PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/51, C12Q 1/68, A61K 39/29, G01N 33/576, C07N 14/18, C12Q 1/70, C07K 16/10

(11) International Publication Number:

WO 94/25601

(43) International Publication Date: 10 November 1994 (10.11.94)

(21) International Application Number:

PCT/EP94/01323

A2

EP

(22) International Filing Date:

27 April 1994 (27.04.94)

(30) Priority Data:

27 April 1993 (27.04.93) 93401099.2 (34) Countries for which the regional or

international application was filed:

GB et al. 5 August 1993 (05.08.93) EP

(34) Countries for which the regional or international application was filed:

GB et al.

(71) Applicant (for all designated States except US): N.V. INNO-GENETICS S.A. [BE/BE]; Industriepark, Zwihnaarde 7, Box 4, B-9052 Ghent (BE).

(72) Inventors: and

(75) Inventors/Applicants (for US only): MAERTENS, Geert [BE/BE]; Zilversparrenstrasse 64, B-8310 Brugge (BE). STUYVER, Lieven [BE/BE]; Hoogstraat 27, B-9340 Lede (BE).

(74) Agent: GROSSET-FOURNIER, Chantal; Grosset-Fournier & Demachy S.A.R.L., 103, rue La Fayette, F-75010 Paris (FR). (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEW SEQUENCES OF HEPATITIS C VIRUS GENOTYPES AND THEIR USE AS THERAPEUTIC AND DIAGNOSTIC **AGENTS**

(57) Abstract

The present invention relates to a polynucleic acid composition comprising or consisting of at least one polynucleic acid containing 8 or more contiguous nucleotides corresponding to a nucleotide sequence from the region spanning positions 417 to 957 of the Core/E1 region of HCV type 3; and/or the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3; and/or the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3; and/or the region spanning positions 8 023 to 8 235 of the NS5 region of the BR36 subgroup of HCV type 3a; and/or the coding region of HCV type 4a starting at nucleotide 379 in the core region; and/or the coding region of HCV type 4; and/or the coding region of HCV type 5, with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV type 1, and/or HCV type 2 genomes in the above-indicated regions, or the complement thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malewi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Grecce	NL.	Netherlands
BF	Burkina Faso	HU	Hangery	NO	Norway
BG	Bulgaria	Œ	freland	NZ	New Zealand
BJ	Benin	n	Italy	PL	Polend
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Кспуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	L	Liechtenstein	SN	Scoogal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	Prence	MN	Mongolia	VN	Vict Nam
GA	Gabon		•		

NEW SEQUENCES OF HEPATITIS C VIRUS GENOTYPES AND THEIR USE AS THERAPEUTIC AND DIAGNOSTIC AGENTS

The invention relates to new sequences of hepatitis C virus (HCV) genotypes and their use as therapeutic and diagnostic agents.

The present invention relates to new nucleotide and amino acid sequences corresponding to the coding region of a new type 2 subtype 2d, type-specific sequences corresponding to HCV type 3a, to new sequences corresponding to the coding region of a new subtype 3c, and to new sequences corresponding to the coding region of HCV type 4 and type 5 subtype 5a; a process for preparing them, and their use for diagnosis, prophylaxis and therapy.

The technical problem underlying the present invention is to provide new type-specific sequences of the Core, the E1, the E2, the NS3, the NS4 and the NS5 regions of HCV type 4 and type 5, as well as of new variants of HCV types 2 and 3. These new HCV sequences are useful to diagnose the presence of type 2 and/or type 3 and/or type 4 and/or type 5 HCV genotypes in a biological sample. Moreover, the availability of these new type-specific sequences can increase the overall sensitivity of HCV detection and should also prove to be useful for therapeutic purposes.

Hepatitis C viruses (HCV) have been found to be the major cause of non-A, non-B hepatitis. The sequences of cDNA clones covering the complete genome of several prototype isolates have been determined (Kato et al., 1990; Choo et al., 1991; Okamoto et al., 1991). Comparison of these isolates shows that the variability in nucleotide sequences can be used to distinguish at least 2 different genotypes, type 1 (HCV-1 and HCV-J) and type 2 (HC-J6 and HC-J8), with an average homology of about 68%. Within each type, at least two subtypes exist (e.g. represented by HCV-1 and HCV-J), having an average homology of about 79%. HCV genomes belonging to the same subtype show average homologies of more than 90% (Okamoto et al., 1992). However, the partial nucleotide sequence of the NS5 region of the HCV-T isolates showed at most 67% homology with the previously published sequences, indicating the existence of a yet another HCV type (Mori et al., 1992). Parts of the 5' untranslated region (UR), core, NS3, and NS5 regions of this type 3 have been published, further establishing the similar evolutionary distances between the 3 major genotypes and their subtypes (Chan et al., 1992).

The identification of type 3 genotypes in clinical samples can be achieved by means of PCR with type-specific primers for the NS5 region. However, the degree to which this will

be successful is largely dependent on sequence variability and on the virus titer present in the serum. Therefore, routine PCR in the open reading frame, especially for type 3 and the new type 4 and 5 described in the present invention and/or group V (Cha et al., 1992) genotypes can be predicted to be unsuccessful. A new typing system (LiPA), based on variation in the highly conserved 5' UR, proved to be more useful because the 5 major HCV genotypes and their subtypes can be determined (Stuyver et al., 1993). The selection of high-titer isolates enables to obtain PCR fragments for cloning with only 2 primers, while nested PCR requires that 4 primers match the unknown sequences of the new type 3, 4 and 5 genotypes.

New sequences of the 5' untranslated region (5'UR) have been listed by Bukh et al. (1992). For some of these, the E1 region has recently been described (Bukh et al., 1993). Isolates with similar sequences in the 5'UR to a group of isolates including DK12 and HK10 described by Bukh et al. (1992) and E-b1 to E-b8 described and classified as type 3 by Chan et al. (1991), have been reported and described in the 5'UR, the carboxyterminal part of E1, and in the NS5 region as group IV by Cha et al. (1992; WO 92/19743), and have also been described in the 5'UR for isolate BR56 and classified as type 3 by the inventors of this application (Stuyver et al., 1993).

The aim of the present invention is to provide new HCV nucleotide and amino acid sequences enabling the detection of HCV infection.

Another aim of the present infection is to provide new nucleotide and amino acid HCV sequences enabling the classification of infected biological fluids into different serological groups unambiguously linked to types and subtypes at the genome level.

Another aim of the present invention is to provide new nucleotide and amino acid HCV sequences ameliorating the overall HCV detection rate.

Another aim of the present invention is to provide new HCV sequences, useful for the design of HCV vaccine compositions.

Another aim of the present invention is to provide a pharmaceutical composition consisting of antibodies raised against the polypeptides encoded by these new HCV sequences, for therapy or diagnosis.

The present invention relates more particularly to a composition comprising or consisting of at least one polynucleic acid containing at least 5, and preferably 8 or more contiguous nucleotides selected from at least one of the following HCV sequences:

- an HCV type 3 genomic sequence, more particularly in any of the following regions:

ļ

- the region spanning positions 417 to 957 of the Core/E1 region of HCV subtype 3a,
- the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3.
- the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3,
- the region spanning positions 8023 to 8235 of the NS5 region of the BR36 subgroup of HCV subtype 3a,
- an HCV subtype 3c genomic sequence,

more particularly the coding regions of the above-specified regions;

- an HCV subtype 2d genomic sequence, more particularly the coding region of HCV subtype 2d;
- an HCV type 4 genomic sequence, more particularly the coding region, more particularly the coding region of subtypes 4a, 4e, 4f, 4g, 4h, 4i, and 4j,
- an HCV type 5 genomic sequence, more particularly the coding region of HCV type 5, more particularly the regions encoding Core, E1, E2, NS3, and NS4

with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV (type 1, type 2, and type 3) polynucleic acid sequences in the above-indicated regions, or the complement thereof.

It is to be noted that the nucleotide difference in the polynucleic acids of the invention may involve or not an amino acid difference in the corresponding amino acid sequences coded by said polynucleic acids.

According to a preferred embodiment, the present invention relates to a composition comprising or containing at least one polynucleic acid encoding an HCV polyprotein, with said polynucleic acid containing at least 5, preferably at least 8 nucleotides corresponding to at least part of an HCV nucleotide sequence encoding an HCV polyprotein, and with said HCV polyprotein containing in its sequence at least one of the following amino acid residues: L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, S130, V134, G142, I144, E152, A157, V158, P165, S177 or Y177, I178, V180 or E180 or F182, R184, I186, H187, T189, A190, S191 or G191, Q192 or L192 or I192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, I203 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or

V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235 or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, I284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or I297 or O297, A299 or K299 or Q299, N303 or T303, T308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, O386, I387, S392, I399, F402, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, D1556, N1567, M1572, Q1579, L1581, S1583, F1585, V1595, E1606 or T1606, M1611, V1612 or L1612, P1630, C1636, P1651, T1656 or I1656, L1663, V1667, V1677, A1681, H1685, E1687, G1689, V1695, A1700, Q1704, Y1705, A1713, A1714 or S1714, M1718, D1719, A1721 or T1721, R1722, A1723 or V1723, H1726 or G1726, E1730, V1732, F1735, I1736, S1737, R1738, T1739, G1740, Q1741, K1742, Q1743, A1744, T1745, L1746, E1747 or K1747, I1749, A1750, T1751 or A1751, V1753, N1755, K1756, A1757, P1758, A1759, H1762, T1763, Y1764, P2645, A2647, K2650, K2653 or L2653, S2664, N2673, F2680, K2681, L2686, H2692, Q2695 or L2695 or I2695, V2712, F2715, V2719 or Q2719, T2722, T2724, S2725, R2726, G2729, Y2735, H2739, I2748, G2746 or I2746, I2748, P2752 or K2752, P2754 or T2754, T2757 or P2757, with said notation being composed of a letter representing the amino acid residue by its one-letter code, and a number representing the amino acid numbering according to Kato et al., 1990.

Each of the above-mentioned residues can be found in any of Figures 2, 5, 7, 11 or 12 showing the new amino acid sequences of the present invention aligned with known sequences of other types or subtypes of HCV for the Core, E1, E2, NS3, NS4, and NS5 regions.

More particularly, a polynucleic acid contained in the composition according to the present invention contains at least 5, preferably 8, or more contiguous nucleotides corresponding to a sequence of contiguous nucleotides selected from at least one of HCV sequences encoding the following new HCV amino acid sequences:

- new sequences spanning amino acid positions 1 to 319 of the Core/E1 region of HCV subtype 2d, type 3 (more particularly new sequences for subtypes 3a and 3c), new type 4

- subtypes (more particularly new sequences for subtypes 4a, 4e, 4f, 4g, 4h, 4i and 4j) and type 5a, as shown in Figure 5;
- new sequences spanning amino acid positions 328 to 546 of the E1/E2 region of HCV subtype 5a as shown in Figure 12;
- new sequences spanning amino acid positions 1556 to 1764 of the NS3/NS4 region of HCV type 3 (more particularly for new subtypes 3a sequences), and subtype 5a, as shown in Figure 7 or 11;
- new sequences spanning amino acid positions 2645 to 2757 of the NS5B region of HCV subtype 2d, type 3 (more particularly for new subtypes 3a and 3c), new type 4 subtypes (more particularly subtypes 4a, 4e, 4f, 4g, 4h, 4i and 4j) and subtype 5a, as shown in Figure 2,

Using the LiPA system mentioned above, Brazilian blood donors with high titer type 3 hepatitis C virus, Gabonese patients with high-titer type 4 hepatitis C virus, and a Belgian patient with high-titer HCV type 5 infection were selected. Nucleotide sequences in the core, E1, NS5 and NS4 regions which have not yet been reported before, were analyzed in the frame of the invention. Coding sequences (with the exception of the core region) of any type 4 isolate are reported for the first time in the present invention. The NS5b region was also analyzed for the new type 3 isolates. After having determined the NS5b sequences, comparison with the Ta and Tb subtypes described by Mori et al. (1992) was possible, and the type 3 sequences could be identified as type 3a genotypes. The new type 4 isolates segregated into 10 subtypes, based on homologies obtained in the NS5 and E1 regions. New type 2 and 3 sequences could also be distinguished from previously described type 2 or 3 subtypes from sera collected in Belgium and the Netherlands.

The term "polynucleic acid" refers to a single stranded or double stranded nucleic acid sequence which may contain at least 5 contiguous nucleotides to the complete nucleotide sequence (f.i. at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous nucleotides). A polynucleic acid which is up till about 100 nucleotides in length is often also referred to as an oligonucleotide. A polynucleic acid may consist of deoxyribonucleotides or ribonucleotides, nucleotide analogues or modified nucleotides, or may have been adapted for therapeutic purposes. A polynucleic acid may also comprise a double stranded cDNA clone which can be used for cloning purposes, or for *in vivo* therapy, or prophylaxis.

The term "polynucleic acid composition" refers to any kind of composition comprising essentially said polynucleic acids. Said composition may be of a diagnostic or a therapeutic

nature.

The expression "nucleotides corresponding to" refers to nucleotides which are homologous or complementary to an indicated nucleotide sequence or region within a specific HCV sequence.

The term "coding region" corresponds to the region of the HCV genome that encodes the HCV polyprotein. In fact, it comprises the complete genome with the exception of the 5' untranslated region and 3' untranslated region.

The term "HCV polyprotein" refers to the HCV polyprotein of the HCV-J isolate (Kato et al., 1990). The adenine residue at position 330 (Kato et al., 1990) is the first residue of the ATG codon that initiates the long HCV polyprotein of 3010 amino acids in HCV-J and other type 1b isolates, and of 3011 amino acids in HCV-1 and other type 1a isolates, and of 3033 amino acids in type 2 isolates HC-J6 and HC-J8 (Okamoto et al., 1992).

This adenine is designated as position 1 at the nucleic acid level, and this methionine is designated as position 1 at the amino acid level, in the present invention. As type 1a isolates contain 1 extra amino acid in the NS5a region, coding sequences of type 1a and 1b have identical numbering in the Core, E1, NS3, and NS4 region, but will differ in the NS5b region as indicated in Table 1. Type 2 isolates have 4 extra amino acids in the E2 region, and 17 or 18 extra amino acids in

the NS5 region compared to type 1 isolates, and will differ in numbering from type 1 isolates in the NS3/4 region and NS5b regions as indicated in Table 1.

TABLE 1

	Region	Positions described in the present invention*	Positions described for HCV-J (Kato et al., 1990)	Positions described for HCV-1 (Choo et al., 1991)	Positions described for HC-J6, HC-J8 (Okamoto et al., 1992)
Nucleotide s	NS5b	8023/8235 7932/8271	8352/8564 8261/8600	8026/8238 7935/8274	8433/8645 8342/8681
	NS3/4	4664/5292 4664/4730 4892/5292 3856/4209 4936/5292	4993/5621 4993/5059 5221/5621 4185/4528 5265/5621	4664/5292 4664/4730 4892/5292 3856/4209 4936/5292	5017/5645 5017/5083 5245/5645 4209/4762 5289/5645
		coding region of present invention	330/9359	1/9033	342/9439
Amino Acids	NS5b	2675/2745 2645/2757	2675/2745 2645/2757	2676/2746 2646/2758	2698/2768 2668/2780
	NS3/4	1556/1764 1286/1403 1646/1764	1556/1764 1286/1403 1646/1764	1556/1764 1286/1403 1646/1764	1560/1768 1290/1407 1650/1768

Table 1: Comparison of the HCV nucleotide and amino acid numbering system used in the present invention (*) with the numbering used for other prototype isolates. For example, 8352/8564 indicates the region designated by the numbering from nucleotide 8352 to nucleotide 8564 as described by Kato et al. (1990). Since the numbering system of the present invention starts at the polyprotein initiation site, the 329 nucleotides of the 5' untranslated region described by Kato et al. (1990) have to be substracted, and the corresponding region is numbered from nucleotide 8023 ("8352-329") to 8235 ("8564-329").

The term "HCV type" corresponds to a group of HCV isolates of which the complete genome shows more than 74% homology at the nucleic acid level, or of which the NS5 region between nucleotide positions 7932 and 8271 shows more than 74% homology at the nucleic acid level, or of which the complete HCV polyprotein shows more than 78% homology at the amino acid level, or of which the NS5 region between amino acids at positions 2645 and 2757 shows more than 80% homology at the amino acid level, to polyproteins of the other isolates of the group, with said numbering beginning at the first ATG codon or first methionine of the long HCV polyprotein of the HCV-J isolate (Kato et al., 1990). Isolates belonging to different types of HCV exhibit homologies, over the complete genome, of less than 74% at the nucleic acid level and less than 78% at the amino acid level. Isolates belonging to the same type usually show homologies of about 92 to 95% at the nucleic acid level and 95 to 96% at the amino acid level when belonging to the same subtype, and those belonging to the same type but different subtypes preferably show homologies of about 79% at the nucleic acid level and 85-86% at the amino acid level.

More preferably the definition of HCV types is concluded from the classification of HCV isolates according to their nucleotide distances calculated as detailed below:

- (1) based on phylogenetic analysis of nucleic acid sequences in the NS5b region between nucleotides 7935 and 8274 (Choo et al., 1991) or 8261 and 8600 (Kato et al., 1990) or 8342 and 8681 (Okamoto et al., 1991), isolates belonging to the same HCV type show nucleotide distances of less than 0.34, usually less than 0.33, and more usually of less than 0.32, and isolates belonging to the same subtype show nucleotide distances of less than 0.135, usually of less than 0.13, and more usually of less than 0.125, and consequently isolates belonging to the same type but different subtypes show nucleotide distances ranging from 0.135 to 0.34, usually ranging from 0.1384 to 0.2477, and more usually ranging from 0.15 to 0.32, and isolates belonging to different HCV types show nucleotide distances greater than 0.34, usually greater that 0.35, and more usually of greater than 0.358, more usually ranging from 0.1384 to 0.2977.
- (2) based on phylogenetic analysis of nucleic acid sequences in the core/E1 region between nucleotides 378 and 957, isolates belonging to the same HCV type show nucleotide distances of less than 0.38, usually of less than 0.37, and more usually of less than 0.364, and isolates belonging to the same subtype show nucleotide distances of less than 0.17, usually of less than 0.16, and more usually of less than 0.15, more usually less than 0.135, more usually less than 0.134, and consequently isolates belonging to the same type but different subtypes show

nucleotide distances ranging from 0.15 to 0.38, usually ranging from 0.16 to 0.37, and more usually ranging from 0.17 to 0.36, more usually ranging from 0.133 to 0.379, and isolates belonging to different HCV types show nucleotide distances greater than 0.34, 0.35, 0.36, usually more than 0.365, and more usually of greater than 0.37,

(3) based on phylogenetic analysis of nucleic acid sequences in the NS3/NS4 region between nucleotides 4664 and 5292 (Choo et al., 1991) or between nucleotides 4993 and 5621 (Kato et al., 1990) or between nucleotides 5017 and 5645 (Okamoto et al., 1991), isolates belonging to the same HCV type show nucleotide distances of less than 0.35, usually of less than 0.34, and more usually of less than 0.33, and isolates belonging to the same subtype show nucleotide distances of less than 0.19, usually of less than 0.18, and more usually of less than 0.17, and consequently isolates belonging to the same type but different subtypes show nucleotide distances ranging from 0.17 to 0.35, usually ranging from 0.18 to 0.34, and more usually ranging from 0.19 to 0.33, and isolates belonging to different HCV types show nucleotide distances greater than 0.33, usually greater than 0.34, and more usually of greater than 0.35.

Table 2: Molecular evolutionary distances

Region	Core/E1	E1	NS5B	NS5B
	579 bp	384 bp	340 bp	222 bp
Isolates*	0.0017 - 0.1347	0.0026 - 0.2031	0.0003 - 0.1151	0.000 - 0.1323
	(0.0750 <u>+</u> 0.0245)	(0.0969 <u>+</u> 0.0289)	(0.0637 <u>+</u> 0.0229)	(0.0607 <u>+</u> 0.0205)
Subtypes*	0.1330 - 0.3794	0.1645 - 0.4869	0.1384 - 0.2977	0.117 - 0.3538
	(0.2786 <u>+</u> 0.0363)	(0.3761 ± 0.0433)	(0.2219 <u>+</u> 0.0341)	(0.2391 ± 0.0399)
Types*	0.3479 - 0.6306	0.4309 - 0.9561	0.3581 - 0.6670	0.3457 - 0.7471
	(0.4703 <u>+</u> 0.0525)	(0.6308 <u>+</u> 0.0928)	(0.4994 <u>+</u> 0.0495)	(0.5295 ± 0.0627)

Figures created by the PHYLIP program DNADIST are expressed as minimum to maximum (average ± standard deviation). Phylogenetic distances for isolates belonging to the same subtype ('isolates'), to different subtypes of the same type ('subtypes'), and to different types ('types') are given.

In a comparative phylogenetic analysis of available sequences, ranges of molecular evolutionary distances for different regions of the genome were calculated, based on 19,781

pairwise comparisons by means of the DNA DIST program of the phylogeny inference package PHYLIP version 3.5C (Felsenstein, 1993). The results are shown in Table 2 and indicate that although the majority of distances obtained in each region fit with classification of a certain isolate, only the ranges obtained in the 340bp NS5B-region are non-overlapping and therefor conclusive. However, as was performed in the present invention, it is preferable to obtain sequence information from at least 2 regions before final classification of a given isolate.

Designation of a number to the different types of HCV and HCV types nomenclature is based on chronological discovery of the different types. The numbering system used in the present invention might still fluctuate according to international conventions or guidelines. For example, "type 4" might be changed into "type 5" or "type 6".

The term "subtype" corresponds to a group of HCV isolates of which the complete polyprotein shows a homology of more than 90% both at the nucleic acid and amino acid levels, or of which the NS5 region between nucleotide positions 7932 and 8271 shows a homology of more than 90% at the nucleic acid level to the corresponding parts of the genomes of the other isolates of the same group, with said numbering beginning with the adenine residue of the initiation codon of the HCV polyprotein. Isolates belonging to the same type but different subtypes of HCV show homologies of more than 74% at the nucleic acid level and of more than 78% at the amino acid level.

The term "BR36 subgroup" refers to a group of type 3a HCV isolates (BR36, BR33, BR34) that are 95 %, preferably 95.5 %, most preferably 96 % homologous to the sequences as represented in SEQ ID NO 1, 3, 5, 7, 9, 11 in the NS5b region from position 8023 to 8235.

It is to be understood that extremely variable regions like the E1, E2 and NS4 regions will exhibit lower homologies than the average homology of the complete genome of the polyprotein.

Using these criteria, HCV isolates can be classified into at least 6 types. Several subtypes can clearly be distinguished in types 1, 2, 3 and 4: 1a, 1b, 2a, 2b, 2c, 2d, 3a, 3b, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i and 4j based on homologies of the 5' UR and coding regions including the part of NS5 between positions 7932 and 8271. An overview of most of the reported isolates and their proposed classification according to the typing system of the present invention as well as other proposed classifications is presented in Table 3.

Table 3

HCV CLASSIFICATION

	OKA- MOTO	MORI	NAKA O	СНА	РКОТОТУРЕ
1a	I	I	Pt	GI	HCV-1, HCV-H, HC-J1
1b	п	п	KI	GII	HCV-J, HCV-BK, HCV-T, HC-JK1, HC- J4, HCV-CHINA
1c					HC-G9
2a	m	ш	K2a	GIII	HC-J6
2ь	ľV	IV	K2b	GIII	HC-J8
2c					\$83, ARG6, ARG8, I10, T983
2d					NE92
-3a	v	v	К3	GIV	E-b1, Ta, BR36, BR33, HD10, NZL1
3ъ		VI	K 3	GIV	HCV-TR, Tb
3c					BE98
4a	•				Z4, GB809-4
4 b					- Z1
4c					GB116, GB358, GB215, Z6, Z7
4d					DK13
4e					GB809-2, CAM600, CAM736
4f					CAM622, CAM627
4g					GB549
4h		-			GB438
4i					CAR4/1205
4j					CAR1/501
4k					EG29
5a				GV	SA3, SA4, SA1, SA7, SA11, BE95
6a					HK1, HK2, HK3, HK4

The term "complement" refers to a nucleotide sequence which is complementary to an indicated sequence and which is able to hybridize to the indicated sequences.

The composition of the invention can comprise many combinations. By way of example, the composition of the invention can comprise:

- two (or more) nucleic acids from the same region or,
- two nucleic acids (or more), respectively from different regions, for the same isolate or for different isolates,
- or nucleic acids from the same regions and from at least two different regions (for the same isolate or for different isolates).

The present invention relates more particularly to a polynucleic acid composition as defined above, wherein said polynucleic acid corresponds to a nucleotide sequence selected from any of the following HCV type 3 genomic sequences:

- an HCV genomic sequence having a homology of at least 67%, preferably more than 69%, more preferably 71%, even more preferably more than 73%, or most preferably more than 76% to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 417 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence having a homology of at least 65%, preferably more than 67%, preferably more than 69%, even preferably more than 70%, most preferably more than 74% to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 574 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence as having a homology of at least 79%, more preferably at least 81%, most preferably more than 83% or more to any of the sequences as represented in SEQ ID NO 147 (representing positions 1 to 346 of the Core region of HVC type 3c, sequence BE98) in the region spanning positions 1 to 378 of the Core region as shown in Figure 3;
- an HCV genomic sequence of HVC type 3a having a homology of at least 74%, more preferably at least 76%, most preferably more than 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 417 to 957 in the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence of HCV type 3a as having a homology of at least 74%,

preferably more than 76%, most preferably 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 (HD10, BR36 or BR33 sequences) in the region spanning positions 574 to 957 in the E1 region as shown in Figure 4;

- an HCV genomic sequence as having a homology of more than 73.5%, preferably more than 74%, most preferably 75% homology to the sequence as represented in SEQ ID NO 29 (HCCl53 sequence) in the region spanning positions 4664 to 4730 of the NS3 region as shown in figure 6;
- an HCV genomic sequence having a homology of more than 70%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 29, 31, 33, 35, 37 or 39 (HCCl53, HD10, BR36 sequences) in the region spanning positions 4892 to 5292 in the NS3/NS4 region as shown in Figure 6 or 10;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a as having a homology of more than 95%, preferably 95,5%, most preferably 96% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 (BR34, BR33, BR36 sequences) in the region spanning positions 8023 to 8235 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a as having a homology of more than 96%, preferably 96.5%, most preferably 97% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 (BR34, BR33, BR36 sequences) in the region spanning positions 8023 to 8192 of the NS5B region as shown in Figure 1;
- an HCV genomic sequence of HCV type 3c being characterized as having a homology of more than 79%, more preferably more than 81%, and most preferably more than 83% to the sequence as represented in SEQ ID NO 149 (BE98 sequence) in the region spanning positions 7932 to 8271 in the NS5B region as shown in Figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- an HCV genomic sequence being characterized as having a nucleotide distance of less than 0.44, preferably of less than 0.40, most preferably of less than 0.36 to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region

- spanning positions 417 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence being characterized having a nucleotide distance of less than 0.53, preferably less than 0.49, most preferably of less than 0.45 to any of the sequences as represented in SEQ ID NO 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence characterized having a nucleotide distance of less than 0.15, preferably less than 0.13, and most preferably less than 0.11 to any of the sequences as represented in SEQ ID NO 147 in the region spanning positions 1 to 378 of the Core region as shown in Figure 3;
- an HCV genomic sequence of HVC type 3a being characterized as having a nucleotide distance of less than 0.3, preferably less than 0.26, most preferably of less than 0.22 to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 417 to 957 in the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence of HCV type 3a being characterized as having a nucleotide distance of less than 0.35, preferably less than 0.31, most preferably of less than 0.27 to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 in the E1 region as shown in Figure 4;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a being characterized as having a nucleotide sequence of less than 0.0423, preferably less than 0.042, preferably less than 0.0362 to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 in the region spanning positions 8023 to 8235 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence of HCV type 3c being characterized as having a nucleotide distance of less than 0.255, preferably of less than 0.25, more preferably of less than 0.21, most preferably of less than 0.17 to the sequence as represented in SEQ ID NO 149 in the region spanning positions 7932 to 8271 in the NS5B region as shown in Figure 1.

In the present application, the E1 sequences encoding the antigenic ectodomain of the E1 protein, which does not overlap the carboxyterminal signal-anchor sequences of E1 disclosed by Cha et al. (1992; WO 92/19743), in addition to the NS4 epitope region, and a part of the NS5 region are disclosed for 4 different isolates: BR33, BR34, BR36, HCCl53 and HD10, all belonging to type 3a (SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37 or 39).

Also within the present invention are new subtype 3c sequences (SEQ ID NO 147, 149 of the isolate BE98 in the Core and NS5 regions (see Figures 3 and 1).

WO 94/25601

Finally the present invention also relates to a new subtype 3a sequence as represented in SEQ ID NO 217 (see Figure 1)

Also included within the present invention are sequence variants of the polynucleic acids as selected from any of the nucleotide sequences as given in any of the above mentioned SEQ ID numbers, with said sequence variants containing either deletions and/or insertions of one or more nucleotides, mainly at the extremities of oligonucleotides (either 3' or 5'), or substitutions of some non-essential nucleotides by others (including modified nucleotides an/or inosine), for example, a type 1 or 2 sequence might be modified into a type 3 sequence by replacing some nucleotides of the type 1 or 2 sequence with type-specific nucleotides of type 3 as shown in Figure 1 (NS5 region), Figure 3 (Core region), Figure 4 (Core/E1 region), Figure 6 and 10 (NS3/NS4 region).

According to another embodiment, the present invention relates to a polynucleic acid composition as defined above, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV type 5 genomic sequences:

- an HCV genomic sequence as having a homology of more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53 (PC sequences) or 151 (BE95 sequence) in the region spanning positions 1 to 573 of the Core region as shown in Figure 9 and 3;
- an HCV genomic sequence as having a homology of more than 61%, preferably more than 63%, more preferably more than 65% homology, even more preferably more than 66% homology and most preferably more than 67% homology (f.i. 69 and 71%) to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53 (PC sequences), 153 or 155 (BE95, BE100 sequences) in the region spanning positions 574 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence having a homology of more than 76.5%, preferably of more than 77%, most preferably of more than 78% homology with any of the sequences as represented in SEQ ID NO 55, 57, 197 or 199 (PC sequences) in the region spanning positions 3856 to 4209 of the NS3 region as shown in Figure 6 or 10;
- an HCV genomic sequence having a homology of more than 68%, preferably of more than 70%, most preferably of more than 72% homology with the sequence as represented in SEQ ID NO 157 (BE95 sequence) in the region spanning positions 980 to 1179 of the E1/E2 region as shown in Figure 13;
- an HCV genomic sequence having a homology of more than 57%, preferably more than

59%, most preferably more than 61% homology to any of the sequences as represented in SEQ ID NO 59 or 61 (PC sequences) in the region spanning positions 4936 to 5296 of the NS4 region as shown in Figure 6 or 10;

- an HCV genomic sequence as having a homology of more than 93%, preferably more than 93.5%, most preferably more than 94% homology to any of the sequences as represented in SEQ ID NO 159 or 161 (BE95 or BE96 sequences) in the region spanning positions 7932 to 8271 of the NS5B region as shown in Figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- a nucleotide distance of less than 0.53, preferably less than 0.51, more preferably less than 0.49 for the E1 region to the type 5 sequences depicted above;
- a nucleotide distance of less than 0.3, preferably less than 0.28, more preferably of less than 0.26 for the Core region to the type 5 sequences depicted above;
- a nucleotide distance of less than 0.072, preferably less than 0.071, more preferably less than 0.070 for the NS5B region to the type 5 sequences as depicted above.

Isolates with similar sequences in the 5'UR to a group of isolates including SA1, SA3, and SA7 described in the 5'UR by Bukh et al. (1992), have been reported and described in the 5'UR and NS5 region as group V by Cha et al. (1992; WO 92/19743). This group of isolates belongs to type 5a as described in the present invention (SEQ ID NO 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 151, 153, 155, 157, 159, 161, 197 and 199).

Also included within the present invention are sequence variants of the polynucleic acids as selected from any of the nucleotide sequences as given in any of the above given SEQ ID numbers with said sequence variants containing either deletion and/or insertions of one or more nucleotides, mainly at the extremities of oligonucleotides (either 3' or 5'), or substitutions of some non-essential nucleotides (i.e. nucleotides not essential to discriminate between different genotypes of HCV) by others (including modified nucleotides an/or inosine), for example, a type 1 or 2 sequence might be modified into a type 5 sequence by replacing some nucleotides of the type 1 or 2 sequence with type-specific nucleotides of type 5 as shown in Figure 3 (Core region), Figure 4 (Core/E1 region), Figure 10 (NS3 / NS4 region), Figure 14 (E1/E2 region).

Another group of isolates including BU74 and BU79 having similar sequences in the 5'UR to isolates including Z6 and Z7 as described in the 5'UR by Bukh et al. (1992), have been described in the 5'UR and classified as a new type 4 by the inventors of this application (Stuyver et al., 1993). Coding sequences, including core, E1 and NS5 sequences of several new Gabonese isolates belonging to this group, are disclosed in the present invention (SEQ ID NO 106, 108, 110, 112, 114, 116, 118, 120 and 122).

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV type 4 genomic sequences:

- an HCV genomic sequence having a homology of more than 66%, preferably more than 68%, most preferably more than 70% homology in the E1 region spanning positions 574 to 957 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 (GB358, GB549, GB809 sequences) as shown in Figure 4;
- an HCV genomic sequence having a homology of more than 71%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 118, 120 or 122 (GB358, GB549, GB809 sequences) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence having a homology of more than 92%, preferably more than 93%, most preferably more than 94% homology to any of the sequences as represented in SEQ ID NO 163 or 165 (GB809, CAM600 sequences) in the region spanning positions 1 to 378 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4c) having a homology of more than 85%, preferably more than 86%, more preferably more than 86.5% homology, most preferably more than 87, more than 88 or more than 89% homology to any of the sequences as represented in SEQ ID NO 183, 185 or 187 (GB116, GB215, GB809 sequences) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4a) having a homology of more than 81%, preferably more than 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 189 (GB908 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4e) having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to any of the sequences as represented in SEQ ID NO 167 or 169 (CAM600, GB908 sequences) in the region

- spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4f) having a homology of more than 79%, preferably more than 81%, most preferably more than 83% homology to any of the sequences as represented in SEQ ID NO 171 or 173 (CAMG22, CAMG27 sequences) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4g) having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 175 (GB549 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4h) having a homology of more than 83%, preferably more than 85%, most preferably more than 87% homology to the sequence as represented in SEQ ID NO 177 (GB438 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4i) as having a homology of more than 76%, preferably more than 78%, most preferably more than 80% homology to the sequence as represented in SEQ ID NO 179 (CAR4/1205 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4j?) having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 181 (CAR4/901 sequence) in the region spanning positions 379 to 957 of the E1 region as shown in figure 4;
- an HCV genomic sequence as having a homology of more than 73%, preferably more than 75%, most preferably more than 77% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, 112, 114, or 116 (GB48, GB116, GB215, GB358, GB549, GB809 sequences) in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4c) having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, or 112 (GB48, GB116, GB215, GB358 sequences) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4e) having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as

- represented in SEQ ID NO 116 or 201 (GB809 or CAM 600 sequences) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4f) having a homology of more than 87%, preferably more than 89%, most preferably more than 90% homology to the sequence as represented in SEQ ID NO 203 (CAMG22 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4g) as having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to the sequence as represented in SEQ ID NO 114 (GB549 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4h) as having a homology of more than 86%, preferably more than 87%, more preferably more than 88% homology, more preferably more than 89% homology to the sequence as represented in SEQ ID NO 207 (GB437 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4i) having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 209 (CAR4/1205 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4j) having a homology of more than 81%, preferably more than 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 211 (CAR1/501 sequence) in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- an HCV genomic sequence (type 4) being characterized as having a nucleotide distance of less than 0.52, 0.50, 0.4880, 0.46, 0.44, 0.43 or most preferably less than 0.42 in the region spanning positions 574 to 957 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 1 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence (type 4) being characterized as having a nucleotide distance of

WO 94/25601 PCT/EP94/01323

less than 0.39, 0.36 0.34 0.32 or most preferably less than 0.31 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;

- an HCV genomic sequence (subtype 4c) being characterized as having a nucleotide distance of less than 0.27, 0.26, 0.24, 0.22, 0.20, 0.18, 0.17, 0.162, 0.16 or most preferably less than 0.15 to any of the sequences as represented in SEQ ID NO 183, 185 or 187 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4a) being characterized as having a nucleotide distance of less than 0.30, 0.28, 0.26, 0.24, 0.22, 0.21 or most preferably of less than 0.205 to the sequence as represented in SEQ ID NO 189 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4e) being characterized as having a nucleotide distance of less than 0.26, 0.25, 0.23, 0.21, 0.19, 0.17, 0.165, most preferably less than 0.16 to any of the sequences as represented in SEQ ID NO 167 or 169 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4f) being characterized as having a nucleotide distance of less than 0.26, 0.24, 0.22, 0.20, 0.18, 0.16, 0.15 or most preferably less than 0.14 to any of the sequences as represented in SEQ ID NO 171 or 173 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4g) being characterized as having a nucleotide distance of less than 0.20, 0.19, 0.18, 0.17 or most preferably of less than 0.16 to the sequence as represented in SEQ ID NO 175 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4:
- an HCV genomic sequence (subtype 4h) being characterized as having a nucleotide distance of less than 0.20, 0.19, 0.18, 0.17 and most preferably of less than 0.16 to the sequence as represented in SEQ ID NO 177 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4i) being characterized as having a nucleotide distance of less than 0.27, 0.25, 0.23, 0.21 and preferably less than 0.16 to the sequence as represented in SEQ ID NO 179 in the region spanning positions 379 to 957 of the E1 region as shown in Figure 4;
- an HCV genomic sequence (subtype 4j?) being characterized as having a nucleotide distance of less than 0.19, 0.18, 0.17, 0.165 and most preferably of less than 0.16 to the

- sequence as represented in SEQ ID NO 181 in the region spanning positions 379 to 957 of the E1 region as shown in figure 4;
- an HCV genomic sequence (type 4) being characterized as having a nucleotide distance of less than 0.35, 0.34, 0.32 and most preferably of less than 0.30 to any of the sequences as represented in SEQ ID NO 106, 108, 110, 112, 114, or 116 in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4c) being characterized as having a nucleotide distance of less than 0.18, 0.16, 0.14, 0.135, 0.13, 0.1275 or most preferably less than 0.125 to any of the sequences as represented in SEQ ID NO 106, 108, 110, or 112 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4e) being characterized as having a nucleotide distance of less than 0.15, 0.14, 0.135, 0.13 and most preferably of less than 0.125 to any of the sequences as represented in SEQ ID NO 116 or 201 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4f) being characterized as having a nucleotide distance
 of less than 0.15, 0.14, 0.135, 0.13 or most preferably less than 0.125 to the sequence as
 represented in SEQ ID NO 203 in the region spanning positions 7932 to 8271 of the NS5
 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4g) being characterized as having a nucleotide distance of less than 0.17, 0.16, 0.15, 0.14, 0.13 or most preferably less than 0.125 to the sequence as represented in SEQ ID NO 114 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4h) being characterized as having a nucleotide distance of less than 0.155, 0.15, 0.145, 0.14, 0.135, 0.13 or most preferably less than 0.125 to the sequence as represented in SEQ ID NO 207 in the region spanning positions 7932 to 8271 of the NS5 region as shown in Figure 1;
- an HCV genomic sequence (subtype 4i) being characterized as having a nucleotide distance of less than 0.17, 0.16, 0.15, 0.14, 0.13 or most preferably of less than 0.125 to the sequence as represented in SEQ ID NO 209 in the region spanning positions 7932 to 8271 of the NS5 region as shown in figure 1;
- an HCV genomic sequence (subtype 4j) being characterized as having a nucleotide distance of less than 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13 and most preferably of less than 0.125 to the sequence as represented in SEQ ID NO 211 in the region spanning

WO 94/25601 PCT/EP94/01323

positions 7932 to 8271 of the NS5 region as shown in figure 1.

Also included within the present invention are sequence variants of the polynucleic acids as selected from any of the nucleotide sequences as given in any of the above given SEQ ID numbers with said sequence variants containing either deletion and/or insertions of one or more nucleotides, mainly at the extremities of oligonucleotides (either 3' or 5'), or substitutions of some non-essential nucleotides (i.e. nucleotides not essential to discriminate between different genotypes of HCV) by others (including modified nucleotides an/or inosine), for example, a type 1 or 2 sequence might be modified into a type 4 sequence by replacing some nucleotides of the type 1 or 2 sequence with type-specific nucleotides of type 4 as shown in Figure 3 (Core region), Figure 4 (Core/E1 region), Figure 10 (NS3 / NS4 region), Figure 14 (E1/E2 region).

The present invention also relates to a sequence as represented in SEQ ID NO 193 (GB724 sequence).

After aligning NS5 or E1 sequences of GB48, GB, 116, GB215, GB358, GB549 and GB809, these isolates clearly segregated into 3 subtypes within type 4: GB48, GB116, GB215 and GB358 belong to the sybtype designated 4c, GB549 to subtype 4g and GB809 to subtype 4e. In NS5, GB809 (subtype 4e) showed a higher nucleic acids homology to subtype 4c isolates (85.6 - 86.8%) than to GB549 (subtype 4g, 79.7%), while GB549 showed similar homologies to both other subtypes (78.8 to 80% to subtype 4c and 79.7% to subtype 4e). In E1, subtype 4c showed equal nucleic acid homologies of 75.2% to subtypes 4g and 4e while 4g and 4e were 78.4% homologous. At the amino acid level however, subtype 4e showed a normal homology to subtype 4c (80.2%), while subtype 4g was more homologous to 4c (83.3%) and 4e (84.1%).

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV type 2d genomic sequences:

- an HCV genomic sequence as having a homology of more than 78%, preferably more than 80%, most preferably more than 82% homology to the sequence as represented in SEQ ID NO (NE92) 143 in the region spanning positions 379 to 957 of the Core/E1 region as shown in Figure 4;
- an HCV genomic sequence as having a homology of more than 74%, preferably more than 76%, most preferably more than 78% homology to the sequence as represented in SEQ ID NO 143 (NE92) in the region spanning positions 574 to 957 as shown in Figure 4;

- an HCV genomic sequence as having a homology of more than 87%, preferably more than 89%, most preferably more than 91% homology to the sequence as represented in SEQ ID NO 145 (NE92) in the region spanning positions 7932 to 8271 of the NS5B region as shown in Figure 1.

Preferentially the above-mentioned genomic HCV sequences depict sequences from the coding regions of all the above-mentioned sequences.

According to the nucleotide distance classification system (with said nucleotide distances being calculated as explained above), said sequences of said composition are selected from:

- a nucleotide distance of less than 0.32, preferably less than 0.31, more preferably less than 0.30 for the E1 region (574 to 957) to any of the above specified sequences;
- a nucleotide distance of less than 0.08, preferably less than 0.07, more preferably less than 0.06 for the Core region (1 to 378) to any of the above given sequences
- a nucleotide distance of less than 0.15, preferentially less than 0.13, more preferentially less than 0.12 for the NS5B region to any of the above-specified sequences.

Polynucleic acid sequences according to the present invention which are homologous to the sequences as represented by a SEQ ID NO can be characterized and isolated according to any of the techniques known in the art, such as amplification by means of type or subtype specific primers, hybridization with type or subtype specific probes under more or less stringent conditions, serological screening methods (see examples 4 and 11) or via the LiPA typing system.

Polynucleic acid sequences of the genomes indicated above from regions not yet depicted in the present examples, figures and sequence listing can be obtained by any of the techniques known in the art, such as amplification techniques using suitable primers from the type or subtype specific sequences of the present invention.

The present invention relates also to a composition as defined above, wherein said polynucleic acid is liable to act as a primer for amplifying the nucleic acid of a certain isolate belonging to the genotype from which the primer is derived.

An example of a primer according to this embodiment of the invention is HCPr 152 as shown in table 7 (SEQ ID NO 79).

The term "primer" refers to a single stranded DNA oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. The length and the sequence of the primer must be such that they allow to prime the synthesis of the extension products.

Preferably the primer is about 5-50 nucleotides. Specific length and sequence will depend on the complexity of the required DNA or RNA targets, as well as on the conditions of primer use such as temperature and ionic strength.

The fact that amplification primers do not have to match exactly with corresponding template sequence to warrant proper amplification is amply documented in the literature (Kwok et al., 1990).

The amplification method used can be either polymerase chain reaction (PCR; Saiki et al., 1988), ligase chain reaction (LCR; Landgren et al., 1988; Wu & Wallace, 1989; Barany, 1991), nucleic acid sequence-based amplification (NASBA; Guatelli et al., 1990; Compton, 1991), transcription-based amplification system (TAS; Kwoh et al., 1989), strand displacement amplification (SDA; Duck, 1990; Walker et al., 1992) or amplification by means of Qß replicase (Lizardi et al., 1988; Lomeli et al., 1989) or any other suitable method to amplify nucleic acid molecules using primer extension. During amplification, the amplified products can be conveniently labelled either using labelled primers or by incorporating labelled nucleotides. Labels may be isotopic (³²P, ³⁵S, etc.) or non-isotopic (biotin, digoxigenin, etc.). The amplification reaction is repeated between 20 and 80 times, advantageously between 30 and 50 times.

The present invention also relates to a composition as defined above, wherein said polynucleic acid is able to act as a hybridization probe for specific detection and/or classification into types of a nucleic acid containing said nucleotide sequence, with said oligonucleotide being possibly labelled or attached to a solid substrate.

The term "probe" refers to single stranded sequence-specific oligonucleotides which have a sequence which is complementary to the target sequence of the HCV genotype(s) to be detected.

Preferably, these probes are about 5 to 50 nucleotides long, more preferably from about 10 to 25 nucleotides.

The term "solid support" can refer to any substrate to which an oligonucleotide probe can be coupled, provided that it retains its hybridization characteristics and provided that the background level of hybridization remains low. Usually the solid substrate will be a microtiter plate, a membrane (e.g. nylon or nitrocellulose) or a microsphere (bead). Prior to application to the membrane or fixation it may be convenient to modify the nucleic acid probe in order to facilitate fixation or improve the hybridization efficiency. Such modifications may encompass homopolymer tailing, coupling with different reactive groups such as aliphatic

groups, NH₂ groups, SH groups, carboxylic groups, or coupling with biotin or haptens.

The present invention also relates to the use of a composition as defined above for detecting the presence of one or more HCV genotypes, more particularly for detecting the presence of a nucleic acid of any of the HCV genotypes having a nucleotide sequence as defined above, present in a biological sample liable to contain them, comprising at least the following steps:

- (i) possibly extracting sample nucleic acid,
- (ii) possibly amplifying the nucleic acid with at least one of the primers as defined above or any other HCV subtype 2d, HCV type 3, HCV type 4, HCV type 5 or universal HCV primer,
- (iii) hybrizing the nucleic acids of the biological sample, possibly under denatured conditions, and with said nucleic acids being possibly labelled during or after amplification, at appropriate conditions with one or more probes as defined above, with said probes being preferably attached to a solid substrate,
- (iv) washing at appropriate conditions,
- (v) detecting the hybrids formed,
- (vi) inferring the presence of one or more HCV genotypes present from the observed hybridization pattern.

Preferably, this technique could be performed in the Core or NS5B region.

The term "nucleic acid" can also be referred to as analyte strand and corresponds to a single- or double-stranded nucleic acid molecule. This analyte strand is preferentially positive-or negative stranded RNA, cDNA or amplified cDNA.

The term "biological sample" refers to any biological sample (tissue or fluid) containing HCV nucleic acid sequences and refers more particularly to blood serum or plasma samples.

The term "HCV subtype 2d primer" refers to a primer which specifically amplifies HCV subtype 2d sequences present in a sample (see Examples section and figures).

The term "HCV type 3 primer" refers to a primer which specifically amplifies HCV type 3 sequences present in a sample (see Examples section and figures).

The term "HCV type 4 primer" refers to a primer which specifically amplifies HCV type 4 genomes present in a sample.

The term "universal HCV primer" refers to oligonucleotide sequences complementary to any of the conserved regions of the HCV genome.

The term "HCV type 5 primer" refers to a primer which specifically amplifies HCV type

5 genomes present in a sample. The term "universal HCV prim r" refers to oligonucleotide sequences complementary to any of the conserved regions of the HCV genome.

The expression "appropriate" hybridization and washing conditions are to be understood as stringent and are generally known in the art (e.g. Maniatis et al., Molecular Cloning: A Laboratory Manual, New York, Cold Spring Harbor Laboratory, 1982).

However, according to the hybridization solution (SSC, SSPE, etc.), these probes should be hybridized at their appropriate temperature in order to attain sufficient specificity.

The term "labelled" refers to the use of labelled nucleic acids. This may include the use of labelled nucleotides incorporated during the polymerase step of the amplification such as illustrated by Saiki et al. (1988) or Bej et al. (1990) or labelled primers, or by any other method known to the person skilled in the art.

The process of the invention comprises the steps of contacting any of the probes as defined above, with one of the following elements:

- either a biological sample in which the nucleic acids are made available for hybridization,
- or the purified nucleic acids contained in the biological sample
- or a single copy derived from the purified nucleic acids,
- or an amplified copy derived from the purified nucleic acids, with said elements or
 with said probes being attached to a solid substrate.

The expression "inferring the presence of one or more HCV genotypes present from the observed hybridization pattern" refers to the identification of the presence of HCV genomes in the sample by analyzing the pattern of binding of a panel of oligonucleotide probes. Single probes may provide useful information concerning the presence or absence of HCV genomes in a sample. On the other hand, the variation of the HCV genomes is dispersed in nature, so rarely is any one probe able to identify uniquely a specific HCV genome. Rather, the identity of an HCV genotype may be inferred from the pattern of binding of a panel of oligonucleotide probes, which are specific for (different) segments of the different HCV genomes. Depending on the choice of these oligonucleotide probes, each known HCV genotype will correspond to a specific hybridization pattern upon use of a specific combination of probes. Each HCV genotype will also be able to be discriminated from any other HCV genotype amplified with the same primers depending on the choice of the oligonucleotide probes. Comparison of the generated pattern of positively hybridizing probes for a sample containing one or more unkown HCV sequences to a scheme of expected

WO 94/25601

hybridization patterns, allows one to clearly infer the HCV genotypes present in said sample.

The present invention thus relates to a method as defined above, wherein one or more hybridization probes are selected from any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59 or 61, 106, 108, 110, 112, 114, 116, 118, 120, 122, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 198, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 222, 269 or sequence variants thereof, with said sequence variants containing deletions and/or insertions of one or more nucleotides, mainly at their extremities (either 3' or 5'), or substitutions of some non-essential nucleotides (i.e. nucleotides not essential to discriminate between genotypes) by others (including modified nucleotides or inosine), or with said variants consisting of the complement of any of the above-mentioned oligonucleotide probes, or with said variants consisting of ribonucleotides instead of deoxyribonucleotides, all provided that said variant probes can be caused to hybridize with the same specificity as the oligonucleotide probes from which they are derived.

In order to distinguish the amplified HCV genomes from each other, the target polynucleic acids are hybridized to a set of sequence-specific DNA probes targetting HCV genotypic regions located in the HCV polynucleic acids.

Most of these probes target the most type-specific regions of HCV genotypes, but some can be caused to hybridize to more than one HCV genotype.

According to the hybridization solution (SSC, SSPE, etc.), these probes should be stringently hybridized at their appropriate temperature in order to attain sufficient specificity. However, by slightly modifying the DNA probes, either by adding or deleting one or a few nucleotides at their extremities (either 3' or 5'), or substituting some non-essential nucleotides (i.e. nucleotides not essential to discriminate between types) by others (including modified nucleotides or inosine) these probes or variants thereof can be caused to hybridize specifically at the same hybridization conditions (i.e. the same temperature and the same hybridization solution). Also changing the amount (concentration) of probe used may be beneficial to obtain more specific hybridization results. It should be noted in this context, that probes of the same length, regardless of their GC content, will hybridize specifically at approximately the same temperature in TMACl solutions (Jacobs et al., 1988).

Suitable assay methods for purposes of the present invention to detect hybrids formed between the oligonucleotide probes and the nucleic acid sequences in a sample may comprise any of the assay formats known in the art, such as the conventional dot-blot format, sandwich hybridization or reverse hybridization. For example, the detection can be accomplished using a dot blot format, the unlabelled amplified sample being bound to a membrane, the membrane being incorporated with at least one labelled probe under suitable hybridization and wash conditions, and the presence of bound probe being monitored.

An alternative and preferred method is a "reverse" dot-blot format, in which the amplified sequence contains a label. In this format, the unlabelled oligonucleotide probes are bound to a solid support and exposed to the labelled sample under appropriate stringent hybridization and subsequent washing conditions. It is to be understood that also any other assay method which relies on the formation of a hybrid between the nucleic acids of the sample and the oligonucleotide probes according to the present invention may be used.

According to an advantageous embodiment, the process of detecting one or more HCV genotypes contained in a biological sample comprises the steps of contacting amplified HCV nucleic acid copies derived from the biological sample, with oligonucleotide probes which have been immobilized as parallel lines on a solid support.

According to this advantageous method, the probes are immobilized in a Line Probe Assay (LiPA) format. This is a reverse hybridization format (Saiki et al., 1989) using membrane strips onto which several oligonucleotide probes (including negative or positive control oligonucleotides) can be conveniently applied as parallel lines.

The invention thus also relates to a solid support, preferably a membrane strip, carrying on its surface, one or more probes as defined above, coupled to the support in the form of parallel lines.

The LiPA is a very rapid and user-friendly hybridization test. Results can be read 4 h. after the start of the amplification. After amplification during which usually a non-isotopic label is incorporated in the amplified product, and alkaline denaturation, the amplified product is contacted with the probes on the membrane and the hybridization is carried out for about 1 to 1,5 h hybridized polynucleic acid is detected. From the hybridization pattern generated, the HCV type can be deduced either visually, but preferably using dedicated software. The LiPA format is completely compatible with commercially available scanning devices, thus rendering automatic interpretation of the results very reliable. All those advantages make the LiPA format liable for the use of HCV detection in a routine setting. The LiPA format should be particularly advantageous for detecting the presence of different HCV genotypes.

The present invention also relates to a method for detecting and identifying novel HCV

genotypes, different from the known HCV genomes, comprising the steps of:

- determining to which HCV genotype the nucleotides present in a biological sample belong, according to the process as defined above,
- in the case of observing a sample which does not generate a hybridization pattern compatible with those defined in Table 3, sequencing the portion of the HCV genome sequence corresponding to the aberrantly hybridizing probe of the new HCV genotype to be determined.

The present invention also relates to the use of a composition as defined above, for detecting one or more genotypes of HCV present in a biological sample liable to contain them, comprising the steps of:

- (i) possibly extracting sample nucleic acid,
- (ii) amplifying the nucleic acid with at least one of the primers as defined above,
- (iii) sequencing the amplified products
- (iv) inferring the HCV genotypes present from the determined sequences by comparison to all known HCV sequences.

The present invention also relates to a composition consisting of or comprising at least one peptide or polypeptide comprising a contiguous sequence of at least 5 amino acids corresponding to a contiguous amino acid sequence encoded by at least one of the HCV genomic sequences as defined above, having at least one amino acid differing from the corresponding region of known HCV (type 1 and/or type 2 and/or type 3) polyprotein sequences as shown in Table 3, or muteins thereof.

It is to be noted that, at the level of the amino acid sequence, an amino acid difference (with respect to known HCV amino acid sequences) is necessary, which means that the polypeptides of the invention correspond to polynucleic acids having a nucleotide difference (with known HCV polynucleic acid sequences) involving an amino acid difference.

The new amino acid sequences, as deduced from the disclosed nucleotide sequences (see SEQ ID NO 1 to 62 and 106 to 123 and 143 to 218, 223 and 270), show homologies of only 59.9 to 78% with prototype sequences of type 1 and 2 for the NS4 region, and of only 53.9 to 68.8% with prototype sequences of type 1 and 2 for the E1 region. As the NS4 region is known to contain several epitopes, for example characterized in patent application EP-A-0 489 968, and as the E1 protein is expected to be subject to immune attack as part of the viral envelope and expected to contain epitopes, the NS4 and E1 epitopes of the new type 3, 4 and 5 isolates will consistently differ from the epitopes present in type 1 and 2 isolates. This is

examplified by the type-specificity of NS4 synthetic peptides as presented in example 4, and the type-specificity of recombinant E1 proteins in example 11.

After aligning the new subtype 2d, type 3, 4 and 5 (see SEQ ID NO 1 to 62 and 106 to 123 and 143 to 218, 223 and 270) amino acid sequences with the prototype sequences of type 1a, 1b, 2a, and 2b, type- and subtype-specific variable regions can be delineated as presented in Figure 5 and 7.

As to the muteins derived from the polypeptides of the invention, Table 4 gives an overview of the amino acid substitutions which could be the basis of some of the muteins as defined above.

The peptides according to the present invention contain preferably at least 5 contiguous HCV amino acids, preferably however at least 8 contiguous amino acids, at least 10 or at least 15 (for instance at least 9, 11, 12, 13, 14, 20 or 25 amino acids) of the new HCV sequences of the invention.

TABLE 4

Amino acids	Synonymous groups Ser, Thr, Gly, Asn		
Ser (S)			
Arg (R)	Arg, His, Lys, Glu, Gln		
Leu (L)	Leu; Ile, Met, Phe, Val, Tyr		
Pro (P)	Pro, Ala, Thr, Gly		
Thr (T)	Thr, Pro, Ser, Ala, Gly, His, Gln		
Ala (A)	Ala, Pro, Gly, Thr		
Val (V)	Val, Met, Ile, Tyr, Phe, Leu, Val		
Gly (G)	Gly, Ala, Thr, Pro, Ser		
Ile (I)	Ile, Met, Leu, Phe, Val, Ile, Tyr		
Phe (F)	Phe, Met, Tyr, Ile, Leu, Trp, Val		
Tyr (Y)	Tyr, Phe, Trp, Met, Ile, Val, Leu		
Cys (C)	Cys, Ser, Thr, Met		
His (H)	His, Gln, Arg, Lys, Glu, Thr		
Gln (Q)	Gln, Glu, His, Lys, Asn, Thr, Arg		
Asn (N)	Asn, Asp, Ser, Gln		
Lys (K)	Lys, Arg, Glu, Gln, His		
Asp (D)	Asp, Asn, Glu, Gln		
Glu (E)	Glu, Gln, Asp, Lys, Asn, His, Arg		
Met (M)	Met, Ile, Leu, Phe, Val		

The polypeptides of the invention, and particularly the fragments, can be prepared by classical chemical synthesis.

The synthesis can be carried out in homogeneous solution or in solid phase.

For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book entitled "Methode der organischen chemie" (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974.

The polypeptides of the invention can also be prepared in solid phase according to the methods described by Atherton and Shepard in their book entitled "Solid phase peptide synthesis" (IRL Press, Oxford, 1989).

The polypeptides according to this invention can be prepared by means of recombinant DNA techniques as described by Maniatis et al., Molecular Cloning: A Laboratory Manual, New York, Cold Spring Harbor Laboratory, 1982).

The present invention relates particularly to a polypeptide or peptide composition as defined above, wherein said contiguous sequence contains in its sequence at least one of the following amino acid residues:

L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, S130, V134, G142, 1144, E152, A157, V158, P165, S177 or Y177, I178, V180 or E180 or F182, R184, I186, H187, T189, A190, S191 or G191, Q192 or L192 or I192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, I203 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235 or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, I284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or I297 or Q297, A299 or K299 or Q299, N303 or T303, T308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F402, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, D1556, N1567, M1572, Q1579, L1581, S1583, F1585, V1595, E1606 or T1606, M1611, V1612 or L1612, P1630, C1636, P1651, T1656 or I1656, L1663, V1667, V1677, A1681, H1685, E1687, G1689, V1695, A1700, Q1704, Y1705, A1713, A1714 or S1714, M1718, D1719, A1721 or T1721, R1722, A1723 or V1723, H1726 or G1726, E1730, V1732, F1735, I1736, S1737, R1738, T1739, G1740, Q1741, K1742, Q1743, A1744, T1745, L1746, E1747 or K1747, I1749, A1750, T1751 or A1751, V1753, N1755, K1756, A1757, P1758, A1759, H1762, T1763, Y1764, P2645, A2647, K2650, K2653 or L2653, S2664, N2673, F2680, K2681, L2686, H2692, Q2695 or L2695 or I2695, V2712, F2715, V2719 or Q2719, T2722, T2724, S2725, R2726, G2729, Y2735, H2739, I2748, G2746 or I2746, I2748, P2752 or K2752, P2754 or T2754, T2757 or P2757,

with said notation being composed of a letter representing the amino acid residue by its oneletter code, and a number representing the amino acid numbering according to Kato et al., 1990 as shown in Table 1 (comparison with other isolates). See also the numbering in Figures 2, 5, 7, and 11 (alignment amino acid sequences).

Within the group of unique and new amino acid residues of the present invention, the following residues were found to be specific for the following types of HCV according to the

WO 94/25601

HCV classification system used in the present invention:

- Q208, R217, E231, I235, I246, T264, I266, A267, F271, K299, L2686, Q2719 which are specific for the HCV subtype 2d sequences of the present invention as shown in Fig. 5 and 2;
- Q43, S60, R67, F182, I186, H187, A190, S191, L192, W194, V202, L203, V219,
 Q231, D232, A237, T254, M280, Q299, T303, L308, and/or L313 which are specific for the Core/E1 region of HCV type 3 of the invention as shown in Fig. 5;
- D1556, Q1579, L1581, S1584, F1585, E1606, V1612, P1630, C1636, T1656, L1663, H1685, E1687, G1689, V1695, Y1705, A1713, A1714, A1721, V1723, H1726, R1738, Q1743, A1744, E1747, I1749, A1751, A1759 and/or H1762 which are specific for the NS3/4 region of HCV type 3 sequences of the invention as shown in Fig. 7;
- K2665, D2666, R2670 which are specific for the NS5B region of HCV type 3 of the invention as shown in Fig. 2;
- L7, A79, A127, S130, E152, V158, S177 or Y177, V180 or E180, R184, T189, Q192 or E192 or I192, N193 or H193, I197 or V197, I203, A210, V212, E217, H218, H219, L227, A232, V249, I251 or M251, D252, L255 or V255, E256, M258 or V258 or F258, A260 or Q260, M265, T268, V271, V274, M280, I284, N292 or S292, Q294, L297 or I297, T308, A310 or D310 or V310 or T310, and G317 which are specific for the core/E1 region of HCV type 4 sequences of the present invention as shown in Fig. 5;
- P2645, K2650, K2653, G2656, V2658, T2668, N2673 or N2673, K2681, H2686,
 D2691, L2692, Q2695 or L2695 or I2695, Y2704, V2712, F2715, V2719, I2722,
 S2725, G2729, Y2735, G2746 or I2746, P2752 or K2752, Q2753, P2754 or
 T2754, T2757 or P2757 which are specific for the NS5B region of the HCV type
 4 sequences of the present invention as shown in Fig. 2;
- M44, Q70, A87, N106, K115, V137, G142, P165, I178, F251, A299, N303, Q317 which are specific for the Core/E1 region of the HCV type 4 sequences of the present invention as shown in Fig. 5;
- L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F102, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S532, V534, F537, M539, I546 which are specific for

- the E1/E2 region of the HCV type 5 sequences of the present invention as shown in Fig. 12;
- C1282, A1283, V1312, Q1321, P1368, V1372, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, M1572, V1595, T1606, M1611, L1612, I1656, V1667, A1681, A1700, A1713, S1714, M1718, D1719, T1721, R1722, A1723, G1726, F1735, I1736, S1737, T1739, G1740, K1742, T1745, L1746, K1747, A1750, V1753, N1755, A1757, D1758, T1763, and Y1764 which are specific for the NS3/NS4 region of HCV type 5 sequences of the invention as shown in Fig. 7;
- A2647, L2653, S2674, F2680, T2724, R2726, Y2730, H2739 which are specific for the NS5B region of the HCV type 5 sequences of the present invention as shown in Fig. 2;
- A256, P1631, V1677, Q1704, E1730, V1732, Q1741 and T1751 which are specific for the HCV type 3 and 5 sequences of the present invention as shown in Fig. 5 and 7;
- T71, A157, I227, T237, T240, Y250, V251, S260, M271, T2673, T2722, I2748 which are specific for the HCV type 3 and 4 sequences of the present invention as shown in Fig. 5 and 2,
- V192, Y194, A197, P249, S250, R294 which are specific for the HCV type 4 and 5 sequences of the present invention as shown in Fig. 5;
- I293 which is specific for the HCV type 4 and subtype 2d sequence of the present invention as shown in Fig. 5;
- D217 and R294 which are specific for the HCV type 3, 4 and 5 sequences of the present invention as shown in Fig. 5;
- L192 which is specific for the HCV type 3 and subtype 2d sequences of the present invention as shown in Fig. 5;
- G191 and T197 which are specific for the HCV type 3, 4 and subtype 2d sequences of the present invention as shown in Fig. 5;
- K232 which is specific for the HCV subtype 2d en type 5 sequences of the present invention as shown in Fig. 5.

and with said notation being composed of a letter, unambiguously representing the amino acid by its one-letter code, and a number representing the amino acid numbering according to Kato et al., 1990 (see also Table 1 for comparison with other isolates), as well as Figure 2 (NS5)

region), Figure 5 (Core/E1 region), Figure 7 (NS3/NS4 region), Figure 12 (E1/E2 region). Some of the above-mentioned amino acids may be contained in type or subtype specific epitopes.

For example M231 (detected in type 5) refers to a methionine at position 231. A glutamine (Q) is present at the same position 231 in type 3 isolates, whereas this position is occupied by an arginine in type 1 isolates and by a lysine (K) or asparagine (N) in type 2 isolates (see Figure 5).

The peptide or polypeptide according to this embodiment of the invention may be possibly labelled, or attached to a solid substrate, or coupled to a carrier molecule such as biotin, or mixed with a proper adjuvant.

The variable region in the core protein (V-CORE in Fig. 5) has been shown to be useful for serotyping (Machida et al., 1992). The sequence of the disclosed type 5 sequence in this region shows type-specific features. The peptide from amino acid 70 to 78 shows the following unique sequence for the sequences of the present inevntion (see figure 5):

QPTGRSWGQ (SEQ ID NO 93)

RSEGRTSWAQ (SEQ ID NO 220)

and RTEGRTSWAQ (SEQ ID NO 221)

Another preferred V-Core spanning region is the peptide spanning positions 60 to 78 of subtype 3c with sequence:

SRRQPIPRARRTEGRSWAQ (SEQ ID NO 268)

Five type-specific variable regions (V1 to V5) can be identified after aligning E1 amino acid sequences of the 4 genotypes, as shown in Figure 5.

Region V1 encompasses amino acids 192 to 203, this is the amino-terminal 10 amino acids of the E1 protein. The following unique sequences as shown in Fig. 5 can be deduced:

LEWRNTSGLYVL (SEQ ID NO 83)

VNYRNASGIYHI (SEQ ID NO 126)

OHYRNISGIYHV (SEQ ID NO 127)

EHYRNASGIYHI (SEQ ID NO 128)

IHYRNASGIYHI (SEQ ID NO 224)

VPYRNASGIYHV (SEQ ID NO 84)

VNYRNASGIYHI (SEQ ID NO 225)

VNYRNASGVYHI (SEQ ID NO 226)

VNYHNTSGIYHL (SEQ ID NO 227)

QHYRNASGIYHV (SEQ ID NO 228)

QHYRNVSGIYHV (SEQ ID NO 229)

IHYRNASDGYYI (SEQ ID NO 230)

LQVKNTSSSYMV (SEQ ID NO 231)

Region V2 encompasses amino acids 213 to 223. The following unique sequences can be found in the V2 region as shown in Figure 5:

VYEADDVILHT (SEQ ID NO 85)

VYETEHHILHL (SEQ ID NO 129)

VYEADHHIMHL (SEQ ID NO 130)

VYETDHHILHL (SEQ ID NO 131)

VYEADNLILHA (SEQ ID NO 86)

VWQLRAIVLHV (SEQ ID NO 232)

VYEADYHILHL (SEQ ID NO 233)

VYETDNHILHL (SEQ ID NO 234)

VYETENHILHL (SEQ ID NO 235)

VFETVHHILHL (SEQ ID NO 236)

VFETEHHILHL (SEQ ID NO 237)

VFETDHHIMHL (SEQ ID NO 238)

VYETENHILHL (SEQ ID NO 239)

VYEADALILHA (SEQ ID NO 240)

Region V3 encompasses the amino acids 230 to 242. The following unique V3 region sequences can be deduced from Figure 5:

VQDGNTSTCWTPV (SEQ ID NO 87)

VQDGNTSACWTPV (SEQ ID NO 241)

VRVGNQSRCWVAL (SEQ ID NO 132)

VRTGNTSRCWVPL (SEQ ID NO 133)

VRAGNVSRCWTPV (SEQ ID NO 134)

EEKGNISRCWIPV (SEQ ID NO 242)

VKTGNQSRCWVAL (SEQ ID NO 243)

VRTGNQSRCWVAL (SEQ ID NO 244)

VKTGNQSRCWIAL (SEQ ID NO 245)

VKTGNVSRCWIPL (SEQ ID NO 247)

VKTGNVSRCWISL (SEQ ID NO 248)

VRKDNVSRCWVQI (SEQ ID NO 249)

Region V4 encompasses the amino acids 248 to 257. The following unique V4 region sequences can be deduced from figure 5:

VRYVGATTAS (SEQ ID NO 89)

APYIGAPLES (SEQ ID NO 135)

APYVGAPLES (SEQ ID NO 136)

AVSMDAPLES (SEQ ID NO 137)

APSLGAVTAP (SEQ ID NO 90)

APSFGAVTAP (SEQ ID NO 250)

VSQPGALTKG (SEQ ID NO 251)

VKYVGATTAS (SEQ ID NO 252)

APYIGAPVES (SEQ ID NO 253)

AQHLNAPLES (SEQ ID NO 254)

SPYVGAPLEP (SEQ ID NO 255)

SPYAGAPLEP (SEQ ID NO 256)

APYLGAPLEP (SEQ ID NO 257)

APYLGAPLES (SEQ ID NO 258)

APYVGAPLES (SEQ ID NO 259)

VPYLGAPLTS (SEQ ID NO 260)

APHLRAPLSS (SEQ ID NO 261)

APYLGAPLTS (SEQ ID NO 262)

Region V5 encompasses the amino acids 294 to 303. The following unique V5 region peptides can be deduced from figure 5:

RPRRHQTVQT (SEQ ID NO 91)

OPRRHWTTOD (SEQ ID NO 138)

RPRRHWTTQD (SEQ ID NO 139)

RPRQHATVQN (SEQ ID NO 92)

RPRQHATVQD (SEQ ID NO 263)

SPQHHKFVQD (SEQ ID NO 264)

RPRRLWTTQE (SEQ ID NO 265)

PPRIHETTQD (SEQ ID NO 266)

The variable region in the E2 region (HVR-2) of type 5a as shown in Figure 12 spanning amino acid positions 471 to 484 is also a preferred peptide according to the present invention

WO 94/25601

with the following sequence:

TISYANGSGPSDDK (SEQ ID NO 267)

The above given list of peptides are particularly suitable for vaccine and diagnostic development.

Also comprised in the present invention is any synthetic peptide or polypeptide containing at least 5 contiguous amino acids derived from the above-defined peptides in their peptidic chain.

According to a specific embodiment, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 3 sequences:

- a sequence having a homology of more than 72%, preferably more than 74%, more preferably more than 77% and most preferably more than 80 or 84% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the region spanning positions 140 to 319 in the Core/E1 region as shown in Figure 5;
- a sequence having a homology of more than 70%, preferably more than 72%, more preferably more than 75% homology, most preferably more than 81% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the E1 region spanning positions 192 to 319 as shown in Figure 5;
- a sequence having a homology of more than 86%, preferably more than 88%, and most preferably more than 90% homology to the amino acid sequences as represented in SEQ ID NO 148 (type 3c); BE98 in the region spanning positions 1 to 110 in the Core region as shown in Figure 5;
- a sequence having a homology of more than 76%, preferably more than 78%, most preferably more than 80% to any of the amino acid sequences as represented in SEQ ID NO 30, 32, 34, 36, 38 or 40 (HCCl53, HD10, BR36 sequences) in the region spanning positions 1646 to 1764 in the NS3/NS4 region as shown in Figure 7 and 11;
- a sequence having a homology of more than 81%, preferably more than 83%, and most preferably more than 86% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the region spanning positions 140 to 319 in the Core/E1 region as shown in Figure 5;
- a sequence having a homology of more than 81.5%, preferably more than 83%, and most

preferably more than 86% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 (HD10, BR36, BR33 sequences) in the E1 region spanning positions 192 to 319 as shown in Figure 5;

- a sequence having a homology of more than 86%, preferably more than 88%, most preferably more than 90% to the amino acid sequence as represented in SEQ ID NO 150; (type 3c BE98) in the region spanning positions 2645 to 2757 in the NS5B region as shown in Figure 2.

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 4 sequences:

- a sequence having a homology of more than 80%, preferably more than 82%, most preferably more than 84% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122 (GB358, GB549, GB809 sequences) in the region spanning positions 127 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having a homology of more than 73%, preferably more than 75%, most preferably more than 78% homology in the E1 region spanning positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122 (GB358, GB549, GB809 sequences) in the region spanning positions 140 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120 or 122 (GB358, GB549, GB809 sequences) in the region spanning positions 192 to 319 of E1 as shown in Figure 5;
- a sequence showing more than 73%, preferably more than 74%, most preferably more than 75% homology to any of the amino acid sequences as represented in SEQ ID NO 106, 108, 110, 112, 114 or 116 (GB48, GB116, GB215, GB358, GB549, GB809 sequences) in the region spanning positions 2645 to 2757 of the NS5B region as shown in Figure 2;
- a sequence having any of the sequences as represented in SEQ ID NO 164 or 166 (GB809 and CAM600 sequences) in the Core/E1 region as shown in Figure 5;
- a sequence having any of the sequences as represented in SEQ ID NO 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188 or 190 (CAM600, GB809, CAMG22, CAMG27, GB549, GB438, CAR4/1205, CAR4/901, GB116, GB215, GB958, GB809-4 sequences) in the E1 region as shown in Figure 5;

WO 94/25601

a sequence having any of the sequences as represented in SEQ ID NO 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212 (GB358, GB724, BE100, PC, CAM600, CAMG22, etc.) in the NS5B region.

The above-mentioned type 4 peptides polypeptides comprise at least an amino acid sequence selected from any HCV type 4 polyprotein with the exception of core sequence as disclosed by Simmonds et al. (1993, EG-29, see Figure 5).

According to yet another aspect, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 5 sequences:

- a sequence having more than 93%, preferably more than 94%, most preferably more than 95% homology in the region spanning Core positions 1 to 191 to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52 or 54 (PC sequences) and SEQ ID NO 152 (BE95) as shown in Figure 5;
- a sequence having more than 73%, preferably more than 74%, most preferably more than 76% homology in the region spanning E1 positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52 or 54 (PC sequences) as shown in Figure 5;
- a sequence having a more than 78%, preferably more than 80%, most preferably more than 83% homology to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52, 54, 154, 156 (BE95, BE100) (PC sequences) in the region spanning positions 1 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having more than 90%, preferably more than 91%, most preferably more than 92% homology to any of the amino acid sequences represented in SEQ ID NO 56 to 58 (PC sequences) in the region spanning positions 1286 to 1403 of the NS3 region as shown in Figure 7 or 11;
- a sequence having more than 66%, more particularly 68%, most particularly 70% or more homology to any of the amino acid sequences as represented in SEQ ID NO 60 or 62 (PC sequences) in the region spanning positions 1646 to 1764 of the NS3/4 region as shown in Figure 7 or 11.

According to yet another embodiment, the present invention relates to a composition as defined above, wherein said contiguous sequence is selected from any of the following HCV amino acid type 2d sequences:

- a sequence having more than 83%, preferably more than 85%, most preferably more than

- 87% homology to the amino acid sequence as represented in SEQ ID NO 144 (NE92) in the region spanning positions 1 to 319 of the Core/E1 region as shown in Figure 5;
- a sequence having more than 79%, preferably more than 81%, most preferably more than 84% homology in the region spanning E1 positions 192 to 319 to the amino acid sequence as represented in SEQ ID NO 144 (NE92) as shown in Figure 12;
- a sequence having more than 95%, more particularly 96%, most particularly 97% or more homology to the amino acid sequence as represented in SEQ ID NO 146 (NE92) in the region spanning positions 2645 to 2757 of the NS5B region as shown in Figure 2.

The present invention also relates to a recombinant vector, particularly for cloning and/or expression, with said recombinant vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral promoter sequence followed by the nucleotide sequences as defined above, with said recombinant vector allowing the expression of any one of the HCV type 2 and/or HCV type 3 and/or type 4 and/or type 5 derived polypeptides as defined above in a prokaryotic, or eukaryotic host or in living mammals when injected as naked DNA, and more particularly a recombinant vector allowing the expression of any of the following HCV type 2d, type 3, type 4 or type 5 polypeptides spanning the following amino acid positions:

- a polypeptide starting at position 1 and ending at any position in the region between positions 70 and 326, more particularly a polypeptide spanning positions 1 to 70, 1 to 85, positions 1 to 120, positions 1 to 150, positions 1 to 191, positions 1 to 200, for expression of the Core protein, and a polypeptide spanning positions 1 to 263, positions 1 to 326, for expression of the Core and E1 protein;
- a polypeptide starting at any position in the region between positions 117 and 192, and ending at any position in the region between positions 263 and 326, for expression of E1, or forms that have the putative membrane anchor deleted (positions 264 to 293 plus or minus 8 amino acids);
 - a polypeptide starting at any position in the region between positions 1556 and 1688, and ending at any position in the region between positions 1739 and 1764, for expression of the NS4 regions, more particularly a polypeptide starting at position 1658 and ending at position 1711 for expression of the NS4a antigen, and more particularly, a polypeptide starting at position 1712 and ending between positions 1743 and 1972, for example 1712-1743, 1712-1764, 1712-1782, 1712-1972, 1712 to 1782 and 1902 to 1972 for expression of the NS4b protein or parts thereof.

The term "vector" may comprise a plasmid, a cosmid, a phage, or a virus.

In order to carry out the expression of the polypeptides of the invention in bacteria such as E. coli or in eukaryotic cells such as in S. cerevisiae, or in cultured vertebrate or invertebrate hosts such as insect cells, Chinese Hamster Ovary (CHO), COS, BHK, and MDCK cells, the following steps are carried out:

transformation of an appropriate cellular host with a recombinant vector, in which a nucleotide sequence coding for one of the polypeptides of the invention has been inserted under the control of the appropriate regulatory elements, particularly a promoter recognized by the polymerases of the cellular host and, in the case of a prokaryotic host, an appropriate ribosome binding site (RBS), enabling the expression in said cellular host of said nucleotide sequence. In the case of an eukaryotic host any artificial signal sequence or pre/pro sequence might be provided, or the natural HCV signal sequence might be employed, e.g. for expression of E1 the signal sequence starting between amino acid positions 117 and 170 and ending at amino acid position 191 can be used, for expression of NS4, the signal sequence starting between amino acid positions 1646 and 1659 can be used, culture of said transformed cellular host under conditions enabling the expression of said insert.

The present invention also relates to a composition as defined above, wherein said polypeptide is a recombinant polypeptide expressed by means of an expression vector as defined above.

The present invention also relates to a composition as defined above, for use in a method for immunizing a mammal, preferably humans, against HCV comprising administring a sufficient amount of the composition possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response, more particularly a vaccine composition including HCV type 3 polypeptides derived from the Core, E1 or the NS4 region and/or HCV type 4 and/or HCV type 5 polypeptides and/or HCV type 2d polypeptides.

The present invention also relates to an antibody raised upon immunization with a composition as defined above by means of a process as defined above, with said antibody being reactive with any of the polypeptides as defined above, and with said antibody being preferably a monoclonal antibody.

The monoclonal antibodies of the invention can be produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly from

WO 94/25601

a mouse or rat, immunized against the HCV polypeptides according to the invention, or muteins thereof, or fragments thereof as defined above on the one hand, and of cells of a myeloma cell line on the other hand, and to be selected by the ability of the hybridoma to produce the monoclonal antibodies recognizing the polypeptides which has been initially used for the immunization of the animals.

The antibodies involved in the invention can be labelled by an appropriate label of the enzymatic, fluorescent, or radioactive type.

The monoclonal antibodies according to this preferred embodiment of the invention may be humanized versions of mouse monoclonal antibodies made by means of recombinant DNA technology, departing from parts of mouse and/or human genomic DNA sequences coding for H and L chains or from cDNA clones coding for H and L chains.

Alternatively the monoclonal antibodies according to this preferred embodiment of the invention may be human monoclonal antibodies. These antibodies according to the present embodiment of the invention can also be derived from human peripheral blood lymphocytes of patients infected with type 3, type 4 or type 5 HCV, or vaccinated against HCV. Such human monoclonal antibodies are prepared, for instance, by means of human peripheral blood lymphocytes (PBL) repopulation of severe combined immune deficiency (SCID) mice (for recent review, see Duchosal et al. 1992).

The invention also relates to the use of the proteins of the invention, muteins thereof, or peptides derived therefrom for the selection of recombinant antibodies by the process of repertoire cloning (Persson et al., 1991).

Antibodies directed to peptides derived from a certaing genotype may be used either for the detection of such HCV genotypes, or as therapeutic agents.

The present invention also relates to the use of a composition as defined above for incorporation into an immunoassay for detecting HCV, present in biological sample liable to contain it, comprising at least the following steps:

- (i) contacting the biological sample to be analyzed for the presence of HCV antibodies with any of the compositions as defined above preferably in an immobilized form under appropriate conditions which allow the formation of an immune complex, wherein said polypeptide can be a biotinylated polypeptide which is covalently bound to a solid substrate by means of streptavidin or avidin complexes,
- (ii) removing unbound components,
- (iii) incubating the immune complexes formed with heterologous antibodies, which

WO 94/25601

specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions,

(iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the HCV serotype present from the observed hybridization pattern.

The present invention also relates to the use of a composition as defined above, for incorporation into a serotyping assay for detecting one or more serological types of HCV present in a biological sample liable to contain it, more particularly for detecting E1 and NS4 antigens or antibodies of the different types to be detected combined in one assay format, comprising at least the following steps:

- (i) contacting the biological sample to be analyzed for the presence of HCV antibodies or antigens of one or more serological types, with at least one of the compositions as defined above, an immobilized form under appropriate conditions which allow the formation of an immunecomplex,
- (ii) removing unbound components,
- (iii) incubating the immunecomplexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions,
- (iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the presence of one or more HCV serological types present from the observed binding pattern.

The present invention also relates to the use of a composition as defined above, for immobilization on a solid substrate and incorporation into a reversed phase hybridization assay, preferably for immobilization as parallel lines onto a solid support such as a membrane strip, for determining the presence or the genotype of HCV according to a method as defined above.

The present invention thus also relates to a kit for determining the presence of HCV genotypes as defined above present in a biological sample liable to contain them, comprising:

possibly at least one primer composition containing any primer selected from those defined above or any other HCV type 3 and/or HCV type 4, and/or HCV type 5, or universal HCV primers,

- at least one probe composition as defined above, with said probes being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
- a buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the possibly amplified products to be carried out,
- means for detecting the hybrids resulting from the preceding hybriziation,
- possibly also including an automated scanning and interpretation device for inferring the HCV genotypes present in the sample from the observed hybridization pattern.

The genotype may also be detected by means of a type-specific antibody as defined above, which is linked to any polynucleotide sequence that can afterwards be amplified by PCR to detect the immune complex formed (Immuno-PCR, Sano et al., 1992);

The present invention also relates to a kit for determining the presence of HCV antibodies as defined above present in a biological sample liable to contain them, comprising:

- at least one polypeptide composition as defined above, preferentially in combination with other polypeptides or peptides from HCV type 1, HCV type 2 or other types of HCV, with said polypeptides being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
- a buffer or components necessary for producing the buffer enabling binding reaction between these polypeptides and the antibodies against HCV present in the biological sample,
- means for detecting the immunecomplexes formed in the preceding binding reaction,
- possibly also including an automated scanning and interpretation device for inferring the HCV genotypes present in the sample from the observed binding pattern.

Figure Legends

Figure 1

Alignment of consensus nucleotide sequences for each of the type 3a isolates BR34, BR36, and BR33, deduced from the clones with SEQ ID NO 1, 5, 9; type 4 isolates GB48, GB116, GB215, GB358, GB549, GB809, CAM600, CAMG22, GB438, CAR4/1205, CAR1/501 (SEQ ID NO. 106, 108, 110, 112, 114, 116, 201, 203, 205, 207, 209 and 211); type 5a isolates BE95 and BE96 (SEQ ID NO 159 and 161) and type 2d isolate NE92 (SEQ ID NO 145) from the region between nucleotides 7932 and 8271, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, HC-J8, T1 and T9, and others as shown in Table 3.

Figure 2

Alignment of amino acids sequences deduced from the nucleic acid sequences as represented in Figure 1 from the subtype 3a clones BR34 (SEQ ID NO 2, 4), BR36 (SEQ ID NO 6, 8) and BR33 (SEQ ID NO 10, 12), the subtype 3c clone BE98 (SEQ ID NO 150), and the type 4 clones GB48 (SEQ ID NO 107), GB116 (SEQ ID NO 109), GB215 (SEQ ID NO 111), GB358 (SEQ ID NO 113), GB549 (SEQ ID NO 115) GB809 (SEQ ID NO 117); CAM600, CAMG22, GB438, CAR4/1205, CAR1/501 (SEQ ID NO 202, 204, 206, 208, 210, 212); the type 5a clones BE95 and BE96 (SEQ ID NO 160 and 162); as well as the subtype 2d isolate NE92 (SEQ ID NO 146) from the region between amino acids 2645 to 2757 with known sequences from the corresponding region of isolates HCV-I, HCV-J, HC-J6, and HC-J8, T1 and T9, and other sequences as shown in Table 3.

Figure 3

Alignment of type 2d, 3c, 4 and 5a nucleotide sequences from isolates NE92, BE98, GB358, GB809, CAM600, GB724, BE95 (SEQ ID NO 143, 147, 191, 163, 165, 193 and 151) in the Core region between nucleotide positions 1 and 500, with known sequences from the corresponding region of type 1, type 2, type 3 and type 4 sequences.

Figure 4

Alignment of nucleotide sequences for the subtype 2d isolate NE92 (SEQ ID NO 143), the type 4 isolates GB358 (SEQ ID NO 118 and 187), GB549 (SEQ ID NO 120 and 175), and

GB809-2 (SEQ ID NO 122 and 169), GB 809-4, BG116, GB215, CAM600, CAMG22, CAMG27, GB438, CAR4/1205, CAR4/901 (SEQ ID NO 189, 183, 185, 167, 171, 173, 177, 179, 181), sequences for each of the subtype 3a isolates HD10, BR36, and BR33, (SEQ ID NO 13, 15, 17 (HD10), 19, 21 (BR36) and 23, 25 or 27 (BR23) and the subtype 5a isolates BE95 and BE100 (SEQ ID NO 143 and 195) from the region between nucleotides 379 and 957, with known sequences from the corresponding region of type 1 and 2 and 3.

Figure 5

Alignment of amino acid sequences deduced from the new HCV nucleotide sequences of the Core/E1 region of isolates BR33, BR36, HD10, GB358, GB549, and GB809, PC or BE95, CAM600, and GB724 (SEQ ID NO. 14, 20, 24, 119 or 192, 121, 123 or 164, 54 or 152, 166 and 194) from the region between positions 1 and 319, with known sequences from type 1a (HCV-1), type 1b (HCV-J), type 2a (HC-JG), type 2b (HC-J8), NZL1, HCV-TR, positions 7-89 of type 3a (E-b1), and positions 8-88 of type 4a (EG-29). V-Core, variable region with type-specific features in the core protein, V1, variable region 1 of the E1 protein, V2, variable region 2 of the E1 protein, V3, variable region 3 of the E1 protein, V4, variable region 4 of the E1 protein, V5, variable region 5 of the E1 protein.

Figure 6

Alignment of nucleotide sequences of isolates HCCL53, HD10 and BR36, deduced from clones with SEQ ID NO 29, 31, 33, 35, 37 and 39, from the NS3/4 region between nucleotides 4664 to 5292, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, and HC-J8, EB1, EB2, EB6 and EB7.

Figure 7

Alignment of amino acid sequences deduced from the new HCV nucleotide sequences of the NS3/NS4 region of isolate BR36 (SEQ ID NO 36, 38 and 40) and BE95 (SEQ ID NO 270). NS4-1, indicates the region that was synthesized as synthetic peptide 1 of the NS4 region, NS4-5, indicates the region that was synthesized as synthetic peptide 5 of the NS4 region; NS4-7, indicates the region that was synthesized as synthetic peptide 7 of the NS4 region.

Figure 8

Reactivity of the three LIPA-selected (Stuyver et al., 1993) type 3 sera on the Inno-LIA HCV Ab II assay (Innogenetics) (left), and on the NS4-LIA test. For the NS4-LIA test, NS4-1, NS4-5, and NS4-7 peptides were synthesized based on the type 1 (HCV-1), type 2 (HC-J6) and type 3 (BR36) prototype isolate sequences as shown in Table 4, and applied as parallel lines onto a membrane strip as indicated. 1, serum BR33, 2, serum HD10, 3, serum DKH.

Figure 9

Nucleotide sequences of Core/E1 clones obtained from the PCR fragments PC-2, PC-3, and PC-4, obtained from serum BE95 (PC-2-1 (SEQ ID NO 41), PC-2-6 (SEQ ID NO 43), PC-4-1 (SEQ ID NO 45), PC-4-6 (SEQ ID NO 47), PC-3-4 (SEQ ID NO 49), and PC-3-8 (SEQ ID NO 51)) of subtype 5a isolate BE95.

A consensus sequence is shown for the Core and E1 region of isolate BE95, presented as PC C/E1 with SEQ ID NO 53. Y, C or T, R, A or G, S, C or G.

Figure 10

Alignment of nucleotide sequences of clones with SEQ ID NO 197 and 199 (PC sequences, see also SEQ ID NO 55, 57, 59) and SEQ ID NO 35, 37 and 39 (BR36 sequences) from the NS3/4 region between nucleotides 3856 to 5292, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, and HC-J8.

Figure 11

Alignment of amino acid sequences of subtype 5a BE95 isolate PC clones with SEQ ID NO 56 and 58, from the NS3/4 region between amino acids 1286 to 1764, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, and HC-J8.

Figure 12

Alignment of amino acid sequences of subtype 5a isolate BE95 (SEQ ID NO 158) in the E1/E2 region spanning positions 328 to 546, with known sequences from the corresponding region of isolates HCV-1, HCV-J, HC-J6, HC-J8, NZL1 and HCV-TR (see Table 3).

Figure 13

Alignment of the nucleotide sequences of subtype 5a isolate BE95 (SEQ ID NO 157) in the E1/E2 region with known HCV sequences as shown in Table 3.

EXAMPLES

Example 1: The NS5b region of HCV type 3

Type 3 sera, selected by means of the INNO-LiPA HCV research kit (Stuyver et al., 1993) from a number of Brazilian blood donors, were positive in the HCV antibody ELISA (Innotest HCV Ab II; Innogenetics) and/or in the INNO-LIA HCV Ab II confirmation test (Innogenetics). Only those sera that were positive after the first round of PCR reactions (Stuyver et al., 1993) were retained for further study.

Reverse transcription and nested PCR: RNA was extracted from 50 μ l serum and subjected to cDNA synthesis as described (Stuyver et al., 1993). This cDNA was used as template for PCR, for which the total volume was increased to 50 μ l containing 10 pmoles of each primer, 3 μ l of 10x Pfu buffer 2 (Stratagene) and 2.5 U of Pfu DNA polymerase (Stratagene). The cDNA was amplified over 45 cycles consisting of 1 min 94°C, 1 min 50°C and 2 min 72°C. The amplified products were separated by electrophoresis, isolated, cloned and sequenced as described (Stuyver et al., 1993).

Type 3a and 3b-specific primers in the NS5 region were selected from the published sequences (Mori et al., 1992) as follows:

for type 3a:

HCPr161(+): 5'-ACCGGAGGCCAGGAGAGTGATCTCCTCC-3' (SEQ ID NO 63) and HCPr162(-): 5'-GGGCTGCTCTATCCTCATCGACGCCATC-3' (SEQ ID NO 64);

for type 3b:

HCPr163(+): 5'-GCCAGAGGCTCGGAAGGCGATCAGCGCT-3' (SEQ ID O 65) and HCPr164(-): 5'-GAGCTGCTCTGTCCTCCTCGACGCCGCA-3' (SEQ ID NO 66)

Using the Line Probe Assay (LiPA) (Stuyver et al., 1993), seven high-titer type 3 sera were selected and subsequently analyzed with the primer sets HCPr161/162 for type 3a, and HCPr163/164 for type 3b. None of these sera was positive with the type 3b primers. NS5 PCR fragments obtained using the type 3a primers from serum BR36 (BR36-23), serum BR33 (BR33-2) and serum BR34 (BR34-4) were selected for cloning. The following sequences were obtained from the PCR fragments:

From fragment BR34-4:

BR34-4-20 (SEQ ID NO 1), BR34-4-19 (SEQ ID NO 3)

From fragment BR36-23:

BR36-23-18 (SEQ ID NO 5), BR36-23-20 (SEQ ID NO 7)

From fragment BR33-2:

BR33-2-17 (SEQ ID NO 9), BR33-2-21 (SEQ ID NO 11)

An alignment of sequences with SEQ ID NO 1, 5 and 9 with known sequences is given in Figure 1. An alignment of the deduced amino acid sequences is shown in Figure 2. The 3 isolates are very closely related to each other (mutual homologies of about 95%) and to the published sequences of type 3a (Mori et al., 1992), but are only distantly related to type 1 and type 2 sequences (Table 5). Therefore, it is clearly demonstrated that NS5 sequences from LiPA-selected type 3 sera are indeed derived from a type 3 genome. Moreover, by analyzing the NS5 region of serum BR34, for which no 5'UR sequences were determined as described in Stuyver et al. (1993), the excellent correlation between typing by means of the LiPA and genotyping as deduced from nucleotide sequencing was further proven.

Example 2: The Core/E1 region of HCV type 3

After aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1990), HC-J6 (Okamoto et al., 1991), and HC-J8 (Okamoto et al., 1992), PCR primers were chosen regions of little sequence variation. **Primers** HCPr23(+): 67) NO CTCATGGGGTACATTCCGCT-3' (SEQ ID and HCPr54(-): 5'-TATTACCAGTTCATCATCATATCCCA-3' (SEQ ID NO 68), were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). This set of primers was selected to amplify the sequence from nucleotide 397 to 957 encoding amino acids 140 to 319 (Kato et al., 1990): 52 amino acids from the carboxyterminus of core and 128 amino acids of E1 (Kato et al., 1990). The amplification products BR36-9, BRR33-1, and HD10-2 were cloned as described (Stuyver et al., 1993). The following clones were obtained from the PCR fragments:

From fragment HD10-2:

HD10-2-5 (SEQ ID NO 13), HD10-2-14 (SEQ ID NO 15), HD10-2-21 (SEQ ID NO 17) From fragment BR36-9:

BR36-9-13 (SEQ ID NO 19), BR36-9-20 (SEQ ID NO 21),

From fragment BR33-1:

BR33-1-10 (SEQ ID NO 23), BR33-1-19 (SEQ ID NO 25), BR33-1-20 (SEQ ID NO 27), An alignment of the type 3 E1 nucleotide sequences (HD10, BR36, BR33) with SEQ ID NO 13, 19 and 23 with known E1 sequences is presented in Figure 4. Four variations were detected in the E1 clones from serum HD10 and BR36, while only 2 were found in BR33. All are silent third letter variations, with the exception of mutations at position 40 (L to P)

and 125 (M to I). The homologies of the type 3 E1 region (without core) with type 1 and 2 prototype sequences are depicted in Table 5.

In total, 8 clones covering the core/E1 region of 3 different isolates were sequenced and the E1 portion was compared with the known genotypes (Table 3) as shown in Figure 5. After computer analysis of the deduced amino acid sequence, a signal-anchor sequence at the core carboxyterminus was detected which might, through analogy with type 1b (Hijikata et al., 1991), promote cleavage before the LEWRN sequence (position 192, Fig. 5). The L-to-P mutation in one of the HD10-2 clones resides in this signal-anchor region and potentially impairs recognition by signal peptidase (computer prediction). Since no examples of such substitutions were found at this position in previously described sequences, this mutation might have resulted from reverse transcriptase or Pfu polymerase misincorporation. The 4 amino-terminal potential N-linked glycosylation sites, which are also present in HCV types 1a and 2, remain conserved in type 3. The N-glycosylation site in type 1b (aa 250, Kato et al., 1990) remains a unique feature of this subtype. All E1 cysteines, and the putative transmembrane region (aa 264 to 293, computer prediction) containing the aspartic acid at position 279, are conserved in all three HCV types. The following hypervariable regions can be delineated: V1 from aa 192 to 203 (numbering according to Kato et al., 1990), V2 (213-223), V3 (230-242), V4 (248-257), and V5 (294-303). Such hydrophilic regions are thought to be exposed to the host defense mechanisms. This variability might therefore have been induced by the host's immune response. Additional putative N-linked glycosylation sites in the V4 region in all type 1b isolates known today and in the V5 region of HC-J8 (type 2b) possibly further contribute to modulation of the immune response. Therefore, analysis of this region, in the present invention, for type 3 and 4 sequences has been instrumental in the delineation of epitopes that reside in the V-regions of E1, which will be critical for future vaccine and diagnostics development.

Example 3: The NS3/NS4 region of HCV Type 3

For the NS3/NS4 border region, the following sets of primers were selected in the regions of little sequence variability after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1990), HC-J6 (Okamoto et al., 1991), and HC-J8 (Okamoto et al., 1992) (smaller case lettering is used for nucleotides added for cloning purposes):

set A:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)

- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set B:
- HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71) set C:
- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set D:
- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71) set E:
- HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)
- HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73) set F:
- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73) set G:
- HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID NO 74)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set H:
- HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set I:
- HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set J:
- HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID NO 74)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71)

set K:

- HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71)

set L:

HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71)

set M:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr4(-): 5'-GACATGCATGTCATGATGTA-3 (SEQ ID NO 78)

set N:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71)

set O:

HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

No PCR products could be obtained with the sets of primers A, B, C, D, E, F, G, H, I, J, K, L, M, and N, on random-primed cDNA obtained from type 3 sera. With the primer set O, no fragment could be amplified from type 3 sera. However, a smear containing a few weakly stainable bands was obtained from serum BR36. After sequence analysis of several DNA fragments, purified and cloned from the area around 300 bp on the agarose gel, only one clone, HCCl53 (SEQ ID NO 29), was shown to contain HCV information. This sequence was used to design primer HCPr152.

A new primer set P was subsequently tested on several sera.

set P:

HCPr152(+): 5'-TACGCCTCTTCTATATCGGTTGGGGCCTG-3' (SEQ ID NO 79) and

HCPr66(-): 5'-CTATTATTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

The 464-bp HCPr152/66 fragment was obtained from serum BR36 (BR36-20) and serum HD10 (HD10-1). The following clones were obtained from these PCR products:

From fragment HD10-1:

HD10-1-25 (SEQ ID NO 31), HD10-1-3 (SEQ ID NO 33),

From fragment BR36-20:

BR36-20-164 (SEQ ID NO 35), BR36-20-165 (SEQ ID NO 37), BR36-20-166 (SEQ ID NO 39),

The nucleotide sequences obtained from clones with SEQ ID NO 29, 31, 33, 35, 37 or 39 are shown aligned with the sequences of prototype isolates of other types of HCV in Figure 6. In addition to one silent 3rd letter variation, one 2nd letter mutation resulted in an

E to G substitution at position 175 of the deduced amino acid sequence of BR36 (Fig. 7). Serum HD10 clones were completely identical. The two type 3 isolates were nearly 94% homologous in this NS4 region. The homologies with other types are presented in Table 5.

Example 4: Analysis of the anti-NS4 response to type-specific peptides

As the NS4 sequence contains the information for an important epitope cluster, and since antibodies towards this region seem to exhibit little cross-reactivity (Chan et al., 1991), it was worthwhile to investigate the type-specific antibody response to this region. For each of the 3 genotypes, HCV-1 (Choo et al., 1991), HC-J6 (Okamoto et al., 1991) and BR36 (present invention), three 20-mer peptides were synthesized covering the epitope region between amino acids 1688 and 1743 (as depicted in table 6). The synthetic peptides were applied as parallel lines onto membrane strips. Detection of anti-NS4 antibodies and color development was performed according to the procedure described for the INNO-LIA HCV Ab II kit (Innogenetics, Antwerp). Peptide synthesis was carried out on a 9050 PepSynthesizer (Millipore). After incubation with 15 LiPA-selected type 3 sera, 9 samples showed reactivity towards NS4 peptides of at least 2 different types, but a clearly positive reaction was observed for 3 sera (serum BR33, HD30 and DKH) on the type 3 peptides, while negative (serum BR33 and HD30) or indeterminate (serum DKH) on the type 1 and type 2 NS4 peptides; 3 sera tested negative for anti-NS4 antibodies (Figure 8). Using the same membrane strips coated with the 9 peptides as indicated above and as shown in Figure 8, 38 type 1 sera (10 type 1a and 28 type 1b), 11 type 2 sera (10 type 2a and 1 type 2b), 12 type 3a sera and 2 type 4 sera (as determined by the LiPA procedure) were also tested. As shown in Table 8, the sera reacted in a genotype-specific manner with the NS4 epitopes. These results demonstrate that type-specific anti-NS4 antibodies can be detected in the sera of some patients. Such genotype-specific synthetic peptides might be employed to develop serotyping assays, for example a mixture of the nine peptides as indicated above, or combined with the NS4 peptides from the HCV type 4 or 6 genotype or from new genotypes corresponding to the region between amino acids 1688 and 1743, or synthetic peptides of the NS4 region between amino acids 1688 and 1743 of at least one of the 6 genotypes, combined with the E1 protein or deletion mutants thereof, or synthetic E1 peptides of at least one of the genotypes. Such compositions could be further extended with type-specific peptides or proteins, including for example the region between amino acids 68 and 91 of the core protein, or more preferably the region between amino acids 68 and 78. Furthermore, such type-specific antigens may be advantageously used to improve current diagnostic screening and confirmation assays and/or HCV vaccines.

Example 5 The Core and E1 regions of HCV type 5

Sample BE95 was selected from a group of sera that reacted positive in a prototype Line Probe Assay as described earlier (Stuyver et al., 1993), because a high-titer of HCV RNA could be detected, enabling cloning of fragments by a single round of PCR. As no sequences from any coding region of type 5 has been disclosed yet, synthetic oligonucleotides for PCR amplification were chosen in the regions of little sequence variation after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1990), HC-J6 (Okamoto et al., 1991), HC-J8 (Okamoto et al., 1992), and the new type 3 sequences of the present invention HD10, BR33, and BR36 (see Figure 5, Example 2). The following sets of primers were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems):

Set 1:

HCPr52(+): 5'-atgTTGGGTAAGGTCATCGATACCCT-3' (SEQ ID NO 80) and

HCPr54(-): 5'-ctattaCCAGTTCATCATCATATCCCA-3' (SEQ ID NO 78)

Set 2:

HCPr41(+): 5'-CCCGGGAGGTCTCGTAGACCGTGCA-3' (SEQ ID NO 81) and

HCPr40(-): 5'-ctattaAAGATAGAGAAAGAGCAACCGGG-3'(SEQ ID NO 82)

Set 3:

HCPr41(+): 5'-CCCGGGAGGTCTCGTAGACCGTGCA-3' (SEQ ID NO 81) and

HCPr54(-): 5'-ccattaCCAGTTCATCATCATATCCCA-3' (SEQ ID NO 78)

The three sets of primers were employed to amplify the regions of the type 5 isolate PC as described (Stuyver et al., 1993). Set 1 was used to amplify the E1 region and yielded fragment PC-4, set 2 was designed to yield the Core region and yielded fragment PC-2. Set 3 was used to amplify the Core and E1 region and yielded fragment PC-3. These fragments were cloned as described (Stuyver et al., 1993). The following clones were obtained from the PCR fragments:

From fragment PC-2:

PC-2-1 (SEQ ID NO 41), PC-2-6 (SEQ ID NO 43),

From fragment PC-4:

PC-4-1 (SEQ ID NO 45), PC-4-6 (SEQ ID NO 47),

From fragment PC-3:

PC-3-4 (SEQ ID NO 49), PC-3-8 (SEQ ID NO 51)

An alignment of sequences with SEQ ID NO 41, 43, 45, 47, 49 and 51, is given in Figure 9. A consensus amino acid sequence (PC C/E1; SEQ ID NO 54) can be deduced from each of the 2 clones cloned from each of the three PCR fragments as depicted in Figure 5, which overlaps the region between nucleotides 1 and 957 (Kato et al., 1990). The 6 clones are very closely related to each other (mutual homologies of about 99.7%).

An alignment of nucleotide sequence with SEQ ID NO 53 or 151 (PC C/E1 from isolate BE95) with known nucleotide sequences from the Core/E1 region is given in Figure 3. The clone is only distantly related to type 1, type 2, type 3 and type 4 sequences (Table 5).

Example 6: NS3/NS4 region of HCV type 5

Attempts were undertaken to clone the NS3/NS4 region of the isolate BE95, described in example 5. The following sets of primers were selected in the regions of little sequence variability after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J (Kato et al., 1991), HC-J6 (Okamoto et al., 1991), and HC-J8 (Okamoto et al., 1992) and of the sequences obtained from type 3 sera of the present invention (SEQ ID NO 31, 33, 35, 37 and 39); smaller case lettering is used for nucleotides added for cloning purposes:

set A:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 66)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set B:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71) set C:

HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)

HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set D:

HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)

HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71) set E:

HCPr116(+): 5'-ttttAAATACATCATGRCITGYATG-3' (SEQ ID NO 69)

HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73)

set F:

- HCPr117(+): 5'-ttttAAATACATCGCIRCITGCATGCA-3' (SEQ ID NO 72)
- HCPr119(-): actagtcgactaRTTIGCIATIAGCCG/TRTTCATCCAYTG-3' (SEQ ID NO 73) set G:
- HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID NO 74)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set H:
- HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set I:
- HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70) set J:
- HCPr131(+): 5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3' (SEQ ID 74)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71) set K:
- HCPr130(+): 5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3' (SEQ ID NO 75)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQID NO 71) set L:
- HCPr134(+): 5'-CATATAGATGCCCACTTCCTATC-3' (SEQ ID NO 76)
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71) set M:
- HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and
- HCPr4(-): 5'-GACATGCATGTCATGATGTA-3' (SEQ ID NO 78)

set N:

- HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and
- HCPr118(-): 5'-actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3' (SEQ ID NO 71)

set O:

- HCPr3(+): 5'-GTGTGCCAGGACCATC-3' (SEQ ID NO 77) and
- HCPr66 (-): 5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3' (SEQ ID NO 70)

No PCR products could be obtained with the sets of primers A, B, C, D, E, F, G,

H, I, J, K, L, M, and N, on random-primed cDNA obtained from type 3 sera. However,

WO 94/25601

set O yielded what appeared to be a PCR artifact fragment estimated about 1450 base pairs, instead of the expected 628 base pairs. Although it is not expected that PCR artifact fragments contain information of the gene or genome that was targetted in the experiment, efforts were put in cloning of this artifact fragment, which was designated fragment PC-1. The following clones, were obtained from fragment PC-1:

PC-1-37 (SEQ ID NO 59 and SEQ ID NO 55), PC-1-48 (SEQ ID NO 61 and SEQ ID NO 57)

The sequences obtained from the 5' and 3' ends of the clones are given in SEQ ID NOS 55, 57, 59, and 61, and the complete sequences with SEQ ID NO 197 and 199 are shown aligned with the sequences of prototype isolates of other types of HCV in Figure 10 and the alignment of the deduced amino acid sequences is shown in Figure 11 and 7. Surprisingly, the PCR artifact clone contained HCV information. The positions of the sequences within the HCV genome are compatible with a contiguous HCV sequence of 1437 nucleotides, which was the estimated size of the cloned PCR artifact fragment. Primer HCPr66 primed correctly at the expected position in the HCV genome. Therefore, primer HCPr3 must have incidentally misprimed at a position 809 nucleotides upstream of its legitimate position in the HCV genome. This could not be expected since no sequence information was available from a coding region of type 5.

Example 7: The E2 region of HCV type 5

Serum BE95 was chosen for experiments aimed at amplifying a part of the E2 region of HCV type 5.

After aligning the sequences of HCV-1 (2), HCV-J(1), HC-J6 (3), and HC-J8 (4), PCR primers were chosen in those regions of little sequence variation.

Primers HCPr109(+): 5'-TGGGATATGATGATGATGACTGGTC-3' (SEQ ID NO 141) and HCPr14(-): 5'-CCAGGTACAACCGAACCAATTGCC-3' (SEQ ID NO 142) were combined to amplify the aminoterminal region of the E2/NS1 region, and were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). With primers HCPr109 and HCPr14, a PCR fragment of 661 bp was generated, containing 169 nucleodtides corresponding to the E1 carboxyterminus and 492 bases from the region encoding the E2 aminoterminus.

An alignment of the type 5 E1/E2 sequences with seq ID NO. 158 with known sequences is presented in Figure 10. The deduced protein sequence was compared with the different

genotypes (Fig. 12, amino acids 328-546). In the E1 region, there were no extra structural important motifs found. The aminoterminal part of E2 was hypervariable when compared with the other genotypes. All 6 N-glycosylation sites and all 7 cysteine residue's were conserved in this E2 region. To preserve alignment, it was necessary to introduce a gap between aa 474 and 475 as for type 3a, but not between aa 480 and 481, as for type 2.

Example 8: The NS5b region of HCV type 4

Type 4 sera GB48, GB116, GB215, and GB358, selected by means of the line probe assay (LiPA, Stuyver et al., 1993), as well as sera GB549 and GB809 that could not be typed by means of this LiPA (only hybridization was observed with the universal probes), were selected from Gabonese patients. All these sera were positive after the first round of PCR reactions for the 5' untranslated region (Stuyver et al., 1993) and were retained for further study.

RNA was isolated from the sera and cDNA synthesized as described in example 1.

Universal primers in the NS5 region were selected after alignment of the published sequences as follows:

HCPr206(+): 5'-TGGGGATCCCGTATGATACCCGCTGCTTTGA-3'

(SEQ ID NO. 124) and

HCPr207(-): 5'-GGCGGAATTCCTGGTCATAGCCTCCGTGAA-3'

(SEQ ID NO. 125);

and were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). Using the Line Probe Assay (LiPA), four high-titer type 4 sera and 2 sera that could not be classified were selected and subsequently analyzed with the primer set HCPr206/207. NS5 PCR fragments obtained using these primers from serum GB48 (GB48-3), serum GB116 (GB116-3), serum GB215 (GB215-3), serum GB358 (GB358-3), serum GB549 (GB549-3), and serum GB809 (GB809-3), were selected for cloning. The following sequences were obtained from the PCR fragments:

From fragment GB48-3: GB48-3-10 (SEQ ID NO. 106)

From fragment GB116-3: GB116-3-5 (SEQ ID NO. 108)

From fragment GB215-3: GB215-3-8 (SEQ ID NO. 110)

From fragment GB358-3: GB358-3-3 (SEQ ID NO. 112)

From fragment GB549-3: GB549-3-6 (SEQ ID NO. 114)

From fragment GB809-3: GB809-3-1 (SEQ ID NO. 116)

An alignment of nucleotide sequences with SEQ ID NO. 106, 108, 110, 112, 114, and 116 with known sequences is given in Figure 1. An alignment of deduced amino acid sequences with SEQ ID NO. 107, 109, 111, 113, 115, and 117 with known sequences is given in Figure 2. The 4 isolates that had been typed as type 4 by means of LiPA are very closely related to each other (mutual homologies of about 95%), but are only distantly related to type 1, type 2, and type 3 sequences (e.g. GB358 shows homologies of 65.6 to 67.7% with other genotypes, Table 4). The sequence obtained from sera GB549 and GB809 also show similar homologies with genotypes 1, 2, and 3 (65.9 to 68.8% for GB549 and 65.0 to 68.5% for GB809, Table 4), but an intermediate homology of 79.7 to 86.8% (often observed between subtypes of the same type) exists between GB549 or GB809 with the group of isolates consisting of GB48, GB116, GB215, and GB358, or between GB549 and GB809. These data indicate the discovery of 3 new subtypes within the HCV genotype 4: in the present invention, these 3 subtypes are designated subtype 4c, represented by isolates GB48, GB116, GB215, and GB358, subtype 4g, represented by isolate GB549, and subtype 4e, represented by isolate GB809. Although the homologies observed between subtypes in the NS5 region seem to indicate a closer relationship between subtypes 4c and 4e, the homologies observed in the E1 region indicate that subtypes 4g and 4e show the closest relation (see example 8).

Example 9: The Core/E1 region of HCV type 4

From each of the 3 new type 4 subtypes, one representative serum was selected for cloning experiments in the Core/E1 region. GB549 (subtype 4g) and GB809 (subtype 4e) were analyzed together with isolate GB358 that was chosen from the subtype 4c group.

Synthetic oligonucleotides:

After aligning the sequences of HCV-1 (2), HCV-J(1), HC-J6 (3), and HC-J8 (4), PCR primers were chosen in those regions of little sequence variation.

Primers HCPr52(+): 5'-atgTTGGGTAAGGTCATCGATACCCT-3', HCPr23(+): 5'-CTCATGGGGTAAGGTCATCGATACCCT-3', and HCPr54(-): 5'-CTATTACCAGTTCATCATCATATCCCA-3', were synthesized on a 392 DNA/RNA synthesizer (Applied Biosystems). The sets of primers HCPr23/54 and HCPr52/54 were used, but only with the primer set HCPr52/54, PCR fragments could be obtained. This set of primers amplified the sequence from nucleotide 379 to 957 encoding amino acids 127 to 319: 65 amino acids from the carboxyterminus of core and 128 amino acids of E1. The

WO 94/25601

amplification products GB358-4, GB549-4, and GB809-4 were cloned as described in example 1. The following clones were obtained from the PCR fragments:

From fragment GB358-4: GB358-4-1 (SEQ ID NO 118)

From fragment GB549-4: GB549-4-3 (SEQ ID NO 120)

From fragment GB809-4: GB809-4-3 (SEQ ID NO 122)

An alignment of the type 4 Core/E1 nucleotide sequences with seq ID NO. 118, 120, and 122 with known sequences is presented in Figure 4. The homologies of the type 4 E1 region (without core) with type 1, type 2, type 3, and type 5 prototype sequences are depicted in Table 4. Homologies of 53 to 66% are observed with representative isolates of non-type 4 genotypes. Observed homologies in the E1 region within type 4, between the different subtypes, ranges from 75.2 to 78.4%. The recently disclosed sequences of the core region of Egyptian type 4 isolates (for example EG-29 in Figure 3) described by Simmonds et al. (1993) do not allow alignment with the Gabonese sequences (as described in the present invention) in the NSB region and may belong to different type 4 subtypes(s) as can be deduced from the core sequences. The deduced amino acid sequences with SEQ ID NO 119, 121, and 123 are aligned with other prototype sequences in Figure 5. Again, type-specific variation mainly resides in the variable V regions, designated in the present invention, and therefore, type-4-specific amino acids or V regions will be instrumental in diagnosis and therapeutics for HCV type 4.

Example 10: The Core/E1 and NS5b regions of new HCV type 2, 3 and 4 subtypes

Samples NE92 (subtype 2d), BE98 (subtype 3c), CAM600 and GB809 (subtype 4e), CAMG22 and CAMG27 (subtype 4f), GB438 (subtype 4h), CAR4/1205 subtype (4i), CAR1/501 (subtype 4j), CAR1/901 (subtype 4?), and GB724 (subtype 4?) were selected from a group of sera that reacted positive but aberrantly in a prototype Line Probe Assay as described earlier (Stuyver et al., 1993). Another type 5a isolate BE100 was also analyzed in the C/E1 region, and yet another type 5a isolate BE96 in the NS5b region. A high-titer of HCV RNA could be detected, enabling cloning of fragments by a single round of PCR. As no sequences from any coding region of these subtypes had been disclosed yet, synthetic oligonucleotides for PCR amplification were chosen in the regions of little sequence variation after aligning the sequences of HCV-1 (Choo et al., 1991), HCV-J(Kato et al., 1990), HC-J6 (Okamoto et al., 1991), HC-J8 (Okamoto et al., 1992), and the other new sequences of the present invention.

The above mentioned sets 1, 2 and 3 (see example 5) of primers were used, but only with set 1, PCR fragments could be obtained from all isolates (except for BE98, GB724, and CAR1/501). This set of primers amplified the sequence from nucleotide 379 to 957 encoding amino acids 127 to 319: 65 amino acids from the carboxyterminus of core and 128 amino acids of E1. With set 3, the core/E1 region from isolate NE92 and BE98 could be amplified, and with set 2, the core region of GB358, GB724, GB809, and CAM600 could be amplified. The amplification products were cloned as described in example 1. The following clones were obtained from the PCR fragments:

From isolate GB724, the clone with SEQ ID NO 193 from the core region.

From isolate NE92, the clone with SEQ ID NO 143

From isolate BE98, the clone from the core/E1 region of which part of the sequence has been analyzed and is given in SEQ ID NO 147,

From isolate CAM600, the clone with SEQ ID NO 167 from the E1 region, or SEQ ID NO 165 from the Core/E1 region as shown in Figure 3,

From isolate CAMG22, the clone with SEQ ID NO 171 from the E1 region as shown in Figure 4,

from isolate GB358, the clone with SEQ ID NO 191 in the core region,.

from isolate CAMG27, the clone with SEQ ID NO 173 from the core/E1 region,

from isolate GB438, the clone with SEQ ID NO 177 from the core/ E1 region,

from isolate CAR4/1205, the clone with SEQ ID NO 179 from the core/E1 region,

from isolate CAR1/901, the clone with SEQ ID NO 181 from the core/ E1 region.

from isolate GB809, the clone GB809-4 with SEQ ID NO 189 from the core/E1 region,

clone GB809-2 with SEQ ID NO 169 from the core/E1 region and the clone with SEQ ID NO 163 from the core region,

and from isolate BE100, the clone with SEQ ID NO 155 from the Core/E1 region as shown in Figure 4.

An alignment of these Core/E1 sequences with known Core/E1 sequences is presented in Figure 4. The deduced amino acid sequences with SEQ ID NO 144, 148, 164, 168, 170, 172, 174, 178, 180, 182, 190, 192, 194, 156, 166 are aligned with other prototype sequences in Figure 5. Again, type-specific variation mainly resides in the variable V regions, designated in the present invention, and therefore, type 2d, 3c and type 4-specific amino acids or V regions will be instrumental in diagnosis and therapeutics for HCV type (subtype) 2d, 3c or the different type 4 subtypes.

The NS5b region of isolates NE92, BE98, CAM600, CAMG22, GB438, CAR4/1205, CAR1/501, and BE96 was amplified with primers HCPr206 and HCPr207 (Table 7). The corresponding clones were cloned and sequenced as in example 1 and the corresponding sequences (of which BE98 was partly sequenced) received the following identification numbers:

NE92: SEQ ID NO 145

BE98: SEQ ID NO 149

CAM600: SEQ ID NO 201

CAMG22: SEQ ID NO 203

GB438: SEQ ID NO 207

CAR4/1205: SEQ ID NO 209

CAR1/501: SEQ ID NO 211

BE95: SEQ ID NO 159

BE96: SEQ ID NO 161

An alignment of these NS5b sequences with known NS5b sequences is presented in Figure 1. The deduced amino acid sequences with SEQ ID NO 146, 150, 202, 204, 206, 208, 210, 212, 160, 162 are aligned with other prototype sequences in Figure 2. Again, subtype-specific variations can be observed, and therefore, type 2d, 3c and type 4-specific amino acids or V regions will be instrumental in diagnosis and therapeutics for HCV type (subtype) 2d, 3c or the different type 4 subtypes.

Example 11: Genotype-specific reactivity of anti-E1 antibodies (Serotyping)

E1 proteins were expressed from vaccinia virus constructs containing a core/E1 region extending from nucleotide positions 355 to 978 (Core/E1 clones described in previous examples including the primers HCPr52 and HCPr54), and expressed proteins from L119 (after the initiator methionine) to W326 of the HCV polyprotein. The expressed protein was modified upon expression in the appropriate host cells (e.g. HeLa, RK13, HuTK-, HepG2) by cleavage between amino acids 191 and 192 of the HCV polyprotein and by the addition of high-mannose type carbohydrate motifs. Therefore, a 30 to 32 kDa glycoprotein could be observed on western blot by means of detection with serum from patients with hepatitis C.

As a reference, a genotype 1b clone obtained form the isolate HCV-B was also expressed in an identical way as described above, and was expressed from recombinant vaccinia virus vvHCV-11A.

WO 94/25601 PCT/EP94/01323

A panel of 104 genotyped sera was first tested for reactivity with a cell lysate containing type 1b protein expressed from the recombinant vaccinia virus vvHCV-11A, and compared with cell lysate of RK13 cells infected with a wild type vaccinia virus ('E1/WT'). The lysates were coated as a 1/20 dilution on a normal ELISA microtiter plate (Nunc maxisorb) and left to react with a 1/20 dilution of the respective sera. The panel consisted of 14 type 1a, 38 type 1b, 21 type 2, 21 type 3a, and 9 type 4 sera. Human antibodies were subsequently detected by a goat anti-human IgG conjugated with peroxidase and the enzyme activity was detected. The optical density values of the E1 and wild type lysates were divided and a factor 2 was taken as the cut-off. The results are given in the table A. Eleven out of 14 type 1a sera (79%), 25 out of 38 type 1b sera (66%), 6 out of 21 (29%), 5 out of 21 (24%), and none of the 9 type 4 or the type 5 serum reacted (0%). These experiments clearly show the high prevalence of anti-E1 antibodies reactive with the type 1 E1 protein in patients infected with type 1 (36/52 (69%)) (either type 1a or type 1b), but the low prevalence or absence in non-type 1 sera (11/52 (21%)).

TABLE A

serum	E1/WT		
type 1a			
3748	3.15		
3807	3.51		
5282	1.99		
9321	3.12		
9324	2.76		
9325	6.12		
9326	10.56		
9356	1.79		
9388	3.5		
8366	10.72		
8380	2.27		
10925	4.02		
10936	5.04		
10938	1.36		

type 1b	
5205	2.25
5222	1.33
5246	1.24
5250	13.58
5493	0.87
5573	1.75
8243	1.77
8244	2.05
8316	1.21
8358	5.04
9337	14.47
9410	5
9413	5.51
10905	1.26
10919	5.00
10928	8.72
10929	8.26
10931	2.3
10932	4.41
44	2.37
45	3.14
46	4.37
47	5.68
48	2.97
49	1.18
50	9.85
51	4.51
52	1.11
53 54	5.20 0.98
55	1.48
56	1.06
57	3.85
58	7.6
59	3.28
60	3.23
61	7.82
62	1.92

type 2	
23	0.91
24	1.16
25	2.51
26	0.96
27	1.20
28	0.96
29	2.58
30	8.05
31	0.92
32	0.82
33 34	5.75 0.79
35	0.86
36	0.85
37	0.76
38	0.92
-39	1.08
40	2.33
41	2.83
42	1.21
43	0.91
type 3	
1	6.88
	1.47
2 3 4 5 6 7	3.06
4	6.52
5	10.24
6	2.72
7	1.11
8	1.54
9 10	1.60 1.21
11	1.07
12	1.00
13	0.85
14	0.96
15	0.51
16	1.00
17	1.09
18	0.99
19	1.04 1.04
20 21	0.96

type 4	
22	0.87
GB48	0.49
GB113	0.68
GB116	0.73
GB215	0.52
GB358	0.56
GB359	0.71
GB438	1.08
GB516	1.04
type 5	
BE95	0.86

Core/E1 clones of isolates BR36 (type 3a) and BE95 (type 5a) were subsequently recombined into the viruses vvHCV-62 and vvHCV-63, respectively. A genotyped panel of sera was subsequently tested onto cell lysates obtained from RK13 cells infected with the recombinant viruses vvHCV-62 and vvHCV-63. Tests were carried out as described above and the results are given in the table given below (TABLE B). From these results, it can clearly be seen that, although some cross-reactivity occurs (especially between type 1 and 3), the obtained values of a given serum are usually higher on its homologous E1 protein than on an E1 protein of another genotype. For type 5 sera, none of the 5 sera were reactive on type 1 or 3 E1 proteins, while 3 out of 5 were shown to contain anti-E1 antibodies when tested on their homologous type 5 protein. Therefore, in this simple test system, a considerable number of sera can already be serotyped. Combined with the reactivity to type-specific NS4 epitopes or epitopes derived from other type-specific parts of the HCV polyprotein, a serotyping assay may be developed for discriminating the major types of HCV. To overcome the problem of cross-reactivity, the position of cross-reactive epitopes may be determined by someone skilled in the art (e.g. by means of competition of the reactivity with synthetic peptides), and the epitopes evoking cross-reactivity may be left out of the composition to be included in the serotyping assay or may be included in sample diluent to outcompete cross-reactive antibodies.

TABLE B

serum	serum E1 ^{1b} /WT		E1 ^{5a} /WT
type 1b			
8316	0.89	0.59	0.80
8358	2.22	2.65	1.96
9337	1.59	0.96	0.93
9410	16.32	9.60	3.62
9413	9.89	2.91	2.85
10905	1.04	0.96	1.05
10919	3.17	2.56	2.96
10928	4.39	2.28	2.07
10929	2.95	2.07	2.08
10931	3.11	1.49	2.11
5	0.86	0.86	0.96
6	3.48	1.32	1.32
7	6.76	4.00	3.77
8	10.88	3.44	4.04
9	1.76	1.88	1.58
10	9.88	7.48	7.20
11	8.48	8.99	8.45
12	0.76	0.72	0.76
13	5.04	5.67	5.37
14	10.48	10.54	11.22
15	5.18	1.62	1.65
type 3			
8332	3.39	4.22	0.66
10907	3.24	4.39	0.96
10908	0.99	0.94	0.98
10934	0.86	0.90	0.90
10927	2.58	2.71	2.44
8210	0.82	0.80	0.86
8344	1.09	6.66	1.17
8351	1.21	1.29	1.22
30	0.85	4.11	0.98
32	0.85	2.16	1.04
type 5	0.70	0.05	1.54
מנונת	0.78	0.95	4.95
BEIIO	0.79	1.01 0.52	1
BE95_	0.47	0.32	0.65 8.33
BEIII	0.71		2.37
BE112 BE113	1.01	1.27	1.60
DC113	1.11	1.33	1.00

Table 5. Homologies of new HCV sequences with other known HCV types

Region (nucleotides)	Isolate (type)	la HCV-1	lb HCV-J	2a HC-J6	2b HC-J8	Tl	3a T7	T9	вь Т10
Core (1-573)	PC (5)	83.8 (91.6)	84.8 (92.1)	82.6 (90.1)	82.4 (89.0)				
E1 (574-957)	HD10 (3) BR36 (3) BR33 (3) PC (5) GB358 (4a) GB549 (4b) GB809 (4c)	61.5 (68.0) 62.0 (66.4) 60.7 (67.2) 61.4 (64.0) 62.5 (69.1) 66.0 (72.2) 63.3 (69.1)	64.6 (68.8) 62.5 (67.2) 63.3 (68.0) 62.4 (64.8) 62.8 (65.9) 62.8 (69.8) 60.7 (64.3)		56.3 (59.4) 55.2 (58.6) 56.0 (58.6) 53.3 (47.2) 54.4 (54.0) 56.5 (54.0) 53.0 (51.6)				
NS3 (3856-4209)	PC (5)	74.7 (89)	76.1 (86.4)	76.1 (89.8)	78.0 (89.0)				
NS4 (4892-5292)	BR36 (3) HD 10 (3)	67.8 (78.5) 69.8 (74.6)		62.0 (67.5) 57.8 (59.9)	61.7 (66.0) 59.1 (59.9)				
NS4 (4936-5292)	PC (5)	61.3 (62.2)	63.0 (65.5)	52.9 (46.2)	54.3 (43.7)				
NS5b (8023-8235)	BR34 (3) BR36 (3) BR33 (3) GB358 (4a) GB549 (4b) GB809 (4c)	65.7 64.3 65.7 67.7 (76.1) 68.8 (76.1) 68.5 (73.5)	66.7 67.6 67.1 65.6 (77.0) 67.1 (77.0) 65.0 (73.5)	63.9 64.8 64.3 66.5 (70.8) 65.9 (71.7) 67.7 (69.9)	64.3 66.7 64.8 65.6 (71.7) 65.9 (74.4) 67.7 (73.5)	94.8 94.8 94.8	93.9 93.4 93.9	75.6 75.1 76.0	77.0 76.5 77.5

Shown are the nucleotide homologies (the amino-acid homology is given between brackets) for the region indicated in the left column.

Table 6. NS4 sequences of the different genotypes

prototype	ТҮРЕ	SYNTHETIC PEPTIDE NS4-1 (NS4a)	SYNTHETIC PEPTIDE NS4-5 (NS4b)	SYNTHETIC PEPTIDE NS4-7 (NS4b)		
position->		1 1 6 7 9 0 0 0	1 1 7 7 2 3 0 0	1 1 7 7 3 4 0 0		
HCV-1	<u>l</u> a	LSG KPAIIPDREV LY <u>RE</u> FDE	SQHLPYIEQ G <u>MML</u> AEQFK <u>Q</u> K	 LAEQFK <u>O</u> K <u>A</u> LGLLQTAS RQA		
HCV-J	lb	LSG RPAVIPDREV LYQEFDE	as <u>h</u> lpyteq g <u>mol</u> aeqfkq k	LAEQFKQ KALGILQTAT KQA		
HC-J6	2a	<u>VNO</u> R <u>AV</u> V <u>A</u> PDKEV LY <u>E</u> AFDE	AS <u>raal</u> iee go <u>r</u> iae <u>ml</u> ks k	iae <u>miks</u> k <u>io</u> gilogas koa		
HC-J8	2b	L <u>ND</u> R <u>VV</u> V <u>A</u> PDKEĽ LY <u>E</u> AFDE	as <u>kaaliee</u> g <u>ormaeml</u> ks k	MAEMIKS KIQGLLQQAT RQA		
BR36	3a	LGG KPAIVPDKEV LYQ <u>0</u> YDE	SQAAPYTEQ AQVIAHQFKE K	iahofke karcitosat 600		
PC	5	LSG KPAIIPDRE <u>A</u> LYQ Q FDE V	a <u>as</u> lpy <u>mde tra</u> ia <u>g</u> qfk <i>e</i> k	IAGQFKE KVLG <u>FIS</u> TIG <u>QK</u> A		

^{*,} residues conserved in every genotype. Underlined amino acids are type-specific, amino acids in italics are unique to type 3 and 5 sequences.

Table 7

SEQ ID NO	Primer NO (polarity)	Sequence from 5' to 3'
63	HCPr161(+)	5'-ACCGGAGGCCAGGAGAGTGATCTCCTCC-3'
64	HCPr162(-)	5'-GGGCTGCTCTATCCTCATCGACGCCATC-3'
65	HCPr163(+)	5'-GCCAGAGGCTCGGAAGGCGATCAGCGCT-3'
66	HCPr164(-)	5'-GAGCTGCTCTGTCCTCGACGCCGCA-3'
67	HCPr23(+)	5'-CTCATGGGGTACATTCCGCT-3'
68	HCPr54(-)	5'-CTATTACCAGTTCATCATCATATCCCA-3'
69	HCPr116(+)	5'-ttttAAATACATCATGRCITGYATG-3'
70	HCPr66(-)	5'-ctattaTTGTATCCCRCTGATGAARTTCCACAT-3'
71	HCPr118(-)	5'actagtcgactaYTGIATICCRCTIATRWARTTCCACAT-3'
72	HCPr117(+)	5'-ttttAAATACATCGCIRCITGCATGCA-3'
73	HCPr119(-)	5'-actagtcgactaRTTIGCIATIAGCCKRTTCATCCAYTG-3'
74	HCPr131(+)	5'-ggaattctagaCCITCITGGGAYGARAYITGGAARTG-3'
75	HCPr130(+)	5'-ggaattctagACIGCITAYCARGCIACIGTITGYGC-3'
76	HCPr134(+)	5'-CATATAGATGCCCACTTCCTATC-3'
77	HCPr3(+)	5'-GTGTGCCAGGACCATC-3'
78	HCPr4(-)	5'-GACATGCATGTCATGATGTA-3'
79	HCPr152(+)	5'-TACGCCTCTTCTATATCGGTTGGGGCCTG-3'
80	HCPr52(+)	5'-atgTTGGGTAAGGTCATCGATACCCT-3'
81	HCPr41(+)	5'-CCCGGGAGGTCTCGTAGACCGTGCA-3'
82	HCPr40(-)	5'-ctattaAAGATAGAGAAAGAGCAACCGGG-3'
124	HCPR206	5'-tggggatcccgtatgatacccgctgctttga-3'
125	HCPR207	5'-ggcggaattcctggtcatagcctccgtgaa-3'
141	HCPR109	5'-tgggatatgatgatgaactggtc-3'
142	HCPR14	5'-ccaggtacaaccgaaccaattgcc-3'

Table 8: NS4 SEROTYPING

	Type 1	1 NS4		Type	Type 2 NS4		Type	Type 3 NS4	
serum	1	5	7	1	5	7	-	5	7
type 1a									
101	3	3	3	ı	_	٣	;	-/+	m
102	_	-/+	7	,	ı	2	ı	1	
103	_	3	3	,	- /+	8	,	+/-	8
104	3	3	٣	2	7	٣	m	- /+	2
105	3	3	~	,	7	7	- /+	+	. ~
106	3	_	_	•	_	7	- /+	- /+	+
107	3	e	m	ı	7	7	7	•	
108	9	m	~	·	- /+	2	-/+	_	7
109	3	3	3	-/+	7	3	_	•	က
0110	<u>د</u>	3	3		- '+	-	1	ı	3

	Туре	Fype 1 NS4		Type	Type 2 NS4		Type	Type 3 NS4	
serum	-	5	7	1	5	7	1	5	7
type 1b									
111	-/+	-/+	ı	ı	•	ı	ı	,	ı
112	,	2	3	ı	•	7	ı	ı	m
113	2	3	m	•	•		1	1	3
114	2	3	3	_	+	7	+	_	3
115	n	3	٣	,	+	3	1	•	3
116	ю	3	ж	ı	'		1	1	<u>-</u>
117	3	•	•	9	-	-	-/+	ı	•
118		7	m	1	-/+	7	ı	+	۳
119	-/+	7	7	- /+	' +	7	+	,4	7
120	ı	3	٣	<u>.</u>	- /+	-/+	•	,	•
121	3	3	٣	'	7	7	7	7	~
122	က	3		,	,	7	7	_	
123	٣	3	7	ı	_	7	ı	_	
124	ю	3	٣		'	7	,	,	7

SUBSTITUTE SHEET (RULE 26)

	Type 1	1 NS4		Type 2	2 NS4		Type	e 3 NS4	
serum	1	\$	7	1	\$	7	1	5	7
125	3	3	3	1		3	2	1	3
126	_	7	7			-		_	
127	m	7	+	1	+		-/+	;	' +
128	٣	3	3	ı	;	, —	7	;	' -
129	7	3	3	ı	,	æ	•	•	m
130	,	7	_	- +	,	•	ı	,	,
131	1	-	,	1	,	,	B	•	;
132	,	•	•	' +	ŧ	+/-	;		1
133	~	n	6			3	1	_	3
134	ı	7	7	ı	1	,	ı	•	
135	٣	۳,	ന		+	7	7	_	m
136	•	۳	3	- /-	+/-	-/+	+	•	m
137	'	' +	+	- /+	'	+	-/+	1	•
138	3	3	3	-/+	2	2	-	+	8
type 2a									
139	3	ı		ю	3	- /+	,	•	•
140	-/+	1	•	σ.	ю	3	m	•	•
141	7	ı		7	_	-/+	7	•	1
142	,	•	ı	,	+	,	ı	ı	1
143	•	-/+	+	_	7	_	_	+	-/+
144	_	_	+	_	۳	7	_		7
145	1	-/+	-/+	8	_	2	7	-/+	' +
146	1	•	,	-/+	'	,	1	•	ı
147	•	+/-	ı	8	_	~	1	ı	
148		1	,	-/+		ı	;		,

	Type	Type 1 NS4		Type	Type 2 NS4		Type	Type 3 NS4	
serum	1	5	7	1	5	7	1	v	7
type 2b									
149	1	-/+	+/-	3	3	1	2	- /+	-/+
type 3		:							
150	- /+	-/+	- +	-/+	-/+	;	-	3	3
151	,	,	1	1	,	•	7	,	7
152	-/+	t	•	1	•	ı	c	1	1
153	1	ı	•	1	1	ı	ı	_	ı
154	-/+	_	3	ı	-/+	7	7	_	က
155	,	7		1	7	7	,	_	e
156	'	1	1	ı	•	,	•	,	•
157	ı	1	ı	+	- /+	١,	- /+	2	7
158	7	,	•	•	_	7	m	7	7
159	•	,	•	1	- /+	-/+	ı		m
160	,	•	•	,	;	,	,	7	<u>س</u>
161	-	•	•	ŧ	-	-	-/+	3	2
type 4									
162	-			ı		1	1	ı	,
163	2	•	1	ı	;	-/+	-/+	1	•

REFERENCES

Barany F (1991). Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA 88: 189-193.

Bej A, Mahbubani M, Miller R, Di Cesare J, Haff L, Atlas R (1990) Mutiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes 4:353-365.

Bukh J, Purcell R, Miller R (1992). Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci USA 89:4942-4946.

Bukh J, Purcell R, Miller R (1993). At least 12 genotypes ... PNAS 90,8234-8238.

Cha T, Beal E, Irvine B, Kolberg J, Chien D, Kuo G, Urdea M (1992) At least five related, but distinct, hepatitis C viral genotypes exist. Proc Natl Acad Sci USA 89:7144-7148.

Chan S-W, Simmonds P, McOmish F, Yap P, Mitchell R, Dow B, Follett E (1991) Serological responses to infection with three different types of hepatitis C virus. Lancet 338:1991.

Chan S-W, McOmish F, Holmes E, Dow B, Peutherer J, Follett E, Yap P, Simmonds P (1992) Analysis of a new hepatitis C virus type and its phylogenetic relationship to existing variants. J Gen Virol 73:1131-1141.

Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156-159.

Choo Q, Richman K, Han J, Berger K, Lee C, Dong C, Gallegos C, Coit D, Medina-Selby A, Barr P, Weiner A, Bradley D, Kuo G, Houghton M (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci USA 88:2451-2455.

Compton J (1991). Nucleic acid sequence-based amplification. Nature, 350: 91-92.

Duchosal A, Eming S, Fisher P (1992) Immunization of hu-PBL-SCID mice and the resue of human monoclonal Fab fragments through combinatorial libraries. Nature 355:258-262.

Duck P (1990). Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques 9, 142-147.

Guatelli J, Whitfield K, Kwoh D, Barringer K, Richman D, Gengeras T (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87: 1874-1878.

Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Shimotohmo K (1991) Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc Natl Acad Sci USA 88, 5547-5551.

Jacobs K, Rudersdorf R, Neill S, Dougherty J, Brown E, Fritsch E (1988) The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucl Acids Res 16:4637-4650.

Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 87:9524-9528.

Kwoh D, Davis G, Whitfield K, Chappelle H, Dimichele L, Gingeras T (1989). Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA, 86: 1173-1177.

Kwok S, Kellogg D, McKinney N, Spasic D, Goda L, Levenson C, Sinisky J, (1990). Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency views type 1 model studies. Nucl. Acids Res., 18: 999.

Landgren U, Kaiser R, Sanders J, Hood L (1988). A ligase-mediated gene detection technique. Science 241:1077-1080.

WO 94/25601

Lizardi P, Guerra C, Lomeli H, Tussie-Luna I, Kramer F (1988) Exponential amplification of recombinant RNA hybridization probes. Bio/Technology 6:1197-1202.

Lomeli H, Tyagi S, Printchard C, Lisardi P, Kramer F (1989) Quantitative assays based on the use of replicatable hybridization probes. Clin Chem 35: 1826-1831.

Machida A, Ohnuma H, Tsuda F, Munekata E, Tanaka T, Akahane Y, Okamoto H, Mishiro S (1992) Hepatology 16, 886-891.

Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Mori S, Kato N, Yagyu A, Tanaka T, Ikeda Y, Petchclai B, Chiewsilp P, Kurimura T, Shimotohno K (1992) A new type of hepatitis C virus in patients in Thailand. Biochem Biophys Res Comm 183:334-342.

Okamoto H, Okada S, Sugiyama Y, Kurai K, Iizuka H, Machida A, Miyakawa Y, Mayumi M (1991) Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human carrier: comparison with reported isolates for conserved and divergent regions. J Gen Virol 72:2697-2704.

Okamoto H, Kurai K, Okada S, Yamamoto K, Lizuka H, Tanaka T, Fukuda S, Tsuda F, Mishiro S (1992) Full-length sequences of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes. Virology 188:331-341.

Persson M, Caothien R, Burton D (1991). Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci USA 89:2432-2436.

Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, Mullis K, Erlich H (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491.

Saiki R, Walsh P, Levenson C, Erlich H (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes (1989) Proc Natl Acad Sci USA

86:6230-6234.

Sano T, Smith C, Cantor C (1992) Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120-122.

Simmonds P, McOmsh F, Yap P, Chan S, Lin C, Dusheiko G, Saeed A, Holmes E (1993), Sequence variability in the 5' non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diversity. J Gen Virology, 74:661-668.

Stuyver L, Rossau R, Wyseur A, Duhamel M, Vanderborght B, Van Heuverswyn H, Maertens G (1993) Typing of hepatitis C virus (HCV) isolates and characterization of new (sub)types using a Line Probe Assay. J Gen Virology, 74: 1093-1102.

Walker G, Little M, Nadeau J, Shank D (1992). Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA 89:392-396.

Wu D, Wallace B (1989). The ligation amplification reaction (LAR) - amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4:560-569.

CLAIMS

- 1. A composition comprising or consisting of at least one polynucleic acid containing 8 or more contiguous nucleotides selected from at least one of the following HCV sequences:
- an HCV type 3 genomic sequence, more particularly in any of the following regions:
 - the region spanning positions 417 to 957 of the Core/E1 region of HCV subtype 3a,
 - the region spanning positions 4664 to 4730 of the NS3 region of HCV type 3,
 - the region spanning positions 4892 to 5292 of the NS3/4 region of HCV type 3,
 - the region spanning positions 8023 to 8235 of the NS5 region of HCV subtype 3a,
 - an HCV subtype 3c genomic sequence,
- an HCV subtype 2d genomic sequence,
- an HCV type 4 genomic sequence,
- the coding region of HCV subtype 5a,

with said nucleotide numbering being with respect to the numbering of HCV nucleic acids as shown in Table 1, and with said polynucleic acids containing at least one nucleotide difference with known HCV polynucleic acid sequences in the above-indicated regions, or the complement thereof.

- 2. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence as having a homology of at least 67%, preferably more than 69%, most preferably 71% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 417 to 957 of the Core/E1 region;
- an HCV genomic sequence as having a homology of at least 65%, preferably more than 67%, most preferably 69% or more to any of the sequences as represented in SEQ ID NO 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 of the E1 region;
- an HCV genomic sequence, having a homology of at least 79%, more preferably at least 81%, most preferably more than 83% or more to any of the sequences as represented in

- SEQ ID NO 147 in the region spanning positions 1 to 378 of the Core region;
- an HCV genomic sequence having a homology of at least 74%, more preferably at least 76%, most preferably more than 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 417 to 957 in the Core/E1 region;
- an HCV genomic sequence having a homology of at least 74%, preferably more than 76%, most preferably 78% or more to any of the sequences as represented in SEQ ID NO 13, 15, 17, 19, 21, 23, 25 or 27 in the region spanning positions 574 to 957 in the E1 region;
- an HCV genomic sequence having a homology of more than 73.5%, preferably more than 74%, most preferably 75% homology to any of the sequence as represented in SEQ ID NO 29 in the region spanning positions 4664 to 4730 of the NS3 region;
- an HCV genomic sequence having a homology of more than 70%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 29, 31, 33, 35, 37 or 39 in the region spanning positions 4892 to 5292 in the NS3/NS4 region;
- an HCV genomic sequence having a homology of more than 95%, preferably 95,5%, most preferably 96% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 in the region spanning positions 8023 to 8235 of the NS5 region;
- an HCV genomic sequence of the BR36 subgroup of HCV type 3a having a homology of more than 96%, preferably 96.5%, most preferably 97% homology to any of the sequences as represented in SEQ ID NO 5, 7, 1, 3, 9 or 11 in the region spanning positions 8023 to 8192 of the NS5B region;
- an HCV genomic sequence having a homology of more than 79%, more preferably more than 81%, and most preferably more than 83% to the sequence as represented in SEQ ID NO 149 in the region spanning positions 7932 to 8271 in the NS5B region.
- 3. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence having a homology of more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53 or 151 in the region spanning positions 1 to 573 of the Core region;

- an HCV genomic sequence having a homology of more than 61%, preferably more than 63%, most preferably more than 65% homology to any of the sequences as represented in SEQ ID NO 41, 43, 45, 47, 49, 51, 53, 153 or 155 in the region spanning positions 574 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 76.5%, preferably of more than 77%, most preferably of more than 78% homology with any of the sequences as represented in SEQ ID NO 55, 57, 197 or 199 in the region spanning positions 3856 to 4209 of the NS3 region;
- an HCV genomic sequence having a homology of more than 68%, preferably of more than 70%, most preferably of more than 72% homology with the sequence as represented in SEQ ID NO 157 in the region spanning positions 980 to 1179 of the E1/E2 region;
- an HCV genomic sequence having a homology of more than 57%, preferably more than 59%, most preferably more than 61% homology to any of the sequences as represented in SEQ ID NO 59 or 61 in the region spanning positions 4936 to 5296 of the NS4 region;
- an HCV genomic sequence having a homology of more than 93%, preferably more than 93.5%, most preferably more than 94% homology to any of the sequences as represented in SEQ ID NO 159 or 161 in the region spanning positions 7932 to 8271 of the NS5B region.
- 4. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence having a homology of more than 66%, preferably more than 68%, most preferably more than 70% homology in the E1 region spanning positions 574 to 957 to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 1 to 957 of the Core/E1 region;
- an HCV genomic sequence having a homology of more than 71%, preferably more than 72%, most preferably more than 74% homology to any of the sequences as represented in SEQ ID NO 118, 120 or 122 in the region spanning positions 379 to 957;
- an HCV genomic sequence having a homology of more than 85%, preferably more than 86%, most preferably more than 86.5% homology to any of the sequences as represented in SEQ ID NO 183, 185 or 187 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 81%, preferably more than

- 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 189 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to any of the sequences as represented in SEQ ID NO 167 or 169 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 79%, preferably more than 81%, most preferably more than 83% homology to any of the sequences as represented in SEQ ID NO 171 or 173 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 175 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 83%, preferably more than 85%, most preferably more than 87% homology to the sequence as represented in SEQ
 ID NO 177 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 76%, preferably more than 78%, most preferably more than 80% homology to the sequence as represented in SEQ ID NO 179 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 181 in the region spanning positions 379 to 957 of the E1 region;
- an HCV genomic sequence having a homology of more than 73%, preferably more than 75%, most preferably more than 77% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, 112, 114, or 116 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as represented in SEQ ID NO 106, 108, 110, or 112 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 88%, preferably more than 89%, most preferably more than 90% homology to any of the sequences as represented in SEQ ID NO 116 or 201 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 87%, preferably more than

- 89%, most preferably more than 90% homology to the sequence as represented in SEQ ID NO 203 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 85%, preferably more than 87%, most preferably more than 89% homology to the sequence as represented in SEQ ID NO 114 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 86%, preferably more than 87%, most preferably more than 88% homology to the sequence as represented in SEQ ID NO 207 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 84%, preferably more than 86%, most preferably more than 88% homology to the sequence as represented in SEQ
 ID NO 209 in the region spanning positions 7932 to 8271 of the NS5 region;
- an HCV genomic sequence having a homology of more than 81%, preferably more than 83%, most preferably more than 85% homology to the sequence as represented in SEQ ID NO 211 in the region spanning positions 7932 to 8271 of the NS5 region.
- 5. A composition according to claim 1, wherein said polynucleic acids correspond to a nucleotide sequence selected from any of the following HCV genomic sequences:
- an HCV genomic sequence having a homology of more than 78%, preferably more than 80%, most preferably more than 82% homology to the sequence as represented in SEQ ID NO 143 in the region spanning positions 379 to 957 of the Core/E1 region;
- an HCV genomic sequence having a homology of more than 74%, preferably more than 76%, most preferably more than 78% homology to the sequence as represented in SEQ ID NO 143 in the region spanning positions 574 to 957;
- an HCV genomic sequence having a homology of more than 87%, preferably more than 89%, most preferably more than 91% homology to the sequence as represented in SEQ ID NO 145 in the region spanning positions 7932 to 8271 of the NS5B region.
- 6. A composition according to any of claims 1 to 5, wherein said polynucleic acid is liable to act as a primer for amplifying the nucleic acid of a certain isolate belonging to the genotype from which the primer is derived.
- 7. A composition according to any of claims 1 to 5, wherein said polynucleic acid is able to act as a hybridization probe for specific detection and/or classification into types of a

nucleic acid containing said nucleotide sequence, with said oligonucleotide being possibly labelled or attached to a solid substrate.

- 8. Use of a composition according to any of claims 1 to 7 for *in vitro* detecting the presence of one or more HCV genotypes, more particularly for detecting the presence of a nucleic acid of any of the HCV genotypes having a nucleotide sequence as defined in any of claims 1 to 5, present in a biological sample liable to contain them, comprising at least the following steps:
 - (i) possibly extracting sample nucleic acid,
 - (ii) possibly amplifying the nucleic acid with at least one of the primers according to claim 6 or any other HCV type 2, HCV type 3, HCV type 4, HCV type 5 or universal HCV primer,
 - (iii) hybridizing the nucleic acids of the biological sample, possibly under denatured conditions, and with said nucleic acids being possibly labelled during or after amplification, at appropriate conditions with one or more probes according to claim 7, with said probes being preferably attached to a solid substrate,
 - (iv) washing at appropriate conditions,
 - (v) detecting the hybrids formed,
 - (vi) inferring the presence of one or more HCV genotypes present from the observed hybridization pattern.
- 9. A composition consisting of or comprising at least one peptide or polypeptide containing in its sequence a contiguous sequence of at least 5 amino acids of an HCV polyprotein encoded by any of the polynucleic acids according to any of claims 1 to 5.
- 10. A composition according to claim 9, wherein said contiguous sequence contains in its sequence at least one of the following amino acid residues:
- L7, Q43, M44, S60, R67, Q70, T71, A79, A87, N106, K115, A127, A190, S130, V134, G142, I144, E152, A157, V158, P165, S177 or Y177, I178, V180 or E180 or F182, R184, I186, H187, T189, A190, S191 or G191, Q192 or L192 or I192 or V192 or E192, N193 or H193 or P193, W194 or Y194, H195, A197 or I197 or V197 or T197, V202, I203 or L203, Q208, A210, V212, F214, T216, R217 or D217 or E217 or V217, H218 or N218, H219 or V219 or L219, L227 or I227, M231 or E231 or Q231, T232 or D232 or A232 or K232, Q235

WO 94/25601

or I235, A237 or T237, I242, I246, S247, S248, V249, S250 or Y250, I251 or V251 or M251 or F251, D252, T254 or V254, L255 or V255, E256 or A256, M258 or F258 or V258, A260 or Q260 or S260, A261, T264 or Y264, M265, I266 or A266, A267, G268 or T268, F271 or M271 or V271, I277, M280 or H280, I284 or A284 or L84, V274, V291, N292 or S292, R293 or I293 or Y293, Q294 or R294, L297 or I297 or Q297, A299 or K299 or Q299, N303 or T303, T308 or L308, T310 or F310 or A310 or D310 or V310, L313, G317 or Q317, L333, S351, A358, A359, A363, S364, A366, T369, L373, F376, Q386, I387, S392, I399, F402, I403, R405, D454, A461, A463, T464, K484, Q500, E501, S521, K522, H524, N528, S531, S532, V534, F536, F537, M539, I546, C1282, A1283, H1310, V1312, Q1321, P1368, V1372, V1373, K1405, Q1406, S1409, A1424, A1429, C1435, S1436, S1456, H1496, A1504, D1510, D1529, I1543, N1567, D1556, N1567, M1572, Q1579, L1581, S1583, F1585, V1595, E1606 or T1606, M1611, V1612 or L1612, P1630, C1636, P1651, T1656 or I1656, L1663, V1667, V1677, A1681, H1685, E1687, G1689, V1695, A1700, Q1704, Y1705, A1713, A1714 or \$1714, M1718, D1719, A1721 or T1721, R1722, A1723 or V1723, H1726 or G1726, E1730, V1732, F1735, I1736, S1737, R1738, T1739, G1740, Q1741, K1742, Q1743, A1744, T1745, L1746, E1747 or K1747, I1749, A1750, T1751 or A1751, V1753, N1755, K1756, A1757, P1758, A1759, H1762, T1763, Y1764, P2645, A2647, K2650, K2653 or L2653, S2664, N2673, F2680, K2681, L2686, H2692, Q2695 or L2695 or I2695, V2712, F2715, V2719 or O2719, T2722, T2724, S2725, R2726, G2729, Y2735, H2739, I2748, G2746 or 12746, 12748, P2752 or K2752, P2754 or T2754, T2757 or P2757,

with said notation being composed of a letter representing the amino acid residue by its oneletter code, and a number representing the amino acid numbering according to Kato et al., 1990 as shown in Table 1.

- 11. A composition according to any of claims 9 or 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having a homology of more than 72%, preferably more than 74%, and most preferably more than 77% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 in the region spanning positions 140 to 319 in the Core/E1 region;
- a sequence having a homology of more than 70%, preferably more than 72%, and most preferably more than 75% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 in the E1 region spanning positions 192 to

319;

- a sequence having a homology of more than 86%, preferably more than 88%, and most preferably more than 90% homology to the amino acid sequences as represented in SEQ ID NO 148 in the region spanning positions 1 to 110 in the Core region;
- a sequence having a homology of more than 76%, preferably more than 78%, most preferably more than 80% to any of the amino acid sequences as represented in SEQ ID NO 30, 32, 34, 36, 38 or 40 in the region spanning positions 1646 to 1764 in the NS3/NS4 region;
- a sequence having a homology of more than 81.5%, preferably more than 83%, and most preferably more than 86% homology to any of the amino acid sequences as represented in SEQ ID NO 14, 16, 18, 20, 22, 24, 26 or 28 in the E1 region spanning positions 192 to 319;
- a sequence having a homology of more than 86%, preferably more than 88%, most preferably more than 90% to the amino acid sequence as represented in SEQ ID NO 150 in the region spanning positions 2645 to 2757 in the NS5B region;
- 12. A composition according to any of claims 9 or 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having a homology of more than 80%, preferably more than 82%, most preferably more than 84% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122 in the region spanning positions 127 to 319,
- a sequence having a homology of more than 73%, preferably more than 75%, most preferably more than 78% homology in the E1 region spanning positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 118, 120, and 122, in the region spanning positions 127 to 319,
- a sequence having more than 85%, preferably more than 86%, most preferably more than 87% homology to any of the amino acid sequences as represented in SEQ ID NO 118, 120 or 122, in the region spanning positions 192 to 319.
- 13. A composition according to any of claims 9 or 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having more than 93%, preferably more than 94%, most preferably more than 95% homology in the region spanning Core positions 1 to 191 to any of the amino acid

WO 94/25601

- sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52, 54, or 152;
- a sequence having more than 73%, preferably more than 74%, most preferably more than 76% homology in the region spanning E1 positions 192 to 319 to any of the amino acid sequences as represented in SEQ ID NO 42, 44, 46, 48, 50, 52, 54, 154 or 156;
- a sequence spanning positions 1286 to 1403 of the NS3 region, with said sequence being characterized as having more than 90%, preferably more than 91%, most preferably more than 92% homology to any of the amino acid sequences represented in SEQ ID NO 56 to 58;
- a sequence spanning positions 1646 to 1764 of the NS3/4 region, with said sequence being characterized as having more than 66%, more particularly 68%, most particularly 70% or more homology to any of the amino acid sequences as represented in SEQ ID NO 60 or 62.
- 14. A composition according to any of claims 9 to 10, wherein said contiguous sequence is selected from any of the following HCV amino acid sequences:
- a sequence having a more than 83%, preferably more than 85%, most preferably more than 87% homology in the region spanning Core positions 1 to 319 to the amino acid sequence as represented in SEQ ID NO 144;
- a sequence having a more than 79%, preferably more than 81%, most preferably more than 84% homology in the region spanning E1 positions 192 to 319 to the amino acid sequence as represented in SEQ ID NO 144;
- a sequence having more than 95%, more particularly 96%, most particularly 97% or more homology to the amino acid sequence as represented in SEQ ID NO 146, in the region spanning positions 2645 to 2757 of the NS5B region.
- 15. A composition according to any of claims 9 to 14, wherein said sequence is selected from the following peptides:

QPTGRSWGQ (SEQ ID NO 93)

RSEGRTSWAQ (SEQ ID NO 220)

RTEGRTSWAQ (SEQ ID NO 221)

SRRQPIPRARRTEGRSWAQ (SEQ ID NO 268)

LEWRNTSGLYVL (SEQ ID NO 83)

VNYRNASGIYHI (SEQ ID NO 126)

QHYRNISGIYHV (SEQ ID NO 127)

EHYRNASGIYHI (SEQ ID NO 128)

IHYRNASGIYHI (SEQ ID NO 224)

VPYRNASGIYHV (SEQ ID NO 84)

VNYRNASGIYHI (SEQ ID NO 225)

VNYRNASGVYHI (SEQ ID NO 226)

VNYHNTSGIYHL (SEQ ID NO 227)

QHYRNASGIYHV (SEQ ID NO 228)

QHYRNVSGIYHV (SEQ ID NO 229)

IHYRNASDGYYI (SEQ ID NO 230)

LQVKNTSSSYMV (SEQ ID NO 231)

VYEADDVILHT (SEQ ID NO 85)

VYETEHHILHL (SEQ ID NO 129)

VYEADHHIMHL (SEQ ID NO 130)

VYETDHHILHL (SEQ ID NO 131)

VYEADNLILHA (SEQ ID NO 86)

VWQLRAIVLHV (SEQ ID NO 232)

VYEADYHILHL (SEQ ID NO 233)

VYETDNHILHL (SEQ ID NO 234)

VYETENHILHL (SEQ ID NO 235)

VFETVHHILHL (SEQ ID NO 236)

VFETEHHILHL (SEQ ID NO 237)

VFETDHHIMHL (SEQ ID NO 238)

VYETENHILHL (SEQ ID NO 239)

VYEADALILHA (SEQ ID NO 240)

VQDGNTSTCWTPV (SEQ ID NO 87)

VQDGNTSACWTPV (SEQ ID NO 241)

VRVGNQSRCWVAL (SEQ ID NO 132)

VRTGNTSRCWVPL (SEQ ID NO 133)

VRAGNVSRCWTPV (SEQ ID NO 134)

EEKGNISRCWIPV (SEQ ID NO 242)

VKTGNQSRCWVAL (SEQ ID NO 243)

VRTGNQSRCWVAL (SEQ ID NO 244)

VKTGNQSRCWIAL (SEQ ID NO 245)

VKTGNVSRCWIPL (SEQ ID NO 247)

VKTGNVSRCWISL (SEQ ID NO 248)

VRKDNVSRCWVQI (SEQ ID NO 249)

VRYVGATTAS (SEQ ID NO 89)

APYIGAPLES (SEQ ID NO 135)

APYVGAPLES (SEQ ID NO 136)

AVSMDAPLES (SEQ ID NO 137)

APSLGAVTAP (SEQ ID NO 90)

APSFGAVTAP (SEQ ID NO 250)

VSQPGALTKG (SEQ ID NO 251)

VKYVGATTAS (SEQ ID NO 252)

APYIGAPVES (SEQ ID NO 253)

AQHLNAPLES (SEQ ID NO 254)

SPYVGAPLEP (SEQ ID NO 255)

SPYAGAPLEP (SEQ ID NO 256)

APYLGAPLEP (SEQ ID NO 257)

APYLGAPLES (SEQ ID NO 258)

APYVGAPLES (SEQ ID NO 259)

VPYLGAPLTS (SEQ ID NO 260)

APHLRAPLSS (SEQ ID NO 261)

APYLGAPLTS (SEQ ID NO 262)

RPRRHQTVQT (SEQ ID NO 91)

QPRRHWTTQD (SEQ ID NO 138)

RPRRHWTTQD (SEQ ID NO 139)

RPRQHATVQN (SEQ ID NO 92)

RPRQHATVQD (SEQ ID NO 263)

SPQHHKFVQD (SEQ ID NO 264)

RPRRLWTTQE (SEQ ID NO 265)

PPRIHETTQD (SEQ ID NO 266)

TISYANGSGPSDDK (SEQ ID NO 267)

16. Recombinant vector, particularly for cloning and/or expression, with said recombinant

vector comprising a vector sequence, an appropriate prokaryotic, eukaryotic or viral promoter sequence followed by the nucleotide sequences as defined in claims 1 to 5, with said recombinant vector allowing the expression of any one of the HCV type 2 and/or HCV type 3 and/or type 4 and/or type 5 derived polypeptides according to any of claims 9 to 15 in a prokaryotic, or eukaryotic host, or in living mammals when injected as naked DNA, and more particularly a recombinant vector allowing the expression of any of the following HCV type 2, HCV type 3, type 4 or type 5 polypeptides spanning the following amino acid positions:

- a polypeptide starting at position 1 and ending at any position in the region between positions 70 and 326, more particularly a polypeptide spanning positions 1 to 70, 1 to 85, positions 1 to 120, positions 1 to 150, positions 1 to 191, positions 1 to 200, for expression of the Core protein, and positions 1 to 263, positions 1 to 326, for expression of the Core and E1 protein;
- a polypeptide starting at any position in the region between positions 117 and 192, and ending at any position in the region between positions 263 and 326, more particularly from positions 119 to 326, for expression of E1, or forms that have the putative membrane anchor deleted (positions 264 to 293 plus or minus 8 amino acids);
- a polypeptide starting at any position in the region between positions 1556 and 1688, and ending at any position in the region between positions 1739 and 1764, for expression of the NS4 regions, more particularly a polypeptide starting at position 1658 and ending at position 1711 for expression of the NS4a antigen, and more particularly, a polypeptide starting at position 1712 and ending between positions 1743 and 1972, for example 1712-1743, 1712-1764, 1712-1782, 1712-1972, 1712 to 1782 and 1902 to 1972 for expression of the NS4b protein or parts thereof.
- 17. A composition according to any of claims 9 to 15, wherein said polypeptide is a recombinant polypeptide expressed by means of an expression vector as defined in claim 16.
- 18. A composition according to any of claims 9 to 15 or 16, for use in a method for immunizing a mammal, preferably humans, against HCV comprising administratering a sufficient amount of the composition possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response, more particularly a vaccine composition including HCV type 3 polypeptides derived from the E1, Core, or NS4 region and/or type 4 and/or type 5 and/or type 2 polypeptides.

- 19. Antibody raised upon immunization with a composition according to any of claims 9 to 15, 17 or 18, by means of a process according to claim 18, with said antibody being reactive with any of the polypeptides as defined in any of claims 9 to 15, 17 or 18.
- 20. Process for detecting in vitro HCV present in biological sample liable to contain it, comprising at least the following steps:
 - (i) contacting the biological sample to be analyzed for the presence of HCV antibodies with any of the compositions according to claims 9 to 15, 17 or 18, preferentially in an immobilized form under appropriate conditions which allow the formation of an immune complex, wherein said polypeptide is preferentially in the form of a biotinylated polypeptide and is covalently bound to a solid substrate by means of streptavidin or avidin complexes,
 - (ii) removing unbound components,
 - (iii) incubating the immunecomplexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions,
 - (iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the HCV serotype(s) present from the observed hybridization pattern.
- 21. Use of a composition according to any of claims 9 to 15, 17 or 18, for incorporation into a serotyping assay for detecting one or more serological types of HCV present in a biological sample liable to contain it, more particularly for detecting E1 and NS4 antigens or antibodies of the different types to be detected combined in one assay format, comprising at least the following steps:
 - (i) contacting the biological sample to be analyzed for the presence of HCV antibodies or antigens of one or more serological types, with at least one of the compositions according to claims 9 to 15, 17 or 18 in an immobilized form under appropriate conditions which allow the formation of an immunecomplex, (wherein said polypeptide is preferentially in the form of a biotinylated polypeptide and is covalently bound to a solid substrate by means of streptavidin or avidin complexes),

- (ii) removing unbound components,
- (iii) incubating the immunecomplexes formed with heterologous antibodies, which specifically bind to the antibodies present in the sample to be analyzed, with said heterologous antibodies having conjugated to a detectable label under appropriate conditions.
- (iv) detecting the presence of said immunecomplexes visually or by means of densitometry and inferring the HCV serological types present from the observed binding pattern.
- 22. A kit for determining the presence of HCV genotypes as defined in any of claims 1 to 5 present in a biological sample liable to contain them, comprising:
 - possibly at least one primer composition containing any primer selected from those defined in claim 6 or any other HCV type 2 and/or HCV type 3 and/or HCV type 4 and/or HCV type 5, or universal HCV primers,
 - at least one probe composition according to claim 7, preferably in combination with other polypeptides or peptides from HCV type 1, type 2 or other types of HCV, with said probes being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
 - a buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the possibly amplified products to be carried out,
 - a means for detecting the hybrids resulting from the preceding hybriziation,
 - possibly also including an automated scanning and interpretation device for infering the HCV genotype(s) present in the sample from the observed hybridization pattern.
- 23. A kit for determining the presence of HCV antibodies according to any of claims 9 to 15, 17 or 18 present in a biological sample liable to contain them, comprising:
 - at least one polypeptide composition according to any of claims 9 to 15, 17 or 18, with said polypeptides being preferentially immobilized on a solid substrate, and more preferentially on one and the same membrane strip,
 - a buffer or components necessary for producing the buffer enabling binding reaction between these polypeptides and the antibodies against HCV present in the biological sample,
 - a means for detecting the immune complexes formed in the preceding binding

reaction,

- possibly also including an automated scanning and interpretation device for infering the HCV genotype present in the sample from the observed binding pattern.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Innogenetics sa.
 - (B) STREET: Industriepark Zwijnaarde 7, box 4
 - (C) CITY: Ghent
 - (E) COUNTRY: Belgium
 - (F) POSTAL CODE (ZIP): B-9052
 - (G) TELEPHONE: 00 32 9 241 07 11
 - (H) TELEFAX: 00 32 9 241 07 99
 - (ii) TITLE OF INVENTION: New sequences of hepatitis C virus genotypes for diagnosis, prophylaxis and therapy.
 - (iii) NUMBER OF SEQUENCES: 270
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR34-4-20
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..213
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
- CTC ACG GAA CGG CTT TAC TGC GGG GGC CCT ATG TTC AAC AGC AAG GGG
 Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly

 1 5 10 15
- GCC CAG TGT GGT TAT CGC CGC TGC CGT GCC AGT GGA GTT CTG CCT ACC

 Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr

WO 94/25601 PCT/EP94/01323

•

20 25 30

AGC TTC GGC AAC ACA ATC ACT TGC TAC ATC AAG GCC ACA GCG GCT GCA

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala

45

AGG GCC GCA GGC CTC CGG AAC CCG GAC TTT CTT GTC TGC GGA GAT GAT

192
Arg Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp

50

55

60

CTG GTC GTG GCT GAG AGT
Leu Val Val Val Ala Glu Ser
65 70

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly
1 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 25 30

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45

Arg Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp
50 60

Leu Val Val Val Ala Glu Ser 65 70

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR36-23-18
 - (ix) FEATURE:

.

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..213

(xi)	SECURNCE	DESCRIPTION:	SEO	TD NO .	٦.
12-1		DDDCKTEITON.	SEV	ID NO:	- J :

		CTT Leu 5						48
	Cys	TAT Tyr						96
		ACA Thr						144
		CTC Leu						192
_	 	 GCT Ala	 					213

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly
1 5 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr
20 25 30

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45

Arg Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

	(i:	i) M	OLEC	TLE ?	CYPE	: cDi	NA.									
	(ii :	i) H	YPOTI	ETIC	CAL:	NO										
	(ii:	i) Ai	NTI-S	ENSE	2: N)										
																•
	(vi		MEDI (B) (23-18	3								
	(i)	c) FI	EATUR	Œ:											•	•
			(A) N (B) I													
	(xi	.) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	io: 5	:					
CTC	ACG	GAG	CGG	CTT	TAC	TGC	GGG	GGC	CCI	ATG	TTI	' AAC	AGC	AAG	GGG	48
1	. 1111	GIU	Arg	Leu 5	туг	cys	GIĀ	. стл	Pro 10		Phe	Asn	Ser	Lys 15	Gly	
GCC	CAG	TGI	GGT	TAT	CGC	CGT	TGC	CGT	GCC	AGT	GGA	GTT	CTG	CCT	ACC	96
ALA	GIN	. Cys	20 20	Tyr	Arg	Arg	Cys	Arg 25	Ala	Ser	Gly	Val	Leu 30		Thr	
AGC	TTC	GGC	AAC	ACA	ATC	ACT	TGT	TAC	ATC	AAA	GCC	ACA	GCG	GCC	GCA	144
Ser	Phe	G1 <i>y</i> 35		Thr	Ile	Thr	Суз 40	Tyr	Ile	Lys	Ala	Thr 45	Ala	Ala	Ala	
AAA	GCC	GCA	GGC	CTC	CGG	AGC	CCG	GAC	TTT	CTT	GTC	TGC	GGA	GAT	GAT	192
	50		Gly			55	Pro	Asp	Phe	Leu	Val 60		Gly	Asp	Asp	
			GTG Val													213
65					70											
(2)	INF	ORMA'	TION	FOR	SEQ	ID N	10: é	5:								
		· (主):	SEQUI	INCE	CHAI	RACTE	RIST	rics:	ŧ				Ì			
		(2	A) LI 3) Ti	NGTE	I: 7	L ami	ino a									
			D) TO													
	(ii)	MOI	ECUI	E TY	PE:	prot	ein									
	(xi)	SEC	QUENC	E DE	SCR	PTIC	N: S	EQ I	D NO): 6:						
Leu 1	Thr	Glu	Arg	Leu 5	Tyr	Cys	Gly	Gly	Pro 10	Met	Phe	Asn	Ser	Lys 15	Gly	
Ala	Gln	Cys	Gly 20	Tyr	Arg	Arg	Cys	Arg ⁻ 25	Ala	Ser	Gly	Val	Leu 30	Pro	Thr	
Ser	Phe	Gly 35	Asn	Thr	Ile	Thr	Cys 40	Tyr	Ile	Lys	Ala	Thr 45	Ala	Ala	Ala	

WO 94/25601 PCT/EP94/01323

99 Lys Ala Ala Gly Leu Arg Ser Pro Asp Phe Leu Val Cys Gly Asp Asp Leu Val Val Ala Glu Ser (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vii) IMMEDIATE SOURCE: (B) CLONE: BR36-23-20 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..213 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: CTC ACG GAG CGG CTT TAC TGC GGG GGC CCT ATG TTT AAC AGC AAA GGG 48 Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly GCC CAG TGT GGT TAT CGC CGT TGC CGT GCC AGT GGA GTT CTG CCT ACC 96 Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 AGC TTC GGC AAC ACA ATC ACT TGT TAC ATC AAA GCC ACA GCG GCC GCA 144 Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 AAA GCC GCA GGC CTC CGG AGC CCG GAC TTT CTT GTC TGC GGA GAT GAT 192 Lys Ala Ala Gly Leu Arg Ser Pro Asp Phe Leu Val Cys Gly Asp Asp 213 CTG GTC GTG GTG GCT GAG AGT Leu Val Val Ala Glu Ser (2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

100

(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly 1 5 10 15	
Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 25 30	
Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45	
Lys Ala Ala Gly Leu Arg Ser Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60	
Leu Val Val Ala Glu Ser 65 70	
(2) INFORMATION FOR SEQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(vii) IMMEDIATE SOURCE: (B) CLONE: BR33-2-17	
(ix) FEATURE:	
(A) NAME/KEY: CDS (B) LOCATION: 1213	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
CTC ACG GAG CGG CTT TAC TGC GGG GGC CCT ATG TTC AAC AGC AAG GGG Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly	48
1 5 10 15	
GCC CAG TGT GGT TAT CGC CGT TGT CGT GCC AGT GGA GTT CTG CCT ACC	96
Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 25 30	
**	
AGT TTC GGC AAC ACA ATC ACT TGT TAC ATC AAG GCC ACA GCG GCT GCA	144
AGT TTC GGC AAC ACA ATC ACT TGT TAC ATC AAG GCC ACA GCG GCT GCA Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45	144

WO 94/25601 . PCT/EP94/01323

101

Lys Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

TTG GTC GTG GTG GCT GAG AGT Leu Val Val Val Ala Glu Ser 65 70 213

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly
1 5 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 25 30

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35 40 45

Lys Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR33-2-21
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..213
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

CTC	ACG	GAG	CGG	CTT	TAC	TGC	GGG	GGC	CCT	ATG	TTC	AAC	AGC	AAG	GGG	48
Leu	Thr	Glu	Arg	Leu	Tyr	Cys	Gly	Gly	Pro	Met	Phe	Asn	Ser	Lys	Gly	
1				5					10					15		
GCC	CAG	TGT	GGT	TAT	CGC	CGT	TGT	CGT	GCC	AGT	GGA	GTT	CTG	CCT	ACC	96
Ala	Gln	Cys	Gly	Tyr	Arg	Arg	Суз	Arg	Ala	Ser	Gly	Val	Leu	Pro	Thr	
			20					25					30			
AGT	TTC	GGC	AAC	ACA	ATC	ACT	TGT	TAC	ATC	AAG	GCC	ACA	GCG	GCT	GCA	144
Ser	Phe	Gly	Asn	Thr	Ile	Thr	Cys	Tyr	Ile	Lys	Ala	Thr	Ala	Ala	Ala	
		35					40					45				
		35					40					45				
AAA	GCC		GGC	CTC	CGG	AAC		GAC	TTT	CTT	GTT		GGA	GAT	GAT	192
		GCA					CCG					TGC		GAT Asp		192
		GCA					CCG					TGC		•		192
	Ala	GCA				Asn	CCG				Val	TGC		•		192
Lys	Ala 50	GCA Ala		Leu	Arg	Asn 55	CCG				Val	TGC		•		192 213
Lys	Ala 50 GTC	GCA Ala GTG	Gly	Leu	Arg GAG	Asn 55 AGT	CCG				Val	TGC		•		
Lys	Ala 50 GTC	GCA Ala GTG	GIY	Leu	Arg GAG	Asn 55 AGT	CCG				Val	TGC		•		

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Leu Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly
1 10 15

Ala Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr 20 25 30

Ser Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Ala Ala Ala 35

Lys Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp 50 55 60

Leu Val Val Val Ala Glu Ser 65 70

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE:

(B) CLONE: HD10-2-5

(ix) FEATURE:

(A) NAME/KEY: CDS(B) LOCATION: 2..541

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

	rc G(al Gl				la Ai			is G	46
-	AGG Arg								94
	TGC Cys								142
	CCA Pro								190
	ACC Thr 65								238
	ATT Ile								286
	TCT Ser								334
	GGA Gly								382
	GCG Ala								. 430
	GTC Val 145								478
	ACG Thr								526

GGA CAC CGA ATG GCT Gly His Arg Met Ala 180 541

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val 1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly 20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His
35 40 45

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr

Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val

Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Met Leu Val Gly
115 120 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 165 170 175

His Arg Met Ala

- (2) INFORMATION FOR SEQ ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	CDNA
(iii)	HYPOTHETI	CAL:	NO

(iii) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE: (B) CLONE: HD10-2-14

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 2..541

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

C GTC GGC GCT CCT GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly 1 5 10 15	46
GTG AGG GCC CTT GAA GAC GGG ATA AAT TTC GCA ACA GGG AAT TTG CCC Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro 20 25 30	94
GGT TGC TCC TTT TCT ATC TTC CTT CCT GCT CTG TTC TCT TGC TTA ATC Gly Cys Ser Phe Ser Ile Phe Leu Pro Ala Leu Phe Ser Cys Leu Ile 35 40 45	142
CAT CCA GCA GCT AGT CTA GAG TGG CGG AAC ACG TCT GGC CTC TAT GTC His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val 50 55 60	190
CTT ACC AAC GAC TGT TCC AAT AGC AGT ATT GTG TAT GAG GCC GAT GAC Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp 65 70 75	238
GTT ATT CTG CAC ACA CCC GGC TGT GTA CCT TGT GTT CAG GAC GGT AAT Val lie Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn 80 85 90 95	286
ACA TCT GCG TGC TGG ACC CCA GTG ACA CCT ACA GTG GCA GTC AGG TAC Thr Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr 100 105 110	334
GTC GGA GCA ACC ACC GCT TCG ATA CGC AGG CAT GTA GAC ATA TTG GTG Val Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Ile Leu Val 115 120 125	382
GGC GCG GCC ACA ATG TGC TCT GCT CTC TAC GTG GGT GAT ATG TGT GGG Gly Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly 130 135 140	430
GCC GTC TTC CTC GTG GGA CAA GCC TTC ACG TTC AGA CCT CGT CGC CAT Ala Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His 145 150 155	478
CAA ACG GTC CAG ACC TGT AAC TGC TCA CTG TAC CCA GGC CAT CTT TCA	526

Gln Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser 160 165 170 175

GGA CAC CGA ATG GCT Gly His Arg Met Ala 541

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val 1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly 20 25 30

Cys Ser Phe Ser Ile Phe Leu Pro Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val 100 105 110

Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Ile Leu Val Gly
115 120 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 165 170 175

His Arg Met Ala

- (2) INFORMATION FOR SEQ ID NO: 17 :
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 541 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(vii) IMMEDIATE SOURCE: (B) CLONE: HD10-2-21	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2541	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
C GTC GGC GCT CCT GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly 1 5 10 15	46
GTG AGG GCC CTT GAA GAC GGG ATA AAT TTC GCA ACA GGG AAT TTG CCC Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro 20 25 30	94
GGT TGC TCC TTT TCT ATC TTC CTT CTT GCT CTG TTC TCT TGC TTA ATC Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile 35 40 45	142
CAT CCA GCA GCT AGT CTA GAG TGG CGG AAC ACG TCT GGC CTC TAC GTC His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val 50 55 60	190
CTT ACC AAC GAC TGT TCC AAT AGC AGT ATT GTG TAT GAG GCC GAT GAC Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp 65 70 75	238
GTT ATT CTG CAC ACA CCC GGC TGT GTA CCT TGT GTT CAG GAC GGT AAT Val Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn 80 85 90 95	286
ACA TCT GCG TGC TGG ACC CCA GTG ACA CCT ACA GTG GCA GTC AGG TAC Thr Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr 100 105 110	334
GTC GGA GCA ACC ACC GCT TCG ATA CGC AGG CAT GTA GAC ATA TTG GTG Val Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Ile Leu Val 115 120 125	382
GGC GCG GCC ACG ATG TGC TCT GCT CTC TAC GTG GGT GAT ATG TGT GGG Gly Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly 130 135 140	430

GCC GTC TTC CTC GTG GGA CAA GCC TTC ACG TTC AGA CCT CGT CGC CAT
Ala Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His
145

CAA ACG GTC CAG ACC TGT AAC TGC TCA CTG TAC CCA GGC CAT CTT TCA
Gln Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser
160

165

170

541

GGA CAC CGA ATG GCT
GRA ATG Met Ala
180

- (2) INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val 1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly
20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser Ala Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val 100 105 110

Gly Ala Thr Thr Ala Ser Ile Arg Arg His Val Asp Ile Leu Val Gly
115 120 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 165 170 175

His Arg Met Ala

(2)	INFORMATION	FOR	SEQ	ID	NO:	19:	
	(i) SECTION	יים פי	מפמז	ידיני	TST	rcs :	

(A) LENGTH: 541 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE:

(B) CLONE: BR36-9-13

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 2..541

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly

1 5 10 15

GTG AGG GCC CTT GAA GAC GGG ATA AAT TTC GCA ACA GGG AAT TTG CCC 94

Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro
20 25 30

GGT TGC TCC TTT TCT ATT TTC CTT CTT GCT CTG TTC TCT TGC TTA ATT

142
Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile

35

40

45

CAT CCA GCA GCT AGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC

His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val

50 55 60

CTT ACC AAC GAC TGT TCC AAT AGC AGT ATT GTG TAC GAG GCC GAT GAC

Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp

65 70 75

GTT ATT CTG CAC ACA CCC GGC TGC ATA CCT TGT GTC CAG GAC GGC AAT

Val Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val Gln Asp Gly Asn

80 85 90 95

ACA TCC ACG TGC TGG ACC CCA GTG ACA CCT ACA GTG GCA GTC AAG TAC

Thr Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Lys Tyr

100 105 110

GTC GGA GCA ACC ACC GCT TCG ATA CGC AGT CAT GTG GAC CTA TTA GTG

Val Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val

115

120

125

			ATG Met						430
 		_	GTG Val						478
 			ACC Thr						526
 	CGA Arg								541

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

					ZSCR!										
Val 1	Gly	Ala	Pro	Val 5	Gly	Gly	Val	Ala	Arg 10	Ala	Leu	Ala	His	Gly 15	Val
Arg	Ala	Leu	Glu 20	Asp	Gly	Ile	Asn	Phe 25	Ala	Thr	Gly	Asn	Leu 30	Pro	Gly
Cys	Ser	Phe 35	Ser	Ile	Phe	Leu	Leu 40	Ala	Leu	Phe	Ser	Cys 45	Leu	Ile	His
Pro	Ala 50	Ala	Ser	Leu	Glu	Trp 55	Arg	Asn	Thr	Ser	Gly 60	Leu	Tyr	Val	Leu
Thr 65	Asn	Asp	Cys	Ser	Asn 70	Ser	Ser	Ile	Val	Tyr 75	Glu	Ala	Asp	Asp	Val 80
Ile	Leu	His	Tþr	Pro 85	Gly	Суз	Ile	Pro	Суs 90	Val	Gln	Asp	Gly	Asn 95	Thr
Ser	Thr	Cys	Trp 100	Thr	Pro	Val	Thr	Pro 105	Thr	Val	Ala	Val	Lys 110	Tyr	Val
Gly	Ala	Thr 115	Thr	Ala	Ser	Ile	Arg 120	Ser	His	Val	Asp	Leu 125	Leu	Val	Gly
Ala	Ala 130	Thr	Met	Cys	Ser	Ala 135	Leu	Tyr -	Val	Gly	Asp 140	Met	Cys	Gly	Ala
Val 145	Phe	Leu	Val	Gly	Gln 150	Ala	Phe	Thr	Phe	Arg 155	Pro	Arg	Arg	His	Gln 160
Thr	Val	Gln	Thr	Cys	Asn	Cys	Ser	Leu	Tyr	Pro	Gly	His	Leu	Ser	Gly

165 170 175
His Arg Met Ala

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR36-9-20
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..541
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:
- C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC

 Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly

 1 5 10 15
- GTG AGG GCC CTT GAA GAC GGG ATA AAT TTC GCA ACA GGG AAT TTG CCC

 Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro

 20

 25

 30
- GGT TGC TCC TTT TCT ATT TTC CTT CTT GCT CTG TTC TCT TGC TTA ATT

 142
 Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile

 35

 40

 45
- CAT CCA GCA GCT AGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC

 His Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val

 50 55 60
- CTT ACC AAC GAC TGT TCC AAT AGC AGT ATT GTG TAC GAG GCC GAT GAC
 Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp
 65 70 75
- GTT ATT CTG CAC ACA CCC GGC TGC ATA CCT TGT GTC CAG GAC GGC AAT

 Val Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val Gln Asp Gly Asn

 80 85 90 95
- ACA TCC ACG TGC TGG ACC CCA GTG ACA CCT ACA GTG GCA GTC AAG TAC

 Thr Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Lys Tyr

 100 105 110

	 			GCT Ala					 	_		382
				TGC Cys	_		_	Gly			·	430
	 	 		GGA Gly			_		 	 		478
(TGT Cys 165								526
		ATG Met	_			-						541

- (2) INFORMATION FOR SEQ ID NO: 22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val 1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly
20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His 35 40 45

Pro Ala Ala Ser Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu
50 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Thr Pro Gly Cys Ile Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Lys Tyr Val 100 105 110

Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly
115 120 - 125

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg His Gln Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 170 His Arg Met Ala 180 (2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vii) IMMEDIATE SOURCE: (B) CLONE: BR33-1-10 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2..541 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23: C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC 46 Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly 5 GTG AGG GCC CTT GAG GAC GGG ATA AAC TTC GCA ACA GGG AAT TTG CCC Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro 25 GGT TGC TCC TTT TCT ATC TTC CTT CTT GCT CTG TTC TCT TGC TTA ATC Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile 35 40 CAT CCA GCA GCT GGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC His Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val 50 55 CTT ACC AAC GAC TGT TCC AAT AGT AGT ATT GTG TAT GAG GCC GAT GAC Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp 65 70 GTT ATT CTG CAC GCG CCC GGC TGT GTA CCT TGT GTC CAG GAC GGC AAT 286

90

Val Ile Leu His Ala Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn

 	 	TGG Trp 100	 			 	 		334
 	 	ACC Thr					Leu	•	382
 	 	ATG Met							430
 		GTG Val							478
 	 	ACC Thr							526
 	 ATG Met								541

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val 1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly 20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His

Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Ala Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val 100 105 110

Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly

.

120 115 Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 135 Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg His Gln 150 Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 170 His Arg Met Ala 180 (2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vii) IMMEDIATE SOURCE: (B) CLONE: BR33-1-19 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2..541 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25: C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC 46 Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly 10 GTG AGG GCC CTT GAG GAC GGG ATA AAC TTC GCA ACA GGG AAT TTG CCC Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro 20 GGT TGC TCT TTT TCT ATC TTC CTT CTT GCT CTG TTC TCT TGC TTA ATC 142 Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile CAT CCA GCA GCT GGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC 190 His Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val

55

70

CTT ACC AAC GAC TGT TCC AAT AGT AGT ATT GTG TAT GAG GCC GAT GAC

Leu Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp

 	 	GCG Ala							286
		TGG Trp 100						•	334
		ACC Thr							382
		ATG Met							430
 	 	GTG Val							478
		ACC Thr							526
 	 ATG Met	_							541

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly 20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His 35 40 45

Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Ala Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95

Ser	Thr	Cys	Trp	Thr	Pro	Val	Thr	Pro	Thr	Val	Ala	Val	Arg	Tyr	Val
			100					105					110		

Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly 120

Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala

Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg His Gln 145 150

Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 170

His Arg Met Ala 180

- (2) INFORMATION FOR SEQ ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR33-1-20
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..541
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
- C GTC GGC GCT CCC GTA GGA GGC GTC GCA AGA GCC CTT GCG CAT GGC 46 Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly 1
- GTG AGG GCC CTT GAG GAC GGG ATA AAC TTC GCA ACA GGG AAT TTG CCC Val Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro
- GGT TGC TCT TTT TCT ATC TTC CTT CTT GCT CTG TTC TCT TGC TTA ATC 142 Gly Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile
- CAT CCA GCA GCT GGT CTA GAG TGG CGG AAT ACG TCT GGC CTC TAT GTC 190 His Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val 55

				TGT Cys												238
	65		•	•		70					75			-	_	
				GCG				_			_	_				286
Val 80	Ile	Leu	His	Ala	Pro 85	Gly	Cys	Val	Pro	Cys 90	Val	Gln	Asp	Gly	Asn 95	
80					85					50					93	
				TGG												334
Thr	Ser	Thr	Cys	Trp	Thr	Pro	Val	Thr	Pro 105	Thr	Val	Ala	Val	Arg	Tyr	
				ACC Thr												382
Val	GLy	ALG	115	1111	ALIA	Jer	116	120	DEL	што	Val	тор	125	Deu	VGI	
	000	000	N C C	ATG	mcc.	UI CHAIN	ccc	Crithelle	መእር	one	COT	CATT	a mc	Послен	ccc	430
				Met												430
		130					135			ť		140				
GCC	GTC	TTC	CTC	GTG	GGA	CAA	GCC	TTC	ACG	TTC	AGA	ccc	CGC	CGC	CAT	478
	Val			Val		Gln					Arg					
	145					150					155					
				ACC												526
Gln 160	Thr	Val	Gln	Thr	Cys 165	Asn	Cys	Ser	Leu	Tyr 170	Pro	Gly	His	Leu	Ser 175	
-00																
			ATG Met													541
GIÀ	urz	ALY	MEC	180												

- (2) INFORMATION FOR SEQ ID NO: 28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Val Gly Ala Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val

1 5 10 15

Arg Ala Leu Glu Asp Gly Ile Asp Phe Ala Thr Gly Asp Leu Pro Gly

Arg Ala Leu Glu Asp Gly Ile Asn Phe Ala Thr Gly Asn Leu Pro Gly
20 25 30

Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Phe Ser Cys Leu Ile His 35 40 45

Pro Ala Ala Gly Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu 50 55 60

Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Val 65 70 75 80

Ile Leu His Ala Pro Gly Cys Val Pro Cys Val Gln Asp Gly Asn Thr 85 90 95	
Ser Thr Cys Trp Thr Pro Val Thr Pro Thr Val Ala Val Arg Tyr Val	
Gly Ala Thr Thr Ala Ser Ile Arg Ser His Val Asp Leu Leu Val Gly 115 120 125	
Ala Ala Thr Met Cys Ser Ala Leu Tyr Val Gly Asp Met Cys Gly Ala 130 135 140	
Val Phe Leu Val Gly Gln Ala Phe Thr Phe Arg Pro Arg Arg His Gln 145 150 155 160	
Thr Val Gln Thr Cys Asn Cys Ser Leu Tyr Pro Gly His Leu Ser Gly 165 170 175	
His Arg Met Ala 180	
(2) INFORMATION FOR SEQ ID NO: 29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 287 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(vii) IMMEDIATE SOURCE: (B) CLONE: HCCl153	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3287	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
TA GAC TTT TGG GAG AGC GTC TTC ACT GGA CTA ACT CAC ATA GAT GCC Asp Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala 1 5 10 15	47
CAC TTT CTG TCA CAG ACT AAG CAG CAG GGA CTC AAC TTC TCG TTC CTG His Phe Leu Ser Gln Thr Lys Gln Gln Gly Leu Asn Phe Ser Phe Leu 20 25 30	95
ACT GCC TAC CAA GCC ACT GTG TGC GCT CGC GCG CAG GCT CCT CCC CCA Thr Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro 35 40 45	143
27 40 42	

Ser Trp Asp Glu Met Trp Lys Cys Leu Val Arg Leu Lys Pro Thr Leu 50 55 60

CAT GGA CCT ACG CCT CTT CTA TAT CGG TTG GGG CCT GTC CAA AAT GAA . 239
His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu
65 70 75

ATC TGC TTG ACA CAC CCC ATC ACA AAA TAC ATC ATG GCA TGC ATG TCA 287

Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser
80 90 95

- (2) INFORMATION FOR SEQ ID NO: 30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Asp Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His
1 5 10 15

Phe Leu Ser Gln Thr Lys Gln Gln Gly Leu Asn Phe Ser Phe Leu Thr 20 25 30

Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser 35 40 45

Trp Asp Glu Met Trp Lys Cys Leu Val Arg Leu Lys Pro Thr Leu His

Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu Ile 65 70 75 80

Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser 85 90 95

- (2) INFORMATION FOR SEQ ID NO: 31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: HD10-1-25

PCT/EP94/01323

(ix) FEATURE	TURE :
--------------	--------

(A) NAME/KEY: CDS
(B) LOCATION: 3..401

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

TC CAA AAT GAA ATC TGC TTG ACA CAC CCC GTC ACA AAA TAC ATT ATG Gln Asn Glu Ile Cys Leu Thr His Pro Val Thr Lys Tyr Ile Met GCA TGC ATG TCA GCT GAT CTG GAA GTA ACC ACC AGC ACC TGG GTG TTG Ala Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu 20 CTT GGA GGG GTC CTC GCG GCC CTA GCG GCC TAC TGC TTG TCA GTC GGC 143 Leu Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly TGC GTT GTA ATC GTG GGT CAT ATC GAG CTG GGG GGC AAG CCG GCA CTC 191 Cys Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Leu GTT CCA GAC AAG GAG GTG TTG TAT CAA CAG TAC GAT GAG ATG GAG GAG 239 Val Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu TGC TCG CAA GCC GCC CCA TAC ATC GAA CAA GCT CAG GTA ATA GCC CAC 287 Cys Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His CAG TTC AAG GAG AAA ATC CTT GGA CTG CTG CAG CGA GCC ACC CAA CAA 335 Gln Phe Lys Glu Lys Ile Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 CAA GCT GTC ATT GAG CCC GTA ATA GCT TCC AAC TGG CAA AAG CTT GAA 383 Gln Ala Val Ile Glu Pro Val Ile Ala Ser Asn Trp Gln Lys Leu Glu 115 120 ACC TTC TGG CAC AAG CAT 401 Thr Phe Trp His Lys His 130

(2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

Gln Asn Glu Ile Cys Leu Thr His Pro Val Thr Lys Tyr Ile Met Ala 1 5 10 15

Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu 20 25 30	
Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys 35 40 45	•
Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Leu Val 50 55 60	
Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys 65 70 75 80	
Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln 85 90 95	
Phe Lys Glu Lys Ile Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 110	
Ala Val Ile Glu Pro Val Ile Ala Ser Asn Trp Gln Lys Leu Glu Thr 115 120 125 Phe Trp His Lys His	
130 (2) TYPODWARION FOR SPO. ID NO. 33.	
(2) INFORMATION FOR SEQ ID NO: 33:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 401 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(vii) IMMEDIATE SOURCE: (B) CLONE: HD10-1-3	
(ix) FEATURE:	
(A) NAME/KEY: CDS (B) LOCATION: 3401	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
TC CAA AAT GAA ATC TGC TTG ACA CAC CCC GTC ACA AAA TAC ATT ATG Gln Asn Glu Ile Cys Leu Thr His Pro Val Thr Lys Tyr Ile Met 1 5 10 15	47
GCA TGC ATG TCA GCT GAT CTG GAA GTA ACC ACC AGC ACC TGG GTG TTG Ala Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu 20 25 30	95
CTT GGA GGG GTC CTC GCG GCC CTA GCG GCC TAC TGC TTG TCA GTC GGC	143

Leu	Gly	Gly	Val 35	Leu	Ala	Ala	Leu	Ala 40	Ala	Tyr	Cys	Leu	Ser 45	Val	Gly	
				GTG Val												191
				GAG Glu												239
				GCC Ala		_										287
				AAA Lys 100												335
				GAG Glu												383
				AAG Lys												401
(2)	,	(i) S (<i>I</i> (I	SEQUE L) LE 3) TO	FOR ENCE ENGTH (PE: OPOLO	CHAF H: 13 amir)GY:	RACTE 33 and 10 ac 1ine	ERIST mino cid ear	rics:		-						
	(xi)	SEÇ	OUENC	CE DI	ESCRI	PTIC	ON: S	SEQ. I	D NO): 34	i :		٠,			
Gln 1	Asn	Glu	Ile	Cys 5	Leu	Thr	His	Pro	Val 10	Thr	Lys	Tyr	Ile	Met 15	Ala	
Cys	Met	Ser	Ala 20	Asp	Leu	Glu	Val	Thr 25	Thr	Ser	Thr	Trp	Val 30	Leu	Leu	
Gly	Gly	Val 35	Leu	Ala	Ala	Leu	Ala 40	Ala	Tyr	Cys	Leu	Ser 45	Val	Gly	Cys	
Val	Val 50	Ile	Val	Gly	His	Ile 55	Glu	Leu	Gly	Gly	Lys 60	Pro	Ala	Leu	Val	
Pro 65	Asp	Lys	Glu	Val	Leu 70	Tyr	Gln	Gln	Tyr	Asp 75	Glu	Met	Glu	Glu	Cys 80	
Ser	Gln	Ala	Ala	Pro 85	Tyr	Ile	Glu	Gln	Ala 90	Gln	Val	Ile	Ala	His 95	Gln	
												•				

287

335

WO 94/25601		124			PCI/EF94/01323
3	100	105		110	
Ala Val Ile (Glu Pro Val I	le Ala Ser As 120	n Trp Gln Lys 125	Leu Glu	Thr
Phe Trp His 1	Lys His				
(2) INFORMATI	ION FOR SEQ I	D NO: 35:			
(A) (B) (C)	JENCE CHARACT LENGTH: 401 TYPE: nucle STRANDEDNES TOPOLOGY: 1	base pairs ic acid S: single			
(ii) MOL	ECULE TYPE: C	DNA			
(iii) HYPO	OTHETICAL: NO				
(iii) ANTI	I-SENSE: NO				
	EDIATE SOURCE CLONE: BR36				
	TURE:) NAME/KEY: C) LOCATION: 3		·		
(xi) SEQ	JENCE DESCRIP	TION: SEQ ID	NO: 35:		
			ATC ACA AAA ' Ile Thr Lys '		
		eu Glu Val Th	C ACC AGC ACC ir Thr Ser Thr		_
			C TAC TGC TTG a Tyr Cys Leu		
			ed GGG GGC AAG		

GTT CCA GAC AAA GAG GTG TTG TAT CAA CAA TAC GAT GAG ATG GAA GAG Val Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu

TGC TCA CAA GCT GCC CCA TAT ATC GAA CAA GCT CAG GTA ATA GCT CAC Cys Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His

CAG TTC AAG GGA AAA GTC CTT GGA TTG CTG CAG CGA GCC ACC CAA CAA

85

Gln Phe Lys Gly Lys Val Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 110

CAA GCT GTC ATT GAG CCC ATA GTA ACT ACC AAC TGG CAA AAG CTT GAG
Gln Ala Val Ile Glu Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu
115 120 125

GCC TTT TGG CAC AAG CAT Ala Phe Trp His Lys His 130 401

- (2) INFORMATION FOR SEQ ID NO: 36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 1 5 10 15

Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu 20 25 30

Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys 35 40 45

Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile Val 50 55 60

Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys
65 70 75 80

Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln 85 90 95

Phe Lys Gly Lys Val Leu Gly Leu Leu Gln Arg Åla Thr Gln Gln Gln 100 105 110

Ala Val Ile Glu Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu Ala 115 120 125

Phe Trp His Lys His 130

- (2) INFORMATION FOR SEQ ID NO: 37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	•
(vii) IMMEDIATE SOURCE: (B) CLONE: BR36-20-166	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3401	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
TC CAA AAT GAA ATC TGC TTG ACA CAC CCC ATC ACA AAA TAC ATC ATG Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met 1 5 10 15	47
GCA TGC ATG TCA GCT GAT CTG GAA GTA ACC ACC AGC ACC TGG GTT TTG	95
Ala Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu 20 25 30	
CTT GGA GGG GTC CTC GCG GCC CTA GCG GCC TAC TGC TTG TCA GTC GGT Leu Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly	143
35 40 45	
TGT GTT GTG ATT GTG GGT CAT ATC GAG CTG GGG GGC AAG CCG GCA ATC Cys Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile	191
50 55 60	
GTT CCA GAC AAA GAG GTG TTG TAT CAA CAA TAC GAT GAG ATG GAA GAG	239
Val Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu 65 70 75	
TGC TCA CAA GCT GCC CCA TAT ATC GAA CAA GCT CAG GTG ATA GCT CAC	287
Cys Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His 80 85 90 95	
CAG TTC AAG GAA AAA GTC CTT GGA TTG CTG CAG CGA GCC ACC CAA CAA	335
Gln Phe Lys Glu Lys Val Leu Gly Leu Leu Gln Arg Ala Thr Gln Gln 100 105 110	
CAA GCT GTC ATT GAG CCC ATA GTA ACT ACC AAC TGG CAA AAG CTT GAG	383
Gln Ala Val Ile Glu Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu 115 120 125	
GCC TTT TGG CAC AAG CAT	401
Ala Phe Trp His Lys His 130	

- (2) INFORMATION FOR SEQ ID NO: 38:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 133 amino acids

- (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:
- Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 1 5 10 15
- Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu 20 25 30
- Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys
 35 40 45
- Val Val Ile Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile Val 50 55 60
- Pro Asp Lys Glu Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys
 65 70 75 80
- Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln
 . 85 90 95
- Phe Lys Glu Lys Val Leu Gly Leu Gln Arg Ala Thr Gln Gln Gln 100 105 110
- Ala Val Ile Glu Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu Ala 115 120 125

Phe Trp His Lys His

- (2) INFORMATION FOR SEQ ID NO: 39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: BR36-20-165
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3..401
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

					TGC Cys 5											. 47
					. Asp			_		Thr					TTG Leu	95
				Leu					Ala					Val	GGT Gly	143
			Ile					Glu					Pro		ATC lle	191
		Asp					Tyr					Glu			GAG Glu	239
											Gln				CAC His 95	287
					Val					Gln					CAA Gln	335
				Glu					Thr					Leu	GAG Glu	383
			His		CAT His											401
(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	40:								
		(A) L B) T	engt YPE :	CHA H: 1: ami OGY:	33 a no a	mino cid									
	(ii) MC	LECU	LE T	YPE:	pro	tein									
	(xi) SE	OUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 4	0:					

Gln Asn Glu Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala

Cys Met Ser Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu 20 25 30

Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys

5

1

Val	Val 50	Ile	Val	Gly	His	Ile 55	Glu	Leu	Gly	Gly	Lys 60	Pro	Ala	Ile	Val	
Pro 65	Asp	Lys	Glu	Val	Leu 70	Тут	Gln	Gln	Tyr	Asp 75	Glu	Met	Glu	Glu	Сув 80	٠
Ser	Gln	Ala	Ala	Pro 85	Tyr	Ile	Glu	Gln	Ala 90	Gln	Val	Ile	Ala	His 95	Gln	
Phe	Lys		Lys 100	Val	Leu	Gly	Leu		Gln	Arg	Ala	Thr	Gln 110	Gln	Gln	
Ala	Val	Ile 115	Glu	Pro	Ile	Val	Thr 120	Thr	Asn	Trp	Gln	Lys 125	Leu	Glu	Ala	
Phe	Trp 130	His	Lys	His												
(2)	INF	ORMAT	NOL	FOR	SEQ	ID 1	NO: 4	11:								
	(i)	(Z (E	A) LE B) TY C) SI	engti (PE : [Rani	H: 50 nucl	CTERI 19 ba Leic ESS: lina	ase p ació sing	pairs 1	3							
	(ii)	MOI	ECUI	E T	PE:	CDNA	1									
((iii)	HYI	POTHE	TIC	AL: N	10										
((iii)	ANT	TI-SE	NSE :	NO											
((vii)				OURC PC-											
	(ix)	FEA			ŒY:	സഭ										
				•		35	09						ē			
	(xi)	SEC	UENC	E DE	SCRI	(PTIC	N: S	EQ I	D NC): 41	. :					
						AAA C Lys E										47
	-	-				GTC Val										95
						CCG Pro										143
						GAA Glu										191

50	55		60	
	GCG CGC CAG CCC Ala Arg Gln Pro 70	Thr Gly Arg S		
	CCC CTT TAC GCC Pro Leu Tyr Ala 85			
	CCT CGA GGC TCT Pro Arg Gly Ser 100		rp Gly Pro I	
	TCG CGT AAT TTG Ser Arg Asn Leu			
	GAT CTC ATG GGG Asp Leu Met Gly 135	Tyr Ile Pro L		
	GCA AGG GCT CTC Ala Arg Ala Leu 150	Ala His Gly V		
	TAT GCA ACA GGG Tyr Ala Thr Gly 165			509
(2) INFORMATION	FOR SEQ ID NO:	42:		
(A) I	ENCE CHARACTERIS ENGTH: 169 amino TYPE: amino acid			
• - •	OPOLOGY: linear			
(D) 7	OPOLOGY: linear	ı		
(ii) MOLECT				
(ii) MOLECT (xi) SEQUER Met Ser Thr Ass	TLE TYPE: protein TCE DESCRIPTION: 1 Pro Lys Pro Gln 5	SEQ ID NO: 42: Arg Lys Thr L	ys Arg Asn '	15
(ii) MOLECT (xi) SEQUER Met Ser Thr Ass	TLE TYPE: protein TCE DESCRIPTION: TO Pro Lys Pro Gln 5 TO Asp Val Lys Phe	SEQ ID NO: 42: Arg Lys Thr L	ys Arg Asn '	15
(ii) MOLECT (xi) SEQUEN Met Ser Thr Ass 1 Arg Arg Pro Gls	TLE TYPE: protein TCE DESCRIPTION: TO Pro Lys Pro Gln 5 TO Asp Val Lys Phe	SEQ ID NO: 42: Arg Lys Thr L 10 Pro Gly Gly G 25 Gly Pro Arg M	ays Arg Asn S Bly Gln Ile S	15 Val Gly
(ii) MOLECT (xi) SEQUER Met Ser Thr Ass 1 Arg Arg Pro Gli 20 Gly Val Tyr Let 35 Thr Arg Lys Thr	TLE TYPE: protein SCE DESCRIPTION: 1 Pro Lys Pro Gln 5 1 Asp Val Lys Phe 1 Leu Pro Arg Arg 40 2 Ser Glu Arg Ser	SEQ ID NO: 42: Arg Lys Thr L 10 Pro Gly Gly G 25 Gly Pro Arg M Gly Pro Arg G	Sly Gln Ile 3 30 Met Gly Val 45 45 Sly Arg Arg 6	15 Val Gly Arg Ala Gln Pro
(ii) MOLECT (xi) SEQUER Met Ser Thr Ass 1 Arg Arg Pro Gli 20 Gly Val Tyr Let 35 Thr Arg Lys Thr	ILE TYPE: protein ICE DESCRIPTION: 1 Pro Lys Pro Gln 5 1 Asp Val Lys Phe 1 Leu Pro Arg Arg 40 5 Ser Glu Arg Ser	SEQ ID NO: 42: Arg Lys Thr L 10 Pro Gly Gly G 25 Gly Pro Arg M Gly Pro Arg G	Sly Gln Ile 3 30 Met Gly Val 45 45 Sly Arg Arg 6	15 Val Gly Arg Ala Gln Pro

85	5 9	0 99

Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro
100 105 110

Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Ile 130 135 140

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160

Gly Val Asn Tyr Ala Thr Gly Asn Leu 165

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 509 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: PC-2-6
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3..509
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CC ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA AGA AAC ACC
Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr
1 5 10 15

AAC CGT CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT
Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val
20 25 30

GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC

Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg

35

40

45

GCG ACT CGG AAG ACT TCG GAA CGG TCG CAA CCC CGT GGA CGG CGT CAG

Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln

50 55 60

ATT Ile 65									239
 TAC Tyr	 								287
 CTG Leu	 								335
CGG Arg									383
GGA Gly									431
GGG Gly 145									479
 GGG Gly	 							:	509

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 169 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly 20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro
50 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp 85 90 95

Leu	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro 105	Asn	Trp	Gly	Pro	Asn 110	Asp	Pro	
Arg	Arg	Lys 115	Ser	Arg	Asn	Leu	Gly 120	Lys	Val	Ile	Asp	Thr 125	Leu	Thr	Сув	•
Gly	Phe 130	Ala	Asp	Leu	Met	Gly 135	Tyr	Ile	Pro	Leu	Val 140	Gly	Gly	Pro	Ile	
Gly 145	Gly	Val	Ala	Arg	Ala 150	Leu	Ala	His	Gly	Val 155	Arg	Val	Leu	Glu	Asp 160	
Gly	Val	Asn	Tyr	Ala 165	Thr	Gly	Asn	Leu								
(2)		SE(() (I	QUENC LI 3) IN	CE CE ENGTE (PE:	SEQ HARACH: 56 nucl	TERI 30 ba	STIC ase p	CS: pairs	;							
	,,,,	•-	•		OGY:											
					CPE:		7									
					11: N	10										
(111)	ANI	ri-se	ense :	: NO											
(vii)				OURC											
	(ix)	(Z		ME/F	ŒY:		80									
	(xi)	SEC	UENC	E DE	ESCRI	PTIC	N: S	EQ I	D NC	: 45	:					
					CC GA La As 5				у Ту					l Gl		46
					GTC Val											94
					AAC Asn											142
					CTT Leu											190
TCT	GCA	GTT	ccc	TAC	CGA	AAT	GCC	TCT	GGG	ATT	TAT	CAT	GTT	ACC .	AAT	238

Ser	Ala 65	Val	Pro	Tyr	Arg	Asn 70	Ala	Ser	Gly	Ile	Tyr 75	His	Val	Thr	Asn		
			AAC Asn													. 280	6
			GGT Gly													334	4
			CAA Gln 115													38:	2
			CCT Pro													430	0
			TCC Ser													471	В
			CAA Gln													520	5
			AAC Asn													574	4
ATG Met																580	0

- (2) INFORMATION FOR SEQ ID NO: 46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Ile Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu 20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His 85 90 95

Ala Pro Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val 115 120 125

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln 165 170 175

Asn Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met
180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: PC-4-6
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..580
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

A ACG TGC GGA TTC GCC GAT CTC ATG GGG TAT ATC CCG CTC GTA GGC
Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly
1 5 10 15

GGC CCC ATT GGG GGC GTC GCA AGG GCT CTC GCA CAC GGT GTG AGG GTC

Gly	Pro	Ile	Gly	Gly 20	Val	Ala	Arg	Ala	Leu 25	Ala	His	Gly	Val	Arģ 30	Val		
			GGG Gly 35													. 14	42
			TTT Phe													19	90
			CCC Pro													23	38
			AAC Asn													28	}6
			GGT Gly		-												14
			CAA Gln 115													38	12
			CCT Pro													43	0
			TCC Ser													47	18
			CAA Gln													52	!6
-			AAC Asn													57	14
ATG Met																58	10

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear -
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Ile Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu
20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His 85 90 95

Ala Pro Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val 115 120 125

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln 165 170 175

Asn Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 959 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: PC-3-4

WO 94/25601 PCT/EP94/01323

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 3..959

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

CC ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA AGA AAC ACC Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr 1 5 10 15 AAC CGT CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val 20 25 30 GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg
AAC CGT CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val 20 25 30 GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC 143
Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val 20 25 30 GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC 143
20 25 30 GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC 143
GGC GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGG ATG GGT GTG CGC 143
Gly Gly val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg
35 40 45
GCG ACT CGG AAG ACT TCG GAA CGG TCG CAA CCC CGT GGA CGG CGT CAG Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln
50 55 60
CCT ATT CCC AAG GCG CGC CAG CCC ACG GGC CGG TCC TGG GGT CAA CCC 239 Pro Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro
65 70 75
GGG TAC CCT TGG CCC CTT TAC GCC AAT GAG GGC CTC GGG TGG GCA GGG 287
Gly Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly
80 85 90 95
TGG CTG CTC TCC CCT CGA GGC TCT CGG CCT AAT TGG GGC CCC AAT GAC 335
Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp
100 105 110
CCC CGG CGA AAA TCG CGT AAT TTG GGT AAG GTC ATC GAT ACC CTA ACG 383
Pro Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr
115 120 125
TGC GGA TTC GCC GAT CTC ATG GGG TAT ATC CCG CTC GTA GGC GGC CCC 431
Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro
130 135 140
ATT GGG GGC GTC GCA AGG GCT CTC GCA CAC GGT GTG AGG GTC CTT GAG 479
Ile Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu 145 150 155
145 150 155
GAC GGG GTA AAC TAT GCA ACA GGG AAT TTA CCC GGT TGC TCT TTC TCT 527
Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser
160 165 170 175
ATC TTT ATT CTT GCT CTT CTC TCG TGT CTG ACC GTT CCG GCC TCT GCA 575
Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala
180 185 190
GTT CCC TAC CGA AAT GCC TCT GGG ATT TAT CAT GTT ACC AAT GAT TGC 623
Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp Cys 195 200 205

		Ile							671
		CCT Pro					 		719
		CCT Pro							767
		AGA Arg 260							815
		TAC Tyr				 	 		863
		ACC Thr							911
		ATT Ile						-	959

- (2) INFORMATION FOR SEQ ID NO: 50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro
50 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp
85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro 100 105 110

Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Ile 130 135 140

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160

Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175

Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Val 180 185 190

Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp Cys Pro 195 200 205

Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala Pro 210 220

Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys Trp Val 225 230 235 240

Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val Thr Ala 245 250 255

Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys 260 265 270

Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu Val Gly 275 280 285

Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln Asn Cys 290 295 300

Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met Ala 305 310 315

- (2) INFORMATION FOR SEQ ID NO: 51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 959 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:

WO 94/25601 PCT/EP94/01323

(B) CLONE: PC-3-8

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 3..959

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

									AGA Arg								47
					Asp					Gly					GTT Val		95
									Gly						CGC Arg	1.	43
								Ser					Arg		CAG Gln	19	91
												Trp			Pro	2:	39
_															GGG Gly 95	28	37
									Pro 105						GAC Asp	33	35
								_	AAG Lys							36	33
									ATC Ile							43	31
Val	Gly 145	Gly	Val	Ala	Arg	Ala 150	Leu	Ala	CAC	Gly	Val 155	Arg	Val	Leu	Glu	47	79
Asp 160	Gly	Val	Asn	Tyr	Pro 165	Thr	Gly	Asn	TTA Leu	Pro 170	Gly	Cys	Ser	Phe	Ser 175	52	
Ile	Phe	Ile	Leu	Ala 180	Leu	Leu	Ser	Cys	CTG Leu 185	Thr	Val	Pro	Ala	Ser 190	Ala	57	
GTT	CCC	TAC	CGA	AA'I'	GCC	TCT	تانات	AIT	TAT	CAT	G I-I	ACC	AAT	GAT'	TGC	62	د:

Val	Pro	Tyr	Arg 195	Asn	Ala	Ser	Gly	Ile 200	Tyr	His	Val	Thr	Asn 205	qaA	Суз		
						TAT Tyr									GCA Ala		671
						GTC Val 230										•	719
						CTG Leu										•	767
						GTT Val										1	815
						GGA Gly										į	863
						AGG Arg										!	911
						AGT Ser 310										9	959
(2)	(2) INFORMATION FOR SEQ ID NO: 52: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 319 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein																
Met						PTIC Pro						Arg	Asn	Thr	Asn		

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 40

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly

- Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp 85 90 95
- Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro 100 105 110
- Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125
- Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Val
- Gly Gly Val, Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160
- Gly Val Asn Tyr Pro Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175
- Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Val 180 185 190
- Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp Cys Pro 195 200 205
- Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala Pro 210 215 220
- Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys Trp Val 225 230 235 240
- Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val Thr Ala 245 250 255
- Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys 260 265 270
- Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu Val Gly 275 280 285
- Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln Asn Cys 290 295 300
- Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met Ala 305 310 315
- (2) INFORMATION FOR SEQ ID NO: 53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 959 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE:

(B) CLONE: PC C/E1

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 2..959

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

CCATGAGCAC GAATCCTAAA CCTCAAAGAA AAACCAAAAG AAACACCAAC CGTCGCCCAC 60 AGGACGTCAA GTTCCCGGGC GGTGGTCAGA TCGTTGGCGG AGTTTACTTG TTGCCGCGCA 120 GGGGCCCTAG GATGGGTGTG CGCGCGACTC GGAAGACTTC GGAACGGTCG CAACCCCGTG 180 GACGGCGTCA GCCTATTCCC AAGGCGCGCC AGCCCACGGG CCGGTCCTGG GGTCAACCCG 240 GGTACCCTTG GCCCCTTTAC GCCAATGAGG GCCTCGGGTG GGCAGGGTGG CTGCTCTCCC 300 CTCGAGGCTC TCGGCCTAAT TGGGGCCCCA ATGACCCCCG GCGAAAATCG CGTAATTTGG GTAAGGTCAT CGATACCCTA ACGTGCGGAT TCGCCGATCT CATGGGGTAY ATCCCGCTCG 420 TAGGCGGCCC CRTTGGGGGC GTCGCAAGGG CTCTCGCACA CGGTGTGAGG GTCCTTGAGG 480 ACGGGGTAAA CTATSCAACA GGGAATTTAC CCGGTTGCTC TTTCTCTATC TTTATTCTTG 540 CTCTTCTCTC GTGTCTGACC GTTCCGGCCT CTGCAGTTCC CTACCGAAAT GCCTCTGGGA 600 TTTATCATGT TACCAATGAT TGCCCAAACT CTTCCATAGT CTATGAGGCA GATAACCTGA 660 TCCTACACGC ACCTGGTTGC GTGCCTTGTG TCATGACAGG TAATGTGAGT AGATGCTGGG 720 780 TCCAAATTAC CCCTACACTG TCAGCCCCGA GCCTCGGAGC AGTCACGGCT CCTCTTCGGA GAGCCGTTGA CTACCTAGCG GGAGGGGCTG CCCTCTGCTC CGCGTTATAC GTAGGAGACG CGTGTGGGGC ACTATTCTTG GTAGGCCAAA TGTTCACCTA TAGGCCTCGC CAGCACGCTA 900 CGGTGCAGAA CTGCAACTGT TCCATTTACA GTGGCCATGT TACCGGCCAC CGGATGGCA 959

- (2) INFORMATION FOR SEQ ID NO: 54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn
1 5 10 15

Arg Arg Pro	Gln Asp	Val :	Lys	Phe	Pro	Gly	Gly	Gly	Gln	Ile	Val	Gly
	20							30				

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp 85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro 100 105 110

Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys
115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Val 130 135 140

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160

Gly Val Asn Tyr Pro Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175

Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Val 180 185 190

Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp Cys Pro 195 200 205

Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala Pro 210 215 220

Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys Trp Val 225 230 235 240

Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val Thr Ala 245 250 255

Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala Leu Cys 260 265 270

Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu Val Gly 275 280 285

Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln Asn Cys 290 295 300

Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met Ala 305 310 315

2)	INFORMATION	FOR	SEQ	ID	NO:	55:
----	-------------	-----	-----	----	-----	-----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 354 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:

(B) CLONE: PC-1-37

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..354

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

ACCACCGGAG CTTCTATCAC ATACTCCACT TACGGCAAGT TCCTTGCTGA TGGAGGGTGT 60

TCAGGCGGCG CGCATGACGT GATCATATGC GACGAGTGCC ATTCCCAGGA CGCCACCACC 120

ATTCTTGGGA TAGGCACTGT CCTTGACCAG GCAGAGACGG CTGGAGCTAG GCTCGTCGTC 180

TTGGCCACGG NCACCCCTCC CGGCAGTGTG ACAACGCCCC ACCCCAACAT CGAGGAAGTG 240

GCCCTGCCTC AGGAGGGGGA GGTTCCCTTC TACGGCAGAG CCATTCCCCT TGCTTTTATA 300

AAGGGTGGTA GGCATCTCAT CTTCTGCCAT TCCAAGAAAA ATTGTGATGA ACTC 354

- (2) INFORMATION FOR SEQ ID NO: 56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 118 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala 1 5 10 15

Asp Gly Gly Cys Ser Gly Gly Ala His Asp Val Ile Ile Cys Asp Glu 20 25 30

354

					•											
Cys	His	Ser 35	Gln	Asp	Ala	Thr	Thr 40	Ile	Leu	Gly	Ile	Gly 45	Thr	Val	Leu	
Asp	Gln 50	Ala	Glu	Thr	Alà	Gly 55	Ala	Arg	Leu	Val	Val 60	Leu	Ala	Thr	Xaa	
Thr 65	Pro	Pro	Gly	Ser	Val 70	Thr	Thr	Pro	His	Pro 75	Asn	Ile	Glu	Glu	Val 80	
Ala	Leu	Pro	Gln	Glu 85	Gly	Glu	Val	Pro	Phe 90	Tyr	Gly	Arg	Ala	Ile 95	Pro	
Leu	Ala	Phe	Ile 100	Lys	Gly	Gly	Arg	His 105	Leu	Ile	Phe	Cys	His 110	Ser	Lys	
Lys	Asn	Cys 115	Asp	Glu	Leu											
(2) INFOR (i) (ii) (iii) (iii) (vii) (vii)	SEQUENCE (A) (B) (C) (D) MOLE HYPO ANTI IMME (B) FEAT (A)	JENCE LEN TYE STE TOE CULE CLO THET CLO TURE:	E CHANGTH: PE: I RANDE POLOC E TYPE FICAL NSE: TE SC DNE:	ARACT 354 nucle EDNES FF: 0 NO NO DURCE PC-1	TERIS 4 bas eic a SS: s Linea CDNA	STICS se pa acid sing ar	3: airs									
(xi)	SEQU	JENCI	E DES	CRIE	PTION	1: SI	EQ II	NO:	57:	:						
ACCACCGG	AG CI	TCT	ATCAC	ATA	ACTC	CACT	TACO	GCAA	GT 1	rccti	rgcto	EA TO	GAGG	GTGI	r	60
TCAGGCGGG	cg co	TATO	GACGI	GAT	rcat <i>i</i>	ATGC	GAC	AGTO	SCC I	ATTCO	CAGO	SA CO	CCAC	CAC	2	120
ATTCTTGGG	SA TI	AGGCZ	ACTGI	r cci	rtgao	CAG	GCAC	BAGAC	GG (CTGGI	AGCTA	AG GC	CTCGT	CGT	2	180
TTGGNCACO	eg no	CACCO	CTC	C CGC	GCAGI	rgtg	ACA	\CGC(CC I	ACCC	CAACA	AT CO	BAGG	AAGTO	3	240
GCCCTGCCT	rc ac	GAG	GGG?	A GGT	rtcco	CTTC	TAC	GNAG	EAG (CAT	rccc	CT TO	CTT	TAT	4	300

- (2) INFORMATION FOR SEQ ID NO: 58:
 - (i) SEQUENCE CHARACTERISTICS:

AAGGGTGGTA GGCATCTCAT CTTCTGCCAT TCCAAGAAAA AATGTGATGA ACTT

- (A) LENGTH: 133 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala
1 5 10 15

Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Val Ile Ile Cys Asp Glu 20 25 30

Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly Ile Gly Thr Val Leu 35 40 45

Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Xaa Thr Xaa 50 55 60

Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro Asn Ile Glu Glu Val 65 70 75 80

Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr Xaa Arg Ala Ile Pro 85 90 95

Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile Phe Cys His Ser Lys
100 105 110

Lys Lys Cys Asp Glu Leu Arg Gln Ala Thr Asp Gln Pro Gly Arg Glu 115 120 125

Arg Pro Trp Glu Tyr 130

- (2) INFORMATION FOR SEQ ID NO: 59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 357 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: PC-1-37
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS

(B) LOCATION: 1..357

(xt)	SECTIENCE	DESCRIPTION:	SEC	TD	NO ·	59.
120-1	SECUENCE	DESCRIETION:	354		110:	22:

ATGGCTTTCA	TGTCTCCGGA	CTTGGAGGTC	ATTACCANCA	CTTGGGTTCT	GGTGGGGGC	6
GTTGTGGCGA	CCCTGNCGNC	CTACTGCTTG	ACGGTGGGTT	CGGTAGCCAT	AGTCGGTAGG	120
ATCATCCTCT	CTGGGAAACC	TGCCATCATT	NCCGATAGGG	AGGTATTATA	CCAGCAATTT	180
GATGAGATGG	AGGAGTGCTC	GGCCTCGTTG	CCCTATATGG	ACGAAACACG	TNCCATTGCC	240
GGACAATTCA	AAGAGAAAGT	GCTCGGCTTC	ATCAGCACGA	CCGGCCAGAA	GGCTGAAACT	300
CTGAAGCCGG	CAGCCACGTC	TGTGTGGAAC	AAGGCTGATC	AGTTCTGGNC	CACATAC	357

(2) INFORMATION FOR SEQ ID NO: 60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

Met Ala Phe Met Ser Pro Asp Leu Glu Val Ile Thr Xaa Thr Trp Val 1 5 10 15

Leu Val Gly Gly Val Val Ala Thr Leu Xaa Xaa Tyr Cys Leu Thr Val 20 25 30

Gly Ser Val Ala Ile Val Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala 35 40 45

Ile Ile Xaa Asp Arg Glu Val Leu Tyr Gln Gln Phe Asp Glu Met Glu 50 55 60

Glu Cys Ser Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Xaa Ile Ala 65 70 75 80

Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln 85 90 95

Lys Ala Glu Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala 100 105 110

Asp Gln Phe Trp Xaa Thr Tyr Met Trp Asn Phe Ile Ser Gly Ile Gln 115 120 125

(2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 357 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: PC-1-48
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..357
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

ATGGCTTGCA TGTCTGCGGA CCTGGAGGTC ATTACCANCA CTTGGGTTCT GGTGGGGGGC 60
GTTGTGGCGN CCCTGGCGGC CTACTGCTTG ACGGTGGGTT CGGTAGCCAT AGTCGGTAGG 120
ATCATCCTCT CTGGGAAACC TGCCATCATT CCCGATAGGG AGGCATTATA CCANCAATTT 180
GATGAGATGG AGGAGTGCTC GGCCTCGTTG CCCTATATGG ACGAGACACG TGCCATTGCC 240
GGACAATTCA AAGAGAAAGT GCTCGGCTTC ATCAGCACGA CCGGCCAGAA GGCTGAAACT 300
CTGAAGCCGG CAGCCACGTC TGTGTGGAAC AAGGCTGANC AGTTCTGGGC CACATAC 357

- (2) INFORMATION FOR SEQ ID NO: 62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

Met Ala Cys Met Ser Ala Asp Leu Glu Val Ile Thr Xaa Thr Trp Val

Leu Val Gly Gly Val Val Ala Xaa Leu Ala Ala Tyr Cys Leu Thr Val 20 25 30

Gly Ser Val Ala Ile Val Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala 35 40 45

Ile Ile Pro Asp Arg Glu Ala Leu Tyr Xaa Gln Phe Asp Glu Met Glu
50 55 60

Glu Cys Ser Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala 65 70 75 80

Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln 85 90 95

Lys Ala Glu Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala 100 . 105 110

Xaa Gln Phe Trp Ala Thr Tyr Met Trp Asn Phe Ile Ser Gly Ile Gln
115 120 125

- (2) INFORMATION FOR SEQ ID NO: 63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr161"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

ACCGGAGGCC AGGAGAGTGA TCTCCTCC

28

- (2) INFORMATION FOR SEQ ID NO: 64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr162"

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:
                                                                        28
GGGCTGCTCT ATCCTCATCG ACGCCATC
(2) INFORMATION FOR SEQ ID NO: 65:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 28 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
   (iii) HYPOTHETICAL: YES
   (iii) ANTI-SENSE: NO
    (ix) FEATURE:
          (A) NAME/KEY: misc_feature
          (B) LOCATION: 1..28
          (D) OTHER INFORMATION: /standard_name= "HCV Primer
                 HCPr163"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:
GCCAGAGGCT CGGAAGGCGA TCAGCGCT
                                                                        28
(2) INFORMATION FOR SEQ ID NO: 66:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 28 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
   (iii) HYPOTHETICAL: YES
   (iii) ANTI-SENSE: YES
    (ix) FEATURE:
          (A) NAME/KEY: misc_feature
          (B) LOCATION: 1..28
          (D) OTHER INFORMATION: /standard_name= "HCV Primer
                 HCPr164"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:
                                                                        28
GAGCTGCTCT GTCCTCCTCG ACGCCGCA
```

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

		(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: YES	
	(iii)	ANTI-SENSE: NO	
	(ix)	FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr23"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
CTO	CATGGG	GT ACATTCCGCT	20
(2)	INFO	RMATION FOR SEQ ID NO: 68:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: YES	
	(iii)	ANTI-SENSE: YES	
	(ix)	FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr54"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
CTA	TTACC	AG TTCATCATCA TATCCCA	27
(2)	INFO	RMATION FOR SEQ ID NO: 69:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	

(iii) HYPOTHETICAL: YES	,
(iii) ANTI-SENSE: NO	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr116"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
TTTTAAATAC ATCATGRCTG YATG	24
(2) INFORMATION FOR SEQ ID NO: 70:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: YES	
(iii) ANTI-SENSE: YES	
<pre>(ix) FEATURE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
CTATTATTGT ATCCCRCTGA TGAARTTCCA CAT	33
(2) INFORMATION FOR SEQ ID NO: 71:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: YES	
(iii) ANTI-SENSE: YES	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature</pre>	

```
(B) LOCATION: 1..28
          (D) OTHER INFORMATION: /standard name= "HCV Primer
                HCPr118:
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:
ACTAGTCGAC TAYTGATCCR CTATRWARTT CCACAT
                                                                        36
(2) INFORMATION FOR SEQ ID NO: 72:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 25 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
   (iii) HYPOTHETICAL: YES
   (iii) ANTI-SENSE: NO
  (ix) FEATURE:
          (A) NAME/KEY: misc_feature
          (B) LOCATION: 1..28
        (D) OTHER INFORMATION: /standard_name= "HCV Primer
                HCPr117:
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:
TTTTAAATAC ATCGCRCTGC ATGCA
                                                                        25
(2) INFORMATION FOR SEQ ID NO: 73:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 36 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
   (iii) HYPOTHETICAL: YES
   (iii) ANTI-SENSE: YES
  (ix) FEATURE:
          (A) NAME/KEY: misc feature
        (B) LOCATION: 1..28
          (D) OTHER INFORMATION: /standard_name= "HCV Primer
                 HCPrl19:
```

ACTAGTCGAC TARTTGCATA GCCKRTTCAT CCAYTG

(2) INFORMATION FOR SEQ ID NO: 74:

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(iii)	HYPOTHETICAL: YES	
(iii)	ANTI-SENSE: NO	
(ix) F	EATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr131:	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
GGAATTCT	AG ACCTCTGGGA YGARAYTGGA ARTG	34
(2) INFO	RMATION FOR SEQ ID NO: 75:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(iii)	HYPOTHETICAL: YES	
(iii)	ANTI-SENSE: NO	
(ix) F	EATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr130:	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
GGAATTCT	ag acgctaycar gcacgttgyg c	31
(2) INFO	RMATION FOR SEQ ID NO: 76:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid	

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: YES
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr134:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

CATATAGATG CCCACTTCCT ATC

23

- (2) INFORMATION FOR SEQ ID NO: 77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: YES
 - (iii) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr3:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

GTGTGCCAGG ACCATC

16

- (2) INFORMATION FOR SEQ ID NO: 78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iii) ANTI-SENSE: YES	
<pre>(ix) FEATURE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
GACATGCATG TCATGATGTA	20
(2) INFORMATION FOR SEQ ID NO: 79:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr152:</pre>	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
TACGCCTCTT CTATATCGGT TGGGGCCTG	29
(2) INFORMATION FOR SEQ ID NO: 80:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: YES	

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer ECPr52: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80: ATGTTGGGTA AGGTCATCGA TACCCT 26 (2) INFORMATION FOR SEQ ID NO: 81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TTPF: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCCGGGAGGT CTCGTAGACC GTGCA 25 (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: YES		159	
ATGTTGGGTA AGGTCATCGA TACCCT (2) INFORMATION FOR SEQ ID NO: 81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCCGGGAGGT CTCGTAGACC GTGCA (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(A) NAME/KEY: misc_feature B) LOCATION: 128 D) OTHER INFORMATION: /standard_name= "HCV Primer	
(2) INFORMATION FOR SEQ ID NO: 81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCCGGGGAGGT CTCGTAGACC GTGCA (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(xi) SE	QUENCE DESCRIPTION: SEQ ID NO: 80:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCCGGGAGGT CTCGTAGACC GTGCA (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	ATGTTGGGTA	AGGTCATCGA TACCCT	26
(A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCCGGGAGGT CTCGTAGACC GTGCA 25 (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(2) INFORMA	TION FOR SEQ ID NO: 81:	
(iii) HYPOTHETICAL: YES (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCGGGAGGT CTCGTAGACC GTGCA 25 (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(. (: (:	A) LENGTH: 25 base pairs B) TYPE: nucleic acid C) STRANDEDNESS: single	
(iii) ANTI-SENSE: NO (ix) FEATURE:	(ii) MO	LECULE TYPE: DNA (genomic)	
(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCCGGGAGGT CTCGTAGACC GTGCA 25 (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(iii) HY	POTHETICAL: YES	
(A) NAME/KEY: misc_feature (B) LOCATION: 128 (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr41: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: CCCGGGGAGGT CTCGTAGACC GTGCA 25 (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(iii) AN	TI-SENSE: NO	
CCCGGGAGGT CTCGTAGACC GTGCA (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	C	A) NAME/KEY: misc_feature B) LOCATION: 128 D) OTHER INFORMATION: /standard_name= "HCV Primer	
(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(xi) SE	QUENCE DESCRIPTION: SEQ ID NO: 81:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	CCCGGGAGGT	CTCGTAGACC GTGCA	25
(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES	(2) INFORMA	TION FOR SEQ ID NO: 82:	
(iii) HYPOTHETICAL: YES	(2 (1 (0	A) LENGTH: 29 base pairs B) TYPE: nucleic acid C) STRANDEDNESS: single	
	(ii) MO	LECULE TYPE: DNA (genomic)	
(iii) ANTI-SENSE: YES	(iii) HY	POTHETICAL: YES	
	(iii) AN	TI-SENSE: YES	

(D) OTHER INFORMATION: /standard_name= "HCV Primer

(A) NAME/KEY: misc_feature

(B) LOCATION: 1..28

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

CTATTAAAGA TAGAGAAAGA GCAACCGGG

29

- (2) INFORMATION FOR SEQ ID NO: 83:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:

(B) MAP POSITION: positions 192 to 203 of the V1 region of HCV type 3 $\,$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:
Leu Glu Trp Arg Asn Thr Ser Gly Leu Tyr Val Leu
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:

(B) MAP POSITION: positions 192 to 203 of the V1 region of HCV type 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val

- (2) INFORMATION FOR SEQ ID NO: 85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 213 to 223 of the V2 region of HCV type $\bf 3$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

Val Tyr Glu Ala Asp Asp Val Ile Leu His Thr

- (2) INFORMATION FOR SEQ ID NO: 86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 213 to 233 of the V2 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

Val Tyr Glu Ala Asp Asn Leu Ile Leu His Ala 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 242 of the V3 region of HCV type 3

.....

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

Val Gln Asp Gly Asn Thr Ser Thr Cys Trp Thr Pro Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 242 of the V3 region of HCV type 5 $\,$
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

Val Met Thr Gly Asn Val Ser Arg Cys Trp Val Gln Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
- (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 248 to 257 of the V4 region of HCV type 3 $\,$
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

Val Arg Tyr Val Gly Ala Thr Thr Ala Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
- (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 248 to 257 of the V4 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

Ala Pro Ser Leu Gly Ala Val Thr Ala Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 294 to 303 of the V5 region of HCV type 3 $\,$
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

Arg Pro Arg Arg His Gln Thr Val Gln Thr 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 294 to 303 of the V5 region of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

Arg Pro Arg Gln His Ala Thr Val Gln Asn 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 93:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN PROTEIN:
 - (B) MAP POSITION: positions 70 to 78 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

Gln Pro Thr Gly Arg Ser Trp Gly Gln

- (2) INFORMATION FOR SEQ ID NO: 94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR33 and BR36
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 237 of the V3 region of HCV type 3 $\,$
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

Val Gln Asp Gly Asn Thr Ser Thr 1 5

- (2) INFORMATION FOR SEQ ID NO: 95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: HD10
- (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 230 to 237 of the V3 region of HCV type 3 $\,$
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

Val Gln Asp Gly Asn Thr Ser Ala 1 5

- (2) INFORMATION FOR SEQ ID NO: 96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR36
 - (viii) POSITION IN PROTEIN:
- (B) MAP POSITION: positions 248 to 257 of the V4 region of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

Val Lys Tyr Val Gly Ala Thr Thr Ala Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR36

- (viii) POSITION IN GENOME:
 - (B) MAP POSITION: Positions 1688 to 1707 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

Leu Gly Gly Lys Pro Ala Ile Val Pro Asp Lys Glu Val Leu Tyr Gln 1 5 10 15

Gln Tyr Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 98:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: HD10
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1688 to 1707 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

Leu Gly Gly Lys Pro Ala Leu Val Pro Asp Lys Glu Val Leu Tyr Gln
1 5 10 15

Gln Tyr Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1712 to 1731
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

PCT/EP94/01323

Ser Gln Ala Ala Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln

1 5 10 15

167

Phe Lys Glu Lys 20

- (2) INFORMATION FOR SEQ ID NO: 100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: BR36
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1724 to 1743 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

Ile Ala His Gln Phe Lys Glu Lys Val Leu Gly Leu Leu Gln Arg Ala 1 5 10 15

Thr Gln Gln Gln

- (2) INFORMATION FOR SEQ ID NO: 101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: HD10
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1724 to 1743 of HCV type 3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

Ile Ala His Gln Phe Lys Glu Lys Ile Leu Gly Leu Leu Gln Arg Ala 1 5 10 15 Thr Gln Gln Gln 20

- (2) INFORMATION FOR SEQ ID NO: 102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1688 to 1707 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

Leu Ser Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu Ala Leu Tyr Gln

1 10 15

Gln Phe Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1688 to 1707
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

Leu Ser Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu Val Leu Tyr Gln 1 5 10 15

Gln Phe Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO: 104:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (viii) POSITION IN GENOME:
 - (B) MAP POSITION: position 1712 to 1731 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

Ser Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala Gly Gln 1 5 10 15

Phe Lys Glu Lys 20

- (2) INFORMATION FOR SEQ ID NO: 105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (viii) POSITION IN GENOME:
 - (B) MAP POSITION: positions 1724 to 1743 of HCV type 5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

Ile Ala Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr 1 5 10 15

Gly Gln Lys Ala

20

- (2) INFORMATION FOR SEQ ID NO: 106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

340

(iii) ANTI-SENSE: NO												
(vii) IMMEDIATE SOURCE: (B) CLONE: GB48-3-10												
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2340												
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:											
C TCC ACT GTA ACC GAA AAG GAC ATC AGG GTC GAG GAG GTC TA												
Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Val Ty 1 5 10 1	.5											
CAG TGT TGT GAC CTG GAG CCC GAA GCC CGC AAG GCA ATT ACC GCC												
Gln Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Ala Ile Thr Ala 20 25 30	Tea											
ACA GAG AGA CTC TAC GTG GGC GGT CCC ATG CAT AAC AGC AAG GGA	GAC 142											
Thr Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly 35 40 45	Asp											
CTG TGC GGG TAT CGC AGA TGT CGC GCA AGC GGC GTC TAC ACC ACC	AGC 190											
Leu Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr 50 55 60	Ser											
TTC GGG AAC ACA CTG ACG TGC TAC CTC AAA GCC TCA GCC GCT ATC												
Phe Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile 65 70 75	Lys											
GCG GCG GGG CTG AGA GAC TGC ACC ATG TTG GTC TGT GGT GAT GAC												
Ala Ala Gly Leu Arg Asp Cys Thr Met Leu Val Cys Gly Asp Asp 80 85 90	Leu 95											
••												
GTT GTC ATC GCT GAG AGC GAT GGC GTA GAG GAC AAA CGA CCC												
Val Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Pro 100 105 110	neu.											

(2) INFORMATION FOR SEQ ID NO: 107:

GGA GCC Gly Ala

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 113 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr Gln 1 5 10 15

Cys	Cys	Asp	Leu 20	Glu	Pro	Glu	Ala	Arg 25	Lys	Ala	Ile	Thr	Ala 30	Leu	Thr	
Glu	Arg	Leu 35	Tyr	Va:l	Gly	Gly	Pro 40	Met	His	Asn	Ser	Lys 45	Gly	Asp	Leu	•
Cys	Gly 50	Tyr	Arg	Arg	Cys	Arg 55	Ala	Ser	Gly	Val	Tyr 60	Thr	Thr	Ser	Phe	
Gly 65	Asn	Thr	Leu	Thr	Cys 70	Tyr	Leu	Lys	Ala	Ser 75	Ala	Ala	Ile	Lys	Ala 80	
Ala	Gly	Leu	Arg	Asp 85	Cys	Thr	Met	Leu	Val 90	Cys	Gly	Asp	Asp	Leu 95	Val	
Val	Ile	Ala	Glu 100	Ser	Asp	Gly	Val	Glu 105	Glu	Ąap	Lys	Arg	Pro	Leu	Gly	
Ala																
(2)	INFO	RMAI	rion	FOR	SEO	ID N	NO: 3	108:								
	(ii) (iii) (iii) (vii)	IOM IVH	CI-SE MEDIA 3) CI	ENGTH (PE: TRANI (POLC LE TY ETICA ENSE: ATE S LONE:	H: 34 nucl DEDNE DGY: TPE: NO GOURG	eic ESS: line cDN/	ase p acid sing ear	pairs i	3							
	(ix)	(2	ATURE A) NZ B) LC	ME/F			340									
	(xi)	SEÇ	QUENC	E DE	ESCRI	PTIC	ON: S	BEQ 1	D NC): 10	8:					•
	CC AC er Th								g Va					ıl Ty		46
	TGT Cys															94
	GAG Glu															142

								ACC Thr		190
		 						ATC Ile	٠	238
								GAC Asp		286
		 						GCC Ala 110		334
GGA Gly	GCC Ala								•	340

- (2) INFORMATION FOR SEQ ID NO: 109:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Val Tyr Gln
1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Arg Ala Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Arg Gly Asp Leu
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

Ala Gly Leu Arg Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Ala Leu Gly
100 105 110

Ala "

(2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 340 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
(ii) MOLECULE TYPE: cDNA														
(iii) HYPOTHETICAL: NO														
(iii) ANTI-SENSE: NO														
(vii) IMMEDIATE SOURCE: (B) CLONE: GB215-3-8														
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2340														
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:														
C TCC ACT GTA ACC GAA AAA GAC ATC AGG GTC GAG GAG GAG GTA TAT Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Val Tyr 1 5 10 15	46													
CAG TGT TGT GAC CTG GAG CCC GAA GCC CGC AAG GTA ATT ACC GCC CTA Gln Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu 20 25 30	94													
ACA GAG AGA CTC TAT GTG GGC GGT CCC ATG CAT AAT AGC AAA GGA GAC Thr Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp 35 40 45	142													
CTG TGC GGG TAT CGC AGA TGC CGC GCA AGC GGC GTC TAC ACC ACC AGC Leu Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser 50 55 60	190													
TTC GGG AAC ACA CTG ACG TGC TAT CTC AAA GCC TCA GCC GCC ATC AGG Phe Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg 65 70 75	. 238													
GCG TCA GGG CTG AGA GAC TGC ACT ATG CTG GTC TAT GGT GAC GAC CTG Ala Ser Gly Leu Arg Asp Cys Thr Met Leu Val Tyr Gly Asp Asp Leu	286													
80 85 90 95														
GTC GTC ATT GCC GAG AGC GAT GGC GTA GAG GAG GAC AAA CGA GCC CTC Val Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Ala Leu 100 105 110	334													
GGA GTC Gly Val	340													

(2) INFORMATION FOR SEQ ID NO: 111:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

Ser Thr Val Thr Glu Lys Asp Ile Arg Val Glu Glu Glu Val Tyr Gln

1 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

Ser Gly Leu Arg Asp Cys Thr Met Leu Val Tyr Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Lys Arg Ala Leu Gly
100 105 110

Val

- (2) INFORMATION FOR SEQ ID NO: 112:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: GB358-3-3
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..340
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:
- C TCC ACT GTA ACC GAA AAG GAC ATC AGG GTC GAG GAG GAG GTG TAT

Se	er Tl	nr V	al Tl	ar G	lu Ly 5	ys As	sp I	le A	_	al G: 10	lu G	lu G	lu Va		yr L5	
					GAG Glu											94
					GTG Val											142
					AGA Arg											190
					ACG Thr											238
					GAC Asp 85											286
					AGC Ser											334
	GCC Ala															340
(2)	(2) INFORMATION FOR SEQ ID NO: 113: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 113 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
					(PE: ESCRI			SEO I	ID NO): 1 3	L3:					
Ser 1			-		Lys							Glu	Val	Tyr 15	Gln	
Cys	Сув	Asp	Leu 20	Glu	Pro	Glu	Ala	Arg 25	Lys	Ala	Ile	Thr	Ala 30	Leu	Thr	
Glu	Arg	Leu 35	Tyr	Val	Gly	Gly	Pro 40	Met	His	Asn	Ser	Lys 45	Gly	Asp	Leu	
Cys	Gly 50	Tyr	Arg	Arg	Cys	Arg 55	Ala	Ser	Gly	Val	Tyr 60	Thr	Thr	Ser	Phe	
Gly	Asn	Thr	Leu	Thr	Cys	Tyr	Leu	Lys	Ala	Ser	Ala	Ala	Ile	Arg	Ala	

286

65

WU 94/25801	176	ICI/EL/4/4EE
Ala Gly Leu Arg Asp Cys 85	Thr Met Leu Val Cys Gly 7	Asp Asp Leu Val 95
Val Ile Ala Glu Ser Asp 100	Gly Val Glu Glu Asp Lys 2	Arg Ala Leu Gly 110
Ala		
(2) INFORMATION FOR SEQ	ID NO: 114:	
(i) SEQUENCE CHARAC (A) LENGTH: 34 (B) TYPE: nucl (C) STRANDEDNE (D) TOPOLOGY: (ii) MOLECULE TYPE:	to base pairs Leic acid RSS: single linear	
(iii) HYPOTHETICAL: N		
(iii) ANTI-SENSE: NO		
(vii) IMMEDIATE SOURC (B) CLONE: GB5		
(ix) FEATURE: (A) NAME/KEY: (B) LOCATION:		
(xi) SEQUENCE DESCRI	TPTION: SEQ ID NO: 114:	
	eg GAT ATC AGG ACC GAG GA eg Asp Ile Arg Thr Glu Glu 10	
CAG TGC TGC GAC CTG GAG	CCC GAA GCC CGC AAG GTG	ATA TCC GCC CTA 94

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Glu Ile Tyr 1 5 15																
	-				-					-	•					
CAG	TGC	TGC	GAC	CTG	GAG	ccc	GAA	GCC	CGC	AAG	GTG	ATA	TCC	GCC	CTA	94
Gln	Cys	Cys	Asp	Leu	Glu	Pro	Glu	Ala	Arg	Lys	Val	Ile	Ser	Ala	Leu	
		-	_	20					25					30		
														GGG		142
Thr	Glu	Arg	Leu	Tyr	Val	Gly	Gly	Pro	Met	Tyr	Asn	Ser	Lys	Gly	Asp	
			35					40					45			

														ACC		190
Leu	Cys	Gly	Gln	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Tyr	Thr	Thr	Ser	
		50					55					60				
														ACT		238
Phe	Gly	Asn	Thr	Val	Thr	Cys	Tyr	Leu	Lys	Ala	Val	Ala	Ala	Thr	Arg	

GCC GCA GGT CTG AAA GGT TGC AGC ATG CTG GTT TGT GGA GAC GAC TTA

Ala Ala Gly Leu Lys Gly Cys Ser Met Leu Val Cys Gly Asp Asp Leu

70

85

GTC GTC ATC TGC GAG AGC GGC GGC GTA GAG GAG GAT GCA AGA GCC CTC

Val Val Ile Cys Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu

100 105 110

CGA GCC Arg Ala 340

- (2) INFORMATION FOR SEQ ID NO: 115:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Glu Ile Tyr Gln
1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu
35 40 . 45

Cys Gly Gln Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 60

Gly Asn Thr Val Thr Cys Tyr Leu Lys Ala Val Ala Ala Thr Arg Ala 65 70 75 80

Ala Gly Leu Lys Gly Cys Ser Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Cys Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu Arg 100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

	(vii)	•			SOUR GB		3-1							
	(ix	(2	-	AME/	KEY: ION:		340			ţ		•		٠
	(xi)	SEC	QUEN	CE DI	ESCR:	IPTIC	ON: 8	SEQ :	ID N	0: 1:	16:			
					AG AG Lu Ai 5				ys Va				al T	46
					GAG Glu									94
					GTG Val									142
					AGA Arg									190
					ACG Thr								-	 238
					GAT Asp 85									286
					AGC Ser									334
GGA Gly					•									340

- (2) INFORMATION FOR SEQ ID NO: 117:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

Ser Thr Val Thr Glu Arg Asp Ile Lys Val Glu Glu Glu Val Tyr Gln 1 5 10 15

179 Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ala Ala Leu Thr 25 Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe Gly Asn Thr Met Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Lys Arg Ala Leu Gly Ala (2) INFORMATION FOR SEQ ID NO: 118: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vii) IMMEDIATE SOURCE: (B) CLONE: GB358-4-1 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..574 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118: ACT TGC GGC TTT GCC GAC CTC ATG GGA TAC ATC CCG CTC GTA GGC GCC Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 10 5 CCT GTG GGT GGC GTC GCC AGG GCC CTG GCA CAC GGT GTT AGG GCT GTG 96 Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

GAG GAC GGG ATC AAT TAT GCG ACA GGG AAT CTT CCC GGT TGC TCT TTC Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe

	CTC Leu							192
	TAT Tyr							240
	TCG Ser							288
	TGT Cys 100							336
	CTC Leu							384
	CTC Leu							432
	GCT Ala							480
	ATG Met							528
	TGT Cys 180						A	574

- (2) INFORMATION FOR SEQ ID NO: 119:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser

50 55 60

Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Thr Glu His His Ile Leu His
85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Pro Tyr Ile Gly Ala Pro 115 120 125

Leu Glu Ser Leu Arg Ser His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Ala Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Val Gly Gln Met Phe Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Val Thr Gly His Arg

(2) INFORMATION FOR SEQ ID NO: 120:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: GB549-4-3
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..574
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

ACG TGC GGC TTT GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC
Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 10 15

CCT GTG GGT GGC GTC GCC AGG GCC TTG GCA CAT GGT GTC AGG GCC GTG
Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val
20 25 30

						GCA	_	_								144
GIU	Asp	35	TTE	ASI	TYE	Ala	40	GIY	ASII	reu	Pro	45	cys	ser	Pne	
						CTT					_					192
Ser		Phe	Leu	Leu	Ala	Leu	Leu	Ser	Cys	Leu		Val	Pro	Ala	Ser	
	50					55					60					
GCG	CAG	CAC	TAC	CGG	AAC	ATC	TCG	GGC	ATT	TAT	CAC	GTC	ACC	AAT	GAC	240
Ala	Gln	His	Tyr	Arg		Ile	Ser	Gly	Ile	-	His	Val	Thr	Asn	-	
65		•			70					75					80	
						GTG										288
Cys	Pro	Asn	Ser		Ile	Val	Tyr	Glu		Asp	His	His	Ile		His	
				85					90					95		
CTA	CCA	GGG	TGT	GTG	CCT	TGC	GTG	AGA	ACC	GGG	AAC	ACC	TCG	CGC	TGC	336
Leu	Pro	Gly	-	Val	Pro	Cys	Val	_	Thr	Gly	Asn	Thr		Arg	Cys	
			100					105					110			
TGG	GTT	CCT	TTA	ACA	CCC	ACT	GTG	GCT	GCC	CCC	TAT	GTT	GGC	GCG	CCG	384
Trp	Val		Leu	Thr	Pro	Thr		Ala	Ala	Pro	Tyr		Gly	Ala	Pro	
		115					120					125				
CTC	GAA	TCC	ATG	CGG	CGG	CAC	GTG	GAC	TTA	ATG	GTG	GGT	GCC	GCC	ACC	432
Leu		Ser	Met	Arg	Arg	His	Val	Asp	Leu	Met		Gly	Ala	Ala	Thr	
	130					135					140					
GTC	TGC	TCG	GCC	CTG	TAC	ATC	GGA	GAC	CTT	TGC	GGA	GGT	GTC	TTC	CTG	480
	Cys	Ser	Ala	Leu	-	Ile	Gly	Asp	Leu		Gly	Gly	Val	Phe		
145					150					155					160	
GTC	GGG	CAG	ATG	TTC	ACC	TTC	CGG	CCG	CGC	CGC	CAT	TGG	ACT	ACC	CAG	528
Val	Gly	Gln	Met		Thr	Phe	Arg	Pro	_	Arg	His	Trp	Thr		Gln	
				165					170					175		
GAC	TGC	AAC	TGC	TCT	ATC	TAT	GAT	GGC	CAC	ATC	ACC	GGC	CAT	AGA	A	574
Asp	Cys	Asn	•	Ser	Ile	Tyr	Asp	-	His	Ile	Thr	Gly		Arg		
			180					185					190			

(2) INFORMATION FOR SEQ ID NO: 121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Thr Ser Arg Cys
100 105 110

Trp Val Pro Leu Thr Pro Thr Val Ala Ala Pro Tyr Val Gly Ala Pro 115 120 125

Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Arg Pro Arg Arg His Trp Thr Thr Gln
165 170 175

Asp Cys Asn Cys Ser Ile Tyr Asp Gly His Ile Thr Gly His Arg 180 185 190

(2) INFORMATION FOR SEQ ID NO: 122:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:

(B) CLONE: GB809-4-3

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..574
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

ACG TGC GGC TTC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC

									•							
Thr 1	Cys	Gly	Phe	Ala 5	Asp	Leu	Met	Gly	Tyr 10	Ile	Pro	Leu	Val	Gly 15	Ala	
CCC	GTT	GGG	GGC	GTC	GCC	AGG	GCC	CTG	GCG	CAT	GGC	GTC	AGG	GCT	GTG	96
														Ala		•
		- •	20					25			-		30			
GAG	GAC	GGG	ATT	AAC	TAT	GCG	ACA	GGG	AAT	CTT	CCC	GGT	TGC	TCT	TTC	144
Glu	Asp	Gly	Ile	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	
		35					40					45				
TCT	ATC	TTC	CTC	CTG	GCA	CTT	CTT	TCG	TGC	CTC	ACT	GTC	CCA	GCG	TCA	192
Ser	Ile	Phe	Leu	Leu	Ala	Leu	Leu	Ser	Cys	Leu	Thr	Val	Pro	Ala	Ser	
	50					55					60					
														AAT		240
	Glu	His	Tyr	Arg		Ala	Ser	Gly	Ile	-	His	Ile	Thr	Asn		
65					70					75					80	
														TTG		288
Cys	Pro	Asn	Ser	Ser 85	Val	Val	Tyr	Glu	Thr 90	Asp	His	His	Ile	Leu 95	HIS	
																225
														CGT		336
		_	100					105					110	Arg		
														GCT		384
Trp	Thr	Pro 115	Val	Thr	Pro	Thr	Val 120	Ala	Ala	Val	Ser	Met 125	Asp	Ala	Pro	
СТС	GAG	TCC	TTC	CGG	CGG	CAT	GTG	GAC	CTA	ATG	GTA	GGT	GCG	GCC	ACC	432
														Ala		
	130			J	_	135		-			140					
GTG	TGT	TCT	GTC	CTC	TAT	GTT	GGA	GAC	CTC	TGT	GGA	GGT	GCT	TTC	CTA	480
Val	Cys	Ser	Val	Leu	Tyr	Val	Gly	Asp	Leu	Cys	Gly	Gly	Ala	Phe	Leu	
145					150					155					160	
GTG	GGG	CAG	ATG	TTC	ACC	TTC	CAG	CCG	CGT	CGC	CAC	TGG	ACC	ACG	CAG	528
Val	Gly	Gln	Met	Phe	Thr	Phe	Gln	Pro	Arg	Arg	His	Trp	Thr	Thr	Gln	
	_			165					170					175		
														AGG	A	574
Asp	Cys	Asn	Cys 180	Ser	Ile	Tyr	Thr	Gly 185	His	Ile	Thr	Gly	His 190	Arg		

(2) INFORMATION FOR SEQ ID NO: 123:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Glu His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Val Val Tyr Glu Thr Asp His His Ile Leu His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Ala Gly Asn Val Ser Arg Cys 100 105 110

Trp Thr Pro Val Thr Pro Thr Val Ala Ala Val Ser Met Asp Ala Pro 115 120 125

Leu Glu Ser Phe Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Val Cys Ser Val Leu Tyr Val Gly Asp Leu Cys Gly Gly Ala Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln
165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg 180 185 190

- (2) INFORMATION FOR SEQ ID NO: 124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..31
 - (D) OTHER INFORMATION: /standard_name= "HCV Primer HCPr206"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

186 TGGGGATCCC GTATGATACC CGCTGCTTTG A 31 (2) INFORMATION FOR SEQ ID NO: 125: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: YES (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 1..30 (D) OTHER INFORMATION: /standard_name= "HCV Primer HcPr207" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125: 30 GGCGGAATTC CTGGTCATAG CCTCCGTGAA (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: amino acid (C) INDIVIDUAL ISOLATE: GB358 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile (2) INFORMATION FOR SEQ ID NO: 127:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val

- (2) INFORMATION FOR SEQ ID NO: 128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

Glu His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

Val Tyr Glu Thr Glu His His Ile Leu His Leu

1 5 10

(2) INFORMATION FOR SEQ ID NO: 130:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:

Val Tyr Glu Ala Asp His His Ile Met His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

Val Tyr Glu Thr Asp His His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358

the second management and the

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

Val Arg Val Gly Asn Gln Ser Arg Cys Trp Val Ala Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 133:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

Val Arg Thr Gly Asn Thr Ser Arg Cys Trp Val Pro Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

Val Arg Ala Gly Asn Val Ser Arg Cys Trp Thr Pro Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide /
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

Ala Pro Tyr Ile Gly Ala Pro Leu Glu Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

Ala Pro Tyr Val Gly Ala Pro Leu Glu Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 137:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

Ala Val Ser Met Asp Ala Pro Leu Glu Ser 1 5 10

(2) INFORMATION FOR SEQ ID NO: 138:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB358 and GB809
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

Gln Pro Arg Arg His Trp Thr Thr Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 139:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: amino acid
 - (C) INDIVIDUAL ISOLATE: GB549
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

Arg Pro Arg Arg His Trp Thr Thr Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 140:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

- (A) ORGANISM: amino acid
- (C) INDIVIDUAL ISOLATE: GB549
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

Arg Pro Arg Arg His Trp Thr Thr Gln Asp

- (2) INFORMATION FOR SEQ ID NO: 141:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:

TGGGATATGA TGATGAACTG GTC

23

- (2) INFORMATION FOR SEQ ID NO: 142:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: YES
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

CCAGGTACAA CCGAACCAAT TGCC

24

- (2) INFORMATION FOR SEQ ID NO: 143:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 957 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..957

(ix) FEATURE:

(A) NAME/KEY: mat_peptide
(B) LOCATION: 1..954

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

		AAA Lys						48
 	 	 GTC Val						96
		CCG Pro						144
		 GAG Glu						192
		CGC Arg 70						240
 	 	 TAC Tyr						288
 	 	 GGG Gly						-336
		AAC Asn						384
		ATG Met						432
		GCT Ala 150						480

		ACA Thr							528
		CTA Leu						•	576
		AGC Ser							624
		TGG Trp							672
		GAG Glu 230							720
		ATA Ile							768
		ATT Ile							816
		GGA Gly							864
		TCG Ser							912
		CCA Pro 310							957

- (2) INFORMATION FOR SEQ ID NO: 144:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly

Gly Val Tyr Le	eu Leu Pro	Arg Arg Gly	Pro Arg Leu Gly	Val Arg Ala
35		40	45	

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Asp Arg Pro Thr Gly Lys Ser Trp Gly Lys Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp
85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro

Arg His Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 . 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Val Val Gly Ala Pro Val 130 135 140

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160

Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175

Phe Leu Leu Ala Leu Leu Ser Cys Ile Thr Val Pro Val Ser Gly Leu 180 185 190

Gln Val Lys Asn Thr Ser Ser Ser Tyr Met Val Thr Asn Asp Cys Gln 195 200 205

Asn Ser Ser Ile Val Trp Gln Leu Arg Asp Ala Val Leu His Val Pro 210 215 220

Gly Cys Val Pro Cys Glu Glu Lys Gly Asn Ile Ser Arg Cys Trp Ile 225 230 235 240

Pro Val Ser Pro Asn Ile Ala Val Ser Gln Pro Gly Ala Leu Thr Lys
245 250 255

Gly Leu Arg Thr His Ile Asp Thr Ile Ile Ala Ser Ala Thr Phe Cys 260 265 270

Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Ala Val Met Leu Ala Ser 275 280 285

Gln Val Phe Ile Ile Ser Pro Gln His His Lys Phe Val Gln Asp Cys 290 295 300

Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala 305 310 315

- (2) INFORMATION FOR SEQ ID NO: 1:5:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 340 base pairs

340

	(C) S	YPE: TRANI OPOL	DEDN	ESS :	sin								
(ii)) MO	LECU	LE T	YPE:	cDN	A.							٠	
(iii)) HY:	POTH	ETIC	AL:	NO									
(iii)) AN	TI-S	ENSE	: NO										
(ix)	(2		E: AME/1 OCAT:		_	_	tide			•				
(ix)	(2		E: AME/I OCATI			340								
(xi)	SE(QUEN	CE DI	SCR:	[PTI	ON:	SEQ :	ID N): 1·	45:				
CA AC er Th								rg T				le T		46
GCT Ala														94
GAG Glu														142
TGC Cys														190
GGA Gly 65														238
GCG Ala														286
GTC Val														334

(2) INFORMATION FOR SEQ ID NO: 146:

CGA GCC Arg Ala

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 113 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr Leu 1 5 10 15

Ala Cys Ser Leu Pro Glu Gln Ala Arg Thr Ala Ile His Ser Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Leu Asn Ser Lys Gly Gln Thr
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met
50 55 60

Gly Asn Thr Ile Thr Cys Tyr Val Lys Ala Gln Ala Ala Cys Lys Ala 65 70 80

Ala Gly Ile Ile Ala Pro Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ser Glu Ser Gln Gly Thr Glu Glu Asp Glu Arg Asn Leu Arg 100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 147:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 345 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..345
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..342
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

ATG AGC ACA CTT CCT AAA CCA CAA AGA AAA ACC AAA AGA AAC ACC AAC

Met 1	Ser	Thr	Leu	Pro 5	Lys	Pro	Gln	Arg	Lys 10	Thr	Lys	Arg	Asn	Thr 15	Asn	
ccc														TTG Leu		. 96
														GTG Val		144
														AAC Asn		192
														CCG Pro		240
														GGT Gly 95		288
														ACC Thr		336
	GCA Ala															345
(2)				FOR												
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 115 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear															
	(ii)	MOI	ECUI	E T	PE:	prot	ein									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

Met Ser Thr Leu Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

1 5 10 15

Pro Gly His Arg Thr Leu Ser Ser Gln Ala Ala Val Arg Ser Leu Val 20 25 30

Glu Phe Thr Cys Tyr His Ala Gly Ala Pro Ser Trp Val Cys Val Gln 35 40 45

Cys Ala Arg Leu Pro Ser Gly Arg Asn Leu Ala Val Gly Ala Asn Pro 50 55 60

Ser Pro Gly Arg Ala Glu Pro Arg Ala Gly Pro Gly Leu Ser Pro Gly 65 70 75 80

Thr Leu Gly Pro Tyr Met Gly Met Arg Ala Ala Gly Gly Gln Gly Gly

85 90 95

Ser Cys Pro Arg Ala Ala Leu Ala Arg Arg Gly Ala Gln Met Thr Pro 100 105 110

Gly Ala Gly 115

- (2) INFORMATION FOR SEQ ID NO: 149:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 280 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..280
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 2..277
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:
- G GCC TGT GAC CTC AAG GAC GAG GCT AGG AGG GTG ATA ACT TCA CTC
 Ala Cys Asp Leu Lys Asp Glu Ala Arg Arg Val Ile Thr Ser Leu
 1 5 10 15
- ACG GAG CGG CTT TAC TGT GGT GGT CCT ATG TTC AAC AGC AAG GGA CAA

 Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Gln

 20
 25
 30
- CAC TGC GGT TAC CGC CGC TGC CGT GCT AGT GGG GTG CTA CCC ACC AGC
 His Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser

 35
 40
 45
- TTC GGG AAC ACA ATC ACC TGT TAC ATC AAA GCA AAG GCA GCT ACC AAA

 190
 Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Lys Ala Ala Thr Lys
 50
 55
 60
- GCT GCC GGA ATT AAA AAT CCA TCA TTC CTT GTC TGC GGA GAT GAC TTG

 Ala Ala Gly Ile Lys Asn Pro Ser Phe Leu Val Cys Gly Asp Asp Leu

 65 70 75
- GTC GTG ATT GCT GAG AGT GCA GGG ATC GAT GAG GAC AGA GCG

 Val Val Ile Ala Glu Ser Ala Gly Ile Asp Glu Asp Arg Ala

 80 85 90
- (2) INFORMATION FOR SEQ ID NO: 150:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 93 amino acids

- (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

Ala Cys Asp Leu Lys Asp Glu Ala Arg Arg Val Ile Thr Ser Leu Thr 1 5 10 15

Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Gln His 20 25 30

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser Phe 35 40 45

Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Lys Ala Ala Thr Lys Ala
50 55 60

Ala Gly Ile Lys Asn Pro Ser Phe Leu Val Cys Gly Asp Asp Leu Val 65 70 75 80

Val Ile Ala Glu Ser Ala Gly Ile Asp Glu Asp Arg Ala 85 90

- (2) INFORMATION FOR SEQ ID NO: 151:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..499
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..496
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA AGA AAC ACC AAC

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

1 5 10 15

CGT CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT GGC
Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly
20 25 30

 _		_	CCG Pro							144
			GAA Glu							192
			CAG Gln 70							240
			TAC Tyr							288
 	 		GGC Gly							336
			AAT Asn							384
 	 		ATG Met							432
 	 		GCT Ala 150							480
 	 	GCA Ala 165	ACA Thr	G						499

(2) INFORMATION FOR SEQ ID NO: 152:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Met Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Gln Pro Thr Gly Arg Ser Trp Gly Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Ala Asn Glu Gly Leu Gly Trp Ala Gly Trp 85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Asn Trp Gly Pro Asn Asp Pro

Arg Arg Lys Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly Pro Ile 130 135 140

Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160

Gly Val Asn Tyr Ala Thr 165

- (2) INFORMATION FOR SEQ ID NO: 153:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:

ACG TGC GGA TTC GCC GAT CTC ATG GGG TAC ATC CCG CTC GTA GGC GGC

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly

1 5 10 15

CCC GTT GGG GGC GTC GCA AGG GCT-CTC GCA CAC GGT GTG AGG GTC CTT

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu

20 25 30

GAG GAC GGG GTA AAC TAT CCA ACA GGG AAT TTA CCC GGT TGC TCT TTC 144

Glu	Asp	Gly 35	Val	Asn	Tyr	Pro	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe		
				CTT Leu											TCT Ser	•	192
				CGA Arg													240
				TCC Ser 85													288
				GTG Val													336
				ACC Thr													384
•				CGG Arg													432
				TTA Leu												,	480
				TTC Phe 165													528
				TCC Ser												:	576
GCG Ala														-			579

(2) INFORMATION FOR SEQ ID NO: 154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu 20 25 30

Glu Asp Gly Val Asn Tyr Pro Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Ile L u Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asn Leu Ile Leu His 85 90 95

Ala Pro Gly Cys Val Pro Cys Val Met Thr Gly Asn Val Ser Arg Cys 100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Leu Gly Ala Val 115 120 125

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Ala Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln 165 170 175

Asn Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 155:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..579

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..576

(xi)	SEQUENCE	DESCRIPTION:	SEQ :	ID NO:	155:
------	----------	--------------	-------	--------	------

					GAC Asp											48
		-			GCA Ala											96
					TAT Tyr											144
					GCA Ala											192
					AAT Asn 70											240
					ATA Ile											288
					CCT Pro											336
					CCC Pro			Ser								384
		Pro			AGA Arg											432
Leu 145	Cys	Ser	Ala	Leu	TAC Tyr 150	Val	Gly	Asp	Ala	Суs 155	Gly	Ala	Leu	Phe	Leu 160	480
Val	Gly	Gln	Met	Phe 165	ACC Thr	Tyr	Arg	Pro	Arg 170	Gln	His	Ala	Thr	Val 175	Gln	528
					ATC Ile											576
GCA Ala																579

⁽²⁾ INFORMATION FOR SEQ ID NO: 156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

Thr Cys Gly Phe Ala Asp Leu Val Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu 20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Leu Ile Leu His 85 90 95

Ala Pro Gly Cys Val Pro Cys Val Arg Lys Asp Asn Val Ser Arg Cys 100 105 110

Trp Val Gln Ile Thr Pro Thr Leu Ser Ala Pro Ser Phe Gly Ala Val 115 120 125

Thr Ala Pro Leu Arg Arg Ala Val Asp Tyr Leu Val Gly Gly Ala Ala 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Ala Cys Gly Ala Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Tyr Arg Pro Arg Gln His Ala Thr Val Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ser Gly His Val Thr Gly His Gln Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 157:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 530 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(iii)	HYPOTHETICAL:	NO
-------	---------------	----

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 3..530

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 3..527

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

CA CCT ACG ACA GCT CTG CTG GTG GCC CAG TTA CTG CGG ATT CCC CAA Pro Thr Thr Ala Leu Leu Val Ala Gln Leu Leu Arg Ile Pro Gln 1 5 10 15	47
GTG GTC ATT GAC ATC ATC GCA GGG AGC CAC TGG GGG GTC TTG TTT GCC Val Val Ile Asp Ile Ile Ala Gly Ser His Trp Gly Val Leu Phe Ala 20 25 30	95
GCC GCA TAC TAT GCA TCG GTG GCT AAC TGG ACC AAG GTC GTG CTG GTC Ala Ala Tyr Tyr Ala Ser Val Ala Asn Trp Thr Lys Val Val Leu Val 35 40 45	143
TTG TTT CTG TTT GCA GGG GTT GAT GCT ACT ACC CAG ATT TCG GGC GGC Leu Phe Leu Phe Ala Gly Val Asp Ala Thr Thr Gln Ile Ser Gly Gly 50 55 60	191
TCC AGC GCC CAA ACG ACG TAT GGC ATC GCC TCA TTT ATC ACC CGC GGC Ser Ser Ala Gln Thr Thr Tyr Gly Ile Ala Ser Phe Ile Thr Arg Gly 65 70 75	239
GCG CAG CAG AAA CTG CAG CTC ATA AAT ACC AAC GGA AGC TGG CAC ATC Ala Gln Gln Lys Leu Gln Leu Ile Asn Thr Asn Gly Ser Trp His Ile 80 85 90 95	287
AAC AGG ACC GCC CTT AAT TGT AAT GAC AGC CTC CAG ACT GGG TTC ATA Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Ile 100 105 110	335
GCC GGC CTC TTC TAC TAC CAT AAG TTC AAC TCT TCT GGA TGC CCG GAT Ala Gly Leu Phe Tyr Tyr His Lys Phe Asn Ser Ser Gly Cys Pro Asp 115 120 125	383
CGG ATG GCT AGC TGT AGG GCC CTT GCC ACT TTT GAC CAG GGC TGG GGA Arg Met Ala Ser Cys Arg Ala Leu Ala Thr Phe Asp Gln Gly Trp Gly 130 135 140	431
ACT ATC AGC TAT GCC AAC ATA TCG GGT CCC AGT GAT GAC AAA CCA TAT Thr Ile Ser Tyr Ala Asn Ile Ser Gly Pro Ser Asp Asp Lys Pro Tyr 145 150 155	479
TGC TGG CAC TAT CCC CCA CGG CCG TGC GGA GTG GTG CCA GCC CAA GAG	527

Cys Trp His Tyr Pro Pro Arg Pro Cys Gly Val Val Pro Ala Gln Glu 160 165 170 175

GTC Val 530

- (2) INFORMATION FOR SEQ ID NO: 158:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 176 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

Pro Thr Thr Ala Leu Leu Val Ala Gln Leu Leu Arg Ile Pro Gln Val

Val Ile Asp Ile Ile Ala Gly Ser His Trp Gly Val Leu Phe Ala Ala 20 25 30

Ala Tyr Tyr Ala Ser Val Ala Asn Trp Thr Lys Val Val Leu Val Leu
35 40 45

Phe Leu Phe Ala Gly Val Asp Ala Thr Thr Gln Ile Ser Gly Gly Ser 50 60

Ser Ala Gln Thr Thr Tyr Gly Ile Ala Ser Phe Ile Thr Arg Gly Ala 65 70 75 80

Gln Gln Lys Leu Gln Leu Ile Asn Thr Asn Gly Ser Trp His Ile Asn 85 90 95

Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Gln Thr Gly Phe Ile Ala 100 105 110

Gly Leu Phe Tyr Tyr His Lys Phe Asn Ser Ser Gly Cys Pro Asp Arg 115 120 125

Met Ala Ser Cys Arg Ala Leu Ala Thr Phe Asp Gln Gly Trp Gly Thr 130 140

Ile Ser Tyr Ala Asn Ile Ser Gly Pro Ser Asp Asp Lys Pro Tyr Cys 145 150 155 160

Trp His Tyr Pro Pro Arg Pro Cys Gly Val Val Pro Ala Gln Glu Val
165 170 175

- (2) INFORMATION FOR SEQ ID NO: 159:
 - (i) SEQUENCE CHARACTERÍSTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

			•	209									
	(D) TO	POLOGY:	linear										
(ii)	MOLECUL	E TYPE:	CDNA										
(iii) HYPOTHETICAL: NO													
(iii)	ANTI-SE	NSE: NO											
(ix)		: ME/KEY: CATION:											
(ix)		: ME/KEY: CATION:		tide									
(xi)	SEQUENC	E DESCRI	PTION:	SEQ ID N	0: 159:								
C TCG ACC Ser Thi					CC GAA G hr Glu G			46					
CAA TCA T					Ala Ala			94					
ACC CAA C								142					
CAG TGT (190					
ATG GGC A Met Gly A 65		Met Thr				Ala Ser		238					
GCC GCA A Ala Ala A 80								286					
GTG GCC I	ATC TGC	GAG AGC Glu Ser 100	CAG GGG Gln Gly	ACA CAC Thr His	Glu Asp	GAA GCA Glu Ala	AGC CTG Ser Leu 110	334					
AGA GCC Arg Ala								340					

- (2) INFORMATION FOR SEQ ID NO: 160:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

Ser Thr Val Thr Glu His Asp Ile Met Thr Glu Glu Ser Ile Tyr Gln

Ser Cys Asp Leu Gln Pro Glu Ala Arg Ala Ile Arg Ser Leu Thr

Gln Arg Leu Tyr Cys Gly Gly Pro Met Tyr Asn Ser Lys Gly Gln Gln

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met

Gly Asn Thr Met Thr Cys Tyr Ile Lys Ala Leu Ala Ser Cys Arg Ala 70

Ala Arg Leu Arg Asp Cys Thr Leu Leu Val Cys Gly Asp Asp Leu Val

Ala Ile Cys Glu Ser Gln Gly Thr His Glu Asp Glu Ala Ser Leu Arg 105

Ala

- (2) INFORMATION FOR SEQ ID NO: 161:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 2..340

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 2..337

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

C TCA ACC GCC ACC GAA CAT GAC ATA TTG ACT GAA GAG TCC ATA TAC Ser Thr Ala Thr Glu His Asp Ile Leu Thr Glu Glu Ser Ile Tyr

	-				5				•	LU				•	12	
					CAG Gln										CTC Leu	94
					TGT Cys										CAA Gln	142
					AGA Arg											190
					ACG Thr											238
					GAC Asp 85											286
					AGC Ser											334
AGA Arg																340
(2)	(2) INFORMATION FOR SEQ ID NO: 162: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 113 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein															
Ser					SCRI His							Ser	Ile	Tvr	Gln	
1	****	A u		5					10					15		
	-	_	20		Pro			25					30		_	
Gln	Arg	Leu 35	Phe	Cys	Gly	Gly	Pro 40	Met	Tyr	Asn	Ser	Lys 45	Gly	Gln	Gln	
Cys,	Gly 50	Tyr	Arg	Arg	Cys	Arg 55	Ala	Ser	Gly	Val	Phe 60	Thr	Thr	Ser	Met	

Gly Asn Thr Met Thr Cys Tyr Ile-Lys Ala Leu Ala Ser Cys Arg Thr

Ala Gly Leu Arg Asp Tyr Thr Leu Leu Val Cys Gly Asp Asp His Val

Ala Ile Cys Glu Ser Gln Gly Thr His Glu Asp Glu Ala Asn Leu Arg 100 105 110

Ala

(2) INFORMATION FOR SEQ ID NO: 163:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..499
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..496

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

			AAT													48
Met	Ser	Thr	Asn	Pro	Lys	Leu	Gln	Arg		Thr	Lys	Arg	Asn		Asn	
1				5					10					15		
			ATG													96
Arg	Arg	Pro	Met	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gln	Ile	Val	Gly	
			20					25					30			
GGA	GTT	TAC	TTG	TTG	CCG	CGC	AGG	GGC	CCT	AGG	TTG	GGT	GTG	CGC	GCG	144
Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Leu	Gly	Val	Arg	Ala	
		35					40					45				
ACT	CGG	AAG	ACT	TCG	GAG	CGG	TCG	CAA	CCT	CGT	GGG	AGG	CGC	CAA	CCT	192
Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gln	Pro	Arg	Gly	Arg	Arg	Gln	Pro	
	50					55					60					
			GCG													240
Ile	Pro	Lys	Ala	Arg	Arg	Ser	Glu	Gly	Arg	Ser	Trp	Ala	Gln	Pro		
65					70					75					80	
			CCC													288
Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu		Cys	Gly	Trp	Ala		Trp	
				85					90					95		

CTC CTG TCC CCT CGC GGG TCT CGG CCG TCT TGG GGC CCT AAT GAT CCC

Leu	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro 105	Ser	Trp	Gly	Pro	Asn 110	Asp	Pro		
					AAC Asn											٠	384
					ATG Met	_											432
					GCC Ala 150												480
	ATC Ile				ACA Thr	G											499

- (2) INFORMATION FOR SEQ ID NO: 164:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

Met Ser Thr Asn Pro Lys Leu Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly 20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 35 . 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp 85 90 95

Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Asn Asp Pro 100 105 110

Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys
115 120 - 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Val 130 135 140 Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val Glu Asp 145 150 155 160

Gly Ile Asn Tyr Ala Thr 165

- (2) INFORMATION FOR SEQ ID NO: 165:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ACACCAACCG	CCGCCCTATG	60
GACGTTAAGT	TCCCAGGCGG	TGGTCAGATC	GTTGGCGGAG	TTTACTTGTT	GCCGCGCAGG	120
GGCCCCAGGT	TGGGTGTGCG	CGCGACTCGG	AAGACTTCGG	AGCGGTCGCA	ACCTCGTGGG	180
AGGCGCCAAC	CTATCCCCAA	GGCGCGCCGA	ACCGAGGGCA	GATCCTGGGC	GCAGCCCGGG	240
TATCCTTGGC	CCCTTTACGG	CAATGAGGGC	TGTGGGTGGG	CAGGGTGGCT	CCTGTCCCCT	300
CGCGGNTCTC	GGNCGTCTTG	GGGCCCCAAT	GATCCCCGGN	GGAGATCCCG	CAACTTGGGT	360
AAGGTCATCG	ATACCCTAAC	ATGCGGCTTC	GCCGACCTCA	TGGGATACAT	CCCGCTTGTA	420
GGCGCCCCG	TGGGTGGCGT	CGCCAGGGCC	CTGGCACATG	GTGTTAGGGC	TGTGGAAGAC	480
GGGATCAATT	ATGCAACAG					499

- (2) INFORMATION FOR SEQ ID NO: 166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 126 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

10 Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly 25 Gly Val Tyr Leu Leu Pro Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg Arg Thr Glu Gly Arg Ser Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Xaa Ser Arg Xaa Ser Trp Gly Pro Asn Asp Pro 105 Arg Xaa Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu 120 115 (2) INFORMATION FOR SEQ ID NO: 167: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 579 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..579 (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 1..579 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167: ACA TGC GGC TTC GCC GAC CTC ATG GGA TAC ATC CCG CTT GTA GGC GCC Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 10 CCC GTG GGT GGC GTC GCC AGG GCC-CTG GCA CAT GGT GTT AGG GCT GTG 96 Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

GAA GAC GGG ATC AAT TAT GCA ACA GGG AAC CTT CCC GGT TGC TCC TTT

Test Arc Tre Cre Tre Ged Cre	Glu	Asp	Gly 35	Ile	Asn	Tyr	Ala	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe		
GCC GTT AAC TAT CGC AAT GCT TCG GGC ATT TAT CAC ATC ACC AAT GAC AAT GAC ALA VAL ASN TYP ARG ASN ALA SEP GLY ILE TYP HIS ILE THE ASN ASP 80 TGC CCG AAT GCA AGC ATC TAC GTG GTG TAC GAA ACC GAA AAT CAC ATC TTA CAC CYS Pro ASN ALA SEP ILE VAL TYP GLU THE GLU ASN HIS ILE HIS 95 CTC CCA GGG TGC GTA CCC TGT GTG GTG AGG ACT GGG AAC CAG TCG CGG TGT LEU Pro Gly Cys Val Pro Cys Val Arg The Gly ASN Gln Ser Arg Cys 110 TGG GTG GCC CTC ACT CCC ACA GTA GGT AGG TCG CCA TAC GCC GGT GCT CCG TTP VAL ALA Leu The Pro The Val ALA Ser Pro Typ ALA GLy ALA Pro 125 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GGC GGT GCT CCG 384 Leu Glu Pro Leu Arg Arg His VAL ASP Leu Met VAL Gly ALA ALA The 135 ATG TGT TCC GCC CTC TAC ATC GCG GAC TTG TGG GGT GGT GCC ACC 432 ATG TGT TCC GCC CTC TAC ATC GCC GAC CAC CYS ASP Leu Cys Gly Gly Leu Phe Leu 145 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG AGG TGT TTG TTG TGG GGC CAC TGG GGC TGT TTG TGG GGC CAC TGG GGC TGT TTG TGG GGC CAC	TCT	ATC	TTC	CTC	TTG	GCG	CTC	CTC	TCG	TGC	CTG	ACT	GTT	CCC	ACA	TCG	•	192
GCC GTT AAC TAT CGC AAT GCT TCG GGC ATT TAT CAC ATC ACC AAT GAC Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65	Ser	Ile	Phe	Leu	Leu	Ala	Leu	Leu	Ser	Cys	Leu	Thr	Val	Pro	Thr	Ser		
Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 80 TGC CCG AAT GCA AGC ATA GTG TAC GAG ACC GAA AAT CAC ATC TTA CAC Cys Pro Asn Ala Ser Ile Val Tyr Glu Thr Glu Asn His Ile Leu His 95 CTC CCA GGG TGC GTA CCC TGT GTG AGG ACT GGG AAC CAG TCG CGG TGT 100 TGG GTG GCC CTC ACT CCC ACA GTA GCG TCG CCA TAC GGC GGT GCT Cys 110 TGG GTG GCC CTC ACT CCC ACA GTA GCG TCG CCA TAC GCC GGT GCT Cys 110 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GAC GGT GCT CCG 384 Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 125 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCT GCC ACC 432 Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 150 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACC ACC Val Gly Gly Chu Pro 160 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACC ACC ASP Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 190		50					55					60						
TGC CCG AAT GCA AGC ATA GTG TAC GAG ACC GAA AAT CAC ATC TTA CAC CYS Pro Asn Ala Ser 1le Val Tyr Glu Thr Glu Asn His Ile Leu His 90 CTC CCA GGG TGC GTA CCC TGT GTG AGG ACC GAG AAC CAG TCG CGG TGT 100 CYS Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys 110 CTC CAA ACC CCC ACA GTA GCG TCG CCA TAC GCC GGT GCT CCG ACC TTP Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 125 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCC ACC ACC Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 CTC CTC ACC ATC GCG GAC GAC GTG GCT GCC ACC ACC CTG ATG TGC GCG GCC ACC TTG TGC GCC ACC TTGC G			-															240
TGC CCG AAT GCA AGC ATA GTG TAC GAG ACC GAA AAT CAC ATC TTA CAC CYS Pro Asn Ala Ser Ile Val Tyr Glu Thr Glu Asn His Ile Leu His 95 CTC CCA GGG TGC GTA CCC TGT GTG AGG ACT GGG AAC CAG TCG CGG TGT 100 TGG GTG GCC CTC ACT CCC ACA GTA GCG TAC GTG AGG ACC GCA TAC GCC GGT GCT CCG 110 TGG GTG GCC CTC ACT CCC ACA GTA GCG TCG CCA TAC GCC GGT GCT CCG 384 Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 125 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ACT GGC GGT GCT CCG 384 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ACC GGT GGT GCT CCG 384 Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC GCT CAC 480 Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG 528 Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG ASp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 190	Ala	Val	Asn	Tyr	Arg	Asn	Ala	Ser	Gly	Ile	Tyr	His	Ile	Thr	Asn	Asp		
Cys Pro Asn Ala Ser 11e Val Tyr Glu Thr Glu Asn His 11e Leu His 95 CTC CCA GGG TGC GTA CCC TGT GTG AGG ACT GGG AAC CAG TCG CGG TGT 336 Leu Pro Gly CYS Val Pro CYS Val Arg Thr Gly Asn Gln Ser Arg Cys 110 336 TGG GTG GCC CTC ACT CCC ACA GTG GCG TCG CCA TAC GCG GGT CCG 384 TTP Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro ACC ACC ACC ACC TTC TAC GGC GAC TTT									•									
CTC CCA GGG TGC GTA CCC TGT GTG AGG ACT GGG AAC CAG TCG CGG TGT 336 Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys 110 TGG GTG GCC CTC ACT CCC ACA GTA GCG TCG CCA TAC GCC GGT GCT CCG 384 Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 125 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCT GCC ACC ACC ACC GGU GCT CCG ATG GTA GGU GCT CCG ACC ACC GGU GCT GCC ACC ACC GGU GCT GCC ACC ACC GGU GCT GCC ACC ACC ACC ACC ACC ACC ACC ACC ACC																		288
Tell Pro Gly Cys Val Pro Cys Val Arg Thr Gly Ash Gln Ser Arg Cys 110	Суз	Pro	Asn	Ala		Ile	Val	Tyr	Glu		Glu	Asn	His	Ile		His		
TGG GTG GCC CTC ACT CCC ACA GTA GCG TCG CCA TAC GCC GGT GCT CCG 384 Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 115 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCT GCC ACC Leu Glu Pro Leu Arg Arg His 135 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA Thr 140 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 150 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG ASp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 185	CTC	CCA	GGG	TGC	GTA	CCC	TGT	GTG	AGG	ACT	GGG	AAC	CAG	TCG	CGG	TGT		336
TGG GTG GCC CTC ACT CCC ACA GTA GCG TCG CCA TAC GCC GGT GCT CCG Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 115 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCT GCC ACC Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg Arg His Trp Thr Thr Gln 165 GAC TGC AAT TGT TCC ATC TAC ACC GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 185	Leu	Pro	Gly	Cys	Val	Pro	Cys	Val	Arg	Thr	Gly	Asn	Gln	Ser	Arg	Cys		
Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 125 CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCT GCC ACC Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 155 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG ASp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 185			_	100					105					110				
CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCC ACC Leu Glu Pro Leu Arg Arg His 135 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 160 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 190	TGG	GTG	GCC	CTC	ACT	CCC	ACA	GTA	GCG	TCG	CCA	TAC	GCC	GGT	GCT	CCG		384
CTT GAG CCC TTG CGG CGT CAT GTG GAC CTG ATG GTA GGT GCT GCC ACC Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 155 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180	Trp	Val	Ala	Leu	Thr	Pro	Thr		Ala	Ser	Pro	Tyr		Gly	Ala	Pro		
Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 Leu Met Val Gly Ala Ala TTC TTC ATC ATC ACG GGC CAC ATT ACG GGT CAT CGG ATG 160 528 576 576			115					120					125					
ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145																		432
ATG TGT TCC GCC CTC TAC ATC GGC GAC TTG TGC GGT GGC TTA TTC TTG Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145	Leu		Pro	Leu	Arg	Arg		Val	Asp	Leu	Met		GIÀ	Ala	Ala	Thr		
Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145																		
145 150 155 160 GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190																		480
GTG GGC CAA ATG TTC ACC TTC CAA CCG CGA CGT CAC TGG ACC ACT CAG Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190		Cys	ser	Ala	Leu	-	116	GTĀ	нар	пеп	_	GIÀ	GIY	Leu	PHE			
Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175 GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190	747					130										200		
GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190	GTG	GGC	CAA	ATG	TTC	ACC	TTC	CAA	CCG	CGA	CGT	CAC	TGG	ACC	ACT	CAG		528
GAC TGC AAT TGT TCC ATC TAC ACG GGC CAC ATT ACG GGT CAT CGG ATG Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190	Val	Gly	Gln	Met	Phe	Thr	Phe	Gln	Pro	Arg	Arg	His	Trp	Thr	Thr	Gln		
Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190																		
180 185 190																		576
	Asp	Cys	Asn		Ser	Ile	Tyr	Thr		His	Ile	Thr	Gly		Arg	Met		
GCA 579				180					182					190				
	GCA																	579
Ala	Ala																	

- (2) INFORMATION FOR SEQ ID NO: 168:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ala Ser Ile Val Tyr Glu Thr Glu Asn His Ile Leu His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Ala Gly Ala Pro 115 120 125

Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 169:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16
--

			TTC Phe													48
			GGC Gly 20													96
			ATC Ile													144
			CTC Leu													192
			TAT Tyr													240
Cys	Pro	Asn	GCG Ala	Ser 85	Ile	Val	Tyr	Glu	Thr 90	Asp	Asn	His	Ile	Leu 95	His	288
Leu	Pro	Gly	TGC Cys 100	Val	Pro	Cys	Val	Lys 105	Thr	Gly	Asn	Gln	Ser 110	Arg	Cys	336
Trp	Val	Ala 115	CTC Leu	Thr	Pro	Thr	Val 120	Ala	Ser	Pro	Tyr	Val 125	Gly	Ala	Pro	384
Leu	Glu 130	Pro	TTG Leu	Arg	Arg	His 135	Val	Asp	Leu	Met	Val 140	Gly	Ala	Ala	Thr	432
Val 145	Cys	Ser	GCC Ala	Leu	Tyr 150	Val	Gly	Asp	Leu	Cys 155	Gly	Gly	Leu	Phe	Leu 160	480
Val	Gly	Gln	ATG Met	Phe 165	Thr	Phe	Gln	Pro	Arg 170	Arg	His	Trp	Thr	Thr 175	Gln	528
GAC Asp	TGT Cys	AAT Asn	TGT Cys 180	TCC	ATC Ile	TAC	GCA Ala	GGG Gly 185	CAT His	ATT Ile	ACG Thr	GGC Gly	CAT His 190	CGG Arg	ATG Met	576
GCT Ala																579

⁽²⁾ INFORMATION FOR SEQ ID NO: 170:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Gly Val Asn Tyr Arg Asn Ala Ser Gly Val Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ala Ser Ile Val Tyr Glu Thr Asp Asn His Ile Leu His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Lys Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Ser Pro Tyr Val Gly Ala Pro 115 120 125

Leu Glu Pro Leu Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 140

Val Cys Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 171:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..579

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..576

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

		GCC Ala 5							48
		GTC Val							96
		AAC Asn	_	_	_ '		_		144
 	 	CTG Leu	 -			 -			192
 	 	CAC His	 	-					240
		AGC Ser 85							288
	 	GTC Val							336
		ACC Thr	Thr						384
 		CGG Arg							432
		CTC Leu							480
		TTC Phe 165							528

GAG TGC AAT TGT TCC ACC TAT CCG GGC CAC ATC ACG GGT CAT AGA ATG
Glu Cys Asn Cys Ser Thr Tyr Pro Gly His Ile Thr Gly His Arg Met
180 185 190

GCG 579

Ala

- (2) INFORMATION FOR SEQ ID NO: 172:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala
1 5 10 15

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val His Tyr His Asn Thr Ser Gly Ile Tyr His Leu Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Phe Glu Ala Val His His Ile Leu His
85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Pro Tyr Leu Gly Ala Pro 115 120 125

Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Thr Ala Thr 130 135 140

Leu Cys Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Gly Ile Phe Leu 145 150 155 160

Ala Gly Gln Met Phe Thr Phe Arg Pro Arg Leu His Trp Thr Thr Gln
165 170 175

Glu Cys Asn Cys Ser Thr Tyr Pro Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

288

(2)	INFORMATION	FOR	SEQ	ID	NO:	173:	
-----	-------------	-----	-----	----	-----	------	--

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 579 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..579

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..576

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

ACG TGC GGT TCC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTA GGC GCC

Thr Cys Gly Ser Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala CCT GTG GGT GGC GTC GCC AGG GCC TTG GCG CAT GGC GTC AGG GCT GTG 96 Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val GAG GAC GGG ATA AAC TAT GCA ACA GGG AAC CTT CCT GGT TGC TCT TTT 144 Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe TCT ATC TTC CTT CTG GCA CTT CTC TCG TGC CTG ACT GTC CCC GCC TCA 192 Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 55 50 GCT GTG CAT TAT CAC AAC ACC TCG GGC ATC TAT CAC ATC ACT AAT GAC 240 Ala Val His Tyr His Asn Thr Ser Gly Ile Tyr His Ile Thr Asn Asp 70

TGC CCT AAC TCT AGC ATA GTC TTT GAG GCA GAG CAT CAC ATC TTG CAT Cys Pro Asn Ser Ser Ile Val Phe Glu Ala Glu His His Ile Leu His 85

CTT CCA GGA TGC GTC CCC TGT GTG AGA ACT GGG AAC CAG TCA CGA TGC Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys

100

TGG ATA GCC TTG ACC CCT ACG TTG GCC GCG CCA CAC ATT GGC GCT CCA 384 Trp Ile Ala Leu Thr Pro Thr Leu Ala Ala Pro His Ile Gly Ala Pro

	115					120		•		125			
CTT (432
TTG 1 Leu (145													480
GTG (528
GAG 1													576
GCG Ala													579
(2)				SEQ			174: TICS	•					
	(1) }	- racion	BNCE	لططت	RACT	ewro.							

- (A) LENGTH: 193 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

Thr Cys Gly Ser Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser

Ala Val His Tyr His Asn Thr Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Phe Glu Ala Glu His His Ile Leu His

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Gln Ser Arg Cys
100 -105 110

Trp Ile Ala Leu Thr Pro Thr Leu Ala Ala Pro His Ile Gly Ala Pro 115 120 125

224 Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Thr Ala Thr Leu Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Ile Phe Leu 155 Val Gly Gln Met Phe Asn Phe Arg Pro Arg Leu His Trp Thr Thr Gln 170 Glu Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met 185 Ala (2) INFORMATION FOR SEQ ID NO: 175: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 579 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..579 (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 1..576 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175: ACG TGC GGC TTT GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 CCT GTG GGT GGC GTC GCC AGG GCC TTG GCA CAT GGT GTC AGG GCC GTG 96 Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 GAG GAC GGG ATT AAC TAT GCA ACA GGG AAT CTT CCC GGT TGC TCC TTT 144 Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 40 35 TCT ATC TTC CTT CTA GCA CTT CTC TCG TGC TTG ACT GTC CCG GCC TCG 192 Ser Ile Phe Leu Leu Ala Leu Leu-Ser Cys Leu Thr Val Pro Ala Ser

GCG CAG CAC TAC CGG AAC ATC TCG GGC ATT TAT CAC GTC ACC AAT GAC

Ala Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val Thr Asn Asp

60

240

55

50"

. 50

65					70					75					80	
				AGT												288
Cys	Pro	Asn	Ser	Ser 85	Ile	Val	Tyr	Glu	Ala 90	Asp	His	His	Ile	Met 95	His	•
									-							
				GTG Val												336
цец	PIO	GIY	100	VAI	PIO	Cys	Vai	105	1111	Gry	ASII	11112	110	Arg	Cys	
TOO	Control	COTT	איזיים	ACA	ccc	א (יייוי	GTG.	CCT	GCC	רככ	ጥልጥ	CTT	GGC	aca	CCG	384
				Thr												304
		115					120					125				
				CGG												432
Leu		Ser	Met	Arg	Arg		Val	Asp	Leu	Met	Val 140	Gly	Ala	Ala	Thr	
	130					135					140					
				CTG												480
145	Cys	ser	Ala	Leu	150	TTE	GIY	Asp	ren	155	GTÅ	GIY	AdT	PHE	160	
						mm a	000	000	000	000	G N III	maa	3 OTT	300	CP.C	eno
				TTC Phe												528
•				165					170					175		
				TCT												576
Asp	Cys	Asn	_	Ser	Ile	Tyr	Asp	Gly 185	His	Ile	Thr	Gly	His 190	Arg	Met	
			180					103					170			
GCT Ala																579
ALA																
(2)	INFO	ORMA?	rion	FOR	SEQ	ID N	10: 1	L76 :								
		(i) S	SEOUI	ENCE	CHAI	RACTE	ERIST	rics:	:							
		(2	A) LI	engti	1: 19	93 an	nino									
		•	•	(PE : OPOL(
	(22)															
				LE T		_										
	(xi)	SEC	QUEN	CE DI	ESCR.	IPTIC	ON: S	SEQ I	ID NO): 17	76:					
Thr	Cys	Gly	Phe	Ala	Asp	Leu	Met	Gly		Ile	Pro	Leu	Val		Ala	
1				5					10					15		
Pro	Val	Gly		Val	Ala	Arg	Ala		Ala	His	Gly	Val		Ala	Val	
			20					25					30			
Glu	Asp	-	Ile	Asn	Tyr	Ala		Gly	Asn	Leu	Pro		Cys	Ser	Phe	
		35					40					45				

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser

55

Ala Gln His Tyr Arg Asn Ile Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Thr Ser Arg Cys
100 105 110

Trp Val Pro Leu Thr Pro Thr Val Ala Ala Pro Tyr Val Gly Ala Pro 115 120 125

Leu Glu Ser Met Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Arg Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Asp Gly His Ile Thr Gly His Arg Met
180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 177:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

ACG TGC GGG TTC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCT

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 5 10 15

CCA GTA GGA GGC GTC GCC AGA GCC TTG GCG CAT GGC GTC AGG GCT GTG

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val

20 25 GAG GAC GGG ATC AAT TAC GCA ACA GGG AAC CTT CCC GGC TGC TCC TTT 144 Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 40 TCT ATC TTC CTC TTG GTA CTT CTC TCG CGC CTA ACT GTC CCA GCG TCT 192 Ser Ile Phe Leu Leu Val Leu Leu Ser Arg Leu Thr Val Pro Ala Ser 55 GCT CAG CAC TAC CGG AAT GCA TCG GGC ATC TAC CAT GTC ACC AAC GAC 240 Ala Gln His Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 70 TGC CCG AAC TCC AGT ATT GTG TAT GAA GCC GAC CAT CAC ATC ATG CAC 288 Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His 85

CTA CCC GGG TGT GTG CCC TGT GTA AGA ACT GGG AAT GTC TCG CGT TGC 336 Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Val Ser Arg Cys 100

TGG ATT CCT TTA ACA CCC ACT GTA GCC GTC CCC TAC CTC GGG GCT CCA 384 Trp Ile Pro Leu Thr Pro Thr Val Ala Val Pro Tyr Leu Gly Ala Pro

CTT ACG TCT GTA CGG CAG CAT GTG GAC CTG ATG GTG GGG GCC GCC ACC 432 Leu Thr Ser Val Arg Gln His Val Asp Leu Met Val Gly Ala Ala Thr 135

TTA TGC TCT GCC CTC TAC ATC GGA GAC CAT TGC GGA GGT GTC TTC TTG 480 Leu Cys Ser Ala Leu Tyr Ile Gly Asp His Cys Gly Gly Val Phe Leu

GCA GGG CAG ATG GTC AGT TTC CAA CCC CGG CGT CAT TGG ACT ACC CAG 528 Ala Gly Gln Met Val Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln

GAT TGC AAC TGT TCC ATC TAT GTG GGC CAC ATC ACC GGC CAC AGG ATG 576 Asp Cys Asn Cys Ser Ile Tyr Val Gly His Ile Thr Gly His Arg Met 185 180

579 GCC Ala

(2) INFORMATION FOR SEQ ID NO: 178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Val Leu Leu Ser Arg Leu Thr Val Pro Ala Ser 50 . 55 60

Ala Gln His Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Met His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Thr Gly Asn Val Ser Arg Cys
100 105 110

Trp Ile Pro Leu Thr Pro Thr Val Ala Val Pro Tyr Leu Gly Ala Pro 115 120 125

Leu Thr Ser Val Arg Gln His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Leu Cys Ser Ala Leu Tyr Ile Gly Asp His Cys Gly Gly Val Phe Leu 145 150 155 160

Ala Gly Gln Met Val Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Val Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 179:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS(B) LOCATION: 1..579

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	179:
------	----------	--------------	-----	----	-----	------

ACCTGCGGCT	TCGCCGACCT	CATGGGATAC	ATCCCGCTCG	TAGGCGCCCC	CGTGGGAGGC	60
GTCGCCAGAR	CTCTGGCGCA	TGGCGTCAGG	GCTCTGGAAG	ACGGGATCAA	TTATGCAACA	120
GGGAATCTTC	CTGGTTGCTC	TTTCTCTATC	TCCCTTCTTG	AACTTCTCTC	GTGCCTGACT	180
GTTCCCGCCT	CAGCCATCCA	CTATCGCAAT	GCTTCGGACG	GTTATTATAT	CACCAATGAT	240
TGCCCGAACT	CTAGCATAGT	GTATGAAGCC	GAGAACCACA	TCTTGCACCT	TCCGGGGTGT	300
ATACCCTGTG	TGAAGACCGG	GAATCAGTCG	CGGTGCTGGG	TGGCTCTCAC	CCCCACGCTG	360
GCGGCCCCAC	ACCTACGTGC	TCCGCTTTCG	TCCTTACGGG	CGCATGTGGA	CCTAATGGTG	420
GGGCCGCCA	CGGCATGCTC	CGCTTTTTAC	ATTGGAGATC	TGTGCGGGGG	TGTGTTTTTG	480
GCGGGCCAAC	TGTTCACTAT	CCGGCCACGC	ATTCATGAAA	CCACTCAGGA	CTGCAATTGC	540
тесатетаст	CAGGGCACAT	CACGGGTNNN	NNNNNNNN			579

(2) INFORMATION FOR SEQ ID NO: 180:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 193 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi)	SEQ	UENCI	E DES	SCRI	OITS	1: SI	EQ II	D NO	: 18	0:					
Thr	Cys	Gly	Phe	Ala	Asp	Leu	Met	Gly	Tyr	Ile	Pro	Leu	Val	Gly	Ala
1	-	_		5					10					15	

Pro Val Gly Gly Val Ala Arg Xaa Leu Ala His Gly Val Arg Ala Leu 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Ser Leu Leu Glu Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Ile His Tyr Arg Asn Ala Ser Asp Gly Tyr Tyr Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Glu Asn His Ile Leu His 85 90 95

Leu Pro Gly Cys Ile Pro Cys Val Lys Thr Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Pro His Leu Arg Ala Pro 115 120 125

Leu Ser Ser Leu Arg Ala His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Ala Cys Ser Ala Phe Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Ala Gly Gln Leu Phe Thr Ile Arg Pro Arg Ile His Glu Thr Thr Gln
165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ser Gly His Ile Thr Gly Xaa Xaa Xaa 180 185 190

Xaa

(2) INFORMATION FOR SEQ ID NO: 181:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..578
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

GCGTGCGGCT TCGCCGATCT CATGGGATAC ATCCCGCTCG TAGGCGCCCC CGTGGGTGGC 60 GTCGCCAGAG CCCTGGCGCA CGGTGTTAGG GCTGTGGAGG ACGGGATTAA CTACGCAACA 120 GGGAATCTTC CTGGTTGCTC TITCTCTATC INCCITCTGG CACTTCTCTC GTGCCTGACT 180 GTCCCGGCCT CGGCTCAGCA CTACCGGAAT GTCTCGGGCA TCTACCACGT CACCAATGAT 240 TGCCCGAATT CCAGCATAGT GTATGAAGCC GATCACCACA TCATGCACTT ACCAGGGTGC 300 ATACCCTGCG TGAGGACCGG GAACGTTTCG CGCTGCTGGG TATCTCTGAC ACCTACTGTG 360 GCTGCTCCCT ACCTCGGGGC TCCGCTTACG TCGCTACGGC GGCATGTGGA TTTGATGGTG 420 GGTGCAGCCA CCCTTTGCTC TGCCCTCTAC GTCGGAGACC TCTGTGGAGG TGTCTTCCTA 480

579

													•		
GTGGGACA	ga T	GTTC	ACCT.	r ccz	AGCCC	GCGC	CGC	CACTO	GA (CAC	CAG	BA C	rgcai	ACTGO	2
TCCATTTA	CG T	CGGC	CACA!	r cac	CAGG	CCAC	AGAZ	ATGG	er e						•
(2) INFO	SEQ	UENC	E CH	ARACT	reris	STICS	S:								
	(B) TYI) STI	PE: 8	: 193 amino EDNES GY:]	o ac: 55: 5	id singl		5			,				
(ii)	MOL	ECULI	e TYI	PE: I	prote	ein									
(xi)	SEQ	UENC	E DES	SCRII	PTIO	N: SI	EQ II	OM	: 182	2:					,
Ala 1	Cys	Gly	Phe	Ala 5	Asp	Leu	Met	Gly	Tyr 10	Ile	Pro	Leu	Val	Gly 15	Ala
. Pro	Val	Gly	Gly 20	Val	Ala	Arg	Ala	Leu 25	Ala	His	Gly	Val	Arg 30	Ala	Val
Glu	Asp	Gly 35	Ile	Asn	Tyr	Ala	Thr 40	Gly	Asn	Leu	Pro	Gly 45	Cys	Ser	Phe
Ser	Ile 50	Xaa	Leu	Leu	Ala	Leu 55	Leu	Ser	Cys	Leu	Thr 60	Val	Pro	Ala	Ser
Ala 65	Gln	His	Tyr	Arg	Asn 70	Val	Ser	Gly	Ile	Tyr 75	His	Val	Thr	Asn	Asp 80
Cys	Pro	Asn	Ser	Ser 85	Ile	Val	Tyr	Glu	Ala 90	Asp	His	His	Ile	Met 95	His
Leu	Pro	Gly	Cys 100	Ile	Pro	Cys	Val	Arg 105	Thr	Gly	Asn	Val	Ser 110	Arg	Cys
Trp	Val	Ser 115	Leu	Thr	Pro	Thr	Val 120	Ala	Ala	Pro	Tyr	Leu 125	Gly	Ala	Pro
Leu	Thr 130		Leu	Arg	Arg	His 135	Val	Asp	Leu	Met	Val 140	Gly	Ala	Ala	Thr
Leu 145	-	Ser	Ala	Leu	Tyr 150	Val	Gly	Asp	Leu	Cys 155	Gly	Gly	Val	Phe	Leu 160
Val	Gly	Gln	Met	Phe 165		Phe	Gln	Pro	Arg 170	Arg	His	Trp	Thr	Thr 175	Glr

Ala

180

Asp Cys Asn Cys Ser Ile Tyr Val Gly His Ile Thr Gly His Arg Met

190

(2) INFORMATION FOR SEQ ID NO: 183:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 579 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..579

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..579

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

					GAC											48
	Cys	Gly	Phe		Asp	Leu	Met	Gly	Tyr 10	Ile	Pro	Leu	Val	GLY 15	Ala	
1				5					10					13		
CCT	GTG	GGT	GGC	GTC	GCC	AGG	GCC	CTA	GAA	CAC	GGT	GTT	AGG	GCT	GTG	96
Pro	Val	Gly	Gly	Val	Ala	Arg	Ala	Leu	Glu	His	Gly	Val	Arg	Ala	Val	
			20					25					30			
GAG	GAC	ССТ	יוייף ע	ልልጥ	TAT	GCA	מטמ	GGG	ДДТ	CTC	CCC	GGT	TGC	тст	ւկուրո	144
					Tyr											
		35			•		40	•				45	•			
					GCA											192
ser	50	ser	Leu	Leu	Ala	Leu 55	Leu	ser	Cys	rea	60	vai	Pro	THE	Ser	
	30					33					00					
GCC	GTC	AAC	TAT	CGC	AAC	GCC	TCG	GGC	GTC	TAT	CAT	ATC	ACC	AAT	GAC	240
					AAC Asn										Asp	240
																240
Ala 65	Val	Asn	Tyr	Arg	Asn 70	Ala	Ser	Gly	Val	Tyr 75	His	Ile	Thr	Asn	Asp 80	
Ala 65 TGC	Val CCG	Asn AAT	Tyr	Arg	Asn 70 ATA	Ala GTG	Ser TAC	Gly GAG	Val GCT	Tyr 75 GAC	His TAC	Ile	Thr	Asn CTA	Asp 80 CAC	240
Ala 65 TGC	Val CCG	Asn AAT	Tyr	Arg	Asn 70	Ala GTG	Ser TAC	Gly GAG	Val GCT	Tyr 75 GAC	His TAC	Ile	Thr	Asn CTA	Asp 80 CAC	
Ala 65 TGC Cys	Val CCG Pro	Asn AAT Asn	Tyr TCG Ser	Arg AGC Ser 85	Asn 70 ATA Ile	Ala GTG Val	Ser TAC Tyr	Gly GAG Glu	Val GCT Ala 90	Tyr 75 GAC Asp	His TAC Tyr	Ile CAC His	Thr ATC Ile	Asn CTA Leu 95	Asp 80 CAC His	288
Ala 65 TGC Cys	Val CCG Pro	Asn AAT Asn	Tyr TCG Ser	Arg AGC Ser 85	Asn 70 ATA Ile	Ala GTG Val	TAC Tyr	Gly GAG Glu AGG	Val GCT Ala 90 GTT	Tyr 75 GAC Asp	His TAC Tyr	CAC His	Thr ATC Ile TCA	Asn CTA Leu 95 CGC	Asp 80 CAC His	
Ala 65 TGC Cys	Val CCG Pro	Asn AAT Asn	Tyr TCG Ser TGC Cys	Arg AGC Ser 85	Asn 70 ATA Ile	Ala GTG Val	TAC Tyr	Gly GAG Glu AGG Arg	Val GCT Ala 90 GTT	Tyr 75 GAC Asp	His TAC Tyr	CAC His	Thr ATC Ile TCA Ser	Asn CTA Leu 95 CGC	Asp 80 CAC His	288
Ala 65 TGC Cys	Val CCG Pro	Asn AAT Asn	Tyr TCG Ser	Arg AGC Ser 85	Asn 70 ATA Ile	Ala GTG Val	TAC Tyr	Gly GAG Glu AGG	Val GCT Ala 90 GTT	Tyr 75 GAC Asp	His TAC Tyr	CAC His	Thr ATC Ile TCA	Asn CTA Leu 95 CGC	Asp 80 CAC His	288
Ala 65 TGC Cys CTC Leu	Val CCG Pro CCT Pro	AST AST GGG Gly	TCG Ser TGC Cys 100	Arg AGC Ser 85 TTA Leu	Asn 70 ATA Ile	Ala GTG Val TGC Cys	TAC Tyr GTG Val	GAG Glu AGG Arg 105	GCT Ala 90 GTT Val	Tyr 75 GAC Asp GGG Gly	TAC Tyr AAT Asn	CAC His CAG Gln	Thr ATC Ile TCA Ser 110	CTA Leu 95 CGC Arg	Asp 80 CAC His TGC Cys	288

115		120	125	
			TG GTA GGT GCT let Val Gly Ala 140	
· · · · ·		Gly Asp Leu C	GC GGT GGC GTA ys Gly Gly Val 55	
			GC CAC TGG ACC rg His Trp Thr	
	T TCT ATC TAC	GCG GGG CAC G	TT ACG GGC CAC al Thr Gly His 190	AGG ATG 576
GCA Ala			•	579
(i) SEQ (A) (B) (D)	UENCE CHARACTE LENGTH: 193 an TYPE: amino ac TOPOLOGY: line	RRISTICS: mino acids cid ear		
	_			
(xi) SEQUE	NCE DESCRIPTION	ON: SEQ ID NO:	184: le Pro Leu Val	
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl	NCE DESCRIPTION OF ALL ASP Leu 5	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H	le Pro Leu Val	15
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl	NCE DESCRIPTION Le Ala Asp Leu 5 Ly Val Ala Arg 10 Le Asn Tyr Ala	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H 25	le Pro Leu Val	15 Ala Val
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl 2 Glu Asp Gly II 35	NCE DESCRIPTION Le Ala Asp Leu 5 Ly Val Ala Arg 0 e Asn Tyr Ala	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H 25 Thr Gly Asn L	le Pro Leu Val is Gly Val Arg 30 eu Pro Gly Cys	15 Ala Val Ser Phe
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl 2 Glu Asp Gly II 35 Ser Ile Phe Le 50	NCE DESCRIPTION Le Ala Asp Leu 5 Ly Val Ala Arg 0 Le Asn Tyr Ala 10 11 12 13 14 15 15 16 16 17 18 18 18 18 18 18 18 18 18	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H 25 Thr Gly Asn L 40 Leu Ser Cys L Ser Gly Ile T	le Pro Leu Val is Gly Val Arg 30 eu Pro Gly Cys 45 eu Thr Val Pro	15 Ala Val Ser Phe Thr Ser
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl 2 Glu Asp Gly Il 35 Ser Ile Phe Le 50 Ala Val Asn Ty 65	NCE DESCRIPTION Le Ala Asp Leu 5 Le Asn Tyr Ala Leu Ala Leu 55 T Arg Asn Ala 70	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H 25 Thr Gly Asn L 40 Leu Ser Cys L Ser Gly Ile T	le Pro Leu Val is Gly Val Arg 30 eu Pro Gly Cys 45 eu Thr Val Pro 60	15 Ala Val Ser Phe Thr Ser Asn Asp 80
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl 2 Glu Asp Gly II 35 Ser Ile Phe Le 50 Ala Val Asn Ty 65 Cys Pro Asn Al	NCE DESCRIPTION Le Ala Asp Leu y Val Ala Arg e Asn Tyr Ala tu Leu Ala Leu 55 Tr Arg Asn Ala 70 a Ser Ile Val 85	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H 25 Thr Gly Asn L 40 Leu Ser Cys L Ser Gly Ile T Tyr Glu Thr G 90	le Pro Leu Val is Gly Val Arg 30 eu Pro Gly Cys 45 eu Thr Val Pro 60 yr His Ile Thr	Ala Val Ser Phe Thr Ser Asn Asp 80 Leu His
(xi) SEQUE Thr Cys Gly Ph 1 Pro Val Gly Gl 2 Glu Asp Gly II 35 Ser Ile Phe Le 50 Ala Val Asn Ty 65 Cys Pro Asn Al Leu Pro Gly Cy 10	WCE DESCRIPTION THE Ala Asp Leu The Ala Arg The Asn Tyr Ala The Leu Ala Leu The Arg Asn Ala The Arg Asn Ala The Asn Tyr Ala The Arg Asn Ala The Arg As	ON: SEQ ID NO: Met Gly Tyr I 10 Ala Leu Ala H 25 Thr Gly Asn L 40 Leu Ser Cys L Ser Gly Ile T Tyr Glu Thr G 90 Val Arg Thr G 105	le Pro Leu Val is Gly Val Arg 30 eu Pro Gly Cys 45 eu Thr Val Pro 60 yr His Ile Thr 75 lu Asn His Ile	15 Ala Val Ser Phe Thr Ser Asn Asp 80 Leu His 95 Arg Cys

Met Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Leu Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 182:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:

Ala Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe
35 40 45

Ser Ile Ser Phe Trp His Phe Ser Arg Ala * Leu Ser Arg Pro Arg 50 55 60

Leu Ser Thr Thr Gly Met Ser Arg Ala Ser Thr Thr Ser Pro Met Ile 65 70 75 80

Ala Arg Ile Pro Ala * Cys Met Lys Pro Ile Thr Thr Ser Cys Thr 85 90 95

Tyr Gln Gly Ala Tyr Pro Ala * Gly Pro Gly Thr Phe Arg Ala Ala 100 105 110

Gly Tyr Leu * His Leu Leu Trp Leu Leu Pro Thr Ser Gly Leu Arg 115 120 125

Leu Arg Arg Tyr Gly Gly Met Trp Ile * Trp Trp Val Gln Pro Pro 130 135 140

Phe Ala Leu Pro Ser Thr Ser Glu Thr Ser Val Glu Val Ser Ser + 145 150 155 160

Trp Asp Arg Cys Ser Pro Ser Ser Arg Ala Ala Thr Gly Pro Leu Arg 165 170 175

Thr Ala Thr Ala Pro Phe Thr Ser Ala Thr Ser Gln Ala Thr Glu Trp

180 185 . 190

(2)	INFORMATION	FOR	SEQ	ID	NO:	185:
-----	-------------	-----	-----	----	-----	------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..579
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 1..576

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

					GCC Ala 5												48	
					GTC Val												96	
					AAT Asn												144	
					TTG Leu												192	
					CGC Arg												240	
					AGC Ser 85												288	
•	CTT Leu	CC <u>A</u> Pro	GGG Gly	TGC Cys 100	TTA Leu	CCC Pro	TGT Cys	GTG Val	AGG Arg 105	GTT Val	GGG Gly	AAT Asn	CAG Gln	TCA Ser 110	CGT Arg	TGT Cys	336	
	TGG	GTG	GCC	CTC	TCT	CCC	ACC	GTG	GCG	GCG	CCT	TAC	ATC	GGT	GCT	CCA	384	

									30							
Trp	Val	Ala 115	Leu	Ser	Pro	Thr	Val 120	Ala	Ala	Pro	Tyr	Ile 125	Gly	Ala	Pro	
					aga Arg					Met					ACT Thr	432
					TAT Tyr 150											480
					TCT Ser											528
					ATC Ile											576
GCA Ala																579
(2)	INF	ORMA!	rion	FOR	SEQ	ID I	10: I	186:								
		(1	A) Li 3) T	ENGTI YPE :	CHAI H: 19 amir OGY:	93 ar 10 ac	mino cid									
	(ii)	MOI	LECUI	LE T	PE:	prot	ein									

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

Pro Val Gly Gly Val Ala Arg Ala Leu Glu His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe

Ser Ile Tyr Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Ile His Tyr Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Leu His
85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 -105 110

Trp Val Ala Leu Ser Pro Thr Val Ala Ala Pro Tyr Ile Gly Ala Pro 115 120 125

Val Glu Ser Phe Arg Arg His Val Asp Met Met Val Gly Ala Ala Thr 135 Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 150 Val Gly Gln Met Phe Ser Phe Arg Pro Arg Arg His Trp Thr Thr Gln 170 Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Ile Thr Gly His Gly Met 185 180 Ala (2) INFORMATION FOR SEQ ID NO: 187: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 579 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..579 (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 1..576 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187: ACT TGC GGC TTT GCC GAC CTC ATG GGA TAC ATC CCG CTC GTA GGC GCC 48 Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 10 CCT GTG GGT GGC GTC GCC AGG GCC CTG GCA CAC GGT GTT AGG GCT GTG 96 Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val GAG GAC GGG ATC AAT TAT GCG ACA GGG AAT CTT CCC GGT TGC TCT TTC 144 Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe . 35 TCT ATC TTC CTC TTG GCA CTT CTT-TCG TGC CTG ACT GTT CCC ACC TCG 192 Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 55 GCC GTC AAC TAT CGC AAT GCC TCG GGC ATC TAT CAC ATC ACC AAT GAC 240

336

384

432

480

528

576

579

					•								_				
	Ala 65	Val	Asn	Tyr	Arg	Asn 70	Ala	Ser	Gly	Ile	Tyr 75	His	Ile	Thr	Asn	qaA 08	
	TGC	CCG	AAC	TCG	AGC	ATA	GTG	TAC	GAG	ACC	GAG	CAC	CAC	ATC	CTA	CAC	
					Ser												
•	Cys	PIO	ASII	361	85	110	742	-;	, .	90	-		1120		95	1110	
	CTC	CCA	GGG	TGT	TTA	CCC	TGC	GTG	AGG	GTT	GGG	AAT	CAG	TCA	CGC	TGC	
					Leu												
			4	100			•		105		•			110	J	•	
•	TGG	GTG	GCC	CTC	ACT	CCC	ACC	GTG	GCG	GCG	CCT	TAC	ATC	GGC	GCT	CCG	
					Thr												
	-		115					120				_	125				
(CTT	GAA	TCC	CTC	CGG	AGT	CAT	GTG	GAT	CTG	ATG	GTA	GGT	GCC	GCT	ACT	
1	Leu	Glu	Ser	Leu	Arg	Ser	His	Val	Asp	Leu	Met	Val	Gly	Ala	Ala	Thr	
		130			•		135					140					
(GCG	TGC	TCC	GCT	CTT	TAC	ATC	GGA	GAC	CTG	TGC	GGT	GGC	GTA	TTT	TTG	
2	Ala	Cys	Ser	Ala	Leu	Tyr	Ile	Gly	Asp	Leu	Cys	Gly	Gly	Val	Phe	Leu	
:	145					150					155					160	
					TTC												
•	Val	Gly	Gln	Met	Phe	Ser	Phe	Gln	Pro		Arg	His	Trp	Thr		Gln	
					165					170					175		
									~~~	~~	comm.	100	-	~~	300	200	
					TCC												
4	Asp	Cys	ASI	_	Ser	TTE	ıyı	Ala	185	urs	Val	IIII	Grå	190	ALG	Mec	
				180					T03					190			
,	GCA																
	Ala																
•																	
							•										
	(2)	INFO	ORMA:	CION	FOR	SEQ	ID i	10:	188:								
			, , , .						n-~~								
		1			ENCE												
			•	•	ENGTI				acio	ıs							
			•-	•	PE:									•			
			(1	)) IC	OPOL	. I EA	TIME	EGI									

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr-Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Thr Glu His His Ile Leu His 85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Thr Pro Thr Val Ala Pro Tyr Ile Gly Ala Pro
115 120 125

Leu Glu Ser Leu Arg Ser His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Ala Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 150 155 160

Val Gly Gln Met Phe Ser Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Val Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 189:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 579 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 1..579
  - (ix) FEATURE:
    - (A) NAME/KEY: mat_peptide
    - (B) LOCATION: 1..576
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

ACG TGC GGC TTC GCC GAC CTC ATG GGA TAC ATC CCG CTC GTG GGC GCC
Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala

1 10 15

4/25001	•	

CCC Pro	GTT Val	GGG Gly	GGC Gly 20	GTC Val	GCC Ala	AGG Arg	GCC Ala	CTG Leu 25	GCG Ala	CAT His	GGC Gly	GTC Val	AGG Arg 30	GCT Ala	GTG Val	·	96
	GAC Asp																144
	ATC Ile 50																192
	GAG Glu																240
	CCG Pro																288
	CCG Pro																336
	ACG Thr																384
	GAG Glu 130																432
	TGT Cys																480
	GGG Gly																528
GAT Asp	TGT Cys	AAT Asn	TGC Cys 180	TCC Ser	ATC Ile	TAT Tyr	ACT Thr	GGC Gly 185	CAT His	ATC Ile	ACC Thr	Gly	CAC His 190	AGG Arg	ATG Met		576
GCG																	579

# (2) INFORMATION FOR SEQ ID NO: 190:

Ala

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 193 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Ala Val 20 25 30

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Glu His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Val Val Tyr Glu Thr Asp His His Ile Leu His 85 90 95

Leu Pro Gly Cys Val Pro Cys Val Arg Ala Gly Asn Val Ser Arg Cys
100 105 110

Trp Thr Pro Val Thr Pro Thr Val Ala Ala Val Ser Met Asp Ala Pro 115 120 125

Leu Glu Ser Phe Arg Arg His Val Asp Leu Met Val Gly Ala Ala Thr 130 135 140

Val Cys Ser Val Leu Tyr Val Gly Asp Leu Cys Gly Gly Ala Phe Leu 145 150 155 160

Val Gly Gln Met Phe Thr Phe Gln Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Thr Gly His Ile Thr Gly His Arg Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 191:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 289 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
    - (ix) FEATURE:
      - (A) NAME/KEY: CDS

(ix) FEATURE:

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..286

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

ATG	AGC	ACG	AAT	CCT	AAA	CCT	CAA	AGA	AAA	ACC	AAA	CGT	AAC	ACC	AAC		48
Met	Ser	Thr	Asn	Pro	Lys	Pro	Gln	Arg	Lys	Thr	Lys	Arg	Asn	Thr	Asn		
1				5	Ī.				10					15			
CGC	CGC	CCC	ATG	GAC	GTT	AAG	TTC	CCG	GGC	GGT	GGC	CAG	ATC	GTT	GGT		96
Arg	Arg	Pro	Met	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gln	Ile	Val	Gly		
_	_		20					25					30				
GGA	GTT	TAC	TTG	TTG	CCG	CGC	AGG	GGC	CCC	AGG	TTG	GGT	GTG	CGC	GCG		144
Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Leu	Gly	Val	Arg	Ala		
_		35					40					45					
ACT	AGG	AAG	ACT	TCG	GAG	CGG	TCG	CAA	CCT	CGT	GGG	AGA	CGT	CAG	CCT		192
Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gln	Pro	Arg	Gly	Arg	Arg	Gln	Pro		
	50	-				55					60						
•																	
ATC	CCC	AAG	GCA	CGT	CGA	TCT	GAG	GGA	AGG	TCC	TGG	GCT	CAG	CCC	GGG		240
Ile	Pro	Lys	Ala	Arg	Arg	Ser	Glu	Gly	Arg	Ser	Trp	Ala	Gln	Pro	Gly		
65		_		_	70					75					80		
TAC	CCA	TGG	CCT	CIT	TAC	GGT	AAT	GAG	GGT	TGT	GGG	TGG	GCA	GGA	TGG	G	289
Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu	Gly	Cys	Gly	Trp	Ala	Gly	Trp		
-		_		85					90					95			

#### (2) INFORMATION FOR SEQ ID NO: 192:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 96 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly
20 25 30

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro

Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Pro Gly

70 75 80 65 Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp 90 (2) INFORMATION FOR SEQ ID NO: 193: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 498 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..498 (ix) FEATURE: (A) NAME/KEY: mat peptide (B) LOCATION: 1..495 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193: ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC AAA CGT AAC ACC AAC 48 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 CGC CGC CCT ATG GAC GTA AAG TTC CCG GGC GGT GGA CAG ATC GTT GGC 96 Arg Arg Pro Met Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly 20 GGA GTT TAC TTG TTG CCG CGC AGG GGC CCC CGG TTG GGT GTG CGC GCG 144 Gly Val Tyr Leu Leu Pro Arg Gly Pro Arg Leu Gly Val Arg Ala 35 ACT CGG AAG ACT TCG GAG CGG TCG CAA CCT CGT GGC AGG CGT CAA CCT 192 Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 55 ATC CCC AAG GCG CGC CGG TCC GAG GGC AGG TCC TGG GCG CAA GCC GGG 240 Ile Pro Lys Ala Arg Arg Ser Glu Gly Arg Ser Trp Ala Gln Ala Gly 70 75 TAC CCC TGG CCC CTC TAT GGC AAT GAG GGC TGT GGG TGG GCA GGG TGG 288

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp

CTC CTG TCT CCT CGC GGC TCT CGG CCA TCT TGG GGC CCA AAT GAT CCC

T																
rea	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro 105	Ser	Trp	Gly	Pro	Asn 110	Asp	Pro	
CGG	CGG	AGA	TCG	CGC	ААТ	CTG	GGT	AAG	GTC	ATC	GAT	ACC	CTG	ACG	TGC	. 384
	Arg															
3	3	115					120	•			-	125				
GGC	TTC	GCC	GAC	CTC	ATG	GGA	TAC	ATC	CCG	CTC	GTG	GGC	GCC	CCC	GTC	432
Gly	Phe	Ala	Asp	Leu	Met	Gly	Tyr	Ile	Pro	Leu	Val	Gly	Ala	Pro	Val	
	130		•			135	•				140	•				
GGG	GGC	GTÇ	GCC	AGG	GCC	CTG	GCG	CAT	GGC	GTC	AGG	GCT	GTG	GAG	GAC	480
Gly	Gly	Val	Ala	Arg	Ala	Leu	Ala	His	Gly	Val	Arg	Ala	Val	Glu	Asp	
145					150					155					160	
	ATT				_											498
Gly	Ile	Asn	Tyr	_	Gln											
				165												
(2)	TATEC	ነገን የፈርጋ ሳ	T ON	FOR	CEO	TD N	TO . 1	04.		•						
(4)	INFO	)RIMA	LION	FOR	SEQ	י עב	10: 1	.54;								
		(1)	:ROII	NCE.	CHAF	יידיי) ב	OR T.S.	TCS ·								
	,				I: 16				_							
•		•	•		amir											
					GY:											
		•	-,													
	(ii)	MOI	LECUI	LE TY	PE:	prot	cein									
	(xi)	SEÇ	QUENC	CE DI	escri	PTIC	ON: S	SEQ I	D NO	): 19	94 :					
Met	(xi) Ser	_	_									Arg	Asn	Thr	Asn	
Met 1		_	_									Arg	Asn	Thr 15	Asn	
1	Ser	Thr	Asn	Pro 5	Lys	Pro	Gln	Arg	Lys 10	Thr	Lys ·			15		
1		Thr	Asn Met	Pro 5	Lys	Pro	Gln	Arg	Lys 10	Thr	Lys ·		Ile	15		
1	Ser	Thr	Asn	Pro 5	Lys	Pro	Gln	Arg	Lys 10	Thr	Lys ·			15		
1 Arg	Ser	Thr	Asn Met 20	Pro 5 Asp	Lys Val	Pro Lys	Gln Phe	Arg Pro 25	Lys 10 Gly	Thr Gly	Lys Gly	Gln	Ile 30	15 Val	Gly	
1 Arg	Ser	Thr Pro	Asn Met 20	Pro 5 Asp	Lys Val	Pro Lys	Gln Phe Arg	Arg Pro 25	Lys 10 Gly	Thr Gly	Lys Gly	Gln	Ile 30	15 Val	Gly	
1 Arg	Ser	Thr	Asn Met 20	Pro 5 Asp	Lys Val	Pro Lys	Gln Phe	Arg Pro 25	Lys 10 Gly	Thr Gly	Lys Gly	Gln	Ile 30	15 Val	Gly	
1 Arg Gly	Ser Arg Val	Thr Pro Tyr 35	Asn Met 20 Leu	Pro 5 Asp Leu	Lys Val Pro	Pro Lys Arg	Gln Phe Arg 40	Arg Pro 25 Gly	Lys 10 Gly Pro	Thr Gly Arg	Lys Gly Leu	Gln Gly 45	Ile 30 Val	15 Val Arg	Gly Ala	
1 Arg Gly	Ser Arg Val	Thr Pro Tyr 35	Asn Met 20 Leu	Pro 5 Asp Leu	Lys Val Pro	Pro Lys Arg	Gln Phe Arg 40	Arg Pro 25 Gly	Lys 10 Gly Pro	Thr Gly Arg	Lys Gly Leu	Gln Gly 45	Ile 30 Val	15 Val Arg	Gly Ala	
1 Arg Gly	Ser Arg Val	Thr Pro Tyr 35	Asn Met 20 Leu	Pro 5 Asp Leu	Lys Val Pro	Pro Lys Arg	Gln Phe Arg 40	Arg Pro 25 Gly	Lys 10 Gly Pro	Thr Gly Arg	Lys Gly Leu Gly	Gln Gly 45	Ile 30 Val	15 Val Arg	Gly Ala	
1 Arg Gly Thr	Ser Arg Val Arg 50	Thr Pro Tyr 35 Lys	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu	Pro Lys Arg Arg 55	Gln Phe Arg 40 Ser	Arg Pro 25 Gly Gln	Lys 10 Gly Pro	Thr Gly Arg Arg	Lys Gly Leu Gly 60	Gln Gly 45 Arg	Ile 30 Val Arg	15 Val Arg Gln	Gly Ala Pro	·
1 Arg Gly Thr	Ser Arg Val	Thr Pro Tyr 35 Lys	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu	Pro Lys Arg Arg 55	Gln Phe Arg 40 Ser	Arg Pro 25 Gly Gln	Lys 10 Gly Pro	Thr Gly Arg Arg	Lys Gly Leu Gly 60	Gln Gly 45 Arg	Ile 30 Val Arg	15 Val Arg Gln	Gly Ala Pro	
1 Arg Gly Thr	Ser Arg Val Arg 50	Thr Pro Tyr 35 Lys	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu	Pro Lys Arg Arg 55	Gln Phe Arg 40 Ser	Arg Pro 25 Gly Gln	Lys 10 Gly Pro	Thr Gly Arg Arg Ser	Lys Gly Leu Gly 60	Gln Gly 45 Arg	Ile 30 Val Arg	15 Val Arg Gln	Gly Ala Pro Gly	
Arg Gly Thr Ile 65	Ser Arg Val Arg 50	Thr Pro Tyr 35 Lys	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu Arg 70	Pro Lys Arg Arg 55	Gln Phe Arg 40 Ser	Pro 25 Gly Gln	Lys 10 Gly Pro Pro	Thr Gly Arg Arg Ser 75	Lys Gly Leu Gly 60	Gln Gly 45 Arg	Ile 30 Val Arg Gln	Val Arg Gln Ala	Gly Ala Pro Gly 80	
Arg Gly Thr Ile 65	Ser Arg Val Arg 50 Pro	Thr Pro Tyr 35 Lys	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu Arg 70	Pro Lys Arg Arg 55	Gln Phe Arg 40 Ser	Pro 25 Gly Gln	Lys 10 Gly Pro Pro	Thr Gly Arg Arg Ser 75	Lys Gly Leu Gly 60	Gln Gly 45 Arg	Ile 30 Val Arg Gln	Val Arg Gln Ala	Gly Ala Pro Gly 80	
Arg Gly Thr Ile 65	Ser Arg Val Arg 50 Pro	Thr Pro Tyr 35 Lys Lys Trp	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Pro Lys Arg Arg 55 Ser	Gln Phe Arg 40 Ser Glu Asn	Pro 25 Gly Gln Gly	Lys 10 Gly Pro Pro Arg Gly 90	Thr Gly Arg Arg Ser 75 Cys	Lys Gly Leu Gly 60 Trp	Gln Gly 45 Arg Ala	Ile 30 Val Arg Gln Ala	Val Arg Gln Ala Gly 95	Gly Ala Pro Gly 80 Trp	
Arg Gly Thr Ile 65	Ser Arg Val Arg 50 Pro	Thr Pro Tyr 35 Lys Lys Trp	Asn Met 20 Leu Thr Ala Pro	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Pro Lys Arg Arg 55 Ser	Gln Phe Arg 40 Ser Glu Asn	Pro 25 Gly Gln Gly	Lys 10 Gly Pro Pro Arg Gly 90	Thr Gly Arg Arg Ser 75 Cys	Lys Gly Leu Gly 60 Trp	Gln Gly 45 Arg Ala	Ile 30 Val Arg Gln Ala	Val Arg Gln Ala Gly 95	Gly Ala Pro Gly 80 Trp	
Arg Gly Thr Ile 65	Ser Arg Val Arg 50 Pro	Thr Pro Tyr 35 Lys Lys Trp	Asn Met 20 Leu Thr	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Pro Lys Arg Arg 55 Ser	Gln Phe Arg 40 Ser Glu Asn	Pro 25 Gly Gln Gly	Lys 10 Gly Pro Pro Arg Gly 90	Thr Gly Arg Arg Ser 75 Cys	Lys Gly Leu Gly 60 Trp	Gln Gly 45 Arg Ala	Ile 30 Val Arg Gln Ala	Val Arg Gln Ala Gly 95	Gly Ala Pro Gly 80 Trp	
Arg Gly Thr Ile 65 Tyr Leu	Ser Arg Val Arg 50 Pro Pro	Thr Pro Tyr 35 Lys Lys Trp Ser	Asn Met 20 Leu Thr Ala Pro Pro 100	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Pro Lys Arg S55 Ser Gly Ser	Gln Phe Arg 40 Ser Glu Asn	Pro 25 Gly Gln Gly Glu Pro 105	Lys 10 Gly Pro Pro Arg Gly 90 Ser	Thr Gly Arg Arg Cys	Lys Gly Leu Gly 60 Trp Gly Gly	Gln Gly 45 Arg Ala Trp	Ile 30 Val Arg Gln Ala Asn 110	Val Arg Gln Ala Gly 95 Asp	Gly Ala Pro Gly 80 Trp Pro	
Arg Gly Thr Ile 65 Tyr Leu	Ser Arg Val Arg 50 Pro	Thr Pro Tyr 35 Lys Lys Trp Ser	Asn Met 20 Leu Thr Ala Pro Pro 100	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Pro Lys Arg S55 Ser Gly Ser	Gln Phe Arg 40 Ser Glu Asn Arg	Pro 25 Gly Gln Glu Pro 105 Lys	Lys 10 Gly Pro Pro Arg Gly 90 Ser	Thr Gly Arg Arg Cys	Lys Gly Leu Gly 60 Trp Gly Gly	Gln Gly 45 Arg Ala Trp Pro	Ile 30 Val Arg Gln Ala Asn 110	Val Arg Gln Ala Gly 95 Asp	Gly Ala Pro Gly 80 Trp Pro	
Arg Gly Thr Ile 65 Tyr Leu	Ser Arg Val Arg 50 Pro Pro	Thr Pro Tyr 35 Lys Lys Trp Ser	Asn Met 20 Leu Thr Ala Pro Pro 100	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Pro Lys Arg S55 Ser Gly Ser	Gln Phe Arg 40 Ser Glu Asn	Pro 25 Gly Gln Glu Pro 105 Lys	Lys 10 Gly Pro Pro Arg Gly 90 Ser	Thr Gly Arg Arg Ser 75 Cys	Lys Gly Leu Gly 60 Trp Gly Gly	Gln Gly 45 Arg Ala Trp	Ile 30 Val Arg Gln Ala Asn 110	Val Arg Gln Ala Gly 95 Asp	Gly Ala Pro Gly 80 Trp Pro	
Arg Gly Thr Ile 65 Tyr Leu Arg	Ser Arg Val Arg 50 Pro Pro	Thr Pro Tyr 35 Lys Lys Trp Ser Arg 115	Asn Met 20 Leu Thr Ala Pro Pro 100 Ser	Pro 5 Asp Leu Ser Arg Leu 85 Arg	Lys Val Pro Glu Arg 70 Tyr Gly Asn	Pro Lys Arg Sser Gly Ser Leu	Gln Phe Arg 40 Ser Glu Asn Arg Gly 120	Pro 25 Gly Gln Glu Pro 105 Lys	Lys 10 Gly Pro Pro Arg Gly 90 Ser	Thr Gly Arg Arg Cys Trp	Lys Gly Leu Gly 60 Trp Gly Gly Asp	Gln Gly 45 Arg Ala Trp Pro Thr 125	Ile 30 Val Arg Gln Ala Asn 110 Leu	Val Arg Gln Ala Gly 95 Asp	Gly Ala Pro Gly 80 Trp Pro	
Arg Gly Thr Ile 65 Tyr Leu Arg	Ser Arg Val Arg 50 Pro Pro	Thr Pro Tyr 35 Lys Lys Trp Ser Arg 115	Asn Met 20 Leu Thr Ala Pro Pro 100 Ser	Pro 5 Asp Leu Ser Arg Leu 85 Arg	Lys Val Pro Glu Arg 70 Tyr Gly Asn	Pro Lys Arg Sser Gly Ser Leu	Gln Phe Arg 40 Ser Glu Asn Arg Gly 120	Pro 25 Gly Gln Glu Pro 105 Lys	Lys 10 Gly Pro Pro Arg Gly 90 Ser	Thr Gly Arg Arg Cys Trp	Lys Gly Leu Gly 60 Trp Gly Gly Asp	Gln Gly 45 Arg Ala Trp Pro Thr 125	Ile 30 Val Arg Gln Ala Asn 110 Leu	Val Arg Gln Ala Gly 95 Asp	Gly Ala Pro Gly 80 Trp Pro	

Gly 145	_	Val	Ala	Arg	Ala 150	Leu	Ala	His	Gly	Val 155	Arg	Ala	Val	Glu	<b>A</b> sp 160	
Gly	Ile	Asn	Tyr	Arg 165	Gln											
(2)	INFO	RMAT	CION	FOR	SEQ	ID N	IO: 3	L95 :								
	(i)	(E	A) LE B) TY	INGTE PE: TRANI	i: 57 nucl	TERI 79 ba leic ESS: line	se pacións	pairs 1	3							
	(ii)	MOI	ECUI	E TY	PE:	cDNA										
(	(iii)	HYP	OTHE	ETICA	L: N	10										
(	(iii)	ANT	CI-SE	ense :	NO											
	(ix)	•	A) NA	ME/F												
		,_			ON:	15	579									
	(ix)		A) NZ	ME/F		mat_		ide								
		\-	, 20		.01.1											·
						PTIC										
						CTC Leu										48
						AGG Arg										96
						GCA Ala										144
TCT	ATC Ile 50	TTC Phe	ATT Ile	CTT Leu	GCA Ala	CTT Leu 55	CTC Leu	TCG Ser	TGC Cys	CTC Leu	ACT Thr 60	GTC Val	CCG Pro	GCC Ala	TCT Ser	192
GCA Ala 65	GTT Val	CCC Pro	TAC Tyr	CGA Arg	AAT Asn 70	GCC Ala	TCT Ser	GGG Gly	ATC Ile	TAT Tyr 75	CAT His	GTC Val	ACC Thr	AAT Asn	GAT Asp 80	240
TGC Cys	CCA Pro	AAC	TCT Ser	TCC Ser 85	ATA Ile	GTC Val	TAT Tyr	-GAG Glu	GCA Ala 90	GAT Asp	GAT Asp	CTG Leu	ATC Ile	CTA Leu 95	CAC His	288
		000	TCC	CTC	رارىك.	ייכיי	GTC.	AGG	מממ	GAT	ААТ	GTG	AGT	AGG	TGC	336

Ala	Pro	Gly	Cys 100	Val	Pro	Cys	Val	Arg 105	Lys	Asp	Asn	Val	Ser 110	Arg	Cys		
						ACG Thr										•	384
						GCC Ala 135											432
						GTT Val											480
						TAT Tyr											528
				TCC		TAC Tyr								CAG			576
GCA Ala																	579

- (2) INFORMATION FOR SEQ ID NO: 196:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 193 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

Thr Cys Gly Phe Ala Asp Leu Val Gly Tyr Ile Pro Leu Val Gly Gly
1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Ala His Gly Val Arg Val Leu 20 25 30

Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe 35 40 45

Ser Ile Phe Ile Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser 50 55 60

Ala Val Pro Tyr Arg Asn Ala Ser Gly Ile Tyr His Val Thr Asn Asp
65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp Asp Leu Ile Leu His
85 90 95

Ala Pro Gly Cys Val Pro Cys Val Arg Lys Asp Asn Val Ser Arg Cys
100 105 110

	Trp	Val	Gln 115	Ile	Thr	Pro	Thr	Leu 120	Ser	Ala	Pro	Ser	Phe 125	Gly	Ala	Val	
	Thr	Ala 130	Pro	Leu	Arg	Arg	Ala 135	Val	Asp	Tyr		Val 140	Gly	Gly	Ala	Ala	
	Leu 145	Cys	Ser	Ala	Leu	Tyr 150	Val	Gly	Asp	Ala	Cys 155	Gly	Ala	Leu	Phe	Leu 160	
	Val	Gly	Gln	Met	Phe 165	Thr	Tyr	Arg	Pro	Arg 170	Gln	His	Ala	Thr	Val 175	Gln	
	Asp	Cys	Asn	Cys 180	Ser	Ile	Tyr	Ser	Gly 185	His	Val	Thr	Gly	His 190	Gln	Met	
	Ala																
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: I	L97:	,							
	·	(i)	(Z (E	A) LI 3) Ti C) Si	CE CH ENGTH (PE: TRANI OPOLO	H: 5' nucl DEDNI	79 ba leic ESS:	ase p acio sing	pairs i	3				·			
		(ii)	MOI	LECUI	LE T	PE:	CDN	A.									
		(iii)	HYI	POTH	ETIC	AL: I	10										
		(iii)	ANT	ri-si	ense :	: NO											
		(ix)	(2		e: Ame/i Ocati												
		(ix)	(2		E: AME/I OCAT:		-		ide					•			
		(xi)	) SE(	QUEN	CE DI	ESCR:	IPTI(	on: s	SEQ :	ID NO	): 1 <u>!</u>	97:					
		TGC Cys															48
•		GTG Val															96
		GAC Asp															144
	TCT	ATC	TAC	CTC	TTG	GCA	CTT	CTC	TCG	TGC	CTG	ACT	GTT	ccc	ACC	TCG	192

Ser	Ile 50	Tyr	Leu	Leu	Ala	Leu 55	Leu	Ser	Cys	Leu	Thr 60	Val	Pro	Thr	Ser		
														AAT Asn		•	240
														CTA Leu 95			288
														CGT Arg			336
														GCT Ala			384
														GCT Ala			432
														TTC Phe			480
														ACG Thr 175			528
														GGA Gly			576
GCA Ala																	579

- (2) INFORMATION FOR SEQ ID NO: 198:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 193 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala 1 5 10 15

Pro Val Gly Gly Val Ala Arg Ala Leu Glu His Gly Val Arg Ala Val

Glu Asp Gly Ile Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe

35 40 4

Ser Ile Tyr Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Thr Ser 50 55 60

Ala Ile His Tyr Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn Asp 65 70 75 80

Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Asp His His Ile Leu His 85 90 95

Leu Pro Gly Cys Leu Pro Cys Val Arg Val Gly Asn Gln Ser Arg Cys
100 105 110

Trp Val Ala Leu Ser Pro Thr Val Ala Ala Pro Tyr Ile Gly Ala Pro 115 120 125

Val Glu Ser Phe Arg Arg His Val Asp Met Met Val Gly Ala Ala Thr 130 140

Val Cys Ser Ala Leu Tyr Ile Gly Asp Leu Cys Gly Gly Val Phe Leu 145 · 150 155 160

Val Gly Gln Met Phe Ser Phe Arg Pro Arg Arg His Trp Thr Thr Gln 165 170 175

Asp Cys Asn Cys Ser Ile Tyr Ala Gly His Ile Thr Gly His Gly Met 180 185 190

Ala

- (2) INFORMATION FOR SEQ ID NO: 199:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1470 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 2..1470
  - (ix) FEATURE:
    - (A) NAME/KEY: mat_peptide
    - (B) LOCATION: 2..1467
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

_			AG C.			ar P			er S		46
			GGT Gly 20						TAT Tyr 30	_	94
			CCC Pro								142
			-							CCA Pro	190
			CCG Pro								238
			CTC Leu							CCA Pro 95	286
		-	TTA Leu 100								334
			GTG Val								382
IGA *			CAT His					Ser		CCA Pro	430
			TGG Trp								478
			TTG Leu							CTC Leu 175	526
			TCA Ser 180								574
			ACG Thr								<b>622</b>
			ACG Thr								670
			TCG Ser								718

225			230			235			
		ATC Ile 245						TGC Cys 255	766
		CCC Pro							814
		GTT Val							862
		ACA Thr							910
		CTG Leu							958
		ATG Met 325							1006
		TAC Tyr							1054
		ACC Thr							1102
		AGC Ser							1150
		TGC Cys							1198
		GGG Gly 405							1246
		GAT Asp							1294
		CGT Arg							1342
		ACG Thr							1390

GCA GCC ACG TCT GTG TGG AAC AAG GCT GAG CAG TTC TGG CCA CAT ACA

Ala Ala Thr Ser Val Trp Asn Lys Ala Glu Gln Phe Trp Pro His Thr

465

TGT GGA ACT TCA TCA GTG GGA TAC AAT AAT AG

Cys Gly Thr Ser Ser Val Gly Tyr Asn Asn

480

485

#### (2) INFORMATION FOR SEQ ID NO: 197:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1485 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: cDNA

#### (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1485

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:

TGTGCCAGGA CCATCACCAC CGGAGCTTCT ATCACATACT CCACTTACGG CAAGTTCCTT 60 GCTGATGGAG GGTGTTCAGG CGGCGCGCAT GACGTGATCA TATGCGACGA GTGCCATTCC 120 CAGGACGCCA CCACCATTCT TGGGATAGGC ACTGTCCTTG ACCAGGCAGA GACGGCTGGA 180 GCTAGGCTCG TCGTCTTGGC CACGGCCACC CCTCCCGGCA GTGTGACAAC GCCCCACCCC 240 AACATCGAGG AAGTGGCCCT GCCTCAGGAG GGGGAGGTTC CCTTCTACGG CAGAGCCATT 300 CCCCTTGCTT TTATAAGGG TGGTAGGCAT CTCATCTTCT GCCATTCCAA GAAAAAATGT 360 GATGAACTCG CCAAGCAACT GACCAGCCTG GGCGTGAACG CCGTGGCATA TTATAGAGGT 420 CTAGACGTCG CCGTCATACC CACAACAGGA GACGTGGTCG TGTGCAGCAC CGACGCGCTC 480 ATGACGGGAT TCACCGGCGA CTTTGATTCT GTCATAGACT GCAACTCCGC CGTCACTCAG 540 ACGGTGGACT TCAGTCTGGA TCCCACTTTT ACCATTGAGA CTACCACAGT GCCCCAGGAC 600 GCAGTGTCCA GAAGCCAGCG TTGGGGCCGC ACGGGGAGAG GTAGGCACGG CATATACCGG 660 TATGTCTCGG CTGGAGAGAG ACCGTCTGGC ATGTTCGACT CCGTGGTGCT CTGTGAGTGC 720 TACGATGCCG GATGTGCATG GTACGATCTG ACTCCTGCCG AGACTACCGT GAGGTTGCGC 780 GCTTACNTAA ACACCCCGG GCTCCCTGTC TGTCAGGACC ATTTGGAATT CTGGGAGGGG 840 GTGTTCACGG GGCTCACTAA CATCGACGCT CACATGCTGT CACAGACCAA ACAGGGTGGG 900 GAGAATTTCC CATACCTTGT AGCGTACCAA GCAACAGTCT GTGTTCGCGC GAAAGCGCCC 960

CCCCCAGCT GGGACACAAT GTGGAAAT	TGC ATGCTCCGTC TCAAACCGAC NTTAACTGGC	1020
CCTACTCCCC TCTTGTACAG GCTGGGGC	CCC GTCCAGAATG AGATCACACT GACGCACCCC	1080
ATCACCAAGT ACATTATGGC TTGCATGT	TOT GCGGACTTGG AGGTCATTAC CAGCACTTGG	1140
GTTCTGGTGG GGGGCGTTGT GGCGGCCC	TTG GCGGCCTACT GCTTGACGGT GGGTTCGGTA	1200
GCCATAGTCG GTAGGATCAT CCTCTCTG	GG AAACCTGCCA TCATTCCCGA TAGGGAGGTA	1260
TTATACCAGC AATTTGATGA GATGGAGG	GAG TGCTCGGCCT CGTTGCCCTA TATGGACGAA	1320
ACACGTGCCA TTGCCGGACA ATTCAAAG	SAG AAAGTGCTCG GCTTCATCAG CACGACCGGC	1380
CAGAAGGCTG AAACTCTGAA GCCGGCAG	SCC ACGTCTGTGT GGAACAAGGC TGAGCAGTTC	1440
TGGNCCACAT ACATGTGGAA CTTCATCA	AGT GGGATACAAT AATAG	1485

#### (2) INFORMATION FOR SEQ ID NO: 198:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 484 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

Cys Ala Arg Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr 1 5 10 15

Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala His Asp Val 20 25 30

Ile Ile Cys Asp Glu Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly
35 40 45

Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val 50 55 60

Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro 65 70 75 80

Asn Ile Glu Glu Val Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr 85 90 95

Gly Arg Ala Ile Pro Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile 100 105 110

Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Lys Gln Leu Thr 115 120 125

Ser Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ala 130 140 Val Ile Pro Thr Thr Gly Asp Val Val Val Cys Ser Thr Asp Ala Leu 145 150 155 160

Met Thr Gly Phe Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Ser 165 170 175

Ala Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile 180 185 190

Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Trp
195 200 205

Gly Arg Thr Gly Arg Gly Arg His Gly Ile Tyr Arg Tyr Val Ser Ala 210 215 220

Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Val Val Leu Cys Glu Cys 225 235 240

Tyr Asp Ala Gly Cys Ala Trp Tyr Asp Leu Thr Pro Ala Glu Thr Thr 245 250 255

Val Arg Leu Arg Ala Tyr Xaa Asn Thr Pro Gly Leu Pro Val Cys Gln 260 265 270

Asp His Leu Glu Phe Trp Glu Gly Val Phe Thr Gly Leu Thr Asn Ile 275 280 285

Asp Ala His Met Leu Ser Gln Thr Lys Gln Gly Glu Asn Phe Pro 290 295 300

Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Val Arg Ala Lys Ala Pro 305 310 315 320

Pro Pro Ser Trp Asp Thr Met Trp Lys Cys Met Leu Arg Leu Lys Pro 325 330 335

Xaa Leu Thr Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln 340 345 350

Asn Glu Ile Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys 355 360 365

Met Ser Ala Asp Leu Glu Val Ile Thr Ser Thr Trp Val Leu Val Gly 370 375 380

Gly Val Val Ala Ala Leu Ala Ala Tyr Cys Leu Thr Val Gly Ser Val 385 390 395 400

Ala Ile Val Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala Ile Ile Pro
405 410 415

Asp Arg Glu Val Leu Tyr Gln Gln Phe Asp Glu Met Glu Glu Cys Ser 420 425 430

Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala Gly Gln Phe 435 440 445 Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln Lys Ala Glu 450 455 460

Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala Glu Gln Phe 465 470 475 480

Trp Xaa Thr Tyr

#### (2) INFORMATION FOR SEQ ID NO: 199:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1485 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: cDNA

# (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1485

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

	•					
TGTGCCAGGA	CCATCACCAC	CGGAGCTTCT	ATCACATACT	CCACTTACGG	CAAGTTCCTT	60
GCTGATGGAG	GGTGTTCAGG	CGGCGCGTAT	GACGTGATCA	TATGCGACGA	GTGCCATTCC	120
CAGGACGCCA	CCACCATTCT	TGGGATAGGC	ACTGTCCTTG	ACCAGGCAGA	GACGGCTGGA	180
GCTAGGCTCG	TCGTCTTGGC	CACGGCCACC	CCTCCCGGCA	GTGTGACAAC	GCCCCACCCC	240
AACATCGAGG	AAGTGGCCCT	GCCTCAGGAG	GGGGAGGTTC	CCTTCTACGG	CAGAGCCATT	300
CCCCTTGCTT	TTATAAAGGG	TGGTAGGCAT	CTCATCTTCT	GCCATTCCAA	GAAAAAATGT	360
GATGAACTCG	CCAAGCAACT	GACCAGCCTG	GGCGTGAACG	CCGTGGCATA	TTATAGAGGT	420
CTAGACGTCG	CCGTCATCCC	CACAGCAGGA	GACGTGGTCG	TGTGCAGCAC	CGACGCGCTC	480
ATGACGGGAT	TCACCGGCGA	CTTTGATTCT	GTCATAGACT	GCAACTCCGC	CGTCACTCAG	540
ACGGTGGACT	TCAGTCTGGA	TCCCACTTTT	ACCATTGAGA	CTACCACAGT	GCCCCAGGAC	600
GCAGTGTCCA	GAAGCCAGCG	TAGGGGCCGC	ACGGGGAGAG	GTAGGCACGG	CATATACCGG	660
TATGTCTCGG	CTGGAGAGAG	ACCNTCTGAC	ATGTTCGACT	CCGTGGTGCT	CTGTGAGTGC	720
TACGATGCCG	GATGTGCGTG	GTATGATCTG	ACTCCTGCCG	AGACTACCGT	GAGGTTGCGC	780
GCTTACATAA	ACACCCCCGG	GCTCCCTGTC	TGTCAGGACC	ATTTGGAATT	CTGGGAGGG	840
GTGTTCACGG	GGCTCACTAA	CATCGACGCT	CACATGCTGT	CACAGACCAA	ACAGGGTGGG	900
GAGAATTTNC	CATACCTTGT	AGCGTACCAA	GCAACAGTCT	GTGTTCGCGC	GAAAGCGCCC	960

CCCCCAGCT GGGACACAAT GTGGAAATGC ATGCTCCGTC TCAAACCGAC TTTAACTGGC 1020 CCTACTCCCC TCTTGTACAG GCTGGGGCCC GTCCAGANTG AGATCACACT GACGCACCCC 1080 ATCACCAAGT ACATTATGGC TTGCATGTCT GCGGACTTGG AGGTCATTAC CANCACTTGG 1140 GTTCTGGTGG GGGGCGTTGT GGCGGCCCTG GCGGCCTACT GCTTGACGGT GGGTTCGGTA 1200 GCCATAGTCG GTAGGATCAT CCTCTCTGGG AAACCTGCCA TCATTCCCGA TAGGGAGGCA 1260 TTATACCAGC AATTTGATGA GATGGAGGAG TGCTCGGCCT CGTTGCCCTA TATGGACGAG 1320 ACACGTGCCA TTGCCGGACA ATTCAAAGAG AAAGTGCTCG GCTTCATCAG CACGACCGGC 1380 CAGAAGGCTG AAACTCTGAA GCCGGCAGCC ACGTCTGTGT GGAACAAGGC TGAGCAGTTC 1440 TGGGCCACAT ACATGTGGAA CTTCATCAGC GGGATACAAT AATAG 1485

#### (2) INFORMATION FOR SEQ ID NO: 200:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 484 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

Cys Ala Arg Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr

Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Val 20 25 30

Ile Ile Cys Asp Glu Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly
35 40 45

Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val 50 55 60

Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro 65 70 75 80

Asn Ile Glu Glu Val Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr 85 90 95

Gly Arg Ala Ile Pro Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile 100 105 110

Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Lys Gln Leu Thr 115 120 125

								25/								
Se	r Le 13		Gly	Val	Asn	Ala	Val 135	Ala	Tyr	Tyr	Arg	Gly 140	Leu	Asp	Val	Ala
Va. 14:		e	Pro	Thr	Ala	Gly 150	Asp	Val	Val	Val	Cys 155	Ser	Thr	Asp	Ala	Leu 160
Me	t Th	r	Gly	Phe	Thr 165	Gly	Asp	Phe	Asp	Ser 170	Val	Ile	Asp	Сув	Asn 175	Ser
Ala	a Va	1	Thr	Gln 180	Thr	Val	Asp	Phe	Ser 185	Leu	Asp	Pro	Thr	Phe 190	Thr	Ile
Gl	ı Th	r	Thr 195	Thr	Val	Pro	Gln	Asp 200	Ala	Val	Ser	Arg	Ser 205	Gln	Arg	Arg
Gl	y Ar 21	_	Thr	Gly	Arg	Gly	Arg 215	His	Gly	Ile	Tyr	Arg 220	Tyr	Val	Ser	Ala
G1; 22!	•	u	Arg	Xaa	Ser	Asp 230	Met	Phe	Asp	Ser	Val 235	Val	Leu	Сув	Glu	Cys 240
Ty	r As	q	Ala	Gly	Cys 245	Ala	Trp	Tyr	Asp	Leu 250	Thr	Pro	Ala	Glu	Thr 255	Thr
Va:	l Ar	g	Leu	Arg 260	Ala	Tyr	Ile	Asn	Thr 265	Pro	Gly	Leu	Pro	Val 270	Сув	Gln
As	o Hi	.s	Leu 275	Glu	Phe	Trp	Glu	Gly 280	Val	Phe	Thr	Gly	Leu 285	Thr	Asn	Ile
As	29		His	Met	Leu	Ser	Gln 295	Thr	Lys	Gln	Gly	Gly 300	Glu	Asn	Xaa	Pro
Ту: 30:		u	Val	Ala	Tyr	Gln 310	Ala	Thr	Val	Cys	Val 315	Arg	Ala	Lys	Ala	Pro 320
Pr	o Pr	ю.	Ser	Trp	Asp 325	Thr	Met	Trp	Lys	Cys 330	Met	Leu	Arg	Leu	Lys 335	Pro
Th	r Le	u	Thr	Gly 340	Pro	Thr	Pro	Leu	Leu 345	Tyr	Arg	Leu	Gly	Pro 350	Val	Gln
Xa	a Gl	u	Ile 355	Thr	Leu	Thr	His	Pro 360	Ile	Thr	Lys	Tyr	Ile 365	Met	Ala	Cys
Me	t Se		Ala	Asp	Leu	Glu	Val 375	Ile	Thr	Xaa	Thr	Trp 380	Val	Leu	Val	Gly
G1; 38	-	1	Val	Ala	Ala	Leu 390	Ala	Ala	Tyr	Cys	Leu 395	Thr	Val	Gly	Ser	Val 400
Al	a Il	.e	Val	Gly	Arg 405	Ile	Ile	Leu	Ser	Gly 410	Lys	Pro	Ala	Ile	Ile 415	Pro
As	p Ar	g	Glu	Ala 420	Leu	Tyr	Gln	Gln	Phe 425	Asp	Glu	Met	Glu	Glu 430	Cys	Ser

Ala Ser Leu Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala Gly Gln Phe

238

286

								2:	8								
			435					440	•				445	5	•		
	Lys	Glu 450		Val	. Leu	Gly	Phe 455		Ser	Thr	Thr	Gly 460		Ly:	s Ala	Glu	
	Thr 465		Lys	Pro	Ala	Ala 470		Ser	Val	Trp	475	_	: Ala	ı Glı	u Gln	Phe 480	
(2)	Trp	Ala		-		ID N	0: 2	:01:									
	(i)	(B	) LE ) TY ) ST	ngth Pe : Rand	: 34 nucl	TERI 0 ba eic SS: line	se p acid sing	airs !									
	(ii)	MOL	ECUL	E TY	PE:	cDNA											
	(iii)	HYP	OTHE	TICA	L: N	o											
	(iii)	ANT	I-SE	NSE:	NO												
	(ix)	-	) NA	ME/K	EY: ON:	CDS 23	40										
	(ix)		) NA	ME/K		mat_ 23		ide									
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 20	1:						
Se	CC AC er Th									l Gl				1 T			46
	TGT Cys																94
	GAG Glu						_							_			142
	TGC Cys																190

TTC GGG AAC ACA CTG ACG TGC TAC CTT AAA GCC TCA GCA GCC ATC AGG

Phe Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg

GCT GCG GGG CTG AAG GAC TGC ACC ATG CTG GTT TGC GGT GAC GAC TTA

Ala Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu

70

GTC GTG ATC GCT GAA AGC GGT GGC GTC GAG GAG GAC AAG CGA GCC CTC

Val Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Lys Arg Ala Leu

100

105

334

GGA GCT

GJA AGC GAG GAC AAG CGA GCC CTC

334

GJA AGC GAG GAC AAG CGA GCC CTC

3340

(2) INFORMATION FOR SEQ ID NO: 202:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:

Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Val Tyr Gln

1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr

20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Ile Arg Ala 65 70 75 80

Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Lys Arg Ala Leu Gly
100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 203:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 340 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO

(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2340	
<pre>(ix) FEATURE:     (A) NAME/KEY: mat_peptide     (B) LOCATION: 2337</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:	
C TCC ACA GTG ACT GAA AGA GAC ATC AGG GTC GAG GAA GAG GTC TAC Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Val Tyr 1 5 10 15	46
CAG TGT TGT GAC CTG GAG CCT GAA ACC CGC AAG GTA ATA TCT GCC CTC Gln Cys Cys Asp Leu Glu Pro Glu Thr Arg Lys Val Ile Ser Ala Leu 20 25 30	94
ACT GAA AGA CTC TAT GTG GGC GGT CCC ATG CAC AAC AGC AGG GGA GAC Thr Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Arg Gly Asp 35 40 45	142
CTA TGC GGG TAC CGT AGA TGC CGC GCG AGC GGC GTA TAC ACC ACA AGC Leu Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser 50 55 60	190
TTC GGG AAC ACT CTG ACG TGC TTC CTC AAG GCC ACA GCG GCC ACC AAA Phe Gly Asn Thr Leu Thr Cys Phe Leu Lys Ala Thr Ala Ala Thr Lys 65 70 75	238
GCC GCT GGC CTA AAG GAC TGC ACC ATG TTG GTG TGT GGT GAC GAC TTA Ala Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu 80 90 95	286
GTC GTT ATC GCC GAA AGC GAT GGT GTC GAA GAG GAC CGC CGA GCC CTC Val Val Ile Ala Glu Ser Asp Gly Val Glu Glu Asp Arg Arg Ala Leu 100 105 110	334
GGA GCT Gly Ala	340

- (2) INFORMATION FOR SEQ ID NO: 204:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 113 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Glu Val Tyr Gln
1 5 10 15

	Суз	Суз	Asp	Leu 20	Glu	Pro	Glu	Thr	Arg 25	Lys	Val	Ile	Ser	Ala 30	Leu	Thr	
	Glu	Arg	Leu 35	Tyr	Val	Gly	Gly	Pro 40	Met	His	Asn	Ser	Arg 45	Gly	Asp	Leu	
	Cys	Gly 50	Tyr	Arg	Arg	Cys	Arg 55	Ala	Ser	Gly	Val	Tyr 60	Thr	Thr	Ser	Phe	
	Gly 65	Asn	Thr	Leu	Thr	Cys 70	Phe	Leu	Lys	Ala	Thr 75	Ala	Ala	Thr	Lys	Ala 80	
	Ala	Gly	Leu	Lys	Asp 85	Cys	Thr	Met	Leu	Val 90	Суѕ	Gly	Asp	Asp	Leu 95	Val	
	Val	Ile	Ala	Glu 100	Ser	Asp	Gly	Val	Glu 105	Glu	Asp	Arg	Arg	Ala 110	Leu	Gly	
	Ala																
	(2)	INFO	RMAT	CION	FOR	SEQ	ID 1	10: 2	205:								
		(ii) (iii)	( <i>I</i>	LECUI	ENGTE TPE: TRANI DPOLO LE TY	H: 34 nucl DEDNE DGY:  (PE:	10 ba leic SSS: line		pairs 1	5							
		(ix)	(E FE2 (2 (E	A) NA B) LO ATURE A) NA B) LO	ME/I CATI E: ME/I CATI	CEY:	mat_	_pept 337				·_					
		CC AC	CG G1	rg ac	C G	AA AA	3G G2	ON: S AT AT Sp I]	rc ac	GG AC	cc qu	AG GI			le Ty		46
,								GAA Glu									94
								GGT Gly									142

		 						ACC Thr	190
								ACT Thr	238
								GAC Asp	286
								GCC Ala 110	334
CGA Arg	_		•						340

- (2) INFORMATION FOR SEQ ID NO: 206:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 113 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Glu Ile Tyr Gln
1 5 10 15

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ala Leu Thr

Glu Arg Leu Tyr Val Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Gln Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Val Thr Cys Tyr Leu Lys Ala Val Ala Ala Thr Arg Ala 65 70 75 80

Ala Gly Leu Lys Gly Cys Ser Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Cys Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu Arg 100 105 110

Ala

(2) INFORMATION FOR SEQ ID NO: 207:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 340 base pairs

(A) LENGTH: 340 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2340	
(ix) FEATURE:  (A) NAME/KEY: mat_peptide  (B) LOCATION: 2337	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:	
C TCC ACG GTG ACT GAA AGG GAC ATT AGG GTC GAG GAA GAG ATC TAC Ser Thr Val Thr Glu Arg Asp Ile Arg Val Glu Glu Glu Ile Tyr 1 5 10 15	46
CAG TGC TGT GAC CTG GAG CCC GAG GCA CGC AAG GTG ATA TCC GCT CTC Gln Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ala Leu 20 25 30	94
ACA GAA AGA CTC TAC AAG GGC GGC CCC ATG TAT AAC AGC AAG GGG GAC Thr Glu Arg Leu Tyr Lys Gly Gly Pro Met Tyr Asn Ser Lys Gly Asp 35 40 45	142
CTA TGC GGG CTT CGG AGG TGC CGC GCA AGC GGG GTA TAC ACC ACA AGC Leu Cys Gly Leu Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser 50 55 60	190
TTC GGG AAC ACG GTG ACA TGC TAC CTT AAA GCC ACA GCA GCC ACC AGG Phe Gly Asn Thr Val Thr Cys Tyr Leu Lys Ala Thr Ala Ala Thr Arg 65 70 75	238
GCT GCA GGG CTG AAA GAT TGC ACT ATG CTG GTA TGC GGT GAC GAC TTA Ala Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu 80 85 90 95	286
GTC GTT ATT GCC GAA AGC GGT GGC GTG GAG GAG GAC GCC CGA GCC CTC Val Val Ile Ala Glu Ser Gly Gly Val Glu Glu Asp Ala Arg Ala Leu 100 105 110	334
CGA GCC Arg Ala	340

(2) INFORMATION FOR SEQ ID NO: 208:

	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 113 amino acids</li><li>(B) TYPE: amino acid</li><li>(D) TOPOLOGY: linear</li></ul>														
	(ii) MOLECULE TYPE: protein														
Ser 1				CE DI Glu 5								Glu	Ile	Tyr 15	Gln
Cys	Cys	Asp	Leu 20	Glu	Pro	Glu	Ala	Arg 25	Lys	Val	Ile	Ser	Ala 30	Leu	Thr
Glu	Arg	Leu 35	Tyr	Lys	Gly	Gly	Pro 40	Met	Tyr	Asn	Ser	Lys 45	Gly	Asp	Leu
Cys	Gly 50	Leu	Arg	Arg	Cys	Arg 55	Ala	Ser	Gly	Val	Tyr 60	Thr	Thr	Ser	Phe
Gly 65	Asn	Thr	Val	Thr	Cys 70	Tyr	Leu	Lys	Ala	Thr 75	Ala	Ala	Thr	Arg	Ala 80
Ala	Gly	Leu	Lys	Asp 85	Cys	Thr	Met	Leu	Val 90	Cys	Gly	Asp	Asp	Leu 95	Val
Val	Ile	Ala	Glu 100	Ser	Gly	Gly	Val	Glu 105	Glu	Asp	Ala	Arg	Ala 110	Leu	Arg
Ala															
(2)	INF	ORMA:	LION	FOR	SEQ	ID 1	NO: :	209:							
	(i)	() ()	A) Li B) T C) S'	CE CI ENGTI YPE: IRANI OPOLO	nucl	10 ba Leic ESS:	ase p acio sino	pair: 1	5						
	(ii)	) MOI	LECU	LE T	YPE:	cDN	A								
	(iii)	) HY	POTH	ETIC	AL: 1	40									
	(iii)	) AN	ri-si	ense	: NO		,								
	(ix		A) N	E: AME/1 OCAT:			340								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:

CCCCACCGTG ACNGAGAGGG ACNTCAGGGT CGAGGAAGAG GTCTATCAGT GCTGTAATCT 60

GGAGNCCGAT GNCCGCAAGG TCATCAACGC CCTCACAGAG AGACTCTACG TGGGCGGCCC 120

TATGCACAAC	AGCAAGGGAG	ACCTGTGTGG	CATCCGTAGA	TGCCGCGCGA	GCGGCGTTTA	180
CACCACGAGC	TTCGGAAACA	CGCTGACTTG	CTACCTCAAA	GCCACAGCGG	CCACCAGGGC ·	240
CGCGGGCTTG	AAGGATTGCA	CCATGCTGGT	CTGCGGNGAC	GACCTGGTTG	TCATTGCTGA	300
GAGCATTGGC	ATAGACGAGG	ACAAGCAAGC	CCTCCGNACT			340

- (2) INFORMATION FOR SEQ ID NO: 210:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 113 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

Pro Thr Val Thr Glu Arg Asp Xaa Arg Val Glu Glu Glu Val Tyr Gln
1 5 10 15

Cys Cys Asn Leu Glu Xaa Asp Xaa Arg Lys Val Ile Asn Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met His Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Ile Arg Arg Cys Arg Ala Ser Gly Val Tyr Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Thr Ala Ala Thr Arg Ala 65 70 75 80

Ala Gly Leu Lys Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ala Glu Ser Ile Gly Ile Asp Glu Asp Lys Gln Ala Leu Arg 100 105 110

Thr

- (2) INFORMATION FOR SEQ ID NO: 211:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 340 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA

iii)	HYPOTHETICAL:	NO
------	---------------	----

(iii) ANTI-SENSE: NO

# (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..340

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:

CTCGACTGTG	NCCGAGAGGG	ACATCAGGAC	AGAGGGAGAG	GTCTATCAGT	GTTGCGACCT	60
GGAACCGGAA	GCCCGCAAGG	TAATCACCGC	CCTCACTGAG	AGACTCTATG	TGGGCGGACC	120
CATGTTCAAC	AGCAAGGGAG	ACCTGTGCGG	ACAACGCCGG	TGCCGCGCAA	GCGGCGTGTT	180
CACCACCAGC	TTCGGGAACA	CACTGACGTG	CTACCTTAAA	GCCACAGCTG	CTACTAGAGC	240
AGCCGGCTTA	AAAGATTGCA	CCATGCTGGT	CTGCGGTGAC	GACTTAGTCG	TTATTTCCGA	300
GAGCGCCGGT	GTGGAGGAGG	ATCCCANAAC	CCNNCGACCN			340

# (2) INFORMATION FOR SEQ ID NO: 212:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 113 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

Ser Thr Val Xaa Glu Arg Asp Ile Arg Thr Glu Gly Glu Val Tyr Gln

Cys Cys Asp Leu Glu Pro Glu Ala Arg Lys Val Ile Thr Ala Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Phe Asn Ser Lys Gly Asp Leu 35 40 45

Cys Gly Gln Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Phe 50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Thr Ala Ala Thr Arg Ala

	Ala	Gly	Leu	Ly:	85	Cys	Th:	. Met	Let	90	l Cys	Gly	/ Asp	As <u>ı</u>	95	Val ·	
	Val	Ile	Ser	Gl: 100		Ala	Gly	/ Val	105		ı Asp	Pro	Xaa	110	r Xaa	Arg	
	Pro	,															
(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	10: 2	213 :									
	(i)	(A (B (C	) LE ) TY !) SI	ngti Pe : Rani	I: 34 nucl	TERI 10 ba leic ESS: line	se p acid sing	airs l	3								
(ii) MOLECULE TYPE: cDNA																	
(	(iii)	НҮР	OTHE	TIC	L: 1	10											
. (	(iii)	ANT	I-SE	NSE :	NO												
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2340																	
(ix) FEATURE:  (A) NAME/KEY: mat_peptide  (B) LOCATION: 2337																	
	(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ 1	D NO	): 21	L3 :						
	CA AC er Th 1								g Va					е Ту			46
CAA Gln	TGT Cys																94
	GAG Glu																142
	TGT Cys																190
	GGT Gly 65																238
GCT	GCG	AAG	CTC	CAG	GAC	TGC	ACG	ATG	CTC	GTG	TGC	GGG	GAC	GAC	CTT		286

Ala Ala Ly3 Leu Gln Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu 80 85 90 95

CGA GTC 340
Arg Val

- (2) INFORMATION FOR SEQ ID NO: 214:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 113 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:

Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln
1 5 10 15

Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys Ser Leu Thr
20 25 30

Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys
50 55 60

Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala
65 70 75 80

Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg 100 105 110

Val

- (2) INFORMATION FOR SEQ ID NO: 215:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 340 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA

	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
<b>.</b>	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2340	
•	(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 2340	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:	
	C TCA ACC GTC ACG GAG AGG GAT ATA AGA ACA GAA GAA TCC ATA TAT Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr 1 5 10 15	46
	CAA GCT TGT TCC CTG CCC CAA GAG GCC AGA ACT GTC ATA CAC TCG CTC Gln Ala Cys Ser Leu Pro Gln Glu Ala Arg Thr Val Ile His Ser Leu 20 25 30	94
	ACC GAG AGA CTC TAC GTG GGA GGG CCC ATG ATA AAC AGC AAA GGG CAA Thr Glu Arg Leu Tyr Val Gly Gly Pro Met Ile Asn Ser Lys Gly Gln 35 40 45	142
	TCC TGC GGT TAC AGG CGT TGC CGC GCA AGC GGT GTT TTC ACC ACC AGC Ser Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser 50 55	190
	ATG GGG AAT ACC ATG ACG TGT TAC ATC AAA GCC CTT GCA GCG TGT AAA Met Gly Asn Thr Met Thr Cys Tyr Ile Lys Ala Leu Ala Ala Cys Lys 65 70 75	238
	GCC GCA GGG ATC GTG GAC CCC GTC ATG CTG GTG TGT GGA GAC GAC CTG Ala Ala Gly Ile Val Asp Pro Val Met Leu Val Cys Gly Asp Asp Leu 80 85 90 95	286
	GTC GTC ATC TCG GAG AGC CAG GGT AAC GAG GAG GAC GAG CGA AAC CTG Val Val Ile Ser Glu Ser Gln Gly Asn Glu Glu Asp Glu Arg Asn Leu 100 105 110	334
	AGA GCT Arg Ala	340
•	(2) INFORMATION FOR SEQ ID NO: 216:	
	· · · · · · · · · · · · · · · · · · ·	

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid "
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

Ser Thr Val Thr Glu Arg Asp Ile Arg Thr Glu Glu Ser Ile Tyr Gln
1 5 10 15

Ala Cys Ser Leu Pro Gln Glu Ala Arg Thr Val Ile His Ser Leu Thr 20 25 30

Glu Arg Leu Tyr Val Gly Gly Pro Met Ile Asn Ser Lys Gly Gln Ser 35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Phe Thr Thr Ser Met 50 55 60

Gly Asn Thr Met Thr Cys Tyr Ile Lys Ala Leu Ala Ala Cys Lys Ala 65 70 75 80

Ala Gly Ile Val Asp Pro Val Met Leu Val Cys Gly Asp Asp Leu Val 85 90 95

Val Ile Ser Glu Ser Gln Gly Asn Glu Glu Asp Glu Arg Asn Leu Arg
100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 217:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 340 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 2..340
  - (ix) FEATURE:
    - (A) NAME/KEY: mat_peptide
    - (B) LOCATION: 2..340
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:
- C TCG ACT GTC ACT GAA CAG GAC ATC AGG GTG GAA GAG GAG ATA TAT

  Ser Thr Val Thr Glu Gln Asp Ile Arg Val Glu Glu Glu Ile Tyr

  1 5 10 15

CAA TGC TGC AAC CTT GAA CCG GAG GCC AGG AAA GTG ATC TCC TCC CTC 94
Gln Cys Cys Asn Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ser Leu

Arg Ala

20 -25 30 ACG GAG CGG CTT TAC TGC GGA GGC CCT ATG TTT AAC AGC AAG GGG GCC 142 Thr Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Ala CAG TGT GGT TAT CGC CGT TGC CGT GCC AGT GGA GTT CTG CCT ACC AGC 190 Gln Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser TTT GGC AAC ACA ATC ACT TGT TAC ATC AAG GCC ACA ACG GCC GCG AAG 238 Phe Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Thr Ala Ala Lys GCC GCA GGC CTC CGG AAC CCG GAC TTT CTT GTC TGC GGA GAT GAT CTG 286 Ala Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp Leu 90 GTC GTG GTG GCT GAG AGT GAT GGC GTC GAC GAG GAT AGA GCA GCC CTG 334 Val Val Val Ala Glu Ser Asp Gly Val Asp Glu Asp Arg Ala Ala Leu 105 AGA GCC 340

#### (2) INFORMATION FOR SEQ ID NO: 218:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:

Ser Thr Val Thr Glu Gln Asp Ile Arg Val Glu Glu Glu Ile Tyr Gln

1 10 15

Cys Cys Asn Leu Glu Pro Glu Ala Arg Lys Val Ile Ser Ser Leu Thr 20 25 30

Glu Arg Leu Tyr Cys Gly Gly Pro Met Phe Asn Ser Lys Gly Ala Gln
35 40 45

Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Pro Thr Ser Phe 50 55 60

Gly Asn Thr Ile Thr Cys Tyr Ile Lys Ala Thr Thr Ala Ala Lys Ala 65 70 75 80

Ala Gly Leu Arg Asn Pro Asp Phe Leu Val Cys Gly Asp Asp Leu Val
85 90 95

Val Val Ala Glu Ser Asp Gly Val Asp Glu Asp Arg Ala Ala Leu Arg
100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO: 219:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

Arg Ser Glu Gly Arg Thr Ser Trp Ala Gln
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 220:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

Arg Ser Glu Gly Arg Thr Ser Trp Ala Gln 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 221:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

Arg Thr Glu Gly Arg Thr Ser Trp Ala Gln
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 222:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 629 base pairs

VO 94/25601		070		PCT/EP94/01323
•		273		
(C)	) TYPE: nucleic ) STRANDEDNESS: ) TOPOLOGY: lin	single		
(ii) MOL	ECULE TYPE: cDN	ZA.		•
(iii) HYPO	OTHETICAL: NO			
(iii) ANT	I-SENSE: NO			
• •	TURE: ) NAME/KEY: CDS ) LOCATION: 3			
	TURE: ) NAME/KEY: mat ) LOCATION: 3			
(xi) SEQ	UENCE DESCRIPTI	ON: SEQ ID NO:	222:	
		Phe Thr Gly Le	TA ACT CAC ATA G ou Thr His Ile A .0	
			CTC AAC TTC TCG Leu Asn Phe Ser	
			SCG CAG GCT CCT Lla Gln Ala Pro 45	
			CGG CTT AAG CCA Arg Leu Lys Pro 60	
		Tyr Arg Leu G	GGG CCT GTC CAA Gly Pro Val Gln 75	
			•	

ACT GCC T Thr Ala T AGT TGG G Ser Trp A CAT GGA C His Gly F ATC TGC TTG ACA CAC CCC ATC ACA AAA TAC ATC ATG GCA TGC ATG TCA 287 Ile Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser GCT GAT CTG GAA GTA ACC ACC AGC ACC TGG GTT TTG CTT GGA GGG GTC 335 Ala Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu Gly Gly Val 105 100 CTC GCG GCC CTA GCG GCC TAC TGC TTG TCA GTC GGT TGT GTT GTG ATT 383 Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys Val Val Ile 120 115 431 GTG GGT CAT ATC GAG CTG GGG GGC AAG CCG GCA ATC GTT CCA GAC AAA Val Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile Val Pro Asp Lys 135 130

					٠.					
			CAA Gln							79
			CAA Gln 165						5	27
	 		CTG Leu						5	75
	 		ACC Thr						. 6	23
AAG Lys									6	29

# (2) INFORMATION FOR SEQ ID NO: 223:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 209 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

Asp Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His

1 5 10 15

Phe Leu Ser Gln Thr Lys Gln Gln Gly Leu Asn Phe Ser Phe Leu Thr 20 25 30

Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser 35 · 40 45

Trp Asp Glu Met Trp Lys Cys Leu Val Arg Leu Lys Pro Thr Leu His 50 55 60

Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu Ile 65 70 75 80

Cys Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala 85 90 95

Asp Leu Glu Val Thr Thr Ser Thr Trp Val Leu Leu Gly Gly Val Leu 100 105 110

Ala Ala Leu Ala Ala Tyr Cys Leu Ser Val Gly Cys Val Val Ile Val 115 120 125

Gly His Ile Glu Leu Gly Gly Lys Pro Ala Ile Val Pro Asp Lys Glu 130 135 140 Val Leu Tyr Gln Gln Tyr Asp Glu Met Glu Glu Cys Ser Gln Ala Ala 145 150 155 160

Pro Tyr Ile Glu Gln Ala Gln Val Ile Ala His Gln Phe Lys Glu Lys
165 170 175

Val Leu Gly Leu Gln Arg Ala Thr Gln Gln Ala Val Ile Glu 180 185 190

Pro Ile Val Thr Thr Asn Trp Gln Lys Leu Glu Ala Phe Trp His Lys 195 200 205

His

- (2) INFORMATION FOR SEQ ID NO: 224:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (ix) FEATURE:
    - (A) NAME/KEY: Peptide
    - (B) LOCATION: 2..12
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

Ile His Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 225:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

Val Asn Tyr Arg Asn Ala Ser Gly Ile Tyr His Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 5:
  - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

Val Asn Tyr Arg Asn Ala Ser Gly Val Tyr His Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 227:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

Val Asn Tyr His Asn Thr Ser Gly Ile Tyr His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 228:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

Gln His Tyr Arg Asn Ala Ser Gly Ile Tyr His Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 229:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

Gln His Tyr Arg Asn Val Ser Gly Ile Tyr His Val

- (2) INFORMATION FOR SEQ ID NO: 230:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

Ile His Tyr Arg Asn Ala Ser Asp Gly Tyr Tyr Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 231:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
      - (B) TYPE: amino acid
      - (C) STRANDEDNESS: single
      - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

Leu Gln Val Lys Asn Thr Ser Ser Ser Tyr Met Val
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 232:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:

Val Trp Gln Leu Arg Ala Ile Val Leu His Val 1 5 10

(2) INFORMATION FOR SEQ ID NO: 233:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 11 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:

Val Tyr Glu Ala Asp Tyr His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 234:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

Val Tyr Glu Thr Asp Asn His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 235:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:

Val Tyr Glu Thr Glu Asn His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 236:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid "
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:

Val Phe Glu Thr Val His His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 237:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:

Val Phe Glu Thr Glu His His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 238:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:

Val Phe Glu Thr Asp His His Ile Met His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 239:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:

Val Tyr Glu Thr Glu Asn His Ile Leu His Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 240:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:

Val Tyr Glu Ala Asp Ala Leu Ile Leu His Ala 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 241:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

Val Gln Asp Gly Asn Thr Ser Ala Cys Trp Thr Pro Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 242:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242: Val Lys Thr Gly Asn Gln Ser Arg Cys Trp Val Ala Leu 1 5 10
- (2) INFORMATION FOR SEQ ID NO: 243:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

Val Lys Thr Gly Asn Gln Ser Arg Cys Trp Val Ala Leu

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 244:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

Val Arg Thr Gly Asn Gln Ser Arg Cys Trp Val Ala Leu

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 245:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

Val Lys Thr Gly Asn Gln Ser Arg Cys Trp Ile Ala Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 246:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
    - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:
    - Val Lys Thr Gly Asn Gln Ser Arg Cys Trp Ile Ala Leu

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 247:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:

Val Lys Thr Gly Asn Ser Val Arg Cys Trp Ile Pro Leu 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 248:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

Val Lys Thr Gly Asn Val Ser Arg Cys Trp Ile Ser Leu

- (2) INFORMATION FOR SEQ ID NO: 249:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

Val Arg Lys Asp Asn Val Ser Arg Cys Trp Val Gln Ile 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 250:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
  (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:

Ala Pro Ser Phe Gly Ala Val Thr Ala Pro
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 251:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:

Val Ser Gln Pro Gly Ala Leu Thr Lys Gly
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 252:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:

Val Lys Tyr Val Gly Ala Thr Thr Ala Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 253:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

Ala Pro Tyr Ile Gly Ala Pro Val Glu Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 254:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:

Ala Gln His Leu Asn Ala Pro Leu Glu Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 255:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:

Ser Pro Tyr Val Gly Ala Pro Leu Glu Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 256:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:

Ser Pro Tyr Ala Gly Ala Pro Leu Glu Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 257:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:

Ala Pro Tyr Leu Gly Ala Pro Leu Glu Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 258:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:

Ala Pro Tyr Leu Gly Ala Pro Leu Glu Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 259:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:

Ala Pro Tyr Val Gly Ala Pro Leu Glu Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 260:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:
Asn Val Pro Tyr Leu Gly Ala Pro Leu Thr Ser

(2) INFORMATION FOR SEQ ID NO: 261:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:

Ala Pro His Leu Arg Ala Pro Leu Ser Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 262:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:

Ala Pro Tyr Leu Gly Ala Pro Leu Thr Ser
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 263:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:

Arg Pro Arg Gln His Ala Thr Val Gln Asp 1 5 10

(2) INFORMATION FOR SEQ ID NO: 264:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:

Ser Pro Gln His His Lys Phe Val Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 265:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

Arg Pro Arg Arg Leu Trp Thr Thr Gln Glu
1 5 10

- (2) INFORMATION FOR SEQ ID NO: 266:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

Pro Pro Arg Ile His Glu Thr Thr Gln Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 267:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 14 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:

Thr Ile Ser Tyr Ala Asn Gly Ser Gly Pro Ser Asp Asp Lys

1 5 10

- (2) INFORMATION FOR SEQ ID NO: 268:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 19 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

Ser Arg Arg Gln Pro Ile Pro Arg Ala Arg Arg Thr Glu Gly Arg Ser 1 5 10 15

Trp Ala Gln

- (2) INFORMATION FOR SEQ ID NO: 269:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1443 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 1..1443
  - (ix) FEATURE:
    - (A) NAME/KEY: mat peptide
    - (B) LOCATION: 1..1443
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

ACC ATC ACC GGA GCT TCT ATC ACA TAC TCC ACT TAC GGC AAG TTC Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe

1		5				10			15		
			TGT Cys							TGC Cys	96
			CAG Gln								144
	 	 	GAG Glu	-				 	 		192
			GGC Gly 70								240
			CAG Gln								288
			ATA Ile								336
			GAT Asp								384
			TAT Tyr								432
			GTC Val 150								480
			GAT Asp				Cys				528
	 	 	AGT Ser								576
			GCA Ala								624
			GGC Gly								672
			GAC Asp 230								720

				TAT Tyr 245												768
				AAC Asn												816
				GGG Gly												864
				ACC Thr												912
				ACA Thr												960
TGG				TGG Trp 325												1008
				CTC Leu												1056
				CCC Pro												1104
				ATT Ile												1152
				GCC Ala												1200
				CTC Leu 405												1248
				CAA Gln												1296
CCC Pro	TAT Tyr	ATG Met 435	GAC Asp	GAG Glu	ACA Thr	CGT Arg	GCC Ala 440	ATT Ile	GCC Ala	GGA Gly	CAA Gln	TTC Phe 445	AAA Lys	GAG Glu	AAA Lys	1344
				ATC Ile												1392
CCG Pro 465	GCA Ala	GCC Ala	ACG Thr	TCT Ser	GTG Val 470	TGG Trp	AAC Asn	AAG Lys	GCT Ala	GAG Glu 475	CAG Gln	TTC Phe	TGG Trp	GCC Ala	ACA Thr 480	1440

TAC 1443
Tyr

- (2) INFORMATION FOR SEQ ID NO: 270:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 481 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:

Thr Ile Thr Thr Gly Ala Ser Ile Thr Tyr Ser Thr Tyr Gly Lys Phe
1 5 10 15

Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Val Ile Ile Cys
20 25 30

Asp Glu Cys His Ser Gln Asp Ala Thr Thr Ile Leu Gly Ile Gly Thr 35 40 45

Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala 50 55 60

Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro Asn Ile Glu
65 70 75 80
Gly Val Ala Ley Pro Cly Cly Cly Cly Val Pro Phe Tyr Cly Arg Ala

Glu Val Ala Leu Pro Gln Glu Gly Glu Val Pro Phe Tyr Gly Arg Ala 85 90 95

Ile Pro Leu Ala Phe Ile Lys Gly Gly Arg His Leu Ile Phe Cys His 100 105 110

Ser Lys Lys Cys Asp Glu Leu Ala Lys Gln Leu Thr Ser Leu Gly 115 120 125

Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ala Val Ile Pro 130 135 140

Thr Ala Gly Asp Val Val Cys Ser Thr Asp Ala Leu Met Thr Gly 145 150 155 160

Phe Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Ser Ala Val Thr 165 170 175

Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr 180 185 190

Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr 195 200 205

Gly Arg Gly Arg His Gly Ile Tyr Arg Tyr Val Ser Ala Gly Glu Arg 210 215 220

Pro Ser Asp Met Phe Asp Ser Val Val Leu Cys Glu Cys Tyr Asp Ala

230 235 240 225 Gly Cys Ala Trp Tyr Asp Leu Thr Pro Ala Glu Thr Thr Val Arg Leu 245 250 Arg Ala Tyr Ile Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu 265· Glu Phe Trp Glu Gly Val Phe Thr Gly Leu Thr Asn Ile Asp Ala His Met Leu Ser Gln Thr Lys Gln Gly Glu Asn Phe Pro Tyr Leu Val 295 Ala Tyr Gln Ala Thr Val Cys Val Arg Ala Lys Ala Pro Pro Pro Ser 310 315 Trp Asp Thr Met Trp Lys Cys Met Leu Arg Leu Lys Pro Thr Leu Thr 325 Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Val Gln Asn Glu Ile 345 Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala 360 Asp Leu Glu Val Ile Thr Ser Thr Trp Val Leu Val Gly Gly Val Val 375 Ala Ala Leu Ala Ala Tyr Cys Leu Thr Val Gly Ser Val Ala Ile Val 390 395 Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu 405 Ala Leu Tyr Gln Gln Phe Asp Glu Met Glu Glu Cys Ser Ala Ser Leu 425 Pro Tyr Met Asp Glu Thr Arg Ala Ile Ala Gly Gln Phe Lys Glu Lys Val Leu Gly Phe Ile Ser Thr Thr Gly Gln Lys Ala Glu Thr Leu Lys Pro Ala Ala Thr Ser Val Trp Asn Lys Ala Glu Gln Phe Trp Ala Thr 470 Tyr

CTCCACAGTCACTGAGGCGACATCTACCAAT AGATGTTTT AG	00000000000000000000000000000000000000	HCV-1 HCV-1 BE90 2TY4 4TY4 4TY4 4TY4 HC-J8 HC-J8 NE91 110 NE92 NE92 NE92 NE93 NZL13 EB1 EB2 EB3
TTTACAGA-GA-GAAGA	3b	T10
ر د د د د د د د د د د د د د د د د د د د	4	- F
A-GAG	3p	T9
A	ສ . ຕ	EB7
<b>4</b> -	3a	EB3
Ą-	3a	EB2
ď-	3a	EB1
TACAGAGGTAGA	3a	NZL13
GTACAGA-GGTAAGA	3a	NE93
ATACAGA-GGTAAG	3a	<b>T</b> 1
ATACAGA-GGTAAG	3a	[] 26
TACAGA-GGTAAGA	3a	TI CHR22
TACAGA-GGTA	3a	CHR21
A-GGTAAG-	3a	E CHR20
-GT-C	2d	<b>S NE92</b>
£9	2c	T983
	2c	II 110
	2c	S ARG8
-DL-L	2c	s ARG6
ATGG	2b	EB12
-CGGTAA-AAAAT-C	2b	NE91
-CGGAA-AA-AAT-CAT	2b	HC-J8
-CT-CAT-G	2a	HC-J6
Y-	1c	4TY4
1	1c	2TY4
C	1p	BE90
-GTT	1p	HCV-J
CTCCACAGTCACTGAGAGCGACATCCGTACGGAGGAGGCAATCTACCAAT	la	HCV-1
778		
7932		

igure

Figure 1 -	Continued 1	
		7932
GB48	4c	A-AGA-GGTCAGGT-
$\vdash$	4c	A-AGA-GGTCAGG-AT-
GB215	4c	A-AAA-GGTCAGG-AT-
GB358	4c	A-GGTCAGG-GT-
GB809	4e	AAAGGTCA-
CAM600	4e	A-GGTCAA-GT-
CAMG22	4 £	1 1
GB549	4g	-TA-GCA-AG
GB438	4h	TA-GGTCA-AG
CAR4/12	41	- I
= CAR1/501	4j	A-GA-T-
	4 k	GT-
	4k	
	5a	i
BE9	<b>5</b> a	AC-CC-ACATATTGTAT-CA
CHR18	5a .	GCTCACATAATGTAT-TTT-
E CHR19	5а	GCTCACATAATGTAT-CT
5)		

gure 1 - Continued

	8031	TGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCCCTCACCGA	T-G-CGA-GCAA-GA-	T-G-CG-GA-ACAAGA	GCG-CATAAATT	GCG-CACTAAATT	-TC-T-GCC-GAGG-GA-ACTAC-CAGT	-TCTGCCT-AAGA-AACT-TAC-CGT	-TCGCCAAG-GA-AACT-TAC-CG	-TCGCCT-AAG-GA-AACT-TAC-CGT	-TCAGCCTGAGG-GTAACTAC-CAGT	-TCAGCC-GAGG-GTAACTTAC-CAGT	CTCAGCCTGAGG-GAACTTAC-CAGT	-TCAGCCT-AGG-GTGACTTAC-CAT-GT	CTCTT-ACC-GAGGAGACTAC-CAGT	-ATAGG-GA-GAAA-TGTCCG	-ATAGG-GA-GAAA-TGTCCG	ATAGG-G	-ATAGG-GA-GAGA-TGTCCG	-A-TTGGG-GA-GAAA-TGTCCG	CATAGG-GA-GAAA-TGTCCG	-ATAGG-GA-GAAA-TGTCCG	-ATAGG-GA-GAAA-TGTCCG	-ATAGG-GA-GAAA-TGTCCGA	-ATAGG-GA-AAAA-TGTCCG	-ATAGG-GA-GAATGTCCG	<u>-</u>	ABB	· 9 - · ·	
1ed 2	3Q ID 7982	GTTGTGA	1	- 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CTC-I	CTCL-	215 CTC	DID	CCTCA-	CCTCA-	CCCTCA-	CTCA-		A	K		K		217 -CCA	-CA		-CA	- C A		•	1,3	-	,
- Continued	SEO		1b	1b	10	10	2a	2b	2b	2b	2c	2c	2c	2°C	2d	3a	3a	3a	3а	3a	3 3	3а	3а	3а	3а	3а		3а		4,
Figure 1		HCV-1	HCV-J	BE90	2TY4	4TY4	HC-J6	HC-J8	NE91	EB12	ARG6	S ARG8	110 110	<b>1</b> T983	NE92	CHR20	CHR21	CHR22	II II	LI 26	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	c E

ב ד ב זחהד ב	Concinaed	rinea	
		SEQ ID	7982
T10			-CTG-AG-GTGAAGGCG-TA
ध्य	3c	149	ı
GB48	4°C	0	AAT-CCGAA
GB116	4c	108	AT-CCGA-
GB215	4c	$\vdash$	TAT-CCGA-
GB358	4c	$\vdash$	
GB80	4e	$\leftarrow$	- 1
CAM6	<b>4</b> e	0	-TA
S CAMG22	4 £	0	AAATA
GB54	49	0	-CAATG
<b>GB43</b>	4 h	0	G-GAAATGATCCG-T
第CAR4/1205	<b>4</b> i	0	A-TGGNG-T-NAATCG
CAR1/50	<u>4</u> j	$\vdash$	AATACCG
N EG-13	4k		AGGTAATT-CTGAA
EG-1	4 7 4		GG-T-G-GTAATTT-CTG
56 <b>38 26</b> )	<b>5</b> a	Ŋ	3ACAAAC
BE96	5a	161	CAAACGC
CHR18	<b>5</b> a		3GTAACGAC-
CHR19	<b>5</b> a		

4	
- Continued	
Cont	
-	
Figure	

	CTTTATGTTGGGGGCCCCTCTTA	CC	A-CTCGTAC-	T-GCAGCG	T-GCTGCT-GT	ACGAGCA-GTTCAGC-ACCC	CAAGCA-GA	CCGAGCA-G-TA	CCAAGCA-GA	GC-AGCA-GACAGC-AAC-ATC	ACAGCA-GA	GCAGCA-GA	ACGAGCA-GA		CCTGCA-GTTCAGC-ACCC-GT	CTGCA-GTT	CTGCA-GTT	CTGCA-	CTGCAA-GTACAGC-	CTGCAA-GTTTCAGC-	CCTGCA-GTTCAGC-ACCC-GT	CTGC	CCTGCCA-GTTCAGC-AACCC-GT	CTGCA-GTTCAGC-	CTGCA-GTTCAGC-ACCC	CTGCA-GTTCA	CTGCA-GTTCA(	CTGCA-GTTTCAGC-	CGCA-CATCA-GTACAGT-ACTCC-G
	1a	1p	1 P	1c	1c	2a	2b	2b	<b>2</b> p	5c	2c	2c	2c	2q	3а	3a	3 a	3a	3a	3a	3a	n N	3a	3a	3a	3а	3а	3 3	35
	HCV-1	HCV-J	BE90	2TY4	4 T Y 4	HC-J6	HC-J8	NE91	co EB12	S ARG6	S ARG8	110 110	T 1983	H NE92	T CHR20	E CHR21	F CHR22	11 26)	_ T7	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	, BR36	Т9

U	ſ	)	I
7	C	5	Į
7	j	į	Į
- 1		1	I
1		i	I
-1	۳	•	I
1	-	•	Ì
-	r	ì	į
t		)	Ì
			Ì
	ı		I
_		4	I
		_	ı
(	Q	)	ı
1		j	ı
	F	3	
-,		ί	
Ē	I	ı	

CGCA-CATCA-GTACAGT-ACTCC-G CCTGTTA-GTTCAGC-AAC-AC	-CCGCTCA-GCATCAGC-AACCTGCCGCTCA-GCATCAGC-AACCTGCGCTCA-GCATCAGC-AACCTGCCGCTCA-GCATCAGC-AACCTGCCGCA-GTAAGC-AACCTTCCGCTCA-GCATCAGC-AACCTACCGCTCA-GTACAGC-AACCTACCGCTCA-GTACAGC-AACCTACCGCA-GTATCAGC-AACCTGCCGCA-GTATCAGC-AACCTTCCGCA-GTATCAGC-AACCTTCCGC	C-CGCTGACA-GTATCAGC-AC-AC-AT
3b 3c	4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 7 5 6 6 6 6 6 6 6 6 6 6	გ გ
T10 BE98	GB48 GB116 GB215 GB215 GB358 GB809 GB809 CAM622 GB438 GB438 GB438 GB438 GB613 GB622 CAR1/501 CAR1/501 CAR1/501 CAR1/501	CHR19

7/111

	8131 T	· •	
	GGTAA		
	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	<i>x</i>	
	ACAACT - G		
	TACTGAC -6		
	CGAGCGGCGTA -ATG -ACG -CC -C	A A A	
	U		
	AGGTGCCG C-A C-A C-T C-T C-T		HHIOHHHHHHOHO
G	2 TCGC  CA-G CA-G	45 C	
T	Officialia		
Conti	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Figure 1 - Continued	HCV-1 HCV-J BE90 2TY4 4TY4 HC-J6 HC-J8	ARGE ARGE TO THE SERVENT TO BE	CHR21 CHR21 CHR21 T1 NE93 NZL13 EB1 EB2 EB3 EB7 EB7 EB7 EB7 EB7 EB7

	8/111
8082 C-C	GATCTACCCTCG G
35 30	444444444445555 C C C C O G I O H O H O H O R O O
T10 BE98	GB48 GB116 GB215 GB215 GB358 GB358 GB358 GB809 CAM600 CAM622 GB549 GB549 GB549 GB549 GB6-19 BE95 BE96 CHR18

8181	C11GC1ACA1CAAGGCCCGGCAGCC1G1CGAGCCGCAGGGC1C -		TATA	TA	-TG-GATTAGAAGTA-A	ATTGAAGTA	ATTGAAA	ATTGCAATGA	G-GATAAAGAAACGCA-T	G-GAAGGAACGCA-T	G-GAA-AGGAACGCA-T	G-GAAAGCAACTGCA-T	G-GA-AAAAGTGCA-A	TA-AGT-CGAAGC	TA-AGTGCGAAG	<u> </u>	ACAGTGCGAAGC	ACAGTGCAA-GC	ACAA-GGCGAAGC	ACAGTGC-AAGAAC	ATACAGCGAGC	ACAGCGAGC		ACAGCAA		ACAGTGCAA-GC	ACAGGCAAA	ACTA-CA-GTG-T
8132	4 .	A	- I C	CL	AA	A-GAT-	A-GGT-	A-GA	-AG	-AG	- G G 9 -	-ATGT-	AG	AAT-	-AAT-	-AAT-	-AAT-	-GAT	-AAT	-AAT	-AAT	- AA T	- AA T	- AAT	- AA T	- AA	- AA T	- AA - A C T
	- ባ - ወ ፕ	15 15	1c	1c	2a	5p	<b>2</b> p	$^{2}\mathrm{p}$	2c	2c	2c	2c	2d	3a	3a	3a	3a	3a	3a	3а	3a	3a	3a	3a	3a	3a	3а	3p
100	HCV - 1	BE90	2TY4	4TY4	HC-J6	HC-J8	NE91	EB12	S ARG6	SS ARG8	110	T983	S NE92	南 CHR20	CHR21	CHR22	LI E 2	(9) T.	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	T9

												•							
<u>1ed</u> 9	8132 -AA-ACTACTGA-CA-GTGT	-AACTAAATACCAATCAA-T	3GCATCACTATCAAG-	-AGGTCATCACTATCAGGG	3GTCATCACATCA-GGT	3GCATCACTATCAG-	3GC-T-	3GC-TATCAATCA-GT-	3GT-CACA-	\GTTCGTTG-TAC-A-GT-	3AC-TAACAACCA-GT	D	3GG-T-	3GC-AAACCTAT-A	!GCACACTAT-A-GG-	A	AA	A-GGTTTTACTAAA	B-G B
- Continued	, 3b	30	4°C	4c	4c	4c	4e	<b>4</b> e	4 £	49	4 h	<b>4</b> i	4 j	4 <i>k</i>	4 K	5а	Ба	<b>5</b> a	ת
Figure 1 -	~	BE98	GB48	GB116	GB215	GB358			225 ITSI	GB549		# CAR4/1205	CAR1/50		EG-1			CHR18	CHR19

12/111

tinued 11	8182 A-ACCATT-CTCATGG-G-C	A-AA-TCCAT-AT-CTCCATGG		AGAC-T-GCTTTC-GC-TGC		AGAT-GC									A-AAT		-GTTC-CGTTC		GC-CGT-TTACG-CCTC
Contin	3b	3c	4c	4c	4c	4c	<b>4</b> e	<b>4</b> e	4 £	49	4h	4 i	4 j	4 k	4 k	<b>5</b> a	<b>5</b> a	5а	<b>5</b> a
Figure 1 - Continued	$\vdash$	BE98	GB48	GB116	GB215	GB358	GB80			GB54	<b>GB43</b>	12			EG-1		BE96	CHR18	CHR19

# Figure 1 - Continued 12

GGAGGACGCGGCGAGCCTGAGA		A-CGA	T-CGA-AT	A-CGA-AT	A-CGAAC	-CTAGAAGC	-CTAGAA-AGCC	-TTAGAAGCG	-TTAGAAGC	.CTAG-AGC	.CTAGAAGC	.TTAGAAGC				AGAAGCTC	AGAAGCTC	T AGA
8232 AAGCGCGGGGGTCCA	G1AAC	GCAAC-G-	GCAATAA-G-	GCATAA-G-	GTCAAC-G-	GT-ATCG-	GT-ATG-	GT-ATCA-	GATGG-'	GT-ATCG-	GT-ATCG-	GT-ATCG-	GT	GT	GT	TGCCG-	TGCCG-	GTAAG-T-
<del>ር ነ</del> ሪ ነ	15 15	2a	2b	2b	2d	3а	3а	3а	3а	3a	3a	3a	3a	3a	3a	3b	3b	7
HCV-1	BE90	HC-J6	HC-J8	NE91	NE92	S CHR20	SCHR21	CHR22	<u>ព</u> ្រ	S T7	H NE93	NZL13	RBB33	m BR34	<b>9</b> BR36	T9	T10	RF.98

ued 13	8232 8271	GATC-AGAAACGACCCG	ATCAGAAACGAGCCG	GATCAGAAACGAGCCGT-	GATCTGAAACGAGCCG	GGTCTGAA-CGAGCCGT	GTCGAA-CGAGCCGT	ATTG-ACGCCGAGCCGT	GGCCAGTAAGAGCCC	GICGGCCGAGCCC	GATTCA-AG-CAA-CAAGCCC-NA-T	GCTGGTC-CANA-CNNCC-N	GCAACACT-AAA	GCAACACT-AAA	GCAACGCTAAA	GCAAACGCT-AATT-
Continued		4c	4c	4c	4°C	4e	4e	4 £	49	4h	4 i	4 j	<b>5</b> a	<b>5</b> a	5a	5а
Figure 1 -		GB48	GB116	GB215	GB358	GB809	CAM600	G22	GB549	GB438	CAR4/1205	CAR1/501	BE95	BE96	CHR18	CHR19

7	ŗ																								•					
7696	ENCG	O-X	IK-Q		X		WW	OX.	K-0	$\alpha$		X	MLK-QT	MF		CMFK-AQ	CMFK-AQ	CMYK-VQ	CMFK-AQ	1	1	CMFK-AQ	CMFK-AQ	1	ŀ	1	CMFK-AQ	MYK-LQ-	MXK-LQ-	CMFK-QH
1 P 9 C	ESDIRTEEAIYQCCDLDPQARVAIKSL	* <b>A S</b> N	-EO	-D	NH-DYN	RA-S-	-S-	-S-F	-S-	-S-PEETH	-S-	-S-P	RBLA-S-PETH	VEKV-	VEKV-	QVEN-E-EKV-S	B-E-	VKV-S	QV~-EN~B-EKV-S	-EKV-	KV-	KV-S	N-E-E-KV-S	KV-S		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HEKSA	KE-KSA	A KUE KV - I
מד השמ	SEK LE		214					216					146						218						10,12	2,4	8'9			150
	13 13	1p	1p	1 <u>0</u>	10	2a	<b>2</b> p	<b>2</b> p	<b>5</b> p	2c	2c	2c	2d	3a	3а	3a	3а	3а	3a	3а	3a	3a	3a	3a	3а	3a	3a	3b	a C	၁
Figure 2	HCV-1	HCV-J	BE90	2TY4	4TY4	HC-J6	HC-J8	NE91	EB12	ARG8	110	T983	NE92	CHR20	CHR21	CHR22	T1	T7	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	T9	07.1.	DEVS

	2694	-MHK-DL	.K-DL	K-DL	DI	K-DL	K-DL	K-DL	K-DL	DT	K-DL	K-DL	K-DL	K-DL	K-00	K-00	K-00	K-00
		MH-	- HW		HW	MH	HW	HW			WX	KMY	HW		)CMY	)FCMY	2CMY	) C MA
		N-E-EKTA	-S-ELEKV-TA	E-EKTA	E-ERTA	E-EKV-TA	E-EKTA	E-EKV-AA	E-EKV-TA	E-ET-KV-SA	E-EKV-SA	E-EKV-SA	- N - EXDX - KV - NA	E-EKV-TA	Q-EAR(	SQ-DARC	JY-Q-ERC	.Y-O-EARC
	2645	N	A	KVEV	KVEV	KVEV	KVEV	RKVEV	RVEV	RVEV		RVB	B-X-VEV	X-RGEVE-E-E-KV-TAMFK-DL	-SBBS	-AHLSS	BMH	ISSWH
근 건	2				- 6										0		1	ı
- Continued		ಡ	rd	10	10	11	11	11	20	20	11	20	21	⊣	16	16	ಡ	ď
Figure 2 - Cor		4	4	GB48 4c	4	4,	4	4	4	2 4	4	4	4	CAR1/501 4	5 5	BE96 5a	18 5	Ľ
<b>14</b>										UB				SHEE	T (A	ULI		

Figure 2 - Continued 2

2744	CGDDLVVICE	-N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-S	-S	-S					-S	VA-	VA-		VA-	VA-	VA-									-SA		
	AGLQDCTMLV	1 1 1 1 1 1	- K	R	t 1 1 1 1 1 1 1	IIAP	IV-PV	IV-PV	IV-PV	IVAP-	IVAP-	V-IVAS-	IIAP	RNPDF	RTPDF	RNPDF	RNPDF	RNPDF	RNPDF	-N-RNPDF	RNPD	RNPD	RNPD	RNPD	RNPDF	RNPDF	RSPDF	K-PSF	K-PSF	IKNPSF
	I KARAACRA	T	SI-	T	<u>I</u>	-VLK-	K	TK-	LK-	· - N ^ -	N	-VKV-	.VQK-	SK	AK	AE	-AK-	T	TT-AK	TN-	IE	TE	K	K	TAK	T	TAK	TS	S L	KTK
	LTSCGNTLTC)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	M T	MM	MM	MM	W	M	W	IW	EI	E	EI	EI	EI	IE	E	EE	EI	IH	EI	E-I	H H	FI	EI	H H	H
2695	YRRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICE	1 1 1 1 1 1 1 1		1 1 1 1	 	1 1 1 1 1 1	- H		- H		1 1 1 1 1 1 1 1	A	[H]	1	1	H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	7	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D4   1   1   1   1   1   1   1   1   1	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>d</u>	<u> </u>	d	d
	la	1p	1b	1c	1°	2a	2b	2b	2b	2C	2c	3c	2d	3a	3a	3а	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3a	3р	3b	3c
	HCV-1	HCV-J	BE90	2TY4	4 TY4	HC-J6	HC-J8	so NE91	EB12	ARG8	110 110	T 1983	나 NE92	H CHR20	CHR21	CHR22	T.I.	^L I 26)	NE93	NZL13	EB1	EB2	EB3	EB7	BR33	BR34	BR36	T9	T10	BE98

18/111

		2695
GB48		YRA-
GB116		
GB215		YA-
GB358		.SI
GB809		WLSIK
CAM600		XXX-
CAMG22		TKK
GB549		QYFVLVTKG-S
		TTK
		TTK
		LTTK
EG19	4 k	YFLTIK-S-
		L-SR-RL-
BE96	Sa	
	<b>5</b> a	ML-
	<b>5</b> a	
F		

Figure 2 - Continued 3

4
ontinued
2 - 0
fgure

2745 2757 SAGVQEDAASLRA TA	-Q-TEERN -Q-NEERN -Q-NEERN -Q-TEERN	-DDR-ADDRTADDR-A-GDDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-ADDR-A
1a 1b	2a 2b 2b	
HCV-1 HCV-J BE90	HC-J6 HC-J8 NE91 NE92	CHR20 CHR21 CHR22 T1 T7 NE93 NZL13 BR34 BR34 BR36 T9

ហ
Ö
9
뒴
7
Ţ
ŭ
P
٧
~
as
Й
린
듸
E

nued 5	2745 2757	-DEKRP-G-	-DEKRA-G-	-DEKRA-GV	-DEKRA-G-	-GEKRA-G-	-GEKRA-G-	-DERRA-G-	-GERA	-GERA	-I-IDKQAT	EPXTX-P	-Q-THE	-Q-THE-N	-Q-THK	-O-THE-CV
Continued		4°C	4c	4c	4c	<b>4</b> e	<b>4</b> e	4£		4 h	41	4 j	5 S	5а	5a	52
Figure 2 -		GB48	GB116	GB215	GB358	GB809	CAM600	G22	GB549	GB438	CAR4/1205	CAR1/501	BE95	BE96	CHR18	CHR 1 9

HCV-1 HCV-J	1a 1b	EQ ID	AAAAAACAAP C
כל	za 2a		A-A
HC-JB	2b		B
NE92	2q	143	CA-AT
3B1	3а	٠	GCA-A
VZL1	<u>3</u> a		CA-A
ICV-TR	Q		<u>C</u>
3E98	บ	4	ACTAGCA-AS
3B358	บ	191	1 1 1
3B809	<b>v</b>	9	
2AM600	e)	9	
3B724	Ç•	ď	
3G-29	4.2		ı
BE95	ಹ	151	
			51
HCV-1	1a		CGCCCACAGGACGTCAAGTTCCCGGGTG
HCV-J	$^{1}\mathrm{p}$		L
HC-J6	2a		
IC-J8	<b>2</b> p		C
E92	2d		C
:B1	3a		
ZL1	3a		
ICV-TR	3b		
E98	3c		GAC
1358	4 c		CCATTCCTCC
B809	4 e		CATT
AM600	4 e		CTATC
B724	4?		CTAT
.G-29	4.2		CCATTTTCCATC
BE95	<b>5</b> a		

22/111

HCV-1 HCV-J HCV-J HC-J8 NE92 EB1 NZL1 HCV-TR BE98 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB358 GB55 GB55 GB55 GB56 GB56 GB77 GB77 GB77 GB77 GB77 GB77 GB77 GB7	- Contin 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TTGCCGCGCAGGGCCCTAGATTGGGTGTGC
GB809 CAM600 GB724	4 4 4 4 0 0 0 0 0	
EG-29 BE95	4 ; 5а	`

23/111

e 3 - Continued 2 201	1a	1bCTT	2	7	8	3	3bCTCGC	3cGCAA	4cAAT-TA	4eGCATAT	4eGCAAATG	45GCTTG-	4	5aGC-AACC-	251	13	T 1b	5 2aACGACTCA	3 2bGCACTT	2dGCGCTCAG	3aTCA	3aTCAG	rr 3bTTTTT	m	3 4	4	00 4	1 4	4	L
-	HCV-1	HCV-J	HC-J6		EB1	NZL1	HCV-TR	BE98	GB358	GB809	CAM600	GB724	EG-29	BE95		HCV-1	HCV-J	HC-J6	HC-J8	NE92	EB1	NZL1	HCV-TR	BE98	GB358	GB809	$\sim$	GB724	EG-29	

က
Continued
3 -
Figure

CGGCGTAGGTCGCG		1	AAA	I		B	AC	A		N-GAC	G	A-A			CTTCGCCGACCTCA		T	TT			A	A				AT
<b>3GCCCCACAGACCCC</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AT			A-AT	A-AT	A-AT	A-AT	1	TAT	A-ATT	AT			PACCETTACGTGCGG	A	A-		I	BD	A	AT	AA	AA		
<b>TGGCTCTCGGCCTAGCTGG</b> (	· I	ATCTCTCT	CGTCT	AGCGTCA	CCTATCT	CCTATC	TCT	CCGICG	ı	-N-	CATCT	AAT		-	ATTTGGGTAAGGTCATCGA1		CG			A		-CT	- CC	· · · · · · · · · · · · · · · · · · ·		
ຽ	1		1	1	1	1	1	1	1	l l	1	I		35	CA	Ţ.	1	I	1	1	1	1	1	1	l	Ţ
1a	$^{1}\mathrm{p}$	.2a	2b	2d	3a	3a	3b	30	<b>4</b> e	4e	4.2	<b>5</b> a			1a	1p	2a	2b	2d	3a	3a	3b	4e	4e	4.2	52
HCV-1	HCV-J	HC-J6	HC-J8	NE92	EB1	NZL1	HCV-TR	BE98	GB809	CAM600	☐ GB724	<b>⋥</b> BE95	SHI	EET	3 HCV - 1	F HCV - J	HC-76	9 HC-J8	NE92	EB1	NZL1	HCV-TR	GB809	CAM600	GB724	BE95
		1a 1b	1a 1b 2a	1a 1b 2a 2b	1a 1b 2a 2b	11a 11b 22b 3a	1 1 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3	11a 22a 23a 3a 3a	HCV-1 1a HCV-J 1b HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a HCV-TR 3b	HCV-1 1a HCV-J 1b HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e CAM600 4e	HCV-1 1a HCV-J 1b HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e CAM600 4e GB724 4?	HCV-1 1a HCV-J 1b HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e CAM600 4e GB724 4? BE95 5a	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e CAM600 4e GB724 4? BE95 5a	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e CAM600 4e GB724 4? BE95 5a	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 4e GB809 4e CAM600 4e GB724 4? BE95 5a HCV-1 1a	HCV-1 1a HCV-J6 2a HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e CAM600 4e GB724 4? BE95 5a HCV-1 1a HCV-J 2a	11 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HCV-1 1a HCV-J6 2a HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 3c GB809 4e GB724 4? BE95 5a HCV-J 1a HCV-J 1a HCV-J 2a HCV-J 2a	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3a HCV-TR 3b BE98 4e GB809 4e GB724 4? BE95 5a HCV-J 1a HCV-J 1b HCV-J 2b HC-J6 2b NE92 2d	HCV-1 1a HCV-1 La HCV-J 1b HCV-J6 2a BC-J8 2b BB1 3a BB1 BB9 BB98 3c GBB09 4e GB724 4? BE95 5a HCV-J 1a HCV-J6 2a HC-J6 2b HC-J6 2b HC-J8 2b BB1 3a BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1	HCV-1 1a HCV-J6 2a HC-J6 2a HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3b BE98 3c GB809 4e GB809 4e GB724 4? BE95 5a HCV-1 1a HCV-J 1b HCV-J 2a HCV-J 2a HCV-J 3a NE92 2d HC-J8 2b HC-J8 2b HC-	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2b NE92 2d EB1 3a NZL1 3a NZL1 3b BE98 3c GB809 4e GB724 4? BE95 5a HCV-J 1a HCV-J 1b HC-J6 2a HC-J6 2a HC-J6 2a HC-J76 2a H	HCV-1 1a HCV-J6 2a HC-J8 2b HC-J8 2d EB1 3a NZL1 3a NZL1 3b BE98 4e GB809 4e GB724 4? BE95 5a HCV-J 1a HCV-J 1b HCV-J 2a HCC-J6 2b HC-J6 2b HC-J8 2b HC-J8 2b HC-J8 2b HC-J8 3a HC-J8 2b HC-J8 3a HCC-J8 4a HCC-J8 3a HCC-J8 4a HCC-J8 4	HCV-1 1a HCV-1 La HCV-J 1b HCV-J6 2a BC-J8 2b BB1 BB9 BBB9 BBB9 Ae GBB09 Ae GBB24 A? BE95 5a BE95 5a HCV-J 1b HCV-J 1b HCV-J 1b HCV-J 2b BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB

**25/**111

GTACATACCTCC AC	C
112222244442 21222222222222222222222222	0
HCV-1 HCV-J HC-J6 HC-J8 NZL1 HCV-TR GB809 CAM600 GB724 BE95 HCV-J	HC-J6 HC-J8 NE92 NZL1 HCV-TR GB809 CAM600 GB724 BE95

	œ	20	/111		
	428 ACGTGCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCC	TT-T-T-TT	TTTTTTT		T
	SEQ ID NO	143	13,15,17 23,25,27 19,21	888	118,187 122,169 167 171 173 120,175 177
	11 12 12 12 12 12 12 12 12 12 12 12 12 1	2a 2b 2d	$\alpha$	4 4 A C C C C	4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6
Figure 4	HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVHCT27 HCVTH	HC-J6 HC-J8 ME92	HD10 HD10 BR33 NZL15 HCV-TR		GB358 GB809_2 CAM600 CAMG22 CAMG27 GB549 GB438

27/111

	A	AA
1	1	T T

רסוורזווחפת ד	181	143	195
	4?	5a	T.
-	CAR4/901	BE95	RE100

Figure 4:	: Continued	ued 2	
HCV-1	<del></del>	429 TCTTGGAGGCGCTGCCAGGGCCCTGGCGATGGCGTCCGGGTTCTGGAA	'GGA.P
HCVEC1	la 1		
HCVHCT18	la		1
HCVHCT23	la	L	1
HCVHCT27	1a	( + 1	1 1
HCVTH	1a		1
HCV-J	1b	CAG	9
1	2a	GCTCATCGA-AC-	9
HC-J8	2b	I	9
a)	2d	AGT-T-TCATCGA-A	1 1
HD10	3a	-G-AGAGA	T
BR33	3a	-AGACC-T-	
BR36	3a	-AGACC	ī
NZL15	3a	-AGACT	ı
HCV-TR	3b	-GGTCAACTTGACAT-G	U
GB809_4	<b>4</b> a	GTC	ı
GB116	4c	-GTTCA-AACTTAC-G	5
GB215	4C	-GTTCAAAT>-TAC-G	1
GB358	4c	-GTTCACTTAC-G	-
GB809 2	<b>4</b> e	-GTTCAACT	1 1 1
CAM600	4 e	CG-GTTC	1 1 1 1
CAMG22	4 £	-GTTCAAAAC-G	1
CAMG27	4 £	-G-GTTCTAAAC-G	Ð
GB549	49	-G-GTTCTATA	Ð
GB438	4 h	AG-ATCATAG-	
CAR4/1205	4 i	1	-

Continued 3	CG-GTTCACTTAC-G	CGGTCATCACTGACTCTCTCTCTCTCTCTCTCTCTCTCTCTC
Con	4 ?	n D D
Figure 4:	CAR4/901	BE95 BE100

30/111

Figure 4:	Continued	lued 4
		479 528
HCV-1	1a	ACGCCGTGAACTATGCAACAGGGAACCTTCCTGGTTGCTCTTTCTCTATC
HCVEC1	1a	
HCVHCT18	1a	
HCVHCT23	r B	
HCVHCT27	1a	
HCVTH	la	1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
HCV-J	1b	
JI. DI	C	
HC-U8	2p 2p	GA-ATCTT-A
NE92	2d	GA-A
	(	7 7 7 E E
HD10	3a	-T-TC
BR33	3a	LCTI-GC
BR36	3a	
NZL15	3a	1
HCV-TR	3b	ATTT
GB809 4	<b>4</b> a	GA-T
GB116 ⁻	4°C	1
GB215	4c	A-CTTCCA
GB358	4°C	GA-CTGTC
GB809 2	<b>4</b> e	O
$CAM60\overline{0}$	4e	GA-CT
CAMG22	4 £	GA-T
CAMG27	4 £	
GB549	49	T
GB438	4 h	GA-CTC

CAR4/1205 CAR4/901 BE95	4iGA-C- 4?GA-T- 5aGA-	T
-------------------------------	-----------------------------	---

32/111

33/111

	578		TTA-1 GG	ָטְטְטְ
	H		-G-GT TGT TGT GC- TC-	AGTT AGTT GTT
	AGA	-A-CA -A-C	- A	1CI
	G		HHODOHO	CTG CG
				TC(
	- T G	T - G T		1 1 D D
	- A T	- A T - A T - A T	-AT -GC -AT -AT TAT AAT	TT AT
	9 C	CT	CT	TAT
lnued	52	D & 1		; ;
- Continue	44 44 4 G G T	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6	ე დ დ ე დ დ
Figure 4	GB809_4 Z4 71	GB116 GB215 GB358 Z6 Z7	GB809 2 CAM600 G22 G27 GB549 GB438 CAR4/1205	BE95 BE100 SA4
•			CUEET /DI	n E 26)

	579	GTGCGCAACTCCACGGGGCTTTAC				ATCATT-	 	GGTGT-CA-ATGCCT-C		AAGATGTACCGGCATGGCCA-CTG	CA-GATT-GTTCTAGCTCTT-AA		GCAAGAGCA-CTCATGACAGA		GTGGTA-GT-TCCTGT-C-TCCTT-CTA	TGGTA-GT-TCCTGT-C-T	GTGGTA-GT-TCCGT-C-TCCTT-CTA	GTACACGA-GT-TCATGTGC-TCCTTG
		la	la	la	1a	1a	1a	1p		2a	<b>2</b> b	2c	2d	3a	3a	3а	3a	3b
••		HCV-1	HCVEC1	HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J					NE92				_	HCV-TR
		٠							S	JB\$	TIT	UTI	SH	EET (	RUL	.E 2	!6)	

35/111

Figure 4 -	Continued	ned 9
		579 628
GB809 4	4a	CTACGTG-TTCA-CTA
Z4	<b>4</b> a	CTACGTG-TTCA-CTATGT-
21	4p	CTACGTG-TTCG-CTTA
GB116	4c	CTATGTCG-CTTA
GB215	4c	CTATTGTCG-C
GB358	4c	CTATTGTCA-CTA
<b>9</b> Z	4c	CTATTGTCG-CT
2.2	4c	CTAT-ATGTCG-CTACCG
	4d	CTATAG-TTG-CTCG
GB809 2	4e	ATTG-TTCGTACC
CAM600	4e	ATTG-TT
	4 £	TTAT-AATCA-C
	<b>4</b> £	TTAT-AA-TCA-C-TATC
	<b>4</b> q	CTACGAT-TCAT
GB4	4 <u>h</u>	CTACGTG-ATCA-CTCCCG
CAR4/12	<u>4</u> i	CTATTG-TTACGGTT-TA
GAR4/901	4.5	CTACGTGT-TCA-C
BE9	5a	CTACATGT-TATTTA
BE100	5a	CTACATGT-TA-CTTA
SA4	52	CTACAGT-TGTT

C	)
~	1
70	נו
	7
בייה ליהטה	֡֝֝֝֝֟֝֓֓֓֓֝֝֟֝֓֓֓֓֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֝֓֓֓֡֓֜֝֓֡֓֓֓֡֓֡֓֜֝֡֡֓֜֡֓֜֡֓֜֡֓֡֓֡֡֡֓֜֡֡֡֡֡֡֡֡
Ì	į
1	l
7	ľ
7	ľ
7	ľ
1	ľ

629	CGAGTATTGTGTACGAGGCGGCCGATGCCATCCTGCACACTCCGGGGTGC	AA		L9L	-ACCCATGACCCC	ATCACC-GGC-ACTCCAG-CTGCGTCC	CCCACC-GGCCTCA-TCAG-T	-TCT-GGCCTT-AA-GAAG-GTTTAA	GTCCC-GGCCTCAGGTG-TTGTCCT	TC-ATC-	TC-ATC	GCAC-ATC-TTTAC-C-C	L	GC
	ы Н Н	la '	n n n	1a	1p	2a	Sp	2c	2q	3a	3a	3a	3а	3p
	HCV-1 HCVEC1	HCVHCT18	HCVHCT23	HCVTH	HCV-J	E HC-Je	IS HC-J8	OTI S83	TE SH	HD10	3 BR33	F BR36	5 NZL15	HCV-TR

	-CCG-ACTAA-T-A-C-CCATATTTG	CAC	-CCAAAGC-CCAATTGAT	CAT-A-T-CCAACTCT	CA	CAA-C-AGC-CCA	CATC-AAC-CCAGT-ACTCA	AAT	CACTAA-C-ATT-CCAT-	CAA-	CAA	TCAC-TTA-T-CCATCT	-TCAC-TTA-AGCCATTCTAA	TAT-A-T-A-CCATATCTA-	CA-	TCATA-	-CCATAC-ATC-CCAATTAA	TCCACTA-ATA-CCTG	-TTCCACTA-ATCTGAG-ATC	-TTCCATT-ATA-CCTGTTG-ATT
	<b>4</b> a	4a	<b>4</b> b	<b>4</b> C	4c	4c	4c	4c	<b>4</b> d	4e	4e	4 £	4 £	49	4h	4 i	4.5		<b>5</b> a	
	GB809 4	24	Z1	-	GB215	10	9Z :	27	DK1	GB809	CAM			<b>GB54</b>		CAR4/12	52 CAR4/901	BE9	BE100	SA4

Figure 4 - Continued 11

Figure 4 - Continued 12		EC1 laACTT	8 1aT-		1a	12		2a	J8 2bAT-AGAATAATGG-AT-CATCA-ACAAG-A	2c	7		0 3aATAGCTTA-ATGCCACCC-AG	3a	9	15 3aATC-AGCTA-AT-CACCC-AG	
Figure 4 -	HCV-1	HCVEC1	HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J	HC-J6	HC-J8	583	NE92		HD10	BR33	BR36	NZL15	HCV-TR
								S	UB	STI	ווטו	E S	HE	ET (	(RU	LE :	26)

39/111

iued 13	728	CGA-G-CCGTGTC-TCAC-CG-A-	ACTGATGACTGA-AC-TCAC-CG	CTGGACAGTA-TTC-CCC-CT	3GA-G-TTGTCAGAC-	T-ACTGA-G-TTGTCAGAC-TCC-CT-	3GA	T-GCTGA-G-TTGTCAGAC-CCCC-T	3TGA.	TGA-GAGAAGT-CACT-TC-C	-AC	ACTGA-GACTGCAGC	TAA-AACTGCAGTCCA	CTGA-AACTGCAGAC-ACA-ACT	GA-AACC-GAC-C-CC-TC-	-GCTAA-AACTGT-TC-TCA-TC-TT-	TGAAGACCGTCAGCCTC-	A-ACGA-GACCGTTC-CAT-TC	7 K H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D H D K D K	THE TOWN THE TANK TO THE TANK	1 I - I GAGI	GTCA-GC-A-ATT-T-AGT-ACCCAAC
- Continue		<b>4</b> a	4a	<b>4</b> b	4c	4c	4c	4c	4c	<b>4</b> d	<b>4</b> e	<b>4</b> e	4 £	4 £	49	4 h	<b>4</b> 1	4.2	r u	ל ט ט	ช ก :	Sа
Figure 4 -		GB809 4	_ 24	21	11	GB215	35	92	27	DK13	GB809		G		GB54	ט	CAR4/12	CAR4/901	DFO	00100	니 · 김 ·	Z.

14
<u>tinued</u>
- Cor
gure 4
면

729	CCCTACGGTGGCCACCAGGGATGGCAAACTCCCCGCGACGCAGCTTCGAC	C	C	C	CA	C	TCCGGA-CAGCAA-CACAA-A	AG-ATGTGCA-C-GCC-GGCGCT-ACA-GGCT-AGA	AC-ACTGTG-AAC-CCGGTGCG-T-A-TCGTAGCGA	C-ATC-CTATC-ACCTGGCGCT-T-A-T-A-GGCGG	GC-ATA-ATGTGCC-ACCTGGTGCG-TTA-C-A-GGCGGA	AAAGTT-C-T-GG-GCAAA-CG-TTC-A-ACA	AAAGTT-C-T-GGGGCAAA-CG-TTC-A-ACA	AAAGTA-T-C-T-GG-GCAAA-CG-TTC-A-ACA	AAAGTT-C-T-GG-GCAA-TA-TG-TTC-A-ACA	AA-GGTTACCCTTGGCG-GAA-CGTC-A-CA
	1a	1a	1a	1a	1a	1a	1p	2a	<b>2</b> p	2c	_2d	3 a	3a	3а	3а	3p
	HCV-1	HCVEC1	HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J				NE92			E BR36		9 HCV-TR

100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	729   4a   ATGGTATCCATGG-CGCTGCTCGA-TCCT-C-    24   4a   ATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-C-    25   4b  CTG-GCCTTCTGCTTAGA-TCCT-C-C-    26   5  CT
		E100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC
C F ECCOT CC EC F CC CF E E C		EO E C F ECCO CO EC F CC CF E E C
		E100
100 580-1-AGCAGC11-GG-GCAG1-AG-1-C	P. T. C	20 E C
100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	K95 58 58 58 58 58 58 58 58 58 58 58 58 58
100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-I-CI	E35 E100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT 100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT E100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT 100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT E100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT 100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	E95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT E100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	CAR4/901 4? ATTTA-
CAR4/901 4? ATTG-TCCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	CAR4/901 4? ATTG-TCCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
CAR4/901 4? ATTG-TCCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	CAR4/901 4? ATTG-TCCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	-W-100111109109190W100-0W00990
CAR4/901 4? ATG-TCCCT-CCT-GGGGCTGCTTTCA-BE95 5aACT-AGCC-AGCTT-GGGGCTGCTTCT BE100 5aACT-AGCC-AGCTT-GG-GCAGT-AG-T-CT BE100 5a	CAR4/901 4? ATTG-TCCT-CCT-GGGGCTGCTTITCT-A- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aAGCC-AGCTT-GG-GCAGT-AG-T-CT	- 4 - かくりか かかかくだ かくがかだくをかくしょうない でじ でし でし ・・・・・・・・・・・・・・・
CAR4/1205 4iCGGCCAC-CCTACGTGCTGCTTTTCCT-A- CAR4/901 4? ATTG-TCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	CAR4/1205 4iCGGCCAC-CCTACGTGCTGCTTTTCCT-A- CAR4/901 4? ATTG-TCCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
CAR4/1205 4iC	CAR4/1205 4iC	GB4.38 4h A('.'.'','-','-','','','-','-','','','','','',
GB438  GB438  GA7-CC-T-GGGGCTACTT-T-TCTGAC  CAR4/1205  41 CCGGCCAC-CCTACGTGCTGCTTTTCCT-A-  CAR4/901  4?  ATTG-TCCT-CCT-GGGGCTGCTTTCA-  BE95  5a ACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT  BE100  5a ACT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	GB438  GB438  GB438  CAR4/1205  4h CTAGCCAC-CCTACGTGCTGCTTTTCCT-A- CAR4/901  4?  ATTG-TCCCT-CCT-GGGCTGCTTTTC-A- BE95  5a ACT-AGCC-AGCCT-GG-GCAGT-A-G-T-CT BE100  5a ACT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	
GB438 4h ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A- CAR4/1205 4iCCGGCCAC-CCTACGTGCTGCTTTTCCT-A- CAR4/901 4? ATTG-TCCCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCT-GG-GCAGT-AG-T-CT BE100 5aCCT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	GB438 4h ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A- CAR4/1205 4iC	-9-W)) TURDO -900000T TOOO - 9T TOW
GB438 4h ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A- CAR4/1205 4iCGGCCAC-CCTACGTGCTGCTTTTCTG-A- CAR4/901 4? ATTG-TCCT-CCT-GGGGCTGCTTTCA- BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	GB438 4h ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A-CAR4/1205 4iCGGCCAC-CCTACGTGCTGCTTTTCTG-A-CAR4/901 4? ATG-TCCCT-CCT-GGGGCTGCTTTTCCT-A-CAR4/901 4? ATG-TCCCT-CCT-GGGGCTGCTTTCA-BE95 5aACT-AGCC-AGCCT-GG-GCAGT-AG-T-CTBE100 5aC	- ヴ - ペンシルグ くびしようじ
GB549  GB438  4h  ACTAGT-CCCTCT-GGGGCTACTTTCTG-A-CAR4/1205  CAR4/1205  4i  ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A-CAR4/901  4?  ATTG-TCCT-CCT-GGGGCTGCTTTTCTT-A-CAR4/901  BE95  5a ACT-AGCC-AGCCT-GG-GCAGT-AG-T-CTBE100  5a ACT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	GB549  GB438  4h  ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A-CAR4/1205  CAR4/1205  4i  ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A-CAR4/901  4?  ATG-TCCTCTGGGCTGCTTTTCCT-A-CAR4/901  BE95  5a ACT-AGCC-AGCCT-GG-GCAGT-AG-T-CTBE100  5a ACT-AGCC-AGCTT-GG-GCAGT-AG-T-CT	
GB549  4g  ACTTGCCCTTTGGCGCGGCTCGAATCCA-G- GB438  4h  ACTAGTCCTCCTACTTTCTG-A- CAR4/1205  4i C	GB549  4g  ACTTGCCCTTTGGCGCGGCTCGAATCCA-G- GB438  4h  ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A- CAR4/1205  4;  ACTGGCCAC-CCTACGTGCTGCTTTTCCT-A- CAR4/901  4?  ATTG-TCCTGGGCTGCTTTTC BE95  5a ACT-AGCC-AGCCT-GG-GCAGT-AG-T-CT BE100  5a	- ヴ - タンし マジル・コマ
G27  4f TG-GCCAC-CATTGGCGCTACTTGA-TCCA-G-GB549  4g  ACTTGCCCTTTGGCGCGGCTCGAATCCA-G-GB438  4h  ACTAGT-CCCT-CCT-GGGGCTACTTTCTG-A-CAR4/1205  4i CGGCCAC-CCTACGTGCTGCTTTTCTG-A-CAR4/901  4?  ATTG-TCCTGGGCTGCTTTTC-A-B-BE95  BE95  5a ACT-AGCC-AGCCT-GG-GCAGT-AG-T-CTBBE100  5a AGCC-AGCTT-GG-GCAGT-AG-T-CT	G27 4fTG-GCCAC-CATTGGCGCTACTTGA-TCCA-G-GB549 4g ACTTGCCCTTTGGCGCGGCTCGAATCCA-G-G-GB438 4h ACTAGT-CCT-CCT-GGGCTACTTTCTG-A-CAR4/1205 4iCGGCCAC-CCTACGTGCTGCTTTTCCT-A-CAR4/901 4? ATG-TCCCT-CCT-GGGCTGCTTTCA-BE95 5aACT-AGCC-AGCCT-GG-GCAGT-A-G-T-CTBE100 5aCT-AGCC-AGCTT-GG-GCAGT-AG-T-CC	
G27 GB549 GB549 GB549 GB549 GB549 GB438 4h ACTAGT-CCCTTTGCGCGCGCTCGAATCCA-G-CAR4/1205 CAR4/1205 GB, ACTAGT-CCTGGGCTACTTTCTG-A-CAR4/901 ACTGGCCAC-CCTACGTGCTGCTTTTCCT-A-CAR4/901 A? ATG-TCCCTCCTGGGCTGCTTTTCT-A-G-T-CT-A-G-T-CT-A-G-T-CT-A-G-T-CT-A-G-T-CT-A-G-T-CT-A-G-T-CTA-G-T-CT	G27 G27 G27 G27 G27 G46 C27 G27 G47 C27 G58549 G58438 G47 C27 C27 C27 C27 C27 C27 C27 C27 C27 C2	G22 4£CCG-GCCAT-CCTTGGCGCTACTCGA-G-
G22 41CG-GCCAT-CCTTGGCGCTACTCGA-TCCA-G-G27 45TG-GCCAC-CATTGGCGCTACTTGA-TCCA-G-G-GB549 49 AC-TTGCCTTTGGCGCGCTCGAATCCA-G-GB438 4h AC-TAGT-CCTGGGGCTACTTTCTG-A-CAR4/1205 4iCGGCCAC-CCTACGTGCTGCTTTTCTT-A-CAR4/901 4? ATG-TCCTCTGGGCTGCTTTTCA-BE95 5aACT-AGCC-AGCCT-GG-A-G-T-CTBE100 5a	G22  41 CCG-GCCAT-CCTTGGCGCTACTCGA-TCCA-G-G-G27  42  G27  44 TTG-GCCAC-CATTGGCGCTACTTGA-TCCA-G-G-GB549  44  ACTTGCCTTTTGGCGCGGCTCGAATCCA-G-GCAR4/1205  41  ACTAGT-CCTCCT-GGGGCTACTTTCTG-A-CAR4/901  42  ATGCCAC-CCTACGTGCTGCTTTTCTT-A-CTT-A-G-T-CT-A-CAR4/901  BE95  5a ACT-AGCC-AGCTT-GG-GCAGT-AG-T-CTBE100  5a AGCC-AGCTT-GG-GCAGT-AG-T-CC	
G22  G27  G4	G22  G27  G27  G4	CAM600 4e TCAGI-GCCAI-C-C-GGIGCIGCTIGACCI-G
CAM600 4e TCAGT-GCCAT-C-C-GGTGCTGCTTGACCT-GG G22 4fCCG-GCCAT-CCTTGGCGCTACTCGA-TCCA-G- G27 4fCTG-GCCAC-CATTGGCGCTACTCGA-TCCA-G- GB549 4g ACTTGCCCTTTGGCGCGGCTCGAATCCA-G- GB438 4h ACTAGT-CCTGGGCTACTTTCTG-A- CAR4/1205 4iCTAGGCCAC-CCTACGTGCTGCTTTTCTT-A- CAR4/901 4? ATG-TCCCT-CCT-GGGGCTGCTTTTCA- BE95 5aACT-AGCC-AGCTT-GG-GCAGT-AG-T-CT BE100 5a	CAM600 4e T - C - A - A - GT - GCCAT - C - GGTGCT GCTTGA CCT - GG G22 4f C G - GCCAT - CCTTGGCGCT - ACTCGA - TCCA - G - G27 G27 4f T G - GCCAC - CATTGGCGCT - ACTTGA - TCCA - G - GB438 GB438 4h A - C - T TG - CCCT - CTTGGCGCG - GCTCGAATCCA - G - CAR4/1205 4i A C T GG - CCAC - CCTACGTGCT - ACTT TCTG - A - CAR4/901 4? A T TG - TCCT - GGGGCT - GCTTT TCTC - A - CAR4/901 4? A T TG - TCCT - GGGGCT - GCTTT TC A - C T T TG - TCCT - GGGGCT - GCTTT TC A T T TG - TCCT - GGGGCT - A - G - T - CT A T - A C - T - A C - T - A C - T - A C - T - C	THE TOTAL PROPERTY OF
CAM600         4e         TCAAGT-GCCAT-C-C-GGTGCTGCTTGACCT-G-G-G-G-G-CCT-G-G-CCTTGGCGCTACTCGA-TCCA-G-G-G-GCCAC-CATTGGCGCTACTTGA-TCCA-G-G-GB438           4f        TG-GCCAC-CATTGGCGCTACTTGA-TCCA-G-G-GB438           4h         ACTTGCCTTTTGGCGCGGCTCGAATCCA-G-G-GAA/1205           4i         ACTAGT-CCCTCTT-GGGGCTACTTTCTG-A-CAR4/901           4?         ACTAGT-CCCTCCT-GGGGCTACTTTCT-AG-T-CT-A-GCTTTCCT-A-GCTTTCCT-A-GCTTTCCT-A-GCTTA-GCTT	CAM600         4e         T - C - A - A - GT - GCCAT - C - C - GGTGCT - GCTTGA - CCT - G - GCAT - CCTTGGCGCT - ACTCGA - TCCA - G - GCAC - CTTGGCGCT - ACTTGA - TCCA - G - GCAC - CATTGGCGCT - ACTTGA - TCCA - G - GCAC - CATTGCCGCG - GCTCGAATCCA - G - GCAC - CCT - CCT - GGGCT - ACTT TCTG - A - C - T - A GT - CCT - CGT - GGGCT - ACTT TCTG - A - C - T - A GT - CCT - CGT - GGGCT - ACTT TCTG - A - C - T - A GT - CCT - CGGGCT - GCTT TCTG - A - C - T - A TG - TCCT - GGGCT - GCTT TC A - C T - A T T - A C - T - A - C - T - A - G - T - CT A - G - T - CT BE100           Sa	GB809 2 4e TC-1-G1-G1-GCC1T-G-1-GG1GC1GC1CGACC1-G-
GB809 2 4e TCAGT-GCCTT-C-T-GGTGCTGCTCGACCT-G-CAM600  G22 4f TCAAGT-GCCAT-C-C-GGTGCTGCTTGACCT-G-G-G22  G27 4fC	GBB09_2 4e TCAGI-GCCIT-C-T-GGTGCTGCTCGACCT-G-CAM600  CAM600 4e TCAAGT-GCCAT-C-C-GGTGCTGCTTGACCT-G-G22  4fC	THE STREET STREET STREET
GBB09_2         4e         TCAGT-GCCTT-C-T-GGTGCTGCTCGACCT-G-CCT-G-CCT-G-CCT-G-CCT-G-CCT-GCTTGC	GBB09_2         4e         TCAA-GT-GCCTT-C-T-GGTGCTGCTTGACCT-G-G22           CAM600         4e         TCAA-GT-GCCAT-C-C-GGTGCTGCTTGACCT-G-G-G22           G22         4f        CG-GCCAT-CCTTGGCGCTACTTGA-TCCA-G-G-GB549           G27         4g         ACTTGCCTGGCGCGGCTCGAATCCA-G-G-GB438           GB438         4h         ACTAGT-CCTGGGGCTACTTG-A-TCTG-A-GCAR4/1205           GAR4/1205         4i         ACTAGT-CCTCCTGGGGCTACTTTCTG-A-CCAR4/901           GAR4/901         4?         ATTG-TCCTGGGGCTGCTTTTCTA-GCTTTCA-GCTTTCA-CCAR4/901           BE95         5a        A-GCT-AGCC-AGCTT-GG-GCAGT-AG-T-CTBE100           BE100         5a        T-AGCC-AGCTT-GG-GCAGT-A-G-T-CT	DK13 4dCCTG-GCAACCTGTGCTGCTTGA-TCTT-GA
DK13  4d	DK13  4d	
DK13  4d	DK13  4d	Z7 4c TCGG-GCC'I'I'A'I'-GG'I'GCAGC'I'I'GAA'I'CCA-C-
Z7  4c  T-CC	Z7  4C  T-CCGG-GCCTTAT-GGTGCAGCTTGA-TCTT-GP  GB809  Z 46  T-CAGT-GCCTT-C-T-GGTGCTGCTTGA-TCTT-GP  CAM600  4E  T-CAGT-GCCTT-C-T-GGTGCTGCTTGACCT-G-  G22  4f CC	T I TO THE TERM OF
Z7         4c         TCCGG-GCCTTAT-GGTGCAGCTTGAATCCA-C-DK13           DK13         4d        CCTG-GCAACCTGTGCTGCTTGA-TCTT-GAGDB809           CAM600         4e         TCAGT-GCCTT-C-T-GGTGCTGCTTGACCT-G-GCAGGGT           G22         4f         TCAAGT-GCCAT-C-CTTGGCGCTGCTTGACCT-G-GGTGCTGCTTGATCCA-G-GGB549           GB549         4g         ACTTG-CCAT-CCTTGGCGCTACTTGA-TCCA-G-GGB438           GB438         4h         ACTTG-CCTCT-GGGGCTACTTG-A-TCCA-G-CAR4/1205           GAR4/1205         4i         ACTGG-CCAC-CCTACGTGCTGCTTTTCTG-A-CCTCGGGCTACTTTCTG-A-GT-CCTGGGGCTACTTTCTTTCTTTCTTTCTATG-TCCCTCGGGCTGCTTTTCTTTCTATG-TCCTGGGGCTGCTTTTCTATG-TCCTGGGGCTGCTTTTCTATG-TCCTGGGGCTGCTTTTCTATG-TCCTGGGGCTGCTTTCATG-TCTG-TCTG-TCTG-TCTG-TCTG-TC	Z7         4c         TCCGG-GCCTTAT-GGTGCAGCTTGA-TCTT-GA           GB809         2         4e         TCATG-GCAACCTGTGCTGCTTGA-TCTT-GA           CAM600         4e         TCAAGT-GCCTT-C-T-GGTGCTGCTTGACCT-GG           G22         4f         TCAAGT-GCCAT-C-C-GGTGCTGCTTGACCT-GG           G27         4f        CCG-GCCAT-CCTTGGCGCTACTTGA-TCCA-G-G-GCTCA-GCGCCTACTTGA-TCCA-G-GCGA38           GB438         4h         ACTTGCCTT-GGGGCTACTTTCTG-A-CCA-G-GCAC-CCT-GGGGCTACTTTCTG-A-CCA-G-CCAC-CCT-GGGGCTACTTTCTG-A-CCA-G-CCAC-CCT-GGGGCTACTTTCTG-A-CCA-G-CCAC-CCT-GGGGCTACTTTCTG-A-CCA-G-CCAC-CCT-GGGGCTGCTTTTCTG-A-CCA-CCA-CCAC-CCT-GGGGCTGCTTTTCTT-ATCTT-ACTAGCCA-CCT-CGGGCTGCTTTTCT-ACCA-CA-CCA-CCAC-CCAC	4c IC
Z6 Z6 Z7 Z6 Z7	Z6 Z6 Z6 Z7	TO THE PERSON OF
Z6 Z7 Z6 Z7 Z7	Z6 Z7 Z6 Z7 Z7 Z7 Z6 Z7 Z7 Z7 Z7 Z6 Z7 Z7 Z6 Z7 Z6 Z7 Z6 Z7 Z7 Z6 Z7 Z7 Z6 Z7 Z7 Z6 Z7 Z7 Z7 Z7 Z6 Z7	28 4C I
Z6         4C         T-C-C-CGGTGTCTTAT-GGTGCTGCTTGACTCCC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	Second   S	C COBERCOBECC BCCCCC BEC BECCC CC C B
GB358         4c         TCCGG-GCCTT-CAT-GGCGCTGCTTGAATCCC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	GB358 4c TCCGG-GCCTT-CAT-GGCGCTGCTTGAATCCC- Z6 4c TCCGGTGTCTTAT-GGTGCTGCTTGACTCCC- Z7 4c TCCGG-GCCTTAT-GGTGCTGCTTGACTCCC- DK13 4dCCTG-GCAACCTGTGCTT-GA-TCTT-GA GB809 2 4e TCA	->-I>>IWDII-WIODIO-IWII>>
GB358  4c	GB358  4c	<u>- プーチンプルタグササーター - チンプチジジールタン・サボンンプ・ププ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</u>
GB215 4c T-C-C-CGG-GCCTT-CAT-GGTGCTA-TTGAATCCT-C-GB358 4c T-C-C	GB215 4c T-C-C-CGG-GCCTT-CAT-GGTGCTA-TTGAATCCT-C-GB358 4c T-C-C	
T - C - C GG - GCCTT - CAT - GGTGCT - A - TTGAATCCT - CGB358	GB215 GB358 4c T-CC	B116 40 TCG-G-GCCTT-C-TTGGTGCTGCTGCTAGAATCCC-
GB116   4c   T - C - C 6G - GCCTT - C - TTGGTGCT GCTAGAATCC - C - GB358   4c   T - C - C 6G - GCCTT - CAT - GGTGCT GCTTGAATCC - C - C - C GGTGCT - CAT - GGTGCT - GCTTGAATCC - C - C - C GGTGCT - C - GGTGCT - GCTTGACTC - C - C - C GGTGCT - A - TTGAATCC - C - C - C GGTGCT - GCTGACT - GCTTGACTC - C - C - C - C GGTGCT - GCTTGACTC - C - C - C - C - C GG GCCTT - AT - GGTGCT - GCTTGACTC - C - C - C - C - C - GG GCCTT - C - T - GGTGCT - GCTTGA - T - T - G GCCAC - C - GGTGCT - GCTTGA - C - C - G GCCAT - C - GGTGCT - GCTTGA - C - C - G GCCAT - C - GGTGCT - GCTTGA - C - C - G GCCAT - C - GGTGCT - GCTTGA - T - C - G GCCAC - C - G GCCAC - A - C - C - C - G GCCAC - C - A - C - C - C - G GCCAC - C - A - C - C - C - G G GCCAC - C - A - C - C - C - G G CCAC - C - G G G C - A - C - T - C - C - C G G - C - C G G - C - C	GB116   4c   T - C - C 6G - GCCTT - C - TTGGTGCT GCTAGAATCC - C - GB358   4c   T - C - C GG - GCCTT - CAT - GGTGCT - A - TTGAATCCT - C - GG - GCCTT - CAT - GGTGCT - GCTTGAATCC - C - C - C GG - GCCTT - CAT - GGTGCT - GCTTGAATCC - C - C - C	C COMPANY HAVE BECOME A BEST CO. C.
GB116         4c         T-CCGG-GCCTT-C-TTGGTGCTGCTAGAATCCC-GB358           GB215         4c         T-CC	GB116         4c         T-CCGG-GCCTT-C-TTGGTGCTGCTAGAATCCC-GB358           GB358         4c         T-CCGG-GCCTT-CAT-GGTGCTA-TTGAATCCTC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	T 4D 4D
4.0 T-C1	A	כ אנכים אני ייי די הייי
Z1 4bC-TG-GCCCTCCCGCAGTTAGA-TCCA-GB116 4c T-CCGG-GCCTT-C-TTGGTGCTGCTAGAATCCC-GB215 4c T-CCGG-GCCTT-CAT-GGTGCTA-TTGAATCCTC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	Z1	O T OT TOTTOD TOTOD TOT UT TO SEE THE
Second Color	21 4b	4
24 4a GATGT-GCAC-CCGGGGCGCTGCTTGA-TC-T-C-GB116 4bCTTG-GCCTTCTTGGTGCTGCTTAGA-TCCA-GB116 4c TCTTG-GCCTTCTTGGTGCTGCTTAGA-TCCC-GB358 4c TCGG-GCCTTCAT-GGTGCTA-TTGAATCCTC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	24 4a 6ATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-C-GB116 4c T-CTG-GCCTCCCGCAGTTAGA-TC-T-C-GB116 4c T-CC	
24         4a         GATGT-GCAC-CCCGGGCGCT-GCTTGA-TC-T-C-Z1           21         4b        CTG-GCCTCCCGCAGTTAGA-TCCA-GB116           GB116         4c         TCCG-GCCTTC-TTGGTGCTGCTAGAATCCC-GB358           GB215         4c         TCCG-GCCTTCAT-GGTGCTGCTTGAATCCC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	24         4a         GATGT-GCAC-CCCGGGCGCT-GCTTGA-TC-T-C-Z1           21         4b        CTG-GCCCTCCCGCAGTTAGA-TCCA-GB116           GB116         4c         TCCG-GCCTT-C-TTGGTGCTGCTAGAATCCC-GB358           GB215         4c         TCC	B809 4 4a ATGGIAICCAIGG-CGCI'GCICT-C-I
A	Carte   Cart	C C BOOK POOR CONTRACTOR CONTRACT
A	GB809   4	
GB809 4         4a         ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG           Z4         4a         GATGT-GCAC-CCGGGCGCTGCTTGA-TC-T-CG           Z1         4b        CTG-GCCCTCCCGCAGTTAGA-TCCA-GC           GB215         4c         TCC	GB809 4         4a         ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG           Z4         4a         GATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-CG           Z1         4b        CTG-GCCTTCT-CGCAGTTAGA-TCCA-GC           GB116         4c         TCCGG-GCCTT-C-TTGGTGCTGCTAGAATCCCG           GB358         4c         TCCGG-GCCTT-CAT-GGTGCTGCTTGAATCCTCG           Z5         4c         TCCGG-GCCTT-CAT-GGTGCTGCTTGAATCCTCG           Z6         4c         TCC	o o
729	729	
729 4 4a ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG 4bCTTGGTATCCATGG-CGCTGCTTGA-TC-T-CG 4bCTG-GCCCTCCGCTTAGA-TCCA-GC 15 4c TC	729  4	
729 4 4a ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG 4b ATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-CG 4bC-TG-GCCTTCTT-GCTGCTGCTTGA-TCCCG 5 4c TC	729  4 4a ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG 4b CATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-CG 4b CATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-CG 58 4c TCGG-GCCTTC-TTGGTGCTGCTAGAATCCCG 64 TC	
729 4 4a ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG 4b GATGT-GCAC-CCCGGGCGCTGCTTGA-TC-T-CG 4b	729 4 4a	
Total   Tota	4 4a ATGGTATCCATGG-CGCTGCTCGA-TCCT-CG 4 4a GATGTGCAC-CCCGGGCGCTGCTTGA-TC-T-CG 4b	4

Figure 4 - Continued 16

42/111

- Continued 17

	TCT
TG-G-G-TTG-G-TTG-G-TTG-G-TTG-G-G-TTG-G-G-TTG-G-G-TTG-G-G-TTG-G-G-TT-	
	-TGCA -AG-GT -AG-GT -AG-GT
GTG-GCAA-GA- ATG-GCT-AA-GA- GTG-ACA-GA- ATG-GCAA-GA- ATG-GCAA-GA- ATG-GCAA-GA- ATG-GCA-GA- ATG-GCA-GA- CTG-GCA-GAG-GCA-GATG-GCA-GATG-GCA-GATG-GCA-GA- GTG-GCA-GA- GG-CA-GA- GG-CA-GA- GGCA-GA- GG-CA-GA- GTG-GCA-GG GTG-GCA-GG GTG-GCA-GG GTG-GCA-GG GTG-GCA-GG GTG-GCA-GG GTG-GCA-GG	-GTG-GTA-GG -AGC-G-TCTACA-CG -AGC-G-TTACT-GG
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 7 7 4 7 8 8 9
#41mmmorxm400mm4	CAR4/90 BE95 BE100 SA4

44/111

nued 18	878 GTGGGGACCTATGCGGGTCTTTTTTTTGTCGGCCAACTGTTCACCTTT-GTTT-GTT-GTTTTT	TGGGGA-GCGACTTGTTGGACTTGGGCTTGTTGTTGTTGTTGTTG
Conti	н н н н н н н н н н н н н н н н н н н	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Figure 4 - Continued 18	HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVTH HCVTH	HC-J6 HC-J6 HC-J8 S83 NE92 HD10 HBR33 BR36 HCV-TR

45/111

	878	1	,	1										•								
	~	1 1 1	I	-GA	TT-T-	TT-T-	T-T-	T	TT-TI	1 1 1	1	1 1 1 1	1 1 1	-A	1 1	-GT	TA	;		Z	A	A
		1 1 1	A	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1	1 1 1	L	1 1	1 1 1	! ! !	; 	1 1 1	1 1 1	B-	1 1 1			1 1 1 1	1 1	1 1 1
		GA-	GA-	B	GA-	GA-	GA-	GA	GA		A-	A	GA-	GA-	GA-	GA	 	GA-	1	A	A-	A -
,		G	נים -	! !	Ę	L-	T	i 1	- L	- L	i	i 	1	1	G	G		A-		1	1	1
		-B	A-G-	AG-	GT-	GT-	GT	GT	I	1		B	-A-CG-	- B	1	-CA-	-CG-	G			A	A-
		-CA-	-CGA	-CA	T-G	-	- L	-CI-	T-G	-CT-G	-CI-G	-CI-G-	-CA	A	DD-	-CI-G	L-G-	-CA-	į		T-G	T-G
		-CT-	'۵-	1	A-	A-	A-	-CA-	A	-Ð-:	-A-	1-A-	1-A-	1-A-	1 1	1 1 1	<del>-</del> B	l l	1	- <b>W</b> -	-A-	-G-
		AGG	-AGG	-AGGC-	-TGGC-	-TGGC-	-TGGC-	- TGG	-TGGC-	<del>0</del> 9	-TGGCT-	- TGGCT-	GGCA-A-	-AGGCA-A	- AGG	- AGG	BB	- AGG	i	G-AC	1	G-A-
		Ë	1	Ë-	i	H	i	1		-T-	1 1	1 1	,   	1	1 1		; ; ;	- I	١	- <del>I</del> -	- L -	1 1 1
		ביים	ال	-9	G	-b-]	G	- <del>D</del>	- B	3-G-	- <del>D</del>	-g-:	₽-	-9-:	- I	·AT-	-9-	- <del>-</del> -	1	- 90;	-525	-925
		i i	; ;	L		[	] ] ]	T	1	9	1	[	1	AT-	A	A	AT-	     	•	<u> </u>	9	9
J.		4A		A	1.	;	A	A-	1	A-	<u></u>	<u></u>	i 1	A	A	A	1	A.	1	A	TA	1 1
- 기	829	L	<u> </u>	A-T	A-C	A-T	A-C	<u> </u>	A-T	A-C	<u>-</u>	A-C	- 1	A-T	A-C	A-C	A-T	טַ	•	A	L	טַ
דזזד																						
ייייייייייייייייייייייייייייייייייייייי		4a	4a	<b>4</b> b	4 C	4 c	4 C	4 C	4 C	4q	4 e	4e	4 £	4 £	49	4 h	41	4.2			S A	
									_								05	_				
י ט		9 4	1		بو	.2	89				on i	000			ص	ω	/12	/90			0	
ב דה הד ב		GB809	24	21	GB11	GB21	<b>GB35</b>	92	<b>L</b> 2	DK13	3B8C	CAME	322	327	3B54	3B43	CAR4	CAR4	1	BE95	BE10	SA4
4		-	,	,	_	_	-	. *									E 26		,		_	

re 4 - Continued 19

HCV-1 HCVHCT23 HCVHCT23 HCVHCT27 HCVHCT27 HCVHCT27 HCV-J8 HCV-J HCV-J8 NE92 NE92 NE92	888 GCV8 THTTTTP 888 GCV8 THTTTTP	ACTGGACGCAAGGTTGCAA
	3a	TC-ATCAAGTCGACCTCGC-G
GT 1771	ر بر	C A C . C CCAC FCC CA C CF ACAC

	928	1-ATA	G-AGCA	-AC	-ACT	1-ACCG	-AC	-ACT	G-ACG	-ACTCA	G-ACTTCCG	1 1	AGT	AG	1CC	G-AGTCG	ACC	-ACCCT	l	-GAACCTCA		)
<u>ed</u> 21	879	-CAGGC-T	TCGGGC-T	-CGAGC-CGCC	-CAGGC-A	-CGGAC-ATG	-CAGGCG	-CAGGC-AG	-CAGGC-ATG	-CAATC-CCC	-CAAGC-AG	-T	-CGGC-C-TTC-CG	-AGGC-C-TGCCCG-	-GC-CTTC-	-CAACTTG	I	C T		TAGGTC-C-AGGCTGTG.	GT	
Figure 4 - Continue		809 4 4	4	4		215 4	3 4	4	27 4	DK13 4d	GB809 2 4	CAM600 4	G22 4	G27 4	GB549 4	GB438 4	CAR4/1205 4	CAR4/901 4		E95 5	BE100 5a	

22
Continued
4 -
Figure

nued 22	929 CCGGCCATATAACGGGTCACCGCATGGCA			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CGT-AT	-TTACCCTAG	AATCCCCT	-GGCTT	-AGTATG		-AT	-AT	-AC-TT-AATAT	-AC-TT-AATAT	-AG-TT-ATTG
Cont	1a	На	la	Тa	la	1p	2a	<b>2</b> p	2c	2d		3a	3a	3a	3a	3p
Figure 4 - Continued 22	HCV-1	HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J	<b>S</b> HC-J6	HC-J8		NE92	- St					9 HCV-TR
																•

nued 23	929 95		-TGCCA-GG	TCG-CTCA-G	-GGCG-TCA-G	GCC	-GGCG-TCA-G	DD	GCG-TAC	-AAT	GTC	-GCTTG	-GCCTA-AG	CC	ATTA-AT	TGCCCCA-GC	-AGCC	TCCT	1	T	CCCCL	
Continued			<u>4</u> a		4G	4c	4 C		4 C	<b>4</b> d			4 £		<b>4</b> g	4h	41	4?			5а	
Figure 4 -		GB809 4	Z4	21	GB116	GB215	GB358	92	27	DK13 :	GB809 2	$CAM60\overline{0}$		G27	54	GB438	CAR4/1205	CAR4/901		曰	团	204

/	50	/1	1	1
---	----	----	---	---

ID 1 MSTNPKPQKKNKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATR R-T			L-R-T-R-T
SEQ ID	144	148	192 164 194 152
<b>6</b> <del>0</del>	2a 2b 2d	3a 3b 3c	4c 4c 47 5a 5a
HCV1	HCJ8 HCJ8 NE92	EB1 NZL1 HCV-TR BE98	GB358 GB809 CAM600 GB724 EG-29 BE95

51/111

		PGYPWPLYGNEGCGWAGWLLSP			<b>A</b>	
	V-core	RPEGRTWAG	-ST-KS-GK -ST-KS-GK T-KS-GK	S S	S S S S	Q-TS-G-
ued 1	51	KT SER SOPRGRROP I PKAR	-Q	KQ-HL		
- Contin		1a 1b	2a 2b 2d	3a 3b 3c	4c 4e 43	5a
Figure 5 · Continued		HCV1 HCVJ	HCJ6 HCJ8 NE92	EB1 NZL1 HCV-TR BE98	GB358 GB809 CAM600 GB724 EG-29	8E95

SUBSTITUTE SHEET (RULE 26)

ned 2	101	RGSRPSWGPTDPRRRSRNLGKVIDTL			I H L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : :	11111111111111111111111111111111111111	N		XXXXXX-		
· Continued 2		<u>a</u>	<del>1</del>	2a	<del>2</del> 2	2d	3а	3b	3c	47	, 4e	45	5a
Figure 5		HCV1	HCVJ	HCJ6	HÇJ8	NE92	NZL1	HCV-TR	BE98	GB809	CAM600	GB724	BE95

53/111

54/111

	176		1	AVI	# # # # # # # # # # # # # # # # # # #		# I I I I I I I I I I I I I I I I I I I		-AVII	-AVII	-AVI		-AVII		# # # # # # # # # # # # # # # # # # #
4 <u>ba</u>	127	- I A		EAV		1 1		IAV	SAV	: :		[Y	AAVVAV-	·	· \ \ \ \ \ \ \ \ \
Continu		<b>4</b> a	<b>4</b> c	<b>4c</b>	4c	ф	<b>4e</b>	44	<b>4</b> f	6 <del>4</del>	4h	<b>4</b> i	<b>ć</b> 5	, G	טרט מ
Figure 5 · Continued 4		GB809 4	GB116	GB215	GB358	GB809_2	CAM600	CAMG22	CAMG27	GB549	<b>GB438</b>	CAR4/1205	CAR4/901	p E O S	BE100

55/111

	226			
		PGC		1 1 1 1 1
	. 72	VYEAADAILHTAT-TSA	TWALAA-VV TWALTVL -WALEG-V	D-VA D-VA D-V
		TNDCPNSSI		S S S S S
	E1 v1	YQVRNSTGLYHVS HS-I	AE-K-ISTG-M- VEISSS-YA VE-KDTGDS-MP LK-TSSS-M-	LEWTSVL LEWTSVL LEWTSVL LEWTSVL LEYT-TSVL
2 panu	177	FLLALLSCLTVPASA	5-AI	FIHASFIHAGFIHASFIHAS
Contin		<u>6 6 6 6 6 6</u>	2a 2b 2c 2d	33a 33a 35a
Figure 5 · Continued 5		HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVTH HCVTH	HC-J6 HC-J8 S83 NE92	HD10 BR33 BR36 NZL1 HCV-TR

56/111

	226		! !
	V2	TDHHLTEHH-M-LDYHLDHHLTEHHLTEHHLTBHHLTDNHLTBNHLTBNHLTBNHLTBNHLTBNHLTBNHLTBNHLDHH-M-LDHH-M-LDHH-M-LDHH-M-L	-LDAML
		>	1 2 1 2 1 1 1
	٧1	EHYAS-11  EHYAS-11  VHYAS-V1  IHYAS-V1  INYAS-V1  VNYAS-V1  VNYAS-V1  VNYAS-V1  VNYAS-V1  VNYAS-I1  QHYAS-I1  QHYAS-I1  QHYAS-I1  VPYAS-I  VPYAS-I	LTYGSL
9 pani	177	χ	
Continued 6		53a 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ę9
Figure 5 .		GB809_4 24 21 6B116 GB215 GB215 GB358 26 27 DK13 GR809_2 CAM600 CAM622 CAM627 GB549 GB549 GB438 CAR4/901 BE95 BE95	нк2

**57/**111

	276 PUTATIVE	LLVGSATLCSALY	MV-M
		LRRHID	
	74	TRDGKLPATQ	VQQPGALTQG VKHRGALTRS ISQPGALTKG VSQPGALTKG V-YVGATTAS V-YVGATTAS V-YVGATTAS V-YVGATTAS
		TPTVA	ST
	٧3	VPC VREGNASRCWVAM TPTVA	EKVTIPV S-N ENDNGTLHIQVN E-TA-VPV A-NL- EEKIIPV S-NIQDT-TTPVQDT-TTPVQDT-TTPV
ned 7	227	D::::::	
Contin		<u> </u>	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Figure 5 · Contin		HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVHH HCVTH	HC-J6 HC-J8 S83 NE92 HD10 BR35 NZL1 HCV-TR

58/111

GB809_4 4a 24 24 4a 24 4a 24 4a 24 4a 24 25 4c 6B215 4c 6B358 4c 27 27 27 27 27 27 27 27 27 27 27 27 28809_2 4e 22AM600 4e 2AM627 4f 6B549 4h 22AK4/1205 4i CAK4/1205 4i CAK4/901 4? 8E95 5a 8E100 5a SA4 5a

59/111

	319	CNCSIYPGHITGHRMA		
	٧5	SPRRHWTTQG	QHFV-D QNFE QH-TFV-E QH-KFV-D	RQ-V-T RQ-V-T RQ-V-T RQ-V-T RT-V-T
6 pani	277 TRANSMEMBRANE DOMAIN	VGDLCGSVFLVGQLFTF	G-M-AA-M-IV VA-MILS-A-MV VALM-AA-VVVV IA-M-AS-V-II	MAA MAA MAA
Continued 9		<u>6 6 6 6 6 6 6</u>	2a 2b 2c 2d	3a 3a 3a 3b
Figure 5		HCV-1 HCVEC1 HCVHCT18 HCVHCT23 HCVHCT27 HCVTH	HC-J6 HC-J8 S83 NE92	HD10 BR33 BR36 NZL1 HCV-TR

319 ----A---A---R--Q-A-V-N 0-A----R--Q-A-V-D 2 ---A---AL----M----A---AL----M---GA--M--MI TRANSMEMBRANE DOMAIN Figure 5 - Continued 10 6a **4**d CAR4/1205 GB809_4 24 21 GB809_2 CAM600 CAMG22 CAMG27 GB116 **GB**549 68438 BE95 BE100 SA4 **GB358** HK2

```
GTGTGCCAGGACCATCTTGAATTTTGGGAGGGCGTCTTTACAGGCCTCACI
                                                                                                           CATATAGATGCCCACTTTCTATCCCAGACAAAGCAGAGTGGGGAGAACCT]
                                                                                                                                           --AG-A--A---
                                                                                                                                                    ----CAG--ACTC--
                                                                                                                                                               ----CAG--ACTC--
                                                                                                                                                                                   A---CAG--ACTC--
                                                                                                                                                                          ----CAG--ACTC--
                                                                                                   6695
                                              HCC153
                                   HC-18
                         HC-16
                                                                                                                                             HC-J8
              HCV-J
                                                                                                                        ¥
C
S
                                                                  EB2
                                                         EB1
                                                                                                                                                                  EB1
                                                                                          SUBSTITUTE SHEET (RULE 26)
```

Figure 6

62/111

Figure 6  HCV-1  HCV-3  HC-38  HCC153  EB1  EB2  EB6  EB7  HCV-1  HCV-1  HCV-3  HC-36  HC-38  HCC153	### ##################################
EB2	AGTGCAC-CG-GAA-
EB6 EB7	AGTAGAC-CG-GGAA

-C--Y---C--A--

4892

----y--

-----

--C--GACC--

-----C----

**CCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAAT** --C--G---C-CT----T --A---GTG---C -A--GAC---T ----4850 Figure 6 - continued 2 SEQ ID NO 29 33 35 37 39 BR36-20-164 BR36-20-166 BR36-20-165 HD 10-1-25 HD10-1-3 HCC 153 HC-16 HC-18 HCV-J HCV-1 EB1 **EB2** SUBSTITUTE SHEET (RULE 26)

11	Figure 6 - conti	tinued 4
		5040
X	CV-1	GCGGCGTCCTGGCTGTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTG
王	HCV-J	AA
=	C-16	
≖	C-18	-GGGACCGATCG-G-GTA-T
. <b></b>	1010-1-25	-AGGTCTT
Ξ.	D10-1-3	-AGCGCC-AGCCTGTCT
ee SUB	R36-20-164	-AGCGCC-AGCCTGTCTT
	BR36-20-166	-AGGTCTTT
E WE	R36-20-165	-AG
SHE		
ET (R		5041 5090
	HCV-1	GTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATACCTGA
	HCV-J	TTA
	C-J6	TGCA-CC-CT-GCA-G-TAA-CA-CGAG-C-TCG-TGCG
<b>x</b>	C-18	TCCA-TC-CC-ACA-CAAT-ATCG-GTTTG-GGCCC
<b>=</b>	010-1-25	ACTCATAAGCGGGCCG-TA
=	010-1-3	ACTCATAAGCGGGCCG-TA
83	R36-20-164	GTTCATAAGCGGGCG-TA
8	R36-20-166	GTTCATAAGCGGGCG-TA
8	3R36-20-165	GTTCATAAGCGGGCG-TA

2
ned
in
int
၁
٠
9
ure
19
<b>L</b>

	5140
HCV-1	CAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGC
HCV-J	
HC-16	AGTGAG-CTTGATG-CTCTA
HC-18	AAT-ATGAG-CCTAG-CTCCA
HD10-1-25	AGGT-GT-A-CAGG
HD10-1-3	AGGT-GT-A-CA
BR36-20-164	AAGGT-GT-A-C-A-AAG
BR36-20-1	AAGGT-GT-A-C-A-AAG
照 BR36-20-165	AAGGT-GT-A-C-A-A
<b>T</b> UTE	
SHE	5141
HCV-1	<b>ACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAG</b>
	C-CTACACAAA
	GAGCGG-TCTTAG-GCA-CG-A-AAT-C-GTCC
9 HC-18	-AGCCG-CCTTGCA-CG-A-GGAT-CATCT
HD10-1-25	C-GCCAACTCA-G-AA-AC-CG
HD10-1-3	C-GCCAGTCA-G-AA-AC-CG
BR36-20-164	CTGCCATACTCA-G-AA-ATC-CGGA
BR36-20-166	CTGCCATACTCA-GA-ATC-CG-A
BR36-20-165	CTGCCATACTCA-G-AA-ATC-CG-A

Figure 6 - Continued 6

5191 AAGGCCCTCGGCCTCCTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGC	GAT-GAACAAAGAGC-GCT	ATAAT-ATCAATAAAA-TC-A-AC-ACA	ATA-AAAACAGCA-AA-GATC-A-ACACA	AATTAGCGACAAAACACTCT-A	AATTAGCGACAAAACACTCT-A	A-TTAT-GCGACAAAACACTCT-A	A-TTAT-GCGACAAAACACTCT-A	A-TTAT-GCGACAAAACACTCT-A	5241	GCTGTCCAGACCAACTGGCAAAACTCGAGACCTTCTGGGCGAAG	TC-TGGGTG-G-GCCTGT	ACG-TTCTCG-ACAAC-A-	GAA-AT-ATCACCGTACAATCA-	GC-TAA-AGCTT	GC-TAA-AGCTT	GCATAAACT	GCATAAACTGTGTCAC	GCATAAACT	
HCV-1	HCV-J	HC-16	HC-18	HD 10-1-25	HD 10-1-3	BR36-20-164		BR36-20-165		HCV-1	HCV-J	HC-16	HC-18	HD10-1-25	HD10-1-3	BR36-20-164	20-1	BR36-20-165	

continued /	5292	AT	ပ္	ပ္	ပု	t i	;	:	;	
rigure b · cc		HCV-1	HCV-J	HC-J6	HC-18	HD10-1-25	HD10-1-3	BR36-20-164	5-2	BR36-20-165

1290 1300 1310 1320 1330 ITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIG G	1340 1350 1360 1370 1380  TVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSTTGEIPFYGKAI
SEQ 1D NO	
1a 2a 2b 5a	1a 1b 2b 5a
HCV-1 HCV-1 HC-16 HC-18	HEEL (BRITE 59)

igure 7

PLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSG 1-0-V--- - \ - L -**DVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFSLDPTFTIETI** ---KQ-TS--V-----A-RGM-V-----1G--F --A-RGM-L--1460 1410 1400 1390 - I - Y - - ---SY. Continued 1a 1b 2a 2b 5a Figure 7 HCV-J HC-J6 HC-J8 HC-J8 HCV-1 HCV-J SUBSTITUTE SHEET (RULE 26)

	71/111		
	1530 AWYEL 	1580 KQSG A- G- G-	ا ع
	1520 LCECYDAGCAWY	1570 LTHIDAHFLSQTKQSG 	1 1 1 1 1
	1500 1510 RGKPGIYRFVAPGERPSGMFDSSVLCERST	1560 FWEGVFTGLT S A	
	1500 0GIYRFVAPGE ST Y-ST -VY-SS HY-SA	1550 PGLPVCQDHLE	
	1490 1500 1510 1520 1:	1540 1550 1560 1570 1.  TPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQTKQSGS	
		ON	
nued 2		SEQ ID NG	225
- Conti	1a 2a 2b 5a	1a 2b 5a 7a	<b>5</b> a
Figure 7 - Continued	HCV-1 HCV-J HC-J6 HC-J8 BE95	HCV-1 HCV-J HC-J6 HC-J8 BE95	<b>BR36</b>
	SUBSTITUTE	SHEET (RULE 26)	

	1630	LLYRLGA	: :	S	1 1 1 1 1 1 1 1	d	d		1680	CLSTGCV	-SI		AI	TV-S-	
	1620	LHGPIF	: : : : :	^\	<u></u>	1	1 1 1 1		1670	<b>ILAALAAY</b>	: : : : : : : : : : : : : : : : : : : :	<b>\</b>	\\	······	1 1 1 1
	1610	GMWKCLIRLK		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\\		E		1660	VISTWVLVGG		AA	MSA		
	1600	AQAPPPSWD	1 1 1 1 1 1	X-	-1NX	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1650	<b>TCMSADLEV</b>	AA	0	I0	A	AA
e.	1590	ENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPILHGPIPLLYRLGA		FAT	FAT	FK	L-FST-T		1640	VQNE I TLTHPVTKY I MTCMSADLEVVTSTWVL VGGVLAALAAYCLSTGCV	-SLI	-TVA	AVAIMSAVI	-S-^1I\	
nued 3	•	Ш	۵	•	t	•	_			>	•	•	•	i	i
- Cont	•	<u>_</u>	<del>1</del>	2a	Sp	5а	3a			1a	16	2a	<b>5</b> p	5a	3a
Figure 7 - Conti	•	HCV-1	HCV-J	HC-J6	HC-J8	BE95	BR36		,				HC-J8		
								SUBS	STITU	TE S	SHE	ET (	RUL	E 2	6)

73/111



SUBSTITUTE SHEET (RULE 26)



Figure 8

TCGCCCACAGGACGTCAAGTTCCCGGGCGGTGGTCAGATCGTTGGCGGAG **ATGAGCACGAATCCTAAACCTCAAAGAAAACCAAAAGAAACACCAACCG** 9 SEQ ID PC-3-4 PC-3-8 PC-2-1 PC-2-6 SUBSTITUTE SHEET (RULE 26)

Figure 9

- Continued 1	101	TTTACTTGTTGCCGCGCGCGCCCTAGGATGGGTGTGCGCGCGC					151	AAGACTTCGGAACGGTCGCAACCCCGTGGACGGCGTCAGCCTATTCCCAA				
Figure 9		PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1		PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1
				c	I IDC	TITI I	TE CL	1CCT	(DI	H C -	25	

77/111

- Continued 2	201 GGCGCGCCAGCCCACGGGCCGGTCCTGGGGTCAACCCGGGTACCCTTGGC					300	CCCTTTACGCCAATGAGGGCCTCGGGTGGGCAGGGTGGCTGCTCCCCCT				
Figure 9	PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1		PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1

78/111

- Continued 3	SCCCCAATGAC				351	TAATTTGGGTAAGGTCATCGATACCCTAACGTGCGGATTCGCCGATCTCA				
Figure 9	PC-3-4	PC-3-8 PC-2-1	PC-2-6	PC C/E1		PC-3-4	PC-3-8	PC-2-1	PC-2-6	PC C/E1

SUBSTITUTE SHEET (RULE 26)

79/111

Figure 9 - Continued 4  PC-3-4
--------------------------------

Figure 9  PC-3-4  PC-3-8  PC-2-1  PC-2-6  PC-4-1  PC-4-1  PC-4-6  PC-3-4	Figure 9 . Continued 5  PC-3-4 GAATTTACCGGTTGCTCTTTCTCTATCTTTGCTCTTCTCGT PC-3-8
PC-4-1	
PC-4-6 PC C/E1	

650 TATCATGTTACCAATGATTGCCCAAACTCTTCCATAGTCTATGAGGCAGA TAACCTGATCCTACACGCACCTGGTTGCGTGCCTTGTGTCATGACAGGTA Continued 6 651 Figure 9 SUBSTITUTE SHEET (RULE 26)

	701 ATGTGAGTAGATGCTGGGTCCAAATTACCCCTACACTGTCAGCCCCGAGC					ctcggagcagtcacgctccttcggagagccgttgactacctagcgg			
- Continued 7	701 ATGTGAGTAGATGCTGGGTCCA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			751	CTCGGAGCAGTCACGGCTCCTCT			
Figure 9	PC-3-4	PC-3-8	PC-4-1	PC C/E1	TUTE		PC-3-8		

- Continued 8	850 AGGGGCTGCCCTCTGCTCCGCGTTATACGTAGGAGACGCGTGTGGGGGCA	900 CTATTCTTGGTAGGCCAAATGTTCACCTATAGGCCTCGCCAGCACGCTACG
Figure 9	PC-3-4 PC-3-8 PC-4-1 PC-4-6 PC C/E1	PC-3-4 PC-3-8 PC-4-1 PC-4-6 PC C/E1

SUBSTITUTE SHEET (RULE 26)

901 GTGCAGAACTGCAACTGTTCCATTTACAGTGGCCATGTTACCGGCCACG - Continued 9 951 GATGGCA Figure 9 SUBSTITUTE SHEET (RULE 26)

		85/111	
	3856 ACCACTGGCAGCCCCATCACGTACTCCCACCTACGGGCGGCG	3991 CAAGTTCCTTGCCGACGGCGGTGCTCGGGGGCGCTTATGACATAATAA	3941  TTTGTGACGAGTGCCACTCCACGGATGCCACATCTTGGGCATCGGC -AT-ATG-GTCT-TCATC-CA -AC-T-ATG-GTCT-TCATC-CA -ACT-ATAGTC-TTATC-TG-AACATCAC-TTATC-TGAACTCACTC-TGA
	1a 1b 2a 5a 5a 3a	11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
Figure 10	SEQ ID NO HCV-1 HCV-J HC-J6 HC-J8 PC1 37 197 C1 48 199 BR36 222	SHCV-1 HCV-1 HCV-J6 HC-J8 TAHC-J8 TAHC-J8 TAHC-J8	95 a HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36

86/111

Figure 10 - Continued 1	4040  ACTGTCCTTGACCAAGCAGACTGCGGGGCGAGACTGGTTGTGCTCGC AGTGACTCGAACAG A	4041  CACCGCCACCCTCCGGGCTCCGTCACTGTGCCCCCATCCCAACATCGAGG	4091  AGGTTGCTCTGTCCACCGGAGAGATCCCTTTTTACGGCAAGGCTATC  -AGCATCCTG-GGT GCTGGTCA-GAGTTG-GGT GCTGGTCA-GAGCT
0 - Con	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3 2 2 3 4 5 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
Figure 1	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36	HCV-1 HCV-1 HC-J6 HC-J8 HC-J8 HC-J8 HC-J8 BR36	HCV - 1 HCV - J HC - J6 HC - J8 PC1 37 PC1 48

Figure 10 - Continued 2	4141  CCCCTCGAAGTAATCAAGGGGGAGACATCTCTCTTCTGTCATTCAAA  1bA-TG-CCAGC	4191 GAAGAAGTGCGACCACCGCCAAAGCTGGTCGCATTGGGCATCAATG  1b	4241  CCGTGGCCTACTACCGCGTCTTGACGTGTCCGTCATCCCGACCAGCGGC  1b    -TAGTAA  2a    -AATA-G
Figure 10	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36	### CO - 1    HCV - 1   HC - J6   HC - J8   PC1   37   PC1   48	HCV-1 HCV-J HCV-J6 HC-J8 PC1_37 PC1_48

inued 3	4291 GATGTTGTCGTCGTGGCAACCGATGCCCTCATGACCGGCTATACCGGCGACCT	4341  CTTCGACTCGGTGATAGACTGCAATACGTGTGTCACCCCAGACAGTCGATT TACAC-A
- Cont	12 12 22 23 33 33	
Figure 10 - Continued	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36	HCV-1 HCV-1 HCV-1 HCV-1 HCV-1 BR36 HCV-1 HCV-1 HCV-1 HCV-1 HCV-1 BR36 HC-J6 HC-J6 HC-J6 HC-J6

89/111

Continued 4	4441 4490	t I	 A-A-A-	AGA-GCGTC-C-GGAT-G		3a	4491			2a TTTG-ATT-CA-TTAGAATA	2bG-ATT-GT-ACA-GGTGA	5aAC-G-ACT-GG-TAA-AGT	5aAC-G-ACT-GG-TAA-ANT-A		4551	la CGTCCGTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGCTC	rp	2a GTGTAGCGGCCA	2b GCGTAGCTCGGCACC	5a	5a -CGTGGTCTCAGTG	© S
Figure 10 - Continued				7	PC1_48			HCV-1	HCV-J	HC-J6	HC-J8	PC1_37	PC1_48	T BR36						~		

Figure 10 - Continued

4640 ACGCCCCCCCGAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCGGG	TCT-GT-GG-TC-ATA-A-	AAGCCCCAATT-	ATTGGACGTTT-CGC	T-T-T	TT		4641	GCTTCCCGTGTGCCAGGACCATCTTGAATTTTGGGAGGGCGTCTTTACAG	-T-GC	TT-GTAGCATCC-	TT-GATACGGCA-CG	CTCTG	CTCTB-L	-ACACT-	4691	GCCTCACTCATATAGATGCCCACTTTCTATCCCCAGACAAAGCAGAGTGGG	CCC	ACA-C	-TACTCAG-AA	-GA-CCCTA-GGACAG	-GA-CCCTA-GGACAG	-AAC
1 1	1b	2a	2b	<b>5</b> a	5а	3a	_	1a	1 p	2a	2b	Ба	Бa	3a		1a	1b	2a	2b	<b>5</b> a	5a	3a
HCV-1	HCV-J	HC-J6	HC-J8	PC1_37	$PC1_48$	BR36		<b>S</b> HCV-1	D-A⊃H BS	HC-J6	MHC-J8	S PC1_37	$PC1_4$	L BR36	LE 2		HCV-J	HC-J6	HC-J8	PC1 37	$PC1_48$	BR36

91/111

2 panul	4891 GTTCAGAATGAAATCACCCTGACGCACCCAGTCACCAAATACATCATGACAGGTCACA-AGCGC	4941  ATGCATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTG TA-GCCT-A-A-A-  GCAATA-G-A-T-ACG-G-  TT-GTA-TCTT-G-G-  TT-GTA-TCTT-G-G-  TT-GTT-GTT-G-G-G-  TT-GTT-GTT-G-G-G-	5040  GCGGCGTCCTGGCTGCTTTGGCCGCGTATTGCCTGTCAACAGGCTGCGTGATGCCCA-GA-GTT -GGTGCGATCG-GTT -GGGGCATCA-GGTGTCGA -GTGGCCGCCTA-GGTGTCGA -GTGGCCGCCTA-GGTGTCGA -AGGCCGCCTTTTTT
- Cont	12 22 23 33 33 33	 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	11 22 33 33 33 33
Figure 10 - Continue	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36	HCV - 1 HCV - J HC - J6 HC - J8 PC1 37 PC1 48 BR36	HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36

_
ഗ
d
O
nu
Ξ.
ن
¤
O
Ч
ا،
1
- 1
0
10
e 10
re 10
rure 10
ıre
ıre

11 22 22 33 33	5241  CCCTGCTGTCCAGACCAACTGGCAAAACTCGAGACCTTCTGGGCGAAGC  1b	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	±2 2a	2b	5а	<b>5</b> a	3a
HCV-1 HCV-J HC-J6 HC-J8 PC1_37 PC1_48 BR36	HCV-1 HCV-J HC-J6 HC-J8 HC-J8 PC1_37 BR36 BR36	HCV-1	HC-J6	HC-J8	PC1_37	$PC1_48$	BR3 <u>6</u>

		95/111
	SEQ ID NO 56 58	
Figure 11	1286 HCV-1 TTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVV HCV-JG	HCV-1 LATATPPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAA  HCV-3T

Н	
ש	
ō	
n	
G	
·H	
بد	
Cor	
O	
1	
ł	
1	
11 -	
11 -	
11	
11	
11	
rure 11	
iqure 11 -	
rure 11	

1406	VVVVATDALMTGYTGDFDSVID	A-RGM-LVA	1466 LDPTFTIETITLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERPSGMFDSSVLCECYDAGCT-Q-V
	HCV-1 HCV-J	HC-J6 HC-J8	HCV-1  HCV-1  HCV-1  HCV-1  HCV-1  HCV-1  HCV-1  SUBSTITUTE SHEET (RULE 26)

- Continued

370	I-NI I-NI IAII	AIIMVM VIIM -TVLF-	420 *   *   NGSWHLNSTAL		I - I - I - R
360	PITALVMAGLLKIPGAILDMIAGANGOLAGIAIRSMOGNWARVLYVLLLVSVVV	-AVGM-V-HVLTLF-IMITTQAIIMVM IGISH-M-LTLF-LVS-TMLQVIIM LVVVI-ISFAAYAS-ATVLF-	380	A	-S   H-YTT-SRHTQA-AG-FDI-PQ-KLVI -S   N-YT-AMAQSIYRLTDIFST-PS-KLV-S   T-QISSAQ-TY-IA-FITRQ-KLI-R
350	LDM1AGARWC VV I-I-G '-EI-F-G	F-IM F-LVS-T I-IS	400 HTVSGFVSLI SSTQSLW-	NARTLTGMF RAAG-F	RHTQA-AG-F QSIYRLTDIF Q-TY-IA-FI
340	3V -YAM-V-EV- -YAA-V-ELV	-HVLTL SH-M-LTL VV	390   ETHVTGGSAG	2TVTA	4-YTT-S V-YT-AMA F-QISSA
330	V8 V8 ATMIL	-AVGM-V. IGI{	380   E2   FAGVDA   E	A	- S - S
	1a 1b 2a 2b	33a 23a	<u>6</u> 4	2a 2b	33 35 5a
	HCV1 HCVJ HCJ8		HCV1	HCJ6 HCJ8	NZL1 HCVTR BE95

igure 1

99/111

GSGP/DORPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAP ----Q--FI-----Y-----D-M----A-AT----T NCNDSLNTGWLAĞLFYHHK ----W-50N1/ ---S-DK---VTN-E-M---480 Figure 12 - Continued 1b 2a 2b 3a 3b 5a 1a 1b 2b 2b 3a 3b 5a HCV1 HCJ6 HCJ8 NZL1 HCVTR BE95 HCV1 HCJ6 HCJ8 NZL1 HCVTR BE95

	530 540	TYSWGENDIDVFVLNNTRPPL	ELLTRP-QG	-1ELS0	-TER			II
Figure 12 - Continued 2		TYSW	1 1 1					
· Con		<u>1</u>	<del>1</del> 6	2a	Sp	<b>3</b> a	3b	<b>5</b> a
15								
Figure		HCV1	HCVJ	HCJ6	HCJ8	NZL1	HCVTR	BE95

-T-A--G

--A--TC--C-GG

157

HEM26

**TH85** 

HC-J7

NZL1

US114

BE95

C--GA----GA--

CCCCTACGACGGCGTTGGTAATGGCTCAGCTGCTCCGGATCCCACAAGCC -T--A--TCTTA-CA--A-CC-C--CT-CGCCGCT--TG-T--CG--CTG -A--C---G-CA-CA--A-CC----GT-CGC-A-G--CG----CG-G-TT --CG----CG-G-L --TG-T--TG-GCTA --TT-A--C--GA----TT-G -A--A--TCTTA-CA--A-CC-C--CT-TGCCGCT ---A----G--C---G-TA-CA--A-CC----GT-CGC-A-G --CG-TGT--GTA----GG----G--TG-C--G --T-A---CG-CGT--GTA----GG-A--G-TG-C--G --CG-TGT--GTA----GG----G--CG-C--G --A--A--CC-A--GG--T-G---T-A----T-A---- Y---**V**----T-A----T-A---- L-----L-A----A----CC-A--GG-AT-G---B---A--A--CC-A--GG--T-G-----A--C--A--GG--T-G-----A--A--C--A--GG--T-G-----A--A--CC-A--GG-AT-G-----A--A--CC-C---G--T-G-A----A--A--CC-A--GG--T-G --A--A--CC-A--GG--T-G --A--A--CC-A--GG--T-G --A--A--TC-A--GG--T CG-CGT--GTA---GG-J--5-- A - - --G -G-<del>-</del>6 -G--G-1b 1b 1b 1b 2a 2b 1b 1b 1b 11b 11b 11b 2a 2b α ΠD SEQ

HCV-CHINA

HCV-JK1

SLIBSTITLITE SHEET (RULE 26)

HCUNK HCV-N HC-J6 HC-J8 HC-J5

HCV-T

HC-J4.83 HC-J4.91 HCV-JTA HCV-JTB

HCV-BK

HCV-J

HC-J1

HCH-H

HCV-1

Figure

1030	ATCTTGGACATGATCGCTGGTGCTCACTGGGGGAGTCCTGGCGGGCATAGC	AAA		GGG-GGGCTAC-T	GGG-G-GGGGGGG	GGG-G-G-G-G-C	GGG-G-GGGGGGGGG-	GGTG-GGGCAC-T	GGTG-GGGC	GAG-G-TGG-C	GGTG-GGGC	GGG-G-TGG-C	GG	GA-CG-G-G-G-C	A-ACT-GCGTCATTCT	GC-CATTTTCC-GCTTGGTTTT-G-	A-	GC-TGG-TGTTCC-GCTCGGTTTT-G	T-GCAGCGCTCAT	T-GCAACGCTCAT	T-GCAACGCTCATC	T-GCTAG-ACGCTCATC	GA-TCAGAGCGTTTT-C-GCC
	1a	la	la	1p	1p	1b	1p	1p	1b	1p	1p	$^{1}p$	1p	1p	2a	2b	2a	2b	3a	3a	3а	3a	<b>5</b> a
-	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	HCV-JK1	HCUNK	HCV-N	HC-J6	HC-78	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

·	rccregragrecrecrec		I	TA-TA-	-TA-TA-	A-TGCA-	-TA-TGCA-	TA-TA-	TA-TA-		rA	TA-TA-	T - AA - T - C - A A -	- TT A - T A -	G-TCA-TTT	A-C-CCA-CCT-	G-TCA-CT	I-CCA-C	GCAA-CA-CAG-TA	GCTA-CA-CGG-TA	GCTA-CA-CA-G-TA	GCTA-CA-CA-G-TA	GC-GCTT-T-
	GGGCGAAGG						L	L	L	L	· L		L	L	AA	A	t	C-A	C	C	C	,-G	A-C
	TCCATGGTGGGAACTGGGCGAAGGTC	; ; ; ; ; ;	! ! ! ! ! ! !	1 1 1 1 1 1 1 1 1	- C 2 -	A	A	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	- L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 1 1 1 1 1 1	- C	CAAGCG-	CAA AGCG-	CAAGCG-	CAAGCG-	CAC	CACT-	CAAC	CAC	CI
080	STATTTCTCCATG		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	?C-AT	?C-AT	?C-AT	3C-AT	C-AT	?C-AT	!C-ATG	!C-AT	!C-AT	:C-AT	!C-AT	C		L D:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!A	!A	A	!A	C-ATG-ATC-
	Ū	1a -	1a -	1b C	1b (	1b (	1b (	1b C	1b (	1b C	1b C	1b C	1b C	1b C	2a C	2b C	2a C	2b C	3a C	3a C	. 3a C	3a C	5a A
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	HCV-JK1	HCUNK	HCV-N	HC-J6	HC-J8	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

tinued 3	1130	TATTTGCCGGCGTCGACGCGGAAACCCCACGTCACCGGGGGAAGTGCCGGC		-GCAAC	T.A	-TTTTGTGAGGCGCAA-C-	-CCGGTACGT-GGGCG	-CGTGGCGTACGT-GGGTG	-CGTCGCAA-CT	-CGTCGCAA-CT	GGCGCAG-	-T	-A-T	25255	B-	CTAC-GTTTTC-A-	-TGGAGTAACCT-TTCGCCAGGAAGT	i	CCAAG-	) I	T-AGTCAT-TACTC	- C-C	C-A	1
- Con		1a	1a	1a	1b	1p	1p	1p	1p	1p	1p	1p	1p	1p	1p	2a	2p	2a	<b>2</b> p	3а	3а	3а	3а	<u>5</u>
Figure 13 - Continued		HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	S HC-J4.91	SO HCV-JTA	HCV-JTB	HCV-CHINA	S HCV-T	南 HCV-JK1	J HCUNK	M- N-L	9C-DH 2	<b>9</b> HC−18	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

105/111

1180 CACACTGTGTCTGGATTTGTTAGCCTCCTCGCACCAGGCGCCCAAGCAGAA	GC G-L	-G-G-CATTTAT	A	A-ACACCAACA-GC-CGTC-A-GTAGTGC-GTCT	C-CGTCTTT-	LL-L	CACGTC-TTA-C-A	C-CGTC-TTA-CGC-(	-G-T-CACCCTCGCACGTCT-TAT-GTCT	TAAG	TAGTTT-GGCT	-T-TAGCT	TGC-GT	T-AC-CCAGGACCC-CACCGA-GTT-C-TTTTG	-GTCCG-GC-C-C-GT-TA-TA-T-T-T	I-CT-TT-G	-AGCTT	C-G-TTT-T-ACATC	TTT-TA-TGTG	C-ACA-GCTTAAT-GG	TTC-GGC	A GAC A CA - C - CCTCAT - TA A - C - GC GC
la	1a	la	1p	1b	1p	1b	1b	1b	1p	1p	1p	1p	1b	2a	2b	2a	2b	3a	3а	3а	3а	5а
HCV - 1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91					₩ HCV-JK1						HC-J7	NZL1	HEM26	TH85	US114	BE95

		GTTGGCACCTCAATAGCACGGCCC			-CACGCT-	ACGT	-CACGT	-CAA	-CACGT	-CACGT	-CTACGT	-CAT	AAT	-CTACGC		CCC	-CA-ACC-GT	1	-CA-ACC-GC	CGACTT	CGACTT	CGAA	CGTACCT	-CACGC
nued 5	1230	CGTCCAGCTGATCAACACCAACGGCAGTTGGCACCTCAATAGCACGG	-AA	-A	AAACG-G	TATG-	AATG-GT	TG-GT	AAT	T	GATTTTT	T A T	ATG-T	CA	AATAT	TD	-T-TT-AT	ITTT-	TAAGTAT	AC-GT(	AC-GTT(	-C-GTGTTC	-C-GGTT(	AC-GRTA
- Conti		1a	1a	1a	1 p	1 p	1 p	1 p	1b	1b	1b	1b	1b	1b	1b	2a	2b	2a	2b	3a	3a	3a	3а	<b>5</b> a
Figure 13 - Contin		HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	E HCV-JTB	S HCV-CHINA	I HCV-T	HCV-JK1	H HCUNK	HCV-N	(HC-J6	F HC-78	26 HC-15	HC-J7	NZL1	HEM26	TH85	US114	BE95

107/111

cinued 6	1280	TGAACTGCAATGATAGCCTCAACACCGGCTGGTTGGCAGGGCTTTTTCTAT			TCTCC-ATG-TCA-TT-CC		-A	-ATCTCCCC				Ē	T	GCTCTG-TTG-TC-C-C-		GTCACTCTT-GCTCC-CGTCAG-	-CT	T	-CTT-GC-AAT-TCCT-CCG	-ATGTC-A-AG-TTA-ATT-GT		T-G-TC-A-AG-TCA-ATAT-G-T-	ı	-TTTCC-GTG-TCA-ACC
- Conti		1a	la	la	1 p	$^{1}\mathrm{p}$	1b	1b	1 p	1 p	1b	1p	1b	1p	1b	2a	2b	2a	2b	3а	3a	3a	3а	<b>5</b> a
Figure 13		HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91			HCV-CHINA		•						HC-J7	NZL1	HEM26	TH85	US114	BE95

1330	CACCACAAGTTCAACTCTTCAGGCTGTCCTGAGAGGCTAGCCAGCTGCCG	GA	C	GCAGG-GCGCAC-CA-GT	ACAT-GTGCGCAC-CA-G	ACAGGCGCGC-CA-G	ACA	GCAAACACA-	C-(	ACAGG-GCACG-AC-CA-G	-DBDB-	GTAA-GTTACT-AC-CA-GTT	A-ATG	ACATGGCACG-G-C-CA-G	ACGCGACAC-CA-GTGC	ACAGCTCCC-GT-GT-TTC	GT-ACGCTGACC-TC-CGTGT	GT-AGACGTAGCTCCC-CT-GT-TTC	TT	Ė	TT	T-TA-TA-TA-TAC-ACAGTAA	TTTA-
	1a	1a	Та	1 <b>b</b>	1b	1p	1p	1b	1p	1b	1p	1b	1b	1p	2a	2b	2a	2b	3a	3a	3a	3а	Ба
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	HCV-JTA	HCV-JTB	HCV-CHINA	HCV-T	HCV-JK1	HCUNK	HCV-N	HC-J6	HC-J8	HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95

gure 13 - Continued

Figure 13 - Continued

	GCCA	1 1 1	1 1 1	-AT-	9L	A-TG	A-TG	AG	AG	A-TG	A-TG	TG	A-TG	TG	-GAG-A	CGAAA	CGAG-AT-	1GA	- L	- L	- AA -	- L	! !
	<b>3GGCCCTATCAGTTAT</b>	I I I		L C C-C	TCT	CC	CC	DDD	T C CC	C	D	CCC	TCC	T C	G-CT-ACAAGA	AA-CT-GGAACG	A-CT-GCAACG	AA-CT-GGAAGAGA	CT-A-CAG	T-CT-G-CAG	CT-G-CAG	T-CT-G-CAG	AA C
1380	ACCCCTTACCGATTTTGACCAGGGCTGGGGCCCTATCAGTTAT	·	·	CA-CGATGC-CTG	CAAGA-A-GCA	CAGA-TGGC-CA	CAGAGGC-CA	CTA-CGA-A-GC-CTA	CTAGA-A-GC-CTA	CAGATACACT	TTAGA-A-GCTA	TAGA-AGGC-CTAG	CAGATACAC-CGG	CTAGA-A-GCA	CAGTA-CGAG-CCCGGGTA	CGGGGGACG-ATC	CAG-A-CGAG-CCCGGATAG	TAAGGGATCG-ATCG	GA-CTTTCCAGGA	CTTCCCAGG	GA-CTCCCA-TG	GA-CTTCCCAGGG	GGGAC
	1a	1a	1a	1p	1p	1b	1p	1p	1p	1p	1p	1b	1b	1p	2a	2b	2a	2b	3a	3a	3а	3а	<b>5</b> a
	HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91			MCV-CHINA									NZL1	HEM26	TH85	US114	BE95

		1430	
HCV-1	1a	ACGGAAGCGGCCCC GACCAG	GACCAGCGCCCCTACTGCTGGCACTACCCCCCA
HCH-H	la	TG-A	! ! ! ! !
HC-J1	1a	V	
HCV-J	1b	TGCCTGAGAT-G	A-GATG-
HCV-BK	1b	-GTCTA-AT-A	A-GAT
HC-J4.83	1b	-GCCTGA-AGT	A-GTTG-
HC-J4.91	1b	-GCCT-A-AGT	A-GTTG-
HCV-JTA	1b	-GCCTG-ATGT	A-GT
HCV-JTB	1b	-GCCTG-G-A-TTGT	A-GT
HCV-CHINA	1b	-GCCTGATAT-G	A-GTT
HCV-T	1b	-G-CTGA-ATAG	A-GTTG-A
HCV-JK1	1b	-GTCTCAT-G	1
HCUNK	1b	-GCCTCAT-ATTTGT	A-GTG-
HCV-N	1b	-TCCT-AA-AG	A-GTTG-A
HC-J6	2a	-T-TC-C-AATAGAGTAT-	A-AGTA
HC-J8	. 2p	TC-C-AA-GATGGGAT-	A-GGT
HC-J5	2a	-T-TC-C-AATAGAATAT-	A-A
HC-J7	2b		A-AGT
NZL1	3а	CT TG-	- A G - A
HEM26	3a	ī	<u>-5</u>
TH85	3a	CTTG-	-AG-
US114	3a	ATC-CATT-TTCTTG-C	CAAAGG-AT
BE95	5a	AT-TCGTAGTTG-C	CAAAATT

nued 10	1480	ATTGTGCCCGCGAAGA	-GT	CA	CTC	IIC-	TTC-	-TCATC-	TTC-	A	-ATTC-	GGTCATC-(	TCT	-TA	CA-ACG-	-GAGTG-ACTGCTC	CGJ	B	CCI-G	BD	TACCGCA	TAAA-GCA	r T - A CC C G 1	CGGGAG-GACC-AGAGC
Continued		la	la	1a	$^{1}\mathrm{p}$	1b	1p	1p	$^{1}\mathrm{p}$	1p	1b	1p	1p	1p	1b	2a	<b>2</b> p	2a	<b>2</b> p	3a	3а	3a	3a	5а
Figure 13 -		HCV-1	HCH-H	HC-J1	HCV-J	HCV-BK	HC-J4.83	HC-J4.91	MCV-JTA	Ή			_	HCUNK	HCV-N		HC-18	<b>9</b> HC-J5	HC-J7	NZL1	HEM26	TH85	US114	BE95