1. Determine the <u>equivalent state of stress</u> if an element is oriented 20⁰ clockwise from the element shown. <u>Show the result on the element</u>. [15%] Ans: 4.99, -1.46, -3.99 MPa

2. The state of stress at a point is shown on the element. (a) Determine the <u>principal</u> stresses and the <u>corresponding orientation</u> of the element. (b) Determine the <u>maximum in-plane shear stress</u> and a<u>verage normal stress</u> at the point, and specify the <u>orientation</u> of the element. You must use <u>Mohr's circle to solve this problem</u>. [20%] Ans: (a) 3.51, -28.51 MPa, -19.3⁰, 70.7⁰ (b) +-16.0, -12.5 MPa, 25.7⁰, -64.3⁰

- 3. The state of plane strain at a point has components $\varepsilon_x = 400(10^{-6})$, $\varepsilon_y = -250(10^{-6})$, $\gamma_{xy} = 310(10^{-6})$. Determine the <u>state of strain</u> on an element oriented 30^0 counterclockwise from the reported position. [15%] Ans:248(10⁻⁶), -348(10⁻⁶), -233(10⁻⁶)(shear)
- 4. The state of plane strain at a point is represented on an element having components $\varepsilon_x = 520(10^{-6})$, $\varepsilon_y = -760(10^{-6})$, and $\gamma_{xy} = -750(10^{-6})$. (a) Determine the <u>in-plane principal strains</u> and specify the <u>orientation</u> of the corresponding element. (b) Determine the <u>maximum in-plane shear strain</u> and <u>average normal strain</u> and specify the <u>orientation</u> of the corresponding element. You must use <u>Mohr's circle to solve this problem</u>. [15%] Ans: (a) 622(10⁻⁶), -862(10⁻⁶), -15.2⁰, 74.8⁰ (b) +-1484(10⁻⁶), -120(10⁻⁶), -29.8⁰, 60.2⁰

5. Determine the slope and deflection of end A of the cantilevered beam. E=200 GPa and $I=65.0 (10^6)$ mm⁴. [15%]

6. Determine the <u>equation of the elastic curve</u> for the beam using the coordinates x_1 and x_2 , and specify the <u>deflection and slope at C</u>. EI is constant. [20%]

