OPTIMIZATION

Jan-May, 2020

Unanswered questions and their solutions:

To show that if the feasible region of a linear programming problem is unbounded then it should have atleast one direction.

Proof: Let us assume representation theorem to be true for all nonempty bounded feasible regions.

Let S have extreme points $\mathbf{x}_1, \dots, \mathbf{x}_r$ and consider $S \cap H$, where $H = \{\mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i \leq M\}$ and M > 0 is such that $\mathbf{x}_1, \dots, \mathbf{x}_r \in S \cap H$ but none of $\mathbf{x}_1, \dots, \mathbf{x}_r$ lie on the hyperplane corresponding to H.

Let $\mathbf{x}_0 \in S$ be such that $M \ge \sum_{i=1}^n \mathbf{x}_{0i} > \max\{\sum_{i=1}^n x_{ki} : k = 1, \dots, r\}$ (there exists such an \mathbf{x}_0 , why?).

Check that this \mathbf{x}_0 cannot be written as a convex combination of the extreme points of S (check this), but it can be written as a convex combination of the extreme points of $S \cap H$, at least one of which (call that extreme point \mathbf{u}) must lie on the hyperplane corresponding to H.

Then by repeating the proof of representation theorem (for unbounded feasible region) conclude that \mathbf{u} lies on an extreme direction of S, that extreme direction is orthogonal to the normals of all the hyperplanes on which \mathbf{u} lies except the hyperplane corresponding to H.

Problem 23(a): Let **d** be an extreme direction of Fea(LPP) (that is **d** is a direction and is orthogonal to the normals of a set of (n-1) LI hyperplanes defining the feasible region Fea(LPP)) then does there always exist an extreme point **x** of Fea(LPP) such that **x** lies on (n-1) LI hyperplanes, the normals to which are orthogonal to **d**?

Proof: Suppose there exists no extreme point which satisfies $\tilde{\mathbf{a}}_i^T \mathbf{x} = \tilde{b}_i$ for i = 1, 2, ..., (n - 1), where $\tilde{\mathbf{a}}_1, ..., \tilde{\mathbf{a}}_{n-1}$ is such that $\tilde{\mathbf{a}}_i^T \mathbf{d} = 0$ for all i = 1, 2, ..., n - 1.

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r$ be the extreme points of S.

Now consider $S \cap H_1$, where $H_1 = \{ \mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i \leq M_1 \}$ is such that all the extreme points of S are in $S \cap H_1$ but none of $\mathbf{x}_1, \ldots, \mathbf{x}_r$ satisfy the equation $\sum_{i=1}^n x_i = M_1$.

Then all $\mathbf{x} \in S \cap H_1$ can be written as a convex combination of the extreme points of $S \cap H_1$. If $\mathbf{x}_0 + \alpha \mathbf{d}$ is an extreme point of $S \cap H_1$ for some $\mathbf{x}_0 \in S$ and some $\alpha > 0$, then $\mathbf{x}_0 + \alpha \mathbf{d}$ satisfies the equation $\sum_{i=1}^n x_i = M_1$, (since $\mathbf{x}_0 \in S$ and \mathbf{d} is a direction) hence either \mathbf{x}_0 is itself an extreme point of S which satisfies $\tilde{\mathbf{a}}_i^T \mathbf{x} = \tilde{b}_i$ for $i = 1, 2, \ldots, (n-1)$, or by starting from $\mathbf{x}_0 + \alpha \mathbf{d}$ (or from \mathbf{x}_0 if it is not an extreme point of S) and moving towards $-\mathbf{d}$, we would have been able to get an extreme point of S, which satisfies $\tilde{\mathbf{a}}_i^T \mathbf{x} = \tilde{b}_i$ for $i = 1, 2, \ldots, (n-1)$, which is in contradiction to our assumption.

If **d** is the only distinct extreme direction of S then since by the previous argument $S \cap H_1$ has at least one extreme point which is not an extreme point of S, that extreme point will be of the form $\mathbf{x} + \alpha \mathbf{d}$ for some $\mathbf{x} \in S$, $\alpha > 0$ (recall proof of representation theorem). Starting from $\mathbf{x} + \alpha \mathbf{d}$ and moving towards $-\mathbf{d}$ will give us an extreme point of S satisfying $\tilde{\mathbf{a}}_i^T \mathbf{x} = \tilde{b}_i$ for $i = 1, 2, \ldots, (n-1)$, which is a contradiction to our assumption.

Hence S has more than one distinct extreme direction and let $\mathbf{d}, \mathbf{d}_1, \dots, \mathbf{d}_s$ be a set of all distinct extreme directions of S(y) us can take them to be elements of D' Hence all the extreme points of $S \cap H_1$ are either extreme points of S or elements of the form $\mathbf{x}_i + \alpha_i \mathbf{d}_j$, for some $i \in \{1, \dots, r\}$, some $j \in \{1, 2, \dots, s\}$ (where \mathbf{d}_j 's are extreme directions each of which

is orthogonal to normals of (n-1) LI defining hyperplanes, out of n LI hyperplanes on which the corresponding \mathbf{x}_i lies, there can be more than one such set of n LI hyperplanes).

Consider $\mathbf{x}_1 + \alpha \mathbf{d}$, $\alpha > 0$ such that $\mathbf{x}_1 + \alpha \mathbf{d}$ lies on the hyperplane corresponding to H_1 (there must exist one such $\alpha > 0$, note here \mathbf{x}_1 is one of the extreme points of S as listed before). Then $\mathbf{x}_1 + \alpha \mathbf{d}$ can be expressed as a convex combination of the extreme points of $S \cap H_1$ (but not as a convex combination of the extreme points of S), or in other words $\mathbf{x}_1 + \alpha \mathbf{d}$ can be written as a convex combination of the extreme points of S plus some direction \mathbf{d} , where $\bar{\mathbf{d}}$ is a nonnegative linear combination of the directions $\mathbf{d}_1, \dots, \mathbf{d}_s$ of S (excluding \mathbf{d}). That is $\mathbf{x}_1 + \alpha \mathbf{d} = \bar{\mathbf{x}}_1 + \mathbf{d}_1 = \bar{\mathbf{x}}_1 + \sum_{j=1}^s \mu_{j1} \mathbf{d}_j$, where $\bar{\mathbf{x}}_1$ is a convex combination of extreme points $\mathbf{x}_1, \dots, \mathbf{x}_r$ of S and $\mu_{j1} \geq 0$ for all $j = 1, \dots, s$.

We now denote $\alpha \mathbf{d}$ by \mathbf{d} itself (since anyway as direction it is same as \mathbf{d}), hence we get $\mathbf{x}_1 + \mathbf{d} = \bar{\mathbf{x}}_1 + \sum_{j=1}^s \mu_{j1} \mathbf{d}_j.$

Hence by similar argument for all $k \in \mathbb{N}$, there exists M_k and corresponding

 $H_k = \{\mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i \leq M_k\}, \text{ where } M_k > M_{k-1} > \ldots > M_1 \text{ such that } \mathbf{x}_1 + k\mathbf{d} \text{ satisfies the equation } \sum_{i=1}^n x_i = M_k \text{ obviously then } \mathbf{x}_1 + k\mathbf{d} \in S \cap H_k \text{)}.$

Hence $\mathbf{x}_1 + k\mathbf{d} = \bar{\mathbf{x}_k} + \mathbf{d}_k = \bar{\mathbf{x}_k} + \sum_{j=1}^s \mu_{jk} \mathbf{d}_j$, where $\bar{\mathbf{x}_k}$ is a convex combination of the extreme points $\mathbf{x}_1, \dots, \mathbf{x}_r$ of S and $\mu_{jk} \geq 0$ for all $j = 1, \dots, s$, which implies

 $\|\mathbf{x}_1 - \bar{\mathbf{x}_k}\| = k\|\mathbf{d} - \frac{1}{k}\sum_{j=1}^s \mu_{jk}\mathbf{d}_j\|.$ (here $\|\cdot\|$ denotes Euclidean length) (**)

Since \mathbf{x}_1 and $\bar{\mathbf{x}}_k$, for all $k \in \mathbf{N}$ belong to the same bounded polyhedral set (obtained by taking all possible convex combinations of extreme points of S) there exists an M>0 such that $\|\mathbf{x}_1 - \bar{\mathbf{x}_k}\| < M$ for all $k \in \mathbf{N}$.

Also since for all k, $\frac{1}{k}\sum_{j=1}^{s}\mu_{jk}\mathbf{d}_{j}$ belongs to the **closed** convex cone generated by $\mathbf{d}_{1},\ldots,\mathbf{d}_{s}$, and d does not belong to this cone (since d is an extreme direction), there exists a $\gamma > 0$ such that for all k, $\|\mathbf{d} - \frac{1}{k} \sum_{j=1}^{s} \mu_{jk} \mathbf{d}_{j}\| > \gamma$ (that is there is positive distance between a closed set and an element not in that closed set).

Hence the RHS of (**) is strictly bigger than $k\gamma$, whereas the LHS of (**) < M (for all k) hence by choosing k large we arrive at a contradiction.

Hence there must exist at least one extreme point which satisfies $\tilde{\mathbf{a}}_i^T \mathbf{x} = \tilde{b}_i$ for $i = 1, 2, \dots, (n - 1)$ 1), where $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_{n-1}$, are normals to defining hyperplanes of S such that $\tilde{\mathbf{a}}_i^T \mathbf{d} = 0$ for all $i = 1, 2, \dots, n - 1.$