Álgebra Linear e Geometria Analítica

Agrupamento IV: Mestrado Integrado em Eng. ^a Eletrónica e Telecomunicações | Mestrado Integrado em Eng. ^a de Computadores e Telemática | Licenciatura em Eng. ^a Informática

30 de Outubro de 2019 Duração: 1h30

1^a prova de avaliação

Justifique devidamente todas as suas respostas.

1. Considere o sistema de equações lineares nas incógnitas x,y e z e com os parâmetros $\alpha,\beta\in\mathbb{R}$.

$$\begin{cases} \alpha y + 2z = \alpha \\ x + \alpha y + 3z = 0 \\ \alpha x + z = \beta \end{cases}$$

- (a) Determine os valores de α e de β para os quais o sistema ϵ
 - i. possível e determinado;
 - ii. possível e indeterminado;
 - iii. impossível.
- (b) Faça $\alpha=1$ e $\beta=-1$. Determine o conjunto de soluções do sistema.
- 2. Considere A e B, matrizes 4×4 tais que det(A) = 3 e

$$B = \left[\begin{array}{rrrr} 0 & -1 & 0 & 0 \\ 1 & 2 & -1 & 0 \\ -1 & 1 & 1 & 2 \\ 0 & 1 & 3 & -1 \end{array} \right].$$

- (a) Verifique que B é invertível.
- (b) Calcule $\det(2A^TB^{-1})$.
- 3. Sejam A, B e C matrizes quadradas tais que AB = AC.
 - (a) Mostre que, se $det(A) \neq 0$, então B = C.
 - (b) Verifique ainda, usando um exemplo em que A não é a matriz nula, que esta conclusão pode não ser válida se det(A) = 0.
- 4. Em \mathbb{R}^3 considere o ponto P(1,-1,1), a reta \mathcal{R} de equações cartesianas $\begin{cases} 2y + z = -1 \\ 2x + 3y + z = -1 \end{cases}$ e o plano \mathcal{P} de equação cartesiana 2x + 3y + z = -1.
 - (a) Obtenha a equação cartesiana do plano que passa no ponto P(1,-1,1) e é ortogonal à reta \mathcal{R} .
 - (b) Indique a posição relativa da reta \mathcal{R} e do plano \mathcal{P} . Qual a distância entre ambos?
 - (c) Determine a distância do ponto P ao plano \mathcal{P} .
- 5. Considere o sistema de equações lineares AX = B, cuja matriz ampliada [A|B] é equivalente por linhas à matriz [C|D] seguintes

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & a & 1 & -1 \\ a & a & 1 & -1 \end{bmatrix}, \qquad [C|D] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & a & 1 & -1 \\ 0 & 0 & 1-a & -1-a \end{bmatrix},$$

sendo a um parâmetro real. Indique, justificando, os valores de a para os quais:

- (a) $(1,-1,-1) \in \mathcal{C}(A)$, sendo $\mathcal{C}(A)$ o conjunto de todas as combinações lineares das colunas de A;
- (b) a reta \mathcal{R}' de equações cartesianas $\begin{cases} ay + z = -1 \\ ax + ay + z = -1 \end{cases}$ é estritamente paralela ao plano \mathcal{P}' de equação cartesiana x + y + z = 1.

Questão	1	2	3	4	5
Cotação	5	4	4	4,5	2,5