

Cannot be seperated with one line. Some problems need more than I line.

\times_{l}	\times_2	9
0	0	٥
0	١	ı
1	0	١
1	1	0

This works if used a "sign" logistic function $F(\cdot)$

This will enable a non linear seperation via 2 lines. Neurons use the sign function due to its simplicity.

n. n. x n. x n. x n. x 2 2 0

One hidden layer

Two hidden layer

less freedom to locate lines with 2 layers

Any shape can be bounded by # of neurons

2 layers solves the problem too and more accurately, but do you need that?

Learning Algorithms

For MLPs (multi layer perceptrons) that we also colled feed forward MLPs.

We need solve the credit Assignment Problem.

Intelligence is updating the weights (= solving the credit assignment problem)

--> Backpropergating the error into the network.

Take a step in the direction resulting in a maximum decrease of the network error E.

This direction is the opposite of gradient of E.

Intelligence is updating the weights.

 $W_{(m)}^{ji} = W_{(i)}^{ji} + \nabla W_{(i)}^{ji}$

 $\Delta W_{ji} = -\eta \frac{\partial E}{\partial W_{ji}}$ (opposite of gradient of error at local neuron) $\eta \in (0,1)$

The input of the jth neuron: (In hidden layer internal neurons) $V_j = \sum_{i=1,2,...,m} W_{i} : Y_i$

Using the chain rule:

$$\frac{\partial W_{ji}}{\partial E} = \frac{\partial V_{j}}{\partial E} \cdot \frac{\partial W_{ji}}{\partial W_{ji}}$$

Local gradient of the jth neuron:

$$\delta_{ij} = -\frac{\partial E}{\partial V_{ij}}$$

Then from $\frac{\partial V_j}{\partial W_{ji}} = y_i$ we get

ΔWji = M.δj.yi ← Delta Rule

logistic function

$$S_{j} = \begin{cases} f(V_{j}) & \text{desired} \\ f'(V_{j}) & \text{if } j \text{ is an output neuron} \\ f'(V_{j}) & \sum_{\substack{k \text{ of next} \\ layer}} S_{k} W_{jk} & \text{if } j \text{ is an hidden neuron} \end{cases}$$

$$f(x)$$
 is the logistic function,

for instance,
$$f(x) = \frac{1}{1 + e^{-\alpha x}}$$

$$\frac{\partial}{\partial x} f(x) = \frac{\partial}{\partial x} (1 + e^{\alpha x})^{-1}$$

$$= -1 \cdot (1 + e^{-x})^{-1} (-\alpha e^{-x})$$

$$= \frac{\alpha \cdot e^{-\alpha x}}{(1 + e^{-\alpha x})^{2}}$$

$$= a \cdot \frac{1}{(1+e^{-\alpha x})} \cdot \frac{(1+e^{-\alpha x}-1)}{(1+e^{-\alpha x})}$$

a is just a

factor

$$= \frac{(1+e^{-\alpha x}) \cdot \left(1 - \frac{1+e^{-\alpha x}}{1+e^{-\alpha x}}\right)}{1+e^{-\alpha x}}$$

=
$$a \cdot f(x) \cdot [1 - f(x)]$$

$$f'(x) = o \cdot f(x) [i - f(x)]$$

$$f'(v_i) = \alpha y_i (i-y_i)$$

Backpropagation

Initialize weights randomly W(n) while (stopping criterion not satisfied)

for each example (x, \underline{y}) supervised learning

Run network with x and get y (feed f)

Update weights in backpropagation.

end for loop n = n + 1end $m^{1/2}$

$$n = n + 1$$

Backpropagation in Batch mode

Update weights only after all examples have been pushed forward through the network.

(n+1) = (n) + (n) (n+1) = (n+1) + (n+1) (n+1) = (n+1) (n+1) + (n+1) = (n+1) (n+1) = (n+1) (n+1) = (n+1) (n+1) = (n+1) =

Training is epoch-by-epoch Stopping criteria

- 1 Look at the MSE change Network converged (E =0) if the absolute rate of change in the average squared error per epoch is sufficiently small ie, [01,0.01...]
- 1 Generalization based method Test for generalization after each epoch. if adquate Generalization - stop

Delta Rule

```
\Delta W_{ji}^{(n)} = \eta \, \mathcal{S}_j(n) \, \mathcal{Y}_i(n)
     n → 0 : no learning
     n → 1 : large changes → unstable
                                                   (leads to weight
                                                      oscillation)
\Delta W_{ji}(n) = N(n) \delta_{j}(n) Y_{i}(n) + \alpha(n) \Delta W_{ji}(n-1) \qquad \delta_{j}(n) = -\frac{\partial E}{\partial V_{j}}
\Delta E[0,1] \text{ momentum } n
\Delta E[0,1] \text{ momentum } n
                      Generalized Delta rule
 Topology of the network
 # of layers

# of newrons per layer I mostly done via

model size 10 too small: under fitting
                     2 too large: overfitting
  Large Remove neurons _____ Stop
                       starts to degrade
```

Autoencoders

Bottleneck concept

Force the network to reduce dimentionality of data.

* backprop doesn't work

inputs
$$x \in [0, 1]^d$$
encoding $y \in [0, 1]^d$ $d' \ll d$
decoding $z = g(w^*y + b^*)$
Error $L(x,\hat{x}) = \|x - \hat{x}\|^2$
bit vector $L_{H(x,\hat{x})} = -\sum_{k=1}^d \left[x_k \log \hat{x}_k + (1-x_k) \log (1-\hat{x}_k)\right]$
(error as tradition of entrophy) cross entrophy loss function

How to train deepnets

idea: Layerwise pretraining followed by greedy layerwise supervised training (with fine tuning)

