

IoT Platform for data processing and access.

Master Practical Course WS 2017

Contents

- O. Introduction
- 1. Sensors
- 2. Data Storage & Processing
- 3. API and Data Access
- 4. Performance Testing

Goals to Achieve

- 1. **Out-of-the-Box** Highly-Available & Fault-Tolerant system that can collect, store and provision data from sensors in a unified format.
- 2. Guaranteed single message delivery.
- 3. Possibility to **permanently** store the data.
- 4. High-speed data compression.
- 5. **Secure** data access using User Authentication.
- 6. Collect performance data and visualize it.

Information flow through the system

Sensor Layer

- Erkin Kirdan
- Mikayil Murad
- Hakan Uyumaz
- Ali Naci Uysal

Overview

Team I:

Responsible for the development of the on-board part of the platform.

Goals:

- Support data transmission for as many different boards and sensors out-of-the-box as possible
- Support easy deployment and setup

Raspberry PI 3

Odroid-XU 40

Architecture

MEAN Stack Web Application

IoT Project Web Server #Home ☐Register Device ⊞All Devices ⊕Logout	
Register Device Unique Device Name	
Breadboard #3	
Device Description	
Bread-board for test	
Board Type	
Raspberry PI • •	
Created By	
alinaciuysal	
board_type: "raspberry_pi"	
communication_protocols: Array(1) ▶ 0: (bootstrap_servers: Array(3), api_version: 10, _id: "5a763a93978bbe39c22ceecd", id: "4913c932-8cba-4d07-9b45-4b6b35bc65eb", device_id: "8b8. length: 1 ▶ _proto_: Array(0) created_by: "hakan" Read-board with KV82 KV88 and KV36"	.9766-aebb-403b-8fde-9a2e807874f2",
description: "Breadboard with KY02, KY10 and KY26" devices: Array(3) ▶ 8: (input_output: Array(1), _id: "5a763a93978bbe39c22ceed6", id: "0cf0d6c7-6627-4973-98f8-033244478977", type: "KY02", interval: 5) ▶ 1: (input_output: Array(1), _id: "5a763a93978bbe39c22ceed4", id: "8a448617-6aee-4c25-94c9-9627563e48ee", type: "KY10", interval: 5) ▶ 2: (input_output: Array(2), _id: "5a763a93978bbe39c22ceed1", id: "7aa6fb1f-8c9c-4a0d-8c36-20f61ebd9da4", type: "KY26", interval: 5) length: 3 ▶proto: Array(9) id: "8b819766-aebb-403b-87de-9a2e807874f2" logdirectory: "/var/log/lot/" log_directory: "/var/log/lot/" log_directory: "/var/log/lot/" log_level: 0 name: "Raspberry #2" v: 6	

Bread-board for te	ect					
	nus.					
ard Type						
Raspberry PI						
g Level						
lotset						
Communication	Protocols + Add	Protocol				
Protocol # 1						
	curity Type	Api Version		ication Type	Kafka Topic	
- F	PlainText	10	Kafka		sensor-input	
Bootstrap Ser			strap Server Port	ı		
141.40.254.1		Boot 909			•	
141.40.254.1 Sensors Wiki +	41				Interval (in seconds)	
141.40.254.1 Sensors Wiki Sensor # 1 De	41 Add Sensor	908				
Sensors Wiki Sensor # 1 De	41 Add Sensor vice Type	900 shore A I/O	92	Read 5	Interval (in seconds)	
141.40.254.1 Sensors Wild + Sensor # 1 De Input/Output Typ	Add Sensor vice Type infrared Transmitter mo bes + Add BO	900 Outle Name	Pin	Read 5	Interval (in seconds) Base Directory	
Sensors Wiki Sensor # 1 De	Add Sensor vice Type infrared Transmitter mo bes + Add BO	900 shore A I/O	92	Read 5	Interval (in seconds)	
Sensors WM + Sensors WM b linput/Output Typ	Add Sensor vice Type infrared Transmitter mo bes + Add BO	900 Outle Name	Pin	Read 5	Interval (in seconds) Base Directory	

Results

- 1. Provision of the data messages from sensors in the unified format including timestamps and values of the corresponding metrics
- 2. Basic out-of-the-box-deployed drivers for different types of single-board computers with different types of sensors connected
- 3. Adjustments of the layer configuration via settings files
- 4. Additionally built web application for easy configuration
- 5. Basic data pre-processing according to settings (e.g. use every n-th measure)
- 6. Easy to extend architecture for new types of boards and sensors

Data storage & processing layer

- Yesika Ramirez
- Moawiah Assali
- Atakan Yenel
- Sergey Nasonov

Contents

- Deployment Diagram
- Configurations
- Streaming & Processing
- ElasticSearch
- Advantages and Challenges

Deployment Diagram

Configuration

- Input Channel
- Output Channel
- Database Index
- Database Document type
- The running process
- Kafka broker IP
- Elasticsearch IP

Streaming & Processing

ElasticSearch

Ports: 9200/9300

Advantages

- Fault Tolerance & High Availability
- Scalability of processing engines
- Easy to deploy
- Low cost
- Flexibility via configuration files

Challenges

- Complexity:
 - Different vendors/versions of the used Software
 - Connectors between streams and ElasticSearch
- Technology Choice
- Security

API Layer

- Sergei Drugalev
- Faisal Hafeez

Contents

- HTTPS
- User authentication
- User Authorization
- API
- MQTT

Basic architecture

HTTPS

User Authentication

- RQlite relational database
- Young project (~1 year old)
- SQLite storage engine
 - Extremely compact and lightweight
 - Doesn't support clustering
 - RQLite does!

User Authentication

- Basic HTTP authentication (login:password)
- Why not Facebook or Google?
 - Not everybody want/like using their private accounts
 - No web client
 - API server is not a website
 - Still easily doable
- Credentials -> ask your system administrator

User authorization

- Wait... Is it different?
- Users have configurable access rights
- Ordinary users cannot alter the data

MQTT

- RABBITMQ broker
- Same authentication AND authorization scheme
- Advantages
 - Lightweight
 - Easy to parse
 - Very little resources on client-side
 - Reliable (QoS 1 and 2)
 - Secure (user authentication + TLS, authorization)
 - Topic wildcards!!

MQTT - topic structure

- TOPIC
 - o /{board ID}/{sensor ID}/{Data Type}

PAYLOAD

```
o {
     value: {},
     unit: {}
}
```


API Endpoints

- /get_all_boards
- /get_sensor_data/:board_id
- /get_sensor_data/:board_id/:sensor_id
- /get_sensor_data/:board_id/:sensor_id/:from
- /get_sensor_data/:board_id/:sensor_id/:from/:to

Challenges

- Dynamic IPs
- Backup machines
- Elasticsearch server down
- Disk Storage

Performance Testing

- Shumail Mohyuddin
- Muhammad Razzaque Bhatti
- Zaryab Khan

Goals

- Monitor the platform and its performance
- Alerts based on threshold values
- Visualize the collected data
- Highlight bottlenecks and recommend possible improvements

Technology stack

• K6

Generate load via virtual users - Behavior test cases written in JavaScript Test platform performance under stress

InfluxDB, Prometheus

Time based database and metrics storage from multiple sources

Grafana

Data visualization across multiple sources

Swagger API Framework middlewares with ExpressJS
 Intercepting the API requests for event logging

Node Exporter - Infrastructure monitoring and alerts

Data storage and processing monitoring

Stress Testing

- Virtual Users 35
 - Increased Dynamically over time
 - Behavior:
 - First request on to get list of boards
 - Select a board and send second request for getting sensors
 - 3rd Request for fetching values from sensors
 - 2 more requests for fetching sensors data
 - One request sent by each VU for this behavior in every second.
 - ~8000 API calls in 30 seconds
- Results:
 - Alert generated when avg RTT over test > 3s
 - Threshold reached at VU= 30
 - RTT averages from 20 milliseconds to ~3 seconds under max stress.

Stress Testing

Monitoring Statistics Interfaces

REST API

GET on <api-url>/swagger-stats/stats

Prometheus Metrics

Available on <api-url>/swagger-stats/metrics

Visualisation Dashboard

Available on <api-url>/swagger-stats/ui

API Realtime Monitoring

API Statistics via API

Performance Recommendations

Though current platform "survived" and didn't crash...But.

- More resources (especially compute power) overall
 - CPU usage reached 100% under heavy stress on Layer-2
 - Similar recommendation for Layer-3

- Load-balancer behind Layer-3 (API) Entry point to have more worker nodes for fault-tolerance and scalability.
- Massive Scalability? Microservices architecture

Live Previews