Multimedia

§3 Basics of data compression

Prof. Dr. Georg Umlauf

Content

§3.1 Basics

- §3.2 Data compression
- §3.3 Classification of compression methods
- §3.4 Measures for compression methods

Why data compression?

- Limited resources
 - Storage space
 - Transmission rate
- Data becomes increasingly complex
 - complex image-, video- and 3d-data,
 - possible due to powerful hardware.
- Storage and transmission of such data requires efficient and effective reduction of data.
- Almost all multimedia data, e.g. audio-, image-, or video-data, is used today in compressed form.

Why data compression?

Encoding

Source coding: Compression of data by sender.

Channel coding: Protection of the data against random errors

during transmission or storage.

Cryptography: Protection of the data against interception or

modification by unauthorized others.

Modulation: Superimpose data onto the physical medium.

What is data compression?

- Reduce amount of (digital) data, necessary to represent a certain information.
- Compression methods
 - Many different approaches and techniques.
 - Developed for different applications.
 - Perform very different for different applications.

Content

- §3.1 Basics
- §3.2 Data compression
- §3.3 Classification of compression methods
- §3.4 Measures for compression methods

What is data compression based on?

- Content of files can be
 - redundant (repetitions, patterns, etc.) and/or
 - partially unimportant (too much detail, etc.).
- Use redundancy, regularity, repetitions, correlation, similarity
 - Coding
- Unimportant Information can be ignored.
 - Data Reduction
 - Depended on the perception of humans.
- Both aspects can be used to shorten the representation of the information, i.e. compress the representation of the information.

What is data compression based on?

Lossless compression

- Text-, program-, and data files must be compressed without loss of information.
- Only redundancy can be remove.
- Original can (in principle) be reconstructed perfectly without errors.
- E.g.: Huffman-Coding, run-length-coding, arithmetic Coding, LZW coding.

Lossy compression

- For image-, video-, and audio-files the compressed file can differ slightly, as long as the difference is unrecognizable (invisible or inaudible).
 - Used physiological properties of human eyes and ears.
 - Compress file to target size.
 - Compress data to target transfer rate.
- There is a difference between the original and the decoded object.
 - Data cannot be reconstructed perfectly without errors.
- Allows for larger compression rates.
- E.g.: JPEG, MPEG

Application: text files

- Order of characters in a file is usually not arbitrary.
- Letters of an alphabet occur with different frequencies.
- Encode frequent letters using "short" symbols and infrequent letters using "long" symbols.
 - Reduce the average length of symbol for the letters.
 - Encode analogously frequent and infrequent letter sequences.

Application: audio files

 A single tone (sinus) can be represented more compactly than a complex sound.

Application: image files

- Not all areas in an image have the same degree of complexity:
 - Large, homogenous areas (e.g. single-colored or regular patterns) can be represented more compactly.
 - Highly detailed areas need a more expensive representation.

Application: video files

- Similar to images:
 - Use coherence between succeeding frames.
 - Image areas that do not change, do not need to be encoded again.

Aspects of data compression (1)

- Compression and de-compression is realized in so-called Codecs.
- Complexity and run-time
 - Dependent on application, data volume and the data itself.
- Compression performance, compression rate
 - Increases usually with increasing recourses (computing power, storage space).
 - Compression rate = $\frac{\text{Un-compressed size of the data}}{\text{Compressed size of the data}}$ [in percent].
 - Saving $= 1 \frac{1}{\text{Compression rate}}$ [in percent].

Aspects of data compression (2)

- Pre- or Post-Processing
 - (de)-coding of the data "online" during the generation/transmission?
 - (de)-coding of the data "offline" in a pre-/post-process?
- Robustness
 - What is the effect of an error in a compressed file?
- Usability
 - Is the compressed file self-extracting or does the receiver need a de-coder?
- Edit ability
 - Can individual blocks of the compressed file be modified without changing the rest of the file?

Examples for compressed file formats

Text: ZIP, RAR

Images: GIF, JPEG, PNG, TIFF

Video: AVI, MPEG

Audio: WAV, MP3, MPEG

Hybrid: PDF

Others: ZIP, GZIP, RAR

Content

- §3.1 Basics
- §3.2 Data compression
- §3.3 Classification of compression methods
- §3.4 Measures for compression methods

Overview

Overview

(0	Type	Form	Method	Chapter
Overview of compression methods	Lossless compression		RLE (run-length coding)	§4.1
		Statistical coding	LZW-codingHuffman-codingarithmetic coding	§4.4 §4.2 §4.3
	Lossy compression	Layered coding	Bit-positionSub-samplingSub-band-coding	§5.1 §7.3.2
		Quantization	 Vector quantization 	§5.2
		Transformation	 DFT/FFT (Fourier-Transformation) DCT (Cosines-Transformation) DWT (Wavelet-Transformation) 	§6.1 §6.2 §6.3
		Prediction	LPC (linear predictive coding)	§7.3.3
	Hybrid compression		JPEGMPEGH.264, H.265	§8.4.6 §9.2 §9.2

Content

- §3.1 Basics
- §3.2 Data compression
- §3.3 Classification of compression methods
- §3.4 Measures for compression methods

How to evaluate the performance of a compression method?

- 1. Compare data size before and after the compression.
 - ightharpoonup Compare $\mathcal X$ and $\mathcal X_c$, e.g. compression rate.
- 2. Compare data quality before and after the compression.
 - lacktriangle Compare ${\mathcal X}$ and ${\mathcal Y}$, e.g. distortion measures.

- Lossless compression, if $\mathcal{X} = \mathcal{Y}$.
- Lossy compression, if $X \neq Y$.

Measures for the quality of a compression method

- Compression performance, compression rate
 - Compression rate = $\frac{\text{Un-compressed size of the data}}{\text{Compressed size of the data}}$ [in percent].
 - Saving $= 1 \frac{1}{\text{Compression rate}}$ [in percent].
 - Compression factor: Ratio of compressed size of a file to the uncompressed size of the file.
 - Example: Compression factor 1:100 means, the compressed file size is a hundredth of the original file size.
- Speed for the compression.
- Speed for the de-compression.

Distortion measures

for
$$X = (x_1, ..., x_n), Y = (y_1, ..., y_n)$$

$$y-x$$
.

$$|x_i - y_i|, i = 1, ..., n.$$

$$(x_i - y_i)^2$$
, $i = 1, ..., n$.

$$d_1 \coloneqq \frac{1}{n} \sum_{i=1}^n |x_i - y_i|$$

$$\sigma^2 \coloneqq \frac{1}{n} \sum_{i=1}^n (x_i - y_i)^2$$

$$SNR = \sigma_{\mathcal{X}}^2/\sigma^2$$
 with $\sigma_{\mathcal{X}}^2 \coloneqq \frac{1}{n} \sum_{i=1}^n x_i^2$.

$$SNR(dB) = 10 \log_{10} \sigma_{\chi}^2 / \sigma^2.$$

$$PSNR = \max_{i} x_i^2 / \sigma^2.$$

$$PSNR(dB) = 10 \log_{10} (\max_{i} x_i^2 / \sigma^2).$$

Trend of the PSNR

 A larger PSNR corresponds usually to a better reconstruction quality.

Source: Wikipedia

§3.4 Measures for compression methods

Example:

Uncompressed original

PSNR=36.81dB

PSNR=45.53dB

PSNR=31.45dB

Problem: How do these measures correlate with the perceived distortion?

Original image Lena

Compressed image to 25% (jpg)

Goal

- What is source coding?
- What is the difference between lossless and lossy compression?
- When is lossless or lossy compression used?
- What is PSNR?