Ordinary Differential Equations

First-order ODEs

They are of the form:

$$F(x, y, y') = 0$$
 or in explicit form $y' = f(x, y)$

involving the derivative y' = dy/dt of an unknown function y, given functions of x, and/or y itself. A first-order ODE usually has a general solution; a solution involving an arbitrary constant, which is denoted by c. In applications we usually have to find a unique solution by determining a value of c from an initial condition of $y(x_0) = y_0$. Together with the ODE this is called an initial value problem with the following mathematical expression:

$$y' = f(x, y), \quad y(x_0) = y_0 \quad (x_0, y_0 \text{ given numbers})$$

and its solution is a particular solution of the ODE. A separable ODE is one that we can put into the form:

$$g(y) dy = f(x) dx$$

by algebraic manipulations (possibly combined with transformations, such as y/x = u) and solve by integrating on both sides. An exact ODE, on the other hand, is of the form

$$M(x, y) dx + N(x, y) dy = 0$$

where M dx + N dy is the differential for and,

$$du = u_x dx + u_y dy$$

of a function u(x, y), so that from du = 0 we immediately get the implicit general solution u(x, y) = c. The solution to u can be attained using two (2) ways:

$$u = \int M dx + k(y)$$
 or $u = \int N dy + I(x)$

Linear ODE's of the form:

$$y' + p(x) y = r(x)$$

are very important. Their solutions are given by the

$$y(x) = e^{-h} \left(\int e^h r dx + c \right), \quad h = \int p(x) dx$$

Certain nonlinear ODEs can be transformed to linear form in terms of new variables.

Second-order ODEs

A second-order ODE is called **linear** if it can be written

$$y'' + p(x)y' + q(x)y = r(x)$$

The above equation is called **homogeneous** if r(x) is zero for all x considered, usually in some open interval, this is written r(x) = 0. Then, this equation becomes:

$$y'' + p(x)y' + q(x)y = 0.$$

The above equation is called non-homogeneous if $r(x) \neq 0$ (meaning r(x) is not zero for some x considered). For the homogeneous ODE we have the important superposition principle that a linear combination of two solutions is again a solution.

Two linearly independent solutions $\boldsymbol{y}_1, \boldsymbol{y}_2$ on an open interval / form a basis (or fundamental system) of solutions. and $y = c_1y_1 + c_2y_2$ with arbitrary constants c_1 , c_2 a general solution. From it, we obtain a particular

solution if we specify numeric values (numbers) for c_1 and c_2 , usually by prescribing two (2) initial conditions:

$$y(x_0) = K_0$$
, $y'(x_0) = K_1$ $(x_0, K_0, K_1 \text{are given})$.

This forms an initial value problem. For a nonhomogeneous ODE, a general solution is of the form

$$y = y_h + y_p$$

Here y_h is a general solution and y_p is a particular solution of. Such a y_p can be determined by a general method or in many practical cases by the method of undetermined coefficients. The latter applies when the above has constant coefficients p and q, and r(x) is a power of x, sine, cosine, etc. (Table 3) Then we write

$$y'' + ay' + by = r(x)$$

Another large class of ODEs solvable "algebraically" consists of the Euler-Cauchy equations:

$$x^2y'' + axy' + by = 0$$

These have solutions of the form $y = x^m$, where m is a solution of the auxiliary equation

$$m^2 + (a-1)m + b = 0.$$

Depending of the roots different solutions can be derived (Table 6). A homogeneous ODE of

$$y'' + ay' + by = 0$$

can be solved by deriving its characteristic equation in the form:

$$\lambda^2 + a\lambda + b = 0$$

Depending of its roots of this equation different solutions can be derived (Table 5)

Higher-order ODEs

A higher order system is of the form:

$$F\left(x, y, y', \cdots, y^{(n)}\right) = 0,$$

Which through substitutions (i.e., $y^{iv} \rightarrow \lambda = y''$) it can be reduced to lower order forms. From there on, all principles from 2nd order ODEs can be applied.

System of ODEs

A system of ODEs (linear) can be written in the form:

$$y'=Ay+g$$
, where $A=egin{bmatrix} a_{11}&a_{12}\ a_{21}&a_{22} \end{bmatrix}$, $y=egin{bmatrix} y_1\ y_2\ \end{bmatrix}$, $g=egin{bmatrix} g_1\ g_2\ \end{bmatrix}$.

If g = 0, the system is called **homogeneous** and is of

$$v' = Av$$

If a_{11}, \cdots, a_{22} are **constants**, it has solutions

$$y = xe^{\lambda t}$$

where λ is a solution of the quadratic equation

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0 \quad y_2(x) = y_1(x)\ln x + x^r(A_1x + A_2x^2 + \cdots)$$

and $x \neq 0$ has components x_1, x_2 determined up to a multiplicative constant by:

$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0.$$

These λ 's are called the **eigenvalues** and these vectors x eigenvectors of the matrix A. To calculate the characteristic equation:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \lambda_2 - (a_{11} + a_{22}) \lambda + \det(\mathbf{A}) = 0.$$

$$p = a_{11} + a_{22}, \qquad q = \det A, \qquad \Delta = p_2 - 4q.$$

or in another form:

$$p = \lambda_1 + \lambda_2$$
, $q = \lambda_1 \lambda_2$, $\Delta = (\lambda_1 - \lambda_2)^2$

The stability criterion are given in Table 4.

Special Functions

The power series method gives solutions of linear ODEs:

$$y'' + p(x)y' + q(x)y = 0$$

with variable coefficients p and q in the form of a power series (with any centre $x_{\rm 0}$, e.g., $x_{\rm 0}=0$)

$$y(x) = \sum_{m=0}^{\infty} a_m (x - x_0)^m$$

= $a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$

Legendre's differential equation:

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

with its polynomial solution:

$$P_n(x) = \sum_{m=0}^{M} (-1)^m \frac{(2n-2m)!}{2^n m! (n-m)! (n-2m)!} x^{n-2m}$$

$$= \frac{(2n)!}{2^n (n!)^2} x^n - \frac{(2n-2)!}{2^n 1! (n-1)! (n-2)!} x^{n-2} + \cdots$$

Frobenius Method states: Let b(x) and c(x) be any functions defined **analytic** at x = 0. Then the ODE:

$$y'' + \frac{b(x)}{x}y' + \frac{c(x)}{x^2}y = 0$$
 (1)

has at least one solution can represented in the form:

$$y(x) = x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}$$

= $x^{r} (a_{0} + a_{1}x + a_{2}x^{2} + \cdots) (a_{0} \neq 0)$

where the exponent r may be any (real or complex) number (and r is chosen so that $a_0 \neq 0$). It's indicial equation is:

$$r(r-1) + b_0r + c_0 = 0$$

Depending on the equations roots, we have the following three (3) cases:

Case 1. Distinct Roots Not Differing by an Integer

$$y_1(x) = x^{r_1}(a_0 + a_1x + a_2x^2 + \cdots)$$

and

$$y_2(x) = x^{r_2}(A_0 + A_1x + A_2x^2 + \cdots)$$

with coefficients obtained successively from Eq. (1) with $r = r_1$ and $r = r_2$, respectively.

Case 2. Double Root $r_1 = r_2 = r$.

A basis is

$$y_1(x) = x^r (a_0 + a_1 x + a_2 x^2 + \cdots)$$
 $[r = \frac{1}{2}(1 - b_0)]$

(of the same general form as before) and

$$v_2(x) \equiv v_1(x) \ln x + x^r (A_1 x + A_2 x^2 + \cdots)$$
 (x > 0)

Case 3. Roots Differing by an Integer. A basis is

$$y_1(x) = x^{r_1}(a_0 + a_1x + a_2x^2 + \cdots)$$

(of the same general form as before) and

$$y_2(x) = ky_1(x) \ln x + x^{r_2} (A_0 + A_1 x + A_2 x^2 + \cdots)$$

where the roots are so denoted that $r_1 - r_2 > 0$ and kmay turn out to be zero. Bessel's Equation is of the

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0$$

It solution of first kind is

$$J_n(x) = x^n \sum_{n=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!} \quad (n \ge 0).$$

Laplace Transform

The main purpose of Laplace transforms is the solution of differential equations and systems of such equations, as well as corresponding initial value problems. The Laplace transform $F\left(s\right)=\mathcal{L}(f)$ of a function $f\left(t\right)$ is defined by

$$F(s) = \mathcal{L}(f) = \int_{0}^{\infty} e^{-st} f(t) dt$$

This definition is motivated by the property that the differentiation of f with respect to t corresponds to the multiplication of the transform F by s; more precisely,

$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$$

$$\mathcal{L}(f'') = s^2\mathcal{L}(f) - sf(0) - f'(0)$$

etc. Hence by taking the transform of a given differential equation

$$y'' + ay' + by = r(t)$$
 where a, b const.

and writing $\mathcal{L}(y) = Y(s)$, we obtain the **subdistiary** equation

$$(s^2 + as + b)Y = \mathcal{L}(r) + sf(0) + f'(0) + af(0).$$

Here, in obtaining the transform $\mathcal{L}(r)$ we can get help from the Table 1. This is the first step. In the second step we solve the subsidiary equation *algebraically* for Y(s). In the third step we determine the **inverse transform** $y(t) = \mathcal{L}^{-1}(Y)$, that is, the solution of the problem.

Linear Algebra

Fundamentals

A $m \times n$ matrix $A = [a_{jk}]$ is a rectangular array of numbers or functions arranged in m horizontal rows and n vertical columns. If m = n, the matrix is called square. A $1 \times n$ matrix is call-ed a row vector and an $m \times 1$ matrix column vector.

The $\operatorname{sum} \mathbf{A} + \mathbf{B}$ of matrices of the same size (i.e., both $m \times n$) is obtained by adding corresponding entries. The $\operatorname{product}$ of \mathbf{A} by a scalar c is obtained by multiplying each a_{ik} by c.

The **product** C = AB of an $m \times n$ matrix A by an $r \times p$ matrix $B = [b_{jk}]$ is defined only when r = n. It is associative, but is **not commutative**. If AB is defined, BA may not be defined, but even if BA is defined, $AB \neq BA$ in general. Also AB = 0 may not imply A = 0 or B = 0 or BA = 0.

The transpose A^{T} of a matrix $A = [a_{jk}]$ is $A^{\mathsf{T}} = [a_{kj}]$. rows become columns and conversely. Here, A need not be square. If it is and $A = A^{\mathsf{T}}$, then A is called symmetric; if $A = -A^{\mathsf{T}}$, it is called symmetric. For a product, $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$.

A main application of matrices concerns linear systems of equations

$$A \times = b$$

(m equations in n unknowns x_1, \cdots, x_n ; A and b given). The most important method of solution is the Gauss elimination, which reduces the system to "triangular" form by elementary row operations, which leave the set of solutions unchanged.

The inverse A^{-1} of a square matrix satisfies $AA^{-1} = A^{-1}A = I$. It exists if and only if det $A \neq 0$. It can be computed by the *Gauss-Jordan elimination*.

The rank r of a matrix \boldsymbol{A} is the maximum number of linearly independent rows or columns of \boldsymbol{A} or, equivalently, the number of rows of the largest square sub-matrix of \boldsymbol{A} with nonzero determinant.

The system of equations has solutions if and only if rank $A = \text{rank}[A \quad b]$, where $[A \quad b]$ is the augmented matrix. The homogeneous system

$$\mathbf{A}x = 0$$

has solutions $x \neq 0$ ("nontrivial solutions") if and only if rank A < n, in the case m = n equivalently if and only if det A = 0.

Eigenvalue Problems

The problems are defined by the vector equation

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
.

 ${m A}$ is a given square matrix. ${m \lambda}$ is a scalar. To *solve* the problem means to determine values of ${m \lambda}$, called **eigenvalues** (or **characteristic values**) of ${m A}$, such that, the above expression, has a nontrivial solution ${m x}$ (that is, ${m x} \neq 0$), called an **eigenvector** of ${m A}$ corresponding to that ${m \lambda}$. A ${m n} \times {m n}$ matrix has at least one and at most ${m n}$ numerically different eigenvalues. These are the solutions of the **characteristic equation**

$$D(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0.$$

 $D\left(\lambda\right)$ is called the **characteristic determinant** of A. By expanding it we get the **characteristic polynomial** of A, which is of degree n in λ . Special matrices of importance are **symmetric** $(A^{\top} = A)$, **skew-symmetric** $(A^{\top} = -A)$, and **orthogonal matrices** $(A^{\top} = A^{-1})$. concerns the diagonalization of matrices and the transformation of quadratic forms to principal axes and its relation to eigenvalues.

If an $n \times n$ matrix **A** has a basis of eigenvectors, then

$$D = X^{-1}AX$$

is ${f diagonal}$, with the eigenvalues of ${m A}$ as the entries on the main diagonal.

Here \boldsymbol{X} is the matrix with these eigenvectors as column vectors. Also,

$$D^{m} = X^{-1}A^{m}X$$
 $(m = 2, 3, \cdots).$

Vector Calculus

All vectors of the form:

$$a = [a_1, a_2, a_3] = (a_1) \hat{x} + (a_2) \hat{y} + (a_3) \hat{z}$$

constitute the real vector space \mathbb{R}^3 with componentwise vector addition

$$[a_1, a_2, a_3] + [b_1, b_2, b_3] = [a_1 + b_1, a_2 + b_2, a_3 + b_3]$$

and componentwise scalar multiplication (c a scalar) $\,$

$$c[a_1, a_2, a_3] = [ca_1, ca_2, ca_3]$$

The inner product or dot product of two vectors is defined by

$$a \cdot b = |a||b|\cos\theta = a_1b_1 + a_2b_2 + a_3b_3$$

where θ is the angle between a and b. This gives for the **norm** or **length** |a| of a:

$$|a| = \sqrt{a \cdot a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

as well as a formula for θ . If $a \cdot b = 0$, we call a and b orthogonal. The vector product or cross product $v = a \times b$ is a vector of length

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}||\mathbf{b}|\sin\theta$$

which can also be represented as a determinant.

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

This multiplication is anticommutative, and is *not* associative.

$$a \times b = -b \times a$$

Gradient is defined as:

$$\nabla f = \frac{\partial}{\partial x} \, \hat{\mathbf{x}} + \frac{\partial}{\partial y} \, \hat{\mathbf{y}} + \frac{\partial}{\partial z} \, \hat{\mathbf{z}}$$

Divergence is defined as:

$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Curl is defined as:

$$\nabla \times \mathbf{v} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{\mathbf{y}} & v_{\mathbf{y}} & v_{\mathbf{y}} \end{vmatrix}$$

Standard Integration Forms

Basic Forms

$$\int x^n dx = \frac{1}{n+1} x^{n+1} \qquad \qquad \int \frac{1}{x} dx = \ln|x|$$

$$\int u dv = uv - \int v du \qquad \int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b|$$

Integrals of Rational Functions

$$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$$

$$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n \neq -1$$

$$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1)x-a)}{(n+1)(n+2)}$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x$$

$$\int \frac{1}{1+x^2} dx = \arctan x$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{x}{a^2+x^2} dx = \frac{1}{2} \ln|a^2+x^2|$$

$$\int \frac{x^2}{a^2+x^2} dx = x - a \tan^{-1} \frac{x}{a}$$

$$\int \frac{x^3}{a^2+x^2} dx = \frac{1}{2} x^2 - \frac{1}{2} a^2 \ln|a^2+x^2|$$

$$\int \frac{1}{ax^2+bx+c} dx = \frac{2}{\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$$

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, a \neq b$$

$$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln|a+x|$$

$$\int \frac{x}{ax^2+bx+c} dx = \frac{1}{2a} \ln|ax^2+bx+c|$$

$$-\frac{b}{a\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$$

f(t)	$\mathcal{L}\left(f(t)\right) = F(s)$		$\mathcal{L}(f(t)) = F(s)$	f(t)	$\mathcal{L}(f(t)) = F(s)$
1	$\frac{1}{s}$	$\frac{ae^{at}-be^{bt}}{a-b}$	$\frac{s}{(s-a)(s-b)}$	$\frac{e^{at}-e^{bt}}{a-b}$	$\frac{1}{(s-a)(s-b)}$
$e^{at}f(t)$	F(s-a)	cosh <i>kt</i>	$\frac{s}{s^2 - k^2}$	sinh <i>kt</i>	$\frac{(s-a)(s-b)}{\frac{k}{s^2-k^2}}$
$\mathcal{U}(t-a)$	$\frac{e^{-as}}{s}$	e ^{at}	$\frac{1}{s-a}$	cos kt	$\frac{s}{s^2 + k^2}$
$f(t-a)\mathcal{U}(t-a)$	$e^{-as}F(s)$	sin <i>kt</i>	$\frac{1}{s-a}$ $\frac{k}{s^2+k^2}$	$\cos kt$ $t^{\times} \ (x \ge -1 \in \mathbb{R})$	$\frac{\Gamma(x+1)}{s^{x+1}}$
$\delta(t)$	1	$t^n (n = 0, 1, 2,)$	$\frac{n!}{s^{n+1}}$	$\int_0^t f(x)g(t-x)dx$	
$\delta(t-t_0)$	e^{-st_0}	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$	f'(t)	sF(s) - f(0)
$f^n(t)$	$s^n F(s) - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0)$	te ^{at}	$\frac{1}{(s-a)^2}$	t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}}$
e ^{at} sin <i>kt</i>	$\frac{k}{(s-a)^2+k^2}$	e ^{at} cos kt	$\frac{s-a}{(s-a)^2+k^2}$	e ^{at} sinh <i>kt</i>	$\frac{k}{(s-a)^2-k^2}$
e ^{at} cosh kt	$\frac{s-a}{(s-a)^2-k^2}$	t sin kt	$\frac{2ks}{(s^2 + k^2)^2} = \frac{s^2 - k^2}{(s^2 - k^2)^2}$	t cos kt	$\frac{k}{(s-a)^2 - k^2} \\ \frac{s^2 - k^2}{(s^2 + k^2)^2}$
t sinh kt	$\frac{2ks}{(s^2-k^2)^2}$	t cosh kt	$\frac{s^2 - k^2}{(s^2 - k^2)^2}$	sin at t	arctan – s
$\frac{1}{\sqrt{\pi t}}e^{-a^2/4t}$	$\frac{s-a}{(s-a)^2-k^2}$ $\frac{2ks}{(s^2-k^2)^2}$ $\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$	$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$	$\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$	$\frac{e^{-a\sqrt{s}}}{s}$

Table 1: Common Laplace transform operations.

Name	$p = \lambda_1 + \lambda_2$	$q=\lambda_1\lambda_2$	$\Delta = \left(\lambda_1 - \lambda_2\right)^2$	Comments
Node		q > 0	$\Delta \geq 0$	Real, same sign
Saddle Point		q < 0		Real, opposite signs
Centre	p = 0	q > 0		Pure imaginary
Spiral		$q \neq 0$	$\Delta < 0$	Complex (not pure imaginary)

Table 2: Criterion

Term in $r(x)$	Choice for $y_p(x)$
ke ^γ ×	Ce ^{γ×}
kx^n where $(n = 0, 1,)$	$K_{n}x^{n} + K_{n-1}x^{n-1} + \cdots + K_{1}x + K_{0}$
$k \cos \omega x$ or $k \sin \omega x$	$K\cos\omega x + M\sin\omega x$
$ke^{\alpha \times}\cos\omega x$ or $ke^{\alpha \times}\sin\omega x$	$e^{\alpha \times} (K \cos \omega x + M \sin \omega x)$

Table 3: Method of undetermined coefficients.

Type of Stability	$p = \lambda_1 + \lambda_2$	$q=\lambda_1\lambda_2$
Stable and attractive	q < 0	q > 0
Stable	$q \leq 0$	q > 0
Unstable	either $q \leq 0$	or $q > 0$

 Table 4: Stability criterion for critical points.

Case	Туре	Roots	Basis	General Solution
1	Distict real	(λ_1, λ_2)	$e^{\lambda_1 \times}$ and $e^{\lambda_2 \times}$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
П	Real Double Root	$(\lambda = -\frac{1}{2}a)$	$e^{-a \times /2}$ and $x e^{-a \times /2}$	$y = (c_1 + c_2 x)e^{-ax/2}$
III	Complex Conjugate	$\lambda_{1,2} = -1/2a \pm \mathbf{j}\omega$	$e^{-ax/2}\cos\omega x$ and $e^{-ax/2}\sin\omega x$	$y = e^{-ax/2} (A\cos\omega x + B\sin\omega x)$

 Table 5: Possible roots of the characteristic equation based on the discriminant value.

Case	Туре	Roots	General Solution
1	Distict real	(m_1, m_2)	$y = c_1 x^{m_1} + c_2 x^{m_2}$
П	Real Double Root	$m = \frac{1}{2} \left(1 - a \right)$	$y = c_1 x^m \ln x + c_2 x^m$
Ш	Complex Conjugate	$y = c_1 x^{\alpha} \cos(\beta \ln x) + c_2 x^{\alpha} \sin(\beta \ln x)$	
		$\alpha = Re(m)$	
	$m_2 = \alpha - \beta \mathbf{j}$	$\beta = Im(m)$	

Table 6: Cases for solving Euler-Cauchy.