Cours de Relativité et principes variationnels (PHY 431) Ecole polytechnique – Ingénieur – 2ème année Année 2023-2024 Pr. Sylvain Chaty

PC8: Mécanique hamiltonienne (24/01/2024)

Notions: Formalisme canonique de Hamilton, espace des phases, Systèmes hamiltoniens simples, Utilisation des transformations canoniques et des crochets de Poisson (lois de conservation, oscillateur harmonique...), Remarques élémentaires sur les systèmes dynamiques et le chaos (cf problème sur les points de Lagrange)

Exercice à rendre pour le 29/01/2024: Pendule double

On considère un double pendule en mouvement sans frottement dans un plan vertical, constitué de deux masses m_1 et m_2 (cf Figure 1): la première fixée par une tige de masse négligeable à un axe fixe O, et la deuxième reliée à la première par une seconde tige de masse négligeable. Les masses m_1 et m_2 , ainsi que O, restent dans un même plan vertical. On note l_1 et l_2 les distances respectives entre O et m_1 , et entre m_1 et m_2 ; et θ_1 et θ_2 les angles respectifs entre l'axe vertical et la tige Om_1 , et entre l'axe vertical et la tige m_1m_2 .

- 1. Ecrire le Lagrangien du système et en déduire les équations du mouvement.
- 2. Quelles sont les quantités conservées? Le mouvement peut-il être chaotique?

Figure 1 – Pendule double (Crédit : https://fr.wikipedia.org/wiki/Pendule double)