

三洋半導体データシート

LC75857E ___ 1/3, 1/4デューティ LC75857W LCD表示ドライバKEY入力付

LC75857E,75857Wは、1/3,1/4デューティダイナミックLCD表示ドライバで、最大164セグメントまでのLCDを直接駆動できると共に、最大4本までの汎用出力ポートも制御できる。また、Keyスキャン回路を内蔵することにより、最大30個までのKey入力が可能となり、フロントパネルとの配線を少なくすることができる。

特長

- ・最大30Key入力付(Keyを押したときのみKeyスキャンを行う)。
- ・1/3デューティ,1/4デューティの切換えをシリアルデータにてコントロール可能。
- ・1/2バイアス、1/3バイアスの切換えをシリアルデータにてコントロール可能。
- ・1/3デューティ時、最大126セグメント,1/4デューティ時、最大164セグメントの表示が可能。
- ・スリープモード、全セグメント強制消灯をシリアルデータにてコントロール可能。
- ・Keyスキャン出力/セグメント出力の切換えをシリアルデータにてコントロール可能。
- ・Keyスキャン動作可能,動作禁止をシリアルデータにてコントロール可能。
- ・セグメント出力ポート/汎用出力ポートの切換えをシリアルデータにてコントロール可能。
- ・コモン、セグメント出力波形のフレーム周波数をシリアルデータにてコントロール可能。
- ・CR発振動作モード,外部クロック動作モードの切換えをシリアルデータにてコントロール可能。
- ・シリアルデータ入出力はCCBフォーマットにてコントローラと通信が可能。
- ・表示データはデコーダを介さずに表示されるため汎用性が高い。
- LCDドライバ部電源V_{LCD}の独立。
 (ロジック部電源V_{DD}=3.6V~6.0Vの時、V_{LCD}=0.75V_{DD}~6.0V,V_{DD}=2.7V~3.6Vの時、V_{LCD}=2.7V~6.0Vの範囲で設定可能)。
- ・電圧検出型リセット回路を内蔵しているので、誤表示を防止することができる。

絶対最大定格/Ta=25 ,V_{SS}=0V

項目	記号	条件	定格値	un i t
最大電源電圧	V _{DD} max	V _{DD}	- 0.3~ +7.0	٧
	V _{LCD} max	V _{LCD}	- 0.3~ +7.0	V
入力電圧	V _{IN} 1	CE,CL,DI	- 0.3~ +7.0	
	V _{IN} 2	OSC, TEST	- 0.3 ~ V _{DD} + 0.3	V
	V _{IN} 3	V _{LCD} 1,V _{LCD} 2,KI1~KI5	- 0.3 ~ V _{LCD} + 0.3	
出力電圧	V _{OUT} 1	DO	- 0.3~ +7.0	
	V _{OUT} 2	OSC	- 0.3 ~ V _{DD} + 0.3	V
	V _{OUT} 3	S1 ~ S42,COM1 ~ COM4,KS1 ~ KS6,P1 ~ P4	- 0.3 ~ V _{LCD} + 0.3	

次ページへ続く。

- 本書記載の製品は、極めて高度の信頼性を要する用途(生命維持装置、航空機のコントロールシステム等、 多大な人的・物的損害を及ぼす恐れのある用途)に対応する仕様にはなっておりません。そのような場合に は、あらかじめ三洋半導体販売窓口までご相談下さい。
- 本書記載の規格値(最大定格、動作条件範囲等)を瞬時たりとも越えて使用し、その結果発生した機器の欠陥について、弊社は責任を負いません。

前ページより続く。

項目	記号	条件	定格値	un i t
出力電流	I _{OUT} 1	S1 ~ S42	300	μΑ
	I _{OUT} 2	COM1 ~ COM4	3	
	I _{OUT} 3	KS1 ~ KS6	1	mA
	I _{OUT} 4	P1 ~ P4	5	
許容消費電力	Pd max	Ta=85	200	mW
動作周囲温度	Topr		- 40 ~ + 85	
保存周囲温度	Tstg		- 55 ~ + 125	

許容動作範囲/Ta= - 40~ +85 ,VSS=0V

項目	記号	SS=0 v	条件	min	typ	max	unit
電源電圧	V _{DD}	VDD		2.7		6.0	
	VLCD	VLCD VDD=3.6	V ~ 6.0V	0.75V _{DD}		6.0	٧
		VLCD VDD=2.7	V ~ 3.6V	2.7		6.0	
入力電圧	V _{LCD} 1	V _{LCD} 1			2/3V _{LCD}	VLCD	V
	V _{LCD} 2	V _{LCD} 2			1/3V _{LCD}	VLCD	V
入力「H」レベル電圧	V _{IH} 1	CE,CL,DI		0.8V _{DD}		6.0	
	V _{IH} 2	KI1 ~ KI5		0.6VLCD		VLCD	٧
	V _{IH} 3	OSC 外部クロ	ック動作モード	0.7V _{DD}		V _{DD}	
入力「L」レベル電圧	V _{IL} 1	CE,CL,DI		0		0.2V _{DD}	
	V _{IL} 2	KI1~KI5		0		0.2V _{LCD}	٧
	V _{IL} 3	OSC 外部クロ	ック動作モード	0		0.3V _{DD}	
CR発振用推奨外付抵抗	Rosc	OSC CR発振動	作モード		39		kΩ
CR発振用推奨外付容量	Cosc	OSC CR発振動	作モード		1000		pF
CR発振保証範囲	fosc	OSC CR発振動	作モード	19	38	76	kHz
外部クロック動作周波数	fCK	OSC 外部クロ	ック動作モード [図4]	19	38	76	kHz
外部クロックデューティ	DCK	OSC 外部クロ	ック動作モード [図4]	30	50	70	%
データセットアップ時間	tds	CL,DI	[図2],[図3]	160			ns
データホールド時間	tdh	CL,DI	[図2],[図3]	160			ns
CEウエイト時間	tcp	CE,CL	[図2],[図3]	160			ns
CEセットアップ時間	tcs	CE,CL	[図2],[図3]	160			ns
CEホールド時間	tch	CE,CL	[図2],[図3]	160			ns
「H」レベルクロック パルス幅	tφH	CL	[図2],[図3]	160			ns
「L」レベルクロック パルス幅	tφL	CL	[図2],[図3]	160			ns
立ち上がり時間	tr	CE,CL,DI	[図2],[図3]		160		ns
立ち下がり時間	tf	CE,CL,DI	[図2],[図3]		160		ns
DO出力ディレイ時間	tdc	DO RPU=4.7kΩ	2,CL=10pF *1			1.5	μs
DO立ち上がり時間	tdr	DO RPU=4.7kΩ	[図2],[図3] 2,CL=10pF *1 [図2],[図3]			1.5	μs

^{*1} DOはオープンドレイン出力なのでプルアップ抵抗RPUおよび負荷容量CLの値により変化する。

電気的特性/許容動作範囲において

電気的特性/許谷動作 項目	記号	端子	条件	min	typ	max	unit
ヒステリシス幅	VH1	CE,CL,DI			0.1V _{DD}		.,
	VH2	KI1 ~ KI5			0.1VLCD		V
パワーダウン	VDET			2.0	2.2	2.4	V
検出電圧				2.0	2.2	2.4	V
入力「H」レベル電流	I _{IH} 1	CE,CL,DI	V _I =6.0V			5.0	
	I _{IH} 2	OSC	V _I =V _{DD} 外部クロック 動作モード			5.0	μА
入力「L」レベル電流	I _{IL} 1	CE,CL,DI	V1=0V	- 5.0			
	I _{IL} 2	OSC	V _I =0V 外部クロック 動作モード	- 5.0			μА
入力フローティング 電圧	VIF	KI1 ~ KI5				0.05V _{LCD}	V
プルダウン抵抗	R _{PD}	KI1 ~ KI5	V _{LCD} =5.0V	50	100	250	l ₁ O
			V _{LCD} =3.0V	100	200	500	kΩ
出力オフリーク電流	IOFFH	DO	V ₀ =6.0V			6.0	μΑ
出力「H」レベル電圧	V _{OH} 1	KS1 ~ KS6	I _O = - 500μA V _{LCD} =3.6V ~ 6.0V	V _{LCD} - 1.0	V _{LCD} - 0.5	V _{LCD} - 0.2	
			I _O = - 250μA V _{LCD} =2.7V ~ 3.6V	V _{LCD} - 0.8	V _{LCD} - 0.4	V _{LCD} - 0.1	v
	V _{OH} 2	P1 ~ P4	I _O = - 1mA	V _{LCD} - 0.9			
	V _{OH} 3	S1 ~ S42	Ι ₀ = - 20μΑ	V _{LCD} - 0.9			
	V _{OH} 4	COM1 ~ COM4	I ₀ = - 100μΑ	V _{LCD} - 0.9			
出力「L」レベル電圧	V _{OL} 1	KS1 ~ KS6	Ι ₀ =25μΑ	0.2	0.5	1.5	
			V _{LCD} =3.6V ~ 6.0V	0.2	0.0	1.0	
			Ι ₀ =12.5μΑ	0.1	0.4	1.2	
	\/a. 2	P1 ~ P4	V _{LCD} =2.7V ~ 3.6V			0.0	V
	V _{0L} 2	S1 ~ S42	I _O =1mA I _O =20μA			0.9	
	V _{OL} 3	COM1 ~ COM4	Ι ₀ =100μΑ			0.9	
	V _{0L} 4	DO DO	I _O =100μA		0.1	0.9	
出力中間レベル電圧	VOLS VMID1	COM1 ~ COM4	1/2バイアス	1/2V _{LCD}	0.1	1/2V _{LCD}	
*2	VIVITUI	JOINT GOINH	I ₀ = ± 100μA	- 0.9		+ 0.9	
_	VMID2	S1 ~ S42	1/3バイアス	2/3V _{LCD}		2/3V _{LCD}	
			I ₀ = ± 20μΑ	- 0.9		+0.9	
	VMID3	S1 ~ S42	1/3バイアス	1/3V _{LCD}		1/3V _{LCD}	V
			I ₀ = ± 20μΑ	- 0.9		+0.9	v
	VMID4	COM1 ~ COM4	1/3バイアス	2/3V _{LCD}		2/3V _{LCD}	
	\/\	00114 00114	I ₀ = ± 100μA	- 0.9		+0.9	
	VMID5	COM1 ~ COM4	1/3バイアス	1/3V _{LCD}		1/3V _{LCD}	
 発振周波数	fosc	OSC	I ₀ = ± 100μA Rosc=39kΩ	- 0.9		+0.9	
761IKI-171XXX	1000		Cosc=1000pF	30.4	38	45.6	kHz

次ページへ続く。

前ページより続く。

項目	記号	端子	条件	min	typ	max	unit
電源電流	I _{DD} 1	V _{DD}	スリープ			100	
	I _{DD} 2	V _{DD}	V _{DD} =6.0V 出力オープン fosc=38kHz		300	600	
	I _{LCD} 1	VLCD	スリープ			5	μΑ
	I _{LCD} 2	VLCD	V _{LCD} =6.0V 出力オ・プン 1/2バイアス fosc=38kHz		100	200	μΛ
	I _{LCD} 3	VLCD	V _{LCD} =6.0V 出力オ・プン 1/3バイアス fosc=38kHz		60	120	

^{*2} VLCD1, VLCD2に内蔵しているバイアス電圧発生用の分割抵抗は除く([図1]参照)。

[図1]

外形図 unit:mm 3159A [LC75857E]

外形図 unit:mm 3190A [LC75857W]

ピン配置図

(1)CLが「L」レベルで停止している場合のシリアルデータ入出力タイミング

[図2]

(2)CLが「H」レベルで停止している場合のシリアルデータ入出力タイミング

[図3]

(3)外部クロック動作モード時のOSC端子のクロックタイミング

[図4]

ブロック図

端子説明

端子名	端子番号	説明	アクティブ	1/0	未使用時 の処理
S1/P1 ~ S4/P4	1 ~ 4	シリアルデータ入力により転送された表示データ			
S5 ~ S38	5 ~ 38	を表示するセグメント出力端子である。 	_	0	OPEN
		S1/P1~S4/P4は、コントロールデータにより汎用出		·	\$1 ±11
		力ポートとして使用することができる。			
COM1 ~ COM3	42 ~ 40	コモンドライバ出力端子で、フレーム周波数は			
COM4/S39	39	fo[Hz]である。COM4/S39は1/3デューティ時、セグ	-	0	OPEN
		メント出力として使用することができる。			
KS1/S40	43	Keyスキャン用出力端子である。			
KS2/S41	44	Keyマトリクスを構成する場合、通常、Keyスキャン			
KS3/S42	45	のタイミングラインにダイオードを付けて			
KS4 ~ KS6	46 ~ 48	ショートを防ぐが、出力トランジスタのインピーダ	_	0	OPEN
		ンスがアンバランスのCMOS出力であるため、		O	OI LIV
		ショートしても破壊しない構成になっている。			
		KS1/S40~KS3/S42はコントロールデータにより			
		セグメント出力として使用することができる。			
KI1 ~ KI5	49 ~ 53	Keyスキャン用入力端子で、プルダウン抵抗が内蔵	ш		GND
		されている。	Н	I	GND
OSC	60	発振器用端子で、外部に抵抗とコンデンサを接続			
		することにより発振回路を構成する。また、コント			
		ロールデータにより外部クロック動作モードを	-	1/0	V_{DD}
		選択すると、外部クロック入力端子として使用する			
		ことができる。			
CE	62	シリアルデータのインタフェース用端子で、コント	Н	_	
		ローラと接続する。また、DOはオープンドレイン出	11	1	
CL	63	力なのでプルアップ抵抗が必要となる。	<u></u>	1	GND
		CE:チップイネーブル			
DI	64	 CL : 同期クロック	-	1	
DO	61	 DI:転送データ			
БО	01	DO: 出力データ	-	0	OPEN
TEST	59	GNDに接続すること。	-	I	-
V _{LCD} 1	56	外部よりLCD駆動バイアス2/3電圧印加用。			
205		│ │1/2バイアス時はV _{LCD} 2と接続すること。	-	I	OPEN
V _{LCD} 2	57	外部よりLCD駆動バイアス1/3電圧印加用。			
205		│ │1/2バイアス時はV _{LCD} 1と接続すること。	-	ı	OPEN
V_{DD}	54	ロジック部電源供給端子で、2.7V~6.0Vを供給する			
20		こと。	-	-	-
V _{LCD}	55	LCDドライバ部電源供給端子で、			
200		V _{DD} =3.6V~6.0Vの時、0.75V _{DD} ~6.0Vを供給し、	_	-	-
		V _{DD} =2.7V~3.6Vの時、2.7V~6.0Vを供給すること。			
V _{SS}	58	電源供給端子で、GNDを接続すること。	_	_	_

CLが「H」レベルで停止している場合

CLが「H」レベルで停止している場合

CE
DI X 0 X 1 X 0 X 0 X 0 X 0 X 1 X 0 XD1X
DO
X O X 1 X O X O X O X O X O X O X O X O
注)B0~B3,A0~A3 ····· CCBアドレス
DD · · · · · · · · · · · · · · · · · ·
・CCBアドレス · · · · 「42H」 ・D1~D164 · · · · · · 表示データ
・SP · · · · · · · · · · ノーマルモード,スリープモードのコントロールデータ
・KCO~KC2 ······ Keyスキャン出力状態設定データ ・KSC ····· Keyスキャン動作可能,動作禁止の状態設定データ
・K0,K1 ······ Keyスキャン出力/セグメント出力切換え選択データ ・P0~P2 ····· セグメント出力ポート/汎用出力ポート切換え選択データ
・SC · · · · · · · · · セグメントの点灯,消灯コントロールデータ ・DR · · · · · · · · · · 1/2バイアス駆動,1/3バイアス駆動切換え選択データ
・DT ・・・・・・・・ 1/3デューティ駆動,1/4デューティ駆動切換え選択データ ・FC0~FC2・・・・・ コモン,セグメント出力波形のフレーム周波数設定データ
• OC · · · · · · · · · · · CR発振動作モード,外部クロック動作モード切換え選択データ

コントロールデータの説明

(1)SP · · · · · · · · ノーマルモード,スリープモードのコントロールデータ このコントロールデータにより、ノーマルモード,スリープモードの切換えを行う。

	モード	OSC端	子の状態	コモン,	Keyスキャン	汎用出力
SP		CR発振 動作モード	外部クロック 動作モード	セグメント 出力端子の状態	の動作状態	ポート の状態
0	ノーマル	発振	外部クロック受信	LCD駆動 波形出力		
1	スリープ	発振停止 (Keyスキャン 実行中は発振)	外部クロック受信 停止(Keyスキャン 実行中は外部 クロック受信)	L(VSS)	状態設定 可能	状態設定 可能

注) Keyスキャンの動作状態の設定,汎用出力ポートの状態設定については、コントロールデータ KCO ~ KC2, KSC, KO, K1, PO ~ P2の説明を参照のこと。

(2)KCO~KC2···· Keyスキャン出力状態設定データ

このコントロールデータにより、Keyスキャン出力端子KS1~KS6の状態設定を行う。

コントロールデータ			Keyスキャンスタンバイ時の出力端子の状態					
KC0	KC1	KC2	KS1	KS2	KS3	KS4	KS5	KS6
0	0	0	Н	Н	Н	Н	Н	Н
0	0	1	L	Н	Н	Н	Н	Н
0	1	0	L	L	Н	Н	Н	Н
0	1	1	L	L	L	Н	Н	Н
1	0	0	L	L	L	L	Н	Н
1	0	1	L	L	L	L	L	Н
1	1	0	L	L	L	L	L	L

注)出力端子KS1/S40~KS3/S42はKeyスキャン出力が選択されているとする。また、「L」に設定されている出力端子からKeyスキャン出力信号は出力されない。

(3)KSC ····· Keyスキャン動作可能,動作禁止の状態設定データ

このコントロールデータにより、Keyスキャン動作可能,動作禁止の状態設定を行う。

KSC	Keyスキャン動作状態
0	Keyスキャン動作可能 「Keyスキャン出力端子KS1~KS6が「H」の状態であるラインのいずれかのKeyが押されると、 Keyスキャンを実行する。
1	Keyスキャン動作禁止 「Keyマトリクス上のいずれのKeyが押されてもKeyスキャンを実行しない。また、この状態が設定されると、強制的にKeyデータが全て「L」にリセットされ、Keyデータ読み取り要求も解除される(DO=「H」)。

(4)K0,K1 · · · · · · Keyスキャン出力/セグメント出力切換え選択データ このコントロールデータにより、出力端子KS1/S40~KS3/S42のKeyスキャン出力/セグメント出力 の切換えを行う。

コントロール データ		出	力端子の状	態	最大Key
K0	K1	KS1/S40	KS2/S41	KS3/S42	入力数
0	0	KS1	KS2	KS3	30
0	1	S40	KS2	KS3	25
1	0	S40	S41	KS3	20
1	1	S40	S41	S42	15

注)KSn(n=1~3) : Keyスキャン出力 Sn(n=40~42): セグメント出力

(5)P0~P2 ····· セグメント出力ポート/汎用出力ポート切換え選択データ このコントロールデータにより、出力端子S1/P1~S4/P4のセグメント出力ポート/汎用出力 ポートの切換えを行う。

コン	トロールテ	ールデータ 出力端子の状態				
P0	P1	P2	S1/P1	S2/P2	S3/P3	S4/P4
0	0	0	S1	S2	S3	S4
0	0	1	P1	S2	S3	S4
0	1	0	P1	P2	S3	S4
0	1	1	P1	P2	P3	S4
1	0	0	P1	P2	P3	P4

注)Sn(n=1~4): セグメント出力ポート Pn(n=1~4): 汎用出力ポート

また、汎用出力ポートを選択した場合の表示データと出力端子との対応を示すと、以下の様になる。

	対応する表示データ		
出力端子	1/3デューティの場合	1/4デューティの場合	
S1/P1	D1	D1	
\$2/P2	D4	D5	
\$3/P3	D7	D9	
S4/P4	D10	D13	

例えば、1/4デューティの場合において、出力端子S4/P4が汎用出力ポートとして選択されている場合、表示データD13=「1」の時、出力端子S4/P4は「 $H_J(V_{LCD})$ を出力し、 $D13=「0」の時、出力端子S4/P4は「<math>L_J(V_{SS})$ を出力する。

(6)SC · · · · · セグメントの点灯,消灯コントロールデータ

このコントロールデータにより、セグメントの点灯,消灯のコントロールを行う。

SC	表示状態
0	点灯
1	消灯

ただし、SC=「1」による消灯とは、セグメント出力端子から消灯波形が出力されることによる消灯である。

(7) DR · · · · · · · · 1/2バイアス駆動,1/3バイアス駆動切換え選択データ

このコントロールデータにより、LCDの1/2バイアス駆動,1/3バイアス駆動の切換えを行う。

DR	バイアス駆動方式
0	1/3バイアス駆動方式
1	1/2バイアス駆動方式

(8)DT · · · · · · · · 1/3デューティ駆動,1/4デューティ駆動切換え選択データ

このコントロールデータにより、LCDの1/3デューティ駆動,1/4デューティ駆動の切換えを行う。

DT	デューティ駆動方式	出力端子(COM4/S39)の状態	
0	1/4 デューティ駆動方式	COM4	注
1	1/3 デューティ駆動方式	\$39	

| 注)COM4:コモン出力 | S39:セグメント出力

(9)FC0~FC2 ··· コモン,セグメント出力波形のフレーム周波数設定データ

このコントロールデータにより、コモン,セグメント出力波形のフレーム周波数の設定を行う

コントロールデータ		ータ	
FC0	FC1	FC2	フレーム周波数 fo[Hz]
0	0	0	fosc/768, fCK/768
0	0	1	fosc/576,fCK/576
0	1	0	fosc/384,fCK/384
0	1	1	fosc/288,fCK/288
1	0	0	fosc/192,fCK/192

(10)0C ······· CR発振動作モード,外部クロック動作モード切換え選択データ このコントロールデータにより、OSC端子の機能(CR発振動作モード,外部クロック動作モード)を 選択する。

OC	OSC端子の機能
0	CR発振動作モード
1	外部クロック動作モード

注)CR発振動作モードを選択した場合は、OSC端子に外付抵抗Rosc,外付容量Coscを接続すること。

表示データと出力端子との対応

(1)1/3デューティ時

য		
COM1	COM2	COM3
D1	D2	D3
D4	D5	D6
D7	D8	D9
D10	D11	D12
D13	D14	D15
D16	D17	D18
D19	D20	D21
D22	D23	D24
D25	D26	D27
D28	D29	D30
D31	D32	D33
D34	D35	D36
D37	D38	D39
D40	D41	D42
D43	D44	D45
D46	D47	D48
D49	D50	D51
D52	D53	D54
D55	D56	D57
D58	D59	D60
D61	D62	D63
	D1 D4 D7 D10 D13 D16 D19 D22 D25 D28 D31 D34 D37 D40 D43 D46 D49 D52 D55 D58	COM1 COM2 D1 D2 D4 D5 D7 D8 D10 D11 D13 D14 D16 D17 D19 D20 D22 D23 D25 D26 D28 D29 D31 D32 D34 D35 D37 D38 D40 D41 D43 D44 D46 D47 D49 D50 D52 D53 D55 D56 D58 D59

出力端子	COM1	COM2	COM3
\$22	D64	D65	D66
\$23	D67	D68	D69
\$24	D70	D71	D72
\$25	D73	D74	D75
S26	D76	D77	D78
\$27	D79	D80	D81
\$28	D82	D83	D84
S29	D85	D86	D87
\$30	D88	D89	D90
S31	D91	D92	D93
\$32	D94	D95	D96
\$33	D97	D98	D99
S34	D100	D101	D102
\$35	D103	D104	D105
S36	D106	D107	D108
\$37	D109	D110	D111
\$38	D112	D113	D114
COM4/S39	D115	D116	D117
KS1/S40	D118	D119	D120
KS2/S41	D121	D122	D123
KS3/S42	D124	D125	D126

注)出力端子S1/P1~S4/P4,COM4/S39,KS1/S40~KS3/S42はセグメント出力が選択されている場合である。

例えば、出力端子S11の場合、以下の様になる。

表示データ		7	山力地フ(044)の北部
D31	D32	D33	出力端子(S11)の状態
0	0	0	COM1,2,3に対するLCDセグメントが消灯
0	0	1	COM3に対するLCDセグメントが点灯
0	1	0	COM2に対するLCDセグメントが点灯
0	1	1	COM2,3に対するLCDセグメントが点灯
1	0	0	COM1に対するLCDセグメントが点灯
1	0	1	COM1,3に対するLCDセグメントが点灯
1	1	0	COM1,2に対するLCDセグメントが点灯
1	1	1	COM1,2,3に対するLCDセグメントが点灯

(2)1/4デューティ時

(2)1/4アユーテイ時					
出力端子	COM1	COM2	COM3	COM4	
S1/P1	D1	D2	D3	D4	
S2/P2	D5	D6	D7	D8	
S3/P3	D9	D10	D11	D12	
S4/P4	D13	D14	D15	D16	
S5	D17	D18	D19	D20	
S6	D21	D22	D23	D24	
S7	D25	D26	D27	D28	
S8	D29	D30	D31	D32	
S9	D33	D34	D35	D36	
S10	D37	D38	D39	D40	
S11	D41	D42	D43	D44	
S12	D45	D46	D47	D48	
S13	D49	D50	D51	D52	
S14	D53	D54	D55	D56	
S15	D57	D58	D59	D60	
S16	D61	D62	D63	D64	
S17	D65	D66	D67	D68	
S18	D69	D70	D71	D72	
S19	D73	D74	D75	D76	
S20	D77	D78	D79	D80	
S21	D81	D82	D83	D84	

出力端子	COM1	COM2	COM3	COM4
S22	D85	D86	D87	D88
S23	D89	D90	D91	D92
S24	D93	D94	D95	D96
S25	D97	D98	D99	D100
S26	D101	D102	D103	D104
S27	D105	D106	D107	D108
S28	D109	D110	D111	D112
S29	S29 D113		D115	D116
S30	S30 D117		D119	D120
S31	D121	D122	D123	D124
S32	D125	D126	D127	D128
S33	D129	D130	D131	D132
S34	D133	D134	D135	D136
S35	D137	D138	D139	D140
S36	D141	D142	D143	D144
S37	D145	D146	D147	D148
\$38	D149	D150	D151	D152
KS1/S40	D153	D154	D155	D156
KS2/S41	D157	D158	D159	D160
KS3/S42	D161	D162	D163	D164

注)出力端子S1/P1~S4/P4,KS1/S40~KS3/S42はセグメント出力が選択されている場合である。

例えば、出力端子S11の場合、以下の様になる。

表示データ			山 九	
D41	D42	D43	D44	出力端子(S11)の状態
0	0	0	0	COM1,2,3,4に対するLCDセグメントが消灯
0	0	0	1	COM4に対するLCDセグメントが点灯
0	0	1	0	COM3に対するLCDセグメントが点灯
0	0	1	1	COM3,4に対するLCDセグメントが点灯
0	1	0	0	COM2に対するLCDセグメントが点灯
0	1	0	1	COM2,4に対するLCDセグメントが点灯
0	1	1	0	COM2,3に対するLCDセグメントが点灯
0	1	1	1	COM2,3,4に対するLCDセグメントが点灯
1	0	0	0	COM1に対するLCDセグメントが点灯
1	0	0	1	COM1,4に対するLCDセグメントが点灯
1	0	1	0	COM1,3に対するLCDセグメントが点灯
1	0	1	1	COM1,3,4に対するLCDセグメントが点灯
1	1	0	0	COM1,2に対するLCDセグメントが点灯
1	1	0	1	COM1,2,4に対するLCDセグメントが点灯
1	1	1	0	COM1,2,3に対するLCDセグメントが点灯
1	1	1	1	COM1,2,3,4に対するLCDセグメントが点灯

- CCBアドレス · · · 「43H」
- ・KD1 ~ KD30 · · · · · Keyデータ
- ・SA · · · · · · スリープアクノレッジデータ

注) $\underline{D0= \lceil H \rfloor}$ で $\underline{Key \tilde{r} - 9 \sigma$ 読み取りを行った場合、 $\underline{Key \tilde{r} - 9 (KD1 \sim KD30)}$ および $\underline{A \cup - \mathcal{I} P \cap \mathcal{I} \cup \mathcal{I}$

出力データの説明

(1) KD1 ~ KD30 · · · Keyデータ

出力端子KS1~KS6と入力端子KI1~KI5により、最大30KeyのKeyマトリクスを構成した時のKeyの出力データで、Keyが押された時、そのKeyに対応するKeyデータが「1」となる。また、その対応関係を示すと以下の様になる。

		•			
	KI1	KI2	KI3	KI4	KI5
KS1/S40	KD1	KD2	KD3	KD4	KD5
KS2/S41	KD6	KD7	KD8	KD9	KD10
KS3/S42	KD11	KD12	KD13	KD14	KD15
KS4	KD16	KD17	KD18	KD19	KD20
KS5	KD21	KD22	KD23	KD24	KD25
KS6	KD26	KD27	KD28	KD29	KD30

コントロールデータKO,K1により、出力端子KS1/S40,KS2/S41がセグメント出力として選択され、出力端子KS3/S42,KS4~KS6と入力端子KI1~KI5により、最大20KeyのKeyマトリクスを構成した場合、KD1~KD10は全て「0」となる。

(2)SA ····· スリープアクノレッジデータ

この出力データは、Keyを押した時の状態が設定される。また、この場合DO=「L」となるが、この期間中にシリアルデータが入力され、モードの設定(ノーマル/スリープ)が行われた場合には、そのモードが設定される。スリープモードの時 SA=[1]、ノーマルモードの時 SA=[0]となる。

スリープモードの説明

スリープモードは、コントロールデータSP=「1」により設定される。スリープモードが設定されると、セグメント出力=「L」、コモン出力=「L」となり、また、OSC端子はCR発振動作モード(OC=「0」)時、発振を停止(Keyスキャン実行中は発振)し、外部クロック動作モード(OC=「1」)時、外部クロックの受信を停止(Keyスキャン実行中は外部クロック受信)する。従って、消費電流が軽減される。ただし、出力端子S1/P1~S4/P4は、コントロールデータP0~P2により、スリープモード時でも汎用出力ポートとして使用することができる。また、スリープモードの解除は、コントロールデータSP=「0」により行われる。

Keyスキャン動作の説明

(1)Keyスキャンタイミング

Keyスキャン周期は288T[s]であり、確実なKeyのON/OFFを判定するために2回のKeyスキャンを実行し、Keyデータの一致を検出している。Keyデータが一致した場合には、Keyが押されたと判断し、Keyスキャン実行開始から615T[s]後にKeyデータ読み取り要求(D0=「L」)が出力される。また、Keyデータが一致せず、その時点でKeyが押されていた場合には再びKeyスキャンを実行する。したがって、E15T[s]より短いKeyのON/OFFは検出できないので注意すること。

*3コントロールデータKCO~KC2により「H」,「L」の状態が設定され、「L」に設定されている 端子からKevスキャン出力信号は出力されない。

(2) ノーマルモード, Keyスキャン動作可能時

KS1~KS6の端子は、コントロールデータKC0~KC2により「H」,「L」に設定されている。 (コントロールデータの説明を参照のこと)

KS1~KS6の端子が「H」の状態であるラインのいずれかのKeyが押されるとKeyスキャンを開始し、すべてのKeyが離れるまでKeyスキャンを行う。また、多重押しは、Keyデータが複数セットされているかどうかで判断する。

615T[s] $\left(T = \frac{1}{fosc} = \frac{1}{fCK}\right)$ 以上Keyが押されると、コントローラにKeyデータの読み取り要求

(DO=「L」)が出力され、コントローラはこれをアクノレッジしKeyデータを読み取る。ただし、シリアルデータ転送時のCE=「H」の時はDO=「H」となる。

コントローラのKeyデータ読み取り終了後、Keyデータ読み取り要求は解除され(D0=「H」)、新たなKeyスキャンを行う。また、D0はオープンドレイン出力なのでプルアップ抵抗($1k\Omega \sim 10k\Omega$)が必要である。

(3)スリープモード, Keyスキャン動作可能時

KS1~KS6の端子は、コントロールデータKC0~KC2により「H」,「L」に設定されている。 (コントロールデータの説明を参照のこと)

KS1~KS6の端子が「H」の状態であるラインのいずれかのKeyが押されると、CR発振動作モード時はOSC端子の発振を開始し(外部クロック動作モード時は外部クロックの受信を開始し)、Key スキャンを行い、すべてのKeyが離れるまでKeyスキャンを行う。また、多重押しは、Key データが複数セットされているかどうかで判断する。

615T[s]
$$\left(T = \frac{1}{fosc} = \frac{1}{fCK}\right)$$
以上Keyが押されると、コントローラにKeyデータの読み取り要求

(DO=「L」)が出力され、コントローラはこれをアクノレッジしKeyデータを読み取る。ただし、シリアルデータ転送時のCE=「H」の時はDO=「H」となる。

コントローラのKeyデータ読み取り終了後、Keyデータ読み取り要求は解除され(DO= Γ H」)、新たなKeyスキャンを行う。ただし、スリープモードの解除は行われない。また、DOはオープンドレイン出力なのでプルアップ抵抗(1k Ω ~ 10k Ω)が必要である。

スリープモード時Kevスキャン例

例)KC0=「1」,KC1=「0」,KC2=「1」の時(KS6のみ「H」でスリープ)

これらのKeyのNずれかが押されると、 CR発振動作モード時はOSC端子の発振を開始し (外部クロック動作モード時は外部クロックの 受信を開始し)、Keyスキャンを行う。

*4このダイオードは、上記の例の様にKS6だけが「H」でスリープモードの状態にある時、 KS6のラインに沿ったKeyの2重押し以上を確実に認識する場合に必要である。 すなわち、KS1~KS5のラインに沿ったKeyが同時に押された時、KS6のKeyスキャン出力信号 のまわりこみによる誤認識を防ぐためである。

(4) ノーマル/スリープモード、Keyスキャン動作禁止時

KS1~KS6の端子は、コントロールデータKC0~KC2により「H」,「L」に設定されている。 いずれのKeyが押されても、Keyスキャンは実行しない。

Keyスキャン動作中に、Keyスキャン動作禁止(コントロールデータKSC=「1」)が設定されるとKey スキャン動作が停止する。

コントローラにKeyデータ読み取り要求(DO=「L」)が出力されている時に、Keyスキャン動作禁止 (コントロールデータKSC=「1」)が設定されると、Keyデータが全て「L」にリセットされ、Key データ読み取り要求も解除される(DO=「H」)。ただし、DOはオープンドレイン出力なので プルアップ抵抗($1k\Omega \sim 10k\Omega$)が必要である。

Keyスキャン動作禁止の解除は、コントロールデータKSC=「0」により行われる。

Keyの多重押し

LC75857E,75857WはKeyの2重押し、および入力端子KI1~KI5のラインに沿ったKeyの3重押し、および出力端子KS1~KS6のラインに沿ったKeyの多重押しについてはダイオードを入れなくてもKeyスキャンが可能であるが、これらの場合以外のKeyの多重押しについては、本来押されていないKeyが押されているものと認識される可能性があるので、各Keyに直列にダイオードを入れること。また、3重押し以上を認めない場合は、読み出したKeyデータに3個以上「1」があった時、ソフト上でそのデータを無視するなどの方法をとること。

1/3デューティ・1/2バイアス点灯方式

1/4デューティ・1/2バイアス点灯方式

fo[Hz] VLCD V_{LCD}1,V_{LCD}2 COM1 0V VLCD V_{LCD}1,V_{LCD}2 COM₂ 0V V_{LCD} COM3 V_{LCD}1,V_{LCD}2 **VLCD** V_{LCD}1,V_{LCD}2 COM4 — 0V VLCD COM1,2,3,4に対するLCDセグメントが — V_{LCD}1,V_{LCD}2 すべて消灯する場合のLCDドライバ出力 — 0V VLCD COM1に対するLCDセグメントのみが — V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 — 0V/ VLCD COM2に対するLCDセグメントのみが V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 — 0V V_{LCD} COM1.2に対するLCDセグメントが — V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 **VLCD** COM3に対するLCDセグメントのみが V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 V_{LCD} COM1,3に対するLCDセグメントが — V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 0V - V_{LCD} COM2,3に対するLCDセグメントが — V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 — ov V_{LCD} COM1,2,3に対するLCDセグメントが V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 — 0V COM4に対するLCDセグメントのみが VLCD — V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 VLCD COM2.4に対するLCDセグメントが V_{LCD}1,V_{LCD}2 点灯する場合のLCDドライバ出力 0V VLCD COM1,2,3,4に対するLCDセグメントが — V_{LCD}1,V_{LCD}2 すべて点灯する場合のLCDドライバ出力 — 0V 注)コントロールデータ FCO=「O」,FC1=「O」,FC2=「O」の時 fo= fosc = fCK 700 = fCK 7 768 768 コントロールデータ FCO=「0」,FC1=「0」,FC2=「1」の時 fo= fosc 576 fCK 576 fCK fosc コントロールデータ FCO=「0」,FC1=「1」,FC2=「0」の時 fo= 384 fCK fosc コントロールデータ FCO=「0」,FC1=「1」,FC2=「1」の時 fo=

コントロールデータ FCO=「1」,FC1=「0」,FC2=「0」の時 fo= fosc 102

288

fCK

192

電圧検出型リセット回路(VDET)について

電源投入時および減電時、つまりロジック部電源電圧VDDがパワーダウン検出電圧VDET(2.2Vtyp)以下では、出力信号を発生しシステムにリセットがかかる。また、この動作を確実にするために、電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること([図5],[図6]参照)。

電源シーケンスについて

電源ON/OFF時は、次のシーケンスを守ること([図5],[図6]を参照)。

- ・電源ON時 ロジック部電源(VDD)ON LCDドライバ部電源(VICD)ON
- ・電源OFF時 LCDドライバ部電源(V_{I CD})OFF ロジック部電源(V_{DD})OFF

ただし、ロジック部電源(V_{DD})とLCDドライバ部電源(V_{LCD})を共通電源にする場合は、両電源を同時にON,0FFすることができる。

システムのリセットについて

LC75857E,75857Wは、下記の様な方法でシステムのリセットを行っており、システムにリセットがかかると表示が消灯し、Keyスキャン動作が禁止され、Keyデータが全て「L」にリセットされる。また、リセットが解除されると、表示の点灯およびKeyスキャン動作が可能となる。

(1)リセット方法

電源投入時、ロジック部電源電圧VDDの立ち上がり時間を1[ms]以上確保し、ロジック部電源を立ち上げるとVDETの出力信号によりシステムにリセットがかかる。減電時においては、

ロジック部電源電圧 V_{DD} の立ち下がり時間を1[ms]以上確保し、ロジック部電源を立ち下げると、同様にVDETの出力信号によりシステムにリセットがかかる。また、リセットはすべてのシリアルデータ(1/3デューティ時:表示データD1~D164+コントロールデータ)の転送が完了した時点、すなわち、すべてのディレクションデータが転送され、最後のディレクションデータ転送時の([図5],[図6]参照)。

1/3デューティ時

注)・t1 1[ms](ロジック部電源電圧VDDの立ち上がり時間)

- •t2 0
- •t3 0
- ・t4 1[ms](ロジック部電源電圧VDDの立ち下がり時間)

[図5]

注)・t1 1[ms](ロジック部電源電圧VDDの立ち上がり時間)

- •t2 0
- •t3 0
- ・t4 1[ms](ロジック部電源電圧VDDの立ち下がり時間)

[図6]

(2)リセット期間中の各ブロックの状態

CLOCK GENERATOR

リセットがかかり、OSC端子の発振が停止する。また、外部クロックの受信も停止する。COMMON DRIVER、SEGMENT DRIVER & LATCH

リセットがかかり、表示を消灯する。ただし、LATCHに表示データを入力することは可能である。 KEY SCAN

リセットがかかり、内部を初期状態にすると共にKeyスキャン動作を禁止する。 KEY BUFFER

リセットがかかり、Keyデータをすべて「L」にする。

CCB INTERFACE, CONTROL REGISTER, SHIFT REGISTER

シリアルデータの転送を可能にするため、リセットはかけていない。

(3)リセット期間中の各端子の状態

端子	リセット時の状態			
S1/P1 ~ S4/P4	L *5			
S5 ~ S38	L			
COM1 ~ COM3	L			
COM4/S39	L *6			
KS1/S40 ~ KS3/S42	L *5			
KS4 ~ KS6	L *7			
OSC	Z *8			
DO	H *9			

- *5 この出力端子は、強制的にセグメント出力を選択し、「L」に固定される。
- *6 この出力端子は、強制的にコモン出力を選択し、「L」に固定される。ただし、 コントロールデータDTが転送されると、コモン出力、セグメント出力のいずれかに選択される。
- *7 この出力端子は、強制的に「L」に固定される。
- *8 この入出力端子は、強制的にハイインピーダンスとなる。
- *9 この出力端子はオープンドレイン出力なのでプルアップ抵抗 $(1k\Omega \sim 10k\Omega)$ が必要であり、リセット期間中にKeyデータの読み取りをしても[H]固定である。

OSC端子の周辺回路について

(1)CR発振動作モード(コントロールデータOC=「0」)

CR発振動作モードを選択した場合は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続すること。

(2)外部クロック動作モード(コントロールデータOC=「1」)

外部クロック動作モードを選択した場合は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗 $Rg(4.7 \sim 47k\Omega)$ を接続すること。また、このときの抵抗値は外部クロック出力端子の許容電流値により決定し、さらに、外部クロック波形が大きくくずれないことも確認すること。

注)外部クロック出力端子の許容電流値 > $\frac{VDD}{Rg}$

1/3デューティ・1/2バイアス(通常パネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

1/3デューティ・1/2バイアス(大きいパネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

1/3デューティ・1/3バイアス(通常パネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

1/3デューティ・1/3バイアス(大きいパネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

1/4デューティ・1/2バイアス(通常パネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

1/4デューティ・1/2バイアス(大きいパネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック 動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

1/4デューティ・1/3バイアス(大きいパネル用)

- *10 LC75857E,75857Wは電圧検出型リセット回路(VDET)によるシステムのリセットを行っているため、ロジック部電源ラインにコンデンサを付加し、電源投入時のロジック部電源電圧VDDの立ち上がり時間、減電時のロジック部電源電圧VDDの立ち下がり時間を1[ms]以上確保すること。
- *11 CR発振動作モード時は、OSC端子とGND間に外付抵抗Rosc,外付容量Coscを接続し、外部クロック動作モード時は、OSC端子と外部クロック出力端子(外部発振器)との間に電流保護抵抗Rg (4.7~47kΩ)を接続すること(OSC端子の周辺回路についてを参照)。
- *12 DOは、オープンドレイン出力なのでプルアップ抵抗が必要である。また、このときの抵抗値は外部の配線容量により適当に $(1k\Omega \sim 10k\Omega)$ 選んで、波形がくずれない様にすること。

コントローラによる表示データ転送時の注意点

LC75857E,75857Wは、1/3デューティ時、表示データ(D1~D126)を3回に分けて転送し、1/4デューティ時、表示データ(D1~D164)を4回に分けて転送しているので、表示の品位上30[ms]以内に全ての表示データを転送することを推奨する。

コントローラによるKeyデータの読み取り方法とその注意点

(1)コントローラがタイマ処理で、Keyデータ読み取りを行う場合フローチャート

タイミングチャート

t5· 2回のKeyスキャンのKeyデータが一致した場合のKeyスキャン実行時間(615T[s])

t6 · 2回のKeyスキャンのKeyデータが一致せず再びKeyスキャンを実行した場合の Keyスキャン実行時間(1230T[s])

t7·· Keyアドレス(43H)転送時間

t8· Keyデータ読み取り時間

$$T = \frac{1}{fosc} = \frac{1}{fCK}$$

解説

コントローラがタイマ処理で、KeyのON/OFFの判別およびKeyデータの読み取りを行う場合は、t9時間ごとに必ず $CE=\lceil L\rfloor$ の状態でDOの状態を確認し、 $DO=\lceil L\rfloor$ ならばKeyがONされたと判断して Keyデータの読み取りを行うこと。

このときのt9は必ず

t9 > t6 + t7 + t8

とすること。

もし、 $\underline{DO=[H]}$ で $\underline{KD30}$)およびスリープアクノレッジデータ(SA)は無効である。

(2)コントローラが割り込み処理で、Keyデータ読み取りを行う場合フローチャート

タイミングチャート

- t5· 2回のKeyスキャンのKeyデータが一致した場合のKeyスキャン実行時間(615T[s])
- t6 · 2回のKeyスキャンのKeyデータが一致せず再びKeyスキャンを実行した場合の Keyスキャン実行時間(1230T[s])
- t7· Keyアドレス(43H)転送時間
- t8· Keyデータ読み取り時間

$$T = \frac{1}{fosc} = \frac{1}{fCK}$$

解説

コントローラが割り込み処理で、 $Key O O N / O F F O 判別および Key データの読み取りを行う場合は、必ず、<math>C E = \lceil L \rfloor$ の時にDOの状態を確認し、 $D O = \lceil L \rfloor$ ならば Key データの読み取りを行うこと。また、その後の Key O O N / O F F O 判別は、t 10 時間後の $C E = \lceil L \rfloor$ の時の D O の 状態によって 判断して、E V F = V C をの読み取りを行うこと。

このときのt10は必ず

t10 > t6

とすること。

もし、 $\underline{DO=[H]}$ で $\underline{KD30}$)およびスリープアクノレッジデータ(SA)は無効である。

- 本書記載の製品は、定められた条件下において、記載部品単体の性能・特性・機能などを規定するものであり、お客様の製品(機器)での性能・特性・機能などを保証するものではありません。部品単体の評価では予測できない症状・事態を確認するためにも、お客様の製品で必要とされる評価・試験を必ず行って下さい。
- 弊社は、高品質・高信頼性の製品を供給することに努めております。しかし、半導体製品はある確率で故障が生じてしまいます。この故障が原因となり、人命にかかわる事故、発煙・発火事故、他の物品に損害を与えてしまう事故などを引き起こす可能性があります。機器設計時には、このような事故を起こさないような、保護回路・誤動作防止回路等の安全設計、冗長設計・機構設計等の安全対策を行って下さい。
- 本書記載の製品が、外国為替及び外国貿易法に定める規制貨物(役務を含む)に該当する場合、輸出する際に同法に基づく輸出許可が必要です。
- 弊社の承諾なしに、本書の一部または全部を、転載または複製することを禁止します。
- 本書に記載された内容は、製品改善および技術改良等により将来予告なしに変更することがあります。したがって、ご使用の際には、「納入仕様書」でご確認下さい。
- この資料の情報(掲載回路および回路定数を含む)は一例を示すもので、量産セットとしての設計を保証するものではありません。また、この資料は正確かつ信頼すべきものであると確信しておりますが、その使用にあたって第3者の工業所有権その他の権利の実施に対する保証を行うものではありません。