CSE 250A HW5

Akhil Nallacheruvu

November 2024

5.1 Survey

CSE 150 Movie Survey Which of the following movies would you recommend? (Please choose to have your responses emailed to you so you can use them in a future assignment.)				
Email * anallacheruvu@ucsd.edu				
Student PID * A69032048				
Movies: *	Would recommend	Would NOT recommend	Have not seen	
Black Panther	•	O	0	

Inception	•	0	0
The Last Airbender	0	•	\circ
The Hunger Games	•	\circ	\circ
The Wolf of Wall Street	•	\circ	\circ
World War Z	0	•	\circ
Interstellar	0	•	\circ
The Martian	•	\circ	\circ
Iron Man 3	0	•	\circ
La La Land	0	•	\circ
Star Wars: The Last Jedi	\circ	•	\circ
WALL-E	•	\circ	\circ
The Dark Knight	•	\circ	\circ
The Lord of the Rings: The Fellowship of the Ring	0	\circ	•
The Matrix	•	0	0
Star Trek Beyond	0	•	\circ
Jurassic World	0	•	\circ
Jurassic Park (1993)	•	\circ	\circ
Deadpool 2	0	•	\circ
Guardians of the Galaxy	0	•	\circ
Mission: Impossible - Fallout	•	\circ	0
Guardians of the Galaxy Vol. 2	\circ	•	0

Zootopia	•	\circ	\circ
Tron	•	\circ	\circ
Star Wars: The Phantom Menace	\circ	\circ	•
Moana	•	\circ	0
Man of Steel	•	\circ	0
Get Out	•	\circ	0
Suicide Squad	•	\circ	0
The Shape of Water	0	•	0
The Avengers	•	\circ	0
Mad Max: Fury Road	\circ	•	0
Frozen	•	\circ	0
The Imitation Game	•	0	0
Ex Machina	0	0	•
2001: A Space Odyssey	•	\circ	0
Blade Runner 2049	\circ	0	•
Terminator Genisys	0	0	•
Terminator 2	0	\circ	•
Avengers: Infinity War	•	0	\circ
Coco	•	\circ	\circ
Ant-Man and the Wasp	•	\circ	0
Venom	•	0	0

Oceans 8	\circ	•	\circ
The Greatest Showman	\circ	\circ	•
The Lego Movie	•	\circ	\circ
Harry Potter and the Deathly Hallows: Part 2	•	\circ	\circ
Wonder Woman	\circ	•	0
Logan	•	\circ	\circ
Jumanji: Welcome to the Jungle	\circ	•	\circ
It	•	\circ	\circ
Justice League	\circ	•	\circ
Thor: Ragnarok	•	\circ	\circ
Rogue One	\circ	•	\circ
Solo	\circ	\circ	•
Captain America: Civil War	•	\circ	0
Batman v Superman: Dawn of Justice	\circ	•	0
Doctor Strange	•	\circ	\circ
Fantastic Beasts and Where To Find Them	•	\circ	\circ
Furious 7	(a)	\bigcirc	\bigcirc

5.2 EM algorithm

a)

$$P(B=b|A=a) = \frac{\sum_{t=1}^{T} \mathbf{I}(\alpha_{1}\alpha_{t})\mathbf{I}(b_{1}b_{t})}{\sum_{t=1}^{T} \mathbf{I}(\alpha_{2}\alpha_{t})\mathbf{I}(b_{1}b_{t})\mathbf{I}(c_{1}c_{t})}$$

$$P(C=c|A=a,B=b) = \frac{\sum_{t=1}^{T} \mathbf{I}(\alpha_{2}\alpha_{t})\mathbf{I}(b_{1}b_{t})\mathbf{I}(c_{1}c_{t})}{\sum_{t=1}^{T} \mathbf{I}(\alpha_{2}\alpha_{t})\mathbf{I}(c_{2}c_{t})\mathbf{I}(c_{3}c_{t})}$$

$$P(D=d|A=a,C=c) = \frac{\sum_{t=1}^{T} \mathbf{I}(\alpha_{2}\alpha_{t})\mathbf{I}(c_{2}c_{t})\mathbf{I}(c_{3}c_{t})}{\sum_{t=1}^{T} \mathbf{I}(\alpha_{2}\alpha_{t})\mathbf{I}(c_{3}c_{t})\mathbf{I}(c_{3}c_{t})}$$

b)
$$P(A = a, B = b | C = c, D = d) = \frac{P(A = a, B = b, C = c, D = d)}{P(C = c, D = d)}$$

$$= \frac{P(A=a)P(B=b|A=a)P(C=c|B=b,A=a)P(D=d|C=c,B=b,A=a)}{P(C=c)P(D=d|C=c)}$$

$$= \boxed{ P(A=a)P(B=b|A=a)P(C=c|B=b,A=a)P(D=d|C=c,B=b) \\ \sum_{A=a,B=b}P(A=a)P(B=b|A=a)P(C=c|B=b,A=a)P(D=d|C=c,B=b)}$$

c)
$$P(a|c,d) = \sum_{B=b} P(A=a, B=b|C=c, D=d)$$

$$P(b|c,d) = \sum_{A=a} P(B=b, A=a|C=c, D=d)$$

d)
$$P(C=c_t, D=d_t) = P(C=c_t)P(D=d_t|C=c_t) =$$

$$\Sigma_{A=a,B=b}P(A=a)P(B=b|A=a)P(C=c_t|B=b,A=a)P(D=d_t|C=c_t,B=b)$$

$$L = \sum_{t} log \sum_{A=a, B=b} P(A=a) P(B=b|A=a) P(C=c_t|B=b, A=a) P(D=d_t|C=c_t, B=b)$$

e)

$$P(A=a) \leftarrow \frac{\sum_{e=1}^{T} P(A=a|C=c_{e_1}D=d_{e})}{T}$$

$$P(B=b|A=a) \leftarrow \frac{\sum_{e=1}^{T} P(B=b,A=a|C=c_{e_2}D=d_{e})}{\sum_{e=1}^{T} P(A=a|C=c_{e_2}D=d_{e})}$$

$$P(C=c|A=a,B=b) \leftarrow \frac{\sum_{e=1}^{T} P(A=a,B=b|C=c_{e_2}D=d_{e})}{\sum_{e=1}^{T} P(A=a,B=b|C=c_{e_2}D=d_{e})}$$

$$P(D=d|B=b,C=c) \leftarrow \frac{\sum_{e=1}^{T} T(c,c_{e})T(d,d_{e})}{\sum_{e=1}^{T} T(c,c_{e})T(d,d_{e})} P(B=b|C=c_{e_2}D=d_{e})$$

5.3 EM algorithm for noisy-OR

a)
$$P(Y=1-X) = \sum_{Z \in \{0,1\}^n} P(Y=1,Z|X) = \sum_{Z \in \{0,1\}^n} P(Y=1|Z,X) P(Z|X) = \sum_{Z \in \{0,1\}^n} P(Y=1|Z,X) P(Z|X) = \sum_{Z \in \{0,1\}^n} \prod_i^n P(Z_i|X_i) = 1 - \prod_i^n P(Z_i=0|X_i) = 1 - \prod_i^n (1-p_i)^{X_i}$$

$$b) P(Z_i=1,X_i=1|X=x,Y=y) = \frac{\sum_{Z=\{0,1\}^n} P(Z_i=1,X_i=1,X=x,Z=z,Y=1)}{P(X=x,Y=y)} = \frac{P(Z_i=1,X_i=1)P(X_i=1)\sum_{z_j} \prod_j P(Z_j=z_j,X_j=x_j)P(Y=1|Z=z)}{P(Y=1|X=x)} = \frac{yx_ip_i}{1-\prod_j (1-p_j)^{X_j}}$$

$$c) p_i = P(Z_i=1|X_i=1)$$

$$P(Z_i=1|X_i=1) \leftarrow \frac{\sum_{i=1}^T P(Z_i=1,X_i=1|X=x^{(i)},Y=y^{(i)})}{\sum_{t=1}^T P(X_i=1|X=x^{(i)},Y=y^{(i)})} = \frac{\sum_{t=1}^T P(Z_i=1,X_i=1|X=x^{(i)},Y=y^{(i)})}{T_i}$$

$$p_i \leftarrow \frac{\sum_{t=1}^T P(Z_i=1,X_i=1|X=x^{(i)},Y=y^{(i)})}{T_i}$$

HW5

November 11, 2024

```
[1]: import math
[3]: with open('spectX-1.txt', 'r') as f:
          features = [list(map(int, line.rstrip(' \n').split(' '))) for line in f]
      with open('spectY-1.txt', 'r') as f:
          labels = [int(line.rstrip("\n")) for line in f]
[5]: num_samples = len(features)
      iterations = 256
      num_features = 23
      probabilities = [0.05] * num_features
      feature_counts = [0] * num_features
[7]: for i in range(num_samples):
          for j in range(num_features):
              if features[i][j] == 1:
                  feature_counts[j] += 1
[9]: log_likelihood = [0] * (iterations + 1)
      mistakes = [0] * (iterations + 1)
[11]: for iteration in range(iterations + 1):
          for sample in range(num_samples):
              term_1 = 0
              term_2 = 1
              for feature in range(num_features):
                  if features[sample][feature] == 1:
                      term_1 += features[sample][feature] * (0 if_
       →probabilities[feature] == 0 else math.log(1 - probabilities[feature]))
                  term_2 *= (1 - probabilities[feature]) ** features[sample][feature]
              log_likelihood[iteration] += (1 - labels[sample]) * term_1 +_{\sqcup}
       →labels[sample] * math.log(1 - term_2)
          log_likelihood[iteration] /= num_samples
          mistakes[iteration] = 0
          for sample in range(num_samples):
              probability = 1
```

```
for feature in range(num_features):
                 probability *= (1 - probabilities[feature]) **__
       →features[sample][feature]
             prob_of_1 = 1 - probability
             if (labels[sample] == 1 and prob_of_1 <= 0.5) or (labels[sample] == 0_{\sqcup}
       \rightarrowand prob_of_1 >= 0.5):
                 mistakes[iteration] += 1
          posteriors = []
          for sample in range(num_samples):
             denominator = 1
             for feature in range(num_features):
                  denominator *= (1 - probabilities[feature]) **__
       →features[sample][feature]
             posteriors.append([labels[sample] * features[sample] [feature] *__
       →probabilities[feature] / (1 - denominator) for feature in range(num_features)])
          for feature in range(num_features):
             probabilities[feature] = sum(posteriors[sample][feature] for sample in_
       →range(num_samples)) / feature_counts[feature]
[12]: for iteration in [0, 1, 2, 4, 8, 16, 32, 64, 128, 256]:
          print(f"Iteration: {iteration} \t Mistakes: {mistakes[iteration]} \t Log_\( \)
       Iteration: 0
                      Mistakes: 175
                                     Log Likelihood: -0.95809
     Iteration: 1
                      Mistakes: 56
                                     Log Likelihood: -0.49592
     Iteration: 2
                      Mistakes: 43
                                     Log Likelihood: -0.40822
     Iteration: 4
                      Mistakes: 42
                                     Log Likelihood: -0.36461
                      Mistakes: 44
     Iteration: 8
                                     Log Likelihood: -0.3475
     Iteration: 16
                      Mistakes: 40
                                     Log Likelihood: -0.33462
                      Mistakes: 37
     Iteration: 32
                                     Log Likelihood: -0.32258
     Iteration: 64
                      Mistakes: 37
                                     Log Likelihood: -0.31483
     Iteration: 128
                      Mistakes: 36
                                     Log Likelihood: -0.31116
                      Mistakes: 36
     Iteration: 256
                                     Log Likelihood: -0.31016
```