SPAN EQUIVALENCE BETWEEN WEAK N-CATEGORIES

YUYA NISHIMURA

Abstract.

- 1. Introduction
- 2. Span equivalence
- 2.1. Definition. Let $f: X \to Y$ be a map of n-globular sets.
 - $f:surjective \ on \ k-cells :\Leftrightarrow f_k: X_k \to Y_k :surjective$
 - $f:injective \ on \ k-cells :\Leftrightarrow f_k: X_k \to Y_k :injective$
 - $f:full \ on \ k-cells :\Leftrightarrow \begin{cases} \forall x, x' \in X_{k-1}, g \in \mathbf{Hom}_Y(f(x), f(x')), \\ \exists h \in \mathbf{Hom}_X(x, x') \ \text{s.t.} \ f(h) = g \end{cases}$
 - f:faithful on k-cell : \Leftrightarrow $\begin{cases} \forall x, x' \in X_{k-1}, g, g' \in \mathbf{Hom}_X(f(x), f(x')), \\ g \neq g' \Rightarrow f(g) \neq f(g') \end{cases}$
- 2.2. DEFINITION. Let K be an n-globular operad. K-algebras $KX \to X$ and $KY \to Y$ are span equivalent if there exists a triple $\langle \psi, u, v \rangle$ such that $\psi : KZ \to Z$ is an K-algebra, $u : Z \to X$ and $v : Z \to Y$ are maps of K-algebras, surjective on 0-cells, full on m-cells for all $1 \le m \le n$, and faithful on n-cells. The triple $\langle \psi, u, v \rangle$ is referred to as an span equivalence of K-algebras.
- 2.3. Proposition. In the pullback diagram in $[\mathbf{G}_n^{op}, \mathbf{Set}]$

$$P \xrightarrow{j} Y \\ \downarrow \downarrow g \\ X \xrightarrow{f} S$$

- $f:surjective \ on \ 0-cells \Rightarrow j:surjective \ on \ 0-cells$
- $f:full\ on\ k-cells \Rightarrow j:full\ on\ k-cells$
- $\bullet \ \textit{f:faithful on } k\textit{-cells} \Rightarrow \textit{j:faithful on } k\textit{-cells} \\$

2010 Mathematics Subject Classification: 00A00.

Key words and phrases: TAC, diagrams.

© Yuya Nishimura, 2015. Permission to copy for private use granted.

Proof.

- 2.4. REMARK. Let K be a monad on $[\mathbf{G}_n^{op}, \mathbf{Set}]$. Pullbacks in K-Alg are created by the forgetful functor U: K-Alg $\to [\mathbf{G}_n^{op}, \mathbf{Set}]$.
- 2.5. Proposition. Let

be span equivalences, then

is span equivalence.

PROOF.

- 2.6. Theorem. Span equivalence is equivalence relation on K-algebras.
- 3. Characterizing equivalence of categories via spans
- 3.1. DEFINITION. Let \mathcal{A} and \mathcal{B} be categories. We say that \mathcal{A} and \mathcal{B} are span equivalent if there exists a triple $\langle \mathcal{A}, u, v \rangle$ such that \mathcal{C} is a category, $u : \mathcal{C} \to \mathcal{A}$ and $v : \mathcal{C} \to \mathcal{B}$ are functors, surjective on objects, full and faithful.
- 3.2. DEFINITION. Let \mathcal{A} and \mathcal{B} be categories, let $\langle S : \mathcal{A} \to \mathcal{B}, T : \mathcal{B} \to \mathcal{A}, \eta : I_{\mathcal{A}} \to TS, \epsilon : ST \to I_{\mathcal{B}} \rangle$ be an adjoint equivalence between \mathcal{A} and \mathcal{B} . We define a category, equivalence fusion $\mathcal{A} \sqcup \mathcal{B}$, as follows:
 - \bullet object-set

• hom-set

$$\mathbf{Hom}(x,y) := \begin{cases} \{\langle f, x, y \rangle \mid f \in \mathcal{A}(x,y)\} & (x,y \in \mathcal{A}) \\ \{\langle f, x, y \rangle \mid f \in \mathcal{B}(x,y)\} & (x,y \in \mathcal{B}) \\ \{\langle f, x, y \rangle \mid f \in \mathcal{B}(Sx,y)\} & (x \in \mathcal{A}, y \in \mathcal{B}) \\ \{\langle f, x, y \rangle \mid f \in \mathcal{B}(x,Sy)\} & (x \in \mathcal{B}, y \in \mathcal{A}) \end{cases}$$

• composition

$$\tilde{\circ} : \mathbf{Hom}(y, z) \times \mathbf{Hom}(x, y) \longrightarrow \mathbf{Hom}(x, z)$$

$$\langle \langle g, y, z \rangle, \langle f, x, y \rangle \rangle \longmapsto \langle g, y, z \rangle \tilde{\circ} \langle f, x, y \rangle := \langle g \circ f, x, z \rangle$$

$$g \circ f := \begin{cases} g \circ_{\mathcal{A}} f & (x, y, z \in \mathcal{A}) \\ g \circ_{\mathcal{B}} f & (x, y, z \in \mathcal{B}) \\ g \circ_{\mathcal{B}} f & (x, y, z \in \mathcal{B}) \\ g \circ_{\mathcal{B}} f & (x, y \in \mathcal{A}, z \in \mathcal{B}) \\ g \circ_{\mathcal{B}} f & (x, y \in \mathcal{B}, z \in \mathcal{A}) \\ Sg \circ_{\mathcal{B}} f & (x \in \mathcal{B}, y, z \in \mathcal{A}) \\ \eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x & (x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{A}) \\ g \circ_{\mathcal{B}} f & (x \in \mathcal{B}, y \in \mathcal{A}, z \in \mathcal{B}) \end{cases}$$

• identities

$$\mathrm{id}_x := \left\{ \begin{array}{ll} \langle \mathrm{id}_x, x, x \rangle & (x \in \mathcal{A}, \mathrm{id}_x \in \mathcal{A}(x, x)) \\ \langle \mathrm{id}_x, x, x \rangle & (x \in \mathcal{B}, \mathrm{id}_x \in \mathcal{B}(x, x)) \end{array} \right.$$

3.3. Proposition. The equivalence fusion $A \sqcup B$ forms a category.

PROOF. It is easy to check that the composition $\tilde{\circ}$ is map from $\mathbf{Hom}(x,y) \times \mathbf{Hom}(y,z)$ to $\mathbf{Hom}(x,z)$. Now, we prove that the composition $\tilde{\circ}$ satisfies composition law and identity law by case analysis.

• composition law

$$\begin{array}{l} -x \in \mathcal{A}, y \in \mathcal{A}, z \in \mathcal{A}, w \in \mathcal{A}, \\ h \circ (g \circ f) = h \circ_{\mathcal{A}} (g \circ_{\mathcal{A}} f) \\ (h \circ g) \circ f = (h \circ_{\mathcal{A}} g) \circ_{\mathcal{A}} f \\ \\ -x \in \mathcal{A}, y \in \mathcal{A}, z \in \mathcal{A}, w \in \mathcal{B}, \\ h \circ (g \circ f) = h \circ (g \circ_{\mathcal{A}} f) = h \circ_{\mathcal{B}} S(g \circ_{\mathcal{A}} f) = h \circ_{\mathcal{B}} (Sg \circ_{\mathcal{B}} Sf) \\ (h \circ g) \circ f = (h \circ_{\mathcal{B}} Sg) \circ f = (h \circ_{\mathcal{B}} Sg) \circ_{\mathcal{B}} Sf \\ \\ -x \in \mathcal{A}, y \in \mathcal{A}, z \in \mathcal{B}, w \in \mathcal{A}, \\ h \circ (g \circ f) = h \circ (g \circ_{\mathcal{B}} Sf) = \eta_w^{-1} \circ_{\mathcal{A}} Th \circ_{\mathcal{A}} T(g \circ_{\mathcal{B}} Sf) \circ_{\mathcal{A}} \eta_x \\ &= \eta_w^{-1} \circ_{\mathcal{A}} Th \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} \eta_y \circ_{\mathcal{A}} f \\ (h \circ g) \circ f = (\eta_w^{-1} \circ_{\mathcal{A}} Th \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} \eta_y) \circ f = (\eta_w^{-1} \circ_{\mathcal{A}} Th \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} \eta_y) \circ_{\mathcal{A}} f \\ \\ -x \in \mathcal{A}, y \in \mathcal{A}, z \in \mathcal{B}, w \in \mathcal{B}, \\ h \circ (g \circ f) = h \circ (g \circ_{\mathcal{B}} Sf) = h \circ_{\mathcal{B}} (g \circ_{\mathcal{B}} Sf) \\ (h \circ g) \circ f = (h \circ_{\mathcal{B}} g) \circ f = (h \circ_{\mathcal{B}} g) \circ_{\mathcal{B}} Sf \\ \\ -x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{A}, w \in \mathcal{A}, \\ h \circ (g \circ f) = h \circ (\eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x) = h \circ_{\mathcal{A}} \eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x \\ &= \eta_w^{-1} \circ_{\mathcal{A}} TSh \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x \\ &= \eta_w^{-1} \circ_{\mathcal{A}} TSh \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x \\ &= \eta_w^{-1} \circ_{\mathcal{A}} TSh \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x \\ &= \eta_w^{-1} \circ_{\mathcal{A}} TSh \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x \end{array}$$

$$\begin{array}{l} -x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{A}, w \in \mathcal{B}, \\ h \circ (g \circ f) = h \circ (\eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x) \\ = h \circ_{\mathcal{B}} S \eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x) \\ = h \circ_{\mathcal{B}} S \eta_z^{-1} \circ_{\mathcal{B}} ST(g \circ_{\mathcal{B}} f) \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} (\varepsilon_{Sz} \circ_{\mathcal{B}} S\eta_z) \circ_{\mathcal{B}} S\eta_z^{-1} \circ_{\mathcal{B}} ST(g \circ_{\mathcal{B}} f) \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} \varepsilon_{Sz} \circ_{\mathcal{B}} ST(g \circ_{\mathcal{B}} f) \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ = h \circ_{\mathcal{B}} g \circ_{\mathcal{B}} f \circ_{\mathcal{B}} \varepsilon_{Sx} \circ_{\mathcal{B}} S\eta_x \\ (h \circ g) \circ f = (h \circ_{\mathcal{B}} g) \circ_{\mathcal{B}} f \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x \circ_{\mathcal{A}}$$

$$-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{B}, w \in \mathcal{A},$$

$$h \circ (g \circ f) = h \circ_{\mathcal{B}} (g \circ_{\mathcal{B}} f)$$

$$(h \circ g) \circ f = (h \circ_{\mathcal{B}} g) \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{B}, w \in \mathcal{B},$$

$$h \circ (g \circ f) = h \circ_{\mathcal{B}} (g \circ_{\mathcal{B}} f)$$

$$(h \circ g) \circ f = (h \circ_{\mathcal{B}} g) \circ_{\mathcal{B}} f$$

• identity law

$$-x \in \mathcal{A}, y \in \mathcal{A},$$

$$f \circ \operatorname{id}_{x} = f \circ_{\mathcal{A}} \operatorname{id}_{x} = f$$

$$\operatorname{id}_{y} \circ f = \operatorname{id}_{y} \circ_{\mathcal{A}} f = f$$

$$-x \in \mathcal{A}, y \in \mathcal{B},$$

$$f \circ \operatorname{id}_{x} = f \circ_{\mathcal{B}} \operatorname{Sid}_{x} = f \circ_{\mathcal{B}} \operatorname{id}_{Sx} = f$$

$$\operatorname{id}_{y} \circ f = \operatorname{id}_{y} \circ_{\mathcal{B}} f = f$$

$$-x \in \mathcal{B}, y \in \mathcal{A},$$

$$f \circ \operatorname{id}_{x} = f \circ_{\mathcal{B}} \operatorname{id}_{x} = f$$

$$\operatorname{id}_{y} \circ f = \operatorname{Sid}_{y} \circ_{\mathcal{B}} f = \operatorname{id}_{Sy} \circ_{\mathcal{B}} f = f$$

$$-x \in \mathcal{B}, y \in \mathcal{B},$$

$$f \circ \operatorname{id}_{x} = f \circ_{\mathcal{B}} \operatorname{id}_{x} = f$$

$$\operatorname{id}_{y} \circ f = \operatorname{id}_{y} \circ_{\mathcal{B}} f = f$$

- 3.4. DEFINITION. Let $\langle S : \mathcal{A} \to \mathcal{B}, T : \mathcal{B} \to \mathcal{A}, \eta : I_{\mathcal{A}} \to TS, \epsilon : ST \to I_{\mathcal{B}} \rangle$ be an adjoint equivalence, let $\mathcal{A} \sqcup \mathcal{B}$ be the equivalence fusion. We define the projections u, v as follows:
 - $u: \mathcal{A} \ \mathcal{B} \longrightarrow \mathcal{A}$ object-function $u: \mathbf{Ob}(\mathcal{A} \ \mathcal{B}) \longrightarrow \mathbf{Ob}(\mathcal{A})$ $x \longmapsto ux := \begin{cases} x & (x \in \mathcal{A}) \\ Tx & (x \in \mathcal{B}) \end{cases}$ hom-functions $u: \mathbf{Hom}(x,y) \longrightarrow \mathcal{A}(ux,uy)$ $\langle f, x, y \rangle \longmapsto uf := \begin{cases} f & (x,y \in \mathcal{A}) \\ Tf & (x,y \in \mathcal{B}) \\ Tf \circ_{\mathcal{A}} \eta_x & (x \in \mathcal{A}, y \in \mathcal{B}) \\ \eta_y^{-1} \circ_{\mathcal{A}} Tf & (x \in \mathcal{B}, y \in \mathcal{A}) \end{cases}$
 - $v: \mathcal{A} \downarrow \mathcal{B} \longrightarrow B$ $object\text{-}function \ v: \mathbf{Ob}(\mathcal{A} \downarrow \mathcal{B}) \longrightarrow \mathbf{Ob}(\mathcal{B})$ $x \longmapsto vx := \begin{cases} Sx & (x \in \mathcal{A}) \\ x & (x \in \mathcal{B}) \end{cases}$ $hom\text{-}functions \ v: \mathbf{Hom}(x,y) \longrightarrow \mathcal{B}(ux,uy)$ $\langle f, x, y \rangle \longmapsto vf := \begin{cases} Sf & (x,y \in \mathcal{A}) \\ f & (\text{others}) \end{cases}$

3.5. Proposition. The projections u, v are functors.

PROOF. We show that u, v preserve composition of morphisms and identity morphism by case analysis.

• u preserves composition of morphisms

$$\begin{split} &-x\in\mathcal{A},y\in\mathcal{A},z\in\mathcal{A},\\ &u(g\circ f)=u(g\circ_{\mathcal{A}}f)=g\circ_{\mathcal{A}}f\\ &ug\circ_{\mathcal{A}}uf=g\circ_{\mathcal{A}}f\\ &-x\in\mathcal{A},y\in\mathcal{A},z\in\mathcal{B},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}Sf)=T(g\circ_{\mathcal{B}}Sf)\circ_{\mathcal{A}}\eta_x=Tg\circ_{\mathcal{A}}TSf\circ_{\mathcal{A}}\eta_x\\ &ug\circ_{\mathcal{A}}uf=(Tg\circ_{\mathcal{A}}\eta_y)\circ_{\mathcal{A}}f=Tg\circ_{\mathcal{A}}TSf\circ_{\mathcal{A}}\eta_x\\ &-x\in\mathcal{A},y\in\mathcal{B},z\in\mathcal{A},\\ &u(g\circ f)=u(\eta_z^{-1}\circ_{\mathcal{A}}Tg\circ_{\mathcal{A}}Tf\circ_{\mathcal{A}}\eta_x)=\eta_z^{-1}\circ_{\mathcal{A}}Tg\circ_{\mathcal{A}}Tf\circ_{\mathcal{A}}\eta_x\\ &ug\circ_{\mathcal{A}}uf=(\eta_z^{-1}\circ_{\mathcal{A}}Tg)\circ_{\mathcal{A}}(Tf\circ_{\mathcal{A}}\eta_x)\\ &-x\in\mathcal{A},y\in\mathcal{B},z\in\mathcal{B},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=T(g\circ_{\mathcal{B}}f)\circ_{\mathcal{A}}\eta_x=Tg\circ_{\mathcal{A}}Tf\circ_{\mathcal{A}}\eta_x\\ &ug\circ_{\mathcal{A}}uf=Tg\circ_{\mathcal{A}}(Tf\circ_{\mathcal{A}}\eta_x)\\ &-x\in\mathcal{B},y\in\mathcal{A},z\in\mathcal{A},\\ &u(g\circ f)=u(Sg\circ_{\mathcal{B}}f)=\eta_z^{-1}\circ_{\mathcal{A}}T(Sg\circ_{\mathcal{B}}f)=\eta_z^{-1}\circ_{\mathcal{A}}TSg\circ_{\mathcal{B}}Tf\\ &ug\circ_{\mathcal{A}}uf=g\circ_{\mathcal{A}}(\eta_y^{-1}\circ_{\mathcal{A}}Tf)=\eta_z^{-1}\circ_{\mathcal{A}}TSg\circ_{\mathcal{A}}Tf\\ &-x\in\mathcal{B},y\in\mathcal{A},z\in\mathcal{B},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=T(g\circ_{\mathcal{B}}f)=Tg\circ_{\mathcal{A}}Tf\\ &-x\in\mathcal{B},y\in\mathcal{B},z\in\mathcal{A},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=\eta_z^{-1}\circ_{\mathcal{A}}T(g\circ_{\mathcal{B}}f)=\eta_z^{-1}\circ_{\mathcal{A}}Tg\circ_{\mathcal{A}}Tf\\ &-x\in\mathcal{B},y\in\mathcal{B},z\in\mathcal{A},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=\eta_z^{-1}\circ_{\mathcal{A}}T(g\circ_{\mathcal{B}}f)=\eta_z^{-1}\circ_{\mathcal{A}}Tg\circ_{\mathcal{A}}Tf\\ &-x\in\mathcal{B},y\in\mathcal{B},z\in\mathcal{A},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=T(g\circ_{\mathcal{B}}f)=Tg\circ_{\mathcal{A}}Tf\\ &-x\in\mathcal{B},y\in\mathcal{B},z\in\mathcal{B},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=T(g\circ_{\mathcal{B}}f)=Tg\circ_{\mathcal{A}}Tf\\ &ug\circ_{\mathcal{A}}uf=Tg\circ_{\mathcal{A}}Tf\\ &-x\in\mathcal{B},y\in\mathcal{B},z\in\mathcal{B},\\ &u(g\circ f)=u(g\circ_{\mathcal{B}}f)=T(g\circ_{\mathcal{B}}f)=Tg\circ_{\mathcal{A}}Tf\\ &ug\circ_{\mathcal{A}}uf=Tg\circ_{\mathcal{A}}Tf\\ &ug\circ_{\mathcal{A}}uf=Tg$$

• u preserves identity morphisms

$$-x \in \mathcal{A},$$

$$u(\mathrm{id}_x) = \mathrm{id}_x = \mathrm{id}_{ux}$$

$$-x \in \mathcal{B},$$

$$u(\mathrm{id}_x) = T\mathrm{id}_x = \mathrm{id}_{Tx} = \mathrm{id}_{ux}$$

• v preserves composition of morphisms

$$-x \in \mathcal{A}, y \in \mathcal{A}, z \in \mathcal{A},$$

$$v(g \circ f) = v(g \circ_{\mathcal{A}} f) = S(g \circ_{\mathcal{A}} f) = Sg \circ_{\mathcal{B}} Sf$$

$$vg \circ_{\mathcal{B}} vf = Sg \circ_{\mathcal{A}} Sf$$

$$-x \in \mathcal{A}, y \in \mathcal{A}, z \in \mathcal{B},$$

$$v(g \circ f) = v(g \circ_{\mathcal{B}} Sf) = g \circ_{\mathcal{B}} Sf$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} Sf$$

$$-x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{A},$$

$$v(g \circ f) = v(\eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x)$$

$$= S(\eta_z^{-1} \circ_{\mathcal{A}} Tg \circ_{\mathcal{A}} Tf \circ_{\mathcal{A}} \eta_x)$$

$$= S\eta_z^{-1} \circ_{\mathcal{B}} ST(g \circ_{\mathcal{B}} f) \circ_{\mathcal{B}} S\eta_x$$

$$= g \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{B},$$

$$v(g \circ f) = v(g \circ_{\mathcal{B}} f) = g \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{B}, y \in \mathcal{A}, z \in \mathcal{A},$$

$$v(g \circ f) = v(Sg \circ_{\mathcal{B}} f) = Sg \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = Sg \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{B}, y \in \mathcal{A}, z \in \mathcal{B},$$

$$v(g \circ f) = v(g \circ_{\mathcal{B}} f) = g \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{A},$$

$$v(g \circ f) = v(g \circ_{\mathcal{B}} f) = g \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{A},$$

$$v(g \circ f) = v(g \circ_{\mathcal{B}} f) = g \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} f$$

$$-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{B},$$

$$v(g \circ f) = v(g \circ_{\mathcal{B}} f) = g \circ_{\mathcal{B}} f$$

$$vg \circ_{\mathcal{B}} vf = g \circ_{\mathcal{B}} f$$

 \bullet v preserves identity morphisms

$$-x \in \mathcal{A}$$

$$v(\mathrm{id}_x) = S\mathrm{id}_x = \mathrm{id}_{Sx} = \mathrm{id}_{vx}$$

$$-x \in \mathcal{B}$$

$$v(\mathrm{id}_x) = \mathrm{id}_x \ \mathrm{id}_{vx}$$

3.6. Proposition. The projections u, v are surjective on objects, full and faithful.

PROOF. It's trivial by definitions that u, v are surjective on objects. So we check fullness and faithfulness.

 \bullet u is full and faithful

- $-x, y \in \mathcal{A},$ $u : \mathbf{Hom}(x, y) = \{ \langle f, x, y \rangle \mid f \in \mathcal{A}(x, y) \} \ni \langle f, x, y \rangle \mapsto f \in \mathcal{A}(x, y) \text{ is bijective.}$
- $-x, y \in \mathcal{B}$, $T: \mathcal{B}(x,y) \to \mathcal{A}(Tx,Ty)$ is bijective. Therefore $u: \mathbf{Hom}(x,y) = \{\langle f, x, y \rangle \mid f \in \mathcal{B}(x,y)\} \ni \langle f, x, y \rangle \mapsto f \in \mathcal{A}(x,y) \ni \langle f, x, y \rangle \mapsto Tf \in \mathcal{A}(Tx,Ty) = \mathcal{A}(ux,uy)$ is bijective.
- $-x \in \mathcal{A}, y \in \mathcal{B},$ $\mathcal{B}(Sx,y) \ni f \mapsto Tf \circ_{\mathcal{A}} \eta_x \in \mathcal{A}(x,Ty)$ is the right adjunct of each f, and bijective. Therefore $u : \mathbf{Hom}(x,y) = \{\langle f, x, y \rangle \mid f \in \mathcal{B}(Sx,y)\} \ni \langle f, x, y \rangle \mapsto Tf \circ_{\mathcal{A}} \eta_x \in \mathcal{A}(x,Ty) = \mathcal{A}(ux,uy)$ is bijective.
- $-x \in \mathcal{B}, y \in \mathcal{A},$ $\mathcal{B}(x, Sy) \ni f \mapsto \eta_y^{-1} \circ_{\mathcal{A}} Tf \in \mathcal{A}(Tx, y)$ is the left adjunct of each f, and bijective. Therefore $u : \mathbf{Hom}(x, y) = \{\langle f, x, y \rangle \mid f \in \mathcal{B}(x, Sy)\} \ni \langle f, x, y \rangle \mapsto \eta_y^{-1} \circ_{\mathcal{A}} Tf \in \mathcal{A}(Tx, y) = \mathcal{A}(ux, uy)$
- \bullet v is full and faithful
 - $-x, y \in \mathcal{A},$ $S: \mathcal{A}(x,y) \to \mathcal{B}(Sx,Sy)$ is bijective. Therefore $v: \mathbf{Hom}(x,y) = \{\langle f, x, y \rangle \mid f \in \mathcal{A}(x,y)\} \ni \langle f, x, y \rangle \mapsto Sf \in \mathcal{B}(Sx,Sy) = \mathcal{B}(vx,vy)$ is bijective.
 - $-x, y \in \mathcal{B},$ $v: \mathbf{Hom}(x, y) = \{ \langle f, x, y \rangle \mid f \in \mathcal{B}(x, y) \} \ni \langle f, x, y \rangle \mapsto f \in \mathcal{B}(x, y) = \mathcal{B}(vx, vy)$ is bijective.
 - $-x \in \mathcal{A}, y \in \mathcal{B},$ $v : \mathbf{Hom}(x,y) = \{\langle f, x, y \rangle \mid f \in \mathcal{B}(Sx,y)\} \ni \langle f, x, y \rangle \mapsto f \in \mathcal{B}(Sx,y) = \mathcal{B}(vx,vy) \text{ is bijective.}$
 - $-x \in \mathcal{B}, y \in \mathcal{A},$ $v : \mathbf{Hom}(x,y) = \{\langle f, x, y \rangle \mid f \in \mathcal{B}(x,Sy)\} \ni \langle f, x, y \rangle \mapsto f \in \mathcal{B}(x,Sy) = \mathcal{B}(vx,vy) \text{ is bijective.}$
- 3.7. Theorem. Let A and B be categories. A is ordinary equivalent to B if and only if A is span equivalent to B.

PROOF. Let \mathcal{A} be ordinary equivalent to \mathcal{B} , then \mathcal{A} is adjoint equivalent to \mathcal{B} . Thus there exists a adjoint equivalence between \mathcal{A} and \mathcal{B} . So we can construct the equivalence fusion and the projections. By Propositions, they are span equivalence. Therefore \mathcal{A} is span equivalent to \mathcal{B} .

On the other hand, let \mathcal{A} be span equivalent to \mathcal{B} . Then there exists a span equivalence $\langle \mathcal{C}, u, v \rangle$ between \mathcal{A} and \mathcal{B} , and \mathcal{C} is ordinary equivalent to both \mathcal{A} and \mathcal{B} . Therefore \mathcal{A} is ordinary equivalent to \mathcal{B} .

3.8. Remark. Let \mathcal{A} be presheaf category. The forgetful functor

$$U: \mathcal{A}\text{-}\mathbf{Cat} \longrightarrow \mathcal{A}\text{-}\mathbf{Gph}$$

is monadic.

3.9. Proposition. Let $F: \mathbf{Cat} \to \mathbf{Wk-1-Cat}$ be the isomorphism above. let \mathcal{A} and \mathcal{B} be categories. \mathcal{A} is span equivalent to \mathcal{B} in \mathbf{Cat} if and only if $F(\mathcal{A})$ is span equivalent to $F(\mathcal{B})$ in $\mathbf{Wk-1-Cat}$.

Proof.

3.10. THEOREM. Let A and B be categories. A is ordinary equivalent to B in Cat if and only if F(A) is span equivalent to F(B) in Wk-1-Cat.

References

L. Lamport, Latex User's Guide & Reference Manual. Addison-Wesley (fifth edition), 1986.

Email: