- 3/1: I) Derive the proper MO diagram for tetrahedral molecules ML_4 using the n d-orbitals, the (n + l) s-orbital, and the (n + l) p-orbitals on the central atom M for
 - (a) σ -only ligands;

Answer. Point group: T_d .

Basis functions: All four L σ -orbitals, M(ns), M((n+l)p), and M((n+l)d).

Apply operations, generate reducible representations, and reduce to irreducible representations:

$$\Gamma_{L\sigma} = (4, 1, 0, 0, 2) = A_1 + T_2$$

$$\Gamma_{M_{ns}} = A_1$$

$$\Gamma_{M_{(n+l)p}} = T_2$$

$$\Gamma_{M_{(n+l)d}} = E + T_2$$

Combine orbitals by their symmetry.

(b) π -donor ligands (having low-lying, filled π orbitals);

Answer. Point group: T_d .

Basis functions: All four L σ -orbitals, all eight L $\pi_{x,z}$ orbitals, M(ns), M((n+l)p), and M((n+l)d). Apply operations, generate reducible representations, and reduce to irreducible representations:

$$\begin{split} \Gamma_{L\sigma} &= (4,1,0,0,2) = A_1 + T_2 \\ \Gamma_{L\pi_{x,z}} &= (8,-1,0,0,0) = E + T_1 + T_2 \\ \Gamma_{\mathcal{M}_{ns}} &= A_1 \\ \Gamma_{\mathcal{M}_{(n+l)p}} &= T_2 \\ \Gamma_{\mathcal{M}_{(n+l)d}} &= E + T_2 \end{split}$$

Combine orbitals by their symmetry.

(c) π -acceptor ligands (having high-lying, empty π orbitals).

Answer. Same intro analysis as part (b).

- II) Do the following problems from Chapter 10: 1, 6, 7, 8, 19, 22.
 - 10.1 Predict the number of unpaired electrons for each of the following:
 - **a.** A tetrahedral d^6 ion.

Answer. Tetrahedral means high spin and t_2 orbitals above e. Thus, there will be 4 unpaired electrons.

b. $[Co(H_2O)_6]^{2+}$.

Answer. Octahedral cobalt with a 2+ oxidation state means high spin. Thus, there will be 3 unpaired electrons.

c. $[Cr(H_2O)_6]^{3+}$.

Answer. High spin/low spin doesn't matter here; there will be 3 unpaired electrons, regardless.

d. A square-planar d^7 ion.

Answer. Square planar compounds have an orbital arrangement determined by the angular overlap model, and are low spin. Thus, there will be 1 unpaired electron.

e. A coordination compound with a magnetic moment of 5.1 Bohr magnetons.

Answer. Using the spin-only magnetic moment formula $\mu_S = \sqrt{n(n+2)}$, we can solve for n with the quadratic formula, take the positive answer, and round.

$$5.1 = \sqrt{n(n+2)}$$

$$0 = n^2 + 2n - 5.1^2$$

$$n\approx 4$$

10.6	Predict	the	magnetic	moments	(spin-only)	of the	following	species.

a. $[Cr(H_2O)_6]^{2+}$.

Answer. We know that $[Cr(H_2O)_6]^{2+}$ has four unpaired electrons. Thus, $\mu = \sqrt{4(4+2)} = \sqrt{24} \approx 4.9$.

b. $[Cr(CN)_6]^{4-}$.

Answer. We know that $[Cr(CN)_6]^{4-}$ has two unpaired electrons. Thus, $\mu = \sqrt{2(2+2)} = \sqrt{8} \approx 2.82$.

c. $[\text{FeCl}_4]^-$.

Answer. We know that $[\text{FeCl}_4]^-$ has five unpaired electrons. Thus, $\mu = \sqrt{5(5+2)} = \sqrt{15} \approx 5.92$.

d. $[Fe(CN)_6]^{3-}$.

Answer. We know that $[Fe(CN)_6]^{3-}$ has one unpaired electron. Thus, $\mu = \sqrt{1(1+2)} = \sqrt{3} \approx 1.73$.

e. $[Ni(H_2O)_6]^{2+}$.

Answer. We know that $[Ni(H_2O)_6]^{2+}$ has two unpaired electrons. Thus, $\mu = \sqrt{2(2+2)} = \sqrt{8} \approx 2.82$.

f. $[Cu(en)_2(H_2O)_2]^{2+}$.

Answer. We know that $[Cu(en)_2(H_2O)_2]^{2+}$ has one unpaired electron. Thus, $\mu = \sqrt{1(1+2)} = \sqrt{3} \approx 1.73$.

10.7 A compound with the empirical formula $Fe(H_2O)_4(CN)_2$ has a magnetic moment corresponding to $2\frac{2}{3}$ unpaired electrons per iron. How is this possible? (Hint: Two octahedral Fe(II) species are involved, each containing a single type of ligand.)

Answer. Fe(H₂O)₆ is a low spin complex with 4 unpaired electrons. Fe(CN)₆ is a high spin complex with 0 unpaired electrons. If we take a weighted average of the spins, we find that the magnetic moment of Fe(H₂O)₄(CN)₂ is $\mu = 4 \cdot \frac{4}{6} + 0 \cdot \frac{2}{6} = 2\frac{2}{3}$.

 $\bf 10.8\,$ What are the possible magnetic moments of Co(II) in tetrahedral, octahedral, and square-planar complexes?

Answer. For tetrahedral and octahedral complexes, we have $\mu=\sqrt{3(3+2)}=\sqrt{15}\approx 3.87$. For square planar, we have $\mu=\sqrt{1(1+2)}=\sqrt{3}\approx 1.73$.

10.19 Explain the order of the magnitudes of the following Δ_o values for Cr(III) complexes in terms of the σ and π donor and acceptor properties of the ligands.

Ligand	\mathbf{F}^-	\mathbf{Cl}^-	H_2O	$\mathrm{NH_{3}}$	en	\mathbf{CN}^-
$\Delta_o \; (\mathrm{cm}^{-1})$	15200	13200	17400	21600	21900	33 500

Answer. Cyanide has by far the greatest magnitude Δ_o because it is the only π -accepting ligand. Ethylenediamine and ammonia form the next group down because they are pure π -donating ligands. Lastly, we have water, chloride, and fluoride because they have π -donating character (within this group, chloride has the lowest value because it has fairly good π -donor abilities, fluoride is in the middle because it has lesser π -donor abilities than chloride, and water has the highest value because it only engages in σ bonding).

10.22 Solid CrF_3 contains a Cr(III) ion surrounded by six F^- ions in an octahedral geometry, all at distances of 190 pm. However, MnF_3 is in a distorted geometry, with Mn-F distances of 179, 191, and 209 pm (two of each). Explain.

Answer. The manganese ion has unequally occupied e_g orbitals whereas the chromium one does not, so the former is subject to Jahn-Teller distortion while the latter is not.

Problem Set 6

- III) Use the Angular Overlap Model to derive the d-orbital splitting diagrams for M(CO)₅ complexes having
 - (a) Square pyramidal geometry;

Answer. From the charts in Module 36, we have $e_{\sigma} = (2, 3, 0, 0, 0)$ and $e_{\pi} = (0, 0, 4, 3, 3)$. Thus we know that the d-orbital splitting diagram is

(b) Trigonal bipyramidal geometry.

Answer. From the charts in Module 36, we have $e_{\sigma} = (\frac{11}{4}, \frac{9}{8}, \frac{9}{8}, 0, 0)$ and $e_{\pi} = (0, \frac{3}{2}, \frac{3}{2}, \frac{7}{2}, \frac{7}{2})$. Thus we know that the d-orbital splitting diagram is

(c) Label the orbitals with the appropriate energies in units of e_{σ} and e_{π} . Note that degenerate orbitals are those with the same energies — you don't have to use group theory to get this information!

- (a) Square pyramidal.
- (b) Trigonal bipyramidal
- (d) Determine the relative energies of $Cr(CO)_5$ (based on orbital population) in these two geometries, and use this to predict the structure of $Cr(CO)_5$.

Answer. Assuming a high spin configuration since chromium is neutral and noting that chromium has a d^4 configuration, we have

$$E_{\text{square pyramidal}} = 1(-4e_{\pi}) + 2(-3e\pi) + 2e_{\sigma} = 2e_{\sigma} - 10e_{\pi}$$
$$E_{\text{trigonal bipyramid}} = 2\left(-\frac{7}{2}e_{\pi}\right) + 2\left(\frac{9}{8}e_{\sigma} - \frac{3}{2}e_{\pi}\right) = \frac{9}{4}e_{\sigma} - 10e_{\pi}$$

Since $E_{\text{trigonal bipyramidal}} > E_{\text{square pyramidal}}$, we know that $Cr(CO)_5$ is square pyramidal.