1 Operation count

A rough estimate of the efficiency & speed of execution of an algorithm can be obtained by counting the # of FP operations performed by the algorithm.

Excluples. Platrix multiplication
$$C = AB$$
 (A,B,C over) $C_{ij} = \sum_{k=1}^{N} a_{ik}b_{kj}$

→ for each coefficient cip we need N additions & N multiplucations

There are N^2 cit coeffs so the total FP op obtaint is $O(N^3)$

Pack-substitution (from
$$\sqrt{x} = \sqrt{x}$$
)

Pack-substitution (from $\sqrt{x} = \sqrt{x}$)

Note that $\sqrt{x} = \sqrt{x}$

Note that \sqrt{x}

Note that if N=M (cf for calculating the invoice) then the op. wount is $O(N^3)$.

2 LV decomposition

- . The disadvantage of all the above methods is that the RHS must be known in advance
- ond store A^{-1} (an $O(N^3)$) operation, and then for any <u>new</u> RHS we multiply $A^{-1}B$ to get the answer (an $O(N^2M)$ op count). where M is the M of RHS vectors.

But there is a better way of during this!

Suppose that instead we can write A = LV where L is lower triangular and V is upper triangular, in Q of operations (much) smaller than N^3 ,

then to solve AX = B we need to solve LUX = B \Longrightarrow LY = B UX = Y

$$\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \left(X \right) = \left(B \right)$$

which is essentially similar to back-substitution with a lower-mangular matrix.

⊕ UX = Y is a standard back-substitution

So Jooth have φ counts $O(N^2M)$.

 $\stackrel{\text{Case 1}}{=} : GJ \text{ toget } A^{-1}, \text{ then } A^{-1}B : (B is NXM)$ $O(N^3) + O(N^2M).$

=> the second option (if we can endeed make the first step <0(N3)) will be more efficient, and more versable.

· How to perform an LU decomposition?

$$LU = A \qquad (a) \qquad \text{aij} = \sum lik \, u_{kj} \quad \forall ij$$

$$L = \begin{cases} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{N1} & l_{N2} & l_{NN} \end{cases}$$

$$U = \begin{cases} u_{11} & u_{12} & \cdots & u_{1N} \\ 0 & u_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & --- & 0 & 0 & 0 \end{cases}$$

— there are a total of $\frac{N(N+1)}{2} + \frac{N(N+1)}{2}$ unknown coefficients $\{l_{ij}\}$ and $\{u_{ij}\}^2$, and a total of N^2 equations for these coefficients. This is an under-determined system so we call arbitrarily choose N of the unknowns to begun with.

Grout's Algorithm has the following property

- sets lii = 1 Vi
- . solves for the other unknowns
- stores the L and V matrices into the original A matrix as

I doa behind the algorithm

in the equation
$$ai_{j} = \sum_{k=1}^{N} lik u_{kj}$$
 $lik = 0$ if $k > i$
so $= \sum_{k=1}^{min(i,j)} lik u_{kj}$

Step 1 so suppose
$$i=1$$

$$a_{ij} = \sum_{k=1}^{n} \ell_{ik} v_{kj} = \ell_{ii} v_{ij} = v_{ij} \quad \text{(since we assume } \ell_{ii}=1)$$

then suppose J=1

$$a_{ij} = \sum_{k=1}^{j} \ell_{ik} u_{kj} = \ell_{ij} u_{ij}$$

$$\theta_{ij} = \frac{\alpha_{ij}}{\mu_{ij}}$$

which we can colculate since we know un

$$8102$$
: now suppose $i=2$

$$a_{2j} = \sum_{k=1}^{2} \ell_{2k} u_{kj} = \ell_{2i} u_{ij} + \ell_{22} u_{2j}$$

$$\Rightarrow u_{2j} = a_{2j} - \ell_{2i} u_{ij}$$

and
$$J=2$$

$$a_{i2} = \sum_{k=1}^{2} l_{ik} u_{k2} = l_{i} u_{i2} + l_{i2} u_{22}$$

$$= l_{ik} = \frac{a_{i2} - l_{i1} v_{12}}{u_{22}}$$

so it is possible to construct the LV decomposition directly into the A matrix following these steps, so that A is modified as

=> The uppivoted Crout algorithm is sumply written as

For
$$k = 1$$
, N^{\prime} = sweep through step #

For $j = k$, N^{\prime}
 $V_{kj} = a_{kj} - \sum_{m=1}^{l} l_{km} v_{mj}$ = assume $i = k$

For $i = k+1$, N^{\prime}
 $l_{ik} = \frac{1}{u_{kk}} \left[a_{ik} - \sum_{m=1}^{l} l_{im} v_{mk} \right]$

Note: in practise, vi, and lix are avectly stored into aij

- . As in the case of standard GJ elimination, proting is essential to the stability of the algorithm.
- · However, since LV is done independently of the RHS, the permutations of the lines in the A matrix must be recorded for later use.
- · Trolover, the ordering of the operations in Crout's algorithm does not facilitate pivoting.

 Another algorithm, which simply re-orders the operations, does allow pivoting:

For
$$i = 1, N$$
 $V_{ij} = a_{ij} - \sum_{m=1}^{i-1} l_{im} u_{mj}$
 $l_{ij} = a_{ij} - \sum_{m=1}^{j-1} l_{im} u_{mj}$
 $l_{ij} = u_{ij} \left[a_{ij} - \sum_{m=1}^{j-1} l_{im} u_{mj} \right]$

-> Now it is possible to pirot the algorithm

Idea: The pivot is selected so that the denomination Uji is the largest possible. (for the same reasons as before) when calculating the ligarithms

LU algorithm with prvoting

• For
$$i=1, j-1$$

$$|uij = aij - \sum_{m=1}^{i-1} lim v_{mj}$$

Note: this calculates all of the vi, in column; except the diagonal element vi which we must select by privoting

• For
$$i=j$$
, $N = j-1$
 $lij = aij - \sum_{m=1}^{j-1} lim \ Umj$

Note: this doesn't calculate ly just yet, now only the part in the []. The largest of these will be the pivot Ujj (note that it has the right formula for being Ujj).

•
$$p = max \left| \frac{lij}{scale(i)} \right| i = j, N$$
 \leftarrow select private

- · sunter line j with line containing the prot (p becomes vij). RELORD the SWITCH FORMS.
- for i = j+1, W $li_{ij} = \frac{li_{i}}{v_{ij}} \in \frac{divide by v_{ij}}{the calculation of lij}$

Note in practice, ly and und

Advantages & application of LU decomposition

- . the operation wint for LU is $O(\frac{N^3}{5})$, so factor at 3 flooler than GJ dimination
- . At is never calculated. if A^{-1} is needed, then we need to perform a backsubstitution on I.
- If det(A) is required $det(A) = det(A) = det(A) = 1 \cdot det(A)$ $= \int_{A}^{A} u_{ii}$

-> LU decomposition provides a very fast way of calculating the determinant of a matrix. (note that the sign of the determinant must be updated according to the permutations if proving was used).

3 Choleski decomposition for real symmetric matrices

When the matrix A is real and symmetric AND positive definite then W decomposition can be accelerated very Cholesky factorsation.

Definitions. A symmetric matrix satisfies $A^T = A$ (a; = a;)

A positive definite matrix satisfies VV, $V^TAV>0$

These properties are often satisfied by matries arising from phyrical systems (see later).

LV decomposition of a symmetric matrix implies

$$A^{T} = A$$

$$\Rightarrow (LU)^{T} = LU$$

$$\Rightarrow U^{T}L^{T} = LU$$

But the transpose of an unper mangular matrix is a lower than gular one, so symmetry of A implies that we can above U as

$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = L \qquad (L^{T} = U)$$

The original system of equations
$$U^{T} = LU$$

The original equations are considered to the symmetric of the original equations of the original equations
$$U^{T} = LU$$

The original equations are get

$$U^{T} = LU$$

The original equation is a symmetric point of the original equations are get

$$U^{T} = LU$$

The original equation is a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmetric point of the original equations are considered as a symmet

$$i=3: \begin{cases} l_{31} + l_{32} l_{32} = 0_{32} & (j=2=1) \\ l_{31} l_{11} = 0_{31} & (j=1) \\ l_{31} l_{21} + l_{32} l_{22} = 0_{32} & (j=2) \\ l_{31} l_{31} + l_{32} l_{32} + l_{33} l_{33} & (j=3=1) \\ and so foth \end{cases}$$
and so foth

so we can always calculate the lig coefficients using the following algorithm:

-> thus solves, in order,

$$\begin{cases} \ell_{1} = 1 \\ \ell_{21} = \frac{1}{\ell_{11}} \left[\alpha_{21} \right] \\ \ell_{21} = \frac{1}{\ell_{11}} \left[\alpha_{31} \right] \\ \ell_{N1} = \frac{1}{\ell_{11}} \left[\alpha_{N1} \right] \\ \ell_{22} = \sqrt{\alpha_{22} - \ell_{21}} \\ \ell_{32} = \frac{1}{\ell_{22}} \left[\alpha_{32} - \ell_{31} \ell_{21} \right] \\ \ell_{42} = \frac{1}{\ell_{22}} \left[\alpha_{42} - \ell_{41} \ell_{21} \right] \\ \ell_{N2} = \frac{1}{\ell_{22}} \left[\alpha_{N2} - \ell_{N1} \ell_{21} \right] \end{cases}$$

. etc

=> treats the matrix in the following order.

- Note: Recouse the matrix is possive definite, det A > 0.

 The diagonal elements are also possive definite
 - . In fact, if a diagonal element is v. small, it implies det A small => the system is near singular, in which case his method above is not appropriate.
 - > unless A is near singular, probing is not vecessary; if A is near singular, the Choleoky method will fail.