Hashtabelle: Und noch eine Datenstruktur für dynamische Mengen . . .

Sei *U* das Universum, aus dem die Schlüssel kommen.

Speichere Daten in Feld der Länge |U|.

| 0 | 1 | 2 |  |  |  |  |  | U | /  - | - 1 |
|---|---|---|--|--|--|--|--|---|------|-----|
|   |   |   |  |  |  |  |  |   |      |     |

Hashtabelle: Und noch eine Datenstruktur für dynamische Mengen . . .

Sei *U* das Universum, aus dem die Schlüssel kommen.

Speichere Daten in Feld der Länge |U|. Nicht praktikabel!

| 0 | 1 | 2 | <br> |  |  |  |  |  |  |  |  | $2^{32}-1$ |  |  |  |
|---|---|---|------|--|--|--|--|--|--|--|--|------------|--|--|--|
|   |   |   |      |  |  |  |  |  |  |  |  |            |  |  |  |

Hashtabelle: Und noch eine Datenstruktur für dynamische Mengen . . .

Sei *U* das Universum, aus dem die Schlüssel kommen.

Speichere Daten in Feld der Länge |U|. Nicht praktikabel!



**Hashfunktion**  $h: U \rightarrow \{0, 1, \dots, m-1\}$  für  $m \ll |U|$ 

Nutze Feld der Länge m. Speichere Element mit Schlüssel k an der Position h(k).

Hashtabelle: Und noch eine Datenstruktur für dynamische Mengen . . .

Sei *U* das Universum, aus dem die Schlüssel kommen.

Speichere Daten in Feld der Länge |U|. Nicht praktikabel!



**Hashfunktion**  $h: U \rightarrow \{0, 1, \dots, m-1\}$  für  $m \ll |U|$ 

Nutze Feld der Länge m. Speichere Element mit Schlüssel k an der Position h(k).

Hashtabelle: Und noch eine Datenstruktur für dynamische Mengen . . .

Sei *U* das Universum, aus dem die Schlüssel kommen.

Speichere Daten in Feld der Länge |U|. Nicht praktikabel!



**Hashfunktion**  $h: U \rightarrow \{0, 1, \dots, m-1\}$  für  $m \ll |U|$ 

Nutze Feld der Länge m. Speichere Element mit Schlüssel k an der Position h(k).

Hashtabelle: Und noch eine Datenstruktur für dynamische Mengen . . .

Sei *U* das Universum, aus dem die Schlüssel kommen.

Speichere Daten in Feld der Länge |U|. Nicht praktikabel!



**Hashfunktion**  $h: U \rightarrow \{0, 1, \dots, m-1\}$  für  $m \ll |U|$ 

Nutze Feld der Länge m. Speichere Element mit Schlüssel k an der Position h(k).

Problem: Kollisionen können auftreten. Wir benötigen Strategien, um damit umzugehen.

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Theoretisch sind alle solche Hashfunktionen gleich gut, **praktisch nicht** (z. B. erster Buchstabe einer Zeichenkette als Hashfunktion).

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Theoretisch sind alle solche Hashfunktionen gleich gut, **praktisch nicht** (z. B. erster Buchstabe einer Zeichenkette als Hashfunktion).

Methoden für  $U = \mathbb{N}$ :

Divisionsmethode: h(k) = k mod m
 m sollte keine Zweierpotenz sein. m typischerweise Primzahl.

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Theoretisch sind alle solche Hashfunktionen gleich gut, **praktisch nicht** (z. B. erster Buchstabe einer Zeichenkette als Hashfunktion).

Methoden für  $U = \mathbb{N}$ :

- Divisionsmethode: h(k) = k mod m
   m sollte keine Zweierpotenz sein. m typischerweise Primzahl.
- Multiplikationsmethode:  $h(k) = \lfloor m(kA \lfloor kA \rfloor) \rfloor$  für Konstante  $A \in (0, 1)$ . Die Wahl  $A \approx \frac{\sqrt{5}-1}{2} = 0,61803...$  hat sich als gut herausgestellt.

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Theoretisch sind alle solche Hashfunktionen gleich gut, **praktisch nicht** (z. B. erster Buchstabe einer Zeichenkette als Hashfunktion).

Methoden für  $U = \mathbb{N}$ :

- Divisionsmethode: h(k) = k mod m
   m sollte keine Zweierpotenz sein. m typischerweise Primzahl.
- Multiplikationsmethode:  $h(k) = \lfloor m(kA \lfloor kA \rfloor) \rfloor$  für Konstante  $A \in (0, 1)$ . Die Wahl  $A \approx \frac{\sqrt{5}-1}{2} = 0,61803...$  hat sich als gut herausgestellt.

In Java hat jede Klasse Methode "int hashCode()".

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Theoretisch sind alle solche Hashfunktionen gleich gut, **praktisch nicht** (z. B. erster Buchstabe einer Zeichenkette als Hashfunktion).

Methoden für  $U = \mathbb{N}$ :

- Divisionsmethode: h(k) = k mod m
   m sollte keine Zweierpotenz sein. m typischerweise Primzahl.
- Multiplikationsmethode:  $h(k) = \lfloor m(kA \lfloor kA \rfloor) \rfloor$  für Konstante  $A \in (0, 1)$ . Die Wahl  $A \approx \frac{\sqrt{5}-1}{2} = 0,61803...$  hat sich als gut herausgestellt.

In Java hat jede Klasse Methode "int hashCode()".

Bei String berechnet diese  $\sum_{i=0}^{\ell-1} s_i \cdot 31^i$  für Zeichenkette  $s_{\ell-1}s_{\ell-2}\dots s_1s_0$ .

Bei guter Hashfunktion ist  $h^{-1}(i) = \{k \in U \mid h(k) = i\}$  für jedes i in etwa gleich groß.

Theoretisch sind alle solche Hashfunktionen gleich gut, **praktisch nicht** (z. B. erster Buchstabe einer Zeichenkette als Hashfunktion).

Methoden für  $U = \mathbb{N}$ :

- Divisionsmethode: h(k) = k mod m
   m sollte keine Zweierpotenz sein. m typischerweise Primzahl.
- Multiplikationsmethode:  $h(k) = \lfloor m(kA \lfloor kA \rfloor) \rfloor$  für Konstante  $A \in (0, 1)$ . Die Wahl  $A \approx \frac{\sqrt{5}-1}{2} = 0,61803...$  hat sich als gut herausgestellt.

In Java hat jede Klasse Methode "int hashCode()".

Bei String berechnet diese  $\sum_{i=0}^{\ell-1} s_i \cdot 31^i$  für Zeichenkette  $s_{\ell-1}s_{\ell-2}\dots s_1s_0$ .

Annahme: h(k) kann in konstanter Zeit berechnet werden.

#### Hashing mit verketteten Listen:

Lege Feld  $T[0 \dots m-1]$  an. Dabei sei jedes T[i] Zeiger auf verkettete Liste.



#### **Hashing mit verketteten Listen:**

Lege Feld  $T[0 \dots m-1]$  an. Dabei sei jedes T[i] Zeiger auf verkettete Liste.

- SEARCH(k):
   Gib das Element mit dem Schlüssel k in der Liste T[h(k)] zurück, sofern es existiert.
- INSERT(x):
   Füge das Element x an den Anfang der Liste T[h(x.key)] ein.
- DELETE(k):
   Lösche das Element mit dem Schlüssel k aus der Liste T[h(k)], sofern es existiert.

#### **Hashing mit verketteten Listen:**

Lege Feld  $T[0 \dots m-1]$  an. Dabei sei jedes T[i] Zeiger auf verkettete Liste.

- SEARCH(k):
   Gib das Element mit dem Schlüssel k in der Liste T[h(k)] zurück, sofern es existiert.
- INSERT(x):
   Füge das Element x an den Anfang der Liste T[h(x.key)] ein.
- DELETE(k):
   Lösche das Element mit dem Schlüssel k aus der Liste T[h(k)], sofern es existiert.

Laufzeit: im Worst Case O(n)

Annahme: h bildet jeden Schlüssel uniform zufällig und unabhängig auf ein Element aus  $\{0, 1, ..., m-1\}$  ab (uniformes Hashing).

Annahme: h bildet jeden Schlüssel uniform zufällig und unabhängig auf ein Element aus  $\{0, 1, \ldots, m-1\}$  ab (uniformes Hashing).

Betrachte Hashtabelle, in die Schlüssel  $k_1, \ldots, k_n$  in dieser Reihenfolge eingefügt wurden. Sei  $\alpha = n/m$  der Auslastungsfaktor.

**Annahme:** h bildet jeden Schlüssel uniform zufällig und unabhängig auf ein Element aus  $\{0, 1, \dots, m-1\}$  ab (uniformes Hashing).

Betrachte Hashtabelle, in die Schlüssel  $k_1, \ldots, k_n$  in dieser Reihenfolge eingefügt wurden. Sei  $\alpha = n/m$  der Auslastungsfaktor.

#### Theorem 4.11

Unter der Annahme des uniformen Hashings benötigt eine erfolglose Suche nach einem Schlüssel, der sich nicht in der Hashtabelle befindet, im Erwartungswert eine Laufzeit von  $\Theta(1+\alpha)$ .

**Beweis:** Such enach k mit i = h(k). Uns interessiert E[|T[i]|].

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = \begin{cases} 1 & \text{falls } h(k_j) = i, \\ 0 & \text{falls } h(k_j) \neq i. \end{cases}$$

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = \begin{cases} 1 & \text{falls } h(k_j) = i, \\ 0 & \text{falls } h(k_j) \neq i. \end{cases}$$

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = \begin{cases} 1 & \text{falls } h(k_j) = i, \\ 0 & \text{falls } h(k_j) \neq i. \end{cases}$$

$$\Rightarrow$$
 **E**[| $T[i]$ |]

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = \begin{cases} 1 & \text{falls } h(k_j) = i, \\ 0 & \text{falls } h(k_j) \neq i. \end{cases}$$

$$\Rightarrow \mathbf{E}[|T[i]|] = \mathbf{E}\left[\sum_{j=1}^{n} X_{j}\right]$$

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = egin{cases} 1 & ext{falls } h(k_j) = i, \ 0 & ext{falls } h(k_j) 
eq i. \end{cases}$$

$$\Rightarrow \mathbf{E}[|T[i]|] = \mathbf{E}\left|\sum_{j=1}^{n} X_{j}\right| = \sum_{j=1}^{n} \mathbf{E}[X_{j}]$$

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = \begin{cases} 1 & \text{falls } h(k_j) = i, \\ 0 & \text{falls } h(k_j) \neq i. \end{cases}$$

$$\Rightarrow \mathbf{E}[|T[i]|] = \mathbf{E}\left[\sum_{j=1}^{n} X_{j}\right] = \sum_{j=1}^{n} \mathbf{E}[X_{j}] = \frac{n}{m} = \alpha$$

**Beweis:** Suche nach k mit i = h(k). Uns interessiert E[|T[i]|].

Für jedes  $j \in \{1, ..., n\}$  definiere Zufallsvariable  $X_j$ :

$$X_j = \begin{cases} 1 & \text{falls } h(k_j) = i, \\ 0 & \text{falls } h(k_j) \neq i. \end{cases}$$

Es gilt  $\Pr[X_j = 1] = \Pr[h(k_j) = i] = 1/m$  und demnach auch  $\mathbf{E}[X_j] = 1/m$ .

$$\Rightarrow \mathbf{E}[|T[i]|] = \mathbf{E}\left[\sum_{j=1}^{n} X_{j}\right] = \sum_{j=1}^{n} \mathbf{E}[X_{j}] = \frac{n}{m} = \alpha$$

Somit folgen wir bei der Suche nach dem Schlüssel k im Erwartungswert  $1 + \alpha$  vielen Zeigern, wobei +1 für den Null-Zeiger des letzten Eintrages der Liste T[i] steht.

#### Theorem 4.12

Unter der Annahme des uniformen Hashings benötigt eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert eine Laufzeit von  $\Theta(1+\alpha)$ .

#### Theorem 4.12

Unter der Annahme des uniformen Hashings benötigt eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert eine Laufzeit von  $\Theta(1+\alpha)$ .

**Beweis:** Schlüssel  $k_1, \ldots, k_n$  wurden in dieser Reihenfolge eingefügt.

#### Theorem 4.12

Unter der Annahme des uniformen Hashings benötigt eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert eine Laufzeit von  $\Theta(1+\alpha)$ .

**Beweis:** Schlüssel  $k_1, \ldots, k_n$  wurden in dieser Reihenfolge eingefügt.

Wie vielen Zeigern folgen wir bei Suche nach zufällig ausgewähltem Schlüssel  $k_i$ ?

#### Theorem 4.12

Unter der Annahme des uniformen Hashings benötigt eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert eine Laufzeit von  $\Theta(1+\alpha)$ .

**Beweis:** Schlüssel  $k_1, \ldots, k_n$  wurden in dieser Reihenfolge eingefügt.

Wie vielen Zeigern folgen wir bei Suche nach zufällig ausgewähltem Schlüssel  $k_i$ ? Da neue Elemente an den Anfang der Liste eingefügt werden, ist dazu nur von Interesse, wie viele Schlüssel nach  $k_i$  in die Liste  $T[h(k_i)]$  eingefügt werden.

#### Theorem 4.12

Unter der Annahme des uniformen Hashings benötigt eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert eine Laufzeit von  $\Theta(1 + \alpha)$ .

**Beweis:** Schlüssel  $k_1, \ldots, k_n$  wurden in dieser Reihenfolge eingefügt.

Wie vielen Zeigern folgen wir bei Suche nach zufällig ausgewähltem Schlüssel  $k_i$ ? Da neue Elemente an den Anfang der Liste eingefügt werden, ist dazu nur von Interesse, wie viele Schlüssel nach  $k_i$  in die Liste  $T[h(k_i)]$  eingefügt werden.

Für jedes  $i \in \{1, ..., n\}$  und jedes  $j \in \{i + 1, ..., n\}$  definieren wir eine Zufallsvariable

$$X_{ij} = \begin{cases} 1 & \text{falls } h(k_j) = h(k_i), \\ 0 & \text{falls } h(k_j) \neq h(k_i). \end{cases}$$

#### Theorem 4.12

Unter der Annahme des uniformen Hashings benötigt eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert eine Laufzeit von  $\Theta(1+\alpha)$ .

**Beweis:** Schlüssel  $k_1, \ldots, k_n$  wurden in dieser Reihenfolge eingefügt.

Wie vielen Zeigern folgen wir bei Suche nach zufällig ausgewähltem Schlüssel  $k_i$ ? Da neue Elemente an den Anfang der Liste eingefügt werden, ist dazu nur von Interesse, wie viele Schlüssel nach  $k_i$  in die Liste  $T[h(k_i)]$  eingefügt werden.

Für jedes  $i \in \{1, ..., n\}$  und jedes  $j \in \{i + 1, ..., n\}$  definieren wir eine Zufallsvariable

$$X_{ij} = egin{cases} 1 & ext{falls } h(k_j) = h(k_i), \ 0 & ext{falls } h(k_j) 
eq h(k_i). \end{cases}$$

Es gilt  $\Pr[X_{ij} = 1] = \Pr[h(k_i) = h(k_j)] = 1/m$  und demnach auch  $E[X_{ij}] = 1/m$ .

Für festes  $i \in \{1, \dots, n\}$  gilt

$$\mathbf{E}\left[1+\sum_{j=i+1}^{n}X_{ij}\right]$$

Für festes  $i \in \{1, ..., n\}$  gilt

$$\mathbf{E}\left[1 + \sum_{j=i+1}^{n} X_{ij}\right] = 1 + \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}]$$

Für festes  $i \in \{1, \dots, n\}$  gilt

$$\mathbf{E}\left[1+\sum_{j=i+1}^{n}X_{ij}\right]=1+\sum_{j=i+1}^{n}\mathbf{E}[X_{ij}]=1+\frac{n-i}{m}.$$

#### 4.3.2 Hashing mit verketteten Listen

Für festes  $i \in \{1, \ldots, n\}$  gilt

$$\mathbf{E}\left[1+\sum_{j=i+1}^{n}X_{ij}\right]=1+\sum_{j=i+1}^{n}\mathbf{E}[X_{ij}]=1+\frac{n-i}{m}.$$

Durchschnitt über alle i:

$$\frac{1}{n}\sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right)$$

#### 4.3.2 Hashing mit verketteten Listen

Für festes  $i \in \{1, \ldots, n\}$  gilt

$$\mathbf{E}\left[1+\sum_{j=i+1}^{n}X_{ij}\right] = 1+\sum_{j=i+1}^{n}\mathbf{E}[X_{ij}] = 1+\frac{n-i}{m}.$$

Durchschnitt über alle i:

$$\frac{1}{n}\sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right) = \frac{1}{n}\left(n+\sum_{i=1}^{n}\frac{n-i}{m}\right) = 1+\frac{1}{n}\sum_{i=1}^{n}\frac{n-i}{m} = 1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$
$$= 1+\frac{1}{nm}\sum_{i=1}^{n-1}i = 1+\frac{1}{nm}\cdot\frac{n(n-1)}{2} = 1+\frac{n-1}{2m} = 1+\frac{\alpha}{2}-\frac{1}{2m} = \Theta(1+\alpha).$$

Damit ist das Theorem bewiesen.

geschlossenes Hashing oder Hashing mit offener Adressierung:

Speichere alle Daten in Feld T.

#### geschlossenes Hashing oder Hashing mit offener Adressierung:

Speichere alle Daten in Feld T.

Betrachte dazu Hashfunktionen der Form

$$h: U \times \{0, 1, \ldots, m-1\} \rightarrow \{0, 1, \ldots, m-1\}.$$

#### geschlossenes Hashing oder Hashing mit offener Adressierung:

Speichere alle Daten in Feld T.

Betrachte dazu Hashfunktionen der Form

$$h: U \times \{0, 1, \ldots, m-1\} \rightarrow \{0, 1, \ldots, m-1\}.$$

Idee: Teste beim Einfügen die Positionen h(k, 0), h(k, 1), h(k, 2) usw., bis freie Position gefunden.

#### geschlossenes Hashing oder Hashing mit offener Adressierung:

Speichere alle Daten in Feld T.

Betrachte dazu Hashfunktionen der Form

$$h: U \times \{0, 1, \ldots, m-1\} \rightarrow \{0, 1, \ldots, m-1\}.$$

Idee: Teste beim Einfügen die Positionen h(k, 0), h(k, 1), h(k, 2) usw., bis freie Position gefunden.

Annahme:  $h(k, 0), h(k, 1), \ldots, h(k, m - 1)$  ist Permutation von  $\{0, 1, \ldots, m - 1\}$ .

```
SEARCH(k)
     for (int i = 0; i < m; i++) {
          i = h(k, i);
           if ((T[i] \neq \text{null}) \&\& (T[i].\text{key} == k)) {
                return j;
           \{ \}  else if (T[j] ==  null) \{ \}
                return -1: //..nicht vorhanden":
8
9
     return -1; // "nicht vorhanden";
```

```
SEARCH(k)
     for (int i = 0; i < m; i++) {
          i = h(k, i);
           if ((T[i] \neq \text{null}) \&\& (T[i].\text{key} == k)) {
                return j;
           \{ \}  else if (T[j] ==  null) \{ \}
                return -1: //..nicht vorhanden":
8
9
     return -1; // "nicht vorhanden";
```

```
SEARCH(k)
     for (int i = 0; i < m; i++) {
          i = h(k, i);
           if ((T[i] \neq \text{null}) \&\& (T[i].\text{key} == k)) {
                return j;
           \{ \}  else if (T[j] ==  null) \{ \}
                return -1: //..nicht vorhanden":
8
9
     return -1; // "nicht vorhanden";
```

```
SEARCH(k)
     for (int i = 0; i < m; i++) {
          i = h(k, i);
           if ((T[i] \neq \text{null}) \&\& (T[i].\text{key} == k)) {
                return j;
           \{ \}  else if (T[j] ==  null) \{ \}
                return -1: //..nicht vorhanden":
8
9
     return -1; // "nicht vorhanden";
```

```
SEARCH(k)
     for (int i = 0; i < m; i++) {
          i = h(k, i);
           if ((T[i] \neq \text{null}) \&\& (T[i].\text{key} == k)) {
                return j;
           \{ \}  else if (T[j] ==  null) \{ \}
                return -1: //..nicht vorhanden":
8
9
     return -1; // "nicht vorhanden";
```

```
DELETE(k)

1  j = \text{SEARCH}(k);

2  \text{if } (j \neq -1) {

4  T[j] = \text{null};

5 }
```

```
DELETE(k)

1  j = \text{SEARCH}(k);

2  \text{if } (j \neq -1) {

4  T[j] = \text{null};

5 }
```

```
DELETE(k)

1 j = \text{SEARCH}(k);

2 \text{if } (j \neq -1) \{

4 T[j] = \text{null};

5 \}
```

Delete(k')

```
DELETE(k)

1 j = \text{SEARCH}(k);

2 if (j \neq -1) {

4 T[j] = \text{null};

5 }
```

 $\mathsf{Delete}(k')$ 

```
DELETE(k)

1  j = \text{SEARCH}(k);

2  \text{if } (j \neq -1) \{

4  T[j] = \text{null};

5 }
```

$$h(k,0) = 1$$

```
DELETE(k)

1 j = \text{SEARCH}(k);

2 if (j \neq -1) {

4 T[j] = \text{null};

5 }
```

$$h(k,1) = 3$$

```
DELETE(k)

1  j = \text{SEARCH}(k);

2  \text{if } (j \neq -1) {

4  T[j] = \text{null};

5 }
```

$$h(k,2) = 0$$

```
DELETE(k)

1  j = \text{SEARCH}(k);

2  \text{if } (j \neq -1) \{

3  \text{Del}[j] = \text{true};

4  T[j] = \text{null};

5 }
```

$$h(k,2) = 0$$

```
DELETE(k)

1  j = \text{SEARCH}(k);

2  \text{if } (j \neq -1)  {

3  \text{Del}[j] = \text{true};

4  T[j] = \text{null};

5 }
```

$$h(k,2) = 0$$

```
DELETE(k)
                                  SEARCH(k)
     i = Search(k);
                                      for (int i = 0; i < m; i++) {
    if (j \neq -1) {
                                           j = h(k, i);
          Del[i] = true;
                                           if ((T[i] \neq null) && (T[i].key == k)) {
          T[j] = \text{null};
 5
                                                return j;
                                           \} else if ((T[j] == null)
                                  6
                                                return -1: //..nicht vorhanden":
                4 5 6 7
                                  8
                                  9
    #
                    # | #
                                       return -1; // "nicht vorhanden";
h(k, 2) = 0
```

```
DELETE(k)
                                 SEARCH(k)
     i = Search(k);
                                      for (int i = 0; i < m; i++) {
    if (j \neq -1) {
                                          j = h(k, i);
          Del[i] = true;
                                           if ((T[i] \neq null) && (T[i].key == k)) {
          T[j] = \mathbf{null};
 5
                                                return j;
                                           } else if ((T[j] == null) && (Del[j] == false) ) {
                                 5
                                 6
                                                return -1: //..nicht vorhanden":
                4 5 6 7
                                 8
                                 9
    #
                    # | #
                                      return -1; // "nicht vorhanden";
h(k, 2) = 0
```

Sondierungsreihenfolgen: gegeben sei "normale" Hashfunktion  $h'\colon U \to \{0,\dots,m-1\}$ 

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h': U \rightarrow \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h' \colon U \to \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h': U \rightarrow \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h': U \rightarrow \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

| 0 | 1 | $^{2}$ | 3 | 4 | 5 | 6 | 7 |
|---|---|--------|---|---|---|---|---|
|   |   |        |   |   |   |   |   |
|   |   |        |   |   |   |   |   |

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h': U \rightarrow \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

| 0 | 1 | $^{2}$ | 3 | 4 | 5 | 6 | 7 |
|---|---|--------|---|---|---|---|---|
|   |   |        |   |   |   |   |   |

• 
$$\Pr[Z=1] = \Pr[h'(k) \in \{0,1\}] = 2/8 = 1/4$$

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h': U \rightarrow \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

|   | 0 | 1 | $^{2}$ | 3 | 4 | 5 | 6 | 7 |
|---|---|---|--------|---|---|---|---|---|
|   |   |   |        |   |   |   |   |   |
| L |   |   |        |   |   |   |   |   |

• 
$$\Pr[Z=1] = \Pr[h'(k) \in \{0,1\}] = 2/8 = 1/4$$

• 
$$\Pr[Z=2] = \Pr[h'(k)=2] = 1/8$$

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h' : U \to \{0, \dots, m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i)=(h'(k)+i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

| 0 | 1 | $^{2}$ | 3 | 4 | 5 | 6 | 7 |
|---|---|--------|---|---|---|---|---|
|   |   |        |   |   |   |   |   |

• 
$$\Pr[Z=1] = \Pr[h'(k) \in \{0,1\}] = 2/8 = 1/4$$

• 
$$\Pr[Z=2] = \Pr[h'(k)=2] = 1/8$$

• 
$$\Pr[Z=6] = \Pr[h'(k) \in \{3,4,5,6\}] = 4/8 = 1/2$$

**Sondierungsreihenfolgen:** gegeben sei "normale" Hashfunktion  $h'\colon U \to \{0,\dots,m-1\}$ 

lineares Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k), h'(k) + 1, h'(k) + 2, ..., d. h.

$$h(k,i) = (h'(k) + i) \bmod m.$$

Nachteil: Tendenz, längere zusammenhängende Blöcke zu bilden:

Einfügen eines neues Datums mit Schlüssel k an Position Z, wobei h'(k) uniform zufällig

• 
$$\Pr[Z=1] = \Pr[h'(k) \in \{0,1\}] = 2/8 = 1/4$$

• 
$$Pr[Z=2] = Pr[h'(k)=2] = 1/8$$

• 
$$Pr[Z = 6] = Pr[h'(k) \in \{3, 4, 5, 6\}] = 4/8 = 1/2$$

• 
$$Pr[Z = 7] = Pr[h'(k) = 7] = 1/8$$

quadratisches Sondieren: Für Schlüssel  $k \in U$  testen wir die Positionen h'(k),  $h'(k) + 1^2$ ,  $h'(k) + 2^2$ ,  $h'(k) + 3^2$ , . . . (jeweils modulo m).

quadratisches Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k),  $h'(k) + 1^2$ ,  $h'(k) + 2^2$ ,  $h'(k) + 3^2$ , ... (jeweils modulo m).

Gilt  $h(k_1, 0) = h(k_2, 1)$ , so werden (anders als beim linearen Sondieren) verschiedene

Sequenzen durchlaufen. Es gilt insbesondere im Allgemeinen nicht  $h(k_1,1)=h(k_2,2)$ .

quadratisches Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k),  $h'(k) + 1^2$ ,  $h'(k) + 2^2$ ,  $h'(k) + 3^2$ , ... (jeweils modulo m).

Gilt  $h(k_1, 0) = h(k_2, 1)$ , so werden (anders als beim linearen Sondieren) verschiedene Seguenzen durchlaufen. Es gilt insbesondere im Allgemeinen nicht  $h(k_1, 1) = h(k_2, 2)$ .

doppeltes Hashing: gegeben seien zwei "normale"

Hashfunktionen  $h' : U \rightarrow \{0, \dots, m-1\}$  und  $h'' : U \rightarrow \{0, \dots, m-1\}$ 

quadratisches Sondieren: Für Schlüssel  $k \in U$  testen wir die

Positionen h'(k),  $h'(k) + 1^2$ ,  $h'(k) + 2^2$ ,  $h'(k) + 3^2$ , ... (jeweils modulo m).

Gilt  $h(k_1,0) = h(k_2,1)$ , so werden (anders als beim linearen Sondieren) verschiedene

Sequenzen durchlaufen. Es gilt insbesondere im Allgemeinen nicht  $h(k_1, 1) = h(k_2, 2)$ .

doppeltes Hashing: gegeben seien zwei "normale"

Hashfunktionen  $h'\colon U \to \{0,\dots,m-1\}$  und  $h''\colon U \to \{0,\dots,m-1\}$ 

Die Hashfunktion *h* ist dann definiert als

$$h(k, i) = h'(k) + i \cdot h''(k) \mod m$$
.

Analyse von geschlossenem Hashing: (ohne Löschen)

Analyse von geschlossenem Hashing: (ohne Löschen)

Uniformes Hashing: Beim Sondieren werden die Positionen in einer uniform zufälligen Reihenfolge getestet.

### Analyse von geschlossenem Hashing: (ohne Löschen)

**Uniformes Hashing:** Beim Sondieren werden die Positionen in einer uniform zufälligen Reihenfolge getestet.

Sei  $\alpha = n/m$  wieder der Auslastungsfaktor. Es gilt  $\alpha \le 1$ .

#### Theorem 4.13

Unter der Annahme des uniformen Hashings untersucht eine erfolglose Suche nach einem Schlüssel, der sich nicht in der Hashtabelle befindet, beim geschlossenen Hashing im Erwartungswert höchstens  $1/(1-\alpha)$  Positionen.

#### **Beweis:**

#### **Beweis:**

Es bezeichne X die Zufallsvariable, die die Anzahl untersuchter Positionen angibt.

• Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.

#### **Beweis:**

- Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.
- Es gilt  $\Pr[X \ge 2] = \frac{n}{m} = \alpha^1$ .

#### **Beweis:**

- Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.
- Es gilt  $\Pr[X \ge 2] = \frac{n}{m} = \alpha^1$ .
- Es gilt  $\Pr[X \ge 3] = \frac{n}{m} \cdot \frac{n-1}{m-1} \le \alpha^2$ , wobei  $\frac{n-1}{m-1} \le \frac{n}{m}$  aus  $m \ge n$  folgt.

#### **Beweis:**

- Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.
- Es gilt  $\Pr[X \ge 2] = \frac{n}{m} = \alpha^1$ .
- Es gilt  $\Pr[X \ge 3] = \frac{n}{m} \cdot \frac{n-1}{m-1} \le \alpha^2$ , wobei  $\frac{n-1}{m-1} \le \frac{n}{m}$  aus  $m \ge n$  folgt.
- Analog kann man für jedes  $i \in \mathbb{N}$  argumentieren:

$$\Pr[X \ge i] = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \le \alpha^{i-1}.$$

#### **Beweis:**

Es bezeichne X die Zufallsvariable, die die Anzahl untersuchter Positionen angibt.

- Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.
- Es gilt  $\Pr[X \ge 2] = \frac{n}{m} = \alpha^1$ .
- Es gilt  $\Pr[X \ge 3] = \frac{n}{m} \cdot \frac{n-1}{m-1} \le \alpha^2$ , wobei  $\frac{n-1}{m-1} \le \frac{n}{m}$  aus  $m \ge n$  folgt.
- Analog kann man für jedes  $i \in \mathbb{N}$  argumentieren:

$$\Pr[X \ge i] = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \le \alpha^{i-1}.$$

Aus der obigen Überlegung folgt

$$\mathsf{E}[X] = \sum_{i=1}^{\infty} \mathsf{Pr}[X \ge i]$$

#### **Beweis:**

Es bezeichne X die Zufallsvariable, die die Anzahl untersuchter Positionen angibt.

- Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.
- Es gilt  $\Pr[X \ge 2] = \frac{n}{m} = \alpha^1$ .
- Es gilt  $\Pr[X \ge 3] = \frac{n}{m} \cdot \frac{n-1}{m-1} \le \alpha^2$ , wobei  $\frac{n-1}{m-1} \le \frac{n}{m}$  aus  $m \ge n$  folgt.
- Analog kann man für jedes  $i \in \mathbb{N}$  argumentieren:

$$\Pr[X \ge i] = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \le \alpha^{i-1}.$$

Aus der obigen Überlegung folgt

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} \mathbf{Pr}[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1}$$

#### **Beweis:**

Es bezeichne X die Zufallsvariable, die die Anzahl untersuchter Positionen angibt.

- Es gilt  $\Pr[X \ge 1] = 1 = \alpha^0$ , da in jedem Fall eine Position betrachtet wird.
- Es gilt  $\Pr[X \ge 2] = \frac{n}{m} = \alpha^1$ .
- Es gilt  $\Pr[X \ge 3] = \frac{n}{m} \cdot \frac{n-1}{m-1} \le \alpha^2$ , wobei  $\frac{n-1}{m-1} \le \frac{n}{m}$  aus  $m \ge n$  folgt.
- Analog kann man für jedes  $i \in \mathbb{N}$  argumentieren:

$$\Pr[X \ge i] = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \le \alpha^{i-1}.$$

Aus der obigen Überlegung folgt

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} \mathbf{Pr}[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} \le \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha},$$

womit das Theorem bewiesen ist.

#### Theorem 4.14

Unter der Annahme des uniformen Hashings untersucht eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert höchstens  $\frac{1}{\alpha} \ln \left( \frac{1}{1-\alpha} \right)$  Positionen.

#### Theorem 4.14

Unter der Annahme des uniformen Hashings untersucht eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert höchstens  $\frac{1}{\alpha} \ln \left( \frac{1}{1-\alpha} \right)$  Positionen.

#### **Beweis:**

Suche nach Schlüssel  $\boldsymbol{x}$  erzeugt die gleiche Sequenz wie das Einfügen des Schlüssels.

#### Theorem 4.14

Unter der Annahme des uniformen Hashings untersucht eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert höchstens  $\frac{1}{\alpha} \ln \left( \frac{1}{1-\alpha} \right)$  Positionen.

#### **Beweis:**

Suche nach Schlüssel x erzeugt die gleiche Sequenz wie das Einfügen des Schlüssels.

Beim Einfügen des *i*-ten Schlüssels beträgt der Auslastungsfaktor  $\alpha_i = (i-1)/m$ 

#### Theorem 4.14

Unter der Annahme des uniformen Hashings untersucht eine erfolgreiche Suche nach einem uniform zufällig gewählten Schlüssel in der Hashtabelle im Erwartungswert höchstens  $\frac{1}{\alpha} \ln \left( \frac{1}{1-\alpha} \right)$  Positionen.

#### **Beweis:**

Suche nach Schlüssel x erzeugt die gleiche Sequenz wie das Einfügen des Schlüssels.

Beim Einfügen des *i*-ten Schlüssels beträgt der Auslastungsfaktor  $\alpha_i = (i-1)/m$  und demnach beträgt gemäß Theorem 4.13 die Anzahl der Positionen, die betrachtet werden, im Erwartungswert höchstens  $1/(1-\alpha_i) = 1/(1-(i-1)/m)$ .

Die Bildung des Durchschnitts über alle Schlüssel ergibt nun

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 - (i-1)/m} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{1 - i/m} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i}$$

$$= \frac{1}{\alpha} \sum_{k=m-n+1}^{m} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{k=m-n}^{m} \frac{1}{x} dx$$

$$= \frac{1}{\alpha} \ln \left( \frac{m}{m-n} \right)$$

$$= \frac{1}{\alpha} \ln \left( \frac{1}{1-\alpha} \right),$$

womit das Theorem bewiesen ist.

