A NOVEL GENE FOR CONTROLLING LEAF SHAPES BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION:

The present invention relates to a novel gene. In particular, the present invention relates to a novel gene in plants which encodes a protein having the function of controlling leaf shapes.

2. DESCRIPTION OF THE RELATED ART:

10

15

20

25

30

5

Transposons are mutagenic genes which are known to be ubiquitous in animal, yeast, baoterial, and plant genomes. Transposons are classified into two classes, Class I and Class II, depending on their transposition mechanisms. Transposons belonging to Class II are transposed in the form DNAs without being replicated. Known Class II transposons include the Ac/Ds, Spm/dSpm and Mu elements of Zea mays (Fedoroff, 1989, Cell 56, 181-191; Fedoroff et al., 1983, Cell 35, 235-242; Schiefelbein et al., 1985, Proc. Natl. Acad. Sci. USA 82, 4783-4787), and the Tam element of Antirrhinum majus (Bonas et al., 1984, EMBO J., 3, 1015-1019). Class II transposons are widely used for gene isolation techniques which utilize transposon tagging. Such techniques utilize the fact that a transposon induces physiological and morphological changes when inserted into genes. The affected gene can be isolated by detecting such changes (Bancroft et al., 1993, The Plant Cell, 5, 631-638; Colasanti et al., 1998, Cell, 93, 593-603; Gray et al., 1997, Cell, 89, 25-31; Keddie et al., 1998, The Plant Cell, 10, 877-887; Whitham et al., 1994, Cell, 78, 1101-1115).

Transposons belonging to Class I, also referred to as retrotransposons, are replicated and transposed via RNA

"Express Mail" Mailing Label Number EL581518746 US

Date of Deposit September 22, 2000

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1,10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

CHUCK DUNBAR
(TYPED OR BRINTED NAME OF BENDER)
(SIGNATURE)

intermediates. Class I transposons were first identified and characterized in Drosophila and in yeasts. However, recent studies have revealed that Class I transposons are ubiquitous in plant genomes and account for a substantial portion of the genomes (Bennetzen, 1996, Trends Microbiolo., 4, 347-353; Voytas, 1996, Science, 274, 737-738). A large majority of retrotransposons appear to be inactive. Recent studies indicate that some of these retrotransposons are activated under stress conditions such as injuries, pathogenic attacks, or cell culture (Grandbastien, 1998, Trends in Plant Science, 3, 181-187; Wessler, 1996, Curr. Biol. 6, 959-961; Wessler et al., 1995, Curr. Opin. Genet. Devel. 5, 814-821). Activation under stress conditions has been reported for Tnt1A and Tto1 in tobacco (Pouteau et al., 1994, Plant J., 5, 535-542; Takeda et al., 1988, Plant Mol. Biol., 36, 365-376), and Tos17 in rice (Hirochika et al., 1996, Proc. Natl. Acad. Sci. USA, 93, 7783-7788), for example.

5

10

15

20

25

30

The Tos17 retrotransposon of rice is one of the most-extensively studied plant Class I elements in plants. Tos17 was cloned by an RT-PCR method using a degenerate primer prepared based on a conservative amino acid sequence in reverse transcription enzyme domains between Tyl-copia retroelements (Hirochika et al., 1992, Mol. Gen. Genet., 233, 209-216). Tos17 is 4.3kb long, and has two 138 bp LTRs (long chain terminal repetitions) and PBS (primer binding sites) complementary to the 3' end of the start methionine tRNA (Hirochika et al., 1996, supra). Tos17 transcripti n is strongly activated through tissue culture, and its copy number increases with culture time. In Nipponbare, a model Japonica cultivar used for genome analysis, two copies of Tos17 are initially present, which are increased to 5 to

30 copies in a regenerated plant after tissue culture (Hirochika et al., 1996, supra). Unlike Class II transposons which were characterized in yeasts and Drosophila, Tos17 is transposed in chromosomes in random manners and causes stable mutation, and therefore provides a powerful tool for functional analysis of rice genes (Hirochika, 1997, Plant Mol. Biol. 35, 231-240; 1999, Molecular Biology of Rice (ed. by K. Shimamoto, Springer-Verlag, 43-58).

10

5

SUMMARY OF THE INVENTION

The present invention relates to a polynucleotide encoding a plant gene capable of controlling leaf shapes, the polynucleotide encoding an amino acid sequence from M t at position 1 to Val at position 690 of SEQ ID NO: 2 in the SEQUENCE LISTING, including any polynucleotide encoding an amino acid sequence in which one or more amino acids are deleted, substituted or added to the amino acid sequence.

20

15

In one embodiment of the invention, the polynucleotide may be derived from rice.

In another embodiment of the invention, the polynucleotide may be as represented by SEQ ID NO: 1 in the SEQUENCE LISTING.

The present invention further relates to methods for controlling leaf shapes in plants.

30

The inventors diligently conducted systematic analyses of phenotypes of plants having a newly transposed Tol7 copy and sequences adjoining Tos17 target sites with

respect to rice. As a result, the inventors found a narrow-leaf rice mutation obtained from Tosl7 insertion, and isolated the gene responsible for this mutation by utilizing Tosl7 as a tag, thereby accomplishing the present invention.

Thus, the invention described herein makes possible the advantage of: providing a novel plant gene which can be provided by using Tosl7.

10

5

This and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a photograph showing a Tos17-inserted narrow-leaf mutant rice plant (left) and a wild-type rice plant (right).

Figure 2 shows a Southern analysis autoradiogram of DNA extracted from self-crossed progeny from a narrow-leaf mutant NC0608 strain (R2 generation) and DNA extracted from a wild-type rice. On the left is shown a autoradiogram of a Southern analysis performed by using Tosl7 as a probe. On the right is shown an autoradiogram of a Southern analysis performed by subcloning NC0608_0_102, which is one of the adjoining sequences of Tosl7, and using it as a probe. The lane indicated as M is a lane of a λ /HindIII marker. The lane indicated as C is a control lane in which DNA obtained from a wild-type plant (Nipponbare) was electrophoresed. The lane indicated as mt is a lane in which DNA obtained

from a narrow-leaf mutant was electrophoresed.

Figure 3 is a schematic representation of a gene which control leaf shapes. Blank boxes in the figure represent introns, whereas black boxes represent exons. The downward arrow on the right-hand side of the figure represent a position at which Tos17 was inserted. The two small downward arrows near the 5' end and the 3' end represent a start codon site and a stop codon site, respectively.

10

15

20

25

30

5

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides a novel plant gene which can be provided by using Tosl7, a vector containing the same, a plant which is transformed by the novel gene, and a method of producing an improved plant including a st p of transforming a plant with the novel gene.

According to the present invention, there is provided a polynucleotide encoding a plant gene capable of controlling leaf shapes. As used herein, the term "controlling leaf shapes" means the ability to alter the leaf length and/or leaf width of a plant, thereby enhancing photosynthesis ability or imparting resistance against lodging, etc. The term "plants" encompasses both monocotyledons and dicotyledons.

A polynucleotide encoding a plant gene capable of controlling leaf shapes according to the present invention is, for example, a polynucleotide encoding an amino acid sequence from Met at position 1 to Val at position 690 of SEQ ID NO: 2 in the SEQUENCE LISTING, including any polynucleotide encoding an amino acid sequence in which one

or more amino acids are deleted, substituted or added to the aforementioned amino acid sequence.

5

10

15

20

25

30

A polynucleotide encoding a plant gene capable of controlling leaf shapes encompasses any polynucleotides which have at least about 80% sequence homology, preferably at least about 85% sequence homology, and more preferably at least about 90% sequence homology, still more preferably at least about 95% sequence homology, and most preferably at least about 99% sequence homology, with an amino acid sequence from Met at position 1 to Val at position 690 of SEQ ID NO: 2 in the SEQUENCE LISTING, so long as they are capable of controlling leaf shapes in plants. The term "sequence homology" indicates a degree of identicalness between two polynucleotide sequences to be compared with each other. The rate (%) of sequence homology between two polynucleotide sequences for comparison is calculated by, after optimally aligning the two polynucleotide sequences for comparison, obtaining a matched position number indicating the number of positions at which identical, or "matched", nucleic acid bases (e.g., A, T, C, G, U, or I) are present in both sequences, dividing the matched position number by total number of bases in the polynucleotide sequences for comparison, and multiplying the quotient by 100. The sequence homology can be calculated by using the following sequencing tools, for example: a Unix base program. designated GCG Wisconsin Package (Program Manual for the Wisconsin Package, Version 8, September 1994, Genetics Computer Group, 575 Science Drive Madison, Wisconsin, USA 53711; Rice, P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hinxton Hall, Cambridge, CB10 1RQ, England), and the ExPASy World Wide Web molecular biology server (Geneva University Hospital and University of Geneva,

Geneva, Switzerland).

5

10

15

20

25

30

The term "control sequence" as used herein refers to a DNA sequence including a functional promoter and any related transcription elements (e.g., an enhancer, CCAAT box, TATA box, SPI site, etc.).

The term "operably linked" as used herein refers to a manner of linking a polynucleotide such that various regulation elements such as a promoter, enhancer, etc., which regulate its expression can operate within a host cell.

It is well-known to those skilled in the art that the type and kinds of control sequences may vary depending on the host cell. For example, CaMV35S promoter, nopaline synthase promoter, and the like are well-known to those skilled in the art. Any methods that are known to those skilled in the art may be used for introducing the gene into a plant body. For example, methods which utilize agrobacterium and methods which directly introduce a gene in a cell are well known. As for methods which utilize agrobacterium, the method of Nagel et al. (Microbiol. Lett. 67, 325 (1990)) may be used, for example. This method transforming with an involves first agrobacterium expression vector via electroporation, and then introducing the transformed agrobacterium into a plant cell by following. a method described in Plant Molecular Biology Manual (S.B. Gelvin et al., Academic Press Publishers). Electroporation techniques and partile gun techniques are known as methods for directly introducing a gene into a cell.

Cells into which genes have been introduced are first selected based on drug resistance, e.g., hygromycin

resistance, and then regenerated into plant bodies by using usual methods.

5

10

15

20

25

30

The terminology and laboratory procedures describ d throughout the present specification are directed to those which are well-known and commonly employed in the art. Standard techniques may be used for recombination methods, polynucleotide synthesis, microorganisms culturing, and transformation (e.g., electroporation). Such techniques and procedures are generally known from various standard textbooks available in the field or by way of the present specification (including a generally-referenced textbook by Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Such literature is incorporated herein by reference.

The polynucleotide according to the present invention can be obtained by using the method described herein, for example. However, the polynucleotide according to the present invention may also be obtained by any chemical synthesis process based on the sequence disclosed her in. For example, the polynucleotide according to the present invention may be synthesized by using a polynucleotide synthesizer available from Applied Bio Systems in accordance with the instructions provided by the manufacturer.

Methods of PCR amplification are well-known in the art (PCR Technology: Principles and Applications for DNA Amplification, ed. HA Erlich, Freeman Press, NewYork, NY (1992); PCR Protocols: A Guide to Methods and Applications, Innis, Gelfland, Snisky, and White, Academic Press, San Diego, CA(1990); Mattila et al. (1991) Nucleic Acids REs.

19: 4967; Eckert, K.A. and Kunkel, T.A. (1991) PCR Methods and Applications 1: 17; PCR, McPherson, Quirkes, and Taylor, IRL Press, Oxford). Such literature is incorporated herein by reference.

5

(Examples)

Hereinafter, the present invention will be described by way of examples which are of illustrative but not limitative nature.

10

15

20

25

30

(Example 1: Activation of Tos17 via culture

Using fully ripened seeds of Nipponbare, which is a variety of Japonica subspecies, induction of calli and cell suspension culture were carried out as described earlier (Hirochika et al., 1996, supra). The activation of Tos17 was carried out following the method of Ohtsuki (1990) (rice protoplast culture system, Food and Agricultural Research Development Association). In summary, fully ripened seeds of rice were cultured in an MS medium having 2,4-dichlorophenoxyacetic acid (2,4-D) added thereto (2 mg/ml) (Ohtsuki (1990), supra) (25 $^{\circ}$ C, 1 month), to induce callus formation. The resultant calluses were cultured for 5 months in an N6 liquid medium having 2,4-D added thereto (Ohtsuki (1990), supra), and thereafter placed on a redifferentiation medium (Ohtsuki (1990), supra), wher by redifferentiated rice plants were obtained generation (R1) plants).

(Example 2: Isolation and identification of narrow-leaf mutants

Utilizing each of the regenerated R1 rice plants obtained according to Example 1, about 1000 R1 seeds were collected from each strain and sown on a paddy field to obtain

second generation (R2) plants, which were subjected to a morphological analysis. As a result of observing the phenotypes of the respective plant bodies in the R2 group, it was learned that about 1/4 of the R2 group of the NC0608 strain exhibit the "narrow-leaf" phenotype (Figure 1). In the paddy field, the Tosl7-inserted narrow-leaf mutants had their leaf length reduced to about 90% in the flag leaf and all leaves down to the third leaf therefrom; and they also had their leaf width reduced to about 78%, about 70%, about 71%, about 69%, respectively, in the flag leaf and all leaves down to the third leaf therefrom (Figure 1, left), as compared with the wild type (Figure 1, right). This suggested that the narrow-leaf phenotype of NC0608 is caused by recessive mutation at a single gene locus.

15

20

25

30

10

5

(Example 3: Isolation of causative gene for narrow-leaf mutations)

In order to identify and isolate the causative gene for narrow-leaf mutations from the NC0608 strain obtained according to Example 2, linkage analysis with respect to the Tos17 gene was performed on a group part of which was separable as narrow-leaf mutations. In order to show that recessive mutation at a single gene locus is responsible for the mutations, adjoining portions of a target site (Ts) of the NC0608 strain at which Tos17 had been transpos - inserted were amplified first.

From the group of R2 rice plants(self-cross d progeny from the NCO608 strain) obtained according to Example 2, individuals exhibiting mutation were identified from normal individuals. DNA was prepared from both groups of individuals by using a CTAB method (Murray and Thompson, 1980, Nucleic Acids Res. 8, 4321-4325). The DNA obtained

5

10

15

20

25

30

from individuals exhibiting narrow-leaf mutation and the DNA obtained from normal individuals were each digested with restriction enzyme XbaI, and after agarose electrophoresis, were allowed to adsorb to hylon membranes. DNA fragments which were obtained from Tosl7 through digestion by Xbal and BamHI were labeled with 32P-dCTP. By using these as probes, a Southern hybridization was performed (Figure 2, left). As seen from the Southern analysis autoradiogram shown on the left-hand side in Figure 2, it was learned the Tos17 band (about 6600 bp) indicated by an arrow was observed in narrow-leaf mutations as a homozygous band, but not in normal individuals, and that the Tosl7 band indicated by the arrow was completely linked with the narrow-leaf mutation phenotype. From these results, it was conclud d that the DNA which is represented by the band which hybridizes to the Tosl7 probe indicated by the arrow contains a causative gene, such that Tosl7, when inserted in a genome region represented by this band, generates narrow-leaf mutations as the genotype becomes homozygous. Accordingly, a portion of the causative gene for the narrow-leaf mutations, i.e., a sequence adjoining Tosl7, was isolated through TAIL-PCR reactions using this DNA as a template. The amplification of the Tos17 target site sequence was accomplished by TAIL-PCR employing the total DNA (Liu Y-G. et al., 1995, Genomics, 25, 674-681, Liu Y-G. et al., 1995, Plant J., 8, 457-463). In summary, by using as a template the total DNA from a regenerated plant having a new Tosl7 target site, three TAIL-PCR amplification reactions were performed, using the following three sets reaction) Tosl7 Tail3, primers: (1st of GAGAGCATCATCGGTTACATCTTCTC ADI and (arbitrarily degenerated primer 1) NGTCGA (G/C) (A/T) GANA (A/T) GAA; (2nd reaction) Tos17 Tail4, ATCCACCTTGAGTTTGAAGGG and AD1;

and (3rd reaction) Tos17 Tail5, CATCGGATGTCCAGTCCATTG and AD1. Next, the respective TAIL-PCR products were subjected to an agarose electrophoresis and then a simple column purification. By directly applying them to a sequencer (Model 377 available from ABI), sequencing was performed.

Four new target sites (Ts) for Tos17 insertion were identified as a result of sequencing the adjoining sequences of Tos17 in the NC0608 strain.

10

15

20

5

a Southern analysis was performed by Next, subcloning NC0608_0_102, one of the adjoining sequences of Tos17, and using it as a probe. The results are shown on the right-hand side in Figure 2. As seen from the autoradiogram on the right-hand side in Figure 2, the Tos17-adjoining sequence NC0608_0_102 hybridized to the DNA fragment located at the same position as that indicated in the Southern analysis in which Tos17 was used as a probe. The results were consistent for all of the 62 strains that were examined. This indicates that the subclone NC0608_0_102 contains a portion of the causative gene for the narrow-leaf mutation, and that NC0608_0_102 is an adjoining sequence of the causative gene for the narrow-leaf mutation.

25

30

(Example 4: Structural analysis of the causative gene for narrow-leaf mutation)

Relying on the adjoining sequence obtained according to Example 3, the inventors attempted to determine the complete structure of cDNA which was transcribed from the gene containing the adjoining sequence NC0608_0_102 through a PCR screening using a cDNA library and Cap Site cDNA (Nippongene). By using the wild-type (Nipponbare) DNA

as a template, the inventors attempted to determine the complete structure of the genomic DNA of the gene containing NC0608_0_102 through a PCR using a primer which is design d from the cDNA and through the aforementioned TAIL-PCR.

5

10

15

The cDNA library was previously prepared in the laboratory of the inventors. The method of preparation can be summarized as follows. First, by using an ISOGEN solution (Nippongene), the total RNA was extracted from a callus of a wild-type rice plant which had been cultured in the aforementioned MS medium. By using an oligo(dT)cellulose column contained in an mRNA purification kit (Stratagen), poly(A)mRNA was obtained from the total RNA. Following usual methods, cDNA was synthesized from the resultant poly(A)mRNA. Thus, a cDNA library was constructed in a Hybri ZAP-II vector (Stratagene).

The cDNA and genomic DNA of the gene containing the adjoining sequence NC0608_0_102 were partially amplified through the below-described four-step PCR reactions and three-step PCR reactions, respectively. All of the amplified fragments were sequenced by using a 377 sequenc r (Perkin Elmer) for both directions.

25

30

20

(CDNA)

First step: Using cDNA library as a template, a PCR reaction was carried out by using a pair of primers specific to the adjoining sequence NC0608_0_102 to confirm that a portion of this adjoining sequence is contained in the cDNA library: NC0608_0_102F ACGGAGACACCTCGTAAACC and NC0608_0_102R1 AAGGCCGACTATTGTTGACC.

Second step: Using the cDNA library as a template, a PCR reaction was carried out by using NC0608_0_102F and Hybri ZAP B (Stratagene), which is a primer specific to Hybri ZAP-II vector. Thus, a fragment which partially overlaps with NC0608_0_102 and which contains the 3' region of cDNA along with the poly(A) binding site was obtained.

Third step: Using the cDNA library as a templat, a PCR reaction was carried out by using Hybri ZAP A (Stratagene), which is a primer specific to Hybri ZAP-II vector, and NC0608_0_102R2 CCTGCAATGTTACCTCTGGC, which is a primer specific to NC0608_0_102. Thus, a 5' fragment which partially overlaps with NC0608_0_102 was obtained.

Fourth step: Using Cap Site cDNA (Nipponegne) as a template, a PCR reaction was carried out by using 1RC2 (Nippongene), which is a primer specific to Cap Site, and TGACAGGTCAGACTGATCAACCGG, which is a primer specific to the fragment obtained in the third step. Thus, a fragment which partially overlaps with the fragment obtained in the third step and which contains the 5' region of cDNA along with the transcription start point (cap site).

25 (Genomic DNA)

5

10

15

20

30

First step: Using the total DNA of Nipponbare, two reactions of TAIL-PCR were carried out using the following two sets of primers to obtain a 5' fragment which partially overlaps with the NCO608_0_102: (first reaction: NCO608_0_102R2 and AD1 employed in Example 3; second reaction: NCO608_0_102R3 TAGGCAATCCGGCAATGTCC and AD1)

Second step: Using the total DNA of Nipponbare, a

PCR reaction was carried out using a primer (CTAGAAGCAAAATCTTGAAGCTGC) which is specific to the fragment obtained in the first step and a primer (AGTGTTCTTCGCACCTCGCG) which is specific to the cDNA fragment obtained in the fourth step PCR. Thus, a 5' fragment which partially overlaps with the fragment obtained in the first step was obtained.

Third step: Using the total DNA of Nipponbare, a PCR reaction BSW carried out using a (TGCCTCGCCTCGGCGATGG) which is specific to the fragment obtained in the second step and a (AATATTTCAAATCACACTAC) which is specific to the 5' region of the cDNA fragment obtained in the fourth step PCR. Thus, a 5' fragment which partially overlaps with the fragm nt obtained in the second step was obtained.

10

15

20

25

30

The cDNA and genomic DNA structures of the narrow-leaf gene are shown together in Figure 3. This gene has 11 introns and encodes 690 amino acids, and yet finds no similar genes registered in existing databases. Thus, it was confirmed that this gene is novel. It was learned that Tos17 had been inserted between the 9th and the 10th bases from the 5' end of the 12th exon region. An amino acid sequence encoded by this gene showed very high homology with a gene in Arabidopsis thaliana having an unknown function.

The above examples are illustrative, and by no means limitative, of various aspects of the present invention and the manners in which the oligonucleotide according to the present invention can be made and utilized.

Thus, according to the present invention, a n vel

polynucleotide is provided which is capable of controlling leaf shapes, the polynucleotide being of use in plant breeding. By introducing the present polynucleotide into plants and artificially controlling leaf shapes, it is expected that enhancement of photosynthesis ability or provision of resistance against lodging, etc., can be attained.

Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.

SEQUENCE LISTING

<110> National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries

Bio-Oriented Technology Research Advancement Institution Society for Techno-Innovation of Agriculture, Forestry, and Fisheries

<120> A novel gene which controls leaf shape and size

10 <130>

140> JP

<141> 2000-03-23

15 <160> 3

<170> Patent In Ver. 2.1

<210> 1

20 <211> 2468

<212> DNA

<213> Oryza sativa

<220>

25 <221> CDS

<222> (198).. (2270)

<300>

30 (400) 1

cetetectee geeteteteg catetgagge tecgategee ggegacecca geeagaatee 120

MIV & L

. .

		gccg	ccc	gt c	tege	cctc	c cc	gctc	gacg	aga	.ccgc	gcc	gagc	ggcg	aa g	aggo	ctagt	180		
		gito	ttcs	Ca (ctcg	cg a	ig a	gt a	igc g	cg g	tg a	ag g	ac c	ag c	ett c	ac c	ag	230		
•	5	•				.M	let S	er S	er A	la V	al L	ys A	sp G	ln l	.eu F	lis (Gln			
٠							1				5					10				
	•	atg	tcg	acg	aca	tgc	gat	tcg	cti	cta	ctg	gag	ctc	aat	gig	att	tgg	278		
		Me 1	Ser	Thr	Thr	Суѕ	Asp	Ser	Leu	Leu	Leu	Glu	Leu	Asn	Val	lle	Trp			
	10				15					20			•		25					
		gat	gag	gtc	ggt	gag	CCC	gac	acg	acg	agg	gac	agg	atg	cig	ctg	gag	326		
		Asp	Glu	Val	Gly	Glu	Pro	Asp	Thr	Thr	Arg	Asp	Arg	Met	Leu	Leu	Glu			
				30					35					40						
	15					•														
		ctc	gag	cag	gag	tgc	ctg	gag	gtc	tac	agg	cgg	aag	gtc	gac	cag	gcg	374		
		Leu	Glu	Gln	Glu	Cys	Leu	Glu	Val	Tyr	Arg	Arg	Lys	Val	Asp	Gln	Ala			
			45					50					55							
	20	aac	cgg	agc	cgc	gcc	cag	ctg	cgg	aag	gcc	atc	gcc	gag	ggc	gag	gca	422		
		Asn	Arg	Ser	Arg	Ala	Gln	Leu	Arg	Lys	Ala	He	Ala	Glu	Gly	Glu	Ala			
		60					65					70					75			
		gag	ctc	gcc	ggc	atc	tgc	tca	gcc	atg	ggc	gag	ccg	coc	gte	cac	gtt	470		
	25	Glu	Leu	Ala	Gly	Ile	Cys	Ser	Ala	Met	Gly	Glu	Pro	Pro	Val	His	Val			
						80					85					90)			-
		aga	cag	tca	aat	cag	888	ctt	cat	ggc	ita	aga	gag	g gag	z i i s	3 88 I	t gca	518		
		Arg	Gln	Ser	Asn	Gin	Lys	Leu	His	Gly	Leu	Arg	Glu	G)1	1 Let	1 As1	n Ala			
	30				95					100)				10	5				
		att	git	cce	g tat	ttg	gas	gas	atg	885	ı aag	aaa	888	ggt	c ga	a cg	a tgg	566		
		Ile	Yal	Pro	Tyr	Len	Gly	Gli	ı Mei	Lys	Lvs	Lvs	Lvs	. Va	1 G1	n Ar	g Trp			

.

.

			110.	•				115					120				
	aac	cag	ttt	gii	cat	gtc	ata	gag	cag	att	aag	888	att	tcg	tet	gaa	614
	Asn	Gln	Phe	Val	His	Val	Ile	Glu	Gln	Ile	Lys	Lys	lle	Ser	Ser	Glu	
5		125					130					135					
	ata	agg	CCA	gcc	gat	ttt	gtt	ccc	ııı	888	gti	ccg	gii	gai	cag	tct	662
•	11e	Arg	Pro	Ala	Asp	Phe	Va l	Pro	Phe	Lys	Val	Pro	Val	Asp	Gln	Ser	
	140					145			•		150					155	
10									•								
	gac	ctg	tca	tta	aga	aag	ctt	gat	gag	ttg	acg	aag	gac	ctg	gna	tcc	710
	Asp	Leu	Ser	Leu	Arg	Lys	Leu	Asp	Glu	Leu	Thr	Lys	Asp	Len	Xaa	Ser	
					160					165					170		
15	ctt	cag	aag	gag	aag	agç	gat	cgg	cta	aag	CEB	gtg	ata	gaa	cat	ttg	758
	Leu	Gln	Lys	Gln	Lys	Ser	Asp	Arg	Leu	Lys	Gin	Val	Ile	Glu	His	Leu	
				175					180					185			
	aat	tct	ttg	cat	tee	tta	igt	gag	gtg	ctt	ggc	ata	gat	ttc	aag	caa	806
20	Asn	Ser	Leu	His	Ser	Leu	Cys	Glu	Val	Leu	Gly	Ile	Asp	Phe	Lys	Gln	
			190			•		195					200				
	aca	gia	tat	gag	gtg	cac	cct	agc	ttg	gac	gaa	gct	gaa	gga	tça	aag	854
	Thr	Va l	Tyr	Glu	Vai	His	Pro	Ser	Lev	Asp	Glu	Ala	G1·u	Gly	Ser	Lys	
25		205					210)				215	i				
	880	ctg	ago	aac	act	aca	att	gag	age	ctt	gci	gci	gco	gca	aac	aga	902
	Asn	Leu	Ser	Asn	Thr	Thr	Ile	Glu	Arg	Ler	. Ala	Ala	A A la	Ala	A AST	Arg	
	220					225	;				230)				235	
30 .																	

ctg cgt gaa atg aag atc caa agg atg caa aag ctt caa gat ttt gct 950 Leu Arg Glu Met Lys Ile Gln Arg Met Gln Lys Leu Gln Asp Phe Ala 240 245 250

	tct	agc	atg	ctc	gag	cta	tgg	aat	ctc	atg	gat	act	cca	ctt	gaa	gag	998
	Ser	Ser	Net	Leu	Glu	Leu	Trp	Asn	Leu	Met	Asp	Thr	Pro	Leu	Glu	Glu	
•				255					260					265			
5						•											
	cag	cag	atg	ttt	cag	aat	ata	aca	igc	aat	ali	gct	gct	tca	gaa	caa	1046
	Gln	Gln	Met	Phe	Gin	Asn	He	Thr	Cys	Asn	Ile	Ala	Ala	Ser	Glu	GIn	
			270					275					280				
	•	•	•						•								
10	gag	ata	act	gaa	CCB	aac	acc	ctc	tcc	aca	gat	ttc	ctg	aat	tat	gtc	1094
	Glu	He	Thr	Glu	Pro	Asn	Thr	Leu	Ser	Thr	Asp	Phe	Leu	Asn	Tyr	Val	
		285					290					295					
	gaa	tet	gag	gig	tta	8gg	ctt	gaa	caa	ctg	aaa	gca	agt	aag	aig	888	1142
15	Glu	Ser	Glu	Val	Leu	Arg	Leu	Glu	Gln	Leu	Lys	Ala	Ser	Lys	Met	Lys	
	300					305					310					315	
	gat	ctt	gti	tta	222	aag	888	gca	gaa	cia	gaa	gag	cal	aga	aga	cgt	1190
	Asp	Len	Val	Leu	Lys	Lys	Lys	Ala	Glu	Leu	Glu	Glu	His	Arg	Arg	Arg	
20					320	•				325					330	_	
	gct	cat	ctt	gii	ggc	gag	gaa	ggt	tat	gca	gag	gag	ttt	180	att	gaa	1238
																Glu	
				335	•				340					345			
25																	
	get	att	gaa	gct	gga	gct	att	gat	ccc	ica	cta	gta	cti	gas	L CAS	att	1286
	 Ala	Ile	Glu	Ala	Gly	Ala	Ile	Asp	Pro	Ser	Let	Val	Let	Gli	Glr	lle	
			350		- •			355					360				
30	ga.a	gct	CAC	att	gca	aca	gto	aaa	gas	gaa	get	l . t t 1	age	C CE	z aas	g gat	1334
	-	_			_						-					s Asp	
•	J	365					370	_				379	•		, \		
							• • •	-				-,,	-				

• •

ç-- ±

	a f t	ctt	282	888	eli	288	aga	t gg	CAB	aai	gel	igi	gaa	gag	gaa	RCC	1382
			•				Arg										
		Lea	014			385	m 8	11.5	4,11	non	390	0,5	4.4		٠.٠	395	
	380					900					350					330	
_																	4.400
5		-	-	-			888	-	_								1430
	Trp	Lev	Glu	Asp	Туг	Asn	Lys	Asp	Asp	Asn	Arg	Туг	Asn	Ala	Gly	Arg	
	•		-		400					405					410		
•	٠.								•								
	gga	gca	cat	cta	aca	cta	aag	agg	gct	gaa	aag	gct	cgt	act	ttg	gic	1478
10	Gly	Ala	His	Leu	Thr	Leu	Lys	Arg	Ala	Glu	Lys	Ala	Arg	Thr	Leu	Val	
				415					420					425			
	aac	aar	att	cct	gga	atg	gta	gat	gtt	ttg	aga	aca	aaa	att	gct	gca	1526
		_				_	_	_	_							Ala	
15		2,0	480		,		,	435					440				•
10			700					100					• • •				
•				~~ .	4.50			~ . ~	an t		0.00		as t	- 44		agc	1574
																	1014
	11p			GIU	Arg	Gly			A\$P	rne	ını			9 613	YYA	Ser	
		445)				450					455)				
20																	
	cti	tcg	tca	alg	ctt	gai	gaa	tat	atg	110	gti	. cg	Cas	g ga	g 888	a gag	1622
•	Let	Ser	Ser	Met	Leu	Asp	Glu	Туг	Met	Phe	Ya!	ALI	g Gli	n Gl	u Ly:	s Glu	
	460)				465					470)				475	
25	caa	gag	3 888	888	aga	C88	agg	gat	cag	2 2 2	3 & & & §	g ct	C Ca	g ga	t ca	g ctc	1670
	Gli	Glt	ı Lys	Lys	Arg	Gli	Arg	Asp	Gln	Lys	Ly	s Le	a Gl	n As	p Gl	n Leu	
	•				480	١				485	S				49	0	
	ARI	a ges	2	z cas	2 288	gei	112	: 180	200	ı te	1 88	a cc	C ag	t cc	a tc	c aag	1718
30			-													r Lys	
50	<i>.</i>	- 4321	. 411	496			- 101	12	500					50		,0	
				431	,				300	•				0(, 0		
					٠	٠											
•	CC	c ct	a ag	t aca	a aas	2 881	g gc	a cc	t ag	g Ca	c tc	tai	8 88	t gg	gt go	a aac	1766

....

.

.*

.

.

										- 2	2 -						
				•						_							
•	Pro	Leu	Ser	Thr	Lys	Lys	Ala	Pro	Arg	His	Ser	Met	Gly	Gly	Ala	Asn	•
			510		-•-			515					520				
•	cga	agg	cta	tct	ctt	ggt	gga	gcc	800	atg	caa	ccc	ccg	aag	act	gat	1814
											Gln						
•		525					530					535				-	
٠	ata	ctg	cat	tca	aag	tet	gii	cgt	gc t	gcc	aag	888	act	gaa	gaa	atc	1862
	ile	Len	His	Ser	Lys	Ser	Ya]	Arg	'Al a	Ala	Lys	Lys	Thr	Glu	Glu	lle	
10	540					545					550					555	
	ggc	act	ttg	tcc	cct	agt	agt	agt	aga	ggt	ttg	gac	att	gcc	gga	ttg	1910
	Gly	Thr	Len	Ser	Pro	Ser	Ser	Ser	Arg	Gly	Leu	Asp	Ile	Ala	Gly	Leu	
			•		560					565					570		
15							•										
	cct	atc	aag	aag	ttg	tct	ttc	aat	8c c	agt	act	cta	cgt	gag	acg	gag	1958
	Pro	He	Lys	Lys	Leu	Ser	Phe	Asn	Ala	Ser	Thr	Len	Arg	Glu	Thr	Glu	
				575					580					585		•	
20											cca						2006
	Thr	Рго	-	Lys	Pro	Phe	. Ala		He	Thr	Pro	Gly			Va]	Ser	
			590					595					600				
											4						2074
25											aci						2054
25	761	805	FLO	ARI	VLR	PIO	610	1111	ASI	Vall	Thr	615		ASP	GIU	ASR	
		000					910					010					
	9.00	ort	000	997	9.00		4.00	7C 8	rta			117	201			act	2102
																Thr	2104
30	620	1117	110	LJO	1111	625	1111	A1 E	DCL	noil	630		241	110	Met	635	
30	020					020					550	•				V 0 0	
	gtt	ឧកច	ge t	CCB	g t cr	CRE	g t cr	ges	g t ø	n pri	crr	ict	cia	g gr	. 221	aag	2150
																Lys	2100
	141	3111	VIO	110	mc i	9111	ige I	n i d	ME.	1111		261	re.	. Ale	1 421		

650

645

640

git toa goa act coa git too cit git tac gac aag coa gag gia aca Val Ser Ala Thr Pro Val Ser Leu Val Tyr Asp Lys Pro Glu Val Thr 655 660 665 5 tig cag gag gac atc gac tac tec tit gas gas agg egg etc gec atc 2246 Leu Glu Glu Asp Ile Asp Tyr Ser Phe Glu Glu Arg Arg Leu Ala Ile 670 675 ' 680 10 tat cig gcc agg can aig git tan cigtigaica attiaigtac giagtigana 2300 Tyr Len Ala Arg Gln Met Val 685 690 15 teigacigea tittetigie ggiggecatt gegiatgiig gicaacaala gicggeciit 2360 ccagiagcac taticigati tacigcaati giillaatgi liiciacaac cagtaaaaca 2420 gciciataca itagctigci cactaaaaaa aaaaaaaaa aaaaaaaaa 2468 20 <210> 2 <211> 690 <212> PRT <213> Oryza sativa 25 <400> 2 Met Ser Ser Ala Val Lys Asp Gln Leu His Gln Met Ser Thr Thr Cys Asp Ser Leu Leu Clu Leu Asu Val Ile Trp Asp Glu Val Gly Glu 25 30 Pro Asp Thr Thr Arg Asp Arg Met Leu Leu Glu Leu Glu Glu Glu Cys 35 40 Leu Glu Val Tyr Arg Arg Lys Val Asp Gln Ala Asn Arg Ser Arg Ala

		50		-			55					60				
	Gln	Leu	Arg	Lys	Ala	lle	Ala	Glu	Gly	Glu	Ala	Glu	Leu	Ala	Gly	He
	65					70					75					80
•	Cys	Ser	Ala	Met	Gly	Glu	Pro	Pro	Val	His	Yal	Arg	Gln	Ser	Asn	Gln
5					85 .	•				90					95	
	Lys	Leu	His	Gly	Leu	Arg	Glu	Glu	Len	Asn	Ala	Ile	Val	Pro	Tyr	Leu
				100					105					110		
•	Gju	Glu	Met	Lys	Lys	Lys	Lys	Val	Glu	Arg	Trp	Asn	Gln	Phe	Val	His
			115					120	•				125			
10	Val	lle.	Glu	Gln	Ile	Lys		He	Ser	Ser	Glu	Ile	Arg	Pro	Ala	Asp
		130					135			•		140				
		Va]	Pro	Phe	Lys		Pro	Val	Asp	Gln		Asp	Leu	Ser	Leu	
	145	_			_	150			_	••	155				•	160
	Lys	Leu	Asp	Glu		Thr	Lys	Asp	Leu		Ser	Leu	Gln	Lys		Lys
15	C	.	A	T	165	C1-	3/- 1	71.	Cin	170	7 4 11	A a w	C	I ~ w	175	C
	Ser	ASD	Arg		Lys	GII	V 21.1	Ile	185		Leu	ASI	261	190	nis	ser
	leπ	Cve	Gla	180 Va 1	len	Glv	ī la	Asp			Gln	Th r	Va l		Gl n	V۵۱
		0,3	195	16.4	DCu	0.,	1.0	200		2,0	V.4	****	205		01 u	14.
20	His	Pro		Leu	Asp	Glu	Ala			Ser	Lvs	Asn			Asn	Thr
		210					215				-,-	220		,		
	Thr			Arg	Leu	Ala			Ala	Asn	Arg			Glu	Met	Lys
	225		•			230					235					240
	Ile	Gln	Arg	Met	Gin	Lys	Leu	Gln	Asp	Phe	Ala	Ser	Sei	Met	Leu	Glu
25					245					250	•				255	
•	Leu	Trp	Asn	Leu	Met	Asp	Thr	Pro	Lev	Glu	G1n	Glr	Gli	ı Met	Phe	Gln
				260	ı				265	5				270)	
	Asn	Ile	Thr	Суз	Ast	Ile	Ala	Ala	Ser	Glu	Glī	·G11	1 I I	thr	Glu	Pro
			275	i				280)				289	5		
30	Asn	Thr	Let	Ser	Thr	Ast	Phe	Let	ASI	Туј	Ya!	Gli	se:	r Gli	l Val	Leu
		290)				29	5				30	0			
	Arg	Let	Glt	Gli	Let	Lys	s Ala	a Sei	Lys	s Met	Ly	e A s	D Le	u Va	Let	ı Lys
	308	•				310)				31!	5				320

·· .

		Lys	Lys	Ala	Glu	Leu	Glu	Glu	His	Arg	Arg	Arg	Ala	His	Leu	Val	Gly
						325					330					335	
		G1 v	Glu	Gly	Туг	Ala	Glu	Glu	Phe	Ser	Ile	Glu	Ala	lle	Glu	Ala	Gly
					340					845					350		
	5	Ala	lle	Asp	Pro	Ser.	Leu	Ya 1	Leu	Glu	Gln	Ile	Glu	Ala	His	He	Ala
				355					360					365			
		Thr	Val	Lys	Glu	Glu	Ala	Phe	Ser	Arg	Lys	Asp	Ile	Leu	Glu	Lys	Val
	•		370					375					380				
		Glu	Arg	Trp	Gln	Asn	Ala	Cys	Glu	'Gl n	Glu	Ala	Trp	Leu	Glu	Asp	Tyr
•	. 10	385					390					396					400
		Asn	Lys	Asp	Asp	Asn	Arg	Tyr	Asn	Ala	Gly	Arg	Gly	Ala	His	Leu	Thr
						405					410					415	
		Leu	Lys	Arg	Ala	Glu	Lys	Ala	Arg	Thr	Len	Val	Asn	Lys	lle	Pro	Gly
					420					425					430		
	15.	Met	Vai	Asp	Val	Len	Arg	Thr	Lys	lle	Ala	Ala	Trp	Lys	Asn	Glu	Arg
				435					440					446			
		Gly			Asp	Phe	Thr	Tyr	Asp	Gly	Yal	Ser			Ser	Met	Leu
			450					455					460				
		Asp	Gļu	Tyr	Met	Phe			G1n	Glu	Lys			Glu	Lys	Lys	Arg
	20	465					470					475		D			480
		Gln	Arg	Asp	Gln			Leu	Gln	Asp			Lys	Ala	Glt		Glu
			_	_		485				_	490		_		_	498	
		Ala	Leu	Туг			Lys	Pro	Ser			Lys	Pro	Let			Lys
					500			.	۵,	505					510		
	25	Lys	Ala			His	zer	Met			Ala	ASI	ı Ar			ı Se	Leu
				515			C1-	n	520		ምኒ-		71	52			. Tes-
		GIŸ			IAI	wet	GIN			, Lys	101	AS			n M1	S 26.	r Lys
		e	530		. 41-	. 41-	· • • • •	585		. C1-	, C1-	, 114	541 Cla		. I.	n C^	, t
	30			ALE	4 416	. Als			1111	GIL	1 611	55		à III	ı Le	u 26	r Pro 560
	30	545		. 0	• A	. C1-	550		, T1-	. A 7 -	, Cl-			. 11	, I.	a 1••	
		261	761	361	Ari			I Wel	ונגי	5 MI	571 571		u fl	0 11	с гу	s Ly 57	s Lev
		°	DL.	. A	n A1.	565		. 1.00	n A=-	₇ (1)			"TL	- D-	. A-		o e Pro
		264	. 201	7 A C	. A12	4 SEI		1.61	u Ari	e tyll	u (il)	1 (71	ս յո		u Ar	≥ LV	× 777

.

680 585 590 Phe Ala Gin Ile Thr Pro Gly Asn Ser Val Ser Ser Thr Pro Val Arg 695 600 605 Pro lie Thr Asn Asn Thr Glu Asp Asp Glu Asn Arg Thr Pro Lys Thr 5 616 Phe Thr Ala Leu Asn Pro Lys Thr Pro Met Thr Val Thr Ala Pro Met .625 630 635 640 Gin Met Ala Met Thr Pro Ser Leu Ala Asn Lys Val Ser Ala Thr Pro 645 650 10 Val Ser Leu Val Tyr Asp Lys Pro Glu Val Thr Leu Glu Glu Asp Ile 660 665 670 Asp Tyr Ser Phe Glu Glu Arg Arg Leu Ala Ile Tyr Leu Ala Arg Glu 083 685 Met Val 15 690

<210> 3

<211> 4574

20 <212> DNA

25

30

<213> Oryza sativa

<400> 3

anananiai itcanaicae actacactet eegicgiete etetetete etetetee 60 eetetetee geeiciete eatetgage teegategee ggegaceea geengaatee 120 geegeeegi etegeetee eegetegaeg agacegege gageggegan gaggeetagt 180 giteitegea eetegegatg agtagegegg tganggaeea getteneeng atgtegaega 240 catgegatte gettetaetg gagetenatg tatgteneeg eitgeegatt enacentite 800 eeggetaete gigtiggite tggentggen gtggnaggatt taeggggitt tittettee 360 tegiteigit tenggigait tgggnagga teggnagge egacaegaeg agggnengga 420 tgetgetggn getegaega gagtgeetgg aggteineng gegnanggit gaeenggen 480 aceggageeg egecangetg eggnanggeen 180 eetgetenge entggegang eegecangeen 540 tetgetenge entgggega eegecangeeng eggnangge entggegang eegecangeen 540 tetgetenge entgggegang eegecengte acgitagaen ggttagtte tggeteenee 600

aalggeigia aaagaggiai egealggiig galcaaaaga iggaagiega aliceigigg 660 aacigigcia aliggegaig gaagaaaagg aagatitagt agagaactaa aagetaegat 720 ticigligia agaigalagi aclacigoli gcaligliga icigalggag glaaaccgig 780 tagaacicca icagcagtia acattitici aacigatiag lagtagegia icaatatatt 840 5 aagggaaagi giiggcagag cliacaitic ilicicacli claticicga clitaigcec 900 agitacigot caatoggito tatactitit acigoigito coatgoatta goaatttagg 960 atatatgiti igiaaaatii aicigitice ticagitiga atatgiicag catgaataat 1020 ataittacig tittacogge ageatgacta agttacigee teaaglaegt titattigit 1080 gaalacatic taccitctig actaatcaat totgotigac tgtagattit agcacitcol 1140 10 cagocalica igoagizaca igoatticai cigaaattii goagicaaat cagaagoito 1200 atggctiang agaggagtig aatgcaatig ticcgtatti ggaagaaatg aaaaagaaaa 1260 aggicgaacg aiggaaccag iligitcaig icalagagca gallaagaaa alticgicig 1320 anatanggee ageegatitt giteeetita aagiteeggi igateagtei gacetgieat 1380 taagaaaget tgatgagttg acgaaggace iggaateeet teagaaggag aaggteatea 1440 15 teactaatae catetitate catiticace agreating teategiste tetatetate 1500 auganteett tieattiett gintaaante teaetatgee atataenigt tigttieten 1560 cagagogaic ggctaaagca agigaiagaa caitigaatt citigcattc citaigigag 1620 gigciiggea tagatiicaa geaaacagia taigaggige accetagett ggacgaaget 1680 gaaggatcaa agaaccigag caacactaca attgagaggc tigcigcigc cgcaaacaga 1740 20 cigogigaaa igaagaicca aaggaigcaa aaggicagca tigocigiac catigiagag 1800 giatcaniga acaciticas icitiaacti ggitaaicis aticiggcas citcaagati 1860 tigetictag caigetegag ciatggaate teatggalae tecaetigaa gageageaga 1920 tgiticagaa tataacatge aatatigetg citcagaaca agagataact gaaccaaaca 1980 ccciciccae agaiticcig aaitaigtaa itiaicaica cigagatige aaaaattiat 2040 2.5 glicgiacig igitatatti icattaagat atgaatgiic atcgactata citataacig 2100 taggicgaat cigaggigti aaggciigaa caacigaaag caaglaagai gaaagaicii 2160 gittiaaaaa agaaagcaga actagaagag catagaagac gigcicaict igtiggcgag 2220 ganggitalg cagaggagti tagcatigan gctatigang cigglangat acticiccige 2280 citacigoci itiatigigo cigacaagio ataccagaca gagticatat acciggicig 2340 30 igitotgito geaggageta tigatecete actagiacit gaacaaatig aageteacat 2400 tgcaacagtg aaagaggaag ctittagccg gaaggatatt ctigagaaag ttgaaagatg 2460 gcaanatget igigaagagg aageetgget ggaagattae aacaaagtat ggatgetage 2520 tgaagetaeg iggietitgi atatitgiti ageaaataat giggiaetga taleteetgg 2580

the state of the s

cttiggetti ittiaggatg ataategita caatgetggg aggggageac atetaacact 2640 asagagget gassagete gisclingt casesagait congrasts that casig 2700 attiatgigi tiggaactic citatcaagi gcatatitaa titacaatti taactottige 2760 cattactaca atcigatate cigcigatit gigcigagea ggaatggtag atgttttgag 2820 5 aacaaaaati geigealgga aaaalgaacg aggaaaggag galileacat algaiggigt 2880 aggitticti acicliacae aliacaliga tegggiciai titigitici igetgazgig 2940 cciticitge anticitaca ggitagecti tegicanige itgatganta tatgitegti 3000 cgicaggaga aagagcaaga gaagaagaga caaagggiai laigcicicg cciaalatte 3060 algialized tazateatel titeacette tgigastace etetaziaet tgaztatace 3120 10 tgcaggatca gaagaagcic caggatcagc tcaaagcgga gcaggaagci tigtacggat 3180 caaaacccag iccaiccaag cccciaagta caaagaaggc acctaggcac ictaigggig 3240 gigcasaccg asgetatet citiggigga ccaccaigca acceegaag acigatatae 3300 igcaticaaa gicigiicgi gcigccaaga aaacigaaga aaicggcaci iigiccccta 3360 giaageceta clagetatea igigiegata tattietiti teetettati tieaettgaa 3420 15 catatgicta acteaageaa acaatateag giagtagagg titggacatt geeggattge 3480 ciatcaagaa giigicitte aaigeeagta etelaegiga gaeggagaea eelegiaaac 3540 cititgetea gateacacca ggaaacagtg tetegtegae geetgtgege cetateacca 3600 alaacactga ggalgalgag aacaggacte egaagacalt tacagcactg aateccaaga 3660 ciccgatgac igitacggci ccaaigcaga iggcaaigac icccicicig gccaacaagg 3720 20 titicageaac tecagities etigittaeg acaageeaga ggtaacatig caggaggaca 3780 legactacie ciligaagaa aggeggeteg ceatetatet ggecaggeaa atggittaae 3840 igligateaa tilaigtaeg tagligaaat etgacigeat liteligieg giggeealig 3900 cgiaigtigg tcaacaatag icggccitic cagiagcact afficigatil acigcaafig 3960 tittaatgit ticlacaacc agtaaaacag cictatacat tagctigctc actactcagt 4020 25 acagetitet eggeageacg assestitet gitetetitg atgastacti ettgetgigg 4080 atagggatag ttactgitac atatactgia igcccticag aatagaaacc igitagtacg 4140 ggaggtatta taggaaggat cgttttggaa ttttggtggt lagcctgcac agtaagticc 4200 atcagittet ggattgteec tegeaaagaa aaaagittte tigattetgg taattegitt 4260 gicceaccig acteetigaa agteticigg acatgggaag ctategtate giategeteg 4320 30 ggcgaacaig aigigigigi cactologag igagcaggco accgaaggol gacligacig 4380 actocagona connectant agreement tittenecee gggtittigt cocannacae 4440 ttitccacca ccgicaagcc tcaagcaaaa ccaaaacgct acgtaacgcc catcaacacc 4500 atgaaatega geagetagit gigeetgeta etggeecece agtgeeetgi acegeeegit 4560 cttctcactc gaca

4574