AULA 9 BLOCOS LÓGICOS

Profa Letícia Rittner

Circuitos digitais

- Combinacionais
 - Composto por um conjunto de portas lógicas
 - O valor da saída é função apenas dos valores atuais das entradas
- Sequenciais
 - Composto por um circuito combinacional mais elementos de memória
 - O valor da saída é função dos valores atuais das entradas e do estado atual do circuito

Circuitos combinacionais

- Análise
 - Dado um circuito, descobrir qual a funcionalidade implementada por ele
- Síntese
 - Dada uma funcionalidade desejada, projetar um circuito digital que a implementa
- Ferramentas
 - Expressão booleana
 - □ Tabela verdade
 - Símbolos esquemáticos
 - Diagrama de tempo

Circuitos combinacionais

A) Descrição do problema

y é 1 se a é 1, ou se b e c são 1. z é 1 se b ou c é 1, mas não ambos, ou se todos são 1.

B) Tabela verdade

Inputs		Outputs		
а	b	С	y z	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

C) Expressões booleanas

$$y = a'bc + ab'c' + ab'c + abc' + abc$$

$$z = a'b'c + a'bc' + ab'c + abc' + abc$$

Adaptado da Profa. Alice

PORTAS LÓGICAS

NOT
AND e OR
NAND e NOR

Portas lógicas

 "Portas lógicas" são melhores elementos básicos do que transistores para a construção de circuitos digitais

Adaptado de Frank Vahid

Significado dos valores verdade

- Níveis de tensão:
 - □ ALTO = 5 V = 1
 - \square BAIXO = 0 V = 0
- Capacitor carregado (1) ou descarregado (0)
- Chave fechada (1) ou aberta (0)
- Fusível intacto (1) ou queimado (0)

Convenção de *Lógica Positiva*

Adaptado do Prof. Leonardo Abdala

Transistor CMOS

Adaptado de Frank Vahid

Transistor CMOS: analogia

Porta NOT

X	F
0	1
1	0

Porta NOT

Quando a entrada é 0

Quando a entrada é 1

Porta AND

X	У	F
0	0	0
0	1	0
1	0	0
1	1	1

Porta AND

Quando 2 entradas são 1

Quando 1 entrada é 0

Porta OR

X	у	F
0	0	0
0	1	1
1	0	1
1	1	1

Porta OR

Quando 1 entrada é 0

Quando 2 entradas são 0

Porta AND: 3 entradas

Exemplo: diagrama de tempo

Portas NAND e NOR

X	У	F
0	0	1
0	1	1
1	0	1
1	1	0

X	у	F
0	0	1
0	1	0
1	0	0
1	1	0

Porta NAND: universalidade

- Qualquer função boleana pode ser implementada usando apenas portas NAND
- Dizemos então que NAND é uma porta universal
- Como conseguimos isso?
 - Precisamos de <u>AND</u>, <u>OR</u>, e <u>NOT</u> para implementar qualquer função
 - Bastar implementar <u>AND</u>, <u>OR</u> e <u>NOT</u> a partir de portas NAND

Porta NAND: universalidade

- □ Precisamos de <u>AND</u>, <u>OR</u>, e <u>NOT</u>
 - NOT: NAND de 2-entradas (entradas iguais)
 - AND: NAND seguido de NOT
 - OR: NAND precedido de NOTs
- Dizemos então que NAND é uma porta universal

Porta NAND

Porta NOR

Interpretação dos dois símbolos da porta NAND.

(b)

Saída vai para o nível BAIXO somente quando todas as entradas forem ALTAS

Saída é ALTA somente quando qualquer entrada é BAIXA

Interpretação dos dois símbolos da porta OR

A saída vai para o nível ALTO quando qualquer entrada for para o nível ALTO.

A saída vai para o nível BAIXO somente quando *todas* as entradas forem para o nível BAIXO.

Aspectos sobre as equivalências de símbolos lógicos:

- As equivalências podem ser estendidas para portas com qualquer número de entradas.
- Nenhum dos símbolos-padrão tem bolhas em suas entradas, e todos os símbolos alternativos os têm.
- NAND e NOR são portas inversoras
 - Os símbolos padrão e os símbolos alternativos para cada um terão uma bolha sobre a entrada ou a saída.
- Portas AND e OR são portas não inversoras.
 - Os símbolos alternativos para cada um terá bolhas em ambas as entradas e as saídas.

Exemplo

	-	_	-	7
Α	В	С	D	Ζ
0	0	0	0	0
0	0	0 1	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0 0 0 0 0	1	1	0	0
0	1	1	1	1
1	0	Ω	0	0
1	0	0	0 1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
0 1 1 1 1 1 1	1	1	1 0 1	0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1
1	1	1	1	1
		(d)		

Exemplo

Exemplo

Tocci & Widmer (2011)

Profa Leticia Rittner

GND

6

Para casa

 No circuito escreva a saída F em função das entradas A, B e C, simplificando quando possível.

Observação: considere lógica TTL, onde entradas "abertas" se comportam como "1"

Para casa

 Encontre o número mínimo de portas NAND de 2 entradas para implementar as expressões a seguir. Desenhe o circuito resultante em cada caso:

- Y = A'.B
- \square Z = A'+B

Para casa

 Implemente uma porta NOR usando apenas portas NAND