	Date:
	ALGORITHMS
	Definetion: Standary IN
	a computational problem
.02	Program: step ley step process of volving a problem.
	Algo si thm Program
	Designi & Implementation
	Any Language & Porogramming Language
	03 independent hardware 08
	A Amalynge
	Posteriam Testing
	1 Algo su thm D porogoum. (a) Independent of (a) Language
	Language Depondent
-	3 Hardware 3 Hardware
-	Independent Dependent
4	(Time and space @ watch Time
-	Function and Bytes

Date:____

characteristics of Algorithm:

- takes o (0.01) made in puts
 - at least one output must be generated

 - Frmiteness

 algorithm must terminate at some
 point it must have a frmite number
 of statements.
 - Unnecessary statements must not be written.

procedure must se effective.

These are the 5 impostant characteristics of every algorithm.

_							
D	a	١	ρ		ı		
	-	•	_	•		 -	

	How to write an algorithm:
	10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1	Algorethm swap (a, b)
1	f Begm The oreader must berno = a; &e able to a = b: Understand what
	temp = a; de able to
	a = b; understand what b = temp; welton.
	b= temp; weltom.
	3 End no fixed syntax
	O Tme
	teme effectionay -> must be fast
	Space efficiency FACTORS]
	Space efficiently Enerors
	(3) Network consumption
5	3 Network consumption 3 chows much data transfer is done
	@ power consumption
	how much power is consumed
	(E) CPU regester
	how many apr suggisters are consume
	in the memory.
	U The state of the

Date:___.__

NOTE: Every stateme Algorithm swap (9,6) in an algorithm Begm temp < a > 0 consumes one $a \leftarrow b \Rightarrow \bigcirc$ unct of time b < temp => 0 End $\alpha = (5 \times a) + (6 \times b) \rightarrow 0$ (general esod) $9 \rightarrow 1$ $b \rightarrow 1$ $temp \rightarrow 1$ S(n) = 3+(3weeds) constant $C_{1} \circ C_{1})$ space space 1 Forequency count Method Algorethm rum CA, n) 4/8/3/9/7 L saw of elements of an assay S= S+ O[i]; returns;

Page No 4

Page No.: 5

_		
Dat	e:	
	A	 -

wi= 00 condition is checked w 121 (n+1) times L 1=2 ~ L=3 Time function u i= 4 f(n)=1 + (n+1) + (n) + (n) f(n)= 2n+3 Space complexity $A \rightarrow n \quad n \rightarrow 1 \quad 2 \rightarrow 1$ 2(n)2 n+3 -> 0(nsum of two motoreces Algorithm iddd CA, B,5m) for (140; i <n', i++) for (j=0) j < n', 5++) ~ n(n+1) e[isi] = A[isi] + B[isi] Terre non f(n) = 2n2+2n+1 (20 (2)

J.

Date:

Shace
$$N \rightarrow N_{3} \rightarrow N_{4} \rightarrow N_{5}$$

$$N \rightarrow 1 \qquad 1 \rightarrow 1 \qquad 2 \rightarrow 1$$

$$N \rightarrow 1 \qquad 2 \rightarrow 1 \qquad 2 \rightarrow 1$$

$$N \rightarrow 1 \qquad 2 \rightarrow 1 \qquad 2 \rightarrow 1$$

$$N \rightarrow 1 \qquad 2 \rightarrow 1 \qquad 2 \rightarrow 1$$

$$N \rightarrow 1 \qquad 2 \rightarrow 1 \qquad 2 \rightarrow 1$$

Multiplication of two matrices,
Algorithm Multiply (A, B, C, n)

The far (i = 0; i < n; i++)

 $(n+i) n \leftarrow fon (j-o, j-en, j++)$ $(n)(n) \leftarrow c [i,j] = o$

3

Time function

f(n)= 2n3+3n2+2n7/

space function $A \rightarrow n^2$ $B \rightarrow n^2$ $C \rightarrow n^2$ $n \rightarrow 1, 1 \rightarrow 1, j \rightarrow$

Date:___-

```
Analysis of time complexity
     for (1=0; 1< n; i++) -> m1
0
                               (orn)
         stmt; on
     fog (i=n; i>0; i--5" nm
(2)
                                 o(n)
          strit; -> 7
      for (1=1; 1 < n; 7=1+2) doesn't affect
3
           stont; on m/2
                f(n)= n/2
      for ( i= 0; i < h; i++) -> (n+1):
4
          for (j=0; j < n; g++ )~ n(n+)
              symt; ~ ~2
                                O(na
      3
Ì
     for (1=0, 1 < n; 1++)
         for (j=0) j Ti; j++)
      3 stmt
```

Date:_____

```
i=0 \rightarrow j=0 executed \rightarrow 0 times

i=1 \rightarrow j=0 executed \rightarrow 1 times

i=2 \rightarrow j=0,1 executed \rightarrow 2 times

i=3 \rightarrow j=0,1,2 \rightarrow 3 times

i=3 \rightarrow j=0,1,2 \rightarrow n-1 times

total
```

f(n) = m(m-1), o(ne)

Trull Hall

6 P=03

fox (1=1) P <= n; i++)

ŕ

P= P+13

3

 $\begin{cases} 1 & 0+1=1 \\ 000p & 1+2=3 \\ 1+2=3 \\ 1+2+3+4=10 \end{cases}$ k times $\begin{cases} 4 & 1+2+3+4=10 \\ \vdots & \vdots \end{cases}$

1+2+--+ K= K(K+1)

D-1			
Dai	e:_		

Assume p>n +> kCk+1) > n K(K+1) > 2n -> stopping condition approx $k^2 > n \rightarrow k > \sqrt{n}$ Trone complexity ?s (O(NT) for (i=1; i=n; i= 1+2) 0 Stmts Assume $i \geq n$ $1 = 2^k$ $2^k \geq n \rightarrow k \leq \log_2 n$ Time wroplexity (o(log_m) 1= 1xex 2 x ... x e = h y K= lagon (Logall thmic complexity)

Date____

eg
$$m=2$$
 $i=1, 2, 4, 2,$

3 torre,

3 true: $1 \rightarrow n, \frac{n}{2}, \frac{n}{2^2}, \frac{n}{2^3}$

Assume
$$i < 1 \rightarrow \frac{\eta}{2^{K}} > \eta$$

$$2^{K} > \eta \rightarrow k = \log_{2} \eta \rightarrow 0 \text{ (for } \eta)$$

Ausumny K2>n - K=vm (O(vm)

for (1=0; 1<n; 1++) 0 € stmt>~ n Independent 200ps for (j=0; j<n; j++) /
{
Strot > = m f(n) 0(n) 0 p = 0for (i= 1; i < n; i= i = 2) p++ >> 2002 n for (j=1; j<p; j=j*2) 0 (log (log n) for (1=0; (<n; 1++) → n+1 (le) fog (j=1; j<n; j=j+2) → nlog , Strition logo fino 2nlogo

summary for (i=0; i<n; i++)

for (i= 0; i < n; 1 = 1+2)

for (i=n; i>1; i--)

(orno

for (i=1; i < n; i= 1 +2) (1927)

for (1=1; i(n; j=1*3)

for (T = n; i>1; i= i/2)

Analysis of if & while

fog in to n do step a

2 stmt; 1,3,5.

Step , for -> n+1

stut -> n

while (wondn)

3 stmt; executes as long as condition is twe

Page No 108

Date:__._.

	Date:
	do
	i strik; > executed at least once every
	3 while (condm). If condition is
	inittally false
	repeat
	2 stmt; executes as clong as
	Cond & Hemme 2, Eas and
	until (condition);
0	i = 0, ~ 1
	achile (i < n) 7+1 f(n)= 3n+2
	stmt
	144> ~ (o(n))
	3
Por	h h +1
(for (=0; (<n; +(n)="3n+2</th" 1++)=""></n;>
	{ stmt:
	3 - 1 (O(n))
3	a=1;
	while (a <b) 1x2="2," 2x2="22.</td" a="1,"></b)>
	cushile $(a < b)$ $a = 1, 1 \times 2 = 2, 2 \times 2 = 2^{2}$. $2^{2} \times 2 = 2^{3} \cdots 2^{k-1} = 2^{k}$
1	a=a*2; *
	2 -> a ? b les minate

Date:____

Terminates @
$$a = a^{k} = b$$
 $a^{k} = b$
 $a^{k} = a^{k}$
 a^{k}

Date:___-

Team inating condition $k \ge n = k = n$

K (K+1) + 1 = n approximately

K2 = n > K= N5

1. 1.14

0(m)

for (K=1, 1=13 K<n) (++)

K= K+12 >> OCNT)

Francing Box of (m, n)

ashile (m 1 = n)

if (m>n) m=m-n;

else m = m-m;

m 16 2 5 5

14 2

Approx 1/2 times

2 2, 7 trues

Page No. 15

Date:____

min (ocis), max (ocns)

for (; m! =n;) if (10)>1) m = m-n; else m= n-m;

algorithm Test (n) 6

if (nos) porint f ("% d?, n); else

for (i=0; i=n; i++).

pormtf ("6d") ;)

ef -> (0(12) time (best case)

elx -> (0(n) time (worst case)

Algorithm Test (n) :f (n 5)

for Ci=0; ; < n; i++) plintf ("%d" ;) ~ n (O(m))

Date:___-.___

	Types of Time Functions
	0(1) - constant o Sf(n)=2
	O(log n) - legavethmec)f(n)=5
	10 (m) einear & - +(h) = 5000
	o(n2) -> quadratic
	0(m3) -> eulore (An) = 2n+3
	o(2") - exponential / froz- rooming
-	o(3n), o(nn) & f(n)= n/5000 + 6
C.	75000 T 6
	comparision of classes of Functions
	7
-	1 < dog n < sor n < n log n < n < n3
	2 = 2 ⁿ < 3 ⁿ < < n ⁿ
	Eg logn n n² 2 ⁿ nº0 < 2 ⁿ
	m=d-0 =1 1 2 m + 2".
	7=2 1 2 4 4
	n=2 2 4 16 16 $n=8$ 3 8 64 256
	n=9 3-1 9 81 512
_	2 ⁿ /n ³
_	M ²
-	on Approximate
_	log n graph)
	, 0 - 11.9
_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Date:___.__

Asymptotic Notations

O Big - Oh -> opper Bound _ Big-ornega → Lower Bound θ Theta → sverage Bound

the function f(n) = o(g(n)) iff] the constants c and no such that f(n) = eg(n) + n≥no

eg $f(n) = 2n + 3 = 10n + n \ge 1$ 6r7 2n+3 5 2n+3n

2n+3 = 5n → n+21

(no -> positive stanting value)

the can also assite

2n+3 = 2ne+3n2 $4n+355n^2 + n \ge 1$ $f(n) = o(n^2)$ also accepted

Date:___-

FOOT given f(n): 2n+3 1 < log n < 5n < n / r n / og n < n < 3 < ... 2 < 3 < ... 2 < 3 < ... < n loues opper bound average bound bound f(n)= o(n), f(n)= o(n2) f(n)= o(logn) But while welting signah, they to exposes as a function closest to average bound.

O(n) is lest for f(n) = 2n + 3The function f(n)= -2 (g(n)) iff I the constants c and no such that fcn> ≥ e g(n) + n≥ no eg $f(n) = \frac{2n+3}{n} \ge \frac{1}{n} + n \ge 1$ so f(n): (-12(n)) nearest one 93 useful f(n)= ~ (log n) f(n)= or (Jn) f(11) = -2 (12) Page No. 19 11

Date:____

Theta

The function f(n) = O(g(n)) 4f & the constants C1, Ce and no such that (1 g(n) = f(n) = ce g(n) + n≥ n

eg find:

 $\frac{1}{n} \leq 2n+3 \leq 5n + n \geq 1$ $e_1 = g(n) + f(n) = c_2 = g(n) + c_3 = c_4 = c$

f(n) = O(n) is the only possible 2 olution

\$ f(n2 = 2ne + 3n + 4

2 n2 + 3 m + 4 5 2 n + 3 n2 + 4 n2 218 + 3n+ 4 = 9 n2 + n≥1

f(n) = 0(n2)

2n2+3n+4 ≥1 m2 + (n) = -2 (n2)

1 n2 5 2 n2 + 3 n + 4 = 9 n2 -> 0(12)

Da1	e:_		

\$(n) = n log n + n $1 n^2 \log n \leq n^2 \log n + n \leq 10n^2 \log n$ $f(n) = O(n^2 \log_n) = -2(n^2 \log_n)$ $= \theta(n^2 \log_n)$ A f(n) = m! f(n)= m(n-1)(n-2) ... (3)(2)(1) 1×1× ... ×) = n/8 nx x ... x y -2(1) and o(n) (average ; is not possesse For smaller bounds, n! is closer to left side For larger value, n! is closed to dight sive n! cannot be fixed in any location use o and a are useful

)ate:___.

\$ f(n) = log m/

log (1×1×··×1) = log (1*2*··×n) ≤ log (nan.)

 $log(1) \leq log n! \leq log n^n$

05 dag n/ 5 n logn

-2-C12 and och dogn)

Properties of drymptotic votations

Ron eral peroperties:

0

If f(n) = 0 (g(n)), then af(n) = 0 (g(n))

eg $f(n) = 2n^2 + 5 = o(n^2)$

(7 f(n) = 14 n2 + 35 =0 (n2)

Teue Be O(g(n)) and -2(g(n)) also

Reflective property

of f(n) is given, f(n) = o(f(n))

f(n)= n2, f(n)= o(n2) also

Data		
Date:	 	

3 Totansi tile Poloporty

If f(n) = 0 (g(n)) and g(n) = 0 (h(n)) then f(n) = O(h(n))

g f(n)=n, g(n)=n, h(n)=元 $n = 0 (n^2), \quad h^2 = 0 (n^3)$

(> so n > 0(n3)

Symmetorie Poroperty

If $f(n) = \theta(g(n))$, then $g(n) = \theta(f(n))$

eg f(n) = n2 g(n) = n2 7 (m) 5 (us) & (us)

(3) Transpose symmetrice property

If en>= 0 (q(m)), then q(m)=-2(f(m))

eg f(m) = n, g(n) = n2 $n = 0 (n^2)$ and $n^2 = -2(n)$

If f(n) = o(g(n)) and 0 (than f(n) = O(g(m))

Page No. 1

Date:____

other 1) If f(m) = o(g(m)), summation peoperties and d(n) = o(e(n)) preperty then f(n) + ol(n) = ?f(n) = n = o(n)d(n) = n2 = o(n2) f(n) + d(n) = n + n2 = 0(n2) f(n) + d(n) = 0 max 0 (8(n), 0 (d(n) #f +(u) = o(d(u)) (2) a(n) o (e(ns) then +(n) * d(n) = 0 (g(n) * e(n) nd nº = 0 (n = nº) = 0 (m3) companis for of Functions nethod-1 $n^2 < n^3$ 2 2=4<2=8 2 n2 < n3 3°=9 < 3°= 27 3 9 4=16 < 43 = 64

Dat	200		
Udl	C	 	

method-2 sprily log on both sedes n^2 $n^3 \rightarrow \log n^2$ os $\log n^3$ 2 logn & 3 logn obviously 20 garl thronic Footmulae log (ab) = log a + log b

log (ab) = log a - log b

log (ab) = b log a

alog b

log a ab = n -> b = loga 1 compage of (n)= n2 log n and g(n)= n (log n)" Applying Log, 10g fcm = 210g n + 10g log n 10g g(n) = 10g n + 10 log log n deg deg 73 smaller, deg dominates lug f(n) > lug g(n) -> f(n) >g(n) compare $f(n) = 3n^{5n}$ and $g(n) = 2^{5n} \log n$ deally for > gon), enjoyptotally (=

0

Date:____

(a) compare f(n) = n log n and g(n) = atn

Applying log on both sedes

log f(n) = (log n) 109 g(n) = In dogs

log log f(n) = 2 log log n > log dominotion

f(n) × g(n)

 $\bigoplus f(n) = 2^{\log n} \text{ and } g(n) = n^{\sqrt{n}}$

(6)

log f(n) = log n, log g(n) = Nn log n
clearly f(n) < g(n)

f(n) = en and g(n) = 30.

f(n) < g(n) in terms of value

But asymptotocally they are equal.

 $f(n) = 2^n$ and $g(n) = 2^n$ $\log f(n) = n$ and $\log g(n) = 2n$

Clearly, f(n) < g(n)[Even asymptotically f(n) < g(n) as after logwe carn't equalise]

Date:___-

7

$$\begin{cases} n^{3} + n < 100 \end{cases}$$

 $9_2(n) = \begin{cases} n^2 + n < 10000 \end{cases}$

 $g_1(n)$ n^3 n^2 n^2 1000 n^2 10000 n^3

we can write $g_2(n) > g_1(n) + n \ge 10000$ so in general $g_2(n) > g_1(n)$ stayting point

check if the asymptotic notations are correct:

1

$$(n+k)^m = \theta(n^m)$$

Highest term = $n^m = \Theta(n^m)$

@

$$2^{n+1} = 0(2^n) \qquad 2 \cdot 2^n$$

$$0(2^n) = 0(2^n) = -1(2^n)$$

$$2^{2n} = O(2^n)$$

$$2^n + sn' + am upper Bound 2 = O(4^n)$$

$$a_1 + a_2 + a_3 + a_4 + a_5$$

m					
1-1	-53	٠	E)		
	5.4	٠.			

(a) Jiogn = 0 (kg kg n) cannot be upper bound (3)

(F) nog n = o(en)

log -> log logn, < n

ypeg Bound

Best, worst and Avaage case Aralysis

1 Linear search

1 Binary rearch Tale

Linear search

A 8 6 12 5 9 7 4 8 16 18 0 1 2 3 4 5 6 7 8 9

seasching key = $7 \rightarrow 6$ compassions 0%key = $20 \rightarrow 10$ compassions 0%

\$ Best case key = 8 => paresent at the

fragt index -> O(1) time

(constant)

B(n) = O(1)

(Best care time)

Pare No.

F-1			
Dat	Ott		
170		 	

dest index -> o (n) thre

(lenear)

w(n)= o(n)

A Average case key -s all possible case times mo. of cases

difficult to compute in general

Aug time = $1+2+3+...+n = \frac{m+1}{2}$ $A(n) = \frac{(m+1)/2}{2} = o(n)$

 $B(n) = o(1) = a(1) = \theta(1)$ w(n) = o(n) = e(n) = a(n)a(n) = o(n)

Binary search type

Oft < wot < reght

				D	ate:	
3.3	♦ B	est case ->	. sees che	ng soot	.1	
		= constant		-		
	C)	- Fg.1				
	ø wa	est as -	- searcher	ig for le	of eleme	
		- helight	\rightarrow	w(n) = 4	log n	
21	in, july.	0	1 3 4		. 1:	
	osing	40				
0.0	same.		in Maria			
e	lementy (9	B	est case		
	⊅ (20)	Left skew	wed		1)	
	(5)	Binary		worst care		
	Ø	seasch		· - 00	n)	
(5	3	Tree	mh u	w(n) = [a	2 1	
				Cn 2 = n		
		Construction of the second		1 1 1		
	mi	nimum uel	9rst ,	na ramum	worst	
		case tin		case th	-	
			· · · · · · · · · · · · · · · · · · ·	y = (, v		
		w(7)= h	in gen	eral		
			max			
	Par Par	log n	n	7.0		
in Tilly	147	b	b			
		height	Skowed			
		dualanced BST	BST	,		