- En electrónica digital, un circuito es una red que procesa variables de valores discretos.
- Un circuito puede considerarse como una caja negra que tiene:
 - Uno o más terminales de entrada
 - Uno o más terminales de salida
 - Una especificación funcional que describe la relación entre las entradas y las salidas
 - Una especificación temporal que describe el retardo entre un cambio en la entrada y la respuesta de la salida.

- Mirando dentro de la caja negra, los circuitos están compuestos de nodos y elementos
- Un elemento es en sí un circuito, con entradas, salidas y especificaciones.
- Un nodo es un alambre cuyo voltaje corresponde a una variable discreta
 - Los nodos se clasifican como entradas, salidas e internos

Circuito combinacional

$$Y = F(A, B) = A + B$$

Dos posibles implementaciones

Circuito combinacional de múltiples salidas

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Notación de buses

- Un circuito es combinacional si:
- Cada elemento que lo compone es en sí mismo combinacional
- Cada nodo del circuito es designado como entrada del circuito o conecta exactamente a un terminal de salida de un elemento de circuito
- El circuito no contiene caminos cíclicos: cada camino a través del circuito visita a cada nodo del circuito a lo más una sola vez.

¿ Cuáles son combinacionales?

Terminología

- El complemento de una variable, A, es su inverso, \overline{A} .
- La variable o su complemento se llama literal.
- Llamamos a A la forma verdadera de la variable y A la forma complementaria.
- Al AND de uno o más literales se le llama un producto o un implicante. AB, ABC y B son todos implicantes para una función de 3 variables.
- Un minitérmino es un producto de todas las variables de una función, en forma verdadera o en forma complementaria. Ej. $AB\overline{C}$ es un minitérmino de una función de 3 variables A, B y C. \overline{AB} no lo es.

Terminología

- En forma similar al OR de uno o más literales se le llama suma.
- Un maxitérmino es una suma de todas las variables de entrada de una función. Ej. A+B+C es un maxitérmino para una función de tres variables A, B y C
- El orden de las operaciones es importante. NOT tiene la precedencia más alta, después AND y finalmente OR. Ej. $Y = A + B\overline{C}$

Suma de productos

minitérmino

A	В	Y	
0	0	0	$\overline{A} \overline{B}$
0	1	1	$\overline{A} \; B$
1	0	0	$A \overline{B}$
1	1	1	A B

$$Y = \overline{A}B + AB$$

Forma canónica de suma de productos

Suma de productos

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Forma canónica de suma de productos

$$Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$$

Producto de sumas

Α	В	Y	maxitérmino	
0	0	0	A + B	
0	1	1	$A + \overline{B}$	
1	0	0	Ā + B	
1	1	1	$\overline{A} + \overline{B}$	

$$Y = (A + B)(\overline{A} + B)$$

Forma canónica de producto de sumas

AXIOMAS

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

Estos 5 axiomas con sus duales definen las variables Booleanans y el significado de NOT, AND y OR.

Teoremas de una variable

	Theorem		Dual	Name
T 1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Identidad en hardware

$$B \rightarrow B \rightarrow B \rightarrow B$$

Elemento nulo en hardware

$$B = 0$$

$$B \rightarrow = 1$$

Idempotencia

$$B = B = B$$

$$B \longrightarrow B \longrightarrow$$

Involución

$$B - \bigcirc \bigcirc \bigcirc = B - \bigcirc \bigcirc$$

Complemento

$$\frac{B}{B} = 0$$

$$\frac{B}{B}$$
 \rightarrow $=$ 1 \rightarrow

Teoremas de varias variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C)\bullet(B+D)=B+(C\bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$=(B+C)\bullet(\overline{B}+D)$	
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Equivalente en hardware del Teorema de De Morgan

NAND

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

NOR

$$Y = \overline{A + B} = \overline{A} \overline{B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Para la tabla de verdad de la función Booleana, Y, y su complemento Y, encontrar la forma canónica de producto de sumas de Y, a partir de la forma canónica de suma de productos que representa a Y

Α	В	Y	Ÿ
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

Α	В	Y	$\overline{\mathbf{Y}}$	minterm
0	0	0	1	$\overline{A} \overline{B}$
0	1	0	1	$\overline{\mathtt{A}} \ \mathtt{B})$
1	0	1	0	$A \overline{B}$
1	1	1	0	AВ

Demostración el Teorema del Consenso

В	C	D	$BC + \overline{B}D + CD$	BC+BD
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Simplificación o minimización de ecuaciones

Step	Equation	Justification
	$\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$	
1	$\overline{B}\overline{C}(\overline{A}+A)+A\overline{B}C$	T8: Distributivity
2	$\overline{B}\overline{C}(1) + A\overline{B}C$	T5: Complements
3	$\overline{B}\overline{C} + A\overline{B}C$	T1: Identity

Mejor aún

Step	Equation	Justification
	$\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$	
1	$\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$	T3: Idempotency
2	$\overline{B}\overline{C}(\overline{A}+A)+A\overline{B}(\overline{C}+C)$	T8: Distributivity
3	$\overline{B}\overline{C}(1) + A\overline{B}(1)$	T5: Complements
4	$\overline{B}\overline{C} + A\overline{B}$	T1: Identity

 Un esquemático es un diagrama de un circuito digital que muestra los elementos que lo componen y las interconexiones entre ellos. Ejemplo

$$Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C.$$

Dibujar los esquemáticos en forma consistente y obedeciendo ciertas reglas, los hace más legibles y fáciles de interpretar

- Las entradas se ubican en la izquierda o arriba
- Las salidas se ubican a la derecha o abajo
- Siempre que sea posible, las compuertas deben fluir de izquierda a derecha
- Conviene dibujar alambres rectos que alambres con esquinas.
- Los alambres siempre conectan en una juntura T
- Un punto donde cruzan dos alambres significa que están conectados
- Dos alambres que se cruzan sin un punto, no están conectados

Para dibujar suma de productos:

- Poner los inversores en columnas adjacentes, a la izquierda para proveer las entradas complementarias si es que se requieren.
- Dibujar una fila de ANDs, una para cada producto.
- Luego para cada salida, dibujar un OR que sume los productos involucrados en la salida correspondiente

Ejemplo para
$$Y = \overline{B}\overline{C} + A\overline{B}$$

Otra forma que ahorra un negador es cambiando una compuerta AND por una NOR

$$Y = \overline{B}\overline{C} + A\overline{B}$$

Circuitos con salidas múltiples (lo veremos con un ejemplo)

El circuito *Prioridad* consiste de n entradas, A_{n-1} , ..., A_0 y n salidas, Y_{n-1} , ..., Y_0 . Sólo una salida puede estar en 1 a la vez y todas las demás en 0. La salida que se pone en 1 corresponde a la entrada 1 que tiene el mismo subíndice siempre que no haya otra que esté en 1 y tenga un subíndice mayor. Veamos el caso de n = 4. En ambos casos la salida Y_2 está en 1 ya que A_2 es la más alta que está en 1. Las salidas de menor prioridad no valen.

Tabla de verdad del circuito prioridad

A_3	A_2	<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	Y ₀
0	0	0	0	0	0	0	0
0 0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Tabla de verdad del circuito prioridad utilizando don't cares

A_3	A_2	A_1	A_0	<i>Y</i> ₃	Y_2	Y ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	X	X	0	1	0	0
1	X	X	Х	0 0 0 0 0	0	0	0

Esquemático del circuito prioridad

- A la lógica en forma de suma de productos se le llama lógica de dos niveles puesto que consiste de un nivel de compuertas AND y luego un nivel de compuertas OR.
- Algunas funciones lógicas requieren una enorme cantidad de hardware si se implementan en forma canónica de suma de productos o producto de sumas.
- Existen métodos sistemáticos para lograr una expresión mínima, ya sea de suma de productos o

Ejemplo

$$Y = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

Α	В	С	Y
0	0	0	0
0	0	1	1)
0	1	0	1)
0	1	1	0
(1	0	0	1)
1	0	1	0
1	1	0	0
1	1	1	1

$$Y = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

$$Y = A \oplus B \oplus C = (A \oplus B) \oplus C$$

La idea es encontrar alguna expresión equivalente que minimice algún criterio.

Criterios:

- Mínimo número de literales.
- Mínimo número de literales en una expresión de suma de productos (o de producto de sumas)
- Mínimo número de términos en una expresión de suma de productos, siempre y cuando no exista otra expresión con el mismo número de términos y con menos literales.

De acuerdo al tercer criterio
$$XY + XZ + \bar{X}\bar{Y}$$

es menor que
$$X(Y+Z)+\bar{X}\bar{Y}$$

Ejemplos de minimización para la misma función

$$f(x,y,z) = (\bar{x}y\bar{z} + (\bar{x}\bar{y}\bar{z}) + x\bar{y}\bar{z}) + (\bar{x}yz + (xyz) + x\bar{y}z)$$
$$f(x,y,z) = \bar{x}\bar{z} + \bar{y}\bar{z} + yz + xz$$

$$f(x,y,z) = \overline{x}y\overline{z} + \overline{x}\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}yz + xyz + xyz + x\overline{y}z$$

$$f(x,y,z) = \overline{x}\overline{z} + x\overline{y} + yz$$

Aún otra forma

Claramente, necesitamos una forma más sistemática

Mapas de Karnaugh

Corresponden a una agrupación de la tabla de verdad en una disposición geométrica que permite aplicar en forma simple y sistemática las reglas de la simplificación

$$Ax + A\bar{x} = A$$

Mapa de dos variables

m ₀	m ₁
m ₂	m ₃

Mapas de Karnaugh

Mapa de tres variables

m ₀	m ₁	m ₃	m ₂
m ₄	m ₅	m ₇	m ₆

Mapas de Karnaugh

Mapa de cuatro variables

m ₀	m ₁	m ₃	m ₂
m_4	m ₅	m ₇	m ₆
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀

Mapas de Karnaugh

La expresión mínima se logra agrupando las celdas (minitérminos) en subcubos lo más grande posible y con el mínimo número de ellos.

Ejemplo de dos variables

$$F(X,Y) = \bar{X}Y + X\bar{Y} + XY$$

F(X,Y) = X + Y

Mapas de Karnaugh

Ejemplo: implementación del OR exclusivo

Tabla de verdad

Función binaria

$$F = X\bar{Y} + \bar{X}Y$$

Mapa de Karnaugh

Diagrama lógico

Mapas de Karnaugh

Ejemplo de tres variables

$$F(X,Y,Z) = \sum m(2,3,4,5)$$

= $\bar{X}Y\bar{Z} + \bar{X}YZ + X\bar{Y}\bar{Z} + X\bar{Y}Z$

Mapas de Karnaugh

Otro ejemplo de tres variables

$$F(X,Y,Z) = \sum m(0,2,4,6)$$

= $\bar{X}\bar{Y}\bar{Z} + \bar{X}Y\bar{Z} + X\bar{Y}\bar{Z} + XY\bar{Z}$

$$F(X, Y, Z) = \bar{Z}$$

Reducción de funciones binarias Mapas de Karnaugh

Otros ejemplos de tres variables

$$F(X,Y,Z) = \sum m(3,4,6,7)$$

$$F(X,Y,Z) = \sum m(0,2,4,5,6)$$

$$F(X,Y,Z) = \sum m(1,3,4,5,6)$$

$$F(X,Y,Z) = \bar{X}Z + \bar{X}Y + X\bar{Y}Z + YZ$$

Mapas de Karnaugh

Otro ejemplo de tres variables

(a)
$$F_1(X, Y, Z) = \Sigma m(3, 4, 6, 7)$$

= $YZ + X\overline{Z}$

(b)
$$F_2(X, Y, Z) = \sum m(0, 2, 4, 5, 6)$$

= $\overline{Z} + X\overline{Y}$

Mapas de Karnaugh

Fig. 2-15
$$F(X, Y, Z) = \Sigma m(1, 3, 4, 5, 6)$$

= $\bar{X}Z + X\bar{Z} + X\bar{Y}$
= $\bar{X}Z + X\bar{Z} + \bar{Y}Z$

Fig. 2-16
$$F(X, Y, Z) = \Sigma m (1, 2, 3, 5, 7)$$

= $Z + \bar{X}Y$

Mapas de Karnaugh

Ejemplo de cuatro variables

$$F(W, X, Y, Z) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

$$F(W, X, Y, Z) = \bar{Y} + \bar{W}\bar{Z} + X\bar{Z}$$

Mapas de Karnaugh

D

Minimización utilizando el producto de sumas

$$F(A, B, C, D) = \sum m(0, 1, 2, 5, 8, 9, 10)$$

$$F = AD + CD + DD$$

$$F = (\bar{A} + \bar{B})(\bar{C} + \bar{D})(\bar{B} + D)$$

Mapas de Karnaugh

Ejemplo de aplicación: Diseño de un circuito decodificador de BCD a 7 segmentos

Mapas de Karnaugh

Tabla de verdad

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

Mapas de Karnaugh

Decodificador de BCD a 7 segmentos

$D_{3:0}$	S_a	S_b
0000	1	1
0001	0	1
0010	1	1
0011	1	1
0100	0	1
0101	1	0
0110	1	0
0111	1	1
1000	1	1
1001	1	1
others	0	0

S_a $D_{1:0}$	3:2			
D _{1:0}	00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	0

S_b				
D _{1:0}	3:2 00	01	11	10
S _b D D _{1:0} 00	1	1	0	1
01	1	0	0	1
11	1	1	0	0
10	1	0	0	0

Mapas de Karnaugh

Decodificador de BCD a 7 segmentos

Mapas de Karnaugh

Decodificador de BCD a 7 segmentos

Mapas de Karnaugh

Decodificador de BCD a 7 segmentos utilizando don't cares

- Los circuitos combinacionales generalmente se agrupan en bloques mayores para formar sistemas más complejos
- Esta es una aplicación del principio de abstracción, esconder los detalles a nivel de compuertas, para enfatizar la función del bloque
- Hemos visto dos bloques: circuito de prioridad y decodificador de BCD a 7 segmentos.
- En esta sección introduciremos dos bloques más que tienen un amplio uso.

Multiplexor 2:1

Implementación utilizando compuertas con control de tercer estado

Multiplexor 4:1

Multiplexores

- Multiplexores más ámplios que 4:1, por ejemplo 8:1 o 16:1 se pueen construír expandiendo el método visto para desarrollar el multiplexor 4:1.
- En general un multiplexor N:1 necesita log_2N líneas de selección.
- La mejor implementación depende de la tecnología utilizada.

Multiplexores

Circuitos combinacionales basados en multiplexores

- Los multiplexores pueden ser utilizados como lookup tables para implementar funciones lógicas.
- Ejemplo: uso de un multiplexor 4:1 para implementar la función AND

Multiplexores

Circuitos combinacionales basados en multiplexores

- En general un multiplexor de 2^N entradas puede programarse para implementar cualquier función lógica de N entradas, aplicando 0s y 1s en las entradas apropiadas.
- Cambiando los valores 0s y 1s de las entradas es posible reprogramar el multiplexor para realizar una función distinta.
- Con un poco de intuición, es posible utilizar un multiplexor de menos entradas, N/2 por ejemplo, para implementar una función de N entradas.

Multiplexores

Ejemplos para ilustrar el último punto de la transparencia anterior

Multiplexores

Ejemplo: Implemetar la función $Y=A\bar{B}+\bar{B}\bar{C}+\bar{A}BC$ utilizando un multiplexor 8: I

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

Multiplexores

Es posible implentar la función $Y=A\bar{B}+\bar{B}\bar{C}+\bar{A}BC$ utilizando un multiplexor 4:1 ?

Α	В	С	Y	_ <u>A</u>	В	Y
0	0	0	1	0	0	\overline{C}
0	0	1	0	0	1	C
0	1	0	0	1	0	1
0	1	1	_1	1	1	0
1	0	0	1/			
1_	0	1	_1/			
(1	1	0	0/			
1	1	1	0			

Decodificadores

- Un decodificador tiene N entradas y 2^N salidas
- Sólo una salida puede valer 1 y depende de la combinación de las entradas.
- La siguiente figura muestra un decodificador de 2:4 y su tabla de funcionamiento

<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	Y ₁	Y ₀
	0	0 0 0	0	0	1
0 0 1	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decodificadores

Implementación de un deodificador

Decodificadores

- Los decodificadores pueden ser combinados con compuertas OR para implementar funciones lógicas.
- La figura muestra la implementación de la función XNOR utilizando un decodificador 2:4 y una

- Hasta ahora nos hemos preocupado principalmente de diseñar circuitos que funcionen, idealmente utilizando el menor número de compuertas posible.
- Sin embargo, cualquier diseñador experimentado puede asegurar que uno de los temas más desafiantes en el diseño de circuitos digitales es la temporización (hacer que el circuito funcione rápido)
- La salida de un circuito toma un tiempo en responder al cambio en una entrada.

- La figura muestra el retardo entre un cambio en la entrada y la salida correspondiente para un buffer.
- La figura recibe el nombre de diagrama de tiempos o diagrama temporal. Muestra la respuesta transitoria.
- La transición de LOW a HIGH se llama flanco de subida.
- La transición de HIGH a LOW se llama flanco de bajada.
- La flecha azul indica que el flanco de subida de Y es causado por el flanco de subida de A.
- El retardo se mide desde el punto correspondiente al 50% de la señal A hasta el punto de 50% de la señal Y.

Retardo de propagación y de contaminación

- La lógica combinacional se caracteriza por su retardo de propagación y su retardo de contaminación.
- El retardo de propagación, t_{pd} , es el máximo tiempo desde que una entrada cambia hasta que la señal de salida alcanza su valor final.
- El retardo de contaminación, t_{cd} , es el mínimo tiempo desde que una entrada cambia hasta que cualquiera de las salidas empieza a cambiar su valor.

Retardo de propagación y de contaminación para un buffer.

- Las causas subyacentes de los retardos en los circuitos incluyen por una parte el tiempo requerido para cargar las capacidades dentro del circuito y la velocidad de la luz.
- t_{pd} y t_{cd} pueden ser diferentes por diversas razones, incluyendo
- diferentes tiempos de retardo de subida y de bajada
- entradas y salidas múltiples, alguna de las cuales son más rápidas que otras
- Circuitos más lentos cuando suben su temperatura y más rápidos cuando se enfrían.

- El cálculo de t_{pd} y de t_{cd} requiere bajar a los menores niveles de abstracción, más allá de lo que veremos en este curso.
- En general los fabricantes proveen hojas de datos especificando los retardos para cada compuerta.
- Con estos datos se puede estudiar bastante bien el retardo de nuestros circuitos

Camino más corto y camino crítico

Short Path

- El retardo de propagación de un circuito combinacional es la suma del retardo de propagación a través de cada elemento en el camino crítico
- El retardo de contaminación es la suma de los retardos de contaminación a través de cada elemento en el camino más corto.

Critical Path

Short Path

$$t_{pd} = 2t_{pd-\text{AND}} + t_{pd-\text{OR}}$$
$$t_{cd} = t_{cd-\text{AND}}$$

Glitches o hazards

- Hasta ahora hemos pensado sólo en casos donde una transición de entrada causa una transición de salida.
- Es posible que sólo una transición de entrada cause múltiples transiciones de salida.
- Éstas se conocen como glitches o hazards.
- Aunque muchas veces no causan problemas, en algunas aplicaciones producen problemas serios.

Glitches o hazards

Circuito con glitch

Glitches o hazards

- Podemos eliminar el glitch agregando una compuerta.
- Esto queda claro estudiando el mapa de Karnaugh del circuito.
- La figura muestra que la transición de entrada de ABC=001 a ABC=011 produce un cambio de implicante primario (subcubo)

Glitches o hazards

 Agregando un subcubo que cubra la frontera entre ambos implicantes soluciona el problema

