IEE 2712 Sistemas Digitales

Clase 12

Objetivos educacionales:

- 1. Encontrar el diagrama de estado desde la descripción verbal.
- 2. Diseñar circuitos combinacionales con flip-flops D y JK

4.5 Diseño de circuitos secuenciales

Ejemplo: Convertidor serial de BCD a exceso de 3

Diseñar un circuito que tenga una entrada y una salida. La salida debe entregar el código exceso de 3 (el bit menos significativo primero) de la entrada que es un código BCD (el bit menos significativo primero también).

4.5 Diseño de circuitos secuenciales

BCD Input			Excess-3 Output			BCD Input			Excess-3 Output						
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	(
1	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1
0	1	0	0	1	0	1	0	0	0	1	0	1	1	1	(
1	1	0	0	0	1	1	0	0	1	0	0	1	0	1	(
0	0	1	0	1	1	1	0	0	1	1	0	1	0	0	1
1	0	1	0	0	0	0	1	1	0	0	0	0	0	1	(
0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	
1	1	1	0	0	1	0	1	1	0	1	0	0	0	0	
0	0	0	1	1	1	0	1	1	1	0	0	0	1	1	(
1	0	0	1	0	0	1	1	1	1	1	0	0	1	0	

4.6 Diseño empleando flip-flops D

Empleando flip-flops D

D	Q(t+1)	Operation	
0	0	Reset	
1	1	Set	

El estado siguiente es el mismo que la entrada actual al flip-flop, por lo que hay que encontrar las entradas al flip-flop (estado siguiente) según la tabla de estados.

Ejemplo: empleando flip-flops D

Pies	sent state	iliput	Next State		Output
Α	В	х	Α	В	Υ
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

4.6 Diseño empleando flip-flops D

Present State		Input	Next State		Output	
A	В	x	Α	В	Y	
0	0	0	0	0	0	
0	0	1	0	1	1	
0	1	0	1	0	0	
0	1	1	0	1	0	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	1	1	0	
1	1	1	0	0	0	

$$A(t+1) = D_A(A, B, X) = \sum m(2, 4, 5, 6)$$

$$B(t+1) = D_B(A, B, X) = \sum m(1, 3, 5, 6)$$

$$Y(A, B, X) = \sum m(1, 5)$$

4.6 Diseño empleando flip-flops D

$$A(t+1) = D_A(A, B, X) = \sum m(2, 4, 5, 6)$$

$$B(t+1) = D_B(A, B, X) = \sum m(1, 3, 5, 6)$$

$$Y(A, B, X) = \sum m(1, 5)$$

4.6 Diseño empleando flip-flops D

4.6 Diseño empleando flip-flops D

Estados no usados (el número de estados que se necesitan no es una potencia de dos): se pueden usar para simplificar las expresiones.

Peligro: si por alguna razón se cae en uno de esos estados, el comportamiento del circuito es impredecible.

Present State			Input	Next State		
A	В	С	x	A	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

4.6 Diseño	empleando	flip-flops
	Present State	Input Next State
	A B C	X A B C
CX C C AB 00 01 11 10	0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
00 X X X 01 01 1 1 1 1 A 1 1 1 1 1 1 1 1 X X X X X X	X	X X
$D_{A} = AX + BX + \overline{B}\overline{C}$	$D_{B} = \overline{A}\overline{C}\overline{X} + \overline{A}\overline{B}X$	$D_C = \overline{X}$

4.7 Diseño empleando flip-flops JK

Ejemplo: empleando flip-flops JK

El diseño se realiza igual que para flip-flops D con la diferencia que ahora la entrada no es directamente el próximo estado sino una transición dada por el flip-flop.

Tablas de excitación:

(a) JK Flip-F	lop		(b) <i>SR</i>	Flip-Flop		
Q(t+1)	J	K	Q(t)	Q(t + 1) S	R
0	0	X	0	0	0	Х
1	1	X	0	1	1	0
0	X	1	1	0	0	1
1	X	0	1	1	X	0
c) <i>D</i> Flip-Flop				(d)	<i>T</i> Flip-Flo	р
Q(t+1)	D			Q (t)	Q (t +	1) T
0	0			0	0	0
1	1			0	1	1
0	0			1	0	1
	1			1		0
	O (t + 1) 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1	$ \begin{array}{cccc} 0 & 0 & 1 & 1 \\ 1 & 0 & X & 1 \\ 0 & X & 1 & X \end{array} $ 2) <i>D</i> Flip-Flop $ \begin{array}{cccc} O & O & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

