Package 'kendallRandomWalks'

October 13, 2022

	Simulate and Visualize Kendall Random Walks and Related Distributions
Versio	n 0.9.4
] 1	ption Kendall random walks are a continuous-space Markov chains generated by the Kendall generalized convolution. This package provides tools for simulating these random walks and studying distributions related to them. For more information about Kendall random walks see Jasiulis-Goldyn (2014) <arxiv:1412.0220>.</arxiv:1412.0220>
Depen	ds R (>= 3.3)
Licens	e MIT + file LICENSE
Encod	ing UTF-8
LazyD	Pata true
Impor	ts ggplot2, dplyr, tibble, actuar
Roxyg	enNote 6.1.0
Sugge	sts knitr, rmarkdown, testthat, covr
Vignet	teBuilder knitr
Needs	Compilation no
Autho	r Mateusz Staniak [aut, cre]
Maint	ainer Mateusz Staniak <mateusz.staniak@math.uni.wroc.pl></mateusz.staniak@math.uni.wroc.pl>
Repos	itory CRAN
Date/F	Publication 2018-08-04 21:40:02 UTC
R to	pics documented:
	dkend

2 dkend

dken	d PDF of Kendall stable distribution	
Index		21
	Z	20
	U	
	transform_kendall_rw	
	summarise_kendall_rw	
	simulate_kendall_rw	
	simulateOneTrajectory	
	rkend	
	Qn	
	qkendSym	
	qkend	
	print.kendall_summary	
	print.kendall_simulation	14
	print.kendall_barrier_crossing	
	plot.kendall_summary	13
	plot.kendall_simulation	13
	plot.kendall_fit	12
	plot.kendall_barrier_crossing	12
	pkendSym	11
	pkend	11
	mutate_kendall_rw	
	ladder_moment_pmf	
	ladder_moment	
	ladder_height	
	kendall_loglik	
	kendallRandomWalks	
	g_function_single	
	g function	- (

Description

PDF of Kendall stable distribution

Usage

dkend(m_alpha)

Arguments

m_alpha function giving moments of order alpha of step dist.

Value

function that returns values of the PDF

estimate_stable_alpha 3

Examples

```
dKend <- dkend(function(x) 1)
# Step distribution: delta_{1}
dKendall <- dKend(1:10, 0.5)
# Values of PDF for arguments 1:10 and alpha = 0.5</pre>
```

estimate_stable_alpha Fit alpha parameter using MLE for distribution with one parameter

Description

Fit alpha parameter using MLE for distribution with one parameter

Usage

```
estimate_stable_alpha(data)
```

Arguments

data

Numeric vector

Value

list with optimal parameter and loglikelihood value

fit_kendall

Fit stable Kendall distribution for given data and m_alpha function.

Description

Fit stable Kendall distribution for given data and m_alpha function.

Usage

```
fit_kendall(data)
```

Arguments

data

Numeric vector of observation to which the distribution will be fitted.

Value

fitted quantiles

fit_stable_alpha

fit_separate

Function for fitting stable Kendall distribution separately to two parts of data

Description

Function for fitting stable Kendall distribution separately to two parts of data

Usage

```
fit_separate(data, separation_point)
```

Arguments

data Numeric vector. Observation to which the distribution will be fitted. separation_point

Order above which data (quantiles) will be separated.

Value

List of class kendall_fit with estimated and theoretical quantiles and estimated parameters.

fit_stable_alpha

Fit stable Kendall distribution with one parameter (alpha)

Description

Fit stable Kendall distribution with one parameter (alpha)

Usage

```
fit_stable_alpha(data)
```

Arguments

data

Numeric vector of data.

Value

list of type kendall_fit

full_loglik_gradient 5

 $full_loglik_gradient$

Gradient of minus loglikelihood for stable Kendall distribution with 3 parameters.

Description

Gradient of minus loglikelihood for stable Kendall distribution with 3 parameters.

Usage

```
full_loglik_gradient(data)
```

Arguments

data

numeric vector of observation.

Value

Function of one argument of length 3 (alpha, location, scale).

full_minus_loglik

Negative loglikelihood for stable Kendall distr. with 3 parameters.

Description

Negative loglikelihood for stable Kendall distr. with 3 parameters.

Usage

```
full_minus_loglik(data)
```

Arguments

data

Dataset for which the loglikelihood will be calculated.

Value

numeric, value of loglikelihood

g_function_single

g_function $Function G(t)$ - W	Williamson transform taken at point 1/t.
--------------------------------	--

Description

This function return only approximated values. To check their precisions use g_function_single function with an argument of length 1.

Usage

```
g_function(t, alpha, density)
```

Arguments

t Argument to the function.

alpha Value of the alpha parameter.

density Density function of the step distribution.

Value

Object of class "integrate"

Examples

```
g_function(1:5, 0.75, dnorm)
```

g_function_single Function G(t) - Williamson transform taken at point 1/t.

Description

This function return the whole "integrate" object, so precision of the approximation can be checked.

Usage

```
g_function_single(t, alpha, density)
```

Arguments

t Argument to the function.alpha Value of the alpha parameter.

density Density function of the step distribution.

kendallRandomWalks 7

Value

Object of class "integrate"

Examples

```
g_function_single(5, 0.26, dnorm)
```

kendallRandomWalks

kendallRandomWalks: explore and visualize Kendall random walks.

Description

Kendall random walks are Markov processes generated by the Kendall convolution. This package helps simulate and visualize these random walks and associated distributions. It also provides function to fit these distributions to data.

Important functions

simulate_kendall_rw simulates Kendall random walks.

transform_kendall_rw applies scaling and shift to simulated Kendall r.w-s.

ladder_moment estimates the distribution of first ladder moment by simulating Kendall random walks.

ladder_height estimates the distribution of first ladder height by simulating Kendall random walks.

ladder_moment_pmf computes the PMF of the distribution of first ladder moment.

g_function Finds the value of G(t) numerically.

pkend, dkend, qkend, rkend give CDF, PDF, quantile function and random numbers from stable Kendall distribution.

kendall_loglik

Log-likelihood for stable kendall distribution with m alpha = 1

Description

Log-likelihood for stable kendall distribution with m_alpha = 1

Usage

```
kendall_loglik(alpha, x)
```

8 ladder_height

Arguments

alpha alpha parameter of the Kendall random walk

x numeric vector of observations

Value

numeric

ladder_height

Estimate the distribution of first ladder height for given level

Description

NA is returned if the level wasn't crossed. Printing the resulting object will give summary of the estimated distribution and information whether level wasn't crossed in some simulations. This information can be used to pick the right trajectory length for the given level.

Usage

```
ladder_height(simulations, level)
```

Arguments

simulations kendall_simulation object

level Positive numeric

Value

tibble

Examples

```
{
  kendall_rw <- simulate_kendall_rw(100, 100, runif, 0.5)
  estim_ladder <- ladder_height(kendall_rw, 1000)
  estim_ladder
}</pre>
```

ladder_moment 9

ladder_moment

Estimate the distribution of first ladder moment for given level

Description

NA is returned if the level wasn't crossed. Printing the resulting object will give summary of the estimated distribution and information whether level wasn't crossed in some simulations. This information can be used to pick the right trajectory length for the given level.

Usage

```
ladder_moment(simulations, level)
```

Arguments

simulations kendall_simulation object level Positive numeric

Value

tibble

Examples

```
{
kendall_rw <- simulate_kendall_rw(100, 100, runif, 0.5)
estim_ladder <- ladder_moment(kendall_rw, 1000)
estim_ladder
}</pre>
```

ladder_moment_pmf

Distribution of the first ladder moment.

Description

Distribution of the first ladder moment.

Usage

```
ladder_moment_pmf(n, level, alpha, step_cdf, step_pdf)
```

10 mutate_kendall_rw

Arguments

n	Argument to the PDF.
level	Level a to be crossed.

alpha Alpha parameter of Kendall random walk.

step_cdf CDF of the step distribution.
step_pdf PDF of the step distribution.

Value

Value of PMF of the distribution of first ladder moment

Examples

```
prob <- ladder_moment_pmf(10, 1000, 0.5, pnorm, dnorm)
prob</pre>
```

mutate_kendall_rw

Mutate each trajectory.

Description

Mutate each trajectory.

Usage

```
mutate_kendall_rw(simulations, mutate_function, df = T)
```

Arguments

 $simulations \qquad Object \ of \ class \ kendall_simulation.$

mutate_function

Function that will be applied to each trajectory.

df

If TRUE, a d.f will be returned, if FALSE, simulations in the kendall_simulation object passed in simulations argument will be replaced by the result of mu-

tate_function.

Value

data frame or a list (of class kendall_simulation)

pkend 11

pkend

CDF of Kendall stable distribution

Description

CDF of Kendall stable distribution

Usage

```
pkend(m_alpha)
```

Arguments

m_alpha

function giving moments of order alpha of step dist.

Value

function function giving values of CDF of Kendall stable distribution

Examples

```
pKend <- pkend(function(x) 1)
# Step distribution: delta_{1}
pKendall <- pKend(1:10, 0.5)
# Values of CDF for arguments 1:10 and alpha = 0.5</pre>
```

pkendSym

CDF of symmetrical Kendall stable distribution

Description

CDF of symmetrical Kendall stable distribution

Usage

```
pkendSym(m_alpha)
```

Arguments

 m_alpha

function giving moments of order alpha of step dist.

Value

function function giving values of CDF of Kendall stable distribution

12 plot.kendall_fit

Examples

```
pKend <- pkendSym(function(x) 1)
# Step distribution: delta_{1}
pKendall <- pKend(1:10, 0.5)
# Values of CDF for arguments 1:10 and alpha = 0.5</pre>
```

```
plot.kendall_barrier_crossing
```

Generic function for plotting results of ladder_moment function.

Description

Generic function for plotting results of ladder_moment function.

Usage

```
## S3 method for class 'kendall_barrier_crossing' plot(x, ...)
```

Arguments

- x kendall_barrier_crossing object
- ... Additional arguments

Value

ggplot2

plot.kendall_fit

QQ-plot for the result of fitting stable Kendall distribtion.

Description

QQ-plot for the result of fitting stable Kendall distribtion.

Usage

```
## S3 method for class 'kendall_fit' plot(x, ...)
```

Arguments

- x List returned by fit_separate or fit_kendall function.
- ... Aditional arguments.

plot.kendall_simulation

13

Value

```
ggplot2 object
```

```
plot.kendall_simulation
```

Generic function that draws simulated trajectories of Kendall random walk

Description

Generic function that draws simulated trajectories of Kendall random walk

Usage

```
## S3 method for class 'kendall_simulation'
plot(x, max_x = NULL, max_id = NULL,
    level = NULL, ...)
```

Other arguments

Arguments

x object returned by normalising_sequences function.
 max_x maximum value on x axis.
 max_id Number of trajectories to plot. If NULL, all paths will be plotted.
 level Y-axis value which will be marked (level to be crossed).

Value

. . .

```
ggplot2 object
```

Description

Plot summary of Kendall random walk simulations.

Usage

```
## S3 method for class 'kendall_summary'
plot(x, ..., type = "density")
```

Arguments

. . .

x Object of class kendall_summary

type Type of the plot: density, histogram or boxplot

Optional arguments, currently ignored

Value

```
ggplot2 object
```

```
print.kendall_barrier_crossing
```

Generic function for printing result of ladder_moment function

Description

Generic function for printing result of ladder_moment function

Usage

```
## S3 method for class 'kendall_barrier_crossing' print(x, ...)
```

Arguments

x kendall_barrier_crossing object

... Additional arguments

Value

invisible x

```
print.kendall_simulation
```

Generic function that prints information about simulated Kendall random walk

Description

Generic function that prints information about simulated Kendall random walk

Usage

```
## S3 method for class 'kendall_simulation' print(x, ...)
```

print.kendall_summary 15

Arguments

x Object returned by simulate_kendall_rw or transform_kendall_rw function.
... Other arguments.

Description

Print summary of Kendall random walk simulations.

Usage

```
## S3 method for class 'kendall_summary'
print(x, ...)
```

Arguments

x Object of type kendall_summary... Optional parameters, currently ignored

qkend

Quantiles of Kendall stable distribution

Description

Quantiles of Kendall stable distribution

Usage

```
qkend(m_alpha)
```

Arguments

m_alpha

function giving moments of order alpha of step dist.

Value

function function returning quantiles of given orders

Examples

```
qKend <- qkend(function(x) 1)
# Step distribution: delta_{1}
qKendall <- qKend(c(0.1, 0.9), 0.5)
# Quantiles of order 0.1 and 0.9 for alpha = 0.5</pre>
```

16 Qn

qkendSym

Quantiles of symmetrical Kendall stable distribution

Description

Quantiles of symmetrical Kendall stable distribution

Usage

```
qkendSym(m_alpha)
```

Arguments

m_alpha

function giving moments of order alpha of step dist.

Value

function function returning quantiles of given orders

Examples

```
qKend <- qkendSym(function(x) 1)
# Step distribution: delta_{1}
qKendall <- qKend(c(0.1, 0.9), 0.5)
# Quantiles of order 0.1 and 0.9 for alpha = 0.5</pre>
```

Qn

Helper function

Description

Helper function

Usage

```
Qn(x, y, alpha)
```

Arguments

x numeric y numeric

alpha numeric, parameter of Kendall random walk

Value

0 or 1 with probability depending on x, y, alpha

rkend 17

rkend

Pseudo-random number from Kendall stable distribution

Description

Pseudo-random number from Kendall stable distribution

Usage

```
rkend(m_alpha)
```

Arguments

m_alpha

function giving moments of order alpha of step dist.

Value

function return n numbers genereted from Kendall stable dist.

Examples

```
rKend <- rkend(function(x) 1)
# Step distribution: delta_{1}
rKendall <- rKend(10, 0.5)
# Ten random number from stable Kendall distribution with alpha = 0.5</pre>
```

simulateOneTrajectory Simulate one trajectory of a Kendall random walk

Description

Simulate one trajectory of a Kendall random walk

Usage

```
simulateOneTrajectory(trajectory_length, step_dist, alpha,
   symmetric = FALSE, ...)
```

Arguments

```
trajectory\_length
```

Number of samples to simulate.

step_dist Function that returns random numbers from step distribution.

alpha Alpha parameter of the random walk

symmetric If TRUE, random walk on the whole real line will be simulated.

... Additional parameters to step distribution.

simulate_kendall_rw

Value

Generated path of the random walk.

Description

Object returned by this has print and plot methods.

Usage

```
simulate_kendall_rw(number_of_simulations, trajectory_length, step_dist,
   alpha, symmetric = FALSE, ...)
```

Arguments

```
number_of_simulations
```

number of trajectories to generate.

trajectory_length

length of trajectories.

step_dist function returning random numbers from step dist.

alpha alpha parameter.

symmetric If TRUE, random walk on the whole real line will be simulated.

... parameters for step distribution.

Value

Object of class kendall_simulation. It is a list that consists of

simulation Tibble with simulation id and simulated values,

step_distribution

Name of the step distribution,

alpha Value of alpha parameter,

is_symmetric Logical value indicating if this is a symmetric Kendall R.W.

Examples

```
kendall_simulations <- simulate_kendall_rw(10, 1000, runif, 0.5)
# Kendall R.W. on positive half-line with uniform step distribution - 10 trajectories.
only_simulations <- kendall_simulations$simulation # tibble with simulated values
kendall_simulations</pre>
```

summarise_kendall_rw

19

summarise_kendall_rw Calculate some characteristic for every simulated instance.

Description

Calculate some characteristic for every simulated instance.

Usage

```
summarise_kendall_rw(simulations, summary_function)
```

Arguments

```
simulations Object of class kendall_simulation.
summary_function
Function that will be applied to each trajectory.
```

Value

data frame of class "kendall_summary".

Description

If one trajectory has length n, an_seq and bn_seq arguments should be sequnces of length n. Object returned by this function has plot and print methods.

Usage

```
transform_kendall_rw(simulations, an_seq = 1, bn_seq = 0)
```

Arguments

simulations tibble returned by simulation function

an_seq sequence that the trajectories will be multiplied by bn_seq sequence that will be substracted from scaled trajectory

Value

List like in simulate_kendall_rw function after transforming trajectories.

Z

Examples

```
kendall_simulations <- simulate_kendall_rw(10, 1000, runif, 0.5) scaled_kendall <- transform_kendall_rw(kendall_simulations, (1:1000)^(-2)) scaled_kendall # kendall random walked scaled by the sequence n^(-1/alpha) scaled_data <- scaled_kendall^*simulation # simulated values plot(scaled_kendall)
```

U

Helper function

Description

Helper function

Usage

U(x, y)

Arguments

x numeric y numeric

Value

sign of the argument whose abs. val. is bigger

Ζ

Helper function: min/max

Description

Helper function: min/max

Usage

Z(x, y)

Arguments

x numeric y numeric

Value

min of arguments divided by max of arguments

Index

```
dkend, 2, 7
                                                simulateOneTrajectory, 17
                                                summarise_kendall_rw, 19
estimate_stable_alpha, 3
                                                transform_kendall_rw, 7, 19
fit_kendall, 3
                                                U, 20
fit_separate, 4
fit_stable_alpha, 4
                                                Z, 20
full_loglik_gradient, 5
full_minus_loglik, 5
g_function, 6, 7
g_function_single, 6
kendall_loglik, 7
kendallRandomWalks, 7
kendallRandomWalks-package
        (kendallRandomWalks), 7
ladder_height, 7, 8
ladder_moment, 7, 9
ladder_moment_pmf, 7, 9
mutate_kendall_rw, 10
pkend, 7, 11
pkendSym, 11
plot.kendall_barrier_crossing, 12
plot.kendall_fit, 12
plot.kendall_simulation, 13
plot.kendall_summary, 13
print.kendall_barrier_crossing, 14
print.kendall_simulation, 14
print.kendall_summary, 15
qkend, 7, 15
qkendSym, 16
Qn, 16
rkend, 7, 17
simulate_kendall_rw, 7, 18
```