Semantics of Functional Programming The Scott Model of **PCF**

Chuang, Tyng-Ruey trc.iis.sinica.edu.tw

Institute of Information Science, Academia Sinica

Formosan Summer School on Logic, Language, and Computation 2014

Denotational semantics of PCF

Instead of specifying *how* a program runs, we specify *what* a program is, the *denotation* of a program.

To assign a denotation to a program,

- **each** type σ is interpreted as some domain D_{σ} ;
- a context $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$ is interpreted as a product $\prod_{i=1}^n D_{\sigma_i}$ of domains;
- in particular, each term of type τ under the empty context is an element of D_{τ} .

In the end, we show that $(\lambda x. M)$ N and $\lambda x. M$ x have the same denotation as M[N/x] and M respectively, and also the Compactness Theorem for the Scott domain model of **PCF**.

Interpretation of types and contexts

Define the denotation of a type inductively:

Definition 1

Every type σ in **PCF** associates with a domain D_{σ} as follows:

- $oldsymbol{1} D_{\mathtt{nat}} := \mathbb{N}_{oldsymbol{\perp}}$, and
- $2 D_{\tau \to \sigma} := [D_{\tau} \to D_{\sigma}].$

Define the denotation of a context inductively on its length:

Definition 2

For each context $\Gamma = x_1 : \sigma_1, \ldots, x_n : \sigma_n$, the associated domain is defined as

$$D_{\Gamma} := D_{\sigma_1} \times D_{\sigma_2} \times \cdots \times D_{\sigma_n}$$

and the associated domain of the empty context is $1 = \{*\}.$

Interpretation of judgements

To proceed with the denotational semantics, we further define the denotation for each judgement inductively on its derivation of the following form

Every judgement $\Gamma \vdash M : \tau$ is interpreted as a *continuous* function

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket : D_{\Gamma} \to D_{\tau}.$$

In particular,

$$\llbracket \vdash \mathsf{M} : \tau \rrbracket : 1 \to D_{\tau}$$

is identified with an element $\llbracket \vdash \mathsf{M} : \tau \rrbracket (*) = d$ of D_{τ} .

Convention

In the following context, $\llbracket \Gamma \vdash M : \tau \rrbracket (\vec{d})$ is written as

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket \ \vec{d}.$$

for any sequence $\vec{d} \in \mathcal{D}_{\Gamma}$ if there is no danger of ambiguity.

(var) Suppose that $\Gamma \vdash M : \tau$ is of the form

$$x_1 : \sigma_1, \ldots, x_n : \sigma_n \vdash x_i : \sigma_i$$

derived by the rule (var). It is interpreted as the projection from D_{Γ} to its *i*-th component D_{σ_i}

$$\llbracket x_1 : \sigma_1, \ldots, x_n : \sigma_n \vdash x_i : \sigma_i \rrbracket (\vec{d}) := (d_i)$$

for
$$i = 1, ..., n$$
 where $\vec{d} = (d_1, ..., d_n) \in D_{\sigma_1} \times \cdots \times D_{\sigma_n}$.

Note that the denotation of this judgement is equal to

$$\llbracket x_1 : \sigma_1, \ldots, x_n : \sigma_n \vdash x_i : \sigma_i \rrbracket = \pi_i$$

where $\pi_i \colon D_{\Gamma} \to D_{\sigma_i}$ is the *i*-th projection and thus it is a continuous function.

(abs) Let $f := \llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \tau \rrbracket$ be the continuous function from $D_{\Gamma} \times D_{\sigma}$ to D_{τ} .

$$\llbracket \Gamma \vdash \lambda x. M : \sigma \rightarrow \tau \rrbracket := \Lambda f$$

where $\Lambda f: D_\Gamma \to [D_\sigma \to D_\tau]$ is the *curried f* . In other words

$$\left(\llbracket \Gamma \vdash \lambda x.\,\mathsf{M} : \sigma \to \tau \rrbracket \; \vec{d}\right) \; d = \llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \tau \rrbracket \; (\vec{d}, d).$$

(app) Define

$$\llbracket \mathsf{\Gamma} dash \mathsf{M} \; \mathsf{N} : au
rbracket ec{d} \ := \mathsf{ev} \left(\llbracket \mathsf{\Gamma} dash \mathsf{M} : \sigma
ightarrow au
rbracket ec{d}, \llbracket \mathsf{\Gamma} dash \mathsf{N} : \sigma
rbracket ec{d}
ight)$$

where $ev: [D_1 \to D_2] \times D_1 \to D_2$ is the *evaluation* map which maps a continuous function $f: D_1 \to D_2$ with an element $d \in D_1$ to f(d).

The cases for zero and suc M are rather obvious:

(z) zero is a constant, so it does not matter what the context is:

$$\llbracket \mathsf{\Gamma} \vdash \mathtt{zero} : \mathtt{nat}
rbracket \vec{d} := 0$$

i.e. a constant function.

(s) The denotation of $\operatorname{\mathtt{suc}}$ is the successor function

$$\llbracket \Gamma \vdash \mathtt{suc} \; \mathsf{M} : \mathtt{nat} \rrbracket \; \vec{d} := \left(S \circ \llbracket \Gamma \vdash \mathsf{M} : \mathtt{nat} \rrbracket \right) \; \vec{d}$$

where $S \colon \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is defined by

$$S(n) := \begin{cases} \bot & \text{if } n = \bot \\ n+1 & \text{if } n \in \mathbb{N}. \end{cases}$$

(Y) The denotation of Y is the fixpoint operation

$$\llbracket \mathsf{\Gamma} \vdash \mathsf{Y} \mathsf{x}.\,\mathsf{M} : \sigma \rrbracket \; \vec{d} := \mu \left(\llbracket \mathsf{\Gamma}, \mathsf{x} : \sigma \vdash \mathsf{M} : \sigma \rrbracket \; \vec{d} \right)$$

where μ is defined previously as $\mu(f):=\bigsqcup_{i\in\mathbb{N}}f^i(\bot)$. (ifz) The denotation of ifz

$$\llbracket \Gamma \vdash \mathtt{ifz}(\mathsf{M}; \mathsf{M}_0; \mathsf{M}_1) : \tau \rrbracket \ \vec{d}$$
$$:= \mathit{ifz}_{\tau}(n, d, f)$$

where

1
$$n := [\![\Gamma \vdash M : nat]\!] d,$$
2 $d := [\![\Gamma \vdash M_0 : \tau]\!] d,$
3 $f := [\![\Gamma, x : nat \vdash M_1 : \tau]\!] d,$

and ifz_{τ} is defined by

$$ifz_{ au}(n,x,f) := egin{cases} oxedsymbol{oxedsymbol{oxedsymbol{oxedsymbol{eta}}}} & ext{if } n = oldsymbol{oxedsymbol{oxedsymbol{oxedsymbol{oxeta}}}}, \ x & ext{if } n = 0, \ f(m) & ext{if } n = m+1. \end{cases}$$

Theorem 3

For every judgement $\Gamma \vdash M : \tau$, the associated function

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket : D_{\Gamma} \to D_{\tau}$$

is Scott continuous.

Proof sketch.

It is not hard to see that each case of $[\![\Gamma \vdash M : \tau]\!]$ is a Scott continuous function.

Examples

Substitution Lemma

Lemma 4

Let $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$ be a context, and $\Gamma \vdash M : \tau$ a judgement. Then the following equation

$$\llbracket \Delta \vdash \mathsf{M} [\vec{N}/\vec{x}] : \tau \rrbracket \ \vec{d} = \llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket \left(\llbracket \Delta \vdash \mathsf{N}_1 \rrbracket \ \vec{d}, \dots, \llbracket \Delta \vdash \mathsf{N}_n \rrbracket \ \vec{d} \right)$$

holds for any context Δ and judgements $\Delta \vdash N_i : \sigma_i$ for i = 1, ..., n.

Proof.

We prove it by induction on derivations of $\Gamma \vdash M : \tau$.

Proof of Substitution Lemma

(var) Suppose that $\Gamma \vdash M : \tau$ is of the form

$$x_1 : \sigma_1, \ldots, x_n : \sigma_n \vdash x_i : \sigma_i$$

for i = 1, ..., n.

Then, for each family of judgements $\Delta \vdash N_i : \sigma_i$, it follows that

where
$$\llbracket x_1 : \sigma_1, \dots, x_n : \sigma_n \vdash x_i : \sigma_i \rrbracket = \pi_i$$
.

Corollary 5 (Application)

For every judgement $\Gamma, x : \sigma \vdash M : \tau$ and $\Gamma \vdash N : \sigma$, we have

$$\llbracket \Gamma \vdash (\lambda x. \mathsf{M}) \mathsf{N} : \tau \rrbracket = \llbracket \Gamma \vdash \mathsf{M}[\mathsf{N}/x] : \tau \rrbracket.$$

Observe that $\vec{d} = (\llbracket \Gamma \vdash x_1 : \sigma_1 \rrbracket \ \vec{d}, \dots, \llbracket \Gamma \vdash x_n : \sigma_n \rrbracket \ \vec{d})$ for any context $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$. Then, this corollary is a series of simple facts:

$$[\![\Gamma \vdash (\lambda x. \mathsf{M}) \mathsf{N} : \tau]\!] \vec{d}$$

$$= ev \left([\![\Gamma \vdash (\lambda x. \mathsf{M}) : \sigma \to \tau]\!] \vec{d}, [\![\Gamma \vdash \mathsf{N} : \sigma]\!] \vec{d} \right)$$

$$= ev \left([\![\Gamma, x : \sigma \vdash \mathsf{M} : \tau]\!] \vec{d}, [\![\Gamma \vdash \mathsf{N} : \sigma]\!] \vec{d} \right)$$

$$= [\![\Gamma, x : \sigma \vdash \mathsf{M} : \tau]\!] \left(\vec{d}, [\![\Gamma \vdash \mathsf{N} : \sigma \vec{d}]\!] \right)$$

$$= [\![\Gamma \vdash \mathsf{M}[\vec{x}, \mathsf{N}/\vec{x}, x] : \tau]\!] \vec{d}$$

$$= [\![\Gamma \vdash \mathsf{M}[\mathsf{N}/x] : \tau]\!] \vec{d}$$

Lemma 6 (Weakening)

Let $\Gamma \vdash M : \tau$ be a judgement. Then the following

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket = \llbracket \Gamma, \mathsf{x} : \sigma \vdash \mathsf{M} : \tau \rrbracket$$

holds for any variable $x : \sigma$ not in Γ .

It follows from Substitution Lemma. (Why?)

Corollary 7 (Extensionality)

Let
$$\Gamma \vdash M : \sigma \rightarrow \tau$$
 be a judgement. Then,

$$\llbracket \Gamma \vdash \lambda x. \, \mathsf{M} \, \, x : \sigma \to \tau \rrbracket = \llbracket \Gamma \vdash \mathsf{M} : \sigma \to \tau \rrbracket$$

if x is not a variable in Γ .

For every sequence $\vec{d} \in D_{\Gamma}$ and $d \in D_{\sigma}$, we have

$$\begin{split} \left(\llbracket \Gamma \vdash \lambda x. \, \mathsf{M} \, x : \sigma \to \tau \rrbracket \, \vec{d} \right) \, d \\ &= \llbracket \Gamma, x : \sigma \vdash \mathsf{M} \, x : \tau \rrbracket (\vec{d}, d) \\ &= \mathsf{ev} \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \to \tau \rrbracket (\vec{d}, d), \llbracket \Gamma, x : \sigma \vdash x : \sigma \rrbracket (\vec{d}, d) \right) \end{split}$$

$$= ev \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \to \tau \rrbracket (\vec{d}, d), d \right)$$
$$= \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \to \tau \rrbracket (\vec{d}, d) \right) d$$

$$= \left(\llbracket \Gamma, X : \sigma \vdash M : \sigma \to \tau \rrbracket (d, d) \right) d$$
$$= \left(\llbracket \Gamma \vdash M : \sigma \to \tau \rrbracket \vec{d} \right) d.$$

Compactness

Define $Y^i x$. M inductively for each $i \in \mathbb{N}$ by

- 1 Y^0x . M := Yx. x and
- $Y^{n+1}x. M := M[Y^nx. M/x].$

Theorem 8

For every judgement $\Gamma, x : \sigma \vdash M : \sigma$, we have

$$\llbracket \Gamma \vdash \mathsf{Y} \mathsf{x}.\,\mathsf{M} : \sigma \rrbracket = \bigsqcup_{i \in \mathbb{N}} \llbracket \Gamma \vdash \mathsf{Y}^i \mathsf{x}.\,\mathsf{M} : \sigma \rrbracket.$$

To show this theorem, it suffices to show the following

$$\llbracket \vdash \mathbf{Y}^i \mathbf{x}. \, \mathsf{M} : \sigma \rrbracket = \llbracket \mathbf{x} : \sigma \vdash \mathsf{M} : \sigma \rrbracket^i (\bot)$$

for $i \in \mathbb{N}$. (Why?)

For n = 0 we show that $\llbracket \vdash Y^0 x . M : \sigma \rrbracket = \bot_{D_{\sigma}} \in D_{\sigma}$.

By definition, Y^0x . M : σ is equal to Yx. x, so

$$\llbracket \vdash \mathsf{Y} \mathsf{x}. \, \mathsf{x} : \sigma \rrbracket = \mu(id) = \bigsqcup_{i \in \mathbb{N}} id^i(\bot)$$

$$= \bigsqcup \bot = \bot$$

For i = n + 1 it suffices to show that

$$\llbracket \vdash \mathsf{Y}^{n+1} \mathsf{x}.\,\mathsf{M} : \sigma \rrbracket = \llbracket \mathsf{x} : \sigma \vdash \mathsf{M} : \sigma \rrbracket \, (\llbracket \vdash \mathsf{Y}^n \mathsf{x}.\,\mathsf{M} : \sigma \rrbracket) \,,$$

so the statement follows by the induction hypothesis.

By definition, $Y^{n+1}x$. M is equal to $M[Y^nx. M/x]$, and by Substitution Lemma we have

$$\llbracket \vdash \mathsf{M}[\mathsf{Y}^n \mathsf{x}.\,\mathsf{M}/\mathsf{x}] \rrbracket = \llbracket \mathsf{x} : \sigma \vdash \mathsf{M} : \tau \rrbracket \left(\llbracket \vdash \mathsf{Y}^n \mathsf{x}.\,\mathsf{M} \rrbracket \right).$$

Examples

