Chap. 8 Properties of Context-Free Languages

Agenda of Chapter 8

- □ Two pumping lemmas
 - A Pumping lemma for context-free languages
 - A Pumping lemma for linear languages
- Closure properties and decision algorithms for CFL
 - Closure of context-free languages
 - Some decidable properties of context-free languages

Pumping Lemma for regular language – logical expression. If L is an infinite regular language, then $\exists m > 0$ such that $\forall W \in L(|w| \ge m)$) $\exists \forall A$ work, pumping set. Substring yet $\exists \exists A$. 10 中 医型 33tate 1310年 一种 \exists a decomposition $w = xyz (|xy| \le m, |y| \ge 1)$ such that $\forall i=1,2,... w_i=xy^iz \in L$ Theorem 8.2] Pumping Lemma for linear languages L : an infinite linear language. 洲: 岩(铁铁) Then \exists positive integers m such that \forall w \in L with $|w| \ge m$, \exists a decomposition of w, w=uvx0z, with |uvyz|≤m and |vy|≥1, such that |w $\forall i=0,1,2,... w_i=uv^ixy^iz \text{ is also in L.}$ Theorem 8.1] Pumping Lemma for CFL Then ∃ positive integers m such that \forall w \in L with $|w| \ge m$, \exists a decomposition of w, w=uvxyz with $|vxy| \le m$ and $|vy| \ge 1$, such that \forall i=0,1,2,... $w_i=uv^ixy^iz$ is also in L

Pumping Lemma for CFL (1/4)

Theorem 8.1] Pumping Lemma for CFL

- L : an infinite CFL

Then in

Proof) Consider L- $\{\lambda\}$ with a CFG having no λ -production and unit-production.

Note]

- the length of string on the right side of any production is bounded
- L is infinite
- There exist arbitrary long derivation → w+ †**

Pumping Lemma for CFL (2/4)

Proof continued)

This indicates the existence of some variable A that repeats on this path, such as

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uVAyz \stackrel{*}{\Rightarrow} uvxyz,$$
 where u,v,x,y,z are all strings of terminals.

From $A \stackrel{*}{\Rightarrow} vAy$ and $A \stackrel{*}{\Rightarrow} x$, we can see that

all the string uv^ixy^iz (i=0,1,...) can be generate by G

Assuming that A is the only repeating variable in $(A \Rightarrow vA)$, $A \Rightarrow x$, we get |vxy|≤m.

[poof of $|vy| \ge 1$]

we get |vy|≥1.

From the fact that G has no production and unit-production,

Pumping Lemma for CFL (3/4)

```
Ex 8.1] Show that L={a^nb^nc^n} | n \ge 0} is not context-free.

For any given m, choose w= a^mb^mc^m. Assume L is CFL.

Consider all possible choice of vxy.

For the case vxy = a^{k1}xa^{k2}, set i=0 then w_0 = uxz \notin L.

For the case vxy = a^{k1}xb^{k2}, set i=0 then w_0 = uxz \notin L.
```

- Cf) L= $\{a^nb^n \mid n \ge 0\}$ is context-free language.

Pumping Lemma for CFL (3/4)

```
Ex 8.2] L={ww | w \in \{a,b\}^*}
```

- For any given m, choose w= $a^mb^ma^mb^m$.
- Consider all possible choice of vxy.

Pumping Lemma for CFL (4/4)

Ex 8.3] L= $\{a^{n!} | n \ge 0\}$ is not context-free

- For any given m, choose $w = a^{m!}$.
- Consider all possible choice of vxy.

Ex 8.4] $L=\{a^nb^j \mid n=j^2\}$ is not context-free

- For any given m, choose $w = a^{m2}b^{m}$.
- Consider all possible choice of vxy.

Pumping Lemma for Linear Language (1/3)

CFL which can be generated by a linear CFG.

Is the language L={aⁿbⁿ | n≥0} (inear?₀ linear growmat.

Is the language $L=\{w| n_a(w)=n_b(w)\}$ linear?

Theorem 8.2] Pumping Lemma for linear languages

L: an infinite linear language.

Then 3 positive integers m such that

 $\forall w \in L \text{ with } |w| \geq m$, $\exists \text{ a decomposition of } w$, w=uvxyz, with |uvyz|≤m and |vy|≥1, such that

 $\forall i=0,1,2,... w_i=uv^ixy^iz$ is also in L.

TO S→SS (4) S→SS→CSS.

Pumping Lemma for Linear Language (2/3)

Proof) Consider L- $\{\lambda\}$ with a LG without λ -production and unit-production. Note]

- The length of string on the right side of any production is bounded
- L is infinite
- There exist arbitrary long derivation \Rightarrow
- The number of variable in G is finite.

This indicates the existence of variable A repeating on this path, such as $U^*AZ \Rightarrow U^*AZ \Rightarrow U^*XYZ \Rightarrow U^*XYZ$, where u,v,x,y,z are all strings of terminals.

From $A \Rightarrow vAy$ and $A \Rightarrow x$, we can see that all the string uv^ixy^iz (i=0,1,...) can be generated by G.

We can also assume that

- there only finite number of variables in S⇒u
- these variables generates finite number of terminals → (uz) is bounded.

 Similarly, |vy| is also bounded, and |uvyz|≤m.
- Since G has no λ -production and unit-production, $|vy| \ge 1$.

Pumping Lemma for Linear Language (3/3)

Ex8.6] L={w| $n_a(w)=n_b(w)$ } is not linear.

- For any given m, choose $w = a^m b^{2m} a^m$
- Consider all possible choice of uvyz.

 \Box $F_{LL} \subset F_{CFL}$

 The family of linear languages is a proper subset of the family of context-free languages.

Closure properties & decision algorithm for CFL

Closure of CFL (1/5)

Theorem 8.3] The family of CFL is closed under union, concatenation, and star-closure.

Proof) Let $L_1 = L(G_1)$, $G_1 = (V_1, T_1, S_1, P_1)$ is a CFG Let $L_2 = L(G_2)$, $G_2 = (V_2, T_2, S_2, P_2)$ is a CFG Assume V_1 and V_2 are disjoint.

1. Closure under union.

Consider L(G₃), $G_3 = (V_1 \cup V_2 \cup \{S_3\}, T_1 \cup T_2 \setminus S_3, P_3), P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1 \mid S_2\}.$ Then, L(G₃) is a CFL and L(G₃) = L₁ UL₂

- i) For any $w \in (L_1 \cup L_2)$, either $S_3 \Rightarrow S_1 \Rightarrow w$ or $S_3 \Rightarrow S_2 \Rightarrow w$ is possible derivation in G_3 . Thus, $w \in L(G_3)$.
- ii) For any $w \in L(G_3)$ either $S_3 \Rightarrow S_1$ or $S_3 \Rightarrow S_2$ must be the first step of the derivation. Case of $S_3 \Rightarrow S_1$: the rest $S_1 \Rightarrow w$ involve productions in P_1 only. Thus, $w \in L_1$. Case of $S_3 \Rightarrow S_2$: the rest $S_2 \Rightarrow w$ involve productions in P_2 only. Thus, $w \in L_2$.

Closure of CFL (2/5)

Proof continued)

2. Closure under concatenation.

Consider
$$G_4 = (V_1 \cup V_2 \cup \{S_4\}, T_1 \cup T_2, S_4, P_4),$$

 $P_4 = P_1 \cup P_2 \cup \{S_4 \rightarrow S_1 S_2\}.$
Then, $L(G_4)$ is a CFL and $L(G_4) = L(G_1)L(G_2).$

3. Closure under star-closure

Consider
$$G_5 = (V_1 \cup \{S_5\}, T_1, S_5, P_5),$$

 $P_5 = P_1 \cup \{S_5 \rightarrow S_1 S_5 | \lambda\}.$
Then, $L(G_5)$ is a CFL and $L(G_5) = L(G_1)^*.$

Closure of CFL (3/5)

Theorem 8.4] The family of CFL is not closed under intersection and complementation.

Proof)

1. Intersection (Proof by a counter example)

Let $L_1 = \{a^nb^nc^m \mid n,m \ge 0\}$, $L_2 = \{a^nb^mc^m \mid n,m \ge 0\}$. L_1 and L_2 are context-free languages. (by using Theorem 8.3)

But, $L_1 \cap L_2 = \{a^nb^nc^n \mid n \ge 0\}$ is not context-free language.

2. Complementation (Proof by contradiction)

Assume a family of CFL is closed under complementation.

Then for two CFL L_1 and L_2 , $(L_1' \cup L_2')'$ is also a CFL.

But, since $(L_1' \cup L_2')' = L_1 \cap L_2$, this is a contradiction.

Thus, the family of CFL is not closed under complementation.

Closure properties & decision algorithm for CFL

Closure of CFL (4/5)

Theorem 8.5] Closure under regular intersection.

 L_1 : a CFL, L_2 : a regular language. Then $L_1 \cap L_2$ is a CFL

Proof) Construct a ndpa M' accepting $L_1 \cap L_2$.

Let $M_1 = (Q, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ be an ndpa, $L(M_1) = L_1$. Let $M_2 = (P, \Sigma, \delta_2, p_0, F_2)$ be a dfa, $L(M_2) = L_2$.

Construction of a new ndpa]

 $M'=(Q) \Sigma$, Γ , δ' , q_0 z, F') simulating the parallel action of M_1 and M_2 . Let $Q'=Q \times P$, $q_0'=(q_0,p_0)$, $F'=F_1\times F_2$

When $(q_k, x) \in \delta_1(q_i, a, b)$, $\delta_2(p_j, a) = p_l$, Let $\delta'((q_i, p_j), a, b) \ni ((q_k, p_l), x)$

Using M' and induction method, we can obtain

$$((q_0, p_0), w, z)

\downarrow^*_{M'}((q_r, p_s), \lambda, x) \text{ with } q_r \in F_1, p_s \in F_2$$

iff $(q_0, w, z)

\downarrow^*_{M1}(q_r, \lambda, x) \text{ and } \delta_2^*(p_0, w) = p_s.$

Thus, w is accepted by M' iff w is accepted by M_1 and M_2 .

Closure of CFL (5/5)

Ex 8.7] Show that $L=\{a^nb^n \mid n\geq 0, n\neq 100\}$ is CFL.

– Use the fact that $L_1 = \{a^nb^n \mid n \ge 0\}$ is context-free.

Ex 8.8] Show L={w \in {a,b,c}* | $n_a(w) = n_b(w) = n_c(w)$ } is not a CFL.

Use the fact that $L_1 = \{a^nb^nc^n | n \ge 0\}$ is not context-free

Some decidable properties of CFL

Theorem 8.6] Given a CFG G=(V,T,S,P), there exist an algorithm for deciding whether or not L(G Proof) 7는 명당. Assume that λ is not in L(G). Use the algorithm for removing useless symbols and productions. (S) is useless iff (L(G)) is empty. terminal = = PES **Theorem 8.7]** Given a CFG G=(V,T,S,P), there exist an algorithm for deciding whether or not L(G) is infinite. Proof) Need only to determine whether G has some repeating variable. Draw a dependency graph with an edge (A,B) whenever there is $A \rightarrow xBy$. Any variable at the base of a cycle is a repeating one.