

Using prediction models in clinical practice Introduction of an NTCP-model based selection approach for proton therapy in esophageal cancer

Maaike Berbée, Maastro

Limited use of models in daily clinical practice

Models in my daily practice

Shared decision making

Auto-contouring

Patient selection for proton therapy

Introduction of an NTCP-model based selection approach for proton therapy in esophageal cancer

Esophageal cancer

Neo-adjuvant chemoradiotherapy → overall survival ↑

Radiation exposure OARs ->

risk of toxicity \(\bar{\chi} \)
risk of non-cancer related death \(\bar{\chi} \)

Esophageal cancer

Neo-adjuvant chemoradiotherapy → overall survival ↑

Radiation exposure OARs ->

risk of toxicity \(\bar{\chi} \)
risk of non-cancer related death \(\bar{\chi} \)

The Netherlands: model based patient selection approach

Model-based approach: ↓ side effects

Statement:

Proton therapy is cost-effective if good patient selection is performed based on clinically relevant gain (evidence based)

⇒ Model-based indications

- → Validated models required, for clinically relevant endpoints
- →Estimation of NTCP
 based on individual
 treatment plan → to
 allow plan comparison

Ramaekers et al, 2013

Conditions model-based indications

Conditions for approval of a National indication protocol proton therapy (NIPP):

- 1. Selection is based on a clinically relevant outcome measure;
- 2. Prediction models of **sufficient quality** are available for the determination of dose-volume-effect relationships;
- 3. It is possible to determine and provide insight into an estimate of the expected clinically relevant benefit (added value), based on a **planning comparison in each individual patient**.

Nationally approved thresholds for delta NTCP

Severity of toxicity (Grade)	Delta NTCP- threshold
Mild toxicity (Grade 1)	-
Moderate toxicity (Grade 2)	≥10%
Severe toxicity (Grade 3)	≥ 5%
Life-threatening tox- death (Grade 4-5)	≥2%

Obligation to prospectively record sideeffects, to validate the models!

Proton therapy for esophageal cancer

Validated NTCP models are required!

No suitable validated NTCP model for esophageal cancer

Alternative: model for two-year mortality in lung cancer

Defraene-Leuven

Tumor volume Mean heart dose Smoking (current) **Dutch model**

Tumor volume

Mean heart dose

Datasets: esophageal cancer patients

	nCRT	dCRT	Total
UMCG	224	70	
Maastro	248	86	
AvL	65		
Total	537	<i>156</i>	693

Validity in combined group....clinically relevant?

 According to the closed testing procedure, the adjustment of the intercept only is sufficient

Differences in 2 year mortality between nCRT and dCRT group

Kaplan Meier Plot, nCRT vs. dCRT

nCRT dCRT

45% 64% 2-year mortality

Differences in 2 year mortality between nCRT and dCRT group

Kaplan Meier Plot, nCRT vs. dCRT

nCRT dCRT 45% 64% 2-year mortality

- Separate validation in dCRT and nCRT cohort
- Intercept adjustment before external validation

Definitive chemo-radiotherapy

Adjustment of intercept

	Original	dCRT
Intercept	-1.3409	-1.0421
√ gross tumor volume (cm³)	0.059	0.059
√ mean heart dose (Gy)	0.263	0.263

Neo-adjuvant chemoradiotherapy

Neo-adjuvant chemoradiotherapy

Recalibration

	Original	dCRT	nCRT
Intercept	-1.3409	-1.0421	-3.0818
√ gross tumor volume (cm³)	0.059	0.059	0.1016
√ mean heart dose (Gy)	0.263	0.263	0.4529

- Independent association MHD?

- Surrogate endpoint, not a real toxicity

- Many prognostic factors are not taken into account:
 - Age, TNM status, WHO performance status etc

Exploratory analyses: Multivariable analysis

	nCRT	dCRT
√ gross tumor volume (cm³)	1.13 (1.06 to 1.20) p < 0.001	1.07 (0.97 to 1.20) p = 0.19
√ mean heart dose (Gy)	1.43 (1.06 to 1.95) p = 0.02	1.31 (1.03 to 1.70) p = 0.03

Both the tumor volume and mean heart dose were associated to 2-year mortality

Exploratory analyses Incremental value of the MHD on top of other known predictors

• Is the MHD associated with 2y-mortality after adjustment for other prognostic factors? (multivariable analysis)

• Does the MDH have additional value on top of multivariable models with an increasing number of predictors? (likelihood ratio test, IDI)

Exploratory analyses Incremental value of the MHD on top of other known predictors

• Is the MHD associated with 2y-mortality after adjustment for other prognostic factors? (multivariable analysis)

```
Combined population: +

nCRT/dCRT seperately: +/-
```

• Does the MDH have additional value on top of multivariable models with an increasing number of predictors? (likelihood ratio test, IDI)

```
Combined polulation population: + nCRT/dCRT seperately: +/-
```

Surrogate endpoint, other prognostic factors

Additional selection criteria

- WHO 0-1
- No T4
- No N3

Delta NTCP > 5%

Development of models for specific toxicities

National implementation of the protocol

Lessons I learned from this project

- Relevant endpoint?
- Relevant prognostic factors?
- Other factors?
- Development and validation in the right population?
- Model performance

Lessons I learned from this project

- Relevant endpoint?
- Relevant prognostic factors?
- Other factors?
- Development and validation in the right population?
- Model performance

Clinical practice can benefit from model implementation

 Data scientists and computer programmers AND clinicians need to collaborate

- Data scientists and computer programmers AND clinicians need to collaborate
- Good models need good predictors

Maastro

- Data scientists and computer programmers AND clinicians need to collaborate
- Good models need good predictors
- Good predictors still need good modelling practices and a lot of tough external validation

Steyerberg et al recommends <u>against</u> SPLIT validation

Figure 1.

Schematic representation of apparent, split-sample, and bootstrap validation. Suppose we have a development sample of 1,000 subjects (numbered 1,2,3,..1000). Apparent validation assesses performance of a model estimated in these 1000 subjects on the sample. Split-sample validation may consider 50% for model development, and 50% for validation. Bootstrapping involves sampling with replacement (e.g., subject number 1 is drawn twice, number 2 is out, etcetera), with validation of the model developed in the bootstrap sample (Sample*) in the original sample.

TRIPOD guidelines advise strong validation

- Data scientists and computer programmers AND clinicians need to collaborate
- Good models need good predictors
- Good predictors still need good modelling practices and a lot of tough external validation
- In the end.....it might need an RCT to prove that using a predictive model really does give the desired benefit and cost-effectiveness in clinical use

Take home messages

• Limited use of predictive models in clinical practice

Clinical practice can benefit from model implementation

• Data scientist and clinicians need to work at the same table

Questions?

- C.T. Muijs
- E. Oldehinkel
- A. van der Schaaf

UMCU/ Julius Center

- E. Schuit
- J.B. Reitsma

NKI/AvL

• F.E.M. Voncken

Maastro

• L. Wee

