Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №3

«Электронный осциллограф»

Выполнила студентка:

Агеева Екатерина Дмитриевна группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение					
	1.1	едение Решаемые задачи				
2	Основная часть					
	2.1	Теоретическая часть				
		Электронно-лучевая трубка				
		Блок-схема осциллографа				
	2.2	Эксперимент				
	2.3	Обработка данных и обсуждение результатов				
		Таблицы				
		Описание программ				
		Графики				
_	_					
3	Вы	вол				

1 Введение

Осциллограф является одним из важнейших исследовательских приборов. Чаще всего он применяется для наблюдения и исследования переменных во времени электрических сигналов.

1.1 Решаемые задачи

- 1. Исследовать чувствительность пластин вертикального и горизонтального отклонений осциллографической трубки.
- 2. Наблюдать с помощью осциллографа синусоидальное напряжение, полученное с выхода генератора.
- 3. Получить фигуры Лиссажу и определить частоту исследуемого напряжения по фигурам Лиссажу.

2 Основная часть

2.1 Теоретическая часть

Электронно-лучевая трубка

Электронно-лучевая трубка (рис. 1) — основной элемент осциллографа, состоящий из :

- Электронной пушки (анод, катод, фокусирующий электрод, нагреватель катода);
- Отклоняющих пластин (горизонтальных C_1 и вертикальных C_2);
- Экрана.

Рис. 1. Схема электронно-лучевой трубки

Электронно-лучевая трубка — это вакуумный прибор, который преобразует электрические сигналы в видимое изображение. Работа трубки происходит следующим образом:

1. Формирование электронного луча

- Катод нагревается нитью накала и испускает электроны (термоэлектронная эмиссия);
- Фокусирующий электрод сужает электронный поток в узкий луч;
- Анод ускоряет электроны высоким напряжением.

2. Отклонение луча

Луч проходит между двумя парами отклоняющих пластин (Горизонтальные пластины (C_1) смещают луч по оси X, а вертикальные пластины (C_2) — по оси Y). Напряжение на пластинах создаёт электрическое поле, отклоняющее электроны пропорционально его величине.

3. Формирование изображения

Электроны попадают на люминофорное покрытие экрана, вызывая свечение в этой точке. При подаче переменного напряжения луч рисует траекторию. Пилообразное напряжение на горизонтальных пластинах создаёт развёртку (луч движется слева направо, затем резко возвращается).

Чувствительность пластин вертикального отклонения определяется по формуле:

$$S_y = \frac{L_{(+-)}}{U_{(+-)}} \left(\frac{\text{MM}}{\text{B}}\right) \tag{1}$$

где $L_{(+-)}$ — смещение пятна, $U_{(+-)}$ — приложенное напряжение. При подаче переменного синусоидального напряжения $u = U_0 cos(2\pi ft + \varphi_0)$ чувствительность пластин определяется по формуле:

$$S_y = \frac{L_{\sim}}{2\sqrt{2}U_{\text{eff}}} \simeq 0,354 \frac{L_{\sim}}{U_{\text{eff}}}$$
 (2)

где L_{\sim} — длина светящейся линии (двойная амплитуда приложенного напряжения) $U_{\rm eff}=\frac{U_0}{\sqrt{2}}$ — эффективное значение синусоидального напряжения.

При подаче разных синусоидальных сигналов на вертикальные и горизонтальные пластины, луч начинает двигаться по сложной траектории, описываемой уравнениями: $U_x = (U_0)_x cos(2\pi f_x + \varphi_x)$ и $U_y = (U_0)_y cos(2\pi f_y + \varphi_y)$. В зависимости от соотношения частот f_x и f_y и фаз φ_x и φ_y на экране возникают различные изображения. В случае, описываемом условием:

$$f_x = nf_y \tag{3}$$

где $n=1,2,\frac{1}{2},\frac{1}{3}$ и т.д., на экране появляются чёткие замкнутые траектории, называемые фигурами Лиссажу.

Если на пластины C_1 подается пилообразное напряжение, которое линейно растет, а затем резко падает, на C_2 пластины подается синусоидальное напряжение $(U_y = (U_0)_y cos(2\pi f_y + \varphi_y))$, и если период развертки пилы T_x и период исследования напряжения T_y связаны друг с другом соотношением:

$$T_x = nT_y \tag{4}$$

то на экране возникает неподвижная синусоида.

Блок-схема осциллографа

Осциллограф состоит из нескольких основных блоков:

- Электронно-лучевой трубки, которая отображает сигнал на экране;
- Генератора развертки, который генерирует пилообразное напряжение для горизонтального отклонения луча;
- Усилителей вертикального и горизонтального отклонений, на которые через входы X и Y осциллографа подается напряжение (исследуемое из них подается на вход Y).

На рис. 2 представлена упрощенная блок-схема осциллографа.

Рис. 2. Упрощенная блок-схема осциллографа

2.2 Эксперимент

На рис. З представлена фотография электронного осциллографа (С1-19Б), на рис. 4 фотография генератора синусоидального напряжения (Г3-109) и испытательного стенда, состоящего из двух плат: для исследования чувствительности пластин и наблюдения фигур Лиссажу и для исследования чувствительности осциллографа. В ходе работы были собраны две цепи с использованием обеих плат поочередно, измерены чувствительности обеих пластин для различных длин отображаемой на экране линии и максимальная чувствительность осциллографа, получены фигуры Лиссажу.

Рис. 3. Фотография электронного осциллографа (С1-19Б)

Рис. 4. Фотография генератора синусоидального напряжения (Г3-109) и испытательного стенда (плат №1 и №2)

На рис. 5 и рис. 6 представлены схемы электрических цепей для исследования чувствительности пластин испытательного стенда и получения фигур Лиссажу, и для наблюдения исследуемого напряжения и определения максимальной чувствительности осциллографа.

Рис. 5. Схема электрической цепи для исследования чувствительности пластин электронно-лучевой трубки и получения фигур Лиссажу

Рис. 6. Схема электрической цепи для наблюдения исследуемого напряжения и определения максимальной чувствительности осциллографа

2.3 Обработка данных и обсуждение результатов

Таблицы

Таблица 1. Плас	стины вертикального отн	клонения (ПВО)
Длина линии на	Эффективное	Чувствительность
экране Т	напражение II «	Тувствительность

Длина линии на экране, L	Эффективное напряжение, $U_{ m eff}$	Чувствительность, S
MM	В	мм/В
10	5.50	0.64
20	11.5	0.62
30	18.1	0.59
40	24.5	0.58
50	31.5	0.56

Для чувствительности пластин вертикального отклонения на основе полученных в ходе эксперимента данных, приведенных в таблице 1, при которых S_y слабо зависит от $U_{\rm eff}$ (при длине L равной 20, 30 и 40 мм), было высчитано среднее значение $\overline{S_y}=0.60$ мм/В и вычислена погрешность результата прямых измерений по общепринятым правилам по отклонению от среднего по формуле:

$$\Delta S = \sqrt{\frac{\Sigma(S_i - \overline{S})^2}{n(n-1)}} \tag{5}$$

Из этого находим $\Delta S_y = 0.12$ мм/В. Таким образом, $S_y = 0.60 \pm 0.12$ мм/В.

Таблица 2. Пластины горизонтального отклонения (ПГО	Э)
---	---	---

Длина линии на	Эффективное	Чувствительность, S	
экране, L	напряжение, $U_{\rm eff}$	Tyberbiresibileerb, 9	
MM	В	мм/В	
10	4.70	0.75	
20	11.1	0.64	
30	17.1	0.62	
40	24.1	0.59	
50	29.3	0.60	

Для чувствительности пластин горизонтального отклонения на основе полученных в ходе эксперимента данных, приведенных в таблице 2, при которых S_x слабо зависит от $U_{\rm eff}$ (при длине L равной 20, 30 и 40 мм), были вычислены среднее значение $\overline{S_x}=0.62$ мм/В и погрешность результата прямых измерений по формуле (5), $\Delta S_x=0.015$ мм/В. Таким образом, $S_x=0.62\pm0.015$ мм/В.

Таблица 3. Максимальная чувствительность осциллографа

Длина линии на	Эффективное	Чувствительность, Ѕ	
экране, L	напряжение, $U_{\rm eff}$	тувствительность, о	
MM	В	мм/В	
10	0.010	$35 \cdot 10$	
20	0.023	$31 \cdot 10$	
30	0.037	$29 \cdot 10$	
40	0.052	$27 \cdot 10$	
50	0.064	$28 \cdot 10$	

Максимальная чувствительность осциллографа вычисляется по следующей формуле:

$$(S_y')_m = \frac{L'}{2\sqrt{2}U_{\text{off}}'} \tag{6}$$

где L' — двойная амплитуда синусоиды, проявляющейся на экране осциллографа в мм, а $U'_{\rm eff}$ — напряжение, подаваемое на вход осциллографа в В.

Было высчитано среднее значение максимальной чувствительности осциллографа: $\overline{(S'_y)_m} = 30 \cdot 10 \text{ мм/B}$; а также погрешность результата прямых измерений, $\Delta(S'_y)_m = 1.4 \cdot 10 \text{ мм/B}$. Таким образом, $(S'_y)_m = (30 \pm 1.4) \cdot 10 \text{ мм/B}$.

Максимальный коэффициент усиления осциллографического усилителя вычисляется по формуле:

$$K_m = \frac{(\overline{S_y'})_m}{\overline{S_y}} \tag{7}$$

Отсюда $K_m = 50 \cdot 10$.

Погрешность K_m , как погрешность косвенных измерений, вычисляется по формуле:

$$\Delta K_m = \sqrt{\left(\frac{\partial K_m}{\partial (S_y')_m}\right)^2 \cdot (\Delta (S_y')_m)^2 + \left(\frac{\partial K_m}{\partial S_y}\right)^2 \cdot (\Delta S_y)^2}$$
 (8)

Которая преобразуется до вида:

$$\Delta K_m = \sqrt{\left(\frac{1}{S_y}\right)^2 \cdot (\Delta(S_y')_m)^2 + \left(\frac{(S_y')_m}{S_y^2}\right)^2 \cdot (\Delta S_y)^2}$$
 (9)

 $\Delta K_m = 2.5 \cdot 10$. Таким образом, $K_m = (50 \pm 2.5) \cdot 10$.

Таблица 4. Измерение неизвестной частоты при наблюдении фигур Лиссажу

Вид фигуры Лиссажу		\sim		
Отношение частот $f_x:f_y$	1:1	2:1	1:3	1:2
Частота по лимбу генератора, f_y , Γ ц	50 ± 0.5	25 ± 0.5	150 ± 0.5	100 ± 0.5
Исследуемая частота, f_x , Γ ц	50 ± 0.5	50 ± 0.5	50 ± 0.5	50 ± 0.5

Описание программ

Для проведения расчётов на языке C++ были написаны программы "Sx", "Sy" и "max S", предназначенные для обработки данных, связанных с чувствительностью пластин горизонтального и вертикального отклонений электроннолучевой трубки осциллографа, а также для вычисления максимальной чувствительности осциллографа и коэффициента усиления.

Программа "Sx" состоит из следующих функций:

- in(): отвечает за ввод данных из файла "Input.csv" в двумерный массив а, где каждая строка содержит длину линии на экране (в мм) и эффективное напряжение (в В).
- roundx(): округляет число до указанного количества значащих цифр.
- colSi(): вычисляет значения чувствительности пластин горизонтального отклонения S_x для каждой строки данных по формуле (2).
- Sx(): вычисляет среднее значение чувствительности S_x для данных строк (исключая первую и последнюю строки).
- dSx(): вычисляет погрешность среднего значения S_x по формуле стандартного отклонения от среднего (5).
- ullet out(): записывает в файл "Output.csv" значения S_x для каждой строки, среднее значение S_x и его погрешность.

Программа "Sy" имеет аналогичную структуру и в точности совпадающие функции, но предназначена для расчёта чувствительности пластин вертикального отклонения S_{y} .

Программа "max S" предназначена для вычисления максимальной чувствительности осциллографа и коэффициента усиления усилителя. Она включает следующие функции:

- in(): отвечает за ввод данных из файла "Input.csv".
- roundx(): округляет число до указанного количества значащих цифр.

- colSi(): вычисляет значения максимальной чувствительности S_{max} для каждой строки данных по формуле (2).
- avrgS(): вычисляет среднее значение S_{max} .
- daS():вычисляет погрешность среднего значения S_{max} .
- Кт(): вычисляет коэффициент усиления усилителя по формуле (7).
- dKm: вычисляет погрешность коэффициент усиления усилителя, как погрешность косвенных измерений, по формуле (9)
- out(): записывает в файл "Output.csv" значения S_{max} для каждой строки, среднее значение S_{max} и коэффициент усиления K_m .

Графики

На рис. 7, рис. 8 приведены результаты работы программы gnuplot для графиков зависимости $S_y = f(U_{\rm eff})$ и $S_x = f(U_{\rm eff})$ соответственно.

Рис. 7. График зависимости $S_y = f(U_{\text{eff}})$

Рис. 8. График зависимости $S_x = f(U_{\text{eff}})$

3 Вывод

В ходе лабораторной работы было проведено исследование характеристик электронного осциллографа, включая определение чувствительности пластин вертикального и горизонтального отклонения, а также изучение фигур Лиссажу. Определены средние значения чувствительности вертикальных и горизонтальных пластин, установлены максимальная чувствительность прибора и коэффициент усиления. Исследование фигур Лиссажу продемонстрировало возможности осциллографа в анализе и визуализации сложных сигналов. Результаты работы показали, что осциллограф является эффективным инструментом для визуализации и анализа электрических сигналов, а также определения их параметров с высокой точностью.

Список литературы

[1] https://github.com/st117208/Workshop3 (дата обращения: 11.04.2025)