

Taller 01 Proporcionalidad Geometría 9°

Germán Avendaño Ramírez, *

Nombre:	Curso:	Fecha:	
Meta de aprendizaje : El estudiante a hallar incógnitas	aplica las propieda	ades de las proporciones	para
Entre uno y otro			
1. Empleando una expresión matemática nes	a escribir simbólica	amente las siguientes exp	resio-
a) Tengo 4 tortas para tres persona	S		
b) Se fue ocho días y solo trabajó c	uatro.		
c) Camilo da tres pasos en tres segu	undos		
d) Realice la notación de las estrate	egias empleadas a	partir de la Ruleta Heurí	stica.

Razón matemática

La razón matemática es una expresión que se encarga de relacionar dos cantidades sin tener en cuenta el tipo. Se representa mediante un cociente indicado, $\frac{a}{b}$ ó a:b. La lectura es a es a b, también se puede emplear a de b.

Partes de la razón

$$\frac{a}{b} = \frac{Antecedente}{Consecuente}$$

La razón suele expresarse en fracción reducida (simplificada), sus partes son el antecedente a y el consecuente b.

^{*}Lic. Mat. U.D., M.Sc. U.N.

Algunos ejemplos

- 1. 5 es a 7, es la razón entre días de asistencia al colegio y días de la semana.
- 2. 1 es 3, razón entre cada uno de los colores de la bandera de Colombia y el total de colores de la bandera. $\frac{1}{3}$ o 1:3

Escribiendo razones

- 1. Escriba las siguientes razones, empleando las cuatro formas de expresar una razón, y en el caso que sea posible hallar la fracción reducida.
 - a) 15 galletas con trocitos de menta en una bolsa con 34 galletas.
 - b) 16 perros pastor alemán de 24 perros.
 - c) 25 conjuntos residenciales de ladrillo de cada 45.
 - d) 10 tambores de 75 instrumentos.
 - e) 32 vacas de 72 mamíferos.
 - f) Realice la notación de las estrategias empleadas a partir de la Ruleta Heurística.

De razones a tasas

- 1. Expresar en forma de razón las siguientes expresiones.
 - a) 8 kilómetros recorre en una hora.
 - b) 30 vueltas da un disco en un minuto.
 - $c)\ c)$ 45 kilogramos en una botella de 3 litros.
 - d) 35 personas por metro cuadrado.
 - e) Establecer las diferencias y semejanzas con las razones del numeral dos.
 - f) 32 vacas de 72 mamíferos.
 - g) Realice la notación de las estrategias empleadas a partir de la Ruleta Heurística.

Tasa

Se dan casos cuando los términos de las razones, corresponden a dos medidas expresadas en diferentes unidades, denominándose tasa.

Ejemplos de tasa

 $\frac{125 \text{ kilómetros}}{2 \text{ horas}}$

Compara el número de kilómetros recorridos con el número de horas que duró el viaje.

Expresando razones

- 1. Expresar como tasa cada razón. Hallar la fracción reducida en cada caso.
 - a) a) 120 palabras en 3 minutos.
 - b) 5 gaseosas en \$3.000
 - c) 395 kilómetros en 5 horas.
 - d) 36 millones de discos en 7 años.
 - e) 79.8 kilómetros con 3 galones de gasolina.
 - f) Realice la notación de las estrategias empleadas a partir de la Ruleta Heurística.

Aplicando

- 1. Dibujar en un papel cuadriculado un cuadrado de 1 por 1 unidad y otro de 2 por 2 unidades. Luego escribir la razón que compara cada uno de los siguientes casos.
 - a) La longitud del lado del cuadrado más pequeño a la longitud del lado del cuadrado más grande.
 - b) El perímetro del cuadrado pequeño al perímetro del cuadrado grande.
 - c) El área del cuadrado pequeño al área del cuadrado grande.
 - d) Dibujar un cuadrado de 3 por 3. Comparar las mismas medidas entre el cuadrado de 1 por 1 unidad y el de 3 por 3 unidades. Describir la relación que existe entre las razones de los lados, los perímetros y las áreas.
- 2. Hacer un dibujo en el que la razón del número de círculos azules al número total de círculos sea $\frac{3}{5}$
- 3. El avestruz es el ave corredora más veloz, llegando a correr 384 kilómetros en 6 horas. ¿Cuál es la rapidez¹ promedio de un avestruz?
- 4. Realice la notación de las estrategias empleadas a partir de la Ruleta Heurística.

Proporciones

La igualdad de razones forma una proporción

$$\frac{a}{b} = \frac{c}{d}$$
, a:b::c:d

Se lee, a es a b, como c es a d. Los términos a y d reciben el nombre de extremos y b y c se denominan medios

¹En el idioma inglés se hace evidente la diferencia entre velocidad (velocity) y la rapidez (speed)

Primera propiedad

El Producto de extremos es igual al producto de medios.

Si
$$\frac{a}{b} = \frac{c}{d}$$
 es una proporción, entonces $a \cdot d = b \cdot c$

Se considera como la propiedad fundamental de las proporciones.

Ejemplo de aplicación de la primera propiedad

Verificar la propiedad fundamental para el siguiente par de razones.

$$\frac{5}{3} = ? \frac{4}{7}$$

Observando la definición se deduce que

$$5 \cdot 7 = ? \ 3 \cdot 4$$
$$35 \neq 12$$

Como los resultados no son iguales, la anterior pareja de razones no es una proporción.

Hallar el valor de x en la proporción.

$$\frac{9}{3} = \frac{6}{x}$$

Como se supone que es una proporción entonces debe satisfacer la propiedad fundamental de la proporciones con lo cual:

$$9\cdot x=3\cdot 6$$

$$9x=18$$

$$x=\frac{18}{9}$$
 multiplicando por $\frac{1}{9}$ ambos miembros de la igualdad
$$x=2$$

Verificando se tiene que:

$$9 \cdot 2 = 3 \cdot 6$$
$$18 = 18$$

Aplicación de la propiedad uno

1. Verificar la propiedad para:
$$\frac{2}{7} = ?\frac{8}{20}$$

2. Hallar el valor de
$$x$$
 para la proporción:
$$\frac{3}{5} = \frac{x}{35}$$