12.005 Lecture Notes 10

A house built upon sand...

Figure 10.1 Figure by MIT OCW.

"Theory" Sand follows Amonton's Law: $\tau = \mu |\sigma_n|$ (Mohr – Coulomb)

Modify for pore fluid: $\tau = \mu |\sigma_n| - |p_f|$

Need to express τ and σ_n on any arbitrary plane develop stress tensor (symmetric)

$$T = c \hat{z} \hat{n}$$

or

$$T_i = \sigma_{ij} n_j$$

$$\sigma_n = \underline{T} \cdot \hat{n}$$

Mohr circle construction

Figure 10.2 Figure by MIT OCW.

Figure 10.3 Figure by MIT OCW.

Assume

- On verge of failure everywhere
- μ, λ^* μ_b, λ_b

Trigonometry relates $\alpha, \beta, \mu, \mu_b, \dots$

Pore Fluid

$$\lambda = \frac{p_f - \rho_w gD}{\left|\sigma_{zz} - \rho_w gD\right|}$$

Often:

$$\sigma_{zz}$$
; $-\rho g(1-\lambda)z\cos(\alpha)$

Sandbox tectonics

Rheology – "Brittle failure" – friction dominates [comp σ positive \rightarrow]

Figure 10.4 Figure by MIT OCW.

Applications:

A)

Figure 10.5 Figure by MIT OCW.

Figure 10.6 Figure by MIT OCW.

B)

Figure 10.7 Figure by MIT OCW.

Figure 10.8 Figure by MIT OCW.

Consider stress only – only variable for brittle failure neglect strain, velocity, inertia, ...

Possible paradoxes:

Type A) "
$$\angle_{int\mu} = \angle_{repose}$$
" \Rightarrow "strong \Rightarrow steep"

Type B) strong \Rightarrow flat

Viscous fluid, type A&B weak \Rightarrow falt

Complicating factors:

Pore pressure; based decollement