AINA PRUNELL

Física 2n batxillerat

FORMULARI MAGNETISME

$$\vec{F} = q \cdot (\vec{v} \times \vec{B}) = q \cdot v \cdot B \cdot \sin(\alpha)$$

$$p = m \cdot v$$

$$F = q \cdot v \cdot B$$

$$F = m \cdot \omega = m \cdot \frac{v^2}{R}$$

$$\Phi = N \cdot \vec{B} \cdot \vec{S} = N \cdot B \cdot S \cdot \cos(\alpha)$$

$$\varepsilon = -\frac{\Delta(N\Phi)}{\Delta t}$$

+q \bullet

$$q \cdot B = \frac{m_e \cdot 2\pi}{T}$$

$$\varepsilon = -\frac{\Delta(N\Phi)}{\Delta t}$$

Una partícula arriba a un detector on deixa una traça que mostra que ha descrit un arc de 3 cm de radi en el sentit de les agulles del rellotge (Figura 21). A la regió del detector hi ha un potent camp magnètic de 2 T dirigit cap a "dins del paper". Tenim motius per creure que la càrrega de la partícula ha de ser de 1,6·10⁻¹⁹C o bé -1,6·10⁻¹⁹C. Indiqueu si la partícula és positiva o negativa i calculeu la seva quantitat de moviment.

$$\vec{F} = q \cdot (\vec{v} \times \vec{B})$$

$$p = m \cdot v$$

$$F = q \cdot v \cdot B$$

$$F = m \cdot \omega = m \cdot \frac{v^2}{R}$$

$$q \cdot y \cdot B = m \cdot \frac{v^2}{R}$$

$$p = q \cdot B \cdot R$$

$$p = 9.6 \cdot 10^{-2} \ kg \cdot m/s$$

S'està construint un prototip de reactor de fusió nuclear anomenat ITER (International Thermonuclear Experimental Reactor). L'ITER tindrà una forma toroïdal amb un diàmetre intern de 6,5 m i un diàmetre extern de 19,4 m. Dintre es mouran nuclis de deuteri i de triti a temperatures de 10⁸ K girant sense xocar amb les parets gràcies a un camp magnètic de fins a 11,8 T.

- (a) Feu una predicció amb aquestes dades de la quantitat de moviment i de la velocitat dels nuclis de deuteri que girin en aquest dispositiu en un moviment circular de 5 metres de radi.
- (b) És compatible la velocitat obtinguda a l'apartat anterior amb els principis de la relativitat especial? Quins altres factors haurien de tenir-se en compte per a un estudi complet d'aquest problema?

Dada: massa nucli deuteri = 3,34·10⁻²⁷ kg.

Solució: $9,45\cdot10^{-18} \text{ kg}\cdot\text{m}\cdot\text{s}^{-1}$; $v = 2,83\cdot10^{9} \text{m}\cdot\text{s}^{-1}$

 $c = 3 \cdot 10^8 \, m/s$

SOLUCIÓ

$$\vec{F}_c = m \cdot \vec{a}_c$$

$$\vec{F} = q \cdot (\vec{v} \times \vec{B})$$

$$q \cdot v \cdot B = m \cdot \frac{v^2}{R}$$

$$q \cdot B = m \cdot \frac{v}{R} = \frac{m \cdot v}{R} = \frac{p}{R}$$

$$p = q \cdot B \cdot R$$

$$p = 3,34 \cdot 10^{-27} \cdot 11,8 \cdot 5$$

$$p = 9.45 \cdot 10^{-18} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$$

I la velocitat és:

$$p = m \cdot v$$

$$v = \frac{p}{m} = \frac{9,45 \cdot 10^{-18}}{3,34 \cdot 10^{-27}}$$

$$v = 2.83 \cdot 10^9 \, m \cdot s^{-1}$$

P4) Sobre una forca conductora com la de la figura adjunta, llisca una barra metàl·lica amb un moviment vibratori harmònic simple al voltant de la posició d'equilibri $x_0 = 1 \text{ m}$, segons l'equació de moviment següent (totes les magnituds estan expressades en el sistema internacional, SI):

Tot el conjunt es troba dins un camp magnètic uniforme, perpendicular al pla de la forca i en el sentit d'entrada al pla del paper, de mòdul B = 0.5 T.

- a) Quin valor té el flux de camp magnètic a través de la superfície compresa entre la barra metàl·lica i la part tancada de la forca en l'instant t = 0? Quina és l'expressió d'aquest flux en funció del temps?
- **b**) Determineu la força electromotriu del corrent induït en funció del temps. Obteniune el valor màxim.

$$\frac{d}{dt} = B \cdot S(t) = B \cdot L \cdot (x_0 - 0.38in(32t))$$

$$= 0.5 \cdot 2 (1 - 0.38in(32t)) = 1 - 0.38in(32t)$$

$$\Phi(0s) = 1 - 0.38in(32t)$$

$$E(t) = -\frac{L\Phi(t)}{Lt} = -\frac{L}{L} (1 - 0.38in(32t))$$

$$= -\frac{L\Phi(t)}{L} = -\frac{L}{L} (1 - 0.38in(32t))$$

$$= -\frac{L\Phi(t)}{L} = -\frac{L}{L} (1 - 0.38in(32t))$$

$$= -\frac{L\Phi(t)}{L} = -\frac{L}{L} (1 - 0.38in(32t))$$

$$= -\frac{L}{L} (0 - 0.3.32 \cdot (0.832t))$$

$$= 0.6668(32t)$$

$$E_{mix} = 9.60$$

Sin (4(2)) 1 (x). LOS (4(x)) $f(x) = \left(\sin(x)\right)^3$ (x) - 3 (sin (r)) 2. cas(x) 4(x) 58in (32x) 11(x)=20S(32x)·32

	Funcions simples		Funcions compostes	
	Funció	Derivada	Funció	Derivada (Regla de la cadena)
Constant	y = c	y'=0		
Identitat	y = x	y'=1		
Potència	$y = x^n$	$y' = nx^{n-1}$	$y = [f(x)]^n$	$y' = n[f(x)]^{n-1} \cdot f'(x)$
	$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	$y = \sqrt{f(x)}$	$y' = \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$
Exponencial	$y = e^x$	$y' = e^x$	$y = e^{f(x)}$	$y' = e^{f(x)} \cdot f'(x)$
	$y = a^*$	$y' = a^x \cdot \ln a$	$y = a^{f(x)}$	$y' = a^{f(x)} \ln a \cdot f'(x)$
	$y = f(x)^{g(x)}$	(x) Cal anar en compte en aquest cas i seguir aquest procés		
	$y = f^{\varepsilon}$ $\ln y = \ln f^{\varepsilon}$	$\frac{1}{y}y' = g$	$-\ln f + g \frac{1}{f} f'$	$y' = f^{\varepsilon} \left[g' \cdot \ln f + g \cdot \frac{1}{f} \cdot f' \right]$
	$\ln y = g \cdot \ln f$ $(\ln y)' = (g \cdot \ln f)'$ $y' = y \left[g' \cdot \ln f + g \cdot \frac{1}{f} \cdot f' \right]$			
Logarítmica	$y = \ln x$	$y' = \frac{1}{x}$	$y = \ln f(x)$	$y' = \frac{1}{f(x)} f'(x)$
	$y = \log_a x$	$y' = \frac{1}{x \cdot \ln a}$	$y = \log_a f(x)$	$y' = \frac{1}{f(x) \cdot \ln a} f'(x)$
Trigonomètrica	$y = \sin x$	$y' = \cos x$	$y = \sin f(x)$	$y' = f'(x) \cdot \cos f(x)$
	$y = \cos x$	$y' = -\sin x$	$y = \cos f(x)$	$y' = -f'(x) \cdot \sin f(x)$
	y = tg x	$y' = 1 + tg^2 x$ $y' = \frac{1}{\cos^2 x}$	$y = tg \ f(x)$	$y' = (1 + tg^2 f(x)) \cdot f'(x)$ $y' = \frac{1}{\cos^2 f(x)} f'(x)$
Funcions arc (Inversa o reciproca de les trigonométriques)	$y = arc \sin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$	$y = \arcsin f(x)$	$y' = \frac{1}{\sqrt{1 - [f(x)]^2}} \cdot f'(x)$
	$y = arc \cos x$	$y' = \frac{-1}{\sqrt{1 - x^2}}$	$y = \operatorname{arc} \cos f(x)$	$y' = \frac{-1}{\sqrt{1 - [f(x)]^2}} f'(x)$
	y = arctgx	$y' = \frac{1}{1+x^2}$	y = arc tg f(x)	$y' = \frac{1}{1 + [f(x)]^2} f'(x)$

FORMULA FLUX >
$$\phi = 3.5 \cdot \cos(\alpha)$$

FORMULA FEM > E=- SCH At

b) Quina és la força electromotriu (FEM) màxima generada per l'espira?

R)
$$0,02 = 2.10^{-2} \text{ m}^2$$
 $191 \text{ New } 2\pi \text{ rod} \times \frac{1 \text{ makes}}{1 \text{ east}} = 20 \text{ rod/s} - 5 \times = 20.t$

$$0 = 0,4 \cdot 2.10^{-2} \cdot \text{Cos}(20t) = 8.10^{-2} \cdot \text{cos}(20t)$$

