Deep Generative Models

Lecture 5

Roman Isachenko

Autumn, 2022

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

- More powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ leads to more powerful generative model $p(\mathbf{x}|\boldsymbol{\theta})$.
- Too powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ could lead to posterior collapse: $q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})$ will not carry any information about \mathbf{x} and close to prior $p(\mathbf{z})$.

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:j-1},\mathbf{z},\boldsymbol{\theta})$$

- Global structure is captured by latent variables z.
- Local statistics are captured by limited receptive field of

Decoder weakening

- Powerful decoder $p(\mathbf{x}|\mathbf{z}, \theta)$ makes the model expressive, but posterior collapse is possible.
- ▶ PixelVAE model uses the autoregressive PixelCNN model with small number of layers to limit receptive field.

KL annealing

$$\mathcal{L}(\phi, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Start training with $\beta=0$, increase it until $\beta=1$ during training.

Free bits

Ensure the use of less than λ bits of information:

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))).$$

This results in $KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})) \geq \lambda$.

VAE objective

$$\log p(\mathbf{x}|\theta) \geq \mathcal{L}(q,\theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\phi)} \log \frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x},\phi)} \rightarrow \max_{q,\theta}$$

IWAE objective

$$\mathcal{L}_{K}(q, \theta) = \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{K} \sim q(\mathsf{z}|\mathsf{x}, \phi)} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathsf{x}, \mathsf{z}_{k}|\theta)}{q(\mathsf{z}_{k}|\mathsf{x}, \phi)} \right) o \max_{\phi, \theta}.$$

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta) \ge \mathcal{L}(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}$ is bounded.
- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- ► Gradient signal becomes really small, training is complicated.
- ▶ IWAE is a standard quality measure for VAE models.

Jacobian matrix

Let $f: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = f(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of variable theorem (CoV)

Let \mathbf{x} be a random variable with density function $p(\mathbf{x})$ and $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, invertible function (diffeomorphism). If $\mathbf{z} = f(\mathbf{x})$, $\mathbf{x} = f^{-1}(\mathbf{z}) = g(\mathbf{z})$, then

$$p(\mathbf{x}) = p(\mathbf{z})|\det(\mathbf{J}_f)| = p(\mathbf{z})\left|\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)\right| = p(f(\mathbf{x}))\left|\det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right)\right|$$
$$p(\mathbf{z}) = p(\mathbf{x})|\det(\mathbf{J}_g)| = p(\mathbf{x})\left|\det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right)\right| = p(g(\mathbf{z}))\left|\det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right)\right|.$$

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

Normalizing flows types
 Linear flows
 Gaussian autoregressive flows
 Inverse gaussian autoregressive flows

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

Normalizing flows types
 Linear flows
 Gaussian autoregressive flows
 Inverse gaussian autoregressive flows

Generative models zoo

Jacobian determinant

Inverse function theorem

If function f is invertible and Jacobian matrix is continuous and non-singular, then

$$\mathbf{J}_f = \mathbf{J}_{g^{-1}} = \mathbf{J}_g^{-1}; \quad |\det(\mathbf{J}_f)| = rac{1}{|\det(\mathbf{J}_g)|}.$$

- ightharpoonup x and z have the same dimensionality (\mathbb{R}^m) .
- $f(\mathbf{x}, \boldsymbol{\theta})$ could be parametric function.
- Determinant of Jacobian matrix $\mathbf{J} = \frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$ shows how the volume changes under the transformation.

Fitting normalizing flows

MLE problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x}, \boldsymbol{\theta})) \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x}, \boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)| \to \max_{\boldsymbol{\theta}}$$

Composition of normalizing flows

Theorem

Diffeomorphisms are **composable** (If $\{f_k\}_{k=1}^K$ satisfy conditions of the change of variable theorem, then $\mathbf{z} = f(\mathbf{x}) = f_K \circ \cdots \circ f_1(\mathbf{x})$ also satisfies it).

$$\begin{aligned} \rho(\mathbf{x}) &= \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial f_K}{\partial f_{K-1}} \dots \frac{\partial f_1}{\partial \mathbf{x}} \right) \right| = \\ &= \rho(f(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial f_k}{\partial f_{k-1}} \right) \right| = \rho(f(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{f_k}) \right| \end{aligned}$$

Normalizing flows (NF)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data \mathbf{x} to the noise \mathbf{z} .

- Normalizing means that the inverse flow takes samples from $\pi(\mathbf{x})$ and normalizes them into samples from the density $p(\mathbf{z})$.
- **Flow** refers to the trajectory followed by samples from p(z) as they are transformed by the sequence of transformations

$$\mathbf{z} = f_{\mathcal{K}} \circ \cdots \circ f_1(\mathbf{x}); \quad \mathbf{x} = f_1^{-1} \circ \cdots \circ f_{\mathcal{K}}^{-1}(\mathbf{z}) = g_1 \circ \cdots \circ g_{\mathcal{K}}(\mathbf{z})$$

Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f_{\mathcal{K}} \circ \cdots \circ f_{1}(\mathbf{x})) + \sum_{k=1}^{K} \log |\det(\mathbf{J}_{f_{k}})|,$$

where $\mathbf{J}_{f_k} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

Note: Here we consider only **continuous** random variables.

Normalizing flows

Example of a 4-step flow

Flow log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

What is the complexity of the determinant computation?

What we need:

- efficient computation of the Jacobian matrix $\mathbf{J}_f = \frac{\partial f(\mathbf{x}, \theta)}{\partial \mathbf{x}}$;
- ightharpoonup efficient inversion of $f(\mathbf{x}, \boldsymbol{\theta})$;
- loss function to minimize.

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

Normalizing flows types
 Linear flows
 Gaussian autoregressive flows
 Inverse gaussian autoregressive flows

Forward KL vs Reverse KL

Forward KL

$$\begin{aligned} \mathsf{KL}(\pi||p) &= \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})} d\mathbf{x} \\ &= -\mathbb{E}_{\pi(\mathbf{x})} \log p(\mathbf{x}|\boldsymbol{\theta}) + \mathsf{const} \to \min_{\boldsymbol{\theta}} \end{aligned}$$

Maximum likelihood estimation is equivalent to minimization of the Monte-Carlo estimation of forward KL.

Forward KL for NF model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

- ▶ We need to be able to compute $f(\mathbf{x}, \theta)$ and its Jacobian.
- ▶ We need to be able to compute the density p(z).
- We don't need to think about computing the function $g(\mathbf{z}, \theta) = f^{-1}(\mathbf{z}, \theta)$ until we want to sample from the flow.

Forward KL vs Reverse KL

Reverse KL

$$KL(p||\pi) = \int p(\mathbf{x}|\theta) \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x})} d\mathbf{x}$$
$$= \mathbb{E}_{p(\mathbf{x}|\theta)} [\log p(\mathbf{x}|\theta) - \log \pi(\mathbf{x})] \to \min_{\theta}$$

Reverse KL for NF model (LOTUS trick)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{z}) + \log |\det(\mathbf{J}_f)| = \log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)|$$

$$KL(p||\pi) = \mathbb{E}_{p(\mathbf{z})} [\log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)| - \log \pi(g(\mathbf{z}, \boldsymbol{\theta}))]$$

- ▶ We need to be able to compute $g(\mathbf{z}, \theta)$ and its Jacobian.
- We need to be able to sample from the density $p(\mathbf{z})$ (do not need to evaluate it) and to evaluate(!) $\pi(\mathbf{x})$.
- ▶ We don't need to think about computing the function $f(x, \theta)$.

Flow KL duality

Theorem

Fitting NF model $p(\mathbf{x}|\theta)$ to the target distribution $\pi(\mathbf{x})$ using forward KL (MLE) is equivalent to fitting the induced distribution $p(\mathbf{z}|\theta)$ to the base $p(\mathbf{z})$ using reverse KL:

$$\underset{\theta}{\arg\min} \ KL(\pi(\mathbf{x})||p(\mathbf{x}|\theta)) = \underset{\theta}{\arg\min} \ KL(p(\mathbf{z}|\theta)||p(\mathbf{z})).$$

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Flow KL duality

Theorem

$$\underset{\boldsymbol{\theta}}{\arg\min} \ KL(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \underset{\boldsymbol{\theta}}{\arg\min} \ KL(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})).$$

Proof

- ightharpoonup $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}), \ \mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta});$
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}), \ \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta});$

$$\log p(\mathbf{z}|\boldsymbol{\theta}) = \log \pi(g(\mathbf{z},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_g)|;$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|.$$

$$\begin{aligned} \mathsf{KL}\left(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})\right) &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})} \big[\log p(\mathbf{z}|\boldsymbol{\theta}) - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})} \big[\log \pi(g(\mathbf{z},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_g)| - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{\pi(\mathbf{x})} \big[\log \pi(\mathbf{x}) - \log |\det(\mathbf{J}_f)| - \log p(f(\mathbf{x},\boldsymbol{\theta}))\big] = \\ &= \mathbb{E}_{\pi(\mathbf{x})} \big[\log \pi(\mathbf{x}) - \log p(\mathbf{x}|\boldsymbol{\theta})\big] = \mathsf{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})). \end{aligned}$$

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

Normalizing flows types
 Linear flows
 Gaussian autoregressive flows
 Inverse gaussian autoregressive flows

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

Normalizing flows types Linear flows

Gaussian autoregressive flows Inverse gaussian autoregressive flows

Jacobian structure

Flow log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

The main challenge is a determinant of the Jacobian matrix.

What is the $det(\mathbf{J})$ in the following cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. Let z be a permutation of x.
- 2. Let z_j depend only on x_j .

$$\log \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{j=1}^{m} \frac{\partial f_j'(x_j, \boldsymbol{\theta})}{\partial x_j} \right| = \sum_{j=1}^{m} \log \left| \frac{\partial f_j'(x_j, \boldsymbol{\theta})}{\partial x_j} \right|.$$

3. Let z_i depend only on $\mathbf{x}_{1:i}$ (autoregressive dependency).

Linear flows

$$z = f(x, \theta) = Wx, W \in \mathbb{R}^{m \times m}, \theta = W, J_f = W$$

In general, we need $O(m^3)$ to invert matrix.

Invertibility

- ▶ Diagonal matrix O(m).
- ▶ Triangular matrix $O(m^2)$.
- It is impossible to parametrize all invertible matrices.

Invertible 1x1 conv

 $\mathbf{W} \in \mathbb{R}^{c \times c}$ - kernel of 1x1 convolution with c input and c output channels. The computational complexity of computing or differentiating $\det(\mathbf{W})$ is $O(c^3)$. Cost to compute $\det(\mathbf{W})$ is $O(c^3)$. It should be invertible.

Linear flows

$$z = f(x, \theta) = Wx, \quad W \in \mathbb{R}^{m \times m}, \quad \theta = W, \quad J_f = W$$

Matrix decompositions

LU-decomposition

$$W = PLU$$
,

where P is a permutation matrix, L is lower triangular with positive diagonal, U is upper triangular with positive diagonal.

QR-decomposition

$$W = QR$$
.

where \mathbf{Q} is an orthogonal matrix, \mathbf{R} is an upper triangular matrix with positive diagonal.

Decomposition should be done only once in the beggining. Next, we fit decomposed matrices (P/L/U or Q/R).

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Hoogeboom E., et al. Emerging convolutions for generative normalizing flows, 2019

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

3. Normalizing flows types

Linear flows

Gaussian autoregressive flows

Inverse gaussian autoregressive flows

Gaussian autoregressive model

Consider an autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_j(\mathbf{x}_{1:j-1}), \sigma_j^2(\mathbf{x}_{1:j-1})\right).$$

Sampling: reparametrization trick

$$x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1).$$

Inverse transform

$$z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- We have an **invertible** and **differentiable** transformation from $p(\mathbf{z})$ to $p(\mathbf{x}|\theta)$.
- It is an autoregressive (AR) flow with the base distribution $p(\mathbf{z}) = \mathcal{N}(0, 1)!$
- ▶ How to derive a linear flow from this AR model?

Gaussian autoregressive flow

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

Generation function $g(\mathbf{z}, \theta)$ is **sequential**. Inference function $f(\mathbf{x}, \theta)$ is **not sequential**.

Forward KL for NF model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

- ▶ We need to be able to compute $f(\mathbf{x}, \theta)$ and its Jacobian.
- ▶ We need to be able to compute the density $p(\mathbf{z})$.
- We don't need to think about computing the function $g(\mathbf{z}, \theta) = f^{-1}(\mathbf{z}, \theta)$ until we want to sample from the flow.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

- 1. Normalizing flows (NF)
- 2. Forward and Reverse KL for NF

3. Normalizing flows types
Linear flows

Gaussian autoregressive flows

Inverse gaussian autoregressive flows

Inverse gaussian autoregressive flow (IAF)

Let use the following reparametrization: $\tilde{\sigma}=\frac{1}{\sigma}$; $\tilde{\mu}=-\frac{\mu}{\sigma}$.

Gaussian autoregressive flow

$$\begin{aligned} x_j &= \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}) = (z_j - \tilde{\mu}_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\tilde{\sigma}_j(\mathbf{x}_{1:j-1})} \\ z_j &= (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})} = \tilde{\sigma}_j(\mathbf{x}_{1:j-1}) \cdot x_j + \tilde{\mu}_j(\mathbf{x}_{1:j-1}). \end{aligned}$$

Let just swap z and x.

Inverse gaussian autoregressive flow

$$\mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \tilde{\sigma}_j(\mathbf{z}_{1:j-1}) \cdot z_j + \tilde{\mu}_j(\mathbf{z}_{1:j-1})$$
$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \tilde{\mu}_j(\mathbf{z}_{1:j-1})) \cdot \frac{1}{\tilde{\sigma}_i(\mathbf{z}_{1:j-1})}.$$

Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

Inverse gaussian autoregressive flow (IAF)

Gaussian autoregressive flow: $f(\mathbf{x}, \boldsymbol{\theta})$

$$x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

Inverse transform: $g(\mathbf{z}, \theta)$

$$z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})};$$

$$z_j = \tilde{\sigma}_j(\mathbf{x}_{1:j-1}) \cdot x_j + \tilde{\mu}_j(\mathbf{x}_{1:j-1}).$$

Inverse gaussian autoregressive flow: $f(\mathbf{x}, \boldsymbol{\theta})$

$$x_j = \tilde{\sigma}_j(\mathbf{z}_{1:j-1}) \cdot z_j + \tilde{\mu}_j(\mathbf{z}_{1:j-1}).$$

Gaussian autoregressive NF

Forward and inverse transforms in gaussian AR NF

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- Sampling is sequential.
- Density estimation is parallel.

Forward and inverse transforms in inverse gaussian AR NF

$$\begin{split} \mathbf{x} &= g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \tilde{\sigma}_j(\mathbf{z}_{1:j-1}) \cdot z_j + \tilde{\mu}_j(\mathbf{z}_{1:j-1}). \\ \mathbf{z} &= f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \tilde{\mu}_j(\mathbf{z}_{1:j-1})) \cdot \frac{1}{\tilde{\sigma}_j(\mathbf{z}_{1:j-1})}. \end{split}$$

- Sampling is parallel.
- Density estimation is sequential.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Summary

- Flow models transform a simple base distribution to a complex one via a sequence of invertible transformations with tractable Jacobian.
- ► Flow models have a tractable likelihood that is given by the change of variable theorem.
- Flows could be fitted using forward and reverse KL minimization.
- Linear flows try to parametrize set of invertible matrices via matrix decompositions.
- Gaussian autoregressive flow is an autoregressive model with triangular Jacobian.
- Inverse gaussian autoregressive flow generate new saamples fast, but the inference is slow.