HW6

$Sam\ Mottahedi$

August 3, 2017

Problem 1)

```
data <- read.table('pearls.txt', header=T, colClasses = c('numeric', 'factor','factor','factor'))
mu <- mean(data$value)
mu_i <- tapply(data$value, data$no_coats, mean)
mu_j <- tapply(data$value, data$batch, mean)

tau_b <- mu - mu_j
tau_a <- mu - mu_i</pre>
```

(a)

$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

the terms $\alpha_i, (\alpha \beta)_{ij}, \epsilon_{ijk}$ are random and $\mu_{..}, \beta_j$ are fixed.

(b)

Mean sq	df	Expected MS
MSA	a - 1 = 2	$\sigma^2 + n\sigma_{\alpha\beta}^2 + \frac{bn}{a-1}\sum_i \alpha_i^2$
MSB	b - 1 = 3	$\sigma^2 + n\sigma_{\alpha\beta}^2 + \frac{bn}{a-1} \sum_j \alpha_i^2$ $\sigma^2 + an\sigma_\beta^2$
MSAB	(a-1)(b-1) = 6	$\sigma^2 + n\sigma_{\alpha\beta}^{2}$
MSE	ab(n-1) = 36	σ^2

$$\sigma^2 = 4.832$$

$$\sigma_{\alpha\beta}^2 = -1.1285$$

$$\sigma_{\beta} = 3.844$$

$$E\{MSAB\} = 4.823$$

$$E\{MSB\}=50.951$$

$$E\{MSA\} = 81.2488333$$

(c)

```
fit2 <- lm(value ~ no_coats + batch + no_coats:batch, data)
anova(fit2)</pre>
```

Analysis of Variance Table

```
##
## Response: value
##
                     Df Sum Sq Mean Sq F value
                      2 150.388 75.194 15.591 1.327e-05 ***
## no_coats
## batch
                      3 152.852
                                   50.951 10.564 3.984e-05 ***
## no_coats:batch 6 1.852
                                    0.309
                                              0.064
                                                        0.9988
## Residuals
                     36 173.625
                                    4.823
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
H_0: \sigma^2_{\alpha\beta} = 0
H_a:\sigma^2_{\alpha\beta}>0
F* = \frac{\mathit{MSAB}}{\mathit{MSE}} = 0.0627666 < F = 2.363751
concluding null, interaction term is not significant.
```

d)

$$H_0: \sigma_{\alpha}^2 = 0$$

 $H_a: \sigma_{\alpha}^2 > 0$
 $F^* = \frac{75.194}{0.309} = 243.3462783$
 $F = 5.1432528$

 $F^* > F$ concluding H_a the effect of coat factor is significant.

e)

Mean sq	df	Expected MS
MSA	a - 1 = 2	$\sigma^2 + bn\sigma_{\alpha}^2$
MSB	b - 1 = 3	$\sigma^2 + n\sigma_{\alpha\beta}^2 + \frac{an}{b-1}\sum_j \beta_j^2$
MSAB	(a-1)(b-1) = 6	$\sigma^2 + n\sigma_{\alpha\beta}^2$
MSE	ab(n-1) = 36	σ^2

```
\begin{split} \sigma^2 &= 4.832 \\ \sigma_{\alpha\beta}^2 &= -1.1285 \\ \sigma_{\alpha} &= 4.3981875 \\ E\{MSAB\} &= 4.823 \\ E\{MSA\} &= 75.194 \\ E\{MSB\} &= 72.7570741 \end{split}
```

f)

```
mu = tapply(data$value, data$no_coat, mean)
11 = mu[2] - mu[1]
12 = mu[3] - mu[1]
```

$$s = sqrt((0.309/(4*4))*(2))$$

 $t = qt(1-0.1/(2*2), 3*4*3)$

B = 2.028094

 $s\{\hat{D}\} = 0.1965324$

 $\mu_6 - \mu_8 = 3.6875$

 $\mu_6 - \mu_{10} = 3.81875$

 $3.2889137 \le \mu_8 - \mu_6 \le 4.0860863$

 $3.4201637 \le \mu_8 - \mu_{10} \le 4.2173363$

Problem 2)

a)

$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_{j(i)} + \epsilon_{ijk}$$

 $\mu_{..}constantvariable$

 α_i : constant related to factor A and subject to $\sum \alpha_i = 0$

 $\beta_{j(i)}$: randomnormalvariable with mean 0

 $epsilon_{ijk}independetN(0, \sigma^2)$

$$i = 1, \ldots, 2; j = 1, \ldots, 3; k = 1, \ldots, 5$$

b)

SSA=0.01825

$$SSB(A) = 0.01153 + 0.44249 = 0.45402$$

SSE = 0.29020

Source	SS	df	MS	$E\{MS\}$
Factor A	0.01825	a-1=1	0.01825	$\sigma^2 + bn \frac{\sum \alpha_i^2}{i} + n\sigma_{\alpha}^2$
Factor B(in	0.45402	a(b-	0.113505	$\frac{\sigma^2 + bn \frac{\sum_{a=1}^{\alpha_i^2}}{a-1} + n\sigma_{\beta}^2}{\sigma^2 + n\sigma_{\beta}^2}$
A)		1)=4		,
Error	0.29020	`	0.0120917	σ^2
		1)=24		
Total	0.47227	abn-	0.0162852	
		1 = 29		

assuming $\alpha = 0.05$

for factor A:

$$F^* = MSA/MSB(A) = 0.1607859$$

F = 7.7086474

$$F^* < F$$

concluding H_0 , there's no considerable variability in different sites.

for factor B:

$$F^* = MSB(A)/MSE = 9.3870434$$

F = 2.7762893

 $F^* > F$ concluding H_a , there is considerable batch to batch difference.

Problem 3)

```
data = read.table('floral.dat',header=T,sep='\t')
trt = as.factor(data$trt)
plot = as.factor(data$plot)
time = as.factor(data$time)
y = data$resp
```

a)

The mean of y for unburned region is higher compared to the burned region. The mean of Y increases with time for unburned region. For the burned region the the mean of y increases with time between 1-9 and deacreases between 9-12 and again increases between 12-15.

b)

$$Y_{ijk} = \mu_{...} + \rho_{i(j)} + \alpha_j = \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}$$

 $\mu_{...}$ is constant

```
\rho_{i(j)}
 random \sim N(0, \sigma_p^2), nested with in factor A. \alpha_j burn/no burn, fixed \beta_k: Time factor, fixed
```

c)

That the covariance for the same plot has compound symmetry and all covariances should be similar in magnitude. Yes.

d)

Yes, except for the two extreme points in left and right the rest of the points seems to be normal.

```
fit <- lm(y ~ trt/plot + trt + time + trt:time)</pre>
anova(fit)
## Analysis of Variance Table
##
## Response: y
##
             Df Sum Sq Mean Sq F value
                                           Pr(>F)
## trt
              1 9964.0 9964.0 446.7287 < 2.2e-16 ***
## time
              3 496.0
                         165.3
                                 7.4132 0.0003540 ***
## trt:plot 16 3564.1
                         222.8
                                 9.9870 2.43e-10 ***
                                 6.4949 0.0008879 ***
## trt:time
              3 434.6
                         144.9
## Residuals 48 1070.6
                          22.3
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hist(fit$residuals, 20)
```

Histogram of fit\$residuals

qqnorm(fit\$residuals)

Normal Q-Q Plot

 $\mathbf{e})$

 $H_0: all \alpha_j = 0$ $H_a:$ not all α_j equal zero

$$F^* = \frac{MSA}{MSS(A)} = 44.7217235$$

$$F = 4.4939985$$

 $F^* > F$ we conclude H_a . That treatment effect exist and burned areas are significantly different.