

DATA LOADING

#Data Loading
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

How My Data Looks

df = pd.read_csv("/content/haberman.csv", header = None)
print(df)

	0	1	2	3
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
201	78	65	1	2
304	70	05	_	
304 305	83	58	2	2

[306 rows x 4 columns]

Attribute Information:

Patient's age (numerical) at the time of the procedure The patient's year of surgery (numerical year - 1900) The number (numerical) of positive axillary nodes found

Status of survival (class attribute) 1 = The patient lived for five years or more 2: The patient passed away in five years.

df.head()

	0	1	2	3
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

IS THERE ANY STEP I NEED TO TAKE TO AVOID DATA REDUNDANCY?

```
df = pd.read_csv("/content/haberman.csv", header = None, names=['Age','Year','Nodes','Survival'])
        Age Year Nodes Survival
                     1
    0
          30
              64
    1
          30
              62
                    6
2
             65
59
         30
    3
         31
         31 65
              67
                      0
    304
          78
               65
                      1
    305
          83
              58
    [306 rows x 4 columns]
```

df.head()

	Age	Year	Nodes	Survival
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

What is the dimension of my data?

```
df.shape (306, 4)
```

What is the datatype of my columns?

What is the mathematical overview of my dataset?

df.describe()

	Age	Year	Nodes	Survival
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

Is there any null value in my dataset?

```
df.isnull().sum()

Age 0
Year 0
Nodes 0
Survival 0
dtype: int64
```

Is there any duplicated?

```
df.duplicated().sum()
17
```

Is there any co-relation in my dataset?

```
df.corr()["Age"]

Age 1.000000
Year 0.089529
Nodes -0.063176
Survival 0.067950
Name: Age, dtype: float64
```

DATA MANIPULATION

```
df['Survival']=df['Survival'].map({1:"Yes",2:"No"})
df
```

	Age	Year	Nodes	Survival
0	30	64	1	Yes
1	30	62	3	Yes
2	30	65	0	Yes
3	31	59	2	Yes
4	31	65	4	Yes
301	75	62	1	Yes
302	76	67	0	Yes
303	77	65	3	Yes
304	78	65	1	No
305	83	58	2	No

306 rows × 4 columns

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 306 entries, 0 to 305
     Data columns (total 4 columns):
         Column
                   Non-Null Count Dtype
     0
         Age
                    306 non-null
                                    int64
                    306 non-null
                                    int64
         Year
     1
         Nodes
                    306 non-null
                                    int64
         Survival 306 non-null
                                    category
     dtypes: category(1), int64(3)
     memory usage: 7.7 KB
df.shape[0]
     306
df.shape[1]
     4
df['Survival'].value_counts(normalize=True)
     Yes
           0.735294
           0.264706
     Name: Survival, dtype: float64
```

Univarient Analysis

import seaborn as sns

CATEGORICAL ANALYSIS

sns.countplot(df["Survival"])

<Axes: xlabel='count', ylabel='Survival'>

df["Survival"].value_counts().plot(kind="bar")

df["Survival"].value_counts().plot(kind="pie",autopct="%.2f")

<Axes: ylabel='Survival'>

Numerical Data

plt.hist(df["Age"], bins=5)

(array([43., 99., 96., 59., 9.]),
 array([30. , 40.6, 51.2, 61.8, 72.4, 83.]),
 <BarContainer object of 5 artists>)

sns.distplot(df["Age"])

<ipython-input-182-cf0334540b62>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\frac{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(df["Age"])
<Axes: xlabel='Age', ylabel='Density'>

sns.boxplot(df["Nodes"])

<Axes: ylabel='Nodes'>

Multivarient Analysis

Numerical-Numerical

 $\verb|sns.scatterplot(x="Age", y="Nodes", data=df,hue="Year")|\\$

Numericl-Categorical

sns.barplot(x = "Age", y = "Survival", data = df)

<Axes: xlabel='Age', ylabel='Survival'>

sns.boxplot(x="Age",y="Survival",data=df)

<Axes: xlabel='Age', ylabel='Survival'>


```
sns.distplot(df["Age"],hist=False)
sns.distplot(df["Nodes"],hist=False)
```

<ipython-input-196-39b0852b716c>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see $\frac{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

```
sns.distplot(df["Age"],hist=False)
<ipython-input-196-39b0852b716c>:2: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df["Nodes"],hist=False)
<Axes: xlabel='Nodes', ylabel='Density'>

CATEGORY-CATEGORY

df['Status']=df['Survival'].map({"Yes":"OK","No":"Not Okay"})

df.sample(5)

	Age	Year	Nodes	Survival	Status
151	52	62	0	Yes	ОК
241	62	62	6	Yes	OK
111	48	62	2	Yes	OK
57	42	59	2	Yes	OK
132	50	61	0	Yes	ОК

pd.crosstab(df['Survival'],df['Status'])

sns.heatmap(pd.crosstab(df['Survival'],df['Status']))

