PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-256043

(43) Date of publication of application: 19.09.2000

(51)Int.CI.

CO3C 27/12

(21)Application number: 11-061743

_061742

(71)Applicant: SEKISUI CHEM CO LTD

(22)Date of filing:

09.03.1999

(72)Inventor: HATTORI TSUYOSHI

(54) INTERMEDIATE FILM FOR LAMINATED GLASS AND LAMINATED GLASS

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an intermediate film free from mutual blocking of the intermediate films having excellent workability and deaerating properties and free from the generation of optical strain by forming projecting and recessed parts at least on one surface of the intermediate film composed of a multilayer resin film having a specified film thickness of the outer most layer and making the projecting and recessed parts made of main embossments and sub-embossments each having a specific roughness.

SOLUTION: The projecting and recessed parts are composed of main embossments each having fine roughness (20–40 μ m roughness) and sub-embossments each having super fine roughness (10–15 μ m roughness). The method for forming the embossments is preferably an emboss roll method capable of quantitatively yielding a fixed number of embossments. After resin films for the intermediate film are laminated, heated and pressed, the embossments are formed on the film. As the multilayer resin film, for example, a plastic polyvinyl butylal based resin, a vinyl chloride based resin, an ethylene-vinyl acetate based resin or an urethane based resin is used. The film thickness of the intermediate film is controlled to 45–200 μ m. The film thickness of the intermediate film is not particularly restricted but preferably in the range of 0.1–2 mm.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号

特開2000-256043

(P2000-256043A)

(43)公開日 平成12年9月19日(2000.9.19)

(51) Int.CL?

織別配号

FI

テーマコード(参考)

C03C 27/12

CO3C 27/12

4G061 F

D

審査請求 未請求 菌泉項の数3 OL (全 6 頁)

(21)出顯番号	物膜平11-61743	(71)出顧人 000002173
		積水化学工業株式金社
(22)出版日	平成11年3月9日(1999.3.9)	大阪府大阪市北区西天樹2丁目4番4号
	· · · · · · · · · · · · · · · · · · ·	(72) 雅明者 股部 強司
		滋賀県甲賀都水口町東1259 積水化学工業
		株式会社内
		F ターム(参考) 40081 AA20 BA01 BA02 CA02 CB05
		CB19 CD02 CD12 CD20 DA09
	,	DA23 DA29 DA30 DA38

(54) 【発明の名称】 合わせガラス用中間膜および合わせガラス

(57)【要約】

【課題】 中間瞬間士のブロッキングを防止し、さら に、作業性や脱気性が良好であり、かつ、光学歪みが発 生しない合わせガラス用中間膜およびそれを用いた合わ せガラスを提供する。

【解決手段】 多層樹脂膜からなる合わせガラス用中間 膜であって、該中間膜の少なくとも一面に凹凸が形成さ れ、該凹凸がメインエンボス及びサブエンボスから構成 される。

特闘2000-256043

2

【特許請求の範囲】

【請求項1】 最外層の機厚が45~200μmである 多層樹脂膜からなる合わせガラス用中間膜であって、該 中間膜の少なくとも一面に凹凸が形成され、該凹凸が粗 さ20~40μmのメインエンボス及び粗さ10~15 μmのサブエンボスからなることを特徴とする合わせガ ラス用中間膜。

1

【語求項2】 最外層の機厚が200~720μmである多層樹脂膜からなる合わせガラス用中間膜であって、該中間膜の少なくとも一面に凹凸が形成され、該凹凸が 19粗さ20~50μmのメインエンボス及び粗さ10~15μmのサブエンボスが形成されてなることを特徴とする合わせガラス用中間膜。

【請求項3】 請求項1又は2記載の合わせガラス用中間膜が、2枚のガラス板の間に挟着されてなることを特徴とする合わせガラス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、合わせガラス用中 間膜およびそれを用いた合わせガラスに関する。

[0002]

【従来の技術】従来から、2枚の透明ガラス板の間に可 塑化ポリビニルブチラール樹脂に代表される接着性中間 膜が検着されてなる合わせガラスは、強度が大きく破損 し難く、破損した場合でも酸片が飛散しない安全なガラ ス村であり、例えば自動車や航空機等の輸送用機器ある いは建築物等の窓ガラスに広く使用されている。

【①①①3】このような合わせガラスを製造する場合には、接着性の熱可塑性制能からなる中間膜を2枚のガラス板の間に挿入し、得られた補層体を予備圧着して各層 30間に残存する空気を脱気した後、本圧着して補層体を完全に密着させる。

【①①①4】上記の合わせガラスに用いられる中間膜は、保存時に中間膜同士が合者し魏状となる、いわゆるブロッキング現象が生じないこと、ガラスと中間膜とを重ね合わせる際の作業性が良好であること、および予備圧着工程における脱気性が良好であることが要求される。特に、予備圧者時における脱気性は合わせガラスの品質を左右する。脱気が不十分であると、得られた合わせガラスの透明性が悪くなったり、促進試験を行うと気泡が生じたりすることがある。

【0005】上記のような脱気性を含む中間膜の総合性能は、素材である熱可塑性樹脂の種類や粘弾性等の物性によって左右されるが、これらの物性を固定して考えると、中間膜の表面形状がその総合性能を決定する大きな要因となる。

【①①①⑥】特に、エンボスと呼ばれる多数の微細な凹 近れ中間暗の出来に取締ずでした時間がセナントが702 ンダムな大きさや形状を有する凹凸を形成したものや、 格子状の多数の条構を形成したもの等がある。

【①①①7】とのようなエンボスが表面に形成された従来の中間膜としては、例えば中間膜の表裏面に配列方向を特定化したエンボスを形成したもの(特開平6-127983号公報)等があり、中間膜同士のブロッキング防止や、ガラス板と中間膜とを重ね合わせる際の作業性改善。および予備圧着工程での脱気性に関して効果が認められている。

【①①①8】一方、近年では合わせガラスの用途の多様化が進み、装飾性、断熱性、合わせ加工等、合わせガラスの付加価値の向上が幅広く要求されるようになってきている。このため、単一村よりなる中間膜だけでは要求項目を総て満足させることが困難となり、単一樹脂膜からなる単層中間膜に代わり、多層樹脂膜からなる多層中間膜が注目されている。例えば特闘平4-254444号公報においては、2種の可塑化ポリビニルアをタール樹脂膜を補層して構成した。少なくも2層の多層樹脂膜からなる多層中間膜が提案されている。

20 [0009]

【発明が解決しようとする課題】しかしながら、ブロッキングの防止、作業性改善あるいは脱気性向上のために、上記多層中間膜の衰面にエンボスを形成した場合、最外層の膜厚が比較的薄い場合には、エンボスが中間膜衰面に形成されるだけではなく、多層樹脂膜を構成する各樹脂層の界面にも該エンボスの凹凸に応じた凹凸状の微小な変形が生じる。このため、各樹脂膜層の界面に微小な乱れが生じて界面が不均一となる。その結果、このような多層中間襞を用いて作製した合わせガラスを通してガラスの反対側を見た場合、反対側の像が歪んで見える。いわゆる光学歪みが発生するという問題が生じている。

【①①10】本発明は、上記の問題を解決するもので、その目的とするところは、中間膜同士のプロッキングを防止し、さらに、作業性や脱気性が良好であり、かつ、光学歪みが発生しない合わせガラス用中間膜あよびそれを用いた合わせガラスを提供することにある。

[0011]

【課題を解決するための手段】上記の課題を解決すべく 鋭意研究を行った結果、合わせガラス用多層中間機に発生する像の歪み、いわゆる光学歪み現象は、中間機表面 に形成されたエンボスの組さと多大な相関があることを 見出し、本発明を完成するに至った。

【0012】本願請求項1記載の発明(以下、第1発明という)である合わせガラス用中間膜は、最外層の膜厚が45~200μmである多層樹脂膜からなる合わせガラス用中間膜であって、該中間膜の少なくとも一面に凹近れば呼ばなり、動力によるによるのである。

. .

【0013】本願請求項2記載の発明(以下、第2発明という)である合わせガラス用中間膜は、最外層の膜厚が200~720μmである多層制脂膜からなる合わせガラス用中間膜であって、該中間膜の少なくとも一面に凹凸が形成され、該凹凸が組さ20~50μmのメインエンポス及び組さ10~15μmのサブエンボスが形成されてなることを特徴とする。

3

【①①14】本発明の合わせガラス用中間膜としては多層樹脂膜が用いられる。上記樹脂膜としては、従来より合わせガラスに用いられている樹脂機を使用することが 10でき、例えば、可塑化ポリピニルブチラール系樹脂、塩化ビニル系樹脂、エチレン-酢酸ビニル系樹脂、ウレタン系樹脂等の熱可塑性樹脂からなる樹脂膜が挙げられる。

【①①15】これらの樹脂膜は、耐候性、耐貫通性、ガラス酸片の飛散防止性、透明性、光学歪みが生じない等の。合わせガラスに要求される基本性能が優れている。また。これら樹脂膜には、紫外線吸収剤、酸化防止剤、接着調整剤等の種々の添加剤が含有あるいは付着されてもよい。

【①①16】尚、本発明の合わせガラス用中間膜の膜厚は、特に限定されるものではないが、各種の用途に適応するためには、①、1~2mmの範囲が好ましい。

【①①17】第1発明の合わせガラス用中間膜で用いちれる多層樹脂膜の最外層の膜厚は、45~200μmとなされる。最外層の膜厚が45μm未満では、後述するメインエンボスの粗さを20~40μmとすると各樹脂膜層の界面に微小な乱れが生じて界面が不均一となり、いわゆる光学歪みが発生する。また、膜厚が200μmを超えるとメインエンボスの粗さを20~40μmとする必要はない。

【①①18】第1発明の中間膜の少なくとも一面に凹凸が形成され、該凹凸は、組さが微細なメインエンボス及び極微細なサブエンボスとからなる。上記メインエンボス及びサブエンボスからなる凹凸が形成されることによって、光学歪みをより効果的に解消することが確認されており、上記メインエンボスの粗さは20~40μmとなされ、サブエンボスの組さは10~15μmとなされる。

【①①19】上記メインエンボスの組さが20μmより小さくなると、予備圧者工程での脱気性が低下し、得られた合わせガラスの透明性が悪くなったり、促進試験を行うと気泡が発生したりすることがある。一方、メインエンボスの粗さが40μmより大きくなると、各樹脂膜層の界面に微小な乱れが生じて昇面が不均一となり、いわゆる光学歪みが発生する。メインエンボスの組さは25~35μmが好ましい。

TAAAAA Lety アンチンはった色をかからから

10 μmより小さくなると予備圧者工程で脱気性が低下し、得られる合わせガラスの透明性が悪くなったり、促造試験で気泡が生じたりすることがあり、15 μmを超えると各樹脂膜層の界面に微小な乱れが生じて界面が不均一となり、いわゆる光学歪みが発生する。

【0021】第2発明の合わせガラス用中間膜で用いられる多層制脂膜の最外層の膜厚は、200~720μmとなされる。最外層の膜厚が200μm未満では、後述するメインエンボスの粗さを20~50μmとすると各制脂膜層の原面に微小な乱れが生じて界面が不均一となり、いわゆる光学歪みが発生する。また、膜厚が720μmを超えるとメインエンボスの粗さを20~50μmとする必要はない。

【0022】第2発明の中間膜の少なくとも一面に凹凸が形成され、該凹凸が、組さが微細なメインエンボス及び極端細なサブエンボスとからなる。上記メインエンボスの組さは、第1発明と同様の理由によって20~50μmとなされ、サブエンボスの粗さは、第1発明と同様の理由によって10~15μmとなされる。

26 【0023】上記エンボスの形状は、円錐、角錐、擬錐 体、角柱、円錐等の柱体等、特に限定されることなく種 々の形状を採用することができる。

【①①24】上記エンボスの配列としては、規則的なもの。ランダムなもの等、種々なものを採用することができ、特に限定されるものではないが、界面の乱れによる光学歪み現象が起こりにくいという点を考慮すれば、エンボスの配列は規則的である方が好ましく、さらにサブエンボスの粗さを15μm以下に抑えることにより、脱気性を阻害せず、光学歪みを改善することができる。

【① ① 2 5 】 とこでいうエンボスの組さとは、中間膜の 表面に形成された多数の凹凸からなるエンボスの深さ又 は高さのことをいう。

【①①26】上記メインエンボスの組さは、例えば表面 粗さ測定装置を用いて10点平均粗さとして測定され る。上記サブエンボスの組さは、例えば表面粗さ測定装 置を用いて得られる中間膜の表面曲線からメインエンボスの凹凸を取り除いた後に測定される。上記表面曲線か ちメインエンボスの凹凸を取り除くには、一般に電気式 表面組さ測定機に用いられている流波回路による方法

や、曲率半径の大きい円で表面曲線上をたどったときの 円の中心の軌跡を利用する方法が用いられるが、前者の 方法が好ましい。

【① ① 2 7 】上記表面粗き測定装置として、例えば触針型表面粗き測定装置が用いられ、該装置の大部分のものは、触針の動きを電気的に拡大する形式のものであり、上記滤波回路は、通常子め測定装置に組み込まれている。触針型表面組き測定装置の市販品としては、例え

(4)

5

01に準拠して0.08mmを採用する。

【①①28】中間膜表面にエンボスを形成する方法としては、例えば、エンボスロール法、カレンダーロール 法、異形押出法等が挙げられるが、定量的に一定のエンボスを得るにはエンボスロール法が好ましい。

【① 029】上記エンボスロールは、ロールにプラスト 材を吹きつけて凹凸表面を形成することにより得られ る。プラスト特としては、例えば、エメリー、ステール グリッドが好適に用いられる。

【①①③①】上記合わせガラス用中間膜の製造方法とし 19 ては、例えば、各樹脂膜をそれぞれ別々に成形し、これ 6の各樹脂膜を重ね合わせて加熱加圧することにより一体化した後表面にエンボスを形成する方法:各樹脂膜を多層押出し法により一体的に満層成形した後表面にエンボスを形成する方法等がある。

【①①31】とのようにして得られた合わせガラス用中間膜を用いて合わせガラスを製造するには、通常の合わせガラスの製法が採用される。例えば、2枚の透明な無機ガラス板、あるいは陽性の高いポリカーボネート板、ポリメチルメタクリレート板等のような有機ガラス板の 20間に上記中間膜を挟み込み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備圧者し、次いで、オートクレーブを用いるか、あるいはプレス成形機を用いて、約120~150℃の温度にて約10~15kg/cm゚の圧力で本圧着を行う。

[0032]

【作用】合わせガラス用中間膜として多層樹脂膜からなる中間膜を使用する場合に発生する。各樹脂膜層の界面の微小な乱れによる合わせガラスを通しての像の歪み、いわゆる光学歪み現象は、中間膜の表面に形成されるメインエンボスの組さとサブエンボスの組さに大きな相関がある。特に、第1発明の対象である。最外層の機厚が45~200μmと比較的薄い多層中間膜においては、各樹脂膜層の界面は中間膜の表面に近い位置にあり、このため、表面にエンボスを形成する際に界面の乱れを起こし易い傾向がある。また、第2発明の対象である、最外層の膜厚が200~720μmの多層中間膜についても、同様のことがいえる。

【①①33】本発明においては、合わせガラス用中間膜の少なくとも一面に形成されるメインエンボスを、第1発明において20~40μmの範囲に、第2発明において20~50μmの範囲に限定することにより、中間膜表面にエンボスを形成した際に従来生じていた各樹脂膜層の界面の乱れが生じることなく均一となる。従って、この中間膜を用いて合わせガラスを製造する場合には、光学歪みを生じることがなく、また、中間膜同士のブロッキングも防止することができ、作業性や脱気性についても白むなどによるファトボできて

例を示し、本発明をさらに詳述するが、本発明はこれら 各実施例に、何ら限定されるものではない。

【0035】各実施例および比較例により得られた合わせガラス用中間膜のブロッキング性。さらにそれを用いた合わせガラスの脱気性。エンボス組さ及び光学歪みを評価した。その評価方法を以下に示す。

【0036】 [プロッキング性の評価方法] 得られた合わせガラス用中間膜を、10mm×25mmの長方形に2枚裁断して積み重ね、その上に2kgの荷重を加え、25時間放置した後、引張試験機により、180度ピール剥離力(サンブル数n=3の平均値)を測定した。なお、この値は大きい程、接着力が大きく、耐ブロッキング性が悪いことを示す。

【0037】 [エンボス組さの測定方法] 測定装置として、東京精密社製験針型表面組さ計「Surfcoml 210A型」を使用した。尚、徳波回路におけるカットオフの長さ(切断係数)は、JIS B 0601に準 郷して0.08mmを採用した。

[脱気性および光学歪みの評価方法]脱気性と光学歪みの評価は、目視にて判定した。

【0038】(実施例1)

[各樹脂膜の調整] ポリビニルブチラール樹脂(重合度 1700、残存酢酸基1をル%、ブチラール化度66モル%)100重量部と、可塑剤としてトリエチレングリコールジー2-エチルブチレート40重置部とを混合し、これをミキシングロールで十分に溶融復譲した後プレス成形機でプレス成形し、平均膜厚0.13mmの樹脂膜Aを得た。

【① ① 3 9】また、塩化ビニル系制脂(塩化ビニルーエチレンーグリンジルメタクリレート共重合体)1 ① 0 重置部と、可塑剤としてジー2 - エチルヘキシルフタレート4 ① 重置部とを混合し、これをミキシングロールで十分に溶融混積した後、プレス成形機でプレス成形し、平均機厚①、12 mmの制脂機Bを得た。

【① 0 4 0 】 [合わせガラス用多層中間膜の製造]上記の樹脂膜Aと樹脂膜Bとを用いて、樹脂膜A/樹脂膜B /樹脂膜Aの順に3層(合計膜厚① 38 mm)に重ね合わせ、プレス成形機で加熱圧者して一体化して多層中間機を得た後。多層中間機表面にエンボスロール法にてエンボスを形成し、合わせガラス用多層中間膜を製造した。一方、エンボスロールの加工方法は、研磨ロールに#54のスチールグリッドをブラストした後一定量を半研磨し、さらに#120の微細なスチールグリッドをブラストして、メインエンボスとサブエンボスとを施した。このエンボスロール法を使用して、メインエンボスとサブエンボスとか形成された合わせガラス用中間膜を製造した。

「ンシェン」名できまず胃豚中科ディングはちゅう 意

(5)

9A)を用いて測定したところ、メインエンボスの粗さ は33μm(10点平均値)、サブエンポスの組さは1 5μm(10点平均値)であった。また、ブロッキング 性について測定した結果 接着力85g/cmと低い値 を示した。すなわち、耐ブロッキング性は良好であり、 作業性に優れることが分かった。

7

【①①42】〔合わせガラスの製造〕上記合わせガラス 用多層中間膜を、その両側から透明なフロートガラス (縦30cm×横30cm×厚さ3mm)で挟み込み、 これをゴムバッグ内に入れ、20 torrの真空度で2 ()分間脱気した後、脱気したままオープンに移し、さら に90℃で30分間保持しつつ真空ブレスした。このよ うにして予備圧着された合わせガラスを、エアー式オー トクレーブで、温度 1 3 5 °C、圧力 1 2 kg/cm* の 条件で、20分間本圧着を行い、合わせガラスを製造し た。得られた合わせガラスについて、ブロッキング性、 脱気性及び光学歪みを評価し、その結果を表しに示し

【()()43】 (実施例2) エンポスロールの加工方法に おいて、#120に代えて#180の敬細なスチールグ 20 にしてメインエンボスのみが形成された合わせガラス用 リッドをブラストしてサブエンボスを縮したこと以外 は、実施例!と同様にしてメインエンボスとサブエンボ ス(10点平均組さ10μm)とが形成された合わせガ ラス用多層中間膜を得た。得られた中間膜及び合わせガ ラスについて、実施例1と同様にブロッキング性、脱気

性及び光学歪みを評価し、その結果を表しに示した。 【()()44】(実施例3)エンポスロールの加工方法に おいて、#120に代えて#220の改細なスチールグ リッドをブラストしてサブエンボスを施したこと以外 は、実施例!と同様にしてメインエンポスとサブエンボ ス(組さ5 μm)とが形成された合わせガラス用多層中 間膜を得た。得られた中間膜及び合わせガラスについ て、実施例1と同様にプロッキング性、脱気性及び光学 歪みを評価し、その結果を表しに示した。

【()()45】(比較例1)エンボスロールの加工方法に おいて、#60のスチールグリッドをブラストしてメイ ンエンボスのみを形成したこと以外は、実施例1と同様 にしてメインエンボスのみが形成された合わせガラス閉 多層中間膜を得た。得られた中間膜及び合わせガラスに ついて、実施例1と同様にブロッキング性、脱気性及び 光学歪みを評価し、その結果を表しに示した。

【①①46】(比較例2)エンボスロールの加工方法に おいて、#36のスチールグリッドをプラストしてメイ ンエンボスのみを形成したこと以外は、実施例1と同様 多層中間膜を得た。得られた中間膜及び合わせガラスに ついて、実施例1と同様にブロッキング性、脱気性及び 光学歪みを評価し、その結果を表1に示した。

[0047]【表】】

5/24/2004

(5)

特闘2000-256043

10

							実		施		69)		比較		鋼	
						1		2		3	;	j		2	,	
,,,		艢	随 類		PVB		PVB		PVB		PVB		PVB			
品	A	睽	籐 食 (mn)		Ø13		GL 3		0. t 3		0.13		0.13			
脂		雅 類			PVC		PVC		PVC		PVC		PVC			
戡	B	膜	厚	(u	n)	G 1	2	0. 1	2	0. I	2	0. 1	2	0. 1	1 2	
	和百禧成					A/B	/A	A/B/A		A/R/A		A/B/A		A/8/A		
幸	届数					3		3	3 3		<u>~</u>	3,		3		
EJIA	全膜厚 (mm)					0.2	8	0.3	8	0. 3	8	0. 3		0. :	3 8	
間	メインエンポス 粗さ(gm)				3	3	3	3	2	3	:	3 3	1	13		
膜	サブエンポス根含 (μm)		1	5	10		5		な	l	ぉ	l				
	ブロッキング性 (g/cm)					8	5	90		9 5		80		,	70	
合:		說 :	₹	傑		良	好	良	竔	良	好	良	纤	庚	好	
わせ				良	好	殸	釺	良	好	やや不		不良				
	能 合判定		0		0		0		Δ ;		Δ					

PVB:ポリビニルブチラール勧略 PVC:ポリ塩化ビニル系結路

[0048]

の構成であり、合わせ工程において各樹脂層の界面は乱 れることなく均一となる。従って、この中間膜を用いて

9

台わせガラスを製造する場合に、光学歪みの発生を防止 【発明の効果】本発明の合わせガラス用中間膜は、上述 30 するととができる。また、中間膜同士のブロッキングも 防止することができ、作業性や脱気性についても良好な 結果を得ることができる。