REAL ANALYSIS

LECTURE NOTES

ABSTRACT. The Notes indicate what we do in the lectures, but are not a complete replacement of the book and lectures. The text is from two books of *Real Analysis*:

- [1] Xingwei Zhou & Wenchang Sun: Real Variable Analysis, the third edition, Science Press, 2014.
- [2] E. Stein & R. Shakarchi: Real Analysis, Princeton University Press, 2005.

1. Fubini's theorem

Notions: set and function slices.

We work in $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$.

- (i) If $E \subset \mathbb{R}^n$, we write $E^y = \{x \in \mathbb{R}^{n_1} : (x,y) \in E\}$ for the "horizontal" y-slice of E where $y \in \mathbb{R}^{n_2}$. Wirte $E_x = \{y \in \mathbb{R}^{n_2} : (x,y) \in \mathbb{R}^n\}$ for the "vertical" x-slice where $x \in \mathbb{R}^{n_1}$.
- (ii) If f(x,y) is a function in \mathbb{R}^n , we write $f^y(x) = f(x,y)$ for the function of the $x \in \mathbb{R}^{n_1}$ variable. Similarly, the slice of f for a fixed $x \in \mathbb{R}^{n_1}$ is $f_x(y) = f(x,y)$.

With the assumption that f is measurable on \mathbb{R}^n , it is not necessarily true that the slice f^y is measurable on \mathbb{R}^{n_1} for each y; nor does the corresponding assertion necessarily hold for a measurable set: the slice E^y may not be measurable for each y.

For example, consider

$$f(x,y) = g(x)g(x+y)\chi_{[0,1]^2}$$
, with $g(t) = \frac{1}{\sqrt{t}}$.

Then $f^y(x) \in L^1$ for $y \neq 0$, but $f^0(x)$ is not integrable.

Another example arises in \mathbb{R}^2 by placing a one-dimensional non-measurable set on the x-axis; the set E in \mathbb{R}^2 has measure zero, but E^y is not measurable for y = 0.

Theorem 1.1 (Fubini). Suppose f(x,y) is integrable on $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. Then for almost every $y \in \mathbb{R}^{n_2}$:

- (i) The slice $f^{y}(x)$ is measurable in x and integrable on \mathbb{R}^{n_1} .
- (ii) The function defined by $\int_{\mathbb{R}^{n_1}} f^y(x) dx$ is measurable in y and integrable on \mathbb{R}^{n_2} .

Moreover:

(iii)
$$\int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^n} f.$$

The conclusion is symmetric in x and y:

- (i) The slice $f_x(y)$ is measurable in y and integrable on \mathbb{R}^{n_2} .
- (ii) The function defined by $\int_{\mathbb{R}^{n_2}} f_x(y) dy$ is measurable in x and integrable on \mathbb{R}^{n_1} .

(iii)
$$\int_{\mathbb{R}^{n_1}} \left(\int_{\mathbb{R}^{n_2}} f(x, y) dy \right) dx = \int_{\mathbb{R}^n} f.$$

We assume that f is real-valued. The theorem then clearly applies to the real and imaginary parts of a complex-valued function.

Proof. Denote $\mathcal{F} = \{ f \in L^1(\mathbb{R}^n) : f \text{ satisfies all the three conclusions (i)-(iii) in the theorem } \}.$ We show that $L^1(\mathbb{R}^n) \subset \mathcal{F}$.

Step 1. Any finite linear combination of functions in \mathcal{F} also belongs to \mathcal{F} . Easy to check.

Step 2. Suppose $\{f_k\} \subset \mathcal{F}$ so that $f_k \nearrow f$ or $f_k \searrow f$, where $f \in L^1(\mathbb{R}^n)$. Then $f \in \mathcal{F}$.

It suffices to consider the case of an increasing sequence, as we can taking $-f_k$ instead of f_k . Also we may replace f_k by $f_k - f_1$ and assume that f_k 's are non-negative. It follows by the monotone convergence theorem

(1.1)
$$\lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \int_{\mathbb{R}^n} f.$$

There is a subset $Y \subset \mathbb{R}^{n_2}$ of zero n_2 -dimensional Lebesgue measure such that

$$f_k^y(x) \in L^1(\mathbb{R}^{n_1}) \ \forall \ y \notin Y \text{ and } \forall k, \text{ and } g_k(y) := \int_{\mathbb{R}^{n_1}} f_k^y(x) dx \in L^1(\mathbb{R}^{n_2}) \ \forall \ k.$$

Applying the monotone convergence theorem to $f_k^y(x) \nearrow f^y(x)$ for fixed $y \in \mathbb{R}^{n_2} \setminus Y$ (so $f^y(x)$ is measurable in x being a limit of measurable functions), we deduce that

$$g_k(y) = \int_{\mathbb{R}^{n_1}} f_k^y(x) dx$$
 increases to a limit $g(y) := \int_{\mathbb{R}^{n_1}} f^y(x) dx$, for a.e. $y \in \mathbb{R}^{n_2}$.

Thus g(y) is measurable, as g(y) is a limit of measurable functions $g_k(y)$. Another application of monotone convergence theorem to $g_k(y) \nearrow g(y)$ yields

(1.2)
$$\lim_{k \to \infty} \int_{\mathbb{R}^{n_2}} g_k(y) dy = \int_{\mathbb{R}^{n_2}} g(y) dy.$$

It follows (1.1), (1.2) and by $f_k \in \mathcal{F}$ that

$$\int_{\mathbb{R}^n} f = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \lim_{k \to \infty} \int_{\mathbb{R}^{n_2}} g_k(y) dy = \int_{\mathbb{R}^{n_2}} g(y) dy = \int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f^y(x) dx \right) dy.$$

This shows that f satisfies (iii).

As $f \in L^1(\mathbb{R}^n)$, g(y) is finite for a.e. y, hence $f^y(x) \in L^1(\mathbb{R}^{n_1})$ for a.e. y, which implies f satisfies (ii). Recall that, for a.e. y, $f^y(x)$ as the limit of $f_k^y(x)$ is measurable on \mathbb{R}^{n_1} and so f satisfies (i).

In summary, $f \in \mathcal{F}$.

Step 3. If E is a G_{δ} set with finite measure, then $\chi_E \in \mathcal{F}$.

- (a) If E is a bouned open cube, it is obvious that $\chi_E \in \mathcal{F}$.
- (b) Suppose E is a subset of the boundary of some closed cube. Observe that $m_{\mathbb{R}^n}(E) = 0$. It is direct to check $\chi_E \in \mathcal{F}$.
- (c) Suppose $E = \bigcup_{k=1}^{N} Q_k$ is a finite union of closed cubes whose interiors are disjoint. Then $\chi_E = \sum_{k=1}^{N} (\chi_{\text{Int }Q_k} + \chi_{\partial Q_k})$. So $\chi_E \in \mathcal{F}$ by Step 3 (a), (b) and Step 1.
- (d) Suppose E is open and of finite measure. Then $E = \bigcup_{k=1}^{\infty} Q_k$ with Q_k being almost disjoint closed cubes. Clearly $\chi_{\bigcup_{j=1}^k Q_k} \nearrow \chi_E \in L^1(\mathbb{R}^n)$. Hence $\chi_E \in \mathcal{F}$ by using Step 3 (c) and Step 2.
- (e) Finally, let E be a G_{δ} of finite measure. Then $E = \bigcap_{j \geq 1} \mathcal{U}_j$ with open sets \mathcal{U}_j . Since $m(E) < \infty$, there is an open set $\mathcal{O}_0 \supset E$. Let $\mathcal{O}_k = \mathcal{O}_0 \cap \bigcap_{j=1}^k \mathcal{U}_j$. Then $\mathcal{O}_1 \supset \mathcal{O}_2 \supset \cdots$ with

$$E = \bigcap_{k=1}^{\infty} \mathcal{O}_k.$$

Obviously $\chi_{\mathcal{O}_k} \searrow \chi_E \in L^1(\mathbb{R}^n)$. Then $\chi_E \in \mathcal{F}$, by Step 3 (d) above and Step 2.

Step 4. If $E \subset \mathbb{R}^n$ with $m_{\mathbb{R}^n}(Z) = 0$, then $\chi_Z \in \mathcal{F}$.

There is a G_{δ} set $G \supset Z$ with m(G) = 0. Step 3 tells us $\chi_G \in \mathcal{F}$. Hence

$$\int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} \chi_{G^y}(x) dx \right) dy = \int_{\mathbb{R}^n} \chi_G = 0.$$

This means

$$m_{\mathbb{R}^{n_1}}(G^y) = \int_{\mathbb{R}^{n_1}} \chi_{G^y}(x) dx = 0 \text{ for a.e. } y,$$

and so G^y is of zero measure. Since $Z^y \subset G^y$, we see that Z^y is of zero measure for a.e. y. This shows that χ_Z satisfies (i) and (ii). Also,

$$\int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} \chi_Z(x, y) dx \right) dy = 0 = \int_{\mathbb{R}^n} \chi_Z.$$

Thus χ_Z satisfies (iii) and consequently belongs to \mathcal{F} .

Step 5. If E is measurable and $m(E) < \infty$, then $\chi_E \in \mathcal{F}$.

Note that $E = G \setminus Z$ where G is a G_{δ} and Z is of zero measure. The conclusion follows by Step 1, 3 and 4.

Step 6. If $f \in L^1(\mathbb{R})$, then $f \in \mathcal{F}$.

Since $f = f^+ - f^-$, by Step 1 it suffices to assume f itself is non-negative.

Recall that non-negative f is an increasing limit of simple functions ϕ_k . It follows from Step 1 and 5, $\phi_k \in \mathcal{F}$. Hence $f \in \mathcal{F}$ by virtue of Step 2.

1.1. Tonelli's Theorem.

Tonelli's Theorem differs from Fubini's theorem in that it applies to any non-negative function f, but without the integrability restriction that $\int f < \infty$.

In practice one often wants to apply Fubini's theorem to $f \in \mathbb{R}^n \to \mathbb{R}$ but does not know $f \in L^1(\mathbb{R})$. In this case one can often first use Tonelli's theorem to |f| to show $\int |f| < \infty$. Then one is justified in applying Fubini's theorem to f.

Theorem 1.2 (Tonelli). Suppose f(x, y) is a non-negative measurable function on $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. Then for almost every $y \in \mathbb{R}^{n_2}$:

- (i) The slice $f^y(x)$ is measurable in x on \mathbb{R}^{n_1} .
- (ii) The function defined by $\int_{\mathbb{R}^{n_1}} f^y(x) dx$ is measurable in y on \mathbb{R}^{n_2} .
- (iii) $\int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^n} f$ in the extended sense (may take value ∞).

The conclusion is symmetric in x and y:

- (i) The slice $f_x(y)$ is measurable in y on \mathbb{R}^{n_2} .
- (ii) The function defined by $\int_{\mathbb{R}^{n_2}} f_x(y) dy$ is measurable in x on \mathbb{R}^{n_1} .
- (iii) $\int_{\mathbb{R}^{n_1}} \left(\int_{\mathbb{R}^{n_2}} f(x, y) dy \right) dx = \int_{\mathbb{R}^n} f$ in the extended sense (may take value ∞).

Proof. Define the truncations of f for $k = 1, 2, \cdots$:

$$f_k(x,y) = \begin{cases} f(x,y) & \text{if } |(x,y)| \le k \text{ and } f(x,y) \le k, \\ 0 & \text{otherwise.} \end{cases}$$

Applying Fubini's theorem to $f_k \in L^1(\mathbb{R}^n)$, we conclude that

- (a) for a.e. y the slice $f_k^y(x)$ is measurable for every k;
- (b) for a.e. y, $\int_{\mathbb{R}^{n_1}} f_k(x,y) dx$ is measurable in y and is integrable on \mathbb{R}^{n_2} for every k.

Observe for each y, $f_k^y(x) \nearrow f^y(x)$. Hence $f^y(x)$ is measurable in x and thus (i) holds. By the monotone convergence theorem,

$$g_k(y) := \int_{\mathbb{R}^{n_1}} f_k(x, y) dx \nearrow g(y) := \int_{\mathbb{R}^{n_1}} f(x, y) dx.$$

Note that g(y), being the limit of measurable functions $g_k(y)$, is measurable. So (ii) follows. Applying the monotone convergence theorem to $\{g_k\}$, one sees that

(1.3)
$$\int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f_k(x, y) dx \right) dy \to \int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f(x, y) dx \right) dy.$$

Since $f_k \nearrow f$ on \mathbb{R}^n , using monotone convergence theorem again,

$$\int_{\mathbb{R}^n} f = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \lim_{k \to \infty} \int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f_k(x, y) dx \right) dy = \int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f(x, y) dx \right) dy,$$

where the second equality is the use of iterated integration of f_k by Fubini's theorem, and the last equality is (1.3). This verifies (iii).

1.2. Applications of Fubini and Tonelli Theorems.

As an immediate consequence of Tonelli's theorem applied to χ_E , we obtain the following.

Corollary 1.1. If E is a measurable set of $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, then for almost every $y \in \mathbb{R}^{n_2}$ the slice $E^y = \{x \in \mathbb{R}^{n_1} : (x,y) \in E\}$ is a measurable subset of \mathbb{R}^{n_1} . Moreover $m(E^y)$ is a measurable function of y and

$$m(E) = \int_{\mathbb{R}^{n_2}} m(E^y) dy.$$

A symmetric result holds for the x-slices $E_x = \{y \in \mathbb{R}^{n_2} : (x,y) \in E\}$ in \mathbb{R}^{n_2} .

One might be tempted to think that the converse assertion holds. To see that this is not the case, note that if we let \mathcal{N} be a non-measurable subset of \mathbb{R} , and define

$$E = [0, 1] \times \mathcal{N} \subset \mathbb{R} \times \mathbb{R},$$

we see that

$$E^{y} = \begin{cases} [0,1] & \text{if } y \in \mathcal{N}, \\ \emptyset & \text{if } y \notin \mathcal{N}. \end{cases}$$

Thus E^y is measurable for every y. However, if E were measurable, then the corollary would imply that E_x is measurable for almost every $x \in \mathbb{R}$, which is not true since $E_x = \mathcal{N}$ for all $x \in [0, 1]$.

There is a weird example in Stein's book page 82-83 where all y-slices and all x-slices are measurable, but E is not measurable.

Proposition 1.1. If $E = E_1 \times E_2$ is a measurable subset of \mathbb{R}^n , and $m_*(E_2) > 0$, then E_1 is measurable.

Proof. By Tonelli's theorem, for a.e. $y \in \mathbb{R}^{n_2}$, the slice function

$$\chi_{E_1 \times E_2}^y(x) = \chi_{E_1}(x)\chi_{E_2}(y)$$

is measurable as a function of x.

Denote by F the set of $y \in \mathbb{R}^{n_2}$ such that the slice E^y is measurable. Tonelli's theorem asserts that $m(F^c) = 0$. Since $m_*(E_2) > 0$, we have $E_2 \cap F \neq \emptyset$ (otherwise $E_2 = (E_2 \cap F) \cup (E_2 \cap F^c)$ implies $m_*(E) = 0$).

Take $y_0 \in E_2 \cap F$. We infer that $\chi_{E_1}(x) = \chi_{E_1 \times E_2}^{y_0}(x)$ is measurable.

The converse of the above result is presented in previous lecture notes, which says $E = E_1 \times E_2$ is a measurable subset of $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ if $E_1 \subset \mathbb{R}^{n_1}$ and $E_2 \subset \mathbb{R}^{n_2}$ are both measurable, and

$$m(E) = m(E_1)m(E_2)$$

with the understanding that if one of the sets E_j has measure zero, then m(E) = 0. As a consequence of this, we conclude that the measurability of functions is preserved under the trivial extension of variables. **Proposition 1.2.** Suppose f is a measurable function on \mathbb{R}^{n_1} . Then the function \tilde{f} defined by $\tilde{f}(x,y) = f(x)$ is measurable on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$.

Proof. We assume f is real-valued. For any $a \in \mathbb{R}$,

$$\{(x,y) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} : \tilde{f}(x,y) < a\} = \{x \in \mathbb{R}^{n_1} : f(x) < a\} \times E_2$$

is measurable. Hence by definition $\tilde{f}(x,y)$ is measurable.

Integrals of functions and Areas of graphs

Proposition 1.3. Suppose E is a measurable subset of \mathbb{R}^n , and f_1, \dots, f_d are real-valued measurable functions. Let

$$\mathcal{G} = \{(x, f_1(x), \cdots, f_d(x)) \in \mathbb{R}^{n+d} : x \in E\}.$$

Then \mathcal{G} is a measurable subset of \mathbb{R}^{n+d} and $m(\mathcal{G}) = 0$.

Proof. Suppose $m(E) < \infty$. Given $\delta > 0$, let $Q_k = \prod_{i=1}^d (a_i^k, b_i^k]$ be disjoint cubes with side length δ such that $\mathbb{R}^d = \bigcup_{k=1}^\infty Q_k$. Let

$$E_k = \{x \in E : (f_1(x), \dots, f_d(x)) \in Q_k\}.$$

Observe E_k is measurable, as it can be written as a intersection of measurable sets,

$$E_k = \bigcap_{i=1}^d \{x \in E : f_i(x) \in (a_i^k, b_i^k]\}.$$

Since $\mathcal{G} \subset \bigcup_{k=1}^{\infty} (E_k \times Q_k)$, we deduce

$$m_*(\mathcal{G}) \le m(\bigcup_{k=1}^{\infty} (E_k \times Q_k)) = \sum_{k=1}^{\infty} m(E_k \times Q_k) = \delta^d \sum_{k=1}^{\infty} m(E_k) = \delta^d m(E).$$

Sending $\delta \to 0$, we find that $m_*(\mathcal{G}) = 0$.

We next deal with the case $m(E) = \infty$. For this end, write $E = \bigcup_{N=1}^{\infty} E_N$ where $E_N = E \cap \{x \in \mathbb{R}^n : |x| \leq N\}$. Set

$$\mathcal{G}_N = \{(x, f_1(x), \cdots, f_d(x)) \in \mathbb{R}^{n+d} : x \in E_N\}.$$

It follows that $m(\mathcal{G}_N) = 0$. As $\mathcal{G} = \bigcup_{N=1}^{\infty} \mathcal{G}_N$, we conclude that \mathcal{G} is of zero measure.

We next return to an interpretation of the integral that arose first in the calculus.

Proposition 1.4. Suppose f(x) is a non-negative function on \mathbb{R}^n , and let

$$\mathcal{A} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : 0 \le y \le f(x)\}.$$

Then

- (i) f is measurable on \mathbb{R}^n if and only if A is measurable in \mathbb{R}^{n+1} .
- (ii) If the conditions in (i) hold, then

$$\int_{\mathbb{R}^n} f(x)dx = m(\mathcal{A}).$$

Proof. If f is measurable, then Proposition 1.2 guarantees that F(x,y) = y - f(x) is measurable on \mathbb{R}^{n+1} . So

$$\mathcal{A} = \{(x,y) : y \ge 0\} \cap \{(x,y) : F(x,y) \le 0\} \subset \mathbb{R}^{n+1}$$

is measurable.

Conversely, suppose that \mathcal{A} is measurable. Note that for each $x \in \mathbb{R}^n$ the slice

$$\mathcal{A}_x = \{ y \in \mathbb{R} : (x, y) \in \mathcal{A} \} = [0, f(x)]$$

is a closed segment. Then Tonelli's theorem (or Corollary 1.1) gives the measurability of $m(\mathcal{A}_x) = f(x)$.

Moreover, by Tonelli's theorem

$$m(\mathcal{A}) = \int_{\mathbb{R}^{n+1}} \chi_{\mathcal{A}}(x, y) dx dy = \int_{\mathbb{R}^n} m(\mathcal{A}_x) dx = \int_{\mathbb{R}^n} f(x) dx.$$

Convolution of functions

Recall that if f is measurable on \mathbb{R}^n then f(x-y) is measurable on \mathbb{R}^{2n} . Let f, g be two integrable functions on \mathbb{R}^n . Their convolution is defined by

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy = \int_{\mathbb{R}^n} f(y)g(x - y)dy.$$

Theorem 1.3. Suppose $f, g \in L^1(\mathbb{R}^n)$. Then (f * g)(x) is well-defined for a.e. x, 1 and is integrable on \mathbb{R}^n . Moreover

$$||(f * g)||_{L^1(\mathbb{R}^n)} \le ||f||_{L^1(\mathbb{R}^n)} ||g||_{L^1(\mathbb{R}^n)},$$

with equality if f and g are non-negative.

¹That is f(x-y)g(y) is integrable on \mathbb{R}^n for a.e. x.

Proof. Applying the Tonelli's theorem, we obtain

$$\int_{\mathbb{R}^{2n}} |f(x-y)g(y)| dx dy = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)| dx \right) |g(y)| dy$$

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)| dx \right) |g(y)| dy \quad \text{(by translation invariance)}$$

$$= ||f||_{L^1(\mathbb{R}^n)} ||g||_{L^1(\mathbb{R}^n)} < \infty.$$

This shows that $f(x-y)g(y) \in L^1(\mathbb{R}^{2n})$. By Fubini's theorem (f*g)(x), as the integral along the x-slice, is finite for a.e. x and is integrable on \mathbb{R}^n . Hence (f*g) is well-defined.

Observe that

$$||f * g||_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}^n} \Big| \int_{\mathbb{R}^n} f(x - y) g(y) dy \Big| dx \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x - y) g(y)| dy dx.$$

This together with the previous equality yields

$$||f * g||_{L^1(\mathbb{R}^n)} \le ||f||_{L^1(\mathbb{R}^n)} ||g||_{L^1(\mathbb{R}^n)},$$

with equality if f and g are non-negative.

Exercise 1.1. Let f, g are measurable functions on \mathbb{R}^n . Then

- (i) f * g is uniformly continuous provided $f \in L^1(\mathbb{R}^n)$ and g is bounded;
- (ii) $(f * g)(x) \to 0$ as $|x| \to \infty$ provided $f, g \in L^1(\mathbb{R}^n)$ and g is bounded.

Proof. Exercise.

Fourier transform

The Fourier transform of an integrable function is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi\sqrt{-1}x\cdot\xi} dx.$$

It is direct to see \hat{f} is bounded and a continuous function of ξ . This is because

$$|\widehat{f}| \le \int_{\mathbb{R}^n} |f| dx = ||f||_{L^1(\mathbb{R}^n)},$$

and by the dominated convergence theorem,

$$\lim_{|\eta_k| \to 0} \widehat{f}(\xi + \eta_k) = \lim_{|\eta_k| \to 0} \int_{\mathbb{R}^n} f(x) e^{-2\pi\sqrt{-1}x \cdot (\xi + \eta_k)} dx = \widehat{f}(\xi).$$

Exercise 1.2. Suppose f and g are integrable functions. Then $\widehat{f*g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$.

Proof. Exercise.

Exercise 1.3. Suppose $f \in L^1(\mathbb{R}^n)$. Then $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Proof. Exercise.

Exercise 1.4. Suppose f is integrable on $[0, 2\pi]$. Then

$$\int_{[0,2\pi]} f(x)e^{-\sqrt{-1}nx}dx \to 0 \quad as \ |n| \to \infty.$$

Consequently if $E \subset [0, 2\pi]$ is measurable, then

$$\int_{E} \cos^{2}(nx + t_{n}) \to \frac{m(E)}{2} \quad as \ n \to \infty.$$

for any sequence t_n .

Proof. Exercise. \Box

Distribution functions

Let f be a measurable function on E. The distribution function of f is given by

$$\mu_f(t) = m(\{x \in E : |f(x)| > t\}).$$

Theorem 1.4. Suppose f is a measurable function on E. Given $1 \le p < \infty$,

$$\int_{E} |f|^p = p \int_{[0,\infty)} t^{p-1} \mu_f(t) dt.$$

Consequently $f \in L^p(E)$ if and only if $t^{p-1}\mu_f(t) \in L^1([0,\infty))$.

Proof. Let $S = \{(x,t) \in E \times \mathbb{R} : 0 \le t < |f(x)|\}$ and F(x,t) = |f(x)| - t. Clearly F(x,t) is measurable on \mathbb{R}^{n+1} , as the measurability is preserved under the trivial extension of variables (see Proposition 1.2). Hence S is measurable, as

$$S = \{(x,t) \in E \times \mathbb{R} : t \ge 0\} \cap \{(x,t) \in E \times \mathbb{R} : F(x,t) > 0\}.$$

Applying the Tonelli's theorem to $pt^{p-1}\chi_{\mathcal{S}}(x,t) \geq 0$, we obtain

$$p \int_{[0,\infty)} t^{p-1} \mu_f(t) dt = \int_{\mathbb{R}^{n+1}} p t^{p-1} \chi_{\mathcal{S}}(x,t) dx dt$$
$$= \int_{\mathbb{R}^n} \int_{[0,\infty)} p t^{p-1} \chi_{\mathcal{S}}(x,t) dt dx$$
$$= \int_E \int_{[0,|f(x)|)} p t^{p-1} dt dx$$
$$= \int_E |f|^p.$$

As an immediate consequence, we see from the theorem above that

- if $\mu_f(t)$ behaves like t^{α} as $t \to \infty$ for some $\alpha \ge -p$, then $f \notin L^p$.
- if $\mu_f(t)$ behaves like t^{α} as $t \to 0$ for some $\alpha \le -p$, then $f \not\in L^p$.

Hence Theorem 1.4 gives criterion for the L^p -integrability of measurable function f through checking the integrability of its distribution function.