VOLUME (OF SOLIDS OF REVOLUTIONS)

(b) Circular cylinder $V = \pi r^2 h$

(c) Rectangular box V = lwh

October 29, 2019

Let's divide S into n "slabs" of equal width Δx by using the planes P_{x_1}, P_{x_2}, \ldots to slice the solid. (Think of slicing a loaf of bread.) If we choose sample points x_i^* in $[x_{i-1}, x_i]$, we can approximate the ith slab S_i (the part of S that lies between the planes $P_{x_{i-1}}$ and P_{x_i}) by a cylinder with base area $A(x_i^*)$ and "height" Δx . (See Figure 3.)

The volume of this cylinder is $A(x_i^*) \Delta x$, so an approximation to our intuitive conception of the volume of the *i*th slab S_i is

$$V(S_i) \approx A(x_i^*) \Delta x$$

Adding the volumes of these slabs, we get an approximation to the total volume (that is, what we think of intuitively as the volume):

$$V \approx \sum_{i=1}^{n} A(x_i^*) \, \Delta x$$

This approximation appears to become better and better as $n \to \infty$. (Think of the slices as becoming thinner and thinner.) Therefore we *define* the volume as the limit of these sums as $n \to \infty$. But we recognize the limit of Riemann sums as a definite integral and so we have the following definition.

Definition of Volume Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the volume of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \, \Delta x = \int_a^b A(x) \, dx$$

EXAMPLE 1 Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Actual value=4.18879

EXAMPLE 2 Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1. Illustrate the definition of volume by sketching a typical approximating cylinder.

EXAMPLE 4 The region \Re enclosed by the curves y = x and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

EXAMPLE 5 Find the volume of the solid obtained by rotating the region in Example 4 about the line y = 2.

The solids in the Examples are all called **solids of revolution** because they are obtained by revolving a region about a line. In general, we calculate the volume of a solid of revolution by using the basic defining formula

$$V = \int_a^b A(x) dx$$
 or $V = \int_c^d A(y) dy$

and we find the cross-sectional area A(x) or A(y) in one of the following ways:

- If the cross-section is a disk, we find the radius of the disk (in terms of x or y) and use $A = \pi (\text{radius})^2$
- If the cross-section is a washer, we find the inner radius r_{in} and outer radius r_{out}
 from a sketch and compute the area of the washer by subtracting the area of the inner
 disk from the area of the outer disk:

$$A = \pi (\text{outer radius})^2 - \pi (\text{inner radius})^2$$

Multiple integrals

Figure 11 shows the solid whose volume is calculated in Example 2. It lies above the xy-plane, below the paraboloid $z = x^2 + y^2$, and between the plane y = 2x and the parabolic cylinder $y = x^2$.

Example 4.

Review of Definite Integral

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \ \Delta x$$

Double integrals over Rectangles

FIGURE 2

Double integrals as Volumes

4

$$V = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

Definition The double integral of f over the rectangle R is

$$\iint_{D} f(x, y) dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number $\varepsilon > 0$ there is an integer N such that

$$\left| \iint\limits_R f(x,y) \ dA - \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \ \Delta A \right| < \varepsilon$$

for all integers m and n greater than N and for any choice of sample points (x_{ij}^*, y_{ij}^*) in R_{ij} .

6

$$\iint\limits_R f(x, y) \ dA = \lim_{m, n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_i, y_j) \ \Delta A$$

If $f(x, y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x, y) is

$$V = \iint\limits_R f(x, y) \ dA$$

FIGURE 6

$z = 16 - x^2 - 2y^2$ $z = 16 - x^2 - 2y^2$ FIGURE 7

Estimate the volume of the solid that Lies above the square R=[0,2]x[0,2]And below the elliptic paraboloid

$$z = 16 - x^2 - 2y^2$$

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$

= $f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$
= $13(1) + 7(1) + 10(1) + 4(1) = 34$

EXAMPLE 2 If $R = \{(x, y) \mid -1 \le x \le 1, -2 \le y \le 2\}$, evaluate the integral

$$\iint\limits_R \sqrt{1-x^2} \, dA$$

FIGURE 9

Iterated integrals

FIGURE 1

TEC Visual 15.2 illustrates Fubini's Theorem by showing an animation of Figures 1 and 2.

FIGURE 2

4 Fubini's Theorem If f is continuous on the rectangle $R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint\limits_R f(x,y) \ dA = \int_a^b \int_c^d f(x,y) \ dy \ dx = \int_c^d \int_a^b f(x,y) \ dx \ dy$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

For a function f that takes on both positive and negative values, $\iint_R f(x, y) \, dA$ is a difference of volumes: $V_1 - V_2$, where V_1 is the volume above R and below the graph of f, and V_2 is the volume below R and above the graph. The fact that the integral in Example 3 is 0 means that these two volumes V_1 and V_2 are equal. (See Figure 4.)

FIGURE 4

In the special case where f(x, y) can be factored as the product of a function of x only and a function of y only, the double integral of f can be written in a particularly simple form. To be specific, suppose that f(x, y) = g(x)h(y) and $R = [a, b] \times [c, d]$. Then

$$\iint\limits_R g(x) h(y) dA = \int_a^b g(x) dx \int_c^d h(y) dy \qquad \text{where } R = [a, b] \times [c, d]$$