第14章 数项级数

14.1 无穷级数的基本性质

第14章 数项级数

14.1 无穷级数的基本性质

14.1.1 无穷级数的定义

14.1.2 收敛的必要条件

14.1.3 收敛级数的可加/可数乘性

14.1.4 收敛级数的可结合性

14.1.5 增加或去掉有限项

14.1.1 无穷级数的定义

无穷级数:
$$\sum_{n=1}^{\infty}a_n=a_1+a_2+\cdots+a_n+\cdots$$

部分和:
$$S_n = \sum_{k=1}^n a_k$$

级数收敛: $\lim_{n\to\infty} S_n = S$ 存在

否则,级数发散

14.1.2 收敛的必要条件

$$\lim_{n o\infty}a_n=0$$

14.1.3 收敛级数的可加/可数乘性

• !!! 前提!!!: 两级数都收敛

$$\sum_{k=1}^\infty a_k, \sum_{k=1}^\infty b_k$$
收敛

则
$$\sum_{k=1}^{\infty}(lpha a_k + eta b_k) = lpha \sum_{k=1}^{\infty} a_k + eta \sum_{k=1}^{\infty} b_k$$

14.1.4 收敛级数的可结合性

- 把 收敛级数 任意 结合
- 而 不改变 其 先后次序
- 与新级数和相同

$$\sum_{n=1}^{\infty} a_n = (a_1 + a_2 + \dots + a_{k_1}) + (a_{k_1+1} + \dots + a_{k_2}) + \dots + (a_{k_{n-1}+1} + \dots + a_{k_n}) + \dots$$

新级数:
$$b_n = a_{k_{n-1}+1} + \cdots + a_{k_n}$$

$$\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}b_n$$

• 正向: 已知 $\sum_{n=1}^\infty a_n$ 收敛,得 $\sum_{n=1}^\infty b_n$ 收敛

• 逆向:已知 $\sum_{n=1}^\infty b_n$ 收敛,且 括号中的项都同号,得 $\sum_{n=1}^\infty a_n$ 收敛

14.1.5 增加或去掉有限项

 $\sum_{n=1}^{\infty} a_n$ 前增加或去掉有限项,不影响级数的敛散性

14.2 正项级数的比较判别法

14.2 正项级数的比较判别法

14.2.0 默认讨论 正项级数

14.2.0.0 正项级数 $a_n \geq 0$

14.2.0.1 收敛的充分必要条件 S_n 有界

14.2.1 比较判别法

14.2.2 Cauchy 积分判别法

14.2.0 默认讨论 正项级数

- 14.2.0.0 正项级数 $a_n \geq 0$
- 14.2.0.1 收敛的充分必要条件 S_n 有界

14.2.1 比较判别法

两正向级数: $\sum_{n=1}^{\infty}a_n$ $\sum_{n=1}^{\infty}b_n$

大级数收敛,小级数也收敛,小级数发散,大级数也发散。

- 不等式形式
 - \circ 条件: n 充分大时, $a_n \leq b_n$
 - 。 结论:
 - 1. $\sum_{n=1}^{\infty}b_n$ 收敛,则 $\sum_{n=1}^{\infty}a_n$ 收敛
 - 2. $\sum_{n=1}^{\infty}a_n$ 发散,则 $\sum_{n=1}^{\infty}b_n$ 发散
- 极限形式

$$\lim_{n o\infty}rac{a_n}{b_n}=l$$

比较对象 $\sum_{n=1}^{\infty} b_n$ 当 分母

 $1.0 < l < +\infty$,级数数量级相同,同敛散

2. l=0, 若 $\sum_{n=1}^{\infty}b_n$ 收敛,则 $\sum_{n=1}^{\infty}a_n$ 收敛

3. $l=+\infty$ 若 $\sum_{n=1}^{\infty}b_n$ 发散,则 $\sum_{n=1}^{\infty}a_n$ 发散

14.2.2 Cauchy 积分判别法

条件:

1.
$$x \ge 1, f(x) \ge 0$$

$$f(x)$$
 递减

$$\sum_{n=1}^{\infty}f(n)$$
 与 $\int_{1}^{+\infty}f(x)dx$ 同敛散

14.3 正项级数的其它判别法

14.3 正项级数的其它判别法

14.3.0 默认讨论 正项级数

14.3.1 (Cauchy) 开方判别法

14.3.2 一个比较的引理

14.3.3 D'Alembert 判别法

14.3.4 Cauchy判别法条件更强

14.3.5 Raabe 判别法

14.3.6 Gauss 判别法

14.3.0 默认讨论 正项级数

14.3.1 (Cauchy) 开方判别法

本质:与 $\sum_{n=1}^{\infty}q^n$ 比较

• 不等式形式

1. 收敛

 $\exists q < 1$ 对 **充分大** 的 n 有

$$\sqrt[n]{a_n} \le q < 1$$

2. 发散

对 无穷多个 n, 有

$$\sqrt[n]{a_n} \ge 1$$

• 极限形式

$$\limsup_{n o\infty}\sqrt[n]{a_n}=q$$

1. 收敛 q < 1

q>1

3. 无法判断 q=1

14.3.2 一个比较的引理

条件:

$$n\geq n_0,\;\frac{a_{n+1}}{a_n}\leq \frac{b_{n+1}}{b_n}$$

1. 若 $\sum_{n=1}^{\infty}b_n$ 收敛, $\sum_{n=1}^{\infty}a_n$ 也收敛

2. 若 $\sum_{n=1}^{\infty}a_n$ 发散, $\sum_{n=1}^{\infty}b_n$ 也发散

14.3.3 D'Alembert 判别法

本质:与 $\sum_{n=1}^{\infty}q^n$ 比较

- 不等式形式
- 1. 收敛

 $\exists \ q < 1, n$ 充分大 时, 有

$$\frac{a_{n+1}}{a_n} \leq q$$

- 2. 发散
 - n 充分大 时,有

$$\frac{a_{n+1}}{a_n} \geq 1$$

- 极限形式
- 1. 收敛

$$\limsup_{n\to\infty}\frac{a_{n+1}}{a_n}=q<1$$

2. 发散

$$\liminf_{n o \infty} rac{a_{n+1}}{n} = q' > 1$$

3. 无法判断

$$q=1$$
 或 $q'=1$

14.3.4 Cauchy判别法条件更强

$$\liminf_{n\to\infty}\frac{a_{n+1}}{a_n}\leq \liminf_{n\to\infty}\sqrt[n]{a_n}\leq \limsup_{n\to\infty}\sqrt[n]{a_n}\leq \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

14.3.5 Raabe 判别法

本质: 与 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ 比较

- 不等式形式
- 1. 收敛

 $\exists r > 1$ *n* 充分大 时

$$n(\frac{a_n}{a_{n+1}}-1) \geq r$$

- 2. 发散
 - n 充分大 时

$$n(\frac{a_n}{a_{n+1}}-1) \leq 1$$

• 极限形式

$$\lim_{n o\infty}n(rac{a_n}{a_{n+1}}-1)=l$$
或 $rac{a_n}{a_{n+1}}=1+rac{l}{n}+o(rac{1}{n}),n o\infty$

- 1. 收敛 l>1
- 2. 发散 l < 1
- 3. 无法判断 l=1

14.3.6 Gauss 判别法

$$rac{a_n}{a_{n+1}} = 1 + rac{1}{n} + rac{eta}{n \ln n} + o(rac{1}{n \ln n}), n
ightarrow \infty$$

- 1. 收敛 $\beta > 1$
- 2. 发散 eta < 1
- 3. 无法判断 $\beta=1$

14.4 任意项级数

14.4 任意项级数

14.4.1 Cauchy 收敛原理

14.4.1.1 一个例子

14.4.2 交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$

14.4.2.1 Leibniz 判别法

14.4.3 $\sum_{n=1}^{\infty} a_n b_n$

14.4.3.0 Abel 分部求和公式

14.4.3.0 Abel 引理

14.4.3.1 Dirichlet 判别法

14.4.3.2 Abel 判别法

14.4.3.3 一个常见的部分和有界数列 $\cos nx$

14.4.1 Cauchy 收敛原理

收敛的 充分必要条件

 $orall \; arepsilon > 0 \; \exists \; N, ext{ if } n > N$, 对一切 $\; p \;$

$$|a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \varepsilon$$

14.4.1.1 一个例子

$$\{a_n\}$$
递减正数列, $\displaystyle\sum_{n=1}^{\infty}a_n$ 收敛, $\displaystyle\lim_{n o\infty}na_n=0$ \displaystyle 即 $\displaystylea_n=o(rac{1}{n})$

14.4.2 交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$

14.4.2.1 Leibniz 判别法

$$\{a_n\}$$
递减趋于零 $\Rightarrow \sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛

14.4.3
$$\sum_{n=1}^{\infty} a_n b_n$$

14.4.3.0 Abel 分部求和公式

$$\sum_{k=1}^n a_k b_k = \sum_{k=1}^{n-1} S_k (b_k - b_{k+1}) + S_n b_n$$
这里 $S_k = \sum_{l=1}^k a_l$

记
$$\Delta b_k = b_k - b_{k+1}$$
 $\sum_{k=1}^n a_k b_k = S_n b_n - \sum_{k=1}^{n-1} S_k \Delta b_k$ 对比 $\int v du = uv - \int u dv$

14.4.3.0 Abel 引理

单调 数列 $\{b_n\}$

部分和 有界数列 $\{a_n\}$, $S_k = \sum_{l=1}^k a_l \quad |S_k| \leq M$

$$|\sum_{k=1}^n a_n b_n| \leq M(|b_1| + 2|b_n|)$$

14.4.3.1 Dirichlet 判别法

- (a) $\{b_n\}$ 单调 **趋于零**
- (b) $\{S_k\}$ 有界

14.4.3.2 Abel 判别法

- (a) $\{b_n\}$ 单调 **有界**
- (b) $\sum_{n=1}^{\infty} a_n$ 收敛

14.4.3.3 一个常见的部分和有界数列 $\cos nx$

$$|\sum_{n=1}^{N} \cos nx| = |rac{\sin{(N+rac{1}{2})x} - \sin{rac{x}{2}}}{2\sin{rac{x}{2}}}| \leq rac{1}{|\sin{rac{x}{2}}|} \ x
eq 2k\pi, k = 0, \pm 1, \pm 2, \cdots$$

14.5 绝对收敛和条件收敛

14.5 绝对收敛和条件收敛

14.5.0 讨论交换求和次序,和改变的条件

14.5.1 绝对收敛必定条件收敛

14.5.2 交换绝对收敛级数

14.5.3 交换条件收敛级数(Riemann定理)

14.5.0 讨论交换求和次序,和改变的条件

绝对收敛 $\sum_{n=1}^{\infty}|a_n|$ 收敛

条件收敛 $\sum_{n=1}^{\infty} a_n$ 收敛

14.5.1 绝对收敛必定条件收敛

14.5.2 交换绝对收敛级数

- 交换 无穷多项 的次序
- 新级数仍收敛
- 和不变

14.5.3 交换条件收敛级数(Riemann定理)

- 适当交换次序
- ullet 可收敛到事先指定的任意实数 S
- 也可以发散到 +∞ 或 -∞

14.6 级数的乘法

此节主要讨论 Cauchy 乘积

14.6 级数的乘法

14.6.0 Cauchy 乘积

14.6.1 Cauchy(任意方式相加)

14.6.2 Mertens(判断收敛的条件)

14.6.3 Abel(已知收敛)

设

$$\sum_{n=1}^{\infty}a_n=A\;,\sum_{n=1}^{\infty}b_n=B$$

14.6.0 Cauchy 乘积

对无穷矩阵按对角线相加

$$c_n = \sum_{i+j=n+1} a_i b_j$$

14.6.1 Cauchy(任意方式相加)

- 相乘的两级数都 绝对收敛
- 任意方式所加的得到级数都是 绝对收敛
- 为AB

14.6.2 Mertens(判断收敛的条件)

- 若 至少一个绝对收敛
- 则 Cauchy 乘积 **收敛** 且 $\sum_{n=1}^{\infty} c_n = AB$

14.6.3 Abel(已知收敛)

- 若 Cauchy 乘积 收敛
- 则 $\sum_{n=1}^{\infty} = AB$

14.7 无穷乘积

建立在无穷和的基础上

$$\prod_{n=1}^{\infty}p_n=p_1p_2\cdots p_n\cdots$$

$$P_n = \prod_{n=1}^n = p_1 \cdots p_n$$

14.7.1 收敛发散的定义

收敛

$$\lim_{n o}P_n=P
eq 0$$

发散

$$\lim_{n \to \infty} P_n = 0$$
 或 不存在

14.7.2 收敛的必要条件

$$\lim_{n o\infty}p_n=1$$

14.7.3 无穷和与无穷乘积的关系

14.7.3.1 $\prod_{n=1}^{\infty}(1+a_n)$ 收敛的充分必要条件

$$\sum_{n=1}^{\infty} \ln\left(1+a_n
ight) = S$$
 收敛

$$\mathbb{H}\prod_{n=1}^{\infty}(1+a_n)=e^S$$

以下讨论上述两级数的关系

14.7.3.2 同敛散条件

独立两个条件

1. 从某个
$$n$$
起, $a_n > 0$ 或 $a_n < 0$

2.
$$\sum_{n=1}^{\infty} a_n^2 < +\infty$$

14.7.3.3 $\prod_{n=1}^{\infty}(1+a_n)=0$ 发散到0的条件

独立的两个条件

1.
$$-1 < a_n < 0$$
, $\sum_{n=1}^{\infty} a_n$ 发散

2.
$$\sum_{n=1}^{\infty}a_n$$
 收敛, 但 $\sum_{n=1}^{\infty}a_n^2$ 发散