0.1 其他

练习 0.1 设 $A = (a_{ij})$ 为 n 阶方阵, 定义函数 $f(A) = \sum_{i,j=1}^{n} a_{ij}^{2}$. 设 P 为 n 阶可逆矩阵, 使得对任意的 n 阶方阵 A 成立: $f(PAP^{-1}) = f(A)$. 证明: 存在非零常数 c, 使得 $P'P = cI_n$. 证明 证法一: 由假设知 $f(A) = \operatorname{tr}(AA')$, 因此

$$f(PAP^{-1}) = \operatorname{tr}(PAP^{-1}(P')^{-1}A'P') = \operatorname{tr}((P'P)A(P'P)^{-1}A') = \operatorname{tr}(AA').$$

以下设 $P'P = (c_{ij}), (P'P)^{-1} = (d_{ij})$. 注意 P'P 是对称矩阵, 后面要用到. 令 $A = E_{ij}$, 其中 $1 \leq i, j \leq n$. 并将其代入 $(P'P)A(P'P)^{-1}A'$ 可得

$$(P'P)A(P'P)^{-1}A' = (P'P)E_{ij}(P'P)^{-1}E_{ji}$$

$$= \begin{pmatrix} c_{1i} \\ c_{2i} \\ \vdots \\ c_{ii} \\ \vdots \\ c_{ni} \end{pmatrix} \begin{pmatrix} d_{1j} \\ d_{2j} \\ \vdots \\ d_{jj} \\ \vdots \\ d_{nj} \end{pmatrix} = \begin{pmatrix} c_{1i}d_{jj} \\ c_{2i}d_{jj} \\ \vdots \\ c_{ii}d_{jj} \\ \vdots \\ c_{ni}d_{jj} \end{pmatrix}$$

于是 $\operatorname{tr}\left(\left(P'P\right)A\left(P'P\right)^{-1}A'\right)=c_{ii}d_{jj}$. 而 $\operatorname{tr}\left(AA'\right)=\operatorname{tr}\left(E_{ij}E_{ji}\right)=\operatorname{tr}\left(E_{ii}\right)=1$. 则由 $\operatorname{tr}\left(P'P\right)A(P'P)^{-1}A'\right)=\operatorname{tr}(AA')$ 可知

$$c_{ii}d_{jj} = 1. (1)$$

再令 $A = E_{ij} + E_{kl}$, 其中 $1 \le i, j, k, l \le n$. 不妨设 $k \ge i, l \ge j$, 将其代入 $(P'P)A(P'P)^{-1}A'$ 可得 $(P'P)A(P'P)^{-1}A' = (P'P)(E_{ij} + E_{kl})(P'P)^{-1}(E_{ji} + E_{lk})$

$$= \begin{pmatrix} c_{1i} & \cdots & c_{1k} \\ c_{2i} & \cdots & c_{2k} \\ \vdots & & \vdots \\ c_{ii} & \cdots & c_{ik} \\ \vdots & & \vdots \\ c_{ki} & \cdots & c_{kk} \\ \vdots & & \vdots \\ c_{ni} & \cdots & c_{nk} \end{pmatrix} \begin{pmatrix} i & k & i & k \\ d_{1j} & \cdots & d_{1l} \\ d_{2j} & \cdots & d_{2l} \\ \vdots & & \vdots \\ d_{jj} & \cdots & d_{jl} \\ \vdots & & \vdots \\ d_{lj} & \cdots & d_{ll} \\ \vdots & & \vdots \\ d_{nj} & \cdots & d_{nl} \end{pmatrix} = \begin{pmatrix} c_{1i}d_{jj} + c_{1k}d_{lj} & \cdots & c_{1i}d_{jl} + c_{1k}d_{ll} \\ c_{2i}d_{jj} + c_{2k}d_{lj} & \cdots & c_{2i}d_{jl} + c_{2k}d_{ll} \\ \vdots & & \vdots \\ c_{ki}d_{jj} + c_{ik}d_{lj} & \cdots & c_{ii}d_{jl} + c_{ik}d_{ll} \\ \vdots & & \vdots \\ c_{ni}d_{jj} + c_{nk}d_{lj} & \cdots & c_{ni}d_{jl} + c_{nk}d_{ll} \end{pmatrix}$$

从而 $\operatorname{tr}((P'P)A(P'P)^{-1}A') = c_{ii}d_{jj} + c_{kk}d_{ll} + c_{ki}d_{jl} + c_{ik}d_{lj}$. 而

$$\operatorname{tr}\left(AA'\right) = \operatorname{tr}\left(\left(E_{ij} + E_{kl}\right)\left(E_{ji} + E_{lk}\right)\right) = \operatorname{tr}\left(E_{ij}E_{ji} + E_{ij}E_{lk} + E_{kl}E_{ji} + E_{kl}E_{lk}\right) = 2 + 2\delta_{ik}\delta_{jl}.$$

于是由 $tr((P'P)A(P'P)^{-1}A') = tr(AA')$ 可知

$$c_{ii}d_{jj} + c_{kk}d_{ll} + c_{ki}d_{jl} + c_{ik}d_{lj} = 2 + 2\delta_{ik}\delta_{jl}, \tag{2}$$

其中 δ_{ik} 是 Kronecker 符号. 由上述(1)(2)两式可得

$$c_{ki}d_{jl}+c_{ik}d_{lj}=2\delta_{ik}\delta_{jl}.$$

在上式中令 $j=l,i\neq k$, 注意到 $d_{jj}\neq 0$, 故有 $c_{ik}+c_{ki}=0$, 又因为 P'P 是对称矩阵, 所以 $c_{ik}=c_{ki}$. 故 $c_{ik}=0,\forall i\neq k$. 于是 P'P 是一个对角矩阵, 从而由(1)式可得 $d_{jj}=c_{ji}^{-1}$, 由此可得 $c_{ii}=c_{jj},\forall i,j$. 因此 $P'P=cI_n$, 其中 $c=c_{11}\neq 0$.

证法二: 我们把数域限定在实数域上, 并取 $V = M_n(\mathbb{R})$ 上的 Frobenius 内积, 则 $f(A) = \sum_{i,j=1} a_{ij}^2 = \|A\|^2$. 设 $\varphi(A) = PAP^{-1}$ 为 V 上的线性变换, 则题目条件可改写为 $\|\varphi(A)\| = \|A\|$ 对任意的 $A \in V$ 成立, 于是由定理??-2 可知 φ 是正交算子, 从而由命题??(2) 即得结论.

0.1.1 矩阵方幂的计算

计算方阵的方幂一般有三种方法:

- (1) 基于相似变换的计算法, 更常见的情形是利用相似标准形 (比如 Jordan 标准形) 来进行计算.
- (2) 利用递推公式法或者说数学归纳法.
- (3) 基于方阵分解. 然后利用二项式定理来进行计算.

例题 0.1 设 A, B 均是 n 阶方阵且满足 $A^2 = A$, $B^2 = B$, $(A + B)^2 = A + B$, 求 AB.

 \mathbf{H} 由 $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A} + \mathbf{B}$ 得到

$$A^2 + AB + BA + B^2 = A + B.$$

又 $A^2 = A$. $B^2 = B$. 所以

$$AB = -BA$$
,

从而

$$A \cdot AB = -A \cdot BA$$

$$AB \cdot A = -BA \cdot A$$

即

$$AB = -ABA;$$

$$-BA = ABA$$
,

因此

$$AB = BA$$
.

由此得到 2AB = 0, 故有 AB = 0.

例题 0.2 设

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

 $B = Q^{-1}AQ$, 其中 Q 为任意 3 阶可逆矩阵 (或者说 B 与 A 相似). 求 $B^{2024} - 2A^2$. 解 计算得到

$$A^{2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -E_{2} & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix},$$

所以 $A^4 = E$. 故 $B^{2024} = Q^{-1}A^{2024}Q = E$. 所以

$$\mathbf{B}^{2024} - 2\mathbf{A}^2 = \mathbf{E} - 2 \begin{pmatrix} -\mathbf{E}_2 & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

例题 0.3 设

k 为正整数, 求 A^k .

解 注意到 $A^2 = 4E = 2^2 E$, 所以

$$A^3 = A^2 \cdot A = 4A = 2^2 A$$
, $A^4 = 2^4 E$.

故由归纳法可知

$$A^k = \begin{cases} 2^{k-1}A, & k \text{ β-$} \text{$\delta$}, \\ 2^k E, & k \text{ β-} \text{β}. \end{cases}.$$

例题 0.4 设

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

求 A^{100} .

解设

$$A_1 = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & 3 & 2 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

则 A 可写为如下分块形式:

$$A = \begin{pmatrix} A_1 & \\ & A_2 \end{pmatrix},$$

于是

$$\boldsymbol{A}^{100} = \begin{pmatrix} \boldsymbol{A}_1^{100} & \\ & \boldsymbol{A}_2^{100} \end{pmatrix}.$$

将 A_1, A_2 分解为

$$A_1 = 2E + 3S$$
, $\sharp \$ $= \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$;

$$A_2 = E + 2H$$
, $\sharp \psi$ $H = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

注意到S与E,H与E均可交换且

$$S^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad S^{i} = \mathbf{O} \ (i \geqslant 3), \quad \mathbf{H}^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{H}^{i} = \mathbf{O} \ (i \geqslant 3).$$

由二项式定理

$$A_1^{100} = (2E + 3S)^{100} = \sum_{i=0}^{100} {100 \choose i} (2E)^{100-i} (3S)^i$$

$$= {100 \choose 0} (2E)^{100} + {100 \choose 1} (2E)^{99} \cdot 3S + {100 \choose 2} (2E)^{98} (3S)^2$$

$$= 2^{100}E + 300S \cdot 2^{99}E + \frac{100 \times 99}{2} \cdot 9S^2 \cdot 2^{98}E$$

$$= 2^{100}E + 300 \cdot 2^{99} \cdot S + 50 \cdot 99 \cdot 9 \cdot 2^{98} \cdot S^2$$

$$\begin{pmatrix} 2^{100} & 0 & 0 \\ 3 & 101 & 100 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{100} & 0 & 0 \\ 3 \cdot 5^2 \cdot 2^{101} & 2^{100} & 0 \\ 11 \cdot 5^2 \cdot 3^4 \cdot 2^{99} & 3 \cdot 5^2 \cdot 2^{101} & 2^{100} \end{pmatrix},$$

$$A_2^{100} = (\mathbf{E} + 2\mathbf{H})^{100} = \mathbf{E}^{100} + 100 \cdot \mathbf{E}^{99} \cdot (2\mathbf{H}) + \frac{100 \times 99}{2} \cdot \mathbf{E}^{98} \cdot (2\mathbf{H})^2$$

$$= E + 200H + 19800H^2$$

$$= \begin{pmatrix} 1 & 200 & 19800 \\ 0 & 1 & 200 \\ 0 & 0 & 1 \end{pmatrix}.$$

因此

$$A^{100} = \begin{pmatrix} 2^{100} & 0 & 0 & 0 & 0 & 0 \\ 3 \cdot 5^2 \cdot 2^{101} & 2^{100} & 0 & 0 & 0 & 0 \\ 11 \cdot 5^2 \cdot 3^4 \cdot 2^{99} & 3 \cdot 5^2 \cdot 2^{101} & 2^{100} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 200 & 19800 \\ 0 & 0 & 0 & 0 & 1 & 200 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

0.1.2 矩阵可逆的判定及计算

求逆矩阵的方法通常有下面三种.

(1) 公式法, 利用公式 $\mathbf{A} \cdot \mathbf{A}^* = |\mathbf{A}|\mathbf{E}$, 即 $\mathbf{A} \cdot \frac{1}{|\mathbf{A}|}\mathbf{A}^* = \mathbf{E}$, 所以

$$A^{-1} = \frac{1}{|A|}A^*.$$

(2) 初等行变换法, 即

$$(A|E) \longrightarrow (E|P),$$

则 $\boldsymbol{A}^{-1} = \boldsymbol{P}$.

(3) 定义法, 由 AX = E 求出 X.

若矩阵 A 没有具体给出, 是抽象的, 则首先想到的是用定义来求 A^{-1} .

命题 0.1

设A为n阶矩阵.则有

A 可逆 $\Leftrightarrow \exists B$ 使得BA = E

⇔ $\exists C$ 使得AC = E

 $\Leftrightarrow \operatorname{rank}(\mathbf{A}) = n$

 $\Leftrightarrow A \sim E$

⇔ A 的最简行阶梯形为E

 $\Leftrightarrow |\mathbf{A}| \neq 0$

⇔ 齐次线性方程组Ax = 0 只有零解

⇔ 线性方程组Ax = b 有唯一解

⇔ A 的特征值均不为0

⇔ A 的伴随矩阵 A^* 可逆

⇔ A 是一些初等矩阵之积.

例题 0.5 设 A_1 为 m 阶可逆矩阵, A_4 为 n 阶可逆矩阵, A_2 为 $m \times n$ 矩阵, A_3 为 $n \times m$ 矩阵. 设

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{pmatrix}.$$

判断何时矩阵 A 可逆. 并在 A 可逆时求 A^{-1} .

解 解法一: 若 A 可逆,则存在矩阵 X 使得 $AX = E_{m+n}$. 令

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 & \boldsymbol{X}_2 \\ \boldsymbol{X}_3 & \boldsymbol{X}_4 \end{pmatrix},$$

则有

$$AX = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} = \begin{pmatrix} A_1X_1 + A_2X_3 & A_1X_2 + A_2X_4 \\ A_3X_1 + A_4X_3 & A_3X_2 + A_4X_4 \end{pmatrix} = \begin{pmatrix} E_m & O \\ O & E_n \end{pmatrix},$$

即

$$\begin{cases} A_1X_1 + A_2X_3 = E_m, \\ A_1X_2 + A_2X_4 = O, \\ A_3X_1 + A_4X_3 = O, \\ A_3X_2 + A_4X_4 = E_n, \end{cases}$$

由于 A_4 可逆, 所以 $X_3 = -A_4^{-1}A_3X_1$. 进而

$$A_1X_1 + A_2(-A_4^{-1}A_3)X_1 = E_m,$$

即

$$(A_1 - A_2 A_4^{-1} A_3) X_1 = E_m.$$

所以 $A_1 - A_2 A_4^{-1} A_3$ 可逆,且 $X_1 = (A_1 - A_2 A_4^{-1} A_3)^{-1}$.由此得到

$$X_3 = -A_4^{-1}A_3(A_1 - A_2A_4^{-1}A_3)^{-1}.$$

同理, 由 A_1 可逆得到 $X_2 = -A_1^{-1}A_2X_4$, 从而

$$(A_4 - A_3 A_1^{-1} A_2) X_4 = E_n.$$

故 $A_4 - A_3 A_1^{-1} A_2$ 可逆且 $X_4 = (A_4 - A_3 A_1^{-1} A_2)^{-1}$. 由此可得

$$X_2 = -A_1^{-1}A_2(A_4 - A_3A_1^{-1}A_2)^{-1}.$$

这样, 若A可逆, 则 $A_1 - A_2 A_4^{-1} A_3$ 和 $A_4 - A_3 A_1^{-1} A_2$ 均可逆.

反之, 若
$$A_1 - A_2 A_4^{-1} A_3$$
 和 $A_4 - A_3 A_1^{-1} A_2$ 均可逆, 令

$$X = \begin{pmatrix} (A_1 - A_2 A_4^{-1} A_3)^{-1} & -A_1^{-1} A_2 (A_4 - A_3 A_1^{-1} A_2)^{-1} \\ -A_4^{-1} A_3 (A_1 - A_2 A_4^{-1} A_3)^{-1} & (A_4 - A_3 A_1^{-1} A_2)^{-1} \end{pmatrix},$$

则有 $AX = E_{m+n}$. 这便得到 A 可逆当且仅当 $A_1 - A_2A_4^{-1}A_3$ 和 $A_4 - A_3A_1^{-1}A_2$ 均可逆且

$$A^{-1} = X = \begin{pmatrix} (A_1 - A_2 A_4^{-1} A_3)^{-1} & -A_1^{-1} A_2 (A_4 - A_3 A_1^{-1} A_2)^{-1} \\ -A_4^{-1} A_3 (A_1 - A_2 A_4^{-1} A_3)^{-1} & (A_4 - A_3 A_1^{-1} A_2)^{-1} \end{pmatrix}.$$

解法二:由打洞原理可知

$$|A| = |A_1| |A_4 - A_3 A_1^{-1} A_2| = |A_4| |A_1 - A_2 A_4^{-1} A_3|.$$

故当且仅当 $A_1 - A_2 A_4^{-1} A_3$ 和 $A_4 - A_3 A_1^{-1} A_2$ 均可逆时A可逆.注意到

$$\begin{pmatrix} E & O \\ -A_3A_1^{-1} & E \end{pmatrix} \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} E & -A_1^{-1}A_2 \\ O & E \end{pmatrix} \begin{pmatrix} A_1^{-1} & O \\ O & (A_4 - A_3A_1^{-1}A_2)^{-1} \end{pmatrix} = E.$$

故

$$A^{-1} = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}^{-1} = \begin{bmatrix} \begin{pmatrix} E & O \\ -A_3A_1^{-1} & E \end{pmatrix}^{-1} \begin{pmatrix} A_1^{-1} & O \\ O & (A_4 - A_3A_1^{-1}A_2)^{-1} \end{pmatrix}^{-1} \begin{pmatrix} E & -A_1^{-1}A_2 \\ O & E \end{pmatrix}^{-1} \end{bmatrix}^{-1}$$

$$= \begin{pmatrix} E & -A_1^{-1}A_2 \\ O & E \end{pmatrix} \begin{pmatrix} A_1^{-1} & O \\ O & (A_4 - A_3A_1^{-1}A_2)^{-1} \end{pmatrix} \begin{pmatrix} E & O \\ -A_3A_1^{-1} & E \end{pmatrix}$$

$$= \begin{pmatrix} A_1^{-1} & -A_1^{-1}A_2 (A_4 - A_3A_1^{-1}A_2)^{-1} \\ O & (A_4 - A_3A_1^{-1}A_2)^{-1} \end{pmatrix} \begin{pmatrix} E & O \\ -A_3A_1^{-1} & E \end{pmatrix}$$

$$= \begin{pmatrix} A_1^{-1} + A_1^{-1}A_2 (A_4 - A_3A_1^{-1}A_2)^{-1} A_3A_1^{-1} & -A_1^{-1}A_2 (A_4 - A_3A_1^{-1}A_2)^{-1} \\ -(A_4 - A_3A_1^{-1}A_2)^{-1} A_3A_1^{-1} & (A_4 - A_3A_1^{-1}A_2)^{-1} \end{pmatrix}.$$

实际上, 到这一步已经完成了这题. 接下来的证明是为了与解法一相互验证 (也可以类似命题??的解法二进行验证). 注意到

$$(A_{1} - A_{2}A_{4}^{-1}A_{3}) (A_{1}^{-1} + A_{1}^{-1}A_{2} (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} A_{3}A_{1}^{-1})$$

$$= E + A_{2} (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} A_{3}A_{1}^{-1} - A_{2}A_{4}^{-1}A_{3}A_{1}^{-1} - A_{2}A_{4}^{-1}A_{3}A_{1}^{-1}A_{2} (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} A_{3}A_{1}^{-1}$$

$$= E + A_{2} [(A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} - A_{4}^{-1} - A_{4}^{-1}A_{3}A_{1}^{-1}A_{2} (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1}] A_{3}A_{1}^{-1}$$

$$= E + A_{2} (E - A_{4}^{-1} (A_{4} - A_{3}A_{1}^{-1}A_{2}) - A_{4}^{-1}A_{3}A_{1}^{-1}A_{2}) (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} A_{3}A_{1}^{-1}$$

$$= E + A_{2} (E - E + A_{4}^{-1}A_{3}A_{1}^{-1}A_{2} - A_{4}^{-1}A_{3}A_{1}^{-1}A_{2}) (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} A_{3}A_{1}^{-1}$$

$$= E + A_{2} (E - E + A_{4}^{-1}A_{3}A_{1}^{-1}A_{2} - A_{4}^{-1}A_{3}A_{1}^{-1}A_{2}) (A_{4} - A_{3}A_{1}^{-1}A_{2})^{-1} A_{3}A_{1}^{-1}$$

= E,

$$\begin{split} &A_{4}^{-1}A_{3}(A_{1}-A_{2}A_{4}^{-1}A_{3})^{-1}=A_{4}^{-1}A_{3}\left(A_{1}^{-1}+A_{1}^{-1}A_{2}\left(A_{4}-A_{3}A_{1}^{-1}A_{2}\right)^{-1}A_{3}A_{1}^{-1}\right)\\ &=A_{4}^{-1}A_{3}A_{1}^{-1}+A_{4}^{-1}A_{3}A_{1}^{-1}A_{2}\left(A_{4}-A_{3}A_{1}^{-1}A_{2}\right)^{-1}A_{3}A_{1}^{-1}\\ &=\left(A_{4}^{-1}\left(A_{4}-A_{3}A_{1}^{-1}A_{2}\right)+A_{4}^{-1}A_{3}A_{1}^{-1}A_{2}\right)\left(A_{4}-A_{3}A_{1}^{-1}A_{2}\right)^{-1}A_{3}A_{1}^{-1}\\ &=\left(A_{4}-A_{3}A_{1}^{-1}A_{2}\right)^{-1}A_{3}A_{1}^{-1}. \end{split}$$

故

$$(A_1 - A_2 A_4^{-1} A_3)^{-1} = A_1^{-1} + A_1^{-1} A_2 (A_4 - A_3 A_1^{-1} A_2)^{-1} A_3 A_1^{-1}.$$

$$A_4^{-1} A_3 (A_1 - A_2 A_4^{-1} A_3)^{-1} = (A_4 - A_3 A_1^{-1} A_2)^{-1} A_3 A_1^{-1}.$$

因此

$$A^{-1} = \begin{pmatrix} A_1^{-1} + A_1^{-1} A_2 \left(A_4 - A_3 A_1^{-1} A_2 \right)^{-1} A_3 A_1^{-1} & -A_1^{-1} A_2 \left(A_4 - A_3 A_1^{-1} A_2 \right)^{-1} \\ - \left(A_4 - A_3 A_1^{-1} A_2 \right)^{-1} A_3 A_1^{-1} & \left(A_4 - A_3 A_1^{-1} A_2 \right)^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} (A_1 - A_2 A_4^{-1} A_3)^{-1} & -A_1^{-1} A_2 (A_4 - A_3 A_1^{-1} A_2)^{-1} \\ -A_4^{-1} A_3 (A_1 - A_2 A_4^{-1} A_3)^{-1} & (A_4 - A_3 A_1^{-1} A_2)^{-1} \end{pmatrix}.$$