

Interval-censored Transformer Hawkes

Detecting Information Operations using the Reaction of Social Systems

Data Science Institute

Dr Marian-Andrei Rizoiu | Behavioral Data Science Marian-Andrei.Rizoiu@uts.edu.au https://www.behavioral-ds.science

Information Operations

"computational propaganda [..] use of algorithms, automation, and human curation to purposefully distribute misleading information over social media networks"

[Woolley & Howard, 2018]

(defense env.) Information operations includes [..] the dissemination of propaganda in pursuit of a competitive advantage over an opponent.

VS.

Challenge: beyond content-based detectors

Content- and user-based detection tools:

language nuances, language drift and adversarial attacks

IO are designed to elicit particular reactions from the target audience

RQ1:

Can we distinguish users types based on on the reaction of online social systems? **no content**

Challenge: partial missing data

Missing tweets

Restrictions from Twitter API [Wu et al, 2020] User moderation, content removal

Only event counts are available between events (via the retweet_count property)

RQ2:

Can we model reshare cascades containing both event times and missing event counts?

Challenge: (very) limited labelled data

Very limited training data

Covert nature of IO Costly human labelling

Abundant amount of unlabelled data

Public datasets APIs

RQ3:

Can we use (large amounts of) unlabelled data to pretrain representations?

Presentation plan

- Motivation and Challenges
- Interval-Censored Transformer Hawkes (IC-TH)

Unified representation times & event counts

missing event counts $= \sum_{i \in \mathcal{H}_u^*} c_i \log \Xi \left(t_i, t_i \right)$

 $\mathscr{L}_{\text{IC-TH-LL}}(\theta) = \sum c_i \log \Xi(t_i, t_{i+1})$

Novel log-likehood function

Model Pre-training via Contrastive learning

Experiments and findings

IC-TH: a mixed data format

Hawkes & Transformer Hawkes

IC-TH: a mixed data format

Hawkes & Transformer Hawkes

Interval-Censored Tranformer Hawkes

$$\mathcal{H}^* = \{(t_0 - dt, 2dt, 1), (t_0, t_1 - t_0, 0), (t_1 - dt, 2dt, 1), (t_1, t_2 - t_1, 1), \dots\}$$

IC-TH: Novel log-likehood function

Interval-Censored Transformer Hawkes

$$\mathcal{L}_{\text{IC-TH-LL}}(\theta) = \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_{i+1})}_{\text{missing event counts}}$$
$$= \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_i)}_{i \in \mathcal{H}_u^*}$$

$$\log L(\theta) = \sum_{i \in \mathcal{H}_u^*} c_i \log \int_{t_i}^{t_{i+1}} \lambda(\tau) d\tau + \sum_{i \in \mathcal{H}_c^*} \log \lambda(t_i) - \sum_{i \in \mathcal{H}^*} \int_{t_i}^{t_{i+1}} \lambda(\tau) d\tau$$

IC-TH: Novel log-likehood function

Interval-Censored Transformer Hawkes

$$\mathcal{L}_{\text{IC-TH-LL}}(\theta) = \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_{i+1})}_{\text{missing event counts}}$$
$$= \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_i)}_{i \in \mathcal{H}_u^*}$$

$$\log L(\theta) = \sum_{i \in \mathcal{H}_u^*} c_i \log \int_{t_i}^{t_{i+1}} \lambda(\tau) d\tau + \sum_{i \in \mathcal{H}_c^*} \log \lambda (t_i) - \sum_{i \in \mathcal{H}^*} \int_{t_i}^{t_{i+1}} \lambda(\tau) d\tau$$

IC-TH: contrastive learning

On a large, unlabeled dataset "contrast samples against each other to learn attributes that are common between data classes and attributes that set apart a data class from another."

Build representations that distinguish users based on the cascades they appear in

IC-TH: contrastive learning

On a large, unlabeled dataset "contrast samples against each other to learn attributes that are common between data classes and attributes that set apart a data class from another."

Positive pairs

cascades in which a given user participates

Negative pairs

given user only appears in one cascade

Presentation plan

- Motivation and Challenges
- Interval-Censored Transformer Hawkes (IC-TH)
- Experiments and findings

Category prediction

Analysis of Information Operations Dataset

Dataset: Twitter Moderation Research Consortium (TMRC) Information Operations dataset

Manipulation that Twitter can reliably attribute to a government or state linked actor – an information operation. [Twitter, TMRC]

Profiling:

Nov 2010 to Aug 2020 32,486 users 22,845,053 tweets 19,476,766 cascades

Classes – states sponsoring IO:

Russia, Iran, Saudi Arabia, Organic users

Dataset: Twitter Moderation Research Consortium (TMRC) Information Operations dataset

Manipulation that Twitter can reliably attribute to a government or state linked actor – an information operation. [Twitter, TMRC]

Profiling:

Nov 2010 to Aug 2020 32,486 users 22,845,053 tweets 19,476,766 cascades

Classes – states sponsoring IO:

Russia, Iran, Saudi Arabia, Organic users

_		
_	Models	
[Kong et al, 2020]	Discrete Mixture Models	0.968
[Zuo et al, 2021]	Transformer Hawkes	0.983
	IC-TH w/o missing counts	0.985
_	IC-TH	0.987

- IC-TH outperforms all baselines;
- Mixed data format + loglikelihood contribute most to performance
- Missing counts moderate performance increases.

Strategies of Russia-backed Information Operations

IC-TH clusters IO agents from specific countries based solely on the timing of the cascades in which they participate; it identifies even individual "troll farms".

Qualitative investigations uncovers strategies of Russian trolls farms:

- C1: Russian news with patriotic framing;
- C2: Regional and conservative news;
- C3: tweet in English, #music, #usa, relationship advice

Conclusion

A unified representation and a novel log-likelihood for event times and missing events for the Transformer Hawkes architecture.

A contrastive learning approach that leverages large amounts of unlabeled data to build representations.

Predict the type of users and online content based solely on how the social systems react to them.

IC-TH reveals even "troll farms" – qualitative analysis reveals their strategies and roles, and the coordinated activity at strategic times.

Conclusion

Thank you!

A unified representation and a novel log-likelihood for event times and missing events for the Transformer Hawkes architecture.

A contrastive learning approach that leverages large amounts of unlabeled data to build representations.

Predict the type of users and online content based solely on how the social systems react to them.

IC-TH reveals even "troll farms" – qualitative analysis reveals their strategies and roles, and the coordinated activity at strategic times.

Who are our online opinion leaders?

Jenna Abrams

@Jenn_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **♥** USA
- & jennabrams.com
- Joined October 2014
- Born on October 02

Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;
- ...

Who are our online opinion leaders?

Jenna Abrams

@Jenn_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **♥** USA
- & jennabrams.com
- Joined October 2014
- Born on October 02

Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

• ...

Russian-controlled trolls operated by the Internet Research Agency in St. Petersburg

Self-exciting (Hawkes) processes [Hawkes, 1971]

Event intensity

$$\lambda(t|\mathcal{H}_t) = \underline{\mu(t)} + \sum_{i:t>T_i} \phi(t-T_i)$$

base intensity (exogenous)

self-excitation (endogenous)

Transformer Hawkes [Zuo et al, 2021]

Event intensity

Softplus function

$$\lambda(t) = f(w^{\top} \underline{h(t)})$$
 Hidden-state

Multi-head self-attention module

$$h(t_{j}) = H(j,:)$$

$$H(j,:) = ReLU(SW_{1} + b_{1})W_{2} + b_{2}$$

$$S = Concat(head_{1}, head_{2}, \cdots)W^{O}$$

$$head_{i} = Softmax\left(\frac{XW_{i}^{Q}(XW_{i}^{K})^{\top}}{\sqrt{d_{k}}}\right)XW_{i}^{V}$$

IC-TH: Novel log-likehood function

Hawkes process

$$\log L(\theta) = \sum_{i=1}^{N(t)} \log \lambda(t_i) - \int_0^t \lambda(\tau) d\tau$$

$$\mathcal{L}_{\text{IC-TH-LL}}(\theta) = \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_{i+1})}_{\text{missing event counts}}$$
$$= \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_i)}_{i \in \mathcal{H}_u^*}$$

IC-TH: Novel log-likehood function

Hawkes process

$$\log L(\theta) = \sum_{i=1}^{N(t)} \log \lambda(t_i) - \int_0^t \lambda(\tau) d\tau$$

$$\mathcal{L}_{\text{IC-TH-LL}}(\theta) = \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_{i+1})}_{\text{missing event counts}}$$
$$= \underbrace{\sum_{i \in \mathcal{H}_u^*} c_i \log \Xi(t_i, t_i)}_{i \in \mathcal{H}_u^*}$$

Synthetic XP: effect of data loss

2 models (PowerLaw and Exponential), 10,000 cascades per model, 20 groups of 500 cascades

IC-TH is robust with data loss; achieves near-perfect separability even at very large data sampling rates (90%).

Dataset: Reputable&controversial news sources, tweeted YouTube

RNCNIX:

102,429 articles 56,397,252 tweets 8,129,126 cascades

Classes – states sponsoring IO:

Reputable, controversial

ActiveRT2017:

75,717 videos 85, 334, 424 tweets 30,535,891 cascades

Classes – states sponsoring IO:

Entertainment, Gaming, Music and News&Politics

Predicting the category of content

Models	vevo	RUSSIA TODAY	
Discrete Mixture Models	0.488	0.675	0.968
Transformer Hawkes	0.469	0.823	0.983
IC-TH w/o missing counts	0.495	0.840	0.985
IC-TH	0.499	_	0.987
Pre-trained IC-TH	0.503	0.853	0.987

IC-TH outperforms all baselines; Mixed data format + loglikelihood contribute most to performance Missing counts and pre-training lead to moderate performance increases.