[220 / 319] Database I

Meena Syamkumar Andy Kuemmel Cole Nelson

220 Progress

Languages learned

- Python [Programming Language]
- HTML [Markup Language]
- SQL [Query Language]

Data storage

- CSV files
- JSON files
- SQL databases

structured query language

Learning Objectives

- Explain how a database is different from a CSV file or a JSON file
- Use SQLite to connect to a database and pandas to query the database
- Write basic queries on a database using SELECT, FROM, WHERE, ORDER BY, and LIMIT

CSV

State	Capital	Population	Area	
WI	Madison	5795000	65498	
• • •	• • •	• • •	• • •	

Characteristics

- one table
- columns sometimes named
- everything is a string

SQL Database

capitals

State	Capital
WI	Madison
• • •	•••

populations

State	Population
WI	5795000
•••	•••

counties

County	Pop	un_emp
Dane	536416	0.02
•••	•••	•••

areas

State	Area
WI	65498
•••	• • •

no text allowed

Characteristics

- collection of tables, each named
- columns always named
- types per column (enforced)

I. More Structure

Database

A	В	C
text	integer	real

same fields and same types in every column

CSV

A,B,C string,string,string string,string,string string,string,string string,string,string

everything is a string

JSON

[{"A":"val", "B":10, "C":3.14}, {"A":"val"}, {"A":"v2", "B": 9, "C":False},

types, but...
missing values
types may differ across columns

I. More Structure

2. Sharing

- I. More Structure
- 2. Sharing
- 3. Queries

which actor appeared in the most movies?

- I. More Structure
- 2. Sharing
- 3. Queries

- I. More Structure
- 2. Sharing
- 3. Queries
- 4. Performance

Let's play a game where we pretend to be a database!

Question I:

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

namos	250	SCOKO
names	age	score
Parker	?	?
Heidy	?	?
Shirly	?	?
Arla	?	?
Bella	?	?
Bill	?	?
Hollis	?	?
Maurita	?	?
Milda	?	?
Pearline	?	?
Teresa	?	?
Ceola	?	?
Milford	?	?
Alisha	?	?
Antonetta	?	?
Ryan	?	?
Karma	?	?
Lashandra	?	?
Breana	?	?
Sara	?	?

Question I:

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

Which question took longer to answer? Why?

names	age	score
Parker	26	21
Heidy	22	22
Shirly	27	22
Arla	21	22
Bella	22	22
Bill	28	22
Hollis	26	23
Maurita	22	24
Milda	22	25
Pearline	29	25
Teresa	25	25
Ceola	30	26
Milford	25	26
Alisha	30	27
Antonetta	28	28
Ryan	25	28
Karma	23	28
Lashandra	24	29
Breana	22	30
Sara	28	30

DBs can keep multiple copies of the same data

- which organizations to use are configured (indexing)
- which copy to use is used is automatically determined based on the question being asked

names	age	score
Arla	21	22
Heidy	22	22
Bella	22	22
Maurita	22	24
Milda	22	25
Breana	22	30
Karma	23	28
Lashandra	24	29
Teresa	25	25
Milford	25	26
Ryan	25	28
Parker	26	21
Hollis	26	23
Shirly	27	22
Sara	28	30
Bill	28	22
Antonetta	28	28
Pearline	29	25
Alisha	30	27
Ceola	30	26

age	score
26	21
22	22
27	22
21	22
22	22
28	22
26	23
22	24
22	25
29	25
25	25
30	26
25	26
30	27
28	28
25	28
23	28
24	29
22	30
28	30
	26 22 27 21 22 28 26 22 22 29 25 30 25 30 25 30 28 25 23 24 22

copy I

copy 2

- I. More Structure
- 2. Sharing
- 3. Queries
- 4. Performance

Why not use a database?

It's often overkill.

For many situations, a simple JSON or CSV is easier to use.

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Metro_Transit_Bus_Routes

OBJECTID	trips_routes_route_id	route_short_name	route_url	ShapeSTLength
63	8052	1	http://www.cityofmadison.com/Metro/schedules/Route01/	32379.426524261
64	8053	2	http://www.cityofmadison.com/Metro/schedules/Route02/	96906.9655714024
65	8054	3	http://www.cityofmadison.com/Metro/schedules/Route03/	76436.6456435859
66	8055	4	http://www.cityofmadison.com/Metro/schedules/Route04/	64774.1334846944
67	8056	5	http://www.cityofmadison.com/Metro/schedules/Route05/	61216.7226616153
68	8057	6	http://www.cityofmadison.com/Metro/schedules/Route06/	151142.298370202
69	8058	7	http://www.cityofmadison.com/Metro/schedules/Route07/	98617.0056650761
70	8059	8	http://www.cityofmadison.com/Metro/schedules/Route08/	56732.757385207
71	8060	10	http://www.cityofmadison.com/Metro/schedules/Route10/	113468.940882266

SQLite Database

File: bus.db

routes Table

Metro_Transit_Ridership_by_Route_Weekday

х	Y	OBJECTID	StopID	Route	Lat	Lon	DailyBoardings	DotSize
-89.385420971415726	43.073647056880461	13341	1163	27	43.073655	-89.385427	1.03	10323.2
-89.385420971415726	43.073647056880461	13342	1163	47	43.073655	-89.385427	0.11	1116.34
-89.385420971415726	43.073647056880461	13343	1163	75	43.073655	-89.385427	0.34	3406.36
-89.34001498094068	43.106457048781294	13344	1164	6	43.106465	-89.340021	10.59	105923.91
-89.369986975587182	43.07785905487895	13345	1167	3	43.077867	-89.369993	3.11	31128.99
-89.369986975587182	43.07785905487895	13346	1167	4	43.077867	-89.369993	2.23	22272.52
-89.369986975587182	43.07785905487895	13347	1167	10	43.077867	-89.369993	0.11	1112.87
-89.369986975587182	43.07785905487895	13348	1167	38	43.077867	-89.369993	1.36	13592
-89.329810986164361	43.089699051299455	13349	1169	3	43.089707	-89.329817	18.9	188997.43

SQLite Database

File: bus.db

routes Table boarding Table how do we use this data?

SQLite Database

File: bus.db

routes Table boarding Table

sqlite3

```
import sqlite3
conn = sqlite3.connect("file.db")

connect for databases is
    analogous to open for files
a connection object for
    databases is analogous to file
    object for files
databases is analogous to file
```


sqlite3

conn.close()

```
import os, sqlite3

assert os.path.exists("bus.db")

sqlite3.connect("bus.db")

for sql in pd.read_sql("select sql from sqlite_master", conn)["sql"]:
    print(sql)
    print()
```

```
pd.read_sql("select * from routes", conn)
```

	index	OBJECTID	trips_routes_route_id	route_short_name	route_url	ShapeSTLength
0	0	63	8052	1	http://www.cityofmadison.com/Metro/schedules/R	32379.426524
1	1	64	8053	2	http://www.cityofmadison.com/Metro/schedules/R	96906.965571
2	2	65	8054	3	http://www.citvofmadison.com/Metro/schedules/R	76436.645644

```
pd.read_sql("select * from boarding", conn)
```

<u>.</u>		index	StopID	Route	Lat	Lon	DailyBoardings
	0	0	1163	27	43.073655	-89.385427	1.03
	1	1	1163	47	43.073655	-89.385427	0.11
	•	0	1160	75	40 070CEE	00 205 407	0.24

demo: poke around DB (will explain more soon)

SELECT		FROM	;
	or		
select			
from	;		

select		
from		
	optional stuff) ;

```
select which columns
from table name;
```

Syntax for SELECT (case and spacing don't matter):

select

which columns

from boarding;

Syntax for SELECT (case and spacing don't matter):

star means all of them

select * from boarding;

index	StopID	Route	Lat	Lon	DailyBoardings
0	1163	27	43.073655	-89.385427	1.03
1	1163	47	43.073655	-89.385427	0.11
2	1163	75	43.073655	-89.385427	0.34
3	1164	6	43.106465	-89.340021	10.59
4	1167	3	43.077867	-89.369993	3.11
5	1167	4	43.077867	-89.369993	2.23
6	1167	10	43.077867	-89.369993	0.11
7	1167	38	43.077867	-89.369993	1.36
8	1169	3	43.089707	-89.329817	18.90

Syntax for SELECT (case and spacing don't matter):

select Route, DailyBoardings from boarding;

Route	DailyBoardings
27	1.03
47	0.11
75	0.34
6	10.59
3	3.11
4	2.23
10	0.11
38	1.36
3	18.90

Syntax for SELECT (case and spacing don't matter):

select *

from routes;

ShapeSTLength	route_url	route_short_name	trips_routes_route_id	OBJECTID	index
32379.426524	http://www.cityofmadison.com/Metro/schedules/R	1	8052	63	0
96906.965571	http://www.cityofmadison.com/Metro/schedules/R	2	8053	64	1
76436.645644	http://www.cityofmadison.com/Metro/schedules/R	3	8054	65	2
64774.133485	http://www.cityofmadison.com/Metro/schedules/R	4	8055	66	3
61216.722662	http://www.cityofmadison.com/Metro/schedules/R	5	8056	67	4
151142.298370	http://www.cityofmadison.com/Metro/schedules/R	6	8057	68	5
98617.005665	http://www.cityofmadison.com/Metro/schedules/R	7	8058	69	6

Syntax for SELECT (case and spacing don't matter):

select route_url
from routes;

Result:

http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...

route url

Syntax for SELECT (case and spacing don't matter):

select * from boarding;

index	StopID	Route	Lat	Lon	DailyBoardings
0	1163	27	43.073655	-89.385427	1.03
1	1163	47	43.073655	-89.385427	0.11
2	1163	75	43.073655	-89.385427	0.34
3	1164	6	43.106465	-89.340021	10.59
4	1167	3	43.077867	-89.369993	3.11
5	1167	4	43.077867	-89.369993	2.23
6	1167	10	43.077867	-89.369993	0.11
7	1167	38	43.077867	-89.369993	1.36
8	1169	3	43.089707	-89.329817	18.90

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80;

Note: SQL only has one equal sign for equality!

But == does work

index	StopID	Route	Lat	Lon	DailyBoardings
732	2007	80	43.076436	-89.424388	72.82
733	2014	80	43.089239	-89.433760	99.50
735	2018	80	43.086293	-89.435043	6.23
737	2023	80	43.078800	-89.429795	100.05
738	2026	80	43.086248	-89.436661	18.45
739	2027	80	43.080259	-89.428067	4.34
740	2034	80	43.086445	-89.433772	120.73
741	2039	80	43.089158	-89.438057	86.27
742	2041	80	43.084252	-89.433487	1.56

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID;

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88
1095	49	80	43.075529	-89.397191	690.92
1099	52	80	43.076131	-89.405660	243.91
1104	60	80	43.075996	-89.403660	160.42
1106	61	80	43.070893	-89.403698	154.41
1109	73	80	43.070820	-89.398650	412.10

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID DESC;

descending means biggest first

index	StopID	Route	Lat	Lon	DailyBoardings
3341	2996	80	43.076534	-89.413067	89.16
3329	2978	80	43.076561	-89.416289	88.71
3256	2881	80	43.084225	-89.429092	12.78
3002	2442	80	43.076588	-89.419301	91.27
968	2349	80	43.078388	-89.430227	561.96
923	2267	80	43.076382	-89.419943	455.02
906	2240	80	43.078988	-89.426659	0.67

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID ASC;

ascending means smallest first

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88
1095	49	80	43.075529	-89.397191	690.92
1099	52	80	43.076131	-89.405660	243.91
1104	60	80	43.075996	-89.403660	160.42
1106	61	80	43.070893	-89.403698	154.41
1109	73	80	43.070820	-89.398650	412.10

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID ASC
limit 3;

only show the top N results

Result:

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88

3 results

Syntax for SELECT (case and spacing don't matter):

```
select *
from boarding
where Route = 80
order by StopID ASC
limit 3;
```

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88

Syntax for SELECT (case and spacing don't matter):

```
select *
from boarding
where Route = 80
order by StopID ASC
limit 3;
```

Result:

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88

You can use any combination of where, order by, and limit. But whichever you use, they must appear in that order!