- *32.* A 4.7 kΩ resistor has a conductance of:
 - a. 213 mS
 - b. 213 μS
 - c. 4.7 S
 - d. 4.7 mS
- 33. At 62 kHz, a 527 nF capacitor has a susceptance of:
 - a. 4.87 mS
 - b. 4.87 S
 - c. 205 S
 - d. 205 mS
- *34.* At 261 Hz, a 682 mH inductor has a susceptance of:
 - a. 1.12 kS
 - b. 1.12 S
 - c. 894 µS
 - d. 894 mS
- **35.** If $Z_L = (503 + 223j) \Omega$, $Y_L =$
 - a. (223 + 503j) S
 - b. (1.66 + 0.737j) mS
 - c. (1.66 0.737j) mS
 - d. 550 S

36. Total admittance seen by the source is:

37. If
$$I_S = (1.2 \angle 70^\circ) A$$
, $I_L =$

38. If $V_X = (8 \angle 10^\circ) V$, what is V_0 ?

39. Draw the Thevenin equivalent circuit external to V_0 , assuming $V_X = (8 \angle 10^\circ) V$.

40. Using **mesh analysis**, find the 3 loop currents for the circuit above.

41. How much power is dissipated by the 3 resistors?

42. Using **nodal analysis**, find the voltage at all nodes in the circuit above.

43. What is the current through the capacitor C_1 ?

44. Using superposition, find the voltage across R₃.

45. How much power is supplied by the source I_1 ?

46. For the power triangle to the right, find S and θ .

47. For the power triangle above, if the source voltage is $(120 \angle 0^{\circ}) V_{rms}$, what is the source current?

48. For the power triangle to the right, find P and Q.

49. If the source voltage is 240 V_{rms} and the frequency is 50 Hz, what value of inductor would be needed to achieve unity power factor in the system above?

50. Draw a fully-labeled power triangle for the system above (P, Q, S, θ)

51. For the 1 kW load, determine what component(s) comprise it.

52. What component (type and value) would be needed to correct the system power factor?

Changlog:

1. Answers to #35 were updated.