1. Solution

The sample size, *n*, is 32. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 32 \rceil$	8	52.31
Q2	$\lceil 0.5 \times 32 \rceil$	16	52.46
Q3	$\lceil 0.75 \times 32 \rceil$	24	52.67

We determine the IQR.

$$IQR = Q3 - Q1$$

= 52.67 - 52.31
= 0.36

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $52.31 - 1.5 \times 0.36$
= 51.77
upper boundary = Q3 + $1.5 \times IQR$
= $52.67 + 1.5 \times 0.36$
= 53.21

We determine the outliers.

outliers =
$$\{51.49, 51.6, 53.61\}$$

We identify the ends of the whiskers: 51.98 and 53.12. We plot the boxplot.

2. Solution

The sample size, *n*, is 15. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 15]	4	49.19
Q2	$\lceil 0.5 \times 15 \rceil$	8	50.02
Q3	$\lceil 0.75 \times 15 \rceil$	12	53.06

We determine the IQR.

$$IQR = Q3 - Q1$$

= 53.06 - 49.19
= 3.87

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $49.19 - 1.5 \times 3.87$
= 43.385
upper boundary = Q3 + $1.5 \times IQR$
= $53.06 + 1.5 \times 3.87$
= 58.865

We determine the outliers.

outliers =
$$\{\}$$

We identify the ends of the whiskers: 44.15 and 54.65. We plot the boxplot.

