

Rodrygo Santos rodrygo@dcc.ufmg.br

Personalized CF • Memory-based - Exploit similarities between users or items • Nearest neighbor approaches • Graph-based approaches • Model-based - Build a model of user-item interactions • Bayesian models • Clustering models • Latent semantic models

User-based CF limitations

U F M G

COMPUTER
SCIENCE

- User-based CF is great...
 - ... except for **sparsity**
- Too many items (think "tens of millions")
 - Too few ratings per user (think "hundreds")
- Hard to find neighbors
 - Complete failure to recommend
- · Hard to trust neighbors
 - Noisy recommendations

User-based CF limitations

- User-based CF is great...
 - ... except for **efficiency**
- Computing all pairwise correlations is $O(m^2n)$
 - Infeasible to compute online
- Offline precomputation is problematic
 - User profiles are unstable

Memory-based CF

- How will I like item i?
- User-based CF
 - How similar users like item i?
 - Item-based CF
 - How do I like items similar to i?

Item-based CF

U F M G

COMPUTER
SCIENCE

· Look for similar items

12

Item-based CF

U F M G

- · Resilience to sparsity
 - Average user has a few ratings
 - Average item has lots of ratings
 - Better coverage and confidence in similarities
- Resilience to changes after a new rating
 - Just another of many ratings for the item
 - Could completely redefine the rater's profile
 - Better stability to allow precomputation

Memory-based CF

- How will I like item i?
 - User-based CF
 - How similar users like item i?
 - Item-based CF
 - How do I like items similar to i?
- Key difference: neighborhoods
 - User-based: unstable, hard to precompute
 - Item-based: stable, easy to precompute

16

Breaking it down

- Similar to user-based CF
 - Data normalization
 - Similarity computation
 - Neighborhood selection
 - Rating aggregation

Breaking it down

- Data normalization
 - Mean centering (for graded feedback)
 - Subtract user's mean
 - Subtract item's mean
 - Unit centering (for binary feedback)
 - Divide by user's Euclidean norm $\|\vec{u}\|$

Breaking it down

U F M G

COMPUTER
SCIENCE

- · Similarity computation
 - Pearson's correlation
 - Cosine similarity
 - · Adjusted after normalization

Breaking it down

U F M G

COMPUTER
SCIENCE

- · Neighborhood selection
 - k items most similar to...
 - ... items rated by \boldsymbol{u}
 - ... items just viewed by **u**
 - ... items added to **u**'s basket
 - What k?
 - Small k → inaccurate scores (few neighbors)
 - Large $k \rightarrow$ too much noise (low-similarity neighbors)
 - k = 20 is a good starting point

How to find neighbors?

U F M G

COMPUTER
SCIENCE

• Who are i's nearest neighbors (rated by u)?

How to find neighbors?

Who are i's nearest neighbors (rated by u)?

Model building

- · Stability allows making it model-based
 - Precompute similarities for all pairs
 - Model contains list of neighbors for each item
- · Still a costly operation
 - Naively: $O(n^2m)$
 - For symmetric similarity functions
 - Only need to compute one direction
 - Can often skip pairs
 - e.g., items without a common rater

Model storage

- No need to keep all neighbors
 - More neighbors → better coverage
 - Less neighbors → better efficiency
- · Balance memory usage and accuracy
 - Keep enough neighbors to recommend (typically, k << x << n)

Breaking it down

UF MG
COMPUTER
SCIENCE

- Rating aggregation
 - Min / max / average / median rating
 - Weighted average (by similarity)
 - Supervised aggregation
 - Common practice
 - Weighted average: simple and effective

UFmGHow to find neighbors? COMPUTER SCIENCE • Who are i's nearest neighbors (rated by u)? $sim(\vec{i}, \vec{x}) = 0.82$ 2 $sim(\vec{i}, \vec{y}) = 0.65$ 1 2 5 4 1 Ω 3 5 4 **2-NN** (5) 3

How to predict? • How will user u like item i? $x = 1 \ y \ 1 \ 3 \ 2 \ sim(\vec{i}, \vec{x}) = 0.82 \ r_{ux} = 2 \ sim(\vec{i}, \vec{y}) = 0.65 \ r_{uy} = 5$ $x = 2 \ sim(\vec{i}, \vec{y}) = 0.65 \ r_{uy} = 5$

Summary

U F M G
COMPUTER
SCIENCE

- Item-based CF is effective
 - More resilient to data sparsity
- Item-based CF is efficient
 - Stability allows neighborhood precomputation
- Item-based CF is *flexible*
 - Profile-based neighborhood
 - Session-based neighborhood
 - Basket-based neighborhood