Χ



(https://swayam.gov.in)



2111cs010024@mallareddyuniversity.ac.in >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)



## Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 1 ()

Week 2 ()

Week 3 ()

week 4 ()

Recap:

Learning
Parameters:
Guess Work,
Gradient
Descent (unit?
unit=59&lesso
n=60)

Contours
Maps (unit?
unit=59&lesso
n=61)

## Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2024-08-21, 23:59 IST.

As per our records you have not submitted this assignment.

- 1) What is the primary benefit of using Adagrad compared to other optimization **1 point** algorithms?
  - It converges faster than other optimization algorithms.
  - It is more memory-efficient than other optimization algorithms.
  - It is less sensitive to the choice of hyperparameters(learning rate).
  - It is less likely to get stuck in local optima than other optimization algorithms.

No, the answer is incorrect.

Score: 0

Accepted Answers:

It is less sensitive to the choice of hyperparameters(learning rate).

2) Select the true statements about the factor  $\beta$  used in the momentum based gradient **1** point descent algorithm.

Setting eta=0.1 allows the algorithm to move faster than the vanilla gradient descent algorithm

Setting eta=0 makes it equivalent to the vanilla gradient descent algorithm

Setting eta=1 makes it equivalent to the vanilla gradient descent algorithm

Oscillation around the minimum will be less if we set  $\beta=0.1$  than setting  $\beta=0.99$ 

No, the answer is incorrect.



| Momentum                           | Score: 0                                                                                |         |
|------------------------------------|-----------------------------------------------------------------------------------------|---------|
| based                              | Accepted Answers:                                                                       |         |
| Gradient                           | Setting $eta=0.1$ allows the algorithm to move faster than the vanilla gradient descent |         |
| Descent (unit?                     | algorithm                                                                               |         |
| unit=59&lesso                      | Setting $eta=0$ makes it equivalent to the vanilla gradient descent algorithm           |         |
| n=62)                              | Oscillation around the minimum will be less if we set $eta=0.1$ than setting $eta=0.99$ |         |
| Nesterov                           | 3) Select the behaviour of the Gradient descent algorithm that uses the following       | 1 point |
| Accelerated                        | update rule,                                                                            |         |
| Gradient                           | $w_{t+1} = w_t - \eta  abla w_t$                                                        |         |
| Descent (unit?<br>unit=59&lesso    | where $w$ is a weight and $\eta$ is a learning rate.                                    |         |
| n=63)                              | ☐ The weight update is tiny at a steep loss surface                                     |         |
| Stochastic And                     | ☐ The weight update is tiny at a gentle loss surface                                    |         |
| Mini-Batch Gradient Descent (unit? | ☐ The weight update is large at a steep loss surface                                    |         |
|                                    | ☐ The weight update is large at a gentle loss surface                                   |         |
| unit=59&lesso                      | No, the answer is incorrect.                                                            |         |
| n=64)                              | Score: 0                                                                                |         |
| Tips for                           | Accepted Answers:                                                                       |         |
| Adjusting                          | The weight update is tiny at a gentle loss surface                                      |         |
| Learning Rate                      | The weight update is large at a steep loss surface                                      |         |
| and<br>Momentum                    | 4) Which of the following algorithms will result in more oscillations of the parameter  | 1 point |
| (unit?                             | during the training process of the neural network?                                      | -       |
| unit=59&lesso                      |                                                                                         |         |
| n=65)                              | Stochastic gradient descent                                                             |         |
| Cline Search                       | Mini batch gradient descent                                                             |         |
| (unit?                             | Batch gradient descent                                                                  |         |
| unit=59&lesso<br>n=66)             | Batch NAG                                                                               |         |
| ○ Gradient                         | No, the answer is incorrect.<br>Score: 0                                                |         |
| Descent with                       | Accepted Answers:                                                                       |         |
| Adaptive                           | Stochastic gradient descent                                                             |         |
| Learning Rate                      |                                                                                         |         |
| (unit?<br>unit=59&lesso            | 5) Which of the following are among the disadvantages of Adagrad?                       | 1 point |
| n=67)                              | It doesn't work well for the Sparse matrix.                                             |         |
| Bias Correction in                 | It usually goes past the minima.                                                        |         |
|                                    | It gets stuck before reaching the minima.                                               |         |
| Adam (unit?<br>unit=59&lesso       | Weight updates are very small at the initial stages of the algorithm.                   |         |
| n=68)                              | No, the answer is incorrect.<br>Score: 0                                                |         |
| O Lecture                          | Accepted Answers:                                                                       |         |
| Material for                       | It gets stuck before reaching the minima.                                               |         |
| Week 4 (unit?<br>unit=59&lesso     |                                                                                         |         |
| n=69)                              | 6) Which of the following is a variant of gradient descent that uses an estimate of the | 1 point |
| ·                                  | next gradient to update the current position of the parameters?                         |         |
| Week 4                             | Managetium autimization                                                                 |         |
| Feedback<br>Form: Deep             | Momentum optimization                                                                   |         |
| Learning - IIT                     | Stochastic gradient descent                                                             |         |
|                                    |                                                                                         |         |

| Ropar (unit?<br>unit=59&lesso | Nesterov accelerated gradient descent                                                                                                                                                                                                 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n=187)                        | Adagrad                                                                                                                                                                                                                               |
| Quiz: Week 4                  | No, the answer is incorrect. Score: 0 Accepted Answers:                                                                                                                                                                               |
| 4 (assessment?                | Nesterov accelerated gradient descent                                                                                                                                                                                                 |
| name=288)                     | 7) Consider a gradient profile $\nabla W = [1, 0.9, 0.6, 0.01, 0.1, 0.2, 0.5, 0.55, 0.56]$ . <b>1 point</b> Assume $v_{-1} = 0$ , $\epsilon = 0$ , $\beta = 0.9$ and the learning rate is $\eta_{-1} = 0.1$ . Suppose that we use the |
| Week 5 ()                     | Adagrad algorithm then what is the value of $\eta_6=\eta/sqrt(v_t+\epsilon)?$                                                                                                                                                         |
| Week 6 ()                     | 0.03                                                                                                                                                                                                                                  |
| Week 7 ()                     | 0.06<br>0.08                                                                                                                                                                                                                          |
| Week 8 ()                     | 0.006                                                                                                                                                                                                                                 |
| Week 9 ()                     | No, the answer is incorrect.<br>Score: 0                                                                                                                                                                                              |
| week 10 ()                    | Accepted Answers: 0.06                                                                                                                                                                                                                |
| Week 11 ()                    | 8) Which of the following can help avoid getting stuck in a poor local minimum while <b>1 point</b> training a deep neural network?                                                                                                   |
| Week 12 ()                    | Using a smaller learning rate.                                                                                                                                                                                                        |
| Download                      | Using a smaller batch size.                                                                                                                                                                                                           |
| Videos ()                     | Using a shallow neural network instead.                                                                                                                                                                                               |
| Books ()                      | None of the above.  No, the answer is incorrect.                                                                                                                                                                                      |
| Text                          | Score: 0 Accepted Answers:                                                                                                                                                                                                            |
| Transcripts<br>()             | None of the above.                                                                                                                                                                                                                    |
| Problem                       | 9) What are the two main components of the ADAM optimizer? 1 point                                                                                                                                                                    |
| Solving                       | Momentum and learning rate.                                                                                                                                                                                                           |
| Session -<br>July 2024 ()     | Gradient magnitude and previous gradient.                                                                                                                                                                                             |
| , ,                           | Exponential weighted moving average and gradient variance.                                                                                                                                                                            |
|                               | Learning rate and a regularization term.                                                                                                                                                                                              |
|                               | No, the answer is incorrect.<br>Score: 0                                                                                                                                                                                              |
|                               | Accepted Answers:  Exponential weighted moving average and gradient variance.                                                                                                                                                         |
|                               | 10) What is the role of activation functions in deep learning? 1 point                                                                                                                                                                |
|                               | Activation functions transform the output of a neuron into a non-linear function, allowing the network to learn complex patterns.                                                                                                     |
|                               | Activation functions make the network faster by reducing the number of iterations r                                                                                                                                                   |
|                               | for training.  Activation functions are used to normalize the input data.                                                                                                                                                             |
|                               | - / tour auton rangulario are about to normanzo uno imput data.                                                                                                                                                                       |

Activation functions are used to compute the loss function.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Activation functions transform the output of a neuron into a non-linear function, allowing the network to learn complex patterns.

