Haotian Teng

E-mail: havens.teng@gmail.com haotiant@andrew.cmu.edu
Personal Website: https://haotianteng.github.io/

RESEARCH EXPERIENCE

Target-based drug generation using graph neural networks with probabilistic diffusion model.

Nov 2022 - Present

• Adapted an E(3) equivalent graph neural network with probabilistic diffusion model to generate small molecules with high binding affinity to given target protein pocket and high druggability.

Detecting N6-methyladenosine (m6A) modification in RNA using long read sequencing

Jan 2021 - Jan 2023

- Introduced Xron, an interpretable hybrid deep learning model combining non-homogeneous Hidden Markov Model (NHMM) and Convolutional-Recurrent Neural Network (CRNN) that achieve accurate detection of m6A modification in RNA. Obtained a 22% and 7% relative improvement on Yeast and human HEK293T cell lines compared to state-of-the-art.
- Obtained informative chemical parameters of nanopore from the highly interpretable hybrid model. Constructed pore models based on the parameters and completed accurate signal segmentation in an unsupervised manner.

Clustering the single-cell spatial transcriptomics data with novel probabilistic graphical model. Aug 2019 - Feb 2022

- Developed a robust probabilistic graphical model <u>FICT</u> that clusters the cell for spatial transcriptomics data. By considering the spatial distribution in addition to the gene expression, the model can give cell clusters variated in spatial domain.
- Discovered 5 novel genes related to neuron differentiation by DGE analysis on clusters identified by FICT.
- Constructed regularized denoise auto-encoder that achieve dimensional reduction faster than UMAP and applicable to any dimensions. It disentangles complicated clusters failed by t-SNE which does not consider nonlinear transformations.

Neural architecture search using deep reinforcement learning

July 2022 - Sept 2022

• Identified 3 novel convolutional neural layer structures using neural architecture search, achieved better performance than usual residual connection layer on several common tasks in openAI gym library with 20% fewer parameters.

Masters Research Project, Using Machine learning algorithm in Nanopore Basecalling Advisor: Prof. Lachlan Coin, Institute for Molecular Bioscience, University of Queensland

2017-02 - 2018-07

- Built a deep learning-based basecaller Chiron using Tensorflow, for Oxford Nanopore sequencer basecalling (Program page: https://github.com/haotianteng/Chiron)
- Developed a preprocessing tool **Nanopre** to identify the polyA region in the Nanopore RNA sequencing platform. (Program page: https://github.com/haotianteng/Nanopre_Tool)
- Prepared training dataset of DNA and RNA Nanopore basecalling reads, using Nanoraw and Graphmap to label the data.
- Implemented a pipeline in Google Cloud and Google Compute engine for end-to-end genome analysis.

Internship and Winter Scholar, The development of spontaneous neural activity in the zebrafish Advisor: Prof. Geoffrey Goodhill, Queensland Brain Institute, University of Queensland

- Built a pipeline for laboratory automation and data analysis in Zebrafish neuron experiment with Arduino, LabVIEW, and MATLAB.
- Constructed PHANTOM toolbox for projecting visual stimulation with conformal transformation, used for zebrafish tectum research. Program page in Github: https://github.com/haotianteng/PHANTOM-toolbox
- Developed algorithms for functional connectivity reconstruction using regularization method under scale-free assumption, correct the false positive correlation due to common input, transition connection, and latent common input.

Internship, Feedback in AIY neurons in Thermotaxis behavior of C.elegans

2015-07 - 2015-12

Advisor: Prof.Aravinthan D.T. Samuel, Center for Brain Science, Harvard University, Boston

- Studied thermotaxis in C.elegans with tracking and multi-neuron fluorescent marked.
- Cross & keep the worm, experiment using a spinning disk confocal microscope and the afterward data acquisition & processing with the combination of ImageJ (Miji) and Matlab
- Proved the derivation dependence between AFD neuron and temperature, designed and conducted the experiment to measure the parameters of the AFD-temperature relationship with temperature signal input under different shapes.

Research Assistant, Locomotion and PH sensoring mechanism in C.elegans & fast reaction tracking System development

2012-07 - 2015-06

Advisor: Dr. Louis Tao, Center for Bioinformatics, Peking University, Beijing

- Marked GCaMP6 into the C.elegans ASH, AWC, ASE neurons to testify and determine the neuron responsible for PH sensoring.
- Developed a neuro-muscle model of C.elegans motor system and proved the theoretical prediction of gait adaptation in C.elegans.

- Recorded and analyzed long-term locomotion parameters of C.elegans by using a tracking and photographing system.
- Developed a visualization tool with openGL to describe and simplify the neuron network in C.elegans, and enabled the tool to search the whole neural pathway through any two given neurons.
- Built a tracking system as one of the contributors, which could achieve high-precision (accuracy below 1 micron) tracking and photographing and simultaneous data collection & processing
- Modified and developed a "snake" model based algorithm for robust and precise C.elegans center line extraction.

Professional EXPERIENCE

Applied Scientist 2023-06 – 2023-09

Amazon, United States

• Tool integration in Large Language models through self-supervised learning.

Algorithm Engineer Winter Intern

2019-01 - 2019-02

Alibaba, Hangzhou, China

• Intelligence cache prediction using deep learning model based on biometric information.

Bioinformatics Engineer

Novogene Europe, Beijing, China

2018-09 - 2019-01

- Optimized the human resequencing and laboratory automation pipeline.
- Designed and developed the long-read sequencing platform.

Senior Research Technician

Institute for Molecular Bioscience, University of Queensland, Australia

2017-06 - 2018-07

 Worked on Oxford Nanopore Technologies Long-read Nanopore direct RNA sequencing data processing, improve the sequencing accuracy and efficiency, improve the succeeded sequencing reads ratio by 15X compared to the original pipeline for long poly-A tail reads.

Intern 2014-07 - 2014-10

Biodynamic Optical Imaging Center, PKU, Beijing, China

- Micro-fluid chip preparation and fabrication.
- Developed a Computational Fluid Dynamics (CFD) module for the microfluid chips fluid field calculation in Fluent, which could draw the flow field from the CAD design sketch.

PUBLICATIONS

- Teng, H., Stoiber, M., Bar-Joseph, Z. and Kingsford C., (2024). Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework. *bioRxiv*
- Teng, H., Yuan, Y. and Bar-Joseph, Z., (2021). Clustering Spatial Transcriptomics Data. *Bioinformatics*.
- Pitt, M. E., Nguyen, S. H., Duarte, T. P., **Teng, H.**, Blaskovich, M. A., Cooper, M. A., & Coin, L. J. (2020). Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. *GigaScience*, 9(2), giaa002.
- Teng, H., Cao, M. D., Hall, M. B., Duarte, T., Wang, S., & Coin, L. J. (2018). Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. *GigaScience*, 7(5), giy037.
- Avitan, L., Pujic, Z., Mölter, J., Van De Poll, M., Sun, B., **Teng, H.**, Amor, R., Scott, E.K. and Goodhill, G.J., 2017. Spontaneous activity in the zebrafish tectum reorganizes over development and is influenced by visual experience. *Current Biology*, 27(16), pp.2407-2419.
- Teng, H. "A neuron-muscle circuit model of C.elegans's locomotion." Bachelor of Science Thesis: Peking University, 2015

EDUCATION

Carnegie Mellon University, Pittsburgh, United States

Ph.D., Computational Biology

• Advisor: Ziv Bar-Joseph, Machine Learning Department and Computational Biology department,

School of Computer Science, Carnegie Mellon University.

2020 - present

Featured courses: Probabilistic Graphical Models (10-708) A+, Deep Reinforcement Learning&Control (10-703), Convex Optimization (10-725) A+

University of Queensland, Queensland, Australia

M.S., Bioinformatics 2016 – 2019

- Advisor: Prof. Lichlan Coin, Institute of Molecular Bioscience, University of Queensland
- Advisor: Prof. Geoffrey Goodhill, Queensland Brain Institute, University of Queensland

Peking University, Beijing, China

B.S., Physics 2011 – 2015

HONORS AND AWARDS

ullet	The 1 st Prize at 27 th Chinese Physics Olympiad, Zhejiang Province (rank 1/1232 in theory part)	2011
•	The Silver Medal at 27th Chinese Physics Olympiad, Finals	2011
•	The 1 st Prize at 29 th Parts of the National College Students Physics Competition	2012

SKILLS

- Programming: Python, C, C++, Matlab, R, Linux, LaTeX,
- Packages&Platforms: Tensorflow, MXNet, Caffe, CUDA, cuDNN, OpenGL, BWA, SAMtools, Velvet, DIAMOND, BLAST+, Minimap2, H5py, Psychtoolbox, LabVIEW, Arduino.
- Software: PyMOL, Fluent(ANSYS), Origin, AutoCAD, Primer Premier, DNA Man, Microsoft Office,
- Wet-lab experiment skill: Molecular cloning, Microinjection
- Language: Chinese(Mother Language), English(Fluent), Spanish(basic), German (Pizza-orderable) TOEFL: Cumulative 103 (R 29, L 29, S 23, W 22); GRE: V 150, Q 169, AW 3.0
- Proficient in Piano playing, learned since 6 years old. Skillful in saxophone.