DIFFERENTIAL PRIVACY - 1

- 1. Which of the following methods is the best method to efficiently protect the data to preserve the privacy of the users?
 - a. Anonymization
 - b. Cryptographical Solution
 - c. Statistical solution
 - d. Data Compression
 - e. Data Duplication
- 2. Between a randomized response (with epsilon>0) and a fair coin toss response, which algorithm would you use to preserve privacy but have a better utility?
 - a. Randomized response because the chance of falsehood is 50%
 - b. Randomized response because the chance of truth is greater than 50%
 - c. Randomized response because the chance of falsehood is greater than 50%
 - d. Coin toss response because the chance of falsehood is 50%
 - e. Coin toss response because the chance of truth is greater than 50%
 - f. Coin toss response because the chance of falsehood is greater than 50%
- 3. Consider the equation in the context of privacy guarantees (The notations used are the same as used during the lecture).

$$P(RR(x') = b) * e^{-\varepsilon} \le P(RR(x) = b) \le P(RR(x') = b) * e^{\varepsilon}$$

To maximize the privacy gains, which of the following values should be changed and how?

- a. ε should be maximum for privacy, ε should be minimum for utility
- b. ε should be minimum for privacy, ε should be minimum for utility
- c. ε should be maximum for privacy, ε should be maximum for utility
- d. ε should be minimum for privacy, ε should be maximum for utility
- e. ε is unrelated

- 4. Consider the below values:
 - $X = \{x1, x2,, xN\}$ is the truth of an experiment
 - $Y = \{y1, y2,....yN\}$ is the revealed values instead of the truth

To identify the average of truth, Y as an estimator cannot be used for the process by which it was obtained. You derive new values Z where $Z = \{z1, z2,zN\}$ from Y which are better estimators of X. How do you arrive at the values Z?

- a. Removing the bias from Y introduced through the random process
- b. Adding the bias to Y removed through the random process
- c. Removing the variance from Y introduced through the random process
- d. Adding the variance to Y removed through the random process
- 5. If ε is fixed, given a privacy guarantee, to improve the utility, which of the following values can be modified?
 - a. Increase the number of experiments
 - b. Increase the amount of randomness
 - c. Increase the amount of bias introduced in the random process
 - d. Increase the amount of variance introduced in the random process
- 6. Identify the equation for the ε -differential mechanism (The notations used are the same as used during the lecture):

a.
$$\frac{P(M(x) \in S)}{P(M(x') \in S)} \le e^{\varepsilon}$$

b.
$$\frac{P(M(x') \in S)}{P(M(x') \in S)} \le e^{\varepsilon}$$

c.
$$\frac{P(M(x)\in S)}{P(M(x)\in S)} \le e^{\varepsilon}$$

d.
$$\frac{P(M(x) \in S)}{P(M(x') \in S)} \ge e^{\varepsilon}$$

e.
$$\frac{P(M(x') \in S)}{P(M(x') \in S)} \ge e^{\varepsilon}$$

f.
$$\frac{P(M(x) \in S)}{P(M(x) \in S)} \ge e^{\varepsilon}$$

- 7. Identify the correct scenario in the case of differential privacy
 - a. Trust the curator; Trust the world
 - b. Do not trust the curator; Trust the world
 - c. Trust the curator; Do not trust the world
 - d. Do not trust the curator; Do not trust the world
- 8. Identify all the values representing sensitivity in a laplacian mechanism where the function under consideration is an average of n binary values {0,1} (The notations used are the same as used during the lecture).
 - a. $\frac{1}{n}$
 - b. $\frac{1}{n} |x_n' x_n|$
 - c. **ε**
 - d. $\frac{\varepsilon}{n}$
 - e. $\frac{-1}{n}$
 - f. $\frac{\Delta}{\epsilon}$
- 9. Identify the distribution from which the noise is derived in a laplacian mechanism. The representation is of the form Laplacian(a,b) where a is the mean and b is the spread parameter. (The notations used are the same as used during the lecture)
 - a. laplacian $(1, \frac{\Delta}{\epsilon})$
 - b. $laplacian(\frac{\Delta}{\epsilon}, 0)$
 - c. $laplacian(\frac{\Delta}{\epsilon}, 1)$
 - d. laplacian $(0, \frac{\Delta}{\epsilon})$
 - e. laplacian(1,1)
 - f. laplacian(0,0)

- 10. Higher privacy guarantees can be achieved in which of the following scenarios? Identify all the possible scenarios.
 - a. Epsilon should be high
 - b. Inverse Sensitivity should be high
 - c. Variance should be high
 - d. Noise should be high
 - e. Utility should be high
- 11. Identify the deviation of the value from the truth in the scenario of a laplacian mechanism. (The notations used are the same as used during the lecture).
 - a. $O(\frac{1}{\epsilon n})$
 - b. $O(\frac{n'}{\varepsilon n})$
 - c. $O(\frac{\varepsilon}{n})$
 - d. $O(\frac{e}{\epsilon n})$
 - e. $O(\varepsilon n)$
- 12. In the scenario of a privacy-utility trade-off, for fixed privacy, the number of samples required for a particular utility varies between the Laplacian mechanism and Randomized response is different by what factor?
 - a. Constant factor
 - b. Linear factor
 - c. Exponential factor
 - d. Logarithmic factor
 - e. Quadratic factor