

```
<xs:complexType name="CategoryType">
<xs:element name="description" type="xs:string" />
```

Software System Architectures (NSWI130)

Quality Attributes Book Type

Martin Nečaský

Faculty of Mathematics and Physics Charles University in Prague

Kinds of requirements

functional requirements

Kinds of requirements

- functional requirements
- quality requirements
 - e.g. performance, reliability, security, availability, modifiability, interoperability, testability, interoperability, ...

Kinds of requirements

- functional requirements
- quality requirements
 - e.g. performance, reliability, security, availability, modifiability, interoperability, testability, interoperability, ...
- (system) constraints

- functionality often takes the only seat in the development scheme
- software projects fail not because the lack of functionalities but because of their low quality

- functionality may be achieved through the use of different architectural structures
- quality attributes can never be achieved in isolation
- one attribute influences other attributes
 - e.g. performance vs maintainability

Quality of Software Architecture

 new definition of software architecture from qualitative point of view:

"Software architecture is mapping of system's functionality onto software structures that determines the architecture's support for qualities."

Quality Attribute Definition

- A quality attribute (QA) is a measurable or testable property of a system that is used to indicate how well the system satisfies a quality requirement of a stakeholder
- QA = measure of "goodness" of a system's functionality along some dimension of interest of a stakeholder

Quality Attributes Examples

"When the user presses the green button the options dialog appears"

performance QA - how quickly the dialog will appear

Quality Attributes Examples

"When the user presses the green button the options dialog appears"

- performance QA how quickly the dialog will appear
- availability QA how often the function will fail and how quickly it will be repaired

Quality Attributes Examples

"When the user presses the green button the options dialog appears"

- performance QA how quickly the dialog will appear
- availability QA how often the function will fail and how quickly it will be repaired
- usability QA how easy it is to learn this function, and how easy it is to locate this function for the user, how easy it is to revert the function

Achieving Quality Attributes

- quality attributes must be considered throughout analysis, design, implementation, and deployment
- quality attributes may involve architectural but also non-architectural aspects

Achieving Performance

Performance measures how long it takes to respond to requests.

- communication among components (architectural)
- functionality allocated to components (architectural)
- shared resources allocation (architectural)
- chosen algorithms (non-architectural)
- how algorithms are coded (non-architectural)

Achieving Modifiability

Modifiability measures how easily system can be changed.

- division of functionality (architectural)
- coding techniques (non-architectural)

Achieving Quality Attributes

Usability measures how easily a user can accomplish a desired task.

- clear and easy to use user interface (non-architectural)
- ability to cancel or undo operations (architectural)
- ability to re-use previously entered data (architectural)

Role of Architecture

- architecture is critical for many qualities
- architecture, by itself, is unable to achieve qualities
 - it provides the foundation for achieving qualities, but attention must be also paid to the non-architectural details

system quality attributes

business quality attributes

architectural quality attributes

system quality attributes

system quality attributes

run-time quality attributes

- availability
- performance
- security
- usability
- ...

system quality attributes

run-time quality attributes

- availability
- performance
- security
- usability
- ...

design-time quality attributes

- modifiability
- portability
- testability
- reusability
- integrability
- ..

business quality attributes

- time to market
- cost/benefit
- legacy systems reuse
- ability to outsource
- ...

architectural quality attributes

- correctness
- completeness
- buildability
- conceptual integrity

Specifying Quality Requirements

- quality attributes do not specify quality requirements
 - it is meaningless to say that system is modifiable

- it may be not clear to which quality attribute a particular aspect belongs to
 - Is system failure an aspect of performance, availability, security, or usability?

Quality Attribute Requirement Scenario

The End

