Introduction to Machine Learning (IML)

LECTURE #11: GENERATIVE MODELS

236756 – 2023-2024 WINTER – TECHNION

LECTURER: YONATAN BELINKOV

Today

- part III: more supervised learning
 - 1. Regression
 - 2. Bagging and Boosting
 - 3. Generative models
 - 4. Deep learning

Types of Data Distributions

Joint:

 $(x, y) \sim D_{XY}$ (sample input-label pair)

Marginal:

 $x \sim D_X$ (sample input) data uncertainty

Conditional:

 $y \sim D_{Y|X=x}$ (sample label for given input) label uncertaint(ies)

Which distributions should we care about?

Recap: Discriminative Approach

- Recall, our data come from a joint distribution $(x,y) \stackrel{iid}{\sim} D_{XY}$
- But we focused on modeling P(y|x) := P(Y = y|X = x) directly
- This allows us to predict
 - E.g., in binary classification, given x:

$$h(x) = \begin{cases} 1 & P(y=1|x) > \frac{1}{2} \\ 0 & otherwise \end{cases}$$

- This is called a discriminative approach
- Remember: we parameterize this with some θ as $P(y|x;\theta)$
 - E.g., for linear classifiers $\theta = w$ and we have $P(y|x;\theta) = w^Tx$

Generative Approach

• Recall Bayes' rule:

$$P(y|x) = \frac{P(x,y)}{P(x)} = \frac{P(x|y)P(y)}{\sum_{y'} P(x|y')P(y')}$$

Class-Conditional Distribution

• This gives a classifier:
$$h(x) = \operatorname{argmax}_{y} \frac{P(x|y)P(y)}{\sum_{y'} P(x|y')P(y')} = \operatorname{argmax}_{y} P(x|y)P(y)$$
• Congretive approach: Estimate $P(x|y)$ and $P(x|y)$

- Generative approach: Estimate P(x|y) and P(y)
 - Implies estimating P(y|x) because $P(y|x) \propto p(x|y)p(y)$
- Again, these have some parameters θ : $P(y|x;\theta) \propto P(x|y;\theta)P(y;\theta) = P(x,y;\theta)$

Class Prior

Generative vs. Discriminative Models

- Generative models solve a harder task
- But sometimes it's easy to learn their parameters
- And modeling the data can be useful

"When solving a given problem, try to avoid a more general problem as an intermediate step"

Generative stories

- Generative models tell a generative story about the data generation
- Think of our Papaya
 - First, we sample a label y from Y according to $P(Y = y; \theta)$
 - Then, we sample x from X|Y = y according to $P(X = x|Y = y; \theta)$

The core of modeling is in deciding on parametric distributions

Graphical models

• It is often convenient to represent the data generation process in a

graphical model

- Arrows represent conditional dependencies $P(x|y;\theta)$
- Can read the data probability from the graph

$$P(x, y; \theta)$$
= $P(y; \theta)P(x|y; \theta)$

Graphical models

 It is often convenient to represent the data generation process in a graphical model

Training generative models

- How to estimate $P(x|y;\theta)$ and $P(y;\theta)$?
- Enter Maximum Likelihood Estimation (MLE)
 - For **training set** $S = \{(x_i, y_i)\}_{i=1}^m$, seek parameters $\hat{\theta}$ that maximize the log-likelihood: $\log L(\theta; S) = \log P(S; \theta)$

$$\log L(\theta; S) = \log P(S; \theta) = \log P(\{(x_i, y_i)\}_{i=1}^m; \theta) = \log \prod_i P(x_i, y_i; \theta)$$

$$= \log \prod_i P(x_i | y_i; \theta) p(y_i; \theta) = \sum_i \log P(x_i | y_i; \theta) + \sum_i \log P(y_i; \theta)$$

- Result: can optimize parameters for each term separately
 - They have different θ 's
- Let's see some examples

- For now, forget about y, and consider a set of coin flips $S = \{x_i\}_{i=1}^m$, where the probability of heads is $\theta^* = P(H)$ (H=HEADS, T=TAILS)
- What is $\hat{\theta} = \operatorname{argmax}_{\theta} \log L(\theta; S)$?

$$\log L(\theta; S) = \log P(S; \theta) = \log P(\lbrace x_i \rbrace_{i=1}^m; \theta) = \log \left[P(x_i; \theta) = \sum_{i=1}^n \log P(x_i; \theta) \right]$$

- For now, forget about y, and consider a set of coin flips $S = \{x_i\}_{i=1}^m$, where the probability of heads is $\theta^* = P(H)$ (H=HEADS, T=TAILS)
- What is $\hat{\theta} = \operatorname{argmax}_{\theta} \log L(\theta; S)$?

$$\log L(\theta; S) = \log P(S; \theta) = \log P(\{x_i\}_{i=1}^m; \theta) = \log \left[P(x_i; \theta) = \sum_{i} \log P(x_i; \theta) \right]$$

$$= \# H \log P(x_i = H; \theta) + \# T \log P(x_i = T; \theta) = \# H \log \theta + \# T \log(1 - \theta)$$

• What's the argmax?
$$\frac{d}{d\theta} \log L(\theta; S) = \frac{\#H}{\theta} - \frac{\#T}{1-\theta} = 0 \quad \widehat{\theta} = \frac{\#H}{\#H + \#T}$$
• Think: is $\hat{\theta} = \theta^*$?

$$\hat{\theta} = \frac{\text{#H}}{\text{#H} + \text{#T}}$$

Example: Continuous variables

- Consider a dataset $S = \{x_i\}_{i=1}^m$, sampled from a Gaussian random variable $X \sim N(\mu, \sigma)$, where $\theta = (\mu, \sigma)$ [still no y in this example]
- What is $\hat{\theta} = \operatorname{argmax}_{\theta} \log L(\theta; S)$?

$$\log L(\theta; S) = \sum_{i} \log P(x_i; \theta) = \sum_{i} \log \left(\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)\right)$$

$$= -m\log(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2}\sum_{i}(x_i - \mu)^2$$

$$= -m\log(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$

$$\frac{d}{d\mu} \log L(\theta; S) = \frac{1}{\sigma^2} \sum_{i} (x_i - \mu) = 0$$

$$\hat{\mu} = \frac{1}{m} \sum_{i} x_i$$

$$\hat{\mu} = \frac{1}{m} \sum_{i} x_i$$

$$\frac{d}{d\sigma}\log L(\theta;S) = -\frac{m}{\sigma} + \frac{1}{\sigma^3} \sum_{i} (x_i - \mu)^2 = 0 \qquad \hat{\sigma} = \sqrt{\frac{1}{m} \sum_{i} (x_i - \hat{\mu})^2}$$

$$\hat{\sigma} = \sqrt{\frac{1}{m} \sum_{i} (x_i - \hat{\mu})^2}$$

Classification example: Naïve Bayes

- Back to our supervised setup: $S = \{(x_i, y_i)\}_{i=1}^m$, and assume:
 - Each $x_i \in \mathcal{X} = \{0,1\}^d \text{ and } y_i \in \mathcal{Y} = \{0,1\}$
 - Denote $x_i[j]$ the j'th feature of the i'th example

Example datum: x = [0,1,1,0,0,1] y = 1

- Suppose we wanted to model P(Y = y | X = x)
- How many parameters would we need? \longrightarrow 2^d (think why)
- Naïve Bayes assumes that $P(x|y) = P(x[1], ..., x[d]|y) = \prod_{j=1}^{d} P(x[j]|y)$
- The classifier: $h(x) = \operatorname{argmax}_{y} P(y) P(x|y) = \operatorname{argmax}_{y} P(y) \prod_{j=1}^{d} P(x[j]|y)$
 - Need to estimate only 2d + 1 parameters! (less risk of overfitting)

Original data

Naïve Bayes means we estimate P(x[j]|y) for each dimension separately

Estimation of first dimension

Estimation of second dimension

Naïve Bayes means we estimate P(x[j]|y) for each dimension separately

Resulting data distribution

And get an estimate of the full data distribution

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html

Training Naïve Bayes

- How do we estimate $P(x|y;\theta)$ and $P(y;\theta)$?
- We've seen the log-likelihood:

$$\log L(\theta; S) = \sum_{i} \log P(x_i | y_i; \theta) + \sum_{i} \log P(y_i; \theta)$$

NB assumption:

$$P(x|y) = \prod_{j=1}^{d} P(x[j]|y)$$

Training Naïve Bayes

NB assumption:

$$P(x|y) = \prod_{j=1}^{d} P(x[j]|y)$$

- How do we estimate $P(x|y;\theta)$ and $P(y;\theta)$?
- We've seen the log-likelihood:

$$\log L(\theta; S) = \sum_{i} \log P(x_i | y_i; \theta) + \sum_{i} \log P(y_i; \theta) = \sum_{i} \sum_{j} \log P(x_i[j] | y_i; \theta) + \sum_{i} \log P(y_i; \theta)$$

- What is $\hat{\theta} = \operatorname{argmax}_{\theta} \log L(\theta; S)$? What are the parameters θ ?
- In the binary case $(x_i \in \{0,1\}^d, y_i \in \{0,1\})$:

•
$$\theta_c^* = P(Y = 1)$$

•
$$\theta_0^*[j] = P(X[j] = 1|Y = 0)$$
 (d terms)

•
$$\theta_1^*[j] = P(X[j] = 1|Y = 1)$$
 (*d* terms)

$$\hat{\theta}_c = \frac{\#\{Y = 1\}}{m}$$

$$\hat{\theta}_0[j] = \frac{\#\{Y = 0, X[j] = 1\}}{\#\{Y = 0\}}$$

$$\hat{\theta}_1[j] = \frac{\#\{Y = 1, X[j] = 1\}}{\#\{Y = 1\}}$$

Naïve Bayes: Discussion

NB assumption:

$$P(x|y) = \prod_{j=1}^{d} P(x[j]|y)$$

- In Naïve Bayes, the features are independent conditioned on the label
- Generative story:
 - First sample Yummy/Not
 - Then sample each feature idependently from the others
- Strong assumption; is it true?
- Probably not (heavy Papayas tend to be higher)
- But, can be useful

Naïve Bayes for text classification

- Consider a spam detection task: $\mathcal{Y} = \{SPAM, NOTSPAM\}$
- How should we represent a text T = "Click to win win"?
- Bag-of-words representation:

$$x_T = [0 \dots 0 \dots 0 1 0 \dots 0 1 0 \dots 0 2 0 \dots 0] \in \mathbb{R}^{|V|}$$

- $V = \{w_j\}_{j=1}^{|V|}$ is the vocabulary; x[j] is number of times word w_j appears in T
- How to predict: $\underset{\#SPAM}{\operatorname{argmax}}_{y} P(y) P(x|y) =_{NB} \underset{R}{\operatorname{argmax}}_{y} P(y) \prod_{i=1}^{\lfloor t \rfloor} P(T_{i}|y)$

• MLE:
$$P(SPAM) = \frac{\#SPAM}{m}$$

$$P(w_j|SPAM) = \frac{\#\{w_j, SPAM\}}{\sum_w \#\{w, SPAM\}}$$

$$P(w_j|NOTSPAM) = \frac{\#\{w_j, NOTSPAM\}}{\sum_w \#\{w, NOTSPAM\}}$$

Probability to see word T_i in text with label y

$$P(Click|y) * P(to|y)$$

 $* P(win|y) * P(win|y)$

Naïve Bayes for text classification

- Consider a spam detection task: 71 (SPAM NOTSPAM)
- How should
 Bag-of-word
 We'll get back to that)

 Think: what happens if we never saw the word "win" with SPAM docs during training?

•
$$V = \{w_j\}_{j=1}^{|V|}$$
 is the vocabulary; $x[j]$ is number of times word w_j appears in T

 $x_T = [0 \dots 0 \dots 010 \dots 010 \dots 020 \dots 0] \in \mathbb{R}^{|V|}$

• How to predict: $\operatorname{argmax}_{y} P(y) P(x|y) =_{NB} \operatorname{argmax}_{y} P(y) \prod P(T_{i}|y)$

• MLE:
$$P(SPAM) = \frac{\#SPAM}{m}$$

$$P(w_j|SPAM) = \frac{\#\{w_j, SPAM\}}{\sum_w \#\{w, SPAM\}}$$

$$P(w_j|NOTSPAM) = \frac{\#\{w_j, NOTSPAM\}}{\sum_w \#\{w, NOTSPAM\}}$$

Probability to see word T_i in text with label y

$$P(Click|y) * P(to|y)$$

 $* P(win|y) * P(win|y)$

- Binary case: $x_i \in \mathcal{X} = \{0,1\}^d$ and $y_i \in \mathcal{Y} = \{0,1\}$
- We predict 1 if P(Y = 1|x) > P(Y = 0|x)

- Binary case: $x_i \in \mathcal{X} = \{0,1\}^d$ and $y_i \in \mathcal{Y} = \{0,1\}$
- We predict 1 if P(Y = 1|x) > P(Y = 0|x)

$$\Leftrightarrow \frac{P(x|Y=1)P(Y=1)}{P(x|Y=0)P(Y=0)} > 1$$

- Binary case: $x_i \in \mathcal{X} = \{0,1\}^d$ and $y_i \in \mathcal{Y} = \{0,1\}$
- We predict 1 if P(Y = 1|x) > P(Y = 0|x)

$$\Leftrightarrow \frac{P(x|Y=1)P(Y=1)}{P(x|Y=0)P(Y=0)} > 1 \Leftrightarrow \frac{P(Y=1)}{P(Y=0)} \prod_{j=1}^{a} \frac{P(x[j]|Y=1)}{P(x[j]|Y=0)} > 1$$
 (*)

- Binary case: $x_i \in \mathcal{X} = \{0,1\}^d$ and $y_i \in \mathcal{Y} = \{0,1\}$
- We predict 1 if P(Y = 1|x) > P(Y = 0|x)

• We predict 1 if
$$P(Y = 1|x) > P(Y = 0|x)$$

$$\Leftrightarrow \frac{P(x|Y = 1)P(Y = 1)}{P(x|Y = 0)P(Y = 0)} > 1 \Leftrightarrow \frac{P(Y = 1)}{P(Y = 0)} \prod_{j=1}^{d} \frac{P(x[j]|Y = 1)}{P(x[j]|Y = 0)} > 1$$
• Then $P(x[j]|Y = 1) = a_j^{x[j]} (1 - a_j)^{(1 - x[j])}$ and $P(x[j]|Y = 0) = b_j^{x[j]} (1 - b_j)^{(1 - x[j])}$
• (*) becomes $\frac{p}{1 - p} \prod_{j=1}^{d} \frac{a_j^{x[j]} (1 - a_j)^{(1 - x[j])}}{b_j^{x[j]} (1 - b_j)^{(1 - x[j])}} > 1$

$$\frac{p}{1-p}\prod_{j=1}^{d}\frac{a_{j}^{x[j]}(1-a_{j})^{(1-x[j])}}{b_{j}^{x[j]}(1-b_{j})^{(1-x[j])}}>1$$
Rearrange terms
$$\Leftrightarrow \frac{p}{1-p}\prod_{j=1}^{d}\frac{1-a_{j}}{1-b_{j}}\prod_{j=1}^{d}\left(\frac{a_{j}(1-b_{j})}{b_{j}(1-a_{j})}\right)^{x_{j}}>1$$
Take log
$$\Leftrightarrow \log\frac{p}{1-p}\prod_{j=1}^{d}\frac{1-a_{j}}{1-b_{j}}+\sum_{j=1}^{d}x_{j}\log\left(\frac{a_{j}(1-b_{j})}{b_{j}(1-a_{j})}\right)>0$$

$$\Leftrightarrow b+\sum_{j=1}^{d}x_{j}w_{j}>0 \Leftrightarrow b+w^{T}x>0$$
Linear model!

Naïve Bayes: Gaussian case

- Assume that $X[j]|Y = y \sim N(\mu_{\nu}[j], \sigma[j])$, such that $x_i \in \mathcal{X} = \mathbb{R}^d$ and $y_i \in \mathcal{Y} = \{0,1\}$ [note $\sigma[i]$ doesn't depend on y here]
- What are the parameters θ to estimate?

•
$$\theta_c^* = P(Y=1)$$

- $\mu_y[j]$, for all y, j (2d terms) $\sigma[j]$, for all j (d terms)

$$\hat{\theta}_c = \frac{\#\{Y = 1\}}{m}$$

$$\hat{\mu}_{y}[j] = \frac{1}{\#\{i: y_{i} = y\}} \sum_{i: y_{i} = y} x_{i}[j]$$

$$\log L(\theta; S) = \sum_{i} \sum_{j} \log P(x_{i}[j]|y_{i}; \theta) + \sum_{i} \log P(y_{i}; \theta)$$

$$\hat{\sigma}[j] = \sqrt{\frac{1}{m}} \sum_{i} (x_i[j] - \hat{\mu}_{y_i}[j])^2$$

- We saw that binary Naïve Bayes is linear
- What about Gaussian Naïve Bayes?
- It's possible to show that in this case:

•
$$P(Y = 1|x) = \frac{1}{1 + e^{w^T x + b}}$$
, where: $w[j] = \frac{\mu_0[j] - \mu_1[j]}{\sigma[j]^2}$

- Does that look familiar?
- Same form as logistic regression!
- Think: which parameters do we estimate in each case, and how?

 $b = \log \frac{1 - \theta_c^*}{\theta_c^*} + \sum_{i} \frac{\mu_1[j]^2 - \mu_0[j]^2}{2\sigma[j]^2}$

• Moreover, we predict 1 if P(Y = 1|x) > P(Y = 0|x)

$$\Leftrightarrow \frac{1}{1 + e^{w^T x + b}} / \frac{e^{w^T x + b}}{1 + e^{w^T x + b}} > 1$$

• Moreover, we predict 1 if P(Y = 1|x) > P(Y = 0|x)

$$\Leftrightarrow \frac{1}{1+e^{w^Tx+b}} / \frac{e^{w^Tx+b}}{1+e^{w^Tx+b}} > 1 \Leftrightarrow e^{w^Tx+b} < 1$$

• Moreover, we predict 1 if P(Y = 1|x) > P(Y = 0|x)

$$\Leftrightarrow \frac{1}{1 + e^{w^T x + b}} / \frac{e^{w^T x + b}}{1 + e^{w^T x + b}} > 1 \Leftrightarrow e^{w^T x + b} < 1 \Leftrightarrow w^T x + b < 0$$

• Gaussian Naïve Bayes (and logistic regression) are linear!

Logistic Regression

Naïve Bayes

Model

Discriminative

Generative

Family

P(y|x)

P(x|y)

Error

 $L_D(h_S)$

 $L_D(h_S)$

Sample

m = O(d)

 $m = O(\log d)$

complexity

Error

Naïve Bayes Logistic Regression

Question: How should the following plot look like?

Bayesian reasoning and MAP estimation

- Suppose you see the following series of coin flips: T, T, T
- What is the MLE estimate of $\theta = P(H)$? $\rightarrow \frac{\#H}{m} = \frac{0}{3} = 0$
- Is this good or bad?
- Recall $\log L(\theta; S) = \# H \log \theta + \# T \log (1 \theta)$ $\rightarrow L(\theta; S) = -\infty$
- Overfitting: if θ is small, with probability $(1-\theta)^m$ will see all T
- How can we fix this?
- Idea: add pseudo-examples, pairs of H and T: H, T, T, T, T
- What's the estimate of $\theta = P(H)$ now? $\Rightarrow \frac{\#H}{m} = \frac{1}{5} = \frac{0+1}{3+2}$

Bayesian reasoning

- ullet So far we thought of ullet as unkown (but fixed!) parameters that we estimate with MLE
- However, this approach can overfit, especially with little data
- In Bayesian reasoning, we think of θ as a random variable
- $P(\theta)$ is the prior distribution
 - Chosen by us before learning a modeling decision
 - Means that samples $\{x_i\}$ are now independent only conditioned on θ

Maximum a posteriori (MAP) Estimation

- In MLE, we look for $argmax_{\theta}P(S|\theta)$
- In MAP, we look for $\operatorname{argmax}_{\theta} P(\theta|S) = \operatorname{argmax}_{\theta} P(S|\theta) P(\theta)$

Posterior

Likelihood

Prior

- Consequences
 - With uniform prior, MAP is the same as MLE
 - As we get more data, the MAP estimate converges to the MLE one
- How do we perform MAP?
 - First, assume a prior
 - Then, optimize

Example: Biased coin

- Given a sequence of coin flips $S = \{x_1, \dots, x_m\}$
- Likelihood $P(S|\theta) = \prod_{i} \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\#H} (1-\theta)^{\#T}$
- Let's assume prior $P(\theta) = \operatorname{Beta}(\theta | \alpha, \beta) \propto \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- Posterior: $P(\theta|S) \propto P(S|\theta)P(\theta) = \theta^{\alpha-1+\#H}(1-\theta)^{\beta-1+\#T}$
- We get $P(\theta|S) = Beta(\theta|\alpha + \#H, \beta + \#T)$ (Beta is conjugate prior for the Bernoulli likelihood)
- Differentiating w.r.t θ and equating to 0, we get:

$$\hat{\theta}_{MAP} = \frac{\alpha + \#H - 1}{\alpha + \beta + \#H + \#T - 2}$$

• We got
$$\hat{\theta}_{MAP} = \frac{\alpha + \#H - 1}{\alpha + \beta + \#H + \#T - 2}$$

- Let's set $\alpha = 1$, $\beta = 1$
 - Then $P(\theta) = Beta(\theta | \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1} = 1$ is a uniform prior

• And
$$\hat{\theta}_{MAP} = \frac{1+\#H-1}{1+1+\#H+\#T-2} = \frac{\#H}{\#H+\#T} = \hat{\theta}_{MLE}$$

- Now let's set $\alpha = 2$, $\beta = 2$
 - Then $\hat{\theta}_{MAP}=\frac{2+\#H-1}{2+2+\#H+\#T-2}=\frac{\#H+1}{\#H+\#T+2}$ which is our estimate using pseudo-examples
 - Prior $Beta(\theta|\alpha,\beta)$ is like adding $(\alpha-1)$ H and $(\beta-1)$ T pseudo-examples

Example: Binary Naïve Bayes

NB assumption:

$$P(x|y) = \prod_{j=1}^{a} P(x[j]|y)$$

- Recall that for the binary case $(x_i \in \{0,1\}^d, y_i \in \{0,1\})$:
 - $\theta_c^* = P(Y=1)$
 - $\theta_0^*[j] = P(X[j] = 1|Y = 0)$ (d terms)
 - $\theta_1^*[j] = P(X[j] = 1|Y = 1)$ (*d* terms)

$$\hat{\theta}_{c} - \frac{m}{m}$$

$$\hat{\theta}_{0}[j] = \frac{\#\{Y = 0, X[j] = 1\}}{\#\{Y = 0\}}$$

$$\hat{\theta}_{1}[j] = \frac{\#\{Y = 1, X[j] = 1\}}{\#\{Y = 1\}}$$

- What are the MAP estimates?
 - Need to specify priors (for all params)
 - E.g., Beta with $\alpha=2$, $\beta=2$
 - Smoothing the zero probabilities of unseen events

$$\hat{\theta}_c = \frac{\#\{Y = 1\} + 1}{m + 2}$$

$$\hat{\theta}_0[j] = \frac{\#\{Y = 0, X[j] = 1\} + 1}{\#\{Y = 0\} + 2}$$

$$\hat{\theta}_1[j] = \frac{\#\{Y = 1, X[j] = 1\} + 1}{\#\{Y = 1\} + 2}$$

Other generative models

- So far, we've considered "simple" classification setups:
 - Binary labels $y_i \in \{0,1\}$
 - Vector or disccrete inputs, e.g., $x_i \in \{0,1\}^d$
- But real-world data often look different
 - Many problems are sequential

Goodbye and thanks for all the fish

• Inputs $S = \left\{x^{(i)}, y^{(i)}\right\}_{i=1}^m$, where $x^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \dots, x_{T_i}^{(i)}\}, \qquad x_k^{(i)}$ may be discrete or continuous $y^{(i)} = \{y_1^{(i)}, y_2^{(i)}, \dots, y_{T_i}^{(i)}\}, \qquad y_k^{(i)} \in \{0,1\}$

- Inputs $S = \left\{x^{(i)}, y^{(i)}\right\}_{i=1}^m$, where $x^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \dots, x_{T_i}^{(i)}\}, \qquad x_k^{(i)} \text{ may be discrete or continuous}$ $y^{(i)} = \{y_1^{(i)}, y_2^{(i)}, \dots, y_{T_i}^{(i)}\}, \qquad y_k^{(i)} \in \{0,1\}$
- Example: Ice cream and weather (Eisner 2002)
 - Observations: number of ice creams eaten each day: $\mathcal{X} = \{1,2,3\}$
 - Hidden variables:

Weather on each day: cold (C) or hot (H), so $\mathcal{Y} = \{C, H\}$

$$(x_1)$$

$$(x_2)$$

- Example: Ice cream and weather
 - Observations: number of ice creams eaten each day: $\mathcal{X} = \{1,2,3\}$
 - Hidden variables: Weather on each day: $\mathcal{Y} = \{C, H\}$
- Suppose we want to model the probability of eating 2 ice creams on day 3. What could it depend on?
- $P(X_3 = 2|?)$

- Example: Ice cream and weather
 - Observations: number of ice creams eaten each day: $\mathcal{X} = \{1,2,3\}$
 - Hidden variables: Weather on each day: $\mathcal{Y} = \{C, H\}$
- Suppose we want to model the probability of eating 2 ice creams on day 3. What could it depend on?
- $P(X_3 = 2|y_3)$ Only the weather at day 3

- Example: Ice cream and weather
 - Observations: number of ice creams eaten each day: $\mathcal{X} = \{1,2,3\}$
 - Hidden variables: Weather on each day: $\mathcal{Y} = \{C, H\}$
- Suppose we want to model the probability of eating 2 ice creams on day 3. What could it depend on?
- $P(X_3 = 2|y_1, y_2, y_3)$ Also weather on other days

- Example: Ice cream and weather
 - Observations: number of ice creams eaten each day: $\mathcal{X} = \{1,2,3\}$
 - Hidden variables: Weather on each day: $\mathcal{Y} = \{C, H\}$
- Suppose we want to model the probability of eating 2 ice creams on day 3. What could it depend on?
- $P(X_3 = 2 | y_1, y_2, y_3, x_1, x_2)$ Also previous # of ice creams
- Pros/cons of different options

Hidden Markov Model (HMM)

- The HMM imposes a specific dependence structure:
 - Each observation depends only on its corresponding latent state
 - Each latent state depends only on its previous one
- Generative story:
 - First sample a sequence of hidden states
 - For each hidden state, sample the features
- Strong assumption; is it true?
 - Probably not
 - But, can be useful

Hidden Markov Model (HMM)

- An HMM is specified by:
 - A set of states \mathcal{Y} , e.g., $\mathcal{Y} = \{0,1\}$
 - Transition probabilities θ : $P(Y_{t+1} = y | Y_t = y') \quad \forall y, y'$
 - A sequence of observations $x_1, ..., x_T$
 - Emission probabilities ϕ : $P(x|y) \forall x, y$
 - Initial state probabilties π_y probability of starting at state y, $\forall y$

Example: Ice cream task (Eisner 2002)

- Example: Ice cream and weather
 - Observations: number of ice creams eaten each day: $\mathcal{X} = \{1,2,3\}$
 - Hidden variables: Weather on each day: cold (C) or hot (H), so $\mathcal{Y} = \{C, H\}$
- Example HMM (state machine) what are

The three problems of HMM

- **1. Likelihood**: Given an HMM with parameters (θ, ϕ, π) and an observation sequence $\mathbf{x} = x_1, ..., x_T$, determine the likelihood $P(\mathbf{x}; \theta, \phi, \pi)$
- **2. Decoding**: Given an observation sequence $\mathbf{x} = x_1, ..., x_T$ and an HMM, find the most probable hidden state sequence $\mathbf{y} = y_1, ..., y_T$
- **3. Learning**: Given an observation sequence $\mathbf{x} = x_1, ..., x_T$ and the set of HMM states \mathcal{Y} , learn the HMM parameters (θ, ϕ, π)

Likelihood computation

- Given an HMM with parameters (θ, ϕ, π) and an observation sequence $\mathbf{x} = x_1, ..., x_T$, determine the likelihood $P(\mathbf{x}; \theta, \phi, \pi)$
- **Problem**: we don't know the state sequence $\mathbf{y}=y_1,\dots,y_T$
- **Solution**: marginalize over it:

$$P(\mathbf{x}; \theta, \phi, \pi) = \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}} P(\mathbf{x}|\mathbf{y})P(\mathbf{y})$$

- How many terms in the sum? $|y|^T$
- The forward algorithm: dynamic program that runs in $|\mathcal{Y}|^2T$

$$P(\mathbf{x}|\mathbf{y}) = \prod_{t=1}^{I} P(x_t|y_t)$$

$$P(\mathbf{y}) = P(\pi_{y_1}) \prod_{t=1}^{T-1} P(y_{t+1}|y_t)$$

Decoding

- Given an observation sequence $\mathbf{x} = x_1, ..., x_T$ and an HMM, find the most probable hidden state sequence $\mathbf{y} = y_1, ..., y_T$
- Could we just compute $P(\mathbf{x}|\mathbf{y})$ for each \mathbf{y} and take argmax?
- No! There are exponentially many y's
- The Viterbi algorithm: another dynamic program with $|y|^2T$ runtime

Learning

- Given an observation sequence $\mathbf{x} = x_1, ..., x_T$ and the set of HMM states \mathcal{Y} , learn the HMM parameters (θ, ϕ, π)
- Note: this is a not a supervised learning problem!
 - We always assume we have x's and y's and need to learn parameters
 - Here we don't have y's
- There are ways to solve it, primarily the forward-backward algorithm (aka Baum-Welch, a special case of Expectation-Maximization)
- But this is beyond our scope

MIF for HMMs

- Inputs $S = \left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{m}$, where $x^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \dots, x_{T_i}^{(i)}\}, \qquad x_k^{(i)} \in \{0, 1\}$ $y^{(i)} = \{y_1^{(i)}, y_2^{(i)}, \dots, y_{T_i}^{(i)}\}, \qquad y_k^{(i)} \in \{0, 1\}$
- How do we estimate the parameters (θ, ϕ, π) ?
 - $\bullet \ \pi_0 = \frac{\#\{y_1^{(i)} = 0\}}{}$
 - $P(Y_{t+1} = 0 | Y_t = 0) = \frac{\#\{Y_{t+1} = 0, Y_t = 0\}}{\#\{Y_t = 0\}}, P(Y_{t+1} = 0 | Y_t = 1) = \frac{\#\{Y_{t+1} = 0, Y_t = 1\}}{\#\{Y_t = 1\}}$ $P(X_t = 0 | Y_t = 0) = \frac{\#\{X_t = 0, Y_t = 0\}}{\#\{Y_t = 0\}}, P(X_t = 0 | Y_t = 1) = \frac{\#\{X_t = 0, Y_t = 1\}}{\#\{Y_t = 1\}}$

- Back to the ice cream and weather example
- Imagine we see the following dataset:

```
3 3 2 1 1 2 1 2 3 hot hot cold cold cold cold cold hot hot
```

• $\pi_H =$

- Back to the ice cream and weather example
- Imagine we see the following dataset:

```
3 3 2 1 1 2 1 2 3 hot hot cold cold cold cold cold hot hot
```

- $\pi_H = 1/3$, $\pi_C = 2/3$
- θ : P(H|H) =

- Back to the ice cream and weather example
- Imagine we see the following dataset:

```
3 3 2 1 1 2 1 2 3 hot hot cold cold cold cold cold hot hot
```

- $\pi_H = 1/3$, $\pi_C = 2/3$
- θ : P(H|H) = 2/3, P(C|H) = 1/3, P(C|C) = 2/3, P(H|C) = 1/3
- ϕ : P(1|H) =

- Back to the ice cream and weather example
- Imagine we see the following dataset:

```
3 3 2 1 1 2 1 2 3 hot hot cold cold cold cold cold hot hot
```

- $\pi_H = 1/3$, $\pi_C = 2/3$
- θ : P(H|H) = 2/3, P(C|H) = 1/3, P(C|C) = 2/3, P(H|C) = 1/3
- ϕ : P(1|H) = 0/4, P(2|H) = 1/4, P(3|H) = 3/4P(1|C) = 3/5, P(2|C) = 2/5, P(3|C) = 0/5

Discussion

- Generative vs discriminative models
 - Generative models estimate P(x|y) and P(y)
 - Discriminative models estimate P(y|x) directly
- Heuristically, generative models may be useful when
 - Want to impose some parametric distributions
 - Don't have a lot of data
 - Want to generate data
 - Did not show
 - Lots of work (Dalle-2, chatGPT, etc. are related, thought not the same)
- Beware: these are heuristics!

Discussion

- Parameter estimation with MLE or MAP
 - MLE when have enough data
 - MAP when have little data and/or want to assume prior on θ
- Naïve Bayes
 - Assumes features are independent conditioned on label
 - Naïve, but often useful
 - Linear model, connection with logistic regression
- HMM
 - Assumes observations only depend on current state + Markov assumption
 - (Used to be) useful in many applications

Next week(s)

- part III: more supervised learning
 - 1. Regression
 - 2. Bagging and Boosting
 - 3. Generative models
 - 4. Deep learning

