שיעור 1 תורת המספרים

1.1 הגדרות בסיסיות

הגדרה 1.1

יהיו a,b מספרים שלמים. אומרים כי b מחלק את a אם קיים מספר שלם c כך ש-

$$a = qb$$
.

q שווה למספר שלם כלומר $\frac{a}{b}$

a אומר כי b מחלק את $b \mid a$

דוגמה 1.1

- 6=3q -כך ש- q=2 כך שקיים מספר שלם 3 $\mid 6\mid$
- 42 = 7q -כך ש- 7 כך שלם מספר שליים מספר 7 בגלל שקיים מספר שליים q = 6
 - .8=5q -בגלל שלא קיים מספר שלם בגלל שלא ל $5 \nmid 8$

b -ל a יחס שקילות בין a ל-

נניח כי $a,b\in\mathbb{Z}$ מספרים שלמים ו- $a,b\in\mathbb{Z}$ מספרים

 $a \equiv b \mod m$

m|a-b כלומר כי a-b אומר התפרש מחלק את מחלק

a=qm+b -בנסוח שקול, $a\equiv b\mod m$ אם קיים שלם $a\equiv b\mod m$

a'' שקול ל-a'' מודולו לעתים אומרים כי

דוגמה 1.2

הוכיחו כי

 $5 \equiv 2 \mod 3$ ×

 $43 \equiv 23 \mod 10$ ב

 $7 \not\equiv 2 \mod 4$ ک

פתרון:

(N

$$5-2=3=1\cdot 3 \quad \Rightarrow \quad 3\mid 5-2 \quad \Rightarrow \quad 5\equiv 2 \mod 3$$
 .

(Þ

$$43 - 23 = 20 = 2 \cdot 10 \implies 10 \mid 43 - 23 \implies 43 \equiv 23 \mod 10$$
.

.7 - 2 = 5 (a)

לא קיים שלם
$$q$$
 כך ש- $q=4$ לכן $q=7$ לכן לא קיים שלם

 $7 \not\equiv 2 \mod 4$.

הגדרה 1.3 השארית

נתונים מספרים שלמים $a,b\in\mathbb{Z}$ היחס

a % b

b ב- a מציין את השארית בחלוקת

דוגמה 1.3

$$43 \% 10 = 3$$
.

$$13 \% 4 = 1$$
.

$$8 \% 2 = 0$$
.

$$-10 \% 3 = -1$$
.

משפט 1.1 משפט החילוק של אוקלידס

-יחידים עלמים q,r מספרים שלמים $b\neq 0$ שלמים שלמים יהיו יהיו מספרים מספרים א

$$a = qb + r$$

0 < r < |b| כאשר

- נקרא ה מודולו, $b \bullet$
 - נקראת המנה $q \bullet$
- ואילו r נקרא השארית. \bullet

.r = a % b שימו לב:

הוכחה: ההוכחה למטה בדף 19. והיא לא חלק של הקורס.

דוגמה 1.4

a=bq+r עבור המספרים את מצאו b=8 ,a=46 עבור

פתרון:

עבור b=8 ו- a=46 מתקיים

$$46 = 8 \cdot 5 + 6 \implies q = 5, r = 6.$$

דוגמה 1.5

עבור b=8 ו- a=-46 מתקיים

$$-46 = 8 \cdot (-6) + 2$$
 \Rightarrow $q = -6, r = 2$.

משפט 1.2 נוסחת השארית

נתונים a,b>0 מספר שלמים.

$$.a~\%~b=a-b\left\lfloor rac{a}{b}
ight
floor$$
 (ম

$$(-a)$$
 % $b=b-(a$ % $b)=b\left\lceil rac{a}{b}
ight
ceil-a$ (2

הוכחה:

-ע כך q,r כך שלמים שלמים אוקלידס 1.1, קיימים שלמים א

$$a = qb + r \tag{*1}$$

נחלק ב- b ונקבל .r = a % מולק ב- $0 \le r < b$ כאשר

$$\frac{a}{b} = q + \frac{r}{b} \tag{*2}$$

(*2) נשים לב כי
$$\frac{r}{b} < 1$$
, לכן לפי

$$\left\lfloor \frac{a}{b} \right\rfloor = q \ .$$

נציב זה ב- (1*) ונקבל

$$a = \left\lfloor \frac{a}{b} \right\rfloor b + r \quad \Rightarrow \quad r = a - b \left\lfloor \frac{a}{b} \right\rfloor \ .$$
 (*3)

-ט כך $q', 0 \leq r' < b$ כלמים שלמים אוקלידס 1.1, קיימים שלמים בי

$$-a = q'b + r'$$

מכאן r' = (-a) % b כאשר

$$a = -q'b - r' = -q'b - b + b - r' = -(q'+1)b + (b-r')$$
 . (*4)

נשים לב כי r=a % שיר (*1) אבל לפי (1*) אבל לפי r-a אבל כי a=qb+r לפי

$$r=b-r'$$
 \Rightarrow $r'=b-r$ (*3) משוואה $b-a+b\left|\frac{a}{b}\right|=b-\left(a-b\left|\frac{a}{b}\right|\right)=b-\left(a\% b\right)$. (*5)

$$.r' = (-a)$$
 % $b = b - (a$ % $b)$ לכן

הזהות השני מנובע מ- (5*):

$$r = b - r' \quad \Rightarrow \quad r' = b - r \stackrel{\text{(*3)}}{=} b - a + b \left| \frac{a}{b} \right| - a + \left\lceil \frac{a}{b} \right\rceil \ .$$

$$.r'=(-a)$$
 % $b=-a+\left\lceil rac{a}{b}
ight
ceil$ לכן

דוגמה 1.6

.101 % את 7 מצאו את .101

פתרון:

$$b = 7$$
 , $a = 101$

101 %
$$7 = 101 - 7 \left| \frac{101}{7} \right| = 101 - 7(14) = 3$$
.

דוגמה 1.7

-101 % את מצאו את -101

פתרון:

לפיכך (101 % 7) = 3 מדוגמה הקודמת: (-a) % b=b-(a % m) לפיכך .b=7 , -a=-101 (-101) % 7=7-(101 % 7)=7-3=4 .

מבדרה 1.4 המחלק המשותף הגדול ביותר gcd

a,b>0 נתונים שני מספרים שלמים

המספר (greatest common dividor) $\gcd(a,b)$ מסומן b ו המחלק ביותר של הגדול ביותר של a והם b וגם a וגם a וגם ביותר שמחלק ביותר שמחלק ביותר שמחלק וגם a

דוגמה 1.8

$$\gcd(2,6) = 2$$
,

$$\gcd(3,6) = 3$$
,

$$\gcd(24,5) = 1$$
,

$$\gcd(20,10)=10$$
,

$$gcd(14, 12) = 2$$
,

$$\gcd(8, 12) = 4$$
.

הגדרה 1.5 כפולה משותפת קטנה ביותר

a,b>0 נתונים שני מספרים שלמים

הכפולה המשותפת הקטנה ביותר מסומן (lowest common multiple) $\mathrm{lcm}(a,b)$ הספר השלם ביותר ש החטנה ביותר ש b ו- a מחלקים אותו.

דוגמה 1.9

$$lcm(6, 21) = 42$$
,

$$lcm(3,6) = 6$$
,

$$lcm(24,5) = 120$$
,

$$lcm(20, 10) = 20$$
,

$$lcm(14, 12) = 84$$
,

$$lcm(8, 12) = 24$$
.

הגדרה 1.6 מספרים זרים

נניח כי $a \geq 1$ ו- $b \geq 2$ מספרים שלמים. אומרים כי $a \geq 1$ ו- $a \geq 1$ מספרים ארים אם

$$gcd(a,b) = 1$$
.

במילים פשוטות, שני מספרים שלמים נקראים **מספרים זרים** אם המחלק המשותף המקסימלי שלהם הוא 1, כלומר, אין אף מספר גדול מאחת שמחלק את שניהם.

משפט 1.3 משפט הפירוק לראשוניים

המשפט היסודי של האריתמטיקה או משפט הפירוק לראשוניים קובע כי כל מספר טבעי ניתן לרשום כמכפלה יחידה של מספרים ראשוניים.

ז"א, יהי $a\in\mathbb{N}$ כל מספר טבעי. אז

$$a = p_1^{e_1} \times p_2^{e_2} \times \dots \times p_n^{e_n} .$$

. כאשר p_1,\ldots,p_n מספרים ראשוניים ו- $e_1\ldots e_n\in\mathbb{N}$, והפירוק הזה יחיד.

דוגמה 1.10

$$60 = 2^2 \times 3^2 \times 5 ,$$

דוגמה 1.11

$$98 = 2^1 \times 7^2$$
.

הגדרה 1.7 פונקציית אוילר

יהי m מספר שלם.

m -הפונקצית אוילר מסומנת ב $\phi(m)$ ומוגדרת להיות השלמים שקטנים ממש מm וזרים ביחס ל

$$\phi(m) := \left\{ a \in \mathbb{N} \mid \gcd(a, m) = 1, \ a < m \right\} .$$

דוגמה 1.12

 $\gcd(a,26)=1$ מכיוון ש-26=2 imes13, הערכים של

$$\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$
.

 $\gcd(a,26)=1$ עבורם a עבורם 12 ערכים א"א יש בדיוק

$$\phi(26) = 12$$
.

משפט 1.4 הפירוק לראשוניים של פונקציית אוילר

נתון מספר טבעי m. נניח כי הפירוק למספרים ראשוניים שלו הוא

$$m = \prod_{i=1}^{n} p_i^{e_i} ,$$

כאשר p_i מספרים אלמיים ו- פונים ו- 1 אז $i \leq i \leq n$ מספרים אלמיים ו- 1

$$\phi(m) = \prod_{i=1}^{n} \left(p_i^{e_i} - p_i^{e_i-1} \right) .$$

דוגמה 1.13

 $\phi(60)$ מצאו את

פתרון:

לכו
$$60 = 2^2 \times 3^1 \times 5^1$$

$$\phi(60) = (2^2 - 2^1)(3^1 - 3^0)(5^1 - 5^0) = (2)(2)(4) = 16.$$

משפט 1.5 שיטה לחישוב

נתונים השלמים a,b כך שהפירוק לראשוניים שלהם הם:

$$a = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} , \qquad b = p_1^{f_1} p_2^{f_2} \dots p_n^{f_n}$$

נתון על ידי gcd -וללא הגבלה כלליות נניח כי ו $k \leq n$ נתון על ידי

$$\gcd(a,b) = p_1^{\min(e_1,f_1)} p_2^{\min(e_2,f_2)} \dots p_k^{\min(e_k,f_k)}$$

הוכחה:

דוגמה 1.14

 $.\gcd(19200,320)$ מצאו את

פתרון:

$$19200 = 2^8 \, 3^1 \, 5^2 \,, \qquad 320 = 2^6 \, 5^1 = 2^6 \, 3^0 \, 5^1 \,.$$

$$\gcd(19200,320) = 2^{\min(8,6)} 3^{\min(1,0)} 5^{\min(2,1)} = 2^6 \, 3^0 \, 5^1 = 320 \ .$$

דוגמה 1.15

 $\gcd(154,36)$ מצאו את

פתרון:

$$154 = 2^1 7^1 11^1$$
, $36 = 2^2 3^2$.

ז"א

$$154 = 2^1 \, 3^0 \, 7^1 \, 11^1$$
, $36 = 2^2 \, 3^2 \, 7^0 \, 11^0$.

$$\gcd(154,36) = 2^{\min(1,2)} 3^{\min(0,2)} 7^{\min(1,0)} 1 1^{\min(1,0)} = 2^1 \ 3^0 \ 7^0 \ 11^0 = 2 \ .$$

משפט 1.6 שיטה לחישוב

a,b נתונים השלמים a,b כך שהפירוק לראשוניים שלהם הם

$$a = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}, \qquad b = p_1^{f_1} p_2^{f_2} \dots p_n^{f_n}$$

נתון על ידי lcm -וללא הגבלה כלליות נניח כי $k \leq n$ וללא

$$lcm(a,b) = p_1^{\max(e_1,f_1)} p_2^{\max(e_2,f_2)} \dots p_k^{\max(e_k,f_k)}$$

הוכחה:

משפט 1.7

$$gcd(a, b) lcm(a, b) = ab$$
.

הוכחה:

$$\min(a, b) + \max(a, b) = a + b.$$

1.2 האלגוריתם של אוקליד

משפט 1.8 האלגוריתם של אוקליד

 $a,b = \gcd(a,b)$ אשר נותן את ($a,b \in \mathbb{Z}, a>0, b>0$). קיים אלגוריתם אשר נותן את a,bיהיו

האלגוריתם הינו מתואר להלן. נגדיר

$$r_0 = a , \qquad r_1 = b .$$

לפי משפט החילוק 1.1 קיימים שלמים q_1 ו- q_1 ו- $q_2 < |b|$ כלומר לפי

$$r_0 = r_1 q_1 + r_2 \ .$$

באותה מידה, לפי משפט החילוק קיימים שלמים q_2 ו- $0 \leq r_3 < |r_2|$ עבורם

$$r_1 = r_2 q_2 + r_3$$
.

-n-ית. בשלב ה- $r_{n+1}=0$ ית.

$$0 \le r_2 < |b|$$
 $a = bq_1 + r_2$

$$:k=1$$
 שלב

$$0 \le r_3 < |r_2| \qquad b = r_2 q_2 + r_3$$

$$:k=2$$
 שלב

$$0 \le r_4 < |r_3| \qquad r_2 = r_3 q_3 + r_4$$

$$:k=3$$
 שלב

:

$$0 \le r_n < |r_{n-1}| \quad r_{n-2} = r_{n-1}q_{n-1} + r_n \quad :k = n-1$$
 שלב

$$r_{n+1} = 0 \qquad \qquad r_{n-1} = r_n q_n$$

$$k=n$$
 שלב

התהליך מסתיים בשלב ה-n-ית אם $r_{n+1}=0$ ואז

$$r_n = \gcd(a, b)$$
.

דוגמה 1.16

 $.\gcd(1071,462)$ -מצאו את ה

.a=1071,b=462 נגדיר $.r_1=b=462$ ו- $.r_0=a=1071$ עד השלב ה- $.r_{n+1}=0$ עד השלב ה- $.r_{n+1}=0$ עד השלב ה

r_{k+1}	q_k		שלב
$r_2 = 147$	$q_1 = 2$	$1071 = 2 \cdot 462 + 147 \ .$:k=1
$r_3 = 21$	$q_2 = 3$	$462 = 3 \cdot 147 + 21$:k=2
$r_4 = 0$	$q_3 = 7$	$147 = 7 \cdot 21 + 0$:k=3

 $gcd(1071, 462) = r_3 = 21$ לפיכך

דוגמה 1.17

 $.\gcd(26,11)$ מצאו את

פתרון:

 $.r_{n+1}=0$ עד השלב ה-n-ית שבו $r_{k-1}=q_kr_k+r_{k+1}$ נבצע את האלגוריתם

r_{k+1}	q_k		שלב
$r_2 = 4$	$q_1 = 2$	$26 = 2 \cdot 11 + 4 \ .$:k=1
$r_3 = 3$	$q_2 = 2$	$11 = 2 \cdot 4 + 3$:k=2
$r_4 = 1$	$q_3 = 1$	$4 = 1 \cdot 3 + 1$:k = 3
$r_5 = 0$	$q_4 = 3$	$3 = 3 \cdot 1 + 0$:k=4

 $gcd(26,11) = r_4 = 1$ לכן

משפט 1.9 משפט בזו (Bezout's identity)

 $d=\gcd(a,b)$ יהיו שלמים שלמים a,b

s.b -ו a בירוף לינארי של פכל אוים ה-s.t בירוף לינארי של הי

$$sa + tb = d$$
.

משפט 1.10 האלגוריתם של אוקליד המוכלל (שיטה 1)

עבורם s,t שלמים חיוביים. קיים אלגוריתם אשר נותן שלמים s,t עבורם

$$d = sa + tb$$

.כאשר $d = \gcd(a, b)$ כמפורט להלן.

מגדירים את הפרמטרים ההתחלתיים:

$$r_0 = a$$
, $r_1 = b$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

אז מבצעים את השלבים הבאים:

$(0 \le r_2 < r_1)$	$t_2 = t_0 - q_1 t_1$	$s_2 = s_0 - q_1 s_1$	$r_2 = r_0 - q_1 r_1$	שלב 1:
$(0 \le r_3 < r_2)$	$t_3 = t_1 - q_2 t_2$	$s_3 = s_1 - q_2 s_2$	$r_3 = r_1 - q_2 r_2$:2 שלב
				:
$(0 \le r_{k+1} < r_k)$	$t_{k+1} = t_{k-1} - q_k t_k$	$s_{k+1} = s_{k-1} - q_k s_k$	$r_{k+1} = r_{k-1} - q_k r_k$	$:\!\!k$ שלב
				÷
$(0 \le r_n < r_{n-1})$	$t_n = t_{n-2} - q_{n-1}t_{n-1}$	$s_n = s_{n-2} - q_{n-1} s_{n-1}$	$r_n = r_{n-2} - q_{n-1}r_{n-1}$	n-1 שלב
			$r_{n+1} = 0$:ח שלב

 $d = \gcd(a, b) = r_n$, $s = s_n$, $t = t_n$.

דוגמה 1.18 (אלגוריתם איוקליד המוכלל)

d = 240s + 46t עבורם s,t שלמים שלמים $d = \gcd(240,46)$ מצאו את

פתרון:

פתרון לדוגמה 1.18 עם השיטה במשפט 1.10 של האלגוריתם איוקליד המוכלל

.a = 240, b = 46

$$r_0 = a = 240$$
, $r_1 = b = 46$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1 = 5$	$t_2 = 0 - 5 \cdot 1 = -5$	$s_2 = 1 - 5 \cdot 0 = 1$	$r_2 = 240 - 5 \cdot 46 = 10$	k=1 שלב
$q_2 = 4$	$t_3 = 1 - 4 \cdot (-5) = 21$	$s_3 = 0 - 4 \cdot 1 = -4$	$r_3 = 46 - 4 \cdot 10 = 6$	k=2 שלב
$q_3 = 1$	$t_4 = -5 - 1 \cdot (21) = -26$	$s_4 = 1 - 1 \cdot (-4) = 5$	$r_4 = 10 - 1 \cdot 6 = 4$	k=3 שלב
$q_4 = 1$	$t_5 = 21 - 1 \cdot (-26) = 47$	$s_5 = -4 - 1 \cdot 5 = -9$	$r_5 = 6 - 1 \cdot 4 = 2$	k=4 שלב
$q_5 = 2$	$t_6 = -26 - 2 \cdot (47) = -120$	$s_6 = 5 - 2 \cdot (-9) = 23$	$r_6 = 4 - 2 \cdot 2 = 0$	k=5 שלב

$$\gcd(a,b) = r_5 = 2$$
, $s = s_5 = -9$, $t = t_5 = 47$.

$$ta + sb = -9(240) + 47(46) = 2$$
.

יש שיטה נוספת למציאת המקדמים s,t במשםט בזו. נתאר אותה על ידי הדוגמה הקודמת.

פתרון לדוגמה 1.18 עם השיטה השניה של האלגוריתם איוקליד המוכלל

לשיטה הזאת יש 2 שלבים. בשלב הראשון מבצעים האלגוריתם של אוקליד במשפט 1.8.

$$\boxed{240} = 5 \cdot \boxed{46} + \boxed{10}$$
 (*0)

$$\boxed{46} = 4 \cdot \boxed{10} + \boxed{6}$$
 (*1)

$$\boxed{10} = 1 \cdot \boxed{6} + \boxed{4} \tag{*2}$$

$$\boxed{6} = 1 \cdot \boxed{4} + \boxed{2} \tag{*3}$$

$$\boxed{4} = 2 \cdot \boxed{2} + 0$$
 (*4)

 $d = \gcd(240, 46) = 2$ לכן

בשלב השני רושמים 2 כצירוף לינארי של 240 ו- 240 באמצעות המשוואות למעלה:

$$2 = 6 - 1 \cdot 4$$
 (*3) לפי (2) $= 6 - 1 \cdot (10 - 1 \cdot 6)$ (*2) לפי (20) $= 2 \cdot 6 - 1 \cdot 10$ $= 2 \cdot (46 - 4 \cdot 10) - 1 \cdot 10$ (*1) לפי (10) $= 2 \cdot 46 - 9 \cdot 10$ $= 2 \cdot 46 - 9 \cdot (240 - 5 \cdot 46)$ (*0) לפי (40) $= 47 \cdot 46 - 9 \cdot (240 - 6)$

דוגמה 1.19 (אלגוריתם איוקליד המוכלל)

d=326s+78t מצאו את שלמים $d=\gcd(326,78)$ ומצאו שלמים $d=\gcd(326,78)$

פתרון:

פתרון לדוגמה 1.19 עם השיטה במשפט 1.10 של האלגוריתם איוקליד המוכלל

.a = 326, b = 78

$$r_0 = a = 326$$
, $r_1 = b = 78$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$\boxed{q_1 = 4}$	$t_2 = 0 - 4 \cdot 1 = -4$	$s_2 = 1 - 4 \cdot 0 = 1$	$r_2 = 326 - 4 \cdot 78 = 14$: k = 1 שלב
$q_2 = 5$	$t_3 = 1 - 5 \cdot (-4) = 21$	$s_3 = 0 - 5 \cdot 1 = -5$	$r_3 = 78 - 5 \cdot 14 = 8$	$\cdot k=2$ שלב
$q_3 = 1$	$t_4 = -4 - 1 \cdot (21) = -25$	$s_4 = 1 - 1 \cdot (-5) = 6$	$r_4 = 14 - 1 \cdot 8 = 6$:k=3 שלב
$q_4 = 1$	$t_5 = 21 - 1 \cdot (-25) = 46$	$s_5 = -5 - 1 \cdot 6 = -11$	$r_5 = 8 - 1 \cdot 6 = 2$	$\cdot k = 4$ שלב
$q_5 = 3$			$r_6 = 6 - 3 \cdot 2 = 0$:k=5 שלב

$$\gcd(a,b)=r_5=2$$
 , $s=s_5=-11$, $t=t_5=46$.
$$sa+tb=-11(326)+46(78)=2$$
 .

יש שיטה נוספת למציאת המקדמים s,t במשםט בזו. נתאר אותה על ידי הדוגמה הקודמת.

פתרון לדוגמה 1.19 עם השיטה השניה של האלגוריתם איוקליד המוכלל

לשיטה הזאת יש 2 שלבים. בשלב הראשון מבצעים האלגוריתם של אוקליד במשפט 1.8.

$$326 = 4 \cdot 78 + 14$$
 (*0)

$$\boxed{78} = 5 \cdot \boxed{14} + \boxed{8} \tag{*1}$$

$$\boxed{14} = 1 \cdot \boxed{8} + \boxed{6} \tag{*2}$$

$$\boxed{8} = 1 \cdot \boxed{6} + \boxed{2} \tag{*3}$$

$$\boxed{4} = 3 \cdot \boxed{2} + 0$$
 (*4)

 $d = \gcd(326, 78) = 2$ לכן

בשלב השני רושמים 2 כצירוף לינארי של 326 ו- 78 באמצעות המשוואות למעלה:

$$2 = 8 - 1 \cdot 6$$
 (*3) לפי (2) $= 8 - 1 \cdot (14 - 1 \cdot 8)$ (*2) לפי (20) $= 2 \cdot 8 - 1 \cdot 14$ (*1) $= 2 \cdot (78 - 5 \cdot 14) - 1 \cdot 14$ (*1) $= 2 \cdot 78 - 11 \cdot 14$ $= 2 \cdot 78 - 11 \cdot (326 - 4 \cdot 78)$ (*0) $= 46 \cdot 78 - 11 \cdot 326$.

1.3 משפטים של מספרים ראשוניים

משפט 1.11 קיימים אינסוף מספרים ראשוניים

קיימים אינסוף מספרים ראשוניים.

הוכחה: נוכיח הטענה דרך השלילה.

. נניח כי $\{p_1,\ldots,p_n\}$ הוא הקבוצה של כל הראשוניים שקיימים וקבוצה זו נוצרת סופי

 $M = (p_1 \cdot p_2 \cdot \ldots \cdot p_n) + 1$ נגדיר השלם

לפי משפט הפירוק לראשוניים (ראו משפט 1.3 למעלה או משפט 5.3 למטה) הוא מספר ראשוני או שווה למכפלה של ראשוניים. של ראשוניים.

 $1 \leq i \leq n$ לכל ש- איכ בגלל ש- בגלל א מספר ראשוני בגלל M

גם לא קיים מספק ראשוני p_i אשר מחלק את M. הרי

$$M \% p_i = 1 \Rightarrow p_i \nmid M$$
.

הגענו לסתירה של המשפט הפירוק לראשוניים, לכן קיימים אינסוף מספרים ראשוניים.

משפט 1.12 משפט הפירוק לראשוניים

-ע כך p_i כך וראשוניים e_i וראשוניים n כך שלם לכל (1.3 משפט (1.3 לכל

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

הוכחה: אינדוקציה.

משפט 1.13 נוסחה לפונקצית אוילר

ראו משפט 1.4) לכל מספר שלם n בעל פירוק לראשוניים (ראו משפט n

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

פונקציית אוילר ניתנת על ידי

$$\phi(n) = \prod_{i=1}^{k} \left(p_i^{e_i} - p_i^{e_i - 1} \right) = \left(p_1^{e_1} - p_1^{e_1 - 1} \right) \left(p_2^{e_2} - p_2^{e_2 - 1} \right) \dots \left(p_k^{e_k} - p_k^{e_k - 1} \right)$$

דוגמה 1.20

 $\phi(24)$ חשבו את

פתרון:

$$24 = 2^3 3^1$$
.

לכן

$$\phi(24) = (2^3 - 2^2)(3^1 - 3^0) = (8 - 4)(3 - 1) = 8.$$

משפט 1.14

אם p מספר ראשוני אז

$$\phi(p) = p - 1 .$$

הוכחה: תרגיל בית.

משפט 1.15

אם p מספר ראשוני אז

$$\phi\left(p^{n}\right) = p^{n} - p^{n-1} .$$

הוכחה: תרגיל בית.

משפט 1.16

אז ($\gcd(s,t)=1$ אז רים אמים ארים s,t אם

$$\phi(s \cdot t) = \phi(s) \cdot \phi(t) .$$

הוכחה: תרגיל בית.

משפט 1.17

אם q ו- p מספרים ראשוניים שונים אז

$$\phi(p \cdot q) = (p-1)(q-1) .$$

הוכחה: תרגיל בית.

משפט 1.18 המשפט הקטן של פרמה

אם מספר הבאים מתקיימים: $a\in\mathbb{Z}_p$ אז התנאים הבאים מתקיימים:

- $a^p \equiv a \mod p$.1
- $a^{p-1} \equiv 1 \mod p$.2
- $a^{-1} \equiv a^{p-2} \mod p$.3

הוכחה:

טענה 1. נוכיח באינדוקציה.

בסיס:

עבור a=0 מתקיימת. a=0 מתקיימת

:מעבר

a נניח כי הטענה מתקיימת עבור

$$(a+1)^p = a^p + pa^{p-1} + \frac{p(p-1)}{2}a^{p-2} + \dots + pa + 1 \equiv a^p + 1 \mod p$$

לכן $a^p \equiv a \mod p$ לכן אומרת אינדוקציה אומרת האינדוקציה

$$(a+1)^p \mod p \equiv a^p + 1 \mod p \equiv (a+1) \mod p$$

כנדרש.

טענה a^{-1} ב- $a^p \equiv 1 \mod p$ נכפיל . $a^{-1} \in \mathbb{Z}_p$ אשר הוכחנו בסעיף $\gcd(a,p)=1$ ב- $\gcd(a,p)=1$ הקודם:

$$a^{-1}a^p \equiv a^{-1} \cdot a \mod p \qquad \Rightarrow \qquad a^{p-1} \equiv 1 \mod p$$
.

.3 טענה

$$a^{p-1} \equiv 1 \mod p \qquad \Leftrightarrow \qquad 1 \equiv a^{p-1} \mod p \quad \Rightarrow \quad a^{-1} \equiv a^{p-2} \mod p \ .$$

משפט 1.19 משפט אוילר

אס
$$\gcd(a,n)=1$$
 -שלמים א a,n אס a,n

$$a^{\phi(n)} \equiv 1 \mod n \ .$$

משפט 1.20

אם
$$\gcd(a,n)=1$$
 שלמים ו- a,n

$$a^{-1} \equiv a^{\phi(n)-1} \mod n \ .$$

דוגמה 1.21

 \mathbb{Z}_{11} -ם 5 ב- חשבו את האיבר ההופכי

פתרון:

לפי משפט פרמט 5.9:

$$5^{-1} = 5^{11-2} \mod 11 = 5^9 \mod 11 \ .$$

לפי הנוסחת לשארית 1.2:

$$5^9$$
 % $11 = 5^9 - 11 \left\lfloor \frac{5^9}{11} \right\rfloor = 9$

$$5^{-1} \in \mathbb{Z}_{11} = 9$$
 . לכן

1.4 משפט השאריות הסיני

משפט 1.21 משפט השאריות הסיני

יחסים שקילות למערכת למערכת של a_1, a_2, \ldots, a_r יהיו בזוגות אשר ארים אשר שלמים שלמים שלמים שלמים יהיו

$$x = a_1 \mod m_1 ,$$

$$x = a_2 \mod m_2 ,$$

:

 $x = a_r \mod m_r$,

קיים פתרון יחיד מודולו $M=m_1m_2\cdots m_r$ שניתן על ידי

$$x = \sum_{i=1}^r a_i M_i y_i \mod M$$

$$0.1 \leq i \leq r$$
 לכל $y_i = M_i^{-1} \mod m_i$ ו- $M_i = rac{M}{m_i}$ לכל

דוגמה 1.22

היעזרו במשפט השאריות הסיני כדי לפתור את המערכת

$$\begin{aligned} x = &22 \mod 101 \ , \\ x = &104 \mod 113 \ . \end{aligned}$$

פתרון:

-1

$$a_1=22$$
 , $a_2=104$, $m_1=101$, $m_2=113$.
$$M=m_1m_2=11413$$
 , $M_1=\frac{M}{m_1}=113$, $M_2=\frac{M}{m_2}=101$.

modularinverse.py בעזרת הקוד-פיתון

$$y_1 = M_1^{-1} \mod m_1 = 113^{-1} \mod 101 = 59$$

$$x = 22 \cdot \left(\frac{101 \cdot 113}{101}\right) \cdot$$

$$\begin{split} y_2 &= M_2^{-1} \mod m_2 = 101^{-1} \mod 113 = 47 \\ x &= a_1 M_1 y_1 + a_2 M_2 y_2 \mod M \\ &= 22 \cdot 113 \cdot 59 + 104 \cdot 111 \cdot 47 \mod 11413 \\ &= 640362 \mod 11413 \\ &= 1234 \ . \end{split}$$

*הוכחות של משפטים

משפט 1.22 משפט החילוק של אוקלידס

-יחידים כך q,r מספרים שלמים $b \neq 0$. קיימים מספרים שלמים a,b

$$a = qb + r$$

 $0 \le r < |b|$ כאשר

- נקרא ה מודולו, b
 - נקראת המנה $q \bullet$
- ואילו r נקרא השארית. \bullet

.r = a % b שימו לב:

הוכחה: ראשית נוכיח כי לכל a,b קיימים שלמים q,r כך ש-a+r+p, כאשר a,b , ואחר כך נוכיח ש-a,r יחידים.

 $.b \neq 0$ אנחנו נניח כי

קיום

נגדיר את הקבוצת שלמים אי-שליליים הבאה:

$$S \triangleq \{a - qb \mid q \in \mathbb{Z} , a - qb \ge 0\} . \tag{1.1}$$

נראה כי S קבוצה לא ריקה.

b>0 מקרה \bullet

אם a-qb=a+Nb>0 אזי האיבר a-qb=a+Nb>0 מספיק גדול כך ש- אם N>0 אזי האיבר b>0 ולכן הוא שייך ל-Sהוא שייך ל-

 $\underline{b < 0}$ מקרה •

אם a-qb=a-Nb>0 אזי האיבר q=N אם שלם N>0 מספיק גדול כך ש- אם או b<0 אם הוא שייך ל-S.

לכן $S
eq \emptyset$ לכן לפ העקרון הסדר הטוב (שקובע שלקבוצת שלמים אי-שליליים יש איבר מינימלי) קיים איבר מינימלי של $S \neq \emptyset$ מינימלי של

$$r = \min S = a - qb . {1.2}$$

r>0 ,S לפי הגדרתה של הקבוצה

יחידות