DISTRIBUSI BERSAMA

BAB IV

DISTRIBUSI BERSAMA Peubah Acak Diskrit

Jika X_1 , X_2 peubah acak diskrit, maka fungsi peluang bersama peubah acak X_1 , X_2 adalah

$$f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$$

Jika $X_1, X_2, ..., X_n$ peubah acak diskrit, maka fungsi peluang bersama $X_1, X_2, ..., X_n$ adalah

$$f(x_1, x_2, ..., x_n) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

Contoh distribusi bersama

1. Distribusi Hipergeometri yang diperluas

 X_1 : banyak objek I yang terambil

X₂: banyak objek II yang terambil

$$f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$$

$$=\frac{\binom{n_1}{x_1}\binom{n_2}{x_2}\binom{n_3}{n-x_1-x_2}}{\binom{N}{n}}$$

Distribusi Multinomial

$$X \sim MULT(n, p_1, p_2, ..., p_k)$$

$$f(x_1, x_2, x_3, ..., x_k) = \frac{n!}{x_1! x_2! x_3! ... x_{k+1}!} p_1^{x_1} p_2^{x_2} p_3^{x_3} ... p_{k+1}^{x_{k+1}}$$

Sifat- sifat

Jika X_1, X_2 peubah acak diskrit dengan fungsi peluang bersama $f(x_1, x_2)$, maka

$$\sum_{x_2} \sum_{x_1} f(x_1, x_2) = 1$$

Jika $X_1, X_2, ..., X_k$ peubah acak diskrit dengan fungsi peluang bersama $f(x_1, x_2, ..., x_k)$ maka, $\sum \sum ... \sum f(x_1, x_2, ..., x_k) = 1$

Fungsi Peluang Batas/ Marginal

Jika X_1, X_2 peubah acak diskrit dengan fungsi peluang bersama $f(x_1, x_2)$ maka fungsi peluang marginal dari X_1 dan X_2 berturut- turut adalah:

$$f_{X_1}(x_1) = \sum_{x_2} f(x_1, x_2)$$
$$f_{X_2}(x_2) = \sum_{x_2} f(x_1, x_2)$$

Fungsi Distribusi Kumulatif Bersama

Misal X_1, X_2 peubah acak diskrit dengan fungsi peluang bersama $f(x_1, x_2)$. Fungsi distribusi kumulatif (CDF) bersama X_1, X_2 didefinisikan sebagai

$$F(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2) = \sum_{t_2 \le x_2} \sum_{t_1 \le x_1} f(t_1, t_2)$$

Independen

X₁ dan X₂ dikatakan saling bebas/ independen jika

$$f(x_1, x_2) = f(x_1).f(x_2)$$

$$F(x_1, x_2) = F(x_1).F(x_2)$$

Distribusi Bersyarat

Ingat:
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

 $f(x \mid y) = \frac{f(x, y)}{f_Y(y)}$ dengan $f(x, y) = f_Y(y).f(x \mid y) = f_X(x).f(y \mid x)$

Jika X dan Y independen maka $f(x|y) = f_X(x)$

Latihan

2. In Exercise 2 of Chapter 3, a game consisted of rolling a die and tossing a coin. If X denotes the number of spots showing on the die plus the number of heads showing on the coin, and if Y denotes just the number of spots showing on the die, tabulate the joint pdf of X and Y.

		Dadu						
		1	2	3	4	5	6	
Koin	0	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	
Kom	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	

Misalkan

X: jumlah mata dadu dan gambar yang muncul

Y: mata dadu yang muncul, maka nilai-nilai:

$$x = 1,2,3,4,5,6,7$$

$$y = 1,2,3,4,5,6$$

Fungsi peluang bersama $X \operatorname{dan} Y = f(x,y)$								
y	1	2	3	4	5	6	7	
1	f(1,1)	f(2,1)	f(3,1)					
2								
3								
4								
5								
6								
							\sum	
4								_
y	1	2	3	4	5	6	7	
1	1/12	1/12	0	0	0	0	0	2/12
2	0	1/12	1/12	0	0	0	0	2/12
3	0	0	1/12	1/12	0	0	0	2/12
4	0	0	0	1/12	1/12	0	0	2/12
5	0	0	0	0	1/12	1/12	0	2/12
6	0	0	0	0	0	1/12	1/12	2/12
								1

Suppose that X₁ and X₂ are discrete random variables with joint pdf of the form

$$f(x_1, x_2) = c(x_1 + x_2)$$
 $x_1 = 0, 1, 2; x_2 = 0, 1, 2$

and zero otherwise. Find the constant c.

Sifat:
$$\sum_{x_2} \sum_{x_1} f(x_1, x_2) = 1$$

$$\sum_{x_2} \sum_{x_1} f(x_1, x_2) = 1$$

$$\Leftrightarrow f(0,0) + f(1,0) + f(2,0) + f(0,1) + f(1,1) + f(2,1) + f(0,2) + f(1,2) + f(2,2) = 1$$

$$\Leftrightarrow c(0+0)+c(1+0)+c(2+0)+c(0+1)+c(1+1)+c(2+1)+c(0+2)+c(1+2)+c(2+2)=1$$

$$\Leftrightarrow$$
 0+c+2c+c+2c+3c+2c+3c+4c=1

$$\Leftrightarrow$$
 18 $c = 1$

$$\Leftrightarrow c = \frac{1}{18}$$

8. If X and Y are discrate random variables with joint pdf

$$f(x,y) = \begin{cases} c \frac{2^{x+y}}{x! \ y!} & ; x = 0,1,2,..., y = 0,1,2,... \\ 0 & ; x, y \text{ otherwise} \end{cases}$$

a. Find the constant c

$$\sum_{y}\sum_{x}f(x,y)=1$$

$$\Leftrightarrow c \sum \sum \frac{2^x 2^y}{x! \, y!} = 1$$

$$\Leftrightarrow c\sum_{x=0}^{\infty} \frac{2^x}{x!} \sum_{y=0}^{\infty} \frac{2^y}{y!} = 1$$

$$\Leftrightarrow c.e^2.e^2 = 1$$

$$\Leftrightarrow ce^4 = 1$$

$$\Leftrightarrow c = e^{-4}$$

b. Find the marginal pdf's of X and Y.

$$f_X(x) = \sum_y f(x, y)$$

$$=\sum_{y}\left(e^{-4}\,\frac{2^{x+y}}{x!\,y!}\right)$$

$$=\sum_{y}\left(e^{-4}\,\frac{2^{x}}{x!}\,\frac{2^{y}}{y!}\right)$$

$$= e^{-4} \frac{2^{x}}{x!} \sum_{v} \frac{2^{v}}{y!}$$

$$=e^{-4}.\frac{2^{x}}{x!}.e^{2}$$

$$=e^{-2}\frac{2^{x}}{x!}$$
, untuk $x=0,1,2,...$

$$f_{Y}(y) = \sum_{x} f(x, y)$$

$$= \sum_{x} \left(e^{-4} \frac{2^{x+y}}{x! y!} \right)$$

$$= \sum_{x} \left(e^{-4} \frac{2^{x}}{x!} \frac{2^{y}}{y!} \right)$$

$$= e^{-4} \frac{2^{y}}{y!} \sum_{x} \frac{2^{x}}{x!}$$

$$=e^{-4}\frac{2^{y}}{y!}\sum_{x}\frac{2^{x}}{x!}$$

$$=e^{-4}.\frac{2^{y}}{v!}.e^{2}$$

$$=e^{-2}\frac{2^{y}}{y!}$$
' $y=0,1,2...$

		\mathbf{X}_2				
		1	2	3		
	1	1/12	1/6	0		
X_1	2	0	1/9	1/5		
	3	1/18	1/4	2/15		

a. Find the marginal pdf's of X_1 dan X_2

i)
$$f_{X_1}(x_1) = \sum_{x_2} f(x_1, x_2)$$

$$f_{X_1}(1) = \frac{1}{12} + \frac{1}{6} + 0 = \frac{3}{12} = \frac{1}{4}$$

$$f_{X_1}(2) = 0 + \frac{1}{9} + \frac{1}{5} = \frac{5+9}{45} = \frac{14}{45}$$

$$f_{X_1}(3) = \frac{1}{18} + \frac{1}{4} + \frac{2}{15}$$

ii)
$$f_{X_2}(x_1) = \sum_{x_1} f(x_1, x_2)$$

$$f_{X_2}(1) = \frac{1}{12} + 0 + \frac{1}{18}$$

$$f_{X_2}(2) = \frac{1}{6} + \frac{1}{9} + \frac{1}{4}$$

$$f_{X_2}(3) = 0 + \frac{1}{5} + \frac{2}{15}$$

Silahkan dikerjakan

- (b) Are X₁ and X₂ independent? Why or why not?
- (c) Find P[X₁ ≤ 2].
- (d) Find P[X₁ ≤ X₂].
- (e) Tabulate the conditional pdf's, $f(x_2 | x_1)$ and $f(x_1 | x_2)$.

TERIMAKASIH