Divide and Conquer

Closest Pair

Closest Pair

- Input: A set n points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Output: A pair of distinct points whose distance is smallest.

Straight-forward Idea

- Input: A set n points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Output: A pair of distinct points whose distance is smallest.
- Plan 1: Brute-force
 - Compute all $\frac{n(n-1)}{2}$ pairs.
 - Output the smallest one.

Straight-forward Idea

- Input: A set n points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Output: A pair of distinct points whose distance is smallest.
- Plan 1: Brute-force
 - Compute all $\frac{n(n-1)}{2}$ pairs.
 - Output the smallest one.
 - $O(n^2)$

- Improve it by sorting
- Avoid some useless computation

- Improve it by sorting
- Avoid some useless computation
- Special case: all points are on the same line.

- Special case: all points are on the same line.
- Plan 2: Sorting
- Sort the points (by the x-coordinate)
 - (6,0)
 - (3,0)
 - (0,0)
 - (10,0)
 - (4,0)

- Special case: all points are on the same line.
- Plan 2: Sorting

 $O(n \log n)$

- Sort the points (by the x-coordinate)
 - Only compute the distance of adjacent point pair.

O(n)

- Output the closest pair.

How to extend this Idea to general case?

Ok! Let's move to divide and conquer!

Divide and Conquer

- Input: A set n points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Output: A pair of distinct points whose distance is smallest.
- Plan 3: Divide and Conquer
 - Divide:
 - Sort the points (by the x-coordinate)
 - Assume all x-coordinate are different.
 - Points are sorted by the x-coordinate.
 - By a vertical line so that each side has n/2 points

Divide

Divide:

- Sort the points (by the x-coordinate)
- Draw a vertical line so that each side has n/2 points.

Recurse

- Find the closest pair in each side.

Recurse

- Find the closest pair in each side.

Combine

- Find the closet pair between two sides.

Combine

- Find the closet pair between two sides.

Output the min of 3 pairs.

How long it takes?

- Straight-forward?
 - Compute all $\left(\frac{n}{2}\right)^2$ pairs, with one point on each side.
 - Return the closest one.
- What about the running time?
 - Divide: $O(n \log n)$
 - Points are sorted by the x-coordinate.
 - By a vertical line so that each side has n/2 points
 - Recurse: $2T(\frac{n}{2})$
 - Find the closest pair in each side.
 - Combine: $O(n^2)$
 - Combine: $O(n^2)$ Overall: $\mathbf{T}(\mathbf{n}) = O(n^2) + 2T(\frac{n}{2}) = O(n^2)^2$

- Key idea
 - We need not compute all pairs

- δ_L , δ_R : smallest distance on left and right
- δ : min $\{\delta_L, \delta_R\}$ (e.g., $\delta = 3, \delta_L = 3, \delta_R = 4$)

• Draw two lines, with δ apart from the middle line.

- Draw two lines, with δ apart from the middle line.
- Only focus on the points inside the two lines.

Only focus on the points inside the two lines.

• All the other distance is larger than δ .

Closest pair in the 2δ -strip

- Brute-force
 - Compute all pairs inside the 2δ -strip.
 - $O(m^2)$: number of points inside
 - Can we bound m?
 - No: m can be equal to n!

How to improve?

- Fix a point a
- Focus on pair (a, b)
 - b is above a.
- What kind of pairs is **impossible** to be the closest one?

How to improve?

- Fix a point a
- Focus on pair (a, b)
 - b is above a.
- What kind of pairs is impossible to be the closest one?

Second

Bonus

- b is outside the $2\delta \times \delta$ -rectangle.
- Focus on the $2\delta \times \delta$ -rectangle

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square

Points inside a $\delta \times \delta$ -square

- How many points can at most appear in the square?
- Tips: distance at least δ

$$- \delta = \min(\delta_L, \delta_R)$$

Discussion

	δ	
δ		δ
	δ	

Points inside a $\delta \times \delta$ -square

- How many points can at most appear in the square?
- Tips: distance at least δ

$$- \delta = \min(\delta_L, \delta_R)$$

- Divide into four sub-square
 - How many point can at most appear in the sub-square?
 - Two points are at most $\frac{\delta}{\sqrt{2}} < \delta$ apart.
 - At most one point!
- At most Four points in the square!

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square
 - 4 points on the left

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square
 - 4 points on the left
 - 4 points on the right (including a)

- Why the first bonus is not enough?
 - We can not **bound** the number of points!
- Can we bound it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square
 - 4 points on the left
 - 4 points on the right (including a)
 - 8 points totally (including a)

Closest pair in the 2δ-strip

- Brute-force
 - Compute all pairs inside the 2δ -strip.
 - $O(m^2)$: number of points inside
 - Can we bound m?
 - No: m can be equal to n!
- Improved way
 - Focus on point *a*
 - Focus on pair (a, b)
 - b is above a.
 - We only need to compute **Seven** b above a.

Divide and Conquer Algorithm

Function ClosestPair(S)

Divide:

- 1. Sort the points (by the x-coordinate).
- 2. Draw such a **vertical line** ℓ that each side has n/2 points.

Recurse

3. Find the closest pair in each side, let δ_L , δ_R be the distance.

Combine

- 4. Let $\delta = \min{\{\delta_L, \delta_R\}}$ and S' be the set of points at most δ from ℓ .
- 5. Sort S' by the y-coordinate.
- 6. For each $a \in S'$, check 7 b above a inside S', find the closest pair.
- 7. Return the closest pair among step 3 and 6.

Running time

Function ClosestPair(S)

Divide: $O(n \log n)$

- Divide:
 - 1. Sort the points (by the x-coordinate).
 - 2. Draw such a **vertical line** ℓ that each side has n/2 points.
- Recurse
 - 3. Find the closest pair in each side, let δ_L , δ_R be the distance.

Combine

- 4. Let $\delta = \min{\{\delta_L, \delta_R\}}$ and S' be the set of points at most δ from ℓ .
- 5. Sort S' by the y-coordinate.
- 6. For each $a \in S'$, check 7 b above a inside S', find the closest pair.
- 7. Return the closest pair among step 3 and 6.

Recurse: $2T(\frac{n}{2})$

Recurse: $O(n \log n)$

Analysis

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n)$$

Recall Master Theorem

$$- T(n) = O(n \log n) \text{ if } T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

- Claim: $T(n) = O(n \log^2 n)$
 - We can not directly apply Master Theorem.
 - Prove it by induction!
 - Prove it by keep expending T(n)!

Improve more

- Can we improve divide and combine to O(n)?
 - If we success, then $T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n \log n)$
- Tips
 - Do we really need sorting every time?
 - What happens if do sorting before divide and conquer?
- Even more
 - A randomized algorithm achieves O(n).
 - Samir Khuller and Yossi Matias (1995).
 - A simple randomized sieve algorithm for the closest-pair problem.

Today's goal

- Learn the closest pair algorithm
- Learn why we have the magical number 7 analytically
 - 7 is not important, can you tell why it can be bounded?
- Learn to analyze the running time without Master Theorem