



 $\frac{7C}{TY} = \frac{1}{6} = \frac{35/6}{35}$ : TC= 35/6 Fri Lec points inside one mapped to the outside on the same -line and vice versa lines thru water all mapped to itself lines outside the will belomes a will enside our by timele lines tungent becomes a will that shares point w/ the larger lines That go then the will belomes a will that intersects our web in 2 points (c) since the jurision is runniche: luiles chaule out will become a line outside the triles that have I pel ornalize becomes a largest Turles that are various becomes a line that intersection intersects at 2 pts.

since AH is largent to 0, OA IAH, by property of invession AH. I OH. LAHH. = LH, HA, LAOH, = LAOH, since the other angles contain a RtL, WAOH, Use can repeal the above most for a feel of we sure H.H. w/x, x, zince they are both on a ray from the center.

# Math 74, Week 10

## Tianshuang (Ethan) Qiu

October 31, 2021

# 1 Mon Lec, 6c

$$z^{n-1} - 1 = \prod_{k=0}^{n-1} (z - \omega_k)$$

As shown in class, the complex roots are evenly spaced across the unit circle,  $2\pi/n$  apart. So we have

$$\omega_k = e^{2\pi i \frac{k}{n}}$$

### 2 Mon Lec, 6f

$$(z-1)(z^{n-1}+z^{n-2}+\ldots+z^2+z+1)=(z^n+z^{n-1}+\ldots+z^2+z)-(z^{n-1}+z^{n-2}+\ldots+z+1)=z^n-1$$

Therefore we can switch our statement to  $\frac{z^n-1}{z-1}$ 

Now we substitute our answer from the previous question in, and since  $\omega_0 = 1$ , it cancels out with the first term.

We can factor the expression into

$$\prod_{k=1}^{n-1} (z - \omega_k)$$

where

$$\omega_k = e^{2\pi i \frac{k}{n}}$$

Essentially the same as 6c but with z = 1 removed.

### 3 Mon Lec, 7b

#### 3.1 6c

Sum:  $-\frac{0}{1} = 0$ Product:  $(-1)^n \frac{1}{1} = (-1)^n$ 

### 6f 3.2

Sum:  $-\frac{1}{1} = -1$ Product:  $(-1)^{n}\frac{0}{1} = 0$ 

### 4 Mon Dis, 1a

$$|A_0A1|...|A_0A_8| = \prod_{k=0}^{8} |1 - \omega_k| = |\prod_{k=0}^{8} (1 - \omega_k)|$$

The last equivalency is due the fact that multiplication of the modulus is equal to the modulus of the product.

We have proven above that  $(z-1)(z^{n-1}+z^{n-2}+...+z^2+z+1)=z^n-1$ , so consider

$$\frac{z^n-1}{z-1} = \frac{(z-1)(z^{n-1}+z^{n-2}+\ldots+z^2+z+1)}{z-1} = z^{n-1}+z^{n-2}+\ldots+z^2+z+1$$

Now using the roots of the polynomial we know that  $z^9 - 1 = (z - 1)(z - \omega)...(z - \omega^8)$ , in this case we have divided out z - 1, so we have

$$z^{8} + z^{7} + \dots + 1 = (z - \omega) \dots (z - \omega^{8})$$

Let z=1, and we have  $9=(z-\omega)...(z-\omega^8)$ , since |9|=9, we have shown that  $|A_0A1|...|A_0A_8|=9$ 

### 5 Mon Dis, 3f

Let x = y - 2, so  $x^3 = y^3 - 6y^2 + 12y - 8$ . Now we plug y back

$$y^{3} - 6y^{2} + 12y - 8 = -6(y - 2)^{2} - 12y + 24 - 6$$
$$y^{3} - 6y^{2} + 12y - 8 = -6y^{2} + 12y - 6$$
$$y^{3} = 2$$

Now since we know that  $2^3 = 8$ , we can directly solve:  $y_1 = \sqrt[3]{2}$ ,  $x_1 = \sqrt[3]{2} + 2$ Then we factor  $(y^3)/(y - \sqrt[3]{2}) = y^2 + \sqrt[3]{2}y + \sqrt[3]{4}$  Now we apply the quadratic formula to get

$$y_2 = \frac{-1 - \sqrt{3}i}{\sqrt[3]{2}}, y_3 = \frac{-1 + \sqrt{3}i}{\sqrt[3]{2}}$$

So we have  $x_2 = \frac{-1 - \sqrt{3}i}{\sqrt[3]{2}} - 2, x_3 = \frac{-1 + \sqrt{3}i}{\sqrt[3]{2}} - 2$