

FIG. 1

2/29

FIG. 2A

FIG. 2B

PHOSPHOCELLULOSE

FRACTION: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

-PoiIIIL

FIG. 2D

FIG. 3

NICKEL COLUMN

FIG. 4B

FIG. 4C

FIG. 5A

FIG. 5B

		2	3	4	5 6 -RFII -ssdna
S. aur Pol III _I	+	+	_	+	
S. aur β	+	+	_	_	+ -
E. coli Pol III CORE	_	_	_	_	+ +
E. coli β			+	+	- +
E. coli y COMPLEX	-	+	+	+	+ +
DNA SYNTHESIS (pmoi)	4.5	5.5	3.9	58	4.4 109

FIG. 6

8/29

AGAROSE GEL

FIG. 8A

DNA SYNTHESIS

	DNA SYNTHESIS (PMOI) PEAK				
ADDITION	PEAK 1	PEAK 2	PEAK 3	PEAK 4	
NONE	22.7	70.6	146.1	4.7	
E. coli β , γ COMPLEX	72.9	61.2	71.4	25.9	

FIG. 8B

9/29

KIWRATCIWNCDFRSSACKAVAKDVGRIMGFDEVTLNEISSLIPHKLGITLDEAYQID-D MYGRDAVSQIITFGTWAAKAVIRDVGRVLGHPYGFVDRISKLIPPDFGMTLAKAFEAEPQ MYGRDAVSQIITFGTWAAKAVIRDVGRVLGHPYGFVDRISKLVPPDFGMTLAKAFEAEPQ	FKKFVHRNHRHORWFSICKKLEGLPRHTSTHAAGIIINDHPLYEYAPLTKGDTGLLTQ LPEIYBADEEVRALIDMARKLEGVTRNAGKHAGGVVIAPTKITDFAPLYCDEEGKHPVTQ LPEIYBADEEVRALIDMARKLEGVTRNAGKHAGGVVIAPTKITDFAPLYCDEEGKHPVTQ	WIWIEAERIGILKIDFLGLRNLSIIHQILTRVEKDLGFNIDIEKIPFDDQKVFELL FDKSDVEYAGLVKFDFLGLRILTIINWALEMINKRRAKNGEPPLDIAAIPLDDKKSFDML FDKSDVEYAGLVKFDFLGLRTLTIINWALEMINKRRAKNGEPPLDIAAIPLDDKKSFDML	SQGDTTGIFQLESDGVRSVLKKLKPEHFEDIVAVTSLYRPGPMEEIPTYITRRHDPS- QRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREE QRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREE	KVQYLHPHLEPILKNTYGVIIYQEQIMQIASTFANFSYGEADILRRAMSKKNRAVL ISYPDVQWQHESLKPVLEPTYGIILYQEQVMQIAQVLSGYTLGGADMLRRAMGKKKPEEM LSYPDVQWQHESLKPVLEPTYGIILYQEQVMQIAQVLSGYTLGGADMLRRAMGKKKPEEM ** * * * * * * * * * * * * * * * * * *	ERDAQHFIEGTKQNGYHEDISKQIFDLIAKQRSHSAAYALVSYQTLWLKAHYPA AKQRSVFEEGAKKNGIDGELAMKIFDLVEKPAGYGFNKSHSAAYALVSYQTLWLKAHYPA AKQRSVFEEGAKKNGIDGELAMKIFDLVEKPAGYGFNKSHSAAYALVSYQTLWLKAHYPA * ** ** ** ***
S.aureus	S.aureus	S.aureus	S.aureus	S.aureus	S.aureus
E.coli	E.coli	E.coli	E.coli	E.coli	E.coli
Sal.typ	Sal.typ	Sal.typ	Sal.typ	Sal.typ	Sal.typ

10/29

SIAKVFAKAINCLNSTDGEPCNECHICKGITQGTNSDVIEIDAASNNGVDEIRNIRDKVKYA SAAKIFAKAVNCEHAPVDEPCNECAACKGITNGSISDVIEIDAASNNGVDEIRDIRDKVKFA ----SHAYLFSGPRGTGKT SIARLLAKGLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYA ATP site PSESKYKVYIIDEVHMLTTGAFNALLKTLEEPPAHAIFILATTEPHKIPPTIISRA PSAVTYKVYIIDEVHMLSIGAFNALLKTLEEPPEHCIFILATTEPHKIPLTIISRC PARGRFKVYLIDEVHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRC ** ** * * * * * * * * * ****** MKGYCLWRCNLDYQALFVVPTP-KFEDVVGQEHSEDCAMG--* ******** Zn++ finger *** S.aureus B. sub E. coli S.aureus S.aureus B. sub E. coli B.sub. E.coli

11/29

S.aureus B.sub E.coli Sal.typ	ALNIANKIERMKIYLAVGIFSLEMGADQLITRNICSSGNVDSNRLRTGTWTEEDWSRFTI ALNIAQNVA-TKTDFSVAIFSLFMGAEQLVMRMLCAEGNINAQNLRTGNLTEEDWGKLTM AMNLVENAA-MLQDKPVLIFSLEMPSEQIMMRSLASLSRVDQTKIRTGQLDDEDWARISG AMNLCENAA-MLQDKPVLIFSLEMPGEQIMMRMLASLSRVDQTRIRTGQLDDEDWARISG * * * * * * * * * * * * * * * * * * *
S.aureus B.sub E.coli Sal.typ	AVGKLS-RTKIFIDDTPGIPINDLRSKCRRLKQEHG-LYVIVIDYLQLIPGVGSRASDNR AMGSLS-NSGIYIDDIPGIRVSEIRAKCRRLKQESG-LGMILIDYLQLIQGSG-RSKDNR TWGILLEKRNIYIDDSSGLTPTEVRSRARRIAREHGGIGLIMIDYLQLMRVPALSDNR TWGILLEKRNMYIDDSSGLTPTEVRSRARRIFREHGGLSLIMIDYLQLMRVPSLSDNR ************************************
S.aureus B.sub E.coli Sal.typ	QQEVSEISRTLKALARELECPVIADSQLSPALPPRRATRPDLPRH

12/29

B.sub.yqeN E.c.delta	MYFDVWKSLKXGE-VHPVYCLYGKETYLLGETVBRIRGTVVDGETKDPNLSVPDLEED MIRLYPEGLRAGLNEGLRAAYLLLGNDPLLLGESGDAVRGVAAAGGFEEHHTFSIDPNTD *:	59
B.s.yqaN E.c.delta	PLDQAIADAMTFPFMGERRLVIVKNPYFLTGEKKKERIEHNVSALESYIQSPAPYTVFVL -WMAIFSLCQAMSLFASRQTLLLLLPENGPHAAINEQLLTLTGLLHDDLLLIVR : :: .::.:::	117
B.s.yqeN E.c.delta	LAPYEKLDERKKLTKALKKHAFIGGEAKELHAKETTDFTVNLAKTEQKTIGTEAAEHLVLL GNKLSKAQEHAAWFTALANKSVQVTCQTPEQAQLPRWVAARAKQLNLELDDAANQVLCYC	125
B.s.yqeN E.c.delta	VMGHLSSIFQEIQKLCTFIGDREEITLDDVKMLVARSLEQNIFELINKIVMRKRTESLQI YEGHLLALAQALERLSLLWPDGK-LTLPRVEQAVMDAAHFTPFHWVDALLMGKSKRALHI !*!* :	235
B.s.yqaN E.c.delta	FYDLLKQNEEPIKIMALISHQFRLILQTKYFAEQGYGQKQIASHLKVHPFRVKLAHDQAR LQQLRLEGSEPVILLRTLQRELLLLVNLKRQSAHTPLR-ALFDKHRVWQNRRGWMGHALM 1 1° 1° 1 11 111 ° 11 1 1 1 1 1 1	291
B.s.yqab E.c.delta	LFSEEELRLIIEQLAVMDYENKTGKKDKQLLLELFLLQLLKRHEKNDPHY RLSQTQLRQAVQLLTRTELTLKQDYGQSVWAELEGLSLLLCHKPLADVFIDG	343

FIG. 12A

B.s.yqeN 8.p. delta	-MVFDVWKSLKKGEVHFVYCLYGKETYLLQETVSRIR-QTVVDQETKDFMLSVFDLEEDP MIATEKIEKLSKEMLGLITLVTGDDIGQYSQLKSRIMEQIAFDKDDLAYSYFDMSEAA 1.11 1.*.* 11 1 * 1	59
Bsub.yqeN	LDQATADAETFPFMGERRLVTVKHPYFLTGERRKERIEHHVSALESYIQSPAPYTVFVLL	117
S.p.delta	YQDAEHDLVSLPFFAEQKVVIFDHLLDITTHKKSFLKEKDLKAFEAYLEHPLETTRLIIF	
		125
Baub.yqeN	Apyeklderkki/kalkkhaphmeakelnakettdp/tvhlakteqktiqteaaehlvllv	143
8.p.delta	AP-GKLDSKRRLVKLLKRDALVLEANPLKEAELRTYPQKYSHQLGLGFESGAFDQLLL	
Baub.ygeN		235
S.p.delta	NGHLSSIFQEIQKLCTFIGDREEITLDDVKKLVARSLEQNIFELIKKIVKRKRTESL	
p.b.detts	RSHDDFSQIHCHAFLKAYKKTCHISLTDIEQAIPKSLQDHIFD-VTRLVLRGKIDAA 1.1 . *.! * !*! !! *!* *!! !.!**!!***!!!! * !!!	
Bsub, ygeN	Q-ifydllkoheepikinalismofrlilotkypaeogygokolasmlkvhpfr	291
S.p.delta		
o.p.uerca	RDLIHDLRLSGEDDIKLIAINLGQFRLFLQLTILARDVKNEQQLVISLSDILGRRVNFYQ t til***! **!!*!! .****!** . !*.! .!!*!* !*!*!!	
Bsub.yqeN	VKLAMDQARLFSEEELRLIIEQLAVMDYENKTGKKDKQLLLELFLLQLLKRNEKNDPHY	343
S.p.delta	VKYALKDSRTLSLAFLTGAVKTLIETDYQIKTGLYEKSYLVDIALLKIMTHSQK	343

FIG. 13

FIG. 14

15/29

SUPEROSE 6

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 16E

17/29

FIG. 17A

24 26 28 30 32 34 36 38 40 42 44 46 48

FIG. 17B

24 26 28 30 32 34 36 38 40 42 44 46 48

FIG. 17C

18/29

SUPEROSE 6

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

19/29

αLτδδ" + β/DNA

3:1

10:1

RFII

TIME (SEC)

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

FIG. 20A

21/29

FIG. 20B

FIG. 20C

FIG. 20D

FIG. 20E

FIG. 20F

26/29

FIG. 20G

FIG. 20H

FIG. 201

