

FDBSCAN-APT A Fuzzy Density-based Clustering Algorithm with Automatic Parameter Tuning

Alessio Bechini Martina Criscione Pietro Ducange Francesco Marcelloni Alessandro Renda

University of Pisa, Dept. of Information Engineering

Outline

- Intro: DBSCAN
- FDBSCAN-APT: Motivation and Goals
- A fuzzy extension of DBSCAN clustering algorithm
- A novel heuristic for Automatic Parameter Tuning
- Experimental Setup and Results
- Conclusions

Intro: DBSCAN

Partitions data into connected dense regions separated by sparse regions

• Distinction between Core, Border, Noise objects

Requires the definition of two input parameters

- E: defines the neighborhood size
- MinPts: minimum number of objects required for a core
- Can discover clusters with arbitrary shapes
- Does not require prior knowledge of the number of clusters
- Crucial importance of input parameter setting

A (simple?) Clustering Task

MinPts, small &

MinPts, big &

FDBSCAN-APT: Goals

On this example, we can draw general goals

- Discover clusters with fuzzy overlapping borders
- Automatically find proper values of input parameters

FDBSCAN APT

Fuzzy DBSCAN with Automatic Parameter Tuning

Fuzzy Border DBSCAN

Basindyategiefuzzyithemshershipfancitiered for the determination of a core object

• A border object belongs to a cluster with a degree in [0,1]

• An object may be ε the border of multiple clusters

Fuzzy border DBSCAN

• canclaspaden clusters borders without affecting overeierem bification

can discover clusters with fuzzy overlapping borders

lenco D. and Bordogna G. "Fuzzy extensions of the DBScan clustering algorithm." Soft Computing (2018)

Automatic Parameter Tuning

Proposed approach

- Fix MinPts
- Estimate ε_{min} and ε_{max}

Basic idea

- Resort to the k-dist plot
 - Evaluate the core-distance for each object
 - Plot after sorting

Automatic Parameter Tuning

Two assumptions:

- The dataset distribution is unimodal
 - all clusters have roughly the same density of objects
- The array of core-distances can be modeled as a mixture of two Gaussian components
 - the first one models the contribution of objects within a high-density region
 - the second one models the contribution of border objects and is affected by the presence of noise and outliers

Automatic Parameter Tuning

- Given the Gaussian Mixture Model fitting on the k-dist array
 - (μ_H, σ_H) the parameters of the *high-density* Gaussian component
 - (μ_L, σ_L) the parameters of the *low-density* Gaussian component
- A heuristic for Automatic FDBSCAN parameter setting
 - MinPts = k
 - $\hat{\varepsilon}_{min} = \mu_H + 2 \sigma_H$
 - $\hat{\varepsilon}_{max} = \alpha * \hat{\varepsilon}_{min} * \frac{\mu_L}{\mu_L \mu_H}$

- Approximately 98% of objects of the high-density component will meet the core condition
- Expressed as a function of $\hat{arepsilon}_{min}$
- User defined parameter $\alpha \ge 1$ for flexibility
- Last coefficient for narrowing borders in presence of noise

Experimental Setup

Comparison of **FDBSCAN-APT** with **50** other **parameter configurations** of FDBSCAN

 ε_{min} : 10 evenly spaced values in the range $[\mu_H + \sigma_H, \ \mu_H + 4 \ \sigma_H]$

 ε_{max} : 5 evenly spaced values in the range $[\varepsilon_{min}, \ 5 * \varepsilon_{min}]$

- Nine bidimensional synthetic datasets
- Clustering results evaluation in terms of Adjusted Rand Index

Square

FDBSCAN-APT output

- FDBSCAN-APT
- x Grid best configuration
- Parameter setting is crucial
- FDBSCAN-APT automatically finds an acceptable configuration
- Introduction of fuzziness is beneficial for modeling this dataset

Banana_noise_1

Banana_noise_20

Clustering Results: ARI		
Dataset	Grid best	FDBSCAN-APT
Square1	0.943	0.844
Banana	0.986	0.916
Banana_noise_1	0.989	0.931
Banana_noise_5	0.956	0.908
Banana_noise_10	0.930	0.882
Banana_noise_20	0.866	0.840
Cluto-t4-8k	0.943	0.943
Cluto-t8-8k	0.898	0.903
Aggregation	0.943	0.809

SPONSORS:

 $arepsilon_{min}*1$)

5.649

Conclusions

Proposal of FDBSCAN-APT clustering algorithm

- It enables the detection of clusters with fuzzy overlapping borders
- A novel heuristic proposed for Automatic Parameter Tuning addresses the crucial issue of input parameters setting
- Effectiveness of the proposed approach is shown on several synthetic datasets

Towards further developments

- Evaluation on real/big/high-dimensional datasets
- Extension to multi-density datasets

Thank you for your attention

Alessandro Renda Smart Computing Ph.D. student

alessandro.renda@unifi.it University of Pisa, Dept. Information Engineering

Computational Intelligence Group

