#### Lecture 1

- Introduction
  - Logistics
  - Why study fluid mechanics?
  - Fluidity and viscosity

If you don't know where you're going, you might not get there.

Yogi Berra 1925 -

# Why study fluid mechanics?

#### □ Panta rei.\*



 $O(10) \mu \mathrm{m}$ 



O(1) mm



O(10) cm



0(10) m

\*Heraclitus, 535-475 BCE

# Why study fluid mechanics?

#### □ Panta rei.



0(1) km



0(1000) km



 $O(10^8) \text{ km}$ 



 $O(10^5)$  Parsec

## Disciplines (an incomplete list)

#### Engineering

- Fluid machinery, hydraulics, piping
- Energy systems, combustion, solar thermal
- Aerodynamics, transportation, and propulsion
- Chemical processing and materials synthesis
- Petrochemical and natural resources
- Pollution and environment
- ...

#### Science

- Climate and meteorology
- Geophyiscs & planetary sci.
- Cosmology
- Biological fluids and processes
- ...

#### Goals of this class

- Understand the fundamental principles (and their mathematical expression) that govern continuum fluid flow
  - Fluid properties
  - Fluid motion and kinematics
  - Forces acting on fluids and Newton's laws
  - Thermodynamics and energy
- Comfortably apply approximations and idealizations
  - Order-of-magnitude estimates
  - Dimensional analysis and scaling
  - Control volume analysis (accounting)
  - Ideal flows (neglect friction)
- Understand how experiments and simulations can be used for scientific and engineering purposes
- Understand how key engineering machines and devices work and how they can be analyzed systematically

#### What is a fluid?

#### Solids: Elasticity.

- Molecules are densely packed and organized
- Elasticity: materials are deformed under static and dynamic forces, but "spring back" to the original configuration when forces are removed.
- May reach a static (unchanging) configuration under body forces (gravity) and both normal and tangential (shearing) surface forces

#### Fluids: Fluidity.

- Molecules are less densely packed and disorganized
- Fluidity: materials deform continuously and permanently under applied shearing forces.
- Fluids may be static under body forces and normal surface forces (pressure) provided these are exactly balanced.

# What is a fluid? (2)

Visualization of continuous and permanent deformation



METY. Fluid Mechanics. C. Tim Colonius, Caltech

1/3/15

## What is a fluid? (3)

- Fluids: materials that deform continuously and permanently under applied shearing forces
- Consequence: At rest, fluids take the shape of their container, except possibly at interfaces between materials that are everywhere normal to gravity (such that at rest there is no shearing force)



Solid: static equilibrium

Fluid: initial condition,

Fluid: static equilibrium

Pin removed and balloon bursts

## What is a fluid? (4)

Example: wind (air) over water



## Properties of a fluid

- "Property" refers to a measurable or inferable quantity associated with the thermodynamic state of a material or its response to externally imposed forces, heat, and change in composition
- Thermodynamic state quantities (state variables) such as pressure, temperature, density, enthalpy, coefficient of thermal expansion, and so on, are independent of these externalities
  - For a pure substance, two state variables uniquely determine all others.
  - Example: the density of a fluid at a given temperature and pressure is the same whether the fluid is being sheared or not
- Other kinds of properties are associated with response of a material to forces, heat, and change in composition
  - Viscosity, thermal conductivity, mass diffusivity
  - In some cases, these are generic to the material (only a function of the thermodynamic state), while in others these properties can depend on (for example) the rate at which something is done to the material

## Viscosity

- What happens if we remove the wind in the last example?
- Perpetual motion?



# Viscosity (2)

- Viscosity (friction) is a resistance to deformation
- It results in a force (stress) that between regions of high velocity to regions of lower velocity.
- □ The stress goes to zero when there is no spatial nonuniformity of the motion
- □ Solids: stress ~ strain
- □ Fluids: stress ~ rate of strain



$$\tau \sim \frac{\Delta U}{\Delta y}$$

$$\tau = \mu \frac{dU}{dy}$$

Note: this formula is a special case of a more general one we will derive later

## Viscosity (3)

- $_{ extstyle }$  Viscosity  $\mu$ 
  - force per unit area (stress) / (change in velocity / length)
- $\square$  Density (mass/unit volume): ho

$$[\rho] = [M/L^3]$$

$$[\mu] = \frac{[ML/T^2][L]}{[L^2]/[L/T]} = [\frac{M}{LT}] = [\rho L^2/T]$$

- Units of viscosity
  - □ SI: kg/m/s;
  - $\Box$  cgs: 1 Poise\* = 1 g/cm/s = 0.1 kg/m/s

## Viscosity (4)

Kinematic viscosity: often more useful (and simpler units!)

$$\nu = \frac{\mu}{\rho} \qquad [\nu] = [L^2/T]$$

#### Classification of fluids

- For the simplest (Newtonian) fluids, viscosity is a property of the fluid, independent the magnitude, direction, and duration of motion
- Material properties can depend on the thermodynamic state

$$\mu = \mu\left(T,p\right) \qquad \text{ {Or any other two indep. \\ state variables }}$$

Viscosity does not vary appreciably with pressure at normal T
 & P.

$$\mu \approx \mu(T)$$

 Viscosity generally increases with T for gases and decreases with T for liquids

# Classification of fluids (2)

- Some Newtonian Fluids
  - Air (gases and mixtures of gases)
  - Water
  - Glycerin
  - Kerosine
  - Octane
  - Mercury
  - Motor oil

# Classification of fluids (3)

Viscosity of some Newtonian fluids @ STP



http://en.wikipedia.org/wiki/ Pitch\_drop\_experiment

| Fluid       | Density<br>(kg/m3) | Viscosity<br>(kg/m/s)  | Kin.<br>Viscosity<br>(m²/s) | Kin.<br>Viscosity<br>REL water |
|-------------|--------------------|------------------------|-----------------------------|--------------------------------|
| Hydrogen    | 0.089              | 9.0 x 10 <sup>-6</sup> | 1.0 x 10 <sup>-4</sup>      | 112.0                          |
| Air (g)     | 1.2                | 1.7 x 10 <sup>-5</sup> | 1.4 x 10 <sup>-5</sup>      | 1 <i>5.7</i>                   |
| Water (I)   | 998.               | 8.9 x 10 <sup>-4</sup> | 8.9 x 10 <sup>-7</sup>      | 1                              |
| Mercury (I) | 13500.             | 1.5 x 10 <sup>-3</sup> | 1.1 x 10 <sup>-7</sup>      | 0.123                          |
| Corn syrup  | 1380.              | 1.4                    | 1.0 x 10 <sup>-3</sup>      | 1.1 x 10 <sup>3</sup>          |
| Tar pitch * | ~1000              | $2.3 \times 10^8$      | 2.2 x 10 <sup>5</sup>       | 2.5 x 10 <sup>11</sup>         |

ME19. Fluid Mechanics. C. Tim Colonius, Caltech 1/3/15

# Classification of fluids (4)

- Non Newtonian Fluids
  - Usually materials with complex microscopic structure
    - Suspensions of microscopic particles or droplets (emulsions)
    - Solutions of large molecules (polymers)
- Viscosity changes with shearing rate
  - Shear thinning
  - Shear thickening
  - http://www.youtube.com/watch? v=5GWhOLorDtw
- Viscosity depends on direction of applied stress (non-isotropic)
  - Polymer solutions
- Viscosity changes with duration of stress (time history)
- Viscosity changes with applied magnetic or electric fields



## Classification of fluids (5)

- Multi-component (and/or multiphase) fluids
  - Sometimes, we can view multi-component materials as a single fluid
  - Granular flow (sand in an hourglass, debris flow)
  - Liquids with "small" gas bubbles
  - Particulate flows (in liquids and gases)
  - More complex behavior than Newtonian (and even non-Newtonian) fluids

## The Reynolds number

- Nature doesn't care about the (arbitrary) units with which we choose to describe material properties
- We want all our analysis to apply to the broadest class of problems possible
- We want to have to conduct as few experiments or prototypes as possible
- □ The viscous stress should be compared to some other force per unit area to determine 'how viscous' the behavior
- How this is done depends on the particular situation (we should always define "a" Reynolds number, not necessarily "the" Reynolds number)

## Back to example

Suppose wind stops at some time. How long until fluid motion in the tank ceases?



$$\rho DLB \frac{\Delta U}{\Delta t} \sim \tau LB$$

$$\tau \sim \mu \frac{\Delta U}{D}$$

$$\Delta t \sim \frac{D^2 \rho}{\mu}$$

$$\Delta t \frac{U}{D} \sim \frac{\rho UD}{\mu} = \frac{UD}{\nu} = \text{Re}$$

Mass \* accel = force

# Reynolds number (2)

Generically, the ratio of 'inertial force' to viscous force

$$Re = \frac{\rho UD}{\mu} = \frac{UD}{\nu}$$

External flow: sphere dragged through fluid



Internal flow in round pipe



# Reynolds number (3)

 $lue{}$  For example, the force acting on a sphere dragged through the fluid, when suitably scaled\*, will be the same regardless of the specific fluid, provided Re is the same

 $\begin{array}{ccc}
U & & \\
\rho, \mu & D
\end{array}$ 

| Fluid      | Kin. Viscosity (m <sup>2</sup> /s) | Diameter<br>(m)      | Velocity<br>(m/s) | Reynolds<br>number |
|------------|------------------------------------|----------------------|-------------------|--------------------|
| Air        | 1.4 x 10 <sup>-5</sup>             | 1 x 10 <sup>-5</sup> | 1.4               | 1                  |
| Corn syrup | 1.0 x 10 <sup>-3</sup>             | 1 x 10 <sup>-2</sup> | 0.1               | 1                  |

By convention, the force is scaled as:  $C_D = \frac{F_D}{\frac{1}{2} \rho U^2 \frac{\pi D^2}{4}} = \mathrm{fun} \, (\mathrm{Re})$ 

\*...and with additional caveats we will discuss next lecture!

### Summary

- Fluids are materials that deform continuously and permanently under applied shearing forces
- Viscosity leads to a surface force (stress) between adjacent parcels of fluid moving with different velocities
  - due to momentum transfer between molecules
  - tends to diffuse (smear, lessen) velocity differences over time
- The Reynolds number is an important nondimensional parameter that tells us how important viscosity is
  - Ratio of "inertial force" (i.e. acceleration) to viscous force
  - Controls how quickly (or 'efficiently') viscosity acts to diffuse momentum compared to an imposed rate of change of momentum (inertia)