E1 Questions de cours

a. Définition d'une fonction périodique

b. Définition d'une fonction admettant un minimum

E2 Négation de propositions Sur chacun des exemples suivants,

écrire $\neg P$.

En justifiant, déterminer si P est vraie ou fausse.

a. $P: orall n \in \mathbb{N}, n^2 \leq 4$

b. $P:\exists n\in\mathbb{N}, 3n=7$

 $\mathsf{c.}\ P: \forall x \in \mathbb{R}, x^2 = 4 \implies x = 2$

a. $\neg P: \exists n \in \mathbb{N}, n^2 > 4 - P$ est fausse car n=3 vérifie $n^2>4$.

b. $\neg P: \forall n \in \mathbb{N}, 3n \neq 7$ - P est fausse car aucun $n \in \mathbb{N}$ ne vérifie 3n=7.

 $\mathsf{c.} \
eg P : \exists x \in \mathbb{R}, x^2 = 4 \land x \neq 2 - P$ est fausse car x=-2 vérifie $x^2=4$, mais $x \neq 2$.

lacksquare Produit des n premiers entiers Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a :

$$2 \times 4 \times 6 \times \cdots \times 2n = 2^n \times n!$$
.

Initialisation : Pour n=1, on a :

$$2 = 2^1 \times 1! = 2,$$

donc la propriété est vraie pour \(n = 1).

Hérédité : Supposons que la propriété est vraie pour un certain $n \in \mathbb{N}$, c'est-à-dire :

$$2 \times 4 \times \cdots \times 2n = 2^n \times n!$$
.

Montrons qu'elle est vraie pour \((n+1). On a : \$\$ 2 \times 4 \times \dots \times $2n \times 2(n+1) = (2^n)$ \times n!) \times 2(n+1). \$\$ Simplifions : \$\$ = $2^n \times n!$ $\times 2(n+1) = 2^{n+1} \times$ (n+1)!. \$\$ Donc, la propriété est vraie pour \(n+1). Conclusion : Par récurrence, la formule est vraie pour tout \(n \in \mathbb{N}).

E4 Détermination du domaine, des limites et de la dérivée Soit $(f(x) = \ln(1 + e^{-x}))$.

a. Déterminer l'ensemble de définition de \(f \).

b. Calculer les limites de \(f \) en c. Calculer la dérivée de \(f \).