Exam 2

Cody Frisby

11/13/2017

1.

Polovija a plot of the Diamenda dataset. As san he seen. Count is highly completed with I

Below is a plot of the  $\tt Diamonds$  dataset. As can be seen,  $\tt Carat$  is highly correlated with  $\tt Value$  among other variables.



Model table is below.

|             | Estimate   | Std. Error | t value    | $\Pr(> t )$ |
|-------------|------------|------------|------------|-------------|
| (Intercept) | -64.942549 | 17.19645   | -3.7765086 | 0.0002786   |
| Color       | 96.194119  | 16.03415   | 5.9993277  | 0.0000000   |
| Cut         | 1.702045   | 13.30199   | 0.1279542  | 0.8984586   |
| Clarity     | 29.811706  | 11.45695   | 2.6020637  | 0.0107661   |
| Carat       | 358.430314 | 68.85559   | 5.2055366  | 0.0000011   |

#### Α.

Cut is not a significant predictor of Value and should NOT be included in the model.

#### В.

**Color** is the most significant predictor in the model (p < 0.000001).

#### C.

The model explains 96.7040882% of the variation in **Value**. This is the  $\mathbb{R}^2$  value of the model. We can interpret it as the amount of variation in Y that is explained by X.

#### D. Predictions

The preditions for the table of values is below.

| Color | Cut | Clarity | Carat | ${\it predictedValue}$ |
|-------|-----|---------|-------|------------------------|
| 4     | 3   | 3       | 0.65  | 647.3549               |
| 5     | 1   | 8       | 0.55  | 853.3604               |
| 7     | 3   | 7       | 0.94  | 1159.1289              |

#### **2**.

Below is a histogram of our predicted probabilities for the "**InvestmentMarketing**" dataset. I've drawn a vertical line at 0.5 which can be thought of as our cutoff. All the values to the right of the line would be our "yes" class.

### **Predicted Probabilities (Logistic Regression)**



#### Α.

Counting all the values that meet the criteria  $(0.5 \ge)$  the total number is 37.

#### В.

The largest predicted value is 0.8450046. This means, according to our model, that there is a 0.8450046 probability that they will use investment services.

#### C.

The table below shows the coefficients of the model with their probabilities. As can be seen, the worst predictor is **region**.

|               | Estimate   | Std. Error | z value    | Pr(> z )  |
|---------------|------------|------------|------------|-----------|
| (Intercept)   | -1.6040438 | 0.5983053  | -2.6809789 | 0.0073407 |
| age           | 0.0144510  | 0.0128132  | 1.1278165  | 0.2593974 |
| sex           | 0.6223115  | 0.2525679  | 2.4639377  | 0.0137420 |
| region        | -0.0217950 | 0.1062455  | -0.2051384 | 0.8374640 |
| income        | 0.0000394  | 0.0000150  | 2.6360381  | 0.0083880 |
| children      | -0.1608996 | 0.1176948  | -1.3670928 | 0.1715962 |
| car           | -0.2120860 | 0.2500121  | -0.8483029 | 0.3962693 |
| personal_loan | -0.3307559 | 0.2732410  | -1.2104917 | 0.2260903 |
| mortgage      | -0.1862119 | 0.2657417  | -0.7007252 | 0.4834745 |

# 3. Using a Decision Tree, predict the spending group for the following individuals:

For this tree I used cp = 0.01 using the training dataset to build the tree.



#### A. 44 year old man who pays for his Deluxe, non-international account using a credit card.

**Ultra-High** is the predicted class.

#### B. High school student who pays cash for a Basic account with no added features

**High** is the predicted class.

## C. 17 year old who uses bank transfer to pay for a Basic account, but has added on features including international calling, voice messaging, call forwarding.

Medium is the predicted class.

4.

#### A.

For the predictions of each class the counts for each class are shown in the table below.

| High | Low | Medium | UltraHigh |
|------|-----|--------|-----------|
| 5    | 2   | 1      | 0         |

#### В.

Below is a table with the predicted probabilites for each class using a naive bayes model. As we can see, **ID182710** (catagory = Low) has the largest probability.

|          | High      | Low       | Medium    | Ultra High |
|----------|-----------|-----------|-----------|------------|
| ID182710 | 0.0981106 | 0.6492650 | 0.2466314 | 0.0059930  |
| ID182711 | 0.2597828 | 0.0061792 | 0.4356713 | 0.2983667  |
| ID182712 | 0.6445454 | 0.0001216 | 0.0952133 | 0.2601196  |
| ID182713 | 0.5073473 | 0.0281416 | 0.4478163 | 0.0166948  |
| ID182714 | 0.1312979 | 0.5330971 | 0.3299499 | 0.0056551  |
| ID182715 | 0.4390724 | 0.0004018 | 0.2372534 | 0.3232724  |
| ID182716 | 0.4934884 | 0.0018658 | 0.1153727 | 0.3892731  |
| ID182717 | 0.4020849 | 0.2456343 | 0.3402386 | 0.0120422  |
|          |           |           |           |            |

#### C.

The most likely group (among men and women) appears to be women, but only slightly. Below is the table values for the conditional probabilities for variable **sex**.

|            | F         | M         |
|------------|-----------|-----------|
| High       | 0.4698795 | 0.5301205 |
| Low        | 0.5000000 | 0.5000000 |
| Medium     | 0.4362416 | 0.5637584 |
| Ultra High | 0.5308642 | 0.4691358 |

**5.** 

Like I did in the homework, I first standardize the variables by diving each element of the variable by the range, i.e.

$$\frac{x_i}{range(X)}$$

where  $x_i$  is the ith element of the Xth variable.

The predicted number of each catagory is in the table below.

| High | Medium | Low | Lowest |
|------|--------|-----|--------|
| 4    | 26     | 12  | 1      |

The person(s) with the largest probability of being promoted are 3835921, 6439891, 8903741, 7787991. These people have probability of close to 1 for class = High.Priority.