Claremont Graduate University School of Mathematical Sciences May 2007

Preliminary Examination on Stochastic Processes

Problem 1 (25 points)

Consider a Markov chain $\{X_n; n = 0, 1, ...\}$ having state space $\{0, 1, ..., 4\}$ and transition matrix:

$$P = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.1 & 0.4 \\ 0 & 0.2 & 0 & 0 & 0.8 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.4 & 0.6 & 0 \\ 0 & 0.3 & 0 & 0 & 0.7 \end{bmatrix}$$

- a) Find all sets of closed irreducible states.
- b) For each set, determine the stationary distribution concentrated on these sets.
 - c) Calculate:

$$\lim_{n \to \infty} E[\exp(X_n^2)|X_0 = 0]$$

Problem 2 (25 points)

A rental car facility has N cars. Each car breaks independently, at a time distributed according to an exponential distribution with parameter λ . When a car breaks, it goes to a repair shop. The time to repair of a single car is exponentially distributed with parameter μ . Each repair time is independent. Let X(t) be the number of cars in the repair shop at time t. Let

$$P_{xy}(t) = P(X(t) = y | X(0) = x)$$

- a) Calculate $q_{xy} = \frac{d}{dt} P_{xy}|_{t=0}$ b) Calculate $\lim_{t\to\infty} E[X(t)]$

Hint: Let $\lambda_x = q_{x,x+1}$ and $\mu_x = q_{x,x-1}$. The unique stationary distribution $\pi(x)$ of a birth and death chain with states $\{0,..,N\}$ is given by:

$$\pi(x) = \frac{\pi_x}{\sum_{y=0}^{N} \pi_y}$$

where

$$\pi_x = \left\{ \begin{array}{cc} 1 \\ \frac{\lambda_0 \dots \lambda_{x-1}}{\mu_1 \dots \mu_x} & \text{if } x = 0 \\ x \ge 1 \end{array} \right.$$

Problem 3 (25 points)

Let $U_1,..,U_n$ be independent random variables, each uniformly distributed on (0,1). Let $1[x \le t]$ be defined by:

$$1[x \le t] = \left\{ \begin{array}{ll} 1 & \text{if} & x \le t \\ 0 & x > t \end{array} \right.$$

Then

$$X(t) = \frac{1}{n} \sum_{k=1}^{n} 1[U_k \le t]$$

is the empirical distribution of $U_1,..,U_n$. Compute the mean and covariance functions of the X(t) process.

Question 4 (25 points)

Solve the stochastic differential equation:

$$X''(t) + 4X'(t) - 21 = W'(t)$$

 $X(0) = X'(0) = 0$

What is $E[X^2(t)]$?