Spin-1

We focus on the simplest illustration studied in this work; the three-level case.

```
In[1]:= Needs["SUN`"]; (* https://github.com/kercl/sun *)
In[3]:= Np = 100; (* Number of atoms *)
```

1 Local operators and their collective representation

First we define the Spin-1 and SU(3) generators matrices (Gell-Mann) in the fundamental representation. Then, we compute the corresponding matrix representations of the SU(3) generators on the totally symmetric subspace of the Np atoms, MatSU3, with the SUN package.

a) Separable bound beta

As set of local operators, we will use spin-1 and magnetic-sublevel single atom projectors onto sublevel 0 for three orthogonal directions $\{x,y,z\}$

We proceed by computing the separable bound, *beta*, from the local operators *o* by maximizing *betap*si over single atom states as indicated in the paper

```
In[11]:= betapsi[o_, psi_] := Total[Table[
         First[First[Abs[(psi.o[[a, m]].psi<sup>†</sup>) / (psi.psi<sup>†</sup>)]^2]], {a, 1, 3}, {m, 1, 2}], 2];
      betaTmp = Table[betapsi[o, {RandomVariate[CircularUnitaryMatrixDistribution[3]][[
            1]]}], {i, 1, 500000}];
      Max [
       betaTmp]
Out[12]= 1.4995908
```

Here we propose to estimate the optimal beta by just sampling random three-level vectors from the *U*(3) Haar measure. A More sophisticated approach is implemented in "find_betabound.py" where we maximize from a random vector using the methods integrated in scipy. From which we

```
In[13]:= beta = 1.5;
```

2 The three-level spinor Bose gas model

We define the Hamiltonian of the spin-1 Bose gas

```
H(c, q) = c[J]^2/N + qQ^{(z)}
```

in whose ground state (GS) in the $J_z = 0$ sector quantum entanglement will be probed

```
ln[14]:= J2 = Ir[MatSpin[[1]]].Ir[MatSpin[[1]]] + Ir[MatSpin[[2]]].Ir[MatSpin[[2]]] +
        Ir[MatSpin[[3]]].Ir[MatSpin[[3]]]; (* Total spin *)
    Qz = Ir[MatSpin[[3]].MatSpin[[3]]]; (* Quadrupole *)
    IdxRed =
       Flatten[Position[Re[Normal[Diagonal[Ir[MatSpin[[3]]]]]], _?(Abs[#] < 0.01 &)]];
     (* We only consider the basis elements with J_z=0 *)
    H[c_{,q}] := (c * J2 / Np + q * Qz) [[IdxRed, IdxRed]];
    GS[H_] := First[Eigenvectors[H + Norm[H] * IdentityMatrix[Dimensions[H][[1]]], -1]];
     (* Ground state *)
     EV[0_, S_] := Re[Tr[KroneckerProduct[Conjugate[S], S].0]];
     (* Expectation value of the GS with respect collective operator 0 *)
```

a) Quantum data

The next step is to gather the data from the model in the form of one-body vector **m** and two-body correlation matrix C

```
\mathbf{m} = \langle \text{Ir}[\mathbf{o}] \rangle / N
C = \langle \operatorname{Ir}[\boldsymbol{o}] \operatorname{Ir}[\boldsymbol{o}]^t - \operatorname{Ir}[\boldsymbol{o}\boldsymbol{o}^t] \rangle / (N(N-1))
```

for each direction {x,y,z}.

```
In[19]: m[state_] := Flatten[Table[EV[Ir[o[[a, m]]]][[IdxRed, IdxRed]], state] / Np,
         {a, 1, 3}, {m, 1, Dimensions[o][[2]]}]];
     of = Flatten[o, 1];
     Cor[state_] := Table[ EV[(Ir[of[[k]]].Ir[of[[r]]] + Ir[of[[r]]].Ir[of[[k]]] -
              Ir[of[[k]].of[[r]] + of[[r]].of[[k]]]) [[IdxRed, IdxRed]], state] /
          (2 * Np * (Np - 1)) , {k, 1, Dimensions[of][[1]]}, {r, 1, Dimensions[of][[1]]}];
```

3 Data-driven entanglement detection

We consider the modified correlation which enter linearly in the central result 'single entanglement witness to test them all" of the paper considering a block-diagonal form of the correlations along each direction.

```
In[22]:= Ctilde[Cor_, m_] := Np * (Cor - KroneckerProduct[m*, m]);
     CtildeXYZ[Cor_, m_] :=
      DiagonalMatrix[Unevaluated@{Ctilde[Cor, m][[{1, 2}, {1, 2}]], Ctilde[Cor, m][[
            {3, 4}, {3, 4}]], Ctilde[Cor, m][[{5, 6}, {5, 6}]]}] // ArrayFlatten
```

We compute the optimal value of the witness given the bound beta as well as the corresponding projector.

```
In[24]:= (* Sum of negative eigenvalues of C *)
     Pscalar[C_] :=
       Sum[(1 - Round[HeavisideTheta[Eigenvalues[C][[a]]]]) * Eigenvalues[C][[a]],
        {a, 1, First[Dimensions[C, 1]]}];
     (* Optimal projector *)
     PP[C_] := Sum[(1 - Round[HeavisideTheta[Eigenvalues[C][[a]]]]) * KroneckerProduct[
          Eigenvectors[C][[a]]*, Eigenvectors[C][[a]]], {a, 1, First[Dimensions[C, 1]]}];
     (* Entanglement witness *)
    W[Cor_, m_] := Pscalar[CtildeXYZ[Cor, m]] - Tr[Cor] + beta;
     Now we move on to test our algorithm. First we consider the GS with c=1, q=1 to obtain:
```

```
ln[27]:= C = 1;
     q = 1;
In[29]:= state = GS[H[c, q]];
     ms = m[state];
     Cors = Cor[state];
In[*]:= W[Cors, ms]
Out[@] = -0.60159149
```

The negative value indicates violation of the entanglement witness and therefore quantum entanglement is required to reproduce the data {C, m} within a quantum theory.

In[=]:=

Where the basis in which the matrix is written is $\{j_x, n0_x, j_y, n0_y, j_z, n0_z\}$ where j_a is the spin (dipole) operator along direction a and $n0_a$ is the projection to the Zeeman sublevel with zero spin projection along a (see definition of o). For unpolarized states, with this projector we infer an entanglement witness of the form Hfeas

for x=-y=1, maximally violated in the SU(2) point, c=1 and q=0. We chose the partition in x,y such that for x=1, y=0, the expression is equivalent to the Vitagliano-Tóth criteria $<\mathbf{J}^2>>= N$

For the ferromagnetic case, c=-1, q=1 we find another witness violated:

```
In[36]:= C = -1;
        q = 1;
  In[38]:= state = GS[H[c, q]];
       ms = m[state];
       Cors = Cor[state];
  In[41]:= W[Cors, ms]
 Out[41]= -0.3109824
  In[42]:= Re[PP[CtildeXYZ[Cors, ms]]] // MatrixForm
Out[42]//MatrixForm=
         0. 0. 0. 0.
                                  0.
         0. 0. 0. 0.
                                  0.
         0. 0. 0. 0.
         0. 0. 0. 0.
         0. 0. 0. 0.
                                               -2.1097406 \times 10^{-16}
         0. 0. 0. 0. -2.1097406 \times 10^{-16} 4.4510053 \times 10^{-32}
```

This time leading to an anisotropic witness in the dipolar space, since only the z component of the spin is projected.

4 Correlations' feasible region

The feasible region in the correlation plane, $\langle X \rangle$, $\langle Y \rangle$, as defined in *Hfeas* = xX + yY is obtained as the convex hull of the correlations <X>,<Y> computed against the GS of Hfeas for a large range of {x,y}. For the present witness, the relevant boundary can be evaluated fixing x =

In[43]:= Ndp = 1000; (* Number of datapoints *)

```
In[44]:=
      x = 1;
      yvalues = N@Subdivide[-400, 400, Ndp];
      EVX = Table[EV[Hfeas[1, 0], GS[Hfeas[x, yvalues[[y]]]]], {y, 1, Ndp}];
      EVY = Table[EV[Hfeas[0, 1], GS[Hfeas[x, yvalues[[y]]]]], {y, 1, Ndp}];
      In this plane, the data reproduced by the GS of the spin-1 spinor model H[1,1] addressed previously
      is mapped to the point:
In[48]:= Xdata = {EV[Hfeas[1, 0], GS[H[1, 1]]]}
      Ydata = {EV[Hfeas[0, 1], GS[H[1, 1]]]}
Out[48]= \{-0.10835784\}
Out[49]= \{0.49323365\}
In[50]:= Show[ListLinePlot[Transpose@{EVX, EVY}, Frame -> True, FrameLabel → {"<X>", "<Y>"},
        Axes → {False, False}, PlotLegends → {"Feasibility boundary"}],
       ListPlot[Transpose@{Xdata, Ydata}, PlotStyle \rightarrow Red, PlotLegends \rightarrow {"H[1,1]"}],\\
       Plot[x, \{x, -1, 1\}, PlotStyle \rightarrow Green, PlotLegends \rightarrow \{"Populations Witness"\}],
       ListLinePlot[Transpose@{ConstantArray[0, 3], N@Subdivide[-1, 2, 2]},
        PlotStyle → Gray, PlotLegends → {"Spin Witness"}]]
         0.5
         0.4
                                                                      Feasibility boundary
         0.3
                                                                     H[1,1]
         0.2
Out[50]=
                                                                       Populations Witness
         0.1
                                                                      - Spin Witness
         0.0
                                           0.0
                                                          0.5
                                     <X>
```

We indicated as well the two lines corresponding to the populations based witness x = -y = 1 and the spin-based Vitagliano-Tóth witness.

The same procedure is to be carried out analogously with the remaining anisotropic witness.

This is used in the paper to compare the present witness with the Vitagliano-Tóth criteria, obtaining that the novel one is more robust in the region in which is obtained in the data-driven way from the ground state of the Bose gas. Moreover, we obtain violation for the twin-Fock state c = 0, q = -1, which is not detected entanglement via spin-1 correlations.