Nom: CORRIGÉ Groupe : _____

Géométrie - Figures équivalentes

Examen formatif

1. Une pyramide droite régulière à base hexagonale est équivalente à un cube dont l'aire totale est 54 cm². Sachant que la hauteur de la pyramide est de 9 cm, calculez le périmètre de sa base.

$$A = 6c^2$$

$$54 = 6c^2$$

$$9 = c^2$$

$$3 cm = c$$

2) Volume du cube

$$V = c^3$$

$$V = 3^{3}$$

$$V = 27 \ cm^3$$

3) Aire de la base de la pyramide

$$V = \frac{A_B \times h}{a_B}$$

$$27 = \frac{A_B \times 9}{1}$$

$$V = \frac{A_B \times h}{3}$$

$$27 = \frac{A_B \times 9}{3}$$

$$9 \ cm^2 = A_B$$

4) Côté de l'hexagone

$$A = 9 \div 6 = 1,5 \ cm^2$$

$$A = \frac{ab \times sinC}{}$$

$$A = \frac{ab \times sinC}{\frac{2}{2}}$$

$$1,5 = \frac{x \cdot x \cdot sin60}{2}$$

$$3 = x^2 \sin 60$$

$$x = \sqrt{\frac{3}{\sin 60}} \approx 1,86 \ cm$$

5) Périmètre de la base

$$P = 6x \approx 11,17 \ cm$$

2. Déterminez le périmètre de l'heptagone régulier équivalent au trapèze illustré ci-dessous.

Les deux triangles aux extrémités du trapèze sont isométriques, car le trapèze est isocèle.

1)
$$m\overline{AE}$$

 $a^2 + b^2 = c^2$
 $8.5^2 + b^2 = 9^2$
 $b \approx 2.96 \ cm$

2)
$$m\overline{BC}$$
 (même mesure que \overline{EF}) $15 - 2 \times 2,96 \approx 9,08 \ cm$

3) Aire du trapèze

$$A = \frac{(b+B) \times h}{2}$$

$$A = \frac{(9,08+15) \times 8,5}{2}$$

$$A \approx 102,34 \ cm^{2}$$

4) Aire d'un triangle de l'heptagone $A=102{,}34\div7\approx14{,}62~cm^2$

5)
$$m \angle H$$

 $m \angle H = \frac{360}{7} \approx 51.4^{\circ}$

6)
$$m \angle I$$
 et $m \angle G$ $\frac{180-51,4}{2} \approx 64,3^{\circ}$

7)
$$m\overline{IH}$$
 et $m\overline{GH}$

$$A = \frac{absinC}{2}$$

$$14,62 = \frac{x \cdot x \cdot sin51,4}{2}$$

$$x \approx 6,12 \ cm$$

8)
$$m\overline{IG}$$

$$\frac{h}{\sin H} = \frac{i}{\sin I}$$

$$\frac{m\overline{IG}}{\sin 51,4} = \frac{6,12}{\sin 64,3}$$

$$m\overline{IG} = \frac{6,12\sin 51,4}{\sin 64,3}$$

$$m\overline{IG} \approx 5,31 cm$$

9) Périmètre de l'heptagone $P = 7 \times 5.31 \approx 37.16 \ cm$

Réponse :

Le périmètre est d'environ 37,16 cm.

3. Soit les trois figures équivalentes ci-dessous.

a) Quelle figure possède le plus petit périmètre? Justifiez votre réponse à l'aide des propriétés apprises en classe.

De tous les polygones équivalents à n côtés, c'est le polygone régulier qui a le plus petit périmètre. La figure B ne peut donc pas avoir le plus petit périmètre puisqu'elle n'est pas régulière. De tous les polygones réguliers équivalents, c'est le polygone ayant le plus de côtés qui a le plus petit périmètre. La figure C possède le plus petit périmètre puisqu'elle a le plus de côtés.

b) Quelle figure possède le plus grand périmètre? Justifiez votre réponse à l'aide des propriétés apprises en classe.

3) m \overline{AB}

La figure B possède le plus grand périmètre pour les raisons mentionnées en a).

c) Calculez le périmètre de chaque figure.

1) Périmètre figure A
$$P = 3 \times 5 = 15 \ cm$$

 $A \approx 10.83 \ cm^2$

$$P=3\times 5=15~cm$$
 $A=\frac{bh}{2}$
2) Aire de la figure A $10,83=\frac{6\times h}{2}$ $h\approx 3,61~cm$ $A=\frac{absinc}{2}$ $A=\frac{5\times 5\times sin60}{2}$

5) Périmètre figure B
$$P = 3.61 + 7 + 6 \approx 16.61 \, cm$$

6) Rayon figure C

 $C \approx 11,69 \ cm$

 $A = \pi r^2$

$$10,83 = \pi r^2$$
4) $m\overline{AC}$ $r \approx 1,86 \ cm$
 $a^2 + b^2 = c^2$
 $3,61^2 + 6^2 = c^2$
 $c \approx 7 \ cm$ $c = 2\pi r$
 $c = 2\pi \times 1,86$

Réponses : Le périmètre de la **figure A** est de **15** cm.

Le périmètre de la **figure B** est de **16,61** cm.

Le périmètre de la **figure C** est de **11,69** cm.

4. Une entreprise pharmaceutique produit des comprimés. Pour faciliter l'ingestion de ces comprimés, elle décide de les envelopper dans une pellicule soluble. Si elle veut minimiser la quantité de pellicule soluble à utiliser, quel comprimé, parmi les deux comprimés de même volume ci-dessous, devrait-elle produire? Justifiez votre réponse à l'aide de calculs.

Comprimé A

- 1) Rayon des demi-boules $r = 6 \div 2 = 3 mm$
- 2) Hauteur du cylindre *La hauteur des demi-boules est équivalente au rayon. $h_{cylindre} = 18 2 \times 3 = 12 \ mm$
- 3) Volume comprimé A

$$V = \pi r^{2} h + \frac{4\pi r^{3}}{3}$$

$$V = \pi \cdot 3^{2} \cdot 12 + \frac{4\pi \cdot 3^{3}}{3}$$

$$V = 144\pi$$

$$V \approx 452,39 \text{ mm}^{2}$$

4) Rayon comprimé B

$$V = \pi r^2 h$$

$$452,39 = \pi \cdot r^2 \cdot 6$$

$$r \approx 4.9 \ mm$$

Comprimé B

5) Aire comprimé A

$$A = A_{boule} + A_{L \, cylindre}$$

$$A = 4\pi r^2 + 2\pi rh$$

$$A = 4\pi \cdot 3^2 + 2\pi \cdot 3 \cdot 12$$

$$A = 108\pi$$

$$A \approx 339,29 \, mm^2$$

6) Aire comprimé B

$$A = 2\pi r^{2} + 2\pi rh$$

 $A = 2\pi \cdot 4,9^{2} + 2\pi \cdot 4,9 \cdot 6$
 $A \approx 335,58 \ mm^{2}$

L'entreprise devrait produire les capsules B puisque l'aire est inférieure à celle de la capsule A.

5. Question bonus!

Une entreprise de moulage de plastique fabrique des flotteurs (dont l'intérieur est vide). Quel est le nombre maximal de flotteurs que l'on peut fabriquer à partir de 1000 L de plastique, sachant que l'épaisseur des parois est de 5 mm et que chaque flotteur contient 35 L d'air?

Rappel: 1 dm³ équivaut à 1 L

On choisit la **boule**, car de tous les solides équivalents, c'est la boule qui a la plus petite aire totale.

1) Rayon « intérieur »

$$V = \frac{4\pi r^3}{3}$$
$$35 = \frac{4\pi r^3}{3}$$
$$r \approx 2.03 \ dm$$

2) Rayon « extérieur » (boule au complet)

$$r \approx 2,03 \ dm + 5 \ mm \approx 2,08 \ dm$$

3) Volume boule au complet

$$V = \frac{4\pi r^3}{3}$$

$$V \approx \frac{4\pi \times 2,08^3}{3}$$

$$V \approx 37,65 \ dm^3$$

4) Volume du plastique

$$V \approx 37,65 - 35 \approx 2,65 \ dm^3 \approx 2,65 \ L$$

5) Nombre de flotteurs

$$1000 \div 2,65 \approx 377$$
 flotteurs