

HH+met reinterpretation exercise

Methods for calculating limits from the data in search experiments

- Higgs combine tool (used in Higgsino search [1], RA2/b [2], ...)
- Question: how well can one reproduce our results from HEPData?
- Chisquare fit
- Improved version: simplified likelihood
 - Described by Waltenberger at the June SUSY workshop:
- Results, comparisons
- Observations

- [1] CMS-SUS-20-004
- [2] CMS-SUS-19-006

Data-driven background prediction, "ABCD"

- Predicted N_{bkg} in $A = N_B (N_C / N_D)$
- All N's are event counts, so Poisson distributed

Higgs combine tool method

Inputs are

- Nobs_i in each SR (signal region, A)
- Nobs_i in each SB, CSR, CSB (B, C, D) region for the ABCD estimate of Nobs_i in A
- N^{sig}_i (MC) in each SR, SB, CSR, CSB (for each (m_{NLSP}, m_{LSP}) scan point)
- \square κ_i for each SR, with uncertainty nuisance parameter
- Uncertainty nuisances for other systematics (scale factors, JEC, ...)

Likelihood is built from

- □ Poisson pdfs for Nobsi in all SR, SB, CSR, CSB regions
- □ Constraints $N^{bkg} = A = \kappa B C / D$ (rateParams)
- $lue{}$ Gaussian pdfs for κ uncertainties
- Log-normal pdfs for other nuisances

The expected yields Nexpi are given by

 \square N^{exp}_i = N^{bkg}_i + μ N^{sig}_{i,} where μ (r in combine) is the signal strength

Extraction of limit & profile likelihood

- Running "combine -M AsymptoticLimits" on the datacard for a model scan point gives:
 - 95% CL upper limit from the data
 - 95% CL upper limit expected, with +/- 1 and 2-sigma deviations
- The criterion for 95% CL is that CLs = 0.05
 - □ CLs = CL_{s+b} / CL_b
 - □ $CL_{s+b} = 1 \Phi(\sqrt{q_{\mu}})$, where q_{μ} is the profile likelihood test statistic:

$$ilde{q}_{\mu} = -2 \ln rac{\mathcal{L}(data|\mu,\hat{ heta}_{\mu})}{\mathcal{L}(data|\hat{\mu},\hat{ heta})}, \quad 0 \leq \hat{\mu} \leq \mu$$
, and Φ is the normal cumulative distribution function (cdf)

- CL_b measured with the Asimov data set (Nobs set to Nexpected)
- □ Details in CMS-NOTE-2011/005 (joint w ATLAS)
- Adding —verbose 1 to AsymptoticLimits gives CL_b at limit
- Running "combine -M MultiDimFit --algo grid" gives ~q_μ vs μ

Profile likelihood vs μ

- Blue curve from combine tool method
 - blue triangles: significance, 95% CLs limit
 - μ < 1 @ 95% CLs \Rightarrow this (300, 1) point is (barely) excluded
 - purple triangle: expected limit

Reproducing the result from HEPData

- The (relevant) available information:
- From Tables 4 & 5
 - Observed yields
 - Estimated pre-fit background yields
 - upper and lower uncertainties
- From figs. 11 (TChiHH-G), 13 (TChiHH), & 14 (T5HH)
 - Cross sections vs scan point (m_{NLSP}, m_{LSP})
 - Observed 95% CL upper limit, +/- 1 sigma
 - Expected 95% CL upper limit, +/- 1, 2 sigma
 - Theory (vs m_{NLSP})
- Covariance matrix
- Efficiency vs scan point and SR bin
- Significance vs scan point

From HEPData

					nred	C*1	. 1
Bin	$\Delta R_{\rm max}$	$N_{\rm b}$	$p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	κ	$N_{ m SR}^{ m pred}$	$N_{ m SR}^{ m fit}$	$N_{ m SR}^{ m obs}$
1	1.1–2.2	3	150-200	$1.09 \pm 0.04 \pm 0.02$	161^{+14}_{-13}	$149.7^{+8.9}_{-8.5}$	138
2			200-300	$0.92 \pm 0.04 \pm 0.02$	$90.4_{-9.0}^{+9.7}$	$91.5^{+6.9}_{-6.5}$	91
3			300-400	$0.94 \pm 0.09 \pm 0.01$	$11.5^{+3.4}_{-2.7}$	$12.8^{+2.6}_{-2.2}$	14
4			>400	$0.98^{+0.19}_{-0.16} \pm 0.02$	$2.8_{-1.4}^{+2.3}$	$2.8_{-1.0}^{+1.4}$	3
5		4	150-200	$1.13 \pm 0.09 \pm 0.08$	$53.5^{+8.8}_{-7.8}$	$54.1^{+5.6}_{-5.2}$	54
6			200-300	$0.96 \pm 0.07 \pm 0.07$	$28.3_{-4.8}^{+5.6}$	$33.2^{+4.2}_{-3.9}$	38
7			300-400	$0.89^{+0.16}_{-0.15} \pm 0.05$	$2.6_{-1.1}^{+1.5}$	$3.2^{+1.3}_{-1.0}$	4
8			>400	$0.92^{+0.27}_{-0.22} \pm 0.07$	$2.6_{-1.4}^{+2.4}$	$1.27^{+0.98}_{-0.63}$	0
9	<1.1	3	150-200	$1.05^{+0.18}_{-0.15}\pm0.12$	$5.1^{+1.6}_{-1.3}$	$5.9^{+1.4}_{-1.2}$	8
10			200-300	$1.04^{+0.14}_{-0.13} \pm 0.11$	$2.17^{+0.79}_{-0.60}$	$2.31^{+0.73}_{-0.57}$	2
11			300-400	$0.72^{+0.33}_{-0.22} \pm 0.08$	$0.06^{+0.11}_{-0.04}$	$0.72^{+0.53}_{-0.33}$	4
12			>400	$1.24^{+0.67}_{-0.45} \pm 0.10$	$0.89^{+1.42}_{-0.60}$	$0.52^{+0.65}_{-0.35}$	0
13		4	150-200	$1.26^{+0.21}_{-0.20} \pm 0.23$	$2.68^{+1.06}_{-0.79}$	$2.58^{+0.85}_{-0.67}$	1
14			200-300	$1.21^{+0.22}_{-0.21}\pm0.22$	$1.26^{+0.62}_{-0.44}$	$1.62^{+0.65}_{-0.48}$	3
15			300-400	$2.35^{+0.88}_{-0.72}\pm0.34$	$0.42^{+0.61}_{-0.27}$	$1.16^{+0.87}_{-0.55}$	1
16			>400	$0.94^{+0.53}_{-0.36} \pm 0.13$	$0.67^{+1.10}_{-0.46}$	$0.78^{+0.76}_{-0.43}$	1

Bin	$N_{ m H}$	p _T ^{miss} [GeV]	N _{SR, tot}	$f_{ m pTmiss}$	$N_{ m SR}^{ m pred}$	$N_{ m SR}^{ m fit}$	Nobs SR
17		300-500		0.789 ± 0.030	$33.6^{+6.1}_{-5.2}$	$37.0^{+4.2}_{-4.0}$	42
18	1	500-700	42.6 ± 4.2	0.172 ± 0.028	$7.3^{+2.0}_{-1.6}$	$7.2^{+1.5}_{-1.3}$	6
19		>700		0.039 ± 0.014	$1.65^{+1.04}_{-0.66}$	$1.50^{+0.75}_{-0.53}$	1
20		300-500		0.789 ± 0.030	$4.0_{-1.1}^{+1.5}$	$4.0^{+1.2}_{-1.0}$	4
21	2	500-700	5.1 ± 1.0	0.172 ± 0.028	$0.88^{+0.40}_{-0.28}$	$0.74^{+0.29}_{-0.21}$	0
22		>700		0.039 ± 0.014	$0.20^{+0.21}_{-0.10}$	$0.14^{+0.13}_{-0.07}$	0

covariance (correlation shown here)

CMS Supplementary

efficiency (by bin available)

137 fb⁻¹ (13 TeV)

 $m(\widetilde{\chi}_0^0)$ [GeV]

0.5

significance

CMS Supplementary

HEPData tables downloadable as csv, yaml, ...

Chisquare method

- Simplest approximation: build the likelihood as a product of Gaussians.
- Then minimize $\chi^2 = -2 \ln(L)$:
- Define the residual Δ_i for each bin i:

$$\Delta_i \equiv N_i^{\text{obs}} - N_i^{\text{pred}},$$
 $N_i^{\text{pred}} \equiv N_i^{\text{bkg}} + \mu N_i^{\text{sig}},$
 $N_i^{\text{sig}} = \epsilon_i \mathcal{B}^2 (H \to b\bar{b}) \sigma \mathcal{L}$

- \square μ is the signal strength
- \square ε , σ , and \mathcal{L} are the efficiency, cross section, and luminosity
- Given the covariance matrix V, we find

$$\chi^2 = \Delta_i V_{ij}^{-1} \Delta_j,$$
$$\to \sum \Delta_i^2 / \sigma_i^2$$

in the limit of uncorrelated bins.

Accounting for signal uncertainty in chisq

- The covariance matrix is given for the background.
- In the chisq formulation we need to add the contribution of the signal uncertainty:

$$V = V^{\text{bkg}} + \text{diag}(N^{\text{obs}})$$

- Nobs being the square of the Poisson uncertainty √Nobs
- The resulting function $\chi^2(\mu)$ is a parabola, with minimum at the best-fit value of μ , μ_0 .
- The square root of $\chi^2(\mu)$ $\chi^2(\mu_0)$ at any other value of μ gives the Z-value (number of standard deviations of a Gaussian pdf).

Limitations of the chisq method

- All uncertainties assumed Gaussian
 - and symmetric
 - not so good for small yields
 - V^{bkg} reflects the combined effects of all sources (CR yields, scale factors, JECs, etc., whereas some contributions are statistical (sideband yields).
 - Vobs represents Poisson stat uncertainties with a Gaussian approximation
- Signal uncertainties are not accounted for.
- The contribution of each bin to chisq represents the consistency of background and observation in that bin.
 - But the real question is, given N^{bkg}, what's the probability of observing N^{obs}?
 - E.g., the bin 11 contribution before squaring is (very nearly) (4 - 0)/√4, which is 2 sigma, vs the detailed study giving 3.3 sigma local significance.

Chisquare method for HH+met

Profile likelihood vs signal strength

- Orange curve from the χ^2 method
 - \Box underestimates μ_0
 - underestimates the high-side uncertainty

Simplified likelihood method

- Feedback from phenomenology team (Wolfgang Waltenberger): need efficiencies by SR bin
 - We now provide these in HEPData (and public twiki)
- Wolfgang also spoke at the June SUSY workshop
- Introduced the simplified likelihood method, SM:
 - https://arxiv.org/abs/1809.05548, https://link.springer.com/article/10.1007/JHEP04(2019)064
- Reproduces one of RA2/b Run 2 limits quite well
- Improvements over chisq method:
 - Poisson pdfs for the observed yields
 - Option to include asymmetric background uncertainties:

Building the simplified likelihood

The predicted yield in bin i is

$$N_i^{\text{pred}} \equiv N_i^{\text{bkg}} + \mu N_i^{\text{sig}},$$

 $N_i^{\text{bkg}} = a_i + b_i \theta_i + c_i \theta_i^2$

- a_i is the central value of the bkg prediction
- ullet θ_i is a nuisance parameter drawn from a unit Gaussian
- ullet b_i is the effective sigma of the bkg uncertainty, $\sqrt{V_{ii}}$ in the limit of symmetric uncertainties
- c_i gives the asymmetry of the bkg uncertainty
- The simplified likelihood is

$$L_S(\mu, \theta) \propto \prod_i \text{Pois}(N_i^{\text{obs}}|N_i^{\text{pred}}(\mu)) \exp(-\frac{1}{2}\theta_i \rho_{ij}^{-1}\theta_j)$$

- lacktriangle where ho
 ightharpoonup correlation matrix in the symmetric limit
- The code, and example input, are in gitHub:
 - https://gitlab.cern.ch/SimplifiedLikelihood/SLtools

SL: asymmetric bkg uncertainties

- The covariance matrix gives second moments, i.e., sigma², on the diagonal, and correlations, on off-diagonal elements
- To incorporate asymmetric uncertainties, SL uses the diagonal elements of the 3rd moment m₃ of the background nuisances.
 - Maybe these could be extracted from combine tool?
- Compute m_3 from a bifurcated Gaussian using the asymmetric uncertainties $\sigma_{1,2}$:

$$m_3 = \frac{2}{\sigma_1 + \sigma_2} \left[\sigma_1 \int_{-\infty}^0 x^3 G(x; 0, \sigma_1) dx + \sigma_2 \int_0^{+\infty} x^3 G(x; 0, \sigma_2) dx \right]$$

Compare SL with full L

Profile likelihood vs signal strength

- The red (black) curve is SL with(out) asymmetric uncertainties
- SL treats Nobs as Poisson,
- N^{bkg} as (asymmetric) Gaussian
 - doesn't fully account for Poisson fluctuations of low-stats CR yields

L & SL vs scan pt

Signal strength

Simpl L, asymm

Chisquare

- Observed

Expected

Some observations

- Phenomenologists have rather sophisticated tools for incorporating published data from experiments
- For the HH+met and RA2/b papers, the provided information is adequate for reasonably closely reproducing the results
- How can one test other models with our HH+met data?
 - Reweight bin efficiencies?
 - The b quark content would have to be the same, else sorting of the model into 3b, 4b, or 1H, 2H bins would be impossible
 - Sorting the model into resolved/boosted, maybe with a cut on ΔR between the H daughter quarks?
 - MET OK
 - ▲R_{max} OK?
- For some ATLAS papers, "likelihood" is provided.
 - What would this entail?

Update: combine with InN nuisances

- Jaebak presented a fit made with combine, but with
 - backgrounds entered directly from the paper
 - bkg uncertainties from the paper, entered into the datacard as (asymmetric) InN nuisances
 - no correlations
- l've modified this approach by adding the bkg correlations
 - Same InN nuisances, but multiplied by the correlation matrix elements to extend to the off-diagonal terms
 - Results shown as green plots in the profile plots (following page)
- Compared with Waltenberger's simplified likelihood
 - these do much better estimating the significance
 - not necessarily better in predicting the limits

L & SLs vs scan point

Profile likelihood vs signal strength $pp \rightarrow \widetilde{\chi}_{3}^{0} \widetilde{\chi}_{2}^{0} \rightarrow HH \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0}, m(\widetilde{\chi}_{2}^{0}) = 275 \text{ GeV}, m(\widetilde{\chi}_{1}^{0}) = 1 \text{ GeV}$ - Simpl L, symm - Simpl L, asymm Chisquare Simpl InN Observed Expected 95% CLs 2.5 Signal strength

Profile likelihood vs signal strength

Profile likelihood vs signal strength

