

Micropower Dual Comparator

FEATURES

- Maximum Offset Voltage 1mV
- Maximum Bias Current 15nA
- Typical Output Drive 70mA
- Operates from 1.1V to 40V
- Internal Pull-Up Current
- Output Can Drive Loads Above V +
- 30μA Supply Current (LT1017)
 110μA Supply Current (LT1018)

APPLICATIONS

- Power Supply Monitors
- Relay Driving
- Oscillators

DESCRIPTION

The LT1017 and LT1018 are general purpose micropower comparators. The LT1017 is optimized for lowest operating power while the LT1018 operates at higher power and higher speed. Both devices can operate from a single 1.1V cell up to 40V. The output stage includes a class "B" pull-up current source, eliminating the need for an external resistive pull-up and saving power. The output stage is also designed to allow driving loads connected to a supply more positive than the device, as can comparators with open collector output stages.

Input specifications are also excellent. On-chip trimming minimizes offset voltage, while high gain and common-mode rejection ratio keep other input-referred errors low. Common-mode voltage range includes ground. Special circuitry prevents false output states even if the input is overdriven.

The LT1017 and LT1018 are pin compatible with older dual comparators such as 393 type devices.

1.5V Powered Refrigerator Alarm

Supply Current

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	40V
Differential Input Voltage	40V
Input Voltage	
Short Circuit Duration	Indefinite
Storage Temperature Range	65°C to 150°C

Operating Temperature Range	
LT1017M, LT1018M	55°C to 125°C
LT1017C, LT1018C	0°C to 70°C
LT1017I, LT1018I	40°C to 85°C
Lead Temperature (Soldering, 10 sec)	

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS		LT10 Min tyl		LT1013 MIN TYP	B Max	UNITS
Offset Voltage (Note 1)	$\pm 0.75 \text{V} \le \text{V}_{\text{S}} \le \pm 20 \text{V}$	25°C • 125°C	0.4 0.5		0.4 0.5 0.7	1 1.4 1.5	mV mV mV
Bias Current	± 0.75 V \leq V _S $\leq \pm 20$ V	25°C 125°C	5 7 10	15 25 40	15 18	75 100 110	nA nA nA
Offset Current	$\pm 0.75 V \le V_{S} \le \pm 20 V$	25°C 125°C	0.4 0.5		1 1.6	8 12 20	nA nA nA

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	LT1017 TYP	MAX	MIN	LT1018 TYP	B. MAX	UNITS
Common-Mode Rejection Ratio	$V_S = \pm 20V, -20V \le V_{CM} \le 19.1V$	25°C • 125°C	105 100 86	115 115 100		105 100 95	115 115 110		dB dB dB
Power Supply Rejection Ratio	±0.75V ≤ V _S ≤ ±20V	25°C 125°C	96 95 86	110 105		96 95 86	110 105 100		dE dE dB
Gain	No Load, $V_{OUT} = \pm 19.9V$ (Note 2) $R_L = 4k, V_{OUT} = \pm 19V$	25°C 125°C 25°C	110 105 100 100 94	115 115 110		110 105 100 100 94	125 120 110		dE dE dE dE
Output Sink Current	V ⁺ = 4.5V, V ⁻ = 0 Overdrive > 30mV	25°C 125°C	30 25 10	65 50 20		35 25 10	70 50 30		mA mA mA
Output Source Current	$V^{+} = 40V, V^{-} = 0$ $V_{IN} = 5mV, V_{OUT} = 0.4V$	25°C 125°C	30 25 25	75 70 75		75 50 50	250 220 200		дд Ац Ац
Output Source Current	$V^{+} = 1.2V, V^{-} = 0$ $V_{IN} = 5mV, V_{OUT} = 0.4V$	25°C 125°C	25 15 25	35 20 40		70 45 40	140 120 110		Ац Ац Ац
Negative Output Saturation	I _{OUT} = 0	25°C 25°C 25°C 25°C		5 35 60 120 350 5 40 75	20 60 120 200 600 20 75 150		5 35 60 120 350 8 35 70	15 60 120 250 700 20 70 150	mV mV mV mV mV mV
	= 10mA = 10mA = 30mA I _{OUT} = 0 = 0.1mA = 1mA = 10mA = 30mA	125°C 125°C 125°C 125°C 125°C		150 600 25 60 100 300	300 900 50 100 200 600		150 500 10 60 110 300 900	300 900 40 100 200 400	mV mV mV mV mV
Positive Output Saturation	I _{OUT} = 0 = 10µA = 0 = 10µA = 0 = 10µA	25°C 25°C • 125°C 125°C		40 175 45 190 50	80 250 90 300 100 300		35 175 45 190 50	80 250 90 300 100 300	m\ m\ m\ m\ m\
Leakage Current	V _S = 5V, V _{OUT} = 40V V _{IN} = 100mV	25°C		0.5 0.6	3 3 - 5		1 1.8	8 10 15	Ац Ац Ац
Supply Current	V _S = 5V V _S = 40V	25°C 125°C 25°C	,	30 40 40 55	60 80 80 90 100		110 110 130 140	250 250 300 250 270 300	مبر مبر مبر مبر مبر مبر
Minimum Operating Voltage	I _{OUT} = 1mA	25°C 125°C			1.15 1.15 1.15			1.2 1.2 1.2	V

The ● denotes specifications which apply over operating temperature range of –55°C to 85°C for M grade parts and 0°C to 70°C for C grade parts.

Note 1: Offset voltage is guaranteed over a common-mode voltage range of $V^- \le V_{IN} \le (V^+ - 0.9V)$.

Note 2: No load gain is guaranteed but not tested (LT1017 only).

IU

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

V + = 5V; V - = 0V V_{IN} = 100mV WITH 10mV OVERDRIVE

V + = 5V; V - = 0V V_{IN} = 100mV WITH 10mV OVERDRIVE

V + = 5V; V - = 0V V_{IN} = 100mV WITH 10mV OVERDRIVE

10

APPLICATIONS

LT1018 Op Amp, Ay = 100

Negative Voltage Regulator

5V Power Supply Monitor

LT1017 Op Amp, Ay = 100

2-Wire Comparator

Precise Tri-Wave Generator

APPLICATIONS

Power Supply Monitor

1.5V Input Flyback Regulator

Regulated Up Converter

Low Power* V to F Converter

10

APPLICATIONS

Fully Isolated Limit Comparator

