2024 春近世代数 (H) 期末考试

- 1. 考虑域 $E = \mathbb{Q}(\sqrt[4]{18}, i)$, 以及 $K = E \cap \mathbb{Q}(\sqrt{3} + \sqrt{2})$. 其中 $i = \sqrt{-1}$.
 - (1) 求维数 $\dim_{\mathbb{Q}} E$;
 - (2) 判断并论证: 多项式 $x^4 18 \in \mathbb{Q}(i)[x]$ 是否可约?
 - (3) 计算维数 $\dim_{\mathbb{Q}} K$;
 - (4) 考虑 $x^4 18$ 的根集 $\mathcal{X} = \{a = \sqrt[4]{18}, b = \sqrt[4]{18}, c = -\sqrt[4]{18}, d = -\sqrt[4]{18}\}$, 以及群 $\mathrm{Aut}(E)$ 自然作用在 \mathcal{X} 上诱导的群同态 $\rho: \mathrm{Aut}(E) \to S(\mathcal{X})$. 试给出 $\mathrm{Im}\rho$ 中的全部元素.
 - (5) 分类 E 的全部子域.
- 2. 考虑一元有理函数域 $E = \mathbb{C}(x)$, 对于正整数 n, 考虑 E 的子域 $L_n = \mathbb{C}(x^n + x^{-n})$.
 - (1) 计算域扩张 E/L_n 的维数 $[E:L_n]$;
 - (2) 判断并论证如下断言是否成立: $L_m \subseteq L_n$ 当且仅当 $n \mid m$.
 - (3) 求 E/L_4 的全部中间域.
- 3. 设 G 是有限群, H 是 G 的真子群, 证明: $G \neq \bigcup_{g \in G} gHg^{-1}$; 并且说明当 G 是无限群的时候,结论是否成立?
- 4. 设 A 是有限生成交换群并且秩为 2, 若 $\theta: A \to \mathbb{Z} \oplus \mathbb{Z}$ 为群的满同态, 证明: $\ker \theta$ 恰好为 A 的扭 (torsion) 子群.