Class 5: Data Visualization with GGPLOT

Julia Ainsworth

Table of contents

Our first plot	1
New graph for genes upregulated/downregulated with drug treatment	4
gapminder extension	7
Bar charts	10
Animation:	15
Combining plots for 10:	16

Our first plot

R has base graphics

Keyboard shortcut to insert a chunk of code: opt + cmd + i

plot(cars)

How would I plot this with ggplot2?

If I hadn't installed ggplot2 yet, this would be the first step:

```
# install.packages("ggplot2")
```

But before I use it, need to re-load (called a "library call") in every session. This is the case for every package 'library(ggplot2)'

```
# library(ggplot2)
library(ggplot2)
```

Every ggplot needs at least 3 layers:

- Data (i.e. the data.frame, here cars)
- Aes (the aesthetic mapping of our data to what we want to plot)
- Geoms (How we want to plot this stuff!)

Simplest version of a ggplot:

```
ggplot(data=cars) +
aes(x=speed, y=dist) +
```

geom_point()

Adding a trend line to our data:

```
ggplot(data=cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  xlab("Speed") +
  ylab("Distance") +
  theme_bw()
```

`geom_smooth()` using formula 'y ~ x'

New graph for genes upregulated/downregulated with drug treatment

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
nrow(genes)
```

[1] 5196

```
colnames(genes)
[1] "Gene"
                 "Condition1" "Condition2" "State"
  ncol(genes)
[1] 4
  table(genes$State)
      down unchanging
                              up
        72
                 4997
                              127
  round( table(genes$State)/nrow(genes) * 100, 2 )
      down unchanging
                              up
      1.39
                96.17
                             2.44
```

Answers to questions: Q: There are 5196 genes in this data set.

Q: There are rncol(genes)' columns in the genes data set. Graph of the genes up and down-regulated:

```
p <- ggplot(genes) +
  aes(Condition1, Condition2, col=State) +
  geom_point()
p</pre>
```


Graph showing the color changing: does p carry over? Answer: yes!

gapminder extension

```
library(gapminder)
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)</pre>
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)
```

First basic scatterplot of gapminder

```
ggplot(gapminder_2007) +
  aes(gdpPercap, lifeExp, size= pop) +
  geom_point(alpha = 0.5) +
  scale_size_area(max_size = 10)
```


Redoing it for 1957

```
gapminder_1957 <- gapminder %>% filter(year==1957)

ggplot(gapminder_1957) +
  aes(gdpPercap, lifeExp, col = continent, size = pop) +
  geom_point(alpha = 0.7) +
  scale_size_area(max_size = 15)
```


Facet wrapping: getting two graphs next to each other

```
gapminder_1957 <- gapminder %>% filter(year==1957 | year==2007)

ggplot(gapminder_1957) +
  aes(gdpPercap, lifeExp, color = continent, size = pop)+
  geom_point(alpha = 0.7) +
  scale_size_area(max_size = 10) +
  facet_wrap(~year)
```


Bar charts

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(lifeExp)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                             pop gdpPercap
1 United States Americas 2007 78.242 301139947 42951.653
2
                              72.961 1318683096
                                                  4959.115
         China
                    Asia 2007
3
        Brazil Americas 2007
                              72.390
                                                  9065.801
                                       190010647
4
     Indonesia
                    Asia 2007
                              70.650 223547000
                                                  3540.652
5
         India
                    Asia 2007 64.698 1110396331
                                                  2452.210
```

Bar chart:

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = lifeExp))
```


Putting colors in:

```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```


Plotting population size by country:

```
gapminder_top5pop <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5pop
```

```
country continent year lifeExp
                                             pop gdpPercap
1
         China
                    Asia 2007 72.961 1318683096 4959.115
2
         India
                    Asia 2007 64.698 1110396331
                                                  2452.210
3 United States Americas 2007 78.242 301139947 42951.653
4
     Indonesia
                    Asia 2007
                              70.650
                                      223547000
                                                  3540.652
5
                Americas 2007 72.390 190010647
                                                  9065.801
        Brazil
```

Barplot:

```
ggplot(gapminder_top5pop) +
  aes(x=reorder(country, -pop), y=pop, fill = country)+
  geom_col(col="gray30") +
```

guides(fill="none")

Flipping bar charts:

head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


Segmented bar plot:

Animation:

```
library(gapminder)
library(gganimate)

# Setup nice regular ggplot of the gapminder data
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
    geom_point(alpha = 0.7, show.legend = FALSE) +
    scale_colour_manual(values = country_colors) +
    scale_size(range = c(2, 12)) +
    scale_x_log10() +
    # Facet by continent
    facet_wrap(~continent) +
    # Here comes the gganimate specific bits
    labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
    transition_time(year) +
    shadow_wake(wake_length = 0.1, alpha = FALSE)
```

Combining plots for 10:

```
library(patchwork)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) +geom_bar(aes(carb))

(p1 | p2 | p3) /
p4</pre>
```

 $geom_smooth()$ using method = 'loess' and formula 'y ~ x'

