Prof. Lorí Viali, Dr. viali@mat.pucrs.br

http://www.pucrs.br/~viali/

Estatistica

Conceitos Básicos

Coleção de números = estatísticas

- ✓ O número de carros vendidos no país aumentou em 30%.
- ✓ A taxa de desemprego atinge, este mês, 7,5%.
- ✓ As ações da Telebrás subiram R\$ 1,5, hoje.
- ✓ Resultados do Carnaval no trânsito: 145 mortos, 2430 feridos.

Estatística: uma definição

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

Estatística (Divisão)

Descritiva

Os procedimentos usados para organizar, resumir e apresentar dados numéricos.

Indutiva

A coleção de métodos e técnicas utilizados para se estudar uma população baseados em amostras probabilísticas desta população.

POPULAÇÃO

Uma coleção de todos os possíveis elementos, objetos ou medidas de interesse.

CENSO

Um levantamento efetuado sobre toda uma população é denominado de levantamento censitário ou simplesmente censo.

AMOSTRA

Uma porção ou parte de uma população de interesse.

AMOSTRAGEM

O processo de escolha de uma amostra da população é denominado de amostragem.

Estatística (Matemática aplicada)

Probabilidade (Matemática)

Univariada

Multivariada

Estatística Univariada

Trabalha com uma única característica dos dados

Estatística Multivariada

Trabalha com duas ou mais características dos dados

Probabilidade X Estatística

Faces	Probabilidades
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6
Total	1

Faces	Freqüências
1	19
2	20
3	21
4	17
5	15
6	25
Total	120

CRITÉRIOS DE ARREDONDAMENTO

Regra
Básica

Sempre para o valor mais próximo

1,454 1,45 1,46 1,456 É impar 1,475 1,48 **Aumenta** É par 1,48 1,485 Não aumenta

Sexo Religião Estado civil Curso

Conceito
Grau de Instrução
Mês
Dia da semana

Discreta

Número de faltas Número de irmãos Número de acertos

Contínua

Altura Área Peso Volume

EXCe

Básico

ESTATÍSTICA DESCRITIVA

Conjunto de dados:

⊗ Organização; ♦ Amostra

© Resumo; ou

© Apresentação População

Um conjunto de dados é resumido de acordo com as seg características

(A)

Tendên

População ou amostra

io central

(B)

Dispersão ou variabilidade

(C)

Assimetria (distorção)

Achatamento ou curtose

Tendência ou posição central

(a)

As médias m p **e** S

A média aritmética

A média geométrica

A média harmônica

A média quadrática

A média interna

Tendência ou posição central

(a) d As d médias

A média aritmética

A média geométrica

A média harmônica

A média quadrática

Tendência ou posição central

S

i

m

p

1

e

S

A média aritmética

$$\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum x_i}{n}$$

A média geométrica

$$\mathbf{m}_{g} = \sqrt[n]{\mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \ldots \cdot \mathbf{x}_{n}} = \sqrt[n]{\prod \mathbf{x}_{i}}$$

Tendência ou posição central

S

i

m

p

1

e

S

A média Harmônica

$$m_{h} = \frac{1}{\frac{1}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{n}}}} = \frac{n}{\frac{1}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{n}}}} = \frac{n}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{n}}}$$

Observação

$$\overline{x} > m_g > m_h$$

EXEMPLO

Médias

Dados

 $\overline{\mathbf{X}}$

 m_g

 m_h

4

5

4,9

4,8

1

9

5

3

1,8

Tendência ou posição central

(b)

A mediana

Quartis,
Decis,
Centis

(c)

A moda

Tendência ou posição central

n a d

a

A média aritmética ponderada

$$ma_{P} = \frac{x_{1} \cdot w_{1} + x_{2} \cdot w_{2} + ... + x_{k} \cdot w_{k}}{w_{1} + w_{2} + ... + w_{k}} = \frac{\sum x_{i} \cdot w_{1}}{\sum w_{i}}$$

Tendência ou posição central

n d a a

A média geométrica ponderada

$$mg_{P} = \sqrt[\sum_{i=1}^{N} w_{i} X_{1} W_{1} \cdot X_{2} W_{2} \cdot ... \cdot X_{k} W_{k}} = \sum_{i=1}^{N} w_{i} \prod_{i=1}^{N} x_{i} W_{i}$$

Tendência ou posição central

P 0 n d a a

A média harmônica ponderada

$$mh_{P} = \frac{w_{1} + w_{2} + w_{k}}{\frac{w_{1}}{x_{1}} + \frac{w_{2}}{x_{2}} + ... + \frac{w_{k}}{x_{k}}} = \frac{\sum w_{i}}{\sum \frac{w_{i}}{x_{i}}}$$

Tendência ou posição central

A mediana [median]

$$m_e = \mathbf{x_{(n+1)/2}}$$
 se "n" é impar

$$m_e = [x_{(n/2)} + x_{(n/2)+1}] / 2 \text{ se "n"} \acute{e} \text{ par}$$

A mediana [median]

$$n = 7$$
 (impar), então $x_{(n+1)/2} = x_4$

Ordena o conjunto

$$m_e = 2 = x_4$$

A mediana [median]

1 -1 0 4 2 5 3 -2

$$n = 8$$
 (par), então $m_e = (x_{n/2} + x_{n/2+1)/2} = (x_4 + x_5)/2$

Ordena o conjunto

-2 -1 0 1 2 3 4 5

$$m_e = (x_4 + x_5)/2 = (1 + 2)/2 = 1,50$$

Tendência ou posição central

A moda [mode]

 m_0 = valor(es) que mais se repete(m)

A moda

0 1 1 2 2 3 5

Então:
$$m_o = 2$$

Pois, o valor "dois" aparece

"três" vezes

A moda

Então:
$$m_o = 1$$
 e $m_o = 2$

Conjunto bimodal

A moda

0 1 2 3 4 5 7

Este conjunto é amodal, pois todos os valores apresentam a mesma frequência.

Dispersão ou variabilidade

(a)

A amplitude (h)

(b)

O desvio médio (dma)

(c)

A variância (s²)

(d)

O desvio padrão (s)

(e)

A variância relativa (g²)

(f)

O coeficiente de variação (g)

Dispersão ou variabilidade

A amplitude (h) [range]

$$h = x_{máx} - x_{mín}$$

O desvio médio (dma) [average deviation]

dma =
$$\frac{|\mathbf{x}_1 - \overline{\mathbf{x}}| + |\mathbf{x}_2 - \overline{\mathbf{x}}| + \dots + |\mathbf{x}_n - \overline{\mathbf{x}}|}{n} = \frac{\sum |\mathbf{x}_i - \overline{\mathbf{x}}|}{}$$

O dma

-2 -1 0 3

A média é:

$$\overline{x} = \frac{-1 - 2 + 0 + 3 + 5}{5} = \frac{5}{5} = 1$$

O dma

Calculando os desvios: $x_i - \overline{x}$

Tem-se:
$$-2 - 1 = -3$$

$$-1 - 1 = -2$$

$$0 - 1 = -1$$

$$3 - 1 = 2$$

$$5 - 1 = 4$$

O dma

Como pode ser visto a soma é igual a zero. Tomando o módulo vem:

dma =
$$\frac{\sum |x_i - \overline{x}|}{n}$$
 =
= $\frac{|-3| + |-2| + |-1| + |+2| + |+4|}{5}$ =
= $\frac{12}{5}$ = 2,40

Dispersão ou variabilidade

A variância (s²) [variance]

$$s^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n} = \frac{\sum (x_{i} - \overline{x})^{2}}{n} = \frac{\sum x_{i}^{2} - \overline{x}^{2}}{n}$$

A variância

Se ao invés de tomar o módulo, elevarmos ao quadrado, tem-se:

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n} =$$

$$= \frac{(-3)^{2} + (-2)^{2} + (-1)^{2} + 2^{2} + 4^{2}}{5} =$$

$$= \frac{9 + 4 + 1 + 4 + 16}{5} = \frac{34}{5} = 6,80$$

Dispersão ou variabilidade

O desvio padrão [standard deviation]

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2}$$

Dispersão ou variabilidade

Se extrairmos a raiz quadrada teremos do resultado anterior teremos o desvio padrão:

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} = \sqrt{6,80} = 2,61$$

Dispersão ou variabilidade

A variância relativa (g²)

$$g^2 = s^2 / \overline{x}^2$$

O coeficiente de variação (g)

$$g = s / \overline{X}$$

Dispersão ou variabilidade

O coeficiente de variação

$$g = \frac{s}{\overline{x}} = \frac{2,6077}{1} = 260,77 \%$$

Até a próxima!

