Simple Linear Regression: Estimation

EC 320: Introduction to Econometrics

Tami Ren

Summer 2022

OLS Properties

OLS Properties

The way we selected OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ gives us three important properties:

- 1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.
- 2. The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^n X_i \hat{u}_i = 0$.
- 3. The point (\bar{X}, \bar{Y}) is always on the regression line.

OLS Residuals

Residuals sum to zero: $\sum_{i=1}^n \hat{u}_i = 0$.

• By extension, the sample mean of the residuals are zero.

OLS Residuals

The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^n X_i \hat{u}_i = 0$.

OLS Regression Line

The point (\bar{X}, \bar{Y}) is always on the regression line.

- Start with the regression line: $\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i$.
- $ullet \hat{Y}_i = ar{Y} \hat{eta}_2 ar{X} + \hat{eta}_2 X_i.$
- Plug \bar{X} into X_i :

$$egin{aligned} \hat{Y}_i &= ar{Y} - \hat{eta}_2 ar{X} + \hat{eta}_2 ar{X} \ &= ar{Y}. \end{aligned}$$

Regression 1 vs. Regression 2

- Same slope.
- Same intercept.

Q: Which fitted regression line "explains"* the data better?

Regression 1 vs. Regression 2

The **coefficient of determination** \mathbb{R}^2 is the fraction of the variation in Y_i "explained" by X_i in a linear regression.

- $R^2=1 \implies X_i$ explains *all* of the variation in Y_i .
- $R^2=0 \implies X_i$ explains *none* of the variation in Y_i .

$$R^2$$
 = 0.74

$$R^2$$
 = 0.06

Explained and Unexplained Variation

Residuals remind us that there are parts of Y_i we can't explain.

$$Y_i = \hat{Y_i} + \hat{u}_i$$

• Sum the above, divide by n, and use the fact that OLS residuals sum to zero to get $\bar{\hat{u}}=0 \implies ar{Y}=ar{\hat{Y}}.$

Total Sum of Squares (TSS) measures variation in Y_i :

$$ext{TSS} \equiv \sum_{i=1}^n (Y_i - ar{Y})^2.$$

• We will decompose this variation into explained and unexplained parts.

Explained and Unexplained Variation

Explained Sum of Squares (ESS) measures the variation in \hat{Y}_i :

$$ext{ESS} \equiv \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2.$$

Residual Sum of Squares (RSS) measures the variation in \hat{u}_i :

$$ext{RSS} \equiv \sum_{i=1}^n \hat{u}_i^2.$$

Goal: Show that TSS = ESS + RSS.

Step 1: Plug $Y_i = \hat{Y}_i + \hat{u}_i$ into TSS.

$$egin{aligned} &= \sum_{i=1}^n (Y_i - ar{Y})^2 \ &= \sum_{i=1}^n ([\hat{Y}_i + \hat{u}_i] - [ar{\hat{Y}} + ar{\hat{u}}])^2 \end{aligned}$$

Step 2: Recall that $\bar{\hat{u}}=0$ and $\bar{Y}=\bar{\hat{Y}}$.

TSS

$$egin{aligned} &= \sum_{i=1}^n \left([\hat{Y}_i - ar{Y}] + \hat{u}_i
ight)^2 \ &= \sum_{i=1}^n \left([\hat{Y}_i - ar{Y}] + \hat{u}_i
ight) \left([\hat{Y}_i - ar{Y}] + \hat{u}_i
ight) \ &= \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2 + \sum_{i=1}^n \hat{u}_i^2 + 2 \sum_{i=1}^n \left((\hat{Y}_i - ar{Y}) \hat{u}_i
ight) \end{aligned}$$

Step 3: Notice ESS and RSS.

TSS

$$= \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2} + \sum_{i=1}^{n} \hat{u}_{i}^{2} + 2 \sum_{i=1}^{n} \left((\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

$$= \text{ESS} + \text{RSS} + 2 \sum_{i=1}^{n} \left((\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

Step 4: Simplify.

TSS

$$egin{aligned} &= \mathrm{ESS} + \mathrm{RSS} + 2 \sum_{i=1}^n \left((\hat{Y}_i - ar{Y}) \hat{u}_i
ight) \ &= \mathrm{ESS} + \mathrm{RSS} + 2 \sum_{i=1}^n \hat{Y}_i \hat{u}_i - 2 ar{Y} \sum_{i=1}^n \hat{u}_i \end{aligned}$$

Step 5: Shut down the last two terms. Notice that

$$\begin{split} \sum_{i=1}^{n} \hat{Y}_{i} \hat{u}_{i} \\ &= \sum_{i=1}^{n} (\hat{\beta}_{1} + \hat{\beta}_{2} X_{i}) \hat{u}_{i} \\ &= \hat{\beta}_{1} \sum_{i=1}^{n} \hat{u}_{i} + \hat{\beta}_{2} \sum_{i=1}^{n} X_{i} \hat{u}_{i} \\ &= 0 \end{split}$$

Calculating \mathbb{R}^2

- $R^2 = \frac{\mathrm{ESS}}{\mathrm{TSS}}$.
- $R^2 = 1 \frac{\text{RSS}}{\text{TSS}}$.

 \mathbb{R}^2 is related to the correlation between the actual values of Y and the fitted values of Y.

• Can show that $R^2=(r_{Y,\hat{Y}})^2.$

So what?

In the social sciences, low \mathbb{R}^2 values are common.

Low \mathbb{R}^2 doesn't mean that an estimated regression is useless.

ullet In a randomized control trial, \mathbb{R}^2 is usually less than 0.1.

High R^2 doesn't necessarily mean you have a "good" regression.

• Worries about selection bias and omitted variables still apply.