

Source: 3D Printing World Environment Day GIF By General Electric

Can we formulate EDfAM as an MDO problem? (EDfAM means EcoDesign for Additive Manufacturing) Prof. Joseph Morlier

Research Experiences

- PhD graduated from Univ. Bordeaux in SHM of civil engineering structures in 2005
- Visiting Postdoc in Beijing (China), LIAMA: Sino French lab on Applied Mathematics (summer 2006)
- Ass. Prof in SUPAERO in 2006 SHM of composites structures
- Full Professor in Structural and Multidisciplinary Design Optimization since 2012 As a visiting Researcher
- In University of Michigan @MDOlab (summer 2017)
- in TU Delft (May 2022) with **ANR Grant 2021** (French Science Foundation) → Also the Purpose of My actual visit at MDOlab

Key Figures at a Glance

ISAE-SUPAERO Programs & Bologna Process

Toulouse: Aerospace Activities

Actual PHD students in my group:

Ecodesign and topology optimization of architectured materials and structures, PhD Edouard Duriez, X fund

Fast nonlinear aeroelasticity, PhD Oriol Chandre-Villa - Airbus fund

Multifidelity aeroelastic modeling for Ultra High Aspect Ratio Wing, PhD Yoann Le Lamer – EU/ONERA fund

Co-design and MDO for Military UAV design, PhD Remy Charayron -DGA/ONERA fund

Discrete optimization for topology optimization of architectured materials with variable linking, PhD Enrico Stragiotti – ONERA fund

Eco-optimization of space launchers, PhD of Thomas Bellier - ANR&RMIT fund

Graph Neural Networks for aerospace dynamic systems Michele Colombo - Airbus fund

ECODESIGN/ARCHITECTED MATERIALS & MDO

Why DfAM?

https://dfam.substack.com/p/dfam-education-in-2022

Composites as a new DV

https://www.compositesworld.com/articles/tow-steering-part-2-the-next-generation

Why EcoDfam

Material/Process as new design variables in MDO

Eco Material selection **Eco Process** selection

https://www.ansys.com/blog/the-impact-of-materials-on-sustainability-part-2

Unit cell design (anisotropy)

Digital materials

Material/Process as new design variables

Eco Process selection

Additive manufacturing (AM) energy consumption

 Consumption depend on material, technology, machine and parameters

=> very high standard deviation

Technology		Material	Energy consumption – Mean and std dev (kWh/kg)	
	SLM	stainless steel	30 ± 6 [24](a)(b)	
Metals	SLIVI	aluminium	130 ± 32 [24](c)(d)	
ivietais	DMLS	stainless steel	44 ± 17 ^{[24](e)}	
	EBM	Titanium alloy	27 ± 19 [24](f)	
	FDM	ABS	174 ± 109 [24](g)(h)(i)	
Polymers	SLS	PA (nylon)	$38 \pm 18^{[24](g)(j)(k)(l)(m)}$	
	SLA	epoxy resin	32 ± 10 ^{[24](g)}	

(a) M. Baumers, C. Tuck, R. Hague, R. Wildman, I. Ashcroft, "Energy inputs to additive manufacturing: does capacity utilization matter?", 22nd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF, 2011, 30-38.

(b) M. Baumers, C. Tuck, R. Hague, R. Wildman, I. Ashcroft, "A comparative study of metallic additive manufacturing power consumption". 21st Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF, 2010, 278-288.

(c) K. Kellens, R. Mertens, D. Paraskevas, W. Dewulf, J.R. Duflou, "Environmental, Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing?", Procedia CIRP, 61, 2017, 582-587.

(d) J. Faludi, M. Baumers, I. Maskery, et al., "Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate?", Journal of Industrial Ecology, 21(51), 2017, S144-S156. (e) P. Mognol, D. Lepicart, N. Perry, "Rapid prototyping: energy and environment in the spotlight", Rapid Prototyping Journal, 12, 2006, 26-34.

(f) M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, R. Hague, "Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?", Journal of Industrial Ecology, 21(S1), 2017, S157-S167.

(g) Y. Luo et al., "Environmental Performance Analysis of Solid Freedom Fabrication Processes", Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment, 1999, 1-6.

(h) S.Junk et S.Coté, "A Practical Approach To Comparing Energy Effectiveness Of Rapid Prototyping Technologies", Proceedings of AEPR'12, 17th European Forum on Rapid Prototyping and Manufacturing, Paris, France, 12-14 Juin 2012.

(i) H-S. Yoon, J-Y. Lee, H-S. Kim, M-S. Kim and al., "A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study". Int J Precis Eng and Manuf-Green Technol, 1(3), 2015, 261–279.

(j) K. Kellens, W. Dewuf, J. Duflou, « The CO2PEI-Initiative (Cooperative Effort on Process Emissions in Manufacturing)", Conference: 14th ERSCP and 6th EMSU conference, 2010.

(k) Sreenivasan, R., Bourell, D. et al., "Sustainabulity Study in Selective Laser Sintering - An Energy Perspective", *Proceedings of the 20th International Solid FreeForm Fabrication Symposium*, 2009. (l) Baumers, M., Tuck, C., Bourell, D., Sreenivasan, R., and Hague, R., "Sustainability of Additive Manufacturing: Measuring the Energy Consumption of the Laser Sintering Process," *Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture*, 225 (12), 2011, 2228-2239.

(m) C. Telenko, & C. C. Seepersad, "A comparative evaluation of energy consumption of Selective Laser Sintering and Injection Molding of Nylon parts", Rapid Prototyping Journal, 18(6), 2012, 1–31.

Material/Process as new design variables

Eco Material selection

ECOHALE design

 Trade-off between use phase (young's modulus and density) and production phase (CO2 footprint)

OpenAeroStruct is a lightweight tool that performs aerostructural optimization using OpenMDAO.

openmdao optimization aerodynamics open-source

Chauhan, S. S., & Martins, J. R. (2018, September). Low-fidelity aerostructural optimization of aircraft wings with a simplified wingbox model using OpenAeroStruct. In International Conference on Engineering Optimization (pp. 418-431). Springer, Cham.

14 (IDO)ab Seminar

EcoHale

Derive OAS 2.0 to treat a HALE pseudo sattelite Design problem

Airbus-built HALE Zephyr

<u>Assets:</u> Flexible, repositionable, permanent coverage, cheaper, lower environnemental impact?

Discrete variables

Minimize CO2 w.r.t. thicknesses, twist, geometry, materials database CES EDUPACK (CFRP-3, GFRP, ALU,...) Subject to Available solar power, stress, buckling, flight

From OAS to EcoHale

- Commercial aircraft
- Breguet range equation
- Fuel consumption
- 2.5G manoeuvre
- High Reynolds number
- Fixed structural material

- ➤ HALE drones
- ➤ Power equilibrium
- ➤ Power from batteries and solar panels
- ➤ Shear gust wall
- ➤ Low Reynolds number
- ➤ Material choice optimization

Discipline	Method	Implementation	Reference
Aerodynamics	VLM	OAS	Anderson (1991)
Structure	Wingbox beams	OAS	Chauhan and Martins (2019)
Energy	Simple in-house method	Section 2.1	data from Colas et al. (2018)
Environmental	Proportional to mass	Section 2.3.2	data from Wetzel and Borchers (2015), Hao et al. (2017)

Objective function

- CO2 emitted by the HALE drone during its life cycle
- No fuel > CO2 from materials and processing

• Structure
$$\blacktriangleright$$
 $CO2_{struct} = M_{spar} \cdot CO2_{mat1} + M_{skin} \cdot CO2_{mat2}$

• Solar panels
$$ightharpoonup$$
 $CO2_{PV} = P_{needed} \cdot CO2_{/W}$

• Batteries
$$ightharpoonup CO2_{bat} = P_{needed} \cdot t_{night} \cdot CO2_{/Wh}$$

•
$$CO2_{total} = CO2_{struct} + CO2_{PV} + CO2_{bat}$$

- 8 design variables:
 - Twist + Angle of attack control points
 - Thickness-to-chord ratio control points
 - Span
 - Root chord
 - Taper ratio
 - Motor spanwise location
 - Skin thickness control points
 - Spar thickness control points

Trapezoidal wing planform

: Wingbox cross-section model [1]

S. S. Chauhan and J. R. Martins, "Low-fidelity aerostructural optimization of aircraft wings with a simplified wingbox model using OpenAeroStruct," in International Conference on Engineering Optimization, pp. 418-431, Springer, 2018.

Discrete Material Choice inspired from SIMP

- 1 material design variable with 2 components:
 - · Density of the material used for the spars
 - · Density of the material used for the skins
- Material properties as a function of the density:
 - · Young's modulus
 - Shear modulus
- Continuous variable by interpolating each material property in the space between real materials from a discrete catalogue

$$E(
ho)=A\cdot
ho^p+B$$
 with $A=rac{E_{i+1}-E_i}{
ho_{i+1}^p-
ho_i^p}$ and $B=E_i-A\cdot
ho_i^p$

Young's modulus example of penalized interpolation of materials [1]

Zuo, Wenjie, and Kazuhiro Saitou. "Multi-material topology optimization using ordered SIMP interpolation." Structural and Multidisciplinary Optimization 55.2 (2017): 477-491.

Mass minimisation

Tab. 1: Final design variable values for validation case

Design variable	Unit	FB HALE [1]	Our case
Span	m	45.6	53.5
Root chord	m	-	1.4
Taper ratio	-	-	0.3
Total mass	kg	320	245
Wing surface	m^2	71.8	50.3
Aspect ratio	-	29	57
C _L cruise	-	1.33	1.39
$(C_L^{3/2}/C_D)$ cruise	-	40.1	50.2
y _{engine} /(b/2)	-	0.46	0.33

Fig. 7: Comparison of the mass breakdowns

D. Colas, N. H. Roberts, and V. S. Suryakumar, "HALE multidisciplinary design optimization Part I: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

CO2 footprint minimization

- Optimization algorithm ➤ SLSQP
- Stopping criteria:
 - ➤ Convergence accuracy: 10⁻³
 - ➤ Maximum number of iterations: 250

Objective function	Dimension	Bounds	
$CO2_{tot}$	\mathbb{R}		
Design variables			
Density	\mathbb{R}^2	$[400, 8000] \text{ kg/m}^3$	
Twist control points	\mathbb{R}^4	[-15, 15] deg	
Skin thickness (t_{skin}) control points	\mathbb{R}^4	[0.001, 0.1] m	
Spar thickness control points	\mathbb{R}^4	[0.001, 0.1] m	
Thickness-to-chord ratio control points	\mathbb{R}^4	[0.01, 0.4]	
Span	\mathbb{R}	[1, 1000] m	
Root chord	\mathbb{R}	[1.4, 500] m	
Taper ratio	\mathbb{R}	[0.3, 0.99]	
Motor location over semi-span ratio	\mathbb{R}	[0, 1]	
Constraints			
Mechanical failure $\sigma < \sigma_{max}$	\mathbb{R}^7		
Buckling $R_s^2 + R_c < 1$	R ⁷		
Skin thickness $2t_{skin} < t_{wing}$	\mathbb{R}^4		
Power equilibrium $P_{needed}/A_{PV} < S_{wing}$	\mathbb{R}		

Property	Material 1	Material 2	Material 3	CFRP	GFRP	Aluminum	Steel	Unit
Density	504.5	529	560.5	1565	1860	2800	7750	kg/m ³
CO2 emissions	44.9	42.8	40.3	48.1	6.18	8.66	3.28	kg_{CO2}/kg
Young's modulus	42.5	42.5	42.5	54.9	21.4	72.5	200	GPa
Shear modulus	16.3	16.3	16.3	21	8.14	27	78.5	GPa
Failure strength	587	237	587	670	255	445	562	MPa
Buckling index Strength index	0.1539 25885	0.1543 10484	0.1544 25959	0.05049 8901	0.24153 22184	0.1720 18331	0.2302 22119	$N^{\frac{1}{3}} \cdot m^{\frac{7}{3}} / kg_{CO2}$ $N \cdot m \cdot kg_{CO2}$

CO2 footprint minimization

(a) Objective function: total CO2 emitted:

(b) Material density for skins and spars:

Material/Process as new design variables

Unit cell design (anisotropy) Digital materials

The ERA of DIGITAL MATERIALS

Chris Spadaccini (IInI,USA) "By controlling the architecture of a microstructure, we can create materials with previously unobtainable properties in the bulk form."

VIDOlab Seminar

Multi-scale TO (well connected+ locally-oriented)

A two level optimization that combines Unit cell design & Topology

Optimization

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229-1241. https://doi.org/10.1007/s00158-015-1294-0

Wu, Jun, Ole Sigmund, and Jeroen P. Groen. "Topology optimization of multi-scale structures: a review." Structural and Multidisciplinary Optimization 63.3 (2021): 1455-1480.

Acceleration through Al

• Density

Orientation

Cubicity

EMTO results

EMTO on L-shape (cellular /digital materials)

https://github.com/mid2SUPAERO/EMTC

How to **ECO**design tomorrow's structures?

Prof. Joseph Morlier, Edouard Duriez, Miguel Charlotte, Catherine Azzaro-Pantel

Print it, Test it

PLA or Selective Laser Melting (SLM)

and Local Buckling?

(a) The MBB beam problem.

(c) Cell buckling scores. The selected cells are(d) Micro-structures with cubicity=1 correspond-circled in red. ing to each selected cell.

(e) Final design post-treated for buckling: the micro-structures with cubicity=1 are superimposed on the design and the global volume fraction is brought back to its initial value.

ADOlah Seminar

Which design is the most rigid?

- Multiple load paths possible in the multi-scale designs.
- Mono-scale design breaks in a very brutal and complete way, completely destroying the structure.
- Ability for multi-scale designs to absorb much more energy.

Olah Saminar

Material/Process as new design variables

A simple way to do Ecodesign with Topology Optimization?

DOIab Seminar 33

Start with Topology Optimization

Inputs: Material, BCs and Loading

Outputs: design of a "stiff" bicycle frame

CO2 footprint minimization (Ashby's method)

Inputs: Type of Structures, default materials

Outputs: Optimal material (bamboo) with optimal Design

#Generalized Ashby's theory compatible with TopOpt #All In One problem is a MDO problem !!!

 $\underset{mat,\mathcal{D},t}{\operatorname{arg min}} \quad CO_2^{tot}(mat,\mathcal{D},t)$

s.t.
$$\delta \leq \delta_{max}$$

 $mat = \{E, \rho, CO_{2mat}^i\} \in \Phi$
 $0 < v_f(\mathcal{D}) \leq 1$

Procedia CIRP

Volume 109, 2022, Pages 454-459

Ecodesign with topology optimization

Edouard Duriez a M, Joseph Morlier a, Catherine Azzaro-Pantel b, Miguel Charlotte a

Show more V

https://doi.org/10.1016/j.procir.2022.05.278

Under a Creative Commons license

Get rights and content

Open access

BONUS

What's new in SMT? [the Surrogate Modeling Toolbox]

OpenSource code:
github.com/SMTorg/smt
Documentation:
smt.readthedocs.io

MDOlab Seminar 5⁻

SMT structure – Surrogate

https://github.com/SMTorg/smt

- Radial basis functions
- Inverse-distance weighting
- Jseful for low Least-squares approximation
 - Second order polynomial approximation
 - Kriging
 - Kriging with partial least square (KPLS)
 - KPLSK
 - Gradient-enhanced KPLS
 - Gradient-enhanced neural networks
 - Marginal Gaussian process

1.1.0 (Latest

- ∨1.1.0 ◆ 651df91
- Mired integer surrogate enhancements (thanks @Paul-Saves)

 Add number of components estimation in KPLS surrogate models (#325)
- · Add propagate_uncertainty option in MFK method (#320); when True the variance of lower fidelity levels are taken into account.
- Add ordered variables management in mixed integer surrogates (#326, #327). Deprecation warning: INT type is deprecated and superseded by ORD type.
- Update version for the GOWER distance model. (#330)
- Implement generalization of the homoscedastic hypersphere kernel from Pelamatti et al. (#330)

Svante Wold (1978) Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models, Technometrics, 20:4, 397-

Compare +

405, DOI: 10.1080/00401706.1978.10489693

useful for kriging in high dimension

Focus on derivatives

Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. (2019). A Python surrogate modeling framework with derivatives. Advances in Engineering Software, 135, 102662.

AI4F

- Mixture of experts (MOE) if 1 expert, comparison of all experts
- Variable-fidelity modeling (VFM)
- Multi-Fidelity Kriging (MFK)
- Multi-Fidelity Kriging KPLS (MFKPLS)
- Multi-Fidelity Kriging KPLSK (MFKPLSK)
- Efficient Global Optimization (EGO)
- Mixed-Integer Sampling and Surrogate (Continuous Relaxation)
- Mixed-Integer Surrogate with Gower Distance

How to approximate highly non linear function?

- •Handle heterogeneity and non linearity (all phases in the flight mission, buckling factor for composite fuselage)
- •Combine multiple surrogate models divide-and- conquer strategy

Focus on mixed integer

Variables types:

Continuous (x) Ex: wing length

Integer (z) Ex: winglet number

Categorical (u) Ex: Plane shape

Categorical variables: n variables,

n=2

u1= shape

u2= color

<u>Levels:</u> L_i levels for I in 1,...n,

 $L_1 = 3$, $L_2 = 2$.

Levels(u1)= square, circle,

rhombus

Levels(u2)= blue, green

Categories: $\prod_{i=1}^{n} L_i$, 2*3=6

- Blue square
- Blue circle
- Blue rhombus
- Green square
- Green circle
- Green rhombus

Focus on mixed integer

Continuous relaxation

E. C. Garrido-Merchán, and D. Hernández-Lobato. "Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes". Neurocomputing, vol. 380 (2020), pages 20-35

Example with 1 categorical variable and two levels

- Red color
- Blue color
- → Categorical variable replaced by two continuous variables denoted by X₁ and X₂
- If $X_1 > X_2 = > (1., 0.) = >$ Blue color
- If $X_1 < X_2 => (0., 1.) => \text{Red color}$

Focus on mixed integer

Continuous relaxation

Validation problem $n_{var} = 2$ Variable types: continuous and categorical with 10 levels. $n_{var,relaxed} = 11$

Test SMT online:

https://github.com/SMTorg/smt/blob/master/tutorial/README.md

These tutorials introduce to use the opensource Surrogate Modeling Toolbox where different surrogate models are available

SMT Tutorial (linear, quadratic, gaussian process, ...)

Noisy Gaussian process

Multi-Fidelity Gaussian Process

Bayesian Optimization - Efficient Global Optimization to solve unconstrained problems

Mixed-Integer Gaussian Process and Bayesian Optimization to solve unconstrained problems with mixed variables (continuous, discrete, categorical)

AIAA AVIATION 2022 Forum

- "A general square exponential kernel to handle mixed-categorical variables for Gaussian process" https://arc.aiaa.org/doi/10.2514/6.2022-3870.
- "A mixed-categorical data-driven approach for prediction and optimization of hybrid discontinuous composites performance" https://arc.aiaa.org/doi/10.2514/6.2022-4037.

Time

To conclude !!

MDOIab Seminar 6:

LCA & Eco Selection as a MDO discipline

LCA & eco selection

- Material
- Process
- from cradle to grave

.

Water withdrawal

Generation of waste

Use recycled: Fibers Resin Metals Reuse & Repair

Carbon Footprint

Energy requirement

First-order approximation

min {mass} is proportional to min {CO2} in AD

Greener Aircraft =

add DIGITAL MATERIALS + DIGITAL FABRICATION + ECODESIGN in the MDO of flexible HAR wing

Thanks to all my Students and ICA/ONERA/SUPAERO/AIRBUS

Colleagues in France

Institut Supérieur de l'A...

John T Hwang University of California ...

http://mdolab.engin.umich.edu

Optimization [MDO] for connecting people?

joseph.morlier@isae-supaero.fr