Оглавление

1	Двойной интеграл				
	1.1	Плош	цадь плоской фигуры.	ę	
	1.2	Задачи, приводящие к понятию двойного интеграла			
		1.2.1	Задача об объёме цилиндрического тела	٦	
		1.2.2	Задача о массе пластины	6	
	1.3	Определение двойного интеграла			
		1.3.1	Двойной интеграл единицы	7	
	1.4	Свойства двойного интеграла			
		1.4.1	Двойной интеграл единицы	7	
		1.4.2	Линейность	8	
		1.4.3	Аддитивность	8	
		1.4.4	О сохранении интегралом знака функции	8	
		1.4.5	О сохранении интегралом неравенства подынтегральных		
			функций	8	
		1.4.6	Теорема об оценке модуля двойного интеграла	Ć	
		1.4.7	Теорема об оценке двойного интеграла	G	
		1.4.8	Теорема о среднем значении для двойного интеграла	Ć	
		1.4.9	Обобщённая теорема о среднем	10	
	1.5	Вычи	сление двойного интеграла	10	
	1.6	Замен	на переменных в двойном интеграле	12	
	1.7	Приложения двойного интеграла			
		1.7.1	Вычисления площади плоской фигуры	14	
		1.7.2	Вычисление массы пластины	14	
		1.7.3	Вычисление координат центра тяжести	14	
		1.7.4	Вычисление объёма тела	14	

2	Теория вероятностей				
	2.1	Определение вероятности	15		
		2.1.1 Случайный эксперимент	15		
	2.2	Свойства операций над событиями(основные)	17		
	2.3	Классическое определение вероятности	18		
		2.3.1 Свойства вероятности	19		
	2.4	Геометрическое определение вероятности	19		

Двойной интеграл

1.1 Площадь плоской фигуры.

Пусть D - фигура на плоскости. Что есть площадь? Если D - треугольник, прямоугольник, многоугольник, то площадь вводится естественным образом.

Рис. 1: Область *D*

- 1 Рассмотрим множество многоугольников m, целиком содержащихся в D (рисунок 1b). S(m) площадь m
- 2 Рассмотрим множество многоугольников M, целиком содержащихся в D (рисунок 1c). S(M) площадь M

Определение. Область D на плоскости, называется квадрируемой, если выполняются следующие условия:

$$1 \exists S_* = \sup S(m)$$

$$2 \ \exists S^* = \inf S(M)$$

$$3 S_* = S^*$$

При этом величина $S=S_*=S^*$ называется площадью квадрируемой облаcти D**Определение.** Говорят, что множество D точек плоскости имеет площадь 0, если D можно заключить в многоугольник сколь угодно малой площади, то есть $\forall \epsilon > 0$ ∃многоугольник $M: (D \subseteq M) \& (S(M) < \epsilon)$ (1.1)Пример. К множествам точек с нулевой плоскостью относятся: 1 точка (рисунок 2а) 2 отрезок (рисунок 2b) 3 гладкая кривая (рисунок 2с) (a) (b) (c) Рис. 2: Множества точек плоскости с нулевой площадью **Теорема.** Пусть D – замкнутая область. Тогда D – квадрируема тогда и только тогда, когда граница D имеет нулевую площадь. **Теорема.** Пусть L – плоская кривая конечной длины. Тогда L имеет площадь нуль. **Следствие.** Если D – плоская область, ограниченная конечным набором гладких кривых, каждая из которых имеет конечную длину, то D – квадрируема.

Замечание. В дальнейшем, если иное не оговорено, будем рассматривать толь-

ко квадрируемые области.

1.2 Задачи, приводящие к понятию двойного интеграла

1.2.1 Задача об объёме цилиндрического тела

Пусть:

1 D - область на плоскости xOy

$$2 f: D \to R$$

$$3 f(x,y) \ge 0, (x,y) \in D$$

Рассмотрим тело:

$$T = \{(x, y, z) : (x, y) \in D, \ 0 \le z \le f(x, y)\}$$
(1.2)

Рис. 3: Тело T

Найдём объём тела T.

1 Раздробим область D на части

$$D = \bigcup_{i=\overline{1,n}} D_i$$
; где $intD_i \cap intD_j = \emptyset, i \neq j$ (1.3)

int D - множество внутренних точек области D. Важно отметить, что она должна быть разделена без пересечений, как на рисунке 4b, но допустимо наличие границы, как на рисунке 4a

2 Выберем в каждой из $D_i, i = \overline{1,n}$ точку $M_i \in D$

Рис. 4

3 Объём ΔV_i той части тела T, которая расположена над D_i , рассчитывается по формуле:

$$\Delta V_i \approx f_i \cdot S(D_i); \ f_i = f(M_i)$$
 (1.4)

Считаем, что размеры D_i малы, тогда объём ΔV приближённо равен объёму цилиндра, высота которого $f(M_i)$, а площадь основания $S(D_i)$. Обозначим $\Delta S_i = S_i(D_i), \ i = \overline{1,n}$

4 Объём всего тела T:

$$V(T) = \sum_{i=1}^{n} \Delta V_i \approx \sum_{i=1}^{n} f_i \Delta S_i$$
 (1.5)

Определение. Диаметром области D называется число:

$$diam D = \sup |MN|; \ M, N \in D \tag{1.6}$$

1.2.2 Задача о массе пластины

Пусть пластина занимает плоскую область D на плоскости $Oxy, f(x,y) \ge 0$ - значение поверхностной плотности материала в точке $(x,y) \in D$. Как найти массу m(D) пластины? Данная задача решается точно так-же, как и предыдущая, потому разбирать повторно мы её не будем.

1.3 Определение двойного интеграла

1.3.1 Двойной интеграл единицы

Пусть D - квадрируемая замкнутая область на Oxy.

Определение. Разбиением области D будет называться множество

$$R = \{D_1, D_2, ..., D_n\},\tag{1.7}$$

где $D_i \leq D, i = \overline{1, n}; \ D = \bigcup D_i; \ int D_i \cap int D_j \neq \emptyset, i \neq j$

Определение. Диаметром разбиения R на число $d(R) = \max_{i=\overline{1.n}} (diam D_i)$ \square

Пусть $f:D\to R$ - заданная в области D функция двух переменных (не обязательно $f\geq 0$)

Определение. Двойным интегралом функции f по области D называется число

$$\iint\limits_{D} f(x,y)dxdy = \lim_{d(R)\to 0} \sum_{i=1}^{n} f(M_i)\Delta S_i, \tag{1.8}$$

где $\Delta S_i = S(D_i), \ M_i \in D, \ i = \overline{1,n}, \ R = \{D_1,D_2,...,D_n\}$ – разбиение обл. D

Замечание. В определении подразумевается, что указанный предел существует, конечен и не зависит от способа выбора точек $M_i \in D_i$, а так же от способа разбиения области D. \square

Определение. Функция f, для которой $\exists \iint\limits_{D} f dx dy$, называется интегрируемой в области D. \Box

1.4 Свойства двойного интеграла

1.4.1 Двойной интеграл единицы

Если D имеет конечную площадь S(D), то

$$\iint\limits_{D} 1 dx dy = S(D) \tag{1.9}$$

1.4.2 Линейность

Если $f,\ g$ интегрируемы в D, то функция $f\pm g$ тоже интегрируема в D, причём:

$$\iint\limits_{D} (f \pm g) dx dy = \iint\limits_{D} f dx dy \pm \iint\limits_{D} dx dy \tag{1.10}$$

Если f интегрируема в D, то $c \cdot f, c = const$ тоже интегрируема в D, причём:

$$\iint\limits_{D} (c \cdot f) dx dy = c \cdot \iint\limits_{D} f dx dy \tag{1.11}$$

1.4.3 Аддитивность

Пусть f интегрируема в D_1 и D_2 и $intD_1\cap intD_2=\emptyset$. Тогда f интегрируема в $D_1\cup D_2$, причём:

$$\iint\limits_{D_1 \cup D_2} f dx dy = \iint\limits_{D_1} f dx dy + \iint\limits_{D_2} f dx dy \tag{1.12}$$

1.4.4 О сохранении интегралом знака функции

Пусть $f(x,y) \ge 0$ в D и f интегрируема в D. Тогда:

$$\iint\limits_{D} f dx dy \ge 0 \tag{1.13}$$

1.4.5 О сохранении интегралом неравенства подынтегральных функций

Пусть $f(x,y) \ge g(x,y)$ в D и f,g интегрируемы в D. Тогда:

$$\iint\limits_{D} f dx dy \ge \iint\limits_{D} g dx dy \tag{1.14}$$

1.4.6 Теорема об оценке модуля двойного интеграла

Пусть f интегрируема в D. Тогда |f| тоже интегрируема в D, причём:

$$\left| \iint\limits_{D} f dx dy \right| \ge \iint\limits_{D} f dx dy \tag{1.15}$$

1.4.7 Теорема об оценке двойного интеграла

Пусть f и g интегрируемы в $D,\,m\leq f\leq M$ в $D,\,g(x,y)\geq 0$ в D. Тогда:

$$m \iint_{D} g dx dy \le \iint_{D} (f \cdot g) dx dy \le M \iint_{D} g dx dy \tag{1.16}$$

Следствие. При g(x,y) = 1 в D, имеет место:

$$m \cdot S(D) \le \iint_D f dx dy \le M \cdot S(D)$$
 (1.17)

1.4.8 Теорема о среднем значении для двойного интеграла

Пусть D – линейно-связная, квадрируемая замкнутая область, f – непрерывна и интегрируема в D. Тогда \exists точка $M_0(x_0,y_0) \in D$ такая, что

$$f(M_0) = \frac{1}{S(D)} \iint_D f(x, y) dx dy \tag{1.18}$$

Замечание: правую часть формули из свойства 8 называют среднем значением функции f в области D

Определение. Область называется линейно-связной, если её граница является связным множеством.

Определение. Множество O называется связным, если \forall точек $M_1, M_2 \exists$ кривая $S \in O$

1.4.9 Обобщённая теорема о среднем

Пусть:

 $1\ f$ - непрерывна на D

 $2\ g$ - интегрируема на D

 $3\ g$ - знакопостоянна на D

4 D - линейно связная область

Тогда $\exists M_o \in D$ такая, что

$$\iint\limits_{D} f(x,y)g(x,y)dxdy = f(M_0)\iint\limits_{D} g(x,y)dxdy \tag{1.19}$$

Замечание. При g(x,y)=1, свойство g совпадает с свойством 1.4.8. \square

1.5 Вычисление двойного интеграла

Пусть D - область на плоскости Oxy. По определению D называется управильной, если её можно задать в виде:

$$D = \{(x, y) : a \le x \le b, \phi_2(x) \le y \le \phi_2(x)\}$$
 (1.20)

Замечание. Область D является у-правильной тогда и только тогда, когда любая прямая параллельная плоскости Oxy пересекает границу D не более чем в двух точках, либо содержит участок границы целиком. \square

Теорема. Пусть:

$$1 \exists \iint\limits_{D} f(x,y) dx dy = I$$

 $2\ D$ является у-правильной и удовлетворяет формуле 1.20

$$3 \ \forall x \in [a, b] \ \exists F(x) = \int_{\phi_1(x)}^{\phi_2(x)} f(x, y) dy$$

Тогда существует повторный интеграл

$$I_{\text{повт.}} = \int_{a}^{b} dx \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) dy = \int_{a}^{b} F(x) dx = I$$
 (1.21)

Замечание. Область называется х-правильной, если её можно задать в виде:

$$D = \{(x, y) : c \le y \le d, \phi_1(y) \le x \le \phi_2(y)\}$$
(1.22)

Пусть:

$$1 \, \exists \iint\limits_{D} f(x,y) dx dy = I$$

 $2\ D$ является х-правильной и удовлетворяет формуле 1.22

$$3 \forall y \in [c,d] \exists F(y) = \int_{\phi_1(y)}^{\phi_2(y)} f(x,y) dx$$

Тогда:

$$\iint\limits_{D} f(x,y)dxdy = \int\limits_{c}^{d} dy \int\limits_{\phi_{1}(y)}^{\phi_{2}(y)} f(x,y)dx \tag{1.23}$$

Если область D не является правильной в направлении какой-либо координатной оси (как представлено на рисунке 6a, то её можно разбить на правильные части и использовать свойство аддитивности двойного интеграла.

1.6 Замена переменных в двойном интеграле

Замена переменных позволяет сложные ситуации (как на рисунке 6а) преобразовывать к более простым (рис. 6b).

Рис. 6

Пусть $I = \iint\limits_{D_{xy}} f(x,y) dx dy$. Предположим подобрано преобразование:

$$\Phi: D_{uv} \to D_{xy} \tag{1.24a}$$

$$\Phi: \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$
 (1.24b)

Теорема (О замене переменных в двойном интеграле). Пусть:

$$1 D_{xy} = \Phi(D_{uv})$$

2 Φ - биекция.

 $3~\Phi$ - непрерывна и параллельна диаграмме.

4 Якобиан отображения к Ф:

$$J_{\Phi} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0 \text{ B } D_{uv}$$
 (1.25)

5 f интегрируема в D_{xy}

Тогда справедливо:

$$\iint\limits_{D_{xy}} f(x,y)dxdy = \iint\limits_{D_{uv}} f(x(u,v),y(u,v))|J_{\Phi}(u,v)|dudv$$
 (1.26)

Замечание. Аналогия с обычным интегралом:

$$\int_{a}^{b} f(x)dx = \begin{vmatrix} x = \xi(t) \\ dx = \xi'(t)dt \\ x = a \Rightarrow t = \xi^{-1}(a) \\ x = b \Rightarrow t = \xi^{-1}(b) \end{vmatrix} = \int_{\xi^{-1}(a)}^{\xi^{-1}(b)} f(\xi(t))\xi'(t)dt$$
 (1.27)

Замечание. Теорема останется справедливой и в случае, когда свойства 2, 3, 4 нарушаются в отдельных точках области D или на конечном числе кривых площади 0. \square

Пример. Переход в двойном интеграле к полярным координатам. В прямоугольная декартова система состоит из начала координат и двух взаимно перпендикулярных осей. Положение точки в такой системе задаётся с помощью пары чисел (x,y), геометрическая интерпретация которых такова: первое число x есть проекция точки на ось X, второе число y есть проекция точки на ось Y.

Полярная система координат состоит из начала координат О и луча Р. Каждая точка задаётся как пара чисел (ρ, ϕ) . ρ задаёт расстояние на луче Р, ϕ задаёт угол против часовой стрелки, на который нужно повернуть получившийся радиус-вектор, чтобы достичь точки M

Связь полярной системы координат с декартовой:

$$\begin{cases} x = \rho \cos(\phi) \\ y = \rho \sin(\phi) \end{cases} J_{\Phi}(\rho, \phi) = \begin{vmatrix} x'_{\rho} & x'_{\phi} \\ y'_{\rho} & y'_{\phi} \end{vmatrix} = \begin{vmatrix} \cos \phi & -\rho \sin \phi \\ \sin \phi & \rho \cos \phi \end{vmatrix} = \rho \cos^{2} \phi + \rho \sin^{2} \phi = \rho \cos^{2} \phi + \rho \cos^{2} \phi = \rho \cos^{2} \phi + \rho \cos^{2} \phi = \rho \cos^{2} \phi$$

Таким образом:

$$\iint_{D_{xy}} f(x,y)dxdy = \iint_{D_{\rho\phi}} f(x\cos\phi, y\sin\phi)\rho d\rho d\phi$$
 (1.29)

1.7 Приложения двойного интеграла

1.7.1 Вычисления площади плоской фигуры

$$S(D) = \iint_{D} 1 dx dy \tag{1.30}$$

1.7.2 Вычисление массы пластины

Пусть f(x,y) - значение поверхностной плотности. Тогда масса пластины:

$$m = \iint_{D} f(x, y) dx dy \tag{1.31}$$

1.7.3 Вычисление координат центра тяжести

Пусть f(x,y) - значение поверхностной плотности. (x_0,y_0) - координаты центра тяжести.

$$x_0 = \frac{1}{m(D)} \iint_D x f(x, y) dx dy$$
 (1.32a)

$$y_0 = \frac{1}{m(D)} \iint_D y f(x, y) dx dy$$
 (1.32b)

1.7.4 Вычисление объёма тела

$$T = \{(x, y, z) : x, y \le D_{xy}, z_1(x, y) \le z \le z_2(x, y)\}$$
 (1.33a)

$$V(T) = \iint_{D_{xy}} [z_2(x,y) - z_1(x,y)] dx dy$$
 (1.33b)

Теория вероятностей

2.1 Определение вероятности

2.1.1 Случайный эксперимент

Случайным называется такой эксперимент, результат которого невозможно точно предсказать.

Пример (1). Бросают монету. Возможные результаты - выпадение орла или решки

$$\Omega = \{O, P\} \tag{2.1}$$

Пример (2). Бросают шестигранную игральную кость.

$$\Omega = \{1, 2, 3, 4, 5, 6\} \tag{2.2}$$

Пример (3). Из колоды из 36 карт извлекают две карты

$$\Omega = \{(x_1, x_2) : x_i$$
 - номер карты, которую достали при извлечении $\}$ (2.3)

В данном случае, число возможных исходов равно $36 \cdot 35 = 1260$. Можно записать уравнение 2.3 следующим образом:

$$\Omega = \{(x_1, x_2) : x_i \in 1, ..., 36, x_1 \neq x_2\}$$
(2.4)

Пример (4). Бросают монету, до первого появления решки.

$$\Omega = \{1, 2, 3, \dots\}, |\Omega| = \aleph_0 \tag{2.5}$$

Пример (5). Производят выстрел по плоской мишени. Возможный исход описывается парой (x_1, x_2) .

$$\Omega = \{ (x_1, x_2) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R} \}$$
 (2.6)

Определение. Множеством всех возможных исходов случайного эксперимента называется множество всех возможных элементарных исходов.

Замечание. В этом определении предполагается, что:

- 1 каждый исход из Ω является делимым и неделимым, то есть не может быть разбит на более мелкие исходы в рамках данного эксперимента
- 2 в результате проведения эксперимента, обязательно имеет место ровно один элементарный исход

Определение (нестрогое). Событием (или, более точно, случайным событием) называется любое подмножество множества Ω элементарных исходов. \square

Определение. Говорят, что в результате эксперимента произошло событие A, если наступил один из входящих в A исходов. \square

РИСУНОК

Определение. Говорят, что событие A является следствием события B, если наступление события B всегда влечёт наступление события A, то есть $B \subseteq A$

Рис. 1

Замечание. Любое множество Ω содержит подмножества \emptyset и Ω . Соответствующее событие считается невозможным \emptyset и достоверным Ω . Эти события называются несобственными, а все остальные – собственными.

Пример. Из ящика, содержащего 2 красных и 3 синих шара, извлекают 1 шар.

$$A = \{$$
извлечённый шар красный или синий $\} = \Omega$ (2.7a)

$$B = \{$$
извлечённый шар белый $\} = \emptyset$ (2.7b)

Определение. Событие (или случайное событие) - множество, являющееся подмножеством Ω . \square

Суммой событий A и B определено как:

$$A + B = A \cup B \tag{2.8}$$

Произведение событий A и B определяется так:

$$A \cdot B = AB = A \cap B \tag{2.9}$$

Событие, противоположное A определено как:

$$\bar{A} = \Omega \setminus A \tag{2.10}$$

2.2 Свойства операций над событиями (основные)

$$1 A + B = B + A$$

$$2 AB = BA$$

$$3(A+B) + C = A + (B+C)$$

$$4 (AB)C = A(BC)$$

$$5 A(B+C) = AB + AC$$

$$6 A + BC = (A+B)(A+C)$$

$$7 \ \bar{\bar{A}} = A$$

$$8 A + A = A$$

$$9 AA = A$$

$$10 \ \bar{A+B} = \bar{A}\bar{B}$$

$$11 \ \bar{AB} = \bar{A} + \bar{B}$$

$$12 \ A \subseteq B \Leftrightarrow A + B = B$$

13
$$A \subseteq B \Leftrightarrow AB = A$$

14
$$A \subseteq B \Leftrightarrow \bar{A} \supset \bar{B}$$

Определения:

- 1 События A и B являются несовместными, если $A \cdot B = \emptyset$.
- 2 События $A_1, ..., A_n$ называются попарно несовместными, если любые два из них несовместные.
- 3 События $A_1,...,A_n$ называются несовместными в совокупности, если $A_1\cdot A_2\cdot ...\cdot A_n=\emptyset$

Очевидно, что если $A_1,...,A_n$ - попарно несовместны, то они несовместны в совокупности.

2.3 Классическое определение вероятности

Пусть $|\Omega| = N < \infty$, $A \subseteq \Omega$; $|A| = N_A$ и по условиям эксперимента нет объективных оснований предпочесть тот или иной исход остальным (все исходы равновозможны). Тогда вероятностью осуществления события A называется число:

$$P\{A\} = \frac{N_A}{N} \tag{2.11}$$

Пример. Два раза бросают шестигранную игральную кость. Событие $A = \{$ сумма выпавших очком больше или равна 11 $\}$. $P\{A\} = ?$

Решение: исходом будем считать пару (x_1,x_2) , где $x_i=\{1,2,3,4,5,6\}$ – число, выпавшее на кости. $\Omega=\{(x_1,x_2):x_i=\{1,2,3,4,5,6\}\}; |\Omega|=N=36.$

|A|=?; $A=\{(5,6),(6,5),(6,6)\}\Rightarrow |A|=3.$ Считаем все исходы из Ω равновозможными. Используя классическое определение вероятности, получим, что:

$$P\{A\} = \frac{N_A}{N} = \frac{3}{36} = \frac{1}{12} \tag{2.12}$$

2.3.1 Свойства вероятности

$$1 P\{A\} \ge 0$$

$$2 P{\Omega} = 1$$

3 Если A, B - несовместные, то

$$P\{A+B\} = P\{A\} + P\{B\}$$
 (2.13)

Доказательства:

1
$$P\{A\}=rac{N_A}{N}\geq 0$$
, что следует из $N_A\geq 0, N\geq 0$

$$2 P{\Omega} = \frac{N_{\Omega}}{N} = {N(\Omega) = |\Omega| = N} = \frac{N}{N} = 1$$

$$3 P\{A + B\} = \frac{N_{A+B}}{N}$$

$$= \{N_{A+B} = |A + B| = |A| + |B| - |AB| = N_A + N_B\}$$

$$= \frac{N_A + N_B}{N} = \frac{N_A}{N} + \frac{N_B}{N} = P\{A\} + P\{B\}$$

2.4 Геометрическое определение вероятности

Геометрическое определение вероятности является обобщением классического на случай бесконечных элементарных исходов. Пусть выполнены следующие условия:

$$1 \ \Omega \subseteq \mathbb{R}^n$$

$$2~\mu(\Omega)<\infty$$
 - некая мера.

$$\mu=1$$
 - длина

$$\mu=2$$
 - площадь

$$\mu=3$$
 - объём

. . .

3 возможность принадлежности исхода к тому или иному подмножеству Ω не зависит от формы события и его расположения внутри Ω

Тогда вероятность осуществления возможности события A называется число $P\{A\} = \frac{\mu(N_A)}{\mu(N)}$

Пример. Задача о встрече. Два человека договорились встретиться в условленном месте с 12:00 до 13:00. При этом, пришедший ждёт другого человека в течение 15 минут, а потом уходит. Какова вероятность того, что они встретятся, если появление каждого из них равновероятно в любое время в период с 12:00 до 13:00?

Исход: (x_1,x_2) , где $x_i\in[0,1]$; - время (в часах после 12:00) появления і-гоо человека в условленном месте. Тогда $\Omega=[0,1]\times[0,1]$.

$$A = \{(x_1, x_2) : |x_1 - x_2| \le \frac{1}{4}\}$$
 (2.14)

Используя геометрические определение, получаем:

$$P\{A\} = \frac{\mu(A)}{\mu(\Omega)} = \frac{\mu(\Omega) - 2 \cdot \mu(K)}{\mu(\Omega)} = \frac{1 - 2 \cdot \frac{1 \cdot 3 \cdot 3}{2 \cdot 4 \cdot 4}}{1} = \frac{7}{16}$$
 (2.15)

Рис. 2