UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE MATEMÁTICA

Sistema de recomendación de libros utilizando modelos de ML

Aplicaciones de la Matemática en la Ingeniería

J. Martínez – B. Muñoz – J.L Nanjari Y. Parra – M. Solla – G. Vega

2^{do} semestre 2022

Contenidos

1 Descripción del problema y objetivos

2 Análisis Exploratorio de Datos

3 Modelos y métricas

4 Conclusiones

Descripción del Problema y Objetivos

Motivación

¿Alguna vez has terminado un libro, o una serie, o una película, y has querido aventurarte en una nueva historia de la misma temática anterior, pero no sabías qué hacer?

Los sistemas recomendadores sirven para que estas situaciones se resuelvan inmediatamente, ¡y puedas seguir disfrutando del contenido que más disfrutas!

Nuestro problema y objetivos

Nuestro problema particular se basa en cómo recomendar libros que se encuentran en el conjunto de datos de Goodreads Books.

Objetivos:

- 1. Crear un sistema basado en modelos de Machine Learning, identificando los parámetros más importantes para este.
- 2. Que el sistema creado no deje de recomendar libros menos populares por sobre otros.
- 3. Comparar diversos métodos de comparación para ver cuál es el mejor.

Análisis Exploratorio de Datos

Tipos datos del DataFrame

bookID: Número identificador del libro en la data

title: Título del libro

authors: Autores del libro

average_rating: Rating promedio

isbn: Número identificador Internacional de 11 dígitos isbn13:Número identificador Internacional de 13 dígitos

language_code: Idioma del libro num_pages: Número de páginas ratings_count: Cantidad de ratings

text_reviews_count: Cantidad de reviews escritas

publication_date: Fecha de publicación

publisher: Editorial

Número de Páginas

	raitings	num_pages	reviews
mean	3,93	336	542
min	0	0	0
max	5	6576	94265

Figura: Descripción del DataFrame

Nombre	Páginas	Publisher
Murder by Moonlight & Other	0	Simon Schuster
Mysteries	U	Audio

Figura: Ejemplo de Audiolibro

Idiomas

Figura: Distribución libros por idioma

Correlación

Figura: Distribución rating promedio por nº de páginas

Correlación

Figura: Distribución n° de ratings por n° de reviews

Autores y Rating Ajustado

Figura: Distribución rating ajustado por autores

Años

Figura: Distribución libros por año

Conclusiones del Análisis

Los parámetros más importantes para realizar el modelo:

- 1. Idioma
- 2. Cantidad de páginas
- 3. Rating
- 4. Autor
- 5. Año de publicación

Modelos de Recomendación

Vecinos más cercanos

Figura: Esquema de Vecinos Más Cercanos

Sean x, y vectores:

Euclideana: $\sqrt{\langle x-y,x-y\rangle}$

Coseno similitud: $\frac{\langle x,y\rangle}{||x||||y||}$

Kernel sigmoide: $tanh(\alpha \langle x, y \rangle + c)$

Preprocesamiento

- 1 Variables numericas estandarizadas (StandarScaler)
- Metodo dummie para los idiomas
- Codigo autor segun adjusted rating
- 4 df_procesado

Resultados del Modelo: Euclideana

Euclideana	num_pages	codigo_autor	Año	text_reviews	ratings_count
Harry Potter #6	652	14	2006	27k	2M
Harry Potter #5	870	14	2004	29k	2M
Animal Farm	122	114	2003	29k	2M
Lord of the Flies	182	3609	1999	26k	2M
Harry Potter #2	341	14	1999	34k	2M
Harry Potter #3	435	14	2004	36k	2M

Figura: Resultados del modelo utilizando Distancia Euclideana

Resultados del Modelo: Coseno Similitud

Coseno	num_pages	codigo_autor	Año	text_reviews	ratings_count
Harry Potter #6	652	14	2006	27k	2M
Harry Potter #5	870	14	2004	29k	2M
Little Women	449	158	2004	18k	1,5M
The Hobbit or There and Back Again	366	3	2002	32k	2,5M
Memoirs of a Geisha	434	891	2005	19k	1,3M
Harry Potter #3	435	14	2004	36k	2,3M

Figura: Resultados del modelo utilizando Coseno Similitud

Resultados del Modelo: Distancia Sigmoidal

Sigmoide	num_pages	codigo_autor	Año	text_reviews	ratings_count
Harry Potter #6	652	14	2006	27k	2M
The Book Thief	552	1292	2006	86k	1,5M
Twilight	501	3747	2006	94k	1,5M
The Hobbit or There and Back Again	366	3	2002	32k	2,5M
Harry Potter #3	435	14	2004	36k	2,3M
Harry Potter #2	341	14	1999	34k	2,3M

Figura: Resultados del modelo utilizando Distancia Sigmoidal

Resultados

- General: falla el genero, acierta el autor
- Euclideana: Atributos en general similares (excepciones)
- Coseno: No sobrestima valores grandes
- 4 Sigmoidal: Libros vecinos de libros distintos
- Sigmoidal: Recomendaciones distintas a Euclideana y Coseno

Conclusiones

Conclusiones

- El sistema de recomendación es excelente para agrupar libros por idioma y popularidad, y también incorpora adecuadamente el resto de los datos en su recomendación.
- 2 Algunas recomendaciones son muy malas respecto al género del libro (pero era algo esperable, dado el dataset utilizado)
- 3 Al implementar un sistema recomendador, son fundamentales tanto el entendimiento y manejo de los datos como el uso adecuado de modelos de ML.

Trabajos futuros

- 1 Refinar el modelo, creando un buen sistema de comparación de resultados para identificar una métrica óptima.
- Obtener una mejor base de datos, que contenga información sobre el contenido de los libros.
- Explorar otros paradigmas para sistemas recomendadores (algoritmo colaborativo y sistemas mixtos).

