Module MAU34403 Quantum mechanics I (Frolov) Homework Sheet 4

Each set of homework questions is worth 100 marks

Use Mathematica if necessary

The XXX periodic Heisenberg spin-1/2 chain of length 2 is described by the Hamiltonian

$$H = \frac{3}{4}J + \frac{J}{\hbar^2} \sum_{\alpha=1}^{3} S_1^{\alpha} S_2^{\alpha}$$
 (0.1)

The Hamiltonian acts in the Hilbert space which is the tensor product of 2 copies of two-dimensional spaces (spin up-down)

$$\mathscr{H} = \mathbb{C}^2 \otimes \mathbb{C}^2 \tag{0.2}$$

and the spin-1/2 operator $S_i^{\alpha}=\hbar\sigma_i^{\alpha}/2$ acts only on the particle at the *i*-th site

$$S_1^{\alpha} = S^{\alpha} \otimes I, \quad S_2^{\alpha} = I \otimes S^{\alpha}$$
 (0.3)

The Hamiltonian commutes with the total spin operator

$$\mathbb{S}^{\alpha} = S_1^{\alpha} + S_2^{\alpha} = S^{\alpha} \otimes I + I \otimes S^{\alpha} \tag{0.4}$$

From problem 2 of HW3 we know that the orthonormal vectors

$$|e_1\rangle \equiv |\uparrow\uparrow\rangle, \quad |e_0\rangle \equiv \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \quad |e_{-1}\rangle \equiv |\downarrow\downarrow\rangle,$$
 (0.5)

are eigenvectors of \hat{H} with the eigenvalue $E_1 = J$ while the vector

$$|f\rangle \equiv \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \tag{0.6}$$

is an eigenvector of \hat{H} with the eigenvalue $E_0=0$. These vectors are also eigenvectors of \mathbb{S}^3 with eigenvalues $s_1=\hbar$, $s_0=0$ and $s_{-1}=-\hbar$.

Compulsory Questions

Problem 1. Spin-1 representation

Introduce the operators $\mathbb{S}^{\pm} = \mathbb{S}^1 \pm i \mathbb{S}^2$, find commutation relations between \mathbb{S}^+ , \mathbb{S}^- and \mathbb{S}^3 , and find how \mathbb{S}^{\pm} act on $|e_m\rangle$, m=1,0,-1. How would you interpret their action?

Problem 2. Consider the state

$$|\psi\rangle = \frac{1}{\sqrt{13}} \left((2+i)|\uparrow\uparrow\rangle - (2-i)|\uparrow\downarrow\rangle + i|\downarrow\uparrow\rangle - (1-i)|\downarrow\downarrow\rangle \right) \tag{0.7}$$

- (a) If the result of a measurement is s_0 , what is the state of the system after it?
- (b) What is the probability to measure first E_1 and immediately after s_0 ? What is the probability to measure first s_0 and immediately after E_1 ? Why are these probabilities equal?

Problem 3. Consider the same state as in Problem 2

$$|\psi\rangle = \frac{1}{\sqrt{13}} \left((2+i)|\uparrow\uparrow\rangle - (2-i)|\uparrow\downarrow\rangle + i|\downarrow\uparrow\rangle - (1-i)|\downarrow\downarrow\rangle \right) \tag{0.8}$$

Check that the general uncertainty relation

$$\Delta \hat{A}^2 \Delta \hat{B}^2 \ge \left(\frac{1}{2} \langle [\hat{A}, \, \hat{B}]_+ \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle \right)^2 - \frac{1}{4} \langle [\hat{A}, \, \hat{B}] \rangle^2 \tag{0.9}$$

holds for

- (i) \mathbb{S}^3 and H
- (ii) \mathbb{S}^3 and \mathbb{S}^1

Practice Questions

Problem 1. Spin-1 representation

Find how the total spin operators \mathbb{S}^{α} act on $|e_m\rangle$, m=1,0,-1.

Problem 2. Consider the state

$$|\psi\rangle = \frac{1}{\sqrt{13}} \left((2+i)|\uparrow\uparrow\rangle - (2-i)|\uparrow\downarrow\rangle + i|\downarrow\uparrow\rangle - (1-i)|\downarrow\downarrow\rangle \right) \tag{0.10}$$

- (a) Expand $|\psi\rangle$ over the basis f and $|e_m\rangle$, m=1,0,-1. Find the probabilities to measure E_0 and E_1 , and s_1 , s_0 and s_{-1} .
- (b) If the result of a measurement is E_1 , what is the state of the system after it?
- (c) Find the expectation values of and the uncertainty in the Hamiltonian H and the total spin operators \mathbb{S}^{α} with respect to $|\psi\rangle$