## Nan's and Infs

1) I would guess nan because you are dividing by 0.

Both 0.\* (numerator/denominator) = nan and denominator\* (numerator/denominator) = nan

## Bound States by Matrix Diagonalization

1) Compare with classmates, or check online

| Rmax | N   | EigV 1     | Eig Vz          |
|------|-----|------------|-----------------|
| 5    | 20  | 1.681778   | 5.683030        |
| 3    | 3 5 | 1.683614   | <b>5.107588</b> |
| 5    | 50  | 1.684067   | 5.113673        |
| 4    | 20  | 1.510321   | 3.757758        |
| ч    | 50  | 1. 512985  | 3.777574        |
| 4    | 100 | 1. 5134 59 | 3.781109        |



The value at r=0 should be 0 because it is a bound.

3) The maximum  $\mu(r)$  is at r=1.5.4 is sufficiently large, but not too large.



5) Scales error around 2, which goes along with our chapter 5 noks. Equation 5.13) has

 $\frac{d^2u}{dr^2} = \frac{u(r+h) - 2u(r) + u(r-u)}{h^2} + O(n^2)$ 

## Bound States from Diag. Hamiltonian

I) E1 =-45.93207286 E2 =-33.8732994

E3 =-14.52481776

3) Coulomb/Square Well Potential:2

b:1

dimunsion: 40

give the closest results to the "exact" takes from mathematica. b is close to the same order as

- 4) The square well potential is most effective at estimating the lowest 3 eigenvalues correctly
- 5) Square Well, fixed Liminsian = 40

| b   | Lowest Eval |                  |  |
|-----|-------------|------------------|--|
| .09 | -45.854     |                  |  |
| . 1 | -45.925     | Actual           |  |
| .2  | -45.931     | E1 =-45.93207286 |  |
| .3  | -45.430     | do sest @ b=2    |  |
| .5  | -45.927     |                  |  |
| l   | - 45. 893   |                  |  |
| 2   | -45.668     |                  |  |

## 6) Square WUI fixed @ b=.2



As the dimension increases, the E1 estimation opers closer to the exact value.

