Calculus II

Assignment 10

20180717

Student ID :	
1.	Solve the differential equation.
	$\frac{dy}{dx} = xe^{-y}$
2.	Find the solution of the differential equation that satisfies the given initial
	condition.
	$\frac{dy}{dx} = \frac{x}{y}, \ y(0) = -3$
3.	Find an equation of the curve that passes through the point $(0,1)$ and
	whose slope at (x, y) is xy .
4.	Solve the differential equation.

5. Solve the initial value problem. $t^3 \frac{dy}{dt} + 3t^2 y = \cos t, \ y(\pi) = 0$

 $y' - y = e^x$

Name : _

6. Use Euler's method with step size 0.5 to compute the approximate y-values y_1, y_2, y_3 , and y_4 of the solution of the initial-value problem $y' = y - 2x, \ y(1) = 0.$

Reading materials : Textbook (Calculus 6ed Stewart) Section $10.1 \sim 10.5,$ especially

- Section 10.1, Example 2.
- Section 10.2, Example 3.
- Section 10.3, Example 1, 2, 3.
- Section 10.5, Example 1, 2, 3.

Or alternate Textbook (Calculus Early Transcendentals 6ed Stewart) Section $9.1 \sim 9.5$, especially

- Section 9.1, Example 2.
- Section 9.2, Example 3.

- Section 9.3, Example 1, 2, 3.— Section 9.5, Example 1, 2, 3.