MS Spectra of Organic Compounds

1. Carbon Hydrates (C_mH_n)

a. Alkane

• C-C σ- fragmentation, C_nH_{2n+1}¬+ cations

- Most abundance (Base peak): $C_3H_7^+$ ($\emph{m/z}$ 43) and $C_4H_9^+$ ($\emph{m/z}$ 57)
- Branched C-C favors cleavage and lose the most weighted alkyl, forming stable secondary/tertiary carbon cations
- Weak molecular lon peak

n-decane(a) vs 5-methylnonane(b)

b. cycloalkane

- Strong molecular ion peaks
- Side chain cleavage is favored
- C_nH_{2n 1}¹⁺cations in the low-weight side

1-methyl-3-pentylcyclohexane

c. Alkene

1-dodecene

- Stronger molecular ion peak than alkane
- C_nH_{2n-1}¹⁺ with difference of 14
- Allyl cleavage (α-cleavage)

d. cycloalkene

Retro-Diels-Alder

e. Benzene

- Strong M^{+*}, low fragments
- m/z 39, 50 52 , 63 65 , 75-77 fragment ion peaks for benzene , but weak intensity
- Benzyl cleavage for alkyl substituted benzenes (m/z 91)

$$CH_2$$
 CH_2
 CH_2

McLafferty rearrangement for alkylbenzenes with γ-H

2. Alcohols (-OH)

a. Aliphatic alcohols

- Very low molecular ion peaks
- Long primary and secondary alcohols would perform hydrogen rearrangement and lose one H₂O.

The base peak sequentially cleaves and loses one C₂H₄ to produce C_nH_{2n-1}⁺ fragment cations.

> Featured oxonium ion via α-cleavage. m/z 31 for primary alcohols

ightharpoonup m/z 31+14n for secondary and tertiary alcohols via H rearrangement and elimination of C_nH_{2n} from oxonium ion RR'C=O+H $_{\circ}$

4-octanol

1-dodecanol(a) vs 1-dodecene(b)

b. Phenol

- Strong molecular ion peak
- CO and CHO, [M-28]** and [M-29]*

Ortho-substituted phenol, lose neutral molecule via ortho-effect

Strong [M-1]⁺ peak for methylphenol and benzyl alcohol

o-methylphenol

3. Ether

- Low molecular ion peak, higher than alcohol
- > R-O+=CR'R" fragment ion (m/z 45,59,73,87...) via α-cleavage; the larger alkyl, easier to lose.
- Alkyl cation via i-cleavage

propylbutyl ether

For aromatic ether:

- Strong molecular ion peak.
- Most fragmentation:

 For R is long chain, McLafferty rearrangement would occur; For no other substitution of benzene,
 m/z 94 as feature fragment ion

4. Carbonyl derivatives

1) α-cleavage and i-cleavage

2) R is long chain and with γ -H: McLafferty Rearrangement

a. Aliphatic ketone

- Obvious molecular ion peak
- Carbonyl cation via α-cleavage: C_nH_{2n-1}O⁻⁺
- ➤ Alkyl cation via i-cleavage: C_nH_{2n+1}¬+
- Methyl ketone (no α-substitution) shows a m/z 58 via McLafferty rearrangement

5-methyl-3-heptanone

b. Aromatic ketone

- Strong molecular ion peak
- ➤ High abundance of aromatic carbonyl cation (Ar-C≡O+) m/z 105.
- Sequential elimination of CO produces phenyl cation m/z 77

c. Aldehyde

- Obvious molecular ion peak for aliphatic aldehyde; strong for aromatic aldehyde
- ➤ Carbonyl cation [M-1]⁺ and HC≡O⁺(m/z 29) via α-cleavage. Carbonyl cation [M-1]⁺ is feature ion peak for aldehyde, especially aromatic aldehyde.
- > [M-29]* via i-cleavage is for high molecular weight aldehyde.
- > m/z 44 via McLafferty rearrangement if no α -substitution of aldehyde.

p-methylbenzaldehyde

d. Ester and Carboxylic acid

- ➤ Obvious molecular ion peak for aliphatic ester and carboxylic acid; **strong for aromatic ones.**
- ➤ [M-OH]⁺ and OH-C≡O⁺ (m/z 45) via α-cleavage for low molecular weight acids, for higher ones only m/z 45.
- > [M-OR]⁺ and [COOR]⁺ via α-cleavage for esters.

➤ McLafferty rearrangement: m/z60 for carboxylic acid, m/z60+14n for esters.

$$C_{14}H_{29}$$
 $C_{14}H_{29}$ $C_{$

- m/z 59+14n for long chain aliphatic acid.
- > m/z 61 for long chain acetate (Page 40)

e. Aromatic Ester and Carboxylic acid

- ➤ Phenyl carbonyl cation (Ar-C≡O⁺) via α-cleavage is feature fragment ion for aromatic ester and acid
- ➤ ortho-effect would occur when benzene is substituted with CH₃ and OH in the ortho-position. Sequentially elimination of H₂O and alcohol would occur and relative fragment ions would be produced.

自丁酸开始以上的各羧酸,都有强峰 m/z 73(「CH₂CH₂COOH),随着烷链的加长,由 m/z 73 开始,每增加 4 个亚甲基,即出现 1 个较强的含羧基的离子,这些离子可用通式「(CH₂)_nCOOH 表示,n=2, 6, 10, 14 等,分别为 m/z 73, 129, 185, 241, 297…各离子相差 56u。

Decanoic acid (a) and Ethyl nonaoate(b)

f. Amide

- R-C≡O⁺ and O≡C-NR₂ via α-cleavage , m/z 44 for primary amides.
- McLafferty rearrangement for long chain aliphatic amides: m/z59+14n
- C_nH_{2n}ON^{¬+} for C-C cleavage of long chains.
- ➤ Strong phenyl carbonyl cation (Ar-C≡O⁺) via α-cleavage and molecular ion peak for aromatic amides.

5. Amine

- Weak molecular ion peak for aliphatic amines;
 Strong for aromatic amines.
- Feature fragment ion peak m/z 30+14n via α-cleavage; high weigh alkyl prefers to be cleaved.
- Sequential rearrangement after α-cleavage and eliminate one ethene to form secondary fragment ions.
- ➤ For anilines, [M-1]⁺ (lose H·) and [M-27]⁺· (-HCN) are characteristic peaks, similar with phenols.
- For nitriles and nitro compounds, see Page 42.

ethylpropylamine

6. Halides

➤ Feature fragment ion peak [M-X]⁺ via i-cleavage for Cl,Br and I derivatives , but not for F.

$$CH_3-CH_2-\stackrel{+}{I} \stackrel{i}{\longrightarrow} \stackrel{i}{I} + C_2H_5+$$

- ► [M-H]*
- > 1,3-elimination for long chain halides, loses one HX
- Feature Isotope peaks for molecular ion peak.

1,3-dibromopropane

7. Sulfides

- Isotope peak [M+2]⁺;
- Obvious molecular ion peak;
- m/z 33 + 14n

a. Thiol

- Fragment ion CH₂=SH⁺ (m/z 47) for primary thiols via α-cleavage. For secondary and tertiary thiols, higher molecular weight alkyls prefers to cleavage.
- Fragment ion [M-H₂S]⁺ via 1,4-elimination for **primary** thiols and sequentially lose C₂H₄. For secondary and tertiary thiols, alkyl cations are tends to formed after losing HS.

b. Thioether

- ightharpoonup α -cleavage would occur at the alkyls besides S with the larger alkyl leaves first. $R-S^+=CH_2$ is produced and may rearrange and eliminate C_nH_{2n} .
- alkyl cation is produced after i-cleavage.
- \triangleright RS⁺ cation is produced after σ –cleavage of C-S bond.

Mercapto-butane(a) vs Diethyl sulfide(b)