

Previous work

TransE

DistMult

Experiment

Conclusion

In Social Network

stochastic blockmodel

models based on tensor factorization

collective matrix factorization

모델 **복잡성** 증가

높은 **계산 비용**

해석의 어려움

정규화 어려움

과적합 or **과소적합** 문제 발생

➡ 성능은 비슷하게, 그러나 간단하게

TransE

$$\mathcal{L} = \sum_{(h,\ell,t) \in S} \sum_{(h',\ell,t') \in S'_{(h,\ell,t)}} \left[\gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]$$

$$S'_{(h,\ell,t)} = \{(h',\ell,t) | h' \in E\} \cup \{(h,\ell,t') | t' \in E\}$$

Head와 Relation을 더했을 때, 최대한 Tail과 가깝도록

Table 1: **Numbers of parameters** and their values for FB15k (in millions). n_e and n_r are the nb. of entities and relationships; k the embeddings dimension.

Метнор	NB. OF PARAMETERS	on FB15K
Unstructured [2]	$O(n_e k)$	0.75
RESCAL [11]	$O(n_e k + n_r k^2)$	87.80
SE [3]	$O(n_e k + 2n_r k^2)$	7.47
SME(LINEAR) [2]	$O(n_e k + n_r k + 4k^2)$	0.82
SME(BILINEAR) [2]	$O(n_e k + n_r k + 2k^3)$	1.06
LFM [6]	$O(n_e k + n_r k + 10k^2)$	0.84
TransE	$O(n_e k + n_r k)$	0.81

Mean rank: 모델이 제시한 정답 entity의 rank의 평균 Hits@10: 모델이 제시한 상위 10개의 정답 중 실제 정답이 있는 비율

한계점: 1 - to - N

자연어 문장에서의 Rule Extraction을 Knowledge Graph에서 시도

$$\mathbf{y}_{e_1} = f(\mathbf{W}\mathbf{x}_{e_1}), \ \mathbf{y}_{e_2} = f(\mathbf{W}\mathbf{x}_{e_2})$$

$$g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) = \mathbf{A}_r^T \left(egin{array}{c} \mathbf{y}_{e_1} \ \mathbf{y}_{e_2} \end{array}
ight)$$

 $g_r^b(\mathbf{y}_{e_1}, \mathbf{y}_{e_2}) = \mathbf{y}_{e_1}^T \mathbf{B}_r \mathbf{y}_{e_2}$

Linear transformation

Bilinear transformation

Models	\mathbf{B}_r	\mathbf{A}_r^T	Scoring Function
Distance (Bordes et al., 2011)	-	$egin{pmatrix} \left(\mathbf{Q}_{r_1}^T & -\mathbf{Q}_{r_2}^T ight) \end{array}$	$- g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) _1$
Single Layer (Socher et al., 2013)	-	$egin{pmatrix} \left(\mathbf{Q}_{r1}^{T} & \mathbf{Q}_{r2}^{T} ight) \end{pmatrix}$	$\mathbf{u}_r^T \tanh(g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2}))$
TransE (Bordes et al., 2013b)	I	$egin{pmatrix} \left(\mathbf{V}_r^T & -\mathbf{V}_r^T ight) \end{matrix}$	$-(2g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2})-2g_r^b(\mathbf{y}_{e_1},\mathbf{y}_{e_2})+ \mathbf{V}_r _2^2)$
NTN (Socher et al., 2013)	\mathbf{T}_r	$egin{pmatrix} \left(\mathbf{Q}_{r1}^T & \mathbf{Q}_{r2}^T ight) \end{matrix}$	$\mathbf{u}_r^T anh \left(g_r^a(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) + g_r^b(\mathbf{y}_{e_1},\mathbf{y}_{e_2}) ight)$

$$g_r^b(\mathbf{y}_{e_1}, \mathbf{y}_{e_2}) = \mathbf{y}_{e_1}^T \mathbf{M}_r \mathbf{y}_{e_2}$$
Diagonal matrix
$$\begin{bmatrix} \mathbf{0} \cdot \mathbf{b} \cdot \mathbf{c} \end{bmatrix} \implies \begin{bmatrix} \mathbf{a} & \mathbf{o} & \mathbf{o} \\ \mathbf{o} & \mathbf{b} & \mathbf{o} \\ \mathbf{o} & \mathbf{o} & \mathbf{c} \end{bmatrix}$$

TransE와 parameter 수 동일

$$<\mathbf{h}, \mathbf{r}, \mathbf{t}_1>=<\mathbf{h}, \mathbf{r}, \mathbf{t}_2>$$

$$\mathbf{t}_1$$

$$\mathbf{t}_2$$

$$\mathbf{h} \cdot \mathbf{r}$$

	FB15k		FB15k-401		WN	
	MRR	HITS@10	MRR	HITS@10	MRR	HITS@10
NTN	0.25	41.4	0.24	40.5	0.53	66.1
Blinear+Linear	0.30	49.0	0.30	49.4	0.87	91.6
TransE (DISTADD)	0.32	53.9	0.32	54.7	0.38	90.9
Bilinear	0.31	51.9	0.32	52.2	0.89	92.8
Bilinear-diag (DISTMULT)	0.35	57.7	0.36	58.5	0.83	94.2

MRR: Rank 역수의 평균

Hits@10: 모델이 제시한 상위 10개의 정답 중 실제 정답이 있는 비율

	Pre	Predicting subject entities			Predicting object entities			
	1-to-1	1-to-n	n-to-1	n-to-n	1-to-1	1-to-n	n-to-1	n-to-n
DISTADD	70.0	76.7	21.1	53.9	68.7	17.4	83.2	57.5
DISTMULT	75.5	85.1	42.9	55.2	73.7	46.7	81.0	58.8

Hits@10: 모델이 제시한 상위 10개의 정답 중 실제 정답이 있는 비율

રિક્ષે? માર્સ્ટ્રે?
$$\mathbf{y}_{e_1} = f(\mathbf{W}\mathbf{x}_{e_1}), \ \mathbf{y}_{e_2} = f(\mathbf{W}\mathbf{x}_{e_2})$$
 wv? Ev? ત્વનાત?

	MRR	HITS@10	MAP (w/ type checking)
DISTMULT	0.36	58.5	64.5
DISTMULT-tanh	0.39	63.3	76.0
DISTMULT-tanh-WV-init	0.28	52.5	65.5
DISTMULT-tanh-EV-init	0.42	73.2	88.2

MAP: 모델이 예측한 rank list에서 실제 정답이 높은 rank에 위치 할수록 높은 수치 w/ type checking: relation에 맞는 entity type을 확인 (BornInCity(*Person, City*))

New York / City
Word vectors

New York City

Ontity vectors

Experiment: Rule Extraction

$$B_1(a_1, a_2) \wedge B_2(a_2, a_3) \wedge ... \wedge B_n(a_n, a_{n+1}) \implies H(a_1, a_{n+1})$$

Algorithm 1 EMBEDRULE

- 1: **Input:** $KB = \{(e_1, r, e_2)\}$, relation set R
- 2: Output: Candidate rules Q
- 3: for each r in R do
- 4: Select the set of start relations $S = \{s : \mathcal{X}_s \cap \mathcal{X}_r \neq \emptyset\}$
- Select the set of end relations $T = \{t : \mathcal{Y}_t \cap \mathcal{Y}_r \neq \emptyset\}$
- 6: Find all possible relation sequences
- 7: Select the K-NN sequences $P' \subseteq P$ for r based on $dist(\mathbf{M}_r, \mathbf{M}_{p_1} \circ \cdots \circ \mathbf{M}_{p_n})$
- 8: Form candidate rules using P' where r is the head relation and $p \in P'$ is the body in a rule
- 9: Add the candidate rules into Q
- 10: end for

B1: 사람 a가 도시 b에서 태어났다.

B2: 도시 b는 국가 c에 속한다.

H: 사람 a의 국적은 국가 c이다.

Experiment: Rule Extraction

Figure 1: Aggregated precision of top length-2 rules extracted by different methods

Experiment: Rule Extraction

Figure 2: Aggregated precision of top length-3 rules extracted by different methods

TransE

DistMult

Antisymmetric

$$\langle h, r, t \rangle = \langle t, r, h \rangle$$

 $\langle h, r, t \rangle = \langle t, r, h \rangle$

Composition

$$\langle h, r, t \rangle = \langle t, r, h \rangle$$

 $(M_{r_1}, M_{r_2}) \neq M_{r_3}$

Conclusion

Multi-relationship을 기존 연구보다 간단하게 표현한 TransE

내적을 활용하여 Multi-relationship 표현과 Rule Extraction 모두 두각을 드러낸 DistMult

Experiment를 통해 성능을 시연하고 다양한 확장을 도모하였지만, 여전히 한계점 존재