Exercice 1

On considère deux ensembles $\mathcal{A} = \{a, b, c\}$ et $\mathcal{B} = \{0, 1, 2\}$ et les relations $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ et $\mathcal{S} \subseteq \mathcal{A} \times \mathcal{B}$.

${\cal R}$ est définie par le tableau suivant	\mathcal{R}	$\mid a \mid$	$\mid b \mid$	c
	\overline{a}	F	F	V
	\overline{b}	V	F	V
	\overline{c}	F	F	V
S est définie par le tableau suivant :	\mathcal{S}	0	1	2
	a	V	F	\overline{F}
	b	F	F	\overline{V}
	c	\overline{F}	V	\overline{F}

- Représentez S sous la forme d'un graphe de A vers B.
- Représentez \mathcal{R} sous la forme d'un graphe de \mathcal{A} vers \mathcal{A} .
- Représentez \mathcal{R} sous la forme d'un graphe orienté avec comme noeuds les éléments de \mathcal{A} .

Exercice 2

On considère $\mathcal{A} = \{0, 1, 2, 3\}$ et les relations "inférieur strict à" $< \subseteq \mathcal{A} \times \mathcal{A}$ et "supérieur ou égal à" $\geq \subseteq \mathcal{A} \times \mathcal{A}$.

- \bullet Représentez < et \geq sous la forme d'un tableau.
- Représentez < et \ge sous la forme d'un graphe de \mathcal{A} vers \mathcal{A} .
- Représentez < et \ge sous la forme d'un graphe orienté avec comme noeuds les éléments de \mathcal{A} .

Exercice 3

Écrire en Python une fonction **genR** qui génère de manière aléatoire uniforme une relation $R \subseteq A \times B$ où $A = \{0, ..., A - 1\}$ et $B = \{0, ..., B - 1\}$.

(vous pouvez utiliser la fonction randint(bi,bs) vue en INF101, qui génère de manière uniforme un entier entre bi et bs).

Exercice 4

On considère les ensembles $A = \{a_0, a_1, a_2\}, B = \{b_0, b_1, b_2\}, C = \{c_0, c_1\}, Z = \{z_0, z_1\}.$

On considère les relations $\mathcal{R}_1, \mathcal{R}_2 \subseteq A \times B, \mathcal{S} \subseteq B \times C, \mathcal{T} \subseteq Z \times A$ définies par

$$\mathcal{R}_{1} \stackrel{def}{=} \{(a_{0}, b_{0}), (a_{1}, b_{0}), (a_{1}, b_{2}), (a_{2}, b_{1}), (a_{2}, b_{2})\}, \mathcal{R}_{2} \stackrel{def}{=} \{(a_{0}, b_{1}), (a_{1}, b_{0}), (a_{1}, b_{1}), (a_{1}, b_{2}), (a_{2}, b_{0})\}, \mathcal{T} \stackrel{def}{=} \{(z_{0}, a_{1}), (z_{1}, a_{0}), (z_{1}, a_{1}), (z_{1}, a_{2})\} \text{ et } \mathcal{S} \stackrel{def}{=} \{(b_{0}, c_{0}), (b_{1}, c_{0}), (b_{1}, c_{1})\}$$

- Calculez $\mathcal{R}_1 \cap \mathcal{R}_2$, $\mathcal{R}_1 \cup \mathcal{R}_2$ et \mathcal{R}_1^{-1} .
- Calculez $\mathcal{R}_1 \circ \mathcal{T}$, $\mathcal{S} \circ \mathcal{R}_1$, $\mathcal{R}_2 \circ \mathcal{T}$, $\mathcal{S} \circ \mathcal{R}_2$.
- Calculez $(S \circ \mathcal{R}_1) \circ \mathcal{T}$ et $S \circ (\mathcal{R}_1 \circ \mathcal{T})$. Qu'est-ce que vous remarquez?
- Calculez $(\mathcal{R}_1 \cup \mathcal{R}_2) \circ \mathcal{T}$ et $(\mathcal{R}_1 \circ \mathcal{T}) \cup (\mathcal{R}_2 \circ \mathcal{T})$. Qu'est-ce que vous remarquez?
- Calculez $(\mathcal{R}_1 \cap \mathcal{R}_2) \circ \mathcal{T}$ et $(\mathcal{R}_1 \circ \mathcal{T}) \cap (\mathcal{R}_2 \circ \mathcal{T})$. Qu'est-ce que vous remarquez?
- Calculez $(\mathcal{R}_1 \cup \mathcal{R}_2)^{-1}$ et $(\mathcal{R}_1^{-1} \cup \mathcal{R}_2^{-1})$. Qu'est-ce que vous remarquez?
- Calculez $(\mathcal{R}_1 \cap \mathcal{R}_2)^{-1}$ et $(\mathcal{R}_1^{-1} \cap \mathcal{R}_2^{-1})$. Qu'est-ce que vous remarquez?

• Calculez $(\mathcal{R}_i \circ \mathcal{T})^{-1}$ et $(\mathcal{T}^{-1} \circ \mathcal{R}_i^{-1})$. Qu'est-ce que vous remarquez?

Exercice 5

Démontrer les assertions suivantes :

- 1. La composition des relations est associative.
- 2. Elle est monotone.
- 3. \cup -distributive: $(\mathcal{R}_1 \cup \mathcal{R}_2) \circ T = (\mathcal{R}_1 \circ \mathcal{T}) \cup (\mathcal{R}_2 \circ \mathcal{T}).$
- 4. $(\mathcal{R}_1 \cap \mathcal{R}_2) \circ \mathcal{T} \subseteq (\mathcal{R}_1 \circ \mathcal{T}) \cap (\mathcal{R}_2 \circ \mathcal{T})$. Donnez un contre-exemple pour l'inclusion réciproque.

Exercice 6

Soient les relations $R, S \subseteq A \times A$. Démontrer les assertions suivantes :

- $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.
- $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$.
- $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$.

Exercice 7

Pour chacune des relations suivantes, précisez les propriétés (parmi réflexivité, symétrie, antisymétrie, transitivité) qu'elle satisfait:

- la relation \mathcal{R} de l'Exercice 1.
- les relations < et \ge de l'Exercice 2.
- la relation $Succ \subseteq \mathbb{N} \times \mathbb{N}$ définie par $Succ \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{N}, b=a+1\}.$
- la relation $Double \subseteq \mathbb{N} \times \mathbb{N}$ définie par $Double \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{N}, b = 2 * a\}.$
- la relation $Abs \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $Abs \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, \ a^2 = b^2\}.$
- la relation $\mathcal{R}_1 \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $\mathcal{R}_1 \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, 1 + (a \times b) \geq a + b\}.$
- la relation de perpendicularité sur l'ensemble des droites.
- la relation de parallélisme sur l'ensemble des droites.

Exercice 8

- Expliciter toutes les relations réflexives sur $\{a,b,c\}$. Il y en a combien? Et sur l'ensemble $\{0,\ldots,A-1\}$?
- Écrire en Python une fonction **genRr** qui génère de manière aléatoire uniforme une relation réflexive $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$. (vous pouvez utiliser la fonction randint(bi, bs) vue en INF101, qui génère de manière uniforme un entier entre bi et bs).
- Écrire en Python un prédicat **testRr** qui teste si une relation $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$ est réflexive.

Exercice 9

- Expliciter toutes les relations symétriques sur $\{a, b, c\}$. Il y en a combien? Et sur l'ensemble $\{0, \ldots, A-1\}$?
- Écrire en Python une fonction **genSr** qui génère de manière aléatoire uniforme une relation symétrique $R \subseteq A \times A$ où $A = \{0, ..., A 1\}$. (vous pouvez utiliser la fonction randint(bi, bs) vue en INF101, qui génère de manière uniforme un entier entre bi et bs).
- Écrire en Python un prédicat **testSr** qui teste si une relation $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$ est symétrique.

Exercice 10

- Expliciter toutes les relations anti-symétriques sur $\{a,b,c\}$. Il y en a combien? Et sur l'ensemble $\{0,\ldots,A-1\}$?
- Écrire en Python une fonction genASr qui génère de manière aléatoire uniforme une relation anti-symétrique R ⊆ A × A où A = {0,..., A − 1}.
 (vous pouvez utiliser la fonction randint(bi, bs) vue en INF101, qui génère de manière uniforme un entier entre bi et bs).
- Écrire en Python un prédicat **testASr** qui teste si une relation $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$ est anti-symétrique.

Exercice 11

- Expliciter toutes les relations tranzitives sur $\{a, b, c\}$.
- Écrire en Python un prédicat **testTr** qui teste si une relation $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$ est tranzitive.

Exercice 12

Soit l'ensemble des propriétés $\mathcal{P} \stackrel{def}{=} \{\text{réflexivité, symétrie, antisymétrie, transitivité}\}$ et soit l'ensemble des opérations $\mathcal{O} \stackrel{def}{=} \{\cap, \cup, \circ\}$. Soit $\mathcal{R}_1, \mathcal{R}_2 \subseteq A \times A$ deux relations quelconques. Soit $p \in \mathcal{P}$ une propriété et $* \in \mathcal{O}$ une opération sur les relations. Validez (c.a.d. donnez une preuve) ou invalidez (c.a.d. donnez un contre-exemple) chacune des assertions suivantes:

• Si \mathcal{R}_1 a la propriété p, alors \mathcal{R}_1^{-1} a aussi la propriété p.

- Si \mathcal{R}_1^{-1} a la propriété p, alors \mathcal{R}_1 a aussi la propriété p.
- Si $\mathcal{R}_1, \mathcal{R}_2$ ont la propriété p, alors $\mathcal{R}_1 * \mathcal{R}_2$ a aussi la propriété p.
- Si $\mathcal{R}_1 * \mathcal{R}_2$ a la propriété p, alors $\mathcal{R}_1, \mathcal{R}_2$ ont aussi la propriété p.

Exercice 13

Soit $\mathcal{R} \subseteq A \times A$ une relation quelconque. Soit $\mathcal{I} \stackrel{def}{=} \{(e,e) \mid e \in A\}$ la relation identité sur A. Prouvez les assertions suivantes:

- \mathcal{R} est réflexive si et seulement si $\mathcal{I} \subseteq \mathcal{R}$.
- \mathcal{R} est symétrique si et seulement si $\mathcal{R} = \mathcal{R}^{-1}$.
- \mathcal{R} est antisymétrique si et seulement si $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}$.
- \mathcal{R} est transitive si et seulement si $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

Exercice 14

- Écrire en Python une fonction **constInv** qui construit dans la relation Ri l'inverse de la relation $R \subseteq A \times B$.
- Écrire en Python une fonction **constUni** qui construit dans la relation RuS l'union des relations R et S avec $R, S \subseteq A \times B$.
- Écrire en Python une fonction **constInt** qui construit dans la relation RnS l'intersection des relations R et S avec R, $S \subseteq A \times B$.
- Écrire en Python une fonction **constComp** qui construit dans la relation SoR la compositions des relations R et S avec $R \subseteq A \times B$ et $S \subseteq B \times C$.

Exercice 15

• Écrire en Python un prédicat **test1** qui prend en paramètre deux relations $R \subseteq A \times B$ et $S \subseteq B \times A$ et qui teste si les deux relations R et S vérifient la propriété

$$\forall x \in A, ((\exists y \in B, x \ R \ y) \Rightarrow (\forall z \in B, z \ S \ x))$$

• Écrire en Python un prédicat **test2** qui prend en paramètre deux relations $R \subseteq A \times B$ et $S \subseteq B \times A$ et qui teste si les deux relations R et S vérifient la propriété

$$\forall x \in A, ((\forall y \in B, x R y) \Rightarrow (\exists z \in B, z S x))$$

Exercice 16

Soit $\mathcal{R} \subseteq A \times A$ une relation quelconque.

- Soit \mathcal{R}^r la cloture reflexive de \mathcal{R} , c.a.d. la plus petite relation reflexive qui contient \mathcal{R} . Formellement \mathcal{R}^r est la relation qui satisfait les trois conditions suivantes:
 - 1. $\mathcal{R} \subseteq \mathcal{R}^r$
 - 2. \mathcal{R}^r reflexive
 - 3. $\forall S \subseteq A \times A$, si $\mathcal{R} \subseteq S$ et S relation reflexive, alors $\mathcal{R}^r \subseteq S$.
- Soit $\mathcal{R}' \subseteq A \times A$ définie par : $\mathcal{R}' \stackrel{def}{=} \bigcap_{\{\mathcal{S} \mid \mathcal{S} \subseteq A \times A, \ \mathcal{R} \subseteq \mathcal{S}, \ \mathcal{S} \ reflexive\}} \mathcal{S}$.
- Soit $\mathcal{R}" \subseteq A \times A$ définie par : $\mathcal{R}" \stackrel{def}{=} \mathcal{R} \cup Id$ où $Id \stackrel{def}{=} \{(a,a) \mid a \in A\}$.
- 1. Prouver que les trois définitions sont equivalentes, c.a.d. que $R^r = \mathcal{R}' = \mathcal{R}''$.
- 2. Écrire en Python une fonction **constRr** qui construit dans la relation Rr la cloture reflexive de la relation $R \subseteq A \times A$.

Exercice 17

Soit $\mathcal{R} \subseteq A \times A$ une relation quelconque.

- Soit \mathcal{R}^s la cloture symétrique de \mathcal{R} , c.a.d. la plus petite relation symétrique qui contient \mathcal{R} . Formellement \mathcal{R}^s est la relation qui satisfait les trois conditions suivantes:
 - 1. $\mathcal{R} \subseteq \mathcal{R}^s$
 - 2. \mathcal{R}^s symétrique
 - 3. $\forall S \subseteq A \times A$, si $\mathcal{R} \subseteq S$ et S relation symétrique, alors $\mathcal{R}^s \subseteq S$.
- Soit $\mathcal{R}' \subseteq A \times A$ définie par : $\mathcal{R}' \stackrel{def}{=} \bigcap_{\{\mathcal{S} \mid \mathcal{S} \subseteq A \times A, \ \mathcal{R} \subseteq \mathcal{S}, \ \mathcal{S} \ symetrique\}} \mathcal{S}$.
- Soit \mathcal{R} " $\subseteq A \times A$ définie par : \mathcal{R} " $\stackrel{def}{=} \mathcal{R} \cup \mathcal{R}^{-1}$.
- 1. Prouver que les trois définitions sont equivalentes, c.a.d. que $R^s = \mathcal{R}' = \mathcal{R}$ ".
- 2. Écrire en Python une fonction **constRs** qui construit dans la relation Rs la cloture symétrique de la relation $R \subseteq A \times A$.

Exercice 18

Soit $\mathcal{R} \subseteq A \times A$ une relation quelconque.

- Soit \mathcal{R}^+ la cloture transitive de \mathcal{R} , c.a.d. la plus petite relation transitive qui contient \mathcal{R} . Formellement \mathcal{R}^+ est la relation qui satisfait les trois conditions suivantes:
 - 1. $\mathcal{R} \subseteq \mathcal{R}^+$
 - 2. \mathcal{R}^+ transitive
 - 3. $\forall S \subseteq A \times A$, si $\mathcal{R} \subseteq S$ et S relation transitive, alors $\mathcal{R}^+ \subseteq S$.
- Soit $\mathcal{R}' \subseteq A \times A$ définie par : $\mathcal{R}' \stackrel{def}{=} \bigcap_{\{\mathcal{S} \mid \mathcal{S} \subseteq A \times A, \ \mathcal{R} \subseteq \mathcal{S}, \ \mathcal{S} \ transitive\}} \mathcal{S}$.
- Soit \mathcal{R} " $\subseteq A \times A$ définie par : \mathcal{R} " $\stackrel{def}{=} \bigcup_{n \geq 0} \mathcal{R}^n$ où $\mathcal{R}^1 \stackrel{def}{=} \mathcal{R}$ et $\mathcal{R}^{i+1} \stackrel{def}{=} \mathcal{R}^i \circ \mathcal{R}$.
- 1. Prouver que les trois définitions sont equivalentes, c.a.d. que $R^+ = \mathcal{R}' = \mathcal{R}$ ".

2. Écrire en Python une fonction **constRs** qui construit dans la relation Rt la cloture transitive de la relation $R \subseteq A \times A$.

Exercice 19

Soit $\mathcal{R} \subseteq A \times A$ une relation quelconque. Rappel: \mathcal{R} est une relation d'équivalence si et seulement si \mathcal{R} est reflexive, symétrique et transitive.

- Soit \mathcal{R}^e la plus petite relation d'équivalence qui contient \mathcal{R} . Formellement \mathcal{R}^e est la relation qui satisfait les trois conditions suivantes:
 - 1. $\mathcal{R} \subseteq \mathcal{R}^e$
 - 2. \mathcal{R}^e relation d'équivalence
 - 3. $\forall S \subseteq A \times A$, si $\mathcal{R} \subseteq S$ et S relation d'équivalence, alors $\mathcal{R}^e \subseteq S$.
- Soit $\mathcal{R}' \subseteq A \times A$ définie par : $\mathcal{R}' \stackrel{def}{=} \bigcap_{\{\mathcal{S} \mid \mathcal{S} \subseteq A \times A, \ \mathcal{R} \subseteq \mathcal{S}, \ \mathcal{S} \ \text{relation d'équivalence}\}} \mathcal{S}$.
- Soit \mathcal{R} " $\subseteq A \times A$ définie par : \mathcal{R} " $\stackrel{def}{=} (\mathcal{R} \cup \mathcal{R}^{-1} \cup Id)^+$.
- 1. Prouver que les trois définitions sont equivalentes, c.a.d. que $R^e = \mathcal{R}' = \mathcal{R}''$.
- 2. Écrire en Python une fonction **constRe** qui construit dans la relation Re la plus petite relation d'équivalence qui contient \mathcal{R} .

Exercice 20

Soit $\mathcal{R} \subseteq A \times A$ une relation d'équivalence quelconque. Pour tout élément $x \in A$ on définit $[x] \stackrel{def}{=} \{y \mid x\mathcal{R}y\}$. Soit $A/\mathcal{R} \stackrel{def}{=} \{[x] \mid x \in A\}$. Montrer les assertions suivantes (où $x, y \in A$ sont quelconques).

- $x \in [x]$.
- $y \in [x]$ si et seulement si [x] = [y].
- [x] = [y] ou $[x] \cap [y] = \emptyset$.

Conclure que A/\mathcal{R} est une partition de A (appelée ensemble quotient de A par rapport à la relation d'équivalence \mathcal{R}).

Exercice 21

Pour chacune des relations suivantes, montrez qu'elles sont des relations d'équivalence et précisez l'ensemble quotient.

- la relation $Eq \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $Eq \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, a=b\}.$
- la relation $Abs \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $Abs \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, \ a^2 = b^2\}.$
- la relation $Parite \subseteq \mathbb{N} \times \mathbb{N}$ définie par $Parite \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{N}, (a-b) \equiv 0 \pmod{2}\}.$
- la relation $\mathcal{R}_5 \subseteq \mathbb{N} \times \mathbb{N}$ définie par $\mathcal{R}_5 \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{N}, (a-b) \equiv 0 \pmod{5}\}.$
- la relation $\mathcal{R}_1 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_1 \stackrel{def}{=} \{(a, a), (b, b), (b, c), (c, b), (c, c)\}.$
- la relation $\mathcal{R}_2 \subseteq \{a,b,c\} \times \{a,b,c\}$ définie par $\mathcal{R}_2 \stackrel{def}{=} \{(a,a),(b,b),(c,c)\}.$
- la relation $\mathcal{R}_3 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_3 \stackrel{def}{=} \{(a, a), (b, b), (b, c), (c, b), (c, c), (a, b), (b, a), (a, c), (c, a)\}.$

Exercice 22

Soit $\mathcal{R} \subseteq A \times A$ une relation quelconque. Rappel: \mathcal{R} est une relation d'ordre si et seulement si \mathcal{R} est reflexive, anti-symétrique et transitive. \mathcal{R} est une relation d'ordre totale si et seulement si \mathcal{R} est une relation d'ordre, et $\forall x, y \in A$, soit $x\mathcal{R}y$, soit $y\mathcal{R}x$.

Pour chacune des relations suivantes, précisez si elles sont des relations d'ordre ou relations d'ordre totale

- la relation $Eq \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $Eg \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, \ a=b\}.$
- la relation $Abs \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $Abs \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, a^2 = b^2\}.$
- la relation $\mathcal{R}_1 \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $\mathcal{R}_1 \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}.$
- la relation $\mathcal{R}_2 \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $\mathcal{R}_2 \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, a \text{ est un diviseur de } b\}.$
- la relation $Inc \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ définie par $Inc \stackrel{def}{=} \{(A, B) \mid A, B \subseteq \mathbb{N}, A \subseteq B\}.$
- la relation $\mathcal{R}_3 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_3 \stackrel{def}{=} \{(a, a), (b, b), (b, c), (c, b), (c, c)\}.$
- la relation $\mathcal{R}_4 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_4 \stackrel{def}{=} \{(a, a), (b, b), (b, a), (b, c), (c, c)\}.$
- la relation $\mathcal{R}_5 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_5 \stackrel{def}{=} \{(a, a), (b, b), (c, b), (b, a), (c, c)\}.$
- la relation $\mathcal{R}_6 \subseteq \{a,b,c\} \times \{a,b,c\}$ définie par $\mathcal{R}_6 \stackrel{def}{=} \{(a,a),(b,b),(c,b),(b,a),(c,c),(c,a)\}.$
- la relation $\mathcal{R}_7 \subseteq \{a,b,c\} \times \{a,b,c\}$ définie par $\mathcal{R}_7 \stackrel{def}{=} \{(a,a),(b,b),(a,b),(c,b),(c,c)\}.$
- la relation $\mathcal{R}_8 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_8 \stackrel{def}{=} \{(a, a), (b, b), (a, b), (c, c)\}.$

Exercice 23

Pour cet exercice, vous avez le droit de réutiliser les fonctions déjà écrites lors des TDs précédents.

- Écrire en Python un prédicat **testOp** qui teste si une relation $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$ est une relation d'ordre.
- Écrire en Python un prédicat **testOt** qui teste si une relation $R \subseteq A \times A$ où $A = \{0, \dots, A-1\}$ est une relation d'ordre totale.
- Écrire en Python un prédicat **eMinim** qui étant donnée une relation d'ordre $R \subseteq A \times A$, retourne un élément minimal $x \in \{0, \dots, A-1\}$, c.a.d. tel que il n'y a pas de $y \in \{0, \dots, A-1\}$ "plus petit" que x (satisfaisant yRx).

Exercice 24

Soit $\mathcal{R} \subseteq A \times B$ une relation quelconque. Rappel:

- \mathcal{R} est **totale** si et seulement si chaque élément du premier (appelé ensemble de départ ou source) est relié à au moins un élément du second (appelé ensemble d'arrivée), c.a.d. $\forall x \in A, \exists y \in B$ tel que $x\mathcal{R}y$.
- \mathcal{R} est une fonction si et seulement si chaque élément de l'ensemble de départ est relié à au plus un élément de l'ensemble d'arrivée, c.a.d. $\forall x \in A, \forall y_1, y_2 \in B$, si $x\mathcal{R}y_1$ et $x\mathcal{R}y_2$, alors $y_1 = y_2$.
- \mathcal{R} est une application si et seulement si \mathcal{R} est une fonction totale (c.a.d. \mathcal{R} est totale et fonction).

- \mathcal{R} est **injective** si et seulement si pour chaque élément de l'ensemble d'arrivée, il existe au plus un antécédent dans l'ensemble de départ, c.a.d. $\forall y \in B, \forall x_1, x_2 \in A, \text{ si } x_1 \mathcal{R} y \text{ et } x_2 \mathcal{R} y,$ alors $x_1 = x_2$.
- \mathcal{R} est surjective si et seulement si pour chaque élément de l'ensemble d'arrivée, il existe au moins un antécédent dans l'ensemble de départ, c.a.d. $\forall y \in B, \exists x \in A$ tel que $x\mathcal{R}y$.
- \mathcal{R} est bijective si et seulement si \mathcal{R} est une application injective et surjective.

Pour chacune des relations suivantes, précisez les propriétés (parmi totale, injective, surjective, application, bijective) qu'elle satisfait:

- la relation $Succ \subseteq \mathbb{N} \times \mathbb{N}$ définie par $Succ \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{N}, \ b=a+1\}.$
- la relation $Double \subseteq \mathbb{N} \times \mathbb{N}$ définie par $Double \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{N},\ b=2*a\}.$
- la relation $Abs \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $Abs \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, a^2 = b^2\}.$
- la relation $\mathcal{R}_1 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_1 \stackrel{def}{=} \{(a, a), (b, b), (b, c), (c, b), (c, c)\}.$
- la relation $\mathcal{R}_2 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_2 \stackrel{def}{=} \{(a, b), (b, c), (c, a)\}.$
- la relation $\mathcal{R}_3 \subseteq \{a,b,c\} \times \{a,b,c\}$ définie par $\mathcal{R}_3 \stackrel{def}{=} \{(a,a),(b,b),(c,b)\}.$
- la relation $\mathcal{R}_4 \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $\mathcal{R}_4 \stackrel{def}{=} \{(a,b) \mid a,b \in \mathbb{Z}, 1 + (a \times b) \geq a + b\}.$

Exercice 25

Soit l'ensemble des propriétés $\mathcal{P} \stackrel{def}{=} \{ \text{totale, injective, surjective, application, bijective} \}$. Soit $\mathcal{R}_1 \subseteq A \times B$ et $\mathcal{R}_2 \subseteq B \times C$ deux relations quelconques. Soit $p \in \mathcal{P}$ une propriété. Validez (c.a.d. donnez une preuve) ou invalidez (c.a.d. donnez un contre-exemple) chacune des assertions suivantes:

- Si \mathcal{R}_1 a la propriété p, alors \mathcal{R}_1^{-1} a aussi la propriété p.
- Si $\mathcal{R}_1, \mathcal{R}_2$ ont la propriété p, alors $\mathcal{R}_2 \circ \mathcal{R}_1$ a aussi la propriété p.
- Si $\mathcal{R}_2 \circ \mathcal{R}_1$ a la propriété p, alors $\mathcal{R}_1, \mathcal{R}_2$ ont aussi la propriété p.

Exercice*** 26

Soit A un ensemble quelconque. On note par $\mathcal{P}(A)$ l'ensemble des sous-ensembles (parties) de l'ensemble A, c.a.d. $\mathcal{P}(A) \stackrel{def}{=} \{X \mid X \subseteq A\}$.

- Montrer qu'il une fonction surjective f de $\mathcal{P}(A)$ vers A.
- Montrer qu'il n'existe pas de fonction surjective g de A vers $\mathcal{P}(A)$.