VPA 5300: The Digital Humanities in the Arts

Week 7 – 01 Sound

Sound waves

Sinusoidal wave

Sinusoidal wave

Heinrich Hertz (1857-1894) proved that electricity can be transmitted in electromagnetic waves, leading to the radio.

Frequency = 1/Period

Frequency spectrum

Joseph Fourier (1768-1830) invented the Fourier series: any complex waveform can be represented as a sum of sinusoidal waveforms.

Decibel scale

- Sound pressure is measured in microPascals (μPa).
- What is important for hearing is the *ratio* between levels (i.e., we need a relative scale)
- Sound Pressure Level (SPL) is measured in decibels (dB) and is proportional to the ratio of sound pressures
- $L(dB) = 20 \log p/p_o$
 - where $p_0 = 20 \mu Pa$ for SPL, i.e. o dB SPL = $20 \mu Pa$
- The decibel scale is a logarithmic scale

Decibel scale

Pressure (μPa)	Level (dB SPL)	Example
20 X 10 ¹¹	220	Cannon @ 4 m
20 X 10 ⁷	140	Jet engine
63 X 10 ⁶	130	Jack hammer
20 X 10 ⁶	120	Discotheque (pain threshold)
63 X 10 ⁵	110	Hammered steel @ 1 m
63 X 10 ³	70	Conversation @ 1 m
20 X 10 ³	50	Quiet street
63 X 10 ²	40	Quiet house
20 X 10	20	Whispered voice @ 1 m
63	10	Minimum outside
20	О	Reference level

Amplitude envelopes

Complex waveforms

Complex waveforms

Spectral envelopes

Aperiodic waveforms

Amplitude modulation

Time-frequency-amplitude representations

