A basic grammar for English

```
S \rightarrow NP VP
                    DET \rightarrow the \mid a \mid my...
NP \rightarrow DET N
                    Ν
                       → boy | girl | book
NP \rightarrow NP PP
                    V → cries | sleeps
VP \rightarrow V
                         → likes | reads
VP \rightarrow V NP
                     V → dreams | complains
VP \rightarrow VPP
                     V → shares | discusses
VP → V NP NP |
                    V → gives | tells
                    N → talks | speaks
VP \rightarrow V NP PP
VP \rightarrow V PP PP
                    P \rightarrow of \mid about \mid to \mid with
PP → P NP
```

Context-Free Grammars

- A context-free grammar (CFG) is defined as G = (Σ, V, S, P) where:
 - Σ is a finite set of terminal symbols
 - ▶ *V* is a finite set of *non-terminal* symbols, $V \cap \Sigma = \emptyset$
 - S is a distinguished symbol in V, termed the axiom of the grammar
 - ▶ P is a set of rewrite rules such that if $\alpha \Rightarrow \beta$ is in P, then (i) $\alpha \in V$ and (ii) $\beta \in (V \cup \Sigma)^*$
- ► The language L(G) of a grammar G is defined as :

$$L(G) = \{ w \in \Sigma^* \text{ st. } S \Rightarrow_G^* w \}$$

- ▶ A word in *L*(*G*) derives from *S* and contains only terminal symbols
- ▶ A *protoword* is any word α in $(V \cup \Sigma)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$.

A simple context-free Grammar

- Let G₁ = ({a,b}, {S}, S, {S → aSb, S → ab})
- ▶ $ab \in L(G_1)$, since $S \Rightarrow ab$
- ▶ $aabb \in L(G_1) : S \Rightarrow aSb$ (by rule 1) and $aSb \Rightarrow aabb$ (by rule 2), then $S \stackrel{*}{\Rightarrow} aabb$.
- ▶ $\forall n > 0, a^n b^n \in L(G_1)$. Proof :
 - true for n = 1, n = 2.
 - ▶ if true for n, then $S \stackrel{*}{\Rightarrow} a^n b^n$ and the last rule used must be $S \rightarrow ab : S \stackrel{*}{\Rightarrow} a^{n-1} S b^{n-1} \Rightarrow a^n b^n$. Replace the last rule with $S \Rightarrow aSb \Rightarrow aabb$ to get $a^{n+1} b^{n+1}$
- ► $L(G_1) = \{a^n b^n, n > 0\}$ (consider the protowords).

Recognition = Search

- ightharpoonup \Rightarrow_G defines an oriented graph (=binary relationship) over the set of protowords.
- ▶ $w \stackrel{?}{\in} L(G)$ amounts to finding a path in this graph
- caveat : the graph is infinite (yet locally finite), classical path-finding algorithms don't work
- search strategies :
 - ▶ from S to w : top-down recognition
 - from w to S: bottom-up recognition
 - depth-first (sequential exploration of paths)
 - breadth-first (parallel exploration of paths)
 - **.**..

Brute-force approach: top-down recursive descent

Solution:

```
% top down recognition
tdr(Proto, Word):- match(Proto, Word, [], []).
tdr([X|Proto], Word) :-
```

apprend(RHS, Proto, NewProto), match(NewProto, Word, NewProto1, NewWord),

tdr(NewProtol, NewWord).

rule(X, RHS),

```
match(L1, L2, L1, L2).
```

- this procedure only visit left-derivations : is it a problem?
- speed-up : check that the terminal prefix of NEWP is consistent with w.

Brute-force approach: top-down recursive descent

Solution:

```
% top down recognition
bulrp([s]).
bulrp(P):-
    append(Pref,Rest,P),
    append(RHS,Suff,Rest),
    rule(X,RHS),
    append(Pref,[X|Suff], NEWP),
    write(NEWP), nl,
    bulrp(NEWP).
```

- bottom-up parsing is based on reductions
- ▶ it fails if *G* contains unproductive rules or chain rules rules $A \stackrel{*}{\Rightarrow} A$. Why?