Week 1 Lab

AUTHOR Jessica Tran PUBLISHED
January 26, 2024

Problem 1

Create two data vectors x and y that contain the integers 1 to 21 and -10 to 10. Print both vectors.

```
x <- c(1:21)
x
```

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

```
y <- c(-10:10)
y
```

Do the following:

(a) Add, subtract, multiply, and divide x by y. Place a comment after each line of code explaining what operation you are performing in words.

```
x+y #adding x & y
```

[1] -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

```
x-y #subtracting x & y
```

```
x*y #multiplying by x & y
```

```
[1] -10 -18 -24 -28 -30 -30 -28 -24 -18 -10 0 12 26 42 60 80 102 126 152 [20] 180 210
```

```
x/y #dividing x by y
```

```
[1] -0.1000000 -0.2222222 -0.3750000 -0.5714286 -0.8333333 -1.2000000

[7] -1.7500000 -2.6666667 -4.5000000 -10.0000000 Inf 12.0000000

[13] 6.5000000 4.6666667 3.7500000 3.2000000 2.8333333 2.5714286
```

[19] 2.3750000 2.2222222 2.1000000

(b) Find the mean of each data set.

```
mean(x) #mean of vector x
```

[1] 11

```
mean(y) #mean of vector y
```

[1] 0

(c) Find the corrected sum of squares for each data set. The formula for this is:

$$\sum (x_i - ar{x})^2$$

```
sum((x-mean(x))^2)
```

[1] 770

```
sum((y-mean(y))^2)
```

[1] 770

(d) Find the mean of the product of x and y.

```
mean(x*y)
```

[1] 36.66667

Problem 2

Participant:	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>
Score standing on level ground:	56	50	41	65	47	50	64	48	47	57
Score standing on a slope:	38	50	46	46	42	41	49	38	49	55

Create a data frame called data with the Problem_2.png image on Canvas. Create your own column names as you see fit. Print data.

```
data <- data.frame(
   "Participants" = c(1:10),
   "Level Ground" = c(56,50,41,65,47,50,64,48,47,57),
   "Slope" = c(38,50,46,46,42,41,49,38,49,55)
)
data</pre>
```

	Participants	${\tt Level.Ground}$	Slope
1	1	56	38
2	2	50	50
3	3	41	46
4	4	65	46
5	5	47	42
6	6	50	41
7	7	64	49
8	8	48	38
9	9	47	49
10	10	57	55

Add a column to data which is the ratio of the score standing on level ground to the score standing on a slope. Print data.

```
LevelGround <- c(56,50,41,65,47,50,64,48,47,57)
Slope <-c(38,50,46,46,42,41,49,38,49,55)
data["Ratio"] <- LevelGround/Slope
data
```

	Participants	Level.Ground	Slope	Ratio
1	1	56	38	1.4736842
2	2	50	50	1.0000000
3	3	41	46	0.8913043
4	4	65	46	1.4130435
5	5	47	42	1.1190476
6	6	50	41	1.2195122
7	7	64	49	1.3061224
8	8	48	38	1.2631579
9	9	47	49	0.9591837
10	10	57	55	1.0363636

Find the mean of the score standing on level ground and the mean score standing on a slope.

```
mean(data$Level.Ground)
```

[1] 52.5

```
mean(data$Slope)
```

[1] 45.4

Problem 3

R has a few build in data sets, convenient for learning new skills. For example, the famous iris data set is built in. In the code chunk below, type in iris into the chunk below and run it.

```
iris
```

26/24, 2:59	9 PM			Week I	Lab
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa
17	5.4	3.9	1.3	0.4	setosa
18	5.1	3.5	1.4	0.3	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa
22	5.1	3.7	1.5	0.4	setosa
23	4.6	3.6	1.0	0.2	setosa
24	5.1	3.3	1.7	0.5	setosa
25	4.8	3.4	1.9	0.2	setosa
26	5.0	3.0	1.6	0.2	setosa
27	5.0	3.4	1.6	0.4	setosa
28	5.2	3.5	1.5	0.2	setosa
29	5.2	3.4	1.4	0.2	setosa
30	4.7	3.2	1.6	0.2	setosa
31	4.8	3.1	1.6	0.2	setosa
32	5.4	3.4	1.5	0.4	setosa
33	5.2	4.1	1.5	0.1	setosa
34	5.5	4.2	1.4	0.2	setosa
35	4.9	3.1	1.5	0.2	setosa
36	5.0	3.2	1.2	0.2	setosa
37	5.5	3.5	1.3	0.2	setosa
38	4.9	3.6	1.4	0.1	setosa
39	4.4	3.0	1.3	0.2	setosa
40	5.1	3.4	1.5	0.2	setosa
41	5.0	3.5	1.3	0.3	setosa
42	4.5	2.3	1.3	0.3	setosa
43	4.4	3.2	1.3	0.2	setosa
44	5.0	3.5	1.6	0.6	setosa
45	5.1	3.8	1.9	0.4	setosa
46	4.8	3.0	1.4	0.3	setosa
47	5.1	3.8	1.6	0.2	setosa
48	4.6	3.2	1.4	0.2	setosa
49	5.3	3.7	1.5	0.2	setosa

1,20,21,2.371111				Week I Euo
50	5.0	3.3	1.4	0.2 setosa
51	7.0	3.2	4.7	1.4 versicolor
52	6.4	3.2	4.5	1.5 versicolor
53	6.9	3.1	4.9	1.5 versicolor
54	5.5	2.3	4.0	1.3 versicolor
55	6.5	2.8	4.6	1.5 versicolor
56	5.7	2.8	4.5	1.3 versicolor
57	6.3	3.3	4.7	1.6 versicolor
58	4.9	2.4	3.3	1.0 versicolor
59	6.6	2.9	4.6	1.3 versicolor
60	5.2	2.7	3.9	1.4 versicolor
61	5.0	2.0	3.5	1.0 versicolor
62	5.9	3.0	4.2	1.5 versicolor
63	6.0	2.2	4.0	1.0 versicolor
64	6.1	2.9	4.7	1.4 versicolor
65	5.6	2.9	3.6	1.3 versicolor
66	6 . 7	3.1	4.4	1.4 versicolor
67	5.6	3.0	4.5	1.5 versicolor
68	5.8	2.7	4.1	1.0 versicolor
69	6.2	2.2	4.5	1.5 versicolor
70	5.6	2.5	3.9	1.1 versicolor
71	5.9	3.2	4.8	1.8 versicolor
72	6.1	2.8	4.0	1.3 versicolor
73	6.3	2.5	4.9	1.5 versicolor
74	6.1	2.8	4.7	1.2 versicolor
7 4 75	6.4	2.9	4.3	1.3 versicolor
75 76	6.6	3.0	4.4	1.4 versicolor
70 77	6.8	2.8	4.8	1.4 versicolor
78	6 . 7	3.0	5.0	1.7 versicolor
78 79	6.0	2.9	4.5	1.5 versicolor
80		2.6		1.0 versicolor
81	5.7 5.5	2.4	3.5 3.8	1.1 versicolor
		2.4		1.0 versicolor
82 83	5.5 E.8		3.7	
	5.8	2.7	3.9	1.2 versicolor
84 os	6.0 5.4	2.7	5.1	1.6 versicolor
85 86	5.4	3.0	4.5	1.5 versicolor
86 87	6.0	3.4	4.5	1.6 versicolor
87	6.7	3.1	4.7	1.5 versicolor
88	6.3	2.3	4.4	1.3 versicolor
89	5.6	3.0	4.1	1.3 versicolor
90	5.5	2.5	4.0	1.3 versicolor
91	5.5	2.6	4.4	1.2 versicolor
92	6.1	3.0	4.6	1.4 versicolor
93	5.8	2.6	4.0	1.2 versicolor
94	5.0	2.3	3.3	1.0 versicolor
95	5.6	2.7	4.2	1.3 versicolor
96	5.7	3.0	4.2	1.2 versicolor
97	5.7	2.9	4.2	1.3 versicolor
98	6.2	2.9	4.3	1.3 versicolor
99	5.1	2.5	3.0	1.1 versicolor
100	5.7	2.8	4.1	1.3 versicolor

120124, 2.39 FWI				WCCKIL	au
101	6.3	3.3	6.0	2.5	virginica
102	5.8	2.7	5.1	1.9	virginica
103	7.1	3.0	5.9	2.1	virginica
104	6.3	2.9	5.6	1.8	virginica
105	6.5	3.0	5.8	2.2	virginica
106	7.6	3.0	6.6	2.1	virginica
107	4.9	2.5	4.5	1.7	virginica
108	7.3	2.9	6.3	1.8	virginica
109	6.7	2.5	5.8	1.8	virginica
110	7.2	3.6	6.1	2.5	virginica
111	6.5	3.2	5.1	2.0	virginica
112	6.4	2.7	5.3	1.9	virginica
113	6.8	3.0	5.5	2.1	virginica
114	5.7	2.5	5.0	2.0	virginica
115	5.8	2.8	5.1	2.4	virginica
116	6.4	3.2	5.3	2.3	virginica
117	6.5	3.0	5.5	1.8	virginica
118	7.7	3.8	6.7	2.2	virginica
119	7.7	2.6	6.9	2.3	virginica
120	6.0	2.2	5.0	1.5	virginica
121	6.9	3.2	5.7	2.3	virginica
122	5.6	2.8	4.9	2.0	virginica
123	7.7	2.8	6.7	2.0	virginica
124	6.3	2.7	4.9	1.8	virginica
125	6.7	3.3	5.7	2.1	virginica
126	7.2	3.2	6.0	1.8	virginica
127	6.2	2.8	4.8	1.8	virginica
128	6.1	3.0	4.9	1.8	virginica
129	6.4	2.8	5.6	2.1	virginica
130	7.2	3.0	5.8	1.6	virginica
131	7.4	2.8	6.1	1.9	virginica
132	7.9	3.8	6.4	2.0	virginica
133	6.4	2.8	5.6	2.2	virginica
134	6.3	2.8	5.1	1.5	virginica
135	6.1	2.6	5.6	1.4	virginica
136	7.7	3.0	6.1	2.3	virginica
137	6.3	3.4	5.6	2.4	virginica
138	6.4	3.1	5.5	1.8	virginica
139	6.0	3.0	4.8	1.8	virginica
140	6.9	3.1	5.4	2.1	virginica
141	6.7	3.1	5.6	2.4	virginica
142	6.9	3.1	5.1	2.3	virginica
143	5.8	2.7	5.1	1.9	virginica
144	6.8	3.2	5.9	2.3	virginica
145	6.7	3.3	5.7	2.5	virginica
146	6.7	3.0	5.2	2.3	virginica
147	6.3	2.5	5.0	1.9	virginica
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica

You can treat the object iris just like data from Problem 3. Find the min, max, median, and mean of Petal.Width. Leave a comment after each line explaining what operation you are performing.

```
min(iris$Petal.Width) #minimum of petal width
```

[1] 0.1

```
max(iris$Petal.Width) #maximum of petal width
```

[1] 2.5

```
median(iris$Petal.Width) #median of petal width
```

[1] 1.3

```
mean(iris$Petal.Width) #mean of petal width
```

[1] 1.199333

Submitting

Submit the following to Canvas:

- Your rendered PDF titled Lastname_1R. Make sure your name is at the top of the document.
- Your .qmd file