# YANG YANG

### PERSONAL INFORMATION



birth Born in China, Sept. 2001
personal email jluelioyang2001@gmail.com
official email yangyang1519@mails.jlu.edu.cn
website https://elio-yang.github.io/
github https://github.com/Elio-yang/

blog https://www.cnblogs.com/oasisyang/

phone (+86) 137 8668 9751

address Jilin University, 2699 Qianjin Street, Changchun, Jilin

# **EDUCATION**

Undergraduate

Jilin University, Changchun, China

Feb. 2019 - Present

**GPA**: 3.69/4.0 **Rank**: 10%

Major: Computer Science and Technology

Interests: Operating System, Computer Architecture and High Performance Computing.

### AWARDS

Undergraduate Academic Year Scholarship The First Prize Scholarship

Sept. 2020

The Second Prize Scholarship

Sept. 2021

# RESEARCH EXPERIENCE

ETECA Lab

Emerging Technology Enabled Computer Architecture, Jilin University

Feb. 2022 - Present

Lab Website: here

Advisor: Prof. Jingweijia TAN

Research on: Computer architecture & High-Performance Computing

In short, I am doing research on the **microarchitecture** of General-Purpose Graphics Processing Unit (**GPGPU**). Due to the **FinFET** and state-of-the-art **chiplet** (based on package-level integration), nanometer scale is much more reachable, as a consequence, **process variation** is more complex than before. Therefore I have also been researching on **hardware variability** related to Multi-Chip-Module (**MCM**)-GPUs. Simultaneously, developing a hybrid approach to model and predict the **energy consumption** of the GPGPU under various condition and optimizing it using methods like dynamic voltage/frequency scaling (**DVFS**) is what I am exploring now.

# **SKILLS**

Languages C/C++ · Assembly (x86, RISC-V) · Python · Go

Frameworks CUDA · Pytorch

Hardware HDLs: Verilog Modelsim

Basic analog circuit design

Software LINUX/UNIX/Windows

GIT

IAT<sub>E</sub>X · Markdown GNU compiler (gcc, etc.)

### OTHER INFORMATION

Languages Chinese · Native proficiency.

English · Professional proficiency.

Interests Literature (Latin-American, magic realism) · Physics · NBA (Golden State Warriors) · Classical (Chopin)

Characteristic Strong patience · Highly self-motivated · Creative · Communication and collaboration skilled.

## **PROJECTS**

EOS

EOS is a 32bit \*nix operating system developed in C language.

Sept. 2021

Till now EOS contains a basic **bootloader**, 2-level **paging**, 4GB **memory management** and **kernel multithreads**. For user environment, it provide a set of traditional shell programs and **multi-process** mechaism. It follows the x86 ABI, so it's easy to port thoses x86 applications. This project is still *active* and it will provide a *GNU C Project* like library and compiler support in the future. You can find the codes here.

MapReduce Engine MapReduce Engine is a Go language implementation of the paper.1

Apr. 2022

This engine consists of a **fault tolerance** (failures like crash and communication-lose of workers) master and a worker cluster. Users can specify their cluster size and working functions (mapf & reducef). With a simulated distributed file system, the workers can communicate with the master through **Remote Procedure Call**. This MapReduce Engine is a basic component for building a distributed system used for operations over large-scale datasets. You can find the codes here.

WYZ-BAR

WYZ-BAR is a bar management system developed in C language.

Mar. 2020

WYZ-BAR is a *collaborative project* (WYZ stands for 3 members and Y is for me) and I am the leader. With the **multi-process** organization and a simple builtin **sqlite style database**, WYZ-BAR is my *first* course project in the university and it made me a minor celebrity. The development flow follows the modern **open source** software's way. A lot of **parsing** techniques are used to deal with all kinds of data input, this system is purposely optimized for unqualified input like the real world. You can find the codes here.

CUDA-FFT

*CUDA-FFT* is a CUDA implementation of the **Fast Fourier Transform** algorithm.

Dec. 2021

This project implemented 3 algorithms to do the *polynomials multiplication*, including ordinary multiplication, **recursive-FFT** and **gpu-FFT**. The performance was well tested and the contrast was shown in the report. This is my first time doing heterogeneous computing and this project leads me to the research of **HPC & GPGPU**. You can find the codes, slide, and report here.

Others

You can find more projects including course labs (like MIT 6.828), Android application (SmogDetector), etc., in GitHub.

<sup>&</sup>lt;sup>1</sup> J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," *Commun. ACM*, vol. 51, no. 1, pp. 107–113, Jan. 2008, doi:10.1145/1327452.1327492.