例1.1

A: 10; B: 8; C: 7; A*2+B*1->4000; A*1+B*1+C*1->3000

决策变量 x_1、x_2;

目标函数 z = 4000*x 1+3000*x 2

约束条件 A<=10; B<=8; C<=7; x_1,x_2>=0

```
% doc linprog
f = [-4000,-3000];
A = [2 1;1 1;0 1];
b = [-10; -8; -7];
[x,fv] = linprog(f, A, b)
```

找到最优解。

 $x = 2 \times 1$

-1.5000

-7.0000

fv = 27000

例1.2

市场上有n种资产 s_i (i=1,2,L,n) 可以选择,现用数额为M 的相当大的资金作一个时期的投资。这n种资产在这一时期内购买 s_i 的平均收益率为 r_i ,风险损失率为 q_i ,投资越分散,总的风险越少,总体风险可用投资的 s_i 中最大的一个风险来度量。

购买 S_i 时要付交易费,费率为 P_i ,当购买额不超过给定值 u_i 时,交易费按购买 u_i 计算。另外,假定同期银行存款利率是 r_0 ,既无交易费又无风险 ($r_0 = 5\%$)。

表 1.1 投资的相关数据

S_i	$r_i(\%)$	$q_i(\%)$	$p_i(\%)$	$u_i(\vec{\pi})$
u_{i}	28	2.5	1	103
S_2	21	1.5	2	198
S_3	23	5.5	4.5	52
S	25	2.6	6.5	40

试给该公司设计一种投资组合方案,即用给定资金M,有选择地购买若干种资产或存银行生息,使净收益尽可能大,使总体风险尽可能小。

目标函数

min max{q_i, x_i | i=1,2,L,n}

max (r_i - p_i) * x_i

约束条件

sum(x i) = M

x i > 0

线性化

- (1) 固定风险水平: q_i * x_i / M <= a
- (2) 固定盈利水平: (r_i p_i) * x_i >= k
- (3) 对风险与收益分别定权

```
% 方案一
cla; clear all;
a=0;
hold on
while a < 0.05
   c = [-0.05, -0.27, -0.19, -0.185, -0.185];
   A = [zeros(4,1),diag([0.025,0.015,0.055,0.026])];
   b = a*ones(4,1);
   Aeq = ones(1,5);
   beq = 1;
   LB = zeros(5,1);
    [x,Q] = linprog(c,A,b,Aeq,beq,LB);
   Q = -Q;
    plot(a,Q,'*k');
    a = a+0.001;
end
```

找到最优解。

找到最优解。

找到最优解。

找到最优解。

找到最优解。

.........

```
xlabel('a'),ylabel('Q')
```


找到最优解。

找到最优解。

找到最优解。

找到最优解。

找到最优解。

xlabel('a2'),ylabel('Q')

