Preliminary Experimental Results

June 28, 2021

Physics-informed neural networks (PINN)

The nonlinear Schrödinger equation along with periodic boundary conditions

$$ih_t + 0.5h_{xx} + |h|^2 h = 0, \quad x \in [-5, 5], \quad t \in [0, \pi/2],$$

 $h(0, x) = 2 \operatorname{sech}(x),$
 $h(t, -5) = h(t, 5),$
 $h_x(t, -5) = h_x(t, 5),$

where $f := ih_t + 0.5h_{xx} + |h|^2 h$

The nonlinear Schrödinger equation along with periodic boundary conditions

$$ih_t + 0.5h_{xx} + |h|^2 h = 0, \quad x \in [-5, 5], \quad t \in [0, \pi/2],$$

 $h(0, x) = 2 \operatorname{sech}(x),$
 $h(t, -5) = h(t, 5),$
 $h_x(t, -5) = h_x(t, 5),$

where $f := ih_t + 0.5h_{xx} + |h|^2 h$

type	#I&B	#collocation	relative L_2 norm
PINN	50	20000	1.97^{-3}
QBPINN	50	20000	0.918

The nonlinear Schrödinger equation along with periodic boundary conditions

$$ih_t + 0.5h_{xx} + |h|^2 h = 0, \quad x \in [-5, 5], \quad t \in [0, \pi/2],$$

 $h(0, x) = 2 \operatorname{sech}(x),$
 $h(t, -5) = h(t, 5),$
 $h_x(t, -5) = h_x(t, 5),$

where
$$f := ih_t + 0.5h_{xx} + |h|^2 h$$

type	#I&B	#collocation	relative L_2 norm
PINN	50	20000	1.97^{-3}
QBPINN	50	20000	0.918

• With different number of initial, boundary (50, 100, 150) and collocation points (25000, 30000), we have similar results.

The nonlinear Schrödinger equation along with periodic boundary conditions

$$ih_t + 0.5h_{xx} + |h|^2 h = 0, \quad x \in [-5, 5], \quad t \in [0, \pi/2],$$

 $h(0, x) = 2 \operatorname{sech}(x),$
 $h(t, -5) = h(t, 5),$
 $h_x(t, -5) = h_x(t, 5),$

where
$$f := ih_t + 0.5h_{xx} + |h|^2 h$$

type	#I&B	#collocation	relative L_2 norm
PINN	50	20000	1.97^{-3}
QBPINN	50	20000	0.918

- With different number of initial, boundary (50, 100, 150) and collocation points (25000, 30000), we have similar results.
- Pre-training with full-precision PINN, then train with QBPINN, we cannot improve the accuracy. This is confirmed by several papers.

Naive FFNN (Larq)

hidden layer 1 hidden layer 2

type	example	#training	#validation	L ₂	MSE
QBPINN	Schrödinger	20150	51456	0.918	_
BFFNN	Schrödinger	41456	10000	4.37	0.0839
BFFNN	BB1	220000	30000	0.395	3.385
BFFNN	BB2	220000	30000	0.156	74.5

- architecture (2, 100, 100, 100, 50, 1)
- BB1: with bouncing transitions (height 3, step 0.005)
- BB2: without bouncing transitions (height 60, step 0.005)

Naive CNN

type	example	#training	#validation	L ₂	archi
B-CNN1	BB	9000	1000	0.232	A1
B-CNN2	BB	9000	1000	9.43^{-2}	A2
B-CNN3	BB	9000	1000	9.39^{-2}	A3

- A1: archi ((10,10,2), (64,2), (64,2), (64,2), 64, 100)
- A2: ((10,10,2), (64,2), (64,2), (128,2), (128,2), (256,2), (256,2), 512, 512, 100)
- A3: ((10,10,2), (128,2), (128,2), (256,2), (256,2), (512,2), (512,2), 1024, 1024, 100)

Comparison

Comparison

- initial set: $x \in [10, 10.2], v = 0$
- property: the set of bad states is the set of all states where $v \ge 10.7$

Another comparison

- initial set: $x \in [10000, 15000]$, v = 0
- property on interval time between transitions (or between peakheight).

Another comparison

- initial set: $x \in [10000, 15000]$, v = 0
- property on interval time between transitions (or between peakheight).

type	example	#training	#validation	L_2	archi
BFFNN	BB	20000	5000	0.176	A1

A1: 2, 100, 100, 100, 100, 100, 1