

CAPACIDAD Parte1

- 1. Si dispone de tres condensadores de 12 μF . Dibuje cómo los conectaría para producir un condensador con capacitancia equivalente de: 4 μF , 8 μF , 18 μF y 36 μF , respectivamente. ¿Podría conectarlos de manera de producir otro valor?
- 2. Se tienen tres condensadores conectados como en la figura. Si la capacidad equivalente es 210 μF , C_1 =100 μF y C_3 =300 μF ¿Cuál debe ser el valor de C_2 ?

3. Para el circuito de la figura, se sabe que C_1 =150 mF, C_2 =200 mF y que C_{AD} =120 mF. Calcular la proporción C_{BD}/C_{AD} .

- 4. Un capacitor de 2.20 *mF* se carga con una batería de 12.0 *V*. Se desconecta de la batería y luego se conecta a un capacitor descargado de 3.50 *mF* (figura). Determine la energía total almacenada:
 - a) Antes de que se conecten los capacitores
 - b) Después de ser conectados.
 - c) ¿Cuál es el cambio en la energía?

5. El capacitor cilíndrico largo mostrado en la figura consiste en cuatro cilindros concéntricos, con radios respectivos Ra, Rb, Rc y Rd. Los cilindros b y c están unidos por bandas de metal. Determine la capacitancia por unidad de longitud de este arreglo. (Considere que hay cargas opuestas e iguales en el cilindro más interno y en el cilindro más externo).

6. Un capacitor tiene placas cuadradas, cada una de lado a, formando un ángulo θ entre sí como se muestra en la figura.

Demuestre que, para θ pequeño, la capacitancia está dada por:

$$C = \frac{\varepsilon_0 a^2}{d} \left(1 - \frac{a\theta}{2d} \right)$$

- 7. Encuentre la capacitancia de dos cascarones delgados, esféricos y concéntricos de radios *a* y *b*. Si consideramos *a* = 3 *cm* y *b* = 7 *cm*, determine el valor de la capacitancia.
- 8. Encuentre la capacitancia de tres cascarones delgados, esféricos y concéntricos de radios a, b y c (a < b < c).
- 9. Encuentre la capacitancia por unidad de largo de dos tubos cilíndricos coaxiales, de radios a y b.
- 10. En el circuito de la figura, la parte que incluye la placa derecha del condensador plano C_1 y la placa izquierda del condensador C_2 están unidas por una barra rígida de longitud $L=20\ cm$ que puede moverse horizontalmente para variar las capacidades de ambos condensadores. El área de ambos condensadores es $A=25\ cm^2$. La separación de las placas del condensador C_1 es x, mientras que la separación de las placas del condensador C_2 es y. Durante una traslación la longitud $d=L+x+y=30\ cm$ permanece constante.

- a) Obtenga la capacidad del sistema, en función de x.
- b) ¿Para qué valores de x la capacidad del sistema es mínima?
- c) Para x = 3 cm ¿Cuánto vale la energía almacenada por el sistema de condensadores?

Respuestas

- 1. Conéctelos en serie y/o paralelo, pruebe distintas configuraciones.
- 2. $600 \, \mu F$
- 3. $C_{BD}/C_{AD}=5$.
- 4. a) $1.58 \times 10^{-4} J$, b) $6.11 \times 10^{-5} J$, c) $-9.73 \times 10^{-5} J$
- 5. $\frac{C}{l} = \frac{2\pi\varepsilon_0}{\ln\left(\frac{R_a R_c}{R_b R_d}\right)}$
- 6. Demostración
- 7. $4\pi \varepsilon_0 \left(\frac{ab}{b-a}\right)$ 5.83×10⁻¹² F
- 8. $4\pi \varepsilon_0 \left(\frac{ac}{c-a} \right)$
- 9. $\frac{2\pi\,\varepsilon_0}{\ln(b/a)}$
- 10. a) $C = \varepsilon_0 A \left[\frac{d L}{(d L)x x^2} \right]$; b) $x_{\min} = \frac{d L}{2} = 5 \text{ cm}$; c) U(3) = 52.65 pJ