

FCF 53F	A CPU-scheduling algorithm determines an order for the execution of its scheduled processes. Given <i>n</i> processes to be scheduled on one processor, how many different schedules are possible? Give a formula in terms of <i>n</i> .
	$N=1$ \longrightarrow 1
	$N-2 \longrightarrow 2 \qquad P_1 , P_2 $ P_2 , P_1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	P, /P2 /P 3 21 3 3 12
	- N /

6.3	Suppose that the following processes arrive for execution at the times
	indicated. Each process will run for the amount of time listed. In
	answering the questions, use nonpreemptive scheduling, and base all
	decisions on the information you have at the time the decision must be
_	made

Process	Arrival Time	Burst Time	
P_1	0.0	8	
P_2	0.4	4	
P_3	1.0	1	

a. What is the average turnaround time for these processes with the FCFS scheduling algorithm?

ary turn around time

$$-\frac{(8-0)+(12-0.4)+(13-1)}{3}-[0.63]$$

6.3	Suppose that the following processes arrive for execution at the times
	indicated. Each process will run for the amount of time listed. In
	answering the questions, use nonpreemptive scheduling, and base all
	decisions on the information you have at the time the decision must be
_	made.

Process	Arrival Time	Burst Time	
P_1	0.0	8	
P_2	0.4	4	
P_3	1.0	1	

b. What is the average turnaround time for these processes with the SJF scheduling algorithm?

$$(8-0)+(9-1)+(13-0.4)$$

6.3	Suppose that the following processes arrive for execution at the times
	indicated. Each process will run for the amount of time listed. In
	answering the questions, use nonpreemptive scheduling, and base all
	decisions on the information you have at the time the decision must be
	made.

Process	Arrival Time	Burst Time
P_1	0.0 >	(8)
P_2	0.4	$\underbrace{4}$
P_3	$\lfloor 1.0 \rfloor$	1

The SJF algorithm is supposed to improve performance, but notice that we chose to run process P_1 at time 0 because we did not know that two shorter processes would arrive soon. Compute what the average turnaround time will be if the CPU is left idle for the first 1 unit and then SJF scheduling is used. Remember that processes P_1 and P_2 are waiting during this idle time, so their waiting time may increase. This algorithm could be called future-knowledge scheduling.

6.16	Consider the following set of processes, with the length of the CPU burst
	given in milliseconds:

Process	Burst Time	Priority
P_1	2	2
P_2	1	1
P_3	8	4
P_4	4	2
P_5	5	3

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0.

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, nonpreemptive priority (a larger priority number implies a higher priority), and RR (quantum = 2).
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of these scheduling algorithms?
- d. Which of the algorithms results in the minimum average waiting time (over all processes)?

FCFS

 Process Burst Time
 Priority

 P_1 | 2 | 2
 2

 P_2 | 3 | 1
 1

 P_3 | II | 8
 4

 P_4 | 15 | 4
 2

 P_5 | 7 \circ | 5
 3

- a. Draw Gantt.
- b. Turnaround time.
- c. Waiting time.
- d. Which has minimum average waiting time?

	12,	Pz	P3	Py	1 Ps
0	2	-	3 1		S 20

RR (quantum = 2)a. Draw Gantt. b. Turnaround time. **Process Burst Time Priority** c. Waiting time. d. Which has minimum average waiting time? Jin $| f_5 \Rightarrow 18 | P_4 \Rightarrow 13$ 14(5+4)=9 $P_{3}(7+4+2) = 13$ $avg = \frac{0+2+12+9+13}{5} = 7.2$

nonpreemptive priority

(a larger priority number implies a higher priority)

Process	Burst Time	Priority
P_1	2	2
P_2	1	$\overline{1}$
P_3	8	4
P_4	4	2
$\underline{P_5}$	5	3

- a. Draw Gantt.
- b. Turnaround time.
- c. Waiting time.
- d. Which has minimum average waiting time?

	0	0		. 0	D		
1	13	16		Py	12		
		7	13 1	5 1	9	20	
\bigcirc		5	,				

		•		
turn	around	$\left \right $ $\left(\mathcal{N}^{\alpha}\right)$	itines	
$n \rightarrow$				11
F ₁	15		13	avg= 11
o O	26	B	10)	
77	0			
13	8	P3	\bigcirc	
Py	19	0	1 (
PS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ry	1)	
15	, ,	Pa	8	
		,		

6.17 The following processes are being scheduled using a preemptive, roundrobin scheduling algorithm. Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. In addition to the processes listed below, the system also has an <i>idle</i>	
task (which consumes no CPU resources and is identified as P_{idle}). This task has priority 0 and is scheduled whenever the system has no other available processes to run. The length of a time quantum is 10 units. If a process is preempted by a higher-priority process, the preempted process is placed at the end of the queue.	
process is placed at the end of the queue.	

Thread	Priority	Burst	Arrival			
P_1	40	20	0			
P_2	30	25	25			
P_3	30	25	30			
P_4	35	15	60			
P_5	5	10	100			
P_6	10	10	105			

- a. Show the scheduling order of the processes using a Gantt chart.
- b. What is the turnaround time for each process?
- c. What is the waiting time for each process?
- -d. What is the CPU utilization rate?

	P	6	10		10	105													
P ₁	P ₁	Pusk		P ₃			Pq	P _q	P ₂	P ₃	Pyle	Ps	P	P 2	100	R	P		
)	10 2	0 /	25	35	45	55 6	0 7	0 7	5 8	o 9	0 10	00 [05 1	115	120				
	(~\r	i + 1	Ing		<u>()</u>							D			7)				
					1			<u> </u>	\			7 4	' '						
					7	(10				,		15	(C)+	10				
Р	Priori	ty Bru	ıst) }	(5	· ·	(0	+2	0)		P		O)					
	Prior	ity Br	ust					10)				1 2	20	- (10) + 4	5)	
Р	Priori	ty Bru	ıct		t	otal	_ =	. []	,0	_	->				('	20			
Р	FIIOI	ТУ БГС	151																
					4 (V	Cn.	<u>, </u>	(-			`								
			t	rır	0100	P	1	(2)	0	- O) -	- 2	0						
						6	2	(80	у —	25) -								
						/>	3 (_ g) c) -	30) =								
						(-	,)	75	· · —	60) =								
							,	_		10	•								
						(.) _	(11	6 -	-10	5)	_							
						1	6	7''											