08.10.2019

Barbara Roszkowska-Lech

www.mini.pw.edu.pl/~barosz

barosz@mini.pw.edu.pl

521-

2 kolokwia - po 16 punktów

24 pkt z kolokwiów zwalnia z części zadaniowej egzaminu - 60pkt zadaniowa,20pkt teoretyczna zadania weekendowe

kolokwia - piątek 18.00 29.11,24.01

- 1. $(f \circ g)(i) = f(g(i))$
 - (a) $f \circ id = f = id \circ f$
 - (b) $f^{-1} \circ f = id$
- 2. Grupa (X, \circ)
 - (a) $\forall_{x,y \in X} x \circ y \in G$
 - i. Wewnętrzność
 - (b) $\forall_{a,b,c \in G} (a \circ b) \circ c = a \circ (b \circ c)$
 - i. Łączność
 - (c) $\exists_{e \in X} \forall_{x \in X} x \circ e = e \circ x = x$
 - i. Element neutralny
 - (d) $\forall_{x \in X} \exists_{x' \in X} x \circ x' = x' \circ x = e$
 - i. Odwracalność
- 3. Rozwiązywanie układów n równań z n niewiadomymi
 - (a) Na razie współczynniki układów równań to liczby rzeczywiste
 - (b) Def. Układ m równań z niewiadomymi $x_1,...,x_n$

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n = b_2$$

• •

$$a_m x_1 + \dots + a_{mn} x_n = b_m$$

na przykład

$$2x + 3y - 5z = 2$$

$$x + 2y - 3z = 1$$

- (c) Rozwiązanie to taki zbiór $(s_1,...,s_n) \in \mathbb{R}^n$, tj $\forall_i a_{i1}s_1 + ... + a_{in}s_n = b_i$
 - i. Definicja n-iloczynu kartezjańskiego
 - ii. $(\mathbb{R}^n = \{(x_1, ..., x_n) | x_i \in \mathbb{R}) = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$

A.
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

- (d) Układ sprzeczny układ który nie ma rozwiązań
- (e) $\begin{vmatrix} b_1 \\ \dots \\ b_m \end{vmatrix}$ kolumna wyrazów wolnych
 - i. Jeśli $\forall_i b_i = 0 \rightarrow$ układ U nazywamy jednorodnym układ jednorodny zawsze ma rozwiązania zerowe

$$2x + 3y = 8$$

$$x + 2y = 7$$

potem

$$r_1 - 2r_2$$
 : $x + 2y = 7$

$$r_1 - r_2 \qquad :-y = -6$$

potem

$$r_1 + 2r_2$$
 : $x = -5$

$$-r_2$$
 : $y = 6$

(f) Dwa układy równań są równoważne gdy maja te same zbiory rozwiązań

- i. Lemat: Następujące operacje przekształcają układ równań na układ równoważny.
 - A. Zamiana kolejności dwóch równań
 - B. Do jakiegoś równania dodajemy inne równanie pomnożone przez stałą
 - C. Mnożenie równania przez stałą inną od zera

$$\begin{array}{lll} x+2y-3z+t=1 \\ 2x-y+z-t=5 \\ \text{potem} \\ r_1-2r_2 & x+2y-3z+t=1 \\ \vdots & -5y+7z-3t=3 \\ \text{potem} \\ \vdots & -5y+7z-3t=3 \\ \hline -y+\frac{7}{5}z-\frac{3}{5}t=\frac{3}{5} \\ \text{potem} \\ \vdots & \text{itd itp każdy umie} \\ \text{potem} \\ x=\frac{11}{5}+\frac{z}{5}+\frac{t}{5} \\ y=\frac{-3}{5}+\frac{7}{5}z+\frac{3}{5}t \\ z,t\in\mathbb{R} \\ \text{Rozw} & \{(\frac{11}{5}+\frac{z}{5}+\frac{t}{5};\frac{-3}{5}+\frac{7}{5}z+\frac{3}{5}t,z,t)\,z,t\in\mathbb{R}\} \\ U': \end{array}$$

(g) U':

$$x_{j1} = c_{11}x_1 + \dots + c_{1n}x_n + d_1$$

$$x_{jk} = c_{k1}x_1 + \dots + c_{kn}x_n + d_k$$

 $j_1 < ... < j_k$ oraz $x_1, ..., x_{jk}$ nie występują po prawej stronie U'

- (h) $x_1,...,x_{jk}$ zmienne zależne , $x_i:i\notin\{j_1,...,j_k\}$ zmienne niezależne (parametry)
- (i) Jeśli U^\prime jest równoważny U to U^\prime nazywamy rozwiązaniem ogólnym układu U
 - i. Każde podstawienie ciągu n-k liczb za parametry i wyliczeniu pozostałych x_j daje rozwiązanie
 - ii. Różnym ciągom parametrów odpowiadają różne rozwiązania
 - iii. Każde rozwiązanie mozna otrzymać w ten sposób

1. :

$$2x_1 + 3x_2 + x_3 + 2x_4 = 1$$
$$4x_1 + 6x_2 + 3x_3 + 2x_4 = 3$$

$$6x_1 + 9x_2 + 5x_2 + 2x_4 = 5$$

2. :

$$\begin{bmatrix} 2 & 3 & 1 & 2 \\ 4 & 6 & 3 & 2 \\ 6 & 9 & 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 1 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 2 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 0 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{3}{2} & 0 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\$$

Rozwiązanie =
$$\{(-\frac{3}{2}x_2 - 2x_4, x_2, 1 + 2x_4, x_4) : x_2, x_4 \in \mathbb{R}\}$$

- 3. Zbiór K zawierający co najmniej dwa elementy nazywamy ciałem, jeśli
 - (a) $K \times K \to K$ $(x, y) \to x \oplus y$
 - (b) $K \times K \to K$ $(x,y) \to x \odot y$
 - (c) Wybierane są dwa elementy K element zerowy oznaczamy 0, element jedynkowy 1
 - i. Spełnione są następujące warunki dla każdych $a,b,c\in K$
 - A. $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ łączność
 - B. $a \oplus b = b \oplus a$ przemienność
 - C. $0 \oplus a = a$ element neutralny
 - D. $\forall_{a \in K} \exists_{p \in K} a \oplus p = 0$ istnienie elementu przeciwnego
 - E. $a \odot (b \odot c) = (a \odot b) \odot c$ łączność
 - F. $a \odot b = b \odot a$ przemienność
 - G. $1 \odot a = a$ element neutralny
 - H. $\forall_{a \in K \setminus \{0\}} \exists_{p \in K} a \odot p = 1$ istnienie elementu odwrotny
 - I. $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)$
 - (d) Przykłady $K = \mathbb{R} (\mathbb{R}, +, \cdot, 0, 1), (\mathbb{C}, +, \cdot, 0, 1)$

i.
$$\{Z_2, +_2, \cdot_2, 0, 1\}$$
 - $\begin{pmatrix} 12 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ (xor) oraz $\begin{pmatrix} 12 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ (koniunkcja)

- (e) Def. K ciało. Podzbiór $L \subset K$ nazywamy podciałem K jeśli dla dowolnych $a,b \in L$
 - i. $a + b \in L, \ a \cdot b \in L, \ -a \in L, \ a^{-1} \in L$
 - ii. Przykład: $Z_n = \{0, 1, ..., n-1\}$
 - A. $tzn \ a +_n b := (a + b) \% n$
 - B. $a \cdot_n b := (a \cdot b) \% n$
 - C. Dla na przykład Z_6 nie zawsze spełniona jest odwracalność
 - iii. Kiedy $(Z_n, +_n, \cdot_n, 0, 1)$ jest ciałem?
 - iv. Kiedy $\forall_{k \in \mathbb{Z}_n} k \in \mathbb{Z}_n$ ma element odwrotny?
- 4. Def. Macierzą $m \times n$ (o m wierszach i n kolumnach) o wyrazach ze zbioru X nazywamy

(a)
$$A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{vmatrix}, a_{ij} \in X, 1 \le i \le m, 1 \le j \le n$$

- (b) Formalnie: $A: \{1,\ldots,m\} \times \{1,\ldots,n\} \to X, (i,j) \mapsto a_{ij} = A(i,j)$
- 5. $M_n^m(x)$ zbiór wszystkich macierzy $m \times n$ o wspólnym X

- 6. Def. $A \in M_n^m(K)$ Operacjami elementarnymi macierzy A nazywamy
 - (a) Dodanie do wiersza innego przemnozonego przez $a \in K(r_i + ar_j)$
 - (b) $r_i \leftrightarrow r_i$
 - (c) ar_i , $a \neq 0$
- 7. Formalna definicja jak się macierz ułoży w takie jakby schodki to jest postać schodkowa
 - (a) Mówimy, że macierz $A \in M_n^m(K)$ jest w postaci schodkowej, jeśli:
 - i. Każdy wiersz zerowy w A znajduje się ponizej każdego wiersza niezerowego
 - ii. Dla każdego i>1 pierwszy od lewej $\neq 0$ wyraz w i-tym wierszu znajduje się w kolumnie na prawo od pierwszego $\neq 0$ wyrazu i-1 wiersza
 - iii. Macierz jest w **zredukowanej** postaci schodkowej, jeśli jest w postaci schodkowej i w każdym niezerowym $\neq 0$ wierszu pierwszy $\neq 0$ wyraz to 1, i jest on jedynym różnym od zera wyrazem w swojej kolumnie
- 8. Niech K ciało. Każda $\neq 0$ macierz $A \in M_n^m(K)$ jest równoważna (A jest równoważne B, $A \approx B$ jeśli z A możemy otrzymać B za pomocą skończonej liczby operacji elementarnych) macierzą w postaci schodkowej i z macierzą w postaci schodkowo zredukowanej.
 - (a) Z tego wynika, że każdy układ równań o współczynnikach w K ma rozwiązanie

- 1. Przypomnienie co to macierz schodkowa
- 2. Twierdzenie: Każda macierz $A \in M_m^n(K)$ jest równoważna z macierzą w postaci schodkowej (potrzebne operacje a,b) oraz z macierzą w postaci schodkowej zredukowanej (a,b,c)
 - (a) $r_i \leftrightarrow r_j$
 - (b) $r_i + ar_j$
 - (c) $a \neq 0$: ar_i
 - (d) Wniosek Każdy niesprzeczny układ równań ma rozwiązanie
 - (e) Dowód:
 - i. Dla macierzy zerowej OK na przykład $\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$
 - ii. Indukcja: $A \neq 0$

Jeden wiersz - od razu postać schodkowa

ZJ - A ma m wierszy, jest niezerowa, jest w postaci schodkowej

Możemy zrobić algorytm, dla którego jeśli A_m jest w postaci schodkowej to otrzymamy z A_{m+1} postać schodkową. Zerujemy odpowiednie kolumny ostatniego wiersza używając wierszy z A_m . Jeśli jakaś kolumna nie dała się wyzerować to wstawiamy wiersz w odpowiednie miejsce. Jak mamy schodkową to łatwo można zrobić schodkową zredukowaną z c. Mamy schodki. Koniec dowodu.

- 3. Definicja: Wielomianem zmiennej x o współczynnikach w K nazywamy wyrażenie $a_0 + a_1x + \cdots + a_nx^n, n \in \mathbb{N}_0, a_0, \ldots a_n \in K$
 - (a) Każdy wielomian f wyraża funkcję $f: K \to K$, $s \mapsto a_0 + a_1 s + \cdots + a_n s^n$. f nazywamy funkcją wielomianową.
 - i. Pierwiastkiem wielomianu nazywamy $s \in K$: f(s) = 0
 - ii. $K = \mathbb{R} \vee \mathbb{C} \vee \mathbb{O}$
 - (b) Przykład: $K = Z_2 = \{0, 1\}$
 - i. $|\{f:f:Z_2\to Z_2\}|=4$. W Z_2 , różne wielomiany oznaczają tą samą funkcję, na przykład x^2+x+1 oraz x^3+x+1
 - ii. Ciało w którym każdy wielomian n-tego stopnia ma n pierwiastków, to ciało algebraicznie domknięte.
 - (c) Zasadnicze twierdzenie algebry: Ciało liczb zespolonych jest ciałem algebraicznie domkniętym. To znaczy, że każdy wielomian o n współczynnikach w tym ciele ma n pierwiastków. $\mathbb R$ nie jest algebraicznie domknięte
- 4. $\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{vmatrix} A : \{1, \dots, m\} \times \{1, \dots, n\} \to K, \quad (i, j) \mapsto A(i, j) \text{ czyli } (a_{ij}) \text{ (i wiersz, j kolumna)}$
 - (a) $r_i(A) = [a_{i1}, \dots, a_{in}], c^j(A) = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$
 - (b) $A_{(2,3)}^{(3,5,7)}$ bierze trzecią, piątą i siódmą kolumnę, z tylko drugim i trzecim rzędem.
 - (c) $0_m^n = \begin{bmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{bmatrix}$
 - (d) Macierz kwadratowa m = n
 - (e) $\begin{bmatrix} x & \\ & x \\ & x \end{bmatrix}$ główna przekątna
 - (f) Jeśli poniżej głównej przekątnej same zera górna trójkątna, na odwrót dolna trójkątna, jeśli na górze i na dole same zera- diagonalna, jeśli dodatkowo na głównej przekątnej same jedynki macierz jednostkowa
 - (g) Macierze możemy dodać, jeśli ich wymiary się zgadzaja: (A+B)(i,j) = A(i,j) + B(i,j)
 - (h) -A: (-A)(i,j) = -(A)(i,j)

- (j) $A \in M_m^n$, $B \in M_n^k$: $A \cdot B \in M_m^k$
 - i. $c^i(A \cdot B) = A \cdot c^i(B)$
 - ii. więc $(A \cdot B)(i,j) := \sum_{s=1}^{n} A(i,s) \cdot B(s,j) = r_i(A)c^j(B)$
 - iii. $r_j(AB) = r_j(A)B$
 - iv. $c^i(AB) = A \cdot c^i(B)$

v.

 $A(row, column), A \in M_{rows}^{columns}$

- 1. $A \in M_m^n(K), B \in M_n^p(K)$
 - (a) $AB \in M_m^p(K)$
 - (b) $A \cdot B(i,j) \stackrel{def.}{=} \sum_{k=1}^{n} A(i,k) \cdot B(k,j)$ i. $c^{j}(A \cdot B) = Ac^{j}(B)$
 - ii. $r_i(A \cdot B) = r_i(A) \cdot B$
 - (c) Mnożenie macierzy nie musi być przemienne zazwyczaj nie jest
 - (d) Przykład $A, B \in M_2^2(K), A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A \cdot B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, B \cdot A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, A \cdot B \neq B \cdot A$
- 2. Własności sumy i iloczynu Niec $A, A', A'' \in M_m^n(K), B, B \in M_n^p(K), C \in M_n^r(K), \lambda \in K$
 - (a) (A + A') + A'' = A + (A' + A'')
 - (b) A + A' = A' + A
 - (c) $A + (-A) = 0_m^n$
 - $(d) A + 0_m^n = A$
 - (e) (AB)C = A(BC)
 - (f) (A + A')B = AB + A'B

$$A(B+B') = AB + AB'$$

i. D:
$$[(A+A')B](i,j) = \sum_{k=1}^{n} (A+A')(i,k) \cdot B(k,j) = \sum_{k=1}^{n} (A(i,k)+A'(i,k)) \cdot B(k,j) = \sum_{k=1}^{n} A(i,k) \cdot B(k,j) + \sum_{k=1}^{n} A'(i,k) \cdot B(k,j) = AB(i,j) + A'B(i,j) = (AB+A'B)(i,j)$$

- (g) $(\lambda A)B = A(\lambda B) = \lambda(AB)$
- (h) $I_m A = A = AI_m$
- 3. Macierz transponowaną do $A \in M_m^n(K)$ nazywamy macierz $A^{\top} \in M_n^m(K)$, taką że $A^{\top}(i,j) = A(j,i)$

(a) Przykład
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}, A^{\top} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix}$$

- (b) $(A^{\top})^{\top} = A$
- (c) Def. Jeśli $A \in M^n_m(K)$ i $A = A^{\top}$ to A nazywamy macierzą symetryczną. Jeśli $A = -A^{\top}$,to A nazywamy macierzą antysymetryczną

i.
$$\begin{bmatrix} 1 & 5 & 3 \\ 5 & 2 & 7 \\ 3 & 7 & 2 \end{bmatrix}$$
 - macierz symetryczna

ii.
$$\begin{bmatrix} 0 & 3 & 2 \\ -3 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$
 - macierz antysymetryczna (muszą być zera na przekątnej)

- 4. Własności operacji transponowania. $A, B \in M_m^n(K), C \in M_m^p(K), \lambda \in K$
 - (a) $(A+B)^{\top} = A^{\top} + B^{\top}$
 - (b) $(\lambda A)^{\top} = \lambda A^{\top}$
 - (c) $(A^{\top})^{\top} = A$
 - (d) $I_n^{\top} = I_n$
 - (e) $(AC)^{\top} = C^{\top}A^{\top}$

i. D:
$$(AC)^{\top}(i,j) = (AC)(j,i) = \sum_{k=1}^{n} A(j,k) \cdot C(k,i) = \sum_{k=1}^{n} A^{\top}(k,j) \cdot C^{\top}(i,k) = \sum_{k=1}^{n} C^{\top}(i,k) \cdot A^{\top}(k,j) = (C^{\top}A^{\top})(i,j)$$

A teraz pora przejsć do prawdziwej algebry liniowej: Przestrzenie wektorowe.

Przestrzenie wektorowe (liniowe)

1. Def. Przestrzeń wektorową nad ciałem K nazywamy zbiór $V \neq \emptyset$ z odwzorowaniami:

$$V \times V \to V$$
: $(u, v) \mapsto u + v$ - dodawanie wektorów

 $K \times V \to V$ $(a, v) \mapsto a \cdot v$ - mnożenie wektora przez skalar

Oraz z wyróżnionym elementem $\mathbb{O} \in V$ (wektor zerowy), to znaczy dla każdych $u, v, u \in V, a, b \in K$

- (a) u + (v + u) = (u + w) + v
- (b) u + v = v + u
- (c) $\mathbb{O} + u = u$
- (d) $\forall_{u \in V} \exists_{u'} u + u' = \mathbb{O}$
- (e) $a \cdot (b \cdot u) = (a \cdot b) \cdot u$
- (f) $(a+b) \cdot u = a \cdot u + b \cdot u$ $a \cdot (u+v) = a \cdot u + a \cdot v$
- (g) $1 \cdot v = v$

Oznaczamy V[K]

Przykłady przestrzeni liniowych:

- (a) $\mathbb{R}^2 = \{ [x, y] : x, y \in \mathbb{R} \}$
- (b) $\mathbb{R}^n = \{[x_1, \dots, x_n] : \forall_i x_i \in \mathbb{R}\}$ wtedy $[x_1, \dots x_n] + [y_1, \dots, y_n] = [x_1 + y_1, \dots, x_n + y_n]$ oraz $\lambda[x_1, \dots, x_n] = [\lambda x_1, \dots \lambda x_n]$
- (c) K^n przestrzeń liniowa nad K
- (d) L < K L podciało K: $\mathbb R$ jest przestrzenią liniową nad $\mathbb Q$, $\mathbb C$ nad $\mathbb R$, K nad L
- (e) \mathbb{R} jest przestrzenią liniową nad \mathbb{R} , K nad K
- (f) $V = M_m^n(K)$ przestrzeń liniowa nad K
- (g) Wielomiany: $K[x] = \{a_0 + a_1x + \dots + a_nx^n : n \in \mathbb{N} \cup \{0\}, a_i \in K\}$ $\lambda(a_0 + \dots + a_nx^n) = \lambda a_0 + \dots + \lambda a_nx^n$ K[x] to przestrzeń liniowa nad ciałem K
- (h) $Map(X,K) = \{f: f: X \to K\}$ K ciało, X niepusty zbiór
- 2. Def. Niech V będzie przestrzenią liniową nad ciałem K

Niepusty podzbiór $U \subset V$ nazywamy podprzestrzenią przestrzeni V, jeśli dla każdych $u, v \in U$ oraz dla dowolnego $a \in K$ $u + v \in U$, $au \in U$

- (a) U < V: Jeśli U < V to $\mathbb{O} \in U$
- (b) Trywialne podprzestrzenie $\{\mathbb{O}\} < V, V < V$
- (c) $\mathbb{R}^2 < \mathbb{R}^3, K_{n-a}[x] < K_n \text{ dla } n, a \in \mathbb{N}_+, n > a$
- (d) Rozwiązania układu równań są przestrzenią wektorową
- 3. V przestrzeń liniowa nad K
 - (a) $a \cdot v = \mathbb{O} \iff a = 0 \lor v = 0$

Algebra liniowa z geometrią dla informatyków - konspekt wykładu 2018/19

Barbara Roszkowska -Lech

Październik 2018

4 Przestrzenie wektorowe

Definicja 4.1. Przestrzenią wektorową (liniową) nad ciałem K nazywamy zbiór V z odwzorowaniami

$$V \times V \to V \quad (u, v) \mapsto u + v \quad zwanym \ dodawaniem \ wektorów,$$

 $K \times V \to V \quad (a,v) \mapsto a \cdot v \quad zwanym \ mnożeniem \ wektora \ przez \ skalar,$ oraz z wyróżnionym elementem $w \ V \ zwanym \ wektorem \ zerowym \ i \ oznaczanym \ przez \ {\bf 0} \ jeśli \ spełnione \ są \ następujace \ warunki \ zwane \ aksjomatami \ przestrzeni \ wektorowej. \ Dla \ każdych \ u,v,w \in V \ oraz \ a,b,\in K$

- 1. u + (w + v) = (u + w) + v łaczność dodawania wektorów,
- 2. u + w = w + u przemienność dodawania wektorów,
- 3. 0+u=u+0=u wektor **0** jest elementem neutralnym dodawania,
- 4. $\forall_{u \in V} \exists_{u' \in V} u + u' = \mathbf{0}$ istnienie elementu odwrotnego w dodawaniu,
- 5. $a \cdot (b \cdot v) = (a \cdot b) \cdot v$ łaczność mnożenia przez skalary,
- 6. $a \cdot (u+v) = a \cdot u + a \cdot v$ rozdzielność mnożenia względem dodawania wektorów
- 7. $(a+b) \cdot v = a \cdot v + b \cdot v$ rozdzielność mnożenia względem dodawania skalarów,

8. $1 \cdot v = v$ 1 jest elementem neutralnym mnożenia.

Elementy zbioru V nazywamy wektorami a elementy ciała K skalarami. Przestrzeń wektorową V nad ciałem K oznaczamy V[K], a tam gdzie nie będzie to prowadzić do nieporozumień tylko V.

Przykłady przestrzeni liniowych

- 1. Niech L będzie podciałem ciała K. Wtedy K jest przestrzenią wektorową na dciałem L.
- 2. Zbiór $K^n = \{(x_1, x_2, \dots, x_n) | x_i \in K, i = 1, 2, \dots n\}$ wszystkich n elementowych ciągów o wyrazach z ciała K z działaniami określonymi następujaco:

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

$$a(x_1, x_2, \dots, x_n) = (ax_1, ax_2, \dots, ax_n)$$

jest przestrzenią liniową nad ciałem K

- 3. Niech $M_m^n(K)$ oznacza zbiór wszystkich macierzy o wyrazach z ciała K. Sumą macierzy $A = [a_{ij}], B = [b_{ij}]$ nazywamy taką macierz $C = [c_{ij}] \in M_m^n(K)$, taką że $c_{ij} = a_{ij} + b_{ij}$, dla każdego $i = 1, \dots, m, \quad j = 1, \dots, n$. Iloczynem macierzy A przez skalar $c \in K$ nazywamy taka macierz $D = [d_{ij}] \in M_m^n(K)$, że $d_{ij} = ca_{ij}$ dla dla każdego $i = 1, \dots, m, \quad j = 1, \dots, n$. Zbiór $M_m^n(K)$ z tak określonymi działaniami jest przestrzenia liniowa nad ciałem K.
- 4. Niech K[x] bedzie zbiorem wszystkich wielomianów o wspólczynnikach w ciele K. Czyli

$$K[x] = \{a_0 + a_1x + \ldots + a_nx^n | n \in N \cup \{0\}, a_0, a_1, \cdots, a_n \in K\}.$$

Określamy dodawanie i mnożenie wielomianów przez skalary. Z tymi działaniami k[x] jest przestrzenią wektorową nad K.

5. Niech K bedzie ciałem, a X niepustym zbiorem.. Oznaczmy $Map(X, K) := \{f; f: X \to K\}$. Zbiór Map(X, K) z dodawaniem (f+g)(x) = f(x) + g(x) i mnożeniem przez skalary (af)(x) = a(f(x)) jest przestrzenią wektorową nad ciałem K.

Definicja 4.2. Niech V bedzie przestrzenią liniową nad ciałem K. Niepusty podzbiór $U \subseteq V$ nazywamy podprzestrzenią V, jeśli dla dowolnych $u, w \in U$ oraz dla dowolnego $a \in K$

$$u + w \in U$$
, $au \in U$.

Jeśli U jest podprzestrzenią V, to będziemy ten fakt zapisywać symbolocznie U < V. Jeśli U jest podprzestrzenią V to U zawiera wektor zerowy), oraz dla dowolnego wektora $u \in U$ zawiera wektor -u. Ponadto U jest przestrzenią liniową nad K z działaniami indukowanymi z V.

Przykłady podprzestrzeni przestrzeni liniowych

- 1. Dla dowolnej przestrzeni liniowej V podzbiór $\{\mathbf{0}\}$, złożony tylko z wektora zerowego jest podprzestrzenią V. Nazywamy ja podprzestrzenią zerową. Ponadto V jest swoją własną podprzestrzenią.
- 2. Niech $K_m[x]$ oznacza zbiór wszystkich wielomianów jednej zmiennej o wspólczynnikach w ciele K stopnia $\leq m$. Wtedy $K_m[x] < K[x]$.
- 3. Niech U będzie jednorodnym układem równań z n niewiadomymi o wspólczynnikach w ciele K i macierzą A. Wtedy Zbiór wszystkich rozwiązań tego układu jest podprzestrzenia przestrzeni K^n . $Rozw(A,0) < K^n$.
- 4. Niech $x_0 \in X$ i niech $W = \{ f \in Map(X, K) : f(x_0) = 0 \}$. Wtedy W jest podprzestrzenią przestrzeni liniowej Map(X, K).

Twierdzenie 4.3. Niech $U \subseteq V$. Wtedy następujące warunki są równoważne

- 1. U < V
- 2. $\forall_{a,b \in K} \forall_{u,w \in U}$ $au + bv \in U$
- 3. $\forall_{a_1, a_2, \dots, a_k \in K} \forall_{u_1, u_2, \dots, u_k \in U}$ $a_1 u_1 + a_2 u_2 + \dots + a_k v_k \in U$.

Twierdzenie 4.4. Niech dla każdego $t \in T$, U_t bedzie podprzestrzenią przestrzeni liniowej V. Wtedy część wspólną wszytkich podprzestrzeni U_t , $\bigcap_{t \in T} U_t$ jest podprzestrzenią przestrzeni V.

Definicja 4.5. Niech $A \subset V$. Podprzestrzeń $L(A) := \bigcap_{A \subset U < V} U$ będąca częscią wspólna wszystkich podprzestrzeni V zawierających zbiór A nazywamy podprzestrzenią generowana przez zbiór A.

Jeśli L(A) = V to mówimy, że A jest zbiorem generatorów przestrzeni V

Definicja 4.6. Niech V będzie przestrzenią liniową nad ciałem K oraz niech $v_1, v_2, \dots, v_n \in V$, $a_1, a_2, \dots, a_n \in K$. Wektor $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$ nazywamy kombinacją liniową wektorów v_1, v_2, \dots, v_n o współ czynnikach a_1, a_2, \dots, a_n .

Zauważmy, że z twierdzenia 3.3 wynika, że U jest podprzestrzenią przestrzeniV wtedy i tylko wtedy gdy U jest zamknięte ze względu wszytkie kombinacje liniowe wektorów z U.

Twierdzenie 4.7. Niech $A \subset V$. Wtedy

$$L(A) = \{ v \in V; \exists_{n \in \mathbb{N}}, \exists_{v_1, v_2, \dots, v_n}, \exists_{a_1, a_2, \dots, a_n} v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n \}.$$

Twierdzenie 4.8. Niech $A, A' \in M_m^n(K)$ oraz v_1, v_2, \dots, v_m będą wierszami macierzy A a v_1', v_2', \dots, v_m' wierszami macierzy A'. Jeśli macierze A i A' są wierszowo równoważne to $L(v_1, v_2, \dots, v_m) = L(v_1', v_2', \dots, v_m')$.

Przykłady

- 1. $K_n[x] = L(1, x, \dots, x^n)$
- 2. $K^n = L(e_1, e_2, \dots, e_n)$ gdzie $e_i = [0, \dots, 0, 1, 0, \dots 0]$.
- 3. $L(x^n, x^{n+1}, \cdots)$ jest podprzestrzenią przestrzeni wielomianów K[x] zawierającą wszystkie wielomiany podzielne przez x^n .

Definicja 4.9. Niech V bedzie przestrzenią liniową nad ciałem K. Układ wektorów v_1, v_2, \cdots, v_k przestrzeni wektorowej V nazywamy liniowo zależnym, jeśli istnieją $a_1, a_2, \cdots, a_k \in K$ nie wszystkie równe 0, takie że $a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0$. Układ wektorów v_1, v_2, \cdots, v_k jest liniowo niezależny, jeśli

$$a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0 \Leftrightarrow a_1 = a_2 = \cdots = a_k = 0.$$

Zauważmy, ze jeśli któryś z wektorów v_i jest zerowy to taki układ jest liniowo zależny.

Twierdzenie 4.10. Układ v_1, v_2, \dots, v_k jest liniowo zależny \Leftrightarrow jeden z wektorów v_i jest kombinacją liniową pozostałych.

Uwaga 4.11. Niech $c^1(A), c^2(A), \dots, c^n(A)$ bedą kolumnami macierzy $A \in M_m^n$. Wtedy układ $c^1(A), c^2(A), \dots, c^n(A)$ jest układem liniowo niezależnym wtedy i tylko wtedy gdy jednorodny układ równań o macierzy A ma tylko zerowe rozwiązanie.

Wniosek 4.12. Niech macierz A będzie wierszowo równoważna z macierzą A'. Wtedy kolumny macierzy A są liniowo niezależne wtedy i tylko wtedy, gdy liniowo niezależne są kolumny macierzy A'.

Podobny wniosek można też udowodnić o wierszach wierszowo równoważnych macierzy A oraz A'. Dokładniej, jeśli v_1, \cdots, v_m będa wierszami macierzy A, a v_1', \cdots, v_m' będa wierszami macierzy A' wierszowo równoważnej z macierzą A to układ v_1, \cdots, v_m jest liniowo niezależny wtedy i tylko wtedy gdy układ v_1', \cdots, v_m' jest liniowo niezależny. Ponadto zauważmy, że niezerowe wiersze kazdej macierzy schodkowej tworzą układ liniowo niezależny a jeśli jeden z wierszy jest zerowy to taki układ jest zależny. Wnioskujemy stad, że wiersze macierzy dowolnej A tworzą układ liniowo niezależny wtedy i tylko wtedy, gdy macierz ta jest równoważna z macierzą schodkowa bez zerowych wierszy.

Twierdzenie 4.13. Niech v_1, v_2, \dots, v_k będzie układem liniowo niezależnym i niech $v \in V$. Wtedy wektor $v \in L(v_1, v_2, \dots, v_k)$ wtedy i tylko wtedy, gdy układ $(v, v_1, v_2, \dots, v_k)$ jest liniowo zależny.

Twierdzenie 4.14. (Tw. Steinitza (magiczne)) Niech układ wektorów (w_1, w_2, \dots, w_k) w przestrzeni wektorowej $V = L(v_1, v_2, \dots, v_m)$ bedzie liniowo niezależny. Wtedy

- $k \leq m$,
- z układu v_1, v_2, \dots, v_m można wybrać podukład $v_{i_1}, \dots, v_{i_{m-k}},$ taki, $\dot{z}e$ $L(v_1, v_2, \dots, v_m) = L(w_1, w_2, \dots, w_k, v_{i_1}, \dots, v_{i_{m-k}}).$

Twierdzenie Steinitza nazywane jest twierdzeniem o wymianie. Mówi ono, że jeśli układ (w_1, \cdots, w_k) jest liniowo niezależny w przestrzeni $V = L(v_1, v_2, \cdots, v_m)$ to w układzie (v_1, v_2, \cdots, v_m) można wymienić pewnych k wektorów na wektory w_1, w_2, \cdots, w_k i uzyskać nowy układ generujący przestrzeń V.

Wnioski

- 1. Jesli W jest podprzestrzenią przestrzeni $V = L(v_1, v_2, \dots, v_m)$ to w W istnieje układ liniowo niezależny $(w_1, w_2, \dots, w_k), (k \leq m)$, taki że $W = L(w_1, w_2, \dots, w_k)$.
- 2. Jeśli $L(w_1, w_2, \dots, w_k) = L(w_1', w_2', \dots, w_l')$ i układy (w_1, w_2, \dots, w_k) oraz $(w_1', w_2', \dots, w_l')$ są liniowo niezależne to k = l.

Definicję liniowej niezależności dla skończonych układów wektorów w przestrzeni liniowej V można rozszerzyc na przypadek układów nieskończonych. Układ

wektorów \mathcal{B} przestrzeni V nazywamy liniowo niezależnym gdy każdy jego skończony podukład jest liniowo niezależny.

Bazy i wymiary przestrzeni wektorowych

Definicja 4.15. Układ wektorów \mathcal{B} nazywamy bazą przestrzeni liniowej V, jeśli

- Układ B jest liniowo niezależny,
- Układ \mathcal{B} generuje przestrzeń V, czyli $V = L(\mathcal{B})$.

Twierdzenie 4.16. Układ wektorów $\mathcal{B} = (v_1, v_2, \dots, v_n)$ jest bazą przestrzeni V wtedy i tylko wtedy, gdy dowolny wektor $v \in V$ można jednoznacznie przedstawić jako kombinację liniową wektorów v_1, v_2, \dots, v_m).

Twierdzenie 4.17. Niech $\mathcal{B} = (v_1, v_2, \cdots, v_n)$ będzie układem wektorów w przestrzeni V. Wtedy następujące warunki są równoważne

- 1. \mathcal{B} jest baza przestrzeni V.
- 2. B jest maksymalnym układem liniowo niezaleznym.
- 3. B jest minimalnym układem generatorów przestrzeni V

Twierdzenie 4.18. Jeśli przestrzeń wektorowa V posiada bazę n elementową to każda baza V ma n elementów.

Definicja 4.19. Mówimy, że przestrzeń V ma wymiar n, jeśli V posiada bazę n elementową. Piszemy wtedy, że dimV = n. Ponadto przyjmujemy, że wymiar przestrzeni zerowej wynosi 0, a jeśli V nie ma skończonej bazy, to V nazywamy przestrzenią nieskończenie wymiarową i piszemy $dimV = \infty$.

Jeśli dimV = n, to każdy n-elementowy liniowo niezależny układ wektorów w przestrzeni V jest bazą V. Jeśli dimV = n, to każdy n elementowy układ wektorów w przestrzeni V jest bazą V.

Twierdzenie 4.20. Podprzestrzeń przestrzeni rozpiętej na skończonym układzie wektorów jest skończenie wymiarowa. Jeśli W jest podprzestrzenią w V oraz dimV = n, to dimW < n. Ponadto, jesli dimV = dimW, to V = W.

Twierdzenie 4.21. Niech V będzie przestrzenia wektorową nad ciałem K. W'owczas

- 1. Każdy liniowo niezależny układ wektorów można uzupełnic do bazy V.
- 2. Z każdego układu generatorów V mozna wybrać bazę.

Algebra liniowa z geometrią dla informatyków - konspekt wykładu 2018/19

Barbara Roszkowska -Lech

December 2, 2018

4 Rząd macierzy

Twierdzenie 4.1. Niech $A, A' \in M_m^n(K)$ oraz v_1, v_2, \dots, v_m będą wierszami macierzy A a v_1', v_2', \dots, v_m' wierszami macierzy A'. Jeśli macierze A i A' są wierszowo równoważne to $\mathcal{L}(v_1, v_2, \dots, v_m) = \mathcal{L}(v_1', v_2', \dots, v_m')$.

Twierdzenie 4.2. Jeśli v_1, \dots, v_m będa wierszami macierzy A, a v_1', \dots, v_m' będa wierszami macierzy A' wierszowo równoważnej z macierzą A to układ v_1, \dots, v_m jest liniowo niezależny wtedy i tylko wtedy gdy układ v_1', \dots, v_m' jest liniowo niezależny.

Zauważmy, że niezerowe wiersze każdej macierzy schodkowej tworzą układ liniowo niezależny, a jeśli jeden z wierszy jest zerowy to taki układ jest zależny.

Wniosek 4.3. Wiersze dowolnej macierzy A tworzą układ liniowo niezależny wtedy i tylko wtedy, gdy macierz ta jest równoważna z macierzą schodkowa bez zerowych wierszy.

Twierdzenie 4.4. Niech $c^1(A), c^2(A), \cdots, c^n(A)$ bedą kolumnami macierzy $A \in M_m^n(K)$. Wtedy układ wektorów

$$c^1(A), c^2(A), \cdots, c^n(A)$$

jest układem liniowo niezależnym wtedy i tylko wtedy gdy jednorodny układ równań o macierzy A ma tylko zerowe rozwiązanie.

Wniosek 4.5. Niech macierz A będzie wierszowo równoważna z macierzą A'. Wtedy kolumny macierzy A są liniowo niezależne wtedy i tylko wtedy, gdy liniowo niezależne są kolumny macierzy A'.

Wniosek 4.6. Macierz $A \in M_n^n(K)$ jest odwracalna wtedy i tylko wtedy gdy jej kolumny $c^1(A), c^2(A), \dots, c^n(A)$ tworzą układ liniowo niezalezny.

Wniosek 4.7. Niech macierz $A \in M_m^n(K)$ będzie wierszowo równoważna z macierzą A'. Wtedy układ kolumn $(c^{i_1}(A), c^{i_2}(A), \cdots, c^{i_k}(A))$ macierzy A jest bazą przestrzeni

$$\mathcal{L}(c^1(A), c^2(A), \cdots, c^n(A))$$

wtedy i tylko wtedy, gdy układ kolumn $(c^{i_1}(A'), c^{i_2}(A'), \cdots, c^{i_k}(A'))$ macierzy A' jest bazą przestrzeni

$$\mathcal{L}(c^{1}(A'), c^{2}(A'), \cdots, c^{n}(A')).$$

Definicja 4.8. Rzędem macierzy $A \in M_m^n(K)$ (ozn rz(A))nazywamy wymiar przestrzeni

$$\mathcal{L}(c^1(A), c^2(A), \cdots, c^n(A)).$$

Uwaga 4.9. (Drugie twierdzenie magiczne) Niech $A \in M_m^n(K)$. Wtedy

$$dim\mathcal{L}(c^{1}(A), c^{2}(A), \cdots, c^{n}(A)) = dim\mathcal{L}(r_{1}(A), r_{2}(A), \cdots, r_{m}(A)).$$

Twierdzenie 4.10. (Twierdzenie Kroneckera - Capelliego) Niech $A \in M_m^n(K)$, $B \in M_m^1(K)$. Układ równań liniowych Ax = B ma conajmniej jedno rozwiązanie wtedy i tylko wtedy gdy rz(A|B) = rz(A).

Wniosek 4.11. Niech $A \in M_m^n(K)$. Układ równań liniowych Ax = B ma dla każdego $B \in M_m^1(K)$ conajmniej jedno rozwiązanie wtedy i tylko wtedy gdy rz(A|B) = m.

Zbiór rozwiązań jednorodnego układu równań $Ax = \mathbf{0}$ zawsze jest przestrzenią liniową. Wyznaczymy teraz jej wymiar.

Twierdzenie 4.12. Niech $A \in M_m^n(K)$. Następujące warunki są równoważne

- 1. Układ równań Ax = 0 ma dokładnie jedno rozwiązanie. (zerowe)
- 2. Istnieje $B \in M_m^1(K)$ takie, że układ Ax = B ma dokładnie jedno rozwiązanie.

- 3. Dla każdego $B \in M_m^1(K)$ układ Ax = B ma co najwyżej jedno rozwiązanie.
- 4. rz(A) = n.

Twierdzenie 4.13. Niech $A \in M_m^n(K)$. Wtedy $Rozw(A|\mathbf{0}) < M_n^1(K)$ oraz $dimRozw(A|\mathbf{0}) = n - rz(A)$.

Dowolną bazę przestrzeni $Rozw(A|\mathbf{0})$ nazywamy fundamentalnym układem rozwiazań.

Twierdzenie 4.14. Niech $A \in M_m^n(K)$, $B \in M_m^1(K)$. Ponadto niech $X_0 \in M_n^1(K)$ będzie elementem zbioru rozwiązań układu równań Ax = B oraz niech $X \in M_n^1(K)$. Wtedy

$$X \in Rozw(A|B) \iff X - X_0 \in Rozw(A|\mathbf{0}).$$

Wniosek 4.15. Niech $A \in M_m^n(K)$, $B \in M_m^1(K)$. Ponadto niech $X_0 \in M_n^1(K)$ będzie ustalonym elementem zbioru rozwiązań układu równań Ax = B. Wtedy

- $Rozw(A|B) = X_0 + Rozw(A|\mathbf{0}) = \{X_0 + Y; Y \in Rozw(A|\mathbf{0}).$
- Jeśli X_1, \ldots, X_p jest układem fundamentalnym przestrzeni $Rozw(A|\mathbf{0})$ to każde rozwiazanie X układu Ax = B daje się jednoznacznie przedstawić w postaci $X = X_0 + a_1X_1 + \ldots + a_pX_p$, gdzie $a_1, a_2, \ldots, a_p \in K$.

5 Sumy i sumy proste podprzestrzeni liniowych

Niech V bedzie przestrzenią liniową nad ciałem K a V_1 oraz V_2 będą podprzestrzeniami V. Pokazaliśmy w poprzednich rozdziałach, że $V_1 \cap V_2$ jest podprzestrzenią przestrzeni V. Pokazaliśmy, tez że $V_1 \cup V_2$ jest podprzestrzenią V wtedy i tylko wtedy gdy $V_1 \subseteq V_2$ lub $V_2 \subseteq V_1$.

Definicja 5.1. Niech V bedzie przetrzenią liniową nad ciałem K a V_1, V_2, \ldots, V_k będą podprzestrzeniami V. Definiujemy

$$V_1 + \ldots + V_k = \{v \in V; v = v_1 + \cdots + v_k, v_i \in V_i\}.$$

Zauważmy, że jeśli V_1, V_2, \ldots, V_k będą podprzestrzeniami V to $V_1 + \ldots + V_k$ jest podprzestrzenią V. Nazywamy ją sumą podprzestrzeni V_1, V_2, \ldots, V_k .

Lemat 5.2.
$$V_1 + ... + V_k = \mathcal{L}(V_1 \cup V_2 \cup ... \cup V_k)$$

Niech teraz $V_i = \mathcal{L}(\mathcal{B}_i)$. Wtedy oczywiste jest, że $V_1 + \ldots + V_k = \mathcal{L}(\mathcal{B}_1 | \ldots | \mathcal{B}_k)$.

Twierdzenie 5.3. Niech V_1 , V_2 bedą skończenie wymiarowymi podprzestrzeniami przestrzeni V. Wówczas

$$dim(V_1 + V_2) = dimV_1 + dimV_2 - dim(V_1 \cap V_2)$$

Definicja 5.4. Przestrzeń V jest sumą prostą swoich podprzestrzeni V_1, V_2, \ldots, V_k , jesli każdy wektor $v \in V$ daje się jednoznacznie przedstawić jako $v = v_1 + \cdots + v_k$, $v_i \in V_i$. Piszemy wówczas $V = V_1 \oplus \cdots \oplus V_k$.

Oczywiście każda suma prosta jest suma podprzestrzeni.

Twierdzenie 5.5. Niech V_1, V_2 będą podprzestrzeniami przestrzeniV. Wówczas

$$V = V_1 \oplus V_2 \quad \Leftrightarrow \quad V = V_1 + V_2, \quad V_1 \cap V_2 = 0.$$

W przypadku sumy więcej niz dwu podprzestrzeni warunek po prawej stronie jest bardziej skomplikowany.

Wniosek 5.6. Niech V_1, V_2 będą podprzestrzeniami skończenie wymiarowej przestrzeni V. Załóżmy, ze $V_1 \cap V_2 = 0$. Wówczas

$$V = V_1 \oplus V_2 \quad \Leftrightarrow \quad V = V_1 + V_2.$$

Twierdzenie 5.7. Niech $V = V_1 + \cdots + V_k$ oraz niech \mathcal{B}_i będzie bazą przestrzeni V_i , dla $i = 1, \dots, k$. Wtedy następujące warunki są równoważne:

- 1. $V = V_1 \oplus \cdots \oplus V_k$.
- 2. Układ $(\mathcal{B}_1 | \ldots | \mathcal{B}_k)$ jest bazą przestrzeni V.
- 3. $Układ(\mathcal{B}_1 | \ldots | \mathcal{B}_k)$ jest liniowo niezależny.

Niech teraz W będzie podprzestrzenią skończenie wymiarowej przestrzeni V. Istnieje podprzestrzeń U < V, taka że $V = W \oplus U$. Podprzestrzeń taką nazywamy podprzestrzenią dopełniającą. Nie jest ona wyznaczona jednoznacznie, ale wszystkie podprzestrzenie dopełniające mają ten sam wymiar równy dimV - dimW. Róznicę wymiarów dimV - dimW nazywamy kowymiarem podprzestrzeni W i oznaczamy codimW.

6 Homomorfizmy przestrzeni liniowych

Definicja 6.1. Niech V, U bedą przestrzeniami liniowymi nad ciałem K. Przekształcenie $F: V \to W$ nazywamy przekształceniem liniowym (homomorfizmem przestrzeni liniowych), gdy dla dowolnych $v, u \in V$, $a \in K$ spełnione są następujące warunki

- F(u+v) = F(u) + F(v),
- F(au) = aF(u).

Łatwo udowodnić następujący fakt:

Uwaga 6.2. Przekształcenie $F: V \to W$ jest liniowe wtedy i tylko wtedy gdy dla dowolnych wektorów $v_1, v_2, \ldots v_n \in V$ oraz dowolnych $a_1, a_2, \ldots a_n \in K$, $F(a_1v_1 + \ldots + a_nv_n) = a_1F(v_1) + \ldots + a_nF(v_n)$

Przykłady

- 1. $F: K[x] \to K[x], \quad w \mapsto \frac{dw}{dx}$.
- 2. Niech $\mathcal{B} = (v_1, \ldots, v_n)$ będzie bazą przestrzeni liniowej V nad ciałem K. Definiujemy przekształcenie $M_{\mathcal{B}}: V \to M_n^1(K)$,

$$M_{\mathcal{B}}(v) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \Leftrightarrow v = x_1 v_1 + \ldots + x_n v_n.$$

Przekształcenie $M_{\mathcal{B}}$ jest przekształceniem liniowym. Nazywamy je przekształceniem wspólrzędnych.

- 3. Niech X bedzie niepustym zbiorem, K ciałem i $x_0 \in X$. Przekształcenie $F: Map(X,K) \to K, \quad f \mapsto f(x_0)$ jest liniowe.
- 4. Niech $V=V_1\oplus V_2$. Dla dowolnego wektora $v\in V$ istnieją wtedy wyznaczone jednoznacznie wektory $v_1\in V_1,\quad v_2\in V_2,$ takie że $v=v_1+v_2.$ Przekształcenie

$$P_{V_1}: V \to V, v \mapsto v_1$$

nazywamy rzutem na V_1 wdłuz V_2 .

Symetrią wzgledem V_1 wzdłuż V_2 nazywamy takie przekształcenie

$$S: V \to V, v \mapsto v_1 - v_2.$$

Łatwo pokazać, że oba te przekształcenia są liniowe.

Twierdzenie 6.3. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $\mathcal{B} = (v_1, \ldots, v_n)$ bedzie bazą przestrzeni V oraz niech w_1, \ldots, w_n będzie dowolnym układem wektorów w przestrzeni W. Istnieje dokładnie jedno przekształcenie liniowe $F: V \to W$, takie że $F(v_i) = w_i$, dla $i = 1, \ldots, n$.

Niech V,W będą przestrzeniami liniowymi nad ciałem K. Oznaczmy symbolem Hom(V,W) zbiór wszystkich przekształceń liniowych z V w W. Przekształcenia liniowe z Hom(V,W) możemy dodawać i mnożyć przez elementy z ciała K. Dla $F,G \in Hom(V,W)$, $a \in K$

$$(F+G)(v) := F(v) + G(v), (aF)(v) := aF(v).$$

Zbiór Hom(V,W) z tymi działaniami jest przestrzenia wektorową nad ciałem K. Wektorem zerowym w tej przestrzeni jest przestrzenie zerowe przyporzadkowujące dowolnemu wektorowi v z przestrzeni V wektor zerowy z przestrzeni V.

Twierdzenie 6.4. Niech $F: V \to W, G: W \to U$ będa przekształceniami liniowymi.

- 1. Przekształcenie $G \circ F : V \to U$ jest przekształceniem liniowym.
- 2. Jesli przekształcenie liniowe F jest odwracalne to $F^{-1}:W\to V$ jet również przekształceniem liniowym.

Definicja 6.5. Niech $F: V \to W$ bedzie przekształceniem liniowym. Wówczas

1. Jądrem przekształcenia F nazywamy zbiór

$$ker F := \{ v \in V : F(v) = \mathbf{0} \}.$$

2. Obrazem przekształcenia F nazywamy zbiór

$$ImF := \{ F(v) : v \in V \}.$$

Przykład 6.6. Niech $V = V_1 \oplus V_2$ oraz P_{V_1} będzie rzutem na V_1 wzdłuż V_2 . Wtedy $Ker P_{V_1} = V_2$ oraz $Im P_{V_1} = V_1$. Ponadto $P_{V_1}|V_1 = Id_{V_1}$ oraz $P_{V_1} + P_{V_2} = Id_{V}$.

Uwaga 6.7. Niech $F: V \to W$ bedzie przekształceniem liniowym. Wówczas

- 1. kerF jest podprzestrzenia liniową V,
- 2. ImF jest podprzestrzenia liniową W.

Twierdzenie 6.8. Niech $\mathcal{B} = (v_1, \ldots, v_n)$ będzie bazą przestrzeni V oraz niech $F: V \to W$ bedzie przekształceniem liniowym. Wówczas $ImF = \mathcal{L}(F(\mathcal{B}))$.

Twierdzenie 6.9. Niech $F:V\to W$ bedzie przekształceniem liniowym. Wówczas

dimV = dimkerF + dimImF.

Definicja 6.10. Przekształcenie liniowe $F: V \to W$ nazywamy

- monomorfizmem, jeśli F jest róznowartosciowe,
- epimorfizmem, jeśli F jest " na",
- izomorfizmem, jesli F jest róznowartościowe i "na" .

Twierdzenie 6.11. Niech $F:V\to W$ bedzie przekształceniem liniowym. Następujące warunki są równoważne:

- 1. F jest monomorfizmem,
- 2. $kerF = \{0\},\$
- 3. F przeprowadza dowolny liniowo niezależny układ wektorów na układ liniowo niezależny,
- 4. F przeprowadza dowolną bazę na układ liniowo niezależny,
- 5. F przeprowadza pewną bazę na układ liniowo niezależny.

Wniosek 6.12. Niech $F: V \to W$ będzie przekształceniem liniowym. Następujące warunki są równoważne:

- 1. F jest izomorfizmem,
- 2. F przeprowadza każdą bazę przestrzeni V na bazę przestrzeni W,
- 3. F przeprowadza pewną bazę przestrzeni V na bazę przestrzeni W.

Niech $F:V\to W$ bedzie izomorfizmem przestrzeni liniowych. Z powyższych wniosków wynika, że wtedy dimV=dimW. Ponadto, jeśli dimV=dimW=n to przestrzenie V oraz W są izomorficzne. Oznacza to, że dwie przestrzenie wektorowe V,W są izomorficzne wtedy i tylko wtedy gdy dimV=dimW W szczególnosci wynika stąd, ze każda n wymiarowa przestrzeń wektorowa jest izomorficzna z przestrzenią K^n .

7 Macierze przekształceń liniowych

Definicja 7.1. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $F: V \to W$ będzie przekształceniem liniowym. Ponadto niech układ wektorów $\mathcal{B} = (v_1, \ldots, v_n)$ bedzie bazą przestrzeni V, a układ $\mathcal{C} = (w_1, \ldots, w_m)$ bazą przestrzeni W. Macierzą przekształcenia F w bazach \mathcal{B} i \mathcal{C} nazywamy macierz $A = [a_{ij}] \in M_m^n(K)$ taką, że

$$c^{j}(A) = M_{\mathcal{C}}(F(v_{i})),$$

 $dla \ j = 1, \ldots, n.$

Macierz przekształcenia liniowego w bazach \mathcal{B} oraz \mathcal{C} oznaczamy $M_{\mathcal{C}}^{\mathcal{B}}(F)$. Bezpośrednio z definicji wynika, że dla dowolnego $j=1,\ldots,n$

$$F(v_j) = \sum_{i=1}^m a_{ij} w_i.$$

Uwaga 7.2. Niech $F: V \to W$ będzie przekształceniem liniowym.

$$DimImF = rz(M_{\mathcal{C}}^{\mathcal{B}}(F)).$$

Twierdzenie 7.3. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $F: V \to W$ bedzie przekształceniem liniowym. Ponadto niech \mathcal{B} bedzie bazą przestrzeni V a układ $\mathcal{C} = bazą$ przestrzeni W. Przekształcenie

$$M_{\mathcal{C}}^{\mathcal{B}}: Hom(V, W) \to M_m^n(K), \quad F \mapsto M_{\mathcal{C}}^{\mathcal{B}}(F),$$

jest izomorfizmem przestrzeni wektorowych.

Twierdzenie 7.4. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $F: V \to W$ bedzie przekształceniem liniowym. Ponadto niech \mathcal{B} bedzie bazą przestrzeni V a układ \mathcal{C} bazą przestrzeni W. Macierz $A = M_{\mathcal{C}}^{\mathcal{B}}(F)$ wtedy i tylko wtedy gdy dla dowolnego wektora $v \in V, M_{\mathcal{C}}(F(v)) = A \cdot M_{\mathcal{B}}(v)$.

Niech \mathcal{B} , \mathcal{B}' będą bazami przestrzeni wektorowej V, a przekształcenie $Id = Id_V$ bedzie przekształceniem identycznosciowym przestrzeni V (tzn $Id_V(v) = v$). Macierz $M_{\mathcal{B}'}^{\mathcal{B}}(Id)$ nazywamy macierzą zmiany bazy z \mathcal{B} do \mathcal{B}' . Macierz ta pozwala obliczyć współrzędne dowolnego wektora z V w bazie \mathcal{B}' , gdy znamy te współrzedne w bazie \mathcal{B} . Prawdziwy jest następujący wzór

$$M_{\mathcal{B}'}(v) = M_{\mathcal{B}'}^{\mathcal{B}}(Id)M_{\mathcal{B}}(v).$$

Twierdzenie 7.5. Jeśli V, U, W są przestrzeniami liniowymi nad ciałem K z bazami $\mathcal{B}, \mathcal{C}, \mathcal{D}$ odpowiednio a $F: V \to W, G: W \to U$ są przek-ształceniami liniowymi, to

$$M_{\mathcal{D}}^{\mathcal{B}}(G \circ F) = M_{\mathcal{D}}^{\mathcal{C}}(G) \cdot M_{\mathcal{C}}^{\mathcal{B}}(F).$$

Twierdzenie 7.6. Jeśli $F: V \to W$ jest przekształceniem liniowym a $\mathcal{B}i \mathcal{B}'$ są bazami przestrzeni V oraz $\mathcal{C}i \mathcal{C}'$ są bazami przestrzeni W, to

$$M_{\mathcal{C}'}^{\mathcal{B}'}(F) = M_{\mathcal{C}'}^{\mathcal{C}}(Id) M_{\mathcal{C}}^{\mathcal{B}}(F) M_{\mathcal{B}}^{\mathcal{B}'}(Id).$$

8 Macierze odwracalne (przypomnienie)

Definicja 8.1. Macierz $A \in M_n^n(K)$ nazywamy odwracalną, jeśli istnieje macierz $B \in M_n^n(K)$, taka że $AB = I_n$. Macierz B nazywamy wówczas macierzą odwrotną do macierzy A i oznaczamy A^{-1} .

Twierdzenie 8.2. Niech $A \in M_n^n(K)$. Nastepujące warunki są równoważne:

- Macierz A jest odwracalna,
- Macierz A jest wierszowo równowazna z macierzą jednostkową,
- Macierz A jest iloczynem macierzy elementarnych,
- Rząd macierzy A jest równy n

Poniższe twierdzenie opisuje algorytm znajdowania macierzy odwrotnej.

Twierdzenie 8.3. Niech $A \in M_n^n(K)$. Macierz A jest odwracalna wtedy i tylko wtedy gdy macierz A|I jest wierszowo równoważna z macierzą I|B. Ponadto jeśli ten warunek jest spełniony to $A^{-1} = B$.

Pokazaliśmy, ze macierze przekształceń (jeśli wybierzemy bazy) wyznaczają jednoznacznie przekształcenia liniowe.

Okazuje się że macierze odwracalne odpowiadają przy takinm utożsamieniu izomorfizmom.

Uwaga 8.4. Macierz $A \in M_n^n(K)$ jest macierzą odwracalną wtedy i tylko wtedy gdy przekształcenie liniowe $F: K^n \to K^n$ takie, że $M_{\mathcal{B}}^{\mathcal{B}}(F) = A$, gdzie \mathcal{B} jest dowolną bazą K^n , jest izomorfizmem.

Wniosek 8.5. Niech $A \in M_n^n(K)$. Jeśli istnieje $B \in M_n^n(K)$, takie że AB = I to zachodzi też BA = I. Ponadto taka macierz B jest wyznaczona jednoznacznie.

- **Uwaga 8.6.** 1. Macierze zamiany wpółrzednych są odwracalne. Ponadto $(M_{\mathcal{B}'}^{\mathcal{B}}(Id))^{-1} = M_{\mathcal{B}}^{\mathcal{B}'}(Id).$
 - 2. Jeśli A, B są macierzami odwracalnymi to AB jest macierza odwracalną i $(AB)^{-1}=B^{-1}A^{-1}$.

9 Wyznaczniki macierzy

Niech $A \in M_n^n(K)$. Symbolem A_{ij} bedziemy oznaczali macierz powstałą z macierzy A przez usunięcie i-tego wiersza oraz j-tej kolumny. Dla kazdej macierzy $A \in M_n^n(K)$ przyporzadkujemy element ciała K zwany wyznacznikiem macierzy.

Definicja 9.1. Wyznacznikiem nazywamy funkcję, która przyporządkowuje każdej macierzy kwadratowej o wyrazach z ciała K pewien element tego ciała, oznaczany det A, tak że

- 1. Jeśli $A = [a] \in M_1^1(K)$, to det A = a,
- 2. Jeśli $A = [a_{ij}] \in M_n^n(K)$, gdzie n > 1, to $det A = \sum_{j=1}^n (-1)^{1+j} a_{1j} det A_{1j}$.

Twierdzenie 9.2. (Własności wyznaczników) Niech $A, B, C \in M_n^n(K)$.

- 1. Jesli $c^{j}(C) = c^{j}(A) + c^{j}(B)$ dla $0 \le j \le n$ oraz $c^{i}(A) = c^{i}(B) = c^{i}(C)$ dla $i \ne j$, to detC = detA + detB.
- 2. Jeśli macierz B powstała z A przez zamianę miejscami dwóch kolumn to det B = -det A.
- 3. Jeśli macierz B powstała z macierzy A przez pomnożenie jednej (dowolnej) kolumny przez element $c \in K$ to detB = cdetA.

W powyższym twierdzeniu możemy kolumny zastąpić wierszami. Wynika to natychmiast z jeszcze jednej własności wyznaczników. Aby ją sformułować przypomnijmy oznaczenie. Dla dowolnej macierzy $A \in M_m^n(K)$ symbolem A^T oznaczamy macierz należacą do $M_n^m(K)$ taką, ze $r_i(A^T) = c^i(A)$ dla $i = 1, \ldots, n$. Inaczej mówiac wiersze macierzy A^T to kolumny macierzy A i odwrotnie. Oczywiste jest, że $(A^T)^T = A$.

Twierdzenie 9.3. Niech $A \in M_n^n(K)$. Wówczas $det A^T = det A$.

Twierdzenie 9.4. Niech $A \in M_n^n(K)$. Wówczas dla każdego $1 \le i \le n, 1 \le j \le n$

$$det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det A_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det A_{ij}.$$

Wzory z powyższego twierdzenia nazywamy rozwinięciem Laplace'a, pierwszy względem j-tej kolumny, drugi względem i-tego wiersza.

Wniosek 9.5. Niech $A \in M_n^n(K)$

- 1. Jeśli w macierzy A wiersz (lub kolumna) jest zerowy to det A = 0.
- 2. Jeśli w macierzy A dwa wiersze (dwie kolumny) są równe to det A = 0.

Zbadamy teraz jak zmienia się wyznacznik macierzy A gdy wykonujemy operacje elementarne na wierszach lub kolumnach macierzy. Przypomnijmy, ze mamy elementarne operacje trzech typów:

- typu 1: dodanie do dowolnego wiersza (kolumny) innego (innej) pomnożonego przez stałą.
- typu2: zamiana kolejności wierszy (kolumn)
- \bullet typu 3 : pomnożenie wiersza (kolumny) przez niezerowy element ciała K.

Wniosek 9.6. Niech $A \in M_n^n(K)$

- 1. Operacje elementarne typu 1 nie zmieniają wyznacznika macierzy A.
- 2. Operacje elementarne typu 2 zmieniają znak wyznacznika A. item Operacje elementarne typu 3 mnożą wyznacznik macierzy A przez element ciała K.

Twierdzenie 9.7. (Twierdzenie Cauchy'ego) Niech $A, B \in M_n^n(K)$. Wówczas

$$detAB = detAdetB.$$

Twierdzenie 9.8. Niech $A = [a_{ij}] \in M_n^n(K)$.

- 1. Macierz A jest odwracalna wtedy i tylko wtedy gdy $\det A \neq 0$.
- 2. Niech A będzie macierzą odwracalną i ponadto niech $B = [b_{ij}] \in M_n^n(K)$ oraz $b_{ij} = (-1)^{j+i} \frac{\det A_{ji}}{\det A}$. Wówczas $B = A^{-1}$.

Twierdzenie 9.9. (Twierdzenie Cramera) Niech U będzie układem n-równań z n-niewiadomymi o macierzy współczynników A i kolumnie wyrazów wolnych B. Załóżmy, żę $det A \neq 0$. Wówczas układ ma dokładnie jedno rozwiązanie (x_1, \ldots, x_n) takie że dla dowolnego i,

$$x_i = \frac{\det A_i}{\det A},$$

gdzie macierz A_i powstała z macierzy Aprzez zastąpienie i-tej kolumny kolumną B

OPERATORY LINIOWE

1. WARTOŚCI I WEKTORY WŁASNE OPERATORÓW I MACIERZY.

1.1. **DEFINICJA** Niech V będzie przestrzenią wektorową nad ciałem K i niech F będzie operatorem liniowym na przestrzeni V. $\lambda \in K$ nazywamy <u>wartością własną operatora F</u>, jeśli $\ker(F - \lambda I_V) \neq \mathbf{0}$. Jeśli λ jest wartością własną F, to każdy niezerowy wektor z przestrzeni $\ker(F - \lambda I_V)$ nazywamy <u>wektorem własnym operatora F</u> odpowiadającym wartości własnej λ . Przestrzeń $\ker(F - \lambda I_V)$ oznaczamy V_{λ} F lub F0 i nazywamy <u>podprzestrzenią własną</u> odpowiadającą F1.

UWAGA. λ jest wartością własną operatora F wtedy i tylko wtedy, gdy istnieje niezerowy wektor $\mathbf{v} \in V$, taki że $F(\mathbf{v}) = \lambda \mathbf{v}$. Wektor $\mathbf{v} \neq \mathbf{0}$ jest wektorem własnym odpowiadającym wartości λ wtedy i tylko wtedy, gdy $F(\mathbf{v}) = \lambda \mathbf{v}$.

Niech $A \in M^n(K)$. Wartościami własnymi i wektorami własnymi macierzy A nazywamy wartości własne i wektory własne operatora L_A . $(L_A: M_n(K) \to M_n(K); L_A(X) = AX.)$

- **1.2. TWIERDZENIE.** Niech A będzie macierzą kwadratową nad ciałem K i $\lambda \in K$. Wtedy λ jest wartością własną macierzy A wtedy i tylko wtedy, gdy $Det(A \lambda I) = 0$.
- 1.3. **TWIERDZENIE.** Niech F będzie operatorem liniowym na przestrzeni V, takim że $A = M_B^B(F)$, gdzie B baza V. Wtedy:
- i) λ jest wartością własną operatora F wtedy i tylko wtedy, gdy λ jest wartością własną A.
- ii) dla dowolnej wartości własnej λ , $v \in V_{\lambda}(F) \Leftrightarrow M_{B}(v) \in V_{\lambda}(A)$.
- 1.4. **DEFINICJA.** Niech F będzie operatorem liniowym na przestrzeni wektorowej V. Mówimy, że **podprzestrzeń** U przestrzeni V jest **niezmiennicza względem operatora F**, jeśli $F(U) \subseteq U$.

PRZYKŁAD. Podprzestrzenie własne operatora F są podprzestrzeniami niezmienniczymi względem F.

2. <u>WIELOMIAN CHARAKTERYSTYCZNY MACIERZY I OPERATORÓW</u>

2.1. **TWIERDZENIE.** Niech $A \in M^n_n(K)$. Wtedy Det(xI - A) jest wielomianem unormowanym stopnia n nad K. Ponadto $Det(A - xI) = \begin{cases} Det(xI - A) & \text{gdy } n = 2k \\ -Det(xI - A) & \text{gdy } n = 2k + 1 \end{cases}$

DEFINICJA. Wielomian Det(xI - A) nazywamy <u>wielomianem charakterystycznym</u> <u>macierzy A</u> i oznaczamy $\chi_A(x)$. **UWAGA**. $\lambda \in K$ jest wartością własną macierzy $A \Leftrightarrow \lambda$ jest pierwiastkiem wielomianu $\chi_A(x)$.

2.2. **LEMAT.** Jeśli A, B $\in M^n_n(K)$ są macierzami podobnymi (tzn. istnieje macierz odwracalna N, taka że B = N⁻¹AN), to $\chi_A(x) = \chi_B(x)$.

FAKT. Niech B oraz C będą bazami przestrzeni wektorowej V. Wtedy jeśli F jest operatorem na V, to macierze $M^B_B(F)$ oraz $M^C_C(F)$ mają jednakowe wielomiany charakterystyczne.

Wielomian charakterystyczny macierzy $M^B_B(F)$ nazywamy <u>wielomianem</u> <u>charakterystycznym operatora F</u> i oznaczamy $\chi_F(x)$.

3. DIAGONALIZACJA MACIERZY OPERATORA LINIOWEGO.

3.1. TWIERDZENIE. Niech F będzie operatorem liniowym na przestrzeni wektorowej V i niech B = $(\mathbf{v}_1, ..., \mathbf{v}_n)$ będzie bazą V. Macierz $M^B_B(F)$ jest macierzą diagonalną wtedy i tylko wtedy, gdy B składa się z wektorów własnych operatora F. Dokładniej, $M^B_B(F)$ =diag $(\lambda_1, ..., \lambda_n) \Leftrightarrow F(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$ dla j = 1, ..., n.

TWIERDZENIE. Niech A, N $\in M_n^n(K)$ i niech N będzie macierzą odwracalną. Wtedy następujące warunki są równoważne:

- i) $N^{-1}AN = diag(\lambda_{1,...,}\lambda_{n}),$
- ii) $AN^{(j)} = \lambda_j N^{(j)}$ dla j = 1, ..., n.
- **3.2. DEFINICJA.** Mówimy, że operator F na V jest <u>diagonalizowalny</u> wtedy i tylko wtedy, gdy istnieje baza B przestrzeni V, taka że $M^B_B(F)$ jest diagonalna. (\Leftrightarrow istnieje baza V złożona z wektorów własnych operatora F).

DEFINICJA. Mówimy, że macierz $A \in M_n^n(K)$ jest <u>diagonalizowalna</u> wtedy i tylko wtedy, gdy istnieje macierz odwracalna $N \in M_n^n(K)$, taka że $N^{-1}AN = diag(\lambda_1, ..., \lambda_n)$. ((\Leftrightarrow istnieje baza $M_n(K)$ złożona z wektorów własnych macierzy A).

3.3 TWIERDZENIE. Wektory własne odpowiadające różnym wartościom własnym są liniowo niezależne.

WNIOSEK. (warunek wystarczający diagonalizowalności operatora F). Jeśli operator F na n wymiarowej przestrzeni wektorowej V ma n różnych wartości własnych, to jest diagonalizowalny.

3.4.TWIERDZENIE. Niech F będzie operatorem liniowym na przestrzeni wektorowej V nad ciałem K i niech $\chi_F(x) = (x - \lambda_1)^{m_1} \cdot ... \cdot (x - \lambda_k)^{m_k}$, gdzie $\lambda_j \in K$ dla j = 1, ..., k oraz $\lambda_i \neq \lambda_j$ dla i $\neq j$. Wtedy następujące warunki są równoważne:

i) istnieje baza przestrzeni V złożona z wektorów własnych operatora F,

ii)
$$V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$$
,

iii)
$$\dim V_{\lambda_j} = m_j$$
, dla $j = 1, ...,k$.

3.5. TWIERDZENIE (Jordana). Niech F będzie operatorem liniowym na przestrzeni V nad

ciałem *C*. Wtedy istnieje baza B przestrzeni *V*, taka że
$$M^{B}_{B}(F) = \begin{bmatrix} K_{1} & \dots & 0 \\ & \ddots & & \\ & & \ddots & \\ & & \ddots & \\ 0 & \dots & K_{p} \end{bmatrix}$$
, gdzie

każda z klatek
$$K_j$$
 jest postaci $K = \begin{vmatrix} \lambda & . & . & . & 0 \\ 1 & \lambda & & & . \\ . & 1 & . & & . \\ . & . & . & . & . \\ 0 & . & . & 1 & \lambda \end{vmatrix}$, gdzie λ jest wartością własną F.