import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df=pd.read_csv('/content/Housing.csv')
df.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwate
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	

df.tail()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwat
540	1820000	3000	2	1	1	yes	no	yes	
541	1767150	2400	3	1	1	no	no	no	
542	1750000	3620	2	1	1	yes	no	no	
543	1750000	2910	3	1	1	no	no	no	
544	1750000	3850	3	1	2	yes	no	no	

df.describe()

	price	area	bedrooms	bathrooms	stories	mainroad	gu
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.000000	545
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.858716	0
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.348635	0
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.000000	0
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	1.000000	0
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	1.000000	0
75 %	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.000000	0
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	1.000000	1


```
#
          Column
                            Non-Null Count
                                             Dtype
     - - -
          _ _ _ _ _
     0
          price
                            545 non-null
                                             int64
     1
                            545 non-null
                                             int64
          area
     2
          bedrooms
                            545 non-null
                                             int64
     3
          bathrooms
                            545 non-null
                                             int64
     4
                            545 non-null
          stories
                                             int64
     5
                            545 non-null
          mainroad
                                             int64
     6
          questroom
                            545 non-null
                                             int64
     7
          basement
                            545 non-null
                                             int64
     8
          hotwaterheating
                            545 non-null
                                             int64
     9
          airconditioning
                            545 non-null
                                             int64
     10
         parking
                            545 non-null
                                             int64
         prefarea
     11
                            545 non-null
                                             int64
     12
          furnishingstatus 545 non-null
                                             int64
    dtypes: int64(13)
    memory usage: 55.5 KB
df.isna().sum()
                         0
    price
    area
                         0
    bedrooms
                         0
                         0
    bathrooms
    stories
                         0
    mainroad
                         0
                         0
    questroom
    basement
                         0
    hotwaterheating
                         0
    airconditioning
                         0
    parking
                         0
    prefarea
                         0
    furnishingstatus
                         0
    dtype: int64
from sklearn.preprocessing import LabelEncoder
lb=LabelEncoder()
                                 'basement',
                                                'hotwaterheating', 'airconditioning', 'prefa
lst=['mainroad', 'questroom',
for i in lst:
  df[i]=lb.fit transform(df[i])
df.head()
            price area bedrooms bathrooms stories mainroad guestroom basement hotwate
       13300000 7420
                                            2
                                                     3
                                                                                    0
                                4
                                                               1
                                                                          0
```

✓ 0s

Rangernuex: 545 entries, v to 544 Data columns (total 13 columns):

12250000 8960

12250000 9960

12215000 7500

11410000 7420

4

3

4

4

2

2

1

4

2

2

2

1

1

1

0

0

0

1

0

1

1

completed at 8:28 PM

```
x=df.iloc[:,1:].values
y=df.iloc[:,0].values
```

```
lt=['area', 'bedrooms', 'bathrooms', 'stories', 'mainroad', 'guestroom', 'basement
    'furnishingstatus']

for i in lt:
    print(sns.regplot(x=df[i],y=y))
    plt.show()
```

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

1e7

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)


```
0.6 -

0.4 -

0.2 -

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 furnishingstatus
```

```
from sklearn.model_selection import train_test_split
xtr,xts,ytr,yts=train_test_split(x,y,test_size=0.30,random_state=42)
```

```
from sklearn.linear_model import LinearRegression
linear=LinearRegression()
linear.fit(xtr,ytr)
ypr=linear.predict(xts)
```

```
df1=pd.DataFrame({'actual':yts,'predicted':ypr,'differance':yts-ypr})
df1
```

	actual	predicted	differance
0	4060000	5.407509e+06	-1.347509e+06
1	6650000	7.097185e+06	-4.471855e+05
2	3710000	3.055462e+06	6.545376e+05
3	6440000	4.476945e+06	1.963055e+06
4	2800000	3.315984e+06	-5.159837e+05
159	3500000	3.796903e+06	-2.969026e+05
160	3360000	4.130262e+06	-7.702624e+05
161	4970000	7.058249e+06	-2.088249e+06
162	3150000	5.417344e+06	-2.267344e+06
163	5530000	5.180834e+06	3.491663e+05

164 rows × 3 columns

```
print('slope is ')
print(list(zip(df.iloc[:,1:],linear.coef_)))
print('constant is ',linear.intercept_)

slope is
  [('area', 253.06232837180667), ('bedrooms', 82734.87457030988), ('bathrooms', 1117372.
  constant is 124157.75864096358
```

 $from \ sklearn.metrics \ import \ mean_absolute_error, mean_absolute_percentage_error, mean_squared and also a simple state of the sklear and also a simple state of the sklear and also a sklear and a sklear and$

```
# absolute error
print('mae', mean_absolute_error(yts,ypr))
# maep
print('maep', mean_absolute_percentage_error(yts,ypr))
#mse
print('mse', mean_squared_error(yts,ypr))
#rmse
print('rmse', np.sqrt(mean_squared_error(yts,ypr)))
mae 925543.5483156566
```

```
maep 0.21335770783051045
mse 1535047758428.0508
rmse 1238970.4429194632
```

```
#r2 score
from sklearn.metrics import r2_score
print('r2 ',r2_score(yts,ypr))
```

r2 0.6435419628959105

Colab paid products - Cancel contracts here