Discriminant Analysis Fisherfaces

Tae-Kyun Kim
Senior Lecturer
https://labicvl.github.io/

Some references

ICML 2018

Max-Mahalanobis Linear Discriminant Analysis Networks, Tianyu Pang · Chao Du · Jun Zhu

Discovering Interpretable Representations for Both Deep Generative and Discriminative Models, Tameem Adel · Zoubin Ghahramani · Adrian Weller

Mixed batches and symmetric discriminators for GAN training, Thomas LUCAS · Corentin Tallec · Yann Ollivier · Jakob Verbeek Batch Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated Analog Circuit Design, Wenlong Lyu · Fan Yang · Changhao Yan · Dian Zhou · Xuan Zeng

High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach, Tim Pearce · Alexandra Brintrup · Mohamed Zaki · Andy Neely

Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression, Haitao Liu · Jianfei Cai · Yi Wang · Yew Soon ONG

NIPS 2018

Discrimination-aware Channel Pruning for Deep Neural Networks, Zhuangwei Zhuang · Mingkui Tan · Bohan Zhuang · Jing Liu · Yong Guo · Qingyao Wu · Junzhou Huang · Jinhui Zhu

Hunting for Discriminatory Proxies in Linear Regression Models, Samuel Yeom · Anupam Datta · Matt Fredrikson

Virtual Class Enhanced Discriminative Embedding Learning, Binghui Chen · Weihong Deng · Haifeng Shen

Power-law efficient neural codes provide general link between perceptual bias and discriminability, Michael Morais · Jonathan W Pillow

Unsupervised Text Style Transfer using Language Models as Discriminators, Zichao Yang · Zhiting Hu · Chris Dyer · Eric Xing · Taylor Berg-Kirkpatrick

Why Is My Classifier Discriminatory?, Irene Chen · Fredrik Johansson · David Sontag

Learning from discriminative feature feedback, Sanjoy Dasgupta · Sivan Sabato · Nicholas Roberts · Akansha Dey

On preserving non-discrimination when combining expert advice, Avrim Blum · Suriya Gunasekar · Thodoris Lykouris · Nati Srebro

Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion

Jacob Buckman · Danijar Hafner · George Tucker · Eugene Brevdo · Honglak Lee

Diverse Ensemble Evolution: Curriculum based Data-Model Marriage

Tianyi Zhou · Shengjie Wang · Jeff Bilmes

Knowledge Distillation by On-the-Fly Native Ensemble

xu lan · Xiatian Zhu · Shaogang Gong

Using Large Ensembles of Control Variates for Variational Inference

Tomas Geffner · Justin Domke

Motivation

Projection that best separates the data in a least-squares sense:

- PCA finds components that are useful for representing data.
- Pooling (or projecting) data may discard essential information for discriminating between data in different classes.
- PCA finds the direction for maximum data variance (unsupervised/generative).
- LDA (Linear Discriminant Analysis)
 or MDA (Multiple Discriminant
 Analysis) finds the direction that
 optimally separates data of different
 classes (supervised/discriminative).

Fisher Linear Discriminant (FLD)

- We first consider 2-class problem i.e. binary-classification.
- Data are projected from D dimensions onto a line, i.e. one-dimensional subspace.
- Given a set of N *D*-dimensional samples $\mathbf{x}_1, ..., \mathbf{x}_N$, where N_1 samples belong to the class \mathbf{c}_1 and N_2 to the class \mathbf{c}_2 .
- We wish to form a linear combination of the components of \mathbf{x} as $y = \mathbf{w}^T \mathbf{x}$ and a corresponding set of N samples y_1, \dots, y_N .

FLD: two-dimensional example

 Projection of same set of two-class samples onto two different lines in the direction marked w.

Finding best direction w

– Class mean in D-dimensional space:

$$\mathbf{m}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in c_i} \mathbf{x}$$

Class mean of projected points:

$$\widetilde{\mathbf{m}}_i = \frac{1}{N_i} \sum_{y \in c_i} y = \frac{1}{N_i} \sum_{\mathbf{x} \in c_i} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{m}_i$$

- Distance between projected class means is

$$|\widetilde{\mathbf{m}}_1 - \widetilde{\mathbf{m}}_2| = |\mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2)|$$

Criterion for Fisher Linear Discriminant

Define the scatter of the projected samples as

$$\tilde{s}_i^2 = \sum_{\mathbf{v} \in c_i} (\mathbf{y} - \widetilde{\mathbf{m}}_i)^2$$

- Thus $(1/N)(\tilde{s}_1^2 + \tilde{s}_2^2)$ is the variance of the pooled (or projected) data.
- Total within-class scatter is $\tilde{s}_1^2 + \tilde{s}_2^2$.
- Find that linear function $\mathbf{w}^T \mathbf{x}$ for which

$$J(\mathbf{w}) = \frac{|\widetilde{\mathbf{m}}_1 - \widetilde{\mathbf{m}}_2|^2}{\widetilde{s}_1^2 + \widetilde{s}_2^2}$$

is maximum and independent of //w//.

Scatter matrices

– To obtain $J(\cdot)$ as an explicit function of \mathbf{w} , we define scatter matrices \mathbf{S}_i and \mathbf{S}_W

$$\mathbf{S}_i = \sum_{\mathbf{x} \in c_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$$

And Within-class scatter matrix $S_W = S_1 + S_2$.

We can then write

$$\tilde{s}_i^2 = \sum_{\mathbf{x} \in c_i} (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{m}_i)^2$$

$$= \sum_{\mathbf{x} \in c_i} \mathbf{w}^T (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T \mathbf{w}$$

$$= \mathbf{w}^T \mathbf{S}_i \mathbf{w}$$
Therefore, $\tilde{s}_1^2 + \tilde{s}_2^2 = \mathbf{w}^T (\mathbf{S}_1 + \mathbf{S}_2) \mathbf{w} = \mathbf{w}^T \mathbf{S}_W \mathbf{w}$

- The within-class scatter matrix $S_W \in \mathbb{R}^{D \times D}$ is symmetric and positive semidefinite, and is nonsingular if N>D.

Scatter matrices

Similarly, the separation of the projected class means is

$$|\widetilde{\mathbf{m}}_{1} - \widetilde{\mathbf{m}}_{2}|^{2} = (\mathbf{w}^{T} \mathbf{m}_{1} - \mathbf{w}^{T} \mathbf{m}_{2})^{2}$$

$$= \mathbf{w}^{T} (\mathbf{m}_{1} - \mathbf{m}_{2}) (\mathbf{m}_{1} - \mathbf{m}_{2})^{T} \mathbf{w}$$

$$= \mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}$$

Where Between-class scatter matrix $S_B = (\mathbf{m_1} - \mathbf{m_2})(\mathbf{m_1} - \mathbf{m_2})^T$.

- The between-class scatter matrix S_B is also symmetric and positive semidefinite.
- Its rank is at most one, since it is the outer product of two vectors.

London Criterion function in terms of scatter matrices and optimisation

The criterion function is written as

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

- This is well known the generalised Rayleigh quotient.
- Maximizing the ratio is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

$$\max_{\mathbf{w}} \mathbf{w}^T \mathbf{S}_B \mathbf{w} \quad \text{subject to} \quad \mathbf{w}^T \mathbf{S}_W \mathbf{w} = \mathbf{k}$$

- This can be accomplished using Lagrange multipliers as

$$L = \mathbf{w}^T \mathbf{S}_B \mathbf{w} + \lambda (\mathbf{k} - \mathbf{w}^T \mathbf{S}_W \mathbf{w})$$

maximize L with respect to both \mathbf{w} and λ .

Optimisation for Fisher Discriminant

Setting the gradient of

$$L = \mathbf{w}^T (\mathbf{S}_B - \lambda \mathbf{S}_W) \mathbf{w} + \lambda \mathbf{k}$$

with respect to w to zero, we get

$$2(\mathbf{S}_B - \lambda \mathbf{S}_W)\mathbf{w} = 0$$

then

$$\mathbf{S}_B \mathbf{w} = \lambda \mathbf{S}_W \mathbf{w}$$

- This is a generalized eigenvalue problem.
- The solution is easy, when S_W is *nonsingular*.

$$\mathbf{S}_{W}^{-1}\mathbf{S}_{B}\mathbf{w}=\lambda\mathbf{w}$$

where **w** and λ are the eigenvector and eigenvalue of $\mathbf{S}_W^{-1}\mathbf{S}_B$.

Multiple Discriminant Analysis

- Generalization of Fisher's Linear Discriminant, for multiple c classes, involves M discriminant functions $\mathbf{w_i}$, i=1,...,M.
- Projection is from a D-dimensional space to a M-dimensional subspace.
- The Within-class and Between-class scatter matrices are defined as

$$\mathbf{S}_W = \sum_{i=1}^c \mathbf{S}_i$$

where $\mathbf{S}_i = \sum_{\mathbf{x} \in c_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$,

$$\mathbf{S}_B = \sum_{i=1}^{c} (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^T$$
.

The desired projections are found as generalised eigenvectors:

$$\mathbf{S}_{B}\mathbf{w}_{i}=\lambda_{i}\mathbf{S}_{W}\mathbf{w}_{i}, \quad i=1,...,M$$

for eigenvalues λ_i .

- If S_W has full rank, the solutions are generalized eigenvectors of $S_W^{-1}S_B$ with largest M eigenvalues.

Fisherfaces

VS

Fisherfaces

P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, TPAMI, 1997.

Lond Recognition using class specific linear projection

- Let us consider N sample images $\{\mathbf{x}_n\}$, n = 1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$ in an D-dimensional image space, and assume that each image belongs to one of c classes $\{c_i\}$, i = 1,...,c.
- We consider a linear transformation mapping the D-dimensional image space into an M-dimensional feature space, where M < D.
- The feature vectors $\mathbf{y}_n \in \mathbb{R}^M$ are defined by the following linear transformation:

$$\mathbf{y}_{\mathsf{n}} = \mathbf{W}^T \mathbf{x}_{\mathsf{n}}$$

where $\mathbf{W} \in \mathbb{R}^{DxM}$ is a matrix with orthonormal columns.

Eigenfaces

- The total scatter matrix S_T (or the covariance matrix) is defined as

$$\mathbf{S}_T = \sum_{n} (\mathbf{x}_n - \mathbf{m}) (\mathbf{x}_n - \mathbf{m})^T$$

where $\mathbf{m} \in \mathsf{R}^D$ is the mean of all samples.

Lond Recognition using class specific linear projection

- After applying the linear transformation \mathbf{W}^T , the scatter matrix of the feature vectors $\mathbf{y}_n \in \mathbb{R}^M$, $\mathbf{n} = 1,...,N$, is $\mathbf{W}^T \mathbf{S}_T \mathbf{W}$
- In PCA, the projection W_{opt} is chosen to maximize the determinant of the total scatter matrix of the projected samples, i.e.,

$$\mathbf{W}_{\text{opt}} = \arg \max_{\mathbf{W}} |\mathbf{W}^T \mathbf{S}_T \mathbf{W}| = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{\text{M}}]$$

where \mathbf{w}_i , i = 1,...,M is the set of D-dimensional eigenvectors of \mathbf{S}_T corresponding to the M largest eigenvalues.

- A drawback of this approach is that both the between-class and within-class scatter are maximized, since $\mathbf{S}_T = \mathbf{S}_B + \mathbf{S}_W$.

Lond Recognition using class specific linear projection

Fisherfaces

- Since the learning set is class-labelled, we use this information to build a more discriminative method for reducing the feature space dimensionality.
- Using class specific linear methods for dimensionality reduction and NN classifiers in the reduced feature space, we may get better recognition rates than with the Eigenface method.
- FLD is a class specific method that selects W in such a way that the ratio of the between-class scatter and the within-class scatter is maximized.
- Let the between-class scatter matrix be defined as

$$\mathbf{S}_B = \sum_{i=1}^c (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^T$$
,

the within-class scatter matrix be defined as

$$\mathbf{S}_W = \sum_{i=1}^c \sum_{\mathbf{x} \in C_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$$

where \mathbf{m}_i is the mean image of class c_i , and N_i is the number of samples in class c_i .

Fisherfaces

- If S_W is nonsingular, the optimal projection W_{opt} is chosen as the matrix with orthonormal columns which maximizes the ratio of the determinant of the between-class scatter matrix to the determinant of the within-class scatter matrix of the projected samples, i.e.,

$$\mathbf{W}_{\text{opt}} = \arg \max_{\mathbf{W}} \frac{|\mathbf{W}^T \mathbf{S}_B \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_W \mathbf{W}|} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_M]$$

where \mathbf{w}_i is the set of generalized eigenvectors of \mathbf{S}_B and \mathbf{S}_W corresponding to the M largest eigenvalues:

$$\mathbf{S}_{B}\mathbf{w}_{i}=\lambda_{i}\mathbf{S}_{W}\mathbf{w}_{i}, \quad i=1,...,M$$

Procedures: Fisherfaces

- Collect training images \mathbf{x}_n of c classes (c=26, N=208, D=2576)
- Compute the class means \mathbf{m}_i , i = 1,...,c, and the global mean \mathbf{m}_i

Procedures: Fisherfaces

- Compute $\mathbf{m}_i - \mathbf{m}$, and \mathbf{S}_B , where rank(\mathbf{S}_B) = c -1.

Procedures: Fisherfaces

- Compute $\mathbf{x} - \mathbf{m}_i$, and \mathbf{S}_W , where rank(\mathbf{S}_W) is N – c.

Fisherfaces

- Given the generalized eigenvalue/vector problem of S_B and S_W :

$$\mathbf{S}_{B}\mathbf{w}_{i} = \lambda_{i}\mathbf{S}_{W}\mathbf{w}_{i}, \quad i = 1, ..., M$$

- Note that there are at most c 1 nonzero generalized eigenvalues i.e. the rank of S_B , and so an upper bound on M is c 1.
- The within-class scatter matrix $S_W \in \mathbb{R}^{D \times D}$ is often singular, since the rank of S_W is at most N c, and, in general, N is smaller than D.

Fisherfaces

- In order to overcome the singular S_W , we propose an alternative to the criterion.
- This method, which we call Fisherfaces, avoids the problem by projecting the image set to a lower dimensional space.
- We use PCA to reduce the dimension of the feature space M_{pca} (<=N-c), and then apply the standard FLD to reduce the dimension to M_{Ida} (<=c-1).
- Formally, Wopt is given by

$$\mathbf{W}_{\mathrm{opt}}^{T} = \mathbf{W}_{\mathrm{lda}}^{T} \mathbf{W}_{\mathrm{pca}}^{T}$$

$$\mathbf{W}_{\text{pca}} = \arg\max_{\mathbf{W}} |\mathbf{W}^T \mathbf{S}_T \mathbf{W}|$$

$$\mathbf{W}_{\text{lda}} = \arg \max_{\mathbf{W}} \frac{\left| \mathbf{W}^T \mathbf{W}_{\text{pca}}^T \mathbf{S}_B \mathbf{W}_{\text{pca}} \mathbf{W} \right|}{\left| \mathbf{W}^T \mathbf{W}_{\text{pca}}^T \mathbf{S}_W \mathbf{W}_{\text{pca}} \mathbf{W} \right|}$$

 There are other ways of reducing the withinclass scatter while preserving between-class scatter e.g. Direct LDA, Null LDA, etc.

Procedures: Fisherfaces

- rank(Sw) = 182 (=N c), rank(Sb) = 25 (=c 1)
- Perform PCA to get W_{pca} (Mpca=25), and compute $W_{pca}^T S_B W_{pca}$ and $W_{pca}^T S_W W_{pca}$.
- Get the generalized eigenvectors of $(\mathbf{W}_{pca}^T \mathbf{S}_W \mathbf{W}_{pca})^{-1} (\mathbf{W}_{pca}^T \mathbf{S}_B \mathbf{W}_{pca})$ with largest Mida eigenvalues.

Top 25 generalized eigenvectors

Comparison to Eigenfaces

Top 25 eigenvectors

Eigenvalues

Procedures: Fisherfaces

- rank(Sw) = 182 (=N-c), rank(Sb) = 25 (=c-1)
- Perform PCA to get \mathbf{W}_{pca} (Mpca=150), and compute $\mathbf{W}_{pca}^T \mathbf{S}_B \mathbf{W}_{pca}$ and $\mathbf{W}_{pca}^T \mathbf{S}_W \mathbf{W}_{pca}$.
- Get the generalized eigenvectors of $(\mathbf{W}_{pca}^T \mathbf{S}_W \mathbf{W}_{pca})^{-1} (\mathbf{W}_{pca}^T \mathbf{S}_B \mathbf{W}_{pca})$ with largest Mida eigenvalues.

Generalized eigenvalues

Top 25 generalized eigenvectors

Procedures: Fisherfaces

Face images in 3-dimensional fisher-subspace

24 training images of 3 different face classes (star, diamond, circle, "in blue") are projected. A query image projection is "in red".

Comparison to Eigenfaces

Face images in 3-dimensional eigen-subspace

24 training images of 3 different face classes (star, diamond, circle, "in blue") are projected. A query image projection is "in red".

London Relation to optimal bayesian decision theory

Bayes Decision Theory

- Fundamental statistical approach to pattern classification
- Quantifies trade-offs between classification using probabilities and costs of decisions
- Assumes all relevant probabilities are known
- Σ_i (data covariance matrix of class i) = arbitrary
 - Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics

London Relation to optimal bayesian decision theory

$$-\Sigma_i = \Sigma$$

• For a classification problem with Gaussian classes of equal covariance $\Sigma_i = \Sigma$, the Bayes decision boundaries (or the discriminant function) is the plane of normal

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$

• The hyperplane is generally not orthogonal to the line between the means.

London Relation to optimal bayesian decision theory

- If $\Sigma_1 = \Sigma_2$, this is also the FLD solution.
- In FLD, $S_W = S_1 + S_2$, $w = S_W^{-1}(m_1 m_2)$
- This gives some interpretations of FLD/LDA
 - It is optimal if and only if the classes are Gaussian and have equal covariance.
 - The extension from two-classes to multiple classes in LDA is ad-hoc.

T-K Kim, PhD dissertation: Discriminant Analysis of Patterns in Images, Image Ensembles, and Videos, Univ. of Cambridge, 2008.