

Clustering-Based Sentiment Analysis for Media Agenda Setting

Opinion Lab Group 2.3

Wing Sheung Leung, Qiaoxi Liu

May 3, 2020

Outline

- Aims
- Dataset
- Expected outputs
- Todo
 - Stage 1
 - Generate word / token / sentence embeddings with our corpus
 - Build a k-mean clustering model for identifying sub-topics in organic dataset
 - Select a sentiment pre-trained model
 - Stage 2
 - Visualize distribution of samples among clusters and corresponding sentiment frequency
 - Stage 3
 - Investigate Media Agenda Setting
- Milestones

Aims

Measure the influence of two online newspapers onto the social media according to Agenda setting theory

Agenda setting theory:

Suggest the news item which is covered more frequently and prominently indicates that the audience will regard the issue as more important.

Dataset

Articles and respective comments on the domain of organic food with search terms *organic food* and *organic farming*

- Articles from two online newspapers, New York Times (English) and Der Spiegel (German)
- Direct response (bilingual): comments right under those articles
- Indirect response: posts in unrelated discussion forums, Quora

	Start	End	No. of articles
New York Times			
With comments	2006	2017	99
Without comments	1970	2017	228
Der Spiegel			
With comments	2007	2017	61
Without comments	2007	2017	91
Quora			
With comments	2009	2017	1304
Without comments	2010	2017	193

Table: Statistics for data crawled from New York Times, Der Spiegel and Quora with 'relevant' labelled as 1.0

Expected outputs (Processes)

Figure: Stage 1: Cluster, tuple(aspect,sentiment)

Figure: Stage 2: Distribution of clusters per articles

Figure: Stage 3: Timeline analysis, influence on social media

Generate embeddings

 $\mathsf{text} \to \mathit{lines split} \to \mathsf{list} \ \mathsf{of} \ \mathsf{sentences} \to \mathit{sentence embedding} \to \mathsf{vectors}$

¹Chidambaram et al. 2018.

²dalequark 2019.

Generate embeddings

 $\mathbf{text} \rightarrow \mathit{lines split} \rightarrow \mathsf{list of sentences} \rightarrow \mathit{sentence embedding} \rightarrow \mathbf{vectors}$

Example: sentence = "You are what you eat."

¹Chidambaram et al. 2018.

²dalequark 2019.

Generate embeddings

 $\mathsf{text} \to \mathit{lines split} \to \mathsf{list} \ \mathsf{of} \ \mathsf{sentences} \to \mathit{sentence embedding} \to \mathsf{vectors}$

Example: sentence = "You are what you eat."

Possible embedding models (on TensorFlow Hub) to apply:

- Universal sentence encoder¹
- Bert²

¹Chidambaram et al. 2018.

²dalequark 2019.

Generate embeddings

 $\mathbf{text} \to \mathit{lines split} \to \mathsf{list} \ \mathsf{of} \ \mathsf{sentences} \to \mathit{sentence embedding} \to \mathbf{vectors}$

Example: sentence = "You are what you eat."

Possible embedding models (on TensorFlow Hub) to apply:

- Universal sentence encoder¹
- Bert²

```
embed = hub.Module("https://tfhub.dev/google/universal-sentence-encoder-xling/en-de/1") with tf.Session() as session: session.run() print(session.run(embed(sentence)))  \rightarrow [0.02, 0.01, ..., -0.12]
```

¹Chidambaram et al. 2018.

²dalequark 2019.

Build a k-mean clustering model for identifying sub-topics

Now, let's start working with vectors!

→ k-means cluster, optimize k with human observation (samples: sentences)

Build a k-mean clustering model for identifying sub-topics

Now, let's start working with vectors!

→ k-means cluster, optimize k with human observation (samples: sentences)

```
s_emb_matrix = [s0, s2, ..., s9] # s are embedding vectors of sentences
nclusters = 3
km = KMeans(nclusters)
km.fit(s_emb_matrix)
clusters = {} # key: label, values: index of sentence
for i, label in enumerate(km.labels_):
    clusters[label].append(i) # append the index to the corresponding label
```


Build a k-mean clustering model for identifying sub-topics

Now, let's start working with vectors!

→ k-means cluster, optimize k with human observation (samples: sentences)

```
s_emb_matrix = [s0, s2, ..., s9] # s are embedding vectors of sentences
nclusters = 3
km = KMeans(nclusters)
km.fit(s_emb_matrix)
clusters = {} # key: label, values: index of sentence
for i, label in enumerate(km.labels_):
    clusters[label].append(i) # append the index to the corresponding label
```

 \rightarrow get clusters[0] : s_0 , s_4 , s_5 with top-n words list topWords[0] : w_0 , w_1 , ... w_n

Build a k-mean clustering model for identifying sub-topics

Now, let's start working with **vectors**!

→ k-means cluster, optimize k with human observation (samples: sentences)

```
s_emb_matrix = [s0, s2, ..., s9] # s are embedding vectors of sentences nclusters= 3 km = KMeans(nclusters) km.fit(s_emb_matrix) clusters = {} # key: label, values: index of sentence for i, label in enumerate(km.labels_): clusters[label].append(i) # append the index to the corresponding label \rightarrow get clusters[0]: s_0, s_4, s_5 with top-n words list topWords[0]: w_0, w_1, ... w_n \rightarrow under each cluster, check similarities of words (samples: words)
```


Build a k-mean clustering model for identifying sub-topics

Now, let's start working with **vectors!**

→ k-means cluster, optimize k with human observation (samples: sentences)

```
s_emb_matrix = [s0, s2, ..., s9] # s are embedding vectors of sentences nclusters= 3 km = KMeans(nclusters) km.fit(s_emb_matrix) clusters = {} # key: label, values: index of sentence for i, label in enumerate(km.labels_): clusters[label].append(i) # append the index to the corresponding label \rightarrow \text{get } clusters[0]: s_0, s_4, s_5 \text{ with top-n words list } topWords[0]: w_0, w_1, ... w_n
```

- → under each cluster, check similarities of words (samples: words)
- → interpret/extract *clusters*[0] to an aspect (like environment).
- \rightarrow sentences s_0 , s_4 , s_5 are assigned to environment.

Select a sentiment pre-trained model

Since we get $s_0 \rightarrow$ "environment", we use pre-trained VADER classifier³ for each sentence, output a **2-tuple**.

³Hutto and Gilbert 2014.

Select a sentiment pre-trained model

Since we get $s_0 \rightarrow$ "environment", we use pre-trained VADER classifier³ for each sentence, output a **2-tuple**.

Example

 s_0 ="not only improves the fruit quality, but is a lot better on our environment as well."

³Hutto and Gilbert 2014.

Select a sentiment pre-trained model

Since we get $s_0 \rightarrow$ "environment", we use pre-trained VADER classifier³ for each sentence, output a **2-tuple**.

Example

 s_0 ="not only improves the fruit quality, but is a lot better on our environment as well."

 \rightarrow arr = [0.2,...,0.1] \rightarrow *kmean clustering* \rightarrow "Environment" (result from stage 1.2)

³Hutto and Gilbert 2014.

Select a sentiment pre-trained model

Since we get $s_0 \rightarrow$ "environment", we use pre-trained VADER classifier³ for each sentence, output a **2-tuple**.

Example

 s_0 ="not only improves the fruit quality, but is a lot better on our environment as well."

```
\rightarrow arr = [0.2,...,0.1] \rightarrow kmean clustering \rightarrow "Environment" (result from stage 1.2)
```

→ VADER classifier

```
analyzer = SentimentIntensityAnalyzer()
print(analyzer.polarity_scores(arr))
```

 \rightarrow {'pos': 0.74, 'neu': 0.26, 'neg': 0.0}

³Hutto and Gilbert 2014.

Select a sentiment pre-trained model

Since we get $s_0 \rightarrow$ "environment", we use pre-trained VADER classifier³ for each sentence, output a **2-tuple**.

Example

 s_0 ="not only improves the fruit quality, but is a lot better on our environment as well."

- \rightarrow arr = [0.2,...,0.1] \rightarrow *kmean clustering* \rightarrow "Environment" (result from stage 1.2)
- → VADER classifier

```
analyzer = SentimentIntensityAnalyzer()
print(analyzer.polarity_scores(arr))
```

- \rightarrow {'pos': 0.74, 'neu': 0.26, 'neg': 0.0}
- → (Environment, pos)

³Hutto and Gilbert 2014.

Visualize distribution on single article (and its comments)

Now, the sentence *s* is converted into a tuple t = (Aspect, +/-/o).

Visualize distribution on single article (and its comments)

Now, the sentence *s* is converted into a tuple t = (Aspect, +/-/o).

- \rightarrow Take all samples [t_0 , t_1 , t_2 , ...] from one article
- \rightarrow accumulate and normalize them

Visualize distribution on single article (and its comments)

Now, the sentence *s* is converted into a tuple t = (Aspect, +/-/o).

- \rightarrow Take all samples [$t_0, t_1, t_2, ...$] from one article
- → accumulate and normalize them

Figure: Aspects distribution on one text

Investigate Media Agenda Setting

Does Y (news) has influence on X (comments/Quora)?

Investigate Media Agenda Setting

Does Y (news) has influence on X (comments/Quora)?

- → discover/measure the relationship between X,Y
- Pearson correlations (time not considered)
- Local Similarity Analysis (LSA) statistic identifies the existence of local and lagged relationships
- Granger causality (Does Y_t help to predict X_{t+1} ?)
- Lagged Correlation (response after a lapse of time, how strong correlation)

Investigate Media Agenda Setting

Does Y (news) has influence on X (comments/Quora)?

- → discover/measure the relationship between X,Y
- Pearson correlations (time not considered)
- Local Similarity Analysis (LSA) statistic identifies the existence of local and lagged relationships
- Granger causality (Does Y_t help to predict X_{t+1} ?)
- Lagged Correlation (response after a lapse of time, how strong correlation)

Milestones

References

- Chidambaram, M. et al. (2018). "Learning cross-lingual sentence representations via a multi-task dual-encoder model". In: arXiv preprint arXiv:1810.12836.
- dalequark (2019). predicting movie reviews with bert on tf hub. URL: https://github.com/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb (visited on 2019).
- Hutto, C. J. and E. Gilbert (2014). "Vader: A parsimonious rule-based model for sentiment analysis of social media text". In: Eighth international AAAI conference on weblogs and social media.