

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/626,475	07/23/2003	Bow-Yaw Wang	CA7038392001	1298
21971	7590	01/12/2005	EXAMINER	
WILSON SONSINI GOODRICH & ROSATI 650 PAGE MILL ROAD PALO ALTO, CA 943041050			ROSSOSHEK, YELENA	
		ART UNIT	PAPER NUMBER	
		2825		

DATE MAILED: 01/12/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/626,475	WANG, BOW-YAW	
	Examiner Helen Rossoshek	Art Unit 2825	

– The MAILING DATE of this communication appears on the cover sheet with the correspondence address –
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 23 July 2003.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-31 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-31 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 23 July 2003 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____. | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

1. This office action is in response to the Application 10/626,475 filed 07/23/2003.
2. Claims 1-31 are pending in the Application.

Claim Objections

3. Claim 14, 19, 20, 21 and 31 are objected to because of the following informalities:

Claims 14 and 31 are formulated unclear in terms of what "fails".

Claims 14, 19, 20 and 21 have an insufficient antecedent basis for the limitation in the claims.

Claim 31 line 28 after "states" delete "." Insert --;--

Appropriate correction is required.

Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

5. Claims 1-31 are rejected under 35 U.S.C. 102(a) as being anticipated by Sheeran et al. ("Checking safety properties using induction and a SAT-Solver", November 2000, In Proc. Conference on Formal Methods in Computer-Aided Design).

With respect to claim 1 Sheeran et al. teaches a method of circuit verification (Introduction, Page 108), comprising: including, in an inductive set of one or more

states, a plurality of states of a circuit design, wherein the inductive set of one or more states includes at least states passing a first property of the circuit design (Page 108); transitioning by at least one step, in a forward direction, states of the inductive set passing at least the first property of the circuit design, resulting in transitioned states as shown on the Fig. 2, which depicts a state transition diagram for a circuit shown on the Fig. 1(Page 109); determining if the transitioned states of the inductive set pass at least the first property of the circuit design by considering the reachable states, which are held by property P (states, which passed or satisfied property P) (Page 109); repeating at least the transitioning and determining, until at least, the determining results in the transitioned states of the inductive set passing at least the first property of the circuit design by starting in an initial state and repeatedly applying the transition relation always leads to a state satisfying (passing) property P (Page 111).

With respect to claims 2-11 Sheeran et al. teaches:

Claim 2: if all the transitioned states of the inductive set are determined to pass at least the first property of the circuit design, all the transitioned states of the inductive set determined to pass at least the first property of the circuit design were transitioned by a first total of transitions within determining a P-safe system wherein P-safe system is the system where all reachable states are P-states, which means that all states satisfy (pass) P (property) (Page 108);

Claim 3: transitioning, in forward direction, initial states of the circuit design by at least the first total of transitions, resulting in a forward transitioned set of states as

shown on the Fig. 2 (top row), wherein property holds for all of the reachable states and wherein transitions are in forward direction as shown by arrows (Page 109);

Claim 4: if the forward transitioned set of states passes the first property of the circuit design, determining the circuit design to be formally verified for at least the first property of the circuit design within the method of the verification real FPGA by using the induction-based methods of safety property checking (Page 108);

Claim 5: the determining does not consider transitioned states resulting from transitioning of states of the inductive set failing at least the first property of the circuit design by checking systems for P-safety and generating a trace when the system turns out not to be P-safe assuming that the domain of T is the entire set of states S, so every state has a successor through T (Page 111);

Claim 6: the determining considers only transitioned states resulting from transitioning of states of the inductive set passing at least the first property of the circuit design as described in the Formulating the Problem (2.2) on the Page 111);

Claim 7: the transitioning is not performed on states of the inductive set failing at least the first property of the circuit design assuming that the domain of T is the entire set of states S, so every state has a successor through T (Page 111);

Claim 8: the transitioning is performed only on states of the inductive set passing at least the first property of the circuit design as shown on the Fig. 2 (Page 109);

Claim 9: each time the transitioning and the determining are repeated prior to transitioning, the inductive set includes transitioned states within the ability of the

system to find the condition when the property is satisfied by going in loop (iteratively) (Page 112);

Claim 10: each time the transitioning and the determining are repeated, prior to transitioning, the inductive set includes transitioned states passing at least the first property of the circuit design (Page 112);

Claim 11: each time the transitioning and the determining are repeated, prior to transitioning, the inductive set excludes transitioned states failing at least the first property of the circuit design as shown in Algorithm 1 for checking if system is P-safe, wherein the programming code (function) returns only “True” condition in the end, wherein “True” condition is only satisfaction of the property P excluding failed states (Page 112).

With respect to claim 12 Sheeran et al. teaches: a method of circuit verification (Introduction, Page 108), comprising: transitioning by at least one step, in a backward direction, states of an inductive set of at least one or more states of a circuit design passing at least a first property of the circuit design, resulting in transitioned states by working backwards through T when starting in a state violating property P as described in the section (2.2) Formulating the Problem on the Page 111; determining if the transitioned states of the inductive set fail at least the first property of the circuit design (Page 111); repeating the transitioning and the determining, until at least, the determining results in the transitioned states of the inductive set failing at least the first property of the circuit design by assuming that every state has a successor through T, so there are always loops (iteration) (Page 112).

With respect to claims 13-28 Sheeran et al. teaches:

Claim 13: a first iteration of transitioning by at least one step, in the backward direction, states of a first iteration of an inductive set of at least one or more states failing at least the first property of the circuit design, resulting in a first iteration of transitioned states (Page 112);

Claim 14: a first iteration of determining if the first iteration of transitioned states of the inductive set fails at least the first property of the circuit design (Page 112);

Claim 15: after the first iteration of transitioning, prior to the transitioning, the inductive set includes the first iteration of transitioned states within the Algorithm 1 to show an example of programming function to program the circuit design verification Bounded Model Checking using iteration and satisfiability check (Page 112);

Claim 16: after the first iteration of transitioning, prior to the transitioning, the inductive set includes the first iteration of transitioned states passing at least the first property of the circuit design (Page 112);

Claim 17: after the first iteration of transitioning, prior to the transitioning, the inductive set excludes the first iteration of transitioned states failing at least the first property of the circuit design by creating the programming function (code) within returning “True” if the system is P-safe and an “error trace” if not (Page 113);

Claim 18: at least after a first iteration of transitioning, the determining does not consider transitioned states resulting from transitioning of states of the inductive set failing at least the first property of the circuit design by using algorithm 2 shown on the Page 114 wherein states which failed to satisfy property P are excluded;

Claim 19: at least after a first iteration of transitioning, the determining considers only transitioned states resulting from transitioning of states of the inductive set passing at least the first property of the circuit design (Page 114);

Claim 20: at least after a first iteration of transitioning, the transitioning is not performed on states of the inductive set failing at least the first property of the circuit design (Page 114);

Claim 21: at least after a first iteration of transitioning, the transitioning is performed only on states of the inductive set passing at least the first property of the circuit design within the Algorithm 2 shown on the Page 114, wherein the text of the programming code of the verification of the circuit design shows the returning of the value of the transitioning performed only on states after the satisfaction of the property by states has been confirmed;

Claim 22: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states as shown in the Algorithm 2 on the Page 114;

Claim 23: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states passing at least the first property of the circuit design as shown in the Algorithm 2 on the Page 114;

Claim 24: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set excludes transitioned states failing at least the first property of the circuit design as shown in the Algorithm 2 shown

on the Page 114, wherein the state which is not satisfied property P is not considered in the further consideration;

Claim 25: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set excludes transitioned states able to reach, in one forward transition, any state of the circuit design failing at least the first property within forward and backward directions excluding the states which are not satisfied property P (Page 114);

Claim 26: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states except for transitioned states to reach, in one forward transition, any state of the circuit design failing at least the first property within forward and backward directions excluding the states which are not satisfied property P (Page 114);

Claim 27: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states passing at least the first property of the circuit design except for transitioned states able to reach, in one forward transitioned, any state of the circuit design failing at least the first property within forward and backward directions excluding the states which are not satisfied property P (Page 114);

Claim 28: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set excludes transitioned states failing at least the first property of the circuit design and transitioned states able to reach, in one forward transition, any state of the circuit design failing at least the first

property as shown in the Algorithm 4 on the Page 115 by removing the dependence between iterations.

With respect to claims 29 and 30 Sheeran et al. teaches: a method of circuit verification (Introduction, Page 18), comprising: attempting bounded verification of one or more properties of a circuit design for at least a first number of transitions within Bounded Model Checking (Page 112); attempting induction proof of the one or more properties of the circuit design for at least the first number of transitions (Introduction, Page 108); and determining if the one or more properties of the circuit design are verified, based at least on the bounded verification and the induction proof (Page 112); If the bounded verification and the induction proof are insufficient to determine the one or more properties of the circuit design to be verified, increasing the first number of transitions by increasing "i" (iterations) and finding the condition where state satisfy the property (Page 112); repeating at least of attempting bounded verification and attempting induction proof by dividing the problem into sub-problems and working as loop-free states, but putting this loop-free states together and getting eventually loop (Page 112); and determining if the one or more properties of the circuit design are verified, based at least on repeating, with the increased first number of transitions, at least one of bounded verification and the induction proof (Page 112).

With respect to claim 31 Sheeran et al. teaches: a method of circuit verification (Introduction, Page 18), comprising: a first iteration of transitioning by at least one step, in a backward direction, states of a first iteration of an inductive set of at least one or more states failing at least a first property of a circuit design, resulting in a first iteration

Art Unit: 2825

of transitioned states going backward after finding the bad state (failing to satisfy to the property) (Page 111); a first iteration of determining if the first iteration of transitioned states of the inductive set fails at least the first property of the circuit design by repeatedly applying the transition relation, which leads to a state satisfying property P (Page 111).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Helen Rossoshek whose telephone number is 571-272-1905. The examiner can normally be reached on 7:00-4:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Matthew S Smith can be reached on 571-272-1907. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Examiner
Helen Rossoshek
AU 2825

A. M. Thompson
Primary Examiner
Technology Center 2800

