Отчет по лабораторной работе N2

Измерение статических характеристик биполярного транзистора

Выполнили студенты 440 группы Есюнин Д.В., Есюнин М.В.

1. Теоретическая часть

1.1. Введение

Принцип действия биполярного транзистора состоит в управлении током неосновных носителей заряда, инжектируемых эмиттерным p-n переходом в базу и достигающих коллекторного p-n перехода, включенного в запорном направлении.

Управление током, протекающим через транзистор, достигается при помощи изменении высоты энергетических барьеров p-n переходов: прямосмещенного эмиттерного и обратносмещенного коллекторного. Биполярный транзистор является прибором, управляемым током — малый ток базы управляет большим током, протекающим из эмитера в коллектор.

1.2. Устройство биполярного транзистора

Рис. 1

Прибор представляет собой монокристалл, содержащий три полупроводниковых области с различным типом проводимости, которые образуют между собой два p-n перехода, а с наружными металлическими электродами – омические контакты.

Как видно из рис. 1а ток, за исключением периферийных областей, течет перпендикулярно границам p-n переходов. Обычно краевыми эффектами на периферии структуры пренебрегают, так как толщина слоя базы много меньше её латеральных размеров. Идеализированная одномерная структура транзистора представлена на рис. 1.

Отметим две принципиальные конструктивно-технологические особенности транзисторов:

• Малая толщина базы по сравнению с диффузионной длиной дырок L_p , являющихся в базе неосновными носителями.

• Относительно малая степень легирования материла базы примесными атомами по сравнению с эмиттером и коллектора.

1.2.1 Схема включение транзистора

Несмотря на то, что схема включения транзистора непосредственно не влияет на физику его работы, она определяет граничные условия на контактах. На рис. 6 приведены две схемы включения транзистора: с общей базой (ОБ) и общим эмиттером (ОЭ).

Рис. 2

1.2.2 Зонная диаграмма транзистора в активном режиме

Присоединим источники напряжения к клеммам транзистора. При нормальном включении, обеспечивающим активный режим, на эмиттерный переход должно быть подано прямое смещение, а на коллекторный переход обратное. На рис. 2 показано включение источников по схеме с общей базой при котором вывод базы является общим для обоих источников питания. При малом уровне инжекции (т.е. вброса электронов и дырок соответственно области и n-типа) электрическое поле вне перехода равно нулю. Тогда на достаточном удалении от границ переходов носители находятся в состоянии термодинамического равновесия, а уровни Ферми располагаются относительно краев зон в соответствующих областях так же, как в равновесном транзисторе (рис. 46). На рис. 76 изображена зонная диаграмма транзистора в активном режиме работы. Перепад уровней Ферми в областях — n переходов соответствие приложенным к этим переходам напряжениям. Кроме того, приложенные напряжения приводят к трансформации зонной диаграммы.

• Эмиттерный переход, находящийся под прямым смещением, сужается, а высота потенциального барьера в переходе уменьшается на e_0U_{96} ;

• Обратно-смещенный коллекторный переход расширяется, а высота потенциального барьера увеличивается на величину $e_0U_{\kappa 6}$.

Рис. 3

2. Практическая часть

2.1. Измерение входной характеристики транзистора $I_{\bf 6} = f(U_{\bf 6})$

Для измерения входной характеристики транзистора собрали схему № 1, изображенную на рис. (4). Сняли зависимость тока базового перехода от напряжения на нем.

Рис. 4: Измерительная схема №1

U_6 ,	В	0.2	0.4	0.6	0.7	0.8	0.9	1	1.2	1.4	1.6	1.8	2	2.1
I_6 , M	A	0	0	0.0024	0.017	0.062	190	274	1.75	2.7	3.6	4.6	5.54	6

Рис. 5: входная характеристика транзистора $I_6 = f(U_6)$

2.2. Измерение переходных характеристик транзистора $I_{\mathbf{k}} = f(U_{\mathbf{6}})$

Рис. 6: Измерительная схема №2

Для выполнения этого задания собрали измерительную схему N 2 (6). Провели измерение семейства переходных характеристик при напряжениях на коллекторе транзистора $0.5~\mathrm{B},~1~\mathrm{B}$ и $5~\mathrm{B}.$

$U_k =$	0.5 B	$ U_k $	= 1 B	$U_k = 1.5 \text{ B}$		
U_6 , B	$ I_k, MA $	U_6 , B	I_k , мА	U_6 , B	I_k , мА	
1	0.02	1	0.02	1	0.02	
1.5	0.1	1.5	0.13	1.5	0.12	
2	0.25	2	0.26	2	0.25	
2.5	0.38	2.5	0.43	2.5	0.41	
3	0.59	3	0.62	3	0.62	
3.5	0.8	3.5	0.82	3.5	0.82	
4	1	4	1.04	4	1.04	
4.5	1.23	4.5	1.26	4.5	1.27	
5	1.45	5	1.52	5	1.51	
6	1.82	6	2	6	2.06	
7	2.08	7	2.56	7	2.6	
8	2.22	8	3.06	8	3.14	
9	2.34	9	3.64	9	3.69	
10	2.41	10	4.18	10	4.24	

Рис. 7: переходная характеристика транзистора $I_{\kappa}=f(U_{\rm 6})$

2.3. Измерение выходных характеристик транзистора $I_{\mathbf{k}} = f(U_{\mathbf{k}})$

Выполнение этого задания производится при включении транзистора по схеме \mathbb{N}^2 (6). Были проведены измерения семейства выходных характеристик при токах базы транзистора 20 мкA, 40 мкA, 60 мкA и 80 мкA.

$I_{\rm f}=20$ мк ${ m A}$		$I_6 = 40$ мкА		$I_6=6$	60 мкА	$I_6 = 80$ мкА		
U_{κ} , B	I_k , мА	U_{κ} , B	I_k , мА	U_{κ} , B	I_k , мА	U_{κ} , B	$ I_k, \text{ MA} $	
0.2	0.09	0.2	0.13	0.2	0.26	0.2	0.37	
0.3	0.16	0.3	0.48	0.3	0.64	0.3	0.8	
0.4	0.24	0.4	0.84	0.4	1.22	0.4	1.6	
1	0.25	0.5	1	0.5	1.81	0.5	2.01	
2	0.26	1	1.03	0.6	1.96	0.6	2.87	
3	0.27	2	1.07	1	2.03	1	3.07	
4	0.27	3	1.1	2	2.1	2	3.18	
5	0.28	4	1.12	3	2.17	3	3.28	
6	0.29	5	1.16	4	2.22	4	3.36	
7	0.3	6	1.2	5	2.28	5	3.45	
8	0.32	7	1.25	6	2.35	6	3.56	
9	0.35	8	1.36	7	2.47	7	3.72	
10	0.43	9	1.55	8	2.67	8	4	
		10	2.02	9	3.07	9	4.56	
				10	3.94	9.2	4.76	
						9.4	4.92	
						9.6	5.1	
						9.8	5.36	
						10	5.66	

Рис. 8: выходная характеристика транзистора $I_{\kappa} = f(U_{\kappa})$

2.4. Расчёт параметров транзистора

Рассмотренные в теоретической части эквивалентные схемы не являются единственно возможными. В литературе можно встретить множество других схем, в частности, П-образные схемы. С точки зрения схемотехники выбор конкретной схемы не имеет существенного значения. Достаточно представить транзистор в виде некоторого бесструктурного четырехполюсника, и задать связи между входными и выходными величинами.

В приближении малого сигнала 4-х полюсник является линейным и упомянутым связям соответствует система двух линейных уравнений. Естественно, что коэффициенты уравнений (параметры 4-х полюсника) зависят не только от физических свойств транзистора и режима, но также от его схемы включения и выбора каких-то двух величин из 4-х в качестве управляющих переменных.

Преимуществом такого подхода является устранение произвола, связанного с выбором той или иной эквивалентной схемы, т.к. величины параметров определяются непосредственно из уравнений транзистора.

Рассмотрим для иллюстрации определение h-параметров транзистора для включения с общим эмиттером. Для h-системы в качестве независимых (управляющих) переменных выбираются входной ток и выходное напряжение. В результате уравнения линейного 4-х

полюсника имеет вид:

$$U_{\text{bx}} = h_{11}i_{\text{bx}} + h_{12}U_{\text{bx}},$$

$$i_{\text{bhix}} = h_{21}i_{\text{bx}} + h_{22}U_{\text{bhix}}.$$
(1)

Из (1) следует, что

$$h_{11} = \left(\frac{U_{\text{BX}}}{U_{\text{BMX}}}\right)\Big|_{i_{\text{BX}}=0} \quad h_{12} = \left(\frac{U_{\text{BX}}}{i_{\text{BX}}}\right)\Big|_{U_{\text{BMX}}=0}$$

$$h_{21} = \left(\frac{i_{\text{BMX}}}{i_{\text{BX}}}\right)\Big|_{U_{\text{BMX}}=0} \quad h_{22} = \left(\frac{i_{\text{BMX}}}{U_{\text{BMX}}}\right)\Big|_{i_{\text{BX}}=0}$$

$$(2)$$

Согласно (4), h_{11} имеет смысл входного сопротивления 4-х полюсника при закороченном выходе; h_{12} — коэффициент обратной связи по напряжению, при разомкнутом входе; h_{21} — коэффициент усиления по току при закороченном выходе; h_{22} — выходная проводимость при разомкнутом входе. Для системы с ОЭ:

$$i_{\text{bx}} = i_{\text{6}} \quad i_{\text{bbix}} = i_{\text{K}}$$

$$U_{\text{bbix}} = U_{\text{K}} + U_{\text{9}} = U_{\text{K}}^*$$

$$(3)$$

Отсюда можно получить h-параметры через основные параметры транзистора:

$$h_{11} = r_6 + \frac{r_9}{1 - \alpha}, \quad h_{12} = \frac{r_9}{2(1 - \alpha)r_{\kappa}},$$
 $h_{21} = \beta = \frac{\alpha}{1 - \alpha}, \qquad h_{22} = \frac{1}{(1 - \alpha)r_{\kappa}}$

Формулы (3) служат в качестве исходных при измерениях h-параметров. Согласно (3) они определяются из опытов при условии короткого замыкания на выходе или холостого на входе. Поскольку выходная цепь в схеме с ОЭ является высокоомной, а входная, наоборот — низкоомной, указанные эксперименты не вызывают затруднений. Именно поэтому h-система наиболее удобна для схем с ОЭ и ОБ. Отметим, что величины h- одного и того же транзистора при различных схемах включения транзистора также различны.

h-параметры будем рассчитывать при $I_6=40$ мк $A,U_{\kappa}=5$ В. Из прямой характеристи- ки перехода база-эмиттер мы можем найти сопротивление базы $R_6=h_{11}=\frac{\Delta U_6}{\Delta I_6}$

$$h_{11} = \left(\frac{U_6}{i_6}\right) \Big|_{U_{\kappa} = 5 \text{ B}} = \frac{(2 - 1.2) \text{ B}}{(5.54 - 1.75) \text{ MA}} \approx 211 \text{ OM}$$

$$h_{12} = \left(\frac{U_6}{U_{\kappa}}\right) \Big|_{i_6 = 40 \text{ MKA}} = \frac{i_6 \cdot R_6}{U_{\kappa}} = \frac{40 \text{ MKA} \cdot 211 \text{ OM}}{5 \text{ B}} \approx 0,042$$

$$h_{21} = \left(\frac{i_{\kappa}}{i_6}\right) \Big|_{U_{\kappa} = 5 \text{ B}} = \frac{1.16 \text{ MA}}{40 \text{ MKA}} = 29$$

$$h_{22} = \left(\frac{i_{\kappa}}{U_{\kappa}}\right) \Big|_{i_6 = 40 \text{ MKA}} = \frac{1.16 \text{ MA}}{5 \text{ B}} = 0.23 \text{ OM}^{-1}$$
(4)

По результатам проведённых измерений были рассчитаны и построены зависимости коэффициента передачи тока от напряжения коллектора при токах коллектора 2 мА и 5 мА.

Для транзистора, включенного по схеме с общим эмиттером, уравнение (4) примет вид

$$h_{11} = \left(\frac{U_6}{U_9}\right)\Big|_{i_{\kappa}=0} \qquad h_{12} = \left(\frac{U_{\kappa}}{i_{\kappa}}\right)\Big|_{U_9=0}$$

$$h_{21} = \left(\frac{i_9}{i_{\kappa}}\right)\Big|_{U_9=0} \qquad h_{22} = \left(\frac{i_9}{U_9}\right)\Big|_{i_{\kappa}=0}$$

Коэффициент передачи по току для схемы с ОЭ

$$K_i(U_{ exttt{ iny K}}) = rac{i_{ exttt{ iny K}}}{i_{ exttt{ iny 6}}} = rac{lpha}{lpha-1},$$
 где $lpha = rac{i_{ exttt{ iny K}}}{i_{ exttt{ iny 6}}+i_{ exttt{ iny K}}}$

По результатам измерений, приведенных в предыдущем параграфе, были рассчитаны коэффициенты передачи тока при токе коллектора 2 мА и 4 мА.

$$lpha_1 = rac{2 \text{ MA}}{60 \text{ MKA} + 2 \text{ MA}} = 0.971, K_1 = 332$$
 $lpha_2 = rac{4 \text{ MA}}{80 \text{ MKA} + 4 \text{ MA}} = 0.980, K_2 = 499$

2.5. Измерение коэффициента усиления однокаскадного усилителя

В данном опыте была собрана схема однокаскадного усилителя (см. рис. 9) и произведено измерение его коэффициента усиления в зависимости от частоты входного сигнала. Амплитуда сигнала с генератора соответственно равна A=16,1 мВ, напряжение $_1=6$ В, $_2=8.1$ В, сила тока коллектора $I_{\rm K}=3,07$ мА

Рис. 9: Однокаскадный усилитель

Рис. 10: Коэффициент усиления однокаска
дного усилителя. Пунктиром отмечена высота, соответствующая уровню
 $\frac{1}{2}$ относительно максимума

Полосой пропускания будем считать ординаты $K(\nu)$, соответствующие уровню 0.5 от максимума функции $K(\nu)$. Получаем полосу:

$$\nu_{\rm min} = 120~\Gamma \rm II, \quad \nu_{\rm makc} = 500~\rm k \Gamma \rm II$$

$$\nu_{\rm min} < \nu < \nu_{\rm makc}$$

2.6. Измерение времени переключения транзистора

Используйте измерительную схему № 3(9). Установили для транзистора режим отсечки: напряжение $E_1=6$ В, ток базы – ноль, при этом ток коллектора должен быть равен нулю, напряжение на коллекторе около 6 В. Подали с генератора прямоугольный сигнал «меандр» частотой 120...150 кГц, напряжением 2...3 В. Получите на осциллографе выходной сигнал. Подстройте уровень входного сигнала так, чтобы транзистор переключался из режима отсечки в режим насыщения A=8,1 мВ. Измерили зависимость времени переключения транзистора из режима отсечки в режим насыщения и из режима насыщения в режим отсечки от тока базы транзистора.

I_6 , мкА	$ \tau_{\text{O} \to \text{H}}, \text{ MKC} $	$\tau_{{\scriptscriptstyle { m H}} ightarrow { m O}}, {\scriptscriptstyle { m MKC}}$		
0	2.5	1.5		
6	2	1.5		
22	1.5	1		
52	1	1		
100	0.7	1		

Рис. 11: Зависимость времени переключения транзистора от тока базы транзистора

3. Вывод

Были изучены некоторые элементы теории p-n-p переходов, сняты экспериментальные данные, по которым построены входная, переходная и выходная характеристики транзистора. По результатам измерений ВАХ найдены: коэффициент передачи тока и времена переключения транзистора из режима насыщения в режим отсечки.