CSE 5525 Artificial Intelligence II

Quiz #5: Probability Wei Xu, Ohio State University

Yo	our Name:			OS	U User	name:	
1 Joint and Conditional Distributions							
Consider three random variables Toothache, Cavity and Catch. The joint probabilities that each random variable takes on the respective values is given below:							
			+toothache		-toothache		
			+catch	-catch	+catch	-catch	
		+cavity	0.108	0.012	0.072	0.008	

Questions:

1) What is
$$P(\text{+toothache})? = 0.08 + 0.016 + 0.012 + 0.064 = 0.2$$

0.108

0.016

+cavity

-cavity

2) What is
$$P(\text{Catch})$$
? $P(\text{+catch}) = 0.106 + 0.016 + 0.072 + 0.144 = 0.34$
 $P(\text{-catch}) = 1 - P(\text{+catch}) = 0.66$

0.064

3) What is
$$P(+\text{cavity}|+\text{catch})$$
? = $\frac{P(+\text{cavity},+\text{catch})}{P(+\text{catch})} = \frac{0.108+0.072}{0.34} = 0.53$

4) What is
$$P(+\text{cavity})$$
 addoothache or $+ \text{catch}$?

$$P(+\text{cavity}, +\text{toothache} \cdot \text{v} + \text{catch})$$

$$P(+\text{toothache} \cdot \text{v} + \text{catch})$$

$$0.108 + 0.012 + 0.012 + 0.016 + 0.064 + 0.144$$

$$0.192$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

$$0.193$$

0.576

0.144

Conditional Independence 2

For random variables X, Y, Z, show that the following three statements are equivalent:

(i)
$$P(X|Y,Z) = P(X|Z)$$

(ii)
$$P(Y|X,Z) = P(Y|Z)$$

$$\begin{array}{l} \text{(i)} \ P(X|Y,Z) = P(X|Z) \\ \text{(ii)} \ P(Y|X,Z) = P(Y|Z) \\ \text{(iii)} \ P(X,Y|Z) = P(X|Z)P(Y|Z) \end{array}$$

Equivalence of the first two statements show that conditional independence is symmetric (X and Y are conditionally independent given Z, and the order of X and Y doesn'tmatter). The third statement is analogous to the definition of unconditional independence: P(X,Y) = P(X)P(Y).

Showing equivalence of (i) and (iii) P(X,Y|Z) = P(X|Z) P(Y|Z) P(X|Y,Z) = P(X|Z) P(X|Z) $P(X|Y,Z) = \frac{P(X,Y,Z)}{P(Y,Z)} = \frac{P(X,Y|Z) P(Z)}{P(Y,Z)}$