



# BLUEBERRY YIELD PREDICTION





# **Final Project Report Template**

- 1. Introduction
  - 1.1. Project overviews
  - 1.2. Objectives
- 2. Project Initialization and Planning Phase
  - 2.1. Define Problem Statement
  - 2.2. Project Proposal (Proposed Solution)
  - 2.3. Initial Project Planning
- 3. Data Collection and Preprocessing Phase
  - 3.1. Data Collection Plan and Raw Data Sources Identified
  - 3.2. Data Quality Report
  - 3.3. Data Preprocessing
- 4. Model Development Phase
  - 4.1. Model Selection Report
  - 4.2. Initial Model Training Code, Model Validation and Evaluation Report
- 5. Model Optimization and Tuning Phase
  - 5.1. Tuning Documentation
  - 5.2. Final Model Selection Justification
- 6. Results
  - 6.1. Output Screenshots
- 7. Advantages & Disadvantages
- 8. Conclusion
- 9. Future Scope
- 10. Appendix
  - 10.1. Source Code
  - 10.2. GitHub & Project Demo Link





# Introduction

# **Project Overview:**

The objective of this project is to develop and optimize predictive models to accurately forecast target variables based on a given dataset. The project involves a systematic approach, starting from problem definition, data collection, and preprocessing, followed by model development, optimization, and evaluation. Various machine learning models, including Linear Regression, Decision Tree, Random Forest, and XGBoost, were explored and compared. The ultimate goal was to select the most accurate and efficient model to ensure reliable predictions, providing insights and potential solutions to the problem at hand.

# **Objectives:**

- **1. To Define and Understand the Problem Statement:** Clearly identify the problem, its significance, and how predictive modeling can provide a solution.
- **2.** To Collect and Preprocess the Data: Gather relevant data, ensure its quality, and perform necessary preprocessing steps to make it suitable for model training.
- **3. To Develop Multiple Predictive Models:** Train and validate various machine learning models, including Linear Regression, Decision Tree, Random Forest, and XGBoost.
- 4. **To Optimize and Tune Models:** Perform hyperparameter tuning to enhance the performance of the models, ensuring the best possible accuracy and efficiency.
- 5. **To Compare and Select the Best Model:** Evaluate the models based on performance metrics and select the most suitable one for the given problem.
- **6. To Document and Present the Results:** Provide detailed documentation of the project phases, results, and findings, including a justification for the final model selection and suggestions for future work.





### **Project Initialization and Planning Phase**

| Date          | 18 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Name  | Blueberry Yield Prediction |
| Maximum Marks | 3 Marks                    |

### **Define Problem Statements (Customer Problem Statement Template):**

Wild blueberry farmers struggle with accurately predicting crop yields due to unreliable traditional methods, leading to resource misallocation and financial losses. They need a reliable, data-driven solution to forecast yields, considering factors like weather, soil quality, and pest pressure. An effective machine learning model can provide precise yield predictions, enhancing decision-making, efficiency, and profitability. The solution must be user-friendly, scalable, and capable of integrating various data sources to support sustainable and optimized farming practices.

Reference: <a href="https://miro.com/templates/customer-problem-statement/">https://miro.com/templates/customer-problem-statement/</a>

### **Example:**



| Problem<br>Statement (PS) | I am<br>(Customer)            | I'm trying<br>to                                               | But                                                                  | Because                                                                                | Which makes me feel                                                                                                             |
|---------------------------|-------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| PS-1                      | A wild<br>blueberry<br>farmer | accurately<br>predict the<br>yield of my<br>blueberry<br>crops | the traditio nal method s I use are often inaccur ate and time-consu | they do not effectively integrate and analyse multiple factors like weather conditions | frustrated and<br>uncertain about<br>my farming<br>decisions, leading<br>to potential<br>financial losses<br>and inefficiencies |





|      |                                  |                                                                 | ming.                                                    | , soil<br>quality,<br>and pest<br>pressure                                        |                                                                                                 |
|------|----------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| PS-2 | an<br>agricultural<br>consultant | provide<br>reliable<br>yield<br>predictions<br>to my<br>clients | the availab le tools and method s are not precise enough | they fail to<br>utilize<br>comprehe<br>nsive data<br>and<br>advanced<br>analytics | concerned about<br>the accuracy of<br>my advice and<br>the success of my<br>clients' operations |





# **Initial Project Planning Template**

| Date          | 18 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Name  | Blueberry Yield Prediction |
| Maximum Marks | 4 Marks                    |

# **Product Backlog, Sprint Schedule, and Estimation (4 Marks)**

| Sprint   | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                          | Story<br>Points | Priority | Team<br>Members | Sprint<br>Start Date | Sprint End<br>Date<br>(Planned) |
|----------|-------------------------------------|----------------------|----------------------------------------------------------------------------|-----------------|----------|-----------------|----------------------|---------------------------------|
| Sprint-1 | Data Collection & Preparation       | USN-1                | Identify and collect primary data sources for blueberry yield prediction   | 3               | High     | Angelica T      | 18th July<br>2024    | 19th July<br>2024               |
| Sprint-1 |                                     | USN-2                | Identify and collect secondary data sources for blueberry yield prediction | 2               | High     | Angelica T      | 18th July<br>2024    | 19th July<br>2024               |
| Sprint-1 | Data<br>Preparation                 | USN-3                | Clean and preprocess the collected data, handle missing value              | 3               | High     | Angelica T      | 18th July<br>2024    | 19th July<br>2024               |
| Sprint-2 | Exploratory Data Analysis (EDA)     | USN-4                | Perform descriptive statistical analysis on the dataset                    | 2               | High     | Angelica T      | 19th July<br>2024    | 20th July<br>2024               |
| Sprint-2 |                                     | USN-5                | Conduct visual analysis using histograms, scatter plots, and heatmaps      | 3               | High     | Angelica T      | 19th July<br>2024    | 20th July<br>2024               |
| Sprint-3 | Model Building                      | USN-6                | Train the data using Linear Regression model                               | 2               | High     | Angelica T      | 20th July<br>2024    | 21st July 2024                  |
| Sprint-3 |                                     | USN-7                | Train the data using Random Forest<br>Regressor model                      | 2               | Medium   | Angelica T      | 20th July<br>2024    | 21st July 2024                  |





| Sprint   | Functional<br>Requirement<br>(Epic)                                      | User Story<br>Number | User Story / Task                                           | Story<br>Points | Priority | Team<br>Members | Sprint<br>Start Date | Sprint End Date (Planned) |
|----------|--------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|-----------------|----------|-----------------|----------------------|---------------------------|
| Sprint-3 |                                                                          | USN-8                | Train the data using Decision Tree<br>Regressor model       | 2               | Medium   | Angelica T      | 20th July<br>2024    | 21st July 2024            |
| Sprint-3 |                                                                          | USN-9                | Train the data using XGBoost Regressor model                | 2               | Medium   | Angelica T      | 20th July<br>2024    | 21st July 2024            |
| Sprint-4 | Model<br>Evaluation &<br>Tuning                                          | USN-10               | Test the models with evaluation metrics (MAE, RMSE, R2)     | 2               | High     | Angelica T      | 21st July<br>2024    | 22nd July<br>2024         |
| Sprint-4 |                                                                          | USN-11               | Perform hyperparameter tuning on the models                 | 2               | Medium   | Angelica T      | 21st July<br>2024    | 22nd July<br>2024         |
| Sprint-5 | Model<br>Deployment                                                      | USN-12               | Save the best model and prepare it for deployment           | 1               | High     | Angelica T      | 22nd July<br>2024    | 22nd July<br>2024         |
| Sprint-5 | Build server-<br>side script<br>using Flask to<br>integrate the<br>model | USN-13               | Develop HTML pages for user input and result display        | 2               | High     | Angelica T      | 22nd July<br>2024    | 22nd July<br>2024         |
| Sprint-5 |                                                                          | USN-14               | Build server-side script using Flask to integrate the model | 2               | High     | Angelica T      | 22nd July<br>2024    | 22nd July<br>2024         |
| Sprint-6 | Project Demonstration & Documentation                                    | USN-15               | Record an explanation video of the project                  | 1               | Medium   | Angelica T      | 22nd July<br>2024    | 23nd July<br>2024         |
| Sprint-6 |                                                                          | USN-16               | Document the project development process step-by-step       | 2               | High     | Angelica T      | 22nd July<br>2024    | 23nd July<br>2024         |





# **Project Initialization and Planning Phase**

| Date          | 18 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 3 Marks                    |

# **Project Proposal (Proposed Solution) template**

| Project Overview         |                                                                                                                                                                                                                     |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                | To create a machine learning model that predicts blueberry yield based on factors like weather, insect populations, and soil conditions, aiding farmers in optimizing their crop management.                        |
| Scope                    | This project includes data collection, preprocessing, model training, evaluation, and deploying the solution via a Flask web application. It does not cover real-time data integration or field validation.         |
| <b>Problem Statement</b> |                                                                                                                                                                                                                     |
| Description              | Farmers face difficulties predicting blueberry yield due to variable weather, insect populations, and soil conditions, impacting their harvest planning and resource management.                                    |
| Impact                   | Solving this issue will enable precise yield predictions, helping farmers optimize harvesting schedules, reduce waste, and improve profitability and resource management.                                           |
| <b>Proposed Solution</b> |                                                                                                                                                                                                                     |
| Approach                 | Develop a predictive model using historical data, perform preprocessing and exploratory analysis, train multiple machine learning algorithms, and integrate the best-performing model into a Flask web application. |
| Key Features             | <ul> <li>Accurate Predictions: Employ advanced machine learning to forecast yield reliably.</li> <li>User-Friendly Interface: Provide an intuitive web interface for easy data input and result display.</li> </ul> |





# **Resource Requirements**

| Resource Type           | Description                             | Specification/Allocation                                                                   |  |  |  |
|-------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| Hardware                | Hardware                                |                                                                                            |  |  |  |
| Computing Resources     | CPU/GPU specifications, number of cores | 2 x NVIDIA V100 GPUs                                                                       |  |  |  |
| Memory                  | RAM specifications                      | 8 GB                                                                                       |  |  |  |
| Storage                 | Disk space for data, models, and logs   | 1 TB SSD                                                                                   |  |  |  |
| Software                | Software                                |                                                                                            |  |  |  |
| Frameworks              | Python frameworks                       | Flask                                                                                      |  |  |  |
| Libraries               | Additional libraries                    | scikit-learn, pandas, numpy                                                                |  |  |  |
| Development Environment | IDE, version control                    | Jupyter Notebook, Git                                                                      |  |  |  |
| Data                    |                                         |                                                                                            |  |  |  |
| Data                    | Source, size, format                    | Kaggle dataset, Historical agricultural data on blueberry yield (size varies, format: CSV) |  |  |  |





# **Data Collection and Preprocessing Phase**

| Date          | 18 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 6 Marks                    |

### **Data Exploration and Preprocessing Template**

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

| Section                             | Description                                                                                                                                                                                                                                      |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Data Overview                       | The dataset includes columns like clonesize, honeybee, bumbles, andrena, osmia, and various weather-related features, with dimensions of X rows and Y columns. Basic statistics such as mean, median, and standard deviation will be calculated. |  |
| Univariate Analysis                 | Examine each variable individually to understand their distributions and central tendencies. Calculate statistics like mean, median, mode, and standard deviation for each feature.                                                              |  |
| Bivariate Analysis                  | Explore relationships between pairs of variables using correlation coefficients and scatter plots. For example, assess how clonesize relates to yield.                                                                                           |  |
| Multivariate Analysis               | Analyze patterns involving multiple variables. Use techniques like heatmaps and pair plots to understand interactions and dependencies among features.                                                                                           |  |
| Outliers and Anomalies              | Identify outliers using statistical methods (e.g., IQR) and visualization (e.g., box plots). Apply transformations or filtering techniques to address these anomalies.                                                                           |  |
| Data Preprocessing Code Screenshots |                                                                                                                                                                                                                                                  |  |





| Loading Data          | In [3]:   M import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_mport rain_quared_error import_sploils import matploitslb.pyplot as plt import matploitslb.pyplot as plt import pashorn as sns import pickle from sklearn.linear_model import LinearRegression  In [4]:   # Load dataset   # Load dataset   # Display the first few rows of the dataset   print(df.head())   Rower clonesize honeybee   bumbles   andrena   osmia   MaxOfUpperTRange     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Handling Missing Data | In [9]: N * Data Cleaming and preparation  # Identify missing values missing_values of.ismull().sum()  # Handle missing values  df = df.dropne()  # Verify no missing values remain print("Missing values after handling:\n", df.ismull().sum())  Missing values after handling: Room  Clometine  Clometine  B c |  |
| Data Transformation   | In [i0]:   # Data Transformation from sklearn.preprocessing import StandardScaler  # Select columns to be scaled columns_to_scale = ['clonesize', 'boneybee', 'bumbles']  # Initialize scaler scaler = StandardScaler()  # Scale the selected columns df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])  # Display transformed data print(df.head())                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Feature Engineering   | In [11]: M # Feature Engineering # Create new feature 'average_temp' as the average of 'MaxOfUpperTRange' and 'NinOfUpperTRange' df['average_temp'] ( df['MaxOfUpperTRange'] + df['MinOfUpperTRange'] / 2  # Display data with new feature print(df[['MaxOfUpperTRange', 'NinOfUpperTRange', 'average_temp']].head())  MaxOfUpperTRange MinOfUpperTRange average_temp 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Save Processed Data   | In [12]: ## Save Processed Data # Save the cleaned and transformed dataset to a new CSV file  of. to_csv('C:\\\Sers\\angel\\OneDrive\\Desktop\\WildBlueberryPollinationSimulationData.csv', index=False)  # Verify the saved data saved_data = pd.read_csv('C:\\Users\\angel\\OneDrive\\Desktop\\KildBlueberryPollinationSimulationData.csv') print(saved_data.head())                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |





# **Data Collection and Preprocessing Phase**

| Date          | 18 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 2 Marks                    |

### **Data Quality Report Template**

The Data Quality Report Template will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

| Data<br>Source         | Data Quality Issue                                   | Severity | Resolution Plan                                                      |
|------------------------|------------------------------------------------------|----------|----------------------------------------------------------------------|
| Blueberries<br>Dataset | Missing values in columns 'clonesize' and 'honeybee' | High     | Fill missing values using forward fill method.                       |
| Blueberries<br>Dataset | Inconsistent data types for 'harvestdate'            | Moderate | Convert 'harvestdate' to a consistent datetime format.               |
| Blueberries<br>Dataset | Outliers in 'yield' column                           | High     | Identify and treat outliers using IQR method.                        |
| Blueberries<br>Dataset | Duplicate rows                                       | Low      | Remove duplicate rows using drop_duplicates() method.                |
| Blueberries<br>Dataset | Mixed units in 'temperature' columns                 | Moderate | Standardize all temperature values to a single unit (e.g., Celsius). |





| Blueberries<br>Dataset | Incorrect values in 'soil_quality' (negative values) | High     | Replace negative values with the median of the column.   |
|------------------------|------------------------------------------------------|----------|----------------------------------------------------------|
| Blueberries<br>Dataset | Typographical errors in categorical data             | Moderate | Standardize categorical data using a predefined mapping. |
| Blueberries<br>Dataset | Missing entries in 'weather_conditions'              | Low      | Fill missing values with the most frequent category.     |





# **Data Collection and Preprocessing Phase**

| Date          | 18 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 2 Marks                    |

### **Data Collection Plan & Raw Data Sources Identification Template**

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

### **Data Collection Plan Template**

| Section              | Description                                                                                                                                                                        |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | This project aims to develop a machine learning model to                                                                                                                           |
|                      | predict the yield of wild blueberries based on various                                                                                                                             |
| Project Overview     | factors such as weather conditions, soil quality, and pest                                                                                                                         |
|                      | pressure. Accurate yield predictions will help farmers                                                                                                                             |
|                      | optimize their resources, reduce waste, and improve                                                                                                                                |
|                      | profitability.                                                                                                                                                                     |
| Data Collection Plan | Data has been collected from Kaggle, a well-known platform for datasets. The selected dataset includes comprehensive information necessary for building a robust predictive model. |
| Raw Data Sources     | The raw data source is publicly accessible and provides a                                                                                                                          |
| Identified           | diverse and comprehensive dataset for training the model.                                                                                                                          |

### **Raw Data Sources Template**





| Source<br>Name    | Description                                                                                                                     | Location/URL                                                                                   | Format | Size   | Access Permissions |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------|--------|--------------------|
| Kaggle<br>Dataset | Wild Blueberries Yield Data: Contains historical data on blueberry yields, weather conditions, soil quality, and pest pressure. | https://www.kagg<br>le.com/datasets/sa<br>urabhshahane/wil<br>d-blueberry-yield-<br>prediction | CSV    | 361 kB | Public             |





# **Model Development Phase Template**

| Date          | 20 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 5 Marks                    |

### **Feature Selection Report Template**

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

| Feature   | Description                                       | Selected (Yes/No) | Reasoning                                               |
|-----------|---------------------------------------------------|-------------------|---------------------------------------------------------|
| clonesize | Size of the blueberry clones                      | Yes               | Important for predicting yield based on plant growth    |
| honeybee  | Count of honeybees observed in the area           | Yes               | Honeybees are crucial pollinators affecting yield       |
| bumbles   | Count of<br>bumblebees<br>observed in the<br>area | Yes               | Bumblebees also contribute significantly to pollination |





| fruitset          | Percentage of flowers that develop into fruits      | Yes | Directly impacts yield by measuring reproductive success     |
|-------------------|-----------------------------------------------------|-----|--------------------------------------------------------------|
| fruitmass         | Average mass of the fruits                          | Yes | Fruit size is a direct measure of yield                      |
| seeds             | Number of seeds<br>per fruit                        | No  | Not a significant predictor of overall yield                 |
| flowernumb        | Number of flowers per plant                         | Yes | More flowers can lead to higher potential yield              |
| cropyear          | Year of the crop                                    | No  | Not necessary if other temporal features are included        |
| fieldsize         | Size of the field<br>where blueberries<br>are grown | No  | Less impact on individual plant yield                        |
| precipitatio<br>n | Total precipitation during the growing season       | Yes | Important for soil moisture and plant health                 |
| soilmoisture      | Moisture level in the soil                          | Yes | Directly affects plant growth and yield                      |
| ph                | pH level of the soil                                | Yes | Soil pH can influence nutrient availability and plant health |
| temperatur<br>e   | Average temperature                                 | Yes | Temperature impacts plant growth cycles                      |





|                      | during the growing season                          |     |                                                    |
|----------------------|----------------------------------------------------|-----|----------------------------------------------------|
| MinOfUpper<br>TRange | Minimum temperature in the upper temperature range | Yes | Temperature influences plant growth and yield      |
| MaxOfUppe<br>rTRange | Maximum temperature in the upper temperature range | Yes | Temperature influences plant growth and yield      |
| RainingDays          | Number of days it rained during the growing season | Yes | Rainfall affects soil moisture and plant health    |
| AvgRaining<br>Days   | Average number of rainy days per month             | Yes | Provides insight into consistent rainfall patterns |





### **Model Development Phase Template**

| Date          | 20 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 4 Marks                    |

### Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

### **Initial Model Training Code:**

```
File Edit View Insert Cell Karnel Widgets Help Trusted Python 3 (ipykarnel) O

In [17]: M # Initialize and train the model

# Linear Regression
reg = LinearRegression()
re
```





```
57159071), (7604.315838, 7630.315686537314), (3723.523376, 3894.539832186767), (6037.686131, 6029.792189965131)]
In [18]: ₩ # Random Forest Regressor
                        rf_reg = RandomForestRegressor()
rf_reg.fit(X_train, y_train)
                        pred_rf = rf_reg.predict(X_test)
                        mae_rf = mean absolute error(y test, pred_rf)
                       mae_ir = mean_squared_error(y_test, pred_rf)
mse_rf = mean_squared_error(y_test, pred_rf)
rmse_rf = np.sqrt(mse_rf)
rsq_rf = r2_score(y_test, pred_rf)
accuracy_rf = rsq_rf * 100
                        print('Random Forest Regressor:')
                        print('Random Forest Regressor:')
print('MsE: %.3f' % mse_rf)
print('MsE: %.3f' % mse_rf)
print('RMSE: %.3f' % rmse_rf)
print('RMSE: %.3f' % rmse_rf)
print('R-Square: %.3f' % rsq_rf)
print(f'Accuracy: {accuracy_rf:.2f}%')
print(f'Actual vs Predicted: {list(zip(y_test, pred_rf))[:10]}') # Showing first 10 pairs
print()
                         Random Forest Regressor:
                        MAE: 116.868
MSE: 22604.657
RMSE: 150.348
                        R-Square: 0.989
Accuracy: 98.86%
                         Actual vs Predicted: [(4282.700632. 4139.818938290001). (6801.49205. 6682.12248011). (6279.338501. 6233.448528890003). (689
                         8.390949, 6904.70566688), (7004.015537, 6904.661148249991), (6779.981658, 6616.757262779998), (4936.01177, 4787.94731337000
                        3), (7604.315838, 7584.481504839996), (3723.523376, 4009.5987002700003), (6037.686131, 6006.676942220003)]
In [19]: # Decision Tree Regressor
dt_reg = DecisionTreeRegressor()
dt_reg.fit(X_train, y_train)
pred_dt = dt_reg.predict(X_test)
                       mae_dt = mean_absolute_error(y_test, pred_dt)
mse_dt = mean_squared_error(y_test, pred_dt)
rmse_dt = np.sqrt(mse_dt)
rsq_dt = r2_score(y_test, pred_dt)
accuracy_dt = rsq_dt * 100
                        print('Decision Tree Regressor:')
                       print('MAE: %.3f' % mae_dt)
print('MSE: %.3f' % mse_dt)
                        print('RMSE: %.3f' % rmse_dt)
print('R-Square: %.3f' % rsq_dt)
                        print(f'Accuracy: {accuracy_dt:.2f}%')
print(f'Actual vs Predicted: {list(zip(y_test, pred_dt))[:10]}') # Showing first 10 pairs
                        print()
                        Decision Tree Regressor:
                        MAE: 155.595
MSE: 42571.611
                         RMSE: 206.329
                        R-Square: 0.978
Accuracy: 97.84%
                        Actual vs Predicted: [(4282.708632, 4125.757119), (6801.49205, 6619.846953), (6279.338501, 6397.355689), (6898.390949, 6922. 846792), (7004.015537, 6575.592668), (6779.981658, 6771.722906), (4936.01177, 4945.794431), (7604.315838, 7576.39253), (372 3.523376, 4178.772056), (6037.686131, 6107.382466)]
mae_xgb = mean_absolute_error(y_test, pred_xgb)
mse_xgb = mean_squared_error(y_test, pred_xgb)
rmse_xgb = np.sqrt(mse_xgb)
rsq_xgb = rp2_score(y_test, pred_xgb)
accuracy_xgb = rsq_xgb * 100
                       print('XGBoost Regressor:')
print('MAE: %.3f' % mae_xgb)
print('MSE: %.3f' % mse_xgb)
print('RMSE: %.3f' % mse_xgb)
print('RMSE: %.3f' % rsa_xgb)
print('R-square: %.3f' % rsa_xgb)
print(f'Accuracy: {accuracy_xgb:.2f}%')
print(f'Actual vs Predicted: {list(zip(y_test, pred_xgb))[:10]}') # Showing first 10 pairs
orint()
                        print()
                        XGBoost Regressor:
                        MAE: 111.927
MSE: 20632.639
                         RMSE: 143.641
```





### **Model Validation and Evaluation Report:**

| Model                | Regression<br>Performance Summary                                 | Prediction Accuracy | Residual Analysis                                                                                                                                                                                                                 |
|----------------------|-------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear<br>Regression | MAE: 97.318<br>MSE: 16219.955<br>RMSE: 127.358<br>R-Square: 0.992 | Accuracy: 99.18%    | Actual vs Predicted: [(4282.700632, 4227.059191178325), (6801.49205, 6715.4747379791415), (6279.338501, 6318.348948833086), (6898.390949, 6891.818434536652), (7004.015537, 6876.183120316626), (6779.981658, 6680.309255897313), |





|                               |                                                                    |                  | (4936.01177,<br>4925.272757159071),<br>(7604.315838,<br>7630.315686537314),<br>(3723.523376,<br>3894.539832186767),<br>(6037.686131,<br>6029.792189965131)]                                                                                                                                                                                                      |
|-------------------------------|--------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random<br>Forest<br>Regressor | MAE: 117.197<br>MSE: 22845.764<br>RMSE: 151.148<br>R-Square: 0.988 | Accuracy: 98.86% | Actual vs Predicted: [(4282.700632, 4139.818938290001), (6801.49205, 6682.12248011), (6279.338501, 6233.448528890003), (6898.390949, 6904.70566688), (7004.015537, 6904.661148249991), (6779.981658, 6616.757262779998), (4936.01177, 4787.947313370003), (7604.315838, 7584.481504839996), (3723.523376, 4009.5987002700003), (6037.686131, 6006.676942220003)] |
| Decision Tree<br>Regressor    | MAE: 161.110<br>MSE: 45330.850<br>RMSE: 212.910<br>R-Square: 0.977 | Accuracy: 97.84% | Actual vs Predicted: [(4282.700632, 4125.757119), (6801.49205, 6619.846953), (6279.338501, 6397.355689),                                                                                                                                                                                                                                                         |





|                      |                                                                    |                  | (6898.390949,<br>6922.846792),<br>(7004.015537,<br>6575.592668),<br>(6779.981658,<br>6771.722906),<br>(4936.01177,<br>4945.794431),<br>(7604.315838,<br>7576.39253),<br>(3723.523376,<br>4178.772056),<br>(6037.686131,<br>6107.382466)]                                         |
|----------------------|--------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XGBoost<br>Regressor | MAE: 111.927<br>MSE: 20632.639<br>RMSE: 143.641<br>R-Square: 0.990 | Accuracy: 98.96% | Actual vs Predicted: [(4282.700632, 4242.088), (6801.49205, 6684.846), (6279.338501, 6362.355), (6898.390949, 6913.2456), (7004.015537, 6884.957), (6779.981658, 6698.55), (4936.01177, 4913.695), (7604.315838, 7600.5967), (3723.523376, 3954.2666), (6037.686131, 6095.0405)] |





# **Model Development Phase Template**

| Date          | 20 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 6 Marks                    |

### **Model Selection Report**

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

### **Model Selection Report:**

| Model                      | Description                                                                                                                                            | Hyperparameters                                                                                                                                                                      | Performance Metric (e.g., Accuracy, F1 Score)                                                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Linear<br>Regression       | Linear Regression is<br>a simple model that<br>assumes a linear<br>relationship between<br>the independent<br>variables and the<br>dependent variable. | <pre># Linear Regression reg = LinearRegression(fit_intercept=True) reg.fit(X_train, y_train) pred_linear = reg.predict(X_test)</pre>                                                | Linear Regression: MAE: 97.318 MSE: 16219.955 RMSE: 127.358 R-Square: 0.992 Accuracy: 99.18%        |
| Random Forest<br>Regressor | Random Forest is an ensemble learning method that constructs multiple decision trees during training and outputs the mean prediction                   | Sondom Forest Repressor reg = RandomForestRepressor(n_estEmetors:100, max_depth:10, min_semples_split=0, random_state=42) reg fit(X_train, y_train)  vec_rf = rf_reg predict(K_text) | Random Forest Regressor: MAE: 117.197 MSE: 22845.764 RMSE: 151.148 R-Square: 0.988 Accuracy: 98.84% |





|                            | of the individual trees.                                                                                                                                                             |                                                                                                                                                                                                                            |                                                                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Decision Tree<br>Regressor | Decision Tree Regressor creates a model in the form of a tree structure, where each node represents a decision based on the features, and the leaves represent the predicted values. | # Decision Tree Regressor (now_depth+8, min_samples_split+8, random_state+42) (c. re. = DecisionTreeRegressor(now_depth+8, min_samples_split+8, random_state+42) (c. reg.predict(X_test)) pred_dt = dt_reg.predict(X_test) | Decision Tree Regressor: MAE: 148.381 MSE: 38588.977 RMSE: 196.441 R-Square: 0.980 Accuracy: 98.05% |
| XGBoost<br>Regressor       | XGBoost is an advanced gradient boosting method that optimizes the performance of boosting algorithms and is known for its accuracy and efficiency.                                  | # NUMBERT Repression (n_astimator=100, learning_rate=0.1, max_depth=0, subsemple=0.8, random_state=41) max_depth=0, subsemple=0.8, random_state=41) pred_mph = mph_rep.oredict(X_text)                                     | XGBoost Regressor: MAE: 106.537 MSE: 17901.843 RMSE: 133.798 R-Square: 0.991 Accuracy: 99.09%       |





# **Model Optimization and Tuning Phase Template**

| Date          | 21 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 10 Marks                   |

### **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

### **Hyperparameter Tuning Documentation (6 Marks):**

| Model                      | Tuned Hyperparameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optimal Values                                                                                                                                                                                                                                                              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear<br>Regression       | <pre># Define the model and parameters for tuning lin_reg = LinearRegression() param_grid = {'fit_intercept': [True, False]}  # Perform GridSearchCV grid_search_lr = GridSearchCV(estimator=lin_reg, param_grid=param_grid, cv=5) grid_search_lr.fit(X_train, y_train)  # Get the best model from GridSearchCV best_lin_reg = grid_search_lr.best_estimator_ pred_linear = best_lin_reg.predict(X_test)</pre>                                                                                                                                       | Linear Regression - Best Hyperparameters:<br>Best Hyperparameters: {'fit_intercept': False}                                                                                                                                                                                 |
| Random Forest<br>Regressor | # Define the model and parameters for tuning rf_reg = RandomForestRegressor() param_grid_rf = {     'n_estimators': [100, 200],     'max_depth': [None, 10, 20],     'min_samples_plit': [2, 5],     'min_samples_plit': [2, 5],     'min_samples_leaf': [1, 2] }  # Perform GridSearchCV grid_search_rf = GridSearchCV(estimator=rf_reg, param_grid=param_grid_rf, cv=5, n_jobs=-1) grid_search_rf,fit(X_train, y_train)  # Get the best model from GridSearchCV best_rf_reg = grid_search_rf.best_estimator_ pred_rf = best_rf_reg.predict(X_test) | Mandom Forest Regressor - Bast hyperparameters:  Mest Nyversemmenters: ("Mas_depth": None, "Man_amples_leef": 1, 'Inin_amples_uplit': 2, 'n_estimators': 200)  Mest Nyversemmenters: ("Mas_depth": None, "Man_amples_leef": 1, 'Inin_amples_uplit': 2, 'n_estimators': 200) |





| Decision Tree<br>Regressor | <pre># Define the model and parameters for tuning dt_reg = DecisionTreeRegressor() param_grid_dt = {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                   | Decision Tree Regressor - Best Hyperparameters: Best Hyperparameters: {'max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 5} |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| XGBoost<br>Regressor       | <pre># Define the model and parameters for tuning xgb_reg = XGBRegressor(objective='reg:squarederror') param_grid_xgb = {     'nestimators': [180, 280],     'max_depth': [3, 5, 7],     'learning_rate': [0.01, 0.1, 0.3] }  # Perform GridSearchCV grid_search_xgb = GridSearchCV(estimator=xgb_reg, param_grid=param_grid_xgb, cv=5, n_jobs=-1) grid_search_xgb.fit(X_train, y_reain) # Get the best model from GridSearchCV best_xgb_reg = grid_search_xgb.best_estimator_ pred_xgb = best_xgb_reg.predict(X_test)</pre> | XGBoost Regressor - Best Hyperparameters:  Best Hyperparameters: {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 200}             |

# **Performance Metrics Comparison Report (2 Marks):**

| Model                   | Baseline Metric                                                                                                | Optimized Metric                                                                                                                                                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear Regression       | Accuracy: 99.18%  Linear Regression: MAE: 97.318 MSE: 16219.955 RMSE: 127.358 R-Square: 0.992 Accuracy: 99.18% | Accuracy: 99.18%  Linear Regression - Best Hyperparameters: Best Hyperparameters: {'fit_intercept': False} Performance Metrics: MAE: 97.318 MSE: 16219.955 RMSE: 127.358 R-Square: 0.992 Accuracy: 99.18%                                                                                                                 |
| Random Forest Regressor | Accuracy: 98.84%                                                                                               | Accuracy: 98.84%  Random Forest Repressor - Rest hyperparameters: Best hyperparameters: ("com_depth": None, "nin_samples_leaf": 3, 'min_samples_oplit': 2, 'n_estimators': 200) Performance Refrict: Not: 181.716 Not: 181.216 Ref. 181.216 |





|                            | Random Forest Regressor: MAE: 117.197 MSE: 22845.764 RMSE: 151.148 R-Square: 0.988 Accuracy: 98.84%                   |                                                                                                                                                                                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decision Tree<br>Regressor | Accuracy: 98.05%  Decision Tree Regressor: MAE: 148.381 MSE: 38588.977 RMSE: 196.441 R-Square: 0.980 Accuracy: 98.05% | Accuracy: 98.19%  Decision Tree Repressor - Best Hyperparameters: Best Hyperparameters: ('nat_depth': None, 'min_samples_leef': 2, 'min_samples_split': 5) Performance Retrics: Mid: 144.748 Mid: 15830-154 Mid: 199.289 Accuracy: 98.19% |
| XGBoost Regressor          | Accuracy: 99.09%  XGBoost Regressor: MAE: 106.537 MSE: 17901.843 RMSE: 133.798 R-Square: 0.991 Accuracy: 99.09%       | Accuracy: 99.11%  XdBoost Regressor - Best Hyperparameters: Best Hyperparameters: ('learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 200) Parformance Metrics: Md: 1106.85 Rd: 1006.85 R - Square: 0.991 Accuracy: 99.11%             |

# **Final Model Selection Justification (2 Marks):**

| Final Model       | Reasoning                                                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Linear Regression | The Linear Regression model achieved the highest accuracy of 99.18% compared to other models. It provided a robust performance with the |





best R-Square value of 0.992. Despite its simplicity, Linear Regression's high accuracy and efficiency make it the most suitable model for the given task.

- 1. **Highest R-Square Value:** Linear Regression achieved the highest R-Square value (0.992), indicating that it explains 99.2% of the variance in the target variable. This suggests that the model fits the data better than the other models.
- 2. **Lowest MAE and RMSE:** The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for Linear Regression are lower than those of the other models. This indicates that Linear Regression's predictions are closer to the actual values, making it more accurate and reliable.
- 3. **Simplicity and Interpretability:** Linear Regression is a simpler and more interpretable model compared to more complex models like XGBoost or Random Forest. Despite its simplicity, it outperformed the other models in terms of accuracy, making it a preferable choice for this particular problem.
- 4. **Consistency Across Metrics:** Linear Regression consistently showed the best performance across multiple metrics (MAE, MSE, RMSE, R-Square), proving its robustness and reliability as the best model for this task.

**Conclusion:** Linear Regression is chosen as the best model because it provides the highest accuracy (99.18%) and the best performance across various metrics. Its simplicity and interpretability further support





| its selection, ensuring both strong predictive power and ease of |
|------------------------------------------------------------------|
| understanding.                                                   |
|                                                                  |
|                                                                  |





# **Conclusion**

In this project, I successfully developed and optimized a predictive model using multiple regression techniques, including Linear Regression, Decision Tree, Random Forest, and XGBoost. Among these, Linear Regression emerged as the best model, offering the highest accuracy (99.18%) and R-Square value (0.992). The project demonstrated the importance of thorough model selection, hyperparameter tuning, and performance evaluation to achieve optimal results. The simplicity, efficiency, and interpretability of Linear Regression made it a suitable choice for our problem, while the model's high accuracy affirmed the success of our approach. Overall, the project achieved its objectives, providing valuable insights and a reliable predictive model.





# **Future Scope**

### 1. Incorporation of Non-Linear Models:

Future work could explore non-linear models such as Support Vector Machines (SVM) with non-linear kernels, or deep learning approaches like neural networks, to capture complex patterns that Linear Regression might miss.

### 2. Feature Engineering and Selection:

Further research could focus on advanced feature engineering techniques to create new predictive features or perform feature selection to remove irrelevant or redundant features. This could enhance the model's performance and generalization capability.

### 3. Handling of Outliers and Anomalies:

Implementing robust methods to detect and handle outliers could improve model reliability, especially in datasets prone to extreme values. Techniques such as robust regression or isolation forests could be considered.

## 4. Model Interpretability and Explainability:

While Linear Regression is inherently interpretable, exploring methods to explain more complex models, like SHAP (SHapley Additive exPlanations) for XGBoost, could help in understanding the decision-making process of advanced models.

## 5. Real-Time Prediction System:

Developing a real-time prediction system using the trained model could extend the project's applicability. Integrating the model into a live system could provide immediate predictions, which could be beneficial in various practical applications.

## 6. Expansion to Other Domains:

The methodologies and models developed in this project could be extended to other domains or datasets. This could involve adapting the current approach to new problems, allowing for the creation of predictive models in different fields.

# 7. Hyperparameter Tuning Techniques:

Future work could include exploring more advanced hyperparameter tuning techniques, such as Bayesian optimization or genetic algorithms, to further optimize model performance. This could lead to even better results than those





achieved with GridSearchCV.

# Results

# **Output Screenshots:**















# **Advantages & Disadvantages**

# **Advantages:**

- **High Accuracy:** The chosen model, particularly after optimization, provided high accuracy in predicting the target variable.
- **Efficiency:** The model was able to handle the dataset effectively, making predictions quickly and with relatively low computational cost.
- **Robustness:** The model's performance remained stable across different subsets of data, indicating its robustness and reliability.
- **Flexibility:** The project explored multiple models, allowing for a comprehensive understanding of different algorithms and their applications to the problem.

# **Disadvantages:**

- **Data Dependency:** The model's performance is heavily dependent on the quality and quantity of the input data. In cases of missing or low-quality data, the accuracy may degrade.
- **Limited Generalization:** While the model performed well on the test data, its generalization to entirely new data might be limited, especially if the new data differs significantly from the training set.
- Complexity in Tuning: Hyperparameter tuning, while improving performance, can be time-consuming and requires careful management to avoid overfitting.
- **Resource Intensive:** Some models, like XGBoost, required significant computational resources, especially when dealing with large datasets.





# Appendix

GitHub & Project Demo Link:

https://github.com/Angelica 839/Blue Berry-Yeild-Prediction