India

National Olympiad

2001

- 1 Let ABC be a triangle in which no angle is 90° . For any point P in the plane of the triangle, let A_1, B_1, C_1 denote the reflections of P in the sides BC, CA, AB respectively. Prove that
 - (i) If P is the incenter or an excentre of ABC, then P is the circumenter of $A_1B_1C_1$;
 - (ii) If P is the circumcentre of ABC, then P is the orthocentre of $A_1B_1C_1$;
 - (iii) If P is the orthocentre of ABC, then P is either the incentre or an excentre of $A_1B_1C_1$.
- Show that the equation $x^2 + y^2 + z^2 = (x y)(y z)(z x)$ has infintely many solutions in integers x, y, z.
- $\boxed{3}$ If a, b, c are positive real numbers such that abc = 1, Prove that

$$a^{b+c}b^{c+a}c^{a+b} < 1.$$

- 4 Show that given any nine integers, we can find four, a, b, c, d such that a + b c d is divisible by 20. Show that this is not always true for eight integers.
- 5 ABC is a triangle. M is the midpoint of BC. $\angle MAB = \angle C$, and $\angle MAC = 15^{\circ}$. Show that $\angle AMC$ is obtuse. If O is the circumcenter of ADC, show that AOD is equilateral.
- 6 Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x)f(y)f(xy) for all $x, y \in \mathbb{R}$.