# 의료 Artificial Intelligence

확률과 인공지능

2022.04.14



### 오늘 배울 내용 …

- 1. 확률과 통계
- 2. 논리설계 실습
- 3. mblock 실습

어렵지 않다 쉬운 것도 아니다



# 인공지능 이론



161 165 167 171 178 183

#### ○ 확률변수

- 표본공간  $\Omega$ 의 각 원소에 하나의 실숫값을 대응하는 함수 X를 **확률변수(random variable)**라고 한다.



[그림 3-1] 확률변수의 정의

#### ○ 이산확률변수

확률변수 X의 치역이 셀 수 있는 이산값으로 주어지는 확률변수 X를 이산확률변수(discrete random variable)라 한다.

$$X(\Omega) = \{1, 2, 3, 4, \cdots \}$$

#### ○ 연속확률변수

- 어떤 연속하는 범위 안에서 모든 실숫값을 가지는 확률변수 X를 연속확률변수(continuous random variable)라 한다.

$$X(\Omega) = \{ x \in \mathbb{R} , \ 0 \le x \le 100 \}$$

#### 확률질량함수

- 이산확률변수 X에 대하여 X가 임의의 실수 x를 취할 확률에 대응하는 다음 함수를 이산확률변수 X의 **확률질량함수(probability mass function)**라 한다.

$$f(x) = P(X = x)$$

#### 화률질량함수의 성질

- 이산확률변수 X의 확률질량함수 f(x)에 대하여 다음 성질이 성립한다.

- (1) 모든 실수 x 에 대하여  $0 \le f(x) \le 1$ 이다.
- (2)  $\sum_{x \in \mathbb{R}} f(x) = 1$
- (3) 임의의  $A \subset \mathbb{R}$  에 대하여  $\mathrm{P}(X \in A) = \sum_{x \in A} f(x)$ 이다.

#### 확률밀도함수

- 연속확률변수 X에 대하여  $a \le X \le b$ 일 확률을 다음과 같이 표현할 때, 확률변수 X는 연속확률분포를 따른다.

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

- 이때 연속함수 f(x)를 확률변수 X의 **확률밀도함수(probability density function)**라 한다.

#### 학률밀도함수의 성질

- 연속확률변수 X의 확률밀도함수 f(x)에 대하여 다음 성질이 성립한다.

- (1) 모든 실수 x에 대하여  $f(x) \ge 0$ 이다.
- (2)  $\int_{-\infty}^{\infty} f(x) dx = 1 \text{ or}.$
- (3)  $P(a \le X \le b) = \int_a^b f(x) dx \circ C$ .

학률변수 X가 a와 b사이에 있을 확률  $P(a \le X \le b)$ 는 x = a와 x = b. 그리고 연속함수 f(x)의 그래프와 x축으로 둘러싸인 면적과 같다. 따라서 연속확률변수 X에 대하여 다음이 성립함을 알 수 있다.



[그림 3-3] 연속확률변수 X의 확률  $P(a \le X \le b)$ 

• 
$$P(X = a) = \int_{a}^{a} f(x) dx = 0$$

• 
$$P(a \le x \le b) = P(a \le x < b) = P(a < x \le b) = P(a < x < b)$$

 $\bigcirc$  다음과 같은 함수 F(x) 를 확률변수X의 분포함수(distribution function)라 한다.

$$F(x) = P(X \le x)$$

#### ○ 누적분포함수

- 이산확률변수 X의 분포함수는 임의의 실수 x에 대하여 이산확률변수 X가 x보다 작거나 같은 값을 취하는 확률로 정의로 정의하므로, 분포함수 F(x)를 **누적분포함수(cumulative distribution function)**라고도 한다.

$$F(x) = \sum_{x_i \le x} f(x_i)$$

- f(x)는 확률질량함수이다.

#### ○ 분포함수의 성질

- 분포함수 F(x)에 대하여 다음 성질이 성립한다.

- (1) 모든 실수 x에 대하여  $0 \le F(x) \le 1$ 이다.
- (2) F(x)는 증가함수이다.
- (3)  $F(\infty) = \lim_{x \to \infty} F(x) = 1$ ,  $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$  or .
- (4) X가 이산확률변수인 경우, P(X = x) = F(x) F(x-1)이다.

이산확률변수 X의 분포함수가 다음과 같을 때, 확률  $P(30 \le X \le 50)$ 을 구하라.

$$F(x) = P(X \le x) = \begin{cases} 0 & (x < 0) \\ 0.15 & (0 \le x < 10) \\ 0.35 & (10 \le x < 30) \\ k & (30 \le x < 50) \\ 1 & (50 \le x) \end{cases}$$

f(x)가 연속확률변수 X의 확률밀도함수일 때, 확률변수 X의 분포함수 F(x)는 다음과 같다.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$



연속확률변수의 분포함수 F(x)

- 분포함수를 이용하여 연속확률변수 X가 구간에 있을 확률을 구할 수 있다.

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a) = \int_{a}^{b} f(x) dx$$

통계에서 2개의 대표적인 값 : 평균(=값의 특징), 분산 (=분포의 특징) → '보통 얼마야···' 하는 값

수집된 데이터  $X_1, X_2, \dots, X_N$ 에 대해서 **평균**은 다음과 같으며, 기호는 E(X)로 표기합니다.

$$E(X) = \frac{1}{N} \sum_{i=1}^{N} X_i$$

수집된 데이터  $X_1, X_2, \dots, X_N$ 의 평균을 E(X)라 할 때 수집된 데이터의 **분산**과 표준 **편차**는 다음과 같으며, 기호로는 각각 V(X),  $\sigma(X)$ 로 표기합니다.

$$V(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - E(X))^2 V(X) = E(X^2) - [E(X)]^2$$

$$\sigma(X) = \sqrt{V(X)}$$

#### 변수에 대해 확률이 균일하지 않을 때(각각 확률이 있을 때) 평균과 분산

- 확률변수 X의 기댓값
  - 확률변수 X의 **기댓값(expected value)** E(X)는 다음과 같이 정의한다.

$$\mathbf{E}(X) = \left\{ egin{aligned} \sum_{i=1}^n x_i f\left(x_i
ight) & (X: 이산확률변수) \\ \int_{-\infty}^\infty x f\left(x
ight) dx & (X: 연속확률변수) \end{aligned} 
ight.$$

어떤 프로야구선수가 한 게임에서 치는 안타 수와 그 확률을 조사하였더니 다음 표와 같았다. 이 선수가 한 게임에서 치는 평균 안타 수를 구하라.

| X      | 0    | 1    | 2    | 3    | 4    | 합계 |
|--------|------|------|------|------|------|----|
| P(X=x) | 0.30 | 0,35 | 0.20 | 0.10 | 0.05 | 1  |

$$\mathrm{Var}(X) = \mathrm{E}\big\{(X-\mu)^2\big\} = \begin{cases} \sum_{i=1}^n (x_i-\mu)^2 f(x_i) & (X:\mathrm{ol}\mathrm{evalshed}) \\ \int_{-\infty}^\infty (x-\mu)^2 f(x) dx & (X:\mathrm{ol}\mathrm{evalshed}) \end{cases}$$

그리고 X의 표준편차는  $\sigma_X$ 로 표기하여 다음과 같이 정의한다.

$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

아래 확률분포에 대한 분산과 표준편차를 구하라.

| X      | 0    | 1    | 2    | 3    | 4    | 합계 |
|--------|------|------|------|------|------|----|
| P(X=x) | 0.30 | 0,35 | 0,20 | 0.10 | 0.05 | 1  |

- Q: 현실에서의 여러가지 변수들의 분포를 잘 설명하는 확률밀도함수는 없을까?

- A: 정규분포!



시험 점수의 분포



- **정규분포 :**  $N(m, \sigma^2)$ :  $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$  를 확률밀도함수로 갖는 연속확률변수 X의 분포



정규분포의 확률밀도함수 
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-m)^2}{2\sigma^2}}$$
그래프

\* 평균  $\mu$ 와 표준편차  $\sigma$  가 다른 정규분포의 확률변수 X에 대해 **표준화를 하면** 이 분포는 **평균**  $\mu$ =0, 표준편차  $\sigma$ =1인 표준정규분포 N(0,1)가 된다.

이때 표준화 식 
$$Z=\frac{X-\mu}{\sigma}$$
 을 통해 얻어진 값을 Z점수(Z score)라 한다.

\* **표준화**  $Z = \frac{X-m}{\sigma}$  : 평균을 0, 표준편차를 1로 변환

$$\mathbf{E}(Z) = \mathbf{E}\left(\frac{X - m}{\sigma}\right) = \frac{1}{\sigma}\mathbf{E}(X) - \frac{m}{\sigma} = \frac{m}{\sigma} - \frac{m}{\sigma} = 0$$

$$V(Z) = V\left(\frac{X-m}{\sigma}\right) = \frac{1}{\sigma^2}V(X) = \frac{1}{\sigma^2} \times \sigma^2 = 1$$

평균  $\mu$ =150 이고, 표준편차  $\sigma$ =10 인 정규분포 N(150, 10 $^2$ )에 대해 X=170에 대한 Z 점수를 계산하시오.

표준화 식  $Z = \frac{X - \mu}{\sigma}$ 을 이용하면  $Z = \frac{170 - 150}{10}$  이므로 점수는 2.



- **표준정규분포** N(0,1): 평균이 0, 표준편차가 1인 정규분포

정리

#### 표준정규분포

연속확률변수 X가 정규분포  $N(m, \sigma^2)$ 을 따를 때, 확률변수  $Z = \frac{X-m}{\sigma}$ 은 표준정 규분포 N(0, 1)을 따릅니다.





표준정규분포표를 읽는 방법

 $P(0 \le Z \le 2) = 0.4772$  $P(0 \le Z \le 2.58) = 0.4951$ 





0.7910

0.8186

0.7939

0.8212

0.7967

0.8238

0.7881

0.8159

0.9



| Z   | 0.00   | 0.01   | 0.02   | 0.03   |
|-----|--------|--------|--------|--------|
| 0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 |
| 0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 |
| 0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 |
| 0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 |
| 0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 |
| 0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 |
| 0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 |
| 0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 |
| 8.0 | 0.2881 | 0.2910 | 0.2939 | 0.2967 |
| 0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 |



| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 80.0   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 8.0 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
|     |        |        |        |        |        |        |        |        |        |        |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1,1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1,2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1,3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1,5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1,8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
|     |        |        |        |        |        |        |        |        |        |        |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |

한 회사의 건전지 수명은 평균이 110시간, 표준편차가 10인 정규분포를 따른다

1) 건전지의 수명이 90시간 이하일 확률은

2) 건전지 수명이 100시간 이상, 115시간 이하일 확률은





## 지능 만들기 - 논리설계 실습

### 논리설계 실습 - 1

다음 블록프로그램 수행되면 list에 담기는 데이터를 예상해 보시오.



#### 논리설계 실습 - 2

실습 1의 리스트 값의 순서가 반대로 저장 되도록 바꾸기



```
모두 삭제 print ▼
                   로(으로) 설정하기
                5 로(으로) 설정하기
                   로(으로) 설정하기
     print ▼ 에 str 항목을(를) 추가하기
                     을(를) <mark>0.5</mark> 초 동안 말하기
                   로(으로) 설정하기
                1 만큼 변경하기
```

# MBlock 실습

### 게임 만들기

#### 총알 피하기 게임



#### 1단계: 분해

- 1. 펜더 객체
- 달리기 모션
- 점프: 1단, 2단
- 숙이기
- 2. 하단/상단 포탄 객체
- 포탄 생성
- 좌로 이동
- 모양 변함
- 3. 배경
- 횡스트롤
- 4. 대포 객체
- 거리가 30미터이면 모양 변경
- 5. 게임 룰
- 펜더가 포탄에 닿으면 수명이 줄어 듬
- 수명이 3개 이상 줄어 들면 게임 끝
- 펜더는 달리면서 이동 거리를 계산해서 말함
- 게임이 끝나면 'Game Over' 게임 클리어시에는 'You win the Game' 출력

### 게임 만들기

#### 총알 피하기 게임



#### 2단계: 추상화

#### 2. 포탄 객체

- 상단 포탄
  - . 숨기기 / 보이기
  - . 복제하기 / 복제본 삭제하기
  - . 가장자리에 닿을 때까지 반복하기
  - . x좌표 변경하기
  - . 다음 모양 바꾸기
  - . 기다리기 (복제본 만들기 인터벌)

#### - 하단 포탄

- . 숨기기 / 보이기
- . 복제하기 / 복제본 삭제하기
- . 가장자리에 닿을 때까지 반복하기
- . x좌표 변경하기
- . 다음 모양 바꾸기
- . 기다리기 (복제본 만들기 인터벌)

### 게임 만들기 - 1

- 상단 포탄 추가







### 게임 만들기 - 2

#### 스프라이트 추가





### 게임 만들기 - 2

lowbeam\_speed

- 하단 포탄 추가





