	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIV	ERSITY,	
	LONERE		
	End Semester Examination - Winter 2019		
	Course: B. Tech in Sea	n: III	
	Subject Name: Engineering Mathematics-III (BTBSC301) Ma	rks: 60	
	Date: 10/12/2019 Du	ration: 3 Hr.	
	Instructionts to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question/expected answer as per OBE or the Course Outcome which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly.	ne (CO) on	
		(Level/CO)	Marks
Q. 1	Attempt the following.		12
A)	Find $L\{\cosh t \int_0^t e^u \cosh u du \}$.	Analysis	4
B)	If $f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$ is a periodic function with period 2π . Find $L\{f(t)\}$.	Analysis	4
C)	Using Laplace transform evaluate $\int_0^\infty e^{-at} \frac{\sin^2 t}{t} dt$	Evaluation	.4
Q. 2	Attempt any three of the following.		12
A)	Using convolution theorem find $L^{-1}\left\{\frac{1}{s(s+1)(s+2)}\right\}$	Application	4
B)	Find $L^{-1}\{\bar{f}(s)\}\$, where $\bar{f}(s) = \log\left(\frac{s^2+1}{s(s+1)}\right)$	Analysis	4
C)	Using Laplace transform solve $y'' + 2y' + 5y = e^{-t} \sin t$; $y(0) = 0$, $y'(0) = 1$	Application	4
D)	Find $L^{-1}\left\{\frac{s^2+2s-4}{(s-5)(s^2+9)}\right\}$	Analysis	4
			10
0.3	Attempt any three of the following.		12

A)	Express the function $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral	Evaluation	4
	and hence evaluate that $\int_0^\infty \frac{\sin \lambda x \sin \lambda \pi}{1-\lambda^2} d\lambda$.		
	1-4		
B)	Using Parseval's identity for cosine transform, evaluate	Application	4
	eo dr		
	$\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)} .$		
C)	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2. \\ 0, & x > 2 \end{cases}$	Analysis	4
	Find the Fourier sine transform of $f(x) = \begin{cases} 2-x, & 1 \le x \le 2, \\ 0, & x > 2 \end{cases}$		
· D)	e-as	Analysis	4
D)	If $F_s\{f(x)\} = \frac{e^{-as}}{s}$, then find $f(x)$. Hence obtain the inverse Fourier sine		
	transform of $\frac{1}{s}$.	: · · · · · · · · · · · · · · · · · · ·	
Q. 4	Attempt any three of the following.		12
A)	Form the partial differential equation by eliminating arbitrary function f from $f(x^2 + y^2 + z^2, 3x + 5y + 7z) = 0$	Synthesis	4
	$\operatorname{Holm}_{f}(x + y + 2, 3x + 3y + 72) = 0$		
B)	Solve $pz - qz = z^2 + (x+y)^2$	Application	4
		Analysis	4
C)	Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ where	Allalysis	. •
	the boundary conditions are $u(0,t) = 0$, $u(l,t) = 0$ $(t > 0)$ and the		
	initial condition $u(x, 0) = x$; l being the length of the bar.		
D	Use the method of separation of variables to solve the equation	Application	4
	$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given that $u(x, 0) = 6e^{-3x}$		
			12
Q. 5	Attempt the following.	Amalusia	4
A)	Determine the analytic function $f(z)$ in terms of z whose real part is $\frac{\sin 2x}{\cos x}$	Analysis	4
	$\cosh 2y - \cos 2x$		
	2 2 0 0 1 0 1 0		4
B)	Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic. Find a function v such that $f(z) = u + iv$ is analytic.	Analysis	4
C)	Find the bilinear transformation which maps the points $z = 0, -1, -i$ onto	Analysis	4
-2	the points $w = i, 0, \infty$. Also, find the image of the unit circle $ z = 1$.		
Q. 6	Attempt the following.		12

A)	Use Cauchy's integral formula to evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle $ z = 3$.
В)	Find the poles of function $\frac{z^2-2z}{(z+1)^2(z^2+4)}$. Also find the residue at each pole.
C)	Evaluate $\oint_C \frac{e^z}{\cos \pi z} dz$, where C is the unit circle $ z = 1$.
	*** Paper End ***

Evaluation

Analysis

Evaluation