IV - Hyperplans

Soit E un espace vectoriel de dimension n supérieure ou égale à 2. On pourra remplacer E par \mathbb{R}^n dans tout le document. Les hyperplans sont des espaces vectoriels particuliers qui ont de nombreuses propriétés et font donc l'objet d'exercices. . .

I - Définitions & Géométrie

Définition 1 - Hyperplan

Un hyperplan de E est un sous-espace vectoriel de E de dimension n-1.

Petites dimensions

- * Définir les hyperplans en dimension 1 n'a pas beaucoup d'intérêt car l'unique espace vectoriel de dimension 0 est $\{0_E\}$.
- * Lorsque n=2. Les hyperplans sont les sous-espaces vectoriels de dimension 1. Ainsi, H est un sous-espace vectoriel de E si et seulement s'il existe un vecteur \overrightarrow{u} non nul tel que $H=\operatorname{Vect}\{\overrightarrow{u}\}$. Les hyperplans sont donc les droites vectorielles.

* Lorsque n=3. Les hyperplans sont les sous-espaces vectoriels de dimension 2. Ainsi, H est un sous-espace vectoriel de E si et seulement s'il existe une famille libre $(\overrightarrow{u}, \overrightarrow{v})$ telle que $H = \text{Vect}\{\overrightarrow{u}, \overrightarrow{v}\}$. Les hyperplans sont donc les

II - Formes linéaires & Hyperplans

Définition 2 - Forme linéaire

Une forme linéaire est une application linéaire de E dans \mathbb{R} . On note $\mathcal{L}(E,\mathbb{R})$ l'ensemble des formes linéaires sur E.

Exemple 1

- * L'application $f: x \mapsto 0$ est une forme linéaire sur E. C'est la forme linéaire nulle.
- * Si $E = \mathbb{R}^2$, la fonction $f: (x,y) \mapsto 2x + 3y$ est une forme linéaire sur \mathbb{R}^2 .
- * Si $E = \mathbb{R}^3$, la fonction $f: (x, y, z) \mapsto x 2y + 4z$ est une forme linéaire sur \mathbb{R}^3 .
- * Si $E = \mathcal{M}_n(\mathbb{R})$, la fonction $f : A \mapsto \sum_{i=1}^n a_{i,i}$ est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$ appelée trace.
- * Si E est l'ensemble des fonctions continues sur [a,b], alors $f\mapsto \int_a^b f(t)\,\mathrm{d}t$ est une forme linéaire. Ici, la dimension de E est infinie.

Chapitre IV - Hyperplans D 2

Proposition 1 - Forme linéaire \rightarrow Hyperplan

Si f est une forme linéaire non nulle, alors Ker f est un hyperplan de E.

Remarque 1

Comme f est une forme linéaire, Im f est un sous-espace vectoriel de \mathbb{R} . Or, les seuls sous-espaces vectoriels de \mathbb{R} sont $\{0\}$ et \mathbb{R} .

Si $\operatorname{Im} f = \{0\}$, alors f est la forme linéaire nulle, ce qui est impossible.

Ainsi, $\operatorname{Im} f = \mathbb{R} \text{ et } \operatorname{Rg}(f) = \dim \mathbb{R} = 1.$

D'après le théorème du rang,

$$\dim \operatorname{Ker} f = \dim E - \operatorname{Rg} f = n - 1$$

donc Ker f est bien un hyperplan de E.

Exemple 2

Reprenons les exemples précédents.

* Si $E = \mathbb{R}^2$ et $f: (x, y) \mapsto 2x + 3y$. Alors,

$$\operatorname{Ker} f = \{(x, y) \in \mathbb{R}^2 ; 2x + 3y = 0\}$$

est un hyperplan de E. Il s'agit de la droite engendrée par le vecteur (-3,2).

* Si $E = \mathbb{R}^3$ et $f: (x, y, z) \mapsto x - 2y + 4z$. Alors,

$$\operatorname{Ker} f = \{(x, y, z) \in \mathbb{R}^3 ; x - 2y + 4z = 0\}$$

est un hyperplan de E. Il s'agit du plan engendré par la famille de vecteurs ((2,1,0),(0,2,1)).

* Si $E = \mathcal{M}_2(\mathbb{R})$ et $f : A \mapsto a_{1,1} + a_{2,2}$. Alors,

$$\operatorname{Ker} f = \{ A \in \mathcal{M}_2(\mathbb{R}) : a_{1,1} + a_{2,2} = 0 \}$$

est un hyperplan de $\mathcal{M}_2(\mathbb{R})$ donc un sous-espace vectoriel de dimension $2^2 - 1 = 3$.

Comme $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ sont des éléments de Ker f et qu'ils forment une famille libre (le vérifier!), alors

$$\operatorname{Ker} f = \operatorname{Vect} \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

* Si $E = \mathcal{M}_3(\mathbb{R})$ et $f: A \mapsto a_{1,1} + a_{2,2} + a_{3,3}$. Alors,

$$\operatorname{Ker} f = \{ A \in \mathscr{M}_2(\mathbb{R}) \; ; \; a_{1,1} + a_{2,2} + a_{3,3} = 0 \}$$

est un hyperplan de $\mathcal{M}_3(\mathbb{R})$ donc un sous-espace vectoriel de dimension $3^2 - 1 = 8$.

Les matrices suivantes sont des éléments de $\operatorname{Ker} f$ qui forment une famille libre (le vérifier!) et donc une base de $\operatorname{Ker} f$:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

* Si $E = \mathcal{M}_n(\mathbb{R})$ et $f: A \mapsto \sum_{i=1}^n a_{i,i}$. Alors,

$$\operatorname{Ker} f = \left\{ A \in \mathscr{M}_n(\mathbb{R}) \; ; \; \sum_{i=1}^n a_{i,i} = 0 \right\}$$

est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension n^2-1 . En notant $(E_{i,j})_{1\leqslant i,j\leqslant n}$ les matrices élémentaires, on montre que

$$\text{Ker } f = \text{Vect } \{E_{i,j}, \ 1 \leqslant i \neq j \leqslant n, \ E_{1,1} - E_{k,k}, \ 2 \leqslant k \leqslant n \}.$$

Chapitre IV - Hyperplans

Proposition 2 - Hyperplan \rightarrow Forme linéaire

Soit H un hyperplan de E. Il existe une forme linéaire non nulle f telle que $H = \operatorname{Ker} f$.

Remarque 2

Soit (e_1, \ldots, e_{n-1}) une base de H que l'on complète en une base (e_1, \ldots, e_n) de E. On définit l'application linéaire

$$f: x = \sum_{i=1}^{n} x_i e_i \mapsto x_n.$$

Alors, $x = \sum_{i=1}^{n} x_i e_i \in \text{Ker } f$ si et seulement si $x_n = 0$ si et seulement si $x \in H$.

Ainsi, H = Ker f.

Exemple 3 - Hyperplan \rightarrow Forme linéaire

- * Soit D un hyperplan de \mathbb{R}^2 .
 - * Comme dim D=1, il existe $(x_0,y_0) \neq (0,0)$ tel que $D=\operatorname{Vect}\{(x_0,y_0)\}.$

L'écriture $D = \{\lambda(x_0, y_0), \lambda \in \mathbb{R}\}$ est une description paramétrique de D.

* Comme D est une droite, il existe $(a,b) \neq (0,0)$ tel que $D = \{(x,y) \in \mathbb{R}^2 : ax + by = 0\}$. Ainsi, en posant $f: (x,y) \mapsto ax + by$, alors D = Ker f.

L'équation ax + by = 0 est une équation cartésienne de D.

On peut passer d'une description paramétrique à une équation cartésienne en cherchant les conditions pour qu'un sytème linéaire admette une solution :

$$(x,y) \in D \iff \exists \lambda \in \mathbb{R} \; ; \; (x,y) = \lambda(x_0, y_0)$$

 $\Leftrightarrow \exists \lambda \in \mathbb{R} \; ; \; \begin{cases} \lambda x_0 = x \\ \lambda y_0 = y \end{cases}$

$$\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} \lambda x_0 = x \\ 0 = x_0 y - y_0 x \end{cases}$$
$$\Leftrightarrow x_0 y - y_0 x = 0.$$

Ainsi, $D = \{(x, y) \in \mathbb{R}^2 : x_0y - y_0x = 0\}$ et $x_0y - y_0x = 0$ est une équation cartésienne de D.

En posant $f:(x,y)\mapsto x_0y-y_0x$, alors $D=\operatorname{Ker} f$.

- * Soit P un hyperplan de \mathbb{R}^3 .
 - * Comme dim P=2, il existe $(\overrightarrow{u}, \overrightarrow{v})$ une famille libre telle que $P=\mathrm{Vect}\,\{\overrightarrow{u}, \overrightarrow{v}\}$. L'écriture $P=\{\lambda\overrightarrow{u}+\mu\overrightarrow{v}, (\lambda,\mu)\in\mathbb{R}^2\}$ est une description paramétrique de P.
 - * Comme P est un plan, il existe $(a,b,c) \neq (0,0,0)$ tel que $P = \{(x,y,z) \in \mathbb{R}^3 : ax + by + cz = 0\}$. Ainsi, en posant $f: (x,y,z) \mapsto ax + by + cz$, alors $P = \operatorname{Ker} f$. L'équation ax + by + cz = 0 est une équation cartésienne de P.

On peut effectuer le même raisonnement que précédemment pour passer d'une description paramétrique à une équation cartésienne.