Let me simplify this for you in **short and easy steps** with an example.

1. What is Happening Here? This process calculates a **fraud score** for transactions. It uses: - Fraud **probability** (likelihood of fraud) - **Expected fraud amount** (amount of money at risk)

The **decision boundary** and **diagonal length** help determine how "fraudulent" a transaction is.

2. Key Concept – Decision Boundary Imagine a graph: - X-axis: **Expected Fraud Amount** - Y-axis: **Fraud Probability**

Each **boundary** (e.g., 99- Transactions **above the line** are more likely to be fraud. - The **diagonal** is a line from the origin (0,0) to a point on the boundary.

3. Simple Steps to Calculate Fraud Score

Step 1: Find the Fraud Probability and Amount Example: - Fraud Probability = **0.8** (80- Expected Fraud Amount = **4000**

Step 2: Calculate the Diagonal Length The diagonal length is the distance from (0,0) to the transaction point:

$$Diagonal Length = \sqrt{(Probability^2 + Amount^2)}$$

Here:

$$Diagonal Length = \sqrt{(0.8)^2 + (4000)^2} \approx 4000.8$$

Step 3: Normalize the Diagonal Length - Normalize it by dividing by the **99th percentile diagonal length** (say it's 5000):

$$Normalized Length = \frac{Diagonal Length}{Diagonal Lengthat 99th Percentile}$$

Here:

$$Normalized Length = \frac{4000.8}{5000} = 0.8$$

Step 4: Apply the Transformation Function Use the formula to calculate the fraud score:

$$FraudScore = 1000 \times \frac{\exp(NormLength) - 1}{\exp(NormLength) + 1}$$

Substitute **Normalized Length = 0.8**:

$$FraudScore = 1000 \times \frac{\exp(0.8) - 1}{\exp(0.8) + 1}$$

After calculation: - Fraud Score **468**

^{**4.} What Does the Score Mean?** - The fraud score tells you how risky the transaction is. - **Higher scores** mean higher fraud risk.

^{**}Summary**

^{1.} Find the fraud probability and expected fraud amount. 2. Calculate the diagonal length. 3. Normalize it using the 994. Use the formula to calculate the fraud score.

^{**}Example Result**: Fraud Score = **468** \rightarrow Moderate Risk Let me know if you want me to break down any step further!

fraud

Shubham Kotal

December 2024

1 Introduction