Teoretická informatika

Na pomezí mezi matematikou a "computer science"

Konečné automaty

Konečný automat je abstraktní systém s konečným počtem stavů, na jehož vstup přicházejí symboly vstupní abecedy a KA na ně reaguje přechodem do následujícího stavu.

3 typy konečných automatů: rozpoznávací ("rozsvítí se jedna žárovka" odpověď ano/ne)

klasifikační ("rozsvítí se jedna žárovka z n" 1 odpověď z více možností)

s výstupní funkcí (přeloží vstupní řetězec na výstupní)

Rozpoznávací KA

Každá pětice A = (Q, Σ , δ , q_0 , F), kde:

Q – konečná, neprázdná, množina stavů

Σ – konečná neprázdná množina vstupních symbolů

δ – přechodová funkce, δ: Q × Σ → Q

q₀ z Q – počáteční stav

F podmnožinou Q – množina koncových stavů

O každém vstupním řetězci vydává odpověď ANO/NE

Klasifikační KA

Každá pětice A = (Q, Σ , δ , q_0 , {Q_i})

Q_i – rozklad množiny stavů

Každý řetězec zařadí do jedné z n tříd (Umělá inteligence a rozpoznávání – klasifikace podle příznaků)

S výstupní funkcí

Každý A = $(Q, \Sigma, O, \delta, q_0, \lambda)$

λ – výstupní funkce (zobrazení)

Vstupní řetězec transformuje na výstupní řetězec (logické řízení)

 λ : Q x Σ -> O (Mealy) Pulzní výstupy

λ: Q -> O (Moore) Hladinové výstupy

KA lze reprezentovat:

- Tabulkou
- Stavovým diagramem (přechodovým grafem)
- Stavovým stromem

Př.:

 $Q = \{q0,q1,q2,q3\}$ (množina stavů)

 $\Sigma = \{0,1\}$ (množina vstupních symbolů)

q0 (počáteční stav)

F = {q1,q2} (množina konečných stavů)

přechodové funkce:

$\delta(q_0,0)=q_0$	$\delta(q_0, 1) = q_2$
$\delta(q_1, 0) = q_1$	$\delta(q_1, 1) = q_3$
$\delta(q_2,0)=q_1$	$\delta(q_2, 1) = q_3$
$\delta(q_3, 0) = q_1$	$\delta(q_3, 1) = q_3$

ABULKA:	0	1
-> 90	90	9/2
< 9n	91	9/3
@ 92	90	9/3
43	90	9/3

Ekvivalence automatů

Dva automaty jsou ekvivalentní, jestliže předepisují stejné zobrazení tak, že ke každému automatu A existuje ekvivalentní stav automatu B a obráceně.

Konfigurace C konečného automatu

Konfigurace C konečného automatu A je uspořádaná dvojice

$$C = (q, w), (q, w) \in Q \times \Sigma^*$$

kde q je aktuální stav a ω je dosud nezpracovaná část vstupního řetězce.

Počáteční konfigurace – konfigurace (q₀, ω)

Koncová konfigurace – konfigurace (q_F, e)

Přechod automatu M = binární relace v množině konfigurací

$$\underset{M}{\vdash}\subseteq (Q\times \Sigma^*)\times (Q\times \Sigma^*)$$

$$(q,w) \underset{M}{\vdash} (q',w') \overset{def.}{\iff} w = aw' \ \land \ q' \in \delta(q,a) \ \operatorname{pro} q, q' \models Q, a \in \Sigma, w, w' \in \Sigma^*$$

Teorie jazyků

Abeceda (Σ)

- libovolná konečná neprázdná množina prvků, které nazveme symboly abecedy (písmena)

Řetězec

- (slovo, věta) každá konečná posloupnost prvků abecedy
- prázdný řetězec (e) je posloupnost, která neobsahuje žádný symbol

Uzávěr abecedy (Σ⁺)

- množina všech neprázdných řetězců vytvořených z písmen abecedy Σ

Iterace abecedy (Σ*)

- množina všech řetězců vytvořených z písmen abecedy Σ
- $-\Sigma^* = \Sigma^+ + \{e\}$

Operace nad řetězci

```
u = a_1 a_2 ... a_n

v = b_1 b_2 ... b_n
```

_ _

Zřetězení $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$

- zřetězení NENÍ komunikativní
- s prázdným řetězcem: eu = ue = u

Mocnina řetězce

$$\Sigma^* \times N_0 \rightarrow \Sigma^*$$

$$u^0 = e$$

$$u^1 = u$$

$$u^2 = u \times u$$

$$u^{n} = u^{n-1} \times u = u \times u^{n-1}$$

Reverze řetězce

$$\Sigma^* \rightarrow \Sigma^*$$

$$u = a_1 a_2 ... a_n$$

$$u^{R} = a_{n ...} a_{1} a_{2}$$

Délka řetězce

 $\Sigma^* \rightarrow N_0$

|u| = n

|e| = 0

Jazyk nad danou algebrou

Nechť Σ je konečná neprázdná abeceda. Jazykem L nazveme libovolnou množinu řetězců nad abecedou Σ . L je nadmnožinou Σ^* .

Operace nad jazyky

Pro jazyky existují stejné operace jako pro množiny.

Základní úloha teorie jazyků

- Zjistit, zda řetězec (ne)patří do daného jazyka.
- U přirozených jazyků algoritmicky nemožné
- U formálních jazyků (mající konečnou délku slov) lze syntaktickou analýzou řešit rozpoznávacím konečným automatem

Popis jazyka

- Akceptační (automatem, který jazyk rozpoznává; nemusí být konečný)
 - Každý rozpoznávací KA jednoznačně definuje jazyk (množina všech řetězců, které převedou automat z počátečního stavu do některého z konečných)
- Generativní (gramatikou = pravidly pro vytváření řetězců)
 - o Pomocí formálních pravidel popsat "správné řetězce"

Gramatiky

Gramatika G je uspořádaná čtveřice (N, T, S, P):

N – množina neterminálních symbolů

T – množina terminálních symbolů

S ∈ N – počáteční symbol

P – množina přepisovacích pravidel

Konvenční pravidla:

Obsahuje-li množina přepisovacích pravidel P pravidla tvaru:

a -> b, a->c, a->d, zapisujeme je: a ->b/c/d

a, b, c = terminální symboly

A, B, C = neterminální symboly

S = počáteční symbol

 α , θ , γ = přepisovací pravidla

Jazyk je "množina všech řetězců, které lze v gramatice odvodit".

Kamil říká, že w lze přepsat na z právě tehdy, když existuje posloupnost řetězců w_0 , w_1 , ..., w_n taková, že: $w = w_0 => w_1 => ... => w_n = z$. Tato posloupnost se nazývá odvozením délky n slova z ze slova w.

Chomského klasifikace gramatik

Typ 0 – obecné (neomezené) gramatiky:

$$\alpha \to \beta$$
 $\alpha \in (N \cup \Sigma)^* N(N \cup \Sigma)^*, \beta \in (N \cup \Sigma)^*$

Typ 1 – kontextové gramatiky:

$$\alpha A \beta o \alpha \gamma \beta$$
 $A \in N, \ \alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+$ nebo $S \to \varepsilon$, pakliže se S neobjevuje na pravé straně žádného pravidla

(Alternativní definice definující stejnou třídu jazyků: $\alpha \to \beta$, $|\alpha| \le |\beta|$ nebo $S \to \varepsilon$ omezené jako výše.)

Typ 2 – bezkontextové gramatiky:

$$A \to \alpha$$
 $A \in \mathbb{N}, \ \alpha \in (\mathbb{N} \cup \Sigma)^*$

Typ 3 – pravé lineární gramatiky:

$$A \to xB$$
 nebo $A \to x$ $A, B \in N, x \in \Sigma^*$

Gramatika je typu i, jestliže pro všechny přepisovací pravidla platí: P≥i. Pozor: Používáním pravých lineárních a levých lineárních přepisovacích pravidel vzniká gramatika typu 2.

Jazyk je typu i, jestliže existuje gramatika G typu i taková, že L = L(G). Může existovat gramatika nižšího typu, která generuje stejný jazyk jako gramatika stejného typu.

Typ jazyka

0 – syntaktický analyzátor; rekurzivně vyčíslitelný jazyk

1 – lineárně omezený automat; kontextový jazyk

2 – nedeterministický zásobníkový automat; bezkontextový jazyk

3 – konečný automat; regulární jazyk

Největší praktické využití mají jazyky typu 2, protože:

- Mají rozpracované metody překladu
- Pro vhodně navržené jazyky je syntaktická analýza deterministická
- Moderní vyšší programovací jazyky jsou typu 2

Jazyky typu 3

- K popisu objektů při rozpoznávání scény, akustickým signálům, ...
- Lexikální analýza (rozpoznávání klíčových slov, identifikátorů a konstant v programu)
- Je rozpoznatelný konečným automatem

 $\delta^*: Q \times \Sigma^* \to Q$ – zobecněná přechodová funkce definuje, jak automat zareaguje na celý řetězec. Zobecněná přechodová funkce je jednoznačně určena přechodovou funkcí δ . Platí:

 $D(\delta)$ je nadmnožinou $D(\delta^*)$ a $\delta^*(q,a) = \delta(q,a)$ pro všechna q z Q; a z Σ .

 δ^* se definuje rekurzivně z δ ...

Redukovaný automat

- Reprezentant třídy ekvivalentních automatů, který má minimální počet stavů.

Souvislosti gramatik, KA a jazyků

- Řetězec w je přijímán automatem M právě tehdy, když w ∈ L(M). V opačném případě je zamítnut. (Jazyk přijímaný automatem M je tvořen všemi řetězci, které automat M přijímá.)

нопином разкир :

G: S -> 0A | 1S | 2 A -> 0B | 1A B -> 05 | 1B

G DE ZREDITÉ GRANATIVA TYPU 3 (PRAVA' LIMEARNÍ).

HAZMÍN POLTUPEM:

- STAVY BUDOU OPPONIDAT METERHILAZ-
- VETUPY BUDDU ODPOVIDAT TERMINALMIN
- PRECHODOVOU PUNKCI ZKOMTRUUSE.
 ME NA ZAKLADE AMALUGIT

X → aY & P =>

8 PRECHOD

- PODATEOM CTAV BUDE DOPOU/DAT
 PODATEOMAN CYHBOLU
- HNOTINU KONCOWCH STAVU URCÍ-HE TAK, ZE

X > e & P => X & F

Where:

Ke každému řetězci generovaného gramatikou G existuje posloupnost přechodů konečného automatu M, která končí v koncovém stavu. L(G) = L(M). KA lze sestrojit pouze ke gramatikám typu 3 ve speciálním tvaru:

X -> aY

X -> e kde pro žádný neterminální symbol X neexistuje více než jedno pravidlo se stejným terminálem na pravé straně

V každé gramatice typu 3 existuje ekvivalentní gramatika s pravidly (výše), pokud je v regulárním tvaru.

Nedeterministický konečný automat

A = (Q,Z,J,S,F)

J: Q × (Zu{e}) → P(Q)

S: Q × (Zu{e}) → P(Q)

STAVU

THAT WAY NEDETERHINISHU:

1) NEDEDNO-RANGINE URUENY PODATECTURY

2) NEDEDNO-RANGINE PRECHODY

3) 2 - PRECHODY

25

RETEREC AKCEPTOVANY NKA:

SLOVO NO = 4,42.... Un E Z*

DE AKCEPTOVANO NKA ft;

EXISTUSE-LI POSLOUPMOST STAVI)

YO, Yn, I Yn

TAKOVA', ŽE

YO E S

YN E F

YN HA E D (YN, Xi+n)

KOY NKA AKCEPTUSE & 2.

KDYZ S n F # Ø

Ke každému nedeterministickému konečnému automatu existuje ekvivalentní konečný automat.

Reprezentace jazyků typu 3 pomocí regulárních výrazů

Regulární množina nad abecedou

- Taková množina řetězců, ke které existuje konečný automat, jenž ji rozpoznává.
- Regulární množiny nad abecedou lze definovat rekurzivně:
 - Prázdná množina je RM nad abc
 - {e} je RM nad abc
 - o {a} je RM nad abc
 - Jsou li P a Q nad abc potom:
 - Sjednocení P a Q je RM nad abc
 - PQ je RM nad abc
 - P* C* isou nad abc
 - Neexistují žádné RM nad abc (každou z elementárních RM (prvních 3) lze vytvořit konečným počtem aplikací (4a,4b,4c) pravidel.

Regulární výrazy lze definovat podobně jako RM. Př.:

RV ba*; RM všechna slova nad {a,b} začínající písmenem b následovaným pouze řetězcem {a}. Sestrojujeme pomocí rozkladu zobecněného přechodového grafu.

Přechod z NKA s e-hranami na deterministický KA. Pro každý stav vytvoříme množinu stavů, které jsou dosažitelné cestami z e-hran.

Úvod do teorie informace

Informace - poznatky o objektu, jevu, procesu, ...

Forma informace - text, obraz, řečový signál, ...

Nosič informace - elektrický signál, magnetizace, ...

Matematický model sdělovací soustavy

Zdroj informace - spojitý (zpráva reprezentována spojitou časovou funkcí)

- diskrétní (reprezentována řetězcem prvků nad abc)

Médium - spojitý(přenáší hodnoty z určitého intervalu)

- diskrétní (přenáší hodnoty z konečné množiny)

Kodér - převádí zprávy (řetězce prvků z abc zdroje) na řetězce prvků abc kanálu

Dekodér - provádí inverzní operaci ke kódování

Zdroj rušení - model vnějšího okolí, nežádoucí ovlivňování přenášením (uložením) zpráv

Zdroj může generovat pouze takové zprávy, které může příjemce vyhodnotit.

Diskrétní zdroj bez paměti

Vysílání jednotlivých znaků tvoří nezávislé jevy. To jaký je znak vysílán jako n-tý nezávisí na
 n-1 znacích vysílaných před ním.

Model diskrétního zdroje informace

Elementární entropie realizace Xi

 $H(X_i) = -\log_2 p(X_i)$

Elementární entropie realizace je vlastností konkrétní realizace.

Střední entropie náhodné veličiny X

$$H(X) = -\sum_{i=1}^{n} p(X_i) \cdot log_2 p(X_i)$$

Střední entropie je vlastností "celé" náhodné veličiny.

ELE DENTA'RM' IMPORTACE REQUIRED IN:

$$I(x_{i}) = H(x_{i}) = -\log_{1} f(x_{i}) \quad [817]$$

STOROM' INFORMACE D.N.V X

$$I(X) = H(X) = -\sum_{x=1}^{\infty} f(x_{i}) \cdot \log_{1} f(x_{i})$$
REDUNDANCE (LADRYTETMOST) EDIOJE EPRAV

$$\rho = 1 - \frac{M(X)}{\log_{1} m}$$

Kódování

- Přizpůsobit přenášené zprávy abecedě kanálu
- Zvýšit odolnost proti rušení (bezpečnostní kódy)
- Efektivněji využít média (komprese)
- Utajit informace (kryptování, šifrování)

Teorie kódování aplikuje lineární algebru, kombinatoriku, teorii grup, teorii čísel

A = zdrojová abeceda

B = kódová abeceda

Kódování znaků: K: A → B⁺

Kódování zpráv: $K^*: A^* \rightarrow B^*$ (K* je jednoznačně určeno pomocí K)

Podmínka jednoznačné dekódovatelnosti:

K* je prostým zobrazením

Blokové kódování

- Prosté kódování, při kterém mají všechny kódové značky stejnou délku (I).
- Každé blokové kódování je jednoznačně dekódovatelné (rozsekáním na l-tice).

Prefixové kódování

- Prosté kódování s nestejnou délkou kódových značek, kde žádná jiná značka není prefixem jiné značky.
- Každé prefixové kódování je jednoznačně dekódovatelné (stačí na to Mealyho KA).
- Lze jej dekódovat znak po znaku.
- Při kódování n znaky lze sestrojit prefixový kód právě tehdy, když platí:

$$n^{-d1} + n^{-d2} + ... + n^{-dn} \le 1 = KRAFTOVA NEROVNOST$$

MC Millanova věta

Pro každé jednoznačné dekódovatelné kódování platí Kraftova nerovnost.

Huffmanova konstrukce kódu s minimální střední délkou kódové značky

Vstup: A, p(A), B

Výstup: K: A \rightarrow B⁺, d(K) je minimální)

- 1) Seřadit prvky abecedy podle ppstí do nerostoucí posloupnosti
- 2) Rozdělit do skupin, začít od prvků s největší ppstí (skupiny mají s-1 prvků, poslední i s)
- 3) Sdružíme prvky v poslední skupině a skupinu zařadíme podle součtové psti do posloup.
- 4) Body 2) a 3) opakujeme, dokud nezískáme skupinu se součtem ppstí = 1
- 5) Zpětným chodem po větvích stromu přiřadíme kódové značky listům stromu.

(M)