A toy ConvNet: X's and O's

Says whether a picture is of an X or an O

For example

Trickier cases

Deciding is hard

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	Χ	-1	-1	-1	-1	X	X	-1
-1	X	X	-1	-1	X	X	-1	-1
-1	-1	Χ	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	X	-1	-1
-1	-1	X	Х	-1	-1	Χ	Х	-1
-1	X	X	-1	-1	-1	-1	X	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Computers are literal

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
			1					
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets match pieces of the image

Features match pieces of the image

1	-1	-1
-1	1	-1
-1	-1	1

1 -1 -1 -1 1 -1 -1 1

```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```

- 1. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature.


```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```


1	1	1

 1
 1

 1
 1

1	1	1
1	1	1

1	1	1
1	1	1
1		

1	1	1
1	1	1
1	1	

1	1	1
1	1	1
1	1	1

$$\frac{1+1+1+1+1+1+1+1}{9} = 1$$

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	-1
1	1	1
-1	1	1

$$\frac{1+1-1+1+1+1-1+1+1}{9} = .55$$

Convolution: Trying every possible match

1 -1 -1 -1 1 -1 -1 -1 1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution: Trying every possible match

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution layer

One image becomes a stack of filtered images

Convolution layer

One image becomes a stack of filtered images

0.77		0.11	0.33	0.55		0.3
	1.00		0.33		0.11	-0.1
0.11		1.00	-0.33	0.11		0.5
0.33	0.33	-0.33	0.55	-0.33	0.33	0.3
0.55		0.11	-0.33	1.00		0.1
	0.11		0.33		1.00	-0.1
0.33	-0.11	0.55	0.33	0.11	-0.11	0.7
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.3
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.5
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.1
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.1
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.1
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.5
0.33		0.11	-0.11	0.11		0.3
0.33	-0.11	0.55	0.33	0.11	-0.11	0.7
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.1
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.1
0.33	0.33	-0.33	0.55	-0.33	0.33	0.3
	-0.11	1.00	-0.33	0.11	-0.11	0.5
-0.11	1.00	-0.11	0.33	-0.11	0.11	
0.77	-0.11	0.11	0.33	0.55	-0.11	0.3

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

maximum

maximum

0.77	-0.11	0.11	0.33	0.55	3.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

1.00	0.33	

maxi	mun	7

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

1.00	0.33	0.55	

maximum

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33	
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11	
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55	
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33	
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11	
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77	

1.00	0.33	0.55	0.33

-0.11 0.33 0.77 -0.11 0.11 0.33 0.55 1.00 -0.11 0.33 -0.11 0.11 -0.11 -0.11 0.11 -0.11 1.09 -0.33 0.11 -0.11 0.55 0.33 -0.33 0.55 -0.33 0.33 0.33 0.33 -0.33 0.55 -0.11 0.11 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 -0.11 0.55 0.33 0.11 -0.11 0.77 0.33

maximum

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Pooling layer

A stack of images becomes a stack of smaller images.

1.00	0.33	0.55	0.33	
0.33	1.00	0.33	0.55	
0.55	0.33	1.00	0.11	
0.33	0.55	0.11	0.77	
0.55	0.33	0.55	0.33	
0.33	1.00	0.55	0.11	
0.55	0.55	0.55	0.11	
0.33	0.11	0.11	0.33	
0.33	0.55	1.00	0.77	
0.55	0.55	1.00	0.33	

Normalization

Keep the math from breaking by tweaking each of the values just a bit.

Change everything negative to zero.

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33
)	

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	0.77

ReLU layer

A stack of images becomes a stack of images with no negative values.

0.77	0	0.11	0.33	0.55	0	0.33
	1.00	0	0.33		0.11	0
0.11		1.00		0.11		0.55
0.33	0.33		0.55	0	0.33	0.33
0.55		0.11	0	1.00	0	0.11
0	0.11	0	0.33		1.00	0
0.33		0.55	0.33	0.11		0.77
0.33	0	0.11	0	0.11	0	0.33
0.55	0.55	0.11	0.33	0.11	0.55	0.55
0.11	0	0.55	0	0.55	0	0.11
0	0.33	0	1.00	0	0.33	0
0.11	0	0.55	0	0.55	0	0.11
0	0.55	0	0.33	0	0.55	0
0.33	0	0.11	0	0.11	0	0.33
0.33	0	0.55	0.33	0.11	0	0.77
	0.11		0.33		1.00	
0.55		0.11		1.00		0.11
0.33	0.33		0.55	0	0.33	0.33
0.11	0	1.00		0.11		0.55
	1.00	0	0.33		0.11	0
0.77	0	0.11	0.33	0.55		0.33

Layers get stacked

The output of one becomes the input of the next.

Deep stacking

Layers can be repeated several (or many) times.

Fully connected layer Every value gets a vote

Vote depends on how strongly a value predicts X or O

Vote depends on how strongly a value predicts X or O

A list of feature values becomes a list of votes.

These can also be stacked.

Putting it all together

A set of pixels becomes a set of votes.

.51

Learning

Q: Where do all the magic numbers come from?
Features in convolutional layers
Voting weights in fully connected layers
A: Backpropagation

Error = right answer – actual answer

.51

	Right answer	Actual answer	Error
X	1		
O			

	Right answer	Actual answer	Error
X	1	0.92	
O			

	Right answer	Actual answer	Error
X	1	0.92	0.08
O			

.51

	Right answer	Actual answer	Error
X	1	0.92	0.08
О	0	0.51	0.49

	Right answer	Actual answer	Error
X	1	0.92	0.08
O	0	0.51	0.49
		Total	0.57

Gradient descent

For each feature pixel and voting weight, adjust it up and down a bit and see how the error changes.

Gradient descent

For each feature pixel and voting weight, adjust it up and down a bit and see how the error changes.

Hyperparameters (knobs)

Convolution

Number of features

Size of features

Pooling

Window size

Window stride

Fully Connected

Number of neurons

Architecture

How many of each type of layer? In what order?

In a nutshell

ConvNets are great at finding patterns and using them to classify images.

Some ConvNet/DNN toolkits

Caffe (Berkeley Vision and Learning Center)

CNTK (Microsoft)

Deeplearning4j (Skymind)

TensorFlow (Google)

Theano (University of Montreal + broad community)

Torch (Ronan Collobert)

Many others