12. VOLTAGE REGULATOR USING OP-AMP

AIM:

To design a high current, low voltage and high voltage linear variable dc regulated power supply and test its line and load regulation.

APPARATUS REQUIRED:

S.NO	APPARATUS	SPECIFICATION	QUANTITY
1.	Transistors	TIP122,2N3055	1 each
2.	Integrated Circuit	LM723	1
3.	Digital Ammeter	(0-10)A	1
4.	Digital Voltmeter	(0-20)V	1
5.	Variable Power Supply	(0-30) V-2A	1
6.	Resistors	300Ω ,430Ω ,1KΩ ,678KΩ ,67 8Ω 1Ω	1 each 2
7.	Capacitors	0.1μ F,100pF	1 each
8.	Rheostat	$(0-350)\Omega$	1

THEORY:

A voltage regulator is an <u>electrical regulator</u> designed to automatically maintain a constant <u>voltage</u> level. A voltage regulator may be a simple "feed-forward" design or may include <u>negative feedback control loops</u>. It may use an electromechanical <u>mechanism</u>, or electronic components. Depending on the design, it may be used to regulate one or more <u>AC</u> or <u>DC</u> voltages. Load regulation is the change in output voltage for a given change in load current. Line regulation or input regulation is the degree to which output voltage changes with input (supply) voltage changes - as a ratio of output to input change. Active regulators employ at least one active (amplifying) component such as a transistor or operational amplifier. linear regulator is a <u>voltage regulator</u> based on an active device (such as a <u>bipolar junction transistor</u>, <u>field effect transistor</u> or <u>vacuum tube</u>) operating in its "linear region"

PROCEDURE:

Line Regulation:

- 1. Give the circuit connection as per the circuit diagram
- 2Set the load Resistance to give load current of 0.25A
- 3Vary the input voltage from 7V to 18V and note down the corresponding output voltages
- 4Similarly set the load current ($\rm I_L$) to 0.5A & 0.9A and make two more sets of measurements.

Load Regulation:

- 1 Set the input voltage to 10V.
- Vary the load resistance in equal steps from 350Ω to 5Ω and note down the corresponding output voltage and load current.
- 3 Similarly set the input voltage (Vin) to 14V & 18V and make two more sets of measurements.

CIRCUIT DIAGRAM:

DESIGN:

$V_0 = 5V$, $V_{ref} = 7.15 V$

To calculate R1, R2, R3 and Rsc.

Vo = Vref(R2/(R1 + R2))

5/7.15 = (R2/(R1 + R2))

(R1 + R2) 0.699 = R2

0.699R1 = 0.301 R2, R1 = 0.4306 R2

Select $\mathbf{R2} = \mathbf{1} \mathbf{K}\Omega$

 $R1 = 1 \text{ K}\Omega * 0.4306 = 430\Omega$

 $\mathbf{R1} = \mathbf{430}\Omega$

R3 = R1 * R2 / (R1 + R2), R3 = 430.6 *1000 / (430.6 + 1000)

 $R3 = 300\Omega$

 $R_{SC} = V_{sense} / I_{limit} = 0.5 / 1A = 0.5\Omega$, $R_{SC} = 0.5\Omega$

Load Regulation:

S.No:	I/P Voltage	O/P
	(V)	Voltage (V)
1)	1	5
2)	2	5
3)	3	5
4)	4	4.7
5)	5	4.7
6)	6	4.6

Line Regulation:

	I/P Voltage		
S.No:	O/P Current	O/P Voltage	
	(mA)	(V)	
1)	1	1.5	
2)	2	2.3	
3)	3	3.1	
4)	4	4.4	
5)	5	4.9	
6)	6	5	
7)	7	5	
8)	8	5	

RESULT:

Thus the line and load regulation of low voltage linear variable dc regulated power supply was designed and tested.