Signals and systems Homework #3 Part 2/2

Dr Rahmati
Spring 97-98
Amirkabir University of Technology
(Tehran polytechnic)

Deadline: 14 Ordibehesht, 1398 [23:55]

- Homeworks will not be accepted after the deadline.
- For theoretical problems, gather them in a single *.pdf file.
- For the matlab problems, provide both these materials:
 - codes [*.m files]
 - a simple **report** that includes all plots and screenshots.
- Notice that the homeworks will be checked by plagiarism detectors, avoid any similarities.
- Matlab problems and theoretical problems will be graded seperately (both will be graded out of 100), but their weights may be different and is determined by the course professor.

Question 1 (10 points)

Determine the Fourier transform of the following signals

[a]
$$e^{-3|t|}\sin(2t)$$

[b]
$$\frac{d}{dt} \left(2te^{-2t}u(t) \right)$$

[c]
$$\frac{1}{3+2t^2}$$

$$[\mathbf{d}] \ \sin \left(\pi \mathbf{t} \right) \boldsymbol{\Pi} \left(t - \frac{1}{2} \right) \ = \ \begin{cases} \sin \left(\pi \mathbf{t} \right) & 0 \le t \le 1 \\ 0 & otherwise \end{cases}$$

[e]
$$t \cos (2\pi f_0 t)$$

Question 2 (10 points)

Determine the inverse Fourier transform of the following signals

[a]
$$X(j\omega) = 3\delta(\omega - 3)$$

[b]
$$X \left(j\omega \right) = \begin{cases} \cos(\omega) & |\omega| < \pi \\ 0 & otherwise \end{cases}$$

[c]
$$X(j\omega) = \pi e^{-|\omega|}$$

[d]
$$1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$$

$$|\mathbf{e}| X \left(j\omega \right) = \frac{5j\omega + 12}{\left(j\omega \right)^2 + 5j\omega + 6}$$

Question 3 (10 points)

[a] Find the Fourier transform of the "Rectangular pulse signal" using Fourier transform definition

[b] using the result of part a and Fourier transform properties, find the Fourier transform of the following signal

Question 4 (10 points)

Consider the following system:

$$x\left(t\right) = \frac{\sin(\pi t)}{\pi t}, \ p\left(t\right) = \cos\left(4\pi t\right), \ q\left(t\right) = \frac{\sin(5\pi t)}{\pi t}, \ H\left(\omega\right) = \begin{cases} 1 & \omega \ge 2\pi \\ 0 & \omega < 2\pi \end{cases}$$

Determine $A(\omega)$, $B(\omega)$ and $C(\omega)$.

4/6

Question 5 (5 points)

Determine the energy spectral density of the signal

$$x(t) = \sin c(10t)$$

Question 6 (5 points)

Consider a pulse p(t) = u(t+1) - u(t-1), using its Fourier transform and parseval's energy relation, show that :

$$\int_{-\infty}^{+\infty} \left(\frac{\sin(\omega)}{\omega} \right)^2 d\omega = \pi$$