N-Substituted heterocyclic derivatives, their preparation and the pharmaceutical compositions in which they are present

 ρ The present invention relates to N-substituted heterocyclic derivatives, to their preparation and to the pharmaceutical compositions in which they are present.

The compounds according to the invention antagonize the action of angiotensin II, which is a peptide hormone of the formula

PS

P S

H-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-OH

Angiotensin II is a potent vasopressor and the biologically active product of the renin-angiotensin system: renin acts on the angiotensinogen of the plasma to produce angiotensin I, which is converted to angiotensin II by the action of the angiotensin I converting enzyme.

The compounds of the present invention are non-peptide compounds which antagonize angiotensin II. By inhibiting the action of angiotensin II on its receptors, the compounds according to the invention prevent especially the increase in blood pressure produced by the hormone-receptor interaction; they also have other physiological actions on the central nervous system and on the kidneys, for example.

Thus the compounds according to the invention are useful in the treatment of cardiovascular complaints such as hypertension and heart failure, as well as in the treatment of complaints of the central nervous system and in the treatment of glaucoma, diabetic retinopathy and renal insufficiency.

The present invention relates to compounds of the formula

05

10

15

20

25

30

P

P1/A 1H 10 H 114 L L

H,14 15

20

P₁, M, 14 H, 14 25

> M,14 LL 30

> > 35

PINNH, 14

in which:

- R₁ and R₂ are similar or different and are each independently hydrogen or a group selected from a C_1-C_6 alkyl, a C₁-C₄ alkoxy, an amino, an aminomethyl, a carboxyl, an alkoxycarbonyl in which the alkoxy is C_1-C_4 , a cyano, a tetrazolyl, a methyltetrazolyl, a methylsulfonylamino, a trifluoromethylsulfonylamino, trifluoromethylsulfonylaminomethyl, acetamide, an N-hydroxyacetamide, an N-(4-carboxy-1,3-thiazol-2-yl)acetamide, a ureido, guanidinocarbonyl, a 2-cyanoguanidinomethyl, an imidazol-1-ylcarbonyl and a 3-cyano-2-methylisothioureidomethyl, with the proviso that at least one of the substituents R, or R, is other than hydrogen;

- R_3 is a hydrogen, a C_1 - C_6 alkyl which is unsubstituted or substituted by one or more halogen atoms, a C_2 - C_6 alkenyl, a C_3 - C_7 cycloalkyl, a phenyl, a phenylalkyl in which the alkyl is C_1 - C_3 , or a phenylalkenyl in which the alkenyl is C_2 - C_3 , said phenyl groups being unsubstituted or monosubstituted or polysubstituted by a halogen atom, a C_1 - C_4 alkyl, a C_1 - C_4 halogenoalkyl, a C_1 - C_4 polyhalogenoalkyl, a hydroxyl or a C_1 - C_4 alkoxy; and either

 $_{\wedge}$ R₄ and R₅ are each independently a C₁-C₆ alkyl, a phenyl or a phenylalkyl in which the alkyl is C₁-C₃, said alkyl, phenyl and phenylalkyl groups being

P, 3, H 500514 P, 14, 13 10/4 H, 14, 13

H

20

35

P

unsubstituted or substituted by one or more halogen atoms or by a group selected from a C_1-C_4 perfluoroalkyl, a hydroxyl and a C_1-C_4 alkoxy;

- or R_4 and R_5 together form a group of the formula $^{\wedge}$ =CR₂R₈, in which R₂ is hydrogen, a C₁-C₄ alkyl or a phenyl and R₈ is a C₁-C₄ alkyl or a phenyl;
 or else R₄ and R₅ together are either a group of the formula (CH₂)_pY
 - or else R_4 and R_5 together are either a group of the formula $(CH_2)_n$ or a group of the formula $(CH_2)_n$ Y- $(CH_2)_q$, in which Y is either an oxygen atom, or a sulfur atom, or a carbon atom substituted by a C_1 - C_4 alkyl group, a phenyl or a phenylalkyl in which the alkyl is C_1 - C_3 , or a group N- R_6 , in which R_6 is a hydrogen, a C_1 - C_4 alkyl, a phenylalkyl in which the alkyl is C_1 - C_3 , a C_1 - C_4 alkylcarbonyl, a C_1 - C_4 halogenoalkylcarbonyl, a C_1 - C_4 polyhalogenoalkylcarbonyl, a benzoyl, an alpha-aminoacyl or an N-protecting group, or R_4 and R_5 , together with the carbon atom to which they are bonded, form an indane or an adamantane;

 $\frac{1}{4}$ p + q = m;

- n is an integer between 2 and 11; and

 $\frac{1}{4}$ m is an integer between 2 and 5;

or

- $_{\lambda}$ R₄ is a C₁-C₆ alkyl which is unsubstituted or substituted by one or more halogen atoms; and
- R_s is a cycloalkyl or a cycloalkylmethyl, said cycloalkyl being C₃-C₇, which is unsubstituted or substituted by one or more halogen atoms;
- or R_4 and R_5 are each a cyclopropyl;
- $\frac{1}{4}$ X is an oxygen atom or sulfur atom; and
- $\frac{1}{2}$ z and t are zero or one is zero and the other is one; and their salts.

If a compound according to the invention has an asymmetric carbon, the invention includes each of the 2 optical isomers of this compound and their racemic

mixture.

05

10

20

25

30

35

The salts of the compounds of formula (I) according to the present invention include those with mineral or organic acids which permit separation or suitable crystallization of the compounds of formula (I), such as trifluoroacetic acid, picric acid, oxalic acid or an optically active acid, for example a mandelic acid or a camphosulfonic acid, and acids which form pharmaceutically acceptable salts such as hydrochloride, the hydrobromide, the sulfate, hydrogensulfate, the dihydrogenphosphate, the methanesulfonate, the methylsulfate, the maleate, the fumarate and the naphthalene-2-sulfonate.

The salts of the compounds of formula (I) also 15 include the salts with organic or mineral bases, for example the salts of alkali or alkaline earth metals, such as the sodium, potassium and calcium salts, the sodium and potassium salts being preferred, or with a tertiary amine such as trometamol, or else the salts of arginine, lysine or any physiologically acceptable amine.

According to the present description and in the claims which follow, halogen atom is understood as meaning a bromine, chlorine or fluorine atom; N-protecting group (also designated by Pr) is understood as meaning a group conventionally used in peptide chemistry for affording temporary protection of the amine group, for example a Boc, Z or Fmoc group or a benzyl group; esterified carboxyl group is understood as meaning an ester which is labile under appropriate conditions, such as, for example, a methyl, ethyl, benzyl or tert-butyl ester. "Alkyl" denotes linear or branched saturated aliphatic hydrocarbon radicals.

The compounds of formula (I) in which R, is in the ortho position and is a carboxyl or tetrazolyl

group and R2 is hydrogen are preferred compounds.

The compounds of formula (I) in which R4 and R5 together form, with the carbon to which they are bonded, a cyclopentane or a cyclohexane are preferred compounds.

5 H The compounds of formula (I) in which R4 is methyl and R5 is cyclohexyl are also preferred compounds.

Likewise, the compounds of formula (I) in which R3 is a 4/14 liner C1-C6 alkyl group art preferred compounds.

The compounds of formula (I) in which X is an oxygen atom are also preferred compounds. 10

Finally, the compounds of formula (I) in which z = t = 0 are preferred compounds.

2-n-Butyl-4-methyl-4-cyclohexyl-1-[(2'-(tetrazol-5yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one and 2-n-butyl-4-15 ΨO spirocyclopentane-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2imidazolin-5-one or one of their salts with acids or bases are particularly preferred.

The following abbreviations are used in the description and

tert-butoxycarbonyl

in the Examples:			
20	alcohol	:	ethyl alcohol
	Et	:	ethyl
	dry ice	:	solid carbon dioxide
	nBu, tBu	:	n-butyl, tert-butyl
	DMF	:	${ t dimethylformamide}$
25	THF	:	tetrahydrofuran
	DCM	:	dichloromethane
T80X	NBS	:	N-bromosuccinimide
1 - ,	DCC	:	dicyclohexylcarbodiimide
	DIPEA	: .	${ t diisopropylethylamine}$
30	ether	:	ethyl ether
	TFA	:	trifluoroacetic acid
•	Z	:	benzyloxycarbonyl

Boc

BOP

: benzotriazolyloxytrisdimethylaminophospho-

nium hexafluorophosphate

Fmòc

: fluorenylmethoxycarbonyl

The present invention further relates to the method of preparing the compounds (I). In said method: al) a heterocyclic derivative of the formula

10 T 90X

P1+12) & H 15

in which z, t, R_3 , R_4 and R_5 are as defined above for (I), is reacted with a (biphenyl-4-yl)methyl derivative of the formula

PITIO, 40,H

in which Hal is a halogen atom and R'_1 and R'_2 are respectively either R_1 and R_2 or a precursor group of R_1 and R_2 ;

b1) if appropriate, the resulting compound of the formula

T92X

9

P1+10,3

is treated with Lawesson's reagent [2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide];

P.

c1) the compound obtained in a1) or b1), of the formula 05

40,H

in which X is an oxygen atom or a sulfur atom, is treated to give the compound (I) by conversion of the groups R', and/or R', to the groups R, and/or respectively.

20

Among the compounds 2, the compounds (II) as defined below are novel.

Thus the present invention further relates to the compounds (II) of the formula

25

$$\begin{array}{c|c}
R5 & (CH_2)t \\
z(CH_2) & N \\
X & N \\
H
\end{array}$$
(II)

in which:

 $\bar{\lambda}$ X is an oxygen atom or sulfur atom;

 $\frac{1}{4}$ z and t are zero or one is zero and the other is one; $\frac{1}{2}$ R₃ is a hydrogen, a C₁-C₆ alkyl which is unsubstituted or substituted by one or more halogen atoms, a

H,14 L L H,14 05

PIN, HILY

H, 14 PJA1 H 15 50, H, 14 PJA1 H 20 14

LL

P. A. 35H

 C_2 - C_6 alkenyl, a C_3 - C_7 cycloalkyl, a phenyl, a phenylalkyl in which the alkyl is C_1 - C_3 , or a phenylalkenyl in which the alkenyl is C_2 - C_3 , said phenyl groups being unsubstituted or monosubstituted or polysubstituted by a halogen atom, a C_1 - C_4 alkyl, a C_1 - C_4 halogenoalkyl, a C_1 - C_4 polyhalogenoalkyl, a hydroxyl or a C_1 - C_4 alkoxy; and either

 R_4 and R_5 are each independently a C_1 - C_6 alkyl, a phenyl or a phenylalkyl in which the alkyl is C_1 - C_3 , said alkyl, phenyl and phenylalkyl groups being unsubstituted or substituted by one or more halogen atoms or by a group selected from a C_1 - C_4 perfluoroalkyl, a hydroxyl and a C_1 - C_4 alkoxy;

or R_4 and R_5 together form a group of the formula $=CR_7R_8$, in which R_7 is hydrogen, a C_1-C_4 alkyl or a phenyl and R_8 is a C_1-C_4 alkyl or a phenyl;

or else R_4 and R_5 together are either a group of the formula $(CH_2)_p$ or a group of the formula $(CH_2)_p$ Y- $(CH_2)_q$, in which Y is either an oxygen atom, or a sulfur atom, or a carbon atom substituted by a C_1 - C_4 alkyl group, a phenyl or a phenylalkyl in which the alkyl is C_1 - C_3 , or a group N- R_6 , in which R_6 is a hydrogen, a C_1 - C_4 alkyl, a phenylalkyl in which the alkyl is C_1 - C_3 , a C_1 - C_4 alkylcarbonyl, a C_1 - C_4 halogenoalkylcarbonyl, a C_1 - C_4 polyhalogenoalkylcarbonyl, a benzoyl, an alpha-aminoacyl or an N-protecting group, or R_4 and R_5 , together with the carbon atom to which they are bonded, form an indane or an adamantane;

 $\frac{1}{2}$ p + q = m;

n is an integer between 2 and 11; and

m is an integer between 2 and 5;

with the limitation that

- if z and t are zero and X is an oxygen atom, R_4 and Λ

Pa, H P3, 12, 14, 14

05

4,14

P3/M/H,13 H,14 10 LL P3. J

3, P3, H

P2+10

P2 , H

P. A. 14, 1/20

P. 1 H,14

P(1) H 25

R_s are other than

a C_1 - C_6 alkyl, a phenyl or a phenylalkyl in which the alkyl is C_1 - C_3 , said alkyl, phenyl and phenylalkyl groups being unsubstituted or substituted by one or more halogen atoms or by a group selected from a C_1 - C_4 perfluoroalkyl, a hydroxyl and a C_1 - C_4 alkoxy;

or $\rm R_4$ and $\rm R_5$ together are other than a group N-R $_6$ in which R $_6$ is a hydrogen, a C $_1$ -C $_4$ alkyl or a phenylalkyl in which the alkyl is C $_1$ -C $_3$; and

. n is other than 6; or

when R_3 represents a substituted phenyl group, R_4 and R_5 together are other than a $(CH_2)_n$ group in which n is between 3 and 5;

and

- if z = 1 and R_3 is a phenyl, R_4 and R_5 are each other than a methyl;

or

- R_A is a C_1-C_6 alkyl which is unsubstituted or substituted by one or more halogen atoms; and

 $_{\Lambda}^{-}$ R_s is a cycloalkyl or a cycloalkylmethyl, the cycloalkyl being C₃-C₇, which is unsubstituted or substituted by one or more halogen atoms;

- or else R_4 and R_5 are each a cyclopropyl.

Among the derivatives (II), the compounds in which z = t = 0, of the formula

30 T120X

$$\begin{array}{c}
R_4 \\
R_5 \\
N \\
H
\end{array}$$

$$\begin{array}{c}
N \\
R_3
\end{array}$$

$$\begin{array}{c}
(II')
\end{array}$$

in which X, R_3 , R_4 and R_5 are as defined above for (II), are preferred compounds.

Particularly preferred compounds of formula

40,H H (II') are those in which R_4 and R_5 form a cyclopentane together with the carbon to which they are bonded, and those in which R_4 is a methyl and R_5 is a cyclohexyl. These compounds have the formula

T130X

 $X \stackrel{N}{\underset{H}{\bigvee}} R_3$ (II'_a) or $X \stackrel{CH_3}{\underset{H}{\bigvee}} R_3$ (II'_b)

PS,H 40 L 15

in which R_3 and X are as defined above. If X is an oxygen atom, R_3 is other than a substituted phenyl group for the compound (II'_a).

The compounds (II) in which z=0 and t=1, of the formula

20 T 13N

$$R_4$$
 R_5
 N
 R_3
 R_3
 R_3

H 25

in which R_3 , R_4 , R_5 and X are as defined above for (II), are preferred compounds.

Finally, the compounds (II) in which z=1 and t=0, of the formula

30

T132X

35

P, A, H, 14

H, 14

L 05

H, 14

L 10

in which:

- $^-$ R₃ is a hydrogen, a C₁-C₆ alkyl which is unsubstituted or substituted by one or more halogen atoms, a C₂-C₆ alkenyl, a C₃-C₇ cycloalkyl, a phenyl, a phenylalkyl in which the alkyl is C₁-C₃, or a phenylalkenyl in which the alkenyl is C₂-C₃, said phenyl groups being unsubstituted or monosubstituted or polysubstituted by a halogen atom, a C₁-C₄ alkyl, a C₁-C₄ halogenoalkyl, a C₁-C₄ polyhalogenoalkyl, a hydroxyl or a C₁-C₄ alkoxy; and either
- $^ R_4$ and R_5 are each independently a C_1 - C_6 alkyl, a phenyl or a phenylalkyl in which the alkyl is C_1 - C_3 , said alkyl, phenyl and phenylalkyl groups being unsubstituted or substituted by one or more halogen atoms or by a group selected from a C_1 - C_4 perfluoroalkyl, a hydroxyl and a C_1 - C_4 alkoxy;
- or R_4 and R_5 together form a group of the formula = CR_7R_8 , in which R_7 is hydrogen, a C_1-C_4 alkyl or a phenyl and R_8 is a C_1-C_4 alkyl or a phenyl;
- or R_4 and R_5 together are either a group of the formula $(CH_2)_p$ Y- $(CH_2)_q$, in which Y is either an oxygen atom, or a sulfur atom, or a carbon atom substituted by a C_1 - C_4 alkyl group, a phenyl or a phenylalkyl in which the alkyl is C_1 - C_3 , or a group N- R_6 , in which R_6 is a hydrogen, a C_1 - C_4 alkyl, a phenylalkyl in which the alkyl is C_1 - C_4 , a C_1 - C_4 alkylcarbonyl, a C_1 - C_4 halogenoalkylcarbonyl, a C_1 - C_4 polyhalogenoalkylcarbonyl, a benzoyl, an alpha-aminoacyl or an N-protecting group, or R_4 and R_5 , together with the carbon atom to which they are bonded, form an indane or an adamantane;

 $\frac{1}{a}$ p + q = m;

 $\frac{1}{2}$ n is an integer between 2 and 11; and

14

- m is an integer between 2 and 5; P. J. H,14 - R_4 is a C_1 - C_6 alkyl which is unsubstituted or substituted by one or more halogen atoms; and $\frac{1}{\Lambda}$ R_s is a cycloalkyl or a cycloalkylmethyl, the cycloalkyl being C_3-C_7 , which is unsubstituted or substituted by one or more halogen atoms; $\frac{1}{\Lambda}$ or else R₄ and R₅ are each a cyclopropyl; and $\frac{1}{2}$ X is an oxygen atom or a sulfur atom; 10 with the limitation that R_3 is other than a phenyl if R_{4} and R_{5} are each a methyl, PS are preferred compounds. 14

20

The derivatives 2 are prepared by known meth-For example, it is possible to use the method described by Jacquier et al. (Bull. Soc. Chim. France, 1971, 3, 1040-1051) and by Brunken and Bach (Chem. Ber., 1956, 89, 1363-1373) and to react an alkyl imidate with an amino acid or its ester in accordance with the following reaction scheme:

$$\begin{array}{c} R_4 & (CH_2)_z - CO_2R' \\ R_5 & (CH_2)_t - NH_2 \end{array} + R_3 - C \xrightarrow{\qquad \qquad } \\ R_5 & C \xrightarrow{\qquad \qquad } \\ S' & G \xrightarrow{\qquad \qquad } \\ \frac{E_4}{R_5} & C \xrightarrow{\qquad \qquad } \\ \frac{R_4}{R_5} & C \xrightarrow{\qquad \qquad } \\ \frac{R_5}{R_5} & C \xrightarrow{\qquad \qquad } \\ \frac{R_4}{R_5} & C \xrightarrow{\qquad \qquad } \\ \frac{R_5}{R_5} & C \xrightarrow{\qquad \qquad } \\ \frac{R_5}{R_5$$

14,40 in which R is a C_1-C_4 alkyl, R' is hydrogen or a C_1-C_4 alkyl and R_3 , R_4 , R_5 , z and t are as defined above for (I).

This reaction is carried out in an acid medium by heating in an inert solvent such as xylene or toluene.

40 05 L

10

The compounds <u>5'</u> are known compounds or are prepared by known methods. The compounds <u>5'</u> can be obtained optically pure using methods of asymmetric synthesis or methods of resolving the racemic mixture, such as those described in "Synthesis of Optically Active Alpha-aminoacids, R.M. Williams, Pergamon Press, 1989".

According to another procedure, the compound $\underline{2}$ can be prepared by reacting an aminoalkylamide $(\underline{5''})$ with an alkyl ortho-ester $(\underline{10})$ in an acid medium in accordance with the following reaction scheme:

T/60x

$$\begin{array}{c} R_4 & (CH_2)_z \text{-CONH}_2 \\ R_5 & (CH_2)_t \text{-NH}_2 \end{array} + R_3 \text{-C(OR)}_3 \longrightarrow 2$$

<u>5"</u>

75, H, 14

in which R is a C₁-C₄ alkyl.

14 25

Using a procedure described by H. Takenaka et al. (Heterocycles, 1989, $\underline{29}(6)$, 1185-89), it is also possible to prepare the compound $\underline{2}$ by reacting an acid halide of the formula

<u>10</u>

Ti,H,13,7"

) c

in which Hal is a halogen, preferably chlorine, with the derivative 5''; the cyclization of the diamide is then carried out in a basic medium.

If z = t = 0, a derivative 5'' can be prepared \leftarrow 35 from a ketone by a procedure described in US patent

4 017 510 or in Swiss patent 540 271:

cyanide
$$H^+$$
 or OH^-

$$R_4^-CO \longrightarrow R_4^-C^-CN \longrightarrow 5''$$

$$05 R_5 \longrightarrow NH_4OH \qquad R_5 \longrightarrow NH_2$$

$$NH_4C1$$

<u>5'''</u>

P, H 10

15

The ketone R_4R_5CO is treated with cyanide (hydrocyanic acid, sodium cyanide or potassium cyanide) and ammonium ions (aqueous ammonia and ammonium chloride); the aminonitrile compound $5^{\prime\prime\prime}$ is then hydrolyzed to $5^{\prime\prime\prime}$, either in a strongly acidic medium or in a basic medium. If appropriate, the aminonitrile $5^{\prime\prime\prime\prime}$ can be resolved with an optically active acid by the procedure in European patent 158 000, in which case it is possible to prepare the compound $5^{\prime\prime\prime}$ and then the compound 2 in optically pure form.

More particularly, according to another object of the present invention, the compound 2 is prepared by a method which comprises reacting a compound of the formula

Ti, H, 123, Tm

R₃-B 14

PS

PS

PS

PS TIAH TIANS 100 PS 30 in which B is

¬ a group C(OR)₃

or

a group c

PS

→ a group COHal

PS

PS,H,14

R being a C_1 - C_4 alkyl and Hal denoting a halogen atom, preferably chlorine, with a compound of the formula

10

(CH2)zCOA

<u>13</u>

in which A is an OH group, an NH2 group or a group OR', being hydrogen or a C_1-C_4 alkyl, and then, if appropriate, treating the resulting compound with Lawesson's reagent (2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane disulfide).

> The (biphenyl-4-yl)methyl derivative prepared by a method described in European patent application 324 377.

The conversion of a group R', and/or R', to a group R, and/or R, is effected by methods well known to those skilled in the art. Thus, if the compound (I) to 15 be prepared possesses a group R, and/or R, = carboxyl, R', and/or R', are an esterified carboxyl group. the compound (I) to be prepared possesses a group R₁ and/or R_2 = tetrazolyl, R'_1 and/or R'_2 can be either a 20 tetrazolyl protected for example by a trityl group, or a cyano group which will subsequently be replaced with a tetrazolyl group protected if necessary by a trityl. The conversion of the cyano group to a tetrazolyl can be effected with an azide, for example tributyltin 25 azide or sodium azide.

> It is also possible to use groups R', and/or R' such as nitro, carboxyl, cyano or acid chloride groups and then to convert them by reactions well known to those skilled in the art to give groups R, and/or R2 as defined for the compound (I).

> Thus, if R'_1 and/or R'_2 are a carboxyl, they can be converted to R₁ and/or R₂ in the form of an imidazol-1-ylcarbonyl or else an N-(4-carboxy-1,3thiazol-2-yl)acetamide.

40,H 35 The group R'_1 and/or R'_2 in the form of an acid

40,H

40,4 H

40,H

10

14

15

chloride can be converted to R_1 and/or R_2 in the form of N-hydroxyacetamide, N-cyanoacetamide, ureido or 2-cyanoguanidinocarbonyl.

0

O

The group R'_1 and/or R'_2 in the form of a nitro can be converted to amino, from which R_1 and/or R_2 is prepared in the form of methylsulfonylamino, trifluoromethylsulfonylamino or trifluoromethylsulfonylaminomethyl.

40,4

The group R'₁ and/or R'₂ in the form of a cyano can be converted to aminomethyl, from which a 3-cyano-2-methylisothioureidomethyl is prepared (according to C. Gordon et al., J. Org. Chem., 1970, <u>35(6)</u>, 2067-2069) or a 2-cyanoguanidinomethyl is prepared (according to R.W. Turner, Synthesis, 1975, 332).

Step al) is carried out in an inert solvent such as DMF, DMSO or THF, in a basic medium, for example in the presence of potassium hydroxide, a metal alcoholate, a metal hydride, calcium carbonate or triethylamine.

Step b1) is carried out by heating under nitrogen in a solvent such as toluene, according to the method described by M.P. Cava et al., Tetrahedron, 1985, 41, 22, 5061.

In the description below, the method comprising steps al, bl and cl is referred to as method 1.

Alternatively, the compounds (I) can be prepared by another method, which is also a subject of the present invention. In this method:

a2) an amino acid of the formula

7_30

25

T 190x

ρ

__35 |9 PS,H

in which z, t, R_4 and R_5 are as defined above for (I), and of which the amine group is protected by the Pr group, is reacted with a (biphenyl-4-yl)methylamine derivative of the formula

05

1700x

PS,40,H L P

in which R'_1 and R'_2 are respectively either R_1 and R_2 or a precursor group of R_1 and R_2 ;

b2) after deprotection of the amine, the resulting compound of the formula

TLOIX

PS L 20

is then treated with an alkyl ortho-ester of the formula $R_3C(OR)_3$ (10), in which R_3 is as defined above for (I) and R is a C_1-C_4 alkyl;

 $\mbox{\ensuremath{\text{c2}}\xspace})$ if appropriate, the resulting compound of the formula

1709x³⁰

PS,335

is treated with Lawesson's reagent [2,4-bis(4-methoxy-

phenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide];
and

d2) the compound thus obtained in b2 or c2, of the formula

20

25

30

is then treated under suitable conditions for preparing the compound (I) by conversion of the groups R'_2 and/or R'_1 to the groups R_2 and/or R_1 respectively.

The compounds 7 are known or are prepared by known methods (Chemistry of the Amino Acids, Greenstein and Winitz, published by John Wiley, 1961, vol. I, p. 697). If appropriate, these compounds can be obtained optically pure using methods of asymmetric synthesis or methods of resolving the racemic mixture, such as those described in "Synthesis of Optically Active Alphaminoacids, R.M. Williams, Pergamon Press, 1989".

The compounds <u>8</u> are prepared according to European patent application 324 377. Step a2) is carried out under the usual conditions for the coupling of an acid with an amine, for example in the presence of BOP and DIPEA.

Step b2), which is the cyclization of the compound 9 in the presence of 10, is carried out according to Jacquier et al. (Bull. Soc. Chim. France, 1971, (3), 1040-1051) and according to Brunken and Bach (Chem. Ber., 1956, 89, 1363-1373).

In the description below, the method comprising

14 L

steps a2 to d2 is referred to as method 2.

In one variant of method 2, in step b2, it is possible, if appropriate, to isolate an intermediate 9' of the formula

$$+2207$$

$$R_{5}-C-(CH_{2})_{z}-CO-NH-CH_{2}$$

$$CH_{2})_{t}-NH-CO-R_{3}$$

$$R_{1}$$

$$R_{2}$$

$$9'$$

and then to prepare the compound $\underline{4}$ by cyclization in an acid medium.

In another variant of method 2, in order to prepare a compound (I) in which R_4R_5 is a group = CR_7R_8 , an amino acid of the formula

$$CH_2-(CH_2)_t-NHCOR_3$$
 $(CH_2)_z-COOH$

can be reacted in an acid medium with an aldehyde or a ketone of the formula

 ρ S, H 25 in which R, and R, are as defined above for (I), and the product is then reacted with the compound 8 to give a compound of the formula

اً: فمر

The cyclization of this compound in an acid medium leads to the compound 4.

29

4,50

+791x

In this method, to prepare a compound (I) in which R_1 and/or L_1 40 R_2 are a carboxyl group, the substituents R'_1 and/or R'_2 are preferably a tert-butoxycarbonyl group.

Finally, another alternative for the preparation of the compounds (I) according to the invention in which z and t are equal to zero and R_5 is other than a cycloalkyl or a cycloalkylmethyl wherein the cycloalkyl is a C_3 - C_7 cycloalkyl, is the photooxidation method, which is also a subject of the present invention.

10P

In this last method:

a3) a (biphenyl-4-yl)methyl derivative of the formula

T230X

(65,40) in which Hal is a halogen atom and R'₁ and R'₂ are respectively 20 L either R₁ and R₂ or a precursor group of R₁ and R₂, is reacted with an imidazole derivative of the formula

TJ31X

<u>11</u>

in which R_3 , R_4 and R_5 are as defined above for (I), in the presence of oxygen and UV irradiation and in a basic medium;

b3) if appropriate, the resulting compound of the formula

PS 3

is treated with Lawesson's reagent [2,4-bis(4-methoxy-phenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide]; and

, ___

10

c3) the compound thus obtained in b3 or c3, of the formula

T241X

PS 120 40,H L L

25

30

35

is then treated under suitable conditions for preparing the compound (I) by conversion of the groups R_1 and/or R_2 respectively.

The imidazole derivative <u>11</u> is either commercially available, or known, or is prepared by known methods indicated above for the preparation of the compounds <u>2</u>.

Step a3) is carried out in an inert solvent such as, for example, DMF; to facilitate the reaction, a photosensitizing product such as methylene blue can be added.

In the description below, the method comprising steps a3) to c3) is referred to as method 3.

The compounds (I) according to the invention in which $\rm R_4$ and $\rm R_5$ together are a group of the formula

H 13,H

 $(CH_2)_p Y(CH_2)_q$ in which Y is an NH group can be prepared by catalytic hydrogenolysis of a corresponding compound (I) in which Y is a group N-R₆, R₆ being a benzyl.

The affinity of the products according to the invention for angiotensin II receptors was studied in a test for the binding of angiotensin II, labeled with iodine 125, to rat liver membrane receptors. The method used is the one described by S. KEPPENS et al. in Biochem. J., 1982, 208, 809-817.

The $\rm IC_{5o}$, namely the concentration which gives a 50% displacement of the labeled angiotensin II bound specifically to the receptor, is measured. The $\rm IC_{5o}$ of the compounds according to the invention is less than 10^{-6} M.

Also, the effect of the products according to the invention as angiotensin II antagonists was observed on different animal species in which the reninangiotensin system had been activated beforehand (C. LACOUR et al., J. Hypertension, 1989, 7 (suppl. 2), S33-S35).

The compounds according to the invention are active after administration by different routes, especially after oral administration.

No signs of toxicity are observed with these compounds at the pharmacologically active doses.

Thus the compounds according to the invention can be used in the treatment of various cardiovascular complaints, especially hypertension, heart failure and venous insufficiency, as well as in the treatment of glaucoma, diabetic retinopathy and various complaints of the central nervous system, for example anxiety, depression, memory deficiencies or Alzheimer's disease.

The present invention further relates to pharmaceutical compositions containing an effective dose of a compound according to the invention, or of a pharma-

25

14 H

H

05

10

15

H,31

14 20

30

35

ceutically acceptable salt, and suitable excipients. Said excipients are chosen according to the pharmaceutical form and the desired mode of administration.

In the pharmaceutical compositions of the preinvention for oral, sublingual, subcutaneous, intramuscular, intravenous, topical, intratracheal, intranasal, transdermal or rectal administration, the active principles of formula I above, or their salts if appropriate, can be administered to animals and humans in unit forms of administration, mixed with conventional pharmaceutical carriers, for the prophylaxis or treatment of the above disorders or diseases. appropriate unit forms of administration include forms for oral administration, such as tablets, gelatin capsules, powders, granules and solutions or suspensions to be taken orally, forms for sublingual, intratracheal or intranasal administration, forms for subcutaneous, intramuscular or intravenous administration and forms for rectal administration. For topical application, the compounds according to the invention can be used in creams, ointments or lotions.

To achieve the desired prophylactic or therapeutic effect, the dose of active principle can vary between 0.01 and 50 mg per kg of body weight per day.

Each unit dose can contain from 0.1 to 1000 mg, preferably 1 to 500 mg, of active ingredients in combination with a pharmaceutical carrier. This unit dose can be administered 1 to 5 times a day so as to administer a daily dosage of 0.5 to 5000 mg, preferably 1 to 2500 mg.

When a solid composition in the form of tablets is prepared, the main active ingredient is mixed with a pharmaceutical vehicle such as gelatin, starch, lactose, magnesium stearate, talc, gum arabic or the like. The tablets can be coated with sucrose, a cellulose

05

10

15

20

25

30

derivative or other appropriate substances, or else they can be treated so as to have a prolonged or delayed activity and so as to release a predetermined amount of active principle continuously.

A preparation in the form of gelatin capsules is obtained by mixing the active ingredient with a diluent and pouring the resulting mixture into soft or hard gelatin capsules.

A preparation in the form of a syrup or elixir or for administration in the form of drops can contain the active ingredient in conjunction with a sweetener, which is preferably calorie-free, methylparaben and propylparaben as antiseptics, as well as a flavoring and an appropriate color.

The water-dispersible granules or powders can contain the active ingredient mixed with dispersants or wetting agents, or suspending agents such as polyvinylpyrrolidone, as well as with sweeteners or taste correctors.

Rectal administration is effected using suppositories prepared with binders which melt at the rectal temperature, for example cacao butter or polyethylene glycols.

Parenteral administration is effected using aqueous suspensions, isotonic saline solutions or sterile and injectable solutions which contain pharmacologically compatible dispersants and/or wetting agents, for example propylene glycol or butylene glycol.

The active principle can also be formulated as microcapsules, with one or more carriers or additives if appropriate.

In addition to the products of formula I above or one of the pharmaceutically acceptable salts, the compositions of the present invention can contain other

35

05

active principles such as, for example, tranquilizers or other drugs which can be useful in the treatment of the disorders or diseases indicated above.

Thus the present invention relates to pharmaceutical compositions containing several active principles in association, one being a compound according to the invention and it being possible for the other or others to be a beta-blocking compound, a calcium antagonist, a diuretic, a non-steroidal antiinflammatory or a tranquilizer.

The following Examples illustrate the invention without however implying a limitation. The following abbreviations are used in these Examples: d denotes density, RT denotes room temperature, $\rm KHSO_4-K_2SO_4$ denotes an aqueous solution containing 16.6 g of potassium bisulfate and 33.3 g of potassium sulfate per liter.

The melting points (m.p.) are given in degrees Celsius; unless indicated otherwise, they were measured without recrystallization of the product.

The purity of the products is checked by thin layer chromatography (TLC) or HPLC. The products are characterized by their NMR spectra run at 200 MHz in deuterated DMSO with tetramethylsilane as the internal reference.

The specific optical rotations ($[\alpha]_D$) are measured at 22°C:

path length: 10 cm,

concentration : 1 g per 100 ml.

The following abbreviations are used in the interpretation of the NMR spectra:

s : singlet

sb, : broad singlet

H ,13

15

20

05

10

60,H

 ρ 30

q : quadruplet
quint,: quintuplet
sext, : sextuplet

m, : unresolved signals or multiplet

In addition, im denotes imidazole.

Conventionally, the hydrogen atoms are numbered on the biphenylyl as shown in the following formula:

10 T290x P

20

In the following compounds, z and t are zero except where the compound prepared is a pyrimidinone.

DE,CL P,40

EXAMPLE 1

40 25

2-n-Butyl-4-spirocyclopentane-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one and 2-n-butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one trifluoroacetate -Method 2

Po

A) 1-N-Fmoc-aminocyclopentanecarboxylic acid is prepared according to the method described by CHI-DEU CHANG et al. (Int. J. Peptide Protein Res., 1980, 15, 59-66). M.p. = 89-91°C.

14

35

 \bigcirc

0

P

B) N-(2'-Tert-butoxycarbonylbiphenyl-4-ylmethyl)-1-(N-Fmoc-amino)cyclopentane-1-carboxamide

40 05

10

20

700 mg of the product prepared in the previous step are dissolved in 8 ml of DMF, and 576 mg of 4-aminomethyl-2'-tert-butoxycarbonylbiphenyl, 970 mg of BOP and a sufficient amount of DIPEA to bring the pH to 6 are added successively.

H, 40

After stirring for 1 hour, the reaction medium is diluted with 100 ml of ethyl acetate and 20 ml of water; the organic phase is washed successively with a saturated solution of sodium bicarbonate, then with a $KHSO_4-K_2SO_4$ solution and finally with a saturated solution of sodium chloride. After drying over sodium sulfate, the solution is evaporated to dryness to give an oil. m=1.2 g.

P.,40

P

C) N-(2'-Tert-butoxycarbonylbiphenyl-4-ylmethyl)-1-aminocyclopentane-1-carboxamide

The product obtained in the previous step is dissolved in 10 ml of DMF, 1 ml of diethylamine is then added and the mixture is stirred for 1 hour 15 minutes at RT. The reaction medium is taken up in 100 ml of ethyl acetate and 20 ml of water and the organic phase is then washed once with water and once with a saturated solution of sodium chloride and then dried over sodium sulfate and evaporated to dryness.

25 م

The residue is chromatographed on silica gel using an ethyl acetate/methanol/30% aqueous ammonia mixture (99/1/0.5; v/v/v) as the eluent to give 600 mg of the expected product.

```
P S 35
```

- IR (CHCl₃):

3350 cm⁻¹: H (amide and amine)

1700 cm⁻¹: C=O (CO₂tBu)

1650 cm⁻¹: C=O (CONH)

NMR spectrum:

1.25 ppm : s : 9 H : tBu

```
\begin{array}{c}
\text{Coding } \begin{cases}
14 & \text{M} & \text{O} \\
\text{OAS} & \text{13} & \text{O} \\
\text{OAS} & \text{OAS} & \text{OAS} \text{OAS} & \text{OAS} & \text{OAS} & \text{OAS} \\
\text{OAS} & \text{OAS} & \text{OAS} & \text{OAS} \\
\text{OAS} & \text{OAS} & \text{OAS} & \text{OAS} \\
\text{
                                                    05 D) 2-n-Butyl-4-spirocyclopentane-1-[(2'-tert-butoxy-
                                                                                carbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one
                                                                                                                           394 mg of the product prepared in the previous
                                                                                step and 250 mg of ethyl orthovalerate are mixed in 2
                                                                               ml of DCM. 1 drop of acetic acid is added and the mix-
                                                                              ture is then heated at 90°C with the DCM being allowed
                                                     10
                                                                                to evaporate off. After 1 hour 15 minutes, the reac-
                                                                               tion medium is taken up in 50 ml of ethyl acetate, 10
                                                                              ml of water and 1 ml of a saturated solution of sodium
                                                                              bicarbonate.
                                                                                                                                                          The organic phase is then washed with a
                                                                               saturated solution of sodium chloride and subsequently
                                                     15
                                                                              dried over sodium sulfate and evaporated to dryness.
                                                                              The residue is chromatographed on silica gel using an
                 178
                                                                              ethyl acetate/toluene mixture (1/2; v/v) as the eluent
                                                                              to give 390 mg of the expected product, which crystal-
                                                                              lizes. M.p. = 63-65°C.
                                                ا در المرام الم
                                                                                L 7.20-7.80 ppm : m : 8 H : aromatic protons
                                                                            - Mass spectrum:
                                                                                        MH+: 461
                                                    35
```

05

E) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4spirocyclopentane-2-imidazolin-5-one trifluoroacetate

180 mg of the product prepared in the previous step are treated with 3 ml of DCM and 4 ml of TFA for 45 minutes. After evaporation under vacuum, the residue is taken up in ether to give a white solid, which is filtered off, washed with ether and then dried under vacuum. m = 155 mg. M.p. = 176-178°C.

NMR spectrum:

0.78 ppm : t : 3 H : CH₃ (nBu) 1.25 ppm : sext : 2 H : CH₃ - CH₂

1.50 ppm : quint : 2 H : CH₃ - CH₂

1.75-2.00 : m : 8 H : cyclopentane

1.75-2.00 : t : 2 H : CH₃ - CH₂ - CH₂

2.65 ppm : t : 2 H : CH₃ - CH₂ - CH₂

4.83 ppm : s : 2 H : CH₃ - C₁ - C₁ 7.20-7.75 ppm : m : 8 H : aromatic protons Mass spectrum: MH+: 405

20

25

30

35

EXAMPLE 2

2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one trifluoroacetate - Method 1

0

A) 2-n-Butyl-4-spirocyclopentane-2-imidazolin-5-one

The ethyl ester of 1-aminocyclopentanecarboxylic acid is prepared according to ADKINS and BILLICA (J. Amer. Chem. Soc., 1948, 70, 3121).

Ethyl valerimidate is prepared according to Mac ELVAIN (J. Amer. Chem. Soc., 1942, 64, 1825-1827) and then freed from its hydrochloride by reaction with potassium carbonate and extraction with DCM.

The ethyl ester of 1-aminocyclopentanecarboxylic acid (1.57 g) and ethyl valerimidate (1.56 g) are dissolved in 12 ml of xylene containing 6 drops of acetic acid. After refluxing for 6 and a half hours,

the reaction medium is concentrated under vacuum and the residue is then chromatographed on silica gel using a chloroform/methanol/acetic acid mixture (94/4/2; v/v/v) as the eluent. The fraction containing the expected product is evaporated several times in the presence of xylene and then benzene in order to remove the acetic acid. 1.91 g of product are obtained in the form of a thick oil.

P 31, H, 500 0 2 W, 31

05

25

30

35

- IR (CHCl₃):

1720 cm-1 : C=OA

 $1635 \text{ cm}^{-1} : \text{C=N}_{\Lambda}$

Note: The fact that there is no visible band between 1500 and 1600 cm⁻¹ indicates that, in chloroform solution, the product is an imidazolin-5-one.

NMR spectrum:

0.92 ppm : t : 3 H : CH_3 (nBu)

1.35 ppm : sext : 2 H : CH₃-CH₂-

1.50-1.93 ppm : m : 10 H : $CH_3-CH_2-C\underline{H}_2$ and cyclo-

pentane

2.33 ppm : t : 2 H : $CH_3 - CH_2 - CH_2 - CH_2 - CH_3 -$

10.7 ppm : m : NH

- Mass spectrum:

MH+: 195

The 2-n-butyl-4-spirocyclopentane-2-imidazolin-5-one prepared in step A can also be obtained by another procedure described below, using cyclopentanone as the starting material.

a) 1-Aminocyclopentanenitrile

This step is carried out according to A. Strecker (Org. Synth., 1955, $\underline{3}$).

1.97 g of sodium cyanide are dissolved in 3.9 ml of water in a round-bottomed flask and a solution containing 2.33 g of ammonium chloride in 5.9 ml of water and 3.5 ml of 20% aqueous ammonia is added; finally, 3 g of cyclopentanone in 3.8 ml of methanol

are added to the flask. After stirring for 1 and a half hours, the mixture is heated at 60°C for 45 minutes, heating is then stopped, stirring is continued for 45 minutes and the mixture is then cooled to 25°C. It is extracted several times with methylene chloride. The extracts are dried over sodium sulfate, filtered and concentrated under vacuum to give 4 g of the expected product in the form of an oil.

The 1-aminocyclopentanenitrile obtained is dissolved in 300 ml of acetone, and a solution of 2.25 g of oxalic acid dihydrate in 200 ml of acetone is added, with stirring. The precipitate formed is filtered off, washed with acetone and then dried.

m = 4.71 g.

M.p. = 220°C.

This compound is 1-aminocyclopentanenitrile hemioxalate.

b) 1-Aminocyclopentaneacetamide

This step is carried out according to J. Zabicky (The Chemistry of Amides, Interscience, New York, 1970, 119).

5.1 g of the oxalate obtained in the previous step are treated with 7.65 ml of concentrated sulfuric acid (d = 1.84) over 45 minutes, with stirring. evolution of a gas is observed and the temperature rises to 100°C. The mixture is cooled to about 35°C and poured into a mixture of ice and concentrated aqueous ammonia (10 g/2.8 ml). The suspension formed is extracted 6 times in succession with chloroform containing 5% of methanol. 3 ml of aqueous ammonia (d =0.92) are added to the aqueous phase and the mixture is extracted again with chloroform containing methanol The combined organic phases are dried (1/0.5; v/v).over sodium sulfate, filtered and concentrated. expected product is obtained in the form of a white

34

05

10

20

25

30

solid.

05

10

15

20

25

P

14

P

m = 3.79 q.

 $M.p. = 95^{\circ}C.$

The structure can be confirmed by the results of analysis and the IR spectrum.

c) 2-n-Butyl-4-spirocyclopentane-2-imidazolin-5-one

This step is carried out according Takenaka et al., Heterocycles, 1989, 29(6), 1185-89.

3 g of the compound prepared in the previous step are placed in 70 ml of anhydrous THF and 3.3 ml of triethylamine, and 3 ml of valeryl chloride in 10 ml of anhydrous THF are added, with stirring. A white suspension is formed. The intermediate which is formed, but not isolated, is 1-(N-valeryl)aminocyclopentanecarboxamide. 6 g of potassium hydroxide pellets, 7 ml of water and 16 ml of methanol are added. The mixture is refluxed for 2 and a half hours and 9 g of ammonium chloride are then added. After stirring for 15 minutes, the mixture is concentrated under vacuum. The residue obtained is taken up in 40 ml of water and extracted with 10 ml of ethyl acetate and then twice with 5 ml of ethyl acetate. The combined organic phases are dried over sodium sulfate and filtered. filtrate is concentrated to dryness to give 4.85 g of the expected product. The NMR spectrum is similar to that described previously. The hydrochloride of this compound can be prepared by the addition of concentrated hydrochloric acid. The hydrochloride melts 240°C with sublimation.

B) 2-n-Butyl-4-spirocyclopentane-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one

970 mg of the product obtained in step A) are dissolved in 10 ml of DMF. 270 mg of sodium methylate are added and the mixture is stirred for 15 minutes at

40

05

10

15

20

25

2.08 g of 4-bromomethyl-2'-tert-butoxycarbonylbiphenyl are added to the suspension and then, after 30 minutes, the mixture is heated at 40°C for 3 and a half hours under nitrogen. The reaction medium is taken up in a mixture containing 100 ml of ethyl acetate, 10 ml of water and 1 ml of a saturated solution of sodium bicarbonate. The organic phase is washed with a saturated solution of sodium chloride and then dried over sodium sulfate and evaporated to dryness. residue is chromatographed on silica gel using an ethyl acetate/toluene mixture (1/2; v/v) as the eluent to give 1.25 g of the expected product, which crystallizes. M.p. = 63-66°C.

14

The IR and NMR spectra and the mass spectrum, as well as the Rf, are identical to those obtained in step D) of Example 1.

ρ,40 ρ

C) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one trifluoroacetate

1.22 g of the product obtained in the previous step are stirred for 40 minutes in a solution containing 6 ml of DCM and 8 ml of TFA. After concentration under vacuum, the residue is taken up in ethyl ether; the white precipitate formed is filtered off, washed with ether and then dried under vacuum to give 1.15 g of the expected product. M.p. = 176-178°C.

The IR and NMR spectra and the mass spectrum are identical to those obtained in Example 1E; like-wise, the Rf observed in TLC is identical.

CL

14

EXAMPLE 3

2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]4-spirocyclopentane-2-imidazolin-5-one trifluoroacetate
- Method 3

0

A) 2-n-Butylbenzimidazole is prepared according to W.O. 35 POOL (J. Amer. Chem. Soc., 1937, <u>59</u>, 178) and 2-n-

P

butyl-4,5,6,7-tetrahydrobenzimidazole is then prepared

according to M. HARTMANN and L. PANIZZON (Helv. Chim. Acta, 1938, 21, 1692-1694). M.p. = 145°C. - NMR spectrum: 0.82 ppm : t : 3 H : CH₃ (nBu) 1.23 ppm : sext : 2 H : $CH_3 - CH_2 - A$ 1.50 ppm : quint : 2 H : $CH_3 - CH_2 - CH_3 - A$ 1.65 ppm : s : 4 H : H_s, H₆ (tetrahydrobenzimidazole) 2.35 ppm : s : 4 H : H₄, H₇ (tetrahydrobenzimidazole) 2.45 ppm : t : 2 H : $CH_3 - CH_2 -$ 11.1 ppm : m : NH Mass spectrum: M+: 178 B) 2-n-Butyl-4-spirocyclopentane-1-[(2'-tert-butoxy-15 carbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one 1 g of the product prepared in the previous step is dissolved in 45 ml of DMF with 303 mg of sodium methylate and a few mg of methylene blue. Oxygen is bubbled into the reaction medium, which is illuminated 20 with a UV lamp. After 15 minutes, 2.14 g of 4-bromo-40 methyl-2'-tert-butoxycarbonylbiphenyl are added then, after 1 hour, the reaction medium is taken up in 300 ml of ethyl acetate to which 50 ml of water and 5 ml of a saturated solution of sodium bicarbonate have 25 been added. The organic phase is then washed with a saturated solution of sodium chloride and subsequently dried over sodium sulfate and evaporated to dryness. The residue is chromatographed on silica gel using an 178 ethyl acetate/toluene mixture (1/2; v/v) as the eluent to give 610 mg of the expected product, which crystal-30 14 lizes. M.p. = 62-65°C. The IR and NMR spectra and the mass spectrum,

as well as the Rf, are identical to those obtained

previously for the same compound.

 \circ

P,40

C) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one trifluoroacetate

This compound is obtained by treatment in an acid medium as described in the last step of Example 1 and Example 2. The physicochemical data are identical to those obtained for the same compound prepared by method 1 or 2.

CL P,40° 40

14

05

15

20

25

EXAMPLE 4

2-n-Butyl-4,4-dimethyl-1-[(2'-tert-butoxy-carbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one and 2-n-butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4,4-di-methyl-2-imidazolin-5-one trifluoroacetate - Method 1
A) 2-n-Butyl-4,4-dimethyl-2-imidazolin-5-one

The ethyl ester of alpha-aminoisobutyric acid is prepared according to R. Jacquier et al. (Bull. Soc. Chim. France, 1971, (3), 1040-1051). 650 mg of this compound and 780 mg of ethyl valerimidate are dissolved in 8 ml of xylene containing 4 drops of acetic acid and the solution is refluxed for 7 hours. The reaction medium is then concentrated under vacuum and the residue is chromatographed on silica gel using a chloroform/methanol/acetic acid mixture (95/5/2; v/v/v) as the eluent. After several evaporations with xylene and then benzene to remove the acetic acid, 560 mg of the expected product are obtained, which crystallizes.

M.p. = 35-38°C. - IR (CHCl₃): 31,500 1725 cm⁻¹ : C=0 310 1635 cm⁻¹ : C=N 6

Note: The absence of a signal between 1500 and 1600 cm^{-1} confirms that the compound present in chloroform solution is a 2-imidazolin-5-one.

- NMR spectrum:

O 0.92 ppm : t : 3 H : CH_3 (nBu)

```
1.20 ppm : s : 6 H : C(C\underline{H}_3)_{2_A}
                                    1.38 ppm : sext : 2 H : CH_3 - C\underline{H}_{2A}
                                  1.63 ppm : quint : 2 H : CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-
                                    2.38 ppm : t : 2 H : CH_3 - CH_2 - 
                  05/3 L 10.7 ppm : m : 1 H : N-H
                               - Mass spectrum:
                                    MH+: 169
                               B) 2-n-Butyl-4,4-dimethyl-1-[(2'-tert-butoxycarbonyl-
                               biphenyl-4-yl)methyl]-2-imidazolin-5-one
                  10
                                                    520 mg of the product prepared in the previous
                               step are dissolved in 10 ml of DMF.
                                                                                                                                167 mg of sodium
                               methylate are added and the mixture is stirred under
40
                               nitrogen for 15 minutes. 1.25 g of 4-bromomethyl-2'-
                               tert-butoxycarbonylbiphenyl are then added and the mix-
                              ture is stirred at 40°C for 3 and a half hours.
                  15
                              reaction medium is taken up in 150 ml of ethyl acetate
                               and then 20 ml of water and 2 ml of a saturated solu-
                               tion of sodium bicarbonate.
                                                                                                                 The organic phase is
                              washed with a saturated solution of sodium chloride,
                 20
                              dried over sodium sulfate and evaporated to dryness.
                              The residue is chromatographed on silica gel using an
                              ethyl acetate/toluene mixture (1.2/2; v/v) as
                              eluent to give 570 mg of the expected product, which
                              crystallizes. M.p. = 98-100°C.

   IR (CHCl₃):

       μ 25 π IR (CHCl₃):

μ,31,50 Ω 1710-1720 cm<sup>-1</sup>: C=0, C=0 (imidazolinone, ester)

μ,31,50 Ω 1625 cm<sup>-1</sup>: C=N
                              - NMR spectrum:
                                   0.78 ppm : t : 3 H : CH_3 (nBu)
               . 30
                                   1.08 ppm : s : 9 H : C(CH_3)_3
                                   1.15 ppm : s : C(CH_3)_2
                                   1.20 ppm : sext : CH_3 - CH_2 -  8 H
                                   1.45 ppm : quint : 2 H : CH_3 - CH_2 - CH_3 -
                                   2.30 ppm : t : 2 H : CH_3 - CH_2 - CH_2 - CH_2 -
                                   4.65 ppm : s : 2 H : CH_2 - C_6H_4 -
```

7.15-7.65 ppm : m : 8 H : aromatic protons An NOE (Nuclear Overhauser Effect) study confirms the position of the 5-one and 4,4-dimethyl substituents on the imidazolinone. - Mass spectrum: MH+ : 435 C) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4,4dimethyl-2-imidazolin-5-one trifluoroacetate 460 mg of the product prepared in the previous step are treated with 3 ml of DCM and 4 ml of TFA for 10 45 minutes. After concentration under vacuum, residue is taken up in ether and the precipitate formed is filtered off, washed with ether and then dried under vacuum to give 450 mg of the expected product in the form of a white solid. M.p. = 168-171°C. - NMR spectrum: 0.82 ppm : t : 3 H : CH₃ (nBu) 1.30 ppm : sext : $CH_3 - C\underline{H}_2 -$ } 8 H T400 X 20 1.55 ppm : quint : 2 H : $CH_3 - CH_2 - CH_2 -$ 2.62 ppm : t : 2 H : $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 -$ 4.82 ppm : s : 2 H : $CH_2 - C_6H_4 -$ 7.20-7.75 : m : 8 aromatic H - Mass spectrum: MH+: 379 EXAMPLE 5 1-[(2'-Cyanobiphenyl-4-yl)methyl]-2-n-butyl-4spirocyclopentane-2-imidazolin-5-one and 2-n-butyl-4-30 spirocyclopentane-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one - Method 1 P, 40 A) 1-[(2'-Cyanobiphenyl-4-yl)methyl]-2-n-butyl-4-spirocyclopentane-2-imidazolin-5-one A mixture containing 250 mg of sodium hydride (as an 80% dispersion in mineral oil) and 5 ml of DMF 35

 \circ

O

0

Ø

0

is prepared under a nitrogen atmosphere and a solution containing 0.97 g of 2-n-butyl-4-spirocyclopentane-2imidazolin-5-one (prepared in Example 2, step A) in 10 ml of DMF is added dropwise. The mixture is stirred for 30 minutes at RT and a solution of 1.5 g of 4bromomethyl-2'-cyanobiphenyl in 10 ml of DMF is then After stirring for 1 hour at RT, the DMF is evaporated off under reduced pressure, the residue is then taken up with ethyl acetate and the organic phase is washed with water and then dried over sodium sulfate, filtered and evaporated. The residue is chromatographed on silica gel using a DCM/ethyl acetate mixture (9/1; v/v) as the eluent. 1.68 g of the expected product are recovered. M.p. = 92-93°C.

P,40 15

05

10

20

40

B) 2-n-Butyl-4-spirocyclopentane-1-[(2'-(triphenyl-methyltetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one

ρ

1.56 g of the previous product, 2.6 g of tributyltin azide and 30 ml of xylene are refluxed for 66 hours. The xylene is then evaporated off and the residue is dissolved in 20 ml of DCM and 5 ml of THF with the addition of 0.8 ml of 10 N sodium hydroxide solution and, after stirring for 30 minutes, 2.5 g of trityl chloride, and the mixture is stirred for 26 hours.

After evaporation of the solvents, the residue is taken up in ethyl acetate, washed with water and then with a 3% solution of potassium bisultate and water. It is dried and evaporated. The residue is chromatographed on alumina using a hexane/ethyl acetate mixture (9/1; v/v) as the eluent to give 1.97 g of the expected

product.

C) 2-n-Butyl-4-spirocyclopentane-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one

M.p. = 150-152°C.

1.96 g of the product prepared in the previous 35 step are dissolved in 10 ml of methanol and 10 ml of

14 β,40 ρ

THF. After the reaction medium has been cooled to 5°C, 1.5 ml of 4 N hydrochloric acid are added and the mixture is stirred for 3 hours at RT and 1 hour at 30°C. After evaporation of the solvents, the residue is taken up in water and the pH is brought to 12 by the addition of 10 N sodium hydroxide solution. The aqueous phase is extracted with ether, toluene and ether again. The aqueous phase is acidified to pH 2 by the addition of 1 N hydrochloric acid and then extracted with ethyl acetate and the extract is dried and evaporated. The white solid obtained is dried at 50°C under 0.05 mm of mercury to give 840 mg of the expected product. M.p. = 180-181°C.

- NMR spectrum:

05

10

25

30

35

14

H 15 \bigcirc 0.75 ppm : t : 3 H : CH₃ (nBu)

1.10 ppm : sext : 2 H : CH₃-CH₂
1.20 ppm : quint : 2 H : CH₃-CH₂-CH₂
1.5-2 ppm : m : 8 H : -C₅H₈

2.2 ppm : t : 2 H : CH₃-CH₂-CH₂
4.6 ppm : s : 2 H : CH₂-C₆H₄
7 ppm : s : 4 H : CH₂-C₆H₄
7 ppm : s : 4 H : aromatic H₃

7.35-7.7 ppm : m : 4 H : aromatic H₃

An NOE study confirms the position of the 5-one substituent on the imidazole.

D) Potassium salt of 2-n-butyl-4-spirocyclopentane-1- [(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one

970 mg of the compound obtained in the previous step are dissolved in 40 ml of an isopropanol/methanol mixture (1/1; v/v) and the pH is adjusted to 12 by the addition of an 85% solution of potassium hydroxide in a methanol/water mixture (20/1; v/v). The reaction medium is evaporated, the residue is taken up in isopropanol and the medium is evaporated again. The residue is dissolved in 20 ml of isopropanol, with gentle

41

heating, and then left to return to room temperature. The mixture is left to decant, the filtrate is evaporated and the residue is then taken up in heptane. After trituration, the product solidifies; it is filtered off and then washed again with heptane and dried under vacuum to give 945 mg of the expected potassium salt. M.p. = 142-144°C.

05

15

20

25

30

35

Elemental analysis: C₂₅H₂₇KN₆O.H₂O₇

calc. % C: 61.95 H: 6.03 N: 17.34

found % 62.02 6.13 17.14

CL 0,40

EXAMPLE 6

2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]4-(4-spirotetrahydropyran)-2-imidazolin-5-one trifluoroacetate and 2-n-butyl-4-(4-spirotetrahydropyran)1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2imidazolin-5-one - Method 2

40 P

- A) 4-Aminotetrahydropyran-4-carboxylic acid is prepared from tetrahydropyran-4-one by the method described in German patent 2 215 721.
- B) 4-(N-Benzyloxycarbonylamino)-4-carboxytetrahydro-pyran

1.015 g of the compound of step A are placed in 12 ml of water and treated at 10°C with 1.22 ml of disopropylethylamine and then 3.33 g of N-(benzyloxy-carbonyloxy)succinimide dissolved in 12 ml of acetonitrile. After 1 hour 15 minutes, the reaction medium is diluted with 70 ml of ethyl acetate and 10 ml of water and the pH is brought to 2 with a saturated solution of potassium bisulfate.

After decantation, the organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulfate and then evaporated under vacuum. The residue is diluted with 60 ml of ether, after which 7 mmol of dicyclohexylamine are added. The precipitate

formed is filtered off and washed with ether; it is then dissolved in an ethyl acetate/water mixture and the pH is brought to 1.5 with a saturated solution of potassium bisulfate. The organic phase is decanted, washed with a saturated solution of sodium chloride and evaporated under vacuum to give 1.9 g of a white solid. M.p. = 110-115°C.

P, 40

10

05

40

15

20

25

30

C) N-(2'-Tert-butoxycarbonylbiphenyl-4-ylmethyl)-4-(Nbenzyloxycarbonylamino)tetrahydropyran-4-carboxamide

0

0

850 mg of the compound prepared in step B are dissolved in 15 ml of DMF, and equimolar amounts of 4aminomethyl-2'-tert-butoxycarbonylbiphenyl, DIPEA then BOP (10% excess) are added. After 40 minutes, the medium is taken up in 200 ml of ethyl acetate and 200 ml of water. The organic phase is decanted and then washed twice with a saturated solution of sodium bicarbonate, twice with a 5% solution of sodium bisulfate and then once with a saturated solution of sodium chloride. After drying over sodium sulfate, organic phase is evaporated under vacuum to give 1.8 g of the expected product.

P, 40

D) N-(2'-Tert-butoxycarbonylbiphenyl-4-ylmethyl)-4aminotetrahydropyran-4-carboxamide

The product obtained in step C is dissolved in 30 ml of methanol. 400 mg of 10% palladium-on-charcoal are added and the mixture is hydrogenated at atmospheric pressure. After 1 hour, the catalyst is filtered off and the filtrate is then concentrated under The residue is chromatographed on silica using an ethyl acetate/methanol/33% aqueous ammonia mixture (99/1/0.5; v/v/v) as the eluent to give 0.93 g of the expected product in the form of a white solid. M.p. = 125-127°C.

- NMR spectrum:

T440x35 8.50 ppm : t : 1 H : amide H

```
7.60-7.05 ppm : m : 8 H : aromatic protons
  4.25 ppm : d : 2 H : CH_2 - C_6H_4 -
  3.70-3.50 ppm : m : 4 H : CH2 in the 2 and 6 posi-
                             tions of the tetrahydro-
                             pyran
  2.00-1.80 ppm : m : 4 H : CH2 in the 3 and 5 posi-
                            tions of the tetrahydro-
                             pyran
  1.05 ppm : s : 9 H : tBu
E) 2-n-Butyl-4-(4-spirotetrahydropyran)-1-[(2'-tert-
butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one
        A mixture containing 0.9 g of the compound
obtained in step D, 327 mg of methyl orthovalerate and
2 drops of acetic acid is heated for 3 hours at 110°C.
The reaction medium is taken up in 100 ml of ethyl
acetate, then washed with a saturated solution of
sodium bicarbonate and a saturated solution of sodium
chloride and then dried over sodium sulfate and the
ethyl acetate is evaporated off.
                                   The residue obtained
is chromatographed on silica using an ethyl acetate/
toluene mixture (2/1; v/v) as the eluent to give 550 mg
of the expected product in the form of a wax.
- NMR spectrum:
  7.05-7.60 ppm : m : 8 H : aromatic protons
  4.63 ppm : s : 2 H : CH_2 - C_6H_4 -
  3.85-3.55 \text{ ppm} : m : 4 \text{ H} : CH_2 \text{ in the 2 and 6 posi-}
                            tions of the tetrahydro-
  2.30 ppm : t : 2 H : CH_2 - C_3H_7
  1.05-1.80 ppm : m : 8 H : CH_2-CH_2-CH_3-CH_3 and CH_2 in
                            the 3 and 5 positions of
                            the tetrahydropyran
  1.03 ppm : s : 9 H : tBu
```

0.75 ppm : t : 3 H : $(CH_2)_3 - C\underline{H}_3$

45

05

15

20

```
F) 2-n-Butyl-4-(4-spirotetrahydropyran)-1-[(2'-tert-
       05
            butoxycarbonvlbiphenyl-4-yl)methyl]-2-imidazolin-5-one
                 trifluoroacetate
    P
                     530 mg of the product obtained in the previous
            step are treated with 4 ml of dichloromethane and 5 ml
            of TFA for 45 minutes. After evaporation under vacuum,
            the residue is taken up in ether and the precipitate
       10
            formed is filtered off, washed with ether and then
            dried under vacuum to give 510 mg of the expected pro-
            duct. M.p. = 159-162°C.
            - NMR spectrum:
       15
              7.80-7.10 ppm : m : 8 H : aromatic protons
              4.80 ppm : s : 2 H : CH_2 - C_5H_4 -
              4.00-3.75 ppm : m : 4 H : CH2 in the 2 and 6 posi-
                                         tions of the tetrahydro-
                                         pyran
460x20
              2.60 ppm : t : 2 H -: CH_2 - C_3H_7
              1.45-2.00 ppm : m : 6 H : CH_2-CH_2-CH_2-CH_3 and CH_2 in
                                         the 3 and 5 positions of
                                         the tetrahydropyran
              1.30 ppm : sext : 2 H : CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>-CH<sub>3</sub>
              0.80 ppm : t : 3 H : (CH_2)_3 - CH_3
       25
            EXAMPLE 7
                     2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-
            4-[spiro(1-benzyl-4-piperidine)]-2-imidazolin-5-one
            trifluoroacetate and 2-n-butyl-4-[spiro(1-benzyl-4-
       30
            piperidine)]-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)-
            methyl]-2-imidazolin-5-one - Method 1
            A) 4-Amino-1-benzylpiperidine-4-carboxylic acid is pre-
                         N-benzylpiperidin-4-one
                    from
                                                    by the
       35
            described in German patent 2 215 721.
```

ρ L

05

10

15

20

470x

B) Ethyl 4-amino-1-benzylpiperidine-4-carboxylate

3.80 g of the compound prepared in step A are added to a solution of 13 g of hydrochloric acid in 50 ml of ethanol at 0°C and the mixture is then refluxed for 5 hours. After concentration under vacuum, the residue is washed with ether and then dissolved in an ether/water mixture, to which a saturated solution of potassium carbonate is added to bring the pH to 9. The ether phase is decanted, washed with a saturated solution of sodium chloride, dried over sodium sulfate and then evaporated to dryness to give 3.50 g of the expected product in the form of an oil.

- NMR spectrum:

7.20-7.40 ppm : m : 5 H : aromatic protons

4.10 ppm : q : 2 H : $CH_2 - CH_3$

3.45 ppm : s : 2 H : CH_2 of the benzyl

2.25-2.60 ppm : m : 4 H : CH_2 in the 2 and 6 positions of the piperidine

1.80-2.05 ppm : m : 2 H) CH $_2$ in the 3 and 5 posi-

1.20-1.40 ppm : m : 2 H } tions of the piperidine

1.12 ppm : t : 3 H : $CH_3 - CH_2 -$

C) 2-n-Butyl-4-[spiro(1-benzyl-4-piperidine)]-2-imi-dazolin-5-one

Ethyl valerimidate is prepared as in Example 2, 25 2.06 g of ethyl valerimidate, 3.40 g of the compound prepared in step B and 8 drops of acetic acid are mixed in 15 ml of xylene and the mixture is refluxed for 6 hours. After concentration under vacuum, the residue is chromatographed on silica gel using a 30 chloroform/methanol/acetic acid mixture (82/15/3; v/v/v) as the eluent. 2.80 g of the expected product are obtained after extraction with chloroform at pH 9 to remove the acetic acid. M.p. = 170-172°C.

 $\begin{cases}
\widehat{A} & = IR \text{ (chloroform):} \\
\widehat{H}, 31, 355003 1725 \text{ cm}^{-1} : C=0
\end{cases}$

```
1640 cm<sup>-1</sup> : C=N
                                     - NMR spectrum:
                                          7.10-7.30 ppm : m : 5 H : aromatic protons
                                          3.45 ppm : s : 2 H : -C\underline{H}_2-C_6H_5
 T480x
                                          1.10-2.75 ppm : 5 m : 14 H : CH_2 in the 2, 3, 5 and
                                                                                                                   6 positions of the
                                                                                                                  piperidine and
                                                                                                                   (CH2) 3-CH3
                                         0.80 ppm : t : 3 H : (CH_2)_3 - CH_3
                        10
                                    D) 2-n-Butyl-4-[spiro(1-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine)]-1-[(2'-benzyl-4-piperidine
                                    tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-
                                     5-one
                                                         513
                                                                     mg of sodium methylate and,
                                                                                                                                                        after
                                    minutes, 4.16 g of
                                                                                               4-bromomethyl-2'-tert-butoxycar-
                                    bonylbiphenyl are added to a solution of 2.78 g of the
                        15
                                    compound obtained in step C in 25 ml of DMF. The reac-
                                    tion medium is heated at 40°C for 5 hours and then
                                    taken up in 300 ml of ethyl acetate, 50 ml of water and
                                    5 ml of a saturated solution of sodium bicarbonate.
                        20
                                    The organic phase is decanted, washed once more with a
                                    saturated solution of
                                                                                                   sodium chloride, dried over
                                    sodium sulfate and evaporated under vacuum.
                                                                                                                                                       The resi-
                                    due is chromatographed on silica using an ethyl ace-
                                    tate/methanol mixture (95/5; v/v) as the eluent to give
                        25
                                    0.98 g of the expected product. M.p. = 103-106°C.
                                    - IR (CHCl<sub>3</sub>):
                                         1710-1725 \text{ cm}^{-1} : C=0, C=0 \text{ (imidazoline, ester)}
                                         1630 cm-1 : C=N /
                                    - NMR spectrum:
                                         7.70-7.10 ppm : m : 13 H : aromatic protons
                        30
T481X
                                         4.70 ppm : s : 2 H : CH_2-C_6H_4-
                                         3.55 ppm : s : 2 H : CH_2 - C_6H_5
                                         1.20-2.75 ppm : 5 m : 14 H : CH_2 in the 2, 3, 5 and 6
                                                                                                                  positions of the piperi-
                       35
                                                                                                                  dine and (CH_2)_3-CH<sub>3</sub>
```

1.15 ppm : s : 9 H : tBu 0.85 ppm : t : 3 H : $(CH_2)_3 - CH_3$ E) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-[spiro(1-benzyl-4-piperidine)]-2-imidazolin-5-one 05 trifluoroacetate 350 mg of the compound obtained in step D are dissolved in 4 ml of dichloromethane and 5 ml of TFA. After 45 minutes, the medium is concentrated under vacuum, the residue is then taken up in an ether/ 10 hexane mixture and the precipitate formed is filtered off, washed with ether and dried under vacuum to give 350 mg of the expected product. M.p. = 198-200°C. - NMR spectrum: 7.05-7.75 ppm : m : 13 H : aromatic protons 15 4.75 ppm : s : 2 H : $CH_2 - C_6H_4 -$ 4.40 ppm : s : 2 H : $CH_2 - C_6H_5$ 3.20-3.60 ppm : m : 4 H : CH2 in the 2 and 6 positions of the piperidine 2.35 ppm : t : 2 H : $CH_2 - CH_2 - CH_3 - CH_3$ 1490x 2.20-1.40 ppm : 3 unresolved signals : CH2 in the 3 and 5 positions of the piperidine and CH2-CH2-CH2-25 CH 1.25 ppm : sext : 2 H : $CH_2-CH_2-CH_2-CH_3$ 0.80 ppm : t : 3 H : $(CH_2)_3 - C\underline{H}_3$ EXAMPLE 8 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-(4-spiropiperidine)-2-imidazolin-5-one ditrifluoroacetate and 2-butyl-4-(4-spiropiperidine)-1-[(2'-tertbutoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one

```
A) 2-n-Butyl-4-(4-spiropiperidine)-1-[(2'-tert-butoxy-
               carbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one
                        300 mg of the compound of Example 7, step D,
               are dissolved in 10 ml of methanol.
                                                           180 mg of 10%
          05
               palladium-on-charcoal are added and the mixture is
               hydrogenated for 3 hours at atmospheric pressure.
               catalyst is filtered off and the filtrate is concentra-
               ted under vacuum to give 200 mg of the expected pro-
               duct.
               - NMR spectrum:
                 7.20-7.75 ppm : m : 8 H : aromatic protons
                4.75 ppm : s : 2 H : CH_2 - C_5H_4 -
                 3.00-1.70 ppm : 3 unresolved signals for the 4 CH<sub>2</sub>
 500x<sub>15</sub>
                                  of the piperidine
                 2.40 ppm : t : 2 H : CH_2 - CH_2 - CH_2 - CH_3
                 1.60 ppm : quint : 2 H : CH_2 - CH_2 - CH_3 - CH_3
                 1.35 ppm : sext : 2 H : CH_2-CH_2-CH_2-CH_3
                 1.20 ppm : s : 9 H : tBu
                 0.90 ppm : t : 3 H : (CH_2)_3 - C\underline{H}_3
               B) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-(4-yl)methyl]
               spiropiperidine)-2-imidazolin-5-one ditrifluoroacetate
                        160 mg of the product obtained in step A are
               stirred for 45 minutes in 3 ml of dichloromethane and 4
               ml of trifluoroacetic acid.
                                               The mixture is concentra-
          25
               ted under vacuum and the residue is taken up in ether
               to give a gum and then a foam after drying under vacuum
               (150 \text{ mg}). \text{ M.p.} = 80-85^{\circ}\text{C.}
               - NMR spectrum:
                 7.15-7.80 ppm : m : 8 H : aromatic protons
                 4.75 ppm : s : 2 H : CH_2-C_6H_4-
T501X
                 3.20-1.60 ppm : 3 unresolved signals : 4 CH<sub>2</sub> of the
                                                            piperidine
                 2.40 ppm : t : 2 H : CH_2-CH_2-CH_2-CH_3
                 1.50 ppm : quint : 2 H : CH_2 - CH_2 - CH_2 - CH_3
         35
                 1.30 ppm : sext : 2 H : CH_2-CH_2-CH_2-CH_3
```

0.80 ppm : t : 3 H : $(CH_2)_3 - C\underline{H}_3$ EXAMPLE 9 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-05 4,4-diphenyl-2-imidazolin-5-one trifluoroacetate and 2n-butyl-4,4-diphenyl-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one - Method 1 A) Valeramidine hydrochloride 6 g of ethyl valerimidate hydrochloride are 10 added to a solution of 6.75 g of ammonia in 80 ml of methanol at 0°C. After 18 h, the reaction medium is concentrated under vacuum to give the expected product in the form of a white solid. B) 2-n-Butyl-4,4-diphenyl-2-imidazolin-5-one 15 This compound is prepared according to the procedure described by J. NYITRAI and K. LEMPERT in Tetrahedron, 1969, 25, 4265-4275, from benzil and valeramidine hydrochloride. M.p. = 135°C. IR (CHCl₃): 1725 cm-1 : C=O 1640 cm-1 : C=N NMR spectrum: 7.20-7.50 ppm : m : 10 H : aromatic protons 2.50 ppm : t : 2 H : $C\underline{H}_2 - CH_2 - CH_2 - CH_3$ 1.65 ppm : quint : 2 H : $CH_2 - CH_2 - CH_3 - CH_3$ 1.35 ppm : sext : 2 H : $CH_2-CH_2-C\underline{H}_2-CH_3$

C) 2-n-Butyl-4,4-diphenyl-1-[(2'-tert-butoxycarbonylbi-phenyl-4-yl)methyl]-2-imidazolin-5-one

0.90 ppm : t : 3 H : $CH_2 - CH_2 - CH_2 - CH_3$

11 ppm : sb : NH

This compound is prepared according to the usual method by reacting 4-bromomethyl-2'-tert-butoxy-carbonylbiphenyl with the compound prepared in step B, in the presence of sodium methylate in DMF.

35

30

```
IR (CHCl<sub>3</sub>):
        1715-1725 cm-1 : C=O, C=O (ester, imidazolinone)
        NMR spectrum:
        7.25-7.80 ppm : m : 18 H : aromatic protons
        4.85 ppm : s : 2 H : N-CH_2-C_5H_4-A_6
        2.60 ppm : t : 2 H : CH_2 - CH_2 - CH_2 - CH_{34}
       1.75 ppm : quint : 2 H : CH_2-CH_2-CH_2-CH_3
       1.40 ppm : sext : 2 H : CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>
10
       1.15 ppm : s : 9 H : tBu
     L 0.90 ppm : t : 3 H : CH, of the n-butyl
      D) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4,4-
     diphenyl-2-imidazolin-5-one trifluoroacetate
              500 mg of the product prepared in step C are
     treated with 2.5 ml of dichloromethane and 2.5 ml of
15
     trifluoroacetic acid at 20°C for 40 minutes.
     concentration under vacuum, the residue is taken up in
     an ether/hexane mixture and the precipitate formed is
     filtered off, washed with hexane and dried to give 440
     mg of the expected product. M.p. = 55-60°C.
       NMR spectrum:
       7.15-7.80 ppm : m : 18 H : aromatic protons
4.85 ppm : s : 2 H : N-CH_2-C_6H_4-A_7

2.60 ppm : t : 2 H : CH_2-CH_2-CH_2-CH_3-CH_3

1.70 ppm : quint : 2 H : CH_2-CH_2-CH_3-CH_3
       1.40 ppm : sext : 2 H : CH_2-CH_2-CH_2-CH_3
        0.90 ppm : t : 3 H : CH, of the butyl
     EXAMPLE 10
              2-n-Butyl-3-[(2'-carboxybiphenyl-4-yl)methyl]-
     6-spirocyclopentane-5,6-dihydro-1H-pyrimidin-4-one
     trifluoroacetate
     A) (1-Aminocyclopentyl)acetic acid
              Cyclopentylideneacetic acid is prepared accor-
35
     ding to G.A.R. KON and R.P. LINSTEAD, J. Chem. Soc.,
```

1925, 127, 616. 740 mg of this acid and 5 ml of 20% aqueous ammonia are placed in an autoclave and the mixture is heated at 150°C for 24 hours. After evaporation of the solvents, the residue is chromatographed on a silica column using a DCM/methanol/20% aqueous ammonia solution mixture (70/30/1; v/v/v) as the eluent to give 330 mg of the expected acid.

B) Ethyl (1-aminocyclopentyl)acetate

330 mg of the acid are dissolved in 10 ml of ethanol. The solution is cooled in an ice bath and saturated with gaseous hydrochloric acid. After 24 hours under reflux, the reaction medium is evaporated, the residue is taken up in a solution of sodium carbonate and extracted with ethyl acetate and the extract is then dried over sodium sulfate, filtered and evaporated to give 312 mg of the expected ester.

C) 2-n-Butyl-6-spirocyclopentane-5,6-dihydro-1H-pyri-midin-4-one

A mixture containing 310 mg of the compound obtained in step B, 348 mg of ethyl valerimidate, 10 ml of xylene and 6 drops of acetic acid is brought to the reflux point. After 2 hours and 18 hours, a further 348 mg of ethyl valerimidate are added and, after a total reflux time of 24 hours, the reaction medium is evaporated and then chromatographed on silica using a DCM/methanol mixture (97/3; v/v) as the eluent to give 153 mg of the expected product.

D-)-2-n-Butyl-3-[(2'-tert-butoxyearbonylbiphenyl-4-yl)-methyl-5-6-dihydro-lH-pyrimidin-4-one

A mixture of 10 ml of DMF and 40 mg of sodium hydride as an 80% dispersion in oil is prepared under a nitrogen atmosphere. 144 mg of the compound prepared in step C, dissolved in 5 ml of DMF, are added dropwise at room temperature. After stirring for 30 minutes, a solution of 288 mg of 4-bromomethyl-2'-tert-butoxy-

P

P

05

10

15

20

25

30

35

P P

Inco

40

carbonylbiphenyl in 5 ml of DMF is added. The mixture is stirred for 2 hours and then evaporated and the residue is taken up in water and extracted with ethyl acetate. The extract is dried over sodium sulfate, filtered, evaporated and then purified by column chromatography using a hexane/ethyl acetate mixture (85/5; v/v) as the eluent to give 174 mg of the expected product.

E)

05

10

15

10 ml of trifluoroacetic acid are cooled in a bath of iced water and 161 mg of the compound prepared in step D are added. The mixture is stirred for 30 minutes and then evaporated. The residue is taken up in ethyl ether and the mixture is then evaporated again. This operation is repeated and the residue is then dried under vacuum to give 140 mg of the expected compound in the form of an amorphous powder. M.p. = 108-115°C.

- NMR spectrum:

20 0.9 ppm : t : 3 H : $(CH_2)_3 - CH_3$

1.1 to 2.1 ppm : m : 12 H : cyclopentane and $CH_2-C\underline{H}_2-C\underline{H}_2-CH_3$

7540x

2.7 ppm : t : 2 H : $CH_2-CH_2-CH_2-CH_3$

3.1 ppm : s : 2 H : $-CH_2-CO$

5.1 ppm : s : 2 H : $N-CH_2-C_6H_5$

7.2 to 7.8 ppm : m : 8 H : aromatic protons

P,40

40

EXAMPLE 11

2-n-Butyl-4-spirocyclopentane-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-thione and 2-n-butyl-1-[(2'-carboxybiphenyl-4-yl)-methyl]-4-spirocyclopentane-2-imidazolin-5-thione tri-fluoroacetate

35

```
A) 2-n-Butyl-4-spirocyclopentane-1-[(2'-tert-butoxy-
                      carbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-thione
                                                 5.63 g of the compound prepared in Example 1,
                     step D, are dissolved in 40 ml of anhydrous toluene and
                     treated with 3 g of Lawesson's reagent at 80°C under
                                                           After 6 hours, the reaction mixture is
                     tered and concentrated. The concentrate is chromato-
                     graphed on silica using a DCM/ethyl acetate mixture
                      (95/5; v/v) as the eluent to give the expected product
                     in the form of an oil, which crystallizes in the cold.
                     m = 4.5 g. M.p. = 77-79°C.
  - NMR spectrum:

M 0 0.90 ppm : t : 3 H : CH<sub>3</sub> (nBu)

1.20 ppm : s : 9 H : tBu

15 13,00,51.35 ppm : sext : 2 H : CH<sub>3</sub>-CH<sub>2</sub>-

Lol.60 ppm : quint : 2 H : CH<sub>3</sub>-CH<sub>2</sub>-

1111
                      (1.80-2.10 ppm : m : 8 H : cyclopentane)
   H, 13,0以 2.60 ppm: t:2 H:CH3-CH2-CH2-CH2-
                   L 5.35 ppm : s : 2 H : CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>- ^
      ^{20} ^{14} ^{1} ^{1} ^{25-7.80} ppm : m : 8 H : aromatic protons _{\star}
                     B) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-
                                                                                                                                                                                                                    0
                     spirocyclopentane-2-imidazolin-5-thione trifluoro-
                     acetate
                                                225 mg of the compound obtained in step A are
    25
                     treated with 5 ml of DCM and 5 ml of TFA for 30 min-
                     utes. After concentration, the residue is taken up in
                                                The expected compound is obtained in the form
                     of a yellow powder, which is filtered off and then
                     rinsed with hexane. m = 160 mg. M.p. = 185-190°C.
                     - Mass spectrum:
                           MH+ : 421
                           NMR spectrum:
9^{\circ} 0.78 ppm : t : 3 H : CH<sub>3</sub> (nBu), 3^{\circ} 1.20 ppm : sext : 2 H : CH<sub>3</sub>-CH<sub>2</sub>,
     35 \left( \begin{array}{c} 2 \\ 2 \end{array} \right) = 2 \cdot 1.50 \text{ ppm} : \text{quint} : 2 \cdot \text{H} : \text{CH}_3 - \text{CH}_2 -
```

```
1.75-2.00 ppm : m : 8 H : cyclopentane
                   7.00-7.65 ppm : m : 8 H : aromatic protons
           05
                 EXAMPLE 12
                          2-n-Butyl-4-(2-spiroindane)-1-{(2'-tert-butoxy-
                 carbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one and 2-
                 n-butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-(2-spiro-
            10
                 indane)-2-imidazolin-5-one - Method 1
    P
                 A) 2-Aminoindane-2-carboxylic acid is prepared accor-
                 ding to R.M. Pinder, J. Med. Chem., 1971, 14, 9, 892,
                 and the corresponding ethyl ester is then prepared
                 according to Adkins (ref. cited in Example 2A).
           15
                 B) 2-n-Butyl-4-(2-spiroindane)-2-imidazolin-5-one
                          2.78 g of the ethyl ester prepared in step A
                 and 2.5 g of ethyl valerimidate are dissolved in 20 ml
                 of xylene in the presence of 60 \mul of acetic acid and
                 refluxed for 3 hours. A further 500 mg of ethyl valer-
           20
                 imidate are added and reflux is maintained for a
                 further 3 hours.
                                      The reaction medium is concentrated
                 and then chromatographed on silica using a hexane/
                 ethyl acetate/acetic acid mixture (3/8/0.3; v/v/v) as
                 the eluent. The pure fractions are combined and eva-
                 porated with toluene to give 3.07 g of the expected
           25
                 product in the form of a white solid.
                                                                 M.p. = 148-
                 150°C.
                 - NMR spectrum:
                   0.90 ppm : t : 3 H : CH<sub>3</sub> (nBu)<sub>A</sub>
          3013, (1.2-1.7 \text{ ppm} : m : 4 \text{ H} : CH_2-CH_2-CH_3 )
                 2.4 ppm : t : 2 H : C\underline{H}_2 - (C\underline{H}_2)_2 - C\underline{H}_3

2.8-3.2 ppm : q : 4 H : 2C\underline{H}_2 (indane)

4.90 ppm : s : 2 H : C\underline{H}_2 - C_6\underline{H}_4 - C_6\underline{H}_4

7.2 ppm : m : 4 H : aromatic protons
           35
```

P,40 C) 2-n-Butyl-4-(2-spiroindane)-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one P The compound obtained in the previous step is dissolved in 20 ml of anhydrous DMF and treated with 05 450 mg of sodium methylate under nitrogen. 40 minutes at room temperature, 3.6 g of 4-bromomethyl-2'tert-butoxycarbonylbiphenyl are added and the mixture is stirred at 40°C for 6 hours. The reaction medium is concentrated, the usual washes are then carried out and 10 the product is chromatographed on silica using dichloromethane/ethyl acetate (95/5; v/v) as the eluent the expected compound in the form of a (m = 1.84 q).- NMR spectrum: 0.80 ppm : t : 3 H : CH₃ (nBu) 1.20 ppm : s : 9 H : tBu 1.20-1.60 ppm : $m : 4 H : CH_2 - CH_2 - CH_3$ 2.40 ppm : t : 2 H : $CH_2 - (CH_2)_2 - CH_3$ $2.9-3.3 \text{ ppm} : q : 4 \text{ H} : 2CH_2 \text{ (indane)}$ 4.80 ppm : s : 2 H : $N-CH_2-C_6H_4-$ 7.20-7.80 ppm : m : 12 H : aromatic protons D) 2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-(2spiroindane)-2-imidazolin-5-one 1.71 g of the compound obtained in previous step are dissolved in 15 ml of DCM and treated 25 with 20 ml of TFA. After 30 minutes, the reaction medium is concentrated and then taken up in ether. After trituration, the solid obtained is filtered off, rinsed with ether and dried to give 1.42 g of the expected product. M.p. = 217-218°C. - NMR spectrum: 0.70 ppm : t : 3 H : CH₃ (nBu)_A

1.10-1.50 ppm : m : 4 H : $CH_2-CH_2-CH_3$ 2.30 ppm : t : 2 H : $CH_2-(CH_2)_2-CH_3$

35|400 2.8-3.3 ppm : q : 4 H : 2CH₂ (indane)

Contine (13,000 4.70 ppm : s : 2 H : $N-CH_2-C_6H_4-A$) (4,0) 7.1-7.7 ppm : m : 12 H : aromatic protons

Other compounds according to the invention were prepared by one of the methods described above. They are collated in Table 1. The structure of each of these compounds is consistent with the analysis of their NMR spectra.

CL P,4010

05

EXAMPLE 13

2-n-Butyl-1-[(2'-(imidazol-1-ylcarbonyl)bi-phenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one

T580%

(I :
$$R_1 = -C-N$$
 , $R_2 = H$, $R_3 = n-C4H9$

 $CR_4R_5 = cyclopentane, X = 0)$

20

A mixture containing 404 mg of the compound prepared in Example 1, step E, 15 ml of THF and 260 mg of carbonyldiimidazole is stirred at room temperature for 72 hours. The reaction medium is evaporated, the residue is taken up in ethyl acetate and the mixture is washed with water and then with a solution of sodium chloride to give 420 mg of product, which are purified by chromatography on silica using a DCM/ethyl acetate mixture (70/30; v/v) as the eluent to give the expected compound.

9 0

25

m = 230 mg. $M.p. = 120 ^{\circ}C.$

CL P,40

EXAMPLE 14

2-n-Butyl-1-[(2'-(3-cyano-2-methylisothio-ureidomethyl)biphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one

05

T590X

P

 SCH_{3} (I: $R_{1} = -CH_{2}-NH-C=N-CN$, $R_{2} = H$, $R_{3} = n-C_{4}H_{9}$, $CR_{4}R_{5} = cyclopentane$, X = O)

P, 4010

A) 1-[(2'-Aminomethylbiphenyl-4-yl)methyl]-2-n-butyl-4-spirocyclopentane-2-imidazolin-5-one

This compound is obtained by hydrogenation of the compound prepared in Example 5.

1 g of the compound prepared in Example 5, step
15 A, is placed in 15 ml of absolute methanol and 2.3 ml
of ethanol in the presence of 0.5 g of 5% palladium-oncharcoal and the mixture is hydrogenated at room temperature for 24 hours. After treatment, 730 mg of the
expected product are obtained in the form of an oil.

ρ

20 B)

A mixture containing 300 mg of the compound prepared in the previous step and 113 mg of N-cyan-imido-S,S-dimethyldithiocarbonate in 3 ml of ethanol is refluxed for 24 hours. After the usual treatment, the reaction medium is purified by chromatography on silica using a DCM/ethyl acetate mixture (50/50; v/v) as the eluent. The expected product is isolated in the form of a white solid.

.. ρ ρ

25

m = 307 mg. $M.p. = 83 ^{\circ}C.$

^ j

EXAMPLE 15

2-n-Butyl-1-[(2'-(2-cyanoguanidinomethyl)bi-phenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-

35 one

T600x

(I: R₁ = CH₂-NH-C=N-CN, R₂ = H, R₃ = n-C₄H₉,CR₄R₅ = cyclopentane, X = O)

P 05

This compound is obtained from the compound prepared in the previous Example. 200 mg of the compound are placed in 10 ml of absolute ethanol and the mixture is saturated with ammonia at about 10°C and then heated at 80°C in an autoclave overnight. After concentration of the reaction medium to dryness, the residue is chromatographed on silica using a DCM/methanol mixture (95/5; v/v) as the eluent to give 130 mg of the expected product.

M.p. = 100°C.

CL 15

EXAMPLE 16

1,40

25

10

2-n-Butyl-4-spirocyclopentane-1-[(2'-trifluoro-methylsulfonylaminobiphenyl-4-yl)methyl]-2-imidazolin-5-one trifluoromethylsulfonate

PS

Ti, H,13 Ti, H

(I: $R_1 = -NHSO_2CF_3$, $R_2 = H$, $R_3 = n-C_4H_9$, $CR_4R_5 = cyclopentane$, X = O)

P S

P,40

A) 4-Methyl-2'-nitrobiphenyl

11.2 g of 2-nitrobromobenzene are mixed with 15 g of 4-iodotoluene and the mixture is heated to 195°C and stirred at this temperature for 3 and a half hours. After returning to room temperature, it is taken up in DCM and heated to the reflux point, the hot solution is filtered on Celite® and the DCM is then

200 30

m = 6.5 g.

evaporated off.

,,14,H P,40

B.p. = $80-120^{\circ}$ C under 0.2 mm Hg, $n_{D}^{24} = 1.6042$.

0 142 35

B) 4-Bromomethyl-2'-nitrobiphenyl

A mixture containing 6.5 g of 4-methyl-2'-

 \mathcal{O}

nitrobiphenyl, 5.42 g of NBS, 118 mg of azo-bis-isobutyronitrile and 500 ml of carbon tetrachloride is refluxed for 5 hours. It is cooled to 0°C and filtered and the filtrate is concentrated to give 9 g of an oily product, which is used as such in the next step.

05 P,40

40

20

25

C) 2-n-Butyl-1-[(2'-nitrobiphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one

80%

mixture containing 260 mg of hydride in 5 ml of DMF is prepared and 500 mg of 2-nbutyl-4-spirocyclopentane-2-imidazolin-5-one, prepared 10 in Example 2, step A, are added at room temperature under nitrogen. After stirring for 15 minutes, 901 mg of 4-bromomethyl-2'-nitrobiphenyl in 5 ml of DMF are added and stirring is continued for 24 hours.

The reaction medium is concentrated to dryness and the 15 residue is taken up in a water/ethyl acetate mixture. The organic phase is decanted, dried over sodium sulfate and filtered and the ethyl acetate is then eva-

porated off. The product obtained is chromatographed on silica using a DCM/ethyl acetate mixture (9/1; v/v)as the eluent to give 500 mg of the expected product.

D) 1-[(2'-Aminobiphenyl-4-yl)methyl]-2-n-butyl-4-spirocyclopentane-2-imidazolin-5-one

450 mg of the product obtained in the previous step are placed in 10 ml of methanol in the presence of 5% palladium-on-charcoal, at room temperature, After filtration of the catalyst and hydrogenation. evaporation, 240 mg of the expected product are obtained.

E) 30

In 4 ml of DCM, 225 mg of the product obtained in the previous step are mixed with 0.1 ml of triethylamine, 0.2 ml of trifluoromethylsulfonic anhydride 31 is added under argon at -78°C and the mixture is then 35 left to return to room temperature. The reaction

medium is washed with water and a solution of sodium bicarbonate and then dried and concentrated to give 150 mg of an amorphous white solid. - NMR spectrum: $0.4-1.3 \text{ ppm} : m : 7 \text{ H} : CH_3-CH_2-CH_2-$ 05 1.4-2.3 ppm : m : 10 H : $CH_3-CH_2-CH_2-CH_2$ and cyclopentane 4-4.8 ppm : AB system : 2 H : $N-C\underline{H}_2-C_6\underline{H}_4-$ 7-7.6 ppm : m : 8 H : aromatic protons 10 8.3 ppm : s : 1 H : -NH 10 ppm : sb : 1 H : CF_SO_H EXAMPLE 17 2-n-Butyl-4-spirocyclopentane-1-[(2'-trifluoromethylsulfonylaminomethylbiphenyl-4-yl)methyl]-2-imidazolin-5-one trifluoromethylsulfonate PS (I: $R_1 = CH_2NHSO_2CF_3$, $R_2 = H$, $R_3 = n-C_4H_9$, PS $CR_4R_5 = cyclopentane, X = 0)$ 85 20 The preparation is effected starting from the 1-[(2'-aminomethylbiphenyl-4-yl)methyl]-2-n-butyl-4spirocyclopentane-2-imidazolin-5-one prepared in Example 14, step A. 322 mg of this compound and 0.122 ml 31 of triethylamine are placed in 3.4 ml of DCM at -70°C 25 and 0.294 ml of trifluoromethylsulfonic anhydride is The mixture is left to return to room temperature, poured into dilute acetic acid and extracted with DCM, the extract is dried over sodium sulfate and 30 filtered and the DCM is evaporated off. The residue is chromatographed twice on silica using DCM/ethyl acetate (95/5; v/v, then 99.5/0.5; v/v) as the eluent. This gives m = 90 mg. $M.p. = 90^{\circ}C.$

- NMR spectrum: T630X

15

20

25

87

35

 $0.4-1.2 \text{ ppm} : m : 7 \text{ H} : -C\underline{H}_2 - C\underline{H}_2 - C\underline{H}_3$

1.3-2.45 ppm : m : 10 H : $CH_2-CH_2-CH_2-CH_3$ and cyclopentane

4.1-5 ppm : m : 4 H : $N-C\underline{H}_2-C_6H_4$ and $NH-C\underline{H}_2-C_6H_4$ 7.1-7.7 ppm : m : 8 H : aromatic protons

8.4 ppm : s : 1 H : NH

EXAMPLE 18

2-n-Butyl-1-[(2'-(N-hydroxyacetamide)biphenyl-

ی م

4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one

(I: $R_1 = -CO-NHOH$, $R_2 = H$, $R_3 = n-C_4H_9$, $CR_4R_5 = cyclopentane, X = 0)$

The compound prepared in Example 2 is freed from its trifluoroacetic acid salt by taking up this compound in an ethyl acetate/water mixture and bringing the solution to pH 6 by the addition of a saturated solution of sodium bicarbonate. The organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulfate, filtered and concentrated to give the free base in the form of a white solid.

450 mg of this compound are dissolved chloroform, 860 ml of thionyl chloride are added at 0°C and the mixture is stirred at room temperature for 2 The solution is concentrated and the traces of thionyl chloride are removed by azeotropic distillation with toluene. The acid chloride thus obtained is added dropwise in DMF solution to a solution containing 200 mg of hydroxylamine hydrochloride and 700 μl of DIPEA in 10 ml of DMF. After 2 hours at 0°C, the reaction medium is concentrated and the concentrate is taken up in 100 ml of DCM and 50 ml of water. The mixture is brought to pH 7 and the organic phase is extracted and

then dried over sodium sulfate. After filtration, the solution is concentrated. The product obtained is recrystallized from an ethyl acetate/ethyl ether/hexane mixture.

05

m = 360 mg. $M.p. = 85^{\circ}C.$

P,40

EXAMPLE 19

2-n-Butyl-4-spirocyclopentane-1-[(2'-ureido-biphenyl-4-yl)methyl]-2-imidazolin-5-one

P5

P5

PS

0

0

Ti, H, 13 Ti, H

(I: $R_1 = NHCONH_2$, $R_2 = H$, $R_3 = n-C_4H_9$, $CR_4R_5 = cyclopentane$, X = O)

ρ 15

40

This compound is prepared using the method described by B.B. Kobu et al. in Org. Synth., 1957, 37, 52, starting from the 1-[(2'-aminobiphenyl-4-yl)-methyl]-2-n-butyl-4-spirocyclopentane-2-imidazolin-5-one prepared in Example 14, step A.

20

l g of the latter is dissolved in 50 ml of 6 N hydrochloric acid and treated with potassium isocyanate for 1 hour at 5°C. The reaction medium is concentrated, the concentrate is taken up in ethyl acetate and the mixture is washed with sodium bicarbonate and then with a saturated solution of sodium chloride. After drying over sodium sulfate and filtration, the solution is concentrated and the oil obtained is purified by chromatography on silica using a DCM/methanol mixture (9/1; v/v) as the eluent.

) | 30

25

m = 600 mg.

NMR spectrum:

13, CA_{3} , H_{A}^{\odot} 0.85 ppm : t : 3 H : CH_{2} - CH_{3} , A_{3} 1.35 ppm : sext : 2 H : CH_{2} - CH_{3} , A_{3} 1.6 ppm : quint : 2 H : CH_{2} - CH_{3} -

 $\begin{array}{c}
\text{Coshinge} \\
\text{Coshin$

(L P,40

EXAMPLES 20 AND 21

1-[(2'-Carboxybiphenyl-4-yl)methyl]-2-n-propyl-4-spirocyclohexane-2-imidazolin-5-one and 1-[(2'-N-cyanocarboxamidebiphenyl-4-yl)methyl]-2-n-propyl-4-spirocyclohexane-2-imidazolin-5-one

آ د م

TipH,13

(I:
$$R_1 = CO-NH-CN$$
, $R_2 = H$, $R_3 = n-C_3H_7$, $CR_4R_5 = cyclohexane$, $X = O$)

15

A) Ethyl butyrimidate hydrochloride

T650X

$$CH_3 - CH_2 - CH_2 - C$$
 . HC1 OC_2H_5

P 14 P

This compound is prepared according to Mc Elvain (J. Amer. Chem. Soc., 1942, 64, 1825-1827).

23 ml of butyronitrile are added at 0°C to a solution of 10.6 g of gaseous hydrochloric acid in 20 ml of anhydrous ethanol and then, after the reaction medium has been left to stand for 4 days at 0°C, it is poured into 200 ml of anhydrous ether at 0°C, with stirring; the precipitate formed is filtered off, washed with ether and then dried under vacuum to give 25.8 g of the expected product.

30

25

B) Ethyl butyrimidate

16 g of the imidate obtained in step A are dissolved in 100 ml of dichloromethane and 50 ml of water, and 15 g of potassium carbonate are added.

35 After decantation, the dichloromethane is dried over

potassium carbonate and then evaporated off to dryness without heating.

C) Ethyl ester of 1-aminocyclohexane carboxylic acid 1-Aminocyclohexanecarboxylic acid is commercially available. 15 g of this amino acid are added at 0°C to a solution of 23 g of gaseous hydrochloric acid in 150 ml of anhydrous ethanol. The reaction medium is refluxed for 5 hours and then concentrated to dryness and the residue is taken up in ether. The white solid obtained is filtered off, washed with ether and then dissolved in a mixture of 300 ml of ether and 100 ml of water. The pH is brought to 9 by the addition of a solution of potassium carbonate. The organic phase is decanted, washed with a saturated solution of sodium chloride, dried over sodium sulfate and then evaporated to dryness to give 14 g of the expected product in the form of an oil.

D) 2-n-Propyl-4-spirocyclohexane-2-imidazolin-5-one

14 g of the product obtained in step C are dissolved in 200 ml of xylene containing 0.6 ml of acetic acid. Half the imidate obtained in step B is added and the mixture is heated to the reflux point. After 1 and a half hours, half the remaining imidate is added and the last quarter is then added after 4 hours.

After a total reflux time of 7 hours, the medium is evaporated to dryness. The solid obtained is taken up in hexane, filtered off, washed with ether and then dried.

This gives 10.3 g of the expected imidazoli-

M.p. = 124-125°C.

I CHCl₃):
A,31,50,0 1715 cm⁻¹: C=0,0
L L,50 L 1635 cm⁻¹: C=N,0

Note: The compound present in solution is indeed an

66

05

10

15

20

ρs ρς

imidazolin-5-one according to the values of the IR bands.

E) 2-n-Propyl-4-spirocyclohexane-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one

40

10

15

970 mg of the imidazolinone obtained in step D are added to 0.24 g of sodium hydride as an 80% dispersion in oil, suspended in 10 ml of dimethylformamide. After stirring for 20 minutes under nitrogen, 1.91 g of 4-bromomethyl-2'-tert-butoxycarbonylbiphenyl, prepared according to European patent application 324 377, are added over 5 minutes. After stirring for 1 hour, the medium is concentrated to half its volume under vacuum and taken up in 100 ml of ethyl acetate and then in 20 ml of water. The organic phase is decanted, washed with a saturated solution of sodium chloride, dried over sodium sulfate and then concentrated under vacuum. The residue is chromatographed on silica using an ethyl acetate/toluene mixture as the eluent to give 2.10 g of the expected product in the form of a wax.

25

30

- IR (CHCl₃): 1705-1715 cm-1: C=O, C=O (ester, imidazolinone)

1635 cm-1 : C=N

Analysis of the NMR spectrum confirms the structure.

F) 1-[(2'-Carboxybiphenyl-4-yl)methyl]-2-n-propyl-4spirocyclohexane-2-imidazolin-5-one (Example 20)

1.25 g of the tert-butyl ester obtained in step E are stirred for 45 minutes in a mixture of 11 ml of dichloromethane and 15 ml of trifluoroacetic acid. After concentration under vacuum, the residue is taken up in ether. The solid formed is filtered off, washed with ether and then dried to give 1.04 g of a white solid.

M.p. = 170-172°C.

- NMR spectrum:

7.10-7.80 ppm : m : 8 H : aromatic protons

4.90 ppm : s : 2 H : $N-C\underline{H}_2-C_6H_4-$ 2.45 ppm : t : 2 H : $CH_3-CH_2-C\underline{H}_2-$ 1.40-1.80 ppm : m : 12 H : spirocyclohexane + $CH_3-CH_2-CH_2-$

0.90 ppm : t : 3 H : $CH_3 - CH_2 -$

1.60 g of the trifluoroacetate obtained previously are dissolved in 150 ml of ethyl acetate and 20 ml of water. 1 N sodium hydroxide solution is added to bring the pH to 5.0. The organic phase is decanted, washed with a saturated solution of sodium chloride, dried over sodium sulfate and then evaporated to dryness. The solid residue is taken up in ethyl ether, filtered off and dried.

m = 1.14 g.M.p. = 208-210 °C.

G) 1-[(2'-N-Cyanocarboxamidebiphenyl-4-yl)methyl]-2-propyl-4-spirocyclohexane-2-imidazolin-5-one (Example 21)

0.54 ml of thionyl chloride is added to 300 mg of the compound prepared in the previous step, suspended in 5 ml of DCM. After 1 and a half hours, the reaction medium is concentrated under vacuum and then evaporated twice with benzene. The acid chloride thus obtained is dissolved in 2 ml of dioxane and added to a solution of 42 mg of cyanamide in 1 ml of dioxane containing 0.2 ml of 10 N sodium hydroxide solution. After 1 and a half hours, the reaction medium is diluted with 150 ml of ethyl acetate and 20 ml of water, the pH is brought to 5 with acetic acid and the organic phase is decanted, washed with a saturated solution of sodium chloride, dried over sodium sulfate and then evaporated to dryness. The residue is chromatographed on silica using a chloroform/methanol/acetic acid mixture (90/8/2; v/v) as the eluent to give 160 mg of the expected product in the form of a solid.

68

10

20

25

30

```
7.20-7.70 ppm : m : 8 H : aromatic protons
               4.75 ppm : s : 2 H : N-CH_2-C_6H_4-
-690X
               2.40 ppm : t : 2 H : CH_3 - CH_2 - C\underline{H}_2 -
               1.30-1.80 ppm : m : 12 H : CH_3-C\underline{H}_2-CH_2- and spiro-
        10
                                            cyclohexane
               0.85 ppm : t : 3 H : CH_3 - CH_2 - CH_2
            EXAMPLE 22
                     1-[(2'-(N-4-carboxy-1,3-thiazol-2-ylacetamide)-
             biphenyl-4-yl)methyl]-2-n-propyl-4-spirocyclohexane-2-
             imidazolin-5-one
                       (I : R_1 = -CONH - \frac{N}{COOH}, R_2 = H, R_3 = n - C_3H_7,
                      CR_4R_5 = cyclohexane, X = 0)
                     This compound is prepared from the compound
             obtained in Example 20.
                     2-Amino-4-ethoxycarbonyl-1,3-thiazole
            pared according to B. Plouvier et al., J. Heterocycl.
             Chem., 1989, 26(6), 1646.
P,40
            A) 1-\(\int(N-4-carbethoxy-1,3-\thiazol-2-y\)lacetamide)-2'-biphenyl-4-yl
            methyl]-2-n-propyl-4-spirocyclohexane-2-imidazolin-5-
            one (sic)
                     500 mg of BOP and 0.14 ml of triethylamine are
            added to a solution of 404 mg of the compound prepared
            in Example 20 and 190 mg of thiazole derivative in 4 ml
            of DCM and 1 ml of DMF. The mixture is stirred for 40
       35
```

4,13

05

15

20

hours at room temperature and then 7 hours at 50°C. The reaction medium is taken up in 50 ml of ethyl acetate and washed twice with a KHSO₄-K₂SO₄ solution, then twice with a saturated solution of sodium bicarbonate and then once with a saturated solution of sodium chloride. After drying over sodium sulfate, the organic phase is concentrated under vacuum and the residue is chromatographed on silica using an ethyl acetate/toluene mixture as the eluent to give 120 mg of the expected product.

M.p. = 96-98°C.

B)

0.5 ml of 2 N sodium hydroxide solution is added to 110 mg of the product obtained in the previous step, dissolved in 1 ml of methanol and 1 ml of dioxane. After stirring for 35 minutes, the reaction medium is diluted with 10 ml of water and 60 ml of ethyl acetate and the pH is brought to 5 by the addition of 1 N hydrochloric acid. The organic phase is decanted, washed with a saturated solution of sodium chloride, dried over sodium sulfate and then concentrated. The residue is taken up in ether, filtered off and dried.

P.114 25

m = 100 mg.

M.p. = 145-148°C.

- NMR spectrum:

8.0 ppm : s : 1 H : H in the 5 position of the thiazole

7.1-7.7 ppm : m : 8 H : aromatic protons

4.7 ppm : s : 2 H : $N-CH_2-C_6H_4-$

2.25 ppm : t : 2 H : $CH_2 - CH_2 - CH_3$

1.2-1.8 ppm : m : 12 H : cyclohexane and $CH_2-CH_2-CH_3$

0.85 ppm : t : 3 H : $CH_2 - CH_2 - CH_3$

CL P,40

EXAMPLE 23

2-n-Butyl-1-[(2'-(2-cyanoguanidinocarbonyl)-biphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5-one

0.5

+710x

(I: $R_1 = CONH-C=N-CN$, $R_2 = H$, $R_3 = n-C_4H_9$, $CR_4R_5 = cyclopentane$, X = O)

P 10

15

20

The acid chloride of the compound obtained in Example 2 is prepared. 1 g of this compound is placed in 20 ml of DCM, in the presence of 1.8 ml of thionyl chloride, and the mixture is stirred at room temperature for 2 hours. After concentration of the medium, the residue is taken up in benzene and the mixture is then concentrated again. The crude product isolated is then used. It is mixed with 417 mg of dicyanodiamide, 0.5 ml of 10 N sodium hydroxide solution, 0.5 ml of water and 10 ml of dioxane and the mixture is then stirred for 5 hours. The reaction medium is taken up in water and ethyl acetate, potassium carbonate is added and the mixture is then concentrated. due obtained is chromatographed on silica using a DCM/ methanol mixture (95/5; v/v) as the eluent. the expected product are isolated.

25

M.p. = 105°C.

CL P,40

EXAMPLE 24

4-Benzylidene-2-n-butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-2-imidazolin-5-one trifluoroacetate

TI,50,13

(I:
$$R_1 = CO_2H$$
, $R_2 = H$, $R_3 = n-C_4H_9$, $R_4R_5 = \rho S$
= $CH-C_6H_5$, $X = O$)

PS

P

A) Tert-butyl 4-(1-benzylidene-1-valerylaminomethyl-amidomethyl)biphenyl-2-carboxylate

4720%

60 10

40

15

Starting from N-Boc- α -dehydro-(L)-phenylalanine, the N-carboxyanhydride of α -dehydro-(L)-phenylalanine is prepared according to R. Jacquier et al., Tetrahedron Lett., 1984, 25(26), 2775. p. . . 644 mg of tert-butyl 4-aminomethylbiphenyl-2'-carboxylate are added to a solution of 430 mg of this compound in 5 ml of THF, the mixture is stirred for 2 hours at room temperature, 1 ml of methyl orthovalerate is then added and the mixture is evaporated to dryness under vacuum without heating. The residue is heated for 3 hours at 100° C, concentrated under vacuum and then chromatographed on silica using a hexane/ethyl acetate mixture (4/1; v/v) as the eluent to give 580 mg of a white solid.

20

$$M.p. = 154$$
°C.

NMR spectrum:

1.3 ppm : s : 9 H : tBu

0.65 ppm : t : 3 H : CH₃ (nBu)_A

2 ppm : t : 2 H : $CH_3-CH_2-CH_2-CH_2-CO_A$

4.4 ppm : d : 1 H : CH₂-NH_A

6.8 ppm : s : 1 H : CH $(=C\underline{H}-C_{6}H_{5})_{A}$

2,40 30

B) 4-Benzylidene-2-n-butyl-1-[(2'-tert-butoxycarbonyl-biphenyl-4-yl)methyl]-2-imidazolin-5-one

P

440 mg of the compound obtained in step A are dissolved in 1 ml of acetic acid and heated for 30 minutes at 100°C.

35

The solution is evaporated to dryness under

vacuum and the residue is chromatographed on silica using a hexane/ethyl acetate mixture (4/1; v/v) as the eluent to give 130 mg of the expected product in the form of an oil.

 $\begin{cases} 05 \frac{A}{\Lambda} & \text{NMR spectrum:} \\ H_1 I_3 \text{ ppm : S : 2 H : CH}_2 & (N-C\underline{H}_2-C_6H_4-) \end{cases}$

100 mg of the compound obtained in the previous step are dissolved in 1 ml of DCM, 1 ml of trifluoroacetic acid is added and the mixture is then stirred for 40 minutes at room temperature and evaporated under vacuum. The residue is taken up several times in DCM and then evaporated. A white solid precipitates on the addition of ethyl ether.

 $\rho = 101 \text{ M.p.} = 89$ $\rho = 101 \text{ M.p.} = 101$ $\rho = 101 \text{ M.p.}$ m = 101 mg. $M.p. = 85^{\circ}C.$

MH+: 435/ NMR spectrum: 1.3 ppm: t: 3 H: CH₃ (nBu) 1.3 ppm: sext: 2 H: CH₃-CH₂-1.6 ppm: m: 2 H: CH₃-CH₂-CH₂-2.6 ppm: t: 2 H: CH₃-CH₂-CH₂-4.82 ppm: s: 2 H: CH₂-C₆H₄-7.05 ppm: s: 1 H: =CH-C₆H₅/ 1.2 ppm: m: 13 H: aromatic prot 7.2-8.2 ppm : m : 13 H : aromatic protons

EXAMPLE 25

4-Benzylidene-1-[(2'-carboxybiphenyl-4-yl)-

methyl]-2-phenyl-2-imidazolin-5-one

Ti, H (I:
$$R_1 = CO_2H$$
, $R_2 = H$, $R_3 = C_6H_5$, $R_4R_5 = PS$
Ti, 50, 13, H = CH-C₆H₅, X = 0)

A) 4-Benzylidene-2-phenyloxazol-5-one

1.8 g of hippuric acid and 0.4 g of potassium bicarbonate are dissolved in 4 ml of acetic anhydride, the solution is heated for a few minutes at 50°C and then cooled to room temperature and 1.49 g of benzaldehyde are added. After 1 hour at room temperature, 20 ml of distilled water are added at 80°C. The solid which precipitates is filtered off, washed with water and ethanol and then dried to give 1.24 g of the expected product in the form of a yellow solid.

M.p. = 215°C.

NMR spectrum:

7.4 ppm : s : 1 H : =CH-C₆H_{s ^}

8.1-8.4 ppm : $m : 10 H : aromatic protons_A$

B) Tert-butyl 4-(1-benzoylamino-1-benzylidenemethyl-amidomethyl)biphenyl-2'-carboxylate

A mixture containing 500 mg of the compound obtained in the previous step, 570 mg of tert-butyl 4-aminomethylbiphenyl-2'-carboxylate and 10 ml of pyridine is heated at 110°C for 3 hours. It is evaporated under vacuum, the residue is taken up in chloroform and the mixture is then evaporated again. The residue is chromatographed on silica using a hexane/ethyl acetate mixture (3/1 then 2/1; v/v) as the eluent to give 106 mg of the expected product in the form of a yellow solid.

- NMR spectrum:

1.1 ppm : s : 9 H : tBu

4.35 ppm : t : 2 H : $-CH_2$ -NH

7.05-7.06 ppm : m : 19 H : aromatic protons +

 $C_6H_5-CH=$

8.65 ppm : t : 1 H : $NH-CH_2$

9.9 ppm : s : 1 H : NH-CH=

(C)

35

A mixture of 1.2 g of the compound obtained in

05

·

40

20

25

77

the previous step and 1.1 g of freshly melted sodium acetate is refluxed for 6 hours in 5 ml of acetic acid. It is left to cool and an insoluble material is then precipitated by the addition of chloroform. The filtrate is evaporated and the residue is chromatographed on silica using a chloroform/methanol mixture (98/2; v/v) as the eluent. The solid obtained is recrystallized from ethyl ether.

m = 692 mg. $M.p. = 120^{\circ}C.$

- NMR spectrum: (N_1) (N_2) (N_3) (N_4) $(N_$ جونده المعراق 7.1-8.3 ppm : m : 19 H : aromatic protons + = $C\underline{H}$ - C_6H_5

EXAMPLES 26 AND 27

P

20

25

30

05

2-n-Butyl-1-[(2'-(2-methyltetrazol-5-yl)biphenyl-4-yl)methyl]-4-spirocyclopentane-2-imidazolin-5one (Example 26) and 2-n-butyl-1-[(2'-(1-methyltetrazol-5-yl)biphenyl-4-yl)methyl]-4-spirocyclopentane-2imidazolin-5-one (Example 27)

In 10 ml of DMF, 500 mg of the compound prepared in Example 5 are mixed with 58 mg of sodium hydride, the mixture is stirred for 30 minutes, 179 mg of methyl iodide and 2 ml of DMF are then added and the mixture is stirred at room temperature for 4 hours. The reaction medium is concentrated and the concentrate is taken up in water and then extracted with ethyl acetate. The extract is dried over sodium sulfate and filtered and the solvent is evaporated off. The residue is chromatographed on silica using a hexane/ethyl acetate mixture (6/4; v/v) as the eluent. 2 fractions are isolated:

90 mg of the compound of Example 26 and 184 mg of the compound of Example 27

ρ,

```
NMR spectra:
                                                                                Example 26
                                                                                0.7 ppm : t : 3 H : CH<sub>3</sub>- (nBu)<sub>4</sub>
                                                                               1.2 ppm : sext : 2 H : CH_3 - C\underline{H}_2 - A
                                                                              1.4 ppm : quint: 2 H : CH_3 - CH_2 - C\underline{H}_2 - A
                                                                               1.5-1.9 ppm : m : 8 H : cyclopentane
                                                                              2.25 ppm : t : 2 H : CH_3 - CH_2 - CH_2 - C\underline{H}_2 - C\underline
                                                                              4.15 ppm : s : 3 H : N-CH_{3}
                                                                              4.6 ppm : s : 2 H : -N-CH_2-C_GH_4-
                                                                              7 ppm : AA', BB' system : 4 H : CH_2-C_6\underline{H}_4-
                                                                              7.3-7.75 ppm : m : 4 H : CH_2 - C_6H_4 - C_6H_
                                                                              Example 27
                                                                              0.7 ppm : t : 3 H : CH<sub>3</sub> (nBu)
                                                                             1.15 ppm : sext : 2 H : CH_3 - C\underline{H}_2 - A
                                                                             1.38 ppm : quint : 2 H : CH_3 - CH_2 - CH_2 - CH_3 - CH_
                                                                             1.5-1.9 ppm : m : 8 H : cyclopentane ^
                                                                             2.2 ppm : t : 2 H : CH_3 - CH_2 - C
                                                                             3.35 ppm : s : 3 H : N-CH_{3A}
                                                                             4.6 ppm : s : 2 H : N-CH_2-C_6H_{4A}
                                                                            7 ppm : AA', BB' system : 4 H : N-CH_2-C_6H_4-A
    2040
                                                                             7.4-7.8 ppm : m : 4 H : CH_2 - C_6H_4 - C_6H_5 - C_6H_5
                                                       EXAMPLE 28
                                                                                                                                          2-n-Butyl-6-spirocyclopentane-3-[(2'-(tetrazol-
                                                      5-yl)biphenyl-4-yl)methyl]-4(1H)-5,6-dihydropyrimidin-
                                                       4-one
                                                      A) Ethyl cyclopentylideneacetate
                                                                                                                                         6 g of 80% sodium hydride are placed in 40 ml
                                                   of benzene, and 57.1 ml of ethyl triethylphosphono-
                                                    acetate are added dropwise at a temperature below 35°C.
 30
                                                   After 1 hour at room temperature, 24.3 ml of cyclo-
                                                   pentanone are added dropwise. The mixture is heated at
                                                   65°C for 15 minutes and then cooled to room temperature
                                                    and the supernatant liquor is decanted.
35
                                                  benzene are added, the mixture is heated at 65°C for 15
```

minutes, cooled and decanted and the supernatant liquor is then recovered. The operation is repeated once. Evaporation of the liquors gives 42 g of the expected product, which is distilled.

> B.p. = 102°C under 11 mm of mercury. m = 22.8 g.

B) (1-Aminocyclopentyl)acetamide

150 ml of gaseous ammonia are added to 20 g of the ethyl cyclopentylideneacetate prepared previously and the mixture is heated at 150°C for 72 hours. product obtained after evaporation is purified by chromatography on silica using a DCM/methanol/20% aqueous ammonia mixture (90/10/1; v/v/v) as the eluent. The product obtained is dissolved in DCM and the solution is dried over sodium sulfate. It is filtered and the DCM is evaporated off to give 7.2 g of the expected product.

C) 2-n-Butyl-6-spirocyclopentane-4(1H)-5,6-dihydropyrimidin-4-one

A mixture containing 4.57 g of the (1-aminocyclopentyl)acetamide prepared previously, 25 ml methyl orthovalerate and a few drops of acetic acid is heated at 100°C for 18 hours. After evaporation of the excess orthovalerate, the residue is taken up in an ethyl acetate/sodium bicarbonate mixture, then washed with an aqueous solution of sodium chloride, dried sodium sulfate and then purified by chromatography on silica using a DCM/methanol mixture (98/2; v/v) as the eluent.

m = 5 q.

- NMR spectrum:

0.75 ppm : t : 3 H : CH₃ (nBu)

H₁/3, v/s 1.2 ppm : sext : 2 H : $CH_3 - C\underline{H}_2 - \sqrt{1}$ 1.3-1.8 ppm : m : 10 H : $CH_3 - C\underline{H}_2 - C\underline{H}_2$ and cyclopentane L L 35 L 2 ppm : t : 2 H : $CH_3 - CH_2 - C\underline{H}_2 - C\underline{H$

10

15

20

(outiles CMS, 14,13, 2

2.15 ppm : s : 2 H : $CH_2 - CO_4$

9.95 ppm : sb : 1 H : NH /

This compound is the one obtained in Example 10, step C.

Sisc3> 05P

40

P

10

15

20

25

D) (2-n-Butyl-4-spirocyclopentane-1-[(2'-(triphenyl-2 methyltetrazel-5-yl)biphenyl-4-yl)methyl]pyrimidin-6-

one

327 mg of 80% sodium hydride in 30 ml of DMF are mixed for 30 minutes under nitrogen with 1.5 g of the pyrimidinone prepared previously, and 5.27 g of 4-bromomethyl-2'-(triphenylmethyltetrazol-5-yl)biphenyl are added. After stirring for 4 hours at room temperature, the solvents are evaporated off and the residue is taken up in ethyl acetate and water, dried over sodium sulfate and concentrated. The product obtained is purified by chromatography on silica using an ethyl

acetate/hexane mixture (3/7; v/v) as the eluent.

 \bigcirc

m = 3.2 g.

E)

3 g of the compound obtained in the previous step are placed in 15 ml of methanol, the mixture is cooled in a water/ice bath, 2.2 ml of 4 N HCl are added and the mixture is stirred for 5 hours at room temperature. After evaporation, the residue is taken up in ethyl acetate and water, and sodium hydroxide solution is then added to give a basic pH (pH 11). The mixture is left to decant and the aqueous phase is washed with ethyl ether and toluene and then ether again. aqueous phase is brought to pH 5 by the addition of dilute hydrochloric acid and is then extracted with ethyl acetate and the extract is dried and concentra-The product obtained is purified on silica using a DCM/methanol mixture (95/5; v/v) as the eluent to give 800 mg of the expected product.

35

```
- NMR spectrum:
              0.85 ppm : t : 3 H : CH3 (nBu)
              1.30 ppm : sext : 2 H : CH_3 - CH_2
              1.40-1.95 ppm : m : 10 H : cyclopentane and
                                        CH_2-CH_2-CH_2-CH_3
              2.30 ppm : t : 2 H : CH_2 - CH_2 - CH_3 - CH_3
             2.55 ppm : s : 2 H : CH_2-CO
             4.95 ppm : s : 2 H : N-CH_2-C_5H_4-
             7.05 ppm : m : 4 H : CH_2 - C_6 H_4 -
      10
             7.55-7.82 ppm : m : 4 H : CH_2 - C_6H_4 - C_6H_4 - C_6H_4
           EXAMPLE 29
                   2-n-Butyl-3-[(2'-carboxybiphenyl-4-yl)methyl]-
           5-spirocyclopentane-5(1H)-5,6-dihydropyrimidin-4-one
           trifluoroacetate
           A) Ethyl 1-cyanocyclopentanecarboxylate
                   This compound is prepared according to Helv.
           Chim. Acta, 1952, 35(7), 2561.
P,H
                   9.2 g of sodium are dissolved in 200 cm³ of
           absolute ethanol. Half the solution of sodium ethylate
      20
           formed is poured into a funnel.
                                                 24.88 g of ethyl
           cyanoacetate are added to the remaining half and the
           mixture is brought to the reflux point.
P
                   43.19 g of 1,4-dibromobutane are poured into
           another funnel and the solution of sodium ethylate and
      25
           the 1,4-dibromobutane are simultaneously added dropwise
           to the reaction medium. When the addition is complete,
           reflux is maintained for 2 hours. The mixture is eva-
           porated and the residue is taken up in an ethyl ether/
           water mixture, washed with a saturated solution of
      30
           sodium chloride and then dried.
                                              The product obtained
           distils at 115-120°C under 11 mm of mercury.
                   m = 24 q.
           B) Ethyl 1-aminomethylcyclopentanecarboxylate
                   This compound is prepared by the catalytic
     35
```

hydrogenation of ethyl 1-cyanocyclopentanecarboxylate.

20 g of ethyl 1-cyanocyclopentanecarboxylate are placed in 200 ml of a 10% solution of ammonia in ethanol and hydrogenated at 60°C under a pressure of 100 bar in the presence of rhodium-on-alumina for 72 hours. After filtration on cellite% _____ and evaporation, the residue is chromatographed on silica using a DCM/methanol/20% aqueous ammonia mixture (98/2/0.5; v/v/v) as the eluent.

m = 12.8 g.

05

10

15

 λ 00

C) 2-n-Butyl-5-spirocyclopentane-4(1H)-5,6-dihydropyri-midin-4-one

A mixture containing 13.12 g of the compound obtained in the previous step and 13.5 g of ethyl valerimidate in 100 ml of xylene containing a few drops of acetic acid is refluxed for 13 hours. The reaction medium is evaporated and the residue is taken up in ethyl acetate and a 10% solution of sodium carbonate and then dried and concentrated.

m = 14 g. M.p. = 89-91°C.

- NMR spectrum:

0.80 ppm : t : 3 H : CH_3 (nBu)

1.10-1.80 ppm : m : 12 H : $CH_3-C\underline{H}_2-C\underline{H}_2-$ and cyclopentane

2.05 ppm : t : 2 H : $CH_3 - CH_2 -$

3.20 ppm : s : 2 H : CH₂ (pyrimidinone)

10 ppm : 1 H : s : NH-CO

D) 2-n-Butyl-5-spirocyclopentane-3-[(2'-tert-butoxy-carbonylbiphenyl-4-yl)methyl]-4(1H)-5,6-dihydropyrimi-din-4-one

500 mg of the product obtained in the previous step are placed in 40 ml of DMF in the presence of 115 mg of an 80% dispersion of sodium hydride in oil, under argon, and stirred at room temperature for half an

ρ 35

40

1.08 g of 4-bromomethyl-2'-tert-butoxycarbonylbiphenyl are added and the mixture is stirred for 2 hours. After evaporation, the residue is taken up in an ethyl acetate/water mixture, washed with a saturated solution of sodium chloride and then dried, concentrated and chromatographed on silica using an acetate/hexane mixture (3/7; v/v) as the eluent.

m = 280 mg.

E)

15

20

05

250 ml of the tert-butyl ester prepared in the previous step are dissolved in 10 ml of DCM. The solution is cooled in a bath of iced water, 5 ml of cold trifluoroacetic acid are then added and the mixture is stirred for one hour in the cold and then 1 hour at room temperature. It is evaporated under reduced pres-The residue is taken up in ethyl ether and then The operation is repeated 3 times, the evaporation residue is then taken up in hexane and triturated and the hexane is then decanted. The product is taken up in ethyl ether and the precipitate is filtered off.

m = 190 mg.

M.p. = 153-155°C.

- NMR spectrum:

25

0.85 ppm : t : 3 H : CH, (nBu)

1.35 ppm : sext : 2 H : $CH_3 - CH_2 -$

1.45-2.20 ppm : m : 10 H : $CH_3-CH_2-C\underline{H}_2$ and cyclo-

pentane

T 810x

2.80 ppm : t : 2 H : $CH_3 - CH_2 -$

30

3.80 ppm : s : 2 H : CH, (pyrimidinone)

5.15 ppm : s : 2 H : $N-CH_2$ -

7.25 ppm : m : 8 H : aromatic protons

Table 1 **R4** R5_ H (or R₂) R_1 (I) 05 CH₂ (Ex.) R_1 R_3 CR4R5 Salt M.p. °C CO2H (30) n-C4H9 cyclohexane TFA 172-174 10 (31) CO2CH3 $n-C_4H_9$ cyclopentane 86-87 (32)* CO2H n-C4H9 C(CH₃)C₆H₅ TFA 55-60 (33) CO2H n-C4H9 $C(C_2H_5)_2$ **TFA** 82-84 (34) CO2H n'-C"H7 cyclopentane TFA 164 (35) (**) n-C4H9 cyclopentane 163-164 (36)CO2H $C_{\mathbf{6}}H_{\mathbf{5}}$ cyclopentane TFA 178 (37)CO2H n-C4H9 cycloheptane **TFA** 160-162 (38) CH₃ CO2H cyclopentane TFA 140 20 (39) CO2H n-C4H9 cyclopropane 204 - 205 (40) -CH₂-CH₂-CH₂tetrazolcyclopentane 110 5-yl (41)tetrazoln-C4H9 cyclohexane 130 25 5-yl tetrazol-(42)n-C₃H₇ cyclohexane 141 5-yl (43) CO2H cyclocyclopentane TFA 82-88 pentyl 30 (44) CO2H cyclopentane $n-C_5H_{11}$ **TFA** 151 (45) CO2H CH2-C6H5 cyclopentane TFA 88 (46)CO2H Н cyclopentane 230 (47)CO2H n-C4H9 cyclobutane 178 **TFA** 35

	(48)	CO2H	n-C ₄ H ₉	cyclododecane	TFA	130-135
	(49)	CO ² H	n-C ₄ H ₉	2-adamantane	TFA	164-166
05	(50)	СО⁵Н	n-C ₄ H ₉	4-phenyl- cyclohexane	TFA	155-157
	(51)	CO ₂ H	n-C ₄ H ₉	4-methyl- cyclohexane	TFA	198-200
	(52)	СО2Н	n-C ₄ H ₉	N-acetyl-4- piperidine	TFA	90-95
10	(53)	CO2H	C ₃ F ₇	cyclopentane	-	141-143
	(54)*	CO ₂ H	n-C ₄ H ₉	CCF3	•	207-209
15	(55)*	CO ₂ H	n-C ₄ H ₉	CC1	TFA	105
	(56)	CO ₂ H	n-C ₄ H ₉	N-co CF3	TFA	95-105
20	(57)	CO ₂ H	n-C ₄ H ₉	N-CO-CH-NH ₂ CH-C ₂ H ₅ CH ₃	TFA	125-135
	(58)	CO _z H	n-C ₄ H ₉	N-co C6H5	TFA	85-90

²⁵

^{**} R_1 = H and R_2 = CO_2H * These compounds have an asymmetric carbon and are isolated in the form of a mixture of optical isomers.

CL

EXAMPLE 59

(R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)-methyl]-4-cyclohexyl-4-methyl-2-imidazolin-5-one tri-fluoroacetate

A) 5-Cyclohexyl-5-methylhydantoin

This compound is prepared according to J. Org. Chem., 1960, 25, 1920-1924.

A solution of 50 g of cyclohexyl methyl ketone in 400 ml of 95° alcohol is added over 30 minutes to 29.4 g of sodium cyanide and 192 g of ammonium carbonate in 400 ml of water. The mixture is heated at 55-60°C for 4 hours and then evaporated to half its volume under vacuum and left to stand overnight at +4°C. The precipitate formed is filtered off, washed with water and then dried under vacuum over phosphorus pentoxide to give 65.5 g of the expected hydantoin, which is identified by its IR and NMR spectra.

M.p. = 220°C.

B) (R,S)-2-Amino-2-cyclohexylpropionic acid

This compound is prepared according to J. Org.
Chem., 1960, 25, 1920-1924.

A mixture containing 7 g of the hydantoin prepared in the previous step and 28 g of barium hydroxide octahydrate in 150 ml of water is heated at 160°C for 5 hours in a steel tube. The reaction medium is saturated with dry ice, the insoluble material formed is filtered off and the filtrate is then concentrated under vacuum. The solid residue is taken up in acetone, filtered off and dried to give 5.25 g of the expected acid, which is identified by its IR and NMR spectra. The product melts at 350°C with decomposition.

C) Ethyl ester of (R,S)-2-amino-2-cyclohexylpropionic acid

3 g of the acid prepared in the previous step are added to 40 ml of absolute alcohol saturated with

14

05

10

15

20

25

2

ρ 14

> 30 Э

> > 35

gaseous hydrochloric acid and the mixture is then refluxed for 20 hours, with stirring. The reaction medium is evaporated under vacuum and the residue is taken up in an ether/water mixture, which is brought to pH 9 by the addition of a saturated solution of sodium bicarbonate. The organic phase is decanted, washed with a saturated solution of sodium chloride and then evaporated under vacuum to give 2.1 g of the expected ester in the form of an oil. Identification by IR and NMR spectra.

D) Ethyl valerimidate

05

10

15

20

25

30

This compound is prepared in the form of the hydrochloride according to Mac Elvain (J. Amer. Chem. Soc., 1942, <u>64</u>, 1825-1827). It is freed from its hydrochloride by reaction with potassium carbonate and then extracted with DCM.

E) (R,S)-2-n-Butyl-4-cyclohexyl-4-methyl-2-imidazolin-5-one

2 g of the ester prepared in step C and 2.35 g of ethyl valerimidate are mixed in 6 ml of xylene, to which 6 drops of acetic acid are added; the reaction medium is refluxed for 6 hours. It is then concentrated under vacuum and the residue is chromatographed on fine silica gel using a chloroform/methanol/acetic acid mixture (95/9/3; v/v/v) as the eluent. The fractions containing the desired product are combined and then evaporated under vacuum; the residue is taken up in an ethyl acetate/water mixture and the pH is brought to 9 by the addition of a solution of sodium hydroxide. organic phase is decanted, washed with water and then with a saturated solution of sodium chloride, dried over sodium sulfate and then evaporated to dryness. The expected product is obtained in the form of a thick oil, which solidifies to give an amorphous solid.

m = 1.56 mg.

IR (chloroform): $1720 \text{ cm}^{-1} : C=0_A$ 1640 cm-1 : C=N, NMR consistent. F) 4-Bromomethyl-2'-tert-butoxycarbonylbiphenyl This compound is prepared by the method described in European patent application 324 377. G) (R,S)-2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-tertbutoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-5-one 10 1.5 g of the imidazolinone prepared in the previous step are dissolved in 20 ml of DMF. 250 mg of sodium hydride as an 80% dispersion in oil are added. After stirring for 20 minutes, 2.48 g of the compound prepared in step F) are added and the reaction medium is left to stand for 2 hours at RT. It is taken up in 15 an ethyl acetate/water mixture; the organic phase is decanted, washed with water and with a saturated solution of sodium chloride, dried over sodium sulfate and then concentrated under vacuum. The residue is chromatographed on silica using an ethyl acetate/toluene 20 mixture (1/4; v/v) as the eluent to give 1.8 g of the expected product in the form of a white wax. - IR (chloroform): 1710-1730 cm-1: ester and imidazolinone C=0 $1630 \text{ cm}^{-1} : \text{C=N}_{4}$ H) (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-cyclohexyl-4-methyl-2-imidazolin-5-one trifluoroacetate 1.5 g of the compound obtained in the previous 30 step are stirred for 40 minutes in 7 ml of TFA and 7 ml The reaction medium is concentrated under vacuum and taken up in ether to give a white solid, which is filtered off, washed with ether and dried

86

under vacuum.

m = 1.40 g.

```
M.p. = 171°C.
                   MH+: 447.
             7.10-7.70 ppm : m : 8 aromatic H
             4.45 ppm : s : 2 H : N-CH_2-C_6H_4-A_1
             2.25 ppm : s : CH<sub>3</sub> in the 4 position
           EXAMPLE 60
                   (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)-
      10
           methyl]-4-cyclohexylmethyl-4-methyl-2-imidazolin-5-one
           trifluoroacetate
                   The
                        following compounds
                                               are
                                                    prepared
           cyclohexyl methyl ketone according to the procedures
           described in Example 59:
          A) 5-Cyclohexylmethyl-5-methylhydantoin
             M.p. = 205-206°C.
          B) (R,S)-2-Amino-3-cyclohexyl-2-methylpropionic acid
              Characterized by its IR and NMR spectra.
          C) Ethyl ester of (R,S)-2-amino-3-cyclohexyl-2-methyl-
     20
          propionic acid
             Characterized by its IR and NMR spectra.
          D) (R,S)-2-n-Butyl-4-cyclohexylmethyl-4-methyl-2-
          imidazolin-5-one
                   This product is obtained in the form of an oil,
          which solidifies.
                              Identification by IR and NMR.
            IR (chloroform):
            1720 cm<sup>-1</sup>: imidazolinone C=O
            1630 cm-1 : C=N
 P,40
          E) (R,S)-2-n-Butyl-4-cyclohexylmethyl-4-methyl-1-[(2'-
     30
          tert-butoxycarbonylbiphenyl-4-yl)methyl]-2-imidazolin-
          5-one
                  This product is obtained by treating the com-
40
          pound of step D with 4-bromomethyl-2'-tert-butoxycar-
          bonylbiphenyl in the presence of sodium hydride.
     35
          purification by chromatography, the product is in the
```

```
form of an oil, which crystallizes in the refrigerator.
             Yield: 51%.
             M.p. = 73-75°C.
      IR (KBr):
       1700-1730 cm-1: imidazolinone and ester C=O
     F) (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-
     4-cyclohexylmethyl-4-methyl-2-imidazolin-5-one tri-
     fluoroacetate
             Yield: 90%.
             M.p. = 143-146°C.
      NMR:
       7.20-7.80 ppm : 8 H : aromatic protons
       4.85 ppm : m : 2 H : N-CH_2-C_6H_4-
       2.70 ppm : t : 3 H : -CH_2-CH_2-CH_3-CH_3
       1.80-0.85 ppm : m : 20 H : 4-methyl
                                 4-cyclohexylmethyl
                                   -CH_2-C\underline{H}_2-C\underline{H}_2-CH_3
       0.80 ppm : t : 3 H : CH_2 - CH_2 - CH_2 - CH_3
     EXAMPLE 61
             (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)-
     methyl]-4-cyclohexyl-4-ethyl-2-imidazolin-5-one tri-
     fluoroacetate
     A) (R,S)-2-Amino-2-cyclohexylbutyronitrile hemioxalate
             1.18 g of ammonium chloride and 1.5 ml of a 32%
     aqueous solution of ammonia are added successively to a
     solution of 1.03 g of sodium cyanide in 6 ml of water,
     followed, over 15 minutes, by 2.8 g of cyclohexyl ethyl
30
     ketone in 5 ml of methanol, and the reaction medium is
     heated at 60°C for 6 hours. It is cooled and extracted
     4 times with DCM and the extracts are then evaporated
     under vacuum.
                     The residue is treated again with the
     same amounts of cyanide, ammonium chloride, aqueous
35
     ammonia, water and methanol at 60°C for 6 hours.
```

reaction medium is then cooled and extracted 4 times with DCM and the extracts are dried and then evaporated under vacuum. The residue is taken up in 30 ml of acetone, and a solution of 1.1 g of oxalic acid dihydrate in 10 ml of acetone is added dropwise. After 15 minutes, the precipitate formed is filtered off, washed with acetone and then with ether and dried under vacuum to give 2.87 g of product, which becomes pasty at 120°C. Identification by IR and NMR.

 $0 \le \frac{1}{3} 10 = 1R \text{ of the free base:}$

05

15

20

25

30

35

P

B) (R,S)-2-Amino-2-cyclohexylbutyramide

2.84 g of the nitrile obtained in step A are added over 30 minutes to 6 ml of pure sulfuric acid. The mixture is heated for 1 hour at 85°C and then 30 minutes at 100°C. After cooling, the reaction medium is added dropwise to 20 ml of iced 32% aqueous ammonia. The mixture is extracted with chloroform and the extract is then dried over sodium sulfate and evaporated under vacuum to give 2.5 g of the expected product in the form of a wax. Identification by IR and NMR.

C) (R,S)-2-n-Butyl-4-cyclohexyl-4-ethyl-2-imidazolin-5-one

2.45 g of the product obtained in the previous step are dissolved in 30 ml of THF; 1.84 ml of triethylamine are added, followed, over 25 minutes, by a solution of 1.73 ml of valeroyl chloride in 10 ml of THF. After stirring for 2 hours, 3.57 g of potassium hydroxide pellets, then 4 ml of water and then 10 ml of methanol are added and the mixture is refluxed for 3 hours. After cooling, 6 g of ammonium chloride are added and the reaction medium is concentrated to half its volume and then extracted with ethyl acetate. The organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulfate and then

concentrated under vacuum. The residue is taken up in 10 ml of hexane and left to stand for 4 hours at 0°C. The solid formed is filtered off and dried.

m = 2.62 g.

M.p. = 80-85°C.

Identification by NMR and IR (chloroform and KBr).

D) (R,S)-2-n-Butyl-1-[(2'-tert-butoxycarbonylbiphenyl-4-yl)methyl]-4-cyclohexyl-4-ethyl-2-imidazolin-5-one

The procedure described in Example 59, step G), is followed; 1.50 g of the expected product are obtained, after chromatography, by treating 1 g of the product of step C) with 4-bromomethyl-2'-tert-butoxy-carbonylbiphenyl.

IR (chloroform):

1700-1720 cm⁻¹: imidazolinone and ester C=0

1635 $cm^{-1} : C=N_{\Lambda}$

E) (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)methyl]-4-cyclohexyl-4-ethyl-2-imidazolin-5-one trifluoro-acetate

The expected product is obtained by treating the compound obtained in the previous step by the method described in Example 59, step H).

Yield: 85%.

M.p. = 159-161°C.

- NMR:

7.10-7.70 ppm : m : 8 H : aromatic protons

4.75 ppm : s : 2 H : $-N-CH_2-C_6H_4-$

2.60 ppm : t : 2 H : $-CH_2 - CH_2 - CH_2 - CH_3$

0.90-1.90 ppm : m : 17 H : cyclohexyl + $-CH_2-CH_3$ +

-CH₂-C<u>H</u>2-CH3-CH3

0.80 ppm : t : 3 H : $-C\underline{H}_3$

0.60 ppm : t : 3 H : $-CH_3$

35

30

10

20

40

CL P,40 -P,40 -P,40 05

EXAMPLE 62

(R,S)-2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one A) 4-Methyl-2'-(tetrazol-5-yl)biphenyl

2'-Cyano-4-methylbiphenyl is prepared according to European patent application 324 377.

2 g of this compound are placed in a round-bottomed flask in the presence of 4 g of tributyltin azide and 20 ml of xylene and the mixture is refluxed for 110 hours. After it has returned to RT, the reaction medium is diluted with toluene and the organic phase is then extracted 3 times with 50 ml of 1 N sodium hydroxide solution. The aqueous phases are combined, washed with ether and then cooled in a bath of iced water and acidified to pH 1-2 by the addition of concentrated hydrochloric acid. The precipitate formed is filtered off, washed with water and dried under vacuum over phosphorus pentoxide to give 2.18 g of the expected product.

0,14 20

14

10

 $\text{M.p.} = 146\text{-}148\,^{\circ}\text{C}$ after recrystallization from ethyl acetate.

B) 4-Methyl-2'-(triphenylmethyltetrazol-5-yl)biphenyl

5.46 g of the compound obtained in step A, 6.9 g of trityl chloride, 100 ml of DCM and 4 ml of triethylamine are mixed in a round-bottomed flask. The medium is refluxed for 4 hours and then evaporated. The residue is taken up in ethyl acetate and washed with water, a 3% solution of potassium hydrogensulfate, 1 N sodium hydroxide solution, water and then a saturated solution of sodium chloride. It is dried over sodium sulfate, filtered and evaporated to give 11 g of the expected product.

M.p. = 161-164°C.

P. 14

35

30

P,40

C) 4-Bromomethyl-2'-(triphenylmethyltetrazol-5-yl)biphenyl

,

05

10

20

25

A mixture containing 11 g of the compound prepared in step B, 140 ml of carbon tetrachloride, 4.12 g of NBS and 0.4 g of benzoyl peroxide is refluxed for 3 hours. After it has returned to RT, it is filtered and the filtrate is then evaporated. The residue is taken up in 30 ml of isopropyl ether. The precipitate formed is filtered off and then dried under vacuum.

P,40

The product obtained is used as such in the next step.

D) (P, S)=2=n=Butyl=4=cyclobeyyl=4=methyl=1=[(2/-(tri=

D) (R,S)-2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tri-phenylmethyltetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one

15

394 mg of sodium hydride as an 80% dispersion in oil are suspended in 100 ml of anhydrous DMF under nitrogen, 1.71 g of 2-n-butyl-4-cyclohexyl-4-methyl-2imidazolin-5-one in 10 ml of anhydrous DMF, prepared in Example 59, step E), are added gradually, with stirring, and the mixture is stirred for 30 minutes. 4.86 g of the compound prepared in step C) are added and the mixture is stirred for 3 hours at RT. evaporated to dryness, the residue is then taken up in 60 ml of ethyl acetate and the medium is filtered and evaporated to dryness. The oil obtained is chromatographed on silica using an ethyl acetate/hexane mixture (1/3; v/v) as the eluent. After evaporation of the solvents, 3.45 g of the expected product are obtained in the form of a solid foam.

30

-070X

- NMR (CDCl₃):

0.9 ppm : $m : 3 H : -CH_2 - CH_2 - CH_2 - CH_3$

1-1.8 ppm : m : 18 H : 4-methyl + 4-cyclohexyl + $CH_2-C\underline{H}_2-C\underline{H}_2-C\underline{H}_3$

2.35 ppm : distorted t : 2 H : $CH_2-CH_2-CH_3-CH_3$

35 4.5 ppm : s : 2 H : $N-CH_2-C_6H_4-$

6.70-8 ppm : m : 23 H : aromatic protons E) (R,S)-2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one 3.38 g of the compound prepared in step D) are dissolved in a mixture of 40 ml of methanol and 20 ml 05 3.5 ml of 4 N hydrochloric acid are added and the mixture is stirred for 3 hours at RT. After evaporation to dryness, the residue is taken up in 10 ml of 2 N sodium hydroxide solution and 10 ml of ether and the mixture is then stirred until a solution is formed. 10 The aqueous phase is extracted twice with ether. aqueous phase is acidified to pH 6 with dilute hydrochloric acid and then extracted 3 times with ethyl acetate and the extracts are dried over sodium sulfate and evaporated to dryness to give 1.72 g of the expec-15 ted product in the form of a white solid foam. - NMR (CDCl₂): 0.9 ppm : t : 3 H : $CH_2 - CH_2 - CH_2 - CH_3$ 0.95-2.7 ppm : m : 18 H : 4-cyclohexyl + 4-methyl + $-CH_2-CH_2-CH_3-CH_3$ 2.1 ppm : t : 2 H : $-CH_2 - CH_2 - CH_3 - CH_3$ 4.4-4.7 ppm : AB system : 2 H : N-CH2-C6H4-6.95-7.1 ppm : q : 4 H : aromatic protons 7.3-7.6 ppm : m : 3 H : aromatic protons 7.8 : d : 1 H : aromatic protons 25 EXAMPLE 63

2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tet-razol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one, levorotatory

A) 5-Methyl-5-phenylhydantoin

35

30 g of acetophenone diluted in 250 ml of 95° alcohol are added over 30 minutes to a mixture of 18.35 g of sodium cyanide and 125 g of ammonium bicarbonate in 250 ml of water and the reaction medium is

14

05

10

15

20

25

30

heated at 60-65°C for 22 hours, with stirring. It is concentrated to half its volume under vacuum and the solid which has precipitated is filtered off, washed with water and ether and then dried under vacuum to give 38 g of a white solid, which is identified by IR.

M.p. = 190-192°C.

B) (R,S)-2-Amino-2-phenylpropionic acid

20 g of the compound prepared in the previous step are added to a mixture of 75 g of barium hydroxide octahydrate and 500 ml of water and the reaction medium is then heated at 160°C for 5 hours in a steel tube. It is saturated with dry ice and the precipitate is then filtered off. The filtrate is concentrated under vacuum and the white solid formed is taken up in acetone, filtered off, washed with acetone and ether and then dried to give 15.3 g of the expected acid.

M.p. = 260-265°C (with decomposition).

C) Ethyl ester of (R,S)-2-amino-2-phenylpropionic acid

Using a spatula, 24 g of the acid prepared in the previous step are added to a solution of 80 g of gaseous hydrochloric acid in 210 ml of absolute ethanol, with stirring, and the mixture is refluxed for 6 and a half hours. It is concentrated under vacuum, the residue is taken up in 600 ml of ethyl acetate and 100 ml of water, and 2 N sodium hydroxide solution is added until the pH is 9. The organic phase is decanted, washed with water and with a saturated solution of sodium chloride, dried over sodium sulfate and then concentrated under vacuum to give 25.5 g of the expected product in the form of an oil. Identification by IR.

D) Dextrorotatory ethyl ester of 2-amino-2-phenylpropionic acid

The enantiomers of the ester prepared in the previous step are separated by the method described by Y. Sugi and S. Mitsui in Bull. Chem. Soc. Japan, 1969,

P,14

ρ

42, 2984-2988. 19.8 g of (L)(+)-tartaric acid are added to the 25.5 g of ester obtained in step C, diluted in 210 ml of absolute ethanol. The mixture is heated to 60°C to give a total solution, which is then left to stand at RT for 4 hours. The precipitate formed is filtered off, then rinsed with twice 70 ml of absolute alcohol and then redissolved in 200 ml of alcohol at the boil and the solution is then left to stand at RT for 72 hours. The acicular crystals formed are filtered off, rinsed twice with 30 ml of alcohol and then dried under vacuum to give 11.9 g of the tartaric acid salt of the expected dextrorotatory ester.

M.p. = 172-173°C.

 $[\alpha]_{D} = +44.5^{\circ} (C = 1, water).$

The remaining alcoholic solution is enriched in the tartaric acid salt of the levorotatory ester.

6.1 g of the tartaric acid salt of the dextrorotatory ester are taken up in 30 ml of water and then
200 ml of ethyl acetate, and 5 N sodium hydroxide solution is added until the pH is 9. The organic phase is
decanted, washed with water and a saturated solution of
sodium chloride, dried over sodium sulfate and then
concentrated under vacuum to give 3.33 g of the expected product in the form of an oil.

 $\left[\alpha\right]_{D} \; = \; +24\,^{\circ} \; \; (\text{C = 2, ethanol}). \quad \text{Identification}$ by NMR.

E) Dextrorotatory ethyl ester of 2-amino-2-cyclohexylpropionic acid

3.30 g of the dextrorotatory ester obtained in the previous step are diluted in 120 ml of acetic acid; 1.5 g of platinum oxide are added and the mixture is then hydrogenated at atmospheric pressure. After hydrogenation for 40 hours, the reaction medium is filtered and then concentrated under vacuum. The residue is taken up in an ether/water mixture and 6 N hydro-

P,14 P,60,4 P 15

05

10

20

30

35

P,60

ρ

chloric acid is added until the pH is 2. The organic phase is separated from the aqueous phase. acetate is added, followed by 5 N sodium hydroxide solution until the pH is 9.5. The organic phase is decanted, washed with water and a saturated solution of sodium chloride, dried over sodium sulfate and then concentrated under vacuum to give 3.10 g of the expected product.

P,60,H

05

15

20

25

 $[\alpha]_D = +18^{\circ}$ (C = 2, ethanol). Literature: W.A. Bonner et al., J. Amer. Chem. Soc., 1956, 78, 3218-3221.

Identification by NMR.

F) 2-n-Butyl-4-cyclohexyl-4-methyl-2-imidazolin-5-one, levorotatory

A mixture containing 3 g of the dextrorotatory ester obtained in the previous step, 4.7 g of ethyl valerimidate and 8 drops of acetic acid in 15 ml of xylene is brought to the reflux point, with stirring.

After refluxing for 7 hours, the reaction medium is concentrated under vacuum. The residue is chromatographed on silica using a chloroform/methanol/ acetic acid mixture (95/9/3) as the eluent; the fractions containing the product are combined and concentrated under vacuum. The residue is taken up in an ethyl acetate/water mixture and the pH is brought to 9 by the addition of 5 N sodium hydroxide solution. organic phase is decanted, washed with water and a saturated solution of sodium chloride, dried over sodium sulfate and concentrated under vacuum to give an oil, which changes to an amorphous solid.

$$m = 2.36 g$$
.
 $[\alpha]_D = -57.2^\circ$ (C = 1, chloroform).

 $[\alpha]_{D} = -\frac{1}{2}$ F, 60,31

[α]_D =
IR (chloroform):

1720 cm⁻¹: C=0

1640 cm⁻²: C=N

1640 cm⁻²: C=N

P

The IR spectrum confirms the 5-one form of the imidazolinone in solution.

940

G) 2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(triphenyl-methyltetrazol-5-yl)biphenyl-4-yl)methyl] imidazoline-2-one 5, levorotatory

Ĺ

05

This compound is prepared from the product prepared in step F by following the procedure described in Example 62, step D.

Yield: 73%.

 $[\alpha]_D = -22.8^{\circ}$ (C = 1, chloroform).

10 15,00,30 10

NMR: superimposable on that of the compound of Example 62, step D.

H) 2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one, levoro-

15 tatory

This compound is prepared from the product prepared in step G by following the procedure described in Example 62, step E.

P,60,3120

Yield: 85%.

 $[\alpha]_{D} = -25.9^{\circ}$ (C = 1, methanol).

- NMR: superimposable on that of the compound of Example 62, step E.

CL P, 425

EXAMPLE 64

2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tet-razol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one, dextrorotatory

A) Levorotatory ethyl ester of 2-amino-2-phenylpropionic acid

9 30

35

The alcoholic solution obtained in Example 63, step D), is concentrated after separation of the crystals of the tartaric acid salt of the dextrorotatory ethyl ester of 2-amino-2-phenylpropionic acid. The solid residue is taken up in 150 ml of water and 600 ml of ethyl acetate and the pH is brought to 9 by the

addition of 5 N sodium hydroxide solution. The organic phase is decanted, washed with water and a saturated solution of sodium chloride, dried over sodium sulfate and then concentrated under vacuum to give 20.6 g of the ester enriched in the levorotatory form.

31

10

15.9 g of (D)(-)-tartaric acid are added to 20.5 g of this ester diluted in 200 ml of absolute ethanol, and a solution is formed at the boiling point of the alcohol. After 5 hours at RT, the acicular crystals formed are filtered off, washed twice with 50 ml of absolute alcohol and then dried under vacuum to give 16.3 g of the tartaric acid salt of the expected product.

P,14 P,60,31₁₅

M.p. =
$$172-173$$
°C.
 $[\alpha]_D = -45.2$ ° (C = 1, water).

6 g of the salt obtained are taken up in 50 ml of water and 200 ml of ethyl acetate and the pH is brought to 9.5 by the addition of 5 N sodium hydroxide solution. The organic phase is decanted, washed with water and a saturated solution of sodium chloride and then dried over sodium sulfate and concentrated under vacuum to give 3.31 g of the expected product in the form of an oil, which is identified by NMR.

P,60,31

20

$$[\alpha]_{D} = -25.5^{\circ} (C = 2, ethanol).$$

 ρ 25

B) Levorotatory ethyl ester of 2-amino-2-cyclohexyl-propionic acid

1

The procedure of Example 63, step E), is followed to give 3.20 g of the expected product from 3.30 g of the compound of step A.

P,60,3130

$$[\alpha]_D = -19.2^{\circ}$$
 (C = 1, ethanol).

C) 2-n-Butyl-4-cyclohexyl-4-methyl-2-imidazolin-5-one, dextrorotatory

P

The procedure of Example 63, step F), is followed.

P,6035

$$[\alpha]_D = +56.9^{\circ}$$
 (C = 1, chloroform).

The NMR and IR spectra are superimposable on those of the levorotatory isomer prepared in Example 63, step F).

P,40

D) 2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(triphenyl-methyltetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one, dextrorotatory

P

The procedure described in Example 63, step G), is followed to give 2.3 g of the expected product in the form of a white solid from 1.1 g of the compound prepared in step C.

P,60,H,3

 $[\alpha]_D = -23.8^{\circ}$ (C = 1, methanol) and NMR spectrum superimposable on that of the compound prepared in Example 62, step D.

P,40

E) 2-n-Butyl-4-cyclohexyl-4-methyl-1-[(2'-(tetrazol-5-yl)biphenyl-4-yl)methyl]-2-imidazolin-5-one, dextro-rotatory

The procedure described in Example 64, step H, is followed to give 1.1 g of the expected product in the form of a white solid from 2.15 g of the compound prepared in step D.

20

25

 $[\alpha]_D = +27.1^{\circ} (C = 1, methanol).$

The NMR spectrum is superimposable on that of the compound prepared in Example 62.

Likewise, the following compounds according to the invention were prepared according to the procedure described in Example 61:

CL P,40

EXAMPLE 65

(R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)-methyl]-4-cyclopropyl-4-methyl-2-imidazolin-5-one trifluoroacetate

0

P,14

M.p. = 149-150°C.

- NMR:

7.05-7.80 ppm : m : 8 H : aromatic protons

4.70 ppm : s : 2 H : $N-CH_2-C_6H_4-$

```
2.45 ppm : t : 2 H : CH_2 - CH_2 - CH_3 - CH_3
                  1.05-1.45 ppm : m + s : 8 H : -CH_2 - CH_2 - CH_2 - CH_3 + CH_3
                                                   in the 4 position +
                                                   cyclopropane CH
          05
                  0.70 ppm : t : 3 H : CH_3 - (CH_2)_3 -
                  0.05-0.45 ppm : m : 4 H : 2 cyclopropane CH,
                EXAMPLE 66
                        (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)-
               methyl]-4,4-dicyclopropyl-2-imidazolin-5-one tri-
                fluoroacetate
                        M.p. = 132-134°C.
                 Mass spectrum:
                  MH+ : 431
                - NMR:
                  7.15-7.80 ppm : m : 8 H : aromatic protons
                  4.75 ppm : s : 2 H : N-CH_2-C_6H_4-
                  2.50 ppm : t : 2 H : CH_2 - CH_2 - CH_3 - CH_3
                  1.1-1.60 ppm : m : 6 H : CH_2 - CH_2 - CH_3 - CH_3 + 2 cyclo-
T1000X
                                             propane CH
                  0.80 ppm : t : 3 H : (CH_2)_3 - C\underline{H}_3
                  0.10-0.80 ppm : m : 8 H : 4 cyclopropane CH,
               EXAMPLE 67
                        (R,S)-2-n-Butyl-1-[(2'-carboxybiphenyl-4-yl)-
               methyl]-4-cyclopentyl-4-methyl-2-imidazolin-5-one tri-
                fluoroacetate
                        M.p. = 104-107°C.
                - NMR:
          30
                  7.20-7.80 ppm : m : 8 H : aromatic protons
                  4.85 ppm : AB system : 2 H : N-C\underline{H}_2-C_6\underline{H}_4-
                  2.75 ppm : distorted t : 2 H : CH_2-CH_2-CH_3
 T1001X
                  2.20-1.00 ppm : m + s : 16 H : cyclopentane + CH, in
                                                    the 4 position +
          35
                                                    -CH2-CH2-CH3
                  0.80 ppm : t : 3 H : CH_3 - (CH_2)_3 -
```