac{v^2}{\sin^2\varphi} = 1$$

Гипербола с фокусами в $\pm(\cos^2\varphi + \sin^2\varphi) = \pm 1$.

27 Конформные отображения, осуществляемые степенной и экспоненциальной функциями

Пример. Рассмотрим $f(z) = z^n, n \in \mathbb{N}$.

Утверждается, что она локально однолистна в $\mathbb{C}\setminus\{0\}$, так как $\forall z\in\mathbb{C}\setminus\{0\}:\ f'(z)=nz^{n-1}\neq 0.$

Причём

$$z_1^n=z_2^n \Leftrightarrow
ho_1^n e^{iarphi_1 n}=
ho_2^n e^{iarphi_2 n} \Leftrightarrow egin{cases} arphi_1-arphi_2=rac{2\pi k}{n}, k\in\mathbb{Z} \ rac{2\pi}{n}\mid arphi_1-arphi_2 \
ho_1=
ho_2 \end{cases}$$

Также к нему есть обратное отображение

$$f^{-1}(w) = |w|^{\frac{1}{n}} e^{\frac{i}{n} \arg(w)}$$

Пример. Рассмотрим $f = e^z$.

Утверждается, что f локально однолистна в \mathbb{C} , так как $f'=e^z\neq 0$. Причём

$$e^{z_1} = e^{z_2} \Leftrightarrow e^{x_1}e^{iy_1} = e^{x_2}e^{iy_2} \Leftrightarrow \begin{cases} 2\pi \mid y_1 - y_2 \\ x_1 = x_2 \end{cases}$$

По аналогии, обратное отображение также конформно

$$f^{-1}(w) = \ln |w| + i \arg(w), \arg(w) \in (0, 2\pi)$$
 - ветвь корня

28 Локально равномерная сходимость и теоремы Вейерштрасса

Определение 28.1. Пусть f_n определена в области D. Тогда f_n локально равномерно сходится к f в области D, если

$$\forall z_0 \in D \; \exists \delta > 0 : \; O_{\delta}(z_0) \subset D : \; f_n \stackrel{O_{\delta}(z_0)}{\Longrightarrow} f$$

Утверждение 28.1. Эквивалентное определение локально равномерной сходимости:

$$\forall K - \kappa o makm \subset D : f_n \stackrel{K}{\Longrightarrow} f$$

Доказательство. $(2 \Rightarrow 1)$ В качестве компактов возьмём $\overline{O}_{\delta}(z_0)$

 $(1 \Rightarrow 2)$ Компакт покрываем шарами, выбираем конечное подпокрытие и получаем \Rightarrow .

Теорема 28.1. Пусть f_n голоморфны в D, f_n сходится κ f локально равномерно в D.

- 1. f голоморфна
- 2. $f_n^{(k)}$ локально равномерно сходится к $f^{(k)}$ в D

Доказательство. 1. По теореме Морера достаточно проверить непрерывность f и

$$\int_{\Gamma$$
 - замкнутой $f(z)dz=0$

Пусть $z_0 \in D, \overline{O}_r(z_0) \subset D.$

Используя определение с компактами получим, что $f_n \rightrightarrows f$ на $\overline{O}_r(z_0) \Rightarrow f$ непрерывна, как равномерный предел непрерывных.

Далее, пусть γ – кусочно гладкая кривая, замкнутая в $\overline{O}_r(z_0)$.

Так как

$$\left| \int_{\gamma} (f_n - f) dz \right| \leqslant \int_{\gamma} |f_n - f| dz \leqslant \varepsilon_n \int_{\gamma} dz = c\varepsilon_n \stackrel{n \to \infty}{\to} 0$$

поэтому

$$\int_{\gamma} f_n(z)dz \to \int_{\gamma} f(z)dz$$

Но

$$\int_{\gamma} f_n dz = 0 \Rightarrow \int_{\gamma} f(z) dz = 0 \Rightarrow f$$
 - голоморфна

2. Напишем формулу Коши

Пусть $z_0 \in D, O_r(z_0) \subset D, z \in O_{\frac{r}{2}}(z_0)$. Тогда

$$f'(z) = \frac{1}{2\pi i} \int_{\partial O_r(z_0)} \frac{f(\xi)d\xi}{(\xi - z)^2}; \quad f'_n(z) = \frac{1}{2\pi i} \int_{\partial O_r(z_0)} \frac{f_n(\xi)d\xi}{(\xi - z)^2}$$

Тогда

$$|f'(z) - f'_n(z)| \leqslant \left| \frac{1}{2\pi i} \int_{\gamma_r} \frac{|f(\xi) - f_n(\xi)| |d\xi|}{|\xi - z|^2} \right| \leqslant \frac{1}{2\pi} \max_{\gamma_r} |f - f_n| \cdot \left| \int_{\gamma_r} \frac{|d\xi|}{|\xi - z|^2} \right| \leqslant \frac{2}{\pi r^2} \max_{\gamma_r} |f - f_n| \cdot 2\pi r = c \max_{\gamma_r} |f - f_n| \to 0$$

При этом $c=\frac{4}{r} \Rightarrow$ стремление на самом деле равномерное на $O_{\frac{r}{2}}(z_0)$. Так можно сделать $\forall z_0 \Rightarrow$ по первому определению f' локально равномерно сходится к f в D. Дальше – очев индукция.

Теорема 28.2. Пусть f_n голоморфна в D, $\sum_{n=1}^{\infty} f_n$ локально равномерно сходится в области D. Тогда

$$1.\,\,f:=\sum_{n=1}^\infty f_n$$
 – голоморфная функция

2.
$$f' = \sum_{n=1}^{\infty} f'_n$$

 \mathcal{A} оказательство. $\tilde{f}_k := \sum_{n=1}^k f_n$ и применяем теорему Вейерштрасса. \square