Miriam Huntley

INTERESTS

Applying tools from physics, numerical methods, and machine learning towards analyzing complex data-driven systems.

EDUCATION

Harvard University, Applied Math, SEAS

Sept. 2010-May 2016

PhD Candidate, GPA: 4.0/4.0

Secondary Field: Computational Science and Engineering

Massachusetts Institute of Technology

Sept. 2005-June 2009

B.S. in Physics, June 2009. **GPA**: 4.9/5.0

Technion, Israel Institute of Technology, Haifa, Israel May-Aug. 2008

Semester Abroad. **GPA**: 96.3/100

Midreshet Lindenbaum, Jerusalem, Israel Aug. 2004-June 2005

Post high school year abroad at college for Judaic studies. **GPA**: 4.0/4.0

University of California, Davis

June-Aug. 2002, 2003, 2004

Attended summer sessions while in high school: Math, CS, Econ. GPA: 4.0/4.0

Northwest Yeshiva High School, Seattle, WA

Aug. 2001-June 2004

Valedictorian, Dean's List every semester. GPA: 4.0/4.0

RESEARCH EXPERIENCE

Brenner Group, Harvard University

Jan. 2013-May 2016

Principles of self-assembly in synthetic and natural biology; applications of random matrix theory for data analysis

Aiden Lab, Baylor College of Medicine

Aug. 2011-May 2016

Algorithm design for Hi-C and genomic data analysis to uncover principles of chromatin spatial organization; Computational modeling of condensed polymer systems

Microsoft Research Internship

June-Aug 2015

Developed an algorithm for input aware ensemble learning

Biochip Group, Institute of Bioengineering and Nanotechnology, Singapore Sept. 2009-Feb. 2010

Developed SAW microfluidic techniques and developed PCR data analysis software

Ashoori Group, MIT

Sept. 2008-June 2009

Senior thesis: performed low temperature transport studies on CVD-grown graphene

Condensed Matter Group, Tel Aviv University

Spring 2008

Wrote numerical simulations of non-linear optical trapping

NSF REU Internship, U.C. Davis

Summer 2007

Performed numerical simulations of fermions using quantum Monte-Carlo techniques

Neutrino and Dark Matter Group, MIT

Jan. and Spring Terms 2007

Designed rear electron gun setup for KATRIN experiment

PUBLICATIONS

(* denote equal contribution, first author contributions in bold)

- 1. MH Huntley*, A Murugan*, MP Brenner. The Capacity of Specific Glues. PNAS (2016)
- 2. EM Darrow*, **MH Huntley***, B Chadwick, E Lieberman Aiden, et al. Deletion of DXZ4 on the human inactive X chromosome eliminates superdomains and impairs gene silencing. PNAS (2016)
- 3. NC Durand, MS. Shamim, MH Huntley, ES Lander, E Lieberman Aiden et al. Juicer: a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems (2016)

- 4. AL Sanborn, SSP Rao, MH Huntley, E Lieberman Aiden et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS (2015)
- 5. SSP Rao*, MH Huntley*, ES Lander, E Lieberman Aiden, et al. A three-dimensional map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell (2014)
- 6. LJ Colwell, Y Qin, MH Huntley, A Manta, MP Brenner. Feynman-Hellmann Theorem and Signal Identification from Sample Covariance Matrices. Physical Review X (2014)
- 7. GG Batrouni, MH Huntley, VG Roussea, RT Scalettar. Exact Numerical Study of Pair Formation with Imbalanced Fermion Populations. Physical Review Letters (2008)

AWARDS

NSF Graduate Research Fellowship	2011
Phi Beta Kappa Award	200
Sigma Pi Sigma Physics Honor Society	2009
MIT Public Service Grant for Website Development Project	2007
Awarded for trip to Guatemala to develop website for technical high school and teach classes	
High School Valedictorian	2004

OTHER

Computer Related: Matlab, python, CUDA, Java, C++ **Languages**: fluent Hebrew and Spanish, beginner Mandarin **Teaching**:

Science of Cooking Lab Instructor

Hebrew Teacher, MIT Hebrew Language Club

Windsurfing Instructor, MIT Sailing Pavilion

Mentor: Harvard Women In Science, Technology, Engineering and Mathematics

2013

2013-Present

2012-2015

Art:

Created images of DNA polymer simulations for exhibits at the Broad Institute and the Smithsonian

Co-wrote and co-directed a Cell Video abstract that was the recipient of the 2015 BioTechniques Lab Grammy in Education (https://www.youtube.com/watch?v=dES-ozV65u4&list=UUISV2Tk7x-wBBXP6-VCNbNw)