

Independent Electric Distribution Reliability Study for Columbia, MO

PREPARED FOR:

Columbia Water & Light Department

(CWLD)

REPORT DATE:

August 24, 2018

(V.3)

PREPARED BY:

Hugo Bashualdo

HBashualdo@Quanta-Technology.com

(919) 316-9665

Edward Pfeiffer

EPfeifer@Quanta-Technology.com

(314) 562-0906

APPROVED BY:

Carl L. Wilkins P.E. License 2018003149

QUANTA TECHNOLOGY, LLC

4020 WESTCHASE BOULEVARD, SUITE 300, RALEIGH, NC 27607 USA
Oakland | Chicago | Boston | Toronto

www.Quanta-Technology.com

Quanta Technology, LLC is a wholly-owned subsidiary of Quanta Services, Inc. (NYSE: PWR)

Report Contributors:

- Vahraz Zamani
- Nikoo Kouchakipour
- Dennis Flinn
- Nima Yousefpoor

VERSION HISTORY:

Version	Date	Description
Draft	4/3/2018	Current Distribution System Assessment
1	4/11/2018	City comments and substation transformers rating methodologies added
2	7/5/2018	Includes the City comments
3	8/24/2018	Final Report
4	1/15/2018	Signed final report

EXECUTIVE SUMMARY

Columbia Water & Light Department ("CWLD") has eight substations located throughout its service territory. Sixty (60) distribution circuits (including stand-by, dedicated, and normal circuits) feed the CWLD's service territory at the 13.8 kV level. CWLD has been evaluating the load serving capability of its electric system, especially to address potential development in the south western part of Columbia, MO ("the city"). Over the past few years, CWLD has evaluated several options meeting forecasted load growth, including a project that would add transmission lines to establish a new Mill Creek substation on Peach Tree Drive. This report presents the results of an independent third party study exploring the adequacy of existing substation and distribution feeder capacity to meet anticipated future loads. The scope of this study does not include any evaluation of 69kV or 161kV facilities.

The study results show the distribution circuits are capable of handling the existing CWLD system load up to and including forecast load growth of 5.62% of the current peak demand. No voltage or thermal loading violations were calculated for loads up to 105.62% of 2018 forecast loads, with the exception of Circuit PC 221. Low voltages on PC 221 would require the installation of a voltage regulation device in the short term to correct risk of low voltage.

The results of the substation capacity adequacy assessment indicate that the existing substation capacity should be adequate for five years. This assessment is based on the assumptions that all of the substations would experience up to 5% annual compound, non-coincident load growth, and that feeder to feeder load transfers could be performed in a timely manner to avoid N-1 transformer loading above nameplate ratings.

The distribution system study created power flow models of all distribution circuits based on GIS graphical and equipment data provided by CWLD. Feeder loading was modeled based on non-coincident feeder peak demand. Feeder egress thermal loading was determined based on CWLD underground system construction standards, ambient temperature assumptions, and cable type and cross-section. The study also assessed the distribution circuit voltage and thermal loading performance for 2018 peak system conditions. Feeder load growth was estimated based on aggregate system load forecast data. The growth rate was applied to the circuit power flow model to assess future voltage and thermal loading performance. The steady state studies were performed using CymeDist tool.

The ampacity study results, which calculate the feeder egress capacity, indicate that the feeder loading could be increased by about 1 MVA from currently assumed values. Emergency thermal feeder ratings were calculated based on short term high temperature operation. The use of such ratings, based on a risk tolerance assessment, could add another 1 MVA of load carrying capacity to address short term emergency conditions.

Substation transformer capacity adequacy was evaluated based on present and forecast substation load, substation N-1 transformer capacity, and feeder to feeder load transfers. Load transfers to adjacent substations were limited by feeder thermal ratings using existing CWLD circuit capacity standards, voltage limits, and transformer nameplate capacity. Normally open bus tie breakers were not closed to increase the transformer load carrying capability in adjacent substations. Compound annual substation load growth of 2-5% over five and ten years was considered to evaluate future substation transformer capacity adequacy.

A sustained non-coincident compound load growth at all substations has been used as a planning tool to identify substations which may have future capacity adequacy issues. Using a 3% annual load growth assumption, the ten year out results indicate that the Perche Creek, Harmony Branch, and Hinkson Creek substations are potential candidates to require some form of transformer capacity additions to provide loading relief should the assumed compound load growth occur. These three stations would, based on the forecast compound load growth assumed, need to utilize a loss of life rating based on transformer insulation degradation to avoid curtailing loads for in the event of a transformer outage.

Both the five year and ten year assessments should be refined at such time as improved substation load forecasts are available. In addition, the planned feeder improvements associated with Harmony T3 should be included in future evaluations.

The primary risk in assessing the substation capacity adequacy is associated with the ability to transfer loads between adjacent substations in a timely manner. This risk is mitigated by the limited likelihood of a transformer failure occurring at or near peak conditions and the thermal time constant of the affected transformers. Loads below peak values and the time delay before the affected transformers reach their maximum allowed top oil temperature will provide a buffer to allow for the implementation of predefined feeder to feeder switching solutions.

The primary use of a substation capacity adequacy assessment which utilizes feeder to feeder transfers and loss of life ratings (as acceptable) is to provide a means of identifying the need for substation capacity additions and provide a mechanism to defer these capacity additions subject to risk tolerance. The results of this analysis indicate that additional substation capacity may be required in future plans to relieve potential Perche Creek, Harmony Branch, and Hinkson Creek Substations. The timing and method for providing this additional substation capacity will be dependent on local development, actual load growth, and the City's risk tolerance to rely on feeder to feeder load transfers and the possible exposure to some transformer loss of life. The details of such a capacity addition plan will develop in conjunction with a detailed substation/feeder load forecast

Potential Projects to Increase Reliability

- Monitor transformer capacity adequacy at the Perche Creek, Harmony Branch and Hinkson Creek Substations based on individual substation load growth
- Include a Bus Tie for the Harmony Branch 3 Transformer and Switchgear
- Add Voltage regulation to the PC 221 feeder.

Additional Recommended Actions to gather more information

Perform a spatial load forecast study at substation level that attempts to identify areas of the city where load growth is likely to occur

NUMBER

Perform a loss of life study on the substation transformers in order to better understand MISSON

acceptable overload conditions

Carl L Wilkins P.E. License 2018003149

TABLE OF CONTENTS

EXE	CUT	IVE SUMMARY	iii
		Figures	
Li	st of	Tables	vii
1	INT	RODUCTION	1
2	DIS	TRIBUTION SYSTEM ASSESSMENT	2
2.		Distribution System Modeling	
2.	.2 S	Substation and Circuit Loading Analysis	8
	2.2	2.1 Substation Load and Capacity Analysis	8
	2.2	2.2 Substation Transformer Load Factor (LF) and Utilization Factor (UF) Analysis	10
	2.2	2.3 Distribution Circuit Load Factor Analysis	15
2.	.3 [Distribution Circuit Capacity Analysis	17
	2.3	3.1 Nominal capacity	19
	2.3	3.2 Emergency Capacity	23
	2.3	3.3 Distribution Circuit Utilization Factor (UF) Analysis	25
	2.3	3.4 Load Modeling in Cyme Power Flow Model	28
3	DIS	TRIBUTION SYSTEM PERFORMANCE	29
3.	.1 S	Substation Transformer Rating Methodologies	29
	3.1	1 N-1 Transformer Nameplate Capacity	29
	3.1	2 N-1 Transformer Nameplate Capacity plus Load Transfer	29
	3.1	3 N-1 Acceptable Loss of Life plus Load Transfer	30
3.	.2 [Distribution System Thermal Capacity	33
3.	.3 [Distribution System Voltage Performance	33
4	DIS	TRIBUTION SYSTEM PERFORMANCE - 5 YEARS	39
4.	.1 L	oad Growth	39
4.	.2 [Distribution Circuit Utilization Factor (UF) – 5.62% Load Growth	40
4.		Distribution System Thermal Capacity – 5.62% Load Growth	
4.		Distribution System Voltage Performance	
4.	.5 L	oad transfer Capability via Distribution Circuits	46
5		TEM IMPROVEMENT	
5.		Substation system Improvement – Current Conditions	
5.		Distribution System Improvements – Current Conditions	
	5.2	·	
	5.2	2.2 Load balancing and relocating existing 900 kVAR capacitor bank	56

	5.2.3	Installation of a 3-phase voltage regulator	56
APPI	ENDIX A	A: SUBSTATION SINGLE LINE DIAGRAM	58
APPI	ENDIX E	B: SUBSTATION TRANSFORMER AND CIRCUIT LOAD PROFILES	66
APPI	ENDIX (C: CABLE SHEET	86
APPI	ENDIX D	D: SUBSTATION AND CIRCUIT LOADING	88
APPI	ENDIX E	: MAXIMUM TRANSFER CAPABILITY THROUGH DISTRIBUTION FEEDER	91

List of Figures

Figure 1. City of Columbia distribution system model	3
Figure 2. In-line and tie switch locations.	5
Figure 3. Distribution of substation transformer LF	11
Figure 4. SUB transformers' UF	
Figure 5. Perche Creek Transformer-1 and Distribution Circuits' Load Profile – Year 2017	14
Figure 6. Perche Creek Transformer-1 and Distribution Circuits' Load Profile – July 2017	14
Figure 7. Distribution (expressed in numbers) of circuits based on their LF	
Figure 8. Distribution (expressed in %) of circuits based on LF	
Figure 9. Cable layout in substation circuit egress trench	
Figure 10. Distribution (expressed in %) of circuits based on their utilization factor – Assumed Ca	
Figure 11. Distribution (expressed in %) of circuits based on their utilization factor – Calculated Ca	
Figure 12. 22.5 MVA transformer load profile	
Figure 13. 22.5 MVA transformer temperature profile	
Figure 14. 22.5 MVA transformer cumulative loss of life	
Figure 15. Distribution System, scattered plot maximum Thermal Loading of each circuit	
Figure 16. ANSI C84.1 Voltage Level Standard	
Figure 17. Maximum and minimum voltage of each distribution circuit	
Figure 18. Voltage level color code map	
Figure 19. PC 221 load profile: July 2017	
Figure 20. PC 221 circuit load profile: July 21–22, 2017	
Figure 21. System coincidental load forecast (2018 – 2027)	
Figure 22. Scattered plot circuit utilization factor	
Figure 23. Distribution System, scattered plot maximum Thermal Loading of each circuit	
Figure 24. Maximum and minimum voltage of each distribution circuit.	
Figure 25. Maximum and minimum voltage, GD, HB, HC and PC circuits	
Figure 26. Voltage profile after load balancing and relocating existing 900 kVAR capacitor bank	
Figure 27. Voltage Profile after Installing a Voltage Regulator	57
List of Tables	
Table 1. Substation and Transformation Capacity	2
Table 2. Typical Distribution Service Transformers Parameters	
Table 3. Typical 13.8-kV Circuit Classification Used in the CYME Model	
Table 4. Distribution Circuit Voltage Set Point	
Table 5. Primary Service Loading Information	
Table 6. Substation Capacity Assessment	
Table 7. Substation Power Transformers' Performance (UF and LF)	
Table 8. Circuits with LF below 50%	
Table 9. Number of Circuits in Circuit Egress per Substation	
Table 10. Circuit Ampacity Study Result	
Table 11. Assumed and Calculated Circuit Capacity (BD, BR, GD and HB circuits)	
Table 12. Assumed and Calculated Circuit Capacity (HC, PC, PL and RH circuits)	

Table 13. Calculated Circuit Emergency Capacity (BD, BR, GD and HB circuits)	23
Table 14. Calculated Circuit Emergency Capacity (HC, PC, PL and RH)	24
Table 15. UF Comparison for BD, BR, GD and HB Circuits	26
Table 16. UF Comparison for HC, PC, PL and RH Circuits	27
Table 17. Voltage Levels and Different Voltage Standards	35
Table 18. Maximum and Minimum Voltage – Circuit PC 221	37
Table 19. Yearly peak load demand growth	39
Table 20. UF Comparison for BD, BR, GD and HB Circuits	41
Table 21. UF Comparison for HC, PC, PL and RH Circuits	42
Table 22. Spot Load Allocation (5.62% of peak demand) and Power flow Simulation Results	45
Table 23. Maximum Transfer Capability from Circuit to Substation through Distribution Circuit ties	49
Table 24. Maximum Transfer Capability from Circuit to Substation through Distribution Circuit ties	50
Table 25 Forecast Substation Adequacy: 2% Growth	54
Table 26 Forecast Substation Adequacy: 3% Growth	54
Table 27 Forecast Substation Adequacy: 4% Growth	55
Table 28 Forecast Substation Adequacy: 5% Growth	55

1 INTRODUCTION

The Columbia Water & Light Department ("CWLD") has eight substations located throughout its service territory and sixty (60) distribution circuits (including stand-by, dedicated, and normal circuits) feed the CWLD's service territory at the 13.8 kV level. CWLD has been evaluating different options to address new development and increased loads. In particular there has been system expansion forecast in the south western part of the city.

CWLD has indicated an interest in having an independent third party perform a study within the CWLD service territory exploring alternatives to compare with existing options which the city has developed. This study presents a distribution system and substation transformation system assessment. This study does not consider any enhancements to the 69kV and 161kV system.

The remainder of this report is structured as follows:

- Section 2, Distribution System Assessment, describes study methodology and results of system
 modeling including network, equipment, and load modeling. It also presents the study methodology
 and the results of the feeder ampacity study, which assesses the thermal loading capacity of
 distribution circuit egress.
- Section 3, Distribution Performance, analyzes the substation transformer's rating capacity under different system operating conditions. On the distribution circuit level, this section shows thermal and system voltage performance.
- Section 4, Distribution System Performance 5 Years, describes the study results of distribution system applying load growth.
- Section 5, System Improvements, provides an overview of mitigation required to maintain the
 distribution system performance; it also describes substation capacity assessment under different
 load growth values studied as sensitivity analysis.
- Appendices provide additional information used during the present study process.

2 DISTRIBUTION SYSTEM ASSESSMENT

2.1 Distribution System Modeling

The information provided by CWLD for modeling purposes was represented in a geographic information system (GIS) graphical interface containing the topology of the circuits. CWLD also provided supplementary graphical information in the form of shape files that could be visualized in a CYME environment. CYME is an industry standard software package used by a large number of power utilities for a wide range of distribution system analyses across North-America. A CYME model was built using software version 7.2, Revision 9. Substation configuration single-line diagrams were also provided and are included in Appendix A.

The CWLD electric service territory is fed by 60 distribution circuits at 13.8 kV nominal voltage. Two circuits are for standby use. The circuits are connected to twenty transformers distributed in eight HV/MV substations, providing a total transformation capacity of 459.2 MVA. Table 1 summarizes the capacity of the eight substations of the CWLD area. These transformers feed the 13.8-kV distribution circuits.

Table 1. Substation and Transformation Capacity

Substatio	n	Transformer			
Name	ID	ID	FOA Capacity (MVA)		
Bolstad	BD	BD T1	22.40		
BOIStau	טם	BD T2	22.40		
Pluo Pidgo	BR	BR T1	22.40		
Blue Ridge	DN	BR T2	22.40		
		GD T1	22.40		
Grindstone	GD	GD T2	22.40		
		GD T3	22.40		
		HB T1	22.40		
Harmony	НВ	нв т2	22.40		
		нв тз	22.40		
		HC T1	22.40		
Hinkson Creek	HC	HC T2	22.40		
		HC T3	22.40		
Perch Creek	PC	PC T1	22.40		
Percir creek	PC	PC T2	22.40		
		PL T1	22.40		
Power Plant	PL	PL T2	22.40		
		PL T3	22.40		
Rebel Hill	RH	RH T1	28.00		
reper mili	КП	RH T2	28.00		

Every circuit was represented by a 13.8-kV source node. All circuits were modeled with a voltage set point between 1.00 pu and 1.03 pu. A detailed cable and conductor CYME model was built for every circuit based on the provided information. Figure 1 depicts the CWLD Distribution System modeled in CYME.

Figure 1. City of Columbia distribution system model.

Size and phasing of distribution transformers were provided by CWLD. Electrical parameters of distribution transformers were assigned typical values as described in Table 2 below.

Table 2. Typical Distribution Service Transformers Parameters

HV [kV]	LV [kV]	Power [kVA]	Phases	Z [%]	N.L. Loss [W]	X/R
13.8/7.967	0.240/0.120	5	1	3.24	50	1.54
13.8/7.967	0.240/0.120	10	1	3.24	70	1.54
13.8/7.967	0.240/0.120	15	1	3.24	80	1.54
13.8/7.967	0.240/0.120	25	1	3.24	120	1.54
13.8/7.967	0.240/0.120	37.5	1	3.15	170	1.56
13.8/7.967	0.240/0.120	50	1	3.04	190	1.60
13.8/7.967	0.240/0.120	75	1	2.94	200	1.67
13.8/7.967	0.240/0.120	100	1	2.89	250	1.72
13.8/7.967	0.208/0.120	112.5	3	2.88	270	1.75
13.8/7.967	0.208/0.120	150	3	2.87	300	1.82
13.8/7.967	0.240/0.120	167	1	2.87	330	1.85
13.8/7.967	0.208/0.120	225	3	2.89	400	1.94
13.8/7.967	0.208/0.120	300	3	2.95	430	2.07
13.8/7.967	0.208/0.120	500	3	3.06	460	2.22
13.8/7.967	0.208/0.120	750	3	5.75	500	2.22
13.8/7.967	0.480/0.277	75	3	2.94	200	1.67
13.8/7.967	0.480/0.277	300	3	2.95	430	2.07
13.8/7.967	0.480/0.277	500	3	5.75	460	2.22
13.8/7.967	0.480/0.277	750	3	5.75	500	2.22
13.8/7.967	0.480/0.277	1000	3	5.75	600	2.22
13.8/7.967	0.480/0.277	2000	3	5.75	800	2.22
13.8/7.967	0.480/0.277	2500	3	5.75	1200	2.22

136 switches were modeled as tie switches and in-line switches. The location of these tie switches is marked with green circles in Figure 2. The majority are located around the city's downtown area.

Figure 2. In-line and tie switch locations.

A total of 119 capacitor banks with a total capacity of 123.6 MVAR have been modeled in the CWLD distribution system and are distributed as follows: 9.3 MVAR on Bolstad circuits, 8.1 MVAR on Blue Ridge circuits, 8.85 MVAR on Grindstone circuits, 24.3 MVAR on Harmony Branch circuits, 21.9 MVAR on Hinkson Creek circuits, 13.5 MVAR on Perche Creek circuits, 19.5 MVAR on Power Plant, and 18.15 MVAR on Rebel Hill circuits.

279.33 miles of overhead lines were modeled as following: 11.96 miles on Bolstad circuits, 30.15 miles on Blue Ridge circuits, 21.84 miles on Grindstone circuits, 58.76 miles on Harmony Branch circuits, 38.95 miles on Hinkson Creek circuits, 43.07 miles on Perche Creek circuits, 49.83 miles on Power Plant, and 24.77 miles on Rebel Hill circuits.

492.35 miles of underground cables were also modeled as part of the CWLD's distribution system as following: 9.07 miles on Bolstad circuits, 38.43 miles on Blue Ridge, 76.39 miles on Grindstone circuits, 47.56 miles on Harmony Branch circuits, 106.65 miles on Hinkson Creek circuits, 125.71 miles on Perche Creek circuits, 32.58 miles on Power Plant, and 55.96 miles on Rebel Hill circuits. The cable capacity (Amps) for different cables implemented in the model is summarized in Table 3 below.

Table 3. Typical 13.8-kV Circuit Classification Used in the CYME Model

Cable Size	Circuit Classification (Amps)
500 CU (UG)	600 Amps class
477 ACSR (OH)	600 Amps class
4/0 AL	200 Amps class
1/0 ACSR (OH)	200 Amps class

Based on the sub-transmission one-line diagram and the medium voltage bus voltage information, the voltage set-points for different feeders were set from 1.0 pu to 1.03 pu (13.9 kV and 14.2 kV). Table 4 summarizes voltage set point at each distribution medium voltage bus.

Table 4. Distribution Circuit Voltage Set Point

Feeder/	Bus Voltage (kV)				
Circuit	Nominal	Dispatched			
BD 211	13.8	14.2			
BD 212	13.8	14.2			
BD 213	13.8	14.2			
BD 221	13.8	14.0			
BD 222	13.8	14.0			
BD 223	13.8	14.0			
BR 211	13.8	13.9			
BR 212	13.8	13.9			
BR 213	13.8	13.9			
BR 221	13.8	14.1			
BR 222	13.8	14.1			
GD211	13.8	14.0			
GD212	13.8	14.0			
GD213	13.8	14.0			
GD221	13.8	14.3			
GD222	13.8	14.3			
GD223	13.8	14.3			
GD231	13.8	14.1			
GD232	13.8	14.1			
GD233	13.8	14.1			
HB 211	13.8	14.0			

Feeder/	Bus Voltage (kV)				
Circuit	Nominal	Dispatched			
HB 212	13.8	14.0			
HB 213	13.8	14.0			
HB 221	13.8	14.0			
HB 222	13.8	14.0			
HB 223	13.8	14.0			
HB 231	13.8	14.0			
HB 232	13.8	14.0			
HB 233	13.8	14.0			
HC 211	13.8	13.9			
HC 212	13.8	13.9			
HC 213	13.8	13.9			
HC 221	13.8	14.1			
HC 223	13.8	14.1			
HC 231	13.8	13.9			
HC 232	13.8	13.9			
HC 233	13.8	13.9			
PC 211	13.8	14.0			
PC 212	13.8	14.0			
PC 213	13.8	14.0			
PC 221	13.8	13.9			
PC 222	13.8	13.9			
PC 223	13.8	13.9			
PL 212	13.8	14.1			
PL 213	13.8	14.1			
PL 214	13.8	14.1			
PL 221	13.8	14.1			
PL 222	13.8	14.1			
PL 223	13.8	14.1			
PL 231	13.8	14.1			
PL 232	13.8	14.1			
PL 233	13.8	14.1			
RH 211	13.8	14.0			
RH 212	13.8	14.0			
RH 213	13.8	14.0			
RH 214	13.8	14.0			
RH 221	13.8	14.0			
RH 222	13.8	14.0			
RH 223	13.8	14.0			
RH 224	13.8	14.0			

After modeling the circuit layout (network) and equipment (switches and service transformer), circuit loading was analyzed, which includes primary services (spot loads) and circuit peak demand. The spot loads are those industrial or commercial services that draw high demand. Location and peak demand of primary service customers were provided by the CWLD (see in Table 5). The circuit peak demand and load allocation is presented in Section Load Modeling in Cyme Power Flow Model.2.3.4.

Feeder/circuit P (kW) Q (kVAR) BD 212 3520 1099.1 **BD 213** 640.86 200.1 BD 223 294 91.8 2998.09 GS 221 936.2 HC 232 3926.61 1226.1 PC 221 496 1589 PP 212 539.61 168.5 RH 221 1948.51 608.4

Table 5. Primary Service Loading Information

2.2 Substation and Circuit Loading Analysis

The CWLD provided load profiles of each distribution circuit from 2017. From load profiles non-coincidental peak demand, utilization factor and load factor were obtained for substations, substation power transformers, and distribution circuits.

2.2.1 Substation Load and Capacity Analysis

The CWLD has a total of seven 69/13.8kVsubstations and one 161/13.8kV substation with either two or three distribution transformers per substation. These substations employ a variety of bus configurations including:

- A seven element straight bus with no bus tie breakers; e.g. Grindstone
- Four element straight bus with a bus tie breaker; e.g. Bolstad or Rebel Hill
- Seven element straight bus with a bus tie breaker; e.g. Power Plant
- Four to six element ring buses; e.g. Blue Ridge, Harmony, and Hinkson

These different configurations provide differing levels of reliability for single contingency, such as a transformer or 69kV line outage, or common mode contingency events, such as bus outages or internal faults of bus tie breakers. Straight bus configurations are typically considered to provide a lower level of reliability and flexibility than ring buses. However, the occurrence of internal breaker failures and bus faults tend to be low enough such that converting a straight bus station to a ring bus would need to be justified based on other considerations.

The CWLD utilizes a straight bus configuration with normally open bus tie breakers between bus sections supplied by a single transformer for their 13.8kV bus design. This allows the load served by a faulted transformer to be picked up by adjacent transformers in the substation by closing the bus tie breaker.

The one exception to this is the Harmony substation in that there is no bus tie between the 13.8kV bus served by transformer #3 and the buses served by transformers #1 and #2. The feeders supplied by transformer #3 would need to be remotely tied to other feeders in order to pick up the load served from a failed transformer #3.

The variety of substation configurations on the CWLD system all provide the ability to serve the individual substation loads with all transformers in service as well as for the loss of one of the transformers in a substation. The one exception, as noted, is the Harmony substation. As such a simple method of determining the rated capacity of a substation is by the sum of the rated capacity of the smallest transformers in the station under N-1 conditions. In this section, we analyzed the substation transformation capacity under N-1 contingency conditions. Section 3.1 discusses alternative methods by which the rated capacity of a distribution substation can be calculated.

With all transformers in service, the substation utilization factor (UF) varies from 42% to 80%. Bolstad substation is the least loaded and Perche creek the most loaded substation, respectively. None of the substations are overloaded with all transformers in service (see Table 6).

Under N-1 condition, the substation's UF varies from 68% to 160%. Four of the seven substations would be overloaded for the loss of one transformer (see Table 6).

The following mitigation strategies may be considered if N-1 substation capacity adequacy is less than actual or forecast load:

- Adding a new transformer or larger transformers where substation overloading is expected to occur,
- Load transferring from overloaded to adjacent substations via distribution switching procedures,
- Developing a short term loss of life transformer rating procedure based on insulation degradation in conjunction with identifying available load transfers to defer substation transformer capacity additions,
- Add Energy Storage System (ESS) to shave peak demand conditions,

These capacity mitigation options will be covered as necessary in Section 3.1 and 5 of the present report to address any identified substation capacity adequacy shortfalls.

Table 6. Substation Capacity Assessment

Substation		Transformer		Load	Category P0 (Non contingency)		Category P1 (N-1 Contingency)	
Name	ID	ID	Capacity (MVA)	(MVA)	Capacity (MVA)	UF	Capacity (MVA)	UF
Bolstad	BD	BD T1 BD T2	22.40 22.40	18.8	44.80	42%	22.40	84%
Blue Ridge	BR	BR T1 BR T2	22.40 22.40 22.40	24.06	44.80	54%	22.40	107%
Grindstone	GD	GD T1 GD T2	22.40 22.40	36.21	67.20	54%	44.80	81%
Harmony Branch	НВ	GD T3 HB T1 HB T2	22.40 22.40 22.40	27.40	44.80	61%	22.40	122%
		HB T3	22.40	15.17	22.40	68%	00.00	Fails
Hinkson Creek	НС	HC T1 HC T2 HC T3	22.40 22.40 22.40	45.20	67.20	67%	44.80	101%
Perche Creek	PC	PC T1 PC T2	22.40 22.40	35.81	44.80	80%	22.40	160%
Power Plant	PL	PL T1 PL T2 PL T3	22.40 22.40 22.40	42.38	67.20	63%	44.80	95%
Rebel Hill	RH	RH T1 RH T2	28.00 28.00	33.37	56.00	60%	28.00	119%

2.2.2 Substation Transformer Load Factor (LF) and Utilization Factor (UF) Analysis

The load factor is the ratio of the energy loading that a piece of equipment is forecast to experience in operation in MWh divided by its maximum demand in MW times 8760 hours per year. It is used to assess how efficiently a transformer or circuit is utilized. It is defined as the relation between total kWh serviced in a period of time and the maximum demand over such a period of time, as expressed in Eq. 2-1. A low LF indicates the asset is infrequently loaded at rated capacity and high loading is of limited duration. High LF specifies the load could put a strain on the electrical system and the non-peak hour load is constantly high.

$$LF = \frac{\text{E-year (MWh)}}{\text{MD (MW)x 8,760 (Hrs)}}$$
 (Eq. 2-1)

Where:

LF = Load Factor

E-year = Energy consumed in a Year, expressed in MWh

MD = Maximum demand registered in the analyzed year, expressed in MW

Utilization factor (UF) is the ratio of the maximum load that could be drawn to the rated equipment/system capacity, as expressed in the following equation (Eq. 2-2):

$$UF = \frac{\text{MD (MVA or Amps)}}{\text{Capacity (MVA or Amps)}}$$
 (Eq. 2-2)

The average transformer's load factor (LF) is 48% with a maximum of 67% (Bosltad Transformer-1) and minimum of 37% (Perche Creek Transformer-1). Those values are typical for peer power utilities for industrial/commercial and residential service areas, respectively. Figure 3 shows the LF of all substation transformers.

Figure 3. Distribution of substation transformer LF.

Transformer UF range from 32% to 81%. Perche Creek Transformer-1 registered the maximum value, while Blue Ridge Transformer-2 registered the minimum. See Figure 4 for transformers' UF

Figure 4. SUB transformers' UF.

Table 7 below summarizes the substation' transformers UF and LF indices. As shown in Figure 4 and Table 7, no transformer is overloaded under normal conditions.

Figure 5 shows the Perche Creek Transformer-1 load profile, the most heavily loaded transformer on the CWLD system. The recorded peak demand was 17.53 MVA. As observed, this transformer reaches its peak demand during July. For about 10 days of the year the load is above 15 MVA. During June, August and September the peak demand remains below 15 MVA (see Figure 6), and for the remaining eight months load, the transformer's peak demand is less than 10 MVA. Giving the high UF (81% for transformer 1), it is recommended to monitor the transformer load during July and create an offloading schedule that should be triggered in case Category P1 operation conditions occur (e.g. transformer failure)

Contrary to the high UF, Perche Creek Transformer 1 has the lowest LF indicating that this transformer provide service to mainly residential customers with very low load factor all together. The life cycle of the transformer is not impacted.

Load profiles figures for all transformers are presented in Appendix B.

Table 7. Substation Power Transformers' Performance (UF and LF)

Substation		Transformer		Load				LF
Name	ID	ID	Capacity	MW	MVAR	MVA	UF	LF
Dalatad	BD	BD T1	22.40	10.93	1.53	11.03	49%	67%
Bolstad	ВО	BD T2	22.40	7.73	0.78	7.77	35%	42%
Dluo Didgo	BR	BR T1	22.40	16.72	1.68	16.80	75%	43%
Blue Ridge	BK	BR T2	22.40	7.15	1.34	7.27	32%	48%
		GD T1	22.40	14.93	2.15	15.09	67%	47%
Grindstone	GD	GD T2	22.40	9.37	4.08	10.22	46%	49%
		GD T3	22.40	11.10	1.40	11.19	50%	57%
		HB T1	22.40	11.07	2.67	11.39	51%	47%
Harmony Branch	НВ	HB T2	22.40	15.40	4.40	16.01	71%	39%
		нв тз	22.40	15.10	1.50	15.17	68%	47%
	НС	HC T1	22.40	17.80	2.20	17.94	80%	45%
Hinkson Creek		HC T2	22.40	13.00	1.90	13.14	59%	40%
		нс тз	22.40	13.90	2.60	14.14	63%	51%
Davida Craali	DC.	PC T1	22.40	17.53	4.28	18.05	81%	37%
Perche Creek	PC	PC T2	22.40	17.23	4.33	17.77	79%	45%
		PL T1	22.40	13.90	1.90	14.03	63%	51%
Power Plant	PL	PL T2	22.40	14.00	1.90	14.13	63%	53%
		PL T3	22.40	14.06	2.19	14.23	64%	53%
Dob al Hill	DII	RH T1	28.00	19.00	3.20	19.27	69%	47%
Rebel Hill	RH	RH T2	28.00	13.64	3.72	14.14	50%	53%

Figure 5. Perche Creek Transformer-1 and Distribution Circuits' Load Profile - Year 2017

Figure 6. Perche Creek Transformer-1 and Distribution Circuits' Load Profile – July 2017

2.2.3 Distribution Circuit Load Factor Analysis

With the non-coincidental circuit peak demand, four distribution circuits registered load factors (LF) above 60% (BD-211, BD-213, PL-231 and RH-221). These are circuits feeding mainly industrial and/or commercial customers. Eleven circuits registered LFs between 50% and 60%. Close to 50% of the CWLD circuits (twenty seven) recorded LFs between 40% and 50%, typical values for mainly-residential service areas. There are sixteen circuits with LF below 40% with potential to increase its load without major system improvement work. Figure 7 and Figure 8 show the distribution of circuits based on LF. Table 8 list circuits with LF below 50%.

Figure 7. Distribution (expressed in numbers) of circuits based on their LF.

Figure 8. Distribution (expressed in %) of circuits based on LF.

Table 8. Circuits with LF below 50%

Circuit	L	F
BD 223		28%
HB 223		32%
BR 212		33%
PC 211		34%
GD221		34%
PC 213		34%
PC 223		35%
HB 222		36%
RH 214		38%
BR 213		38%
HC 223		38%
HC 213		39%
PL 213		39%
HB 232		40%
HB 231		40%
HB 211		40%
PC 212		41%
BR 221		41%
RH 212		41%
RH 224		41%
HB 221		42%
BR 211		43%
HC 221		44%
PL 214		44%
PC 222		44%
HC 212		45%
GD211		45%
GD231		46%
PL 222		46%
PL 233		46%
PL 212		46%
PL 221		46%
HB 213		46%
HC 233		47%
PL 232		47%
HB 212		47%
PC 221		48%
GD212		48%
GD213		48%
BR 222		48%
HC 211		48%
HC 231		49%
HB 233		50%

2.3 Distribution Circuit Capacity Analysis

The CWLD has assumed 372 Amps to be the maximum circuit capacity for all 13.8-kV circuits. The published maximum allowed conductor temperature allowed by CWLD is 90 degrees Celsius. According to the National Electric Code the maximum current for the type of wire used by CWLD is 465 Amps. CWLD has decided that the maximum carrying capacity of this feeder shall not exceed 80% of the rated capacity of the feeder. This section presents an assessment of the calculated ampacity of all 13.8-kV circuits. To perform the ampacity study, CYMCAP (a CYME module) was used. CYMCAP deals with cables at all alternating voltages. Cables can be directly buried, in ducts/pipes, in backfills, in duct banks, in air, in troughs, or in casings. A circuit capacity depends upon, among others, the following factors:

- 1. Physical construction/cable geometry: direct buried, direct buried conduits, concrete encased duct bank, buried pipes, and cable in air
- 2. Ambient temperature
- 3. Circuit load factor
- 4. Cable specifications (by manufacturer)
- 5. Number of circuits in the same trench, etc.

The techniques and formulas outlined in the international standards IEC-60287©, IEC-60853©, and IEC-60949© issued by the International Electrotechnical Commission are used throughout the calculations. The permissible current rating of an AC cable is derived from the expression for the temperature rise above ambient temperature (See Eq. 2-3):

$$\Delta\theta = (I^2R + 0.5W_d)T_1 + (I^2R(1+\lambda_1) + W_d)nT_2 + (I^2R(1+\lambda_1+\lambda_2) + W_d)n(T_3+T_4) \tag{Eq. 2-3}$$

Where:

1	=	Current flowing in one conductor (A)
$\Delta\theta = \vartheta_c - \vartheta_{amb}$	=	Conductor temperature rise above ambient (°C)
R	=	ac resistance per unit length of the conductor at maximum operating temperature (Ω/m)
W_d	=	Dielectric loss per unit length for the insulation surrounding the conductor (W/m)
T_1	=	Thermal resistance per unit length between conductor and sheath (K·m/W)
T_2	=	Thermal resistance per unit length of the bedding between sheath and armour (K·m/W)
<i>T</i> ₃	=	Thermal resistance per unit length of the external serving of the cable (K·m/W)
T_4	=	Thermal resistance per unit length between the cable surface and the surrounding medium (K·m/W)
n	=	Number of load-carrying conductors in the cable (equal size conductors carrying the same load)
λ_1	=	Ratio of losses in the metal sheath to total losses in all conductors in that cable

 λ_2 = Ratio of losses in the armour to total losses in all conductors in that cable

Worst case scenarios for each substation's circuits were studied. The worst case scenario assumes four, three, or two circuits running in parallel in the same trench with no separation between conduits containing the circuits. The number of circuits running in the same trench is determined based on the graphical circuit maps provided by the CWLD. Table 9 list the circuits' IDs running in parallel in substation circuit's egress, together with the load factors that were used in the CYMCAP simulations.

Table 9. Number of Circuits in Circuit Egress per Substation

Number and Order of Circuits in an Egress Trench	LF		
BD 212	56%		
BD 213	62%		
BR 221	41%		
BR 211	43%		
BR 212	33%		
GD223	55%		
GD222	52%		
GD212	48%		
GD221	34%		
HB 231	40%		
HB 223	32%		
HB 211	40%		
HB 233	50%		
HC 213	39%		
HC 212	45%		
HC 223	38%		
HC 211	48%		
PC 213	34%		
PC 222	44%		
PC 221	48%		
PC 223	35%		
PL 233	46%		
PL 212	46%		
PL 221	46%		
PL 232	47%		
RH 221	61%		
RH 222	51%		
RH 223	0%		
RH 224	41%		

Figure 9 depicts the assumed circuit egress-trench layout for four, three or two circuits running in parallel. Four conduits is the most congested underground egress that CWLD has. CWLD indicated that the direct buried conduits are buried randomly with no separation between them.

Figure 9. Cable layout in substation circuit egress trench.

The following technical factors were assumed:

- 1. Physical construction/cable geometry: direct buried conduits (5"), no separation between conduits, buried 4 feet deep. Four, three, or two conduits running in a trench.
- 2. Ambient temperature: 32 °C (90 °F).
- 3. Circuit load factor: depends on each circuit load profile.
- 4. Cable configuration: 500 kcmil, 15-kV type, 220 mils EPR 133% insulation, 1/3 concentric neutral with PVC jacket, single conductor.
- 5. Nominal capacity temperature: 105 °C (221 °F) (See cable sheet in Appendix C).
- 6. Emergency capacity temperature: 120 °C (248 °F) (Cable provider suggests 140 °C, see Appendix C).

2.3.1 Nominal capacity.

The ampacity study results show that the circuit's capacity are greater than the assumed capacity (352 Amps). The increase varies from 15 to 58 Amps (4% to 16%, respectively). The increase in capacity is due to two factors: 1) circuit load factor (LF \leq 62%) and 2) the number of circuits in an egress trench (four at the most). The lower the load factor and the fewer circuits in a trench, the greater the circuit capacity can be. Table 10 depicts the ampacity study results.

Table 10. Circuit Ampacity Study Result

Circuit order	15	Calculated Capacity @ 105		
in trench	LF	Amps	kVA	
BD 212	56%	398	9,513	
BD 213	62%	398	9,513	
BR 221	41%	410	9,800	
BR 211	43%	410	9,800	
BR 212	33%	410	9,800	
GD223	55%	367	8,772	
GD222	52%	367	8,772	
GD212	48%	367	8,772	
GD221	34%	367	8,772	
HB 231	40%	386	9,226	
HB 223	32%	386	9,226	
HB 211	40%	386	9,226	
HB 233	50%	386	9,226	
HC 213	39%	384	9,178	
HC 212	45%	384	9,178	
HC 223	38%	384	9,178	
HC 211	48%	384	9,178	
PC 213	34%	386	9,226	
PC 222	44%	386	9,226	
PC 221	48%	386	9,226	
PC 223	35%	386	9,226	
PL 233	46%	373	8,915	
PL 212	46%	373	8,915	
PL 221	46%	373	8,915	
PL 232	47%	373	8,915	
RH 221	61%	394	9,417	
RH 222	51%	394	9,417	
RH 223	0%	394	9,417	
RH 224	41%	394	9,417	

To ensure safe system operation, all circuits coming out of a substation will assume the calculated circuit capacity for such a substation. Table 11 (BD, BR, GD and HB circuits) and Table 12 (HC, PC, PL, RH circuits) present the assumed circuit capacity and the calculated (revised) circuit capacity.

Table 11. Assumed and Calculated Circuit Capacity (BD, BR, GD and HB circuits)

Cinquit	Assumed Capacity	Calculated Capacity @ 105 °C		
Circuit	(Amps)	(Amps)		
BD 212	372	398		
BD 213	372	398		
BD 211	372	398		
BD 221	372	398		
BD 222	372	398		
BD 223	372	398		
BR 221	372	410		
BR 211	372	410		
BR 212	372	410		
BR 213	372	410		
BR 222	372	410		
GD223	372	367		
GD222	372	367		
GD212	372	367		
GD221	372	367		
GD211	372	367		
GD213	372	367		
GD231	372	367		
GD232	372	367		
GD233	372	367		
HB 231	372	386		
HB 223	372	386		
HB 211	372	386		
HB 233	372	386		
HB 212	372	386		
HB 213	372	386		
HB 221	372	386		
HB 222	372	386		
HB 232	372	386		

Table 12. Assumed and Calculated Circuit Capacity (HC, PC, PL and RH circuits)

Cinamit	Assumed Capacity	Calculated Capacity @ 105 °C	
Circuit	(Amps)	(Amps)	
HC 213	372	384	
HC 212	372	384	
HC 223	372	384	
HC 211	372	384	
HC 221	372	384	
HC 222	372	384	
HC 231	372	384	
HC 232	372	384	
HC 233	372	384	
PC 213	372	386	
PC 222	372	386	
PC 221	372	386	
PC 223	372	386	
PC 211	372	386	
PC 212	372	386	
PL 233	372	373	
PL 212	372	373	
PL 221	372	373	
PL 232	372	373	
PL 213	372	373	
PL 214	372	373	
PL 222	372	373	
PL 223	372	373	
PL 231	372	373	
RH 221	372	394	
RH 222	372	394	
RH 223	372	394	
RH 224	372	394	
RH 211	372	394	
RH 212	372	394	
RH 213	372	394	
RH 214	372	394	

2.3.2 Emergency Capacity

Considering the expensive – sometimes prohibitive – cost of replacing failed cables during emergency operation, power utilities do not risk cable loading beyond 120 °C operating temperature. Most utilities allow no more than 4 hours of continuous operation at emergency loading conditions. Should circuit load increase beyond the emergency ratings or see continuous operation beyond 4 hours, the distribution system operator coordinates load shedding or load transferring. Table 13 shows circuits' emergency capacities at 120°C of BD, BR, GD and HB circuits.

Table 13. Calculated Circuit Emergency Capacity (BD, BR, GD and HB circuits)

Circuit	Calculated Emergency Capacity @ 120 °C				
Circuit	Amps	kVA			
BD 212	434	10,373			
BD 213	434	10,373			
BD 211	434	10,373			
BD 221	434	10,373			
BD 222	434	10,373			
BD 223	434	10,373			
BR 221	448	10,708			
BR 211	448	10,708			
BR 212	448	10,708			
BR 213	448	10,708			
BR 222	448	10,708			
GD223	401	9,585			
GD222	401	9,585			
GD212	401	9,585			
GD221	401	9,585			
GD211	401	9,585			
GD213	401	9,585			
GD231	401	9,585			
GD232	401	9,585			
GD233	401	9,585			
HB 231	423	10,110			
HB 223	423	10,110			
HB 211	423	10,110			
HB 233	423	10,110			
HB 212	423	10,110			
HB 213	423	10,110			
HB 221	423	10,110			
HB 222	423	10,110			
HB 232	423	10,110			

Table 14 shows circuits' emergency capacities at 120°C of HC, PC, PL, RH circuits.

Some utilities do not consider emergency ratings and only use the circuit nominal capacity for both normal and emergency distribution system operation.

Table 14. Calculated Circuit Emergency Capacity (HC, PC, PL and RH).

Cinquit	Calculated Emergency Capacity @ 120 °C				
Circuit	Amps	kVA			
HC 213	420	10,039			
HC 212	420	10,039			
HC 223	420	10,039			
HC 211	420	10,039			
HC 221	420	10,039			
HC 222	420	10,039			
HC 231	420	10,039			
HC 232	420	10,039			
HC 233	420	10,039			
PC 213	425	10,158			
PC 222	425	10,158			
PC 221	425	10,158			
PC 223	425	10,158			
PC 211	425	10,158			
PC 212	425	10,158			
PL 233	408	9,752			
PL 212	408	9,752			
PL 221	408	9,752			
PL 232	408	9,752			
PL 213	408	9,752			
PL 214	408	9,752			
PL 222	408	9,752			
PL 223	408	9,752			
PL 231	408	9,752			
RH 221	431	10,302			
RH 222	431	10,302			
RH 223	431	10,302			
RH 224	431	10,302			
RH 211	431	10,302			
RH 212	431	10,302			
RH 213	431	10,302			
RH 214	431	10,302			

2.3.3 Distribution Circuit Utilization Factor (UF) Analysis

Utilization factor (UF) is defined as the relation between circuit maximum load observed at the head of the circuit and the circuit capacity (as defined in Section 2.3 above). With the circuit capacity assumed by the CWLD as base (8.89 MVA), circuit HC 223 was identified as the most loaded at peak demand with a UF of 98%. Statistically, 27% of distribution circuits recorded a UF above 70%, while 33% of distribution circuits registered loading below 50% UF as illustrated in Figure 10. Transformer and circuit peak demand are listed in Appendix D.

Figure 10. Distribution (expressed in %) of circuits based on their utilization factor – Assumed Capacity.

With the calculated circuit capacity result as base, the most-loaded circuit registered a UF of 95% (all circuits shifted toward lower levels of UF). The number of circuits with UF greater than 70% reduced to 15% (from 27%). Circuits with UF below 50% increased to remains statically the same (33%).

Figure 11. Distribution (expressed in %) of circuits based on their utilization factor - Calculated Capacity.

With the calculated circuit capacity, no distribution circuit registered overloading concerns and loading factor decreases except circuit of Grindstone substation which UF increases by 1%. In Table 15 and Table 16, the red bars represent circuit's UF with assumed capacity as base while the blue bars shows the circuit's UF with calculated capacity as base. Table 15 illustrates UF for BD, BR, GD and HB circuits. Table 16 depicts the UF for HC, PC, PL and RH circuits.

Table 15. UF Comparison for BD, BR, GD and HB Circuits

Circuit	Assumed Capacity		Calculated Capacity (@ 105°C)			
Oilean	Amps	kVA	U.F.	Amps	kVA	U.F.
BD 212	372	8,891	46%	398	9,513	43%
BD 213	372	8,891	71%	398	9,513	66%
BD 211	372	8,891	24%	398	9,513	23%
BD 221	372	8,891	13%	398	9,513	12%
BD 222	372	8,891	73%	398	9,513	68%
BD 223	372	8,891	74%	398	9,513	69%
BR 221	372	8,891	16%	410	9,800	14%
BR 211	372	8,891	67%	410	9,800	61%
BR 212	372	8,891	74%	410	9,800	67%
BR 213	372	8,891	77%	410	9,800	70%
BR 222	372	8,891	68%	410	9,800	61%
GD223	372	8,891	25%	367	8,772	25%
GD222	372	8,891	39%	367	8,772	40%
GD212	372	8,891	67%	367	8,772	68%
GD221	372	8,891	63%	367	8,772	64%
GD211	372	8,891	74%	367	8,772	75%
GD213	372	8,891	36%	367	8,772	37%
GD231	372	8,891	28%	367	8,772	29%
GD232	372	8,891	69%	367	8,772	70%
GD233	372	8,891	38%	367	8,772	39%
HB 231	372	8,891	47%	386	9,226	45%
HB 223	372	8,891	57%	386	9,226	55%
HB 211	372	8,891	23%	386	9,226	22%
HB 233	372	8,891	66%	386	9,226	64%
HB 212	372	8,891	41%	386	9,226	40%
HB 213	372	8,891	67%	386	9,226	64%
HB 221	372	8,891	61%	386	9,226	59%
HB 222	372	8,891	72%	386	9,226	69%
HB 232	372	8,891	66%	386	9,226	64%

Table 16. UF Comparison for HC, PC, PL and RH Circuits

Circuit	Assumed Capacity		Calculated Capacity (@ 105°C)			
Oilean	Amps	kVA	U.F.	Amps	kVA	U.F.
HC 213	372	8,891	61%	384	9,178	59%
HC 212	372	8,891	72%	384	9,178	70%
HC 223	372	8,891	98%	384	9,178	95%
HC 211	372	8,891	78%	384	9,178	75%
HC 221	372	8,891	55%	384	9,178	53%
HC 222	372	8,891	11%	384	9,178	11%
HC 231	372	8,891	57%	384	9,178	55%
HC 232	372	8,891	50%	384	9,178	49%
HC 233	372	8,891	63%	384	9,178	61%
PC 213	372	8,891	77%	386	9,226	74%
PC 222	372	8,891	60%	386	9,226	58%
PC 221	372	8,891	90%	386	9,226	87%
PC 223	372	8,891	54%	386	9,226	52%
PC 211	372	8,891	64%	386	9,226	62%
PC 212	372	8,891	64%	386	9,226	62%
PL 233	372	8,891	56%	373	8,915	56%
PL 212	372	8,891	47%	373	8,915	47%
PL 221	372	8,891	52%	373	8,915	52%
PL 232	372	8,891	55%	373	8,915	55%
PL 213	372	8,891	80%	373	8,915	80%
PL 214	372	8,891	69%	373	8,915	69%
PL 222	372	8,891	40%	373	8,915	40%
PL 223	372	8,891	82%	373	8,915	82%
PL 231	372	8,891	55%	373	8,915	55%
RH 221	372	8,891	40%	394	9,417	37%
RH 222	372	8,891	90%	394	9,417	85%
RH 223	372	8,891	1%	394	9,417	1%
RH 224	372	8,891	38%	394	9,417	36%
RH 211	372	8,891	84%	394	9,417	79%
RH 212	372	8,891	54%	394	9,417	51%
RH 213	372	8,891	28%	394	9,417	26%
RH 214	372	8,891	62%	394	9,417	58%

2.3.4 Load Modeling in Cyme Power Flow Model.

The non-coincidental circuit peak demand was used to perform load allocation to each modeled service transformer. The load allocation to each service transformer was performed using the following equation:

$$LTi. = \frac{Circuit\ Load\ *Ti\ capacity}{\sum_{1}^{n} Ti\ Capacity}$$

Where:

LTi. = Load allocated to service transformer i

Circuit Load = Non-coincidental circuit peak demand (MVA, PF)

Ti = Capacity of Service transformer i (MVA)

$$\sum_{i=1}^{n} Ti \ Capacity = \text{Sum of circuit service transformer capacity (MVA)}$$

Before performing load allocation, all spot-loads values were fixed so that they are included in the total peak demand.

3 DISTRIBUTION SYSTEM PERFORMANCE

3.1 Substation Transformer Rating Methodologies

Quanta Technology would recommend consideration of one of three ratings methodologies to apply to the total capacity of a load serving substation to address actual or forecast capacity shortfalls. Two of these options provide for the opportunity to defer transformer capacity additions. The methodology which the CWLD selects will be based on the level of risk tolerance which they have regarding substation operation. The three methods of rating load serving substations are:

- N-1 transformer nameplate capacity based on the maximum nameplate rating of the transformers
- N-1 transformer nameplate capacity plus the maximum load that can be transferred to a neighboring substation(s) based on the adjacent substations N-0 capacity and the available feeder capacity to facilitate load transfers
- N-1 transformer acceptable loss of life capacity, for example a 2% loss of life overload rating derived from the manufacturer's nameplate and heat run data. The loss of life is a function of assumed transformer insulation degradation. A loss of life rating could be combined with load transfers to adjacent substations.

3.1.1 N-1 Transformer Nameplate Capacity

This approach is the most conservative. The basic assumption is that the low side of a load serving substation could be tied together in such a way that, for the outage of one of the substation's transformers, the remaining transformer(s) could share the load equally or as determined by the transformers' impedance.

Thus a substation with two 22.5 MVA transformers with a low side bus operated normally open would be rated a total of 22.5 MVA based on the outage of one transformer and closing the necessary low side bus-tie breakers. A substation with three 22.5 MVA transformers with the low side buses operated normally open would be rated a total of 45 MVA based on the outage of one transformer and closing the necessary low side bus-tie breakers. The rating in this method is determined by the sum of the capacity of the smallest remaining transformers.

3.1.2 N-1 Transformer Nameplate Capacity plus Load Transfer

This ratings method augments the previous approach by including the amount of load that can be transferred to an adjacent substation or substations via feeder switching. The magnitude of feeder load that can be transferred is a function of:

- 1) The total number of feeders that can have all or some of their loads transferred to an adjacent substation.
- 2) The location of sectionalizing devices on the feeders which are available to facilitate post contingency load transfers.
- 3) The magnitude of the load to be transferred based on the location of the sectionalizing devices.
- 4) The feeder capacity and voltage constrained load carrying capability of the feeders out of the adjacent substation which will be used to transfer load; and

5) The N-0 transformer capacity of the adjacent substations which will be accepting load transfers.

The implementation of this ratings methodology requires a case by case review of bullets one through four. This review is required to determine the potential load that can be transferred away and the ability of the feeders and transformers at the adjacent substations to accept the load to be transferred. The feeder capacity used in evaluating the ability to accept load transfers from adjacent substation can be increased if a short term emergency rating is used to determine feeder capacity.

The amount of load that can be transferred to the feeders of an adjacent substation is limited by the applicable rating of the transformer which supplies the feeder(s) to which load is transferred assuming that no 13.8kV bus tie breakers are closed. This limits exposure to N-1-1 contingency events should a bus tie breaker failure occur. Additionally, it is assumed that overlapping transformer outages involved in the load transfers do not occur at adjacent substations. Closing low side bus tie breakers to increase the available transformer of the receiving substation is possible but would increase the load at risk for a follow on contingency.

3.1.3 N-1 Acceptable Loss of Life plus Load Transfer

This method is an extension of the N-1 substation capacity plus load transfer. In this approach the N-1 substation transformer capacity is assumed to be greater than the maximum nameplate value. Manufacture transformer nameplate and heat run data would be used to determine the relationship between the maximum top oil temperature and forecast loss of life using software such as the EPRI PTLoad program. Loss of life is an estimation of degradation of the transformer insulation due to high temperature operation. The acceptable loss of life emergency rating is an MVA rating which considers ambient conditions, an assumed daily load cycle, and the long term effect on transformer insulation life. The acceptable loss of life rating would be based on risk tolerance and transformer outage performance. Operational metrics, such as maximum top oil temperature and/or an associated maximum percentage of 65°C overload, could be developed to provide guidance as to when load curtailments might be required.

The following is an example of how transformer test data and the EPRI PTLoad program could be used to calculate an emergency transformer rating based on an acceptable loss of life. Input data for this example were obtained from the Waukesha transformer test report provided by the CWLD and augmented with some approximations that would typically be obtained from the transformer nameplate. The calculations assumed a constant 35°C ambient temperature over 24 hours and a daily load cycle for which the transformer was loaded to 125% of its 65°C rise rating of 22.5 MVA, 28 MVA, for five hours with a minimum load of 75% of nameplate (Figure 12). In this calculation the transformer is assumed to have a 20.55 year life (180,000 hours).

Figure 12. 22.5 MVA transformer load profile

For these ambient and loading conditions the PTLoad program calculated a top oil temperature of 106.4°C and a hot spot temperature of 150°C (Figure 13). The cumulative loss of life over the course of a 24 hour period for these conditions is 0.14%. Operating at or below the transformer rating would have a calculated loss of life of 24 hours or 0.013% over its 180,000 hour assumed life (Figure 14). To limit the increase in transformer loss of life to 2.0%, additional transformer capacity would need to be installed within approximately 14 days so as to return the maximum transformer loading to below the 22.5 MVA 65°C rise rating.

Figure 13. 22.5 MVA transformer temperature profile

Figure 14. 22.5 MVA transformer cumulative loss of life

Based on these generic calculations, a 22.5 MVA transformer would have a 14 day, 2% loss of life rating of 28 MVA. The risk assessment associated with this type of short term, loss of life rating should include both the probability of a transformer outage, assumed to be roughly 4% for this example, and the probability at being at or near peak load conditions, roughly 5% based on generic load duration assumptions. Thus the probability of a transformer outage at or near peak conditions is roughly 0.2%. The possibility of overlapping transformer outages of units that reserve each other under peak load conditions is assumed to be very small.

The use of this type of emergency loss of life rating and load transfer would provide additional operational flexibility and reduce the current exposure to contingency based load curtailments. The application of such short term substation capacity ratings would also provide the opportunity to defer substation transformer capacity additions or other remedies suggested by the substation overloads identified in Table 6. Actual transformer data should be used to calculate the loss of life data for either classes of transformers or individual transformers.

As noted previously, the application of a loss of life overload rating is subject to risk tolerance associated with several factors. These would include the age of the transformers, the current condition of the transformers (e.g. subject to high levels of combustible gasses), the ability and time required to perform feeder to feeder load transfers, and the availability of spare transformers and the time required to install a replacement. All of these factors should be considered before applying transformer loss of life in the assessment of substation transformer capacity adequacy. While the application of a loss of life rating may prove to be unacceptable in the adequacy planning, a detailed assessment of the CWLD transformer population would provide a metric, such as maximum allowable top oil temperature as an indicator of transformer degradation, which could be used operationally to assess the risk of overloads as an alternative to load curtailment.

3.2 Distribution System Thermal Capacity

Thermal capacity analysis tests the ability of each system element, beyond the circuit head, (feeder section, service transformer, switches, voltage regulators, etc.) to carry power during the circuit peak demand. It compares the maximum power flow through a system element with the system element's nominal capacity. This metric is the thermal capacity ratio and it is expressed as follows (Eq. 3-1):

Thermal Capacity ratio (%) =
$$\frac{Maximum\ current\ through\ system\ element\ (Amps)}{System\ element\ nominal\ capacity\ (Amps)}$$
 (Eq. 3-1)

Based on the loading data provided, the CWLD distribution system did not experience any overloads at the time of circuit peak demand with all substation transformers and 13.8-kV distribution circuits in service. Figure 15 shows the calculated maximum thermal capacity ratio (loading capacity) of each of the 60 distribution circuits analyzed. The "Y" axis represents the maximum thermal capacity (expressed in %) of each of the analyzed circuits. The "X" axis represent each of the 60 circuits

Figure 15. Distribution System, scattered plot maximum Thermal Loading of each circuit.

3.3 Distribution System Voltage Performance

ANSI C84.1 Standard defines voltage levels for utilization and service voltages (see Figure 16). The utilization voltage is the voltage level needed for proper operation of customer appliances and fixtures. The service voltage is the voltage level the power utility is expected to provide to their customers at their service entrance.

The ANSI standard defines "Range A" and "Range B" voltages for normal and emergency (infrequent) system operation conditions:

- Range A, the occurrence of service voltage outside of these limits should be infrequent. Utilization equipment shall be designed to give satisfactory performance throughout Range A voltages.
- Range B, Voltage levels as a result of practical design and operating conditions, they shall be limited
 in extent, frequency, and duration. When occurrence is sustained, corrective measurement shall be
 undertaken to meet Range A requirements

NOTES:

- (a) These shaded portions of the ranges do not apply to circuits supplying lighting loads
- (b) This shaded portion of the range does not apply to 120-600-volt systems.
- (c) The difference between minimum service and minimum utilization voltages is intended to allow for voltage drop in the customer's wiring system. This difference is greater for service at more than 600 volts to allow for additional voltage drop in transformations between service voltage and utilization equipment.

Figure 16. ANSI C84.1 Voltage Level Standard

The CYME distribution system model includes service transformers, which typically accounts for voltage drop of 3 V on a 120 V base. As shown in Table 17, in the 120 standard voltage column, the minimum voltage level at the secondary side of a service transformer should be 114 V (95% of 120 V nominal) during circuit peak demand condition, and the maximum voltage level at the service entrance should not exceed 126 V (120 V +/- 5%).

Valtage	Doint of Managers went		St	andard V	oltages	(V)		Percent of
voltage	Point of Measurement	120	208	240	277	480	600	Nominal Voltage
	High Voltage Range A	126	218	252	291	504	630	105.0%
Service	Low Voltage Range A	114	198	228	263	456	570	95.0%
Entrance Voltage	High Voltage Range B	127	220	254	293	508	635	105.8%
	Low Voltage Range B	110	191	220	254	440	550	91.7%
	High Voltage Range A	126	218	252	291	504	630	105.0%
Utilization	Low Voltage Range A	108	187	216	249	432	540	90.0%
Voltage	High Voltage Range B	127	220	254	293	508	635	105.8%
	Low Voltage Range B	104	180	208	240	416	520	86.7%

Table 17. Voltage Levels and Different Voltage Standards

During peak demand condition, all circuits – except circuit PC 221 – comply with ANSI voltage standards. The straight dotted red lines in Figure 17 show the maximum and minimum ANSI voltage levels (105% and 95% respectively). It also shows the maximum and minimum voltages from power flow modeling for each distribution circuit. The maximum voltage levels are presented in dark-colored solid lines, while minimum voltage levels are presented in light-colored dotted lines. The "X" axis represents each of the 60 circuits. As observed, the minimum voltage is 112.4 V (93.7% of nominal value), which was identified in one node of the circuit PC 221.

Figure 17. Maximum and minimum voltage of each distribution circuit.

Figure 17 allows for the identification of voltage violation (voltage below 95% of nominal voltage for this case). Figure 18 locates circuit sections with voltage violation (voltages below 95%), which are shown as red lines.

Figure 18. Voltage level color code map

Table 18 list the maximum and minimum voltage values calculated by the power flow modeling in circuit PC 221 during peak demand conditions.

Table 18. Maximum and Minimum Voltage - Circuit PC 221

r	Ainimum Voltage	9	_	Maximum Voltage	
min Ph-A	min Ph-B	min Ph-C	Max Ph-A	Max Ph-B	Max Ph-C
94.83%	93.67%	94.81%	100.72%	100.72%	100.72%

As stated in the ANSI C84.1 standard, Range B voltage levels shall be limited in extent, frequency, and duration. A closer view identified that, when the circuit load in circuit PC 221 is 6.5 MVA or below, the minimum voltage remained within ANSI limits. Figure 19 and Figure 20 show the load profile and the maximum load for ANSI compliance (6.5 MVA). Note that load above 6.5 MVA is consistent for several days (17 days in July) as illustrated in Figure 19 and for several hours in a day (around 12 hours) as illustrated in Figure 20.

Figure 19. PC 221 load profile: July 2017.

Figure 20. PC 221 circuit load profile: July 21–22, 2017.

According to the power flow simulation, circuit PC 221 violates voltage performance standards. This situation is expected to worsen as load on the feeder increases in the future. The CWLD is encouraged to assess mitigation measures to overcome the voltage issue. Some of the mitigation options could include the following:

- Install a voltage regulator
- Add a new capacitor bank
- Load transfer to a neighboring circuit

These mitigation options are discussed in Section 6 of this report.

4 DISTRIBUTION SYSTEM PERFORMANCE - 5 YEARS

4.1 Load Growth

CWLD provided 14 years coincidental system peak demand forecast. See Figure 21 below. The peak demand shows a steady 1.1% demand growth year after year as shown in Table 19. The provided system demand forecast doesn't provide visibility of demand growth at substation level nor reflects demand growth geographically (e.g. City's Southwest area may be growing in a fast pace compared with downtown or Northeast areas).

Figure 21. System coincidental load forecast (2018 – 2027)

Table 19. Yearly peak load demand growth

2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
1.11%	1.11%	1.11%	1.11%	1.11%	1.11%	1.11%	1.12%	1.12%	1.12%

To overcome the limited information regarding load forecast, the following approaches were implemented:

- At the substation level, a uniform non-coincidental forecast annual load growth of 2%, 3%, 4% and 5% was modeled as part of a growth sensitivity analysis
- At the distribution feeder level, a uniform non-coincident forecast load growth of 5.62% (yearly growth of 1.1% compounded in 5 years) were modeled as:
 - Organic growth (distributed along distribution circuit) applied to all distribution circuits
 - Spot load, equivalent to 5.62% of peak demand, located at the far end of three phase branch. This sensitivity analysis is applied to circuits at substation with potential overload conditions, namely GD, HC, and PC.

It is recommended that CWLD complete a spatial load forecast study at the substation level. Such a study will provide multiple benefits to system planning efforts, such as:

- Need for, siting of, and sizing of new HV/MV substations,
- Determining substation transformer capacity upgrade needs,
- Identify need for new distribution feeders in mid to long term planning
- Estimating load transfer capability among feeders and substations, create operating orders identifying switches to operate when a specific load transferring is required, and
- Provide inputs for an Integrated Resource Planning

4.2 Distribution Circuit Utilization Factor (UF) – 5.62% Load Growth

No overloads were observed at the feeder heads after applying the five year 5.62% compounded load growth (either organic growth or spot load) to each distribution circuit (See Figure 22 below). Feeder HC223 is the most heavily loaded feeder at 100% utilization factor.

Figure 22. Scattered plot circuit utilization factor

Table 20 and Table 21 contain the calculated circuit capacity. There are no distribution circuit overload concerns. Blue bars, in Table 20 and Table 21, visually represents each distribution circuit utilization factor. Table 20 shows the circuit UF with calculated capacity for BD, BR, GD and HB circuits. Table 21 depicts the circuit UF with calculated capacity for HC, PC, PL and RH circuits.

Table 20. UF Comparison for BD, BR, GD and HB Circuits

	Calculated	5.6% gro	owth in 5 years
Circuit	Capacity (MVA)	2022 MVA	UF - 2022 (%)
BD 211	9.51	2.29	24%
BD 212	9.51	4.31	45%
BD 213	9.51	6.63	70%
BD 221	9.51	1.20	13%
BD 222	9.51	6.86	72%
BD 223	9.51	6.98	73%
BR 211	9.80	6.29	64%
BR 212	9.80	6.96	71%
BR 213	9.80	7.23	74%
BR 221	9.80	1.48	15%
BR 222	9.80	6.34	65%
GD211	8.77	6.97	79%
GD212	8.77	6.30	72%
GD213	8.77	3.39	39%
GD221	8.77	5.90	67%
GD222	8.77	3.70	42%
GD223	8.77	2.34	27%
GD231	8.77	2.65	30%
GD232	8.77	6.48	74%
GD233	8.77	3.61	41%
HB 211	9.23	2.15	23%
HB 212	9.23	3.88	42%
HB 213	9.23	6.27	68%
HB 221	9.23	5.73	62%
HB 222	9.23	6.77	73%
HB 223	9.23	5.39	58%
HB 231	9.23	4.39	48%
HB 232	9.23	6.21	67%
HB 233	9.23	6.21	67%

Table 21. UF Comparison for HC, PC, PL and RH Circuits

	Calculated	5.6% grd	owth in 5 years
Circuit	Capacity (MVA)	2022 MVA	UF - 2022 (%)
HC 211	9.18	7.29	79%
HC 212	9.18	6.78	74%
HC 213	9.18	5.69	62%
HC 221	9.18	5.14	56%
HC 223	9.18	9.21	100%
HC 231	9.18	5.32	58%
HC 232	9.18	4.71	51%
HC 233	9.18	5.92	65%
PC 211	9.23	6.01	65%
PC 212	9.23	6.02	65%
PC 213	9.23	7.26	79%
PC 221	9.23	8.48	92%
PC 222	9.23	5.61	61%
PC 223	9.23	5.04	55%
PL 212	8.92	4.39	49%
PL 213	8.92	7.51	84%
PL 214	8.92	6.47	73%
PL 221	8.92	4.93	55%
PL 222	8.92	3.73	42%
PL 223	8.92	7.70	86%
PL 231	8.92	5.21	58%
PL 232	8.92	5.17	58%
PL 233	8.92	5.26	59%
RH 211	9.42	7.86	83%
RH 212	9.42	5.03	53%
RH 213	9.42	2.61	28%
RH 214	9.42	5.81	62%
RH 221	9.42	3.71	39%
RH 222	9.42	8.49	90%
RH 223	9.42	0.13	1%
RH 224	9.42	3.61	38%

4.3 Distribution System Thermal Capacity – 5.62% Load Growth

For non-coincident circuit peak demand, two circuits were calculated to be loaded at 98% of capacity on a circuit section (circuit BD222 and PC211). These are the highest loading conditions on the system. In general, the CWLD's distribution system did not have any overloaded circuit sections. Figure 23 shows the calculated maximum thermal capacity ratio (loading capacity) of each of the analyzed 60 distribution circuit's sections. The "Y" axis represent the maximum thermal capacity expressed in % of each of the analyzed circuits. The "X" axis represents each of the 60 circuits

Figure 23. Distribution System, scattered plot maximum Thermal Loading of each circuit.

4.4 Distribution System Voltage Performance

In this analysis it is assumed a voltage regulator is installed on circuit PC 221 to address low voltages, as suggested in section 5.2.3, Installation of a 3-phase voltage regulator.

Organic load growth was analyzed first. Peak loads were increased by 5.62% on all feeders. All circuits comply with ANSI voltage standards. CWLD's design planning criteria considers a limited number of conductor and cable cross sections for main trunk lines. Such distribution planning criteria is very beneficial for voltage control and load transferring via distribution feeder ties, with minimum voltage concern. Load transferring will be discussed in section 5.1 Substation system Improvement – Current Conditions below.

The straight dotted red lines in Figure 24 show the maximum and minimum ANSI voltage levels (105% and 95% respectively). It also shows the maximum and minimum voltages from power flow modeling for

each distribution circuit. The maximum voltage levels are presented in dark-colored solid lines, while minimum voltage levels are presented in light-colored dotted lines. The "X" axis represents each of the 60 circuits. As observed, the minimum voltage is above 95% of nominal value.

Figure 24. Maximum and minimum voltage of each distribution circuit.

Perche Creek, Harmony Branch, and Hinkson Creek substations are the most likely candidates for loading relief should the assumed forecast load growth occur in the areas supplied by these substation. Substation load growth sensitivity is discussed in section 5.1, Substation system Improvement – Current Conditions. Sensitivity analysis at distribution system level was performed for the following substation circuits:

- Grindstone (GD)
- Harmony Branch (HB)
- Hinkson Creek (HC)
- Perche Creek (PC)

Load growth to simulate extending feeders to pick up new loads was modeled by adding spot load, equivalent to 5.62% of peak demand, at the ends of three phase circuit sections.

Table 22 below shows the calculated spot load per circuit and power flow simulation results.

Table 22. Spot Load Allocation (5.62% of peak demand) and Power flow Simulation Results

	Spot	Mir	nimum Volta	age	Ma	ximum Volta	age	Max
Circuit	load							Loading
	(KVA)	min Ph-A	min Ph-B	min Ph-C	Max Ph-A	Max Ph-B	Max Ph-C	(%)
GD211	370.9	97.99%	97.49%	98.73%	101.45%	101.45%	101.52%	56%
GD212	335.1	99.22%	99.29%	99.31%	101.94%	101.49%	102.33%	89%
GD213	180.3	100.27%	100.39%	100.17%	101.69%	101.46%	101.45%	48%
GD221	314.1	102.04%	102.04%	102.04%	103.62%	103.62%	103.62%	52%
GD222	196.8	102.77%	102.88%	102.90%	103.62%	103.62%	103.62%	29%
GD223	124.6	101.88%	101.63%	101.94%	103.96%	103.62%	103.62%	84%
GD231	141	101.18%	101.06%	101.18%	102.37%	102.17%	102.17%	48%
GD232	345	99.26%	98.27%	98.22%	102.17%	102.17%	102.17%	46%
GD233	192.1	101.09%	100.68%	100.98%	102.21%	102.17%	102.17%	32%
HB 211	114.7	99.30%	100.27%	98.59%	101.45%	101.61%	101.45%	78%
HB 212	206.4	99.24%	99.11%	98.66%	101.45%	101.45%	101.45%	85%
HB 213	334	96.92%	96.51%	97.63%	101.45%	101.45%	101.45%	77%
HB 221	305.1	98.96%	98.60%	98.43%	101.45%	101.45%	102.14%	60%
HB 222	360.3	96.05%	95.45%	96.22%	101.45%	101.45%	101.45%	64%
HB 223	286.8	95.54%	96.35%	95.88%	101.45%	101.45%	101.45%	85%
HB 231	233.8	99.31%	98.22%	98.88%	101.45%	101.45%	101.45%	84%
HB 232	330.3	99.46%	99.12%	98.89%	101.45%	101.45%	101.49%	59%
HB 233	330.8	98.20%	99.02%	98.62%	101.45%	101.52%	101.45%	92%
HC 211	388.2	98.43%	98.41%	97.77%	100.72%	100.97%	100.72%	76%
HC 212	360.9	97.54%	98.23%	98.28%	100.72%	100.72%	100.72%	50%
HC 213	302.7	97.43%	96.00%	98.27%	100.72%	100.72%	100.72%	76%
HC 221	273.7	99.19%	99.32%	100.06%	102.17%	102.17%	102.17%	60%
HC 223	490.3	96.23%	95.87%	96.32%	102.17%	102.17%	102.17%	66%
HC 231	283.3	98.49%	99.14%	98.89%	100.72%	100.72%	100.72%	52%
HC 232	250.5	98.76%	98.76%	98.76%	100.72%	100.72%	100.72%	69%
HC 233	315.3	98.82%	98.28%	98.13%	100.72%	100.72%	100.72%	52%
PC 211	319.7	98.28%	97.40%	97.43%	101.45%	101.45%	101.45%	98%
PC 212	320.3	100.28%	98.33%	98.71%	101.45%	101.45%	101.45%	49%
PC 213	386.4	96.92%	98.77%	97.14%	101.45%	101.45%	101.45%	39%
PC 221	451.4	96.69%	96.17%	96.58%	103.79%	103.79%	103.53%	60%
PC 222	298.6	97.39%	97.48%	96.51%	100.72%	100.72%	100.72%	60%
PC 223	268.2	99.32%	98.41%	98.89%	100.72%	100.72%	100.72%	86%

No voltage or thermal violations were identified when adding spot loads to the circuits (see below). No system reinforcements are required to accommodate up to 5.62% load growth. It is however recommended to revise the assumed load growth based on any future load forecast studies.

Figure 25. Maximum and minimum voltage, GD, HB, HC and PC circuits

4.5 Load transfer Capability via Distribution Circuits

The load transfer capability study discussed in this section was performed with the goal of evaluating load transfers between substations via distribution circuit ties. The study identifies the maximum amount of kVA that can safely be transferred off of a substation transformer via existing distribution circuit ties. The maximum load transfer capability is limited by the circuit voltage performance or the maximum rated circuit capacity of 372 Amps in accordance by the CWLD's standard practice. This load transfer capability does not consider substation transformation capacity. Substation transformation capacity is studied in section 5.1 Substation system Improvement – Current Conditions. The study also considers 1.1% load growth from 2017 to 2018 and that the existing switches have load break capability.

CWLD has installed a good number of switches throughout the distribution system which enable load transfers between circuits and substations. This study will focus on the maximum amount of load that can be transferred so as to relieve substation transformer overloads.

Table 23 and

	rom				To SUI	3 (KVA)				
•	10111				10 301	o (KVA)				Total
SUB	Circuit	DB	BR	GD	НВ	НС	PC	PL	RH	(KVA)
BR	BR 211	-	-	-	-	-	-	3,861	-	3,861
BR	BR 212	-	-	-	2,412	-	ı	3,603	-	6,015
BR	BR 213	2,211	-	-	-	-	ı	-	15,065	17,276
BR	BR 221	1,388	ı	1	ı	-	ı	-	1	1,388
BR	BR 222	-	-	-	-	-	-	5,321	-	5,321
BD	BD 211	-	-	-	-	-	-	-	-	-
BD	BD 212	-	4,060	-	-	-	-	-	-	4,060
BD	BD 213	-	ı	1	ı	1	ı	-	1,702	1,702
BD	BD 221	-	ı	-	-	-	ı	-	-	-
BD	BD 222	-	ı	1	ı	-	ı	-	ı	1
BD	BD 223	-	1,971	1	ı	1	1	-	ı	1,971
GD	GD211	-	ı	1	ı	1,911	ı	-	1	1,911
GD	GD212	-	ı	1	ı	-	ı	-	1,368	1,368
GD	GD213	-	ı	1	ı	1	ı	-	ı	1
GD	GD221	-	1	1	-	-	1	-	-	-
GD	GD222	-	ı	-	-	-	ı	-	1,368	1,368
GD	GD223	-	ı	1	ı	-	ı	-	1,368	1,368
GD	GD231	-	ı	1	ı	1	1	-	ı	1
GD	GD232	-	ı	1	ı	4,387	1	2,997	2,997	10,381
GD	GD233	-	-	-	-	3,384	-	-	-	3,384
НВ	HB 211	-	-	-	-	-	ı	-	1	-
НВ	HB 212	-	-	-	-	-	ı	-	1	-
НВ	HB 213	-	-	-	-	-	-	-	-	-
НВ	HB 221	-	ı	1	ı	1	2,448	-	ı	2,448
НВ	HB 222	-	2,234	1	ı	1	1	4,685	ı	6,919
НВ	HB 223	-	ı	1	4,688	7,191	3,269	1,702	1	16,850
НВ	HB 231	-	-	-	3,734	-	-	-	-	3,734
НВ	HB 232	-	ı	-	-	-	7,756	-	-	7,756
НВ	HB 233	-	-	-	-	-	ı	-	1	-
HC	HC 211	-	-	2,221	-	-	-	-	-	2,221
HC	HC 212	-	ı	1	ı	1	ı	-	ı	1
НС	HC 213	-	-	-	-	-	1,943	-	-	1,943
НС	HC 221	-	-	-	3,734	-	2,667	-	-	6,401
НС	HC 222	-	-	-	-	-	-	-	-	-
НС	HC 223	-	1	-	-	-	1,943	-	-	1,943
НС	HC 231	-	-	5,017	-	-	-	-	-	5,017
НС	HC 232	-	-	-	-	-	-	-	-	-
НС	HC 233	-	-	-	3,000	-	-	4,404	-	7,404

Table 24 show the maximum amount of load that can be transferred from each of the substation transformers under 2018 peak conditions. Appendix E shows the maximum load that can be transferred from each distribution circuit.

Table 23. Maximum Transfer Capability from Circuit to Substation through Distribution Circuit ties

F	rom				To SUI	B (KVA)				Takal
CLID	6: :1									Total
SUB	Circuit	DB	BR	GD	НВ	HC	PC	PL	RH	(KVA)
BR	BR 211	-	1	-	-	1	1	3,861	1	3,861
BR	BR 212	-	1	ı	2,412	ı	ı	3,603	ı	6,015
BR	BR 213	2,211	1	ı	ı	ı	ı	-	15,065	17,276
BR	BR 221	1,388	1	1	1	1	1	-	1	1,388
BR	BR 222	-	-	-	-	-	-	5,321	-	5,321
BD	BD 211	-	-	-	-	-	-	-	-	-
BD	BD 212	-	4,060	-	-	-	-	-	-	4,060
BD	BD 213	-	-	-	-	-	-	-	1,702	1,702
BD	BD 221	-	-	-	-	-	-	-	-	-
BD	BD 222	-	-	-	-	-	-	-	-	-
BD	BD 223	-	1,971	-	-	-	-	-	-	1,971
GD	GD211	-	-	-	-	1,911	-	-	-	1,911
GD	GD212	-	-	-	-	-	-	-	1,368	1,368
GD	GD213	-	-	-	-	-	-	-	-	-
GD	GD221	-	-	-	-	-	-	-	-	-
GD	GD222	-	-	-	-	-	-	-	1,368	1,368
GD	GD223	-	-	-	-	-	-	-	1,368	1,368
GD	GD231	-	-	-	-	-	-	-	-	-
GD	GD232	-	-	-	-	4,387	-	2,997	2,997	10,381
GD	GD233	-	-	-	-	3,384	-	-	-	3,384
НВ	HB 211	-	-	-	-	-	-	-	-	-
НВ	HB 212	-	-	-	-	-	-	-	-	-
НВ	HB 213	-	-	-	-	-	-	-	-	-
НВ	HB 221	-	-	-	-	-	2,448	-	-	2,448
НВ	HB 222	-	2,234	-	-	-	-	4,685	-	6,919
НВ	HB 223	-	-	-	4,688	7,191	3,269	1,702	-	16,850
НВ	HB 231	-	-	-	3,734	-	-	-	-	3,734
НВ	HB 232	-	-	-	-	-	7,756	-	-	7,756
НВ	HB 233	-	-	-	-	-	-	-	-	-
HC	HC 211	-	-	2,221	-	-	-	-	-	2,221
HC	HC 212	-	-	-	-	-	-	-	-	-
НС	HC 213	-	1	ı	-	ı	1,943	-	-	1,943
НС	HC 221	-	1	ı	3,734	ı	2,667	-	-	6,401
HC	HC 222	-	1	ı	-	ı	1	-	-	-
HC	HC 223	-	ı	ı	-	ı	1,943	-	-	1,943
НС	HC 231	-	1	5,017	-	ı	ı	-	-	5,017
HC	HC 232	-	1	-	-	ı	1	-	-	-
НС	HC 233	-	-	-	3,000	-	-	4,404	-	7,404

Table 24. Maximum Transfer Capability from Circuit to Substation through Distribution Circuit ties

F	rom				To SUI	B (KVA)				Total
SUB	Circuit	DB	BR	GD	НВ	НС	PC	PL	RH	(KVA)
PC	PC 211	-	-	-	2,952	-	-	-	-	2,952
PC	PC 212	-	-	-	6,686	-	-	-	-	6,686
PC	PC 213	-	1	-	4,952	5,023	-	-	-	9,975
PC	PC 221	-	-	-	-	-	-	-	-	-
PC	PC 222	-	-	-	3,340	-	-	-	-	3,340
PC	PC 223	-	1	1	-	-	-	-	-	-
PL	PL 212	-	-	-	2,412	-	-	-	-	2,412
PL	PL 213	-	1	-	3,734	2,078	-	-	-	5,812
PL	PL 214	-	ı	1	ı	3,222	-	-	-	3,222
PL	PL 221	-	-	-	-	-	-	-	-	-
PL	PL 222	-	2,818	-	-	-	-	-	764	3,583
PL	PL 223	-	-	-	-	-	-	-	-	-
PL	PL 231	-	1	2,688	-	-	-	-	4,075	6,763
PL	PL 232	1	ı	1	ı	-	-	-	-	-
PL	PL 233	ı	5,107	1	ı	-	-	-	-	5,107
RH	RH 211	1	1	10,933	1	-	-	-	-	10,933
RH	RH 212	ı	ı	2,688	ı	-	-	3,907	-	6,595
RH	RH 213	-	1,971	1	-	-	-	-	-	1,971
RH	RH 214	2,360	1,052	-	-	-	-	-	-	3,412
RH	RH 221	-	1,971	-	-	-	-	-	-	1,971
RH	RH 222	-	1	-	-	-	-	5,321	-	5,321
RH	RH 223	-	ı	1	-	-	-	-	-	-
RH	RH 224	-	-	-	-	-	-	-	-	-

5 SYSTEM IMPROVEMENT

5.1 Substation system Improvement – Current Conditions

A substation by substation capacity adequacy assessment was performed to determine the ability to serve substation loads under first contingency (N-1) transformer outage conditions. The analysis started with the individual loads forecast for each substation and included the planned, permanent, transfer of 4 MVA of load from Perche Creek transformers 1 and 2 to Harmony Branch transformers 1 and 2. Harmony Branch transformer #3 was treated as a standalone, single unit, station since there is no bus tie between buses 2 and 3.

The adequacy assessment considered the N-1 transformer capacity of a station and the aggregate substation load assuming that any available bus tie breakers would be closed to serve the load. In the case of the Power Plant Substation, it was assumed that local generation would be used to reduce post contingency loading. Load transfers between substations by way of feeder to feeder transfers were considered in the event that the aggregate substation load exceeded the N-1 transformer capacity. The maximum amount of load that could be shifted between substations by feeder to feeder transfers was determined based on:

- 1. Thermal capacity of the receiving feeder assuming CWLD's standard rating of 372 Amp
- 2. Maintaining acceptable feeder voltages
- 3. Limiting the post transfer loading on the receiving transformer to its 65°C nameplate rating.
- 4. Bus tie breakers in the substations to which loads are transferred are assumed to remain open. Additional load transfers might be possible by closing these bus tie breakers but this would expose load to breaker failure events.
- 5. MW load loss after considering feeder to feeder transfers is calculated based on load in excess of the substations N-1 transformer capacity based on 65°C nameplate rating. The load in excess of 65°C nameplate rating is also represented as a percentage of this rating for comparison with the assumed generic example of 2% loss of life rating, 125% of nameplate. The need for substation capacity additions can be measured against risk tolerance for a planned loss of load or transformer loss of life.

The adequacy assessment included the 2018 individual peak substation load forecast and a range of individual, non-coincident substation load forecasts. Absent substation specific load forecast data the study assumed uniform non-coincident load forecasts at each substation.

The adequacy assessment assumed non-coincident peak substation load forecasts. It is typical that individual substations will peak at different hours, and occasionally on different days or in different weeks, than when the aggregate system peak occurs. Contributing to this is the composition of the loads, residential, commercial, and industrial, at the individual substations. Similarly, it is common for the forecast load growth at individual substations to vary from that of the aggregate system. Based on localized conditions individual substations may have a growth rate 2-5 times that of the aggregate system. Some substations may exhibit negative growth while the aggregate system and neighboring substations have positive growth. Individual substation adequacy needs to be planned to meet each substations non-coincident load and load forecast rather than the coincident loads forecast at the time of the aggregate system peak.

Absent individual substation load forecast data, uniform non-coincident forecast load growth of 2%, 3%, 4%, and 5% were modeled as part of a load growth sensitivity analysis. Should the forecast load exceed a station's N-1 transformer capacity, load was assumed to be transferred to adjacent substations based on the feeder to feeder evaluations. Feeder to feeder transfers were limited by the receiving transformer's available capacity including that substation's assumed forecast growth. The analysis of individual substations can be refined by substituting more case specific load growth forecasts for both the substation being evaluated and those to which loads would be transferred.

The following tables assess individual substation capacity adequacy based on a 2018 peak forecast and then five and ten years of compound growth based on the assumed uniform growth rates. Included in the tables are the substation nameplate transformer capacity, the N-1 substation capacity assuming that available 13.8kV bus tie breakers are closed, the forecast load by year, the sum of loads which could be transferred to adjacent substations adjusted to reflect adjacent substation load growth, the amount of load that exceeds the N-1 substation capacity plus available load transfer, and the percent overload of the 65°C nameplate rating of the N-1 transformer capacity. This latter value would be used should CWLD develop and implement an acceptable loss of life rating based on transformer nameplate data and an acceptable top oil temperature. This value represents the amount of load that would need to be curtailed if the rating is capped at the 65°C nameplate rating.

Based on the load forecast and feeder to feeder transfer assumptions of this assessment, the adequacy calculations suggest that the individual substations have adequate capacity to support load growth of up to 5% per year for 5-years. The exceptions to this are Harmony Branch #3 and Perche Creek. Harmony Branch #3, in the absence of a bus tie, will require additional feeder to feeder transfer capability to address a transformer outage. In discussions with the City it was indicated that there were plans for expansion of this capability. The Perche Creek Substation would be exposed to a 2 MVA overload in year 5 if it and its adjacent substations all saw 5% growth over five years.

Using a 3% non-coincident load growth as a proxy for strong localized load growth, there is adequate N-1 substation capacity in the first five years of the analysis. However, extending this assessment out to 10 years, as a proxy for more active local development and related local load growth, provides an indication of which substations may be the first to experience a future capacity shortfall. Subject to more rigorous local load forecasting data and detailed feeder load carrying capability, the areas supplied by Perche Creek, Harmony Branch, and Hinkson Creek Substations may be candidates for substation capacity additions should they experience a significant step change or year on year load growth.

Two things of note; first, this test of substation adequacy is a function of the load growth at the substation in question as well as adjacent substations. The ability to accept load transfers is diminished over time as the loads on the adjacent transformers increase. Therefore the adequacy of a substation becomes a function of its forecast load growth as well as that of adjacent substations. Second, the 10 year assessment is included for illustrative purposes only. It is not likely that individual substations would experience a sustained non-coincident compound growth rate in multiples of the aggregate system forecast over a ten year period. However, the ten year adequacy metrics do provide some insights as to which substations should be monitored should concentrated load growth occur.

The adequacy assessment assumes that the CWLD puts in place procedures to facilitate feeder to feeder load transfers in order to quickly mitigate potential transformer overloads should a transformer failure occur. The risk of overloading a transformer prior to transferring loads is reduced by the probability of

the transformer outage occurring at or near peak conditions and the time delay between a step change in the transformer loading and the increase in the top oil temperature. In any event, it would be good practice to identify the feeder to feeder transfers associated with substations exposed to N-1 overloads and insure that the switching actions can be implemented in a timely manner.

Table 25 Forecast Substation Adequacy: 2% Growth

							2018					5 years					10 years		
	Nameplate	N-1 Nameplate	2% LoL 125% N-1 Nameplate	Est Annual Load Growth	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload
Blue Ridge	44.8	22.4	28	2.0%	24.1	1.7	32.8			26.6	4.2	30.1			29.4	7.0	26.1		
Bolstad	44.8	22.4	28	2.0%	18.8	0	7.7			20.8	0.0	7.7			22.9	0.5	7.7		
Grindstone	67.2	44.8	56	2.0%	36.5	0	19.8			40.3	0.0	18.4			44.5	0.0	13.3		
Harmony 1-2	44.8	22.4	28	2.0%	31.4	9	26.2			34.7	12.3	26.2			38.3	15.9	23.5		
Harmony 3	22.4	0	0	2.0%	15.2	15.2	6.3	8.9	N/A	16.8	16.8	4.6	12.2	N/A	18.5	18.5	1.9	16.6	N/A
Hinkson	67.2	44.8	56	2.0%	45.1	0.3	24.3			49.8	5.0	21.0			55.0	10.2	17.3		
Perche	44.8	22.4	28	2.0%	31.9	9.5	21.8			35.2	12.8	20.2			38.9	16.5	16.1	0.4	102%
Power Plant	67.2	44.8	56	2.0%	42.3	0	26.9			46.7	1.9	24.2			51.6	6.8	20.4		
Rebel	56	28	35	2.0%	33.4	5.4	30.2			36.9	8.9	29.1			40.7	12.7	27.0		

Table 26 Forecast Substation Adequacy: 3% Growth

							2018					5 years					10 years		
	Nameplate	N-1 Nameplate	2% LoL 125% N-1 Nameplate	Est Annual Load Growth	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload
Blue Ridge	44.8	22.4	28	3.0%	24.1	1.7	32.8			27.9	5.5	28.2			32.4	10.0	18.7		
Bolstad	44.8	22.4	28	3.0%	18.8	0	7.7			21.8	0.0	7.7			25.3	2.9	5.8		
Grindstone	67.2	44.8	56	3.0%	36.5	0	19.8			42.3	0.0	16.3			49.1	4.3	8.5		
Harmony 1-2	44.8	22.4	28	3.0%	31.4	9	26.2			36.4	14.0	26.0			42.2	19.8	14.7	5.1	123%
Harmony 3	22.4	0	0	3.0%	15.2	15.2	6.3	8.9	N/A	17.6	17.6	3.7	13.9	N/A	20.4	20.4	0.0	20.4	N/A
Hinkson	67.2	44.8	56	3.0%	45.1	0.3	24.3			52.3	7.5	19.2			60.6	15.8	12.4	3.4	108%
Perche	44.8	22.4	28	3.0%	31.9	9.5	21.8			37.0	14.6	18.5			42.9	20.5	11.6	8.8	139%
Power Plant	67.2	44.8	56	3.0%	42.3	0	26.9			49.0	4.2	22.4			56.8	12.0	12.7		
Rebel	56	28	35	3.0%	33.4	5.4	30.2			38.7	10.7	28.1			44.9	16.9	22.0		

Table 27 Forecast Substation Adequacy: 4% Growth

						1	2018		1		1	5 years	1	1			10 years		
	Nameplate	N-1 Nameplate	2% LoL 125% N-1 Nameplate	Est Annual Load Growth	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload
Blue Ridge	44.8	22.4	28	4.0%	24.1	1.7	32.8			29.3	6.9	26.2			35.7	13.3	11.8	1.4	106%
Bolstad	44.8	22.4	28	4.0%	18.8	0	7.7			22.9	0.5	7.7			27.8	5.4	4.1	1.4	106%
Grindstone	67.2	44.8	56	4.0%	36.5	0	19.8			44.4	0.0	13.4			54.0	9.2	2.9	6.3	114%
Harmony 1-2	44.8	22.4	28	4.0%	31.4	9	26.2			38.2	15.8	23.7			46.5	24.1	6.2	17.9	180%
Harmony 3	22.4	0	0	4.0%	15.2	15.2	6.3	8.9	N/A	18.5	18.5	2.0	16.5	N/A	22.5	22.5	0.0	22.5	N/A
Hinkson	67.2	44.8	56	4.0%	45.1	0.3	24.3			54.9	10.1	17.4			66.8	22.0	6.7	15.2	134%
Perche	44.8	22.4	28	4.0%	31.9	9.5	21.8			38.8	16.4	16.2	0.2	101%	47.2	24.8	8.8	16.1	172%
Power Plant	67.2	44.8	56	4.0%	42.3	0	26.9			51.5	6.7	20.5			62.6	17.8	7.8	10.0	122%
Rebel	56	28	35	4.0%	33.4	5.4	30.2			40.6	12.6	27.1			49.4	21.4	15.3	6.1	122%

Table 28 Forecast Substation Adequacy: 5% Growth

					2018					5 years					10 years				
	Nameplate	N-1 Nameplate	2% LoL 125% N-1 Nameplate	Est Annual Load Growth	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload	Load	N-1 Overload	Max Load Transfer Away	Load Loss or Overload	% N-1 Overload
Blue Ridge	44.8	22.4	28	5.0%	24.1	1.7	32.8			30.8	8.4	23.0			39.3	16.9	8.6	8.2	137%
Bolstad	44.8	22.4	28	5.0%	18.8	0	7.7			24.0	1.6	6.7			30.6	8.2	4.1	4.2	119%
Grindstone	67.2	44.8	56	5.0%	36.5	0	19.8			46.6	1.8	10.8			59.5	14.7	0.0	14.7	133%
Harmony 1-2	44.8	22.4	28	5.0%	31.4	9	26.2			40.1	17.7	19.8			51.1	28.7	1.1	27.7	224%
Harmony 3	22.4	0	0	5.0%	15.2	15.2	6.3	8.9	N/A	19.4	19.4	0.1	19.3	N/A	24.8	24.8	0.0	24.8	N/A
Hinkson	67.2	44.8	56	5.0%	45.1	0.3	24.3			57.6	12.8	15.5			73.5	28.7	4.2	24.5	155%
Perche	44.8	22.4	28	5.0%	31.9	9.5	21.8			40.7	18.3	13.7	4.6	120%	52.0	29.6	7.3	22.3	199%
Power Plant	67.2	44.8	56	5.0%	42.3	0	26.9			54.0	9.2	17.0			68.9	24.1	6.3	17.8	140%
Rebel	56	28	35	5.0%	33.4	5.4	30.2			42.6	14.6	25.3			54.4	26.4	10.8	15.6	156%

5.2 Distribution System Improvements – Current Conditions

To solve the circuit PC 221 low voltage issue the following options were evaluated.

5.2.1 Add a new capacitor bank.

Currently, the PC 221 circuit power factor is 99%, leaving no room for additional reactive compensation. Therefore, this option is not applicable.

5.2.2 Load balancing and relocating existing 900 kVAR capacitor bank

Around 40 kVA of load was transferred from B to A phase, and 40 kVA of load was transferred from B to C phase. The minimum voltage improved from 112.4 to 112.5 V, as shown in Figure 26. The existing capacitor banks were relocated upstream. With all changes, the voltage profile was not improved. This option is not viable.

Figure 26. Voltage profile after load balancing and relocating existing 900 kVAR capacitor bank.

5.2.3 Installation of a 3-phase voltage regulator.

A new 3-phase 200-amp voltage regulator is added at around 20,000 feet downstream of the PC substation. The voltage profile improved as shown in the voltage profile below (see Figure 27). The minimum registered voltage is 96.28% (115.5 V) in phase B. This corrected the low voltage condition. It is recommended to add a voltage regulator as a short term solution.

Figure 27. Voltage Profile after Installing a Voltage Regulator

APPENDIX A: SUBSTATION SINGLE LINE DIAGRAM

Master Display.ODS - BlueRidgeSub 7/20/2017 5:22:23 PM DHC@WLDB00366

Master Display.ODS - BolstadSub DHC@WLDB00366

7/20/2017 4:36:32 PM

Master Display.ODS - GrindstoneSub 7/20/2017 4:55:28 PM DHC@WLDB00366

Master Display.ODS - HarmonySub DHC@WLDB00366

7/20/2017 4:41:43 PM

Master Display.ODS - HinksonSub DHC@WLDB00366 7/20/2017 4:57:12 PM

Master Display.ODS - PercheSub DHC@WLDB00366

7/20/2017 5:29:33 PM

Master Display.ODS - PlantSub7/20/2017 4:46:44 PM DHC@WLDB00366

Master Display.ODS - RebelSub DHC@WLDB00366

7/20/2017 4:48:02 PM

APPENDIX B: SUBSTATION TRANSFORMER AND CIRCUIT LOAD PROFILES

APPENDIX C: CABLE SHEET

PRODUCT DESCRIPTION

The Medium Voltage Primary Underground Distribution (UD) cables consist of a Copper (filled or unfilled) conductor, covered with ethylene propylene rubber (EPR), a concentric neutral of helically applied copper wires, and a linear low-density polyethylene (LLDPE) jacket with 3 extruded red stripes.

APPLICATIONS

- · Suitable for underground primary power applications
- · For wet or dry locations
- · For direct burial or in duct

- · High dielectric strength
- Low moisture absorption
- · Low dielectric loss
- Excellent resistance to treeing
- Jacket is sunlight-resistant
- Designed to operate continuously at a conductor temperature not exceeding
- » 105°C for normal operations
- » 140°C for emergency overload
- » 250°C for short circuit

SPECIFICATIONS	
Conductor Count	1 conductor
Conductor	Fully annealed bare copper Class B compressed strand (filled or unfilled)
Gauge Sizes	Filled: Available in 2 AWG through 1000 kcmil Unfilled: Available in 2 AWG through 1000 kcmil
Conductor Strand Shield	Extruded thermoset semi-conducting polymer over the conductor
Insulation	Ethylene Propylene Rubber (EPR)
Insulation Shield	Extruded thermoset semi-conducting polymer over the insulation
Neutral	Helically applied, annealed, solid bare copper wires
Jacket	Linear Low-Density Polyethylene (LLDPE)
Jacket Marking	00000 FT LS CABLE XXAWG (KCMIL) AL or CU I/C XXKV XXX% INSUL LEVEL XXXMILS EPR AA X #BB LLDPE JKT MV-90 (UL) MADE IN USA MMDDYYYY
Packaging	Non-returnable wood reels in a variety of lengths and dimensions
Performance Compliances	ASTM B-3 ICEA 5-94-649 ICEA 7-31-610 (water block compliance) AEIC CSB UL 1072 (MV-90) RUS UI

800.249.0014

Part Number: E9JPT-A65B01CA00

Copper Filled, 15kV 133% I.L., 220-mils Series E9JP

		Nominal	Nominal		Nominal	Nominal		Ampac	ity
Part Number	Conductor Size AWG/kcmil	Conductor Diameter ¹ in (mm)	Insulation Diameter ¹ in (mm)	Concentric Neutral No. x AWG	Jacket Thickness ¹ in (mm)	Overall Diameter ¹ in (mm)	Nominal Net Weight ¹ lbs/kft (kg/km)	Underground Duct ²	Direct Buried
				⅓ Reduced Neut	ral				
E9JPT-025B01CA00	2	0.280 (7.1)	0.77 (19.6)	6 x 14	0.055 (1.40)	1.08 (27.4)	671 (1,000)	177	241
E9JPT-015B01CA00	1	0.319 (8.1)	0.81 (20.6)	7 x 14	0.055 (1.40)	1.12 (28.4)	759 (1,130)	201	272
E9JPT-1A5B01CA00	1/0	0.358 (9.1)	0.85 (21.6)	9 x 14	0.055 (1.40)	1.15 (29.2)	874 (1,302)	229	306
E9JPT-2A5B01CA00	2/0	0.401 (10.2)	0.89 (22.7)	11 x 14	0.055 (1.40)	1.20 (30.5)	1,009 (1,504)	260	343
E9JPT-3A5B01CA00	3/0	0.451 (11.5)	0.94 (23.9)	14 x 14	0.055 (1.40)	1.25 (31.8)	1,180 (1,759)	295	380
E9JPT-4A5B01CA00	4/0	0.507 (12.9)	1.00 (25.4)	18 x 14	0.055 (1.40)	1.30 (33.0)	1,397 (2,081)	334	418
E9JPT-A15B01CA00	250	0.552 (14.0)	1.06 (26.8)	21 x 14	0.055 (1.40)	1.38 (35.1)	1,612 (2,402)	366	445
E9JPT-A35B01CA00	350	0.654 (16.6)	1.16 (29.4)	29 x 14	0.055 (1.40)	1.48 (37.7)	2,109 (3,143)	437	498
E9JPT-A65B01CA00	500	0.781 (19.8)	1.29 (32.6)	26 x 12	0.055 (1.40)	1.66 (42.2)	2,937 (4,376)	516	547
E9JPT-B25B01CA00	750	0.958 (24.3)	1.48 (37.5)	25 x 10	0.080 (2.04)	1.90 (48.3)	4,132 (6,156)	603	610
				Full Neutral					
9JPM-025B01CA00	2	0.280 (7.1)	0.77 (19.6)	16 x 14	0.055 (1.40)	1.07 (27.2)	789 (1,175)	173	234
9JPM-015B01CA00	1	0.319 (8.1)	0.81 (20.6)	20 x 14	0.055 (1.40)	1.12 (28.4)	943 (1,405)	199	266
9JPM-1A5B01CA00	1/0	0.358 (9.1)	0.85 (21.6)	25 x 14	0.055 (1.40)	1.15 (29.2)	1,092 (1,628)	226	302
9JPM-2A5B01CA00	2/0	0.401 (10.2)	0.89 (22.7)	32 x 14	0.055 (1.40)	1.19 (30.3)	1,324 (1,972)	259	342
9JPM-3A5B01CA00	3/0	0.451 (11.5)	0.94 (23.9)	25 x 14	0.055 (1.40)	1.26 (32.0)	1,552 (2,313)	294	388
9JPM-4A5B01CA00	4/0	0.507 (12.9)	1.00 (25.4)	32 x 12	0.055 (1.40)	1.30 (33.0)	1.870 (2.786)	335	439

¹The dimensions and weights shown are nominal and subject to industry standards and manufacturing tolerances. Other designs available upon request.

²Ampacities: ½ Reduced Neutral, triplexed - based on ICEA Standards. Full Neutral, single phase - based on 90°C conductor, 20°C ambient, 100% load factor, 36" burial depth, and earth RHO 90.

The catalog information was extracted from:

http://lscns.us/uploadedFiles/Docs/PDF/Catalogs/Energy/EPR-CN-LLDPE-Power-UD-serE9-copper.pdf

APPENDIX D: SUBSTATION AND CIRCUIT LOADING

SUB/Xfmr	kV	Maxi	mum der	nand	Minir	num den	nand	Power Factor	Load Factor
Feeder	Nominal	MW	MVAR	MVA	MW	MVAR	MVA	(PF)	(LF)
BD T1	13.8	10.93	1.53	11.03	3.91	-2.32	4.54	0.99	67%
BD 211	13.8	2.15	0.28	2.17	0.59	-0.70	0.92	0.99	61%
BD 212	13.8	4.07	-0.25	4.08	0.85	-2.09	2.26	1.00	56%
BD 213	13.8	6.02	1.78	6.28	1.65	-0.34	1.68	0.96	62%
BD T2	13.8	7.73	0.78	7.77	-1.02	-2.28	2.49	0.99	42%
BD 221	13.8	0.36	-1.08	1.14	-3.05	-1.45	3.38	0.88	
BD 222	13.8	6.45	0.74	6.49	0.00	0.00	0.00	0.99	51%
BD 223	13.8	6.47	1.34	6.61	0.63	0.26	0.68	0.98	28%
BR T1	13.8	16.72	1.68	16.80	2.57	-2.26	3.42	0.99	43%
BR 211	13.8	5.91	-0.71	5.95	1.07	-1.24	1.64	0.99	43%
BR 212	13.8	6.54	-0.77	6.59	1.02	-1.34	1.68	0.99	33%
BR 213	13.8	6.77	1.01	6.84	0.31	0.15	0.34	0.99	38%
BR T2	13.8	7.15	1.34	7.27	1.99	-0.75	2.13	0.98	48%
BR 221	13.8	1.35	0.39	1.41	0.22	-0.01	0.22	0.96	41%
BR 222	13.8	5.93	0.96	6.01	1.74	-0.80	1.92	0.99	48%
BR 223	13.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
GD T1	13.8	14.93	2.15	15.09	3.48	-1.00	3.62	0.99	47%
GD211	13.8	6.33	1.86	6.60	0.90	0.26	0.94	0.96	45%
GD212	13.8	5.96	0.11	5.96	1.24	-0.45	1.32	1.00	48%
GD213	13.8	3.09	0.86	3.21	0.58	0.08	0.59	0.96	48%
GD T2	13.8	9.37	4.08	10.22	1.47	-0.49	1.55	0.92	49%
GD221	13.8	4.86	2.75	5.59	0.42	-0.78	0.89	0.87	34%
GD222	13.8	3.46	0.53	3.50	0.84	-0.54	1.00	0.99	52%
GD223	13.8	2.07	0.79	2.22	0.63	0.07	0.63	0.93	55%
GD T3	13.8	11.10	1.40	11.19	2.80	-1.10	3.01	0.99	57%
GD231	13.8	2.48	0.37	2.51	0.38	-0.17	0.42	0.99	46%
GD232	13.8	6.09	0.75	6.14	1.58	-0.95	1.84	0.99	52%
GD233	13.8	3.28	0.96	3.42	0.91	0.14	0.92	0.96	58%

SUB/Transfr	kV	Maxi	mum der	mand	Minir	num den	nand		
Feeder	Nominal	MW	MVAR	MVA	MW	MVAR	MVA	PF	LF
HB T1	13.8	11.07	2.67	11.39	2.81	-0.65	2.89	0.97	47%
HB 211	13.8	1.95	0.60	2.04	0.42	0.10	0.43	0.96	40%
HB 212	13.8	3.59	0.77	3.67	0.71	-0.42	0.82	0.98	47%
HB 213	13.8	5.79	1.33	5.94	1.54	-0.45	1.60	0.97	46%
нв т2	13.8	15.40	4.40	16.01	2.74	-0.81	2.86	0.96	39%
HB 221	13.8	5.16	1.68	5.43	0.91	0.13	0.92	0.95	42%
HB 222	13.8	6.19	1.66	6.41	1.05	-1.04	1.48	0.97	36%
HB 223	13.8	4.85	1.58	5.10	0.70	0.17	0.72	0.95	32%
нв тз	13.8	15.10	1.50	15.17	3.6	-1.00	3.74	1.00	47%
HB 231	13.8	3.85	1.57	4.16	1.09	0.37	1.15	0.93	40%
HB 232	13.8	5.87	0.24	5.87	1.11	-0.38	1.17	1.00	40%
HB 233	13.8	5.87	0.40	5.88	1.53	-1.89	2.43	1.00	50%
HC T1	13.8	17.80	2.20	17.94	3.80	-2.90	4.78	0.99	45%
HC 211	13.8	6.86	-0.78	6.90	1.00	-0.91	1.35	0.99	48%
HC 212	13.8	6.38	0.70	6.42	1.38	-1.20	1.83	0.99	45%
HC 213	13.8	5.29	1.00	5.38	0.85	-0.64	1.06	0.98	39%
HC T2	13.8	13.00	1.90	13.14	1.10	-0.40	1.17	0.99	40%
HC 221	13.8	4.76	1.02	4.87	1.08	-0.25	1.11	0.98	44%
HC 222	13.8	1.00	0.10	1.00	0.00	0.00	0.00	1.00	
HC 223	13.8	8.57	1.61	8.72	1.63	-1.23	2.04	0.98	38%
НС ТЗ	13.8	13.90	2.60	14.14	4.20	-0.80	4.28	0.98	51%
HC 231	13.8	5.03	0.30	5.04	1.37	-1.37	1.94	1.00	49%
HC 232	13.8	4.11	1.72	4.46	0.90	0.28	0.94	0.92	54%
HC 233	13.8	5.42	1.44	5.61	1.23	0.22	1.25	0.97	47%
PC T1	13.8	17.53	4.28	18.05	3.15	-1.44	3.46	0.97	37%
PC 211	13.8	5.54	1.28	5.69	0.90	-0.57	1.07	0.97	34%
PC 212	13.8	5.61	0.99	5.70	1.16	-0.77	1.39	0.98	41%
PC 213	13.8	6.59	1.95	6.87	1.02	-0.06	1.02	0.96	34%
PC T2	13.8	17.23	4.33	17.77	2.31	-0.25	2.33	0.97	45%
PC 221	13.8	7.84	1.73	8.03	-0.41	-0.29	0.50	0.98	48%
PC 222	13.8	5.08	1.55	5.31	1.16	0.16	1.17	0.96	44%
PC 223	13.8	4.62	1.19	4.77	0.61	-0.23	0.65	0.97	35%

SUB/Transfr	kV	Maxi	mum der	mand	Minir	num den	nand		
Feeder	Nominal	MW	MVAR	MVA	MW	MVAR	MVA	PF	LF
PL T1	13.8	13.90	1.90	14.03	1.80	-2.60	3.16	0.99	51%
PL 212	13.8	4.13	0.50	4.16	0.99	-1.35	1.67	0.99	46%
PL 213	13.8	6.85	1.91	7.11	1.36	-0.35	1.40	0.96	39%
PL 214	13.8	5.96	1.40	6.12	1.46	-0.13	1.47	0.97	44%
PL T2	13.8	14.00	1.90	14.13	0.20	-3.10	3.11	0.99	53%
PL 221	13.8	4.65	0.39	4.67	1.10	-1.03	1.51	1.00	46%
PL 222	13.8	3.50	0.47	3.53	0.80	-0.59	0.99	0.99	46%
PL 223	13.8	7.17	1.30	7.29	2.09	-0.65	2.19	0.98	53%
PL T3	13.8	14.06	2.19	14.23	3.47	-2.05	4.03	0.99	53%
PL 231	13.8	4.81	1.08	4.93	1.01	-1.03	1.44	0.98	62%
PL 232	13.8	4.86	0.59	4.90	1.13	-0.71	1.33	0.99	47%
PL 233	13.8	4.87	1.02	4.98	0.94	-0.51	1.07	0.98	46%
RH T1	13.8	19.00	3.20	19.27	4.80	-2.00	5.20	0.99	47%
RH 211	13.8	7.19	1.92	7.44	2.42	-0.27	2.44	0.97	54%
RH 212	13.8	4.58	1.31	4.76	0.67	0.09	0.68	0.96	41%
RH 213	13.8	2.45	-0.30	2.47	0.74	-0.90	1.17	0.99	54%
RH 214	13.8	5.43	0.87	5.50	0.90	-0.86	1.24	0.99	38%
RH T2	13.8	13.64	3.72	14.14	4.58	0.57	4.62	0.96	53%
RH 221	13.8	3.25	1.34	3.52	0.50	0.19	0.53	0.92	61%
RH 222	13.8	7.62	2.56	8.04	2.23	0.63	2.32	0.95	51%
RH 223	13.8	0.12	0.03	0.12	0.00	-0.04	0.04	0.97	
RH 224	13.8	3.34	0.71	3.41	0.59	-0.22	0.63	0.98	41%

APPENDIX E: MAXIMUM TRANSFER CAPABILITY THROUGH DISTRIBUTION FEEDER

From Bolstad (BD) Substation

				То	Circuit (kV	/A)	
				Blue	Ridge	Rebel Hill	Max. load
				BR	BR	RH	transfer
				T1	T2	T1	(kVA)
				BR 213	BR 221	RH 214	
	BD	T1	BD 211				-
	BD	T1	BD 212		4,060		4,060
From Circuit	BD	T1	BD 213			1,702	1,702
From (BD	T2	BD 221				-
	BD	T2	BD 222				-
	BD	T2	BD 223	1,971			1,971

CONFIDENTIAL/PROPRIETARY © 2018 QUANTA TECHNOLOGY, LLC PAGE 91

From Blue Ridge (BR) Substation

						1	o Circuit (kVA)				
				Bol	stad	Harmony Branch	Powe	r Plant		Rebel Hill		Max. load
				BD BD		НВ	PL	PL	RH	RH	RH	transfer
				T1	T2	T2	T2	T3	T1	T1	T2	(kVA)
				BD 212	BD 223	HB 222	PL 222	PL 233	RH 213	RH 214	RH 221	
	BR	T1	BR 211					3,861				3,861
nit	BR	T1	BR 212			2,412		3,603				6,015
From Circuit	BR	T1	BR 213		2,211				6,396	3,332	5,337	17,276
Fro	BR	T2	BR 221	1,388								1,388
	BR	T2	BR 222				5,321					5,321

From Grindstone (GD) Substation

						To Circ	uit (kVA)			
				Hi	inkson Cre	ek	Power Plant	Rebe	el Hill	Max. load
				НС	НС	НС	PL	RH	RH	transfer
				T1	T3	T3	T3	T1	T1	(kVA)
	•			HC 211	HC 231	HC 232	PL 231	RH 211	RH 212	
	GD	T1	GD211	1,911						1,911
	GD	T1	GD212					1,368		1,368
	GD	T1	GD213							-
init	GD	T2	GD221							-
From Circuit	GD	T2	GD222					1,368		1,368
Fro	GD	T2	GD223					1,368		1,368
	GD	T3	GD231							-
	GD	T3	GD232			4,387	2,997		2,997	10,381
	GD	T3	GD233		3,384					3,384

From Harmony Branch (HB) Substation

									To C	Circuit (kV	A)					
					Blue Ridge	Harmon	y Branch	Hinkso	n Creek		Perche	: Creek		Powei	r Plant	Max.
					BR	НВ	НВ	НС	НС	PC	PC	PC	PC	PL	PL	load
					T1	T2	T3	T2	T3	T1	T1	T1	T2	T1	T1	transfer (kVA)
					BR 212	HB 223	HB 231	HC 221	HC 233	PC 211	PC 212	PC 213	PC 222	PL 212	PL 213	(KVA)
		НВ	T 1	HB 211												-
		НВ	T 1	HB 212												-
		НВ	T 1	HB 213												_
4		НВ	T 2	HB 221									2,448			2,448
	ב -	НВ	T 2	HB 222	2,234								2,110	4,685		6,919
L L		НВ	T 2	HB 223	·		4,688	3,970	3,222		2,269	1,000		·	1,702	16,850
	ı	НВ	T 3	HB 231		3,734										3,734
		НВ	T 3	HB 232						2,681	3,132	1,943				7,756
		НВ	T 3	HB 233												-

From Hinkson Creek (HC) Substation

							To Circuit (kVA)				
				(Grindston	е	Harmony Branch	Perche	Creek	Power	⁻ Plant	Max. load
				GD	GD	GD	НВ	PC	PC	PL	PL	transfer
				T1	T3	T3	T2	T1	T2	T1	T1	(kVA)
	•			GD211	GD232	GD233	HB 223	PC 213	PC 221	PL 213	PL 214	
	НС	T1	HC 211	2,221								2,221
	НС	T1	HC 212									
	НС	T1	HC 213					1,943				1,943
uit	НС	T2	HC 221				3,734	2,667				6,401
From Circuit	НС	T2	HC 222									-
Fro	НС	T2	HC 223					1,943	1			1,943
	НС	Т3	HC 231			5,017						5,017
	НС	Т3	HC 232		-							-
	НС	Т3	HC 233				3,000			1,702	2,702	7,404

From Perche Creek (PC) Substation

						To Circu	ıit (kVA)			
				Hai	rmony Brar	nch	Н	inkson Cre	ek	
				НВ	НВ	НВ	НС	НС	НС	Max. load transfer
				T2	T2	T3	T1	T2	T2	(kVA)
				HB 221	HB 223	HB 232	HC 213	HC 221	HC 223	(******)
	PC	T1	PC 211			2,952				2,952
	PC	T1	PC 212		3,734	2,952				6,686
From Circuit	PC	T1	PC 213		2,483	2,469	2,480	2,467	76	9,975
From (PC	T2	PC 221						-	-
	PC	T2	PC 222	3,340						3,340
	PC	T2	PC 223							-

From Power Plant (PL) Substation

							То С	ircuit (kVA	()				
					Blue Ridge	:	Grindstone	Harmon	y Branch	Hinkson Creek	Rebe	el Hill	Max. load
				BR	BR	BR	GD	НВ	НВ	НС	RH	RH	transfer
				T1	T1	T2	T3	T2	T2	T3	T1	T2	(kVA)
				BR 211	BR 212	BR 222	GD232	HB 222	HB 223	HC 233	RH 212	RH 222	
	PL	T1	PL 212					2,412					2,412
	PL	T1	PL 213						3,734	2,078			5,812
	PL	T1	PL 214							3,222			3,222
cuit	PL	T2	PL 221										-
From Circuit	PL	T2	PL 222			2,818						764	3,583
Fro	PL	T2	PL 223										-
	PL	Т3	PL 231				2,688				4,075		6,763
	PL	T3	PL 232										-
	PL	T3	PL 2 33	2,873	2,234								5,107

From Rebel Hill (RH) Substation

				To Circuit (kVA)								
			Bolstad	Blue Ridge	Grindstone				Power Plant		Max. load	
				BD	BR	GD	GD	GD	GD	PL	PL	transfer
			T1	T1	T1	T2	T2	T3	T2	T3	(kVA)	
			BD 213	BR 213	GD212	GD222	GD223	GD232	PL 222	PL 231		
From Circuit	RH	T1	RH 211			2,865	1,417	6,651				10,933
	RH	T1	RH 212						2,688		3,907	6,595
	RH	T1	RH 213		1,971							1,971
	RH	T1	RH 214	2,360	1,052							3,412
	RH	T2	RH 221		1,971							1,971
	RH	T2	RH 222							5,321		5,321
	RH	T2	RH 223									-
	RH	T2	RH 224									-