Chapitre IX

Succession d'Épreuves Indépendantes Loi Binomiale

I. SUCCESSION D'ÉPREUVES INDÉPENDANTES

A. RAPPEL

Deux épreuves successives sont indépendantes lorsque le résultat de la première n'influe pas sur le résultat de la deuxième.

FIGURE 9.1. – Arbre de Probabilité qui Présente l'Indépendance des Épreuves

Ainsi, A et B sont deux événements indépendants si et seulement si :

$$--P_A(B) = P_{\overline{A}}(B) = P(B)$$

$$- P(A \cap B) = P(A) \times P(B)$$

B. Modélisations

On peut représenter une succession de n épreuves indépendantes par un arbre pondéré (une issue de cette succession d'épreuves est alors un chemin sur l'arbre).

Si les n épreuves indépendantes ont pour univers respectifs $\Omega_1, \Omega_2, \cdots, \Omega_n$, les issues de ces n épreuves sont les éléments du produit cartésien $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$.

C. EXEMPLE

Un restaurant propose deux entrées e_1 et e_2 , trois plats p_1 , p_2 , et p_3 et un dessert d. Un client prend au hasard une entrée, un plat, et un dessert.

L'ensemble des issues de cette expérience est $\Omega = \Omega_1 \times \Omega_2 \times \Omega_3$ où

$$\Omega_1 = \{e_1; e_2\}, \ \Omega_2 = \{p_1; p_2; p_3\}, \ \text{et } \Omega_3 = \{d\}$$

Ainsi,
$$\Omega = \{(e_1, p_1, d); (e_1, p_2, d); ...\}$$

On peut aussi représenter la situation par un arbre :

FIGURE 9.2. – Arbre Pondéré Représentant la Situation

II. LOI BINOMIALE

A. ÉPREUVE DE BERNOULLI

1. Définition

Une *épreuve de Bernoulli* est un expérience aléatoire possédant deux issues qu'on appelle généralement « succès » et « échec ». La probabilité du succès p est appelée paramètre de la loi de Bernoulli.

k_i	0	1
$P(X = k_i)$	1-p	p

FIGURE 9.3. – Loi de la Variable Aléatoire X

X est une variable aléatoire donnant le nombre de succès (il n'y a que deux possibilités : 0 ou 1). On dit que X suit la loi de Bernoulli. Penser à un jeu de pile ou face.

2. Propriété

Si X est une variable aléatoire suivant la loi de Bernoulli de paramètre p, alors, l'espérance de X est E(X) = p et sa variance est V(X) = p(1 - p).

B. SCHÉMA DE BERNOULLI

1. Définition

Un *schéma de Bernoulli* est une répétition de *n* épreuves *identiques* et *indépendantes* à deux issues (*n* épreuves de Bernoulli).

Une issue de cette expérience aléatoire est un élément (n-uplet) de $\Omega = \{S; \overline{S}\}^n$.

2. EXEMPLE

On tire successivement 4 fois à pile ou face avec une pièce (truquée peut-être) dont la probabilité de tomber sur « pile » est p.

Les tirages obtenus sont des 4-uplets composés de P et de F (si l'on note P l'événement « tomber sur pile » et F « tomber sur face »).

Un exemple de tirage est (P,F,F,F). On peut aussi noter S et \overline{S} au lieu de P et F.

C. LOI BINOMIALE

1. Définition

On considère une expérience aléatoire qui suit un schéma de Bernoulli, autrement dit, une répétition de n épreuves identiques et indépendantes à deux issues (succès et échec) dont la probabilité de succès est p.

La variable aléatoire donnant le nombre de succès suit la *loi binomiale* de paramètres n et p, notée $\mathcal{B}(n,p)$. Cette loi est aussi parfois appelée loi du nombre de succès.

2. Propriété

Soit X une variable aléatoire suivant la loi binomiale de paramètres n et p, on peut aussi noter $X \sim \mathcal{B}(n, p)$.

Pour tout entier k compris entre 0 et n:

FIGURE 9.4. – Illustration de la Loi Binomiale

A. DÉMONSTRATION

Dans l'arbre, chaque chemin contenant exactement k succès passe par k branches de probabilité p et n-k branches de probabilité 1-p. Ainsi la probabilité d'un tel chemin est $p^k(1-p)^{n-k}$.

On compte ensuite le nombre de chemins contenant k succès : il y en a $\binom{n}{k}$.

On peut aussi considérer qu'un tirage est un n-uplet contenant des S et des \overline{S} .

Ainsi, un tirage contenant k succès comporte k fois la lettre S et n-k fois la lettre \overline{S} . Le nombre de façons de disposer les k « S » parmi les n éléments est $\binom{n}{k}$.

B. EXEMPLE

Avec nos 4 tirages de pièce truquée, si on a $p = \frac{2}{3}$ (la probabilité de tirer « pile » est $\frac{2}{3}$) et si on note X la variable aléatoire donnant le nombre de « pile », on a :

$$P(X = 1) = {4 \choose 1} \left(\frac{2}{3}\right)^1 \left(1 - \frac{2}{3}\right)^{4-1} = 4 \times \left(\frac{2}{3}\right) \times \left(\frac{1}{3}\right)^3 \approx 0,099$$

3. Propriété

Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(n, p)$.

L'Espérance de X est
$$E(X) = np$$

La variance de X est $V(X) = np(1-p)$
L'Écart-type de X est $\sigma(X) = \sqrt{np(1-p)}$

Démonstration dans chapitre sur les opérations sur les Variables Aléatoires.

A. EXEMPLE

On reprend la pièce truquée précédente, qu'on lance quatre fois. X est toujours la variable aléatoire donnant le nombre de « pile ».

$$E(X) = 4 \times \frac{2}{3} \approx 2,67 \quad \text{(On peut espérer d'obtenir 2,67 piles sur 4 tirages)}.$$

$$\sigma(X) = \sqrt{4 \times \frac{2}{3} \times \frac{1}{3}} \approx 0,94 \quad \text{(Dont l'interprétation est moins intéressante)}.$$