Nirma University

Institute of Technology

Semester End Examination (IR), December - 2021 B. Tech. in Computer Science and Engineering, Semester-V 2CS503 Design and Analysis of Algorithms

Roll /

Roll / Exam No.			Supervisor's initial with date		
Time: 2 Hou	rs			Max	Marks: 50
Instructions:		4. Assume suitable of 5. CLO_ and BL_ have			s per Course
Q 1 Q 1 CLO1 BL4,5	(a)	Answer the follower that: (nlo log to be 2.	owing: $gn - 2n + 13$) = $\Omega(nlogn)$. A	assume base of	[15] [5]
			or		
Q 1 CLO1 BL4,5	(a)	Prove that $\sum_{i=1}^{n}$ 2.	$\log(i)$ is $\theta(n \log n)$. Assume b	ase of log to be	[5]
Q 1 CLO2,3 BL3,4	(b)	integers using	e the time complexity of m Divide and Conquer? Prov example of multiplying 381 OR	e your answer	[10]
Q 1 CL02,3 BL3,4	(b)	for finding the seven elements the algorithm.	ins n distinct elements. Wrimedian of the array, by for Derive the expression of ralso derive the expression of ee elements are formed.	ming groups of running time of	[10]
Q 2 Q 2 CLO2,3 BL3,4	(a)	What is the tin "A" as the sou	owing: s algorithm for single source ne complexity of this algorit ree vertex, find the shorte thm. Show computation for	hm? Assuming st path for the	[20] [12]

Page 1 of 2

Q 2 CLO2,3 BL3,4	(b)	Given a sequence of matrices A, B, C, D with dimensions 40x20, 20x30, 30x10, and 10x30, find the most efficient way to multiply these matrices together. The most efficient way is the one that involves the least number of scalar multiplications. Report the optimal parenthesization and minimum number of scalar multiplications. Show	[8]
Q 3 Q 3 CLO2,3 BL3,4	(a)	computation for each step. Answer the following: Assume a 0/1 knapsack problem with four types of objects, whose weights are respectively 2, 3, 4 and 5 units, and whose values are 3, 5, 6, and 10. The knapsack can carry a maximum of 8 units of weight. Assume that an adequate number of objects of each type are available. Solve this problem using backtracking. Show computation	[15] [12]
Q 3 CLO1 BL2	(b)	in each step. Critically compare divide and conquer and dynamic programming techniques.	[3]