Flerdimensjonal analyse (MA1103)

Øving 6

Oppgave 1 (3.2: 8)

Anta at $f: \mathbb{R}^2 \to \mathbb{R}$ har kontinuerlige annenordens partiellderiverte, og at $\mathbf{r}(t) = (x(t), y(t))$ der x og y er to ganger deriverbare. La $g(t) = f(\mathbf{r}(t))$. Vis at

$$g''(t) = \frac{\partial^2 f}{\partial x^2}(\mathbf{r}(t))x'(t)^2 + 2\frac{\partial^2 f}{\partial x \partial y}(\mathbf{r}(t))x'(t)y'(t) + \frac{\partial^2 f}{\partial y^2}(\mathbf{r}(t))y'(t)^2 + \frac{\partial f}{\partial x}(\mathbf{r}(t))x''(t) + \frac{\partial f}{\partial y}(\mathbf{r}(t))y''.$$

Oppgave 2 (3.3: 2,5)

Regn ut linjeintegralet $\int_C f \, ds$ når

- a) f(x,y) = xy og C er parametrisert ved $\mathbf{r}(t) = (3t,4t), t \in [0,2],$
- b) f(x, y, z) = z og C er parametrisert ved $\mathbf{r}(t) = (t\sin(t), t\cos(t), t), t \in [0, 2\pi].$

Oppgave 3 (3.3: 9)

Gjennomfør beviset for setning 3.3.6 (side 186) når de to parametriseringene har motsatt orientering.

Oppgave 4 (3.4: 1,3)

Regn ut linjeintegralet $\int_C \mathbf{F} \cdot d\mathbf{r}$ når

- a) $\mathbf{F}(x,y) = (y,x)$ og kurven C er parametrisert ved $\mathbf{r}(t) = (2t,-3t), t \in [1,3],$
- b) $\mathbf{F}(x,y,z)=(zy,x^2,xz)$ og kurven C er parametrisert ved $\mathbf{r}(t)=(t,t^2,t^3),\,t\in[0,2].$

Oppgave 5 (3.4: 6)

Regn ut linjeintegralet $\int_C \mathbf{F} \cdot d\mathbf{r}$ når $\mathbf{F}(x,y) = (x,y)$ og C er sirkelen med sentrum i origo og radius 5. C skal gjennomløpes i positiv retning (dvs. mot klokken).

Oppgave 6 (3.4: 8)

La C være omkretsen til trekanten med hjørner i punktene $(0,0),(\pi,0)$ og (π,π) . Regn ut $\int_C \mathbf{F} \cdot d\mathbf{r}$ når $\mathbf{F}(x,y) = (\cos(x)\sin(y),x)$ og C er positiv orientert (dvs. mot klokken).

Oppgave 7

Avgjør om feltet er konservativt og i så fall finn en potensialfunksjon.

- a) $\mathbf{F}(x,y) = (x^2 + y^2, 2xy),$
- b) $\mathbf{F}(x, y) = (xy, xy),$
- c) $\mathbf{F}(x,y) = (2x\cos(y) + \cos(y), x^2\sin(y) + x\sin(y)).$

Oppgave 8 (3.4: 14)

Figuren viser en båt som blir dratt bortover en flat strand med et tau. Tauet går gjennom en talje som er festet i punktet (20,5), og trekkraften i tauet er konstant lik K. Posisjonen til båten ved tiden $t \in [0,20]$ er (t,0).

a) Vis at arbeidet som kraften utfører er gitt ved

$$W = K \int_0^{20} \frac{20 - t}{\sqrt{25 + (20 - t)^2}} dt.$$

b) Finn W.

Oppgave 9 (Eksamen Juni 2016, oppgave 5)

La $\mathbf{F}(x,y,z)=(2xy,x^2,z).$ Beregn linje
integralet

$$\int_C \mathbf{F} \cdot d\mathbf{r},$$

når

- i) C er kurven parametrisert ved $\mathbf{r}:[0,2\pi]\to\mathbb{R}^3,\,\mathbf{r}(t)=(\cos(t),\sin(2t),\sin^2(t)).$
- ii) C er en vilkårlig glatt kurve med startpunkt (0,0,0) og endpunkt $(1,-2,\sqrt{2})$.

Oppgavene finnes i boka Flervariabel analyse med lineær algebra av T.Lindstrøm og K.Hveberg. Se henvisningen i parentes.