CSC-391: Data Structures

Lecture: 15

Graph-2: Graph Representation

Prepared by: K M Akkas Ali, Assistant Professor, IIT, JU

Lecture-15:

Graph-2: Graph Representation

Objectives of this Lecture:

- Definition of graphs and related concepts
- □ Vertices/nodes, edges, adjacency, incidence
- Degree, in-degree, out-degree
- Subgraphs, unions, isomorphism
- Adjacency matrices
- Types of Graphs
- Trees
- Undirected graphs
- ☐ Simple graphs, Multigraphs, Pseudographs
- Digraphs, Directed multigraph
- Bipartite
- Complete graphs, cycles, wheels, cubes, complete bipartite
- Representation of Graphs
- Graph Traversal
- Graph Applications

For graphs to be computationally useful, they have to be conveniently represented in programs.

There are two computer representations of graphs:

- Adjacency Matrix representation
- Adjacency Lists representation

Adjacency Matrix Representation

- In this representation, each graph of n nodes is represented by an n x n matrix A, that is, a two-dimensional array A
- The nodes are (re)-labeled 1,2,...,n
- A[i][j] = 1 if (i,j) is an edge
- A[i][j] = 0 if (i,j) is not an edge
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Example of Adjacency Matrix

Another Example of Adj. Matrix

Re-label the nodes with numerical labels

directed: n²

G

Pros and Cons of Adjacency Matrices

- Pros:
 - From the adjacency matrix, to determine the connection of vertices is easy
 - Simple to implement
 - Easy and fast to tell if a pair (i,j) is an edge: simply check if A[i][j] is 1 or 0
 - For a digraph (= directed graph), the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

- Cons:
 - No matter how few edges the graph has, the matrix takes O(n²) in memory

Adjacency Lists Representation

Each row in adjacency matrix is represented as an adjacency list.

- A graph of n nodes is represented by a one-dimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

```
#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {
    int vertex;
    struct node *link;
};

node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */
```

Example of Linked Representation

L[0]: empty

L[1]: empty

L[2]: 0, 1, 4, 5

L[3]: 0, 1, 4, 5

L[4]: 0, 1

L[5]: 0, 1

Pros and Cons of Adjacency Lists

• Pros:

 Saves on space (memory): the representation takes as many memory words as there are nodes and edge.

Cons:

 It can take up to O(n) time to determine if a pair of nodes (i,j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

An undirected graph with n vertices and e edges ==> n head nodes and 2e

Some Operations on Graph:

- degree of a vertex in an undirected graph
 - —# of nodes in adjacency list
- # of edges in a graph
 - –determined in O(n+e)
- out-degree of a vertex in a directed graph
 - —# of nodes in its adjacency list
- in-degree of a vertex in a directed graph
 - -traverse the whole data structure

Graph Traversal Techniques:

- <u>Problem</u>: Search for a certain node or traverse all nodes in the graph
- The previous connectivity problem, as well as many other graph problems, can be solved using graph traversal techniques
- There are two standard graph traversal techniques:
 - Depth-First Search (DFS)
 - Breadth-First Search (BFS)
- Depth First Search
 - Once a possible path is found, continue the search until the end of the path
- Breadth First Search
 - Start several paths at a time, and advance in each one step at a time
- In both DFS and BFS, the nodes of the undirected graph are visited in a systematic manner so that every node is visited exactly one.
- Both BFS and DFS give rise to a tree:
 - When a node x is visited, it is labeled as visited, and it is added to the tree
 - If the traversal got to node x from node y, y is viewed as the parent of x, and x a child of y

Depth-First Search:

Depth-First Search:

Exploring a Labyrinth Without Getting Lost

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.
- We start at vertex s, tying the end of our string to the point and painting s "visited". Next we label s as our current vertex called u.
- Now we travel along an arbitrary edge (u, v).
- If edge (u, v) leads us to an already visited vertex v we return to
 u.
- If vertex v is unvisited, we unroll our string and move to v, paint v "visited", set v as our current vertex, and repeat the previous steps.

Depth-First Search

- DFS follows the following rules:
 - Select an unvisited node x, visit it, and treat as the current node
 - 2. Find an unvisited neighbor of the current node, visit it, and make it the new current node;
 - If the current node has no unvisited neighbors, backtrack to the its parent, and make that parent the new current node;
 - 4. Repeat steps 3 and 4 until no more nodes can be visited.
 - 5. If there are still unvisited nodes, repeat from step 1.

Depth-First Search:

```
Algorithm DFS(v); Input: A vertex v in a graph
Output: A labeling of the edges as "discovery" edges and "backedges"
for each edge e incident on v do
   if edge e is unexplored then let w be the other endpoint of e
   if vertex w is unexplored then label e as a discovery edge
      recursively call DFS(w)
   else label e as a backedge
```

Illustration of DFS

DFS Tree

Graph G

Implementation of DFS

- Observations:
 - the last node visited is the first node from which to proceed.
 - Also, the backtracking proceeds on the basis of "last visited, first to backtrack too".
 - This suggests that a stack is the proper data structure to remember the current node and how to backtrack.

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties.
- The starting vertex s has level 0, and, as in DFS, defines that point as an "anchor."
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
- These edges are placed into level 1
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
- This continues until every vertex has been assigned a level.
- The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation

More BFS

- BFS follows the following rules:
 - 1. Select an unvisited node x, visit it, have it be the root in a BFS tree being formed. Its level is called the current level.
 - 2. From each node z in the current level, in the order in which the level nodes were visited, visit all the unvisited neighbors of z. The newly visited nodes from this level form a new level that becomes the next current level.
 - 3. Repeat step 2 until no more nodes can be visited.
 - 4. If there are still unvisited nodes, repeat from Step 1.

Illustration of BFS

BFS Pseudo-Code

```
Algorithm BFS(s): Input: A vertex s in a graph
Output: A labeling of the edges as "discovery" edges and "cross edges"
 initialize container L<sub>0</sub> to contain vertex s
 i ← 0
 while L<sub>i</sub> is not empty do
     create container L<sub>i+1</sub> to initially be empty
     for each vertex v in L, do
       if edge e incident on v do
          let w be the other endpoint of e
         if vertex w is unexplored then
            label e as a discovery edge
              insert w into L<sub>i+1</sub>
            else label e as a cross edge
              i \leftarrow i + 1
```

Applications: Finding a Path

- Find path from source vertex s to destination vertex d
- Use graph search starting at s and terminating as soon as we reach d
 - Need to remember edges traversed
- Use depth first search?
- Use breath first search?

Breadth-First Search Vs. Depth-First Search:

DFS vs. BFS

Prepared by: K M Akkas Ali, Assistant Professor, IIT, JU

Breadth-First Search Vs. Depth-First Search:

DFS vs. BFS

front rea

Initial call to BFS on

Α

ARRIVATE AND ARRIVATE ARRIVATE

G

Dequeue

Add G

front rea B

Dequeue

Add B

front rea DC

Dequeue

Add C, D

found destination - done! Path must be stored separately

rea	front
r	D

Dequeue C Nothing to add