

Department of Computer Science and Engineering (Data Science)

Advanced Computational Linguistics (DJ19DSC7012)

Assignment1

A.Y 2024-25

- Q.1 You are developing a Bidirectional RNN for translating poetry from Italian to English, focusing on maintaining the original context and meaning.
- a. What specific challenges does translating poetry present compared to standard text translation?
- b. How can you analyze the model's ability to maintain poetic devices like rhyme and meter?
- c. Describe your data collection and preparation methods for creating a suitable dataset of Italian poetry.
- d. Outline the Bidirectional RNN architecture, including how you would implement techniques to preserve the poetic context.
- Q.2 You are developing a machine translation model to translate regional Indian languages (like Hindi, Tamil, and Bengali) into English. Concerns arise about potential biases in translations, especially regarding cultural nuances and idiomatic expressions.
- a. What specific biases might arise when translating regional languages, and how could these affect the quality of translations?
- b. How would you analyze the training data to identify sources of bias related to cultural context?
- c. Describe the steps you would take to ensure the translation model captures cultural nuances accurately.
- d. Outline how you would evaluate the model's effectiveness in translating idiomatic expressions and culturally specific references.

Q.3 You are developing a healthcare chatbot using an encoder-decoder architecture with attention to provide patient responses in multiple Indian languages.

- What challenges might you encounter regarding the medical terminology and colloquial expressions used in different Indian languages?
- How can attention mechanisms enhance the chatbot's ability to generate contextually relevant responses?
- Describe how you would structure the encoder-decoder model to handle multilingual input.
- Outline the evaluation strategy to ensure the chatbot provides accurate and culturally appropriate responses.

Q.4 You are developing a transformer-based model to translate news articles from English to Hindi.

- What challenges do you anticipate in translating news articles, particularly with regard to context, idiomatic expressions, and cultural references?
- How do transformers address the limitations of traditional translation models like LSTMs or GRUs?
- Describe the architecture of your transformer model, including the key components such as self-attention and positional encoding.
- Outline your approach to collecting and preprocessing the dataset for effective training.

Q1)

a. Challenges of translating poetry compared to standard text translation:

Translating poetry presents several unique challenges:

- 1. Preserving form and structure: Poetry often has specific metrical patterns, rhyme schemes, and stanzaic structures that are crucial to its impact. These formal elements can be difficult to maintain across languages.
- 2. Maintaining rhythm and sound: The musicality of poetry, including alliteration, assonance, and consonance, is language-specific and challenging to recreate in translation.

- 3. Capturing nuanced meaning: Poems often rely on connotations, wordplay, and cultural references that may not have direct equivalents in the target language.
- Balancing literal vs. figurative meaning: Poetic language is often highly figurative, requiring careful consideration of whether to prioritize literal accuracy or poetic effect in translation.
- 5. Preserving ambiguity: Many poems intentionally use ambiguous language for artistic effect, which can be difficult to maintain in translation.
- 6. Space constraints: Poems often have strict line lengths or syllable counts, which can be challenging to adhere to while preserving meaning.
- 7. Emotional resonance: Capturing the emotional impact and tone of the original poem is crucial but often elusive in translation.
- b. Analyzing the model's ability to maintain poetic devices:

To evaluate the model's performance in maintaining poetic devices, you could:

- Rhyme analysis: Develop a tool to detect and compare rhyme schemes in the original and translated poems. This could involve phonetic analysis of end words in each line.
- 2. Metric analysis: Create an algorithm to analyze the stress patterns and syllable counts of both the original and translated versions, comparing how closely the translation maintains the original meter.
- 3. Semantic similarity: Use techniques like cosine similarity with word embeddings to measure how closely the translated version captures the meaning of the original.
- 4. Expert evaluation: Engage bilingual poets or literary translators to assess the quality of the translations, focusing on how well poetic devices are maintained.
- 5. Automated poetry quality metrics: Develop or adapt existing metrics that assess features like imagery, figurative language, and sound devices in both the original and translated poems.
- 6. A/B testing: Present human evaluators with the original poem, a human translation, and the model's translation, asking them to rate which better preserves poetic elements.
- 7. Device-specific evaluation: Create separate evaluations for different poetic devices (e.g., alliteration, assonance, metaphor) to pinpoint areas of strength and weakness in the model's output.
- c. Data collection and preparation methods:

To create a suitable dataset of Italian poetry:

- 1. Source selection: Gather poems from diverse Italian poets across different time periods and styles. Include both classic and contemporary works to ensure a broad representation.
- 2. Copyright considerations: Ensure all selected poems are either in the public domain or that you have permission to use them for this purpose.
- 3. Parallel corpus creation: For each Italian poem, obtain high-quality English translations. Ideally, use multiple translations per poem to capture different interpretative approaches.
- 4. Metadata annotation: Tag each poem with relevant metadata such as author, time period, poetic form, and themes.
- Structural markup: Use XML or a similar markup language to annotate the structure of each poem, including stanza breaks, line breaks, and other formatting elements.
- 6. Linguistic annotation: Perform part-of-speech tagging, named entity recognition, and dependency parsing on both the Italian originals and English translations.
- 7. Poetic device annotation: Manually or semi-automatically annotate specific poetic devices in both languages, such as rhyme schemes, metrical patterns, and figurative language.
- 8. Quality control: Have bilingual experts review the dataset for accuracy of translations and annotations.
- 9. Data splitting: Divide the dataset into training, validation, and test sets, ensuring a balanced representation of different poets, styles, and time periods in each set.
- 10. Data augmentation: Consider techniques like back-translation or paraphrasing to expand the dataset while maintaining poetic qualities.

d. Bidirectional RNN architecture for preserving poetic context:

To implement a Bidirectional RNN that preserves poetic context:

- 1. Input Embedding: Use pre-trained multilingual word embeddings (e.g., multilingual BERT) to capture semantic relationships across languages.
- Bidirectional LSTM layers: Implement multiple layers of Bidirectional LSTMs to capture context from both directions in the poem.
- 3. Attention mechanism: Incorporate a multi-head attention mechanism to allow the model to focus on relevant parts of the input when generating each word of the translation.
- 4. Context vector: Create a global context vector that encodes information about the entire poem, including its structure and overall theme.

- 5. Poetic form encoder: Design a separate encoder to capture the poem's formal structure, including rhyme scheme and meter.
- 6. Decoder with copy mechanism: Implement a decoder with a copy mechanism to allow direct copying of certain words (e.g., proper nouns) from the source text.
- 7. Constrained decoding: Implement constrained decoding techniques to enforce the target poem's structural requirements (e.g., syllable count, rhyme scheme).
- 8. Multi-task learning: Include additional tasks in the training process, such as predicting poetic devices or metrical patterns, to encourage the model to preserve these elements.
- Fine-tuning stage: After initial training, fine-tune the model on a smaller dataset of high-quality poetic translations to refine its ability to produce more nuanced and context-aware translations.
- 10. Iterative refinement: Implement a mechanism for the model to iteratively refine its translations, potentially using reinforcement learning techniques to optimize for poetic quality metrics.

Q2)

- a. Specific biases in translating regional languages and their impact on translation quality:
 - 1. Cultural bias: Translations may favor Western cultural concepts, potentially misrepresenting or oversimplifying Indian cultural elements.
 - 2. Gender bias: Many Indian languages have gendered nouns and verbs, which might lead to stereotypical gender assignments in English translations.
 - 3. Caste and social hierarchy bias: Translations might not accurately capture the nuances of social relationships and respectful forms of address present in Indian languages.
 - 4. Religious bias: Translations may misinterpret or inadequately represent religious concepts and terms specific to Indian religions.
 - 5. Dialectal bias: Focusing on standardized versions of languages could lead to poor translations of regional dialects.
 - 6. Historical context bias: Modern training data might not accurately capture historical or classical language usage.

These biases could significantly impact translation quality by:

- Losing cultural richness and depth
- Misrepresenting social dynamics
- Incorrectly conveying tone and register

- Failing to capture the full meaning of idiomatic expressions
- Producing translations that sound unnatural to native speakers
- b. Analyzing training data to identify sources of bias related to cultural context:
 - 1. Demographic analysis: Examine the sources of your training data, identifying the demographics represented (age, region, socioeconomic status, etc.).
 - Topic modeling: Use techniques like Latent Dirichlet Allocation (LDA) to identify prevalent themes in the corpus and assess their cultural relevance and diversity.
 - 3. Named entity recognition: Analyze the frequency and context of culturally specific named entities (e.g., places, festivals, historical figures) to gauge cultural representation.
 - 4. Sentiment analysis: Examine how different cultural concepts are portrayed in terms of sentiment, looking for skewed representations.
 - 5. Word embedding analysis: Use techniques like WEAT (Word Embedding Association Test) to identify potential biases in word associations.
 - 6. Idiomatic expression inventory: Create an inventory of idiomatic expressions and assess their representation and translation in the training data.
 - 7. Linguistic feature analysis: Examine the distribution of linguistic features specific to Indian languages (e.g., honorifics, gendered language) and their translations.
 - 8. Parallel corpus alignment: For parallel corpora, analyze how cultural concepts are aligned between source and target languages, looking for consistent mistranslations or omissions.
- c. Steps to ensure the translation model captures cultural nuances accurately:
 - 1. Diverse data collection: Gather training data from a wide range of sources, ensuring representation of different regions, dialects, and socioeconomic groups.
 - 2. Cultural consultant involvement: Engage cultural experts to review and annotate the training data, highlighting culturally significant elements.
 - 3. Contextual embedding: Implement context-aware embedding techniques that can capture cultural nuances based on surrounding text.
 - 4. Fine-tuning on cultural datasets: Create specialized datasets focusing on culturally rich content and use them for fine-tuning the model.
 - 5. Multi-task learning: Incorporate additional tasks such as cultural concept classification to help the model learn cultural nuances.
 - 6. Adversarial debiasing: Implement adversarial training techniques to reduce identified biases in the model's outputs.

- 7. Culturally-aware attention mechanisms: Develop attention mechanisms that give higher weight to culturally significant words or phrases.
- 8. Explicit cultural knowledge integration: Create a knowledge base of cultural concepts and integrate it into the translation process, possibly using techniques like knowledge distillation.
- 9. Dialect-specific models: Develop separate models or model components for major dialects within each language.
- 10. Continuous learning and updating: Implement a system for continuously updating the model with new cultural references and evolving language usage.
- d. Evaluating the model's effectiveness in translating idiomatic expressions and culturally specific references:
 - 1. Curated test set: Create a diverse test set specifically focused on idiomatic expressions and cultural references, manually translated by expert translators.
 - 2. Human evaluation: Engage bilingual speakers, particularly those with strong cultural knowledge, to assess the quality and accuracy of translations.
 - 3. Cultural equivalence metric: Develop a metric that measures how well the translated text preserves the cultural significance of the original, possibly using a knowledge base of cultural concepts.
 - 4. Idiom detection and evaluation: Implement an idiom detection system and evaluate how accurately these are translated, both in terms of meaning and cultural equivalence.
 - 5. Context-based evaluation: Assess translations within larger contexts (e.g., full paragraphs or documents) to evaluate if cultural nuances are preserved across broader narratives.
 - A/B testing with target audience: Present original texts and their translations to native English speakers unfamiliar with the source culture, assessing how well they grasp cultural concepts.
 - Back-translation analysis: Perform back-translation (translate to English, then back to the original language) and assess how well cultural elements are preserved.
 - 8. Gradient-based attribution: Use techniques like integrated gradients to identify which parts of the input contribute most to the translation of cultural elements, ensuring the model focuses on relevant parts of the input.
 - 9. Comparative analysis: Compare your model's performance on cultural and idiomatic translations with both general-purpose translation models and human translators.

10. Longitudinal studies: Conduct ongoing evaluations to assess how well the model adapts to evolving cultural references and language use over time.

Q3)

1. Challenges with medical terminology and colloquial expressions in Indian languages:

a) Varied medical terminology:

- Many Indian languages lack standardized medical terms, often borrowing from English or Sanskrit.
- Different regions may use different terms for the same medical concept.
- Traditional medicine systems like Ayurveda have their own terminologies that may not align with modern medical terms.

b) Colloquial health expressions:

- Each language and region has unique colloquial expressions for describing symptoms or health conditions.
- These expressions may not have direct equivalents in other languages or in formal medical terminology.

c) Code-mixing:

• In many urban areas, speakers mix English medical terms with local languages, creating hybrid expressions.

d) Lack of comprehensive medical corpora:

 There may be limited availability of large, high-quality medical datasets in various Indian languages.

e) Dialectal variations:

 Within each language, dialectal differences can lead to varied expressions for health-related concepts.

f) Cultural sensitivity:

 Some health topics may be considered taboo or require careful phrasing in certain cultures.

- 2. Enhancing contextual relevance with attention mechanisms:
- a) Symptom-focused attention: Implement an attention mechanism that focuses on key symptomatic words or phrases in the user's input.
- b) Medical term highlighting: Design the attention to give higher weight to recognized medical terms, ensuring they're properly addressed in the response.
- c) Contextual memory: Use a memory network in conjunction with attention to maintain context over a longer conversation, allowing the chatbot to refer back to previously mentioned symptoms or conditions.
- d) Multi-head attention: Implement multi-head attention to capture different aspects of the input, such as symptoms, duration, and severity.
- e) Hierarchical attention: Use hierarchical attention to first attend to important sentences, then to key words within those sentences.
- f) Cross-lingual attention: For code-mixed inputs, implement cross-lingual attention that can focus on relevant terms regardless of the language they're in.
 - 3. Structuring the encoder-decoder model for multilingual input:
- a) Universal encoder: Use a single, powerful encoder trained on multiple Indian languages to create a universal sentence representation.
- b) Language-specific decoders: Implement separate decoders for each target language to generate appropriate responses.
- c) Language identification module: Include a language identification component to route the encoder output to the appropriate decoder.

- d) Shared vocabulary: Create a shared subword vocabulary across all languages using techniques like SentencePiece or BPE.
- e) Cross-lingual embeddings: Utilize multilingual word embeddings (e.g., multilingual BERT) to capture semantic similarities across languages.
- f) Transfer learning: Pre-train the model on a large multilingual corpus, then fine-tune on medical data in specific languages.
- g) Code-switching handling: Design the encoder to handle code-switched input by incorporating a token-level language identification mechanism.
 - 4. Evaluation strategy for accuracy and cultural appropriateness:
- a) Medical accuracy evaluation:
 - Engage medical professionals fluent in the target languages to review chatbot responses for accuracy.
 - Create a test set of common medical scenarios and compare chatbot responses to expert-crafted answers.
- b) Cultural sensitivity assessment:
 - Work with cultural experts to review responses for appropriateness and sensitivity.
 - Conduct user studies with diverse groups of native speakers to gather feedback on the cultural nuances of the chatbot's language.
- c) Multilingual BLEU score: Adapt the BLEU score for multilingual evaluation, comparing chatbot outputs to human-translated reference responses.
- d) Intent classification accuracy: Evaluate how well the chatbot identifies the user's intent across different languages and health topics.
- e) Entity recognition performance: Assess the chatbot's ability to correctly identify and categorize medical entities (symptoms, conditions, medications) in various languages.

- f) Dialectal variation handling: Test the chatbot with inputs from different regional dialects to ensure consistent performance.
- g) Code-mixing evaluation: Create a specific evaluation set for code-mixed inputs to assess the chatbot's ability to handle hybrid language use.
- h) User satisfaction surveys: Conduct surveys in multiple languages to gather user feedback on the chatbot's helpfulness, clarity, and cultural appropriateness.
- i) A/B testing: Compare the multilingual chatbot's performance against single-language models and human operators.
- j) Continuous monitoring: Implement a system for ongoing monitoring of chatbot interactions, flagging potential issues for human review.
- k) Ethical review: Establish an ethics committee to regularly review the chatbot's responses and suggest improvements for sensitive topics.
- I) Confusion matrix analysis: Use confusion matrices to identify patterns of misunderstanding or misclassification across different languages and medical topics.

Q4)

- 1. Challenges in translating news articles:
- a) Context preservation:
 - News articles often require understanding of broader contexts (political, historical, cultural) that may not be explicitly stated in the text.
 - Maintaining coherence across long passages can be challenging.
- b) Idiomatic expressions:
 - English news often uses idiomatic expressions that may not have direct Hindi equivalents.
 - Translating these requires understanding the intent and finding culturally appropriate alternatives.

c) Cultural references:

 Articles may contain references to Western cultural elements unfamiliar to Hindi readers. • Deciding whether to translate, transcribe, or explain such references is crucial.

d) Named entities:

- Proper handling of names, places, and organizations is critical in news translation.
- Deciding when to transliterate vs. translate named entities can be challenging.
- e) Specialized terminology: News articles often contain domain-specific jargon (e.g., financial, scientific, or legal terms) that may lack standardized Hindi translations.
- f) Style and tone: Maintaining the appropriate journalistic style and tone in Hindi, which may differ from English conventions.
- g) Rapidly evolving language: News often includes neologisms or newly coined terms that may not exist in standard translation datasets.
- h) Headline translation: News headlines are often crafted for impact and may use wordplay or cultural references that are challenging to translate effectively.
 - How transformers address limitations of traditional models:
- a) Parallelization: Unlike sequential models (LSTMs/GRUs), transformers process all input tokens in parallel, allowing for faster training and inference.
- b) Long-range dependencies: Self-attention mechanisms allow transformers to capture long-range dependencies more effectively than LSTMs/GRUs, which is crucial for maintaining context in long news articles.
- c) Context-aware representations: Transformers create context-aware representations for each word, considering the entire input sequence, which helps in handling ambiguity and context-dependent translations.
- d) Multi-head attention: This allows the model to focus on different aspects of the input simultaneously, capturing various linguistic phenomena more effectively.
- e) Positional encoding: Transformers use positional encodings to maintain word order information without relying on recurrence, allowing for better handling of long-distance relationships.

- f) Scalability: Transformer architectures are more scalable, allowing for larger models and datasets, which is beneficial for capturing the complexities of news translation.
 - 3. Architecture of the transformer model:
- a) Input embedding layer:
 - Converts input tokens into dense vector representations.
 - Combines with positional encodings to preserve sequence order information.

b) Encoder stack:

- Multiple identical layers, each containing:
 - Multi-head self-attention mechanism: Allows the model to attend to different parts of the input sequence.
 - 2. Position-wise feed-forward network: Applies non-linear transformations to each position separately.
 - Layer normalization and residual connections: Stabilize training and allow for deeper networks.

c) Decoder stack:

- Similar to the encoder, but with an additional layer:
 - 1. Masked multi-head self-attention: Prevents the decoder from attending to future tokens during training.
 - 2. Multi-head attention over encoder output: Allows the decoder to focus on relevant parts of the input sequence.
 - 3. Position-wise feed-forward network.
 - 4. Layer normalization and residual connections.
- d) Final linear and softmax layer: Projects the decoder output to the target vocabulary size and applies softmax to generate probabilistic outputs.
- e) Positional encoding: Adds information about the position of each token in the sequence, using sine and cosine functions of different frequencies.
- f) Self-attention mechanism:
 - Computes attention weights using queries, keys, and values derived from the input.

- Allows each token to attend to all other tokens in the sequence.
- g) Feed-forward networks: Point-wise fully connected layers that apply non-linear transformations to each position separately.
 - 4. Approach to collecting and preprocessing the dataset:
- a) Data collection:
 - Gather parallel corpora of English-Hindi news articles from reputable sources.
 - Include diverse news categories (politics, economics, sports, technology, etc.) to ensure broad coverage.
 - Collect data from various time periods to capture evolving language use.
- b) Data cleaning:
 - Remove duplicate article pairs.
 - Filter out poorly aligned or machine-translated content.
 - Normalize punctuation and formatting across both languages.
- c) Tokenization: Use subword tokenization methods like BPE (Byte Pair Encoding) or SentencePiece to handle rare words and improve generalization.
- d) Sentence alignment: Ensure proper alignment of sentences between source and target languages, possibly using tools like Hunalign.
- e) Named entity recognition and handling:
 - Identify named entities in both languages.
 - Create a strategy for consistent handling (e.g., maintain English for person names, translate organization names).
- f) Metadata incorporation: Include relevant metadata (e.g., article category, publication date) as additional features to provide context.
- g) Data augmentation:
 - Use techniques like back-translation to increase the dataset size and improve robustness.

- Create synthetic examples for handling idiomatic expressions and cultural references.
- h) Preprocessing pipeline: Develop a consistent preprocessing pipeline that can be applied to both training data and new inputs during inference.
- i) Vocabulary construction:
 - Build separate vocabularies for English and Hindi, ensuring coverage of domain-specific terms.
 - Consider using a shared vocabulary for both languages to leverage cross-lingual similarities.
- j) Handling of out-of-vocabulary words: Implement strategies for handling OOV words, such as using a copy mechanism or fallback transliteration.
- k) Data splitting: Create train/validation/test splits, ensuring that articles from the same event or time period don't appear across splits.
- I) Length filtering: Filter out extremely short or long articles that might introduce noise or computational challenges.
- m) Quality assurance: Implement human review for a subset of the processed data to ensure quality and catch any systematic preprocessing errors.