Optimización FAMAF, UNC — 2024

Guía de Ejercicios N°4: Búsqueda lineal y región de confianza

1. Probar que para un problema de minimización irrestricta, la condición de que:

"Si x^* es un mínimo local de una función f, entonces $\nabla f(x^*)^T p \geq 0$ para toda dirección factible p."

Sólo puede ser satisfecha si el gradiente en x^* es 0.

- 2. Sea M una matriz definida positiva y sea $p = -M^{-1}\nabla f(x^k)$. Probar que p es una dirección de descenso para f en x^k .
- 3. Un vector p es una dirección de curvatura negativa para la función f en el punto x si $p^T \nabla^2 f(x) p < 0$. Probar que dicha dirección existe si y sólo si al menos un autovalor de $\nabla^2 f(x)$ es negativo. Además probar que, si una dirección de curvatura negativa existe, entonces también existe una dirección de curvatura negativa que es también una dirección de descenso.
- 4. Mostrar un ejemplo donde si p es una dirección tal que $\nabla f(x)p = 0$ entonces p puede ser de descenso, ascenso o ninguna de las dos.
- 5. Sea $f: \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$. Para $k = 0, 1, 2, \ldots$, sea $x^{k+1} = x^k \lambda_k \nabla f(x^k)$, donde $\lambda_k \geq \bar{\lambda} > 0$ para todo $k \geq 0$. Suponga que $x^k \to x^*$. Probar que $\nabla f(x^*) = 0$.
- 6. Considerar el problema de minimización irrestricta

minimizar
$$f(x_1, x_2) = (x_1^4 + 2x_1^3 + 24x_1^2) + (x_2^4 + 12x_2^2)$$

con punto inicial $x^0 = (2,1)$ y cota inicial de región de confianza $\delta_0 = 1$. Realizar 2 iteraciones del algoritmo del método de región de confianza.

7. Suponer que en un método de región de confianza $p_k=\alpha v$ donde v es algún vector no nulo. Mostrar como determinar α tal que p_k resuelve el subproblema de región de confianza

minimizar
$$q(x) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T \nabla^2 f(x_k) p$$
 sujeto a $||p|| \le \delta_k$.