

相當於證明 $m_H(4)=2^4=16$

下圖為其中 8 個狀況,將 O,X 顛倒後,以相同框法可得相反的另外 8 個

得證

$$d_{vc}(H) = \infty$$

對於 N 個點 \cdot 取 $\mathbf{x}_i = \mathbf{10}^i$, for i = 1...N

假設這 N 個 example 對應的 label 分別為 y_i ($y_i \in \{-1, +1\}$, for i = 1...N)

則取 α = $0.z_1z_2...z_N$

即可滿足 $h_{\alpha}(x_i) = y_i$ (for i = 1...N)

其中 y 與 z 的關係為:

例如: $y_1=-1$, $y_2=+1$, $y_3=+1$, $y_4=-1$ 則取 $\alpha=0.2002$

因此永遠可以找到一組 2^N 個不同 α 值的 hypothesis 組成一個 hypothesis set shatter N 個點

Poof:

首先觀察 $h_{\alpha}(x) = \text{sign}(|\alpha x \mod 4 - 2| - 1)$ 可以發現

當 h_α(x)=+1 時:

αx mod 4≤1 或 αx mod 4≥3

當 h_α(x)=-1 時:

 $1 < \alpha x \mod 4 < 3$

對於 N 個點,取 $x_i = 10^i$, for i = 1...N

討論 $h_{\alpha}(x)=y$ 是否都成立

 $\textcircled{1}x_1$:

a.
$$y_1 = +1$$
,則 $\alpha = 0.0$

$$\alpha * x_1 \mod 4 = 0 * 10^1 \mod 4 = 0$$

故
$$h_{\alpha}(x_1) = +1 = y_1$$

b.
$$y_1 = -1$$
,則 $\alpha = 0.2$

$$\alpha * x_1 \mod 4 = 0.2*10^1 \mod 4 = 2$$

故
$$h_{\alpha}(x_1) = -1 = y_1$$

 $@x_i, i=2...N:$

a.
$$y_i = +1,$$
 $= 0.z_1z_2...z_{i-1}0z_{i+1}...z_N$

$$\alpha * x_i \mod 4 = 0.z_1 z_2 ... z_{i-1} 0 z_{i+1} ... z_N * 10^i \mod 4$$

$$= z_1 z_2 ... z_{i-1} 0. z_{i+1} ... z_N \mod 4$$

$$=z_{i-1}0.z_{i+1}...z_N \mod 4$$
 (因為 100 $\mod 4 = 0$,所以百位數以上不影響)

$$= 0.z_{i+1}...z_{N}$$

(不管 z_{i-1} 是 0 還是 2,都是此結果)

故
$$h_{\alpha}(x_i)$$
=+1= y_i

b.
$$y_i = -1, \text{ } \exists \alpha = 0.z_1z_2...z_{i-1}2z_{i+1}...z_N$$

$$\alpha * x_i \mod 4 = 0.z_1 z_2 ... z_{i-1} 2z_{i+1} ... z_N * 10^i \mod 4$$

$$= z_1 z_2 ... z_{i-1} 2. z_{i+1} ... z_N \mod 4$$

$$=z_{i-1}2.z_{i+1}...z_N \mod 4$$
 (因為 $100 \mod 4 = 0$,所以百位數以上不影響)
$$= 2.z_{i+1}...z_N \qquad \qquad (不管 z_{i-1} 是 0 還是 2,都是此結果)$$
 故 $h_{\alpha}(x_i)=-1=y_i$

由於 N 可以是任意大於 0 的正整數 · 又對於任意 N 值都能從 H 中找到一組 hypothesis subset 來處理 2^N 種(因為 binary classification)可能的 label 的組 合 · 故 $d_{vc}(H)=\infty$

根據題意·H1及H2間可能的關係有三種(交集不為空集合):

Case1	H ₁ H ₂	此時(H $1 \cap H2$) $\subset H1$ · 故必滿足 $d_{vc}(H1 \cap H2) \leq d_{vc}(H1)$
Case2	H. (H.	此時(H $1 \cap H2$) $\subset H1$ · 故必滿足 $d_{vc}(H1 \cap H2) \leq d_{vc}(H1)$
Case3	Hz Hz	此時(H $1 \cap$ H 2) = H $1 \cdot$ 故必滿足 d_{vc} (H $1 \cap$ H 2) $\leq d_{vc}$ (H 1)

在所有可能的情況下都滿足 $d_{vc}(\mathrm{H1}\cap\mathrm{H2}) \leq d_{vc}(H1)$, 故得証

$$M_{H1}(N) = N + 1 \perp M_{H2}(N) = N + 1$$

然而當所有點皆為+1或-1時,發生重疊的狀況

故
$$M_{H1\cup H2}(N) = (N+1)+(N+1)-2=2N$$

根據上式:

N=1 時,
$$M_{H1\cup H2}(1) = 2*1 = 2 = 2^1$$

N=2 時,
$$M_{H1\cup H2}(2) = 2*2 = 4 = 2^2$$

N=3 時,
$$M_{H1\cup H2}(3) = 2*3 = 6 < 2^3$$

可以把 $E_{out}(h_{s,\Theta})$ 以下式表達:

$$E_{out}(h_{s,\Theta}) = \lambda^* \mu + (1-\lambda)^* (1-\mu)$$

其中λ及μ定義同 Coursera HW2 的第一題

由題目敘述已知 noise 的比例為 0.2 · 故可知 1-λ為 0.2

另外本題的 input 分布為 uniform distribution in [-1, 1]

討論所有 s 與Θ的關係(共 4 種 case)

Case1	s = 1, Θ>0	μ= Θ /2
Case2	s = 1, Θ<0	μ= Θ /2
Case3	s = -1, Θ>0	μ= (2- Θ)/2
Case4	s = -1, Θ<0	μ= (2- Θ)/2

綜合上面 4 個 case 的結果

可得
$$\mu$$
=((s+1)/2)*(| Θ |/2) - ((s-1)/2)*((2- $|\Theta$ |)/2) = (2s $|\Theta$ |-2s+2)/4

代入
$$E_{out}(h_{s,\Theta}) = \lambda^* \mu + (1-\lambda)^*(1-\mu)$$

得
$$E_{out}(h_{s,\Theta}) = 0.3*s*|\Theta|-0.3s+0.5$$

由於只有 20 筆資料的關係·Ein 及 Eout 的分布較為分散·但可以看的出來 Eout 之值通常比較大

本題的資料量遠大於第7題, Ein 與 Eout 基本上都落在 0.2 左右, 故差值不大

由題目敘述可知 H 中的每個 hypothesis 可以把 R^d 空間分成 2^d 個 hyperrectangular regions,並決定這 2^d 個 region 的 label(+1 or -1) 試證①、②

① "simplified decision trees" hypothesis set 的 VC-dimension $>= 2^d$ Proof: 將 2^d 個點分別至於 2^d 個不同 region 中,則此 2^d 個點可以被 shatter ② "simplified decision trees" hypothesis set 的 VC-dimension $< 2^d+1$ Proof: 將 2^d+1 個點置於 2^d 個不同 region 中,根據鴿籠定理必定會有一個 region 中含有兩個點,當此兩點的 label 不同時(一為+1, 一為-1)即無法 shatter

由於"simplified decision trees" hypothesis set 的 VC-dimension $>= 2^d$ 且
"simplified decision trees" hypothesis set 的 VC-dimension $< 2^d + 1 \cdot$ 因此
"simplified decision trees" hypothesis set 的 VC-dimension 為 2^d · 得証