

Frequency Domain Identification via Sum-of-Rational Optimization

M. Abdalmoaty, J. Miller, M. Yin, and R.S. Smith Automatic Control Laboratory(IfA) and NCCR Automation, ETH Zurich, Switzerland

Introduction

Goal Parameter estimation of rational canonical LTI TF model through global optimization, in a prediction-error framework

Challenge Non-convexity: most available techniques only guarantee local solutions, and require good initialization (see [4, Ch.10] and [5, Ch.9])

Proposed approach

- Problem formulated in freq. domain as a non-convex rational optimization problem.
- Equivalently written as an infinite-dimensional LP in the space of finite nonnegative Borel measures.
- Moment-SOS hierarchy used to get finite SDPs.
- Global optimally certified a-posteriori: checking a rank condition.

2 Problem Overview

 $y_t = G(q; \theta)u_t + e_t,$ $G(q; \theta) = \frac{B(q; b)}{A(q; a)} = \frac{b_1 q^{-1} + \dots b_n q^n}{1 + a_1 q^{-1} + \dots a_n q^n}$ Model:

Parameters: $\theta = [a, b] \in \Theta$

Data set: $D_N = \{\omega_f, \hat{G}_f\}_{f=1}^N$ frequency-domain data;

e.g. $\hat{G}_f \equiv \mathsf{ETFE}$

Estimator:

$$\hat{\theta}_N := \arg\min_{\theta \in \Theta} \sum_{f=1}^N \left| W_f \left(\hat{G}_f - G(e^{j\omega_f}; \theta) \right) \right|^2 = \arg\min_{\theta \in \Theta} \sum_{f=1}^N \frac{p_f(\theta)}{q_f(a)}$$

 $W_f \neq 0$ are given weights,

$$p_f(\theta) = |W_f \hat{G}_f(1 + A(e^{-j\omega_f}; a)) - W_f B(e^{-j\omega_f}; b)|^2,$$

$$q_f(a) = |1 + A(e^{-j\omega_f}; a)|^2,$$

Degree-2 polynomials in θ

3 An Equivalent Infinite-dimensional LP

Sum-of-Rational optimization problem defining $\hat{\theta}_N$ is reformulated as LP on finite nonnegative Borel measures μ, ν_1, \dots, ν_N [1]

$$p^* = \inf \sum_{f=1}^{N_f} \langle p_f(\theta), \nu_f(\theta) \rangle$$

$$\langle 1, \mu \rangle = 1,$$

$$\mu, \nu_1, \dots, \nu_N \in \mathcal{M}_+(\Theta)$$

$$\forall (\alpha, \beta) \in \mathbb{N}^{2n}, \ f = 1, \dots, N$$

$$\langle a^{\alpha} b^{\beta} q_f(a), \nu_f(\theta) \rangle = \langle a^{\alpha} b^{\beta}, \mu(\theta) \rangle.$$

If Θ guarantees stability of $G(g;\theta)$, then $\forall (a,b) \in \Theta: q_f(a) > 0$,

$$p^* = \min_{\theta \in \Theta} \sum_{f=1}^{N} \left| W_f \left(\hat{G} - G(e^{j\omega_f}; \theta) \right) \right|^2$$

Such a Θ is defined via a polynomial matrix inequality in a (see [2]).

4 Hierarchy of SDPs

When Θ is a compact basic semi-algebraic set, a truncation of degree d using the Moment-SOS approach [3], gives an SDP

$$p_d^* = \inf_{y,y^f} \sum_{f=1}^N \mathbb{L}_{y^f}(p_f(\theta))$$

$$y_0 = 1$$

$$\forall (\alpha,\beta) \in \mathbb{N}_{2d}^n, f = 1, \dots, N$$

$$\mathbb{L}_{y^f}(a^{\alpha}b^{\beta}q_f(a)) = \mathbb{L}_y(a^{\alpha}b^{\beta})$$

$$\mathbb{M}_d[\Theta y], \forall f : \mathbb{M}_{d+1}[\Theta y^f] \succeq 0$$

- Size of the largest LMI is independent of N;
- $p_d^* \to p^*$ as $d \to \infty$ (if Θ has the stability constraint)
- Exploit *term-sparsity*: q_f does not depend on b
- Solution recovery $\hat{\theta}_N$ under rank-condition on $\mathbb{M}_d[\Theta y]$

5 Preliminary Results

Monte Carlo: sampled gains $\hat{G}_f = G(e^{j\omega}; \theta_\circ) + E_f, \quad E_f \stackrel{\text{iid}}{\sim} \mathcal{CN}(0, 0.1^2)$

Extensions

- Continuous-time models: with band-limited inputs by minimizing $\sum_{f=1}^{N} |W_f(\hat{G} - G(\Omega_f; \theta))|^2$; includes fractional-order models.
- Closed-loop identification: by modifying p_f and q_f using a known controller and reference signal.
- *Min-Max estimation* by solving $\min_{\theta \in \Theta} \max_{f \in 1..N_f} |W_f \left(G_f G(e^{j\omega_f})\right)|^2$

Conclusion

- Frequency-domain formulation \equiv global rational optimization problem that can be solved via a multi-measure approach
- Several extensions possible

References

[1] F. Bugarin, D. Henrion, and J.B. Lasserre. Minimizing the sum of many rational functions. Mathematical Programming Computation,

8(1):83–111, 2016.

[2] D. Henrion and J.B. Lasserre. Inner approximations for polynomial matrix inequalities and robust stability regions. IEEE TAC, 57(6):1456–1467,

[3] J.B. Lasserre. Moments, Positive Polynomials And Their Applications. World Scientific Publishing Company, 2009.

[4] L. Ljung. System Identification: Theory for the User. Pearson Education, 1999.

[5] R. Pintelon and J. Schoukens. System identification: a frequency domain approach. John Wiley & Sons, 2012.