Análise Matemática. Curso 2021-2022.

Data: 03/11/2021

Grao en Enxenería Informática. ESEI Ourense.

Departamento de Matemáticas. Universidade de Vigo.

BLOQUE II

APELIDOS	NOME	DNI	NOTA

- 1. Considérese a función $f: \mathbb{R} \to \mathbb{R}$ definida como $f(x) = \frac{x^2 1}{e^{x^2}}$.
 - a) Encontrar os intervalos de crecemento e decrecemento de f.

Solución: Analizamos o signo da súa derivada

$$f'(x) = \frac{2xe^{x^2} - (x^2 - 1)e^{x^2}2x}{(e^{x^2})^2} = \frac{2x - (x^2 - 1)2x}{e^{x^2}} = \frac{4x - 2x^3}{e^{x^2}}$$

calculando onde se anula

$$f'(x) = 0 \iff 4x - 2x^3 = 0 \iff 2x(2 - x^2) = 0 \iff x = -\sqrt{2}, x = 0, x = \sqrt{2}.$$

e substituíndo valores nos intervalos que se forman:

$$f'(-2)>0\Longrightarrow f'(x)>0\quad \text{ para todo }x\in(-\infty,-\sqrt{2})\Longrightarrow f\text{ \'e crecente en }(-\infty,-\sqrt{2}),$$

$$f'(-1)<0\Longrightarrow f'(x)<0\quad \text{ para todo }x\in(-\sqrt{2},0)\Longrightarrow f\text{ \'e decrecente en }(-\sqrt{2},0),$$

$$f'(1)>0\Longrightarrow f'(x)>0\quad \text{ para todo }x\in(0,\sqrt{2})\Longrightarrow f\text{ \'e crecente en }(0,\sqrt{2}),$$

$$f'(2)<0\Longrightarrow f'(x)<0\quad \text{ para todo }x\in(\sqrt{2},+\infty,)\Longrightarrow f\text{ \'e decrecente en }(\sqrt{2},+\infty),$$

b) Clasificar os extremos relativos de f. Son extremos absolutos?

Do estudo anterior sobre os intervalos de crecemento e decrecemento podemos concluir que f alcanza máximos relativos en $x=-\sqrt{2}$ e $x=\sqrt{2}$ e un mínimo relativo en x=0.

Para determinar se o mínimo é absoluto temos que comparar $f(0) = -1 \cos x$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 - 1}{\mathrm{e}^{x^2}} \stackrel{\text{"0m", L'Hôp.}}{=}$$
$$\lim_{x \to \pm \infty} \frac{2x}{2x\mathrm{e}^{x^2}} \lim_{x \to \pm \infty} \frac{1}{\mathrm{e}^{x^2}} = 0 > f(0),$$

e polo tanto f alcanza en x=0 o seu mínimo absoluto.

Para saber cal é o máximo absoluto temos que comparar $f(-\sqrt{2})$ con $f(\sqrt{2})$, e como $f(-\sqrt{2}) = f(\sqrt{2})$ concluimos que en ambos puntos se alcanza o máximo absoluto de f (Observación: é un máximo absoluto non estricto).

2. a) Calcular a integral indefinida $\int \frac{x}{3+3x^2} dx$.

Solución: Facendo o cambio de variable $u=1+x^2 \Longrightarrow du=2xdx$ obtense

$$\int \frac{x}{3+3x^2} dx = \frac{1}{3} \int \frac{x}{1+x^2} dx = \frac{1}{6} \int \frac{2x}{1+x^2} dx = \frac{1}{6} \int \frac{1}{u} du = \frac{1}{6} \ln|u| + c = \frac{1}{6} \ln(1+x^2) + c.$$

b) Obter a área encerrada entre a gráfica da función $y = \frac{x}{3+3x^2}$ o eixe OX e as rectas verticais x = -2, x = 2.

SOLUCIÓN: Área= $\int_{-2}^{2} \left| \frac{x}{3+3x^2} \right| dx$.

Para quitar o valor absoluto que aparece dentro da integral temos que estudar o signo da función $f(x) = \frac{x}{3+3x^2}$ no intervalo [-2,2]:

$$\frac{x}{3+3x^2} = 0 \Longleftrightarrow x = 0.$$

$$f(-1) = -\frac{1}{6} < 0 \Longrightarrow f(x) < 0 \quad \text{para todo } x \in [-2, 0),$$

$$f(1) = \frac{1}{6} > 0 \Longrightarrow f(x) > 0$$
 para todo $x \in (0, 2]$.

Logo,

$$\int_{-2}^{2} \left| \frac{x}{3+3x^2} \right| dx = -\int_{-2}^{0} \frac{x}{3+3x^2} dx + \int_{0}^{2} \frac{x}{3+3x^2} dx =$$

$$= -\left(\frac{1}{6} \ln (1+x^2)\right) \Big|_{x=-2}^{x=0} + \left(\frac{1}{6} \ln (1+x^2)\right) \Big|_{x=0}^{x=2} =$$

$$= -\left(\frac{1}{6} \ln 1 - \frac{1}{6} \ln 5\right) + \left(\frac{1}{6} \ln 5 - \frac{1}{6} \ln 1\right) = \frac{1}{6} \left(\ln(5) + \ln(5)\right) = \frac{1}{3} \ln(5) u^2 \approx 0.536479 u^2.$$