Digital Speech and Audio Processing

DSAP Theory course

First...

A practical message from prof. Verhelst...

DSAP Theory course

Make sure you look into the theory course slides and notes BEFORE the exams!

- There's a lot of information
- Possibility to ask questions

Digital Speech and Audio Processing

Introduction to project 2

Who are we?

- Henk Brouckxon

E-mail: hbrouckx@etro.vub.ac.be

Room: Ke.2.13, located in <u>building Ke</u>

Tel: +32 2 629 2939

Practical arrangements

30h practical exercises

- Week 22-23, 25 28: Wednesday 10:00-12:00 @ K.3.125
- Week 31 36: Wednesday 09:00-12:00 @ K.3,115

! Work in groups of 4 persons!

Practical arrangements

3 projects

- Project 1: Stereo to surround sound upmixing (week **23**, 25, 26)
- Project 2: surround sound reconstruction (week **27**, 28, 31, 32)
- Project 3: TBD (week **33**, 34, 35)
- Evaluation: week 36

Week 23,27,28,32

- Explanation of the projects
- Attendance obligatory

Other weeks

- PC rooms available (attendance not obligatory)
- Assistance: available on request (send mail to make appointment)

Evaluation

- Send code + files (email) on May 19th (week 35)
- Evaluation May 24th (week 36)
 - 15 min presentation
 - 5 min demo
 - 10 min questions

Project 1: Stereo to surround sound upmixing

Project 1: Some remarks

Equation (8) for the window is wrong

$$w(n) = \begin{cases} \sin\left(\frac{\pi(n + \frac{1}{2})}{2(N)}\right), & 0 \le n - M - 1\\ 1, & M \le n \le M - 1\\ \sin\left(\frac{\pi(N) - \frac{1}{2}}{2(N - M)}\right), & M \le n \le -1 \end{cases}$$
(8)

→ replace by a suitable window (constant overlap-add requirement for synthesis !!)

Project 1: Some remarks

• Error in equation (9)

$$y(n) = \mathbf{w}^{T}(n)\mathbf{x}(n) = \mathbf{w}^{T}(n), \qquad (9)$$

Project 2: Surround sound scene reconstruction

Goal: record and reconstruct a surround sound scene

Sound source localisation

Signal, picked up by microphone \vec{i} at location \vec{r}_i :

$$x_i(t) = A_i(\vec{r}_s - \vec{r}_i).s(t - \Delta_t(\vec{r}_s - \vec{r}_i))$$

By measuring the time difference on arrival (TDOA) of the sound at different microphones, a microphone array can localise sound sources

$$TDOA(i, j) = \Delta_t(\vec{r}_s - \vec{r}_j) - \Delta_t(\vec{r}_s - \vec{r}_i)$$

TDOA Measurement

Time-domain maxima in the GCC indicate possible TDOA values

From TDOA to Location

■ Based on TDOA, a microphone pair (1,2) allows determination of the incidence angle relative to the pair's axis:

$$\alpha = \arccos\left(\frac{c.\Delta_t}{d}\right)$$
 $\Delta_t = TDOA$ $c = 340m/s$ speed of sound

• Combine two orthogonal pairs (1,2) and (3,4) to obtain spherical coordinates (azimuth θ / elevation ϕ):

Sound source localisation

The array:

1. Surround panning: Vector-Base Amplitude Panning

- Virtual sound source p, reproduced in a position between two real loudspeakers a and b
- \triangleright Gains g_a and g_b , applied to the signal for loudspeakers a and b (normalise g_a , g_b):

$$\begin{cases} \vec{1}_a = (x_a, y_a) \\ \vec{1}_b = (x_b, y_b) \end{cases} \Rightarrow (g_a \quad g_b) = (x_p \quad y_p) \begin{pmatrix} x_a & y_a \\ x_b & y_b \end{pmatrix}^{-1} \\ \vec{1}_p = (x_p, y_p) \end{cases}$$

2. Virtual room ambience: reverberation

Sound waves reflect on the walls and cause reverberation

delayed and attennuated repetitions of the original sound source

2. Virtual room ambience: "image" model

2. Virtual room ambience: "image" model

Reverberation adds virtual sources, each with its own:

- Location
- Delay
- Amplitude

- Implement sound source localisation
 - Paper: "The Generalized Correlation Method for Estimation of Time Delay", C.H.Knapp et al.
 - Paper: "A closed-form location estimator for use with room environment microphone arrays", M.S.Brandstein et al.
- Implement VBAP for sound scene reconstruction
 - Paper: "Virtual Sound Source Positioning Using Vector Base Amplitude Panning", V.Pulkki <u>link</u>
- Combine VBAP with virtual room reverberation
 - Paper: "Image Method for Efficiently Simulating Small-room Acoustics", J.B.Allen and D.A.Berkley <u>link</u>
- Apply to real recordings
 - to be scheduled based on group lists