National Tsing Hua University Department of Electrical Engineering EE4292 IC Design Laboratory (積體電路設計實驗) Fall 2021

CVAE-seq2seq Robotic Arm Control AI accelerator

Team Member: 鍾宇騫(107062205)、黃韋珀(107070032)

1. Functionality

我們的 CVAE seq2seq decoder 為課程前就已訓練好的模型,但僅有 Pytorch model 和 weight 的 ckpt 檔,project 內的 C++軟體模型、RISCV 的驗 證 C 程式、RTL code 都是為了 project 寫的。

該模型可以根據外界輸入的手臂狀態和目標點位置,迭代運算出每一步的移動軌跡,使機械手臂的手掌移動到目標點[1]。如 Figure.1 所示,CVAE decoder 主要由三個 Fully Connection 和一個 Gated Recurrent Unit (GRU)的運算所組成。一開始的 rand 值會先經過一層 Fully Connection (FC_12h)計算出GRU 的初始 hidden state,之後 GRU 便會不停迭代運算出下一層的 hidden state,供後半部的 Fully Connection 計算出手臂移動軌跡 state 和判斷是否完成工作的 label config。

Figure.1 CVAE seq2seq decoder

由 Equation.1 的 GRU 計算公式可知其中的矩陣相乘計算原理與 Figure.1 中的 Fully Connection 是一樣的,並且因為 SRAM 無法合成進 Design, Weights 輸入的頻寬有所限制,因此在電路架構的設計我們只放置了一個 Fully Connection 的模組來重複使用,以降低 I/O pin 的數量。

$$R_t = sigmoid(W_{ir}X_t + b_{ir} + W_{hr}h_{t-1} + b_{hr})$$

 $Z_t = sigmoid(W_{iz}X_t + b_{iz} + W_{hz}h_{t-1} + b_{hz})$
 $N_t = tanh(W_{in}X_t + b_{in} + R_t(W_{hn}h_{t-1} + b_{hn}))$
 $h_t = (1 - Z_t)N_t + Z_th_{t-1}$
Equation.1 GRU 計算公式

而在 Sigmoid 與 Hyper Tangent 的實作上,我們嘗試在 C++上以查表(LUT) 來模擬,但 LUT 的誤差於計算過程中不斷累加,使得最終結果與 Pytorch 的運算結果相差過大,並且這部份我們在 Webots 上有實際去模擬算出來的軌跡是無法移動到目標點的。因而我們採用 CORDIC 演算法[2]來實作這兩種自然對數運算。如 Figure.2 & 3 所示,該演算法可以透過對 Input 和 Output 做加法和邏輯運算的處理,並使用相同的 data path 來實現 Sigmoid 和 Hyper Tangent。且因為 CORDIC 是使用逼近的方式來迭代計算結果,我們參考論文[2]調整出適合 CVAE decoder 運算資料範圍的參數,以 latency 41 cycles,

throughput 1 result/cycle 的架構實作於 CVAE decoder 內。

Figure.2 CORDIC based sigmoid/tanh algorithm [2]

Figure.3 Pipelined RHC (left) and VLC (right) module [2]

如 Figure.4, 電路架構的設計我們分為三部份: Control、Storage、Data path。整個系統由 Control 電路的 FSM 來控制, 所有 Input 控制訊號都會送到 FSM, 再由 FSM 來控制其他電路的行為。

Storage 的部分因為無法合成 SRAM 以及為了降低 I/O pin 的數量,我們開了一組 Register files 供內部運算的資料暫存,總共有 7,840 bits。Register files 會負責接收內部運算好的資料或是外部進來的資料,再透過 FSM 將資料送至其他的 data path。

Data path 的部分有兩個: 一為 Fully Connection,由於上述提及 **SRAM 無法合成**,所以我們只配置了一個 Fully Connection 電路,並且受限於 Weight 頻寬,運算速度為 1 MAC/cycle;二為 GRU 電路。因為 **Register Files 沒有如外部 SRAM 的頻寬限制**,GRU 的設計為完全的 Pipeline, Latency 為 89 cycles, Throughput 為 1 result/cycle。GRU 其中的 Hyper Tangent 和 Sigmoid 我們是根據 Figure.2 來實作,並且用到的參數是以 LUT 的方式刻在電路內。

Figure.4 CVAE decoder top module

整體的 Data flow 為 Testbench 透過 control 訊號通知 CVAE decoder 資料已經準備好,CVAE decoder 會自行向外部 SRAM 讀寫並運算結果,讀進來的資料和運算結果都會暫存於 Register files,而在運算結果都寫回外部 SRAM 後,會送一個 finish 訊號給 Testbench 來開始驗證結果。

2. Specification

(a) Overall PPA

	Spec	Our result
Quantization RMSE	< 0.05	0.03
Clock period	< 6.4 ns	5.8 ns (post sim)
Iteration latency	< 10,000 cycles	5,454 cycles
Power	< 100 uW	29 uW
Area	$< 500,000 \ um^2$	1,001,104 um ²

(b) Clock period

_	Unit: ns	Synthesis	P&R	Post sim	
	Clock period	5.12	5.6	5.8	

(c) Power profiling

(1) Overall

Unit: uW	DC	ICC	PT (pre-sim)	PT (post-sim)
Leakage power	4810	5400	5600	5400
Dynamic power	22400	22900	5400	23500
Total power	27300	28300	11000	29000

(2) Post simulation with Prime Time

由表可知,絕大部分的 Power 都是在 clock 上,data path 與 storage 的 功耗其實占比不高。

Module	Switch	Switching Internal		nal	Leakage		Total	
Unit	uW	%	uW	%	uW	%	uW	%
Clock network	17200	95.0	4620	85.0	265	4.9	22100	76.3
Registers	32	0.2	26	0.4	2650	49.1	2710	9.4
Combinational	874	4.8	791	14.5	2480	46.0	4150	14.3

(3) Gate level simulation with Prime Time

從 Gate level sim 看各 module 功耗可以發現耗能與面積成正比(參考面的 Area profiling)。

4, 1 Hou promise)								
Module	Switch	ning	Inter	nal	Leal	cage	То	tal
Unit	uW	%	uW	%	uW	%	uW	%
FC	85.8	61.7	416	1.9	161	3.3	664	2.4
GRU-sigmoid 0	9.15	6.9	4060	18.2	917	19.1	4990	18.3
GRU-sigmoid 1	11.2	8.0	4070	18.2	918	19.1	5000	18.3
GRU-tanh	15.8	11.3	4080	18.2	904	18.7	5000	18.3
GRU-others	4.35	3.0	290	1.3	241	5.0	510	2.0
FSM & Register	13.0	9.2	9480	42.3	1670	34.7	11100	40.7
Total	140	100	22400	100	4810	100	27300	100

(d) Area profiling

面積主要由 GRU 的三顆 CORDIC 電路和 Register files 所組成。Total cell 的面積是有符合 spec 的,但因為 APR 時把 core utilization 設 0.5 或更高會繞不出來,我們推測問題是在於 Register files 的 bit 數過多(7840 bits)

Module	Absolute area	Percentage
Fully Connection	$11,615 \ um^2$	3.9 %
GRU-sigmoid 0	$55,479 \ um^2$	18.9 %
GRU-sigmoid 0	$55,586 \ um^2$	18.9 %
GRU-tanh	$54,362 \ um^2$	18.5 %
GRU-others	18,009 um²	6.1 %
FSM & Register files	$99,223 \ um^2$	41.5 %
Total cell area	294,277 um²	100.0 %
APR area	1,001,104 um ²	Core utilization: 0.3

3. Implementation

(a) 演算法模型

已根據課程前已有的 Pytorch 的模型演算法實作出 C++版本的軟體程式,該軟體可以基於 Pytroch 的浮點數資料產生出 Quantization 後的 Weight 和 Pattern。並且能透過快速的更改單一變數來調整 CORDIC 演算法和 Quantization 的各項參數來達到電路的運算精度需求。

(b) 系統架構設計

如 Figure.5 以及上述的架構解釋,設計出整個電路的架構,並將 Module 的 I/O 與功能開好規格分配給組員。

(c) 浮點數 Quantization

採用 32-bits fixed point 來實作,調完參數後的 RMSE 為 0.03,滿足規格

(d) 電路設計

根據(b)的系統架構,組員各自設計分配的部分,並在設計完成後組裝起來與TB 測試。

(e) 電路合成& APR

参考 Lab10 的 Script,沒有設定 clock gating,並修改部分 APR 參數,如 core utilization。

4. Verification

(1) Performance

為了驗證加速器的加速效果,我們使用 Xilinx vcu118 FPGA 合成包含 RISCV Araine 64-bits CPU 的完整系統,在其運行 CVAE Decoder 的軟體運算,並在軟體內使用 Assembly code 量測計算所需的 cycle count 來與我們加速器的運算效果比較。這個 FPGA 的驗證環境是課程前就有的,但在上面跑的 C 程式是為了這份 Project 寫的。

Table.1 Accelerator and software performance

The second second second personnel second se						
	Iteration cycle count	Clock period				
Accelerator	5,454	5.8 ns				
SW in RISCV	519,611	6.4 ns				

根據 Table.1 結果,可得到相較軟體的加速效果達 95倍。

Speed up = $519,611 \div 5,454 = 95.27$

(2) Functionality

我們設計的 CVAE decoder 是根據真實手臂的參數所訓練的,因此我們使用機械元件 3D 模擬軟體 Webots 內的七軸機械手臂模型來驗證我們電路所產出的 Output 是否能真的達到目標,也就是給定機械手臂初始狀態、目標三軸座標和三軸方向,電路是否能計算出每個 iteration 的軌跡,使得 Webots 內的機械手臂可以將手掌中心移動到影片中黃色的目標點。驗證方式是先產生好 input pattern 存成輸入檔案,給 Ncverilog 模擬後寫成 output 檔案,再把這些 output 檔案放到 Webots 上執行。並且 Webots 的模擬環境是課程前就有的。

Demo Video 1: https://www.youtube.com/watch?v=3Of2RPVDa7U
多筆 Testcases,每筆 Testcase 中,手臂會根據電路已運算好的輸出移動到目標點。

Demo Video 2: https://www.youtube.com/watch?v=gNhx5yFs1H0
單筆 Testcase,手臂會根據每個 iteration 的軌跡移動,每個 iteration 中加了 1 second sleep time 來方便觀察。

5. Contribution

(1) 鍾宇騫

- 演算法研究& 軟體模型實作
- Testbench 驗證環境撰寫
- 電路架構設計
- GRU 電路設計& Modules 整合
- 電路合成 & APR
- RISCV 驗證環境架設 & 效能分析

(2) 黄韋珀

- 演算法研究&軟體模型實作
- Testbench 驗證環境撰寫
- Fully Connection 電路設計& Modules 整合
- 電路合成 & APR

6. Reference

- [1] Long-horizon Trace Planning with CVAE-Seq2Seq Variational Inference for Robot Manipulation, master's thesis of department of Electrical Engineering, NTHU
- [2] A CORDIC-Based Architecture with Adjustable Precision and Flexible Scalability to Implement Sigmoid and Tanh Functions, IEEE International Symposium on Circuits and Systems (ISCAS 2021)