Models

Prediction and overfitting Prof. Dr. Jan Kirenz

The following content is based on Mine Çetinkaya-Rundel's excellent book Data Science in a Box

Prediction

Goal: Building a spam filter

- Data: Set of emails and we know if each email is spam/not and other features
- Use logistic regression to predict the probability that an incoming email is spam
- Use model selection to pick the model with the best predictive performance
- Building a model to predict the probability that an email is spam is only half of the battle!
 We also need a decision rule about which emails get flagged as spam (e.g. what probability should we use as out cutoff?)
- A simple approach: choose a single threshold probability and any email that exceeds that probability is flagged as spam

A multiple regression approach

Output Code

```
## # A tibble: 22 x 5
                   estimate std.error statistic p.value
      term
      <chr>
                      <dbl>
                                <dbl>
                                                    <dbl>
##
                                          <dbl>
   1 (Intercept)
                   -9.09e+1
                              9.80e+3
                                       -0.00928 9.93e- 1
   2 to multiple
                  -2.68e+0
                              3.27e-1
                                       -8.21
                                                 2.25e-16
   3 from
                   -2.19e+1
                              9.80e+3
                                       -0.00224 9.98e- 1
   4 cc
                    1.88e-2
                              2.20e-2
                                        0.855
                                                 3.93e- 1
                   -2.07e+1
                              3.87e+2
                                       -0.0536
                                                9.57e- 1
   5 sent email
   6 time
                    8.48e-8
                              2.85e-8
                                        2.98
                                                 2.92e- 3
   7 image
                   -1.78e+0
                              5.95e-1
                                       -3.00
                                                 2.73e- 3
   8 attach
                    7.35e-1
                              1.44e-1
                                        5.09
                                                 3.61e- 7
   9 dollar
                   -6.85e-2
                              2.64e-2
                                       -2.59
                                                 9.64e- 3
                    2.07e+0
                              3.65e-1
                                        5.67
                                                 1.41e- 8
## 10 winneryes
## 11 inherit
                    3.15e-1
                              1.56e-1
                                        2.02
                                                 4.32e- 2
                                        0.00128 9.99e- 1
## 12 viagra
                    2.84e+0
                              2.22e+3
                              2.97e-1
                                                 4.03e- 3
## 13 password
                   -8.54e-1
                                       -2.88
## 14 num char
                    5.06e-2
                              2.38e-2
                                        2.13
                                                 3.35e- 2
## 15 line breaks -5.49e-3
                              1.35e-3
                                       -4.06
                                                 4.91e-5
## 16 format
                   -6.14e-1
                              1.49e-1
                                       -4.14
                                                 3.53e-5
                                       -4.25
                                                 2.16e-5
## 17 re subj
                   -1.64e+0
                              3.86e-1
## 18 exclaim subj
                   1.42e-1
                              2.43e-1
                                        0.585
                                                 5.58e- 1
## 19 urgent subj
                    3.88e+0
                              1.32e+0
                                        2.95
                                                 3.18e- 3
## 20 exclaim mess
                   1.08e-2
                              1.81e-3
                                        5.98
                                                 2.23e-9
## 21 numbersmall
                  -1.19e+0
                              1.54e-1
                                       -7.74
                                                 9.62e-15
                   -2.95e-1
                              2.20e-1 -1.34
## 22 numberbig
                                                 1.79e- 1
```

Prediction

- The mechanics of prediction is easy:
 - Plug in values of predictors to the model equation
 - Calculate the predicted value of the response variable, \hat{y}
- Getting it right is hard!
 - There is no guarantee the model estimates you have are correct
 - Or that your model will perform as well with new data as it did with your sample data

Underfitting and overfitting

Spending our data

- Several steps to create a useful model: parameter estimation, model selection, performance assessment, etc.
- Doing all of this on the entire data we have available can lead to overfitting
- Allocate specific subsets of data for different tasks, as opposed to allocating the largest possible amount to the model parameter estimation only (which is what we've done so far)

Splitting data

Splitting data

Training set:

- Sandbox for model building
- Spend most of your time using the training set to develop the model
- Majority of the data (usually 80%)

Testing set:

- Held in reserve to determine efficacy of one or two chosen models
- Critical to look at it once, otherwise it becomes part of the modeling process
- Remainder of the data (usually 20%)

Performing the split

```
# Fix random numbers by setting the seed
# Enables analysis to be reproducible when random numbers are used
set.seed(1116)

# Put 80% of the data into the training set
email_split <- initial_split(email, prop = 0.80)

# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)</pre>
```

Peek at the split

```
glimpse(train_data)
```

```
## Rows: 3,137
## Columns: 21
## $ spam
             ## $ to multiple
             <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
## $ from
             ## $ cc
             <int> 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0,...
## $ sent email
             <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0,...
## $ time
             <dttm> 2012-01-01 07:16:41, 2012-01-01 08:03:59...
## $ image
             <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
## $ attach
             <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
## $ dollar
             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5,...
## $ winner
             ## $ inherit
## $ viagra
             ## $ password
             <dbl> 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1,...
## $ num char
             <dbl> 11.370, 10.504, 13.256, 1.231, 1.091, 4.8...
## $ line breaks
             <int> 202, 202, 255, 29, 25, 193, 237, 69, 79, ...
## $ format
             <dbl> 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, ...
## $ re subj
             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,...
## $ urgent subj
             ## $ exclaim mess <dbl> 0, 1, 48, 1, 1, 1, 18, 1, 1, 0, 10, 4, 10...
## $ number
             <fct> big, small, small, none, none, big, small...
```

```
glimpse(test_data)
```

```
## Rows: 784
## Columns: 21
## $ spam
            ## $ to multiple
            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ...
## $ from
            ## $ cc
            <int> 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 7, 0, 0,...
            <dbl> 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
## $ sent email
## $ time
            <dttm> 2012-01-01 17:00:32, 2012-01-01 19:12:00...
## $ image
            ## $ attach
            ## $ dollar
            <dbl> 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8,...
## $ winner
            ## $ inherit
            ## $ viagra
            ## $ password
            ## $ num char
            <dbl> 7.773, 2.643, 0.869, 13.890, 4.560, 2.192...
            <int> 192, 68, 25, 225, 64, 85, 10, 57, 97, 39,...
## $ line breaks
## $ format
            <dbl> 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1,...
## $ re subj
            <dbl> 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,...
## $ exclaim subj <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,...
## $ urgent subj
            ## $ exclaim mess <dbl> 6, 0, 2, 0, 0, 3, 0, 5, 1, 3, 3, 0, 4, 32...
            <fct> small, small, small, none, big, sm...
## $ number
```

Modeling workflow

Fit a model to the training dataset

```
email_fit <- logistic_reg() %>%
  set_engine("glm") %>%
  fit(spam ~ ., data = train_data, family = "binomial")
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Categorical predictors

from and sent_email

• from: Whether the message was listed as from anyone (this is usually set by default for regular outgoing email)

```
train_data %>%
  count(spam, from)
```

 sent_email: Indicator for whether the sender had been sent an email in the last 30 days

```
train_data %>%
  count(spam, sent_email)
```

```
## # A tibble: 3 x 3
## spam sent_email n
## <fct> <dbl> <int>
## 1 0 0 1962
## 2 0 1 885
## 3 1 0 290
```

Numerical predictors

##												
	ariable type:											
	kim_variable		_	complete_rate	_	mean	sd	p0	p25	p50	p75	p100
	o_multiple	0	0	1	_	171	0.377	0	0	0	0	1
	o_multiple	1	0	1		0207	0.143	0	0	0	0	1
## 3 fr		0	0	1	1		0	1	1	1	1	1
## 4 fr		1	0	1		990	0.101	0	1	1	1	1
## 5 cc		0	0	1		416	2.77	0	0	0	0	68
## 6 cc		1	0	1		345	2.02	0	0	0	0	23
## 7 se	ent_email	0	0	1	0.	311	0.463	0	0	0	1	1
## 8 se	ent_email	1	0	1	0		0	0	0	0	0	0
## 9 in	mage	0	0	1	0.	0562	0.510	0	0	0	0	20
## 10 in	mage	1	0	1	0.	00690	0.0829	0	0	0	0	1
## 11 at	ttach	0	0	1	0.	128	0.765	0	0	0	0	21
## 12 at	ttach	1	0	1	0.	193	0.574	0	0	0	0	2
## 13 do	ollar	0	0	1	1.	54	5.19	0	0	0	0	64
## 14 do	ollar	1	0	1	0.	655	2.63	0	0	0	0	36
## 15 ir	nherit	0	0	1	0.	0351	0.237	0	0	0	0	6
## 16 ir	nherit	1	0	1	0.	0690	0.560	0	0	0	0	9
## 17 vi	iagra	0	0	1	0		0	0	0	0	0	0
## 18 vi		1	0	1	0		0	0	0	0	0	0
	assword	0	0	1	0.	126	1.09	0	0	0	0	28
	assword	1	0	1	0.	0138	0.143	0	0	0	0	2
## 21 nu		0	0	1	11.	2	14.3	0.003	1.86	6.83	15.4	165.
## 22 nu		1	0	1	4.	60	13.0	0.001	0.503	1.08	3.20	174.
	ine_breaks	0	0	1	244.		317.	2	42	136	320.	3589
	ine_breaks	1	0	1	88.		265.	1	14	22.5	63.8	3729
## 25 fc		0	0	1		724	0.447	0	0	1	1	1
## 26 fc		1	0	1		434	0.497	0	0	0	1	1
## 27 re		0	0	1		289	0.453	0	0	0	1	1
## 28 re		1	0	1		0207	0.143	0	0	0	0	
	xclaim_subj	0	0	1		0780	0.268	0	0	0	0	
	xclaim_subj	1	0	1		0862	0.281	0	0	0	0	
	rgent_subj	0	0	1		00105	0.0324	•	0	0	0	<u>-</u>
	rgent_subj	1	0	1		0103	0.101	0	0	0	0	- 1
	xclaim_mess	0	0	1		02	41.2	0	0	1	5	1203

Fit a model to the training dataset

```
email_fit <- logistic_reg() %>%
  set_engine("glm") %>%
  fit(spam ~ . - from - sent_email - viagra, data = train_data, family = "binomial")
```

```
email fit
## parsnip model object
## Fit time: 24ms
## Call: stats::glm(formula = spam ~ . - from - sent email - viagra, family = stats::binomial,
      data = data
##
## Coefficients:
   (Intercept)
                 to multiple
                                                                                           dollar
                                                   time
                                                                image
                                                                             attach
                                        CC
                                                                                       -7.115e-02
    -8.251e+01
                -3.114e+00
                                 2.130e-02
                                               6.173e-08
                                                           -1.412e+00
                                                                          3.871e-01
     winneryes
                     inherit
                                  password
                                              num char
                                                          line breaks
                                                                             format
                                                                                          re subj
     2.134e+00
                3.569e-01
                                               5.793e-02
                                                           -6.367e-03
                                                                         -7.715e-01
                                                                                       -3.050e+00
                                -9.737e-01
## exclaim subj
                urgent subj
                              exclaim mess
                                            numbersmall
                                                         numberbig
                                 1.200e-02
     2.350e-01
                   3.866e+00
                                              -6.915e-01
                                                            1.174e-01
##
## Degrees of Freedom: 3136 Total (i.e. Null); 3118 Residual
## Null Deviance:
                        1933
## Residual Deviance: 1402
                              AIC: 1440
```

Predict outcome on the testing dataset

```
predict(email_fit, test_data)
```

```
## # A tibble: 784 x 1
##    .pred_class
##    <fct>
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## # ... with 778 more rows
```

Predict probabilities on the testing dataset

```
email_pred <- predict(email_fit, test_data, type = "prob") %>%
  bind_cols(test_data %>% select(spam, time))
email_pred
```

```
## # A tibble: 784 x 4
##
    .pred_0 .pred_1 spam
                        time
##
     <dbl> <dbl> <fct> <dttm>
## 1 0.942 0.0581 0
                         2012-01-01 17:00:32
## 2 0.920 0.0804 0
                         2012-01-01 19:12:00
## 3 0.904 0.0960 0
                         2012-01-01 19:23:44
## 4 0.997 0.00304 0
                         2012-01-02 01:54:46
## 5 0.833 0.167
                         2012-01-02 02:58:14
## 6 0.849 0.151
                         2012-01-02 03:05:45
## # ... with 778 more rows
```

A closer look at predictions

```
email pred %>%
   arrange(desc(.pred 1)) %>%
   print(n = 10)
## # A tibble: 784 x 4
##
      .pred 0 .pred 1 spam
                            time
##
        <dbl>
                <dbl> <fct> <dttm>
                0.962 1
##
       0.0381
                            2012-03-27 07:17:01
      0.205
                0.795 1
##
                            2012-02-21 09:34:56
                0.592 0
##
   3 0.408
                            2012-02-03 14:25:39
##
       0.412
                0.588 1
                            2012-03-10 23:43:58
   4
   5 0.448
                0.552 1
                            2012-02-14 20:45:19
##
      0.462
                0.538 1
##
                            2012-02-04 16:54:23
##
                0.531 0
       0.469
                            2012-01-12 03:00:16
      0.472
                0.528 1
                            2012-01-25 17:17:54
##
   8
   9 0.477
                0.523 1
                            2012-03-21 03:00:30
##
## 10
       0.486
                0.514 1
                            2012-03-16 22:39:28
## # ... with 774 more rows
```

Evaluate the performance

Receiver operating characteristic (ROC) curve⁺ which plot true positive rate vs. false positive rate (1 - specificity)

```
email_pred %>%
  roc_curve(
    truth = spam,
    .pred_1,
    event_level = "second"
) %>%
  autoplot()
```


⁺Originally developed for operators of military radar receivers, hence the name.

Evaluate the performance

Find the area under the curve:

```
email_pred %>%
  roc_auc(
    truth = spam,
    .pred_1,
    event_level = "second"
)
```

