h e g

Haute école de gestion de Genève

Geneva School of Business Administration

Test paramétrique

Dr Sacha Varone

တ Objectif

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

- Connaître les principales définitions
- Comprendre le principe d'un test statistique paramétrique

h e

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Test

Rappels

Intervalle de confiance

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

estimé	hypothèse	intervalle
μ	σ^2 connu, distr. normale ou $n \geq 30$	$\mu \in \bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
	σ^2 inconnu, distr. normale	$\mu \in \bar{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$
π	$n\bar{p} \geq 5 \text{ et } n(1-\bar{p}) \geq 5$	$\bar{p} \pm z_{\alpha/2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$
σ^2	μ connu, distr. normale	$\left[\frac{\sum (x_i - \mu)^2}{q_{\frac{\alpha}{2},n}} ; \frac{\sum (x_i - \mu)^2}{q_{1-\frac{\alpha}{2},n}}\right]$
	μ inconnu, distr. normale	$\left[\frac{\sum (x_i - \bar{x})^2}{q_{\frac{\alpha}{2}, n-1}} \; ; \; \frac{\sum (x_i - \bar{x})^2}{q_{1 - \frac{\alpha}{2}, n-1}} \right]$

Rappels
Test d'hypothèse
Type
Hypothèse
nulle/alternative
Région critique
Risques

Test

Test d'hypothèse

Rappels

Test d'hypothèse

Type

Hypothèse nulle/alternative

Région critique

Risques

Test

But de l'estimation : quantifier

But de l'inférence : valider/invalider

υ 	Type de test		
Rappels	- 	paramétriques	non paramétriques
Test d'hypothèse Type	Données	distribuées selon une loi particulière	pas de distribution particulière
Hypothèse nulle/alternative	Puissance	+	_
Région critique	Risque erreur		+
Risques	Exemple	movenne. variance	médiane médiane

h g

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1

Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Hypothèse nulle/alternative

Hypothèse nulle et alternative

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1

Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Principe : choisir entre deux hypothèses

Hypothèse nulle H_0 = affirmation testée.

Hypothèse alternative H_1 = ensemble des valeurs non couvertes par l'hypothèse nulle (non H_0).

- \blacksquare H_0 rejeté si contradiction suffisamment évidente.
- \blacksquare Sinon, non rejet de H_0

Φ

ے

Exemple

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1

Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Supposition : les PME suisses ont en moyenne $\mu=35$ employés avec une variance égale à 220.

Échantillon aléatoire de taille 20 : $\bar{x}=27$, $s^2=334.7$

Question : statistiquement admissible que $\mu=35$?

_

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1

Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Supposition : les PME suisses ont en moyenne $\mu=35$ employés avec une variance égale à 220.

Échantillon aléatoire de taille 20 : $\bar{x}=27$, $s^2=334.7$

2 2 5 6 7 8 12 14 23 26 28 31 40 42 46 47 48 49 52 52

Question : statistiquement admissible que $\mu=35$?

 $H_0 : \mu = 35$

 $H_1 : \mu \neq 35$

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1 Exemple

Trucs

Exemple

Remarque

Région critique

Risques

- 1. H_0 et H_1 formulées en termes du paramètre de la population d'intérêt.
- 2. H_0 = statu quo, condition supposée exister H_1 si suffisamment d'évidence de changement.
- 3. H_0 contient = ou \ge ou \le .

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1

Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Étudiants en emploi \rightarrow horaire tenant compte de leur situation. (i.e. travail jusqu'à 25h par semaine, $\approx 60\%$). La situation réelle a-t-elle changé?

1. Déterminer le paramètre de la population d'intérêt

Exemple

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1 Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Étudiants en emploi \rightarrow horaire tenant compte de leur situation. (i.e. travail jusqu'à 25h par semaine, $\approx 60\%$). La situation réelle a-t-elle changé?

- 1. Déterminer le paramètre de la population d'intérêt Nombre d'heures de travail moyen par semaine des étudiants en emploi.
- 2. Définir la situation qui est supposée vraie.

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1 Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Étudiants en emploi \rightarrow horaire tenant compte de leur situation. (i.e. travail jusqu'à 25h par semaine, $\approx 60\%$). La situation réelle a-t-elle changé?

- 1. Déterminer le paramètre de la population d'intérêt Nombre d'heures de travail moyen par semaine des étudiants en emploi.
- 2. Définir la situation qui est supposée vraie. Statu quo $\mu \leq 25 h$.
- 3. Formuler l'hypothèse nulle et l'hypothèse alternative

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1 Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Étudiants en emploi \rightarrow horaire tenant compte de leur situation. (i.e. travail jusqu'à 25h par semaine, $\approx 60\%$). La situation réelle a-t-elle changé?

- 1. Déterminer le paramètre de la population d'intérêt Nombre d'heures de travail moyen par semaine des étudiants en emploi.
- 2. Définir la situation qui est supposée vraie. Statu quo $\mu \leq 25 h$.
- 3. Formuler l'hypothèse nulle et l'hypothèse alternative

$$H_0 : \mu \le 25$$

$$H_1 : \mu > 25$$

Ф О

7

Remarque

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

 H_0 et H_1

Exemple

Trucs

Exemple

Remarque

Région critique

Risques

Test

Une hypothèse simple correspond à une valeur spécifique, une situation déterminée (une hypothèse sur une égalité). Une hypothèse composite correspond à un ensemble de valeurs, de situations (une hypothèse sur une inégalité).

h e

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique forme

Valeur critique

Risques

Test

Région critique

Zone critique

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique

forme

Valeur critique

Risques

Test

Principe du test : rejet de H_0 si la valeur de la statistique Q_0 est trop différente du paramètre

Deux zones à définir

- lacklart A : ensemble des valeurs probables de Q_0 lorsque l'hypothèse H_0 est vraie. Il s'agit de la région d'acceptation de H_0 .
- \blacksquare R: ensemble des valeurs peu probables de Q_0 lorsque l'hypothèse H_0 est vraie. Il s'agit de la région de rejet de H_0 (région critique).

Zone critique

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique

forme

Valeur critique

Risques

Test

Principe du test : rejet de H_0 si la valeur de la statistique Q_0 est trop différente du paramètre

Deux zones à définir

- lacklart A : ensemble des valeurs probables de Q_0 lorsque l'hypothèse H_0 est vraie. Il s'agit de la région d'acceptation de H_0 .
- \blacksquare R : ensemble des valeurs peu probables de Q_0 lorsque l'hypothèse H_0 est vraie. Il s'agit de la région de rejet de H_0 (région critique).

Règle de décision

$$q_0 \notin R \iff \mathsf{Acceptation} \ \mathsf{de} \ H_0$$

$$q_0 \in R \iff \mathsf{Rejet} \; \mathsf{de} \; H_0$$

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique

forme

Valeur critique

Risques

Test

Un meneur de jeu, plusieurs joueurs.

Principe : loterie

- 1. Le meneur choisit 5 nombres secrets entre 1 et 10.
- 2. Un joueur annonce son nombre
- 3. Le meneur de jeu vérifie et annonce au joueur s'il a gagné
- 4. Retour en 1.

Après quelques itérations, analyser les résultats.

_ _

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique

forme

Valeur critique

Risques

Test

■ test unilatéral à gauche

$$H_1: q = q_1 < q_0$$

$$R \qquad A$$

r

■ test unilatéral à droite

$$H_1: q = q_1 > q_0$$

$$A \qquad R$$

T

■ test bilatéral

$$\begin{array}{ccc}
H_1: q = q_1 \neq q_0 \\
R_1 & R_2
\end{array}$$

$$\begin{array}{ccc}
& R_2 \\
\hline
& r_1 & r_2
\end{array}$$

0
Ф
_

Valeur critique

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique forme

Valeur critique

Risques

Test

La valeur critique r, aussi appelée seuil critique, est la valeur d'une statistique correspondant à un certain niveau de signification.

But : déterminer la frontière pour le rejet de H_0

Choix : de façon à limiter le risque d'erreur.

h e g

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Zone critique forme

Valeur critique

Risques

Б

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Туре

Tableau

Risques liés

Risque total

En pratique

Test

Risques

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Туре

Tableau

Risques liés

Risque total

En pratique

Test

Risque de première espèce α (risque de type I) Rejet de H_0 alors qu'elle est en fait vraie.

$$\alpha = P(Q_0 \in R \mid H_0)$$

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Type

Tableau

Risques liés

Risque total

En pratique

Test

Risque de première espèce α (risque de type I) Rejet de H_0 alors qu'elle est en fait vraie.

$$\alpha = P(Q_0 \in R \mid H_0)$$

Risque de deuxième espèce β (risque de type II) Accepter H_0 alors qu'elle est en fait fausse.

$$\beta = P(Q_0 \notin R \mid H_1)$$

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Type

Tableau

Risques liés

Risque total

En pratique

Test

Risque de première espèce α (risque de type I) Rejet de H_0 alors qu'elle est en fait vraie.

$$\alpha = P(Q_0 \in R \mid H_0)$$

Risque de deuxième espèce β (risque de type II) Accepter H_0 alors qu'elle est en fait fausse.

$$\beta = P(Q_0 \notin R \mid H_1)$$

Remarque : α est aussi appelé *niveau de signification*.

h e g

Tableau des risques

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Туре

Tableau

Risques liés

Risque total

En pratique

	État de la nature		
	H_0 vraie	H_1 vraie	
H_0 accepté	correct	eta	
H_1 accepté	α	correct	

 H_1 peu différent de $H_0 \Rightarrow \beta$ grand

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Type Tableau

Risque total

En pratique

_

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Туре

Tableau

Risques liés

Risque tota

En pratique

Test

Le risque total d'erreur est défini par la relation

$$\alpha \underbrace{P(H_0)}_{\text{inconnu}} + \beta \underbrace{P(H_1)}_{\text{inconnu}}$$

En pratique

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Type Tableau

Risques liés

Risque total

En pratiqu ϵ

Test

En pratique, on détermine le seuil critique r pour un α choisi arbitrairement petit (en général 5~% ou 10~%).

D Φ _ Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Test

Procédure de test

Procédure de test

Rappels

Test d'hypothèse

Hypothèse nulle/alternative

Région critique

Risques

Test

Procédure de test

- 1. Spécifier la valeur de la population d'intérêt.
- 2. Formuler l'hypothèse nulle H_0 et l'hypothèse alternative H_1
- 3. Choisir le niveau de signification α
- 4. Déterminer la région critique.
- 5. Calculer la statistique associée à l'échantillon.
- 6. Rejeter H_0 si la statistique appartient à la région critique. Ne pas rejeter H_0 dans le cas contraire.
- 7. Énoncer une conclusion.