On a group-theoretic approach to the supersingular locus of Shimura varieties

Ryosuke Shimada

Department of Mathematics, the University of Hong Kong

Slides and the preliminary version of proceedings are available at https://ryosukeshimada.github.io

Motivation

- Simple descriptions of the supersingular (or basic) locus of Shimura varieties have been used towards applications in number theory (the Kudla-Rapoport program, Zhang's Arithmetic Fundamental Lemma, the Tate conjecture for certain Shimura varieties, etc.).
- The study of the perfection of the basic locus is essentially reduced to the study of the affine Deligne-Lusztig variety (ADLV) via the Rapoport-Zink uniformization.

Table of contents

- Basics of affine Deligne-Lusztig varieties
- Fully Hogde-Newton decomposable cases
- Beyond fully Hogde-Newton decomposable cases

Definition of DLVs

 G/\mathbb{F}_q : a connected reductive group.

B: a Borel subgroup.

 σ : the Frobenius automorphism of $\overline{\mathbb{F}}_q/\mathbb{F}_q.$

 W_0 : the finite Weyl group

$$G(\mathbb{F}_q) = \{ g \in G(\overline{\mathbb{F}}_q) \mid g^{-1}\sigma(g) = 1 \}.$$

Definition

For $w \in W_0$, the *(classical) Deligne-Lusztig variety* X_w is a scheme of finite type/ $\overline{\mathbb{F}}_q$ defined as

$$X_w = \{gK \in G/B \mid g^{-1}\sigma(g) \in BwB\} \subset G/B.$$

- $G(\mathbb{F}_q)$ acts on X_w by left multiplication.
- DLVs play a crucial role in the DL theory for finite groups of Lie type.

Review of Coxeter groups and examples of DLVs

Let W be a group generated by a subset $S = \{s_1, s_2, \dots, s_r\}$.

Definition

(W,S) is called a *Coxeter system* if there exist $2 \le m(i,j) \le \infty$ s.t.

$$W = \langle S \mid s_i^2 = 1, \forall i \text{ and } (s_i s_j)^{m(i,j)} = 1, \forall i \neq j \rangle.$$

A word of min. length among words of $w \in W$ is called *reduced*. $\ell(w) :=$ the length of any reduced word of w. $\operatorname{supp}(w) =$ the subset of S occurring in some reduced word of w.

 (W_0, S) is a Coxeter system with S = the set of simple reflections.

Example

$$G = GL_n$$
. Then $W_0 \cong \mathfrak{S}_n$ and $S = \{(1 \ 2), \dots, (n-1 \ n)\}.$

$$X_{(1\ 2\ \cdots\ n)} \cong \mathrm{Dr}_{\mathbb{F}_q}^{n-1} \coloneqq \mathbb{P}_{\mathbb{F}_q}^{n-1} \setminus \bigcup_{\substack{H: \ \mathrm{rational\ hyperplane}}} H.$$

Definition of ADLVs with Iwahori level

From now on, we will use the following notation.

F: a non-archimedean local field with uniformizer t.

 G/\mathcal{O}_F : an unramified connected reductive group.

 $T \subseteq B$: a max. torus, B: a Borel subgroup.

 σ : the Frobenius automorphism of L/F.

$$L = \widehat{F^{un}}, K = G(\mathcal{O}_L), J_b = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$$

 $I\subseteq K$: the standard Iwahori subgroup associated to $T\subset B\subset G$.

 \widehat{W} : the Iwahori-Weyl group $\cong W_0 \ltimes X_*(T)$.

Definition

For $w \in \widetilde{W}$ and $b \in G(L)$, the affine Deligne-Lusztig variety $X_w(b)$ is a scheme locally (perfectly) of finite type/ $\overline{\mathbb{F}}_q$ defined as

$$X_w(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IwI\} \subset G(L)/I.$$

Definition of closed ADLVs with arbitrary parahoric level

Set
$$\Omega = \{ w \in \widetilde{W} \mid \ell(w) = 0 \}.$$

 $W_a\subseteq \widetilde{W}$: the affine Weyl group, $\widetilde{S}=$ the set of simple affine reflections.

Then (W_a, \tilde{S}) is a Coxeter system and $\widetilde{W} \cong W_a \rtimes \Omega$.

For $v, w \in W_a$, $\tau, \tau' \in \Omega$, we define $v\tau \leq w\tau' \stackrel{\text{def}}{\iff} v \leq w \text{ and } \tau = \tau'$.

Let $Adm(\mu) = \{ w \in \widetilde{W} \mid w \le t^{w_0 \mu} \text{ for some } w_0 \in W_0 \}.$

Definition

Let $J \subset \widetilde{S}$ with $J = \sigma(J)$. The closed affine Deligne-Lusztig variety in $G(L)/P_J$ is the closed reduced $\overline{\mathbb{F}}_q$ -subscheme defined as

$$X(\mu,b)_J = \{gP_J \in G(L)/P_J \mid g^{-1}b\sigma(g) \in P_J \mathrm{Adm}(\mu)P_J\},\$$

where $P_J \supseteq I$ is the standard parahoric subgroup associated to J.

- J_b acts on $X_w(b)$ and $X(\mu, b)_J$ by left multiplication.
- $P_\emptyset = I$ and $P_S = K$.

Group-theoretic data in the case of GL_n

Example

Let $G = GL_n$.

T: the torus of diagonal matrices.

B: the subgroup of upper triangular matrices.

$$\tilde{S} = \{(1\ 2), \dots, (n-1\ n), (1\ n)t^{(-1,0,\dots,0,1)}\}.$$

$$X_*(T)\cong \{t^\lambda=egin{pmatrix}t^{m_1}&&&\\&\ddots&&\\&&t^{m_n}\end{pmatrix}\mid \lambda=(m_1,\ldots,m_n)\in \mathbb{Z}^n\}.$$

Thus $X_*(T) \cong \mathbb{Z}^n$ and hence $\widetilde{W} \cong \mathfrak{S}_n \ltimes \mathbb{Z}^n$.

Set
$$\tau = t^{(1,0,\ldots,0)} s_1 s_2 \cdots s_{n-1}$$
. Then $\Omega = \{\tau^m \mid m \in \mathbb{Z}\} \cong \mathbb{Z}$.

Set
$$s_0 = (1 \ n)t^{(-1,0,\dots,0,1)}$$
 and $s_i = (i \ i+1)$. Then $\tau s_i \tau^{-1} = s_{i+1}$.

Relationship to Shimura varieties

Assume that $F=\mathbb{Q}_p$. A *Dieudonné module* a free module of finite rank over $\mathcal{O}(=W(\mathbb{F}_q))$ together with a σ -linear operator \mathbf{F} and a σ^{-1} -linear operator \mathbf{V} such that $\mathbf{FV}=\mathbf{VF}=p$.

 \mathbb{X} : a fixed *p*-divisible group over $\overline{\mathbb{F}}_q$.

M: the Dieudonné module attached to $\mathbb{X},\ N := M \otimes_{\mathcal{O}} L$.

Fix a basis of M over $\mathcal O$ and write $\mathbf F=b\sigma,b\in \mathrm{GL}_n(L),\ n=\mathrm{rk}_{\mathcal O}M.$ Lattices inside N which are stable under $\mathbf F$ and $\mathbf V$ correspond to quasi-isogenies $\mathbb X\to X$ of p-divisible groups over $\overline{\mathbb F}_q$.

 $gM,g\in GL_n(L)$ is stable under **F** and **V** $\Leftrightarrow p(gM)\subseteq F(gM)\subseteq gM$,

i.e., $g^{-1}b\sigma(g) \in Kp^{\mu}K = K\mathrm{Adm}(\mu)K$ for some μ of the form $(1,\ldots,1,0,\ldots,0)$ (minuscule cocharacters).

More generally, if (G, μ, b) arises from a Rapoport-Zink datum of Hodge type, then $\mathcal{M}(G, \mu, b)^{\mathrm{pfn}}_{\overline{\mathbb{F}}_q} \cong X(\mu, b)_J$, where $\mathcal{M}(G, \mu, b)_{\overline{\mathbb{F}}_q}$ denotes the special fiber of the corresponding Rapoport-Zink space.

Summary of part 1

- $(G, \mu, J, b) \rightsquigarrow X(\mu, b)_J$.
- Affine Deligne-Lusztig varieties are p-adic analogue of classical Deligne-Lusztig varieties.
- The perfection of a Rapoport-Zink space is an affine Deligne-Lusztig variety.

From now on, we pass to the perfection even in the equal characteristic case for simplicity.

The EKOR stratification

Let $J \subseteq \widetilde{S}$ and let W_J be the subgroup of \widetilde{W} generated by J.

 ${}^J\widetilde{W}$: the set of minimal length representatives for the cosets in $W_J\backslash\widetilde{W}$.

Set ${}^{J}\operatorname{Adm}(\mu) = \operatorname{Adm}(\mu) \cap {}^{J}\widetilde{W}$.

Proposition

We have the EKOR stratification

$$X(\mu, b)_J = \bigsqcup_{w \in {}^J Adm(\mu)} \pi_J(X_w(b)),$$

where π_J : $G(L)/I \rightarrow G(L)/P_J$ is the projection.

- If $J = \emptyset$, we speak of the KR stratification instead.
- If J = S, we speak of the EO stratification instead.
- This is the local analogue of the stratification defined by He-Rapoport in the global context of Shimura varieties.

Elements with spherical σ -support

We say that $b \in G(L)$ is basic if the Newton vector of b is central. Let τ_{μ} be the image of t^{μ} under the projection $\widetilde{W} = W_a \rtimes \Omega \to \Omega$. Then τ_{μ} is basic and $\pi_J(X_w(\tau_{\mu}))$ corresponds to the intersection of a global EKOR stratum with the basic Newton stratum.

Theorem (Görtz-He)

Let $\tau \in \Omega$. Let $w \in W_a \tau$ such that $W_{\text{supp}_{\sigma}(w)}$ is finite. Then $X_w(\tau)$ is a disjoint union of (classical) Deligne-Lusztig varieties.

- The same is true for $\pi_J(X_w(\tau))$.
- The global EKOR stratum associated to w is contained in the basic locus if and only if $W_{\text{supp}_{\sigma}(w)}$ is finite.

Example

Let $G = GL_2$. Then

$$X_{s_0}(1) = \bigsqcup_{G(F)/G(\mathcal{O}_F)} \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q).$$

$\operatorname{depth}(G,\mu)$

Let Δ denote the set of simple roots. For $\alpha \in \Delta$, we define ω_{α} to be the rational fundamental weight such that

$$\langle \omega_{\alpha}, \beta^{\vee} \rangle = \begin{cases} 1 & (\beta = \alpha) \\ 0 & (\beta \in \Delta \setminus \{\alpha\}). \end{cases}$$

For each σ -orbit \mathcal{O} of Δ , we set

$$\omega_{\mathscr{O}} = \sum_{\alpha \in \mathscr{O}} \omega_{\alpha}.$$

For a dominant cocharacter $\mu \in X_*(T)$, we define

$$\operatorname{depth}(G,\mu) := \max_{\mathscr{O} \subset \Delta} \langle \omega_{\mathscr{O}}, \mu \rangle,$$

where \mathcal{O} runs through all σ -orbits of S.

Fully Hodge-Newton decomposable pairs

Set
$${}^{J}Adm(\mu)_{\neq\emptyset} = \{ w \in {}^{J}Adm(\mu) \mid X_w(\tau_{\mu}) \neq \emptyset \}.$$

Theorem (Görtz-He-Nie)

The pair (G, μ) is fully Hodge-Newton decomposable if and only if the following equivalent conditions are satisfied:

- **1** The cocharacter μ is minute $\stackrel{\text{def}}{\Leftrightarrow} \operatorname{depth}(G, \mu) \leq 1$.
- 2 $W_{\operatorname{supp}_{\sigma}(w)}$ is finite for every $w \in {}^{J}Adm(\mu)_{\neq \emptyset}$.

In particular, the validity of the condition (ii) is independent of the rational level J.

Theorem (Görtz-He-Nie)

If (G, μ) is fully Hodge-Newton decomposable, then $X(\mu, \tau_{\mu})_J$ is naturally a disjoint union of Deligne-Lusztig varieties.

- This is called the weak Bruhat-Tits stratification.
- The closure relation can be described in terms of the Bruhat-Tits building of J_b.

The cases of Coxeter type

We call an element $w \in W$ a σ -Coxeter element if w can be written as the product of elements of \tilde{S} which lie in different σ -orbits.

Definition

We say that (G, μ, J) is of Coxeter type if every $w \in {}^{J}\mathrm{Adm}(\mu)_{\neq \emptyset}$ is a σ -Coxeter element with $W_{\mathrm{supp}_{\sigma}(w)}$ finite.

Theorem (Görtz-He, Görtz-He-Nie)

If (G, μ, J) is of Coxeter type, then $X(\mu, \tau_{\mu})_J$ is naturally a disjoint union of Deligne-Lusztig varieties of Coxeter type.

- This is called the *Bruhat-Tits stratification* because it satisfies some nicer properties.
- Deligne-Lusztig varieties of Coxeter type are especially important in the (classical) Deligne-Lusztig theory.
- The classification of fully Hodge-Newton decomposable cases and the cases of Coxeter type are known.

Examples of Coxeter type

Example

The fully Hodge-Newton decomposable cases contain the following cases which have been studied in the context of Shimura varieties:

- The Siegel case of genus 2, which has been studied by Katsura-Oort and Kaiser.
- The GU(1, n-1), p split case, which has been studied by Harris-Taylor.
- The GU(1, n-1), p inert case, which has been studied by Vollaard-Wedhorn.
- The GU(2,2), *p* inert case, which has been studied by Howard-Pappas.

All of these cases concern J = S, and are of Coxeter type.

Example (
$$G = GL_2$$
)

$$X((1,-1),1)_S = \bigsqcup_{G(F)/G(\mathcal{O}_F)} \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q) \sqcup \bigsqcup_{G(F)/G(\mathcal{O}_F)} \{ \operatorname{pt} \}.$$

Summary of part 2

- depth(G, μ) $\in \mathbb{Q}$.
- (G, μ) is fully HN decomposable $\Leftrightarrow \operatorname{depth}(G, \mu) \leq 1$.
- If this is the case, then $X(\mu, \tau_{\mu})_J$ is a union of DLVs.
- The cases of Coxeter type are special cases of fully HN decomposable cases.

From now on, we will mainly focus on the case J = S.

Examples beyond the cases of Coxeter type

Example (Ivanov)

Let $G = GL_2$. Then

$$X_{s_1t^{(-r,r)}}(1)\cong igsqcup_{G(F)/G(\mathcal{O}_F)}(\mathbb{P}^1\setminus\mathbb{P}^1(\mathbb{F}_q)) imes \mathbb{A}^{r-1}.$$

Theorem (Chan-Ivanov)

Let
$$G = \operatorname{GL}_n$$
. Set $c_r = (1 \ 2 \ \cdots \ n)t^{(-r,\dots,-r,(n-1)r)}$. Then

$$X_{c_r}(1) \cong \bigsqcup_{G(F)/G(\mathcal{O}_F)} \operatorname{Dr}_{\mathbb{F}_q}^{n-1} \times \mathbb{A}^{\frac{n(n-1)r}{2}-n+1}.$$

 Using this description, Chan-Ivanov gave a geometric realization of the local Langlands correspondence in many interesting cases.

Length positive elements and non-emptiness criterion

Let $p := \widetilde{W} \to W_0$ be the projection. For $w = p(w)t^{\mu} \in \widetilde{W}$, the set of *length positive elements* is

$$\mathsf{LP}(\mathit{w}) := \{\mathit{v} \in \mathit{W}_0 \mid \langle \mathit{v}\alpha, \mu \rangle + \delta^+(\mathit{v}\alpha) - \delta^+(\mathit{p}(\mathit{w})\mathit{v}\alpha) \geq 0 \text{ for all } \alpha \in \Phi_+ \}.$$

Here $\delta^+ : \Phi \to \{0,1\}$ denotes the charcteristic function of Φ_+ . It is easy to check that $LP(w) \neq \emptyset$.

Theorem (Görtz-He-Nie, Lim, Schremmer)

Assume that the Dynkin diagram of G is σ -connected. Let $w \in W_a \tau$. Then

$$X_w(\tau) \neq \emptyset \Leftrightarrow (i) \ W_{\operatorname{supp}_{\sigma}(w)}$$
 is finite, or,
 $(ii) \ \forall v \in \mathsf{LP}(w), \operatorname{supp}_{\sigma}(\sigma^{-1}(v^{-1})p(w)v) = S$

- " σ -Coxeter" is a Coxeter condition in (i) focusing on $W_a \times \Omega$.
- What happens if we consider a Coxeter condition in (ii) focusing on $W_0 \ltimes X_*(T)$?

Elements with positive Coxeter part

Theorem (S., He-Nie-Yu, Schremmer-S.-Yu)

If $w \in W$ has positive Coxeter part, i.e., $\exists v \in \mathsf{LP}(w)$ such that $\sigma^{-1}(v^{-1})p(w)v$ is a σ -Coxeter element, then $X_w(b)$ is a disjoint union of iterated fibrations over Deligne-Lusztig varieties of Coxeter type whose iterated fibers are \mathbb{A}^1 or \mathbb{G}_m . If b is basic, then all fibers are \mathbb{A}^1 and each iterated fibration is the product of varieties.

Proposition (Deligne-Lusztig, Görtz-He)

Let $w \in \widetilde{W}$ and let $s \in \widetilde{S}$ be a simple affine reflection.

- (i) If $\ell(sw\sigma(s)) = \ell(w)$, then $X_w(b) \cong X_{sw\sigma(s)}(b)$.
- f) If $\ell(sw\sigma(s))=\ell(w)-2$, then there exists a decomposition $X_w(b)=X_1\sqcup X_2$ such that
 - X_1 is open and there exists a J_b -equivariant morphism $X_1 \to X_{sw}(b)$, which is a Zariski-locally trivial $\mathbb{G}_m^{\mathrm{pfn}}$ -bundle.
 - X_2 is closed and there exists a J_b -equivariant morphism $X_2 \to X_{sw\sigma(s)}(b)$, which is a Zariski-locally trivial $\mathbb{A}^{1,\mathrm{pfn}}$ -bundle.

The definition of positive Coxeter type

Definition

We say that (G, μ, J) is of *positive Coxeter type* if every $w \in {}^{J}Adm(\mu)_{\neq \emptyset}$ satisfies one of the following conditions:

- (i) w is a σ -Coxeter element with $W_{\text{supp}_{\sigma}(w)}$ finite.
- m w has positive Coxeter part.
 - Clearly, this notion is a generalization of Coxeter type.

Theorem (S.)

If (GL_n, μ, S) is of positive Coxeter type, then $X(\mu, \tau_{\mu})_S$ is naturally a disjoint union of the product of a Deligne-Lusztig variety of Coxeter type and a finite-dimensional affine space.

• The index set of this stratification and can be described in terms of the Bruhat-Tits building of J_b . If μ is minuscule, the same is true for the closure relations between strata. So this is a natural generalization of the Bruhat-Tits stratification.

Classification of Coxeter type

Let ω_k^\vee denote the cocharacter of the form $(1,\ldots,1,0,\ldots,0)$ in which 1 is repeated k times.

Theorem

The following assertions on μ are equivalent.

- **1** The pair (GL_n, μ, S) is of Coxeter type.
- **1** The cocharacter μ is central or one of the following forms modulo $\mathbb{Z}\omega_n^{\vee}$:

$$\omega_1^\vee, \quad \omega_{n-1}^\vee \ (n \geq 1), \quad \omega_1^\vee + \omega_{n-1}^\vee \ (n \geq 2), \quad \omega_2^\vee \ (n=4).$$

• The $(GL_4, \omega_2^{\vee}, S)$ -case was studied by Fox.

Classification of positive Coxeter type

Theorem (S.)

The following assertions on μ are equivalent.

- **1** The pair (GL_n, μ, S) is of positive Coxeter type.
- **1** The cocharacter μ is central or one of the following forms modulo $\mathbb{Z}\omega_n^{\vee}$:

$$\begin{array}{lll} \omega_{1}^{\vee}, & \omega_{n-1}^{\vee}, & (n \geq 1), \\ \omega_{1}^{\vee} + \omega_{n-1}^{\vee}, & \omega_{2}^{\vee}, & 2\omega_{1}^{\vee}, & \omega_{n-2}^{\vee}, & 2\omega_{n-1}^{\vee}, \\ \omega_{2}^{\vee} + \omega_{n-1}^{\vee}, & 2\omega_{1}^{\vee} + \omega_{n-1}^{\vee}, & \omega_{1}^{\vee} + \omega_{n-2}^{\vee}, & \omega_{1}^{\vee} + 2\omega_{n-1}^{\vee}, & (n \geq 3), \\ \omega_{3}^{\vee}, & \omega_{n-3}^{\vee}, & (n = 6, 7, 8), \\ 3\omega_{1}^{\vee}, & 3\omega_{n-1}^{\vee}, & (n = 3, 4, 5), \\ \omega_{1}^{\vee} + \omega_{2}^{\vee}, & \omega_{3}^{\vee} + \omega_{4}^{\vee}, & (n = 5), \\ 4\omega_{1}^{\vee}, & \omega_{1}^{\vee} + 3\omega_{2}^{\vee}, & 4\omega_{2}^{\vee}, & 3\omega_{1}^{\vee} + \omega_{2}^{\vee}, & (n = 3), \\ m\omega_{1}^{\vee} & with & m \in \mathbb{Z}_{>0}, & (n = 2). \end{array}$$

The Siegel case

Consider $(\mathrm{GSp}_{2n}, \omega_n^{\vee}, S)$. If n = 2, then this is of Coxeter type.

Theorem (S.-Takamatsu)

If n=3, then it is of positive Coxeter type. The corresponding $X(\mu,\tau_{\mu})_S$ is naturally a disjoint union of the product of a Deligne-Lusztig variety of Coxeter type and a finite-dimensional affine space. The index set and the closure relation can be described in terms of the Bruhat-Tits building of J_b .

Although it is not of positive Coxeter type if $n \ge 4$, we still have a simple geometric structure in the case n = 4.

Theorem (S.-Takamatsu)

If n=4, then the corresponding $X(\mu,\tau_{\mu})_S$ is naturally a disjoint union of the product of a Deligne-Lusztig variety and a finite-dimensional affine space. The index set can be described in terms of the Bruhat-Tits building of J_b .

$\operatorname{depth}(G,\mu) \leq 2$

It is easy to check the following proposition.

Proposition

Let $G = \operatorname{GL}_n$ and let $\mu \in X_*(T)_+$. If $\operatorname{depth}(G, \mu) < 2$, then (G, μ, S) is of positive Coxeter type. If $n \geq 6$, then $\operatorname{depth}(G, \mu) < 2$ if and only if (G, μ, S) is of positive Coxeter type.

• We have depth($GSp_{2n}, \omega_n^{\vee}$) = $\frac{n}{2}$.

Conjecture

If $\operatorname{depth}(G, \mu) < 2$, then (G, μ, S) is of positive Coxeter type and hence $X(\mu, \tau_{\mu})_S$ has a simple geometric structure.

Conjecture

If $\operatorname{depth}(G, \mu) = 2$, then $X(\mu, \tau_{\mu})_S$ has a simple geom. structure.

I recently proved the existence of a simple geometric structure in the $\mathrm{GU}(2,n-2)$, p inert case. This case also has $\mathrm{depth}(G,\mu)=2$.

Summary of part 3

- The case of positive Coxeter type is a generalization of Coxeter type.
- The depth(G, μ) \leq 2-cases seem to imply a simple geometric structure on $X(\mu, \tau)_S$.