STM32F4 Cheat Sheet

1 NVIC

 $NVIC_XXX(YYY_IRQ >> 3) = YYY_IRQ \& 0b111;$ NVIC_ISER - Interrupt Set-Enable NVIC_ICER - Interrupt Clear-Enable NVIC_ISPR - Interrupt Set-Pending NVIC_ICPR - Interrupt Clear-Pending NVIC_IPR(XXX_IRQ) - Interrupt Priority $NVIC_IRQ(XXX_IRQ) = handler;$

EXTI/SYSCFG

1 bit/input line EXTI_IMR - Interrupt Mask EXTI_EMR - Event Mask EXTI_RTSR - Rising Trigger Selection EXTI_FTSR - Falling Trigger Selection EXTI_PR - Pending EXTI{0-4, 9_5, 15_10}_IRQ

SYSCFG_EXTICR1-4 - EXTernal Interrupt Configuration A(0b0000)-I(0b1000) (4-bit)

GPIO{A-I}

4-bit/pin

 $GPIOX_MODER - MODE$ 2-bit/pin: GPIO_MODER_{ IN, OUT, ALT, ANA } GPIOX_OTYPER - Output TYPE 1-bit/pin: 0 – push-pull, 1 – open-drain $GPIOX_PUPDR - Pull-Up/Pull-Down$ 2-bit/pin: GPIO_PUPDR_{ PU, PD } $GPIOX_IDR - Input Data$ GPIOX_ODR - Output Data 1-bit/pin GPIOX_BSRR - Output Bit Set/Reset bit 15-0: set, 31-16: reset GPIOX_AFRL - Alternate Function Low (pin 7-0) GPIOX_AFRL - Alternate Function High (pin 15-8)

4 DAC

DAC_CR - Control $DAC_EN\{1-2\} - ENable$ $\mathtt{DAC_SWTRIGR} - \mathtt{SoftWare} \ \mathtt{TRIGger}$ DAC_SWTRIG{1-2} DAC_DHR12R{1-2} - 12-bit right-aligned holding

DAC_DHR12L{1-2} - 12-bit left-aligned holding

$ADC\{1-3\}$

 $ADCX_SR - Status Register$ ADC EOC – End Of Conversion $ADCX_CR1$ - Control Register 1 ADC_{12b, 10b, 8b, 6b} ADC_DISCEN - DISContinuous mode ENable $ADC_SCAN - SCAN \mod e$ ADC_EOCIE - End Of Conversion Interrupt Enable $ADCX_CR1$ - Control Register 2 ADC_SWSTART - SoftWare START ADC_EXTEN_{rise, fall, both} - EXTernal Trigger ENable $ADC_EXTSEL_XXX - EXTernal$ event SELectT1{CC1, CC2, CC3}, T2{CC2, CC3, CC4, TRG0} T3{CC1, TRG0}, T4CC4, T5{CC1, CC2, CC3} T8{CC1, TRGO}, EXTI11 ADC_EOCS End Of Conversion Selection ADC_CONT Continuous conversion ADC_ADON A.D Converter ON ADCX_SQR1 SeQuence Register 1 (channels 16-13) bit 23-20 – Length ADCX_SQR2 SeQuence Register 2 (channels 12-7) ADCX_SQR3 SeQuence Register 3 (channels 6-1) 5-bit/input channel $ADCX_DR - Data Register$ ADC_IRQ - unique interrupt

TIM{1-14}

 $TIMX_CR1$ – Control Register 1 TIM_ARPE - Auto-Relad Preload Enable TIM_UDIS - Update DISable TIM_CEN - Counter Enable $TIMX_CR2$ - Control Register 2 $TIM_MMS_XXX - Master Mode Selection$ RESET, ENABLE, UPDATE, COMPARE_PULSE COMPARE1, COMPARE2, COMPARE3, COMPARE4 TIMX_SMCR - Slame Model Control Register TIM_ECE - External Clock Enable TIM_TS_ - Trigger Selection ITRO, ITR1, ITR2, ITR3, TI1F_ED, TI1FP1, TI2FP2, ETRF $TIMX_SR - Status Register$ TIM_CC{1-4}F - Capture/Compare interrupt flag TIM_UIF - Update Interrupt Flag TIMX_EGR - Event Generation Register TIM_UG - Update Generation TIMX_CCMR1 - Capture/Compare mode (channel 1, 2) TIMX_CCMR2 - Capture/Compare mode (channel 3, 4) $TIM_CC\{1-4\}S_- - capture/compare selection$ OUT, TI1/TI3, TI2/TI4, TRC Output $TIM_OCYM_- - mode$ FROZEN, SET, CLR, TOGGLE, PWM1, PWM2 InputTIMX_CCER - Capture/Compare Enable Register CC{ 1-4}NP - Capture/Compare output polarity CC{1-4}P - Capture/Compare output polarity CC{1-4}E - Capture/Compare output enable $\mathtt{TIM}X_\mathtt{CNT}$ - $\mathtt{CouNTer}$ $\mathtt{TIM}X\mathtt{_PSC}$ - $\mathtt{PreSCaler}$ $\mathtt{TIM}X_\mathtt{ARR}$ - Auto-Reload Register TIMX_CCR1-4 - Capture/Compare Register TIM{2-7, 9-14}_IRQ

TIM{1, 8}_{BRK, UP, TRG_COM, CC}_IRQ