

NeuroPass: Secure Neural Password using EEG sensor

Abhejit Rajagopal, Anthony Nguyen

University of California, Los Angeles EE113D, Professor Briggs, Fall 2013

Introduction and Motivation

What is an EEG signal?

- Electroencephalogram
- First demonstrated by Vladimir Pravdich-Neminsky in 1912 on a household canine
- Voltage measurement of ionic current flows within neurons of the brain
- Ensemble of neural oscillations

Why should you care?

- Little concrete analysis of such measurable electronic potentials
- Computational framework needed to interpret signals since single neurons cannot be held responsible
- Can help understand how the brain's signaling system works

Information coding on neural channels

Brain's signaling system

- The brain is able to communicate with many muscles and cells throughout body over a network
- Signaling system, measured via electronic potential, is a key metric
- EEG in particular can help brain mapping

What are we proposing?

- Examine extent of coded neural information
- Propose: Detect salient, or even non-obvious higherdimensional, signal features
- Can both understand how brain's signaling system works and create something useful/futuristic!

NeuroPass: EEG password

- Our project's goal is to generate a stream of coded information from neural (EEG) signals
- Information can be decoded from 14 available channels
- Can re-encoded in the form of a password

Emotiv EEG headset

Detection on a Noisy Channel

 Challenge: analyzing <u>arbitrary</u> biological data to make dependable decisions from fundamentally noisy information

So what do one of these things look like?

Detection on a Noisy Channel

 Challenge: analyzing arbitrary biological data to make dependable decisions from fundamentally noisy information

Noisy detection methods developed

- Figure 2a:
 - DC offset removal
- Figure 2b:
 - Digital filtering
- Figure 3: Local Minima + Threshold
- Figure 4: Masking

Noisy detection methods developed

- Figure 2a: DC offset removal
- Figure 2b: Digital filtering
- Figure 3:
 - Local Max/Min & Threshold
- Figure 4:
 - Masking

$$t(x) = \operatorname{sgn}\left(\sum_{i=1}^{n} w_i x_i - \theta\right).$$

Code Generation

- Figure 5:
 - Generated Code

>> code

code =

656	2
1282	2
1933	2
2552	2
3089	2
3854	2

Code Generation

- Figure 6:

- Generated Code: Feature detection

656	2
1282	2
1933	2
2552	2
3089	2
3854	2
4425	2
5160	2
5797	2
6438	2
6916	2
7679	2
8308	2
8957	2
9468	2
9912	2
10382	2
11576	2
12137	2
12783	2
13425	2
13952	2
14703	2
15234	2

>> code

Challenge 1: Data Uniformity

- Data collection is not uniform from run-to-run due to EEG sensor placements
- Channel sources change between runs making datauniformity very challenging!
- Therefore, data interpretation might change over time!

- Codings developed:
 - Feature detection
 - (blinks, clenches, eyerolling)
 - Pulse Width Modulation
 - PWM of peaks
- Developed in Matlab (no special functions) and C!

Challenge 1: Data Uniformity

- Codings developed:
 - Feature detection
 - (blinks, clenches, eyerolling)
 - Pulse Width Modulation
 - PWM of peaks
 - Developed in Matlab (no special functions) and C!

Challenge 2:

Serious corrosion of contact affects signal tremendously:

Solution: chemistry

Before and After treatment

- Copper gets corroded easily

Challenge 3: DSK Memory

DSK has 32 k of internal data memory

4 bytes needed to store a float 14 channels of data 128 samples per second 30 seconds of data

215040 bytes needed!

Thank You!