

30 ноября 2021 года

Градиентный бустинг над деревьями

Вспоминаем идею...

Идея градиентного бустинга

FSAM + минимизация в случае дифференцируемой ф-ии ошибки

Задача регрессии с выборкой $(x_i, y_i)_{i=1}^m$, дифференцируемая функция ошибки L(y, a), уже есть алгоритм a(x) – строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}.$$

т.е. настраиваемся на невязку

$$b(x_i) \approx y_i - a(x_i)$$

формально надо:

а не

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

$$\sum_{i=1}^{m} L(y_i - a(x_i), b(x_i)) \to \min$$

хотя часто они эквивалентны

Проблема

Задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

может не решаться аналитически

$$F(b_1,...,b_m) = \sum_{i=1}^m L(y_i, a(x_i) + b_i) \to \min_{(b_1,...,b_m)}$$

Функция $F(b_1,...,b_m)$ убывает в направлении антиградиента, поэтому выгодно считать

$$b_i = -L'(y_i, a(x_i)), i \in \{1, 2, ..., m\}.$$

новая задача для настройки второго алгоритма:

$$(x_i, -L'(y_i, a(x_i)))_{i=1}^m$$
.

Алгоритм градиентного бустинга (примитивный вариант)

• Строим алгоритм в виде

$$a_n(x) = \sum_{t=1}^n b_t(x),$$

для удобства можно даже считать, что $a_0(x) \equiv 0$.

• Пусть построен $a_{t}(x)$, тогда обучаем алгоритм $b_{t+1}(x)$ на выборке

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$

•
$$a_{t+1}(x) = a_t(x) + b_{t+1}(x)$$
.

Итерационно получаем сумму алгоритмов...

Вот почему называется градиентный бустинг

Частный случай: регрессия с СКО

$$L(y,a) = \frac{1}{2}(y-a)^2$$
, $L'(y,a) = -(y-a)$

Задача для настройки следующего алгоритма

$$(x_i, y_i - a_t(x_i))_{i=1}^m$$

т.е. очень логично: настраиваемся на невязку!

Частный случай: классификация на два класса

нужна дифференцируемая функция ошибки...

- предполагаем, что алгоритм выдаёт вещественные значения
 - нам подходят суррогатные функции ошибки

Частный случай: классификация на два класса

BinomialBoost – логистическая функция ошибки:

$$L(y,a) = \log(1 + e^{-y \cdot a}), \ a \in (-\infty, +\infty), \ y \in \{-1, +1\},$$
$$L'(y,a) = -\frac{y}{1 + e^{-y \cdot a}} = -y\sigma(ya).$$

Функция ошибки типа Adaboost:

$$L(y,a) = e^{-y \cdot a}, \ a \in (-\infty, +\infty), \ y \in \{-1, +1\},\$$

 $L(y,a) = -ye^{-y \cdot a}.$

здесь что-то выводится явно...

Итерация градиентного бустинга

Как решать задачу с выборкой

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$
?

Любым простым методом! Мы уже настраиваемся на нужную функцию ошибки.

Проблемы

Шаг в сторону антиградиента

- не приводит в локальный минимум (сразу) ⇒ <mark>итерации</mark>
- мы всё равно не можем сделать такой шаг, а лишь шаг по ответам какого-то алгоритма модели ⇒ не нужно стремиться шагать именно туда

Дальше решение проблем...

Эвристика сокращения – Shrinkage

$$a_{t+1}(x) = a_t(x) + \eta \cdot b_t(x),$$
 $\eta \in (0,1]$ – скорость (темп) обучения (learning rate)

Видно, что число слагаемых (базовых алгоритмов) – шагов бустинга – надо контролировать (при увеличении можем переобучиться)

Чем меньше скорость, тем больше итераций надо

Стохастический градиентный бустинг (Stochastic gradient boosting)

Идея бэгинга Бреймана: bag fraction ~ берём часть всей выборки

- м.б. лучше качество («регуляризация»)
- быстрее
- аналог обучения по минибатчам
- можно вычислить ООВ-ошибки

J. Friedman «Stochastic Gradient Boost» // 1999 http://statweb.stanford.edu/~jhf/ftp/stobst.pdf

Column / Feature Subsampling for Regularization аналогичная идея с признаками

TreeBoost – градиентный бустинг над деревьями

Решающее дерево:

$$b(x) = \sum_{j} \beta_{j} I[x \in X_{j}]$$

TreeBoost – градиентный бустинг над деревьями

Наша основная задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + \sum_{j} \beta_j I[x \in X_j]) \to \min$$

Разбиваем по областям:

$$\sum_{x_i \in X_j} L(y_i, a(x_i) + \beta_j) \to \min_{\beta_j}$$

если разбиение выбрано и зафиксировано, то в каждой области осталось выбрать оптимальную константу

Наша основная задача

$$F(b_1,...,b_m) = \sum_{i=1}^m L(y_i, a(x_i) + b_i) \to \min_{(b_1,...,b_m)},$$

заметим, что

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$\sum_{i=1}^{m} \left[L(y_i, a(x_i)) + L'(y_i, a(x_i)) \cdot b_i + \frac{1}{2} L''(y_i, a(x_i)) \cdot b_i^2 \right]$$

(частные производные по второму аргументу функции ошибки)

$$\sum_{i=1}^{m} \left[g_i b_i + \frac{1}{2} h_i b_i^2 \right] \rightarrow \min,$$

$$g_i = L'(y_i, a(x_i)),$$

$$h_i = L''(y_i, a(x_i)).$$

Сделаем оптимизацию с регуляризацией

Пусть дерево b(x) делит пространство объектов на T областей $X_1,\dots,X_T,$ в каждой области $X_{_i}$ принимает значение $eta_{_i}$.

$$\Phi = \sum_{i=1}^{m} \left[g_i b_i + \frac{1}{2} h_i b_i^2 \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} \beta_j^2 \to \min$$

$$\Phi = \dots + \gamma 4 + \lambda \frac{1}{2} (1 + 1 + 0.01 + 4)$$

$$\Phi = \sum_{j=1}^{T} \left[\sum_{x_i \in X_j} \left[g_i \beta_j + \frac{1}{2} h_i \beta_j^2 \right] + \lambda \frac{1}{2} \beta_j^2 \right] + \gamma T =$$

$$= \sum_{j=1}^{T} \left[\beta_j \sum_{x_i \in X_j} g_i + \frac{1}{2} \beta_j^2 \left(\sum_{x_i \in X_j} h_i + \lambda \right) \right] + \gamma T$$

Приравнивая производную к нулю:

$$\beta_j = -\frac{\sum_{x_i \in X_j} g_i}{\sum_{x_i \in X_j} h_i + \lambda}$$

Минимальное значение (при фиксированной структуре дерева)

$$\Phi_{\min} = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{x_i \in X_j} g_i\right)^2}{\sum_{x_i \in X_i} h_i + \lambda} + \gamma T$$

Можно использовать при построении дерева для его оценки:

$$Gain = \frac{1}{2} \left(\frac{\sum_{x_i \in X_{\text{left}}} g_i}{\sum_{x_i \in X_{\text{left}}} h_i + \lambda} + \frac{\sum_{x_i \in X_{\text{right}}} g_i}{\sum_{x_i \in X_{\text{right}}} h_i + \lambda} - \frac{\sum_{x_i \in X_{\text{left}}} g_i + \sum_{x_i \in X_{\text{right}}} g_i}{\sum_{x_i \in X_{\text{left}}} h_i + \sum_{x_i \in X_{\text{right}}} h_i + \lambda} - \gamma \right)$$

можно использовать прунинг – строим дерево, рекурсивно обрезаем, если Gain<0

Не используем какой-то традиционный критерий расщепления. Исходим из функции ошибки!

Александр Дьяконов (dyakonov.org)

История продвинутых методов / современные реализации

sklearn.ensemble.	GradientBoostingRegressor	
	GradientBoostingClassifier	
XGBoost (eXtreme Gradient Boosting)	https://github.com/dmlc/xgboost	
LightGBM, Light Gradient Boosting Machine	https://github.com/Microsoft/LightGBM	
CatBoost	https://github.com/catboost/catboost	

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Особенности реализаций продвинутых методов

	XGBoost	LightGBM	CatBoost
Построение	По уровням (Level-wise) потом добавили по листьям, но для	По листьям (Leaf-wise) best-first	По уровням однородно (oblivious trees)
деревьев	гистограмм		
Поиск расщеплений	Exact greedy algorithm (полный перебор) + добавили потом гистограммный подход	Гистограммный подход (использование бинов) +	Предварительный биннинг
	tree_method='hist'	Exclusive Feature Bundling Связываем разреженные	Динамический бустинг
Фишки		признаки, которые одновременно не нули	Overfitting Detector Ранний останов od type='Iter'
		Random forest mode	use_best_model=True eval_metric=

Особенности реализаций продвинутых методов

	XGBoost	LightGBM	CatBoost
	– Сплиты медленнее, чем у	Gradient-based One-Side Sampling (GOSS)	Бернулли или байесовская подвыборка
Сэмплирование / градиенты /	конкурентов pre-sorted algorithm &	Среди малых градиентов сэмплируем, но с	остообраст подраговраст
СПЛИТЫ	Histogram-based	большим весом не выбран ли по умолчанию	
Важности признаков	Gain / Frequency или Weight / Coverage	Gain / split	Prediction Values Change / Loss Function Change
Нули обрабатываются как NaN	+ см. ниже Sparsity-aware Split Finding	+ По умолчанию use_missing=True	
Неизвестные значения	На оптимальную сторону сплита	На оптимальную сторону сплита	Min / Max

Особенности реализаций продвинутых методов

	XGBoost	LightGBM	CatBoost
	_	+	+
	вводится в версии 1.5.1	На две части с учётом mean target	Ordered Target Statistics
Категориальные			Smoothed target encoding
признаки			OHE с числом категорий < one_hot_max_size
			Жадные комбинации категориальных признаков

Построение деревьев

По уровням (Level-wise)

По листьям (Leaf-wise)

По уровням однородно (oblivious trees)

https://github.com/Microsoft/LightGBM/blob/master/docs/Features.rst#references

Игнорирование нулей / NaN

убираем нули, выбираем сплит, нули добавляем в «выгодное поддерево»

https://mlexplained.com/2018/01/05/lightgbm-and-xgboost-explained/

Гистограммный подход (Histogram based algorithm)

каждый вещественный признак дискретизуется – разбивается на бины

теперь число порогов, которые надо посмотреть ~ число бинов

Exclusive Feature Bundling (EFB)

объединение признаков с большим числом нулей (жадный алгоритм)

поиск оптимального решения – NP-полная задача

	признак 1	признак 2	bundle
0	1	0	1
1	0	1	3
2	1	0	1
3	2	0	2
4	0	2	4
5	0	3	5
6	1	0	1
7	0	2	4
8	2	0	2

строим граф признаков, веса рёбер = число конфликтов между признаками, сортируем признаки по степени

идём по признакам, по возможности включаем в существующие бандлы (если мало конфликтов)

https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e

Gradient-based One-Side Sampling (GOSS)

$$g(x_1)=1,\ g(x_2)=2,\ g(x_3)=0.1,\ g(x_4)=0.5,\ g(x_5)=2.5,\ g(x_6)=0$$
 выбираем top-2 $g(x_1)=1,\ g(x_2)=2,\ g(x_3)=0.1,\ g(x_4)=0.5,\ g(x_5)=2.5,\ g(x_6)=0$ из остальных сэмплируем $2\times g(x_1)=1,\ g(x_2)=2,\ 2\times g(x_4)=0.5,\ g(x_5)=2.5$ но берём с весом

из объектов с маленькими градиентами сэмплируем (используем не все), но учитываем с большим весом

CatBoost = Category + Boosting: проблема смещения

Smoothed target encoding – для категориальных признаков

При построении дерева значение в листе = сумма антиградиентов получается утечка мы оцениваем значение в точке, зная метку на ней!

Динамический бустинг (Ordered Boosting)

- случайная перестановка обучения
- оценивания значения, используя информацию до рассматриваемой точки в таблице

oblivious trees – один предикат на каждом уровне

работает «из коробки»

с параметрами по умолчанию

CatBoost: Ordered Boosting

Figure 1: Ordered boosting principle, examples are ordered according to σ .

return M_n

```
Algorithm 2: Building a tree in CatBoost
input : M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
grad \leftarrow CalcGradient(L, M, y);
r \leftarrow random(1, s);
if Mode = Plain then
   G \leftarrow (grad_r(i) \text{ for } i = 1..n);
if Mode = Ordered then
    G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i=1..n);
T \leftarrow \text{empty tree};
foreach step of top-down procedure do
     foreach candidate split c do
          T_c \leftarrow \text{add split } c \text{ to } T;
          if Mode = Plain then
                \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_r(p)) for
                 p: leaf_r(p) = leaf_r(i)) for i = 1..n;
          if Mode = Ordered then
               \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,\sigma_r(i)-1}(p)) for
                 p: leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
                 for i = 1..n;
          loss(T_c) \leftarrow cos(\Delta, G)
    T \leftarrow \arg\min_{T_c}(loss(T_c))
if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r'}(p)) for
    p: leaf_{r'}(p) = leaf_{r'}(i) for r' = 1..s, i = 1..n;
if Mode = Ordered then
     M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
       p : leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j for r' = 1...s,
      i = 1..n, j \ge \sigma_{r'}(i) - 1;
return T, M
```

Параметры градиентного бустинга: определяющие тип бустинга

objective	- какая задача решается, какая целевая функция и в каком формате
/ loss_function	будет ответ
booster	– какой бустинг проводить: над решающими деревьями, линейный или
	dart
boosting_type	- lgb: gbdt / dart (Dropouts meet Multiple Additive Regression Trees) / goss
boosering_cype	/ rf
tree_method	– как строить деревья
	(grow_policy – порядок построения дерева: на следующем шаге
	расщеплять вершину, ближайшую к корню, или на которой ошибка
	максимальна)
base_score	– начальный ответ на всех объектах (bias)
eval_metric	– значения какой функции ошибки смотреть на контроле (как правило,
	задание этого параметра не означает, что эту функцию будем
	минимизировать при настройке бустинга)

DART: Dropouts meet Multiple Additive Regression Trees

Вместо

$$a_n(x) = \sum_{t=1}^n b_t(x)$$

берём подмножество построенных деревьев $Q = \mathrm{randsubset}(\{1, 2, ..., n\})$ пытаемся дополнить их

$$b_{t+1} = \arg\min_{b} \sum_{i=1}^{m} L(y_i, \sum_{t \in O} b_t(x_i) + b(x_i))$$

потом нужна поправка, что смещали ответ не всего ансамбля (подробно об это не будем)

$$a_n(x) = \sum_{t=1}^{n} b_t(x) + \eta b_{t+1}(x)$$

http://proceedings.mlr.press/v38/korlakaivinayak15.pdf

LGBM: разные варианты

XGBoost: разные варианты

Минутка кода

```
from lightgbm import LGBMRegressor
model = LGBMRegressor()
model = LGBMRegressor(boosting type='dart')
model = LGBMRegressor(boosting type='goss')
model = LGBMRegressor(boosting type='rf', subsample freq=1, subsample=0.75)
                          Без subsample freq не берутся подвыборки!
model = XGBRegressor()
model = XGBRegressor(tree method='approx')
model = XGBRegressor(tree method='hist')
model = XGBRegressor(tree_method='gpu_hist')
                                  Как правильно строить RF
params = {'colsample bynode': 0.8, 'learning rate': 1,
          'max depth': 5, # глубину м.б. надо сделать больше
          'num_parallel_tree': 100, # именно это число деревьев в RF
          'objective': 'binary:logistic',
          'subsample': 0.8, 'tree method': 'gpu hist'}
bst = train(params, dmatrix, num boost round=1) # а вот бустить не надо!
```

Параметры градиентного бустинга: основные

<pre>learning_rate / eta</pre>	– темп (скорость) обучения
n_estimators /	– число итераций бустинга (базовых алгоритмов)
<pre>num_iterations /</pre>	
/ iterations	
num_parallel_tree	– для режима RF

categorical_feature	- какие признаки категориальные

Темп обучения

пример малого, среднего и большого темпов

Темп обучения и число базовых алгоритов

Нет логики «чем больше деревьев, тем лучше»
Нет логики «уменьшили темп в 2 раза – число деревьев надо увеличить в 2 раза»!

Параметры градиентного бустинга: сложность

max_depth	– максимальная глубина
gamma	– порог на уменьшение функции ошибки при расщеплении в
	дереве
min_child_weight	– минимальная сумма весов объектов в потомках
max_delta_step	– порог на изменение весов
<pre>max_leaves / num_leaves</pre>	 максимальное число вершин в дереве
<pre>min_split_gain / min_gain_to_split</pre>	– порог на изменение loss-функции
min_child_samples / min_data_in_leaf	- минимальное число объектов в листьях
min sum bossian in loaf	– минимальная сумма весов объектов в листе, минимальное
min_sum_hessian_in_leaf	число объектов, при котором делается расщепление

Сложность деревьев

Сложность деревьев

scikit-learn

lightgbm

Для разной глубины – разное оптимальное число деревьев

Сложность деревьев

num_leaves = 3

num_leaves = 10

верно ли, что для малых деревьев нет большого темпа?

Параметры градиентного бустинга: формирование подвыборок

```
subsample /
                      - какую часть объектов обучения использовать для построения
bagging fraction
                      одного дерева
colsample bytree/

    какую часть признаков использовать для построения одного

feature fraction /
                      дерева
rsm
colsample_bylevel
                      - какую часть признаков использовать для построения
                      расщепления в уровне
colsample bynode

    какую часть признаков использовать для построения

                      расщепления в вершине
scale pos weight

    для сбалансирования позитивных и негативных весов

/ class weight
                      веса классов
  bootstrap type
                      - тип бутстрепа (для Bayesian bootstrap есть bagging temperature)
```

```
/ subsample_freq (int, optional (default=0)) - частота взятия подвыборок // sampling frequency
```

Подвыборки

Обычно больше – лучше (в XGBoost это не всегда так) Если берём подвыборки бустинги «хуже суммируются»

Параметры градиентного бустинга: регуляризация

reg_alpha / alpha	– коэффициент L1-регуляризации
<pre>reg_lambda / lambda // 12 leaf reg</pre>	– коэффициент L2-регуляризации
random_strength	– шум при оценки сплитов (CatBoost)
border_count	– число сплитов для вещественных признаков (CatBoost)
ctr_border_count	– число сплитов для категориальных признаков (CatBoost)

Регуляризация

Параметры градиентного бустинга: остальные

verbosity / silent	– вывод информации при обучении
n_jobs / nthread /	- число используемых потоков
num_threads	
random_state	– инициализация генератора псевдослучайных чисел
missing	– что обозначает пропуски
<pre>importance_type</pre>	- как вычислять важность
	«weight» (как часто признак выбирался),
	«total_gain» (по той функции ↑),
	«gain» (total_gain / weight),
	«total_cover» (за разделение скольких объектов отвечает),
	«cover» (total_cover / weight).
/ subsample_for_bin	– число объектов для бинов

Параметры градиентного бустинга: fit

early_stopping_round	– если на отложенном контроле заданная функция ошибки не
(fit)	уменьшается такое число итераций, обучение останавливается
sample_weight	- веса объектов
eval_metric	– метрика качества
callbacks	– какие функции вызывать после каждой итерации

- CPU / GPU
- хранить модель в ОЗУ

Early stopping (yepes fit)

```
params = {'objective': 'binary', 'reg lambda': 0.0001, 'reg alpha': 0.0001,
          'num leaves': 7, 'learning rate': 0.1, 'colsample bytree': 0.75,
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(data, y, test size=0.33, random state=42)
model = lgb.LGBMClassifier(n jobs=-1, n estimators=1000, **params, metric='auc') # использовать auc
model.fit(X train, y train,
          eval set=[(X test, y test)],
          early stopping rounds=200,
         verbose=50)
Training until validation scores don't improve for 200 rounds
[50] valid 0's auc: 0.685867
[100] valid 0's auc: 0.687435
[150] valid 0's auc: 0.687931
[200] valid 0's auc: 0.688472
[250] valid 0's auc: 0.686139
[300] valid 0's auc: 0.685785
[350] valid 0's auc: 0.684596
Early stopping, best iteration is:
[198] valid 0's auc: 0.688558
```

Early stopping (yepes train)

```
def accuracy(preds, train data):
    labels = train data.get label()
    preds = 1. / (1. + np.exp(-preds))
    return 'accuracy', np.mean(labels == (preds > 0.5)), True
def rmsle(y true, train data):
    y pred = train data.get label()
    return 'RMSLE', np.sqrt(np.mean(np.power(np.log1p(y pred) - np.log1p(y true), 2))), False
bst = lqb.train(params,
                train set=lgb.Dataset(X train, y train),
                num boost round=1000,
                valid sets=[lgb.Dataset(X test, y test), lgb.Dataset(X train, y train)],
                valid names=['A', 'B'], # имена датасетов для удобства
                init model = tmp, # тут м.б. booster для продолжения обучения МОЖНО задать текстовый файл - см. ниже
                early stopping rounds=50,
                feval=lambda a, b: [accuracy(a,b), rmsle(a,b)], # несколько самописных функций
                verbose eval=25)
Training until validation scores don't improve for 50 rounds
[125]
      A's binary logloss: 0.106202 A's accuracy: 0.0227515 A's RMSLE: 0.10447
        B's binary logloss: 0.0928391 B's accuracy: 0.0218412 B's RMSLE: 0.0983035
      A's binary logloss: 0.106231 A's accuracy: 0.0227515 A's RMSLE: 0.104485
[150]
        B's binary logloss: 0.0921399 B's accuracy: 0.0218412 B's RMSLE: 0.0980522
Early stopping, best iteration is:
       A's binary logloss: 0.106148 A's accuracy: 0.0227515 A's RMSLE: 0.104426
[1111]
        B's binary logloss: 0.0932007 B's accuracy: 0.0218412 B's RMSLE: 0.0984656
bst.save model('model.txt') # см. в файле прописаны деревья
```

Встроенные способы контроля

встроенный

универсальный

Встроенные способы контроля

существенно быстрее 2 мин – 2 сек

- не перестраивают ансамбль с начала
- нечестный контроль упрощённый способ выбора порогов (хитрость!)
 - сразу получаем с шагом 1
 - результаты похожи

Важности признаков – Задача OneTwoTrip (сейчас об этом не будем)

Перебор параметров

```
params = {'learning rate': [0.05, 0.1, 0.2],
          'subsample': [0.5, 0.75, 1.0],
          'max depth': [1, 2, 3, 4],
          'reg alpha': [0, 0.0001, 0.01],
          'reg lambda': [0, 0.0001, 0.01],
model = xqb.XGBRFClassifier()
rs = RandomizedSearchCV(model, params, n_iter=100,
                        scoring='roc auc',
                        n jobs=-1, cv=gss)
rs.fit(data, y, groups=groups)
```

тут есть грубая ошибка... какая?

Советы по обучению: мониторьте разные метрики качества

Советы по обучению: темп обучения learning rate

для разной сложности (ех: глубина)

обычно глубина 3-6 - смещённые (high bias), разброс ниже, чем в глубоких

- смещение как раз устраняется бустингом
- модель не должна переобучаться ⇒ простая
 - быстрее строить
- зафиксируйте (достаточно большое) число деревьев в ансамбле
 - настройте learning rate (для этого числа деревьев)
 - выберите оптимальную глубину
 - настраивайте другие параметры

Есть стратегия – сделать очень маленький темп и очень много деревьев

(но для настройки других параметров не годится)

Совет: постобработка ответов

Значения gbm могут выходить за пределы отрезка!

за пределы какого-то компактного множества в задаче регрессии

Вообще говоря, не важно, как их вернуть обратно...

Итог

• выбрать вид бустинга / критерий расщепления / функцию ошибки «по задаче»

• три самых важных параметра: сложность, темп, число деревьев при разных сложностях (глубина / число листьев) настроить два остальных связных параметра для настройки можно немного деревьев

- в продакшене: увеличить число деревьев, взять маленький темп обучения
 - использовать сумму нескольких gbm

проверить, помогает ли это проверить, как нужно менять параметры для суммы

Литература

A. Natekin, A. Knoll Gradient boosting machines, a tutorial // Front Neurorobot. 2013; 7: 21.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/

все статьи по XGBoost, LightGBM, CatBoost

Сравнения

https://www.kaggle.com/nholloway/catboost-v-xgboost-v-lightgbm
https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc

Про параметры

https://neptune.ai/blog/lightgbm-parameters-guide