Discrete Differential Geometry

Maxwell Thum

February 10, 2023

Introduction

This is an interactive blueprint to help with the formalisation of several definitions and results from *discrete differential geometry*, using Keenan Crane's textbook as a general template.

The actual Lean code can be found at (https://github.com/maxwell-thum/DDG_Lean3). This blueprint is adapted from the blueprint of Thomas F. Bloom and Bhavik Mehta's Unit Fractions project (https://github.com/b-mehta/unit-fractions), which was itself based on the blueprint created by Patrick Massot for the Sphere Eversion project (https://github.com/leanprover-community/sphere-eversion).

This blueprint uses Patrick Massot's leanblueprint plugin (https://github.com/PatrickMassot/leanblueprint) for plasTeX (http://plastex.github.io/plastex/).

Chapter 1

Combinatorial Surfaces

1.1 Abstract simplicial complexes

Definition 1.1. An abstract simplicial complex \mathcal{K} is a set of non-empty¹ finite sets called simplices such that for all $\sigma \in \mathcal{K}$, if $\sigma' \subseteq \sigma$ and $\sigma' \neq \emptyset$, then $\sigma' \in \mathcal{K}$.

Abstract simplicial complexes are the combinatorial or topological analogs of *geometric simplicial complexes*, which we will see shortly. Abstract simplicial complexes capture the connectivity of geometric simplicial complexes without their geometry.

Definition 1.2. The degree or dimension of an (abstract) simplex with k+1 vertices is k.

Definition 1.3. An (abstract) simplex of degree k is called an abstract k-simplex.

For instance, 0-simplices are points or vertices, 1-simplices are line segments or edges, 2-simplices are triangles or faces, and 3-simplices are tetrahedra.

Definition 1.4. A nonempty subset of an abstract simplex is called a *face*.

By definition of an abstract simplicial complex, all of the faces of a simplex are themselves simplices. A proper subset of a simplex is called a *proper face*.

Definition 1.5. Given two simplicial complexes \mathcal{K} and \mathcal{K}' , we say that \mathcal{K}' is a *subcomplex* of \mathcal{K} if $\mathcal{K}' \subseteq \mathcal{K}$, that is, every simplex in \mathcal{K}' is a simplex in \mathcal{K} as well.

Definition 1.6. If the set of degrees of the simplices of an abstract simplicial complex has a maximum k, then that abstract simplicial complex is said to be an abstract simplicial k-complex.

Definition 1.7. Let \mathcal{K} be an abstract simplicial k-complex. If every simplex is a face of some k-simplex, then we say \mathcal{K} is *pure* and call it a *pure simplicial* k-complex.

Definition 1.8. The $star \operatorname{St}(\sigma)$ of a simplex σ in an abstract simplicial complex \mathcal{K} is the set of all simplices in \mathcal{K} having σ as a face.

The star $\operatorname{St}(S)$ of a set S of simplices in $\mathcal K$ (i.e., a subset of $\mathcal K$) is the set of all simplices in $\mathcal K$ having some simplex in S as a face. Equivalently, $\operatorname{St}(S) = \bigcup_{\sigma \in S} \operatorname{St}(\sigma)$.

¹Some authors allow simplices to be empty.

Definition 1.9. The *closure* $\mathrm{Cl}(S)$ of a set of simplices $S\subseteq\mathcal{K}$ is the smallest (by inclusion) simplicial complex containing S.

Lemma 1.10.

$$\mathrm{Cl}(S) = \bigcup_{\sigma \in S} \mathcal{P}(\sigma) \ \, \varnothing.$$

Definition 1.11. The $link \operatorname{Lk}(\sigma)$ of a simplex $\sigma \in \mathcal{K}$ is the set of all simplices $\tau \in \mathcal{K}$ such that σ and τ are disjoint and their union is a simplex. In set-builder notation,

$$\mathrm{Lk}(\sigma) \coloneqq \{\tau \in \mathcal{K} \mid \tau \cap \sigma = \varnothing, \tau \cup \sigma \in \mathcal{K}\}.$$

Lemma 1.12. For any set of simplices $S \subseteq \mathcal{K}$,

$$Lk(S) = Cl(St(S)) St(Cl(S)).$$

1.1.1 The halfedge mesh

1.2 Simplicial complexes

Chapter 2

Discrete Exterior Calculus