PA4

Coded by Zhao Zixuan

Generating test files

These tests generates symmetric (numbers with similar lengths) test cases.

Multiplication

Division

Other tests are generated using similar code.

Benchmark and Algorithm Choosing

Multiplication

```
In[572]:= fft = Mean /@ Partition [Flatten@Import["fft.txt", "Data"], 100];
L平均值 L划分 L压平 L导入
In[573]:= karatsuba = Mean /@ Partition [Flatten@Import["karatsuba.txt", "Data"], 100];
L平均值 L划分 L压平 L导入
In[574]:= long = Mean /@ Partition [Flatten@Import["long.txt", "Data"], 100];
L平均值 L划分 L压平 L导入
In[576]:= toom3calll = Mean /@ Partition [Flatten@Import["toom3_calll.txt", "Data"], 100];
L平均值 L划分 L压平 L导入
In[577]:= toom3callk = Mean /@ Partition [Flatten@Import["toom3_callk.txt", "Data"], 100];
L平均值 L划分 L压平 L导入
In[577]:= toom3callk = Mean /@ Partition [Flatten@Import["toom3_callk.txt", "Data"], 100];
```


The algorithm implemented are:

Long multiplication: $O(n^2)$

Karatsuba multiplication: $O(n^{1.585})$

Toom-Cook 3 Way multiplication: $O(n^{1.465})$

Fast Fourier Transform Multiplication: $O(n \log(n))$

However, FFT and long multiplication outproformed others(maybe due to optimization problems).

```
In[602]:= ListPlot[
      _绘制点集
       {fft, karatsuba, long, toom3callk, toom3calll}[[All, 1;; 10]], PlotLegends \rightarrow
        SwatchLegend[{{"fft", "karatsuba", "long", "toom3callk", "toom3calll"}}],
       Joined → True, ImageSize → Large]
       连接点 上真
                    上图像尺寸
      300
      250
                                                                                     fft
      200
                                                                                        karatsuba
Out[602]=
                                                                                       long
      150
                                                                                        toom3callk
                                                                                     toom3calll
      100
      50
```

Hence for operand less than 10¹², long multiplication is used, and fft is used for larger multiplications.

Division

```
In[608]= longdiv = Mean /@ Partition[Flatten@Import["long.txt", "Data"], 20];
              [平均值 ] 划分
In[609]:= newtondiv = Mean /@ Partition[Flatten@Import["newton.txt", "Data"], 20];
                L平均值 L划分
                                 L压平 L导入
```


Hence long division is used for operands less than 10^{62} , and Newton division is used for larger numbers.