Institut für Medizinische Genetik

Vorlesung Medizinische Genetik TB Grundlagen HS 2024

Prof. Dr. med. Anita Rauch

1/7: Einführung, Chromosomenstörungen

04.10.2024 Seite 1

Lernziele - allgemein

- Was versteht man unter Medizinischer Genetik
- Für den medizinischen Alltag wichtige Grundprinzipien der Med. Genetik
- Was gibt es für genetisch bedingte Krankheitsbilder und wann sollte man daran denken
- Symptomatik und Diagnostik der häufigsten genetischen Krankheiten

Womit befasst sich die Medizinische Genetik?

LUNGS

KNEE JOINT

BONE

HAIR

BLADDER

EYE

KIDNEYS

INTESTINE

SCROTUM

UTERUS

Medizinische Genetik

- Diagnose angeborener oder chronischer Krankheiten
- Beratung hinsichtlich Krankheitsverlauf und Behandlungsoptionen
- Beratung hinsichtlich Wiederholungsrisiken
- Präsymptomatische Risikoabklärung
 - Wie hoch ist das Erkrankungsrisiko?
 - Lässt sich die Erkrankung vermeiden?
 - Lässt sich durch Früherkennung besser therapieren?

Spezialistentitel Medizinische Genetik

Facharzt/ärztin Medizinische Genetik FMH Klinische Genetik und genetische Beratung

Laborspezialist Medizinische GenetikFAMH
Labordiagnostik
Weiterbildung für Ärzte
oder Naturwissenschaftler

Lernziele 1/7

 Sie können Kategorien genetisch bedingter Krankheiten benennen und charakterisieren

 Sie können die wichtigsten Krankheitsbilder bei Chromosomenstörungen benennen und deren Entstehung erklären

Mögliche Ebenen genetischer Defekte

Fehlgeburt: chromosomale Ursachen häufig

- Etwa 10-15% aller festgestellten klinischen Schwangerschaften enden in einer Fehlgeburt, überwiegend gegen Ende des 1. Trimesters
- Für etwa 50-70% dieser Fehlgeburten sind mikroskopisch sichtbare Chromosomenaberrationen als häufigste Ursache nachweisbar.

Chromosomenanalyse "Karyotypisierung" Mikroskopisch nur aus Zellen in Mitose Mikroskopieren Blau = Chromatin Metaphase im Mikroskop Oktober 2024 Rauch et al. Science 2008

Unauffälliger Karyotyp:

Embryonale Krankheiten: Triploidie, Trisomie, Monosomie,

Zugewinn oder Verlust ganzer Chromosomen bzw. Chromosomensätze

Begriff Krankheit

Cave komplette Blasenmole bei Triploidie

- Blasenartige Umwandlung der Plazenta ohne kindliche Anteile
 - Diandrie mit Verlust des maternalen Vorkerns
 - 1:2000

Risiko der malignen Entartung

und www.acep.org

Chromosomale Ursachen für spontane Frühaborte

Alter	Abnormer Karyotyp	Triploidie	Trisomie	Monosomie	Andere
<25	36 %	18 %	4 %	4%	11 %
25-29	50 %	13 %	18 %	9 %	9 %
30-34	57 %	10 %	34 %	7 %	6 %
35-39	68 %	7 %	48 %	6 %	8 %
40+	78 %	2 %	58 %	3 %	15 %

Menasha et al. GiM 2005

Häufige fetale / neonatale Krankheiten

Häufige Trisomien: 13 (Pätau), 18 (Edwards), 21 (Down)

Trisomie 21 (Down Syndrom)

- ~1:800
- i. d. R. Geistige Behinderung
- Kleinwuchs
- Herzfehler
- Gastrointestinale Probleme
- Hämatologische Probleme
- Immunologische Probleme
- Hör-, Sehstörungen
- Demenz, Lebenserwartung 49 Jahre
- Erhöhtes Zöliakie-Risiko

https://www.berliner-zeitung.de/panorama/alles-moeglich-erstes-ehepaar-mit-down-syndrom-feiert-22--hochzeitstag-25807366

Non-Disjunction

THOMPSON & THOMPSON GENETICS IN MEDICINE

Non-Disjunction tritt vorallem in der Eizelle auf

Wiederholungsrisiko für Trisomie 21?

Figure 2-23 Human Molecular Genetics, 3/e. (© Garland Science 2004)

Kann man mit einer Monosomie leben?

Monosomien = Fehlen eines ganzen Chromosoms

Grobe strukturelle Chromosomenstörungen

Tetrasomie 12p

Partielle Monosomie 18q