lournal of Computational Physics 274 (2014) 681-694

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/icp

A comparison of acceleration methods for solving the neutron transport *k*-eigenvalue problem

Jeffrey Willert*, H. Park, D.A. Knoll

Theoretical Division, MS B216, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

Guillermo Ibarra

Nuclear Engineering Research Seminar, February 25th, 2020

Introduction

$$\hat{\Omega}_{m} \cdot \nabla \psi_{g,m} \left(\vec{r} \right) + \Sigma_{t,g} \psi_{g,m} \left(\vec{r} \right) = \frac{1}{4\pi} \left[\sum_{g'=1}^{G} \Sigma_{s,g' \to g} \phi_{g'} \left(\vec{r} \right) + \frac{\chi_{g}}{k_{e\!f\!f}} v \Sigma_{f,g'} \phi_{g'} \left(\vec{r} \right) \right],$$

Introduction

$$\hat{\Omega}_{m} \cdot \nabla \psi_{g,m}(\vec{r}) + \Sigma_{t,g} \psi_{g,m}(\vec{r}) = \frac{1}{4\pi} \left[\sum_{g'=1}^{G} \Sigma_{s,g' \to g} \phi_{g'}(\vec{r}) + \frac{\chi_{g}}{k_{eff}} \nu \Sigma_{f,g'} \phi_{g'}(\vec{r}) \right],$$

where

$$\phi_g = \sum_m \psi_{g,m} w_m.$$

Operator Notation

$$\mathcal{L}\Psi = \frac{1}{4\pi} \left[S + \frac{1}{k_{eff}} \mathcal{F} \right] \Phi,$$

where:

$$\mathcal{L} = \hat{\Omega} \cdot \nabla + \Sigma_t$$
$$S = \Sigma_s$$
$$\mathcal{F} = \chi \nu \Sigma_f$$

and

$$\Psi = [\psi_1, \psi_2, \dots, \psi_G]$$

$$\Phi = [\phi_1, \phi_2, \dots, \phi_G]$$

$$\phi = \mathcal{M}_0 \psi$$

Power Iteration

Algorithm 1 Power Iteration (PI) algorithm.

Power Iteration

Input Φ^0 , k^0 , outer tolerance, inner tolerance, k max.

while $\frac{|k^{n+1}-k^n|}{k^{n+1}}$ > outer tolerance **do**

while $\|\Phi^{n+1,k+1} - \Phi^{n+1,k}\| > \text{inner tolerance and } k < k \max \text{ do}$

Compute new flux via source iteration

$$\mathcal{L}\Psi^{n+1,k+1} = \frac{1}{4\pi} \mathcal{S}\Phi^{n+1,k} + \frac{1}{4\pi} \frac{1}{k_{eff}} \mathcal{F}\Phi^n \tag{8}$$

$$\Phi^{n+1,k+1} = \mathcal{M}_0 \Psi^{n+1,k+1} \tag{9}$$

end while

Update Eigenvalue

$$k^{n+1} = \frac{W^T \mathcal{F} \Phi^{n+1}}{W^T \mathcal{F} \Phi^n} k^n \tag{10}$$

in which $W^T\vec{x}$ represents the numerical integral of \vec{x} throughout the domain.

end while

Housekeeping

- ► JFNK: Jacobian-Free Newton-Krylov
- NKA: Nonlinear Krylov Acceleration

Housekeeping

- ► JFNK: Jacobian-Free Newton-Krylov
- ► NKA: Nonlinear Krylov Acceleration
- ► HOLO: High-Order/Low-Order Acceleration, Moment Base Acceleration
- NDA: Nonlinear Diffusion Acceleration

Motivation

H. Park, D.A, Knoll, C.K. Newman, *Nonlinear acceleration of transport criticality problems*, Nucl. Sci. Eng. 172 (2012) 53-56

- ► NDA to accelerate scattering source
- ▶ JFNK to accelerate the fission source in LO space

Material properties 1-D test problems.

Property	Material 1	Material 2	Material 3
x-range (cm)	[0, 5]	$[5, \tau - 5]$	$[\tau - 5, \tau]$
$\Sigma_{\rm f}$ (cm ⁻¹)	1	1	1
Σ_s (cm ⁻¹)	.856	.856	.856
$\nu \Sigma_f \text{ (cm}^{-1})$	0	.144	0

Convergence Comparison 1-D Extra Small Test

Fig. 1. Methods comparison for 1-D k-eigenvalue problem. 15 mfp domain. Dominance ratio is .3018.

First Test

 $\tau = 35$ and $\tau = 210$

First Test

 $\tau = 35$ and $\tau = 210$

$$F\begin{pmatrix} \Phi \\ k \end{pmatrix} = \begin{pmatrix} F_{\Phi}(\Phi, k) \\ F_{k}(\Phi, k) \end{pmatrix} = 0 \tag{1}$$

$$F_{\Phi}(\Phi,k) = \Phi - P(k)\Phi$$

$$\begin{split} F_{\Phi}(\Phi, k) &= \Phi - P(k)\Phi \\ P_{1}(k) &= \mathcal{M}_{0}\mathcal{L}^{-1}\left[\frac{1}{4\pi}\left(\mathbb{S} + \frac{1}{k}\mathcal{F}\right)\right] \end{split}$$

$$F_{\Phi}(\Phi, k) = \Phi - P(k)\Phi$$

$$P_{1}(k) = \mathcal{M}_{0}\mathcal{L}^{-1}\left[\frac{1}{4\pi}\left(\mathbb{S} + \frac{1}{k}\mathcal{F}\right)\right]$$

$$\Phi^{n+1} = P_{2}(k^{n})\Phi^{n}$$

$$P_{2}(k^{n})\Phi^{n} = \mathcal{M}_{0}\left(\mathcal{L} - \frac{1}{4\pi}\mathcal{S}\mathcal{M}_{0}\right)^{-1}\frac{1}{4\pi k^{n}}\mathcal{F}\Phi^{n}$$

$$F_{\Phi}(\Phi, k) = \Phi - P(k)\Phi$$

$$P_{1}(k) = \mathcal{M}_{0}\mathcal{L}^{-1} \left[\frac{1}{4\pi} \left(\mathbb{S} + \frac{1}{k} \mathcal{F} \right) \right]$$

$$\Phi^{n+1} = P_{2}(k^{n})\Phi^{n}$$

$$P_{2}(k^{n})\Phi^{n} = \mathcal{M}_{0} \left(\mathcal{L} - \frac{1}{4\pi} \mathcal{S} \mathcal{M}_{0} \right)^{-1} \frac{1}{4\pi k^{n}} \mathcal{F} \Phi^{n}$$

$$F_{k}(\Phi, k) = \left(1 - \frac{W^{T} \mathcal{F} P(k)\Phi}{W^{T} \mathcal{F} \Phi} \right) k$$

JFNK Algorithm

Algorithm 2 Jacobian-Free Newton-Krylov (JFNK) algorithm.

JFNK

Input initial iterate x_0 , $\eta \in (0, 1)$.

Set n = 0.

while $F(x_n) >$ tolerance **do**

Compute Newton step s satisfying

$$||F'(x_n)s + F(x_n)|| < \eta ||F(x_n)||$$
 (18)

by solving

$$F'(x_n)s = -F(x_n) \tag{19}$$

with GMRES.

Compute next iterate x_{n+1}

$$x_{n+1} = x_n + s$$
.

(20)

Set n = n + 1. end while

NKA Algorithm

Algorithm 3 Nonlinear Krylov Acceleration (NKA) algorithm.

NKA

Input initial iterate x_0 , history length M.

Set $x_1 = x_0 - F(x_0)$

Set n = 1.

while $F(x_n) >$ tolerance **do**

Compute NKA Update

$$\vec{\mathbf{v}}_{n+1} = \sum_{i=n-M+1}^{n} z_i^{(n)} \vec{\mathbf{v}}_i + \left(F(x_n) - \sum_{i=n-M+1}^{n} z_i^{(n)} \vec{\mathbf{w}}_i \right)$$
(21)

$$\vec{v}_i = x_{i-1} - x_i \tag{22}$$

$$\vec{W}_i = F(x_{i-1}) - F(x_i)$$
 (23)

$$\vec{z}^{(n)} = \arg\min_{y \in \mathbb{R}^M} \left\| F(x_n) - \sum_{i=n-M+1}^m y_i \vec{w}_i \right\|$$
 (24)

and

$$x_{n+1} = x_n + v_{n+1}. (25)$$

Set n = n + 1.

end while

$$Ax = \lambda x$$

$$Ax = \lambda x$$

$$k = \int \int v \Sigma_f \phi dV dE$$

$$Ax = \lambda x$$

$$k = \int \int v \Sigma_f \phi dV dE$$
$$F(\Phi) = \Phi - P(k(\Phi)) \Phi$$

$$Ax = \lambda x$$

$$k = \int \int v \Sigma_f \phi dV dE$$
$$F(\Phi) = \Phi - P(k(\Phi)) \Phi$$
$$k(\Phi) = \int \int v \Sigma_f \phi dV dE$$

$$\nabla \cdot \vec{J}_g + \left(\Sigma_{t,g} - \Sigma_{s,g \to g}\right) \phi_g = \sum_{g' \neq g} \Sigma_{s,g' \to g} \phi_{g'} + \frac{\chi_g}{k_{eff}} \sum_{g'=1}^G v \Sigma_{f,g'} \phi_{g'}$$

$$\nabla \cdot \vec{J}_{g} + \left(\Sigma_{t,g} - \Sigma_{s,g \to g}\right) \phi_{g} = \sum_{g' \neq g} \Sigma_{s,g' \to g} \phi_{g'} + \frac{\chi_{g}}{k_{eff}} \sum_{g'=1}^{G} v \Sigma_{f,g'} \phi_{g'}$$
$$\vec{J}_{g}(\vec{r}) = \int_{4\pi} \vec{\Omega} \psi_{g} \left(\vec{\Omega}, \vec{r}\right) d\vec{\Omega} = \mathcal{M}_{1} \psi_{g}$$

$$\nabla \cdot \vec{J}_{g} + \left(\Sigma_{t,g} - \Sigma_{s,g \to g}\right) \phi_{g} = \sum_{g' \neq g} \Sigma_{s,g' \to g} \phi_{g'} + \frac{\chi_{g}}{k_{eff}} \sum_{g'=1}^{G} v \Sigma_{f,g'} \phi_{g'}$$

$$\vec{J}_{g}(\vec{r}) = \int_{4\pi} \vec{\Omega} \psi_{g} \left(\vec{\Omega}, \vec{r}\right) d\vec{\Omega} = \mathcal{M}_{1} \psi_{g}$$

$$\vec{J}_{g} = -\frac{1}{3\Sigma_{t,g}} \nabla \psi_{g} + \vec{D}_{g} \phi_{g}$$

$$\nabla \cdot \vec{J}_{g} + \left(\Sigma_{t,g} - \Sigma_{s,g \to g}\right) \phi_{g} = \sum_{g' \neq g} \Sigma_{s,g' \to g} \phi_{g'} + \frac{\chi_{g}}{k_{eff}} \sum_{g'=1}^{G} v \Sigma_{f,g'} \phi_{g'}$$

$$\vec{J}_{g}(\vec{r}) = \int_{4\pi} \vec{\Omega} \psi_{g} \left(\vec{\Omega}, \vec{r}\right) d\vec{\Omega} = \mathcal{M}_{1} \psi_{g}$$

$$\vec{J}_{g} = -\frac{1}{3\Sigma_{t,g}} \nabla \psi_{g} + \vec{D}_{g} \phi_{g}$$

$$\nabla \cdot \left[-\frac{1}{3\Sigma_{t,g}} \nabla \psi_{g} + \vec{D}_{g} \phi_{g} \right] + \left(\Sigma_{t,g} - \Sigma_{s,g \to g}\right) \phi_{g} = \sum_{g' \neq g} \Sigma_{s,g' \to g} \phi_{g'} + \frac{\chi_{g}}{k_{eff}} \sum_{g'=1}^{G} v \Sigma_{f,g'} \phi_{g'}$$

Consistency term:

$$\vec{D}_g = \frac{\vec{J}_g^{HO} + \frac{1}{3\Sigma_{t,g}} \nabla \phi_g^{HO}}{\phi_g^{HO}}$$

Consistency term:

$$\vec{D}_g = \frac{\vec{J}_g^{HO} + \frac{1}{3\Sigma_{t,g}} \nabla \phi_g^{HO}}{\phi_g^{HO}}$$

From the transport sweep:

$$\Psi = \frac{1}{4\pi} \mathcal{L}^{-1} \left[S + \frac{1}{k_{eff}} \mathcal{F} \right] \Phi$$

Consistency term:

$$\vec{D}_g = \frac{\vec{J}_g^{HO} + \frac{1}{3\Sigma_{t,g}} \nabla \phi_g^{HO}}{\phi_g^{HO}}$$

From the transport sweep:

$$\begin{split} \Psi &= \frac{1}{4\pi}\mathcal{L}^{-1}\left[\mathcal{S} + \frac{1}{k_{eff}}\mathcal{F}\right]\Phi \\ \Phi^{HO} &= \mathcal{M}_0\Psi \end{split}$$

Consistency term:

$$\vec{D}_g = \frac{\vec{J}_g^{HO} + \frac{1}{3\Sigma_{t,g}} \nabla \phi_g^{HO}}{\phi_g^{HO}}$$

From the transport sweep:

$$\begin{split} \Psi &= \frac{1}{4\pi}\mathcal{L}^{-1}\left[\mathcal{S} + \frac{1}{k_{eff}}\mathcal{F}\right]\Phi \\ \Phi^{HO} &= \mathcal{M}_0\Psi \\ \vec{J}_g &= \mathcal{M}_1\Psi \end{split}$$

LO Discretization

Operator notation of NDA LO system:

$$D\Phi = (S_U + S_L)\Phi + \frac{1}{k_{eff}}\mathcal{F}\Phi.$$

LO Discretization

Operator notation of NDA LO system:

$$D\Phi = (S_U + S_L)\Phi + \frac{1}{k_{eff}}\mathcal{F}\Phi.$$

in which:

$$D_{g}\Phi = \nabla \cdot \left[-\frac{1}{3\Sigma_{t,g}} \nabla + \vec{D}_{g} \right] \phi_{g} + \left(\Sigma_{t,g} - \Sigma_{s,g \to g} \right) \phi_{g},$$
$$\left(S_{U,g} + S_{L,g} \right) \Phi = \sum_{g' \neq g} \Sigma_{s,g' \to g} \phi_{g'}.$$

NDA Algorithm

Algorithm 4 NDA.

Nonlinear Diffusion Acceleration

Compute initial iterate $\Phi^{(0)}$, initial eigenvalue approximation k^0 . Set iteration counter m=0.

while
$$|k^{m} - k^{m-1}| > \tau$$
 do

Update counter, m = m + 1.

Execute transport sweep and compute new consistency term

$$\Psi^{(m)} = \frac{1}{4\pi} \mathcal{L}^{-1} \left(S + \frac{1}{k^{m-1}} \mathcal{F} \right) \Phi^{(m-1)}, \tag{37}$$

$$\Phi^{HO} = \int \Psi^{(m)} d\hat{\Omega}, \tag{38}$$

$$\vec{J}^{HO} = \int \hat{\Omega} \Psi^{(m)} d\hat{\Omega}, \tag{39}$$

$$\hat{D}^{(m)} = \frac{\vec{J}^{HO} + \frac{1}{3\sum_{i}}\nabla\phi^{HO}}{\phi^{HO}}.$$
(40)

Solve the LO eigenvalue problem for $\Phi^{(m)}$ and k^m

$$(\mathcal{D}^{(m)} - S_U - S_L)\Phi^{(m)} = \frac{1}{k^{(m)}}\mathcal{F}\Phi^{(m)}.$$
 (41)

end while

Solving LO Eigenvalue

Rewriting the LO problem:

$$F_{\Phi}(\Phi) = (D - S_U - S_L)\Phi - \frac{1}{k(\Phi)} \mathcal{F}\Phi.$$

in which:

$$k(\Phi) = \sum_{g=1}^{G} \int v \Sigma_{f,g} \phi_g dV.$$

Preconditioned:

$$\mathcal{M} = D - S_L - \frac{1}{k^{m-1}} \mathcal{F}.$$

Problem Set Dominance Ratios

Dominance Ratio:

$$\rho = \frac{\left|k_2\right|}{\left|k_1\right|},$$

Problem Set Dominance Ratios

Dominance Ratio:

$$\rho = \frac{\left|k_2\right|}{\left|k_1\right|},$$

Scattering plus dominance Ratio:

$$\rho_{s+f} = \frac{\left| k_{PI(1)}^{n+1} - k^* \right|}{\left| k_{PI(1)}^{n} - k^* \right|}.$$

Problem Set

LRA-BWR 2g, S16, 352 × 352, $\rho = 0.97$, $\rho_{s+f} = 0.993$

Problem Set

C5G7 7g, S16, 357 \times 357, $\rho = 0.77$, $\rho_{s+f} = 0.989$

JFNK-HO Parameter Study

HO-JFNK	parameter	study.
---------	-----------	--------

η	Max Krylovs	Sweeps	
		LRA-BWR	C5G7MOX
.001	15	1631	204
.01	15	2882	174
.1	15	2016	152
.001	30	503	179
.01	30	1030	155
.1	30	453	125
.001	150	337	165
.01	150	308	154
.1	150	314	166

JFNK-HO vs NKA-HO Study

Method	Sweeps		
	LRA-BWR	C5G7MOX	
HO-JFNK(.1, 15)	2016	152	
HO-JFNK(.001, 30)	503	179	
HO-JFNK(.1, 30)	453	125	
HO-JFNK(.01, 150)	308	154	
HO-JFNK(.1, 150)	314	166	
HO-NKA(15)	301	121	
HO-NKA(30)	262	168	

Mesh Convergence Study NDA-NCA

Mesh size	Sweeps	Sweeps		Error	Order
	JFNK	K NKA			
0.46875	5	6	1.0014486	2.541×10^{-6}	-
0.3125	5	5	1.0014499	1.025×10^{-6}	1.97
0.234375	6	5	1.0014503	5.617×10^{-7}	2.09
0.1875	6	5	1.0014505	3.598×10^{-7}	2.00
0.15625	5	5	1.0014507	2.496×10^{-7}	2.00

Mesh Convergence Study

Mesh size	Sweeps	k_{eff}	Error	Ordei
0.937500	296	1.0014417	9.210×10^{-6}	-
0.468750	301	1.0014486	2.280×10^{-6}	2.01
0.312500	300	1.0014499	1.025×10^{-6}	1.97
0.234375	403	1.0014503	5.617×10^{-7}	2.09
0.187500	294	1.0014505	3.598×10^{-7}	2.00
0.156250	234	1.0014507	2.496×10^{-7}	2.00

HOLO vs HO Study LRA-BWR

Method	Sweeps	Time (s)	HO time (s)	LO time (s)	Factor
NDA-NCA-JFNK	5	115.04	46.04	69.00	1.00
NDA-NCA-NKA	5	140.88	46.02	94.86	1.22
NDA-PI	7	987.62	64.53	923.09	8.59
HO-JFNK(.001, 30)	503	4687.32	4687.32	_	40.75
HO-JFNK(.01, 150)	308	2893.14	2893.14	-	25.15
HO-NKA(15)	301	2768.65	2768.65	-	24.07
HO-NKA(30)	262	2410.32	2410.32	-	20.95
PI(1)	9754	89795.33	89795.33	-	780.56
PI(10)	12501	115 084.21	115 084.21	_	1000.38

HOLO vs HO Study

LRA-BWR: cost breakdown

Method	Sweeps	LO func. evals.	Precond. const.	Precond. app.
NDA-NCA-JFNK	5	177	15	147
NDA-NCA-NKA	5	187	172	172
NDA-PI	7	1920	-	-

HOLO vs HO Study

Method	Sweeps	Time (s)	HO time (s)	LO time (s)	Factor
NDA-NCA-JFNK	6	535.48	214.92	320.56	1.00
NDA-NCA-NKA	6	635.52	214.71	420.81	1.19
NDA-PI	13	2599.61	469.37	2130.24	4.85
HO-JFNK(.001, 30)	179	6512.52	6512.52	_	12.16
HO-JFNK(.01, 150)	154	5620.18	5620.18	_	10.50
HO-NKA(15)	121	4500.79	4500.79	_	8.41
HO-NKA(30)	168	6180.89	6180.89	_	11.54
PI(1)	1454	56387.71	56 387.71	_	105.30
PI(10)	1970	72851.56	72 851.56	_	136.05

HOLO vs HO Study

C5G7: cost breakdown

Method	Sweeps	LO func. evals.	Precond. const.	Precond. app.
NDA-NCA-JFNK	6	282	16	250
NDA-NCA-NKA	6	244	228	228
NDA-PI	13	2139	_	-

Conclusion

- NKA is generally more efficient at solving the nonlinear HO problem.
- By moving a large portion of the problem to the LO computational space, overall work is reduced considerably.
- While JFNK and NKA applied to the HO problem can accelerate the solution when comparted to standard power iteration, they are significantly more expensive than NDA-NCA.
- ▶ NDA-NCA performance is less sensitive to mesh size and choice of parameters.
- ▶ NDA-NCA can also be preconditioned to further accelerate the solution.
- ► For both problems, BWR-LRA and C5G7, NDA-NCA is the most efficient by a factor of 10-40.

Thanks!

Questions?