UNIVERSITI TUNKU ABDUL RAHMAN ACADEMIC YEAR 2019/2020 JANUARY 2020 TRIMESTER FINAL ASSESSMENT

ANSWER SCRIPT

Candidate is required to fill in ALL the information below:

Name: (as stated in Student Identity Card)	Ngu Yi Hui		
Faculty /Institute/ Centre:	FSc	Programme:	Statistical Computing And Operations Research
Index No. (in numbers):	A00082DBSCF	Index No. (in words):	A Zero Zero Eight Two DBSCF
Course Code :	UDPS2013	Course Description:	Numerical Methods
Submission Date :	12 th MAY 2020	Time:	9am - 11am

	FOR EXAMINER'S USE ONLY MARKS	
QUESTION NUMBER		
	Internal	External
Q1		
Q2		
Q3		
Q4		
TOTAL MARKS		

(Co. No. 578227-M) DU012(A)

DECLARATION STATEMENT

I, Ngu Yi Hui (Name), Student ID No. 18ADB01438, hereby solemnly and fully declare and confirm that during my programme of study at Universiti Tunku Abdul Rahman, I shall abide and comply with all the rules, regulations and lawful instructions of Universiti Tunku Abdul Rahman and endeavour at all times to uphold the good name of the University.

I hereby declare that my submission for this Final Assessment is based on my original work, not plagiarised from any source(s) except for citations and quotations which have been duly acknowledged. I am fully aware that students who are suspected of violating this pledge are liable to be referred to the Examination Disciplinary Committee of the University.

Programme:	Statistical Computing And Operations Research
(Digital) Signature:	HUI
Student's I.C / Passport No.:	991110-14-6378
Index No:	A00082DBSCF
Date of Submission:	12 th MAY 2020

Index Number (in figure): A00082DBSCF Course Code: UDPS2013 Page: 3

QI.

(a)
$$\frac{dy}{dx} = f(x,y) = x^{2} + 2x \cos(xy) , \ y(0) = 0 \ \text{ and } 0 \le x \le 3$$
Holding x as a constant and applying Mean Value Theorem to the function
$$f(x,y) = x^{2} + 2x \cos(xy) \quad \text{for } y, < y_{2} \quad \text{and } 0 \le x \le 3,$$

$$\frac{f(x,y_{2}) - f(x,y_{1})}{y_{2} - y_{1}} = \frac{2}{2y} f(x,y) = -2x^{2} \sin(xy) \quad , \ y \in (y_{1},y_{2})$$

$$f(x,y_{2}) - f(x,y_{1}) = -2x^{2} \sin(xy) (y_{2} - y_{1}) \quad , \ y \in (y_{1},y_{2})$$

$$|f(x,y_{2}) - f(x,y_{1})| = |2||x^{2}||\sin(xy)||(y_{2} - y_{1})|$$

$$\leq (2)(4)(1)|(y_{2} - y_{1})| \quad , \ y \in (y_{1},y_{2})$$

f satisfies a Lipschitz condition in the variable y with Lipschitz constant L=18. As f continuous for when 0 < x < 3 and $y \in (-\infty, \infty)$, the initial value problem $y' = f(x,y) = x^2 + 2x \cos(xy)$, 0 < x < 3, y(0) = 0 has a unique solution.

Index Number (in figure): A00082DBSCF

Course Code: UDPS2013

Page: 4

QI.

(b)	Cubic Sphere Polynomial H forces the Suretion f(x) to include all the data points over a close	Lagrange Rolynomial H forces the function f(x) to include all the data points over a close
	interval of x	interval of x.
	All the data points need to be sorted according to the x-courdinate.	It is flexible, the data points do not need to be sorted according to the x-coordinate.
	It divides the whole interval into sub-divisions to perform the piecewise polynomial approximation where the cubic polynomial is used for each successive pair of nodes.	
	It is more accurate than Logrange Polynomial.	It is less accurate compared with Cubic Spline Polynomial.
	It can retain the shape of the curve when it is well-fitted by the polynomial over each sub-intervals	It will be more accurate when higher degree of Lagrange Polynomial is performed.

Index Number (in figure): A00082DBSCF

Course Code: UDPS2013

Page: 5

QI.

(c)	Newton Method	False 18 sition Method
	It is an open method as the iteration begins at an initial estimation (p.) which is close to the root for the continuous f(x).	
	It needs only one initial approximation which is close to the root (p).	It needs two initial approximation (p_0, p_1) which are close to the root (p) , but the two initial approximation (p_0, p_1) cannot be too close to each other.
	It uses the help of tangent line to approximate the solution, thus the assumption of $f'(x_n) \neq 0$ must be met. $(n = 0, 1, 2,)$	It make use of the secant line to find the solution, thus the condition $f(p_0) \neq f(p_0)$ must be met in the first iteration.
	It usually converges faster than Bisection Method, but requires the model information providing the derivative exists	Its convergence rate usually faster than Bisection Method.
,	H converges faster when f(x) is a straight line. Also, when the magnitude of the slope of the tangent line is larger, it converges faster.	It converges faster when the magnitude of the slope of the secont line is larger.

Index Number (in figure): A00082DBSCF Course Code: UDPS2013 Page: 6

Q2.

(a) Accuracy of:

Euler's Method = O(h2)

Taylor Series Method of Order p = O(hP)

Runge Kutta Method of Order 4 = 0 (h4)

The power of h is higher, the accuracy will be higher.

: Euler is least accurate

Index Number (in figure): A00082DBSCF

Course Code: UDPS2013

Page: 7

Q2.

(b) (i) Using Trapezoidal Rule with
$$h=1$$
, $f(x) = \frac{1}{1+x^2}$

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \simeq \frac{1}{2} \left[f(0) + f(1) \right]$$

$$\simeq \frac{1}{2} \left(1 + 0.5 \right)$$

$$\simeq 0.75$$

×	f(x)	
0	1	
1	0.5	

(ii) Using Composite Simpson's Rule with
$$h = \frac{1}{6}$$
, $f(x) = \frac{1}{1+x^2}$

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \simeq \frac{1}{6(3)} \left[1+0.5 + 4(0.9730 + 0.8 + 0.5902) + 2(0.9 + 0.6923) \right]$$

$$\simeq \frac{1}{18} (14.1374)$$

$$\simeq 0.7854$$

*	f(x)	
0	1	
1/6	0.9730	
1/3	0.9	
1/2	8.0	
2/3	0.6923	
5/6	0.5902	
1	0.5	

(iii) Actual
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \left[\frac{1}{1+x^{2}} - \frac{\pi}{4} \right]_{0}^{1} = \frac{\pi}{4}$$

The accuracy of estimate in part (i):
$$\frac{10.75 - \frac{\pi}{4}1}{\frac{\pi}{4}} = 0.04507$$

The accuracy of estimate in part (ii):
$$\frac{|0.7854 - \frac{\pi}{4}|}{\frac{\pi}{4}} = 0.000002338$$

· Composite Simpson's Rule is more accurate than Trapezoidal Rule.

Index Number (in figure): A00082DBSCF Course Code: UDPS2013 Page: 8

Q3.

(a)
$$y' = f(x,y) = H(y-x)$$
, $y(1) = 2$

Using Henn's Method with $h = 0.1$,

 $y_{n+1}^* = y_n + h f(x_n, y_n)$
 $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*)]$
 $y_{n+1}^* = y_n + 0.1 [H(y_n - x_n)]$
 $y_{n+1} = y_n + 0.05 [H(y_n - x_n) + H(y_{n+1}^* - x_{n+1})]$, $n = 0, 1, ...$

×n	y.*	y _n
1		2
1.1	2.4	2.46
1.2	3.004	3.0928
1.3	3.8499	3.9813

Index Number (in figure): A00082DBSCF Course Code: UDPS2013 Page: 9

Q3.

(b) (i) Expand function f(x) in a 3rd Taylor polynomial about a point x. and evaluate at (x.+h) and (x.-h).

(1)
$$-f(x_0+h) = f(x_0) + hf'(x_0) + \frac{h^2f''(x_0)}{2!} + \frac{h^3f'''(x_0)}{3!} + \frac{h^4f'''(\xi_0)}{4!}$$
,
 ξ_0 is between x_0 and x_0+h

$$(2) - f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2 f''(x_0)}{2!} - \frac{h^3 f'''(x_0)}{3!} + \frac{h^4 f''''(\xi_{-1})}{4!},$$

$$\xi_{-1} \text{ is between } x_0 - h \text{ and } x_0$$

$$f''(x_{0}+h)+f(x_{0}-h)=2f(x_{0})+h^{2}f''(x_{0})+\frac{h^{4}}{24}\left[f'''(\xi_{0})+f'''(\xi_{0})\right]$$

$$f''(x_{0})=\frac{1}{h^{2}}\left[f(x_{0}-h)-2f(x_{0})+f(x_{0}+h)\right]-\frac{h^{2}}{12}f'^{(4)}(\xi),$$

$$\xi\in(x_{0}-h,x_{0}+h)\text{ and }f'^{(4)}(\xi)=\frac{f'^{(4)}(\xi_{0})+f'^{(4)}(\xi_{0})}{2}$$

$$f''(x_{0})=\frac{f(x_{0}+h)-2f(x_{0})+f(x_{0}-h)}{h^{2}}+O(h^{2})$$

$$=\frac{f(x_{0}+h)-2f(x_{0})+f(x_{0}-h)}{h^{2}}+K_{1}h^{2}+K_{2}h^{4}+\cdots$$

Ihl <1, and Ki, Kz, ... are constant

Course Code: UDPS2013

Index Number (in figure): A00082DBSCF

Page: 10

Q3.

(b)(ii)
$$f(x) = xe^{x}$$

Using Richardson Extrapolation, with $h = 0.1$,
$$N_{1}(0.1) = \frac{f(1.1) - 2f(1) + f(0.9)}{0.1^{2}}$$

$$= \frac{3.3046 - 5.4366 + 2.2136}{0.1^{2}}$$

$$= 8.16$$

$$N_{1}(0.05) = \frac{f(1.05) - 2f(1) + f(0.95)}{0.05^{2}}$$

$$= \frac{3.0005 - 5.436(+ 2.4564)}{0.05^{2}}$$

$$= 8.12$$

$$N_{1}(0.025) = \frac{f(1.025) - 2f(1) + f(0.975)}{0.025^{2}}$$

$$= \frac{2.8568 - 5.4366 + 2.5849}{0.025^{2}}$$

$$= 8.16$$

$$N_{1}(0.1) = N_{1}(0.05) + \frac{N_{1}(0.05) - N_{1}(0.1)}{3}$$

$$= 8.1067$$

$$N_{2}(0.05) = N_{1}(0.025) + \frac{N_{1}(0.025) - N_{1}(0.05)}{3}$$

$$= 8.1733$$

$$N_3(0.1) = N_3(0.05) + \frac{N_3(0.05) - N_3(0.1)}{15}$$

$$= 8.1777$$

Index Number (in figure): A00082DBSCF Course Code: UDPS2013 Page: 11

Q4.

(a)
$$y'' - 4 \times y' + 4 y = x + 1$$
, $y(1) = 1$, $y(1.4) = 2$

Using Finite Difference Method with $h = 0.1$,

Substitute $y'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$, $y' = \frac{y_{i+1} - y_{i-1}}{2h}$, $x = x_i$ and $y = y_i$.

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} - 4 \times \frac{y_{i+1} - y_{i-1}}{2h} + 4y_i = x_i + 1$$

100 (yi+1 - 2y; + yi-1) - 20 x; (yi+1 - yi-1) + 4y; = x; +1 , i=1,2,3

$$200 - 200 y_3 + 100 y_7 - 52 + 26 y_2 + 4 y_3 = 2.3$$

- 196 y_3 + 126 y_2 = - 145.7

Using Cremer's Rule,
$$\begin{bmatrix}
0 & 78 & -196 \\
76 & -196 & 124 \\
-196 & 126 & 0
\end{bmatrix} \begin{bmatrix}
y_3 \\
y_2 \\
y_1
\end{bmatrix} = \begin{bmatrix}
-119.9 \\
2.2 \\
-145.7
\end{bmatrix}$$

(Continue next page).

Course Code: UDPS2013

Index Number (in figure): A00082DBSCF

Page: 12

$$y_{3} = \begin{vmatrix} -119.9 & 76 & -196 \\ 2.2 & -196 & 124 \\ -145.7 & 126 & 0 \end{vmatrix} = \frac{6006987.2}{3756928} = 1.5989$$

$$y_{3} = \begin{vmatrix} 0 & 78 & -196 \\ 76 & -196 & 124 \\ -196 & 126 & 0 \end{vmatrix}$$

$$y_{2} = \begin{vmatrix} 0 & -119.9 & -196 \\ 76 & 2.2 & 124 \\ -196 & -145.7 & 0 \end{vmatrix} = \frac{4999881.6}{3756928} = 1.3308$$

$$y_{1} = \begin{vmatrix} 0 & 78 & -196 \\ 76 & -196 & 124 \\ -196 & 126 & 0 \end{vmatrix} = \frac{4287992}{3756928} = 1.1414$$

$$y(1.1) \approx 1.1414$$

$$y(1.2) \approx 1.3308$$

$$y(1.3) \approx 1.5989$$

Index Number (in figure): A00082DBSCF Course Code: UDPS2013 Page: 13

Q4.

(b)
$$\int_{0}^{1} \frac{1}{1+x} dx$$
Using Romberg Integration $R_{3,3}$,
$$f(x) = \frac{1}{1+x}$$

$$R_{1,1} = \frac{h_{1}}{2} \left[f(0) + f(1) \right] = \frac{1}{2} \left(1 + 0.5 \right) = 0.75$$

$$R_{2,1} = \frac{1}{2} \left[R_{1,1} + h_{1} f(0.5) \right] = \frac{1}{2} \left[0.75 + 1 \left(0.6667 \right) \right] = 0.7083$$

$$R_{2,2} = R_{2,1} + \frac{R_{2,1} - R_{1,1}}{3} = 0.7083 + \frac{0.7083 - 0.75}{3} = 0.6944$$

$$\therefore \int_{0}^{1} \frac{1}{1+x} dx \approx 0.6944$$

Index Number (in figure): A00082DBSCF

Course Code: UDPS2013

Page: 14

J. Jomba

Q4

(c) First, we need to check for the condition, Strictly Row Diagonally Dominant,

For the following system of linear equations, they does not fulfil the

condition,

eq1: ×+10y+z=18 -> 1<10+1 ? Not Fulfil

eq1:
$$\times + 10y + z = 18 \rightarrow 1 < 10 + 1$$
 } Not filst eq2: $10 \times + y + z = 18 \rightarrow 1 < 10 + 1$ eq3: $\times + y + 10z = 18 \rightarrow 10 > 1 + 1 - Fulst$

So we need to interchange the row of the equations to make them follows Strictly Row Diagonally Dominant rule.

In this case, we interchange equation 1 and equation 2. $10 \times + y + z = 18 + 10 > 1+1$

 $\times + loy + z = 18 \rightarrow 10 > 1+1$ All fulsil $\times + y + loz = 18 \rightarrow 10 > 1+1$

The condition is fulfilled now.

Then, we can continue to perform Gauss - Scidel Method to solve it,
$$x^{(k)} = \frac{1}{10} \left[-y^{(k-1)} - z^{(k-1)} + 18 \right]$$

$$y^{(k)} = \frac{1}{10} \left[-x^{(k)} - z^{(k-1)} + 18 \right]$$

$$z^{(k)} = \frac{1}{10} \left[-x^{(k)} - y^{(k)} + 18 \right] , k = 1, 2, ...$$

To obtain approximated solution for the system of linear equations up to n decimal places, $n \ge 1$, we stop the iterations when all the unknowns are having the absolute error smaller than 0.000005 (n=5 decimal places, in this case).