110A HW7

Warren Kim

Winter 2024

Throughout this section, F is a field and F[x] is the ring of polynomials with F coefficients.

Question 1

Let $f, g, h \in F[x]$, and suppose f and g are relatively prime. Show that if f|h and g|h, we have fg|h.

Response

Proof: Let $f, g, h \in F[x]$ and suppose f and g are coprime. If $f \mid h$ and $g \mid h$, then h = fa for some $a \in F[x]$. Then we have $g \mid h = fa$, and since (f, g) = 1, we necessarily have that $g \mid a$; that is, a = gb for some $b \in F[x]$. Then we have h = fa = fgb, so $fg \cdot b = h$ and by definition, this means that $fg \mid h$.

Let $a, b \in F$ be distinct (i.e., $a \neq b$). Show that x - a and x - b (viewed as elements of F[x]) are relatively prime.

Response

Proof: Let d = (x - a, x - b). Then by definition, we have that $d \mid (x - a)$ and $d \mid (x - b)$; that is, x - a = dp and x - b = dq for some $p, q \in F[x]$. Then

$$(x-a) - (x-b) = dp - dq$$
$$a - b = dp - dq$$
$$a - b = d(p-q)$$

Now since $a \neq b$, we have that $a - b \neq 0$, so a - b is a unit; i.e. it has an inverse. Then

$$d(p-q) \cdot (a-b)^{-1} = (a-b) \cdot (a-b)^{-1}$$
$$d(p-q) \cdot (a-b)^{-1} = 1$$
$$d((p-q)(a-b)^{-1}) = 1$$

so $d \mid 1$. This implies that d = 1, so (x - a, x - b) = 1.

Let $f, g \in F[x]$ and suppose $g \neq 0$. Consider the set $S = \{f - gs | s \in F[x]\}$. Let $r \in S$ be of lowest degree. Show that $\deg(r) < \deg(g)$. (yes, we did this in class.)

Response

Proof: Let $f, g \in F[x]$ and suppose $g \neq 0$. Consider the set $S = \{f - gs : s \in F[x]\}$. Let $r \in S$ be of lowest degree. Then we can write r = f - gs. Suppose for the sake of contradiction that $\deg(r) \geq \deg(g)$. Then $r = \sum_{i=0}^{n} r_i x^i$ and $g = \sum_{i=0}^{m} g_i x^i$ where $n \geq m$. Since $\deg(r) = n, \deg(g) = m$, we have that $r_n \neq 0$ and $g_m \neq 0$; i.e. they are units. Now consider $t := r_n x^n \cdot (g_m x^m)^{-1} = r_n g_m^{-1} x^{n-m}$. Then

$$tg = \left(r_n g_m^{-1} x^{n-m}\right) \cdot \left(\sum_{i=0}^m g_i x^i\right) = \left(\sum_{i=0}^{m-1} r_n g_m^{-1} g_i x^{n-m+i}\right) + r_n x^n$$

SO

$$r - tg = \left(\sum_{i=0}^{n-1} r_i x^i\right) + r_n x^n - \left(\left(\sum_{i=0}^{m-1} r_n g_m^{-1} g_i x^{n-m+i}\right) + r_n x^n\right)$$
$$= \left(\sum_{i=0}^{n-1} r_i x^i\right) - \sum_{i=0}^{m-1} r_n g_m^{-1} g_i x^{n-m+i}$$

so $\deg(r-tg) \leq n-1 < n = \deg(r)$. But we have that r = f - gs, so we get

$$r - tg = (f - gs) - tg = f - g(s + t)$$

Since $s+t \in F[x]$, we have that $r-tg \in S$, but r was chosen to have the lowest degree and $\deg(r-tg) < \deg(r)$, a contradiction. Therefore, $\deg(r) < \deg(g)$.

Let $f \in F[x]$, $a \in F$, and suppose f(a) = 0 (that is, when plugging in a for x in f, we obtain 0). Show that x - a divides f.

Response

Proof: Let $f, \in F[x], a \in F$, and suppose that f(a) = 0. We can write f = (x - a)q + r for unique $q, r \in F[x]$ where $\deg(r) < \deg(x - a) = 1$, which implies r is a constant. Then since r = f(a) = 0, we get f = (x - a)q + 0 = (x - a)q, so $(x - a) \mid f$.

Let $p \in F[x]$, and suppose whenever p = ab for $a, b \in F[x]$, we either have p|a or p|b. Show that p is irreducible (i.e., its only factors are units and associates).

Response

Proof: Let $p \in F[x]$ and $a \in F[x]$ a divisor of p. Then $a \mid p$, so p = ab for some $b \in F[x]$. There are two cases:

- Case 1: If $p \mid a$, then a = pq for some $q \in F[x]$, so we get p = ab = (pq)b. Since F[x] is an integral domain, we apply the cancellation property to the equation p = p(qb) to get 1 = qb. So, q, b are units, which implies that a and p are associates.
- Case 2: If $p \mid b$, then b = pr for some $r \in F[x]$. But we have that p = ab since $a \mid p$, so p = ab = a(pr). Since F[x] is an integral domain, we apply the cancellation property to the equation p = (ar)p to get 1 = ar, so a is a unit.

In either case, the only factors of p are units and associates, so p is irreducible.