Topic: Data Analytics

Research question:

In online games, predict whether a player is active or not in the next week based on the player's previous behavior.

Aim 1: improve the model's accuracy.

Aim 2: analyse players' behaviors and give advice for keeping them.

Tutor: Tommy Liu

Group member:

Qingzheng Xu u6174243

Xuguang Song u6250082

This question is important because:

1. It can help game designers to make the game better, and they can know how to adjust strategy for different players. Business value.

2. Players' in-game behaviours are also meaningful in helping us analyse real-life behaviours. For example, in 2007, some researchers analyse real-world epidemics based on a virtual epidemic in World of Warcraft. Research value.

Raw data resource (timestamp):

Original data comes from World of Warcraft, officially recorded at one of the server between 2008-2010.

We use the open source version(License CCO: Public Domain) on Kaggle shared by Myles O'Neill (2019).

What the raw data set looks like:

	char	level	race	charclass	zone	guild		timestamp
0	59425	1	Orc	Rogue	Orgrimmar	165	01/01	/08 00:02:04
1	65494	9	Orc	Hunter	Durotar	-1	01/01	/08 00:02:04
2	65325	14	Orc	Warrior	Ghostlands	-1	01/01	/08 00:02:04
3	65490	18	Orc	Hunter	Ghostlands	-1	01/01	/08 00:02:04
500	0 248	15 70	Orc	Warlock	Shattrath City	104	01/01	/08 00:12:28
50	1 497	19 70	Orc	Warlock	Netherstorm	79	01/01	/08 00:12:28
502	2 2742	27 23	Tauren	Shaman	Undercity	160	01/01	/08 00:12:33
503	3 6085	59 44	Tauren	Shaman	Warsong Gulch	228	01/01	/08 00:12:33
100	0	87 70	Tauren	Shaman	Nagrand	19	01/01	08 00:23:23
100	1 300	78 70	Tauren	Shaman	The Steamvault	5	01/01	08 00:23:23
100	2 393	65 70	Tauren	Shaman	Netherstorm	35	01/01	08 00:23:23
100	3 601	79 70	Tauren	Shaman	Arathi Basin	53	01/01	08 00:23:23

Recording all current online players' information every **10** minutes.

State of art:

Our choice: define player groups and machine learning

player behavior analysis

	char	race	charclass	meanlevel	maxlevel	minlevel	levelup	guild	zone	soloplayer	w1_active	12_change	w2_active	23_change	w3_active	34_change	w4_active	leave
0	7	1.0	2.0	57.30	60	54	6	282	117	0	0	0	0	172	172	-113	59	0
1	9	1.0	2.0	70.00	70	70	0	79	80	0	216	-19	197	-71	126	51	177	0
2	19	1.0	1.0	69.93	70	69	1	-1	60	0	6	160	166	-19	147	36	183	0
3	21	1.0	2.0	70.00	70	70	0	205	18	0	75	-34	41	-12	29	6	35	0
4	22	1.0	3.0	62.00	62	62	0	5	121	0	0	0	0	15	15	-15	0	1

Attributes:

char, race, charclass, meanlevel, maxlevel, minlevel, levelup

Leave (0 or 1)

Target attribute:

guild, zone, soloplayer

wi_active, ij_change: such as w1_active, 12_change

Train classification model and Overall accuracy:

Accuracy: model.score(x_test, y_test)

The ability of the model to correctly predict the target attribute – leave.

83.68% for the best Random Forest model

73.40% for the best K-Nearest Neighbors model

The best n is 1 and score is 0.7339782345828295 .

The best max_depth is 9 and score is 0.8367593712212817 .

Method for choosing the number of clusters:

Elbow method and silhouette coefficient

Approach 2: Manually divide

Definition: active rate =

$$\sum_{i=1}^{3} week_{i}_active_time + week1_to_2_change_time + week2_to_3_change_time + max_level + level_up$$

100

Distribution:

max active rate: 27.96 min active rate: 0.01

mean active rate: 1.44301523947753°

Division:

Casual player: active rate < 0.1

Average player: 0.1 < active rate < 1.6

Loyal Player: active rate > 1.6

General model accuracy (using the whole dataset):

83.68% for the best Random Forest model. 73.40% for the best K-Nearest Neighbors model.

K-means clustering

outcome and overall accuracy of separate data sets:

	group1	group2	overall	
RF	95.89%	81.74%	83.61%	
classifier	(+22.49%)	(-1.93%)	(-0.07%)	
KNN	95.9%	71.7%	74.9%	
classifier	(+22.5%)	(-1.69%)	(+1.5%)	

	casual	average	loyal	overall
RF classifier	90.25% (+6.58%)	77.90% (-5.8%)	95.71% (+12.03%)	84.53% (+0.85%)
KNN classifier	78.3% (+4.9%)	69.18% (-4.22%)	95.71% (+22.31%)	77.28% (+3.88%)

Conclusion:

- 1. Dividing the whole data into small groups containing different players can improve accuracy.
- 2. Different kinds of players have quite different behaviors, so the company should treat them differently and try to turn casual or average players into loyal players.

More analytics and Recommendations:

56.86%

23.93% Loyal players: to find challenges

More instances; high rewards; guild experience.

19.21% Casual players: to have a try at the game

advertisements; game tutorials; beginner protection.

Average players: to have fun and to pass time

more game contents; ask for feedback.

Future work:

1. Improve the prediction accuracy on average players

- * combine the casual and loyal player's data to predict
- * further dividing the players in average players

2. Treat the attribute 'guild' in a better way

* use a historic guild list for recording guild changes

such as [(-1, 5), (225, 10), (-1, 2), (126, 50)]

Tips: '-1' means no guild; each timestamp is 10 minutes.

Eric & Nina (2007) The untapped potential of virtual game worlds to shed light on real world epidemics Retrieved from: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(07)70212-8/fulltext?code=lancet-site&version=printerFriendly