NAME – VISHWAJEET SINGH Statistics and Probability Assignment Solution

Solution – 1 -:

Given mean= 70

variance = 200

hence mean for 10 adults = 10(70) = 700

variance for 10 adults = 10(200) = 2000

therefore, standard deviation sd = $\sqrt{2000}$ = 44.72

If the weight > 800 kg causes the elevator to "unsafely" reach the ground, then we can find the upper tail of our normal distribution:

P (Weight of 10 adults > 800 kg).

$$Z - score = (X - mu)/SD = (800 - 700)/44.72 = 2.24$$

Hence P (Z < 2.24), using z table we get 0.9875 or 98.75%

Hence it is safe to reach the ground when there are 10 adults in the lift.

Solution -2 -:

The total sample size is N = 500. Therefore, the total degrees of freedom are:

$$df_{total} = 500 - 1 = 499$$

The between-groups degrees of freedom are $df_{between} = 5 - 1 = 4$, and the within-groups degrees of freedom are:

$$\begin{split} df_{within} &= df_{total} - df_{between} = 499 - 4 = 495 \\ &i,j \sum X_{ij} = 499712 \\ &i,j \sum X_{ij}{}^2 = 499691630 \\ SS_{total} &= i,j \sum X_{ij}{}^2 - 1/N \; (i,j \sum X_{ij})^2 = 267464.112 \\ &SS_{within} = 266084.42 \\ &SS_{between} = 1379.692 \\ MS_{between} &= SS_{between} \; / \; df_{between} = 1379.692 \; / \; 4 = 344.923 \\ MS_{within} &= SS_{within} \; / \; df_{within} = 266084.42 \; / \; 495 = 537.544 \\ &F = MS_{between} \; / \; MS_{within} = 344.923 \; / \; 537.544 = 0.642 \end{split}$$

The following null and alternative hypotheses need to be tested:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$$

 H_1 : Not all means are equal.

The above hypotheses will be tested using an F-ratio for a One-Way ANOVA.

Based on the information provided, the significance level is $\alpha = 0.05$, and the degrees of freedom are $df_1 = 4$ and $df_2 = 4$, therefore, the rejection region for this F-test is $R = \{F : F > F_c = 2.39\}$.

Test Statistics

$$F = MS_{between} / \ MS_{within} = 344.923 \ / \ 537.544 = 0.642$$

Since it is observed that $F = 0.642 < 2.39 = F_c$, it is then concluded that the null hypothesis is not rejected. Therefore, there is not enough evidence to claim that not all 5 population means are equal, at the $\alpha = 0.05$ significance level.

Using the P-value approach: The p-value is p = 0.633, and since $p = 0.633 \ge 0.05$, it is concluded that the null hypothesis is not rejected. Therefore, there is not enough evidence to claim that not all 5 population means are equal, at the $\alpha = 0.05$ significance level.

Solution -3 -:

	A1	A2	A3	Anova: Single Factor						
	86	90	82							
	79	76	68	SUMMARY						
	81	88	73	Groups	Count	Sum	Average	Variance		
	70	82	71	Column 1	5	400	80	38.5		
	84	89	81	Column 2	5	425	85	35		
				Column 3	5	375	75	38.5		
Sum	400	425	375							
Mean	80	85	75							
				ANOVA						
		O		Source of Variation	SS	df	MS	F	P-value	F crit
				Between Groups	250	2	125	3.34821429	0.06991	3.88529
				Within Groups	448	12	37.3333333			
				Total	698	14				

We have the sample of the scores of 15 trainees (A1, A2, A3). Each group consists of 5 trainees. We calculate the mean of each group. We should find out whether these means are different significantly (whether they were chosen from the different populations), $\alpha = 0.05$.

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 H_1 : at least one of the means is different.

Using Single-Factor ANOVA in Excel we get p-value $\approx 0.069 > \alpha$.

So, we accept H_0 .

Three different types of the instructional approaches have the same effect on the trainees.