In particular, this is the case if

$$U = \mathbb{R}^n_+ = \{ v \in \mathbb{R}^n \mid v \ge 0 \}$$

and if

$$J(v) = \frac{1}{2} \langle Av, a \rangle - \langle b, v \rangle$$

is an elliptic quadratic functional on \mathbb{R}^n . Then the vector $u_{k+1} = (u_1^{k+1}, \dots, u_n^{k+1})$ is given in terms of $u_k = (u_1^k, \dots, u_n^k)$ by

$$u_i^{k+1} = \max\{u_i^k - \rho_k(Au_k - b)_i, 0\}, \quad 1 \le i \le n.$$

49.12 Penalty Methods for Constrained Optimization

In the case where $V = \mathbb{R}^n$, another method to deal with constrained optimization is to incorporate the domain U into the objective function J by adding a penalty function.

Definition 49.11. Given a nonempty closed convex subset U of \mathbb{R}^n , a function $\psi \colon \mathbb{R}^n \to \mathbb{R}$ is called a *penalty function* for U if ψ is convex and continuous and if the following conditions hold:

$$\psi(v) \ge 0$$
 for all $v \in \mathbb{R}^n$, and $\psi(v) = 0$ iff $v \in U$.

The following proposition shows that the use of penalty functions reduces a constrained optimization problem to a sequence of unconstrained optimization problems.

Proposition 49.19. Let $J: \mathbb{R}^n \to \mathbb{R}$ be a continuous, coercive, strictly convex function, U be a nonempty, convex, closed subset of \mathbb{R}^n , $\psi: \mathbb{R}^n \to \mathbb{R}$ be a penalty function for U, and let $J_{\epsilon}: \mathbb{R}^n \to \mathbb{R}$ be the penalized objective function given by

$$J_{\epsilon}(v) = J(v) + \frac{1}{\epsilon} \psi(v) \quad \text{for all } v \in \mathbb{R}^n.$$

Then for every $\epsilon > 0$, there exists a unique element $u_{\epsilon} \in \mathbb{R}^n$ such that

$$J_{\epsilon}(u_{\epsilon}) = \inf_{v \in \mathbb{R}^n} J_{\epsilon}(v).$$

Furthermore, if $u \in U$ is the unique minimizer of J over U, so that $J(u) = \inf_{v \in U} J(v)$, then

$$\lim_{\epsilon \to 0} u_{\epsilon} = u.$$

Proof. Observe that since J is coercive, since $\psi(v) \geq 0$ for all $v \in \mathbb{R}^n$, and $J_{\epsilon} = J + (1/\epsilon)\psi$, we have $J_{\epsilon}(v) \geq J(v)$ for all $v \in \mathbb{R}^n$, so J_{ϵ} is also coercive. Since J is strictly convex and $(1/\epsilon)\psi$ is convex, it is immediately checked that $J_{\epsilon} = J + (1/\epsilon)\psi$ is also strictly convex. Then by Proposition 49.1 (and the fact that J and J_{ϵ} are strictly convex), J has a unique minimizer $u \in U$, and J_{ϵ} has a unique minimizer $u_{\epsilon} \in \mathbb{R}^n$.