Admitere * Universitatea Politehnica din București 2002 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Să se calculeze $C_6^4 + A_5^2$.
 - a) 15; b) 102; c) 10; d) 25; e) 35; f) 20.
- 2. Să se determine abscisele punctelor de extrem local ale funcției $f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^3 3x.$
 - a) 1, -1; b) $\sqrt{3}$; c) 1; d) 0, $\sqrt{3}$, $-\sqrt{3}$; e) 0; f) 0, -1.
- 3. Fie matricele $A=\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$ și $B=\left(\begin{array}{cc} a & b \\ 0 & 2 \end{array}\right)$. Să se determine numerele reale a și b dacă AB=BA.
 - a) $a = 2, b \in \mathbb{R}$; b) a = 2, b = 2; c) a = 1, b = 1; d) a = -2, b = 0;
 - e) a = 2, b = 0; f) $a \in \mathbb{R}, b = 0$.
- 4. Fie ecuația: $x^2 + mx + m + 1 = 0$. Să se determine $m \in \mathbb{R}$ astfel încât: $x_1^2 + x_2^2 = -2$
 - a) m = -2; b) $m \in (1,2)$; c) m = 0; d) $m \in \{0,2\}$; e) nu există m;
 - f) $m \in \{1, 2\}.$
- 5. Să se calculeze $\sqrt{a^2-b^2}$ pentru a=242,5 și b=46,5.
 - a) 196; b) 240,75; c) 238,25; d) 283; e) $\sqrt{46640}$; f) 238.
- 6. Să se rezolve ecuația $\sqrt[3]{x} = x$.
 - a) 0, 1; b) 0, 1, -1; c) 1; d) 0, 1, i; e) 0; f) 1, -1.
- 7. Să se determine m real dacă ecuația $x^2 (m+3)x + m^2 = 0$ are două soluții reale și distincte.
 - a) $m \in (-\infty, 3);$ b) $m \in \mathbb{R};$ c) $m \in (-\infty, -1);$ d) $m \in (3, \infty);$ e) $m \in (-1, 3);$ f) m = -3.
- 8. Fie funcția $f:(-1,\infty)\to \mathbb{R}$, $f(x)=x\cdot\ln(x+1)$. Să se calculeze f(1)+f'(0).
 - a) 0; b) $\ln 2$; c) $\ln 3$; d) $1 + \ln 2$; e) 1; f) ∞ .
- 9. Să se așeze în ordine crescătoare numerele 1, $\ln 2$, $\ln 3$, π .
 - a) 1, $\ln 2$, π , $\ln 3$; b) 1, $\ln 2$, $\ln 3$, π ; c) $\ln 2$, $\ln 3$, 1, π ; d) $\ln 2$, 1, $\ln 3$, π ; e) 1, π , $\ln 2$, $\ln 3$; f) 1, $\ln 3$, π , $\ln 2$.
- 10. Să se calculeze $\int_0^1 \frac{x}{x^2+1} dx$.
 - a) -1; b) 0; c) 1; d) ; e) $\frac{1}{2} \ln 2$; f) 2.
- 11. Să se rezolve ecuația $9^x 4 \cdot 3^x + 3 = 0$.
 - a) 1; b) -1; c) 0; d) nu are soluții; e) 0 și 1; f) $\ln 3$.
- 12. Să se determine m real dacă funcția $f: \mathbb{R} \to \mathbb{R}, \begin{cases} 2x+m, & x \leq 1 \\ m^2x+2, & x > 1 \end{cases}$ este continuă pe \mathbb{R} .
 - a) nu există; b) 0 și 1; c) 1; d) -1; e) 0; f) 2.
- 13. Să se rezolve inecuația: $\frac{x+1}{1+x^2} \le 1$
 - a) $(-\infty, 1] \cup [2, \infty)$; b) $(-\infty, 0] \cup [1, \infty)$; c) $(-\infty, -2) \cup (1, \infty)$;
 - d) $(-\infty, 0) \cup (1, \infty)$; e) [-2, 1]; f) (-2, 1).
- 14. Să se rezolve sistemul: $\begin{cases} x + 2y = 5 \\ y^2 3y + 2 = 0. \end{cases}$
 - a) (3,1),(1,2); b) $(\frac{1}{2},1),(1,2)$; c) (2,3); d) (-1,0),(2,1); e) nu are soluții;
 - f) (3,4).

15. Să se calculeze aria cuprinsă între graficul funcției: $f(x) = x^2 + 1$ și axa Ox, pentru $x \in [0,1]$.

a) 3; b)
$$\frac{4}{3}$$
; c) 4; d) $\frac{1}{3}$; e) 2; f) $\frac{1}{2}$.

- 16. Să se calculeze: $\lim_{n\to\infty} \frac{n^2}{1+2+3+\cdots+n}$
 - a) 1; b) ∞ ; c) $\frac{1}{2}$; d) 0; e) nu există; f) 2.
- 17. Să se rezolve ecuația: $\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = 0$
 - a) $\frac{1}{2}$, 1; b) $-\frac{1}{2}$; c) $-\frac{1}{2}$, 0; d) 0; e) 1; f) $-\frac{1}{2}$, 1.
- 18. Să se găsească primul termen și rația unei progresii aritmetice, dacă: $a_3=8, a_7=20.$
 - a) $a_1 = 6, r = -3$; b) $a_1 = 4, r = 1$; c) $a_1 = 2, r = 3$; d) $a_1 = 8, r = 2$;
 - e) $a_1 = 4, r = 3$; f) $a_1 = -1, r = 1$.