STATS 300A: Theory of Statistics I

Autumn 2016/17

Scribes: Kenneth Tay

Lecture 8: October 20

Lecturer: Joseph Romano

8.1 Bayes Estimators

Recall the set-up for Bayes estimators:

Definition 8.1 We are given a "weight" function Λ on Ω (usually a probability measure), $X \sim P_{\theta}$ with $\theta \in \Omega$. We wish to estimate $g(\theta)$, with loss function $L(\theta, d)$.

The Bayes estimator δ^* is the estimator which minimizes "average risk", i.e.

$$\int_{\theta} \int_{x} L(\theta, \delta(x)) dP_{\theta}(x) d\Lambda(\theta),$$

If Λ is a probability distribution, it is called the **prior distribution** for θ .

Assume that Λ is a probability distribution. We can rewrite the quantity to be minimized:

$$\int_{\theta} \int_{x} L(\theta, \delta(x)) dP_{\theta}(x) d\Lambda(\theta) = \mathbb{E} \left[L(\Theta, \delta(X)) \right],$$

where the expectation is taken over the joint distribution of (x,θ) , i.e. $\Theta \sim \Lambda$, and given $\Theta = \theta$, $X \sim P_{\theta}$.

We write the quantity in this way so that we can condition on X and use the Law of Iterated Expectation to find the Bayes estimator. The next theorem makes this precise:

Theorem 8.2 In the set-up above, assume that

- 1. There exists an estimator δ_0 of $g(\theta)$ with finite average risk, and
- 2. For almost all x, $\delta_{\Lambda}(x)$ minimizes

$$\mathbb{E}[L(\Theta, \delta(x)) \mid X = x].$$

Then δ_{Λ} is a Bayes estimator w.r.t. Λ , i.e. it minimizes average risk.

Proof: For any other δ ,

$$\mathbb{E}[L(\Theta,\delta(x))\mid X=x] \geq \mathbb{E}[L(\Theta,\delta_{\Lambda}(x))\mid X=x]$$

for almost all x. Taking expectations on both sides and using the Law of Iterated Expectation, we get the desired result.

Some remarks on the theorem:

• The first condition in the Theorem ensures that the problem is meaningful. If it doesn't hold, then all estimators have infinite average risk, so any one of them would be a Bayes estimator.

8-2 Lecture 8: October 20

• When we say "almost all" x in the second condition, "almost all" is with reference to the marginal (or unconditional) distribution of x, i.e. $Q(X \in E) = \int P_{\theta}(E) d\Lambda(\theta)$.

The theorem above gives the following examples:

- (Squared error loss) Suppose L(θ, d) = (d θ)², g(θ) = θ. Then δ_Λ(X) = E[Θ | X], i.e. the mean of the **posterior distribution** (distribution of Θ given X).
 For general g(θ) we obtain the same result: δ_Λ(X) = E[g(Θ) | X].
- (Absolute error loss) Suppose $L(\theta, d) = |d t|$. Then $\delta_{\Lambda}(X) = \text{median of the conditional distribution of } g(\Theta) | X$.

The examples above show us that the posterior distribution is an important ingredient for determining the Bayes estimator. In general, we have

posterior density of
$$\theta = \frac{\text{joint density of } (x, \theta)}{\text{marginal density of } x}$$
.

Since the denominator does not depend on θ (it's just a constant that ensures that the joint density integrates to what it should), we can write

```
posterior density of \theta \propto joint density of (x, \theta),

= density of (x \mid \theta) \times density of \theta

=: likelihood \times prior density.
```

We will be using this relation a lot in our calculations for Bayes estimators.

8.1.1 Uniqueness of Bayes Estimators

For squared error loss, we have the following theorem:

Theorem 8.3 δ_{Λ} is unique (a.e. \mathcal{P}) if:

- 1. Its average risk w.r.t. Λ is finite, and
- 2. Almost everywhere w.r.t. $Q \Rightarrow almost$ everywhere w.r.t. \mathcal{P} , i.e. $Q(N) = 0 \Rightarrow P_{\theta}(N) = 0$ for all θ . (Q is the marginal distribution of X.)

(**Remark**: Condition 2 is satisfied if the parameter space Ω is an open set and equal to the support of Λ , and $P_{\theta}(E)$ is continuous in θ for every E.)

Example: Binomial setting where $X_i \sim \text{Binom}(n, \theta)$. Suppose Λ puts all its mass on $\{0, 1\}$, i.e. we will only observe X = 0 or X = n. Then $\delta(X)$ will be Bayes as long as $\delta(0) = 0$ and $\delta(n) = 1$.

The following theorem tells us that when determining the "best" estimator, you can't automatically rule out unique Bayes estimators:

Theorem 8.4 If $\delta_{\Lambda}(X)$ is a unique Bayes estimator, then $\delta_{\Lambda}(X)$ is admissible.

Lecture 8: October 20 8-3

Proof: Suppose δ' is any other estimator which dominates δ_{Λ} , i.e.

$$R(\theta, \delta') \le R(\theta, \delta_{\Lambda})$$
 for all θ ,
 $R(\theta, \delta') < R(\theta, \delta_{\Lambda})$ for some θ .

Averaging both sides w.r.t Λ , we get avg risk of $\delta' \leq$ avg risk of δ_{Λ} . Since δ_{Λ} uniquely minimizes average risk, we must have $\delta' = \delta_{\Lambda}$.

8.1.2 Bayes Estimators are Biased

Under squared error loss, Bayes estimators cannot be unbiased (except in exceptional settings):

Theorem 8.5 Under squared error loss, no unbiased estimator $\delta(X)$ is Bayes unless its average risk is 0, i.e.

$$\mathbb{E}[(\delta(X) - g(\Theta))^2] = 0.$$

(Here, the expectation is taken over the joint distribution of X and Θ .)

Proof: Because δ is unbiased, $\mathbb{E}[\delta(X) \mid \Theta] = g(\Theta)$. Because δ is Bayes, $\delta(X) = \mathbb{E}[g(\Theta) \mid X]$.

We can compute $\mathbb{E}[\delta(X)g(\Theta)]$ in 2 ways:

$$\begin{split} \mathbb{E}[\delta(X)g(\Theta)] &= \mathbb{E}[\mathbb{E}[\delta(X)g(\Theta) \mid \Theta]] \\ &= \mathbb{E}[g(\Theta)\mathbb{E}[\delta(X) \mid \Theta]] \\ &= \mathbb{E}[g(\Theta)g(\Theta)], \end{split}$$

and

$$\begin{split} \mathbb{E}[\delta(X)g(\Theta)] &= \mathbb{E}[\mathbb{E}[\delta(X)g(\Theta) \mid X]] \\ &= \mathbb{E}[\delta(X)\mathbb{E}[g(\Theta) \mid X]] \\ &= \mathbb{E}[\delta(X)\delta(X)]. \end{split}$$

Thus,

$$\mathbb{E}[(\delta(X) - g(\Theta))^2] = \mathbb{E}[\delta(X)^2 - 2\delta(X)g(\Theta) + g(\Theta)^2] = 0.$$

8.1.3 Examples of Bayes Estimators for Squared Error Loss

8.1.3.1 Binomial setting

Assume $X \mid \Theta = \theta \sim \text{Binom}(n, \theta)$, prior $\Lambda = \text{Beta}(a, b)$, i.e. the prior has density

$$\lambda(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$

Calculate the posterior density of θ :

posterior density of $\theta \propto \text{likelihood} \times \text{prior density}$,

$$\propto \binom{n}{x} \theta^x (1-\theta)^{n-x} \cdot \theta^{a-1} (1-t)^{b-1}$$
$$\propto \theta^{x+a-1} (1-\theta)^{n-x+b-1},$$

8-4 Lecture 8: October 20

i.e. Θ has posterior distribution Beta(a',b') with $a'=x+a,\,b'=n-x+b.$

Recall that the mean of Beta(a,b) is given by $\frac{a}{a+b}$. Hence, the Bayes estimator of θ is

$$\delta_{\Lambda}(x) = \frac{a'}{a' + b'}$$

$$= \frac{x + a}{x + a + n - x + b}$$

$$= \frac{x + a}{n + a + b}$$

$$= \frac{x}{n} \cdot \frac{n}{n + a + b} + \frac{a}{a + b} \cdot \frac{a + b}{n + a + b}.$$

The last line gives us the following interpretation: Recall that $\frac{X}{n}$ is the UMVU estimator for θ , while $\frac{a}{a+b}$ is the prior estimator for θ (i.e. best estimate without any data). Viewed in this way, the Bayes estimator is a convex combination of the UMVU estimator and prior estimator.

Also note that $\frac{n}{n+a+b} \to 1$ as $n \to \infty$, i.e. as the sample size grows, the Bayes estimator tends to the frequentist UMVU estimator.

8.1.3.2 Binomial setting vs. Geometric setting

Consider the binomial setting where we observe the data "TTTH". We have

posterior
$$\propto \binom{4}{1}(1-\theta)^3\theta \cdot \text{prior}.$$

If we were in the geometric setting instead and observed the same data "TTTH", we would have

posterior
$$\propto (1-\theta)^3 \theta \cdot \text{prior}$$
.

which gives the same posterior as the binomial setting! Hence, in some sense, the Bayes estimator is the same regardless of the sampling rule.

8.1.3.3 Normal setting

 X_1, \ldots, X_n iid, $X_i \sim \mathcal{N}(\theta, \sigma^2)$, σ^2 fixed and known. Let $\Lambda = \mathcal{N}(\mu, b^2)$.

posterior
$$\propto \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^2}(x_i - \theta)^2\right] \cdot \frac{1}{\sqrt{2\pi b}} \exp\left[-\frac{(\theta - \mu)^2}{2b^2}\right]$$

$$\propto \exp\left\{\frac{\theta \sum x_i}{\sigma^2} - \frac{n\theta^2}{2\sigma^2} - \frac{\theta^2}{2b^2} + \frac{\mu\theta}{b^2}\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\theta^2\left(\frac{n}{\sigma^2} + \frac{1}{b^2}\right) - 2\theta\left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu}{b^2}\right)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left(\frac{n}{\sigma^2} + \frac{1}{b^2}\right)\left[\theta^2 - 2\theta\frac{n\frac{\bar{x}}{\sigma^2} + \frac{\mu}{b^2}}{\frac{n}{\sigma^2} + \frac{1}{b^2}}\right]\right\}.$$

Hence, the posterior distribution of θ is

$$\mathcal{N}\left(\frac{\frac{n\bar{x}}{\sigma^2} + \frac{\mu}{b^2}}{\frac{n}{\sigma^2} + \frac{1}{b^2}}, \left(\frac{n}{\sigma^2} + \frac{1}{b^2}\right)^{-1}\right).$$

Lecture 8: October 20 8-5

The Bayes estimator under squared error loss is

$$\frac{\frac{n\bar{x}}{\sigma^2} + \frac{\mu}{b^2}}{\frac{n}{\sigma^2} + \frac{1}{b^2}} = \bar{x} \frac{n/\sigma^2}{\frac{n}{\sigma^2} + \frac{1}{b^2}} + \mu \frac{1/b^2}{\frac{n}{\sigma^2} + \frac{1}{b^2}}.$$

Note that as in the binomial setting earlier, the Bayes estimator is a convex combination of the UMVU estimator and the prior estimator.

Note also that as $b \to \infty$, the Bayes estimator tends to \bar{X} . So, while \bar{X} is never Bayes w.r.t. any probability distribution, it is Bayes w.r.t. to the improper prior Lebesgue measure on \mathbb{R} .

8.1.3.4 Improper priors

A proper prior is a probability distribution, while an improper prior is one that is not a probability distribution.

For improper priors, we can calculate the Bayes estimator in the same way, since we still have

posterior
$$\propto$$
 likelihood \times prior.

Typically, the posterior ends up being a probability distribution, in which case we can take the mean to be the Bayes estimator.

As an example, consider the improper prior Lebesgue measure on \mathbb{R} for the Normal setting.

posterior
$$\propto \exp\left[-\frac{1}{2\sigma^2}\sum (x_i - \theta)^2\right] \cdot 1$$

 $\propto \exp\left[-\frac{n}{2\sigma^2}(\theta - \bar{x})^2\right],$

i.e. the posterior is $\mathbb{N}(\bar{x}, \sigma^2/n)$. Thus, the Bayes estimator is \bar{X} .