GENETIC ALGORITHM AND PROGRAMMING, AND THEIR APPLICATION

OVERVIEW

- What is Genetic Algorithm: one-max, TSP
- What is Genetic Programming: symbolic regression, even parity bit generator

WHAT IS GENETIC ALGORITHM?

Genetic Algorithm (GA)

- A meta-heuristic algorithm that mimics the evolution process in nature: survival of the fittest

Natural Selection

WHAT IS GENETIC ALGORITHM?

WHAT IS GENETIC ALGORITHM?: OVERFLOW

GA: POPULATION INITIALISATION

Population Initialisation

- Random Initialisation
- Heuristic Initialisation

GA: FITNESS FUNCTION

Fitness Evaluation

Should quantitatively measure how fit an individual solution is

Fast to compute

- Crossover *
- Mutation

- Crossover *
- Mutation

Evolution (crossover & mutation)

- Crossover *
- Mutation

Natural selection (fittest) & Avoid early convergence

Tournament Selection

K (e.g., = 4) individuals to participate in the tournament

- Crossover *
- Mutation

- Crossover
- Mutation *

GA: ONE-MAX PROBLEM EXAMPLE

One Max problem:

maximise the number of ones in a bitstring => Fitness

- Individual: a binary list
- Population: a population of size 300
- Crossover: ind | [:i] <-> ind2[:i]
- Mutation: flip i'th bit

GA: TRAVELLING SALESMAN PROBLEM (EXERCISE)

THETRAVELLING SALESMAN PROBLEM

WHAT'S THE SHORTEST ROUTE TO VISIT ALL LOCATIONS AND RETURN?

Travelling Salesman Problem (NP-hard)

- Individual: a single visiting order (List)
- Fitness:
 - Minimise the total distance when visiting the cities sequentially as indicated in the individual
- Crossover:
 - a single-point crossover (tools.cxOrdered)
- Mutation:
 - shuffling (tools.mutShuffleIndexes)

GENETIC PROGRAMMING IS A SPECIFIC BRANCH OF GENETIC ALGORITHM

Genetic Algorithm: automatically evolve a good-enough solution for a given problem

Genetic Programming: automatically evolve a good-enough "program" for a given problem

GENETIC PROGRAMMING IS A SPECIFIC BRANCH OF GENETIC ALGORITHM

GP OVERFLOW: THE SAME AS GA

Define Primitives

Primitives:

 the smallest unit of processing available in a programming language

~= define internal nodes of a syntax tree

- Crossover
- Mutation

GENETIC PROGRAMMING: INDIVUDAL EVALUATION

GP: SYMBOLIC REGRESSION

Symbolic Regression

- Individual: a candidate expression f'
- Fitness:
 - Minimise the mean squared error between f'(x) and f(x)
- Crossover:
 - a single-point crossover (gp.cxOnepoint)
- Mutation:
 - a sinple-point replacement (gp.mutUniform)
- Primitives: add, multiply, subtract, negative, etc.

GP:EVEN PARITY GENERATOR (EXERCISE)

Even Parity Bit Generator

- Individual: a candidate expression G'
- Fitness:
 - Maximise the number of correctly computed even parity bits
 - ... Or Minimise the number of wrongly computed even parity bits
- Crossover:
 - a single-point crossover (gp.cxOnepoint)
- Mutation:
 - shuffling (gp.mutUniform)

APPLICATION OF GP: SPECTRUM BASED FAULT LOCALISATION

Localise the fault that caused the observed failure

Spectrum-Based Fault Localisation (SBFL)

"The code is more likely to be faulty if it is executed by less passing test cases and more failing test cases"

Risk evaluation formula \rightarrow Ochiai = $\frac{1}{\sqrt{(e_f + e_f) \times (e_f + e_p)}}$									
	t_1	t_2	t_3	Spectrum				Ochiai	Rank
	(PASS)	(FAIL)	(PASS)	e_p	e_f	n_p	n_f	Ociliai	Naiik
p_1	>			1	0	1	1	0.00	4
p_2		~		0	1	2	0	1.00	1
p_3		✓	~	1	1	1	0	0.71	2
p_4	✓	✓	✓	2	1	0	0	0.58	3

APPLICATION OF GENETIC PROGRAMMING IN FAULT LOCALISATION

Shin Yoo. "Evolving Human Competitive Spectra-Based Fault Localisation Techniques", SSBSE' I 2

Minimise the average expense (E) for a set of bugs

GP Operaters (Primitives):

addition, subtraction, multiplication, division, square root

Terminal Symbols: spectrum (e_p, e_f, n_p, n_f)

GENETIC PROGRAMMING AND GENETIC ALGORITHM IN MY RESEARCH

 GP as a learning algorithm to generate an effective FL model in FLUCCS

 GA to construct an effective candidate set of FL models for voting in EMF

GP as a learning algorithm in Defect Prediction

SUMMARY

- As long as a problem can be re-defined as a search problem, Genetic Programming (GP) can be used to solve diverse software engineering problems.
- DEAP is an evolutionary computation framework with broad applicability that allows users to define their own types, initialisation methods, and algorithms.