

Tecnólogo em Sistemas para Internet Disciplina de Programação Estruturada – 2 Semestre André Luís Del Mestre Martins

Avaliação – Valor: 10,0

Nome: _______ Data: __/__/2019

Parte 1: ______ Parte 2: ______ Total:_____

Prova individual. Parte 1: escrita a mão. Parte 2: prática.

Pontuação máxima: 10,0. Total = (Parte1+Parte2)/2

Computação e Música

As notas musicais podem ser identificadas por letras para facilitar a escrita, aumentar a velocidade de leitura e facilitar a comunicação com músicos de outros países. A definição das letras e suas notas correspondentes é a seguinte:

Tabela 1												
Nota	Dó	Dó#	Ré	Ré#	Mi	Fá	Fá#	Sol	Sol #	Lá	Lá#	Si
Universal	C	C#	D	D#	Е	F	F#	G	G#	A	A#	В
Função 1	С	c	D	d	Е	F	f	G	g	A	a	В
Índice	3	4	5	6	7	8	9	10	11	0	1	2

(2,5) 1 – Converte nota musical para inteiro. Escreva uma função com um parâmetro: (1 - char) Nota musical – terceira linha da tabela. Ao final, a função deve retornar o valor numérico (int) correspondente a nota musical de acordo com a representação ocidental – quarta linha da tabela. Exemplos:

A nota 'A' corresponde ao número 0 A nota 'd' corresponde ao número 6

Tabela 2

Nota musical Lá (A) em diferentes frequências – quanto mais baixa a frequência, mais grave o som							
Oitava - oitava	0	1	2	3	4	5	6
Frequência (Hz) - Freq _{oitava}	55	110	220	440	880	1760	3520

Observe que a Tabela 1 forma toda a escala cromática de uma *oitava*. A nota Lá (A), por exemplo, corresponde a uma frequência de 440 Hz. Quando uma frequência é multiplicada por 2, a nota permanece a mesma. Assim, as frequências de 220Hz e 880 Hz são também notas Lá, só que uma oitava abaixo e uma oitava acima, respectivamente.

(1,5) 2 – Calcula oitava. Assumindo a nota Lá (A) como referência e a frequência de 55 Hz como a mais baixa possível, escreva uma função com um parâmetro: (1 - float) frequência em Hz. Ao final, a função deve retornar o número da oitava (*int*) base que a frequência pertence (Ver Tabela 2). Valores menores que o mínimo, retornam -1.

(RECURSÃO 2,5) – Resolva este exercício com solução RECURSIVA e ganhe pontos extras.

Sugestão: utilize a contante #define A_BASE 55

Exemplo:

Para a frequencia 520.5 Hz, a oitava eh 3 Para a frequencia 110.0 Hz, a oitava eh 1 Para a frequencia 1520.5 Hz, a oitava eh 4 Para a frequencia 20.5 Hz, a oitava eh -1 (1,0) 3 — Calcula frequência base da oitava. Assumindo a Tabela 2, escreva uma função com um parâmetro: (I - float) frequência em Hz. Ao final, a função deve retornar o frequência da nota Lá (A) que é a base da oitava pertencente a frequência passada como parâmetro (Ver Tabela 2).

(EXTRA 2,5) – Sabendo que $Freq_{oitava} = A_{base} * 2^{oitava}$, onde $A_{base} = 55$ Hz e $Freq_{oitava}$ e oitava estão descritos na Tabela 2, resolva este exercício utilizando a função do exercício 2 e a função potencia () e ganhe pontos extras.

Exemplo:

```
Para a frequencia 520.5~\mathrm{Hz}, a frequencia base eh 440~\mathrm{Hz} Para a frequencia 110.0~\mathrm{Hz}, a frequencia base eh 110~\mathrm{Hz} Para a frequencia 1520.5~\mathrm{Hz}, a frequencia base eh 880~\mathrm{Hz} Para a frequencia 20.5~\mathrm{Hz}, a frequencia base eh 0~\mathrm{Hz}
```

Para cada frequência, temos um som diferente. Todas as notas devem ter a mesma distância umas das outras. Essa distância é chamada de *semitom*. Por meio da análise de frequências, descobriu-se que multiplicando a frequência de uma nota musical por 1.0594, chegava-se na nota seguinte. Depois de multiplicar a frequência da nota Lá pelo número 1.0594 doze vezes, retornamos à nota Lá. Note que a raiz duodécima de $2 - 2^{1/12} - \text{é}$ 1.059463094

Tabela 3													
		OITAVA 3											
Semitom	A	a	В	C	c	D	d	Е	F	f	G	g	A
Índice	0	1	2	3	4	5	6	7	8	9	10	11	0
Frequência (Hz)	440	466.16	493.88	523.25	554.37	587.33	622.25	659.26	698.46	739.99	783.99	830.61	880
Multiplicador	20/12	21/12	2 ² /12	23/12	24/12	25/12	26/12	27/12	28/12	29/12	210/12	211/12	20/12

(2,5) 4 – Calcula frequência de nota musical. Escreva uma função com dois parâmetros: (1 - int) o índice da oitava – nota Lá (A) – e (2 - int) o índice do semitom de uma nota musical. Ao final, a função deve retornar a frequência (*float*) da nota musical indicada pelo número do semitom (Ver Tabela 3).

(RECURSÃO 2,5) – Resolva este exercício com solução RECURSIVA e ganhe pontos extras.

Sugestão: utilize a contante #define RAIZ_DUODECIMA_DOIS 1.059463094 Exemplo:

```
Para a oitava iniciando em 440 Hz e semitom 4, a frequencia eh 554.37 Hz
Para a oitava iniciando em 440 Hz e semitom 8, a frequencia eh 698.46 Hz
Para a oitava iniciando em 880 Hz e semitom 0, a frequencia eh 880.00 Hz
```

```
//voce pode utilizar os codigos abaixo como ponto de partida
#define DOIS_RAIZ_DOZE 1.059463094
#define A_GRAVE 55
#define MAX 7

int potencia(int a, int b) {
  int i, ac=1;
  if(b > MAX) {
    printf("ERRO - b > %i\n", MAX);
    return -1;
  }
  for (i = 0; i < b; ++i) {
    ac *= a;
  }
  return ac;
}</pre>
```


Tecnólogo em Sistemas para Internet Disciplina de Programação Estruturada – 2 Semestre André Luís Del Mestre Martins

Nome:	Data:	/ /	1

Parte 2 – Circule A COLUNA com o mês de seu nascimento na tabela abaixo

Nota	A	a	В	С	c	D	d	Е	F	f	G	g
Oitava	0	1	2	3	4	5	0	1	2	3	4	5
Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez

Você vai utilizar o mês de seu nascimento para chamar as funções na prova.

Entrada (mês de março)	Saída
Nota = 'B'	Ex1-Semitom da Nota B = 2
Oitava = 2	Ex4-Frequencia de B no oitava 2 = 246.94
	Ex2-Oitava de 246.94 = 2
	Ex3-Freq base de 246.94 = 220

Entrada (mês de novembro)	Saída
Nota = 'G'	Ex1-Semitom da Nota G = 10
Oitava = 4	Ex4-Frequencia de G na oitava 4 = 1567.98
	Ex2-Oitava de 1567.98 = 4
	Ex3-Freq base de 1567.98 = 880

(10,0) Questão Única. Escreva a função main() utilizando OBRIGATORIAMENTE as funções com os parâmetros relacionados ao mês de seu aniversário.:

- (2,0) i Organize seu código no formato de **projeto**, onde constantes e cabeçalhos de funções estão em um arquivo *fulano.h*, descrição das funções estão em *fulano.c* e a função main () está separada em um arquivo *main.c*.
- (2,0) ii Na função main (), demonstre o uso da função do exercício 1
- (2,0) iii Escreva a função main () demonstrando o uso de rotacionaEsquerda ()
- (2,0) vi Escreva a função main () demonstrando o uso de repetePrint ()
- (2,0) v Escreva a função main () demonstrando o uso de repetePrint ()

Entrada (mês de março)	Saída
Nota = 'B'	Ex1-Semitom da Nota B = 2 Ex4-Frequencia de B no oitava 2 = 246.94
Oitava = 2	Ex2-Oitava de 246.94 = 2
	Ex3-Freq base de 246.94 = 220

Referencias:

https://www.descomplicandoamusica.com/matematica-na-musica/