

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «	Информатика и системы	управления»	
— КАФЕЛРА «Пр	ограммное обеспечение	ЭВМ и информ	апионные технологии»
	r r	T 1	
	Отч	ı ët	
	по лабораторно	ой работе .	№ 3
II annoversa.	[<i>A</i>		*****
-	Исследование псевдо	эслучаиных ч	нисел
Дисциплина	: Моделирование		_
_			
Студент	<u>ИУ7-75Б</u>		Д.В. Сусликов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			И.В. Рудаков

(Подпись, дата)

(И.О. Фамилия)

Содержание

Задание	3
Теория	4
Примеры	5
Листинги	8

Задание

Изучить методы генерирования псевдослучайных чисел, а также критерии оценки случайности последовательности. Реализовать критерий оценки случайной последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях целых чисел. Последовательности получать алгоритмическим и табличным способами.

Теория

Псевдослучайная последовательность (**ПСП**) — последовательность чисел, которая была вычислена по некоторому правилу, но имеет свойства случайной последовательности чисел в рамках решаемой задачи.

Табличный способ генерация ПСП

Табличные генераторы в качестве источника случайных чисел используют заранее подготовленные таблицы, содержащие проверенные некоррелированные числа. Недостатки такого способа являются использование внешнего ресурса для хранения чисел и период, ограниченный размером таблицы.

Алгоритмический способ генерация ПСП

Алгоритмические генераторы случайных чисел для получения следующего псевдослучайного числа используют некоторое математическое правило, например, линейный конгруэнтный метод. В данном работе последовательность генерируется при помощи формулы:

$$X_{n+1} = (aX_n + c) mod m (1)$$

Критерий оценки случайности последовательности

Для выполнения работы был выбран критерий «хи квадрат ».

$$V = \frac{1}{n} \sum_{s=1}^{k} (\frac{Y_s^2}{p_s}) - n,$$

Это один из самых известных статистических критериев, также это основной метод, используемый в сочетании с другими критериями.

Примеры

Смотря на примеры работы программы для последовательности чисел в количестве 10000, сгенерированных линейным конгруэнтным и табличным методами, можно сделать вывод, что лучше себя в точности показал табличный метод.

0.	.9 1099	100999		09	1099	100999
3	79	399	1	3	55	347
8	18	902	2	1	49	696
7	13	681	3	9	33	905
2	44	796	4	1	55	506
1	29	283	5	0	44	711
6	86	430	6	9	77	755
9	67	217	7	8	76	191
0	72	916	8	6	87	302
5	99	111	9	8	33	358
0 8	92	110	10	2	12	324
Вычисл				Вычислить		
	ить П учайности 6.604		Me	ера случ	айности 4.898	
lepa c	пучайности		0	ера случ 9		
lepa cı 9	1 учайности 6.604 79.37		0 10	ера случ 9 [99	4.898	

Рисунок 1 – Пример 1

Рисунок 2 – Пример 2

Рисунок 3 – Пример 3

Листинги

Листинг 1 - lab3.py

```
import sys
      from PyQt5 import QtWidgets
      from PyQt5 import uic, QtWidgets, QtGui
      from PyQt5.QtWidgets import QApplication, QWidget,
         QListWidgetItem, QTableWidgetItem, QMessageBox
      import design
      from itertools import islice
     COUNT = 10000
      class App(QtWidgets.QMainWindow, design.Ui MainWindow):
10
        def init (self):
11
          self.current = 10
12
          self.m = 2.**32
13
          self.a = 1664525
14
          self.c = 1013904223
15
          self.count = 1
16
17
        super().__init__()
18
          self.setupUi(self)
19
          self.initUl()
20
21
          self.setFixedSize(858, 875)
23
        def initUl(self):
24
          self.calcAlgBtn.clicked.connect(self.calcAlgBtnPushed)
25
          self.calcTableBtn.clicked.connect(self.calcTableBtnPushed)
26
          self.calcManualBtn.clicked.connect(self.calcManualBtnPushed)
27
28
        def get number (self, low=0, high=100):
29
          self.current = (self.a * self.current + self.c) % self.m
30
```

```
result = int(low + self.current \% (high - low))
31
          return result
32
33
34
        def calcAlgBtnPushed(self):
35
          one alg, two alg, three alg = self.alg rand()
36
37
          for i in range (10):
            self.tableAlg.setItem(i, 0, QTableWidgetItem(str(one alg
39
               [10*(self.count-1):10*self.count][i])))
            self.tableAlg.setItem(i, 1, QTableWidgetItem(str(two alg
40
               [10*(self.count-1):10*self.count][i])))
            self.tableAlg.setItem(i, 2, QTableWidgetItem(str(three alg
41
               [10*(self.count-1):10*self.count][i])))
42
          self.measureAlg1.clear()
43
          self.measureAlg2.clear()
          self.measureAlg3.clear()
45
          self.measureAlg1.setText(str(round(self.calc hi(one alg,
             10000, 0, 10), 3)))
          self.measureAlg2.setText(str(round(self.calc_hi(two_alg,
47
             10000, 10, 100), 3)))
          self.measureAlg3.setText(str(round(self.calc hi(three alg,
48
             10000, 100, 1000), 3)))
49
            self.count += 1
50
51
        def calcTableBtnPushed(self):
          one tbl, two tbl, three tbl = self.table rand()
53
          for i in range(10):
55
            self.tableTable.setItem(i, 0, QTableWidgetItem(str(one tbl
               [:10][i]))
            self.tableTable.setItem(i, 1, QTableWidgetItem(str(two tbl
57
               [:10][i]))
```

```
self.tableTable.setltem(i, 2, QTableWidgetltem(str(
58
                three tbl[:10][i]))
59
          self.measureTable1.clear()
60
          self.measureTable2.clear()
61
          self.measureTable3.clear()
          self.measureTable1.setText(str(round(self.calc hi(one tbl,
63
             10000, 0, 10), 3)))
          self.measureTable2.setText(str(round(self.calc_hi(two tbl,
64
             10000, 10, 100), 3)))
          self.measureTable3.setText(str(round(self.calc hi(three tbl,
65
              10000, 100, 1000), 3)))
66
          self.count += 1
67
68
        def table rand(self):
69
          numbers = set()
70
          with open('numbers.txt') as file:
71
            line num = 0
72
            lines = islice (file, line num, None)
73
            for I in lines:
              numbers update (set ( | sp| it ("") [1:-1] ))
75
              line num += 1
76
               if len(numbers) >= 3* COUNT + 1:
77
                 break
78
            numbers.remove("")
79
            numbers = list (numbers)[:3*COUNT]
80
          one digit = [int(i)%10 for i in numbers[:COUNT]]
          two digits = [int(i)\%90 + 10 for i in numbers[COUNT:COUNT *]
82
              2]]
          three digits = [int(i)\%900 + 100 for i in numbers[COUNT*2:3*]
83
             COUNT]]
          return one digit, two digits, three digits
84
85
        def alg rand(self):
86
```

```
one digit = [self.get number(0, 10) for i in range(COUNT)]
87
           two digits = [self.get number (10, 100) for i in range (COUNT)
88
           three digits = [self.get number(100, 1000) for i in range(
89
              COUNT)]
                   one digit, two digits, three digits
           return
91
        def calc hi(self, arr, n, start, end):
           tab = [0 for i in range(start + end)]
93
           for i in range(n):
95
             tab[arr[i]] += 1
96
           s = 0
97
98
           for i in tab:
             s += i * i
100
           return s * (end-start) / n - n
101
102
        def calcManualBtnPushed(self):
103
           nums = self.manualText.toPlainText().split()
104
           for i in range(len(nums)):
105
           nums[i] = int(nums[i])
106
107
           hi = self.calc hi(nums, len(nums), min(nums), max(nums)+1)
108
           self.measureManual.setText(str(round(hi, 3)))
109
110
      def main():
111
        app = QtWidgets.QApplication(sys.argv)
112
        window = App()
113
        window show()
114
        app.exec_()
115
116
       if name == ' main ':
117
        main()
118
```