AFCIL: Assumption Free Class Incremental

Learning

Divya Mehul Rajparia, Rahul Vigneswaran, Hari Chandana Kuchibhotla, Vineeth N Balasubramanian

Indian Institute of Technology Hyderabad, India

Introduction

- Continual Learning (CL) is a machine learning paradigm where data arrives sequentially as *tasks*, and the model must learn them without forgetting previous ones.
- Most CL methods assume balanced data and mitigate forgetting by storing *exemplars* from past tasks.
- Long-Tailed Class Incremental Learning (LTCIL) relaxes the balance assumption but still depends on exemplars.
- Exemplar-free methods address privacy concerns but struggle with skewed data.
- This exposes a gap: a CL setup that is exemplar-free, supports imbalanced data, uses pre-trained weights, and enables a multimodal setting.
- We define this as **Assumption-Free Class Incremental Learning (AFCIL)**—free from prior assumptions.

Results

Accuracies across methods for Assumption Free Class Incremental Learning

	CIFAR100-LT		ImageNet-LT		t-LT	
ho	100	50	10	100	50	10
Zero-Shot CLIP	80.36	80.36	80.36	89.71	89.71	89.71
L2P (CVPR '22)	70.70	74.46	79.65	87.04	88.85	90.92
DualPrompt (ECCV '22)	70.53	74.45	79.99	89.03	90.52	92.09
CODA (CVPR '23)	80.79	85.69	89.72	89.83	91.00	93.68
SLCA (ICCV '23)	71.90	75.31	79.297	92.08	92.84	93.632
MoE-Adapter (CVPR '24)	79.85	80.05	82.77	89.75	90.12	91.96
DES (Ours)	87.17	89.4	89.38	$9\overline{4.51}$	94.8	96.09
	6.38↑	3.71	$0.34 \downarrow$	2.43	1.96	2.41

Ablation study

Top: Evaluating impact of different components of DES on overall accuracy on CIFAR100LT dataset. **Bottom Left:** Analysis of different freezing strategies for the phase 2 of DES on CIFAR100LT dataset. **Bottom Right:** Analysis of different saturation techniques for DES

Frozen Expert	Balanced Sampler	Accuracy
X	X	81.16 (\(\daggerightarrow 6.01 \)
	X	$\begin{vmatrix} 81.16 & (\downarrow 6.01) \\ 83.92 & (\downarrow 3.25) \end{vmatrix}$
X		86.33 (10.84)
		87.17

Freezing Strategy	Accuracy		
Top weighted (local)	86.84 (\(\psi 0.33 \))		
Top weighted (global)	86.91 (\$\display\$0.26)		
Round Robin	87.04 (\$\display\$0.13)		
Random	87 17		

Saturation Technique	Accuracy
Weighted Loss	85.54 (\\$\\$1.63)
Balanced Sampler	87.17

Key Contributions

- We propose a new continual learning setup, **Assumption Free** Class Incremental Learning (AFCIL), which removes key assumptions made in prior work.
- The AFCIL setup supports long-tailed data, is exemplar-free, and permits the use of pre-trained weights.
- To address the challenges of AFCIL, we introduce **Dynamic Expert Saturation (DES)**, a method that incrementally saturates experts to accommodate both head and tail classes.

DES: Methodology

Methodology

- We propose **Dynamic Expert Saturation (DES)**, which fully utilizes model capacity by first specializing in head classes, then progressively saturating with tail class knowledge.
- To enable efficient training, we insert lightweight trainable adapters (MLPs) into a frozen CLIP backbone, allowing adaptation without modifying the backbone.
- Training proceeds in two phases:
 - Phase 1: All experts are trained with an imbalanced sampler to learn head class features.
- Phase 2: Head experts are frozen, and remaining experts are fine-tuned with a balanced sampler to specialize in tail classes, incrementally saturating model capacity.
- Final predictions combine expert outputs through dynamic weighting, leveraging both head and tail expertise.

Future work

- Implement a more intelligent freezing strategy to freeze experts after phase one of training.
- Store task statistics for classifier alignment, enabling the preservation of knowledge from previous tasks while facilitating adaptation to new tasks and mitigating forgetting.