4. Topologie Übung

Ferdinand Szekeresch

14. Mai 2016

Aufgabe 1

 $(X, \leq), X$ Menge, \leq Ordnungsrelation auf X.

Beh.: $O := \{U \subseteq X | \forall u \in U, x \in X : u \leq x \Rightarrow x \in U\}$ ist Topologie auf X. Bew.:

- \emptyset, X klar.
- Seien U_i Mengen aus $O, i \in I$ bel. Indexmenge. Dann gilt: Sei $u \in \bigcup u_i, x \in X$ mit $u \le x \Rightarrow \exists i \in I : u \in U_i$

$$\stackrel{U_i \in O}{\Rightarrow} x \in U_i \Rightarrow x \in \bigcup_{i \in I} U_i$$

Set $u \in \bigcup_{i \in I} u_i, x \in X$ and $u \le x \to \exists i \in I$. $u \in U_i$ $\stackrel{U_i \in O}{\Rightarrow} x \in U_i \Rightarrow x \in \bigcup_{i \in I} U_i$ $u \in \bigcap_{i \in I} U_i, x \in X \text{ mit } u \le x \Rightarrow \forall i \in I : x \in U_i \Rightarrow x \in \bigcap_{i \in I} U_i \text{ Beh.:}$

Die Ordnungserhaltenden und die stetigen Abbildungen von X nach Ystimmen überein.

Bew.:

"⊇": Sei $F: X \to Y$ stetig, $x_1, x_2 \in X$ mit $x_1 \leq x_2$. Zu zeigen: $f(x_1) \leq$ $f(x_2)$.

Betrachte folgende offene Menge in Y:

$$V := \{ u \in Y | f(x) \le y \}$$

Das Urbild $f^{-1}(V) =: U$ ist eine offene Menge in X, da f stetig ist. $\Rightarrow \forall u \in U \forall x \in X : u \le x \stackrel{x_1 \in U}{\Rightarrow} x_1 \le x_2 x_2 \in U \Rightarrow f(x_2) \in V$ $\Rightarrow \stackrel{\text{Def. } V}{\Rightarrow} f(x_1) \leq f(x_2)$. Also: f ist abstandserhaltend.

"⊆": Sei f ordungserhaltend. Sei V eine offene Menge in Y. Zu zeigen: $U := f^{-1}(V)$ ist offen in X.

Seien also $u \in U, x \in X$ mit $u \le x \stackrel{f \text{ ordnungserh.}}{\Rightarrow} f(u) \le f(x)$

Da V offen in Y ist und $f(u) \in V$ ist, nach Definition von "offen"ist auch $f(x) \in V \Rightarrow x \in U$.

Also: U ist offen in X.

Aufgabe 2

Beh.: $SO(n) := \{A \in \mathbb{R}^{n \times n} | \det(A) = 1 \text{ und } A^T A = E\}$ ist zusammenhängend.

Bew.: SO(n) ist wegzusammenhängend, denn:

Lineare Algebra: Zu jedem $A \in SO(n)$ existiert $U \in GL(n, \mathbb{R})$ mit:

$$A = U \cdot \begin{pmatrix} 1 & & & & 0 \\ & \ddots & & & \\ & & D_{\theta_1} & & \\ & & & \ddots & \\ 0 & & & D_{\theta_m} \end{pmatrix} \cdot U^{-1}$$

und $D_{\theta_i} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}$ Somit: Definiere Weg von E nach A durch $\gamma:[0,1]\to \mathrm{SO}(n)$

$$t \mapsto U \cdot \begin{pmatrix} 1 & & & & & 0 \\ & \ddots & & & & \\ & & D_{\theta_1(t)} & & & \\ & & & \ddots & \\ 0 & & & D_{\theta_m(t)} \end{pmatrix} \cdot U^{-1}$$

 $mit \ \theta_i(t) := t \cdot \theta_i$

Das ist ein Weg von E nach A! Also: $\mathrm{SO}(n)$ ist zusammenhängend (da wegzusammenhängend).

Beh.: $O(n) := \{A \in \mathbb{R}^{n \times n} | A^T A = E\}$ ist nicht zusammenhängend.

Bew.: es gilt: det : $O(n) \rightarrow \{-1, 1\}$ ist stetig (Leibniz-Formel) und surjektiv.

 $\Rightarrow O(n) = f^{-1}(-1) \cup f^{-1}(1) \Rightarrow O(n)$ ist nicht zusammenhängend

Aufgabe 3

(a) Beh.: Für $U\subseteq\mathbb{R}^n$ offen gilt: U zusammenhängend $\Leftrightarrow U$ wegzusammenhängend. Bew.:,, \Leftarrow "klar.

"⇒": Definiere Äquivalenz relation \sim auf \mathbb{R}^n durch $x\sim y:\Leftrightarrow x$ kann mit y durch Weg verbunden werden.

Sei $U \neq \emptyset$ zusammenhängende offene Teilmenge von \mathbb{R}^n . Zu zeigen: U ist wegzusammenhängend.

Wähle $a \in U$ beliebig und setze $A := \{x \in U | x \sim a\}$. Zu zeigen: A = U.

Dazu zeige: A ist offen und abgeschlossen in U bzgl. der Teilraumtopologie.

(Dann folgt A = U oder $A = \emptyset$, weil U zsh. $\Rightarrow A = U$, da $a \in A$ ist.)

Beh.: A ist offen in U.

Bew.: U offen in \mathbb{R}^n , $A \subseteq U \Rightarrow \forall x \in A \exists \varepsilon > 0 B_{\varepsilon}(x) \subseteq U$

 $B_{\varepsilon}(x)$ ist konvex \Rightarrow jedes $y \in B_{\varepsilon}(x)$ ist durch einen Weg mit x verbindbar. $\forall y \in B_{\varepsilon}(x) : x \sim y$.

 $x \in A \Rightarrow x \sim a \stackrel{\sim \text{transitiv}}{\Rightarrow} y \sim a \Rightarrow y \in A$. Also: $B_{\varepsilon}(x) \subseteq A \Rightarrow A$ ist offen.

Beh.: A ist abgeschlossen un U.

bew.: Sei $x \in \bar{A}$, dem Abschluss von A bzgl. der Teilraumtopologie.

 $x \in U \Rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq Ux \in \bar{A} \stackrel{\text{Blatt } 3}{\Rightarrow} \emptyset \neq (B_{\varepsilon}(x) \cap U) \cap A = B_{\varepsilon}(x) \cap A.$ Wie eben gilt für $y \in B_{\varepsilon}(x) \cap A : y \sim x$.

Wegen $y \in A$ gilt auch $y \sim a \stackrel{y \text{ transitiv}}{\Rightarrow} x \sim a \rightarrow x \in A \Rightarrow \bar{A} = A \Rightarrow A$ abgeschlossen.

(b) $U := \{(x, \sin(\frac{1}{x}) | x > 0\} \cup \{(0, 0)\}$ $U \setminus \{(0, 0)\}$ ist zsh., da $U \setminus \{(0, 0)\}$ Bild von (0, 1] unter der stetigen Abbildung

$$(0,1] \to \mathbb{R}^2$$

 $x \mapsto (x, \sin\left(\frac{1}{x}\right))$

(0,0)liegt im Abschluss von $U\backslash\{(0,0)\},$ da jede Umgebung von (0,0)einen Punkt aus $U\backslash(0,0)$ enthält.

 $\overset{\text{Blatt 3}}{\Rightarrow} U$ ist zusammenhängend.

Ann.: U ist wegzsh. \Rightarrow es ex. ein stetiger Weg $\gamma:[0,1)\to U, \gamma(0)=(0,0), \gamma(1)=(1,0).$

Sei $\gamma(t) = (\gamma_1(t), \gamma_2(t)) \Rightarrow \gamma_1$ ist ebenfalls stetig.

Zwischenwertsatz $\Rightarrow \forall y \in (0,1) \exists t \in (0,1) : \gamma(t) = y$

Sei insbes. $y = \frac{1}{n} \Rightarrow \exists t_n \in (0,1) : \gamma_1(t_n) = \frac{1}{n} \Rightarrow \gamma(t_n) = (\gamma_1(t_n), \gamma_2(t_n)) = (\frac{1}{n}, \sin(n))$

 $\gamma \text{ ist stetig} \Rightarrow \gamma(t_n) \stackrel{n \to \infty}{\longrightarrow} (0, 0)$

Aufgabe 4

X Top. Raum, \sim Äquivalenzrel. auf X.

(a) $Y := X/\sim$ sei versehen mit der Quotiententopologie.

Beh.: Ist Z weiterer top. Raum und $f:Y\to Z$, dann ist f stetig $\Leftrightarrow f\circ\pi$ stetig. " \Rightarrow "Sei $f:X/\sim\to Z$ stetig. Dann ist $f\circ\pi$ Verkettung stetiger Abbildungen, also stetig.

"

—"Sei $f \circ \pi$ stetig und $U \subseteq Z$ offen.

 $\Rightarrow \pi^{-1}(f^{-1}(U)) = (f \circ \pi)^{-1}(U)$ offen in $X \Rightarrow f^{-1}$ ist offen in $X/\sim \Rightarrow f$ ist stetig.

(b) Beh.: Durch (a) ist die Quotiententopologie eindeutig bestimmt.

Bew.: Seien J_1, J_2 zwei Topologien auf X/\sim , die obige Eigenschaften erfüllen. Z.z. $J_1=J_2$.

Betrachte $\mathrm{id}_{X/\sim}:(X/\sim,J_1)\to(X/\sim,J_2)$. Nach obiger Eigenschaft ist id stetig \Rightarrow alle $U\in J_2$ sind in J_1 enthalten. $J_1\subseteq J_2$.

Analog umgekehrt,