

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 8709/4

MATHEMATICS

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	4

1			M1		For using WD = $Fd \cos \alpha$
		$WD = 30x80 \cos 10^{\circ}$	A1		•
		Answer: 2360J	A1	3	
2	(i)	<u>95001500</u> 440120	M1		For attempting to find the gradient of the relevant section
		Answer: 25ms ⁻¹	A1	2	
	(ii)		M1		For drawing 3 connected straight line segments with, in order, +ve, zero and –ve slopes
		Any two of the following three features: Graph starts at the origin and terminates on the t-axis	A1		
		The acceleration stage is less steep than the deceleration stage			
		25ms ⁻¹ (f.t. for ans (i)) is correctly shown			
		All three of the above features	A1	3	
3		$R = mg \cos 30^{\circ}$	B1		
		$F = 0.4 \text{ mg cos } 30^{\circ}$	M1		For using $F = \mu R$
			M1		For resolving forces along the plane
		Component of the weight down the plane = $mg \sin 30^{\circ}$	B1ft		f.t. for cos instead of sin, following earlier cos/sin mix
		$0.4 mg \cos 30^{\circ} + P = mg \sin 30^{\circ}$	A1ft		Depends on both M marks; f.t. for wrong <i>F</i> or wrong weight component
		Answer: <i>P</i> = 0.768	A1	6	
4	(i)		M1		For using $s(t) = \int vdt$ and attempting to integrate
		$s = 2t^2 - 0.01t^4$	A1		
		$2t^2 - 0.01t^4 = 100$	B1ft		f.t. for wrong s(t)
			M1		For identifying the equation as a quadratic in t^2 and attempting to solve
		Answer: <i>t</i> = 10	A1	5	
	(ii)		M1		For using <i>a</i> = d <i>v</i> /d <i>t</i> and attempting to differentiate
		$4-0.12t^2$	A1		
		Answer: -ve when $t = 10 \Rightarrow$ slowing down	A1	3	
		for the above 3 marks:			
<i>v</i> (10) = 0 🗗	slowing down B3			

Page 2 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	4

5	(i)	$T_{AR} = T_{BR}$	B1	1	
	(ii)	$T \cos RAB = T \cos RBA \Rightarrow$ angle	B1	1	
	(,	RAB = angle RBA	21	·	
	(iii)	$2T\cos 60^{\circ} = 0.5g$	M1		For resolving forces on R vertically
		T = 0.5g	A1		May be implied
		$R = 0.3g + T \sin 30^{\circ}$	M1		For resolving the forces on <i>B</i> vertically (3 terms required)
		Answer: 5.5N	A1ft		f.t. for 3 + ½ T
Alterr	native	for the above 4 marks:			
For u	sing <i>R</i>	$R_{\rm B} = R_{\rm A} + 0.3g$	31		
For re	esolvin	ng forces vertically on the whole syste	em		
	R _A = ($(0.5 + 0.3)g)$ or for $R_A = \frac{1}{2}(0.5g)$ and R_A	d //1		
Answ	er: 5.5	5 N /	A 1		
T = 0	.5 <i>g</i>	E	31		
		$F = T \cos 30^{\circ}$	M1		For resolving the forces on <i>B</i> horizontally
		Answer: 4.33N	A1	6	
6	(i)		M1		For applying N2 to one particle, or for using $(m_1 + m_2)a = (m_1 - m_2)g$
		0.5a = 0.5g - T or $0.4a = T - 0.4g$ or $0.9a = 0.1g$	A1		
			M1		For applying N2 to the other particle (if necessary) and solving for a
		Answer: 1.11ms ⁻²	A1	4	
	(ii)	$v^2 = 2(g/9)4.5$	M1		For using $v^2 = 2as$
		$0 = g^{1/2} - gt$	M1		For using $0 = u + at$
		Answer: 0.316s	A1	3	
	(iii)		M1		For using distance is 2s and obtaining s from $(u + 0)/2 = s/t$, $0 = u^2 + 2as$ or $s = ut + \frac{1}{2}at^2$
		Answer: 1m	A1	2	5 – ul + 72 dl

Page 3 of 3	Page 3 of 3 Mark Scheme			
	AS Level Examinations – November 2001	8709	4	

7	(i)	$1200g(500 \sin 6^{\circ})$ seen or implied	B1		Can be scored in 1 st or 2 nd part
			M1		For using WD by driving force = PE gain + WD against resistance, or for using WD against resistance =
					$(1800 - component of weight) \times 500$
		$1800 \times 500 = 1200g(500 \sin 6^{\circ}) + WD$ against resistance, or	A1ft		f.t. for wrong PE gain or equivalent
		WD against resistance =			
		$(1800 - 1200gsin6^{\circ}) \times 500$			
		Answer: 273 000J	A 1	4	
	(ii)		M 1		For using KE gain = $\frac{1}{2} m(v^2 - u^2)$
	• •	½ 1200(20² – 8²)	A1		3
		WD = 201 600 + 627 170 + 700 x 500	M1		For using WD by driving force = KE gain + PE gain + WD against resistance
		Answer: 1 180 000 J	A1	4	
	SR (For candidates who assume, implicitly or otherwise, that the acceleration is constant)				
		(max 2 out of 4)			
$v^2 = $	$u^2 + \tilde{2}a$	the acceleration (0.336) using as, applying Newton's 2 nd law to find the sengine (2360) and multiplying by 500 to 0.			
Ans	wer: 1	180 000 J A1			
					P. E. v.
	(iii)		M1		For using $\frac{P_{top}}{P_{bottom}} = \frac{F_{top}}{F_{bottom}} \times \frac{v_{top}}{v_{bottom}}$
		Ratio = 4 x 20/8	A 1		
		Answer: 10	A 1	3	
SR		(max 1 out of 3)			
236		calculated values of <i>F</i> in the ratio 4:1 (e.g. and 2360), and obtaining the answer 10:1 d ratio.			
1					

