CS112: Data Structures

Lecture 13

Schedule

- Monday, August 8:
 - Work on project 4
- Wednesday, August 10:
 - Review
- Monday August 15:
 - Students present Projects 4 (attendance required)
- Wednesday, August 17:
 - Final exam

Review: Shortest Path

Dijkstra's algorithm:

to find shortest path from A to B:

- Build a tree of shortest paths from A
 - Is set of shortest paths really a tree?
 Suppose not, then must have two shortest paths converge and then diverge

Dijkstra's algorithm

Grow a tree of shortest paths from start

- grow it one edge / vertex at a time
- But which?
 - Vertex has to be one edge from tree
 - Of edges for a vertex, has to be edge that gives shortest path to start
 - Of vertices one edge from tree, choose the one with the shortest 'shortest path via tree'

Node	Status	Lin K	Distance
A	Tree		0
В	Fringe	A	5
C	Fringe	A	4
D	Fringe	A	7
E			
F			

Node	Status	Lin K	Distance
A	Tree		0
В	Fringe	A	5
C	Tree	A	4
D	Fringe	A	7
E			
F	Fringe	С	12

Node	Status	Lin K	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Fringe	В	6
E			
F	Fringe	С	12

Node	Status	Lin K	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Fringe	D	7
F	Fringe	C	12

Node	Status	Lin K	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Tree	D	7
F	Fringe	E	9

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Tree	D	7
F	Tree	E	9

Minimum Spanning Tree

- Spanning Tree: a subgraph with
 - All the nodes
 - Some of the edges
 - A tree, I.E., one path between any pair of nodes
- Minimum spanning tree
 - A spanning tree
 - With minimum total edge weight

Not a tree (has a cycle)

Not minimal

Not spanning (leaves out node F)

Not minimal

Not minimal

Minimal Spanning Tree

Node	Status	Link	Weight
A	Tree		0
В	Fringe	A	5
C	Fringe	A	4
D	Fringe	A	7
E			
F			

Node	Status	Link	Weight
A	Tree		0
В	Fringe	A	5
C	Tree	A	4
D	Fringe	A	7
E			
F	Fringe	C	8

Node	Status	Link	Weight
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Fringe	В	1
E			
F	Fringe	C	8

Node	Status	Link	Weight
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	A	6
E	Fringe	D	1
F	Fringe	С	8

Node	Status	Link	Weight
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	A	6
E	Tree	D	1
F	Fringe	E	2

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	1
E	Tree	D	1
F	Tree	E	2

Sorting

- Sorting is important
 - Can search sorted data in O(log n) time
- There are many different sorting algorithms
- In this class, we will look at 5
 - Insertion
 - Quick
 - Merge
 - Heap
 - Radix

Why study more than one?

- Each algorithm has strengths & weaknesses
 - No one best for all situations
- Good examples of array algorithms
- Good example of many algorithms for the same task

2-array vs in-place sorting

- Simplest to describe: 2-array
 - Given: array A, not in order
 - Produce: array B, same numbers but in order
- More efficient use of memory: In-Place
 - Given: array A, unsorted
 - Produce: array A, same numbers but in order

General In-Place

- In-Place: extra memory constant as input size grows
 - -0(1)

Insertion Sort

• To sort: take numbers one by one from unsorted and insert in order in sorted

Insertion Sort

Insertion Sort (cont.)

In-Place Insertion Sort

Insertion Sort

- How fast is insertion sort
- Count: comparison of two numbers to be sorted

1st insertion: 0 compares

2nd insertion1 compare

3rd insertion
 2 compares worst case

— ...

nth insertion
 n-1 compares worst case

Insertion Sort

- $0+1+2+...+n-1 = (n-1)*((n-1)+1)/2 = O(n^2)$
- Also cost of moving lots of data

Code

• See http://www.cs.ubc.ca/~harrison/Java/ InsertionSortAlgorithm.java.html

Divide and Conquer

- General approach when > O(n)
 - divide data in half
 - process each half
 - combine results

N log N Sorts

- Quicksort:
 - Partition
 - Split data into two groups, all in one group < any in other group
 - sort groups separately
 - use quicksort recursively
 - append
 - if partition & sort are in-place this is a no-op

Partition

- Choose a "pivot" value from data
 - ideal would be median => equal size lists
 - but takes too long to find median
 - simplest: pivot = first
 - but in order -> worst case
 - safer: median of 1st, last, middle

Partition

• Trick: first partition like this

Partition

- Use 2 pointers: left and right
 - move left from low+1 up until A[left] > pivot
 - move right from high down until A[right]<pivot
 - Swap
 - Repeat until left>=right

Quicksort

- How sort regions left & right of pivot?
 - Quicksort! (unless nothing in region)
 - Actually, insertion sort faster for small regions
 - size<10 or so</pre>

Complexity

- Partition takes O(n) time where n is the number of numbers to partition
- Best case: assume partition always into equal halves
 - Suppose 15 numbers in array

partition 0 - 1415 compares

- partition 0-6, 8-14 7+7=14 compares

... always O(n) compares

- Each level divides partition size by 2, stop at size 1
 - log n levels
- Total: O(n log n)

Complexity

- Worst case: always divide into 0 and allbut pivot
 - $-15 \rightarrow 14 \rightarrow 13 \rightarrow ... 1$: O(n) levels, total O(n²)
- Average case: O(n logn) like best

Code

 See http://www.cs.ubc.ca/~harrison/Java/ QSortAlgorithm.java.html

Merge sort

- Divide & Conquer:
 - split in two parts
 - no comparisons done in split
 - sort each part
 - merge the parts
- Cf quicksort which does comparisons in split and not in combine

Merge

Combine 2 sorted lists into one big sorted list

- compare smallest remaining in each list
- move smallest to output
- when one list empty move all of other list
- Needs extra space
 - linked lists or second array

Complexity

- Merge takes O(n) where n is size of result
- Like quicksort, level i does 2^i sublists, each of length $O(N/2^i) => O(N)$ work at each level
- Best, worst, average all do O(log n) levels
- Complexity is O(n log n)

Code

http://www.cs.ubc.ca/~harrison/Java/
 ExtraStorageMergeSortAlgorithm.java.html

Merge vs Quick

- Merge has space overhead and also time overhead but even worst case is O(n log n)
- Quick is in-place and low time overhead but (very unlikely) worst case O(n²)

Radix sort

- Put in piles by last digit
- collect piles in order
- put in piles by next-to-last digit ...

Radix Sort

Radix Sort

Complexity of Radix Sort

- Outer loop: once per digit
 - Inner loop: once per number
- Compares: d * n
 - If we consider d as a constant, O(n)