Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Advanced Database Management System

Semester: IV

Program: B.Tech. (CSE) with Spl. GG, AI &ML, DEVOPS, CSF, BDATA, CCVT Time: 03 hrs.

Course		lax. Marks	s: 100			
	SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО			
Q. 1	List four significant differences between a file-processing system and a DBMS.	4M	CO1			
Q. 2	Differentiate between the dense index and sparse index.	4M				
Q. 3	Explain DDL and DML commands with suitable examples.	4M	CO3			
Q. 4	Consider a relation schema R(X Y Z W P) is decomposed into R1(X Y) and					
	R2 (Z W). Determine, whether the above R1 and R2 are Lossless or Lossy?	4M	CO4			
Q. 5	Explain ACID properties of a transaction.	4M	CO5			
	SECTION B					
	(4Qx10M=40 Marks)					
Q.6	i. In order to perform a sequential search on ordered and unordered records the average number of blocks that require searching is b/2 where b is the total number of blocks. Justify with suitable example. On ordered records the search operation can be made efficient by using a different algorithm. Discuss the algorithm and justify why is this a better approach?	4M	CO2			
	ii. Construct B+ tree for the following elements with order=3 5, 15, 25, 30, 45, 60, 18, 28	6M				
Q.7	A. Write Relational Algebra queries for the following schema: Instructor (ID, name, dept_name, salary) Teaches (ID, course_id, sec_id, semester, year) Course (course_id, Title, Fee, credits)					
	I. Find the names of all instructors together with the course id of all courses they taught.II. Find the names of all instructors in the Physics department together	2M	CO3			
	with the course id of all courses they taught. III. Find the names of all instructors in the Comp. Sci. department	2M				
	together with the course titles of all the courses that the instructors	4 1 V1				
	teach. B. Convert following SQL in to relational algebra:	2M				
	b. Convert following SQL in to relational algebra.					

				n, MovieStar WHERI	E 2M	
	starName = name AND birthdate = 1960 ii. (SELECT name, address from MovieStar) EXCEPT (SELECT					
	r	7 2M				
Q.8	i. Explain d	5M	COA			
	ii. Given a r FD = {AB -	5M	CO4			
Q.9	i. Illustrate	+				
	of data frag					
	:: D:	10M	CO6			
	ii. Discuss t Explain wh					
	1 Zipiaii Wii	ar primary emaracter	SECTION-C	3055055.		
			(2Qx20M=40 Marl	ks)		
Q.10	i. Explain, what is a schedule? Define the concepts of recoverable, cascade					
	less, and strict schedules, and compare them in terms of their recoverability.					
	ii. Check, g	10M				
		valent serial schedu		•		
	_	- 1				
	Transaction	Transaction T ₁	Transaction T ₂	Transaction T ₃		
				read_item(Y); read_item(Z);		
		read_item(X); write_item(X);				CO5
	Time			write_item(Y); write_item(Z);		
	Tille		read_item(Z);	wino_nom(z),	10M	
		read_item(Y); write_item(Y);	read_item(Y);			
		_ , ,	write_item(Y);			
	•		read_item(X); write_item(X);			
Q. 11	i. Construct an E-R diagram for a car-insurance company whose customers					
	own one or	10M				
	number of I	recorded accidents.				
ii. If, no attribute has the capability to become a primary key in a relation,						
	how you wi					
	example an		CO1			
	(OR) iii.Compare Following (with suitable example):					
		ary key and Unique				
	b. Multivalued attribute and Composite attributeiv. Describe three–schema architecture and explain the role of physical					
	data independence and logical data independence.					