Dimension

Question:

12. Find a standard basis vector for \mathbb{R}^3 that can be added to the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to produce a basis for \mathbb{R}^3 .

a.
$$\mathbf{v}_1 = (-1, 2, 3), \ \mathbf{v}_2 = (1, -2, -2)$$

b.
$$\mathbf{v}_1 = (1, -1, 0), \ \mathbf{v}_2 = (3, 1, -2)$$

Solution:

- (a) Either (1,0,0) or (0,1,0) can be used since neither is in span $\{\mathbf{v}_1,\mathbf{v}_2\}$ (e.g., with (1,0,0), linear independence can be easily shown calculating $\begin{vmatrix} -1 & 1 & 1 \\ 2 & -2 & 0 \\ 3 & -2 & 0 \end{vmatrix} = 2 \neq 0$ then using parts (b) and (g) of Theorem 2.3.8; the set forms a basis by Theorem 4.6.4)
- (b) Any of the three standard basis vector for R^3 can be used since none of them is in span $\{\mathbf{v}_1, \mathbf{v}_2\}$ (e.g., with (1,0,0), linear independence can be easily shown calculating $\begin{vmatrix} 1 & 3 & 1 \\ -1 & 1 & 0 \\ 0 & -2 & 0 \end{vmatrix} = 2 \neq 0$ then using parts (b) and (g) of Theorem 2.3.8; the set forms a basis by Theorem 4.6.4)

Question:

13. Find standard basis vectors for \mathbb{R}^4 that can be added to the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to produce a basis for \mathbb{R}^4 .

$$\mathbf{v}_1 = (1, -4, 2, -3), \quad \mathbf{v}_2 = (-3, 8, -4, 6)$$

Solution:

The equation $k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{e}_1 + k_4 \mathbf{e}_2 + k_5 \mathbf{e}_3 + k_6 \mathbf{e}_4 = \mathbf{0}$ can be rewritten as a linear system

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & -2 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 0 & 0 & 0 & 1 & \frac{2}{3} & 0 \end{bmatrix}.$

Based on the leading entries in the first, second, fourth, and fifth columns, the vector equation $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_4\mathbf{e}_2 + k_5\mathbf{e}_3 = \mathbf{0}$ has only the trivial solution (the corresponding augmented matrix has the

reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$). Therefore the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{e}_2 , and \mathbf{e}_3 are linearly

independent. Since $\dim(R^4) = 4$, it follows by Theorem 4.6.4 that the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{e}_2 , and \mathbf{e}_3 form a basis for R^4 . (The answer is not unique.)

Question:

17. Find a basis for the subspace of \mathbb{R}^3 that is spanned by the vectors

$$\mathbf{v}_1 = (1,0,0), \ \mathbf{v}_2 = (1,0,1), \ \mathbf{v}_3 = (2,0,1), \ \mathbf{v}_4 = (0,0,-1)$$

Solution:

The equation $k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3 + k_4 \mathbf{v}_4 = \mathbf{0}$ can be rewritten as a linear system

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

For arbitrary values of s and t, we have $k_1 = -s - t$, $k_2 = -s + t$, $x_3 = s$, $k_4 = t$.

Letting s = 1 and t = 0 allows us to express \mathbf{v}_3 as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 : $\mathbf{v}_3 = \mathbf{v}_1 + \mathbf{v}_2$.

Letting s = 0 and t = 1 allows us to express \mathbf{v}_4 as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 : $\mathbf{v}_4 = \mathbf{v}_1 - \mathbf{v}_2$.

By part (b) of Theorem 4.6.3, span $\{v_1, v_2\}$ = span $\{v_1, v_2, v_3, v_4\}$.

Based on the leading entries in the first two columns, the vector equation $k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 = \mathbf{0}$ has only the trivial

solution (the corresponding augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$). Therefore

the vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. We conclude that the vectors \mathbf{v}_1 and \mathbf{v}_2 form a basis for span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. (The answer is not unique.)