CS 5683: Big Data Analytics

Assignment-6: HITS using Spark

Total Points: 20 (3% toward final)

Due date: Nov 15, 2020 at 11:59pm

In this assignment, we will implement the HITS algorithm in Apache Spark. You can use *numpy* operations, if necessary. You will experiment with a large real-world graph to find its node's hub and authority scores. **NOTE:** *This is an individual assignment*.

Dataset: Use the simple directed graph¹ given with this assignment to implement the HITS algorithm. The network is represented as edgelist, i.e. $(u \ v)$ in the input file represent an edge from node u to node v. The given network contains 1,005 nodes and 25,571 edges.

HITS Implementation:

Assume the directed graph G = (V, E), where V is a set of nodes and E is a set of edges. G has n nodes and m edges, all nodes have non-negative out-degree, and $L = [L_{ij}]_{n \times n}$ is an $n \times n$ matrix called *link matrix* such that for any $i, j \in [1, n]$:

$$L_{ij} = \begin{cases} 1 & if \ (i \to j) \in E \\ 0 & otherwise \end{cases}$$

Given the link matrix L and some scaling factors λ , μ , the hub score vector \boldsymbol{h} and the authority score vector \boldsymbol{a} can be expressed using the following equations:

$$h = \lambda La$$

$$a = \mu L^T h$$

where *I* in above equations is the $n \times 1$ vector with all entries equal to 1.

Based on these equations, the iterative method to compute h and a is as follows:

- 1. Initialize h with a column vector (of size $n \times 1$) with all 1's
- 2. Compute $a = L^T h$
- 3. Compute h = La
- 4. Go to step 2

Note: Elements of **a** and **h** in the above algorithm should be scaled between 0 and 1

¹ http://snap.stanford.edu/data/email-Eu-core.html

Implementation in Spark:

Implement the above algorithm in Apache Spark. Set the number of iterations to 40, assume that λ , $\mu = 1$, and then obtain the vectors \mathbf{h} and \mathbf{a} . The link matrixes L and L^T can be very large and should be processed with only RDD. Whereas, the vectors \mathbf{h} and \mathbf{a} can be stored in disk or memory. Importantly, the data (edgelist) can be read only twice – once to find L and once to find L^T . The total number of nodes should be calculated while reading the data one of the two times. However, this can be done with reading the data only once.

NOTE: The given data should be considered as a directed graph.

Compute:

- i. List of 5 top node ids and their hub scores
- ii. List of 5 bottom node ids and their hub scores
- iii. List of 5 top node ids and their authority scores
- iv. List of 5 bottom node ids and their authority scores

Submission requirements:

- 1. Submit the python notebook (.ipynb) with your program and output
- 2. The python notebook should include your name

Grading Rubric: (Total – 20 points)

- 1. Data processing to find L and $L^T 5$ points
- 2. Spark program to find a and h vectors: 10 points
- 3. Output: 5 points