

NoHype: Virtualized Cloud Infrastructure without the Virtualization

Eric Keller, Jakub Szefer, Jennifer Rexford, Ruby Lee

Princeton University

IBM Cloud Computing Student Workshop

(ISCA 2010 + Ongoing work)

Virtualized Cloud Infrastructure

Run virtual machines on a hosted infrastructure

- Benefits...
 - Economies of scale
 - Dynamically scale (pay for what you use)

Without the Virtualization

- Virtualization used to share servers
 - Software layer running under each virtual machine

Without the Virtualization

- Virtualization used to share servers
 - Software layer running under each virtual machine
- Malicious software can run on the same server
 - Attack hypervisor

Are these vulnerabilities imagined?

- No headlines... doesn't mean it's not real
 - Not enticing enough to hackers yet?
 (small market size, lack of confidential data)
- Virtualization layer huge and growing
 - 100 Thousand lines of code in hypervisor
 - 1 Million lines in privileged virtual machine
- Derived from existing operating systems
 - Which have security holes

NoHype

- NoHype removes the hypervisor
 - There's nothing to attack
 - Complete systems solution
 - Still retains the needs of a virtualized cloud infrastructure

No hypervisor ----->

Virtualization in the Cloud

- Why does a cloud infrastructure use virtualization?
 - To support dynamically starting/stopping VMs
 - To allow servers to be shared (multi-tenancy)
- Do not need full power of modern hypervisors
 - Emulating diverse (potentially older) hardware
 - Maximizing server consolidation

Roles of the Hypervisor

- Isolating/Emulating resources
 - CPU: Scheduling virtual machines
 - Memory: Managing memory
 - I/O: Emulating I/O devices
- Networking
- Managing virtual machines

Push to HW / Pre-allocation

Remove

Push to side

NoHype has a double meaning... "no hype"

Scheduling Virtual Machines

- Scheduler called each time hypervisor runs (periodically, I/O events, etc.)
 - Chooses what to run next on given core
 - Balances load across cores

Dedicate a core to a single VM

- Ride the multi-core trend
 - 1 core on 128-core device is ~0.8% of the processor
- Cloud computing is pay-per-use
 - During high demand, spawn more VMs
 - During low demand, kill some VMs
 - Customer maximizing each VMs work,
 which minimizes opportunity for over-subscription

Managing Memory

- Goal: system-wide optimal usage
 - i.e., maximize server consolidation

Hypervisor controls allocation of physical memory

Pre-allocate Memory

- In cloud computing: charged per unit
 - -e.g., VM with 2GB memory
- Pre-allocate a fixed amount of memory
 - Memory is fixed and guaranteed
 - Guest VM manages its own physical memory (deciding what pages to swap to disk)
- Processor support for enforcing:
 - allocation and bus utilization

Emulate I/O Devices

- Guest sees virtual devices
 - Access to a device's memory range traps to hypervisor
 - Hypervisor handles interrupts
 - Privileged VM emulates devices and performs I/O

Emulate I/O Devices

- Guest sees virtual devices
 - Access to a device's memory range traps to hypervisor
 - Hypervisor handles interrupts
 - Privileged VM emulates devices and performs I/O

Dedicate Devices to a VM

- In cloud computing, only networking and storage
- Static memory partitioning for enforcing access
 - Processor (for to device), IOMMU (for from device)

Virtualize the Devices

- Per-VM physical device doesn't scale
- Multiple queues on device
 - Multiple memory ranges mapping to different queues

Networking

• Ethernet switches connect servers

Networking (in virtualized server)

Software Ethernet switches connect VMs

Networking (in virtualized server)

Software Ethernet switches connect VMs

Networking (in virtualized server)

Software Ethernet switches connect VMs

Do Networking in the Network

- Co-located VMs communicate through software
 - Performance penalty for not co-located VMs
 - Special case in cloud computing
 - Artifact of going through hypervisor anyway
- Instead: utilize hardware switches in the network
 - Modification to support hairpin turnaround

Removing the Hypervisor Summary

- Scheduling virtual machines
 - One VM per core
- Managing memory
 - Pre-allocate memory with processor support
- Emulating I/O devices
 - Direct access to virtualized devices
- Networking
 - Utilize hardware Ethernet switches
- Managing virtual machines
 - Decouple the management from operation

NoHype Double Meaning

Means no hypervisor, also means "no hype"

- Multi-core processors
- Extended Page Tables
- SR-IOV and Directed I/O (VT-d)
- Virtual Ethernet Port Aggregator (VEPA)

NoHype Double Meaning

Means no hypervisor, also means "no hype"

- Multi-core processors
- Extended Page Tables
- SR-IOV and Directed I/O (VT-d)
- Virtual Ethernet Port Aggregator (VEPA)

Current Work: Implement it on today's HW

Xen as a Starting Point

Pre fill EPT mapping to partition memory

- Management tools
- Pre-allocate resources
 - -i.e., configure virtualized hardware
- Launch VM

Network Boot

- gPXE in Hvmloader
 - Added support for igbvf (Intel 82576)
- Allows us to remove disk
 - Which are not virtualized yet

Allow Legacy Bootup Functionality

- Known good kernel + initrd (our code)
 - -PCI reads return "no device" except for NIC
 - HPET reads to determine clock freq.

Use Device Level Virtualization

- Pass through Virtualized NIC
- Pass through Local APIC (for timer)

Block All Hypervisor Access

- Mount iSCSI drive for user disk
- Before jumping to user code, switch off hypervisor
 - Any VM Exit causes a Kill VM
 - User can load kernel modules, any applications

Timeline

Next Steps

Assess needs for future processors

- Assess OS modifications
 - to eliminate need for golden image(e.g., push configuration instead of discovery)

Conclusions

- Trend towards hosted and shared infrastructures
- Significant security issue threatens adoption
- NoHype solves this by removing the hypervisor
- Performance improvement is a side benefit

Questions?

Contact info:

ekeller@princeton.edu

http://www.princeton.edu/~ekeller

szefer@princeton.edu

http://www.princeton.edu/~szefer