模型-评价主题-统计类评价-方差分析【gyj】

- 1. 模型名称
- 2. 适用范围
- 3. 形式
- 4. 求解方法
 - (1) 单因素方差分析模型
 - (2) 多因素方差分析模型
- 5. 补充资料

模型-评价主题-统计类评价-方差分析【gyi】

1. 模型名称

方差分析 (Analysis of Variance, ANOVA)

2. 适用范围

方差分析可用于在建模过程中,分析哪些因素对模型有显著影响,哪些没有显著影响。

换言之,就是<u>检验各组别间是否有差异</u>。

3. 形式

• 样本数量:两个或两个以上样本

• 数据类型: 方差分析用于分析定类数据 1 与定量数据 2 之间的关系。

• 自变量个数

<u>单因素方差分析</u>: 试验中只有一个因素在改变<u>多因素方差分析</u>: 试验中有多于一个因素在改变

4. 求解方法

(1) 单因素方差分析模型

4.1.1 概念

• 方差分析的基本原理:

从试验结果退点,因素A对指标有无显著影响,即当A取不同水平时指标有无显著差异。

- 。 不同处理组的差别来源于两个:
 - <u>组间差异(SSb)</u>:实验条件、不同的处理造成的差异。用变量在各组的均值与总均值之偏差平方和的总和表示。**组间自由度** 用dfb表示。
 - <u>组内差异(SSw)</u>: 随机误差、测量误差造成的差异或个体间的差异。用变量在各组内的均值与该组内变量值之偏差平方和的 总和表示。**组内自由度用dfw表示。**

4.2.1 步骤

- 根据题目写出各变量:
 - 因素: 试验中需要考察的、可以控制的条件
 - 检验指标: 人们关心的实验结果
 - o r: 因素的水平数,即将这个因素放入几种不同的情况下检验 (因素所处的状态)
 - ∘ n: 样本总数,即所有水平下的子样本数之和
 - ∘ n_i:一个水平下的样本数,即在这种情况下进行了几次试验。
 - 。 H₀: 原假设,因素对检验指标没有显著影响。
- 计算每组数据的平均值(\overline{X}_i)

$$ar{X_{\cdot i}} = rac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$$

• 计算全体数据的总平均值(\bar{X})

$$ar{X} = rac{1}{n} \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij} = rac{1}{r} \sum_{i=1}^r ar{X}_{\cdot i}$$

• 计算组间平方和(S_A)

$$S_A = \sum_{i=1}^r n_i (ar{X_{\cdot i}} - ar{X})^2$$

• 计算组内平方和(S_E)

$$S_E = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - ar{X}_{\cdot i})^2$$

• 计算总平方和(S_T)

$$S_T = S_A + S_E$$

• 计算自由度、均方、F值、P值:

方差来源	离差平方和	自由度	均方	F值	P值
因素A(组间)	S _A	r - 1	$rac{S_A}{r-1}$	$F=rac{rac{S_A}{r-1}}{rac{S_E}{n-r}}$	р
误差(组内)	S _E	n-r	$\frac{S_E}{n-r}$		
总和	S _T	n - 1			

P值: F(r-1, n-r)分布**大于**F值的概率。

• 查表得到 $F_{\alpha}(r-1,n-1)$ 值,并与F值比较: F值分布表

• 得出结论:

。 若由试验数据算得结果有 $F>F_{\alpha}(r-1,n-r)$,则拒绝原假设 H_{0}

。 或, 当p < α时, 拒绝原假设H₀

。 【注】在方差分析中还做如下规定:

■ 如果α = 0.01时拒绝H₀,则称因素A的影响**高度显著**。

■ 如果α = 0.05时拒绝H₀, 但α = 0.01时不拒绝H₀, 则称因素A的影响**显著**。

4.3.1实例

题目:为了考察化工生产厂中温度对某种化工产品的收率(%)的影响,现选择了5种不同的温度。在同一温度下各做4次试验,试验结果见表7.16.问反应温度对产品收率有无显著影响。

	1	2	3	4
1	55.0	58.0	57.4	57.1
2	54.4	56.8	56.0	56.0
3	54.0	54.1	54.0	54.0
4	56.4	57.0	57.0	57.0
5	56.1	57.0	54.0	54.0

- 根据题目写出各变量:本题的因素为温度;检验指标为产品的收率; r = 5; n_i = 4(表示每一个水平进行了4次测量); n = 20 H₀:温度对产品收率没有显著影响。
- 计算每组数据的平均值($ar{X}_i$)

$$ar{X_{\cdot i}} = rac{1}{n_i} \sum_{i=1}^{n_i} X_{ij}$$

• 计算全体数据的总平均值($ar{X}$)

$$ar{X} = rac{1}{n} \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij} = rac{1}{r} \sum_{i=1}^r ar{X}_{\cdot i}$$

如, $ar{X}=rac{56.875+54.90+54.10+56.75+55.80}{5}=55.685$ 。

• 计算组间平方和(S_A)

$$S_A = \sum_{i=1}^r n_i (ar{X_{\cdot i}} - ar{X})^2$$

如,

 $S_A = 4 \cdot (56.875 - 55.685)^2 + 4 \cdot (54.90 - 55.685)^2 + 4 \cdot (54.10 - 55.685)^2 + 4 \cdot (56.75 - 55.685)^2 + 4 \cdot (55.80 - 55.685)^2 = 22.7680$

• 计算组内平方和(S_E)

$$S_E = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - ar{X}_{\cdot i})^2$$

如,水平1中 $\sum_{j=1}^{n_i}(X_{ij}-\bar{X_i})=5.1075$;然后按照这种方法计算出每个水平的这个值;则 $S_E=5.1075+11.32+0.06+0.27+4.86=21.6175$

• 计算总平方和(S_T)

$$S_T = S_A + S_E$$

如, $S_T = 22.7680 + 21.6175 = 44.3855$

• 按公式计算自由度、均方、F值、概率

整理得到下表:

方差来源	离差平方和	自由度	均方	F值	P值
组间	$S_A=22.7680$	4	5.6920	3.9496	0.0220
组内	$S_E=21.6175$	15	1.4412	3.9496	0.0220
总和	$S_T=44.3855$	19			

• 查表得到 $F_{\alpha}(r-1,n-1)$ 值,并与F值比较: F值分布表

 $F_{0.05}(4,15) = 3.60 < 3.9496(F)$

• 得出结论:

由于 $F_{0.05}(4,15)=3.60<3.9496(F)$,拒绝 ${
m H}_{
m 0}$,即温度对产品收率有显著影响。

4.4.1代码实现

Matlab(法一)

```
clc,clear,close all
a = readmatrix('data_example.txt') %注意矩阵转置
[p,t,st] = anoval(a)
Fa = finv(0.95,t{2,3},t{3,3}) %计算F分布上的α分位数
```

Matlab(法二)

```
%ANOVA方差分析
%需要输入每组每个变量的情况,会输出F值
%再将计算出的F与理论上的F分布表进行对比
%若F>F(dfb,dfw),表明各组数据存在显著性差异
%若F<F(dfb,dfw),表明各组数据不存在显著性差异
clear all;
X = [55.0000 59.0000 57.4000 57.1000

      54.4000
      56.8000
      52.4000
      56.0000

      54.0000
      54.1000
      54.3000
      54.0000

      56.4000
      57.0000
      56.6000
      57.0000

    56.1000 57.0000 56.1000 54.0000];%需要处理的数据,每列为一组
[r,m]=size(X);
                                        %r是每组多少个变量,m是共有多少组
d1=mean(X)-mean(mean(X));
                                        %求各组的平均值与总平均值的差距
ssb=r*sum(d1.^2);
                                        %求组间变异的离均差平方和
dfb=m-1;
                                         %计算组间变异自由度
                                         %计算各组组内各个变量与组内平均值的差值的平方和的累加
D2=var(X,1)*r;
ssw=sum(D2):
                                         %计算组内变异的离均差平方和
dfw=r*m-m;
                                         %计算组内变异的自由度
msb=ssb/dfb;
                                         %组内变异均方
                                         %组间变异均方
msw=ssw/dfw;
F=msb/msw
                                         %F值
%再将计算出的F与理论上的F分布表进行对比
%若F>F(dfb,dfw),表明各组数据存在显著性差异
%若F<F(dfb,dfw),表明各组数据不存在显著性差异
```

(2) 多因素方差分析模型

4.2.1 概念

以双因素方差分析为例,其基本思想是:对每个因素各取几个水平,然后对各因素不同水平的每个组合做一次或若干次试验,对所的数据进行方差分析。对双因素方差分析可分为<u>无重复试验</u>和等重复试验两种情况。

- 无重复试验:只需检验两因素是否分别对指标有显著性影响。
- 等重复试验: 还要进一步检验两因素是否对指标有显著的交互影响。

4.2.2 步骤

• 列双因素试验数据表:

设A取s个水平 A_1,A_2,\cdots,A_s ; B取r个水平 B_1,B_2,\cdots,B_r ; 在水平组合(B_i , A_i)下做了t 个试验。

	A_1	A_2	 A_s
B_1	X_{111},\cdots,X_{11t}	X_{121},\cdots,X_{12t}	 X_{1s1},\cdots,X_{1st}
B_2	X_{211}, \cdots, X_{21t}	X_{221},\cdots,X_{22t}	 X_{2s1}, \cdots, X_{2st}
B_r	X_{r11}, \cdots, X_{r1t}	X_{r21},\cdots,X_{r2t}	 X_{rs1}, \cdots, X_{rst}

• 写原假设:

$$egin{aligned} H_{01}: lpha_j &= 0 (j=1,2,\cdots,s) \ H_{02}: eta_i &= 0 (i=1,2,\cdots,r) \ H_{03}: \gamma_{ij} &= 0 (i=1,2,\cdots,r;j=1,2,\cdots,s) \end{aligned}$$

 γ 表示 B_i 和 A_j 对指标的交互影响。

• 若为**无交互影响**

○ 即根据经验或某种分析能够实现判定两因素之间没有交互影响,则每组试验就不必重复,t = 1.

方差来源	离差平方和	自由度	均方	F值
因素A	S_A	s-1	$rac{S_A}{s-1}$	$F_A = rac{S_A/(s-1)}{S_E/(s-1)(r-1)}$
因素B	S_B	r-1	$\frac{S_B}{r-1}$	$F_B = rac{S_B/(r-1)}{S_E/(s-1)(r-1)}$
误差	S_E	(s-1)(r-1)	$\frac{S_E}{(s-1)(r-1)}$	
总和	S_T	rs-1		

 \circ 因素A的平方和:因素A造成的组间差异(S_A)

$$S_A = r \sum_{j=1}^s (ar{X_{\cdot j}} - ar{X})^2$$

 \circ 因素B的平方和:因素B造成的组间差异(S_B)

$$S_B = s \sum_{i=1}^r (ar{X_{\cdot i}} - ar{X})^2$$

 \circ 随机误差 (S_E)

$$S_E = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - ar{X}_{\cdot i} - ar{X}_{\cdot j} + ar{X})^2$$

 \circ 总平方和 (S_T)

$$S_T = S_A + S_B + S_E = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - ar{X})^2$$

 \circ 总平均值 (\bar{X})

$$ar{X} = rac{1}{rs}\sum_{i=1}^r\sum_{j=1}^s X_{ij}$$

o A组数据的平均值 (\overline{X}_{i})

$$ar{X_{\cdot j}} = rac{1}{r} \sum_{i=1}^r X_{ij}$$

 \circ B组数据的平均值 (\overline{X}_{i})

$$ar{X_{\cdot i}} = rac{1}{s} \sum_{i=1}^s X_{ij}$$

。 判断结果:

- $F_A < F_lpha(s-1,(r-1)(s-1))$ 时接受 H_{01} ,否则拒绝。
- $lacksymbol{lack}$ $F_B < F_lpha(r-1,(r-1)(s-1))$ 时接受 H_{02} ,否则拒绝。
- 若为**交互相应**:
 - 。 根据每个水平下做了多少次试验判断t的值。

方差来源	离差平方和	自由度	均方	F值
因素A	S_A	s-1	$\frac{S_A}{s-1}$	$F_A = rac{S_A/(s-1)}{S_E/[rs(t-1)]}$
因素B	S_B	r-1	$\frac{S_B}{r-1}$	$F_B=rac{S_B/(r-1)}{S_E/[rs(t-1)]}$
交互效应	S_{AB}	(s-1)(r-1)	$\frac{S_{AB}}{(s-1)(r-1)}$	$F_{AB} = rac{S_{AB}/(r-1)(s-1)}{S_E/[rs(t-1)]}$
误差	S_E	rs(t-1)	$rac{S_E}{rs(t-1)}$	
总和	S_T	rst-1		

 \circ 因素A的平方和:因素A造成的组间差异(S_A)

$$S_A = rt \sum_{j=1}^s (ar{X_{\cdot j \cdot}} - ar{X})^2$$

 \circ 因素B的平方和:因素B造成的组间差异(S_B)

$$S_B = st \sum_{i=1}^r (ar{X_i}_{\cdot\cdot\cdot} - ar{X})^2$$

 \circ 因素AB的平方和:因素AB造成的交互影响(S_{AB})

$$S_{AB} = t \sum_{i=1}^r \sum_{j=1}^s (ar{X_{ij\cdot}} - ar{X_{i\cdot\cdot}} - ar{X_{\cdot j\cdot}} + ar{X})^2$$

。 随机误差 (S_E)

$$S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - ar{X_{ij\cdot}})^2$$

 \circ 总平方和 (S_T)

$$S_T = S_A + S_B + S_E + S_{AB} = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - ar{X})^2$$

 \circ 总平均值 (\bar{X})

$$ar{X} = rac{1}{rst} \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk}$$

 \circ AB间的交互影响 ($ar{X_{ij}}$)

$$ar{X_{ij\cdot}} = rac{1}{t} \sum_{k=1}^t X_{ijk}$$

 \circ B组数据的平均值 ($\bar{X_{i...}}$)

$$ar{X_{i\cdot\cdot}} = rac{1}{st}\sum_{j=1}^s\sum_{k=1}^t X_{ijk}$$

o A组数据的平均值 ($X_{.j.}$)

$$ar{X_{\cdot j \cdot}} = rac{1}{rt} \sum_{i=1}^r \sum_{k=1}^t X_{ijk}$$

- 。 判断结果:
 - 若 $F_A > F_{\alpha(r-1,rs(t-1))}$,则拒绝 H_{01}
 - $lacksymbol{\bullet}$ 若 $F_B > F_{lpha(s-1,rs(t-1))}$,则拒绝 H_{02}
 - 若 $F_{AB} > F_{lpha((r-1)(s-1),rs(t-1))}$,则拒绝 H_{03} ,即认为交互作用显著

4.3.3 例子

1. <u>无交互影响</u>:

题目:一种火箭使用4种燃料、3种推进器进行射程试验,对于每种燃料与每种推进器的组合做一次试验,得到的试验数据如下表。问各种燃料及各推进器之间有无显著差异

	B_1	B_2	B_3
A_1	58.2	56.2	65.3
A_2	49.1	54.1	51.6
A_3	60.1	70.9	39.2
A_4	75.8	58.2	48.7

设在显著性水平α= 0.05下检验

- 令假设 $H_1: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$; $H_2: \beta_1 = \beta_2 = \beta_3 = 0$
- 按照上述公式对每个量进行计算,汇总到表格中:

方差来源	离差平方和	自由度	均方	F值	P值
因素A	$S_A = 157.5900$	3	52.5300	0.4305	0.7387
因素B	$S_B=223.8467$	2	111.9233	0.9174	0.4491
误差	$S_E=731.9800$	6			

由于题目中规定"每个组合做一次试验", 故本题为无交互影响, t=1

• 通过查表,得 $F_{0.05}(3,6)=4.76>F_A$ 接受 H_1 ; $F_{0.05}(2,6)=5.14>F_B$,接受 H_2 .即,各燃料和各种推进器之间的差异对于火箭的射程没有显著影响。

4.3.4 代码:

Matlab

```
clc,clear,close all
a = readmatrix('data_1.txt')
[p,t,st] = anova2(a)
```

2. <u>有交互影响</u>

题目:一种火箭使用4种燃料、3种推进器进行射程试验,对于每种燃料与每种推进器的组合做<u>两次</u>试验,得到的试验数据如下表。问各种燃料及各推进器之间有无显著差异。

	B_1	B_2	B_3
A_1	58.2, 52.6	56.2, 41.2	65.3, 60.8
A_2	49.1, 42.8	54.1, 50.5	51.6, 48.4
A_3	60.1, 58.3	70.9, 73.2	39.2, 40.7
A_4	75.8, 71.5	58.2, 51.0	48.7, 41.4

设在显著性水平α= 0.05下检验

- 令假设 $H_1: \alpha_1=\alpha_2=\alpha_3=\alpha_4=0$; $H_2: \beta_1=\beta_2=\beta_3=0$; $H_3=\gamma_{11}=\gamma_{12}=,\dots=\gamma_{43}=0$
- 按照上述公式对每个量进行计算,汇总到表格中:

方差来源	离差平方和	自由度	均方	F值	P值
因素A	$S_A = 261.6750$	3	87.2250	4.4174	0.0260
因素B	$S_B = 370.9808$	2	185.4904	9.3939	0.0035
交互作用	$S_{AB}=1768.6925$	6	294.7821	14.9288	0.0001
误差	$S_E = 236.9500$	12	19.7458		

本题题目中规定t = 2

• 通过查表,得 $F_{0.05}(2,12) = 3.89 < F_A$,拒绝 H_1 ; $F_{0.05}(3,12) = 3.49 < F_B$,拒绝 H_2 . $F_{\alpha}(6,12) = 3.00 < F_{AB}$, 拒绝 H_3 . 即,各燃料推进器之间的差异对于火箭的射程有显著影响,且交互作用显著。

4.4.2 代码

Matlab

```
clc, clear, close all
a = readmatrix('data_2.txt')
[p, t, st] = anova2(a,2)
```

5. 补充资料

- 1. <u>数模官网 方差分析</u>
- 2. 数学建模算法与应用书 p201~211
- 3. 全流程总结方差分析- 知乎
- 4. 上文中用到的其他知识点

1. 定类数据:数据类型为分的类别,各个类别之间无法进行比较和数学运算。例,中国的民族可分成汉族、维吾尔族、壮族等。 \underline{c}

2. 定量数据:数字,可以进行数学运算。 👱