

TS27M2C,I,M

LOW POWER DUAL CMOS OPERATIONAL AMPLIFIERS

- EXCELLENT PHASE MARGIN ON CAPACITIVE LOADS
- SYMETRICAL OUTPUT CURRENTS
- LOW OUTPUT DYNAMIC IMPEDANCE
- THE TRANSFER FUNCTION IS LINEAR
- PIN TO PIN COMPATIBLE WITH STANDARD DUAL OP-AMPs (TL082 -LM358)
- STABLE AND LOW OFFSET VOLTAGE
- THREE INPUT OFFSET VOLTAGE SELECTIONS

ORDER CODES

Part Number	Temperature	Paci	kage
i ait ituilibei	Range	N	D
TS27M2C/AC/BC	0°C, +70°C	•	•
TS27M2I/AI/BI	-40°C, +125°C	•	•
TS27M2M/AM/BM	-55°C, +125°C	•	•
Example: TS27M2A	CN	•	•

DESCRIPTION

The TS272 series are low cost, low power dual operational amplifiers designed to operate with single or dual supplies. These operational amplifiers use the SGS-THOMSON silicon gate LIN MOS process giving them an excellent consumption-speed ratio. These series are ideally suited for low consumption applications.

Three power consumptions are available allowing to have always the best consumption-speed ratio:

• I_{CC} = 10 μ A/amp. : TS27L2 (very low power) • I_{CC} = 150 μ A/amp. : TS27M2 (low power) • I_{CC} = 1mA/amp. : TS272 (high speed)

These CMOS amplifiers offer very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input currents drift with temperature (see figure 2).

PIN CONNECTIONS (top view)

October 1995 1/8

BLOCK DIAGRAM

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC} ⁺	Supply Voltage - (note 1)		18	V
V_{id}	Differential Input Voltage - (note 2)		±18	V
Vi	Input Voltage - (note 3)		-0.3 to 18	V
Ιο	Output Current for V _{CC} ⁺ ≥ 15V		±30	mA
I _{in}	Input Current		±5	mA
T _{oper}	Operating Free-Air Temperature Range	TS27M2C/AC/BC TS27M2I/AI/BI TS27M2M/AM/BM	0 to +70 -40 to +125 -55 to +125	°C
T _{stg}	Storage Temperature Range		-65 to +150	°C

Notes: 1. All voltage values, except differential voltage, are with respect to network ground terminal.

2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply Voltage	3 * to 16	V
V _{icm}	Common Mode Input Voltage Range	0 to V _{CC} ⁺ - 1.5	V

* Selected devices only.

SCHEMATIC DIAGRAM (for 1/2 TS27M2)

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +10V, V_{CC}^- = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	TS27M2C/AC/BC			TS27M2I/AI/BI TS27M2M/AM/BM			Unit
-		Min.	Тур.	Max.	Min.	Тур.	Max.	
Vio	$\label{eq:local_problem} \begin{split} & \text{Input Offset Voltage} \\ & V_O = 1.4V, V_{ic} = 0V & \text{TS27M2C/I/M} \\ & \text{TS27M2AC/AI/AM} \\ & \text{TS27M2BC/BI/BM} \\ & \text{T}_{min.} \leq T_{amb} \leq T_{max.} & \text{TS27M2C/I/M} \\ & \text{TS27M2AC/AI/AM} \\ & \text{TS27M2BC/BI/BM} \end{split}$		1.1 0.9 0.25	10 5 2 12 6.5 3		1.1 0.9 0.25	10 5 2 12 6.5 3.5	mV
DV_io	Input Offset Voltage Drift		2			2		μV/°C
l _{io}	$ \begin{array}{l} \text{Input Offset Current - (note 1)} \\ V_{ic} = 5V, \ V_o = 5V \\ T_{min.} \leq T_{amb} \leq T_{max.} \end{array} $		1	100		1	200	pA
l _{ib}	Input Bias Current - (note 1) $V_{ic} = 5V, V_0 = 5V$ $T_{min.} \le T_{amb} \le T_{max.}$		1	150		1	300	pA
Voн		8.7 8.6	8.9		8.7 8.5	8.9		V
V _{OL}	Low Level Output Voltage V _{id} = -100mV			50			50	mV
A_{vd}	$ \begin{array}{l} \text{Large Signal Voltage Gain} \\ \text{$V_0 = 1$V to 6$V, $R_L = 100$kΩ, $V_{ic} = 5$V} \\ \text{$T_{min.} \le T_{amb} \le T_{max.}} \end{array} $	30 20	50		30 10	50		V/mV
GBP	Gain Bandwidth Product $A_V = 40 dB$, $R_L = 100 k\Omega$, $C_L = 100 pF$ $f_{in} = 100 kHz$		1			1		MHz
CMR	Common Mode Rejection Ratio V _o = 1.4V, V _{ic} = 1V to 7.4V	65	80		65	80		dB
SVR	Supply Voltage Rejection Ratio $V_{CC}^{+} = 5V \text{ to } 10V, V_{0} = 1.4V$	60	80		60	80		dB
Icc	Supply Current (per amplifier) $ A_V = 1, \text{ no load, } V_0 = 5V $ $ T_{min.} \le T_{amb} \le T_{max.} $		150	200 250		150	200 300	μА
lo	Output Short Circuit Current $V_{id} = 100mV$, $V_0 = 0V$		60			60		mA
I _{sink}	Output Sink Current $V_{id} = -100 \text{mV}, V_0 = V_{CC}$		45			45		mA
SR	Slew-Rate at Unity Gain $R_L = 100k\Omega$, $C_L = 100pF$, $V_i = 3$ to 7V		0.6			0.6		V/μs
Øm	Phase Margin at Unity Gain $A_V = 40 dB$, $R_L = 100 k\Omega$, $C_L = 100 pF$		45			45		Degrees
Kov	Overshoot Factor		30			30		%
en	Equivalent Input Noise Voltage $f = 1 \text{kHz}, R_S = 100\Omega$		38			38		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$ dB
V _{O1} /V _{O2}	Channel Separation		120			120		dB

Note: 1. Maximum values including unavoidable inaccuracies of the industrial test.

TYPICAL CHARACTERISTICS

Figure 1: Supply Current (each amplifier) versus Supply Voltage

Figure 3a: High Level Output Voltage versus High Level Output Current

Figure 3a: Low Level Output Voltage versus Low Level Output Current

Figure 2: Input Bias Current versus Free Air Temperature

Figure 3b: High Level Output Voltage versus High Level Output Current

Figure 3b: Low Level Output Voltage versus Low Level Output Current

27M2-05.EPS

27M2-07.EPS

27M2-09.EPS

27M2-08.EPS

27M2-04.EPS

27M2-06.EPS

TYPICAL CHARACTERISTICS (continued)

Figure 5 : Open Loop Frequency Response and Phase Shift

Figure 7: Phase Margin versus Supply Voltage

Figure 9: Slew Rate versus Supply Voltage

Figure 6 : Gain Bandwidth Product versus Supply Voltage

Figure 8: Phase Margin versus Capacitive Load

Figure 10: Input Voltage Noise versus Frequency

6/8

27M2-14.EPS

27M2-12.EPS

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
Dilliensions	Min.	Тур.	Max.	Min.	Тур.	Max.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
c1		•	45°	(typ.)	•	•
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S			8° (max.)		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.