Licence 1

Examen d'Analyse 1 (Fonctions réelles d'une variable réelle) session 1

Exercice 1 Soit f une fonction définie sur \mathbb{R} par

$$f(x) = xe^x$$
 si $x \le 1$ et $f(x) = ax + b$ si $x > 1$.

Déterminer a et b pour que f soit dérivable en 1.

Exercice 2

- 1. Enoncer avec précision le théorème des accroissemments finis.
- 2. En utilisant le théorème des accroissements finis, montrer que

$$\forall x > 0$$
 $\frac{1}{x+1} < \ln\left(\frac{x+1}{x}\right) < \frac{1}{x}.$

En déduire que pour tout entier naturel $n \ge 2$, on a

$$\ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n} < 1 + \ln n.$$

3. Monter que la suite $(u_n)_{n\geqslant 1}$ définie par

$$u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

est équivalente à la suite $(w_n)_{n\geqslant 1}$ définie par $w_n = \ln n$. En déduire que $(u_n)_{n\geqslant 1}$ est divergente.

- 4. On considère la suite $(v_n)_{n\geqslant 1}$ définie par $v_n=u_n-\ln n$.
 - a) Montrer que pour tout entier naturel non nul $n, v_n \in [0, 1]$.
 - b) Montrer que la suite $(v_n)_{n\geq 1}$ est strictemment monotone.
 - c) En déduire que la suite $(v_n)_{n\geqslant 1}$ est convergente.

Exercice 3

- 1. Calcular $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$
- 2. a) Montrer que pour tout x > 0, on a : $\arctan x + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.
 - b) Calculer $\lim_{x \to +\infty} \frac{\left(\frac{\pi}{2} \arctan x\right)\sqrt[3]{x^3 + 5x + 2}}{\sin\left(\frac{1}{x}\right)}$.

Exercice 4

Soit (C_f) la courbe représentative de la fonction f définie par $f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que lorsque x est au voisinage de l'infini, on peut écrire

$$f(x) = \frac{x}{2} - \frac{1}{4} + \frac{1}{48x^2} + o\left(\frac{1}{x^2}\right).$$

3. En déduire l'asymptôte de la courbe (C_f) au voisinage de l'infini et la position de (C_f) par rapport à l'asymptôte.

Licence 1

Examen d'Analyse 1 (Fonctions réelles d'une variable réelle) session 1

Licence 1

Examen d'Analyse 1 (Fonctions réelles d'une variable réelle) session 1