实验三:外部中断/定时器实验

1. 实验目的

- 掌握外部中断引脚功能设置及外部中断工作模式设置。
- 学习中断服务函数的编写。
- 掌握定时器外设的操作原理和编程。

2. 实验设备

- 硬件: PC 机一台
 Mini2440 ARM 实验板一套
 J-link 仿真器一套
- 软件: WindowsXP 系统, Keil uVision 4.0 集成开发环境

3. 实验内容

- (1)将 GPIOGO 设置为低电平触发外部中断;然后等待中断事件。中断服务程序利用计数器 (R2)计算中断发生的次数。使用 Keil uVision 的调试功能单步、全速运行程序,设置断点,打开寄存器窗口监视寄存器,观察计数器的变化。
- (2) 使用 GPIO 读取 Mini2440 实验板上的按键状态,观察按键输入的抖动现象。

4. 实验预习要求

- (1) 学习 ARM 中断工作原理和编程方法;
- (2) 查阅 S3C2440 芯片手册,了解中断处理系统的结构和原理。

5. 实验步骤

- (一) 外部中断实验:
- (1)开发板按键 1 连接到 EINT8/GPI00, 见图 3-1, 本实验中该引脚被配置成外部中断输入功能。

图 3-1 按键输入

(2) 启动 Keil uVision,新建一个工程 ex03-1。不需要系统提供的 Startup 文件。建立汇编源文件 ex03-1. s,编写实验程序,然后添加到工程中。设置工程选项,存储器映射。设置工程调试选项。建立仿真初始化文件 RAM. ini。

具体步骤参考实验二。

(3)S3C2440 中断控制器原理见图 3-2。

图 3-2 中断控制器原理

- (4)实验程序分为三个部分:
- a)设置中断向量表;
- b) 初始化 ARM 处理器、中断控制器、IO 输入引脚的设置,允许中断发生和处理,然后主程序进入空循环,等待中断事件;
 - c) 准备中断处理程序, 对中断事件进行相应的处理;

R/W

Address

(5)编译链接工程。连接实验板电源、J-link 仿真器,进行仿真调试。全速执行程序,按下按键 1,然后暂停程序执行,观察计数值的变化。

参考: GPIOG 控制寄存器

Register

one con	0.50000000	B 447			0x0	
GPGCON	PGCON 0x56000060 R/W 0		Configures the pins of	onfigures the pins of port G		
				'	i	
GPG4	PG4 [9:8]		00 = Input 10 = EINT[12]	01 = Output 11 = LCD_PWRDN		
GPG3		[7:6]	00 = Input 10 = EINT[11]	01 = Output 11 = nSS1		
GPG2		[5:4]	00 = Input 10 = EINT[10]	01 = Output 11 = nSS0		
GPG1		[3:2]	00 = Input 10 = EINT[9]	01 = Output 11 = Reserved		
GPG0 [1:0]		00 = Input 10 = EINT[8]	01 = Output 11 = Reserved			

Description

Reset Value

(一) 定时器实验:

(1) 本实验使用 S3C2440 片内定时器 0, 见图 3-3。PCLK 时钟经过预分频作为递减计数器的时钟, 当计数器的值减小到 0 时,将触发中断事件。

图 3-3 按键输入

(2) 启动 Keil uVision,新建一个工程 ex03-2。不需要系统提供的 Startup 文件。建立汇编源文件 ex03-1. s,编写实验程序,然后添加到工程中。设置工程选项,存储器映射。设置工程调试选项。建立仿真初始化文件 RAM. ini。

具体步骤参考实验二。

- (3)实验程序分为三个部分:
- a)设置中断向量表;
- b) 初始化 ARM 处理器、中断控制器、定时器的设置,允许中断发生和处理,然后主程序进入空循环,等待中断事件;
 - c)准备中断处理程序,对中断事件进行相应的处理;
- (5)编译链接工程。连接实验板电源、J-link 仿真器,进行仿真调试。全速执行程序,然后暂停程序执行,观察计数值的变化。

参考: 定时器控制寄存器

Register	Address	R/W	Description	Reset Value
TCFG0	0x51000000	R/W	Configures the two 8-bit prescalers	0x00000000

TCFG0	Blt	Description	Initial State
Reserved	[31:24]		0x00
Dead zone length	[23.16]	These 8 bits determine the dead zone length. The 1 unit time of the dead zone length is equal to that of timer 0.	0x00
Prescaler 1	[15:8]	These 8 bits determine prescaler value for Timer 2, 3 and 4	0x00
Prescaler 0	[7.0]	These 8 bits determine prescaler value for Timer 0 and 1.	0x00

TIMER CONTROL (TCON) REGISTER

Register	Address	R/W	Description	Reset Value
TCON	0x51000008	R/W	Timer control register	0x00000000

TCON (Continued)

TCON	Bit	Description	Initial state
Reserved	[7:5]	Reserved	
Dead zone enable	[4]	Determine the dead zone operation. 0 = Disable 1 = Enable	0
Timer 0 auto reload on/off	[3]	Determine auto reload on/off for Timer 0. 0 = One-shot 1 = Interval mode(auto reload)	0
Timer 0 output inverter on/off	[2]	Determine the output inverter on/off for Timer 0. 0 = Inverter off 1 = Inverter on for TOUT0	0
Timer 0 manual update (note) [1]		Determine the manual update for Timer 0. 0 = No operation 1 = Update TCNTB0 & TCMPB0	0
Timer 0 start/stop	[0]	Determine start/stop for Timer 0. 0 = Stop 1 = Start for Timer 0	0

TIMER 0 COUNT BUFFER REGISTER & COMPARE BUFFER REGISTER (TCNTB0/TCMPB0)

Register	Address	R/W	Description	Reset Value
TCNTB0	0x5100000C	R/W	Timer 0 count buffer register	0x00000000

TCNTB0	Bit	Description	Initial State
Timer 0 count buffer register	[15:0]	Set count buffer value for Timer 0	0x00000000

6. 实验参考程序

GPIO 输出实验的参考程序见程序清单 3.1。GPIO 输入实验的参考程序见程序清单 2.2。

程序清单 3.1 外部中断实验参考程序

桂丹淖	手半	3.1	外部甲断头验参	^{\$} 考 桂 予
NOINT		EQU (0x80	; 1000 0000
BIT_EINT8	3_23	EQU	(0x1<<5)	
EINT8		EQU	(0x1<<8)	
GPGCON		EQU	0x56000060	;Port G control register
EXTINT1		EQU	0x5600008c	External interrupt control register 1;
INTMSK		EQU	0x4a000008	;Interrupt mask control
EINTMASK	EQU	(0x560000a4	;External interrupt mask
SRCPND		EQU	0x4a000000	;Interrupt request status
INTPND		EQU	0x4a000010	;Interrupt request status
EINTPEND	EQU	(0x560000a8	;External interrupt pending
	AREA	RESET	T, CODE, READONLY	;声明代码段 RESET
	ENTR	YY		;表示程序入口
	CODE	32		; 声明 32 位 ARM 指令
	b	Reset		
Undef	b	Undef		;handler for Undefined mode
SWI	b	SWI		;handler for SWI interrupt
Pabort	b	Pabor	t	;handler for PAbort
Dabort	b	Dabor	t	;handler for DAbort
	b			;reserved
	b	IRQ		;handler for IRQ interrupt
FIQ	b	FIQ		;handler for FIQ interrupt
Reset				

LDR	R0, =0x2	
STR	RO, [R1]	
LDR	R1, =EXTINT1	;set external interrupt 8 as 'Falling edge triggered'
LDR	R0, =0x2	;bit[2:0] = 010

LDR R1,=GPGCON ;set GPIO portG(0) as external interrupt 8

LDR R1,=INTMSK ;

	LDR	R0, [R1]	;get interrupt mask register
	BIC	R0, #0x20	;clear EINT8 mask
	STR	R0, [R1]	;set interrupt mask register
	LDR	R1, =EINTMASK ;	
	LDR	R0, [R1]	;get external interrupt mask register
	BIC	R0, #0x100	;clear EINT8 mask
	STR	R0, [R1]	;set external interrupt mask register
	mrs r0,	cpsr	;get cpsr
	bic r0,	rO,#NOINT	;clear irq mask
	msr cps	r_cxsf, r0	;set cpsr
Loop			
	В	Loop	
IRQ	LDR	R1, =EINTPEND	;clear External interrupt pending bit
	LDR	R0, =EINT8	
	STR	R0, [R1]	
	LDR	R1, =SRCPND	;clear interrupt source pending bit
	LDR	r0, =BIT_EINT8_23	
	STR	R0, [R1]	
	LDR	R1, =INTPND	;clear interrupt pending bit
	STR	RO, [R1]	
	LDR	RO, [R1]	
	add	r2, r2, #0x1	;increase counter (R2)
	subs pc,	Ir, #0x4	;return from interrupt: pc = r14 - 4

END

程序清单	3. 2	定时器实验参考程	序
NOINT	EQU	0x80	; 1000 0000
BIT_TMR_INT	EQU	(0x1<<10)	
TICKS_RATE	EQU	1	
PCLK EQU		12000000	
TCNTBO_VAL	EQU	((PCLK/(2*255*T10	CKS_RATE)) - 1)
TCFG0	EQU	0x51000000	;Timer configuration registerO
TCON	EQU	0x51000008	;Timer control register
TCNTB0	EQU	0x5100000c	:Timer count buffer 0

INTMSK		EQU 0x4a000	2000
INIMOV		EQU 0x4a000	3008 ;Interrupt mask control
SRCPND		EQU 0x4a000	0000 ;Interrupt request statu
INTPND		EQU 0x4a000	• • •
		240 0X 14000	, medit ape i oquobe beaca
	ARE <i>A</i>	RESET, CODE, REAL	ADONLY
	ENTF		
	CODE	32	
	b	Reset	
Undef	b	Undef	;handler for Undefined mode
SWI	b	SWI	;handler for SWI interrupt
Pabort	b	Pabort	;handler for PAbort
Dabort	b	Dabort	;handler for DAbort
	b		;reserved
	b	IRQ	;handler for IRQ interrupt
FIQ	b	FIQ	;handler for FIQ interrupt
Reset			
	LDR	R1,=INTMSK	;
	LDR	R0, [R1]	get interrupt mask register;
	BIC	RO, #BIT_TMR_	_INT ;clear TimerO int mask
	STR	R0, [R1]	;set interrupt mask register
	mrs	r0, cpsr	;get cpsr
	bic	r0, r0, #NOINT	;clear irq mask
	msr	cpsr_cxsf, r0	;set cpsr
	LDR	R1, =TCFG0	;set timerO prescaler
	LDR		prescaler value: Oxff
	STR	RO, [R1]	
	LDR	R1, =TCNTB0	;set timer counter value
	LDR	RO, =TCNTBO_V	VAL ;
	STR	RO, [R1]	
	1.00	D4 -T00H	
	LDR	R1, =TCON	;
	LDR	R0, =0x2	;manual load
	STR	R0, [R1]	;
	LDD	DO -0 0	
	LDR	R0, =0x9	;start as autoload mode
	STR	R0, [R1]	;

Loop		
	В	Loop
IRQ	LDR	R1,=SRCPND ;clear interrupt source pending bit
	LDR	rO, =BIT_TMR_INT
	STR	RO, [R1]
	LDR	R1,=INTPND ;clear interrupt pending bit
	STR	RO, [R1]
	add	r2, r2, #0x1 ;increase counter (R2)
	subs pc,	Ir, $\#0x4$;return from interrupt: pc = r14 - 4

END

7. 思 考

- (1)能否使用多个外部中断,如何区分中断来源?
- (2) 定时器产生中断的最大时间间隔是多大?

8. 选作内容

- (1) 用按键控制指示灯的状态。
- (2) 用定时器控制指示灯的闪烁速度。