CENTRAL FAX CENTER

JAN 16 2007

Application No. 10/749,269

AMENDMENTS TO THE SPECIFICATION

In the Specification

Please substitute the following amended paragraph(s) and/or section(s) (deleted matter is shown by strikethrough and added matter is shown by underlining):

Page 13, line 18 – page 14, line 26

The electrically insulating substrate may be paper or a film forming polymer such as polyester (e.g., polyethylene terephthalate or polyethylene naphthalate), polyimide, polysulfone, polypropylene, nylon, polyester, polycarbonate, polyvinyl resin, polyvinyl fluoride, polystyrene and the like. Specific examples of polymers for supporting substrates included, for example, polyethersulfone (Stabar M STABAR M S-100, available from ICI), polyvinyl fluoride (Tedlar , TEDLAR® available from E.I. DuPont de Nemours & Company), polybisphenol-A polycarbonate (MakrofolTM MAKROFOLTM, available from Mobay Chemical Company) and amorphous polyethylene terephthalate (Melinar MELINAR Inc.). The electrically conductive materials may be graphite, dispersed carbon black, iodine, conductive polymers such as polypyrroles and Calgon® CALGON® conductive polymer 261 (commercially available from Calgon Corporation, Inc., Pittsburgh, Pa.), metals such as aluminum, titanium, chromium, brass, gold, copper, palladium, nickel, or stainless steel, or metal oxide such as tin oxide or indium oxide. In embodiments of particular interest, the electrically conductive material is aluminum. Generally, the photoconductor substrate has a thickness adequate to provide the required mechanical stability. For example, flexible web substrates

generally have a thickness from about 0.01 to about 1 mm, while drum substrates generally have a thickness from about 0.5 mm to about 2 mm.

The charge generating compound is a material that is capable of absorbing light to generate charge carriers, such as a dye or pigment. Non-limiting examples of suitable charge generating compounds include, for example, metal-free phthalocyanines (e.g., ELA 8034 metalfree phthalocyanine available from H.W. Sands, Inc. or Sanyo Color Works, Ltd., CGM-X01), metal phthalocyanines such as titanium phthalocyanine, copper phthalocyanine, oxytitanium phthalocyanine (also referred to as titanyl oxyphthalocyanine, and including any crystalline phase or mixtures of crystalline phases that can act as a charge generating compound), hydroxygallium phthalocyanine, squarylium dyes and pigments, hydroxy-substituted squarylium pigments, perylimides, polynuclear quinones available from Allied Chemical Corporation under the trade name Indofast® INDOFAST® Double Scarlet, Indofast® INDOFAST® Violet Lake B, Indofast® INDOFAST® Brilliant Scarlet and Indofast® INDOFAST® Orange, quinacridones available from DuPont under the trade name Monastral MONASTRAL Med, Monastral Monastral Red, Monastral MONASTRALTM Violet and MonastralTM MONASTRALTM Red Y, naphthalene 1,4,5,8tetracarboxylic acid derived pigments including the perinones, tetrabenzoporphyrins and tetranaphthaloporphyrins, indigo- and thioindigo dyes, benzothioxanthene-derivatives, perylene 3,4,9,10-tetracarboxylic acid derived pigments, polyazo-pigments including bisazo-, trisazo- and tetrakisazo-pigments, polymethine dyes, dyes containing quinazoline groups, tertiary amines, amorphous selenium, selenium alloys such as selenium-tellurium, selenium-tellurium-arsenic and selenium-arsenic, cadmium sulphoselenide, cadmium selenide, cadmium sulphide, and mixtures thereof. For some embodiments, the charge generating compound comprises

oxytitanium phthalocyanine (e.g., any phase thereof), hydroxygallium phthalocyanine or a combination thereof.

Page 15, line 18 - page 16, line 5

Non-limiting examples of suitable light stabilizer include, for example, hindered trialkylamines such as Tinuvin TINUVIN® 144 and Tinuvin TINUVIN® 292 (from Ciba Specialty Chemicals, Terrytown, NY), hindered alkoxydialkylamines such as Tinuvin TINUVIN® 123 (from Ciba Specialty Chemicals), benzotriazoles such as Tinuvan TINUVIN® 328, Tinuvin TINUVIN® 900 and Tinuvin TINUVIN® 928 (from Ciba Specialty Chemicals), benzophenones such as Sanduver SANDUVOR® 3041 (from Clariant Corp., Charlotte, N.C.), nickel compounds such as Arbestab ARBESTABTM (from Robinson Brothers Ltd, West Midlands, Great Britain), salicylates, cyanocinnamates, benzylidene malonates, benzoates, oxanilides such as Sanduver SANDUVOR® VSU (from Clariant Corp., Charlotte, N.C.), triazines such as Gyagard CYAGARDTM UV-1164 (from Cytec Industries Inc., N.J.), polymeric sterically hindered amines such as Luchem LUCHEMTM (from Atochem North America, Buffalo, NY). In some embodiments, the light stabilizer is selected from the group consisting of hindered trialkylamines having the following formula:

$$R_{2}$$
 R_{3}
 R_{5}
 R_{6}
 R_{7}
 R_{10}
 R_{11}
 R_{16}
 R_{15}
 R_{15}

where R₁, R₂, R₃, R₄, R₆, R₇, R₈, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅ are, each independently, hydrogen, alkyl group, or ester, or ether group; and R₅, R₉, and R₁₄ are, each independently, alkyl group;

and X is a linking group selected from the group consisting of $-O-CO-(CH_2)_m-CO-O-$ where m is between 2 to 20.

Page 3, line 19, - Page 4, line 9

In a first aspect, an organophotoreceptor comprises an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:

(a) a charge transport material having the formula

$$Y_1$$
 R_1
 X_1
 X_2
 R_2
 R_2

where Y1 and Y2 are, each independently, an arylamine group;

 R_1 and R_2 comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

 X_1 and X_2 , each independently, are bridging groups, such as groups having the formula $-(CH_2)_{m}$, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ comprise, each independently, H, hydroxyl group, thiol group, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

E1 and E2 are, each independently, an epoxy group; and

Z is a linking group comprising an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group; and

(b) a charge generating compound.

Page 5, line 1-line 17

In a fifth aspect, the invention features a polymeric charge transport compound prepared by the reaction of a functional group in a polymeric binder with at least an epoxy group in a compound having the formula

$$Y_1$$
 N
 Z
 N
 Y_2
 R_1
 X_1
 X_2
 R_2
 R_2

where Y₁ and Y₂ are, each independently, an arylamine group;

R₁ and R₂ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

 X_1 and X_2 , each independently, are bridging groups, such as groups having the formula $-(CH_2)_{m^-}$, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ comprise, each independently, H, hydroxyl group, thiol group, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

 E_1 and E_2 are, each independently, an epoxy group; and

Z is a linking group comprising an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

Page 10, line 9 - line 24

As described herein, an organophotoreceptor comprises a charge transport material having the formula

$$Y_1$$
 N
 X_1
 X_2
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8

where Y₁ and Y₂ are, each independently, an arylamine group;

 R_1 and R_2 comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

 X_1 and X_2 , each independently, are bridging groups, such as groups having the formula $-(CH_2)_m$ -, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ comprise, each independently, H, hydroxyl group, thiol group, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

E₁ and E₂ are, each independently, an epoxy group; and

Z is a linking group comprising an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

Page 23, line 25 - page 24, line 13

As described herein, an organophotoreceptor comprises a charge transport material having the formula

$$Y_1$$
 N
 Z
 N
 X_2
 R_2
 E_1
 E_2
 (1)

where Y1 and Y2 are, each independently, an arylamine group;

R₁ and R₂ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

X₁ and X₂, each independently, are bridging groups, such as groups having the formula -(CH₂)_m-, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ comprise, each independently, H, hydroxyl group, thiol group, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

 E_1 and E_2 are, each independently, an epoxy group; and

Z is a linking group comprising an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

E₁ and E₂ each can be, independently, an oxiranyl ring.