Безопасность и экологичность проекта

Студент группы САПР-534

Милиенко И.А.

В данном разделе рассматриваются вопросы безопасности и экологичности проекта системы управления разработкой программных продуктов по методологии *SCRUM*. Целью раздела является обеспечение безопасности и экологичности деятельности людей при работе с разрабатываемой системой. Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Анализ и идентификация опасных и вредных факторов на рабочем месте;
- 2. Разработка мероприятий по обеспечению безопасноти и экологичности деятельности;

Далее приведены методы и способы решения поставленных задач.

					Лист
Изм.	Лист	№ докум.	Подпись	Дата	

1. Анализ и идентификация опасных и вредных производственных факторов.

Помещение, в котором находится рабочее место сотрудников имеет следующие характеристики:

- офис разделен на три комнаты площадью 50 м² каждая;
- общая площадь офиса 150 м²;
- объем офиса 450 м³;
- размеры каждой комнаты приблизительно 6х8 м;
- число рабочих мест 12;
- освещение естественное и общее искусственное;

Рисунок 1, план рабочего помещения

Работа с компьютером характеризуется значительным умственным напряжением и нервно-эмоциональной нагрузкой на сотрудников, поэтому критично важно организовать место, где трудятся люди, наиболее удобным обрзаом. Ежедневно люди на рабочем месте могут подвергаться вредному воздействию целой группы факторов, что существенно снижает

Ізм.	Лист	№ докум.	Подпись	Дата

производительность труда и вредит здоровью. К таким факторам можно отнести:

- несоответствие парметров микроклимата установленным нормам
- опасность возникновения пожара;
- зрительные нагрузки, связанные с неправильным освещением рабочего места
- статические нагрузки, связанные с длительным пребыванием в одном и том же положении;
 - повышенный уровень электромагнитного излучения;
 - повышенный уровень шума;
 - загрязнение воздуха вредными веществами, пылью, микроорганизмами;

Если воздействие на человека определенного производственного фактора приводит к травме или другому резкому ухудшению здоровья, то данный фактор является опасным. Если же производственный фактор приводит к заболеванию или снижению работоспособности, он считается вредным.

В следующих разделах буду рассмотрены:

- вентиляция;
- освещенность;
- шум;

1.1 Вентиляция

Процесс замены загрязненного воздуха помещений свежим, чистым называют вентиляцией. После принятия мер по совершенствованию технологии и оптимизации конструктивного исполнения оборудования с целью исключения воздействия вредных факторов на человека или снижения их уровней и концентраций до предельно допустимых значений вентиляция позволяет наилучшим образом снизить избыточные количества теплоты, влаги, вредных газов, паров и пыли. Классификация производственной вентиляции

Изм.	Лист	№ докум.	Подпись	Дата

приведена на рисунке 2.

Определяющий показатель при выборе систем вентиляции — коэффициент кратности воздухообмена, ч⁻¹,

$$k = L/V\pi$$
,

где L — воздухообмен в помещении, $м^3/ч$;

Уп — внутренний объем помещения, M^3 .

При k < 3ч-1 рекомендуется применять естественную систему вентиляции, при 3...5 ч-1 — искусственную, а при k > 5ч-1 — искусственную с подогревом приточного воздуха.

Рисунок 2, классификация производственной вентиляции

Назначение рабочих систем вентиляции — удаление из помещений вредностей или снижение их концентраций до предельно допустимых для постоянного поддержания требуемых параметров воздушной среды. Тем не менее существуют определенные производства, в воздух рабочих зон которых

Изм.	Лист	№ докум.	Подпись	Дата

могут внезапно поступать большие количества вредных веществ (кроме пыли). Для предотвращения острых отравлений работающих в таких помещениях устраивают аварийную систему вентиляции (как правило, вытяжную), которая совместно с рабочей вентиляцией должна обеспечивать $k \geq 8$. С помощью аварийной вентиляции также поддерживают необходимые параметры воздушной среды при выходе из строя рабочей системы вентиляции.

Общеобменная вентиляция характеризуется более или менее равномерными подачей и удалением воздуха по всему объему помещения. Местная вентиляция — это удаление заданных объемов воздуха только от определенных рабочих мест или подача его к определенным рабочим местам.

Вытяжная общеобменная вентиляция необходима для активного удаления воздуха, загрязненного по всему объему помещения, при малой кратности воздухообмена. Приточная общеобменная вентиляция применима в помещениях с локальным выделением вредностей для созд ания воздушного подпора, усиливающего эффективность работы местной вытяжной вентиляции. Приточно-вытяжная вентиляция, которая может быть только общеобменной, целесообразна для обеспечения интенсивного и надежного обмена воздуха в помещениях.

1.2 Освещенность.

Естественное освещение. Освещение в производственных помещениях в светлое время суток осуществляется естественным источником света — небосводом. Естественное освещение создается в помещениях с постоянным пребыванием людей. Оно может отсутствовать в помещениях с кратковременным пребыванием людей и где наличие света недопустимо по технологическим условиям работы.

Виды естественного освещения: боковое (через окна), верхнее (через зенитные фонари) и комбинированное. Применение той или иной системы естественного освещения зависит от назначения и размеров помещения,

Лист

расположения его в плане здания, а также от светового климата местности.

Интенсивность естественного освещения оценивается коэффициентом естественного освещения (KEO), показывающего, во сколько раз освещенность в помещении меньше освещенности наружной.

Нормируется значение КЕО по СНиП 23-05-95 "Естественное и искусственное освещение" с учетом характера зрительной работы, разряда и подразряда зрительной работы, контраста объекта с фоном, характеристики фона, вида естественного освещения, совмещенного освещения и светового климата, где расположено здание. КЕО находится в пределах от 0,1 до 6%. Нормативные значения КЕО приведены в таблице 1.

В СНиП приведены нормативные значения КЕО для зданий, расположенных в III поясе светового климата РФ. Для зданий, расположенных в I, II, IV, V поясах светового пояса РФ, нормированные значения КЕО определяются по формуле

$$e_N = e_H \cdot m_N$$

где $m_N^{}-\,$ коэффициент светового климата ($N^{}-\,$ номер группы обеспеченности естественным светом для административного района).

Таблица 1 Нормативные значения KEO для естественного и совмещенного освещения

Характеристика	Разряд	Естественное о	свещение	Совмещенное ос	вещение
зрительной работы	зрительной работы]	KEO, %	
риооты	раооты	При верхнем или комбинирован ном освещении	боковом	При верхнем или комбинированн ом освещении	При боковом освещении
Наивысшей точности	1	-	-	6	2
Очень высокой точности	1	-	-	4,2	1,5
Высокой точности	1	-	-	3	1,2
Средней точности	1	4	1,5	2,4	0,9
Малой точности	5	3	1	1,8	0,6

					Лис
Изм.	Лист	№ докум.	Подпись	Дата	

Очень малой точности	6	3	1	1,8	0,6
Работа со светящимися материалами	7	3	1	1,8	0,6
Общее наблюдение за ходом производственного процесса	8	3	1	1,8	0,6

1.3 Шум.

Шум — это совокупность звуков, неблагоприятно воздействующих на организм человека и мешающих его работе и отдыху.

Источниками звука являются упругие колебания материальных частиц и тел, передаваемых жидкой, твердой и газообразной средой.

Скорость звука в воздухе при нормальной температуре составляет приблизительно 340 м/с, в воде -1 430 м/с, в алмазе — 18~000 м/с.

Звук с частотой от 16 Гц до 20 кГц называется слышимый, с частотой менее 16 Гц — инфразвук и более 20 кГц — ультразвук.

Область пространства, в котором распространяются звуковые волны, называется звуковым полем, которое характеризуется интенсивностью звука, скоростью его распространения и звуковым давлением.

Интенсивность звука — это количество звуковой энергии, передаваемой звуковой волной за 1 с через площадку 1 м 2, перпендикулярную направлению распространения звука, Вт/м2.

Звуковое давление — им называется разность между мгновенным значением полного давления, создаваемого звуковой волной и средним давлением, которое наблюдается в невозмущенной среде. Единица

Изм.	Лист	№ докум.	Подпись	Дата

измерения — Па.

Порог слуха молодого человека в диапазоне частот от 1 000 до 4 000 Гц соответствует давлению 2× 10-5 Па. Наибольшее значение звукового давления, вызывающего болезненные ощущения, называется порогом болевого ощущения и составляет 2× 102 Па. Между этими значениями лежит область слухового восприятия.

Интенсивность воздействия шума на человека оценивается уровнем звукового давления (L), который определяется как логарифм отношения эффективного значения звукового давления к пороговому. Единица измерения — децибел, дБ.

На пороге слышимости при среднегеометрической частоте 1 000 Гц уровень звукового давления равен нулю, а на пороге болевого ощущения — 120–130 дБ.

Окружающие человека шумы имеют разную интенсивность: шепот — 10–20 дБА, разговорная речь — 50–60 дБА, шум от двигателя легкового автомобиля — 80 дБА, а от грузового — 90 дБА, шум от оркестра — 110–120 дБА, шум при взлете реактивного самолета на расстоянии 25 м — 140 дБА, выстрел из винтовки — 160 дБА, а из тяжелого орудия — 170 дБА.

Шум, возникающий при работе производственного оборудования и превышающий нормативные значения, воздействует на центральную и вегетативную нервную систему человека, органы слуха.

Шум воспринимается весьма субъективно. При этом имеет значение конкретная ситуация, состояние здоровья, настроение, окружающая обстановка.

Основное физиологическое воздействие шума заключается в том, что повреждается внутреннее ухо, возможны изменения электрической проводимости кожи, биоэлектрической активности головного мозга, сердца и скорости дыхания, общей двигательной активности, а также изменения размера некоторых желез эндокринной системы, кровяного давления, сужение кровеносных сосудов, расширение зрачков глаз. Работающий в условиях

Изм.	Лист	№ докум.	Подпись	Дата
				70

длительного шумового воздействия испытывает раздражительность, головную боль, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, нарушение сна. В шумном фоне ухудшается общение людей, в результате чего иногда возникает чувство одиночества и неудовлетворенности, что может привести к несчастным случаям.

Длительное воздействие шума, уровень которого превышает допустимые значения, может привести к заболеванию человека шумовой болезнью — нейросенсорная тугоухость. На основании всего выше сказанного шум следует считать причиной потери слуха, некоторых нервных заболеваний, снижения продуктивности в работе и некоторых случаях потери жизни.

2. Разработка мероприятий по обеспечению безопасности и экологичности проекта.

2.1 Вентиляция.

Основное назначение вентиляции — удаление из рабочей зоны загрязнённого или перегретого воздуха и подача чистого воздуха, в результате чего в рабочей зоне создаются необходимые благоприятные условия воздушной среды. Одна из главных задач, возникающих при устройстве вентиляции — определение потребного воздухообмена.

Объем потребного воздухообмена рассчитывается по формуле:

$$L = \frac{Q_{u36}}{c_{\rho} \cdot \rho(t_{\text{\tiny BLIM}} - t_{np})},$$

где, $Q_{{}_{\!\scriptscriptstyle H\!36}}$ — избыточное тепло, кДж/ч;

 $e_{p}^{\,-}$ теплоемкость сухого воздуха, Дж/К;

 ρ — плотность приточного воздуха, кг/м³;

 $t_{{\scriptscriptstyle Bbm}}-$ температура удаляемого воздуха из помещения, ${}^{\scriptscriptstyle 0}{\rm C};$

 $t_{\it np}$ – температура приточного воздуха, равная 10 $^{\rm o}$ C.

При температуре воздуха равной 273 K (т.е. 0° C), плотность воздуха ρ =1,293 кг/м³, а при температуре равной 23 $^{\circ}$ C плотность равна:

$$\rho_t^{23} = \frac{T_K \cdot \rho_0}{T_K + t} = \frac{273 \cdot 1,293}{273 + 23} = 1,192 \, \text{K}\Gamma/\text{M}^3,$$

Температура воздуха удаляемого из помещения $t_{\scriptscriptstyle 6 \text{\tiny bim}}$ определяется из выражения

$$t_{\text{num}} = t_{p,3} + \Delta t (H-2) = 23 + 0.5(3-2) = 23.5 \, {}^{0}\text{C}$$

где $t_{p.s.} = 23$ °C, температура в рабочей зоне;

 $\Delta t = 0.5$ °C/м - температурный градиент по высоте помещения;

Н = 2,8м - расстояние от пола до центра вытяжных проемов.

Избыточное тепло, выделяемое в воздух рабочей зоны, рассчитывается по формуле:

$$Q_{us6} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6$$

где Q_1 – тепловыделения от устройств вычислительной техники, кДж/ч;

 Q_2 – теплоотдача от нагретых поверхностей, кДж/ч;

 Q_3 – тепловыделения от искусственного освещения, кДж/ч;

 Q_4 – тепловыделения через технический чердак, кДж/ч;

 Q_5 — тепловыделения людьми, кДж/ч;

 Q_6 – тепло от солнечной радиации через окна, кДж/ч.

В помещении находятся: 12 персональных компьютеров по 500 Вт (вместе с мониторами). Тепловыделения от устройств вычислительной техники рассчитываются по формуле:

$$Q_1$$
=3600· N · n =(12·0,5)·3600·0,5=10800 кДж/ч,

где N – мощность устройств вычислительной техники;

n=0,5— коэффициент тепловых потерь для устройств вычислительной техники.

Так как нагретых поверхностей в помещении нет, то теплоотдача от нагретых поверхностей $Q_2=0$.

В помещении имеется 18 светильников с люминесцентными лампами типа ЛБ40 (40Вт). Тепловыделения от искусственного освещения рассчитываются по

Изм.	Лист	№ докум.	Подпись	Дата

формуле:

$$Q_3 = 3600 \cdot N_{ocs} = 3600 \cdot 18 \cdot 0,04 = 2592$$
 кДж/ч,

где N_{ocs} — суммарная мощность источников освещения, кВт.

Так как помещение находится на 5 этаже 8-этажного здания, то теплопоступления через технический чердак отсутствуют, т.е. $Q_4 = 0$.

В анализируемом помещении находятся 12 человек, все мужчины. Для умственной работы количество явного тепла, выделяемого одним человеком, составляет 386 кДж/ч при 22 °C. Тепловыделения людьми рассчитываются по формуле:

$$Q_5 = q_1 \cdot n = 386 \cdot 12 = 4632 \text{ кДж/ч}$$

Количество тепла, от солнечной радиации вычисляется по формуле

$$Q_6 = F \cdot q \cdot \mu$$

где F –общая площадь поверхности оконных проемов, M^2 ;

q — количество тепловой энергии, вносимое через световую поверхность оконных проемов в 1 M^2 , ($q=300 \ \kappa \mathcal{J} \mathcal{M} / M^2 \mathcal{U}$);

 μ —коэффициент, учитывающий вид застекления и его чистоту.

Коэффициент μ вычисляется как произведение:

$$\mu = K_1 \times K_2$$

где K_1 – коэффициент, учитывающий загрязнение атмосферы и вида остекления;

 K_1 — коэффициент, учитывающий степень загрязнения стекла.

Коэффициент $K_1=0.64\,$ при загрязненной атмосфере и двойном остеклении в металлических переплетах, коэффициент $K_2=0.96\,$ при незначительной степени загрязнения стекла.

Таким образом

$$\mu = K_1 \cdot K_2 = 0.64 \cdot 0.96 = 0.6144$$

Размеры одного окна составляют $2 \text{м} \times 4 \text{м}$. Учитывая, что в помещении 4 окна, вычислим общую площадь оконных проемов, как:

$$F = 4.2.4 = 32 \,\text{m}^2$$

Вычислим количество тепла от солнечной радиации:

	_			
Изм.	Лист	№ докум.	Подпись	Пата
VISIVI.	TIVICI	№ ДОКУМ.	ПОДПИСЬ	дата

$$Q_6 = F \cdot q \cdot \mu = 32 \cdot 300 \cdot 0,6144 = 5898,24$$
 қДж/ч,

Суммарное избыточное тепло в помещении:

$$Q_{u36} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 = 10800 + 0 + 2592 + 0 + 4632 + 5898, 24 = 23922, 24$$
 қДж/ч

Потребный воздухообмен, необходимый для удаления избыточного тепла из помещения, рассчитывается по формуле:

$$L = \frac{Q_{us6}}{c_{\rho} \cdot \rho(t_{sbm} - t_{np})} = \frac{23922,24}{1,005 \cdot 1,192 \cdot (23,5 - 10)} = 1479,2 \text{ m}^{3}/\text{y}$$

Определим необходимую кратность воздухообмена:

$$K = \frac{L}{V_{non}} = \frac{L}{S \cdot h} = \frac{1479,2}{450} = 3,28$$
,

где V_{nom} – объем помещения, м³.

$$V_{BEHT} = 1,10 \times 1479,2 = 1627,12 \text{ m}^3$$

где 1,10 – коэффициент, учитывающий утечки и подсосы воздуха.

Далее по таблице подберем вентилятор, имеющий соответствующую производительность ($V_{\mbox{\tiny Beht}}$).

Был выбран вентилятор осевой накладной ERA 6, имеющий следующие характеристики:

Производительность: 245 м³/ч;

Тип: вытяжной осевой;

Мощность: 20 Вт;

Диаметр: 150 мм;

Вес: 0,7 кг;

Количество вентиляторов, необходимое для удовлетворения потребного воздухообмена вычисляется по формуле:

$$N = \frac{V_{BEHT}}{P_{BEHT}} = \frac{1627,12}{245} = 7$$
 IIIT.

Изм.	Лист	№ докум.	Подпись	Дата

2.2 Расчет уровня шума на рабочем месте.

Одним из неблагоприятных факторов производственной среды является высокий уровень шума, создаваемый печатными устройствами, оборудованием для кондиционирования воздуха, вентиляторами систем охлаждения в самих ЭВМ.

Для уменьшения параметров уровня шума на рабочем месте необходима правильная организация производственного помещения, следует оборудование с повышенным уровнем шума изолировать в отдельное помещение, либо ставить в специально оборудованный шкаф.

Для решения вопросов о необходимости и целесообразности снижения шума необходимо знать уровни шума на рабочем месте оператора.

Уровень шума, возникающий от нескольких некогерентных источников, работающих одновременно, подсчитывается на основании принципа энергетического суммирования излучений отдельных источников:

$$L_{\Sigma}=20 \lg \sum_{i=1}^{n} L_{i}$$

где L_i – уровень звукового давления і-го источника шума, дБ; n – количество источников шума.

Обычно рабочее место оператора оснащено следующим оборудованием, которые имеют наивысшие уровни шума: группа винчестеров в системном блоке ПЭВМ, один или несколько вентиляторов системы охлаждения ПЭВМ, монитор, клавиатура, принтер и сканер, а также в последнее время все чаще применяются кондиционирующие аппараты.

Уровни звукового давления источников шума, действующих на оператора или пользователя ЭВМ на его рабочем месте представлены в таблице 2

Изм.	Лист	№ докум.	Подпись	Дата

Уровни звукового давления постоянных источников шума

Источник шума	Уровень звукового давления, дБ		
Внутренние	составляющие ЭВМ		
Группа винчестеров (1 шт)	30		
Система охлаждения (3 вент.)	30		
Внешние с	оставляющие ЭВМ		
Клавиатура (стандартная)	10		
Перифер	ийные устройства		
Принтер	45		
Копировальный аппарат			
Сканер (на осн. лампы)	42		
Факс			
Дополнительные	е источники в помещении		
Кондиционер	27		

Общий уровень шума, создаваемый всеми устройствами одновременно:

$$L_{\Sigma}$$
=20· lg (30+30+10+45+42+27)=45,3 дБ,

Полученное значение не превышает допустимый уровень шума для рабочего места оператора, равного 65 дБ (ГОСТ 12.1.003-83 «Шум. Общие требования безопасности»), а также не превышает уровень шума рабочего места программиста — 50 дБ. Также следует учесть, что такие периферийные устройства как сканер, принтер, факс, копировальный аппарат обычно не используются одновременно, таким образом уровень шума будет ниже рассчитанного значения. Кроме того, при работе принтера и факса непосредственное присутствие оператора необязательно, т.к. данные устройства снабжаются механизмом автоподачи листов. Кондиционирующее устройство может отсутствовать или быть в выключенном состоянии, если условия микроклимата допускают это, в таком случае уровень шума также будет ниже расчетного.

Следовательно набор оборудования подходит для организации рабочего места сотрудника.

Таким образом в разделе «Безопасность и экологичность проекта» были рассмотрены вопросы обеспечения безопасности и комфортных условий труда.

Изм.	Лист	№ докум.	Подпись	Дата

Были выявлены и проанализированы основные опасные и вредные факторы, имеющие различный характер и происхождение, а так же предложены пути снижения их вредного воздействия. Так же был сделан расчёт уровня шума на рабочем месте оператора ЭВМ.

2.3 Расчет искусственного освещения

Рациональное освещение рабочего места является одним из важнейших факторов, влияющих на эффективность трудовой деятельности человека, предупреждающих травматизм и профессиональные заболевания. Правильно организованное освещение создает благоприятные условия труда, повышает работоспособность и производительность труда. Освещение на рабочем месте оператора должно быть таким, чтобы работник мог без перенапряжения зрительных анализаторов выполнять свою работу.

Помещение и рабочие места должны быть обеспечены естественным и искусственным освещением, достаточным для безопасного выполнения работ в соответствии со СНиП 23-05-95 Естественное и искусственное освещение [12]. Для освещения помещений, как правило, следует предусматривать газоразрядные лампы низкого и высокого давления (люминесцентные, ДРЛ, металлогалогеновые, натриевые, ксеноновые).

Для расчета общего равномерного искусственного освещения горизонтальной рабочей поверхности применяется метод коэффициента использования светового потока. Предполагается использование светодиодных светильников Оптолюкс-Офис-Эконом.

Световой поток группы ламп F_{Π} рассчитывается по формуле:

$$F_{\pi} = \frac{E_{HOPM} Szk}{Nn}$$

где $E_{{\scriptscriptstyle HOPM}}$ — нормируемая минимальная освещенность на рабочем месте, ${}^{{\scriptscriptstyle JK}}$, (при системе общего освещения с разрядными лампами минимальное значение освещенности для IV разряда зрительной работы равно 300 лк);

 S_n – площадь помещения, M^2 ;

z — коэффициент минимальной освещенности. Для светодиодных ламп z = 1,1:

k — коэффициент запаса светового потока, зависящий от степени

Изм.	Лист	№ докум.	Подпись	Дата

загрязнения ламп k = 1, 4;

N — число светильников;

n — количество ламп в светильнике;

 η — коэффициент использования светового потока ламп;

F — световой поток лампы.

Индекс помещения определяется по формуле:

$$i = \frac{L \cdot B}{h \cdot (L + B)}$$

где h — высота подвеса светильника над рабочей поверхностью, M;

L — длина помещения, M;

B — ширина помещения, M.

Необходимо рассчитать оптимальную схему расположения светильников для помещения с размерами L=6 м, B=8,3 м и высотой H=3 м. Светильники встраиваемые., поэтому высота подвеса светильников равна высоте помещения h=3 м.

Для данного помещения і равно:

$$i = \frac{6.8,3}{3.(6+8,3)} = 1,16$$

Коэффициент отражения потолка и пола принимаем 0,7 и 0,5 соответственно. Значение η определяем по таблице коэффициентов использования светового потока, которое для светильника Оптолюкс-Офис-Эконом составляет 0,82.

Подставляем все значения в:

$$F_{\pi} = \frac{300 \cdot 150 \cdot 1, 1 \cdot 1, 4}{0,82} = 67608$$
 лм

Световой поток светодиодов светильника составляет F = 2450 лм

Количество необходимых ламп рассчитаем по формуле:

$$N = \frac{F_{\pi}}{F} = 28$$
 ламп

Схема размещения светильников представлена на рисунке 2. В один светильник вставляется 4 лампы.

Светильник Оптолюкс-Офис-Эконом имеет размеры: ширина — 595 мм,

Изм.	Лист	№ докум.	Подпись	Дата

длина — 595 мм, высота — 50 мм.

Рисунок 2, схема размещения светильников.

Спроектированная система освещения рабочего места обеспечивает возможность нормальной работы в темное время суток, а также при недостаточном естественном освещении. Система соответствует требованиям СанПиН 2.2.2/2.4.1340-03 к освещению рабочих помещений.

В данном разделе были рассмотрены вопросы безопасности и экологичности дипломного проекта. Были выявлены опасные и вредные факторы, присутствующие на рабочих местах, где будет внедрятся проект и разработаны мероприятия по приведению условий работы людей к необходимым нормам.