STANISLAS Exercices

Fonctions vectorielles -Courbes planes paramétrées

PSI 2021-2022

Chapitre XVI

I. Fonctions à valeurs vectorielles

Exercice 1. On suppose que, pour tout $t \in \mathbb{R}$, A(t) est une matrice ansitymétrique d'ordre n. Soit X une fonction à valeurs dans $\mathcal{M}_n(\mathbb{R})$ telle que X' = AX.

- 1. Déterminer l'équation différentielle satisfaite par $Y = {}^t\!XX$.
- **2.** Montrer que, s'il existe $t_0 \in \mathbb{R}$ tel que $X(t_0)$ soit orthogonale, alors X(t) est orthogonale pour tout $t \in \mathbb{R}$.

Exercice 2. Soient I un intervalle de \mathbb{R} et $\Omega: I \to \mathscr{M}_n(\mathbb{R})$ une fonction dérivable telle que pour tout $t \in I$, $\Omega(t) \in O_n(\mathbb{R})$. On suppose que n est impair. Montrer que, pour tout $t \in I$, $\det(\Omega'(t)) = 0$.

Exercice 3. (**) [ESPCI] L'espace vectoriel \mathbb{R}^2 est muni de sa structure euclidienne canonique. Soit $f \in \mathscr{C}^1(]-1,1[,\mathbb{R}^2)$ telle que f(0)=0 et $f'(0) \neq 0$. Montrer qu'il existe $\varepsilon > 0$ tel que $t \mapsto \|f(t)\|$ soit croissante sur $[0,\varepsilon[$.

II. Points particuliers

Exercice 4. Montrer que l'arc paramétré Γ défini par $t \mapsto \left(\frac{1}{t^2-t}, \frac{t}{t^2-1}\right)$ admet un unique point double et que ses tangentes en ce point sont perpendiculaires.

Exercice 5. Montrer que la courbe paramétrée $t\mapsto \left(\frac{4t-3}{t^2+1}\frac{2t-1}{t^2+2}\right)$ admet un unique point singulier, et tracer l'allure de la courbe au voisinage de ce point.

Exercice 6. On considère l'arc paramétré $t \mapsto \left(t + \frac{4}{t}, \frac{t}{3} + 2 + \frac{3}{t+1}\right)$. Étudier les asymptotes et les points singuliers de cette courbe.

Exercice 7. (Cardioïde) [TPE] Soit $\mathscr C$ la courbe d'équation $\begin{cases} x(t) &= 2\cos(t) - \cos(2t) \\ y(t) &= 2\sin(t) - \sin(2t) \end{cases}$ Tracer cette courbe en précisant les tangentes éventuelles.

III. Avec Python

Exercice 8. [Centrale] Soit L l'arc paramétré défini par

$$(x(t) = \sqrt{\cos^2(t) + 4\cos(t) + 3}, y(t) = \sin(t))$$

- 1. Préciser le domaine de définition et faire (avec Python) le tracé de la courbe. Justifier les symétries détectées. En déduire un domaine d'étude.
- 2. Étudier les variations sur le domaine d'étude et faire l'étude aux éventuels points singuliers.
- 3. Donner l'expression des tangentes à l'origine.
- **4.** Donner une valeur approchée de la longueur de L.

Exercice 9. (Folium de DESCARTES) [Centrale] Pour $t \neq -1$, soit $\varphi(t) = (f(t), g(t))$ avec $f(t) = \frac{t}{1+t^3}$ et $g(t) = \frac{t^2}{1+t^3}$.

- 1. Tracer avec Python le support de cet arc. Étudier les symétries, réduire l'intervalle d'étude, déterminer le comportement lorsque t tend vers -1.
- **2.** On remarque la présence d'une boucle. Estimer numériquement la longueur de cette boucle.
- 3. Trouver une équation cartésienne de la courbe de la forme F(x,y)=0.
- **4.** Montrer que trois points distincts $\varphi(t_1)$, $\varphi(t_2)$, $\varphi(t_3)$ sont alignés si et seulement si $t_1t_2t_3 = -1$.

Mathématiciens

DESCARTES René (31 mar. 1596 à La Haye en Touraine-11 fév. 1650 à Stockholm).