チェビシェフ関数変換法

竹広真一

平成 21 年 1 月 3 日

この文書は、チェビシェフ関数変換法の基本的な定式化を行う.

1 チェビシェフ関数の性質

チェビシェフ関数系 $T_k(x)$ は区間 [-1,1] で定義される関数からなり、次の性質ような性質をもつ.

● 定義

$$x = \cos \theta; \quad T_k(x) = T_k(\cos \theta) = \cos k\theta.$$
 (1)

微分の表現¹

$$x = \cos \theta$$
, $\frac{dT_k}{dx} = \frac{k \sin k\theta}{\sin \theta}$, $\frac{d^2T_k}{dx^2} = \frac{-k^2 \cos k\theta \sin \theta + k \sin k\theta \cos \theta}{\sin^3 \theta}$. (2)

● 端点での値2

$$T_{k}(1) = 1, \quad T_{k}(-1) = (-1)^{k},$$

$$\frac{dT_{k}}{dx} = \frac{dT_{k}(\cos\theta)}{d\theta} \frac{d\theta}{dx} = \frac{(\cos k\theta)'}{(\cos\theta)'} = \frac{k\sin k\theta}{\sin\theta},$$

$$\frac{d^{2}T_{k}}{dx^{2}} = \frac{d}{d\theta} \left(\frac{dT_{k}}{dx}\right) \frac{d\theta}{dx} = \frac{d}{d\theta} \left(\frac{k\sin k\theta}{\sin\theta}\right) \frac{1}{(\cos\theta)'} = \frac{k^{2}\cos k\theta \sin\theta - k\sin k\theta \cos\theta}{-\sin^{3}\theta}.$$

$$(3)$$

$$\frac{dT_k}{dx}\Big|_{x=1} = k^2, \quad \frac{dT_k}{dx}\Big|_{x=-1} = (-1)^{k+1}k^2,$$
(4)

$$\left. \frac{d^2 T_k}{dx^2} \right|_{x=1} = \frac{k^2 (k^2 - 1)}{3}, \quad \left. \frac{d^2 T_k}{dx^2} \right|_{x=-1} = (-1)^k \frac{k^2 (k^2 - 1)}{3}. \tag{5}$$

• 微分方程式3

$$(1 - x^2)\frac{d^2T_k}{dx^2} - x\frac{dT_k}{dx} + k^2T_k = 0.$$
 (6)

● 漸化式4

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x). (7)$$

$$\begin{split} \frac{dT_k}{dx}\Big|_{x=-1} &= \lim_{\theta \to \pi} \frac{k \sin k\theta}{\sin \theta} = \lim_{\varphi \to 0} \frac{k \sin k(\pi - \varphi)}{\sin(\pi - \varphi)} = \lim_{\varphi \to 0} \frac{-k \cos k\pi \sin \varphi}{\sin \varphi} \\ &= (-1)^{k+1} \lim_{\varphi \to 0} \frac{k \sin \varphi}{\sin \varphi} = (-1)^{k+1} k^2, \\ \frac{d^2T_k}{dx^2}\Big|_{x=1} &= \lim_{\theta \to 0} \frac{-k^2 \cos k\theta \sin \theta + k \sin k\theta \cos \theta}{\sin^3 \theta} = \lim_{\theta \to 0} \frac{(-k^2 \cos k\theta \sin \theta + k \sin k\theta \cos \theta)'}{(\sin^3 \theta)'} \\ &= \lim_{\theta \to 0} \frac{k^3 \sin k\theta \sin \theta - k^2 \cos k\theta \cos \theta + k^2 \cos k\theta \cos \theta - k \sin k\theta \sin \theta}{3 \sin^2 \theta \cos \theta} \\ &= \lim_{\theta \to 0} k(k^2 - 1) \frac{\sin k\theta}{3 \sin \theta \cos \theta} = \lim_{\theta \to 0} \frac{k^2(k^2 - 1) \sin k\theta}{3 \sin \theta} \frac{1}{\cos \theta} = \frac{n^2(n^2 - 1)}{3}. \\ \frac{d^2T_k}{dx^2}\Big|_{x=-1} &= \lim_{\theta \to \pi} \frac{-k^2 \cos k\theta \sin \theta + k \sin k\theta \cos \theta}{\sin^3 \theta} = \lim_{\theta \to \pi} k(k^2 - 1) \frac{\sin k\theta}{3 \sin \theta \cos \theta} \\ &= \lim_{\theta \to \pi} \frac{k(k^2 - 1)}{3} \frac{\sin k(\pi - \varphi)}{\sin(\pi - \varphi) \cos(\pi - \varphi)} = \lim_{\varphi \to 0} \frac{k(k^2 - 1)}{3} \frac{-\cos k\pi \sin k\varphi}{-\sin \varphi \cos \varphi} \\ &= \lim_{\varphi \to 0} (-1)^k \frac{k(k^2 - 1)}{3} \frac{\sin k\varphi}{\sin \varphi \cos \varphi} = (-1)^k \frac{k(k^2 - 1)}{3}. \end{split}$$

 $\frac{d^2T_k}{dx^2} = \frac{-k^2\cos k\theta\sin\theta + k\sin k\theta\cos\theta}{\sin^3\theta}. = -k^2\frac{\cos k\theta}{\sin^2\theta} + k\frac{\sin k\theta\cos\theta}{\sin^3\theta}. = -k^2\frac{T_k(x)}{1-x^2} + \frac{k\sin k\theta}{\sin\theta}\frac{\cos\theta}{\sin^2\theta}$ $= -k^2\frac{T_k(x)}{1-x^2} + \frac{dT_k}{dx}\frac{x}{1-x^2} \rightarrow (1-x^2)\frac{d^2T_k}{dx^2} - x\frac{dT_k}{dx} + k^2T_k(x).$

4三角関数の和を積に直す公式より

$$\cos(k+1)\theta + \cos(k-1)\theta = 2\cos k\theta\cos\theta \to T_{k+1}(x) + T_{k-1}(x) = 2xT_k(x).$$

● 昇降漸化式5

$$T_{k\pm 1}(x) = xT_k(x) \mp \frac{1-x^2}{k} \frac{dT_k}{dx}$$
 (8)

• 不定積分6

$$\int T_n(x)dx = \frac{1}{2} \left\{ \frac{1}{n+1} T_{n+1}(x) - \frac{1}{n-1} T_{n-1}(x) \right\} \quad (n = 2, 3, ...), (9)$$

$$\int T_0(x)dx = T_1(x), \quad \int T_1(x)dx = \frac{1}{4} T_2(x) \tag{10}$$

5

$$T_{k+1}(x) = \cos(k+1)\theta = \cos k\theta \cos \theta - \sin k\theta \sin \theta = xT_k(x) - \frac{1}{k} \frac{k \sin k\theta}{\sin \theta} \sin^2 \theta = xT_k(x) - \frac{1-x^2}{k} \frac{dT_k}{dx}$$

$$T_{k-1}(x) = \cos(k-1)\theta = \cos k\theta \cos \theta + \sin k\theta \sin \theta = xT_k(x) + \frac{1}{k} \frac{k \sin k\theta}{\sin \theta} \sin^2 \theta = xT_k(x) + \frac{1-x^2}{k} \frac{dT_k}{dx}$$

 $6x = \cos \theta$ と変換して

$$\int T_n(x)dx = \int \cos(n\theta)(-\sin\theta)d\theta
= -\frac{1}{2} \int \sin[(n+1)\theta] - \sin[(n-1)\theta]d\theta
= \frac{1}{2} \left\{ \frac{1}{n+1} \cos[(n+1)\theta] - \frac{1}{n-1} \cos[(n-1)\theta] \right\}
= \frac{1}{2} \left\{ \frac{1}{n+1} T_{n+1}(x) - \frac{1}{n-1} T_{n-1}(x) \right\}.$$

$$\int T_0(x)dx = \int dx = x = T_1(x).$$

$$\int T_1(x)dx = \int \cos\theta(-\sin\theta)d\theta = -\frac{1}{2} \int \sin(2\theta)d\theta = \frac{1}{4} \cos(2\theta) = \frac{1}{4} T_2(x).$$

直交関係⁷

$$\int_{-1}^{1} T_k(x) T_l(x) \frac{dx}{\sqrt{1 - x^2}} = \alpha_k \delta_{kl}, \tag{11}$$

ここで

$$\alpha_k = \begin{cases} \pi & k = 0 \\ \pi/2 & k \neq 0 \end{cases} . \tag{12}$$

である.

• 低次の関数形

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$, (13)

$$T_4(x) = 8x^4 - 8x^2 + 1, \ T_5(x) = 16x^5 - 20x^3 + 5x, \dots$$
 (14)

2 離散チェビシェフ関数変換

2.1 正変換・逆変換の定義

区間 $[x_{min},x_{max}]$ でとある時間発展方程式と境界条件の下での解をチェビシェフ関数変換法で数値計算したい。区間 $[x_{min},x_{max}]$ で定義された関数 $f^*(x^*)$ は次の線形写像で区間 [-1,1] での関数 f(x) へと写される。

$$x^* = \frac{x_{max} + x_{min}}{2} + \frac{x_{max} - x_{min}}{2} \times x.$$
 (15)

 $\int_{-1}^{1} T_k(x) T_l(x) \frac{dx}{\sqrt{1-x^2}} = \int_{pi}^{0} \cos k\theta \cos l\theta \frac{-\sin \theta}{\sin \theta} = \int_{0}^{\pi} \cos k\theta \cos l\theta \ d\theta.$

 $k \neq l$ のとき

$$\begin{split} \int_0^\pi \cos k\theta \cos l\theta \ d\theta &= \int_0^\pi \frac{1}{2} [\cos(k+l)\theta + \cos(k-l)\theta] \ d\theta \\ &= \frac{1}{2} \left[\frac{1}{k+l} \sin(n+m)\theta + \frac{1}{k-l} \sin(n-m)\theta \right]_0^\pi = 0. \end{split}$$

 $k=l\neq 0$ のとき

$$\int_0^\pi \cos k\theta \cos l\theta \ d\theta = \int_0^\pi \cos^2 k\theta \ d\theta = \int_0^\pi \frac{1}{2} [1 + \cos 2k\theta] \ d\theta = \frac{1}{2} \left[\theta + \frac{1}{2k} \sin 2k\theta \right]_0^\pi = \frac{\pi}{2}.$$

k = l = 0 のとき

$$\int_0^{\pi} \cos k\theta \cos l\theta \ d\theta = \int_0^{\pi} \ d\theta = [\theta]_0^{\pi} = \pi.$$

この区間 [-1,1] での関数 f(x) に関して, N この離散格子点

$$x_k = \cos\left(\frac{\pi k}{N}\right) \tag{16}$$

上での値で表現する. このとき $f(x_k)$ を $K(\leq N)$ 次までのチェビシェフ関数の線形和で表すことを考える.

$$f(x_k) = \sum_{n=0}^{K} {}^{"}c_n T_n(x_k), \tag{17}$$

これは離散チェビシェフ逆変換の定義である. ただし $\sum_{k=0}^{N}$ " は

$$\sum_{k=0}^{N} a_k \equiv \frac{1}{2} a_0 + \sum_{k=1}^{K-1} a_k + \frac{1}{2} a_N,$$

$$\sum_{k=0}^{K} a_k \equiv \frac{1}{2} b_0 + \sum_{k=1}^{K-1} b_k + a_K \quad (K < N)$$

$$\equiv \frac{1}{2} b_0 + \sum_{k=1}^{K-1} b_k + \frac{1}{2} a_K \quad (K = N)$$

である.

 $\{c_n\}$ は f(x) のチェビシェフ関数による展開係数であり、

$$c_n = \frac{2}{N} \sum_{k=0}^{N} {}'' f(x_k) T_n(x_k), \tag{18}$$

と計算される. これが離散チェビシェフ正変換の定義である.

格子点が $x_k = \cos\left(\frac{\pi k}{N}\right)$ であることとチェビシェフ関数の定義から

$$f(x_k) = \sum_{n=0}^{K} {}''c_n T_n(x_k), = \sum_{n=0}^{K} {}''c_n T_n \left[\cos \left(\frac{\pi k}{N} \right) \right] = \sum_{n=0}^{K} {}''c_n \cos \left(\frac{\pi nk}{N} \right).$$

これは K 次で打ち切られた台形公式の離散 \cos 逆変換に他ならない 8 .

同様に正変換は

$$c_n = \frac{2}{N} \sum_{k=0}^{N} {}'' f(x_k) T_n(x_k) = \frac{2}{N} \sum_{k=0}^{N} {}'' f(x_k) T_n \left[\cos \left(\frac{\pi k}{N} \right) \right] = \frac{2}{N} \sum_{k=0}^{N} {}'' f(x_k) \cos \left(\frac{\pi k n}{N} \right).$$
(19)

これは台形公式の離散 \cos 正変換に他ならない. したがって、チェビシェフ変換を行うには、格子点を $x_k = \cos\left(\frac{\pi k}{N}\right)$ に選ぶだけであとは離散 \cos 変換のサブルーチンを呼ぶだけでいい.

⁸例えば ISPACK/ftpack のマニュアルの FTICTB 等の項を参照のこと

2.2 微分の計算

 $f(x) = \sum_{n=0}^{K} {}^{n} c_{n} T_{n}(x)$ に対してその微分を

$$f'(x) = \sum_{n=0}^{K} {}''d_n T_n(x)$$

を表すチェビシェフ変換係数 $\{d_n\}$ はもとのチェビシェフ変換係数 $\{c_n\}$ から次のように計算される 9 .

$$d_{n-1} = d_{n+1} + 2nc_n. (20)$$

K=N の場合 $d_K=0, d_{K-1}=rac{2Kc_K}{2}$ から,K< N の場合 $d_K=0, d_{K-1}=2Kc_K$ から再帰的に計算すれば良い.

g実際に f'(x) を積分してみると、チェビシェフ関数の積分の公式から

$$\int f'(x)dx = \sum_{n=0}^{K} {}''d_n \int T_n(x)dx$$

$$= C + \frac{1}{2}d_0T_1(x) + \frac{1}{4}d_1T_2(x) + \sum_{n=2}^{K} {}''d_n\frac{1}{2} \left\{ \frac{1}{n+1}T_{n+1}(x) - \frac{1}{n-1}T_{n-1}(x) \right\}$$

$$= C + \frac{1}{2}d_0T_1(x) + \frac{1}{4}d_1T_2(x) + \frac{1}{2}\sum_{n=3}^{K+1} {}''d_{n-1}\frac{1}{n}T_n(x) - \frac{1}{2}\sum_{n=1}^{K-1} {}''d_{n+1}\frac{1}{n}T_n(x)$$

$$= C + \frac{1}{2}d_0T_1(x) + \frac{1}{4}d_1T_2(x) + \sum_{n=3}^{K-1} {}''\frac{1}{2n}(d_{n-1} - d_{n+1})T_n(x)$$

$$+ \frac{1}{2K}d_{K-1}T_K(x) + \frac{1}{4(K+1)}d_KT_{K+1}(x) - \frac{1}{2}d_2T_1(x) - \frac{1}{4}d_3T_2(x)$$

$$= C + \frac{1}{2}(d_0 - d_2)T_1(x) + \frac{1}{4}(d_1 - d_3)T_2(x) + \sum_{n=3}^{K-1} {}''\frac{1}{2n}(d_{n-1} - d_{n+1})T_n(x)$$

$$+ \frac{1}{2K}d_{K-1}T_K(x) + \frac{1}{4(K+1)}d_KT_{K+1}(x)$$

$$= C + \sum_{n=2}^{K-1} {}''\frac{1}{2n}(d_{n-1} - d_{n+1})T_n(x) + \frac{1}{2K}d_{K-1}T_K(x) + \frac{1}{4(K+1)}d_KT_{K+1}(x)$$

ただし C は積分定数である. これと $f(x)dx = \sum_{n=0}^K {}''c_nT_n(x_k)$ を比較して, K=N の場合には

$$C = \frac{1}{2}c_0T_0(x), \quad c_n = \frac{1}{2n}(d_{n-1} - d_{n+1}) \quad (n = 1, 2, \dots K - 1), \quad \frac{c_K}{2} = \frac{1}{2K}d_{K-1}, \quad d_K = 0.$$

K < N の場合には

$$C = \frac{1}{2}c_0T_0(x), \quad c_n = \frac{1}{2n}(d_{n-1} - d_{n+1}) \quad (n = 1, 2, \dots K - 1), \quad c_K = \frac{1}{2K}d_{K-1}, \quad d_K = 0.$$

2.3 積分の計算

 $f(x) = \sum_{n=0}^{K} {}^{n} c_{n} T_{n}(x)$ に対してその積分を

$$\int f(x)dx = \sum_{n=0}^{K} {}^{"}b_n T_n(x)$$

を表すチェビシェフ変換係数 $\{b_n\}$ はもとのチェビシェフ変換係数 $\{c_n\}$ から次のように計算される 10

$$b_n = \frac{1}{2n}(c_{n-1} - c_{n+1}) \quad (n = 1, 2, \dots K - 1). \tag{21}$$

K=N の場合 $b_K=c_K-1/K$ から, K< N の場合 $b_K=c_{K-1}/(2K)$ から定まる. b_0 は境界条件から x のある 1 点での値を与えることにより定められる.

2.4 補間の計算

Clenshow's Recurrence Formula 11 を用いると、任意の x についての f(x) のチェビシェフ関数による補間値を効率的に求めることができる。チェビシェフ関数の漸 10 先の微分の計算と同様にして実際に f(x) を積分してみると、チェビシェフ関数の積分の公式から

$$\int f(x)dx = \sum_{n=0}^{K} {}''c_n \int T_n(x)dx$$

$$= C + \sum_{n=2}^{K-1} {}''\frac{1}{2n}(c_{n-1} - c_{n+1})T_n(x) + \frac{1}{2K}c_{K-1}T_K(x) + \frac{1}{4(K+1)}c_KT_{K+1}(x)$$

ただし C は積分定数である. これと $\int f(x)dx = \sum_{n=0}^K {}''b_nT_n(x_k)$ を比較して, K=N の場合には

$$\frac{1}{2}b_0 = C, \quad b_n = \frac{1}{2n}(c_{n-1} - c_{n+1}) \quad (n = 1, 2, \dots K - 1), \quad \frac{b_K}{2} = \frac{1}{2K}c_{K-1},$$

K < N の場合には

$$\frac{1}{2}b_0 = C, \quad b_n = \frac{1}{2n}(c_{n-1} - c_{n+1}) \quad (n = 1, 2, \dots K - 1), \quad b_K = \frac{1}{2K}c_{K-1}, \quad d_K = 0.$$

¹¹Clenshow's Recurrence Formula:

関数 f(x) がとある関数系 $F_k(x)$ で

$$f(x) = \sum_{k=0}^{N} c_k F_k(x)$$

と表されているとする。さらに関数系が次の漸化式

$$F_{n+1}(x) = \alpha(n, x)F_n(x) + \beta(n, x)F_{n-1}(x)$$

化式から $\alpha(n,x)=2x, \beta(n,x)=-1$ であるから, K=N の場合には

$$y_{K+2} = y_{K+1} = 0,$$

$$y_k = 2xy_{k+1} - y_{k+2} + c_k, \quad (k = K, K - 1, ..., 1),$$

$$f(x) = -y_2 + xy_1 + \frac{c_0}{2} - \frac{c_K}{2} T_K(x).$$
(22)

ただし $T_K(x) = \cos(K \cos^{-1} x)$ と計算することができる.

K < N の場合には最大次の修正が必要なく

$$f(x) = -y_2 + xy_1 + \frac{c_0}{2} \tag{24}$$

を満たしているとする. このとき漸化式

$$y_{N+2} = y_{N+1} = 0$$
, $y_k = \alpha(k, x)y_{k+1} + \beta(k+1, x)y_{k+2} + c_k$

で定義される量 $y_k, (k=N,N-1,\ldots,1)$ を用いると f(x) を求めるための関数系の和は

$$f(x) = \beta(1, x)F_0(x)y_2 + F_1(x)y_1 + F_0(x)c_0$$

と計算することができる.

「証明」

 y_k に関する漸化式を c_k について解き, f(x) の式に代入すると

$$f(x) = \sum_{0}^{N} c_k F_k(x)$$

$$= y_N F_N(x)$$

$$+ [y_{N-1} - \alpha(N-1, x)y_N] F_{N-1}(x)$$

$$+ [y_{N-2} - \alpha(N-2, x)y_{N-1} - \beta(N-1, x)y_N] F_{N-2}(x)$$

$$+ [y_{N-3} - \alpha(N-3, x)y_{N-2} - \beta(N-2, x)y_N] F_{N-3}(x)$$
...
$$+ [y_3 - \alpha(3, x)y_4 - \beta(4, x)y_5] F_3(x)$$

$$+ [y_2 - \alpha(2, x)y_3 - \beta(3, x)y_4] F_2(x)$$

$$+ [y_1 - \alpha(1, x)y_2 - \beta(2, x)y_3] F_1(x)$$

$$+ [c_0 + \beta(1, x)y_2 - \beta(1, x)y_2] F_0(x)$$

最後の項だけ c_0 のまま残し、 $\beta(1,x)y_2$ をわざと足し引きしている. 各 y_k について整理すると

$$f(x) = y_N[F_N - \alpha(N-1,x)F_{N-1} - \beta(N-1,x)F_{N-2}] + y_{N-1}[F_{N-1} - \alpha(N-2,x)F_{N-2} - \beta(N-2,x)F_{N-3}] \cdots + y_2[F_2 - \alpha(1,x)F_1 - \beta(1,x)F_0] + y_1F_1 + c_0F_0 + \beta(1,x)y_2F_0$$

 $F_k(x)$ の漸化式より $k=N,N-1,\dots,2$ まではキャンセルし、残りの項は最後の行だけになる. したがって

$$f(x) = \beta(1, x)F_0(x)y_2 + F_1(x)y_1 + c_0F_0(x).$$

で良い.

2.5 領域定積分計算

f(x) の領域積分 $\int_{-1}^1 f(x) dx$ を離散格子点上の値 $f(x_k), x_k = cos(k\pi/N), n = 0, \ldots, N$ の線形和として表したい. そのためには

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} T_{k}(x) \sum_{k=1}^{K} {}^{"}c_{k}dx = \sum_{k=1}^{K} {}^{"}c_{k} \int_{-1}^{1} T_{k}(x)dx
= \frac{1}{2}c_{0} \int_{-1}^{1} T_{0}(x)dx + c_{1} \int_{-1}^{1} T_{1}(x)dx + \sum_{k=2}^{K} {}^{"}c_{k} \int_{-1}^{1} T_{k}(x)dx
= c_{0} + \sum_{k=2,even}^{K} {}^{"}c_{k} \frac{1}{2} \left[\frac{1}{k+1} T_{k+1} - \frac{1}{k-1} T_{k-1} \right]_{-1}^{1}
= c_{0} + \sum_{k=2,even}^{K} {}^{"}c_{k} \left(\frac{1}{k+1} - \frac{1}{k-1} \right)
= c_{0} + \sum_{k=2,even}^{K} {}^{"}\frac{2}{1-k^{2}}c_{k}$$

これに再度 $c_k = \sum_{n=0}^N {}'' f(x_n) T_k(x_n)$ を代入して和のとり方を逆にすると

$$\int_{-1}^{1} f(x)dx = c_0 + \sum_{k=2,even}^{K} \frac{2}{1-k^2} c_k$$

$$= \sum_{n=0}^{N} f(x_n) T_0(x_n) + \sum_{k=2,even}^{K} \frac{2}{1-k^2} \sum_{n=0}^{N} f(x_n) T_k(x_n)$$

$$= \sum_{n=0}^{N} f(x_n) + \sum_{n=0}^{N} f(x_n) \sum_{k=2,even}^{K} \frac{2}{1-k^2} T_k(x_n)$$

$$= \sum_{n=0}^{N} f(x_n) \left[1 + \sum_{k=2,even}^{K} \frac{2}{1-k^2} \cos\left(\frac{\pi kn}{N}\right) \right]$$

したがって

$$\int_{-1}^{1} f(x)dx = \sum_{n=0}^{N} w_n f(x_n), \quad w_n \equiv 1 + \sum_{k=2 \text{ even}}^{K} \frac{2}{1 - k^2} \cos\left(\frac{\pi k n}{N}\right). \tag{25}$$