

Analysis of Algorithms

Amypo Technologies Pvt Ltd

Agenda

- Substitution methods
- Master Theorem

Substitution Method

- The substitution method is a kind of method in which a guess for the solution is made.
- There are two types of substitution -
- Forward substitution
- Backward substitution.

Forward substitution

- This method makes use of an initial condition in the initial term and value for the next term is generated.
- This process is continued until some formula is guessed.
- Thus in this kind of substitution method, we use recurrence equations to generate the few terms.

Backward Substitution Method

 In this method backward values are substituted recursively in order to derive some formula.

Tree Method:

- The recurrence relation can also be solved using tree method.
- In this method, a recursion tree is built in which each node represents the cost of a single subproblem in the form of recursive function invocations.
- Then we sum up the cost at each level to determine the overall cost.
- Thus recursion tree helps us to make a good guess of the time complexity.
- Let us understand this method with the help of some examples.

Master's Method

- We can solve recurrence relation using a formula denoted by Master's method.
- T(n) = aT(n/b) + Fn) where n 2 d and d is some constant.
- Then the Master theorem can be stated for efficiency analysis as -

Master Method

- The Master Method is used for solving the following types of recurrence
- T (n) = a T+ f (n) with a≥1 and b≥1 be constant & f(n) be a function and can be interpreted as
- Let T (n) is defined on non-negative integers by the recurrence.
 T (n) = a T(n/b)+ f (n)
- n is the size of the problem.
- a is the number of subproblems in the recursion.
- n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the same size.)
- f (n) is the sum of the work done outside the recursive calls, which includes the sum of dividing the problem and the sum of combining the solutions to the subproblems.

Master Theorem

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & f(n) = O(n^{\log_b a - \varepsilon}) \\ \Theta(n^{\log_b a} \log n) & f(n) = \Theta(n^{\log_b a}) \end{cases}$$

$$\begin{cases} \varepsilon > 0 \\ c < 1 \end{cases}$$

$$\begin{cases} \Theta(f(n)) & f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{AND} \\ af(n/b) < cf(n) \text{ for largen} \end{cases}$$

- Case1: If $f(n) = O(n \text{ to the power of log b a- } \epsilon)$ for some constant $\epsilon > 0$, then it follows that:
- T (n) = Θ (n to the power of log b a)

Master Theorem

Example:

• $T(n) = 8 T(n/2) + 1000n^2$ apply master theorem on it.

Solution:

Compare T (n) = $8 T(n/2)+1000n^2$ with T (n) = a T(n/b)+f(n) with a>=1 and b>1

a = 8, b=2, $f(n) = 1000 n^2$, $log_b a = log_2 8 = 3$

Put all the values in: $f(n) = O(n \text{ to the power of log b a-} \epsilon)$

1000 n^2 = O ($n^{3-ε}$) If we choose ε=1, we get: 1000 n^2 = O (n^{3-1}) = O (n^2)

Case 2: If it is true, for some constant $k \ge 0$ that:

F (n) = Θ (n to the power of log b a log to the power of k
 n)then it follows that: T (n) = Θ(n to the power of log b a log to the power of k+1 n)

Example:

- T(n) = 2 T(n/2) + 10n, solve the recurrence by using the master method.
- As compare the given problem with
 T (n) = a T(n/2) + f(n) with a>=1 and b>1
 a = 2, b=2, k=0, f (n) = 10n, log_ba = log₂2 =1
- Put all the values in f (n) =Θ (n to the power of log b a log to the power of k n),
 we will get 10n = Θ (n¹) = Θ (n) which is true.

Therefore: T (n) = Θ Θ (n to the power of log b a log to the power of k+1 n) = Θ (n log n)

Case 3: If it is true $f(n) = \Omega$ (n to the power of log b a+ \mathcal{E}) for some constant $\varepsilon > 0$ and it also true that: a f(n/b) < = cf(n) for some constant c<1 for large value of n ,then :

$$T(n) = \Theta((f(n)))$$

Example: Solve the recurrence relation:

$$T(n) = 2 T(n/2) + n^2$$

Solution:

Compare the given problem with

$$T(n) = a T(n/2) + f(n) \text{ with a} = 1 \text{ and b} > 1$$

$$a= 2$$
, $b=2$, $f(n) = n^2$, $log_b a = log_2 2 = 1$

Put all the values in f (n) = Ω (n to the power of logb a+ ε).. (Eq. 1)

If we insert all the value in (Eq.1),

we will get $n^2 = \Omega(n^{1+\epsilon})$ put $\epsilon = 1$, then the equality will hold. $n^2 = \Omega(n^{1+\epsilon})$ = $\Omega(n^2)$