PERFORMANCE AND ACOUSTIC TESTING OF A VARIABLE CAMBER PROPELLER

DONALD P. McERLEAN, 1ST LIEUTENANT, USAF DONALD E. EDWARDS

TECHNICAL REPORT AFAPL-TR-70-80

FEBRUARY 1971

This document has been approved for public release and sale; its distribution is unlimited.

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

UNCLASSIFIED

Security Classification		
	ONTROL DATA - R & D	
	exing annotation must be en red when the overall report is classified)	
1. ORIGINATING ACTIVITY (Corporate author)	UNCLASSIFIED	
Air Force Aero Propulsion Laboratory	2b. GROUP	
Wright-Patterson AFB, Ohio		
3. REPORT TITLE		
PERFORMANCE AND ACOUSTIC TESTING	OF A VARIABLE CAMBER PROPELLER	
	j	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
Work period from March 1970 through July	1970	
5. AUTHOR(S) (Piret name, middle initial, last name)		
Donald P. McErlean, 1st Lieutenant, USAF		
Donald E. Edwards		
6. REPORT DATE	7a. TOTAL NO. OF PAGES 7b. NO. OF REFS	
February 1971	98 3	
M. CONTRACT OR GRANT NO.	94. ORIGINATOR'S REPORT NUMBER(S)	
,	AFAPL-TR-70-80	
b. PROJECT NO. 3066		
c. Task No. 306612		
c, tuba no. ooota	9b. OTHER REPORT NO(\$) (Any other numbers that may be assigned this report)	
d.		
10. DISTRIBUTION STATEMENT		
This document has been approved for public	release and sale; its distribution is unlimited.	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY	
	Air Force Aero Propulsion Laboratory	
	Wright-Patterson AFB, Ohio	
3, ABSTRACT		
This report presents the test results obtain	ained from a series of performance and acoustic	
	ed with a variable camber feature. The subject	
	el Allison Division of General Motors under a prior	
	, effects a change in camber by deflecting a flap	
positioned along the 72% chordal line of each	blade.	
۵		
The tests were conducted on the 10,000 b	norsepower electric whirl rig located at Wright-	
	ith the same blade with fixed camber, the variable	
	y approximately 11% with a horsepower input of pressure level and the 1/3 octave band frequency	
	uenced by increasing the camber on this propeller.	
spectra did not appear to be approchably inti	deficed by file casing the camper on this properier.	
These tests represent the only test data a	available on this unique propeller configuration which	
Poor bosomming for 1/ profit abhiteamons.		

DD FORM 1473

>

+0

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification LINK A LINK B LINK C KEY WORDS ROLE WT ROLE WT ROLE WT Propellers for Aircraft Variable Camber V/STOL Aircraft Static Performance Acoustic Performance Testing

Security Classification

UNCLASSIFIED

PERFORMANCE AND ACOUSTIC TESTING OF A VARIABLE CAMBER PROPELLER

DONALD P. McERLEAN, IST LIEUTENANT, USAF
DONALD E. EDWARDS

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report summarizes the variable camber propeller test program work accomplished during the period from March 1970 through July 1970 under Project 3066, Task 306612, "Propeller Technology," Lt McErlean, AFAPL/TBC, project engineer. This report was submitted by the authors November 1970.

In-house technical support for the test program and report preparation was provided by members of the Components Branch, Turbine Engine Division of the Air Force Aero Propulsion Laboratory. The performance testing was conducted by Dr. Donald P. McErlean and the acoustic testing was conducted by Mr. Donald E. Edwards. Test facilities were under the direction of Mr. S. W. Blosser of the Experimental Test Branch, Technical Facilities Division of the Air Foyce Aero Propulsion Laboratory; Mr. George Medisch of the same Branch was the Chief of the Propeller Test Crew.

Special appreciation is extended to Mr. M. P. Wannemacher of the Components Branch, Turbine Engine Division of the Air Force Aero Propulsion Laboratory for acting as associate investigator during the course of this program, and to the members of the propeller test crew for their assistance and cooperation.

Technical support was provided by the manufacturer of the propeller, Detroit Diesel Allison Division of General Motors Corporation, Indianapolis, Indiana.

This technical report has been reviewed and is approved.

Director, Turbine Engine Division

ABSTRACT

This report presents the test results obtained from a series of performance and acoustic near-field measurements on a propeller fitted with a variable camber feature. The subject propeller, manufactured by the Detroit Diesel Allison Division of General Motors under a prior Contributing Engineering Program Contract, effects a change in camber by deflecting a flap positioned along the 72% chordal line of each blade.

The tests were conducted on the 10,000 horsepower electric whirl rig located at Wright-Patterson Air Force Base. In comparison with the same blade with fixed camber, the variable camber feature increased the static thrust by approximately 11% with a horsepower input of 3500 SHP at 1020 RPM. The overall sound pressure level and the 1/3 octave band frequency spectra did not appear to be appreciably influenced by increasing the camber on this propeller.

These tests represent the only test data available on this unique propeller configuration which has good potential for V/STOL applications.

BLANK PAGE

TABLE OF CONTENTS

SECT	ION		PAGE	
I	IN'	NTRODUCTION		
П	TE	TEST AND FACILITIES		
	1.	Test Vehicle	2	
	2.	Test Plan	3	
		a. Test Data Recorded	3	
		b. Propeller Configurations Tested	3	
	3.	Test Facilities	4	
		a. Horsepower	4	
		b. Thrust	5	
		c. RPM	5	
		d. Acoustic Data Acquisition System	5	
ш	II DATA ANALYSIS AND REDUCTION		7	
	1.	Aerodynamic Data	7	
	2.	Acoustic Data	7	
IV	TEST RESULTS		9	
	1.	Aerodynamic Performance Results	9	
		a. Thrust vs RPM	9	
		b. Horsepower vs RPM	9	
		c. $C_T/C_p \text{ vs } C_p$	9	
		d. Figure of Merit	9	
		e. Thrust vs Blade Angle	10	

TABLE OF CONTENTS (CONT)

SECTION			PAGE
2. Acoustic Data		oustic Data	10
	a.	Graphical Frequency Spectra	10
	b.	Overall Sound Pressure Level	11
	c.	Tabular Frequency Spectra	11
	d.	Comparison of Measured Sound Pressure Levels With Predicted Values	11
v co	NCL	USIONS AND RECOMMENDATIONS	12
1.	Con	nclusions	12
2.	Rec	commendations	12
APPENI	OIX	RAW TEST DATA	51
1.	Whi	irl Rig Performance Data	54
2.	Tab	oular Frequency Spectra	70
REFERI	ENCE	es	90

ILLUSTRATIONS

FIGURE		PAGE
1.	End View of Variable Camber Blade	13
2.	Variable Camber Propeller Installed on Whirl Rig No. 1	14
3.	Blade Flap Actuation Mechanism	15
4.	Microphone Positions for Acoustic Data Acquisition System	16
5.	Pounds Thrust vs Propeller Speed at Various Blade Angles - Zero Blade Flap Deflection	17
6.	Pounds Thrust vs Propeller Speed at Various Blade Angles - Full Blade Flap Deflection	18
7.	Horsepower vs Propeller Speed at Various Blade Angles - Zero Blade Flap Deflection	19
8.	Horsepower vs Propeller Speed at Various Blade Angles - Full Blade Flap Deflection	20
9.	Thrust/Horsepower vs Power Coefficient	21
10.	Figure of Merit vs Power Coefficient	22
11.	Pounds of Thrust vs Blade Angle at 1000 RPM	23
12.	Pounds of Thrust vs Blade Angle at 1020 RPM	24
13-28.	Graphical Frequency Spectra	26-41
29-34.	Overall Sound Pressure Level Diagrams	44-49

SYMBOLS

D	propeller diameter, ft
AF	activity factor = $\frac{100,000}{16} \int_{0.2}^{1.0} \frac{b}{D} \left(\frac{r}{R}\right)^3 d\left(\frac{r}{R}\right)$
β	blade angle
r	radius along blade, ft
R	total blade radius, ft
C _{Li}	integrated design lift coefficient = $4 \int_{0.2}^{1.0} c_{\ell} \left(\frac{r}{R}\right)^3 d\left(\frac{r}{R}\right)$
C∕i	blade section design lift coefficient
M	tip Mach number = $\frac{\pi ND}{60a}$
N	propeller speed, RPM
а	speed of sound, ft/sec
σ	density ratio, ρ / ρ_0
P	local density, lb-sec ² /ft ⁴
Po	sea level standard density, lb-sec ² /ft ⁴
нР	corrected rig horsepower $\frac{\text{test horsepower}}{\sigma}$
$C_{\mathbf{p}}$	power coefficient $\frac{5 \times 10^{10} \text{ HP}}{\text{N}^3 \text{ D}^5}$
$\mathbf{c_T}$	thrust coefficient $\frac{1.514 \times 10^6 \text{ Th}}{N^2 D^4}$ figure of merit = 0.798 $\frac{C_T^{1.5}}{C_p}$
F. M.	figure of merit = $0.798 \frac{CT}{Cp}$
Th	corrected rig thrust, pounds $\frac{\text{test thrust}}{\sigma}$

SECTION I

INTRODUCTION

A serious problem with the propellers which are currently used for V/STOL and STOL applications is that the need for high static thrust has caused the blade to be designed for takeoff conditions and therefore the performance at cruise speed is hampered. The development of a high speed V/STOL or STOL turboprop requires that the propeller give good performance in both the static and flight regimes. An excellent way of accomplishing this high performance throughout the flight envelope is to utilize a propeller which incorporates variable geometry.

Although the above discussion centers around performance, it is recognized that the planned application of STOL and V/STOL aircraft for short-haul transportation in and around a civilian environment has caused the noise generated by these aircraft to become of major importance. Therefore, it was decided that, to evaluate the performance of propellers for this type of aircraft, it would be necessary to measure not only thrust, horsepower, and RPM but also the near-field acoustic signature.

This report presents the results of the performance testing of a variable camber propeller manufactured by the Detroit Diesel Allison Division of General Motors. This propeller incorporates a flap, similar to the aileron of a wing, located along the trailing edge of each blade. When activated, this flap effectively changes the camber of the blade.

In view of the current interest in improving STOL and V/STOL aircraft performance and in the noise pollution aspects of such aircraft, the findings of this report are believed to be of significant value. They represent the only test data available on this unique propulsor configuration and, hopefully, may provide a basis for further research into the area of variable geometry propellers.

SECTION II

TEST AND FACILITIES

1. TEST VEHICLE

The tests described in this report were performed on a variable camber propeller developed by the Detroit Diesel Allison Division of General Motors. This propeller, which is basically a standard Aeroproducts A6441FN-606 (Lockheed Electra) blade, was modified by the addition of a flap positioned along the 72% chordal line of each blade. This flap, similar to the aileron of a wing, effectively changes the camber of the blade when deflected. This can be seen quite clearly in Figures 1 and 2.

The blade flap actuation mechanism, which can be seen in Figure 3, is basically a two-position cam which deflects the flap after the blade has progressed through a specified blade angle. This mechanism operates in the following manner: When the blades are moved into the takeoff position, the cam rotates the flap toward the blade thrust face to produce the high camber required for maximum takeoff thrust. As the blade angle is increased into the cruise range, the flap moves to its low camber position where it completes the design airfoil section for high cruise efficiency.

The present configuration deflects the flap at all blade angles of 40° or less. However, this mechanism was modified slightly for this experiment in order to allow the flap angle to be varied independently of the blade angle so that a base line could be drawn for performance/acoustic measurements.

The following are the major characteristics of the propeller:

Diameter	13 feet, 6 inches
Activity Factor	177
Design RPM	1020
Takeoff Horsepower	4200
Integrated Design Lift Coefficient	0.25

Equivalent Design Lift Coefficient (Flap Deflected)

0.75

Number of Blades

4

Material

SAE 4350 steel, hollow-ribbed construction

2. TEST PLAN

The tests described in this report are standard whirl rig calibration tests during which both performance and acoustic near-field data were obtained.

a. Test Data Recorded

The following data were recorded, where applicable, through the total RPM range of the test:

Test Run Number

Barometric Pressure

Time of Day

Ambient Temperature

Total Test Time

Corrected Horsepower

Blade Angle, Degrees

Corrected Thrust

Propeller Speed, RPM

Acoustic Near-Field Signature

b. Propeller Configurations Tested

The following test runs were made with both zero and full-blade flap deflection:

- +250 blade angle, 500 to 1000 RPM in 100 RPM increments plus 1020 and 1050 RPM
- *+32.20 blade angle, 500 to 1000 RPM in 100 RPM increments plus 1020 and 1050 RPM
- *+39.20 blade angle, 500 to 1000 RPM in 100 RPM increments plus 1020 and 1050 RPM

- *+42.80 blade angle, 500 to 1000 RPM in 100 RPM increments plus 1020 and 1050 RPM.
 - +50.10 blade angle, 500 to 1000 RPM in 100 RPM increments plus 1020 and 1050 RPM.
- *Acoustic near-field signature was recorded for these configurations.

All blade and flap angles were measured at the 42-inch blade station and 4200 SHP and 1050 RPM were employed as operating limits.

For all the configurations tested, full blade flap deflection consisted of moving the blade flap 5.4° in the increasing camber direction from the design airfoil position. The measurement of both blade and flap angle was accomplished by using a protractor and a special template designed according to the manufacturer's blade drawings.

3. TEST FACILITIES

All testing described in this report was done on the 10,000 horsepower electric whirl rig No. 1 located at Wright-Patterson AFB. In general, this rig consists of a large concrete pier which houses the electric drive motor, thrust and RPM measuring equipment, and various accessory drives. The pier rises about 25 feet off the floor of a large open building. The control room is located under the pier and the propeller may be observed via a periscope and strobe light arrangement. The following paragraphs give a brief description of the horsepower, thrust, and RPM measuring systems.

a. Horsepower

The input power to the propeller is calculated from measuring the armature voltage and amperage at the electric drive motor. Predetermined correction factors are then applied to allow for the copper and field winding losses. The resultant watts are then converted to horsepower and an atmospheric correction factor is used to adjust the data to standard day conditions. These calculations are made with an electronic desk calculator during the course of the test so that field curves can be drawn to check for obvious data discrepancies.

The system is calibrated against a well documented test propeller whose blades have been accurately set and locked into place. No load losses are determined by motoring the rig at various RPM settings.

b. Thrust

The thrust is measured by converting the movement of the propeller shaft to hydraulic pressure via a hydraulic diaphragm. The pressure signal is then directly converted to pounds thrust with a precalibrated Emery-Tate load indicator and then corrected to standard day conditions. The thrust system is calibrated statically by applying a known load (lead weights) to the propeller shaft.

c. RPM

Accurate shaft RPM was obtained from a magnetic pickup which receives impulses from the drive motor shaft. These impulses are then presented on a digital display in the control room as propeller RPM.

d. Acoustic Data Acquisition System

The acoustic data acquisition system consisted of six channels. Each channel employed a one-half inch Bruel and Kjaer microphone and cathode follower. The microphones were clamped to microphone stands which gave them the same elevation as the propeller hub and were positioned as shown in Figure 4. A preamplifier was used to drive the signal through 250 feet of four-conductor shielded cable. The cable connected the microphone assembly to the instrumentation in the control room where the signal was monitored by an oscilloscope and a Bruel and Kjaer voltmeter which was built into a third-octave spectrum analyzer. An Ampex FR-1300 tape unit was used to record the signal and a junction box with variable attenuators was used for system calibration. Power supplies for the microphones and amplifiers were also located in the control room.

A complete list of the data acquisition system instrumentation follows:

Microphone - half-inch Bruel and Kjaer condenser type 4133

Cathode

Follower - Bruel and Kjaer type 2619

Preamplifier - general purpose line drive amplifier,

Fairchild ADO-24

Cable - 20 gage, 4-conductor, shielded

Tape

Recorder - Ampex FR1300, 30 IPS, extended mode,

54 KHz center frequency

SECTION III

DATA ANALYSIS AND REDUCTION

1. AERODYNAMIC DATA

As was previously stated, the performance data was taken directly from the instrumentation in the control room. This data is then corrected for the various loss and atmospheric effects by employing predetermined correction factors. The data in this form is then delivered to the Project Engineer for reduction. This is accomplished by using a computer program written for the IBM 7094 Digital Computer at Wright-Patterson Air Force Base. This program is entitled "Computer Program for Reducing Static Propeller Test Data" and is contained in Reference 1. The explanation of the program contained here generally follows that of Chopin (Reference 2).

The program accepts whirl rig test data in precisely the format in which it is taken from the rig by the test crew. This is then reduced by the computer into power coefficient (C_p) , thrust coefficient (C_T) , C_T/C_p , figure of merit (F. M.), thrust/horsepower (Th/HP), and propeller tip Mach number.

The computer then fits a second-degree polynomial, employing the method of least squares, through six consecutive test data points which are distributed on either side of a selected tip Mach number value. This routine continues until smoothed horsepower and thrust curves are created for the entire range of tip Mach numbers. The reduced data is then presented in two forms: coefficients computed from the raw test data, and coefficients computed from the fitted curves at preselected tip Mach number increments.

For this series of tests, a tip Mach number increment of 0.025 from M = 0.300 to the last data point was employed. The computer printouts of the reduced data are contained in the Appendix.

2. ACOUSTIC DATA

The acoustic data, which was recorded on magnetic tape, was reduced by utilizing the data analysis capability of the Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio.

The magnetic recording tape was run on a Honeywell 7600 tape transport from which the signal was analyzed by a General Radio, type 1921, third-octave, real-time, spectrum analyzer. The frequency spectra from the analyzer were then printed in tabular form on paper tape.

Selected frequency spectra were then programmed into an IBM 1800 computer for graphical presentation by a Calcomp plotter. The spectrum analyzer center frequencies and filter numbers are shown in the tabular acoustic data contained in the Appendix.

SECTION IV

TEST RESULTS

1. AERODYNAMIC PERFORMANCE RESULTS

a. Thrust vs RPM

Figures 5 and 6 show the thrust generated by the propeller at various blade angles with increasing RPM. Comparison of the curve for the zero flap angle blade with the curve for the flap-deflected blade shows a much more marked drop in thrust for the flap-deflected case when the blade angle is increased past the stall point. This behavior is not unusual as it exhibits the basic difference between the effective camber of the two blades.

b. Horsepower vs RPM

Figures 7 and 8 display the increase in the power absorbed by the propeller at various blade angles with increasing RPM. Comparison of the two curves shows that, at each blade angle-RPM combination, the blade absorbed (or required) more horsepower with the flap deflected than it did without the flap deflected.

c. C_T/C_p vs C_p

Figure 9 is essentially a curve of thrust/horsepower at various power settings. As can be seen from the figure, the effect of RPM (as reflected in tip Mach number) was negligible, except at low power settings. What was most interesting was the fact that the curve for the high cambered blade (flap deflected) was always above the curve for the low cambered blade. Thus, the blade with the flap deflected always has the advantage in thrust production per horsepower, although this advantage is slight at high power coefficients.

d. Figure of Merit

The Figure of Merit is essentially a measure of the static efficiency of a propeller or helicopter rotor. Figure 10 shows that the deflection of the blade

flap caused an average increase in the Figure of Merit of approximately 5 points. It is also interesting to note that again there was only a very slight effect due to changing the propeller speed at a fixed blade angle.

e. Thrust vs Blade Angle

Probably the most significant conclusions can be drawn from Figures 11 and 12. These figures illustrate the variation in thrust with blade angle for a given propeller RPM. Also shown on these plots are some representative crossplot lines of constant horsepower. Therefore, assuming a constant speed propeller (which is the actual operational design of the tested configuration) and a horsepower which is fixed by the turbomachinery involved, these curves show the actual gain in static thrust due to the variable camber feature.

Figure 12, at 1020 RPM, showed that the increase in the blade camber caused by deflecting the flap resulted in about an 11% thrust increase at the 3500 SHP level and about a 7% increase at the 4200 SHP level.

It should be noted, however, that it was not possible to determine from the data whether this was an optimum configuration. A much more extensive test program would have to be carried out to study the effects of flap chord, deflection angle, basic blade shape, etc. Testing of this scope was simply not possible within the confines of the present effort.

2. ACOUSTIC DATA

The microphone positions utilized to obtain the acoustic data are shown in Figure 4.

a. Graphical Frequency Spectra

Selected frequency spectra as plotted by the Calcomp plotter are illustrated in Figures 13 through 28. The values selected are representative of a high and low blade angle both with and without the flap deflected.

An interesting observation which may be obtained from the graphical spectra of microphone positions 5 and 6 is that the broadband vortex noise propagated forward from the plane of rotation does not seem to be affected by the deflection of the blade flap.

b. Overall Sound Pressure Level

Figures 29 through 34 present the overall sound pressure level for each microphone position at three selected RPM values for each configuration tested. Except for microphone position 4, which is along the axis of expected maximum sound pressure level, the flap caused no consistent increase in sound pressure level.

c. Tabular Frequency Spectra

Included in the Appendix with the performance data are tables of the measured sound pressure level for each center frequency in the 1/3 octave band analysis. This data may then be plotted to obtain graphs similar to Figure 13 for any propeller test configuration desired.

d. Comparison of Measured Sound Pressure Levels With Predicted Values

A detailed comparison of the measured near-field noise levels with existing prediction methods (Reference 3) has indicated maximum deviations of +13 db and -7 db. The average deviation between measured and predicted data is +5 db to -3 db. Inaccuracies in the prediction methods do not fully account for the discrepancies between measured and predicted data. Additional studies are currently under way to determine the acoustic characteristics of the whirl rig facility in detail. The effect of reverberation on the accuracy of measured near-field data will be investigated.

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

The variable camber propeller with blade flaps deflected showed approximately 11% gain in static thrust at 3500 SHP and 1020 RPM. This is reflected in a gain of 1-1/2 to 3 points in the Figure of Merit at all power coefficients tested.

The overall sound pressure level was practically unaffected by deflecting the blade flaps. This result was somewhat unexpected, especially for the broadband vortex noise.

2. RECOMMENDATIONS

The manufacturer of the propeller felt that a 10^{0} flap angle should have been the maximum deflection angle. However, despite repeated attempts on the rig and in the assembly shop, only an 8^{0} deflection angle was obtained and of that only 5.4^{0} was in the positive (increasing camber) direction. Therefore, one recommendation would be to take the present configuration and, with some delicate machining, attempt to obtain the 10^{0} deflection angle.

Additionally, since this concept has certainly shown that it is feasible, further work is warranted to try and optimize the flapped blade configuration.

Hopefully, different variable geometry concepts will be tested on a continuing basis and will allow direct comparison of the results for each configuration. Since the static thrust of V/STOL machines has been considered a high risk area of V/STOL propulsion, this work should have considerable application.

Figure 1. End View of Variable Camber Blade

Figure 2. Variable Camber Propeller Installed on Whirl Rig No. 1

Figure 3. Blade Flap Actuation Mechanism

Figure 4. Microphone Positions for Acoustic Data Acquisition System

Figure 5. Pounds Thrust vs Propeller Speed at Various Blade Angles - Zero Blade Flap Deflection

Figure 6. Pounds Thrust vs Propeller Speed at Various Blade Angles - Full Blade Flap Deflection

Horsepower vs Propeller Speed at Various Blade Angles - Zero Blade Flap Deflection Figure 7.

Figure 8. Horsepower vs Propeller Speed at Various Blade Angles - Full Blade Flap Deflection

Figure 9. Thrust/Horsepower vs Power Coefficient

Figure 11. Pounds of Thrust vs Blade Angle at 1000 RPM

Figure 12. Pounds of Thrust vs Blade Angle at 1020 RPM

GRAPHICAL FREQUENCY SPECTRA

Figures 13 through 28

Figure 13

Figure 14

ONE-THIRD OCTAVE BAND CENTER FREQUENCY IN HZ
Figure 15

5655

Figure 16

Figure 18

Figure 19

33

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

BLADE ANGLE = 32.2 FLAP ANGLE = 0.0

6 ⊙	Overall Sound Pressure Level, db#	RPM
	98	500
	106	700
	118	1000

5 ⊙	Overall Sound Pressure Level, db	RPM
	102	500
	112	700
	121	1000

Figure 29

BLADE ANGLE = 32.2

FLAP ANGLE = 5.0

6 ⊙	Overall Sound Pressure Level , db*	RPM
	99	500
	108	700
	118	1000

5 ⊙	Overall Sound Pressure Level, db	RPM
	103	500
	112	700
	122	1000

Figure 30

BLADE ANGLE = 39.2 FLAP ANGLE = 0.0

6 ⊙	Overall Sound Pressure Level, db *	RPM
	103	500
	111	700
	I 2 2	1000

5 ⊙	Overall Sound Pressure Level, db	RPM
	108	500
	116	700
	126	1000

Figure 31

BLADE ANGLE = 39.2 FLAP ANGLE = 5.0

6 ⊙	Overall Sound Pressure Leve!, db*	RPM
,	102	500
	112 123	700 1 000

5 ⊙	Overall Sound Pressure Level, db	RPM
	107 117 126	500 700 1000

Figure 32

BLADE ANGLE = 42.8 FLAP ANGLE = 0.0

6 ⊙	Overall Sound Pressure Level, db*	RPM
	105	500
	115	700
	124	1000

⁵	Overall Sound Pressure Level, db	RPM	
	110	500	
	120	700	
	127	1000	

Figure 33

BLADE ANGLE = 42.8 FLAP ANGLE = 5.0

6 ⊙,	Overall Sound Pressure L'evel, db*	RPM
	106	500
	115	700
	124	1000

5 •	Overall Sound Pressure Level, db	RPM
	111	500
	120	700
	127	1000

Figure 34

BLADE ANGLE = 42.8 FLAP ANGLE = 5.0

6 •	Overall Sound Pressure Level, db*	RPM
	106	500
	115	700
	124	1000

5 ⊙	Overall Sound Pressure Level, db	RPM
	111	500
	120	700
	127	1000

Figure 34

APPENDIX

RAW TEST DATA

COMPUTER PRINTOUT

Line 3

BETA - Test blade angle (reference only)

AF - Blade activity factor (reference only)

DIA - Propeller diameter in feet

NBL - Number of blades in hub (reference only)

TEMPC - Ambient temperature in degrees Centigrade

TEMPR - Ambient temperature in degrees Rankine

SIGMA - Density ratio (reference only)

RAW DATA POINTS * * * * *

RPM - Propeller rpm

HP - Corrected horsepower

TH - Corrected thrust

TMACH - Propeller tip Mach number

RCT - Raw thrust coefficient

RCP - Raw power coefficient

RCT/CP - Ratio of raw thrust to raw power coefficient

RFM - Raw figure of merit

RTH/HP - Ratio of raw corrected thrust to corrected horsepower

FITTED CURVE DATA FOR CONSTANT MACH NUMBER INCREMENTS * * * * *

MACH - Selected Mach number increment

HP - Horsepower at Mach increment

TH - Thrust at Mach increment

TIPS - Propeller tip speed in ft/sec corresponding to Mach

increment

RPM - Propeller rpm at Mach increment

CT - Thrust coefficient at Mach increment

CP - Power coefficient at Mach increment

CT/CP - Ratio of thrust coefficient to power coefficient at Mach

increment

FM - Figure of merit at Mach increment

TH/HP - Ratio of thrust to horsepower at Mach increment

1. WHIRL RIG PERFORMANCE DATA

STATIC PRCP PERFORMANCE

RUN 1 ALLISON VARIABLE CAMPER O DEG FLAP

BETA=25.0 AF=177.0 DIA=13.500 NBL=4 TEMPC= 25.0 TEMPR= 536.69 SIGMA=0.9458

**** RAN CATA PCINTS ****

<u>_</u>	T TWACH	RCT	RCP	RCT/CP	11	RTH/HP
1102.	C	0.2015	0.1115	1.8057	•	8.8160
707	Ċ	_	0.1084	8	655	7.4752
27.	C.		•	6	669.	6.7078
+2.	0	.2	•	8	.658	5.5835
48	Ô	.2	•	a	.653	4.8966
31.	်	.2	•	1.8054	.659	4.4048
4783.	0	17	•	Φ.	.664	4.3442
6	0	.2	•	1.8162	599.	4.2205

**** FITTED CLRVE DATA FCR CONSTANT MACH NUMBER INCREMENTS **** (HP. 6 PCINT 2ND ORDER.

H/H	5	.29	.84	.32	.81	· 34	.93	.60	.29	.02	.75	4.557	.39	24
T.	•	•	.6	9.	.6	9.	9	•	•	•	• 6	0.656	•	•6
1/0	.83	15.	£5.	.52	25.	88.	.85	.84	.83	. 62	. EC	1.801	EC	. 61
م	.109	. 104	.103	.103	.165	.107	• 109	.110	.111	.113	.114	0.1156	.116	.116
5	.200	.200	.199	.200	.200	.201	.202	.203	.204	.205	.206	0.2082	.210	.212
٥.	2	63	60	43	ויין מיז	53	3	90	4	84	24	984:	0	4
-	69	(7	2	45	5	11	40	58	O	25	S	682.	_	B
Ŧ	67	38	50	911	051	30	58	87	189	52	35	4236.	64	90
H	4	Ų	U	4	U	J	01		6C2 •	C	ċ11.	.055	1057.	1154.
MACH	C.325	C.35C	C.375	0.400	C.425	C.450	6.475	005-0	C.525	0.550	0.575	0.600	C.625	0.650

STATIC PRCP PERFORMANCE

RLN 2 ALLISON VARIABLE CAMPER 5 DEG. FLAP

BETA±25.0 AF=177.0 DIA=13.500 NPL=4 TEMPC= 24.0 TEMPR= 534.89 SIGNA=0.9477 **** RAW CATA PCINTS ****

ЬP	I	TMACH	RCT	RCP	C1/	3 T	Ξ	
•	1333;	9.312	.2	0.1463	•66	9	-	
6 •	1926.	0.273	2	0.1464	.65	9		
•	2634.	0.426	.2	0.1473	.66	9	a,	
15.	2518.	0.499	.2	9.1479	69.	9.	-	
. 51	4422.	0.501	.2	0.1497	.66	3	'n	
÷2.	5544.	0.623	0.2539	0.1523	1.6667	0.6701	4.0705	
44.	5798.	0.635	5	0.1522	.67	•	0	
(1)	6210.	7.654	2	9.1544	.66		8	

2ND GRCER.															
6 PCINT	HH	.70	.38	.95	.51	.08	5.707	.37	.11	.85	. 52	.42	.23	• 06	0
*dH) ****	2	549.	.676	.677	.677	.674	0.67C	.567	599.	899.	899.	229.	.671	.672	.675
MENTS #	1/C	.64	53	.71	.71	.70	1.689	.67	. 68	.67	.67	.67	.47	• 66	.67
R INCRE	S	.148	.143	.142	.143	. 144	0.1464	. 148	.148	149	.150	.150	.151	.152	.153
ACH NUMBER		.244	.244	-244	.245	.246	0.2473	.248	.248	.245	.250	.251	.253	.254	.256
ONSTANT MA		\sim	62	22	42	32	722.	62	02	42	82	N	4	£30	43
FER CONS							510.								
CATA	H	452	586	3	213	50	2821.	5	504	87	27	68	15	606	100
CLRVE	ì	w	1	-	· 3	~	454	ш		u	1	Ç	2	11	40
CELLIED ****	AC	.32	(4)	.37	.40	.42	C.450	47	50	.52	.55	5.7	.60	.62	65
*															

STATIC PRCP PERFURNANCE

RUN 3 ALLISON VARIABLE CAMPER O DEG FLAP

RAW CATE POINTS

	RPF	4	Η	TMACH		U	RCP	12	RFR	_	
	500.	266.	1570.	0.312		.2870	0.2373	1.2095	•	5.9023	
	600	452.	2245.	•		285	0.2333	.22	.520	•	
	700.	734.	3086.	0.436		287	23	.20	.516	•	
	800°	1056.	4080	•		291	2	.22	.525	•	
	£99.	15.75.	5158.	0.550		16	24	.20	.520		
	1000.	2 C	6469.	•	ပ်	EFT	0.2458	.20	522	2.9351	
	1020.	25 = 1.	£744.	3.6.6		296	.24	.19	.526	•	
	1050.	2588.	7100.	0.654		297	.24	• 13	.518	•	
*	FITTED	מר פּא	IE DATA		CONST	FCF CONSTANT MACH	NUMBER	INCREMENTS	***** (HP + 6 PCINI	# 6 PCINT	2ND O
	FACH 325	aH .	+ (0)	ı	TIPS	S. 6	CT	CP CT/CP	14 i	ТН/НР	
	11/4										

TH/HP	.64	.39	• 06	.72	.41	.13	.88	69.	.50	.32	3.192	.04	.91
	.51	.52	.53	.53	.52	.52	.52	.52	.52	.52	6.522	.52	.52
1/0	.2C	.24	.24	.24	.23	. 22	.21	.21	. 2C	· 2C	1.267	. 2C	.19
	.237	.230	.229	.230	.233	. 235	.238	.239	.241	.242	0.2430	.245	.246
	.286	.285	.286	.286	.237	.233	.289	.290	.291	.292	0.2933	.294	.295
	21	3	02	42	∞	22	62	0	42	62	923.	63	0
-	\$	O	~	181	σ	-4	•	۷,	9	2	652.	(7)	C
I	70	97	255	583	923	28	676	980	524	8	5463.	16	50
CI	C	Ś	4	4	113	G	4	2	53	45	1711.	ŝ	53
AC	.32	(U	.37	.40	.42	.45	4.	.50	.52	35	C.575	.60	.62

BETA=32.2 AF=177.0 DIA=13.500 NBL=4 TEMPC= 24.0 TEMPR= 534.89 SIGMA=0.9486

STATIC PRCP PERFURMANCE

RUN 4 ALLISON VARIABLE CAMMER 5 DEG FLAP

BETA=32.2 4F=177.0 DIA=13.500 NBL=4 TEMPC= 25.0 TEMPR= 536.69 SIGMA=0.9448

**** RAW CATA POINTS ***

									2ND CRDER.															
TH/H	5.7188	737	.118	.577	.192	.860	.818	.725	Py & PCINT	H/H	5.434	.18	.87	. 55	• 25	66.	.75	.57	•39	.23	•00	96.	.85	.74
ш	•	.543	O	.545	.547	.556	.549	.549	H) ****		•	50.00	5.5		.55	. 55	• 524	. 54	.54	• 514	. 54	.54	.54	.55
CT/C	1.1719	.169	.181	.172	.177	.172	.178	.172	CREMENTS	P CT/C	03 1.163	0 1.19	9 1.20	9 1.20	3 1.15	0 1.18	5 1.17	6 1.17	71.1 2	5 1.17	7 1.17	8 1.17	5 1.17	C 1.17
C	•	.290	S	.289	.288	.295	.289	.293	H NUMBER IN		.3377 0.2	.3370 0.2	.3369 0.2		.3378 0.2	.3385 0.2	.3393 0.2	.3397 0.2	.3402 0.2	.3469 0.2	.3410 0.2	.3420 0.2	.3432 0.2	.3445 0.2
C		.339	_	925.	.339	.346	.341	.344	STANT MAC		522.	6.3	03		8	2	53	O	44	œ	2	4	00	4
H TMAC	30. 0.311	91. 0.37	61. 0.43	54. 6.49	11. 0.55	31. 0.62	76. 9.63	29.0 .70	CATA FCF CON	-	0	334. 3	078. 4	4	449. 4	875. 5	328. 5	799. 5	300. 5	829. 6	373. 6	9 .096	578. 7	226. 7
	2C. 1	£8. 2	520	326. 4	683. 6	£C. 7	759. 7	048. 8	D CLRVE		371.	00	0		01	02	151	.71	2 ÷ 2	EC2	C53	345	60	955
O.	500	02	•	00	00	000	020.	50.	#####	AC	0.325	0.05	.37	40	.42	.45	.47	.50	.52	.53	.57	.60	.62	• 65:

STATIC PRCP PERFORMANCE

REN 5 ALLISON VARIABLE CAMPER 9 DEG FLAP

BETA=59.2 AF=177.0 DIA=13.500 NBL=4 TEMPC= 26.0 TEMPR= 538.49 SIGNA=0.9417

**** RAW CATA POINTS ****

							D ORDER.
							2 N
RTH/HP 4.0981	.447 .972	.57	.276	2.0424	•	• 964	6 PCINT
4 ~	331 369	-	0	Œ	362	302	(HP;
•	0.40	•	•	4)	4.	4	***
CT/C	0.847ê C.8527	.847	910	C.8413	.845	.845	INCREMENTS
RCP 0.4184	.418	14.	.42	0.4193	.414	4	NUMBER
RC. 0.351	00	0.352	C • 354	0.352	0.250	0.352	CONSTANT MACH
TMACH 0.311		•		9.624	.63	3.652	FCR
TH 1922.	2796.	963.	£284.	. 962	7988.	8499.	CATA
1P 465.		1924. 4			3944. 7	4326.	**** FITTED CLRVE CATA FCR
500°	600.		906		1020.	1050.	FITTE

H/H	.93	.73	.50	.27	.05	2.869	.70	·56	.43	15.	.21	.12	.04	.97
T.	4 C	4C	41	41	4 C	6.405	40	4 C	40	5.5	35	50	39	40
T/C	. 64	B.	. 86	.86	E3	0.852	. 84	• E4	.84	.84	. 84	₽ E 4	. B4	• E4
a C	.413	.411	.469	.411	.414	0.4172	.419	.420	.42C	.420	617.	419	.417	.415
CT	.3531	. 2543	.3350	.3554	.3554	0.3553	.3551	.3548	.3543	7555.	.3529	.3525	.2522	.352C
G.	23	9	40	1	48	724.	65	00	43	in o i	2.5	60	0	46
-	0	O	2	in	a.	512.	4	63	16	26	4	(5) (1)	7	4
H	11	45	ŝ	22	94	4031.	7.7	O 3	50	0	2	61	8	45
d I	(T)	11	C	W	15	1423.	60	ŝ	27	έĮ	SE	ניו	Ė	27
AC	.32	33	37	40	45	0.450	47	500	.52	55	.57	60	.62	.65

STATIC PROP PERFORMANCE

BETA=39.2 AF=177.0 DIA=12.500 NBL=4 TEMPC= 26.0 TEMPR= 538.49 SIGNA=0.9417 RUN S ALLISON VARIABLE CAMPER 5 DEG FLAP

**** RAW CATA POINTS ****

4	I	TVACH	RC1	S S S	RCT/CP	2. L	R TH/HP
7.	2157.	0.311	•	0.4790	0.8232		4.0168
£7.	2993.	0.373	L.)	0.4579	C.829E	408	3.3743
. 2E.	4111.	0.425	(1)	•	0.8255	. 4CB	2.8789
23.	5357.	3.498	4	•	0.8284	.408	2.5233
3086.	6348.	0.560	(1)	•	C.8204	.406	2.2191
203.	8414.	3.622	41	•	C.8221	.406	2,0019
4455	£733.	0.611	-4	•	C.8163	· 405	1.9603

080														
2ND														
P, 6 PCINT	H	.85	5	14.	.19	.98	.79	.62	.50	15.	.25	.15	2.067	8
NUMBER INCREMENTS ****	IL.	.41	.41	.41	.41	.41	.4C	.40	.4C	.4C	.40	.40	6.405	.40
* 5	1/0	. £2	40.	. 84	· 84	e E	.82	. 82	. 82	.82	.82	13.	0.818	.81
RINCRE	S	.470	.45	.454	.455	.457	.461	.463	.463	.466	.468	.459	0.4700	.470
CH NUMBE	7.7	.288	386	.384	.383	.382	.382	.382	.382	.383	.383	.384	33	85
CF CONSIANT MACH	3. d	3	563.	040	44	84	54	Q	05	4	8	25	99	1006.
	TIPS	370.	398	427.	455.	484.	512.	541.	559.	597.	626.	683.	711.
CAIAF	H	2	.0	.0	7	-	6	6	7	6	œ	0	7852.	2
CLRVE	НР	C	179	5	S	<u></u>	27	in ()	15	<u> </u>	51	4	3759.	52
*** FILIED CLRVE DALA	MACH	t.	u,	.	4.	4.	4.	.4	10	ທີ	r.	R.	009.3	•

STATIC PRCP PEFFCRMANCE

RUN 7 ALLISON VARIABLE CAPHER O DEG FLAP

PETA=50.1 AF=177.0 CIA=13.500 NPL=4 TEMPC= 27.0 TEMPR= 540.29 SIGNA=0.9350

RAW CATA PCINTS

	SNC
RTH/HP 2.6753 2.2112 1.9791 1.6554 1.4855	74 6 PCINT 2.554 2.376 2.210 2.061 1.931 1.818 1.721 1.562 1.562
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	# # 0 . 2 6 2 0 . 2 6 2 0 . 2 5 6 2 0 . 2 5 5 9 0 0 . 2 5 5 6 0 0 . 2 5 5 6 0 0 . 2 5 5 6 0 0 . 2 5 5 6 0 0 . 2 5 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 . 2 5 6 0 0 0 . 2 5 6 0 0 0 . 2 5 6 0 0 0 . 2 5 6 0 0 0 . 2 5 6 0 0 0 . 2 5 6 0 0 0 0 . 2 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
074707070707070707070707070707070707070	m
# A B H 4 0 0	INCR 1 NCR 1 N
00000 00000 00000 00000 00000 00000	CH COM
00000000000000000000000000000000000000	ANT
5	TIPS 399. 427. 436. 434. 570. 570.
TH 1 1959 5 2305 5 2809 6 4953 6 6513 5 6513 6	2152. 2491. 2353. 3240. 3651. 45651. 4564. 5026.
736. 1269. 2027. 30C1. 42C4.	ED CLRV 6.4.3. 1.2.4.1. 1.2.4.1. 2.6.4.1. 2.6.4.1. 4.6.4.1.
800. 900. 900.	# # # # # # # # # # # # # # # # # # #

ORDER.

STATIC PRCP PERFURMANCE

PUN 8 ALLISON VARIABLE CAMPER 5 DEG FLAP

BETA=50.1 AF=177.0 DIA=13.500 NBL=4 TEMPC= 28.0 TEMPR= 542.09 SIGMA=0.9319

**** RAW CATA POINTS ****

KIH/HP	2.6418	2.1553	1.8576	1.6160	1.4439	
X T	0.2668	0.2557	0.2595	0.2571	C.2578	
#3/13×	C.5414	0.5336	0.5330	0.5312	C.5333	
Z X	0.7047	0.6973	0.6986	0.6924	0.6885	
- د د	0.3315	0.3721	0.3723	0.3578	0.3671	
I O Z	0.210	0.374	0.453	0.497	0.556	
I -					•	
7	15C.	1378.	2145.		4471.	
ž. Ž	500.	_		502 .	898	

IND ORDER.	
CONSTANT MACH NUMBER INCREMENTS **** (HP. 6 PCINT 2ND ORDER.	TH/HP 2.515
H) ****:	FP 0.266
MENTS #	RPW CT CP CT/CP 525. 0.3787 0.6998/ 0.541
R INCR	CP 0.6998/
1 NUMBE	CT).3787 (
TANT MACH	RPW 525.
O	T1PS
**** FITTED CLRVE DATA FOR	TH 2234.
CLRVE	HP 908
FITTED	MACH 0.325
* * * *	J

H	21	33	2.171	02	89	78	98	50	52	40
3.	.26	.25	0.263	.26	.25	.25	.25	.25	.25	.25
7/0	. 54	\$ E .	0.539	11	(")	53	(1)	13	. n	(1)
C D	669.	.694	0.6940	. 695	.695	.697	696	669.	. 552	.698
CT	787	.3760	0.3740	.3723	.3710	.3699	.3690	. 3583	.3677	.3072
α	2	S	.909	4	w	7	Ġ	0	4	Œ,
TIPS	371.	4004	428·	437.	435.	514.	542.	571.	.665	623.
<u> </u>	48	0.0	3002.	10	26	17	(1)	27	36	4
d H	. 605 605	12	1382.	682	C21	40	£22	2	137	[1]
MACH	0.325	C.350	0.375	0.400	0.423	0.450	0.475	C-500	S	1. \ U'i

AFAPL-TR-70-80

STATIC PROP PERFORMANCE Run 9 allison variable camber o deg flap

9606
SIGNA=0.
527.69 51
EMPR= 52
20.0 TE
TEMPC= 2
NBL=4
DIA=13.500
AF=177.0
BETA=42.8

***	RAW	CATE POIN	2	计分类计算				
	R P F	6. 1	TH	TMACH	RCT	RCP	RCT/CP	α π
M	500.	10	1934.	3.314	.362	'n	0.719é	0.3458
9	00	~	2840.	0.576	.360	41	0.7185	344
7	. 40	300	12	0.442	.361	r.	C.7204	345
no	00	52	5053.	0.502	.361	163	C.7227	346
₽.	03.	3288.	6400.	0.567		•	0.7202	0.3442
6	.66	35€	809	0.625	.359	4.	0.7252	347

RTH/HP 3.5115 2.9218 2.2042 1.9459 1.7764

ORDER.													
2ND													
***** (Hb + 6 PCINI	H/H	•	3.191	.98	•	.61	.45	.31	.19	•00	66.	.91	· 34
工】 ***		.34	G.35C	17)	. 25	34	34	.34	.34	.34	.34	.34	\$E.
EMENTS #	1/C	.71		.73	.73	.72	.72	.72	17.	.71	.71	.72	.72
INCR	o O	. 50	1.4960	.49	.49	.49	49	. 5C1	. 502	.502	.501	.49	.497
H NUMBER	5	.362	13	.3516	.361	.3511	.3608	.3666	. 3564	.3662	.3600	.259a	.3596
ONSTANT MACI	RPR		• 0 (G	00	37	11	17	57	16	17	L -"	lć	55
Ü			394.	2		~	\mathbf{c}	٠,	·L)	6			676.
DATA FCR	Ħ	12	2463.	826	21	429	190	521	007	51	051	51	194
CLRVE	H	.33	772.	4	5	1	in in	75	77	9	CZ	4	25
FITTED	C	.32	0.350	.37	.400	.425	.450	.475	.500	.525	.550	.575	.600

STATIC PRCP PERFORMANCE

RUN IC ALLISON VARIABLE CAMBER 5 CEG FLAP

BETA=42.8 AF=177.0 DIA=13.500 NBL=4 TEMPC= 21.0 TEMPR= 529.49 SIGNA=0.9573

POINTS
IN CATA
**** RAM

ONC		000	TALCOUNTS	OH DATES	CONCTANT MACE		CL BVE DAT	נט כו פו	E117	****
	1.7909	2545.0	5904.0	•	0.3882	0.603	7776.	4345.	• ₹96	
	1.9039	0.3480	0.7031	•	0.3847	9.564	9356	3589.	•106	
	2.1521	0.3516	0.7057	0.5525	5685.0	0.501	60.	2537.	800.	
	2.4717	0.3538	0.7091	•	C.391C	0.498	192.	1056.	700.	
	2.8774	0.3514	C.7088	•	5582.0	0.376	050.	1060.	601 .	
	3.4216	0.3515	5.7026	•	0.3931	0.314	159.	631.	501.	
	RTH/HP	Α. Τ.	RC1/CP	RCP	RCT	TMACH	ĭ	<u>а</u> .	₹	

*	FITTED	CLRVE	CATA FCR	ខ	INSTANT MACH	H NUMBER	INCRE	* SINS	H) ****	**** [Hb 8 PCINI	2NC	ORDER.
	MACH	H	I		R P R	5		T/C	T.	I		
	C.325	5	2	W	19	1062.	r.	0.705	•			
	.35	161	19		10	.391	. 540	.71	(J)	.12		
	.375	5	690	2	66	.3914	. 540	.71	.25	.92		
	.400	3	490	W	39	.3912	.548	.71	(J)	.72		
	.425	4	576	(C)	~	906ۥ	.550	.71	.35	S. S.		
	.450	(C)	40		13	.2899	.551	.70	W	.40		
	.475	Ŀ	394	(1)	S	.3839	.552	.70	.00	.26		
	.500	:	408		9	.3879	.552	.7C	.34	.14		
	.525	25	946	C	(I)	.3369	.550	.76	.34	40.		
	.550	(1)	50	2	7	.3858	.543	.70	.34	.95		
	70	3.78R.	7092.			3847	. 54	.70	34	1		
	.600	27	10	677.	'n	.383	. 54	.70	.34	80		

STATIC PROP PERFORMANCE

RIN IA ALLISCN VARIABLE CAPRER SCEG FLAP

PETA=42. A AF=177.0 DIA=13.500 NRL=4 TEMPC= 19.0 TEMPR= 525.89 SIGMA=0.9635

**** FAN L'AIL DUINTS *****

めいる	<u>د.</u>	I	HUVAL	RCI	9 0 0	21/0	π	R TH/H
00		2197.	0.214	C.401¢		6.7113	0.2557	3.4708
609	111	3113.	1.00°	5.3952	C.5617	703	0.3530	2.461
0 0 0	N	4210.	0-4.0	CT.	41	701	40	2.444
.00	~	5465.	0.503	~	0,	703	(4)	2.145
000	111	£308.	0.5.4	CT .	w	669	(L)	1.897
57.	_	7703.	5.632	(1)	۱۷.	.700	~ 1	1.785

IT 2ND ORDER.													
P+ 6 PCIN	H/H	.35	.13	2.923	.72	• 55	.39	.26	.14	.03	46.	.86	.79
工) ****	II.	10	.36	0.359	٠ ۱۳	• W	.35	.34	.34	.34	• <u>3</u> 4	.34	.34
# SINEWE	1/0	27.	.71	0.715	.71	.7C	.70	.7C	69.	59.	69.	.70	.70
R TICAE		. 565	57	0.5355	10	.556	.557	. 557	1000	* n n n n n n n n n n n n n n n n n n n	. 553	.550	. 540
H NUMBE		.400	36E.	0.3970	368.	393	.392	.390	.389	18E.	.336	(C)	.385
DWSTANT MACH		 1	161	597.	(a)	~	-	R,	Φ	(4 ·	~	\vdash	IU
C C	TIPS	からか	394.	422.	450.	478.	30€	534.	562.	29D.	619.	547.	675.
DATA FC	Ξ	4)	~	3092.	Š	6	ň	'n	6	2	+	Ö	3
CLRVE	d H	C	400		1235.	4	540	7	7	SC	17	(3)	S
****	AC	3	10	C.375	G	45	45	47	50	52	55	57	90

STATIC PROP PERFORMANCE

RLN ZA ALLISGN VARIABLE CAMBER O CEG FLAP

BETA=42.8 AF=177.0 DIA=13.530 NBL=4 TEMPC= 20.0 TEMPR= 527.69 SIGNA=0.9642

特种特特
POINTS
CATA
RAW
**

Č	DCTAIT	4	977	***	OFMUNICATION		HOAN TANTO	F	ATAT EL	EVELO CETTIE		*
	1.7836	 1	450	•	0.7252	0.4915	0.3564	0.622	7075.	4363.	992.	
	1.9557		436	•	C.7214	0.4938	113	3.545	(A)	3223.	900.	
	2.2187	•	994		0.7275	0.4900	C)	0.502		2	800°	
	5.5058	"	453	•	0.7230	\$565°U	(1)	3.442	3834.	・ ひまい で	704.	
	1956.	"	477	C. C.	0.7270	0.4940	~)	0.376	2329.	. 126	60 0.	
	3.5953	(*)	3538		C.7368	0.4915	C.3521	0.314	$\boldsymbol{\sigma}$	551.	₹ 0 0°	
	TH/HP	•	Z Z		RCT/CP	RC P	RCT SCT	TNACH	ĭ	ďΨ	≥ Ω. α′	

**** (HP) 6 PCINT 2ND ORDER.

1	44.	.24	.02	.82	.63	.47	.33	.20	60.	2.003	.92	ò
IL.	. 45	(1)	300	(c)	w.	.34	.34	.34	34	C-343	45.	·
2	13	14	7	7	73	12	72	72	17	0.720	72	0
d U	64.	.48	.48	.48	4.5	.49	64.	54.	67.	7557-0	67.	`
CT	.3516	.3562	3592	.2584	.3578	.3574	.3571	• 3568	.3566	0.3969	.3564	
2 0. 2	8	(T)	ъ 6	3.1	11	17	23	4	127	877.	16	
_	20	6	U.	14.	ι. Ω	2	(1)	4)	Ω_{\cdot}	620.	-1	r
エト	12	4	30	B	9.0	22	+ 1	5	0	5665	4	0
) I	c17.	755.	927	12	47)	(T)	25	1,7	¢ C	.2652	Ĺ	•
MACH	C.325	0.350	C-375	0.400	C.425	C.450	C.475	005.0	0.525	C•5:0	C. 53.1	000

STATIC PRCP PERFORMANCE

RUN 3A ALLISON VARIABLE CAMBER 5 DEG FLAP

BETA=39.2 AF=177.0 DIA=13.500 NBL=4 TEMPC= 24.0 TEMPR= 534.89 SIGNA=0.9512

RAW CATA POINTS

RTH/HP	4.0375	3.3409	2.8625	2.5025	2.2059	1.9998	1.9707
RFR	0.4141	0.4118	0.4114	C.4116	0.4648	0.4053	0.4060
RCT/CP	0.8274	C.8216	C.8212	C.8205	0.8137	0.8196	C.E166
RCP	4.	0.4801	4	4.	4	4.	4
RCT	_	0.3944	-	•	_	_	•
TMACH	0.312	0.374	0.436	657.0	0.501	0.623	0.630
H	2.	3107.	25.	5333.	89.	9567.	83.
4	(1) (1) (1)	930.	1476.	2211.	5123.	42 £4.	4466.
∝	50 0∙	600 °				10001	1011.

**** FITTED CLAVE DATA FOR CONSTANT MACH NUMBER INCREMENTS **** (HP, 6 PCINT 2ND ORDER.

TH/HP	.85	.63	•39	.16	96.	.77	.61	.48	36	.25	.15	2.068	66.
T.	.41	.41	.42	.41	.41	.41	.40	.4C	.40	.40	.40	0.407	.40
7/0	. £2	. 63	8	6.0	. 52	.62	. 51	18.	.81	4		0.815	.81
d S	.478	.471	.471	.473	.476	.478	.481	.480	.480	.480	.479	0.4782	A)
C1	.3943	.3945	.3945	.3943	.3940	.3936	.3932	.3928	.3921	3915	.3908	3902	.3895
RPR	21	62	92	42	B	22	52	02	42	82	41	0	.~1
TIPS	AC.	σ	~	S	m		6	'n	Ç	2	10	681.	C
H	4	7	2	S	0	S	6	3	ന	۴	-	7912.	-
Ŧ	O	4	~	12	(1)	É.	15	22	11	S	37	3827.	25
MACH	32	35	16	40	45	10	47	20	52	S	57	009.0	62

STATIC PRCP PERFORMANCE

RUN 4A ALLISON VARIABLE CAMBER O CES FLAP

BETA=39.2 AF=177.0 DIA=13.500 NBL=4 TEMPC= 23.0 TEMPR= 533.09 SIGMA=0.9545

**** RAW DATA POINTS ****

RTH/HP	4.1053	3.4187	2.9655	2.5815	2.2800	2.0619	2.0213	2.0047
RFR	4	4	4	4	4	0.3599	4	4
RCT/CF	C.8413	C. 8407	0.8508	0.8465	C.8425	C.8443	0.8459	0.8586
RC P	0.4237	0.4254	0.4148	0.4247	0.4195	0.4173	0.4227	0.4175
S	.356	.357	:355	.359	.353	0.3523	.357	.35E
TMACH	0.312	0.375	7:4.0	0.499	0.563	2.624	0.637	0.652
H	1950.	2817.	7.8	5034.	59	7593.	8155.	2
4	475.	824.	1276.	1950.	27¢1.	3731.	4035.	4273.
RP P	500.	e00°				. 666		

**** FITTED CLRVE DATA FCR CONSTANT MACH NUMBER INCREMENTS ***** [HP. 5 PCINT 2ND ORDER.

H/H	.93	.72	64.	.26	• 06	2.874	.70	.57	44.	.33	.23	.14	90.	66.
T.	.46	.4C	.41	.41	.40	C: 4C5	.40	.40	.40	.40	.40	.40	40	.40
T/C	.84	e C	986	• 6.53	• 85	0.849	. 64	. 64	. 84	. 24	.84	.84	.84	.85
ð	.423	.415	.415	.416	.418	0.4204	.421	.419	.420	.421	.421	.421	.420	.415
	.3559	.3570	.3574	.3575	.3573	0.3569 (.3564	.3554	.3553	.3552	.3552	.2556	.3561	.3567
RPR	N	19	0	41	81	721.	61	O	41	31	21	Ćĺ	01	41
	4	C	~	W	Ü	510.	17	4	46	8	10	-	0	6.)
Ŧ	2111.	2455.	2822.	3211.	3623.	4058.	4515.	498g.	5497.	5032.	6594.	7188.	7910.	8460.
H	536.	638.	£C7.	532.	3	1412.	é é	53	42	a)	Ŝ	163	17	17
MACH						C.450								•

STATIC PRCP PERFURMANCE

BETA=32.2 AF=177.0 CIA=13.500 NBL=4 TEMPC= 23.0 TEMPR= 533.09 SIGMA=0.9473 RUN SA ALLISON VARIABLE CAMBER 5 DEG FLAP

RAW CATA PCINTS

TH/H	5.5982	.671	.978	.502	.125	.801	.734	•649
ш	•	. 536	.532	. 533	.537	S	.536	.536
(1)	1.1472	.14	.14	.14	.15	.14	•	•14
RCP	•	.2		2	.2	171	(1)	4
RCI		.34	4.0.4	11)	.34	0.3470	34	.34
TMACH	0.312	0.375	5.437	3.499	7.502	0.624	0.657	0.655
I	1355.	2700.		39.		7593.	7879.	8393°
4	331.	578.	921.		1931.	27 ic.	2881.	3176.
A O S	:00:	.00 5	700.	800	. 006	1000.	1020.	1050.

ORDER.															
2ND															
(HP+ 6 PCINT	H/H	.32·	.07	.76	.45	.16	16.	.68	• 50	.32	.16	40.	2.908	.78	.67
I) ****		.53	.54	.54	.54	.54	. 53	.53	.53	.53	.53	.53	0.556	.53	.53
MENTS	1	.13	.16	.17	.17	.16	13	.14	.15	.14	.14	.14	1.145	.14	. 14
INCRE	ď	.301	:291	.288	.289	.250	. 293	- 295	. 294	.296	.298	.297	300C	.302	.304
H NUMBER		.3420	.3398	13387	.3383	.3384	.3388	.3395	.3391	.3400	.3412	.3418	0.3437 0	.3457	.3479
ONSTANT MACH		21	61	10	41	31	2	51	6	41	8	21	961;	01	41
C					W	B		(,,			CI	113	679.	0	4
CATA FCP	Ŧ	02	357	67	650	17.	352	301	75	251	795	345	.9469	58	253
CLRVE	Ħ	QI)	¥	40	€2	23	3	168	17	181	623	G)	2389.	72	Cel
FITTED	AC	.32	.35	.37	.40	.42	.45	.475	.500	.525	.550	.575	C-600	.629	.650
* * *															

STATIC PRCP PERFORMANCE

BETA=32.2 AF=177.0 DIA=13.500 NBL=4 TEMPC= 24.0 TEMPR= 534.89 SIGNA=0.9422 RUN 6A ALLISON VARIABLE CAMBER O BEG FLAP

**
PUINIS
CATA
RAN

X X X	0.5181 5	6.5157	0.3228 6	0.5103 3	1.1937 0.5136 3.2289	0.5266 2	0.5219 2	0.5214 2
RCP	.236	.236	.145	.241	0.2436	.246	.25C	.249
RCT	.287	.285	.287	:287	C-29C7	.295	.299	.298
TNACH	0.312	0.375	0.436	0.499	0.562	0.624	0.696	
Ŧ		2258.			5176.			10.
4	•				1663.		2384.	2556.
X 0. X	501.				905.		1020.	1051.

***** FITTED CLRVE DATA FCP CONSTANT MACH NUMBER INCREMENTS **** (HPJ 6 PCINT 2ND ORDER.

H/H	.01	114	.92	.53	5.091	•66	.28	.95	•66	.42	.07	96.	88	23.
IL.	.55	.60	.62	.62	0.607	.58	.57	.55	.54	.53	300	.50	.51	532
1/0	.28	.41	.46	.43	1.423	٠ س	6,	.29	.25	.24	.16	.16	.18	- 2C
CP	23	.201	.194	.195	0.2007	.207	.215	.221	.228	. 234	.251	.251	.250	247
	.287	.2855	.2849	.2850	2855	.2864	.2374	.2877	.2893	.2911	.2923	.2942	.2955	.298B
3.	21	29	02	42	682.	2	S	02	42	(1)	23	(n)	(1)	043
					432.									
H	1703.	1970.	2257.	2568.	2905.	3257.	3653.	4051.	4491.	4950.	5444.	5969.	6525.	7111.
aН	284.	221.	381.	464.	571.	100	. 750	1026.	1224.	1447.	1759.	2014.	2254.	2:19.
MACH	C.325	0.350	0.375	C.400	0.425	C.45C	C.475	0.500	C.525	C-5>0	C.575	0.500	0.625	0.550

2. TABULAR FREQUENCY SPECTRA

AMBIENT

_		Microphone Numbers								
Filter	Center	ı	2	3	4	5	6			
Number	Frequency	db*	db	db	db	db	db			
40	Overall	070	073	070	071	071	072			
39	20,000.	060	060	060	060	060	060			
38	16,000.	060	060	060	060	060	060			
37	12,500.	060	060	060	060	060	060			
36	10,000.	063	062	062	061	062	062			
35	8,000.	060	060	060	060	060	060			
34	6,300.	060	060	060	060	060	060			
33	5,000.	060	060	060	060	060	060			
32	4,000.	060	060	060	060	060	060			
31	3, 150.	060	060	060	060	060	060			
30	2,500.	060	060	060	060	060	060			
29	2,000.	060	060	060	060	060	060			
28	1,600.	060	060	060	060	060	060			
27	1,250.	060	060	060	060	060	060			
26	1,000.	060	060	060	060	060	060			
25	800.	060	060	060	060	060	060			
2 4	630.	060	060	060	060	060	060			
23	500.0	060	060	060	060	060	060			
23 22	400.0	060	065	060	064	060	064			
21	315.0	060	061	060	060	060	061			
20	250.0	060	060	060	060	060	060			
19	200.0	060	060	060	060	060	060			
18	160.0	060	060	060	060	060	060			
17	125.0	060	060	060	060	060	060			
		060	060	060	060	060	060			
16	100.0	060	060	060	060	060	060			
15	80.0	067	070	067	067	070	070			
14	63.0	060	060	060	060	060	060			
13	50.0	060	060	060	060	060	060			
12	40.0		060	060	060	060	060			
11	31.5	060 060	060	060	060	060	060			
10	25.0	060	060	060	060	060	060			
9	20.0	060	060	060	060	060	060			
8	16.0	060	060	060	060	060	060			
7	12.5	060	060	060	060	060	060			
6	10.0					060	060			
5	8.0	060	060	060	060					
4 3 2	6.3	060	060	060	060	060	060			
3	5.0	060	060	060	060	060	060			
2	4.0	060	060	060	060	060	060			
1	3.15	060	060	060	060	060	060			

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

Blade Angle 320
Flap Angle 00
RPM 500

-				Microphor	ne Numbers	3	
Filter	Center	l l	2	3	4	5	6
Number	Frequency	db#	db	ΰb	db	db	db
40	Overall	103	101	098	099	102	098
39	20,000.	060	060	060	060	060	060
38	16,000.	064	062	060	060	063	060
37	12,500.	077	074	072	068	075	070
36	10,000.	083	081	078	076	082	077
35	8,000.	086	083	080	078	083	079
34	6,300.	087	084	082	079	084	081
33	5,000.	088	086	083	081	086	082
32	4,000.	089	087	085	082	086	083
31	3, 150.	090	087	085	084	088	084
30	2,500.	090	088	086	084	088	085
29	2,000.	090	088	086	085	089	085
28	1,600.	090	088	086	085	089	085
27	1,250.	090	088	086	086	089	085
26	1,000.	090	088	086	086	089	086
25	800.	091	088	087	086	089	085
24	630.	091	090	087	088	091	087
23	500.0	090	089	087	088	091	088
22	400.0	090	090	088	090	094	089
21	315.0	090	090	085	088	094	090
20	250.0	091	089	088	089	093	089
19	200.0	087	088	084	088	094	089
18	160.0	084	086	083	087	090	085
17	125.0	084	084	084	087	087	081
16	100.0	083	083	077	080	086	079
15	80.0	081	076	071	081	078	072
14	63.0	091	083	072	080	082	075
13	50.0	076	073	068	079	069	064
12	40.0	087	082	071	079	070	063
11	31.5	098	093	082	080	075	066
10	25.0	075	070	061	077	063	060
9	20.0	065	062	060	075	060	060
8	16.0	070	067	060	074	060	060
7	12.5	062	060	060	073	060	060
6	10.0	060	060	060	072	060	060
5	8.0	060	060	060	071	060	060
5 4	6.3	060	060	060	069	060	060
3	5.0	060	060	060	066	060	060
2	4.0	060	060	060	061	060	060
ī	3.15	060	060	060	060	060	060
-							

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

			Microphone Numbers								
Filter	Center	l	2	3	4	5	6				
Number	Frequency	db#	db	db	db	db	db				
40	Overall	113	111	107	106	111	106				
39	20,000.	064	061	060	060	062	060				
38	16,000.	075	072	069	066	074	069				
37	12,500.	087	085	083	078	086	081				
36	10,000.	094	092	090	086	093	088				
35	8,000.	096	093	091	088	095	090				
34	o, 300.	097	095	092	090	096	091				
33	5,000.	098	096	094	091	097	093				
32	4,000.	100	097	095	092	098	094				
31	3, 150.	100	098	096	093	098	095				
30	2,500.	100	098	095	093	098	095				
29	2,000.	100	098	096	094	098	094				
28	1,600.	100	098	096	094	098	094				
27	1,250.	100	098	096	095	098	094				
26	1,000.	100	099	096	095	098	094				
25	800.	100	098	097	095	098	094				
24	630.	100	100	097	096	099	095				
23	500.0	099	098	097	097	100	095				
22	400.0	099	099	096	096	102	096				
21	315.0	098	100	093	096	102	095				
20	250.0	098	098	096	095	103	097				
19	200.0	094	094	091	091	101	096				
18	160.0	092	093	089	089	095	089				
17	125.0	093	093	091	089	093	088				
16	100.0	102	096	085	088	096	089				
15	80.0	092	087	081	031	088	082				
14	63.0	085	084	076	076	081	074				
13	50.0	109	105	088	087	098	074				
12	40.0	100	096	080	078	088	069				
11	31.5	079	075	072	068	073	062				
10	25.0	077	076	069	067	067	063				
9	20.0	069	067	064	062	064	060				
8	16.0	067	065	063	061	061	060				
7	12.5	071	065	060	060	060	060				
	10.0	064	061	060	060	060	060				
6 5	8.0	060	062	060	060	000	060				
4	6.3	060	060	060	060	060	060				
3	5.0	060	030	060	060	060	060				
2	4.0	060	060	060	060	060	060				
1	3. 15	060	061	060	060	060	060				
•		1			1						

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

			N	licrophon	Numbers		
Filter	Center	1	2	3	4	5	6
Number	Frequency	db#	db	db	db	db	db
40	Overall	126	126	121	120	121	118
39	20,000.	080	080	080	080	080	080
38	16,000.	087	083	082	080	086	082
37	12,500.	099	094	094	090	097	098
36	10,000.	106	101	102	098	105	100
35	8,000.	106	102	103	100	106	102
34	6,300.	107	103	104	101	107	102
33	5,000.	108	104	105	103	108	104
32	4,000.	109	105	106	103	108	104
31	3, 150.	109	105	106	105	108	105
30	2,500.	109	105	106	104	108	105
29	2,000.	109	105	106	105	108	105
28	1,600.	109	106	107	106	108	105
27	1,250.	110	106	107	107	109	105
26	1,000.	111	107	108	106	109	105
25	800.	110	106	109	106	109	105
24	630.	110	108	108	107	110	105
23	500.0	109	106	108	109	111	106
22	400.0	108	107	108	110	111	108
21	315.0	108	106	104	105	113	107
20	250.0	108	109	107	105	110	105
19	200.0	110	111	104	105	111	106
18	160.0	106	103	106	099	102	098
17	125.0	118	114	118	108	109	106
16	100.0	097	098	096	092	096	091
15	80.0	112	113	099	104	096	097
14	63.0	125	126	112	117	107	110
13	50.0	101	102	090	093	087	086
12	40.0	090	090	082	082	081	080
11	31.5	088	087	082	081	080	080
10	25.0	086	086	080	080	080	080
9	20.0	084	083	080	080	080	080
8	16.0	087	083	080	080	080	080
7	12.5	083	081	080	080	080	080
	10.0	081	080	080	080	080	080
6 5 4	8.0	080	080	080	080	080	080'
1	6.3	080	080	080	080	080	080
2	5.0	080	080	080	080	080	080
3	4.0	080	080	080	080	080	080
2 1		080	080	080	080	082	080
1	3.15	550					
				L			

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

				Micropho	ne Number	8	
Filter	Center	ı	2	3	4	5	6
Number	Frequency	db*	db	db	db	db	db
40	Overall	105	102	099	099	103	099
39	20,000.	060	060	060	060	060	060
38	16,000.	067	063	061	060	064	060
37	12,500.	078	075	073	069	076	072
36	10,000.	085	082	080	077	083	079
35	8,000.	087	084	081	079	085	081
34	6,300.	088	085	083	081	086	082
33	5,000.	089	087	085	082	087	083
32	4,000.	090	088	086	084	088	085
31	3, 150.	092	089	087	086	090	086
30	2,500.	092	090	087	086	090	087
29	2,000.	092	089	088	086	090	087
28	1,600.	092	090	088	087	090	086
27	1,250.	092	090	088	087	090	086
26	1,000.	092	089	088	087	089	086
25	800.	092	090	088	088	089	086
24	630.	093	091	088	088	090	087
23	500.0	092	090	088	089	091	088
22	400.0	091	091	089	091	093	089
21	315.0	091	091	086	089	094	088
20	250.0	092	090	089	088	093	088
19	200.0	090	088	086	088	094	091
18	160.0	087	088	084	088	091	085
17	125.0	085	086	086	084	091	082
16	100.0	081	086	080	083	086	079
15	80.0	081	078	073	074	080	073
14	63.0	090	083	076	083	089	080
13	50.0	075	076	070	068	072	067
12	40.0	088	083	073	070	074	066
11	31.5	100	095	083	080	083	073
10	25.0	076	071	063	061	066	060
9	20.0	064	062	060	060	061	060
8	16.0	067	064	061	060	063	061
7	12.5	063	063	062	060	062	061
6	10.0	060	060	060	060	060	060
5	8.0	061	060	060	060	060	060
4	6.3	060	060	060	060	060	060
3	5.0	060	060	060	060	060	060
2	4.0	060	060	060	060	060	060
1	3.15	060	060	060	060	060	060
_							

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

				Microphor	ne Number	8	
Filter	Center	1	2	3	4	5	6
Number	Frequency	db#	db	db	db	db	db
40	Overall	115	112	108	108	111	108
39	20,000.	065	062	060	060	063	060
38	16,000.	077	073	070	067	075	070
37	12,500.	089	086	084	080	087	082
36	10,000.	096	093	091	088	094	090
35	8,000.	097	095	093	090	096	092
34	6,300.	098	096	094	092	097	093
33	5,000.	100	098	095	093	098	094
32	4,000.	101	098	096	094	099	095
31	3, 150.	102	099	097	096	100	097
30	2,500.	102	100	097	095	099	096
29	2,000.	102	100	097	096	099	096
28	1,600.	102	099	097	096	099	095
27	1,250.	102	099	097	096	099	095
26	1,000.	102	099	097	097	099	096
25	800.	102	099	098	097	099	095
24	630.	102	101	098	098	100	096
23	500.0	101	100	098	099	100	096
22	400.0	101	100	097	100	101	097
21	315.0	100	099	094	099	102	096
20	250.0	099	097	096	097	102	096
19	200.0	097	095	092	093	100	095
18	160.0	094	093	091	092	096	090
17	125.0	095	093	092	092	095	088
16	100.0	102	099	088	093	097	090
15	80.0	092	090	082	083	088	083
14	63.0	032	086	077	077	082	076
13	50.0	111	106	089	093	094	084
12	40.0	101	097	081	084	085	075
11		080	077	073	071	073	065
10	31.5 25.0	079	077	070	068	071	065
9	20.0	075	071	063	063	066	060
	16.0	072	071	067	065	066	061
8 7	12.5	071	070	063	063	065	063
6	10.0	069	066	060	061	061	060
5	8.0	064	062	060	060	060	060
4	6.3	063	063	060	061	060	060
3	5.0	062	060	060	061	060	060
3 2	4.0	060	060	060	060	060	060
1	3.15	060	060	060	060	060	060
1	3, 10	1	1				

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

Blade Angle 320
Flap Angle 50
RPM 1000

				Microphor	ne Number	\$	
Filter	Center	_1	2	3	4	5	6
Number	Frequency	db#	db	db	db	db	db
40	Overall	128	126	121	120	121	118
39	20,000.	080	080	080	080	080	080
38	16,000.	087	083	083	080	087	082
37	12,500.	098	093	096	091	09 6	094
36	10,000.	106	100	102	099	105	100
35	8,000.	107	101	104	101	107	102
34	6,300.	107	102	105	102	107	103
33	5,000.	109	103	106	103	109	105
32	4,000.	109	104	106	104	109	105
31	3, 150.	109	104	107	105	109	105
30	2,500.	109	104	106	105	109	105
29	2,000.	109	105	107	105	109	105
28	1,600.	109	105	107	105	108	105
27	1,250.	110	105	108	107	109	106
26	1,000.	110	106	108	106	109	105
25	800.	110	106	108	107	109	105
24	630.	111	107	109	107	109	105
23	500.0	112	105	109	109	110	106
22	400.0	113	105	108	108	109	105
21	315.0	113	106	104	106	110	106
20	250.0	113	109	106	105	108	105
19	200.0	113	112	103	101	111	105
18	160.0	109	107	104	100	103	098
17	125.0	120	119	116	105	111	101
16	100.0	105	101	096	093	096	091
15	80.0	113	113	100	104	098	099
14	63.0	126	126	114	117	111	111
13	50.0	105	102	091	093	090	088
12	40.0	101	092	083	083	081	080
11	31.5	099	090	081	082	080	080
10	25.0	099	087	080	080	080	080
	20.0	098	084	080	080	080	080
9 8	16.0	098	082	080	080	080	080
7	12.5	096	080	080	080	080	080
6	10.0	094	080	080	080	080	080
5	8.0	093	080	080	080	080	080
4	6.3	092	080	080	080	080	080
3	5.0	091	080	080	080	080	080
2	4.0	090	080	080	080	080	080
1	3. 15	088	080	080	080	080	080
1	3.10	555				'	

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

Blade Angle 390 Flap Angle 00 RPM_500

Filter	Center			Micro	phone Nun	bers	
Number	Frequenc	1	2	3			_
		db ⁴	dt			<u> </u>	
40	Overall	110	1.00	NSW6	- 00	db	di
39	20,000.	060	108		103	107	102
38	16,000.	064	060		060	060	
37	12,500.	076	063		060	064	
36	10,000.	084	076		068	076	
35	8,000.	086	083	1	076	084	078
34	6,300.	088	085		078	085	080
33	5,000.	089	087	1000	080	087	082
32	4,000.	091	089	085	082	088	083
31	3, 150.	091	090	086	083	089	084
30	2,500.	092	091	087	085	090	086
29	2,000.	093	092	087	085	090	086
28	1,600.	093	092	088	086	091	087
27	1, 250.	094	093	089	088	091	087
26	1,000.	095	093	090	089	092	088
25	800.	095	094	090	090	093	088
24	630.	195650055	095	093	092	094	11 11 11 11 11 11 11 11 11 11
23	500.0	099	098	094	094	096	090
22	400.0	097	097	095	095	097	092
21	315.0	099	099	095	096	099	093
20	250.0	099	099	093	095	101	094
9	200.0	099	098	094	094	099	095
8	160.0	096	095	092	093	099	095
7	125.0	091	094	090	092	096	093
6	100.0	091	092	091	089	093	091
5	80.0	090	093	087	083	090	087 085
4	63.0	089	089	083	080	087	The state of the s
3	50.0	095	091	080	081	087	084 083
2	40.0	083	086	077	078	082	077
l i	31.5	095	091	078	075	078	
	25.0	106	102	089	083	086	073 082
0 1	20.0	083	079	068	066	070	065
	16.0	073	070	060	061	066	060
	12.5	075	070	062	060	061	060
	10.0	070	066	060	060	060	060
	8.0	067	065	060	060	060	060
	6.3	066	066	060	060	060	060
	5.0	060	061	060	060	060	060
1	4.0	061	061	060	060	060	060
	3. 15	060	061	060	060	060	060
1	0. 10	063	060	060	060	060	060

^{*}Decibel reference .0002 microbar

		Microphone Numbers							
Filter	Center	ı	2	3	4	5	6		
Number	Frequency	db*	db	db	db	db	db		
40	Overall	121	118	113	113	116	111		
39	20,000.	080	080	060	060	063	060		
38	16,000.	080	080	068	066	075	069		
37	12,500.	088	087	083	078	088	082		
36	10,000.	095	094	091	087	095	089		
35	8,000.	097	096	092	090	097	092		
34	6,300.	098	097	094	091	098	093		
33	5,000.	100	099	096	093	099	095		
32	4,000.	100	100	096	094	100	096		
31	3,150.	101	101	097	096	101	097		
30	2,500.	102	102	098	096	101	097		
29	2,000.	102	102	099	097	102	098		
28	1,600.	103	10 2	100	099	102	098		
27	1,250.	104	104	101	100	103	099		
26	1,000.	105	105	102	101	103	099		
25	800.	105	105	103	102	104	101		
24	630.	108	107	104	104	105	101		
23	500.0	106	106	104	105	106	102		
22	400.0	106	107	104	104	107	103		
21	315.0	107	107	102	103	107	101		
20	250.0	106	105	104	102	107	102		
19	200.0	103	102	098	100	106	101		
18	160.0	101	102	099	099	102	097		
17	125.0	103	102	101	098	100	095		
16	100.0	108	106	094	094	097	095		
15	80.0	101	100	092	092	098	094		
14	63.0	096	095	084	084	089	084		
13	50.0	119	115	094	092	099	087		
12	40.0	109	106	086	085	091	082		
11	31.5	089	086	078	075	077	072		
10	25.0	086	083	071	070	072	067		
9	20.0	080	080	068	068	068	062		
8	16.0	080	080	065	064	063	060		
8 7	12.5	080	080	065	065	062	060		
6	10.0	081	080	064	062	060	060		
5	8.0	080	080	061	064	060	060		
4	6.3	080	080	060	065	060	060		
3	5.0	080	080	060	064	060	060		
2	4.0	080	080	060	062	060	060		
1	3. 15	080	080	065	062	060	060		
•	0.10								

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

				Microphor	e Number	\$	
Filter	Center	ı	2	3	4	5	6
Number	Frequency	db#	db	db	db	db	db
40	Overall	127	127	123	122	126	122
39	20,000.	080	080	080	080	080	080
38	16,000.	083	083	082	081	087	083
37	12,500.	094	094	092	091	099	095
36	10,000.	101	101	100	098	106	101
35	8,000.	103	101	102	100	108	104
34	6,300.	104	103	103	101	109	105
33	5,000.	104	104	104	103	110	106
32	4,000.	105	105	105	104	110	107
31	3, 150.	106	106	106	105	111	107
30	2,500.	107	107	107	105	111	108
29	2,000.	107	107	107	106	112	108
28	1,600.	108	108	108	107	112	108
27	1,250.	109	109	109	109	113	109
26	1,000.	109	109	109	109	114	110
25	800.	109	110	110	110	114	110
24	630.	110	111	111	111	115	111
23	500.0	110	111	111	111	115	110
22	400.0	111	111	112	110	116	111
21	315.0	111	110	110	108	115	110
20	250.0	112	112	111	107	114	110
19	200.0	110	112	108	109	114	110
18	160.0	110	110	109	106	111	106
17	125.0	120	118	118	107	115	110
16	100.0	105	105	103	102	107	102
15	80.0	112	113	105	106	102	103
14	63.0	125	126	117	119	112	115
13	50.0	102	103	099	099	097	094
12	40.0	096	096	097	095	094	085
11	31.5	093	094	093	090	093	081
10	25.0	090	092	092	089	089	080
9	20.0	089	088	088	088	089	080
8	16.0	084	085	087	086	088	080
7	12.5	084	083	082	083	087	080
6	10.0	083	082	082	081	087	080
5	8.0	081	080	080	080	083	080
4	6.3	080	080	080	080	083	080
3	5.0	080	080	080	080	080	080
2	4.0	080	080	080	080	080	080
1	3.15	082	080	080	080	080	080

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

	-	Microphone Numbers						
Filter	Center	ı	2	3	4	5	6	
Number	Frequency	db*	db	db	db	db	db	
40	Overall	110	109	104	103	107	102	
39	20,000.	060	060	060	060	060	060	
38	16,000.	064	064	060	060	065	060	
37	12,500.	077	077	072	069	076	071	
36	10,000.	084	084	080	077	084	079	
35	8,000.	087	086	082	079	086	081	
34	6,300.	088	088	084	081	087	082	
33	5,000.	090	090	085	082	089	084	
32	4,000.	091	090	086	083	089	085	
31	3, 150.	092	092	088	085	091	086	
30	2,500.	092	092	088	086	090	086	
29	2,000.	093	092	088	087	091	087	
28	1,600.	094	093	089	088	092	087	
27	1,250.	095	094	090	089	092	088	
26	1,000.	096	095	091	091	093	088	
25	800.	096	096	093	092	094	090	
24	630.	098	098	094	094	095	091	
23	500.0	096	097	095	095	097	093	
22	400.0	099	100	096	096	099	094	
21	315.0	098	099	092	095	099	094	
20	250.0	098	098	095	094	099	094	
19	200.0	095	096	092	092	098	094	
18	160.0	093	095	092	092	095	091	
17	125.0	093	093	092	090	092	087	
16	100.0	091	092	086	085	091	085	
15	80.0	090	088	083	082	087	083	
14	63.0	097	091	082	081	086	082	
13	50.0	086	087	079	080	082	079	
12	40.0	095	091	078	075	079	075	
11	31.5	107	103	088	082	039	084	
19	25.0	083	079	068	068	070	067	
9	20.0	072	069	063	060	064	060	
8	16.0	073	071	064	062	061	060	
7	12.5	070	066	060	061	060	060	
	10.0	067	065	062	062	060	060	
6 5	8.0	068	063	060	060	060	060	
	6.3	064	062	060	060	060	060	
3	5.0	061	060	060	060	060	060	
2	4.0	063	060	060	060	060	060	
4 3 2 1	3. 15	060	060	060	060	060	060	
1	0.10	""						

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

				Microphor	ne Number	3	
Filter	Center	ı	2	3	4	5	6
Number	Frequency	db#	db	db	db	db	db
40	Overall	122	120	113	113	117	112
39	20,000.	080	080	060	061	064	060
38	16,000.	080	080	069	069	075	070
37	12,500.	088	087	083	079	088	083
36	10,000.	095	094	091	087	096	090
35	8,000.	097	096	093	090	097	092
34	6,300.	099	098	095	092	099	094
33	5,000.	100	100	096	094	100	095
32	4,000.	100	101	097	095	101	096
31	3,150.	102	101	098	096	102	097
30	2,500.	102	102	099	097	101	097
29	2,000.	102	103	099	098	102	098
28	1,600.	103	104	101	099	102	098
27	1,250.	104	104	101	101	103	099
26	1,000.	106	105	102	102	104	099
25	800.	105	106	104	103	105	101
24	630.	107	108	105	105	106	102
23	500.0	106	107	105	106	107	102
22	400.0	108	109	105	106	108	10-1
21	315.0	108	108	102	105	108	1.02
20	250.0	106	106	104	103	107	103
19	200.0	103	103	100	100	106	101
18	160.0	101	104	100	100	102	098
17	125.0	104	104	102	100	100	096
16	100.0	109	107	096	094	099	094
15	80.0	102	100	091	094	099	094
14	63.0	098	097	085	084	090	085
13	50.0	120	117	093	094	098	089
12	40.0	111	108	085	088	091	084
11	31.5	091	089	079	078	079	072
10	25.0	087	086	073	07∠	073	067
9	20.0	082	081	069	068	070	061
8	16.0	083	081	069	067	06ნ	060
7	12.5	084	081	066	064	065	060
6	10.0	080	080	063	067	0€ ≟	060
5	8.0	080	080	061	067	060	060
4	6.3	080	080	060	067	060	060
3	5.0	080	080	060	066	060	060
2	4.0	080	080	060	063	V60	060
ī	3. 15	080	080	060	060	060	000
	0.10	000					

^{*}Decibel reference .0002 microbar

			Microphone Numbers						
Filter	Center	1 /	2	3	4	5	6		
Number	Frequency	db#:	db	db	db	db	db		
40	Overall	127	127	124	122	128	122		
39	20,000.	080	080	080	080	080	080		
38	16,000.	084	083	082	082	087	083		
37	12,500.	095	093	620	092	099	094		
36	10,000.	101	101	100	098	106	101		
35	8,000.	103	101	102	100	108	103		
34	6,300.	105	103	103	101	109	105		
33	5,000.	106	104	105	103	110	106		
32	4,000.	106	105	105	104	111	107		
31	3, 150.	107	107	106	105	112	108		
30	2,500.	107	106	107	105	111	108		
29	2,000.	108	107	107	106	112	109		
28	1,600.	109	108	108	107	113	108		
27	1,250.	109	109	109	108	113	109		
26	1,000.	110	110	110	109	114	110		
25	800.	110	110	111	110	114	111		
24	630.	111	111	112	111	115	112		
23	500.0	110	110	112	111	115	112		
22	400.0	112	112	112	110	115	112		
21	315.0	112	111	110	109	115	110		
20	250.0	112	113	110	108	114	110		
19	200.0	111	112	110	109	114	109		
18	160.0	110	109	110	106	110	107		
17	125.0	119	119	119	107	115	111		
16	100.0	105	105	104	102	107	102		
15	80.0	113	113	105	107	102	104		
14	63.0	126	126	116	120	112	117		
13	50.0	102	103	098	098	096	094		
12	40.0	096	096	097	094	094	086		
11	31.5	094	094	094	091	092	082		
10	25.0	091	092	092	087	092	082		
9	20.0	087	089	089	086	089	080		
	16.0	088	087	087	085	092	082		
8 7	12.5	083	084	084	083	088	081		
	10.0	081	080	080	080	087	080		
6 5	8.0	080	081	081	080	085	080		
4	6.3	080	080	080	080	082	080		
3	5.0	080	080	080	080	080	080		
2	4.0	080	080	080	080	080	080		
1	3.15	080	080	080	080	080	080		
•	0.10		555		1				

^{*}Decibel reference .0002 microbar

Blade Angle 42°
Flap Angle 0°

RPM 500

		Microphone Numbers							
Filter	Center	1	2	3	4	5	6		
Number	Frequency	db*	db	db	db	db	db		
40	Overall	113	111	106	107	110	10 5		
39	20,000.	060	060	060	060	060	060		
38	16,000.	064	063	060	060	065	060		
37	12,500.	077	076	073	070	077	072		
36	10,000.	084	083	080	077	085	079		
35	8,000.	087	086	082	079	086	082		
34	6,300.	088	087	084	081	087	083		
33	5,000.	090	090	086	083	089	084		
32	4,000.	091	091	086	084	090	085		
31	3, 150.	092	092	088	086	091	086		
30	2,500.	093	092	088	087	091	087		
29	2,000.	093	093	089	088	092	088		
28	1,600.	094	094	090	089	092	088		
27	1,250.	095	095	091	090	093	089		
26	1,000.	096	096	092	092	094	090		
25	800.	097	097	095	093	096	091		
24	630.	099	100	096	~096	097	092		
23	500.0	099	100	097	098	098	094		
22	400.0	102	102	097	099	101	097		
21	315.0	103	103	097	099	103	098		
20	250.0	103	103	099	099	103	098		
19	200.0	101	100	096	097	102	098		
18	160.0	099	099	095	096	100	096		
17	125.0	096	097	095	093	097	092		
16	100.0	096	098	091	088	094	089		
15	80.0	096	094	087	088	093	089		
14	63.0	098	096	086	086	090	085		
13	50.0	092	092	082	084	088	085		
12	40.0	097	093	080	078	080	075		
11	31.5	108	104	091	083	088	083		
10	25.0	086	084	074	071	074	068		
9	20.0	078	072	060	063	065	060		
8	16.0	077	071	063	063	061	060		
7	12.5	073	069	060	060	062	060		
	10.0	071	068	060	060	060	060		
6 5 4 3	8.0	072	068	060	060	060	060		
4	6.3	068	069	060	060	060	060		
3	5.0	066	067	060	060	060	060		
2	4.0	067	063	060	060	060	060		
1	3.15	060	064	060	060	060	060		
1	""	000							

^{*}Decibel reference .0002 microbar

			1	Microphor	ne Number	8	
Filter	Center	1	2	3	4	5	6
Number	Frequency	db#	db	db	db	db	db
40	Overall	123	121	117	117	120	115
39	20,000.	080	080	061	060	080	060
38	16,000.	080	080	070	069	080	070
37	12,500.	088	088	084	082	088	083
36	10,000.	095	094	091	090	096	090
35	8,000.	097	096	093	091	098	093
34	6,300.	098	098	095	093	099	094
33	5,000.	099	100	096	094	101	096
32	4,000.	101	101	097	096	101	097
31	3,150.	102	102	099	097	102	098
30	2,500.	102	102	099	098	102	098
29	2,000.	103	103	100	099	103	099
28	1,600.	104	104	101	100	103	100
27	1,250.	104	105	102	102	104	100
26	1,000.	106	107	104	104	106	101
25	800.	107	107	106	104	107	103
24	630.	109	110	107	107	108	104
23	500.0	107	110	108	108	109	105
22	400.0	110	112	110	109	111	106
21	315.0	111	112	107	108	112	106
20	250.0	112	111	109	107	111	106
19	200.0	107	108	104	104	111	106
18	160.0	107	108	106	105	107	103
17	125.0	107	108	108	104	105	101
16	100.0	109	108	101	099	103	099
15	80.0	106	106	100	100	106	101
14	63.0	101	100	089	089	097	091
13	50.0	120	117	100	088	102	093
12	40.0	111	107	092	087	095	090
11	31.5	095	090	079	080	081	076
10	25.0	094	087	075	074	080	071
9	20.0	091	085	067	069	080	065
8	16.0	090	084	071	071	080	061
7	12.5	085	084	068	068	080	061
6	10.0	087	084	067	067	080	060
5	8.0	081	080	060	068	080	060
4	6.3	080	080	062	068	080	060
3	5.0	080	080	061	069	080	060
4 3 2 1	4.0	080	080	060	068	080	060
1	3.15	080	080	060	070	080	060

^{*}Decibel reference .0002 microbar

Blade Angle 420
Flap Angle 00

RPM 992

		Microphone Numbers						
Filter	Center		2	3	4	5	6	
Number	Frequency	db#	db	db	db	db	db	
40	Overall	127	127	124	124	126	123	
39	20,000.	080	080	080	080	080	080	
38	16,000.	084	084	082	083	087	083	
37	12,500.	096	094	093	094	098	094	
36	10,000.	102	101	100	100	106	102	
35	8,000.	104	103	102	101	107	103	
34	6,300.	104	104	104	103	108	104	
33	5,000.	106	105	105	104	109	106	
32	4,000.	106	106	105	105	110	106	
31	3, 150.	107	107	107	106	111	108	
30	2,500.	108	108	107	107	111	108	
29	2,000.	109	108	108	108	111	108	
28	1,600.	110	109	109	109	113	109	
27	1,250.	110	110	110	110	113	110	
26	1,000.	111	111	111	111	114	111	
25	800.	112	111	112	112	115	112	
24	630.	114	113	113	113	116	113	
23	500.0	114	113	114	114	116	113	
22	400.0	115	114	115	115	118	114	
21	315.0	113	113	112	112	118	113	
20	250.0	114	114	113	112	117	114	
19	200.0	112	11.3	111	111	116	112	
18	160.0	112	111	113	110	115	112	
17	125.0	119	117	116	111	114	112	
16	100.0	108	108	106	106	113	109	
15	80.0	112	112	105	106	107	104	
14	63.0	125	126	117	118	114	117	
13	50.0	105	105	099	100	103	098	
12	40.0	100	100	098	098	101	092	
11	31.5	094	096	092	096	101	090	
10	25.0	093	094	091	092	099	090	
9	20.0	092	090	088	091	097	088	
8	16.0	091	089	089	088	095	089	
7	12.5	087	089	084	086	095	085	
	10.0	084	083	080	083	093	081	
6 5	8.0	080	080	080	081	093	080	
4	6.3	080	080	080	080	092	080	
3	5.0	080	080	080	080	089	080	
2	4.0	080	080	080	080	087	080	
1	3.15	080	080	080	080	083	080	
A 10	""	👐	""	1				

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

Blade Angle 420
Flap Angle 50
RPM 500

			Microphone Numbers						
Filter	Center	ı	2	3	4	5	6		
Number	Frequency	db#	db	db	db	db	db		
40	Overall	113	112	107	108	111	106		
39	20,000.	060	060	060	060	060	060		
38	16,000.	066	064	061	060	065	061		
37	12,500.	078	077	074	071	078	073		
36	10,000.	085	084	081	078	085	080		
35	8,000.	088	087	083	080	087	082		
34	6,300.	089	089	085	082	089	083		
33	5,000.	091	090	086	084	090	085		
32	4,000.	092	091	088	085	091	086		
31	3, 150.	093	092	089	087	092	088		
30	2,500.	093	093	089	087	092	088		
29	2,000.	095	094	090	089	093	088		
28	1,600.	095	094	091	090	093	088		
27	1,250.	096	095	092	092	094	089		
26	1,000.	097	097	093	093	095	090		
25	800.	098	098	094	094	097	092		
24	630.	100	100	096	096	098	094		
23	500.0	100	100	097	098	099	095		
23 22	400.0	103	103	099	100	102	097		
21	315.0	103	103	096	100	104	098		
20	250.0	104	103	101	100	103	098		
20 19	200.0	101	101	097	097	103	098		
18	160.0	098	100	097	098	101	096		
		098	098	096	094	098	093		
17	125.0		1			094	089		
16	100.0	097	099	093	089		090		
15	80.0	097	096	089	089	093	085		
14	63.0	100	097	088	087	091			
13	50.0	092	094	085	085	090	086		
12	40.0	098	094	081	078	080	077		
11	31.5	109	105	091	085	089	084		
10	25.0	087	084	073	074	075	070		
9	20.0	078	073	062	063	067	061		
8 7	16.0	076	072	067	064	061	060		
7	12.5	073	071	062	061	061	060		
6	10.0	074	069	061	060	060	060		
5	8.0	076	071	062	060	060	060		
4	6.3	072	067	067	060	060	060		
3	5.0	073	064	065	060	060	060		
2	4.0	071	065	061	060	060	060		
1	3.15	068	061	067	060	060	060		

^{*}Decibel reference .0002 microbar

AFAPL-TR-70-80

	1	Microphone Numbers						
Filter	Center	1	2	3	4	5	6	
Number	Frequency	db#	db	db	db	db	db	
40	Overall	921	922	117	118	120	115	
39	20,000.	070	068	061	063	069	060	
38	16,000.	079	079	070	069	080	071	
37	12,500.	089	089	084	082	091	084	
36	10,000.	095	095	091	089	098	091	
35	8,000.	097	097	094	092	099	094	
34	6,300.	097	099	096	094	100	095	
33	5,000.	099	101	097	095	101	096	
32	4,000.	100	102	098	096	102	098	
31	3, 150.	101	103	099	098	103	099	
30	2,500.	102	103	100	099	103	099	
29	2,000.	103	104	101	100	104	100	
28	1,600.	103	105	102	101	104	100	
27	1,250.	105	106	103	103	105	101	
26	1,000.	106	108	104	104	106	102	
25	800.	106	109	106	106	107	102	
24	630.	108	111	107	108	108	104	
23	500.0	107	111	109	110	109	105	
22	400.0	109	113	110	110	111	107	
21	315.0	110	113	108	110	111	107	
20	250.0	110	112	109	109	112	107	
19	200.0	107	109	105	105	111	107	
18	160.0	104	110	106	106	107	104	
17	125.0	107	109	109	105	105	100	
16	100.0	107	107	100	099	103	098	
15	80.0	106	105	098	101	105	102	
14	63.0	098	098	089	090	097	093	
13	50.0	118	115	099	092	101	094	
12	40.0	109	106	092	089	096	091	
11	31.5	092	088	084	081	085	076	
10	25.0	091	085	078	075	084	072	
9	20.0	089	082	069	068	081	065	
8	16.0	089	081	069	069	080	062	
7	12.5	086	080	069	067	084	060	
6	10.0	084	079	067	068	079	060	
7 6 5 4 3 2	8.0	080	074	063	064	077	060	
4	6.3	079	074	064	066	076	060	
3	5.0	074	073	060	067	078	060	
9	4.0	071	068	063	069	074	060	
1	3.15	067	071	063	063	073	060	
1	3.13	""	, ,,,	1		710	300	

^{*}Decibel reference .0002 microbar

Center Frequency Overall 20,000. 3,000. 4,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	127 080 084 095 101 102 103 105 105 107 108 108 109 110	2 db 127 080 084 095 101 103 104 105 106 107 108 109 109	3 db 123 080 082 093 100 101 103 104 104 105 106 107	4 db 124 080 082 093 100 102 103 104 105 106 107	5 db 127 080 087 098 105 106 107 108 109 111 111	124 080 082 094 101 103 105 106 107 108
Overall 20,000. 36,000. 30,000. 3,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	127 080 084 095 101 102 103 105 105 107 108 108 109	127 080 084 095 101 103 104 105 106 107 108 109	123 080 082 093 100 101 103 104 104 105 106	124 080 082 093 100 102 103 104 105 106 107	127 080 087 098 105 106 107 108 109	124 080 082 094 101 103 105 106 107
20,000. 16,000. 12,500. 10,000. 10,000. 10,000. 10,000. 10,000. 10,000.	080 084 095 101 102 103 105 105 107 108 108 109 110	080 084 095 101 103 104 105 106 107 108 109	080 082 093 100 101 103 104 104 105 106	080 082 093 100 102 103 104 105 106 107	080 087 098 105 106 107 108 109	080 082 094 101 103 105 106 107
6,000. 2,500. 0,000. 8,000. 6,300. 5,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	080 084 095 101 102 103 105 105 107 108 108 109 110	084 095 101 103 104 105 106 107 108 109	082 093 100 101 103 104 104 105 106	082 093 100 102 103 104 105 106 107	087 098 105 106 107 108 109	082 094 101 103 105 106 107
2,500. 8,000. 6,300. 5,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	095 101 102 103 105 105 107 108 108 109 110	095 101 103 104 105 106 107 108 109	093 100 101 103 104 104 105 106	093 100 102 103 104 105 106 107	098 105 106 107 108 109	094 101 103 105 106 107
0,000. 8,000. 6,300. 5,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	101 102 103 105 105 107 108 108 109	101 103 104 105 106 107 108 109	100 101 103 104 104 105 106	100 102 103 104 105 106 107	105 106 107 108 109 111	101 103 105 106 107
8,000. 6,300. 5,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	102 103 105 105 107 108 108 109	103 104 105 106 107 108 109	101 103 104 104 105 106	102 103 104 105 106 107	106 107 108 109 111	103 105 106 107
6,300. 5,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	103 105 105 107 108 108 109	104 105 106 107 108 109	103 104 104 105 106	103 104 105 106 107	107 108 109 111	105 106 107
5,000. 4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	105 105 107 108 108 109 110	105 106 107 108 109	104 104 105 106	104 105 106 107	108 109 111	106 107
4,000. 3,150. 2,500. 2,000. 1,600. 1,250. 1,000.	105 107 108 108 109 110	106 107 108 109	104 105 106	105 106 107	109 111	107
3, 150. 2, 500. 2, 000. 1, 600. 1, 250. 1, 000.	107 108 108 109 110	107 108 109	105 106	106 107	111	
2,500. 2,000. 1,600. 1,250. 1,000.	108 108 109 110	108 109	106	107		108
2,000. 1,600. 1,250. 1,000.	108 109 110	109			111	
1,600. 1,250. 1,000.	109 110		107			108
1, 250. 1, 000.	110	109		108	111	109
1,000.			108	109	112	109
	111	111	109	111	113	110
000		112	110	112	114	111
800.	111	112	111	112	114	112
630.	113	113	112	114	116	113
500.0	113	113	113	115	116	114
400.0	114	114	113	115	118	114
315.0	114	114	110	114	118	114
250.0	112	114	111	112	117	114
200.0	112	113	110	110	116	113
160.0	112	115	112	113	115	112
125.0	118	117	113	111	113	111
100.0	107	111	107	110	114	111
80.0	108	109	105	103	107	101
63.0	125	125	118	114	114	111
50.0	106	106	101	101	104	099
40.0	101	103	097	098	104	089
31.5	099	097	093	095	102	085
25.0	094	095	091	095		083
20.0	091	095	090	092		082
16.0	087	091	087	089	099	081
12.5	085	088	085	086	097	081
10.0	083	086	083	083	096	080
8.0	080	080	080	080	095	080
	080	080	080	080	094	080
0.0	080	080	080	080	092	080
5.0	080	080	080	080	091	080
	080	080	080	080	090	080
	31.5 25.0 20.0 16.0 12.5 10.0 8.0 6.3 5.0	31.5 099 25.0 094 20.0 091 16.0 087 12.5 085 10.0 083 8.0 080 6.3 080 5.0 080 4.0 080	31.5 099 097 25.0 094 095 20.0 091 095 16.0 087 091 12.5 085 088 10.0 083 086 8.0 080 080 6.3 080 080 5.0 080 080 4.0 080 080	31.5 099 097 093 25.0 094 095 091 20.0 091 095 090 16.0 087 091 087 12.5 085 088 085 10.0 083 086 083 8.0 080 080 080 6.3 030 080 080 5.0 080 080 080 4.0 080 080 080	31.5 099 097 093 095 25.0 094 095 091 095 20.0 091 095 090 092 16.0 087 091 087 089 12.5 085 088 085 086 10.0 083 086 083 083 8.0 080 080 080 080 6.3 080 080 080 080 5.0 080 080 080 080 4.0 080 080 080 080	31.5 099 097 093 095 102 25.0 094 095 091 095 100 20.0 091 095 090 092 099 16.0 087 091 087 089 099 12.5 085 088 085 086 097 10.0 083 086 083 083 096 8.0 080 080 080 080 095 6.3 080 080 080 080 094 5.0 080 080 080 080 091 4.0 080 080 080 080 091

^{*}Decibel reference . 0002 microbar

AMBIENT

		Microphone Numbers							
Filter	Center	1	2	3	4	5	6		
Number	Frequency	db#	db	db	db	db	db		
40	Overall	072	073	073	073	073	072		
39	20,000.	060	060	060	060	060	060		
38	16,000.	060	060	060	060	060	060		
37	12,500.	060	060	060	060	060	060		
36	10,000.	064	062	964	062	063	062		
35	8,000.	060	060	061	060	060	060		
34	6,300.	060	060	060	060	060	060		
33	5,000.	060	060	060	060	060	060		
32	4,000.	060	060	060	060	060	060		
31	3, 150.	060	060	060	060	060	060		
30	2,500.	060	060	060	060	060	060		
29	2,000.	060	060	060	060	060	060		
28	1,600.	060	060	060	060	060	060		
27	1,250.	060	060	060	060	060	060		
26	1,000.	060	060	060	060	060	060		
25	800.	060	060	060	060	060	060		
24	630.	060	060	060	060	060	060		
23	500.0	060	060	060	060	060	060		
22	400.0	060	062	060	063	060	063		
21	315.0	060	060	060	062	061	061		
20	250.0	060	060	060	061	060	060		
19	200.0	060	060	060	060	060	060		
18	160.0	060	060	060	060	060	060		
17	125.0	060	060	060	060	060	060		
16	190.0	060	060	060	060	060	060		
15	80.0	060	060	060	060	060	060		
14	63.0	069	069	070	070	070	070		
13	50.0	060	060	060	060	060	060		
12	40.0	060	060	060	060	060	060		
11	31.5	060	060	060	060	060	060		
10	25.0	060	060	060	060	060	060		
	20.0	060	060	060	060	060	060		
9 8	16.0	061	060	061	060	062	060		
7	12.5	062	061	062	061	062	061		
6	10.0	060	060	060	060	060	060		
6 5	8.0	060	060	060	060	060	060		
4	6.3	060	060	060	060	060	060		
	5.0	060	060	060	060	060	060		
9	4.0	060	060	060	060	060	060		
3 2 1	3.15	060	060	060	060	060	060		
1	0.10	000	""	000	000	""	300		

^{*}Decibel reference .0002 microbar

REFERENCES

- 1. Gerald T. Cafarelli and Matthew H. Chopin, Computer Program for Reducing Static Propeller Test Data, ASD Technical Report 68-19, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, June 1968.
- 2. Matthew H. Chopin, Propeller Static Performance Tests for V/STOL Aircraft, Part I Summary Report, ASD Technical Report 69-15, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, January 1970.
- 3. Peter A. Franken and Edward M. Kerwin, <u>Methods of Flight Vehicle</u>
 <u>Noise Prediction</u>, WADC Technical Report 58-343, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, November 1958.