

COMP110: Principles of Computing

12: Machine Code

Worksheets

Worksheet 8

Due today!

Worksheet 9

Due Monday 6th January 2020!

You are required to make a final submission of all your worksheets by the summative deadline

- ► You are required to make a **final submission** of all your worksheets by the **summative deadline**
- ► See MyFalmouth for the deadline

- ► You are required to make a **final submission** of all your worksheets by the **summative deadline**
- See MyFalmouth for the deadline
- Upload a zip containing all your worksheet submissions to LearningSpace

- You are required to make a final submission of all your worksheets by the summative deadline
- See MyFalmouth for the deadline
- Upload a zip containing all your worksheet submissions to LearningSpace
 - Worksheets 2 and 8: save the "review" of your quiz attempt as a PDF

- You are required to make a final submission of all your worksheets by the summative deadline
- See MyFalmouth for the deadline
- Upload a zip containing all your worksheet submissions to LearningSpace
 - Worksheets 2 and 8: save the "review" of your quiz attempt as a PDF
 - All other worksheets: put the files from your GitHub submission into a folder

- ► You are required to make a **final submission** of all your worksheets by the **summative deadline**
- See MyFalmouth for the deadline
- Upload a zip containing all your worksheet submissions to LearningSpace
 - Worksheets 2 and 8: save the "review" of your quiz attempt as a PDF
 - All other worksheets: put the files from your GitHub submission into a folder
- If you have changed your work since opening a pull request, please include a README file detailing which worksheets you have changed!

- ► You are required to make a **final submission** of all your worksheets by the **summative deadline**
- See MyFalmouth for the deadline
- Upload a zip containing all your worksheet submissions to LearningSpace
 - Worksheets 2 and 8: save the "review" of your quiz attempt as a PDF
 - ► All other worksheets: put the files from your GitHub submission into a folder
- If you have changed your work since opening a pull request, please include a README file detailing which worksheets you have changed!
- ▶ Viva sessions in January

► CPUs execute machine code

- ► CPUs execute machine code
- Programs must be translated into machine code for execution

- ► CPUs execute machine code
- Programs must be translated into machine code for execution
- There are three main ways of doing this:

- ► CPUs execute machine code
- Programs must be translated into machine code for execution
- There are three main ways of doing this:
 - An interpreter is an application which reads the program source code and executes it directly

- ► CPUs execute machine code
- Programs must be translated into machine code for execution
- ► There are three main ways of doing this:
 - An interpreter is an application which reads the program source code and executes it directly
 - An ahead-of-time (AOT) compiler, often just called a compiler, is an application which converts the program source code into executable machine code

- ► CPUs execute machine code
- Programs must be translated into machine code for execution
- There are three main ways of doing this:
 - An interpreter is an application which reads the program source code and executes it directly
 - An ahead-of-time (AOT) compiler, often just called a compiler, is an application which converts the program source code into executable machine code
 - ► A just-in-time (JIT) compiler is halfway between the two it compiles the program on-the-fly at runtime

Interpreted:

- ► Python
- ▶ Lua
- JavaScript (in old web browsers)
- Bespoke scripting languages

Interpreted:

- Python
- ▶ Lua
- JavaScript (in old web browsers)
- Bespoke scripting languages

Compiled:

- **▶** C
- **▶** C++
- Swift
- ► Rust

Interpreted:

- ▶ Python
- ▶ Lua
- JavaScript (in old web browsers)
- Bespoke scripting languages

Compiled:

- C
- **▶** C++
- Swift
- ► Rust

JIT compiled:

- Java
- ► C#
- JavaScript (in modern web browsers)
- ► Jython

Interpreted:

- ► Python
- ▶ Lua
- JavaScript (in old web browsers)
- Bespoke scripting languages

Compiled:

- C
- **▶** C++
- ► Swift
- ► Rust

JIT compiled:

- Java
- **▶** C#
- JavaScript (in modern web browsers)
- Jython

NB: technically any language could appear in any column here, but this is where they typically are

► Run-time efficiency: compiler > interpreter

- ► Run-time efficiency: compiler > interpreter
 - ► The compiler translates the program in advance, on the developer's machine

- ► Run-time efficiency: compiler > interpreter
 - The compiler translates the program in advance, on the developer's machine
 - ► The interpreter translates the program at runtime, on the user's machine — this takes extra time

► Portability: compiler < interpreter

- Portability: compiler < interpreter
 - A compiled program can only run on the operating system and CPU architecture it was compiled for

- Portability: compiler < interpreter</p>
 - A compiled program can only run on the operating system and CPU architecture it was compiled for
 - An interpreted program can run on any machine, as long as a suitable interpreter is available

► Ease of development: compiler < interpreter

- Ease of development: compiler < interpreter</p>
 - Writing an AOT or JIT compiler (especially a good one) is hard, and required in-depth knowledge of the target machine

- ► Ease of development: compiler < interpreter
 - Writing an AOT or JIT compiler (especially a good one) is hard, and required in-depth knowledge of the target machine
 - Writing an interpreter is easy in comparison

▶ Dynamic language features: compiler < interpreter

- ▶ Dynamic language features: compiler < interpreter</p>
 - ► The interpreter is already on the end user's machine, so programs can use it e.g. to dynamically generate and execute new code

- ▶ Dynamic language features: compiler < interpreter
 - The interpreter is already on the end user's machine, so programs can use it e.g. to dynamically generate and execute new code
 - ► The AOT compiler is not generally on the end user's machine, so this is more difficult

Interpreter vs compiler

▶ JIT compilers have similar pros/cons to interpreters

Interpreter vs compiler

- ► JIT compilers have similar pros/cons to interpreters
 - Runtime efficiency: JIT > interpreter (e.g. code inside a loop only needs to be translated once, then can be executed many times)

Interpreter vs compiler

- ► JIT compilers have similar pros/cons to interpreters
 - Runtime efficiency: JIT > interpreter (e.g. code inside a loop only needs to be translated once, then can be executed many times)
 - Ease of development: JIT < interpreter</p>

 Many modern interpreters and JIT compilers translate programs into bytecode

- Many modern interpreters and JIT compilers translate programs into bytecode
- Bytecode is essentially machine code for a virtual machine (VM)

- Many modern interpreters and JIT compilers translate programs into bytecode
- Bytecode is essentially machine code for a virtual machine (VM)
- Translation from source code to bytecode can be done ahead of time

- Many modern interpreters and JIT compilers translate programs into bytecode
- Bytecode is essentially machine code for a virtual machine (VM)
- Translation from source code to bytecode can be done ahead of time
- At runtime, translate the bytecode (by interpretation or JIT compilation) into machine code for the physical machine

- Many modern interpreters and JIT compilers translate programs into bytecode
- Bytecode is essentially machine code for a virtual machine (VM)
- Translation from source code to bytecode can be done ahead of time
- At runtime, translate the bytecode (by interpretation or JIT compilation) into machine code for the physical machine
- E.g. a Java JAR file, a .NET executable, a Python .pyc or .pyo file all contain bytecode for their respective VMs

 Assembly language is designed to translate directly into machine code

- Assembly language is designed to translate directly into machine code
- An ahead-of-time compile for assembly language is called an assembler

- Assembly language is designed to translate directly into machine code
- An ahead-of-time compile for assembly language is called an assembler
- Generally much simpler than an AOT compiler for a higher-level language

 Designed by Chuck Peddle and team at MOS Technology

- Designed by Chuck Peddle and team at MOS Technology
- ▶ 8-bit CPU, 16-bit addressing

- Designed by Chuck Peddle and team at MOS Technology
- ▶ 8-bit CPU, 16-bit addressing
- Clocked between 1MHz and 3MHz

- Designed by Chuck Peddle and team at MOS Technology
- ▶ 8-bit CPU, 16-bit addressing
- Clocked between 1MHz and 3MHz
- ► First produced in 1975

- Designed by Chuck Peddle and team at MOS Technology
- ▶ 8-bit CPU, 16-bit addressing
- Clocked between 1MHz and 3MHz
- ► First produced in 1975
- ► Still in production today

We usually write numbers in decimal i.e. base 10

- We usually write numbers in decimal i.e. base 10
- Hexadecimal is base 16

- We usually write numbers in decimal i.e. base 10
- Hexadecimal is base 16
- Uses extra digits:
 - ► A=10, B=11, ..., F=15

- We usually write numbers in decimal i.e. base 10
- Hexadecimal is base 16
- Uses extra digits:
 - ► A=10, B=11, ..., F=15

Hex	Dec	Hex	Dec	Hex	Dec
00	0	10	16	F0	240
01	1	11	17	F1	241
		:		:	
09	9	19	25	F9	249
0A	10	1A	26	FA	250
0B	11	1в	27	FB	251
0C	12	1C	28	FC	252
0D	13	1D	29	FD	253
0E	14	1E	30	FE	254
0F	15	1F	31	FF	255

► Executes a series of **instructions** stored in **memory**

- Executes a series of instructions stored in memory
- An instruction is stored as an opcode followed by 0 or more arguments

- Executes a series of instructions stored in memory
- An instruction is stored as an opcode followed by 0 or more arguments
- ► CPU has several **registers**, each storing a single value

- Executes a series of instructions stored in memory
- An instruction is stored as an opcode followed by 0 or more arguments
- ► CPU has several **registers**, each storing a single value
 - Memory locations inside the CPU

- Executes a series of instructions stored in memory
- An instruction is stored as an opcode followed by 0 or more arguments
- ► CPU has several **registers**, each storing a single value
 - Memory locations inside the CPU
 - Faster to access than main memory

- Executes a series of instructions stored in memory
- An instruction is stored as an opcode followed by 0 or more arguments
- ► CPU has several **registers**, each storing a single value
 - Memory locations inside the CPU
 - Faster to access than main memory
- Instructions can read and write values in registers and in memory, and can perform arithmetic and logical operations on them

- Executes a series of instructions stored in memory
- An instruction is stored as an opcode followed by 0 or more arguments
- ► CPU has several **registers**, each storing a single value
 - Memory locations inside the CPU
 - Faster to access than main memory
- Instructions can read and write values in registers and in memory, and can perform arithmetic and logical operations on them
- ► The program counter (PC) register stores the address of the next instruction to execute

▶ 6502 is an 8-bit CPU, meaning each register stores 8 bits of data

- 6502 is an 8-bit CPU, meaning each register stores 8
 bits of data
 - ▶ 1 byte

- 6502 is an 8-bit CPU, meaning each register stores 8 bits of data
 - ▶ 1 byte
 - ► A number between 0 and 255

- 6502 is an 8-bit CPU, meaning each register stores 8
 bits of data
 - ▶ 1 byte
 - A number between 0 and 255
- ► A = accumulator

- 6502 is an 8-bit CPU, meaning each register stores 8
 bits of data
 - ▶ 1 byte
 - ► A number between 0 and 255
- ► A = accumulator
- ► X, Y = **index** registers

- 6502 is an 8-bit CPU, meaning each register stores 8 bits of data
 - ▶ 1 byte
 - A number between 0 and 255
- ► A = accumulator
- ► X, Y = **index** registers
- ► SP = stack pointer register

- 6502 is an 8-bit CPU, meaning each register stores 8
 bits of data
 - ▶ 1 byte
 - A number between 0 and 255
- ► A = accumulator
- ► X, Y = **index** registers
- ► SP = **stack pointer** register
- ► PC = program counter register (16 bits)

- 6502 is an 8-bit CPU, meaning each register stores 8
 bits of data
 - ▶ 1 byte
 - A number between 0 and 255
- ► A = accumulator
- ► X, Y = **index** registers
- ► SP = **stack pointer** register
- ► PC = program counter register (16 bits)
- ▶ Status register, composed of seven 1-bit flags

► Translates **directly** to machine code

- ► Translates **directly** to machine code
- ► I.e. 1 line of assembly = 1 CPU instruction

- Translates directly to machine code
- ▶ I.e. 1 line of assembly = 1 CPU instruction
- An assembler translates assembly to machine code

- Translates directly to machine code
- ▶ I.e. 1 line of assembly = 1 CPU instruction
- An assembler translates assembly to machine code
 - I.e. an assembler is a "compiler" for assembly language

- Translates directly to machine code
- ▶ I.e. 1 line of assembly = 1 CPU instruction
- An assembler translates assembly to machine code
 - I.e. an assembler is a "compiler" for assembly language
- Each CPU architecture has its own instruction set therefore its own assembly language


```
LDA #$01
STA $0200
LDA #$05
STA $0201
LDA #$08
STA $0202
```



```
LDA #$01
STA $0200
LDA #$05
STA $0201
LDA #$08
STA $0202
```

Try if out! http://skilldrick.github.io/easy6502/

LDA #\$01

► Store the value 01 (hexadecimal) into register A

- Store the value 01 (hexadecimal) into register A
- ▶ LDA ("load accumulator") stores a value in register A

- Store the value 01 (hexadecimal) into register A
- LDA ("load accumulator") stores a value in register A
- # denotes a literal number (as opposed to a memory address)

- Store the value 01 (hexadecimal) into register A
- LDA ("load accumulator") stores a value in register A
- # denotes a literal number (as opposed to a memory address)
- s denotes hexadecimal notation

STA \$0200

Write the value of register A into memory address 0200 (hex)

- Write the value of register A into memory address 0200 (hex)
- STA ("store accumulator") copies the value of register A into main memory

- Write the value of register A into memory address 0200 (hex)
- STA ("store accumulator") copies the value of registerA into main memory
- Note that address is a 16-bit number (2 bytes, 4 hex digits)

- Write the value of register A into memory address 0200 (hex)
- STA ("store accumulator") copies the value of registerA into main memory
- Note that address is a 16-bit number (2 bytes, 4 hex digits)
- ▶ In this emulator the display is "memory mapped", with 1 byte per pixel, starting from address 0200
 - Real systems are usually more complicated than this!

Assembly to machine code

Assembly to machine code

```
LDA #$01

STA $0200

LDA #$05

STA $0201

LDA #$08

STA $0202
```

```
LDA #$01
STA $0200
LDA #$05
STA $0201
LDA #$08
STA $0202
```

```
A9 01

8D 00 02

A9 05

8D 01 02

A9 08

8D 02 02
```

```
LDA #$01

STA $0200

LDA #$05

STA $0201

LDA #$08

STA $0202
```

```
A9 01

8D 00 02

A9 05

8D 01 02

A9 08

8D 02 02
```

Note that the 6502 is **little endian**

```
LDA #$01

STA $0200

LDA #$05

STA $0201

LDA #$08

STA $0202
```

```
A9 01
8D 00 02
A9 05
8D 01 02
A9 08
8D 02 02
```

Note that the 6502 is **little endian**

▶ In 16-bit values, the "low" byte comes before the "high" byte

```
LDA #$01

STA $0200

LDA #$05

STA $0201

LDA #$08

STA $0202
```

```
A9 01
8D 00 02
A9 05
8D 01 02
A9 08
8D 02 02
```

Note that the 6502 is little endian

- In 16-bit values, the "low" byte comes before the "high" byte
- ► Intel x86 is also little endian

▶ PC normally **advances** to the next instruction

- ▶ PC normally **advances** to the next instruction
- ► Some instructions **modify** the PC

- ▶ PC normally **advances** to the next instruction
- ► Some instructions **modify** the PC
- ► E.g. **MP** (jump) sets the PC to the specified address

- PC normally advances to the next instruction
- Some instructions modify the PC
- ► E.g. JMP (jump) sets the PC to the specified address

```
INC $0200 ; add 1 to the value at address 0200
JMP $0600 ; jump back to beginning of program
```

- PC normally advances to the next instruction
- Some instructions modify the PC
- E.g. JMP (jump) sets the PC to the specified address

```
INC $0200 ; add 1 to the value at address 0200
JMP $0600 ; jump back to beginning of program
```

- ► In this emulator the program always starts at address
 - ► This may **not** be the case on other 6502-based systems!

▶ Don't use explicit jump locations in your code, it's not maintainable!

- ▶ Don't use explicit jump locations in your code, it's not maintainable!
- Can add a label to a line of code, by giving a name followed by a colon

- ▶ Don't use explicit jump locations in your code, it's not maintainable!
- Can add a label to a line of code, by giving a name followed by a colon
- ► Labels can then be used in instructions

- Don't use explicit jump locations in your code, it's not maintainable!
- Can add a label to a line of code, by giving a name followed by a colon
- Labels can then be used in instructions

```
start:
INC $0200
JMP start
```

- Don't use explicit jump locations in your code, it's not maintainable!
- Can add a label to a line of code, by giving a name followed by a colon
- ► Labels can then be used in instructions

```
start:
INC $0200
JMP start
```

▶ start is essentially a constant with value \$0600

- Don't use explicit jump locations in your code, it's not maintainable!
- Can add a label to a line of code, by giving a name followed by a colon
- ► Labels can then be used in instructions

```
start:
INC $0200
JMP start
```

- ▶ start is essentially a constant with value \$0600
- The assembled code is exactly the same as for the previous slide

```
LDX #$08 ; set X=8

decrement:

DEX ; subtract 1 from X

STX $0200 ; store X in top left pixel

CPX #$03 ; compare X to 3

BNE decrement ; if not equal, jump

STX $0201 ; store X in next pixel

BRK ; halt execution
```

```
LDX #$08 ; set X=8

decrement:

DEX ; subtract 1 from X

STX $0200 ; store X in top left pixel

CPX #$03 ; compare X to 3

BNE decrement ; if not equal, jump

STX $0201 ; store X in next pixel

BRK ; halt execution
```

```
X=8
do
X=X-1
memory[0200]=X
while X\neq 3
memory[0201]=X
```

Assembly language does not have structured programming constructs such as if/else, switch/case, for, while, etc.

- Assembly language does not have structured programming constructs such as if/else, switch/case, for, while, etc.
- However all of these can be implemented using branch instructions

- Assembly language does not have structured programming constructs such as if/else, switch/case, for, while, etc.
- However all of these can be implemented using branch instructions
- ... which is exactly how compilers implement them

► Branching allows us to implement if statements

▶ Branching allows us to implement if statements

```
CPX #$01   ; compare X to 1
BMI else   ; if X < 1, jump
DEY    ; Y = Y - 1
JMP end   ; skip over else block
else:
   INY    ; Y = Y + 1
end:</pre>
```

▶ Branching allows us to implement if statements

```
if X \ge 1 then Y = Y - 1 else Y = Y + 1 end if
```

► JSR (jump to subroutine) works like JMP, but stores the current PC

- ▶ JSR (jump to subroutine) works like JMP, but stores the current PC
- ► RTS (return from subroutine) jumps back to the instruction after the JSR

- ▶ JSR (jump to subroutine) works like JMP, but stores the current PC
- RTS (return from subroutine) jumps back to the instruction after the JSR
- ► These are used to implement function calls

- ▶ JSR (jump to subroutine) works like JMP, but stores the current PC
- RTS (return from subroutine) jumps back to the instruction after the JSR
- ► These are used to implement function calls
- ► Return addresses are stored on a **stack**

Addressing modes

Addressing modes

► Immediate: LDA #\$42

Addressing modes

- ► Immediate: LDA #\$42
 - ► Load the literal value 42 (hex) into register A

► Immediate: LDA #\$42

► Load the literal value 42 (hex) into register A

► Absolute: LDA \$42

- ► Immediate: LDA #\$42
 - Load the literal value 42 (hex) into register A
- ► Absolute: LDA \$42
 - ► Load the value stored at memory address 42 (hex) into register A

- ► Immediate: LDA #\$42
 - ► Load the literal value 42 (hex) into register A
- ► Absolute: LDA \$42
 - Load the value stored at memory address 42 (hex) into register A
- ► That # makes a big difference!

- ► Immediate: LDA #\$42
 - Load the literal value 42 (hex) into register A
- ► Absolute: LDA \$42
 - Load the value stored at memory address 42 (hex) into register A
- ▶ That # makes a big difference!
- Note that these actually assemble to different CPU instructions

LDA \$0200,X

LDA \$0200,X

► Look up the value stored at memory address

0200 + (value of X register)

and store it in A

LDA \$0200,X

Look up the value stored at memory address

0200 + (value of X register)

and store it in A

► Can also do LDA \$0200, Y

LDA \$0200,X

► Look up the value stored at memory address

0200 + (value of X register)

and store it in A

- ► Can also do LDA \$0200, Y
- ... but only x and y registers can be used for indexed addressing

```
LDX #0 ; X=0

loop:

TXA ; A=X

STA $0200,X ; store A to 0200+X

INX ; X++

JMP loop ; loop forever
```

```
LDX #0 ; X=0
loop:

TXA ; A=X
STA $0200,X ; store A to 0200+X
INX ; X++
JMP loop ; loop forever
```

▶ Why does it stop $\frac{1}{4}$ of the way down?

```
LDX #0 ; X=0

loop:

TXA ; A=X

STA $0200,X ; store A to 0200+X

INX ; X++

JMP loop ; loop forever
```

- ▶ Why does it stop $\frac{1}{4}$ of the way down?
- ► Hint: it stops after filling 256 pixels...

