

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

EPM2036 – CONTROL THEORY (RE / TE)

2 MARCH 2019 2:30 p.m - 4:30 p.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 8 pages including cover page with 4 Questions only. Laplace Transform Table is included in Appendix.
- 2. Attempt **ALL** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

a) A system is described by the following differential equation.

$$y''(t) + 7y'(t) + 12y(t) = x'(t) + 2x(t)$$

x(t) and y(t) are the input and output respectively. Assuming zero initial conditions,

i. Find the transfer function Y(s)/X(s).

[3 marks]

ii. Identify the finite pole(s) and zero(s) for the transfer function.

[2 marks]

iii. Determine the output response y(t), given that the input x(t) is a unit step input.

[5 marks]

iv. Prove the final value theorem with the output.

[2 marks]

b) Using Mason's rule, find the transfer function C(s)/R(s) for the signal flow graph in Figure 1.

Figure 1

[13 marks]

a) The open loop transfer function of a second order system is given as

$$G(s) = \frac{16}{s(s+4)}$$

i. Prove that the step response of the system is underdamped.

[4 marks]

ii. Determine the oscillation frequency, ω

[3 marks]

iii. Determine the time t_{max} at which the maximum overshoot occurs.

[3 marks]

iv. Determine the overshoot.

[3 marks]

b) Given the characteristics equation as follows

$$s^4 + Ks^3 + 2s^2 + s + 1 = 0$$

Using Routh criterion, determine the range of K for stability.

[12 marks]

The following is an open loop transfer function of a unity feedback system.

$$KG(s) = \frac{K(s+2)}{s(s+3)(s+4)}$$

a) Determine all poles and zeros.

[3 marks]

b) Sketch the root loci of the system.

[12 marks]

c) If K = 1, draw the asymptotic magnitude bode plot for the function G(s) on the semi log graph.

[10 marks]

Continued

YBC

4/8

A unity feedback system shown in Figure 2 has a plant transfer function G(s). PI controller K(s) is designed to control the plant.

$$G(s) = \frac{1}{(s+3)(s+4)}$$

$$K(s) = k_P + \frac{k_I}{s}$$

Figure 2

a) If the steady-state error for a unit ramp input must be no more than 0.06, determine k_I .

[9 marks]

b) Find the range of k_P for the system to be stable.

[9 marks]

c) Using the critical values for k_I and k_P , determine the closed-loop transfer function.

[7 marks]

Appendix

Laplace Transform Pairs

f(t)	F(s)
Unit impulse $\delta(t)$	1
Unit step $u(t)$	$\frac{1}{s}$
t	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$
$\frac{t^{n-1}}{(n-1)!} \qquad (n = 1, 2, 3,)$	$\frac{1}{s^n}$
t'' (n = 1, 2, 3,)	$\frac{n!}{s^{n+1}}$
e ^{-ai}	$\frac{1}{s+a}$
te ^{-at}	$\frac{1}{(s+a)^2}$
$\frac{t^{n-1}}{(n-1)!}e^{-at} \ (n=1,2,3,\dots)$	$\frac{1}{(s+a)^n}$
$t^n e^{-at} \ (n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cos ωt	$\frac{s}{s^2 + \omega^2}$
sinh ωt	$\frac{\omega}{s^2 - \omega^2}$
cosh ωt	$\frac{\overline{s^2 - \omega^2}}{\frac{s}{s^2 - \omega^2}}$

f(t)	F(s)
$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
$\frac{1}{ab} \left[1 + \frac{1}{a-b} (be^{-at} - ae^{-bt}) \right]$	$\frac{1}{s(s+a)(s+b)}$
$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2t}$	$\frac{{\omega_n}^2}{s^2 + 2\zeta \omega_n s + {\omega_n}^2}$
$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2t}-\phi\right)$ $\phi = \tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$	$\frac{s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$

$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1 - \zeta^2 t} + \phi\right)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{{\omega_n}^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
$1-\cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
$\omega t - \sin \omega t$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
$\sin \omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
$\frac{1}{2\omega}t\sin\omega t$	$\frac{s}{(s^2+\omega^2)^2}$
$t\cos\omega t$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	$\frac{s^2}{(s^2+\omega^2)^2}$

End of Page