Linear Algebra Howework # 7

D .	527	17	
<i>D</i> .	> 27	اط	<u>(1</u>

For (1)(a) and (2) all we need to do is to
show that these sets are closed under
addition and scalar multiplication (or not)
(1)(a) let V, we SAT i.e.
(1)(a) let $V, w \in S \cap T$ i.e. $V \in S, V \in T, w \in S, w \in T$
What about the V+w? and dv, x eR
Well, V+W & S since S is a substace and so is av.
and so is dv.
VIWET and XVET since Tisa
rubspace
>) V+W +SNT, &Y+SNT HX+R
9.2.1.
b) Example: 2 lines in R2 (different lines)
,
For example _1= 3 \q \frac{1}{2}, \text{ LeR}
L= dd delp
W / L1
Then V= 2 EL1
W= 1 e Lz
111 11 11 11 11 11 11 11 11 11 11 11 11
1-2 V+W= 13 4 L, U-Z

Let us consider a generic element (Vector") in TT2, namely We need to show that for any such P(X) (a equivalent any [90 9,92]") X, X2 X2 Such that p(x)= d1 P(x) + d2 P2(x) + d3 P3(x) Let us see if this is the case $P(X) = Q_{3} \times + Q_{1} \times + Q_{2} \times^{2}$ $= d_{1}(1+x) + d_{2}(1-x) + d_{3}(1-x^{2})$ = x, tx, x + x2 - x2 x + x3 - x3 x2 $= (\alpha_1 + \alpha_2 + \alpha_3) + (\alpha_1 - \alpha_2) \times + (-\alpha_3) \times^2$ collecting terms

