For the basis $\mathbf{e_i}$, the components of \mathbf{T} are $\begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{bmatrix}$

- 1. Find the components of T^2 and T^3 for the same basis.
- 2. Find $I_T = \text{tr } \mathbf{T}$, $II_T = \text{tr } \mathbf{T}^2$, and $III_T = \text{tr } \mathbf{T}^3$.
- 3. Find the eigenvalues of **T** and the eigenvectors. Construct a principal basis (p_A say) expressed in terms of e_i .
- 4. What are the components of \mathbf{T} , \mathbf{T}^2 , and \mathbf{T}^3 with respect to the principal basis. Determine \mathbf{I}_T , \mathbf{II}_T , and \mathbf{III}_T using these components.
- 5. Set up the transformation matrix between p_A and \mathbf{e}_i . Start with the components of **T** in the principal basis obtained in Prob. 4 and use the transformation relation to obtain the components with respect to the basis \mathbf{e}_i .
- 6. (a) Obtain the values of the invariants \hat{I}_T , \hat{II}_T , and \hat{III}_T .
 - (b) Show that the Cayley-Hamilton theorem holds using components in the e_i system.
 - (c) With the use of components in either system, show that

$$\hat{III}_{T} = \frac{1}{6} [I_{T}^{3} - 3I_{T}II_{T} + 2III_{T}] = \det(\mathbf{T})$$

- 7. Find the components of the tensor $T^{1/2}$ in the e_i system. Obtain $T_{i\,j}^{1/2}$ $T_{j\,k}^{1/2}$.
- 8. In the \mathbf{e}_i system find the components of $\mathbf{T}^{\text{-1}}$ from the equation

$$\mathbf{T}^{-1} = \left(\mathbf{T}^2 - \hat{\mathbf{I}}_{\mathrm{T}} \mathbf{T} - \hat{\mathbf{I}}_{\mathrm{T}} \mathbf{I}\right) / \left(\hat{\mathbf{I}}\hat{\mathbf{I}}_{\mathrm{T}}\right).$$

Transform these components to obtain the components of \mathbf{T}^{-1} in the p_A system.