时间序列分析 作业三

502022370071, 庄镇华, zhuangzh@lamda.nju.edu.cn

2022年11月18日

作业提交注意事项

- (1) 请严格参照教学立方网站所述提交作业,文件命名统一为学号 _ 姓名.pdf;
- (2) 未按照要求提交作业,或提交作业格式不正确,将会被扣除部分作业分数;
- (3) 除非有特殊情况(如因病缓交),否则截止时间后不接收作业,本次作业记零分。
- 1. 考虑线性模型 $Y = \alpha + \beta X + \varepsilon$, 其中 α 和 β 都是常量。X 和 ε 是互不相关的随机变量,均值和方差如下: $E[X] = \mu_X, E[\varepsilon] = 0$, $Var[X] = \sigma_X^2$, $Var[\varepsilon] = \sigma_\varepsilon^2$ 。求:
 - 1) $E[Y \mid X]$ 和 $Var[Y \mid X]$
 - 2) E[Y] 和 Var[Y]

Solution. 1)

$$\begin{split} \mathbf{E}[Y \mid X] &= \mathbf{E}[\alpha + \beta X + \varepsilon | X] \\ &= \mathbf{E}[\alpha | X] + \mathbf{E}[\beta X | X] + \mathbf{E}[\varepsilon | X] \\ &= \alpha + \beta X \end{split}$$

$$Var[Y \mid X] = E[(Y - E[Y \mid X])(Y - E[Y \mid X])^T \mid X]$$

$$= E[(Y - \alpha - \beta X)(Y - \alpha - \beta X)^T \mid X]$$

$$= E[\varepsilon \varepsilon^T \mid X]$$

$$= E[(\varepsilon - E[\varepsilon])(\varepsilon - E[\varepsilon])^T \mid X]$$

$$= Var[\varepsilon \mid X]$$

$$= \sigma_{\varepsilon}^2$$

2)

$$E[Y] = E[E[Y|X]]$$

$$= E[\alpha + \beta X]$$

$$= \alpha + \beta \mu_X$$

$$Var[Y] = E[Var[Y|X]] + Var[E[Y|X]]$$
$$= E[\sigma_{\varepsilon}^{2}] + Var[\alpha + \beta X]$$
$$= \sigma_{\varepsilon}^{2} + \beta^{2}\sigma_{X}^{2}$$

2. 1) 已知随机过程

$$X_t = \varepsilon_t + c \left(\varepsilon_{t-1} + \varepsilon_{t-2} + \cdots \right)$$

其中 c 是一个常量, $\{\varepsilon_t\}$ 是白噪声, 证明这一随机过程是非平稳的。

2) 基于 X_t , 引入新的过程

$$Y_t = \nabla X_t$$

请证明 $\{Y_t\}$ 是一个 MA(1) 过程, 并说明 $\{Y_t\}$ 是否是平稳的。

3) 求 $\{Y_t\}$ 的 ACF 。

Solution. 1) 将 X_t 写为以下形式的随机过程:

$$X_t = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}$$

则 $\psi_0 = 1; \psi_i = c, i \ge 1;$ 当 |z| > 1 时,

$$\psi(z) = \sum_{i=0}^{\infty} \psi_i z^{-i} = 1 + c(z^{-1} + z^{-2} + \dots)] = 1 + c \frac{1 - (\frac{1}{z})^{\infty}}{z - 1}$$

不收敛,因此随机过程 X_t 是非平稳的。

2)

$$Y_t = \nabla X_t = X_t - X_{t-1} = \varepsilon_t - (1 - c)\varepsilon_{t-1}$$

由 $\{\varepsilon_t\}$ 是白噪声, c 是一个常量, Y_t 具有如下结构:

$$\begin{cases} Y_t = 0 + \varepsilon_t - (1 - c)\varepsilon_{t-1} \\ 1 - c \neq 0 \\ \mathbf{E}[\varepsilon_t] = 0, \mathbf{Var}[\varepsilon_t] = \sigma_{\varepsilon}^2, \mathbf{E}[\varepsilon_s \varepsilon_t] = 0, s \neq t \end{cases}$$

根据定义, q=1, $\mu=0$, $\theta_1=1-c$, $\{Y_t\}$ 是一个中心化 MA(1) 过程,易知 $\{Y_t\}$ 是平稳过程,因为 MA(q) 模型的统计性质是有限项级数求和,总是收敛,因此都是平稳过程。

3) 自相关系数 ACF

$$\rho_{YY}(k) = \frac{E[(Y_t - \mu_Y)(Y_{t+k} - \mu_Y)]}{\sqrt{E[(Y_t - \mu_Y)^2]E[(Y_{t+k} - \mu_Y)^2]}}$$

易知 $\rho(0) = 1$; $\rho(k) = 0$, $k \ge 2$; 当 k = 1 时,由 $\mu_Y = 0$; $\mathrm{E}[\varepsilon_s \varepsilon_t] = 0$, $s \ne t$,

$$\rho_{YY}(1) = \frac{E[Y_t Y_{t+1}]}{\sqrt{E[Y_t^2]E[Y_{t+1}^2]}} = \frac{E[(\varepsilon_t - (1-c)\varepsilon_{t-1})(\varepsilon_{t+1} - (1-c)\varepsilon_t)]}{\sqrt{E[(\varepsilon_t - (1-c)\varepsilon_{t-1})^2]E[(\varepsilon_{t+1} - (1-c)\varepsilon_t)^2]}} = -\frac{(1-c)}{1 + (1-c)^2}$$

综上,

$$\rho_{YY}(k) = \begin{cases} 1 & , k = 0 \\ \frac{c-1}{c^2 - 2c + 2} & , k = 1 \\ 0 & , k \ge 2 \end{cases}$$

3. 常数均值模型, $Y_t = \mu + \varepsilon_t$ (t = 1, ..., N) ε_t 为 i.i.d., 均值为 0 , 常数方差 σ^2 (白噪声)。 对于所有样本,

$$\hat{\mu} = \frac{1}{N} \sum_{t=1}^{N} Y_t = \bar{y}$$

预测 $\hat{Y}_{N+\ell|N} = \hat{\mu}_{e}$ 请证明: 预测误差的方差为

$$V\left[Y_{N+\ell} - \hat{Y}_{N+\ell|N}\right] = \sigma^2 \left(1 + \frac{1}{N}\right)$$

Solution. 证明:

易知 $\mathrm{E}[Y_{N+\ell} - \hat{Y}_{N+\ell|N}] = \mu - \mu = 0$,则 $V[Y_{N+\ell} - \hat{Y}_{N+\ell|N}] = \mathrm{E}[(Y_{N+\ell} - \hat{Y}_{N+\ell|N})^2] = \mathrm{E}[(Y_{N+\ell} - \frac{1}{N} \sum_{t=1}^{N} Y_t)^2]$,下面证明 $\mathrm{E}[(Y_{N+\ell} - \frac{1}{N} \sum_{t=1}^{N} Y_t)^2] = \sigma^2 \left(1 + \frac{1}{N}\right)$:

$$\begin{split} & \mathrm{E}[(Y_{N+\ell} - \frac{1}{N} \sum_{t=1}^{N} Y_{t})^{2}] \\ & = \mathrm{E}[Y_{N+\ell}^{2}] - \frac{2}{N} \mathrm{E}[Y_{N+\ell} \sum_{t=1}^{N} Y_{t}] + \frac{1}{N^{2}} \mathrm{E}[(\sum_{t=1}^{N} Y_{t})^{2}] \\ & = \mathrm{E}[(\mu + \varepsilon_{N+\ell})^{2}] - \frac{2}{N} \mathrm{E}[(\mu + \varepsilon_{N+\ell}) \sum_{t=1}^{N} (\mu + \varepsilon_{t})] + \frac{1}{N^{2}} \mathrm{E}[(\sum_{t=1}^{N} (\mu + \varepsilon_{t}))^{2}] \\ & = \mathrm{E}[\mu^{2} + 2\mu\varepsilon + \varepsilon_{N+\ell}^{2}] - \frac{2}{N} \sum_{t=1}^{N} \mathrm{E}[(\mu + \varepsilon_{N+\ell})(\mu + \varepsilon_{t})] + \frac{1}{N^{2}} \mathrm{E}[(\sum_{t=1}^{N} (\mu + \varepsilon_{t}))^{2}] \\ & = \mu^{2} + \sigma^{2} - 2\mu^{2} + \frac{1}{N^{2}} \mathrm{E}[(\sum_{t=1}^{N} (\mu + \varepsilon_{t}))^{2}] \\ & = \mu^{2} + \sigma^{2} - 2\mu^{2} + \frac{1}{N^{2}} \mathrm{E}[\sum_{t=1}^{N} (\mu + \varepsilon_{t})^{2} + \sum_{t=1}^{N} \sum_{s\neq t}^{N} (\mu + \varepsilon_{t})(\mu + \varepsilon_{s})] \\ & = \mu^{2} + \sigma^{2} - 2\mu^{2} + \frac{1}{N^{2}} N(\mu^{2} + \sigma^{2}) + \frac{1}{N^{2}} (N^{2} - N)\mu^{2} \\ & = \sigma^{2} \left(1 + \frac{1}{N}\right) \end{split}$$

- 4. 证明平稳随机过程 $\{Y(t)\}$ 自协方差函数 $\gamma(k)$ 的性质
 - 1) 【对称性】 $\gamma(k) = \gamma(-k)$
 - 2)【规范性】 $|\gamma(k)| \leq \gamma(0)$
 - 3)【非负定性】 $\forall y, n, t$, 二次型 $\sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \gamma (t_i t_j) \ge 0$

$$\begin{aligned} \textbf{Solution.} \ \ 1) \ & \because Cov[Y(t),Y(t+k)] = Cov\left[Y(t+k),Y(t)\right] \\ & \therefore \gamma(k) = Cov[Y(t),Y(t+k)] = Cov[Y(t+k),Y(t)] = \gamma(-k) \end{aligned}$$

- 2) $: V[\lambda_1 Y(t) + \lambda_2 Y(t+k)] \ge 0$ $: (\lambda_1^2 + \lambda_2^2) \gamma(0) + 2\lambda_1 \lambda_2 \gamma(k) \ge 0$ 若 $\lambda_1 = \lambda_2 = 1$, 有 $\gamma(k) \ge -\gamma(0)$, 若 $\lambda_1 = 1, \lambda_2 = -1$, 则 $\gamma(k) \le \gamma(0)$, 综上, $|\gamma(k)| \le \gamma(0)$ 。
- 3) 根据自协方差函数的定义和均值运算性质有:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \gamma(t_i - t_j)$$

$$= E[\sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j (Y_i - \mu)(Y_j - \mu)]$$

$$= E\left[\left[\sum_{i=1}^{n} y_i (Y_i - \mu)\right]^2\right]$$

$$\geq 0$$

5. 开放题:对课程的建议

Solution. 1) 本课程中介绍时序分析思想在深度学习和机器学习中最新应用的部分特别精彩和实用,希望老师多多教授一些这方面的知识

- 2) 老师的理论证明也很精彩,希望也能多分享一些
- 3) 希望能多一些时序分析在当今工业界应用的案例