

Trabalho Final: PROJETO DO CONTROLE DO ELEVADOR DO BLOCO B DA UFFS.

Prof. Adriano Padilha.

Discentes: Daniele Karoline, João L., João M.

1. Proposta de Atividade

Desenvolver um projeto baseado em transferência de registradores (BC:BO) em Verilog para o controle do elevador (Bloco B). Este projeto deverá ser sintetizável no kit de FPGA da Altera (DE1) para simulação de todas suas entradas e saídas.

2. Descrição do funcionamento do projeto

O projeto foi aplicado em um Dispositivo Lógico Programável - FPGA. Para a execução do trabalho, utilizou-se o *FPGA Altera Cyclone II* e programado em VeriLog.

O funcionamento do projeto baseia-se em comandos de entrada que indicam o andar, subida ou descida e sensores, os quais servem para verificar a porta (aberta ou fechada) e se há pessoa entre a porta. Codificou-se os comandos para os botões que indicam o andar (de 1 até 4) e o botão de descida/subida. Utilizou-se o Display de Sete Segmentos para indicar o andar. Também há a verificação do funcionamento do motor, onde analisa-se se está em repouso, em subida ou descida.

2.1 Descrição das entradas e saídas utilizadas na DE1

Entradas:

- S = Botão para cima
- D = Botão para baixo
- B = Botões de 1 a 4
- SP = Sensor de porta (0 = fechada, 1 = aberta)
- SPE = Sensor de pessoas na porta (0 = não, 1 = sim)
- EMERG = Botão de emergência
- Clock
- SEN = Sensor do andar atual

Reset

Saídas:

- Porta = Acionamento porta (0 = fecha, 1 = abrir)
- Motor
 - 00 = Parado
 - o 01 = Subindo
 - 10 = Descendo
 - o 11 = Erro
- C = Indicador andar
- B = Indicador de estado atual
- E = Indicador de destino
- Led = Indica emergência

Correspondência das entradas e saídas no FPGA:

- B1 = KEY0
- B2 = KEY1
- B3 = KEY2
- B4 = KEY3
- S = SW0
- D = SW1
- SP = SW2
- SPE = SW3
- EMERG = SW4
- SEN1 = SW8
- SEN2 = SW7
- SEN3 = SW6
- SEN4 = SW5
- M = LEDR9 e LEDR8
- CLOCK = CLOCK_50

- RESET = SW9
- LED = LEDG
- B = HEX0
- C = HEX1
- E = HEX3
- PORTA = LEDR0

2.2 Projeto BO:BC e FSM

Figura 1: FSM - Finite State Machine

Figura 2: Bloco Operativo e Bloco de Controle

3. Resultados Alcançados

Com esse trabalho, pudemos ter maior contato com um projeto de sistema digital. Tendo agora um conhecimento mais sólido de como funcionam, as possibilidades de criação, como funciona o planejamento e passos para o surgimento de um projeto eletrônico. Tivemos oportunidade de aprofundar os conhecimentos que nos foram passados em VeriLog e também a autonomia da busca por soluções.

4. Código em VeriLog

O projeto possui um módulo, BC_elevador, porém, este não possui módulos adicionais. Apesar disso, temos os módulos mostra_andar, mostra_destino e emergência, que estão utilizados no BC_elevador_certo, mesmo este não compilando corretamente.

Disponibilizados no GitHub: https://github.com/DanieleKaroline/elevator