GREENHILL ACADEMY

MATHEMATICS LESSON NOTES FOR PRIMARY FIVE (TERM 1)

TERM 1 TOPICS

- SET CONCEPTS
- NUMERATION SYSTEMS
- OPERATION ON NUMBERS
- NUMBER BASES
- FINITE SYSTEM
- NUMBER PATTERNS
- FRACTION

WK. 1: Lesson 1 & 2

SETS

Review of P.4 work on sets

- 1. Draw set symbols for:
 - a) Subset of
 - b) b) union set
 - c) Intersection set
 - d) Null set
 - e) Equal set
 - f) Non equivalent set
 - g) Equivalent set
 - h) Non equivalent set.
- 2. Give that Set $A = \{1, 2, 3, 4\}$

$$B = \{ 5, 6, 7, 8 \}$$

$$C = \{ 1, 3, 4, 2 \}$$
 and

$$D = \{ a, e, I, o, u \}$$

- a) Describe set A
- b) Using symbols show the relationship between sets
 - (i) A and C
 - B and C (ii)
 - (iii) A and D.
- 3. Draw a venn diagram and shade the regions below.
 - (i) $A \cap B$
- (ii) $P \cup Q$ (iii) F G (iv) G F
- 4. Study the Venn diagram below and answer the questions that follow.

a) Find n(A - B)

- b) n(B A)
- c) Write down all members of
 - i) Set A
- ii) Set B
- iii) Set $A \cap B$
- iv) Find $n(A \cup B)$

- 5. Given that $X = \{0, 1, 2, 3, 4\}$ and $Y = \{1, 3, 6, 9, 12\}$
 - a) Represent the two sets on the Venn diagram.

- b) From the venn diagram, find
 - $\mathsf{X} \cap \mathsf{Y}$ (i)
- (ii) $n(X \cup Y)$ (iii) n(Y X)

WK. 1: Lesson 3

Complement of sets

Complement of a set means a set of members not in the given set.

OR

Elements in the universal set but not in the given set.

Example

Given that; $P = \{4, 3, 6, 7, 9\}$ and

$$Q = \{1, 2, 3, 5, 7\}$$

Write down members in P' (Complement of set P)

$$P' = \{1, 2, 3\}$$
 * Find $n(P \cap Q)$

Note: The symbol for complement of a set

Shading regions for complement of a set

 $A \cap B$ the complement

Draw and shade (A∪B)'

ACTIVITY

Mk Book 6 page 8 - 10 primary school Maths book 15 pg 7 - 8.

Fountain Primary Mtc bk. 6 pg 8 – 10

WK. 1: Lesson 4

SUBSETS

A subset is a small set got from a big set.

The bigger set from which a subset is got is called a <u>Universal set</u> or <u>Super set</u>.

The symbol for subset is **C.**

The symbol for not a subset is $\not\subset$. The symbol for Universal set is ξ .

1. Draw a venn diagram to show that all goats (G) are Animals (A)

2. Draw a venn diagram to show that girls are a subset of females

3. Given that set $Q = \{a, b, c\}$. List down all the subsets in set Q.

$$\{\}, \{abc\} \longrightarrow Subsets \longrightarrow 8 \text{ in number.}$$

N.B The empty set and the set itself (universal) are subsets of every set.

4. By calculating, find the number of subsets in set Z if $Z = \{7, 5, 3\}$ No. of subsets = 2^n where n represents the number of elements in the given set.

∴ set Z has 3 elements

$$\therefore$$
 n(c) = 2^n

$$= 2^3$$

$$= 2 \times 2 \times 2$$

$$= 4 \times 2$$

= 8 subsets

Ref: Mk. Bk 7 Pg 2

WK. 1: Lesson 5

PROPER SUBSETS

These are all subsets of a given set excluding the given set itself. (Universal set)

Set $P = \{1, 2, 3\}$. Find by listing all the proper subsets of set P.

These are :-

→ 7 proper subsets.

ii) By calculation

Number of proper subsets

$$= 2^n - 1$$

$$= 2^3 - 1$$

$$= (2 \times 2 \times 2) - 1$$

$$= 8 - 1$$

REF: Mk bk 7 pg 2 - 3

WK. 1: Lesson 6

APPLICATION OF SETS

In a group of swimmers, 15 do free style (f) 10 do backstroke (b) and 6 do both

$$n(f) = 15$$

$$n(b) = 10$$

$$n(f \cap B) = 6$$

a) Represent the above information on a venn diagram.

b) How many swimmers swim only back stroke?

4 swimmers

c) How many do only free style?

$$15 - 6$$

19 swimmers

d) How many swimmers are in that group?

$$(10+6)+6+(15-6)$$

 $4+6+9$
 $10+9$

= 19 swimmers

e) How many swim only one style?

Backstroke only + free style

$$(10-6) + 15-6$$

$$4 + 9$$

= 13 swimmers

- 2. Given that n(A) = 15 n(B) = 25 $n(A \cap B) = 5$
- a) Represent the above information on a venn diagram

REF: Mk book 6 pg 29 - 30

WK. 2: Lesson 1

PLACE VALUES AND VALUES OF WHOLES

Reviewing place values up to millions.

Give the value of each digit in 4123456.

NUMBER	DIGIT	PLACE VALUE	VALUE
6,142,572	6	MILLIONS	6 X 1,000,000 = 6,000,000
	1	HUNDRED THOUSANDS	1 X 100,000 = 100,000
	4	TEN THOUSANDS	4 X 10,000 = 40,000
	2	THOUSANDS	2 X 1000 = 2000
	5	HUNDREDS	5 X 100 = 500
	7	TENS	7 X 10 = 70
	2	ONES	2 X 1 = 2

REF: MK Bk 5 page 26 – 27

Understanding MTC bk 5 pg 16 - 17

Mk bk 6 pg 34

WK. 2: Lesson 2

Writing figure in words

When writing in words, we group the number into it's major groups:

Example

4,156,036

Millions	Thousands	Units
4	156	036

4 156 036 → Four millions one hundred

fity six thousands thirty six.

REF: Understanding MTC bk 5 pg 13, bk 6 pg 23

Prim MTC, Macmillan bk 5 pg 18 - 19

WK. 2: Lesson 3

Writing words in figures

Write six hundred two thousand, four hundred sixty four in figures.

Solution: breakdown the number in it's groups.

Six hundred two thousand = 602,000

Four hundred sixty four = + 464

602,464

Example II

Write two million, seven hundred thirty two.

Two million → 2,000,000

Seven hundred sixty five thousand →765,000

Four hundred thirty two _____ 432

2,765,432

REF: Mk bk 6 pg 38 -39.

WK. 2: Lesson 4

PLACE VALUES AND VALUES OF DECIMALS

Write the place value and value of each digit in the No. below.

<u>Values</u> (Note: Value = digit x place value)

$$0.3464$$

$$-4 \times \frac{1}{10,000} = \frac{4}{10,000} = 0.0004$$

$$-6 \times \frac{1}{1000} = \frac{6}{1000} = 0.006$$

$$-4 \times \frac{1}{100} = \frac{4}{100} = 0.04$$

$$-3 \times \frac{1}{10} = \frac{3}{10} = 0.3$$

What is the value of 8 in 0.238

0.238

$$8 \times \frac{1}{1000} = \frac{8}{1000} =$$
0.008

Writing decimals in words.

i)
$$0.5 = \frac{5}{10}$$

= Five tenths

- ii) 1.8 **One and eight tenths.**
- iii) 21.008

Twenty one and eight thousandths.

One hundred ninety five and seventy five thousandth.

Reference: 1) Learning Math standard five pg 29.

2) Mk bk 6 pg 46

WK. 2: Lesson 5 & 6

Writing decimals in figures

Example

1) Thirty six and four tenths

36 and
$$\frac{4}{10}$$

36 and 0.4

36.0

0.4

<u>36.4</u>

2) Six tenth

$$\frac{6}{10} =$$
0.6

3) Fourteen hundredths

$$\frac{14}{100} = \mathbf{0.14}$$

4) One hundred twenty and fourteen hundredths.

120 and
$$\frac{14}{100}$$

120 and 0.14

Or

120.00

0.14

120.14

Reference: 1) Mk bk 6, pg 45.

WK. 3: Lesson 1

EXPANDING WHOLE NUMBERS

Expanding using values

1) Expand 349

$$349 = (3 \times 100) + (4 \times 10) + (9 \times 1)$$

$$300 + 40 + 9$$

2) Expand 48914

$$48914 = (4 \times 10,000) + (8 \times 1000) + (9 \times 100) + (1 \times 10) + (4 \times 1)$$

 $40,000 + 8000 + 900 + 10 + 4$

Expanding using powers / exponents

 $(1 \times 10^2) + (4 \times 10^1) + (8 \times 10^0)$

$$(7 \times 10^3) + (9 \times 10^2) + (6 \times 10^1) + (2 \times 10^0)$$

Writing expanded numbers as single numbers / short form.

What number has been expanded to give;

$$(2 \times 10^3) + (4 \times 10^2) + (3 \times 10^1) + (7 \times 10^0)$$

REFERENCE: Mk bk 5, pg 31 – 32, MK Bk. 7 pg 48

Understanding Math bk 5, pg 21.

WK. 3: Lesson 2

EXPANDING DECIMALS

- 1) Using values
- i) Expand 28.369

=
$$(2 \times 10) + (8 \times 1) + (3 \times \frac{1}{10}) + (6 \times \frac{1}{100}) + (\frac{9}{1000})$$

ii) Expand 1 3 5 . 6 5

$$(1 \times 100) + (3 \times 10) + (5 \times 1) + (6 \times \frac{1}{10}) + (7 \times \frac{1}{100})$$

$$100 + 30 + 5 + 0.6 + 0.07$$

2. **Using powers**

Expand 28.369 using powers.

$$(2 \times 10^{1}) + (8 \times 10^{0}) + (3 \times 10^{-1}) + (6 \times 10^{-2}) + (9 \times 10^{-3})$$

Writing expanded decimals in their shortest form. Mk bk. 7, pg 48 – 49

WK. 3: Lesson 3

ROMAN NUMERALS

HINDU	1	5	10	50	100	500	1000
ROMAN	I	V	X	L	С	D	М

A) Repeated Roman numerals

Numbers with 2 and 3.

$$2 = I + I = II$$

$$20 = 10 + 10 = XX$$

$$3 = I + I + I = III$$

$$30 = 10 + 10 + 10 = XXX$$

$$200 = 100 + 100 = \underline{CC}$$

$$300 = 100 + 100 + 100 = \underline{CCC}$$

B) **Subtraction Roman Numerals**

(number with 4 and 9)

$$4=(5-1)=\underline{IV}$$

$$40 = (50 - 10) = XL$$

$$9 = (10 - 1) = \underline{IX}$$

$$90 = (100 - 10) = XC$$

$$400 = (500 - 100) = \underline{CD}$$

$$900 = (1000 - 100) = CM$$

C) Addition Roman numerals

Numbers with (6, 7 and 8)

$$6 = (5+1) = VI$$
 $60 = 50 + 10 = LX$ $600 = 500 + 100 = DC$

$$7 = (5+2) = VII$$
 $70 = (50+20) = LXX$ $700 = 500 + 200 = DCC$

$$8 = (5+3) = VIII$$
 $80 = (50 + 30) = LXXX$ $800 = 500 + 300 = DCCC$

= CD + XL + V

Examples

Write the following as Roman numerals.

i)
$$75 = 70 + 5$$
 $445 = 400 + 40 + 5$

Changing roman numerals to Hindu – Arabic

Express LXXVI in hindu – Arabic numerals

$$=$$
 LXX + VI

$$= 70 + 6$$

=LXX + V

Mzee Yokana was born in the year MCMXLII. Express this year in Hindu – Arabic.

$$MCMXLII = M + CM + XL + II$$

 $1000 + 900 + 40 + 2$

<u> 1942</u>

REFERENCE: Mk bk 6 pg 50, Mk bk 5 pg 5 – 6

Learning MTC standard 5, pg 11

WK. 3: Lesson 4

ROUNDING OFF WHOLE NUMBERS

Rounding off means taking a given place value to another level.

When rounding off, we consider that if the digit on the right of the required place value is less than 5 we add to it 0 and replace all digits on it's right with 0's.

If the figure on the right of the place value is 5 or more add one to it.

Example

Round off 214 to the nearest tens.

Example II

Round off 7591 to the nearest thousands.

REFERENCE: Mk bk 6 pg 47

Mk bk 5 pg 20

Macmillan bk 5 pg 22 - 24.

WK. 3: Lesson 5

ROUNDING OFF DECIMALS

Example

1) Round of 31.46 to the nearest tenths.

31.46

1

<u>31.5</u>

NB: When rounding off decimals the digits on the right of the place value rounded off are not replaced.

2) Round off 4.169 to the nearest whole number.

Note: nearest whole number also means the place of ones.

4.169

0

4.000

∴ **4.169** ≈ <u>4</u>

NB:

REFERENCE: Understanding MTC bk 6 pg 25-26

Mk bk 6 pg 48.

OPERATION ON NUMBERS

WK. 3: Lesson 6

Review of work done in P.4 on addition and subtraction.

WK. 4: Lesson 1

MULTIPLICATION

Terms used: product

Example

1) Find the product of 28 and 23.

28
$$\times 23 = 20 + 3$$

28 $\times 20 = 560$

28 $\times 3 = 484$

644

2) In Moses' house there are 13 rooms and each room has 24 chairs. How many chairs are there altogether?

13
$$24 = 20 + 4$$
 $X 24$

$$13 \times 4 = 52$$

$$13 \times 20 = +260$$

312 chairs

REFERENCE: Understanding MTC bk 5 pg 42 – 45, MK BK. 5 pg 54 – 56

Macmillan MTC bk 5 pg 31 – 32

WK. 4: Lesson 2

DIVISION

Terms used: **share.**

Quotient.

Share 288 book s equally among 12 classes.

$$024$$

$$12\sqrt{288}$$

$$0 \times 2 = \underline{0}$$

$$28$$

$$48$$
 $4 \times 12 = 48$

1	12
2	24
3	36
4	48
5	60
6	72
7	84
8	96
9	108

Each class gets 24 books

REFERENCE: Understanding MTC bk 5 pg 62 – 66

Macmilan Pr MTC pg 32 – 36.

Mk bk. 5 pg. 57 – 62

WK. 4: Lesson 3

MIXED OPERATION (BODMAS)

Brackets

Of

Division

Multiplication

Addition

Subtraction

1) Workout: $240 \div (5 \times 8)$

40

2) Simplify: 8 - 12 + 4

8 + 4 - 12

12 - 12

0___

REFERENCE: Understanding MTC bk 6 62 – 66 MK. BK. 5 PG. 63

Macmillan bk 5 pg 37 - 38

WK. 4: Lesson 4

BASES

Introduction - Names of bases

- The digit used in each base.

- Place values

Bases: are systems of counting or grouping numbers.

Below are some of the systems their names and digits used in each.

Base	Name of base	Digits used
Base Two	Binary	0, 1
Base Three	Ternary	0, 1, 2
Base Four	Quaternary	0, 1, 2, 3
Base Five	Quinary	0, 1, 2, 3, 4
Base Six	Senary	0, 1, 2, 3, 4, 5
Base Seven	Septenary	0, 1, 2, 3, 4, 5, 6
Base Eight	Octal	0, 1, 2, 3, 4, 5, 6, 7
Base nine	Nonary	0, 1, 2, 3, 4, 5, 6, 7, 8
Base Ten	Deciaml (denary)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Place values in base five

Give the place value of each of the digits in 324_{five}

Example II 124_{five} 1 2 4_{five}

In base two the place values are:

Writing bases in words

A part form base ten (decimal base), when writing other bases in words we name their individual digits.

Example

- i) 43_{five} in words is written as Four, three, base five.
- ii) $213_{\text{five}} = \text{Two, one, three, base five.}$

REFERENCE: MK Bk 5, pg 70 – 71

WK. 4: Lesson 5

EXPANDING BASES

Example

Expand 13_{five}

- = (1 group of fives) (3ones)
- = (1 x fives) + (3xones)

Using powers

$$\frac{1}{5^1}$$
 $\frac{3}{5^0}$

$$= (1 \times 5^1) + (3 \times 5^0)$$

Expand 213_{five}

Example III

Expand 1 0 1two

(REF: MK. BK. 7, PG. 38)

WK. 4: Lesson 6

CHANGING FROM BASE FIVE TO BASE TEN

Example I

Change 14_{five} to base ten

14_{five}
ones
fives
$$= (1 \times 5) + (4 \times 1)$$

$$5 + 4$$

$$= 9ten$$

Example II

Change 213_{five} to base ten

Example III

Change 2 1 3_{four} to base five.

REFERENCE: MK bk 5 pg 71 // MK Bk 7, pg 39

WK. 5: Lesson 1

CHANGING FROM BASE TEN TO OTHER BASES

Change 9_{ten} to base five

Change 58_{ten} to base five.

	No.	Rem
5	58	3
5	11	1
	2 /	

$$\therefore 58_{ten}$$
= 2 1 3_{five}

Express 33_{ten} to base three

	No.	Rem
3	33	0
3	11	2
3	3	0
	1	

 $33_{ten} = 1020_{three}$

REFERENCE: MK BK 5 72 // Mk. Bk. Pg. 39
MACMILLAN BK 5 PG 6

WK. 5: Lesson 2

FINDING UNKNOWN BASES

Examples

Given $23_x = 19_{ten}$

Find the value of x

$$\begin{array}{c|cc} 2 & 3 \\ \hline x^1 & x^0 \\ \end{array}$$

$$= (2 \times x^{1}) + (3 \times x^{0}) = 19$$

$$(2 \times x) + (3 \times x) = 19$$

$$2x + 3$$

$$2x + 3 - 3 = 19 - 3$$

$$2x = 16$$

$$2x = 16$$

$$2x = 16$$

$$2x = 8$$

ii)
$$55_y = (5 \times y^1) + (5 \times y^0) = 35$$

 $5 \times y + 5 \times 1 = 35$
 $5y + 5 = 35$
 $5y + 5 - 5 = 35 - 5$
 $\frac{5y}{5} = \frac{30}{5}$
 $\frac{5}{5} = \frac{5}{5}$

REFERENCE: Fountain primary math bk 7 pg 37

Mk Bk 7 old edition pg 43

WK. 5: Lesson 3

ADDITION OF BASES

Workout: 24_{five} + 33_{five}

$$24_{five} 4 + 3 = 7 \div 5 = 1^{r2}$$

$$33_{\text{five}} \qquad 1 + 2 + 3 = 6 \div 5 = 1^{\text{r2}}$$

112_{five}

In addition if the answer is bigger than the base we divide, write the remainder and regroup the answer.

Example I

$$10011_{two}\,+\,1100_{two}$$

 10011_{two}

1100_{two}

11111_{two}

ACTIVITY: Understanding MTC bk 6 pg 46 - 47 // MTC bk 7 pg 40

WK. 5: Lesson 4

SUBTRACTION OF BASES

Example: $101_{two} - 11_{two}$

 101_{two}

<u>- 11_{two}</u>

<u>010</u> **⇒** <u>**10**_{two}</u>

Subtract: 40_{five}

- <u>22_{five}</u>

13_{five}

REFERENCE: Mk bk 7 pg 40 - 41 // Fountain Bk. 7 pg 33

WK. 5: Lesson 5

MULTIPLICATION OF BASES

$$2_{five} X 3$$

$$2_{\text{five}}$$

$$11_{\text{five}}$$

$$= 6 \div 5 = 1^{r1}$$

$$421_{\text{five}}$$

WK. 5: Lesson 6

FINITE SYSTEMS

This is a system of grouping where we consider only the remainders.

It can also be called modular (mod) or clock Arithmetic.

Grouping in finite systems

Finite 5.

$$7 = 2$$
 (finite 5)

By calculation

$$7 = 7 \div 5$$

$$7 = 2$$
(finite 5)

Express 10 in finites

$$10 = 10 \div 5$$

$$= 2^{r0}$$

10 = 0 (finite 5)

Write 6 in finite 7

Since 6 is less than 7

It remains as 6

$$6 = 6$$
 (finite 7)

REFERENCE: MK bk 5 pg 206

WK. 6: Lesson 1

ADDITION IN FINITE SYSTEMS

Using a dial

Add: 1 + 4 (finite 5)

1 + 4 = 0 (finite 5)

ii) 4 + 2 + 3 (finite 7)

4 + 2 + 3 + 2 (finite 7)

1 + 4 + (finite 5)

Reference: MK Bk. 5 pg 210

WK. 6: Lesson 2

SUBTRACTION IN FINITE

- 1. 3-4 =____ (finite 5) (5+3)-48-4=4
- 2. $6-5 = \pmod{7}$ $6-5 = 1 \pmod{7}$

Ref: MK Bk 7, pg 330

WK. 6: Lesson 3

NUMBER PATTERNS AND SEQUENCES

Review of P.4 Work on G.C.F and L.C.M from listed factors and multiples Mk Bk. 5 pg 80 – 82

WK. 6: Lesson 4

TYPES OF NUMBERS.

- 1) Whole numbers \implies 0, 1, 2, 3, 4, 5,
- 2) <u>Counting numbers</u>/ Natural numbers \rightarrow 1, 2, 3, 4, 5,
- 3) Odd numbers: These are numbers that give a remainder when divided by 2

 → {1, 3, 5, 7,}
- 4) Even numbers: These are ones that are exactly disable by two $\Rightarrow \{0, 2, 4, 6, 8, 10, \dots \}$
- 5) <u>Prime numbers:</u> These are numbers with only two factors.
 - **→** {2, 3, 5, 7, 11, 13,}
- 6) <u>Composition numbers:</u> These are numbers with more than 2 factors \Rightarrow {4, 6, 8, 9, 10, 12,}
- 7) Square numbers: These are numbers got by multiplying a number by its self.

 ⇒ {1, 4, 9, 16, 25,}
- 8) <u>Cubic numbers:</u> These are got by multiplying the same number three times. {1, 8, 27, 64,}
- 9) <u>Triangular numbers:</u> These are got by adding consecutive counting numbers.

REFERENCE: Understanding MTC bk 6 pg 81 – 84

Mk Bk 5 Pg 80 - 89

WK. 6: Lesson 5

DIVISIBILITY TESTS

These show which number is exactly divisible by another given number.

Divisibility test for 2.

A number is divisible by 2 if the last digit is an even number

i,e 0, 2, 4, 6, 8,

Divisibility test for 3.

A number is divisible by 3 if the <u>sum</u> of its <u>digits</u> is divisible by 3.

Example

State whether 144 is divisible by 3.

Sum of the digits

1 + 4 + 4

= 9

9 is divisible by 3

 \therefore 144 is divisible by 3.

Divisibility test for 4

A number is divisible by 4 if its last two digits are zero or divisible by 4.

Divisibility test for 5

A number is divisible by 5 if its last digit is either 0 or 5.

Divisibility test for 6

A number is divisible by 6 if it is even and the sum of its digits is divisible by 3.

Example:

Is 612 divisible by 6?

612 is divisible by 6 since it is an even number and the sum of its digits (6+1+2=9) as shown is divisible by 3.

Divisibility test for 7

When the last digit of a number is doubled and the result is subtracted from the number formed by the remaining digits, the result must be divisible by 7.

Example:

Is 861 divisible by 7?

The last digit is 1 and the number formed by the remaining digits is 86.

When is doubled it gives (1+1) = 2. Subtract 2 from 86 (86-2) = 84.

84 is divisible by 7 : 861 is also divisible by 7.

Note: For big numbers that cannot easily be detected as numbers divisible by 7, repeat the same procedure on the last result obtained after subtracting.

Divisibility test for 9

A number is divisible by 9 if the sum of its digits is divisible by 9.

Example:

198: The sum of 198 is 1 + 9 + 8 = 18

18 is divisible by 9 therefore 198 is divisible by 9.

Divisibility test for 10

A number is divisible by 10 if its last digit is 0.

REFERENCE: MK BK 6 pg 65 - 67.

WK. 6: Lesson 6

PRIME FACTORIZATION OF NUMBERS

Prime factorizing means dividing a number by its prime factors.

We use prime factors when prime factorizing e.g = $\{2, 3, 5, 7, 11, 13, \dots \}$

Example I

Prime factorise 18.

We can either use a ladder or a factor tree. i.e

2	18	
3	9	
3	3	
	1	

We can represent the prime factors as follows.

Set notation / subscript form

$$18 = \{2_1, 3_1, 3_2\}$$

Multiplication form

$$18 = 2 \times 3 \times 3$$

power form (expanded form)

$$18 = 2^1 \times 3^2$$

Example II

Prime factorise 100.

* Take note of factors of 100 that are prime numbers.

Subscript form ÷

$$100 = \{2_1, 2_2, 5_1, 5_2\}$$

Multiplication form

$$100 = 2 \times 2 \times 5 \times 5$$

Power form

$$100 = 2^2 \times 5^2$$

WK. 7: Lesson 1

FINDING L.C.M BY PRIME FACTORIZING

Example

Find the L.C.M of 4 and 12 by prime factorization.

2	4	12	
2	2	6	
3	1	3	
	1	1	

$$L.C.M = 2 \times 2 \times 3$$

$$= 4 \times 3$$

Example II

Find the L.C.M of 12 and 20.

2	12	20	
2	6	10	
3	3	5	
5	1	5	
	1	1	

L.C.M =
$$2 \times 2 \times 3 \times 5$$

= 4×15
= **60**

REFERENCE: MK MTC Bk 5 pg 86.

WK. 7: Lesson 2

Finding G.C.F by prime factorizing

Example:

Find the G.C.F of 6 and 8

G.C.F = 2

Example II

Find the G.C.F of 24 and 36.

G.C.F =
$$2 \times 2 \times 3$$

= 4×3 = **12**

WK. 7: Lesson 3

Representing rime factors on Venn diagrams

Example I

Represent the prime factors of 12 and 18 on a Venn diagram.

2	12
2	6
3	3
	1

2	18	
3	9	
3	3	
	1	

$$F_{12} = \{ 2_1, 2_2, 3_1 \}$$

$$F_{18} = \{ (2_1) (3_1) (3_2) \}$$

a) Find the G>C>F of 12 and 18.

G.C.F product of the intersection

$$F_{12} \cap F_{18} = \{2_1, 3_1\}$$

$$\therefore$$
 G.C.F = 2 x 3

<u>6</u>

L.C.M = product of the union.

$$F_{12} \cup F_{18} = \{2_1, 2_2, 3_1, 3_2\}$$

$$= 2 \times 2 \times 3 \times 3$$

$$=$$
 4 x 9

Example 2

Below is a venn diagram showing factors.

a) Find the G.C.f of 70 and 30.

G.C.F = product of the intersection

$$F_{70} \cap F_{30} = \{2_1, 5_1\}$$

G.C.F =
$$2 \times 5$$

b) Find the L.C.M of 20 and 70.

L.C.M = product of the union

$$F_{70} \cup F_{30} = \{2_1, 3_1, 5_1, 7_1\}$$

L.C.m =
$$2_1 \times 3_1 \times 5_1 \times 7_1$$

= 6×35

Activity: Understanding MTC Bk 6 Pg 79 - 81

MK BK. 6 pg. 86

WK. 7: Lesson 4

Finding the unknown number given prime factors on a venn diagram

a) Find the value of x.

$$F_x = \{2_1, x 2_2, x 3_1\}$$

$$x = 4 \times 6$$

b) Find the value of y.

$$F_y = \{2_1, 2_2, 3_1, 5_1\}$$

$$y = 2_1 \times 2_2 \times 3_1 \times 5_1$$

$$y = 2 \times 2 \times 3 \times 5$$

$$y = 4 \times 15$$

REFERENCE: MK BK 6 Pg 88 - 89

WK. 7: Lesson 5

SQUARE ROOTS OF NUMBERS

Review of square numbers.

A square number is got by multiplying a number by it's self.

A square root is a number that is multiplied by its self to give a square number.

The symbol for square root is $\sqrt{}$

Example

Find the square root of 36.

$$\sqrt{36} = \sqrt{(2x2)x(2x3)}$$

$$\sqrt{36} = 2 \times 3$$

Example:

Find the square root of 100.

$$\sqrt{100} = \sqrt{(2x2)x(5x8)}$$
$$= 2 \times 5$$
$$= 10$$

WK. 7: Lesson 6

Review of P.4 work on fraction)

FRACTIONS

- 1) Express the missing following as mixed fractions.
 - a) $\frac{3}{2}$

- b) $\frac{11}{3}$ c) $\frac{47}{10}$ d) $\frac{49}{6}$
- 2) Express each of these fractions as improper fractions

- a) $1\frac{1}{2}$ b) $1\frac{1}{4}$ c) $3\frac{5}{12}$ d) $33\frac{1}{3}$

- 3) Write five equivalent fractions to each of these fractions
 - a) $\frac{1}{2}$

- b) $\frac{2}{3}$ c) $\frac{1}{8}$
- 4) Reduce these fractions to their lowest terms
 - a) $\frac{2}{4}$

- b) $\frac{12}{18}$ c) $\frac{8}{12}$ d) $\frac{27}{45}$ e) $\frac{125}{200}$
- 5) Compare the fractions below using the symbols <, > or = (show the working)
 - a) $\frac{5}{6}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{1}{2}$

- e) $\frac{7}{9}$ $\frac{7}{8}$ f) $\frac{14}{30}$ $\frac{7}{15}$

REFERENCE: Learning MTC pg 12 – 23 MK Bk 5 pg 118.

WK. 8: Lesson 1

Ordering fractions

This involves arranging in either ascending or descending order.

Ascending order

Means from lowest to highest.

Descending Order

Means from highest to lowest.

Example

Arrange $\frac{1}{3}$, $\frac{1}{2}$, $\frac{1}{4}$ in ascending order.

L.C.M method;

$$M_3 = \{ 3, 6, 9, (12), 15, \dots \}$$

$$M_2 = \{ 2, 4, 6, 8, 10, (12), 14, \dots \}$$

$$M_4 = \{ 4, 8, (12), 16, \dots \}$$

$$L.C.M = 12$$

$$\frac{1}{3} \times 12 \implies 1 \times 4 = 4$$

$$\frac{1}{2} \times \frac{12}{1} = 1 \times 6 = 6$$

$$\frac{1}{4} \times 12 \implies 1 \times 3 = 3$$

In ascending order

$$=\frac{1}{4},\frac{1}{3},\frac{1}{2}$$

Method II

Arrange $\frac{5}{8}$, $\frac{3}{4}$, $\frac{4}{6}$ in descending order.

Renaming (equivalent fractions)

$$\frac{5}{8} = \frac{10}{16} = \boxed{\frac{15}{24}} = \frac{20}{32} = \frac{25}{40} = \frac{30}{48}$$

$$\frac{3}{4} = \frac{6}{8} = \frac{9}{12} = \frac{12}{16} = \frac{15}{20} = \frac{20}{24}$$

$$\frac{4}{6} = \frac{8}{12} = \frac{12}{18} = \frac{16}{24} = \frac{20}{30} = \frac{24}{36}$$

In descending order = $\frac{3}{4}$, $\frac{4}{6}$, $\frac{5}{8}$

REFERENCE: MK Bk 5, pg 119

Comparing fractions using <, > or =

Example

Use **>, < or =**

$$\frac{1}{3} > \frac{1}{4}$$

$$\frac{1}{3} > \frac{1}{4}$$
 M₃ = 3, 6, 9, 12

$$\frac{1}{3}$$
 x 12

$$\frac{1}{3}$$
 x $\frac{12}{}$ M₄ = 4, 8, 12, 16

$$= \underline{\mathbf{4}} \qquad \qquad \frac{1}{4} \times \underline{\mathbf{12}} = \underline{\mathbf{3}}$$

Which is smaller $\frac{5}{6}$ or $\frac{1}{2}$ ii)

L.C.M of 2 and 6.

$$\frac{5}{-6} \times 6 = \underline{5}$$
 $\frac{1}{-2} \times 6 = \underline{3}$

$$\frac{1}{2}$$
 x 6 = 3

$$\frac{1}{2} < \frac{5}{6}$$

REFERENCE: MK Bk 5 pg 120.

WK. 8: Lesson 2

ADDITION OF FRACTIONS

Example I

$$\frac{1}{4} + \frac{1}{2}$$

$$\frac{1}{4} = \frac{2}{8} = \frac{3}{12}$$

$$\frac{3}{4}$$

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$$

Example 2

John filled $\frac{1}{2}$ of a tank in the morning and $\frac{2}{5}$ in the afternoon, what fraction did he fill altogether?

$$\frac{1}{2} + \frac{2}{5}$$

$$M_2 = \{ 2, 4, 6, 8, 10, 12, \dots \}$$

$$M_2 = \{ 5, 10, 15, 20, \dots \}$$

$$\frac{1}{2} + \frac{2}{5} = \frac{5+4}{10}$$

$$= \frac{9}{10}$$

REFERENCE: MK BK 5 Pg 121 -125.

WK. 8: Lesson 3

SUBTRACTION OF FRACTIONS

Example I

Subtract;
$$\frac{4}{5} - \frac{1}{5} = \frac{3}{5}$$

Example II

A baby was given $\frac{5}{6}$ of a glass of water. If it drunk $\frac{7}{12}$, What fraction remained?

$$\frac{5}{6} - \frac{7}{12}$$
 $M_2 = \{ 6, (12), 18, 24 \}$ $M_{12} = \{ (12), 24, 36 \}$

$$L.C.M = 12.$$

$$\frac{10-7}{12} = \frac{3}{12} \longrightarrow \frac{1}{4}$$

Activity: Mk bk 5 Pg 126 - 127.

Isaac had $\frac{3}{4}$ of sugarcane. If he gave $\frac{3}{5}$ of it to Peter. What fraction did he remain with.

$$\frac{3}{4} - \frac{3}{5} = \frac{15 - 12}{20}$$
$$= \frac{3}{20}$$

REFERENCE: Understanding MTC Std 5 pg 19 – 22.

MK BK 5 Pg 126 – 127.

WK. 8: Lesson 4

Multiplication of fractions

1) i)
$$\frac{1}{3} \times \frac{2}{5} = \frac{1X2}{3X5} = \frac{2}{15}$$

ii)
$$\frac{1}{2} \times \frac{1}{2} = \frac{nxn}{dxd}$$
$$\frac{1x1}{2x2} = \frac{1}{4}$$

2) What is $\frac{2}{5}$ of 20 books?

$$\frac{2}{5}$$
 x 20

$$2 \times 4 = 8$$
 books

3) What is $2\frac{1}{2}$ of 2 dozens.

$$1 doz = 12 books$$

$$2 dozens = 12 x 2$$

$$2\frac{1}{2}$$
x 24

$$\frac{5}{2}$$
 x 24 = **60 books**

WK. 8: Lesson 5

RECIPROCALS OF FRACTIONS

Reciprocal of
$$\frac{3}{5}$$
 is $\frac{5}{3}$

A reciprocal is a number multiplied by a given fraction to give 1.

The Reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$

Check: $\frac{2}{3} \times \frac{3}{2} = \frac{-6}{-6}$

<u>= 1</u>

Any fraction multiplied by its reciprocal always gives 1.

Example:

Find the reciprocal of $\frac{3}{4}$

Let the reciprocal be m

$$\frac{3}{4} \times m = 1$$

$$4x \frac{3}{4}m = 1 x 4$$

$$3m = 4$$

$$\frac{\mathcal{Z}m}{\mathcal{Z}} = \frac{4}{3}$$

$$m = \frac{4}{3}$$

Consider the reciprocal of

- a) 7
- b) 0.7
- c) $1\frac{1}{3}$
- d) 2.5

REFERENCE: Mk Bk 5 pg 133.

WK. 8: Lesson 6

Division of fractions

Wholes by fractions

Example 2

$$3 \div \frac{1}{4} = \frac{3}{1} \times \frac{4}{1}$$
$$= \frac{12}{1} \longrightarrow 12$$

Example 3

How many half litre cups are in a 3 litre jerry can?

$$3 \div \frac{1}{2}$$
$$3 \times \frac{2}{1} = 6 \text{ cups}$$

Example 4

How many $\frac{1}{4}$ kg packets of sugar can be packed from 3kg?

12 packets can be packed.

Division of fractions by fractions

Example I

$$\frac{2}{3} \div \frac{4}{5} \longrightarrow \frac{2}{3} \times \frac{5}{4}$$

$$=\frac{10}{12} = \frac{5}{6}$$

Example 2

$$\frac{3}{4} \div \frac{1}{3}$$

$$\frac{3}{4} \times \frac{3}{1} = \frac{9}{4}$$

$$2\frac{1}{4}$$

REFERENCE: MK Bk 5 pg 134 - 136

ii) How many boys are there?

$$\frac{1}{3}$$
 x 60

c) How many girls are there?

$$\frac{2}{3}$$
 x 60

<u>40 girls</u>

d) How many more girls are there than the boys?

20 more girls

REFERENCE: Mk Bk 5 pg 132.

WK. 9: Lesson 1

Ordering decimals

Arrange 0.4, 0.44, 4.4 in ascending order.

As common fractions $\Longrightarrow \frac{4}{10}$, $\frac{44}{100}$, $\frac{44}{10}$

LCD = 100 (biggest denominator)

Multiply each by the biggest denominator.

$$\frac{4}{10} \times 100$$

$$= 40$$

$$\frac{44}{100} \times 100$$

$$= 44$$

$$\frac{44}{10}$$
 x 100 In ascending order,
= 440 **0.4, 0.44, 4.4**

<u>REFERENCE:</u> Learning MTC Std 5 pg 31 – 32 Mk bk 5 pg 145 – 146.

WK. 9: Lesson 2

MULTIPLICATION OF DECIMALS

Multiply: 0 . 2 x 0 . 3

Method 1

Re-write decimals ad fractions.

$$= \frac{2}{10} \times \frac{3}{10} \qquad \text{Remember } \frac{nxn}{dxd}$$

$$= \frac{2x3}{10x10}$$

$$=$$
 $\frac{6}{10}$ $=$ **0.06**

Method 2

REFERENCE: Learning MTC Std pg 33 – 34.

WK. 9: Lesson 3

DIVISION OF DECIMALS

Example 1: 0.2 ÷ 0.4

$$= \frac{2}{10} \div \frac{4}{10}$$

$$= \frac{2}{10} \times \frac{10}{4}$$

$$= \frac{2x1}{1x4} = \frac{2}{4} = \frac{1}{2}$$

Example 2: 0.3 ÷ 0.03

$$= \frac{3}{10} \div \frac{3}{100}$$

$$= \frac{3}{10} \times \frac{100}{3}$$

$$= 1 \times 10$$

$$= \mathbf{10}$$

REFERENCE: MTC Bk 6 pg 118 – 119.

WK. 9: Lesson 4

RATIO

A ratio is a comparison of two numbers.

e.g 2:3 which is read as two to three.

Expressing ratios as fractions

i) Express 2: 3 as a fraction.

$$2:3=\frac{2}{3}$$

ii) The ratio of boys to girls in a class is 3:4, express this as a fraction.

$$3:4 = \frac{3}{4}$$

Expressing fractions as ratios

i) Express $\frac{1}{3}$ as a ratio.

$$\frac{1}{3}$$
 = 1:3

ii) $\frac{5}{6}$ of a class are present, express this in ratio from $\frac{5}{6}$.

REFERENCE: Mk Bk 6 Pg 125 - 126

WK. 9: Lesson 5

Expressing quantities as ratios

Example

Henry has 12 books and John has 20 books. What is the ratio of Henry's books to John's books?

$$\frac{12}{4}$$
 : $\frac{20}{4}$ Reduce

Express 20 minutes as a ratio of 1 Hr.

1Hr = 60minutes

20Min: 60Min

$$\frac{20}{20}$$
: $\frac{60}{20}$ Reduce

<u>1 : 3</u>

<u>NB</u>:

When comparing two or more quantities, rations must be expressed in the same units and in the lowest terms.

REFERENCE: Mk Bk 6 Pg 127.

WK. 9: Lesson 6

PROPORTIONS

Proportions are ways of comparing quantities.

Direct proportion

This is a type of proportion in which the two quantities decrease or increase in the same ratio.

Example (price of pens and No. of pens)

The cost of a pen is shs 1500. Find the cost of 5 similar pens

1 pen sh 1500

5 pens 5 x sh 1500

= 1500

<u>x 5</u>

shs <u>7500</u>

NB:

Always start by finding the equivalence of 1 item.

REFERENCE: MK BK. 6 PG. 136