

**Bulletin
de
l'Observatoire astronomique
de
Vilno.**

I. ASTRONOMIE

Nº 7.

Biuletyn

**Obserwatorium astronomiczne
w Wilnie.**

1925

Bulletin

de

l'Observation astronomique

de

Vilno.

• L'ASTRONOMIE •

№ 5

Bulletin

Observation astronomique

w Wilnie

1888

Drukarnia „Znicz“ w Wilnie.

Wydano z siedzibą w Wilnie 1888 r. w Druckerei „Znicz“

J. JANTZEN.

Säkuläre Störungen des Planeten (944) Hidalgo durch die 4 inneren Planeten.

Der Zweck der vorliegenden Abhandlung ist die säkulären Störungen, die vier inneren Planeten (Merkur, Venus, Erde und Mars) auf den Planeten Hidalgo ausüben, auszurechnen. Die angewandte Rechenmethode ist diejenige von Gauss in Bearbeitung von Hill *).

Die Ausgangselemente von Hidalgo sind durch C. Vick (A. N. 214—259) angegeben. Die genannten Elemente sind auf das Äqu. 1900.0 reduziert. Die Elemente der grossen Planeten sind der „Connaissance des Temps“ entnommen und sind diejenigen von Leverrier.

Die Störungsrechnung für Merkur, Venus und Erde ist fünfstellig, dagegen für Mars sechsstellig durchgeführt.

Laut der Gaussischen Theorie wurde die Peripherie der excentrischen Anomalie

im Falle Merkur in 24 Telle

„	Venus	“	24	“
„	Erde	“	36	“
„	Mars	“	48	“

geteilt.

Die entsprechenden Werte der wahren Anomalien und Radienvektoren sind der Abhandlung K. Jantzen (Bulletin de l'Observatoire astronomique de Wilno N. 5) entnommen.

Die ausgewählte Rechnungsdichte für Merkur, Venus und Erde ist sicher völlig ausreichend. Da für Mars die ausgerechneten Funktionenwerte in der Umgebung $E = 345^\circ$ sehr grossen Schwankungen unterworfen waren, so wurde für die 12 Werte $E = 303^\circ.75, 311^\circ.25 \dots 26^\circ.25$ eine Verdichtung ausgerechnet. Diese Verdichtung

*) Astr. Papers of Amer. Ephem. Vol. I.

gibt eine scharfe Kontrolle der Rechnung, hat aber für das Endresultat nur einen sehr geringen Einfluss.

Die weiter angeführte Tafel gibt die Konstanten, welche direkt aus den Planetenelementen ausgerechnet sind; die Bennung der Buchstaben ist diejenige von Hill.

	Merkur	Venus	Erde	Mars
II	241.6043	240.6842	236.4729	237.7752
II'	238.8092	292.2378	260.1911	134.1550
I	36.8750	41.1758	43.0587	41.4286
K	8.7229	302.1734	339.7855	95.4516
K'	357.4448	313.5786	333.6725	111.7212
log k	9.933584	9.899197	9.869147	9.944546
log k'	9.977945	9.986082	9.997042	9.948136
1 : m'	6000000	408000	329390	3093500

Die Tafeln I, II, III, IV enthalten die Störungskomponenten R_0 , S_0 , W_0 und nämlich: die Tafel I enthält die Störungskomponenten durch Merkur, die Tafel II durch Venus, die Tafel III durch Erde, die Tafel IV durch Mars. Die Tafel V dagegen enthält die Störungen, welche Mars in der Verdichtungsstelle ausgeübt hat.

Wir führen weiter folgende Bezeichnungen ein:

$j = \text{Anzahl der Kolonnen.}$

$$Me = \frac{1}{j} \Sigma [R_0 \sin v + (\cos v + \cos E) S_0];$$

$$M\gamma = \frac{1}{j} \Sigma \left[-R_0 \cos v + \left(\frac{r}{a} \sec^2 \varphi + 1 \right) \sin v. S_0 \right];$$

$$Mi = \frac{1}{j} \Sigma W_0 \cos u;$$

$$M\Omega = \frac{1}{j} \Sigma W_0 \sin u;$$

$$ML = \frac{1}{j} \Sigma \left[-\frac{r}{a} R_0 \right];$$

Diese Werte stellen sich in nämlichem Falle folgendermassen dar:

	Merkur	Venus	Erde	Mars
Me	— 0.00000	+ 0.00024	+ 0.00074	+ 0.00504
M γ	+ 0.00412	+ 0.01014	+ 0.01185	— 0.01072
Mi	+ 0.00064	— 0.00120	— 0.00025	— 0.00004
M Ω	— 0.00389	— 0.01401	— 0.02669	— 0.06251
ML	+ 1.00370	+ 1.00907	+ 1.01264	+ 1.01092

Bei Anwendung der Newcomb'schen Werte für die Massen der inneren Planeten können wir unsere Endresultate in folgendem Täfelchen zusammenstellen:

	Merkur	Venus	Erde	Mars
[de : dt] ₀₀	0.00000	+ 0.00004	+ 0.00016	+ 0.00012
[d γ : dt] ₀₀	+ 0.00008	+ 0.00273	+ 0.00396	— 0.00038
[di : dt] ₀₀	+ 0.00001	— 0.00037	— 0.00009	0.00000
[d Ω : dt] ₀₀	— 0.00012	— 0.00630	— 0.01486	— 0.00371
[d π : dt] ₀₀	+ 0.00004	+ 0.00104	— 0.00004	— 0.00138
[dL : dt] ₀₀	+ 0.03170	+ 0.46791	+ 0.57988	— 0.06087

Wilno. 1925. Oktober.

T A F E L I. Merkur.

<i>E</i>	<i>R₀</i>	<i>S₀</i>	<i>W₀</i>
0			
0.0	— 2.62230	— 0.00080	+ 0.00674
15.0	2.51276	+ 0.07755	0.00524
30.0	2.23802	0.09650	0.00981
45.0	1.87366	0.06946	0.01377
60.0	1.52291	0.04014	0.01457
75.0	1.24040	0.02171	0.01351
90.0	1.03072	0.01168	0.01197
105.0	0.88019	0.00631	0.01055
120.0	— 0.77418	+ 0.00331	+ 0.00945
135.0	0.70130	0.00153	0.00864
150.0	0.65389	+ 0.00038	0.00812
165.0	0.62708	— 0.00049	0.00783
180.0	0.61818	0.00126	0.00778
195.0	0.62638	0.00208	0.00796
210.0	0.65236	0.00308	0.00839
225.0	0.69857	0.00446	0.00912
240.0	— 0.76931	— 0.00652	+ 0.01024
255.0	0.87305	0.00971	0.01186
270.0	1.01906	0.01482	0.01412
285.0	1.22174	0.02305	0.01716
300.0	1.49503	0.03576	0.02074
315.0	1.84060	0.05317	0.02360
330.0	2.22149	0.07000	0.02269
345.0	2.52296	0.06316	0.01538
Σ	— 15.61800	+ 0.01977	+ 0.14462
Σ'	— 15.61879	+ 0.02044	+ 0.14462

T A F E L II. Venus.

E	R_0	S_0	W_0
0			
0.0	— 2.86070	— 0.11698	— 0.08723
15.0	2.59712	+ 0.00672	0.08310
30.0	2.28704	0.05813	0.05356
45.0	1.89451	0.03498	0.02364
60.0	1.51772	0.01129	— 0.00656
75.0	1.22331	+ 0.00164	+ 0.00065
90.0	1.01098	— 0.00110	0.00322
105.0	0.86141	— 0.00155	0.00399
120.0	— 0.75724	— 0.00142	+ 0.00412
135.0	0.68612	0.00117	0.00409
150.0	0.63997	0.00096	0.00406
165.0	0.61394	0.00080	0.00411
180.0	0.60533	0.00067	0.00429
195.0	0.61334	0.00055	0.00463
210.0	0.63869	0.00040	0.00520
225.0	0.68381	— 0.00017	0.00607
240.0	— 0.75326	+ 0.00030	+ 0.00737
255.0	0.85469	0.00130	0.00929
270.0	1.00018	0.00351	0.01206
285.0	1.20733	0.00824	0.01575
300.0	1.50436	0.01694	0.01963
315.0	1.92629	+ 0.02465	0.01955
330.0	2.46677	— 0.00518	+ 0.00187
345.0	2.87716	— 0.11105	— 0.04745
Σ	— 16.04224	— 0.03654	— 0.08553
Σ'	— 16.03903	— 0.03776	— 0.08606

T A F E L III. Erde.

E	R_0	S_0	W_0
0			
0.00	— 2.71238	— 0.24967	— 0.15415
11.25	2.45966	— 0.06396	0.14967
22.50	2.30462	+ 0.07940	0.12528
33.75	2.14013	0.11656	0.08801
45.00	1.90441	0.08405	0.04937
56.25	1.63448	0.043 7	0.02132
67.50	1.38651	0.01770	— 0.00536
78.75	1.18357	0.00544	+ 0.00257
90.00	— 1.02542	+ 0.00026	+ 0.00619
101.25	0.90420	— 0.00169	0.00771
112.50	0.81193	0.00219	0.00324
123.75	0.74223	0.00238	0.00836
135.00	0.69034	0.00227	0.00835
146.25	0.65281	0.00212	0.00833
157.50	0.62734	0.00199	0.00839
168.75	0.61245	0.00188	0.00855
180.00	— 0.60727	— 0.00180	+ 0.00887
191.25	0.61139	0.00174	0.00937
202.50	0.62506	0.00168	0.01012
213.75	0.64901	0.00159	0.01115
225.00	0.68446	0.00144	0.01257
236.25	0.73352	0.00111	0.01450
247.50	0.79903	— 0.00039	0.01709
258.75	0.88523	+ 0.00109	0.02057
270.00	— 0.99792	+ 0.00408	+ 0.02520
281.25	1.14566	0.00989	0.03117
292.50	1.34139	0.02054	0.03849
303.75	1.60524	0.03754	0.04613
315.00	1.96683	0.05508	0.04981
326.25	2.44662	+ 0.03650	+ 0.03580
337.50	2.92331	— 0.10285	— 0.02315
348.75	3.00283	0.29075	0.11262
Σ	—21.40822	— 0.10327	— 0.16399
Σ'	—21.40903	— 0.11703	— 0.16741

T A F E L IV. Mars.

E	R_0	S_0	W_0
0			
0.0	— 2.147193	— 0.318374	— 0.381692
7.5	1.969907	— 0.094492	0.358416
15.0	1.944845	+ 0.108472	0.350452
22.5	2.021519	0.267423	0.349431
30.0	2.147763	0.352415	0.337143
37.5	2.237315	0.337202	0.295327
45.0	2.203624	0.241891	0.225790
52.5	2.041441	0.129932	0.152343
60.0	— 1.817556	+ 0.046899	— 0.094714
67.5	1.593761	— 0.000827	0.056419
75.0	1.398029	0.023891	0.032829
82.5	1.236031	0.033078	0.018656
90.0	1.104491	0.035294	0.010139
97.5	0.998117	0.034318	0.004965
105.0	0.911960	0.032054	— 0.001766
112.5	0.841961	0.029447	+ 0.000248
120.0	— 0.784966	— 0.026912	+ 0.001556
127.5	0.738589	0.024632	0.002440
135.0	0.700997	0.022653	0.003072
142.5	0.670833	0.020989	0.003560
150.0	0.647014	0.019609	0.003981
157.5	0.628788	0.018492	0.004376
165.0	0.615576	0.017601	0.004785
172.5	0.606945	0.016912	0.005235
180.0	— 0.602625	— 0.016395	+ 0.005748
187.5	0.602456	0.016032	0.006349
195.0	0.606373	0.015796	0.007060
202.5	0.614427	0.015664	0.007912
210.0	0.626759	0.015603	0.008936
217.5	0.643610	0.015578	0.010168
225.0	0.665341	0.015527	0.011655
232.5	0.692423	0.015372	0.013451
240.0	— 0.725486	— 0.014978	+ 0.015624
247.5	0.765337	0.014143	0.018249
255.0	0.813020	0.012555	0.021410
262.5	0.869905	0.009737	0.025204
270.0	0.937833	— 0.004966	0.029722
277.5	1.019389	+ 0.002839	0.035036
285.0	1.118353	0.015239	0.041163
292.5	1.240553	0.034374	0.047976
300.0	— 1.395484	+ 0.062875	+ 0.053004
307.5	1.599069	0.102997	0.060863
315.0	1.878423	0.153028	0.061558
322.5	2.274408	0.194331	+ 0.045345
330.0	2.807313	+ 0.154407	— 0.019527
337.5	3.267030	— 0.106637	0.178862
345.0	3.112249	0.462222	0.357790
352.5	2.548549	0.503311	0.405892
Σ	—31.713273	+ 0.080796	— 1.540568
Σ'	—31.722363	+ 0.099437	— 1.533899

T A F E L V. Mars.

<i>E</i>	<i>R</i> ₀	<i>S</i> ₀	<i>W</i> ₀
0			
300.00	— 1.395484	+ 0.062875	+ 0.055004
303.75	1.489995	0.081418	0.058233
307.50	1.599069	0.102997	0.060863
311.25	1.727003	0.127271	0.062307
315.00	1.878423	0.153028	0.061558
318.75	2.059011	0.177379	0.056885
322.50	2.274408	0.194331	0.045345
326.25	2.526907	0.192711	+ 0.022157
330.00	— 2.807313	+ 0.154407	— 0.019527
333.75	3.079114	+ 0.057474	0.086621
337.50	3.267030	— 0.106637	0.178862
341.25	3.284058	0.304239	0.279011
345.00	3.112249	0.462222	0.357790
348.75	2.832768	0.527366	0.398130
352.50	2.548549	0.503311	0.405892
356.25	2.315965	0.423568	0.396398
0.00	— 2.147193	— 0.318374	— 0.381692
3.75	2.035337	0.205725	0.368198
7.50	1.969907	— 0.094492	0.358416
11.25	1.941946	+ 0.011096	0.352739
15.00	1.944845	0.108472	0.350452
18.75	1.973194	0.195045	0.350045
22.50	2.021519	0.267423	0.349431
26.25	2.082968	0.321360	0.346051
30.00	— 2.147763	+ 0.352415	— 0.337143
S	— 63.435636	+ 0.180233	— 3.074467
S'	— 63.435656	+ 0.18 093	— 3.074407

K. JANTZEN.

Perturbacje wiekowe planety Hidalgo.

1. *Wstęp.* Praca niniejsza jest dalszym ciągiem pracy opublikowanej przemennie w Nr. 5 niniejszego Biuletynu. Zadaniem jej jest obliczenie perturbacji wiekowych w elementach planety (944) Hidalgo. W pracy wyżej cytowanej zostały obrachowane perturbacje spowodowane przez Jowisza. W pracy J. Jantzenowej, pomieszczonej w Nr. 7 niniejszego Biuletynu zostały obliczone perturbacje wywołane przez Merkurego, Wenus, Ziemię i Marsa. Obecnie podaje wyniki perturbacji wywołanych przez Saturna, Urana i Neptuna.

2. *Szczegóły rachunkowe.* Stosowaną we wszystkich przytaczanych obliczeniach jest metoda Gauss-Hilla. W metodzie tej dzieli się koło anomalii ekscentrycznej na pewną ilość równych części; dla wartości podziałowych oblicza się pewne funkcje, z których bierze się średnią arytmetyczną. W ten sposób dokładność wyniku zależy od dwóch czynników: od dokładności rachunku w poszczególnych kolumnach i od gęstości tych kolumn. Należy więc wybrać podziały, które dla każdej z planet dadzą tę samą dokładność. W pracy niniejszej perturbacje wywołane przez Saturna rachowano dla 96 wartości anomalii ekscentrycznej, perturbacje wywołane przez Urana dla 32 wartości i wywołane przez Neptuna dla 24 wartości. Zarówno przyjęta dokładność sześciocyfrowa, jak i gęstość rachunku są w dobrej zgodzie z wynikami, uzyskanemi dla Jowisza.

Elementy wyjściowe planet są przyjęte według Leverrier'a. Elementy planety Hidalgo podane są przez C. Vick'a A. N. 214 — 259. Wszystkie te elementy zostały odniesione na równonoc 1900.0.

		Elementy wyjściowe planet.	Ausgangselemente der Planeten.		
		Hidalgo	Saturn	Uranus	Neptun
1900.0	π	77° 30' 1.7	91° 5' 53.6	171° 32' 55.3	46° 43' 38.5
	Ω	21 1 39.3	112 47 25.5	73 28 37.6	130 40 53.0
	i	43 3 31.2	2 29 33.1	0 46 20.9	1 46 45.3
	φ	40 46 22.0	3 12 14.6	2 39 22.7	0 30 55.8
	log a	0.757179	0.980219	1.283711	1.478705

Tab. 1.

Bezpośrednio z elementów zostały wyrachowane stałe, które przy zachowaniu oznaczeń Hilla poniżej podaje:

		Stałe.	Konstanten.	
		Saturn	Uranus	Neptun
	II	240° 6' 50.6	237° 22' 40.2	238° 53' 57.4
	II'	252 43 42.9	331 11 5.2	207 27 49.5
	K	353 12 39.2	259 25 29.7	38 17 55.9
	K'	342 53 8.7	274 8 44.3	23 11 36.7
	I	43 11 35 5	42 35 29.5	43 40 58.6
	log k	9.879005	9.975572	9.976769
	log k'	9.990842	9.905918	9.897745
	1 : m'	3501.6	22869	19314

Tab. 2.

Załączone na końcu pracy tablice I, II, III, zawierają składowe perturbacji R_0 , S_0 , W_0 , odpowiednio dla Saturna, Uranusa i Neptuna. Niepodane są tu anomalie prawdziwe i promienie wodzące, gdyż są to te same wartości, które zostały opublikowane w pracy o perturbacjach Jowisza.

Tablice Nr.Nr. 4, 5 zawierają wyniki rachunku perturbacyjnego:
Przyczem użyte zostały następujące skrócenia:

j = ilość kolumn = Anzahl der Kolonnen.

$$M\epsilon = \frac{1}{j} \sum [R_0 \sin v + (\cos v + \cos E) S_0];$$

$$M\gamma = \frac{1}{j} \sum [R_0 \cos v + \left(\frac{r}{a} \sec^2 \varphi + 1 \right) \sin v. S_0];$$

$$Mi = \frac{1}{j} \sum W_0 \cos u;$$

$$M\Omega = \frac{1}{j} \sum W_0 \sin u;$$

$$ML = \frac{1}{j} \sum \left[-\frac{r}{a} R_0 \right].$$

Tab. 3.

Ujmujemy więc wyniki w tabliczce poniżej:

	Saturn	Uranus	Neptun
$M\epsilon$	+ 0.075160	+ 0.013809	+ 0.003613
$M\gamma$	- 0.390776	- 0.045520	- 0.011338
Mi	- 0.084831	- 0.011267	- 0.002756
$M\Omega$	- 0.128902	- 0.021322	- 0.005436
ML	+ 0.545087	+ 0.067777	+ 0.016923

Tab. 4.

Uwzględniając masy planet perturbujących (Newcomb) możemy wyliczyć ostateczne rezultaty.

	Saturn	Uranus	Neptun
$(de : dt)_{00}$	+ " 1.5410	+ " 0.0434	+ " 0.0134
$(d\gamma : dt)_{00}$	- 12.2689	- 0.2188	- 0.0646
$(di : dt)_{00}$	- 3.0328	- 0.0617	- 0.0178
$(d\Omega : dt)_{00}$	- 6.7498	- 0.1709	- 0.0516
$(d\pi : dt)_{00}$	- 14.0870	- 0.2649	- 0.0784
$(dL : dt)_{00}$	+ 24.7204	+ 0.4628	+ 0.1366

Tab. 5.

3. *Zestawienie perturbacji 8 planet.* Poniższe zestawienie wyników obejmuje perturbacje wywołane przez 4 planety wewnętrzne (cf. praca J. Jantzen Biuletyn Obs. Astr. Wil. Nr. 7) perturbacje Jowisza (cf. Biuletyn Obs. Astr. Wil. Nr. 5) oraz perturbacje Saturna, Urana i Neptuna. Perturbacje te zostały pomnożone przez odpowiednie masy.

	$10^6 m' M_e$	$10^6 m' M_\gamma$	$10^6 m' M_i$	$10^6 m' M_\Omega$	$10^6 m' M_L$
Jowisz	+ 200.807	- 529.275	- 129.301	- 144.578	+ 415.905
Saturn	+ 21.464	- 111.599	- 24.226	- 36.812	+ 155.668
Urana	+ 0.604	- 1.991	- 0.493	- 0.932	+ 2.964
Neptun	+ 0.187	- 0.587	- 0.143	- 0.281	+ 0.876
Ziemia	+ 0.002	+ 0.036	- 0.001	- 0.081	+ 3.074
Wenus	+ 0.001	+ 0.024	- 0.003	- 0.034	+ 2.473
Mars	+ 0.002	- 0.003	- 0.000	- 0.020	+ 0.327
Merkury	+ 0.000	+ 0.001	- 0.000	- 0.001	+ 0.167
Σ	+ 223.067	- 643.394	- 154.167	- 182.739	+ 581.454

Tab. 6.

Skąd już w łatwy sposób otrzymamy ostateczne wyniki na całkowite perturbacje wiekowe Hidalgo pochodzące od 8 planet:

de : dt = + 16.0153
$d\gamma$: dt = - 70.7333
di : dt = - 19.2995
$d\Omega$: dt = - 33.5063
$d\pi$: dt = - 79.7580
dL : dt = + 84.0573

Tab. 7.

W tablicy 7 jednostką czasu są lata Juljańskie. Tablica 6 pokazuje wyraźnie, że wpływy Jowisza i Saturna decydują o charakterze perturbacji Hidalgo. Gra tutaj rolę zarówno wielka przewaga mas tych ostatnich, jak i położenie orbity Hidalgo, która przenika się z orbitą Jowisza.

4. *Elementy Hidalgo jako funkcje czasu.* Uzyskane wyniki pozwalają wyrazić elementy Hidalgo, jako liniowe funkcje czasu. Niestety jednak ten sposób wyrażenia elementów naszej planety jest słuszny tylko przy stosunkowo krótkich czasach. Rozpatrzmy dla przykładu analityczne wyrażenie na mimośród Hidalgo:

t wieki Juljańskie, liczone od 1900,

$$e = 0.6514 + 0.00776 \cdot t$$

Zakładając tutaj $t = -83$, względnie $t = +45$ otrzymamy:

$$e = -0.03, \text{ względnie } e = 1.003.$$

Wypadki te odpowiadałyby datom -6400 , względnie $+6400$.

Widzimy, że mamy tu do czynienia z niedorzeczością, co jest szczególnie dobrze widoczne w drugim wypadku, który pokazuje możliwość drogi parabolicznej, przy skończonej połowie wielkiej osi.

Wzgłydy omówione skłaniają do przeprowadzenia dalszego rachunku z bardzo niewielką dokładnością.

Ustalamy więc wzory na elementy Hidalgo:

Wiekowe rozwinięcia elementów Hidalgo. t - wieki Juljańskie od 1900.	Säkuläre Entwickelungen der Bahnelemente des Hidalgo t - Julianische Jahrhunderte von 1900 ab.
	$\pi = 77.96 - 2.215 \cdot t$
1900.0	$\Omega = 21.22 - 0.931 \cdot t$
	$i = 43.17 - 0.536 \cdot t$
	$e = 0.6514 + 0.00776 \cdot t$

Tab. 8.

Uwzględniamy dalej wpływ precesji. W tym celu bierzemy wzory Oppolzera (Bahnbestimmung der Kometen und Planeten. Bd1), odnosimy je na epokę 1900.0, odrzucamy wyrazy, mające wpływ mniejszy niż $0^{\circ}01$ w ciągu tysiąclecia, czas wyrażamy w stuleciach i wszystko stosujemy dla Hidalgo.

Otrzymamy, co następuje:

Wpływ precesji na Hidalgo.

Einfluss der Präcessionswirkung auf Hidalgo.

$$\pi = \pi_0 + 1.398 \cdot t + 0.0003 \cdot t^2$$

$$\Omega = \Omega_0 + 1.389 \cdot t + 0.0003 \cdot t^2$$

$$i = i_0 + 0.012 \cdot t$$

Tab. 9

Następna tablica podaje łączny wpływ perturbacji wiekowych i precesji dla Hidalgo:

Perturbacje i precesja u Hidalgo.

Störungen und Präcession bei Hidalgo.

$$\pi = 77.96 - 0.817 \cdot t + 0.0003 \cdot t^2$$

$$\Omega = 21.22 + 0.458 \cdot t + 0.0003 \cdot t^2$$

$$i = 43.17 - 0.524 \cdot t$$

$$e = 0.6514 + 0.00776 \cdot t$$

Tab. 10.

Podobnież postępujemy dla Jowisza, przyczem korzystamy z gotowych już wyrażeń podawanych w rocznikach Connaissance des Temps, uwzględniających zarówno perturbacje jak i precesję:

Perturbacje i precesja u Jowisza.

Störungen und Präcession bei Jupiter.

$$\pi' = 12.72 + 1.610 \cdot t + 0.0011 \cdot t^2$$

$$\Omega' = 99.44 + 1.011 \cdot t + 0.0004 \cdot t^2$$

$$i' = 1.31 - 0.006 \cdot t$$

$$e' = 0.0483 + 0.00016 \cdot t$$

Tab. 11.

5. O przecięciu się orbity Hidalgo z orbitą Jowisza. Posiadanie analitycznych rozwinięć na elementy Jowisza i Hidalgo pozwala rozstrzygnąć pytanie, czy i kiedy orbity tych planet przetną się ze sobą. Warto zauważać, że przecięcie się orbit nie decyduje o spotkaniu się samych planet *). Wyznaczenia czasu przecięcia się orbit nie należy rozumieć zbyt dosłownie. Zarówno dlatego, że uwzględnia się tu jedynie wyrazy wiekowe, jak i z tego powodu, że nasze wzory w chwili przecięcia się tracą swą wartość. Wyznaczoną przez nas chwilę należy więc rozumieć jako epokę nierównowagi, w czasie której elementy ulegają bardzo wielkim zmianom, mogącym w zupełności przekształcić charakter orbity.

Chcąc wyznaczyć tak omówioną chwilę przecięcia się obu orbit zauważymy, że przecięcie to musi nastąpić w węźle. Jeżeli więc przez r i r' oznaczymy promienie wodzące Hidalgo i Jowisza w jednym z węzłów, to poszukiwaną chwilę znajdziemy przez rozwiązanie względem czasu równania:

$$r - r' = 0.$$

Znajdziemy z łatwością v i v' anomalie prawdziwe Hidalgo i Jowisza w węźle — przez rozwiązanie trójkąta, utworzonego przez dwie orbity i ekleptykę.

Dojdziemy do wzorów:

$$\sin I \sin (v + \omega) = \sin i' \sin (\Omega - \Omega')$$

$$\sin I \cos (v + \omega) = \sin i \cos i' - \cos i \sin i' \cos (\Omega - \Omega')$$

$$\sin I \sin (v' + \omega') = \sin i \sin (\Omega - \Omega')$$

$$\sin I \cos (v' + \omega') = -\cos i \sin i' - \sin i \cos i' \cos (\Omega - \Omega')$$

$$r = a (1 - e^2) : (1 - e \cos v)$$

$$r' = a' (1 - e'^2) : (1 - e' \cos v')$$

Tab. 12.

*) Cf W. Dziewulski: Säkuläre Marsstörungen in der Bewegung des Eros, Bull. de l'Acad. des Sciences de Cracovie. Décembre 1905.

Założymy w równaniach naszych $t = -10, -5, 0, +5, +10$:

t	— 10	— 5	0	+ 5	+ 10
900	900	1400	1900	2400	2900
π	86.16 ⁰	82.05 ⁰	77.96 ⁰	73.89 ⁰	69.82 ⁰
Ω	16.66	18.94	21.22	23.52	25.83
i	48.41	45.79	43.17	40.55	37.92
e	0.5738	0.6126	0.6514	0.6902	0.7290
π'	356.73 ⁰	4.70 ⁰	12.72 ⁰	20.80 ⁰	28.93 ⁰
Ω'	89.37	94.40	99.44	104.50	109.59
i'	1.37	1.34	1.31	1.28	1.25
e'	0.0467	0.0475	0.0483	0.0491	0.0499
$a(1-e'^2)$	3.835	3.571	3.291	2.993	2.679
$a'(1-e'^2)$	5.190	5.190	5.190	5.190	5.189
$e \cos v$	+ 0.2166	+ 0.2938	+ 0.3749	+ 0.4585	+ 0.5429
$e' \cos v'$	— 0.0454	— 0.0462	— 0.0469	— 0.0477	— 0.0488
r	3.152	2.760	2.394	2.052	1.736
r'	5.437	5.441	5.445	5.450	5.455
$r-r'$	— 2.285	— 2.681	— 3.051	— 3.398	— 3.719
r	4.895	5.057	5.265	5.527	5.861
r'	4.965	4.961	4.957	4.954	4.949
$r-r'$	— 0.070	+ 0.096	+ 0.308	+ 0.573	+ 0.912

Tab. 13.

Z tablicy 13 widzimy, że węzeł wstępujący nie daje rozwiązań w uważanym przedziale. Węzeł zstępujący zaś daje rozwiązanie:

$$t = -7.7, \text{ co odpowiada dacie 1130.}$$

6. *Zakończenie.* Tak więc nie możemy oczekiwac w przyszłości przecinania się dróg Hidalgo i Jowisza. W niedawnej jednak przeszłości, bo 800 lat temu takie przecięcie się miało miejsce. Być może, że wtedy właśnie perturbujące wpływy Jowisza wprowadziły zakłócenia do elementów Hidalgo i z normalnej planetoidy utworzyły ciało niebieskie wybiegające daleko poza obręb drogi Jowisza.

T A B L I C A I. S a t u r n.

<i>E</i>	<i>R</i> ₀	<i>S</i> ₀	<i>W</i> ₀
0			
0.00	— 0.041150	— 0.008151	— 0.006018
3.75	0.043401	0.006459	0.006452
7.50	0.045860	0.004347	0.006935
11.25	0.048495	— 0.001887	0.007490
15.00	0.051299	+ 0.000852	0.008132
18.75	0.054278	0.003800	0.008874
22.50	0.057466	0.006887	0.009726
26.25	— 0.060905	+ 0.010042	— 0.010698
30.00	— 0.064663	+ 0.013192	— 0.011787
33.75	0.068818	0.016253	0.012986
37.50	0.073469	0.019143	0.014280
41.25	0.078726	0.021755	0.015632
45.00	0.084719	0.023975	0.016491
48.75	0.091602	0.025663	0.018272
52.50	0.099547	0.026650	0.019354
56.25	— 0.108759	+ 0.026735	— 0.020063
60.00	— 0.119475	+ 0.025671	— 0.020158
63.75	0.131978	0.023160	0.019308
67.50	0.146605	0.018852	0.017073
71.25	0.163768	0.012341	0.012880
75.00	0.183954	+ 0.003174	— 0.006004
78.75	0.207757	— 0.009116	+ 0.004435
82.50	0.235862	0.024955	0.019438
86.25	— 0.269017	— 0.044628	+ 0.040042
90.00	— 0.307969	— 0.068145	+ 0.067160
93.75	0.353297	0.095080	0.101307
97.50	0.405171	0.124416	0.142294
101.25	0.463108	0.154521	0.188945
105.00	0.525624	0.183291	0.239004
108.75	0.590356	0.208529	0.289409
112.50	0.654235	0.228389	0.336829
116.25	— 0.714073	— 0.241792	+ 0.378388
120.00	— 0.767181	— 0.248565	+ 0.412204
123.75	0.811783	0.249327	0.437569
127.50	0.847191	0.245194	0.454815
131.25	0.873586	0.237440	0.464932
135.00	0.891777	0.227270	0.469219
138.75	0.902889	0.215690	0.469005
142.50	0.908154	0.203471	0.465497
146.25	— 0.908729	— 0.191148	+ 0.459679
150.00	— 0.905635	— 0.179085	+ 0.452337
153.75	0.899739	0.167497	0.444065
157.50	0.891733	0.156502	0.435283
161.25	0.882171	0.146146	0.426300
165.00	0.871450	0.136425	0.417298
168.75	0.859880	0.127313	0.408402
172.50	0.847709	0.118766	0.399706
176.25	— 0.835086	— 0.110729	+ 0.391231

T A B L I C A I. Saturn.

E	R_0	S_0	W_0
0			
180.00	— 0.822116	— 0.103142	+ 0.382984
183.75	0.808853	0.095942	0.374939
187.50	0.795324	0.089071	0.367067
191.25	0.781548	0.082473	0.359330
195.00	0.767493	0.076093	0.351668
198.75	0.753132	0.069883	0.344033
202.50	0.738406	0.063792	0.336345
206.25	— 0.723280	— 0.057783	+ 0.328562
210.00	— 0.707687	— 0.051816	+ 0.320614
213.75	0.691552	0.045859	0.312428
217.50	0.674815	0.039885	0.303946
221.25	0.657404	0.033874	0.295108
225.00	0.639252	0.027812	0.285860
228.75	0.620314	0.021695	0.276157
232.50	0.600509	0.015524	0.265950
236.25	— 0.579815	— 0.009313	+ 0.255217
240.00	— 0.558190	— 0.003089	+ 0.243935
243.75	0.535606	+ 0.003113	0.232098
247.50	0.512079	0.009245	0.219728
251.25	0.487615	0.015242	0.206846
255.00	0.462263	0.021028	0.193506
258.75	0.436088	0.026516	0.179776
262.50	0.409182	0.031604	0.165742
266.25	— 0.381692	+ 0.036184	+ 0.151524
270.00	— 0.353766	+ 0.040145	+ 0.137242
273.75	0.325611	0.043373	0.123046
277.50	0.297452	0.045763	0.109087
281.25	0.269554	0.047226	0.095530
285.00	0.242202	0.047693	0.082535
288.75	0.215699	0.047131	0.070260
292.50	0.190345	0.045540	0.058837
296.25	— 0.166437	+ 0.042966	+ 0.048381
300.00	— 0.144248	+ 0.039504	+ 0.038977
303.75	0.124004	0.035282	0.030667
307.50	0.105883	0.030474	0.023464
311.25	0.089997	0.025276	0.017341
315.00	0.076385	0.019897	0.012236
318.75	0.065022	0.014547	0.008065
322.50	0.055818	0.009423	0.004724
326.25	— 0.048629	+ 0.004696	+ 0.002095
330.00	— 0.043270	+ 0.000505	+ 0.000064
333.75	0.039529	— 0.003047	— 0.001483
337.50	0.037184	0.005893	0.002652
341.25	0.036013	0.008001	0.003535
345.00	0.035805	0.009370	0.004210
348.75	0.036368	0.010021	0.004747
352.50	0.037536	0.009997	0.005198
356.25	— 0.039167	— 0.009353	— 0.005610
Σ	— 19.335108	— 2.173239	+ 8.067077
Σ'	— 19.335130	— 2.173245	+ 8.067082

T A B L I C A II: Uranus.

E	$10^2 \cdot R_0$	$10^2 \cdot S_0$	$10^2 \cdot W_0$
0			
0.00	— 0.47464	— 0.09977	— 0.06957
11.25	0.57392	— 0.03451	0.09078
22.50	0.69107	+ 0.06813	0.12010
33.75	0.82653	0.18009	0.15872
45.00	0.99950	0.26777	0.20000
56.25	1.24581	0.29440	0.22347
67.50	1.61359	0.22335	0.18818
78.75	— 2.15803	+ 0.02387	— 0.02887
90.00	— 2.93162	— 0.31921	+ 0.33811
101.25	3.96802	0.79299	0.99234
112.50	5.26001	1.34714	1.97037
123.75	6.73884	1.89800	3.22548
135.00	8.27263	2.35112	4.61736
146.25	9.69339	2.63303	5.94947
157.50	10.84299	2.71301	7.03435
168.75	— 11.61160	— 2.60239	+ 7.74607
180.00	— 11.95052	— 2.33891	+ 8.03557
191.25	11.86430	1.96927	7.91735
202.50	11.39248	1.53810	7.44609
213.75	10.59476	1.08428	6.69838
225.00	9.54117	0.64119	5.76129
236.25	8.30748	— 0.23812	4.72533
247.50	6.97278	+ 0.09896	3.67879
258.75	— 5.61730	+ 0.34884	+ 2.70071
270.00	— 4.31953	+ 0.49654	+ 1.85347
281.25	3.15054	0.54157	1.17521
292.50	2.16825	0.49155	0.67693
303.75	1.40732	0.37133	0.34323
315.00	0.87899	0.21606	0.14166
326.25	0.56528	+ 0.06404	+ 0.03198
337.50	0.42683	— 0.05120	— 0.02274
348.75	— 0.41307	— 0.10800	— 0.05051
Σ	— 78.73660	— 9.53729	+ 40.95340
Σ'	— 78.73619	— 9.53645	+ 40.95320

der von mir „die Werte“ genannten Säulen, die die Störungen und die Anzahl der Spalten verursachen. Die vorliegende Abhandlung ist diejenige, die beruht darauf, dass die Anzahl der Spalten gleich ist als Argumente. Die Störungen können wir durch die Anzahl der Spalten abhängen. Von der Genauigkeit der Rechnung abhängen Spalten und von der Anzahl der Spalten. Beides muss berücksichtigt werden. In vorliegender Arbeit wurden die Säulenabzüge auf 36 Spalten, die Grenzstörungen auf 52 und diejenigen von Neptun auf 24 Spalten gerechnet.

Die Ausgangselemente der wahren Planeten und die von Levensher gewählten werden. Die Elemente von Neptun stammen von C. Vick A. 18. 216-220. Diese Elemente auf 1900.0 reduziert sind in der Tafel I des polnischen Teiles zusammengestellt. Unmittelbar aus den Elementen wurden die Rechnungskonstanten erhalten. Mit

T A B L I C A III: Neptun.

E	$10^2. R_0$	$10^2. S_0$	$10^2. W_0$
0			
0.0	— 0.12601	— 0.02614	— 0.01839
15.0	0.16027	+ 0.00115	0.02579
30.0	0.19972	0.03976	0.03665
45.0	0.25107	0.06883	0.04849
60.0	0.33548	0.06681	0.04959
75.0	0.48172	+ 0.01702	— 0.01498
90.0	0.71652	— 0.08644	+ 0.09161
105.0	— 1.05257	— 0.23384	+ 0.30473
120.0	— 1.47723	— 0.39912	+ 0.63540
135.0	1.94748	0.54599	1.05208
150.0	2.39652	0.64005	1.48107
165.0	2.75161	0.66051	1.83077
180.0	2.95459	0.60531	2.02571
195.0	2.97522	0.48860	2.03064
210.0	2.81433	0.33442	1.85600
225.0	— 2.49935	— 0.17040	+ 1.54854
240.0	— 2.07640	— 0.02299	+ 1.17476
255.0	1.60248	+ 0.08621	0.80293
270.0	1.13670	0.14409	0.48678
285.0	0.73157	0.14919	0.25555
300.0	0.42305	0.11273	0.11097
315.0	0.22639	0.05586	0.03481
330.0	0.13010	+ 0.00287	+ 0.00129
345.0	— 0.10746	— 0.02713	— 0.01175
Σ	— 14.78665	— 1.74821	— 7.75895
Σ'	— 14.78719	— 1.74821	— 7.75904

K. JANTZEN.

Über die säkuläre Störungen des Planeten (944) Hidalgo.

1. *Einleitung.* Die vorliegende Abhandlung ist eine Fortsetzung der von mir in N. 5 des „Bulletin astronomique de l'Observatoire de Wilno“ publizierter Arbeit. Ich beabsichtige hier die durch Saturn, Uranus und Neptun in Bahnelementen des Planeten (944) Hidalgo verursachten säkuläre Störungen auszurechnen. Somit gibt die vorliegende Arbeit im Anschluss sowohl mit der obenzitierten Abhandlung wie auch mit der Abhandlung J. Jantzen „Säkuläre Störungen des Planeten (944) Hidalgo durch die 4 inneren Planeten“ sämtliche säkuläre Hidalgostörungen.

2 *Recheneinzelheiten*. Die hier angewandte Rechenmethode ist diejenige von Gauss-Hill. Die Grundgedanke dieser Methode beruht darauf, dass der Kreis der excentrischen Anomalie auf eine Anzahl gleicher Teile geteilt werden soll und für die Teilungswerte als Argumente sollen gewisse Funktionenwerte ausgerechnet werden. Die Störungen stellen sich dann als Mittelwerte der obigen Funktionenwerte dar. Also hängt die Genauigkeit der Resultaten von zwei Faktoren ab: von der Genauigkeit der Rechnung in einzelnen Spalten und von der Anzahl der Spalten. Beides muss gut angepasst werden. In vorliegender Arbeit wurden die Saturnstörungen auf 96 Spalten, die Uranusstörungen auf 32 und diejenigen von Neptun auf 24 Spalten gerechnet.

Die Ausgangselemente der grossen Planeten sind die von Leverrier gewählt worden. Die Elemente von Hidalgo stammen von C. Vick A. N. 214—259. Diese Elemente auf 1900.0 reduziert sind in der Tafel 1 des polnischen Textes zusammengestellt. Unmittelbar aus den Elementen wurden die Rechnungskonstanten erhalten. Mit

Benutzung der Hillschen Bezeichnungsweise sind diese Konstanten in der Tafel 2 zu finden. In den am Ende der Abhandlung beigefügten Tafeln I, II, III, befinden sich die Störungskomponenten R_0 , S_0 , W_0 , entsprechend für Saturn, Uranus und Neptun. Die Werte der wahren Anomalien und der Radienvektoren waren schon in der Abhandlung über Jupitersstörungen publiziert worden und brauchen hier nicht wiederholt zu werden.

Das Gesamtresultat der Störungsrechnung ist in den Tafeln 4 und 5 zusammengestellt. Dabei wurde eine Verkürzung in Hillschen Bezeichnungsweise benutzt. Diese Verkürzung ist in der Tafel 3 zu sehen.

Die Tafel 6 enthält eine kurze Zusammenfassung der säkulären Störungen, die durch 8 Planeten verursacht wurden. Aus der Tafel 6 lassen sich die definitiven Resultate leicht ermitteln und sind in der Tafel 7 angegeben.

Es ist kaum nötig zu erwähnen, dass die benutzte Zeiteinheit das Julianische Jahr ist.

3. *Die Bahnelemente des Hidalgo als Funktionen der Zeit.* Die Kenntnis der säkulären Störungen allein lässt die Bahnelemente als Funktionen der Zeit nur in einer rohen Annäherung darstellen. Deswegen beschränken wir uns in weiterem nur auf eine geringe Genauigkeit von $0^{\circ}.01$ und in der Tafel 8 zeigen wir den säkulären Einfluss der Störungen auf die Hidalgoelemente.

Da in dieser Abhandlung die gegenseitige Stellung der beiden Bahnkurven von Jupiter und Hidalgo uns interessiert, so müssen wir noch die Präcessionswirkung berücksichtigen. Zu diesem Zweck benutzen wir die Oppolzerschen Präcessionsformeln, gemäss unseren beschränkten Genauigkeit vereinfachten, und stellen in der Tafel 9 den Einfluss dieser Wirkung dar.

Die Gesamtveränderung der Hidalgobahnelementen durch Präcession und säkulären Störungen ist in der Tafel 10 angegeben. Eine analoge Darstellung der Jupitersbahnelementen ist in der Tafel 11 zusammengestellt.

Die Bahn von Hidalgo durchsetzt sich räumlich mit der Bahn von Jupiter. Da die beiden Bahnen ihre gegenseitige Lage mit der Zeit ändern, so entsteht die Frage, ob und wann sie sich schneiden können.

Um die Frage näher zu untersuchen, müssen wir studieren, wie sich die beiden Planeten im gemeinsamen Knoten behalten. Es lassen sich sehr einfache Formeln ableiten, welche die Entfernung r und r' des Hidalgo bzw. Jupiters im gemeinsamen Knoten, als

Funktionen der Zeit darstellen. Dann wird die Schnittpunktepoche durch Auflösung nach der Zeit der Gleichung:

$$r - r' = 0$$

bestimmt.

Die Zusammenstellung 12 löst unsere Aufgabe auf. Da eine direkte Auflösung der Gleichung $r - r' = 0$ zu umständlich wäre, so wählen wir den Weg regula falsi, und setzen in unsere Gleichung den Wert $t = -10, -5, 0, +5, +10$ ein. (Jahrhunderte).

Die kurze Zusammenstellung in Tafel 13 der Rechnungsergebnisse zeigt, dass im aufsteigenden Knoten im betrachteten Zeitintervalle kein Schnitt stattfindet. Dagegen im absteigenden Knoten weist die Differenz $r - r'$ auf einen Zeichenwechsel im Intervalle $t = -10, -5$ hin.

Die Anwendung einer quadratischen Interpolation ergibt, dass $t = -7.7$ die Wurzel der Gleichung $r - r' = 0$ ist. Dies entspricht dem Jahre 1130 unserer Zeitrechnung.

Wir möchten unsere Ergebnisse mit der Bemerkung schliessen, dass die angegebene Zeitepoche 1130 nicht auf den Zusammenstoss der beiden Himmelskörper hinweisen braucht. Das Ergebniss soll vielmehr derartig aufgefasst werden, dass die erwähnte Epoche die Zeit eines starken und überwiegenden Einflusses des Jupiters war. Dieser Einfluss konnte die Hidalgoelemente gründlich ändern. Leider aber sind unsere heutigen mathematischen Leistungen zu schwach, um etwas genauer die Änderungen der Planetenelemente in der betrachteten Epoche darstellen zu können.

Wilno, 1925. Nov. 19.

Comparing the observed moment of minimum with the calculated:

Max. = J.D. 2420284

I receive as correction obs. - calc. for the moment of minimum = 63 days.

The brightness of RV Bootis oscillates between 2.6 and 11.7 steps, which correspond to 8°22' and 7°73' of the B.D. scale.

The mean error of each observation amounts to ± 2.6 , ± 2.0 , ± 0.7 in the Potzdem scale.

The curve represents the alterations of brightness of the star. In my case the brightness of 1 Vulpeculae oscillates between 7.3 and 10.2 mag., which correspond to 6^m36 and 5^m65 of the Potzdem scale.

W. DZIEWULSKI.

On the variable star RV Bootis.

I observed in Cracow the variable star RV Bootis since March 31th until Mai 2^d 1915. I made on the whole 80 observations with a four inches short focus refractor. For reference I used the following stars (the magnitudes are taken from the B.D. Catalogue):

star	B.D.	steps
B.D. + 31°2644	7 ^m 7	13.8
32°2511	7.9	6.3
32°2505	8.4	0.0

As starting point I took the elements of Hartwig:

$$\text{Max.} = \text{J.D. } 2419192 + 136 E$$

I observed the variable star RV Bootis during 2 maxima and 2 minima, but I grouped the observations according to the period to receive one correction for the moment of maximum and one for minimum. I studied especially the curve of brightness near maximum and minimum. As the mean moments I received:

$$\text{Max.} = \text{J.D. } 2420277.5$$

$$\text{Min.} = \text{J.D. } 2420197.6$$

Comparing the observed moment of maximum with the calculated:

$$\text{Max.} = \text{J.D. } 2420284$$

I receive as correction: obs. — calc. for the moment of maximum: — 6.5 days.

The brightness of RV Bootis oscillates between 2.8 and 11.7 steps, which correspond to 8^m22 and 7^m73 of the B.D. scale.

W. DZIEWULSKI.

On the variable star T Vulpeculae.

I observed in Cracow the variable star T Vulpeculae since June 25th until Mai 2^d 1915. I made on the whole 117 observations with a four inches short focus refractor. For reference I used the following stars (the magnitudes are taken from the Potsdam Catalogue = P.D.):

star	P.D.	steps
32 Vulpeculae	5 ^m 12	25.1
B.D. + 29°4121	5.73	14.9
" 29°4131	6.26	9.4
" 27°3909	6.88	0.0

As starting point I took the elements of Luizet, corrected by Guthnick:

$$J.D. 2409849.058 + 4.435521 E$$

The observations, expressed in units of my scale, were grouped according to the period; I formed 12 groups and then formed intermediate groups, which contained half of observations of two adjacent groups. I got the following mean values:

d.	st.	d.	st.
0.110	17.1	2.260	9.7
0.292	17.2	2.392	9.6
0.455	15.7	2.568	8.7
0.672	14.5	2.767	9.5
0.871	15.0	2.944	9.2
1.017	15.0	3.093	7.5
1.222	14.0	3.234	7.3
1.470	12.1	3.444	8.3
1.674	12.2	3.690	10.6
1.814	11.5	3.902	12.5
1.925	10.9	4.104	12.8
2.081	10.5	4.322	14.9

The mean error of each observation amounts to ± 2.6 , i. e. $\pm 0^m 18$ in the Potsdam scale.

The curve represents the alterations of brightness of the star. In my scale the brightness of T Vulpeculae oscillates between 7.3 and 17.2 steps, which correspond to $6^m 36$ and $5^m 65$ of the Potsdam scale.

I studied especially the curve of brightness near maximum and minimum. The mean epoch of maximum, calculated with the elements of Luizet and Guthnick, namely J.D. 2419833.416 needs a correction $+ 0.20$ days. For the difference between maximum and minimum I got: $M - m = 1.40$.

Guthnick solved 15 equations and received the mentioned results. I added the sixteenth equation for the determined moment of maximum and solved these 16 equations. I received a correction for the epoch: $- 0^d 006$ and for the period $+ 0^d 000038$, i.e.

J.D. 2409849.052 + 4.435559 E

ERRATA

dans le mémoire

Sur la libration des périhéliés de petites planètes

(Bulletin № 6)

page 4 ligne 5 au lieu de: $\frac{d\eta}{dt} = + b\xi + \sum_{i=1}^8 [0 . i] \xi_i$
lisez: $\frac{d\eta}{dt} = + b\xi - \sum_{i=1}^8 [0 . i] \xi_i$
