Digital Image Processing Using MATLAB

SP_Tutorial2

• TA

崔子昂 cuiza@shanghaitech.edu.cn 李超凡 lichfl@shanghaitech.edu.cn

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

- What is Digital Image?
- Digital image compose of a finite number of elements Pixel.
- A visual representation in form of a function f(x, y),
 - -f is related to the intensity or brightness at point
 - -(x, y) are spatial coordinates
 - -x, y, and the amplitude of f are finite and discrete quantities

• What is Digital Image?

• What is Digital Image?

(a) A 256X256 image with 256 gray levels; (b) its amplitude profile

- Color image
- Human visual system color space the LMS color space
- 3 types of cones sensitive to red, green and blue respectively

Color image

$$f(x, y)$$
 $f(x, y, c)$

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

Color balance

• White balance

$$I(x,y) = 0.299 f_R(x,y) + 0.587 f_G(x,y) + 0.114 f_B(x,y)$$

$$k_R = \frac{\overline{I}}{\overline{f_R}} \quad k_G = \frac{\overline{I}}{\overline{f_G}} \quad k_B = \frac{\overline{I}}{\overline{f_B}}$$

$$\begin{bmatrix} g_R(x,y) \\ g_G(x,y) \\ g_R(x,y) \end{bmatrix} = \begin{bmatrix} k_R \\ k_G \end{bmatrix} \begin{bmatrix} f_R(x,y) \\ f_G(x,y) \\ f_R(x,y) \end{bmatrix}$$

- Calculate I(x, y);
- Find means of I, f_R , $f_G \& f_B$;
- Calculate coefficient k_R , $k_G \& k_B$;
- g(x,y) = k * f(x,y)

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

HSI color space

• RGB color space to HSI color space

$$I = rac{1}{3}(R+G+B)$$

$$S = 1 - rac{3min(R,G,B)}{R+G+B}$$

$$H = egin{cases} heta. & G \geq B \ 2\pi- heta, & G < B \end{cases}$$

$$\theta = cos^{-1}[rac{rac{1}{2}[(R-G)+(R-B)]}{\sqrt{(R-G)^2+(R-B)(G-B)}}]$$

HSI color space

• HSI color space to RGB color space

$$egin{aligned} 1 \, {}^{\circ}if \, H \in [0 \, {}^{\circ}, 120 \, {}^{\circ}) : & 2 \, {}^{\circ}if \, H \in [120 \, {}^{\circ}, 240 \, {}^{\circ}) : & 3 \, {}^{\circ}if \, H \in [240 \, {}^{\circ}, 360 \, {}^{\circ}) : \ H = H & H = H - 120 \, {}^{\circ} & H = H - 240 \, {}^{\circ} & H = H - 240 \, {}^{\circ} & H = H - 240 \, {}^{\circ} & H = H - 120 \, {}^{\circ} & H = 110 \,$$

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

Demosaicing

• Bayer filter

Demosaicing

• Color image reconstruction

- Nearest-neighbour interpolation (最近相邻插值)
- Bilinear interpolation (双线性插值)

Demosaicing

- Some tips and functions may used in your homework:
- $img_R = img(:, :, 1);$
- $RGB_{img} = cat(3, img_R, img_G, img_B);$
- uint8 & double:
 - -uint8 range from 0 to 255;
 - -double range from 0 to 1;
- -If you use double(img), the intensity range of the image will not change. It can only change data type.
 - -You should use im2double(img) to change the intensity range to [0,1]

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

Spatial noise

Gaussian Noise

$$f(x) = rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

 $mean = \mu$; $variance = \sigma^2$

• Salt-and-pepper Noise(椒盐噪声)
Pulse Noise(冲激噪声)

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

Spatial filter

- A spatial filter is directly applied on the image.
- A spatial filter is also called spatial masks(掩模), kernels(核), templates(模板) or windows(窗口).
- A spatial filter consists of
- a) neighborhood
- b) a predefined operation
- A spatial filter can be linear and nonlinear

Spatial filter

Linear Spatial Filter: Average Filter

• Nonlinear Spatial Filter: Median Filter Order-statistic Filter(统计排序滤波器)

a). Original Image

c). Average Filter(size 5x5)

b). Average Filter(size 3x3)

d). Weighted Average Filter(size 3x3)

 $g(x,y) = median\{m \times n \text{ pixel neighbouring around } I(x,y)\}$

Spatial filter

- Try these built-in functions:
- imnoise(input_image, type, para);
- fspecial(type, para);
- imfilter(input_image, spatial_mask, ...);
- medfilt2(input_image, [m n]);
- Other functions...

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

Histogram

$$h(r_k) = n_k$$

Where r_k : the kth intensity value in the level range of [0, L-1]

 n_k : the number of pixels in the image with intensity r_k

Normalized Histogram (归一化直方图)

$$p(r_k) = \frac{n_k}{MN}$$

Where $p(r_k)$: the probability of occurrence of intensity r_k in an image

M,N: the row and column dimensions of the image

Histogram

• Histogram examples

Histogram

Histogram properties:

- Describe the number or probability of intensity, no location(spatial) information;
- Can be same as other images;
- $\sum_{0}^{L-1} n_k = M \cdot N$ or $\sum_{0}^{1} p(r_k) = 1$
- If region $C = A \cup B$, A and B are disjoint, $H_c = H_A + H_B$

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

Log transformation

- $s = c \log (1 + r)$
- $s, r \in [0, L-1]$

Gamma transformation

- $s = c \cdot r^{\gamma}$
- $s, r \in [0, L-1]$

- Color image processing
 - -Digital image and color image
 - -Color balance
 - -HSI color space
 - -Demosaicing
- Spatial filtering
 - -Spatial noise
 - -Linear and nonlinear spatial filter
- Intensity transformation
 - -Histogram
 - -Log transformation and Gamma transformation
 - -Histogram processing

- ➤ Uniform Probability density function : $p_s(s) = \frac{1}{L-1}$
- \triangleright The probability density function (PDF) of s is

$$p_s(s) = p_r(r) \cdot \frac{dr}{ds} \Longrightarrow p_r(r) \cdot \frac{dr}{ds} = \frac{1}{L-1} \Longrightarrow (L-1)p_r(r) \cdot dr = ds$$

➤ Transformation function : $s = T(r) = (L-1) \int_0^r p_r(w) dw$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = (L-1) \sum_{j=0}^k p_r(r_j) = (L-1) \sum_{j=0}^k \frac{n_j}{MN} = \frac{L-1}{MN} \sum_{j=0}^k n_j k$$
$$= 1, 2, \dots, L-1$$

$\mathbf{r}_{\mathbf{k}}$	n_k	$p_r(r_k)$	s _k		s_k	$p_s(s_k)$	
0	790	0.19	1.33	1	0	0	
1	1023	0.25	3.08	3	1	0.19	
2	850	0.21	4.55	5	2	0	
3	656	0.16	5.67	6	3	0.25	
4	329	0.08	6.23	6	4	0	
5	245	0.06	6.65	7	5	0.21	
6	122	0.03	6.86	7	6	0.24	
7	81	0.02	7.00	7	7	0.11	

Generate a processed image with a specified histogram:

For input:
$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

For output: $G(z) = (L - 1) \int_0^z p_z(t) dt$
Therefore, $z = G^{-1}(s) = G^{-1}[T(r)]$

r_k	$p(r_k)$	$s_k = T(r_k)$	\mathbf{z}_{q}	$p(z_q)$	$=G(z_q)$	$s_k \rightarrow z_k$	$r_k \rightarrow z_k$	$\mathbf{z}_{\mathbf{k}}$	$p(z_k)$
0	0.19	1	0	0	0	0→ 0, 1, 2	0 →3	0	0
1	0.25	3	1	0	0	1→3	1→4	1	0
2	0.21	5	2	0	0	2→4	2→5	2	0
3	0.16	6	3	0.15	1		3→6	3	0. 19
4	0.08	6	4	0.20	2		4→6	4	0.25
5	0.06	7	5	0.30	5	5 → 5	5 → 7	5	0.21
6	0.03	7	6	0.20	6	6→6	6→7	6	0.24
7	0.02	7	7	0.15	7	7→7	7→7	7	0.11

