FINAL

INSTALLATION RESTORATION PROGRAM REMEDIAL INVESTIGATION REPORT SITE 2 - PESTICIDE PIT BURIAL AREA

STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

VOLUME II OF II

SEPTEMBER 1997

Prepared For
AIR NATIONAL GUARD READINESS CENTER
ANDREWS AFB, MARYLAND 20762-5157

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to everage 1 heer per response, including the time for reviewing instructions, searching existing data sources, pathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments reparding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suits 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) Remedial Investigation September 1997 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE Remedial Investigation Report, Site 2-Pesticide Pit Burial Area, Stewart Air National Guard Base, Newburgh, New York 6. AUTHOR(S) NA 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER **ANEPTEK Corporation** 209 West Central Street Natick, Massachusetts 01760 10. SPONSORING/MONITORING 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER ANG/CEVR 3500 Fetchet Avenue Andrews AFB MD 20762-5157 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION CODE 12a. DISTRIBUTION AVAILABILITY STATEMENT Approved for public release: distribution is unlimited 13. ABSTRACT (Maximum 200 words) Site 2-Pesticide Pit Burial Area was investigated under the Installation Restoration Program. A removal action was conducted in 1988, when pesticide containers and contaminated soil were excavated from the pit. The pit covered an area of approximately 1000 square feet and was approximately 12 feet deep. The report recommends no further action based on study results. 15. NUMBER OF PAGES 14. SUBJECT TERMS 16. PRICE CODE

ABSTRACT

20. LIMITATION OF

19. SECURITY CLASSIFICATION

OF ABSTRACT

18. SECURITY CLASSIFICATION

OF THIS PAGE

17. SECURITY CLASSIFICATION

OF REPORT

FINAL

INSTALLATION RESTORATION PROGRAM

REMEDIAL INVESTIGATION REPORT SITE 2 - PESTICIDE PIT BURIAL AREA

STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

VOLUME II OF II

SEPTEMBER 1997

Prepared For

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND 20762-5157

DTIC QUALITY INSPECTED 3

Prepared By

ANEPTEK CORPORATION

209 West Central Street Natick, Massachusetts 01760 (508) 650-1048

LIST OF APPENDICES

Volume II of II

Appendix A	Basewide Site Investigation Data
Appendix B	Field Change Requests
Appendix C	Investigation Derived Waste
Appendix D	Boring Logs
Appendix E	Monitoring Well Construction Logs
Appendix F	Water Level Data and Calculations
Appendix G	Aquifer Testing Data and Analyses
Appendix H	Geophysical Survey Reports
Appendix I	Pesticide Screening Data
Appendix J	Chains of Custody
Appendix K	Analytical Data
Appendix L	Data Validation Reports
Appendix M	Results of EPA's Biokinetic Uptake Model For Lead
Appendix N	Letters From NYSDEC Regarding Sensitive Habitats and Water Bodies

APPENDIX A BASEWIDE SITE INVESTIGATION DATA

TABLE 7-3 WATER LEVEL OBSERVATIONS

STEWART ANGB, NEW YORK

LOCATION	CASING ELEVATION (FT)	8/11/87 ELEVATION (FT)	8/14/87 ELEVATION (FT)	9/2/87 ELEVATION (FT)	9/14/87 ELEVATION (FT)	1/18/89 ELEVATION (FT)
JMW-101	440.21	429.63	408.77 ³	429 ·	431.83	428.55
JMW-107	367.43	357.18	356.88	356.7	359.0	361.67
JMW-108	370.85	362.35	362.15	362.27	362.14	366.99
JMW-109	374.45	364.4	364.33	366.09	369.48	669.80
JTB-100A	436.6		1	405.02	404.7	405.14
JTB-100B	436.6		422.6 ²	405.15	404.32	405.82
JTB-101A	440.15	406.55	403.54	407.34	406.41	407.84
JTB-101B	440.15	406.59	403.54	407.35	406.45	407.88
JTB-102A	430.36		392.68	393.29	393.35	394.02
JTB-102B	430.36		395.17	393.18	396.77	397.49
JTB-102C	430.36		416.01	416.18	417.4	417.71
JTB-103A	435.48		420.63 ²	404.79	403.86	413.18 ³
JTB-103B	435.48		420.12 ²	404.95	403.95	407.68
JTB-104A	437.95		413.82	414.19	414.83	417.45
JTB-104B	437.95		414.06	414.53	415.15	418.34
JTB-104C	437.95		419.88	420.55	424.06	425.47
JTB-105A	394.57	376.63	376.36	376.64	376.25	377.95
JTB-105B	394.57	377.3	377.12	378.98	377.25	378.72
JTB-105C	394.57	280.96	380.66	380.26	382.05	382.59
JTB-106A	389.95	371.32	371.24	371.76	371.39	373.15
JTB-106B	389.95	371.68	371.75	372.1	371.77	373.31
JTB-107A	367.99	356.54	356.37	356.3	357.92	360.96
JTB-107B	367.99	356.54	356.37		358.39	361.12
JTB-108A	370.25	360.73	360.58	360.81	360.68	364.92
JTB-108B	370.25	360.45	360.17	360.72	360.49	364.81
JTB-109A	374.01	364.19	364.08	365.91	368.81	369.28
JTB-109B	374.01	364.19	364.05	365.77	369.48	369.82
JTB-110A	364.22	346.31	346.18	346.36	346.85	352.90
JTB-110B	364.22	346.19	346.17	346.26	346.75	352.85

¹ Depth below top of casing.

² Not installed by this date.

³ May be an anomalous measurement.

APPENDIX B-1

SOIL BORING LOGS (INCLUDING PIEZOMETER AND MONITORING WELL INSTALLATION DIAGRAMS)

INSTAL	LATION F	RESTOR	ATION PRO	OGRAM		В	ORING NO. JTB-10
CLIENT - STEWART AIR NATIONAL GUARD BASE						PF	ROJECT NO. 5139-01
CONTRACTOR EN	MPIRE SOILS	INVESTIGA	ATIONS	DATE STARTED	8/13	/87	COMPLTD. 8/14/87
METHOD Spun ca	asing	CASING SIZ	ZE 4" I.D.	HNU TIP 10.6		PRO	OTECTION LEVEL B C D
GROUND EL 433	.93	SOIL DRILL	ED 45.61	ROCK DRILLED	10'	FI	BELOW GROUND 55.6
LOGGED BY J. [Urquhart	CHECKED	BY FFB	DATE 11-10-	87		
	GC RECOVERY HNU HEADSPACE (ppm)		SOIL/ROCK DES		GRAPHICAL LITHOLOGY SOIL CLASS	OR ROCK FRACTURES	Z XI-9/SMOTB WELL DATA
Bkg S-1	To Ab	lty Sand psoil & lation ll	topsoil, or fill materi loose to mo	fine sand & ganics, gravel al, dry, derate dense.	0 0 0 0	SM	16 2827 30 55 A A A
- S-2	1 11 201	sal Till	silt with s widely grad very dense	ome gravel, led, moist, basal till.	γ. γ.	ML	24 50 3510085
10 — S-3			graded, moi	andy silt gravel, widely st, dense to basal till.	· 4	ML	37 70 4760 117
15 — S-4	0					ML	24100 100
20 –	0				Δ	ML	100 100
25 — S-6 = S-6	0		Grey fine t sandy silt to some sha widely grad very dense	with little ley gravel, ed, moist,	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	ML	100 100
30 -	1.2				Δ . Δ . Δ . Δ . Δ . Δ . Δ . Δ . Δ . Δ .	ML	27 30 100 100
35 -	1.1				Δ Δ Δ D	ML	2 28 39 367
* U= THIN WALL	S= SPLIT SPOO	N R= ROC	к			E	E.C. JORDAN CO.

		1	
INSTALLATION RESTORATION PR	OGRAM		BORING NO. JTB-100
CLIENT - STEWART AIR NATIONAL GUARD BAS	E		PROJECT NO. 5139-01
CONTRACTOR EMPIRE SOILS INVESTIGATIONS	DATE STARTED	8/13	/87 COMPLTD. 8/14/87
METHOD Spun casing CASING SIZE 4" I,D.	HNU TIP 10.6		PROTECTION LEVEL B C D
GROUND EL 433.93 SOIL DRILLED 45.61	ROCK DRILLED 1	10'	FT BELOW GROUND 55.6
LOGGED BY J. Urguhart CHECKED BY FFB	DATE 11-10-87	7	
DEPTH (FT) HNU AMB. AIR SAMP. NO. SAMPLE CLP GC RECOVERY HNU HEADSPACE (PPm)			OR ROCK FRACTURES OO Z Z Z WELL DATA EL. (FT)
Sandy Grey fine sand Silt little clay, to Clay structure laminations. moist, cohesive to dense. Shale Black, dark gr	ly silt with crace gravel. has thin Widely graded, we medium dense crey extremely le, Fe staining surfaces,	۱۵.	ML 24 47 4760 94
* U= THIN WALL S= SPLIT SPOON R= ROCK			E.C. JORDAN CO

INSTALLATION I	RESTORATION PRO	OGRAM	BORING NO. JTB-10					
CLIENT - STEWART AIR								
CONTRACTOR EMPIRE SOILS	INVESTIGATIONS	DATE STARTED 8.	_4_87 CCMPLTD. 8_7_87					
METHOD HSA/Spin casing	CASING SIZE 4" I.D.	HNU TIP 10.6	PROTECTION LEVEL B C D					
GROUND EL 437.64	SOIL DRILLED 37.7	ROCK DRILLED 8.8	FT BELOW GROUND 46.5					
LCGGED BY S. Pinette	CHECKED BY FFB	DATE 11-10-87	Page 1 of 2					
DEPTH (FT) HINU AMB. AIR SAMP. NO. & TYPE NO. SAMPLE CIP GC RECOVERY HINU HEADSPACE (PP)	SOIL/ROCK DES	<u></u>	SOIL CLASS OR FOCK FRACTURES % do AD % view view view view view view view view					
0 Bkg S-1 05 Fi F A T S-2 5 Ba	ne Sand Light yellows ill & grass roots, blation uniform; over ill with little of trace gravel ne Sand Olive brown, sal clay & coarse gravel, very gap graded Olive gray wi medium gravel coarse sand, moderately pl firm, moist As above with sand	ish brown with loose dry rery fine & coarse sand, silty, trace sand & coarse sand & co	8 60 A A A A A A A A A A A A A A A A A A					
35 S-8 Z 0	very hard As above but weathered sha	· · · · · · · · · · · · · · · · · · ·	100/0.2					
	7.7' Top of Rock hale Medium grayif cleavage suif with cxidatio	well cleaved, ===	0%					
* U= THIN WALL S= SPLIT SPOX			E.C. JORDAN CO					

INSTALLATION	RESTORATION PRO	OGRAM	BORING NO. JTB-101
CLIENT : STEWART AIR	NATIONAL GUARD BASE		PROJECT NO. 5139-01
CONTRACTOR EMPIRE SOILS	NVESTIGATIONS	DATE STARTED {	3/4/87 CCMPLTD. 8/7/87
METHOD HSA/Spun casing	CASING SIZE 4" I.D.	HNU TIP 10.6	PROTECTION LEVEL B C D
GROUND EL 437.64	SOIL DRILLED 37.7'	ROCK DRILLED 8.8	FT BELOW GROUND 46.5
LCGGEDBY S. Pinette	CHECKED BY FFB	DATE 11-10-87	Page 2 of 2
CLP (FT) AMB. AIR AMB. AIR SAMP NO. A TYPE NO. SAMPLE CLP GC GC RECOVERY HINU HIEADSPACE (PPM)	SOIL/ROCK DES	GBAPHICAL MOITHINDS	SOIL CLASS OR ROCK FRACTURES OR ACAD OR ACAD WELL DATA
+U	hale Medium gray, we 45°, staining surfaces, very Sandstone intershale at 42.6 to B.O.B. @ 46.5'	ell cleaned @ g on cleavage broken;	_ 5 1 1 1 1 1 1 1 1 1
* U=THIN WALL S=SPLIT SPC	OCN R=ROCK		E.C. JORDAN CO

INSTALLATION	RESTORATION PRO	OGRAM	BORING NO. JMW-101
CLIENT - STEWART AIR	PROJECT NO. 5139-01		
CONTRACTOR EMPIRE SOILS	_7_87 COMPLTD. 8_10_87		
METHOD HSA	CASING SIZE 4.25" I.D	.HNU TIP 10.6	PROTECTION LEVEL B C D
GROUND EL 437.83	SOIL DRILLED 32.5	ROCK DRILLED 0.	2 FT BELOW GROUND 32.7
LOGGED BY T. Longley	CHECKED BY FFB	DATE 11-10-87	
DEPTH (FT) HINU AMB. AIR SAMP. NO. & TYPE NO. SAMPLE CIP GC RECOVERY HNU HIEADSPACE (PPM)	SOIL/ROCK DES		LUTHOLOGY SOIL CLASS OR ROCK FRACTURES OR POCK OR POCK FRACTURES OR POCK OR PO
10 — 15 — 25 — 25 — 25 — 30 — 30 — 30 — 30 — 30 — 30 — 30 — 3	See log of JTB-101 for soil/rock descrip Analytical Sample JMW1 B.O.B. 32.7		
* U= THIN WALL S= SPLIT SPO	ON R= ROCK		E.C. JORDAN CO.

SANOUND EL 427.62 SOIL DRILLED 51.6 ROCK DRILLED 10 FT SELOW GROUND 61 LOGGED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 EL 2	INST	TALLA	ATION	RESTOR	ATION PRO	OGRAM			DRING N		
METHOD Spun Casing CASING SIZE 4" I.D. HNU TIP 10.6 GROUND EL 427.62 SOIL DRILLED 51.6: ROCK DRILLED 10: FY BELOW GROUND 61 CHECKED BY FFB DATE 11-10-87 CHECKED BY FFB DATE 11-10-87 BE SOLLAROCK DESCRIPTION SEE BLOWS/6-IN TO SEE STORY SILE Trace fine sand, widely graded, dry loose S-1	CLIENT	STEV	VART A	IR NATIONAL	GUARD BASE			PR			-01
SANOUND EL 427.62 SOIL DRILLED 51.6 ROCK DRILLED 10 FT SELOW GROUND 61 LOGGED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 EL 2	CONTRACTOR	EMPI	RE SOI	LS INVESTIG	ATIONS	DATE STARTED	8/11/			0/1	
DOGGED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 BE COMMENDED BY J. Urquhart CHECKED BY FFB DATE 11-10-87 Sandy Silt Brown with organics, O O O O O O O O O O O O O O O O O O O	METHOD Sp	un Cas	ing	CASING S	IZE 4" I.D.						C D
Solutions of the stand such gravel, widely graded, slightly moist, very dense, basal till S-2 V V S S S S S S S S S S S S S S S S S	ROUND EL	427.62		SOIL DRIL	LED 51.6'		10'	FT	BELOW GF	ROUND	61.6
Silt Brownish grey silt with race fine sand, some gravel, widely graded, slightly moist, very dense basal till S-3 V Gravelly Silt basal fine sand some gravel, widely graded, slightly moist, very dense basal till S-4 V Gravelly Silt trace fine sand some gravel, widely graded, slightly moist, very dense basal till S-5 S-6 V Gravelly Silt trace fine sand much gravel, slightly graded, slightly moist, very dense basal till S-6 V Gravelly Silt trace fine sand much gravel, slightly graded, moist, very dense basal till S-6 V Gravelly Silt trace fine sand much gravel, slightly graded, moist, very dense, basal till S-6 V Gravelly Silt trace fine sand much gravel, slightly graded, moist, very dense, basal till S-6 V Gravelly Silt trace fine sand much gravel, slightly gravel, moist, very dense, basal till S-6 V Gravelly Silt Brownish grey silt with trace fine sand much gravel, slightly gravel, moist, very dense, basal till S-6 V Gravelly Silt Brownish grey silt with trace fine sand much gravel, slightly gravel, moist, very dense, basal till S-6 V Gravelly Silt Brownish grey silt with trace fine sand, little clay, some gravel, Moist very dense, basal till S-6 V Gravelly Silt Brownish grey silt with trace fine sand, little clay, some gravel, moist, very dense, basal till S-6 V Gravelly Salt Brownish grey silt with trace fine sand, little clay, some gravel, moist, very dense, basal till S-6 V Gravelly Salt Brownish grey silt with trace fine sand, little clay, some gravel, moist, very dense, basal till S-7 V Gravelly Salt Brownish gravel with trace fine sand, little clay, some gravel, moist, very dense, basal till S-7 V Gravelly Salt Salt Salt Salt Salt Salt Salt Salt	OGGED BY $_{ m J}$. Urqu	hart	CHECKED	BY FFB	DATE 11-10-	87				
Sandy Silt Brown with organics, Co of SM 712 1719 29 Alloose, over brownish grey Silt with It race gravel, trace coarse sand, widely graded, dry co loose Silt Brownish grey silt with Sasal trace fine sand, some gravel, widely graded, slightly moist, very dense basal till Analytical Sample JTB1021201 A. Silt Dark grey silt with trace fine sand some gravel, widely graded, moist, very dense, basal till Analytical Sample JTB1021201 A. Silt Dark grey silt with trace fine sand some gravel, widely graded, moist, very dense, basal till Sold Silt Dark grey silt with trace fine sand much gravel, moist, very dense, basal till Dark grey silt with trace fine sand much gravel. Silt trace fine sand much gravel. Silt solated light grey clay. A. A. M. L. Silt Isolated light grey. A. A. M. L. Silt Isolated light grey. Can be also the clay. A. M. L. Silt Isolated light grey. Can be also the clay. A. M. L. Silt Isolated light grey. Can be also the clay. A. M. L. Silt Isol	. Q	SAMPLE CLP GC	RECOVERY HINU HEADSPACE	(uodd)	SOIL/ROCK DES	SCRIPTION .	GRAPHICAL LITHOLOGY	SOIL CLASS OR ROCK FRACTURES	BLOWS/6		
Solution Silt Brownish grey silt with Andrew Gravely Dark grey silt with trace fine sand some gravel, widely graded, slightly moist, very dense basal till Analytical Sample JJB1021201 Silt Dark grey silt with trace fine sand some gravel, widely graded, moist, very dense, basal till Solution Dark grey silt with trace fine sand much gravel, moist, very dense, basal till Solution Dark grey silt with trace fine sand much gravel. Isolated light grey clay lenses, moist, cohesive, plastic, very dense, basal till Silt Brownish grey silt with trace fine sand, little clay, some gravel. Moist, very dense, basal till Silt Brownish grey silt with trace fine sand, little clay, some gravel. Moist, very dense, basal till Solution Dark grey silt with trace fine sand, little clay, some gravel. Moist, very dense, basal till Solution Dark grey silt with trace fine sand, little clay, some gravel. Moist, very dense, basal till Solution Dark grey silt with trace fine sand, little clay, some gravel. Moist, very dense, basal till	Die	T A T	1.5	Topsoil & Ablation	loose, over fine sandy gravel, tra sand, wide	c brownishgrey silt, trace ace coarse	0.0.0.0.0		7 12 17	19 29 2	
S-4 Silt brace fine sand much gravel, moist, very dense, basal till Dark grey silt with trace fine sand much gravel. Isolated light grey clay lenses, moist, cohesive, plastic, very dense, basal till Silt brownish grey silt with trace fine sand, little clay, some gravel. Moist wery dense, basal till Silt brownish grey silt with trace fine sand, little clay, some gravel. Moist wery dense, basal till Silt brownish grey silt with trace fine sand, little clay, some gravel. Moist wery dense, basal till A A A A A A A A A A A A A A A A A A	15—			Basal Till An Silt Basal	trace fine gravel, wi slightly m dense basa alytical Sam Dark grey fine sand widely gra	sand, some dely graded, oist, very l till ple JTB1021201 silt with trace some gravel, ded, moist,				*	
fine sand much gravel. Isolated light grey clay lenses, moist, cohesive, plastic, very dense, basal till Silt Brownish grey silt with trace fine sand, little clay, some gravel. Moist very dense, basal till WL 40 A.A.	1	4	.2	Silt Basal	Dark grey trace fine gravel, mo	silt with sand much ist, very	Δ · Δ · Δ · Δ · Δ · Δ · Δ · Δ · Δ · Δ ·		2255 641	00119	
Silt Brownish grey silt with trace fine sand, little clay, some gravel. Moist very dense, basal till b.c. ML		5 🕅	7.1		fine sand Isolated l lenses, mo plastic, v	much gravel. ight grey clay ist, cohesive, ery dense,	Δ.Δ.	ML	5970 811	00151	
The state of the s	S-	6	0.4	Silt	trace fine clay, some	sand, little gravel. Moist		ML	43 55 68	100123	
* U= THIN WALL S= SPLIT SPOON H= HOCK . E.C. JORDAN CO	, , ,	VALL S	S= SPLIT	SPOON R= F	OCK ·				E.C. JOR	DAN C	:o

	RESTORATION PRO		BORING NO. JTB-10
	NATIONAL GUARD BASE	 	PROJECT NO. 5139-01
ONTRACTOR EMPIRE SOILS		DATE STARTED	COMPLTD. 8/13/87
ETHOD Spun casing	CASING SIZE 4" I.D.	HNU TIP 10.6	PROTECTION LEVEL B C
ROUND EL 427.62	SOIL DRILLED 51.6	ROCK DRILLED 10'	FT BELOW GROUND 61.6
DGGEDBY J. Urquhart	CHECKED BY FFB	DATE 11-10-87	
	SOIL/ROCK DES avelly Brownish grey lt clay, trace f	silt, trace \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SOIL CLASS OR ROCK FRACTURES OR ROCK A ROCK
5 S-8 N 0,5 (T	ill) much gravel, moist, very o till .6'	widely graded A	39100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S-9 N OS	bedded. Roller bit 51	riable, thinly = = = = = = = = = = = = = = = = = = =	80 100
5	B.O.B. 61.6'		

INSTALLATION	RESTOR	ATION PRO	OGRAM			DRING NO.	JTB-103
JENT . STEWART AL	R NATIONAL	GUARD BASE			PR	OJECT NO.	5139-01
ONTRACTOR EMPIRE SOIL	8/1	2/87	COMPLTD.	8/14/87			
ETHOD _{Spin} casing/corin	g CASING SIZ	ZE 4" I.D.	HNU TIP 10.6		PRO	TECTION LEVE	LBC <u>r</u>
ROUND EL 432.54	SOIL DRILL	ED 41'	ROCK DRILLED	10'	FT	BELOW GROUP	ND 51.4
OGGED BY T, Longley	CHECKED		DATE 11-10-	87			
(FT) HNU AMB. AIR SAMP NO. & TYPE NO. SAMPLE CLP GC RECOVERY HNU HNU (ppm)		SOIL/ROCK DES	SCRIPTION		OR ROCK FRACTURES	BLOWS/6-IN or RQD %	WELL DATA EL. (FT)
5 -	Over Silty Sand Fill & Abla Till Silt & Sand Basal Till Ar	Brown, trace clay, damp, non-p	se sand, trace y, loose, over ly, silty sand ce gravel, well graded, blastic, very sive structure	0.0	ML/ SM SM	36 30 3137	
S-3 Bkg		While tri-	coning, water ned grey at			26 22 3575	
5 -	Sandy Silt	non to slig	e fine gravel, ghtly plastic, ded, dense,	Δ. Δ	ML	11 21 4267	63
0 — . S-5		very dense cemented to	ered bedrock, , damp,	Δ Δ Δ Δ Δ		12276 12276 3289100/0.4	
5 —		<u> </u>	ut with little	1.5.5			
0 —		trace grav	e coarse sand, el, trace clay sorted, very -plastic, damp	Δ. Δ.		13 39 8310d	
5 –		As above, 2" lense o sorted fin	but around a f very well e sand	Δ .Δ .Δ .Δ .Δ		33 57100/.3	
0 ▼ S-9 02Bkg	Silty Sand	Yellowish- little coa fragments,	rse shale	. Δ. Δ.	SM	29 47100/.1	

CUENT STEWART AIR NATIONAL GUARD BASE CONTRACTOR EMPIRE SOILS INVESTIGATIONS DATE STARTED 8/12/87 COMPLTD. 8/14/87 GROUND EL 432.54 SOIL DRILLED 40. ROCK DRILLED 11.4. FT BELOW GROUND 51.4. TO	INSTALLATION F	RESTORATION PRO	OGRAM	BORING NO. JTB-103
METHOD Spin casing-corin CASING SIZE 4" I.D. HNU TIP 10.6 GROUND EL 432.54 SOIL DRILLED 40' ROCK DRILLED 11.4' FT BELOW GROUND 51.4 LONGLED BY T. Longley CHECKED BY FFB DATE 11-10-87 GROUND EL 432.54 CHECKED BY FFB DATE 11-10-87 GROUND 51.4 TO SPIN SPIN SPIN SPIN SPIN SPIN SPIN SPIN	CLIENT - STEWART AIR	NATIONAL GUARD BASE		PROJECT NO. 5139-01
GROUND EL 432.54 LOGGED BY T. Longley CHECKED BY FFB DATE 11-10-87 SOLUPRICK DESCRIPTION Extremely weathered bed 1.0. FOR BROWN of Street Stree	CONTRACTOR EMPIRE SOILS	INVESTIGATIONS	DATE STARTED 8/12	2/87 COMPLTD. 8/14/87
GROUND EL 432.54 LOGGED BY T. Longley CHECKED BY FFB DATE 11-10-87 SOLUPRICK DESCRIPTION Extremely weathered bed 1.0. FOR BROWN of Street Stree	METHOD Spin casing-corin	CASING SIZE 4" I.D.		L
SOL/ROCK DESCRIPTION Extremely weathered bed 5.1. Solvent and a sile very dense, wet; few distinct brown mottles; sile very dense, wet; few dist	1		ROCK DRILLED 11.4	FT BELOW GROUND 51.4
Extremely weathered bed A SM rock, water return is brown S-10 S-10 SB Bkg Sand & Brown, trace gravel, Silt very dense, wet; few distinct brown mottles; distinct brown worlittle clay, moist, lensoid, very hard B-0.B. © 51.4' Solid Rock **Back & Brown w/little clay, moist, lensoid, wery hard B-0.B. © 51.4' Solid Rock **Back & Brown w/little clay, moist, lensoid, wery hard **Back & Brown w/little clay, moist, lensoid, wery hard **B-0.B. © 51.4' Solid Rock	LOGGED BY T. Longley	CHECKED BY FFB	DATE 11-10-87	
* U= THIN WALL S= SPLIT SPOON R= ROCK F.C. LORDAN CO	Samphon Service (mgm) 1. Hold Hall Hall Hall All Samphon Service By	SOIL/ROCK DES Extremely water brown and & Brown, trace to be	veathered bed- return is ce gravel, wet; few cown mottles; ock yen w/little t, lensoid,	SM
	* U=THIN WALL S=SPLIT SPOO	N R= ROCK		E.C. JORDAN CO

INSTALLATION F	RESTORATION PRO	OGRAM		BC	PRING NO. JTB-10
LIENT STEWART AIR	NATIONAL GUARD BASE			PRO	OJECT NO. 5139-01
ONTRACTOR EMPIRE SOILS	INVESTIGATIONS	DATE STARTED	8/11	/87	COMPLTD. 8/12/87
METHOD Spin casing-coring	CASING SIZE 4" I.D.	HNU TIP 10.6		PRO	TECTION LEVEL B C
GROUND EL 435.54	SOIL DRILLED 27'	ROCK DRILLED 10	o'	FT	BELOW GROUND 37.0
OGGED BY T. Longley	CHECKED BY FFB	DATE 11-10-8	7		
(FT) HNU AMB. AIR SAMP NO. & TYPE NO. SAMPLE CLP GC GC HECOVERY HNU HEADSPACE	SOIL/ROCK DES	<u></u>		OR ROCK FRACTURES	BLOWS/6-IN N MOD R
S-1	Ablation fine sand, trace coars loose - hit Poor recove angular coa gravel - ro drive shoe andy Silt Brown, trace coarse sand gravel, wice non-plastic massive, ve ine Sandy Gray, trace coarse sand gravel, wice	trace gravel, se sand, dry, rock @ 1' ery of wash- arse sand, ock stuck in ce to little d, trace dely graded, c, damp, ery dense till et to little d, trace dely graded, c, hard, damp,		ML	16 6074 49 134 A A A A A A A A A A A A A A A A A A A
S=6 $S=6$	black, grahighly wear brown silt dull yellow silty sand dense. Black to govery broke a randomly joints a forude beddocore axis.	, damp, very rayish black, n w/numerous oriented ractures, ling @ 550 to		2534 548 258	98 1007.3

INSTALLATIO	AIR NATIONAL GUARD BASI		PRO	OJECT NO. 5139-01
ONTRACTOR EMPIRE SC		1	7/87	COMPLTD. 8/10/87
ET. 100	04000000	HNU TIP 10.6	- 1	TECTION LEVEL B C
ETHOD Spin casing-co ROUNDEL 392.69	SOIL DRILLED	ROCK DRILLED		BELOW GROUND 38.
OGGED BY T. Longley & J. Urguhart		DATE 11-10-87	+	30.
(FT) HINU AMB. AIR SAMP NO. & TYPE NO. SAMPLE CLP GC GC RECOVERY HNU	E SOIL/ROCK DES	GRAPHICAL UTHOLOGY		BLOWS/6-IN N N FILL DATA
S-2 Y 12 S-3 S-3 S-3 S-3	dense to very	ation till silty sand, to dense, e structure, avel TB1050701 ve silty sand el, trace clay, dense,	ML SM- GM SM- GM	10 15 12 50/0.2
5— S-4	Basal Till Color change to grayi Grey-black grasilt, very der moist (weather fragments and	ish black avel, some nse, slightly red shale till)	SM- GM	48 50/0.2
R-3 R-3 R-4 R-4	Roller Bit to 37.0' B.O.B. @ 38.0'	· ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

INSTALLATION RESTORA			· · · · ·	<u> </u>	ORING NO		
STEWART AIR NATIONAL		DATE STARTED		<u> </u>			
CONTRACTOR EMPIRE SOILS INVESTIGA		HNU TIP 10.6	7/3	80/87	TECTION LEVE	8/4/87	
METHOD HSA/Rock core CASING SIZ		ROCK DRILLED					_
GROUND EL 386.97 SOIL DRILL			10.5	FI	BELOW GROU		<u>U</u>
LOGGED BY S. Pinette CHECKED E	BY FFB	DATE 11-10-8			Page 1 of 1		
DEPTII (FT) HINU AMB. AIR SAMP NO. & TYPE NO. SAMPLE CI P GC RECOVERY HNU HEADSPACE (Ppm)	SOIL/ROCK DES	SCRIPTION	GRAPHICAL LITHOLOGY	OR ROCK FRACTURES	SLCWS:6-iN or RQD % 2 0 40 60 8	WELL DATA	
Bkg S-1 S-2 Y Bkg S-1 Sandy Silt Topsoil ove Ablation Til Gravelly Sand An JT S-3 Sandy Silt Silty Sand Basal Till Sandy Clayey Silt 19.5 - Bedroc	Grayish r loose, l l Grayish medium d alytical Sa B1060501 Grayish laminate moist, m dense. Olive br clay, mo stiff, or clay, med Olive br tragment	orange, dry, ittle gravel orange, dry, ense mple orange w/silt , trace grave ottled, medium ersilty fine ttle gravel itrace clay, ium dense own, some shale shard	0.	SW ML	29 31 53 100 29 31 53 100 11 18 18 13 5 15 23 38 31 60 100 / 0 -		
R-1	Medium g cleayed staining surfaces inclusio bedding cleavage 450	ray, closely with oxide on cleavage, few calcite ns, subtle parallel to at approx.		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

INSTALLATION RESTORATION PR	OGRAM	BORING NO. JTB-107
CLIENT : STEWART AIR NATIONAL GUARD BASI		PROJECT NO. 5139-01
CONTRACTOR EMPIRE SOILS INVESTIGATIONS	DATE STARTED 7/30	
METHOD Spin casing-coring CASING SIZE 4" I.D.	HNU TIP 10.6	PROTECTION LEVEL B C D
	 	
SOUTH TO		17.4
HEAD ON BANK SOIL/ROCK DESCRIPTION OF THE SAME SAME SAME SAME SAME SAME SAME SAM	DATE 11-10-87 SCRIPTION To sand, trace ravel & roots, rown moist The sand, little ravel, moist, rose, mottled, stratified Ty sand, in medium-coarse ravel, moist rock 9.4') grayish black lighly weathered raing, clay	SSH 2 7 915 16 A A A A A A A A A A A A A A A A A A
25— 30— 35— 40 * U= THIN WALL S= SPLIT SPOON R= ROCK		E.C. JORDAN CO.

.

24

INSTALLATION R	ESTORATION PRO	OGRAM		BORING NO. JMW-107
CLIENT : STEWART AIR	NATIONAL GUARD BASE			PROJECT NO. 5139-01
CONTRACTOR EMPIRE SOILS	INVESTIGATIONS	DATE STARTED	7/30	0/87 CCMPLTD. 8/3/87
METHOD 4.25" HSA	CASING SIZE N/A	HNU TIP 10.6		PROTECTION LEVEL B C C
GROUND EL 364.14	SOIL DRILLED * 21.0	ROCK DRILLED	N	FT BELOW GROUND 9.5
CGGED BY L. Healey	CHECKED BY FFB	DATE 11-10-	87	
(FT) IINU AMB. AIR SAMP NO. & TYPE NO. & TYPE NO. GC CI P GC RECOVERY HNU IIEADSPACE (Ppm)	SOIL/ROCK DES		GRAPHICAL DITHOLOGY	SUIL CLASS ON BOCK FRACTURES ON BOCK SO
Bkg Se de An ta	ee log of JTB-107 for escriptions. halytical sample JMW-1 ken from 4.5-7.5'		0.0.0.0.0.0.0	13 21 18 22 40
	Note: Moved borehole times before boulder- was found. 21' of so	free location		

_E.C. JORDAN CO.____

INSTALLATION F	RESTORATION PRO	OGRAM	BORING NO. JTB-10
CLIENT STEWART AIR	NATIONAL GUARD BASE		PROJECT NO. 5139-01
CONTRACTOR EMPIRE SOILS	INVESTIGATIONS	DATE STARTED 8/	3/87 CCMPLTD. 8/4/87
METHOD HSA/Coring	CASING SIZE 4.25" I.D	HNU TIP 10.6	PROTECTION LEVEL B C D
GROUNDEL 367.34	SOIL DRILLED 12.8	ROCK DRILLED 10'	FT BELOW GROUND 22.8
LOGGED BY T. Longley	CHECKED BY FFB	DATE 11-10-87	
CLIP GRAPH IN SAMPLE CLIP GRAPH IN GRAP	SOIL/ROCK DES		च ।
5- S-2	opsoil w/few disting damp, firm; horizontal; lation fractures w/l structure avelly Tan & gray, many disting orange mottles all plastic, mois lation orange mottles Auger refusation. 8' Bedrock ale Blackish gray broken with pweathering & cleavage sure Cleavage sure 66° to core allows. Have 1.5' slows.	widely graded, to bright es, slightly st, dense w/few, faint lat 12.8' y, extremely prominent staining on faces. faces are at	SM 4 10 1317 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
* U= THIN WALL S= SPLIT SPOO	DN R= ROCK		E.C. JORDAN CO.

CONTRACTOR EMPIRE SOILS INVESTIGATIONS METHOD HSA CASING SIZE 4.25" I.D. HNU TIP 10.6 PROTECTION LEVEL B C GROUND EL 368.34 SOIL DRILLED 12' ROCK DRILLED N.A. FT BELOW GROUND 12 LOGGED BY T. Longley CHECKED BY FFB DATE 11-10-87	INSTALLATION RESTORATION PR	OGRAM	BORING NO. MW-108
METHOD HSA CASING SIZE 4.25" I.D. HNU TIP 10.6 PROTECTION LEVEL B C GROUND EL 368.34 SOIL DRILLED 12' ROCK DRILLED N.A. FT BELOW GROUND 12 LOGGED BY T. Longley CHECKED BY FFB DATE 11-10-87 BY WAY A SOIL DRILLED 12' ROCK DESCRIPTION SY SOIL ROCK DESCRIPTION RO	CLIENT - STEWART AIR NATIONAL GUARD BAS	E	PROJECT NO. 5139-01
GROUND EL 368.34 SOIL DRILLED 12 ROCK DRILLED N.A. FT BELOW GROUND 12 LOGGED BY T. Longley CHECKED BY FFB DATE 11-10-87 EL SURVEY BY SURVEY	CONTRACTOR EMPIRE SOILS INVESTIGATIONS	DATE STARTED	· CCMPLTD.
Analytical Sample JMW1080701 Solvand Brown, trace to little gravel, moist to wet firm, well graded w/few distinct yellow mottles S-2 filled VOA jar, S-3 filled remaining jars B.O.B. @ 12' DATE 11-10-87 ADD SOLVANCK DESCRIPTION SOLVANCK DESCRI	METHOD HSA CASING SIZE 4.25" I.E	L	PROTECTION LEVEL B C
ELGO Note of the property of	GROUND EL 368.34 SOIL DRILLED 12.	ROCK DRILLED N.A.	FT BELOW GROUND 12
Bkg S-1 Bkg Silty Sand Brown, dry, loose, trace Topsoil & gravel, roots at top Till Analytical Sample JMW1080701 Analy	1. Boligiey	11-10-07	
	LOGGED BY T. Longley CHECKED BY FFB CONTROCK DE CHECKED BY FFB	DATE 11-10-87 SCRIPTION , loose, trace of the design of	SX

E.C. JORDAN CO.___

INSTALLATION	RESTORATION PRO	OGRAM	BORING NO. JTB-10
CLIENT STEWART AIR	NATIONAL GUARD BASE		PROJECT NO. 5139-01
CONTRACTOR EMPIRE SOILS	INVESTIGATIONS	DATE STARTED 8/4/	/87 COMPLTD.
METHOD H.S.A./Spin casin	ng CASING SIZE 4" I.D.	HNU TIP 10.6	PROTECTION LEVEL B C D
GROUND EL 371.72	SOIL DRILLED 10.4	ROCK DRILLED 91	FT BELOW GROUND 19.4
LOGGED BY T. Longley	CHECKED BY FFB	DATE 11-10-87	
DEPTH RAME (FT) AMB. AIR RAME. AIR RAME. AIR RAME. ALS AMPLE ALS CLP CLP CLP GCO PART OF THE ADSPACE (PPPM)	SOIL/ROCK DES		SOIL CLASS OR ROCK FRACTURES Z Z WELL DATA
Bkg S-1 19 Bkg S S S S S S S S S S S S S S S S S S S	over gravel, dry andy Silt soil over to structure with the structure, and the structure, and the structure with the structure of the s	to tan, trace of loose; top- plocky of looky of looky of looky of looky of look of loo	ML 3 6 1112 17 Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å

<u>...</u>

•

. •

١.

•

	RESTORATION PRO			<u>l</u>	ORING NO. CJECT NO. 5	
	NATIONAL GUARD BASE	DATE STARTED		<u>. </u>		
CONTRACTOR EMPIRE SOILS	CASING SIZE 4½"		7/2	9/87	TECTION LEVEL	7/29/87
METHOD HSA		HNU TIP 10.6 ROCK DRILLED			BELOW GROUN	
GROUND EL 361.34	SOIL DRILLED 18.9'	DATE	7.3'	FI	BELOW GROOM	D 26.2
LOGGED BY J. Urquhart	CHECKED BY FFB	DATE 11-10-		0 (0		
CIFT) HINLI AMB. AIR SAMIP NO. & TYPE NO. SAMPLE CI P GC RECOVERY HINLI HEADSPACE (PPM)	SOIL/ROCK DES	CRIPTION	GRAPHICAL LITHOLOGY	SOIL CLASS OR ROCK FRACTURES	5LCWS/6-iN or RQD % N 20 40 60 80	WELL DATA EL. (FT)
Bkg S-1 16 Bkg Sa 10	ndy Silt Gray brown, some gravel, some gravel, lty Fine Gray to brown dittle grave dense, dry lty Sand Dark gray, to black thinly laming soft, broken soft, broken broken, slig weathering fractures, correlled to parallel t	race gravel, attack, medium to very the to moderat with many cleavage is bedding @ ly 700 to Bottom % foot		HE SM	20 40 60 80 527 29 37 56 911 17 14 28 6 6 5 7 1 713 6 6 1	

APPENDIX B-2

ROCK CORE LOGS

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-110
Logged By T. Longley	Date 8-19-87	Protection Level D
Core Diameter NX ≉2")	Core Run No. R-1 Depth 18	3.9 ft to 22.9 ft. (4')
Core Recovery 3 ft.	RQD 42 % Core Qualit	y Fair

Shale - gray to blackish gray, thinly laminated, medium soft, moderately fractured and broken, 42% RQD, slight to moderate weathering with many fractures showing bright oxidation staining.

Cleavage is // to bedding and at 20° to core axis.

Few fractures up to 60° to axis Few open vugs

Very crumbly at bottom of run

Project No 5139-01	Project Name Stewart ANGB	Boring No JTB-110
Logged By T. Longley	Date 8-19-87	Protection Level D
Core Diameter NX ≉2")	Core Run No. R-2 Depth 22.9	ft to 26.2 ft. (3.3')
Core Recovery 2.6 ft.	RQD 52 * ~ 5 Core Quality	Fair

i.

ROCK DESCRIPTION AND IDENTIFICATION

Shale - As above but less fractured

Last 9" of core is severely weathered along fracture faces

Project No. 5139-01	Project Name Stewart ANGB	Boring No JTB-101
Logged By S. Pinette	Date 8-6-87	Protection Level D
Core Diameter NX (≈2")	Core Run No. R-1 Depth 37.0	ft to 41.5 ft. (4.5)
Core Recovery 3.5 ft.	RQD O % Core Quality	Very poor

Upper 0.7' (37.0'-37.7') is olive grey till mixed with medium grey shale fragments.

remainder of core is medium grey shale; well cleaved; cleavage planes stained rusty brown and medium greenish brown; cleavage oriented at 45° to core axis. Only 4 pieces of core are at least 1" in diameter.

Project No. 5139-01	Project Name Stewart	ANGB	Boring No. JTB-101
Logged By S. Pinette	Date 8-7-87		Protection Level D
Core Diameter NX (≈2")	Core Run No. R-2	Depth 41.5	ft to 46.5 ft. (5)
Core Recovery 3.9 ft.	RQD 36 %	Core Quality	Poor to fair

Shale - predominantly medium grey, closely cleaved; cleavage plane oriented at 45° to core axis; cleavage surface stained medium greenish brown and, in frequently, rusty brown (geothite); vertical joint (parallel to core axis) discontinous (0.1') in shale

Feldspathic Sandstone -0.7' bed interbedded with shale
(42.6' to 43.3') fine grain, light
grey/tan color; laminated parallel
to cleavage in shale; relatively
massive

VISUAL IDENTIFICATION OF ROCK CORES

SHEET 1 OF 1

Project No.	5139-01	Project Name Stewart	ANGB Boring No. JTB-102
Logged By J.	Urquhart	Date 8-12-87	Protection Level D
Core Diameter	Roller Bit 3.5"	Core Run No.	Depth 51.6 ft to 61.6 ft.
Core Recovery	0* ft.	RQD O %	Core Quality

*No rock core made - hole advanced into rock with tri-cone roller bit.

CORE RECOVERY (FT,)	.3 FT. CORE RECOVERY	R	OCK DESCRIPTION	AND IDENTIFICATION
1				
4				
-	•			
. =	·			
(2				
н (гт.)				
P T 9				
DEF				
		_		
TOTAL() TOTAL()			
3	8			

VISUAL IDENTIFICATION OF ROCK CORES

SHEET 1 OF 1

Project No. 5139-01	Project Name Stewart	ANGB	Boring No	. JTB-103
Logged By T. Longley	Date 8-14-87		Protectio	n Level D
Roller Bit.	Core Run No	Depth 43	} ft to	51.4 ft.
Core Recovery O* ft.	RQD O %	Core Quality		

*No rock core made - hole advanced into rock with tri-cone roller bit.

.3 FT. CORE RECOVERY (FT,) CORE RECOVERY ш TOTAL ____(TOTAL (

ROCK DESCRIPTION AND IDENTIFICATION

- FCJORDANCO -

Project No. 5139-01	Project Name Stewart ANGB		Boring No. JTB-104	
Logged By T. Longley	Date 8-11-87		Protection Level D	
Core Diameter NX (≈2")	Core Run No. R-1	Depth 27	ft to 30.5 ft. (3.5)	
Core Recovery 1.9 ft.	RQD O \$	Core Quality	Very poor	

Black to grayish black shale, highly fractured and broken with numerous interconnecting, randomly oriented joints and open fractures. No one piece is as large as 4"; most are less than 2". Weathering of fractur is moderately fresh, especially near 30', which has moderate staining and distinct FeO and Mn O2 staining on fracture faces. No distinct layerin or foliation

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-104
Logged By T. Longley	D'ate 8-12-87	Protection Level D
Core Diameter NX (≈2")	Core Run No. R-2 Depth 30	.5 ft to 32.5 ft. (2')
Core Recovery 1.9 ft.	RQD O % Core Qualit	y Very poor

Same rock type as in R-1 - highly fractured and broken shale, common joints and fractures, few open ½" in size; top of run is extremely broken and pebbly, bottom ½' of recovered core is severely weathered rock (prevented penetration and caused core block), very (soil-like weak and crumbly; one rock piece shows bedding at 55° to long core axis; FeO & MnO2 is faint to distint throughout core

Some fragments exhibit highly shear and rehealed rock.

Thin interbedded layers of feldspath sandstone

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-104
Logged By T. Longley	Date 8-12-87	Protection Level D
Core Diameter NX (≈2")	Core Run No. R-3 Depth 32.5	ft to 34.3 ft. (1.8')
Core Recovery 1.8 ft.	RQD O % Core Quality	Very poor

Shale

Same as above; extremely fractured and broken, crumbly, very weak, moderate to severe weathering; no piece of core longer than 1".

Top of recovery is slough from soil zone - pebbles and gravel

Core recovery is very subjective due to the poor rock quality

SHEET 1 OF 3

Project No. 5139-01 Project Name Stewart ANGB		Boring No JTB-106
Logged By S. Pinette	Date 8-3-87	Protection Level D
Core Diameter NX (≈2")	Core Run No. R-1 Depth 19.5	ft to 23.0 ft. (3.5)
Core Recovery 2.3 ft.	RQD 9 % Core Quality	Poor

ROCK DESCRIPTION AND IDENTIFICATION

Shale - Medium grey colored; closel spaced cleaved planes are well developed and stained medium brown (FeO/MnO); cleavage and stratification are parallel and oriented at 40-500 with respect to core axis trace calcite peds and veinlets occur throughout, oriented both parallel and transverse to bedding/cleavage

Note: Majority of core breaks occualong cleavage planes; no joints evident in this run

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-106 Protection Level D			
Logged By S. Pinette	Date 8-4-87				
Core Diameter NX (≈2")	Core Run No. R-2 Depth 23.0	ft to 27.0 ft. (4.0)			
Core Recovery 4.0 ft.	RQD 18 % Core Quality	Fair to poor			

Shale - essentially same as described for R-1; discontinuous, poorly developed joints present; oriented 90° to cleavage plane; joint surface stained iron-oxide (geothite) rusty yellowish brown color which is distinct from stain on cleavage surfaces; joints are relatively sparse

Project No. 5139-01	Project Name Stewart	t ANGB	Boring No. JTB-106			
Logged By S. Pinette	Date 8-4-87		Protection Level D			
Core Diameter NX (≈2")	Core Run No. R-3	Depth 27.0	ft to	30.0	ft.	(3.0)
Core Recovery 2.8 ft.	RQD 78 %	Core Quality	Good			

Shale as described in R-2 above; joints are more abundant and slightly better developed then in R-2; joints spaces as closely as 1 inch in some core sections

SHEET _1 OF _3

Project No. 5139-01	Project Name Stewa	rt ANGB	Boring No. JTB-107				
Logged By T. Longley	Date 8-19-87		Protection Level D				
Core Diameter NX (≈2")	Core Run NoR-1	Depth 10	ft to 14 ft. (4)				
Core Recovery 1.6 ft.	RQD 0 %	Core Quality	Very poor				

ROCK DESCRIPTION AND IDENTIFICATION

Shale gray shale

highly fractured and broken slicken sides throughout reddish brown to yellowish stain on most all surfaces

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-107		
Logged By T. Longley	Date 8-19-87	Protection Level D		
Core Diameter NX (≈2")	Core Run No. R-2 Depth	14 ft to 17 ft. (3')		
Core Recovery 41 ft.	RQD O % Core Qual	ity Very poor		

1:

ROCK DESCRIPTION AND IDENTIFICATION

Shale - Gray, thinly laminated medium-hard, highly fractured and broken, slight to moderate weathering staining on all fracture surfaces

Cleavage is 36° to core axis and is // to bedding lineation

Project No. 5139-01	Project Name Stewart ANGB	Boring No JTB-107
Logged By T. Longley	Date 8-20-87	Protection Level D
Core Diameter NX (≈2")	Core Run No. R-3 Depth	17 ft to 19.3 ft. (2.3)
Core Recovery 3.5 ft.*	RQD O % Core Qual:	ity Very poor

Shale - Same as R-1 and R-2

 $^{*}\text{R--3}$ recovered some of the broken fragments from R-2

SHEET 1 OF 2

Project No. 5139-01	Project Name Stewart ANGB	Boring No JTB-108			
Logged By T. Longley	Date 8-20-87	Protection Level D			
Core Diameter NX (≈2")	Core Run No. R-1 Depth	12.8 ft to 17.8 ft. (5)			
Core Recovery 1.4 ft.	RQD O % Core Qual	ity Very poor			

ROCK DESCRIPTION AND IDENTIFICATION

Shale - gray to blackish gray thinl laminated medium soft to medium hard with depth, highly fractured and broken, medium weathering at top to slight with depth

Cleavage 50° to long axis

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-108			
Logged By T. Longley	Date 8-20-87	Protection Level D			
Core Diameter NX ≉2")	Core Run No. R-2 Depth 17	.8 ft to 22.8 ft. (5)			
Core Recovery 3.0 ft.	RQD 14 % Core Quali	ty Very poor			

Shale - blackish gray to black thinly laminated, medium hard to hard, fresh to slight weathering highly fractured and broken

Cleavage is // to laminations and at 45° to long axis

Trace of disseminated pyrite

Project No. 5139-01	Project Name Stewart ANGB	Boring No JTB-109 Protection Level D			
Logged By T. Longley	Date 8-19-87				
Core Diameter NX (2")	Core Run No. R-1 Depth	10 ft to 14.3 ft. (4.3')			
Core Recovery 2.0 ft.	RQD O % Core Quali	ty Very poor			

Shale - gray, thinly laminated, medium hard, highly fractured and broken, fresh to slight weathering

Can't measure ⋠'s at all due to broken nature of rock

Project No. 5139-01	Project Name Stewart ANGB	Boring No. JTB-109			
Logged By T. Longley	Date 8-19-87	Protection Level D			
Core Diameter NX #2")	Core Run No. R-2 Depth 14.	3 ft to 18.5 ft. (4.2)			
Core Recovery 1.8 ft.	RQD 0% Core Quality	Very poor			

Shale same as above - recovered very short pieces but these show more weathering on all fracture faces

APPENDIX B-3

MONITORING WELL INSTALLATION SHEETS

SITE Stewart ANGB

_____ јов no. <u>5139</u>—01

MONITORING WELL DESIGNATION VMW-101 INSTALLATION DATE 8/3/87

DIAMETER OF WELL 0.166

MATERIAL SCH 40 PVC

LOCKING PROTECTIVE COVER

YES ___ NO ___ DRILLER DEVELOPED YES __ NO __

WELL CONSTRUCTION

10' EXREEN LENGTH

2,41 COSING

WATER LEVEL RANGE 31.44

ELEVATION OF WELL AT GRADE ___

GROUNDWATER INFORMATION

APPROXIMATE RECHARGE/YIELD _____

WELL SCREEN POSITIONED IN _______ (i.e. till, clay, rock)

GROUNDWATER MONITORING/SAMPLING DATA

RECOMMENDED TYPE OF EQUIPMENT TO FLUSH WELL

RECOMMENDED AMOUNT OF FLUSHING _

SITE Stewart ANGB

_____ јов no. <u>5139-01</u>

MONITORING WELL DESIGNATION JMW - 107 INSTALLATION DATE 8/3/87

DIAMETER OF WELL D.166 FT MATERIAL SCH. 40 PVC; 0.010" SLOTTED EXPERSI

LOCKING PROTECTIVE COVER YES ___ NO ___ DEILLER DEVELOPED YES ___ NO ___

WELL CONSTRUCTION

9.38

5' SCREEN LENGTH

C = 3.25 CASING

D = 0.166

WATER LEVEL RANGE 10.25 10.55

ELEVATION OF WELL AT GRADE ____

GROUNDWATER INFORMATION

WELL SCREEN POSITIONED IN TILL (i.e. till, clay, rock)

GROUNDWATER MONITORING/SAMPLING DATA

RECOMMENDED TYPE OF EQUIPMENT TO FLUSH WELL _____

RECOMMENDED AMOUNT OF FLUSHING

SITE Stewart ANGB

_____ JOB NO. 5139-01

MONITORING WELL DESIGNATION IMW - 108 INSTALLATION DATE 8/4/87

DIAMETER OF WELL O. 166 FT MATERIAL SCH. 40 PVC; 0.010 STOT SIZE GREEN

LOCKING PROTECTIVE COVER

YES ____ NO ___

DRILLER DEVELOPED YES ___ NO ___

5' SCREEN LENGTH

WELL CONSTRUCTION

2.59 CAGING

WATER LEVEL RANGE 8.5 - 8.7

ELEVATION OF WELL AT GRADE ___

GROUNDWATER INFORMATION

APPROXIMATE RECHARGE / YIELD ______

WELL SCREEN POSITIONED IN ________ (i.e. till, clay, rock)

GROUNDWATER MONITORING/SAMPLING DATA

RECOMMENDED TYPE OF EQUIPMENT TO FLUSH WELL

RECOMMENDED AMOUNT OF FLUSHING ___

SITE Stewart ANGB JOB NO. 5139-01

MONITORING WELL DESIGNATION ______ INSTALLATION DATE 8/6/87

DIAMETER OF WELL O.166' MATERIAL SCH. 40 PVC; 0.010 STOT SIZE SCREEN

LOCKING PROTECTIVE COVER YES ___ NO ___

BRILLER DEVELOPED YES NO ____

WELL CONSTRUCTION

-BACKFILL

BENTONITE SEAL

-SLOTTED SCREEN

SAND BACKFILL

A = 10.25

5' SCREEN LENGTH

c = 2.45 CASING

D = 0.166'

WATER LEVEL RANGE 10.05 - 10.12

ELEVATION OF WELL AT GRADE _____

GROUNDWATER INFORMATION

WELL SCREEN POSITIONED IN TILL (i.e. till, clay, rock)

GROUNDWATER MONITORING/SAMPLING DATA

RECOMMENDED TYPE OF EQUIPMENT TO FLUSH WELL

RECOMMENDED AMOUNT OF FLUSHING _____

APPENDIX C

LABORATORY DATA

C-1 GRAIN-SIZE DISTRIBUTION CURVES C-2 SIEVE ANALYSIS DATA

APPENDIX C-1

GRAIN-SIZE DISTRIBUTION CURVES

JGA 003

JORDAN GORRILL ASSOCIATES GEOTECHNICAL CONSULTANTS

APPENDIX C-2 SIEVE ANALYSIS DATA "LEVEL D"

WATER CONTENT - GENERAL

	.*		,		DAT	E) <u>3.01</u>	
	PROJECT <u>STEWART</u>		ANI		JOE	3 NO	5/37.0	>/
	PROJECT		111				7	
							 	
	BORING AND SAMPLE NO.		MW101 51	12 PCI WM	MW 109 53	B1000 53	8101-54	B 102 4
	TARE NO.		34	106	75	55	50	5
18	TARE PLUS WET SOIL		207.4	226.7	242.5	251.6	229.6	369.
RAN	TARE PLUS DRY SOIL		289.7	207.4	224.5	237.3	215.3	249
WEIGHT IN GRAMS	WATER	W _w	17.7	19.3	18.0	14.3	14.3	20.7
GHT	TARE		72.7	58.Z	61.1	58.8	53.0	52.
WEI	DRY SOIL	Ws	217.0	149.2	163.4	178.5	162.5	196.
	WATER CONTENT, %	w	8.2	12.9	11.0	8.0	ව.ව	10.0
SAI	MPLE DESCRIPTION							,
	BORING AND SAMPLE NO.		B103 5Z	BD3 57	B104 54	B10555	B12653	81065
	TARE NO.		60	8	4	53	70	3
AS.	TARE PLUS WET SOIL		279.3	234.8	261.8	153.3	355	263
WEIGHT IN GRAMS	TAREPLUS DRY SOIL		259.1	221.1	245.4	167.5	24.1	1238.
2	WATER	W _w	20.7	13.7	16.4	15.ラ	25.0	34.7
GHT	·· TARE		52.5	52.1	53.4	53.7	13.6	5.5
WE	DRY SOIL	W s	206.6	169.0	192.0	114.1	205.5	166
	WATER CONTENT, %	w	10.0	8.1	8.5	13.6	12.2	13.2
SA	MPLE DESCRIPTION					<u></u>		· · · · · ·
	BORING AND SAMPLE NO.		B107 5Z	B10353	B.110 54		<u> </u>	<u> </u>
	TARE NO.		25	19	51			
RAMS	TARE PLUS WET SOIL		234.9		237.2			
GRA	TARE PLUS DRY SOIL		210.5	213.8	215.3			
WEIGHT IN G	WATER	ww	24.4	189	21.9			<u> </u>
H91	TARE		63.7	55.7	52.8			
WE	DRY SOIL	Ws	141.8	158.1	162.5			
	WATER CONTENT, %	w	17.2	12.0	13.5			1
SA	MPLE DESCRIPTION							
RE	MARKS high 17.2 (5-2)	ضا (w 8.0(1	31 <u>9</u> 3)	AVE = 11	.2%		
TE	CHNICIAN	<u> </u>	MPUTED BY-		150	HECKED BY_		
154.6							JORDAN GORRI	ILL ASSOC

PROJECT	<u></u>	_	WART	λ
		<u> </u>	WAL	ANG

CHK. BY

JOB Nº 5120 (1)

GRAIN SIZE ANALYSIS

SAMPLE I.D: BOI	RING_	MI			5-1			
MOISTURE CONTE	ENT		SIEVE	Wt. RET		% RET	Ĭ	CORRECT'D
TARE Nº 100 Wt	5E.2	Ī	3					
SAMPLE+TARE, i 22	6.7	SIS	11/2					
SAMPLE+TARE 1 20	7.4	ΓΥS	1				150	1 50
SAMPLE, f	7.2 11.	∢i	3/4		19.0	12.1	57.5	55.7
MOISTURE	9.3	A	1/2		19,61	13.1	\$; c	; 5-
MUISTURE	: =	ш[5/g	İ	30.3	22.5		-
% Wc		RS	1/4		40.1	26.9	15.	-:
% OF FINES	111	۷Į	4		43.0	<u> </u>		
TARE Nº 106 Wt. 5	78.2	ပ	PAN				<u> </u>	:
SAMPLE+TARE, 1 _ Z	27.4		Wt. i		Wt. f	:	_ % Loss	5
SAMPLE+TARE, f	05.2		4		•	-		
WI. SOIL LOST			10		58.5	39.2	60.8	l oi
wr. soil, i 140	7.2	2	20		72.9	48.9	51.1	51
% of FINES 28	3.Z3	χ	40		81.2	54.4	45.6	1 45
HYDROMETER	· · · · · · · · · · · · · · · · · · ·	ā١	60		89.7	60.1	39.9	40 1
ANALYSIS	` :	Ž V	100		99.3	66.6	53.4	33/
SAMPLE SIZE i	1	шl	200		106.5	71.4	28.5	
MENISCUS CORR (M)		Z	PAN		106.6		T -	<u> </u>
DISP AGENTCORR(Cd))		Wt. i	Wt. f _	%	_oss	C.F.	
TIME AT MIN TEN			UAL R	L IR'D Eff.Dp	R-Cd+M	d=K√ L SIZE	% Finer C	CORRECTED
0	1					İ	1	-
1/2			<u>_</u>	<u> </u>			<u>i</u>	
				 		i i		T

TIME	At MIN	TEMP/K	ACTUAL HYDRO	R CORR'D	L Eff.Dpth	R-Cd+ M	d=K√누 SIZE	% Finer	CORRECTED
	i o	 							
	1/2	<u> </u>			 				
	1 1	<u> </u>							
	2								
	4							<u> </u>	
	8	1							
	15								
	30	. '							Ì ,
	60	<u> </u> '		<u> </u>				<u> </u>	
	120	<u> </u>							
	240	<u> </u>						<u> </u>	
	480								
	1440								

% FINER =
$$\left[\left(\frac{G_s}{G_s-I}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$$

PROJECT	<u> </u>		1
PROJECT		مسوم س و و او مسو	Λ . Λ
	_	EWAFT	ANC

CHK. BY

JOB Nº 5/39.69

GRAIN SIZE ANALYSIS

SAMPLE I.D: BORING	MN	1108)	NUN	BER		<u>5-3</u>	_DEPTH		
MOISTURE CONTENT			VE		t. RET			% RET	% PASS	CORRECT'D
				HTIW	TARE	WIT	HOUT TARE			
TARE Nº WI				<u> </u>					ļ	
SAMPLE+TARE, i 242.5	YSIS	<u> 1</u> 1	<u>′2 </u>							
SAMPLE+TARE, 1 224.5	≻									
SAMPLE, f	JAL		/4			<u> </u>			190	
MOISTURE 18 c	AN	را	′2	<u> </u>			3.6	2.2/		
% Wc	SE		/8	<u> </u>			15.5	<u> </u>		-
			4				21.3	13.01		5
% OF FINES	OA	\		<u> </u>		<u> </u>	33.5	2.5	705	5.
TARE Nº 75 W. 61.1	ူပ	OPAN							<u> </u>	<u> </u>
SAMPLE+TARE,1 224.5		Wt.	i				Wt. f		_ % Los	ss
SAMPLE+TARE, f 131.5			1	T				_		
wi. soil Lost 45.0		1	0				59.1	36.21	53.5	. 64_
Wt. SOIL, i 163.4	SIS	2	0	1			78.4	48.0	52.0	
% of FINES 26.3/	ΥS	4	0			(90.3	55.3-	+ 44.7	
	ا لـــ الا	60				10	∞.6	61.6	38.4	35
HYDROMETER ANALYSIS	ANA	10	00			1	10.1	157.4	32:	33~
SAMPLE SIZE i	w	20	00				200	73.4	2:00	1 25
MENISCUS CORR (M)	Z	P	AN			1	20.2	73.6	-	
DISP. AGENT	"	Wt. i			Wt f		% 1	_oss		
AMOUNT CORR(Cd)][777.					, ,o ,			
	A (**)	ΓUAL		₹	L		R-Cd+ M	d=K√\=		
TIME AT MIN TEMP/K					_	th.	CALC	SIZE	% Finer	CORRECTED
								1 0.00	1	
0			<u> </u>		<u> </u>			<u> </u>	!	
1/2			<u> </u>		<u> </u>			ļ		
			<u> </u>		<u> </u>		1			
2			!		!		!	<u> </u>		
4			<u> </u>				<u> </u>		<u> </u>	
8			<u> </u>				1		i ;	
15			ļ		<u> </u>		-	<u> </u>	1	
30			1		<u> </u>			<u> </u>	i	
60			1		1		 		1	
120			-		-		1	-		
240		···	-							
480					<u> </u>					
1440			1		<u> </u>			<u> </u>	<u> </u>	

% FINER = $\left[\left(\frac{G_s}{G_{s}-I}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

PROJECT STEWART ANG

CHK. BY

JOB Nº 5129 01

GRAIN SIZE ANALYSIS

SHIMIL	-E 1.D.	DUMING.	يسنب	<u>-~</u>		NO	MDEK		<u> </u>	_	l	
		NTENT		SII	EVE		Wt. RET		INED	% RET	% PASS	CORRECT'D
TARE N	: <u>55</u> w	v1. <u>58.8</u>			3			T				:
SAMPLE	E+TARE, i	251.6	SIS	11	1/2			\top				
SAMPLE	E+TARE.f.	237.3	YS		1			\top			100	100
SAMPLI	E, f	178.5		3	3/4			十	5 c.!	159	63.	= 7
MOISTI	 	14.3	AN	را	1/2				/		·	!
19/ W-	JAC	8.0%	إيرا	3,	/ ₈				240		2: //	. 11
76 VIC .				1,	/4				38.5	21.6	752	1 5
%	OF FINE	ES	OA		4				-45.E	25.7	763	-2/
		<u></u>	11/51	P/	AN	<u> </u>			-			
SAMPLE	MPLE+TARE, 1 _ 237.3			Wt.	. i				Wt. f		_ % Los	:s
SAMPLE	MPLE+TARE, f			1	4			Ī	_ [l	
	SOIL LOST 76.7				10			\vdash	50.8	31.8.	68.2	1 3
			S		20			1	61.3	37.7	62.3	
	Wr. SOIL, i 178.5				40				74.8	4:1.9	1 56.1	
	% of FINES 43.0/				0	-			32.8	46.4	1 70.1 1 53.6	1 75
Г н	YDROME	TER	NAL		00	\vdash		_	93.0			101
. —	ANALYSI E SIZE i		<	0.0	00	 		-		52.1	47.9	
ì	E SIZE I :US CORR (N	_ ,	N N		AN	 		1	02.0	57.1	429	1 75
I	SENT		FIN	3		<u> </u>					<u> </u>	
Į.	T CORF			Wt. i		Wt. f			% L	.oss	C.F.	
	T		نساا				T		T			
			ACT	TUAL	R	, !	L	į	R-Cd+M		į	
TIME	At MIN	TEMP/K	HY)RO	COR	R'D	Eff.Dp	th.	CALC	SIZE	% Finer	CORRECTED
	0							=			i	
	1/2										<u> </u>	
		 			<u> </u>		 		1			
	2	i		 ;			İ	_	<u>!</u>	,		
	4	 					<u>. </u>				:	
	8									<u> </u>		
	i5											
	30											
	60	 					1	-		<u> </u>		
	120			1				ᅱ				
	240			<u> </u>			<u> </u>	\neg				
	1 480	i :			,					l	i	

% FINER = $\left[\left(\frac{G_s}{G_{s}-I}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

1440

PROJECT	STEWART	λ
		<i>1</i> \ ,.
	ニュスノスシー	ANG
		71100

CHK. BY

JOB Nº 5130 (1)

GRAIN SIZE ANALYSIS

MOISTURE CONTENT	SIEV	1 1					
		'F '	VI. REI	AINED	% RET	% PASS	CORRECT'D
TABENO 70 W. 75.0 11	0.2	WITH	TARE	WITHOUT TARE	70 112 1		
	3						i
SAMPLE+TARE, i 229.6	11/2						
SAMPLE+TARE, f 215.3							<u>i</u>
SAMPLE, f			<u> </u>			<u> </u>	:
MOISTURE 14.3	(1 72				0	00.	<u>) 100 </u> ===
· · · · · · · · · · · · · · · · · · ·	· 			3.2	201		
/ · · · · · · · · · · · · · · · · · · ·	: 1/4			5.7	5.5	7-4-5	
% OF FINES	\			14.8	9.1	30.0	91/
TARE Nº 50 Wt. 53.0		<u> </u>				<u> </u>	
SAMPLE+TARE, 1 215.3	Wt. i			Wt.1	f	_ % Los:	s
SAMPLE+TARE, 1 24.5	1 4						
Wt. SOIL LOST 88.8	10			28.1	17.3	82.7	53
wt. SOIL, i 162.3	2 20)		39.5	24.3	75.7	1 75/
% of FINES 54.7/	2 40)		47.2	29.1	70.9	1 71
78 01 7 111 20	 60			55.1	33.9	100.1	1 1001
HYDROMETER ANALYSIS	100	0		63.9	39.4	10.10	10:
1	200			73.3	45.2	54.8	
MENISCUS CORR (M)				73.5	45.3		I —
DISP. AGENT	Wt. i_		\A/+ F	· %		C.F.	
AMOUNT CORR(Cd)	AA 1. f -		441.1 _				
			,	2 6 14	J-1/ [
TIME AT MIN TEMP/K H	TUAL	R	L	R-Cd+ M	d=K√누 SIZE	% Finer	CORRECTED
TIME- AT MIN TEMPT R H	- I DRO I	CONRE	7	TIL CALC	1 3.22	70 1 11701	
0							
/2	<u> </u>						
2					1	i	
4	!					;	
8	<u> </u>						
15	1					İ	
30			1		<u> </u>	!	
60						<u> </u>	
120							
240		···-					
480							
1 1440	1		1	1	1	1	

% FINER = $\left[\left(\frac{G_s}{G_{s-1}}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

ſ	DOOLECT	\sim	WART	1
ļ	PROJECT	·		Λ .
,			しょ ノス・ウ・ー	/ A A ! / —
١		=	V. 1	
!				•

CHK. BY

JOB Nº 5139.61 DATE 8.31.87

GRAIN SIZE ANALYSIS

SAMPLE I.D: BORING	B	1021	NUMBER :	5-6	_DEPTH		
	T		WI. KEI	AINEU	% RET	% PASS	CORRECT'D
MOISTURE CONTENT		SIEVE		WITHOUT TARE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
TARE Nº 5 W1. 52.8	F	3					<u>!</u>
SAMPLE+TARE, i 269.7	SIS	11/2					-
SAMPLE+TARE, 1 249.0	7	1				100	<u> </u>
SAMPLE, f 176.2	M	3/4			1	100	: 100 : 46 /
	AN	1/2		5.7	44	95.6	
MOISTORE	ш	3/8		3.2	57	<u> </u>	
% Wc	RS	1/4		16.4	95	854	
% OF FINES	OA	4		28.7	14.6	1 3-2	1 55 1
	2	PAN				<u> </u>	<u> </u>
TARE Nº _ 5 Wt. 52.8		Wt.i		Wt	f	_ % Los:	5
SAMPLE+TARE, 1 247.0		YY 1. L					
SAMPLE+TARE, f 146.2		. 4					
Wt. SOIL LOST 102.8		10		44.7	12.8		1 77 /
Wr. SOIL, i 196.2	S	20		57.2	29.2	70.8	71
	ΥS	40		164.4	32.8		
% OF FINES	AL	60	•	73.3	37.4		
HYDROMETER	Z	100		83.3	425	57.5	58 /
ANALYSIS	E A	200		93.3	47.6	, 52.4	52
SAMPLE SIZE i		PAN	 	93.4	1 -		
MENISCUS CORR (M)	🗉		<u> </u>		1.000	^ F	,
DISP. AGENT		Wt. i	Wt. f	%		U.i.	
AMOUN! CORR(Cg)	<u>ــال</u>	71101	0 1	R-Cat N	A d=K√=		

A								1	
TIME	Δt MIN	TEMP/K	ACTUAL HYDRO	R CORR'D	L Eff.Dpth.	R-Cd+M CALC	d=K √누 SIZE	% Finer	CORRECTED
	0		<u> </u>	<u> </u>					
	1/2			<u> </u>	 			 	
	1		!	<u> </u>		ļ	<u> </u>	<u> </u>	1
	2				<u> </u>		!	<u> </u>	·
	4	İ					-		1
	8		i			<u> </u>	<u> </u>	<u> </u>	
	15						<u> </u>	1	<u> </u>
	30]		<u> </u>	<u> </u>	<u> </u>	
	60					<u> </u>		 	
	120								
	240						ļ	-	
	480				,				1
	1440								

% FINER = $\left[\left(\frac{G_S}{G_S-I}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

Gs _____ REAL/ASSU

PROJECT			<i>}</i>
	<u> </u>	EWALT	4.11.5

CHK. BY CLK

DATE 8.31.87

GRAIN SIZE ANALYSIS

SAMPL	E I.D:	BORING.	5	103		NU	MBER		<u>5-2.</u>	_DEPTH	l		
	URE CO			!	EVE		Vt. RET	ΆΙ	NED	% RET	% PASS		CORRECT'D
						WIT	TARE	WIT	HOUT TARE		701700		
TARE N	: <u>160 </u>	1			3							\perp	
SAMPLE	+TARE, i.	<u> 274. E</u>	SIS	. 13	/2								
SAMPLE	E+TARE,f.	<u> 250, i </u>	Σ,		}	İ							
SAMPLE	E, f	206.6	NAI		/4			1					
ŀ	JRE		A		/2			<u> </u>		W-7-1	100	<u>i</u>	Im
			Ä		/ ₈	<u>i </u>			4,0	1,9	78.1	:	<u>95 /</u>
% WC .				SH 1/4		<u>i </u>	. <u> </u>		9.2	4.5	95.5		26
%	OF FINE	ES	OA		4			_	17.0	8.Ź	91.8		9,2 /
,	<u> </u>		ပ	P	ΔN								
	E+TARE,			Wt.	i				Wt. f		_ % Los	ss.	
SAMPLE	E+TARE,f	164.0		4	7				~	_			
Wt. SOIL	LOST	95.1		1	0				38.2	18.4	81.6	,	82
WI. SOIL	., i	206.6	SIS	2	.0				54.3	Z6.3	73.7		74 /
% of FI	NES	46.01	ΥS	40			•		67.1	32.5	67.5		48
			AL	6	0	ļ			80.2	<u> 38.8</u>	61.2		61
"	YDROME ANALYS	IS .	AN	10	00			'	96.2	46.6	53.4	.	54
	SIZE i _		E/	20	00			1	11.4	53.9	46.1		45 -
MENISC	us corr (I	M)(N	Z	P	ΔN			1	11.6		-		
DISP AC	ENT		1	Wt. i		<u> </u>	\A/+ F		• % 1	_0ss	CE		,
AMOUN'	T CORF	R(C _d)		** 1. (*****					_	
].		A C T	*11A1		,	L		R-Cd+ M	4-V [L			
TIME	A+ MIN	TEMP/K		UAL						d=K√누 SIZE	% Finer	ر ر	RRECTED
	<u>: </u>	1 1 (2) (1)					<u> </u>		OALO	O.L.	70 1 111 (=	TITLETED
	0												·
	1/2	1			<u> </u>					· ·			
	<u> </u>	İ					<u> </u>						
	! 2						<u> </u>			!			
	4												
	8				<u> </u>		<u> </u>						
	15				<u> </u>		ļ						
	30	<u> </u>											
	60												
	120				<u> </u>								
<u>L</u>	240	1			ļ		1		ļ	1			

% FINER = $\left[\left(\frac{G_S}{G_S-I}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

480 1440

PROJECT STEWART ANG

CHK. BY

JOB Nº 5/30 C

GRAIN SIZE ANALYSIS

SAMP	LE I.D:	BORING	_5	103		NU	MBER			_DEPTH	ł	
]		NTENT		SI	EVE		VI. RE		NED	% RET	% PASS	CORRECT'D
TARE N	<u> </u>	/1. <u>52. :</u>			3	Ī		Ī				
SAMPLE	E+TARE, i	234.8	SIS	1	/2			T				
SAMPL!	E+TARE.f.	221.1	\ <u>S</u>]						200	::::
SAMPL	E, f	16.0	114		/4				12.1	7.2		
MOISTI	JRE	13.7	AN	I	/2				17.7	105	20-3	90
			SE	3/8				!	51.2:		57.5	8.5
			AR		/4				24.6	14.6		
<u>%</u>	OF FINI	<u>ES</u>	0		4				31.5	16.6	3.4	ε (
TARE N	TARE Nº 8 Wt. 52.1			P	AN	<u> </u>	····					
1	SAMPLE+TARE, 1221.1			Wt	. i				Wt. f		_ % Los	ss
	SAMPLE+TARE, f 143.3			4	4							
Wt. SOIL	WI. SOIL LOST 77.8			}	0			Γ	43.6	25.3	74.2	74
Wt. SOIL	15	2	0			_	53.5	31.7	68.3			
% of FINES 46.01			ΥS	4	0			1	60.9	36.0	64.0	
	HYDROMETER			6	0			1	18.9	40.3	59.2	
	ANALYS	IS	ANA	10	00				79.0	46.7	53.3	
	SIZE i _		Шш	20	00				91.2	54.0	450	
1	US CORR (I		FIN	Œ.	ΔN				91.4			
E .	ENT			Wt i			Wt f			.oss	CE	
AMOUN	T CORF	₹(C ^q) ——	<u> </u>	** ** *			771.1			.033		
TIME	At MIN	TEMP/K	ACT HYI	UAL DRO	R	R'D	L Eff.Dp	th.	R-Cd+M		% Finer	CORRECTED
	0											1
	1/2											
											i i	:
	2										j	
	4									į į	1	
	8										ļ	!
	15										}	
	30											:
	60]				
	120							_				
	240							_				
	480							_				
	1440						i 					

% FINER = $\left[\left(\frac{G_s}{G_{s-1}}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

PROJECT STEWART ANG

CHK.BY

JOB Nº 5139.01 DATE 8.51.85

GRAIN SIZE ANALYSIS

SAMPL	_E I.D:	BORING	B	10-	4	NU	MBER	<u> 5-4</u>	DEPTH		
MOIST	URE CO	NTENT		SII	EVE	١	Vt. RET	AINED	% RET	% PASS	CORRECT
						WIT	TARE	WITHOUT TARE	70 1121	701 755	COMMECT
1		11. 53.4			3						<u> </u>
SAMPLE	+TARE, i	261.8	SIS	1	/2					100	100
SAMPLE	E+TARE,f	245.4	>-		1			25.7	13.4	36.6	87/
SAMPLI	E, f	192.0	NAL		/4	<u> </u>				<u> </u>	1
MOIST	JRE	16.4	1		/2	<u> </u>	····		<u> </u>		-
% Wc		3.51	SE		/8			27.0	.1.5	==.=	2.2
			OAR		/4	<u> </u>		31.2	25	55	84
%	OF FIN	<u>ES</u>	ŏ		4	<u> </u>		37.0	19.3	95.7	1 81/
TAREN	<u>• 4</u> w	1t. <u>53.4</u>		Ρ.	AN	<u> </u>					i
SAMPLE	E+TARE,i	245.4		Wt	. i			Wt.:	f	_ % Loss	
SAMPLE	E+TARE, f	160.3			4						1
Wt. SOIL	LOST	85.1		į	0			50.6	26.4	73.6	1 74 /
Wt. SOIL	_, i	192.0	<u>S</u>	2	0			62.8	32.7	67.3	67
% of Fi	NES	44.3	YSI	4	0			71.8	37.4	62.6	63/
			AL.	6	0			8z. I	42.3	57.2	
"	YDROME ANALYS	IS S	NA NA	10	00			93.9	439	51.1	57
	SIZE I _		w	20	00			106.8	55.6	44.4	44
MENISC	US CORR (M)	Z	P	AN			107.0			
	SENT					<u> </u>	W+ f	°/_ !	1 000	C.F	
AMOUN	T CORI	R(Cd)		171. (*****				C.I	
			^ CT	UAL	0		١	R-Cd+M	d=K√ L		
TIME	AT MIN	TEMP/K	HYI	OAL	COR	R'D	Eff Do	th. CALC	SIZE	% Finer C	ORRECT
									10122	70 / 11101	
	0				<u> </u>		<u> </u>				
<u> </u>	1/2										
ļ	1								_		
	2										
	! 4						ļ				
<u> </u>	8				<u> </u>		<u> </u>				
ļ	15	!					ļ				·
-	30	<u> </u>			<u> </u>		<u> </u>				
 	1 60										
	120						<u> </u>				 -
	240	!			<u> </u>		ļ				
-	1 480						 				
<u> </u>	1440	1			<u> </u>		<u> </u>		<u> </u>		

% FINER= $\left[\left(\frac{G_s}{G_{s-1}}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

BOIECT	$\widehat{}$	λ
400521	STEWART	Λ . \cdot
	- X/	
		, ,,,,

CHK. BY RLR

(i)

DATE 8.31.37

GRAIN SIZE ANALYSIS

SAMPLE I.D: BORING_	1	: 106	NUMBER	<u> 53</u>	_DEPTH		
		SIEVE	Wt. RET		% RET	% PASS	CORRECT'D
MOISTURE CONTENT		SIEVE	SRAT KTIW	WITHOUT TARE			
TARE Nº 70 W1. 58:6		3					<u> </u>
SAMPLE+TARE, i 289.1	SIS	11/2					
CAMPIE+TARE & 2641		1			_	100	100
SAMPLE, f	A	3/4		7.1	3,5	96.5	1 97 -
	A N	1/2		9.7	4.7	95.3	1 95
LMOIS LURE	I II	3/8		11.6	5.6	C+.4	1 C4 /
% Wc	RS	1/4		18.7	9.1	90.9	<u> 9) </u>
OF FINES	IZI	4		23,1	13.7	56.3	861
% OF FINES	3	PAN			<u>'</u>		
TARE Nº 70 Wt. 78.6		18/5 :		W+	f	_ % Loss	s
SAMPLE+TARE, 1 264.1		Wt. i			•		
SAMPLE+TARE, f 195.0		4					<u> </u>
Wr. SOIL LOST 69.1		10		46.8	22.8	77.2	1 77
Wr. SOIL, i 205.5	8	20		65.4	31.8	63.2	68/
	S	40		80.2	39.0	61.0	1/21.
1 53//						l	1 / 1
% of FINES 33.6/	֓֞֞֞֞֞֞֞֞֞֞֞֓֓֞֞֞֞֓֓֓֞֞֞֞֓֓֡֡֡֡֡֡֡֡	60		1 97.3	47.4	52.6	53/
HYDROMETER	NAL	60 100		97.3		52.6	1 53
HYDROMETER ANALYSIS	ANAL	100		1163	56.6		
HYDROMETER ANALYSIS SAMPLE SIZE i	E ANAL	100 200		116.3		44.4	44
HYDROMETER ANALYSIS	ANAL	100	144.5	1163	56.6 66.1	33:9	34/

AMOUNI	CORF	((Ca)	J L!						
TIME	Δt MIN	TEMP/K	ACTUAL HYDRO	R CORR'D	L Eff.Dpth.	R-Cd+M CALC	d=K√L SIZE	% Finer	CORRECTED
		1	1						
	0						 		
	1/2				<u> </u>				
	1								
	2								
	4							<u> </u>	
	8							<u> </u>	
	15								
	30						<u> </u>		
	60							<u> </u>	
	120								
}	240								
	480		<u> </u>						
	1440	+							
	1 1440	<u> </u>	1	1					

% FINER =
$$\left[\frac{G_s}{G_{s}-I}\right] \times \frac{100}{Wi} \left((R-C_d+M)-I\right) \times 1000$$

•	
•	~
٠	_
٠	-

PROJECT STEWART ANG

CHK. BY PIP

JOB Nº 5139.01

GRAIN SIZE ANALYSIS

MOISTURE 2-17 3/8 5.0 4.3 9.5.7 9 9 9 9 9 9 9 9 9	
SAMPLE+TARE, i 263.3 SAMPLE+TARE, f 235.5 SAMPLE, f 136.7 MOISTURE 24.7 % Wc 37.8 9.0 9.0 OF FINES TARE Nº 7 Wt. 51.9 SAMPLE+TARE, i 236.6 SAMPLE+TARE, i 164.5 Wt. soil lost 74.1 Wt. soil lost 74.1 Wt. soil, i 186.7 % of FINES SAMPLE SIZE i MENISCUS CORR (M) DISP AGENT AMOUNT CORR (Cd) VI I I I I I I I I I I I I I I I I I I	CT'I
SAMPLE+TARE, i 263.3 SAMPLE, f 136.7 MOISTURE 24.7 % Wc 37, Wt. 51.9 SAMPLE+TARE, i 25.5 TARE Nº 7/2 Wt. 51.9 SAMPLE+TARE, i 278.6 SAMPLE+TARE, i 278.6 SAMPLE+TARE, i 164.7 Wt. SOIL LOST 74.1 Wt. SOIL, i 186.7 % of FINES 39.9 (HYDROMETER ANALYSIS SAMPLE SIZE i MENISCUS CORR (M) DISP. AGENT AMOUNT CORR (Cd) DISP. AGENT AMOUNT CORR (Cd) TIME At MIN TEMP/K HYDRO CORR DEFF. Dpth. CALC SIZE WFiner CORRECT	
SAMPLE+TARE, f 225	
SAMPLE, f 136.7	
MOISTURE 24.7 3/8 3.0 4.3 25.7 9 9 9 9 9 9 9 9 9	
% Wc 3.2	0
% OF FINES TARE № 3 Wt. 51.9 SAMPLE+TARE, i 738.6 SAMPLE+TARE, f 164.5 Wt. SOIL LOST 74.1 Wt. SOIL, i 186.7 % of FINES 39.9 / 2 HYDROMETER ANALYSIS 40 SAMPLE SIZE i MENISCUS CORR (M) 100 DISP. AGENT AMOUNT CORR (Cd) 200 Wt. i Wt. f Wt. f MENISCUS CORR (Cd) Wt. i Wt. f Meniscus CORR (Cd) ACTUAL R L R-Cd+M d=K√L % Finer CORRECT Wt. i CALC SIZE We Finer CORRECT Wt. i CALC SIZE We Finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT We finer CORRECT WE fine fine fine fine fine fine fine fine	61
TARE Nº	1
SAMPLE+TARE, i 738.6 Wt. i Wt. f % Loss SAMPLE+TARE, f 164.5 Wt. SOIL LOST 74.1 Wt. SOIL, i 186.7 % of FINES 39.9 /	7/
SAMPLE+TARE, i	
Wf. SOIL LOST	
Wf. SOIL LOST	
Wt. SOIL, i 39.97 % of FINES 39.97 HYDROMETER ANALYSIS 60 SAMPLE SIZE i 200 MENISCUS CORR (M) 200 DISP. AGENT AMOUNT CORR (Cd) Wt. i Wt. i Wt. f Wt. i Wt. f ACTUAL R L R-Cd+M CALC R-Cd+M CALC TIME At MIN TEMP/K HYDRO CORR'D Eff.Dpth. CALC O .	3
% of FINES 39.97/ 40 77.8 35.0 62.0 6 HYDROMETER ANALYSIS 60 83.7 44.8 55.2 5 SAMPLE SIZE i MENISCUS CORR (M) 200 117.0 60.0 49.0 49.0 MENISCUS CORR (M) 200 117.0 60.0 40.0 40.0 40.0 MENISCUS CORR (M) 200 117.0 60.0 40.0	7 /
HYDROMETER	2
ANALYSIS SAMPLE SIZE 200 11Z.0 60.0 40.0 2 MENISCUS CORR (M)	51
SAMPLE SIZE	5
DISP. AGENT Wt. i Wt. f % Loss C.F. TIME At MIN TEMP/K HYDRO CORR'D Eff.Dpth. CALC SIZE % Finer CORRECT	2 /
AMOUNT CORR(Cd) WI.I WI.I WI.I WI.I COSS C.F. TIME At MIN TEMP/K HYDRO CORR'D Eff.Dpth. CALC SIZE % Finer CORRECT	
TIME At MIN TEMP/K HYDRO CORR'D Eff.Dpth. CALC SIZE % Finer CORRECT	
	TEC
2	
4	
8	
15	
30	
60	

% FINER = $\left[\left(\frac{G_s}{G_{s-1}} \right) \times \frac{100}{Wi} \right] \left((R - C_d + M) - I \right) \times 1000$

PROJECT	\subseteq),
	DIEWART	ANG

CHK. BY TS

JOB Nº 5130.0: DATE 2.3:.3:

GRAIN SIZE ANALYSIS

MOISTURE CONTENT TARE Nº 25 Wt. 557 SAMPLE+TARE, i 234.9 SIEVE Wt. RETAINED % RET % PASS CORRE	מ'דב
TARE Nº 25 Wt. 357 3 3 SAMPLE+TARE, i 234.9 0 11/2	
SAMPLE+TARE, i 234.9 0 1/2	
1	
SAMPLE+TARE, f Z10.5	
SAMPLE, f 141.0 4 3/4	
MOISTURE 24.4 4 1/2	
$\frac{1}{2}$	
% OF FINES 8 4 11.3 5.0 92.0 92	. /
TARE Nº 25 Wr. 68.7 O PAN	
SAMPLE+TARE, i 210.5 Wt. i Wt. f % Loss	
SAMPLE+TARE, f 123.L 4	
Wr. SOIL LOST 869 10 13.6 9.6 90.4 90	
Wr. SOIL, i 141.8 0 20 16.5 11.6 88.4 88	
% of FINES 5.3% / 40 18.8 13.3 86.7 87	
	. /
1 TO 1 20 2 2 1 1 70 1 70	
	. /
MENISCUS CORR (M) Z PAN 54.9	
DISP AGENT	
AMOUNT CORR (Cd) Wt. i Wt. f % Loss C.F.	
ACTUAL R L R-Cd+M d=K√+ TIME At MIN TEMP/K HYDRO CORR'D Eff.Dpth. CALC SIZE % Finer CORREC	
TIME At MIN TEMP/K HYDRO CORR'D Eff. Dpth CALC SIZE % Finer CORREC	
1/2	
2	
4	
8	7
15	
30	
60	
120	/
240	
480	
1440	_

% FINER = $\left[\left(\frac{G_s}{G_{s}-I}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

PROJECT	$\widehat{}$		
PROJECT			λ
	,		/\ .
	ية أحسد ا	7 X - 2	
	STEW		

CHK. BY

JOB Nº 5/39.01 DATE 8.31.37

GRAIN SIZE ANALYSIS BORING 8108 NUMBER 55

SAMP	_E I.D:	BORING	<u>_ E</u>	105	<u> </u>	NU	MBER		<u>55</u>	_DEPTH	ł		
	URE CO				EVE	٧	Vt. RET	Αl	NED	% RET	% PASS	;	CORRECT'D
	. 19 v					WIT	TARE	WIT	HOUT TARE	70 1121	701.700		CONTRACTO
					3	<u> </u>		_					
SAMPLE	+TARE, i	200.1	SIS	1!	/2	<u> </u>		L					
SAMPLE	E+TARE,f	213.6	$\parallel > \parallel$		<u> </u>	<u> </u>	· .						
SAMPLE	E, f	156.1	A		/4	<u> </u>	·	_			100		
	JRE	18.9	AN		/2			<u> </u>	11.5	7.3	0,2.7		95/
•		12.0%	잉티		/8	<u> </u>	 	<u> </u>	20.0	12.7	87.5		8 ⁻
			AR		/4	-	 	_	26.3	16.7	63.3		23/
	OF FIN		0		4	<u> </u>		_	34.2	216	78.4		7色/
TAREN	9 19 W	_{/t.} <u>55.7</u>		Ρ,	AN	<u> </u>							
SAMPLE	E+TARE,i	213.5		Wt.	. i		. 		Wt. f	· · · · · · · · · · · · · · · · · · ·	_ % Lo:	SS	
SAMPLE	E+TARE,f	158.3		4	4]					1		
Wt. SOIL	LOST	<u> 55.0</u>		J	0				45.9	29.0	171.0		7)
Wt SOII	_, i	158.1	S1S	2	0	1			57.6	36.4	1 63.6		1A/
% of FI	NES 34.8	35.2	ΥS	4	0		·		16.4	42.0	58.0		5 8
			AL	6	0				77.6	49.1	50,9		5! /
Н	YDROME ANALYS	LIER IS	AN	10	00			-	75.1	60.2	398		40
	SIZE i _		E /	20	00			_	03.2	64.5	35.5		35
	US CORR (AN-			_	03.3		1		
DISP AG	SENT		-	Wt. i	· · · · · · · · · · · · · · · · · · ·	1	14/4 £				· · ·	<u> '</u>	
AMOUN'	TCOR	R (Cd)		AA I. (AA 1. 1 _		/0 !	_055	C.F.	• -	
			ΔСТ	UAL	F		L		R-C _d + M	d=K√\=			
TIME	AT MIN	TEMP/K						th.	CALC	SIZE	% Finer	c	DRRECTED
	1 0				Ī		<u>i </u>			<u> </u>			
	1/2				<u> </u>								
	1				<u> </u>				`				
	2												
	4		***************************************		İ								
	8												
	15				<u> </u>								
	30												
	60				•								
	120												
	2.40												
:	1	· i			1				1	i			

% FINER = $\left[\left(\frac{G_s}{G_{s-1}} \right) \times \frac{100}{Wi} \left((R - C_d + M) - I \right) \right] \times 1000$

1440

PROJECT STEWART AND

CHK. BY RIR

JOB Nº 5/30.01 DATE 8.5.31

GRAIN SIZE ANALYSIS

SAMPLE I.D: BORING	B	110	NUMBER	54	_DEPTH		
MOISTURE CONTENT		SIEVE		TAINED	% RET	% PASS	CORRECT'D
TARE Nº \$ 51 W1. 52.8		3					
SAMPLE+TARE, i 237.2	SIS	11/2					
SAMPLE+TARE, f	>	1					<u> </u>
SAMPLE, f	NAL	3/4					1
219	V	1/2		0	,) 25 C	loc
% Wc	SE	3/8	<u> </u>	1.8	j.]	G49	95
	AR	1/4		3.2 1L.1	5.1	90.1	9.5 /
% OF FINES	00	PAN		16.7	<u> </u>		1
TARE Nº 51 Wt. 52.8						0/ 1	_
SAMPLE+TARE, i 2!5.3		Wt. i		W1.1	f	_ % Los:	s
SAMPLE+TARE, f 150.4		4					
Wt. SOIL LOST 64.9		10		29.7	18.3	81.7	52
W. SOIL . 162.5	118	20		40.3	24.8	75.2	75/
% of FINES 40.0/	ΥS	40		48.5	30.0	70.0	1 70
HYDROMETER	님	60		60.2	31.7	58.3	1 3/
ANALYSIS	AN	100		82.3	50.7	49.3	20
SAMPLE SIZE i	ll w	200		1. 98.1	<i>3</i> 0.4	39.5	141
MENISCUS CORR (M)	I Z	PAN		98.3	60.5		<u> </u>
DISP. AGENT CORR (Cd)		Wt. i	Wt.f _	%	Loss	C.F.	
TIME AT MIN TEMP/K			RR'D Eff.Dr	R-Cd+M oth. CALC	d=K√L SIZE	% Finer	CORRECTED

TIME	Δt MIN	TEMP/K	ACTUAL HYDRO	R CORR'D	L Eff.Dpth.	R-Cd+M CALC	d=K√\ SIZE	% Finer	CORRECTED
	0								
	1/2								
	1								
	2								
	4								
	8								
	15						·		
	30	,							
	60								
	120								
	240				1				
	480								
	1440								

% FINER = $\left[\left(\frac{G_s}{G_{s-1}}\right) \times \frac{100}{Wi} \left((R-C_d+M)-I\right)\right] \times 1000$

APPENDIX D
FIELD PERMEABILITY TEST DATA

RISING HEAD PERMEABILITY TEST DATA

JMW109 PERMTE	ST.	JMW107 PERMTEST	EST	JMW101 PERMIEST	HTEST	
Diameter of r Length of zon Diameter of z Static water Number of rea	iser = 0.166 ie = 7 ione = 0.666 level = 9.91 idings = 14	Diameter of Length of zo Diameter of Static water Number of re	riser = 0.166 ne = 7 zone = 0.66 level = 10.13 adings = 18	Diameter o Length of : Diameter o Static wat Number of	f riser = 0.166 zone = 12 f zone = 0.333 . er level = 31.23 readings = 16	
Time (min.)	Excess Head (ft.)	Time (min.)	Excess Head (ft.)	Time (min.)	Excess Head (ft.)	1
ć	ò		c c	c	1 71	
0	2.04	ς.	1.98	o		
٠.	1.93	,	1.9	3.	1.34	
	1.87	1.5	1.86	-	1.34	
2	1.73	7	1.84	7	1.24	
l 67	1.59	· en	1.78	ന	1.20	
ব	1.48	- 4	1.75	7	1.17	
. 10	1.39	S	1,69	2	1.13	
9		9	1.65	9	1.13	
, ,	1.22	7	1.61	7	1.11	
. ∝	1.15	- &	1,57	8	1.09	
) O	1.08	6	1.53	6	1.08	
10	1.01	10	1.49	10	1.07	
15	0.74	15	1,14	15	1.02	
20	0.61	21	0.89	20	0.94	
		. 29	0.49	25	0.88	
= 5.19	10 5 cm/sec	30	0.47	30	0.84	
		70	0.17			
		20	0.13	K = 2.24	x 10 5 cm/sec	
		•				
		K = 4.20 x	: 10 ⁵ cm/sec			
				-		
C31	Diameter of r Length of zor Diameter of zor Diameter of zor Diameter of zor Static water Number of res (min.) 1 2 3 4 5 6 7 7 8 8 9 10 115 20 118 20	ST iser = level = dings = Hec Hec The Heckler The The Heckler The Heckler The The Heckler The The The The The The The The The The	Diametr = 0.166 Diametr = 7 Length = 0.666 Static Static Static Ss = 14 Number Ss = 14 Number Ss = 14 Number Ss = 14 Number Ss = 14 Number Ss = 14 Number Ss = 1.03 Ss = 14 Number Ss = 1.03 Ss = 1.53 Ss = 1.53 Ss = 1.53 Ss = 1.53 Ss = 1.53 Ss = 1.53 Ss = 1.53 Ss = 1.53 Ss = 1.03 Ss = 1.01 Ss = 1.	Excess Time Example 1.5 1.01	Diameter of riser = 0.166 Diameter of seek Diameter of cone = 7 Length of sone = 7 Length of sone = 7 Length of sone = 7 Length of sone = 7 Length of sone = 0.66 Diameter of static water level = 10.13 Static static water level = 10.13 Static static water level = 10.13 Static static water level = 10.13 Static static water level = 10.13 Static static water level = 10.13 Static static static water level = 10.18 Static s	Diameter of riser = 0.166 Diameter of riser = 1 1

APPENDIX G

DAMES AND MOORE - BORING AND MONITORING WELL DATA

M	AJOR DIVISI	ONS	GRAPH SYMBOL		TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL- SAND PIXTURES, LITTLE OR NO FINES
COARSE GRAINED -	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS,GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
SOILS	MORE THAN 50% OF COARSE FRAC-	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES
	TION RETAINED ON NO.4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS. GRAVEL-SAND- CLAY MIXTURES
	SAND AND	CLEAN SAID (LITTLE		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50%	SOILS SAIDA	OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN HO.	MORE THAN 50% OF COARSE FRAC-	SANDS WITH FINES		SM	SILTY SANDS, SAND-SILT MIXTURES
	TION PASSING NO. 4 SIEVE	OF FINES)		sc	CLAYEY SANDS, SAND-CLAY MIXTURES
,				ML	INORGANIC SILTS AND VEHY FINE SANDS, ROCK FLOUR, SILTY OR CLAYCY FINE SANDS OR CLAYCY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
				мн	INORGANIC SILIS, MICACLOUS OR Diatomaccous finc Sand Or Silty Soils
HORE THAN 50% OF MATERIAL IS SHALLER THAN NO. 210 SECVE SIZE	SILTS AND CLAYS	EIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH Plasticity, fat clays
				ОН	ORGANIC CLAYS OF MCDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	IGHLY ORGANIC SOI	LS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

MOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDENLINE SOIL CLASSIFICATIONS.

SOIL CLASSIFICATION CHART

UNIFIED SOIL CLASSIFICATION SYSTEM

Page 1 of 3

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

DRILLING METHOD: Hollow stem auger

SAMPLING METHOD: Split spoon

BORING NO.: SW-1 SURFACE ELEV: 436.0

DATE STARTED: 9/12/85

DATE FINISHED: 9/16/85

-					
SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
	40	SS	9 1 2 3	SM ML	Brown moist silt and fine to medium sand, little medium gravel grading to brownish-gray, silt, dry, some fine gravel and coarse sand, little coarse to medium gravel Hnu=0ppm
	103 .	SS	5 6		Gray dry silt, litle fine to medium gravel, little sand Hnu=0ppm
			7 8		boulder drilled at 8.0'
3	88	SS	9 10 11		grades to some sand, little fine to coarse gravel Hnu=Oppm
			12 13 14	ML	cobble at 15.0'
4	128		15 - 16 - 17		CODDIC GC 13.5
			18 19 20		•
5	77	SS			

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-1

SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
			20		
			21		
			22	·	boulder at 23.0'
			23		
			24		
6	188	SS	25		grades to little sand Anu=Oppm
			26		
			27		
	·		28	ML	
			29		
7	146	SS	30		Hnu=<1ppm
			31		
	· · · · · ·		32		
			33		
			34		
8	80/2"	SS	35		Hnu=<1ppm
			36		
			37		
			38		Brown with iron staining, fissile, weathered shale, dry to moist, wet zone from 40'1" to 40'2", some silt
	· .		39		from 40'1" to 40'2", some silt
9	"צ'עשנ	55	40		

Page 3 of 3

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-1

SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
10	100/5"	ss	40 41 42 43 44 45 46 47	WEATHERED ROCK	grades to gray, dry with iron staining
			48		Bedrock, spoon refusal, no sample Hnu=0ppm Boring terminated at a depth of 50.0 feet on 9/16/85

NOTE: Hnu readings are field detections of organic vapors given off by soil samples; measured with an Hnu photoionization meter set to a 9.8 span.

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

DRILLING METHOD: Hollow stem auger

SAMPLING METHOD: Split spoon

BORING NO.: SW-2 SURFACE ELEV: 433.5'

DATE STARTED: 9/18/85

DATE FINISHED: 9/19/85

SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
I	32	SS			Brown, mottled, dry to moist, fine sand and silt, little fine gravel Hnu=Oppm
			2	SP	
	100		4 5	SM	Brown, dry fine sand, little fine to
			6		Brown, dry fine sand, little fine to medium gravel Hnu=0ppm Brown, moist, fine sand, little medium to coarse sand and fine gravel, trace silt
			8	SP	Hnu=Øppm
3	92	SS	10		grades to dry, less gravel
			12		:lb libble fine to medium
			13		Gray, moist, silt, little fine to medium gravel, little fine sand Hnu=0ppm
4	75	SS	15	ML	·
			17	·	
			19	-	
		_	.]	

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-2

SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
	100/5"				no soil sample; cuttings are gray silt drilled boulder at 21 feet
			22 23 24		
5	80	ss_	25 26		grades to dry to slightly moist, little fine to medium sand, little fine to coarse gravel. Hnu=lØppm
			27	ML	11110-22 pp.m
6	20/1"	ss	29 30 31		no soil sample; cuttings are gray silt
			32		
7	100/1"	ss	34 35 36		Brown-gray with iron stains, weathered, slightly, metamorphosed shale finu=200ppm
		-	37	R O C K	
8	100/1/2"	SS	39 40		Hnu=8ppm

Page 3 of 3

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-2

SAMPLE NO.	BLOWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
			40		
			41		
			43		•
	-יש/ששו	SS	44		Spoon bounces; bedrock
			46	BEDROCK	
			47	£00;	
			49	K	Boring terminated at a depth of 50.0 feet on 9/19/85
	50/0"		50		on 9/19/85

NOTE: Hnu readings are field detections of organic vapors given off by soil samples; measured with an Hnu photoionozation meter set to a 9.8 span.

Page 1 of 3

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-3 SURFACE ELEV: 432.6'

DRILLING METHOD: Hollow stem auger

SAMPLING METHOD: Split sploon

DATE STARTED: 9/24/85 DATE FINISHED: 9/26/85

•		_	•		
SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
1	46	SS	Ø		Gray-brown, dry to slightly moist, mottled fine sand, some fine to medium gravel, little silt
				1	Hnu=0ppm
			2		boulder at 3.0'
			3	l	
			4		
2	31	SS	5		grades to mottled, tan-light brown, _ moist
			6		Hnu=Øppm
			7	SM	boulder at 8.0'
		ļ	8		
			9	1	
3	74	SS	10	1	Hnu=Oppm
			II	İ	boulder at 12.0'
		\ 	12		bounder at 22.0
	<u> </u>		13	1	
			14	1	
4	52	SS	15	·	- which have moist fine sand some
		-	16	1	Tan to light brown, moist, fine sand, some fine to coarse gravel, trace silt Hnu=0ppm
		·	17	-	Hun=abbw
			18	SP	
		.	19		
5	86	SS	20	SM	Yellow-tan, dry to slightly moist, fine
1	1 00		.	.	

Page 2 of 3

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-3

SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
			20 -		sand and silt, little fine to medium gravel
			21	511	grades to brown, dry, no gravel
			22		grades to brown, dry, no gravel grades to gray slightly moist Gray, slightly moist silt, some fine to medium gravel, some fine sand Hnu=0ppm
			23		Hnu=ppm
			24		
6	50/6"	รร	25		·
			26		
			27		
			28		
			29		cobble at 30.0'
7	50/3"	SS	30		grades to dry, little fine to coarse
			31	ML	gravel Hnu=0ppm
			32		
			33		
			34	<u> </u>	
8	79/1/2"	SS	35		grades to no gravel Hnu=Øppm
			36	l	Tall of Fran
			37		
			38		
			39		grades to light gray silt and gravel
	50/1/2"		40		J

Page 3 of 3

DAMES & MOORE BORING LOG

CLIENT: STEWART AIR NATIONAL GUARD BASE LOCATION: NEWBURGH, NY

BORING NO.: SW-3

SAMPLE NO.	BLCWS/FT	SAMPLE TYPE	DEPTH IN FT.	SOIL GRAPH	MATERIAL DESCRIPTION
			40		Hnu=0ppm
			41	ML	
			42		Weathered rock Hnu=0ppm
			44		drilled easy from 44 1/2 to 45 feet Shale_bedrock
9	70/1"	SS	45		Shale bedrock Hnu=0ppm
			47		·
			48		
			49 5Ø		Boring terminated at a depth of 49.5 feet on 9/26/85

NOTE: Hnu readings are field detections of organic vapors given off by soil samples; meadured with an Hnu photoionozation meter set to a 9.8 span.

WELL SCHEMATIC SW-1

DAMES 8 MOORE

WELL SCHEMATIC SW-3

APPENDIX B FIELD CHANGE REQUESTS

	nange No! ! of!
3. PROJECT STEWART ANG BASE - SITE 2 4. PROJECT NUMBER 5. APPLICABLE DOCUMENT	_
6. DESCRIPTION OF CHANGE:	
GROUNDWATER MONITORING WELL MW-13 WAS IN AND SAMPLED IN ADDITION TO PROPOSED MONITORIN	STALLED
7. REASON FOR CHANGE:	
AS MW-02 AND MW-03 WERE NOT INSTALLED, ADDED TO FACILITATE SAMPLING AND AVALYSIS GROUND WATER	MW-13 WAS
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT: MW-13	
10. REQUESTED BY: Michael Plan Field/Project Manager	7/10/96 Date
11. FINAL DISPOSITION:	
12. APPROVAL:	
NGB Project Manager	Date

1. Field Cha 2. Page <u>/</u>	nge No of'
3. PROJECT STEWART ANG BASE - SITE 2 4. PROJECT NUMBER 5. APPLICABLE DOCUMENT	
6. DESCRIPTION OF CHANGE: PROPOSED GROUND WATER MONITORING WELLS MANY TACKED	1W-02 AND
7. REASON FOR CHANGE: TMOUND ASSAY SCREENING OF SOILS COLLECTED FRO LOCATIONS INDICATED THE PRECEDED OF PESTICIDES. ANG SITE INVESTIGATION PROTOCOL, THEY COULD NOT INSTALLED 8. RECOMMENDED DISPOSITION:	AS PER
9. PRESENT & COMPLETED WORK IMPACT:	
MW-02 AND MW-03	
10. REQUESTED BY: Mihael Hund Field/Project Manager	7/10/96 Date
11. FINAL DISPOSITION:	
12. APPROVAL: NGB Project Manager	Date

	ange No3 of1
3. PROJECT STEWART ANG BASE - SITE 2	
4. PROJECT NUMBER	
5. APPLICABLE DOCUMENT	
6. DESCRIPTION OF CHANGE:	
THREE SOIL SAMPLES WERE COLLECTED FROM THE	5012
BORING FOR MW-OI AND SUBMITTED TO THE O	FFS:TR
LABORATORY FOR CHEMICAL ANALYSIS.	
7. REASON FOR CHANGE:	
THIS WAS PERFORMED TO ENSURE AN ADEQUATION OF SITE- SPECIFIC BACKGROUND DATA WERE OB	TAINED
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT:	
INCREASED THE NUMBER OF BACKGROUND SAMPLE	ES COLLECTED.
10. REQUESTED BY:	
mishael Flush Field/Project Manager	7/10/96 Date
Tiolar roject riminger	
11. FINAL DISPOSITION:	
12. APPROVAL:	
NGB Project Manager	Date

	1. Field Change No
3. PROJECT STEWART ANG BASE - SITE 2 4. PROJECT NUMBER 5. APPLICABLE DOCUMENT	_
6. DESCRIPTION OF CHANGE:	
A GROUND PENETRATING RADAR SURVEY WAS P. TEST PIT WAS EXCHVATED TO CONFIRM TH FORMER PESTICIDE PIT LOCATION	E LOCATION OF THE
7. REASON FOR CHANGE:	
THE EM SURVEY WAS FOUND TO PROVIDE RESULTS AS TO THE LOCATION OF THE B	URIED "I" BEAMS
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT:	·
ACHIEVED CONFIRMATION OF PIT LOCATION; CONFIRMED APPROPRIATENESS OF SOIL B	THERE FORE ORING LOCATIONS
·	
10. REQUESTED BY: 9mhal Olen Field/Project Manager	7/10/96 Date
11. FINAL DISPOSITION:	· .
12. APPROVAL:	
NGB Project Manager	Date

1. F 2. P	rield Change No. <u>5</u> Page/_ of _1
3. PROJECT STEWART ANG BASE - S.TE 2	
4. PROJECT NUMBER	
5. APPLICABLE DOCUMENT	
6. DESCRIPTION OF CHANGE:	
GLASSWARE FOR COLLECTION OF SOIL SAMPLES	CHANGED TO:
1-202 1/105 MOUTH GLASS JAR FOR V	10Cs
1-207. WIDE MOUTH GLASS JAR FOR V 1-802. WIDE MOUTH GLASS JAR FOR S	VOC: PEST/PCB, TAL INORGANICS
1-202 GLASS JAR FOR T.O.C.	- WE BEING USED FOR
7. REASON FOR CHANGE:	ARE COLLECTION
REOVINED GLASCWARE FOR LAR TO PERFORM NYS	DEC CLP ANALYSES
LINERS NOT USED BECAUSE CORE BARREL SAM	PLER IS BEING UCED
DUE TO HARDNESS OF MATERIAL	
DUE TO HARANES! UF MATERIAL	
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT:	
ALL SOIL SAMPLES	
10 PROVINCE DV	
10. REQUESTED BY:	1 -
Field/Project Manager	10/18/95 Date
11. FINAL DISPOSITION:	
12. APPROVAL:	
NGB Project Manager	Date

1. Field Change No. 6

2. Page	_ of/
3. PROJECT STEWART ANG BASE - SITE 2 4. PROJECT NUMBER 5. APPLICABLE DOCUMENT	
6. DESCRIPTION OF CHANGE:	
GROUND WATER MONITORING WELLS WILL BE CON AS 2" DIAMETER WELLS INSTEAD OF 4" WELLS	USTRUCTED
T DELGOVEOR CHANCE.	
7. REASON FOR CHANGE:	
WELLS TO BE INSTALLED WILL BE CONSISTENT EXISTING WELLS	W.17H ·
·	
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT:	
ALL GROUND WATER MONITORING WELLS	
•	
10. REQUESTED BY:	
-	- Lielar
michael Blend	10/18/95 Date
Field/Project Manager	Date
11. FINAL DISPOSITION:	
12. APPROVAL:	
NGB Project Manager	Date

1. F 2. F	Field Change No Page1 of
3. PROJECT STEWART ANG BACE - SITE 2 4. PROJECT NUMBER 5. APPLICABLE DOCUMENT	
6. DESCRIPTION OF CHANGE:	
DURING BOREHOLE ABANDONMENT OF SOIL BORING WEATHERED SHALE, SAND WILL BE PLACED IN TAND ABOVE THE WEATHERED SHALE ZONE AND THE TO BE GROUND TO WITHIN APPROX. 1 FT OF GROUND	HE BOREHOLF WITHIN
7. REASON FOR CHANGE:	
THIS IS DONE TO AVOID SIGNIFICANTLY ALTERING WATER BY ADDING BENTONITE GROUT IMMEDIA. OF WELLS TO BE INSTALLED AND SAMPLED.	TELY UPGRADIENT
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT:	
SB-01; SB-06, SB-07	
	-
10. REQUESTED BY:	
Field/Project Manager	10/18/95 Date
11. FINAL DISPOSITION:	
12. APPROVAL:	
NGB Project Manager	Date

	1. Field Change No. <u>8</u> 2. Page of
3. PROJECT STEWART ANG BASE - SITE 2 4. PROJECT NUMBER 5. APPLICABLE DOCUMENT	
6. DESCRIPTION OF CHANGE:	
DECONTAMINATION PROCEDURE CHANGED TO THE O ALCONOR RINSE; D TAP RINSE; B RINSE STAINLESC STEEL, 170 HNO, FOR CARBON STE RINSE; B AIR DRY; D DI WHTER RINSE; B WR	FULLOWING W/ 10 90 HNO3 FOR EL : @ TAP RINGE & METHANOL 4P IN FOIL
7. REASON FOR CHANGE:	
DECONTAMINATION PROCEDURE ALTERED TO PEGION TO DECONTAMINATION PROCEDU	FOLLOW EPA'S
8. RECOMMENDED DISPOSITION:	
9. PRESENT & COMPLETED WORK IMPACT:	
ALL SAMPLING	
10. REQUESTED BY:	
Michael Plud Field/Project Manager	10/18/95 Date
11. FINAL DISPOSITION:	
12. APPROVAL:	
NGB Project Manager	Date

APPENDIX C INVESTIGATION DERIVED WASTE

ANALYTICAL REPORT

ANEPTEK CORPORATION 209 WEST CENTRAL ST. NATICK MA 01760

Report Date:

06-JAN-96

Project:

STEWART ANG SITE 2

<u>Lab Number:</u>

156140

Sample Number(s): 156140-01

to

156140-04

Ronala A. Bayer Laboratory Director

Inorganics Analysis Data Sheet Form I - IN

Client Name: ANEPTEK

Project Name:

STEWART ANG SITE 2

ETL Sample Number: 156140-01

Client I.D.: IDW-01-120695

Date Collected: 06-DEC-95

Matrix:

3 Soil/Sldg

Date Received: 07-DEC-95

Comments:

Analysis	Result	Units	Method	Analyzed
Chromium	0.33 U 0.37 0.03 U 0.03 U 0.33 U 0.2 U 83.2 0.33 U 0.03 U	MG/L MG/L MG/L MG/L UG/L % MG/L MG/L	7470	02-JAN-96

Volatile Organics Analysis Data Sheet Form I VOA TCLP-8240

Client ID: IDW-01-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-01

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted:

Project Name: STEWART ANG SITE 2

Date Analyzed: 21-DEC-95

% Solid: 83.2

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: TCLP-8240

Sample Wt/Vol: 5ml

Lab File Id: >W1719

Level: LOW

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/1	ug/l	Qualifier
71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4 79-01-6	Benzene 2-Butanone Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene	10 10 10 10 10 10 10 10		U
75-01-4	Vinyl Chloride	10		Ŭ

Semi-Volatile Organics Analysis Data Sheet Form I SV TCLP-8270

Client ID: IDW-01-120695

Date Collected: 06-DEC-95

ETL Sample Number:

156140-01

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 21-DEC-95

% Solid: 83.2

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 1000ml

Lab File Id: E5836.D

Level: LOW

			Detection Limit	· Conc.	Data
CAS NO.	Compound	ug/1	ug/l	Qualifier	
	106-46-7	1,4-Dichlorobenzene	10		v u
	121-14-2	2,4-Dinitrotoluene	10		Ų
	118-74-1	Hexachlorobenzene Hexachlorobenzene	10		sa U
	87-68-3	Hexachlorobutadiene	10		U
	67-72-1	Hexachloroethane	10		Helin U Herri
	95 - 48 - 7	2-Methylphenol	10		U
	108-39-4	3-Methylphenol	10	황	_ំ ប
	106-44-5	4-Methylphenol	10		U
	98-95-3	Nitrobenzene	10		Ü
	87-86-5	Pentachlorophenol	50		U
	110-86-1	Pyridine	10		U
	95-95-4	2,4,5-Trichlorophenol	10		U
	88-06-2	2,4,6-Trichlorophenol	10	·.·	U

Herbicide Organics Analysis Data Sheet Form I Herb TCLP-8150

Client ID: IDW-01-120695

ETL Sample Number: 156140-01

Client Name: ANEPTEK

Project Name: STEWART ANG SITE 2

% Solid: 83.2

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 500ml

Level: LOW

Date Collected: 06-DEC-95

Date Received: 07-DEC-95

Date Extracted: 20-DEC-95

Date Analyzed: 30-DEC-95

Report Date: 06-JAN-96

•

Column: DB-5

Lab File Id: 36P2371P.D

CAS NO.	Compound	Detection Limit ug/l	Conc. ug/l	Data Qualifier	
94-75-7 93-72-1	2.4-D 2.4,5-TP (Silvex)	.5 .5		U U	

Pesticide/PCB Organics Analysis Data Sheet Form I PEST TCLP-8080

Client ID: IDW-01-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-01

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 29-DEC-95

% Solid: 83.2

Report Date: 06-JAN-96

Column: DB-5

Sample Wt/Vol: 1000ml

Matrix: 3 Soil/Sldg

Lab File Id: 36P2334P.D

Level: LOW

		Detection	Conc.	Data
CAS NO.	Compound	Limit ug/l	ug/1	Qualifier
58-89-9 57-74-9 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC(Lindane) Chlordane Endrin Heptachlor Heptachlor Epoxide Methoxychlor Toxaphene	.05 1 .1 .05 .05 .5		U U U U U U

Inorganics Analysis Data Sheet Form I - IN

Client Name: ANEPTEK

Project Name:

STEWART ANG SITE 2

ETL Sample Number: 156140-02

Matrix:

3 Soil/Sldg

Client I.D.: IDW-02-120695 Date Collected: 06-DEC-95

Date Received: 07-DEC-95

Comments:

Analysis	Analysis	Result	Units	Method	Analyzed
	Arsenic Barium Cadmium Chromium Lead Mercury Percent Solids Selenium Silver TCLP Extraction pH	0.33 U 0.39 0.03 U 0.03 U 0.33 U 0.2 U 78.0 0.33 U 0.03 U	MG/L MG/L MG/L MG/L UG/L % MG/L MG/L	6010 6010 6010 6010 6010 7470 160.3 6010 6010 1311 9045	02 - JAN - 96 02 - JAN - 96 02 - JAN - 96 02 - JAN - 96 02 - JAN - 96 22 - DEC - 95 07 - DEC - 95 02 - JAN - 96
	Remarks:				

Remarks:

Pesticide/PCB Organics Analysis Data Sheet Form I PEST TCLP-8080

Client ID: IDW-02-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-02

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

% Solid: 78.0

Date Analyzed: 29-DEC-95

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 1000ml

Lab File Id: 36P2335P.D

Level: LOW

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/1	ug/l	Qualifier
58-89-9 57-74-9 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC(Lindane) Chlordane Endrin Heptachlor Heptachlor Epoxide Methoxychlor Toxaphene	.05 1 .1 .05 .05 .5		U U U U U U

Volatile Organics Analysis Data Sheet Form I VOA TCLP-8240

Client ID: IDW-02-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-02

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted:

Project Name: STEWART ANG SITE 2

% Solid: 78.0

Date Analyzed: 20-DEC-95

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: TCLP-8240

Sample Wt/Vol: 5ml

Lab File Id: >W1711

Level: LOW

CAS NO.	Compound	Detection Limit ug/l	Conc. ug/l	Data Qualifier
71-43-2 78-93-3 56-23-5 108-90-7 67-66-3 107-06-2 75-35-4 127-18-4 79-01-6 75-01-4	Benzene 2-Butanone Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene Vinyl Chloride	10 10 10 10 10 10 10 10 10		U U U U U U U

Semi-Volatile Organics Analysis Data Sheet Form I SV TCLP-8270

Client ID: IDW-02-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-02

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 21-DEC-95

% Solid: 78.0

Report Date: 06-JAN-96

Column: DB-5

Sample Wt/Vol: 1000ml

Matrix: 3 Soil/Sldg

Lab File Id: E5837.D

Level: LOW

		Detection	Conc.	Data
CAS NO.	Compound	Limit ug/l	ug/l	Qualifier
106-46-7	1,4-Dichlorobenzene	10		Ų
121 - 14 - 2	2,4-Dinitrotoluene	10		U
118-74-1	Hexachlorobenzene	. 10		U
87 - 68 - 3	Hexachlorobutadiene	10		Ü
67-72-1	Hexachloroethane	10	rer	<u>U</u> :
95-48-7	2-Methylphenol	10		U
108-39-4	3-Methylphenol	10		
106-44-5	4-Methylphenol	10	2	J
98-95-3	Nitrobenzene	10		u, U
87 - 86 - 5	Pentachlorophenol	50		U
110-86-1	Pyridine	10		U
95-95-4	2.4.5-Trichlorophenol	10		U
88-06-2	2,4,6-Trichlorophenol	10		U ···

Herbicide Organics Analysis Data Sheet Form I Herb TCLP-8150

Client ID: IDW-02-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-02

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 20-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 30-DEC-95

% Solid: 78.0

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 500ml

Level: LOW

Lab File Id: 36P23721P.D

		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/1	ug/l	Qualifier	
94 - 75 - 7 93 - 72 - 1	2,4-D 2,4,5-TP (Silvex)	.5 .5		V U	

$\begin{array}{c} \hbox{Inorganics Analysis Data Sheet} \\ \hbox{Form I - IN} \end{array}$

Client Name: ANEPTEK

Project Name:

STEWART ANG SITE 2

ETL Sample Number: 156140-03

Client I.D.: IDW-03-120695

Matrix:

3 Soil/Sldg

Date Collected: 06-DEC-95

Date Received: 07-DEC-95

Comments:

Analysis	Result	Units	Method	Analyzed
Arsenic Barium Cadmium Chromium Lead Mercury Percent Solids Selenium Silver TCLP Extraction pH	0.33 U 0.34 0.03 U 0.03 U 0.33 U 0.2 U 90.0 0.33 U 0.23 U	MG/L MG/L MG/L MG/L MG/L UG/L % MG/L MG/L	6010 6010 6010 6010 6010 7470 160.3 6010 6010 1311 9045	02-JAN-96 02-JAN-96 02-JAN-96 02-JAN-96 02-JAN-96 22-DEC-95 07-DEC-95 02-JAN-96 02-JAN-96 20-DEC-95 11-DEC-95

Remarks:

Semi-Volatile Organics Analysis Data Sheet Form I SV . TCLP-8270

Column: DB-5

Client ID: IDW-03-120695 Date Collected: 06-DEC-95

ETL Sample Number: 156140-03 Date Received: 07-DEC-95

Client Name: ANEPTEK Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2 Date Analyzed: 21-DEC-95

% Solid: 90.0 Report Date: 06-JAN-96

Sample Wt/Vol: 1000ml Lab File Id: E5838.D

Matrix: 3 Soil/Sldg

Dilution Factor: 1.00 Level: LOW

 		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/l	ug/l	Qualifier
106-46-7	1.4-Dichlorobenzene	10		U .
121-14-2	2.4-Dinitrotoluene	10		Ū
118-74-1	Hexachlorobenzene	10		Ū
87 - 68 - 3	Hexachlorobutadiene	10		Ü
67-72-1	Hexachloroethane	10		Ü
95 - 48 - 7	2-Methylphenol	10		Ū
108-39-4	3-Methylphenol	10		· U
106-44-5	4-Methylphenol	10		Ü
98-95-3	Nitrobenzene	10		· U
87-86-5	Pentachlorophenol	50		U
110-86-1	Pyridine	10		U
95 - 95 - 4	2,4,5-Trichlorophenol	10		U
88-06-2	2,4,6-Trichlorophenol	10		U

Herbicide Organics Analysis Data Sheet Form I Herb TCLP-8150

Client ID: IDW-03-120695

ETL Sample Number: 156140-03

Client Name: ANEPTEK

Project Name: STEWART ANG SITE 2

% Solid: 90.0

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 500ml

Level: LOW

Date Collected: 06-DEC-95

Date Received: 07-DEC-95

Date Extracted: 20-DEC-95

Date Analyzed: 30-DEC-95

Report Date: 06-JAN-96

Column: DB-5

Lab File Id: 36P23731P.D

CAS NO.	Compound	Detection Limit ug/l	Conc. ug/l	Data Qualifier
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	.5 .5	Larry W	· U U

Pesticide/PCB Organics Analysis Data Sheet Form I PEST TCLP-8080

Client ID: IDW-03-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-03

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 29-DEC-95

% Solid: 90.0

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg Sample Wt/Vol: 1000ml

Column: DB-5

Lab File Id: 36P2336P.D

Level: LOW

		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/1	ug/l	Qualifier)
58-89-9 57-74-9 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC(Lindane) Chlordane Endrin Heptachlor Heptachlor Epoxide Methoxychlor Toxaphene	.05 1 .1 .05 .05 .5		U U U U U U	1

Volatile Organics Analysis Data Sheet Form I VOA TCLP-8240

Client ID: IDW-03-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-03

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted:

Project Name: STEWART ANG SITE 2

Date Analyzed: 20-DEC-95

% Solid: 90.0

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 5ml

Column: TCLP-8240

Lab File Id: >W1712

Level: LOW

	Detection	Conc.	Data
Compound	ug/1	ug/l	Qualifier
Benzene 2-Butanone Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene	10 10 10 10 10 10 10 10		U U U U U U U
	Benzene 2-Butanone Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene	Compound Limit ug/l Benzene 10 2-Butanone 10 Carbon Tetrachloride 10 Chlorobenzene 10 Chloroform 10 1,2-Dichloroethane 10 1,1-Dichloroethene 10 Tetrachloroethene 10 Trichloroethene 10 Trichloroethene 10	Limit ug/l ug/l ug/l ug/l ug/

Inorganics Analysis Data Sheet Form I - IN

Client Name: ANEPTEK

Project Name:

STEWART ANG SITE 2

ETL Sample Number: 156140-04

Client I.D.: IDW-04-120695

Matrix:

3 Soil/Sldg

Date Collected: 06-DEC-95

Date Received: 07-DEC-95

Comments:

Analysis	Result	Units	Method	Analyzed
Arsenic Barium Cadmium Chromium Lead Mercury Percent Solids Selenium Silver TCLP Extraction pH	0.33 U 0.20 0.03 U 0.03 U 0.33 U 0.2 U 80.5 0.33 U 0.03 U	MG/L MG/L MG/L MG/L MG/L UG/L % MG/L MG/L	6010 6010 6010 6010 6010 7470 160.3 6010 6010 1311	02 - JAN - 96 02 - JAN - 96 02 - JAN - 96 02 - JAN - 96 02 - JAN - 96 22 - DEC - 95 07 - DEC - 95 02 - JAN - 96 02 - JAN - 96 20 - DEC - 95 11 - DEC - 95

Remarks:

EnviroTest horatories Inc.

Semi-Volatile Organics Analysis Data Sheet Form I SV TCLP-8270

Client ID: IDW-04-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-04

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 21-DEC-95

% Solid: 80.5

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 1000ml

Lab File Id: E5839.D

Level: LOW

 		Detection	Conc.	Data
CAS NO.	Compound	Limit ug/l	ug/l	Qualifier
106-46-7	1.4-Dichlorobenzene	10		, * U -
121 - 14 - 2	2,4-Dinitrotoluene	10		U
118-74-1	Hexachlorobenzene	10		· U
87 - 68 - 3	Hexachlorobutadiene	10		U
67-72-1	Hexachloroethane	10		U
95-48-7	2-Methylphenol	10		U
108-39-4	3-Methylphenol	10		U
106-44-5	4-Methylphenol	10		U
98-95-3	Nitrobenzene	10		U
87-86-5	Pentachlorophenol	50		U
110-86-1	Pyridine	10		U
95-95-4	2,4,5-Trichlorophenol	10		U
88-06-2	2,4,6-Trichlorophenol	10		. U '

Herbicide Organics Analysis Data Sheet Form I Herb TCLP-8150

Client ID: IDW-04-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-04

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 20-DEC-95

Project Name: STEWART ANG SITE 2

Date Analyzed: 30-DEC-95

% Solid: 80.5

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 500ml

Lab File Id: 36P23741P.D

Level: LOW

CAS NO.	Compound	Detection Limit ug/l	Conc. ug/l	Data Qualifier	
94 - 75 - 7 93 - 72 - 1	2,4-D 2,4,5-TP (Silvex)	.5 .5		U U	

Pesticide/PCB Organics Analysis Data Sheet Form I PEST TCLP-8080

Client ID: IDW-04-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-04

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted: 19-DEC-95

Project Name: STEWART ANG SITE 2

% Solid: 80.5

Date Analyzed: 29-DEC-95 Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 1000ml

Lab File Id: 36P2337P.D

Level: LOW

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/l	ug/l	Qualifier
58-89-9 57-74-9	gamma-BHC(Lindane) Chlordane	.05		. U II
72-20-8 76-44-8	Endrin Heptachlor	.1 .05		Ŭ U
1024-57-3 72-43-5	Heptachlor Epoxide Methoxychlor	.05		Ŭ U
8001-35-2	Toxaphene	5		Ŭ

Volatile Organics Analysis Data Sheet Form I VOA TCLP-8240

Client ID: IDW-04-120695

Date Collected: 06-DEC-95

ETL Sample Number: 156140-04

Date Received: 07-DEC-95

Client Name: ANEPTEK

Date Extracted:

Project Name: STEWART ANG SITE 2

Date Analyzed: 20-DEC-95

% Solid: 80.5

Report Date: 06-JAN-96

Matrix: 3 Soil/Sldg

Column: TCLP-8240

Sample Wt/Vol: 5ml

Lab File Id: >W1713

Level: LOW

		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/l	ug/l	Qualifier	
71-43-2	Benzene	10		II.	
78-93-3	2-Butanone	10		Ŭ	
56-23-5	Carbon Tetrachloride	10		Ŭ	
108-90-7	Chlorobenzene	10		Ŭ	
67-66-3	Chloroform	10		Ū	
107-06-2	1,2-Dichloroethane	10		Ü	
75 - 35 <i>-</i> 4	1,1-Dichloroethene	10		Ū	
127 - 18 - 4	Tetrachloroethene	10		Ū	
79-01-6	Trichloroethene	10		Ŭ	
75 - 01 - 4	Vinyl Chloride	10		Ü	

APPENDIX D BORING LOGS

	ANIE	DTCV		Clien	t/Project/Cont	ract No.:		T_	
	ANE	PTEK		ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04			Page 1 of 3		
CORPORATION				Sampler Type/Size:			Boring/Well No.:		
	Boring	Log		2' S	plit Spoon/ 5	' NX Core Barre	I	MW-01	
				e/Model:		Date/Time Started	Date/Time	Finished	
			CME Tra	ck Ri	a		10/16/95 952	10/20/95	930
Logged By			Drilling M		_		Screening Device (Ty		
J. Donov			HSA / N				HNU PID 10.2 eV		
	survey coor	d):	Ground. E			Bedrock Depth:	Water Table Depth:	Borehole D	iameter:
		-,-			43.0 ft.	31.6 ft.	NA .	8"(0-16')/4'	(16-43')
Depth	Sample	Sample	Blows/	Rec.		•		USCS	FID
(ft)	Interval (ft)	Number	6-in.	(in.)		Lithologic Des	cription	Class.	(ppm)
	0-2		4,10	12	0-2" Brown top	osoil		GM	ф
1	1		15,33			nse SILT, some grav	vel .		·
-					Not enough rec	covery for a sample			
2	1								
	2-4	MW-01-04	7,25	13	Grey v. dense S	SILT, trace clay, trac	ce gravel	ML	ф
3			34,41						
								į	
4									
	4-6	MW-01-06	25,39	24	Grey v. dense S	SILT, some fc. grav	vel, trace clay	ML	ф
5			45,50/4"						
_	1								
6	6-8		21,28	10	Grover dones	SILT, little clay, trace	o f o gravel	ML	ф
7 —	0-0		30,48	10	Grey v. dense s	SILT, little clay, trace	e 1c. graver	IVIL	Ψ
<i>'</i>	1		30,40						
8									
	8-10	MW-01-10	16,23	22	Grey v. dense S	SILT, little clay, trace	e fc. gravel	ML	ф
9	1		32,41						
10									
	10-11.2		19,35	10	-	SILT, little clay, trace	e fc. gravel	ML	ф
¹¹			52/2"		Refusal at 11.2				
					Roller Bit to 13				
¹² —	-								
13	1					•			
-	13-15		10,22	15	Grey v. dense S	SILT, little clay, trace	e fc. gravel	ML	ф
14	1		33,31			••	-		•
]								
15									
					Roller Bit to 16	•			
16				·			•	!	
	12.22	1414 04 17	Min./ ft			16' with Series 6 B			1
¹⁷ —	16-18	MW-01-18	5 5	24"	Grey very stiff (lodgement till)	CLAY and fc. grave	ei, some siit	CL	φ
			ů						
Granul	Penetratio ar Soils	n Resistance Cohesive	Soils		roportions : 0 - 10%	Notes and Commer	nts:		
Blows/ft	Density	Blows/ft	Density	1	10 - 20%		water during drilling.		
<4	V. Loose	<2	V. Soft		: 20 - 35%				
l - 10 0 - 30	Loose m. Dense	2 - 4 4 - 8	Soft m. Stiff		35 - 50% ater Content	-			
30 - 30 30 - 50	Dense	8 - 15	Stiff		D - Dry	1			
>50	V. Dense	15 - 30	V. Stiff		M - Moist				
		>50	Hard	<u> </u>	W - Wet				

	ANE	PTEK			/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04	Page 2 of 3		
	CORPOR	RATION		Samp	oler Type/Size:	Boring/We	ll No.:	
	Boring			5' N	X Core Barrel	MW-01		
Depth (ft)	Sample Interval	Sample Number	Minutes/ 12 in	Rec. (in.)	Lithologic Description	USCS Class.	PID/FID (ppm)	
18								
19	20-22	MW-01-22	3 4 4 5 4	54	Grey very stiff CLAY and fc. gravel, some silt (lodgement till)	CL	ф	
21	25-27	MW-01-27	3	60	Grey very stiff CLAY and fc. gravel, some silt	CL	ф	
24			5 4 4 4		(lodgement till)			
26 27 28						,		
30 31 32	28-33	MW-01-31.6	3 4 4 7 7	60	28'-31.6' Grey very stiff CLAY and fc. gravel, some silt (lodgement till) 31.6'-33' Dark grey weathered shale, RQD = 0	CL	ф	
33	33-38		4 3 4		Dark grey fractured shale, no iron staining, no fines RQD = 0			
35 36 37			5 3					
38								

Notes and Comments:

Client/Project/Contract No.: Page 1 of 2 ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04

4	CORPO	RATION		Sam	pler Type/Size:			Boring/We	ll No.:		
	Boring			2' S	plit Spoon/ 5'	NX Core Barre	l	MW-02			
Drilling Co		5	Drilling Ri	<u> </u>	• •		Date/Time Started	Date/Time	Finished		
	st Thomas		CME Tra	ck Ri	a		10/19/95 1650	10/20/95	1230		
ogged By			Drilling M				Screening Device (Ty		odel):		
VI. Plumb)		HSA / N	X Co	re Barrel		HNU PID 10.2 eV	0.2 eV			
	survey coord	i):	Ground. E			Bedrock Depth:	Water Table Depth:	Borehole D	iameter:		
545946.	ON 56874	0.4E	432.9			30.2 ft.	NA	8.25"(0-18')/4"(18-31.5			
Depth	Sample	Sample	Blows/	Rec.				USCS	FID (ppm)		
(ft)	Interval (ft)	Number	6-in.	(in.)		Lithologic Description Class					
	0-2		12,16	3	Brown topsoil				ф		
1 _	1		14,27								
2											
	2-4	MW-02-04	i '	6	Light brown v. s	stiff clayey SILT, tra	ace c. gravel	ML	ф		
3	4		7,7						-		
_	-{										
4 _						1000		-			
5	-										
~									:		
6 —											
_	1			٠							
7											
8											
	8-10	MW-02-10		12	_		ey SILT, trace c. gravel	ML	ф		
9	4		41,65			RAVEL, some light	brown silty sand	GM GW			
–	-				8'9"-9.0' Grey	Tractured rock		GW			
10	-			-	HSA to 13'						
	-		:		11077 10 10						
·· –	1										
12	1										
	1										
13	J						. 4.				
	13-15	MW-02-15	16,31	24		CLAY, rolls to 1/8'	n	ML	bottom 1"		
14	_	1	30,24		13'5"-13'6" Co	•		GP	30 ppm		
	4						nottled with light brown	ML			
15	1	101/00/17	10.00	1		gravel (lodgement ti		SM	7-22 ppm		
. –	15-17	MW-02-17	10,30	111	Grey v. dense S	ILT, fm. sand (lod	gement ull)	SIVI	7-22 ppin		
¹⁶	-		28,25								
	-{										
·′ —				1					- ~		
	Panatration	Resistance	<u> </u>	<u> </u>	Proportions			1	<u> </u>		
Grant	lar Soils	Cohesiv	e Soils	Trace	e: 0 - 10%	Notes and Comme	nts:				
Blows/ft	Density	Blows/ft	Density		: 10 - 20%						
<4	V. Loose	<2	V. Soft	Some	e: 20 - 35%						

4 - 10 2 - 4 Soft And: 35 - 50% Loose m. Stiff Water Content 10 - 30 m. Dense 4 - 8 Stiff 30 - 50 8 - 15 D - Dry Dense >50 V. Dense 15 - 30 V. Stiff M - Moist >50 Hard W - Wet

	A NITT	DTCV		Client/Project/Contract No.:					
		PTEK		ANG	ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04 Page 2 of 2				
		RATION		Sam	pler Type/Size:	Boring/We	ll No.:		
	Boring	Log		5' N	X Core Barrel	MW-02			
Depth	Sample	Sample	Minutes/	Rec.	Listado do Docembrios	USCS	PID/FID		
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)		
18	-				Roller Bit to 18'				
-					Begin Coring at 18' with Step Bit	CL	0-5 ppm		
19	18-22	MW-02-22		57	Grey very stiff CLAY, fc. gravel, some silt, 1 cobble				
20	4		1.5		(lodgement till)				
			2 3						
21	1								
_									
22	22-27	MW-02-27	3	60	Grey very stiff CLAY, fc. gravel, some silt, 1 cobble	CL	4 ppm		
23	- 22-21	10100-02-27	5	"	(lodgement till)		+ ppm		
-	1		4						
24			4						
25			4						
	-								
26 —									
]								
27	07.01.51				071 001011 C	01	t		
28 —	27-31.5'		2 3	52	27'-30'2" Grey very stiff CLAY, fc. gravel, some silt, 1 cobble (lodgement till)	CL	ф		
			3		30'2"-31'6" Weathered shale with sand in vertical				
29]		4		fractures				
30	1	,	5/6"						
_	1								
31	1								
32					E.O.B 31.5'				
33	1								
]								
34									
35	-								
-									
36							•		
37 —									
´´ 									
38	1								
]								
39									
Notes and C	comments:								

Client/Project/Contract No.: ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/DO-04 Page 1 of 2 Sampler Type/Size: Boring/Well No.:

		•		Boring/Well No.:						
	Borin	g Log		2'	2' Split Spoon/ 5' NX Core Barrel MW-03					
Drilling C	Contractor:		Drilling	Rig Ma	ake/Model:		Date/Time Started	Date/Time	e Finished	
	ast Thoma	S	СМЕ Т	rack F	Rig		10/20/95 750	10/24/95		
Logged E	Ву:		Drilling				Screening Device (Typ	e. make. mo	1500	
M. Plum	nb/K.Kutaw	/ski	HSA /	NX C	ore Barrel		HNU PID 10.2 eV	o, mako, mo	ucij.	
Location	(survey cod	ord):	Ground		Total Depth	: Bedrock Depth:	Water Table Depth:	Daniel I	D: .	
545959	.3N 5687	79.4E		.7 ft.	35 ft.	32 ft.	NA	Borehole I		
Depth	Sample	Sample	Blows			02 11.	INA	8.25"(0-18		
(ft)	Interval (f	t) Number	6-in.	(in.))	Lithologic De	scription	USCS Class.	FID	
	0-2	MW-03-02	2 6,7	10	0.45 0			Class.	(ppm)	
1 —	⊣ ~′′	10100-03-02	7,12	'°		opsoil clayey silt with		ML	ф	
· —			/,12	ŀ	1"-18" Grey m. stiff clayey SILT, trace fm. gravel				I	
2 -	-	1								
_		 	 	-	HSA to 4'					
3	1	1		i	113A (0 4				Ī	
-		1		l				1	ľ	
4 -	7	1						1		
-	4-6	MW-03-06	3,13	5	Dense f e Cl	BAVEL				
5 —	1	1	18,13	ľ	Dense 1c. G	RAVEL, some orange-b	rown clayey silt	GM/GC	ф	
	7	1	10,13		l			ľ		
6	1				İ			l l		
		†		1-	HSA to 8'					
7	1		1		11071 10 0					
	1				1					
8	1	<u> </u>		1]					
			5,6	15	M. dense fc.	GRAVEL, some orange	e-brown clavey cilt	ML		
9	8-10		9,5	1		to grey-green clayey si		IVIL	ф	
			1			se great dayby di				
0								1 1		
_					HSA to 14'	· · · · · · · · · · · · · · · · · · ·		 		
1]							1		
	1]		
²	1							i i		
	4							1 1		
з —	4		ľ					1		
	1		ĺ							
4] [
_	14-16		6,14			tiff clayey SILT, some	fm. gravel	ML	ф	
5			26,16		(lodgement till)				•	
	!]		
⁶ —	10.10			$\vdash \vdash$			- 1			
, —	16-18		25,40			d clayey SILT, some f.	-m. gravel	ML	ф	
′ - -∤			34,48		(lodgement till)			j [
								1 1		
Granul	Penetration ar Soils		- 6-21	P	roportions			<u></u>		
Blows/ft	ar Soils Density	Cohesive Blows/ft	e Soils Density		0 - 10%	Notes and Comments	:			
4	V. Loose	<2	V. Soft		10 - 20% 20 - 35%				I	
- 10	Loose	2 - 4	Soft			Lost 35 gallons of wa	ter during drilling			
- 30	lm Donna I	1 o l	l 0			1 g=110110 01 Wa	to. Guring urming,			

RIMW03.XLS 7/31/96

10 - 30

30 - 50

>50

Dense

m. Dense

V. Dense

4 - 8

8 - 15

>50

15 - 30

Stiff

Hard

m. Stiff

V. Stiff

Water Content

D - Dry

M - Moist

W - Wet

ANEPTEK

CORPORATION **Boring Log**

Client/Project/Contract No.:

ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/DO-04

Sampler Type/Size:

Boring/Well No.:

Page 2 of 2

MW-03

5' NX	Core	Barrel
-------	------	--------

	Boring	Log		5' N	X Core Barrel	MW-03		
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID	
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)	
8	1					ML	ф	
	18-23	MW-03-22	1	21	Begin Coring at 18' with Step Bit		¥	
9	1		1.5		Light brown clayey SILT, some mc. gravel, trace f. sand			
	1	ŀ	1.5	i '	Color change to grey in bottom 1" with no f. sand	1		
o	7		5		Rolled to between 1/4" to 1/8" when water was added]		
	1		2.2	l	(lodgement till)			
1			ł					
						•		
.2							1	
			İ					
.3					Grey very stiff dense CLAY, some fm. gravel, some silt	CL	ф	
	23-28	MW-03-27	1	41		1		
24	_	1	3.3		(lodgement till) Rolls to 1/16" when wet			
	_		2	1	Holls to 1/10 when wet			
25	4		2.1				1	
	{		3.12		1		1	
²⁶ _	_		İ			1		
_	4			1				
27	_	ŀ		ı		į	1	
_			1					
²⁸ –		MW-03-32	4.11	39	Grey very stiff dense CLAY, some fm. gravel, some silt,	CL	ф	
_	28-32	10100-03-32	1.3		trace f. sand (lodgement till)			
29 _			3		Rolls to 1/16" when wet	1		
20	_		2		Harder than last interval		1	
30 _			3			ł	1	
- 31	-			1		1		
· -	-			1				
32								
³²	32-35		2	36	Weathered shale - dark-blue grey, fine grained, iron staining			
33	-	1	4	1	between fractures, bedding planes dipping approximately 45°	' 1	•	
_		1	4.5]	fractures along bedding planes, no secondary mineralization,		1	
34		1			can be scratched easily with knife		1	
-			1	1			1	
35					RQD = 0			
-				1	50 D 05 t			
36					E.O.B 35 ft			
_					1	l		
37	_	ł	1	1	1			
							ļ	
38	_		1	-				
39			1					
i		1		- 1	Į.	l l	I _	

Notes and Comments:

Granu	Granular Soils		ve Soils	Trace: 0 - 10%	Notes and Co
Blows/ft	Density	Blows/ft		Little: 10 - 20%	
<4	V. Loose	<2	V. Soft	Some: 20 - 35%	İ
4 - 10	Loose	2 - 4	Soft	And: 35 - 50%	
10 - 30	m. Dense	4 - 8	m. Stiff	Water Content	
30 - 50	Dense	8 - 15	Stiff	D - Dry	7
>50	V. Dense	15 - 30	V. Stiff	M - Moist	
		>50	Hard	W - Wet	

Notes and Comments:

			7	Client/Project/Contract No.:					
	ANE	PIEK	.	ANG	Stewart ANGB Site 1/ DAHA-90-93-D-0003/D0-08	Page 2	of 4		
	CORPOR	RATION		Samp	oler Type/Size:	Boring/We	ll No.:		
	Boring	Log		2" S	plit Spoon/ 5' NX Core Barrel	MW-04			
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID		
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)		
	17.5-22.5		3	42	Grey very stiff CLAY, some silt, some fc. gravel, trace f.	CL	ф		
18			3		sand, 1 cobbles (lodgement till)				
			3		Rolls to 1/32" when water is added				
19			3 5						
20			3						
21									
22									
23 —	22.5-27.5	,	2	56.5	Grey very stiff CLAY, some silt, some fc. gravel, trace f.	CL	ф		
			2		sand, 2 cobbles (lodgement till)		,		
24			1		Rolls to 1/32" when water is added	:			
			3.5						
25			3.5				;		
26									
27									
	07.5.00.5		4.5	00	0 277 01 AV				
28	27.5-32.5		1.5 2	33	Grey very stiff CLAY, some silt, some fc. gravel, trace f. sand, 2 cobbles (lodgement till)	CL	ф		
29			4		Rolls to 1/32" when water is added				
			4						
30			3						
31 —									
3 1									
32									
					Changed to Series 6 Bit at 32.5'				
33	32.5-34			11	Grey very stiff CLAY, some silt, some fc. gravel, trace f.	CL	ф		
34					sand, 1 cobble, washed stones, rolls to 1/32" when water is added (lodgement till)				
	34-36		4		Eight medium size pieces of fined grained grey gravel				
35			5						
36	26.40				Construction and the Construct				
37	36-40		3 3		Grey very stiff TILL consisting mainly of CLAY, some silt, some fc. gravel, trace f. sand, 2 cobbles	CL	ф		
-			4		Rolls to 1/32" when water is added				
38	İ		2.5						
] [
39		ľ	Í						
Notes and Co	omments:								

ANG/Stewart ANGB Site 1/ DAHA-90-93-D-0003/DO-04

Page 3 of 4

	, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,							
	CORPOR	RATION		Samp	ler Type/Size:	Boring/Well No.:		
	Boring	Log		5' N	X Core Barrel	MW-04		
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID	
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)	
40								
					Roller Bit to 41'			
41								
	41-43.5		7	5	1" Grey very stiff CLAY, some silt, some fc. gravel, trace f.	CL		
42			8		sand, 2 cobbles (lodgement till) Rolls to 1/32" when water is added			
42			6"/4.5		Gravel jammed in barrel			
43					Graver jammed in barrer			
44					Röller Bit to 45'			
45								
. —	45-47		7.5	18	Grey weathered shale, 45° bedding planes, fractures along			
46			8		bedding planes, iron staining in fractures, no secondary mineralization, RQD = 0			
47					mmoralization, NGD – V			
· —	47-52		11		Grey weathered shale, 45° bedding planes, fractures along			
48			9		bedding planes, iron staining in fractures, no secondary			
			10		mineralization, RQD = 0			
49			9					
			8					
50								
51								
						·		
52								
	52-57			50	52-56' Grey weathered fractured shale, bedding not evident, iron staining in fractures, pieces 5-15 mm in size, no secondary			
53					mineralization, RQD = 0			
54					56-57' Fractures along bedding planes can be identified			
· —								
55								
56								
57 —								
·	57-62		4	44	57'-61' Grey weathered shale, 45° bedding planes, fractures	·		
58]		7		along bedding planes, iron staining in fractures, some vertical			
			6		fractures, no secondary mineralization			
59			8		61-62' No iron staining between fractures			
			10		RQD = 0			
60	1							
 61	1							
	1	1						
62								
	1							
63	<u></u>		<u> </u>	<u> </u>		.L	<u> </u>	

ANEPTEK

CORPORATION Boring Log

Client/Project/Contract No.:

ANG/Stewart ANGB Site 1/ DAHA-90-93-D-0003/DO-04

Page 4 of 4
Boring/Well No.:

Sampler Type/Size:

5' NX Core Barrel

MW-04

	Doming	g Log 5' NX Core Barrel MW-04					
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)
3	62-67		12	44	Dark grey highly weathered shale, iron staining in fractures,		
			12		little to trace amounts of grey till in sample, no secondary		
4			7		mineralization, bedding not evident		l
			8		RQD = 0		
5			5				
6							
_							
57	~~~~						
	67-72		4		Dark grey weathered shale, white calcite veins in rock		
88			6		RQD= 11%		
. —			5				
⁵⁹ —			14 5				
70			ິ				
~ -						1	
′1							
· —							
'2							
					Roller Bit to 72.5'		
′3 —					E.O.B 72.5 ft.		
				ĺ			
74							
75		•					
_							
_							
-							
							l

Client/Project/Contract No.: LCSI ANEPTEK Page 1 of 2 ANG/Stewart ANGB Site 1/ DAHA-90-93-D-0003/DO-08 CORPORATION Boring/Well No.: Sampler Type/Size: **Boring Log** MW-05 2' Split Spoon/ 5' NX Core Barrel Date/Time Started Date/Time Finished Drilling Rig Make/Model: Drilling Contractor: CME Track Rig 10/26/95 1625 10/30/95 1632 East Coast Thomas Screening Device (Type, make, model): **Drilling Method:** Logged By: Photovac FID /Bacharach 4 Gas **HSA / NX Core Barrel** K.Kutawski/ M. Plumb Total Depth: Bedrock Depth: Water Table Depth: **Borehole Diameter:** Ground. El: Location (survey coord): 8.25"(0-24.5')/4"(24.5-36.5') 36.5 ft. 24.5 ft NA 545386.81N 569141.96E 349.9 ft. USCS Blows/ Rec. Depth Sample Sample Lithologic Description Class. (ppm) (in.) (ft) Interval (ft) Number 6-in. ML ф 0-6"Brown moist soft clayey SILT, little f. gravel, trace m. 0-2 4, 2 gravel, trace f. sand 5, 8 6"-18" Color change to tan, molded iron and manganese staining visible - Rolled to 1/8" 2 ML 24 Tan v. stiff clayey SILT, some f. gravel (platey to subangular), 2-4 11, 11 trace m. gravel, trace f. sand, molded 11, 12 3 ML Tan v. stiff clayey SILT, some f. gravel (platey to subanuglar), 5, 10 4-6 trace f. sand, molded 9, 8 6 5, 10 Tan v. stiff saturated clayey SILT, some m. gravel, trace f.-m. MH ф 6-8 9,8 sand with 2" of fractured platey rock with iron staining 8 Tan v. stiff dry clayey SILT, some f. gravel (some platey), ML 8-10 19, 14 little m. gravel, trace f. sand (lodgement till) 9 20, 21 10 Tan v. stiff wet clayey SILT, some f. gravel (some platey), ML 19, 14 10-12 little m. gravel, trace f. sand (lodgement till) 20, 21 11 2" layer of grey fine grained m. gravel 12 ML Tan v. stiff dry clayey SILT, some f. gravel, trace m. gravel, 12-14 5, 12 33, 37 trace f.-m. gravel (lodgement till) 13 14 CL 13 Grey v. stiff CLAY and SILT, trace f. gravel, trace f. sand 14-16 5, 13 Rolls to 1/16" when water is added (lodgement till) 16, 24 15 Very hard, can be broken by hand with some force 16 12 Grey v. stiff CLAY and SILT, trace f. gravel, trace f. sand CL φ 5, 13 16-18 16, 24 Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Proportions Penetration Resistance Cohesive Soils **Notes and Comments:** Trace: 0 - 10% Granular Soils Little: 10 - 20% Density Blows/ft Density Blows/ft V. Soft Some: 20 - 35% <2 <4 V. Loose And: 35 - 50% 1 - 10 2 - 4 Soft Loose Water Content 10 - 30 m. Dense 4 - 8 m. Stiff

Dense

V. Dense

30 - 50

>50

8 - 15

>50

15 - 30

Stiff

Hard

V. Stiff

D - Dry

M - Moist

W - Wet

Depth S. (ft) In 8 1 9 2 1 2 2 3 4 5 2 4 6 7 2 4 6 9 9	Sample Interval	Sample Number		2" S Rec. (in.)	pler Type/Size: Split Spoon/ 5' NX Core Barrel Lithologic Description Grey v. stiff CLAY and SILT, little fm. gravel, trace f. sand Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Grey v. stiff CLAY and SILT, and fm. GRAVEL, trace f. sand	Boring/We MW-05 USCS Class.	PID/FID (ppm)
Depth S (ft) In	Sample Interval	Sample	Blows/ 6 in 13, 20 22, 36	Rec. (in.)	Lithologic Description Grey v. stiff CLAY and SILT, little fm. gravel, trace f. sand Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Grey v. stiff CLAY and SILT, and fm. GRAVEL, trace f. sand	USCS Class.	(ppm) φ
Depth S (ft) In 8	Sample Interval	Sample	6 in 13, 20 22, 36	(in.)	Grey v. stiff CLAY and SILT, little fm. gravel, trace f. sand Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Grey v. stiff CLAY and SILT, and fm. GRAVEL, trace f. sand	Class.	(ppm) φ
9			22, 36 9, 8		Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Grey v. stiff CLAY and SILT, and fm. GRAVEL, trace f. sand		,
9			22, 36 9, 8		Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Grey v. stiff CLAY and SILT, and fm. GRAVEL, trace f. sand		,
212 3	20-22		1	8		CL	#
4					Rolls to 1/16" when water is added (lodgement till) Very hard, can be broken by hand with some force Refusal at 21'3", platey pieces of rock in nose		Ψ
6 24. 7 8 9					Roller Bit to 24.5'		
27	4.5-29.5	3	Min/ft. 5 6 7	48	Begin Coring at 24.5' with Step Bit Weathered shale, iron staining in fractures, white calcite veins in rock, bedding planes at 45° angles, changes in fracture direction noted from 45° angle to vertical then back to 45°		ф
			9 9		angle RQD= 0		
1 🗐	9.5-34.5		5 5 7 5		Weathered shale, iron staining in fractures, white calcite veins in rock, no consistant bedding can be seen, fractures vary horizontal to vertical RQD = 0		
3					·		
25					Roller Bit to 36.5'		
78					E.O.B 36.5'		

Notes and Comments:

	1 CHCGGGGG		1.000.000			
Granu	lar Soils	Cohes	ive Soils	Trace: 0 - 10%		
Blows/ft Density		Blows/ft	Density	Little: 10 - 20%		
<4	V. Loose	<2	V. Soft	Some: 20 - 35%		
4 - 10	Loose	2 - 4	Soft	And: 35 - 50%		
10 - 30	m. Dense	4 - 8	m. Stiff	Water Content		
30 - 50	Dense	8 - 15	Stiff	D - Dry		
>50	V. Dense	15 - 30	V. Stiff	M - Moist		
		>50	Hard	W - Wet		

Notes and Comments:

	ANEPTEK			ANG/Stewart ANGB Site 1/ DAHA-90-93-D-0003/D0-08 Page 2 of 2				
17	CORPO	RATION		Samp	pler Type/Size:	Boring/Well No.:		
	Boring	Log		2" S	plit Spoon/ 5' NX Core Barrel	MW-07		
Depth (ft)	Sample Interval	Sample Number	Minutes/ ft.	Rec. (in.)	Lithologic Description	USCS Class.	PID/FID (ppm)	
					Begin Coring at 16' with Step Bit			
18	16-21		5 7 7		Fractured dark grey shale, calcite veins in top 5" No clear fracture pattern RQD = 0		ф	
20			7 6					
22232425	21-26		2 3 5 5 7		Fractured dark grey shale No clear fracture pattern RQD = 0		ф	
26 27 28 29 30	26-30.5		5 5 4 4 4/6"	24	Dark grey weathered shale, multiple fractures in no clear pattern, calcite veins in bottom 3" RQD = 0		ф	
31	-				E.O.B 30.5 ft.			
33	- - -							
34		:						
36			:					
37								
38 <u> </u>	-							

Notes and Comments:

Lost approximately 43 gallons of water during drilling.

Client/Project/Contract No.: Page 1 of 2 ANG/Stewart ANGB Site 2/ DAHA-90-93-DO-004 Boring/Moll No

	CORPORATION Sampler Type/Size:							Boring/We	ll No.:		
	Boring	Log		2' S	plit Spoon/ 5	' NX Core Barre	I	MW-09			
Drilling Co	ntractor:		Drilling Ri	g Mak	Make/Model: Date/Time Started Date/Time Finish						
East Coa	st Thomas		CME Tra	ck Ri	g		11/6/95 1500	11/8/95	11/8/95 700		
Logged By			Drilling M				Screening Device (Typ	pe, make, model):			
K. Kutaw	ski		HSA / N	X Cor	e Barrel		Photovac FID /Bacha	rach 4 Gas			
	Location (survey coord): Ground					Bedrock Depth:	Water Table Depth:	Borehole D	Diameter:		
1	49N 5692		366.2 ft		26.0 ft.	11.0 ft	NA	8.25"(0-17	'}/4"(17-26)		
Depth	Sample	Sample	Blows/	Rec.				USCS	FID		
(ft)	Interval (ft)	Number	6-in.	(in.)		Lithologic Des	cription	Class.	(ppm)		
	0-2		2,2	12	0-3" Dark brov	vn topsoil		ML	ф		
1 _			4,4		3-12" Brown m	oist clayey SILT, litt	tle fm. gravel, trace f.				
]				sand						
2							July a mig.				
	2-4		18,17	3		ey SILT and fm. an	igular to subangular	ML .	ф		
3 —			17,15		gravel						
 	-								1		
	4-6		5,11	17	Brown moist cla	avev SILT, little f, pl	atey angular and sub-	ML	ф		
5 —	1 "		11,11		1		6" when water was added				
	1										
6						1977	****				
	6-8		17,24	5	Brown clayey S	ML	ф				
7			19,14		trace f. sand, m						
		:									
8 —	0.10		6.4	16	Prown majet al	avey SILT little f or	ravel, trace m. gravel,	ML	φ		
9 —	8-10		6,4 8,6	10		ose of spoon wet	aver, trace iii. graver,	·	Ψ		
	1		.,,,			ood of open. Het					
10 —	1										
	10-12		6,9	19		ist clayey SILT, little	-	ML	ф		
11			13,22	,	_		when water is addded				
	1				4-19" Dark gre	y wet pieces of plate	ey rock, trace fines				
12			477.44	10		1 16					
	12-14		17,14 26,16	16	• •	nered fractured plate knife, trace to no fir	ey rock, breaks in hand,		ф		
13	1		20,10		spoon	kilile, trace to no ili	ies, water maide				
14 —	1										
· · · -	14-14.8		22	3	Dark grey weat	hered fractured plat	ey rock, breaks in hand,				
15			50/3"		scratches with	knife, trace to no fir	nes	<u></u>			
					Roller Bit to 17	•					
16											
l —	-										
17 —	-										
	1	<u></u>		L		•			L		
Granu	Penetration lar Soils		ive Soils		Proportions : 0 - 10%	Notes and Commer	nts:				
Blows/ft	Density	Blows/ft	Density	4	: 10 - 20%						
<4	V. Loose	<2	V. Soft	1	: 20 - 35%						
4 - 10 10 - 30	Loose m. Dense	2 - 4 4 - 8	Soft m. Stiff		35 - 50% ater Content	Lost 30 gallons of	water during drilling.				
1.0	1 5 31100	ı. Ţ	1			4					

8 - 15 Stiff D - Dry 30 - 50 Dense 15 - 30 V. Stiff M - Moist >50 V. Dense W - Wet >50 Hard

RIMW09.XLS 7/31/96

ANEPTEK CORPORATION Boring Log Drilling Contractor: East Coast Thomas Logged By: K Kutawski Client/Project/ ANG/Stewart A Sampler Type/ 2' Split Spoo

Client/Project/Contract No.:

ANG/Stewart ANGB Site 1/ DAHA-90-93-D-0003/D0-08

Page 1 of 2

Sampler Type/Size:

Boring/Well No.:

2' Split Spoon/ 5' NX Core Barrel

MW-11

Date/Time Started

Date/Time Finished

Drilling Cor	ntractor:		Drilling Rig Wake/Wodel: Date/Time Started					Date/Time	rinisheu		
East Coas	t Thomas		CME Tra	ck Ri	g		11/8/95 1100	11/9/95			
Logged By:	:		Drilling M	ethod	:		Screening Device (Type,	make, mod	lel):		
K.Kutaws	ki		HSA / N	X Coi	e Barrel		Photovac FID /Bachar	ach 4 Gas			
	urvey coord	i):	Ground. E		100	Bedrock Depth:	Water Table Depth:	Borehole I	Diameter:		
	9N 5692		388.69 1	t.	29.0 ft.	18.0 ft	NA	8.25"(0-19')/4"(19-29')			
Depth	Sample	Sample	Blows/	Rec.		<u> </u>		USCS	FID		
(ft)	Interval (ft)	Number	6-in.	(in.)	•	escription	Class.	(ppm)			
1	0-2		1,1 2,2	6	Brown soft clay pieces of wood	vey SILT, trace m. g , molded	ML	ф			
2											
	2-4		11,8	20	Brown v. stiff n	noist clayey SILT, li	ttle f. gravel, trace m.	ML	ф		
3			11, 8		gravel, trace f.	sand, molded					
4											
	4-6		5,5	2	Brown stiff moi	st clayey SILT, little	e f. gravel, trace m.	ML	ф		
5			5,8		gravel, trace f.	sand, tiny pieces of	platey rock, molded				
					Rock in nose						
6									100		
	6-8		8,9	18	Brown v. stiff n	Brown v. stiff moist clayey SILT, little to some fm. gravel,					
7			13,8		trace f. sand, m	nottled					
8											
	8-10	:	6,4	18	•	on wet, water ran o	ML	ф			
9			13,10			•	ravel, trace m. gravel,				
						utside of material w	vet, inside of material				
10					moist						
	10-12		2,3	18		, ,	some f. gravel, trace m.	ML	ф		
11			7,14		gravel, little f. s	and, rock in nose					
_											
12					0.450.7	:cc	CUT arms f manual trace	ML			
	12-14		29,11	24			SILT, some f. gravel, trace	IVIL	ф		
13 —			9,11			f. sand, rock in nos	material was saturated,				
					inside of materi	•	nateriai was saturateu,				
14	14-16		7,16	24			ravel, trace m. gravel,	ML	ф		
15 —	14-10		20,19			•	et, inside of material		*		
'			20,10		moist (lodgeme		54, 51 material				
16					olor (loagelile	,					
」 `` ─	16-18		15,21	12	Tan v. stiff slig	htly moist tight clay	vey SILT, some fm. gravel,	ML	ф		
17			23,30		1		sand (lodgement till)		· ·		
I. –					,	., •	· •				
	<u> </u>		_	<u> </u>	<u></u>			l			
Granul	Penetration ar Soils		ve Soils		Proportions : 0 - 10%	Notes and Comme	nts:				
Blows/ft	Density	Blows/ft	Density		10 - 20%						
<4	V. Loose	<2	V. Soft	Some	: 20 - 35%	Lost approximately	/ 30 gallons of water during (drilling.			

LCMW11.XLS 7/31/96

Loose

Dense V. Dense

m. Dense

2 - 4

4 - 8

8 - 15

>50

15 - 30

Soft

Stiff

Hard

m. Stiff

V. Stiff

And: 35 - 50%

Water Content

D - Dry

M - Moist

W - Wet

4 - 10

10 - 30

30 - 50

>50

ANE	PTEK	7	ANG/Stewart ANGB Site 1/ DAHA-90-93-D-0003/D0-08 Page 2 of 2					
CORPO	RATION		Sam	oler Type/Size:	Boring/We			
Boring				plit Spoon/ 5' NX Core Barrel	MW-11			
Depth Sample	Sample	Blows/	Rec.		USCS	PID/FID		
(ft) Interval	Number	6 in	(in.)	Lithologic Description	Class.	(ppm)		
18								
18-19.4		20,30	11	Dark grey very soft weathered shale, crumbles in hand, iron		ф		
19 —		50/4"		staining in fractures, no soil, scratches easily with knife, m. gravel to sand size pieces of rock				
20 .		Min/ ft		Begin Coring at 19' with Step Bit				
21 19-24		4.5	2	Dark grey fractured shale, no iron staining, white calcite veins		ф		
		7		throughout, too small a sample to see bedding planes or				
22		10 6		fracture orientation				
23		6 8						
24								
24-29		4	53	Dark grey weathered shale, iron staining in fractures, white		ф		
25		5		calcite veins throughout, fractures at 45° angles along				
		5		bedding planes RQD= 26.3%				
26		5 6.5		NUD = 20.3%				
27								
28								
29								
				E.O.B 29 ft.				
30								
31								
32								
33								
34								
35								
]								
36								
37								
38								
39								
Notes and Comments:					<u> </u>			

				Clien	t/Project/Contr	ract No.:		T		
	ANE	PTEK		ANG	/Stewart ANGI	Page 1 of 3				
	CORPOR	RATION		Samp	oler Type/Size:	Boring/Well No.:				
	Boring	Loa		2' S	plit Spoon/ 5	SB-01				
Drilling Co.	Contractor: Drilling Rig Make/Model:						Date/Time Started	Date/Time	Finished	
_			CME Tra	_			10/2/95 1713	10/4/95	1327	
Logged By	t Thomas		Drilling M					vice (Type, make, model):		
			HSA / N			HNU PID 10.2 eV				
R. Ramug	urvey coord	I),	Ground. E			Bedrock Depth:	Water Table Depth:	Borehole D	Diameter:	
	N 56865		433.8		50 ft.	40 ft	NA	8.25"(0-10		
Depth	Sample	Sample	Blows/	Rec.	00 11.	10 10	1	USCS	FID	
(ft)	Interval (ft)	Number	6-in.	(in.)		Lithologic Des	scription	Class.	(ppm)	
	0-2	SB-01-02	7,13		0-4" Brown top	soil with roots			ф	
1	0-2	36-01-02	12,19	I i	•		ttle gravel, little mc. sand	ML		
' -			12,10				me gravel, some mc.			
2					sand	J.,	3 ,			
					HSA to 4'					
3										
· —										
4										
T	4-6	SB-01-06	6,16	16	Grey soft loose	ML	ф			
5	4-0	3B-01-00	20,21	'	0.07 0016 10000					
°			20,21							
6 —										
· —					HSA to 9'					
7 —					non to o					
′ —					ļ					
8										
° —										
9 —										
• —	9-10	SB-01-10	13	12	Grev stiff SILT.	some clay, little f.	sand, little c. sand, trace	ML	φ	
10	3-10	05 01 10	50/6"		gravel, refusal a				· ·	
			Min/ ft		·	10' with Popcorn B	Bit		ф	
11 -	10-13	SB-01-13	8		10-11' Boulder					
'' —	10-10	00 01 10	4			ry dense CLAY, fm	n, gravel, little silt	CL		
12 —			7		(lodgement till)	,	,			
			′		(iougoinone tiii)					
13										
	13-15		16		Switched to Ste	ep Bit because mate	erial was too hard		ф	
14	10 10		10	20		•	., little silt, 2 boulders, can	CL		
	l					" when wet (lodgen				
15								ļ		
	15-18.5	SB-01-18.5	1.5	42	Grev hard CLA	Y and fm. GRAVEL	., some silt, slightly plastic			
16	10 10.0	05 01 10.0	1.5		(lodgement till)		, , , ,			
	i		2			ately 35-40 gallons	of water)	CL	ф	
17	1		_		,	,				
	i			1						
	Ponetratia	Posistanas		ļ	Proportions	I		<u> </u>	I	
Granu	Penetration ar Soils	n Resistance Cohesiv	e Soils	.1	: 0 - 10%	Notes and Comme	nts:			
Blows/ft	Density	Blows/ft	Density	_	: 10 - 20%					
<4	V. Loose	<2	V. Soft	1	: 20 - 35%					
4 - 10	Loose	2 - 4	Soft		35 - 50%					
10 - 30	m. Dense	4 - 8	m. Stiff	<u></u>	ater Content	-				
30 - 50 >50	Dense V. Dense	8 - 15 15 - 30	Stiff V. Stiff		D - Dry M - Moist					
/ 50	V. Delise	>50	Hard		W - Wet					

ANEPTEK CORPORATION Boring Log

ANGRC/Stewart ANG/ DAHA-90-93-D-0003/D0-04

Sampler Type/Size:

Boring/Well No.:

Page 2 of 3

5' NX Core Barrel

Client/Project/Contract No.:

SB-01

Boring Log				lp. M	X Core Barrel	SB-01			
De	pth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID	
(1	ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)	
18									
19									
		18.5-20	İ			Roller Bit through boulders 18.5'-20.0'			
20					Ì				
_									
21									
		20-25	SB-01-25	2	54	Grey very stiff CLAY and fm. gravel, trace fc. sand, trace	CL	ф	
22				5		to little silt, trace cobbles (lodgement till)			
				2.5		Rolls to 1/8" when wet			
23 _				2					
				1.5					
24									
25_									
		25-27.5	SB-01-27.5	3	30	Grey very stiff CLAY and fm. gravel, trace fc. sand, trace			
26				2		to little silt, trace cobbles (lodgement till)			
						Rolls to 1/8" when wet	CL	ф	
27						Bottom 6" Brown tinge			
_						Section 2011 AND CONTRACT CONT			
28		27.5-30							
						Roller Bit 27.5' to 30.0'			
29									
³⁰ —		30-32.5	SB-01-32.5	· ·		Grey-brown hard CLAY and fm. gravel, trace fc. sand,			
31		30-32.5	58-01-32.5	2 2		trace to little silt, trace cobbles (lodgement till)			
5 1				2		Rolls to 1/8" when wet	CL	۸ .	
32						Holis to 170 when wet	C.	Ψ	
2									
33 —									
,,		32.5-35				Roller Bit 32.5 to 35'			
34		02.000							
35									
_		35-37				NO RECOVERY	Contract the second contract to the second co		
36									
37									
_									
38									
						Roller Bit 37' to 40'			
39									
39									
_									
					L		l		

Notes and Comments:

Lost 800 gallons of water. Water being lost in top 10' where the augers are seated. Ground around drilling mounding due to water build up.

ANGRC/Stewart ANG/ DAHA-90-93-D-0003/D0-04

Sampler Type/Size:

Page 3 of 3
Boring/Well No.:

5' NX Core Barrel

Client/Project/Contract No.:

SB-01

	Boring Log			5' N	X Core Barrel	SB-01		
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID	
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)	
40	40-45		3.5 4	48	No soil recovery Weathered shale - dark-blue grey, fine grained, iron staining throughout, bedding planes dipping approximately 40°-45°,		ф	
43			3 7 4		fractures along bedding planes, iron staining visible in fractures, no secondary mineralization, can be scratched easily with knife $RQD = 0$			
44								
46474849	45-50		5.5 6 6 6 4.5		Weathered shale - dark-blue grey, fine grained, iron staining throughout, bedding planes dipping approximately 40° - 45° , fractures along bedding planes, iron staining and m. grey sand visible in fractures, no secondary mineralization, can be scratched easily with knife RQD = 0		ф	
50					E.O.B 50 ft			

Γ				Clien	t/Project/Cont	ract No.:		1		
	ANE	PTEK		1	ANG/Stewart ANG Site 2/ DAHA-90-93-D-0003/DO-04				Page 1 of 2	
1	CORPO	RATION		Sami	pler Type/Size:	Boring/We				
	Boring					SB-02				
Drilling Co		Log	Drilling Ri	<u> </u>					Finished	
_			1	-		Date/Time Finished				
Last Coas	t Thomas		CME Tra				10/4/95 1612	10/4/95	1900	
K.Kutaws	urvey coord	4/•	Ground. E		Core Barrel HNU PID 10.2 eV Total Depth: Bedrock Depth: Water Table Depth: Borehole Diameter					
•	545937.3N 568681.2E 434.5				24 ft.	Bedrock Beptil.	NA	8.25"(0-10'		
Depth	Sample	Sample	Blows/	Rec.					FID	
(ft)	Interval (ft)	Number	6-in.	(in.)		Class.	(ppm)			
	0-2	SB-02-02	9,12	21	0-5" Brown top	osoil with roots, little	f. gravel	ML	ф	
1 —			25,27		•	yey SILT, little f. san			· '	
]	i								
2						ALMAN CONTRACTOR CONTR				
					HSA to 4'					
3										
4 —	1			I						
·	4-6	SB-02-06	6,22	22	4.0'-4'4" Tan o	clayey SILT, little f. s	sand, trace f. gravel	ML	ф	
5	1	05 02 00	31,30			hard clayey SILT, lit			,	
	1				(lodgment till)		-		ľ	
6										
				l	HSA to 9'					
⁷ —										
8										
9								:		
	9-10.2	SB-02-10.2	10,42	10	Grey hard claye	ey SILT, some fm. s	sand, trace c. sand, trace f	f.		
10	1		50/2"		gravel			ML	ф	
								- 		
11					HSA to 15'					
12 —										
			ŀ							
13										
14										
						o:				
15	15-19		Min/ft		Begin Coring w NO RECOVERY					
16 —	15-19		2 6		Rock jammed in					
			3		ook jaminieu II	. 201101				
17			3.5							
		Resistance			Proportions			1		
	ar Soils	Cohesiv Blows/ft		4	: 0 - 10% 10 - 20%	Notes and Commen	its:			
Blows/ft <4	Density V. Loose	<2	Density V. Soft		: 20 - 35%					
4 - 10	Loose	2 - 4	Soft	And:	35 - 50%	Į				
10 - 30 30 - 50	m. Dense Dense	4 - 8 8 - 15	m. Stiff Stiff	\vdash^{w}	ater Content D - Dry					
>50	V. Dense	15 - 15	V. Stiff		M - Moist					
		>50	Hard		W - Wet					

			·····	Clien	t/Project/Contr	ract No.:				
	ANE	PTEK		ANG/Stewart ANG Site 2/ DAHA-90-93-D-0003/D0-04 Page 1 of 2					of 2	
	CORPOR	RATION		Sam	pler Type/Size:		Boring/We	ll No.:		
	Boring			2' Split Spoon/ 5' NX Core Barrel SB-02						
Drilling Cor			Drilling Ri						Date/Time Finished	
_	East Coast Thomas CME Tra			_	10/4/95	1900				
Logged By:							10/4/95 1612 Screening Device (Type			
							HNU PID 10.2 eV			
	K.Kutawski HSA / N Location (survey coord): Ground. I				re Barrel Total Depth:	Bedrock Depth:	Water Table Depth:	Borehole D	liameter:	
	N 56868		434.5							
Depth	Sample	Sample	Blows/	Rec.	24 10.			USCS	FID	
(ft)	Interval (ft)	Number	6-in.	(in.)		Lithologic Des	scription	Class.	(ppm)	
					0.511.5	the tall and a Basic	<i>f</i>	ML	ф	
1, —	0-2	SB-02-02	9,12	21	•	soil with roots, little		₩	Ψ	
1			25,27		i an v. stiff clay	ey SILT, little f. san	u, trace i. graver			
2 —										
					HSA to 4'			-		
3					1.00 10 7					
4										
	4-6	SB-02-06	6,22	22	4.0'-4'4" Tan c	layey SILT, little f. s	sand, trace f. gravel	ML	ф	
5			31,30		4'4"-6.0' Grey	hard clayey SILT, lit	tle fm. gravel			
					(lodgment till)					
6						+				
	:				HSA to 9'					
7										
8										
° -										
9										
I -	9-10.2	SB-02-10.2	10,42	10	Grey hard claye	y SILT, some fm. s	sand, trace c. sand, trace f			
10			50/2"		gravel			ML	ф	
						400				
11					HSA to 15'					
					ł					
12										
1,2										
13										
14										
[
15			Min/ft		Begin Coring wi	ith Step Bit		1		
	15-19	2.04	2		NO RECOVERY					
16			6		Rock jammed in	n barrel				
			3							
17			3.5							
		Resistance			Proportions	Nata - 10		<u></u>		
Granul Blows/ft	ar Soils Density	Cohesiv Blows/ft	e Soils Density		: 0 - 10% : 10 - 20%	Notes and Commer	its:			
<4	V. Loose	<2	V. Soft		e: 20 - 35%					
4 - 10	Loose	2 - 4	Soft		35 - 50%					
10 - 30	m. Dense	4 - 8	m. Stiff	$\vdash^{\widetilde{\mathbf{w}}}$	ater Content					
30 - 50 >50	Dense V. Dense	8 - 15 15 - 30	Stiff V. Stiff		D - Dry M - Moist					
	Delise	>50	Hard		W - Wet					
J		·	<u> </u>	<u>. </u>						

	ANE	PTEK			/Stewart ANG Site 2/ DAHA-90-93-D-0003/D0-04	Page 2 of 2		
17	CORPORATION				pler Type/Size:	Boring/Well No.:		
	Boring				X Core Barrel	SB-02		
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID	
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)	
18					Roller Bit to 19'			
19 —								
'								
20]							
	19-24		1		NO RECOVERY - Grey fine grained rock jammed in core barrel			
21			1.5 1		Darrei			
22			1					
²³ —]							
24								
					505.046			
25					E.O.B 24 ft			
26					·			
							ŀ	
²								
28								
 29								
30			:					
31 —								
32								
33								
					·			
34								
35 —							ļ	
							·	
36								
37	,							
	Ì							
38								
39								
Notes and C	omments:							

Client/Project/Contract No.:

RISB02.XLS 7/31/96

500-600 gallons of water lost during drilling.

				Clien	t/Project/Cont	ract No.:				
	ANE	PTEK		ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04 Page 1 of 2					of 2	
	CORPORATION				oler Type/Size:	Boring/Well No.:				
	Boring Log				2' Split Spoon/ 5' NX Core Barrel				SB-03	
Drilling Co	Drilling Contractor: Drilling Rig			g Mak	e/Model:		Date/Time Started	Date/Time Finished		
Fast Coas	t Thomas		CME Tra	ck Ri	q		10/5/95 1300	10/5/95	1615	
Logged By			Drilling M				Screening Device (Typ	e, make, m	odel):	
K.Kutaws			HSA / N	X Cor	re Barrel		HNU PID 10.2 eV			
	survey coord	l):	Ground. E			Bedrock Depth:	Water Table Depth:	Borehole D	Diameter:	
•	IN 56867		435.1	ft.	24 ft.	NA	NA	8.25"(0-10	')/3"(10-22')	
Depth	Sample	Sample	Blows/	Rec.				USCS	FID	
(ft)	Interval (ft)	Number	6-in.	(in.)		Lithologic Des	cription	Class.	(ppm)	
-	0-1.3	SB-03-1.3	16, 24		0-4" Brown top	soil with roots and	grass		ф	
1 -	0	00 00 110	50/3"	1		ILT, little fc. grav		ML	·	
-						*****				
2					HSA to 4'					
3										
4										
l _	4-6	SB-03-06	12,16	18	Grey hard SILT	, some f. sand, trac	e clay (lodgement till)	ML	ф	
5			21,20							
l _										
6 —							w. 1462-7			
I					HSA to 9'					
7 —	1									
8										
° -	1									
9 —	1	•								
	9-10.3	SB-03-10.3	28,38	16	9'-9'5" Grey h	ard moist SILT, som	e f. sand, trace clay	ML	ф	
10	1		50/3"		9'5"-10'3" Gre	ey hard tight, dry CL	AY, little f. sand, trace f.			
					gravel, trace sil	t, rolled to 1/16" wi	nen water was added			
11					HSA to 12'					
<u> </u>	ŀ									
12						401 11 01 -1	da e			
	10.1-		Min/ft			12' with Step Bit	o oilt troop m acad 3			
13 —	13-17		2	36	· ·		e silt, trace m. sand, 3 can be rolled to 1/8" when			
			3	•	1	rt. grained, i red), d ed (lodgement till)	an be roned to 1/6 when	CL	ф	
14			4	1	water was adde	ou trougernerit till)			ľ	
15	1		5							
1										
16										
_	1									
17	1					·				
	Penetration	Resistance	I		Proportions					
	ar Soils	Cohesiv		Trace	: 0 - 10%	Notes and Comme	nts:			
Blows/ft	Density	Blows/ft	Density V. Soft		: 10 - 20% :: 20 - 35%					
<4 4 - 10	V. Loose Loose	2 - 4	Soft		35 - 50%					
10 - 30	m. Dense	4 - 8	m. Stiff		ater Content	1				
30 - 50	Dense	8 - 15	Stiff		D - Dry					
>50	V. Dense	15 - 30	V. Stiff		M - Moist					
	l	>50	Hard	<u> </u>	W - Wet	<u> </u>				

Client/Project/Contract No.: **ANEPTEK** Page 2 of 2 ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/DO-04 CORPORATION Sampler Type/Size: Boring/Well No.: **Boring Log** 5' NX Core Barrel SB-04 USCS PID/FID Sample Sample Minutes/ Rec. Depth Lithologic Description Class. Number 12 in (in.) (ppm) (ft) Interval 18 18-22 SB-08-22 3 Grey CLAY, some f.-c. gravel, some f.-c. sand, little silt, few CL 19 2 cobbles (lodgement till) 3 20 3 3 21 22 Roller Bit to 23' 23 E.O.B.- 23 ft. 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Notes and Comments:

Series 2 Bit used

38

39

Client/Project/Contract No.: Page 1 of 2 ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/DO-04 Boring/Well No.: Sampler Type/Size:

CORPORATION					oler Type/Size:			Boring/Wel	ll No.:	
Boring Log					2' Split Spoon/ 5' NX Core Barrel				SB-05	
Drilling Cont			Drilling Rig	Mak	ke/Model: Date/Time Started			Date/Time Finished		
East Coast			CME Trac	ck Ric	c Rig 10/10/95 1050				1440	
Logged By:	moniac		Drilling Me							
K.Kutawski	i		HSA / N	Cor	ore Barrel HNU PID 10.2 eV					
Location (su):	Ground. E		Total Depth: Bedrock Depth: Water Table Depth: Borehole					
546013.4N			435.8		22 ft.		NA	8.25"(0-13'	')/3"(13-22')	
Depth	Sample	Sample	Blows/	Rec.				USCS	FID	
(ft)	nterval (ft)	Number	6-in.	(in.)		Lithologic Des	scription	Class.	(ppm)	
1	0-2	SB-05-02	2,15 10,15	7	Brown m. dens Rock in nose	e SILT, some f. san	d, trace clay	ML	ф	
3					HSA to 4'					
5	4-6	SB-05-06	5,6 5,10	9	clay	grey in bottom 2 "	d, some fc. gravel, trace	ML	ф	
7					HSA to 8'					
9 —	8-10	SB-05-10	8,11 17,27	24		m. dense f. SAND, y hard CLAY, some	some silt, trace clay silt, trace f. sand	SM CL	ф	
11 12 13 14					Roller Bit to 14'					
15 16 17	14-17	SB-05-17	Min/ft 2 2.5 5	12		14' with Step Bit I fc. GRAVEL, son	ne silt, trace f. sand	CL	ф	
	Penetration		<u> </u>		Proportions					
Granula			ve Soils		e: 0 - 10%	Notes and Comme	nts:			
4 - 10 1 10 - 30 1 30 - 50 1	Density V. Loose Loose m. Dense Dense	Blows/ft <2 2 - 4 4 - 8 8 - 15 15 - 30	Density V. Soft Soft m. Stiff Stiff V. Stiff	Some And:	: 10 - 20% e: 20 - 35% 35 - 50% Vater Content D - Dry M - Moist					
>50	V. Dense	>50 >50	V. Stiff Hard		W - Wet					

	A 3.15	OTEV	,	Client/Project/Contract No.:						
	ANE			ANG	/Stewart ANGB Site 2/ DAHA-90-93-D-003/DO-04	Page 2	of 2			
	CORPO				pler Type/Size:	Boring/Well No.:				
Boring Log					X Core Barrel	SB-05				
Depth (ft)	Sample Interval	Sample Number	Minutes/ 12 in	Rec. (in.)	Lithologic Description	USCS Class.	PID/FID (ppm)			
	17-22	SB-05-22	3	24	Grey CLAY, and fc. GRAVEL, some silt, trace m. sand,					
18]		3		cobbles - approximately 1 ft of gravel (lodgement till)					
19 	-		2 7			CL	ф			
			2							
20										
21										
					E.O.B22 ft					
23										
24										
25										
26										
27										
28										
29										
30										
31						:				
32										
33					•					
34										
35										
36										
37										
38										
39 —										
Notes and C	comments:		 							

200 gallons of water lost during coring.

Notes and Comments: Cohesive Soils Trace: 0 - 10% Granular Soils Density Little: 10 - 20% Blows/ft Blows/ft Density V. Soft Some: 20 - 35% V. Loose < 4 < 2 2 - 4 Soft And: 35 - 50% 4 - 10 Loose 10 - 30 m. Dense 4 - 8 m. Stiff Water Content 30 - 50 Dense 8 - 15 Stiff D - Dry V. Dense 15 - 30 V. Stiff M - Moist >50 W - Wet >50 Hard

K	ANE	RATION
Depth	Sample	Sample
(ft)	Interval	Number
18		

	Client/Project/Contract No.:	
	ANGRC/Stewart ANG/ DAHA-90-93-D-0003/D0-04	Page 2 of 2
	Sampler Type/Size:	Boring/Well No.:
	5' NX Core Barrel	SB-06
-		· · · · · · · · · · · · · · · · · · ·

Boring Log				19. M	X Core Barrel	SB-06			
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID		
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)		
					UCA 4-101				
	1				HSA to19'				
18									
]								
19									
	19-20.4		24,62	13	Grey hard CLAY, some silt, little fm. gravel (higher than last	CL _.	ф		
20			50/4"		interval) (lodgement till)				
					1.44 = 50 a 60 a agrapa agrapa a agrapa agrapa a agrapa a agrapa a agrapa a agrapa a agrapa a agrapa a				
21					Roller Bit to 22.5'				
22									
23			Min/ft.		Begin coring at 22.5' with Step Bit				
	22.5-26.5	SB-06-26.5	5	48	Grey very stiff dense CLAY, some fm. gravel, some silt, little	CL	ф		
24	1		4		fc. sand (lodgement till)				
	1		6						
25	1		5						
26	1								

27 —	1			i	·				
	ł								
, —	26.5-31.5		,	12	Recovery 11' of rock - m. gravel, 2 cobbles				
²⁸ —	20.5-31.5		2	12		C.	ф		
l			6		1" grey very stiff dense CLAY, some fm. gravel, some silt, little	CL	l		
29	-		10		fc. sand (lodgement till)				
			4						
30	1		5						
31									
	31.5-34.5		10	22	0-9" Weathered shale fractures along bedding planes at 45°				
32			6		9-11" Grey moist CLAY - can be rolled 1/16" w/o water		ф		
]				11-16" Weathered shale fractures along bedding planes at 45°				
33					16-21" Brown moist grey-green CLAY, f. gravel rolled to 1/16"				
					21-22" Weathered shale				
34	<u></u>				Roller Bit from 34.5' to 36'				
	34.5-36								
35									
36	36-41	5		24	Weathered shale - dark-blue grey, fine grained, iron staining				
	1	4			throughout, bedding planes dipping approximately 30°, fractures		ф		
37	l	4			along bedding planes, iron staining visible in fractures, no secondary		·		
	i	3			mineralization, can be scratched easily with knife				
38 —	i	5			RQD = 0		 		
	1				-				
39	1								
	ł				E O B 41 6				
41 ———	1				E.O.B 41 ft.				
Notes and C	omments:					· · · · · · · · · · · · · · · · · · ·			

Notes and Comments:

Client/Project/Contract No.:

ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04

Page 1 of 2

Sampler Type/Size:

Boring/Well No.:

SB-07

	CORPO	KAHUN		Sam	pier i ype/Size:			Boring/wei	ii No.:
Boring Log					plit Spoon/ 5	' NX Core Barre	l	SB-07	
Drilling Co			Drilling Ri	g Mak	ce/Model:		Date/Time Started	Date/Time	Finished
=	st Thomas		CME Tra	ck Ri	a		10/12/95 1400	10/13/95	900
ogged By			Drilling M		<u> </u>				del):
			HSA / N				HNU PID 10.2 eV		
C.Kutaws	survey coord	11.	Ground. E			Bedrock Depth:	Water Table Depth:	Borehole D	 Diameter:
	3N 56872		433.4		35 ft.	32 ft. 9in.	NA	8.25"(0-10'	
Depth	Sample	Sample	Blows/	Rec.		02 10 0	1.4.	USCS	FID
(ft)	Interval (ft)		6-in.	(in.)		Lithologic De	scription	Class.	(ppm)
1	0-2	SB-07-02	3,12 13,9	11	·	soil clayey silt with e clayey SILT, some	roots e fm. gravel, little fm.	ML	ф
3					HSA to 4 '				
5	4-6	SB-07-06	8,38 53,50/4"	18	Brown hard cla (lodgement till)	yey SILT, some fm	n. gravel, little mc. sand	ML	ф
6					HSA to 9'		AN		
7 _					TIOA to o				
8								·	
10	9-11	SB-01-11	21,40 55,50/4"	18		, can be rolled to be	platey & subangular gravel, etween 1/4" and 1/16"	ML	ф
12					HSA to 14'				
13				:					
15	14-16	SB-07-16	32,22 50/3"	6	15'11"-16' Gre	=	sand, trace fm. gravel silt, trace f. sand (shiny	ML	ф
16					(lodgement till) Roller Bit to 18				-
17									
	Penetration				Proportions		4		N
Granu Blows/ft <4	lar Soils Density V. Loose	Cohes Blows/ft <2	Density V. Soft	Little	e: 0 - 10% : 10 - 20% e: 20 - 35%	Notes and Comme	nts:		
4 - 10 10 - 30	Loose m. Dense	2 - 4 4 - 8	Soft m. Stiff	And:	35 - 50% /ater Content				
30 - 50 >50	Dense	8 - 15 15 - 30	Stiff V Stiff		D - Dry M - Moist	1			
	LV DANCA		LV SUICE		DOL - DELUCAT	•			

>50

V. Dense

15 - 30

>50

V. Stiff

Hard

M - Moist

W - Wet

Client/Project/Contract No.: Page 2 of 2 ANG/Stewart ANGB Site 2/ DAHA-90-93-D-0003/DO-04

Sampler Type/Size:

Boring/Well No.:

	Boring	Log		5' NX Core Barrel			SB-07		
Depth	Sample	Sample	Minutes/	Rec.		USCS	PID/FID		
(ft)	Interval	Number	12 in	(in.)	Lithologic Description	Class.	(ppm)		
18									
					Begin Coring at 18' with Carbide Bit				
19									
	18-23	SB-07-23	3.5	6	Rock jammed in barrel		ф		
20			3		Grey fine grained gravel recovered				
			4			,			
21			4.5						
22			6						
23									
-	23-28	SB-07-25	4	56	Changed from Carbide Bit to Series 6 bit at 23'	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
24			2		Grey very stiff dense CLAY, some fm. gravel, some SILT,	CL	ф		
		SB-17-25	2.5		little fc. sand (lodgement till)				
25		Duplicate	3.5		Rolls to 1/16" when wet				
			3						
26									
27 —									
28									
. —	28-33	SB-07-33	3	48	Grey very stiff dense CLAY, some fm. gravel, some SILT,				
29			3		little fc. sand (lodgement till)				
		SB-17-33	3		Rolls to 1/16" when wet		ф		
30		Duplicate	3 .		32'9"-33' Weathered shale				
			5		Weathered shale - dark-blue grey, fine grained, iron staining				
31					throughout, bedding planes dipping approximately 45°,				
					fractures along bedding planes, iron staining visible in				
32					fractures, no secondary mineralization, can be scratched easily				
3					with knife RQD=0				
· —	33-35		10	14	Weathered shale - same description as above		φ		
34 —			7		RQD = 0		Ψ		
			6						
55									
					E.O.B 35 ft				
6 —									
7 —									
′ —									
8									
			İ						
9									
		I							

D - Dry

M - Moist

W - Wet

Stiff

Hard

V. Stiff

8 - 15

>50

15 - 30

RISB08.XLS 7/31/96

Dense

V. Dense

30 - 50

>50

	ANE	PTEK			/Stewart ANGB Site 2/ DAHA-90-93-D-0003/D0-04	Page 2 of 2	
7	CORPORATION			Samı	oler Type/Size:	Boring/Well No.:	
				5' N	X Core Barrel	SB-08/MW-13	
Depth	Sample	Sample	Blows	Rec.		USCS	PID/FID
(ft)	Interval	Number	6 in	(in.)	Lithologic Description	Class.	(ppm)
					HSA to 19'		
18	-					·	
19]						
	19-21	SB-08-21	13,19	17		ML	ф
20	1		18,16		gravel (lodgement till) 14-17" Color change to darker grey and tighter material,		
21	1				rolls to 1/32" when water is added		
					E.O.B 21 ft.		
22							
23]						
24 —							
25							
ac —							
26	1						
27	1						
28]						
	•					ŀ	
29	j						
30							
_	1						
31	1						
32 —							
	1						
33 _]						
34	1						
	j						
35	.						
36	1						
	j						
37							
38							
39							
]	
Notes and C	comments:						

Client/Project/Contract No.:

APPENDIX E MONITORING WELL CONSTRUCTION LOGS

CORPORATION

Well Completion Log

Client/Project/Contract No.:

ANG /Stewart Site 2 /DAHA-90-93-DO-004

MW-01

Logged By:

M.Plumb/ J.Donovan

Date/Time Started 10/31/95 0700

Date/Time Finished 9/19/95 1630

Well/Boring No.:

Drilling Contractor:

Drilling Rig Make/Model:

Drilling Method:

CORPORATION

Well Completion Log

Client/Project/Contract No.:

ANG /Stewart Site 1 /DAHA-90-93-DO-008

Logged By: Date/Time Started

Started Date/Time Finished

MW-04

11/16/95

Well/Boring No.:

1230

1 Log M.Plumb 11/15/95 1330

Drilling Rig Make/Model: Drilling Method:

CORPORATION

Well Completion Log

Client/Project/Contract No.:

M. Plumb/J. Donovan

ANG /Stewart Site 1/ DAHA-90-93-D-008

MW-05

Date/Time Started 10/13/95 0700

Date/Time Finished 10/31/95 1430

Well/Boring No.:

Drilling Contractor:

Drilling Rig Make/Model:

Logged By:

CME Track Rig

Drilling Method:

Hole Diameter

CORPORATION

Well Completion Log

Client/Project/Contract No.:

ANG /Stewart Site 1 /DAHA-90-93-D-008

Date/Time Started

MW-06

Logged By: M.Plumb/J.Donovan

10/31/95 1530

Date/Time Finished 900 11/1/95

Well/Boring No.:

Drilling Contractor:

Drilling Rig Make/Model:

CME Track Rig

Drilling Method:

CORPORATION Well Completion Log

Client/Project/Contract No.: Well/Boring No.: MW-07

ANG /Stewart Site 1 /DAHA-90-93-DO-008

Date/Time Started Date/Time Finished

Logged By: M.Plumb

11/2/95 0900

11/2/95 1730

Drilling Contractor: Drilling Rig Make/Model: **Drilling Method:**

CORPORATION

Well Completion Log

Client/Project/Contract No.:

ANG /Stewart Site 1 /DAHA-90-93-DO-008

MW-08

NG /Stewart Site 1 /DAIIA-30-35-1

Date/Time Started 11/3/95 1400

Date/Time Finished

1630

Well/Boring No.:

11/3/95

Drilling Contractor:

Drilling Rig Make/Model:

Logged By:

M.Plumb/J.donovan

Drilling Method:

CORPORATION

Well Completion Log

Client/Project/Contract No.:	
------------------------------	--

ANG /Stewart Site 2 /DAHA-90-93-DO-004

MW-09

Logged By:

Date/Time Started 11/7/95 1400

Date/Time Finished 11/8/95 730

Well/Boring No.:

K.Kutawski **Drilling Contractor:** Drilling Rig Make/Model:

Drilling Method:

CORPORATION Well Completion Log

ANG /Stewart Site 2 /DAHA-90-93-DO-004

Client/Project/Contract No.:

MW-10

Logged By: K.Kutawski

Date/Time Started 11/7/95 0900

Date/Time Finished 11/8/95 830

Well/Boring No.:

Drilling Contractor:

Drilling Rig Make/Model:

CORPORATION

Well Completion Log

Client/Project/Contract No.:

ANG /Stewart Site 1 /DAHA-90-93-DO-008

MW-11

11/9/95 0900

Drilling Method:

Date/Time Finished 11/9/95 1630

Well/Boring No.:

Drilling Contractor:

Drilling Rig Make/Model:

East Coast Thomas

Logged By:

J.Donovan

CME Track Rig

Date/Time Started

Hole Diameter

bgs - below ground surface

CORPORATION

Well Completion Log

Client/Project/Contract No.:

ANG /Stewart Site 1 /DAHA-90-93-DO-008

MW-12

|MW-1

Logged By: Date/Time Started

J.Donovan 11/9/95

Date/Time Finished

Well/Boring No.:

Drilling Contractor:

Drilling Rig Make/Model:

Drilling Method:

CORPORATION Well Completion Log Client/Project/Contract No.: Well/Boring No.: ANG /Stewart Site 2 /DAHA-90-93-D0-004 MW-13/ SB-08

Logged By: **Date/Time Started** J.Donovan 11/16/95 1424

Date/Time Finished 11/16/95 1645

Drilling Contractor:

Drilling Rig Make/Model:

APPENDIX F WATER LEVEL DATA AND CALCULATIONS

APPENDIX F, TABLE F-1 GROUNDWATER ELEVATIONS - DECEMBER 8, 1995 STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

		Reference		
		Point	Depth to	Groundwater
Well/Piezometer	Reference	Elevation	Groundwater ¹	Elevation
Designation	Point	(ft msl)	(ft)	(ft msl)
MW-01	Top of Riser	438.49	31.68	
MW-04	Top of Riser	436.29	30.40	405.89
MW-05	Top of Riser	352.28	3.11	349.1
MW-06	Top of Riser	352.53	4.18	348.3
MW-07	Top of Riser	362.77	7.77	355.00
MW-08	Top of Riser	362.14	8.60	353.54
MW-09	Top of Riser	368.81	11.17	357.64
MW-10	Top of Riser	368.39	4.95	363.44
MW-11	Top of Riser	388.69	16.74	371.95
MW-12	Top of Riser	389.78	6.28	383.50
MW-13	Top of Riser	435.32	12.20	423.12
SW-2	Top Casing	435.58	24.65	410.93
SW-3	Top Casing	434.19	23.43	410.76
JMW-107	Top of Riser	367.04	NM	NM
JMW-108	Top Casing	370.70	2.97	367.73
JMW-109	Top of Riser	374.15	3.70	370.45
JTB-100 (a)	Top of Riser	436.00	11.61	424.39
JTB-100 (b)	Top of Riser	436.24	28.51	407.73
JTB-103(a)	Top Casing	435.53	20.78	414.75
JTB-103 (b)	Top Casing	435.53	24.14	411.39
JTB-105 (a)	Top Casing	394.43	NM	NM
JTB-105 (b)	Top Casing	394.43	NM	NM
JTB-105 (c)	Top Casing	394.43	NM	NM
JTB-106 (a)	Top Casing	389.85	15.47	374.38
JTB-106 (b)	Top Casing	389.85	15.04	374.81
JTB-107 (a)	Top Casing	367.92	6.78	361.14
JTB-107 (b)	Top Casing	367.92	6.75	361.17
JTB-108 (a)	Top Casing	370.31	NM	NM
JTB-108 (b)	Top Casing	370.31	NM	NM
JTB-109 (a)	Top Casing	373.96	4.20	369.76
JTB-109 (b)	Top Casing	373.96	3.69	370.27
SG-01	3 ft Mark	392.22	1.09	390.31
SG-02	3 ft Mark	337.11	0.84	334.95
SG-03	6 ft Mark	336.14	3.68	333.82
SG-04	6 ft Mark	336.22	3.93	334.15
SG-06	3 ft Mark	332.36	1.89	331.25

Notes: ¹ Readings for stream gages are direct readings and are evaluated with respect to the elevations of the appropriate foot marks on the gage.

ft - feet

NM - Not Measured

APPENDIX F, TABLE F-2 GROUNDWATER ELEVATIONS - MARCH 19, 1996 STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

	· · · · · · · · · · · · · · · · · · ·	Reference		
		Point	Depth to	Groundwater
Well/Piezometer	Reference	Elevation	Groundwater ¹	Elevation
Designation	Point	(ft msl)	(ft)	(ft msl)
MW-01	Top of Riser	438.49	31.10	407.39
MW-04	Top of Riser	436.29	29.96	406.33
MW-05	Top of Riser	352.28	1.89	350.39
MW-06	Top of Riser	352.53	3.37	349.16
MW-07	Top of Riser	362.77	5.80	356.97
MW-08	Top of Riser	362.14	6.44	355.70
MW-09	Top of Riser	368.81	7.72	361.09
MW-10	Top of Riser	368.39	2.93	365.46
MW-11	Top of Riser	388.69	14.18	374.51
MW-12	Top of Riser	389.78	3.52	386.26
MW-13	Top of Riser	435.32	11.38	423.94
SW-2	Top Casing	435.58	23.59	411.99
SW-3	Top Casing	434.19	22.55	411.64
JMW-107	Top of Riser	367.04	NM	NM
JMW-108	Top Casing	370.70	2.08	368.62
JMW-109	Top of Riser	374.15	2.78	371.37
JTB-100 (a)	Top of Riser	436.00	NM	NM
JTB-100 (b)	Top of Riser	436.24	NM	NM
JTB-103(a)	Top Casing	435.53	27.30	408.23
JTB-103 (b)	Top Casing	435.53	27.23	408.30
JTB-105 (a)	Top Casing	394.43	NM	NM
JTB-105 (b)	Top Casing	394.43	NM	NM
JTB-105 (c)	Top Casing	394.43	NM	NM
JTB-106 (a)	Top Casing	389.85	11.90	377.95
JTB-106 (b)	Top Casing	389.85	11.75	378.10
JTB-107 (a)	Top Casing	367.92	5.48	362.44
JTB-107 (b)	Top Casing	367.92	4.93	362.99
JTB-108 (a)	Top Casing	370.31	NM	NM
JTB-108 (b)	Top Casing	370.31	NM	NM
JTB-109 (a)	Top Casing	373.96	3.29	370.67
JTB-109 (b)	Top Casing	373.96	3.15	370.81
SG-01	3 ft Mark	392.22	NM	NM
SG-02	3 ft Mark	337.11	NM	NM
SG-03	6 ft Mark	336.14	NM	NM
SG-04	6 ft Mark	336.22	NM	NM
SG-06	3 ft Mark	332.36	NM	NM_

Notes: ¹ Readings for stream gages are direct readings and are evaluated with respect to the elevations of the appropriate foot marks on the gage.

ft - feet

NM - Not Available

WELLINFO.XLS D 5/1/96 9:19 AM

APPENDIX F, TABLE F-3 GROUNDWATER ELEVATIONS - APRIL 9, 1996 STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

		Reference		
		Point	Depth to	Groundwater
Well/Piezometer	Reference	Elevation	Groundwater ¹	Elevation
Designation	Point	(ft msl)	(ft)	(ft msl)
MW-01	Top of Riser	438.49	31.12	407.37
MW-04	Top of Riser	436.29	29.99	406.30
MW-05	Top of Riser	352.28	2.04	350.24
MW-06	Top of Riser	352.53	3.74	348.79
MW-07	Top of Riser	362.77	6.07	356.70
MW-08	Top of Riser	362.14	6.86	355.28
MW-09	Top of Riser	368.81	8.29	360.52
MW-10	Top of Riser	368.39	3.80	364.59
MW-11	Top of Riser	388.69	14.60	374.09
MW-12	Top of Riser	389.78	3.15	386.63
MW-13	Top of Riser	435.32	11.65	423.67
SW-2	Top Casing	435.58	24.16	411.42
SW-3	Top Casing	434.19	22.71	411.48
JMW-107	Top of Riser	367.04	4.27	362.77
JMW-108	Top Casing	370.70	2.24	368.46
JMW-109	Top of Riser	374.15	2.82	371.33
JTB-100 (a)	Top of Riser	436.00	9.33	426.67
JTB-100 (b)	Top of Riser	436.24	28.71	407.53
JTB-103(a)	Top Casing	435.53	28.41	407.12
JTB-103 (b)	Top Casing	435.53	28.06	407.47
JTB-105 (a)	Top Casing	394.43	13.68	380.75
JTB-105 (b)	Top Casing	394.43	13.46	380.97
JTB-105 (c)	Top Casing	394.43	9.67	384.76
JTB-106 (a)	Top Casing	389.85	12.84	377.01
JTB-106 (b)	Top Casing	389.85	12.49	377.36
JTB-107 (a)	Top Casing	367.92	5.98	361.94
JTB-107 (b)	Top Casing	367.92	5.96	361.96
JTB-108 (a)	Top Casing	370.31	4.44	365.87
JTB-108 (b)	Top Casing	370.31	4.62	365.69
JTB-109 (a)	Top Casing	373.96	3.15	370.81
JTB-109 (b)	Top Casing	373.96	2.87	371.09
SG-01	3 ft Mark	392.22	1.61	390.83
SG-02	3 ft Mark	337.11	0.94	335.05
SG-03	6 ft Mark	336.14	3.70	333.84
SG-04	6 ft Mark	336.22	4.07	334.29
SG-06	3 ft Mark	332.36	3.21	332.57

Notes: ¹ Readings for stream gages are direct readings and are evaluated with respect to the elevations of the appropriate foot marks on the gage.

ft - feet

NM - Not Measured

APPENDIX F, TABLE F-4 CALCULATED DECEMBER 8, 1995 WATER TABLE ELEVATIONS STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

					Calculated
	Completion	Elevation	Total	Pressure	Water Table
Well	Interval	Head (Z)	Head	Head (P)	Elevation
Pair		(ft msl)	(ft msl)	(ft)	(ft msl)
MW-05	BR	317.40	349.17	31.77	348.08
MW-06	OB	340.40	348.35	7.95	
MW-07	BR	332.85	355.00	22.15	352.72
MW-08	OB	345.60	353.54	7.94	
MW-09	BR	346.20	357.64	11.44	366.26
MW-10	OB	359.70	363.44	3.74	
MW-11	BR	360.70	371.95	11.25	389.39
MW-12	OB	379.70	383.50	3.80	
MW-04	BR	380.70	405.89	25.19	411.79
JTB-100(b)	OB	390.40	407.73	17.33	
JTB-103(a)	BR	382.30	414.75	32.45	406.21
JTB-103(b)	OB	391.70	411.39	19.69	
JTB-106(a)	BR	360.00	374.38	14.38	375.10
JTB-106(b)	OB	369.00	374.81	5.81	
JTB-107(a)	BR	347.80	361.14	13.34	361.18
JTB-107(b)	OB	358.20	361.17	2.97	
JTB-109(a)	BR	353.30	369.76	16.46	370.68
JTB-109(b)	OB	362.90	370.27	7.37	

Notes:

Calculated water table elevation is based on the following equation:

$$H_{wt} = Z_s - [((Z_s - Z_d)/(P_s - P_d))] \times P_s$$

Where:

Hwt - Calculated Water Table Elevation

Z_{s,d} - Elevation Head in the shallow or deep well

 $P_{s,d}$ - Elevation Head in the shallow or deep well

Key:

BR - Bedrock

ft - feet

OB - Overburden

msl - mean sea level

APPENDIX F, TABLE F-5 CALCULATED APRIL 9, 1996 WATER TABLE ELEVATIONS STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

					Calculated
	Completion	Elevation	Total	Pressure	Water Table
Well	Interval	Head (Z)	Head	Head (P)	Elevation
Pair		(ft msl)	(ft msl)	(ft)	(ft msl)
MW-05	BR	317.40	350.24	32.84	348.29
MW-06	OB	340.40	348.79	8.39	
MW-07	BR	332.85	356.70	23.85	354.31
MW-08	OB	345.60	355.28	9.68	
MW-09	BR	346.20	360.52	14.32	366.70
MW-10	OB	359.70	364.59	4.89	
MW-11	BR	360.70	374.09	13.39	400.08
MW-12*	OB	379.70	386.63	6.93	
MW-04	BR	380.70	406.30	25.60	410.02
JTB-100(b)	OB	390.40	407.53	17.13	
JTB-103(a)	BR	382.30	407.12	24.82	408.08
JTB-103(b)	OB	391.70	407.47	15.77	
JTB-105(b)	OB	367.70	380.97	13.27	390.62
JTB-105(c)	OB	376.70	384.76	8.06	
JTB-106(a)	BR	360.00	377.01	17.01	377.70
JTB-106(b)	OB	369.00	377.36	8.36	
JTB-107(a)	BR	347.80	361.94	14.14	361.97
JTB-107(b)	OB	358.20	361.96	3.76	
	-				
JTB-108(a)	BR	346.80	365.87	19.07	365.50
JTB-108(b)	OB	355.80	365.69	9.89	
JTB-109(a)	BR	353.30	370.81	17.51	371.34
JTB-109(b)	OB	362.90	371.09	8.19	

Notes:

Calculated water table elevation is based on the following equation:

 $H_{wt} = Z_s - [((Z_s - Z_d)/(P_s - P_d))] \times P_s$

Where:

Hwt - Calculated Water Table Elevation

 $Z_{s,d}$ - Elevation Head in the shallow or deep well

 $P_{s,d}$ - Elevation Head in the shallow or deep well

Key:

BR - Bedrock

ft - feet

OB - Overburden

msl - mean sea level

APPENDIX F, TABLE F-6 CALCULATIONS OF VERTICAL GRADIENTS AT WELL PAIRS BASED ON WATER ELEVATIONS DATA COLLECTED DECEMBER 8, 1995 STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

Vertical Gradient (ft/ft)	0.0357	0.1145	-0.4296	-0.6079	-0.3552	-0.1897 2	0.3574	NM	-0.0478	-0.0029 NM	NM NM	-0.0531 NM
Groundwater Elevation (ft msl)	349.17	355 353.54	357.64	371.95	410.93	405.89	414.75	NM NM NM	374.38	361.14 361.17 NM	NM NM NM	369.76 370.27 NM
Elevation Center of Screen (ft mst)	317.40 340.40	332.85	346.20 359.70	360.70 379.70	388.80 421.10	380.70 390.40	382.30 391.70	356.20 367.70 376.70	360.00	347.80 358.20 357.22	346.80 355.80 359.63	353.30 362.90 364.05
Elevation Top of Screen (ft msl)	319.90	335.35 348.10	348.70 362.20	363.20 382.20	393.80 426.10	383.20 391.40	383.30 392.70	357.20 368.70 377.70	361.00	348.80 359.20 359.72	347.80 356.80 362.13	354.30 363.90 366.50
Well/Piezometer Designation	MW-05 MW-06	MW-07 MW-08	MW-09 MW-10	MW-11 MW-12	SW-2 MW-13	MW-04 JTB-100 (b)	JTB-103(a) JTB-103 (b)	JTB-105 (a) JTB-105 (b) JTB-105 (c)	JTB-106 (a) JTB-106 (b)	JTB-107 (a) JTB-107 (b) JMW-107	JTB-108 (a) JTB-108 (b) JMW-108	JTB-109 (a) JTB-109 (b) JMW-109

Notes: 1 By convention a positive gradient indicates a vertically upward gradient, and a negative gradient indicates vertically downward gradient.

2 - Water level in JTB-100a does not appear to be representative of formation conditions, therefore the gradient calculation was based on comparison with nearby MW-04.

NM - Not Measured

ft - feet msl - mean sea level

APPENDIX F, TABLE F-7 CALCULATIONS OF VERTICAL GRADIENTS AT WELL PAIRS BASED ON WATER ELEVATIONS DATA COLLECTED MARCH 19, 1996 STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

	Elevation Top of	Elevation Center of	Groundwater	Vertical
Well/Piezometer Designation	Screen (ft msl)	Screen (ft msl)	Elevation (ft msl)	Gradient (ft/ft)
MW-05 MW-06	319.90	317.40	350.39 349.16	0.0535
MW-07 MW-08	335.35 348.10	332.85 345.60	356.97 355.70	9660'0
MW-09 MW-10	348.70	346.20	361.09 365.46	-0.3237
MW-11 MW-12	363.20 382.20	360.70	374.51 386.26	-0.6184
SW-2 MW-13	393.80 426.10	388.80	411.99	-0.3401
MW-04 JTB-100 (b)	383.20 391.40	380.70	406.33 NM	NM
JTB-103(a) JTB-103 (b)	383.30 392.70	382.30 391.70	408.23	-0.0074
JTB-105 (a) JTB-105 (b) JTB-105 (c)	357.20 368.70 377.70	356.20 367.70 376.70	NM NM	NN
JTB-106 (a) JTB-106 (b)	361.00	360.00	377.95 378.10	-0.0167
JTB-107 (a) JTB-107 (b) JMW-107	348.80 359.20 359.72	347.80 358.20 357.22	362.44 362.99 NM	-0.0529 NM
JTB-108 (a) JTB-108 (b) JMW-108	347.80 356.80 362.13	346.80 355.80 359.63	NM NM NM	NM
JTB-109 (a) JTB-109 (b) JMW-109	354.30 363.90 366.55	353.30 362.90 364.05	370.67 370.81 NM	-0.0146 NM

Notes:

- By convention a positive gradient indicates a vertically upward gradient, and a negative gradient indicates vertically downward gradient.

ft - feet

msl - mean sea level NM - Water levels not measured.

APPENDIX F, TABLE F-8 CALCULATIONS OF VERTICAL GRADIENT AT WELL PAIRS BASED ON WATER ELEVATION DATA COLLECTED APRIL 9, 1996 STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

cr Screen Screen Gradient 319.50 317.40 350.24 348.70 340.40 348.79 348.10 345.60 355.28 348.10 345.60 355.28 348.10 346.20 360.70 362.20 359.70 364.59 382.20 359.70 364.59 383.20 388.80 411.42 426.10 421.10 406.30 383.20 380.70 366.53 381.20 380.70 407.47 382.30 382.30 407.12 382.30 380.70 407.53 382.30 380.70 407.53 382.30 380.70 380.75 382.30 380.70 380.75 382.30 360.00 377.01 382.30 380.75 380.75 382.30 380.75 380.77 382.30 380.77 380.77 382.20 382.30 380.77 <td< th=""><th></th><th>Elevation Ton of</th><th>Elevation Center of</th><th>Groundwater</th><th>Vertical</th></td<>		Elevation Ton of	Elevation Center of	Groundwater	Vertical
(ft mst) (ft	Vell/Piezometer	Screen	Screen	Elevation	Gradient
319.90 317.40 350.24 342.90 340.40 348.79 348.70 346.20 355.28 348.70 348.70 366.20 382.20 360.70 374.09 382.20 379.70 374.09 382.20 379.70 374.09 382.20 380.70 406.30 391.40 380.70 407.12 382.30 382.30 407.12 392.70 380.70 407.12 382.30 380.70 407.12 382.30 380.70 407.12 382.30 380.70 380.75 382.30 380.75 380.75 382.30 360.00 377.36 382.30 360.00 377.36 382.30 360.00 377.36 382.30 362.90 362.90 382.30 362.90 377.36 382.30 362.90 377.36 382.30 362.90 377.36 382.30 362.90 377.36 382.30 362.90 377.30 382.30 362.90 377.30 382.30 362.90 377.30 382.30 362.90 377.30 382.	Designation	(ft msl)	(ft msl)	(ft msl)	(ft/ft)
335.35 332.85 356.70 348.70 345.60 360.52 362.20 360.70 364.59 382.20 380.70 374.09 382.20 380.70 374.09 383.20 380.70 374.09 383.20 380.70 401.42 426.10 421.10 423.67 426.10 421.10 423.67 383.30 380.70 407.33 387.20 380.70 407.12 387.20 380.70 380.75 387.70 360.00 377.01 377.70 360.00 377.01 388.80 347.80 361.96 377.20 369.00 377.36 388.80 366.00 377.36 377.80 369.00 377.36 389.72 368.46 365.69 369.00 377.21 365.69 369.00 377.22 365.69 369.00 377.21 365.69 366.03 371.09 366.06 371.09 366.06 371.09 366.07 371.09 367.08 371.09	MW-05 MW-06	319.90	317.40	350.24 348.79	0.0630
348.70 346.20 362.20 350.70 382.20 350.70 382.20 379.70 382.20 379.70 382.20 388.80 421.10 423.67 425.10 421.10 382.20 380.70 392.70 390.40 392.70 391.70 392.70 391.70 362.20 380.75 362.20 380.75 362.20 380.75 362.20 380.75 362.20 380.75 362.20 380.75 362.20 380.75 362.20 380.75 362.20 380.77 362.20 380.77 362.20 380.77 362.20 380.77 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20 362.20	MW-07 MW-08	335.35	332.85	356.70 355.28	0.1114
363.20 360.70 374.09 382.20 379.70 386.63 393.80 411.42 426.10 421.10 423.67 383.20 380.70 407.53 383.30 382.30 407.12 383.30 382.30 407.12 386.70 380.77 380.77 387.70 380.77 380.77 361.00 360.00 377.01 347.80 347.80 361.94 359.20 358.20 361.94 359.20 358.20 361.94 359.20 358.20 361.96 362.13 362.90 362.81 363.90 362.90 362.80 363.90 362.90 371.09 364.00 371.09 364.00 371.09	MW-09 MW-10	348.70	346.20 359.70	360.52	-0.3015
393.80 388.80 411.42 426.10 421.10 423.67 383.20 380.70 406.30 391.40 390.40 407.53 383.30 382.30 407.12 387.20 382.30 407.12 368.70 367.70 380.75 368.70 367.70 380.75 368.70 369.00 377.01 377.01 377.01 384.76 388.80 369.00 377.36 347.80 369.00 377.36 357.22 357.22 362.77 358.80 358.80 368.46 355.80 365.69 362.13 353.30 370.81 364.05 371.33 364.05 371.33	MW-11 MW-12	363.20	360.70 379.70	374.09	0099.0-
383.20 380.70 406.30 391.40 390.40 407.53 382.70 382.30 407.12 357.20 356.20 380.75 368.70 367.70 380.75 368.70 367.70 384.76 377.70 369.00 377.01 370.00 369.00 377.36 377.30 358.20 361.94 359.72 358.20 361.96 356.80 355.80 365.69 362.13 355.80 365.69 363.90 362.90 371.09 366.55 366.55 371.39	SW-2 MW-13	393.80	388.80 421.10	411.42	-0.3513
383.30 382.30 407.12 392.70 391.70 407.47 357.20 356.20 380.75 368.70 367.70 380.97 377.70 360.00 377.01 348.80 369.00 377.01 359.20 358.20 361.96 359.72 358.20 361.96 356.81 357.22 362.77 356.80 355.80 365.87 356.31 353.30 370.81 365.30 362.90 371.09 366.55 364.05 371.33	MW-04 JTB-100 (b)	383.20 391.40	380.70 390.40	406.30	-0.1268 2
357.20 356.20 380.75 368.70 367.70 380.75 377.70 376.70 384.76 361.00 360.00 377.01 348.80 347.80 361.96 359.20 358.20 361.96 359.72 357.22 362.77 346.80 355.80 365.87 354.30 353.30 370.81 365.55 366.55 371.09 366.55 364.05 371.33	JTB-103(a) JTB-103 (b)	383.30 392.70	382.30 391.70	407.12	-0.0372
361.00 360.00 377.01 370.00 369.00 377.01 348.80 347.80 361.94 359.20 358.20 361.96 347.80 346.80 362.77 347.80 346.80 365.69 356.13 353.30 370.81 365.90 365.90 371.09 366.55 364.05 371.33	JTB-105 (a) JTB-105 (b) JTB-105 (c)	357.20 368.70 377.70	356.20 367.70 376.70	380.75 380.97 384.76	-0.0191 -0.4211
348.80 347.80 361.94 359.20 358.20 361.96 347.80 346.80 362.77 347.80 346.80 365.87 356.80 355.80 365.69 354.30 353.30 370.81 365.90 365.90 371.09 366.55 364.05 371.39	JTB-106 (a) JTB-106 (b)	361.00	360.00	377.01	-0.0389
346.80 346.80 365.87 356.80 355.80 365.69 362.13 359.63 368.46 354.30 353.30 370.81 366.55 364.05 371.39	JTB-107 (a) JTB-107 (b) JMW-107	348.80 359.20 359.72	347.80 358.20 357.22	361.94 361.96 362.77	-0.0019
354.30 353.30 370.81 365.90 362.90 371.09 366.55 364.05 371.33	JTB-108 (a) JTB-108 (b) JMW-108	347.80 356.80 362.13	346.80 355.80 359.63	365.87 365.69 368.46	0.0200
	JTB-109 (a) JTB-109 (b) JMW-109	354.30 363.90 366.55	353.30 362.90 364.05	370.81 371.09 371.33	-0.0292 -0.2087

msl - mean sea level

Notes: ¹ By convention a positive gradient indicates a vertically upward gradient, and a negative gradient indicates vertically downward gradient.

² - Water level in JTB-100a does not appear to be representative of formation conditions, therefore the gradient calculation was based on nearby MW-04.

ft - feet

Figure 1. Relation of flowlines and equipotential lines in true-scale and distorted flow patterns

Figure 2. Nomograph for the determination of φ_1 from α_1 and X

APPENDIX G AQUIFER TESTING RESULTS

APPENDIX TABLE 1

ANEPTEK OVERBURDEN WELL SLUG TEST INPUT DATA

WELL NUMBER	INPUT	90-MW	MW-08	MW-10	MW-12	MW-13
	:					
WELL GROUND SURFACE ELEVATION (MSL)		349.9	359.4	366.2	387.2	433.1
REFERENCE ELEVATION - TOP OF RISER (MSL)		352.53	362.14	368.39	389.78	435.32
DEPTH TO STATIC WATER LEVEL - TOR (FT)		4.04	8.32	1.44	5.85	11.88
DEPTH TO STATIC WATER LEVEL - GROUND SURFACE (FT)		1.41	5.58	-0.75	3.27	99.6
ELEVATION OF STATIC WATER LEVEL (MSL)		348.49	353.82	366.95	383.93	423.44
DEPTH TO TOP OF SCREEN FROM GROUND SURFACE (FT)		5	11.3	4	5	7
DEPTH TO BOTTOM OF SCREEN FROM GROUND SURFACE (FT)		10	16.3	6	10	17
ELEVATION OF TOP OF SCREEN (MSL)		344.9	348.1	362.2	382.2	426.1
ELEVATION OF BOTTOM OF SCREEN (MSL)		339.9	343.1	357.2	377.2	416.1
DEPTH TO BEDROCK (FT)		24.5	16	10.3	18	37.5
ELEVATION OF BEDROCK (MSL)		325.4	343.4	6.235	369.2	395.6
AQUIFER SATURATED THICKNESS (FT)	H	23.09	10.42	11.05	14.73	27.84
DEPTH TO TOP OF SCREEN RELATIVE TO TOP OF AQUIFER (FT)		3.59	5.72	4.75	1.73	-2.66
DEPTH TO BOTTOM OF SCREEN RELATIVE TO TOP OF AQUIFER (FT)		8.59	10.72	9.75	6.73	7.34
LENGTH OF WELL SCREEN (FT)	Le	5	5	5	5	10
LENGTH OF SATURATED WELL SCREEN (FT)		5	5	5	5	7.34
LENGTH OF SATURATED RISER (FT)		3.59	5.72	4.75	1.73	0
LENGTH OF SATURATED WELL SCREEN AND RISER (FT)	Lw	8.59	10.72	9.75	6.73	7.34
DIAMETER OF SCREEN (FT)	2rc	0.166	0.166	0.166	0.166	0.166
DIAMETER OF BOREHOLE (FT)	2rw	0.687	0.687	0.687	0.687	0.687
MEAN GRAIN-SIZE FILTER PACK (mm)		0.59	0.59	0.59	0.59	0.59
POROSITY OF FILTER PACK (%)		0.3	0.3	0.3	0.3	0.3

APPENDIX TABLE 2

ANEPTEK BEDROCK WELL SLUG TEST INPUT DATA

WELL NUMBER	INPUT	MW-01	MW-04	MW-05	MW-07	MW-09	MW-11
WELL GROUND SURFACE ELEVATION (MSL)		436.4	434.2	349.9	360.1	366.2	385.9
REFERENCE ELEVATION - TOP OF RISER (MSL)		438.49	436.29	352.28	362.77	368.81	388.69
DEPTH TO STATIC WATER LEVEL - TOR (FT)		31.87	30.37	3.02	7.56	10.91	16.29
DEPTH TO STATIC WATER LEVEL - GROUND SURFACE (FT)		29.78	28.28	0.64	4.89	8.3	13.5
ELEVATION OF STATIC WATER LEVEL (MSL)		406.62	405.92	349.26	355.21	357.9	372.4
DEPTH TO TOP OF SCREEN FROM GROUND SURFACE (FT)		37	51	30	24.75	17.5	22.7
DEPTH TO BOTTOM OF SCREEN FROM GROUND SURFACE (FT)		42	56	35	29.75	22.5	7.72
ELEVATION OF TOP OF SCREEN (MSL)		399.4	383.2	319.9	335.35	348.7	363.2
ELEVATION OF BOTTOM OF SCREEN (MSL)		394.4	378.2	314.9	330.35	343.7	358.2
DEPTH TO BEDROCK (FT)		88	45	21.5	16	10.3	18
ELEVATION OF BEDROCK (MSL)		403.4	389.2	328.4	344.1	355.9	367.9
DEPTH TO BASE OF FRACTURED ROCK (FT)		55	19	43.5	88	32.3	40
ELEVATION OF BASE OF FRACTURED ROCK (MSL)		381.4	367.2	306.4	322.1	333.9	345.9
AOUIFER SATURATED THICKNESS (FT)	H	77	22	22	77	22	22
DEPTH TO TOP OF SCREEN RELATIVE TO TOP OF AQUIFER (FT)		7	9	8.5	8.75	7.2	4.7
DEPTH TO BOTTOM OF SCREEN RELATIVE TO TOP OF AQUIFER (FT)		6	11	13.5	13.75	12.2	7.6
LENGTH OF WELL SCREEN (FT)	Le	5	5	5	5	5	5
LENGTH OF SATURATED WELL SCREEN (FT)		5	5	5	5	5	5
LENGTH OF SATURATED RISER (FT)		7.22	22.72	29.36	19.86	9.2	9.5
TOTAL LENGTH OF SATURATED WELL SCREEN AND RISER (FT)	Lw	12.22	27.72	34.36	24.86	14.2	14.2
DIAMETER OF SCREEN (FT)	2rc	0.166	0.166	0.166	0.166	0.166	0.166
DIAMETER OF BOREHOLE (FT)	2rw	0.33	0.33	0.33	0.33	0.33	0.33
MEAN GRAIN-SIZE FILTER PACK (mm)		0.59	0.59	0.59	0.59	0.59	0.59
POROSITY OF FILTER PACK (%)		0.3	0.3	0.3	0.3	0.3	0.3

APPENDIX TABLE 3

E.C. JORDAN OVERBURDEN WELL SLUG TEST INPUT DATA

WELL NUMBER	INPUT VARIABLE	JMW-107	JMW-108	JMW-109
WELL GROUND SURFACE ELEVATION (MSL)		364.1	368.1	371.8
REFERENCE ELEVATION - TOP OF RISER (MSL)		367.04	370.7	374.15
DEPTH TO STATIC WATER LEVEL - TOR (FT)		10.13	8.38	9.91
DEPTH TO STATIC WATER LEVEL - GROUND SURFACE (FT)		7.19	5.78	7.56
ELEVATION OF STATIC WATER LEVEL (MSL)		356.91	362.32	364.24
DEPTH TO TOP OF SCREEN FROM GROUND SURFACE (FT)		4.38	5.97	5.25
DEPTH TO BOTTOM OF SCREEN FROM GROUND SURFACE (FT)		9:38	10.97	10.25
ELEVATION OF TOP OF SCREEN (MSL)		359.72	362.13	366.55
ELEVATION OF BOTTOM OF SCREEN (MSL)		354.72	357.13	361.55
DEPTH TO BEDROCK (FT)		9.4	12.8	10.4
ELEVATION OF BEDROCK (MSL)		354.7	355.3	361.4
AQUIFER SATURATED THICKNESS (FT)	H	2.21	7.02	2.84
DEPTH TO TOP OF SCREEN RELATIVE TO TOP OF AQUIFER (FT)		-2.81	0.19	-2.31
DEPTH TO BOTTOM OF SCREEN RELATIVE TO TOP OF AQUIFER (FT)		2.19	5.19	2.69
LENGTH OF WELL SCREEN	Le	5	5	5
LENGTH OF SATURATED WELL SCREEN (FT)		2.19	5	2.69
LENGTH OF SATURATED RISER (FT)		0	0.19	0
LENGTH OF SATURATED WELL SCREEN AND RISER (FT)	Lw	2.19	5.19	2.69
DIAMETER OF SCREEN (FT)	2rc	0.166	0.166	0.166
DIAMETER OF BOREHOLE (FT)	2rw	99.0	99.0	99.0
MEAN GRAIN-SIZE FILTER PACK (mm)		65.0	65.0	0.59
POROSITY OF FILTER PACK (%)		6.0	0.3	0.3

STEWART ANG BASE MW-04 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity:	6.49E-01 2.29E-04	ft/day cm/sec
Y-Intercept (Yo):	2.02E+00	ft
Well Screen Ratio (Le/rw):	30.3	
Dimensionless Parameter A:	0.00	
Dimensionless Parameter B:	0.00	
Slope of Line [ln(Yo/Yt)/t]:	1.827E-01	1/min
Well Parameters (Rc^2 / 2*Le):	6.972E-04	ft
Dimensionless Ratio [ln(Re/rw)]:	3.536	
Effective Radius [Re]:	5.67	ft
Volume Tested [rw <vol<re]:< td=""><td>5.04E+02</td><td>ft^3</td></vol<re]:<>	5.04E+02	ft^3

Well/Aquifer Parameters

Depth of well:	27.72	ft
Length of well screen:	5.00	ft
Saturated thickness:	22.00	ft
Diameter of the well casing:	0.167	ft
Diameter of the well filter:	0.330	ft

					*			
No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	2.041	2	0.0084	2.034	3	0.0167	2.034
4	0.0250	2.028	5	0.0334	2.022	6	0.0417	2.022
7	0.0500	2.015	8	0.0584	2.015	9	0.0667	2.009
10	0.0750	2.009	11	0.0834	2.002	12	0.0917	1.996
13	0.1000	1.996	14	0.1084	1.996	15	0.1167	1.990
16	0.1250	1.990	17	0.1334	1.990	18	0.1417	1.977
19	0.1500	1.977	20	0.1584	1.977	21	0.1667	1.977
22	0.1750	1.964	23	0.1834	1.964	24	0.1917	1.964
25	0.2084	1.958	26	0.2250	1.951	27	0.2417	1.945
28	0.2584	1.932	29	0.2750	1.926	30	0.2917	1.926
31	0.3084	1.913	32	0.3250	1.913	33	0.3417	1.906
34	0.3584	1.900	35	0.3750	1.894	36	0.3917	1.894
37	0.4084	1.881	38	0.4250	1.874	39	0.4417	1.842
40	0.4584	1.868	41	0.4750	1.855	42	0.4917	1.849
43	0.5084	1.849	44	0.5250	1.842	45	0.5417	1.836
46	0.5584	1.830	47	0.5750	1.823	48	0.5917	1.817

STEWART ANG BASE MW-04 Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	0.6084	1.810	50	0.6250	1.804	51	0.6417	1.798
52	0.6584	1.798	53	0.6750	1.785	54	0.6917	1.785
55	0.7084	1.778	56	0.7250	1.772	57	0.7417	1.766
58	0.7584	1.759	59	0.7750	1.753	60	0.7917	1.753
61	0.8084	1.746	62	0.8250	1.740	63	0.8417	1.734
64	0.8584	1.727	65	1.0584	1.663	66	1.2584	1.606
67	1.4584	1.542	68	1.6584	1.490	69	1.8584	1.433
70	2.0584	1.382	71	2.2584	1.330	72	2.4584	1.286
73	2.6584	1.234	74	2.8584	1.190	75	3.0584	1.151
76	3.2584	1.106	77	3.4584	1.068	78	3.6584	1.030
79	3.8584	0.991	80	4.0584	0.953	81	4.2584	0.921
82	4.4584	0.889	83	4.6584	0.857	84	4.8584	0.825
85	5.0584	0.793	86	5.2584	0.767	87	5.4584	0.742
88	5.6584	0.716	89	5.8584	0.690	90	6.0584	0.665
91	6.2584	0.639	92	6.4584	0.620	93	6.6584	0.594
94	6.8584	0.575	95	7.0584	0.556	96	7.2584	0.537
97	7.4584	0.518	98	7.6584	0.499	99	7.8584	0.479
100	8.0584	0.467	101	8.2584	0.447	102	8.4584	0.435
103	8.6584	0.415	104	8.8584	0.403	105	9.0584	0.390
106	9.2584	0.377	107	9.4584	0.358	108	9.6584	0.345
109	9.8584	0.339	110	10.8584	0.281	111	11.8584	0.236
112	12.8584	0.198						

STEWART ANG BASE

MW-04

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-04 DUPLICATE Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity: 6.67E-01 ft/day 2.35E-04 cm/sec Y-Intercept (Yo): 2.09E+00 ft Well Screen Ratio (Le/rw): 30.3 Dimensionless Parameter A: 0.00 Dimensionless Parameter B: 0.00 Slope of Line [ln(Yo/Yt)/t]: 1.877E-01 1/min Well Parameters (Rc^2 / 2*Le): 6.972E-04 ft Dimensionless Ratio [ln(Re/rw)]: 3.536 Effective Radius [Re]: 5.67 ft

Volume Tested [rw<Vol<Re]: 5.67 It

Well/Aquifer Parameters

Depth of well: 27.72 ft
Length of well screen: 5.00 ft
Saturated thickness: 22.00 ft
Diameter of the well casing: 0.167 ft
Diameter of the well filter: 0.330 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	2.117	2	0.0083	2.098	3	0.0167	2.105
4	0.0250	2.098	5	0.0333	2.085	6	0.0417	2.098
7	0.0500	2.079	8	0.0583	2.085	9	0.0667	2.079
10	0.0750	2.079	11	0.0833	2.079	12	0.0917	2.066
13	0.1000	2.066	14	0.1083	2.073	15	0.1167	2.060
16	0.1250	2.060	17	0.1333	2.053	18	0.1417	2.047
19	0.1500	2.041	20	0.1583	2.034	21	0.1667	2.041
22	0.1750	2.041	23	0.1833	2.028	24	0.1917	2.034
25	0.2000	2.021	26	0.2083	2.028	27	0.2167	2.028
28	0.2250	2.015	29	0.2417	2.009	30	0.2583	2.002
31	0.2750	1.989	32	0.2917	1.996	33	0.3083	1.989
34	0.3250	1.970	35	0.3417	1.977	36	0.3583	1.964
37	0.3750	1.964	38	0.3917	1.951	39	0.4083	1.945
40	0.4250	1.945	41	0.4417	1.932	42	0.4583	1.925
43	0.4750	1.913	44	0.4917	1.913	45	0.5083	1.906
46	0.5250	1.906	47	0.5417	1.887	48	0.5583	1.881
49	0.5750	1.874	50	0.5917	1.874	51	0.6083	1.861

STEWART ANG BASE

MW-04 DUPLICATE

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	0.6250	1.868	53	0.6417	1.855	54	0.6583	1.842
55	0.6750	1.849	56	0.6917	1.836	57	0.7083	1.829
58	0.7250	1.823	59	0.7417	1.817	60	0.7583	1.810
61	0.7750	1.810	62	0.7917	1.804	63	0.8083	1.797
64	0.8250	1.797	65	0.8417	1.785	66	0.8583	1.785
67	0.8750	1.778	68	0.8917	1.778	69	1.0917	1.708
70	1.2917	1.637	71	1.4917	1.573	72	1.6917	1.509
73	1.8917	1.465	74	2.0917	1.401	75	2.2917	1.350
76	2.4917	1.305	77	2.6917	1.254	78	2.8917	1.209
79	3.0917	1.170	80	3.2917	1.119	81	3.4917	1.081
82	3.6917	1.036	83	3.8917	1.010	84	4.0917	0.959
85	4.2917	0.927	86	4.4917	0.902	87	4.6917	0.870
88	4.8917	0.825	89	5.0917	0.806	90	5.2917	0.774
91	5.4917	0.742	92	5.6917	0.716	93	5.8917	0.697
94	6.0917	0.658	95	6.2917	0.646	96	6.4917	0.626
97	6.6917	0.594	98	6.8917	0.575	99	7.0917	0.550
100	7.2917	0.524	101	7.4917	0.492	102	7.6917	
103	7.8917	0.467	104	8.0917	0.447	105	8.2917	0.435
106	8.4917	0.415	107	8.6917	0.396	108	8.8917	0.390
109	9.0917	0.371	110	9.2917	0.358	111	9.4917	0.351
112	9.6917	0.326	113	9.8917	0.313	114	10.8917	
115	11.8917	0.217	116	12.8917	0.191	117	13.8917	
118	14.8917	0.134	119	15.8917	0.108	120	16.8917	0.095
121	17.8917	0.076						

STEWART ANG BASE
MW-04 DUPLICATE
Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-05 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity:	1.02E-01 3.60E-05	ft/day cm/sec
Y-Intercept (Yo):	2.03E+00	ft
Well Screen Ratio (Le/rw):	30.3	
Dimensionless Parameter A:	0.00	
Dimensionless Parameter B:	0.00	
Slope of Line [ln(Yo/Yt)/t]:	2.820E-02	1/min
Well Parameters (Rc^2 / 2*Le):	6.889E-04	ft
Dimensionless Ratio [ln(Re/rw)]:	3.648	
Effective Radius [Re]:	6.33	ft
<pre>Volume Tested [rw<vol<re]:< pre=""></vol<re]:<></pre>	6.30E+02	ft ³

Well/Aquifer Parameters

Depth of well:	34.36	ft
Length of well screen:	5.00	ft
Saturated thickness:	22.00	ft
Diameter of the well casing:	0.166	ft
Diameter of the well filter:	0.330	ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	2.038	2	0.0166	2.031	3	0.0333	2.031
4	0.0500	2.031	5	0.0666	2.031	6	0.0833	2.031
7	0.1000	2.031	8	0.1166	2.025	9	0.1333	2.025
10	0.1500	2.025	11	0.1666	2.025	12	0.1833	2.025
13	0.2000	2.018	14	0.2166	2.018	15	0.2333	2.018
16	0.2500	2.018	17	0.2666	2.018	18	0.2833	2.018
19	0.3000	2.012	20	0.3166	2.012	21	0.3333	2.012
22	0.3500	2.012	23	0.3666	2.012	24	0.3833	2.012
25	0.4000	2.006	26	0.4166	2.006	27	0.4333	2.006
28	0.4500	2.006	29	0.6500	1.993	30	0.8500	1.980
31	1.0500	1.967	32	1.2500	1.954	33	1.4500	1.942
34	1.6500	1.935	35	1.8500	1.922	36	2.0500	1.909
37	2.2500	1.897	38	2.4500	1.890	39	2.6500	1.877
40	2.8500	1.865	41	3.0500	1.858	42	3.2500	1.845
43	3.4500	1.833	44	3.6500	1.826	45	3.8500	1.813
46	4.0500	1.801	47	4.2500	1.788	48	4.4500	1.781
49	4.6500	1.768	50	4.8500	1.762	51	5.0500	1.749

STEWART ANG BASE
MW-05
Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	5.2500	1.743	53	5.4500	1.730	54	5.6500	1.717
55	5.8500	1.711	56	6.0500	1.704	57	6.2500	1.692
58	6.4500	1.679	59	6.6500	1.672	60	6.8500	1.666
61	7.0500	1.653	62	7.2500	1.647	63	7.4500	1.634
64	7.6500	1.627	65	7.8500	1.615	66	8.0500	1.608
67	8.2500	1.595	68	8.4500	1.589	69	8.6500	1.576
70	8.8500	1.570	71	9.0500	1.563	72	9.2500	1.551
73	9.4500	1.544	74	10.4500	1.506	75	11.4500	1.461
76	12.4500	1.422	77	13.4500	1.384	78	14.4500	1.345
79	15.4500	1.313	80	16.4500	1.275	81	17.4500	1.243
82	18.4500	1.211	83	19.4500	1.172	84	20.4500	1.140
85	21.4500	1.108	86	22.4500	1.083	87	23.4500	1.051
88	24.4500	1.025	89	25.4500	0.999	90	26.4500	0.967
91	27.4500	0.942	92	28.4500	0.916	93	29.4500	0.890
94	30.4500	0.865	95	31.4500	0.839	96	32.4500	0.820
97	33.4500	0.794	98	34.4500	0.775	99	35.4500	0.756
100	36.4500	0.730	101	37.4500	0.711	102	38.4500	0.692
103	39.4500	0.672	104	40.4500	0.647	105	41.4500	0.634
106	42.4500	0.615	107	43.4500	0.595	108	44.4500	0.576
109	45.4500	0.557	110	46.4500	0.538	111	47.4500	0.525
112	48.4500	0.512	113	49.4500	0.493	114	50.4500	0.480

STEWART ANG BASE

MW-05

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-06 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity:	4.47E-01 1.58E-04	ft/day cm/sec
Y-Intercept (Yo):	1.56E+00	ft
Well Screen Ratio (Le/rw):	14.6	
Dimensionless Parameter A:	1.99	
Dimensionless Parameter B:	0.30	
Slope of Line [ln(Yo/Yt)/t]:	2.481E-01	1/min
Well Parameters (Rc^2 / 2*Le):	6.972E-04	ft
Dimensionless Ratio [ln(Re/rw)]:	1.796	
Effective Radius [Re]:	2.07	ft
<pre>Volume Tested [rw<vol<re]:< pre=""></vol<re]:<></pre>	6.55E+01	ft^3

Well/Aquifer Parameters

	D€	epth o	of well:	8.59	ft
Lengt	h of	well	screen:	5.00	ft
Sat	urate	ed thi	ickness:	23.09	ft
Diameter of	the	well	casing:	0.167	ft
Diameter of	the	well	filter:	0.687	ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.715	2	0.0083	1.702	3	0.0167	1.689
4	0.0250	1.670	5	0.0333	1.657	6	0.0417	1.651
7	0.0500	1.638	8	0.0583	1.632	9	0.0667	1.619
10	0.0750	1.613	11	0.0833	1.607	12	0.0917	1.594
13	0.1000	1.594	14	0.1083	1.581	15	0.1167	1.575
16	0.1250	1.568	17	0.1333	1.562	18	0.1417	1.556
19	0.1500	1.549	20	0.1583	1.543	21	0.1667	1.537
22	0.1750	1.530	23	0.1833	1.524	24	0.1917	1.518
25	0.2000	1.518	26	0.2083	1.505	27	0.2167	1.499
28	0.2250	1.492	29	0.2417	1.486	30	0.2583	1.473
31	0.2750	1.460	32	0.2917	1.454	33	0.3083	1.441
34	0.3250	1.435	35	0.3417	1.422	36	0.3583	1.416
37	0.3750	1.410	38	0.3917	1.397	39	0.4083	1.391
40	0.4250	1.378	41 •	0.4417	1.372	42	0.4583	1.365
43	0.4750	1.352	44	0.4917	1.346	45	0.5083	1.340
46	0.5250	1.333	47	0.5417	1.327	48	0.5583	1.314

STEWART ANG BASE

MW-06

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	0.5750	1.308	50	0.5917	1.302	51	0.6083	1.295
52	0.6250	1.289	53	0.6417	1.283	54	0.6583	1.276
55	0.6750	1.270	56	0.6917	1.264	57	0.7083	1.251
58	0.7250	1.251	59	0.7417	1.238	60	0.7583	1.232
61	0.7750	1.225	62	0.7917	1.225	63	0.8083	1.219
64	0.8250	1.213	65	0.8417	1.206	66	0.8583	1.200
67	0.8750	1.194	68	0.8917	1.187	69	1.0917	1.117
70	1.2917	1.060	71	1.4917	1.009	72	1.6917	0.959
73	1.8917	0.914	74	2.0917	0.876	75	2.2917	0.838
76	2.4917	0.800	77	2.6917	0.768	78	2.8917	0.736
79	3.0917	0.705	80	3.2917	0.679	81	3.4917	0.647
82	3.6917	0.628	83	3.8917	0.603	84	4.0917	0.584
85	4.2917	0.558	86	4.4917	0.539	87	4.6917	0.520
88	4.8917	0.508	89	5.0917	0.482	90	5.2917	0.469
91	5.4917	0.457	92	5.6917	0.438	93	5.8917	0.425
94	6.0917	0.412	95	6.2917	0.400	96	6.4917	0.387
97	6.6917	0.381	98	6.8917	0.362	99	7.0917	0.355
100	7.2917	0.342	101	7.4917	0.336	102	7.6917	0.323
103	7.8917	0.317	104	8.0917	0.304	105	8.2917	0.304
106	8.4917	0.292	107	8.6917	0.285	108	8.8917	0.279
109	9.0917	0.273	110	9.2917	0.266	111	9.4917	0.260
112	9.6917	0.247	113	9.8917	0.247	114	10.8917	0.215
115	11.8917	0.196	116	12.8917	0.177	117	13.8917	0.158
118	14.8917	0.146	119	15.8917	0.133	120	16.8917	0.120
121	17.8917	0.114	122	18.8917	0.107	123	19.8917	0.095
124	20.8917	0.088	125	21.8917	0.082	126	22.8917	0.082
127	23.8917	0.076	128	24.8917	0.069	129	25.8917	0.069
130	26.8917	0.063	131	27.8917	0.063	132	28.8917	0.063
133	29.8917	0.057						

STEWART ANG BASE

MW-06

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-07 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity:	5.33E-01 1.88E-04	ft/day cm/sec
Y-Intercept (Yo):	1.58E+00	ft
Well Screen Ratio (Le/rw):	30.3	
Dimensionless Parameter A:	0.00	
Dimensionless Parameter B:	0.00	
Slope of Line [ln(Yo/Yt)/t]:	1.527E-01	1/min
Well Parameters (Rc^2 / 2*Le):	6.972E-04	ft
Dimensionless Ratio [ln(Re/rw)]:	3.479	
Effective Radius [Re]:	5.35	ft
Volume Tested [rw <vol<re]:< td=""><td>4.49E+02</td><td>ft^3</td></vol<re]:<>	4.49E+02	ft^3

Well/Aquifer Parameters

Depth of well:	24.86	ft
Length of well screen:	5.00	ft
Saturated thickness:	22.00	ft
Diameter of the well casing:	0.167	ft
Diameter of the well filter:	0.330	ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0010	1.656	2	0.0083	1.644	3	0.0166	1.637
4	0.0250	1.637	5	0.0333	1.624	6	0.0416	1.624
7	0.0500	1.618	8	0.0583	1.612	9	0.0666	1.605
10	0.0750	1.605	11	0.0833	1.599	12	0.0916	1.593
13	0.1000	1.586	14	0.1083	1.586	15	0.1166	1.580
16	0.1250	1.580	17	0.1333	1.573	18	0.1416	1.573
19	0.1500	1.567	20	0.1583	1.561	21	0.1750	1.561
22	0.1916	1.554	23	0.2083	1.542	24	0.2250	1.535
25	0.2416	1.529	26	0.2583	1.529	27	0.2750	1.522
28	0.2916	1.516	29	0.3083	1.510	30	0.3250	1.503
31	0.3416	1.497	32	0.3583	1.491	33	0.3750	1.491
34	0.3916	1.484	35	0.4083	1.478	36	0.4250	1.471
37	0.4416	1.471	38	0.4583	1.465	39	0.4750	1.459
40	0.4916	1.452	41	0.5083	1.446	42	0.5250	1.446
43	0.5416	1.440	44	0.5583	1.433	45	0.5750	1.433
46	0.5916	1.427	47	0.6083	1.421	48	0.6250	1.414

STEWART ANG BASE
MW-07
Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	0.6416	1.414	50	0.6583	1.408	51	0.6750	1.408
52	0.6916	1.401	53	0.7083	1.395	54	0.7250	1.389
55	0.7416	1.389	56	0.7583	1.382	57	0.7750	1.376
58	0.7916	1.376	59	0.8083	1.370	60	0.8250	1.363
61	1.0250	1.325	62	1.2250	1.274	63	1.4250	1.236
64	1.6250	1.197	65	1.8250	1.159	66	2.0250	1.127
67	2.2250	1.095	68	2.4250	1.057	69	2.6250	1.032
70	2.8250	0.994	71	3.0250	0.974	72	3.2250	0.943
73	3.4250	0.917	74	3.6250	0.885	75	3.8250	0.866
76	4.0250	0.841	77	4.2250	0.815	78	4.4250	0.790
79	4.6250	0.770	80	4.8250	0.751	81	5.0250	0.726
82	5.2250	0.707	83	5.4250	0.688	84	5.6250	0.669
85	5.8250	0.649	86	6.0250	0.630	87	6.2250	0.611
88	6.4250	0.598	89	6.6250	0.579	90	6.8250	0.560
91	7.0250	0.547	92	7.2250	0.528	93	7.4250	0.516
94	7.6250	0.503	95	7.8250	0.490	96	8.0250	0.477
97	8.2250	0.458	98	8.4250	0.446	99	8.6250	0.439
100	8.8250	0.420	101	9.0250	0.407	102	9.2250	0.401
103	9.4250	0.388	104	9.6250	0.375	105	9.8250	0.363
106	11.8250	0.267	107	13.8250	0.203	108	15.8250	0.146
109	17.8250	0.108	110	19.8250	0.076	111	21.8250	0.057
112	23.8250	0.038	113	25.8250	0.031	114	27.8250	0.019
115	29.8250	0.019	116	31.8250	0.012	117	0.0000	1.000

STEWART ANG BASE

MW-07

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-07 DUPLICATE Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity:	4.46E-01 1.57E-04	ft/day cm/sec
Y-Intercept (Yo):	1.58E+00	ft
Well Screen Ratio (Le/rw):	30.3	
Dimensionless Parameter A:	0.00	
Dimensionless Parameter B:	0.00	
Slope of Line [ln(Yo/Yt)/t]:	1.277E-01	1/min
Well Parameters (Rc^2 / 2*Le):	6.972E-04	ft
Dimensionless Ratio [ln(Re/rw)]:	3.479	
Effective Radius [Re]:	5.35	ft
<pre>Volume Tested [rw<vol<re]:< pre=""></vol<re]:<></pre>	4.49E+02	ft^3

Well/Aquifer Parameters

Depth of we	ell: 24.86	ft
Length of well scr	een: 5.00	ft
Saturated thickne	ess: 22.00	ft
Diameter of the well cas:	ing: 0.167	ft
Diameter of the well filt	ter: 0.330	ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.669	2	0.0083	1.656	3	0.0167	1.650
4	0.0250	1.644	5	0.0333	1.637	6	0.0417	1.631
7	0.0500	1.625	8	0.0583	1.625	9	0.0667	1.618
10	0.0750	1.612	11	0.0833	1.612	12	0.0917	1.605
13	0.1000	1.599	14	0.1083	1.599	15	0.1167	1.593
16	0.1250	1.593	17	0.1333	1.586	18	0.1417	1.580
19	0.1500	1.580	20	0.1667	1.574	21	0.1833	1.567
22	0.2000	1.561	23	0.2167	1.554	24	0.2333	1.548
25	0.2500	1.542	26	0.2667	1.535	27	0.2833	1.535
28	0.3000	1.529	29	0.3167	1.523	30	0.3333	1.516
31	0.3500	1.510	32	0.3667	1.503	33	0.3833	1.503
34	0.4000	1.497	35	0.4167	1.491	36	0.4333	1.484
37	0.4500	1.484	38	0.4667	1.478	39	0.4833	1.472
40	0.5000	1.472	41	0.5167	1.465	42	0.5333	1.459
43	0.5500	1.459	44	0.5667	1.452	45	0.5833	1.452
46	0.6000	1.446	47	0.6167	1.440	48	0.6333	1.440
49	0.6500	1.433	50	0.6667	1.427	51	0.6833	1.427

STEWART ANG BASE
MW-07 DUPLICATE
Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	0.7000	1.421	53	0.7167	1.421	54	0.7333	1.414
55	0.7500	1.408	56	0.7667	1.408	57	0.7833	1.401
58	0.8000	1.401	59	0.8167	1.395	60	1.0167	1.350
61	1.2167	1.306	62	1.4167	1.274	63	1.6167	1.236
64	1.8167	1.204	65	2.0167	1.166	66	2.2167	1.140
67	2.4167	1.108	68	2.6167	1.076	69	2.8167	1.057
70	3.0167	1.025	71	3.2167	1.006	72	3.4167	0.981
73	3.6167	0.949	74	3.8167	0.930	75	4.0167	0.904
76	4.2167	0.892	77	4.4167	0.866	78	4.6167	0.847
79	4.8167	0.828	80	5.0167	0.809	81	5.2167	0.790
82	5.4167	0.771	83	5.6167	0.751	84	5.8167	0.732
85	6.0167	0.720	86	6.2167	0.700	87	6.4167	0.688
88	6.6167	0.675	89	6.8167	0.656	90	7.0167	0.637
91	7.2167	0.624	92	7.4167	0.611	93	7.6167	0.598
94	7.8167	0.586	95	8.0167	0.573	96	8.2167	0.560
97	8.4167	0.547	98	8.6167	0.535	99	8.8167	0.528
100	9.0167	0.516	101	9.2167	0.503	102	9.4167	0.497
103	9.6167	0.471	104	9.8167	0.458	105	10.8167	0.426
106	11.8167	0.375	107	12.8167	0.350	108	13.8167	0.318
109	14.8167	0.293	110	15.8167	0.261	111	16.8167	0.235
112	17.8167	0.223	113	18.8167	0.203	114	19.8167	0.184
115	20.8167	0.172	116	21.8167	0.159	117	22.8167	0.146
118	23.8167	0.140						

STEWART ANG BASE

MW-07 DUPLICATE

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-08 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity: 1.30E+00 ft/day
4.58E-04 cm/sec
Y-Intercept (Yo): 1.62E+00 ft
Well Screen Ratio (Le/rw): 14.6
Dimensionless Parameter A: 0.00
Dimensionless Parameter B: 0.00
Slope of Line [ln(Yo/Yt)/t]: 5.455E-01 1/min
Well Parameters (Rc^2 / 2*Le): 6.972E-04 ft

Dimensionless Ratio [ln(Re/rw)]: 2.372

Effective Radius [Re]: 3.68 ft Volume Tested [rw<Vol<Re]: 2.11E+02 ft^3

Well/Aquifer Parameters

Depth of well: 10.72 ft
Length of well screen: 5.00 ft
Saturated thickness: 10.42 ft
Diameter of the well casing: 0.167 ft
Diameter of the well filter: 0.687 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.824	2	0.0083	1.773	3	0.0166	1.767
4	0.0250	1.748	5	0.0333	1.729	6	0.0416	1.703
7	0.0500	1.703	8	0.0583	1.678	9	0.0666	1.671
10	0.0750	1.646	11	0.0833	1.633	12	0.0916	1.614
13	0.1000	1.601	14	0.1083	1.588	15	0.1166	1.575
16	0.1250	1.575	17	0:1333	1.556	18	0.1416	1.550
19	0.1500	1.544	20	0.1583	1.531	21	0.1666	1.518
22	0.1750	1.499	23	0.1833	1.486	24	0.1916	1.486
25	0.2000	1.473	26	0.2083	1.467	27	0.2166	1.454
28	0.2250	1.448	29	0.2333	1.435	30	0.2500	1.416
31	0.2666	1.397	32	0.2833	1.384	33	0.3000	1.359
34	0.3166	1.346	35	0.3333	1.333	36	0.3500	1.320
37	0.3666	1.301	38 .	0.3833	1.295	39	0.4000	1.269
40	0.4166	1.263	41	0.4333	1.244	42	0.4500	1.237
43	0.4666	1.212	44	0.4833	1.199	45	0.5000	1.186
46	0.5166	1.173	47	0.5333	1.161	48	0.5500	1.148

STEWART ANG BASE

MW-08

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	0.5666	1.142	50	0.5833	1.129	51	0.6000	1.116
52	0.6166	1.110	53	0.6333	1.097	54	0.6500	1.078
55	0.6666	1.065	56	0.6833	1.065	57	0.7000	1.052
58	0.7166	1.033	59	0.7333	1.020	60	0.7500	1.014
61	0.7666	1.001	62	0.7833	1.001	63	0.8000	0.988
64	0.8166	0.976	65	0.8333	0.963	66	0.8500	0.956
67	0.8666	0.950	68	0.8833	0.944	69	0.9000	0.931
70	1.1000	0.842	71	1.3000	0.752	72	1.5000	0.676
73	1.7000	0.612	74	1.9000	0.561	75	2.1000	0.503
76	2.3000	0.459	77	2.5000	0.427	78	2.7000	0.395
79	2.9000	0.363	80	3.1000	0.338	81	3.3000	0.306
82	3.5000	0.293	83	3.7000	0.274	84	3.9000	0.255
85	4.1000	0.236	86	4.3000	0.223	87	4.5000	0.216
88	4.7000	0.197	89	4.9000	0.191	90	5.1000	0.172
91	5.3000	0.165	92	5.5000	0.159	93	5.7000	0.153
94	5.9000	0.140	95	6.1000	0.140	96	6.3000	0.133
97	6.5000	0.121	98	6.7000	0.114	99	6.9000	0.114
100	7.1000	0.114	101	7.3000	0.108	102	7.5000	0.108
103	7.7000	0.102	104	7.9000	0.095	105	8.1000	0.095
106	8.3000	0.095	107	8.5000	0.089	108	8.7000	0.082
109	8.9000	0.082	110	9.1000	0.082	111	9.3000	0.082
112	9.5000	0.076	113	9.7000	0.070	114	0.0000	1.000

STEWART ANG BASE

MW-08

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-08 DUPLICATE Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity: 1.88E+00 ft/day 6.64E-04 cm/sec Y-Intercept (Yo): 1.75E+00 ft

Well Screen Ratio (Le/rw): 14.6
Dimensionless Parameter A: 2.51
Dimensionless Parameter B: 0.37

Slope of Line [ln(Yo/Yt)/t]: 7.994E-01 1/min Well Parameters (Rc^2 / 2*Le): 6.889E-04 ft

Dimensionless Ratio [ln(Re/rw)]: 2.372

Effective Radius [Re]: 3.68 ft
Volume Tested [rw<Vol<Re]: 2.11E+02 ft^3

Well/Aquifer Parameters

Depth of well: 10.72 ft
Length of well screen: 5.00 ft
Saturated thickness: 10.42 ft
Diameter of the well casing: 0.166 ft
Diameter of the well filter: 0.687 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.824	2	0.0083	1.786	3	0.0167	1.767
4	0.0250	1.741	5	0.0333	1.722	6	0.0417	1.710
7	0.0500	1.690	8	0.0583	1.678	9	0.0667	1.658
10	0.0750	1.646	11	0.0833	1.633	12	0.0917	1.620
13	0.1000	1.607	14	0.1083	1.595	15	0.1167	1.582
16	0.1250	1.569	17	0.1333	1.556	18	0.1417	1.550
19	0.1500	1.531	20	0.1583	1.524	21	0.1667	1.512
22	0.1750	1.505	23	0.1833	1.493	24	0.1917	1.480
25	0.2000	1.473	26	0.2083	1.461	27	0.2167	1.454
28	0.2250	1.442	29	0.2417	1.429	30	0.2583	1.403
31	0.2750	1.390	32	0.2917	1.371	33	0.3083	1.352
34	0.3250	1.333	35	0.3417	1.320	36	0.3583	1.320
37	0.3750	1.288	38	0.3917	1.256	39	0.4083	1.263
40	0.4250	1.244	41	0.4417	1.231	42	0.4583	1.212
43	0.4750	1.199	44	0.4917	1.186	45	0.5083	1.167
46	0.5250	1.161	47	0.5417	1.142	48	0.5583	1.129
49	0.5750	1.116	50	0.5917	1.110	51	0.6083	1.091

STEWART ANG BASE
MW-08 DUPLICATE
Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	0.6250	1.084	53	0.6417	1.071	54	0.6583	1.065
55	0.6750	1.052	56	0.6917	1.039	57	0.7083	1.027
58	0.7250	1.020	59	0.7417	1.008	60	0.7583	0.995
61	0.7750	0.988	62	0.7917	0.976	63	0.8083	0.969
64	0.8250	0.957	65	0.8417	0.950	66	0.8583	0.937
67	0.8750	0.931	68	0.8917	0.918	69	1.0917	0.816
70	1.2917	0.727	71	1.4917	0.657	72	1.6917	0.593
73	1.8917	0.535	74	2.0917	0.484	75	2.2917	0.446
76	2.4917	0.408	77	2.6917	0.370	78	2.8917	0.344
79	3.0917	0.312	80	3.2917	0.287	81	3.4917	0.267
82	3.6917	0.248	83	3.8917	0.229	84	4.0917	0.216
85	4.2917	0.197	86	4.4917	0.191	87	4.6917	0.172

STEWART ANG BASE MW-08 DUPLICATE Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-09 Kim Kutawski, Aneptek Corp.

Results

1.64E+00 ft/day Hydraulic Conductivity: 5.79E-04 cm/sec 2.00E+00 ft Y-Intercept (Yo): Well Screen Ratio (Le/rw): 30.3 Dimensionless Parameter A: 2.51 Dimensionless Parameter B: 0.37 Slope of Line [ln(Yo/Yt)/t]: 6.164E-01 1/min Well Parameters (Rc^2 / 2*Le): 6.972E-04 ft Dimensionless Ratio [ln(Re/rw)]: 2.652 2.34 ft Effective Radius [Re]: 8.56E+01 ft³ Volume Tested [rw<Vol<Re]:</pre>

Well/Aquifer Parameters

Depth of well: 14.20 ft
Length of well screen: 5.00 ft
Saturated thickness: 22.00 ft
Diameter of the well casing: 0.167 ft
Diameter of the well filter: 0.330 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	2.053	2	0.0083	2.028	3	0.0167	2.015
4	0.0250	2.002	5	0.0333	1.996	6	0.0417	1.977
7	0.0500	1.970	8	0.0583	1.957	9	0.0667	1.945
10	0.0750	1.932	11	0.0833	1.926	12	0.0917	1.913
13	0.1000	1.900	14	0.1083	1.894	15	0.1167	1.881
16	0.1250	1.868	17	0.1333	1.862	18	0.1417	1.849
19	0.1500	1.836	20	0.1583	1.830	21	0.1667	1.817
22	0.1750	1.804	23	0.1833	1.798	24	0.1917	1.785
25	0.2000	1.779	26	0.2083	1.766	27	0.2167	1.760
28	0.2250	1.747	29	0.2333	1.741	30	0.2417	1.728
31	0.2500	1.721	32	0.2667	1.702	33	0.2833	1.683
34	0.3000	1.664	35	0.3167	1.645	36	0.3333	1.626
37	0.3500	1.607	38	0.3667	1.594	39	0.3833	1.575
40	0.4000	1.556	41	0.4167	1.543	42	0.4333	1.524
43	0.4500	1.511	44	0.4667	1.492	45	0.4833	1.479
46	0.5000	1.460	47	0.5167	1.447	48	0.5333	1.428

STEWART ANG BASE MW-09 Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	0.5500	1.415	50	0.5667	1.396	51	0.5833	1.383
52	0.6000	1.371	53	0.6167	1.358	54	0.6333	1.339
55	0.6500	1.326	56	0.6667	1.313	57	0.6833	1.300
58	0.7000	1.288	59	0.7167	1.275	60	0.7333	1.256
61	0.7500	1.249	62	0.7667	1.230	63	0.7833	1.218
64	0.8000	1.205	65	0.8167	1.192	66	0.8333	1.179
67	0.8500	1.173	68	0.8667	1.160	69	0.8833	1.147
70	0.9000	1.135	71	0.9167	1.122	72	1.1167	0.994
73	1.3167	0.873	74	1.5167	0.771	75	1.7167	0.682
76	1.9167	0.605	77	2.1167	0.535	78	2.3167	0.471
79	2.5167	0.414	80	2.7167	0.369	81	2.9167	0.331
82	3.1167	0.286	83	3.3167	0.261	84	3.5167	0.235
85	3.7167	0.210	86	3.9167	0.184	87	4.1167	0.165
88	4.3167	0.153	89	4.5167	0.133	90	4.7167	0.121
91	4.9167	0.114	92	5.1167	0.102	93	5.3167	0.095
94	5.5167	0.082	95	5.7167	0.076	96	5.9167	0.070
97	6.1167	0.063	98	6.3167	0.063	99	6.5167	0.057
100	6.7167	0.057						

STEWART ANG BASE
MW-09
Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-09 DUPLICATE Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity: 1.78E+00 ft/day 6.29E-04 cm/sec

Y-Intercept (Yo): 1.97E+00 ft

Well Screen Ratio (Le/rw): 30.3
Dimensionless Parameter A: 2.51
Dimensionless Parameter B: 0.37

Slope of Line [ln(Yo/Yt)/t]: 6.699E-01 1/min Well Parameters $(Rc^2 / 2*Le)$: 6.972E-04 ft

Dimensionless Ratio [ln(Re/rw)]: 2.652

Effective Radius [Re]: 2.34 ft Volume Tested [rw<Vol<Re]: 8.56E+01 ft^3

Well/Aquifer Parameters

Depth of well: 14.20 ft
Length of well screen: 5.00 ft
Saturated thickness: 22.00 ft
Diameter of the well casing: 0.167 ft
Diameter of the well filter: 0.330 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.983	2	0.0083	1.983	3	0.0166	1.977
4	0.0250	1.964	5	0.0333	1.951	6	0.0416	1.938
7	0.0500	1.926	8	0.0583	1.913	9	0.0666	1.906
10	0.0750	1.894	11	0.0833	1.881	12	0.0916	1.868
13	0.1000	1.862	14	0.1083	1.849	15	0.1166	1.836
16	0.1250	1.823	17	0.1333	1.811	18	0.1416	1.804
19	0.1500	1.792	20	0.1583	1.779	21	0.1666	1.766
22	0.1750	1.760	23	0.1833	1.747	24	0.1916	1.741
25	0.2000	1.728	26	0.2083	1.715	27	0.2250	1.696
28	0.2416	1.677	29	0.2583	1.658	30	0.2750	1.632
31	0.2916	1.613	32	0.3083	1.600	33	0.3250	1.575
34	0.3416	1.562	35	0.3583	1.543	36	0.3750	1.524
37	0.3916	1.505	38	0.4083	1.492	39	0.4250	1.473
40	0.4416	1.454	41	0.4583	1.441	42	0.4750	1.422
43	0.4916	1.403	44	0.5083	1.390	45	0.5250	1.371
46	0.5416	1.358	47	0.5583	1.339	48	0.5750	1.326
49	0.5916	1.307	50	0.6083	1.294	51	0.6250	1.281

STEWART ANG BASE
MW-09 DUPLICATE
Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	0.6416	1.262	53	0.6583	1.249	54	0.6750	1.237
55	0.6916	1.224	56	0.7083	1.211	57	0.7250	1.192
58	0.7416	1.179	59	0.7583	1.167	60	0.7750	1.154
61	0.7916	1.141	62	0.8083	1.307	63	0.8250	1.115
64	0.8416	1.103	65	0.8583	1.090	66	0.8750	1.077
67	1.0750	0.937	68	1.2750	0.816	69	1.4750	0.714
70	1.6750	0.624	71	1.8750	0.548	72	2.0750	0.478
73	2.2750	0.420	74	2.4750	0.369	75	2.6750	0.325
76	2.8750	0.286	77	3.0750	0.255	78	3.2750	0.223
79	3.4750	0.197	80	3.6750	0.178	81	3.8750	0.159
82	4.0750	0.146	83	4.2750	0.127	84	4.4750	0.114
85	4.6750	0.108	86	4.8750	0.095	87	5.0750	0.089
88	5.2750	0.082	89	5.4750	0.076	90	5.6750	0.070
91	5.8750	0.063	92	6.0750	0.057	93	6.2750	0.057
94	6.4750	0.051	95	6.6750	0.051	96	5.9167	0.070

STEWART ANG BASE
MW-09 DUPLICATE
Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-10 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity: 7.17E-01 ft/day 2.53E-04 cm/sec
Y-Intercept (Yo): 1.44E+00 ft
Well Screen Ratio (Le/rw): 14.6
Dimensionless Parameter A: 1.99
Dimensionless Parameter B: 0.30
Slope of Line [ln(Yo/Yt)/t]: 3.526E-01 1/min
Well Parameters (Rc^2 / 2*Le): 6.972E-04 ft
Dimensionless Ratio [ln(Re/rw)]: 2.026
Effective Radius [Re]: 2.61 ft
Volume Tested [rw<Vol<Re]: 1.05E+02 ft^3

Well/Aquifer Parameters

Depth of well: 9.75 ft
Length of well screen: 5.00 ft
Saturated thickness: 11.05 ft
Diameter of the well casing: 0.167 ft
Diameter of the well filter: 0.687 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.447	2	0.0167	1.441	3	0.0334	1.428
4	0.0500	1.422	5	0.0667	1.416	6	0.0834	1.403
7	0.1000	1.396	8	0.1167	1.390	9	0.1334	1.377
10	0.1500	1.371	11	0.1667	1.358	12	0.1834	1.358
13	0.2000	1.346	14	0.2167	1.339	15	0.2334	1.333
16	0.2500	1.327	17	0.2667	1.320	18	0.2834	1.308
19	0.3000	1.301	20	0.3167	1.288	21	0.3334	1.282
22	0.3500	1.276	23	0.3667	1.263	24	0.3834	1.257
25	0.4000	1.250	26	0.4167	1.244	27	0.4334	1.238
28	0.4500	1.231	29	0.4667	1.225	30	0.4834	1.212
31	0.5000	1.206	32	0.5167	1.200	33	0.5334	1.193
34	0.7334	1.104	35	0.9334	1.028	36	1.1334	0.958
37	1.3334	0.895	38 *	1.5334	0.831	39	1.7334	0.774
40	1.9334	0.723	41	2.1334	0.711	42	2.3334	0.685
43	2.5334	0.660	44	2.7334	0.634	45	2.9334	0.615
46	3.1334	0.590	47	3.3334	0.577	48	3.5334	0.558

STEWART ANG BASE

MW-10

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	3.7334	0.539	50	3.9334	0.526	51	4.1334	0.520
52	4.3334	0.514	53	4.5334	0.507	54	4.7334	0.501
55	4.9334	0.488	56	5.1334	0.482	57	5.3334	0.476
58	5.5334	0.469	59	5.7334	0.469	60	5.9334	0.463
61	6.1334	0.457	62	6.3334	0.450	63	6.5334	0.438
64	6.7334	0.438	65	6.9334	0.431	66	7.1334	0.425
67	7.3334	0.425	68	7.5334	0.419	69	7.7334	0.412
70	7.9334	0.406	71	8.1334	0.406	72	8.3334	0.399
73	8.5334	0.393	74	8.7334	0.387	75	8.9334	0.387
76	9.1334	0.380	77	9.3334	0.374	78	9.5334	0.374
79	10.5334	0.349	80	11.5334	0.336	81	12.5334	0.317
82	13.5334	0.298	83	14.5334	0.285	84	15.5334	0.273
85	16.5334	0.260	86	17.5334	0.247	87	18.5334	0.247
88	19.5334	0.234	89	20.5334	0.222	90	21.5334	0.215
91	22.5334	0.203	92	23.5334	0.196	93	24.5334	0.184
94	25.5334	0.177	95	26.5334	0.165	96	0.0000	1.000

STEWART ANG BASE MW-11 Kim Kutawski, Aneptek Corp.

Results

6.23E-02 ft/day Hydraulic Conductivity: 2.20E-05 cm/sec 2.08E+00 ft Y-Intercept (Yo): Well Screen Ratio (Le/rw): 30.3 Dimensionless Parameter A: 2.51 Dimensionless Parameter B: 0.37 Slope of Line [ln(Yo/Yt)/t]: 2.341E-02 1/min 6.972E-04 ft Well Parameters (Rc^2 / 2*Le): Dimensionless Ratio [ln(Re/rw)]: 2.652 2.34 ft Effective Radius [Re]: 8.56E+01 ft³ Volume Tested [rw<Vol<Re]:</pre>

Well/Aquifer Parameters

Depth of well: 14.20 ft
Length of well screen: 5.00 ft
Saturated thickness: 22.00 ft
Diameter of the well casing: 0.167 ft
Diameter of the well filter: 0.330 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	2.148	2	0.0083	2.142	3	0.0167	2.123
4	0.0250	2.104	5	0.0333	2.091	6	0.0417	2.085
7	0.0500	2.078	8	0.0583	2.072	9	0.0667	2.078
10	0.0750	2.078	11	0.0833	2.078	12	0.0917	2.078
13	0.1000	2.072	14	0.1083	2.072	15	0.1167	2.072
16	0.1250	2.072	17	0.1333	2.072	18	0.1417	2.072
19	0.1500	2.065	20	0.1583	2.065	21	0.1667	2.065
22	0.1750	2.065	23	0.1833	2.065	24	0.1917	2.065
25	0.2000	2.065	26	0.2083	2.065	27	0.2167	2.065
28	0.2250	2.065	29	0.2417	2.059	30	0.2583	2.059
31	0.2750	2.059	32	0.2917	2.059	33	0.3083	2.059
34	0.3250	2.059	35	0.3417	2.059	36	0.3583	2.046
37	0.3750	2.053	38	0.3917	2.053	39	0.4083	2.053
40	0.4250	2.053	41	0.4417	2.053	42	0.4583	2.053
43	0.4750	2.046	44	0.4917	2.046	45	0.5083	2.046
46	0.5250	2.046	47	0.5417	2.046	48	0.5583	2.027
49	0.5750	2.040	50	0.5917	2.046	51	0.6083	2.046

STEWART ANG BASE

MW-11

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	0.6250	2.040	53	0.6417	2.040	54	0.6583	2.040
55	0.6750	2.040	56	0.6917	2.040	57	0.7083	2.040
58	0.7250	2.034	59	0.7417	2.034	60	0.7583	2.034
61	0.7750	2.034	62	0.7917	2.034	63	0.8083	2.034
64	0.8250	2.034	65	0.8417	2.034	66	0.8583	2.027
67	0.8750	2.027	68	0.8917	2.027	69	1.0917	2.021
70	1.2917	2.008	71	1.4917	1.995	72	1.6917	1.989
73	1.8917	1.976	74	2.0917	1.951	75	2.2917	1.957
76	2.4917	1.951	77	2.6917	1.938	78	2.8917	1.925
79	3.0917	1.919	80	3.2917	1.912	81	3.4917	1.893
82	3.6917	1.893	83	3.8917	1.887	84	4.0917	1.874
85	4.2917	1.868	86	4.4917	1.855	87	4.6917	1.849
88	4.8917	1.842	89	5.0917	1.830	90	5.2917	1.823
91	5.4917	1.817	92	5.6917	1.804	93	5.8917	1.798
94	6.0917	1.785	95	6.2917	1.778	96	6.4917	1.772
97	6.6917	1.753	98	6.8917	1.759	99	7.0917	1.747
100	7.2917	1.740	101	7.4917	1.734	102	7.6917	1.721
103	7.8917	1.715	104	8.0917	1.708	105	8.2917	1.702
106	8.4917	1.696	107	8.6917	1.683	108	8.8917	1.676
109	9.0917	1.664	110	9.2917	1.683	111	9.4917	1.651
112	9.6917	1.645	113	9.8917	1.638	114	10.8917	1.600
115	11.8917	1.562	116	12.8917	1.523	117	13.8917	1.485
118	14.8917	1.453	119	15.8917	1.421	120	16.8917	1.389
121	17.8917	1.358	122	18.8917	1.326	123	19.8917	1.294
124	20.8917	1.268	125	21.8917	1.236	126	22.8917	1.211
127	23.8917	1.185	128	24.8917	1.160	129	25.8917	1.128
130	26.8917	1.103	131	27.8917	1.077	132	28.8917	1.058
133	29.8917	1.032	134	30.8917	1.007	135	31.8917	0.988
136	32.8917	0.962	137	33.8917	0.943	138	34.8917	0.924
139	35.8917	0.905	140	36.8917	0.879	141	37.8917	0.860
142	38.8917 41.8917	0.841	143	39.8917	0.822	144	40.8917	0.803
145 148	44.8917	0.784 0.733	146 149	42.8917 45.8917	0.771 0.714	147 150	43.8917 46.8917	0.752 0.701
	47.8917	0.733	152	48.8917	0.714	153	49.8917	0.701
151 154	50.8917	0.643	155	51.8917	0.624	156	52.8917	0.612
157	53.8917	0.599	158	54.8917	0.524	159	55.8917	0.512
160	56.8917	0.561	161	57.8917	0.548	162	58.8917	0.529
163	59.8917	0.516	164	60.8917	0.510	165	61.8917	0.497
166	62.8917	0.484	167	63.8917	0.471	168	64.8917	0.459
169	65.8917	0.452	170	66.8917	0.439	171	67.8917	0.427
172	68.8917	0.414	173	69.8917	0.408	174	70.8917	0.395
175	71.8917	0.388	176	72.8917	0.382	177	73.8917	0.376
178	74.8917	0.363	179	75.8917	0.350	180	76.8917	0.350

STEWART ANG BASE

MW-11

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
181	77.8917	0.337	182	78.8917	0.331	183	79.8917	0.325
184	80.8917	0.312	185	81.8917	0.306	186	82.8917	0.299
187	83.8917	0.293	188	84.8917	0.286	189	85.8917	0.280
190	86.8917	0.274	191	87.8917	0.267	192	88.8917	0.261
193	89.8917	0.248	194	90.8917	0.242	195	91.8917	0.242
196	92.8917	0.229	197	93.8917	0.223	198	94.8917	0.223
199	95.8917	0.216	200	96.8917	0.210	201	97.8917	0.204
202	98.8917	0.197	203	99.8917	0.197	204	100.8917	0.191
205	101.8917	0.184	206	102.8917	0.178	207	0.0000	1.000

STEWART ANG BASE MW-12 Kim Kutawski, Aneptek Corp.

Results

<u>,</u>	ft/day cm/sec
Y-Intercept (Yo): 1.86E+00	ft
Well Screen Ratio (Le/rw): 14.6	
Dimensionless Parameter A: 1.99	
Dimensionless Parameter B: 0.30	
Slope of Line $[\ln(Yo/Yt)/t]$: 3.676E-02	1/min
Well Parameters (Rc^2 / 2*Le): 6.972E-04	ft
Dimensionless Ratio [ln(Re/rw)]: 1.747	
Effective Radius [Re]: 1.97	ft
Volume Tested [rw <vol<re]: 5.92e+01<="" td=""><td>ft^3</td></vol<re]:>	ft^3

Well/Aquifer Parameters

Depth of well	.: 6.73 ft
Length of well screen	1: 5.00 ft
Saturated thickness	s: 14.73 ft
Diameter of the well casing	յ։ 0.167 ft
Diameter of the well filter	:: 0.687 ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.987	2	0.0083	1.994	3	0.0167	1.987
4	0.0250	1.981	5	0.0333	1.981	6	0.0417	1.975
7	0.0500	1.968	8	0.0583	1.962	9	0.0667	1.962
10	0.0750	1.962	11	0.0833	1.956	12	0.0917	1.956
13	0.1000	1.949	14	0.1083	1.943	15	0.1167	1.943
16	0.1250	1.943	17	0.1333	1.943	18	0.1417	1.937
19	0.1500	1.937	20	0.1583	1.937	21	0.1667	1.930
22	0.1750	1.930	23	0.1833	1.930	24	0.1917	1.924
25	0.2000	1.924	26	0.2083	1.917	27	0.2167	1.917
28	0.2250	1.917	29	0.2417	1.911	30	0.2583	1.911
31	0.2750	1.905	32	0.2917	1.905	33	0.3083	1.898
34	0.3250	1.898	35	0.3417	1.892	36	0.3583	1.892
37	0.3750	1.892	38	0.3917	1.886	39	0.4083	1.886
40	0.4250	1.879	41	0.4417	1.879	42	0.4583	1.873
43	0.4750	1.873	44	0.4917	1.867	45	0.5083	1.867
46	0.5250	1.860	47	0.5417	1.860	48	0.5583	1.860
49	0.5750	1.854	50	0.5917	1.854	51	0.6083	1.848

STEWART ANG BASE

MW-12

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
52	0.6250	1.848	53	0.6417	1.841	54	0.6583	1.841
55	0.6750	1.841	56	0.6917	1.841	57	0.7083	1.835
58	0.7250	1.835	59	0.7417	1.829	60	0.7583	1.829
61	0.7750	1.829	62	0.7917	1.822	63	0.8083	1.822
64	0.8250	1.816	65	0.8417	1.816	66	0.8583	1.816
67	0.8750	1.809	68	0.8917	1.809	69	1.0917	1.784
70	1.2917	1.759	71	1.4917	1.740	72	1.6917	1.721
73	1.8917	1.695	74	2.0917	1.676	75	2.2917	1.663
76	2.4917	1.644	77	2.6917	1.625	78	2.8917	1.606
79	3.0917	1.594	80	3.2917	1.581	81	3.4917	1.568
82	3.6917	1.549	83	3.8917	1.536	84	4.0917	1.524
85	4.2917	1.511	86	4.4917	1.492	87	4.6917	1.479
88	4.8917	1.466	89	5.0917	1.460	90	5.2917	1.447
91	5.4917	1.435	92	5.6917	1.422	93	5.8917	1.409
94	6.0917	1.397	95	6.2917	1.390	96	6.4917	1.378
97	6.6917	1.371	98	6.8917	1.358	99	7.0917	1.346
100	7.2917	1.339	101	7.4917	1.327	102	7.6917	1.320
103	7.8917	1.308	104	8.0917	1.301	105	8.2917	1.289
106	8.4917	1.282	107	8.6917	1.270	108	8.8917	1.263
109	9.0917	1.257	110	9.2917	1.244	111	9.4917	1.231
112	9.6917	1.225	113	9.8917	1.219	114	10.8917	1.174
115	11.8917	1.136	116	12.8917	1.098	117	13.8917	1.060
118	14.8917	1.028	119	15.8917	0.996	120	16.8917	0.971
121	17.8917	0.939	122	18.8917	0.908	123	19.8917	0.882
124	20.8917	0.857	125	21.8917	0.831	126	22.8917	0.806
127	23.8917	0.787	128	24.8917	0.761	129	25.8917	0.742
130	26.8917	0.723	131	27.8917	0.704	132	28.8917	0.685
133	29.8917	0.666	134	30.8917	0.647	135	31.8917	0.628
136	32.8917	0.615	137	33.8917	0.596	138	34.8917	0.584
139	35.8917	0.571	140	36.8917	0.552	141	37.8917	0.539
142	38.8917	0.527	143	39.8917	0.514	144	40.8917	0.501
145	41.8917		146	42.8917	0.476	147	43.8917	0.469
148	44.8917		149	45.8917	0.444	150	46.8917	0.431
151	47.8917	0.425	152	48.8917	0.419	153	49.8917	0.406
154	50.8917		155	51.8917	0.387	156	52.8917	0.380
157	53.8917		158	54.8917		159	55.8917	0.355
160	56.8917		161	57.8917	0.342	162	58.8917	
163	59.8917		164	60.8917	0.317	165	61.8917	
166	62.8917		167		0.298	168	64.8917	
169	65.8917		170	66.8917	0.279	171	67.8917	
172	68.8917		173	69.8917	0.260	174 177	70.8917 73.8917	
175	71.8917		176	72.8917			76.8917	
178	74.8917	0.234	179	75.8917	0.228	180	10.031/	0.220

STEWART ANG BASE

MW-12

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
181	77.8917	0.228	182	78.8917	0.222	183	79.8917	0.215
184	80.8917	0.209	185	81.8917	0.203	186	82.8917	0.203
187	83.8917	0.196	188	84.8917	0.190	189	85.8917	0.190
190	86.8917	0.184	191	87.8917	0.184	192	0.0000	1.000

STEWART ANG BASE

MW-12

Kim Kutawski, Aneptek Corp.

STEWART ANG BASE MW-13 Kim Kutawski, Aneptek Corp.

Results

Hydraulic Conductivity: 3.88E-01 ft/day 1.37E-04 cm/sec 4.61E-01 ft Y-Intercept (Yo): 29.1 Well Screen Ratio (Le/rw): Dimensionless Parameter A: 2.48 Dimensionless Parameter B: 0.37 Slope of Line [ln(Yo/Yt)/t]: 6.640E-02 1/min Well Parameters (Rc^2 / 2*Le): 2.011E-03 ft Dimensionless Ratio [ln(Re/rw)]: 2.016 2.58 ft Effective Radius [Re]: Volume Tested [rw<Vol<Re]: 2.05E+02 ft³

Well/Aquifer Parameters

Depth of well: 7.34 ft
Length of well screen: 10.00 ft
Saturated thickness: 27.84 ft
Diameter of the well casing: 0.166 ft
Diameter of the well filter: 0.687 ft
Porosity of filter pack: 0.30

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0001	1.394	2	0.0084	1.368	3	0.0167	1.343
4	0.0250	1.330	5	0.0334	1.317	6	0.0417	1.304
7	0.0500	1.273	8	0.0584	1.254	9	0.0667	1.234
10	0.0750	1.222	11	0.0834	1.203	12	0.0917	1.190
13	0.1000	1.177	14	0.1084	1.158	15	0.1167	1.145
16	0.1250	1.133	17	0.1334	1.120	18	0.1417	1.107
19	0.1500	1.094	20	0.1584	1.075	21	0.1667	1.063
22	0.1750	1.050	23	0.1834	1.037	24	0.1917	1.024
25	0.2000	1.012	26	0.2084	0.999	27	0.2167	0.986
28	0.2250	0.974	29	0.2334	0.954	30	0.2417	0.948
31	0.2500	0.935	32	0.2584	0.923	33	0.2667	0.916
34	0.2750	0.903	35	0.2834	0.891	36	0.2917	0.884
37	0.3084	0.859	38	0.3250	0.840	39	0.3417	0.821
40	0.3584	0.802	41	0.3750	0.783	42	0.3917	0.763
43	0.4084	0.751	44	0.4250	0.738	45	0.4417	0.719
46	0.4584	0.706	47	0.4750	0.687	48	0.4917	0.681

STEWART ANG BASE

MW-13

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
49	0.5084	0.668	50	0.5250	0.655	51	0.5417	0.643
52	0.5584	0.630	53	0.5750	0.617	54	0.5917	0.611
55	0.6084	0.604	56	0.6250	0.592	57	0.6417	0.585
58	0.6584	0.579	59	0.6750	0.572	60	0.6917	0.566
61	0.7084	0.560	62	0.7250	0.553	63	0.7417	0.547
64	0.7584	0.541	65	0.7750	0.534	66	0.7917	0.528
67	0.8084	0.528	68	0.8250	0.522	69	0.8417	0.522
70	0.8584	0.522	71	0.8750	0.509	72	0.8917	0.509
73	0.9084	0.509	74	0.9250	0.502	75	0.9417	0.502
76	0.9584	0.496	77	1.1584	0.464	78	1.3584	0.439
79	1.5584	0.420	80	1.7584	0.407	81	1.9584	0.401
82	2.1584	0.394	83	2.3584	0.394	84	2.5584	0.375
85	2.7584	0.375	86	2.9584	0.369	87	3.1584	0.362
88	3.3584	0.362	89	3.5584	0.356	90	3.7584	0.350
91	3.9584	0.343	92	4.1584	0.350	93	4.3584	0.343
94	4.5584	0.343	95	4.7584	0.337	96	4.9584	0.337
97	5.1584	0.337	98	5.3584	0.331	99	5.5584	0.331
100	5.7584	0.331	101	5.9584	0.324	102	6.1584	0.324
103	6.3584	0.324	104	6.5584	0.318	105	6.7584	0.318
106	6.9584	0.318	107	7.1584	0.318	108	7.3584	0.318
109	7.5584	0.311	110	7.7584	0.311	111	7.9584	0.305
112	8.1584	0.311	113	8.3584	0.305	114	8.5584	0.305
115	8.7584	0.305	116	8.9584	0.299	117	9.1584	0.299
118	9.3584	0.299	119	9.5584	0.299	120	9.7584	0.299
121	9.9584	0.292	122	10.9584	0.286	123	11.9584	0.286
124	12.9584	0.280	125	13.9584	0.273	126	14.9584	0.273
127	15.9584	0.267	128	16.9584	0.267	129	17.9584	0.267
130	18.9584	0.261	131	19.9584	0.261	132	20.9584	0.261
133	21.9584	0.254	134	22.9584	0.254	135	23.9584	0.248
136	24.9584	0.241	137	25.9584	0.241	138	26.9584	0.241
139	27.9584	0.241	140	28.9584	0.241	141	29.9584	0.235
142	30.9584	0.235	143	31.9584	0.229	144	32.9584	0.229
145	33.9584	0.222	146	34.9584	0.229	147	35.9584	0.229
	36.9584		149	37.9584	0.216	150	38.9584	0.216
151	39.9584	0.216	152	40.9584	0.210	153	41.9584	0.210
154	42.9584	0.210	155	43.9584	0.210	156	44.9584	0.210
157	45.9584	0.203	158	46.9584	0.203	159	47.9584	0.197
160	48.9584	0.197	161	49.9584	0.191	162	50.9584	0.197
163	51.9584	0.197	164	52.9584	0.191	165	53.9584	0.191
166	54.9584	0.184	167	55.9584	0.184	168	56.9584	0.191
169	57.9584	0.184	170	58.9584	0.184	171 174	59.9584	0.178
172	60.9584	0.184	173	61.9584	0.178	174	62.9584	0.178
175	63.9584	0.178	176	64.9584	0.171	177	65.9584	0.178

STEWART ANG BASE

MW-13

Kim Kutawski, Aneptek Corp.

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
178	66.9584	0.178	179	67.9584	0.171	180	68.9584	0.171
181	69.9584	0.171	182	70.9584	0.171	183	71.9584	0.171
184	72.9584	0.165	185	73.9584	0.165	186	74.9584	0.171
187	75.9584	0.165	188	76.9584	0.159	189	77.9584	0.165
190	78.9584	0.159	191	79.9584	0.159	192	80.9584	0.165
193	81.9584	0.159	194	82.9584	0.159	195	83.9584	0.152
196	84.9584	0.165	197	85.9584	0.159	198	86.9584	0.159
199	87.9584	0.152	200	88.9584	0.152	201	89.9584	0.159
202	90.9584	0.152	203	91.9584	0.146	204	92.9584	0.152
205	93.9584	0.146	206	94.9584	0.146	207	95.9584	0.146
208	96.9584	0.140	209	97.9584	0.140	210	98.9584	0.140
211	99.9584	0.140	212	100.9584	0.140	213	101.9584	0.146
214	102.9584	0.140	215	103.9584	0.140	216	104.9584	0.140
217	105.9584	0.140	218	106.9584	0.140	219	107.9584	0.140
220	108.9584	0.140	221	109.9584	0.133	222	110.9584	0.133
223	111.9584	0.133	224	112.9584	0.133	225	113.9584	0.140
226	114.9584	0.140	227	115.9584	0.133	228	0.0000	1.000

STEWART ANG BASE
MW-13
Kim Kutawski, Aneptek Corp.

Stewart ANG PPBA RI JMW-107 RE-ANALYSIS AMK - Aneptek Corp

Results

Hydraulic Conductivity: 4.66E-01 ft/day 1.64E-04 cm/sec 2.77E+00 ft Y-Intercept (Yo): Well Screen Ratio (Le/rw): 15.2 1.51 Dimensionless Parameter C: 5.853E-02 1/min Slope of Line [ln(Yo/Yt)/t]: 3.749E-03 ft Well Parameters (Rc^2 / 2*Le): Dimensionless Ratio [ln(Re/rw)]: 1.475 Effective Radius [Re]: 1.44 ft 3.10E+01 ft³ Volume Tested [rw<Vol<Re]:</pre>

Well/Aquifer Parameters

Depth of well: 2.21 ft
Length of well screen: 5.00 ft
Saturated thickness: 2.21 ft
Diameter of the well casing: 0.166 ft
Diameter of the well filter: 0.660 ft
Porosity of filter pack: 0.30

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.5000	1.980	2	1.0000	1.900	3	1.5000	1.860
4	2.0000	1.840	5	3.0000	1.780	6	4.0000	1.750
7	5.0000	1.690	8	6.0000	1.650	9	7.0000	1.610
10	8.0000	1.570	11	9.0000	1.530	12	10.0000	1.490
13	15.0000	1.140	14	21.0000	0.890	15	29.0000	0.490
16	30.0000	0.470	17	40.0000	0.170	18	50.0000	0.130
19	60.0000	0.090						

Stewart ANG PPBA RI JMW-107 RE-ANALYSIS AMK - Aneptek Corp

Stewart ANG PPBA RI JMW-108 RE-ANALYSIS AMK - Aneptek Corp

Results

Hydraulic Conductivity:	1.16E-01 4.09E-05	ft/day cm/sec
Y-Intercept (Yo):	5.33E+00	ft
Well Screen Ratio (Le/rw):	15.2	
Dimensionless Parameter A:	2.01	
Dimensionless Parameter B:	0.31	
Slope of Line [ln(Yo/Yt)/t]:	6.620E-02	1/min
Well Parameters (Rc^2 / 2*Le):	6.889E-04	ft
Dimensionless Ratio [ln(Re/rw)]:	1.765	
Effective Radius [Re]:	1.93	ft
Volume Tested [rw <vol<re]:< td=""><td>5.67E+01</td><td>ft^3</td></vol<re]:<>	5.67E+01	ft^3

Well/Aquifer Parameters

Depth of well:	5.19	ft
Length of well screen:	5.00	ft
Saturated thickness:	7.02	ft
Diameter of the well casing:	0.166	ft
Diameter of the well filter:	0.660	ft

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0000	5.100	2	1.0000	4.880	3	2.0000	4.670
4	3.0000	4.410	5	4.0000	4.090	6	5.0000	3.880
7	6.0000	3.660	8	7.0000	3.420	9	8.0000	3.200
10	9.0000	2.970	11	10.0000	2.780	12	11.0000	2.580
13	12.0000	2.410	14	13.0000	2.260	15	14.0000	2.110
16	15.0000	1.950	17	20.0000	1.380	18	25.0000	0.880
19	30.0000	0.610	20	35.0000	0.480	21	60.0000	0.100

Stewart ANG PPBA RI JMW-108 RE-ANALYSIS AMK - Aneptek Corp

Stewart ANG PPBA RI JMW-109 RE-ANALYSIS AMK - Aneptek Corp

Results

Hydraulic Conductivity:	5.34E-01	ft/day
	1.88E-04	cm/sec
Y-Intercept (Yo):	1.91E+00	ft
Well Screen Ratio (Le/rw):	15.2	
Dimensionless Parameter A:	2.01	
Dimensionless Parameter B:	0.31	
Slope of Line [ln(Yo/Yt)/t]:	6.341E-02	1/min
Well Parameters (Rc^2 / 2*Le):	3.749E-03	ft
Dimensionless Ratio [ln(Re/rw)]:	1.561	
Effective Radius [Re]:	1.57	ft
Volume Tested [rw <vol<re]:< td=""><td>3.71E+01</td><td>ft^3</td></vol<re]:<>	3.71E+01	ft^3

Well/Aquifer Parameters

Depth of well:	2.69	ft
Length of well screen:	5.00	ft
Saturated thickness:	2.84	ft
Diameter of the well casing:	0.166	ft
Diameter of the well filter:	0.660	ft
Porosity of filter pack:	0.30	

No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)	No.	Time (min)	Drawdown (ft)
1	0.0000	2.040	2	0.5000	1.930	3	1.0000	1.870
4	2.0000	1.730	5	3.0000	1.590	6	4.0000	1.480
7	5.0000	1.390	8	6.0000	1.300	9	7.0000	1.220
10	8.0000	1.150	11	9.0000	1.080	12	10.0000	1.010
13	15.0000	0.740	14	20.0000	0.610	15	60.0000	0.010

Stewart ANG PPBA RI JMW-109 RE-ANALYSIS AMK - Aneptek Corp

APPENDIX H GEOPHYSICAL SURVEY REPORTS

GEOPHYSICS GPR INTERNATIONAL INC.

13 Highland Circle, Suite E Needham Heights, MA 02194-3031

Tel.: (617) 455-0185 Fax: (617) 455-0522

September 22, 1995

Our Contract No. B95106

Mr. Michael Plumb Aneptek, Inc. 209 West Central St Natick, MA 01760

Re:

Electromagnetic Survey, Stewart Air National Guard Base,

Newburgh, New York

Dear Mr. Plumb:

Geophysics GPR International, Inc., under a directive of Aneptek, Inc., performed a electromagnetic (EM31) survey on September 7, 1995, near a fuel pump island on Base Road B, Stewart Air National Guard Base, Newburgh, New York. The objective of the survey was to locate a burial pit reported to contain steel "H" beams.

The EM31 method was chosen, based upon the reported shallow depth of burial of the beams (about ten feet) and proximity of a metal chainlink fence and a buried electrical utility. All electromagnetic and magnetic methods are influenced by surface and near-surface metallic objects and electrical sources with the EM31 meter to a lesser degree.

Additionally, at our own decision and expense, a GSSI SIR-3 radar system with 100-Mhz and 500-Mhz antennas and a Fisher TW-6 pipe and cable locator were mobilized to aid in the investigation.

Theory

The terrain conductivity method employs transmitting and receiving coils separated by a fixed distance. An alternating current is sent through the transmitting coil generating a primary magnetic field. This time-varying magnetic field induces the flow of small secondary currents in the earth, which in turn generate a secondary magnetic field.

Both the primary and secondary magnetic fields are detected by the receiving coil. Within certain limits, the component of the secondary magnetic field, which is out-of-phase (quadrature) with the primary field, is directly proportional to the apparent conductivity of the ground. The component of the secondary field, which is in-phase with the primary field, is related to the magnetic susceptibility and conductivity of the ground, often yielding anomalies near metallic objects. Thus, the terrain conductivity survey provides two readings at each station: the quadrature and the in-phase components of the secondary magnetic field.

Equipment

Geophysics GPR International, Inc. mobilized a geophysicist for this investigation. A Geonics EM-31 Terrain Conductivity Meter was employed for the EM survey. The readings were stored in an Omnidata digital data logger and transferred to a laptop computer. The EM-31 has an intercoil spacing of 12 feet, yielding an effective depth of penetration of about 18 feet.

The radar data were displayed and printed on a graphic recorder, and the fisher readings were observed.

Procedure and Interpretation

Aneptek established a general grid within which the terrain conductivity survey was conducted (see Att). Stations were marked every 50 feet within the site. We established closer-spaced control within this grid so that data collection lines could be run at a 5-foot spacing in a general east-west and north-south directions in order to have the receiver boom location at right angles to each other for the data collection.

Additionally, ground penetrating radar data were collected along lines chosen to cross the conjectured location of the pit containing the discarded H beams. To identify the possible pit and H beams, the geophysicist scanned the GPR display as the assistant pulled the antenna along the chosen traverses. Also, a Fisher TW-6 metal detector was used to test several areas for the presence of the buried H beams.

Results

1. Terrain Conductivity Surveys

The processed EM data are presented as two 11"x 17" color contour maps (see Att). The color plots allow rapid visual assimilation of the geophysical information. The contour maps show the variation of one parameter across the site: the EM-31 in-phase component of the induced magnetic field. One map is a display of the east-west readings and the other map is a display of the north-south readings. The out-of-phase component did not provide a useful response and is not shown.

Interpretation of the terrain conductivity data involved trying to identify the geophysical responses. The prominent geophysical responses at this site are clearly due to the chainlink fence at the northern edge and the buried electrical utility along the westerly edge of the investigated area.

The following comments can be made:

- The steel fence and the buried electrical utility strongly interfered with the EM response of the site along the northern and western edges of the surveyed area
- The pit reported to contain buried H beams was not located within the investigated area. There is a small anomaly centered about position 125N/30E on both plots, but this feature is too small to state with any degree of confidence that it may represent large buried metallic objects
- It is possible that if the H beam-containing pit is located within the areas of fence and cable interference, its anomalous response is masked. However, based upon our experience a large concentration of buried ferrous objects, such as lengths of H beams, should still be observable to a distinct degree through the surficial interference.
- The remainder of the area investigated by EM31 shows normal background readings

2. Ground Penetrating Radar Survey

The quality of the radar data was poor with the depth of penetration less than six feet. The site soil materials, together with the shallow water table, precluded quality records and good penetration.

- The GPR method appears to be restricted in its use at this particular area due to subsite conditions.
- 3. Pipe and Cable Locator Survey

2-m Typala

• The Locator gave ambiguous readings within the suspected area, probably due to the depth of burial of the H beams about at the limit of detection by this method.

Geophysics GPR International is pleased to have performed this geophysical service and welcomes the opportunity to work again with your firm.

Sincerely,

Lester M. Tyrala,

District Manager

LMT/hp Att: Site Plan Map and EM31 colored contour maps

ANEPTEK STEWA

NE EM IN

E-W

ANEPTEK CORPORATION STEWART ANG BASE

NEWBURGH, NY EM-31 SURVEY IN PHASE MODE

E-W READINGS

0

ANEPTEK STEW

N: EN IN

N-S

ANEPTEK CORPORATION STEWART ANG BASE

NEWBURGH, NY EM-31 SURVEY IN PHASE MODE

N-S READINGS

APPENDIX I PESTICIDE SCREENING DATA

APPENDIX I

I.0 Immuno Assay Screening

I.1 Introduction

Pesticide immuno assay screening of all subsurface soils was performed during the RI to provide an indication of the relative pesticide concentrations in the soils and to aid in the selection of samples to be submitted to the off-site laboratory for chemical analysis. The immuno assay screening test kit used for the Site 2 RI is designed by Millipore Corporation to detect DDT in soils. The principal of the immuno assay screening is based on the use of antibodies produced by living organisms that bind to specific foreign substances or antigens introduced to the organism's body. These antibodies have a strong affinity to bind on to the specific antigen for which they were produced and can be extracted from an organism for use in the screening tests.

I.2 Test Procedure

To perform the test, the potentially contaminated soil sample is placed in a jar and mixed with a solvent to extract any contaminants present on soil particles. This extract is then placed into a test tube coated with a precise quantity of the appropriate antibody for the contaminant of interest. After addition of the sample extract to the test tube, any contaminant available in the extract solution will bind onto the available antibody binding sites along the test tube wall. An enzyme conjugate is then added which is made up of an enzyme that has been linked to the target analyte for which the test was designed. The enzyme does not interfere with the capability of the analyte to bind to the antibody binding sites. In accordance with the law of mass action, the more contaminant present in the sample, the fewer antibody binding sites will be taken up by the enzyme conjugate.

Next, the liquid is emptied out of the test tube to separate the unbound enzyme conjugate from that which is bound to the antibody binding sites along the test tube wall. Then a substrate is added to the test tube which reacts with the enzyme in the enzyme conjugate to produce a color in the liquid. The more conjugate which remains bound to the sides of the test tube, the more intense the color will be. Inversely, the more contaminant present in the extract, the less conjugate will be taken up at the binding sites, and a less intense color is produced. The resistance to the passage of light, or optical density, of the colored liquid is then measured using a differential photometer. The concentration of contaminant present in the original sample can then be approximated based on the optical density.

I.3 Calibration Procedure

The photometer is calibrated from blank and control samples of known concentrations. To calibrate the test, "blank" solution and control samples with known concentrations of DDT in soils of 0.2 ppm, 1.0 ppm, and 10.0 ppm, are provided with the DDT test kit. Interpretation of the

results each test involves obtaining the optical density of the blank sample and each control sample. The optical density of each control sample is then divided by that of the blank sample to obtain the ${}^{\circ}B_{o}$ for each known concentration. Next, a plot of concentration versus ${}^{\circ}B_{o}$ is generated, providing a calibration curve for samples analyzed as part of that sample batch. Due to changing characteristics of the calibration curve within varying concentration ranges, it is not valid to attempt to determine contaminant concentrations outside of the control limits of the test kit (i.e., 0.2 ppm and 10.0 ppm). Therefore, should analysis of a sample produce a ${}^{\circ}B_{o}$ which falls below that of the 10.0 ppm control sample, the concentration can only be reported as being greater than 10.0 ppm. Similarly, when the ${}^{\circ}B_{o}$ of the sample is found to be higher than that of the 0.2 ppm control sample, the concentration must be reported as being less than 0.2 ppm.

Although the test kit used during the Site 2 RI was developed specifically for DDT, the antibodies present in the kit bind not only to DDT, but also to DDT's metabolites and other structurally similar compounds. For this reason, the results of this screening technology provide concentrations of total pesticides in the soil sample analyzed. Therefore, a direct correlation of concentrations detected during onsite screening and laboratory analysis for TCL Pesticides and PCBs would not be expected as the TCL does not include all compounds to which the screening technology is sensitive. Compounds which provide positive results from the DDT soil screening technology used at Site 2 are listed in Table I-1.

I.4 Evaluation of Calibration Procedures Performed During the Site 2 RI

The results of all screening performed as part of the Site 2 RI are presented in Table 6-12 (see Section 6.2.2). A total of 72 soil samples from 12 soil borings were screened on-site using the immuno assay screening method. Samples were analyzed in 12 batches on 12 different days during the field program. Each day screening was performed, a new calibration curve was developed as described in Section 5.0 of this report. All calibration curves are presented in this Appendix following this discussion.

As noted in Section 6.2.2, Table 6-12, most of the $\%B_o$ values obtained from the analysis of the first four sample batches (analyzed from 10/2/95 through 10/6/95) are greater than 100%, which would suggest that the samples analyzed are actually less contaminated than the "blank" solution. When this problem was observed, Aneptek consulted with Millipore Corporation's technical consultants to identify and solve the problem. Initially, an effort was made to re-analyze a batch of samples to compare results for possible procedural error. Upon re-analysis of the samples collected from soil boring SB-02, the results were comparable to the original data set, providing the same total pesticide concentrations as the first analysis. Aneptek then sent split samples from soil borings SB-03 and SB-04, as well as samples of the "blank" solution and control samples provided with the kit to Millipore for confirmation analysis by their personnel. Results of the confirmation analysis indicated that the "blank" solution provided with the kits was contaminated, producing an optical density lower than that of the samples being analyzed. However, because field screening results were evaluated in relation to the $\%B_o$ of both the sample and the control samples, the effect of the contaminated "blank" solution was negated. Therefore, while the $\%B_o$

values for the initiation still valid.	tial sample batches	appear too high,	the sample total p	esticide concentra	ations are
	•				

TABLE I-1 COMPOUNDS PRODUCING POSITIVE RESULTS IN SOIL DDT IMMUNO ASSAY SCREENING STEWART AIR NATIONAL GUARD BASE NEWBURGH, NEW YORK

COMPOUND	LOWER LIMIT OF DETECTION (ppm)
4,4'-DDT	0.04
4,4'-DDD	0.01
4,4'-DDE	0.18
o,p'-DDT	4
o,p'-DDD	0.4
o,p'-DDE	3
DDA	0.002
Chloropropylate	0.007
Chlorobenzilate	0.03
Dicofol	0.14
Tetradifon	1.2
Thiobencarb	5
Tebuconazole	7
Neburon	17
Chloroxuron	24
Monolinuron	25
Diclofop	70

DDD - Dichlorodiphenyldichloroethane

 $\ensuremath{\mathsf{DDE}}$ - $\ensuremath{\mathsf{Dichlorodiphenyldichloroethylene}}$

DDT - Dichlorodiphenyltrichloroethane

ppm - parts per million

APPENDIX J CHAINS OF CUSTODY

EnviroTest Laboratories Inc. CHAIN OF CUSTODY RECO	REPORT TYPE TURNAROUND LABORATORY #(Labouse	STANDARD ISRA	NYASP A B CLP (D QUICK TEMPBLANK	. No.	8401	Эр	assis assis	MATRIX CLIENT I.D. View Vi	RW-55-100395 6 2 3 1 1 2 1 1 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9	2 SS-OF 3	5-62 · 2 2	55-63	1 55-04 Y PO-55 lia		1 55-66 B	(dsm/sm/ fn-22)				COMPANY DATE TIME RECEIVED BY COMPANY DATE DATE OF THE COMPANY	41 debition to the second seco
st Laborato	2,		() EI(V V V	. No.	۵ ۲	Newberrah M		CLIENT I	RW-55-10		-)		COMPANY	
Enviroles 315 Fullerton Avenue, Newb	AND OFF CONTRATION	ADDRESS Wort Conta.	SITY, STATE, ZIP KK	NAME OF CONTACT NAME OF CONTACT PHONE NAME OF CONTACT	PROJECT LOCATION	PROJECT NUMBER / PO NO.		SAMPLING P. B. B. TIME M. B. B. B. TIME O. B. MATE AM PIM O. B. MATE	1012K5 1510 X WATER	103195 1545 X Soil	10 3 45 1840 X Soi \	10/2 X Soil	X 0900 X	1 105 X 2190 Sellator			105 X 0930 X 5011	-	1	RELINGUISHED BY JAM	

			模制		
	COMPANY	COMPANY	COMPANY		
					1 20 3 5 11
	RECEIVED BY	RECEIVED BY	RECEIVED BY		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1	TIME 1335	TIME	TIME		
911915	OFFICE HOLD	V DATE I'	DATE		
22	COMPANY AMPDICK (COMPANY	COMPANY		
	NGUISH X	RELINQUISHED BY /	RELINQUISHED BY	COMMENTS	
	11/10 TT	NOUISHED BY COMPANY CO	NGUISHED BY COMPANY CONPORT TO THE 1335 RECEIVED BY COMPANY COMPANY CONPANY COMPANY CO	NGUISHED BY COMPANY COMPANY COMPANY COMPANY COMPANY COMPANY DATE TIME RECEIVED BY RECEIVED BY	NQUISHED BY COMPANY C

CTDOHS PH-0054

NYSDOH 10142 NJDEP 73507

CHAIN OF CUSTODY RECORD

1		REPORT TYPE	TUBNABOUND	CNI	LABORATORY # (Lab Use Only)
ADDRESS WILL OF CONTACTION	DM				
751 LFW	מן און אינין איין אי	NYASP A□ B□ C	CLP		TEMPBEANK V
4A 1881	71/60 PHONE NO.	OTHER	\ \cup verbal	00 N SO	ph GHEGK V (V) REVIEWED'BY
	, Newbergh NV		Эр	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	NY PUBLIC WATER SURPLIFS SOURCE ID
		lass mber Amber Washed stic	Hydroxid Hydroxid Astic Acid	-Glas	ELRP TYPE
SAMPLING \$ B B ATRIX ETL# DATE AM PM O B MATRIX	× CLIENT I.D.	Liter PIS Nitric A	Sodium Sodium Sodium Pla	त्रेह्मकार २०२:	FEDERAL ID
10/3/8/1000 X Water	r FR-TW-100395	6221		91,2	91.1 AKK 91.3 STAL MORIS ON
	58-01-02	2		91.1	91.2. 91.3. TAI MATAB OF TOO
	58-01-18.5	2		Part S	
	58-01-33.5	7		n I	
				91'1	
Mater	-				
				A 100 100 100	
(1987)					
		3 1 -01			
1 1 1 1 1 1					
RELIMOUISHED BY	W	2	RECEIVED BY		COMPANY
RELINQUISHED BY	AIR OFF COMPANY 1014	1/95 12:015	RECEIVED BY) 	COMPANY TIME WITH
RELINOUISHED BY 1			RECEIVED BY		COMPANY TIME TO THE TOTAL OF TH
RELINQUISHED BY	COMPANY DATE	E TIME	RECEIVED BY		COMPANY. DATE TIME:
COMMENTS					

ies Inc.

X (914) 562-0841

CHAIN OF CUSTODY RECORD

	FΑ
12	562-0890
ā	62-0
、	14) 5
IX	6)
ar	12550
السو	ž
X	urgh,
Ġ.	Newbi
10	ullerton Avenue, N
	Wer
7	lo Io
15	Jlen
57	315 Ful
	9

LABORATORY # (Lab Use Only) TURNAROUND ☐ VERBAL NORMAL STANDARD SRA NYASP A□ B□ CLPX REPORT TYPE OTHER_ Corporation NAME OF CONTACT

DILLIAL OG West AFIRDTEK ADDRESS CUSTOMER NAME CITY, STATE, ZIP

7+4	して シュート コンプ・マント ショー・									*	Ĉ		NY PUBLIC WATER SUPPLIES	
OFF		29				oxide slic	_			500	23		SOURCE ID	
	SAMPLING & D	al Numb ontainer (Glass	ICL St Amber	ler Amb	DION O	FIG 191	Olish	Plan Plasti	I Plastic	Amb _e	90 TE		ELRP TYPEEFFERAL IN	
#	DATE TIME OF MATRIX CLIENT I.D.	40₽	7!7	^{2δ} 10.	Win.	lpos	-117	Seon	WC>	2500	0,00		ANALYSIS BEQUESTED	
	lebies Iron X Water RB-SB-100 Sak			C					-	2.00	5	'		
	Ē	4		5]						7	7	コンタース・「TA」、他下げんへもので	
	10/4/94 18-34 1X 501 158-02-02			- <u> </u>	5 (1) 3 (1)				1 . i .	<u> </u>	0	7		10
1 10 ⁻¹²	10 lake 11/45 X 2011 513-107- 110	9		1.3	1			(0.2)		9 ; \ -	5 - 6 C			ૃ
25				- 2 - 2						1	8			
E 21	1014/65 1X 201 1 5B - 62 - 16 2			<u>:</u>			· · · · · ·	\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		N. (7			
·94	16/16/16/10/16 1/ Spil 3 R- 04 - 24 03				12.49	3					, i			
erer Z	/	L				3 (3)			+		- }			
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	::						j.		<u> </u>				

1 91.7 912 TO MANGE		COMPANY COMPAN	COMPANY	COMPANY	COMPANY COMPANY
1 3 911		A KAM KILLINGE	BECENTED BY	Maghing 1	/ CONTROL BY
2	DATE / TIME	9/19/25	10/6/95 TIME	10/6/ps /S30	DATE/ TIME
1 N201 12B-03-1	COMPANY	COMPANY	Hastowner Allertex	COMPANY KWEPTEK	, COMPANY
CIC 189 (20)	RELINGUISHED/BY/	RELINQUISHED BY	BEINNO MEDECIEN	DEVINGUEUED BY	

58-03-510 5R-13-77

105PA 1015

58-03-06

10/6 Act 63/m

COMMENTS

EnviroTest Laboratories Inc.

	ne or ra	4.30.47
	347	25 July 2
	17.4	1.
	A 160 X	
		10.
	att.	7.23
		1
ъ.		4.16.
97		1-12-1
21	1.5	W. 15
35 (35.00
	^	
35.4		-17 T
巫	5.7	
100	\smile	
1	1	151
15	100	401
3.	37.	3553
4		
23		20 11 1
数		2.3
寒	_	
ar.	_	in the
33		
-	4	17
ξ.		. 7.43
15.00	96	
	200	To read
27	> -	

30		1-1
37.1	$\overline{}$	
*	7 1	3.
*	_	
	_	
- 4		100
2.1	(°)	, ,
- 37 '	$\overline{}$	
	ì	
		1
	S	
- 1	-	
191		1
	y,	,
		٠.
	$\overline{}$	١
_		
	<u>.</u>	
	()	1
٠, ١	_	,
4.5		
2.5		
- 2	_	
	L	
1		
- 1 - 2 7		
- 1 - 2 - 7	O H O)
		_
		_
		_
10 (10 mg/ga/s		_
The Belleville		_
The state of the s		_
The state of the state of		_
The The State of the state of		_
The state of the state of the		_
The state of the s		_
The state of the s		_
The state of the s	Z	_
The state of the s		_
The state of the s		_
こうでしていることできることできるというできることできることできることできることできることできることできることできること		_
The state of the s		_
The state of the s		_
The state of the s		_
こうて こうないのいかしなる 大きな ないのかのかいかいかい		_
The second secon		_
The state of the s		_
The state of the s		_
The state of the s		_
The state of the s		_

CUSTOMER AME ANO 17 6/	746	REPORT TYPE TURNAROUND	JND LABORATORY # (Lab Use Only)
ADDRESS 209 W.	Central St	STANDARD□ ISRA□ X	
CITY, STATE, ZIP Lick	MA DIFFO	NYASP A□ B□ CLPX □ QUICK □	TEMP BLANK Y
NAME OF CONTACT M. Ke	Plumb 503/650-1048	OTHER OTHER OTHER	BY
PROJECT LOCATION STEWAY	ANGB "		NY PUBLIC WATER SUPPLIES
PROJECT NUMBER / PO NO.		Silic Si Silic Si Silic Si Si Si Si Si Si Si Si Si Si Si Si Si	
SAMPLING & B B TIME S B B TIME S B B B B B B B B B B B B B B B B B B	MATRIX CLIENT I.D.	Total Number of Contain of Contai	AedioD
X SHM 01/01	X Water RB-58-101095	17779	91.1 91.2 91.3 TAUMINITECT
A Party Control of the Control of th			
Section Sectio		1000年の大学の大学の大学を表示して、1000年の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の	
esting if onsett			
(1) 전문(1) 전문(1) (2)			
	1		
5.00			
	4		
)			
HELINOUISHEDBY	COMPANY COMPANY	DATE RECEIVED BY	DATE
RELINGUISHED BY	COMPANY /	TIME	COMPANY DATE TO THE CASE
J Agganshed by		TIME	COMPANY
RELINQUISHED BY	COMPANY	DATE TIME RECEIVED BY	COMPANY IDATE STATES
COMMENTS			
		2	

CHAIN OF CUSTODY RECORD

D LABORATORY#(Lab Use On		TEMP BLANK Y	BY	e i kirili. Çvi	SOURCE ID	FEDERAL ID	41.1, 41.2, 41.3, Ch. 114, Mall			A Market			A)	The state of the s	
TURNAROUND	NORMAL	QUICK	VERBAL	FAMILIA	stic stic	125ml Pla	<u>ا</u>	13	7	2		Z.1	1 1 1 1 1		
	X		^ <u> </u>		T Valroxide Silc Silc	VIIIIO ACIO					The state of the s				
REPORT TYPE	STANDARD□ ISRA[NYASP A□ B□	ОТНЕВ		Pio Jequ Jequ Ss	Total Num of Contain of Contain of Contain Lifer Ami Lifer Am Lifer An	± 2								
	+		ENO.			CLIENT I.D.	SB-05-02	5B-05-060	5B-05 - 72	< R-06-02	58-06-26.5	58-00-34.5	TB-04	What Tenno Blank	
MERNAME ASISON CHANGE	200 Wort Control	3	DIMILE	OCATION ANG BUSE	PROJECT NUMBER/POND. Struzart RI SI	SAMPLING ESS DATE TIME SES MATRIX AM PM CG	10/10/6/1100 X Soil	10101 X Soil	1 1/2 X Citisplana	1,95/X	10/11/10 F 6450 X Scil 5 B - 06 - 26	10/11/15/1240 X Sil	Wirter	White	
CUSTOMER NAME	ADDRESS	CITY, STATE, ZIP	NAME OF CON	PROJECT LOCATION	PROJECT I	ETC# (71	1	11 F	W King	1	10 A S A S A S A S A S A S A S A S A S A	Section 1	तुरुकः (दुःकः (४०.7)	

Ž.	Series					
な大な	Ž.					が大き
	ME.	ME	ME	ME		101%
4						A. William
	,					444
	6/					2
1	AN SO	ATE	AE A	AE SEE		
	00	o.	<u>α</u>	9		1
,	a y c					100
						14,573
in.						
:	λ	Ž	¥	Σ		
٠.	COMPANY	MPAI	COMPAN	COMPANY		١.
	83	<u>S</u>	8	8		
			1.5			١.
			1.4			
	. 2				1.5	
	1				1	
-			7			
	1	<u>`</u> `) S	≿		
•		EIVED BY	RECEIVED BY	RECEIVED BY		
	Ş E		SE SE	CEIV		
i,	HE.	JE C	Ä	HE	25	
	1350)	100 h	Janes Jane		1
	K	e ze			1	S.
	7:03 7:03					
	覧 て	TIME	TIME	TIME		
	,					
	195					
	DATE 0 12	<u> </u>	DATE	DATE		
	82	DA	DA	δ		
	لد					
	RELINGUISHED BY COMPANY COMPANY A CO		≻	≥		
	COMPANY Ane i	PÄN	COMPANY	COMPANY		
	COM	SOM	W O O	W O O		
		_	_	_		
j	10	}				
	71.					
	f_{d}					!
		7				
	ر`ڃ	<u>`</u>	≿	<u></u> ≾		
		9 9	EDE	ED E	1	
ŀ	F 2	HSI	띪	HSI	NTS	
	RELINQUISHED BY	ğ-	RELINQUISHED BY	RELINQUISHED BY	COMMENTS	
	ᇣ	교	ם	H	8	
•						

6

NYSDOH 10142 NJDEP 73507 CTDOHS PH-0054 EPA NY049

EnviroTest Laboratories Inc. CHAIN OF CUSTODY FECORDS

CUSTOMER NAME A . A . A . A	X of v.			REPORT	1 :	TYPE	4	TUR	TURNAROUND	INC	0	LABORATORY	LABORATORY # (Lab Use Only)
ADDRESS 210	, –	(m/m) 52.	ST	STANDARD	_	□SRA□	X	K NORMAI	MAL				
CITY, STATE, ZIP	Litik W	07+10 A)	 T	UYASP A□				QUICK	7			TEMP BLANK "Y	N .
NAME OF CONTACT	} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PHONE NO.	- T	OTHER		,		VERBAL	3AL	133		REVIEWED BY	1N
PROJECT LOCATION	γ,	a Count Base							E1/5	5,4	510,5	NY PUBLIC WATER SUPPLIES	TER SUPPLIES
PROJECT NUMBER / PO NO	.O.			S	Jedi Jedi	Peuc	θριχοι-	Oi)s	140 M	571 700	210	ELRP TYPE	
SAMPLING SE MATRIX ETL# DATE TIME OF MATRIX	COMP BARB MATRIX X	CLIENT I.D.	Total Num of Contains	HCL Selo Imo*	Lifer Amb Sulfuric Ac Lifer Am Coganic Walls Lifer Plassign	Liler Plassi Mitric Acid Mitric Acid Liler Plassi Liler Plassi	liseld lelij	SSOMI Pla	Storing Storin	SEGIEL ACIO		FEDERAL ID ANALYSIS. REQUESTED	<u>dersen</u>
10/12/45	\ \ \ \ \ \ \	RB-58-101295	9	7	7			Page Heigh Page	. 13.		91.1	91.7 91.3	TANAMA
1 1423				 					1	_	, 17		
5191	X 51,	56-63-33	~	*						_	ت	भ ा	16
S. 50.00	X 50.1	88-07-16	3						-		۳	<u> </u>	
	×	58-17-33	~					-	-		بال	الرج الرج	
Stangt gift Stangt for Specific for Up for No.	*		14	17				9. 4. 4.5			11		
100 mg/kg/2 mg/kg/kg/2 mg/kg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/kg/2 mg/k													
	,												
					-								
, F											#/		
							46.	1					
					4 T		Section 1	1,3°			ur.		
,								. ^				議院を記さるです。	
RELINQUISHED BY ALL	4	COMPANY Autore 1	10/15/9	- - -	IHO P	H	RECEIVED BY	.			O		DATE TIME F
RELINĞUISHED BY		CÓMPANÝ	DATE	F	riME	2	RECEIVED BY	>			О		DATE
RELINQUISHED BY		COMPANY	DATE	F	TIME	E/	REGEIVED BY	1			0	COMPANY	DATE
RELINQUISHED BY		COMPANY	DATE	F.	TIME		RECEIVED BY) 0		00%	COMPANY	DATE DETINE
COMMENTS				-		$ \mathcal{I} $) Name				

Envirolest Laboratories Inc. CHAIN OF CUSTODY RECORD 315 Fullerton Avenue, Newburgh, NY 12550 (914) 562-0890 FAX (914) 562-0841

			mental contractions with the contraction of the con
CUSTOMER NAME A DE DIFE P (CETATION)	REPORT TYPE	TURNAROUND	LABORATORY # (Lab Use Only)
+ 1	STANDARD□ ISRA□	NORMAL	
ZIZIP V V V V	NYASP A□ B□ CLP【	☐ aulok	TEMPEBANK
Dingh A	OTHER	U VERBAL	PH CHEOK *
ANG BUSE SITES		\$	NY PUBLIC WATER SURPLIES
	ollss))))	SOURCE ID
SAMPLING P. B.	isi Numbi Soniaine So	oos nui piasii nui piasii je piasii	FEDERAL ID
ETL# DATE TIME & MATRIX CLIENT I.D.	POS VIIN PAIT PAIT VIIN VIIN VIIN	1520 1521 1520 1500 1500 1500 1500 1500	ANALYSIS REQUESTED
JR. 19/15/1015 1/501L MW-01-04			1/6
yo-10-mm -01-04			91.2-91.3-TAL/METALO-CON
10-10- MM -01-04			70 C
2/10/17/020 1 MW -01-18			1/6
81-10- mu 1 1 1 1 60			91,2-9,3-TACMENIC
81-10- MW -01-18			
1245 6 nw -01 - 31.6			91.1
3 6 1 hw-01-31.6		7	91,2-91,3-TAL/METAES - OVE
V 1 1 11 11 -01-31.6			700
04 WATER 78-06	38		41.1
+ TEMP BLANK			
,			をはる。 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、
COMPANY	TIME	RECEIVED BY	COMPANY DATE TIME
COMPANY COMPANY	SATE TIME	RECEIVED BY	
COMPANY	DATE TIME RECE	RECEIVED BY	COMPANY
RELINQUISHED BY COMPANY	DATE TIME RECEI	RECEIVED BY	
COMMENTS			

EnviroTest Laboratories Inc. CHAIN OF CUSTODY RECORD RD 315 Fullerton Avenue, Newburgh, NY 12550 (914) 562-0890 FAX (914) 562-0841

CUSTOMER NAME				Tacana		10∨ ±		THRNAROUND	BOE		LABORATORY # (Lab Use Only)
ANEPTEK				<u>.</u>	• • [[]					
ADDRESS (V.C	C FATRAL	7.0		STANDARD	T.	ISRA∐	14.14	A POHIMAL			
TE, ZIP	1000			NYASP A] CLP		QUICK _			TEMP BLANK V 17 N
Ή	no	0	01760	OTHE				VERRAI			PH CHECK Y
NAME OF CONTACT AIKE DE	OL VMB	7	508)-650-1048	ו נו					-		REVIEWED BY
PROJECT LOCATION	•	410	4.4TIMA 1 61.00 D								NY PUBLIC WATER SUPPLIES
PROJECT NUMBER / PO NO.	1]		s	Jaqu	jastic o	ارد ارد آرد		Jəq		ELRP TYPE
	۹ ا			elesino Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontai Sontain	furic A furic A iter An	ric Acid Liter p H muit	Isp.	pld Im0 pld Imi Slerile	mA Imu	Yed	FEDERAL ID
ETL# DATE TIME OF AMP PM CG	™Z COM GRAE	MATRIX	CLIENT I.D.	104	Ins	POS	Ins In		2	05	ANALYSIS REQUESTED
10/17/1236	3/ 1/4	Vagren	Spr101-10-WI	63	4	11			14.00°	11/6	1 91.2, 91.3 TALMET 400
	1	V (4.87 E.A.	TB-04-01						100 mm	16	
			TEMP PLANK						2		
								当ま			
										Sec.	
Comments of the Comments of th											
								(字 (数			
S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.											
						11. 11.	27.58 27.58				
	1										
RELINQUISHED BY		1	COMPANY	0/05	TIME	H	RECEIVED BY				COMPANY
RECIMOUISHED BY	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				TIME	H.	RECEIVED BY				COMPANY DATE THE TOWN THE COMPANY
RELINQUISHED BY	<i>i</i> .		COMPANY	DATE	TIME		RECEIVED BY		32		COMPANY DATE: TIME OF THE COMPANY
RELINQUISHED BY			COMPANY	DATE	TIME	"	RECEIVED BY	1	To l		COMPANY DATE OF TIME OF POINT OF THE COMPANY
OF MENTION									•	ن بر	
COMMENTS							\int			a de la composição de l	

Envirolest Laboratories Inc. CHAIN OF CUSTODY RECORD 315 Fullerton Avenue, Newburgh, NY 12550 (914) 562-0890 FAX (914) 562-0841

LABORATORY # (Lab Use Only)		TEMPBEANK Y N N 21 OF THE OF T	REVIEWEDABY	NY PUBLIC WATER SUPPLIES	SOURCE ID	FEDERAL ID ANALYSIS REQUESTED TO A STATE OF THE STATE OF	C, TCL SUOC SPECT PEG TRY GILL	No 1978		Noc								COMPANY TIMES	COMPANY DATE: Y TIME TO THE TOWN	COMPANY	COMPANY COMPANY CONTENT CONTEN		
TURNAROUND	□ NORMAL	QUICK	U VERBAL		ilic Silic Silic	Liler Plass Sulfunic Acc 250ml Plas Sterile Sterile 250ml Amil 2 02 2 02 COOPBE	201 771			1774	172		***		等等 多 等 法						*		
REPORT TYPE	STANDARD□ ISRA□	NYASP A□ B□ CLP【	OTHER		Siese Siese	Total Num 40ml Glass 40ml Glass Liter Amb Liter Amb Corganic Wa Liter Plass Liter Plass Liter Plass Liter Plass Liter Amb Liter Plass Li	83 777	83 222		2 J	© EC	**************************************						TIME	TE TIME TIME	TIME TIME TECEIVED BY	TE TIME RECEIVED BY		
	JAKAL ST	nA 01760	SOS/650-104 8)			CLIENT I.D.	X WATER MW-01-1178	X WATER MW-10-1128	X WATER MW-109-1128	78-1128	8211-801-MW	٠						.VQ	DA	DAT	COMPANY DATI	0	
CUSTOMER NAME AN EPTEK	ADDRESS 209 W, CENTRAL	CITY, STATE, ZIP V.4 T/CK	NAME OF CONTACT	8 3 8 4	PROJECT NUMBER / PO NO.	SAMPLING & B SAMPLING & B ETL# DATE TIME OF MATRIX	11/28/4 0900 X WATER	1/22/1010		1877) 1877)	1/28/ 1370 X WATER			S. S. S. S. S. S. S. S. S. S. S. S. S. S				RELINQUISHED BY	RELINQUISHED BY	RELINQUISHED BY	PRINGUISHED BY	D Blurk	

CHAIN OF CUSTODY RECORD

CUSTOMERNAME A WE PTE K CORP.	. '	REPORT TYPE	TURNAROUND	LABORATORY # (Lab Use Only)
\sim	בשותל לשו	STANDARD : ISRA	O NORMAL	
84,	1 %	NYASP A□ B□ CLPI	¶ □ ouick	TEMPRIVIN M. N.
١ ٨	PHONE NO.	ОТНЕВ	□ VERBAL	PH CHIEOIG Y. N. N. REVIEWED BY
PROJECT LOCATION	7			NY PUBLIC WATER SUPPLIES
PROJECT NUMBER / PO NO.		ojise Daysi Daysi Jayi Di	oils oils	SOURCE ID
SAMPLING & B SAMPLING & B ETL# DATE ATIME OF MA	MATRIX CLIENT I.D.	Total Number of Contained of Co	Liter Plasti Liter Plasti Sulfuric Ac Soomi Plas Serile Soomi Ami 2 os 2 os	FEDERAL ID
11/27 1445 X WATER	722 MW-09-1127 (MG/M)24	899年6	721	VOC, TEL SWC, THE CIPEB TACHOLICE
	T8-1127	~	77 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	VOCL
Section 2				
270			を変える。	
man &				
Frankling Frankling				
April.	₹\$ [*]			
	-			
in the second				
		100 mm mm mm mm mm mm mm mm mm mm mm mm m		
			The state of	
RELINQUISHED BY		TIME	RECEIVED BY	COMPANY
RELINGUISHED BY	COMPANY	DATE TIME RECI	RECEIVED BY	COMPANY
RELINQUISHED BY		DATE TIME (REC	RECEIVED BY	COMPANY
TELINQUISHED BY	COMPANY D	DATE TIME REC! 1.1.2.8	RECEIVED BY	COMPANY CEZ (1) DP 19 THE TOTAL STATE (2) DP 19 THE TOTAL STATE (2) DP 19 THE TOTAL STATE (2) DP 19 THE TOTAL STATE (3) DP 19 THE TOTAL STATE (4) DP 19 THE TOTAL STATE (5) DP 19 THE TOTAL STATE (6) DP 19 THE TOTAL STATE (6) DP 19 THE TOTAL STATE (6) DP 19 THE TOTAL STATE (6) DP 19 THE TOTAL STATE (7) DP
COMMENTS TOWN B	Ĵ			
-)	

Envirolest Laboratories Inc. CHAIN OF CUSTODY RECORD 315 Fullerton Avenue, Newburgh, NY 12550 (914) 562-0840

CUSTOMEB NAME				1000年代の一大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大
ANERTER CORPORATION	17.10x	REPORT TYPE	TURNAROUND	LABORATORY # (Lab Use Only) **
ADDRESS	1 (3001	STANDARD□ ISRA□	□ NORMAL	
,		NYASP A□ B□ CLP[X]	□ aulck	IK Y
×	PHONE NO. (502) 1/8	OTHER	UERBAL	pH CHECK V NI REVIEWED BY
				NY PUBLIC WATER SUPPLIES
	7	Peys Jeg D) (IIC (IIC (IIC)	SOURCE ID
SAMPLING P. B. B. B. B. B. B. B. B. B. B. B. B. B.	MATRIX CLIENT I.D.	Total Numite Plastics Aomi Glass Aomi Glass Liler Amber Liler Ambe	Liler Plassi Sulfuric Acia Sulfuric Acia Sulfuric Acia Sulfuric Acia Sterile Sterile Sulfurica S	FEDERAL ID STEQUESTED SANALYSIS REGUESTED
() Wash 1330 XV	VATER MU-108-1128	4	7 To 10 To 1	JOSE TO STORE OF THE PARTY
		-		
marks.			等人 ・ 一次 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一 ・ 一	
## (5) #100m				
esia la maggio				
3. S ²				
*				
			7.00	
				教養教育主義などのからいのかい
HELINQUISHED BY		TIME	RECEIVED BY	COMPANY COMPANY
RELINQUISHED BY		TIME	RECEIVED BY	COMPANY DATE: TIME TO THE TARK TO THE TARK THE THE TARK THE TARK THE TARK THE TARK T
RELINQUISHED BY		TIME	RECEIVED BY	COMPANY DATE TIME
RELINQUISHED BY	COMPANY DATE	TIME 1578	RECEIVED BY	COMPANY TIME (1) 20 9C STATE
A como	my 4°			
			7	

CHAIN OF CUSTODY RECORD

CUSTOMEB NAME						
ANEPTEK		REPORT TYPE	n -	TURNAROUND		
ADDRESS W CEAMINAL		STANDARD	ISRA□ □ □ 6	TORMAL		
ZIP	0707	NYASP A□ B□	□ 2 3	DOUCK		× ×
	SOP-KO -1648	OTHER		VERBAL		prichiems
PROJECT LOCATION CTF.WART AN						NY PUBLIC WATER SUPPLIES
PO NO.	•	Jager Jager Jager Jager Second	astic droxide c	ons		SOURCE ID
SAMPLING & B SAMPLING & B ETL# DATE AMPANO & MATRIX	CLIENT I.D.	Total Num OI Contain OI Contain OI Contain Lifer Amb Sulfuric Act Lifer Amb Sulfuric Act Lifer Amb Organic W Lifer Amb Organic W	Mitric Acid Lifer Plassi Lifer Plassi Lifer Plassi Sulfuric Acid	125ml Plas Sterile Sterile S50ml Amil	2 oz. Gorpak	FEDERAL ID ANALYSIS REQUESTED
11/28 1820 4 AVECUS	S	88 23			724,	SVOC PEST/PLB CV TOLMETALS
11/28	SW-12-1128	8 8 2 2				\ .
age of the second		J. 16				
economic Constant						
Carry of Jan 19 and 19				1878年 1878年		
	1865 A					
			影響			
The first						
			在 医学数位表示			
RELINQUISHED BY	COMPANY F- //	ال ال	RECEIVED BY		၁	COMPANY
RELINOVISHED BY	COMPANY		RECEIVED BY		0 %	COMPANY DATE STATES
RELINQUISHEDBY	COMPANY	DATE TIME	RECEIVED BY		0	COMPANY
RELINQUISHED BY	COMPANY	DATE TIME	RECEIVED BY	2. Show at	0	COMPANY PATE 9-95-TIMES OF
COMMENTS						
CONMETALS						

à		í
Ĭ		•
		I
		١
Š		۱
į.	~ .	I
		l
		I
		١
Ñ	発養を	ł
ď		i
2		l
		ı
		l
	The second	ľ
\$		l
Š.		l
ı		İ
,		1
		Ì
د. و		ı
		l
ò		ı
		I
		ı
_	و مسا	ı
ź		ı
÷	(n	ŀ
	U ,	ł
	_	ı
7		ı
		ı
ż		l
		l
		ŀ
8		l
		l
ķ		l
Ė		l
۱		ı
ľ	~	l
3		l
۵.		l
		ı
	1.5.2	
	CHAIN OF CUSTODY R	ı
,		ľ
		l
_		ı
ı		١
j		١
Z	Transfer to	l
		l

				Service would be a first of the service and the service of the ser
CUSTOMER NAME	7,70	REPORT TYPE	TURNAROUND	LABORATORY# (Lab Use Only)
<i>+</i>	+ 10 mm / 1/2 mm	STANDARD ISRA	(名 NORMAL	
E, ZIP		NYASP A□ B□ CLP[X]	□ auick	TEMP BLANK NOTE OF
NAME OF CONTACT	01760	OTHER	☐ VERBAL	PH CHECK Y
PROJECT LOCATION	(() () () ()			NY PUBLIC WATER SUPPLIES
		Devis Personal Person	0)	SOURCE ID
SAMPLING PRE SAMPLING AND SAMPLING AND SAMPLINE AND PAN COR	MATRIX CLIENT I.D.	Total Numb Total Numb 40ml Glass 40ml Glass Hot. Liter Ambe Sulfuric Acid Liter Ambe Liter Ambe Sulfuric Acid Liter Ambe Liter Ambe Liter Ambe Liter Ambe Liter Ambe Liter Ambe Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid Liter Acid	Sulfur Acid Sulfur Acid Sulfur Acid Scom Plasti Scom Ambe Scom Ambe Scom Ambe Scom Ambe Scom Ambe Scom Ambe Scom Ambe Scom Ambe	FEDERAL ID
11/28/4-1730	x Water (4,-03 - 1128	4.5		()
	M	83		
1/2ek-1830	5w-12-1	3 6 8	TC2.10C	7000
11/2/1820	5m-0	※※<td></td><td>が記録が、プラウス</td>		が記録が、プラウス
	TB-11	対象の		
SET OF A				
N () () () () () () () () () (The state of the s
es es Se es				
	-			
			1000年 1000年	
		S. Carlotte Control of the Control o	· · · · · · · · · · · · · · · · · · ·	The state of the s
HELINGUISHED BY	// .	TIME		COMPANY COMPAN
RELINGUISHED BY		DATE TIME TO RECEIVED BY		COMPANY
RELINQUISHEDBY		DATE TIME RECEIVED BY		COMPANY
RELINQUISHED BY	COMPANY	DATE TIME RECEIVED BY		COMPANY DATE TIME TO THE TOTAL OF THE TOTAL
COMMENTS				

NYSDOH 10142 NJDEP 73507 CTDOHS PH-0054 EPA NY049

CHAIN OF CUSTODY RECORD

LABORATORY # (Lab Use Only)		TEMP BLANK W. / NI	REVIEWEDIBY	NY PUBLIC WATER SUPPLIES	ELRP TYPE	FEDERAL ID	ANALYSIS REQUESTED	TCLP/ors/mit-			* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							は、大きないできるとのでは、「ないでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ		10K 12/5/45	· COMPANY DATE TIME	COMPANY	COMPANY DATE TIME		
TURNAROUND	□ NORMAL	QUICK	☐ VERBAL		oji Sile Jio	iler Plasi Somi plas Serile Serile Somi Ami Soor Soor Soor Soor	15 Si 15 Si								100 mm 100 mm					1 man		ЕD ВУ	ED BY (The first	\	
REPORT TYPE	STANDARD□ ISRA□	NYASP A B CLP	отнев		astic Sished ber ber ber	olai Numni Containo Miller Ambi Liler Ambi Liler Ambi Liler Acid Liler Ambi Liler Acid Liler Ambi Liler Acid Liler Ambi L	S N 17 10 18 7 1	5 -	2			6)							3/7/JTIME/ (A)	TIME ' RECEIVED BY	TIME RECEIVED BY	TIME RECEIVED BY		
	7 / 2	14 01260	PHONE NO.	ر عاد ن		. ·	CLIENT I.D.	IDW-01-120695	13w-02-120695	1210-03-120695	JDn- 00 - 120698	†	.~^	(Tree)	25.4			10.	,	7	COMPANY DATE	COMPANY DATE	COMPANY DATE		
CUSTOMEN NAME)	ADDRESS () 2 0 1 CC 074	5		PROJECT LOCATION (7 T LUAR 7 ANE S	PROJECT ŇUMBER / PO NO.	SAMPLING ME	ETL# DATE TIME OF MATRIX	12/1/0/X X Soil	14/15 X 5016	1420 X	//57 K K (2,,,		\$2.00 A A A A A A A A A A A A A A A A A A		garte.	* y*				-X 71 X/W	RELINQUISHED BY		PRELINQUISHED BY STORY	COMMENTS	

	į	L	÷	1	
ĺ	İ	ř	Y	- -	·
			_		
	3		٦)	2. 3.
	Ė	1)	
		5	ī	Ti.	7
•	á				
	**	Į	I		
		Ĺ		Ý	
			_	7	,
		ſ		•	
		6	-r1) :	e et
Į		ì	_	_	
		Ţ	_	•	
		Ľ	J,)	
		_			
	_	Ī)	١
		Γ	_	•	,
Į	_	L	Ŀ		
	_	7		•	
		P	_	•	
	Į	۲			
		_	7		
		4	_		
	7				

1 pcB, Tow Metals (1014) TIME NY PUBLIC WATER SUPPLIES **LABORATORY** # (Lab Use Only) TIME **ANALYSIS REQUESTED** DATE DATE 3. TEMP BLANK 741 netal PH CHECK REVIEWED BY 751777 FEDERAL ID ELRP TYPE SOURCE ID COMPANY COMPANY COMPANY COMPANY 7 114 71/ 707 774 - A. . Ę r. TURNAROUND Qorpak Qorpak 250ml Amber NORMAL ☐ VERBAL RECEIVED BY RECEIVED BY Liter Plastic Sulfuric Acid Michael RECEIVED BY RECEIVED BY Liler Plastic Mano Cla STANDARD SRA 4 REPORT TYPE 7 0 d m 3 M M t 34 3 Liler Amber Sulfuric Acid NYASP A□ TIME 40ml Glass OTHER 3 ستخ 3 ۴ Total Number of Containers 3 6 3 3 7 MW-13 -0330 (MS/MO)24 a 0 5 2 0 Q 13.47 10.471 DATE 8401 Tru- 108.032 -032 1 - 12 - 0320 -04-032 100-101-034 CLIENT I.D. TW-03-073 5W-02-0330 MW-01-0320 1.50-401 - mu PHONE NO. COMPANY COMPANY 18051 COMPANY COMPANY 1.0 09010 water 100400 Lunger MATRIX امرهودر 10.0 BACT 630 ン SAMPLING PR BDATE TIME OR AM PM C.B. かん Ž PROJECT NUMBER / PO NO 3/2/46 0900 3/1/1055 3/24/11/12C 3/2/91/145 3/21/41/0955 020 1/4/1035 340HOBEHS MIKT DILLIND 3646 1455 209 Wert PROJECT LOCATION ANT PTEK NAME OF CONTACT **CUSTOMER NAME** TEWAST RELINQUISHED BY RELINQUISHED BY (Noujshed By CITY, STATE, ZIP Natio 3 COMMENTS ADDRESS ETL#

APPENDIX K ANALYTICAL DATA

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

154139-06	SB-04-Z1	11 U	11 U	11 U	11 U	11 U5	17 U6	3 J4	11 U	11 U	11 U	11 U	110	11 C	110	11 U	110	11 U	110	11 0	110	110	2	11 U	11 U	11 UJ15	11 UJ15	11 UJ15	11 UJ15	1 J15	11 UJ15	11 UJ15	11 UJ15	11 UJ15	ν-
154139-05	SB-04-02	11 0	11 U	11 U	11 U	11 05	11 05	11 UJ4	11 0	11 U	11 U	11 U	11 C	11 O	11 U	11 U	11 U	11 0	11 U	11 U	11 U	11 U	110	11 U	11 U	11 U	11 U	11 U	110	11 U	110	11 U	11 U	11 U	~
154139-04	2B-0Z-10.Z	11 U	11 U	11 UJ4	11 UJ4	11 05	16 U6	2 J4	11 U	11 U	11 U	11 U	11 U	110	11 0	11 U	11 U	11 U	11 U	11 U	11 U	11 U	110	11 U	11 U	11 UJ15	11 UJ15	11 UJ15	11 UJ15	11 0315	11 UJ15	11 UJ15	11 UJ15	11 0315	~
154139-03	SB-02-06	110	11 U	11 UJ4	11 UJ4	110	11 U5	2 14	11 U	11 C	110	110	11 O	11 C	11 U	11 U	11 O	11 U	11 U	11 0	11 0	11 0	11 U	11 U	11 O	11 U	11 U	11 U	11 U	11 0	11 U	11 U	11 0	11 U	
154139-02	2D-70-9S	11 U	11 U	11 UJ4	11 UJ4	11 O	11 U5	11 UJ4	11 U	11 U	11 U	11 C	110	11 U	11 O	. 11 U	11 U	11 U	11 U	11 U	11 O	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 C	~	←
	CRQL	10	10	10	10	9	10	10	10	9	9	9	9	9	9	9	9	9	9	9	10	10	10	10	9	9	9	9	9	9	9	9	9	6	
SAMPLE NUMBER:	SAMPLE LUCATION: COMPOUND		Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes	DILUTION FACTOR:

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

154139-12 SB-03-1.3	110	11 U	11 U	11 U		15 U6	11 UJ4	11 U	11 C	11 U	11 U	11 U	11 U	11 U	110	11 U	110	110	110	110	110	110	110	110	110	110	110	110	11 U	110	110	11 U	2	~
154139-10 SB-03-22	11 U	11 U	11 N	110	11 US		2 14	11 U	11 N	11 0	_	11 U		11 U	11 U	11 C	11 C	11 U	11 U	11 U	11 U	~	11 C	110	11 UJ15	11 UJ16	11 UJ1	11 UJ1	11 UJ1	11 UJ15	11 UJ1	11 UJ15	1 115	
154139-09 SB-03-56	11 U	11 U	11 U	11 U	11 05	11 05	2 14	11 U	11 U	11 U	11 U	11 U	11 0	11 U	11 U	11 U	11 U	11 U	11 0	11 C	11 U	11 U	11 U	11 U	11 U	11 C	110	11 U	11 U	11 U	11 U	11 C	11 U	~
154139-08 SB-03-06	11 U	11 0	11 0	11 O	11 05	18 UG	1 14	110	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 N	11 U	110	11 U	110	11 U	11 C	11 U	110	11 N	. 11 U	110	11 U	110	11 C	11 U	11 0	₩	~
154139-07 SB-04-06	11 U	11 U	11 U	11 U	11 U5	11 U5	11 UJ4	11 U	11 U	11 U	11 U	11 0	11 U	110	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U·	11 U	11 0	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	7	~
2	10 10	10	10	9	10	10	10	10	9	10	9	10	10	10	10	5	6	9	10	10	9	10	10	10	10	9	10	10	9	9	9	9	9	
SAMPLE NUMBER: SAMPLE LOCATION:		Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes	DILUTION FACTOR:

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (ug/L)

154139-11 TB-03		10 U	10 N	10 U	10 U	-	က	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
154139-01 RBSB100595		10 U	10 U	10 U	10 U	~	2	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	_	10 U	10 U
	CRQL	10	10	10	10	10	10	10	0	9	10	9	10	0	01	01	10	10	10	10	10	10	10	10	10	10	10	10	10	9	9	10	10	10
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes

DILUTION FACTOR:

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

154139-06 SB-04-21	370 U 370 U 370 U	370 U	370 U	370 U	370 U	3700	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4 920 UJ4
154139-05 SB-04-02	370 U 370 U 370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	930 U	370 U	930 U	370 U	370 U	370 U	370 U	930 UJ4 930 UJ4
154139-04 SB-02-10.2	360 U 360 U	098 300 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	O 006	360 U	O 006	360 U	360 U	360 U	360 U	900 UJ4 900 UJ4
154139-03 SB-02-06	370 U 370 U 370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4 920 UJ 4
154139-02 SB-02-02	370 U 370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	940 U	370 U	940 U	370 U	370 U	370 U	370 U	940 UJ4 940 UJ4
- 0 0	330 330 330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800 800
SAMPLE LOCATION.	bis(2-Chloroethyl)ether Phenol	2-Ciliolopilol 1.3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachioroethane N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline 2,4-Dinitrophenol

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

154139-06 SB-04-21	370 U	370 U	920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	370 U5	370 U	370 U	370 U	370 U	370 U	370 U	370 U5	370 U	370 U	370 U	370 U	370 U	370 U	370 U	~
154139-05 SB-04-02	370 U	370 U	930 UJ4	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	930 014	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U5	370 U	370 U	370 U	370 U	370 U	370 U	370 U	←
154139-04 SB-02-10.2	360 U	09E	900 UJ4	360 U	360 U	360 U	006 n	N 006	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	3e0 U	360 U	360 U	τ-
154139-03 SB-02-06	370 U	370 U	920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	~
154139-02 SB-02-02	370 11	370 U	940 UJ4	370 U	370 U	370 U	940 U	940 U	370 U	370 U	370 U	940 034	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U	
0	330 330	330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	
SAMPLE NUMBER: SAMPLE LOCATION:	Dibenzofuran	2,4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	DILUTION FACTOR:

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

154139-09 154139-10 SB-03-56 SB-03-22	370 U 370 U 370 U 370 U 370 U))	ם	n)		כ)	-	.	D	⊃	>	5	5	5	_	370 U 370 U	5	_D	370 U 370 U	5	UJ4	D.	⊃	-	-	5	370 U 370 U	-	7	940 UJ4 840 UJ4	940 UJ4 940 UJ4
154139-08 15413 SB-03-06 SB-03	380 U 380 U 3) –	380 U 3		7	_	5	<u>ס</u>)	5	-		-	_)	ח	5	_	_	-	_		UJ 4	5	_	D	-	5	_	ם	ב	UJ4	960 UJ4
154139-07 SB-04-06	370 U 370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4	920 UJ4
	330 330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800	800
SAMPLE LOCATION:	COIMPOUND bis(2-Chloroethyl)ether	2-Chlorophenol	1.3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1.2.4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

154139-12 SB-03-1.3	360 U	900 R2	360 U	360 U	360 U	O06	006 n	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 US	360 U	360 U	360 U	360 U	360 U	360 U	360 US	360 U	360 U	360 U	360 U	360 U	360 U	360 U	•	-
154139-10 SB-03-22	370 U 370 U	940 UJ4	370 U	370 U	370 U	940 U	940 U	370 U	370 U	370 U	940 UJ4	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	,	- -
154139-09 SB-03-56	370 U 370 U	940 UJ4	370 U	370 U	370 U	940 U	940 U	370 U	370 U	370 U	940 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U	,	\-
154139-08 SB-03-06	380 U 380 U	960 UJ4	380 U	380 U	380 U	N 096	N 096	380 U	380 U	380 U	960 UJ4	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 NS	380 U	380 U	380 U	380 U	380 U	380 U	380 U		τ-
154139-07 SB-04-06	370 U 370 U	920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U		-
1080	330 330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330		
SAMPLE NUMBER: SAMPLE LOCATION:	Dibenzofuran 2 4-Dinitrotoli lene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene		DILUTION FACTOR:

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (ug/L)

154139-01 RBSB100595		5 6	10 U	10 U	10 U	10 U	_		70.0	0 = 0	10 C	10 U	10 U	10 U	10 U	10 U			_	-				10 U	0.07	10 U	0 2 7	00,	5 5	200	25 1.14	\supset
	CRQL	5 6	9	10	9	5	9	9 :	2 9	5 5	2 9	9	9	9	9	6	10	9	5	10	9	10	9	6 6	C7	10 25	3 .	5 5	5 5	5 5	25.	25
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	bis(2-ChloroethyI)ether Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Metriyiprierioi Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-1 richiorophenol	2-Chloronaphthalene	Z-INITIOALIIII IE	Acenaphthylene	Ulmethylphthalate		Acertaphin en e	2,4-Dinitrophenol

LABORATORY: SITE: SDG:

STEWART ANG AC139/154139 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (ug/L)

154139-01 RBSB100595	10 U	10 U 25 R2	-	10 U	10 U	25 U	25 U	10 U	10 U	10 U	25 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	က	10 U	10 U	10 U	10 U	10 U	10 U	10 U
JOBO	10	10 25	9	10	9	25	25	19	10	5	25	5	9	9	10	5	9	10	10	9	10	9	10	5	10	1	10	9	10
SAMPLE NUMBER: SAMPLE LOCATION:	Dibenzofuran	2,4-Dinitrotoluene 4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene

DILUTION FACTOR:

PESTICIDE/PCB SOIL ANALYSIS (ug/kg) STEWART ANG, SITE 2 AC009 ENVIROTEST LABORATORIES, INC. SITE: SDG: LABORATORY:

154139-06 SB-04-21	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	18 U	3.7 U	3.7 U	1.8 U	1.8 U	180 U	37 U	73 U	37 U	37 U	37 U	37 U	37 U
154139-05 SB-04-02	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	9.1 J25	5.1	3.7 U	3.7 U	6.1 JN25	3.7 U	15	19 U	3.7 U	3.7 U	1.9 U	1.9 U	190 U	37 U	74 U	37 U	37 U	37 U	37 U	37 U
154139-04 SB-02-10.2	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	3.6 U	2.3	3.6 U	3.6 U	1.2 JN25	3.6 U	3.6	18 U	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	36 U
154139-03 SB-02-06	1.8 U	1.8 U	1.8 U	1.8.7	1.8 U	1.8 U	1.8 U	1.8 U	0.2	2.3 JN25	3.7 U	3.7 U	1.1 JN25	3.7 U	3.6 J25	18 U	3.7 U	3.7 U	1.8 U	1.8 U	180 U	37 U	73 U	37 U	37 U	. 37 U	37 U	37 U
154139-02 SB-02-02	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	3.7 U	18	3.7 U	3.7 U	2.0 J25	3.7 U	3.7 U	19 U	3.7 U	3.7 U	1.9 U	1.9 U	190 U	37 U	75 U	37 U	37 U	37 U	37 U	37 U
Ö	1.7 1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	3.3	3.3	3.3	3.3	3.3	3.3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	33	33
SAMPLE NUMBER: SAMPLE LOCATION:		beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4.4'-DDE	Endrin	Endosulfan II	4.4'-DDD	Endofulfan Sulfate	4.4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

DILUTION FACTOR:

STEWART ANG, SITE 2 AC009 ENVIROTEST LABORATORIES, INC. SITE: SDG: LABORATORY:

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

154139-12	SB-03-1.3		1.8 U	1.8 U	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	0.67	3.4	3.6 U	3.6 U	1.5 JN25	3.6 U	8.1	18 U	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	36 U	~
154139-10	SB-03-22		1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	19 U	3.7 U	3.7 U	1.9 U	1.9 U	190 U	37 U	75 U	37 U	37 U	37 U	37 U	37 U	~
154139-09	SB-03-56		1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	3.7 U	0.41 JN25	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	19 U	3.7 U	3.7 U	1.9 U	1.9 U	190 U	37 U	75 U	37 U	37 U	37 U	37 U	37 U	τ-
154139-08	SB-03-06	•	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	19 U	3.8 U	3.8 U	1.9 U	1.9 U	190 U	38 U	77 U	38 U	38 U	38 U	38 U	38 U	
154139-07	SB-04-06		1.8 U	1.8 U	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	18 U	3.7 U	3.7 U	1.8 U	1.8 U	180 U	37 U	73 U	37 U	37 U	37 U	37 U	37 U	_
		CRQL	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	3.3	3.3	3.3	3.3	3.3	3.3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	33	33	
SAMPLE NUMBER:	SAMPLE LOCATION:	COMPOUND	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

SITE: STEWART ANG, SITE 2
SDG: AC009
LABORATORY: ENVIROTEST LABORATORIES, INC.

PESTICIDE/PCB AQUEOUS ANALYSIS

(NG/L)

RB-SB-100595 0.05 U 0.10 U 0.10 U 0.10 U 0.50 U 0.10 U 0.10 U 0.05 U 1.0 U 2.0 U 1.0 U 0.10 U 0.10 U 5.0 U 1.0 U 154139-01 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.10 U 0.10 U 0.05 U 0.05 0.05 0.05 0.05 0.05 0.05 SAMPLE NUMBER: SAMPLE LOCATION: gamma-BHC(Lindane) Heptachlor Epoxide COMPOUND gamma-Chlordane Endofulfan Sulfate alpha-Chlordane Endrin Aldehyde **Endrin Ketone** Endosulfan II Methoxychlor Aroclor-1016 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1221 Endosulfan I Foxaphene alpha-BHC Heptachlor delta-BHC beta-BHC 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endrin Aldrin

ANE139 ENVIROTEST LABORATORIES, INC. STEWART ANG, SITE 2 LABORATORY: SITE: SDG:

INORGANIC SOIL ANALYSIS (mg/kg)

CONTRACT DETECTION LIMITS (mg/kg)	40	12	8	40	_	-	1000	2	9	S.	20	9.0	1000	ო	0.1	ω	1000	~	2	1000	~	10	4	0.5						
154139-06 SB0421	11200	9.3 UJ5	4.2	51.1	0.8	1.1 U	25800 R3	16.3	9.5	26.7 J12	23600	13.9 R5	6970	642	0.04 U	23.9	1290	0.61 U	1.2	30.1 R3	0.13 UJ5	14.7	58.9	1.1 U	UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE		N LIMIT			
154139-05 SB0402	8820	5.5 15	4	34.1	0.56	0.53 U	20600 R3	12	8.7	21 112	20000	14.1 R5	2060	664	0.04 U	18.5	744	0.62 U	9.0	41.3 R3	0.14 J5	12.2 J12	54.1	1.1 U	DUE TO LIMITATIO	.(^^!	VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT			
154139-04 SB0210	7280	8 15	0.54 U	28.1	0.44	0.52 U	26400 R3	10.4	7.3	19.4 J12	17500	0.17 R5	5710	534	0.04 U	15.4	671	0.6 U	0.83		U	9.5	.40.8	1.1 U	S APPROXIMATE [יובעי (באוא הבעוני	CTED AT INSTRU			
154139-03 SB0206	8280	4.7 UJ5	3.4	30.9	0.42	0.54 U	27000 R3	12.2	8.1	19.5 J12	19300	9.7 R5	5920	541	0.04 U	17.2	779	0.63 U	69.0	40.2 R3	0.19 J5, J10	10	46	1.1 U	UJ - QUANTITATION IS APPROXIMATE DUE	ALIT CONTROL REV VALUE IS REJECTED.	UE IS NON-DETE			
154139-02 SB0202 MENT ION	0989	7.7 J5	3.6	27.1	0.43	0.54 U	25000 R3	10.2	7.4	18.8 J12	16800	10 R5	4110	481	0.04 U	16.1	593	0.63 U	0.67	30.2 R3	0.4 J5	9.7	48.3	1.1 U	- U, U	R-VAI			•	4 AA
15413 SB02 INSTRUMENT DETECTION LIMITS	3.48	4.22	0.5	0.14	0.22	0.48	2.06	1.86	1.28	0.48	1.04	0.16	2.8	0.18	0.04	2.54	12.1	0.56	0.38	4.56	0.12	0.62	0.26	1.0					- I	D VAPUF
MBER: ATION: :LEMENTS	٩	. 🕰	ட	۵	۵	۵	۵.	۵.	۵	۵	۵	ட	۵.	۵	S	۵	۵.	ட	۵.	۵	ш.	₾	Ω.	O	AETHOD	FURNACE ICP/FI AMF AA	COLD VAPOR	COLORIMETRIC	- MIDI-DISTILLATION	AUTOMATED COLD VAPOR AA
SAMPLE NUMBER: SAMPLE LOCATION: INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	NAL	7 - TOKI	, >		-	AV - AUTO

QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT ICP/FLAME AA FURNACE

STEWART ANG, SITE 2 **ANE139** LABORATORY: SITE: SDG:

INORGANIC SOIL ANALYSIS

(mg/kg)

ENVIROTEST LABORATORIES, INC.

CONTRACT	LIMITS (mg/kg)	40	12	2	40		~	1000	2	9	5	20	9.0	1000	က	0.1	∞	1000	-	2	1000	2	10	4	0.5
154139-12 SB0313 (SB0213)		9400	4.6 UJ5	3.8	29.1	0.55	0.52 U	16200 R3	12.3	တ	22.4 J12	20400	10.2 R5	5030	592	0.04 U	16.1	651	0.6 U	0.71	34.7 R3	0.16 J5	12.6 J12	55.1	1.1 U
154139-10 SB0322		10400	7.7 J5	4.3	48.5 J12	0.65	0.54 U	35000	14.3	9.7	22.4 J12	22200	10.9 R5	0299	542	0.04 U	21.3	1060	0.63 U	0.63	48.1 R3	0.26 J5	13.5 J12	56.6	1.10
154139-09 SB0356		9100	6.2 J5	3.4	32.6	0.52	0.54 U	27300 R3	11.9	9.1	21 112	20900	10.3 R5	6490	208	0.04 U	18.8	883	0.63 U	0.92	43.7 R3	0.18 J5	12.2 J12	55.5	1.1 U
154139-08 SB0306		9050	7.6 J5	က	31.1	0.49	0.55 U	27400 R3	13.4	8.7	21.5 J12	20800	8.1 R5	6500	520	0.04 U	17.6	886	0.64 U	0.77	43.9 R3	0.22 J5	12.1 J12	54	1.1 U
154139-07 SB0406 MENT		6200	6.1 J5	0.55 U	18.2	0.41	0.53 U	21700 R3	8.7 J2	6.4	19.5 J12	15300	1.7 R5	3660	392	0.04 U	14.4	530	0.62 U	0.91	42.7 R3	0.13 UJ5	8.7	42.9	1.1 U
15413 SB04 INSTRUMENT	LIMITS mg/kg	3.48	4.22	0.5	0.14	0.22	0.48	5.06	1.86	1.28	0.48	1.04	0.16	2.8	0.18	0.04	2.54	12.1	0.56	0.38	4.56	0.12	0.62	0.26	1.0
ER: ION:	EMENTS	۵	. 🕰	让	۵	۵.	Ф	۵	۵	۵	۵.	۵	ш	₾	۵	S	۵	۵	u.	۵	۵.	ш	۵	۵.	ပ
SAMPLE NUMBER: SAMPLE LOCATION:	INORGANIC ELEMENTS	Aliminim	Antimony	Arsenic	Barium	Bervllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT ICP/FLAME AA ANALYICAL METHOD - FURNACE

COLORIMETRIC

COLD VAPOR

ш ч S O

⁻ AUTOMATED COLD VAPOR AA - MIDI-DISTILLATION

INORGANIC AQUEOUS ANALYSIS (UG/L)

STEWART ANG, SITE 2
ANE 139
ENVIROTEST LABORATORIES, INC.

SITE: SDG:

LABORATORY:

SAMPLE NUMBER: SAMPLE LOCATION: II INORGANIC ELEMENTS II	15413 RB-S INSTRUMENT DETECTION LIMITS ua/L	154139-01 RB-SB-100595 MENT ION	COI DET	CONTRACT DETECTION LIMITS (ug/L)
	17.4	67.8		
. α.	21.1	21.1 U		09
	2.5	2.5 U		9
۵.	0.7	11.6		200
<u>C</u>	<u>L</u> .	1.1 U		יט ו
Cadmium P	2.4	2.4 U		ດ
Ω.	10.3	30500		2000
Chromium P	6.3 0.3	9.3 UJ2		2 (
Δ.	6.4	6.4 U		ა გ
۵.	2.4	3.8		72
۵.	5.2	279		90.
ட	0.8	0.8 R3		e (
Magnesium P	4	4610		5000
Manganese P	6.0	16.7		15
>>	0.2	0.2 U		0.2
<u>а</u> .	12.7	12.7 U		40
Potassium P	2.09	1660		5000 1
Selenium F	2.8	2.8 U		
۵.	6.	1.9 U		010
۵	22.8	30100		2000
ட	9.0	0.6 U		ר י
Vanadium P	3.1	3.1		20
Ω.	1.3	36.3		50
O	9	10 U		5
ANALYICAL METHOD F - FURNACE P - ICP/FLAME AA CV - COLD VAPOR C - COLORIMETRIC CA - MIDI-DISTILLATION AV - AUTOMATED COLD VAPOR AA	VAPOR		J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT	

TOC ANALYSIS

STEWART ANG ANE139 ENVIROTEST LABORATORIES, INC

154139-06 SB0421	0.87%	154139-12 SB0213* (SB-03-1.3) 0.62%
154139-05 SB0402	0.78%	154139-10 SB0322 0.69%
154139-04 SB0210	%62'0	154139-09 SB0356 0.52%
154139-03 SB0206	0.63%	154139-08 SB0306 0.79%
154139-02 SB0202	0.42%	154139-07 SB0406 1.17%
SAMPLE NUMBER: SAMPLE LOCATION:	TOC	SAMPLE NUMBER: SAMPLE LOCATION: TOC

STEWART ANG LABORATORY: SITE: SDG:

ENVIROTEST LABORATORIES, INC. 154009/AN009

VOLATILE SOIL ANALYSIS

11 UJ4 12 U6 110 110 11 U 11 U 110 110 110 110 11 U 11 U 110 11 C 110 110 110 110 11 C 10 Σ 11 C 110 110 11 C 110 110 154009-09 SS-02 11 UJ4 11 05 110 154009-08 110 SS-01 11 UJ4 11 05 SB-01-32.5 110 11 C 11 U 110 11 C 110 11 C 11 C 710 110 11 0 7 110 110 110 110 110 110 11 U 154009-04 13 U6 11 U5 110 110 110 SB-01-18.5 110 110 110 110 110 110 7 110 110 110 110 154009-03 110 11 U 110 154009-02 SB-01-02 555555555555 5555 9 \circ 99 0 0 SAMPLE NUMBER: SAMPLE LOCATION: trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane ,2-Dichloroethene (total) cis-1,3-Dichloropropene Bromodichloromethane Dibromochloromethane 4-Methyl-2-Pentanone ,1,1-Trichloroethane Carbon Tetrachloride ,1,2-Trichloroethane COMPOUND 1,2-Dichloropropane Methylene Chloride 1,1-Dichloroethene 1,1-Dichloroethane ,2-Dichloroethane etrachloroethene Carbon Disulfide richloroethene Chlorobenzene Chloromethane Bromomethane Ethylbenzene **Fotal Xylenes** Vinyl Chloride Chloroethane 2-Hexanone 2-Butanone Chloroform Bromoform Benzene oluene Styrene Acetone

STEWART ANG 154009/AN009 ENVIROTEST LABORATORIES, INC.

VOLATILE SOIL ANALYSIS (ug/kg)

154009-14 SS-07	2223	26 U6	5	277 277	2	777 777	777 200	777 777	######################################	222	11 C C D
154009-13 SS-06	120 120 120	12 U 12 U 12 U5	12 U 21 12 U 21 12 U 21	25	2	12 U 12 U 12 U	12 U 12 U 12 U	12 U 12 U 12 U	12 U 12 U	12 1 12 0 0 0 0	12 U 12 U 2
154009-12 SS-05	12 U 12 U 12 U 13 U 13 U 13 U 13 U 13 U	12 U 12 U 12 U5	12 U 12 U 12 U 12 U 12 U 12 U 12 U 12 U	12 12 12 10 10 10	2	121 120 120 0	12 U 12 U 12 U	12 U 12 U 12 U	12 U 12 U	72 4 72 4 0 0 0	12 U 12 U 3
154009-11 SS-04	12 U 12 U 12 U		12 U 24 12 U 2 U 24 U 2 U 2 U 24	12 U 12 U U 12 U U	12 C C C C C C C C C C C C C C C C C C C	1 2 5 5 0 0 0 0	12 U 12 U 12 U	12 U 12 U 12 U	12 U 12 U	12 C 12 U	12 U 12 U 12 U
154009-10 SS-03	777 000	11 U 11 U 5	11 U 14 U 14 U 14 U 14	2	. T T Ł	2	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1777 1000	11 C	<u> </u>	1111
į	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 5 7 5 7	2	6 6 6 6	555	5 6 6 5	5666	5666	5 6 6 6	55	2	2999
JMBER: ATION:	Chloromethane Bromomethane Vinyl Chloride	Chloroethane Methylene Chloride Acetone	Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (total)	Chloroform 1,2-Dichloroethane 2-Rutanone	1,1,1-Trichloroethane Carbon Tetrachloride	1,2-Dichloropropane cis-1,3-Dichloropropene Trichloropropene	Dibromochloromethane 1,1,2-Trichloroethane	trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone	2-Hexanone Tetrachloroethene	1,1,2,2-Tetrachloroethane Toluene	Ethylbenzene Styrene Total Xylenes

STEWART ANG 154009/AN009 ENVIROTEST LABORATORIES, INC. SITE: SDG: LABORATORY:

VOLATILE SOIL ANALYSIS (ug/kg)

154009-15 SS-15		12 U	12 U	12 U	12 U	12 U	12 N5	12 UJ4	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	2
. Z. S.	CRQL	10	10	10	10	. 10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	ν-	_	10	10	10	~	~	~	10	10	10	10
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes

NALYSIS	
AQUEOUS AI	
TILE AQ	(NG/L)
SLA OLA	

SITE: STEWART ANG
SDG: 154009/AN009
LABORATORY: ENVIROTEST LABORATORIES, INC.

154009-07 TB-02		10 D	10 N	10 U	10 U	~	10 U	10 UJ4	10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 N	10 U	10 U	10 U	10 O	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U
154009-06 RWSS100395		10 N	10 U	10 U	10 U	10 U	വ	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
154009-05 TRIP BLK01		10 0	10 0	10 U	10 U	-	7	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 N	10 U	10 N	10 U	10 U	10 C	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
154009-01 FBTW100395		10 U	10 U	10 U	10 U	10 U	4	10 UJ4	10 U	10 U	10 U	43	10 U	10 U	10 U	10 U	4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	CRQL	9	10	9	9	9	9	9	9	9	10	10	10	9	9	10	9	9	10	10	9	9	9	9	9	9	9	9	10	10	10	19	9	9
SAMPLE NUMBER: SAMPLE LOCATION:		Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene .	Styrene	Total Xylenes

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

154009-09 SS-02	360 U 360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	O 006	360 U	O 006	360 U	360 U	360 U	360 U	900 UJ4	900 UJ4
154009-08 SS-01	360 U 360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	O 006	360 U	O 006	360 U	360 U	360 U	360 U	900 UJ4	900 UJ4
154009-04 SB-01-32.5	360 U 360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	910 U	360 U	910 U	360 U	360 U	360 U	360 U	910 UJ4	910 UJ4
154009-03 SB-01-18.5	360 U 360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	910 U	360 U	910 U	360 U	360 U	360 U	360 U	910 UJ4	910 UJ4
154009-02 SB-01-02	360 U 360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	910 U	360 U	910 U	360 U	360 U	360 U	360 U	910 UJ4	910 UJ4
Ç	330 330 330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800	800
SAMPLE NUMBER: SAMPLE LOCATION:	bis(2-Chloroethyl)ether Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

154009-09 SS-02		360 U	360 U	900 UJ4	360 U	360 U	360 U	900 UJ4	O 006	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 US	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	~
154009-08 SS-01	1	360 U	360 U	900 UJ4	360 U	360 U	360 U	900 UJ4	O 006	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	54	360 U	360 U	360 U	360 U	360 U	360 U	360 U5	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	~
154009-04 SB-01-32.5	;	360 U	360 U	910 UJ4	360 U	360 U	360 U	910 UJ4	910 U	360 U	360 U	360 U	910 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U5	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	
154009-03 SB-01-18.5		360 U	360 U	910 UJ4	360 U	360 U	360 U	910 UJ4	910 U	360 U	360 U	360 U	910 UJ4	360 U	360 U	360 U	43	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	O 098	360 U	360 U	360 U	360 U	360 UJ4	
154009-02 SB-01-02		360 U	360 U	910 UJ4	360 U	360 U	360 U	910 UJ4	910 U	360 U	360 U	360 U	910 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	~
	CRQL	330	330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	نن
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	Dibenzofuran	2,4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylohthalate	4-Nitroaniline	4.6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3.3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	DILUTION FACTOR

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

)9-13 154009-14 SS-07) :	o :	ɔ :	-	-	n	-	n	-	D.	⊃	-	390 U 380 U	⊃	n	D	390 U 380 U	-	5	-	5	-	-	UJ4	-		-	-	⊃	390 U 380 U	390 U 380 U	D.	970 UJ4 960 UJ4	
154009-12 154009-13 SS-05 SS-06		- :	-	-	_	-	_	400 U 33	-	D.	-	-	-	5		-	_	_	_	_	_	_	400 U	_	JJ4	_	-	_	3 n 066	400 U	400 U	400 U	400 U	990 UJ4 S	77.7.000
154009-11 15 SS-04 St		400 U	400 U	400 N	400 U	400 N	400 U	400 U	400 U	400 N	400 U	400 U	400 U	400 N	400 U	400 U	400 U	400 U	400 U	400 N	400 N	400 N	400 U	400 U	400 UJ4	400 N	066 n	400 U	O66	400 U	400 U	400 U	400 U	990 UJ4	
154009-10 SS-03		380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 UJ4	380 U	950 U	380 U	950 U	380 U	380 U	380 U	380 U	950 UJ4	
· . <u>· ·</u>	O	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800))
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	bis(2-Chloroethyl)ether	Phenol	2-Chlorophenol	1.3-Dichlorobenzene	1.4-Dichlorobenzene	1 2-Dichlorobenzene	2 2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2 4-Dimethylphenol	bis(2-Chloroethoxy)methane	2.4-Dichlorophenol	1.2.4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2.4.6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylohthalate	2.6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE SOIL ANALYSIS (ug/kg)

										-																				
154009-14 SS-07	380 U 380 H	960 UJ4	380 U	380 U	380 U	960 UJ4	O 096	380 N	380 U	380 U	960 UJ4	380 U	380 U	380 U	52	380 U	380 U	380 U	380 U	380 U	380 U	380 N	380 N	380 N	380 U	380 U	380 U	380 U	380 UJ4	
154009-13 SS-06	390 U	930 U 970 UJ4	330 U	330 N	330 N	970 UJ4	970 U	330 N	390 U	390 U	970 UJ4	330 U	330 U	330 U	40	44	330 U	330 U	330 U	330 N	330 U	390 NS	330 U	330 U	330 U	330 U	330 U	330 U	390 UJ4	
154009-12 SS-05	400 U	990 UJ4	400 U	400 U	400 U	990 UJ4	O 066	400 U	400 U	400 N	990 UJ4	400 U	400 U	400 U	400 U	400 U	400 U	400 N	400 U	400 U	400 N	400 U	400 N	400 U	400 N	400 U	400 N	400 U	400 UJ4	
154009-11 SS-04	400 U	990 UJ4	400 U	400 U	400 N	990 UJ4	O66	400 N	400 N	400 U	990 UJ4	210	400 U	92	400 U	480	370	400 U	400 N	170	260	400 N5	400 N	310	160	220	180	56	210 J4	
154009-10 SS-03	380 U	380 U 950 UJ4	380 N	380 U	380 U	950 UJ4	950 U	380 U	380 U	380 U	950 UJ4	380 U	380 U	380 U	380 U	51	39	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 UJ4	
000	330	330 800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	
SAMPLE NUMBER: SAMPLE LOCATION:	Dibenzofuran	2,4-Dinitrotoluene	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylohthalate	Fluoranthene	Pyrene	Butylbenzylohthalate	3.3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylohthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)byrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

154009-15 SS-15		410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 UJ4	410 U	1000 U	410 U	1000 U	410 U	410 U	410 U	410 U	1000 UJ4	1000 034
	CRQL	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800	800
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	bis(2-Chloroethyl)ether	Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE SOIL ANALYSIS (ug/kg)

154009-15 SS 15	5		410.0	\neg	1000 UJ4	410 U	410 U	410 U	1000 UJ4	1000 U	410 U	410 U	410 U	1000 UJ4	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 UJ4
		האקר האקר	330	330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
SAMPLE NUMBER:		COIMPOOND	Dibenzofuran	2,4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

154009-06 RWSS100395	, 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ4	10 U	25 U	10 U	25 U	10 U	10 U	10 U	10 U		25 UJ4
154009-01 FBTW100395	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ4	10 U	25 U	10 U	25 U	10 U	10 U	10 U	10 U		25 UJ4
	CRQL 10	9	9	6	9	10	9	5	10	9	9	9	0	5	9	6	5	5	5	9	9	5	9	10	9	25	10	25	9	10	10	9	25	25
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND bis/2-Chloroethy/Jether	Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG 154009/AC009 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

154009-06 RWSS100395	. 10 U	10 U	25 UJ4	10 U	10 U	10 U	25 UJ4	25 U	10 U	10 U	10 U	25 UJ4	10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	~	10 U	. 10 U	10 U	10 U	10 U		10 UJ4
154009-01 FBTW100395	10 U	10 U	25 UJ4	10 U	10 U	10 U	25 UJ4	25 U	10 U	10 U	10 U	25 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ4
- - -	CKC 10	9	25	10	9	5	25	22	5	5	9	25	9	9	9	9	9	5	9	9	9	9	9	1	5	9	9	5	9	10
NUMBER: CATION:	COMPOUND	2 4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene .	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene

STEWART ANG AC009 ENVIROTEST LABORATORIES, INC SITE: SDG: LABORATORY:

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

154009-14 SS-07	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	1.3 R25	4,4 J25	3.8 U	3.8 U	3.8 U	3.8 U	1.4 J25	19 U	3.8 U	3.8 U	1.9 U	1.9 U	190 U	38 U	U 22	38 U	38 U	38 U	38 U	38 U	τ-
154009-13 SS-06	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	5.7 J25	9.4	3.9 U	3.9 U	4.4	3.9 U	16	19 U	3.9 U	3.9 U	1.9 U	1.9 U	190 U	39 U	78 U	39 U	39 U	39 U	39 U	39 U	τ-
154009-12 SS-05	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	5.6	2.1	4.0 U	4.0 U	4.0 U	4.0 U	0.59 R25	20 U	4.0 U	4.0 U	2.0 U	2.0 U	200 U	40 U	Ú 62	40 U	40 U	40 U	40 U	40 U	τ-
154009-11 SS-04	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U5	2.0 U	2.0 U	2.0 U	98	18	4.0 U	4.0 U	6.2 J25	4.0 U	36	20 U	4.0 U	4.0 U	2.0 U	2.0 U	200 U	40 U	79 U	40 U	40 U	40 U	40 U	40 U	~
154009-10 SS-03	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	0.20 R25	4.6	3.8 U	3.8 U	1.4 JN25	3.8 U	6.5	19 U	3.8 U	3.8 U	1.9 U	1.9 U	190 U	38 U	76 U	38 U	38 U	38 U	38 U	38 U	۲
CROI	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	3.3	3.3	3.3	3.3	3.3	3.3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	33	33	
SAMPLE NUMBER: SAMPLE LOCATION: COMPOLIND		beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

STEWART ANG AC009 ENVIROTEST LABORATORIES, INC SITE: SDG: LABORATORY:

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

38 154009-09 SS-02																			3.6 U 3.6 U											
154009-08 SS-01		.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	0.49	0.58	3.6	3.6	3.6	3.6	0.5	18	3.6	3.6	1.8	1.8	180	36	72	36	36	36	36	36	
154009-04 SB-01-32.5		1.8 U	1.8 U	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	18 U	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	36 U	
154009-03 SB-01-18.5		1.8 U	1.8 U	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	3.6 U	3.6 U	3.6 U	3.6 Ù	3.6 U	3.6 U	3.6 U	18 U	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	3e U	
154009-02 SB-01-02		1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	3.6 U	9.7	3.6 U	3.6 U	3.6 U	3.6 U	2.3 J25	18 U	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	3e U	
; ;	CRQL	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	3.3	3.3	3,3	3.3	3.3	3.3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	33	33	
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4.4'-DDE	Endrin	Endosulfan II	4.4'-DDD	Endofulfan Sulfate	4.4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	

STEWART ANG AC009 ENVIROTEST LABORATORIES, INC SITE: SDG: LABORATORY:

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

154009-15 SS-15	2.1 UJ8	2.1 UJ8 2.1 UJ8	_	2.1 U5, UJ8	_	2.1 UJ8	_	4.3 J8	1.9 J8, 25	4.1 UJ8	4.1 UJ8	4.1 UJ8	4.1 UJ8	0.29 R25	21 UJ8	4.1 UJ8	_	2.1 UJ8	_	210 UJ8	41 UJ8	82 UJ8	41 UJ8	41 UJ8	41 UJ8	41 UJ8	41 UJ8
0 0 0 0	1.7 1.7	7.7	1.7	1.7	1.7	1.7	1.7	3.3	9.3 9.3	3.3	ა. შ	3.3	3.3 3.3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	33	33
SAMPLE NUMBER: SAMPLE LOCATION:	alpha-BHC	beta-BHC delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

STEWART ANG AC009 ENVIROTEST LABORATORIES, INC

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

154009-06 RW-SS-100395		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.50·U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
154009-01 FB-TW-100395		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	CRQL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0
SAMPLE NUMBER:	COMPOUND	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

INORGANIC SOIL ANALYSIS ANE009 ENVIROTEST LABORATORIES, INC STEWART ANG LABORATORY: SITE: SDG:

(mg/kg)

CONTRACT DETECTION LIMITS (mg/kg)	46 1000 1000 1000 1000 1000 1000 1000 10
154009-09 SS-02	11900 9860 12500 10000 9.1 UJ2, 5 4.6 UJ2, 5 3.6 J3, 5 3.9 3.3 9.3 3.3 3.3 3.6 5.2 4 45.1 33.6 0.74 0.48 0.51 0.67 1.0 0.52 U 0.52 U 1.0 22000 R3 21300 R3 3420 R3 16000 R3 15.6 9.7 9.2 8.3 3420 R3 16000 R3 15.6 9.7 9.2 8.3 3420 R3 16000 R3 15.6 9.7 9.2 8.3 3420 R3 16000 R3 15.6 10.3 14.6 17.6 17.6 17.6 7190 5740 5030 6070 6070 568 535 672 566 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 23.3 21.5 20.5 20.5 20.5 1420 0.04 U 0.04 U 0.04 U 0.04 U 23.3 8.3 8.3 8.3 8.3 8.2 R3 9.2 9.2 1.5 20.5 60.05 0.82 U 5.3 8.3 8.3 8.3 8.3 8.3 8.3 8.2 R3 9.5 53.3 R3 54.3 R3 39.3 R3 39.3 R3 14.5 61.7 53.3 R3 39.3 R3 39.3 R3 14.5 61.7 6.3 J5, 10 0.29 J5, 10 0.13 J5 0.13 UJ5, 10 14.5 1.1 U 1.1 U 1.1 U 1.1 U ALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT
154009-08 SS-01	11900 9860 12500 100 102, 5 3.9 3.3 3.6 3.6 3.9 3.3 3.8 52.4 45.1 5 5.3 6.24 45.1 6 5.3 6.24 45.1 6 5.24 0.25 U 1 0 0.52 U 0.53 U 0.54 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55 U 0.55
154009-04 SB1325	91 UJ2, 5 3.9 3.3 53.8 52.4 0.74 0.74 0.62 U 22000 R3 15.6 9.7 2400 10.7 2400 10.7 2400 10.3 7190 568 568 568 0.04 U 23.3 7190 0.04 U 23.3 1040 0.61 UJ5, 10 0.63 53.3 R3 0.61 UJ5, 10 0.63 53.3 R3 0.65 J5, 10 1.1 U JANTITATION IS APPROXIMATE DUE CONTROL REVIEW) E IS REJECTED. E IS NON-DETECTED AT INSTRUME!
154009-03 SB1185	11900 9.1 UJ2, 5 3.9 53.8 0.74 1 U 22000 R3 15.6 9.7 24000 10.7 7190 568 0.04 U 23.3 1420 0.61 UJ5, 10 0.82 U 53.3 R3 0.61 UJ5, 10 14.5 61.7 1.1 U 1.1 U 1.2 CONTROL REVIII 1.1 U 1.2 STEJECTED. IE IS NON-DETEC
154009-02 SB0102 MENT ION	300 9.1 UU2, £ 4.1 14.2 106 107 100 11.1 830 6.3 10.04 10.04 10.04 10.04 10.05, 7 10.06 919 919 919 919 919 919 919 91
15400 SB01 INSTRUMENT DETECTION LIMITS mg/kg	3.48 4.22 0.55 0.14 0.02 1.28 0.28 1.28 0.16 0.04 0.18 0.05 0.38 0.38 0.38 0.38 0.38 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
BER: FION: EMENTS	num P 3.48 103 c F 0.5 c F 0.5 dum P 0.14 3 um P 0.22 C um P 0.28 314 t P 1.28 1 sirum P 1.28 1 sirum P 1.28 5 anese P 0.16 1 ry CV 0.04 C sirum P 12.1 ium P 12.1 ium P 12.1 ium P 0.38 m P 12.1 ium P 0.38 m P 12.1 ium P 0.38 c C 0.12 ium P 0.26 de C - 1 c COLD VAPOR AA AUTOMATED COLD VAPOR AA
SAMPLE NUMBER: SAMPLE LOCATION: INORGANIC ELEMENTS	Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Cobalt Copper Iron Lead Manganese P Manganese P Manganese P Manganese P Nickel P P Selenium P Selenium P Selenium P Selenium P Selenium P Selenium P Cyanadium P Cyanadium P Cyanadium Cyanad

R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

⁻ COLORIMETRIC - MIDI-DISTILLATION - AUTOMATED COLD VAPOR AA

STEWART ANG LABORATORY: SITE: SDG:

INORGANIC SOIL ANALYSIS (mg/kg)

ANE009 ENVIROTEST LABORATORIES, INC

CONTRACT	LIMITS (mg/kg)	40	12	2	40	•	-	1000	7	9	5	20	9.0	1000	က	0.1	ω	1000	Ψ-	7	1000	2	10	4	0.5
154009-14 SS-07		1	4.9 UJ2, 5																						
154009-13 SS-06		10300		5.2	44.5	0.39	0.56 U	4740 R3	13.5	10	22	21500	17.7	4390	647	0.05 U	22.4	920	0.65 UJ5, 10	0.46	26.8 R3	0.14 UJ5	14.3	61.7	1.2 U
154009-12 SS-05		11900	10 UJ2, 5	4.7	59.4	0.74	1.1 U	11100 R3	14.4	10.3	24.8	23600	16.9	4650	1240	0.05 U	21.1	606	0.67 UJ5, 10	0.9 U	47.5 R3	0.17 J5, 10	16	95.5	1.2 U
154009-11 SS-04		11200	5 UJ2, 5																						
39-10 33		12100	9.6 UJ2, 5	4.4	42	0.84	1.1 U	1700 R3	15.2	10.6	24.2	23400	13.6	4570	605	0.04 U	28.6	636	0.64 UJ5, 10	0.87 U	26.5 R3	0.14 UJ5	14.3	58.1	1.1 U
15400 SS-(INSTRUMENT DETECTION	LIMITS mg/kg	3.48	4.22	0.5	0.14	0.22	0.48	2.06	1.86	1.28	0.48	1.04	0.16	2.8	0.18	0.04	2.54	12.1	0.56	0.38	4.56	0.12	0.62	0.26	~
ER: ION:	MENTS	۵	. Д.	ய	α.	۵	<u>α</u>	<u>α</u>	۵.	ட	۵	۵	ட	Ω	₾	ટ	۵	<u>а</u>	ட	۵	۵	ഥ	۵	۵.	ပ
SAMPLE NUMBER: SAMPLE LOCATION:	INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barinm	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	lron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

- AUTOMATED COLD VAPOR AA

- MIDI-DISTILLATION COLORIMETRIC

- FURNACE - ICP/FLAME AA - COLD VAPOR

ANALYICAL METHOD

INORGANIC SOIL ANALYSIS

ENVIROTEST LABORATORIES, INC ANE009 LABORATORY:

STEWART ANG

SITE: SDG:

25.7.7.2 26600 15.8 14.7.0 0.00 26.3 1020	2.8 0.16 0.18 0.04 0.04 0.56 0.56	INSTRUMENT DETECTION LIMITS mg/kg 3.48 13400
	P 1.04 CV 0.16 CV 0.04 P 2.54 P 2.54 P 2.54 P 2.54 P 4.56	10.4 UJ2, 5 4 60 1.1 1.2 U 11200 R3 17.2 12.2

1000

0.1

1000

1000

100

(mg/kg)

DETECTION CONTRACT

LIMITS

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT ANALYICAL METHOD - FURNACE

0.15 UJ5, 10

4.56 0.12 0.62 0.26

дыдао

Vanadium Thallium

Zinc

Cyanide

1.2 U

17.7

- AUTOMATED COLD VAPOR AA - MIDI-DISTILLATION გიგ

- COLORIMETRIC

ICP/FLAME AA COLD VAPOR

STEWART ANG SITE: SDG:

INORGANIC AQUEOUS ANALYSIS

ANE009 ENVIROTEST LABORATORIES, INC LABORATORY:

SAMPLE LOCATION: SAMPLE NUMBER:

RWSS100395 154009-06 FBTW100395 154009-01

INSTRUMENT

CONTRACT

INSTRUMEN I DETECTION LIMITS ug/L 17 4 281
21.1 U
2.5 U
1.1 U
2.4 U
11900
9.3 0
0.4 0.4 0.4
986
0.8 U
1090
11.9
0.2 0
12.7 U
1300
2.8 U
1.9 U
10100
0.6 U
4.1
18.5
10 U

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT FURNACE ICP/FLAME AA ANALYICAL METHOD

AUTOMATED COLD VAPOR AA - MIDI-DISTILLATION _ ~ S O S ≷

COLORIMETRIC

COLD VAPOR

STEWART ANG
ANE009
ENVIROTEST LABORATORIES, INC

TOC ANALYSIS

154009-09 SS-02 154009-08 SS-01 0.76% 154009-04 SB1325 0.82% 154009-03 SB1185 0.97% 154009-02 SB0102 0.44% SAMPLE NUMBER: SAMPLE LOCATION: TOC

1.07%

154009-14 SS-07 154009-13 SS-06 1.72% 154009-12 SS-05 0.77% 154009-11 SS-04 1.36% 154009-10 SS-03 0.15% SAMPLE NUMBER: SAMPLE LOCATION: TOC

2.26%

154009-15 SS-15 SAMPLE NUMBER: SAMPLE LOCATION:

1.21%

TOC

SITE: STEWART ANG STEWART ANG SDG: AC204/154204 LABORATORY: ENVIROTEST L

STEWART ANG BASE AC204/154204 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

154204-01 RBSB101095	10 U	10 U	10 U	10 U	7 7 7	\supset	10 U	10 U	10 0	10 C	10 U	10 N	10 U	10 U	10 U	10 U	10 (10 U	10 U	10 0	10 U	10 C	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
IMBER: ATION:	OUND CROL 10 10	10	7	,	20	Je 10 Jene 10	nane 10	(total) 1	-								~	~	_	~	_	•	~	10	•		~	•	10		10
SAMPLE	COMPOUND Chloromethane Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disuilide 1 1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes

DILUTION FACTOR:

7

STEWART ANG BASE AC204/154204 ENVIROTEST LABORATORIES INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

154204-01 RBSB10195	10 U	0 O 0 O	10 U	10 U	10 U	10 U	10 U	10 U	0 7	0 5		10 0	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	25 U	10 U	25 U	.10 U	10 U	10 U	10 U		25 UJ4
(CKQL 10	5 5	9	5	9	10	10	9	5 5	⊇ ç	2 9	9	9	9	10	9	9	10	9	9	10	9	9	9	22	9	22	5	9	9	5	22	25
NUMBER: CATION:	COMPOUND hloroethyl)ether	Phenol 2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

LABORATORY: SITE: SDG:

AC204/154204 ENVIROTEST LABORATORIES INC. STEWART ANG BASE

SEMIVOLATILE AQUEOUS ANALYSIS

RBSB101095 25 R2 154204-01 SAMPLE LOCATION: SAMPLE NUMBER: COMPOUND 2,4-Dinitrotoluene Dibenzofuran 4-Nitrophenol

25 UJ4 10 U 10 U 10 U 10 U 10 U 10 U 9 10 U 10 U 10 C 10 U 10 U 10 U 10 U 10 U 4-Bromophenyl-Phenylether 4-Chlorophenyl-Phenylether 4,6-Dinitro-2-Methylphenol N-nitrosodiphenylamine(1) 3,3'-Dichlorobenzidine Butylbenzylphthalate Benzo(a)anthracene Hexachlorobenzene Di-n-butylphthalate **Pentachlorophenol** Diethylphthalate Phenanthrene Fluoranthene 4-Nitroaniline Anthracene Carbazole Fluorene Pyrene

Bis(2-ethylhexyl)phthalate indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Di-n-octylphthalate Benzo(a)pyrene Chrysene

10 U

STEWART ANG BASE AC204/154204 ENVIROTEST LABORATORIES, INC. LABORATORY: SITE: SDG:

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

154204-01 RB-SB-101095	0.05 U	0.05 U	0.05 U	0.05 U	0.005 JN25	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	CRQL 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	2.0	1.0	2.0	1.0	0.1	1.0	1.0	1.0
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

ENVIROTEST LABORATORIES, INC STEWART ANG BASE ANE204/154204 LABORATORY: SDG:

INORGANIC AQUEOUS ANALYSIS

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THI RBSB101095 3.4 U 13.3 4990 17.6 0.2 U 0.67 U 0.89 U 3.1 U 1.2 U 7.1 U 14.1 U 23.4 U 2.8 U 10.3 U 154204-01 2.4 1760 15.1 32500 5.1 129 **NSTRUMENT** DETECTION LIMITS 21.1 2.5 0.7 1.1 4.2.1 10.3 6.4 6.4 6.5 7.5 8.0 0.9 0.2 12.7 60.7 NORGANIC ELEMENTS ANALYICAL METHOD SAMPLE LOCATION: FURNACE SAMPLE NUMBER: Magnesium Manganese Potassium /anadium Chromium Selenium Cadmium Aluminum Cyanide Beryllium Thallium Antimony Mercury Calcium Sodium Copper Arsenic Barium Cobalt Nickel Silver Zinc Lead ron Lo

9 9

5000

5 5 5 5 5 5 5 5

(ug/L)

DETECTION CONTRACT

LIMITS

QUALITY CONTROL REVIEW (DATA REVIEW).

5000

0.2

8

5000 15 5000

AUTOMATED COLD VAPOR AA

MICROWAVE DIGESTION

Σ

ICP/FLAME AA COLD VAPOR MIDI-DISTILLATION

R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

SITE:

STEWART ANG BASE

VOLATILE SOIL ANALYSIS

SDG: LABORATORY:	154290/154372 ENVIROTEST L	0/154372 OTEST LABORATORIES, INC.	S, INC.	(ug/kg)		
JMBER: ATION:	· •	154290-01 SB-05-02	154290-02 SB-05-06	154290-03 SB-05-22	154290-04 SB-06-02	154290-05 SB-06-26.5
	CRQL	7.7	11.	11.0	710	22 U
Bromomethane	2 0) (1)	11 C	11 C	22 U
Vinyl Chloride	9	11 U	110	11 C	11 0	22 U
Chloroethane	10	11 0	11 0	11 U	110	22 U
Methylene Chloride	9	~	2	2		
Acetone	9			13 U6	11 US	22 U5
Carbon Disulfide	10	11 UJ4		11 C	11 C	22 U
1,1-Dichloroethene	10	11 U	11 N	11 U	110	22 U
1,1-Dichloroethane	9	11 U			11 C	22 U
1,2-Dichloroethene (total)	10	11 U		11 U	110	22 U
Chloroform	10	11 U	11 U	11 U	110	22 U
1,2-Dichloroethane	10	11 U	11 U	11 U	110	22 U
2-Butanone	9	11 U	4	11 U		22 U
1,1,1-Trichloroethane	9	11 U	11 0	11 U	11 U	22 U
Carbon Tetrachloride	10	11 U	11 U	11 U	11 U	22 U
Bromodichloromethane	10	11 U	11 0	11 U	11 U	22 U
1,2-Dichloropropane	10	11 U	11 U	11 0	11 U	
cis-1,3-Dichloropropene	10	11 U	11 C	110	11 U	
Trichloroethene	10	11 U	11 C	11 U	11 U	22 U
Dibromochloromethane	9	11 U	110	11 U	11 U	22 U
1,1,2-Trichloroethane	0	11 U	110		11 U	22 U
Benzene	9		11 C		11 U	22 U
trans-1,3-Dichloropropene	9				11 U	22 U
Bromoform	9	11 U	110	11 U	11 U	22 U
4-Methyl-2-Pentanone	10	11 U	11 U		11 U	22 U
2-Hexanone	10	110	11 U	11 U	11 U	22 U
Tetrachloroethene	10	110	11 O	11 U	110	22 U
1,1,2,2-Tetrachloroethane	10	11 0	11 U	11 U	11 U	22 U
Toluene	10	11 U	11 0	11 U	က	22 U
Chlorobenzene	10	11 U	11 U			22 U
Ethylbenzene	10		11 O			
Styrene	9		110	11 U	11 C	
Total Xylenes	6	11 O	11 0	11 0	ო	22 U
DILUTION FACTOR:		~	~	-	~	7

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC.

VOLATILE SOIL ANALYSIS (ug/kg)

SAMPLE LOCATION: COMPOUND COMPOUND COMPOUND COMPOUND COMPOUND Chloromethane Chloroethane Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane Carbon Tetrachloride Carbon Tetrachloride 1,1-1-Trichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloropropene 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,3,2-Tetrachloroethane 1,1,3,2,3-Tetrachloroethane	154290-06 154372-02 154372-03 154372-04 154372-05 SB-06-34.5 SB-07-02 SB-07-33 SB-07-16 SB-17-33	110 110 110 110 110 110 110 110 110 110	120	120 110 110 110	1 110 1	12 U5 1	12 U 11 U 12 U 1	12 U 11 U 11 U	12 0 11 0 11 0	12 U 11 U	110 110	12 U 11 U 11 U 1	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U 11 U	12 U 11 U 11 U	12 U 11 U 11 U	12 0 11 0 11 0 11 0	12 0 11 11 11 11	120 110 110 1	12 U 11 U 11 D 7	12 U 11 U 11 U 11 U	120 110 110 110	12 U 11 U 11 U 11 U	120 110 110 110	12 0 11 0 11 0 11 0	120 110 110 110 1		12 0 11 0 11 0	12 U 11 U 11 U	12 U 11 U 11 U	
E NUMBER: LOCATION: UND CRQL 10 10 10 10 10 10 10 10 10 10 10 10 10		12 U		12 U	·	12 U5	12 U	12 U	12 U		7	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U					12 U	
		10	5 5	5 6		_	-	_	~	·	•	_	10	•	_	_			9	•		`	~	10	•	10	`	`	•	10	1	10	

STEWART ANG BASE 154290/154372

VOLATILE AQUEOUS ANALYSIS 10 U 154372-06 10 U 10 U 10 U 10 U 100 10 U TB-05 RBSB101295 10 U 10 U 10 U 10 C 10 U 10 U 10 U 10 U 10 U 10 O 10 U 10 0 10 U 10 U 10 0 10 U 10 U 154372-01 10 0 100 10 U 2 100 10 0 10 0 10 0 10 U ENVIROTEST LABORATORIES, INC. 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 C 10 U 10 C 10 U 10 U 10 U 10 U 10 U 154290-07 4 5555 5 5555 55 SAMPLE NUMBER: SAMPLE LOCATION: trans-1,3-Dichloropropene ,1,2,2-Tetrachloroethane ,2-Dichloroethene (total) cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane 4-Methyl-2-Pentanone ,1,1-Trichloroethane Carbon Tetrachloride 1,1,2-Trichloroethane ,2-Dichloropropane COMPOUND Methylene Chloride ,1-Dichloroethene 1,1-Dichloroethane ,2-Dichloroethane Tetrachloroethene Carbon Disulfide Trichloroethene Chlorobenzene LABORATORY: Chloromethane Bromomethane Total Xylenes Ethylbenzene Vinyl Chloride Chloroethane 2-Hexanone 2-Butanone Chloroform Bromoform Benzene oluene Styrene Acetone SITE:

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC

154290-05 SB-06-26.5	360 U 360 U	360 U	2000	360 0	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	1500	360 U	360 U	360 U	2300	360 UJ4	360 U	910 U	360 U	910 U	360 U	360 U	360 U	360 U	910 UJ4 910 UJ4	
154290-04 1 SB-06-02 S	360 U	360 U	0.098	360 U	360 11	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U		360 UJ4		006 006	360 U	O 006	360 U	360 U	360 U	360 U	900 UJ4 900 UJ4	
154290-03 SB-05-22	370 U 370 U	370 U	370 U	3/0 0	370 11	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	930 N	370 U	930 U	370 U	370 U	370 U	370 U	930 UJ4 930 UJ4	
154290-02 SB-05-06	370 U 370 U	370 U	370 U	370 U	3700	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	. 370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4 920 UJ4	! !
154290-01 SB-05-02	370 U 370 U	370 U	370 U	370 U	3/0 N	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4 920 UJ4	
ā	330 330 330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800)
JUMBER: CATION:	COMPOUND bis(2-Chloroethyl)ether Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chioropropane)	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2.4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	101101101011010111111111111111111111111

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC

154290-05 SB-06-26.5	360 U 360 U	910 UJ4	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	910 034	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U5	360 U	360 U	360 U	360 U	360 U	360 U	360 U	_
154290-04 SB-06-02	360 U 360 U	900 034	360 U	360 U	360 U	006 006	006 006	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	37	360 U	360 U	360 U	360 U	360 U	360 U	360 US	360 U	360 U	360 U	360 U	360 U	360 U	360 U	~
154290-03 SB-05-22	370 U 370 U	930 UJ4	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	930 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U5	370 U	370 U	370 U	370 U	370 U	370 U	370 U	_
154290-02 SB-05-06	370 U 370 II	920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U	-
154290-01 SB-05-02	370 U 370 II	97.0 U 920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U	~
2	330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	ند
SAMPLE NUMBER: SAMPLE LOCATION:	Dibenzofuran	z,4-Dillitotolderie 4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	DILUTION FACTOR:

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC

154372-05 SB-17-33	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	910 U	360 U	910 U	360 U	360 U	360 U	360 U	910 UJ4	910 UJ4
1543272-04 SB-07-16	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	290	370 U	370 U	370 U	100	370 UJ4	370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4	920 UJ4
154372-03 SB-07-33	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	910 U	3eo U	910 U	360 U	360 U	360 U	3eo n	910 UJ4	910 UJ4
154372-02 SB-07-02	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	920 U	370 U	920 U	370 U	370 U	370 U	370 U	920 UJ4	920 UJ4
154290-06 SB-06-34.5	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	330 U	330 U	330 U	390 U	390 U	330 N	390 U	390 U	390 U	330 U	390 U	390 U	330 U	390 U	330 N	390 UJ4	390 U	970 U	330 N	970 U	330 U	330 U	330 U	390 U		970 UJ4
	CRQL 330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800	800
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND his/2-Chloroethyl)ether	Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC

154372-05 SB-17-33	360 U	3eo U	910 UJ4	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	910 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	•	ν
1543272-04 SB-07-16	370 U	370 U	920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	2300	370 U	370 U	370 U	370 U	370 U	370 U	370 US	370 U	370 U	370 U	370 U	370 U	370 U	370 U		₩
154372-03 SB-07-33	360 U	360 U	910 UJ4	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	910 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U		
154372-02 SB-07-02	370 U	370 U	920 UJ4	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	920 UJ4	370 U	370 U	370 U	370 U	44	41	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U		-
154290-06 SB-06-34.5	390 U	390 U	970 UJ4	390 U	390 U	390 U	970 U	970 U	390 U	390 U	390 U	970 UJ4	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 US	390 U	390 U	390 U	330 U	390 U	390 U	390 U		√-
- - -	330	330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330		
SAMPLE NUMBER: SAMPLE LOCATION:	Dibenzofuran	2.4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3.3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene		DILUTION FACTOR:

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

154372-01 RBSB101295		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	_	10 UJ4	10 N	10 U	10 N	10 U	25 U	10 U	25 U	10 U	10 U	10 U	\supset	_	25 UJ4
	CRQL	10	9	10	10	9	10	10	9	9	5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	22	9	22	9	9	9	9	25	25
SAMPLE NUMBER: SAMPLE LOCATION:		bis(2-Chloroethyl)ether	Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorane	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG BASE 154290/154372 ENVIROTEST LABORATORIES, INC

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

RBSB101295 25 UJ4 25 UJ4 10 0 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 100 10 U 10 0 154372-01 9 9 5 CRQL SAMPLE NUMBER: SAMPLE LOCATION: 4-Chlorophenyl-Phenylether 4-Bromophenyl-Phenylether 4,6-Dinitro-2-Methylphenol N-nitrosodiphenylamine(1) Bis(2-ethylhexyl)phthalate Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene COMPOUND 3,3'-Dichlorobenzidine Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(a)anthracene Hexachlorobenzene Di-n-octylphthalate Di-n-butylphthalate Pentachlorophenol 2,4-Dinitrotoluene Benzo(a)pyrene Diethylphthalate Phenanthrene 4-Nitroaniline Dibenzofuran Fluoranthene 4-Nitrophenol Anthracene Carbazole Chrysene Fluorene Pyrene

STEWART ANG BASE AC290/154290/154372 ENVIROTEST LABORATORIES, INC.

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

SAMPLE NUMBER: SAMPLE LOCATION: COMPOUND alpha-BHC beta-BHC	CRQL 1.7 1.7	154290-01 SB-05-02 1.8 U 1.8 U	154290-02 SB-05-06 1.8 U 1.8 U	154290-03 SB-05-22 1.9 U	154290-04 SB-06-02 1.8 U	154290-05 SB-06-26.5 1.8 U 1.8 U
beta-bnc delta-BHC gamma-BHC(Lindane)	1	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	 		2 6 7 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 4 2 8 2 6 3 3 4 5 5 5 5 6
Heptachlor Aldrin Heptachlor Epoxide	<u>, , , , , , , , , , , , , , , , , , , </u>	1.8 U 5.2 U	 8: 8: 8: 8 	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
	- ઌ ઌ ઌ - ઌ ઌ ઌ	0.32 JN25 1.5 3.7 U	3.5 J25 3.7 U	7.0 J25 35 J25 3.7 U	3.6 U 0.15 JN25 3.6 U	7.2 R25 43 J25 3.6 U
Endosulfan II 4,4'-DDD Endofulfan Sulfate	က က က က က က	3.7 U 0.75 3.7 U	3.7 U 44 3.7 U	3.7 U 19 3.7 U	3.6 U 0.41 JN25 3.6 U	3.6 U 890 JN25 3.6 U
4,4'-DDT Methoxychlor Endrin Ketone Endrin Aldehyde	ა ა. ა. ა. ∽ ა. ა. ა. ა.	5.6 U6 18 U 3.7 U 3.7 U	18 18 U 3.7 U	49 19 U 3.7 U 3.7 U	3.6 U5, UJ20 18 U 3.6 U 3.6 U	4300 18 U 3.6 U U o.e.
alpha-Chlordane gamma-Chlordane Toxaphene	1.7	1.8 U 1.8 U 180 U	1.8 U 1.8 U 180 U	1.9 U 1.9 U 190 U	1.8 U 1.8 U 180 U	4.4 JN25 2.9 R25 180 U
	33 67 33	37 U 73 U 37 U	37 U 73 U 37 U	37 U 74 U 37 U	36 U 72 U 36 U	36 U 72 U 36 U
	8 8 8 8	37 U 37 U 37 U 37 U	37 U 37 U 37 U 37 U	37 U 37 U 37 U 37 U	36 U 36 U 36 U 36 U	36 U 36 U 36 U 36 U
DILUTION FACTOR:		-	~	~	~	~

PESTICIDE/PCB SOIL ANALYSIS STEWART ANG BASE AC290/154290/154372 ENVIROTEST LABORATORIES, INC. SITE: SDG: LABORATORY:

(ug/kg)

SAMPLE NUMBER:		154290-06	154372-02	154372-03	154372-04	154372-05
SAMPLE LOCATION:		SB-06-34.5	SB-07-02	SB-07-33	SB-07-16	SB-17-33
	CRQL					
alpha-BHC	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
beta-BHC	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
delta-BHC	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
gamma-BHC(Lindane)	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Heptachlor	1.7	1.9 U5	1.8 U5	1.8 U5	1.8 U5	1.8 U5
Aldrin	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Heptachlor Epoxide	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Endosulfan I	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Dieldrin	3.3	3.9 U	6.0 JN25	3.6 U	3.7 U	3.6 U
4,4'-DDE	3.3	0.64 JN25	190 J25	1.5 JN25	8.4	4.1
Endrin	3.3	3.9 U	3.7 U	3.6 U	3.7 U	3.6 U
Endosulfan II	3.3	3.9 U	3.7 U	3.6 U	3.7 U	3.6 U
4,4'-DDD	3.3	9.9 JN25	150 JN25	57 JN25	11 J25	69 JN25
Endofulfan Sulfate	3.3	3.9 U	3.7 U	3.6 U	3.7 U	3.6 U
4,4'-DDT	3.3	19	089	69	48	58
Methoxychlor	17	19 U	18 U	18 U	18 U	18 U
Endrin Ketone	3.3	3.9 U	3.7 U	3.6 U	3.7 U	3.6 U
Endrin Aldehyde	3.3	3.9 U	3.7 U	3.6 U	3.7 U	3.6 U
alpha-Chlordane	1.7	1.9 U	1.1 R25	1.8 U	1.8 U	1.8 U
gamma-Chlordane	1.7	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Toxaphene	170	190 U	180 U	180 U	180 U	180 U
Aroclor-1016	33	39 U	37 U	36 U	37 U	36 U
Aroclor-1221	29	78 U	73 U	72 U	73 U	72 U
Aroclor-1232	33	39 U	37 U	36 U	37 U	0 9E
Aroclor-1242	33	39 U	37 U	36 U	37 U	36 U
Aroclor-1248	33	39 U	37 U	36 U	37 U	36 U
Aroclor-1254	33	39 U	37 U	36 U	37 U	36 U
Aroclor-1260	33	39 U	37 U	36 U	37 U	36 U
DILUTION FACTOR:		<u> </u>	~	· 	~	~

STEWART ANG BASE AC290/154290/154372 ENVIROTEST LABORATORIES, INC.

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

154372-01 RB-SB-101295		0.054 U	0.054 U	0.054 U	0.054 U	0.003 JN25	0.054 U	0.054 U	0.054 U	0.11 U	0.11 U	0.11 U	0.11 U	0.02	0.11 U	0.025 J20, JN25	0.54 U	0.11 U	0.11 U	0.054 U	0.054 U	5.4 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U	1.10	1.1 U
نخ نہ	CROL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	0.1	1.0	1.0	1.0
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

STEWART ANG BASE

SITE: SDG:

INORGANIC SOIL ANALYSIS

(mg/kg)

ANE290

ENVIROTEST LABORATORIES, INC. LABORATORY:

NO (B)	Ş	5 5	ī c	۷ ز	5 ≠	- •	- 6	200	۷ ,	ر ا ک	2	207	9.0	00	က	0.1	ω	1000	- (7	1000	2	9	4 :	C.5		
CONTRACT DETECTION LIMITS (mg/kg)							,	=						¥				=		,						H H H	_ _
154290-05 SB6265	000	10300	4.0 0.24, 0	i	5.74	0.31	0.52 U	21800 K3	16.3	9.4	20.3	21600	9.6 J5	5860	257	0.04 U	20.6	1140 J12	0.61 U	·	51 R3	0.18 J5, 10	12.8	55.3 J12	1.1 O	GISTIEIEN ON	אס וטבוא וורובט
154290-04 SB0602		9770	9.1 UJZ, 3	5.2	37.3	0.47 U	10	11000 R3	19.7	11.7	24.9	22600	12.5 J5	5150	1070	0.04 U	22.6	777	0.6 U	. .		0.14 J5, 10	12.9	61.9 J12	1.1 U	CIT 4 F18 81 - CF 17	
154290-03 SB0522		9330	4.7 UJZ, 5	വ	59.2	0.24 U	0.53 U	24600 R3	15.2	9	23.7	20700	15.1 J5	6220	537	0.04 U	20.9	935	0.62 U	0.52	48.7 R3	0.15 J5, 10	11.9	51.1 J12	1.1 U		APPKOXIMATE DI FIVI (DATA REVIE)
154290-02 SB0506		10500	9.2 UJ2, 5	2.6	53.8	0.59	1.1 U	25800 R3	17.2	12.9	26.6	22700	11.6 J5	6390	579	0.04 U	26.7	006	0.61 U	1.7	50.2 R3	0.13 UJ5, 10	10.4	62 J12	1.1 U		J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE COLLA ITY CONTROL REVIEW (DATA REVIEW).
154290-01 SB0502 ENT ON			4.6 UJ2, 5	4.2	33.3	0.25		17400 R3	12	8.4	19.7	19400	10.2 J5	4830	652	0.04 U	17	761	0.61 U	<u>+</u>	44.2 R3	0.34 J5. 10		53.5 J12	1.1 U		0 - CD 'C
15. SE INSTRUMENT DETECTION LIMITS ma/kg	S. S.	3.48	4.22	0.5	0.14	0.22	0.48	2.06	1.86	1.28	0.48	40.	0.16	2.8	0.18	- C	2.54	12.1	0.56	0.38	4.56	0.12	0.62	0.3	1.0		
JER: TON: EMENTS		₾	۵	ட	۵	۵	۵.	۵	۵	. О.	. 🕰	. Δ	. ц	_ Δ.	. Δ	. ?	ם מ	. Δ	. ц.	. 🕰	. Ф	. ц	. Ф	. 0.	. ပ		ETHOD
SAMPLE NUMBER: SAMPLE LOCATION: INORGANIC ELEMENTS		Aluminum	Antimony	Arsenic	Barium	Bervllium	Cadmium	Calcium	Chromium	Cobalt	Copper	ייין מטן	- C	Magnesium	Magricalan	Morginy	Niekol	Dotaccin	Selenium	Silver	Soding Soding	Theiling	Vanadina	7:00	Cyanide		ANALYICAL METHOD

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).

- AUTOMATED COLD VAPOR AA

- MICROWAVE DIGESTION

- COLORIMETRIC

r d So z ≷

FURNACEICP/FLAME AA - COLD VAPOR

R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

LABORATORY: SDG: SITE:

STEWART ANG BASE

ANE290 ENVIROTEST LABORATORIES, INC.

INORGANIC SOIL ANALYSIS (mg/kg)

	-																		_			_		_		. ~	
1000	DETECTION	LIMITS (mg/kg)	40	12	2	4	~	_	1000	2	9	S	20	9.0	1000	ന	0.1	ω	1000	•	N	1000		7	4	9.0	
154372-05 SB1733			ı																						52.1 J12		
154372-04 SB0716			8590	4.6 UJ2,5	3.9	33	0.32	0.53 U	28300	14.8	7.6	19.4	19400	8.2.15	2990	543	0.04 U	17.9	870	0.62 UJ10	0.58	51.1 R3	0.13 UJ5,10	10.2	51.5 J12	112) - :
154372-03 SB0733																									57.1 J12		
154372-02 SB0702			9520	4.6 UJ2, 5	4.4	42.2	0.24 U	0.53 U	11200 R3	13.7	80	20.9	21000	13.9 J5	4510	895	0.04 U	19	899						57.5 J12	- +	<u>-</u>
154290-06 SB6345	ENT		15600	9811.12.5	î	63.1	0.69	111	2630 R3	27.5	16.1	36.8	31000	13.5.15	7600	1250	0.05 U	31	1520	0.65 U	4	70.8 R3	0.14.15.10	6	82.6 J12		о У.
	INSTRUMENT DETECTION	LIMITS	2/8	0.40 0.40	1 C	2.5	0.0	0.48	20.7	- i	 		5 5		ο α - · ·	, c	2 5	25.5	12.1	0.56	0.38	4.56	12	 	20.0) () -
ER:	<u>.</u>	EMENTS	٥	ـ ۵	_ Li	_ 0	_ 0	۵ ـ	_ 0	_ 0	_ 0	_ 0	_ 0	L LI	_ 0	L D	_	ם כ	_ 0	. և	_ 0		. ц	۵ ـ	_ 0	. (ی
SAMPLE NUMBER:		INORGANIC ELEMENTS		Aluminum	Antimony	Arseriic	Barluri	Deryman.	Cadimum	Calcidin		Cobail	copper		Lead	Magnesium	Manganese	Miekoli y	Nickel Dotosii im	Colonium	October Hallin	Sodiim	Journal Tholling	Veregine	Variadiuiii	ZIII C	Cyanide

ANALYICAL METHOD
F - FURNACE
P - ICP/FLAME AA
CV - COLD VAPOR
C - COLORIMETRIC
M - MICROWAVE DI
AV - AUTOMATED C ICP/FLAME AA

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).

R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

COLORIMETRIC COLD VAPOR

AUTOMATED COLD VAPOR AA - MICROWAVE DIGESTION

INORGANIC AQUEOUS ANALYSIS STEWART ANG BASE

> SITE SDG:

ANE290

ENVIROTEST LABORATORIES, INC. LABORATORY:

DETECTION CONTRACT LIMITS J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. RBSB101295 21.1 UJ2 2.4 U 1330 9.3 U 6.4 U 8.3 409 0.8 U 230 11.6 1.9 U 0.6 U 2.8 U 1.1 U 154372-01 194 NSTRUMENT DETECTION LIMITS 0.9 0.2 12.7 60.7 2.8 1.4.0 4.0.0 4.4.0 8.0 8.0 8.0 0.7 UG/L **NORGANIC ELEMENTS** о о и о о о о о о и о о ANALYICAL METHOD SAMPLE LOCATION: SAMPLE NUMBER: - FURNACE Manganese Magnesium Potassium Vanadium Chromium Selenium Cyanide Aluminum Beryllium Cadmium Thallium Antimony Mercury Calcium Sodium Copper Arsenic Barium Cobalt Nickel Silver Lead <u>ron</u>

4

5000

10 50 25 100 3 5000 15

(ug/L) 200

200

5000

5000

U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

AUTOMATED COLD VAPOR AA

- MICROWAVE DIGESTION

COLORIMETRIC

30≥≷

ICP/FLAME AA

COLD VAPOR

TOC ANALYSIS

STEWART ANG
ANE290/154290/372
ENVIROTEST LABORATORIES, INC

154290-05 SB0626.5	0.75%	154372-05 SB1733	0.64%
154290-04 SB0602	0.55%	154372-04 SB0716	0.82%
154290-03 SB0522	0.94%	154372-03 SB0733	1.10%
154290-02 SB0506	0.58%	154372-02 SB0702	0.78%
154290-01 SB0502	0.65%	154290-06 SB0634.5	0.19%
SAMPLE NUMBER: SAMPLE LOCATION:	TOC	SAMPLE NUMBER: SAMPLE LOCATION:	TOC

STEWART ANG BASE 154477/154478 ENVIROTEST LABORATORIES, INC.

VOLATILE SOIL ANALYSIS (ug/kg)

	154478-03 MW-01-31.6	:	11.0		110		11.0	11 05) - -)) - ;	- C) - -	11 0	11.0	J.10	0 :	0 : 7) 	0 ;) 	7	= 1	- <i>7</i> - 7	- -	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	11 17 17 17 17 17 17 17 17 17 17 17 17 1	44 11.145	44 1 10 46	11 030, 13	3 =	11 030, 13	<u> </u>	11 030, 13	o O	7
	154478-02 MW-01-18		110	11 0	11 O	11.0	· ;	14 U6	11 C	710) - -	11.0)		110) 	11 O	——————————————————————————————————————	14 ; 10 ;	11 C	110	0 : 7) [14 11 146	11 02.0	0.00	11 038, 13		11 0,08, 15	9 5		ΟJα,	•
	154478-01 MW-01-04		11 U	11 U	11 O	11 U	11 O	11 05			11 0	110	11 0	110	110	11 C	110	110) 110	11 0) = ;		- ;	o :	7.7	- ;	110) [110	0 11	
		CRQL	10	9	9	9	9	10	9	9	9	10	9	9	9	9	9	9	9	9	10	9	9	9	9 9	2 ;	5 5	5 5	2 :	5 5	2 !	9 9	2 !	9 9	10	
LABORALORI	SAMPLE NUMBER: SAMPLE LOCATION:		Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromotorm	4-Methyl-2-Pentanone	2-Hexanone	l etrachioroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes	

STEWART ANG BASE 154477/154478 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

154478-04 TB-06	1	10 U	10 U	10 U	10 U	10 U	100	0.01	001	00.4	5 5	5 5	5 5	2 7	0 2 5	0.00	100	001	000	100	10 O	0.01	0 0 0	00.	0 5	0 5		0 0 0	10 0	0 0L	10 U	100	0.0	0 01
154477-02 TB-DW-01		10 0	10 N	10 0	10 0	5	9 12	10 0	10 U	10 U	00.	0 5	5 6	0:	100	100	10 C	10 U	100	10 U	100	10 C	10 U	100	0 0 0	100	10 U	0.01	10 C	10 U	10 U	10 0		100
154477-01		10 U	10 U	10 U	10 U	10 U	10 R2	10 U	10 U	10 U	10 U	7.7	0 0 0	0 :	10 0	10 0	10 N	10 U	10 N	10 N	10 U	10 N	10 U	10 C	100	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U	10 U
	CRQL	10	10	10	10	10	10	9	9	9	9 9	9	2 :	2	9	9	9	10	9	5	10	10	9	0 :	£ :	10	9	9	9	9	9	9	9	10
SAMPLE NUMBER:	_		Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes

STEWART ANG BASE 154477/154478 ENVIROTEST LABORATORIES, INC

154478-03 MW-01-31.6	370 U	370 U	370 U	3/0 0	3/0 0	370 U	3/0 0	3/00	3/00	3/0.0	3/00	0700	3/0 0	3/0 0	370 U	370 U	370 U	370 U	370 U	370 UJ4	370 U	370 U	3/0 0	3/0 0	3/0 0	920 0	3/0 0	920 UJ4	370 U	370 U	370 U	370 U		920 UJ4
154478-02 MW-01-18	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 0	360 U	360 U	360 0	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 U	360 U	360 U	910 U	360 U	910 UJ4	360 U	360 U	360 U	360 U	910 R2	910 034
154478-01 MW-01-04	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 U	360 U	360 U	006 n	360 U	900 UJ4	360 U	360 U	360 U	360 U	900 R2	900 UJ4
	CRQL 330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800	800
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND COMPOUND	Dhanol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

LABORATORY: SDG: SITE:

STEWART ANG BASE 154477/154478

ENVIROTEST LABORATORIES, INC

(ng/kg)

SEMIVOLATILE SOIL ANALYSIS

920 UJ4 370 UJ4 370 UJ4 370 UJ4 MW-01-31.6 370 U5 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 920 U 920 U 920 U 370 U 154478-03 370 U 370 U 360 UJ4 910 UJ4 360 UJ4 360 UJ4 360 U5 360 U5 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 910 U 360 U 360 U 360 U 910 U 910 U 360 U MW-01-18 360 UJ4 360 UJ4 900 UJ4 360 UJ4 360 U5 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U 360 U O06 MW-01-04 360 U 360 U 360 U O 006 330 330 800 330 330 330 330 330 800 800 SAMPLE LOCATION: SAMPLE NUMBER: 4-Chlorophenyl-Phenylether 4-Bromophenyl-Phenylether 4,6-Dinitro-2-Methylphenol N-nitrosodiphenylamine(1) Bis(2-ethylhexyl)phthalate Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene COMPOUND 3,3'-Dichlorobenzidine Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(a)anthracene Hexachlorobenzene Di-n-octylphthalate Di-n-buty/phthalate Pentachlorophenol 2,4-Dinitrotoluene Benzo(a)pyrene Diethylphthalate Phenanthrene 4-Nitroaniline -luoranthene 4-Nitrophenol Dibenzofuran Anthracene Carbazole Chrysene Fluorene ²yrene

STEWART ANG BASE 154477/154478 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

154477-01 DW01101795		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 U	0	10 U	10 U	2	_	_	10 N	2	_	10 U	25 U	10 U	25 U	10 U	10 U	10 U	10 U		25 UJ4
	CRQL	19	9	10	10	9	9	10	10	9	9	9	9	10	9	9	9	9	9	9	10	9	9	10	9	9	25	9	25	9	9	10	9	25	25
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	bis(2-Chloroethyl)ether	Phenol	2-Chlorophenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chioro-3-Methyiphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG BASE 154477/154478 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

154477-01 DW01101795		10 U	10 U	25 UJ4	10 N	10 N	10 U	25 U	25 U	10 U	10 U	10 U	25 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 N	49	10 U	10 U	10 U	10 U	10 U	10 UJ4	10 U
	CRQL	9	9	25	9	9	9	25	25	10	9	9	25	9	9	9	9	9	9	9	9	9	9	9	9	9	10	9	10	10	10
SAMPLE NUMBER: SAMPI F I OCATION:	COMPOUND	Dibenzofuran	2,4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene

STEWART ANG BASE AC477/154477/478 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

154478-03 MW-01-31.6	1.8 UJ20 1.8 UJ20	1.8 U	1.8 U5	∞: 	1.8 U	3.7 U	3.7 U	3.7 UJ20	3.7 U	3.7 U	3.7 U	3.7 UJ20	18 UJ20	3.7 U	3.7 U	1.8 U	1.8 U	180 U	37 U	73 U	37 U	37 U	37 U	37 U	37 U
154478-02 MW-01-18	1.8 UJ20 1.8 UJ20	1.8 1.8 1.0	1.8 U5		 5.8.1 	3.7 U	3.7 U	3.7 UJ20	3.7 U	3.7 U	3.7 U	3.7 UJ20	18 UJ20	3.7 U	3.7 U	1.8 U	1.8 ∪	180 U	37 U	73 U	37 U	37 U	37 U	37 U	37 U
154478-01 MW-01-04	1.8 UJ20 1.8 UJ20		1.8 U5	 ⊃ 8. ⊃ 2.	. ω Ο ω Ο Ο	3.6 U	3.6 U	3.6 UJ20	3.6 U	3.6 U	3.6 U	3.6 UJ20	18 UJ20	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	36 U
	1.7 1.7 1.7	7.7	1.7	7.7	. <u>/</u>	3.3	3.3	3.3	3.3	3.3	3.3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	33	33
SAMPLE NUMBER: SAMPLE LOCATION:	alpha-BHC	delta-BHC	Heptachlor	Aldrin	reptaction Epoxide Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

SITE: STEW STEW SDG: AC477 LABORATORY: ENVIR

STEWART ANG BASE AC477/154477/478 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

154477-01 DW-01-1017		0.05 UJ8, 20	_		N 18	-		_	_		0.44 J8	_	_	•		J8, 2	0.50 UJ8, 20	_		0.014 R25		5.0 UJ8	1.0 UJ8	2.0 UJ8	1.0 UJ8	1.0 UJ8		_	1.0 UJ8
نشدند	CRQL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	1.0	0.1	1.0	1.0
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260

ANE477/154477/478 ENVIROTEST LABORATORIES, INC. STEWART ANG BASE LABORATORY: SITE: SDG:

INORGANIC SOIL ANALYSIS

CONTRACT	LIMITS (mg/kg)	40	12	2 5	04	- •	- 000	000	v Ç	<u> </u>	ဂ င်	07	0.0 0.0	0001	0	- o	φ ς	000	– c	7 000	0001	4 -	2.5	4 r	o O	щ
																										BHT NI CHIBITNACI SNOITATIMI
																										SINCITATIMITOT
154478-03 MW1316		11100	9.2 UJ5	4.8	50.6	0.82	1.10	23400	17.5	11.6	28 J12	24800	11.8 J5	7160	623	0.04 U	24.9	096	0.31 U	1.3 J2	49.7	0.48 J5, 10	13.1	62.7	1.10	
154478-02 MW0118		10600	14.6 J5	5.3	47.7	96.0	1 N	23100	16.1 J2	10.6	26.4 J12	23900	12.2 J5	7130	614	0.04 U	24.4	870	0.31 U	0.83 U	41.6	0.67 J5, 10	12.5	63.2	1.1 U	
154478-01 MW0104 IENT		0266	9.1.0.15	6.2	43.4	0.86	- - -	21800	15 J2	11.8	25 J12	22400	12.5 J5	6430	524	0.04 U	23.7	886	0.3 U	1.2 J2	19.1	0.55 J5, 10	7	54.8	1.1 U	•
1544 MW INSTRUMENT	LIMITS mg/kg	3.48	0.4 0.70	0.5	0.14	0.22	0.48	2.06	1.86	1.28	0.48	1.04	0.16	2.8	0.18	0.04	2.54	12.1	0.56	0.38	4.56	0.12	0.62	0.3	1.0	
IBER: (TION:	EMENTS	٥	_ 0	. LL	. С	۵	۵	۵.	۵	۵	۵	Δ.	. ഥ	Δ.	Δ.	<i>></i>	۵	۵	щ	۵	۵	ட	۵	۵	ပ	
SAMPLE NUMBER: SAMPLE LOCATION:	INORGANIC ELEMENTS		Aptimopy	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	lron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT ICP/FLAME AA ANALYICAL METHOD - FURNACE

MICROWAVE DIGESTION COLD VAPOR COLORIMETRIC m σ S o z §

⁻ AUTOMATED COLD VAPOR AA

ANE477/154477/478 ENVIROTEST LABORATORIES, INC. STEWART ANG BASE LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS

SAMPLE NUMBER: SAMPLE LOCATION:	154477-01 DW01101795 INSTRUMENT
INORGANIC ELEMENTS	DETECTION LIMITS 11G/I

CONTRACT DETECTION LIMITS

	200	09 ;	01	200	Ω I	ς ; ;	0009	10	09 20	25	1000	ന	2000	15	0.2	40	2000	က (01	0009	9	09	20	10
											-													
								16					-			16				-		91		
	320000 J15, 16	234 U	103 J14, 15	1760 J14, 16	20.3 J14, 16	26.7 U	444000 J15, 16		309 J14, 16	2430 J15, 16	625000 J15, 16	342 J15	187000 J15, 16	15500 J15, 16	0.75 J14, 15	•	59600 J15, 16	15.6 UJ10	21.1 U	18000 J16	3.6 J14	602 J14, 15, 7	2980 J15, 16	20 N
7,00	17.4	21.1	2.5	0.7	- -	2.4	10.3	9.3	6.4	2.4	5.2	0.8	4	6.0	0.2	12.7	60.7	2.8	9.1	22.8	9.0	3.1	1.3 6.1	10
	PM	PM	ΣH	Μd	PM	PM	PM	PM	PM	PM	PM	ΕM	PM	Μd	25	ΡM	PM	ΕM	PM	ΡM	ΜΉ	Μd	ΡM	ပ
	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcinm	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT ANALYICAL METHOD
F - FURNACE
P - ICP/FLAME AA
CV - COLD VAPOR
C - COLORIMETRIC
M - MICROWAVE DI
AV - AUTOMATED C ICP/FLAME AA

MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA

COLORIMETRIC

COLD VAPOR

STEWART ANG ANE478 ENVIROTEST LABORATORIES, INC

SAMPLE NUMBER: SAMPLE LOCATION:

155478-01 MW0104

154478-02 MW0118

0.86%

0.94%

700

154478-03 MW1316

0.46%

TOC ANALYSIS

STEWART ANG AC787/155787/155816 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

155787-08 MW1081128	0 0 0 0 0 0 0 0 0	10 U	10 R2	10 C	10 C	10 10 1	10 C	10 U	10 U	0.00	10 C	10 C	10 C	100	0 5	5 5	5 5	10 U	10 R2	10 R2	10 U	10.0	10 C	10 U	0 5	5 6	0.00
155787-06 MW1091128	10 U 10 U 7	2 5	10 R2	10 10 10 10 10	5 0 0	10 U	10 U	10 U	10 U	10 U	10 U	100	001	100	00.	5 5	5 5	10 U	10 R2	10 R2	10 U	10 N	10 U	10 U	100	100	10 U
155787-05 MW101128	5 6 6 2 0 0	5 C 6	10 R2	10 t	0 O	10 U	100	10 U	10 U	10 U	10 U	10 U	10 U	100	0.0	0 0	5 5	10 C	10 R2	10 R2	10 U	10 N	10 U	10 U	10 0	00,	10 U
155787-04 MW011128	0 0 0 0 0 0 0 0 0	5.6.4 5.0.5	10 U 10 R2		5 6 0 0	10 U	10 (1	10 U	10 U	10 U	10 U	10 U	10 0	10 C	100	0.0	5 5	10 0	10 R2	10 R2	10 U	10 U	10 U	10 U	10 U	10 U	10 C
155787-02 MW091127	10 U 10 UJ4	2	10 U 10 R2	10 U	10 U	10 U	0 0) ဗို့ က	10 U	10 U	10 U	10 U	10 U	4	10 U	100	00.	5 5	10 UJ4	3 J4	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	CKQL 10 10	2 6 8	5 6	Ç :	5 6	9	5 5	<u> </u>	10	10	10	10	10	10	9 :	9 9	5 5	5 5	10,1	10	10	9	10	10	6	10	5 5
JMBER: ATION:	Chloromethane Bromomethane	Chloroethane	Methylene Chloride Acetone	Carbon Disulfide	1,1-Dichloroethene	1,2-Dichloroethene (total)	Chloroform	7-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichioropropene	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	m, p - Xylene o - Xylene

SITE: STEWART ANG SUG: AC787/155787/ LABORATORY: ENVIROTEST I

STEWART ANG AC787/155787/155816 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

SAMPLE NUMBER:		155816-01	155816-02	155816-03	155816-04 SW021128	155816-05 TB-1129
SAMPLE LOCATION:	CROI	200031120	021 01 001	071 - 71 000) i - -
	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Bromomethane	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1, 4	10 U
Vinyl Chloride	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1, 4	10 U
Chloroethane	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 0
Methylene Chloride	9	10 UJ1	10 UJ1		10 UJ1	10 U
Acetone	5	10 R2	10 R2	10 R2	10 R2	10 R2
Carbon Disulfide	10	10 UJ1	10 UJ1	10 UJ1		10 U
1.1-Dichloroethene	10	10 UJ1	10 UJ1	10 UJ1		10 U
1, Dichloroethane	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
1 2-Dichloroethene (total)	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Chloroform	9	10 UJ1	10 UJ1	10 UJ1		10 U
1 2-Dichloroethane	10	10 UJ1	10 UJ1	10 UJ1		10 U
2-Butanone	10	10 UJ1	10 UJ1	10 UJ1		10 U
1 1 1-Trichloroethane	10	10 UJ1	10 UJ1			10 U
Carbon Tetrachloride	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Bromodichloromethane	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
1.2-Dichloropropane	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	
cis-1,3-Dichloropropene	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Trichloroethene	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Dibromochloromethane	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	
1.1.2-Trichloroethane	10	10 011	10 011	10 UJ1	10 UJ1	10 U
Benzene	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
trans-1,3-Dichloropropene	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Bromoform	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 N
4-Methyl-2-Pentanone	10	10 R2	10 R2	10 R2	10 R2	10 R2
2-Hexanone	10	10 R2	10 R2	10 R2	10 R2	10 R2
Tetrachloroethene	10	10 UJ1		10 UJ1	10 UJ1	10 U
1.1.2.2-Tetrachloroethane	9	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 N
Toluene	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
Chlorobenzene	10		10 UJ1		10 UJ1	10 U
Ethylbenzene	10	10 UJ1	10 UJ1	17 11	15 J1	10 U
Styrene	10	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
m o - Xvlene	9	_	10 UJ1, 4	_		10 UJ4
o - Xylene	9	10 UJ1	10 UJ1	10 UJ1	10 UJ1	10 U
DILUTION FACTOR:		~	~	~	-	~

VOLATILE AQUEOUS ANALYSIS (UG/L)

SITE: SDG: LABORATORY:

STEWART ANG AC787/155787/155816 ENVIROTEST LABORATORIES, INC.

155787-07 TB-1128		10 U	10 UJ4	10 0	10 UJ4	10 U	10 R2	10 U	100	10 0	10 U	10 U	0.01	100	10 U	10 0	10 U	10 0	10 U	10 U	10 0	10 U	10 U	10 0	10 U	10 01	10 UJ4	10 0	10 0	10 U	10 U	10 0	10 U	10 0	10 0
155787-03 TB-1127		10 U	10 UJ4	10 U	10 UJ4	10 U	10 R2	10 U	10 U	10 U	10 U	10 0	10 U	10 U	10 0	10 N	10 N	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 UJ4	10 UJ4	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U
	CRQL	10	10	9	9	10	10	10	9	9	9	9	9	9	9	10	9	10	9	10	10	10	9	9	10	9	9	10	10	9	9	9	9	9	10
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	m, p - Xylene	o - Xylene

STEWART ANG SITE: SDG: LABORATORY:

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

	N S
	RIES.
٥	RATO
1228	LABO
22/Q	EST
AC/8//155/8//1558/6	FNVIROTEST LABORATORIES, INC
A C	Z

155787-06 MW1091128	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	001	0.01	0.5	0 :	0 5	001	0 0 0	100	0.01	0.01	10 US	000	10 0	100	0.00	0 0.7	0.0	720 0	0 :	25 U	10 U	10 U	10 U	10 U	25 U	75 U
155787-05 MW101128	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	0.01	10 U	10 U	10 U	10 U	10 U	10.0	10 U5	10 U	10 U	10 0	10 U	10 U	10 U	25 U	0 0 0	25 U	10 U	10 U	10 0	10 U	25 U	
155787-04 MW011128	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 N	10 U	0 0	10 U	10 C	10 O	10 U	10 N	10 N	10 05	10 0	10 U	10 U	10 C	10 U	10 U	25 U	10 U	25 U	10 U	10 N	10 U	10 U	25 U	25 U
155787-02 MW091127	101	10.0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0		10 U	10 U	10 U	10 N	10 U	10 US	10 U	10 U	10 U	10 N	10 U	10 N	25 U	10 N	25 U	10 U	10 U	10 U	10 U	25 U	25 U
155787-01 MW1081128		200	10 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 05	10 U	10 U	10 U	10 U	10 U	. 10 U	25 U	10 U	25 U	10 U	10 U	10 U	10 Ù	25 U	25 U
	CRQL	5 5	5 5	10,00	9 9	10	9	9	10	10	9	5	5	1	9	9	9	9	9	6	9	10	9	5	9	25	10	25	9	9	10	10	25	25
UMBER: CATION:		DIS(Z-Chioroethyl)etrier	Prierrol 2-Chlorophenol	1 3 Dichlorobenzene	1,3-Dichlorobenzene	1 2-Dichlorobenzene	2 2-Oxyhis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2.4-Dimethylphenol	bis(2-Chloroethoxy)methane	2.4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2 6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG AC787/155787/155816 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

155787-06 MW1091128	107	2 5	25.0	10.0	100) - - -	2 2	0.57	75 U	10 U	10 U	10 0	25 U	10 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	•	-
155787-05 MW101128		5 5	25.1	101	5 5	5 5		25 U	25 U	10 N	100	10 U	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	*	-
155787-04 MW011128	-	0 =	0 50	0 07	2 5	2 5	0 :	25 U	25 U	10 U	10 U	10 U	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	77	10 U	10 U	10 U	10 11	10 U	10 U	10 U	•	-
155787-02 MW091127		000	0 uc	7 7 7	5 5	0.00	10 U	25 U	25 U	10 U	10 U	10 N	25 U	10 U	10 U	10 U	.10 U	10 U	10 U	10 U	10 U	10 U	10 U	14 U6	10 U	10 U	10 U	100	10.0	10 U	10 U	•	
155787-01 MW1081128		10 U	0 01	72 0) 	10 U	10 N	25 U	25 U	10 U	10 U	10 U	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	16 U6	10 U	1011	101	2 2 2	5 5	10 C	10 U		~
	CRQL	9	5 9	2 5	2 9	9	9	25	25	10	10	5	25	10	10	5	9	10	9	9	9 9	9 9	2	2 0	0	, C	5 5	5 5	5 5	5 5	5 6		
SAMPLE NUMBER: SAMPLE LOCATION:		Dibenzofuran	2,4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4 6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachloronhenol	Dhananthrana	Apthacene	Carbazole	Odrugazoro Di-n-britvlohthalate	Elioteathene	Dyrono	Butvibonzvlohthalate	Butylber Eylpi iti ididic 2-3' Dichlorobenzidine	S,S-Diction Operation C	Objection and a contract of the contract of th	Distant Series	Dis(z-etriyiricky)/princials	Distriction and the property of the property o		Delizo(k)ildolaridiene	Benzo(a)pyrene	Indeno(1,2,3-cd/pyrerie Diboaz(2,b)aathracene	Diberiz(a,ri)arimiracario Benzo(g,h,i)perylene		DILUTION FACTOR:

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

STEWART ANG AC787/155787/155816 ENVIROTEST LABORATORIES, INC.

SITE: SDG: LABORATORY:

155816-07 SW121128	10 U 7	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	0 5	10 C	10 U	თ <u>(</u>		72 J13	5 5	5 5	41 J13	10 U	10 U	25 U	10 U	25 U	100) 	5 5	25 11.14	25 U
155816-06 SW021128	10 U 2	10 U	10 0	10 C	10 U	10 t	10 U	10 t	0 5		10 U	~	10 U	37 J13	0 0	0 5	75.313	10 C	10 U	25 U	10 U	25 U	10 U	10 C	5 5	001 251114	25 U
155816-02 MW131128	10 U	10 U	10 C	0 0 0 1	0 0 0 0	10 U	5 5 5 0	10 U	100	0.00	10 U	10 U	10 U	10 U	100	100	0 0 4	10 U	10 U	25 U	10 U	25 U	10 U	10 U	100	10 U	25 U 25 U
155816-01 SW031128	10 U	10 U	5 5 5	10 U	0 0	10 U	5 0 0	10 U		55	10 C	10 U	10 U	10 U	10 U		100	2 0 0	10 U	25 U	10 U	25 U	10 U	10 U	10 U	10 0	25 U34 25 U
	CRQL 10 10	: 2 ;	5 6	9	5 5	: 우 <u>:</u>	5 5	10	Ç :	5 5	2 6	9	10	10	10	9 :	6 5	5 5	5 6	25	10	25	9	9	9	5 5	25 25
UMBER: CATION:	COMPOUND bis(2-Chloroethyl)ether	2-Chlorophenol	1,3-Dichlorobenzene 1.4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	Hexachloroethane	N-Nitroso-di-n-propylamine	4-men 19 produce Nitrobenzene	Isophorone	2-Nitrophenol	Z,4-DIMEtriyiprierioi bis/2-Chloroethoxv)methane	2 4-Dichlorophenol	1 2 4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachiorocycloperitatiene 2.4.6. Trichlorophenol	2,4,0-111611101 option 2,4,5-Trichlorophenol	2,4,5-1115111515151515151515151515151515151	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline 2,4-Dinitrophenol

STEWART ANG AC787/155787/155816 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

155816-07 SW121128	27.17.00	c	101	2 5	75 U	-	10 U	10 N	25 U	25 U	10 O	10 0	10 U	25 U	10 U	10 U	10 U	10 C	10 U	10 0	10 U	10 N	10 U	10 U	10 U5	10 U	10 U	10 U	10 U	10 U	10 U	10 U
155816-06	344041120	c	7 7) : 	25 U	Ψ-	10 U	10 U	25 U	25 U	10 U	10 U	10 U	25 U	10 O	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 05	10 N	10 N	10 U	10 U	10 U	10 U	10 U
155816-02	WWW 131 120		00.	0.2	25 U	10 U	10 U	₩	25 U	25 U	10 U	10 U	10 U	25 U	10 U	10 U	10 U	-	10 U	10 U	10 U	10 U	10 U	10 U	10 NS	10 U	. 10 U	10 U	10 U	10 U	10 U	10 U
155816-01	SW031128	•	10 U	0 01	25 U	10 U	10 U	10 U	25 U	25 U	10 U	10 U	10 U	25 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U5	10 U	10 U	10 U	10 U	10 U	10 U	10 U
		CRUL	ę :	10	25	10	5	1	25	25	10	9	10	25	9	5	9	9	9	10	9	9	9	10	10	9	9	9	9	10	9	10
SAMPLE NUMBER:	LE LOCATION:	COMPOUND	Dibenzofuran	2.4-Dinitrotoluene	4-Nitrophenol	Fluciene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4 6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromonhenvi-Phenviether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate		Pyrene	Ritylhenzylphthalate	3.3'-Dichlorobenzidine	Serzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pvrene	Indepo(1.2.3-rd)nyrene	Dibenz(a h)anthracene	Benzo(g,h,i)perylene

STEWART ANG BASE AC787/155787/155816 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

155787-06 MW-109-1128	0.05 U 0.05 UJ19, 20 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	_ :	0.10 0.20	0.10 U	0.013 JN25	0.10 U	0.098	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	Υ
155787-05 MW-10-1128	0.05 U 0.05 UJ19, 20 0.05 U	0.05 U	0.05 U	0.05 U	. 0.05 U	0.05 U	0.10 U	0.10 U	0.10 0.20	0.10 U	0.089 JN25	0.10 U	0.22	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
155787-04 MW-01-1128	0.05 U 0.05 UJ19, 20 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 UJ29	0.14 J29	0.10 0.720	0.10 U	1.3 JN25	0.10 U	3.20 J20, 25	0.50 U	0.10 U	0.10 U	0.007	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	~
155787-02 MW-09-1127	0.05 U 0.05 UJ19, 20 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	<u></u>	0.10 0320	0.10 U	0.21 JN25	0.10 U	0.52 J10	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
155787-01 MW-108-1128	0.05 U 0.05 UJ19, 20 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.10 UJZ0	0.10 U	0.027 JN25	0.10 U	0.13	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
CROI	0.05 0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	0.7	1.0	0.	1.0	
SAMPLE NUMBER: SAMPLE LOCATION: COMPOUND	alpha-BHC beta-BHC delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-UUE 	: :	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

STEWART ANG BASE AC787/155787/155816 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

155816-07 SW-12-1128	0.05 U 0.05 UJ19, 20	0.05 U	0.05 U	0.05 U 0.05 U	0.10 UJ29	0.79 J29 0 11 R25	0.10 U	7.1 JN25	0.10 U	8.4 J13, 20	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	τ-
155816-06 SW-02-1128	0.05 U 0.05 UJ19, 20	0.05 U 26.0	0.05 U	0.05 U 0.05 U	0.10 UJ29	0.78 J29		4.6 JN25	0.10 U	4.60 J13, 20	0.50 U	0.10 U	0.10 U	0.017 R25	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	~
155816-02 MW-13-1128	0.05 U 0.05 UJ19, 20	0.05 0.05 0.05 0.05	0.05 U	0.05 U 0.05 U	0.10 U	0.10 U	0.10 U	0.31 JN25	0.10 U	0.58	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	~
155816-01 SW-03-1128	0.05 UJ8 0.05 UJ8, 19, 20	0.05 UJ8 0.05 UJ8	0.05 UJ8	0.05 UJ8 0.05 UJ8	0.10 UJ8	0.10 UJ8	0.10 UJ8	1.4 JN25	0.10 UJ8	6.4 J8, 20	0.50 UJ8	0.10 UJ8	0.10 UJ8	0.05 UJ8	0.05 UJ8	5.0 UJ8	1.0 UJ8	2.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	ν-
	0.05	0.05	0.05	0.05	0.10	0.0	0.0	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	1.0	1.0	0.1	1.0	
SAMPLE NUMBER: SAMPLE LOCATION:	alpha-BHC	gamma-BHC(Lindane)	Aldrin	Heptachlor Epoxide Endosulfan I	Dieldrin	4,4'-DDE Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

STEWART ANG BASE ANE787/816 ENVIROTEST LABORATORIES, INC. SITE: SDG: LABORATORY:

INORGANIC AQUEOUS ANALYSIS (UG/L)

CONTRACT DETECTION LIMITS	(ng/L)	90,	00 5	20	200	ກເ	5	2000	<u> </u>	o c	67 67	0001		000s	15 0.	0.2	40	0006	ກຸ	10	2000	2 8	ဂ္ဂ	20,	10	
155787-06 TMW-109-1128	7.1.7	454	23.4 U	2.3	21.8	1.2 U	2.7 U	104000	10.3 U	7.7	6.4	745	0.11 U	12000	928 J17	0.2 U	14.1 U	1430	1.6 UJ5	2.1 U	14700 J17	1.2 U	3.4 U	208 J5, 7	30	NTIFIED IN THE
155787-05 TMW-10-1128		5020	23.4 U	3.0	68.4	1.2 U	2.7 U	101000	10.3 U	7.1 0	14.3	9460	4.4	15600	426	0.2 U	14.1	1880	1.6 UJ5	2.1 U	133000	1.2 U	17.2	795 15, 7	12	LIMITATIONS IDE DETECTION LIMIT
155787-04 TMW-01-1128		8200	23.4 U	15.9	29	1.2 U	2.7 U	83800	23.6	10	21.4	12000	တ	8110	328	0.2 U	14.3	2930	1.6 UJ5, 10	2.1 U	53500	1.2 U	43.9	225 J5, 7, 17	32	SOXIMATE DUE TO DATA REVIEW). AT INSTRUMENT E
155787-02 TMW-09-1127		5170	30	3.2	93.7	1.2 U	4.8	183000	10.3 U	9.1	24.8	9450	8.4	27100	2060	0.23	43.6	5150 J12	1.6 UJ5	3.8 J2	125000	1.2 U	20.9	273 J5, 7, 17	10 U	J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT
155787-01 TMW108-1128 ENT ON		1020	23.4 U	2	53.2	1.2 U	2.7 U	141000	10.3 U	7.1 U	17.8	2000	2.1	17200	57.5	0.2 U	14.1 U	2010	1.6 UJ5	2.1 U	62400	1.2 U	9	90.6 J5, 7, 17	10 U	J. UJ. QUA! V - V
155 TMV INSTRUMENT DETECTION I IMITS	UG/L	17.4	21.1		0.7	-	2.4	10.3	9.3	6.4	2.4	5.2	0.1	14	6.0	0.2	12.7	60.7	4.1	9.1	22.8	1.7	3.1	1.3	10	AL METHOD FURNACE CP/FLAME AA SOLD VAPOR COLORIMETRIC MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA
BER: TION: FMFNTS		PM	PM	MΗ	P	PM	M	PM	PM	PM	PM	PM	ΕM	PM	PM	<i>></i>	P	PM	F	PM	PM	ΕM	PM	PM	O	CAL METHOD FURNACE ICP/FLAME AA COLD VAPOR COLORIMETRIC MICROWAVE DIGESTION AUTOMATED COLD VAPO
SAMPLE NUMBER: SAMPLE LOCATION: INORGANIC FI FMFNTS		Aluminum	Antimony	Arsenic	Barium	Bervllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	ANALYICAL METHOD F - FURNACE P - ICP/FLAME A CV - COLD VAPOR C - COLORIMETF M - MICROWAVE AV - AUTOMATED

STEWART ANG BASE ANE787/816 SITE: SDG:

INORGANIC AQUEOUS ANALYSIS (NG/L)

> ENVIROTEST LABORATORIES, INC. LABORATORY:

	CONTRACT DETECTION	LIMITS (ug/L)	200	09	19	200	5	S	2000	10	20	25	1000	က	2000	15	0.2	49	2000	5	10	2000	9	20	20	9
155787-13 DMW-109-1128			69	23.4 U	1.2 U	19.4	1.2 U	2.7 U	101000	10.3 U	7.1 U	4.5	102	0.47	12100	1140 J17	0.2 U	14.1 U	1320	1.6 U	2.1 U	16200 J17	1.2 U	3.4 U	115 J5,6,7	N N
155787-12 DMW-10-1128			25.7	23.4 U	4.4	36.8	1.2 U	2.7 U	00096	10.3 U	7.1 U	5.8	82.5	1.2	13500	61.5	0.2 U	14.1 U	984	1.6 U	2.1 U	128000	1.2 U	3.4 U	60.5 J5, 6,	N N
155787-11 DMW-01-1128			305	23.4 U	11.7	12.7	1.2 U	2.7 U	38500	10.7	7.1 U	4.8	81	0.58	2450	13.9	0.2 U	14.1 U	1860	1.6 U	2.1 U	54100	1.2 U	24.9	292 J5, 6, 7, 17	N N
155787-10 DMW-09-1127			191	25.4	1.2 U	62.2	1.2 U	2.7 U	187000	10.3 U	7.1 U	4.8	381	1.4	24700	1830	0.2 U	34.7	3740	1.6 U	2.1 U	132000	1.2 U	3.4 U	305 J5, 6, 7, 17	N. R.
155787-09 1 DMW108-1128 D				_		46.6	_	_					28										1.2 U			Z Z
1557 DMM	INSTRUMENT	LIMITS UG/L	17.4	21.1	1.1	0.7	1.1	2.4		6.9	6.4	2.4	5.2	0.1	14	6.0	0.2	12.7	60.7	1.4	1.9	22.8	- -	3.1	د .	10
ER:	;	MENTS	PM	Μd	Σ	PM	PM	PM	ΡM	PM	PM	PM	PM	Ξ	PM	PM	<u>ე</u>	Μd	P	Ε	PM	₽M	Ξ	PM	PM	ပ
SAMPLE NUMBER:		INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

AUTOMATED COLD VAPOR AA

COLORIMETRIC MICROWAVE DIGESTION

π σ S O Σ ≷

FURNACEICP/FLAME AA COLD VAPOR

ANALYICAL METHOD

STEWART ANG BASE ANE787/816 ENVIROTEST LABORATORIES, INC. LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS (UG/L)

CONTRACT	LIMITS (ua/L)	200	09	10	200	S	വ	5000	1	20	25	1000	ო	2000	15	0.2	4	2000	5	10	2000	9	20	20	10	
155816-08 DSW031128		78.3	23.4 U	1.2 U	18.3	1.2 U	2.7 U	157000	10.3 UJ2	7.1 U	6.9	59.5	2	32800	1110	0.2 U	14.1 U	2330		5.3 J2		1.2 UJ5	11.5	117 J5, 6, 7	N.	ATIFIED IN THE
155816-07 TSW121128		797	23.4 U	2.5	25.2	1.2 U	2.7 U	183000	10.3 UJ2	7.1 U	5.7	1520	2.9	43000	3040	0.2 U	14.1 U	2120	1.6 UJ5, 10	4.3 J2	16500	1.2 UJ5	10.7	96.8 R17	10 U	LIMITATIONS IDER ETECTION LIMIT
155816-06 TSW021128		1230	42.7	ო	29.5	1.2 U	2.7 U	189000	10.3 UJ2	7.1 U	7	2160	က	43500	3000	0.2 U	14.1	2320	1.6 UJ5, 10	5.4 J2	16500	1.2 UJ5	15	194 J5, 6, 7	10 N	OXIMATE DUE TO DATA REVIEW). AT INSTRUMENT D
155816-02 TMW131128		11500			J12	1.2 U			22.1 J2		41.1 J12		14.3	37400	1540	0.2 U	36.7	8400 J12	1.6 UJS, 10	5.4 J2	12400	1.2 UJ5	47.7	139 J5, 6, 7	10 U	J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT
155816-01 TSW031128 ENT ON		9420	23.8	4.8	57.2	1.2 U	2.7 U	173000	17.2 J2	10.1	29.7 J12	17900	10.9	37900	1580	0.2 U	29.8	4380	1.6 UJ5, 10	5 J2	13000	1.3 J5	37.4	265 J5, 6, 7	10 U	J, UJ - QUA QUALITY C R - VALUE U - VALUE
155 TSW INSTRUMENT DETECTION	LIMITS UG/L	17.4	21.1	1.1	0.7	_ .	2.4	10.3	9.3	6.4	2.4	5.2	0.1	14	6.0	0.2	12.7	2.09	4.1	1.9	22.8	·-	3.1	1.3	10	SAL METHOD FURNACE ICP/FLAME AA SOLD VAPOR COLORIMETRIC MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA
BER: TION:	EMENTS	PM	PM	Ħ	PM	PM	ΡM	PM	PM	PM	PM	P	ΕM	Ā	PM	S	PM	PM	Ψ	PM	∑ d	Σ	∑	Σd	ပ	CAL METHOD FURNACE ICP/FLAME AA COLD VAPOR COLORIMETRIC MICROWAVE DIGESTION AUTOMATED COLD VAPO
SAMPLE NUMBER: SAMPLE LOCATION:	INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	ANALYICAL METHOD F - FURNACE P - ICP/FLAME A CV - COLD VAPOR C - COLORIMETF M - MICROWAVE AV - AUTOMATED

STEWART ANG BASE LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS (UG/L)

ANE787/816 ENVIROTEST LABORATORIES, INC.

i d	CONTRACT	LIMITS (ug/L)	200	09	10	200	5	ည	2000	9	20	25	1000	က	2000	15	0.2	40	2000	S	10	2000	5	50	20	10
																				5, 10					6, 7	
155816-11 DSW021128			19.3 U	28.3	1.2 U	18	1.2 U	2.8	188000	10.3 UJ2	7.1 U	4.2	195	1.3	44800	3080	0.2 U	14.1 U	1970	1.6 UJE	5.7 J2	17200	1.2 UJE	7.4	52.2 J5,	N R
155816-10 DSW121128			119	23.4 U	2.7	20.3	1.2 U	3.2	189000	10.3 UJ2	7.1 U	7.2	298	1.4	43400	3000	0.2 U	14.1 U	2140	1.6 UJ5, 10	7.2 J2	16800	1.2 UJ5	. 11.5	206 R17	N N
155816-01 TSW031128	LN:		19.3 U	23.4 U	8.1	228 J12	1.2 U	2.7 U	172000	10.3 UJ2	7.1 U	4.2	4820	0.33	30100	732	0.2 U	14.1 U	7750 J12	1.6 UJ5	3.9 J2	12900	1.2 UJ5	11.2	42.4 J5, 6, 7	N R
F	INSTRUMENT DETECTION	LIMITS UG/L	17.4	21.1	1.1	0.7	7.	2.4	10.3	9.3	6.4	2.4	5.2	0.1	14	0.9	0.2	12.7	60.7	4.	1.9	22.8	- -	3.1	1 .3	6
ABER: ATION:		LEMENTS	PM	Md	FM	PM	PM	PM	PM	PM	PM	PM	PM	M	PM	PM	2	PM	PM	MΗ	PM	PM	M	P	PM	ပ
SAMPLE NUMBER: SAMPLE LOCATION:		INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barinm	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA

COLORIMETRIC

\$ ≥ ∪ S

FURNACE ICP/FLAME AA COLD VAPOR

டி டி

ANALYICAL METHOD

STEWART ANG BASE

VOLATILE SOIL ANALYSIS

SITE: SDG: LABORATORY:	STEWART ANG 154598/154678 ENVIROTEST L	STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC	ES, INC.	(ug/kg)	
SAMPLE NUMBER:		154598-01	154598-02	154678-01	154678-02 MW/-03-32
SAMPLE LOCATION: COMPOUND	CRQL	MW-02-1/	15-70-0/10	77-00-MAINI	
Chloromethane	10	11 U	□ :	— ; — ;	7.7
Bromomethane	9	11 U	7) - - -	
Vinyl Chloride	9	11 C	7 7	= 1	
Chloroethane	9		11 C	- ?	
Methylene Chloride	9		25 47 16	0 1 	11 15
Acetone	9	13.06	0 1. 7		
Carbon Disulfide	9	- ;) 	- - -	- 7
1,1-Dichloroethene	9	J	- -	2 = 5	2 = 2
1,1-Dichloroethane	9	11 0) - -	- *	5 = 5
1,2-Dichloroethene (total)	9 9	110	- 7 - 7		
Chloroform	<u></u> 9	0 : :	- -		
1,2-Dichloroethane	ę :	11 U	- *		
2-Butanone	9 !) 	- *	5 5	
1,1,1-Trichloroethane	9 9) - -	- ?		
Carbon Tetrachloride	9		- *	5 = 5	= = =
Bromodichloromethane	9 !	11 0.) 	- -	2 = 7
1,2-Dichloropropane	9	0 : 1	- ;	2	= = =
cis-1,3-Dichloropropene	10	710	- ;	5 = 5	7 - 0
Trichloroethene	2 :		2 7	5 5	1 = 1
Dibromochloromethane	9 9		2.5	5 5	: = = = = = = = = = = = = = = = = = = =
1,1,2-Trichloroethane	5 5) - - -	5 5) -
Benzene	2 9) - ;	5 5		110
trans-1,3-Dichloropropene	2 ;		- -		11 U
Bromoform	2 9		5 5		110
4-Methyl-2-Pentanone	2 9	O = 7	÷ = 5	7 = 0	110
2-Hexanone	0.5	o :	2 7		11
Tetrachloroethene	9 9) - 7	- - -		110
1,1,2,2-Tetrachloroethane	2 9		2 5		_
Toluene	9	0 TT 0	- ;		7
Chlorobenzene	5 5	0 <	2 = 2		11 U
Ethylbenzene	5 5		7	11 0	11 U
Styrene Total Xylenes	9 9		11 05	11 U	11 US
	1	•	•	•	-
DILUTION FACTOR:	ċ:		-	-	

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

154678-03 TRIP BLK02		10 O	10 N	10 C	10 N	10 N	10 U	10 0	10 C	10 U	10 U	10 U	10 0	10 C	10 0	10 U	100	000	100	100	100	100	10 C	100	001	100	001	0 0L	10 U	001		100		0.01
154598-01 TRIP BLK01		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 O	10 U	10 N	10 U	10 U	10 U	10 C	10 U	10 U	10 U	10 U		10 U			10 U	10 C	10 U	10 U	10 U	10 U	10.0	10 U
	CRQL	9	9	10	9	9	10	9	1	9	10	10	9	9	9	9	9	9	10	9	9	9	9	9	9	9	10	10	9	9	9	9 9	2 :	10
SAMPLE NUMBER:	COMPOUND	Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes

DILUTION FACTOR:

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC

SEMIVOLATILE SOIL ANALYSIS (ug/kg)

154678-02 MW-03-32	360 11	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 U	360 UJ4	360 U	O 006	360 U	900 UJ4	360 U	360 U	360 U	360 U	900 UJ4	900 UJ4
154678-01 MW-03-22	36011	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 U	360 UJ4	360 U	O 006	360 U	900 UJ4	360 U	360 U	360 U	360 U	900 UJ4	900 UJ4
154598-02 MW-02-31	- Car	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	45	380 UJ4	380 U	380 U	39	380 U	380 U	O 096	380 U	960 UJ4	380 U	380 U	380 U	380 U	960 R2	960 UJ4
154598-01 MW-02-17	11 026	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	280	370 U	4300	370 UJ4	370 U	370 U	3800	370 U	370 U	930 U	370 U	930 UJ4	370 U	370 U	370 U	370 U	930 R2	930 UJ4
	CRQL	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	800	330	800	330	330	330	330	800	800
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	bis(z-Chioroethyi)ether Dhenol	2-Chlorophenol	1.3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniiine	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC

SEMIVOLATILE SOIL ANALYSIS (ug/kg)

154678-02 MW-03-32	:	360 U	360 U	900 R2	360 U	360 U	360 U	N 006	900 UJ4	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 US	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	
154678-01 MW-03-22		360 U	360 U	900 R2	360 U	360 U	360 U	O 006	900 UJ4	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 US	360 U	360 U	360 U	360 U	360 U	360 U	72	360 U	360 U	360 U	360 U	360 U	360 U	360 U	
154598-02 MW-02-31		380 ח	380 N	O 096	380 U	380 U	380 U	096 n	096 n	380 N	380 U	380 U	960 UJ4	380 U	380 U	380 UJ4	380 NS	380 U	380 U	380 U	380 UJ4	380 U	380 U	51	380 UJ4	380 U	380 U	380 U	380 U	380 U	380 U	
154598-01 MW-02-17		370 U	370 U	930 U	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	930 UJ4	79	370 U	370 UJ4	370 US	370 U	370 U	370 U	370 UJ4	370 U	370 U	370 U	370 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	
	_	330	330	800	330	330	330	800	800	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	
SAMPLE NUMBER:	COMPOUND	Dibenzofuran	2.4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline	4,6-Dinitro-2-Methylphenol	N-nitrosodiphenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butvlphthalate	Fluoranthene	Pvrene	Butylbenzylohthalate	3.3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a.h)anthracene	Benzo(g,h,i)perylene	

DILUTION FACTOR:

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

		•																		
154678-02 MW-03-32	1.8 UJ20 1.8 UJ20 1.8 U																			Υ-
154678-01 MW-03-22	1.8 UJ20 1.8 UJ20 1.8 U	1.8 U 1.8 U 5.0 U 5.0 U 5.0 U 5.0 U	 ∞ . ω . ∪ ∪ ∪ ∪	3.6 U 0.74 R25	3.6 UJ20 3.6 U	21 JN25	3.6 U 59.120.25	18 UJ20	3.6 U	3.6 U	6. 0. 0. 0. 0. 0.	180 U	36 U	72 U	36 U	36 U	36 U	36 U	36 U	~
154598-02 MW-02-31	1.9 UJ20 1.9 UJ20 1.9 U	0.00.00.00.00.00.00.00.00.00.00.00.00.0	 	3.8 U 0.32 R25	3.8 UJ20 3.8 U	24 JN25	3.8 U 40.120	19 UJ20	3.8 U	3.8 U	0.6 0.0	190 U	38 U	77 U	38 U	38 U	38 U	38 U	38 U	~
154598-01 MW-02-17	93 UJ20 93 UJ20 93 U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 88 0 86 0 86	190 U 110 JN25	190 UJ20 190 U	8900 JN25	190 U 9400 I20	930 UJ20	190 U	190 U	16 JN25	9300 U	1900 U	3700 U	1900 U	1900 U	1900 U	1900 U	1900 U	20
Ć	7.7 7.7 7.7 7.7	<u>, , , , , , , , , , , , , , , , , , , </u>	. .	က က က က	က က က က	3.3	თ თ თ თ	17	3.3	3.3	7.7	170	33	29	33	33	33	33	33	
SAMPLE NUMBER: SAMPLE LOCATION:	alpha-BHC delta-BHC	gamma-BHC(Lindane) Heptachlor	Aldrin Heptachlor Epoxide Endosulfan I	Dieldrin 4,4'-DDE	Endrin Endosulfan II	4,4'-DDD	Endofulfan Sulfate 4 4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

STEWART ANG BASE 154598/154678 LABORATORY: SITE: SDG:

INORGANIC SOIL ANALYSIS (mg/kg)

ENVIROTEST LABORATORIES, INC.

CONTRACT	DETECTION LIMITS (mg/kg)	40	12	2	40	•	•	1000	2	10	5	20	9.0	1000	က	0.1	∞	1000	~	2	1000	2	10	4	0.5	
																	•									
154678-02 MW0332		9380	5.0 J5	6.1	40.9	0.61	0.52 U	29900	12.2	8.6	18.5	18600	8.6	5460	498 J5	0.04 U	17.2	1020	0.3 UJ5, 10	0.41 U	30.4	0.26 J5, 10	11.5	46.9	1.1 U	
154678-01 MW0322		7250	4.5 UJ5	3.9	24.7	0.55	0.52 U	21500	10.4	7.3	16.9	16400	10.1	4270	377 JS	0.04 U	15.7	290	0.3 UJ5	0.42	14.5	0.53 J5, 10	တ	45.2	1.1 U	
154598-02 MW0231		12500	9.7 UJ2, 5	5.1	82.9	0.5 U	1.1 U	24300	20.7	11.9	28.4	25900	17.6 J5	6930	299	0.04 U	23.9	1210 J12	0.32 U	0.87 U	49.8	0.25 UJ5, 10	13.7	79.2 J12	1.1 0	
154598-01 MW0217 IENT	7		4.7 UJ2, 5			0.24 U			11.6	7.5	18.2	16600		5810		0.04 U						15, 10		40.6 J12		
1545 MW INSTRUMENT	DETECTION LIMITS mg/kg	3,48	4.22	0.22	0.14	0.22	0.48	2.06	1.86	1.28	0.48	1.04	0.1	2.8	0.18	0.04	2.54	12.1	0.28	0.38	4.56	0.22	0.62	0.3	1.0	
1BER: (TION:	EMENTS	۵	. Δ.	ΙL	۵	۵	۵	۵	۵.	۵	۵	۵	ᄔ	Q.	۵	20	۵	۵	ட	۵	О.	ட	۵.	۵	ပ	
SAMPLE NUMBER: SAMPLE LOCATION:	INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barinm	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT ANALYICAL METHOD
F - FURNACE
P - ICP/FLAME AA
CV - COLD VAPOR
C - COLORIMETRIC
M - MICROWAVE DI
AV - AUTOMATED C ICP/FLAME AA

MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA

COLORIMETRIC

COLD VAPOR

TOC ANALYSIS

STEWART ANG 154598/154678 ENVIROTEST LABORATORIES, INC

154598-01 MW0217

SAMPLE NUMBER: SAMPLE LOCATION:

TOC

154598-02 MW0231

154678-01 MW0322

154678-02 MW0332

0.75%

0.67%

0.83%

0.65%

STEWART ANG AC177/159177 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

159177-05 SW-03-0321	0 0 0 0 0 0 0 0 0 0 0 0	10 U 10 UJ4	10 C	0 O	10 U	0 0	10 U	10 U	70 C	0 5	0 5	5 5		5 5	10 U	107	10 0	10 U	10 U	10 N	10 U	10 U	10 U	10 U	00,	0 0 0	0 01	₩.
159177-04 SW-12-0320	0 0 0 0 0 0 0	10 U 10 U J4	10 0	5 0 0 0	10 U	10C	10 U	10 U	10 U	10.0	000	0 7	2 5	0 5	200	2	12.0	10 U	10 U	10 U	10 U	10 U	10 U	22	10 n		0.01	~-
159177-03 MW-130320	5 6 6 U U U U	10 U 10 U.J4	10 U	10 U	10 U	19 C	10 0	10 U	10 U	10 U	100	100	000	0 5	2 5	5 5	2 5	2 6	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 0	
159177-02 SW-02-0320	0 0 0 0 0 0 0 0 0 0 0	10 U A 4 14	10 U	10 U	10 U	10 C	10.0	10 U	10 U	10 U	10 U	10 0	100	100	5 5	0 5	5 5	2 5	10.0	10 U	10 U	10 0	10 U	22	10 U	·	10 U	~
159177-01 MW-01-0320	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 U	70 C	10 U	- 0	0 5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	000	0 0 0	0 0 7	5 5	5 5	10.0	10.5	10 U	10 U	10 U	10 U	10 U	10 U	~
	CRQL 10 10 10	2 0 5	5 6	9 9	5 6	6 6	5 5	2 6	10	10	10	10	9	9	5 5	2 ;	2 5	5 5	5 5	5 5	5 5	5 6	9	9	9	10	9	
JMBER: ATION:	COMPOUND Chloromethane Bromomethane Vinyl Chloride	Onloroeurane Methylene Chloride	Acetone Carbon Disulfide	1,1-Dichloroethene	1, 1-Diction betrialle 1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	z-butarione 111-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-Z-Pentanone	Z-nexalione Totrooploroothopo		Tolliene	Chlorobenzene	Ethylbenzene	Styrene	m, p - Xylene	o - Xylene	DILUTION FACTOR:

STEWART ANG AC177/159177 ENVIROTEST LABORATORIES. INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

LABORATORY: E	ENVIROTI	EST LABORATORIES, INC.	S, INC.			
SAMPLE NUMBER: SAMPLE LOCATION: COMPOUND	CROL	159177-06 JMW-109-0321	159177-07 MW-09-0321	159177-08 MW-10-0321	159177-09 JMW-108-0321	159177-10 TB01
	10	10 U	7	10 U	7	10 U
Bromomethane	10	10 U	10 U	10 U	10 U	10 U
Vinyl Chloride	9	~	10 U	10 U	10 U	10 C
Chloroethane	9	10 U	10 U	10 0	10 U	10 U
Methylene Chloride	10	10 U	10 U	10 N	10 N	10 U
Acetone	10	10 UJ4	10 UJ4	10 UJ4		10 UJ4
Carbon Disulfide	10	10 U	10 U	10 U		10 U
1,1-Dichloroethene	10		10 U	10 U	10 U	10 U
1,1-Dichloroethane	10	10 U	2	10 U		10 U
1,2-Dichloroethene (total)	10	2		10 U	10 U	10 U
Chloroform	9	10 U	10 U	10 0		10 U
1,2-Dichloroethane	9	10 U	10 0	10 U		10 U
2-Butanone	10	10 U	10 N	10 0	10 U	10 U
1,1,1-Trichloroethane	9	10 U	10 U	10 N	10 C	10 C
Carbon Tetrachloride	10	10 U	10 U	10 U	10 N	10 U
Bromodichloromethane	10	10 U	10 U	10 U	10 0	10 U
1,2-Dichloropropane	9	10 U	10 U	10 N	10 C	10 U
cis-1,3-Dichloropropene	10	10 U	10 U	10 U	10 0	10 0
Trichloroethene	9	10 U	10 U	10 N	100	10 U
Dibromochloromethane	9	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	9	10 U	10 U	10 U	10 U	10 U
Benzene	9	10 U	10 U	10 N	10 N	10 U
trans-1,3-Dichloropropene	10	10 U	10 U	10 U	10 U	10 U
Bromoform	9	10 U	10 U	10 U	10 N	
4-Methyl-2-Pentanone	10	10 U	10 U	10 U	~	10 C
2-Hexanone	9	10 U	10 U	10 N	~	10 C
Tetrachloroethene	10	10 U	10 U	10 0	10 U	10 U
1,1,2,2-Tetrachloroethane	9	10 U	10 U	10 U	10 U	10 U
Toluene	9	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	9	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	9	10 U	10 U	10 U	10 U	
Styrene	9	10 U	10 U	10 C	10 0	10 0
m, p - Xylene	9	10 U	10 U	10 U	10 C	10 U
o - Xylene	10	10 U	10 0	10 0	10 U	0 01
DILUTION FACTOR:		τ-	₹~	*		_

STEWART ANG AC177/159177 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

159177-05 SW-03-0321	10 U	10 U	10 U	100	000	0 5	0 5	5 5	0.00	10 U	10 U	10 U	10 U	10 U	10 0	100	100	10 034	0 0 C	100	2 5	0 2	0 10 10	0.07	0.00	450 CZ	O (0 0,0	0.01	10 U	25 UJ4	25 UJ4
159177-04 SW-12-0320	10 U	10 U	10 U	10 C	10 0	100	001	5 5	5 5	10 U	10 U	10 U	10 U	10 U	ω :	10 U	45	10 UJ4	10 U	10 U	7 9	10 U	0 :	0 67	10.0	25 UJ4	10 U	10 U	10 U	10 U	25 UJ4	25 UJ4
159177-03 MW-130320	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 t	5 5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	- !	10 014	10 N	10 U	0.00	10 U	10 U	0 62	10.0	25 UJ4	10 U	10 U	10 0	10 U	25 UJ4	25 UJ4
159177-02 SW-02-0320	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 C	2 5	10.0	10 U	10 U	10 U	.10 U	_	10 U	96 68	10 UJ4	10 U	10 U	5	10 U	10 U	25 U	10 U	25 UJ4	10 O	10 N	10 N	10 U	25 UJ4	25 UJ4
159177-01 MW-01-0320	0 C U U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	70.5	5 5	100	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ4	10 U	10 U	10 U	10 U	10 U	25 U	10 N	25 UJ4	10 U	10 U	10 U	10 U	25 UJ4	25 UJ4
- (CKQ 10 10 10	9	9	9	5	10	5	ę ;	5 5	2 5	5 5	<u> </u> 연	9	9	10	10	10	9	9	9	9	9	5	52	9	22	6	9	9	9	25	25
UMBER: CATION:	COMPOUND bis(2-Chloroethyl)ether	2-Chlorophenol	1.3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,2-Oxybis(1-chloropropane)	2-Methylphenol	Hexachloroethane	N-Nitroso-di-n-propylamine	4-ivietnyipheriol		2-Nitrophenol	2 4-Dimethylphenol	bis(2-Chloroethoxy)methane	2.4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2.6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

STEWART ANG AC177/159177 ENVIROTEST LABORATORIES, INC.

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

159177-05 SW-03-0321	10 U 10 U 15 I.14	10 U	10 C	10 0 25 11.14	25 UJ4	10 U	10 U	000	25 UJ4	10 U	0.01	10 UJ4	10 U	J0 (10 U	10 U	10 U	10 U	10.0	10 US	0 :	10 U	10 0	10 N	10 U	10 N	10 U	₩
159177-04 SW-12-0320	100 000 1000	50 L	10 U	70 U 25 H 14	25 UJ4 25 UJ4	10 U	10 U	10 U	25 UJ4	100	0.01	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 0	10 U	10 US	0 0L	10 D	10 U	10 U	10 U	10 U	10 U	 .
159177-03 MW-130320	10 U 10 U	75 C34 10 U	10 U	10 U	25 034 25 UJ4	10 U	10 U	10 U	25 UJ4	10 U	10.0	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 0	10 U5	10 0	10 U	10 U	10 U	10 U	10 U	10 U	~
159177-02 SW-02-0320	100 U	25 U34 10 U	10 U	10 U	25 U34 25 U34	10 U	10 U	10 U	25 UJ4	10 U	10 N	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 NS	10 N	10 U	10 U	10 U	10 U	10 U	10 U	~
159177-01 MW-01-0320	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 UJ4 10 U	10 U	10 U	25 U34 25 U.14	10 U	10 U	10 U	25 UJ4	10 U	10 U	10 UJ4	10 U	10 U	10 U	10 U	10 U	10 U	10 U	14 N6	က	10 U	10 U	10 U	10 U	10 U	10 U	~
<u> </u>	CKC 100000000000000000000000000000000000	5 6	10	1 0	22 22 25	9 6	9	9	25	9	9	9	10	9	5	9	9	5	9	10	9	9	9	9	5	5	10	
JUMBER: CATION:	MPOUND Jene	4-Nitrophenol Fluorene	4-Chlorophenyl-Phenylether	Diethylphthalate	4-Nitroaniline 4 6-Dinitro-2-Methylphenol	N-nitrosodiohenylamine(1)	4-Bromophenyl-Phenylether	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-butylphthalate	Fluoranthene	Pyrene	Butylbenzylphthalate	3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3-cd)pyrene	Dibenz(a.h)anthracene	Benzo(g,h,i)perylene	DILUTION FACTOR:

STEWART ANG

SEMIVOLATILE AQUEOUS ANALYSIS (UG/L)

159177-09 JMW-108-0321	10 U 10 U 10 U	10 U	0 0	10 U	10 U	10 C	10 C	10 U	10 U	10 U	10 U	100	100	10 0	10.0	10 0.34	000	100	000	0.00) I	70 C 70 C	000	25 U34	001	10 0	10 0	10 U	25 UJ4	25 UJ4
159177-08 MW-10-0321	0 0 0 0 0 0	10 U	10 C	10 C	10 U	10 C	5 6 5 0	10 U	10 U	10 U	10 N	10 U	10 U	10 U	100	10 UJ4	0.01	10 C	100	0.00) - - -	72 O	000	25 UJ4	10 U	10.0	10 N	10 U	25 UJ4	25 UJ4
159177-07 MW-09-0321	0 0 0 0 0 0	10 U	100	5 5 5 5	10 U	10 t	5 5 0 0	10 U	10 U	10 U	10 U	10 U	10 U	10 C	10 U	10 UJ4	10 U	10 U	10 U	100		25 U	0.00	25 UJ4	10 0	10 N	10 U	10 U	25 UJ4	25 UJ4
159177-06 JMW-109-0321	5 5 5 5 5 5	10 U	10 C	5 6 5 0	10 U	10 U	10 U.14	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 0	10 UJ4	10 U	10 U	0 0 0	25 U	10 O	25 UJ4	10 U	10 U	10 U	10 U	25 UJ4	25 UJ4
- - -	, 9666	9	6 5	5 6	9	9	5 5	9 9	9	10	9	10	10	9	9	9	9	9	9	ę :	2 !	25	9	22	9	10	9	9	22	25
NUMBER: CATION:	COMPOUND bis(2-Chloroethyl)ether Phenol	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,Z-Dichlorobenzene 2 2-Oxvhis(1-chloropropane)		Hexachloroethane	N-Nitroso-di-n-propylamine	4-Inethia premo	Sophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Acenaphthylene	Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

SITE: SDG:

STEWART ANG AC177/159177

SEMIVOLATILE AQUEOUS ANALYSIS

(NG/L)

JMW-108-0321 25 UJ4 25 UJ4 10 UJ4 25 UJ4 10 05 10 U 10 U ⊃ <u>0</u> 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 159177-09 10 U 10 U 10 O 10 C 10 U 10 U 00 10 U 25 UJ4 25 UJ4 10 UJ4 25 UJ4 25 UJ4 MW-10-0321 10 U5 10 U 10 U 10 U 10 U 10 U 10 U 10 C 10 U 10 U 10 U 100 10 U 10 U 10 U 100 159177-08 25 UJ4 10 UJ4 25 UJ4 25 UJ4 25 UJ4 MW-09-0321 10 US 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 C 10 U 10 U 10 U 10 U 10 O 10 U 10 C 10 U 10 U 10 U 159177-07 ENVIROTEST LABORATORIES, INC. JMW-109-0321 10 UJ4 25 UJ4 10 US 10 U 10 U 25 U 10 U 59177-06 10 U 10 U 10 C 10 U 10 U 25 U 10 0 10 U 10 U 10 U 10 U 5 5 SAMPLE NUMBER: SAMPLE LOCATION: 4-Chlorophenyl-Phenylether 4-Bromophenyl-Phenylether 4,6-Dinitro-2-Methylphenol N-nitrosodiphenylamine(1) Bis(2-ethylhexyl)phthalate Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene COMPOUND 3,3'-Dichlorobenzidine Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(a)anthracene Hexachlorobenzene Di-n-octylphthalate Di-n-butylphthalate Pentachlorophenol 2,4-Dinitrotoluene Benzo(a)pyrene Diethylphthalate LABORATORY: Phenanthrene Dibenzofuran 4-Nitrophenol 4-Nitroaniline Fluoranthene Anthracene Carbazole Chrysene Fluorene Pyrene

DILUTION FACTOR:

STEWART ANG BASE AC177/159177 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

159177-05 SW-03-0321	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 0	90.0	0.10 0	0.10 U	0.49 JN25	0.10 U	0.28	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	₹**
159177-04 SW-12-0320	0.05 U	0.03 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.44	0.10 U	0.10 U	9.7 JN25	0.10 U	4.1	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 N	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	~
159177-03 MW-13-0320	0.05 UJ8																											-
159177-02 SW-02-0320	0.05 UJ8	0.05 0.08	0.05 UJ8	0.05 UJ8	0.05 UJ8	0.05 UJ8	0.05 UJ8	0.10 UJ8	0.26 J8	0.10 UJ8	0.10 UJ8	4.5 J8, JN25	0.10 UJ8	1.7 J8	0.50 UJ8	0.10 UJ8	0.10 UJ8	0.05 UJ8	0.05 UJ8	5.0 UJ8	1.0 UJ8	2.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	~
159177-01 MW-01-0320	0.05 UJ8	0.05 UJ8		0.05 UJ8	0.05 UJ8	0.05 UJ8	0.05 UJ8	0.10 UJ8	0.54 J8	0.10 UJ8	0.10 UJ8	4.4 38	0.10 UJ8	11 J8	0.50 UJ8	0.10 UJ8	0.10 UJ8	0.05 UJ8	0.05 UJ8	5.0 UJ8	1.0 UJ8	2.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	1.0 UJ8	ν-
2	0.05	0.05	0.03	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0,10	0.10	0,50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	0.1	0.1	1.0	1.0	
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND alpha-BHC	beta-BHC	delta-BHC	gaillila-Di lo(Ellisario) Hentachlor	Aldrin	Heptachlor Epoxide	Endosulfan i	Dieldrin	4 4'-DDF	Findrin	Endosulfan II	4 4'-DDD	Findofulfan Sulfate	4 4'-DDT	Methoxychlor	Fudrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

STEWART ANG BASE AC177/159177 ENVIROTEST LABORATORIES INC.

PESTICIDE/PCB AQUEOUS ANALYSIS (UG/L)

159177-09 JMW-108-0321	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.03	0.10	0.10 U	0.10 U	0.009 JN25	o.10 U	0.013 J25	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
159177-08 MW-10-0321	0.05 UJ8 0.05 UJ8	0.05 UJ8 0.05 LJB	0.05 UJ8	0.05 UJ8	0.05 UJ8	0.05 0.18	0.10 UJ8	0.10 UJB	0.10 UJ8	0.043 J8	0.10 UJ8	0.21 J8	0.50 UJ8	0.10 UJ8	0.10 UJ8	0.05 UJ8	0.05 UJ8	5.0 UJ8	1.0 UJ8	2.0 UJB	1.0 UJB	1.0 UJB	1.0 UJ8	1.0 UJ8	1.0 UJ8	τ-
159177-07 MW-09-0321	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 0	0.10 0	0.10 U	0.10 U	0.038 J25	0.10 U	0.12	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
159177-06 JMW-109-0321	0.05 U 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.10	0.10 U	0.10 U	0.017	0,10 U	0.009 J25	0.50 U	0.10 U	0.10 U	0.05 U	0.05 U	5.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	₹
<u> </u>	0.05 0.05 0.05	0.05	0.05	0.05	0.05	0.05		0.10	0.10	0.10	0.10	0.10	0.50	0.10	0.10	0.05	0.05	5.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	
SAMPLE NUMBER: SAMPLE LOCATION:	alpha-BHC		gariiila-bho(Liilualle) Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Uleidrin 4 4'-NNF	Endrin	Endosulfan II	4.4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	DILUTION FACTOR:

STEWART ANG BASE ANE177 ENVIROTEST LABORATORIES, INC. LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS (UG/L)

	CONTRACT	Į.																									
TSW-03-0321 159177-05 TSW030										10.1 UJ6																	
TSW-12-0320 159177-04 TMW120			449	28.1 U	1.7 U	20.6	- -	3.3 U	182000	10.1 UJ6	7.2 U	5.1 U	1060	7.	42800	3110	1 17	12.6 U	1880	1.7 R5	2 U	17300	٦ د	6.4 U	81.9 J7	10 U	
TMW-13-0320 159177-03 TMW130			5700	28.1 U	17.7	216	10	3.3 U	209000	10.1 UJ6	7.2 U	32.7	20700	7	35800	1310	0.2 UJ7	21.6	5240	19.9 R5	5 U	14800	10	19.2	59.9 J7	10 U	
TSW-02-0320 159177-02 TSW020			314	28.1 U	1.7 U	18.8	10	3.3 U	179000	10.1 UJ6	7.2 U	6.3	915	1.1 UJ10	42400	3100	0.2 U.17	13.4	1800	1.7 R5	5 U	17100	10	6.4 U	45.9 J7	10 U	
TMW-01-0320 159177-01 TMM010			3370	28.111) - rc	614 619	J C	33.0	48600	10.1 UJ6	7.2 U	14.5	5200	2.6	7220	173	0.2.11.17	12.6.1	2230	1.7 R5	5 U	29700	10	16.3	91.9 J7	10 U	
⊬`	INSTRUMENT DETECTION	LIMITS LIG/I	20.8	0.7. 0.7.), t) (n	6 i C) C	<u>ე</u> ერ) -	5.5	. 4 . 6	7.2	. .	0.10	γ - C α) (1 6	20.0		7.2	30.4	60	ω α	, L	10.0	! !
CATION: JMBER:	<u>.</u>	EMENTS	Md	2 0	2 Z	2 2	. d	20	2 2	∑ A	. ∑	. O	. a	Ž.	NO.	Z Q	<u> </u>	> ∑	Z Q	Σ	Ma	Σd	Z H	. a	2		,
SAMPLE LOCATION: SAMPLE NUMBER:	L Ü	INORGANIC ELEMENTS	a cian IV	Adminim	Antifficiny	Alseriic	Beryllinm	Oct ymain	Calcina	Chromitim	Cobalt	Copper	וייטט ארין מטז	700	Mognocium	Magnesium	Marigariese	Mercury Niekol	Dotossiim	Salanium	Silver	S in income	Thallim	Vonadi in	7inc	Cvanide	5

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

AUTOMATED COLD VAPOR AA

COLORIMETRIC MICROWAVE DIGESTION

FURNACE ICP/FLAME AA COLD VAPOR

ANALYICAL METHOD
F - FURNACE
P - ICP/FLAME AA
CV - COLD VAPOR
C - COLORIMETRIC
M - MICROWAVE DI
AV - AUTOMATED C

ANE177 ENVIROTEST LABORATORIES, INC. STEWART ANG BASE LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS (UG/L)

	CONTRACT DETECTION	LIMITS (ug/L)	200	09	9	200	ιΩ I	വ	2000	9	20	25	1000	က	2000	15	0.2	40	2000	လ (10	2000	9	20	20	10	
DMW-01-0320 159177-11 DMW010			38.3	28.1 U	3.5 J10	18.4	1 0	3.3 U	36900	10.1 U	7.2 U	8.9	33.9	1.1 U	2200	35.8	0.2 U	12.6 U	1420	2.4 J5, 10	2 (58200	10	7.2	77.7 J12	N N	ITIFIED IN THE
TJMW-108-0321 159177-09 T.IM110			943	28.1 U	1.7 U	54.4	1 C	4.5	158000	10.1 UJ6	7.2 U	12.6	1810	1.1 U	18600	71.7	0.2 UJ7	16.7	1790	1.7 R5	2 N	51200	1 0	6.4 U	49.9 J7	10 U	LIMITATIONS IDEN
TMW-10-0321 159177-08 TMM/100			40400	28.1 U	20.2	263	4.1	9.7	118000	55.4 J6	36.1	9.96	80100	35	29000	3250	0.2 UJ7	78.1	5560	1.7 R5	5 U	99400	10	8.66	324 J7	10 U	ROXIMATE DUE TO
TMW-09-0321 159177-07			80.8	28.1 U	1.7 U	115	1 U	3.3 U	182000	10.1 UJ6	7.2 U	10.5	309	1.1 U	24200	793	0.2 UJ7	19.4	1700	1.7 R5	5 U	107000	10	6.4 U	56.8 R17	10 U	QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE
TJMW-109-0321 159177-06 TIM409			68.6	28.1 U	1.7 U	17.2	1 U	3.3 U	97400	10.1 UJ6	7.2 U	5.7	302	1.1 U	12000	869	0.2 UJ7	12.6 U	1040	1.7 R5	2 N	15400	1 U	6.4 U	19.5 J7, 17	10 U	J, UJ - QL
Τ, Τ	INSTRUMENT DETECTION	LIMITS UG/L	20.8	25.3	1.5	2.3	6.0	3.0	19.3	9.1	6.5	4.6	7.2	1.0	21.0	0.8	0.2	11.3	70.0	7.5	4.5	30.4	6.0	5.8	1.4	10.0	
TION: BER:	E P A IO.	EMENTS	PM	PM	ΕM	PM	PM	PM	ΡM	PM	PM	Μď	Μd	Ħ	PM	PM	S	PM	PM	M	Md	PM	MΗ	PM	PM	ပ	ETHOD
SAMPLE LOCATION: SAMPLE NUMBER:	L U	INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	ANALYICAL METHOD

QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

- ICP/FLAME AA - COLD VAPOR - COLORIMETRIC - MICROWAVE DIGESTION / - AUTOMATED COLD VAPOR AA

ш ч S O ≥ ≶

FURNACE

STEWART ANG BASE LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS

ANE177 ENVIROTEST LABORATORIES, INC.

SAMPLE LOCATION: SAMPLE NUMBER:	ă	DSW-02-0320 159177-12	DMW-13-0320 159177-13 DMM/130	DSW-12-0320 159177-14 DSW120	DSW-03-0321 159177-15 DSM030	DJMW-109-0321 159177-16 DMW109	
EFA 10.	INSTRUMENT DETECTION						CONTRACT
INORGANIC ELEMENTS	LIMITS UG/L						(LIMITS (ug/L)
Aluminum PM	20.8	23.1 U	23.1 U	29.6	92.2	23.1 U	200
	25.3	28.1 U	28.1 U	28.1 U	28.1 U	28.1 U	9
	1.5	1.7 U	7.8	1.7 U	1.7 U	1.7 U	10
	2.3	14.4	185	15.3	12	16.7	200
<u> </u>	0.9	10	10	10	10	10	
	3.0	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	
	19.3	178000	176000	184000	173000	95400	
Ε	9.1	10.1 U	10.1 U	10.1 U	10.1 U	10.1 U	
	6.5	7.2 U	7.2 U	7.2 U	7.2 U	7.2 U	
Copper	4.6	5.4	7.8	5.1 U	9.3 J17	5.4	25
	7.2	261	8470	205	66	32.6	
7	1.0	1.1 U	1.1 U	1.1 UJ10	1.1 UJ10	1.1 U	
esium	21.0	41900	33700	42700	35300	11400	2000
	0.8	3080	635	3140	1210	482	
	0.2	0.2	0.2 U	0.2 U	0.2 U	0.2 U	
	11.3	12.6 U	12.6 U	12.6 U	12.6 U	12.6 U	
inm	70.0	1620	4670	1670	. 2390		
	7.	8.3 UJ5, 10	1.7 UJ5, 10	8.3 UJ5, 10	1.7 UJ5, 10		
	4.5	2 N	5 U	5 U	5 U		
E	30.4	17000	9180	16800	13700	13700	2000
-	6.0	10	10	10	10	10	
ε	5.8	6.4 U	. 6.4 U	6.4 U	6.4 U		20
	4.1	13.4 J12	25.6 J12	25.9 J12	169 J12, 17		50
Cyanide C	10.0	X X	X X	N N	œ Z	Y Y	01
ANALYICAL METHOD		J, UJ - QU	IANTITATION IS APP	J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE	LIMITATIONS IDEI	VTIFIED IN THE	

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

AUTOMATED COLD VAPOR AA MICROWAVE DIGESTION

COLORIMETRIC

m σ S o Σ ≷

FURNACE ICP/FLAME AA COLD VAPOR

ı

ANE177 ENVIROTEST LABORATORIES, INC. STEWART ANG BASE LABORATORY: SITE: SDG:

INORGANIC AQUEOUS ANALYSIS

CONTRACT	DETECTION LIMITS	(ng/L)	200	09	9	200	9	5	2000	10	50	25	1000	င	2000	15	0.2	40	2000	5	10	2000	10	20	20	10	
DJM-108-0321 159177-19 DJM110			23.1 U	28.1 U	1.7 U	47.3	J C	3.3 U	144000	10.1 U	7.2 U	5.1	41.8	1.1 U	18400	31.2	0.2 U	12.6 U	1620	1.7 UJS, 10	5 U	55800	J C	6.4 U	38.5 J12	X X	
DMW-10-0321 159177-18 DMW100			46.7	28.1 U	1.7 U	29.6	10	3.3 U	00066	10.1 U	7.2 U	8.4	32.3	1.1 U	14800	32.7	0.2 U	12.6 U	202	1.7 UJ5, 10	5 U	97900	10	6.4 U	163 J12	N N	
DMW-09-0321 159177-17 DMW090 ENT	z		31.5	28.1 U	1.7 U	115	10	3.3 U	175000	10.1 U	7.2 U	5.8	37.5	1.1 U	24600	738	0.2 U	17.5	1760	1.7 UJ5, 10	5 U	113000	1 U	6.4 U	107 R17	N N	
DMV 159 DN INSTRUMENT	DETECTION	NG/L	20.8	25.3	1.5	2.3	6.0	3.0	19.3	9.1	6.5	4.6	7.2	1.0	21.0	0.8	0.2	11.3	70.0	1.5	4.5	30.4	6.0	5.8	1.4	10.0	
CATION: JMBER: EPA ID:	EMENTS		PM	PM	FM	PM	PM	PM	PM	PM	PM	PM	PM	ΣH	PM	PM	20	PM	Μd	FM	Md	PM	FM	PM	PM	ပ	
SAMPLE LOCATION: SAMPLE NUMBER: EPA ID:	INORGANIC ELEMENTS		Aluminum	Antimony	Arsenic	Barinm	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	

J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
R - VALUE IS REJECTED.
U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT

MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA

- COLD VAPOR - COLORIMETRIC

шчооъ≸

- FURNACE - ICP/FLAME AA

ANALYICAL METHOD

APPENDIX L DATA VALIDATION REPORTS

DATA VALIDATION REPORT

SDG No.: AC139/154139

Site: Stewart ANG, Newburgh NY

DATE: January 29, 1996

TABLE OF CONTENTS

<u>SECTION</u> Page	<u>şe</u>
ORGANIC DATA	. 2
INORGANIC DATA	16
VALIDATION FOOTNOTES2	23
Prepared by: GC/MS Section prepared by:	
Lam for Elissa MaDonagh Elissa McDonagh	
Inorganic and Pesticide/PCB Section prepared by:	

Lorie MacKinnon

Loui 4. Makinson

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No. 154139 SDG No. AC139 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG AC139/154139 contains the following samples for analysis:

Volatiles:

10 soil/ SB-02-02, SB-02-06, SB-02-10.2, SB-04-02, SB-04-21,

SB-04-06, SB-03-06, SB-03-56, SB-03-22, SB-03-1.3

2/aqueous/RB-SB-100595, TB-03

Semi-volatiles:

10 soil/ SB-02-02, SB-02-06, SB-02-10.2, SB-04-02, SB-04-21,

SB-04-06, SB-03-06, SB-03-56, SB-03-22, SB-03-1.3

1/aqueous/RB-SB-100595

Pesticides/PCBs:

10 soil/ SB-02-02, SB-02-06, SB-02-10.2, SB-04-02, SB-04-21,

SB-04-06, SB-03-06, SB-03-56, SB-03-22, SB-03-1.3

1/aqueous/RB-SB-100595

Associated QC:

SB-03-06, SB-03-56/Field duplicates

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

		SAM by Elissia McDonagh Date: 01/29/96
Reviewer's s	ignature: Pest/PCB	by Lai 4. Mackinson Date: 01/29/96
Verified By:	Lorie MacKinnon	Date: 01/29/96

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: All samples were extracted and analyzed within the required holding times.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

- Value < CRQL; report CRQL followed by "U" (U5).
- Value > CRQL and < action level; report value followed by "U" (U6).
- Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

Compound	Maximum	Action Level
Methylene Chloride	2 ug/kg	20 ug/kg
Acetone	15 ug/kg	150 ug/kg
di-n-butyl phthalate	130 ug/kg	1300 ug/kg
Heptachlor	0.22 ug/kg	1.1 ug/kg

The action level values were compared to the sample values and the following recommendations are recommended: Methylene chloride in samples SB-04-06, SB-03-06, SB-03-56, SB-03-22, SB-03-22RE, SB-03-1.3, SB-02-10.2, SB-02-10.2RE, SB-04-02, SB-04-21 and SB-04-21RE, Acetone in samples SB-04-06, SB-03-56, SB-02-02, SB-02-06 and SB-04-02, di-n-butyl phthalate in samples SB-04-21, SB-03-22 and SB-03-1.3 and Heptachlor in samples SB-02-10.2, SB-04-02, SB-04-21, SB-04-06, SB-03-06, SB-03-56, SB-03-22 and SB-03-1.3 are reported as the CRQL followed by a "U5". Acetone in samples SB-03-06, SB-03-22, SB-03-22RE, SB-03-1.3, SB-02-10.2, SB-02-10.2RE, SB-04-21 and SB-04-21RE should be reported as the value followed by "U6", (i.e., the CRQL has been raised and the value is considered to be non-detect).

It should be noted that Pesticide/PCB fraction method blank PBLK03, associated with all SDG aqueous samples, had a positive result for Heptachlor (0.006 ug/L). Qualification was not required as the aqueous samples were field rinse blanks and are not blank qualified.

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample):

Rinse blank RB-SB-100595

Associated samples: All soil samples in SDG

Compound	Maximum	Action Level
Methylene Chloride Acetone bis(2-ethylhexyl)- phthalate	1 ug/L 5 ug/L 3 ug/L	10 ug/L 50 ug/L 30 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: Bis(2-ethylhexyl)phthalate in samples SB-02-02, SB-04-02, SB-04-21, SB-04-06, SB-03-06, SB-03-56 and SB-03-1.3 should be reported as the CRQL followed by a "U5".

C. Trip blank contamination:

Trip Blank TB-03

Associated samples: All

All soils in the SDG

Compound	Maximum	Action Level
Methylene Chloride	1 ug/L	10 ug/L
Acetone	3 ug/L	30 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: All compound results were previously blank qualified due to laboratory or field blanks.

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor:

ABN instrument "5972-1", initial calibration 10/04/95:

	IC	CC
COMPOUND	(10/4/95)	(10/18/95)

4-Nitrophenol

Associated samples: All listed RBSB100595 SB-03-1.3

+ - RF <0.05; Estimate positive results (J2) and reject non-detects (R2) in the associated samples.

DATA ASSESSMENT

5. CALIBRATION

A. PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

VOA instrument "MSD", initial calibration 09/18/95:

COMPOUND	IC (9/18/95)	CC (10/11/95)	CC (10/12/95)	CC (10/13/95)
Vinyl Chloride Chloroethane Acetone		X X		X
Carbon disulfide		X	X	X
Associated samples:	All listed	SB-02-02 SB-02-06 SB-02-10.2	SB-04-02 SB-04-21 SB-04-06 SB-03-06 SB-03-56 SB-03-22 TB-03, SB-0 RBSB100595 SB-02-10.2R	

ABN instrument "5972-1", initial calibration 10/04/95:

COMPOUND	IC (10/4/95)	CC (10/18/95)	CC (10/19/95
Hexachlorocyclopentadies 3-Nitroaniline 2,4-Dinitrophenol 4-Nitrophenol Pentachlorophenol	ne X X X	Х	X X X
Associated samples:	All listed	RBSB100595 SB-03-1.3	SB-02-02, SB-02-06 SB-02-10.2, SB-04-02 SB-04-21, SB-04-06 SB-03-06, SB-03-56 SB-03-22

 $[\]rm X$ - %RSD > 30% or %D > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery: All surrogate recoveries were within validation guidelines.

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance:

The VOA internal standard 1,4-Difluorobenzene was under-recovered in the soil sample SB-03-22RE. The VOA internal standard Chlorobenzene-d5 was under-recovered in the soil samples SB-02-10.2, SB-04-21, SB-03-22, SB-02-10.2RE, SB-04-21RE and SB-03-22RE. It is recommended to estimate the positive results (J15) and non-detects (UJ15) for all compounds quantitated from the internal standards in the associated samples.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification:

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </=25%. The following analytes in the samples shown were qualified because of compound identification:

It should be noted that Heptachlor had a %D >25% in most samples. However, as the compound was blank qualified "U" in all samples, there is no estimation.

SB-02-02 - 4,4'-DDD (40.0%, J25)

SB-02-06 - 4,4'-DDE (82.6%, JN25), 4,4'-DDD (118.2%, R25) and 4,4'-DDT (41.7%, J25)

SB-02-10.2- 4,4'-DDD (133.3%, R25)

SB-04-02 - 4,4'-DDD (62.3%, JN25) and Dieldrin (42.2%, J25). The higher results for 4,4'-DDE (5.1 ug/kg) and Dieldrin (9.1 ug/kg) quantitated from column DB-17 were more acceptable as the two compounds were resolved on the second column and integration performed for the DB-5 column was poorly done. The compounds were not fully resolved and a perpendicular should have been dropped to the baseline. The results were substituted by the validator.

SB-03-56- 4,4'-DDE (78.0%, JN25)

SB-03-1.3- 4,4'-DDD (120.0%, R25)

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

It should be noted that the ABN fraction aqueous matrix spike blank compounds 4-Nitrophenol and Pentachlorophenol were slightly over-recovered. The ABN fraction soil matrix spike blank compound Pentachlorophenol was slightly over-recovered. No action is recommended.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation). The m/z ion 91 was used to quantitate xylenes (the SOP requests the 106 ion to be used for quantitation).

The Tentatively Identified Compound forms (1B) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

Volatiles:

SB-02-10.2, SB-01-10.2RE

Use the non-detected results for Vinyl chloride and Chloroethane from the re-analysis. $\dot{}$

Use all other positive and non-detected results from the original analysis.

SB-04-21, SB-04-21RE

Use positive and non-detected results from the original analysis.

SB-03-22, SB-03-22

Use positive and non-detected results from the original analysis.

DATA ASSESSMENT

Tentatively Identified Compounds

Compound	RBSB100595 ug/L	$\frac{SB-02-02}{ug/kg}$	$\frac{SB-02-06}{ug/kg}$	$\frac{SB-03-22}{ug/kg}$
VOA Unknown ABN Unknown unknown amide unknown hydrocarbon unknown C15H26O isomer unknown phthalate	X(7)	X(86)	XX(162) X(78) X(94) X(82)	X(96)
<u>Compound</u>	SB-03-22RE ug/kg	<u>SB-04-06</u> ug/kg	$\frac{SB-04-21}{ug/kg}$	TB-03 ug/kg
VOA Unknown ABN Unknown unknown amide unknown hydrocarbon unknown C15H26O isomer unknown phthalate	X(58)	X(320)	XX(156)	XX(14)

- X Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

Metals Appendices, SOP HW-2 SDG No: ANE139/154139

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No. 154139 SDG No. ANE139 Laboratory Envirotest Lab. Site Stewart ANG

Contractor Aneptek Reviewer Lorie MacKinnon

Matrix: 10 Soil/1 ag field QC

Data Assessment:

The SDG ANE139/154139 contains the following samples for analysis:

Metals/CN: 10 soil/ SB-02-02, SB-02-06, SB-02-10.2, SB-04-02, SB-04-21,

SB-04-06, SB-03-06, SB-03-56, SB-03-22, SB-03-1.3 (SB0213*)

1/aqueous/RB-SB-100595

 \ast Validator changed laboratory ID SB0213 to SB0313 in order to correctly reflect sampling lD.

TOC: 10 soil/ SB-02-02, SB-02-06, SB-02-10.2, SB-04-02, SB-04-21, SB-04-06, SB-03-06, SB-03-56, SB-03-22, SB-03-1.3

Associated QC: SB-03-06, SB-03-56/Field duplicates

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable. Data $\,$

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- st . Data Completeness
- * Holding times
 - . Calibration verification results

Blank analysis

Interference check standard results

Matrix spike results

- Duplicate analysis results
- * Field duplicate analysis
- * . Laboratory control sample results
 - Furnace AA results
 - . ICP serial dilution results
 - . Detection limit results
- * Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Calibration Verification

The 2xCRDL standard for Chromium was under-recovered at 64.6%. Results near the CRDL may be biased low. Estimate positive and non-detected (J2, UJ2) Chromium results which are less than 4xCRDL of 8 mg/kg or 40 ug/L. Based on this action level, Chromium results for samples RB-SB-100595 and SB0406 are estimated.

The CRA standard for Lead was over-recovered at 122%. Results near the CRDL may be biased high. Estimate (J2) positive Lead results which are less than 2xCRDL of 1.2 mg/kg or 6 ug/L. Based on this action level, the Lead result for SB0210 would be estimated. However, as the sample lead result was rejected due to matrix spike recovery, there is no action.

It should be noted that the low standard of 5~ug/L was used for the Lead analysis, instead of the CRDL of 3~ug/L. As all lead results were rejected due to matrix spike recovery, there is no action.

Matrix Spike Recoveries

Antimony (47.5%), Lead (324.9%) and Thallium (72.4%) were recovered outside of the control limits in the matrix spike performed on sample SB-04-06. Due to a possible low bias, all Antimony and Thallium results are estimated (J5, UJ5). As the Lead recovery was greater than 200%, all detected Lead results are rejected (R5).

It should be noted that the validator did not apply the matrix spike actions to the aqueous sample.

Laboratory Duplicates

The Lead duplicate precision (147%) was not within control limits for the laboratory duplicate performed on sample SB-04-06. All Lead results would be estimated (J6), however, as they were previously rejected due to matrix spike recovery, there is no action taken.

Blanks

Lead was detected in the laboratory calibration blank CCB4 at the negative CRDL. Therefore, results less than 10XCRDL are rejected (R3). The five samples on either side of CCB4 were reviewed and the following actions are taken: Lead is rejected for sample RB-SB-100595.

The field blank contained levels of several metals above the CRDL. The following table lists the maximum concentration of each metal found in the blanks along with the resultant action level.

Field Blank RB-SB-100595 associated with all SDG samples

Element	Maximum Conc./Units	Action Level
Calcium	30500 ug/L, 6100 mg/kg	30500 mg/kg
Iron	279 ug/L, 55.8 mg/kg	279 mg/kg
Sodium	30100 ug/L, 6020 mg/kg	30100 mg/kg
Zinc	36.3 ug/L, 7.26 mg/kg	36.3 mg/kg

Value < Action Level; the value is rejected R3. Value > IDL and > Action Level; the value is reported unqualified.

The action level values were compared to the sample value before application of sample dilution factors. Based on the action levels found, the following actions are taken: Calcium results for samples SB-02-02, SB-02-06, SB-02-06, SB-02-06, SB-03-06, SB-03-56 and SB-03-1.3 (SB0213) are rejected (R3). Sodium results for samples SB-02-02, SB-02-06, SE-0210, SB-04-02, SB-04-21, SB-04-06, SB-03-06, SB-03-56, SB-03-22 and SB-03-1.3 (SB0213) are rejected (R3).

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate injections agreed within +/-20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exception:

<u>Analyte</u>	Sample ID	Recovery	Action
Lead	RBSB100595	115.9%	No action, result U
Arsenic	SB0406	116.0%	No action, result U
Thallium Thallium	SB0206 SB0210	83.7% 122.0%	J10, UJ10 No action, result U

ICP Serial Dilution

A serial dilution was performed on sample SB-04-06. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Barium (11.7%), Copper (11.5%) and Vanadium (23.6%). As 10XIDL was less than the CRDL in all cases, all Barium, Copper and Vanadium results greater than the CRDL are estimated (J12).

It should be noted that the validator did not apply the matrix spike actions to the aqueous sample.

Detection Limit Results

It should be noted that ICP sample SB-04-21 was diluted 2X as Iron exceeded the calibration range. The diluted results for all analytes were reported, thus elevating the instrument detection limit (IDL) for all ICP analytes for sample SB-04-21.

It should be noted that the soil Cyanide IDL of 1.0 mg/kg is greater than the contract required detection limit of 0.50 mg/kg. No action is recommended.

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE139/154139 Date: 01/23/96 Laboratory Envirotest Lab.

Reviewer's Initials: LAM Number of samples 10 soil/1 ag

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	19	0	0	0
Furnace	0	0	0	0	0	10	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	0	0	0	198	19
Furnace	0 .	0	0	0	0	44	10
Mercury	0	0	0	0	0	11	0
Cyanide	0	0	0	0	0	11	0

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	2	0	0	0	10	0
Furnace	0	0	0	0	0	11	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

							7
	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Estimation
ICP	0	0	0	16	0	198	28
Furnace	0	0	0	0	0	44	11
Mercury	0	0	0	0	0	11	0
Cyanide	0	0	0	0	0	11	0

CLP DATA ASSESSMENT

Appendix A.6: CLP Data Assessme	ent Checkli	st:		
INORGANIC REGIO	NAL DATA AS	SSESSMENT	REGION 2	
SDG NO. ANE139	SITE_	STEWART ANG		
LABORATORY ENVIROTEST LABORAT	ORIES, INC			<u> </u>
NO. OF SAMPLES/MATRIX 10 SOIL	/ 1 AQUEOUS			
REVIEWER'S NAME LORIE A. MACK	INNON			
DAT	TA ASSESSME	NT SUMMARY		
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>
HOLDING TIMES	1	1	1	1
CALIBRATIONS	1	1	1	1
BLANKS	2_	1	1	1
INTERFERENCE	1			
DUPLICATE ANALYSIS	1_	1	1_	1
MATRIX SPIKE	1_	2	1	1
MSA, ANALYTICAL SPIKE ANALYSIS	S	1		
SERIAL DILUTION	1_			
SAMPLE VERIFICATION	1	1	1_	1
OTHER QC	1	1	1	1

1 - Data has no problems/or qualified due to minor problems.

1

- 2 Data qualified due to major problems.
- 3 Data unacceptable.

OVERALL ASSESSMENT

4 - Problems, but do not affect data.

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- U5 Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.

- J15, UJ15 One or more of the Internal standard (IS) areas were not within the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- J22 The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual

column analysis %D is between 50 - 90%; compound result is qualified as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

- R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.
- R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.
- Quality of Spectra submitted poor for compound in question: reject compound result.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5X the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- J11 The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated

or rejected based on %D.

J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.

J14, UJ14 Matrix spike not performed for analysis. Estimate results (J14, UJ14) based on lack of accuracy data.

J15 Laboratory duplicate not performed for analysis. Estimate positive results (J18) greater than the CRDL based on lack of precision data.

DATA VALIDATION REPORT

SDG No.: AC009/154009

Site: Stewart ANG, Newburgh NY

DATE: January 29, 1996

TABLE OF CONTENTS

SECTION	<u>Page</u>
	2
INORGANIC DATA	17
VALIDATION FOOTNOTES	24
Prepared by:	
COME Coation propared	ov.

GC/MS Section prepared by:

Am for Elisse McDonagh

Elissa McDonagh

Inorganic and Pesticide/PCB Section prepared by:

Loui Makinson Lorie MacKinnon

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No. 154009 SDG No. AC009 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG AC009/154009 contains the following samples for analysis:

Volatiles:

11 soil/ SB-01-02, SB-01-18.5, SB-01-32.5, SS-01, SS-15, SS-

02, SS-03, SS-04, SS-05, SS-06, SS-07

4/aqueous/RW-SS-100395, FB-TW-100395, TRIP BLK01, TB-02

Semi-volatiles:

11 soil/ SB-01-02, SB-01-18.5, SB-01-32.5, SS-01, SS-15, SS-

02, SS-03, SS-04, SS-05, SS-06, SS-07 2/aqueous/RW-SS-100395, FB-TW-100395

Pesticides/PCBs:

11 soil/ SB-01-02, SB-01-18.5, SB-01-32.5, SS-01, SS-15, SS-

02, SS-03, SS-04, SS-05, SS-06, SS-07 2/aqueous/RW-SS-100395, FB-TW-100395

Associated QC:

SS-1, SS-15 Field Duplicates

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Reviewer's si	gnature: GC/MS by I	Lisa McDonagh	Date: <u>01/29/96</u>
Reviewer's si	gnature: Pest/PCB l	by Lorie MacKinnon	Date: 01/29/96
Verified By:	Lorie MacKinnon	Date:_	01/29/96

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: All samples were extracted and analyzed within the required holding times.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

- Value < CRQL; report CRQL followed by "U" (U5).
- Value > CRQL and < action level; report value followed by "U" (U6).
- Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

Compound	<u>Maximum</u>	Action Level
Acetone	12 ug/kg	120 ug/kg
Heptachlor	0.26 ug/kg	1.3 ug/kg

The action level values were compared to the sample values and the following recommendations are recommended: Acetone in samples SB-01-02, SB-01-32.5, SS-01, SS-03, SS-05, SS-06 and SS-15 and Heptachlor in samples SS-15, SB-01-18.5, SB-01-32.5, SS-01, SS-02, SS-03, SS-04, SS-06 and SS-07 should be reported as the CRQL followed by a "U5". Acetone in samples SB-01-18.5, SS-02, SS-04 and SS-07 should be reported as the value followed by "U6", (i.e., the CRQL has been raised and the value is considered to be non-detect).

B. Field or rimse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample):

It should be noted that Field Blank FB-TW-100395 which is a field blank of source water used for drilling, is not used to qualify the samples based on region II validation protocol.

Rinse blank RW-SS-100395

Associated samples: SS-01, SS-02, SS-03, SS-04, SS-05, SS-06, SS-07, SS-15

Compound	<u>Maximum</u>	Action Level
Acetone bis(2-ethylhexyl)- phthalate	5 ug/L 1 ug/L	50 ug/L 10 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: Bis(2-ethylhexyl)phthalate in samples SS-01, SS-02, SS-04 and SS-06 should be reported as the CRQL followed by a "U5".

Rinse blank RB-SB-100595

Associated samples:

SB-01-02, SB-01-18.5, SB-01-32.5

Compound	Maximum	Action Level
Methylene Chloride Acetone bis(2-ethylhexyl)- phthalate	1 ug/L 5 ug/L 3 ug/L	10 ug/L 50 ug/L 30 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: Methylene chloride in sample SB-01-18.5 and Bis(2-ethylhexyl)phthalate in sample SB-01-32.5 should be reported as the CRQL followed by a "U5".

C. Trip blank contamination:

Trip Blank Trip blk01

Associated samples:

SB-01-02, SB-01-18.5, SB-01-32.5

Compound	Maximum	Action Level
Methylene Chloride	1 ug/L	10 ug/L
Acetone	7 ug/L	70 ug/L

Trip Blank TB-02

Associated samples:

SS-01, SS-02, SS-03, SS-04, SS-05, SS-06, SS-07, SS-15

Compound	Maximum	Action Level
Acetone	1 ug/L	10 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: All compound results were previously blank qualified due to laboratory or field blanks.

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor: All response factors were greater than or equal to 0.05 units.

DATA ASSESSMENT

5. CALIBRATION

A. PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D and %RPD:

VOA instrument "MSD", initial calibration 09/18/95:

COMPOUND	IC(9/18/95)	CC(10/5/95)	CC(10/6/95)	CC(10/10/95)
Carbon disulfide		Х	X	X
Associated samples:	All listed	FBTW100395 SB-01-02 TRIP BLK01 RWSS100395 TB-02	SS-02 SS-03 SS-04 SS-05 SS-06 SS-07 SS-15	SB-01-18.5 SB-01-32.5 SS-01

ABN instrument "5972-1", initial calibration 10/04/95:

COMPOUND	IC(10/4/95)	CC(10/12/95)
Hexachlorocyclopentadie	ne	x
3-Nitroaniline	X	X
2,4-Dinitrophenol	X	
4-Nitrophenol		X
4-Nitroaniline		X
Pentachlorophenol	X	
Benzo(g,h,i)perylene		X

COMPOUND

IC(10/4/95) CC(10/12/95)

Associated samples:

All listed FBTW100395, SB-01-02,

SB-01-18.5, SB-01-32.5, RWSS100395, SS-01, SS-02, SS-03, SS-04, SS-05, SS-06, SS-07, SS-15

 $\rm X$ - $\rm \$RSD$ > 30% or $\rm \$D$ > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

It should be noted that Pesticide/PCB initial and continuing standard forms 6 and 7 were not submitted in the data package. The laboratory was notified on 1/22/96. The forms were received by the validator on 01/25/96.

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery:

Pesticide/PCB surrogates TCX and DCB were under-recovered on both columns for sample SS-15 (TCX 29% and 48%, DCB 59% and 58%). Therefore, all results are estimated (J8, UJ8).

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance: All internal standard criteria were met.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification:

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </=25%. The following analytes in the samples shown were qualified because of compound identification:

It should be noted that Heptachlor had a D > 25% in all cases. However, the compound was previously blank qualified out in all samples.

- SB-01-02 The higher result for 4,4'-DDT (2.3 ug/kg) quantitated from column DB-17 was more acceptable as the manual integration performed for the result from column DB-5 was poorly done. A perpendicular should have been dropped to the baseline and was not. The result was substituted by the validator and estimated (J25)as the %D on the two columns was 27.8%.
- SS-01 The higher result for Dieldrin (0.49 ug/kg) quantitated from column DB-17 was more acceptable as the integration performed for the result from column DB-5 was poorly done. A perpendicular should have been dropped to the baseline and was not. The result was substituted by the validator and estimated (J25) as the %D on the two columns was 48.5%.
 4,4'-DDE (55.2%, JN25) and 4,4'-DDT (26.0%, J25)
- SS-15 4,4'-DDE (47.4%, J25) and 4,4'-DDT (96.9%, R25)
- SS-02 Dieldrin (56.0%, JN25) and 4,4'-DDT (28.6%, J25)
- SS-03 Dieldrin (185.0%, R25) and 4,4'-DDD (64.3%, JN25)
- SS-04 4.4'-DDD (29.0%, J25) The Dieldrin result is not estimated (%D 26.6%) as the diluted result SS-04DL, which had a %D <25% was used.

Page 13

Attachment 1, SOP No. HW-6 SDG No.: AC009/154009

SS-05 - 4,4'-DDT (205.1%, R25)

SS-06 - Dieldrin (29.8%, J25)

SS-07 - Dieldrin (92.3%, R25), 4,4'-DDE (31.8%, J25) and 4,4'-DDT (42.9%,

J25)

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

The % RPD for pesticide/PCB fraction compound Heptachlor was 38% in the MS/MSD performed on sample SS-07. Due to blank contamination action, Heptachlor was considered non-detected in sample SS-07. Therefore, qualification is not necessary.

It should be noted that the ABN fraction aqueous matrix spike blank compounds 4-Nitrophenol and Pentachlorophenol were slightly over-recovered. No action is recommended.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation). The m/z ion 91 was used to quantitate xylenes (the SOP requests the 106 ion to be used for quantitation).

The Tentatively Identified Compound forms (1B) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

It should be noted that transcription errors were found in the pesticide/PCB package: Upon review of raw data for sample SB-06-26.5, the validator found that the results listed for 4,4'-DDD and 4,4'-DDT from the DB-17 column were incorrect. The validator edited both the Form I and Form 10.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

Pesticides:

SB-06-26.5, SB-06-26.5DL

Use 4,4'-DDD and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

SB-07-02, SB-07-02DL

Use 4,4'-DDE and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

SB-17-33, SB-17-33DL

Use 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

<u>Tentatively Identified Compounds</u>

Compound	$\frac{\text{TB-04}}{\text{ug/L}}$	RBSB1012 ug/kg	$\frac{\text{TB-05}}{\text{ug/L}}$	<u>SB-06-02</u> ug/kg
VOA Unknown ABN Unknown unknown alkane unk. diethyl benzene unk. methyl benzene Tetramethylbenzene isomer ethyldimethylbenzene isomer VOA C10H12 isomer ABN C10H12 isomer unk. C10H14 VOA C11H16 isomer	XX(62)	XX(28) X(5)	XX(14)	XX(296) XX(330)
ABN C11H16 isomer C10H8 isomer unk. C14H10CL4		X(7)		
unk. decanoic acid VOA Methylnaphthalene isomer		XX(39)		
ABN Methylnaphthalene isomer VOA Dimethylnaphthalene isome ABN Dimethylnaphthalene isomer Trimethylnaphthalene isomer Ethylnaphthalene isomer Dimethyl butanol isomer DDE isomer DDT isomer 2-fluoro-1-propene diethylmethyl benzene biphenyl		XX(23)		

Compound	SB-17-33	SB-07-02	<u>SB-07-16</u>	SB-06-26.5
	ug/kg	ug/kg	ug/kg	ug/kg
VOA Unknown ABN Unknown unknown alkane unk. diethyl benzene unk. methyl benzene Tetramethylbenzene isomer ethyldimethylbenzene isomer VOA C10H12 isomer ABN C10H12 isomer unk. C10H14 VOA C11H16 isomer	X(170)	XX(338) XX(210)	X(21) XX(300) X(7)	XX(2620) XX(640) XX(276) X(118) X(240) X(370) X(220) X(500) X(240) XX(860) X(220)

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No. 154009 SDG No. ANE 009 Laboratory Envirotest Lab. Site Stewart ANG

Contractor Aneptek Reviewer Lorie MacKinnon

Matrix: 11 Soil/2 ag field QC

Data Assessment:

The SDG ANE009/154009 contains the following samples for analysis:

Metals/CN: 11 soil/ SB-01-02, SB-01-18.5, SB-01-32.5, SS-01, SS-15, SS-02, SS-

03, SS-04, SS-05, SS-06, SS-07

2/aqueous/RW-SS-100395, FB-TW-100395

TOC: 11 soil/ SB-01-02, SB-01-18.5, SB-01-32.5, SS-01, SS-15, SS-02, SS-

03, SS-04, SS-05, SS-06, SS-07

Associated QC: SS-1, SS-15 Field Duplicates

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.
- Usable The results that do not carry "J" or "R" are fully usable. Data $\ensuremath{\mathsf{Data}}$

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- Data Completeness
- Holding times
 - · Calibration verification results
 - Laboratory blanks

- Interference check standard results
 - Matrix spike results
- * Duplicate analysis results
- * Field duplicate analysis
- * Laboratory control sample results
 - Furnace AA results
- * ICP serial dilution results
 - Detection limit results
- * Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Calibration Verification

The 2xCRDL standard for Antimony was under-recovered at 78.5%. Results near the CRDL may be biased low. Estimate positive and non-detected (J2, UJ2) Antimony results which are less than 4xCRDL of 48 mg/kg. Based on this action level, all soil and aqueous Antimony results in the data group are estimated.

The 2xCRDL standard for Chromium was under-recovered at 74.8%. Results near the CRDL may be biased low. Estimate positive and non-detected (J2, UJ2) Chromium results which are less than 4xCRDL of 8 mg/kg. Based on this action level, all aqueous Chromium results in the data group are estimated.

The CRA standard for Selenium over-recovered at 127.2%. Results near the CRDL may be biased high. Estimate (J2) positive Selenium results which are less than 2xCRDL of 2 mg/kg. As all Selenium results are non-detected, there is no action.

It should be noted that the low standard of 5 ug/L was used for the Lead calibration, instead of the CRDL level of 3 ug/L. As the Lead CRA analysis standard was within control limits no action is taken.

Matrix Spike Recoveries

Antimony (39.4%), Selenium (64.0%) and Thallium (61.9%) were underrecovered in the matrix spike performed on sample SS-07. Due to a possible low bias, all Antimony, Selenium and Thallium results are estimated (J5, UJ5).

It should be noted that soil matrix spike recoveries weren't used to qualify the aqueous field QC results.

Blanks

The field blanks contained levels of several metals above the CRDL. The following table lists the maximum concentration of each metal found in the blanks

along with the resultant action level. The following field blanks were associated with the samples:

Field Blank RB-SB-100595 associated with all SB samples

<u>Element</u>	Maximum Conc./Units	Action Level
Calcium	30500 ug/L, 6100 mg/kg	30500 mg/kg
Iron	279 ug/L, 55.8 mg/kg	279 mg/kg
Manganese	16.7 ug/L, 3.3 mg/kg	16.7 mg/kg
Sodium	30100 ug/L, 6020 mg/kg	30100 mg/kg
Zinc	36.3 ug/L, 7.3 mg/kg	36.3 mg/kg

Field Blank RW-SS-100395 associated with all SS samples

<u>Element</u>	Maximum Conc./Units	Action Level
Calcium Sodium	02100 48/23, 0010	32700 mg/kg 31000 mg/kg

Value < Action Level; the value is rejected R3.
Value > IDL and > Action Level; the value is reported unqualified.

The action level values were compared to the sample value before application of sample dilution factors. Based on the action levels found, the following actions are taken: Calcium and Sodium results for samples SS-01, SS-15, SS-02, SS-03, SS-04, SS-05, SS-06 and SS-07 are rejected (R3). Calcium and Sodium results for samples SB0102, SB1185 and SB13253 are rejected (R3).

It should be noted that Field Blank FB-TW-100395 which is a field blank of source water used for drilling, is not used to qualify the samples based on region II validation protocol.

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate injections agreed within +/- 20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exception:

<u>Analyte</u>	Sample ID	Recovery	<u>Action</u>
Lead Lead	FBTW10 RWSS10	121.0% 115.6%	No action, result U J10
Selenium	SB0102	79.5%	J10, UJ10

<u>Analyte</u>	Sample ID	Recovery	Action
Selenium	SB1185	76.2%	J10, UJ10
Selenium	SB1325	77.6%	J10, UJ10
Selenium	RWSS10	83.2%	J10, UJ10
Selenium	SS-02	77.5%	J10, UJ10
Selenium	SS-03	79.6%	J10, UJ10
Selenium	SS-05	82.0%	J10, UJ10
Selenium	SS-06	78.4%	J10, UJ10
Selenium	SS-15	80.2%	J10, UJ10
Thallium	SB0102	84.4%	J10, UJ10
Thallium	SB1185	42.6%	J10, UJ10
Thallium	SB1325	59.8%	J10, UJ10
Thallium	SS-02	80.6%	J10, UJ10
Thallium	SS-05	71.2%	J10, UJ10
Thallium	SS-07	60.9%	J10, UJ10
Thallium	SS-15	63.9%	J10, UJ10

Detection Limit Results

It should be noted that the Cyanide instrument detection limit (IDL) of 1.0 mg/kg is greater than the contract required detection limit of 0.5 mg/kg. No action is recommended.

It should be noted that several ICP fraction samples were diluted at 2x as Iron (an interferent) was high. The diluted results were reported for all analytes, elevating the ICP detection limits.

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE009/154009 Date: 01/22/96 Laboratory Envirotest Lab.

Reviewer's Initials: ______ Number of samples _11 soil/2 aq

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	22	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0 .	0	0	0	0	234	22
Furnace	0	0	0	0	0	52	0
Mercury	0	0	0	0	0	13	0
Cyanide	0	0	0	0	0	13	0

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	15	0	0	0	11	0
Furnace	0	0	0	0	0	38	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Estimation
ICP	0	0	0	0	0	234	26
Furnace	0	0	0	0	0	52	38
Mercury	0	0	0	0	0	13	0
Cyanide	0	0	0	0	0	13	0

CLP DATA ASSESSMENT

INORGANIC REGI	ONAL DATA A	SSESSMENT	REGION 2					
SDG NO. ANEOOO	SITE_	STEWART AND						
LABORATORY ENVIROTEST LABORA	TORIES, INC							
NO. OF SAMPLES/MATRIX 11 SOI	L/ 2 AQUEOUS	3						
REVIEWER'S NAME LORIE A. MACKINNON								
DATA ASSESSMENT SUMMARY								
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	CN				
HOLDING TIMES	1	1_	1	1				
CALIBRATIONS	1_	1	1	1_				
BLANKS	2	1	1	1				
INTERFERENCE	1							
DUPLICATE ANALYSIS	1	1_	1	1				
MATRIX SPIKE	1	1	1_	1				
MSA, ANALYTICAL SPIKE ANALYSI	S	1_						
SERIAL DILUTION	1							
SAMPLE VERIFICATION	1	1_	1	1				
OTHER QC	1	1	1	1				
OVERALL ASSESSMENT	1	1	1_	1_				

- Data has no problems/or qualified due to minor problems. Data qualified due to major problems.

- Data unacceptable.
 Problems, but do not affect data.

SDG No: 154009 Page 24

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- U5 Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

SDG No: 154009 Page 25

One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.

- J15, UJ15 One or more of the Internal standard (IS) areas were not within the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual

SDG No: 154009 Page 26

column analysis %D is between 50 - 90%; compound result is qualified as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

- R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.
- R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.
- R28 Quality of Spectra submitted poor for compound in question: reject compound result.

SDG No: 154009 Page 27

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5X the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- J11 The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated

SDG No: 154009 Page 28

or rejected based on %D.

J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.

- J14, UJ14 Matrix spike not performed for analysis. Estimate results (J14, UJ14) based on lack of accuracy data.
- J15 Laboratory duplicate not performed for analysis. Estimate positive results (J18) greater than the CRDL based on lack of precision data.

DATA VALIDATION REPORT

SDG No.: AC204/154204

Site: Stewart ANG, Newburgh NY

DATE: February 3, 1996

TABLE OF CONTENTS

SECTION	<u>Page</u>
ORGANIC DATA	2
INORGANIC DATA	13
VALIDATION FOOTNOTES	18
Prepared by:	
GC/MS Section prepared by:	
In For Elissa McDonagh	
Elissa McDonagh	
Inorganic and Pesticide/PCB Section prepared by:	

Lorie MacKinnon

Low Makinson

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No. 154204 SDG No. AC204 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG AC204/154204 contains the following samples for analysis:

Volatiles:

1/aqueous/RB-SB-101095

Semi-volatiles:

1/aqueous/RB-SB-101095

Pesticides/PCBs:

1/aqueous/RB-SB-101095

Associated QC:

None

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data Reviewer:	GC/MS by Elissa McDonagh	Date: 02/04/96
Data Reviewer:	Pest/PCB by Lorie MacKinnon	Date: 02/04/96
Verified By: _	Lorie MacKinnon	Date: <u>02/04/96</u>

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: All samples were extracted and analyzed within the required holding times.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

• Value < CRQL; report CRQL followed by "U" (U5).

• Value > CRQL and < action level; report value followed by "U" (U6).

Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

Compound	<u>Maximum</u>	<u>Action Level</u>
Heptachlor	0.006 ug/L	0.03 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: No actions are made as the associated sample RB-SB-101095 is a field rinseate sample and is therefore not blank qualified.

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample):

Not applicable as the only sample in the data package is a field rinseate sample.

C. Trip blank contamination:

Not applicable as the only sample in the data package is a field rinsate sample.

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/-0.05 in both the initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor <0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor:

ABN instrument "5972-1", initial calibration 10/04/95:

 $\begin{array}{ccc} & & & \text{IC} & & \text{CC} \\ \hline \text{COMPOUND} & & & & & & & & & \\ \hline (10/4/95) & & & & & & & & & \\ \hline \end{array}$

4-Nitrophenol

Associated samples: All listed RBSB101095

+ - RF < 0.05; Estimate positive results (J2) and reject non-detects (R2) in the associated samples.

DATA ASSESSMENT

CALIBRATION 5.

PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing Percent D compares the response factor of the continuing concentration. calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

VOA instrument "MSD", initial calibration 09/18/95:

CC IC (10/16/95)(9/18/95)COMPOUND X

Carbon disulfide

All listed RBSB101095 Associated samples:

ABN instrument "5972-1", initial calibration 10/04/95:

CC IC (10/18/95)(10/4/95)COMPOUND X 3-Nitroaniline X X 2,4-Dinitrophenol Pentachlorophenol

All listed RBSB101095 Associated samples:

 $\mbox{\em MRSD}$ > 30% or $\mbox{\em MD}$ > 25%; Estimate (J4) positive and non-detected (UJ4) X results in the associated samples.

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery: All surrogate recoveries were within validation guidelines.

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance: All internal standard areas were within control limits.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification: There were no qualifications based on compound identification.

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </= 25%. The following analytes in the samples shown were qualified because of compound identification:

RB-SB-101095 - Heptachlor (94%). Based on validation limits, in cases where the %D's are greater than 90%, the compound results is rejected. However, upon review of the chromatogram, it appeared that the manual integration performed on the DB-5 analysis was poorly done. A perpendicular should have been dropped to the baseline. The DB-5 result was therefore low. The validator estimated (JN25) the result due to dual column %D.

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

It should be noted that the ABN fraction aqueous matrix spike blank compounds 4-Nitrophenol and Pentachlorophenol were slightly over-recovered. No action is recommended.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation).

The Tentatively Identified Compound forms (1B) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None

Tentatively Identified Compounds

RBSB101095
ug/L
X(8)
XX(8)

- X Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

Metal Appendices, SOP HW-2 SDG No: ANE204

CLP DATA ASSESSMENT

Appendix	A.2:	Data	Assessment	Narrative
----------	------	------	------------	-----------

Case No. 154204 SDG No. ANE 204 Laboratory Envirotest Lab. Site Stewart ANG

Contractor Aneptek Reviewer Lorie MacKinnon

Matrix: 1 aq field QC

Data Assessment:

The SDG ANE204/154204 contains the following samples for analysis:

Metals/CN:

1/aqueous/FB-SB-101095

Associated QC:

None

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable. Data

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding times
 - Calibration verification results
- * Blank analysis
- Interference check standard results
- Matrix spike results
- * Duplicate analysis results
- Field duplicate analysis
- * Laboratory control sample results
- Furnace AA results
 - . ICP serial dilution results

Metal Appendices, SOP HW-2 SDG No: ANE204

- * Detection limit results
- Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Calibration Verification

The 2xCRDL standard for Chromium was over-recovered at 124.2% and 141.2%. Results near the CRDL may be biased high. Estimate positive (J2) Chromium results which are less than 4xCRDL of 40 ug/L. As the sample result is undetected, there is no action.

The CRA standard for Lead was over-recovered at 122%. Results near the CRDL may be biased high. Estimate (J2) positive Lead results which are less than 2xCRDL of 6 ug/L. As the sample result is undetected, there is no action.

It should be noted that the low standard of 5 ug/L was used for the Lead analysis, instead of the CRDL of 3 ug/L. As the lead result is undetected and the CRA standard was over-recovered, there is no action.

ICP Serial Dilution

A serial dilution was performed on sample RBSB101095. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Barium (24.1%). As 10XIDL was less than the CRDL, all Barium results greater than the CRDL are estimated (312). Based on this action level, there are no qualifications.

Metal Appendices, SOP HW-2

SDG No: ANE204

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE204/154204 Date: 01/30/96 Laboratory Envirotest Lab.

Reviewer's Initials: <u>LAM</u> Number of samples <u>1 aqueous</u>

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	0	0	0	18	0
Furnace	0 .	0	0	0	0	4	0
Mercury	0	0	0	0	0	1	0
Cyanide	0	0	0	0	0	1	0

Metal Appendices, SOP HW-2 SDG No: ANE204

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Estimation
ICP	0	0	0	0	0	18	0
Furnace	0	0	0	0	0	4	0
Mercury	0	0	0	0	0	1	0
Cyanide	0	0	0	0	0	1	0

Metal Appendices, SOP HW-2 SDG No: ANE204/154204

CLP DATA ASSESSMENT

Appendix	A.6:	CLP	Data	Assessment	Checklist:
----------	------	-----	------	------------	------------

INORGANIC	REGIONAL DATA A	ASSESSMENT	REGION 2	
SDG NO. ANE204	SITE	STEWART AN	IG	
LABORATORY ENVIROTEST LA	BORATORIES, INC			
NO. OF SAMPLES/MATRIX 1	AQUEOUS			
REVIEWER'S NAME LORIE A.	MACKINNON			
	DATA ASSESSME	ENT SUMMARY		
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>
HOLDING TIMES	1_	1	1	1
CALIBRATIONS	1_	1	1	1
BLANKS	1	1_	1	1
INTERFERENCE	1			
DUPLICATE ANALYSIS	1_	1	1_	1_
MATRIX SPIKE	1	1_	1	1
MSA, ANALYTICAL SPIKE ANA	ALYSIS	1		
SERIAL DILUTION	1			
SAMPLE VERIFICATION	1	1	1	1_
OTHER QC .	1	1_	1_	1_
OVERALL ASSESSMENT	1	1_	1	1_

^{1 -} Data has no problems/or qualified due to minor problems.

^{2 -} Data qualified due to major problems.

^{3 -} Data unacceptable.

^{4 -} Problems, but do not affect data.

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- U5 Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- J7 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

SDG No: 154204 Page 19

One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.

- J15, UJ15 One or more of the Internal standard (IS) areas were below the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- J22 The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual column analysis %D is between 50 90%; compound result is qualified

SDG No: 154204 Page 20

as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

- R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.
- R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.
- R28 Quality of Spectra submitted poor for compound in question: reject compound result.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
 - J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
 - The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5X the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
 - J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
 - J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
 - J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
 - J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
 - J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
 - J9 The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
 - J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
 - J11 The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
 - J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated or rejected based on %D.

SDG No: 154204 Page 22

J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.

- J14, UJ14 Matrix spike not performed for analysis. Estimate results (J14, UJ14) based on lack of accuracy data.
- J15 Laboratory duplicate not performed for analysis. Estimate positive results (J18) greater than the CRDL based on lack of precision data.

DATA VALIDATION REPORT

SDG No.: AC290/154290/154372

Site: Stewart ANG, Newburgh NY

DATE: February 5, 1996

TABLE OF CONTENTS

<u>Par</u>	<u>te</u>
RGANIC DATA	. 2
NORGANIC DATA	18
ALIDATION FOOTNOTES	25
repared by:	
C/MS Section prepared by:	
In for Elissa McDonagh	
lissa McDonagh	
norganic and Pesticide/PCB Section prepared by:	
Loui Mackinson	

Lorie MacKinnon

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No.154290/372 SDG No. AC290 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG AC290/154290/372 contains the following samples for analysis:

Volatiles:

10 soil/SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5,

SB-06-34.5, SB-07-02, SB-07-33, SB-07-16, SB-17-33

3/aqueous/RB-SB-101295, TB-04, TB-05

Semi-volatiles:

10 soil/SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5,

SB-06-34.5, SB-07-02, SB-07-33, SB-07-16, SB-17-33

1/aqueous/RB-SB-101295

Pesticides/PCBs:

10 soil/SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5,

SB-06-34.5, SB-07-02, SB-07-33, SB-07-16, SB-17-33

1/aqueous/RB-SB-101295

Associated QC:

SB-07-33, SB-17-33/Field duplicates

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data	reviewer:	GC/MS by Elissa McDonagh	Date: 02/05/96
Data	reviewer:	Pest/PCB by Lorie MacKinnon	Date: 02/05/96
Verif	ied By:	Lorie MacKinnon	Date: 02/05/96

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: All samples were extracted and analyzed within the required holding times.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

- Value < CRQL; report CRQL followed by "U" (U5).
- Value > CRQL and < action level; report value followed by "U" (U6).
- · Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

The VOA, ABN and PEST laboratory method blanks and instrument blanks contained the following maximum quantities of contaminants:

Associated samples: All soil samples in SDG

Compound	<u>Maximum</u>	Action Level
Acetone bis(2-ethylhexyl)phthalate Heptachlor	9 ug/kg 0.9 ug/L 0.098 ug/kg	90 ug/kg 9 ug/L 0.49 ug/kg
4,4'-DDT	1.3 ug/kg	6.5 ug/kg

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended: Acetone in samples SB-05-02, SB-06-02, SB-06-26.5, SB-06-34.5, SB-07-02, SB-07-33 and SB-17-33 and 4,4'-DDT in sample SB-06-02 should be reported as the CRQL followed by a "U5". Heptachlor in samples SB-05-02, SB-05-22, SB-06-02, SB-06-26.5, SB-06-34.5, SB-07-02, SB-07-33, SB-07-16 and SB-17-33 should be reported as the CRQL followed by a "U5". Acetone in samples SB-05-06, SB-05-22 and SB-07-16 and 4,4'-DDT in sample SB-05-02 should be reported as the CRQL followed by a "U6"(i.e., the CRQL has been raised and the value is considered to be non-detected).

Pesticide/PCB fraction method blank PBLK02, associated with all SDG aqueous samples, had positive results for delta-BHC, Heptachlor, 4,4'-DDE and 4,4'-DDT. No qualification was required as all aqueous samples were field/rinse blanks and are not blank qualified.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample)

The VOA, ABN and PEST rinse blanks contained the following maximum quantities of contaminants:

RB-SB-101095 Associated samples: All SB05 and SB06 samples in SDG

Compound	<u>Maximum</u>	Action Level
Acetone	2 ug/L	20 ug/L
bis(2-ethylhexyl)phthalate	9 ug/L	90 ug/L
Heptachlor	0.005 ug/L or 0.167 ug/kg	0.83 ug/kg

RB-SB-101295 Associated samples: All SB07 samples in SDG.

Compound	<u>Maximum</u>	Action Level
Acetone bis(2-ethylhexyl)phthalate Heptachlor 4,4'-DDD 4,4'-DDT	2 ug/L 3 ug/L 0.003 ug/L or 0.099 ug/kg 0.02 ug/L or 0.66 ug/kg 0.025 ug/L or 0.83 ug/kg	20 ug/L 30 ug/L 0.50 ug/kg 3.3 ug/kg 4.4 ug/kg

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended: Bis(2-ethylhexyl)phthalate in samples SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5, SB-06-34.5 and SB-07-16 should be reported as the CRQL followed by a "U5".

C. Trip blank contamination:

Trip Blank TB-04

Associated samples: Associated samples: All SB05 and SB06 samples in SDG

<u>Compound</u> · <u>Maximum</u> <u>Action Level</u>

Acetone 4 ug/L 40 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: All compound results were previously blank qualified due to laboratory or field blanks.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor: Response factors greater than or equal to 0.05 units.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

5. CALIBRATION

A. PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

VOA instrument "MSD", initial calibration 09/18/95:

COMPOUND	10 (9/18/95)	(10/16/95)
Carbon disulfide		X
Associated samples:	All listed	SB-05-02

ABN instrument "5972-1", initial calibration 10/04/95:

COMPOUND -	IC (10/4/95)	CC (10/19/95)	CC (10/20/95)	CC (10/21/95)
Hexachlorocyclopentadie 3-Nitroaniline	ne X	X X	X X	
2,4-Dinitrophenol 4-Nitrophenol Carbazole	X	X	X	X X
Pentachlorophenol	X	X		
Associated samples:	All listed	SB-06-02 SB-06-26.5 SB-06-34.5 SB-05-02 SB-05-06 SB-05-22	SB-07-02 SB-07-33 SB-07-16 SB-17-33 RBSB101295	SPBK30, SBSPK30

Page 9

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

X - %RSD > 30% or %D > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

<u>Compound</u> <u>Standard</u> <u>%RPD</u> <u>Column</u> <u>Associated Samples</u> 4,4'-DDT INDAM02 27.0 DB-5 All samples

Therefore, all non-detected 4,4'-DDT results and detected results (quantitated off the DB-5 column) are estimated (J20, UJ20): SB-06-02 and RB-SB-101295.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery: All surrogate recoveries were within validation guidelines.

It should be noted that the incorrect percent recovery information appears on the raw data for the pesticide soil fractions. Recoveries were double those listed on the Form II's. No action is taken.

Attachment 1, SOP No. HW-6 SDG No: AC290/154290/372

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance: All internal standard criteria were met.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification: No compounds were qualified due to compound identification.

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </= 25%. The following analytes in the samples shown were qualified because of compound identification:

It should be noted that Heptachlor had a %D >25% in most samples. However, as the compound was blank qualified "U" in all samples, there is no qualification.

- SB-05-02 Dieldrin (100 %D) would be rejected. However, upon review of raw data, the manual integration was poorly performed on the DB-5 analysis. A perpendicular should have been dropped for the separation between Dieldrin and 4,4'-DDE. The higher results from the DB-17 column, which were fully resolved, were reported by the validator and estimated (JN25) due to %D.
- SB-05-06 4,4'-DDE (31.4%, J25)
- SB-05-22 Dieldrin (66.7%) The manual integration performed for Dieldrin (4.2 mg/kg) on the DB-5 column was poorly done. The higher Dieldrin result (7.0 mg/kg) from the DB-17 column is resolved from 4.4'-DDE and appears to have no positive interferences. The validator reported the DB-17 result of 7.0 mg/kg estimated (J25).
 4.4'-DDE (25.7%, J25)
- SB-06-02 4,4'-DDE (80%, JN25), 4,4'-DDD (192.7%, R25) and 4,4'-DDT (44.4%, No action as result was blank qualified)
- SB-06-26.5 Dieldrin (2816.7%, R25), 4,4'-DDE (34.9%, J25), alpha-chlordane (54.5%, JN25), gamma-chlordane (162.1%, R25), 4,4'-DDD (over-calibrated, R25) and 4,4'-DDT (over-calibrated, R25). Upon review

of raw data, the validator found that the results listed for 4,4'-DDD and 4,4'-DDT from the DB-17 column were incorrect. The validator edited both the Form I and Form 10.

- SB0626.5DL 4,4'-DDD (259.6%, R25), DB-5 column result 890 (separated) DB-17 column result 3200 peaks not resolved. As the validator felt that 4,4'-DDD was present, the DB-5 result was reported estimated (JN25).
- SB-06-34.5 4,4'-DDE (150%) The manual integration performed for 4,4'-DDE on the DB-5 column was poorly done. A perpendicular should have been dropped to the baseline giving a higher result. As the validator felt that 4,4'-DDE was present in the sample the value is estimated (JN25) instead of rejected. 4,4'-DDD (112.1%, R25) Co-elution on the DB-17 column is suspected. It should be noted that the Form I result for 4,4'-DDT has a "P" qualifier indicating a dual column %D > 25%. However, the %D reported on the Form 10 was 5.3%. The validator removed the "P" qualifier.
- RBSB101295 4,4'-DDT (56%, JN25) and Heptachlor (146.7%, JN25) The Heptachlor result was not rejected as the manual integration performed was poorly done. A perpendicular should have been dropped to the baseline giving a higher result on the DB-5 column.
- SB-07-02 Dieldrin (83.3%, JN25), 4,4'-DDE (71.4%, Over-calibrated), alphachlordane (218.2%, R25), 4,4'-DDD (over-calibrated, however, there is peak separation, JN25) and 4,4'-DDT (over-calibrated).
- SB-07-02DL 4,4'-DDE (36.8%, J25) 4,4'-DDD result %D is less than 25%. However, the validator highly suspects co-elution on both columns as the peak shape is extremely broad on the DB-5 column and the dilution does not agree with original analysis, in which two peaks were present in the area. The 4,4'-DDD diluted result is not used.
- SB-07-33- 4,4'-DDE (80%, JN25) and 4,4'-DDD (75.4%, JN25)
- SB-07-16- 4,4'-DDD (45.5%, J25)
- SB-17-33- 4,4'-DDD (73.9%, JN25) Result on DB-17 column is over-calibrated. Not over-calibrated on quantitated DB-5 column.
- SB-17-33DL 4,4'-DDD (200%, R25)

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

It should be noted that the ABN fraction aqueous matrix spike blank compounds 4-Nitrophenol and Pentachlorophenol were slightly over-recovered. The ABN fraction soil matrix spike blank compound Pentachlorophenol was slightly over-recovered. No action is recommended.

It should be noted that insufficient sample was received to prepare an actual ABN sample matrix spike/matrix spike duplicate. Laboratory reagent was used to prepare the MS/MSD.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation). The m/z ion 91 was used to quantitate xylenes (the SOP requests the 106 ion to be used for quantitation).

The Tentatively Identified Compound forms (1B) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

It should be noted that transcription errors were found in the pesticide/PCB package: Upon review of raw data for sample SB-06-26.5, the validator found that the results listed for 4,4'-DDD and 4,4'-DDT from the DB-17 column were incorrect. The validator edited both the Form I and Form 10.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

Pesticides:

SB-06-26.5, SB-06-26.5DL

Use 4,4'-DDD and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

SB-07-02, SB-07-02DL

Use 4,4'-DDE and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

SB-17-33, SB-17-33DL

Use 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

DATA ASSESSMENT

Tentatively Identified Compounds

Compound	TB-04 ug/L	RBSB1012 ug/kg	$\frac{\text{TB-05}}{\text{ug/L}}$	$\frac{SB-06-02}{ug/kg}$
VOA Unknown ABN Unknown unknown alkane unk. diethyl benzene unk. methyl benzene Tetramethylbenzene isomer ethyldimethylbenzene isomer VOA C10H12 isomer ABN C10H12 isomer unk. C10H14 VOA C11H16 isomer ABN C11H16 isomer	XX(62)	XX(28) X(5)	XX(14)	XX(296) XX(330)
C10H8 isomer unk. C14H10CL4		X(7)		
unk. decanoic acid VOA Methylnaphthalene isomer ABN Methylnaphthalene isomer		XX(39)		
VOA Dimethylnaphthalene isome ABN Dimethylnaphthalene isome Trimethylnaphthalene isomer Ethylnaphthalene isomer Dimethyl butanol isomer DDE isomer DDT isomer 2-fluoro-1-propene diethylmethyl benzene biphenyl		XX(23)		

Compound	SB-17-33 ug/kg	$\frac{SB-07-02}{ug/kg}$	SB-07-16 ug/kg	$\frac{SB-06-26.5}{ug/kg}$
VOA Unknown ABN Unknown unknown alkane unk. diethyl benzene unk. methyl benzene Tetramethylbenzene isomer ethyldimethylbenzene isomer	X(170)	XX(338) XX(210)	X(21) XX(300)	XX(2620) XX(640) XX(276) X(118) X(240) X(370) X(220)
VOA C10H12 isomer ABN C10H12 isomer unk. C10H14 VOA C11H16 isomer			X(7)	X(500) X(240) XX(860) X(220)

Compound	SB-17-33 ug/kg	<u>SB-07-02</u> ug/kg	SB-07-16 ug/kg	SB-06-26.5 ug/kg
ABN C11H16 isomer C10H8 isomer unk. C14H10CL4 unk. decanoic acid		XX(344) X(84)		X(122) X(810) XX(4600)
VOA Methylnaphthalene isomer ABN Methylnaphthalene isomer VOA Dimethylnaphthalene isome	۵r		X(90)	X(700)
ABN Dimethylnaphthalene isomer Trimethylnaphthalene isomer				XX(1530) X(130)
Ethylnaphthalene isomer			V (7)	X(172)
Dimethyl butanol isomer DDE isomer DDT isomer		X(280) X(640)	X(7)	
2-fluoro-1-propene diethylmethyl benzene biphenyl				X(740) X(114)

- X Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No. 154290/372 SDG No. ANE 290 Laboratory Envirotest Lab. Site Stewart ANG

Contractor Aneptek Reviewer Lorie MacKinnon

Matrix: 10 Soil/1 aq field QC

Data Assessment:

The SDG ANE290/154290/154372 contains the following samples for analysis:

Metals/CN:

10 soil/SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5,

SB-06-34.5, SB-07-02, SB-07-33, SB-07-16, SB-17-33

1/aqueous/RB-SB-101295

TOC:

10 soil/SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5,

SB-06-34.5, SB-07-02, SB-07-33, SB-07-16, SB-17-33

Associated QC:

SB-07-33, SB-17-33/Field duplicates

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable. Data

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding times
 - Calibration verification results
 - Blank analysis
- Interference check standard results
 - Matrix spike results

- * Duplicate analysis results
- * Field duplicate analysis
- * Laboratory control sample results
 - Furnace AA results
 - . ICP serial dilution results
- Detection limit results
- Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Calibration Verification

The 2xCRDL standard for Antimony was under-recovered at 77.3%. Results near the CRDL may be biased low. Estimate positive and non-detected (J2, UJ2) Chromium results which are less than 4xCRDL of 48 mg/kg or 240 ug/L. Based on this action level, Antimony results for samples SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5, SB-06-34.5, SB-07-02, SB-07-33, SB-07-16, SB-17-33 and RB-SB-101295 are estimated.

The CRA standard for Lead was over-recovered at 123.7%. Results near the CRDL may be biased high. Estimate (J2) positive Lead results which are less than 2xCRDL of 1.2 mg/kg or 6 ug/L. However, as the sample lead results are greater than this level, there is no action.

It should be noted that the low standard of 5 ug/L was used for the Lead analysis, instead of the CRDL of 3 ug/L. As all lead results are greater than 5X the CRDL, there is no action.

Matrix Spike Recoveries

Antimony (50.2%), Lead (133.9%) and Thallium (52.3%) were recovered outside of the control limits in the matrix spike performed on sample SB-05-02. Due to a possible low bias, all Antimony and Thallium results are estimated (J5, UJ5). Due to a possible high bias, all positive Lead results are estimated (J5).

It should be noted that the Cyanide result for sample SB-05-22 was flagged with an "N" qualifier (matrix recovery out of control limits) and shouldn't have been. The validator edited the Form I.

It should be noted that the validator did not apply the matrix spike actions to the aqueous field QC sample.

Blanks

The field blanks contained levels of several metals above the CRDL. The following table lists the maximum concentration of each metal found in the blanks along with the resultant action level. It should be noted that Field rinseate

sample RB-SB-101295 was submitted in data package SDG 154204.

Field Blank RB-SB-101095 associated with all SB-05 and SB-06 SDG samples

<u>Element</u>	Maximum Conc./Units	Action Level
Calcium	32500 ug/L, 6500 mg/kg	32500 mg/kg
Iron	129 ug/L, 25.8 mg/kg	129 mg/kg
Sodium	30900 ug/L, 6180 mg/kg	30900 mg/kg
Manganese	17.6 ug/L, 3.52 mg/kg	17.6 mg/kg

Value < Action Level; the value is rejected R3.

Value > IDL and > Action Level; the value is reported unqualified.

The action level values were compared to the sample value before application of sample dilution factors. Based on the action levels found, the following actions are taken: Calcium and Sodium results for samples SB-05-02, SB-05-06, SB-05-22, SB-06-02, SB-06-26.5 and SB-06-34.5 are rejected (R3).

Field Blank RB-SB-101295 associated with all SB-07 SDG samples

Element	Maximum Conc./Units	Action Level
Aluminum	317 ug/L, 63.4 mg/kg	317 mg/kg
Iron	409 ug/L, 81.8 mg/kg	409 mg/kg
Zinc	31.4 ug/L, 6.28 mg/kg	31.4 mg/kg

Value < Action Level; the value is rejected R3.

Value > IDL and > Action Level; the value is reported unqualified.

The action level values were compared to the sample value before application of sample dilution factors. All sample levels were greater than the action levels. No qualifications are necessary.

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate injections agreed within +/- 20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exception:

<u>Analyte</u>	Sample ID	Recovery	Action
Selenium	SB0716	82%	J10, UJ10
Thallium Thallium Thallium Thallium	SB0502 SB0506 SB0522 SB0602	62.8% 64.4% 68.0% 56.9%	J10, UJ10 J10, UJ10 J10, UJ10 J10, UJ10

<u>Analyte</u>	Sample ID	Recovery	Action
Thallium Thallium Thallium Thallium	SB06-26.5	75.8%	J10, UJ10
	SB06-34.5	82.4%	J10, UJ10
	SB0702	68.4%	J10, UJ10
	SB0716	79.1%	J10, UJ10

ICP Serial Dilution

A serial dilution was performed on sample SB-05-02. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Potassium (24.5%) and Zinc (19.6%). As 10XIDL was less than the CRDL in all cases, all Potassium and Zinc results greater than the CRDL are estimated (J12).

It should be noted that the validator did not apply the serial dilution actions to the aqueous sample.

Detection Limit Results

It should be noted that ICP samples SB-06-34.5, SB-06-02 and SB-05-06 were diluted as Iron levels were close to or exceeded the calibration range. The diluted results for all analytes were reported, thus elevating the instrument detection limits (IDL) for all ICP analytes for the samples. A prescan was performed with the samples undiluted, however the laboratory did not submit it in the data package according to the SOW. No action is taken, as the non-detected results were less than the CRDL in all cases.

CLP DATA ASSESSMENT.

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE290/154290/372 Date: 02/05/96 Laboratory Envirotest Lab.
Reviewer's Initials: LAM Number of samples 10 soil/1 aq

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	17	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	0	0	0	198	17
Furnace	0	0	0	0	0	44	0
Mercury	0 .	0	0	0	0	11	0
Cyanide	0	0	0	0	0	11	0

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	11	0	0	0	10	0
Furnace	0	0	0	0	0	29	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Estimation
ICP	0	0	0	11	0	198	28
Furnace	0	0	0	0	0	44	11
Mercury	0	0	0	0	0	11	0
Cyanide	0	0	0	0	0	11	0

CLP DATA ASSESSMENT

Appendix	A.6:	CLP	Data	Assessment	Checklist:
----------	------	-----	------	------------	------------

INORGANIC REGIONAL DATA ASSESSMENT REGION 2							
SDG NO. ANE290/154290/372 SITE STEWART ANG							
LABORATORY ENVIROTEST LABORA	TORIES, INC			·			
NO. OF SAMPLES/MATRIX 10 SOI	L/ 1 AQUEOU	S					
REVIEWER'S NAME LORIE A. MAC	KINNON						
DA	ATA ASSESSME	ENT SUMMARY					
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>			
HOLDING TIMES	1	1_	1_	1			
CALIBRATIONS	1	1_	1	1			
BLANKS	2	1	1	1_			
INTERFERENCE1							
DUPLICATE ANALYSIS	1	1	1_	1			
MATRIX SPIKE	1_	1	1	1			
MSA, ANALYTICAL SPIKE ANALYSIS1							
SERIAL DILUTION	1						
SAMPLE VERIFICATION	1_	1_	1	1_			
OTHER QC .	1_	1	1	1_			
OVERALL ASSESSMENT	1	1	1	1_			

^{1 -} Data has no problems/or qualified due to minor problems.

^{2 -} Data qualified due to major problems.

^{3 -} Data unacceptable.

^{4 -} Problems, but do not affect data.

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- U5 Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

SDG No: 154290/372 Page 26

One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.

- J15, UJ15 One or more of the Internal standard (IS) areas was less than the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- J22 The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25
 50% in its two analyses. Compound result is estimated. Dual
 column analysis %D is between 50 90%; compound result is qualified

SDG No:	154290/372
---------	------------

as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

- R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.
- R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.
- R28 Quality of Spectra submitted poor for compound in question: reject compound result.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5X the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- J11 The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated or rejected based on %D.

SDG No: 154290/372

J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.

J14, UJ14 Matrix spike not performed for analysis. Estimate results (J14, UJ14) based on lack of accuracy data.

J15 Laboratory duplicate not performed for analysis. Estimate positive results (J18) greater than the CRDL based on lack of precision data.

DATA VALIDATION REPORT

SDG No.: AC477/154477/154478

Site: Stewart ANG, Newburgh NY

DATE: February 5, 1996

TABLE OF CONTENTS

<u>SECTION</u>	<u>Page</u>
ORGANIC DATA	2
INORGANIC DATA	16
VALIDATION FOOTNOTES	23
Prepared by: GC/MS Section prepared by: An for Elissa McDonagh	
Elissa McDonagh	
Inorganic and Pesticide/PCB Section prepared by:	

Low Muchimm

Lorie MacKinnon

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No. 154477/478 SDG No. AC477 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG AC477/154477/478 contains the following samples for analysis:

Volatiles:

3 soil/MW-01-04, MW-01-18, MW-01-31.6 3/aqueous/TB-3, DW-01-101795, TB-DW-01

Semi-volatiles:

3 soil/MW-01-04, MW-01-18, MW-01-31.6

1/aqueous/DW-01-101795

Pesticides/PCBs:

3 soil/MW-01-04, MW-01-18, MW-01-31.6

1/aqueous/DW-01-101795

Associated QC:

None

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data reviewer:	GC/MS by Elissa McDonagh	Date: 02/05/96
bata reviewer	30/1	
Data reviewer:	Pest/PCB by Lorie MacKinnon	Date: 02/05/96
bata leviewer.	1080/102 0, 20120 1000	
	Lawie MacKinnen	Date: 02/05/96

Verified By: <u>Lorie MacKinnon</u> Date: <u>02/05/96</u>

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: All samples were extracted and analyzed within the required holding times.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

- Value < CRQL; report CRQL followed by "U" (U5).
- Value > CRQL and < action level; report value followed by "U" (U6).
- · Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

Aqueous method blank: Associated sample DW-01-101795

Compound	<u>Maximum</u>	Action Level
<pre>bis(2-ethylhexyl)phthalate Heptachlor 4,4'-DDT</pre>	5 ug/L 0.004 ug/L 0.021 ug/L	50 ug/L 0.020 ug/L 0.105 ug/L

Soil method blank: Associated samples: All soil SDG samples

Compound	<u>Maximum</u>	<u>Action Level</u>
Acetone Di-n-butyl phthalate Heptachlor 4,4'-DDT	33 ug/kg 230 ug/kg 0.22 ug/Kg 0.25 ug/Kg	330 ug/kg 2300 ug/kg 1.1 ug/Kg 1.25 ug/Kg

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended. Acetone in samples MW-01-04, MW-01-18RE, MW-01-31.6 and MW-01-31.6RE, di-n-butyl phthalate in samples MW-01-04, MW-01-18 and MW-01-31.6 and Heptachlor in samples DW-01-101795, MW-01-31.6, MW-01-04 and MW-01-18 are reported as the CRQL followed by a "U5". Acetone in sample MW-01-18 should be reported as the value followed by "U6" (i.e., the CRQL has been raised and the value is considered to be non-detected.

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample)

Rinse blank RB-SB-101295 (included in SDG 154290) is associated with the SDG soil samples. Field sample DW-01-101795 is a field water sample from tub and is qualified as any other water sample.

RB-SB-101295

Associated samples: All soil samples in SDG

Compound	<u>Maximum</u>	Action Level
Acetone bis(2-ethylhexyl)phthalate Heptachlor 4,4'- DDD 4.4 - DDT	2 ug/L 3 ug/L 0.003 ug/L or 0.10 ug/kg 0.02 ug/L or 0.67 ug/kg 0.025 ug/L or 0.83 ug/kg	20 ug/L 30 ug/L 0.50 ug/kg 3.33 ug/kg 4.16 ug/kg

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended: bis(2-ethylhexyl)phthalate in sample MW-01-18 should be reported as the CRQL followed by "U5".

C. Trip blank contamination:

Trip Blank TB-DW-01

Associated samples: DW01101795

Compound	<u>Maximum</u>	<u>Action Level</u>
Methylene Chloride	2 ug/L 9 ug/L	20 ug/L 90 ug/L

The action level values were compared to the sample values and the following recommendations are recommended: Acetone in sample DW011017 should be reported as the CRQL followed by "U5".

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor:

ABN instrument "5972-1", initial calibration 10/04/95:

	IC	CC
COMPOUND	(10/4/95)	(11/02/95)

3-Nitroaniline

Associated samples: All listed MW-01-04, MW-01-18 $_{\mathrm{MW}}$ -01-31.6

VOA instrument "MSD", initial calibration 10/17/95:

<u>COMPOUND</u>	IC (10/17/95)	CC (10/24/95)
Acetone 2-Butanone	+ +	++
Associated samples:	All aqueous listed	DW-011017 TB-DW-01

^{+ -} RF <0.05; Estimate positive results (J2) and reject non-detects (R2) in the associated samples.

DATA ASSESSMENT

- 5. CALIBRATION
- A. PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

ABN instrument "5972-1", initial calibration 10/04/95:

COMPOUND	IC (10/4/95)	CC (10/24/95)	CC (11/02/95)
4-Chloroaniline			X
2-Nitroaniline			X
3-Nitroaniline	X		X
2,4-Dinitrophenol	X		
4-Nitrophenol		X	
Carbazole			X
Pentachlorophenol	X	X	
3,3'-Dichlorobenzidine			X
Di-n-octylphthalate			Х
Dibenz(a,h)anthracene		X	

Associated samples: All listed DW01101795 MW-01-04, MW-01-18 MW-01-31.6

 χ - %RSD > 30% or %D > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

Pesticides:

Compound	Standard	<u>Time</u>	%RPD	Column	Associated Samples
Alpha-BHC Beta-BHC Endrin 4,4'- DDT Methoxychlor	PEM01 PEM01 PEM01 PEM01 PEM01	11/15 11:32 11/15 11:32 11/15 11:32 11/15 11:32 11/15 11:32	40.0 34.0 41.0	DB-5 DB-5 DB-5 DB-5 DB-5	All samples All samples All samples All samples All samples
Alpha-BHC Endrin 4,4'- DDT Methoxychlor	PEM01 PEM01 PEM01 PEM01	11/15 11:32 11/15 11:32 11/15 11:32 11/15 11:32	$32.0 \\ 39.0$	DB-17 DB-17 DB-17 DB-17	All samples All samples All samples All samples
Beta-BHC	PEM02	11/15 20:11	30.0	DB-5	All samples

Therefore, all affected results are estimated (J20, UJ20).

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery:

The VOA surrogate Bromofluorobenzene was under-recovered in the soil samples MW-01-18 and MW-01-31.6. It is recommended to estimate the positive results and non-detects (J8, UJ8) for all compounds associated with this surrogate.

The ABN surrogate Phenol-d5 was recovered at less than 10% in the MS/MSD set prepared using laboratory tap water. No action is recommended.

It should be noted that ABN surrogates 2-Fluorobiphenyl and 2-Chlorophenol-d4 were under-recovered in the aqueous sample DW01101795. No action is recommended.

Pesticide surrogates TCX (11%, 31%) and DCB (20%, 22%) were under-recovered on both columns in the sample DW-01-101795. It is recommended to estimate all positive and non-detected (J8, UJ8) results for the sample.

It should be noted that the incorrect percent recovery information appears on the raw data for the pesticide soil fractions. Recoveries were double those listed on the Form II's. No action is taken.

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance:

The VOA internal standard Chlorobenzene-d5 was under-recovered in the soil samples MW-01-18, MW-01-31.6, MW-01-18RE and MW-01-31.6RE. It is recommended to estimate the positive results (J15) and non-detects (UJ15) for all compounds quantitated from the internal standard in the associated samples.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification: There were no qualifications based on compound identification.

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </= 25%. The following analytes in the samples shown were qualified because of compound identification:

It should be noted that Heptachlor had a %D >25% in most samples. However, as the compound was blank qualified "U" in all samples, there is no qualification.

DW-01-1017- Alpha-chlordane (185.7%, R25), gamma-chlordane (370.0%, R25), 4,4'-DDD (84.1%, JN25 over-calibrated) and 4,4'-DDT (42.2%, J25 over-calibrated).

DW011017DL- 4,4'-DDD (63.6%, JN25)

DATA ASSESSMENT

MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

It should be noted that the ABN aqueous and soil MS/MSD sets were performed on laboratory tap water due to insufficient sample volume. Recoveries and percent RPDs were outside of control limits. However, as qualifications are done on the native sample only, there is no action on the SDG samples.

The ABN matrix spike compounds Phenol, 4-Chloro-3-methylphenol, Acenaphthene and Pyrene were recovered outside of the QC recovery limits in the aqueous matrix spike. The ABN matrix spike compounds Phenol, 1,4-Dichlorobenzene, 4-Chloro-3-methylphenol, Acenaphthene and Pyrene were recovered outside of the QC recovery limits in the aqueous matrix spike duplicate. The %RPDs were high for the matrix spike compounds Phenol, 1,4-Dichlorobenzene and 4-Chloro-3-methylphenol. No action is recommended.

The ABN matrix spike compound Pentachlorophenol was recovered outside of the QC recovery limits in the soil matrix spike duplicate. No action is recommended.

It should be noted that the PEST aqueous and soil MS/MSD sets were performed as batch QC. Recoveries and percent RPDs were outside of control limits. However, as qualifications are done on the native sample only, there is no action on the SDG samples. All pesticide matrix spike blank recoveries were found to be within control limits.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation).

The Tentatively Identified Compound forms (1B) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

<u>Volatiles:</u>

MW-01-18, MW-01-18RE

Use the positive and non-detected results from the re-analysis.

MW-01-31.6, MW-01-31.6RE

Use the positive and non-detected results from the re-analysis.

Pesticides:

DW-01-1017, DW-01-1017DL

Use 4,4'- DDD and 4,4'-DDT result from diluted analysis.

Use all other results from undiluted analysis.

DATA ASSESSMENT

Tentatively Identified Compounds

Compound	MW-01-18	MW-01-31.6	MW0131.6RE	DW01101795
	ug/kg	ug/kg	ug/kg	ug/kg
ABN Unknown unknown alkane unk. C17H14 isomer unk. hydrocarbon Tetradecane	X(76)	X(86)	X(8)	XX(159) XX(764) X(27) X(70)

- X Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

Metal Appendices, SOP No: HW-2 SDG No: ANE478/154477/154478

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No. 154477/478 SDG No. ANE 478 Laboratory Envirotest Lab. Site Stewart ANG

Contractor Aneptek Reviewer Lorie MacKinnon

Matrix: <u>3 Soil/1 Aqueous</u>

Data Assessment:

The SDG ANE477/154477/154478 contains the following samples for analysis:

Metals/CN:

3 soil/MW-01-04, MW-01-18, MW-01-31.6

1/aqueous/DW-01-101795

TOC:

3 soil/MW-01-04, MW-01-18, MW-01-31.6

Associated QC: None

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable.
Data

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding times
 - Calibration verification results
- * Blank analysis
- Interference check standard results
 - Matrix spike results
 - Duplicate analysis results
- * Field duplicate analysis

Metal Appendices, SOP No: HW-2 SDG No: ANE478/154477/154478

- Laboratory control sample results
 - Furnace AA results
 - ICP serial dilution results
- * Detection limit results
- Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Calibration Verification

Aqueous analysis only

The CRA standard for Lead was over-recovered at 122.0%. Results near the CRDL may be biased high. Estimate (J2) positive Lead results which are less than 2xCRDL of 6 ug/L. However, as the sample lead results are greater than this level, there is no action.

The CRDL standard for Chromium was over-recovered at 124.2% and 141.2%. Results near the CRDL may be biased high. Estimate (J2) positive Chromium results which are less than 4xCRDL of 40 ug/L. However, as the sample Chromium results are greater than this level, there is no action.

Soil analysis only

The CRA standard for Selenium was over-recovered at 143.4%. Results near the CRDL may be biased high. Estimate (J2) positive Selenium results which are less than 2xCRDL of 2 mg/kg. The 2xCRDL standard for Cadmium was over-recovered at 121.8%. Results near the CRDL may be biased high. Estimate (J2) positive Cadmium results which are less than 4xCRDL of 4 mg/kg. The CRDL standard for Chromium was over-recovered at 126.4% and 122.7%. Results near the CRDL may be biased high. Estimate (J2) positive Chromium results which are less than 4xCRDL of 8 mg/kg. The 2xCRDL standard for Silver was over-recovered at 122.4%. Results near the CRDL may be biased high. Estimate (J2) positive Silver results which are less than 4xCRDL of 8 mg/kg. Based on these levels, the following actions were taken Chromium and Silver in sample MW-01-04 are estimated (J2), Chromium in sample MW-01-18 is estimated (J2) and Silver in sample MW-01-31.6 is estimated (J2).

It should be noted that the low standard of 5 ug/L was used for the Lead analysis, instead of the CRDL of 3 ug/L. As all lead results are greater than 5X the CRDL, there is no action.

Matrix Spike Recoveries

Antimony (28.8%), Lead (153.8%) and Thallium (46.9%) were recovered outside of the control limits in the matrix spike performed on soil sample MW-01-04. Due to a possible low bias, all Antimony and Thallium results are estimated (J5, UJ5). Due to a possible high bias, all positive Lead results are estimated (J5).

Metal Appendices, SOP No: HW-2 SDG No: ANE478/154477/154478

It should be noted that the validator did not apply the matrix spike actions to the aqueous QC sample.

In the aqueous analysis batch, a matrix spike was performed on a field rinsate blank sample (except for the cyanide analysis). The affected sample DW-01-101795 was a field sample. However, as it contained high analyte levels, it is qualified based on the lack of pertinent matrix spike data. Therefore, all positive analyte levels less than four times the matrix spike level are estimated (J14).

Blanks

The field blanks contained levels of several metals above the CRDL. The following table lists the maximum concentration of each metal found in the blanks along with the resultant action level. It should be noted that Field rinseate sample RB-SB-101295 was submitted in data package SDG 154204.

Field Blank RB-SB-101295 associated with all soil SDG samples

<u>Element</u>	Maximum Conc./Units	Action Level
Aluminum	317 ug/L, 63.4 mg/kg	317 mg/kg
Iron	409 ug/L, 81.8 mg/kg	409 mg/kg
Zinc	31.4 ug/L, 6.28 mg/kg	31.4 mg/kg

Value < Action Level; the value is rejected R3. Value > IDL and > Action Level; the value is reported unqualified.

The action level values were compared to the sample value before application of sample dilution factors. Based on the action levels found, there are no qualifications.

It should be noted that in Lead analysis dated 10/30/95, CCB4 was detected at the negative CRDL. No samples in the SDG were affected.

Laboratory Duplicate

In the aqueous analysis batch, a laboratory duplicate was performed on a field rinsate blank sample (except for the cyanide analysis). The affected sample DW-01-101795 was a field sample. However, as it contained high analyte levels, it is qualified based on the lack of pertinent duplicate precision data. Therefore, all results greater than the CRDL are estimated (J15).

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate

Metal Appendices, SOP No: HW-2 SDG No: ANE478/154477/154478

injections agreed within +/- 20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exception:

<u>Analyte</u>	Sample ID	Recovery	<u>Action</u>
Selenium	DW0110	34.2%	J10, UJ10
Thallium Thallium Thallium	MW0104 MW0118 MW1316	45.6% 50.2% 52.2%	J10, UJ10 J10, UJ10 J10, UJ10

ICP Serial Dilution

A serial dilution was performed on soil sample MW-01-04. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Copper (12.8%). As 10XIDL is less than the CRDL, all Copper results greater than the CRDL are estimated (J12).

In the aqueous analysis batch, an ICP serial dilution was performed on a field rinsate blank sample. The affected sample DW-01-101795 was a field sample. However, as it contained high analyte levels, it is qualified based on the lack of pertinent matrix effect data. Therefore, all results greater than the CRDL are estimated (J16).

Detection Limit Results

It should be noted that ICP samples DW-01-101795, MW-01-04, MW-01-18 and MW-01-31.6 were diluted as Iron levels were close to or exceeded the calibration range. The diluted results for all analytes were reported, thus elevating the instrument detection limit (IDL) for all ICP analytes for the samples. A prescan was performed with the samples undiluted. As all undetected levels were below the CRDL for samples MW-01-04, MW-01-18 and MW-01-31.6, no action is taken. Sample DW-01-101795 was analyzed straight, 5x and 10x for ICP and the 10x dilution was reported for all ICP analytes. Antimony, Cadmium and Silver were undetected at 10X, therefore the reported non-detected results were greater than the CRDL. The validator reviewed the interference check sample data (ICSA) and found interference for those elements which would warrant the diluted analysis. No qualification is made.

Metals Appendices, SOP HW-2

SDG No: ANE139/154139

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE478/154477/478 Date: 02/05/96 Laboratory Envirotest Lab. Number of samples 3 soil/ 1 aq Reviewer's Initials: LAM

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	0	0	0	72	0
Furnace	0	0	0	0	0	16	0
Mercury	0	0	0	0	0	4	0
Cyanide	0	0	0	0	0	4	0

Metal Appendices, SOP No. HW-2 SDG No: ANE478/154477/478

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	4	0	0	0	9	0
Furnace	0	0	0	0	0	12	0
Mercury	0	0	0	0	0	1	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Estimation
ICP	0	11	0	18	0	72	42
Furnace	0	2	0	0	0	16	14
Mercury	0	1	0	0	0	4	2
Cyanide	0	0	0	0	0	4	0

Metal Appendices, SOP No. HW-2 SDG No: ANE478/154477/478

CLP DATA ASSESSMENT

Appendix	A.6:	CLP	Data	Assessment	Checklist:
----------	------	-----	------	------------	------------

11					
INORGANIC RE	GIONAL DATA A	ASSESSMENT	REGION 2		
SDG NO. <u>ANE478/154477/478</u>	SITE	STEWART AN	ī <u>G</u>		
LABORATORY ENVIROTEST LABO	RATORIES, INC	:			
NO. OF SAMPLES/MATRIX 3 SO	IL/ 1 AQUEOUS	<u> </u>			
REVIEWER'S NAME LORIE A. M	ACKINNON				
	DATA ASSESSM	ENT SUMMARY			
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>	
HOLDING TIMES	1	1	1_	1	
CALIBRATIONS	1	1	1	1	<u>_</u>
BLANKS	1	1	1_	1	<u>_</u> _
INTERFERENCE	1				
DUPLICATE ANALYSIS	1_	1	1_	1	<u>L</u>
MATRIX SPIKE	1	1_	1_		<u>L</u>
MSA, ANALYTICAL SPIKE ANALY	SIS	1			
SERIAL DILUTION	1_				
SAMPLE VERIFICATION	1_	1_	1_	1	<u>L</u>
OTHER QC ·	1_	1	1		1
OVERALL ASSESSMENT	1_	1	1	<u></u>	1
			1.1		

^{1 -} Data has no problems/or qualified due to minor problems.

^{2 -} Data qualified due to major problems.

^{3 -} Data unacceptable.

^{4 -} Problems, but do not affect data.

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- U5 Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

- SDG No: ANE478/154477/478
- One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.
- J15, UJ15 One or more of the Internal standard (IS) areas was less than the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual column analysis %D is between 50 90%; compound result is qualified

SDG No:	ANE478/15	4477/478
---------	-----------	----------

as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.

R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.

R28 Quality of Spectra submitted poor for compound in question: reject compound result.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5% the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- J9 The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- J11 The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated or rejected based on %D.

DDG NO. MIDTIO/IOIIII/II	SDG No:	ANE478	/154477	/478
--------------------------	---------	--------	---------	------

- J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.
- Matrix spike not performed for analysis or performed on field blank. Estimate positive results less than four times the spike level added based on lack of accuracy data.
- J15 Laboratory duplicate not performed for analysis or was performed on a field blank. Estimate positive results greater than the CRDL based on lack of precision data.
- J16 ICP serial dilution was not performed or was performed on field blank. Estimate results greater than 10XIDL or greater than the CRDL for which an ISD was not performed.

DATA VALIDATION REPORT

SDG No.: AC787/154787/154816

Site: Stewart ANG, Newburgh NY

DATE: February 13, 1996

TABLE OF CONTENTS

<u>P</u>	age
RGANIC DATA	2
NORGANIC DATA	.18
ALIDATION FOOTNOTES	
repared by:	
C/MS Section prepared by:	
In for Elissa McDonagh	
lissa McDonagh	
norganic and Pesticide/PCB Section prepared by:	

Low Makinsin

Lorie MacKinnon

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No. 155787/816 SDG No. AC787 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG AC787/155787/816 contains the following samples for analysis:

Volatiles: 12 aqueous/MW-09-1127, MW-01-1128, MW-10-1128, MW-109-1128,

MW-108-1128, SW-02-1128, SW-03-1128, MW-13-1128, SW-12-1128,

TB-1129, TB-1127, TB-1128

Semi-volatiles: 9 aqueous/MW-09-1127, MW-01-1128, MW-10-1128, MW-109-1128, MW-

108-1128, SW-02-1128, SW-03-1128, MW-13-1128, SW-12-1128

Pesticides/PCBs: 9 aqueous/MW-09-1127, MW-01-1128, MW-10-1128, MW-109-1128, MW-

108-1128, SW-02-1128, SW-03-1128, MW-13-1128, SW-12-1128

Associated QC: SW-02-1128, SW-12-1128/Field duplicates

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data reviewer:	GC/MS by Elissa McDonagh		Date:_	02/13/96	
Nata reviewer:	Pest/PCB by Lorie MacKinnon		Date:	02/13/96	
			_		
Verified Bv:	Lorie MacKinnon	Date	e: 02/1	.3/96	

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: The VOA aqueous samples SW031128, MW131128 and TB-1129RE were analyzed one day outside of the required holding time. The VOA aqueous samples SW121128 and SW021128 were analyzed two days outside of the required holding time. It is recommended to estimate the detected and non-detected results (J1, UJ1).

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

- Value < CRQL; report CRQL followed by "U" (U5).
- · Value > CRQL and < action level; report value followed by "U" (U6).
- Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

The VOA, ABN and PEST laboratory method blanks and instrument blanks contained the following maximum quantities of contaminants:

Associated samples: All aqueous in SDG

Compound	Maximum	Action Level
Naphthalene	2 ug/L	10 ug/L
bis(2-ethylhexyl)phthalate	2 ug/L	20 ug/L
4,4'-DDT	0.011 ug/L	0.055 ug/L

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended: Naphthalene in samples MW1081128, MW091127, MW011128, MW101128 and MW1091128 and bis(2-ethylhexyl)phthalate in samples MW101128, MW1091128, MW131128, SW031128, SW021128 and SW121128 should be reported as the CRQL followed by a "U5". Bis(2-ethylhexyl)phthalate in samples MW1081128 and MW091127 should be reported as the CRQL followed by a "U6"(i.e., the CRQL has been raised and the value is considered to be non-detected).

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample)

It should be noted that there were no field blanks associated with the aqueous samples.

C. Trip blank contamination:

It should be noted that sample TB1129RE appears to have carryover from the

standard analyzed in the cell prior to the sample. Both initial and re-analysis are included in the package. The compounds detected in the re-analysis were not used to qualify the data.

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor:

VOA instrument "MSD2", initial calibration 12/01/95:

COMPOUND	IC (12/1/95)	CC (12/4/95)
Acetone		+
Associated samples:	All listed	MW091127, TB-1127

VOA instrument "MSD2", initial calibration 12/05/95:

<u>COMPOUND</u> .	IC (12/5/95)	cc (12/05/95)	CC (12/06/95)	cc (12/07/95)
Acetone 4-Methyl-2-Pentanone 2-Hexanone	+ + +	+ + +	+ + +	+ + +
Associated samples:	All listed	MW1081128 MW011128 MW101128 MW1091128	SW031128 MW131128 SW121128 TB-1129	SW021128 TB-1129RE

⁻ RF < 0.05; Estimate positive results (J2) and reject non-detects (R2) in the associated samples.

DATA ASSESSMENT

5. CALIBRATION

A. PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD of the initial calibration exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

VOA instrument "MSD2", initial calibration 12/01/95:

COMPOUND	$\frac{10}{(12/1/95)}$	<u>(12/4/95)</u>
Bromomethane Chloromethane Acetone	X X	X X
4-methyl-2-pentanone 2-Hexanone		X X
Associated samples:	All listed	MW091127, TB-1127 TB-1128

VOA instrument "MSD2", initial calibration 12/05/95:

COMPOUND	IC (12/5/95)	CC (12/05/95)	CC (12/06/95)	CC (12/07/95)
Bromomethane Vinyl Chloride m,p-xylene			x	X X X
Associated samples:	All listed	MW1081128 MW011128 MW101128	SW031128 MW131128 SW121128	SW021128 TB-1129RE

MW1091128 TB-1129

ABN instrument "5972-2", initial calibration 11/29/95:

 $\begin{array}{c|c} & \text{IC} & \text{CC} \\ \hline \text{COMPOUND} & (11/29/95) & (12/07/95) \\ \hline \text{3-Nitroaniline} & \text{X} \\ \end{array}$

0 1,101 041122110

Associated samples: All listed SW031128, MW131128, SW021128, SW121128

 X^- %RSD > 30% or %D > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

Pesticide Initial Calibration

Compound	<u>Date</u>	%RPD Column	Associated Samples
beta-BHC	12/14/95	20.4% DB-5	All samples

It is recommended to estimate all non-detected and detected (quantitated on the DB-5 column) results (UJ19, J19) for all SDG samples.

Analysis of the PEST Resolution Check Mixture yielded a 54% resolution between 4,4'-DDE and Dieldrin on the DB-05 column. It is recommended to estimate (J29) positive 4,4'-DDE and Dieldrin results quantitated off the DB-05 column. It is also recommended to estimate the non-detected Dieldrin results (UJ29) in the samples where 4,4'-DDE is detected. It should be noted that the data package narrative incorrectly reported the resolution problem with the compounds gammachlordane and 4,4'-DDE.

Pesticide Continuing Calibration

Compound	Standard/Time	%RPD Column	Associated Samples
beta-BHC	PEM01 12/14 17:31	30.0% DB-5	All samples
beta-BHC Endrin 4,4'-DDT	PEM02 12/15 02:12 PEM02 12/15 02:12 PEM02 12/15 02:12	40.0% DB-5 26.0% DB-5 27.0% DB-5	All samples All samples All samples

Therefore, all non-detected and detected compound results (quantitated off the DB-5 column) are estimated (J20, UJ20).

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery:

The VOA surrogate Toluene-d8 was over-recovered in the aqueous sample TB-1129. The sample was re-analyzed as is required. No action is recommended.

The ABN surrogate Terphenyl-d14 was under-recovered in the aqueous samples MW011128, MW091127 and MW101128. The ABN surrogates 2-Fluorobiphenyl and 2-Chlorophenol-d4 were under-recovered in the aqueous sample SW031128. No action is required.

The PEST surrogates TCX and DCB were under-recovered (TCX, 36% and 55%, DCB 55%) in sample SW-03-1128. It is recommended to estimate positive and non-detected results (J8, UJ8) for that sample.

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance: All internal standard criteria were met.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification: No compounds were qualified due to compound identification.

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </= 25%. The following analytes in the samples shown were qualified because of compound identification:

It should be noted that 4, 4'-DDD had a %D >90% in most samples and was rejected. Upon review of the sample chromatograms, it appears that there is a interferant peak present which is slightly resolved on the DB-05 column. The laboratory is able to integrate and report the peaks separately, although due to the compression of the chromatogram, the validator was not able to check the accuracy of the integration. On the DB-17 column, however, it appears that the 4,4'-DDD and interferant peak co-elute and the two compounds are reported as 4,4'-DDD. Due to the discrepancy, the %D is high. The results with high %D are rejected as the validator is unable to confirm which of the two peaks (in the DB-5 chromatograms) is 4,4'-DDD.

```
MW108-1128 4,4'-DDD (214.8%, R25)

MW09-1127 4,4'-DDD (138.1%, R25)

MW01-1128 4,4'-DDD (141.2%, R25)

4,4'-DDT (41.9%, J25)

MW01-1128DL 4,4'-DDE (66.7%, JN25)

4,4'-DDD (230.8%, R25)

MW10-1128 4,4'-DDD (147.2%, R25)

MW109-1128 4,4'-DDD (376.9%, R25)
```

```
Attachment 1, SOP No. HW-6
SDG No: AC787/155787/155816
```

SW03-1128 4,4'-DDD (225.0%, R25) 4,4'-DDT (52.5%, JN25)

SW03-1128DL 4,4'-DDE (120.3%, R25) 4,4'-DDD (300.0%, R25)

MW13-1128 4,4'-DDD (71.0%, JN25)

SW02-1128 4,4'-DDD (833.3%, R25) 4,4'-DDT (42.9%, J25) alpha-chlordane (205.9%, R25)

SW02-1128DL 4,4'-DDD (226.1%, R25) 4,4'-DDE (35.1%, J25)

SW12-1128 4,4'-DDD (1366.7%, R25) 4,4'-DDT (30.0%, J25) Endrin (990.9%, R25)

SW12-1128DL 4,4'-DDD (167.6%, R25) 4,4'-DDE (33.8%, J25)

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

4,4'-DDT (36%) was recovered outside of the QC limits in the matrix spike duplicate performed on PEST fraction sample MW-09-1127. It is recommended to estimate (J10) the 4,4'-DDT result in the sample. The %RPD for Dieldrin was high (21%) in the PEST MS/MSD pair. As Dieldrin was not detected in the native sample, there in no action.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. It should be noted that the laboratory reference spectra for 2-Butanone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation).

The Tentatively Identified Compound forms (1E and 1F) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

The spectra for the detected Phenol in samples MW1091128, SW021128 and SW121128 should have been cleaned before reported.

The spectra for the detected 2-Butanone in sample MW091127 should have been cleaned before reported.

It should be noted that the %RPD for ABN compounds Naphthalene and 2-Methylnaphthalene was greater than 30% in the field duplicate pair SW-02-1128 and SW-12-1128. It is recommended to estimate (J13) the detected results for those compounds in the sample and field duplicate.

It should be noted that the %RPD for 4,4'-DDT was high (58.5%) in the field duplicate pair SW-02-1128 and SW-12-1128. It is recommended to estimate (J13) 4.4'-DDT in the sample and duplicate.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

Volatiles:

TB-1129, TB-1129RE

Use the positive and non-detected results from the original analysis

Pesticides:

MW-01-1128, MW-01-1128DL

Use 4,4'-DDD (rejected) and 4,4'-DDT result from diluted analysis. Use all other detected and non-detected results from the original analysis.

SW-03-1128, SW-03-1128DL

Use 4,4'-DDD (rejected) and 4,4'-DDT result from diluted analysis. Use all other detected and non-detected results from the original analysis.

SW-02-1128, SW-02-1128DL

Use 4,4'-DDD (rejected) and 4,4'-DDT result from diluted analysis. Use all other detected and non-detected results from the original analysis.

SW-12-1128, SW-12-1128DL

Use 4,4'-DDD (rejected) and 4,4'-DDT result from diluted analysis. Use all other detected and non-detected results from the original analysis.

DATA ASSESSMENT

Tentatively Identified Compounds

Compound	MW1081128	MW091127	MW011128	MW101128	MM091128
	ug/L	ug/L	ug/L	ug/L	ug/L
VOA Unknown ABN Unknown unk. decanoic acid C14H10CL4 isomer unk. phthalate 1,1-Dichloro-2,2- bis(p-chlor)	X(3)	X(2) XX(10)	X(6) XX(8) X(5) XX(7) X(3)	XX(7)	X(4)

Compound	<u>SW031128</u> ug/L	MW131128 ug/L	SW021128 ug/L	<u>SW121128</u> ug/L
VOA Unknown ABN Unknown C14H10CL4 isomer unk. alkane unk. cyclohexane Decane-trimethyl-isomer	X(4)	XX(50) XX(45) X(10) X(8)	XX(48) X(8) X(21) XX(44)	X(24)
C13H28 isomer VOA Benzene-ethyldimethyl iso ABN Benzene-ethyldimethyl iso Benzene-trimethyl isomer Benzene-tetramethyl isomer C10H8 isomer C10H12 isomer		X(7)	X(30) X(11) XX(28) X(140)	XX(218) XX(25) XX(31) X(45) X(100)
VOA C10H14 isomer ABNC10H14 isomer Benzene isomer VOA C11H16 isomer	X(6)		XX(79) XX(44) X(8) XX(74)	XX(150) X(15) XX(106)
ABN C11H16 isomer Naphthalene-methyl isomer Naphthalene-dimethyl isomer Benzene-methyl-propyl isomer Benzene-methyl-methylethyl is			X(8) X(18) XX(104)	X(12) XX(104) X(7) X(10)
Chlorophenothane Undecyclohexane Naphthalene,1,2,3,4-tetrahyd	X(7) ro	X(8)	X(22)	X(28)

- Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

Metal Appendices, SOP No: HW-2

SDG No: ANE787/ANE816

Page 18

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No.155787/816 SDG No. ANE787/ANE816 Laboratory Envirotest Lab.

Site <u>Stewart ANG</u> Contractor <u>Aneptek</u> Reviewer Lorie MacKinnon

Matrix: 18 aqueous

Data Assessment:

The SDG ANE787/ANE816 contains the following samples for analysis:

Metals/CN:

ANE787 10 aqueous/TMW-09-1127, TMW-01-1128, TMW-10-1128, TMW-109-1128, TMW-108-1128, DMW-09-1127, DMW-01-1128, DMW-10-1128, DMW-109-1128, DMW-108-1128

ANE816 8 aqueous/TSW-02-1128, TSW-03-1128, TMW-13-1128, TSW-12-1128, DSW-02-1128, DSW-03-1128, DMW-13-1128, DSW-12-1128

Associated QC:

TSW-02-1128, TSW-12-1128, DSW-02-1128, DSW-12-1128/Field

duplicates

It should be noted that the validator assigned the samples for Total metals analysis the "T" prefix and the samples for dissolved metals analysis the "D" prefix.

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable. Data

Metal Appendices, SOP No: HW-2

SDG No: ANE787/ANE816

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding times
 - Calibration verification results
- * Blank analysis
- Interference check standard results
 - Matrix spike results
 - Duplicate analysis results
 - Field duplicate analysis
- * . Laboratory control sample results
 - Furnace AA results
 - ICP serial dilution results
- Detection limit results
 - Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Calibration Verification

ANE 787

The CRDL standard for Silver was over-recovered at 123.7%. Results near the CRDL may be biased high. Estimate (J2) positive Silver results which are less than 4xCRDL of 40 ug/L. Based on this action level, the Silver result for sample TMW09-1127 is estimated.

ANE 816

The CRDL standard for Silver was over-recovered at 121.4%. Results near the CRDL may be biased high. Estimate (J2) positive Silver results which are less than 4xCRDL of 40 ug/L. Based on this action level, the detected Silver results for all samples in ANE816 are estimated.

The 2xCRDL standard for Chromium was under-recovered at 75.5%. Results near the CRDL may be biased low. Estimate positive and non-detected (J2, UJ2) Chromium results which are less than 4xCRDL of 40 ug/L. Based on this action level, the Chromium results for all samples in ANE816 are estimated.

It should be noted that the low standard of 5 ug/L was used for the Lead analysis, instead of the CRDL of 3 ug/L. As the lead CRA standard recovery was within control limits, there is no action.

SDG No: ANE787/ANE816

Blanks

It should be noted that in the ANE787 data report, the vanadium blanks were incorrectly reported on the Form 3s. The validator edited the forms. In the ANE 816 data report, the Form 3 lists the continuing blank CCB6 for Lead at 6.2~ug/L. The validator reviewed the raw data and found that the blank in question was detected below the CRDL at 0.3~ug/L. The validator edited the Form 3.

Matrix Spike Recoveries

ANE 787

Selenium (71.4%) and Zinc (54.2%) were recovered outside of the control limits in the matrix spike performed on total metals sample TMW-09-1127. Due to a possible low bias, all Selenium and Zinc results are estimated (J5, UJ5) for total metals samples in the SDG. Zinc (53.7%) was recovered outside of the control limits in the matrix spike performed on dissolved metals sample DMW-09-1127. Due to a possible low bias, all Zinc results are estimated (J5, UJ5) for dissolved metals samples in the SDG.

ANE 816

Selenium (50.8%), Thallium (58.0%) and Zinc (53.0%) were recovered outside of the control limits in the matrix spike performed on total metals sample TSW-03-1128. Due to a possible low bias, all Selenium, Thallium and Zinc results are estimated (J5, UJ5) for all metals samples in the SDG.

Laboratory Duplicate Analysis

ANE787

Laboratory duplicates were performed for both total and dissolved samples. The %RPD for Zinc (78.7%) in the laboratory duplicate analysis performed on DMW-09-1127 was outside of control limits. It is recommended to estimate (J6) zinc results for the dissolved metals samples.

It should be noted that the vanadium laboratory duplicates were incorrectly reported on the Form 6. The duplicate values were within the CRDL, therefore not requiring the "*" qualifier. The validator removed the "*" qualifier from the Form I's of the associated samples.

ANE816

A laboratory duplicate was performed on sample TSW031128 to be associated with all SDG ANE816 samples. The %RPD for Zinc (72.1%) in the laboratory duplicate analysis performed on TSW-03-1128 was outside of control limits. It is recommended to estimate (J6) zinc results for all SDG samples.

Metal Appendices, SOP No: HW-2

SDG No: ANE787/ANE816

Field Duplicates

The %RPD for Zinc (66.9%) in the field duplicate pair of TSW-02-1128 and TSW-12-1128 was outside of control limits. It is recommended to estimate (J7) all Zinc results for the total metals analysis samples. The %RPD for Zinc (119.1%) in the field duplicate pair of DSW-02-1128 and DSW-12-1128 was outside of control limits. It is recommended to estimate (J7) all Zinc results for the dissolved metals analysis samples.

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate injections agreed within +/- 20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exceptions:

ANE787

<u>Analyte</u>	Sample ID	Recovery	Action
Selenium	TMW-01-1128	83.3%	J10, UJ10
Thallium Thallium Thallium Thallium	TMW-01-1128 TMW-10-1128 TMW-109-1128 DMW-108-1128	130.5% 117.5% 125.1% 124.9%	U, No Action U, No Action U, No Action U, No Action
ANE816			
<u>Analyte</u>	Sample ID	Recovery	<u>Action</u>
Arsenic	DSW-02-1128	119.1%	U, No Action
Selenium Selenium Selenium Selenium Selenium Selenium Selenium	TSW-03-1128 TMW-13-1128 TSW-02-1128 TSW-12-1128 DSW-03-1128 DSW-12-1128 DSW-02-1128	52.2% 81.4% 69.1% 67.5% 68.6% 59.1% 63.0%	J10, UJ10 J10, UJ10 J10, UJ10 J10, UJ10 J10, UJ10 J10, UJ10 J10, UJ10
Thallium Thallium	TMW-13-1128 DMW-13-1128	128.4% 144.7%	U, No Action U, No Action

It should be noted that the "W" qualifier was not present for Selenium on the Form I for sample DSW-02-1128. The validator edited the Form I. It should be noted that in the Form 14 for the Lead analysis dated 12/14/95, an analytical spike was not listed in the run for sample TSW-03-1128. The validator reviewed the raw data and found the analytical spike to be present and within control limits. The Form 14 was edited.

Metal Appendices, SOP No: HW-2

SDG No: ANE787/ANE816

ICP Serial Dilution

ANE787

A serial dilution was performed on sample TMW-09-1127. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Potassium (10.3%). As 10XIDL was less than the CRDL, all Potassium results in SDG 787, greater than the CRDL, are estimated (J12).

ANE816

A serial dilution was performed on sample TSW-03-1128. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Barium (37.6%), Copper (72.4%), Potassium (21.9%) and Vanadium (15.3%). As 10XIDL was less than the CRDL in all cases, all Barium, Copper, Potassium and Vanadium results in SDG 816, greater than the CRDL are estimated (J12).

Total and Dissolved Metals comparison

A comparison of the total and dissolved metals results was performed. If the concentration of any dissolved analyte was greater than its total concentration by more than 10%, both were estimated (J17). If the concentration of any dissolved analyte was greater than its total concentration by more than 50%, both were rejected (R17). The following table lists the analytes out of control limits in the sample pairs.

Sample Pair	<u>Analyte</u>	%Greater	Action
TMW108-1128/DMW108-1128	Zinc	43.5%	J17
TMW-01-1128/DMW-01-1128	Zinc	29.8%	J17
TMW-09-1127/DMW-09-1127	Zinc	11.7%	J17
TMW109-1128/DMW109-1128	Manganese Sodium	22.8% 10.2%	J17 J17
TSW-12-1128/DSW-12-1128	Zinc	53.0%	R17

Calculation and Transcription Check

A transcription error was found in the Lead results for samples TMW109-1129 and DMW108-1128. Both are undetected, but are reported down to the wrong instrument detection limit. The Form I's were edited. A transcription error was found in the Mercury result for sample TMW-09-1127. The reported result was undetected 0.20 U. However, upon review of the raw data, the validator found that the sample result was detected at 0.23 ug/L. The Form I was edited.

Page 23

Metal Appendices, SOP No: HW-2

SDG No: ANE787/ANE816

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE787/ANE816 Date: 02/13/96 Laboratory Envirotest Lab.

Reviewer's Initials: LAM Number of samples 18 aqueous

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Diss/ Total	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	2	0	0	324	2
Furnace	0	0	0	0	0	72	0
Mercury	0	0	0	0	0	18	0
Cyanide	0	0	0	0	0	18	0

Page 24

Metal Appendices, SOP No: HW-2 SDG No: ANE787/ANE816

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	17	0	0	0	16	0
Furnace	0	0	0	0	0	29	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Diss/ total	Serial Dil.	MSA	Total Analytes	Estimation
ICP	16	11	10	7	0	324	77
Furnace	0	0	0	0	0	72	29
Mercury	0	0	0	0	0	18	0
Cyanide	0	0	0	0	0	18	0

Metal Appendices, SOP No: HW-2

SDG No: ANE787/ANE816

CLP DATA ASSESSMENT

Appendix	A.6:	CLP	Data	Assessment	Checklist:
----------	------	-----	------	------------	------------

p. p							
INORGANIC REGI	ONAL DATA AS	SSESSMENT	REGION 2				
SDG NO. ANE787/ANE816	SITE_	STEWART AND	J.				
LABORATORY ENVIROTEST LABORA	TORIES, INC						
NO. OF SAMPLES/MATRIX 18 AQU	EOUS						
REVIEWER'S NAME LORIE A. MAC	KINNON						
<u>D</u> A	ATA ASSESSME	NT SUMMARY					
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>			
HOLDING TIMES	1_	1	1		1_		
CALIBRATIONS	1	1_	1_		1		
BLANKS	1_	1_	1_		<u>l</u> _		
INTERFERENCE	1_						
DUPLICATE ANALYSIS	1_	1_	1_		1_		
MATRIX SPIKE	1	1	1_		1_		
MSA, ANALYTICAL SPIKE ANALYSIS1							
SERIAL DILUTION	1_						
SAMPLE VERIFICATION	1	1	1_		1		
OTHER QC	1_	1_	1_		1_		
OVERALL ASSESSMENT	1_	1	1_		1_		

^{1 -} Data has no problems/or qualified due to minor problems.

^{2 -} Data qualified due to major problems.

^{3 -} Data unacceptable.

^{4 -} Problems, but do not affect data.

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

- SDG No: 155787/155816
- One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.
- J15, UJ15 One or more of the Internal standard (IS) areas was less than the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- J22 The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual column analysis %D is between 50 90%; compound result is qualified

SDG	No:	155787	/155816
. 117(1	INU.	100101	, 100010

as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.

R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.

R28 Quality of Spectra submitted poor for compound in question: reject compound result.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5% the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- J9 The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated or rejected based on %D.

Page 30 SDG No: 155787/155816 The sample was less than 50% solids. Analysis using a method J13 intended for soils might not give representative results. results are estimated. Matrix spike not performed for analysis or performed on a field J14 blank. Estimate positive results less than four times the spike level added based on lack of accuracy data. Laboratory duplicate not performed for analysis or was performed on J15 field blank. Estimate positive results greater than the CRDL based on lack of precision data. ICP serial dilution was not performed or was performed on field J16 Estimate results greater than 10XIDL or greater than the CRDL for which an ISD was not performed. A comparison of the total and dissolved analytes was performed. J17, R17 the concentration of any dissolved analyte was greater than its total concentration by more than 10% both were estimated. If the

concentration by more than 50% both were rejected.

concentration of any dissolved analyte was greater than its total

DATA VALIDATION REPORT

SDG No.: 154598/154678

Site: Stewart ANG, Newburgh NY

DATE: March 5, 1996

TABLE OF CONTENTS

<u>Pag</u>	ge
ORGANIC DATA	. 2
INORGANIC DATA	16
VALIDATION FOOTNOTES	23
Prepared by:	
GC/MS Section prepared by:	
Elissa McDonagh	
Inorganic and Pesticide/PCB Section prepared by:	
Lorie MacKinnon	

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No.154598/678 SDG No. 598/678 Laboratory Envirotest Lab. Site Stewart ANG

Data Assessment:

The SDG 154598/678 contains the following samples for analysis:

Volatiles:

4 soil/MW-02-17, MW-02-31, MW-03-22, MW-03-32

2/aqueous/TRIP BLK01, TRIP BLK02

Semi-volatiles:

4 soil/MW-02-17, MW-02-31, MW-03-22, MW-03-32

Pesticides/PCBs: 4 soil/MW-02-17, MW-02-31, MW-03-22, MW-03-32

The current Functional Guidelines for evaluating organic data have been applied.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data	reviewer:	GC/MS by	Elissa McDonagh	Date:	03/05/96	

Data reviewer: Pest/PCB by Lorie MacKinnon Date: 03/05/96

Verified By: Lorie MacKinnon Date: 03/05/96

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

The following analytes in the samples shown were qualified because of holding time: All samples were extracted and analyzed within the required holding times.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

- Value < CRQL; report CRQL followed by "U" (U5).
- Value > CRQL and < action level; report value followed by "U" (U6).
- · Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

The VOA, ABN and PEST laboratory method blanks and instrument blanks contained the following maximum quantities of contaminants:

PEST BLK03 - Associated samples: MW-02-17 and MW-02-31

Compound	Maximum	Action Level
Heptachlor	0.30 ug/kg	1.5 ug/kg

PEST BLK04 - Associated samples: MW-03-22 and MW-03-32

<u>Compound</u>	Maximum	Action Level	
Heptachlor 4,4'-DDD 4,4'-DDT	0.37 ug/kg 1.2 ug/kg 2.0 ug/kg	1.85 ug/kg 6.0 ug/kg 10 ug/kg	

Associated samples: All SEMI and VOA samples in SDG

Compound	Maximum	<u>Action Level</u>	
Methylene Chloride	2 ug/kg	20 ug/kg	
Acetone	17 ug/kg	170 ug/kg	
Xylenes	1 ug/kg	5 ug/kg	
di-n-butyl phthalate	44 ug/kg	440 ug/kg	

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended: Methylene Chloride in samples MW-02-17 and MW-03-22, Acetone in samples MW-03-22

and MW-03-32, Xylenes in samples MW-02-17, MW-02-31 and MW-03-32, di-n-butyl phthalate in samples MW-02-17, MW-02-31, MW-03-22 and MW-03-32 and Heptachlor in samples MW-03-22, MW-03-32 and MW-02-31 should be reported as the CRQL followed by a "U5". Acetone in samples MW-02-17 and MW-02-31 and 4,4'-DDD and 4,4'-DDT in sample MW-03-32 should be reported as the CRQL followed by a "U6"(i.e., the CRQL has been raised and the value is considered to be non-detected).

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample)

It should be noted that there are no field or rinse blanks associated with the samples in the SDG.

C. Trip blank contamination:

No compounds were detected.

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor:

ABN instrument "5972-1", initial calibration 10/04/95:

COMPOUND	IC (10/04/95)	CC (11/02/95)	CC (11/08/95)
3-Nitroaniline 4-Nitrophenol		+	+
Associated samples:	All listed	MW-02-17 MW-02-31	MW-02-17DL MW-03-22 MW-03-32

^{+ -} RF < 0.05; Estimate positive results (J2) and reject non-detects (R2) in the associated samples.

DATA ASSESSMENT

5. CALIBRATION

A. PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and non-detected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

ABN instrument "5972-1", initial calibration 10/04/95:

COMPOUND	IC (10/04/95)	CC (11/02/95)	CC (11/08/95)
2,2'-oxybis-			X
(1-chloropropane)		37	v
4-Cloroaniline		X	X
Hexachlorocyclopentadiene			X
2-Nitroaniline		X	X
3-Nitroaniline	X	Х	
2,4-Dinitrophenol	X		X
4,6-Dinitro-2-methylphenol			X
Carbazole		X	
Pentachlorophenol	X		
3,3'-Dichlorobenzidine		X	
Di-n-octylphthalate		X	
Associated samples:	All listed	MW-02-17 MW-02-31	MW-02-17DL MW-03-22 MW-03-32

 χ - %RSD > 30% or %D > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

Attachment 1, SOP No. HW-6 SDG No: 154598/678

Compound	Standard/Time	%RPD Column	<u>Associated Samples</u>
alpha-BHC beta-BHC Endrin 4,4'-DDT Methoxychlor	PEM01 11/15 11:32 PEM01 11/15 11:32 PEM01 11/15 11:32 PEM01 11/15 11:32 PEM01 11/15 11:32	40.0 DB-5 34.0 DB-5 41.0 DB-5	All samples All samples All samples All samples All samples
beta-BHC	PEM02 11/15 20:11	30.0 DB-5	All samples
alpha-BHC Endrin 4,4'-DDT Methoxychlor	PEM01 11/15 11:32 PEM01 11/15 11:32 PEM01 11/15 11:32 PEM01 11/15 11:32	32.0 DB-17 39.0 DB-17	All samples All samples All samples All samples

Therefore, all non-detected and positive alpha-BHC, beta-BHC, Endrin, 4,4'-DDT and Methoxychlor results are estimated (J20, UJ20).

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery: All surrogate recoveries were within validation guidelines.

It should be noted that the incorrect percent recovery information appears on the raw data for the pesticide soil fractions. Recoveries were double those listed on the Form II's. No action is taken.

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance: All internal standard criteria were met.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification: No compounds were qualified due to compound identification.

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </=25%. The following analytes in the samples shown were qualified because of compound identification:

MW-02-17 - 4,4'-DDE (63.6%, JN25), 4,4'-DDD (87.5%, JN25 Over-calibrated), 4,4'-DDT (42.9%, J25 over-calibrated), alpha-chlordane (68.8%, JN25).

MW-02-17DL 4,4'-DDD (57.3%, JN25)

MW-02-31 - 4,4'-DDE (212.5%, R25), 4,4'-DDD (58.3%, JN25)

MW-03-22 - 4,4'-DDE (237.8%, R25), 4,4'-DDD (100.0%, R25), 4,4'-DDT (28.8%, J25)

MW-03-32 - 4,4'-DDD (48.8%, J25)

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD:

There was insufficient sample to prepare an ABN matrix spike/matrix spike duplicate. Therefore, the MS/MSD was prepared using laboratory reagent. The %RPD for ABN matrix spike compound 1.2.4-Trichlorobenzene was greater than the CRR. No action is recommended.

It should be noted that the PEST MS/MSD was performed as batch QC. Gamma-BHC (42%) was outside of recovery limits in the MS and the %RPDs for gamma-BHC (72%), Heptachlor ((70%), Aldrin ((70%), Dieldrin (75%), Endrin (69%) and 4.4'-DDT (76%) were outside of control limits. There is no action taken as validation actions affect the native sample only.

It should be noted that the PEST samples were extracted on 10/23 and 10/26 without an associated blank spike. The blank spike submitted in the package was extracted on 10/20. No action is recommended.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality. The m/z ion 58 was used to quantitate acetone (the SOP requests the 43 ion to be used for quantitation).

The Tentatively Identified Compound forms (1E and 1F) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

It should be noted that in the PEST analytical sequence, there are 13 hours between the analysis of the instrument blanks and standards. No action is recommended.

It should be noted that the unknown for TRIP BLK02 is not present and should not be reported.

It should be noted that there were no field duplicates associated with this SDG.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

ABN:

MW-02-17, MW-02-17DL

Use the positive results for the compounds Naphthalene and 2-Methylnaphthalene from the diluted analysis.

Use all other positive and non-detected results from the original analysis.

Pesticides:

MW-02-17, MW-02-17DL

Use 4,4'-DDD and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

DATA ASSESSMENT

Tentatively Identified Compounds

Compound	MW-02-17 ug/kg	MW-02-31 ug/kg
VOA Unknown	XX(1050)	XX(19)
ABN Unknown	XX(7520)	
unknown alkane	X(820)	
Benzene,-trimethyl isomer	XX(1880)	
ethyldimethyl benzene isomer	X(440)	
Tetramethyl benzene isomer	XX(640)	
VOA C10H12 isomer	XX(1640)	X(6)
ABN C10H12 isomer	X(1580)	
VOA C11H14 isomer	X(210)	
ABN C11H14 isomer	X(700)	
C11H10 isomer	X(300)	
VOA C11H16 isomer	XX(720)	
ABN C11H16 isomer	X(780)	
unknown hydrocarbon	X(480)	
VOA Naphthalene,-methyl isomer	•	XX(16)
ABN Naphthalene,-methyl isomer	X(1420)	
Naphthalene, -dimethyl isomer	XX(1040)	
DDT isomer	X(6000)	
Tetradecane	X(540)	
1,1-Dichloro-2,2-bis(p-chlor)	X(9200)	

- X Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

Metal Appendices, SOP No: HW-2

SDG No: 154598/154678

Page 16

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No. 154598/678 SDG No. ANE 290/678 Laboratory Envirotest Lab. Site Stewart ANG

Contractor Aneptek Reviewer Lorie MacKinnon

Matrix: 4 Soil

Data Assessment:

The SDG 154598/154678 contains the following samples for analysis:

Metals/CN:

4 soil/SDG ANE290 MW-02-17, MW-02-31, SDG NYG678 MW-03-22, MW-

03-32

TOC:

4 soil/MW-02-17, MW-02-31, MW-03-22, MW-03-32

It should be noted that there are no field duplicates or field blanks associated with the samples in this SDG.

The current Functional Guidelines for evaluating inorganic data have been applied.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

- J, UJ This flag indicates the result qualified as estimated.
- R This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable. Data

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- Data Completeness
- Holding times
 - Calibration verification results
- * Blank analysis
- Interference check standard results
 - Matrix spike results
- Duplicate analysis results

Metal Appendices, SOP No: HW-2

SDG No: 154598/154678

NA • Field duplicate analysis

- Laboratory control sample results
 - Furnace AA results
 - ICP serial dilution results
 - Detection limit results
- Calculation and transcription checks
- * all criteria were met for this parameter.

NA - Not applicable.

Validation actions were taken based on the following information:

Calibration Verification

ANE 290

The 2xCRDL standard for Antimony was under-recovered at 77.3%. Results near the CRDL may be biased low. Estimate positive and non-detected (J2, UJ2) Antimony results which are less than 4xCRDL of 48 mg/kg or 240 ug/L. Based on this action level, Antimony results for samples MW-02-17 and MW-02-31 are estimated.

The CRA standard for Lead was over-recovered at 123.7%. Results near the CRDL may be biased high. Estimate (J2) positive Lead results which are less than 2xCRDL of 1.2 mg/kg or 6 ug/L. However, as the sample lead results are greater than this level, there is no action.

NYG678

The 2xCRDL standard for Chromium was over-recovered at 136.2%. Results near the CRDL may be biased high. Estimate positive (J2) Chromium results which are less than 4xCRDL of 8 mg/kg. Based on this action level, no actions are taken.

The CRA standard for Selenium was over-recovered at 143.4%. Results near the CRDL may be biased high. Estimate (J2) positive Selenium results which are less than 2xCRDL of 2.0 mg/kg. However, as the sample Selenium results were undetected, there is no action.

It should be noted that the low standard of 5 ug/L was used for the Lead calibration, instead of the CRDL of 3 ug/L. As all lead results are greater than 5X the CRDL, there is no action.

Matrix Spike Recoveries

ANE290

Antimony (50.2%), Lead (133.9%) and Thallium (52.3%) were recovered outside of the control limits in the matrix spike performed on sample SB-05-02. Due to

a possible low bias, all Antimony and Thallium results are estimated (J5, UJ5). Due to a possible high bias, all positive Lead results are estimated (J5).

NYG678

Antimony (50.5%), Selenium (64.5%), Manganese (169.8%) and Thallium (66.3%) were recovered outside of the control limits in the matrix spike performed on sample MW-03-22. Due to a possible low bias, all Antimony, Selenium and Thallium results are estimated (J5, UJ5). Due to a possible high bias, all positive Manganese results are estimated (J5).

Laboratory Duplicate Analysis

It should be noted that the Lead results for SDG NYG678 were found with the "*" qualifier, indicating poor duplicate precision. The %RPD was found to be below 20%. The validator therefore removed the "*" qualifiers from the Lead results.

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate injections agreed within +/- 20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exception:

<u>Analyte</u>	Sample ID	Recovery	Action
Selenium	MW0332	80.8%	J10, UJ10
Thallium Thallium Thallium Thallium	MW0217 MW0231 MW0322 MW0332	81.6% 77.7% 80.3% 73.9%	J10, UJ10 J10, UJ10 J10, UJ10 J10, UJ10

ICP Serial Dilution

ANE290

A serial dilution was performed on sample SB-05-02. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Potassium (24.5%) and Zinc (19.6%). As 10XIDL was less than the CRDL in all cases, all Potassium and Zinc results greater than the CRDL are estimated (J12). Based on the sample levels, the Zinc results for the SDG samples and the Potassium result for sample MW-02-31 are estimated.

NYG678

A serial dilution was performed on sample MW-03-22. For initial

Metal Appendices, SOP No: HW-2 Page 19

SDG No: 154598/154678

Detection Limit Results

It should be noted that ICP sample MW-02-31 was diluted (2X) as the Iron level exceeded the calibration range. The diluted results for all ICP analytes were reported, thus elevating the instrument detection limits (IDL) for all ICP analytes for the samples. A prescan was performed with the samples undiluted, however the laboratory did not submit it in the data package according to the SOW. No action is taken, as the non-detected results were less than the CRDL in all cases.

It should be noted that the Selenium and Thallium results for samples MW-02-17 and MW-02-31 were reported down to the wrong instrument detection limits. The raw data and Form 10s were reviewed the Form I results were edited.

Page 20

Metal Appendices, SOP No: HW-2

SDG No: 154598/154678

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: 154598/678 Date: 03/05/96 Laboratory <u>Envirotest Lab.</u>
Reviewer's Initials: <u>LAM</u> Number of samples <u>4 soil</u>

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	0	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	0	0	0	72	0
Furnace	0	0	0	0	0	16	0
Mercury	0	0	0	0	0	4	0
Cyanide	0	0	0	0	0	4	0

Page 21

Metal Appendices, SOP No: HW-2

SDG No: 154598/154678

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	2	0	0	0	6	0
Furnace	0	0	0	0	0	13	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Det. Limit	Serial Dil.	MSA	Total Analytes	Estimation
ICP	0	0	0	3	0	72	11
Furnace	0	0	0	0	0	16	13
Mercury	0	0	0	0	0	4	0
Cyanide	0	0	0	0	0	4	0

Metal Appendices, SOP No: HW-2

SDG No: 154598/154678

CLP DATA ASSESSMENT

Appendix	A.6:	CLP	Data	Assessment	Checklist:
----------	------	-----	------	------------	------------

INORGANIC REGI	ONAL DATA AS	SSESSMENT	REGION 2	
SDG NO. 154678/154678	SITE_	STEWART AND	1	
LABORATORY ENVIROTEST LABORA	TORIES, INC		- 1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (· .
NO. OF SAMPLES/MATRIX 4 SOIL				
REVIEWER'S NAME LORIE A. MAC	KINNON			
DA	ATA ASSESSMEN	NT SUMMARY		
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>
HOLDING TIMES	1_	1_	1	1
CALIBRATIONS	1	1_	1	1_
BLANKS	1	1	1	1
INTERFERENCE	1			
DUPLICATE ANALYSIS	1	1	1	1
MATRIX SPIKE	1	1	1	1_
MSA, ANALYTICAL SPIKE ANALYSI	S	1		
SERIAL DILUTION	1			
SAMPLE VERIFICATION	1	1	1	1
OTHER QC	1_	1	1	1
OVERALL ASSESSMENT	1	1	1	1

^{1 -} Data has no problems/or qualified due to minor problems.

^{2 -} Data qualified due to major problems.

^{3 -} Data unacceptable.

^{4 -} Problems, but do not affect data.

SDG No: 154290/372

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- J13 Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

SDG No: 154290/372 Page 24

One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.

- J15, UJ15 One or more of the Internal standard (IS) areas was less than the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- J22 The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual column analysis %D is between 50 90%; compound result is qualified

as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

- R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.
- R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.
- Quality of Spectra submitted poor for compound in question: reject compound result.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5X the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- J/UJ6 The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- J9 The %RSD of duplicate injections for GFAA analysis do not agree within +/- 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated or rejected based on %D.

SDG No: 154290/372 Page 27

J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.

- J14, UJ14 Matrix spike not performed for analysis. Estimate results (J14, UJ14) based on lack of accuracy data.
- J15 Laboratory duplicate not performed for analysis. Estimate positive results (J18) greater than the CRDL based on lack of precision data.

SDG: SITE:

STEWART ANG BASE 154598/154678

VOLATILE SOIL ANALYSIS

11 05 11 U5 110 11 U 11 U 110 11 U 110 7 110 110 11 U 110 11 0 110 110 110 110 11 U 154678-02 MW-03-32 Ţ. 11 U5 154678-01 MW-03-22 17 UG 11 U 11 U 10 110 110 110 1 110 110 1 110 110 110 154598-02 MW-02-31 ENVIROTEST LABORATORIES, INC. 11 05 11 U 11.05 13 U6 110 11 U 7 110 11 U 110 110 **11** ∪ 110 110 110 11 U 110 110 154598-01 MW-02-17 55555 5 5555 555 0 9 SAMPLE NUMBER: SAMPLE LOCATION: trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane ,2-Dichloroethene (total) cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane 4-Methyl-2-Pentanone 1,1,2-Trichloroethane 1,1,1-Trichloroethane Sarbon Tetrachloride 1,2-Dichloropropane COMPOUND Methylene Chloride ,2-Dichloroethane Tetrachloroethene ,1-Dichloroethane ,1-Dichloroethene Carbon Disulfide Trichloroethene Chlorobenzene Chloromethane LABORATORY: Bromomethane Ethylbenzene **Fotal Xylenes** Vinyl Chloride Chloroethane 2-Hexanone 2-Butanone Bromoform Chloroform Benzene Toluene Acetone

DILUTION FACTOR:

SITE: SDG: LABORATORY:

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC.

VOLATILE AQUEOUS ANALYSIS (UG/L)

154678-03 TRIP BLK02		100	2 5	0 5	0.0	10 U	10 U	10 N	10 U	10 0					10 C	10 N	10 0	10 U	10 U	10 0	10 U	10 0	001	00,		100	10 0	10 0	100	100	100	100	0.00	0
154598-01 TRIP BLK01	-	100		000	10 U	10.0	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 C	100	0.01
	CRQL	9 9	2 5	10	9	9	10	5	9	10	9	9	9	9	9	10	10	9	10	10	9	10	9	10	10	10	10	9	9	9	9	9	ę <u>;</u>	10
SAMPLE NUMBER: SAMPLE LOCATION:		Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	Methylene Chloride	Acetone	Carbon Disulfide	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	2-Butanone	1,1,1-Trichloroethane	Carbon Tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Pentanone	2-Hexanone	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Total Xylenes

DILUTION FACTOR:

SITE: SDG: LABORATORY:

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC

SEMIVOLATILE SOIL ANALYSIS (ug/kg)

154678-02 MW-03-32	360 U 360 U 360 U	360 U 360 U	360 U 360 UJ4	360 U 360 U 360 L	360 U	0 098 300 C	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 UJ4	360 U	006 1	360 U 900 1.14	360 U	360 U	360 U	360 U	900 UJ4	900 OJ4
154678-01 MW-03-22	360 U 360 U 360 U	360 U 360 U	360 U 360 UJ4	360 U 360 U	300 C	360 U	360 U	360 U	360 U	360 U	360 UJ4	360 U	360 U	360 UJ4	360 U	006 006	360 U	360 U	360 U	360 U	360 U	900 UJ4	900 034
154598-02 MW-02-31	380 U 380 U 380 U	380 U	380 U 380 U	380 U 380 U	380 n	380 U	380 U	380 U	380 U	380 U 45	380 UJ4	380 U	380 U	380 U	380 U	O 096	380 U	380 U	380 U	380 U	380 U	960 R2	960 UJ4
154598-01 MW-02-17	370 U 370 U 370 U	370 U	370 U 370 U	370 U 370 U	370 U	370 U 370 U	370 U	370 U 370 U	280	370 U	370 UJ4	370 U	370 U	370 U	370 U	930 U	370 U	370 U	370 U	370 U	370 U	930 R2	930 UJ4
	330 330 330	330	330	330 330	330	330 330	330	330 330	330	330	330	330.	330	330 330	330	800	330	330	330	330	330	800	800
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND bis(2-Chloroethyl)ether Phenol	1,3-Dichlorobenzene	1,2-Dichlorobenzene 2 2-Oxvbis(1-chloropropane)	2-Methylphenol Hexachloroethane	N-Nitroso-di-n-propylamine 4-Methylphenol	Nitrobenzene	2-Nitrophenol	2,4-Dimethylphenol bis/2-Chloroethoxv)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Napntnalene 4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-Methylphenol	2-Methylnaphthalene Hexachlorocyclonentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene		Dimethylphthalate	2,6-Dinitrotoluene	Acenaphthene	3-Nitroaniline	2,4-Dinitrophenol

SITE: SDG: LABORATORY:

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES, INC

SEMIVOLATILE SOIL ANALYSIS (ug/kg)

154678-02 MW-03-32	- 000	360 0	900 G	360 U	360 U	360 U	O 006	900 UJ4	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 U5	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	7
154678-01 MW-03-22		360 U	360 C	36011	360 11	360 U	O 006	900 UJ4	360 U	360 U	360 U	900 UJ4	360 U	360 U	360 U	360 U5	360 U	360 U	360 U	360 U	360 U	360 U	72	360 U	360 U	360 U	360 U	360 U	360 U	360 U	•
154598-02 MW-02-31	- 4	380 U	380 0	380) I	380 U	N 096	O 096	380 U	380 U	380 U	960 UJ4	380 U	380 U	380 UJ4	380 NS	380 U	380 U	380 U	380 UJ4	380 U	380 U	51	380 UJ4	380 U	380 U	380 U	380 U	380 U	380 U	•
154598-01 MW-02-17		370 U	00/8	930 0	0.078	370 11	0 0 0 6 0 0 0 6	930 U	370 U	370 U	370 U	930 UJ4	79	370 U	370 UJ4	370 U5	370 U	370 U	370 U	370 UJ4	370 U	370 U	370 U	370 UJ4	370 U	370 U	370 U	370 U	370 U	370 U	
	CRQL	330	330	200	000	230	800	008	330	330	330	800	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	
SAMPLE NUMBER: SAMPLE LOCATION:	COMPOUND	Dibenzofuran	2,4-Dinitrotoluene	4-Nitrophenol	Fluorene	4-Chlorophenyl-Phenyletner	Dietriyiphitialate	4-jaiki daliilii ja 4 6-Dinitro-2-Methylphenol	N-nitrosodiohenvlamine(1)	4-Bromophenyl-Phenylether	Heyachlorobenzene	Pentachlorophenol	Phenanthrene	Anthracene	Carbazole	Di-n-hutvlphthalate	Fluoranthene	Dyrene	Rutylbenzylphthalate	3.3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene	Bis(2-ethylhexyl)phthalate	Di-n-octvlphthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)nyrene	Indeno(1.2.3-cd)byrene	Dibenz(a h)anthracene	Benzo(g,h,i)perylene	

DILUTION FACTOR:

STEWART ANG BASE 154598/154678 ENVIROTEST LABORATORIES INC. SITE: SDG: LABORATORY:

PESTICIDE/PCB SOIL ANALYSIS (ug/kg)

154678-02													3.6 UJ20																		
154678-01	MW-03-22		1.8 UJ20	1.8 UJ20	1.8 U	1.8 U	1.8 U5	1.8 U	1.8 U	1.8 U	3.6 U	0.74 R25	3.6 UJ20	3.6 U	21 R25	3.6 U	59 J20, 25	18 UJ20	3.6 U	3.6 U	1.8 U	1.8 U	180 U	36 U	72 U	36 U	36 U	36 U	36 U	36 U	
154598-02	MW-02-31		1.9 UJ20	1.9 UJ20	1.9 U	1.9 U	1.9 U5	1.9 U	1.9 U	1.9 U	3.8 U	0.32 R25	3.8 UJ20	3.8 U	24 JN25	3.8 U	40 J20	19 UJ20	3.8 U	3.8 U	1.9 U	1.9 U	190 U	38 U	77 U	38 U	38 U	38 U	38 U	38 U	
154598-01	MW-02-17	-	93 UJ20	93 UJ20	93 U	93 U	93 U	93 N	93 N	93 U	190 U	110 JN25	190 UJ20	190 U	8900 JN25	190 U	9400 J20	930 UJ20	190 U	190 U	16 JN25	63	9300 U	1900 U	3700 U	1900 U	1900 U	1900 U	1900 U	1900 U	
		CROL	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	3.3	3.3	3.3	3.3	3.3	3,3	3.3	17	3.3	3.3	1.7	1.7	170	33	29	33	33	33	ဗ္ဗ	33	
SAMPLE NUMBER:	SAMPLE LOCATION:	COMPOUND	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	Heptachlor Epoxide	Endosulfan I	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endofulfan Sulfate	4,4'-DDT	Methoxychlor	Endrin Ketone	Endrin Aldehyde	alpha-Chlordane	gamma-Chlordane	Toxaphene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	

20

DILUTION FACTOR:

ENVIROTEST LABORATORIES, INC. STEWART ANG BASE 154598/154678 SITE: SDG: LABORATORY:

INORGANIC SOIL ANALYSIS

CONTRACT	LIMITS (mg/kg)	40	12	7	40	_	~	1000	2	4	S	20	9.0	1000	က	0.1	∞	1000	~	2	1000	2	10	4	0.5	
154678-02 MW0332		0380	5.0 15	6.1	40.9	0.61	0.52 U	29900	12.2	8.6	18.5	18600	9.8	5460	498 J5	0.04 U	17.2	1020	0.3 UJ5, 10	0.41 U	30.4	0.26 J5, 10	11.5	46.9	1.1 U	J, UJ - QUANTITATION IS APPROXIMATE DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW). R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUMENT DETECTION LIMIT
154678-01 MW0322		7250	4.5 UJ5	3.9	24.7	0.55	0.52 U	21500	10.4	7.3	16.9	16400	10.1	4270	377 J5	0.04 U	15.7	290	0.3 UJ5	0.42	14.5	0.53 J5, 10	တ	45.2	1.10	J, UJ - QUANTITATION IS APPROXIMATE DUE QUALITY CONTROL REVIEW (DATA REVIEW) R - VALUE IS REJECTED. U - VALUE IS NON-DETECTED AT INSTRUME!
154598-02 MW0231		12500	9.7 UJ2. 5	5.1	82.9	0.5 U	1.1 U	24300	20.7	11.9	28.4	25900	17.6 J5	6930	299	0.04 U	23.9	1210 J12	0.32 U	0.87 U	49.8	0.25 UJ5, 10	13.7	79.2 J12	1.10	LUANTITATION IS A Y CONTROL REVIE JE IS REJECTED. JE IS NON-DETEC
154598-01 MW0217 ENT		7520	4.7 UJ2. 5	4	17.2	0.24 U	0.53 U	23400	11.6	7.5	18.2	16600	7.7 J5	5810	466	0.04 U	15.8	622	0.31 U	0.42 U	40.6	0.24 UJ5, 10	ω	40.6 J12	1.1 U	J. UJ QUALI' R VAI U VAI
1545 MW INSTRUMENT	LIMITS mg/kg	3 48	4.22	0.22	0.14	0.22	0.48	2.06	1.86	1.28	0.48	1.04	0.1	2.8	0.18	0.04	2.54	12.1	0.28	0.38	4.56	0.22	0.62	0.3	1.0	SAL METHOD FURNACE ICP/FLAME AA SOLD VAPOR COLORIMETRIC MICROWAVE DIGESTION AUTOMATED COLD VAPOR AA
ABER: ATION:	LEMENTS	۵	. С	L	۵	۵	<u>С</u>	۵	<u>α</u>	۵	C	<u>С</u>	ட	۵	۵	S	۵	<u>α</u>	ட	۵	۵.	ட	<u></u>	., С	ပ	CAL METHOD FURNACE ICP/FLAME AA COLD VAPOR COLORIMETRIC MICROWAVE DIGESTION AUTOMATED COLD VAPO
SAMPLE NUMBER: SAMPLE LOCATION:	INORGANIC ELEMENTS	Aluminum	Antimony	Arsenic	Barinm	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cyanide	ANALYICAL METHOD F - FURNACE P - ICP/FLAME A CV - COLD VAPOR C - COLORIMETI M - MICROWAVE AV - AUTOMATED

SITE: SDG: LABORATORY:

STEWART ANG 154598/154678 ENVIROTEST LABORATORIES, INC

TOC ANALYSIS

SAMPLE NUMBER: SAMPLE LOCATION:

TOC

154598-01 MW0217

154598-02 MW0231

0.83%

0.65%

154678-01 MW0322

154678-02 MW0332

0.67%

0.75%

DATA VALIDATION REPORT

SDG No.: AC177/159177

Site: Stewart ANG, Newburgh NY

DATE: May 7, 1996

TABLE OF CONTENTS

<u>SECTION</u> <u>Page</u>
ORGANIC DATA2
INORGANIC DATA18
VALIDATION FOOTNOTES25
Prepared by:
GC/MS Section prepared by:
An for Elissa McDongh
Elissa McDonagh
Inorganic and Pesticide/PCB Section prepared by:

Loui Mackinsin

Lorie MacKinnon

CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

Case No. 159177 SDG No. AC177 Laboratory Envirotest Lab. Site Stewart ANG Data Assessment:

The SDG AC177/159177 contains the following samples for analysis:

Volatiles:

10 aqueous/MW-01-0320, SW-02-0320, MW-13-0320, SW-12-0320, SW-03-0321, JMW-109-0321, MW-09-0321, MW-10-0321, JMW-108-0321,

TB-01

Semi-volatiles:

9 aqueous/MW-01-0320, SW-02-0320, MW-13-0320, SW-12-0320, SW-03-0321, JMW-109-0321, MW-09-0321, MW-10-0321, JMW-108-0321

Pesticides/PCBs:

9 aqueous/MW-01-0320, SW-02-0320, MW-13-0320, SW-12-0320, SW-

03-0321, JMW-109-0321, MW-09-0321, MW-10-0321, JMW-108-0321

Associated QC:

SW-02-0320, SW-12-0320/Field duplicates

MW-13-0320 MS/MSD

The validation was performed according to the CLP Organics Data Review and Preliminary Review, Standard Operating Procedure Number HW-5, Revision 8, dated January 1992.

All data are valid and acceptable except those analytes which have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detects), "R" (unusable), or "JN" (presumptive evidence for the presence of the material at an estimated value). All action detailed on the attached sheets. Spreadsheets containing the validated sample results are found at the end of the report.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present of not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data reviewe	er: GC/MS by Elissa McDonagh	Date:05/07/96
	er: Pest/PCB by Lorie MacKin	07/07/00
	Lorie MacKinnon	Date: 05/07/96

DATA ASSESSMENT

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "UJ", or "R", if the holding times are grossly exceeded.

All holding times were met.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during the sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than five times the blank contaminant level (ten times for the common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

Blank Actions

• Value < CRQL; report CRQL followed by "U" (U5).

Value > CRQL and < action level; report value followed by "U" (U6).

Value > CRQL and > action level; report value unqualified.

A. Method blank contamination:

The VOA, ABN and PEST laboratory method blanks and instrument blanks contained the following maximum quantities of contaminants:

Associated samples: All aqueous in SDG

Compound	<u>Maximum</u>	Action Level
bis(2-ethylhexyl)phthalate	19 ug/L	190 ug/L

The action level value was compared to the sample values after application of the sample dilution factors and the following actions are recommended: Bis(2-ethylhexyl)phthalate in samples SW-02-0320, MW-130320, SW-12-0320, SW-03-0321, JMW-109-0321, MW-09-0321, MW-10-0321 and JMW-108-0321 should be reported as the CRQL followed by a "U5". Bis(2-ethylhexyl)phthalate in sample MW-01-0320 should be reported as the CRQL followed by a "U6"(i.e., the CRQL has been raised and the value is considered to be non-detected).

In addition to the TCL compounds, TIC compounds were noted in the ABN laboratory method blanks. The RT of the blank TICs were compared to the RTs of the TICs found in the associated samples, and where similarities were found, the sample TIC result was flagged with a J30 in the TIC table if the concentration of the compound was greater than 5 times the amount of the concentration in the blank and rejected (R30) on the form 1F if the concentration of the compound was less than 5 times the amount of the concentration in the blank.

B. Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample)

It should be noted that there were no field/rinse/equipment blanks

associated with the aqueous samples.

C. Trip blank contamination:

The trip blank sample was non-detected for all compounds.

DATA ASSESSMENT

3. MASS SPECTROMETER TUNING:

Tuning performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The following samples shown were qualified with "R" because of tuning: All tuning criteria were met.

DATA ASSESSMENT

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A. RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. The response factor for the VOA/ABN Target Compound List (TCL) must be >/- 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). If the mean RRF of the initial calibration or the continuing calibration has a response factor < 0.05 for any analyte, those analytes detected in environmental samples will be qualified as estimated, "J". All nondetects for those compounds will be rejected, "R". The following analytes in the samples shown were qualified because of response factor: None were qualified due to response factor.

DATA ASSESSMENT

CALIBRATION 5.

PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D): Α.

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing Percent D compares the response factor of the continuing concentration. calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and the %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J"; and non-detects are flagged "UJ". If the %RSD and %D grossly exceed QC criteria, non-detect data may be qualified "R".

For the PCB/PESTICIDE fraction, if %RSD of the initial calibration exceeds 20% for all analytes except to the two surrogates (which must not exceed 30% RSD). qualify all associated positive results "J" and non-detects "UJ". If the %RPD of the continuing calibration check is greater than 25%, positive and nondetected results are estimated "J, UJ".

The following analytes in the samples shown were qualified for %RSD, %D or %RPD:

VOA instrument "MSD", initial calibration 2/29/96:

COMPOUND	IC (2/29/96)	CC (03/26/96)
Acetone		X
Associated samples:	All listed	MW-01-0320, SW-02-0320, MW-130320, SW-12-0320, SW-03-0321, JMW-109-0321, MW-09-0321, MW-110-0321, JMW-108-0321, TB01

ABN instrument "5972-1", initial calibration 02/23/96:

COMPOUND	IC (02/23/96)	CC (03/27/96)	CC 03/29/96
4-Methylphenol			X
4-Chloroaniline		X	
4-Chloro-3-methylphenol			X
2-Nitroaniline		X	X
3-Nitroaniline	X	X	X
2.4-Dinitrophenol		X	X
4-Nitrophenol		X	X
4-Nitroaniline		X	,

Page 9

Stewart ANG Base

SDG No: AC177/159177

ABN instrument "5972-1", initial calibration 02/23/96:

COMPOUND	IC (02/23/96)	CC (03/27/96)	CC 03/29/96
4,6-Dinitro-2-methylphe Pentachlorophenol Carbazole	nol	X X X	X X
Associated samples:	All listed	MW-01-0320, SW-02-0320, MW-130320, SW-12-0320, SW-03-0321, MW-09-0321, MW-10-0321, JMW-108-032	

 $\rm X$ - %RSD > 30% or %D > 25%; Estimate (J4) positive and non-detected (UJ4) results in the associated samples.

DATA ASSESSMENT

6. SURROGATES/SYSTEM MONITORING COMPOUNDS (SMC):

All samples are spiked with surrogate/SMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate/SMC concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following analytes for the samples shown were qualified because of surrogate/SMC recovery:

The VOA surrogates Toluene-d8, Bromofluorobenzene and 1,2-Dichloroethane were over-recovered in sample MW-130320MS. The VOA surrogate Toluene-d8 was over-recovered in sample MW-130320MSD. Matrix interference is suspected. No action is required.

The PEST surrogates TCX and DCB were recovered outside of the control limits of 60 - 150% in the following samples:

Sample	TCX(DB-5)	TCX (DB-17)	DCB(DB-5)	DCB(DB-17)
MW-01-0320	42%	41%	50%	50%
MW-10-0321	42%	41%	50%	43%
MW130320	46%	49%	50%	47%
SW-02-0320	28%	25%	(60%)	55%

It is recommended to estimate positive and non-detected results (J8, UJ8) for those samples.

DATA ASSESSMENT

7. INTERNAL STANDARDS PERFORMANCE:

Internal Standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of two (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated "J", and all non-detects as "UJ" only id IS area is <50%. Non-detects are qualified as "R" if there is a severe loss of sensitivity (<25% of the associated area counts).

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. The following analytes in the samples shown were qualified because of internal standards performance: All internal standard criteria were met.

DATA ASSESSMENT

8. COMPOUND IDENTIFICATION:

A. VOLATILE AND SEMI-VOLATILE FRACTIONS

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within +/- 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For tentatively identified compounds (TIC), the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. The following analytes in the samples shown were qualified for compound identification: No compounds were qualified due to compound identification.

B. PESTICIDE FRACTIONS

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns. The percent difference (%D) of the positive results obtained on the two GC columns should be </= 25%. The following analytes in the samples shown were qualified because of compound identification:

It should be noted that 4, 4'-DDD had a %D >90% in some samples. Based on validation protocol, a compound with a dual column %D greater than 90% should be rejected. However, upon review of the sample chromatograms, it appears that there is a interferant peak present which is slightly resolved on the DB-05 column. The laboratory is able to integrate and report the peaks separately, although due to the compression of the chromatogram, the validator was not able to check the accuracy of the integration. On the DB-17 column, however, it appears that the 4,4'-DDD and interferant peak co-elute and the two compounds are reported as 4,4'-DDD. Due to the discrepancy, the %D is high. The results with high %D are estimated as presumptively present at an approximated quantity (JN25) as the percent difference is due to the interferant area included in the DB-17 result.

It should be noted that both the 4,4'-DDD peak and interferant peak are within the DDD retention time window. At the request of the client, the laboratory performed an extra matrix spike consisting of 4,4'-DDD to confirm which peak was 4.4'-DDD.

MW-01-0320DL 4,4'-DDE (36.4%, J25)

SW-02-0320DL 4.4'-DDD (144.4%, JN25) There is peak co-elution on DB-17 column.

SW-12-0320DL 4,4'-DDD (85.6%, JN25)

SDG No: AC177/159177

SW-03-0321

4,4'-DDD (71.4%, JN25)

JMW-109-0321

4,4'-DDT (36.4%, J25)

MW-09-0321

4,4'-DDD (36.8%, J25)

 $JMW\!-\!108\!-\!0321$

4,4'-DDT (38.5%, J25)

4,4'-DDD (166.7, JN25)

Page 13

DATA ASSESSMENT

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of data. The following analytes, for the samples shown, were qualified because of the MS/MSD: All recoveries were found to be within control limits.

DATA ASSESSMENT

10. OTHER QC DATA OUT OF SPECIFICATION:

VOLATILES: It should be noted that the laboratory reference spectra for Acetone was of poor quality.

The Tentatively Identified Compound forms (1E and 1F) did not include the "JN" qualifier.

The response factors are not shown on the quantitation reports.

The spectra for the detected Chloromethane in sample MW-09-0321 should have been cleaned before reported.

The validator changed one of the VOA tentatively identified compounds (form 1E) reported for sample SW-02-0320 and SW-12-0320.

The validator changed some of the ABN tentatively identified compounds (form 1F) reported for samples MW-01-0320, MW130320, SW-02-0320 and SW-12-0320.

The ABN sample prep and analysis summary form incorrectly listed the date of analysis for sample JMW-109-0321 as 03/27/96. The correct analysis date is 03/29/96.

It should be noted that the %RPDs for 4,4'-DDE (51.4%), 4,4'-DDD (73.2%) and 4,4'-DDT (82.8%) were high (58.5%) in the field duplicate pair SW-02-0320 and SW-12-0320. It is recommended to estimate (J13) 4,4'-DDT, 4,4'-DDE and 4,4'-DDD in the sample and duplicate.

- 11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT: Overall system performance was good.
- 12. CONTRACTUAL NON-COMPLIANCE: None
- 13. This package contains re-extraction, re-analysis or dilution. Upon reviewing the QC results, the following form I(s) and/or compounds are identified to be used:

Pesticides:

MW-01-0320, MW-01-0320DL

Use 4,4'-DDD and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

SW-02-0320, SW-02-0320DL

Use 4,4'-DDD and 4.4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

SW-12-0320, SW-12-0320DL

Use 4,4'-DDD and 4,4'-DDT result from diluted analysis.
Use all other detected and non-detected results from the original analysis.

DATA ASSESSMENT

<u>Tentatively Identified Compounds</u>

Compound	MW01320 ug/L	SW02-0320 ug/L	MW-130320 ug/L	SW12-0320 ug/L	JMW109 ug/L
VOA Unknown ABN Unknown unknown amide unknown phthalate unknown hydrocarbon	X(5) X(3)	X(330) XX(30)	X(2) X(2)	X(61) XX(36)	X(3)
unknown alkane VOA C10H14 isomer ABN C10H14 isomer VOA C11H16 isomer ABN C11H16 isomer VOA C10H12 isomer ABN C10H12 isomer VOA C10H8 isomer VOA C11H14 isomer VOA C11H10 isomer C12H12 isomer C12H12 isomer	XX(11)	XX(183) XX(86) XX(199) X(16) X(68) X(10) X(86) X(44) X(84) X(68) X(17)	XX(7)	XX(477) XX(89) XX(144) XX(29) X(14) X(81) X(38) X(95) X(86) X(16)	
C9H12 isomer methylnaphthalene isome Naphthalene,1-ethyl-Benzene(1,1-dimethylpre		X(23) X(41) X(8) X(86)		X(50) X(75)	
Compound	MW09-0321 ug/L	MW10-0321 ug/L	JMW-108-035 ug/L	<u>21</u>	

Compound	MW09-0321	MW10-0321	JMW-108-0321
	ug/L	ug/L	ug/L
ABN Unknown unknown amide	X(3)	X(3)	X(3)

- X Tentatively Identified Compound (TIC) of this description was found in the sample.
- XX Multiple TICs of this description were found in this sample.

Rejected Tentatively Identified Compounds are not included in this table.

SDG No: AC177/159177

CLP DATA ASSESSMENT

Appendix A.2: Data Assessment Narrative

Case No. 159177 SDG No. ANE177 Laboratory Envirotest Lab.

Site <u>Stewart ANG</u> Contractor <u>Aneptek</u> Reviewer <u>Lorie MacKinnon</u>

Matrix: 18 aqueous

Data Assessment:

The SDG ANE177 contains the following samples for analysis:

Metals/CN: 18 aqueous/TMW-01-0320, TSW-02-0320, TMW-13-0320, TSW-12-0320,

TSW-03-0321, TJMW-109-0321, TMW-09-0321, TMW-10-0321, TJMW-108-0321, DMW-01-0320, DSW-02-0320, DMW-13-0320, DSW-12-0320, DSW-03-0321, DJMW-109-0321, DMW-09-0321, DMW-10-0321, DJMW-

108-0321 (Cyanide analysis on total "T" samples only)

Associated QC: TSW-02-0321/TSW-12-0321, DSW-02-0321/DSW-12-0321 Field

duplicates

TMW-13-0320 and DMW-13-0320 MS/DUP

It should be noted that the laboratory assigned samples TJMW-108-0321 and DMW-108-0321 the shortened Form 1 IDs TJM110 and DJM110.

The validation was performed according to the Evaluation of Metals Data for the Contract Laboratory Program, Standard Operating Procedure Number HW-2, Revision 11, dated January 1992.

2.1 Validation Flags

The following flags have been applied in red by the data validator and must be considered by the data user.

J. UJ - This flag indicates the result qualified as estimated.

R - This flag indicates an unusable value. The rejected data are known to contain significant errors based on documented information and must not be used by the data user.

Usable - The results that do not carry "J" or "R" are fully usable. Data

2.2 The Data Assessment

The inorganic data were evaluated based on the following parameters:

- Data Completeness
- Holding times
- Calibration verification results
- Blank analysis
- * Interference check standard results
 - Matrix spike results
 - Duplicate analysis results
 - Field duplicate analysis
- * Laboratory control sample results
 - Furnace AA results
 - ICP serial dilution results
- Detection limit results
- * Calculation and transcription checks
- * all criteria were met for this parameter.

Validation actions were taken based on the following information:

Data Completeness

It should be noted that the Cyanide distillation logbook does not contain a section for the Ph of samples before distillation. No action was taken, as the chain of custody lists the proper preservative.

Calibration Verification

03/27/96 Total analysis

The CRDL standard for Chromium was over-recovered at 121.4%. Results near the CRDL may be biased high. Estimate (J2) positive Chromium results which are less than 4xCRDL of 40 ug/L. As chromium was non-detected, there are no actions.

The CRDL standard for Silver was over-recovered at 132.4% and 147.2%. Results near the CRDL may be biased high. Estimate (J2) positive Silver results which are less than 4xCRDL of 40 ug/L. As silver was non-detected, there are no actions.

03/27/96 Dissolved analysis

The CRDL standard for Silver was over-recovered at 128.6% and 127.6%. Results near the CRDL may be biased high. Estimate (J2) positive Silver results which are less than 4xCRDL of 40 ug/L. As silver was non-detected, there are no actions.

Matrix Spike Recoveries

Selenium (-134.9%) was recovered outside of the control limits in the matrix spike performed on total metals sample TMW-13-0320. Due to a possible low bias, all Selenium results are rejected (R5) for total metals samples in the SDG.

Selenium (56.7%) was recovered outside of the control limits in the matrix spike performed on dissolved metals sample DMW-13-0320. Due to a possible low bias, all Selenium results are estimated (J5, UJ5) for dissolved metals samples in the SDG.

Laboratory Duplicate Analysis

Laboratory duplicates were performed for both total and dissolved samples. The sample and duplicate levels were below five times the CRDL for total Chromium and the difference between the sample and duplicate was greater than the CRDL. Therefore, the total chromium results are estimated (J6, UJ6). The sample and duplicate levels were below five times the CRDL for total Selenium and the difference between the sample and duplicate was greater than the CRDL. The total Selenium results would be estimated (J6, UJ6). However, as the total Selenium results were previously rejected due to matrix spike recoveries, the action is noted only.

Field Duplicates

The %RPDs for Mercury (200%) and Zinc (56.3%) in the field duplicate pair of TSW-02-0321 and TSW-12-0321 was outside of the control limits. It is recommended to estimate (J7, UJ7) all Mercury and Zinc results for the total metals analysis samples.

ICP Serial Dilution

A serial dilution was performed on sample DMW-13-0320. For initial concentrations greater than 10XIDL, the following %Ds were greater than 10%: Zinc (11.4%). As 10XIDL was less than the CRDL, all dissolved Zinc results, greater than the CRDL, are estimated (J12).

Furnace AA Results

Furnace AA QC data were reviewed. Duplicate injections and one-point analytical spikes were performed for each sample and analyte. All duplicate injections agreed within +/- 20%. Spike recoveries met the 85 - 115% recovery criteria for all samples with the following exceptions:

SDG No: AC177/159177

<u>Analyte</u>	Sample ID	Recovery	Action
Arsenic	DMW-01-0320	84.8%	J10
Arsenic	DSW-03-0321	117.5%	U, No Action
Lead Lead Lead	TSW-02-0320 DSW-12-0320 DSW-03-0321	82.3% 77.6% 81.3%	UJ10 UJ10 UJ10
Selenium Selenium	TMW-13-0320 TMW-01-0320 TSW-02-0320 TSW-12-0320 TSW-03-0321 TJMW-109-0321 TMW-09-0321 TMW-10-0321 DMW-01-0320 DSW-02-0320 DSW-12-0320 DSW-12-0320 DSW-03-0321 DJMW-109-0321 DMW-109-0321 DMW-10-0321 DMW-10-0321 DJM-108-0321	81.2% 72.1% 55.5% 60.9% 57.4% 80.3% 75.5% 52.2% 77.3% 82.7% 59.9% 84.2% 47.4% 72.6% 78.2% 82.1% 65.9%	(J10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected (UJ10) Previously rejected J10 UJ10 UJ10 UJ10 UJ10 UJ10 UJ10 UJ10
Thallium Thallium Thallium Thallium	DMW-13-0320 DJMW-109-0321 DJM-108-0321 TMW-13-0320	124.5% 120.9% 118.1% 116.5%	U, No Action U, No Action U, No Action U, No Action

Total and Dissolved Metals comparison

A comparison of the total and dissolved metals results was performed. If the concentration of any dissolved analyte was greater than its total concentration by more than 10%, both were estimated (J17). If the concentration of any dissolved analyte was greater than its total concentration by more than 50%, both were rejected (R17). The following table lists the analytes out of control limits in the sample pairs.

Sample Pair	<u>Analyte</u>	%Greater	<u>Action</u>
TSW-03-0321/DSW-03-0321	Zinc Copper	13.4% 32.9%	J17 J17
TJMW-109-0321/DJMW-109-0321	Zinc	28.7%	J17
TMW-09-0321/DMW-09-0321	Zinc	113.1%	R17

SDG No: AC177/159177

CLP DATA ASSESSMENT

Appendix A.4: CLP Data Assessment Result Forms:

Spreadsheets containing the validated sample results are found at the end of the report.

Appendix A.5:

CLP Data Assessment Summary Forms (Inorganics)

SDG No: ANE177 Date: 05/06/96 Laboratory Envirotest Lab.
Reviewer's Initials: LAM Number of samples 18 aqueous

Analytes Rejected Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	9	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Diss/ Total	Serial Dil.	MSA	Total Analytes	Rejection
ICP	0	0	2	0	0	324	2
Furnace	0	0	0	0	0	72	9
Mercury	0	0	0	0	0	18	0
Cyanide	0	0	0	0	0	9	0

SDG No: AC177/159177

Analytes Flagged as estimated (J, UJ) Due to Exceeding Review Criteria

	Holding times	Calibr ation	Prep blank	Field blank	Inter- ference	Spike Rec.	LCS
ICP	0	0	0	0	0	0	0
Furnace	0	0	0	0	0	22	0
Mercury	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0

	Field Dup	Lab Dup	Diss/ total	Serial Dil.	MSA	Total Analytes	Estimation
ICP	8	9	6	8	0	324	62
Furnace	0	0	0	0	0	72	29
Mercury	9	0	0	0	0	18	0
Cyanide	0	0	0	0	0	9	0

CLP DATA ASSESSMENT

Appendix	A.6:	CLP	Data	Assessment	Checklist:
----------	------	-----	------	------------	------------

* *				
INORGANIC RE	GIONAL DATA A	ASSESSMENT	REGION 2	
SDG NO. ANE177	SITE	STEWART AN	IG	
LABORATORY ENVIROTEST LABORATORY	RATORIES, INC			
NO. OF SAMPLES/MATRIX 18 AG	QUEOUS			
REVIEWER'S NAME LORIE A. MA	ACKINNON			
	DATA ASSESSMI	ENT SUMMARY		
	<u>ICP</u>	<u>AA</u>	<u>HG</u>	<u>CN</u>
HOLDING TIMES	1	1	1	1
CALIBRATIONS	1	1_	1_	1
BLANKS	1_	1_	1	1
INTERFERENCE	1_			
DUPLICATE ANALYSIS	1_	1_	1_	1_
MATRIX SPIKE	1	1_	1_	1_
MSA, ANALYTICAL SPIKE ANALY	SIS	1		
SERIAL DILUTION	1_			
SAMPLE VERIFICATION	1	1	1_	1
OTHER QC	1	1	1	1
OVERALL ASSESSMENT	1	1	1	1_

^{1 -} Data has no problems/or qualified due to minor problems.

^{2 -} Data qualified due to major problems.

^{3 -} Data unacceptable.

^{4 -} Problems, but do not affect data.

DATA VALIDATION RECOMMENDATION FOOTNOTES - ORGANICS

- J1, UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and non-detects (UJ1). Holding times have been grossly exceeded: reject all non-detects (R1).
- J2, R2 The initial or continuing calibration RF was low: estimate positive results (J2) and reject non-detects (R2).
- J4, UJ4 The initial calibration %RSD was greater than 30% or the continuing calibration %D was greater than 25%: estimate positive results (J4) and non-detects (UJ4).
- Compound was present in the associated blank. Compound is present in the sample at a concentration less than the CRQL: report the CRQL (U5).
- Compound was present in the associated blank. Compound was present in the sample at a concentration higher than the CRQL but lower than the "action level": qualify the result by reporting the value followed by "U" (U6). (i.e., the limit of detection has been raised for that compound, and the result is considered to be non-detect.
- One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was greater than the Contract Required Recovery Range (CRR): estimate positive results within that area of the chromatogram (J7).
- J8, UJ8 One or more of the surrogate standard % recoveries (in the case of pesticides, both DCB and TCX) was less than the CRR: estimate positive results (J8) and non-detects (UJ8) within that area of the chromatogram.
- J9, R9 One of more of the surrogate standard % recoveries was less than 10%: estimate positive results (J9) and reject non-detects (R9) within that area of the chromatogram.
- J10 The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the CRR for this compound: estimate positive results in the unspiked sample (J10).
- J11, R11 The MS and/or MSD % recoveries were less than 10% for this compound: estimate positive results in the unspiked sample (J11) and reject non-detects (R11).
- J12 The MS/MSD %RPD for this compound was high: estimate positive results in the unspiked sample (J12).
- Field duplicate %RPD was high for this compound: estimate positive results for this compound in the sample and duplicate (J13).

- One or more of the Internal Standard (IS) areas were detected above the CRR; estimate the positive results for all compounds quantitated from that IS.
- J15, UJ15 One or more of the Internal standard (IS) areas was less than the CRR: estimate positive results (J15) and non-detects (UJ15) for all compounds quantitated from that IS.
- J16, R16 One or more IS areas were grossly low: estimate (J16) positive results and reject (R16) non-detects for all compounds quantitated from that IS.
- J/NJ17, R17 % Breakdown for DDT exceeded 20%: estimate positive results for DDT (J17), DDD, and DDE (NJ17) in all associated samples. If no DDT is present, but DDD and/or DDE are present: reject the CRQL (R6) for DDT. Qualify positive results for DDD and/or DDE as presumptively present at an estimated quantity (NJ17).
- J/NJ18, R18 % Breakdown for endrin exceeded 20%: estimate positive results for endrin (J18). If no endrin is present, but endrin ketone and/or endrin aldehyde are present: reject the CRQL (R7) for endrin. Qualify positive results for endrin aldehyde and endrin ketone (NJ18) as presumptively present at an estimated quantity.
- J/UJ19, R19 Initial calibration %RSD for this compound exceeded 20%: estimate positive and non-detected results (J19, UJ19) for this compound in associated samples. If %RSD exceeded 90%, flag all non-detected results as unusable (R8).
- J/UJ20, R20 Continuing calibration %RPD for this compound exceeded 25% (quantitation or confirmation column): estimate positive and non-detected results (J20, UJ20) for this compound in associated samples. If %RPD exceeded 90%, flag all non-detected results as non-usable (R9).
- J21 Compound reported above calibration range, estimate result (J21).
- The continuing calibration %D exceeded 25% for a surrogate standard compound: estimate (J22) positive results for all compounds associated with the out of control surrogate in the affected samples.
- J23 Surrogate %D >25% or %RSD > 30%, estimate positive results for compounds associated with the out of control surrogate.
- R24 The initial calibration %RSD or continuing calibration %D > 90%. Reject non-detects.
- J/NJ25, R25 Pesticide compound which has concentration values differing from 25 50% in its two analyses. Compound result is estimated. Dual

column analysis %D is between 50 - 90%; compound result is qualified as presumptively present at an approximated quantity (NJ25). Dual column %D is greater than 90%; the compound result is rejected (R10).

- R26 Reject non-detected result. Compound detected above the calibration range and could not be quantitated to be reported.
- R27 Isomer identified at the incorrect retention time in samples and/or standards. Reject positive and non-detected results.
- R28 Quality of Spectra submitted poor for compound in question: reject compound result.
- The resolution between two adjacent compound peaks in the resolution check mixture was less than 60%. Estimate the positive results for compounds not adequately resolved.
- J30, R30 The TIC compound was detected in the blank. In the sample, the concentration of the TIC is greater than five times the concentration in the most contaminated associated blank. The sample TIC result is flagged J30, as the result may be biased high due to contamination. If the sample TIC concentration is less than five times the concentration found in the blank, the sample TIC result is rejected.

DATA VALIDATION RECOMMENDATION FOOTNOTES - INORGANICS

- J/UJ1, R1 Holding times have been exceeded: estimate positive results (J1) and reject non-detects (R1). Samples were improperly preserved prior to analysis; estimate positive results (J1) non-detects (UJ1).
- J/UJ2, R2 Linearity was poor near the CRDL (Low levels). Estimate or reject the results within an affected area based on the recovery of the CRDL standard.
- The analyte was present in the associated blank above the CRDL. The sample result was less than the action level of 5X the maximum concentration found in any blank, and has been rejected. The associated blank had a value below the negative CRDL. Results less than ten times the CRDL are rejected.
- J/UJ4, R4 The ICS recovery of an element is outside of criteria. The reported results or detection limits are estimated or rejected based on the recovery of the interference check sample.
- J/UJ5, R5 The recovery of an element is outside of control limits in the matrix spike. The reported results or detection limits are estimated or rejected based on the recovery.
- $\rm J/UJ6$ The RPD for laboratory duplicate sample analysis results exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ7 The RPD for the field duplicate analysis exceeded 50% (100% for soils) for this analyte. The reported results are estimated.
- J/UJ8, R8 The LCS recovery for an element is outside of criteria. The reported results are estimated or rejected based on the laboratory control sample analyte recovery.
- J9 The %RSD of duplicate injections for GFAA analysis do not agree within $\div/-$ 20%, or the laboratory performed a single burn analysis. The sample results are estimated.
- J10, UJ10 The recovery of analytical spikes for GFAA analysis is outside of control limits. Positive sample results or detection limits are estimated.
- J11 The sample required an MSA which was not performed, was performed incorrectly, or the correlation was < 0.995. The positive results are estimated.
- J12, R12 The results of the ICP Serial Dilution analysis were outside of control limits for initial concentrations equal to or greater than 10XIDL. Analyte results greater than 10XIDL or CRDL are estimated

or rejected based on %D.

- J13 The sample was less than 50% solids. Analysis using a method intended for soils might not give representative results. The results are estimated.
- Matrix spike not performed for analysis or performed on a field blank. Estimate positive results less than four times the spike level added based on lack of accuracy data.
- J15 Laboratory duplicate not performed for analysis or was performed on field blank. Estimate positive results greater than the CRDL based on lack of precision data.
- J16 ICP serial dilution was not performed or was performed on field blank. Estimate results greater than 10XIDL or greater than the CRDL for which an ISD was not performed.
- J17, R17 A comparison of the total and dissolved analytes was performed. If the concentration of any dissolved analyte was greater than its total concentration by more than 10% both were estimated. If the concentration of any dissolved analyte was greater than its total concentration by more than 50% both were rejected.

APPENDIX M

RESULTS OF EPA'S BIOKINETIC UPTAKE MODEL FOR LEAD

RESULTS OF BIOKINETIC UPTAKE MODEL FOR LEAD

National Default Values

ABSORPTION METHODOLOGY: Linear Absorption

AIR CONCENTRATION: 0.100 ug Pb/m3

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate	e (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0	
1-2	2.0	3.0	32.0	
2-3	3.0	5.0	32.0	
3-4	4.0	5.0	32.0	
4-5	4.0	5.0	32.0	
5-6	4.0	7.0	32.0	
6-7	4.0	7.0	32.0	

DIET: DEFAULT

DRINKING WATER Conc: 4.00 ug Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.

Dust: constant conc.

Age	Soil (ug Pb/g)	House Dust (ug Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

PAINT Intake: 0.00 ug Pb/day DEFAULT

MATERNAL CONTRIBUTION: Infant Model

Maternal Blood Conc: 2.50 ug Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (ug/dL)	Total Uptake (ug/day)	Soil+Dust Up (ug/day)	take
0.5-1:	3.70	7.36	4.53	
1-2:	4.07	10.51	7.08	
2-3:	3.87	11.06	7.19	
3-4:	3.65	11.15	7.31	
4-5:	3.17	9.47	5.58	
5-6:	2.77	9.25	5.08	
6-7:	2.51	9.34	4.82	
	Diet Uptake	Water Uptake	Paint Uptake	Air Uptake
YEAR	(ug/day)	(ug/day)	(ug/day)	(ug/day)
0.5.1	2.45	0.26	0.00	0.02
0.5-1:	2.45	0.36		
1-2:	2.52	0.87		0.03
2-3:	2.88	0.92	0.00	0.06
3-4:	2.82	0.96	0.00	0.07
4-5:	2.80	1.02	0.00	0.07
5-6:	2.98	1.09	0.00	0.09
6-7:	3.31	1.12	0.00	0.09

Site-Specific Values

ABSORPTION METHODOLOGY: Linear Absorption

AIR CONCENTRATION: 0.100 ug Pb/m3

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate	(m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0	
1-2	2.0	3.0	32.0	
2-3	3.0	5.0	32.0	
3-4	4.0	5.0	32.0	
4-5	4.0	5.0	32.0	
5-6	4.0	7.0	32.0	
6-7	4.0	7.0	32.0	

DIET: DEFAULT

DRINKING WATER Conc: 35.00 ug Pb/L WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.

Dust: constant conc.

Age	Soil (ug Pb/g)	House Dust (ug Pb/g)
0-1	16.8	4.7
1-2	16.8	4.7
2-3	16.8	4.7
3-4	16.8	4.7
4-5	16.8	4.7
5-6	16.8	4.7
6-7	16.8	4.7

Additional Dust Sources: None DEFAULT

PAINT Intake: 0.00 ug Pb/day DEFAULT

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 ug Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (ug/dL)	Total Uptake (ug/day)	Soil+Dust Up (ug/day)	take
0.5-1:	3.10	6.10	0.24	
1-2:	4.05	10.95	0.37	
2-3:	4.07	11.73	0.38	
3-4:	3.88	11.92	0.38	
4-5:	3.71	12.16	0.28	
5-6:	3.58	12.86	0.26	
6-7:	3.44	13.36	0.24	
	Diet Uptake	Water Uptake	Paint Uptake	Air Uptake
YEAR	(ug/day)	(ug/day)	(ug/day)	(ug/day)
0.5.1.	2.50	3.26	0.00	0.02
0.5-1:	2.58			0.02
1-2:	2.62	7.93		
2-3:	2.97	8.32		0.06
3-4:	2.89	8.58		0.07
4-5:	2.81	9.00	0.00	0.07
5-6:	2.98	9.53	0.00	0.09
6-7:	3.30	9.72	0.00	0.09

APPENDIX N

LETTERS FROM NYSDEC REGARDING. SENSITIVE HABITATS AND WATER BODIES

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Wildlife Resources Center 700 Troy-Schenectady Road Latham, NY 12110-2400

(518) 783-3932

August 23, 1995

Jeff Donovan Aneptek Corporation 209 West Central Street Natick, MA 017.60

Dear Mr. Donovan:

We have reviewed the New York Natural Heritage Program files with respect to your recent request for biological information concerning the EPA Hazardous Waste Investigation at the Stewart Air National Guard Base, site as indicated on your enclosed map, located in the Town of New Windsor, Orange County, New York State.

We did not identify any potential impacts on endangered, threatened, or special concern wildlife species, rare plant, animal or natural community occurrences, or other significant habitats.

The absence of data does not necessarily mean that rare or endangered elements, natural communities or other significant habitats do not exist on or adjacent to the proposed site, but rather that our files currently do not contain any information which indicates the presence of these. Our files are continually growing as new habitats and occurrences of rare species and communities are discovered. In most cases, site-specific or comprehensive surveys for plant and animal occurrences have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of species, habitats or communities. This information should <u>not</u> be sutstituted for <u>on-site</u> surveys that may be required for environmental assessment.

This response applies only to known occurrences of rare animals, plants and natural communities and/or significant wildlife habitats. You should contact our regional office, Division of Regulatory Affairs, at the address on the enclosed list for information regarding any regulated areas or permits that may be required (e.g., regulated wetlands) under state law.

If this proposed project is still active one year from now we recommend that you contact us again so that we can update this response.

Beth O'Neill

Sincerely,

Information Services

NY Natural Heritage Program

Enc.

cc: Reg. 3, Wildlife Mgr.

New York State Department of Environmental Conservation 21 South Putt Corners Road, New Paltz, NY 12561-1696 (914) 256-3000 - Division of Regulatory Services FAX (914) 255-3042

August 17, 1995

JEFF DONOVAN ANEPTEK CORPORATION 209 W CENTRAL ST NATICK MA 01760

RE: Hazardous Waste Remediation Investigation Site

Town of Newburgh, Orange County

Dear Mr. Donovan:

In response to your August 4, 1995 letter be advised that there are no designated Wild, Scenic and Recreational rivers within a two mile radius of the identified location, at the Stewart National Guard Base. Also, streams and lakes in New York are classified (see enclosed guide) and listed in the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR Part 800). In addition, all water bodies are protected from pollution by our Water Quality Regulations and some waterbodies, Class C(†) and higher, are also protected from physical disturbance.

Please feel free to make an appointment to come to our office and use our maps and regulatory books if you require more detailed information. You can contact me at (914) 256-3058.

Sincerely,

Wendy DuBois Regulatory Services

DuBois

Region 3

WD/btdonovan.ltr(1) Enclosure