## FEEDADEADF15h

## Schedule Tour 软件架构文档

版本 2.0

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

# 修订历史记录

| 日期        | 版本   | 说明                        | 作者  |
|-----------|------|---------------------------|-----|
| 12/7/2013 | 1. 0 | 软件架构文档第一版本,针对第一次迭<br>代的内容 | 孟繁宇 |
| 17/7/2013 | 1. 1 | 中期软件架构文档 1                | 孟繁宇 |
| 2/8/2013  | 2. 0 | 小学期终期软件架构文档               | 孟繁宇 |
|           |      |                           |     |

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

# 目录

| 1. | 简介                 | ∠           |
|----|--------------------|-------------|
|    | 1.1 目的<br>1.2 参考资料 | 4           |
| 2. | 用例视图               | 4           |
| 3. | 逻辑视图               | 4<br>5<br>6 |
| 4. | 进程视图               | 8           |
| 5. | 部署视图               | 8           |
| 6. | 实现视图               | 10          |
| 7. | 数据视图(可选)           | 1(          |
| R  | 核心質注设计(可选)         | 1 1         |

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

## Schedule Tour 软件架构文档

### 1. 简介

#### 1.1 目的

本文档将从构架方面对系统进行综合概述,其中会使用多种不同的构架视图来描述系统的各个方面。它用于记录并表述已对系统的构架方面作出的重要决策。

#### 1.2 参考资料

无

## 2. 用例视图



## 3. 逻辑视图

#### 3.1 概述

本系统分为应用层、业务服务层和中间件层

#### 3.2 在构架方面具有重要意义的设计包

本系统的系统逻辑分层图:

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |



# 3.2.1 Business Layer 实体类图 实体类图及相关关系如下图所示:



图 3.2.1.1 Business Layer 实体类图

在本阶段,共存在三个实体类: User、Route、Event。三个类之间的关系详细介绍见上图。 User 类: 记录用户名信息与用户密码,同时保存盐

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

Event 类:记录用户发生地点、事件名称、事件重要度、开始时间与持续时间等信息

Route 类:记录用户一天的日程安排顺序信息等内容

#### 3.2.2 Application Layer 包图

Application Layer 包图如下图所示:



在应用层中主要包括事务管理、路线管理、历史查询、以及登陆、注册、设置等功能,需要使用到业务层、中间件层的包/集合.

事务管理:包括新增事件、删除事件、修改事件发生地、修改事件优先级等内容;

路线管理:包括查询最优路线、自定义路线等内容;

活动推荐:包括半径三公里内的事件推荐、沿途活动推荐等内容;

历史信息查询:包括以往日程安排信息的浏览,查看等内容;

GCM: 包括事件信息推送等内容。

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

#### 3.2.3 Application Layer 边界类视图



#### 3.2.4 逻辑视图



图 3.2.4.1、登陆事件逻辑视图

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |



图 3.2.4.2、注册用户逻辑视图



图 3.2.4.3、添加事件逻辑视图

### 4. 进程视图

该软件暂不需要使用到多进程进行实现

## 5. 部署视图

截止到第一阶段, 该软件的部署视图如下图所示

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |



| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

## 6. 实现视图



## 7. 数据视图(可选)

该阶段迭代暂不涉及数据视图

NodeJS-based Server

| Schedule Tour | Version: 2.0   |
|---------------|----------------|
| 软件架构文档        | Date: 2/8/2013 |

#### 8. 核心算法设计

本软件的核心算法为路线规划算法。路线规划算法分为两部分。

一部分是两个事件点之间的路线安排。另一部分是许多事件的安排。关于两个事件点之间的路线安排,我们将相关的任务交给了百度进行处理。通过百度提供的相关接口,我们可以获得路线的安排。

另一部分是关于日程安排的管理。目前的方法是:根据用户的预设日程安排,按照时间顺序将其插入。并且能够在两个日程之间尽量插入其它的时间不固定事件。在一天日程的最后,会插入最重要的时间不确定事件。