Meteorite Group Report

7

Inter-Uni Datathon 2024

Member: Tong Zhu (Judy), Kevin Shen, Kevin Xu, Shubhanker Rawat

Introduction & Aim

- Skyline Financial Services (SFS) faced an unexpected dip in monthly revenue.
- Internal investigations revealed fraud slipping past current detection systems
- Our task is to analyze transaction data and detect potential fraudulent activities

Data Understanding & Exploration

Data Overview:

train.csv: contains transactions with the IsFraud label.

test.csv: contains similar transactions but without IsFraud label for predictions.

sample_submission.csv: provides the format for submitting fraud predictions

Preprocessing Method

Methods

For preprocessing, we utilized multiple different data preprocessing methods, which includes:

- Text Processing(extracting domains from email and removing \$ symbols)
- Currency Exchange(from AED or GBP to AUD)
- Data Clipping(transform outliers into -1 for age)
- Grouping(gender, transaction location and device type)
- Label encoding(occupation, education level, marital status ...)

- ...

Preprocessing Method Data Example

Clipping age outliers

- Improve accuracy(consider ages above 100 or below 0 as misinput)

Transforming different monetary units into AUD(income, expenditure, gift)

-1 AED = 0.4 AUD

-1 GBP = 2.0 AUD

•Grouping iphone 15 as Mobile for device type

The correlations among all numeric variables are relatively low.

Data Analysis - Correlations

Data Analysis - Label Distribution

There are 36.4% Fraud and 63.6% not Fraud in the train dataset.

Data Analysis - Label Encoding

Before Label Encoding ->

Gender	Occupation	EducationLevel	MaritalStatus	NumDependents	Income	Expenditure	 MerchantID	TransactionType	TransactionLocation	DeviceType
Female	Professional	Bachelor	Widowed	3	28884.43 AUD	14610.61 AUD	м006	Withdrawal	Adelaide	Mobile
Male	Student	High School	Married	4	AU\$ 54919.07	39169.49 AUD	M002	Withdrawal	Canberra	Mobile
Male	Unemployed	Master	Married	2	AU\$ 74728.57	55873.76 AUD	м008	Purchase	Brisbane	Mobile
Male	Professional	High School	Married	3	AU\$ 55712.62	AED 89649.04	M001	Purchase	Darwin	iphone 15
Male	Professional	High School	Single	4	53004.7 AUD	AED 43601.02	M001	Withdrawal	MLB	Tablet
Male	Unemployed	High School	Single	3	64488.68 AUD	AU\$ 21813.53	М007	Purchase	Canberra	Mobile
Female	Professional	High School	Married	2	80403.31 AUD	AU\$ 63429.08	м003	Purchase	Hobart	iphone 15

After Label Encoding ->

Gender	Occupation	EducationLevel	MaritalStatus	NumDependents	Income	Expenditure	GiftsTransaction	TransactionAmount	TransactionType	TransactionLocation
0	2	1	3	3	28884.43	14610.610	2100.02	258.140	3	0
1	0	0	1	4	54919.07	39169.490	9939.42	34.940	3	2
1	1	2	1	2	74728.57	55873.760	2299.70	323.820	1	1
1	2	0	1	3	55712.62	35859.616	4335.70	12.996	1	3
1	2	0	0	4	53004.70	17440.408	4763.48	456.300	3	5
1	1	0	0	3	64488.68	21813.530	5489.06	182.510	1	2
0	2	0	1	2	80403.31	63429.080	382.42	137.500	1	4

We use label encoding method to transfer categorical to numerical type.

Model Evaluation & Testing

For Machine Learning, we utilized multiple different machine learning methods, which includes:

- Random Forest Classifier
- Linear Regression
- Logistic Regression
- XGBoost

Random Forest Classifier

- Classification
- Dividing dataset into a single train set (80%) and a test set (20%)
 - Accuracy: Around 82%.
 - AUC-ROC: Around 87%.
 - Confusion Matrix

XGBoost

Classification

- Dividing dataset into a single train set (70%) and a test set (30%)
- Accuracy : Around 85%.
- AUC-ROC: Around 83%.

AUC-ROC Score	: 0.83466414 precision		f1-score	support	
0 1	0.79 0.85	0.94 0.58	0.86 0.69	2091 1199	
accuracy macro avg weighted avg	0.82 0.81	0.76 0.81	0.81 0.77 0.80	3290 3290 3290	

Linear Regression & Logistic Regression

Linear RegressionLow R squared score

Mean Squared Error: 0.1863773827213508

R^2 Score: 0.20603691515753342

•	Logistic Regression
	 Low accuracy

Classification	Report:			
	precision	recall	f1-score	support
0	0.63	0.97	0.77	1368
1	0.57	0.07	0.12	826
accuracy			0.63	2194
macro avg	0.60	0.52	0.44	2194
weighted avg	0.61	0.63	0.52	2194

Regression is not suitable.

Results & Analysis

- Although the model's accuracy is high, there is room for improvement in handling fraudulent transactions. The confusion matrix reveals a noticeable number of false negatives (357 fraud cases classified as non-fraud).
- The AUC-ROC score shows strong overall classification capability, but further optimization is needed, especially for fraud detection, where recall and false negatives are critical.

Thank You!