

Generalized Measures of Fault Tolerance in (n, k) -star Graphs*

Xiang-Jun Li Jun-Ming Xu[†]

^aSchool of Mathematical Sciences, University of Science and Technology of China,
Wentsun Wu Key Laboratory of CAS, Hefei, 230026, China

Abstract

This paper considers a kind of generalized measure $\kappa_s^{(h)}$ of fault tolerance in the (n, k) -star graph $S_{n,k}$ and determines $\kappa_s^{(h)}(S_{n,k}) = n + h(k-2) - 1$ for $2 \leq k \leq n-1$ and $0 \leq h \leq n-k$, which implies that at least $n + h(k-2) - 1$ vertices of $S_{n,k}$ have to remove to get a disconnected graph that contains no vertices of degree less than h . This result contains some known results such as Yang et al. [Information Processing Letters, 110 (2010), 1007-1011].

Keywords: Combinatorics, fault-tolerant analysis, (n, k) -star graphs, connectivity, h -super connectivity

1 Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph $G = (V, E)$, where V is the set of processors and E is the set of communication links in the network. The connectivity $\kappa(G)$ of a graph G is an important measurement for fault-tolerance of the network, and the larger $\kappa(G)$ is, the more reliable the network is.

A subset of vertices S of a connected graph G is called a *vertex-cut* if $G - S$ is disconnected. The *connectivity* $\kappa(G)$ of G is defined as the minimum cardinality over all vertex-cuts of G . Because κ has many shortcomings, one proposes the concept of the h -super connectivity of G , which can measure fault tolerance of an interconnection network more accurately than the classical connectivity κ .

A subset of vertices S of a connected graph G is called an *h -super vertex-cut*, or *h -cut* for short, if $G - S$ is disconnected and has the minimum degree at least h . The *h -super connectivity* of G , denoted by $\kappa_s^{(h)}(G)$, is defined as the minimum cardinality over all h -cuts of G . It is clear that, if $\kappa_s^{(h)}(G)$ exists, then

$$\kappa(G) = \kappa_s^{(0)}(G) \leq \kappa_s^{(1)}(G) \leq \kappa_s^{(2)}(G) \leq \cdots \leq \kappa_s^{(h-1)}(G) \leq \kappa_s^{(h)}(G).$$

*The work was supported by NNSF of China (No.11071233).

[†]Corresponding author: xujm@ustc.edu.cn (J.-M. Xu)

For any graph G and integer h , determining $\kappa_s^{(h)}(G)$ is quite difficult. In fact, the existence of $\kappa_s^{(h)}(G)$ is an open problem so far when $h \geq 1$. Only a little knowledge of results have been known on $\kappa_s^{(h)}$ for particular classes of graphs and small h 's.

This paper is concerned about $\kappa_s^{(h)}$ for the (n, k) -star graph $S_{n,k}$. For $k = n - 1$, $S_{n,n-1}$ is isomorphic to a star graph S_n , Cheng and Lipman [3], Hu and Yang [5], Nie *et al.* [6] and Rouskov *et al.* [7], independently, determined $\kappa_s^{(1)}(S_n) = 2n - 4$ for $n \geq 3$. Very recently, Yang *et al.* [9] have showed that if $2 \leq k \leq n - 2$ then $\kappa_s^{(1)}(S_{n,k}) = n + k - 3$ for $n \geq 3$ and $\kappa_s^{(2)}(S_{n,k}) = n + 2k - 5$ for $n \geq 4$.

We, in this paper, will generalize these results by proving that $\kappa_s^{(h)}(S_{n,k}) = n + h(k - 2) - 1$ for $2 \leq k \leq n - 1$ and $0 \leq h \leq n - k$.

The proof of this result is in Section 3. In Section 2, we recall the structure of $S_{n,k}$ and some lemmas used in our proofs.

2 Definitions and lemmas

For given integer n and k with $1 \leq k \leq n - 1$, let $I_n = \{1, 2, \dots, n\}$ and $P(n, k) = \{p_1 p_2 \dots p_k : p_i \in I_n, p_i \neq p_j, 1 \leq i \neq j \leq k\}$, the set of k -permutations on I_n . Clearly, $|P(n, k)| = n!/(n - k)!$.

Definition 2.1 *The (n, k) -star graph $S_{n,k}$ is a graph with vertex-set $P(n, k)$. The adjacency is defined as follows: a vertex $p = p_1 p_2 \dots p_i \dots p_k$ is adjacent to a vertex*

- (a) $p_i p_2 \dots p_{i-1} p_1 p_{i+1} \dots p_k$, where $2 \leq i \leq k$ (swap p_1 with p_i).
- (b) $\alpha p_2 p_3 \dots p_k$, where $\alpha \in I_n \setminus \{p_i : 1 \leq i \leq k\}$ (replace p_1 by α).

The vertices of type (a) are referred to as *swap-neighbors* of p and the edges between them are referred to as *swap-edge* or *i-edges*. The vertices of type (b) are referred to as *unswap-neighbors* of p and the edges between them are referred to as *unswap-edges*. Clearly, every vertex in $S_{n,k}$ has $k - 1$ swap-neighbors and $n - k$ unswap-neighbors. Usually, if $x = p_1 p_2 \dots p_k$ is a vertex in $S_{n,k}$, we call p_i the *i-th bit* for each $i \in I_k$.

The (n, k) -star graph $S_{n,k}$ is proposed by Chiang and Chen [4] who showed that $S_{n,k}$ is $(n - 1)$ -regular $(n - 1)$ -connected.

Lemma 2.2 *For any $\alpha = p_1 p_2 \dots p_{k-1} \in P(n, k - 1)$ ($k \geq 2$), let $V_\alpha = \{p\alpha : p \in I_n \setminus \{p_i : i \in I_{k-1}\}\}$. Then the subgraph of $S_{n,k}$ induced by V_α is a complete graph of order $n - k + 1$, denoted by K_{n-k+1}^α .*

Proof. For any two vertices $p\alpha$ and $q\alpha$ in V_α with $p \neq q$, by the condition (b) of Definition 2.1, $p\alpha$ and $q\alpha$ are linked in $S_{n,k}$ by an unswap-edge. Thus, the subgraph of $S_{n,k}$ induced by V_α is a complete graph K_{n-k+1} . ■

By Lemma 2.2, the vertex-set $P(n, k)$ of $S_{n,k}$ can be decomposed into $|P(n, k - 1)|$ subsets, each of which induces a complete graph K_{n-k+1} . It is clear that, for any two distinct elements x and y in $P(n, k)$, if they are in different complete subgraphs K_{n-k+1}^α and K_{n-k+1}^β ($\alpha \neq \beta$), then there is at most one edge between x and y in $S_{n,k}$, which is a swap-edge if and only if α and β differ in only one bit. Thus, we have the following conclusion.

Lemma 2.3 *The vertex-set of $S_{n,k}$ can be partitioned into $|P(n, k - 1)|$ subsets, each of which induces a complete graph of order $n - k + 1$. Furthermore, there is at most one swap edge between any two complete graphs.*

Let $S_{n-1,k-1}^{t:i}$ denote a subgraph of $S_{n,k}$ induced by all vertices with the t -th bit i for $2 \leq t \leq k$. The following lemma is a slight modification of the result of Chiang and Chen [4].

Lemma 2.4 *For a fixed integer t with $2 \leq t \leq k$, $S_{n,k}$ can be decomposed into n subgraphs $S_{n-1,k-1}^{t:i}$, which is isomorphic to $S_{n-1,k-1}$, for each $i \in I_n$. Moreover, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1,k-1}^{t:i}$ and $S_{n-1,k-1}^{t:j}$ for any $i, j \in I_n$ with $i \neq j$.*

Lemma 2.5 (Chen *et al.* [2]) *In an $S_{n,k}$, a cycle has a length at least 6 if it contains a swap-edge.*

3 Main results

In this section, we present our main results, that is, we determine the h -super connectivity of the (n, k) -star graph $S_{n,k}$. Since $S_{n,1} \cong K_n$, we only consider the case of $k \geq 2$ in the following discussion.

Lemma 3.1 $\kappa_s^{(h)}(S_{n,k}) \leq n + h(k - 2) - 1$ for $2 \leq k \leq n - 1$ and $0 \leq h \leq n - k$.

Proof. By our hypothesis of $h \leq n - k$, for any $\alpha \in P(n, k - 1)$, we can choose a subset $X \subseteq V(K_{n-k+1}^\alpha)$ such that $|X| = h + 1$. Then the subgraph of K_{n-k+1}^α induced by X is a complete graph K_{h+1} . Let S be the neighbor-set of X in $S_{n,k} - X$. Clearly, $V(K_{n-k+1}^\alpha - X) \subseteq S$, that is, X has exactly $n - k + 1 - |X|$ unswap-neighbors in $V(K_{n-k+1}^\alpha - X) \cap S$. Since $S_{n,k}$ is $(n - 1)$ -regular, every vertex of X has exactly $(k - 1)$ swap-neighbors are not in K_{n-k+1}^α . Moreover, any two swap-neighbors of X are different from each other by Lemma 2.3. It follows that

$$|S| = n - k + 1 - |X| + |X|(k - 1) = n + h(k - 2) - 1. \quad (3.1)$$

We now need to show that S is an h -cut of $S_{n,k}$. Clearly, S is a vertex-cut of $S_{n,k}$ since $S_{n,k}$ is not a complete graph for $k \geq 2$. We only need to show that every vertex of $S_{n,k} - (X \cup S)$ has degree at least h . Let u be a vertex in $S_{n,k} - (X \cup S)$. If u has a neighbor v in $S \cap V(K_{n-k+1}^\alpha)$, then u is a swap-neighbor of v since all the unswap-neighbors of v are in $V(K_{n-k+1}^\alpha)$. If u has a neighbor v in $S \setminus V(K_{n-k+1}^\alpha)$, then v has a swap-neighbor in $V(K_{n-k+1}^\alpha)$. Moreover, if u has two neighbor v, v' in S , then three vertices u, v and v' are concluded in a cycle of length at most 5 and containing at least one swap-edge, which contradicts with Lemma 2.5. Thus, u has at most one neighbor in S . In other words, u has at least $n - 2$ neighbor in $S_{n,k} - S$. Since $n - 2 \geq n - k \geq h$ for $k \geq 2$, u has degree at least h in $S_{n,k} - S$. By the arbitrariness of $u \in S_{n,k} - (X \cup S)$, S is an h -cut of $S_{n,k}$, and so

$$\kappa_s^{(h)}(S_{n,k}) \leq |S| = n + h(k - 2) - 1$$

as required. The lemma follows. ■

Corollary 3.2 $\kappa_s^{(h)}(S_{n,2}) = n - 1$ for $0 \leq h \leq n - 2$.

Proof. On the one hand, $\kappa_s^{(h)}(S_{n,2}) \leq n - 1$ by Lemma 3.1 when $k = 2$. On the other hand, $\kappa_s^{(h)}(S_{n,2}) \geq \kappa(S_{n,2}) = n - 1$. \blacksquare

To state and prove our main results, we need some notations. Let S be an h -cut of $S_{n,k}$ and X be the vertex-set of a connected component of $S_{n,k} - S$. For a fixed $t \in I_k \setminus \{1\}$ and any $i \in I_n$, let

$$\begin{aligned} Y &= V(S_{n,k} - S - X), \\ X_i &= X \cap V(S_{n-1,k-1}^{t:i}), \\ Y_i &= Y \cap V(S_{n-1,k-1}^{t:i}) \text{ and} \\ S_i &= S \cap V(S_{n-1,k-1}^{t:i}), \end{aligned} \tag{3.2}$$

and let

$$\begin{aligned} J &= \{i \in I_n : X_i \neq \emptyset\}, \\ J' &= \{i \in J : Y_i \neq \emptyset\} \text{ and} \\ T &= \{i \in I_n : Y_i \neq \emptyset\}. \end{aligned} \tag{3.3}$$

Lemma 3.3 *Let S be a minimum h -cut of $S_{n,k}$ and X be the vertex-set of a connected component of $S_{n,k} - S$. If $3 \leq k \leq n - 1$ and $1 \leq h \leq n - k$ then, for any $t \in I_k \setminus \{1\}$,*

- (a) S_i is an $(h-1)$ -cut of $S_{n-1,k-1}^{t:i}$ for any $i \in J'$,
- (b) $\kappa_s^{(h)}(S_{n,k}) \geq |J'| \kappa_s^{(h-1)}(S_{n-1,k-1})$,
- (c) $J \cup T = I_n$.

Proof. (a) By the definition of J' , S_i is a vertex-cut of $S_{n-1,k-1}^{t:i}$ for any $i \in J'$. For any vertex x in $S_{n-1,k-1}^{t:i} - S_i$, since x has degree at least h in $S_{n,k} - S$ and has exactly one neighbor outsider $S_{n-1,k-1}^{t:i}$, x has degree at least $h-1$ in $S_{n,k}^{t:i} - S_i$. This fact shows that S_i is an $(h-1)$ -cut of $S_{n-1,k-1}^{t:i}$ for any $i \in J'$.

(b) By the assertion (a), we have $|S_i| \geq \kappa_s^{(h-1)}(S_{n-1,k-1})$, and so

$$\kappa_s^{(h)}(S_{n,k}) = |S| \geq \sum_{i \in J'} |S_i| \geq |J'| \kappa_s^{(h-1)}(S_{n-1,k-1}).$$

(c) If $J \cup T \neq I_n$, that is, $I_n \setminus (J \cup T) \neq \emptyset$, then there exists an $i_0 \in I_n$ such that $V(S_{n-1,k-1}^{t:i_0}) = S_{i_0}$. Thus, we have

$$\begin{aligned} \kappa_s^{(h)}(S_{n,k}) &= |S| \geq |S_{i_0}| = \frac{(n-1)!}{(n-k)!} \\ &\geq (n-1)(n-2) \\ &= n + (n-1)(n-3) - 1 \\ &> n + (n-3)(n-3) - 1 \\ &\geq n + h(k-2) - 1, \end{aligned}$$

which contradicts to Lemma 3.1. Thus, $J \cup T = I_n$. The Lemma follows. \blacksquare

Theorem 3.4 $\kappa_s^{(h)}(S_{n,k}) = n + h(k-2) - 1$ for $2 \leq k \leq n - 1$ and $0 \leq h \leq n - k$.

Proof. By Lemma 3.1, we only need to prove that, for $2 \leq k \leq n-1$ and $0 \leq h \leq n-k$,

$$\kappa_s^{(h)}(S_{n,k}) \geq n + h(k-2) - 1. \quad (3.4)$$

We proceed by induction on $k \geq 2$ and $h \geq 0$. The inequality (3.4) is true for $k=2$ and any h with $0 \leq h \leq n-2$ by Corollary 3.2. The inequality (3.4) is also true for $h=0$ and any k with $2 \leq k \leq n-1$ since $\kappa_s^{(0)}(S_{n,k}) = \kappa(S_{n,k}) = n-1$. Assume the induction hypothesis for $k-1$ with $k \geq 3$ and for $h-1$ with $h \geq 1$, that is,

$$\kappa_s^{(h-1)}(S_{n-1,k-1}) \geq n + (h-1)(k-3) - 2. \quad (3.5)$$

Let S be a minimum h -cut of $S_{n,k}$ and X be the vertex-set of a minimum connected component of $S_{n,k} - S$. Use notations defined in (3.2) and (3.3). Choose $t \in I_k \setminus \{1\}$ such that $|J|$ is as large as possible. For each $i \in I_n$, we write $S_{n-1,k-1}^i$ for $S_{n-1,k-1}^{t:i}$ for short. We consider three cases depending on $|J'| = 0$, $|J'| = 1$ or $|J'| \geq 2$.

Case 1. $|J'| = 0$,

In this case, $X_i \neq \emptyset$ and $Y_i = \emptyset$ for each $i \in J$, that is, $J \cap T = \emptyset$. By Lemma 3.3 (c), $|J| \geq 2$ or $|T| \geq 2$ since $n \geq 4$. Clearly, $J \neq \emptyset$ and $T \neq \emptyset$. Without loss of generality, assume $|J| \geq 2$, $\{i_1, i_2\} \subseteq J$ and $i_3 \in T$. By Lemma 2.4, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1,k-1}^{i_1}$ (resp. $S_{n-1,k-1}^{i_2}$) and $S_{n-1,k-1}^{i_3}$, each edge of which has at least one end-vertex in S . Since $J \cap T = \emptyset$ and $S_{i_1} \cap S_{i_2} = \emptyset$, we have that

$$|S| \geq 2 \frac{(n-2)!}{(n-k)!}. \quad (3.6)$$

Noting that, for $k=3$,

$$2 \frac{(n-2)!}{(n-k)!} \geq 2(n-2) \geq n + (n-3) - 1 \geq n + h(k-2) - 1,$$

and, for $k \geq 4$,

$$2 \frac{(n-2)!}{(n-k)!} \geq 2(n-2)(n-3) \geq n + (n-3)(n-3) - 1 \geq n + h(k-2) - 1,$$

we have that

$$2 \frac{(n-2)!}{(n-k)!} \geq n + h(k-2) - 1 \text{ for } k \geq 3. \quad (3.7)$$

It follows from (3.6) and (3.7) that

$$\kappa_s^{(h)}(S_{n,k}) = |S| \geq 2 \frac{(n-2)!}{(n-k)!} \geq n + h(k-2) - 1.$$

Case 2. $|J'| = 1$,

Without loss of generality, assume $J' = \{1\}$. By Lemma 3.3 (a), S_1 is an $(h-1)$ -cut of $S_{n-1,k-1}^1$. Let $S' = S \setminus S_1$.

If $|S'| \geq n-2$ then, by (3.5), we have that

$$\begin{aligned} \kappa_s^{(h)}(S_{n,k}) &= |S| = |S_1| + |S'| \geq \kappa_s^{(h-1)}(S_{n-1,k-1}) + (n-2) \\ &\geq (n + (h-1)(k-3) - 2) + (n-2) \\ &\geq (n + (h-1)(k-3) - 2) + (h+k-2) \\ &= n + h(k-2) - 1 \end{aligned}$$

We now assume $|S'| \leq n - 3$. We claim $|J| = 1$. Suppose to the contrary $|J| \geq 2$.

If $|T| = 1$ then, by Lemma 3.3 (c), we have $|J| = n$. Then $|S_i| \geq 1$ for $i \in J$, otherwise there exists $i \in J \setminus J'$ such that $X_i = V(S_{n-1,k-1}^i)$, then $|X| > |X_i| = |V(S_{n-1,k-1}^i)| > |Y|$, which contradicts to the minimality of X . Therefore, $|S'| \geq n - 1$, a contradiction.

If $|T| \geq 2$, assume that $i_1 \in J \setminus J'$ and $i_2 \in T \setminus J'$, then $X_{i_1} \neq \emptyset, Y_{i_1} = \emptyset, X_{i_2} = \emptyset, Y_{i_2} \neq \emptyset$. By Lemma 2.4, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1,k-1}^{i_1}$ and $S_{n-1,k-1}^{i_2}$, each edge of which must have one end-vertex in S' . Thus, we have

$$|S'| \geq \frac{(n-2)!}{(n-k)!} \geq n - 2 \text{ for } k \geq 3,$$

a contradiction.

Thus, $|J| = 1$. We have $J = \{1\}$ since $\{1\} = J' \subseteq J$. Then $X_1 = X$ and $|X_1| \geq h + 1$. By the choice of t , the i -th ($i \neq 1$) bits of all vertices in X_1 are same, and so X_1 a complete graph. Thus, as computed in (3.1), we have that

$$\kappa_s^{(h)}(S_{n,k}) = |S| = n + (|X_1| - 1)(k - 2) - 1 \geq n + h(k - 2) - 1.$$

Case 3. $|J'| \geq 2$.

By Lemma 3.3 (b) and (3.5), we have that

$$\begin{aligned} \kappa_s^{(h)}(S_{n,k}) = |S| &\geq |J'| \kappa_s^{(h-1)}(S_{n-1,k-1}) \\ &\geq 2(n + (h - 1)(k - 3) - 2) \\ &\geq n + (h + k) + 2(h - 1)(k - 3) - 4 \\ &= n + h(k - 2) + (h - 1)(k - 3) - 1 \\ &\geq n + h(k - 2) - 1. \end{aligned}$$

By the induction principle, the theorem follows. ■

Corollary 3.5 (Yang et al. [9]) *If $2 \leq k \leq n - 2$ then $\kappa_s^{(1)}(S_{n,k}) = n + k - 3$ for $n \geq 3$ and $\kappa_s^{(2)}(S_{n,k}) = n + 2k - 5$ for $n \geq 4$.*

As we have known, when $k = n - 1$, $S_{n,n-1}$ is isomorphic to the star graph S_n . Akers and Krishnamurthy [1] determined $\kappa(S_n) = n - 1$ for $n \geq 2$; Cheng and Lipman [3], Hu and Yang [5], Nie et al. [6] and Rouskov et al. [7], independently, determined $\kappa_s^{(1)}(S_n) = 2n - 4$ for $n \geq 3$. All these results can be obtained from our result by setting $k = n - 1$ and $h = 0, 1$, respectively.

Corollary 3.6 $\kappa(S_n) = n - 1$ for $n \geq 2$ and $\kappa_s^{(1)}(S_n) = 2n - 4$ for $n \geq 3$.

Remark 3.7 Wan and Zhang [8] determined $\kappa_s^{(2)}(S_n) = 6(n - 3)$ for $n \geq 4$. Thus, our result is invalid for $\kappa_s^{(h)}(S_n)$ when $h \geq 2$. Thus, determining $\kappa_s^{(h)}(S_n)$ for $h \geq 2$ needs other technique.

References

- [1] S. B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks. *IEEE Transactions on Computers*, **38** (4) (1989), 555-566.
- [2] Y.-Y. Chen, D.-R. Duh, T.-L. Ye, J.-S. Fu, Weak-vertex-pancyclicity of (n, k) -star graphs. *Theoretical Computer Science*, **396** (2008), 191-199.
- [3] E. Cheng, M. J. Lipman, Increasing the connectivity of the star graphs. *Networks*, **40**(3) (2002), 165-169.
- [4] W.-K. Chiang and R.-J. Chen, The (n, k) -star graphs: A generalized star graph. *Information Processing Letters*, **56** (1995), 259-264.
- [5] S.-C. Hu, C.-B. Yang, Fault tolerance on star graphs. *International Journal of Foundations of Computer Science*, **8** (2) (1997), 127-142.
- [6] X.-D. Nie, H.-M. Liu and J.-M. Xu, Fault-tolerant analysis of star networks (in Chinese). *Acta Mathematica Scientifica*, **24** (2) (2004), 168-176.
- [7] Y. Rouskov, S. Latifi, and P. K. Srimani, Conditional fault diameter of star graph networks. *Journal of Parallel and Distributed Computing*, **33** (1) (1996), 91-97.
- [8] M. Wan, Z. Zhang, A kind of conditional vertex connectivity of star graphs. *Applied Mathematics Letters*, **22** (2009), 264-267.
- [9] W.-H. Yang, H.-Z. Li, X.-F. Guo, A kind of conditional fault tolerance of (n, k) -star graphs. *Information Processing Letters*, **110** (2010), 1007-1011.