

Introduction

- ► Overview inspired by the following inputs
 - 203 High-mass Dijet Analysis and the end of Run-2
 - 182 Toward a 2D dijet search integration of invariant mass and angular analysis
 - 193 Heavy resonance searches in the di-jet mass spectrum using b-tagging
 - 107 Search for new resonances with b-tagged jets in multi-jet final state
 - 130 new physics search in the energetic photon+jet final state

Many thanks to the authors!

- ► Overview inspired by the following inputs
 - 203 High-mass Dijet Analysis and the end of Run-2
 - 182 Toward a 2D dijet search integration of invariant mass and angular analysis
 - 193 Heavy resonance searches in the di-jet mass spectrum using b-tagging
 - 107 Search for new resonances with b-tagged jets in multi-jet final state
 - 130 new physics search in the energetic photon+jet final state

Many thanks to the authors!

A very simple search:

- Trigger on lowest unprescaled single jet trigger (HLO_i380)
- ullet Leading (sub-lead.) jet $p_T >$ 440 (60) GeV (LooseBad cleaning on all jets)
- Kinematic selections optimized for different benchmarks:
 - Resonance: $|y^*| < 0.6$, $m_{ii} > 1.1$ TeV;
 - W^* : $|y^*| < 1.2$, $m_{jj} > 1.7$ TeV;
 - Angular: $|y^*| < 1.7$, $m_{ij} > 2.5$ TeV;
- Resonance Search uses a sliding window fit to get background prediction from data
- Angular search uses pythia8 MC for background shape, scaled to data
- Jet energy folding included in Gaussian limits

- New fitting method developed for Moriond (SWiFt), still other under development
 - ► Further integration with the current analysis limit calculation
 - Finer granularity through signal morphing

See Karishma's talk in less than 1 hour!

- New fitting method developed for Moriond (SWiFt), still other under development
- Investigate the possibility of using Large-R/Variable-R/Reclustered jets instead of the standard R=0.4 jets
 - \blacktriangleright MC studies using reclustered jets (R=1.0) showed an improvement in expected limits of 0.1-0.2 TeV for q^* signals, no change for W'
 - Loss of sensitivity in low invariant mass region due to trigger turn-ons
 - ► CMS uses wide-jets (R=1.1), 2016 preliminary expected limits equal to ATLAS

- New fitting method developed for Moriond (SWiFt), still other under development
- Investigate the possibility of using Large-R/Variable-R/Reclustered jets instead of the standard R=0.4 jets
 - \blacktriangleright MC studies using reclustered jets (R=1.0) showed an improvement in expected limits of 0.1-0.2 TeV for q^* signals, no change for W'
 - Loss of sensitivity in low invariant mass region due to trigger turn-ons
 - ► CMS uses wide-jets (R=1.1), 2016 preliminary expected limits equal to ATLAS
- Preliminary investigations into using quark-gluon tagger
- Breit-Wigner signal limit requested by phenomenological colleagues
- Jet energy unfolding in collaboration with SM experts

- Current analysis: $\chi = e^{|y_1 y_2|}$ distribution for data compared to Pythia (NLO QCD and EW corr.) in different m_{jj} bins, combined in statistical analysis
 - lacktriangle Main syst. unc. from JES, PDF, μ_R and μ_F scale

New angular dijet search approach

More info here

- Current analysis: $\chi = e^{|y_1 y_2|}$ distribution for data compared to Pythia (NLO QCD and EW corr.) in different m_{ii} bins, combined in statistical analysis
 - Main syst. unc. from JES, PDF, μ_B and μ_E scale
- Compare χ distribution in on m_{ii} and all the others
 - ▶ Small m_{ii} logarithmic dependence expected in χ shape

ICHEP dataset only (data)

New angular dijet search approach

More info here

- Current analysis: $\chi = e^{|y_1 y_2|}$ distribution for data compared to Pythia (NLO QCD and EW corr.) in different m_{jj} bins, combined in statistical analysis
 - \blacktriangleright Main syst. unc. from JES, PDF, μ_B and μ_F scale
- Compare χ distribution in on m_{ij} and all the others
 - lacktriangle Small m_{jj} logarithmic dependence expected in χ shape
- Avoid to be systematic limited by considering ratios between different m_{ii} -bins
- ullet Compare Data to MC ratios for residual m_{ii} dependence
 - ▶ Data-driven strong reduction cancellation of syst. unc.

New angular dijet search approach

More info here

- Current analysis: $\chi = e^{|y_1 y_2|}$ distribution for data compared to Pythia (NLO QCD and EW corr.) in different m_{jj} bins, combined in statistical analysis
 - lacktriangle Main syst. unc. from JES, PDF, μ_R and μ_F scale
- ullet Compare χ distribution in on m_{jj} and all the others
 - lacktriangle Small m_{jj} logarithmic dependence expected in χ shape
- Avoid to be systematic limited by considering ratios between different m_{ii} -bins
- ullet Compare Data to MC ratios for residual m_{ii} dependence
 - ▶ Data-driven strong reduction cancellation of syst. unc.

Unphysical fluctuations due to k-factor \rightarrow now fixed

INFN

- ullet Generic search for resonance in the high mass dijet spectrum with >=1, 2 b-jets
 - b-tagging is crucial, both online (low-mass) and offline

- ullet Generic search for resonance in the high mass dijet spectrum with >=1, 2 b-jets
 - ▶ b-tagging is crucial, both online (low-mass) and offline
- ullet b-trigger efficiency studied on data (including η dep.)

- Generic search for resonance in the high mass dijet spectrum with >=1, 2 b-jets
 - b-tagging is crucial, both online (low-mass) and offline
- ullet b-trigger efficiency studied on data (including η dep.)
- Offline tagging moved from MV2c20(2015) → MV2c10(2016)
- Considering switching to flat efficiency WP for higher sensitivity

0.9 ATLAS Simulation Internal pp (s = 13 TeV	■ Z' ≥ 1 b-tag ■ 1.5 TeV
.og 0.9 pp √s = 13 TeV ₩ 0.8	■ Z'2 b-tag
	• b* ≥ 1 b-tag
0.0 o.0 o.0 o.0 o.0 o.0 o.0 o.0 o.0 o.0	□ 4 TeV
± 0.5	△ 5 TeV
0.5 o.4 o.4	and the second
0.3 ***	
0.2	
0.1	ا ا
0	
1500 2000 2500 300	00 3500 4000 4500 5000 m _{ii} [GeV]

MV2c20	Z' 1.5 TeV			Z' 2.0 TeV		
b-tagging working point	1b	2b	1b+2b	1b	2b	1b+2b
fixed cut 85%	9.4	3.7	3.4	16.9	11.0	9.2
fixed cut 77%	7.4	4.3	3.7	15.3	14.7	10.5
fixed cut 70%	6.6	4.4	3.6	14.2	17.4	10.7
fixed cut 60%	6.8	6.9	4.8	16.3	29.7	13.7
flat-eff cut 85%	24.2	5.5	5.4	38.0	13.2	12.5
flat-eff cut 77%	15.8	4.2	4.0	26.2	10.7	9.9
flat-eff cut 70%	12.5	3.7	3.5	21.8	10.1	9.2
flat-eff cut 60%	9.2	3.5	3.3	17.5	9.5	8.3
flat-eff cut 50%	7.3	3.8	3.4	15.5	9.7	8.1
flat-eff cut 30%	6.5	5.3	4.1	14.0	16.5	10.4

$$f(x) = p_1(1-x)^{p_2} \cdot x^{p_3+p_4 \cdot \ln x + p_5(\ln x)^2}$$
 $x = m_{jj}/\sqrt{s}$

- Usual fit function is not able to reproduce a high-stat. spectrum
 - sculpting effects from b-tagging modify jet flavor relative fractions
 - flavor composition is depending on kinematics as b-tagger is

An extreme example

$$f(x) = p_1(1-x)^{p_2} \cdot x^{p_3+p_4 \cdot \ln x + p_5(\ln x)^2}$$
 $x = m_{jj}/\sqrt{s}$

- Usual fit function is not able to reproduce a high-stat. spectrum
 - sculpting effects from b-tagging modify jet flavor relative fractions
 - flavor composition is depending on kinematics as b-tagger is
- Need to find a suitable way to describe dijet spectrum, including tagging shape
 - $ightharpoonup F(x) \cdot g(x)$ method: F(x) par. numbers from untagged, g(x) from data subset or MC
 - Limited by statistics: F(x),g(x) independent fit provides wrong indications
 - ▶ Consider simultaneous fit: F(x) on un-tagged + g(x) on efficiencies

$$f(x) = p_1(1-x)^{p_2} \cdot x^{p_3+p_4 \cdot \ln x + p_5(\ln x)^2}$$
 $x = m_{jj}/\sqrt{s}$

- Usual fit function is not able to reproduce a high-stat. spectrum
 - sculpting effects from b-tagging modify jet flavor relative fractions
 - ▶ flavor composition is depending on kinematics as b-tagger is
- Need to find a suitable way to describe dijet spectrum, including tagging shape
 - $ightharpoonup F(x) \cdot g(x)$ method: F(x) par. numbers from untagged, g(x) from data subset or MC
 - Limited by statistics: F(x),g(x) independent fit provides wrong indications
 - ▶ Consider simultaneous fit: F(x) on un-tagged + g(x) on efficiencies
- Alternative approach for the fit: reweight m_{jj} shape
 - (from SM) apply SF to b-tagged spectra to smooth 'em like the untagged ones

Since "inclusive is not conclusive": why don't we look for $b\overline{b}$ resonances in associations with extra (b-)jets?

Since "inclusive is not conclusive": why don't we look for $b\overline{b}$ resonances in associations with extra (b-)jets?

- Trigger those events it's crucial:
 - ightharpoonup HLT_j420 has an offline plateau \sim 480 GeV, HLT_4j110 has low efficiency
 - Pursuit a HLT_2j250_j3_j4 (L1_1100) option

$$m_{Z'}$$
= 1 TeV - $\epsilon \sim$ 15%
 $m_{Z'}$ = 0.7 TeV - $\epsilon \sim$ 9%

$$m_{Z'} = 1 \text{ TeV}$$

$$m_{Z'} = 0.7 \text{ TeV}$$

Anything in the red box is more efficient

Proposed new trigger: HLT_2j220_j120_v

Since "inclusive is not conclusive": why don't we look for $b\overline{b}$ resonances in associations with extra (b-)jets?

- Trigger those events it's crucial:
 - \blacktriangleright HLT_j420 has an offline plateau \sim 480 GeV, HLT_4j110 has low efficiency
- Pursuit a HLT_2j250_j3_j4 (L1_100) option
- More jets \rightarrow more objects \rightarrow more kinematics for signal discrimination two examples $\Delta \Phi^*$, M_{boost}

- Nice complementarity with dijet search benchmark in commons
- Current analysis:
 - single γ trigger, >150 GeV γ and >60 GeV jet
 - Fit $m_{\gamma j}$ spectrum with analytical function

- Nice complementarity with dijet search benchmark in commons
- Current analysis: \blacktriangleright single γ trigger, >150 GeV γ and >60 GeV jet
- ▶ Fit $m_{\sim i}$ spectrum with analytical function

• γ +jet analysis exploring almost background-free $m_{\gamma i}$ region

~sart(L)

limited by background

- Nice complementarity with dijet search benchmark in commons
- Current analysis: \blacktriangleright single γ trigger, >150 GeV γ and >60 GeV jet
- ightharpoonup Fit $m_{\gamma j}$ spectrum with analytical function

- ullet γ +jet analysis exploring almost background-free $m_{\gamma i}$ region
 - ightharpoonup sensitivity improving as $\sim \mathcal{L}$
- TADA observed an excess at $m_{\gamma i} \sim 1.9$ TeV, missing in default analysis
 - ightharpoonup Mimic TADA selections in offline analysis for further investigation: secondary 50 GeV jet veto & remove $\Delta\eta(\gamma,j)$ cut

- Nice complementarity with dijet search benchmark in commons
- Current analysis: \blacktriangleright single γ trigger, >150 GeV γ and >60 GeV jet \blacktriangleright Fit $m_{\gamma j}$ spectrum with analytical function
- ullet γ +jet analysis exploring almost background-free $m_{\gamma j}$ region
 - lacktriangle sensitivity improving as $\sim \mathcal{L}$
- TADA observed an excess at $m_{\gamma i} \sim$ 1.9 TeV, missing in default analysis
 - lacktriangle Mimic TADA selections in offline analysis for further investigation: secondary 50 GeV jet veto & remove $\Delta\eta(\gamma,j)$ cut
- Low-mass background fit is becoming challenging: fit bias (spurious signal) is bigger than stat.unc.
 - Investigating various fit function, including SWiFt
 - Alternative to spurious signal needed to avoid small MC stat. limitations
- ullet Coordination with SM γ +jet cross section group to improve knowledge on NLO effects for MC template fit

Conclusions

- Simple signature analysis developed nice strategies, worth to be shared with other signatures
 - an example: background fitting techniques
- Jet reconstruction and performances will be crucial and shared by a lot of such analysis
 - ▶ it's a nice leverage to achieve significant improvements
- Increased statistics allows exploration of more complex signatures
 - model specific signatures, we've plenty of them
- Remember to record event first: be sure trigger will not be a limitation!

BACKUP