

逐飞助手说明书

目录

目	录	1
1.	前言	3
2.	功能介绍	4
	2.1. 主题切换	4
	2.2. 窗口置顶	5
	2.3. 调整窗口	5
	2.4. 功能切换	6
	2.5. 通讯方式	6
3.	使用说明	8
	3.1. 串口助手的使用	8
	3.1.1. 串行端口	8
	3.1.2. 网络	9
	3.1.3. 接收区域	14
	3.1.4. 发送区域	16
	3.1.5. 拓展区域	17
	3.2. 虚拟示波器的使用	19
	3.2.1. 波形显示区域	20
	3.2.2 诵道开关区域	21

	3.2.3. 移动和缩放	21
	3.2.4. 保存图片	22
	3.2.5. 配合例程使用	22
	3.3. 摄像头图像显示的使用	25
	3.3.1. 图像显示区	26
	3.3.2. 视频播放区	27
	3.3.3. 配合例程使用	28
	3.4. 拓展工具的使用	34
	3.4.1. 调参工具的使用	34
	3.4.2. 虚拟手柄	40
4.	问题集锦	43
5.	文档版本	44

1.前言

逐飞助手是一款多功能的上位机软件,集成了串口助手、虚拟示波器以及摄像头图像显示等多种实用功能。我们将对其进行持续的更新迭代,不局限于对现有的功能进行完善和优化,还包括增加新的功能。因此,如果小伙伴们发现软件不完善的地方,希望你们能及时反馈给逐飞科技,也可以直接联系群管理 JAY (QQ: 2677611713)。有什么好的建议也可以反馈给我们,我们会认真分析大家提的建议,让软件功能更加丰富以及完善,感谢大家的支持。

文中涉及的例程,包括逐飞助手的软件及其相关资料,都可以在逐飞助手的仓库中找到, 奉上下载链接: https://gitee.com/seekfree/seekfree_assistant。

2.功能介绍

逐飞助手目前主要包含三大功能: 串口助手、虚拟示波器、摄像头图像显示。打开软件后, 界面默认显示串口助手页面,如图 2.1 所示:

图 2.1 逐飞助手浅色模式

2.1.主题切换

办 小太阳图标是用于切换主题的按键,默认是浅色主题,用小太阳表示。点击后,主题会切换成深色,同时图标变成月亮,如图 2.2 所示。大家可以根据个人喜好选择主题颜色。

图 2.2 逐飞助手深色模式

2.2.窗口置顶

2.3.调整窗口

另外,如果需要调整窗口的大小,可以把鼠标置于窗体的右下角区域,且鼠标进入可缩放 区域光标会发生变化,如图 2.3 所示。

图 2.3 逐飞助手调整窗口大小

2.4.功能切换

软件打开后默认是串口助手功能页面,如果需要切换功能,在功能选项栏点击对应的文字即可切换功能,如图 2.4 所示。

图 2.4 功能选项栏

2.5.通讯方式

第一次打开软件,通信栏默认选择的是串口通信栏,在这个栏目下你可以选择端口号,波特率、数据位等参数对端口进行配置。如果想切换成网络通讯,可以点击通信栏"网络"所在一侧即可切换,切换后,可选择网络协议、选择 IP 地址,设置端口等。如图 2.5 所示。

图 2.5 通信栏

3.使用说明

3.1.串口助手的使用

逐飞助手的串口助手功能,实际上包含串行端口数据调试器和网络数据调试器,通俗来说应该是串口助手加网络助手。

3.1.1.串行端口

使用步骤如下:

- 1、功能选项栏点击串口助手(默认选择串口助手功能,没有切换到其他功能的情况下不用点);
 - 2、通信栏点击串行端口(默认选择串行端口,没有切换的情况的下不用点);
 - 3、配置端口, 即选择端口号、波特率、数据位、停止位、校验位、流控位;
 - 4、点击连接按键:
 - 5、连接成功后,图标颜色会发生变化,如图

图 3.1 逐飞助手使用串口调试步骤

3.1.2.网络

使用步骤如下:

- 1、功能选项栏点击串口助手(默认选择串口助手功能,没有切换到其他功能的情况下不用点);
 - 2、通信栏点击网络;
 - 3、选择网络协议,配置网络参数;
 - 4、点击连接按键;
 - 5、连接成功后,图标颜色会发生变化,如图

图 3.2 逐飞助手使用网络调试步骤

3.1.2.1.TCP Server 协议使用说明

图 3.3 使用 TCP Server 协议

如上图所示:

- 1、切换至网络调试后,需要选择协议类型,下拉框提供三个选项: TCP Server、TCP Client 以及 UDP。默认选项为 TCP Server 协议;
- 2、TCP Server 协议下,逐飞助手会自动获取用户电脑所有可用的 IP 地址,用户可以在下拉框中自行选择需要的 IP 地址;
- 3、TCP Server 协议下,需要点击图中端口栏后的文本框填写开启服务的端口,默认填写的端口号为 8080;
 - 4、点击连接按键, TCP Serve 即会开启侦听;
- 5、当有客户端连接后,客户端栏后的下拉框会保存所有的客户端 IP 以及端口号。下拉框 默认显示最新连接的客户端。当有多个客户端连接,可以在此处选择,来指定给哪个客户端发

送消息。

3.1.2.2.TCP Client 协议使用说明

图 3.4 使用 TCP Client 协议

如上图所示:

- 1、选择协议类型 TCP Client;
- 2、填写 TCP Serve 端 IP 地址;
- 3、填写 TCP Serve 端的端口;
- 4、点击连接按键,连接前需要确认 TCP Serve 端是否开启,只有服务端开启侦听后,客户端才能正常连接成功。

特别说明: 远程地址是指的服务端 (TCP Serve) 地址,端口指的是服务端 (TCP Serve) 的端口。如图 2.4 中填写的远程地址 172.20.224.1 即为图 3.3 中开启 TCP Serve 的地址,图

3.4 中填写的端口 8080 即为图 3.3 中开启 TCP Serve 的端口。它们需要一一对应,这样才能保证服务端与客户端的正常通信。

3.1.2.3.UDP 协议使用说明

图 3.5 使用 UDP 协议

如上图所示:

- 1、选择协议类型 UDP;
- 2、选择你想使用的本机 IP 地址;
- 3、填写端口;

- 4、填写远程地址,即被"连接"方的 IP 地址;
- 5、填写远程地址的端口,即被"连接"方的端口号;
- 6、点击连接按键。

特别说明: UDP 发送的时候需要正确填写接收方的地址和端口。如图 3.5 所示,左边地址为 172.20.224.1,端口为 8080;右边地址为 172.20.224.1,端口为 8086。所以左边要给右边发送数据时,远程地址需要填写 172.20.224.1,端口需要填写 8086,然后点击连接按键;右边配置好也点击连接按键后,二者就可以相互通信了。

当两个 IP 地址处于同一局域网的时候,例如 172.20.224.1 和 172.20.224.3。二者如果想通信,那么 172.20.224.1 的端口可以填写 8080,远程地址填写 172.20.224.3,远程端口填写 8080,二者都点击连接按键后,就可以互相通信了。更多关于 UDP 的知识,这里就不展开了,有兴趣的小伙伴可以去看看相关的资料。

3.1.3.接收区域

图 3.6 接收区

如图 3.6 所示,逐飞助手的接收区域主要由文本显示区以及操作区组成。

- 1、HEX 显示勾选框: 勾选后接收显示区域将以 16 进制显示, 软件默认勾选 HEX 显示。 默认勾选是因为逐飞助手具有接收摄像头数据的功能, 并且各个功能可以在任意时刻去切换。 这就可能出现, 在接收摄像头图像数据的过程中切换到串口助手页面的情况, 如果没有勾选 HEX 显示, 软件会按照默认的编码方式对摄像头数据进行解码, 这势必会出现乱码的情况, 而 实时上传的图像数据非常巨大, 显示大量的乱码文本将导致软件十分卡顿。
- 2、UTF-8 编码勾选框:软件默认按照 GB2312 进行编码,如果需要使用 UTF-8 编码需要将其勾选。勾选后,发送区的 UTF-8 编码勾选框也会一起勾选上。软件暂时不支持其他编码方式。
 - 3、显示时间戳勾选框:勾选后,接收区的文本显示将会带上时间戳。
 - 4、清除显示按键:点击将清除接收区域的文本并且将接收计数清零。
- 5、保存数据按键:点击后会把所有接收到的所有数据写入一个以时间命名的 txt 文本中, txt 文本将存在于逐飞助手软件同一个路径下。

特别说明:逐飞助手接收区域做了特殊处理,当接收的数据非常大时,接收区只显示部分接收到数据,但是你可以通过以下两种方式查看所有数据:

- 1、点击接收显示区域然后按下 Ctrl + A (全选), 再按下 Ctrl + C(复制), 然后你可以粘贴到任意一个文本文件中去, 这样你就可以得到全部接收到的数据。
- 2、点击保存数据按键,点击后所有接收到的数据将会写入以时间命名的 txt 文本中, 这个文本就是全部接收到的数据。

3.1.4.发送区域

图 3.7 发送区

如图 3.7 所示,逐飞助手的发送区域主要由操作区和文本输入区组成。

- 1、HEX 发送勾选框:勾选后,文本输入框将只能输入十六进制文本。
- 2、显示发送勾选框:勾选后,发送的文本将显示在接收区。
- 3、UTF-8 编码勾选框:软件默认按照 GB2312 进行编码,如果需要使用 UTF-8 编码需要将其勾选。勾选后,接收区的 UTF-8 编码勾选框也会一起勾选上。软件暂时不支持其他编码方式。
 - 4、换行回车勾选框:勾选后,发送将会加上换行换行回车,仅在非 HEX 发送时生效。
 - 5、自动发送勾选框:勾选后,建立正常通信后将会按照周期进行发送。
- 6、自动发送的发送周期:默认值为 100ms, 未勾选自动发送勾选框时可以对周期值进行修改。
 - 7、发送文件按键:可以选择文件进行发送。
 - 8、清除发送按键:清除文本输入框的文本以及清除发送计数。
 - 9、打开拓展:可以在接收区域弹出一个拓展区域,可以用来保存多条命令。
- 10、发送输入框:输入发送内容的区域。特别说明,当勾选了 HEX 发送后,输入的文本只能是 0-9、a-f、A-F 之间的字符,多个 HEX 数据用空格隔开。如发送"0x16,0xA7,0x1B"只

需要输入"16 A7 1B"。

11、发送按键:建立正常的通信后,点击发送即可发送输入的内容。

3.1.5.拓展区域

- 1、自动发送周期:勾选操作区域的勾选框,将自动发送,默认为 100ms 的自动发送周期。
- 2、+按键:拓展区域默认有8行命令存储列,点击此按键可以添加一行;
- 3、重置按键:点击此按键可以清除所有的发送内容,以及取消勾选 HEX 发送;
- 4、HEX 发送勾选框:勾选后,发送内容必须输入 16 进制文本。每行的勾选框相互独立;
- 5、发送内容文本框:可以要发送的文本内容;
- 6、发送按键:点击此按键发送同一行文本框中的内容;
- 7、删除按键:点击此按键可以删除本行所有内容,包括控件。
- 8、自动发送勾选框:勾选自动发送框后,将按照自动发送周期发送当前行的数据;如果勾选了多行,则按照勾选的先后顺序进行周期发送。

如上图所示, 如果先勾选"2", 后勾选"3", 这样会按照 100 毫秒的周期, 自动发送"2""3"; 如果先勾选"3", 后勾选"2", 这样就会按照 100 毫秒的周期, 自动发送"3", "2"。

3.2.虚拟示波器的使用

功能选项点击示波器,页面将切换为虚拟示波器的页面,如图 3.8 所示。

图 3.8 逐飞助手虚拟示波器界面

3.2.1.波形显示区域

图 3.9 波形显示区域

如图 3.9 所示, 波形显示区域主要由波形显示区和操作区组成。

- 1、波形显示区:接收到的波形数据会显示在此区域,配合通道开关可控制波形显数的条数,另外鼠标也能在此区域对波形进行各种操作。
- 2、固定 X 轴按键:点击按键后,即无法沿 X 轴方向对图形进行平移、缩放操作,再次点击可取消。
- 3、固定Y轴按键:点击按键后,即无法沿Y轴方向对图形进行平移、缩放操作,再次点击可取消。
 - 4、跳转最前按键:点击按键后,将实时跳转显示最新的一段波形数据。

- 5、自适应按键:点击按键后,所有的波形数据会自适应显示在波形显示区域中。
- 6、清除波形按键:点击按键后,所有的波形数据会被清除。
- 7、Printf 协议通道开关:点击按键后,可以打开或者关闭 Printf 协议。

特别说明: Printf 协议格式: describe:data1,data2,...dataN\n 或者 data1,data2,...data8\n 其中"describe:" describe 可以是任意字符代替,但必须带上冒号,否则就会数据一起解析,这将导致转换浮点数的时候出错。Data1-DataN 为数字字符串,目前只支持 8 个通道后续会考虑增加通道,或者取消通道的限制,数据必须以\n 结尾。

3.2.2.通道开关区域

图 3.10 通道开关区域

如图 3.10 所示,波形显示区域主要由通道开关以及通道数据组成。

- 1、通道开关:逐飞助手虚拟示波器支持显示8个通道的波形数据,所以对应有8个通道开关,通道开关的颜色对应每个通道波形线的颜色。默认8个通道都是打开的,如果需要关闭某个通道,只需要点击对应的通道开关即可。
- 2、通道数据: 当鼠标进入波形显示区域后, 会出现一条红色竖线, 移动鼠标能看 8 个通道的数据会显示在通道开关下方的区域。

3.2.3.移动和缩放

鼠标进入波形区域后, 按住鼠标左键能够对波形进行移动操作, 按住鼠标右键能够对波形

进行缩放操作,也可以通过鼠标滚轮对波形进行缩放。

特别说明:因为鼠标右键和鼠标滚动对波形的缩放是 X、Y 轴同时缩放的,所以如果你只想对 X、Y 轴其中一个轴进行缩放操作,可以点击固定 Y 轴、固定 X 轴按键后,再进行缩放操作。

3.2.4.保存图片

鼠标点击波形显示区域后,右键单击此区域,会出现保存图片的菜单,可以选择是否保存 为图片。

图 3.11 保存图片

3.2.5.配合例程使用

这里我们以 TC264 为例。打开对应的逐飞助手虚拟示波例程

(Exx_xx_seekfree_oscilloscope_demo),编译并下载到核心板中。

图 3.12 例程编译

图 3.13 例程下载

然后,我们打开逐飞助手,按照下面截图,依次点击。

图 3.14 使用虚拟示波器

此时逐飞助手上面虚拟示波器有四个通道进行显示。

图 3.15 虚拟示波器显示波形

由于例程里面默认使用了 4 个通道进行发送。如果需要修改发送的通道数量,通过修改结构体里面的 channel_num 变量来实现。

```
int core0_main(void)
   clock_init();
                                   // 获取时钟频率<务必保留>
   debug_init();
                                   // 初始化默认调试串口
   // 此处编写用户代码 例如外设初始化代码等
   // 初始化逐飞助手示波器的结构体
   seekfree_assistant_oscilloscope_struct oscilloscope_data;
   oscilloscope_data.data[0] = 0.1111 + 2;
   oscilloscope_data.data[1] = 0.3333 - 1;
   oscilloscope_data.data[2] = 4.222;
   oscilloscope data.data[3] = 5.222:
// 设置为4个通道,通道数量最大为8个
   oscilloscope_data.channel_num = 4;
   // 此处编写用户代码 例如外设初始化代码等
   cpu_wait_event_ready();
                                   // 等待所有核心初始化完毕
   while (TRUE)
       // 此处编写需要循环执行的代码
       // 通过串口发送到虚拟示波器上
       seekfree_assistant_oscilloscope_send(&oscilloscope_data);
       oscilloscope_data.data[0] -= 1;
```

图 3.16 虚拟示波器例程

3.3.摄像头图像显示的使用

功能选项点击图像传输,页面将切换为摄像头图像显示的页面。页面暂时只有两大部分,

一部分是实时的摄像头图像数据显示区,另一部分是视频播放区,如图 3.17 所示。

图 3.17 逐飞助手图传界面

3.3.1.图像显示区

图 3.18 图像显示区

如图 3.18 所示, 图像显示区分为三个部分:

- 1、当逐飞助手接收到摄像头图像数据后,鼠标在图像上移动,会在此区域显示鼠标指定位置的像素值。
 - 2、当逐飞助手接收到摄像头图像数据后,会在此区域显示实时的图像数据。
- 3、保存视频 按键: 当逐飞助手接收到数据后,可以点击此按键来保存视频,点击后按键图标将发生变化,再次点击会弹窗提示视频保存成功。保存成功后,视频将出现在逐飞助手软件同一路经下。

宽高信息: 此区域显示的宽度和高度信息是由逐飞助手自动解算的。

视频帧率: FPS 后的数据即为图像的帧率信息, 当接收到图像数据后, 会自动更新图像帧率。

3.3.2.视频播放区

图 3.19 视频播放区

如图 3.19 所示, 视频播放区由视频显示和操作按键组成。

- 1、当加载了视频文件后,视频显示区可以看到视频和进度条。
- 2、加载视频文件按键:点击此按键可以选择指定路径下的视频文件,目前仅支持 avi 格式(逐飞助手保存的视频文件格式)的文件。
- 3、上一帧按键:点击此按键可以回到上一帧,在此界面被选中(点击此窗口任意位置) 状态下,可以使用键盘方向键←。
 - 4、播放按键:点击此按键能够暂停和播放视频。
- 5、下一帧按键:点击此按键可以跳转至下一帧,在此界面被选中(点击此窗口任意位置) 状态下,可以使用键盘方向键→。
 - 6、旋转按键:每点击一次,视频画面将顺时针旋转 90°。
- 7、倍速下拉框:点击此下拉框,可以选择不同的速度进行视频的播放,默认选项有:0.1、0.2、0.5、1.0、1.5、2.0。

3.3.3.配合例程使用

这里我们以 TC264 显示通过串口显示灰度图像到逐飞助手为例。打开对应的逐飞助手显示灰度图像的例程(Exx_xx_seekfree_assistant_mt9v03x_demo)编译并下载到核心板中。

```
🔼 ADS_SPACE - E10_01_seekfree_assistant_mt9v03x_demo/user/cpu0_main.c - AURIX Development Studio
<u>File Edit Source Refactor Navigate Search Project Debug Window Help</u>
 Q 🔡 🖫
> & Binaries
> 
includes
                             4 * 5 * 本文件是 TC264 开源库的一部分
 > 🗁 code
   ▶ Debua
                           > @ cpu0_main.c
    lisr config.h
   > @ isr.c
   ■ 尽量不要使用的引脚.txt
   ■ 無除临时文件.bat
   ● 推荐IO分配.txt
                                                                                      □ Console × □ Properties 🗈 Problems
Quick Links ×
                           CDT Build Console [E10 01 seekfree assistant mt9v03x demo)
TASKING VX-Toolset For AURIX Development Studio (non-commercial): ELF size v1.1r8 Build 22011964
Flinished building: E10_61_seekfree_assistant_mt9v03x_demo.siz
First Steps
 Maria Import AURIX Project
 Flash && Start Project
                           16:42:33 Build Finished. 0 errors, 0 warnings. (took 852ms)
Product Documentation
```

图 3.20 例程编译

图 3.21 例程下载

然后, 我们打开逐飞助手, 按照下面截图, 依次点击。

图 3.22 使用图传功能

此时等待两秒钟左右,就可以看到图像和边线显示在逐飞助手上面。

图 3.23 图像显示

例程中给了几种显示的方式,可以通过修改 INCLUDE_BOUNDARY_TYPE 宏定义来实现。

如图 3.24 所示:

```
    □ cpu0 main.c ×

  79 // 4.如果一直在 Debug 串口输出报错 就需要检查报错内容 并查看本文件下方的常见问题列表进行排查
     // 5.使用115200波特率。逐飞助手的图像大概两三秒一帧,这是由于串口传输慢导致的,并非摄像头采集问题
     ...
// 6.115200波特率一秒钟大约传输11.25KB数据,一副图像188x120的分辨率大约有22KB的数据
  86
  88 //0: 不包含边界信息
 89 //1:回含三条边线信息,边线信息只包含横轴坐标,纵轴坐标由图像高度得到,意味着每个边界在一行中只会有一个点
90 //2:包含三条边线信息,边界信息只含有纵轴坐标,横轴坐标由图像宽度得到,意味着每个边界在一列中只会有一个点,一般来说很少有这样的使用需求
91 //3:包含三条边线信息,边界信息含有横线轴坐标,薄体着不见潜定中个点的槽线业标,成功整量也可以大于或者小于图像的高度,通常来说边线数量大于图像的高度,一般是搜线算法能找出回容的情况
92 //4:没有图像信息,仅包含三条边线信息,边线信息只包含横轴坐标,纵轴坐标由图像高度得到,意味着每个边界在一行中只会有一个点,这样的方式可以极大的降低传输的数据量
                                            已包含横轴坐标,纵轴坐标由图像高度得到,意味着每个边界在一行中只会有一个点,这样的方式可以极大的降低传输的数据量
 93 #define INCLUDE_BOUNDARY_TYPE 3
  95 // 边界的点数量远大于图像高度,便于保存回弯的情况
 96 #define BOUNDARY_NUM
                                          (MT9V03X_H * 3 / 2)
 98 uint8 xy_x1_boundary[BOUNDARY_NUM], xy_x2_boundary[BOUNDARY_NUM], xy_x3_boundary[BOUNDARY_NUM];
99 uint8 xy_y1_boundary[BOUNDARY_NUM], xy_y2_boundary[BOUNDARY_NUM], xy_y3_boundary[BOUNDARY_NUM];
100
 101 uint8 x1_boundary[MT9V03X_H], x2_boundary[MT9V03X_H], x3_boundary[MT9V03X_H];
102 uint8 y1_boundary[MT9V03X_W], y2_boundary[MT9V03X_W], y3_boundary[MT9V03X_W];
104 // 图像备份数组,在发送前将图像备份再进行发送,这样可以避免图像出现撕裂的问题
105 uint8 image_copy[MT9V03X_H][MT9V03X_W];
106
107 #define LED1
108 int core0_main(void)
109 {
          clock_init();
         debug_init();
// 此处编写用户代码 例如外设初始化代码等
111
                                               // 初始化默认调试串口
113
114 #if(0 != INCLUDE_BOUNDARY_TYPE)
115    int32 i=0;
116 #endif
```

图 3.24 图像显示

3.3.3.1.只显示图像

摄像头正常初始化完成后,如果只想显示当前摄像头的图像,可以调用如下图 3.25 所示函数实现:

```
seekfree_assistant_camera_information_config(
    SEEKFREE_ASSISTANT_MT9V03X, // 摄像头类型
    image_copy[0], // 摄像头图像数组的地址
    MT9V03X_W, // 摄像头图像宽度
    MT9V03X_H); // 摄像头图像高度
```

图 3.25 发送图像函数

1、SEEKFREE_ASSISTANT_MT9V03X:表示摄像头类型,这里使用的是总钻风摄像头。如果使用的凌瞳,可以将此参数修改为 SEEKFREE_ASSISTANT_SCC8660。

2、image_copy[0]: 摄像头图像数组的地址。

3、MT9V03X_W: 摄像头图像的宽度。

4、MT9V03X_H: 摄像头图像的高度。

3.3.3.2.任意绘点模式

逐飞助手支持显示任意绘制点,可以调用如下图 3.26 所示函数实现:

```
seekfree_assistant_camera_information_config(
  SEEKFREE_ASSISTANT_MT9V03X,
                                // 摄像头类型
  NULL,
                                 // 摄像头图像数组的地址,如果只需要绘制点线并且不显示图像的时候,参数为NULL
                                 // 摄像头图像宽度,绘制点线的时候,决定画布的宽度
  MT9V03X W,
  MT9V03X H);
                                 // 摄像头图像高度,绘制点线的时候,决定画布的高度
seekfree_assistant_camera_boundary_config(
  XY_BOUNDARY,
                                 // 绘制方式,此处为自由模式
  BOUNDARY_NUM,
                                 // 需要绘制点的个数
                                 // 第一条线的所有点的X坐标
  x1_boundary,
  x2 boundary,
                                 // 第二条线的所有点的X坐标
  x3_boundary,
                                 // 第三条线的所有点的X坐标
                                 // 第一条线的所有点的Y坐标
  y1_boundary,
                                 // 第二条线的所有点的Y坐标
  y2_boundary,
                                 // 第三条线的所有点的Y坐标
  y3_boundary);
```

图 3.26 任意绘点

自由显示的原理的简要说明,如下图 3.27 所示:

图 3.27 任意绘点原理

为了减少发送的数据量,我们内置了几种显示边线的模式。

3.3.3.3.逐行显示模式

逐行显示模式下,只需要点的 X 坐标,而 Y 坐标即为 X 坐标在数组中的索引值,如下图 3.28 所示:

图 3.28 逐行显示模式原理

调用函数、只需对函数中的参数做如下图 3.29 所示的更改:

```
seekfree_assistant_camera_information_config(
                                  // 摄像头类型
   SEEKFREE_ASSISTANT_MT9V03X,
                                  // 摄像头图像数组的地址,如果只需要绘制点线并且不显示图像的时候,参数为NULL
   image_copy[0],
   MT9V03X W,
                                  // 摄像头图像宽度,绘制点线的时候,决定画布的宽度
   MT9V03X_H);
                                  // 摄像头图像高度,绘制点线的时候,决定画布的高度
seekfree_assistant_camera_boundary_config(
   X BOUNDARY,
                                  // 绘制方式,此处为逐行显示模式
   MT9V03X_H,
                                  // 需要绘制点的个数
                                  // 第一条线的所有点的X坐标
   x1_boundary,
   x2 boundary,
                                  // 第二条线的所有点的x坐标
   x3_boundary
                                  // 第三条线的所有点的x坐标
                                  // 逐行显示模式,不需要此参数
   NULL,
                                  // 逐行显示模式,不需要此参数
   NULL,
   NULL);
                                  // 逐行显示模式,不需要此参数
```

图 3.29 逐行显示模式

3.3.3.1.逐列显示模式

逐列显示模式下,只需要点的 Y 坐标,而 X 坐标即为 Y 坐标在数组中的索引值,如下图 3.30 所示:

图 3.30 逐列显示模式原理

调用函数, 只需对函数中的参数做如下图 3.31 所示的更改:

```
seekfree_assistant_camera_information_config(
  SEEKFREE_ASSISTANT_MT9V03X,
                                 // 摄像头类型
                                 // 摄像头图像数组的地址,如果只需要绘制点线并且不显示图像的时候,参数为NULL
   image_copy[0],
                                 // 摄像头图像宽度,绘制点线的时候,决定画布的宽度
  MT9V03X_W,
  MT9V03X_H);
                                 // 摄像头图像高度,绘制点线的时候,决定画布的高度
seekfree_assistant_camera_boundary_config(
  Y_BOUNDARY,
                                 // 绘制方式,此处为逐列显示模式
  MT9V03X W,
                                 // 需要绘制点的个数
                                 // 逐列显示模式,不需要此参数
  NULL,
                                 // 逐列显示模式,不需要此参数
  NULL,
                                 // 逐列显示模式,不需要此参数
  NULL,
  y1 boundary,
                                 // 第一条线的所有点的Y坐标
                                 // 第二条线的所有点的Y坐标
  y2_boundary,
                                 // 第三条线的所有点的Y坐标
  y3_boundary );
```

图 3.31 逐列显示模式

3.4.拓展工具的使用

目前拓展工具只有一个调参工具,未来还会增加些新的东西,也欢迎小伙伴们给我们提出宝贵的意见和想法。

3.4.1.调参工具的使用

点击拓展工具中的开启调参,软件将弹出调参工具的窗口,如图 3.32 所示。

图 3.32 调参工具

此窗口和主窗口一样,可以在右下角的位置对窗口进行大小的调整。

点击 () ,可以让所有通道参数恢复成默认配置。

参数调试默认预留 8 个通道,每个通道参数默认最小值为 0,最大值为 1000,步进值为 1。最值、步进值以及参数名称都支持修改。

图 3.33 参数

如图 3.33 所示:

- 1、减号按键:点击一次,参数将按照默认的步进值减一次;
- 2、当前的参数值:可以通过拖动进度条修改当前参数值,也可以点击此文本框输入参数。 只要成功建立通信连接后,输入过程中,参数就会下发;
 - 3、加号按键:点击一次,参数将按照默认的步进值加一次;
 - 4、编辑参数配置按键:点击将弹出下拉框,展示可以修改的配置项:
 - 5、滑动条:只要成功建立通信连接后,拖动过程中,参数就会下发。

特别说明:如果希望重复发某个值,可以先在文本框输入,然后点击滑动条圆行滑块。例如,你想重复发送 68 这个值,在文本框输入 68 后(此时会发送一次 68),滑动条圆形滑块会处于 68 的位置,然后你点击圆形滑块即可。

3.4.1.1.修改参数配置项

前面提到最值、步进值以及参数名称都支持修改,下面对此进行说明。

点击需要修改配置项参数所在区域最右侧的编辑参数配置按键,将弹出如图 3.34 所示界面。

图 3.34 参数配置项

如上图所示,参数名、步进值、最小值以及最大值都可以按键自己的需求进行修改,修改完成后点击确定,即可保存修改。如图 3.35 所示, 我将参数 1、2 名称修改成了左电机、右电机。

图 3.35 修改示例

特别说明:调试工具中的参数值、步进值、最小值、最大值都是 float 类型,一般有效位为 7 位,相关的内容感兴趣的朋友可以去找资料学习一下。

步进值:只能为正数,如果需要发负数,可以将最小值改为负数。

最小值: -3.40E+38。

最大值: 3.40E+38。

3.4.1.2.配合例程使用

这里我们以 TC264 为例。打开对应的逐飞助手参数调试例程(Exx_xx_seekfree_assistant_parameter_debug_demo)编译并下载到核心板中。

```
🙆 ADS_SPACE - E10_04_seekfree_assistant_parameter_debug_demo/user/cpu0_main.c - AURIX Development Studio
                                                                                                                                                                    <u>F</u>ile <u>E</u>dit <u>S</u>ource Refac<u>t</u>or <u>N</u>avigate Se<u>a</u>rch <u>P</u>roject <u>D</u>ebug <u>W</u>indow <u>H</u>elp
 Q 🔡 👨
☑ C/C++ Projects × № Project Explor... □ □ 🗈 cpu0_main.c ×
                                                                                                                                                                           - -

    ♥ ♥ ♥ ► 8 64

    ★ Binaries

    ★ Binaries
                                                    seekfree_assistant_init();
                                            66
67
                                                    // 此处编写用户代码 例如外设初始化代码等
  > 🗱 Binaries
                                                                                         // 等待所有核心初始化完毕
                                                    cpu_wait_event_ready();
  > 🔊 Includes
                                            68
                                                    while (TRUE)
  > 🗁 code
                                            69
70
71
72
73
74
75
76
77
78
79
80
81
  > 🗁 Debug
                                                        // 此处编写需要循环执行的代码
  > 🗁 libraries
                                                         // 滴答客解析接收到的数据

→ user

                                                         seekfree_assistant_data_analysis();
    > 🖻 cpu0_main.c
    > 🖟 cpu0_main.h
    > @ cpu1 main.c
                                                         for(uint8_t i = 0; i < SEEKFREE_ASSISTANT_SET_PARAMETR_COUNT; i++)</pre>
    → lisr config.h
    > isr.c
    > 🗎 isr.h
                                                             if (seekfree\_assistant\_parameter\_update\_flag[i])
    ■ Lcf_Tasking_Tricore_Tc.lsl■ 尽量不要使用的引脚.txt
                                                                  seekfree assistant parameter update flag[i] = 0;
                                            82
83
84
85
86
    圖 删除临时文件.bat
                                                                  // 通过DEBBUG串口发送信息
                                                                 printf("receive data channel : %d ", i);
printf("data : %f ", seekfree_assistant_parameter[i]);
printf("\r\n");
    ■ 推荐IO分配.txt
                                            87
88
89
                                                             }
                                            90
                                                         // 此处编写需要循环执行的代码
                                                    }
                                            92 }
                                                                                                                                       X | ⊕ ⊕ 🔄 🗊 🗃 = 🖦 📴 者 🖸 🔻 😁 🕶
                                     - -
Quick Links ×
                                         □ Console × □ Properties ₺ Problems
                                         CDT Build Console [F10_04 seekfree assistant_parameter_debug_demo] Finished building: E10_04_seekfree_assistant_parameter_debug_demo.siz
 First Steps
 Create new AURIX Project
                                          rm libraries/infineon_libraries/iLLD/TC26B/Tricore/_PinMap/IfxScu_PinMap.src libraries/infineon_libraries/Service,
 Maria Import AURIX Project
                                          09:34:35 Build Finished. 0 errors, 0 warnings. (took 10s.40ms)
 Flash && Start Project
 Product Documentation
                                      Y <
 65:1:2005
```

图 3.36 例程编译

图 3.37 配置端口并连接

点击开启调参。

图 3.38 点击开启调参

此时会弹出一个新窗口。

图 3.39 调参工具弹出

我们可以通过拖动、点击+号、点击-号和手动输入的方式来调整参数,同时串口助手可以观察到每个通道的值。

图 3.40 调参工具使用

3.4.2.虚拟手柄

点击拓展工具中的开启手柄,软件将弹出虚拟手柄的窗口,如图 3.41 所示。

图 3.41 虚拟手柄

蓝色四个按键,默认绑定键盘上的 W(三角形)、D(圆圈)、S(五角星)、A(爱心)。

橘红色四个按键,默认绑定键盘的方向键,上、下、左、右和图标箭头方向对应。

特别说明:键盘快捷键生效需要虚拟手柄窗口被激活,点击下窗口任意位置即被激活。 当建立通信连接后,每点击一次按键将发送对应的键值。如串口助手建立通信连接后,按下 键盘的 W,串口将发送字符:"W\r\n"。界面上也会显示:"W",2 秒后消失。

再比如按下方向键↑, 串口将发送字符: "Up\r\n", 界面上也会显示"Up", 2 秒后消失。

3.4.2.1.快捷键修改

虚拟手柄支持快捷自定义,如下图所示。

点击文本框,按下键盘上的按键即可。组合键只支持两个键组合如:"Ctrl+Q"。如果快捷键输入错误可以按下键盘上的删除键(BackSpace)后,重新输入,输入完成后点击保存,快捷键即被修改。

4.问题集锦

1、软件报毒。

软件本身是安全的,之所以报毒是因为做成免安装的单文件应用,所以可以为逐飞助手添加排除项。添加排除项的方法。

2、软件无法打开。

目前打不开软件的问题集中出现在系统为 Windows 11 家庭版的电脑上,如果遇到打不开的情况,请尝试将逐飞助手改成任意的英文名称。

3、软件打开但是页面空白。

如果遇到软件打开了,但是页面空白,需要在设置中获取下系统更新,更新重启后即可,如果更新后,还是空白,请联系技术人员。

4、示波器发送了之后,通道数据在变化,但是不显示波形。

需要更新电脑的显卡驱动(如果通道数据不变化,则还是发送的数据本身有问题)。

5、逐飞助手开启了 TCP 服务,但是 wifi 模块无法连接上。

先确定连接的网络是否为 2.4G,然后看防火墙是否允许逐飞助手通过,也可以直接关闭防火墙试试。如果电脑连接的手机的热点,上述两个问题都确定过了,还是不行,可以在电脑连上手机热点后,电脑再开启热点,然后逐飞助手用热点网络开启 TCP 服务,wifi 模块再修改成此网络的参数。

更多遇到的问题,可以留言。如果有更好的建议也可以提出来,感谢大家的支持。

5.文档版本

版本号	日期	作者	内容变更
V1.0	2023/12/4	LJC	初始版本。
V1.1	2024/3/22	LJC	基于逐飞助手 V1.0.5 版本,增加和修改说明书。