Lección 10 Módulo Sensor ultrasónico

Resumen

El **sensor ultrasónico** es ideal para todo tipo de proyectos que necesitan medidas de distancia, evitando los obstáculos como ejemplos.

El HC-SR04 es barato y fácil de usar ya que vamos a usar una **librería** diseñada específicamente para estos sensores.

Componentes necesarios

- (1) x Placa Arduino UNO
- (1) x Módulo de sensor ultrasónico
- (4) x F M cables (cables de hembra a macho DuPont)

Sensor de ultrasonidos

El módulo HC-SR04 del sensor ultrasónico proporciona la función sin contacto de la medida entre 2 cm y 400 cm, la precisión que varía puede alcanzar los 3 mm.

El principio básico del trabajo es el siguiente:

Utilizando el disparador IO para una señal de nivel alto de al menos 10us,

El Módulo envía automáticamente ocho 40 kHz y detecta si hay una señal de retorno. Esta señal de retorno dependerá de la distancia recorrida y, por tanto, de la distancia.

Distancia de prueba = (tiempo de alto nivel x velocidad del sonido (340m / s) / 2

El diagrama de sincronización se muestra a continuación. Sólo tiene que suministrar un pulso de 10us corto a la entrada de activación para iniciar el rango, y luego el módulo enviará una ráfaga de 8 ciclos de ultrasonido a 40 kHz y aumentar su eco. El Echo es un objeto de distancia que es el ancho de pulso y el rango en proporción.

Se puede calcular el rango a través del intervalo de tiempo entre la señal de disparo de envío y la señal de eco de recepción. La fórmula es la siguiente:

```
Fórmula centímetros: us / 58 = centímetros
Pulgadas: us / 148 = inch; 0: el rango = tiempo de alto nivel * velocidad (340M /
S) / 2;
```

Sugerimos utilizar más de 60ms de ciclo de medición, con el fin de evitar la señal de disparo a la señal de eco.

Conexión

Aquí podemos ver como conectar los cuatro pines del sensor al Arduino Uno.

Diagrama de cableado

El diagrama de cableado es el siguiente. Recordad que utilizamos en general rojo para cables conectados a 5V y negro para 0V o tierra (GND).

Montaje

Código

Necesitaremos una librería para poder utilizar algunas funciones y comunicarnos con el sensor. Para ello, deberemos de incluirla en nuestro proyecto, de la siguiente forma:

Una vez incluída, ya la podemos utilizar en nuestro programa.

Vamos a utilizar el monitor serie para mostrar los datos por pantalla, por lo menos mientras probamos el programa.

```
#include "SR04.h" //Incluimos la librería a utilizar
#define TRIG_PIN 12
#define ECHO_PIN 11
```

```
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN);
long a;

void setup() {
    Serial.begin(9600);
    delay(1000);
}

void loop() {
    a=sr04.Distance(); //Devuelve la distancia en Cm.
    Serial.print(a);
    Serial.println("cm");
    delay(1000); //Esperaremos 1s entre mediciones
}
```

Abriendo el monitor y podemos ver los datos que vamos imprimiendo desde el programa

Una vez detectados los valores, con estructuras **if-else** podríamos tomar decisiones en nuestro programa para realizar ciertas acciones.