

DynaLearn, una herramienta de razonamiento cualitativo

Jorge Gracia (on behalf of Dynalearn team)

Ontology Engineering Group (OEG) Universidad Politécnica de Madrid

http://www.oeg-upm.net

jgracia@fi.upm.es

Asignatura de "Modelos de Razonamiento", Noviembre 2011

Outline

- 1. Introduction
- 2. Qualitative Reasoning modelling
- 3. Semantic Technologies
- 4. Semantic Grounding
- 5. Semantic Feedback
- 6. Research and in-use questions

"Engaging and informed tools for learning conceptual system knowledge"

QUALITATIVE REASONING

- Trata de capturar la interpretación humana de la realidad
- Representa sistemas físicos mediante modelos
- Estudia su comportamiento mediante simulación
- Enfocado en las variables cualitativas de los sistemas (ej.: cierto árbol es de tamaño "grande", la población de cierta especie "aumenta", etc.) más que en variables numéricas

APPLICATION TO LEARNING OF ENVIRONMENTAL SCIENCES

- Idea: aprendizaje basado en construir modelos ("Learning by modelling")
- Herramientas para el aprendizaje:
 - Definición de terminología apropiada
 - Interacción con el modelo
 - Predicción de su comportamiento
- Ejemplos:
 - "Estudiar la evolución de la población de una especie cuando se introduce otra en su mismo ecosistema"
 - "Estudiar el efecto de los agentes contaminantes en un rio"
 - •

DYNALEARN

- "Sistema para la adquisición de conocimiento conceptual en el contexto de la enseñanza de ciencias medioambientales". Combina:
 - Construcción de modelos representando un sistema
 - Técnicas semánticas para relacionar distintos modelos de alumnos y profesores
 - Uso de avatares para interaccionar con el sistema

DYNALEARN

QR Modelling

Entities

Scenarios (starting situation)

Model fragments (capturing partial knowledge)

QR Modelling

Model fragments (capturing partial knowledge)

QR Modelling

Running simulations

Green frog: Biomass

Green frog: Birth

Green frog: Death

Green frog: Number of

Semantic Techniques

SEMANTIC TECHNIQUES

- To bridge the gap between the loosely and imprecise terminology used by a learner and the well-defined semantics of an ontology
- To put in relation to the QR models created by other learners or experts in order to automate the acquisition of feedback and recommendations from others

Semantic Techniques

Semantic Grounding

Semantic Grounding

Benefits of grounding

- Support the process of learning a domain vocabulary
- Ensure lexical and semantic correctness of terms
- Ensure the interoperability among models
- Extraction of a common domain knowledge
- Detection of inconsistencies and contradictions between models
- Inference of new, non declared, knowledge
- Assist the model construction with feedback and recommendations

Semantic Grounding

Semantic Feedback

e.g., "You can complete your model with a P+ proportionality"

Feedback (assessments)

Student

e.g., "Users who modelled death also modelled birth"

Feedback (extensions)

Community of users

Semantic Feedback

Semantic Feedback

- Collaborative filtering for (subjective) community-driven recommendation. E.g.:
 - "Users who liked model X also liked model Y"
 - "Users who modeled X also modeled Y"
- Model-based. Recommendations based on the properties of the model under an objective perspective. E.g.:
 - "Find a model fragment with inverse behaviour to the current one"
 - "List all models which are more specific than the current one"

Research & in-use questions

SOME RESEARCH QUESTIONS

- Q1. Which external knowledge source is the most suitable for grounding?
- Q2. Are the proposed groundings suitable according to human opinion?
- Q3. Are the state-of-the-art ontology matching tools suitable for the alignment of QR models?

Research & in-use questions

SOME RESEARCH QUESTIONS

- Q1. Which external knowledge source is the most suitable for grounding?
- Q2. Are the proposed groundings suitable according to human opinion?
- Q3. Are the state-of-the-art ontology matching tools suitable for the alignment of QR models?

Q1 – Semantic Web resources

Coverage Study

Tested 1686 different English words coming from DynaLearn glossaries

Knowledge source	Coverage Ratio		
DBpedia	72%		
OpenCyc	69%		
WordNet	45%		
Watson	47%		

Behaviour of Dbpedia in other languages?

Labels in other languages for the covered English terms:

Language	ratio
English	100%
German	72%
Spanish	64%
Dutch	61%
Portuguese	58%

Q1 – Semantic Web resources

Coverage Study

What if we fix spelling errors and suggest nearby terms?: "fiter feeding" → "filter feeding"

Knowledge source	Coverage Ratio	
DBpedia + Yahoo Spelling Suggestion	78%	

What if we combine several sources?:

Knowledge source	Coverage Ratio	
DBpedia + OpenCyc	87%	
DBpedia + Watson	73%	
Dbpedia + WordNet	72%	
Dbpedia + OpenCyc + WordNet + Watson	88%	

Research & in-use questions

SOME RESEARCH QUESTIONS

Q1. Which external knowledge source is the most suitable for grounding?

DBpedia (combined with OpenCyc for English)

- Q2. Are the proposed groundings suitable according to human opinion?
- Q2. Are the state-of-the-art ontology matching tools suitable for the alignment of QR models?

Q2 – human-based evaluation

HULL'S EXPERIMENT

- Tested 909 English labels covered by DBpedia, randomly selected from DynaLearn glossaries
- Asked 8 expert evaluators, each one evaluated between 200-300 groundings. Each grounding was double-evaluated
- Question: For each grounded term, are all its relevant meanings contained in the set of grounding candidates? If yes, mark the relevant ones.

Accuracy	precision@1st		
(Average)	(Average)		
83%	76 %		

Inter-evaluator Agreement Level (Average)			
Agreem.1			
(chosen	Agreem.2 (existence of	Cohen's	
grounding)	suitable grounding)	Карра	
78%	85%	0,47	

Research & in-use questions

SOME RESEARCH QUESTIONS

Q1. Which external knowledge source is the most suitable for grounding?

Dbpedia (combined with OpenCyc for English)

Q2. Are the proposed groundings suitable according to human opinion?

Yes... (with an 83% accuracy)

Q3. Are the state-of-the-art ontology matching tools suitable for the alignment of QR models?

Q4 - Ontology Matching

MODEL MATCHING EXPERIMENT

Reference Alignments:

Provided by experts, manually aligned:

Case 1 - Social aspects of population growth, v1 vs. v2

Case 2 - Soil contamination, v1 vs. v2

Case 3 - Hervibory vs. Predation

Case 4 - Amensalism vs. Commensalism

Ontology alignment tools tested: CIDER, Falcon

Q4 - Ontology Matching

	CIDER			Falcon		
	Precision	Recall	Time (s)	Precision	Recall	Time (s)
Case 1 (pop.)	1.00	1.00	10.8	0.80	1.00	1.9
Case 2 (soil)	1.00	1.00	9.2	0.79	1.00	2.0
Case 3 (h./p.)	1.00	1.00	4.2	0.63	1.00	1.8
Case 4 (a./c.)	0.67	0.80	4.6	0.44	0.80	1.7
AVERAGE	0.92	0.95	7.2	0.67	0.95	1.9

Research & in-use questions

SOME RESEARCH QUESTIONS

Q1. Which external knowledge source is the most suitable for grounding?

Dbpedia (combined with OpenCyc for English)

Q2. Are the proposed groundings suitable according to human opinion?

Yes... (with an 83% accuracy)

Q3. Are the state-of-the-art ontology matching tools suitable for the alignment of QR models?

Yes

Some references

- [1] Bredeweg, B., Liem, J., Linnebank, F., Bühling, R., Wißner, M., Gracia, J., Salles, P., Beek, W. and Gómez Pérez, A. *DynaLearn: Architecture and Approach for Investigating Conceptual System Knowledge Acquisition*. In Intelligent Tutoring Systems 2010, Part II, pp. 272-274, LNCS 6095, Springer-Verlag.
- [2] Gracia, J., Liem, J., Lozano, E., Corcho, O., Trna, M., Gómez-Pérez, A., and Bredeweg, B. (2010). *Semantic Techniques for Enabling Knowledge Reuse in Conceptual Modelling*. Proc. of 9th International Semantic Web Conference (ISWC2010), Shanghai (China), Springer, volume 6414, November 2010. **Nominated as best in-use paper**.
- [3] DynaLearn web site, <u>www.dynalearn.eu</u>

Thanks for your attention!

Jorge Gracia
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn
28660 Boadilla del Monte, Madrid

http://www.oeg-upm.net

jgracia@fi.upm.es

Phone: 34.91.3363673

Some images under Creative Commons licence :

http://www.flickr.com/photos/binkley27/2969227096/ http://www.flickr.com/photos/tauntingpanda/14782257/ http://www.flickr.com/photos/rainforest_harley/232636845

