Assignment Report: Binary Classifiers

Objective:

Observ	ve and compare the efficiency and attributes of the below binary classifiers:
	Half Space
	Logistic Regression (using inbuilt function)
	SVM classifier (using a linear kernel)
	SVM classifier (using a Polynomial kernel and a Gaussian kernel)
	Logistic Regression using the SGD procedure.

• Procedure:

- 1. Choose two datasets, one having linearly separable examples and second having linearly non-separable examples.
- 2. Read the dataset from the file to create DataFrame in python.
- 3. Perform Feature standardization to all the features in the dataset.
- 4. Split the complete dataset into a training set and test set with 70:30, 80:20 and 90:10 ratio and repeat the procedure for these different splits.
- 5. Taking the training set as input, train the model and draw the prediction for the test set.
- 6. Compare the prediction with the actual labels given to the test set and compute the efficiency.
- 7. Repeat the procedure for the given different classifiers and for the svm classifier also vary the regularisation parameter.

Observations:

The efficiency of the model for *linearly non-separable* data with varying splits, classifiers and regularisation parameter is given in the table below-

Classifier/Splits Ratio		Efficiency(%)			
		70:30	80:20	90:10	
Half Space using pe	rceptron	95.87	95.27	95.65	
Logistic Regress	Logistic Regression		97.82	97.83	
Logistic Regression us	sing SGD	97.82	97.82	95.65	
SVM	Regularisation Parameter(C)				
	C = 0.3	98.54	98.18	97.83	
Linear Kernel	C = 0.7	98.79	98.55	98.55	
	C = 0.9	98.3	98.91	98.55	
Polynomial Kernel	C = 0.3	97.33	98.18	99.28	
(degree = 3)	C = 0.7	99.03	97.45	98.55	
	C = 0.9	99.27	98.91	97.83	
Gaussian kernel	C = 0.3	99.03	99.27	100.0	
	C = 0.7	100.0	100.0	100.0	
	C = 0.9	100.0	100.0	100.0	

The Number of Iterations required for the convergence of Logistic Regression for different test set splits is given in the table below-

Classifier		No. of iterations			
	Split Ratio	70:30	80:20	90:10	
Logistic Regression		16	15	16	
Logistic Regression using SGD		23	20	20	

The number of support vectors obtained with varying splits and regularisation parameter is given in the table below-

OV/84 NA/44 1/ 2 mm = 1	No. Of Support Vectors				
SVM With Kernel Function	Split Ratio/Regularisation Parameter(C)	C= 0.3	C= 0.7	C= 0.9	
Line on Komel	70:30	91	62	62	
Linear Kernel	80:20	98	72	70	
	90:10	102	80	72	
	70:30	356	280	263	
Polynomial Kernel	80:20	400	302	281	
	90:10	433	334	303	
wave size Kamal	70:30	163	104	91	
gaussian Kernel	80:20	175	110	99	
	90:10	187	117	104	

The above computations are made on a dataset having 1372 examples and 5 features.

The efficiency of the model for *linearly separable* data with varying splits, classifiers and regularisation parameter is given in the table below-

Splits Ratio		70:30	80:20	90:10
Half Space using perceptron		100.0	100.0	100.0
Logistic Regress	Logistic Regression		100.0	100.0
Logistic Regression us	sing SGD	100.0	100.0	100.0
SVM	Regularisation Parameter(C)			
	C = 0.3	100.0	100.0	100.0
Linear Kernel	C = 0.7	100.0	100.0	100.0
	C = 0.9	100.0	100.0	100.0
Polynomial Kernel	C = 0.3	100.0	100.0	100.0
(degree = 3)	C = 0.7	100.0	100.0	100.0
	C = 0.9	100.0	100.0	100.0
Gaussian kernel	C = 0.3	100.0	100.0	100.0
	C = 0.7	100.0	100.0	100.0
	C = 0.9	100.0	100.0	100.0

The Number of Iterations required for the convergence of Logistic Regression for different test set splits is given in the table below-

Classifier		No. of iterations			
	Split Ratio	70:30	80:20	90:10	
Logistic Regression		11	12	11	
Logistic Regression using SGD		19	20	20	

The number of support vectors obtained with varying splits and regularisation parameter is given in the table below-

0.41.454.46	No. Of Support Vectors				
SVM With Kernel Function	Split Ratio/Regularisation Parameter(C)	C= 0.3	C= 0.7	C= 0.9	
1. 1/2	70:30	4	3	4	
Linear Kernel	80:20	4	4	4	
	90:10	4	3	4	
Dalama maial Kama al	70:30	23	15	15	
Polynomial Kernel	80:20	25	17	15	
	90:10	25	16	14	
was a kamal	70:30	13	11	14	
gaussian Kernel	80:20	12	12	12	
	90:10	13	12	12	

The above computations are made on a dataset having **100** examples and **5** features.

Conclusions:

- 1. In the smooth scenario, where the data is linearly separable the efficiency is 100% for all the classifiers. In this case, Half Space using perceptron is a better approach because of its simplicity.
- 2. Whenever the data is linearly non-separable, Soft SVM with gaussian kernel function gives the best efficiency and good generalization for high values of regularisation parameter(C = 0.9). While, half space classifiers performs the worst.
- 3. The number of support vectors as the output of the SVM is inversely proportional to the regularisation parameter(C).
- 4. The number of support vectors as the output of the SVM is highest with the gaussian kernel function and lowest for the linear kernel function.