1 Implication

Which of the following implications are always true, regardless of P? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

- (a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$.
- (b) $\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y)$.
- (c) $\exists x \forall y P(x, y) \implies \forall y \exists x P(x, y)$.

2 Equivalences with Quantifiers

Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers. For all $x \in \mathcal{U}$, if there exists a $y \in \mathcal{U}$ such that $\mathcal{Q}(x,y) = 1$

(a)
$$\forall x \left((\exists y \ Q(x,y)) \Rightarrow P(x) \right)$$
 $\forall x \ \exists y \ (Q(x,y) \Rightarrow P(x))$ $\forall x \ \exists y \ (P(x,y) \Rightarrow P(x))$ $\forall x \ \exists y \ (P(x,y) \Rightarrow P(x))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ Q(x,y))$ $\forall x \ (\exists y \ P(x,y)) \land (\exists y \ P($

The truth table of XOR (denoted by \oplus) is as follows.

A	В	$A \oplus B$
F	F	F
F	T	T
T	F	T
T	T	F

1. Express XOR using only (\land, \lor, \neg) and parentheses.

CS 70, Fall 2020, DIS 00

2. Does $(A \oplus B)$ imply $(A \vee B)$? Explain briefly.

3. Does $(A \lor B)$ imply $(A \oplus B)$? Explain briefly.

4 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

(a)
$$P \wedge (Q \vee P) \equiv P \wedge Q$$

(b)
$$(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$$

(c)
$$(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$$