

STUSB06E

3.3 V USB transceiver

Features

- Compliant to USB v2.0 for full-speed (12 Mb/s) and low-speed (1.5 Mbps) operation
- HBM = ± 9 kV on D+, D- lines, ± 7 kV on V_{BEG}
- ±6 kV ESD compliant to IEC-61000-4-2 on D+, D-, V_{REG} lines
- Separate I/O supply with operation down to 1.6 V
- Integrated 150 kΩ switchable pull-up from D+ to V_{BFG}
- Supports host negotiation protocol (DP pull-up auto-connection after SE0)
- SEO active low interrupt in HNP mode (INT, VCC IO referred)
- Very low power consumption to meet USB 'suspend' current requirements
- No power supply sequencing requirements
- Software controlled re-enumeration (SOFTCON)
- Available in small BCC++16L package
 3 mm x 3 mm max thickness 0.80 mm halogen
 free RoHS compliant package

Applications

- Mobile phones
- PDAs
- MP3 players
- Digital still cameras

Description

The STUSB06E is a single chip transceiver that complies with the physical layer specifications of the Universal Serial Bus (USB) v2.0 standard. It is powered by external 3.3 V supply and has an integrated 150 k Ω resistor to implement charger detection with weak pull-up method.

The STUSB06E also supports sharing mode when V_{REG} is not present, which allows the D+/D-lines to be shared with other serial protocols.

It supports both full-speed (12 Mbps) and low-speed (1.5 Mbps) operation. It is also designed to operate down to 1.6 V so that it is compatible with lower system voltages of most portable systems, which include cell phones, PDAs and MP3 players.

Table 1. Device summary

Order code	Package	Packaging
STUSB06EHTR	BCC++16L (3 mm x 3 mm)	3000 parts per reel

Contents

1	Application
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics
5	Functional description 11 5.1 Power supply configurations 11
6	Diagram
7	Functional tables
8	Package mechanical data 16
9	Revision history

STUSB06E Application

1 Application

Figure 1. Application circuit

 R_S = 33 Ω ± 10 %

Pin configuration STUSB06E

2 Pin configuration

Figure 2. Pin connections (top view)

Table 2. Pin description

Iable 2						
Pin°	Symbol	Туре	Description			
1	OE#	I	Active low output enable signal			
2	RCV	0	Differential receiver output. Stable output during SE0. This pin has an internal 220 $k\Omega$ pull-down to ground when HIGHZ="H" only.			
3	VP	0	Standard Mode: USB D+ receiver output. This pin has an internal 220 k Ω pull-down to ground when HIGHZ="H" only.			
4	VM	0	Standard Mode: USB D- receiver output. This pin has an internal 220 k Ω pull-down to ground when HIGHZ="H" only.			
5	SUSPEND	I	Normally used as Suspend input (active high). Puts the transceiver in low power consumption mode. Functionality can change depending on status of SPEED# and SOFTCON pins. See <i>Table 12</i> for more details.			
6	HIGHZ	I	Sets to high impedance for production flash. This pin has an internal 220 $k\Omega$ pull-down to ground always connected.			
7	V _{CC_IO}	PWR	Supply voltage for digital I/O pins (1.6 V to 3.6 V)			
8	SPEED#	I	Normally used as Speed selection input. A logic LOW adjusts the slew rate of D+/D-USB differential signals for Full-speed operation. Set to HIGH for Low-speed operation. Functionality can change depending on status of SUSPEND and SOFTCON pins. See <i>Table 12</i> for more details.			
9	D-	AI/O	USB Mode: Negative USB data line			
10	D+	AI/O	USB Mode: Positive USB data line			
11	VO	I	USB differential driver data input			
12	FSE0	I	Standard Mode: Force single-ended zero data input. This pin has an internal 220 k Ω pull-down to ground when HIGHZ="H" only.			
13	V _{REG}	PWR	Analog supply voltage input (3.0 V to 3.6 V). Left floating brings the device into sharing mode.			

STUSB06E Pin configuration

Table 2. Pin description (continued)

Pin°	Symbol	Туре	Description
14	INT	0	Active Low output interrupt signal. Active when a SE0 is detected while in HNP mode. This pin has an internal 220 k Ω pull-down to ground when HIGHZ="H" only.
15	V _{PU}	PWR	Data line pull-up supply voltage. Connect an external 1.5 k Ω resistor to D+ (full-speed) or D- (low-speed). Pin output is controlled by SUSPEND, SPEED# and SOFTCON inputs.
16	SOFTCON	I	Normally used as Software controlled enumeration pin: controls the status of VPU pin and the connection of internal weak pull-up resistor. LOW: VPU floating (SUSPEND="0" or "1"). HIGH: VPU = 3.3 V. Functionality can change depending on status of SPEED# and SUSPEND pins. See <i>Table 12</i> for more details.
Ехр	GND	PWR	Ground reference

Maximum ratings STUSB06E

3 Maximum ratings

Table 3. Absolute maximum ratings (1)

Symbol	Parameter	Value	Unit
V _{REG}	Supply voltage	-0.5 to 4.6	V
V ₊	All other input	-0.5 to 4.6	٧
Io	Output current (D+, D-)	± 50	mA
Io	Output current (all others)	± 15	mA
T _{STG}	Storage temperature range	-65 to +150	°C
	Electrostatic discharge voltage (according to HBM JESD22-A114) (D+,D-)	± 9	kV
	Electrostatic discharge voltage (according to HBM JESD22-A114) (V _{REG})	± 7	kV
ESD	Electrostatic discharge voltage (according to HBM JESD22- A114) (all other pins)	± 2	kV
	Electrostatic discharge voltage (according to CDM JESD22-C101C) (all pins)	± 500	V
	Electrostatic discharge voltage (according to MM JESD22-A115A) (all pins)	± 200	V

^{1.} Absolute maximum ratings are those values above which damage to the device may occur. Functional operation under these conditions is not implied. All voltages are referenced to GND.

4 Electrical characteristics

Table 4. DC electrical characteristics (power supply, digital I/O pins) ($V_{CC_IO} = 1.8 \text{ V}$, $V_{REG} = 3.3 \text{V}$ unless otherwise noted; $T_A = 25 \,^{\circ}\text{C}$, specifications over temperature, -40 to 85 $^{\circ}\text{C}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{REG}	Analog supply voltage		3.0		3.6	V
V _{CC_IO}	System I/F supply voltage		1.6		3.6	V
V _{IL}	Low level input voltage (1)				0.15 V _{CC_IO}	V
V _{IH}	High level input voltage (1)		0.85 V _{CC_IO}			V
I _{IOLZ}	Low level input leakage (RCV, VP, VM, FSE0, INT)	V _{CC_IO} =1.8V, HIGHZ=1.8V, all inputs at GND.			± 10	μΑ
I _{IOHZ}	High level input leakage (RCV, VP, VM, FSE0, INT)	V _{CC_IO} =1.8V, HIGHZ=1.8V all inputs at 1.8V.			± 10	μΑ
I _{IL}	Low level input leakage (Speed#, OE#, VO, FSE0, SUSPEND)	V _{CC_IO} =1.65 to 3.6V, HIGHZ=GND or floating			± 5	μΑ
I _{IH}	High level input leakage (Speed#, OE#, VO, FSE0, SUSPEND)	V _{CC_IO} =1.65 to 3.6V, HIGHZ=GND or floating			± 5	μΑ
V _{OL}	Low level output voltage (2)	I _{OL} = +20μA	0		100	mV
V _{OH}	High level output voltage	I _{OH} = -20μA	V _{CC_IO} -100		V _{CC_IO}	mV
		D+, D- are idle, SUSPEND = 1			5	μΑ
I _{IF}	V _{CC_IO} supply current	D+, D- active, C _{LOAD} = 25pF, SPEED#=0, f=6MHz ⁽³⁾		1.3	2	mA
		D+, D- active, $C_{LOAD} = 25pF$, SPEED#=1, f=750kHz $^{(3)}$		180	220	μΑ

- 1. Specification applies to the following pins: OE#, SUSPEND, HIGHZ, SPEED#, VO, FSE0, SOFTCON.
- 2. Specification applies to the following pins: RCV, VP, VM, INT.
- 3. Characterized specification(s), but not production tested.

Note: 1 The device is not guaranteed to function outside its operating rating.

- 2 Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 $k\Omega$ in series with 100 pF.
- 3 All AC parameters guaranteed by design but not production tested.

57

Electrical characteristics STUSB06E

Table 5. DC electrical characteristics (power supply, digital I/O pins) $(V_{CC_IO} = 1.8 \text{ V}, V_{REG} = 3.3 \text{ V} \text{ unless otherwise noted}; T_A = 25 ^{\circ}\text{C}, \text{ specifications over temperature, -40 to 85 }^{\circ}\text{C})$

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
	V _{REG} supply current (suspend mode) D+, D- are idle, V _{REG} =3.0-3 V _{CC_IO} =1.6-3.6V. Suspend (See <i>Table 6</i>)					10	μΑ
	V _{REG} supply current (disable mode)	D+, D- are idle, V _{REG} =3.0-3 V _{CC_IO} =GND or floating				5	μΑ
	V _{REG} supply current (HighZ Mode)	D+, D- are idle, V _{REG} =3.0-3 V _{CC_IO} =1.8V, HIGHZ="1"	3.6V,			5	μA
	V _{REG} supply current (FS receiving mode)	D+, D- are idle, V _{REG} =3.0- 3.6V SPEED# = 0, SUSPEND = 0	OE#=1			6.0	mA
	V _{REG} supply current (FS transmit mode)		OE#=0			6.0	mA
I _{REG}	V _{REG} supply current (LS receiving mode)	D+, D- are idle, V _{REG} =3.0- 3.6V, SPEED# = 1, SUSPEND = 0	OE#=1			4.0	mA
	V _{REG} supply current (LS transmit mode)		OE#=0			4.0	mA
	V _{REG} supply current (receiving mode 12 Mbps)	D+, D- are active, V_{REG} =3.0-3.6V, C_{LOAD} = 50pF, SPEED# = 0, SUSPEND = 0	OE#=1			5.5	mA
	V _{REG} supply current (transmit mode 12 Mbps)		OE#=0			8.5	mA
	V _{REG} supply current (receiving mode 1.5 Mbps)	D+, D- are active, V_{REG} =3.0-3.6V, C_{LOAD} = 600pF, SPEED# = 1, SUSPEND = 0	OE#=1			4	mA
	V _{REG} supply current (transmit mode 1.5 Mbps)		OE#=0			7	mA
I _{VPULEAK}	V _{PU} leakage current	V _{PU} = 0V		-5		5	μΑ
I _{VCC_IOLEAK}	V _{CC_IO} leakage current	$V_{CC_IO} = 3.6V$, $V_{REG} = 0V$		-5		5	μΑ
V _{PU}	Pull-Up output voltage	I _{TERM} = 200μA, V _{REG} =3.0-3.6V		V _{REG} - 5.0mV			٧
RSW	V _{PU} internal switch resistance	I _{TERM} = 10mA, V _{REG} = 3.0-3.6V		6	9	11	Ω
V	V comparator threshold	Supply present		2.4			٧
V _{THREG}	V _{REG} comparator threshold	Supply lost				0.8	٧
V	V comparator throubald	Supply present		1.4			٧
V _{THIF}	V _{CC_IO} comparator threshold	Supply lost				0.25	٧
V _{HYS}	V _{CC_IO} and V _{REG} supply voltage detection hysteresis	$V_{CC_IO} = 1.8V, V_{REG} = 3.0$	3.6V		100		mV

Table 6. DC electrical characteristics (D+, D- pins; USB standard mode) $(V_{CC_IO} = 1.8 \text{ V}, V_{REG} = 3.3 \text{ V} \text{ unless otherwise noted}; T_A = 25 ^{\circ}\text{C}, \text{ specifications over temperature}, -40 to 85 ^{\circ}\text{C})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{LO}	HighZ state data line leakage	V _{CC_IO} = 1.8V; SUSPEND = 1	-10		10	μΑ
V _{DI}	Differential input sensitivity	I(D+)-(D-)I	0.2			V
V _{CM}	Differential common mode range	Includes V _{DI} range (VDI=200mV)	0.8		2.5	V
V	Single ended receiver threshold	Low to high transition	0.8	1.6	2.0	V
V _{SE}	Single ended receiver timeshold	High to low transition	0.8	1.1	2.0	V
V _{RHYS}	Receiver hysteresis	$V_{CM} = 0.8V$		100		mV
V _{OL}	Static output low	$R_L = 1.5 k\Omega$ to 3.6V			0.3	V
V _{OH}	Static output high	$R_L = 15k\Omega$ to GND	2.8		3.6	V
C _I	Transceiver input capacitance	Pin to GND		25		pF
Z _{DRV}	Driver output impedance (1)	Steady state drive	28		44	Ω
Z _{IN}	Input impedance		1			МΩ
Z _{IN CD}	D+ input impedance vs V _{REG} (During weak pull-up charger detection method)		105	150	195	kΩ

^{1.} It includes external resistor. We recommend 33 Ω ± 10 % series external resistor to match USB compliance spec range (28-44 Ω)

57

Electrical characteristics STUSB06E

Table 7. AC electrical characteristics ($V_{CC_IO} = 1.8 \text{ V}$, $V_{REG} = 3.3 \text{ V}$ unless otherwise noted; $T_A = 25 \,^{\circ}\text{C}$, specifications over temperature, -40 to 85 $^{\circ}\text{C}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Transition rise time (LOW SPEED)	CL = 50pF	75			ns
t _R	Transition rise time (LOW SPEED)	CL = 600pF			300	
	Transition fall time (LOW SDEED)	CL = 50pF	75			ns
t _F	Transition fall time (LOW SPEED)	CL = 600pF			300	
t _{RFM}	Rise/Fall time matching (LOW SPEED)	(t _R , t _F)	80		125	%
V _{CRS_LS}	Output signal crossover voltage (LS)		1.3		2	V
t _R	Transition Rise time (FULL SPEED)	CL = 50pF Figure 5	4		20	ns
t _F	Transition Fall time (FULL SPEED)	CL = 50pF Figure 5	4		20	ns
t _{RFM}	Rise/Fall time matching (FULL SPEED)	(t _R , t _F)	90		111.11	%
V _{CRS_FS}	Output signal crossover voltage (FS)		1.3		2	V
t _{TA_OI}	Output to input turnaround time		0		5	ns
t _{TA_IO}	Turnaround time		0		5	ns
t _{PZH} , t _{PZL}	Driver enable delay time			8		ns
t _{PHZ} , t _{PLZ}	Driver disable delay time			17		ns
	VP, VM to D+, D- propagation delay time	FS, CL=50pF			55	ns
t _{PLH} , t _{PHL}	VF, VIVI to D+, D- propagation delay time	LS, CL=600pF			300	ns
t _{PLH} , t _{PHL}	D+, D- to RCV propagation delay time	FS, input slope = 15 ns			18	ns
t _{PLH} , t _{PHL}	D+, D- to VP, VM propagation delay time	FS, input slope = 15 ns			24	ns
t _{DET_SE0}	SE0 detection delay time D+, D- to INT ("0", "0" to INT="0")	Suspend="0", Softcon= Speed#="1"			40	ns
t _{DET#_SE0}	No SE0 detection delay time D+, D- to INT ("1", "X" to INT= "1") or ("x", "1" to "1")	Suspend="0", Softcon= Speed#="1"			40	ns

5 Functional description

The STUSB06E is designed to provide USB connectivity in mobile systems. The STUSB06E can operate down to digital I/O supply voltages of 1.6 V and still meet USB physical layer specifications. The STUSB06E takes typical 3.3 V supply voltage, V_{REG} , to operate the transceiver. The system voltage, V_{CC_IO} , is used to set the reference voltage required by the digital I/O lines interfacing to the system controller. Internal circuitry provides translation between the USB and system voltage domains. V_{CC_IO} will typically be the main supply voltage rail for the controller.

In addition, a termination supply voltage, V_{PU} , is provided to support speed selection. V_{PU} can be disabled or enabled under software control via the SOFTCON input. This allows for software-controlled connect or disconnect states. A 1.5 k Ω resistor is required to be connected between this pin and the D+ (full-speed) or D- (low-speed) line; according to *Table 6* behavior, sometimes, an internal weak pull-up resistor is connected instead.

The V_{REG} Input voltage ranging form 3 V to 3.6 V must be provided as main power supply.

The STUSB06E also supports sharing mode in which some pins are made 3-state to allow data lines sharing.

5.1 Power supply configurations

The STUSB06E supports four power supply configurations.

Operating mode: Both V_{CC_IO} and V_{REG} are present. This is the standard configuration for normal operation.

Disable mode: V_{REG} is connected while V_{CC_IO} is disconnected. D+ and D- pins are three-stated and the power consumption is reduced.

Sharing mode: V_{CC_IO} is connected while V_{REG} is disconnected. HIGHZ input is left floating or driven low. D+ and D- pins are three-stated and the differential data lines can be shared with signals of up to 3.6 V. Power consumption is reduced in this mode. The pins VP and VM are driven high and pin RCV is driven low.

High-Z mode: V_{CC_IO} is connected while V_{REG} is disconnected. High-Z input must be driven High. Every output pin is three-stated and the differential data lines can be shared with signals of up to 3.6 V. Power consumption is reduced in this mode. Refer to the functional tables for more details regarding pin's status in these power modes.

Charger detection mode: An embedded weak pull-up resistor of 150 k Ω is used to implement a resistive detection mechanism. According to USB Battery Charger Specification rel.1.1, this method will reliably detect:

- Rechargeable Portable Device attached to Dedicated Charger Port or
- Rechargeable Portable Device attached to Standard Host Port.

Figure 3. Dedicated charger port

Figure 4. Standard host port

First charger (Figure 3) will have a 200 Ω Max resistor (RDCHGR_DAT) between D+ and D- and its connection will held both the D+ and D- lines at high level. Second charger (Charging Host Port Figure 4) connection will held both the D+ and D- lines to logic low level.

Table 8. USB lines status during charger detection

USB lines status	USB PHY with resistive detection method ON				
03D lilles status	Disconnected	Dedicated charger port	Standard host port		
D+	"1"	"1"	"0"		
D-	"0"	"1"	"0"		

STUSB06E Block diagram

6 Block diagram

Figure 5. Functional diagram

Functional tables STUSB06E

7 Functional tables

Table 9. Standard mode (see Table 12)

SUSPEND	OE#	D+, D-	RCV	VP, VM	Function
L	L	Driving	Active	Active	Normal driving
L	Н	Receiving	Active	Active	Receiving
Н	L	Driving	Inactive (1)	Active	Driving during suspend (Differential receiver inactive)
Н	Н	High-Z	Inactive (1)	Active	Low-power state

^{1.} In suspend mode the differential receiver is inactive and RCV is LOW.

Table 10. Standard mode driving (OE#=LOW)

FSE0	vo	D+, D-
L	L	Differential logic 0
L	Н	Differential logic 1
Н	L	SE0
Н	Н	SE0

Table 11. Standard mode receiving (OE#=HIGH)

D+,D-	RCV	VP	VM
Differential logic 0	L	L	Н
Differential logic 1	Н	Н	L
SE0	SE0 RCV (1)		L

^{1.} RCV holds the status it had just before SE0.

Table 12. Pull-up setting mode (speed selection and charger detection)

Suspend	Softcon	Speed#	Function		
0	0	0	No 1.5 kΩ pull-up	FS	USB standard mode, default state
0	1	0	1.5 kΩ pull-up	FS	USB standard mode
0	0	1	No 1.5 kΩ pull-up	LS	USB standard mode
0	1	1	Pull-up ON (1.5 k Ω) after detecting SE0 RCV="0"	FS	Suspend, conditional pull-up
1	0	0	No 1.5 kΩ pull-up	FS	Suspend standard mode
1	1	0	1.5 kΩ Pull-up	FS	Suspend standard mode
1	0	1	No 1.5 kΩ pull-up LS Suspend standa		Suspend standard mode
1	1	1	No 1.5 kΩ pull-up, RCV="0"	FS/X	USB mode & Rwpu ON (150 kΩ)

STUSB06E Functional tables

Table 13. Pin states in power modes

Pins	Disable mode	Sharing mode	High-Z mode
V _{REG}	3.3 V	Not Present	-
V _{CC_IO}	Not present	1.6 V to 3.6 V input	1.6 V to 3.6 V input
V _{PU}	High impedance	High impedance	High impedance
D+, D-	High impedance	High impedance	High impedance
VP, VM	Invalid	Н	High impedance (1)
RCV	Invalid	L	High impedance (1)
INT	Invalid	Н	High impedance (1)
FSE0	High impedance ⁽¹⁾	High impedance ⁽¹⁾	High impedance (1)
Inputs (VO, SPEED#, SUSPEND, OE#, SOFTCON)	High impedance	High impedance	High impedance
HIGHZ	Floating (2)	Floating (2)	Н

^{1.} A 220 $k\Omega$ pull down is connected when HIGHZ="1".

Table 14. Power supply configurations

Mode	V _{REG}	V _{CC_IO}
Operating mode	3.0 V to 3.6 V	1.6 V to 3.6 V
Disable mode	X ⁽¹⁾	GND
Charger detection mode (2)	3.0 V to 3.6 V	1.6 V to 3.6 V

^{1.} X: don't care.

^{2.} HIGHZ input has an internal pull down resistor in order to disable HIGH-Z mode if left floating.

^{2.} weak 150 k Ω pull-up is connected between D+ to $\rm V_{REG}$ below some conditions.

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		0.725	0.80		0.029	0.031
A1	0.05	0.075	0.10	0.002	0.003	0.004
b	0.27	0.30	0.33	0.011	0.012	0.013
b1	0.32	0.35	0.38	0.013	0.014	0.015
D	2.90	3	3.10	0.114	0.118	0.122
D2	1.73	1.80	1.87	0.068	0.071	0.074
D3	1.35	1.40	1.45	0.053	0.055	0.057
E	2.90	3	3.10	0.114	0.118	0.122
E2	1.73	1.80	1.87	0.068	0.071	0.074
E3	1.35	1.40	1.45	0.053	0.055	0.057
е		0.50			0.020	
e1		2.45			0.096	
e2		2.50			0.098	

577

Tape & Reel BCC++16L (3x3) Mechanical Data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	3.2	3.3	3.4	0.126	0.130	0.134
Во	3.2	3.3	3.4	0.126	0.130	0.134
Ko	1.0	1.1	1.2	0.039	0.043	0.047
Po	3.9	4	4.1	0.154	0.157	0.161
Р	7.9	8	8.1	0.311	0.315	0.319

STUSB06E Revision history

9 Revision history

Table 15. Document revision history

Date	Revision	Changes
04-Dec-2008	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

