Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 2

Aufgabe 2.1 (2+2 Punkte)

Gegeben seien die Mengen A, B und eine Relation R von A in B. Geben Sie jeweils eine prädikatenlogische Formel für folgende Aussagen an:

a) R ist eine rechtstotale Relation.

$$\forall b \in B : \exists a \in A : (a, b) \in R$$

b) R ist eine linkseindeutige Relation.

$$\forall a_1 \in A : \forall a_2 \in A : \forall b_1 \in B : \forall b_2 \in B : ((a_1, b_1) \in R \land (a_2, b_2) \in R \land a_1 \neq a_2) \Rightarrow b_1 \neq b_2$$
oder
$$\forall a_1 \in A : \forall a_2 \in A : \forall b \in B : ((a_1, b) \in R \land (a_2, b) \in R) \Rightarrow a_1 = a_2$$

Aufgabe 2.2 (3 Punkte)

Sei A ein Alphabet.

Beweisen Sie für alle Wörter $w_1 \in A^*, w_2 \in A^*, w_3 \in A^*: (w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)$

Sei
$$|w_1| = n$$
, $|w_2| = m$, $|w_3| = k$.
Wir zeigen, dass $|(w_1 \cdot w_2) \cdot w_3| = |w_1 \cdot (w_2 \cdot w_3)| = n + m + k$ gilt: $|(w_1 \cdot w_2) \cdot w_3| = (n + m) + k = n + m + k$
 $|w_1 \cdot (w_2 \cdot w_3)| = n + (m + k) = n + m + k$

Weiterhin gilt $|w_1 \cdot w_2| = n + m$ und $|w_2 \cdot w_3| = m + k$ Wir zeigen nun, dass $\forall i \in \mathbb{G}_{n+m+k} : ((w_1 \cdot w_2) \cdot w_3)(i) = (w_1 \cdot (w_2 \cdot w_3))(i)$:

Es gilt
$$((w_1 \cdot w_2) \cdot w_3)(i) = \begin{cases} (w_1 \cdot w_2)(i) & \text{falls } 0 \le i < n + m \\ w_3(i - (n + m)) & \text{falls } n + m \le i < n + m + k \end{cases}$$

$$= \begin{cases} w_1(i) & \text{falls } 0 \le i < n \\ w_2(i - n) & \text{falls } n \le i < n + m \\ w_3(i - (n + m)) & \text{falls } n + m \le i < n + m + k \end{cases}$$

$$= \begin{cases} w_1(i) & \text{falls } 0 \le i < n \\ w_2(i - n) & \text{falls } n \le i < n + m \\ w_3((i - n) - m) & \text{falls } n + m \le i < n + m + k \end{cases}$$

$$= \begin{cases} w_1(i) & \text{falls } 0 \le i < n \\ (w_2 \cdot w_3)(i - n) & \text{falls } n \le i < n + m + k \end{cases}$$

$$= w_1 \cdot (w_2 \cdot w_3)(i).$$

Da beide Wörter surjektive Abbildungen sind und für alle Werte aus dem Definitionsbereich den gleichen Wert liefern, sind die Wörter $(w_1 \cdot w_2) \cdot w_3$ und $w_1 \cdot (w_2 \cdot w_3)$ identisch.

Aufgabe 2.3 (2+2+3 Punkte)

Gegeben sei folgende induktiv definierte Folge von Zahlen:

$$x_0 = 0$$

 $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2n + 1.$

a) Berechnen Sie x_1, x_2, x_3, x_4 .

$$x_1 = x_{0+1} = x_0 + 2 \cdot 0 + 1 = 0 + 0 + 1 = 1$$

 $x_2 = x_{1+1} = x_1 + 2 \cdot 1 + 1 = 1 + 2 + 1 = 4$
 $x_3 = x_{2+1} = x_2 + 2 \cdot 2 + 1 = 4 + 4 + 1 = 9$
 $x_4 = x_{3+1} = x_3 + 2 \cdot 3 + 1 = 9 + 6 + 1 = 16$

b) Geben Sie für x_n eine geschlossene Formel (ein arithmetischer Ausdruck, der nur von n abhängt) an.

$$x_n = n^2$$

c) Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsanfang: n = 0: Nach Definition gilt $x_0 = 0 = 0^2$. $\sqrt{}$ Induktionsvoraussetzung: Für ein festes, aber beliebiges $n \in \mathbb{N}_{=}$ gelte $x_n = n^2$. Induktionsschluss: Wir zeigen, dass dann auch $x_{n+1} = (n+1)^2$ gelten muss. Nach Definiton gilt $x_{n+1} = x_n + 2n + 1$. Nach Induktionsvoraussetzung gilt $x_n = n^2$, und wir erhalten $x_{n+1} = n^2 + 2n + 1 = (n+1)^2$ nach der ersten binomischen Formel. (Kürzer: $x_{n+1} \stackrel{\text{Definiton}}{=} x_n + 2n + 1 \stackrel{\text{Induktionsvoraussetzung}}{=} n^2 + 2n + 1 = (n+1)^2$) Damit ist der Induktionsschluss gezeigt.

Aufgabe 2.4 (4 Punkte)

Gegeben sei eine Menge M und eine Abbildung $f: M \to M$. Wir definieren eine Folge von Mengen induktiv wie folgt:

$$M_0 = M$$

 $\forall n \in \mathbb{N}_0 : M_{n+1} = \{ f(x) \mid x \in M_n \}.$
 Beweisen Sie: $\forall n \in \mathbb{N}_0 : M_{n+1} \subseteq M_n.$

Vorbemerkung: Bildlich kann man sich die Aussage folgendermaßen vorstellen:

Induktionsanfang: n = 0: $M_{0+1} = \{f(x) \mid x \in M_0\} \subseteq M$, da der Wertebereich von f die Menge M ist.

Da $M_0 = M$ gilt, folgt $M_{0+1} \subseteq M_0$. $\sqrt{}$

Induktionsvoraussetzung: Für ein beliebiges, aber festes $n \in \mathbb{N}_0$ gilt $M_{n+1} \subseteq M_n$. Induktionsschluss: Wir zeigen, dass dann auch $M_{n+2} \subseteq M_{n+1}$ gilt.

Wir wählen ein beliebiges, aber festes Element $x \in M_{n+2}$.

Nach Definition von M_{n+2} gibt es ein Element $y \in M_{n+1}$, so dass x = f(y) gilt.

Nach Induktionsvoraussetzung gilt $M_{n+1} \subseteq M_n$, und es folgt, dass $y \in M_n$ gelten muss.

Damit folgt $x = f(y) \in M_{n+1}$.

Da wir für ein beliebiges $x \in M_{n+2}$ gezeigt haben, dass $x \in M_{n+1}$ gilt, haben wir $M_{n+2} \subseteq M_{n+1}$ gezeigt.