## **Notes-splitleaf**

Equivalent Support Bound combined with lookahead: bound  $+ b_0 + lamb < R^c$ , Hierarchical Objective Lower Bound: bound  $< R^c$ , Accurate Support Bound: a < lamb,

- (1) If Equivalent Support Bound or Hierarchical Objective Lower Bound does NOT hold, we can prune all trees that contain  $d_p$ , which means we need to split at least one leaf in  $d_p$ .
- (2) If Accurate Support Bound does NOT hold, we can prune all trees that contain  $(l_1, l_2)$ , which means we need to split at least one of  $(l_1, l_2)$ .

There are 4 cases, here is how it goes:

**A.** If not(1) and not(2), we don't prune any tree, and we push one row [1,1,1,1 ...,1,1] into *self.splitleaf*, which marks every leaf to be split.



**B.** If (1) and (2), we push two rows into *self.splitleaf*, after the two rows are popped out and those leaves are split, we will only get trees which split one leaf in  $d_p$  and one leaf in  $(l_1, l_2)$ .



C. If (1) and not(2), we push one row into self.splitleaf, which marks all leafs in  $d_p$  to be split, but  $l_1$  and  $l_2$  to be not split.



**D.** If not(1) and (2), we push one row into *self.splitleaf*, which marks all leafs in  $(l_1, l_2)$  to be split, but  $d_p$  to be not split.

