Cognome:	Nome:	# Matricola:	Riga:	Col:
Cognome.	MOINC.	π Matricula.	Kiga.	CU

Algoritmi e Strutture Dati - 05/06/14

Esercizio 0 Scrivere correttamente nome, cognome, numero di matricola, riga e colonna.

Esercizio 1 – Punti > 6 (Parte B)

Dati n segmenti della retta delle ascisse, dove l'i-esimo segmento inizia nella coordinata a[i] e termina nella coordinata b[i], scrivere un algoritmo che prenda in input i vettori a, b e la dimensione n, e restituisca il sottoinsieme di segmenti indipendenti (che non si intersecano) di copertura massimale, ovvero che copre la maggior parte della retta delle ascisse.

Discutere informalmente la correttezza della soluzione proposta e calcolare la complessità computazionale.

Esercizio 2 – Punti > 6 (Parte A)

Dati due alberi binari di ricerca T ed S, scrivere un algoritmo che determini se tali alberi sono uguali o meno (sia per contenuto nelle chiavi, che strutturalmente).

Discutere informalmente la correttezza della soluzione proposta e calcolare la complessità computazionale.

Esercizio 3 – Punti > 8 (Parte B)

Dati un grafo non orientato G = (V, E) ed un intero k, scrivere un algoritmo che ritorni **true** se è possibile colorare il grafo usando al più k colori, in modo che ogni nodo sia colorato con un colore diverso da tutti i nodi adiacenti, **false** altrimenti.

Discutere informalmente la correttezza della soluzione proposta e calcolare la complessità computazionale.

Esercizio 4 – Punti > 12 (Parte B)

Sia V un vettore contenente n interi. Chiamiamo costo C(i, j) di un sottovettore $V[i \dots j]$ di V la somma dei suoi elementi:

$$C(i,j) = \sum_{t=i}^{j} V[t]$$

Una k-partizione del vettore V è una divisione del vettore in k sottovettori $V[1,j_1],V[j_1+1,j_2],V[j_2+1,j_3],\ldots,V[j_{k-1}+1,j_k]$ con $j_k=n$ e $j_t< j_{t+1}, \forall 1\leq t< k$, ovvero tale per cui i sottovettori coprono totalmente il vettore e non si sovrappongono. Chiamiamo costo della partizione il costo massimo dei suoi sottovettori. Dato un vettore V contenente n interi e un intero k, con $2\leq k\leq n$, il problema è trovare una partizione di V di costo minimo che divide V in k sottovettori. Ad esempio, se $V=\{2,3,7,-7,15,2\}$, una 3-partizione possibile è $\{2,3,7\},\{-7,15\},\{2\}$, che ha costo pari a 2+3+7=12. La 3-partizione $\{2,3\},\{7\},\{-7,15,2\}$ ha costo pari a -7+15+2=10 e dovrebbe essere ottima.

- 1. Scrivere un algoritmo che risolva il problema nel caso particolare k=2, restituendo il costo della 2-partizione ottima (suggerimento: O(n)).
- 2. Scrivere un algoritmo che risolva il problema nel caso particolare k=3, restituendo il costo della 3-partizione ottima (suggerimento: $O(n^2)$).
- 3. Scrivere un algoritmo che risolva il problema per ogni k, restituendo il costo della k-partizione ottima (suggerimento: $O(kn^2)$).

Discutere informalmente la correttezza delle soluzioni proposte e calcolare la complessità computazionale. Ovviamente i casi con k=2 e k=3 possono essere risolti dall'algoritmo generale, ma per questi due valori è possibile scrivere algoritmi più efficienti e/o più semplici.