Aufgabe 1 (Herbst 2015). Betrachten Sie das Polynom $f = x^2 + x + 1 \in \mathbb{F}_5[x]$.

- (a) Zeigen Sie, daß $K = \mathbb{F}_5[x]/(f)$ ein Körper mit 25 Elementen ist. (2 Punkte)
- (b) Bestimmen Sie ein Element $w \in K$ mit $w^2 = 2$. (3 Punkte)
- (c) Zeigen Sie, daß die Matrix

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \in \mathcal{M}_{2 \times 2, \mathbb{F}_5}$$

über K diagonalisierbar ist.

(3 Punkte)

Aufgabe 2 (Herbst 2014). Sei $K \subset L$ eine Körpererweiterung, seien $\alpha, \beta \in L$ gegeben, so daß $\alpha + \beta$ und $\alpha\beta$ algebraisch über K sind. Man zeige, daß α und β algebraisch über K sind. (5 Punkte)

Aufgabe 3 (Herbst 2017). Es seien K ein Teilkörper von $\mathbb R$ und $f \in K[X]$ ein Polynom. Weiter sei $Z \subset \mathbb C$ ein Zerfällungskörper von f über K. Der Grad [Z:K] sei ungerade. Zeigen Sie, daß dann auch Z ein Teilkörper von $\mathbb R$ ist. (6 Punkte)

Zusatzaufgabe (Herbst 1987). Man entscheide, ob die folgenden Aussagen richtig oder falsch sind , und gebe eine kurze Begründung.

- (a) Der Körper \mathbb{Q} der rationalen Zahlen besitzt echte Teilkörper. (2 Punkte)
- (b) Jedes nicht konstante irreduzible Polynom über Q hat nur einfache Nullstellen. (2 Punkte)
- (c) Ist $f \in \mathbb{Q}[X]$ ein irreduzibles Polynom mit den Nullstellen $\alpha, \beta \in \mathbb{C}$, so gilt $\beta \in \mathbb{Q}(\alpha)$. (2 Punkte)
- (d) Das direkte Produkt $\mathbb{R} \times \mathbb{R}$ des Körpers \mathbb{R} mit sich selbst ist ein zu \mathbb{C} isomorpher Körper. (2 Punkte)