MAT1375, Classwork8, Fall2025

Ch8. Graphing Polynomials

1. The End Behavior of the polynomials and the Leading Coefficient Test:

As x goes to ∞ or $-\infty$, the graph of polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0, \quad (a_n \neq 0)$$

either rises or falls eventually. Here, we can conclude this into the following table

2. Roots of a Function and *x*-intercepts.

A <u>root</u>, or <u>solution</u> of a polynomial f(x) is **a number** c so that f(c) =_____.

Each **real** root/zero/solution of the polynomial f(x) appears as an X of the graph of f(x). (Here '**real**' means not a complex number)

Degree	Number of the roots	Graph of the polynomial of that degree
	At most 2 (real) roots	
		2 (real) roots (x=2, x=2) NO (real) roots
3	At most 3 (real) noots	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4	At most 4 (real) nots	4 (real) mots (x=0, x=1, x=2, x=3s)

3. Multiplicity of the root and x-intercepts.

Let $f(x) = (x - r)^n$ where r is the _____ of f and this root repeats ____ times. We call r a root with

The graph _____ the x-axis and at the root r.

The graph _____ the x-axis at the root r.

The graph tends to **flatten out** near the roots with **multiplicity** greater than _____

4. **Turning Points** of Polynomial Functions:

Let f(x) be a polynomial function of **degree** n, then the graph of f has at most turning points.

5. The essential part for drawing a complete graph of f:

- End Behavior by ______ test (how the function behaves when ____ approaches _____)
- All roots (which are ____- intercepts) with the Multiplicities
- All y-intercepts (the values by computing)
- All asymptotes (for rational functions in next chapter)
- Turning points with Extrema (that is all _____ and ____)

6. The domain of a polynomial f is ______, and it is continuous for all real numbers and there

are no ______, no ______ or _____ asymptotes, and no _____

The following graphs **cannot** be graphs of polynomials:

