groups of small order*

$Daume^{\dagger}$

2013-03-21 18:16:06

Below is a list of all possible groups per order up to isomorphism. Groups of prime order:

• All groups of prime order are isomorphic to a cyclic group of that order.

Groups of prime square order:

- All groups of order p^2 , where p is a prime, are isomorphic to one of the following:
 - $C_{p^2}(Abelian)$: cyclic group of order p^2 .
 - $C_p \times C_p(Abelian)$: elementary abelian group of order p^2 .

Groups of order 1:

• trivial group (i.e. $\{e\}$).

Groups of order 6:

- $C_6(Abelian)$: cyclic group of order 6.
- S_3 (non-Abelian): symmetric group where n=3.

Groups of order 8:

- $C_8(Abelian)$: cyclic group of order 8.
- $C_4 \times C_2(Abelian)$: direct product of two groups of a cyclic group of order 4 and a cyclic group of order 2.
- $C_2 \times C_2 \times C_2$ (Abelian): direct product of three groups of a cyclic group of order 2.
- D_4 (non-Abelian): octic group; dihedral group of degree 4.

^{*} $\langle GroupsOfSmallOrder \rangle$ created: $\langle 2013-03-21 \rangle$ by: $\langle Daume \rangle$ version: $\langle 36451 \rangle$ Privacy setting: $\langle 1 \rangle$ $\langle Example \rangle$ $\langle 20A05 \rangle$ $\langle 20-00 \rangle$

[†]This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.

• $Q_8(non-Abelian)$: quaternion group.

Groups of order 10:

- $C_{10}(Abelian)$: cyclic group of order 10.
- D_5 (non-Abelian): dihedral group of degree 5.

Groups of order 12:

- $C_{12}(Abelian)$: cyclic group of order 12.
- $C_2 \times C_6$ (Abelian).
- A_4 (non-Abelian): alternating group of degree 4.
- D_6 (non-Abelian): dihedral group of degree 6.
- $Dic(C_6)$ (non-Abelian): dicyclic group of order 12. This is a generalized quaternion group Q_{12} .

Groups of order 14:

- $C_{14}(Abelian)$: cyclic group of order 14.
- D_7 (non-Abelian): dihedral group of degree 7.

Groups of order 15:

• $C_{15}(Abelian)$: cyclic group of order 15.

References

 $\begin{tabular}{ll} [PJ] Pedersen, & John: & Groups & of small & order. \\ & http://www.math.usf.edu/eclark/algctlg/small_groups.html & \\ \end{tabular}$