Chapitre 12

Fonctions trigonométriques

I. <u>Définitions sinus et cosinus</u>

1) Fonction périodique

Définition:

Soit f une fonction définie sur un intervalle \mathcal{D} .

La fonction f est périodique de période T s'il existe un nombre réel strictement positif T tel que, pour tout nombre réel x de \mathcal{D} , le nombre x+T appartient à \mathcal{D} et :

$$f(x+T) = f(x)$$

Interprétation graphique :

Dans un repère $(O; \vec{i}, \vec{j})$, la courbe représentative d'une fonction périodique de période T est invariante par translation de vecteur $T\vec{i}$.

Remarque:

Si T est une période de f et n un entier naturel n T est également une période de f.

2) Fonctions sinus et cosinus

Définitions:

- La fonction $x \mapsto \sin x$ définie sur \mathbb{R} est appelée fonction sinus et notée sin.
- La fonction $x \mapsto \cos x$ définie sur \mathbb{R} est appelée fonction cosinus et notée cos.

Remarques:

Pour tout réel x :

- $-1 \le \cos x \le 1$
- $-1 \leq \sin x \leq 1$
- $\cos^2 x + \sin^2 x = 1$

3) <u>Dérivabilité de la fonction sinus</u>

Propriété:

La fonction sinus est **dérivable** sur \mathbb{R} et pour tout nombre réel x,

$$\sin'(x) = \cos(x)$$

Propriété:

Soit a et b deux réels.

La fonction f définie sur \mathbb{R} par $f(x) = \sin(ax + b)$ est **dérivable** sur \mathbb{R} .

Pour tout réel $x, f'(x) = a \cos(ax + b)$.

4) Dérivabilité de la fonction cosinus

Propriété:

La fonction cosinus est **dérivable** sur \mathbb{R} et pour tout nombre réel x,

$$\cos'(x) = -\sin x$$

Démonstration:

On sait que, pour tout nombre réel x, $\cos x = \sin\left(x + \frac{\pi}{2}\right)$.

La fonction sin est dérivable sur \mathbb{R} , donc la fonction $f: x \mapsto \sin\left(x + \frac{\pi}{2}\right)$ est dérivable sur \mathbb{R} et :

pour tout nombre réel x, $f'(x)=1\times\cos\left(x+\frac{\pi}{2}\right)=-\sin x$ donc $\cos'(x)=-\sin x$.

Propriété:

Soit a et b deux réels.

La fonction f définie sur \mathbb{R} par $f(x) = \cos(ax + b)$ est **dérivable** sur \mathbb{R} .

Pour tout réel x, $f'(x) = -a \sin(ax + b)$.

II. Étude de la fonction sinus

1) Étude sur l'intervalle $[0; \pi]$

Pour tout nombre réel x, $\sin'(x) = \cos x$.

Or $\cos(x) \ge 0$ sur $\left[0; \frac{\pi}{2}\right]$ et $\cos x \le 0$ sur $\left[\frac{\pi}{2}; \pi\right]$.

Donc, la fonction sinus est croissante sur $\left[0;\frac{\pi}{2}\right]$ et décroissante sur $\left[\frac{\pi}{2};\pi\right]$.

Tableau de variation sur $[0;\pi]$

x	0		$\frac{\pi}{2}$		π
$\sin'(x)$	1	+	0	_	-1
$\sin(x)$	0	1	1		0

2) Courbe représentative sur $[-\pi; \pi]$

Propriété :

La fonction sinus est **impaire**.

Démonstration:

On sait que pour tout nombre réel x, $\sin(-x) = -\sin(x)$.

Propriété:

La courbe représentative $\mathscr C$ de la fonction sinus est **symétrique par rapport à l'origine** O du repère.

Remarque:

D'après la parité de la fonction sinus, il suffit d'étudier la fonction sur $[0; \pi]$, puis de compléter la courbe par symétrie par rapport à l'origine du repère.

3) Courbe représentative de la fonction sinus

Propriété:

La fonction sinus est périodique de période 2π .

Démonstration :

On sait que, pour tout nombre réel x, $\sin(x+2\pi)=\sin(x)$.

Remarque:

On en déduit alors que $\sin(x+k2\pi)=\sin x$ pour tout $k \in \mathbb{Z}$.

Propriété:

Dans un repère $(O; \vec{i}, \vec{j})$, la courbe représentative \mathscr{C} de la fonction sinus est **invariante par toute** translation de vecteur $k \ 2\pi \vec{i}$ où $k \in \mathbb{Z}$.

Démonstration:

Pour tout x de \mathbb{R} et tout k de \mathbb{Z} , on note $M(x;\sin x)$ et $M'(x+2k\pi,\sin(x+2k\pi))$ deux points de \mathscr{C} .

Alors $\overline{\text{MM}}' \begin{pmatrix} k \times 2\pi \\ 0 \end{pmatrix}$, donc $\overline{\text{MM}}' = k \, 2\pi \, \vec{i}$ et M' est l'image de M par la translation de vecteur $k \, 2\pi \, \vec{i}$.

Remarque:

D'après la périodicité de la fonction sinus, il suffit d'étudier la fonction sur n'importe quel intervalle de longueur 2π , puis de reproduire la courbe correspondante par des translations de vecteurs parallèles à l'axe des abscisses, de norme 2π .

Remarque:

La courbe de la fonction sinus est appelée une sinusoïde.

III. Étude de la fonction cosinus

1) Étude sur l'intervalle $[0; \pi]$

Pour tout nombre réel x, $\cos'(x) = -\sin x$.

Or $\sin(x) \ge 0$ sur $[0; \pi]$ donc $\cos'(x) \le 0$ sur $[0; \pi]$.

Donc, la fonction cosinus est décroissante sur $[0;\pi]$.

Tableau de variation sur $[0;\pi]$

x	0		$\frac{\pi}{2}$		π
$\cos'(x)$	0	_	-1	-	0
$\cos(x)$	1		0		-1

2) Courbe représentative sur $[-\pi; \pi]$

Propriété:

La fonction cosinus est paire.

Démonstration:

On sait que pour tout nombre réel x, $\cos(-x) = \cos(x)$.

Propriété:

La courbe représentative Γ de la fonction cosinus est symétrique par rapport à l'axe des ordonnées du repère.

Remarque:

D'après la parité de la fonction cosinus, il suffit d'étudier la fonction sur $[0; \pi]$, puis de compléter la courbe par symétrie par rapport à l'axe des ordonnées.

3) Courbe représentative de la fonction cosinus

Propriété:

La fonction cosinus est périodique de période 2π .

Démonstration:

On sait que, pour tout nombre réel x, $\cos(x+2\pi)=\cos(x)$.

Remarque:

On en déduit alors que $\cos(x+k2\pi)=\cos x$ pour tout $k \in \mathbb{Z}$.

Propriété:

Dans un repère $(0; \vec{i}, \vec{j})$, la courbe représentative \mathscr{C} de la fonction cosinus est **invariante par** toute translation de vecteur $k \, 2\pi \, \vec{i}$ où $k \in \mathbb{Z}$.

Remarque:

D'après la périodicité de la fonction sinus, il suffit d'étudier la fonction sur n'importe quel intervalle de longueur 2π , puis de reproduire la courbe correspondante par des translations de vecteurs parallèles à l'axe des abscisses, de norme 2π .

Remarques:

- Pour tout $x \in \mathbb{R}$, $\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$ donc la courbe représentative \mathscr{C} de la fonction sinus est l'image de la courbe représentative Γ de la fonction cosinus par la translation de vecteur $\frac{\pi}{2}\vec{i}$.
- La courbe de la fonction cosinus est aussi appelée une sinusoïde.