Application 3: Social Network Analysis

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- This week, we study social networks and society structures.
 - Understand the basics in social networks and society structures.
 - Standard analytical techniques
 - Measures and algorithms
 - Understand the basic topologies of social networks and society structures

What is a social network?

- Relations among people
 - Nodes are people, and links are relations.
- Difference between network and graph
 - Graph: binary matrix
 - Network: weighted matrix

Organization and Society

Max Weber
One of the three principal
architects of modern social science

- Let's go back to the father of modern sociology!
 - Max Weber (1864-1920) think
 - An institution to control individuals in the interest of the organization leaders' goals (Weber, 1978)
 - Leader? Control? Individuals?
 - Institution=System=Tool?
 - Okay, then where are the links?

Modern View on Organizational Structure

- Social networks as a metaphor of a social system
 - Leader at the center. Minions as pendants
- Barnes, 1954
 - Started focusing on the patterns of ties
 - Pattern between bounded groups and social categories
- March and Simon, 1958
 - Organization analysis
 - From the social structure viewpoint
 - They started to see social networks as social structures.

New Breeds in SNA

- Internet and world wide web
 - Computer Scientists
- Protein structures and material structures
 - Biologists and Physicists
- Their common interests?

Albert, Jeong, and Barabasi (1999)

Jeong, Mason, Barabasi, and Oltvai (2001)

Key Techniques in Social Network Analysis

- So, they started to see social networks as social structures.
- Then, how to find the leaders, the organizations, and the system?
- Measures
 - Required by sociologists looking for a key personnel
- Clusters
 - Required by sociologists looking for a sub-group
- Dynamics
 - Triadic closure and strength of weak ties

Centralities as Measures

- From a suggestive metaphor to an analytic approach
 - Metaphor: This person at the center must be the leader!
 - Analytics: This person with a high score must be the leader!
- We need Numbers, Scores!
- Mathematical sociologists searched correlations between numbers and roles
 - Some numbers found to be useful became metrics and named as centralities
 - Degree centrality
 - Betweenness centrality
 - Eigenvector centrality

(Freeman, 1979; Bonacich, 1972)

Centralities: Degree Centrality

- Simple! Counting the number of links
- Local measure
 - Do not need the network-wise calculation
- Approximate hubs in a network

Centralities: Betweenness Centrality

- Simple! Counting the number of all-pair shortest paths going through the node
- Global measure
 - Need the whole network structure to calculate a value for a node
- Interesting implications
 - Has been suggested as a information/influence transfer indicator

Low Degree and High Betweenness

- High degree centrality people
 - Often, they are hubs. They are the elites.
- High betweenness centrality people
 - Often, they are information brokers.
- Then, low degree and high betweenness people?
 - They are not network elites, but they control information!

Clusters as Social Groups

- How to divide the social entities into sub groups?
- Graph theoretic groups
 - K-Cliques
- Cohesive groups
 - Form a tightly linked components

K-Clique

- Clique in an undirected graph G
 - A set of vertices V such that for every two vertices in V, there exists an edge connecting the two.
- Complete network
- NP-Complete problem, only works in a small network or very small K

Newman Clustering

- Girvan-Newman Algorithm (Girvan and Newman, 2002)
 - The betweenness of all existing edges in the network is calculated first.
 - The edge with the highest betweenness is removed.
 - The betweenness of all edges affected by the removal is recalculated.
 - Steps 2 and 3 are repeated until no edges remain.
- Pretty nice tool to find a cohesive group

Network Visualization

Cellular Network

Small World Network

Network Density

- One of the simplest metrics about network status
 - Things you need to report when you write a SNA paper
 - Number of nodes
 - Network Density
 Sometimes $Density = \frac{sum(M)}{|M|(|M|-1)}$
 - Network diameter
 - Pareto distribution parameter if the degree distribution follows the power-law
- One trend
 - Social network density is usually very low.
 - Why?
 - One pendant node increase will induce huge network density drop.
 - Remember the adjacency matrix will grow O(n²)

Degree Distribution

- The overall shape of networks
- How to statistically recognize a network topology?

