My Project

Generated by Doxygen 1.8.6

Tue Aug 14 2018 10:56:33

Contents

1	Clas	s Index			1
	1.1	Class I	List		1
2	File	Index			3
	2.1	File Lis	st		3
3	Clas	s Docu	mentation		5
	3.1	Consta	antGridSol	ver Class Reference	5
		3.1.1	Construc	tor & Destructor Documentation	5
			3.1.1.1	ConstantGridSolver	5
			3.1.1.2	~ConstantGridSolver	5
			3.1.1.3	ConstantGridSolver	6
		3.1.2	Member	Function Documentation	6
			3.1.2.1	calculateEM	6
			3.1.2.2	calculateEP	6
			3.1.2.3	calculateS	7
			3.1.2.4	calculateT	8
			3.1.2.5	calculateU	9
			3.1.2.6	fwdIteration	10
			3.1.2.7	modifyCCnj	11
			3.1.2.8	saveS	11
			3.1.2.9	setParameters	12
			3.1.2.10	solveForEnergies	12
	3.2	Nonco	nstantGrid	Solver Class Reference	12
		3.2.1	Member	Function Documentation	13
			3.2.1.1	calculateEM	13
			3.2.1.2	calculateEP	13
			3.2.1.3	fwdlteration	14
			3.2.1.4	generateGrid	15
			3.2.1.5	modifyCCnj	15
			3.2.1.6	Q	16
			2017	T	16

iv CONTENTS

		3.2.1.8	U
3.3	Param	eters Clas	s Reference
	3.3.1	Construc	etor & Destructor Documentation
		3.3.1.1	Parameters
		3.3.1.2	~Parameters
		3.3.1.3	Parameters
	3.3.2	Member	Function Documentation
		3.3.2.1	checkNumberOfRowsInFile
		3.3.2.2	FRIEND_TEST
		3.3.2.3	FRIEND_TEST
		3.3.2.4	FRIEND_TEST
		3.3.2.5	FRIEND_TEST
		3.3.2.6	FRIEND_TEST
		3.3.2.7	FRIEND_TEST
		3.3.2.8	FRIEND_TEST
		3.3.2.9	FRIEND_TEST
		3.3.2.10	FRIEND_TEST
		3.3.2.11	FRIEND_TEST
		3.3.2.12	FRIEND_TEST
		3.3.2.13	getB
		3.3.2.14	getDx
		3.3.2.15	getE
		3.3.2.16	getGrid_points_per_lambda
		3.3.2.17	getNChannels
		3.3.2.18	getNE
		3.3.2.19	getNSymmetries
		3.3.2.20	getUnit
		3.3.2.21	getV
		3.3.2.22	getVMatrix
		3.3.2.23	getXMax
		3.3.2.24	getXMin
		3.3.2.25	getXValues
		3.3.2.26	ld
		3.3.2.27	isOpen
		3.3.2.28	kappa
		3.3.2.29	kappa
		3.3.2.30	lambda
		3.3.2.31	loadB
		3.3.2.32	loadE
		3.3.2.33	loadParams

CONTENTS

			3.3.2.34	loadV	22
			3.3.2.35	NX	23
			3.3.2.36	requiredDx	23
			3.3.2.37	setXValues	23
			3.3.2.38	\mathbf{x}	23
		3.3.3	Friends A	And Related Function Documentation	23
			3.3.3.1	Parameters_getV_Test	23
			3.3.3.2	Parameters_isOpen_Test	23
			3.3.3.3	Parameters_kappaDouble_Test	23
			3.3.3.4	Parameters_kappaInt_Test	23
			3.3.3.5	Parameters_lambda_Test	23
			3.3.3.6	Parameters_loadV_Test	23
			3.3.3.7	Parameters_requiredDX_Test	24
4	File	Docume	entation		25
	4.1	Consta	ıntGridSolv	ver.cpp File Reference	25
		4.1.1	Detailed I	Description	25
	4.2	Consta	ıntGridSolv	ver.h File Reference	25
		4.2.1	Detailed I	Description	26
	4.3	main.c	pp File Ref	ference	26
		4.3.1	Function	Documentation	27
			4.3.1.1	main	27
			4.3.1.2	read_file	27
	4.4	Nonco	nstantGrid	Solver.cpp File Reference	28
	4.5	Nonco	nstantGrid	Solver.h File Reference	28
	4.6	Parame	eters.cpp F	File Reference	29
		4.6.1	Detailed I	Description	29
	4.7	Parame	eters.h File	Reference	29
		4.7.1	Detailed I	Description	30
	4.8	Solver_	_z_liczenie	em_psi.cpp File Reference	30
		4.8.1	Detailed I	Description	31

32

Index

Chapter 1

Class Index

4	4		NI -		1	: -4
1	. 1	(มล	22		IST

Here are the classes, structs, unions and interfaces with brief descriptions:		
ConstantGridSolver	Ę	
NonconstantGridSolver	12	

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

ConstantGridSolver.cpp
Definitions of ConstantGridSolver class methods
ConstantGridSolver.h
Definition of ConstantGridSolver class
main.cpp
NonconstantGridSolver.cpp
NonconstantGridSolver.h
Parameters.cpp
Definitions of Parameters class methods
Parameters.h
Definition of Parameters class
Solver_z_liczeniem_psi.cpp
Definitions of Solver class methods

File Index

Chapter 3

Class Documentation

3.1 ConstantGridSolver Class Reference

```
#include <ConstantGridSolver.h>
```

Public Member Functions

```
    arma::cx_mat calculateT (int j, double E) const
```

Calculates $T(x_i, E)$ matrix.

arma::cx_mat calculateU (int j, double E)

Calculates $U(x_i, E)$ matrix.

• arma::cx_mat calculateEP (int j, double E)

Calculates $\mathbf{E}^+(x_i, E)$ matrix.

arma::cx_mat calculateEM (int j, double E)

Calculates $\mathbf{E}^-(x_j, E)$ matrix.

• void modifyCCnj (arma::cx_mat &n1, arma::cx_mat &n0, arma::cx_mat &j1, arma::cx_mat &j0, double E)

Modifies closed channels elements.

arma::cx_mat fwdIteration (const arma::cx_mat &B, double E)

Iterates Numerov algorithm forward up to N-1 and returns \mathbf{R}_{N-1} matrix for a given energy.

arma::cx_mat calculateS (const arma::cx_mat R_N, double E)

Calculates S matrix for given \mathbf{R}_{N-1} .

void saveS (const arma::cx_mat &S, const int E, const std::string directory)

Saves S matrix (Im and Re part separately).

- void setParameters (const Parameters ¶meters)
- ConstantGridSolver ()=default
- \sim ConstantGridSolver ()=default
- ConstantGridSolver (const Parameters ¶ms)

Constructor.

void solveForEnergies (std::string directory)

Performs Numerov calculations for a given set of parameters for all energies.

3.1.1 Constructor & Destructor Documentation

```
3.1.1.1 ConstantGridSolver::ConstantGridSolver() [default]
```

3.1.1.2 ConstantGridSolver::~ConstantGridSolver() [default]

3.1.1.3 ConstantGridSolver::ConstantGridSolver (const Parameters & params) [explicit]

Constructor.

3.1.2 Member Function Documentation

3.1.2.1 arma::cx_mat ConstantGridSolver::calculateEM (int j, double E)

Calculates $\mathbf{E}^-(x_i, E)$ matrix.

This method calculates E^- matrix for for a given point x_j on the grid and given energy. The matrix is diagonal and its elements are calculated the following way:

- $\mathbf{E}_{n,n}^-(x_j,E) = \exp(-ikx_j)$ if channel n is open
- $\mathbf{E}_{n,n}^-(x_j,E) = \cosh(kx_j)$ if channel n is closed
- $\mathbf{E}_{n,m}^-(x_j,E) = 0$ for $n \neq m$

Parameters

j	- index of the value on the grid
Ε	- energy

Returns

$$\mathbf{E}^-(x_i, E)$$

Exceptions

std::invalid_argument	if j is wrong

Here is the call graph for this function:

3.1.2.2 arma::cx_mat ConstantGridSolver::calculateEP (int j, double E)

Calculates $\mathbf{E}^+(x_i, E)$ matrix.

This method calculates \mathbf{E}^+ matrix for for a given point x_j on the grid and given energy. The matrix is diagonal and its elements are calculated the following way:

• $\mathbf{E}_{n,n}^+(x_j,E) = \exp(ikx_j)$ if channel n is open

- $\mathbf{E}_{n,n}^+(x_j,E) = \sinh(kx_j)$ if channel n is closed
- $\mathbf{E}_{n,m}^+(x_j,E)=0$ for $n\neq m$

Parameters

j	- index of the value on the grid
Ε	- energy

Returns

$$\mathbf{E}^+(x_i,E)$$

Exceptions

std::invalid_argument	if j is wrong

Here is the call graph for this function:

3.1.2.3 arma::cx_mat ConstantGridSolver::calculateS (const arma::cx_mat R_N, double E)

Calculates S matrix for given \mathbf{R}_{N-1} .

This method calculates the scattering matrix $\mathbf{S}(E)$. Its value is given by

$$\mathbf{S} = (\mathbf{R}_{N-1}\mathbf{e}_{N-1}^{+} - \mathbf{e}_{N}^{+}) - 1(\mathbf{R}_{N-1}\mathbf{e}_{N-1}^{-} - \mathbf{e}_{N}^{-})$$
(3.1)

where $\mathbf{e}_i^{\pm} = (\mathbf{I} - \mathbf{T}_i)\mathbf{E}_i^{\pm}$.

Parameters

R_N	- R _{N-1}
Ε	- energy

Returns

 \mathbf{S}

Exceptions

std::runtime_error	if there is a problem with calculating
--------------------	--

Here is the call graph for this function:

3.1.2.4 arma::cx_mat ConstantGridSolver::calculateT (int j, double E) const

Calculates $T(x_j, E)$ matrix.

This method calculates T matrix for a given point x_j on the grid and given energy according to the formula:

$$\mathbf{T}_{j} = -\frac{dx}{12}\mathbf{Q}_{j}. (3.2)$$

j	- index of the value on the grid
Е	- energy

Returns

$$\mathbf{T}(x_i, E)$$

Exceptions

std::invalid_argument	if the index j is wrong

Here is the call graph for this function:

3.1.2.5 arma::cx_mat ConstantGridSolver::calculateU (int j, double E)

Calculates $U(x_i, E)$ matrix.

This method calculates \mathbf{U} matrix for given index j using the set of parameters provided to the ConstantGridSolver object according to the following formula:

$$\mathbf{U}_j = 12(\mathbf{I} - \mathbf{T}_j)^{-1} - 10\mathbf{I}.$$
 (3.3)

in	j	- index on the grid of x value
in	E	- energy value

Returns

$$\mathbf{U}(x_i, E)$$

Exceptions

std::invalid_argument	if x_j does not exist

Here is the call graph for this function:

3.1.2.6 arma::cx_mat ConstantGridSolver::fwdIteration (const arma::cx_mat & B, double E)

Iterates Numerov algorithm forward up to N-1 and returns \mathbf{R}_{N-1} matrix for a given energy.

This method performs the Numerov iteration for a given energy for a case of some particular symmetry.

The initial value \mathbf{R}_0^{-1} :

- $\mathbf{R}_0^{-1} = \mathbf{0}$ if no symmetries
- + ${f R}_0^{-1} = {f U}_0^{-1}({f I} + {f B})$ if the symmetry is described by ${f B}$

Every value depends on the previous one: $\mathbf{R}_j = \mathbf{U}_j - \mathbf{R}_{j-1}^{-1}$.

in	В	- B matrix to calculate the initial value
in	Ε	- energy

Returns

 \mathbf{R}_{N-1}

Exceptions

std::invalid_argument	if \mathbf{U}_i cannot be calculated for given iteration i
std::runtime_error	

Here is the call graph for this function:

3.1.2.7 void ConstantGridSolver::modifyCCnj (arma::cx_mat & n1, arma::cx_mat & n0, arma::cx_mat & j1, arma::cx_mat & j0, double E)

Modifies closed channels elements.

Here is the call graph for this function:

3.1.2.8 void ConstantGridSolver::saveS (const arma::cx_mat & S, const int E, const std::string directory)

Saves S matrix (Im and Re part separately).

This method saves the scattering matrix in a given directory. The real and imaginary part of S are saved in separate files.

Paths:

 $Re(\mathbf{S})$: directory/re_SE.dat (E is the value of the energy) $Im(\mathbf{S})$: directory/im_SE.dat (E is the value of the energy)

S	- scattering matrix to be saved
Ε	- energy
directory	- where to save the files

- 3.1.2.9 void ConstantGridSolver::setParameters (const Parameters & parameters) [inline]
- 3.1.2.10 void ConstantGridSolver::solveForEnergies (std::string directory)

Performs Numerov calculations for a given set of parameters for all energies.

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- ConstantGridSolver.h
- · ConstantGridSolver.cpp

3.2 NonconstantGridSolver Class Reference

#include <NonconstantGridSolver.h>

Public Member Functions

- arma::cx_mat Q (double x, double E)
 - calculates ${f Q}$ matrix.
- arma::cx_mat T (double x, double E, double dx)
 - calculates T matrix for given x (uses interpolation from Parameters).
- arma::cx_mat U (double x, double E, double dx)
 - Calculates \mathbf{U} matrix for given \mathbf{x} (uses interpolation from Parameters).
- void modifyCCnj (arma::cx_mat &n1, arma::cx_mat &n0, arma::cx_mat &j1, arma::cx_mat &j0, double E)
 Modifies closed channels elements.
- arma::cx_mat calculateEP (double x, double E)
 - Calculates $\mathbf{E}^+(x,E)$ matrix.
- arma::cx mat calculateEM (double x, double E)
 - Calculates $\mathbf{E}^-(x,E)$ matrix.
- std::vector< double > generateGrid (double E)

• arma::cx_mat fwdIteration (const arma::cx_mat &B, double E, std::vector< double > grid) Iterates Numerov algorithm forward up to N-1.

3.2.1 Member Function Documentation

3.2.1.1 arma::cx_mat NonconstantGridSolver::calculateEM (double x, double E)

Calculates $\mathbf{E}^-(x,E)$ matrix.

This method calculates E^- matrix for for a given point x and given energy. The matrix is diagonal and its elements are calculated the following way:

- $\mathbf{E}_{n,n}^-(x,E) = \exp(-ikx)$ if channel n is open
- $\mathbf{E}_{n,n}^-(x,E) = \cosh(kx)$ if channel n is closed
- $\mathbf{E}_{n,m}^-(x,E) = 0$ for $n \neq m$

Parameters

X	
Е	- energy

Returns

$$\mathbf{E}^{-}(x,E)$$

Exceptions

std::invalid_argument	if j is wrong
-----------------------	---------------

Here is the call graph for this function:

3.2.1.2 arma::cx_mat NonconstantGridSolver::calculateEP (double x, double E)

Calculates $\mathbf{E}^+(x,E)$ matrix.

This method calculates \mathbf{E}^+ matrix for for a given point x and given energy. The matrix is diagonal and its elements are calculated the following way:

- $\mathbf{E}_{n,n}^+(x,E) = \exp(ikx)$ if channel n is open
- $\mathbf{E}_{n,n}^+(x,E) = \sinh(kx)$ if channel n is closed
- $\mathbf{E}_{n,m}^+(x,E) = 0$ for $n \neq m$

Parameters

Х	
Ε	- energy

Returns

$$\mathbf{E}^+(x,E)$$

Exceptions

std::invalid_argument	if x is wrong

Here is the call graph for this function:

3.2.1.3 arma::cx_mat NonconstantGridSolver::fwdIteration (const arma::cx_mat & B, double E, std::vector< double > grid)

Iterates Numerov algorithm forward up to N-1.

This method performs the Numerov iteration for a given energy for a case of some particular symmetry.

The initial value \mathbf{R}_0^{-1} :

- $\mathbf{R}_0^{-1} = \mathbf{0}$ if no symmetries
- + ${f R}_0^{-1} = {f U}_0^{-1}({f I} + {f B})$ if the symmetry is described by ${f B}$

Parameters

in	В	- B matrix to calculate the initial value
in	Ε	- energy

Returns

$$\mathbf{R}_{N-1}$$

Exceptions

std::invalid_argument	if \mathbf{U}_i cannot be calculated for given iteration i
std::runtime_error	

Here is the call graph for this function:

3.2.1.4 std::vector< double > NonconstantGridSolver::generateGrid (double $\it E$)

Calculates the grid points.

This method generates grid points for Numerov calculations based on the energy E and potential.

Parameters

E

Returns

Χ

Here is the call graph for this function:

3.2.1.5 void NonconstantGridSolver::modifyCCnj (arma::cx_mat & n1, arma::cx_mat & n0, arma::cx_mat & j1, arma::cx_mat & j0, double E)

Modifies closed channels elements.

Here is the call graph for this function:

3.2.1.6 arma::cx_mat NonconstantGridSolver::Q (double x, double E)

calculates Q matrix.

This method calculates \mathbf{Q} matrix for a given point x and given energy according to the formula:

$$\mathbf{Q}(x) = -\frac{1}{unit} \left(\mathbf{V}(x) - E\mathbf{I} \right). \tag{3.4}$$

Parameters

Х	
Ε	- energy

Returns

 $\mathbf{Q}(x,E)$

Here is the call graph for this function:

3.2.1.7 arma::cx_mat NonconstantGridSolver::T (double x, double E, double dx)

calculates T matrix for given x (uses interpolation from Parameters).

This method calculates T matrix for a given point x and given energy according to the formula:

$$\mathbf{T}(x) = -\frac{dx}{12}\mathbf{Q}(x). \tag{3.5}$$

X	
Е	- energy
dx	- the distance from the next point on the grid

Returns

$$\mathbf{T}(x,E)$$

Here is the call graph for this function:

3.2.1.8 arma::cx_mat NonconstantGridSolver::U (double x, double E, double dx)

Calculates **U** matrix for given x (uses interpolation from Parameters).

This method calculates \mathbf{U} matrix for given x using the set of parameters provided to the NonconstantGridSolver object according to the following formula:

$$\mathbf{U}(x) = 12(\mathbf{I} - \mathbf{T}(x))^{-1} - 10\mathbf{I}.$$
(3.6)

Parameters

in	X	
in	Ε	- energy value
	dx	- the distance from the next point on the grid

Returns

$$\mathbf{U}(x,E)$$

Exceptions

_			
ſ	std::invalid_argument	if x is out of range	

Here is the call graph for this function:

The documentation for this class was generated from the following files:

- · NonconstantGridSolver.h
- NonconstantGridSolver.cpp

3.3 Parameters Class Reference

#include <Parameters.h>

Public Member Functions

void loadParams (std::string="Params.txt")

Reading the values of parameters from the file generated in Mathematica.

void setXValues ()

Setting xValues.

- FRIEND_TEST (ParametersInputTest, setXValues_failsIfXMaxLessOrEqualXMin)
- FRIEND_TEST (ParametersInputTest, setXValues_failsIfInvalidDX)
- FRIEND TEST (ParametersInputTest, setXValues failsIfInvalidCombinationOfXMinXMaxDx)
- FRIEND TEST (ParametersInputTest, setXValues worksGoodForCorrectValues)
- void loadE (std::string filename="E.dat")

Reading the values of energies from the file generated in Mathematica.

void loadV (std::string filename="V.dat")

Reading the values of V from the file generated in Mathematica.

- FRIEND_TEST (Parameters_loadV_Test, failsForIncorrectNumberOfRows)
- FRIEND_TEST (Parameters_loadV_Test, worksGoodForGoodFileOneChannel)
- FRIEND_TEST (Parameters_loadV_Test, worksGoodForGoodFileTwoChannels)
- void loadB (std::string filename="B")

Reading the values of B from the file generated in Mathematica.

- FRIEND_TEST (ParametersInputTest, loadB_failsIfAnyFileDoesNotExistAndPositiveNSymmetries)
- FRIEND_TEST (ParametersInputTest, loadB_worksGoodForGoodFilesOneChannel)
- FRIEND TEST (ParametersInputTest, loadB failsIfAnyFileIsIncorrect)
- bool checkNumberOfRowsInFile (std::string filename, const int required_number_of_columns)
- Parameters ()=default
- ∼Parameters ()=default
- Parameters (std::vector< std::string > filenames)

From a given directory takes all the needed values and creates Parameters object.

· arma::cx_mat getVMatrix (int) const

V matrix for a given x_i.

- double getE (int) const
- · int NX () const
- double getXMin () const
- double getXMax () const
- double getDx () const
- double x (int i) const
- FRIEND TEST (ParametersOutputTest, x worksCorrectForNegativeIndices)
- · double getUnit () const
- int getNChannels () const
- int getNE () const
- arma::cx_mat getB (int i) const
- int getNSymmetries () const
- · int getGrid points per lambda () const
- arma::cx mat ld () const
- · bool isOpen (int nChannel, double energy) const

Check if the channel is open.

- double kappa (int n1, int n2, int i, double E) const
- double kappa (int n1, int n2, double x, double E) const
- arma::cx_mat getV (double x) const

Linear interpolation of V (works also for V given on non-constant grid if needed)

- double lambda (double x, double E) const
 de Broglie length for a given potential and x
- double requiredDx (double x, double E) const
- const std::vector< double > & getXValues () const

Friends

- class Parameters_loadV_Test
- class Parameters_isOpen_Test
- · class Parameters_kappaInt_Test
- class Parameters_kappaDouble_Test
- class Parameters_getV_Test
- class Parameters_lambda_Test
- class Parameters_requiredDX_Test

3.3.1 Constructor & Destructor Documentation

- **3.3.1.1 Parameters::Parameters()** [default]
- 3.3.1.2 Parameters:: \sim Parameters() [default]
- 3.3.1.3 Parameters::Parameters (std::vector < std::string > filenames) [explicit]

From a given directory takes all the needed values and creates Parameters object.

Here is the call graph for this function:

3.3.2 Member Function Documentation

- 3.3.2.1 bool Parameters::checkNumberOfRowsInFile (std::string filename, const int required number of columns)
- 3.3.2.2 Parameters::FRIEND_TEST (ParametersInputTest , setXValues_failsIfXMaxLessOrEqualXMin)
- 3.3.2.3 Parameters::FRIEND_TEST (ParametersInputTest , setXValues_failsIfInvalidDX)
- 3.3.2.4 Parameters::FRIEND_TEST (ParametersInputTest , setXValues_failsIfInvalidCombinationOfXMinXMaxDx)

```
Parameters::FRIEND_TEST ( ParametersInputTest , setXValues_worksGoodForCorrectValues )
        Parameters::FRIEND_TEST ( Parameters_loadV_Test , failsForIncorrectNumberOfRows )
3.3.2.6
        Parameters::FRIEND_TEST ( Parameters loadV Test , worksGoodForGoodFileOneChannel )
3.3.2.7
3.3.2.8
        Parameters::FRIEND_TEST ( Parameters | IoadV | Test |, worksGoodForGoodFileTwoChannels |)
        Parameters::FRIEND_TEST ( ParametersInputTest , loadB_failsIfAnyFileDoesNotExistAndPositiveNSymmetries )
        Parameters::FRIEND TEST ( ParametersInputTest , loadB worksGoodForGoodFilesOneChannel )
3.3.2.11 Parameters::FRIEND_TEST ( ParametersInputTest , loadB_failsIfAnyFileIsIncorrect )
3.3.2.12 Parameters::FRIEND_TEST ( ParametersOutputTest , x_worksCorrectForNegativeIndices )
3.3.2.13 arma::cx_mat Parameters::getB ( int i ) const [inline]
3.3.2.14 double Parameters::getDx() const [inline]
3.3.2.15 double Parameters::getE (int i) const
3.3.2.16 int Parameters::getGrid_points_per_lambda( ) const [inline]
3.3.2.17 int Parameters::getNChannels ( ) const [inline]
3.3.2.18 int Parameters::getNE( )const [inline]
3.3.2.19 int Parameters::getNSymmetries ( ) const [inline]
3.3.2.20 double Parameters::getUnit ( ) const [inline]
3.3.2.21 arma::cx_mat Parameters::getV ( double x ) const
```

Linear interpolation of V (works also for V given on non-constant grid if needed) Here is the call graph for this function:

3.3.2.22 arma::cx_mat Parameters::getVMatrix (int i) const

V matrix for a given x_i.

3.3.2.23 double Parameters::getXMax() const [inline]
3.3.2.24 double Parameters::getXMin() const [inline]
3.3.2.25 const std::vector < double > & Parameters::getXValues() const [inline]
3.3.2.26 arma::cx_mat Parameters::ld() const [inline]
3.3.2.27 bool Parameters::isOpen(int nChannel, double energy) const

Check if the channel is open.

Here is the call graph for this function:

3.3.2.28 double Parameters::kappa (int n1, int n2, int i, double E) const

Here is the call graph for this function:

3.3.2.29 double Parameters::kappa (int n1, int n2, double x, double E) const

Here is the call graph for this function:

3.3.2.30 double Parameters::lambda (double x, double E) const

de Broglie length for a given potential and x

Here is the call graph for this function:

3.3.2.31 void Parameters::loadB (std::string filename = "B")

Reading the values of B from the file generated in Mathematica.

3.3.2.32 void Parameters::loadE (std::string filename = "E.dat")

Reading the values of energies from the file generated in Mathematica.

3.3.2.33 void Parameters::loadParams (std::string filename = "Params.txt")

Reading the values of parameters from the file generated in Mathematica.

Here is the call graph for this function:

3.3.2.34 void Parameters::loadV (std::string filename = "V.dat")

Reading the values of V from the file generated in Mathematica.

Here is the call graph for this function:

- 3.3.2.35 int Parameters::NX () const
- 3.3.2.36 double Parameters::requiredDx (double x, double E) const

Here is the call graph for this function:

- 3.3.2.37 void Parameters::setXValues ()
- Setting xValues.
- **3.3.2.38** double Parameters::x (int i) const [inline]
- 3.3.3 Friends And Related Function Documentation
- $\textbf{3.3.3.1} \quad \textbf{friend class Parameters_getV_Test} \quad \texttt{[friend]}$
- **3.3.3.2** friend class Parameters_isOpen_Test [friend]
- **3.3.3.3 friend class Parameters_kappaDouble_Test** [friend]
- **3.3.3.4** friend class Parameters_kappaInt_Test [friend]
- **3.3.3.5** friend class Parameters_lambda_Test [friend]
- **3.3.3.6** friend class Parameters_loadV_Test [friend]

3.3.3.7 friend class Parameters_requiredDX_Test [friend]

The documentation for this class was generated from the following files:

- Parameters.h
- Parameters.cpp

Chapter 4

File Documentation

4.1 ConstantGridSolver.cpp File Reference

Definitions of ConstantGridSolver class methods.

```
#include "ConstantGridSolver.h"
Include dependency graph for ConstantGridSolver.cpp:
```


4.1.1 Detailed Description

Definitions of ConstantGridSolver class methods.

4.2 ConstantGridSolver.h File Reference

Definition of ConstantGridSolver class.

```
#include "armadillo"
#include "Parameters.h"
#include <sstream>
#include <fstream>
#include <cstring>
#include <math.h>
```

26 File Documentation

Include dependency graph for ConstantGridSolver.h:

This graph shows which files directly or indirectly include this file:

Classes

· class ConstantGridSolver

4.2.1 Detailed Description

Definition of ConstantGridSolver class. This file contains a definition of ConstantGridSolver class, performing the calculations for a given set of parameters (Parameters object).

4.3 main.cpp File Reference

```
#include <iostream>
#include <vector>
#include <fstream>
#include "Parameters.h"
#include "ConstantGridSolver.h"
#include "NonconstantGridSolver.h"
```

Include dependency graph for main.cpp:

Functions

- std::vector< std::string > read_file (std::string filename)
- int main ()

4.3.1 Function Documentation

4.3.1.1 int main ()

Here is the call graph for this function:

4.3.1.2 std::vector<std::string> read_file (std::string filename)

28 File Documentation

4.4 NonconstantGridSolver.cpp File Reference

#include "NonconstantGridSolver.h"
Include dependency graph for NonconstantGridSolver.cpp:

4.5 NonconstantGridSolver.h File Reference

```
#include "armadillo"
#include "Parameters.h"
#include <sstream>
#include <ostream>
#include <fstream>
#include <cstring>
#include <math.h>
```

Include dependency graph for NonconstantGridSolver.h:

This graph shows which files directly or indirectly include this file:

Classes

· class NonconstantGridSolver

4.6 Parameters.cpp File Reference

Definitions of Parameters class methods.

```
#include <string>
#include "Parameters.h"
Include dependency graph for Parameters.cpp:
```


4.6.1 Detailed Description

Definitions of Parameters class methods.

4.7 Parameters.h File Reference

Definition of Parameters class.

30 File Documentation

```
#include <cmath>
#include <vector>
#include <string>
#include <exception>
#include <gtest/gtest_prod.h>
#include "armadillo"
Include dependency graph for Parameters.h:
```


This graph shows which files directly or indirectly include this file:

Classes

class Parameters

4.7.1 Detailed Description

Definition of Parameters class. This file contains the definition of Parameters class.

4.8 Solver_z_liczeniem_psi.cpp File Reference

Definitions of Solver class methods.

#include "Solver.h"

Include dependency graph for Solver_z_liczeniem_psi.cpp:

4.8.1 Detailed Description

Definitions of Solver class methods.

Index

~ConstantGridSolver ConstantGridSolver, 5	getGrid_points_per_lambda Parameters, 20
~Parameters	getNChannels
Parameters, 19	Parameters, 20
i didifferens, 19	getNE
calculateEM	Parameters, 20
ConstantGridSolver, 6	getNSymmetries
NonconstantGridSolver, 13	Parameters, 20
calculateEP	getUnit
ConstantGridSolver, 6	Parameters, 20
NonconstantGridSolver, 13	getV
calculateS	Parameters, 20
ConstantGridSolver, 7	getVMatrix
calculateT	Parameters, 20
ConstantGridSolver, 8	getXMax
calculateU	Parameters, 20
ConstantGridSolver, 9	getXMin
checkNumberOfRowsInFile	Parameters, 21
Parameters, 19	getXValues
ConstantGridSolver, 5	Parameters, 21
~ConstantGridSolver, 5	
calculateEM, 6	ld
calculateEP, 6	Parameters, 21
calculateS, 7	isOpen
calculateT, 8	Parameters, 21
calculateU, 9	
ConstantGridSolver, 5	kappa
ConstantGridSolver, 5	Parameters, 21
fwdlteration, 10	lambda
modifyCCnj, 11	
saveS, 11	Parameters, 21 loadB
setParameters, 12	
solveForEnergies, 12	Parameters, 22 loadE
ConstantGridSolver.cpp, 25	Parameters, 22
ConstantGridSolver.h, 25	loadParams
	Parameters, 22
FRIEND_TEST	loadV
Parameters, 19, 20	Parameters, 22
fwdIteration	i didilieleis, ZZ
ConstantGridSolver, 10	main
NonconstantGridSolver, 14	main.cpp, 27
	main.cpp, 26
generateGrid	main, 27
NonconstantGridSolver, 15	read_file, 27
getB	modifyCCnj
Parameters, 20	ConstantGridSolver, 11
getDx	NonconstantGridSolver, 15
Parameters, 20	,
getE	NX
Parameters, 20	Parameters, 23

INDEX 33

NonconstantGridSolver, 12	Parameters_lambda_Test
calculateEM, 13	Parameters, 23
calculateEP, 13	Parameters_loadV_Test
fwdIteration, 14	Parameters, 23
generateGrid, 15	Parameters_requiredDX_Test
modifyCCnj, 15	Parameters, 23
Q, 15	
T, 16	Q
U, 17	NonconstantGridSolver, 15
NonconstantGridSolver.cpp, 28	read file
NonconstantGridSolver.h, 28	-
Darameters 10	main.cpp, 27 requiredDx
Parameters, 18	•
~Parameters, 19	Parameters, 23
checkNumberOfRowsInFile, 19	saveS
FRIEND_TEST, 19, 20	ConstantGridSolver, 11
getB, 20	setParameters
getDx, 20	
getE, 20	ConstantGridSolver, 12
getGrid_points_per_lambda, 20	setXValues
getNChannels, 20	Parameters, 23
getNE, 20	solveForEnergies
getNSymmetries, 20	ConstantGridSolver, 12
getUnit, 20	Solver_z_liczeniem_psi.cpp, 30
getV, 20	Т
getVMatrix, 20	NonconstantGridSolver, 16
getXMax, 20	Nonconstantidhusoiver, 10
getXMin, 21	U
getXValues, 21	NonconstantGridSolver, 17
ld, 21	
isOpen, 21	X
kappa, 21	Parameters, 23
lambda, 21	
loadB, 22	
loadE, 22	
loadParams, 22	
loadV, 22	
NX, 23	
Parameters, 19	
Parameters_getV_Test, 23	
Parameters_isOpen_Test, 23	
Parameters_kappaDouble_Test, 23	
Parameters_kappaInt_Test, 23	
Parameters_lambda_Test, 23	
Parameters_loadV_Test, 23	
Parameters_requiredDX_Test, 23	
requiredDx, 23	
setXValues, 23	
x, 23	
Parameters.cpp, 29	
Parameters.h, 29	
Parameters_getV_Test	
Parameters, 23	
Parameters_isOpen_Test	
Parameters, 23	
Parameters_kappaDouble_Test	
Parameters, 23	
Parameters_kappaInt_Test	
Parameters, 23	