Diszkrét matematika 1

2. előadás Halmazok

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2024 tavasz

Halmazok

Halmazok

- Mi naiv halmazelmélettel foglalkozunk: halmazok = elemek gondolati burka
- azonban ez nem a mindig elég

Russell paradoxon (Bertrand Russell, 1872 - 1970)

- Egy halmaz legyen jó, ha nem eleme saját magának.
- Egy halmaz legyen rossz, ha eleme saját magának.
- Legyen A a jó halmazok halmaza.
- Ekkor A jó vagy rossz?

- Ha A jó halmaz $\Longrightarrow A$ eleme önmagának (definíció szerint) $\Longrightarrow A$ rossz $\mbox{\it if}$
- ullet Ha A rossz halmaz \Longrightarrow A nem eleme önmagának (definíció szerint) \Longrightarrow A jó ${\it 1}$

Halmazok

 Mi naiv halmazelmélettel foglalkozunk: halmazok = elemek gondolati burka

Meghatározottsági axióma

Egy halmazt az elemei egyértelműen meghatároznak.

Speciálisan:

Két halmaz pontosan akkor egyenlő, ha ugyan azok az elemeik.

$$\{1,2,3\} = \{3,2,1\} = \{1,3,2\} = \dots$$

• Egy halmaznak egy elem csak egyszer lehet eleme.

$$\{1,2,3\} = \{1,1,2,3\} = \{1,1,2,2,3\} = \{1,1,2,2,3,3\} = \dots$$

• Üres halmaz: $\emptyset = \{\}$. Figyelem $\emptyset \neq \{\emptyset\}$!

Részhalmazok

Definíció

- Az A halmaz részhalmaza a B halmaznak, $A \subset B$, ha $\forall x (x \in A \Rightarrow x \in B)$.
- Ha $A \subset B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subseteq B$.

A részhalmazok tulajdonságai:

Állítás (Biz.: HF)

- 1. $\forall A \ A \subset A$ (reflexivitás).
- 2. $\forall A, B, C A \subset B \land B \subset C \Rightarrow A \subset C$ (tranzitivitás).
- 3. $\forall A, B \land A \subset B \land B \subset A \Rightarrow A = B$ (antiszimmetria).

Művelet halmazokkal – unió

Definíció

Legyen A, B két halmaz. A és B uniója,

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

Általában: legyen $\mathcal A$ egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor

$$\cup \mathcal{A} = \cup_{A \in \mathcal{A}} A = \{x : \exists A \in \mathcal{A}, x \in A\}.$$

Példa

- $\bullet \ \{M \in \mathbb{R}^{5 \times 5} : \det M = 0\} \cup \{M \in \mathbb{R}^{5 \times 5} : \det M \neq 0\} = \mathbb{R}^{5 \times 5}$
- $\bullet \cup_{r \in \mathbb{R}} \{ M \in \mathbb{R}^{5 \times 5} : \det M = r \} = \mathbb{R}^{5 \times 5}$

Művelet halmazokkal – unió

Az unió tulajdonságai

Állítás (Biz.: HF)

- 1. $A \cup \emptyset = A$
- 2. $A \cup B = B \cup A$ (kommutativitás)
- 3. $A \cup (B \cup C) = (A \cup B) \cup C$ (asszociativitás)
- 4. $A \cup A = A$ (idempotencia)
- 5. $A \subset B \Leftrightarrow A \cup B = B$

Bizonyítás.

5. \Rightarrow : $A \subset B \Rightarrow A \cup B \subset B$, de $A \cup B \supset B$ mindig teljesül, így $A \cup B = B$. \Leftarrow : Ha $A \cup B = B$, akkor A minden eleme B-nek.

Művelet halmazokkal – metszet

Definíció

Legyen A, B két halmaz. A és B metszete,

$$A \cap B = \{x : x \in A \land x \in B\}.$$

Általában: legyen $\mathcal A$ egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor

$$\cap \mathcal{A} = \cap_{A \in \mathcal{A}} A = \{x : \forall A \in \mathcal{A}, x \in A\}.$$

Példa

Művelet halmazokkal – metszet

Az metszet tulajdonságai

Állítás (Biz.: HF)

- 1. $A \cap \emptyset = \emptyset$
- 2. $A \cap B = B \cap A$ (kommutativitás)
- 3. $A \cap (B \cap C) = (A \cap B) \cap C$ (asszociativitás)
- 4. $A \cap A = A$ (idempotencia)
- 5. $A \subset B \Leftrightarrow A \cap B = A$

Diszjunkt halmazok

Definíció

- Az A, B halmazok diszjunktak, ha $A \cap B = \emptyset$.
- Legyen \mathcal{A} egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor \mathcal{A} diszjunkt, ha $\cap \mathcal{A} = \emptyset$.
- Legyen A egy halmazrendszer (halmaz, mely elemei halmazok). Ekkor A elemei páronként diszjunktak, ha

$$\forall A, B \in \mathcal{A}, A \neq B : A \cap B = \emptyset$$

Megjegyzés:

- páronként diszjunkt ⇒ diszjunkt

Példa

• Legyen $A = \{1, 2\}$, $B = \{1, 3\}$ $C = \{2, 3\}$. A, B, C diszjunktak, de nem páronként diszjunktak.

Művelet halmazokkal

Az unió és metszet disztributivitása.

Állítás

Legyenek A, B, C tetszőleges halmazok. Ekkor

$$\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Bizonyítás.

$$x \in A \land x \in B \text{ vagy } x \in A \land x \in C$$
,

azaz
$$x \in (A \cap B) \cup (A \cap C)$$
.

2. HF, hasonló

Különbség, komplementer

Definíció

Két A, B halmaz különbsége

$$A \setminus B = \{a \in A : a \notin B\}$$

Legyen X egy rögzített alaphalmaz. Ekkor A halmaz komplementere

$$\overline{A} = X \setminus A = \{a \in X : a \notin A\}.$$

Állítás (Biz.: HF)

- $\bullet \ A \subset B \Longleftrightarrow \overline{B} \subset \overline{A}$
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (1. de Morgan szabály)
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (2. de Morgan szabály)

Szimmetrikus differencia

Definíció

Két A, B halmaz szimmetrikus differenciája

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
$$= \{a : (a \in A) \oplus (b \in B)\}$$

Állítás (Biz.: HF)

Ekvivalens definíció a szimmetrikus differenciára

$$A \bigwedge B = (A \cup B) \setminus (A \cap B) = \{a : (a \in A) \oplus (b \in B)\}$$

Hatványhalmaz

Definíció

Egy A halmaz hatványhalmaza $\mathcal{P}(A) = 2^A = \{B : B \subset A\}$, A összes részhalmazának hallmaza.

Példa

- $\mathcal{P}(\emptyset) = 2^{\emptyset} = \{\emptyset\}$ (egyelemű halmaz!)
- $\bullet \ \mathcal{P}(\{a\}) = 2^{\{a\}} = \{\emptyset, \{a\}\}\$
- $P(\{a,b\}) = 2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

Egy véges A halmaz elemszámát jelöljük |A|-val.

Állítás (Biz. később)

Legyen A egy véges halmaz. Ekkor $|\mathcal{P}(A)| = |2^A| = 2^{|A|}$.