Théorème de Convergence monotone

Anito Kodama

11 octobre 2024

Proposition 1 (Théorème de Beppo-Levi - (Convergence monotone)). Si les variables aléatoires X_n sont positives et si la suite $(X_n)_n$ converge simplement presque sûrement vers X, alors

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X],$$

et cela même si $\mathbb{E}[X] = \infty$.

Démonstration : Montrons la convergence de l'espérance par étapes.

1. $\mathbb{E}[X_n] \geq 0$, et la suite $\mathbb{E}[X_n]$ est croissante. Ainsi, il existe un $\alpha \geq 0$ tel que

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \alpha.$$

2. Comme $X_n \leq X$ pour tout n, on a également :

$$\mathbb{E}[X_n] \leq \mathbb{E}[X].$$

3. On en déduit alors que :

$$\alpha \leq \mathbb{E}[X].$$

Montrons que $\alpha \geq \mathbb{E}[X]$

Pour cela, nous devons prouver que pour toute variable aléatoire étagée S telle que $0 \le S \le X$, on a :

$$\alpha \geq \mathbb{E}[S].$$

Prenons donc une variable aléatoire étagée $S \geq 0$ telle que $S \leq X.$ Montrons que pour tout $c \in [0,1[,$ on a :

$$\alpha \ge c \cdot \mathbb{E}[S] = \mathbb{E}[cS].$$

Construction des événements

Considérons les événements $E_{n,c} = \{X_n \ge cS\}$. Ces événements forment une suite croissante, car (X_n) est croissante. De plus, on a :

$$\bigcup_{n>0} E_{n,c} = \Omega.$$

Ensuite, on utilise les inégalités suivantes :

$$\mathbb{E}[X_n] \ge \mathbb{E}[X_n \cdot \mathbf{1}_{E_{n,c}}] = \mathbb{E}[X_n \cdot \mathbf{1}_{X_n > cS}] \ge \mathbb{E}[cS \cdot \mathbf{1}_{X_n > cS}].$$

Calculs d'espérance

Nous avons:

$$\mathbb{E}[cS \cdot \mathbf{1}_{E_{n,c}}] = c \cdot \mathbb{E}\left[\sum_{i=1}^{K} a_i \mathbf{1}_{A_i} \cdot \mathbf{1}_{E_{n,c}}\right] = c \cdot \sum_{i=1}^{K} a_i \mathbb{P}(A_i \cap E_{n,c}).$$

Comme $A_i \cap E_{n,c}$ est croissant, on a :

$$\lim_{n\to\infty} \mathbb{P}(A_i \cap E_{n,c}) = \mathbb{P}(A_i).$$

D'où:

$$\lim_{n \to \infty} \mathbb{E}[cS \cdot \mathbf{1}_{E_{n,c}}] = c \cdot \sum_{i=1}^{K} a_i \mathbb{P}(A_i) = c \cdot \mathbb{E}[S].$$

Conclusion

Ainsi, on a:

$$\lim_{n \to \infty} \mathbb{E}[X_n] \ge c \cdot \mathbb{E}[S], \quad \forall c \in [0, 1[.$$

En faisant tendre c vers 1, on en déduit que $\alpha \geq \mathbb{E}[S]$ pour toute variable étagée S telle que $0 \leq S \leq X$. Finalement, comme X peut être approchée par des variables étagées S, on conclut que :

$$\alpha \geq \mathbb{E}[X].$$

Étant donné que $\alpha \leq \mathbb{E}[X]$ (voir l'étape 2), on en conclut que :

$$\alpha = \mathbb{E}[X].$$

Ainsi, on a montré que :

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X].$$

Explications de la preuve

La preuve repose sur des propriétés de croissance, d'inégalités, et sur l'usage de variables aléatoires étagées qui permettent d'approximer X.

1. Premier point : $\mathbb{E}[X_n] \to \alpha$

La première étape consiste à remarquer que les espérances $\mathbb{E}[X_n]$ sont croissantes car $X_n \leq X_{n+1}$ pour tout n, et que les X_n sont positives. Par conséquent, $\mathbb{E}[X_n] \geq 0$ et forme une suite croissante.

Une suite croissante bornée (elle est bornée par X) converge nécessairement, et donc il existe une limite, notée α , telle que

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \alpha.$$

2. Inégalité avec $\mathbb{E}[X]$

Puisque $X_n \leq X$ presque sûrement (p.s.) pour tout n, on a également l'inégalité

$$\mathbb{E}[X_n] < \mathbb{E}[X].$$

Cela signifie que la limite α est inférieure ou égale à $\mathbb{E}[X]$, c'est-à-dire :

$$\alpha < \mathbb{E}[X].$$

Nous avons donc déjà une borne supérieure sur α .

3. Inégalité avec $\mathbb{E}[S]$ pour $S \leq X$

Pour montrer que $\alpha = \mathbb{E}[X]$, on introduit une variable aléatoire étagée S, qui est une approximation simple de X. Par construction, $S \leq X$, et il suffit de montrer que pour toute telle variable S, on a

$$\alpha \geq \mathbb{E}[S]$$
.

Cela entraînera alors que $\alpha \geq \mathbb{E}[X]$ (car X peut être vu comme la limite de telles approximations).

4. Utilisation des indicatrices $E_{n,c}$

Prenons un facteur $c \in [0, 1[$ et considérons l'ensemble des événements $E_{n,c} = \{X_n \ge cS\}$, qui sont croissants avec n (puisque X_n est croissant). En prenant la limite, on obtient :

$$\bigcup_{n>0} E_{n,c} = \Omega$$

par convergence simple presque sûrement de $X_n \to X$.

Ensuite, on montre que:

$$\mathbb{E}[X_n] \geq \mathbb{E}[X_n \times \mathbf{1}_{E_{n,c}}] \geq \mathbb{E}[cS \times \mathbf{1}_{E_{n,c}}],$$

ce qui nous donne une borne inférieure pour $\mathbb{E}[X_n]$.

5. Passage à la limite

Lorsque $n \to \infty$, l'événement $E_{n,c}$ converge presque sûrement vers $\{S \leq X\}$, et donc l'espérance $\mathbb{E}[cS \times \mathbf{1}_{E_{n,c}}]$ converge vers $c \times \mathbb{E}[S]$. Ceci implique que :

$$\lim_{n \to \infty} \mathbb{E}[X_n] \ge c \times \mathbb{E}[S].$$

Comme cela est vrai pour tout $c \in [0, 1[$, on obtient finalement que :

$$\alpha \geq \mathbb{E}[S].$$

6. Conclusion : $\alpha = \mathbb{E}[X]$

Comme cela est vrai pour toute variable S étagée telle que $0 \le S \le X$, on peut conclure que $\alpha \ge \mathbb{E}[X]$. Mais, comme on avait déjà $\alpha \le \mathbb{E}[X]$, on conclut que :

$$\alpha = \mathbb{E}[X].$$

Résumé final

Ainsi, la preuve montre que la suite croissante d'espérances $\mathbb{E}[X_n]$ converge vers $\mathbb{E}[X]$, même lorsque $\mathbb{E}[X] = \infty$, en utilisant l'approximation par des variables étagées et des inégalités sur des espérances conditionnelles.