Chapter 6

Frequent Itemsets

Market-Basket Model

The Discovery of Frequent Itemsets

- Often viewed as the discovery of "association rules"
 - Although the latter is a more complex characterization of data
 - Because it depends fundamentally on the discovery of frequent itemsets
- The "market-basket" model of data
 - Essentially a <u>many-to-many relationship</u> between "items" and "baskets"

- The "frequent-itemsets" problem
 - Find sets of items that appear in (are related to) many of the same baskets

Algorithms for Finding Frequent Itemsets

A-Priori algorithm

 Eliminates most large sets as candidates by looking first at smaller sets and recognizing that a large set cannot be frequent unless all its subsets are

Various improvements to the basic A-Priori idea

 Concentrating on very large data sets that stress the available main memory

Approximate algorithms

- Work faster but are not guaranteed to find all frequent itemsets
- Also in this class are those that exploit parallelism (e.g., MapReduce)

The Market-Basket Model

- Used to describe a common form of many-to-many relationship between two kinds of objects
 - Items (e.g., things sold in a supermarket)
 - Baskets (sometimes called "transactions")
 - Each basket consists of a set of items (an *itemset*)
 - Usually we assume that the number of times in a basket is small
 - The number of baskets is very *large*
 - Bigger than what can fit in main memory

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Association rules discovered:

5

 ${Milk} \rightarrow {Coke}$ ${Diaper, Milk} \rightarrow {Beer}$

Input Output

Definition of Frequent Itemsets

Frequent itemsets

A set of items that appears in *many* baskets

Formal definition

- The *support* for an itemset I: the number of baskets for which I is a subset
- We are given a support threshold s
- We say I is **frequent** if its support $\geq s$

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

The support for $\{Beer, Bread\} = 2$

(Ex) Frequent Itemsets

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

• Frequent itemsets (i.e., support ≥ 3)

$$\{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}$$

Applications of Frequent Itemsets (1/3)

- The original application: analysis of true market baskets
 - Items: the different products that the store sells
 - Baskets: the sets of items in a single market basket
 - Application
 - A major chain might sell 10⁵ different items and have millions of baskets
 - By finding frequent itemsets, a retailer can learn what is commonly bought together
 - Especially important are the *unexpected* sets of items bought together
 - (ex) {Bread, Milk} (X), {Diaper, Beer} (O)
 - It offers the supermarket an opportunity to do some clever marketing
 - (ex) Advertise a sale on diapers and raise the price of beer
 - (ex) Place diapers and beer close together

Applications of Frequent Itemsets (2/3)

Related concepts

- Items: words
- Baskets: documents (e.g., Web pages, blogs, tweets)
- Application
 - Words appearing together in many documents may be a joint concept
 - (ex) {Brad, Angelina}

Plagiarism

- items: documents
- Baskets: sentences
 - Note that an item is "in" a basket if the sentence is in the document
- Application
 - Documents appearing together in many baskets share many sentences in common → plagiarism!

Applications of Frequent Itemsets (3/3)

Drug side effects

— Items: drugs and side-effects

– Baskets: patients

Application

- Can detect combinations of drugs that result in particular side effects
- But requires extension!
 - Absence of an item needs to be observed as well as presence

Association Rules

- Represented as if-then rules about the contents of baskets
- The form of an association rule

$$I \rightarrow j$$

- $I = \{i_1, i_2, ..., i_k\}$: a set of times (i.e., itemset)
- j: an item
- Implication
 - If all of the items in I appear in some basket, then j is "likely" to appear in that basket as well

The Confidence of an Association Rule

Formalizes the notion of "likely"

Definition

- Let $conf(I \rightarrow j)$ be the confidence of the association rule $I \rightarrow j$
 - $I = \{i_1, i_2, ..., i_k\}$: an itemset
- Let support(I) be the support for an itemset I
- Then, $conf(I \rightarrow j)$ is defined as follows:

$$conf(I \to j) = \frac{support(I \cup \{j\})}{support(I)}$$

– That is, the confidence of $I \rightarrow j$ is the probability of j given I

The Interest of an Association Rule

Not all high-confidence rules are interesting

- If everyone purchases milk, $X \rightarrow milk$ will have 100% confidence for any X
- A rule $I \rightarrow j$ is more valuable if it reflects a true relationship
 - *I* somehow affects *j*

Definition

- The interest of a rule $I \rightarrow j$, interest $(I \rightarrow j)$, is defined as follows:

$$interest(I \rightarrow j) = conf(I \rightarrow j) - \frac{support(\{j\})}{\# of \ baskets}$$

- interest($I \rightarrow j$) = 0 → I has no influence on j
- interest($I \rightarrow j$) > 0 → the presence of I causes the presence of j
- interest($I \rightarrow j$) < 0 → the presence of I discourages the presence of j

(Ex) Confidence and Interest

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Consider the association rule $\{m, b\} \rightarrow c$
 - $conf({m, b} \rightarrow c) = 2/4 = 0.5$
 - interest($\{m, b\} \rightarrow c$) = 0.5 5/8 = 0.5 0.625 = -0.125
 - Item c appears in 5/8 of the baskets
 - Thus, the rule is not very interesting!

Finding Association Rules (1/2)

- Problem definition
 - − Find all association rules $I \rightarrow j$ with support $(I \cup \{j\}) \ge s$ and conf $(I \rightarrow j) \ge c$
 - s must be reasonably high (in practice, often around 1% of the baskets)
 - c must also be reasonably high (perhaps 50%)
- Suppose we have found all itemsets with support $\geq s$
 - We also have the exact support for each of these itemsets
- We then can easily find within them all the association rules that have both high support and high confidence

Finding Association Rules (2/2)

- Let J be a set of n items that is found to be frequent
 - Then there are only *n* possible rules, namely $J \{j\} \rightarrow j$ for each *j* in *J*
- For every element j of J, generate a rule $J \{j\} \rightarrow j$
 - Since support(J) ≥ s, it is obvious that support($J \{j\} \cup \{j\}$) ≥ s
 - Thus, we only need to check if $conf(J \{j\} \rightarrow j) \ge c$
 - We can easily compute $conf(J \{j\} \rightarrow j) = support(J)/support(J \{j\})$
 - Because J is frequent, $J \{j\}$ must be at least as frequent
 - Thus we already have support(J) and support($J \{j\}$)
 - Output the rule $J \{j\}$ → j if conf $(J \{j\}$ → $j) \ge c$
- The *hard* part is finding all frequent itemsets! → explained next

(Ex) Finding Association Rules

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Let support threshold s=3 and confidence threshold c=0.75
- 1. Find frequent itemsets:
 - $\{b, m\}, \{b, c\}, \{c, m\}, \{c, j\}, \{m, c, b\}$
- 2. Find association rules:

$$\{b\} \rightarrow m: c = 4/6$$
 $\{b\} \rightarrow c: c = 5/6$ $\{b, c\} \rightarrow m: c = 3/5$ $\{c\} \rightarrow b: c = 3/5$ $\{b, m\} \rightarrow c: c = 3/4$

. . .

A-Priori Algorithm

A-Priori Algorithm

- The original algorithm to find association rules with high support and confidence
 - From which many variants have been developed
- Assumption: representation of market-basket data
 - Market-basket data is stored in a file basket-by-basket
 - Each item is represented by an *integer* code
 - (ex) {23,456,1001} {3,18,92,145} {...
 - The average size of a basket is small
 - However, the size of the file of baskets is very large
 - Thus, it does not fit in main memory

The Cost of An Association Rule Algorithm

- A major cost of an association rule algorithm is the time it takes to read the baskets from disk
 - Because the file of baskets is too large to fit in main memory
- Once a basket is in main memory, generating all the subsets of size k in main memory should take time much less than the time it took to read the basket from disk
 - (ex) if there are 20 items in a basket, there are $_{20}\mathrm{C}_2$ = 190 subsets of size 2
 - As k gets larger, the time required to generates all the subsets of size k for a basket with n items grows larger
 - However, it is usually possible to eliminate many of the items in each basket as not able to participate in a frequent itemset, so n drops as k increases

The Cost of An Association Rule Algorithm

- Consequently, the work of examining each of the baskets can usually be assumed proportional to the size of the file
- In practice, association rule algorithms read the data in passes
 - All baskets read in turn (sequentially)
- Thus, the running time of an association rule algorithm is proportional to:
 - The number of passes taken by the algorithm × the size of the file
- Thus, what does matter is the number of passes

Main Memory Bottleneck

- For many association rule algorithms, main memory is the critical resource
 - For example, we need to count the occurrence of each pair of items
 - (ex) {Bread,Milk}:10, {Milk,Beer}:8, {Coke,Beer}:4, ...
 - However, the number of pairs of items can be very large
 - For n items, the number of all possible pairs is ${}_{n}C_{2}$
 - If we do not have enough main memory to store each of the counts,
 then the algorithm will *thrash*
 - Because adding 1 to a random count will most likely require us to load a page from disk
- Thus, each algorithm has a *limit* on how many items it can deal with

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent **pairs** of items $\{i_1, i_2\}$
 - Why?
 - Frequent pairs are common, frequent triples are rare
 - Probability of being frequent drops exponentially with size
- Thus, let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Counting Pairs in Memory

- For *n* items, the number of pairs is ${}_{n}C_{2} = n(n-1)/2$
 - Suppose $n = 10^5$ and counts are 4 byte integers
 - Naively, $4\times10^5(10^5-1)/2\approx2\times10^{10}$ bytes = 20 GB of memory needed
- How can we reduce the amount of memory required to count?
 - Triangular matrix method
 - Store counts in a one-dimensional triangular array
 - Triple method
 - Store counts as triples [i, j, c], meaning the count of pair $\{i, j\}$ (i < j) is c

Triangular Matrix Method

- We could use a two-dimensional array a
 - We store the count of a pair $\{i, j\}$ in a[i, j]
 - However, this strategy makes half the array useless because $\{i, j\} = \{j, i\}$
- A more space-efficient way
 - Use a one-dimensional triangular array
 - We store in a[k] the count of a pair $\{i, j\}$ $(1 \le i \le j \le n)$, where

$$k = (i-1)\left(n - \frac{i}{2}\right) + j - i$$

- In this layout, the pairs are stored in lexicographic order
 - $\{1, 2\}, \{1, 3\}, ..., \{1, n\}, \{2, 3\}, \{2, 4\}, ..., \{2, n\}, \{3, 4\}, \{3, 5\}, ..., \{3, n\}, ..., \{n-2, n-1\}, \{n-2, n\}, ..., \{n-1, n\}$

Triple Method

- The triangular matrix method requires us to store the count of a pair even when the count is 0
 - Inefficient when the counts of most pairs are 0
- Thus, we store triples [i, j, c] only for pairs $\{i, j\}$ (i < j) with c > 0
 - Also, we also use a hash table with i and j as the search key to find a triple [i, j, c] quickly

Comparisons

- Triangular matrix method: uses 4 bytes per pair (but for all pairs)
- Triple method: uses **4+4+4=12 bytes** per pair (but only for pairs with c > 0)
- Therefore, the triangular matrix will be better if at least 1/3 of ${}_{n}C_{2}$ possible pairs actually appear in the basket data

Comparing the Two Approaches

Triangular Matrix

Triples

Monotonicity of Itemsets

- If we have too many items so the pairs do not fit into memory, can we do better?
- The key observation driving much of the effectiveness of the algorithms we shall discuss

If a set I of Items is frequent, then so is every subset of I

Proof

- For $J \subseteq I$, every basket that contains all the items in I surely contains all the items in J
- Thus, the count for J must be at least as great as the count for I
- Consequently, if the count for I is at least s, then count for J is at least s

Maximal Frequent Itemsets

 Monotonicity offers us a way to compact the information about frequent itemsets

- We say an itemset is maximal if no superset is frequent
 - (ex) support($\{a\}$) > s and support($\{a, b\}$) > $s \rightarrow \{a\}$ is **not** maximal

Why useful?

- If we list only the maximal itemsets, then we know that *all* of their subsets are frequent
- No set that is not a subset of some maximal itemset can be frequent
- Thus, we can reduce the number of output itemsets
 - (ex) $\{a\}$, $\{b\}$, $\{a,b\} \rightarrow \{a,b\}$

(Ex) Maximal Frequent Itemsets

	Support	Maximal (s=3)	
{a}	4	No	Franciscot but
{b}	5	No •	Frequent, but —— superset {b, c}
{c}	3	No	also frequent
{a, b}	4	Yes	
{a, c}	2	No	Frequent, and its only superset, {a, b, c} is not frequent
{b, c}	3	Yes	
{a, b, c}	2	No	•

Tyranny of Counting Pairs

- In practice, the most main memory is required for determining the frequent *pairs*
 - The number of items n is rarely so large so we can count them in memory
 - The number of pairs can be very large
 - The number of *frequent* triples, quadruples, and larger sets are *rare*
 - # of frequent pairs > # of frequent triples > # of frequent quadruples > ...
- Thus, we first concentrate on algorithms for computing frequent pairs, then extend to larger sets
 - There are many more triples than pairs
 - It is the job of the A-Priori algorithm and related algorithms to avoid counting many triples or larger sets, and they are effective in doing so

The A-Priori Algorithm

Naïve approach (if we have enough memory)

- Read the file of baskets in a single pass
- For each basket of n items, generate all the ${}_{n}C_{2}$ pairs by a double loop
- Each time we generate a pair, add 1 to its count
- At the end, examine all pairs and output those pairs whose count > s
- However, this approach fails if there are too many pairs of items to count them all in main memory

A-Priori algorithm

- Designed to reduce the number of pairs that must be counted
- To do so, it performs two passes over data, rather than one pass

The First Pass of A-Priori

We create two tables

- The first table: translates item names into integers from 1 to n
- The other table: an array of counts
 - The ith array element counts the occurrences of the item numbered i
 - Initially, the counts for all the items are 0

As we read baskets

- We look at each item in the basket and translate its name into an integer
- Next, we use that integer to index into the array of counts
- We add 1 to the integer found there
- ✓ Requires only memory proportional to the number of items.

Between the Passes of A-Priori

- We examine the counts of items to determine which of them are frequent
- For the second pass of A-Priori, we create a new numbering from 1 to m for just the frequent items
 - This table is an array indexed 1 to n
 - The entry for i is either 0, if item i is not frequent, or a unique integer in the range 1 to m, if item i is frequent
 - We shall refer to this table as the frequent-item table

34

The Second Pass of A-Priori

- We count all the pairs that consists of two frequent items
 - Recall that a pair cannot be frequent unless both its items are frequent
 - If we use the triangular-matrix method
 - The space required is $2m^2$ bytes, rather than $2n^2$ bytes
 - If we use the triples method
 - The renumbering of just the frequent items is necessary

The mechanics

- For each basket, look in the frequent-items table to find frequent items
- In a double loop, generate all pairs of frequent items in that basket
- For each such pair, add 1 to its count
- Finally, examine the counts to determine which pairs are frequent
- ✓ Requires memory proportional to square of *frequent* items only

Main Memory Use of A-Priori Algorithm

Item names to to integers n

Unused

Item
names
to
integers1
2
quent
items

Data structure for counts of pairs

A-Priori for All Frequent Itemsets

- We can use the same technique to find larger frequent itemsets without an exhaustive count of all sets
- For each size k = 1, 2, ..., we construct two sets of itemsets
 - C_k = the set of candidate itemsets of size k
 - The itemsets we must count in order to determine whether they are frequent
 - L_k = the set of truly frequent itemsets of size k
 - If $L_k = \emptyset$, then we stop
 - By monotonicity, there can be no larger frequent itemsets

Constructing C_k from L_{k-1}

Step 1: Join

- Generate C_k by merging a pair of frequent itemsets in L_{k-1} if their (k-2) items are identical

Step 2: Prune

- Delete all itemsets I ∈ C_k if some (k − 1)-subset of I is not in L_{k-1}
 - Because all (k-1)-subsets of I must be frequent if I is frequent
 - In other words, C_k is all those itemsets of size k, every k-1 of which is an itemset in L_{k-1}

Example

- Let $L_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$
- After the join step, $C_4 = \{\{1, 2, 3, 4\}, \{1, 3, 4, 5\}\}$
- After the prune step, $C_4 = \{\{1, 2, 3, 4\}\}\ (\because \{1, 4, 5\} \text{ is not in } L_3)$

Constructing L_k from C_k

• Make a pass through the baskets and counting all and only the itemsets of size k that are in ${\cal C}_k$

• Those itemsets that have count at least s are in L_k

• If we find $L_k = \emptyset$, then we stop

(Ex) A-Priori for All Frequent Itemsets

- ① Let $C_1 = \{\{b\}, \{c\}, \{j\}, \{m\}, \{n\}, \{p\}\}\}$
- ② Count the support of itemsets in C_1
- ③ Prune non-frequent: $L_1 = \{\{b\}, \{c\}, \{j\}, \{m\}\}\}$
- **4** Construct $C_2 = \{\{b, c\}, \{b, j\}, \{b, m\}, \{c, j\}, \{c, m\}, \{j, m\}\}$
- \bigcirc Count the support of itemsets in C_2
- ⑥ Prune non-frequent: $L_1 = \{\{b, m\}, \{b, c\}, \{c, m\}, \{c, j\}\}$
- 7 Construct $C_3 = \{\{b, m, c\}, \{b, c, j\}, \{b, m, j\}, \{c, m, j\}\}$
- 8 Count the support of itemsets in C_3
- 9 Prune non-frequent: $L_3 = \{\{b, m, c\}\}$

Handling Larger Datasets

Handling Larger Datasets in Main Memory

- The A-Priori algorithm is fine *as long as* the counting of the candidate pairs C_2 can be accomplished in memory
 - Otherwise, *thrashing* occurs
 - i.e., repeated moving of data between disk and main memory
- Several algorithms have been proposed to *cut down* on the size of candidate set C_2
 - PCY algorithm
 - Multistage algorithm
 - Multihash algorithm

PCY (Park-Chen-Yu) Algorithm

Observation

- There may be much unused space in main memory on the first pass
 - We do not need more than the main memory for the two tables
 - A translation table from items to integers and an array to count those integers
 - (ex) If there are 10^6 items, only 12×10^6 bytes = 12 MB is used for the counts
- Can we use the unused memory to reduce memory required in the second pass?

The idea of PCY

- Use the unused space to store some information that can *filter* infrequent pairs in the second pass
- Similar to the idea of a Bloom filter

Main Memory Use of PCY

The First Pass of PCY

- In addition to item counts, maintain a hash table with as many buckets as fit in memory
 - As we examine a basket during the first pass, we not only count each item in the basket, but generate all pairs, using a double loop
 - We hash each pair and add 1 to the bucket into which that pair hashes
 - Note that we just keep the count for each bucket, not the actual pairs

```
FOR (each basket) :
    FOR (each item in the basket) :
        add 1 to item's count;

New     FOR (each pair of items) :
        hash the pair to a bucket;
        add 1 to the count for that bucket;
```

Observation about Buckets

- At the end of the first pass, each bucket has a count
 - The sum of counts of all the pairs that hash to that bucket
- If the count of a bucket $\geq s$ (i.e., the support threshold)
 - The bucket is called a *frequent* bucket
 - The pairs that hash to a frequent bucket may or may not be frequent
- However, if the count of a bucket < s</p>
 - The bucket is called an *infrequent* bucket
 - no pair that hashes to an infrequent bucket can be frequent
- Thus, we only count pairs that hash to frequent buckets in the second pass!

Between The Passes of PCY

- The hash table is replaced by a bitmap, with 1 bit for each bucket
 - The bit is 1, if the bucket is frequent and 0, if not
- Space reduction
 - 4 byte integers for each bucket are replaced by a single bit
 - Thus, the bitmap takes only 1/32 of the space
- If most buckets are infrequent (this is what we expect)
 - The number of pairs being counted on the second pass will much smaller than the total number of pairs of frequent items
 - Thus, PCY can handle some data sets without thrashing during the second pass, while A-Priori would run out of main memory and thrash

The Second Pass of PCY

- Count only those pairs $\{i,j\}$ that meet the following conditions for being a candidate pair in C_2 :
 - ① Both i and j are frequent items
 - ② The pair $\{i,j\}$ hashes to a bucket whose bit in the bitmap is 1
 - That is, $\{i, j\}$ hashes to a **frequent** bucket
- Both conditions are necessary for the pair to have a chance of being frequent
- It is the second condition that distinguishes PCY from A-Priori

Counting Pairs in PCY

- However, on the second pass of PCY, we cannot use the triangular matrix method to count pairs
 - Because the pairs of frequent items are placed *randomly* within the triangular matrix, we cannot compact the matrix
- Consequently, we are forced to use the triples methods in PCY
 - Note that A-Priori can use the both methods
 - That restrict may not matter if the fraction of pairs of frequent items that actually appear in buckets were small, but ...
- Thus, unless PCY lets us avoid counting at least 2/3 of the pairs of frequent items, we cannot gain by using PCY instead of A-Priori
 - Triangular matrix: 4 bytes per pair
 - Triple method: 12 bytes per pair

Multistage Algorithm

- Improves PCY to reduce further the number of candidate pairs
 - By using *several* successive hash tables
 - However, the tradeoff is that it requires more than two passes
- Takes more than two passes to find the frequent pairs
 - The first pass \rightarrow the second pass \rightarrow the third pass

Pass 3

50

The First and Second Passes

The first pass

- The same as the first pass of PCY
- After that pass, the frequent buckets are summarized by a bitmap

The second pass

- Again go through the file of baskets
- Using *another* hash function, rehash only those pairs $\{i, j\}$ that meet the following two criteria:
 - ① Both i and j are frequent items
 - ② The pair $\{i, j\}$ hashed to a frequent bucket on the **first** pass
- Summarize the second hash table to a bitmap
 - As result, we expect there to be many fewer frequent buckets in the second hash table than in the first

The Third Pass

- Count only those pairs $\{i, j\}$ that meet the following conditions for being a candidate pair in C_2 :
 - ① Both i and j are frequent items
 - ② $\{i,j\}$ hashes to a frequent bucket in the **first** hash table
 - (3) $\{i,j\}$ hashes to a frequent bucket in the **second** hash table
- The third condition is the distinction between Multistage and PCY
- Important points
 - The two hash functions have to be independent
 - We need to check both hashes on the third pass
 - If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket

Main Memory Use of Multistage

Pass 1

Count items
Hash pairs {i,j}

Pass 2

Hash pairs {i,j} into Hash2 iff: i,j are frequent, {i,j} hashes to freq. bucket in B1 Pass 3

Count pairs {i,j} iff:
i,j are frequent,
{i,j} hashes to
freq. bucket in B1
{i,j} hashes to
freq. bucket in B2

Multihash Algorithm

Key idea

- Get the benefit of the extra passes of Multistage in a single pass
- Use several independent hash tables on the first pass

Pass 2

The Danger of Using Two Hash Tables

- Each hash table has half as many buckets as the one large hash table of PCY
 - Thus, the average count of a bucket doubles
 - We have to sure most buckets will still not reach count s

A single large hash table

Two small hash tables

- If the average count of a bucket for PCY is much lower than s
 - We can operate two half-sized hash tables and still expect most of the buckets of both hash tables to be infrequent
 - Thus, in this situation we might well choose the multihash approach
- If so, we can get a benefit like multistage, but in only two passes

Main Memory Use of Multihash

The Second Pass of Multihash

Each hash table is converted to a bitmap, as usual

Note

- The two bitmaps for the two hash functions occupy exactly as much space as a singe bitmap would for the second pass of PCY
- The conditions for a pair $\{i, j\}$ to be in C_2 , and thus to require a count on the second pass, are the same as for the third pass of Multistage
 - ① Both i and j are frequent items
 - ② $\{i, j\}$ hashes to a frequent bucket in the **first** hash table
 - (3) $\{i,j\}$ hashes to a frequent bucket in the **second** hash table

Extensions of PCY

Either Multistage or Multihash can use more than two hash functions

- Multistage (with more than two hash functions)
 - There is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
- Multihash (with more than two hash functions)
 - The bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$

Limited-Pass Algorithm

Limited-Pass Algorithms

- The algorithms for frequent itemsets discussed so far use one pass for *each* size of itemset
 - i.e., a total of k passes to find frequent itemsets of size 1, 2, ..., k
 - Can we use fewer passes?
- However, there are many applications where it is not essential to discover every frequent itemset
 - In many cases, it is quit sufficient to find most but not all of the frequent itemsets (e.g., a supermarket application)
- We explore some algorithms that uses at most two passes
 - But we may miss some frequent itemsets
 - (ex) Random sampling, SON (Savasere, Omiecinski, and Navathe)

Random Sampling (1/2)

Key idea

- Instead of using the entire file of baskets, pick a random subset of the baskets and pretend it is the entire dataset
- We *must* adjust the support threshold s to $p \cdot s$ to reflect the smaller number of baskets
 - -p: the sampling rate
 - (ex) if we choose a sample of 1% of the baskets, we adjust s to s/100
- How can we pick the sample?
 - For each basket, select that basket with some fixed probability p
 - (ex) if there are m baskets in the entire file, we shall sample $p \cdot m$ baskets

Random Sampling (2/2)

- Having selected a sample, we store these baskets in main memory and execute one of the algorithms in main memory
 - A-Prioir, PCY, Multistage, or Multihash
- Although the algorithm must run passes over the main-memory sample, there are no disk accesses needed to read the sample
 - Since it resides in main memory
 - Therefore, only two passes are required
- Of course the algorithm will fail if it can't be run in main memory
 - An option is to read the sample from disk for each pass
 - Sine the sample is much smaller than the full dataset, we still avoid most of the disk I/O

Avoiding Errors in Sampling Algorithms

- In random sampling, there can be errors
 - False negative
 - An itemset that is frequent in the whole but not in the sample
 - False positive
 - An itemset that is frequent in the sample but not in the whole
- If the sample is large enough, there are unlikely to be serious errors
 - An itemset whose support is much *larger* than s will almost surely be identified from a random sample
 - An itemset whose support is much *less* than s is unlikely to appear frequent in the sample

How Can We Reduce Such Errors?

We can eliminate false positives

- Make a pass through the full dataset and count all the itemsets that were identified as frequent in the sample
- Retain as frequent only those itemsets that were frequent in the sample and also frequent in the whole
- But requires more passes

We cannot eliminate false negatives but can reduce their number

- Use a support threshold *smaller* than $p \cdot s$ (e.g., $0.9p \cdot s$) to catch more truly frequent itemsets
- We shall identify, as having support at least $0.9p \cdot s$ in the sample, almost all those itemsets that have support at least s in the whole
- But requires more space

SON Algorithm

 Improves the random sampling to avoid both false negatives and false positives, at the cost of making two passes

First pass

- Divide the input file into *chunks*
- Treat each chunk as a sample, and find all frequent items in that chunk
 - We use $p \cdot s$ as the threshold, if each chunk is fraction p of the whole file
- Store on disk all the frequent itemsets found for each chunk
- These frequent itemsets become the *candidate* itemsets

Second pass

 Count all the candidate itemsets and select those that have support at least s as the frequent itemsets

SON Algorithm: Key Idea

- In the SON algorithm, an itemset becomes a candidate if it is frequent in *any* one or more chunks
- Key "monotonicity" idea
 - An itemset *cannot* be frequent in the whole unless it is frequent in at least one chunk
 - Proof
 - If an itemset is not frequent in any chunk, then its support is less than $p \cdot s$ in each chunk
 - Since the number of chunks is 1/p, the total support of that items is less than $(1/p)p \cdot s = s$
- Therefore, there are no false negatives
 - Every itemset frequent in the whole is frequent in at least one chuck

SON Algorithm and MapReduce

SON algorithm lends itself well to a parallel-computing environment

Distributed version

- ① Distribute baskets among many nodes
- 2 Compute frequent itemsets at each node
- 3 Distribute the candidates to all nodes
- 4 Count the support for each candidate at each node
- (5) Finally sum those supports to get the support for each candidate
- SON algorithm can be easily expressed as MapReduce jobs
 - Of course, this process does not have to be implemented in MapReduce

SON: MapReduce Version (1/2)

Phase 1: Find candidates itemsets

- Map task
 - Input: a subset of the baskets
 - Output: a set of key-value pairs (F, 1)
 - *F*: a frequent itemset from the subset
- Reduce task
 - Input: a set of key-values pairs (F, [1, 1, ...])
 - *F*: a frequent itemset identified from some subset
 - Output: a set of key-value pairs (F, 1)
 - F: a candidate itemset

SON: MapReduce Version (2/2)

Phase 2: Find true frequent itemsets

Map task

- Input: a subset of the candidate itemsets, a subset of the baskets
- Output: a set of key-value pairs (C, v)
 - C: a candidate itemset
 - v: the count for C among the subset of the baskets

Reduce task

- Input: a set of key-values pairs $(C, [v_1, v_2, ...])$
 - C: a candidate itemset
- Output: a set of key-value pairs (C, sum)
 - *C*: a frequent itemset whose *sum* is at least *s*
 - sum: the sum of values $v_1, v_2, ...$