清华大学本科生考试试题专用纸(A)

考试课程

2015-2016 线性代数 - II 2016 年 4 月 26 日

- 填空题 (每空 4 分):
 - 1. 给定矩阵 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$, 则 A 的奇异值分解为 ______.

答案:
$$A = \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

- 2. 合同矩阵具有相同的
 - (a) 特征值(b) 秩(c) 正特征值的个数(d) 行列式

答案: (b) (c)

3. 已知 $A = \begin{pmatrix} 1 & 2 & -1 \\ a & 5 & 0 \\ -1 & 0 & b \end{pmatrix}$ 是正定矩阵,则 a, b 满足的条件是 ______.

答案: a=2,b>5.

由 A 是正定矩阵, 故 A 对称, a=2; A 的各阶顺序主子式大于 0,

故
$$\begin{vmatrix} 1 & 2 & -1 \\ 2 & 5 & 0 \\ -1 & 0 & b \end{vmatrix} > 0$$
,即 $b > 5$.

4. 已知矩阵 $\begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ & & & & \\ \end{pmatrix}, \quad \mathcal{M} \ H^{-1} = \underline{\qquad}.$

答案:
$$H^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 & 0\\ \frac{1}{6} & \frac{1}{6} & -\frac{1}{3} & 0\\ \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & -\frac{1}{4}\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$
.

5. 设矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

是 _

答案: C, D; D.

6. 平面中所有满足 $5x^2 + 8xy + 5y^2 = 1$ 的所有点的集合构成的图形是

答案: 长轴方向为 $\frac{1}{\sqrt{2}}(1,-1)$, 长半轴长为 1, 短轴方向为 $\frac{1}{\sqrt{2}}(1,1)$, 短 半轴长为 1/3 的椭圆.

7. 矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
 的 Jordan 标准形是 ______

答案:
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

8. 设 $A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$,则 A 的伪逆是 _____ 答案: $A^+ = \frac{1}{10} \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$

二 (15 分) 设矩阵 A 有如下奇异值分解 $A = U\Sigma V^T$, 其中 U,V 为正交阵:

$$A = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \\ v_4^T \end{pmatrix}.$$

(1) 写出方程组 $Ax = u_1$ 的通解; (2) 求方程组长度最短的解,并证明.

解: (1) 方程组通解为 $x = v_1 + k_3v_3 + k_4v_4$, 其中 k_3, k_4 为任意常数.

(2) 长度最短的解为 $x^+ = A^+b = v_1$ 或直接由 v_1, v_3, v_4 相互正交得 $x = v_1$ 是长度最短的解.

$$\equiv$$
 (15 分) 已知线性变换 σ 在基 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 下的

矩阵为
$$\begin{pmatrix} & & 1 \\ & 1 \\ & 1 \end{pmatrix}$$
, 求 σ 在基 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, 下的

矩阵表示.

答案:
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

四 (15 分) 设 $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, 其中 a,b,c 为实数. 试求使 $A^{100} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 的 a,b,c 的一切可能值.

答案: $a = -c = \pm 1$, b 可为任意实数或 b = 0 且 $a = \pm 1$, $c = \pm 1$.

证明: A 为正定矩阵,故存在可逆矩阵 P 使得 $A = PP^t$.

$$AB = PP^TB = PP^TBPP^{-1},$$

故 AB 与对陈矩阵 P^TBP 相似,二者有相同的特征值。而 P^TBP 合同于正定矩阵 B,也是正定矩阵,其特征值都是正数,因此 AB 的特征值是正数。

证法二: 设 λ 为 AB 的任意特征值, $x \neq 0$ 是 AB 的属于特征值 λ 的特征向量, 即有 $ABx = \lambda x$. 于是

$$x^{T}(B^{T}AB)x = (Bx)^{T}ABx = \lambda x^{T}Bx.$$

由于 B 正定,故 B 可逆,则对称矩阵 B^TAB 合同于正定阵 A,也是正定阵,从而上式左端 $x^T(B^TAB)x > 0$. 而由 B 正定知上式右端中 $x^TBx > 0$,所以 $\lambda > 0$,得证。

六 (7 分) 设 $A = (a_{ij})_{n \times n}$, 若 $|a_{ii}| > \sum_{j \neq i, j=1}^{n} |a_{ij}|$ $(i = 1, 2, \dots, n)$, 求证: A 的行列式 $\det A \neq 0$.

证明: 设 λ 为 A 的任意特征值, x 是属于 λ 的特征向量. 则由 $Ax = \lambda x$ 得对任意 $1 \le i \le n$ 有

$$(a_{ii} - \lambda)x_i = \sum_{j=1, j \neq i}^n a_{ij}x_j.$$

于是

$$|a_{ii} - \lambda| |x_i| \le \sum_{i=1}^n j = 1, j \ne i^n |a_{ij}| |x_j|.$$

取 x_i 满足 $|x_i| = \max\{|x_1 \cdots, |x_n|\}$,则

$$|a_{ii} - \lambda| \le \sum_{j=1, j \ne i} j = 1, j \ne i^n |a_{ij}| \frac{|x_j|}{|x_i|} \le |a_{ii}|.$$

所以 λ 落在复平面上以 a_{ii} 为圆心, $|a_{ii}|$ 为半径的圆盘中. 注意到 $|a_{ii}| > 0$,所以 $\lambda \neq 0$,从而矩阵 A 的行列式非零.