Christian Weiss: 445316
Florian Hoffmann: 444959
Yannick Hettinga: 445071
Aufgabe 1.1
a) i) waiting -> running: Dies kann nicht eintreten, do wenn das Ereignis
auf das gewortet wird eintritt, zuerst in den
ready-Zostand gewechselt wird, bis der
Scheduler dem Prozess Zeit auf dem CPU
gibt.
ii) running -> waiting: Dies tritlein, wenn der Prozess entweder auf
1/0 oder ein anderes Ereigniss warten muss,
bevor er weitervechnen kann.
iii) ready -> waiting: Dies kann nicht eintreten, da der Prozess, solange
er ready ist night Ausgeführt wird und daher nich
signalisieren kann, dasser auf ein Ereigniss warten muss.
iv) ready-) terminated: Dies kann eigenflich nicht eintreten, da der Prozes
entweder sich selber beenden muss, was er nur selber kann
oder von einem externen Signal beendet wird, wobei
aber der Signal Hondler des Prozesses ausgeführt wird
A(so muss der Prozess in vunning sein, um zo
terminieren, aber es gibt meist auch die Möglichkei
Zu "killen", was in jedem Zustand passieren konn,
ohne doss der Prozess vergieren kann.
b) Eigentlich nur einer, aber bei modernen Geräten mit mehreren
Kernen und hardwarseitigem Molfifhreading so viele wie das
Gerät an Threads hat
() Beliebig viele, bis der Hauptspeicher oder die Prozesstabelle voll ist.

