计算机学院专业基础课

计算机组成原理实验 串行通信接口 (补充材料,自学)

高小鹏

北京航空航天大学计算机学院 系统结构研究所

为什么需要串行通讯?

- 衡量通讯系统的若干指标
 - 性能
 - ■距离
 - 成本
- 总线: 并行通讯的主要实现方式

指标	性能	距离	成本
总线		短8	高窓

并行通讯特点

- 传输线数目没有限制
- 通信联络控制线
 - READY
 - BUSY
 - ACK

串行通信基本特点

- 单一传输线
 - 控制与数据
- 通讯协议
 - 异步通信
 - ■同步通信
- 电平
- 第三个特点是串行通信中在传输线上对信息 的逻辑定义与TTL不兼容,因此,需要进行 逻辑电平转换。

调制方式

- ASK(振幅调制)
- PSK(相移调制)
- FSK(频移调制)

Project: 只涉及2端 数字部分,不含调制

发送

- 并串转换寄存器
 - 并行写入: 多位数据同时被加载至寄存器
 - 移位输出: 寄存器逐位移位, 先输出低

Project的设计目标

串行通信协议

- 异步串行
- 同步串行
 - ■面向字符
 - 面向比特
 - ■面向字节

串行通信协议

- 通信协议: 通信双方的一种约定
 - 数据格式
 - 同步方式
 - 传送速度
 - 传送步骤
 - 检纠错方式
 - 控制字符定义

异步通信的核心问题

- 字符发送是随机的
- 问题核心是接收方如何实现字符识别
- 发送方必须提供起始判断和结束判断
 - 起始位
 - 停止位

Project的设计目标

起止式异步通讯数据格式

■ 数据帧: 起始位+数据位+校验位+停止位

1个字符:可以是7位数据,也可以是8位数据

发送过程

- ■空闲
 - 发送空闲位: 1
- ■数据
 - 发送起始位: {0: 1位}
 - 发送数据位:7位
 - 发送校验位: 可以没有
 - 发送停止位: {1: 1位/1.5位/2位}

Project: 1位起始, 8位数据, 无校验, 1位停止

接收过程

- 采样信号线
- 状态机+计数器

Project: 不要求

起/止位作用

- 提供字符分界
- 收发双方时钟同步
 - 收发双方的时钟不可能绝对同步
 - ■时钟误差积累
 - 检测到起始位→计数器重新启动

异步通信性能

■ 假设: 8位数据位,1位停止位

效率 =
$$\frac{数据位}{2+数据位+停止位}$$
= $\frac{8}{2+8+1}$
= 72.7%

面向比特的同步通信数据格式

- 数据域中的有效载荷: 任意位
- 帧起始和帧结束: 特定位组合

Project: 不要求

串行通信接口标准

- 接口标准要解决的问题
 - 通信双方在物理层面如何互联
- 接口标准的本质
 - 一组计算机和外设间双方共同遵循的约定
- 接口标准的内容
 - 电缆的机械
 - 电气特性
 - 信号功能
 - 0 0 0

串行通信接口标准

- RS-232
- RS-422A
- RS-485

Project: 针对RS-232协议

RS-232:包括核心芯片和外围芯片 Project:只涉及核心芯片(且很简单)

串行通信接口部件的主要功能

- 数据格式化
- ■串↔并转换
- 控制传输速率
- 错误检测
- 电平转换
- 连接MODEM

Project: 串并转换, 其余不要求

串行通信接口部件的构成

- 核心
 - 商用可编程串行接口芯片
- 少量外围
 - 电平转换
 - ■隔离
 - 0 0 0

Project: 设计"核心", 不涉及"外围"

串行接口芯片

- 功能
- 软硬件界面

串行接口芯片一功能

- 数据格式化
- ■串↔并转换
- 控制传输速率
- 波特率发生
- 错误检测
- 连接MODEM
- 中断

Project:不涉及 错误检测、连接 MODEM、中断

串行接口芯片一软硬件界面

- 寄存器组
 - 控制
 - ■状态
 - ■数据

UART寄存器

Project: 寄存器与此不同

DLAB	A[2:0]	寄存器	PC地址
0	000	接收缓冲区(R)	3F8H
		发送保持寄存器(W)	
0	001	中断允许寄存器	3F9H
X	010	中断识别寄存器(R)	3FAH
X	011	线路控制寄存器	3FBH
X	100	MODEM控制寄存器	3FCH
X	101	线路状态寄存器	3FDH
X	110	MODEM状态寄存器	3FEH
1	000	除数锁存器(H)	3F8H
1	001	除数锁存器(L)	3F9H

■ 10个寄存器,3位地址编码

设计串行接口部件

- CPU接口
 - 数据信号
 - 地址信号
 - 控制信号-R、W、地址使能
 - 译码逻辑一片选
- 通讯接口
 - ■电平变换

Project: MiniUART的CPU接口为WISHBONE协议

(一种芯片内互连总线协议) STB: 片选—CPU决定读写设备 WE: 指示当前操作时读or写

A: 地址信号, 位数由MiniUART的寄存器数决定

DIN: CPU写入的数据,32位 DOUT:设备输出的数据,32位

串行通讯模式一查询模式

- 通过软件循环查询UART的状态寄存器
- 发送和接收都组织在某个相应循环中
- CPU利用率低
 - 大量时间用于查询状态
 - 造成空等待或者发送接收性能低下

串行通讯模式一中断模式

- 中断响应: 发送? 接收?
- 8259编程
- 关键问题: 同步
 - 并发: 主循环流程与中断服务程序
 - ■配合:同步与互斥

Project: 不要求