An Introduction to Model-Based Clustering

Anish R. Shah, CFA
Northfield Information Services
Anish@northinfo.com

Newport June 3, 2011

Clustering

- Observe characteristics of some objects
 - $-\{\mathbf{x}_1, ..., \mathbf{x}_N\}$ N objects
- Goal: group alike objects
 - say there are M clusters $\{z_1, ..., z_N\}$ cluster memberships z_k = object k's membership, a number from 1..M
 - k, j in the same cluster $\rightarrow \mathbf{x}_k$, \mathbf{x}_j similar –or- k, j in different clusters $\rightarrow \mathbf{x}_k$, \mathbf{x}_j dissimilar

Examples of Characteristics

- Clustering dog breeds

- $\mathbf{x} = (\text{past 3 years of monthly returns})$
- Clustering stocks via fundamentals
 - $-\mathbf{x} = (\text{beta to the market, dividend rate, E/P, } \underline{\text{Debt/Equity, ...}})$
- Clustering stocks via fundamentals & returns
 - x = (beta to the market, dividend rate, past 2 years of monthly returns)

Machine Learning

 Rather than being programmed with rules, the system inferentially learns the patterns/rules of reality from data

Supervised Learning

- Some of the training data is labeled
- e.g. There are 5 company types AAPL & MSFT are type 1, ..., XOM is type 5.
 Find the prototype for each type and label the rest of the universe
- e.g. Amazon & Netflix recommendations

Unsupervised Learning

- None of the data has labels
- Organize the system to maximize some criterion
- e.g. Clustering maximizes similarity within each cluster
- e.g. Principal Components Analysis maximizes explained variance
- Vanilla clustering is the canonical example of unsupervised machine learning

Review of Forms of Hard Clustering

- 'Hard' means an object is assigned to only one cluster
 - In contrast, model-based clustering can give a probability distribution over the clusters
- Hierarchical Clustering
 - Maximize distance between clusters
 - Flavors come from different ways of measuring distance
 - Single Linkage distance between the two nearest elements
 - Complete Linkage distance between the two farthest elements
 - Average Linkage mean (or median) distance between all elements
- K-Means
 - Minimize mean (median in K-medians) distance within clusters

K-Means / K-Medians

 K-Means (heuristically) assigns objects to clusters to minimize the average squared distance (absolute distance in K-Medians) from object to cluster center.

• Minimize $\frac{1}{N} \sum_{k=1..N} ||\mathbf{x}_k - \mathbf{\mu}_{z_k}||^2$ over

> $z_1...z_N$ = cluster assignments $\mu_1...\mu_M$ = centers of the clusters

K-Means Algorithm

- 1. Randomly assign objects to clusters
- 2. Calculate the center (mean) of each cluster
- 3. Check assignments for all the objects. If another center is closer to an object, reassign the object to that cluster
- 4. Repeat steps 2-3 until no reassignments occur
- Extremely fast
- The solution is a local max, so several starting points are used in practice
- (K-Medians) For robustness, step 2 uses median instead of mean to get centers

Mixture of Gaussians: A Model-Based Clustering Similar to K-Means

- Observe data for N objects, {x₁, ..., x_N}
- Each cluster generates data distributed normally around its center
 - when object k is from cluster m, $p(\mathbf{x}_k) \sim \exp(\|\mathbf{x}_k - \mathbf{\mu}_m\|^2 / \sigma^2)$
- Some clusters appear more frequently than others
 - given no observation information, p(an object belongs to cluster m) = $π_M$
- Find the setup that make the observations most likely to occur
 - cluster centers $\{\mu_1 ... \mu_M\}$
 - variance σ^2
 - cluster frequencies $\{\pi_1 ... \pi_M\}$

Model-Based Clustering

- Observe characteristics of some objects
 - $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$ N objects
- An object belongs to one of M clusters, but you don't know which
 - $\{z_1, ..., z_N\}$ cluster memberships, numbers from 1..M
- Some clusters are more likely than others
 - $P(z_k=m) = \pi_m$ $(\pi_m = frequency cluster m occurs)$
- Within a cluster, objects' characteristics are generated by the same distribution, which has free parameters
 - $P(\mathbf{x}_k | z_k = m) = f(\mathbf{x}_k, \boldsymbol{\lambda}_m)$ ($\boldsymbol{\lambda}_m = \text{parameters of cluster m})$
 - f doesn't have to be Gaussian

Model-Based Clustering (2)

 Now you have a model connecting the observations to the cluster memberships and parameters

-
$$P(\mathbf{x}_k) = \sum_{m=1..M} P(\mathbf{x}_k | z_k = m) P(z_k = m)$$

- $= \sum_{m=1..M} f(\mathbf{x}_k, \boldsymbol{\lambda}_m) \boldsymbol{\pi}_m$

-
$$P(\mathbf{x}_1 \dots \mathbf{x}_N) = \prod_{k=1..N} P(\mathbf{x}_k)$$
 (assuming **x**'s are independent)

- 1. Find the values of the parameters by maximizing the likelihood (usually the log of the likelihood) of the observations
 - max log P(\mathbf{x}_1 ... \mathbf{x}_N) over $\mathbf{\lambda}_1$... $\mathbf{\lambda}_M$ and $\mathbf{\pi}_1$... $\mathbf{\pi}_M$
 - This turns out to be a nonlinear mess and is greatly aided by the "EM Algorithm" (next slide)
- 2. With parameters in hand, calculate the probability of membership given the observations

$$- P(z|\mathbf{x}) = P(\mathbf{x}|z) P(z) / P(\mathbf{x})$$

EM (Expectation-Maximization) Algorithm Setup

- Let $\theta = (\lambda_1 ... \lambda_M, \pi_1 ... \pi_M)$, the parameters being maximized over
- Observe x. Don't know z, the cluster memberships
- Want to maximize $\log p(x|\theta)$, but it is too complicated
- EM can be used when
 - It's possible to make an approximation of p(z|x,θ), the conditional distribution of the hidden variables
 - $\log p(x,z|\theta)$, the probability if all the variables were known, is easy to manipulate

The EM Algorithm

- Want to maximize $\log p(x|\theta) = \log \int p(x,z|\theta) dz$
- (E Step)
 - Create an approximate distribution of the missing data. Call it u(z) Ideally this is $p(z|x,\theta)$
 - Let Q(θ) = the log likelihood under θ averaged by u(z)
 = ∫ log p(x,z|θ) u(z) dz
- (M Step)
 - Maximize $Q(\theta)$ over θ
 - $-\theta_{\text{new}} = \text{the maximizer}$
- Repeat E & M steps until convergence
- EM switches between 1) finding an approximate distribution of missing data given the parameters and 2) finding better parameters given the approximation

Experiments

- Universe is the "S&P 468" the S&P 500 stripped of securities missing data
- Know ICB sector assignments for these companies
 - 10 sectors: Oil & Gas, Basic Materials, Industrials, Consumer Goods, Healthcare, Consumer Services, Telecommunications, Utilities, Financials, Technology
- Have information about the companies
 - 5 years of monthly returns
 - market β
 - fundamentals (E/P, B/P, rev/P, debt/equity, yield, trading activity, relative strength, log mkt cap, earnings variability, growth rate, price volatility)
 - Each characteristic is scaled to make its cross-sectional standard deviation 1
- Using assortments of information, cluster securities into 10 groups

Universe Breakdown by Sector

Cast Clusters in Terms of the Known Sectors

- To illustrate results in this presentation, cast the clusters in terms of the original sectors
 - For each sector, sum the cluster probabilities of all companies in that sector. Rescale so the sum is 1. This gives sectors in terms of clusters
 - Take that rescale in the other direction, so each cluster sums to 1. This gives the clusters in terms of sectors, without biasing toward numerous sectors
- There are many other uses for the cluster results

5 Years Monthly Returns

Gaussian Mixture Model

% of Probability Mass by Cluster

5 Years Monthly Returns

Gaussian Mixture Model

Composition of Sectors As Clusters

5 Years Monthly Returns

Gaussian Mixture Model

Security Composition in Clusters

5 Years Monthly Returns

Gaussian Mixture Model

Security Composition in Sectors

5 Years Monthly Returns & β

Gaussian Mixture Model

% of Probability Mass by Cluster

5 Years Monthly Returns & β

Gaussian Mixture Model

Composition of Sectors As Clusters

5 Years Monthly Returns & β

Gaussian Mixture Model

Security Composition in Clusters

5 Years Monthly Returns & β

Gaussian Mixture Model

Security Composition in Sectors

Fundamentals – E/P, E/B, ...

Gaussian Mixture Model

% of Probability Mass by Cluster

Fundamentals – E/P, E/B, ...

Gaussian Mixture Model

Composition of Sectors As Clusters

Fundamentals – E/P, E/B, ...

Gaussian Mixture Model

Security Composition in Clusters

Fundamentals – E/P, E/B, ...

Gaussian Mixture Model

Security Composition in Sectors

Fundamentals & β

Gaussian Mixture Model

% of Probability Mass by Cluster

Fundamentals & β

Gaussian Mixture Model

Composition of Sectors As Clusters

Fundamentals & β

Gaussian Mixture Model

Security Composition in Clusters

Fundamentals & B

Gaussian Mixture Model

Security Composition in Sectors

5 Years Returns, Fundamentals & B

Gaussian Mixture Model

% of Probability Mass by Cluster

5 Years Returns, Fundamentals & β

Gaussian Mixture Model

Composition of Sectors As Clusters

5 Years Returns, Fundamentals & β

Gaussian Mixture Model

Security Composition in Clusters

5 Years Returns, Fundamentals & B

Gaussian Mixture Model

Security Composition in Sectors

Closing Remarks

- It works with different distributions
 - Here, deviations from cluster centers were Gaussian
 - Can easily do the same assuming deviations
 $^{-\lambda|x|}$, the distribution associated with median. (Gaussian is mean)
- Clustering helps identify what a security is, i.e. what alpha model to use for it
- Switching from applying filters to thinking about underlying mathematical models
 - gives you your own custom tool set
 - makes understanding what something does infinitely easier

