

Home Search Collections Journals About Contact us My IOPscience

Corrigendum: Sufficient conditions for uniqueness of the weak value

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 J. Phys. A: Math. Theor. 46 029501

(http://iopscience.iop.org/1751-8121/46/2/029501)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.151.150.17

The article was downloaded on 13/12/2012 at 19:04

Please note that terms and conditions apply.

J. Phys. A: Math. Theor. 46 (2013) 029501 (2pp)

Corrigendum: Sufficient conditions for uniqueness of the weak value

2012 J. Phys. A: Math. Theor. 45 015304

J Dressel and A N Jordan

Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

E-mail: jdressel@pas.rochester.edu and jordan@pas.rochester.edu

Received 8 November 2012 Published 12 December 2012 Online at stacks.iop.org/JPhysA/46/029501

In section 5 of [1] we implicitly used the following lemma without proof.

Lemma. The singular values of the $M \times N$ dimensional matrix $F = P + g^n F_n$ with $M \le N$ have maximum leading order of g^n , where $P = [p_1 \vec{1} \cdots p_N \vec{1}]$ and $F_n = [\vec{E}_1 \cdots \vec{E}_N]$ such that $\sum_i p_j = 1$ and $\sum_i \vec{E}_j = \vec{0}$.

Proof. The M singular values of F are $\sigma_k = \sqrt{\lambda_k}$, where λ_k are the eigenvalues of the $M \times M$ dimensional matrix $G = FF^T$. The $N \times N$ dimensional matrix $H = F^TF$ also has the same M eigenvalues as G, as well as (N - M) additional zero eigenvalues. Since $P^TF_n = 0$, the latter has the simple form $H = P^TP + g^{2n}F_n^TF_n$, where $(P^TP)_{ij} = Mp_ip_j$ is $M||\vec{p}||^2$ times the projection operator onto the probability vector $\vec{p} = (p_1, \dots, p_N)$ and $(F_n^TF_n)_{ij} = \vec{E_i} \cdot \vec{E_j}$. We will use H to determine the singular values of F.

Differentiating the eigenvalue relation $H(g^{2n})\vec{u}_k(g^{2n}) = \lambda_k(g^{2n})\vec{u}_k(g^{2n})$ with respect to g^{2n} produces the following deformation equation that describes how the eigenvalues of H continuously change with increasing g^{2n} ,

$$\dot{\lambda}_k(g^{2n}) = ||F_n \vec{u}_k(g^{2n})||^2. \tag{1}$$

Integrating this equation produces the following perturbative expansion of the eigenvalues for small *g*,

$$\lambda_k(g^{2n}) = \lambda_k(0) + g^{2n} ||F_n \vec{u}_k(0)||^2 + O(g^{4n}). \tag{2}$$

Hence, to prove the lemma it is sufficient to show that $\lambda_k(0)$ and $||F_n\vec{u}_k(0)||$ cannot both vanish unless $\lambda_k(g^{2n}) = 0$ for all g.

Since $H(0) = P^T P$ is proportional to a projection operator, $\lambda_1(0) = M||\vec{p}||^2$ is its only nonzero eigenvalue with associated eigenvector $\vec{u}_1(0) = \vec{p}/||\vec{p}||$. Hence, $\sigma_1(g^{2n}) \approx \sqrt{M}||\vec{p}|| > 0$ to leading order. For $k \neq 1$, $\lambda_k(0) = 0$ and $\vec{u}_k(0)$ can be chosen arbitrarily to span the degenerate (N-1)-dimensional subspace orthogonal to $\vec{u}_1(0)$. Suppose $||F_n\vec{u}_k(0)|| = 0$ for some $k \neq 1$, which implies $F_n\vec{u}_k(0) = 0$ since only the zero vector has zero norm. It follows that $H(g^{2n})\vec{u}_k(0) = P^TP\vec{u}_k(0) + g^{2n}F_n^TF_n\vec{u}_k(0) = 0$ since $\vec{u}_k(0)$ is orthogonal to $\vec{u}_1(0) \propto \vec{p}$. Therefore, $\vec{u}_k(0)$ is an eigenvector of $H(g^{2n})$ with eigenvalue 0 for any g. Since H is symmetric, its eigenvectors form an orthogonal set for any g, so we must have the

identification $\vec{u}_k(g^{2n}) = \vec{u}_k(0)$. As a result, the associated eigenvalue vanishes for any g, $\lambda_k(g^{2n}) = \lambda_k(0) = 0$, which proves the lemma.

This proof has also been included in a subsequent extended article [2].

Acknowledgments

We thank Dr Parrott for urging us to justify this lemma [3].

References

- Dressel J and Jordan A N 2012 Sufficient conditions for uniqueness of the weak value J. Phys. A: Math. Theor. 45 015304
- [2] Dressel J and Jordan A N 2012 Contextual-value approach to the generalized measurement of observables Phys. Rev. A 85 022123
- [3] Parrott S 2012 Proof gap in 'Sufficient conditions for uniqueness of the weak value' arXiv:1202.5604v6