III. Sequential Circuits

Sequential Circuit

- at each moment, the output depends on
 - the input
 - the internal state
- so, for the same input, different output values may emerge, at different moments
- internal state
 - memorized by the circuit
 - evolves in time

Block Diagram

State Evolution

- the state changes at certain moments
 - synchronous: at regular time moments
 - provided by a special signal (clock)
 - asynchronous: when an event occurs
 - events are defined depending on the circuit's activity
 - why doesn't it change permanently?
 - sending the signals through gates and communication lines - with delays
 - so signals are considered after they have stabilized

The Clock

- periodic signal
 - active cycle the percentage of the period when the signal is active
 - depends on what active signal means
 - level-active (during value 0 or 1)
 - edge-active (changing from 0 to 1 or the reverse)
- period duration
 - long enough for the signals to stabilize

Implementation

- the simplest logic diagram
 - the feed-back connection is essential

usually, more complex schemes are used

Types of Sequential Circuits

- bit-level bistable circuits
- depending on how the clock is detected
 - latch level-active
 - flip-flop edge-active
- multi-bit circuits
 - registers, counters
 - made of multiple bistable circuits

III.1. Bistable Circuits

Bistable Circuit

- what should a bit-implementation circuit look like?
- specifications
 - can write either 0 or 1 to it
 - memorize the last written value until a new one is written
 - can read the last written value
- cannot be a combinational circuit (memorization)

No-clock RS Bistable Circuit

- two inputs (R,S), two outputs (Q,P), two feed-back connections
 - the circuit implements a single bit: $P = \overline{Q}$

How It Works (1)

at first sight we have simultaneously

$$q = Q$$
 and $p = P$
 $Q = \overline{p + R}$
 $P = \overline{q + S}$

- in fact, when inputs change, outputs do not change instantly
 - due to gate propagation delays
 - so the behavior can be studied with truth tables

How It Works (2)

- consider (q,p) the current output values
- and (Q,P) the next output values
 - depending on (q,p) and on inputs (R,S)
 - they will becomecurrent values after thepropagation delays

Karnaugh Diagram

outputs: QP

qp\RS	00	01	11	10
00	11	10	00	01
01	01	00	00	01
11	00	00	00	00
10	10	10	00	00

$$Q = \overline{p + R}$$

$$P = \overline{q + S}$$

Stable States

- in principle, (Q,P) changes permanently
- but when (Q,P)=(q,p),
 we have a stable state
 - we want to find these stable states
 - the circuit can be controlled if passing only through stable states

qp\RS	00	01	11	10
00	11	10	00	01
01	01	00	00	01
11	00	00	00	00
10	10	10	00	00

Functioning (1)

initial state (q,p)	evolution (q,p)	conclusion	
	R=0, S=1		
00	$00 \rightarrow 10 \text{ stable}$		
01	$01 \rightarrow 00 \rightarrow 10 \text{ stable}$	the circuit evolves towards	
10	10 stable	the stable state (Q,P)=(1,0) in all cases	
11	$11 \rightarrow 00 \rightarrow 10 \text{ stable}$		
	R=1, S=0		
00	$00 \rightarrow 01$ stable		
01	01 stable	the circuit evolves towards	
10	$10 \rightarrow 00 \rightarrow 01$ stable	the stable state (Q,P)=(0,1) in all cases	
11	$11 \rightarrow 00 \rightarrow 01$ stable		

Functioning (2)

initial state (q,p)	evolution (q,p)	conclusion	
	R=0, $S=0$		
00	$00 \to 11 \to 00 \to \dots$	for q=p, the circuit oscillates	
01	01 stable	indefinitely	
10	10 stable	for q≠p, the circuit holds the	
11	$11 \rightarrow 00 \rightarrow 11 \rightarrow \dots$	state (stable)	
	R=1, S=1		
00	00 stable		
01	$01 \rightarrow 00$ stable	the circuit evolves towards	
10	$10 \rightarrow 00$ stable	the stable state (Q,P)=(0,0) in all cases	
11	$11 \rightarrow 00$ stable		

Functioning (3)

- we remind the condition $P = \overline{Q}$
- (R,S)=(0,0): keep the current state (memorization)
- (R,S)=(0,1): stabilize at Q=1 (set)
- (R,S)=(1,0): stabilize at Q=0 (reset)
- (R,S)=(1,1): forbidden combination
 - because P=Q does not implement a bit

Synchronous Sequential Circuits

- add a synchronization signal (clock) to the RS bistable circuit
- starting from which other bistable circuits can be designed
 - D, JK, T
- all are latches (level-active)

RS Latch

$q(=Q_t)$	R	S	Q_{t+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	*
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	*

D Latch

- models only R≠S situations
- eliminates the forbidden combination
- with this circuit, the current state does not actually depend on the previous one

JK Latch

• eliminates the RS forbidden combination

$q(=Q_t)$	J	K	Q_{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

T Latch

- derived from the JK latch
- models only J=K situations

$q(=Q_t)$	T	Q_{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

State Evolution

R	S	Q_{t+1}	
0	0	Q_t	unchanged
0	1	1	write 1
1	0	0	write 0
1	1	*	forbidden

J	K	Q_{t+1}	
0	0	Q_{t}	unchanged
0	1	0	write 0
1	0	1	write 1
1	1	\overline{Q}_{t}	invert

D	Q_{t+1}	
0	0	write 0
1	1	write 1

T	Q_{t+1}	
0	Q_{t}	unchanged
1	$\overline{Q_t}$	invert

Block Diagrams for Latches

Homework

- implement and analyze the behavior of the no-clock RS circuit using NAND gates instead of the NOR gates
- the same for the RS, D, JK, T latches

Flip-flop

- inputs are considered on the rising (or falling) edge of the clock signal
- ways of making a flip-flop
 - electronics derive the clock signal
 - results in an impulse-like signal
 - use latches \rightarrow master-slave circuits

Master-slave D Flip-flop

Latch vs. Flip-flop

- each category has its utility
- flip-flops used for controlling digital systems
 - the edge of the clock signal is very short compared with the clock period
 - i.e., it can be considered as a moment
 - during each clock period, the system makes exactly one step of its evolution
- latches asynchronous systems

III.2. Complex Sequential Circuits

Registers

- a bistable circuit implements a single bit
 - not very useful in practice
- we can use several bistable circuits together
 - all receive the same command at the same time
 - such a circuit is called register
- types of registers
 - parallel registers
 - shift (serial) registers

Parallel Register

- implementation with
 D bistable circuits
 - can be latches or flipflops, as needed
- the same command (clock)
 - all bits change at the same moments
- natural extension of the bistable circuit

Classic Shift Register

- memorizes the last *n* values applied on the input
- can be implemented only with flip-flops
 - homework: why?

Other Shift Registers

Universal Shift Register

- serial or parallel inputs and outputs
- right or left shift operations
- one can use any of the features above, as needed

s_0	s_1	function
0	0	unchanged
0	1	shift right
1	0	shift left
1	1	parallel load

Designing a Sequential Circuit (1)

- finite state machine (automaton)
- 1. determine the states of the circuit
- 2. determine the state transitions
 - how the next state and the outputs depend on the inputs and the current state
- 3. state encoding
 - using the necessary number of bits
- 4. write the truth table for the state transitions

Designing a Sequential Circuit (2)

- 5. minimization
- 6. implementation
 - the state memorized by flip-flops
 - combinational part from the minimization
 - the inputs of the combinational part (current state) are collected from the outputs of the flip-flops and the input variables
 - the outputs of the combinational part (next state) are applied at the inputs of the flip-flops

Binary Counter

- at each moment keeps an *n*-bit number
- at each clock "tick" incrementation
 - could also be decrementation
 - after the maximum value, 0 comes next
 - no inputs, only state variables
 - which keep the current value of the number
 - outputs are identical to the state variables

Example: *n*=4

current state				next state				current state				next state			
q_3	q_2	q_1	q_0	d_3	d_2	d_1	d_0	q_3	q_2	q_1	q_0	d_3	d_2	d_1	d_0
0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1
0	0	0	1	0	0	1	0	1	0	0	1	1	0	1	0
0	0	1	0	0	0	1	1	1	0	1	0	1	0	1	1
0	0	1	1	0	1	0	0	1	0	1	1	1	1	0	0
0	1	0	0	0	1	0	1	1	1	0	0	1	1	0	1
0	1	0	1	0	1	1	0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	1	1	0	0	0	1	1	1	1	0	0	0	0

Example: *n*=4

by minimization we get the equations below

$$d_{0} = \overline{q_{0}} = q_{0} \oplus 1$$

$$d_{1} = \overline{q_{1}} \cdot q_{0} + q_{1} \cdot \overline{q_{0}} = q_{1} \oplus q_{0}$$

$$d_{2} = \overline{q_{2}} \cdot q_{1} \cdot q_{0} + q_{2} \cdot \overline{q_{1}} + q_{2} \cdot \overline{q_{0}} = q_{2} \oplus (q_{1} \cdot q_{0})$$

$$d_{3} = \overline{q_{3}} \cdot q_{2} \cdot q_{1} \cdot q_{0} + q_{3} \cdot \overline{q_{2}} + q_{3} \cdot \overline{q_{1}} + q_{3} \cdot \overline{q_{0}} =$$

$$= q_{3} \oplus (q_{2} \cdot q_{1} \cdot q_{0})$$

state implementation - D flip-flops

Implementation

Microprogramming (1)

- alternative implementation technique
 - the state is still memorized by flip-flops
 - combinational part implemented by a ROM circuit
 - the inputs of the Boole functions are applied to the address inputs of the ROM
 - the outputs of the Boole functions are collected from the data outputs of the ROM

Microprogramming (2)

- implementation of the combinational part
 - start from the truth table
 - to each location write the desired output values
- advantage flexibility
 - any change of the automaton requires only the rewriting of the contents of the ROM
- drawback low speed
 - ROM circuits are slower than logic gates

The Same Example

- there are $16 (= 2^4)$ states
 - encoded with 4 state bits
- so the ROM circuit will have
 - -2^4 addresses $\rightarrow 4$ address bits
 - 16 locations
 - -4 data bits \rightarrow locations are 4 bits wide
 - in this example there are no inputs and outputs
 of the system only state bits

The Contents of the ROM

address	value
0	0001
1	0010
2	0 0 1 1
3	0100
4	0101
5	0110
6	0111
7	1000

address	value
8	1001
9	1010
10	1011
11	1100
12	1 1 0 1
13	1110
14	1111
15	0000

Implementation

IV. Internal Representations

- elementary internal representations
 - they are part of the computer's architecture
 - so they are implemented in hardware
 - directly accessible to the programmers
- more complex data structures
 - based on elementary representations
 - defined and accessible to the programmers by software

Elementary Representations

- numerical data
 - integer/rational numbers
 - only certain subsets of these sets
- alpha-numerical data
 - characters etc.
- instructions
 - the only system-specific representations
 - thus non-standardized and non-portable

Studying the Representations

numerical representations

$$repr(n_1) op repr(n_2) = repr(n_1 op n_2) ???$$

- example if we add two integer variables, will the result fit into its destination?
- representation errors
 - approximations
 - overflows

Sending the Information

- between various physical media
 - between computers/systems
 - between the components of a computer/system
- transmission errors may occur
 - due to perturbations/incorrect working
 - digital signal some bits are inverted
 - we wish to detect to occurrence of such errors
 - and even fix them, where possible (correction)

Ways of Detection/Correction

- use additional redundant bits
- parity 1 additional bit
 - allows detecting the occurrence of a (1 bit)
 error
 - odd/even parity: odd/even number of bits 1
- Hamming code
 - 4 information bits, 3 additional bits
 - detection/correction of multiple errors simultaneously

Example: Odd Parity

transmitter

- has to send value $(110)_2$
- -2 bits of value 1 (even) \rightarrow the additional bit is 1
- sends $(1101)_2$

receiver

- receives the bit string
- if the number of bits of value 1 is even error
- else eliminate the parity bit and get $(110)_2$