第二章课外练习题

导数和微分的概念与运算

1. 求下列极限

(1)
$$\lim_{x\to 0} (1-2f(x))^{\frac{1}{\sin x}}$$
, 其中 $f(x)$ 在 $x=0$ 可导, $f(0)=0$, $f'(0)=2$, 且当 $x\neq 0$ 时

 $f(x) \neq 0$;

(2)
$$\lim_{x\to 0} \frac{f(1-\cos x)}{\tan(5x^2)}$$
, 其中 $f'(0)$ 存在, $f(0) = 0$;

(3)
$$\lim_{x\to+\infty} x^{\frac{1}{2}} \sqrt{f\left(\frac{2}{x}\right)}$$
, 其中曲线 $y=f(x)$ 在原点处与曲线 $y=\sin x$ 相切.

2. 设
$$f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x} & x > 0 \\ 0 & x = 0 \end{cases}$$
 在 $x = 0$ 处右连续但右导数不存在,则 α 的取值范围是[]

A $\alpha > 0$. B $0 < \alpha \le 1$. C $\alpha > 1$. D $\alpha < 1$.

3. 设 f(x) 在 x = 0 的某邻域内有定义,F(x) = |x| f(x),则 F(x) 在 x = 0 处可导的充分必

要条件是[]

(A)
$$\lim_{x \to 0^+} f(x) = -\lim_{x \to 0^-} f(x)$$
. (B) $\lim_{x \to 0} f(x)$ $\neq \pm$.

(B)
$$\lim_{x\to 0} f(x)$$
 存在

(C)
$$f(x) \stackrel{\cdot}{=} x = 0$$
 处连续

(C)
$$f(x) \neq x = 0$$
 处连续. (D) $f(x) \neq x = 0$ 处可导.

4. f(x),g(x)在 $(-\infty,+\infty)$ 上有定义,对任意的x,h有f(x+h)=f(x)g(h)+f(h)g(x)

成立, 且
$$f(0) = g'(0) = 0$$
, $g(0) = f'(0) = 1$, 求 $f'(x)$.

5.
$$\exists \exists f(x) = \begin{cases} x^4 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}, \quad \Re f''(0).$$

6. 如图, f(x), g(x) 是两个逐段线性的连续

函数,设u(x) = f(g(x)),求u'(1)的值.

7. 导数运算

- (1) $f(x) = |\ln|x|, xf'(x);$
- (2) 已知y = y(x)由方程

- (3) 设函数 y = y(x) 由方程 $x^{y^2} + y^2 \ln x + 4 = 0$ 确定,求 y';
- (4) 已知函数 $y = f(\frac{x+1}{x-1})$ 满足 $f'(x) = \arctan \sqrt{x}$, 求 $\frac{dy}{dx}\big|_{x=2}$;
- (5) 设函数 g(y) 是 f(x) 的反函数,若 f'(x),f''(x) 存在且 $f'(x) \neq 0$,求 g''(y).
- 8. 证明 $(x^{n-1}e^{\frac{1}{x}})^{(n)} = \frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$.
- 9. 设 f(0) = 0. 证明: 函数 f(x) 在 x = 0 处可导的充要条件是: 存在在 x = 0 处连续的函数 g(x) ,使得 f(x) = xg(x) .
- 10. 设f(x)在(a,b)内有定义,且在 $x_0 \in (a,b)$ 处可导.数列 $\{x_n\}, \{y_n\}$ 满足条件:

$$a < x_n < x_0 < y_n < b, \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = x_0.$$

试求
$$\lim_{n\to\infty} \frac{f(y_n) - f(x_n)}{y_n - x_n}$$
.