Erwartungswert einer Zufallsvariablen

7. April 2019

Abbildung 1: Farben der Zahlen beim Roulette

Beim Roulette gibt es 37 Nummernfächer mit den Nummern 0 bis 36. Die 0 hat die Farbe grün, die anderen Zahlen sind rot oder schwarz wie in Abbildung 1 dargestellt. Fridolina setzt immer 1 Euro auf rot. Wie viel gewinnt oder verliert Fridolina durschnittlich pro Spiel?

Lösung: Wir modellieren das Problem zunächst als ein _____-Experiment, bei dem jedes _____ ω in der ____ Ω diesselbe Wahrscheinlichkeit hat. Also:

 $\Omega =$ _____

X sei nun eine Zufallsvariable, die den Gewinn in Euro bezeichnet. Eine Zufallsvariable ist immer eine Abbildung von Ω in die reellen Zahlen. Bei uns kann X nur die Wer-

te _____ oder ____ annnehmen. Zum Beispiel entnehmen wir Abbildung 1, dass für das Ergebnis $\omega = 5$ gilt: $X(\omega) = 1$. Und für $\omega = 15$ gilt: $X(\omega) = -1$. **Aufgabe 1:** Was ist X(16), X(17) und X(18)?

Wie viel gewinnt Fridolina nun durchschnittlich pro Runde? Um diese Frage zu beantworten, stellen wir uns vor, dass Fridolina dass Spiel sehr oft, d.h. zum Beispiel, n=1.000.000-mal spielen würde. Dabei wäre es dann zu folgendem Ergebnis gekommen:

Ereignis	X = 1	X = -1
Anzahl	486.000	514.000

Aufgabe 2: Berechnen Sie in diesem Fall den durschschnittlichen Gewinn \overline{x} pro Spielrunde!

$h_n(X=1) = $	ist die	Häufigkeit des
Ereignisses $X = 1$. Wenn w	vir \overline{x} nun mittels der	Häufigkeiten
schreiben, ergibt sich:		
		TT11 0 1 1
Die Wahrscheinlichkeit ein	nes Ereignisses ist die	Häufigkeit
beigro	oßer Stichprobenlänge n . In For	rmeln: $\lim_{n \to \infty} h_n (X = 1) =$
Der Erwart	ungswert von X ist gleich \overline{x} h	bei $\xrightarrow{n\to\infty}$
großer Stichprobenlänge n		
$E[X] = \underline{\hspace{1cm}}$		
-		

Aufgabe 3: Berechnen Sie nun den Erwartungswert von X!