Edris Amin
Paper Presentation

Moving Object Detection With Genetic Programming

Background

- Surveillance
- Human-Computer Interaction
 - http://www.betatechreviews.com/wp-content/uploads/2011/10/microsoft_kinect_kids_playing1.jpg
- RoboCup Soccor
 - http://i.telegraph.co.uk/multimedia/archive/o1436/Red-and-blue_1436364i.jpg

- oThresholding:
 - oIntensity, Color
- OHardware:
 - Specialized lighting
 - oSpecialized ranger
- oRequires constant adjustment

Methodology

Overview:

- Evolution Phase = Training
- Image scanner
 - Windowed
 - Two regions
 - Object
 - Background

Methodology GP Training

- Image Quantifiers Single Frame
 - Pixel Intensity: grayscale [o 100]
 - Pixel Color: RGB
 - Hue = [o 359]
 - Ranged to [-1 1] using sin()
 - 12 Features
 - f[1-5]: average intensity of each region
 - f[6]: (f[1]+f[2]+f[3]+f[4])-4*f[5]
 - f[7-12]:
 - f[7]=mean(f[1], f[2])
 - f[8]=mean(f[1], f[3])
 - f[9]=mean(f[1], f[4])
 - f[10]=mean(f[2], f[3])
 - f[11]=mean(f[2], f[4])
 - f[12]=mean(f[3], f[4]);

Methodology GP Training

- Image Quantifiers Multi Frame
 - Motion plane = MP

$$=\frac{\sum_{i=1}^{n-1}((x_i-x_{i-1})*(n-i))}{n}$$

x = frame # n = total # of frames in Motion plane

- MP provides
 - Change of pixels in [n] frames
 - High MP indicates moving object
- MP is good better suited for a stationary background

Methodology Evaluation GP settings

Function Set

Function	Return Type	Arguments
+	Double	Double, Double
-	Double	Double, Double
×	Double	Double, Double
/	Double	Double, Double
=	Boolean	Double, Double
<	Boolean	Double, Double
>	Boolean	Double, Double
if	Double	Boolean, Double, Double
between	Boolean	Double, Double, Double

Terminal Set

Terminal	Return Type
drand	Double
Att[x]	Double

Evolution Settings

Population Size	200
Maximum Depth	12
Minimum Depth	2
Generations	150
Mutation Rate	0%
Crossover Rate	90%
Elitism Rate	10%

Methodology Evaluation Training Data

- Positive
 - Ball located near center of frame
- Negative
 - Ball out of center
 - Variations of color ≠ Ball color
- Best GP selected from each training set
- Best GPs evaluated
- Optimum GPs from evaluation used in application

Methodology Application

- Retrieve current frame from video
- 2.Use window to sample frames*
- 3. Classify these windows using optimum GP
- 4. Assemble labeled windows back to frame**
- 5.Output processed frames continuously as video.

* Most pixels are sampled multiple times due to overlap

** Voting is used to classify these pixels.

Pixel A sampled 3 times = ball

Pixel A sampled 9 times = not-ball

Pixel A ← not-ball

- Pixel Intensity
 - Error ≈ 5%
 - False Positive ≈ [2.5% 5%]
- Color Values
 - Error ≈ 10%
 - False Positive ≈ [8% 10%]
- Feature Values
 - Error ≈ 15%
 - False Positive ≈ 14%
- Motion Plane
 - Error < 2%</p>
 - False Positive < 1%

Pixel Intensity				
Condition	Accuracy	FP Rate		
Three Halogen Lights	96.15%	2.59%		
Two Halogen Lights	95.33%	2.66%		
One Halogen Light	94.92%	5.08%		

Color Values				
Condition	Accuracy	FP Rate		
Three Halogen Lights	89.29%	9.53%		
Two Halogen Lights	91.31%	8.04%		
One Halogen Light	88.48%	10.48%		

Motion Plane				
Output Frame	Accuracy	FP Rate		
Three Halogen Lights	98.18%	0.28%		
Two Halogen Lights	98.59%	0.16%		
One Halogen Light	98.18%	0.83%		

- Pixel Intensity, One Halogen
 - Accuracy = 94.92%

False Positive =5.08%

- Color Value, One Halogen
 - Accuracy = 88.48%

False Positive =10.48%

Comparison Motion Plane VS Feature Approach

Evaluation

Key: Motion plane —— and ——Feature —— and ——

Comparison Speed & Intensity vs Motion Plane

- Speed
 - GP small → Efficient Runtime
- Intensity VS Motion Plane
 - Pixel Intensity only identifies biggest object
 - Motion plane identifies multiple objects of varying size

Reference

 Andy Song, Danny Fang, "Robust method of detecting moving objects in videos evolved by genetic programming," Proceedings of the 10th annual conference on Genetic and evolutionary computation, July 12-16, 2008, Atlanta, GA, USA