

X4-Class **Power MOSFET**

IXTA60N20X4

 $\mathbf{V}_{\mathtt{DSS}}$ 200V 60A $21.0 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

 ►¬ ★)	
	TO-263
os	(IXTA)

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	200 200	V	
V _{GS}	Continuous Transient	±20 ±30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	60 106	A A	
I _A É _{AS}	T _c = 25°C T _c = 25°C	30 350	A mJ	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150$ °C	50	V/ns	
P _D	T _C = 25°C	250	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C	
T _{SOLD}	Plastic Body for 10s	260	°C	
F _c	Mounting Force	1065 / 2.214.6	N/lb	
Weight		2.5	g	

G = Gate	D	= Drain
S = Source	Tab	= Drair

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsChar(T, = 25°C, Unless Otherwise Specified)Min.		acteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150 ^{\circ}C$				μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$		17.6	21.0	mΩ

DS101043A(10/21) © 2021 Littelfuse, Inc.

Symbol	Test Conditions (Characteristic Values		
$(T_J = 25^{\circ}C, I)$	Unless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	34	56	S	
R_{Gi}	Gate Input Resistance		7.45	Ω	
C _{iss}			2450	pF	
c _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		406	pF	
C _{rss}			0.95	pF	
	Effective Output Capacitance				
C _{o(er)}	Energy related		240	pF	
C _{o(tr)}	Time related $\int V_{DS}^{65} = 0.8 \cdot V_{DSS}$		880	pF	
t _{d(on)}	Pagiativa Switching Times		13	ns	
t,	Resistive Switching Times		22	ns	
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		52	ns	
t,	$\int R_{\rm G} = 5\Omega \text{ (External)}$		10	ns	
Q _{g(on)}			33	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		9	nC	
\mathbf{Q}_{gd}	J		11	nC	
R_{thJC}				0.60 °C/W	

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
I _s	V _{GS} = 0V			60	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			240	Α
$\mathbf{V}_{\mathtt{SD}}$	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} & \ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 30A$, -di/dt = 200A/ μ s $V_R = 100V$		107 920 17		ns nC A

Note 1: Pulse test, $t \leq 300 \mu s,$ duty cycle, d $\leq 2~\%$

IXTA60N20X4

0

0.2

0.4

0.6

8.0

V_{DS} - Volts

1.6

1.8

1.2

1.4

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 30A Value vs. Junction Temperature

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

IXTA60N20X4

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

Littelfuse reserves the right to change limits, test conditions and dimensions.

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

Pulse Width - Second

© 2021 Littelfuse, Inc.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littlefuse.com/disclaimer-electronics.