

Cutting Electricity Cost For Service Provider Networks

Muhammad Saqib Ilyas

FDC

Zartash Afzal Uzmi Tariq Mahmood Jadoon Ihsan Ayyub Qazi Muhamad Fareed Zaffar Aamir Qayyum

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers
 - Cellular networks
- Conclusions and future work

The Interne

Source: http://cnet.co/1Q9SkZ0

Image source: http://bit.ly/1awWnLn

1 Data Center ~ 50,000 - 80,000 servers

Google's data center locations http://bit.ly/1Wblvbe

1 Data Center ~ 50,000 - 80,000 servers

Microsoft Azure's data center locations http://bit.ly/1mqvi26

Google's B4 SDN

Google's B4 SDN

Google's B4 SDN

Google's B4 SDN

Amazon

- Amazon
 - 87 data centers
 - At least 2 M servers

Source: http://bit.ly/11erCWn

- Amazon
 - 87 data centers
 - At least 2 M servers
- Telenor Pakistan
 - 8000 cellular sites

Source: http://bit.ly/1T9VBqd

Massive infrastructure

Massive infrastructure

Massive power draw

Annual DC Opex

\$951 M

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Google

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Electricity Cost 2012

\$81 M

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Electricity Cost 2012

\$81 M

Source: GREENNETS

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Significant electricity costs

Electricity Cost 2012

\$81 M

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers
 - Cellular networks
- Conclusions and future work

Opportunity

Network workload has systematic variations

A. Nazir et. al, "Unveiling Facebook: a Measurement Study of Social Network Based Applications" Barroso et. al, "The Case for Energy Proportional Computing", IEEE Computer, 2007

Peng et. al, "Traffic-Driven Power Savings in Operational 3G Cellular Networks", MOBICOM 2011

Opportunity

Opportunity

Deploy sufficient resources to handle peak

Opportunity

Deploy sufficient resources to handle peak

Most equipment (nearly) idle

Opportunity

Opportunity

Deactivate idle equipment

CA: California

CA: California

NY: New York

CA: California

NY: New York

CA: California

NY: New York

CA: California NY: New York

TX: Texas

Resource pruning cuts electricity cost

CA: California NY: New York

CA: California NY: New York

CA: California

NY: New York

CA: California

NY: New York

CA: California

NY: New York

CA: California

NY: New York

TX: Texas

Workload relocation cuts electricity cost *further*

CA: California

NY: New York

CA: California

NY: New York

CA: California

NY: New York

RP and WR can cut electricity costs

RP and WR can cut electricity costs

Ain't no such thing as a free lunch

Transition Costs

- Transition costs may be present
 - Examples:
 - Expensive inter data-center traffic

Transition Costs

- Transition costs may be present
 - Examples:
 - Expensive inter data-center traffic
 - Energy spent while resuming and sleeping

Transition Costs

- Transition costs may be present
 - Examples:
 - Expensive inter data-center traffic
 - Energy spent while resuming and sleeping
- Relocate Energy Demand to Better Locations (RED-BL)

This Thesis

Towards systematic minimization of network electricity cost

using Workload Relocation (WR) and Resource Pruning (RP)

while considering transition costs

Contributions

Data centers

INFOCOM Mini-Conference 2012

- Optimization framework
- Simulation based evaluation

Computer Networks, 2014

- Finer granularity
- NP-Completeness

Cellular Networks

GLOBECOM 2013

- Adaptation of optimization framework
- Simulation based evaluation

Submitted

- NP-Hardness proof *
- Additional evaluations

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers
 - Cellular networks
- Conclusions and future work

Source: http://bit.ly/1mrli7o

- Data center operator
 - Geographically distributed data centers

- Data center operator
 - Geographically distributed data centers
- Data center equipment

IT Load	Non-IT Load
Servers	Lighting
Storage	Cooling
Network	Power distribution

- Data center operator
 - Geographically distributed data centers
- Data center equipment

IT Load	Non-IT Load
Servers	Lighting
Storage	Cooling
Network	Power distribution

Power consumed is affine function of workload

- Data center operator
 - Geographically distributed data centers
- Data center equipment

IT Load	Non-IT Load
Servers	Lighting
Storage	Cooling
Network	Power distribution

Power consumed is affine function of workload

Let's recap how we can use WR and RP

Interval - 1

Electricity price driven workload assignment

Interval - 1

Interval - 1

Sum of all data centers' electricity cost

Interval - 1

Interval - 2

Problem Mod Data center

deactivation

Interval - 1

Interval - 2

Data center activation

Locally optimal

Locally optimal

Might not be globally optimal

An alternative workload mapping

An alternative workload mapping

Total cost: 46

An alternative workload mapping Total cost: 42 NY CA O NY TX NY 12 CA 12 CA 12

Optimal State Trajectory Problem

Optimal State Trajectory Problem

Relocate Energy Demand to *Better* Locations (RED-BL)

minimize
$$\sum_{j=1}^n \sum_{i=1}^m c_i e_i^j (p_i^j \lambda (f + (1-f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$
 Transition energy

Subject to several constraints (please see the thesis)

Experimental Setup

- Workload from 3 popular Facebook apps
- Electricity prices from 33 US locations
- Simulated a week-long deployment plan
- Compared RED-BL against various schemes

UNIFORM: Equally distribute workload

LO: Local Optimal Ignoring Transition Costs

LS: Local Optimal with Selection

Comparison Benchmarks

Best practical variant of local optimal

Increased over provisioning

Increased over provisioning

More capacity at cheaper locations

Increased over provisioning

More capacity at cheaper locations

Greater savings

(De)activation overhead = energy cost

No transition costs

(De)activation overhead = energy cost

Granular (De)activation

Granular (De)activation

- Electricity cost savings can be achieved
 - Overprovisioning
 - Diversity

- Electricity cost savings can be achieved
 - Overprovisioning
 - Diversity
- It is important to consider transition costs

- Electricity cost savings can be achieved
 - Overprovisioning
 - Diversity
- It is important to consider transition costs
- RED-BL has wider applicability

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers
 - Cellular networks
- Conclusions and future work

23

Marsan et. al, "Optimal Energy Savings in Cellular Access Networks", ICC 2009

Is Workload Relocation Possible?

40% users receive signal from more than three BTSs

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_{i} e_{i}^{j} (p_{i}^{j} \lambda (f + (1-f) \frac{x_{i}^{j}}{c_{i}}) + b_{i}^{j} \sigma + s_{i}^{j} \delta)$$

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \sum_{i=1}^{m} -f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda) - f(\frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

$$minimize \sum_{j=1}^{m} p_i^j$$

For every interval, minimize # TRXs

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \lambda) - f(\frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

$$minimize \sum_{j=1}^{m} p_i^j$$

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j) - f(\frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

$$minimize \sum_{j=1}^{m} p_i^j$$

Experimental Setup

Experimental Setup

Call volume traces for 2 days at 26 urban BTSs

Experimental Setup

- Call volume traces for 2 days at 26 urban BTSs
- Trace driven simulation:
 - Periodically obtain optimal call placement
 - Place BTSs with low-traffic in power-saving mode

BTS Power Consumption Models

Parameter	Value		
	Model 1	Model 2	Model 3
Idle Power (W)	1425	2401.8	2341.5
Peak Power (W)	1500	3887.5	2973.9
Power Saving per TRX (W)	20	50	100

Results: Power-Saving Feature Only

Energy savings	Model 1	Model 2	Model 3
Percentage	4.73%	5.43%	12.89%
Daily energy savings (kWh)	43.28	109.68	217.12
Country-wide daily savings - 31000 sites (MWh)	51.6	130.77	258.87

Results: Power-Saving Feature Only

Energy savings	Model 1	Model 2	Model 3
Percentage	4.73%	5.43%	12.89%
Daily energy savings (kWh)	43.28	109.68	217.12
Country-wide daily savings - 31000 sites (MWh)	51.6	130.77	258.87

Energy Savings (kWh) RP + WR

At least 9.8% lower power consumption

Effect of Granular Deactivation

Granularity	Model 1	Model 2	Model 3
2-state	5.38%	6.29%	14.94%
3-state	6.81%	7.73%	18.62%
6-state	8.70%	9.65%	23.37%

Effect of Granular Deactivation

Granularity	Model 1	Model 2	Model 3
2-state	5.38%	6.29%	14.94%
3-state	6.81%	7.73%	18.62%
6-state	8.70%	9.65%	23.37%

Savings increase with finer granularity

Case Study II - Summary

- Overlaps in signal coverage
 - Some geo-flexibility in workload
- Built-in power saving feature
- Significant cost reduction through WR + RP

Parameter Cellular network Data centers

Parameter

Cellular network

Data centers

Network resource

Parameter

Cellular network

Data centers

Network resource

Servers

Parameter	Cellular network	Data centers
Network resource	TRX	Servers

Parameter Cellular network Data centers

Network resource TRX Servers

Workload relocation

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation		Client redirect

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning		

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning		Server shutdown / idle / hibernate

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate

Transition costs

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate
Transition costs		(De)activation overheads

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate
Transition costs	Negligible	(De)activation overheads

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers
 - Cellular networks
- Conclusions and future work

Future Work

- Adaptation and application to 3G, 4G, 5G and beyond
- Factor in other forms of transition costs:
 - Cost of change in latency
 - Cost of increase in call blocking probability
- Experimentation on a real testbed
- Incorporation into an OA&M framework
- Interplay with energy markets

Conclusions

- RED-BL: an electricity cost reduction framework
 - Systematic application of WR and RP
- Can significantly reduce electricity costs
 - Data centers
 - Cellular networks
- Reduction in power consumption
 - Positive ecological impact