Context free grammars - Gramatici independente de context. Automate stiva

March 31, 2024

$\{a^nb^n\}$ e regulat?

- Pt a fi limbaj regulat, ar trebui sa existe un automat finit care sa-l recunoasca.
- ar trebui sa tina minte cati a a citit, dar n nu este limitat
- dupa ce a citit a^m ar trebui sa fie intr-o stare ce specifica o multime de simboluri nonterminale din care sa fie derivate exact b^m. ⇒ pt fiecare m ar trebui sa fie o stare distinctica
- deci automatul ar trebui sa aiba evidenta unui numar nelimitat de posibilitati

acest lucru nu se poate face cu un numar finit de stari

- dar, nu tot ce pare a avea nevoie de memorie nelimitata, chiar are:
 - $C = \{w | w \text{ are un numar egal de 0 si 1}\}$
 - $D = \{w | w \text{ are un numar egal de aparitii } 01 \text{ si } 10 \}$

$\{a^nb^n\}$ e regulat?

- Pt a fi limbaj regulat, ar trebui sa existe un automat finit care sa-l recunoasca.
- ar trebui sa tina minte cati a a citit, dar n nu este limitat
- dupa ce a citit a^m ar trebui sa fie intr-o stare ce specifica o multime de simboluri nonterminale din care sa fie derivate exact b^m. ⇒ pt fiecare m ar trebui sa fie o stare distinctica
- deci automatul ar trebui sa aiba evidenta unui numar nelimitat de posibilitati

acest lucru nu se poate face cu un numar finit de stari

- dar, nu tot ce pare a avea nevoie de memorie nelimitata, chiar are:
 - $ightharpoonup C = \{w | w \text{ are un numar egal de 0 si 1}\}$
 - $D = \{w | w \text{ are un numar egal de aparitii 01 si 10} \}$

D este limbaj regulat

 $D = \{w | w$ are un numar egal de aparitii 01 si 10 ca substringuri $\}$

$$D=\{0,1,arepsilon \ w$$
 daca incepe cu 0 se termina cu 0 w daca incepe cu 1 se termina cu $1\}$

? 101, 1010, 0110

$$1 + 0 + \varepsilon + 0(0 + 1)^*0 + 1(0 + 1)^*1$$

Gramatici independente de context. Context-free grammars

- ightharpoonup G = (T, N, Z, P) e independenta de context daca
- fiecare productie are forma

$$X \to \chi, X \in N, \chi \in V^*$$

Un limbaj care e definit de o gramatica independenta de context este limbaj independent de context.

Exista CFL care nu sunt Regular languages

Fie
$$G = (\{0,1\}, \{S\}, \{S \to 01 | 0S1\}, S)$$

 \triangleright $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$

Arbore de parsare pentru 000111:

Limbajul parantezelor

Fie
$$G = (\{(,)\}, \{S\}, \{S \to SS | (S) | ()\}, S)$$

- ▶ left-most derivation: $S \Rightarrow \mathbf{S}S \Rightarrow (\mathbf{S})S \Rightarrow (())S \Rightarrow (())()$ Deci $S \Rightarrow^L (())()$
- ▶ right-most derivation: $S \Rightarrow SS \Rightarrow S() \Rightarrow (S)() \Rightarrow (())()$ Deci $S \Rightarrow^R (())()$

Gramatica ambigua - reamintire

O gramatica e ambigua daca exista un string in limbaj care e parsat in doi arbori de derivare.

Pentru $G = (\{(,)\}, \{S\}, \{S \to SS | (S) | ()\}, S)$ Derivarea ()()():

Ambiguitate

Fie $G_4 = (\{+,*,i\}, \{E\}, E, P)$ Doua derivari distincte stanga, doua derivari distincte dreapta

- ightharpoonup E
 ightarrow E + E
- ightharpoonup E
 ightharpoonup E
 ightharpoonup E * E
- ightharpoonup E
 ightarrow i

CFG pentru Engleza

- $ightharpoonup T = \{eats, saw, man, woman, telescope, the, with, at\}$
- \triangleright $N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$

$$P = \begin{array}{ccc} S & \rightarrow & \text{NP VP} \\ \hline VP & \rightarrow & \text{Vi} \\ VP & \rightarrow & \text{Vt NP} \\ \hline VP & \rightarrow & \text{VP PP} \\ \hline NP & \rightarrow & \text{DT N} \\ \hline NP & \rightarrow & \text{NP PP} \\ \hline PP & \rightarrow & \text{IN NP} \\ \hline \end{array}$$

Vi	\rightarrow	eats
Vt	\rightarrow	saw
N	\rightarrow	man
Ν	\rightarrow	woman
Ν	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	at

S = sentence, VP = verb phrase, NP = noun phrase, PP = prepositional phrase, DT = determiner, Vi = intransitive verb, Vt = transitive verb, N = noun, IN = preposition

Arbore de derivare

Derivarea stanga:

 $S\Rightarrow$ **NP** $VP\Rightarrow$ **DT** N $VP\Rightarrow$ the **N** $VP\Rightarrow$ the man **VP** \Rightarrow the man **Vi** \Rightarrow the man eats

The man saw the woman with the telescope.

Ce a vazut "the man"?

The man saw the woman with the telescope.

Ce a vazut "the man"? The telescope at the man saw the woman \in ? L(G)

if then else grammar

```
▶ T = \{if, then, else, E1, E2, S1, S2, S3\}, N = \{stmt, expr\}

▶ P = stmt \rightarrow if expr then stmt

stmt \rightarrow if expr then stmt else stmt

stmt \rightarrow S1 \mid S2 \mid S3

expr \rightarrow E1 \mid E2
```

if then else grammar

```
ightharpoonup T = \{if, then, else, E1, E2, S1, S2, S3\}, N = \{stmt, expr\}
```


if then else - rezolvare ambiguitate

```
    T = {if, then, else, E1, E2, S1, S2, S3},
    N = {stmt, matched_stmt, unmatched_stmt, expr}
```

```
P=
stmt → m\_stmt

| um\_stmt

m\_stmt → if expr then m\_stmt else um\_stmt

| smtm1

| um\_stmt → if expr then stmt

| if expr then m\_stmt else um\_stmt

stmt1 → S1 | S2 | S3

expr → E1 | E2
```

Intre un then si un else e permis doar matched_stmt.

m_stmt=matched_stmt (if cu ambele then si else),

um stmt=unmatched stmt

Exemple de gramatici: Liste de stmt

Recursivitate dreapta

Recursivitate stanga

Exemple de gramatici: Liste de elemente cu separator/marcaj de final

Separator intre elemente

Semn de punctuatie la final

Letia and Chifu. 2.3, 2.3.1 Sipser - 2.1,2.2

Automat stiva. Push down automaton (PDA)

- ► Niciun automat finit nu poate fi construit pt a recunoaste aⁿbⁿ sau limbajul parantezelor - structuri imbricate
- ➤ Se creste puterea automatelor finite prin adaugarea unei stive drept structura aditionala de memorie

▶ Daca gramaticile regulate sunt o subclasa a gramaticilor independente de context, de ce se dezvolta metode specifice gramaticilor regulate si nu se aplica pt acestea cele de la gramaticile independente?

Automat stiva. Push down automaton (PDA)

- Niciun automat finit nu poate fi construit pt a recunoaste aⁿbⁿ sau limbajul parantezelor - structuri imbricate
- ➤ Se creste puterea automatelor finite prin adaugarea unei stive drept structura aditionala de memorie

- Daca gramaticile regulate sunt o subclasa a gramaticilor independente de context, de ce se dezvolta metode specifice gramaticilor regulate si nu se aplica pt acestea cele de la gramaticile independente?
- ▶ Datorita complexitatii analizei gramaticilor independente de context: gramaticile regulate sunt mai simplu de analizat

Idee: Push down automata: 00001111

- 1. citeste simboluri de la intrare
- 2. la fiecare 0 citit, impinge-l pe stiva
- 3. la fiecare 1 citit, scoate de pe stiva un 0
- 4. daca citirea stringului se termina cand stiva se goleste, accepta stringul. Daca stiva devine goala cand mai sunt 1 de citit sau s-a terminat sirul si in stiva inca mai sunt 0-uri, respinge stringul

NFA- reamintire

Un automat finit nedeterminist este $(Q, \Sigma, \delta, q_0, F)$, unde:

- 1. Q este setul de stari
- 2. Σ un alfabet finint de intrare
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ este o functie de tranzitie
- 4. $q_0 \in Q$ este starea de start
- 5. $F \subseteq Q$ setul de stari finale

Definitie formala 1 a automatului stiva (Sipser)

Un automat stiva este $(Q, \Sigma, \Gamma, \delta, q_0, F)$, unde Q, Σ, Γ, F sunt seturi finite:

- 1. Q este setul de stari
- 2. Σ un alfabet de intrare
- 3. Γ este alfabetul stivei
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ este o functie de tranzitie
- 5. $q_0 \in Q$ este starea de start
- 6. $F \subseteq Q$ setul de stari finale

PDA for 0^n1^n

Fie
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
start \longrightarrow q_1 $\varepsilon, \varepsilon \to \$$ q_2 $0, \varepsilon \to 0$

$$\downarrow 1, 0 \to \varepsilon$$

$$q_4$$
 $\varepsilon, \$ \to \varepsilon$ q_3 $1, 0 \to \varepsilon$

PDA for?

Fie
$$M_1 = (Q, \{0, 1\}, \{\$, 0, 1\}, \delta, q_1, \{q_1, q_4\})$$
start \longrightarrow q_1 $\varepsilon, \varepsilon \to \$$ q_2 $0, \varepsilon \to 0$ $1, \varepsilon \to 1$ $\varepsilon, \varepsilon \to \varepsilon$ $0, 0 \to \varepsilon$

PDA for $\{ww^{R}|w \in \{0,1\}^{*}\}$

$$\begin{aligned} \mathbf{w}^R &= \mathbf{w} \text{ scris invers} \\ \text{Fie } M_1 &= (Q, \{0, 1\}, \{\$, 0, 1\}, \delta, q_1, \{q_1, q_4\}) \\ \text{start} &\longrightarrow \boxed{q_1} \underbrace{\varepsilon, \varepsilon \to \$}_{} \underbrace{q_2} \underbrace{0, \varepsilon \to 0}_{1, \varepsilon \to 1} \\ &\downarrow \varepsilon, \varepsilon \to \varepsilon \\ &\downarrow \varepsilon, \$ \to \varepsilon \end{aligned}$$

la fiecare pas, ghiceste daca a ajuns la mijlocul stringului sau nu

Gramatica palindrom par

▶ Palindrom: (T, N, P, A), P = $\{A \rightarrow 0A0 | 1A1$ $A \rightarrow \varepsilon \}$

PDA for $\{a^i b^j c^k | i, j, k \ge 0, i = j \text{ sau } i = k\}$

ghiceste daca e acelasi numar de a si b sau a si c

$$\{vbw|v,w\in\{a,b\}^*,|v|=|w|\}$$

$$M = (Q, \{a, b\}, \{\$, S\}, \delta, q_1, \{q_4\})$$

$$\{vbw|v, w \in \{a, b\}^*, |v| = |w|\}$$

$$M = (Q, \{a, b\}, \{\$, S\}, \delta, q_1, \{q_4\})$$

$$\text{start} \longrightarrow \boxed{q_1} \xrightarrow{\varepsilon, \varepsilon \to \$} \boxed{q_2} \xrightarrow{a, \varepsilon \to S} b, \varepsilon \to S$$

$$\downarrow b, \varepsilon \to \varepsilon$$

$$\downarrow q_4 \xrightarrow{\varepsilon, \$ \to \varepsilon} \boxed{q_3} \xrightarrow{a, S \to \varepsilon} b, S \to \varepsilon$$

Exemplu Gramatica independenta de context

▶ Palindrom: (T, N, P, A), P = $\{A \rightarrow 0A0 | 1A1$ $A \rightarrow \varepsilon \}$

Acelasi numar de 0 si 1: ({0,1},{A},P,A), P= $\{A \to 0A1A|1A0A \\ A \to \varepsilon\}$

Automat finit - reamintire

Automat finit (finite automaton, finite state acceptor):

$$A = (T, Q, R, q_0, F)$$

- Q set nevid setul starilor interne
- ▶ $(T \cup Q, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- $ightharpoonup q_0 \in Q$ starea initiala
- $ightharpoonup F \subseteq Q$ stari finale
- ▶ fiecare element din R are forma $qt \rightarrow q'$, $q, q' \in Q, t \in T$

$$L(A) = \{ \tau \in T^* | q_0 \tau \Rightarrow^* q, q \in F \}$$

Automat stiva - definitie sistem de rescriere

Automat stiva

$$A = (T, Q, R, q_0, F, S, s_0)$$

, unde:

- Q set nevid setul starilor interne
- ▶ $(T \cup Q \cup S, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- $ightharpoonup q_0 \in Q$ starea initiala
- ▶ $s_0 \in S \cup \{\varepsilon\}$ simboluri stiva, s_0 continutul initial al stivei
- $ightharpoonup F \subseteq Q$ stari finale
- fiecare element din R are forma $\sigma q t \tau \to \sigma' q' \tau$, $\sigma, \sigma' \in S^*, \ q, q' \in Q, t \in T \cup \varepsilon, \tau \in T^*$

Daca automatul e la configuratia $s_1...s_nq\tau$ intr-o derivare, automatul e in starea q, τ este partea necitita din input, $s_1,...,s_n$ este continutul pe stiva, s_n in varf.

Limbaj acceptat

Daca automatul e la configuratia $s_1...s_nq\tau$ intr-o derivare, automatul e in starea q, τ este partea necitita din input, $s_1,...,s_n$ este continutul pe stiva, s_n in varf.

$$L(A) = \{ \tau | s_0 q_0 \tau \# \Rightarrow^* q \#, q \in F, \tau \in T^* \}$$

$0^{n}1^{n}$

$$M_1 = (\{0,1\}, \{q_2,q_3\}, R, q_2, \{q_3\}, \{0,1\}, \varepsilon), R = \{$$

- 1. $\varepsilon q_2 0 \rightarrow 0 q_2$
- 2. $0q_21 \rightarrow \varepsilon q_3$
- 3. $0q_31$ → εq_3 }

$$??\varepsilon q_20011 \Rightarrow^* q_3$$

Pe stiva pot fi alte simboluri decat cele din alfabetul de intrare.

CFG - PDA

Pentru fiecare gramatica independenta de context G exista un automat stiva A a.i. L(A)=L(G).

exemplu 2

Fie
$$G_1 = (T, N, E, P)$$

- $T = \{+, *, (,), i\}, N = \{E, T, F\}$
- cu productiile P
 - \blacktriangleright $(1,2)E \rightarrow T|E+T$
 - $(3,4)T \rightarrow F|T * F$
 - ▶ $(5,6)F \to i|(E)$

Automatul stiva construit pentru analiza descendenta:

$$T = \{+, *, (,), i\}, Q = \{q\},\$$

$$q_0 = q, F = \{q\}, S = \{+, -, *, (,), i, E, T, F\}, s_0 = E$$

- cu productiile R
 - 1. $Eq \rightarrow Tq, Eq \rightarrow T + Eq$,
 - 2. $Tq \rightarrow Fq$, $Tq \rightarrow F * Tq$,
 - 3. $Fq \rightarrow iq, Fq \rightarrow)E(q,$
 - 4. $+q+ \rightarrow q, *q* \rightarrow q, (q(\rightarrow q,)q) \rightarrow q, iqi \rightarrow q$

Derivarea gasita: i+i*i

stiva	stare	intrare	derivarea cea mai din stanga
Е	q	i + i * i	E
T + E	q	i + i * i	E+T
T + T	q	i + i * i	T+T
T+F	q	i + i * i	F+T
T+i	q	i + i * i	i+T
T+	q	+i*i	
Т	q	i * i	
F*T	q	i * i	i+T*F
F*F	q	i * i	i+F*F
F*i	q	i * i	i+i*F
F*	q	* <i>i</i>	
F	q	i	
i	q	i	i+i*i
	q		

Exemplu

Fie $G_1 = (T, N, E, P)$

- $T = \{+, *, (,), i\}, N = \{E, T, F\}$
- cu productiile P
 - \blacktriangleright $(1,2)E \rightarrow T|E+T$
 - $(3,4)T \rightarrow F|T * F$
 - ▶ $(5,6)F \rightarrow i|(E)$

Automatul stiva:

$$T = \{+, *, (,), i\}, Q = \{q\},\$$

$$q_0 = q, F = \{q\}, S = \{+, -, *, (,), i, E, T, F\}, s_0 = E$$

- cu productiile R
 - 1. $Tq \rightarrow Eq, E + Tq \rightarrow Eq$,
 - 2. $Fq \rightarrow Tq$, $T * Fq \rightarrow Tq$,
 - 3. $iq \rightarrow Fq$, $(E)q \rightarrow Fq$,
 - 4. $q+\rightarrow +q, q*\rightarrow *q, q(\rightarrow (q,q)\rightarrow q), qi\rightarrow iq$
 - 5. $Eq \rightarrow q$

Derivarea gasita: i+i*i

stiva	stare	intrare	derivarea cea mai din dreapta
	q	i + i * i	i+i*i
i	q	+i*i	
F	q	+i*i	F+i*i
Т	q	+i*i	T+i*i
Е	q	+i*i	E+i*i
E+	q	i * i	
E+i	q	* <i>i</i>	
E+F	q	* <i>i</i>	E+F*i
E + T	q	* <i>i</i>	E+T*i
E+T*	q	i	
E+T*i	q	i	
E+T*F	q		
E + T	q		E+T*F
Е	q		E+T
	a		E