Uni DB1 Notes

Notes for the DB1 (databases) course at HdM Stuttgart

Inhaltsverzeichnis

1	Autb	pau eines DBMS	4				
	1.1	Typen von Daten	4				
	1.2	Programmaufbau	4				
	1.3	Erweitertes Programm-Modell	4				
	1.4	Definition DBMS	4				
	1.5	Effizienz-Typen	5				
	1.6	Services	5				
	1.7	Metadaten	5				
	1.8	Interne Dateistruktur	5				
	1.9	Hintergrundprozesse	6				
	1.10	Logging	6				
	1.11	Datenbank vs. Schema	6				
	1.12	Verwendungszwecke für Views	6				
2	Keys	-	7				
_	2.1	Definition Candidate Key	7				
	2.2	Definition Primary Key					
	2.3	Definition Foreign Key	7				
	2.5	Definition Foreign Rey	'				
3	Skripte 7						
	3.1	Restartfähige Skripte	7				
	3.2	Delta-Skripte	7				
4	Mengenoperationen 8						
-	4.1	Typen von Multi-Tabellen-Abfragen:	8				
	4.2	Optimierung von Additiven Mengenoperationen	8				
	4.3	Inner- vs Outer-Join	8				
	4.4	Weitere Joins	8				
5	Modellierung 9						
	5.1	Datenbankentwurfsablauf	9				
	5.2	Abbildungsprozess	9				
	5.3	Grundsätze der Modellbildung	9				
	5.4	Anforderungsdokument	10				
	5.5	ER-Modell	10				
	5.6	Redundanz-Anomalien	10				
	5.7	Normalformen	11				

	5.8	Ablauf des Schemaentwurfs	11
	5.9	Indizierung	11
		5.9.1 Problemfelder von Indizes	11
		5.9.2 Spaltenwahl für Indizes	11
6	Weit	ere Services	12
	6.1	Authorisierungsdienst	12
	6.2	Mehrnutzerbetrieb	12
	6.3	Zuverlässigkeit	12
	6.4	Transaktionen/ACID	12
	6.5	Transaktionskontrolle	12
	6.6	Konsistenzsicherung	13
	6.7	Parallelitätssteuerung	13
	6.8	Möglichkeiten der Einbindung	13
	6.9	Impedance Mismatch	13
	6 10	Definition Cursor	14

"The true courage is to admit that the light at the end of the tunnel is probably the headlight of another train approaching" - Slavoj Žižek, *The Courage of Hopelessness*

Mehr Details unter https://github.com/pojntfx/uni-db1-notes.

1 Aufbau eines DBMS

1.1 Typen von Daten

• Persistent: Über mehrere Programabläufe verfügbar

• Temporär: Nur während der Laufzeit verfügbar

1.2 Programmaufbau

Applikation → DBMS → Datenbank

1.3 Erweitertes Programm-Modell

- Präsentationsschicht (temporäre Daten)
- Logik-Schicht (temporäre Daten)
- Daten-Zugriffs-Schicht (temporäre Daten)
- API zwischen App und DBMS
- DBMS (persistente Daten)
- Datenbank (persistente Daten)

1.4 Definition DBMS

- Sammelt Daten
- Verwaltet Daten
- Definitiert Struktur (Modell)
- Definition, Manipulation & Abfrage von Daten
- Services

1.5 Effizienz-Typen

Entwickler:

- Effiziente Modellierung
- · Einfache Sprache
- Gutes Tooling

Admins:

- · Effiziente Ressourcennutzung
- Einbindung in Systemverwaltung
- Monitoring
- Anpassung
- Zugriffssteuerung

1.6 Services

SMARASTD:

- Service to ensure Data Integrity
- Multi-User Support
- Authorization Service
- Recovery Service
- Access via Network
- Storage, Query & Manipulation of Data
- Transactional Support
- Data Dictionary & System Catalog

1.7 Metadaten

- Data Dictionary: Metadaten der DB-Objekte
- System Catalog: Status und Konfiguration

1.8 Interne Dateistruktur

- n Datendateien (n = 1...MAXDATAFILES)
- Control-Files
- · Logfiles

1.9 Hintergrundprozesse

- **DBWR** (Database Write-Prozess): Lesen & Schreiben auf Daten-Dateien
- LGWR (Log Write-Prozess): Logging aller Veränderungen
- **PMON** (Process-Monitor): Garbage Collector; führt in konsistenten Zustand nach Abbruch von z.B. einer Transaktion
- **SMON** (System-Monitor): Consistency Check; führt in konsistenten Zustand nach Crash von DBMS, OS oder Hardware
- ARCH (Archiv-Prozess): Archivierung von Daten

1.10 Logging

Notwendig für ...

- Konsistenz
- Wiederherstellbarkeit

Log-Dateien sind ...

- Groß: Ineffizienter Zugriff
- Wichtig: Verlust muss vermieden werden
- → Round-Robin-Prozess mit Archiv-Prozess

1.11 Datenbank vs. Schema

- Datenbank: Objekte zusammen von DBMS verwaltet
- Schema: Objekte zusammen von DBMS betrachtet

1.12 Verwendungszwecke für Views

- Trennung der Anwendungsschicht vom Unternehmensmodell (menhir)
- Sicherheit
- Zugriffsstrukturen
- Vereinfachte Schemaevolutionen
- Einfügen und Löschen einschränken
- → Am besten immer nur via Views auf Daten zugreifen

2 Keys

2.1 Definition Candidate Key

Ein Key is eine Menge von Spalten.

- Eindeutigkeit: Es gibt keine zwei Zeilen mit demselben Candidate Key
- Irreduzibilität: Nimmt man eine oder mehrere Spalten aus dem Key, so ist dieser nichtmehr eindeutig.

2.2 Definition Primary Key

Ein gewählter Candidate Key (oft der mit der kleinsten Anzahl von Spalten).

2.3 Definition Foreign Key

Es werden zwei Tabellen A und B betrachtet.

Der Foreign Key, welcher B aus A referenziert, ist ein Candidate Key von B (meist der Primary Key).

3 Skripte

3.1 Restartfähige Skripte

- 1. Löschen Constraints
- 2. Löschen Objekte
- 3. Anlegen Objekte
- 4. Anlegen Constraints

3.2 Delta-Skripte

Bei einer Erweiterung des Modells dürfen bestehende Daten nicht ungültig werden.

- alter table: Neue Spalte einfügen
- update: Default-Werte für alte Zeilen einfügen (falls not null)
- insert: Fehlende Zeilen anlegen (falls not null)
- alter table: Foreign Key-Constraint hinzufügen
- alter table: not null-Constraint hinzufügen

4 Mengenoperationen

4.1 Typen von Multi-Tabellen-Abfragen:

- **Additive** Mengenoperationen: Mehrere Teilabfragen (in etc.)
- Multiplikative Mengenoperationen: Kartesisches Produkt (join etc.)

4.2 Optimierung von Additiven Mengenoperationen

Wenn Abfragen über mehrere Tabellen gemacht werden, so müssen alle Abfragen fertig sein, damit verglichen werden kann. Deshalb union all verwenden (Vorsicht: Duplikate werden nicht entfert!)

4.3 Inner- vs Outer-Join

- Inner Join: Zeilen in linker Tabelle, für welche in der rechten Tabelle keine entsprechenden Zeilen existieren, werden nicht dargestellt.
- Outer Join (+): Zeilen in Tabelle A, für welche in Tabelle B keine entsprechende Zielen existieren, werden mit null gefüllt.
 - Left Outer Join: Rechts kann null-Werte haben
 - Right Outer Join: Links kann null-Werte haben
 - Full Outer Join: Beide könnten null-Werte haben

4.4 Weitere Joins

- Builk Join (Kartesisches Produkt)
- Restricted Join (mit zwei Where-Bedingungen)
- Natural Join (min. ein Attribut gleich)
- Semi Join (nur Attribute einer Tabelle im select-Statement)
- Multiple Join (z.B. join aus drei Tabellen)
- Auto Join (Tabelle mit sich selbst joinen; z.B. Stückliste)

5 Modellierung

5.1 Datenbankentwurfsablauf

- 1. Input: Reale Welt
- 2. Anforderungen analysieren
- 3. Entwurf (konzeptionell) erstellen
- 4. Entwurf (logischen) erstellen
- 5. Implementieren
- 6. Output: System

Dabei wird nebenläufig kontinuierlich getestet.

5.2 Abbildungsprozess

Realwelt

- Vielschichtig
- Unikate
- Umfangreiche Beziehungen

• Semantisches Datenmodell

- Zusammenfassung zu Gruppen, abstrahiert
- Integritätsbedingungen
- Explizit modellierte Beziehungen

· Relationales Datenbankmodell

- Einfach
- Tabellen
- Implizit modellierte Beziehungen

5.3 Grundsätze der Modellbildung

SSRWKV:

- Syntaktische & semantische Richtigkeit
- · Systematischer Aufbau
- Relevanz
- Wirtschaftlichkeit

- Klarheit
- Vergleichbarkeit

5.4 Anforderungsdokument

Ein gutes Anforderungsdokument sollte die Eigenschaften haben ...

- Korrektheit
- Vollständigkeit
- Konsistenz
- Einfachkeit
- · Eindeutig

Ein gutes Anforderungselement sollte bestehen aus ...

- Informationsanforderungen
- Bearbeitungsanforderungen
- Funktionale Anforderungen
- Dynamische Anforderungen

5.5 ER-Modell

- Atribut: Datenelement
- Entität: Gruppierungselement
- Beziehung: Verknüpfung (n:m-Beziehungen via schwacher Entität)
- Kardinalität: Maximale Anzahl an Elementen in Beziehung

5.6 Redundanz-Anomalien

Folgende Anomalien treten durch Redundanzen auf:

- Änderungsanomalie
- Löschanomalie
- Einfügeanomalie

5.7 Normalformen

- Erste Normalform: Spalten sind nicht weiter auftrennbar
- **Zweite Normalform**: Alle Attribute hängen vom Schlüssel ab (keine funktionalen Abhängigkeiten)
- **Dritte Normalform**: Beziehungen werden über Foreign Key-Constraints abgebildet (keine transitiven Abhängkeiten)

5.8 Ablauf des Schemaentwurfs

- 1. Erheben von Infos
- 2. Identifikation der Attribute
- 3. Formalisierung von Infos
- 4. Gruppierung der Attribute

5.9 Indizierung

5.9.1 Problemfelder von Indizes

- Im temporären Speichern funktionieren Indizes nicht mehr
- Falsche Anwendung von Indizes kann sogar langsamer als keine Indizes sein. Ohne Indizes werden immer alle Zeilen einer Tabelle evaluiert; bei Indizes wird immer von einer Position ausgehend, bis die where-Clause eintritt, evaluiert. Letztere Strategie besitzt damit auch einen Overhead, welcher teuerer als die Ersparnis durch das frühere Abbrechen nach dem Eintreten der where-Clause sein kann.

5.9.2 Spaltenwahl für Indizes

Bei der Erstellung eines Indexes sollte immer die Spalte mit der höchsten Selektivität (> 0, 8) zuerst angeben werden, welche sich mit folgender Formel berechnen lässt:

$$Selektivitt = 1 - \frac{n - distinct(n)}{n}$$

n: Anzahl von Elementen

distinct(n): Anzahl von eindeutigen Elementen

6 Weitere Services

6.1 Authorisierungsdienst

Nutzt eine Allowlist.

• Beschränkung von Nomen (i.e. "Nutzer x darf auf Tabelle products zugreifen"): **Objektprivilegien**

• Beschränkung von Prädikaten (i.e. "Nutzer x darf updatenen"): Systemprivilegien

6.2 Mehrnutzerbetrieb

- · Sichtbarkeit von Daten
- Änderbarkeit von Daten
- · Trennung in Anwender und Admins
- Schonung von Ressources
- Einfache Verwaltung

6.3 Zuverlässigkeit

Daten dürfen weder physisch noch semantisch fehlerhaft sein, weshalb folgende Dinge existieren müssen:

- Transaktionen
- Virtueller Single-User-Betrieb

6.4 Transaktionen/ACID

Aktionen werden entweder vollständig oder gar nicht ausgeführt.

- Atomicy: Alles oder nichts
- Consistency: Zustand 1 → Zustand 2 (Unterbrechung: Zustand 2 = Zustand 1)
- Isolation: Virtueller Single-User-Betrieb
- Durability: Zustand 2 bleibt erhalten, egal was passiert

6.5 Transaktionskontrolle

• begin: Start einer Transaktion (SQL: Nicht definiert)

- end: Ende einer Transaktionen (SQL: commit)
- undo: Verwerfen offener Transaktionen (SQL: rollback)
- redo: Wiederherstellung abgeschlossener Transaktionen (SQL: Nicht definiert)
- savepoint: Sub-Transaktionen (SQL only)

6.6 Konsistenzsicherung

• Constraints: In Tabellen

• Transaktionen: In Ablaufebene

• Trigger: In Prozedualen Erweiterungen

6.7 Parallelitätssteuerung

Verhindern von ...

- Lost Update: Verlorengegangenen Änderungen
- Dirty Read/Write: Zugriff auf "schmutzige" Daten

Umsetzung durch ...

- Lese-, Schreib- und Exklusiv-Sperren (Funktionale Sperr-Ebene)
- Table-, Page- und Row-Level-Sperren (Physische Sperr-Ebene)

```
→ Z.B. durch select ... for update of ...
```

6.8 Möglichkeiten der Einbindung

- Low Code-Umgebungen (z.B. LibreOffice Base, IFTTT)
- Embedding
- APIs

6.9 Impedance Mismatch

- too_many_rows: Mehr als ein Datensatz
- no_data_found: Null Datensätze (nicht streng genommen ein Impendance Mismatch)

6.10 Definition Cursor

Ergebnis einer Abfrage wird in einer Tabelle abgelegt, von welcher dann n-mal gefetched werden kann.