Bound for preperiodic points for maps with good reduction

Sebastian Troncoso

Michigsn State University

January 04, 2017.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism.

orbit: of a point $P \in \mathbb{P}^n$: $P, \phi(P), \phi^2(P), \phi^3(P), \dots$

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism.

orbit: of a point $P \in \mathbb{P}^n$: $P, \phi(P), \phi^2(P), \phi^3(P), \dots$

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism.

orbit: of a point $P \in \mathbb{P}^n$: $P, \phi(P), \phi^2(P), \phi^3(P), \dots$

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism.

orbit: of a point $P \in \mathbb{P}^n$: $P, \phi(P), \phi^2(P), \phi^3(P), \dots$

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

The set of K-rational preperiodic points is denoted by $Preper(\phi, K)$.

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism.

orbit: of a point $P \in \mathbb{P}^n$: $P, \phi(P), \phi^2(P), \phi^3(P), \dots$

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic.

The set of K-rational preperiodic points is denoted by $Preper(\phi, K)$.

The **orbit length** of a preperiodic point P is the cardinality of the orbit of P (as a set).

Tail points

Tail point: A point that is preperiodic but not periodic.

3 / 13

Tail points

Tail point: A point that is preperiodic but not periodic.

Tail points (red) and periodic point (green) of $z^2 + c$.

Uniform boundedness of preperiodic points

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

Uniform boundedness of preperiodic points

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

Conjecture (Uniform Boundedness Conjecture - Morton-Silverman 1994)

There exists a bound B=B(D,n,d) such that if K/\mathbb{Q} is a number field of degree D, and $\phi:\mathbb{P}^n\to\mathbb{P}^n$ is a morphism of degree $d\geq 2$ defined over K, then

$$\# \operatorname{PrePer}(\phi, K) \leq B$$
.

GOAL: Prove good bounds that depend additionally on the number of places of bad reduction of phi

GOAL: Prove good bounds that depend additionally on the number of places of bad reduction of phi (and sometimes don't depend on the degree!).

• For simplicity we will from now on deal only with rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1.$

- For simplicity we will from now on deal only with rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .

- For simplicity we will from now on deal only with rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1.$
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, $\mathfrak p$ a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak p}$ the local ring at $\mathfrak p$.
- Write ϕ in normal form:

$$\phi([x : y]) = [F(x, y), G(x, y)],$$

where F(x,y) and G(x,y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

- For simplicity we will from now on deal only with rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .
- Write ϕ in normal form:

$$\phi([x : y]) = [F(x, y), G(x, y)],$$

where F(x, y) and G(x, y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

• We say ϕ has **good reduction** at \mathfrak{p} if F and G do not have a common zero module \mathfrak{p} in \mathbb{P}^1 .

- For simplicity we will from now on deal only with rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1$.
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, $\mathfrak p$ a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak p}$ the local ring at $\mathfrak p$.
- Write ϕ in normal form:

$$\phi([x : y]) = [F(x, y), G(x, y)],$$

where F(x, y) and G(x, y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

- We say ϕ has **good reduction** at \mathfrak{p} if F and G do not have a common zero module \mathfrak{p} in \mathbb{P}^1 .
- ullet In other words, ϕ does not drop degree mod \mathfrak{p} .

- For simplicity we will from now on deal only with rational maps $\phi: \mathbb{P}^1 \to \mathbb{P}^1.$
- Let K be a number field, \mathcal{O}_K its ring of algebraic integers, \mathfrak{p} a non zero prime ideal of \mathcal{O}_K and $\mathcal{O}_{\mathfrak{p}}$ the local ring at \mathfrak{p} .
- Write ϕ in normal form:

$$\phi([x : y]) = [F(x, y), G(x, y)],$$

where F(x, y) and G(x, y) are coprime homogeneous polynomials of the same degree, with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and at least one a \mathfrak{p} -unit.

- We say ϕ has **good reduction** at \mathfrak{p} if F and G do not have a common zero module \mathfrak{p} in \mathbb{P}^1 .
- ullet In other words, ϕ does not drop degree mod $\mathfrak{p}.$
- \bullet By convention, we say ϕ has bad reduction at all archimedean places.

Bound on maximal orbit length of a preperiodic point

Theorem (J.K. Canci, L. Paladino 2015)

Let $\phi:\mathbb{P}^1\to\mathbb{P}^1$ be a rational map of degree ≥ 2 defined over a number field K and $[K,\mathbb{Q}]=D$. Suppose ϕ has good reduction outside a finite set of places S, including all archimedean ones. Let s=|S|. If $P\in \operatorname{PrePer}(\phi,K)$ is of orbit length n, then

$$n \leq \max \left\{ (2^{16s-8}+3) \left[12s \log(5s)\right]^D, \left[12(s+2) \log(5s+5)\right]^{4D} \right\}.$$

Bounds independent of the degree

Theorem (S. Troncoso 2016)

Let K be a number field and S a finite set of places of K containing all the archimedean ones. Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K, and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S.

(a) If there are at least three K-rational tail points of ϕ then

$$|\operatorname{Per}(\phi,K)| \le 2^{16|S|} + 3.$$

(b) If there are at least four K-rational periodic points of ϕ then

$$|\operatorname{Tail}(\phi, K)| \le 4(2^{16|S|}).$$

Bounds for Preperiodic points

Theorem (S. Troncoso 2016)

Let K be a number field and S a finite set of places of K containing all the archimedean ones. Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K, and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S. Then

- (a) $|\operatorname{Per}(\phi, K)| \le 2^{16|S|d^3} + 3$.
- (b) $| \operatorname{Tail}(\phi, K) | \le 4(2^{16|S|d^3}).$
- (c) $|\operatorname{PrePer}(\phi, K)| \leq 5(2^{16|S|d^3}) + 3.$

Reciprocity of periodic and tail points

Theorem (S. Troncoso 2016)

Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K. Suppose ϕ has good reduction outside S. Let $R \in \mathbb{P}^1(K)$ be a tail point and let n be the period of the periodic part of the orbit of R. Let $P \in \mathbb{P}^1(K)$ be any periodic point that is not $\phi^{mn}(R)$ for some m. Then $\delta_{\mathfrak{p}}(P,R)=0$ for every $\mathfrak{p} \notin S$.

• Almost every pair of *K*-rational tail point and *K*-rational periodic point induces *S*-unit equations.

- Almost every pair of K-rational tail point and K-rational periodic point induces S-unit equations.
- That means linear relations of the form

$$au + bv = 1$$

where $(u, v) \in (\mathcal{O}_S^*)^2$ and $a, b \in K$. $(\mathcal{O}_S^*$ is the group of S-units)

- Almost every pair of K-rational tail point and K-rational periodic point induces S-unit equations.
- That means linear relations of the form

$$au + bv = 1$$

where $(u, v) \in (\mathcal{O}_S^*)^2$ and $a, b \in K$. $(\mathcal{O}_S^*$ is the group of S-units)

• Beukers and Schlickewei's explicit bound on the number of solutions $(u, v) \in (\mathcal{O}_S^*)^2$ to the S-unit equation.

- Almost every pair of K-rational tail point and K-rational periodic point induces S-unit equations.
- That means linear relations of the form

$$au + bv = 1$$

where $(u, v) \in (\mathcal{O}_S^*)^2$ and $a, b \in K$. $(\mathcal{O}_S^*$ is the group of S-units)

• Beukers and Schlickewei's explicit bound on the number of solutions $(u,v) \in (\mathcal{O}_S^*)^2$ to the *S*-unit equation. For $a,b \in K$ the number of solutions of

$$au + bv = 1$$

is bounded by

$$2^{8(2|S|+2)}$$

- Almost every pair of K-rational tail point and K-rational periodic point induces S-unit equations.
- That means linear relations of the form

$$au + bv = 1$$

where $(u, v) \in (\mathcal{O}_S^*)^2$ and $a, b \in K$. (\mathcal{O}_S^*) is the group of S-units

• Beukers and Schlickewei's explicit bound on the number of solutions $(u, v) \in (\mathcal{O}_S^*)^2$ to the *S*-unit equation. For $a, b \in K$ the number of solutions of

$$au + bv = 1$$

is bounded by

$$2^{8(2|S|+2)}$$

• The finitely many solutions to au + bv = 1 give us a bound on $Per(\phi, K)$, $Tail(\phi, K)$ and $PrePer(\phi, K)$.

Parallel theorem by Canci and Vishkautsan

Theorem (Canci, Vishkautsan 2016)

Let K be a number field and S a finite set of places of K containing all the archimedean ones. Let $\phi\colon \mathbb{P}^1\to \mathbb{P}^1$ be rational map defined over K, where the degree d of ϕ is ≥ 2 . Assume that ϕ has good reduction outside S. Then

$$\# \operatorname{Per}(\phi, K) \leq \kappa d + \lambda,$$

where $\kappa = 2^{2^5 s}$ and $\lambda = 2^{2^{77} s}$.

Joint work with J.K. Canci and S. Vishkautsan

Joint work with J.K. Canci and S. Vishkautsan

The number of K-rational preperiodic points of rational functions with good reduction outside of S is $O(d^2)$.

 The theorem on the reciprocity of periodic and tail points can be generalize in higher dimensions.

- The theorem on the reciprocity of periodic and tail points can be generalize in higher dimensions.
- Reciprocity K-rational tail points and K-rational periodic hypersurface.

- The theorem on the reciprocity of periodic and tail points can be generalize in higher dimensions.
- Reciprocity K-rational tail points and K-rational periodic hypersurface.
- Similarly, we get a reciprocity K-rational tail hypersurface and K-rational periodic points.

- The theorem on the reciprocity of periodic and tail points can be generalize in higher dimensions.
- Reciprocity K-rational tail points and K-rational periodic hypersurface.
- Similarly, we get a reciprocity K-rational tail hypersurface and K-rational periodic points.
- With these theorems we can get similar consequences than the one dimensional case. However Hypotheses of general position are required.

- The theorem on the reciprocity of periodic and tail points can be generalize in higher dimensions.
- Reciprocity K-rational tail points and K-rational periodic hypersurface.
- Similarly, we get a reciprocity K-rational tail hypersurface and K-rational periodic points.
- With these theorems we can get similar consequences than the one dimensional case. However Hypotheses of general position are required.
- For instance, if $\operatorname{Per}_{\Phi}(H) \geq 2N + 1$ and the hypersurfaces on the orbit of H are in general position then $|Tail(\Phi, K)|$ is bounded.