

## planetmath.org

Math for the people, by the people.

## proof of the Jordan Hölder decomposition theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfThe Jordan Holder Decomposition Theorem}$ 

Date of creation 2013-03-22 12:08:49 Last modified on 2013-03-22 12:08:49

Owner djao (24) Last modified by djao (24)

Numerical id 9

Author djao (24) Entry type Proof Classification msc 20E22 Let |G| = N. We first prove existence, using induction on N. If N = 1 (or, more generally, if G is simple) the result is clear. Now suppose G is not simple. Choose a maximal proper normal subgroup  $G_1$  of G. Then  $G_1$  has a Jordan–Hölder decomposition by induction, which produces a Jordan–Hölder decomposition for G.

To prove uniqueness, we use induction on the length n of the decomposition series. If n = 1 then G is simple and we are done. For n > 1, suppose that

$$G \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{1\}$$

and

$$G \supset G'_1 \supset G'_2 \supset \cdots \supset G'_m = \{1\}$$

are two decompositions of G. If  $G_1 = G_1'$  then we're done (apply the induction hypothesis to  $G_1$ ), so assume  $G_1 \neq G_1'$ . Set  $H := G_1 \cap G_1'$  and choose a decomposition series

$$H \supset H_1 \supset \cdots \supset H_k = \{1\}$$

for H. By the second isomorphism theorem,  $G_1/H = G_1G'_1/G'_1 = G/G'_1$  (the last equality is because  $G_1G'_1$  is a normal subgroup of G properly containing  $G_1$ ). In particular, H is a normal subgroup of  $G_1$  with simple quotient. But then

$$G_1 \supset G_2 \supset \cdots \supset G_n$$

and

$$G_1 \supset H \supset \cdots \supset H_k$$

are two decomposition series for  $G_1$ , and hence have the same simple quotients by the induction hypothesis; likewise for the  $G_1'$  series. Therefore n=m. Moreover, since  $G/G_1=G_1'/H$  and  $G/G_1'=G_1/H$  (by the second isomorphism theorem), we have now accounted for all of the simple quotients, and shown that they are the same.