GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Mecánica de Fluidos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Séptimo Semestre	170702	85
ocpunio ocinicatie	170702	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al participante los conocimientos para comprender y resolver fenómenos relacionados con el movimiento de los fluidos, así como su aplicación en procesos y sistemas industriales.

TEMAS Y SUBTEMAS

1. Estática de fluidos

- 1.1 Introducción.
- 1.2 Variación de la presión con la posición en un fluido.
- 1.3 Medida de la presión.
- 1.4 Empuje hidrostático en superficies sumergibles.
- 1.5 Estabilidad de cuerpos en fluidos.
- 1.6 Equilibrio de fluidos en movimiento.

2. Cinemática de fluidos

- 2.1 El campo de velocidad
- 2.2 Medición de velocidades y caudales con tubo de Pitot.
- 2.3 El campo de aceleración.
- 2.4 Teorema de transporte de Reynolds.
- 2.5 Ecuación de continuidad.
- 2.6 Ecuación de Bernoulli.
- 2.7 Ecuación de energía.

3. Fluio en canales abiertos

- 3.1 Introducción.
- 3.2 Clasificación del flujo en canal abierto.
- 3.3 Tipos de flujo en canal abierto.
- 3.4 Flujo estable en canales abiertos.
- 3.5 Formas eficientes para canales abiertos.
- 3.6 Flujo crítico y energía específica.
- 3.7 Salto hidráulico.
- 3.8 Flujo gradualmente variado.

4. Flujo viscoso en tuberías y canales

- 4.1 Flujo laminar y turbulento.
- 4.2 Flujo laminar incompresible y permanente entre placas paralelas.
- 4.3 Flujo laminar en tuberías y anillos.
- 4.4 Relaciones para flujo turbulento.
- 4.5 Pérdida de energía en flujo turbulento en conductos abiertos y cerrado
- 4.6 Flujo permanente incompresible a través de tuberías simples.

5. Flujo en conductos

5.1 Introducción.

- 5.2 Flujo laminar en tuberías circulares.
- 5.3 Flujo laminar a través de anillos.
- 5.4 Flujo laminar entre planos paralelos.
- 5.5 Capa límite.
- 5.6 Medida de viscosidad.
- 5.7 Fundamentos de la teoría de lubricación hidrodinámica.
- 5.8 Flujo laminar a través de medios porosos.
- 5.9 Flujo no permanente.

6. Análisis dimensional

- 6.1 Variables o parámetros.
- 6.2 Dimensiones y Unidades.
- 6.3 Aplicación del Teorema de Buckingham.
- 6.4 Números adimensionales, Euler, Froude, Reynolds, Match y su significado.
- 6.5 Uso de los números adimensionales.
- 6.6 Estudio de modelos.

7. Flujos compresibles

- 7.1 Introducción.
- 7.2 Clasificación de flujos compresibles.
- 7.3 Flujo isoentrópico y sus leyes.
- 7.4 Flujo subsónico y flujo supersónico .

8. Solución Numérica de las ecuaciones de Navier-Stokes

- 8.1 Diferencias Finitas.
- 8.2 Elementos Finitos.

9. Turbomáquinas

- 9.1 Introducción.
- 9.2 Bombas reciprocantes.
- 9.3 Turbinas.
- 9.4 Bombas rotodinámicas.
- 9.5 Transmisiones hidrodinámicas.
- 9.6 Efecto del tamaño en la eficiencia de turbomáquinas.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extra clase la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Mecánica de Fluidos, Arthur G. Hansen, Ed. Limusa.
- 2. Mecánica de Fluidos, Frank M. White Mc Graw Hill.
- 3. Introduction to the Mechanics of a Continuos Médium, Lawrence E. Malvern, Prentice Hall.
- 4. Fundamentals of Fluid Mechanics Munson, Bruce R., Young, Donald F. y Okiishi, Theodore H., Ed. John Wiley & Sons Ltd, USA, Fifth Edition, 2006.

Libros de Consulta:

 Mecánica de Fluidos, Streeter, Victor L., Wylie, E. Benjamín y Interamricana S. A., Colombia, Novena Edición, 2003. GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

- 2. Mechanics of Fluids, Massey, Bernard F., Publisher: Routledge, Eighth Edition, 2006.
- 3. Applied Fluid Mechanics, Mott, Robert L., Ed. Prentice Hall Inc., Sixth Edition, 2005.
- 4. Mechanics of Fluids, Shames, Irving H., McGraw Hill Science, Fourth Edition, 2002.

PERFIL PROFESIONAL DEL DOCENTE

Físico, Ingeniero mecánico o doctorado en mecánica con especialidad en mecánica de fluido con experiencia en la docencia y en todo tipo de modelado y aprovechamiento de fluidos.

