## Vorlesung Systemtheorie und Regelungstechnik I (SR1) Albert-Ludwigs-Universität Freiburg – Sommersemester 2020

## Übungsblatt 3: Lineare Systeme (zu Kapitel 2)

Prof. Dr. Moritz Diehl, Jochem De Schutter und Matthias Gramlich

1. Sind die folgenden Differentialgleichungen (DGL) mit Eingangssignal u(t), Ausgangssignal y(t) und konstantem Parameter k linear und/oder zeitinvariant? Beweisen Sie Ihre Aussagen. (3 Punkte)

(a) 
$$\dot{y}(t) = \sin(t) \cdot y(t) - ku(t)$$

(b) 
$$\dot{y}(t) = y(t) \cdot u(t)$$

Tipp: Linearität kann bewiesen werden, indem man von zwei Lösungstrajektorien  $u_1(t), y_1(t)$  und  $u_2(t), y_2(t)$  ausgeht und explizit zeigt, dass jede Linearkombination dieser Lösungstrajektorien eine Lösung der DGL darstellt. Zeitinvarianz kann bewiesen werden, indem man von einer Lösungstrajektorie ausgeht und explizit zeigt, dass diese auch nach einer beliebigen Verschiebung in der Zeit immer noch eine Lösung der Differentialgleichung darstellt.

2. In dieser Aufgabe soll das nichtlineare Waschbeckenmodell (ohne Auffangbecken) des ersten Übungsblatts um eine Ruhelage linearisiert werden. Das Waschbecken mit Zufluss u(t) und Wassermenge x(t) wird durch die ODE

$$\dot{x}(t) = u(t) - k\sqrt{x(t)}$$

beschrieben. (4 Punkte)

- (a) Berechnen Sie den Gleichgewichtszustand  $x_{ss}$  als Funktion von der konstanten Flussrate  $u_{ss}$ .
- (b) Linearisieren Sie das System für kleine Abweichungen ( $\delta x(t), \delta u(t)$ )) von der Ruhelage ( $x_{\rm ss}, u_{\rm ss}$ ), um eine ODE der folgenden Form zu erhalten:

$$\delta \dot{x}(t) = A \, \delta x(t) + B \, \delta u(t).$$

- (c) Nehmen Sie nun an, dass  $k=0.60\frac{\sqrt{\text{kg}}}{\text{s}}$  und  $u_{\text{ss}}=2.4\frac{\text{kg}}{\text{s}}$ . Berechnen Sie  $x_{\text{ss}}$ , A, und B.
- (d) Betrachten Sie nun ein erweitertes Waschbecken, das außer der Wassermenge  $x_1(t)$  noch die Wassertemperatur  $x_2(t)$  observiert. Anfangs befindet sich eine Wassermenge  $m_0$  der Temperatur  $T_0 = T_a$  im Becken. Das einfließende Wasser hat die Temperatur  $T_h$ . Da das Wasser im Becken zudem Wärmenergie an die Umgebung abgibt, entstehen Wärmeverluste mit einer Wärmeverlustleistung von  $k_2 \cdot C \cdot m(t) \cdot (x_2(t) T_a)$ , wobei  $k_2$  eine Konstante mit Einheit 1/s, die Konstante C die spezifische Wärmekapazität des Wassers mit Einheit  $J/(kg \cdot K)$  und  $T_a$  die Umgebungstemperatur ist. Dieses System wird durch die ODE

$$\dot{x}(t) = \begin{bmatrix} -k_1 \sqrt{x_1(t)} + u(t) \\ -k_2(x_2(t) - T_a) + \frac{T_h - x_2(t)}{x_1(t)} u(t) \end{bmatrix}$$

beschrieben. Führen Sie die Schritte a) bis c) erneut durch unter der Annahme, dass  $T_{\rm h}=340\,{\rm K}, T_a=300\,{\rm K},$   $k_1=0.60\frac{\sqrt{\rm kg}}{\rm s}, k_2=0.1\frac{\rm l}{\rm s}$  und  $u_{\rm ss}=2.4\frac{\rm kg}{\rm s}$ .

3. (Python) In dieser Aufgabe wollen wir das Waschbecken (mit Temperatur) aus Aufgabe 2d) für das nichtlineare Modell und das lineare Modell simulieren und vergleichen. Als Vorlage wird Ihnen eine Simulation des gesteuerten Traktors aus dem Skript (Kap. 2.2) zur Verfügung gestellt. Die Traktorsimulation besteht aus folgenden Dateien, die Sie von der Kurswebseite herunter laden können. (3 Punkte)

| Dateiname      | Beschreibung                                                                     |
|----------------|----------------------------------------------------------------------------------|
| tractor.py     | Besteht aus drei Unterprogrammen:                                                |
|                | 1. Das Hauptprogramm definiert Simulationsparameter (Anfangswert, Zeitschritte,) |
|                | und startet die Simulation                                                       |
|                | 2. tractor_ode_nl: Definiert die nichtlineare Zustandsgleichung                  |
|                | 3.tractor_out Definiert die Ausgangsgleichung des Traktormodells                 |
| toolbox_sr1.py | Besteht aus zwei Unterprogrammen:                                                |
|                | 1. rk: Runge-Kutta Verfahren zur Simulation eines Zeitschritts (vgl. Kap. 2.8)   |
|                | 2. nlsim: Funktion, die mittels rk für eine Eingangstrajektorie die              |
|                | Ausgangstrajektorie simuliert. Die Funktion werden wir häufig verwenden.         |
|                |                                                                                  |

- (a) Machen Sie sich mit den einzelnen Dateien vertraut und führen Sie tractor.py aus.
- (b) Verändern Sie die Datei tractor.py, sodass nicht das Ausgangssignal sondern die Zustände des Traktors geplottet werden.

- (c) Erstellen Sie ein Script sink\_simulate.py. Definieren Sie eine Funktion sink\_ode\_nl, die die nichtlineare ODE des Waschbeckens implementiert. Als Vorlage können Sie die Datei tractor.py verwenden.
- (d) Simulieren Sie nun das Waschbecken im Script  $sink\_simulate.py$ . Verwenden Sie als Anfangswert  $x_0 = [1;300]$  und als Eingang einen konstanten Wert von u = 2.4 (step input). Ausgangsgröße ist die Masse  $x_1(t)$ . Erreicht Ihre Simulation den vorhergesagten Gleichgewichtspunkt?
- (e) \*Erstellen Sie eine Funktion sink\_ode\_l die das linearisierte Verhalten implementiert. Als Vorlage können Sie erneut die Datei tractor.py verwenden.
- (f) \*Erweitern Sie ihr Script sink\_simulate.py nun um zusätzlich das lineare System zu simulieren. Vergleichen Sie die Ergebnisse der linearen und nichtlinearen Implementierung. Wo ist die Abweichung am größten? Warum?