Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Определить минимальную степень ребра в неориентированном графе

Выполнил: А. И. Леонов

Студент группы 321702

Проверила: Н. В. Малиновская

Содержание

5	Заключение	10
	4.2 Демонстрация на тесте 2:	8
	4.1 Краткое описание:	
	Пример работы алгоритма в семантической памяти	
3	Тестовые примеры	3
2	Список понятий	2
1	Введение	2

1 Введение

Цель:

Получить навыки формализации и обработки информауии с использованием семантических сетей.

Задача:

Определить минимальную степень ребра в неориентированном графе

2 Список понятий

- 1. Граф совокупность непустого множества вершин и пар вершин.
- 2. **Неориентированный граф** граф, ребра которого не имеют направления и могут быть проходимыми в обоих направлениях.

Рис. 1: Пример неориентированного графа

3 Тестовые примеры

Тест 1

Вход: Необходимо найти наименьшую степень ребра в заданном неориентированном графе

Рис. 2: Вход теста 1

Выход:

Найдено ребро с наименьшей степенью

Рис. 3: Выход теста 1

Тест 2

Вход:

Рис. 4: Вход теста 2

Найдено ребро с наименьшей степенью

Рис. 5: Выход теста 2

Тест 3

Вход:

Рис. 6: Вход теста 3

Найдено ребро с наименьшей степенью

Рис. 7: Выход теста 3

Тест 4

Вход:

Рис. 8: Вход теста 4

Найдено ребро с наименьшей степенью

Рис. 9: Выход теста 4

Тест 5

Вход:

Рис. 10: Вход теста 5

Найдено ребро с наименьшей степенью

Рис. 11: Выход теста 5

4 Пример работы алгоритма в семантической памяти

4.1 Краткое описание:

- 1. Создаем список вершин графа
- 2. Считаем степень каждой вершины
- 3. Выбираем ребро и считаем его степень
- 4. Если пройдены все ребра ищем ребро с наименьшей степенью

4.2 Демонстрация на тесте 2:

Рис. 12: Вход теста 2

1. Для каждой вершины графа считаем её степень затем записываем эти значения.

Рис. 13: Подсчет степеней вершин графа

Рис. 14: Подсчет степеней ребер графа

- 2. Затем для каждого ребра подсчитываем его степень, складывая степени тех вершин, которые соединяет это граф.
- 3. Сравниваем степени всех ребер и выбираем наименьшее значение

Рис. 15: Найдены ребра с наименьшей степенью

5 Заключение

Формализована задача по нахождению наименьшей степени ребра в неориентированном графе. Проведены тесты и найдены соответсвующие значения. Реализован алгоритм для выполнения этой задачи на произвольном неориентированном графе.

Список использованных источников

1. Глоссарий теории графов [Электронный ресурс]. https://ru.wikipedia.org/wiki/Глоссарий_теории_графов