Modelling spatial navigation and decision making

- Striatal and hippocampal contributions to spatial learning in the water maze
- Successor features in the hippocampus: model-based / model-free?
- Future plans

- Striatal and hippocampal contributions to spatial learning in the water maze
- Successor features in the hippocampus: model-based / model-free?
- Future plans

Artificial spatial learning in the Morris water maze task

Striatum: Response learning

$$Q_a = v_a^{striatum} = \phi \left[\sum_{i=1}^{N} v_a^{sensory} W_{i,a} \right]$$

$$\Delta Q_{s_{t-1},a_{t-1}} = \alpha \left[r_t + \gamma \max_{a'} (Q_{s_t,a_t}) - Q_{s_{t-1},a_{t-1}} \right]$$

$$\Delta W_{i,a_{t-1}} = \Delta Q_{s_{t-1},a_{t-1}} v_i^{sensory} \left(\sum_{j=1}^N v_j^{Sens} \right)^{-1}$$

Hippocampus: Place learning

Striatum learning strategy is sensitive to blocking

Striatum learning trajectories

Blocking paradigm

See Doeller & Burgess (2008)

Hippocampus learning

Striatum learning (hippocampal lesion)

- Striatal and hippocampal contributions to spatial learning in the water maze
- Successor features in the hippocampus: model-based / model-free?
- Future plans

Successor representation: a model for place cell firing?

Successor representation

$$V(s_t) = \sum_{s'} M(s_t, s') R(s')$$

$$M(s_t, s') = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k I(s_{t+k} = s') \right]$$

$$M(s_{t},s') = E_{\pi} [I(s_{t}=s') + \gamma M(s_{t+1},s')]$$

$$\Delta \hat{M}(s_t, s') \propto \delta_t^M(s') = I(s_t = s') + \gamma \hat{M}(s_{t+1}, s') - \hat{M}(s_t, s')$$

The successor representation is sensitive to changes in reward contingencies

Successor features: extending the SR to large or continuous state spaces

$$\phi(s_t) = \left[\phi_1(s_t), \phi_2(s_t), ..., \phi_N(s_t)\right]^T$$

Successor features:

Expected future occurrence of a feature

$$\boldsymbol{\psi}^{\pi}(s) \equiv E^{\pi} \left[\sum_{k=0}^{\infty} \gamma^{t+k} \boldsymbol{\phi}_{t+k+1} \middle| s_{t} = s \right]$$

$$\hat{\psi}(s_t, j) = \sum_i \phi_i(s_t) W_{ij}$$

Ongoing work...

- Striatal and hippocampal contributions to spatial learning in the water maze
- Successor features in the hippocampus: model-based / model-free?
- Future plans

Plans for the near future

 Investigating the role of 'splitter cells' in trajectory planning and reinforcement learning

Ainge et al. (2007)

 Investigating the role of the hippocampus in solving non-spatial tasks

Daw et al. (2011)

Thanks for listening

Peter

And to...

Neil

Sofie Marcus

Alexa

Dan

James

Talfan

Andrea

Siti

Eva

Sebastian

Annika

Davide

