History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

 $Q(\beta^-) = 2238 \ 10; \ S(n) = 6415 \ 8; \ S(p) = 12454 \ 11; \ Q(\alpha) = -4866 \ 9 \qquad {\color{red} \bf 2017Wa10}$

S(2n)=11990 8, S(2p)=22940 12 (2017Wa10).

Mass measurements: 2006Ha03 (also 2006Jo14), 2004Ri12 (also 2005Jo22,2004Jo18).

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 79 primary references, 75 dealing with nuclear structure calculations and 4 with decay modes and half-lives.

⁹⁸Zr Levels

Cross Reference (XREF) Flags

		B 98 Y C 98 Z ₁	β^- decay (0.548 s) β^- decay (2.32 s) r IT decay (1.9 μ s) β^- n decay (1.478	F 252 Cf SF decay J 235 U(n,F γ), 241 Pu(n,F γ) G 9 Be(238 U,F γ) K 238 U(α ,F γ)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0#	0+	30.7 s 4	ABCDEFGHIJKL	$%β^-=100$ Evaluated rms charge radius=4.401 fm <i>16</i> (2013An02). Evaluated $δ(^{90}Zr,^{98}Zr)=+1.002$ fm ² 5 (2013An02). T _{1/2} : from 1976He10. Others: 1968DeZZ, 1967Hu08, 1960Or02. $^{1/2}(^{90}Zr,^{98}Zr)=+0.981$ fm ² 5 (2003Th03,2002Ca37); systematic uncertainty=0.043 fm ² . Also 2005Bi25 from the same group.
854.06 [@] 6	0+	64 ns 7	ABC EFGHIJKL	J^{π} : E0 transition to 0^+ . $T_{1/2}$: weighted average of 64 ns 7 from ^{98}Y β^- decay (0.548 s) and 65 ns 10 from (n,F γ).
1222.91# 5	2+	2.63 ps 55	ABC EFGHIJKL	J ^π : E2 368.8 γ to 0 ⁺ . T _{1/2} : from RDDS in ${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma)$ (2018Si26). Others: ≥0.68 ps from B(E2)(W.u.)=8.9 20 or <11 (2018Wi09) deduced from γ -ray yields in Coulomb excitation; <4 ps from fast-timing $\gamma\gamma$ -coin in ${}^{235}\text{U}(\text{n},\text{F}\gamma)$, ${}^{241}\text{Pu}(\text{n},\text{F}\gamma)$, and analysis by generalized centroid difference method (2017An15); <11 ps (2010Be30), <21 ps (1989Ma38), <0.2 ns (1982Ka03), all from $\beta\gamma$ (t) in ${}^{98}\text{Y}$ decay (0.548 s); <0.20 ns (2001AhZY, $\gamma\gamma$ (t) in ${}^{252}\text{Cf}$ SF decay). μ: >+0.38 17 (integral PAC method, preliminary result from 2001AhZY).
1436.17 ^{&} 7	0+	0.72 ns 8	A EFGH J	J^{π} : E0 to 0 ⁺ . T _{1/2} : from βγγ(t) or βγ(t) in ⁹⁸ Y β ⁻ decay (0.548 s). Unweighted average of 0.611 ns 33 (2010Be30), 0.865 ns 42 (1989Ma38), 0.69 ns 10 (1982Ka03). Weighted average is 0.71 ns 9, but reduced χ^2 =11 is too high.
1590.78 [@] 6	2+		AB EFGH JK	J^{π} : $L(t,p)=2$.
1744.61 <mark>&</mark> 6	2+		A EF H J	J^{π} : L(t,p)=2.
1806.18 ^a 6	3-		ABC EFGH JK	J^{π} : L(t,p)=3.
1843.41 [@] 6	4+	5.2 ps <i>10</i>	BC EFGH JK	J ^π : 620.5γ E2 to 2 ⁺ ; 204.3γ from 4 ⁺ ;probable band assignment (1995HaZT). However, $\gamma\gamma(\theta)$ in ⁹⁸ Y β ⁻ decay (2.32 s) suggests J=3. T _{1/2} : from RDDS in ⁹ Be(²³⁸ U,Fγ) (2018Si26). Others: 20 ps 6 from $\beta\gamma$ (t) in ⁹⁸ Y β ⁻ decay (2.32 s) (2010Be30); ≤10 ps (2017An15, $\gamma\gamma$ (t) fast-timing technique, ≤14 ps in ²⁴¹ Pu(n,Fγ), and ≤10 ps in ²³⁵ U(n,Fγ)); 28 ps <i>12</i> (from ⁹⁸ Y decay (2.32 s), quoted by 1994St31 from thesis by M.

⁹⁸Zr Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
1859.37 7	0+	0.290 ns <i>13</i>	A H J	Liang, University of Koln (1992)). Note that in 2017An15, lifetime of this state could not be determined precisely due to imprecise lifetime of the first 2^+ state. J^{π} : 636.5 γ E2 to 2^+ ; E0 to 0^+ . $T_{1/2}$: from $\beta\gamma(t)$ in ^{98}Y β^- decay (0.548 s). Weighted average of
2047.71 [#] 8	4+		BC EFGH JK	0.318 ns 27 (2010Be30), 0.283 ns 15 (1989Ma38), and 0.24 ns 10 (1982Ka03). J ^{\pi} : L(t,p)=4.
2104 <i>I</i>			Н	J^{π} : 1986Me11 quote 2 ⁺ from decay characteristics; however, no details of γ rays from this level are available.
2225.15 8	(2^{+})		Α	J^{π} : 2225.2 γ and 789.0 γ to 0^+ ; no β feeding from 0^- parent.
2276.93 ^{&} 8	(4^{+})		B EFG JK	J^{π} : $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ) (2017Ur03); 686.2 γ and 1053.9 γ to 2 ⁺ ; possible band member.
2487 1			Н	J ^{π} : 1986Me11 quote 3 ⁺ from decay characteristics; however, no details of γ transitions from this level are available.
2490.98 [@] 6	6+	1.80 ps 62	BC EFGH JK	J^{π} : 647.6 γ $\Delta J=2$, E2 to 4 ⁺ ; band member.
2568 <i>1</i>			н	$T_{1/2}$: from RDDS in ${}^9\text{Be}({}^{238}\text{U},\text{F}\gamma)$ (2018Si26). Other: <10 ps from $\beta\gamma$ (t) in ${}^{98}\text{Y}$ β^- decay (2.32 s) (2010Be30). J $^{\pi}$: 1986Me11 quote 4 ⁺ from decay characteristics; however, no details
				of γ transitions from this level are available.
2613 <i>I</i>	(24)		Н	J^{π} : 1986Me11 quote 2 ⁺ from decay characteristics; however, no details of γ transitions from this level are available.
2778.71 <i>7</i> 2800.22 ^{<i>a</i>} 9 3035 <i>8</i>	(2 ⁺) 5 ⁻		A BC EF H K H	J^{π} : 2779γ to 0 ⁺ , 972.2γ to 3 ⁻ , no β feeding from 0 ⁻ parent. J^{π} : L(t,p)=5.
3064.37 ^b 13	5 ⁽⁻⁾		BC EFGh J	J ^{π} : ΔJ=2, Q 1258.2 γ to 3 ^{$-$} , 1221.0 γ and 1016.7 γ to 4 ^{$+$} .
3065.61 15	(1)		A h	J^{π} : 3065.5 γ to 0 ⁺ ; possible β feeding from 0 ⁻ parent.
3117.10 ^{&} 11 3160 8	(6 ⁺)		B EFG K H	J^{π} : 1273.7 γ ΔJ =2, Q to 4 ⁺ ; member of a sequence.
3216.35 [@] 12	8+	1.95 ps <i>47</i>	BC EFGH JK	XREF: H(3205). J ^{π} : 725.4 γ Δ J=2, E2 to 6 ⁺ ; spin=8 from $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay; band member.
3249.02 22 3271 8	(5,6,7 ⁻) 4 ⁺		B E H	$T_{1/2}$: from DSAM in ²⁴⁸ Cm SF decay (2012Sm02). J^{π} : 448.8 γ to 5 ⁻ ; possible β feeding from (7 ⁺ ,6 ⁺) parent. J^{π} : L(t,p)=4.
3336.4 <i>5</i> 3354 <i>8</i> 3435 <i>8</i> 3506 <i>8</i>	5 ⁻ 2 ⁺		EF H H	J^{π} : $L(t,p)=5$. J^{π} : $L(t,p)=2$.
3539 8			H H	
3576.26 ^b 12 3592.2 ^a 5 3739 8	(7 ⁻) (7 ⁻)		C EF EF H	J^{π} : 776 γ to $5^{(-)}$; member of a sequence built on $5^{(-)}$. J^{π} : 792 γ to 5^{-} ; member of a sequence.
3763 8 3812.1& 4 3825 8	(8+)		H EFG K H	J^{π} : 1321.6 γ to 6 ⁺ ; member of a sequence.
3855 8 3894.1 <i>4</i>	(7-)		H EFGH K	XREF: H(3886).
				J^{π} : $L(t,p)=(7)$.
3984.73 [@] 14	(10^+)	1.42 ps <i>34</i>	C EFG JK	J^{π} : 768.4 γ to 8 ⁺ ; possible band member. $T_{1/2}$: from DSAM in ²⁴⁸ Cm SF decay (2012Sm02).
4005 8 4061 8	(5 ⁻ ,6 ⁺) (6 ⁺)		H H	J^{π} : L(t,p)=(5,6). J^{π} : L(t,p)=(6).

⁹⁸Zr Levels (continued)

409.8 (5°,6°) 4108.67 13 (1) 4	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XRE	EF	Comments
4108.67 13 (1) A F J F; 2672.7γ, 3254.4γ and 4108.5γ to 0*; possible β feeding from 0* parent. 4108.18 δ I* (9°) C EF J*; 622.6γ to (7°); member of a sequence built on 5(°). 4198.88 b 14 (9°) C EF J*; 622.6γ to (7°); member of a sequence built on 5(°). 4225.8 δ* H J*; 10g f=5.2 (allowed transition) from 0°; 2728.9γ to 0*; spin=1 from γγ(θ) in (25°C FS decay. 4271.11 δ I* A J J*; 10g f=5.2 (allowed transition) from 0°; 2411.9γ to 0*; also supported by γγ(θ) in (1,Fγ). 4278.79 12 B EF J J*; (5,6.7,8*) from 1787.8γ to 6*; log f=6.0 from (7*,6*). 4365.8 H J** H H 3499.07 12 I** A J**; log f=4.9 from (7*,6*); spin=6 from γγ(θ) in (n,Fγ) and 98 Υ β** decay (2.32 s). 4367.8 H J**; log f=5.3 (allowed transition) from 0°; 2174.4γ to 0*. 4450.8 (7°) H J**; log f=5.3 (allowed transition) from 0°; 2174.4γ to 0*. 4451.8 I A (7*) B EF J**; log f=5.3 from 0°; 2593γ to 0*; spin=1 from γγ(θ) in (n,Fγ). 4454.8 I A (7*) B EF J**; log f=5.3 from 0°; 2593γ to 0*; spin=1 from γγ(θ) in (n,Fγ). 4545.8 I A (7*) B EF J**; log f=6.0 from (7*,6*) parent. 4608 B H J**; log f=6.3 from 0°; 2174.4γ to 0*. 4754.7 I** 16 (12*) C EF K J**; ry 10 (10*); band member. 4766.6 I B (11*) C F J**; ry 10 (10*); band member. 4770.9 A 17 (13*) C F J**; ry 10 (10*); band member. 4781.7 I (15°) C F K J**; 834.6γ to (12*); band member. 4791.8 35γ-8 20γ-8 40γ-9 γροροsed by 2004 Wu08, as no 820γ was reported in 2004 Wu08. 4792.9 I B (14*) C 14*) and member. 4791.1 I H I H I I I I I I I I I I I I I I I	4097 8	$(5^-,6^+)$			H	J^{π} : L(t,p)=(5.6).
A F J J ^π : log fr=4.3 (allowed transition) from 0 ⁻ ; 2728.9y to 0 ⁺ ; spin=1 from γγ(θ) in ²⁵² Cf SF decay. 4198.88 ^b 14 (9 ⁻)						
198.88 14 (9°) 1425.8 6 6		. ,				, , , , , , , , , , , , , , , , , , , ,
4225.8 6 6 6 4 4271.11 6 1 Γ	4165.18 <i>6</i>	1-		A F	J	
4225.8 6 6 6 4 4271.11 6 1 Γ	4198.88 <mark>b</mark> 14	(9^{-})		C EF		· · · · · · · · · · · · · · · · · · ·
4271.11 6 1					Н	
4278.79 12 4292.41 10 6+ B EF J J ^π : $(5,6,7,8^+)$ from $1787.8y$ to 6^+ ; $\log ft=6.0$ from $(7^+,6^+)$. 4292.41 10 6+ B EF J J ^π : $\log ft=4.9$ from $(7^+,6^+)$; spin=6 from $\gamma\gamma(\theta)$ in $(n,F\gamma)$ and $9^8 Y \beta^-$ decay (2.32 s) . 4365 8 4387 8 4399.07 12 1 ⁻ 4450.8 (7^-) 4450.8 (7^-) 4452.59 9 1 ⁻ 4492.35 15 1 ⁻ A J ^π : $\log ft=5.3$ (allowed transition) from 0^- ; 2174.4γ to 0^+ . 4492.35 15 1 ⁻ 4545.81 14 (7^+) B EF J ^π : 253.4γ to 6^+ ; possible (weak) β feeding ($\log ft=6.3$) from $(7^+,6^+)$ parent. 4608 8 4754.71 6 16 (12^+) 40 C EF K J ^π : 770γ to (10^+) ; band member. 4916.61 16 (11^-) 5780.99 17 (14^+) 5790.99 17 (13^-) 679 C F J ^π : 804.3γ to (11^-) ; member of a sequence. 6538.9 11 (16^+) 6538.9 11 (16^+) 6541.37 17 (15^-) 6601.9 11 (17^-) 1.9 μs 2 C 6601.9 11 (17^-) 1.9 μs 2 C 6601.9 11 (17^-) 1.9 μs 2 C 671 (18^+) 671 (18^+) 672 (18^+) 673 (18^+) 674 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 675 (18^+) 677 (16^+) 775 (16^+) ; band member.	4271.11 6	1-		A	J	J^{π} : log ft =5.2 (allowed transition) from 0^{-} ; 2411.9 γ to 0^{+} ; also supported
4292.41 10 6+ B EF J J ^π : log ft=4.9 from (7+,6+); spin=6 from γγ(θ) in (n,Fγ) and 98 Y β ⁻ decay (2.32 s). 4365 8	4278.79 12			В		
4387 8 4387 8 4389 07 12 1		6+		B EF	J	J ^π : log ft=4.9 from (7 ⁺ ,6 ⁺); spin=6 from $\gamma\gamma(\theta)$ in (n,F γ) and ⁹⁸ Y β ⁻
4387 8 4399.07 12 1 A J ^π : log ft =5.3 (allowed transition) from 0 ⁻ ; 2174.4 γ to 0 ⁺ . 4450.8 (7 ⁻) 4452.59 9 1 ⁻ A J ^π : L(t,p)=(7). 4492.35 15 1 ⁻ A J ^π : log ft =4.5 from 0 ⁻ ; 2593 γ to 0 ⁺ ; spin=1 from $\gamma\gamma(\theta)$ in (n,F γ). 4608 8 4754.71 16 (12 ⁺) 4916.61 16 (11 ⁻) 588.29 17 (14 ⁺) 5720.94 17 (13 ⁻) 6541.37 17 (15 ⁻) 6541.37 17 (15 ⁻) 6601.9 11 (17 ⁻) 1.9 μ s 2 C 6601.9 11 (17 ⁻) 1.9 μ s 2 C 6601.9 11 (17 ⁻) 7595.9 15 (18 ⁺) K J ^π : log ft =5.3 (allowed transition) from 0 ⁻ ; 2174.4 γ to 0 ⁺ . J ^π : log ft =5.3 from 0 ⁻ ; 2593 γ to 0 ⁺ ; spin=1 from $\gamma\gamma(\theta)$ in (n,F γ). J ^π : log ft =6.3 from 0 ⁻ ; 4492 γ , 3638.6 γ to 0 ⁺ . J ^π : 253.4 γ to 6 ⁺ ; possible (weak) β feeding (log ft =6.3) from (7 ⁺ ,6 ⁺) parent. H 4754.71 16 (12 ⁺) 4608 8 H 4754.71 16 (12 ⁺) 4754.71 17 (13 ⁻) 4754.71 17 (13 ⁻) 4754.71 18 19 19 19 19 19 19 19 19 19 19 19 19 19	4365 8				Н	350ay (2102 5).
4450 8 (7 ⁻)	4387 8					
4452.59 9 1 ⁻	4399.07 12	1-		A		
4492.35 15 1 ⁻		(7^{-})			H	
4545.81 14 (7 ⁺) B FF J^{π} : 253.4γ to 6 ⁺ ; possible (weak) β feeding (log ft=6.3) from (7 ⁺ ,6 ⁺) parent. 4608 8 4754.71 6 (12 ⁺) C FF K J^{π} : 770γ to (10 ⁺); band member. 4916.61 16 (11 ⁻) C F J^{π} : 717.7γ to (9 ⁻), member of a sequence. 5589.29 17 (14 ⁺) C F K J^{π} : 834.6γ to (12 ⁺); band member. 5720.94 17 (13 ⁻) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6538.9 11 (16 ⁺) J^{π} : γ to (14 ⁺), band member. 6541.37 17 (15 ⁻) C F E(level): see comment for 6541 level for the two levels being separate. J^{π} : γ to (14 ⁺), band member. 6541.37 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. 6601.9 11 (17 ⁻) 1.9 μs 2 C J^{π} : γr proposed configuration= J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence.					J	
parent. 4608 8 4754.71 6						
4754.71 6 16 (12+)		(7+)		B EF		
4916.61 ^b 16 (11 ⁻) C F J^{π} : 717.7γ to (9 ⁻), member of a sequence. 5589.29 [@] 17 (14 ⁺) C F K J^{π} : 834.6γ to (12 ⁺); band member. 5720.94 ^b 17 (13 ⁻) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6538.9 [@] 11 (16 ⁺) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6541.37 ^b 17 (15 ⁻) C F $E(\text{level})$: see comment for 6541 level for the two levels being separate. J^{π} : γ to (14 ⁺), band member. 6541.37 ^b 17 (15 ⁻) C F $E(\text{level})$: 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J^{π} : γ to (14 ⁺) and (13 ⁻); member of a sequence. %IT=100 J^{π} : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952γ+835γ+820γ+804γ+770γ+768γ+725γ+718γ (2006Si36). Other: 1.4 μs 5 (2013RuZX, from 1223γ(t)).					H	
5589.29 17 (14+) C F K J ^π : 834.6 γ to (12+); band member. 5720.94 17 (13-) C F J ^π : 804.3 γ to (11-); member of a sequence. 6538.9 11 (16+) K E(level): see comment for 6541 level for the two levels being separate. 5720.94 17 (15-) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16+) level at 6539 decaying by a 949.6 γ proposed by 2004Wu08, as no 820 γ was reported in 2004Wu08. 5720.94 17 (15-) 1.9 μ s 2 C π	4754.71 [@] <i>16</i>	(12^{+})		C EF	K	J^{π} : 770 γ to (10 ⁺); band member.
5720.94 ^b 17 (13 ⁻) C F J^{π} : 804.3γ to (11 ⁻); member of a sequence. 6538.9 [@] 11 (16 ⁺) K E(level): see comment for 6541 level for the two levels being separate. 6541.37 ^b 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J^{π} : γs to (14 ⁺) and (13 ⁻); member of a sequence. 6601.9 11 (17 ⁻) 1.9 μs 2 C %IT=100 J^{π} : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952γ+835γ+820γ+804γ+770γ+768γ+725γ+718γ (2006Si36). Other: 1.4 μs 5 (2013RuZX, from 1223γ(t)). 7595.9 [@] 15 (18 ⁺) K J^{π} : 1057γ to (16 ⁺); band member.	4916.61 <mark>b</mark> <i>16</i>	(11^{-})		C F		J^{π} : 717.7 γ to (9 ⁻), member of a sequence.
6538.9 11 (16 ⁺)	5589.29 [@] 17	(14^{+})		C F	K	J^{π} : 834.6 γ to (12 ⁺); band member.
541.37 ^b 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08. J ^π : γs to (14 ⁺) and (13 ⁻); member of a sequence. $\%$ IT=100 J ^π : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952γ+835γ+820γ+804γ+770γ+768γ+725γ+718γ (2006Si36). Other: 1.4 μs 5 (2013RuZX, from 1223γ(t)). $T_{1/2}$: $T_{1/2}$	5720.94 <mark>b</mark> 17	(13^{-})		C F		J^{π} : 804.3 γ to (11 ⁻); member of a sequence.
6541.37 ^b 17 (15 ⁻) C F E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6 γ proposed by 2004Wu08, as no 820 γ was reported in 2004Wu08. J ^{π} : γ s to (14 ⁺) and (13 ⁻); member of a sequence. %IT=100 J ^{π} : proposed configuration= $\pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2})$. $T_{1/2}$: from sum of time spectra gated on 952 γ +835 γ +820 γ +804 γ +770 γ +768 γ +725 γ +718 γ (2006Si36). Other: 1.4 μ s 5 (2013RuZX, from 1223 γ (t)).	6538.9 [@] 11	(16^+)			K	
6601.9 11 (17 ⁻) 1.9 μ s 2 C %IT=100 $J^{\pi}: \text{ proposed configuration} = \pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2}).$ $T_{1/2}: \text{ from sum of time spectra gated on}$ $952\gamma + 835\gamma + 820\gamma + 804\gamma + 770\gamma + 768\gamma + 725\gamma + 718\gamma \text{ (2006Si36)}. \text{ Other:}$ $1.4 \ \mu\text{s } 5 \text{ (2013RuZX, from 1223}\gamma(t)).$ $7595.9^{\text{@}} 15 \text{ (18+)}$ K $J^{\pi}: 1057\gamma \text{ to (16+); band member.}$	6541.37 ^b 17	(15 ⁻)		C F		E(level): 2006Si36 suggest that 6541 level is most likely different from a (16 ⁺) level at 6539 decaying by a 949.6γ proposed by 2004Wu08, as no 820γ was reported in 2004Wu08.
$J^{\pi}: \text{ proposed configuration} = \pi g_{9/2}^2 \otimes \nu(g_{7/2}h_{11/2}).$ $T_{1/2}: \text{ from sum of time spectra gated on}$ $952\gamma + 835\gamma + 820\gamma + 804\gamma + 770\gamma + 768\gamma + 725\gamma + 718\gamma \text{ (2006Si36)}. \text{ Other:}$ $1.4 \ \mu\text{s } 5 \text{ (2013RuZX, from 1223}\gamma(t)).$ $7595.9^{\text{@}} \ 15 \text{ (18+)}$ $\text{K} J^{\pi}: 1057\gamma \text{ to (16+); band member.}$	6601.9 <i>11</i>	(17^{-})	1.9 us 2	С		
$T_{1/2}$: from sum of time spectra gated on $952\gamma + 835\gamma + 820\gamma + 804\gamma + 770\gamma + 768\gamma + 725\gamma + 718\gamma$ (2006Si36). Other: $1.4~\mu s~5$ (2013RuZX, from 1223 γ (t)). 7595.9 $^{\textcircled{@}}$ 15 (18 $^{+}$) K J $^{\pi}$: 1057 γ to (16 $^{+}$); band member.		,	·· /·· –	-		
7595.9 [@] 15 (18 ⁺) K J ^{π} : 1057 γ to (16 ⁺); band member.						$T_{1/2}$: from sum of time spectra gated on $952\gamma+835\gamma+820\gamma+804\gamma+770\gamma+768\gamma+725\gamma+718\gamma$ (2006Si36). Other:
	7595.9 [@] 15	(18^{+})			K	
	8725.4 [@] 18	(20^{+})			K	J^{π} : 1229.5 γ to (18 ⁺); band member.

 $[\]dagger$ From least-squares fit to Ey data, assuming 0.5 keV uncertainty when not stated.

[‡] Ascending spins are assumed for levels populated in SF decays due to yrast pattern of excitation of levels in such studies.

^{*} Seq.(B): γ cascade based on g.s.

[@] Band(A): Band based on 854, 0⁺. The 2⁺ member of this band is either at 1590.8 keV as in 2001Ur01 or at 1222.9 keV as in 2006Si36. Q(intrinsic)=2.00 *10* (2001Ur01) from lifetime data for 12⁺, 10⁺ and 8⁺ states.

[&]amp; Seq.(C): γ cascade based on 1436, 0^+ .

^a Seq.(D): γ cascade based on 3⁻. Possible octupole structure.

^b Seq.(E): γ cascade based on (5⁻), 3064.

|--|

γ (98Zr	.)
----------------	----

								γ ⁽⁹⁸ Zr)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f .	J_f^{π}	Mult.	δ	α#	$I_{(\gamma+ce)}$	Comments
854.06	0+	854.06 <i>6</i>		0.0	0+	E0			100	Monopole strength $\rho^2(E0)=0.0112$ 12 (2005Ki02 evaluation), based on data in 1994Lh01. Energy of E0 transition from level energy difference. Mult.: from ce data in (t,py) and $^{98}Y \beta^-$ decay (0.548 s).
1222.91	2+	368.8 1	2.5 2	854.06 (0+	[E2]		0.0109		B(E2)(W.u.)=29 +8-6 E _{γ} : other: 370.0 10 in (α ,F γ). I $_{\gamma}$: from 98 Y β^- decay (0.548 s). Others: 2.1 2 in (α ,F γ), 0.9 3 in 248 Cm SF decay.
		1222.9 <i>I</i>	100.0 2	0.0	0+	E2		0.00044		B(E2)(W.u.)=2.9 +8-5 E _{γ} : others: 1222.7 2 in ⁹⁸ Zr IT decay, 1222.7 10 in $(\alpha, F\gamma)$. I _{γ} : deduced from ⁹⁸ Y β ⁻ decay (0.548 s). Uncertainty of 0.2 is from deduced absolute γ -branching ratios to the 854 level and the ground state. Mult.: $\gamma\gamma(\theta)$ in β ⁻ decay (0.548 s) and ²³⁵ U(n,F γ), and
1436.17	0+	213.2 <i>I</i>	100 4	1222.91	2+	E2		0.0716		RUL. B(E2)(W.u.)=58 8 Mult.: $\gamma\gamma(\theta)$ in β^- decay (0.548 s) and ²³⁵ U(n,F γ), and RUL.
		582.0 [‡] 2		854.06 (0+	E0 [‡]			6.6 6	Mult.: ce data in (t,p γ) and ⁹⁸ Y β^- decay (0.548 s). Evaluated q_K^2 (E0/E2)=1.05 7, X(E0/E2)=0.054 3, ρ^2 =0.076 6 (2005Ki02), based on data in 1994Lh01 and 1982Ka03. Monopole strength ρ =0.274 15 (1994Lh01), 0.29 8 (1982Ka03). I(E0)/I(E2)=0.065 4 (1994Lh01).
1590.78	2+	154.5 367.8 <i>1</i> 736.8 <i>1</i>	1.9 11.7 8 14.6 8	1436.17 (1222.91 2854.06 (1222.91 2	2+ 0+	[E2] [M1+E2] [E2]		0.228 0.0088 22		
		1590.9 <i>I</i>	100 <i>3</i>	0.0	0+	E2				Mult.: from $\gamma \gamma(\theta)$ in ${}^{98}\text{Zr }\beta^-$ decay (0.548 s), and (n,F γ), and ΔJ^{π} , where J^{π} of each level is known independently.
1744.61	2+	152.7 [@] 521.6 <i>I</i> 890.6 <i>I</i>	3 79 <i>3</i> 43 <i>3</i>	1590.78 2 1222.91 2 854.06 (2 ⁺ 0 ⁺	[M1+E2] M1+E2	+0.44 4	0.15 <i>9</i> 0.00302		Mult., δ : $\gamma\gamma(\theta)$ in ²³⁵ U(n,F γ), D+Q from $\gamma\gamma(\theta)$, M1+E2 from ΔJ^{π} , where each J^{π} is determined uniquely in different experiments. Other δ : +0.2 I from $\gamma\gamma(\theta)$ in ⁹⁸ Y β^- decay (0.548 s).
1806.18	3-	1744.5 <i>1</i> 215.5 2	100 <i>4</i> 6.7 <i>17</i>	0.0 (1590.78 2		[E1]		0.0122		
1843.41	4+	583.258 <i>30</i> 252.7 <i>2</i>	100 3	1222.91 2 1590.78 2	2+	E1 [E2]		0.0392		Mult.: $\gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay. B(E2)(W.u.)=54 +18-16

4

γ (98Zr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [#]	$\mathrm{I}_{(\gamma+ce)}$	Comments
									I _γ : others: 1.4 2 in $(\alpha, F_γ)$, 5.2 17 in ²⁴⁸ Cm SF decay, 4.8 in ²⁵² Cf SF decay. Values in SF decay seem too high by a factor of ≈ 3 .
1843.41	4+	620.505 19	100 <i>3</i>	1222.91	2+	E2	0.00225		B(E2)(W.u.)= $42 + 10 - 7$
									I_{γ} : other: 100 in (α, F_{γ}) , 100 5 in ²⁴⁸ Cm SF decay.
									Mult.: $\gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay.
1859.37	0_{+}	268.7 1	100 3	1590.78	2+	E2	0.0316		B(E2)(W.u.)=42 3
		.1.				4			Mult.: $\gamma \gamma(\theta)$ and RUL.
		423.0 [‡] 2		1436.17	0_{+}	E0‡		1.5 2	Mult.: ce data in $(t,p\gamma)$ and $^{98}Y \beta^-$ decay $(0.548 s)$.
									Evaluated q_K^2 (E0/E2)=5.4 14, X(E0/E2)=26 7, ρ^2 =0.061 8 (2005Ki02), based on data in 1994Lh01 and 1982Ka03.
									Monopole strength ρ =0.237 25 (1994Lh01), 0.29 15 (1982Ka03).
		(2)(5.1	10.1.0	1222.01	2+	F2	0.00202		I(E0)/I(E2(269γ))=0.0130 <i>16</i> (1994Lh01).
		636.5 1	18.1 9	1222.91	21	E2	0.00209		B(E2)(W.u.)=0.103 8
2047.71	4+	204.3 1	14 3	1843.41	4±	[M1+E2]	0.06 3		Mult.: Q from $\gamma\gamma(\theta)$ in 98 Y β^- decay (0.548 s); M2 ruled out by RUL. I _{γ} : other: 21 7 in 248 Cm SF decay. I γ =67 in 252 Cf SF decay is
2047.71	4	204.5 1	14 3	1043.41	4	[MIT+E2]	0.00 3		discrepant.
		241.5 <i>I</i>	100 8	1806.18	3-	[E1]	0.00885		E_{γ} : other: 240.1 <i>I</i> from ⁹⁸ Zr IT decay.
									I_{γ} : others: 100 14 in ²⁴⁸ Cm SF decay, 100 in ²⁵² Cf SF decay.
		456.8 2	11 3	1590.78	2+	[E2]			I_{γ} : other: 21 7 in ²⁴⁸ Cm SF decay. I_{γ} =67 in ²⁵² CF SF decay is
									discrepant.
		824.8 2	28 3	1222.91	2+	E2			I_{γ} : other: 36 7 in ²⁴⁸ Cm SF decay. I_{γ} =133 in ²⁵² Cf SF decay is
									discrepant.
2225.15	(2^{+})	789.0 2	45 9	1436.17	0+				Mult.: $\gamma(\theta)$ in ²⁴⁸ Cm SF decay, and ΔJ^{π} .
2223.13	(2)	1002.3 <i>I</i>	100 18	1222.91					
		2225.2 2	45 18	0.0					
2276.93	(4^{+})	433.5 1	36 7	1843.41					I_{γ} : from ⁹⁸ Y β^- decay (2.32 s).
	(.)	686.2 <i>1</i>	100 7	1590.78					I_{γ} : 24 in ²⁵² Cf SF decay is discrepant.
		1053.9 <i>I</i>	100 7	1222.91					I_{γ} : from 98 Y β^{-} decay (2.32 s), 414 from 252 Cf SF decay.
2490.98	6+	647.580 <i>30</i>	100 /	1843.41		E2	0.0020		B(E2)(W.u.)=106 + 56 - 27
									Mult.: $\gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay, also supported by $\gamma\gamma(\theta)$ in ⁹⁸ Y β^- decay (2.32 s).
2778.71	(2^{+})	972.2 2	25 4	1806.18	3-				ii 1 ρ docay (2.52 δ).
	` /	1033.9 3	18 4	1744.61					
		1187.8 2	14 4	1590.78					
		1555.7 <i>1</i>	100 11	1222.91					
		2779.0 2	14 4		0^{+}				
2800.22	5-	752.5 1	100 8	2047.71	4+				I_{γ} : others: 100 <i>19</i> in ⁹⁸ Zr IT decay, 100 <i>17</i> in ²⁴⁸ Cm SF decay, 100 in ²⁵² Cf SF decay.
		956.6 2	13 4	1843.41	4+				I_{γ} : others: 50 17 in ²⁴⁸ Cm SF decay, 12.5 in ²⁵² Cf SF decay.
		994.0 <i>1</i>	38 8	1806.18					I_{γ} : others: 50 19 in 98 Zr IT decay, 50 17 in 248 Cm SF decay, 63 in
									²⁵² Cf SF decay.

S

γ (98Zr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α#	Comments
3064.37	5 ⁽⁻⁾	1016.7	50 25	2047.71	4+			E_{γ} , I_{γ} : from ²⁴⁸ Cm SF.
		1221.0 5	75 25	1843.41	4+			Ey from IT decay. Iy from 248 Cm SF.
		1258.6 <i>4</i>	100 25	1806.18	3-	Q		E_{γ} : unweighted average of 1258.9 <i>I</i> from ⁹⁸ Y β ⁻ decay (2.32 s) and 1258.2 2
								from 98 Zr IT decay (1.9 μ s).
								I_{χ} : from ²⁴⁸ Cm SF.
								Mult.: $\gamma \gamma(\theta)$ in IT decay.
3065.61	(1)	3065.5 2	100	0.0				•
3117.10	(6^{+})	840.1 <i>I</i>	100 11	2276.93	(4^{+})			
		1273.7 2	28 11	1843.41	4+	Q		Mult.: γ (DCO) in ²⁴⁸ Cm SF decay.
3216.35	8+	725.4 <i>1</i>	100	2490.98	6+	E2	0.00148	B(E2)(W.u.)=54 13
								E_{γ} : from IT decay. Other: 725.3 2 in ^{98}Y β^- decay (2.32 s).
								Mult.: $\gamma \gamma(\theta)$ and $\gamma(\text{pol})$ in ²⁴⁸ Cm SF decay ,also supported by $\gamma \gamma(\theta)$ in
								²⁵² Cf SF decay and RUL.
3249.02	$(5,6,7^{-})$	448.8 2	100	2800.22	5-			·
3336.4		846 [@]	$20 \times 10^{1} 10$	2490.98	6+			E_{γ} , I_{γ} : from ²⁴⁸ Cm SF.
		1493.0	100 50	1843.41				E_{γ} , I_{γ} : from ²⁴⁸ Cm SF.
3576.26	(7^{-})	511.9 <i>1</i>	70 25	3064.37				E_{γ} : from IT decay.
00.00	(,)	0111,7 1	, 0 20	200				I_{γ} : unweighted average of 111 25 in IT decay, 50 25 in ²⁴⁸ Cm SF decay and 47
								in ²⁵² Cf SF decay.
		776.0 <i>1</i>	100 <i>21</i>	2800.22	5-			$E_{\gamma}I_{\gamma}$: from IT decay. Others: $I_{\gamma}=100~50$ in 248 Cm SF and 100 in 252 Cf SF.
3592.2	(7^{-})	792.0	100	2800.22				Ey, iy. Hom II deed J. Odlors. If 100 30 m. Om SI did 100 m. Of SI.
3812.1	(8 ⁺)	694.6 10	25	3117.10				E_{γ} : from (α, F_{γ}) . Others: 694.3 from ²⁴⁸ Cm SF, 694.8 from ²⁵² Cf SF.
3012.1	(0)	071.010	20	5117.10	(0)			I_{γ} : from 252 Cf SF.
		1321.6	100	2490.98	6+			E _{γ} : average of 1321.0 from ²⁴⁸ Cm SF and 1322.2 from ²⁵² Cf SF.
3894.1	(7^{-})	677.7 3	100	3216.35				by, worded of 1321.0 from the of the 1322.2 from the off.
3984.73	(10^{+})	768.4 <i>1</i>	100	3216.35		[E2]	0.00127	B(E2)(W.u.)=55 14
	(-)					. ,		E_{γ} : from IT decay. Other: 770.0 10 from (α, F_{γ}) .
4108.67	(1)	2672.7 2	60 10	1436.17	0_{+}			
		3254.4 2	100 20	854.06				
		4108.5 2	40 10	0.0				
4165.18	1-	1099.5 2	2.8 4	3065.61				
		1386.3 <i>I</i>	11.1 7	2778.71				
		2305.9 1	16.7 7	1859.37				
		2420.6 <i>1</i>	26.4 7	1744.61				
		2574.4 <i>1</i>	22.9 7	1590.78		(E1)		Mult.: $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ).
		2728.9 <i>1</i>	7.6 4	1436.17				252 225
		2942.3 1	100 3	1222.91		(E1)		Mult.: $\gamma \gamma(\theta)$ in ⁹⁸ Y β^- (0.548 s), ²⁵² Cf SF, and ²³⁵ U(n,F γ).
		3311.1 <i>I</i>	52.4 17	854.06				
4100.00	(0=)	4164.9 2	3.8 4	0.0				
4198.88	(9 ⁻)	622.6 1	100	3576.26				E_{γ} : from IT decay.
4271.11	1-	1492.4 <i>1</i>	94 <i>6</i>	2778.71				
		2045.9 2	19 6	2225.15	(21)			

6

γ (98Zr) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α#	Comments
4271.11	1-	2411.9 2	25 6	1859.37 0+				
		2526.3 <i>1</i>	69 6	1744.61 2 ⁺				225
		2680.3 <i>1</i>	100 6	1590.78 2+	(E1)			Mult.: $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ).
		2834.4 3	25 6	1436.17 0+				
		3048.3 <i>1</i>	56 6	1222.91 2+				
		3416.9 <i>I</i>	63 6	854.06 0+				
4278.79		4271.3 2	31 6	$0.0 0^{+}$				
	-1	1787.8 <i>1</i>	100	2490.98 6+				_ 252
4292.41	6+	698.6 [@]	4.4	3592.2 (7-)				E_{γ} : from ²⁵² Cf SF decay only.
		1174.9 3	9.2 15	3117.10 (6+)				
		1492.0 2	11.5 15	2800.22 5	141 50	0.15.0		252 GC GE 1 235 LV E
		1801.6 <i>I</i>	100 3	2490.98 6+	M1+E2	+0.17 8		Mult.: $\gamma \gamma(\theta)$ in 98 Y β^{-} (2.32 s), 252 Cf SF, and 235 U(n,F γ). δ : from $\gamma \gamma(\theta)$ in 98 Y β^{-} (2.32 s). Other: -0.77 12 from $\gamma \gamma(\theta)$ in (n,F γ).
1		2015.4 2	5.4 8	$2276.93 (4^{+})$				
		2244.0 <i>4</i>	1.5 8	$2047.71 4^{+}$				
		2448.8 2	3.1 8	1843.41 4 ⁺				
4399.07	1-	2174.4 2	54 18	$2225.15 (2^{+})$				
		2539.5 2	25 4	1859.37 0 ⁺				
		2962.1 5	7 4	1436.17 0+				
		3176.0 3	11 4	1222.91 2+				
1450 50	1 –	4398.8 2	100 4	$0.0 0^{+}$				
4452.59	1-	2227.3 2 2593.0 <i>3</i>	5.9 12	2225.15 (2 ⁺)				
		2593.0 3 2707.8 <i>3</i>	2.9 <i>6</i> 3.5 <i>12</i>	1859.37 0 ⁺ 1744.61 2 ⁺				
		2861.7 3	2.9 6	1590.78 2 ⁺				
		3016.6 2	4.7 6	1436.17 0 ⁺				
		3229.8 2	35.9 12	1222.91 2 ⁺	E1			Mult.: $\gamma \gamma(\theta)$ in ²³⁵ U(n,F γ).
		3598.4 2	4.7 6	854.06 0 ⁺	EI			with $y y(0)$ in $O(11,1^{\gamma}y)$.
		4452.4 2	100 4	$0.0 0^{+}$				
4492.35	1-	3056.3 <i>3</i>	11 3	1436.17 0 ⁺				
11,2.33	•	3638.6 <i>3</i>	11 2	854.06 0 ⁺				
		4492.0 2	100 3	$0.0 0^{+}$				
4545.81	(7^{+})	253.4 1	100	4292.41 6+	[M1+E2]		0.028 11	
4754.71	(12^{+})	770.0 <i>1</i>	100	3984.73 (10 ⁺)				E_{γ} : from IT decay.
4916.61	(11^{-})	717.7 <i>1</i>	100	4198.88 (9-)				E_{γ} : from IT decay.
5589.29	(14^{+})	834.6 <i>1</i>	100	4754.71 (12 ⁺)				E_{γ} : from IT decay.
5720.94	(13^{-})	804.3 1	100	4916.61 (11 ⁻)				E_{γ} : from IT decay.
6538.9	(16^{+})	949.6 <i>10</i>		5589.29 (14 ⁺)				E_{γ} : from (α, F_{γ}) .
6541.37	(15^{-})	820.4 <i>I</i>	100 19	5720.94 (13 ⁻)				E_{γ} , I_{γ} : from IT decay.
6601.6	(1.77-)	952.1 <i>I</i>	59 12	5589.29 (14 ⁺)	(FA)		7.01.0	E_{γ},I_{γ} : from IT decay.
6601.9	(17 ⁻)	63.0 <i>1</i>	100	6541.37 (15 ⁻)	(E2)		5.91 9	$\alpha(K)$ =4.52 7; $\alpha(L)$ =1.157 19; $\alpha(M)$ =0.204 4; $\alpha(N)$ =0.0260 4; $\alpha(O)$ =0.000682 11

Comments $\alpha(\exp)=5.5 \ 16 \ (2006Si36)$ B(E2)(W.u.)=1.62 18 E_{ν} : from IT decay. Mult.: from α (expt)=5.5 16 (2006Si36), deduced from intensity balance. Value is consistent with E2(+M1), δ >1.25 or E2(+M3), δ <0.09. E_ν: 2006Si36 discussed another scenario for the placement of 63.0γ: two closely-spaced 63.0-keV gamma rays, an E1 to 6540, (16⁺) level (from 2004Wu08) and E2 to 6541, (15⁻) level, however, based on intensity-balance arguments, this scenario was considered unlikely.

7595.9 E_{γ} : from (α, F_{γ}) . 1057.0 *10* $6538.9 (16^{+})$ 8725.4 E_{γ} : from (α, F_{γ}) . 1129.5 *10* 7595.9 (18⁺)

 ∞

[†] Most γ-ray data for low-spin (J≤2) levels are from 98 Y β^- decay (0.548 s), and for high-spin (J>2) are from 98 Y β^- decay (2.32 s), based on detailed studies by 2017Ur03, when a level is populated in these decays. Exceptions are noted.

 $^{^{\}ddagger}$ E0 transitions are from ce data in (t,py) (1986Me11) and from 98 Y β^{-} decay (0.548 s) (1994Lh01,1982Ka03).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

