Relazione di laboratorio - Pendolo semplice

Misura del periodo di un pendolo semplice

Federico Cesari

Indice

8	Conclusioni	9
7	Dipendenza dalla massa	8
6	Dipendenza dalla lunghezza 6.1 Confronto parametri retta	7
5	Dipendenza dall'angolo Minimi quadrati Test Z per g	
4	Scelta strumento di misura	2
3	Strumentazione	2
2	Premesse teoriche	2
1	Scopo dell'esperienza	2

1 Scopo dell'esperienza

L'esperienza di laboratorio ha lo scopo di studiare il periodo di un pendolo semplice del quale conosciamo le espressioni del periodo teorico (in condizioni ideali e prive di attrito) al variare della sua lunghezza e dell'angolo di partenza. Verrà quindi misurato il periodo e se ne osserverà la variazione in funzione dell'angolo, della lunghezza e della massa appesa ad esso.

2 Premesse teoriche

aggiungi equazioni

3 Strumentazione

Strumento	Sensibilità		
Cr. Analogico	0.2s		
Cr. Digitale	0.01s		
Fotocellula	0.001s		
Goniometro	1°		
Asta graduata	0.1cm		
Calibro	0.01mm		
Bilancia digitale	1g		

4 Scelta strumento di misura

Al fine di stabilire il migliore strumento di misura per le succesive misurazioni, registro 8 misure del periodo del pendolo prima con un angolo di partenza $\theta=5^\circ$ e poi con $\theta=30^\circ$ utilizzando un cronometro analogico, uno digitale e una fotocellula. Lo strumento che mostrerà discrepanze significative tra il periodo calcolato con $\theta=5^\circ$ e $\theta=30^\circ$ sarà quello utilizzato per i testi successivi. Procedo quindi con le misurazioni dei periodi del pendolo a cui è stata agganciata una sfera di massa $m=(110\pm1)g$

sistema valori per C.Analogico.

	C.Analogico	C. Digitale	Fotocellula		C.Analogico	C. Digitale	Fotocellula
	$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$		$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$
	1.6	1.63	1.702		1.8	1.65	1.733
$\theta = 5^{\circ}$	1.7	1.65	1.703	$\theta = 30^{\circ}$	1.7	1.67	1.733
	1.5	1.60	1.703		1.6	1.70	1.733
	1.7	1.71	1.703		1.7	1.62	1.733
	1.7	1.71	1.703		1.7	1.70	1.731
	1.7	1.65	1.702		1.8	1.72	1.733
	1.6	1.70	1.703		1.7	1.80	1.733
	1.7	1.70	1.703		1.6	1.69	1.732
$\bar{T}_5(s)$	1.65	1.67	1.703	$\bar{T}_{30}(s)$	1.70	1.69	1.715
σ_{T_5}	0.05	0.02	0.000	$\sigma_{T_{30}}$	0.08	0.03	0.0005

Da questi primi set di dati noto subito che la deviazione standard dei periodi misurati dal cronometro

digitale è più grande della sensibilità dello strumento, quindi dovrei scegliere la deviazione standard come errore sulla singola misura.

Invece per evidenziare quale dei tre strumenti fornisca periodi significativamente differenti per i due angoli di partenza sottopongo le coppie di periodi medi a un test Z:

Z	$\sigma_{ar{T}_5}$	$\sigma_{ ilde{T}_{30}}$
$z_{\rm an.}$	0.234	0.234
$z_{ m dig.}$	0.170	0.132
$z_{ m fot.}$	22.8	14.2

Il test mostra che i periodi misurati con i cronometri analogico e digitale con ancgoli di partenza $\vartheta=5^\circ$ e $\vartheta=30^\circ$, risultano essere compatibili con livelli di significatività maggiori dell'80% (specifica bene i valori). Per quanto riguarda i periodi registrati con la fotocellula questi risultano appartenere a popolazioni differenti e posso quindi affermare che lo strumento che fornisce periodi significativamente differenti per i due angoli di partenza sia proprio la fotocellula.

5 Dipendenza dall'angolo

La prima parte dell'esperienza consiste nel verificare la dipendenza di T, periodo del pendolo a cui è stata attaccata una sferetta di legno di massa $m = (10 \pm 1)g$, da ϑ , angolo di partenza. Per prima cosa si procede alla misurazoine della lunghezza del pendolo. Attraverso l'asta graduata misuro prima la distanza da terra alla cima del pendolo (L_C) e poi la distanza da terra al centro della sfera appesa $(L_F)^1$.

Cima	Fondo	
$L_C(\text{cm}) \pm 0.1\text{cm}$	$L_F(\text{cm}) \pm 0.1\text{cm}$	
89.0	16.8	

Ricavo quindi la lunghezza del pendolo:

$$l = L_C + L_F = (72.2 \pm 0.2) \text{cm.}^2$$

A questo punto prendo tre misurazioni del periodo del pendolo, partendo da un angolo di partenza di 5°. Continuo a prendere le misure avanzando di 5° fino ad arrivare a 30°.

	5 °	10°	15°	20 °	25 °	30 °
	$T(s) \pm 0.001s$	$T(s) \pm 0.001s$	$T(s) \pm 0.001s$	$T(s)\pm 0.001s$	$T(s) \pm 0.001 s$	$T(s) \pm 0.001s$
	1.703	1.706	1.710	1.715	1.723	1.730
	1.702	1.706	1.710	1.715	1.723	1.731
	1.701	1.706	1.710	1.715	1.723	1.731
$\bar{\mathbf{T}}(\mathbf{s})$	1.702	1.706	1.710	1.715	1.723	1.731

Dall'espressione del periodo del pendolo sappiamo che il periodo è direttamente proporzionale a $\sin(\theta/2)^2$, più precisamente:

$$T = T_0 \left[1 + \frac{1}{4} \sin \left(\frac{\vartheta}{2} \right)^2 \right]$$

Se dovessi riportare su un grafico i periodi sperimentali in funzione di $x = \sin(\theta/2)^2$ mi aspetto quindi un andamento lineare e più precisamente una retta del tipo

$$y = T_0 + \frac{T_0}{4}x$$

Per verificare ciò mi avvalgo del metodo dei minimi quadrati... inserire qualche informazione a riguardo

Minimi quadrati

Appurato che T e sin $(\vartheta/2)^2$ siano *teoricamente* linearmente correlati, è di mio interesse trovare quale retta della forma y = A + Bx meglio interpola i dati sperimentali così da appurare se i valori misurati soddisfano la attesa teorica che y sia lineare in x.

Posso fare questo avvalendomi del metodo dei minimi quadrati che ha proprio lo scopo di determinare i parametri che legano due variabili legate da essi, nel mio caso due variabili x e y legati da due parametri A e B.

 $^{^1}$ Avrei potuto misurare il diametro della sfera con il calibro e aggiungere il raggio della sfera successivamente invece che includerlo nelle misura di cima e fondo, tuttavia la sensibilità dell'asta e il fatto che questa non fosse perfettamente perpendicolare ha reso gli errori di L_C e L_F troppo grossolani rendendo così inutile la maggiore cura nella misura del raggio.

 $^{^2}$ Propago l'errore linearmente ((0.1+0.1) cm = 0.2cm) perché essendo solo due misure (per di più effettuate con un asta graduata imperfetta) rischio di sottostimare l'errore sommandolo in quadratura

Questo metodo necessita delle assunzioni importanti:

- 1. Le misure siano statisticamente indipendenti;
- 2. Una delle due variabili (sceglierò la x) abbia errori trascurabili rispetto all'altra 3 .
- 3. Gli errori della variabile y siano distribuiti normalmente.

preso letteralmente dal Cannelli

4

Per rispettare la seconda assunzione confronto gli errori relativi delle mie due variabili.

	T	
δ_T/T	$\delta_T(s)$	T(s)
0.000339	0.001	1.702
0.000338	0.001	1.706
0.000337	0.001	1.710
0.000336	0.001	1.715
0.000335	0.001	1.723
0.000333	0.001	1.731

$y = \sin(\vartheta/2)^2$			
у	δ_y	δ_y/y	
0.0019	0.00075	0.398	
0.0076	0.0015	0.198	
0.017	0.0023	0.132	
0.030	0.0030	0.099	
0.047	0.0037	0.078	
0.067	0.0044	0.065	

Come si può leggere nelle tabelle l'errore associato alle misure dei periodi è perfettamente trascurabile rispetto a quello associato al seno, quindi scelgo di portare le misure del periodo sull'asse x e quelle del seno sull'asse y.

Procedo al calcolo dei parametri *A* e *B* e dei rispettivi errori:

$$A = -3.68$$
 $\sigma_A = 0.179$

$$B = 2.16$$
 $\sigma_B = 0.105$

l'errore sulla x è da scrivere?

$T(s) \pm \delta_T$	$\sin(\theta/2)^2 \pm \delta_y$
1.702	0.0019
1.706	0.0076
1.710	0.0170
1.715	0.0302
1.723	0.0468
1.731	0.0669

Figure 1: $T(\sin(\theta/2)^2)$

³Giudico un errore come trascurabile rispetto all'altro quando si trovano in rapporto 1 a 3,4,5.

 $^{^4\}mathrm{Lascio}\,3$ cifre significative negli errori relativi del periodo per evidenziarne le piccole discrepanze.

Periodo in funzione di ϑ (parabolico)

Figure 2: Rappresentazione grafica dei dati sperimentali con errori ridotti.

Calcolo il valore di g:

$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$
 \rightarrow $T_0^2 = 4\pi^2 \frac{l}{g}$
$$g = \frac{4l\pi^2}{T_0^2}$$

poiché sappiamo che

$$T = T_0 + \frac{T_0}{4}y \qquad \rightarrow \qquad y = 4\frac{T - T_0}{T_0} \qquad \rightarrow \qquad y = 4\frac{T}{T_0} - 4$$

$$b = \frac{4}{T_0} \qquad \rightarrow \qquad T_0 = \frac{4}{b}$$

Quindi

$$\mathbf{g} = \frac{\mathbf{l}\pi^2}{4}\mathbf{b}^2$$

Calcolo l'errore associato a g:

$$\sigma_g = \sqrt{\left(\frac{\partial g}{\partial l}\right)^2 \sigma_l^2 + \left(\frac{\partial g}{\partial b}\right)^2 \sigma_b^2}$$

$$\sigma_g = \sqrt{\left(\frac{b^2 \pi^2}{4}\right)^2 \sigma_l^2 + \left(\frac{l b \pi^2}{2}\right)^2 \sigma_b^2}$$

Test Z per g

Ottengo $g = \dots$ Scelgo livello di significatività = 0.05.

6 Dipendenza dalla lunghezza

Figure 3: Rappresentazione grafica dei dati sperimentali con errori.

6.1 Confronto parametri retta

7 Dipendenza dalla massa

8 Conclusioni