Maciej Byczko	Prowadzący:	Numer ćwiczenia	
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	2	
PN 10:50 TP	Temat ćwiczenia:	Ocena:	
	Układy Kombinacyjne	0 0011611	
Grupa:	Data wykonania:		
В	10 Października 2021		

Spis treści

1	Zad	anie 1		2
	1.1	Polece	enie	. 2
	1.2	Rozwi	iązanie	. 2
		1.2.1	Schemat układu	. 2
		1.2.2	Kod VHDL	. 2
		1.2.3	Symulacja	. 3
2	Zad	anie 2		3
	2.1	Polece	enie	. 3
	2.2	Rozwia	iązanie	. 3
		2.2.1	Wyprowadzenie	. 3
		2.2.2	Tabela prawdy	. 4
		2.2.3	Siatka Karnaugh	
		2.2.4	Schemat układu	
		2.2.5	Kod VHDL	. 5
		2.2.6	Symulacja	. 6
3	Zad	anie 3		6
	3.1	Polece	enie	. 6
	3.2	Rozwia	iązanie	. 7
		3.2.1	Tabela Prawdy	. 7
		3.2.2	Siatki Karnaugh	
		3.2.3	Schemat układu	
		3.2.4	Kod VHDL	. 8
		3.2.5	Symulacja	. 10
4	Wni	ioski		10

1 Zadanie 1

1.1 Polecenie

Wykonać dowolną bramkę - funktor: 2 wejścia, 1 wyjście

1.2 Rozwiązanie

1.2.1 Schemat układu

1.2.2 Kod VHDL

```
LIBRARY ieee;
  USE ieee.std_logic_1164.ALL;
  USE ieee.numeric_std.ALL;
  LIBRARY UNISIM;
  USE UNISIM. Vcomponents. ALL;
  ENTITY schematic_zad1_schematic_zad1_sch_tb_IS
  END schematic zad1 schematic zad1 sch tb;
  ARCHITECTURE behavioral OF schematic_zad1_schematic_zad1_sch_tb IS
     COMPONENT schematic zad1
10
                    : IN
                           STD LOGIC;
     PORT(
             IN 1
11
                           STD LOGIC;
             IN 2
                      IN
12
                      OUT STD_LOGIC);
             OUT 1:
13
     END COMPONENT;
14
     SIGNAL IN_1
                   : STD_LOGIC;
      SIGNAL IN_2
                   : STD_LOGIC;
17
      SIGNAL OUT_1:
                      STD LOGIC;
18
19
  BEGIN
20
21
     UUT: schematic_zad1 PORT MAP(
22
       IN 1 \Rightarrow IN 1,
23
       IN_2 \implies IN_2,
24
       OUT_1 \implies OUT_1
25
      );
26
27
  IN_1 \le '0', '1' after 100 ns, '0' after 300 ns;
  IN_2 <= '0',
                 '1' after 200 ns,
                                     '0' after 400 ns;
29
```

END;

1.2.3 Symulacja

2 Zadanie 2

2.1 Polecenie

Implementacja funkcji logicznej $G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$

2.2 Rozwiązanie

2.2.1 Wyprowadzenie

$$G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$$

$$= \sum (1, 5, 8, 10, 14) = \sum (0001, 0101, 1000, 1010, 1110)$$

$$= \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + w\overline{x}y\overline{z} + w\overline{x}y\overline{z} + wxy\overline{z}$$

$$= \overline{w}yz(\overline{x} + x) + w\overline{z}(\overline{x}y + \overline{x}y + xy)$$

$$= \overline{w}yz + w\overline{z}(\overline{x}(\overline{y} + y) + xy)$$

$$= \overline{w}yz + w\overline{z}(\overline{x} + xy)$$

$$= \overline{w}yz + w\overline{z}((\overline{x} + x)(\overline{x} + y))$$

$$= \overline{w}yz + w\overline{z}((\overline{x} + y))$$

$$= \overline{w}yz + w\overline{z}((\overline{x} + y))$$

$$= \overline{w}yz + w\overline{z}z + w\overline{z}y$$

$$(9)$$

2.2.2 Tabela prawdy

Kod dziesiętny	W	X	У	Z	G
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

2.2.3 Siatka Karnaugh

Rysunek 1: $G_{wxyz} = w\overline{x}\overline{z} + \overline{w}\overline{y}z + wy\overline{z}$

2.2.4 Schemat układu

2.2.5 Kod VHDL

```
LIBRARY ieee;
  USE ieee.std_logic_1164.ALL;
  USE ieee.numeric std.ALL;
  LIBRARY UNISIM;
  USE UNISIM. Vcomponents. ALL;
  ENTITY schematic_zad2_schematic_zad2_sch_tb_IS
  END schematic zad2 schematic zad2 sch tb;
  ARCHITECTURE behavioral OF schematic_zad2_schematic_zad2_sch_tb IS
     COMPONENT schematic_zad2
10
             w : IN
                      STD_LOGIC;
     PORT(
11
             x : IN
                      STD LOGIC;
12
             y : IN
                      STD_LOGIC;
13
             : IN STD_LOGIC;
14
                       : OUT STD_LOGIC);
             G_{wxyz}
15
     END COMPONENT;
16
      SIGNAL w : STD\_LOGIC := '0';
18
     SIGNAL x : STD LOGIC := '0';
19
     SIGNAL y : STD\_LOGIC := '0';
20
    SIGNAL z
              : STD\_LOGIC := '0';
21
     SIGNAL G_wxyz : STD_LOGIC;
22
23
  BEGIN
24
     UUT: schematic_zad2 PORT MAP(
26
       w \implies w,
27
```

```
x \implies x,
28
        y \implies y \;,
29
         z \implies z,
30
        G_wxyz \implies G_wxyz
31
32
33
        w <= not w after 800ns;
34
        x \le not x after 400 ns;
35
        y \ll not y after 200 ns;
       z \ll not z after 100 ns;
37
   END;
```

2.2.6 Symulacja

3 Zadanie 3

3.1 Polecenie

Implementacja układu translatora kodu 4-bit kod NKB na 4-bit kod Aikena

3.2 Rozwiązanie

3.2.1 Tabela Prawdy

TZ: 1 1 toda	NKB				Kod Aikena			
Kod dziesiętny	W	X	у	z	W	X	у	z
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	1	1	1	1	1	0	1
8	1	0	0	0	1	1	1	0
9	1	0	0	1	1	1	1	1
10	1	0	1	0	-	-	-	-
11	1	0	1	1	-	-	-	-
12	1	1	0	0	-	-	-	-
13	1	1	0	1	_	-	-	-
14	1	1	1	0	_	-	-	_
15	1	1	1	1	_	-	-	-

3.2.2 Siatki Karnaugh

$$x_A = x\overline{z} + xy + w$$

		yz					
		00	01	11	10		
wx	00	0	1	1	0		
	01	0	1	1	0		
	11		-	-	-		
	10	0	1	-	-		

$$y_A = \overline{x}y + x\overline{y}z + w$$

 $z_A = z$

3.2.3 Schemat układu

$3.2.4 \mod VHDL$

- Vhdl test bench created from schematic C:\Users\Qucker135\
Documents\ISE_DS_projects\NKB_to_Aiken\NKB_to_Aiken_schematic.sch
- Wed Oct 06 22:49:49 2021

Notes:

```
1) This testbench template has been automatically generated using
      types
     std_logic and std_logic_vector for the ports of the unit under
     test.
     Xilinx recommends that these types always be used for the top-
     I/O of a design in order to guarantee that the testbench will
     bind
    - correctly to the timing (post-route) simulation model.
    - 2) To use this template as your testbench, change the filename to
      any
     name of your choice with the extension .vhd, and use the "Source
10
     —>Add"
    - menu in Project Navigator to import the testbench. Then
11
     edit the user defined section below, adding code to generate the
12
    - stimulus for your design.
13
  LIBRARY ieee;
15
  USE ieee.std_logic_1164.ALL;
16
  USE ieee.numeric std.ALL;
  LIBRARY UNISIM;
18
  USE UNISIM. V components. ALL;
19
  ENTITY NKB_to_Aiken_schematic_NKB_to_Aiken_schematic_sch_tb_IS
  END NKB_to_Aiken_schematic_NKB_to_Aiken_schematic_sch_tb;
  ARCHITECTURE behavioral OF
22
         NKB_to_Aiken_schematic_NKB_to_Aiken_schematic_sch_tb_IS
23
24
     COMPONENT NKB_to_Aiken_schematic
25
                : IN STD LOGIC;
     PORT(X_3
26
      X_2 : IN
                 STD_LOGIC;
             X_1 : IN
                       STD_LOGIC;
             X 0 : IN
                       STD LOGIC;
29
             Y 3 : OUT STD LOGIC;
30
             Y_2 : OUT STD_LOGIC;
31
             Y 1 : OUT STD LOGIC:
32
             Y_0 : OUT STD_LOGIC);
33
     END COMPONENT;
     SIGNAL X 3 : STD LOGIC := 0;
36
     SIGNAL X 2 : STD LOGIC := '0';
37
     SIGNAL X_1 : STD_LOGIC := '0';
38
     SIGNAL X_0 : STD\_LOGIC := '0';
39
     SIGNAL Y_3 : STD_LOGIC;
     SIGNAL Y_2 : STD_LOGIC;
     SIGNAL Y_1 : STD_LOGIC;
42
     SIGNAL Y_0 : STD_LOGIC;
43
44
  BEGIN
45
46
     UUT: NKB_to_Aiken_schematic PORT MAP(
47
      X_3 => X_3,
```

```
X_2 => X_2,
49
        X_1 => X_1,
50
        X_0 => X_0,
51
        Y_3 => Y_3,
52
        Y_2 \implies Y_2,
53
        Y_1 => Y_1,
54
        Y_0 => Y_0
55
       );
56
57
        X_3 \le not X_3 \text{ after } 800 ns;
58
        X_2 \le not X_2 \text{ after } 400 \, ns;
59
        X_1 \le not X_1 \text{ after } 200 ns;
60
        X_0 \le not X_0 after 100 ns;
61
62
   END;
63
```

3.2.5 Symulacja

