QXD0133 - Arquitetura e Organização de Computadores II

Universidade Federal do Ceará - Campus Quixadá

Thiago Werlley thiagowerlley@ufc.br

18 de outubro de 2025

Capítulo 13

Memory Protection Units - ARM System Developer's Guide

Capítulo 13

CP15 e Cache

Coprocessor 15 registers that configure and control cache operation.

Function	Primary register	Secondary registers	Opcode 2
Clean and flush cache	c7	c5, c6, c7, c10, c13, c14	0, 1, 2
Drain write buffer	c7	c10	4
Cache lockdown	c9	c0	0, 1
Round-robin replacement	c15	c0	0

Proteção de acesso aos recursos

- Alguns sistemas embarcados usam operações multitarefas e devem garantir que uma tarefa em execução não interrompa a operação de outras tarefas.
- A proteção dos recursos do sistema e outras tarefas contra acesso indesejado é chamada de proteção.
- Existem dois métodos para controlar o acesso aos recursos do sistema, desprotegidos e protegidos.
- Um sistema desprotegido depende apenas do software para proteger os recursos do sistema.
- Um sistema protegido depende de hardware e software para proteger os recursos do sistema.

Proteção de acesso aos recursos

- Sistema desprotegido
 - Conta apenas com proteção via software
 - Não há hardware dedicado à proteção
 - As tarefas devem cooperar entre si para garantir o acesso correto aos recursos
- Sistema protegido
 - Conta com proteção por software hardware
 - Hardware dedicado à proteção
 - As tarefas devem seguir certas regras determinadas pelo S.O. e pelo hardware, a fim de garantirem os privilégios de acesso necessários

Recursos

- Tipicamente, dois tipos de recurso precisam de proteção: Memória e periféricos de E/S
- No ARM, os periféricos são mapeados em memória
 - A proteção de acesso à memória também resulta na proteção aos dispositivos de E/S

MPU vs. MMU

- MPU (Memory Protection Unit)
 - Proteção de áreas (regiões) especificadas em software
- MMU (Memory Management Unit)
 - Proteção com uso de memória virtual

- Uma região trata-se de um conjunto de atributos (configurados usando o CP15) associados a uma área de memória.
 - ID (de 0 a 7)
 - Permissões de acesso
 - Endereço inicial
 - Tamanho
 - Políticas de cache

- Algumas regras:
 - Regiões recebem um número que determina sua prioridade
 - Regiões podem sobrepor outras regiões
 - No caso de sobreposição, os atributos da região de maior prioridade tem precedência sobre as demais regiões. Essa prioridade só é aplicada aos endereços contidos na área sobreposta.
 - O tamanho da região é indicado em potências de 2, entre 4KB e 4GB
 - O endereço inicial de uma região deve ser múltiplo de seu tamanho.

- Exceções de Prefetch Abort ou Data Abort
 - Quando o processador tenta acessar uma determinada região, a MPU compara as permissões de acesso com o modo de execução atual do processador. Caso não haja permissão de acesso é gerada uma exceção.
 - Ocorrem também ao tentar acessar um endereço de uma região não definida

ARM core	Number of regions	Separate instruction and data regions	Separate configuration of instruction and data region		
ARM740T	8	no	no		
ARM940T	16	yes	yes		
ARM946E-S	8	no	yes		
ARM1026EJ-S	8	no	yes		

Regiões em Background

Task 1 running

Task 2 running

Task 3 running

(User access)

(Privileged access)

MPU e o CP15

Coprocessor registers that control the MPU.

Function	Primary register	Secondary registers
System control	c1	c0
Region cache attributes	<i>c</i> 2	c0
Region write buffer attributes	<i>c</i> 3	c0
Region access permissions	<i>c</i> 5	c0
Region size and location	<i>c</i> 6	c0 to c7

Definindo regiões (CP15:c6)

As etapas a seguir são necessárias para inicializar a MPU, os caches e o buffer de gravação:

- Defina o tamanho e a localização das regiões de instruções e dados usando CP15:c6.
- 2 Defina a permissão de acesso para cada região usando CP15:c5.
- 3 Defina os atributos de cache e buffer de gravação para cada região usando CP15:c2 para cache e CP15:c3 para buffer de gravação.
- 4 Habilite os caches e o MPU usando CP15:c1.

Definindo regiões (CP15:c6)

CP15:c6 register format setting size and location of a region.

Field name	Bit fields	Comments
Base address	[31:12]	Address greater than 4 KB must be a multiple of the size represented in [5:1]
SBZ	[11:6]	Value "should be zero"
N	[5:1]	Size of region is 2^{N+1} , where $11 \le N \le 31$
E	[0]	Region enable, $1 = \text{enable}$, $0 = \text{disable}$

Definindo regiões

• **Exemplo** \rightarrow Região 3, iniciando em 0x300000, com 256KB

```
MOV r1, #0x300000 ; set starting address ORR r1, r1, #0x11 << 1 ; set size to 256 KB MCR p15, 0, r1, c6, c3, 0
```

Definindo regiões

• **Exemplo** \rightarrow Lendo tamanho e endereço da região 5, na arquitetura ARM940T

```
MRC p15, 0, r2, c6, c5, 0 ; r2 = base/size Data Region 5
MRC p15, 0, r3, c6, c5, 1 ; r3 = base/size Inst Region 5
```

Permissões de acesso (CP15:c5)

CP15:c5:c0 standard instruction region AP CP15:c5:c1 standard data region AP

	AP7	AP6	AP5	AP4	AP3	AP2	AP1	AP0
31 161	1514	1312	11 10	9 8	7 6	5 4	3 2	1 0

CP15:c5:c2 extended instruction region AP CP15:c5:c3 extended data region AP

eAP7		e.A	AP6	e	AP5	e	AP4	е	AP3		eAP2		eAP1		eAP0
31 2	28	27	24	23	20	19	16	15	12	11	8	7	4	3	0

CP15 register 5 access permission register formats.

Permissões de acesso (CP15:c5)

no access	00	0000
no access	01	0001
read only	10	0010
read/write	11	0011
unpredictable	_	0100
no access	_	0101
read only	_	0110
unpredictable	_	0111
unpredictable	_	1000 to 1111
	no access read only read/write unpredictable no access read only unpredictable	no access 01 read only 10 read/write 11 unpredictable — no access — read only — unpredictable —

Configuração de cache e de write buffer (CP15:c2:c3)

CP15:c2 cache and CP15:c3 write buffer region registers.

Habilitando a MPU (CP15:c1)

Memory protection unit control bits in the CP15:c1:c0 control register.

Protection unit enable bits in CP15 control register 1.

Bit	Function enabled	Value
0	MPU	0 = disabled, 1 = enabled
2	data cache	0 = disabled, 1 = enabled
12	instruction cache	0 = disabled, 1 = enabled

Exemplo (ver seção 13.3)

Table 13.10 Memory map of example protection system.

Function	Access level	Starting address	Size	Region
Protect memory-mapped peripheral devices	system	0x10000000	2 MB	4
Protected system	system	0x00000000	4 GB	1
Shared system	user	0x00010000	64 KB	2
User task 1	user	0x00020000	32 KB	3
User task 2	user	0x00028000	32 KB	3
User task 3	user	0x00030000	32 KB	3

Exemplo (ver seção 13.3)

QXD0133 - Arquitetura e Organização de Computadores II

Universidade Federal do Ceará - Campus Quixadá

Thiago Werlley thiagowerlley@ufc.br

18 de outubro de 2025

Capítulo 13