Calcolo differenziale

October 31, 2022

Contents

0.1 Equazioni e disequazioni

0.1.1 La retta

La retta è **lineare** in x e y.

Se m > 0 è crescente, se m < 0 è decrescente. Forma esplicita y = mx + q.

Questa forma descrive tutte le rette tranne quella **verticale**: y = c

Forma implicita ax + by + c = 0

$$m = tg\Theta = \frac{\Delta y}{\Delta x}$$

$$y = m(x - x_0) + y_0 \Longleftrightarrow q = y_0 - mx_0$$

$$ax \ge -b \Longrightarrow$$

- se a > 0 : $x \ge \frac{-b}{a}$
- se $a < 0 : x \le \frac{-b}{a}$

0.1.2 Polinomi di secondo grado: le parabole

$$P_2(x) = ax^2 + bx + c, a \neq 0$$

 $x^2 = c \Longrightarrow$

- se c > 0 : $x \pm \sqrt[2]{c}$
- se c = 0 : x = 0
- se $c < 0 : \nexists x \in IR$

Dimostrazione della correttezza della formula risolutiva per le equazioni di secondo grado

$$ax^{2} + bx + c = 0, a \neq 0$$

$$a * \left[x^{2} + \frac{bx}{a} + \frac{c}{a}\right] = 0$$

$$x^{2} + \frac{bx}{a} + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$

$$\left[x + \frac{b}{2a}\right]^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$

$$\left[x + \frac{b}{2a}\right]^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \sqrt[2]{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \sqrt[2]{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = \frac{-b \pm \sqrt[2]{b^{2} - 4ac}}{2a}$$

In questa situazione abbiamo 3 opzioni:

- $b^2 4ac > 0 \iff 2$ soluzioni
- $b^2 4ac = 0 \iff 1$ soluzione
- $b^2 4ac < 0 \iff 0$ soluzioni

0.1.3 Modulo

$$|x| = \sqrt[2]{x^2} =$$

- se x > 0 : x
- se x < 0 : -x

Geometricamente, il modulo è la distanza di x dal punto ${\bf 0}$ sull'asse dei numeri IR.

$$\begin{aligned} |x| & \leq a \Longleftrightarrow [-a,a] \\ |x| & \geq a \Longleftrightarrow (-\infty,-a] \cup [a,+\infty) \\ -|x| & \leq x \leq |x| \end{aligned}$$

Disuguaglianza triangolare: $|x+y| \le |x| + |y|$

$$|x * y| = |x| * |y|$$

0.2 Insiemi numerici

E' detta insieme una collezione di elementi per i quali è sempre possibile rispondere alla domanda $x \in A$.

0.2.1 Applicazioni

Tramite un'applicazione, associo gli elementi dell'insieme A agli elementi dell'insieme B, detto **immagine** di A.

Un'applicazione è:

- Iniettiva: $\forall x_1, x_2 \in A \text{ t.c. } x_1 \neq x_2 : x_1 \to b_1 \neq x_2 \to b_2$
- Suriettiva: $\forall b \in B : \exists a \in A \text{ t.c. } a \to b$
- Biunivoca: Suriettiva \(\) Iniettiva

Se esiste un'applicazione suriettiva ed iniettiva fra A e B questi sono detti in **biezione**.

0.2.2 Definizione di N tramite gli insiemi

A questo punto possiamo definire i numeri naturali positivi partendo dagli insiemi.

- 0: classe degli insiemi in biezione con $A = \emptyset$
- 1: classe degli insiemi in biezione con $A = \{\emptyset\}$
- 2: Classe degli insiemi in biezione con $A = \{\emptyset, \{\emptyset\}\}\$
- ...: ...

Possiamo accorgerci quindi come l'insieme ${\bf N}$ definisce la ${\bf cardinalità}$ degli insiemi.

Da qui possiamo continuare:

- N+: poichè N definisce la cardinalità degli insiemi, la somma di due numeri \in N è uguale alla cardinalità di $(A \cup B) \forall A, B$ t.c. $A \cap B = \emptyset$.
- -1: quel numero t.c. -1+1=0. Da qui definiamo **Z**.
- $\frac{n}{m}$: $a_1, a_2, ..., a_n \in \mathbf{Z}, 0 \le a_2, ..., a_n \le 9 : a_1 + \sum_{i=1}^n \frac{a^i}{10^i}$
- **Q**: $\frac{n}{m}$, $\frac{n_1}{m_1} \in \mathbf{Z}$, m, $m_1 \neq 0$: $(n, m) = (n_1, m_1) \iff (n * m_1) = (n_1 * m)$. La struttura **periodica** è valida se si conviene che $a, \overline{9} = a + 1$.
- Q+: $\frac{n}{m} + \frac{n_1}{m_1} = \frac{n*m_1+m*n_1}{m*m_1}$
- $\mathbf{Q}*: \frac{n}{m}*\frac{n_1}{m_1} = \frac{n*n_1}{m*m_1}$
- Q inverso: $\frac{n}{m} * \frac{n}{m}^{-1} = 1 \Longrightarrow \frac{n}{m}^{-1} = \frac{m}{n}, n \neq 0$

• R: Tutti i numeri scritti in forma decimale anche con **infinite** cifre **non periodiche** dopo la virgola

Possiamo infine definire le n-tuple di numeri (a,b,...) come **prodotto cartesiano** degli insiemi $A*B*...=\{(a,b,...)\forall a\in A \land \forall b\in B \land ...\}$

$$N\subset Z\subset Q\subset R$$

0.3 Coefficiente binomiale

$$q \in R, q \neq 1 \Longrightarrow \Sigma_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q} \Longleftrightarrow$$

$$(1-q) * \Sigma_{k=0}^n q^k = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=0}^n q^k - q * \Sigma_{k=0}^n q^k = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=0}^n q^k - \Sigma_{k=1}^{n+1} q^k = 1-q^{n+1} \Longleftrightarrow$$

$$(\Sigma_{k=1}^n q^k + 1) - (\Sigma_{k=1}^n q^k + q^{n+1}) = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=1}^n q^k - \Sigma_{k=1}^n q^k + 1-q^{n+1} = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=1}^n q^k = \Sigma_{k=1}^n q^k$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \iff \frac{n!}{k! (n-k)!} = \frac{(n-1)!}{(k-1)! (n-1-(k-1))!} + \frac{(n-1)!}{k! (n-1-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{(n-1)!}{(k-1)! (n-k) (n-k-1)!} + \frac{(n-1)!}{k (k-1)! (n-1-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{k (n-1)! + (n-k) (n-1)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{(n-1)! (k+n-k)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{n * (n-1)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{n * (n-1)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{n!}{k! (n-k)!}$$

$$(a+b)^n = \sum_{k=0}^n \left(\binom{n}{k} * a^{n-k} * b^k \right)$$

Dimostriamolo per induzione usando il seguente schema.

- 1. P(n) è vera con n=1
- 2. Supponiamo che P(n) vera $\Longrightarrow P(n+1)$ vera

Procediamo al primo passo:

$$(a+b)^{1} = \sum_{k=0}^{1} \left(\binom{1}{k} * a^{1-k} * b^{k} \right) \iff$$

$$a+b = \binom{1}{0} * a^{1} * b^{0} + \binom{1}{1} * a^{1-1} * b^{1} \iff$$

$$a+b = 1 * a * 1 + 1 * 1 * b = a+b$$

Abbiamo dimostrato che P(1) è vera, procediamo quindi col secondo passaggio.

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} \left(\binom{n+1}{k} * a^{n+1-k} * b^k \right)$$

$$(a+b)(a+b)^n =$$

$$(a+b) * \sum_{k=0}^n \left(\binom{n}{k} * a^{n-k} * b^k \right) =$$

$$\sum_{k=0}^n \left(\binom{n}{k} * a^{n+1-k} * b^k \right) + \sum_{k=0}^n \left(\binom{n}{k} * a^{n-k} * b^{k+1} \right) =$$

$$\sum_{k=0}^n \left(\binom{n}{k} * a^{n+1-k} * b^k \right) + \sum_{k=1}^{n+1} \left(\binom{n}{k-1} * a^{n-k+1} * b^k \right) =$$

$$\binom{n}{0} * a^{n+1} * b^0 + \sum_{k=1}^n \left(\binom{n}{k} * a^{n+1-k} * b^k \right) + \sum_{k=1}^n \left(\binom{n}{k-1} * a^{n-k+1} * b^k \right) + \binom{n}{n} * a^0 * b^{n+1} =$$

$$a^{n+1} + \sum_{k=1}^n \left[\binom{n}{k} + \binom{n}{k-1} \right) * a^{n+1-k} * b^k \right] b^{n+1} =$$

$$a^{n+1} + \sum_{k=1}^n \left(\binom{n+1}{k} * a^{n+1-k} * b^k \right) + b^{n+1} =$$

$$\sum_{k=0}^{n+1} \left(\binom{n+1}{k} * a^{n+1-k} * b^k \right)$$

0.4 Funzioni

0.4.1 Definizione

Dati due insiemi A e B, una funzione con **dominio** A e **codominio** B è una qualunque legge che **ad ogni** elemento di A associa **uno ed uno solo** elemento di B.

Può anche essere ad **n variabili** ed avere quindi n insiemi di partenza

$$f: A \longrightarrow B \text{ t.c. } \forall x \in A \longrightarrow f(x) \in B$$

Le funzioni reali a variabile reale sono le funzioni

$$f: A \subset \mathbf{R} \longrightarrow \mathbf{R}$$

0.4.2 Immagine

$$\{f(x)\forall x\in A\}\subset B$$

0.4.3 Grafico di una funzione

Definizione

L'insieme dei punti ${\bf R}^2$ definiti da

$$g_{\mathbf{R}} = \{(x, f(x)) \forall x \in A\}$$

Rappresentazione sul piano

Poichè ${\bf R}^2$ è rappresentabile sul piano cartesiano anche $g_{\bf R}$ lo è

Proprietà fondamentale della funzione espressa col grafico

$$\forall x_0 \in A \exists ! y_0 \text{ t.c. } x = x_0 \cap g_{\mathbf{R}} = (x_0, f(x_0))$$

0.4.4 Proprietà delle funzioni

Una funzione è detta

- pari: $\forall x \in A : f(x) = f(-x)$
- dispari: $\forall x \in A : -f(x) = f(-x)$
- limitata superiormente: $\exists M \in \mathbf{R} \text{ t.c. } M \geq f(x) \forall x \in A$
- limitata inferiormente: $\exists m \in \mathbf{R} \text{ t.c. } m \leq f(x) \forall x \in A$
- limitata: f(x) è limitata superiormente e inferiormente
- monotona crescente in A: $\forall x_1, x_2 \in A \text{ t.c. } x_1 \leq x_2 : f(x_1) \leq f(x_2)$
- monotona decrescente in A: $\forall x_1, x_2 \in A \text{ t.c. } x_1 \leq x_2 : f(x_1) \geq f(x_2)$
- periodica di periodo T: $\forall x \in A, x + kT \in A, k \in \mathbf{Z} : f(x + kT) = f(x)$
- successione: il dominio è \mathbf{N} , $f(n) = a_n$

0.4.5 Funzioni composte

- $g(f(x)) = g \circ f(x)$
- funzione neutra o identità: f(x) = x = I(x)
- funzione inversa: $f \circ f^{-1}(x) = f^{-1} \circ f(x) = I(x)$
- $f: \operatorname{Img}_{f^{-1}} \longrightarrow \operatorname{Def}_{f^{-1}}$

- f^{-1} : $\operatorname{Img}_f \longrightarrow \operatorname{Def}_f$
- $f \circ f^{-1}$: $\operatorname{Img}_f \longrightarrow \operatorname{Def}_f$
- $f^{-1} \circ f$: $\operatorname{Img}_{f^{-1}} \longrightarrow \operatorname{Def}_{f^{-1}}$

0.4.6 Condizioni di esistenza della funzione inversa

- $\operatorname{Img}_f \subset Def_g$
- f iniettiva: se, per assurdo, non lo fosse vorrebbe dire che $\exists x_1, x_2$ t.c. $x_1 \neq x_2, y_1 = f(x_1) = f(x_2)$ e quindi $f^{-1}(y)$ potrebbe essere sia x_1 che x_2 , e quindi f^{-1} non sarebbe una funzione

0.4.7 Operazioni sui grafici

- f(x+k): spostamento a sx
- f(x-k): spostamento a dx
- f(x) + k: spostamento in alto
- f(x) k: spostamento in basso
- -f(x): ribaltamento su asse y
- (f(-x)): ribaltamento su asse x
- |f(x)|: ribaltamento su asse y degli y < 0
- f(|x|): Ribaltamento su asse x degli x < 0

0.5 Limiti

0.5.1 Limiti convergenti

Una successione è detta **convergente** a l, o $\lim_{x\to\infty}=l$ se

$$\forall \epsilon > 0, \exists N = N (\epsilon) \text{ t.c. } \forall n > N \Longrightarrow |a_n - l| \le \epsilon$$

Non tutte le successioni convergono.

0.5.2 Limiti divergenti

Una successione è detta divergente a $+\infty$, o $\lim_{x\to\infty} = +\infty$, se

$$\forall M > 0, \exists N = N(M) \text{ t.c. } \forall n > N \Longrightarrow a_n \geq M$$

e divergente a $-\infty$ se $a \leq -M$. Non tutte le successioni divergono.

Convergenza per eccesso e per difetto

Una successione è detta tendere ad l per **eccesso** (l^+) nel caso in cui $a_n \not \in l$, per **difetto**(l^-) in caso contrario.

0.5.3 Monotonia e limiti

Preso $A = \{a_n \forall n \in \mathbf{N}\}$, se $a_{n \in \mathbf{N}}$ è una successione **monotona**:

- crescente: converge a \sup_A se limitata, se no diverge a $+\infty$
- decrescente: converge ad \inf_A se limitata, se no diverge a $-\infty$

0.5.4 Esempi di successioni limitate

$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\Longrightarrow |\frac{1}{N}-0|\leq \epsilon\Longrightarrow \frac{1}{\epsilon}\leq n$$

$$\Longrightarrow \text{ per } N=\frac{1}{\epsilon} \text{ esiste sempre } n>N$$

$$\lim_{n\to\infty} 2^n = \infty$$

$$\Longrightarrow 2^n \ge M \Longrightarrow n \ge \log_2 M$$

$$\Longrightarrow \text{ per } N = \log_2 M \text{ esiste sempre } n > \log_2 M$$

$$\lim n \to \infty \frac{n+1}{n-1} = 1$$

$$\implies \left| \frac{n+1}{n-1} - 1 \right| \le \epsilon \implies \ge -\epsilon \, \forall n \in \mathbf{N}$$

$$\implies \frac{n+1}{n-1} < 1 + \epsilon \implies n+1 \le n+n\epsilon - 1 - \epsilon$$

$$\implies 2 + \epsilon \le n\epsilon \implies n \ge \frac{2}{\epsilon} + 1$$

0.5.5 Algebra dei limiti

$$\lim_{n \to n_0} a_n = a \lim_{n \to \infty} b_n = b$$

$$\lim_{n \to n_0} a_n + b_n = a + b$$

$$\lim_{n \to n_0} a_n * b_n = a * b$$

$$\lim_{n \to n_0} a_n^{b_n} = a^b$$

$$\lim_{n \to n_0} f(a_n) = f(a)$$

0.5.6 Teorema di permanenza del segno

$$\begin{split} \lim_{n\to n_0} a_n &= a,\ a \geq 0 \Longrightarrow \exists N \in \mathbf{N} \text{ t.c. } \forall n > N: a_n \geq 0 \\ \lim_{n\to n_0} a_n &= a,\ a \leq 0 \Longrightarrow \exists N \in \mathbf{N} \text{ t.c. } \forall n > N: a_n \leq 0 \\ \text{E' quindi implicato:} \\ \lim_{n\to n_0} a_n &= a,\ \lim_{n\to n_0} b_n &= b,\ a_n > b_n \Longrightarrow a > b \end{split}$$

0.5.7 Teorema dei carabinieri

$$a_n \le b_n \le c_n \ a = c \Longrightarrow a = b = c$$