Assigment 3

This assignment focuses on getting comfortable with working with multidimensional data and linear regression. Key items include:

- Creating random n-dimensional data
- · Creating a Model that can handle the data
- Plot a subset of the data along with the prediction
- Using a Dataset to read in and choose certain columns to produce a model
- Create several models from various combinations of columns
- Plot a few of the results

```
In [101... import numpy as np import matplotlib.pylab as plt %matplotlib inline
```

1. Create a 4 dimensional data set with 64 elements and show all 4 scatter 2D plots of the data x_1 vs. y, x_2 vs. y, x_3 vs. y, x_4 vs. y

```
In [102... n = 64
x = np.linspace(0, 1, n) + np.random.rand(4, n)
x = np.vstack([x, np.ones(len(x.T))]).T
y = np.linspace(0, 1, n) + np.random.rand(n) - 1
```

```
In [103... plt.scatter(x.T[0], y)
```

Out[103]: <matplotlib.collections.PathCollection at 0x7fbf31434d30>


```
In [104... plt.scatter(x.T[1], y)
```

Out[104]: <matplotlib.collections.PathCollection at 0x7fbf24166760>

In [105... plt.scatter(x.T[2], y)

Out[105]: <matplotlib.collections.PathCollection at 0x7fbf2bc6f970>

In [106... plt.scatter(x.T[3], y)

Out[106]: <matplotlib.collections.PathCollection at 0x7fbf241ba8e0>

2. Create a Linear Regression model (like we did in class) to fit the data. Use the example from Lesson 3 and do not use a library that calculates automatically. We are expecting 5 coefficients to describe the linear model.

After creating the model (finding the coefficients), create a new column $y_p = \Sigma \beta_n \cdot x_n$

```
In [107... left = np.linalg.inv(np.dot(x.T, x))
In [108... right = np.dot(y.T, x)
In [109... beta = np.dot(left, right)
    beta
Out[109]: array([ 0.17801115,  0.13144248,  0.15611395,  0.35563022, -0.7746985 ])
In [110... pred = np.dot(x, beta)
```

3. Plot the model's prediction as a different color on top of the scatter plot from Q1 in 2D for all 4 of the dimensions ($x_1 o y_p, x_2 o y_p, x_3 o y_p, x_4 o y_p$)

```
In [111... plt.scatter(x.T[0], pred, c='red')
```

```
plt.scatter(x.T[0], y, c='b')
```

Out[111]: <matplotlib.collections.PathCollection at 0x7fbf31568ac0>


```
In [112... plt.scatter(x.T[1], pred, c='red')
  plt.scatter(x.T[1], y, c='b')
```

Out[112]: <matplotlib.collections.PathCollection at 0x7fbf24282a90>

4. Read in mlnn/data/Credit.csv with Pandas and build a Linear Regression model to predict Credit Rating (Rating). Use only the numeric columns in your model, but feel free to

experiment which which columns you believe are better predicters of Credit Rating (Column Rating)

```
In [115...
           import pandas as pd
           credit = pd.read csv('/Users/don/Desktop/mlnn/data/Credit.csv',index col=0)
           credit.head()
Out [115]:
               Income Limit Rating Cards Age
                                                 Education Gender Student Married
                                                                                      Ethnicity Balance
            1
                14.891 3606
                                283
                                         2
                                             34
                                                        11
                                                              Male
                                                                                     Caucasian
                                                                                                   333
                                                                         No
                                                                                 Yes
                                             82
            2 106.025 6645
                                483
                                         3
                                                        15
                                                            Female
                                                                        Yes
                                                                                 Yes
                                                                                         Asian
                                                                                                   903
             104.593
                       7075
                                514
                                             71
                                                              Male
                                                                                          Asian
                                                                                                   580
                                                        11
                                                                         No
                                                                                 No
             148.924 9504
                                681
                                                                                                   964
                                         3
                                             36
                                                        11
                                                            Female
                                                                         Nο
                                                                                 No
                                                                                          Asian
               55.882 4897
                                357
                                         2
                                                        16
                                                                                                    331
                                             68
                                                              Male
                                                                         No
                                                                                 Yes Caucasian
```

Choose multiple columns as inputs beyond Income and Limit but clearly, don't use Rating

```
columns = ['Income', 'Limit', 'Age', 'Education', 'Balance']
In [116...
          X = credit[columns].values
         X = np.vstack([X.T, np.ones(len(X))]).T
          array([[1.48910e+01, 3.60600e+03, 3.40000e+01, 1.10000e+01, 3.33000e+02,
Out[116]:
                  1.00000e+001,
                  [1.06025e+02, 6.64500e+03, 8.20000e+01, 1.50000e+01, 9.03000e+02,
                  1.00000e+00],
                  [1.04593e+02, 7.07500e+03, 7.10000e+01, 1.10000e+01, 5.80000e+02,
                  1.00000e+00],
                  [5.78720e+01, 4.17100e+03, 6.70000e+01, 1.20000e+01, 1.38000e+02,
                  1.00000e+001,
                  [3.77280e+01, 2.52500e+03, 4.40000e+01, 1.30000e+01, 0.00000e+00,
                  [1.87010e+01, 5.52400e+03, 6.40000e+01, 7.00000e+00, 9.66000e+02,
In [117...
         y = credit['Rating']
          У
                 283
Out[117]:
                  483
          3
                  514
                  681
          5
                 357
                 . . .
          396
                 307
          397
                 296
          398
                 321
          399
                 192
          400
                 415
          Name: Rating, Length: 400, dtype: int64
In [118... left 2 = np.linalg.inv(np.dot(X.T, X))
          right 2 = np.dot(y.T, X)
```

```
beta_2 = np.dot(left_2, right_2)
pred_2 = np.dot(X, beta_2)
```

5. Plot your results using scatter plots (just like in class). Show as many of your columns vs. credit rating that you can.


```
In [120... plt.scatter(X.T[1], y, c='b')
  plt.scatter(X.T[1], pred_2, c='orange')
```

Out[120]: <matplotlib.collections.PathCollection at 0x7fbf24077ac0>


```
In [121... plt.scatter(X.T[2], y, c='b')
  plt.scatter(X.T[2], pred_2, c='orange')
```

Out[121]: <matplotlib.collections.PathCollection at 0x7fbf2bd074f0>

In [122... plt.scatter(X.T[3], y, c='b')
 plt.scatter(X.T[3], pred_2, c='orange')

Out[122]: <matplotlib.collections.PathCollection at 0x7fbf24554550>


```
In [123... plt.scatter(X.T[4], y, c='b')
plt.scatter(X.T[4], pred_2, c='orange')
```

Out[123]: <matplotlib.collections.PathCollection at 0x7fbf245718e0>

