Plan du cours

1.	Théorème de Thalès														
	1. Le théorème	1													
11.	Réciproque du théorème de Thalès	2													

Chapitre . . . : Le théorème de Thalès et sa réciproque

Activité d'introduction

Entourer les figures dans lesquelles, on peut utiliser le théorème de Thalès.

a. A B C

I. Théorème de Thalès

1. Le théorème

Soient ABC un triangle quelconque non aplati.

Si les droites (BD) et (BE) sont sécantes en B et si la droite (AC) est parallèle à la droite (DE). Alors on a l'égalité suivante :

$$\frac{BA}{BD} = \frac{BC}{BE} = \frac{AC}{DE}$$

Énoncé:

Dans la figure ci-dessous, les droites (MN) et (BC) sont parallèles.

Calculer la longueur MN.

Résolution:

Dans le triangle ABC :

- Les droites (MC) et (NB) sont sécantes en A.
- (MN) // (BC)

D'après le théorème de Thalès, on a :

$$\frac{AM}{AC} = \frac{AN}{AB} = \frac{MN}{BC}$$
$$\frac{0.6}{1.8} = \frac{AN}{AB} = \frac{MN}{2.1}$$

On remplace :

Calcul de MN:

$$\frac{0.6}{1.8} = \frac{MN}{2.1} \text{ donc } MN = \frac{0.6 \times 2.1}{1.8}$$

$$MN = 0.7 \text{ cm}$$

II. Réciproque du théorème de Thalès

Si les points A, B et M sont alignés dans le même ordre que les points A, C et N et $\frac{AM}{AB} = \frac{AN}{AC}$ alors (BC)//(MN).

Exemple

Les droites (MN) et (BC) sont-elles parallèles?

Exercice 1 Montrer que 2 droites ne sont pas parallèles.

Exercice	2

1. Les droites (AB) et (DE) sont-elles parallèles?

2. Les droites (PR) et (DE) sont-elles parallèles?

.....

	 	 	 ٠.	 	 	 	 • •	 		 	• •	 	 	 	 	 	 	• •	 	 	٠.						
• •	 	 	 	 	 	 	 	 	 	 	 	 	 	 	• •	 		 	 	 	 	 	 		 	 	
	 	 	 	 •	 	 	 	 	 	 	 	 	 	 		 		 	 	 	 	 	 	•	 	 	
• •	 	 	 	 	 	 	 	 	 	 	 	 	 	 	• •	 		 	 	 	 	 	 		 	 	
	 	 	 	 •	 	 	 	 	 	 	 	 	 	 		 		 	 	 	 	 	 	•	 	 	