## Uplift Modeling in Algorithmic Marketing

William Wong

January 4, 2022

## Outline

- Introduction
- Review of causal inference
- Three methods of modeling uplift
- Numerical example using CausalML

## What is Uplift Modeling?

- Uplift modeling refers to the set of techniques used to model the incremental impact of an action or treatment on a customer outcome.
- It is both a causal inference problem and a machine learning one.
- There are 100 customers belonging to 4 segments as shown in the figure below.



## Cumulative Uplift





- In the example above, there are 100 customers who belong to the 4 separate segments.
- The use cases for uplift modeling:
  - Target the Persuadables for promotions.
  - Stop reaching out to those who react to the treatment negatively (e.g., the Sleeping Dogs).

#### Review of Causal Inference



- $\bullet$  X is a confounder for the treatment T and the outcome Y.
- $\mathbb{E}[Y^1]$  is the average value of Y if **everyone was treated** with T=1.
- The average treatment effect ATE =  $\mathbb{E}[Y^1 Y^0]$ .
- $\mathbb{E}[Y^1 Y^0] \neq \mathbb{E}[Y|T = 1] \mathbb{E}[Y|T = 0]$ 
  - $\mathbb{E}[Y^1 Y^0]$  is the **average treatment effect**, because it is comparing what would happen if the same people were treated with T = 1 versus with T = 0.
  - $\mathbb{E}[Y|T=1] \mathbb{E}[Y|T=0]$  is the **observed treatment effect**. Note that it is comparing two different populations of people.
- An example
  - T is COVID vaccination.
  - Y is mortality.
  - X is age.
- Consistency assumption the potential outcome under treatment  $Y^{T=t}$  is equal to the observed outcome if the actual treatment received is T=t.
- Ignorability assumption  $\{Y^1, Y^0\} \perp T | X$ . Among subjects with the same values of X, we can think of treatment T as being randomly assigned.

## Review of Causal Inference (con't)

In a randomized trial, the distribution of X will be the same in both groups since the assignment is random!



For observational data,



we can match individuals in the  $\mathcal{T}=1$  group to individuals in the  $\mathcal{T}=0$  group on the covariates X.

#### Problem Formulation



- Paper by Gutierrez and Gérardy, 2016 [link].
- The Conditional Average Treatment Effect for a subgroup in the population

$$CATE = \tau(X) = \mathbb{E}[Y^1|X] - \mathbb{E}[Y^0|X], \qquad (1)$$

where X is a vector of features.

- $\mathbb{E}[Y|T=t,X]$  references observed data only.
- $\mathbb{E}[Y|T=t,X] = \mathbb{E}[Y^{T=t}|T=t,X]$  by consistency.
- $\mathbb{E}[Y|T=t,X] = \mathbb{E}[Y^{T=t}|T=t,X] = \mathbb{E}[Y^{T=t}|X]$  by ignorability.

# Comparison of Various Models

| Model                | Prediction                    |
|----------------------|-------------------------------|
| Propensity model     | Pr(buy T=0,X)                 |
| Churn model          | Pr(churn   T = 0, X)          |
| Response model       | Pr(buy T=1,X)                 |
| Uplift model         | Pr(buy T=1,X) - Pr(buy T=0,X) |
| Style-affinity model | Pr(style = s buy, X)          |
| Price-affinity model | Pr(price = p buy, X)          |

## Method 1 — Build Two Separate ML Models

• Estimate  $E[Y^1|X]$  and  $E[Y^0|X]$  using the treatment group data and the control group data separately.

#### Method 2 — Class Transformation

- Define a new outcome variable  $Y^* = Y^1 \frac{T}{\Pr(T=1|X)} Y^0 \frac{1-T}{1-\Pr(T=1|X)}$ .
- Can show that  $\mathbb{E}[Y^*|X] = \mathsf{CATE} = \tau(X)$ .
- Build a model to estimate  $\mathbb{E}[Y^*|X]$ .

### Method 3 — Direct Modeling using a Decision Tree



- Modify(!) existing ML algorithms to model the uplift.
- There are 8 data points in a given tree node, with 4 instances in the treatment group and 4 instances in the holdout. Three out of the 4 customers in the treatment group converted (green circles), and 2 out of the 4 customers in the holdout group converted (red circles).
- For the best split at a given node in the tree, we want to maximize the gain of the divergence between the outcome class distributions between treatment and control [link].
- The left child node contains the Persuadables only. Everyone in the treatment group converted, and no one in the control group converted.
- The right child node is just the opposite; it contains the Sleeping Dogs who generate negative value when they receive treatment.

## Uplift Tree and Random Forests using CausalML

- CausaIML [link] is an open-source Python package from Uber.
- Jupyter notebook [link].
- The synthetic dataset contains columns
  - treatment\_group\_key: Each row belongs to one of the **four** groups control, treatment1, treatment2, and treatment3. There are 1,000 rows for each group.
  - 19 features.
  - conversion: 0 or 1.
- Uses UpliftRandomForestClassifier() as the model.
- CausalML has the plot\_gain() function which calculates the uplift curve given a
  DataFrame containing the treatment assignment, observed outcome, and the
  predicted treatment effect.