# Nonconvex Power Control in Ad Hoc Wireless Networks

Chee Wei Tan

City University Hong Kong

Lake Arrowhead IPAM Workshop 8th June 2010

#### Acknowledgement

- Mung Chiang (Princeton)
- R. Srikant (Uni. of Illinois at Urbana-Champaign)
- Steven Low (Caltech)
- Shmuel Friedland (Uni. of Illinois at Chicago)

#### What makes a problem easy or hard

- ... the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.  $-SIAM\ Review\ 1993,\ R.\ Rockafellar$
- Linear inequality theory & nonconvex integer programming (1947)
- Semidefinite matrix theory & nonconvex quadratic programming (1995)
- Nonnegative matrix theory & nonconvex cone programming (this talk)

#### **Motivation**

- Wireless Network Power Control in IS-95, CDMA 2000, 3G-4G
- Rayleigh Fading, Multiple Antennas etc



## System Model



(a) Cellular wireless network

(b) Interference channel

#### Power Control & Performance Metrics

Signal-to-Interference Ratio:

$$\mathsf{SIR}_l(\mathbf{p}) = rac{G_{ll}p_l}{\displaystyle\sum_{j 
eq l} G_{lj}p_j + n_l}$$

with  $G_{lj}$  the channel gains from transmitter j to receiver l and  $n_l$  the additive white Gaussian noise (AWGN) power at receiver l

• Power constraints  $\mathbf{p} \in \mathcal{P}$ , e.g.,  $\mathbf{p} \leq \mathbf{\bar{p}}$  (Uplink),  $\mathbf{1}^{\mathsf{T}}\mathbf{p} \leq \mathbf{\bar{P}}$  (Downlink)

### Max-min Weighted SIR

• Let \( \beta \) be a priority weight vector

$$\begin{array}{ll} \text{maximize} & \min_{l} \frac{\mathsf{SIR}_{l}(\mathbf{p})}{\beta_{l}} \\ \text{subject to} & p_{l} \leq \overline{p}_{l} \ \ \forall \ l \end{array}$$

- How to solve this nonconvex problem?
- Fast algorithm? Fast in what sense?

#### Max-Min Weighted SIR: Analytical Solution

• **Theorem 1.** The optimal solution is such that the value  $SIR_l/\beta_l$  for all users are equal. The optimal weighted max-min SIR is given by

$$\gamma^* = \frac{1}{\rho(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_i)\mathbf{ve}_i^{\mathsf{T}}))},\tag{1}$$

where

$$i = \arg\min_{l} \frac{1}{\rho(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_l)\mathbf{v}\mathbf{e}_l^{\top}))}.$$
 (2)

Further, all links i that achieve the minimum in (2) transmit at peak power  $\bar{p}_i$  and the rest do not. Further, the optimal  $\mathbf{p}$ , denoted by  $\mathbf{p}^*$ , is  $t\mathbf{x}(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p}_l)\mathbf{v}\mathbf{e}_l^{\mathsf{T}}))$  for some constant t > 0.

#### Conditional Affine Eigenvalue Problem

ullet Find  $(\check{\lambda},\check{\mathbf{s}})$  in

$$\lambda \mathbf{s} = \mathbf{A}\mathbf{s} + \mathbf{b}, \quad \lambda \in \mathbb{R}, \quad \mathbf{s} \ge \mathbf{0}, \quad \|\mathbf{s}\| = 1,$$
 (3)

where A and b is a square irreducible nonnegative matrix and nonnegative vector, respectively and  $\|\cdot\|$  a monotone vector norm.

•  $(\check{\lambda},\check{\bf s})$  is the Perron-Frobenius eigenvalue and vector pair of  ${\bf A}+{\bf bc}_*$ , where

$$\mathbf{c}_* = \arg\max_{\|\mathbf{c}\|_* = 1} \rho(\mathbf{A} + \mathbf{b}\mathbf{c}^\top), \tag{4}$$

where  $\|\cdot\|_*$  is the dual norm of  $\|\cdot\|_*$ , and  $\check{\mathbf{s}} = (\mathbf{A}\check{\mathbf{s}} + \mathbf{b})/\|\mathbf{A}\check{\mathbf{s}} + \mathbf{b}\|_*$ .

An affine eigenvalue problem on the nonnegative orthant, V. D. Blondel, L. Ninove and P. Van Dooren, Linear Algebra & its Applications, Vol. 404, 2005

#### Max-min SIR & Conditional Affine Eigenvalue

• Individual power constraints  $(\bar{p}_1 = \bar{p}_2 = \cdots = \bar{p}_L = \bar{p})$ :

$$\mathsf{SIR}_{l}(\mathbf{p}^{*}) = \tau^{*}\beta_{l} \ \Rightarrow \ \frac{(p_{l}^{*}/\bar{p})}{\sum_{j\neq l} F_{lj}(p_{l}^{*}/\bar{p}) + (v_{l}/\bar{p})} = \tau^{*}\beta_{l} \quad (5)$$

Let  $\mathbf{s}^* = (1/\bar{p})\mathbf{p}^*$ :

$$(1/\tau^*)\mathbf{s}^* = \mathsf{diag}(\boldsymbol{\beta})\mathbf{F}\mathbf{s}^* + (1/\bar{p})\mathsf{diag}(\boldsymbol{\beta})\mathbf{v}, \|\mathbf{x}\|_{\infty} = 1$$
 (6)

- Conditional eigenvalue problem:
  - $s_l = p_l/\bar{p}_l$ ,  $\mathbf{A} = \operatorname{diag}(\boldsymbol{\beta})\mathbf{F}$ ,  $\mathbf{b} = (1/\bar{p})\operatorname{diag}(\boldsymbol{\beta})\mathbf{v}$  and  $\lambda = 1/\tau^*$
  - $\blacksquare \|\cdot\| = \|\cdot\|_{\infty} \longleftrightarrow \|\cdot\|_{*} = \|\cdot\|_{1} \quad \& \quad \mathbf{c}_{*} = \mathbf{e}_{i}$
  - $(\check{\lambda}, \check{\mathbf{s}})$  is the Perron-Frobenius eigenvalue and vector pair of  $\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p})\mathbf{v}\mathbf{e}_i^{\mathsf{T}})$

#### A Max-min SIR Algorithm

- Algorithm 1. [Equal power constrained Max-min SIR]
  - 1. Update power  $\mathbf{p}(k+1)$ :

$$p_l(k+1) = \frac{\beta_l}{\mathsf{SIR}_l(\mathbf{p}(k))} p_l(k) \ \forall \ l.$$

2. Normalize  $\mathbf{p}(k+1)$ :

$$p_l(k+1) = p_l(k+1) / \max_j p_j(k+1) \cdot \bar{p} \ \forall \ l.$$

• Theorem 2. Starting from any initial point  $\mathbf{p}(0)$ ,  $\mathbf{p}(k)$  in Algorithm 1 converges geometrically fast to  $\mathbf{x}(\operatorname{diag}(\boldsymbol{\beta})(\mathbf{F} + (1/\bar{p})\mathbf{v}\mathbf{e}_i^{\mathsf{T}}))$  (unique up to a scaling constant).

#### Interlude: Nonlinear Perron-Frobenius Theory

ullet A mapping T:K o K is concave if

$$T(a\mathbf{x}+(1-a)\mathbf{y}) \ge aT\mathbf{x}+(1-a)T\mathbf{y}$$
 for all  $\mathbf{x},\mathbf{y} \in K$  and  $a \in [0,1],$  and montone if  $\mathbf{0} \le \mathbf{x} \le \mathbf{y}$  implies  $\mathbf{0} \le T\mathbf{x} \le T\mathbf{y}$ .

• Theorem 3. [Krause01] Let  $\|\cdot\|$  be a monotone norm on  $\mathbb{R}^L$ . For a concave mapping  $f: \mathbb{R}_+^L \to \mathbb{R}_+^L$  with  $f(\mathbf{z}) > 0$  for  $\mathbf{z} \geq \mathbf{0}$ , the following statements hold. The conditional eigenvalue problem  $f(\mathbf{z}) = \lambda \mathbf{z}, \ \lambda \in \mathbb{R}, \ \mathbf{z} \geq \mathbf{0}, \ \|\mathbf{z}\| = 1$  has a unique solution  $(\lambda^*, \mathbf{z}^*)$ , where  $\lambda^* > 0$ ,  $\mathbf{z}^* > \mathbf{0}$ . Furthermore,  $\lim_{k \to \infty} \tilde{f}^k(\mathbf{z})$  converges geometrically fast to  $\mathbf{z}^*$ , where  $\tilde{f}(\mathbf{z}) = f(\mathbf{z})/\|(\mathbf{z})\|$ .

#### Interlude: Nonlinear Perron-Frobenius Theory

- $T\mathbf{p} = \mathbf{F}\mathbf{p}$ , where  $\mathbf{F}$  is a irreducible nonnegative matrix
  - Classical (Linear) Perron-Frobenius Theory
  - Power Method:  $\mathbf{p}(k+1) \leftarrow \frac{\mathbf{F}\mathbf{p}(k)}{\|\mathbf{F}\mathbf{p}(k)\|}$ , &  $\lim_{k\to\infty}\mathbf{p}(k) = \mathbf{x}(\mathbf{F})$
- $T\mathbf{p} = \mathbf{F}\mathbf{p} + \mathbf{v}$ , where  $\mathbf{v}$  is a nonnegative vector
  - Conditional Affine Eigenvalue Problem[BlondelNinoveVanDooren05]
- Other interesting  $T\mathbf{p}$ ? How to handle different constraints on  $\mathbf{p}$ ?

#### Probabilistic Max-min Weighted SIR

• Under Rayleigh fading, power received from the jth transmitter at lth receiver is given by  $G_{lj}R_{lj}P_j$  and exponentially distributed with mean  $E[G_{lj}R_{lj}p_j] = G_{lj}p_j$  ( $R_{lj}$  models Rayleigh fading - unit mean exponential random variable).

```
minimize \max_{l} P(\mathsf{SIR}_{l}(\mathbf{p}) < \beta_{l}) subject to \mathbf{p} \in \mathcal{P}, variables: \mathbf{p},
```

- How to solve this nonconvex chance-constrained problem?
- Fast algorithm?

#### An Equivalent Deterministic Problem

Under Rayleigh Fading [KandukuriBoyd02, Haenggi04]:

$$P(\mathsf{SIR}_l(\mathbf{p}) < \beta_l) = 1 - e^{-v_l \beta_l/p_l} \prod_j \left( 1 + \frac{\beta_l F_{lj} p_j}{p_l} \right)^{-1}$$

• Deterministic optimization to a chance-constrained problem:

$$\begin{array}{ll} \text{minimize} & \max_l \ 1 - e^{-v_l\beta_l/p_l} \prod_j \left(1 + \frac{\beta_l F_{lj} p_j}{p_l}\right)^{-1} \\ \text{subject to} & \mathbf{p} \in \mathcal{P}, \\ \text{variables:} & \mathbf{p}, \end{array}$$

• When v = 0, use geometric programming [KandukuriBoyd02]

### Reformulation & Optimality

A nonconvex problem with hidden convexity:

$$\begin{array}{ll} \text{minimize} & \alpha \\ \text{subject to} & v_l\beta_l/p_l + \sum_j \log\left(1 + \frac{\beta_l F_{lj} p_j}{p_l}\right) \leq \alpha \ \, \forall \, l, \\ & \mathbf{p} \in \mathcal{P}, \\ \text{variables:} & \mathbf{p}, \, \alpha. \end{array}$$

- Use logarithmic change of variable and interior point method.
   But can we say more?
- At optimality:

$$v_l \beta_l / p_l^{\star} + \sum_j \log \left( 1 + \frac{\beta_l F_{lj} p_j^{\star}}{p_l^{\star}} \right) = \alpha^{\star} \text{ for all } l$$

# Connection to Nonlinear Perron-Frobenius Theory

• Denote a matrix  $\mathbf{B}$  with the entries (that are functions of  $\mathbf{p}$ ):

$$B_{lj} = \begin{cases} 0, & \text{if } l = j\\ \frac{p_l}{\beta_l p_j} \log\left(1 + \frac{\beta_l F_{lj} p_j}{p_l}\right), & \text{if } l \neq j. \end{cases}$$

 Examine optimality condition using the nonlinear Perron-Frobenius theory:

$$f_l(\mathbf{p}) = \beta_l((\mathbf{B}(\mathbf{p})\mathbf{p})_l + v_l) = \alpha_l p_l$$
 for all  $l$ , with  $\mathbf{p} \in \mathcal{P}$ .

• Prove Concavity by Perspective Function: If f(x) is convex, then its perspective function tf(x/t) is also convex.

## Comparison

| Concave Self-mapping $T\mathbf{p}$                                                                | Perron eigenvalue                                                          |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| First part (deterministic max-min SIR)                                                            |                                                                            |
| $(\mathbf{Fp} + (1/\bar{p})\mathbf{v})_l$ ,                                                       | $\rho \left( \mathbf{F} + (1/\bar{p}) \mathbf{v} \mathbf{e}_i^{T} \right)$ |
| $i = \arg \max_{l} \rho \left( \mathbf{F} + (1/\bar{p}) \mathbf{v} \mathbf{e}_{l}^{\top} \right)$ | ,                                                                          |
| $(\mathbf{Fp} + (1/\bar{P})\mathbf{v})_l$                                                         | $\rho\left(\mathbf{F} + (1/\bar{P})\mathbf{v}1^{\top}\right)$              |

• The fixed point in each above system, i.e., optimal power, is the Perron-Frobenius eigenvector

## Comparison

| Concave Self-mapping $T\mathbf{p}$                                                                                                          | Perron eigenvalue                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| First part (deterministic max-min SIR)                                                                                                      |                                                                                                                        |
| $(\mathbf{Fp} + (1/\bar{p})\mathbf{v})_l$                                                                                                   | $\rho\left(\mathbf{F} + (1/\bar{p})\mathbf{v}\mathbf{e}_i^{T}\right)$                                                  |
| $i = \arg \max_{l} \rho \left( \mathbf{F} + (1/\bar{p}) \mathbf{v} \mathbf{e}_{l}^{\top} \right)$                                           |                                                                                                                        |
| $(\mathbf{Fp} + (1/\bar{P})\mathbf{v})_l$                                                                                                   | $\rho \left( \mathbf{F} + (1/\bar{P}) \mathbf{v} 1^{\top} \right)$                                                     |
| Second part (probabilistic max-min SIR)                                                                                                     |                                                                                                                        |
| $v_l \beta_l + \sum_j p_l \log \left( 1 + \frac{\beta_l F_{lj} p_j}{p_l} \right)$                                                           | $\rho\left(\mathbf{B}(\mathbf{p}^{\star}) + (1/\bar{p})diag(\boldsymbol{\beta})\mathbf{v}\mathbf{e}_{i}^{\top}\right)$ |
| $i = rg \max_{l}  ho \left( \mathbf{B}(\mathbf{p}^{\star}) + (1/\bar{p}) diag(\boldsymbol{\beta}) \mathbf{v} \mathbf{e}_{l}^{\top} \right)$ |                                                                                                                        |
| $v_l \beta_l + \sum_j p_l \log \left( 1 + \frac{\beta_l F_{lj} p_j}{p_l} \right)$                                                           | $\rho \left(\mathbf{B}(\mathbf{p}^{\star}) + (1/\bar{P}) diag(\boldsymbol{\beta}) \mathbf{v} 1^{\top} \right)$         |

• The fixed point in each above system, i.e., optimal power, is the Perron-Frobenius eigenvector

#### Solve Previous Open Problems

ullet No-noise  $(\mathbf{v}=\mathbf{0})$  case **[KandukuriBoyd02]** 'heuristic':

$$\mathbf{p}(k+1) \leftarrow \mathsf{diag}(\boldsymbol{\beta})\mathbf{B}(\mathbf{p}(k))\mathbf{p}(k)$$

converges from any initial point

• Multiple antenna case [WieselEldarShamai04]:

$$(T\mathbf{p})_{l} = \frac{1}{\mathbf{u}_{l}^{\dagger}\mathbf{H}_{l}(\sum_{j=1}^{L} p_{j}\mathbf{H}_{j}\mathbf{H}_{j}^{\dagger} + \mathbf{I})^{-1}\mathbf{H}_{l}^{\dagger}\mathbf{v}_{l}}$$

and convergence of 'heuristic'

Concavity, Monotonicity & 'Power Method'

#### Extensions & Applications

- Link nonconvex nonnegative cone programming and nonnegative matrix theory
- Fundamental spectral radius minimax theorem [FriedlandKarlin75]
- Convergence rate: How to quantify the 'nonlinear' second largest eigenvalue?
- Intriguing link to other applications:
  - network resource allocation (arbitrarily affine constraints)
  - network traffic estimation, network data mining (nonnegative matrix factorization) . . .
- Nonnegative nonconvex optimization is 'interesting'

#### Thank You

http://www.cs.cityu.edu.hk/~cheewtan

cheewtan@cityu.edu.hk