

Name and section: $_{ ext{-}}$			
ID number:			
F_mail·			

1. (40 points) Determine the interpolating polynomial p(x) that interpolates u at \bar{x} , $\bar{x} - h$ and $\bar{x} - 2h$. Then, show that the one-sided approximation of $u'(\bar{x})$ is given by

$$D_2 u(\bar{x}) = \frac{3u(\bar{x}) - 4u(\bar{x} - h) + u(\bar{x} - 2h)}{2h}.$$
 (1)

Next, test this finite difference formula [cf. Eq. (1)] to approximate u'(1.2) for $u(x) = \cos(x)\sin(x)$. Specifically, write a MATLAB script (or a code in **any** programming language) for this purpose and show the absolute error as a function of h in a log-log scale by halving h at each step, i.e., use h = 0.1, h = 0.05, h = 0.025 etc. Perform the halvation 10 times and present your results in a table with the following format:

- column 1: h (step-size)
- column 2: $E_2u(\bar{x})$ (absolute error, i.e., $E_2u(\bar{x}) = |D_2u(\bar{x}) u'(\bar{x})|$).

Subsequently, show that the approximation is indeed **second-order accurate**, i.e., $\mathcal{O}(h^2)$ (you might want to compute the slope of the straight line in the log-log scale). You are free to modify the script $dr_chapter_1_{ex_fd.m}$ for this purpose.

Attach your code, the figure and MATLAB output.

2. (60 points) Consider the fourth-order accurate finite difference approximation

$$u''(\bar{x}) = c_1 u(\bar{x} - 2h) + c_2 u(\bar{x} - h) + c_3 u(\bar{x}) + c_4 u(\bar{x} + h) + c_5 u(\bar{x} + 2h) + \mathcal{O}(h^4), \quad (6)$$

which is based on 5 equally-spaced points, i.e., $x_1 = \bar{x} - 2h$, $x_2 = \bar{x} - h$, $x_3 = \bar{x}$, $x_4 = \bar{x} + h$ and $x_5 = \bar{x} + 2h$. In class we discussed about how to obtain the coefficients c_i , for i = 1, 2, 3, 4, 5 via solving the *Vandermonde* system given by

$$\frac{1}{(i-1)!} \sum_{j=1}^{n} c_j (x_j - \bar{x})^{(i-1)} = \begin{cases} 1 & \text{if } i-1=k, \\ 0 & \text{otherwise} \end{cases}$$
 (7)

- (a) (20 points) Set up the underlying 5×5 Vandermonde system.
- (b) (10 points) Compute the coefficients c_i using the MATLAB function fdstencil.m that we discussed in class and verify that the c_i 's satisfy the system you determined in part (a).

- (c) (30 points) Test this finite difference formula [cf. Eq. (6)] to approximate u''(1) for $u(x) = \sin(2x)$. Similarly, as you did in Question 1, write a MATLAB script (or a code in **any** programming language) for this purpose and show the absolute error as a function of h in a log-log scale. Present again your results in a table with the following format:
 - column 1: h (step-size)
 - column 2: $E_4u(\bar{x})$ (absolute error).

Subsequently, show that the approximation is indeed **fourth-order accurate**, i.e., $\mathcal{O}(h^4)$. Compare the error against the predicted one from the leading term of the expression printed by fdstencil.m.

Attach your code, the figure and MATLAB output.