

Web-based ontology analysis and partitioning tool

Ahmad Alzeitoun Imuwahen Osazuwa Iulia Buga

Supervised by:

Dr. Gökhan Coskun and Irlan Grangel

Agenda

- Objective
- Organization
- Solution
- Challenges
- Demo
- Q&A

Objective

- Decompose large ontologies into smaller modules.
- Support the comprehension of an existing ontology and improve the process of ontology (modular) reuse and interlink.

Organization

- Weekly* team meetings
 - with mentors on Wednesdays
 - with team on Sundays

- Github for managing code/tasks
- Google Drive for managing files

Solution

- Programming language: Javascript
- Environment: Windows, Mac Os
- Tools: SublimeText, Atom, GitSCM

Tasks

- 1. Technology stack
- 2. Upload
- 3. Parse
- 4. Metrics
- 5. Filtering
- 6. Visualize and modify
- 7. Partition and export
- 8. Document
- 9. Test
- 10. Research

Application flow

Technology stack

MEAN

- AngularJS
- ExpressJS
- Node.js

Package managers:

- Bower (frontend)
- npm (backend)

Image credit: http://adrianmejia.com/blog/2014/10/03/mean-stack-tutorial-mongodb-expressjs-angularjs-nodejs/

Libraries

- RdfStore (backend)
- VisJS (frontend)

Upload

Local upload

- OWL file as input
- processed by NodeJS and RDFStore
- dedicated folder: uploads

URL upload

- custom code to add bonus metrics
- processed by NodeJS and RDFStore
- no storage

Output: triples (subject, predicate, object)

Parse

OWL2VOWL

RDFStore

- local/URI upload
- generate JSON in VOWL format
- local/URI upload
- generate custom JSON of edges, nodes, graph

Output: REST endpoints

nodes

```
[{"id":"family-ontology","label":"family-ontology"},{"id":"Alice","label":"Alice"},{"id":"Bob","label":"Bob"},
{"id":"Mary","label":"Mary"},{"id":"ObjectProperty","label":"ObjectProperty"},
```

edges

```
[{"from":"family-ontology","to":"Ontology","label":"rdf:type","arrows":"from","filter":["resource"]},
{"from":"hasChild","to":"ObjectProperty","label":"rdf:type","arrows":"from","filter":["object-property","resource"]},
{"from":"_:7","to":"Restriction","label":"rdf:type","arrows":"from","filter":["resource"]},
{"from":"Person","to":"Class","label":"rdf:type","arrows":"from","filter":["class","resource"]},
```


Metrics

OWL2VOWL

- already available
- generate VOWL JSON

VOWL	
Name	Count
Class	3
Datatype	0
Object	1
Datatype property	0
Property	1
Axioms	15

RDFStore

- not available
- custom code to add bonus metrics

Rdfstore	
Blank node	2
iterals	2

Filtering

- generate input for visualization
- process the nodes and edges
- add a filter to each edge
- Implementation:
 - Node.js using RDFStore

Visualization

VisJS

- highlight
 - color
 - shape
- metrics
- add edit node
- add edge
- save
- export as image

Partitioning

- Constructing weighted matrix
- Weight Normalization
- Neighborhood random walk distance method
- Silhouette: criterion function
- Agglomerative algorithm

Export

Triplles generation:

http://www.perceive.net/schemas/relationship/enemyOf http://example.org/#spiderman <a href="http://example.org/#spiderman <a href="http://example.org/#spiderman <a href="http

Export as text file:

Results

Group Gc | Enterprise Information Systems | 19.10.2015

Challenges

- technology stack: setting up the stack
- AngularJS and Node.js connection
- javascript libraries shortcomings
- converting JSON to OWL

