Second Spectrum of Tungsten (WII)

Donald D. Laun 1

(October 30, 1963)

A preliminary report on the second spectrum of tungsten, published in 1938, presented 27 even energy levels and 50 odd energy levels that were derived from 500 W II lines ranging in wavelength from 1961.43 Å to 4348.13 Å. The present paper submits data on 62 even levels, 132 odd levels, and 2,173 classified lines of W II, ranging in wavelength from 1756.6 Å to 6219.77 Å. The ground state of the W⁺ ion is represented by the 6 D_{0½} level of a sextet D term arising from the $5d^46s^1$ electron configuration, but the level intervals and magnetic splitting factors indicate considerable departure from LS-coupling, suggesting that coupling intermediate between LS and J_J may be more appropriate for the spectrum W II.

1. Introduction

The search for regularities among spectral lines emitted by tungsten arcs and sparks was initiated at the National Bureau of Standards in 1925 when O. Laporte and I were both new (temporary) members of the Spectroscopy Section. By exploiting existing data on wavelengths, intensities, and Zeeman patterns, Laporte [1] ² identified the first spectral terms and classified lines of WI. Zeeman data confirmed the designation of the six lowest energy levels as ⁵D from $5d^46s^2$ and ⁷S from $5d^56s^1$. This term analysis and quantum interpretation of WI was later greatly extended by Laporte and Mack [2] until it included 300 energy levels and 2,378 classified lines ranging in wavelength from 2008.64 Å to 11477.97 Å.

Shortly after Laporte found the low-energy terms in W_I, I began a search for the theoretical low ⁶D (from $5d^46s^1$) and ⁶S (from $5d^5$) terms in W_{II}, assuming that ionization removed one s electron. This initial search failed because of insufficient information about the spectrum W II. Then I undertook to reobserve the ultraviolet arc and spark spectra of tungsten, to distinguish W II from W I, to refine the wavelengths, and to observe Zeeman patterns of W II lines. From these observations, 27 even levels (including ⁶D and ⁶S) and 50 odd levels were derived from 500 W II lines ranging in wavelength from 1961.43 Å to 4348.13 Å; these results were published [3] in 1938 as a preliminary report on lines and levels of the spectrum WII. From time to time during the following quarter century, further improvements in observations and extensions of analyses have been made; the purpose of the present paper is to present the final data on 62 even levels, 132 odd levels, and 2,173 classified lines of W II, ranging in wavelength from 1756.6 Å to 6219.77 Å.

Small rods of very pure tungsten were used as electrodes in the arcs and sparks that served as light sources. The arcs were operated with applied potential of 220 v and 6 amp dc, the sparks with 30,000 v, about 30 ma, ac, and 0.006 µf capacitance.

The first spectrograms were made in 1925 with a Hilger E 1 (Littrow) quartz spectrograph which could be effectively employed in the ultraviolet down to wavelength 1900 A. Later, these spectrograms were supplemented by a new series obtained by C. C. Kiess with the first Hilger E 185 (Littrow) quartz spectrograph that was delivered to the Bureau of Standards in 1932. This larger spectrograph has a focal length of 3 m, and reciprocal dispersion, or plate factor, of 0.3 Å/mm at 2100 Å and 1 Å/mm at 3000 A. These observations of tungsten lines on photographic plates exposed in quartz spectrographs were presented by me as a Master's Thesis at the University of Chicago [4]. Additional spectrograms were made in 1933 by Kiess with a concave grating of 22-ft radius, and 30,000 lines per inch. In a Wadsworth mounting, this grating produced spectra down to 1900 Å with a plate factor of 2.44 Å/mm in the first order, and with a plate factor of 0.88 Å/mm in the second order from 3200 to 4400 Å. This grating spectrograph was employed also to photograph tungsten spectra throughout the visible range.

Since all the above-mentioned spectrographs were stigmatic, movable diaphragms before the slits permitted placing strips of juxtaposed spectra on photographic plates. The usual procedure was to photograph the iron-arc spectrum containing standard wavelengths, then the tungsten arcs and sparks in adjacent strips and another iron spectrum beside the tungsten spark. The positions of tungsten spectral lines relative to iron lines were measured on Gaertner comparators, in 1925–26 at the Bureau of Standards; and in 1933–34 at Marquette University by courtesy of the late Fr. Joseph Carroll, S. J. Linear scale readings allowed the wavelengths of tungsten lines to be interpolated between iron

^{2.} Experimental Procedure

¹Former member of Spectroscopy Section, NBS; present address: Kiel, Wis. ²Figures in brackets indicate the literature references at the end of this paper.

standards in the case of prismatic spectra with the aid of Hartmann's dispersion formula, and from grating spectrograms by assuming linear dispersion. In both cases, small corrections were made when the interpolated values of iron wavelengths departed from their standard values. For purposes of analysis, the final wavelengths of tungsten lines were converted to vacuum wavenumbers with the aid of the Table of Wavenumbers published by Coleman, Bozman, and Meggers [5].

At the same time that the positions or wavelengths of tungsten lines were being measured, their relative intensities were estimated in both sources. Although this intensity scale, ranging from 1 for a barely discernible line to 1000 for the strongest, is more or less arbitrary, it is primarily useful in separating W II from W I, and also qualitatively supports the subsequent analysis in which intensities are related to quantum numbers. In some cases W II lines appear to coincide with W I, and if a W II line sometimes appears stronger in the arc than in the spark, it may be an example of pole effect. Unfortunately, no deliberate attempt to exclude or exploit pole effect in the tungsten arc was made.

Finally, some information about tungsten spectra in the vacuum ultraviolet was obtained by measuring two spectrograms made by J. C. Boyce at the Massachusetts Institute of Technology in 1940 and kindly presented to the Bureau of Standards. These spectrograms were obtained with an evacuated grating spectrograph having a plate factor of 4.26 Å/mm. The spectra were measured down to 1200 Å. Although the excitation conditions were altered, the differences between spectra were so slight that only above 1756 Å was it possible positively to identify W II lines. The wavelengths from this point to 1950 Å were finally corrected to the scale of values calculated from atomic energy levels.

My preliminary paper [3] of 1938 reported Zeeman-effect measurements of spectrograms made with a Weiss magnet and quartz spectrographs at the Bureau of Standards. These data have been superseded by those obtained with the more powerful Bitter magnet and grating spectrographs at the Massachusetts Institute of Technology. These results will be mentioned in the next section.

3. Results

The main result of the experiments mentioned above is that the wavelengths of about 13,000 spectral lines characteristic of arcs and sparks between tungsten electrodes have been measured. Among these, about 4,000 have been attributed to W II and 2,173 of these lines, including 90 percent of the total intensity, have been shown to arise from transitions between 194 derived energy levels, 62 even and 132 odd. The even levels are displayed in table 1 and the odd levels in table 2. In these tables, the electron configuration is given in col-

umn 1, the spectral term designation in column 2, total angular momentum, J, in column 3, relative values of energy levels in column 4, intervals between levels of complex terms in column 5, and observed magnetic splitting factor, g, in column 6. Most of these data were supplied in 1956 for the third volume of Atomic Energy Levels [6] which contains J and level values for 45 even and 90 odd levels. In that volume, g-factors were reported for 38 even levels and for 58 odd. These were derived from MIT Zeeman spectrograms measured by J. E. Mack and Mrs. Taschek at the University of Wisconsin. Since 1956, the number of even levels has increased from 45 to 62 and odd levels from 90 to 132. Likewise, g-factors are now available for 46 even and 71 odd levels as compared with 38 and 58 respectively, in 1956.

In Atomic Energy Levels [6], it is stated that because of departure from LS-coupling it is difficult to assign term designations except for the lowest terms. Consequently, only six even terms, comprising 21 levels between 0 and 17437 K, were completely grouped and designated, and 24 higher even levels, between 18000 and 26929 K, were tentatively designated, guided by analogy with Mo II, g-factors, and theoretical calculations of the late R. E. Trees. Likewise, two odd terms, comprising six levels, were tentatively designated ⁶F and ²S, but the remaining 84 levels were given as miscellaneous. In the present paper, additional levels and g-factors are reported but no revision or ex-

tension of designations has been made.

The spectral lines of tungsten from which all the information in tables 1 and 2 was derived, are listed in table 3 in order of increasing wavelength. Each line is described by its measured wavelength in angstroms, by its estimated intensity in a tungsten arc and/or spark, by its appropriate vacuum wavenumber in kaysers (1 K=1 cm⁻¹), by the difference (O-C) between the observed wavenumber and that calculated from the combination of energy levels shown in the next-to-last column. Abbreviated notes about the observed Zeeman patterns for 307 lines appear in the final column.

Table 3 contains 2,173 classified lines of W II, including 42 doubly classified. The only other table of classified W II lines was published [3] in 1938; it contained 500 lines, including 6 doubly classified. In addition to 2,173 classified lines, table 3 also contains wavelengths, intensities, and wavenumbers of 25 of the strongest W II lines still unclassified; these are included with the hope that the blank spaces under "combinations" may eventually be

filled in.

The "Intensity" column of table 3 shows that the great majority of these W II lines were observed in arc as well as spark sources but with generally higher intensity in the latter when spectrogram exposures were chosen to make W I lines appear in both sources with nearly equal intensities. In a few cases, W II lines appear only, or stronger, in arc spectra; most if not all such deviations may be explained by coincident W I lines, pole effects, or air lines that occa-

sionally mask metal lines in sparks operated at atmospheric pressure. Where the letter A follows an arc intensity, a line with nearly identical wavelength has actually been classified as a combination of W I energy levels. The letter d in table 3 indicates a double line.

The observed minus calculated wavenumbers (O-C) have an average value of 0.1 K for wavelengths measured in air, that is, above 2000 Å. This means that the average error in these wavelength measurements is of the order of 0.01 Å, and there is high confidence that the great majority of the combinations are real, rather than accidental. However, in the vacuum ultraviolet, below 2000 Å, the average O-C is considerably greater, in a few cases as large as 5 K, which entails an error in wavelength of the order of 0.2 Å. In such cases, confidence that the combinations are genuine is greatly reduced but they have been tentatively retained for the following reasons. Since the scale of wavenumbers is greatly compressed in the vacuum region, and the tungsten spectra below 2000 Å were photographed with relatively small dispersion and measured without adequate standard wavelengths, it was inevitable that these measured wavelengths of WII lines would be more or less uncertain. Furthermore, it appears that most of these Wii short waves involve the lowest and adjacent metastable energy levels, which is precisely what should be expected of strong lines with high energy. Therefore, these combinations with relatively large O-C may be regarded as real pending wavelength measurements of higher accuracy.

In the introduction, I mentioned that the first spectral terms, both in WI and in WII, were found from Zeeman-effect observations. In both spectra, such observations have greatly facilitated their analyses, and constitute the supreme test of validity. In the last column of table 3, are found some notes about the observed Zeeman patterns of 307 WII lines extending from 2216 Å to 4358 Å. The Zeeman

patterns of W I and W II on MIT spectrograms were measured at the University of Wisconsin by J. E. Mack and Mrs. Taschek who supplied most of the magnetic splitting factors (g-factors) for tungsten levels that appear in Atomic Energy Levels [6]. Recently, those spectrograms were kindly loaned to me for examination. Without giving any details, I have merely written "res" to indicate resolved Zeeman patterns that agree with the combinations of W II lines in table 3. Unresolved Zeeman patterns are numbered 4, 5, 6, and 7, according to the notation of Back and Landé [7]. Incidentally, Zeeman types 4, 5, and 6 uniquely characterize, and fix J-values of, energy levels belonging to even multiplicities such as those responsible for WII lines. All the Zeemaneffect spectrograms are thickly covered by patterns of Willines, and the Will patterns are often obscured, or vice versa, but despite these difficulties, the combinations are generally verified.

Finally, reference is made to the Tables of Spectral-Line Intensities by Meggers, Corliss, and Scribner [8] which list 1,300 tungsten lines, 1168 W I and 132 W II, observed in an arc between copper electrodes containing 0.1 atomic percent of tungsten. It is noteworthy that no Wil lines appear among the first 28 lines of highest intensity; they are all W I. Tungsten is similar to rhenium in this respect, but unlike thorium or uranium in which spark lines predominate in this type of arc source. Ionization potentials may be responsible for this difference, since the I.P. of copper is less than that of tungsten or rhenium but greater than that of thorium or uranium. In the list of all observed lines of tungsten [8], all of the W II lines are now classified, and will be given in this paper.

In conclusion, let me say that since my association with the Bureau of Standards in 1925–26, when this investigation began, and again in 1943–44, when I collaborated on the uranium project [9], this work on W II has been pursued as a part-time occasional avocation with the goal of finding order in a complex spectrum.

Table 1. Even levels of W II

Configuration	Designation	J	Level	Interval	Obs. g
5d ⁴ (⁵ D)6s	a ⁶ D	0½ 1½ 2½ 3½	0. 00 1518. 78 3172. 52 4716. 32	1518. 78 1653. 74 1543. 80 1430. 84	3. 186 1. 839 1. 639 1. 563
$5d^5$	a ⁶ S	$4\frac{1}{2}$ $2\frac{1}{2}$	6147. 16 7420. 43	1100.01	1. 522 1. 913
$5d^4(^3{ m F})6s$	a ⁴ F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	8711, 26 11301, 08 13411, 96 14857, 22	2589. 82 2110. 88 1445. 26	0. 624 1. 084 1. 186 1. 234

Table 1. Even levels of Wii—Continued

Configuration	Designation	J	Level	Interval	Obs. g
5d ⁴ (³ P)6s	a 4P	0½	8832. 66		2. 383
		$1\frac{1}{2}$	10592, 52	1759. 86	1. 471
		$\frac{21}{2}$	13434. 10	2841. 58	1. 526
$5d^4(^5{\rm D})6s$	a 4D			v	
3a ² (*D) 68	a *D	$0\frac{1}{2}$	13173. 38	1460. 98	0. 455
		$1\frac{1}{2}$	14634. 36	333. 46	1. 183
	-	$2\frac{1}{2}$	14967. 82	179. 20	1. 013
		$3\frac{1}{2}$	15147. 02		0. 872
$5d^4(^3{\rm G})6s$	a 4G	$2\frac{1}{2}$	16234. 84	354. 83	0. 995
		$3\frac{1}{2}$	16589. 67		1. 153
		$4\frac{1}{2}$	16553. 14	-36. 53	1. 137
		$5\frac{1}{2}$	17437. 02	883. 88	1. 181
5d4(3H)6s	4H	$\frac{3\frac{1}{2}}{1^{\frac{1}{2}}}$	18000. 70		1. 098
$5d^{5} \ 5d^{5}$	² D ⁴ G	$\frac{1\frac{1}{2}}{4\frac{1}{2}}$	18990. 96 19070. 68		0. 90 1. 102
$5d^{5}$	⁴ G	$2\frac{1}{2}$	19276. 52		0. 997
$5d^4(^3{ m P})6s$	$^{2}\mathrm{P}$	$0\frac{1}{2}$	19404. 08		0.64
5d4(3H)6s	⁴ H ² D	$6\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	19442. 54		1 100
$5d^5 \ 5d^5$	4G	$\frac{27_2}{21/4}$	19637.38 20039.74		1. 102 1. 107
$5d^5$	4D	$1\frac{1}{1}$	20455. 93		0. 51
$5d^5$	$^{4}\overline{\mathrm{G}}$	$1\frac{1}{2}$ $5\frac{1}{2}$ $4\frac{1}{2}$	20534. 35		1. 197
$5d^4(^3{\rm H})6s$	4H	$4\frac{1}{2}$	20780.38		1. 065
$5d^{5}$	4F	$2\frac{1}{2}$	22139.97		1. 06
5d ⁵	⁴ F ² P	$2\frac{1}{2}$ $3\frac{1}{2}$ $1\frac{1}{2}$	22194. 08		1. 119
$5d^4(^3P)6s$	² P	01/2	22503.06 22535.80		1. 22
$5d^4(^3D)6s$	$^{4}\mathrm{D}$	$0\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	23046. 80		2. 2 0. 86
$5d^5$	$^4\overline{\mathrm{F}}$	$4\frac{1}{2}$	23234. 87		1. 249
$5d^{5}$	4D	$2\frac{1}{2}$	23450. 50		1. 297
$5d^{5}$	4D	$\begin{array}{c} -17 \\ 3\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	23803. 84		
$5d^{5}$	^{2}I	$\frac{5\frac{1}{2}}{3\frac{1}{2}}$	23955. 40 24804. 67		1. 10
		$1\frac{1}{2}$	24918. 10		1. 10
$5d^{5}$	$^4\mathrm{F}$	11/2	24991. 56		0. 9
		$0\frac{1}{2}$ $1\frac{1}{2}$ $4\frac{1}{2}$	25045.20		0. 32
$5d^{5}$	⁴ P	$1\frac{1}{2}$	25169. 87		1.64
		$\frac{4\frac{1}{2}}{21}$	25209. 28 25672. 16		0.0
$5d^4(^3{\rm H})6s$	2H	$\frac{2\frac{1}{2}}{4\frac{1}{2}}$	25672.16 26158.74		0. 9
$5d^{5}$	4P	$2\frac{1}{2}$	26227. 00		1. 04
$5d^{5}(^{3}\mathrm{H})6s$	2 H	$5\frac{1}{2}$	26929. 34		1. 01
		$3\frac{1}{2}$	27273.86		
		$5\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	28118. 90		
		$6\frac{1}{2}$	28187. 60		
		5½ 11/	28377. 80		
		$\frac{1}{2}$	28491. 00 28631. 86		
7		41/2	29341. 56		
		$4\frac{1}{2}$	30633. 02		
		$5\frac{1}{2}$	31100. 46		
		6½ 5½ 1½ 3½ 4½ 4½ 5½ 5½ 5½ 4½	33910. 56		1. 34
		$4\frac{1}{2}$	34091. 02		

Table 2. Odd levels of W II

Configuration	Designation	J	Level	Interval	Obs. g
$5d^{4}(^{5}\mathrm{D})6p$	z 6F°	$0\frac{1}{2}$	36165. 35	2064 06	0. 678
Ou (12)0p		11/2	39129. 41	2964. 06 2920. 04	1.147
		$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	42049. 45	2827. 73	1. 292
		$3\frac{1}{2}$	44877. 18	1616. 25	1. 277
		$\frac{4\frac{1}{2}}{5\frac{1}{2}}$	46493. 43 51495. 00	5001. 57	1. 311 1. 054
$5d^4(^3P)6p$	z 2S°	$0\frac{1}{2} \\ 2\frac{1}{2}$	38576. 32 39936. 81		1. 614 0. 889
		$1\frac{1}{2}$	42298. 20		1. 498
		$3\frac{1}{2}$	42390. 27		1. 161
		$2\frac{1}{2}$	44354. 82		1. 390
		$0\frac{1}{2}$	44455. 18		-0.217
		$\frac{4\frac{1}{2}}{1\frac{1}{2}}$	44758. 10 44911. 63		1. 270 1. 221
		$0\frac{1}{2}$	45457. 02		0.519
		$1\frac{1}{2}$	45553.70		1. 033
		$\frac{1\frac{1}{2}}{3\frac{1}{2}}$	46175. 42		1. 452
		$2\frac{1}{2}$	46355. 40		1. 236
		11/	46625. 27 47179. 94		1. 70 1. 007
		$0\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} $	47413. 33		1. 111
		$\frac{1}{1}\frac{1}{2}$	47588. 64		2.00
		$2\frac{1}{2}$	48284. 48		1. 366
		5 1/2	48332. 73		1 000
		$3\frac{1}{2}$ $1\frac{1}{2}$ $3\frac{1}{2}$	48830. 70 48982. 86		1. 008 1. 72
		$\frac{1}{3}\frac{72}{1/2}$	49124. 52		1. 429
		$0\frac{1}{2}$	49154. 50		2.78
		$0\frac{1}{2}$ $4\frac{1}{2}$ $2\frac{1}{2}$	49181.04		1. 409
		$\frac{2\frac{1}{2}}{21}$	49242. 10		1. 510 1. 334
		$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	50292. 33 50430. 95		0. 93
		$\frac{1}{4}\frac{1}{2}$	50863. 05		1. 194
		$3\frac{1}{2}$	51045. 25		
		$\frac{1}{2}$	51254. 40		1. 58
		$\frac{2\frac{7}{2}}{2\frac{1}{2}}$	51438. 03 51863. 03		1. 301 0. 937
		$\frac{3}{2}\frac{7}{1}$	52087. 02		0. 301
		$4\frac{1}{2}$ $3\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$	52275. 28		1. 297
		$0\frac{1}{2}$ $4\frac{1}{2}$	52355. 11		0. 981
		$4\frac{1}{2}$	52567. 15		1. 56 ?
		$0\frac{1}{2}$	52593. 72 52803. 00		1. 50 ;
		$1\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$ $0\frac{1}{2}$	52901.74		1. 374
		$2\frac{1}{2}$	53113. 52		1. 262
		$\frac{11_{2}}{2}$	53329.71		1. 357
		3½ 41/	53338. 07 53369. 97		0. 968 1. 086
		1 1/2	53422. 98		0. 976
		$0\frac{1}{2}$	53440. 17		2. 038
		$2\frac{1}{2}$ $4\frac{1}{2}$ $1\frac{1}{2}$	54026. 24		1 100
		$\frac{4\frac{1}{2}}{11}$	54056.54		1. 123
		$\frac{1}{2}$	54137. 20 54229. 06		1. 608
		$\begin{array}{c} 5\frac{1}{2} \\ 2\frac{1}{2} \\ 0\frac{1}{2} \end{array}$	54375. 82		1. 51
		$0\frac{1}{2}$	54485. 60		1. 46
		$3\frac{1}{2}$	54498. 57		0.000
		$2\frac{1}{2}$ $0\frac{1}{2}$	54704.61		0. 623
		$\frac{0\frac{1}{2}}{5\frac{1}{2}}$	54760.06 54958.58		1. 141
		$\frac{37_2}{31_2}$	55022. 86		1, 111
		$3\frac{1}{2}$ $2\frac{1}{2}$ $4\frac{1}{2}$	55162. 30		1. 00
		$4\frac{1}{2}$	55392. 37		1. 061
		$\frac{1\frac{1}{2}}{1\frac{1}{2}}$	55488. 01		1 091
		$\frac{1}{5}\frac{1}{2}$	56084. 30 56376. 45		1. 021
		$\frac{5\frac{1}{2}}{4\frac{1}{2}}$	56413. 64		
		$\frac{4\frac{1}{2}}{6\frac{1}{2}}$	56439.60		
		$2\frac{1}{2}$	56544. 40		

Table 2. Odd levels of Wii—Continued

Configuration	Designation	J	Level	Interval	Obs. g
$5d^4(^3{ m P})6p$	z ² S ⁰	3½	56612.74		1. 22
0a (1)0p	2 10	31/2	56768. 61		
		21/2	56874. 99		1. 147 0. 815
		$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$ $4\frac{1}{2}$	56932. 27		1. 06
		$4\frac{1}{2}$	57089. 46		1.00
		2),	57252. 00		
		$3\frac{1}{2}$	57729.92		1. 184
		$2\frac{1}{2}$	57856.70		1. 36
		$4\frac{1}{2}$	57986. 92		
		$1\frac{1}{2}$	58007.60		1. 20
		$2\frac{1}{2}$	58336. 98		
		$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$	58687. 88		
		$\frac{3\frac{1}{2}}{11}$	58709. 56		
		$\frac{1}{1}\frac{1}{2}$	58747. 94		0. 78
		$\frac{5\frac{1}{2}}{3\frac{1}{2}}$	58891.74		1. 144
		372 41/	59276. 81 59399. 34		1. 102
		11/2	59816. 30		1.179
		$\frac{4\frac{1}{2}}{1\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	59869. 14		1 195
4		$3\frac{1}{4}$	59933. 66		1. 125
		$2\frac{1}{2}$	59992. 20		
		$3\frac{1}{2}$ $2\frac{1}{2}$ $5\frac{1}{2}$	60218.84		1. 130
		$3\frac{1}{2}$	60256. 45		1. 100
		$4\frac{1}{2}$	60278. 71		
		$3\frac{1}{2}$	60424. 14		
~		$\frac{2\frac{1}{2}}{2}$	60474.67		
		$ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	60656. 51		
		$4\frac{1}{2}$	60900. 97 61055. 80		0. 92
		$\frac{472}{5\frac{1}{2}}$	61240. 81		1 100
	4	$\frac{3}{2}$	61326. 29		1. 120
		41/2	61360. 54		
		$ \begin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \\ 4\frac{1}{2} \\ 6\frac{1}{2} \end{array} $	61550.60		-
		$2\frac{1}{2}$	61566.70		1. 07
		$5\frac{1}{2}$	61589. 46		1. 149
		$6\frac{1}{2}$	61602. 18		
		$2\frac{1}{2}$	62333. 20		
		$4\frac{1}{2}$	62437. 04		
		6/2	62714. 56		
		4 ½ 51/	62715. 98 62966. 50		
		972 91/	62989. 60		
		$\frac{2}{6}\frac{7}{2}$	63087. 90		
		$3\frac{1}{2}$	63266. 30		
		4½ 5½ 2½ 6½ 3½ 3½ 3½ 2½ 2½ 4½	63788. 20		
		$2\frac{1}{2}$	63880.10		
		$2\frac{1}{2}$	64030.34		
		$4\frac{1}{2}$	64207.50		
		$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	64310.00		
		$3\frac{1}{2}$	64356.70		
		$\frac{4\frac{1}{2}}{21}$	64516.37		
		$\frac{3\frac{17}{2}}{5\frac{1}{2}}$	64896. 22		
		$2\frac{5}{2}$	64969.10		
		41/2	64990.32 65003.20		
		$\frac{4\frac{1}{2}}{2\frac{1}{2}}$	65141.56		
		$5\frac{1}{2}$	65326.40		
		$3\frac{1}{2}$	65644.00		
		$\frac{3\frac{1}{2}}{5\frac{1}{2}}$	65684.80		
		$4\frac{1}{2}$	66270.95		
		$5\frac{1}{2}$	66703, 50		
		$5\frac{1}{2}$	<i>68012. 50</i>		
		$6\frac{1}{2}$	68078.98		

Table 3. Classified lines of W II

Wavelength	Inte	ensity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Compilation	effect
Vac.						
1756. 604 1757. 789 1759. 408 1760. 00 1765. 514		8 3 4 5	56928. 0 56889. 6 56837. 3 56818. 2 56640. 7	$ \begin{array}{c} -4.3 \\ 0.0 \\ +3.0 \\ 0.0 \\ -3.1 \\ -3.5 \end{array} $	$\begin{array}{c} a\ ^6\mathrm{D}_{0^1\!4}-56932^\circ_{1^3\!4}\\ a\ ^6\mathrm{S}_{2^1\!4}-64310^\circ_{2^1\!4}\\ a\ ^6\mathrm{D}_{3^1\!2}-61550^\circ_{3^1\!4}\\ a\ ^6\mathrm{D}_{1^1\!2}-58336^\circ_{2^1\!4}\\ a\ ^6\mathrm{D}_{2^1\!4}-59816^\circ_{1^1\!4}\\ a\ ^6\mathrm{D}_{3^1\!2}-61360^\circ_{4^1\!2} \end{array}$	
1766. 319 1775. 023 1776. 834 1783. 050 1794. 166		8 3 4 10 4	56614. 9 56337. 3 56279. 9 56083. 7 55736. 2	$\left\{ \begin{array}{l} +4.9 \\ +5.0 \\ -0.6 \\ +0.8 \\ -0.6 \\ +3.0 \end{array} \right.$	$\begin{array}{c} a\ ^6\mathrm{D}_{34}\!-\!61326^{\circ}_{34}\\ a\ ^6\mathrm{S}_{24}\!-\!64030^{\circ}_{24}\\ a\ ^6\mathrm{D}_{14}\!-\!57856^{\circ}_{34}\\ a\ ^4\mathrm{F}_{14}\!-\!64990^{\circ}_{24}\\ a\ ^6\mathrm{D}_{04}\!-\!56084^{\circ}_{14}\\ a\ ^6\mathrm{D}_{14}\!-\!57252^{\circ}_{24} \end{array}$	
1795. 131 1798. 60 1799. 558 1800. 570 1802. 211		20 3 4 20 8	55706. 2 55598. 8 55569. 2 55538. 0 55487. 4	$-1.6 \\ +0.1 \\ 0.0 \\ \{ +1.0 \\ -2.1 \\ -0.6 $	$\begin{array}{c} a\ ^6\mathrm{D}_{34}\!$	
1803. 840 1804. 51 1806. 437 1807. 645 1809. 082		8 6 3 2 2	55437. 3 55416. 7 55357. 6 55320. 5 55276. 6	$\begin{array}{c} -5.0 \\ +3.2 \\ +1.4 \\ +1.4 \\ +0.7 \end{array}$	$\begin{array}{c} a \ ^6\mathrm{D}_{412} - 61589_{512}^{\circ} \\ a \ ^6\mathrm{D}_{112} - 56932_{112}^{\circ} \\ a \ ^6\mathrm{D}_{112} - 56874_{212}^{\circ} \\ a \ ^4\mathrm{F}_{112} - 64030_{212}^{\circ} \\ a \ ^6\mathrm{D}_{312} - 59992_{312}^{\circ} \end{array}$	
1811. 021 1812. 161 1812. 765 1812. 977 1815. 073		5 40 6 5 2	55217. 5 55182. 7 55164. 4 55157. 9 55094. 2	$ \begin{array}{r} +0.2 \\ +3.6 \\ -0.1 \\ +5.1 \\ +0.6 \end{array} $	$\begin{array}{c} a \ ^6\mathrm{D}_{3 / 4} - 59933 \ ^3\mathrm{I}_{3 / 4} \\ a \ ^6\mathrm{D}_{4 / 4} - 61326 \ ^3\mathrm{I}_{3 / 4} \\ a \ ^6\mathrm{D}_{2 / 4} - 58336 \ ^2\mathrm{I}_{2 / 4} \\ a \ ^6\mathrm{D}_{3 / 4} - 59869 \ ^3\mathrm{I}_{3 / 4} \\ a \ ^6\mathrm{D}_{4 / 4} - 61240 \ ^5\mathrm{L}_{2 / 4} \end{array}$	
1817. 347 1821. 062 1823. 64 1826. 126 1828. 69		10 30 3 20 6	55025. 2 54913. 0 54835. 4 54760. 7 54684. 0	$ \begin{cases} -0.4 \\ +4.4 \\ +0.2 \\ +0.3 \\ +0.6 \\ -1.0 \\ -0.2 \end{cases} $	$\begin{array}{c} a ^{6}\mathrm{D}_{134} - 56544_{234}^{2} \\ a ^{6}\mathrm{D}_{432} - 61055_{332}^{4} \\ a ^{6}\mathrm{S}_{234} - 62333_{332}^{2} \\ a ^{6}\mathrm{S}_{234} - 58007_{334}^{2} \\ a ^{6}\mathrm{D}_{034} - 54760_{032}^{2} \\ a ^{6}\mathrm{D}_{334} - 59399_{432}^{4} \\ a ^{6}\mathrm{D}_{234} - 57856_{232}^{2} \end{array}$	
1838. 338 1847. 041 1848. 104 1852. 110		25 5 30 15	54397. 0 54140. 6 54109. 7 53992. 5	$ \begin{array}{c} -0.8 \\ +3.4 \\ +0.4 \\ -0.7 \end{array} $	$\begin{array}{c} a \ ^{4}\mathrm{P}_{1^{1}\!2} -\!-\!64990^{\circ}_{2^{1}\!2} \\ a \ ^{6}\mathrm{D}_{0^{1}\!2} -\!54137^{\circ}_{1^{1}\!2} \\ a \ ^{6}\mathrm{D}_{4^{1}\!2} -\!60256^{\circ}_{3^{1}\!2} \\ a \ ^{6}\mathrm{D}_{3^{1}\!2} -\!58709^{\circ}_{3^{1}\!2} \end{array}$	
1852. 917		20	53969. 0	-0.2	$a {}^{6}\mathrm{D}_{1\frac{1}{2}} - 55488 {}^{\circ}_{1\frac{1}{2}}$	
1860. 069 1861. 26 1864. 976 1865. 818 1871. 261		4 6 15 8 6	53761. 4 53727. 0 53620. 0 53595. 8 53439. 9	$\begin{array}{c} +1.\ 6 \\ +5.\ 0 \\ -0.\ 7 \\ -0.\ 3 \\ \left\{ \begin{array}{c} -0.\ 3 \\ -0.\ 3 \end{array} \right. \end{array}$	$\begin{array}{c} a \ ^6\mathrm{D}_{2 1 \!\!\!/} - 5693 \ ^2\mathrm{i}_{1 \!\!\!/} \\ a \ ^6\mathrm{D}_{4 1 \!\!\!/} - 59869 \ ^3\mathrm{i}_{3 \!\!\!/} \\ a \ ^6\mathrm{D}_{3 1 \!\!\!/} - 58336 \ ^3\mathrm{i}_{2 \!\!\!/} \\ a \ ^6\mathrm{D}_{2 1 \!\!\!/} - 56768 \ ^3\mathrm{i}_{3 \!\!\!/} \\ a \ ^6\mathrm{D}_{0 1 \!\!\!/} - 53440 \ ^3\mathrm{i}_{3 \!\!\!/} \\ a \ ^6\mathrm{D}_{2 1 \!\!\!/} - 56612 \ ^3\mathrm{i}_{3 \!\!\!/} \end{array}$	
1871. 90 1873. 646 1875. 156 1877. 33 1877. 869		6 20 12 2 20	53421. 6 53371. 9 53328. 9 53267. 2 53251. 8	-1. 4 0. 0 -0. 8 -3. 4 -0. 4	$\begin{array}{c} a \ ^{0}\mathrm{D}_{0 \mid 4} - 53422 \ ^{\circ}_{1 \mid 4} \\ a \ ^{6}\mathrm{D}_{2 \mid 4} - 56544 \ ^{\circ}_{2 \mid 4} \\ a \ ^{6}\mathrm{D}_{0 \mid 4} - 53329 \ ^{\circ}_{1 \mid 4} \\ a \ ^{6}\mathrm{D}_{3 \mid 4} - 57986 \ ^{\circ}_{4 \mid 4} \\ a \ ^{6}\mathrm{D}_{4 \mid 4} - 59399 \ ^{\circ}_{4 \mid 4} \end{array}$	*
1878. 54 1880. 216 1881. 798 1882. 185 1886. 304		4 8 15 8 6	53233. 0 53185. 4 53140. 6 53129. 7 53013. 7	$ \begin{array}{c} -3.1 \\ -0.4 \\ +0.2 \\ +0.1 \\ +0.1 \end{array} $	$\begin{array}{c} a~^{6}\mathrm{S}_{212}-60656^{\circ}_{212}\\ a~^{6}\mathrm{D}_{134}-54704^{\circ}_{234}\\ a~^{6}\mathrm{D}_{334}-57856^{\circ}_{234}\\ a~^{6}\mathrm{D}_{412}-59276^{\circ}_{334}\\ a~^{6}\mathrm{D}_{314}-57729^{\circ}_{334} \end{array}$	

Table 3. Classified lines of Wii—Continued

Wavelength	In	tensity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Communation	effect
Vac.						
1891, 908 1892, 442 1893, 80 1895, 943 1900, 503		6 15 4 30 12	52856. 7 52841. 8 52803. 9 52744. 2 52617. 6	$\left\{ \begin{array}{l} -0.3 \\ +1.3 \\ +5.8 \\ +0.9 \\ -0.4 \\ -0.8 \end{array} \right.$	$\begin{array}{c} a\ ^6\mathrm{D}_{112}-54375_{212}^{\circ}\\ a\ ^4\mathrm{F}_{112}-61566_{212}^{\circ}\\ a\ ^6\mathrm{S}_{212}-60256_{312}^{\circ}\\ a\ ^6\mathrm{D}_{012}-52803_{112}^{\circ}\\ a\ ^6\mathrm{D}_{412}-58891_{512}^{\circ}\\ a\ ^6\mathrm{D}_{112}-54137_{112}^{\circ}\end{array}$	
1901. 245 1902. 51 1906. 677 1908. 750 1909. 16		30 20 12 10 6	52597. 1 52562. 1 52447. 3 52390. 3 52379. 0	$ \begin{array}{r} +3.4 \\ -0.3 \\ -1.4 \\ -5.6 \\ +5.9 \end{array} $	$\begin{array}{c} a \ ^6\mathrm{D}_{012} - 52593_{012}^{\circ} \\ a \ ^6\mathrm{D}_{412} - 58709_{312}^{\circ} \\ a \ ^6\mathrm{S}_{212} - 59869_{312}^{\circ} \\ a \ ^6\mathrm{S}_{212} - 59816_{112}^{\circ} \\ a \ ^6\mathrm{S}_{312} - 57089_{412}^{\circ} \end{array}$	
1909. 80 1911. 50 1915. 38 1925. 99 1928. 61 1929. 47		$\begin{array}{c} 4 \\ 25 \\ 8 \\ 12 \\ 20 \\ 10 \end{array}$	52361. 4 52314. 9 52209. 0 51921. 3 51850. 8 51827. 7	+6.3 -0.6 -0.9 -0.1 $+0.5$ -0.4	$\begin{array}{c} a \ ^6\mathrm{D}_{0 \ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	
1930. 10 1931. 87 1934. 345 1934. 62 1938. 21		6 10 10 3 25	51810. 8 51763. 3 51697. 1 51689. 7 51594. 0	$\begin{array}{c} -0.1 \\ -0.1 \\ -0.2 \\ +1.2 \\ -0.7 \end{array}$	$\begin{array}{c} a\ ^6\mathrm{D}_{132}-53329^{\circ}_{132}\\ a\ ^4\mathrm{F}_{132}-604774^{\circ}_{232}\\ a\ ^6\mathrm{D}_{332}-56413^{\circ}_{332}\\ a\ ^4\mathrm{F}_{232}-62989^{\circ}_{232}\\ a\ ^6\mathrm{D}_{132}-53113^{\circ}_{232} \end{array}$	
1938. 74 1940. 54 1943. 27 1945. 02 1948. 35		3 8 4 10 30	51579. 9 51532. 0 51459. 6 51413. 5 51325. 5	$\left\{ \begin{array}{l} -2.9 \\ +1.5 \\ -0.1 \\ +0.2 \\ -0.2 \\ -0.5 \end{array} \right.$	$\begin{array}{c} a\ ^6\mathrm{D}_{412} - 57729^{8}_{312} \\ a\ ^4\mathrm{F}_{312} - 64990^{3}_{212} \\ a\ ^6\mathrm{D}_{212} - 54704^{3}_{212} \\ a\ ^4\mathrm{G}_{412} - 68012^{3}_{212} \\ a\ ^4\mathrm{F}_{412} - 66270^{4}_{412} \\ a\ ^6\mathrm{D}_{212} - 54498^{3}_{312} \end{array}$	
1949. 55 1949. 93 1951. 06 1953. 00 1957. 90		40 4 40 3 2	51293. 9 51283. 9 51254. 2 51203. 3 51075. 1	$egin{array}{c} +4.8 \\ -0.3 \\ -0.2 \\ 0.0 \\ +0.2 \\ \end{array}$	$\begin{array}{c} a~^6\mathrm{S}_{2},_2 - 58709_3^*,_2 \\ a~^6\mathrm{D}_{1},_2 - 52803_3^*,_2 \\ a~^6\mathrm{D}_{0},_2 - 51254_1^*,_2 \\ a~^6\mathrm{D}_{2},_2 - 54375_2^*,_2 \\ a~^6\mathrm{D}_{1},_2 - 52593_0^*,_2 \end{array}$	
1959. 54 1961. 42 1962. 14 1962. 92 1963. 02		5 6 40 20 2	51032. 3 50983. 5 50964. 7 50944. 4 50941. 9	$ \begin{array}{r} +0.2 \\ -0.1 \\ 0.0 \\ -0.3 \\ -0.4 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{F}_{2^{1}2^{-}}-62333^{2}_{3^{1}4}\\ a\ ^4\mathrm{P}_{0^{1}4}-59816^{\circ}_{1^{1}4}\\ a\ ^6\mathrm{D}_{2^{1}2}-54137^{\circ}_{1^{1}2}\\ a\ ^4\mathrm{F}_{3^{1}2}-64356^{\circ}_{3^{1}4}\\ a\ ^6\mathrm{D}_{4^{1}2}-57089^{4}_{4^{1}2} \end{array}$	
1967. 09 1967. 41 1968. 67 1973. 32 1974. 66		$\begin{bmatrix} 2 \\ 10 \\ 8 \\ 20 \\ 4 \end{bmatrix}$	50836. 5 50828. 2 50795. 6 50676. 0 50641. 6	+0. 2 +0. 6 +0. 1 0. 0 -0. 3	$\begin{array}{c} a\ ^6\mathrm{D}_{152}-523556_{52} \\ a\ ^4\mathrm{F}_{452}-65684_{552} \\ a\ ^4\mathrm{F}_{332}-64207_{332} \\ a\ ^6\mathrm{D}_{352}-55392_{332}^2 \\ a\ ^4\mathrm{G}_{552}-68078_{552}^2 \end{array}$	
1975. 48 1976. 70 1977. 24 1977. 53 1981. 42		$\begin{array}{c} 15 \\ 25 \\ 12 \\ 15 \\ 20 \\ \end{array}$	50620. 7 50589. 4 50575. 6 50568. 1 50468. 8	$\begin{array}{c} -0.7 \\ +2.2 \\ +0.1 \\ -0.1 \\ +3.2 \end{array}$	$\begin{array}{c} a \ ^6\mathrm{D}_{4 \downarrow 2} - 56768 ^3_3 \downarrow_2 \\ a \ ^6\mathrm{S}_{2 \downarrow 3} - 58007 ^6_{1 \downarrow 4} \\ a \ ^4\mathrm{G}_{3 \downarrow 2} - 68012 ^5_{5 \downarrow 4} \\ a \ ^6\mathrm{D}_{1 \downarrow 2} - 52087 ^3_{2 \downarrow 2} \\ a \ ^6\mathrm{D}_{4 \downarrow 2} - 56612 ^3_{3 \downarrow 2} \end{array}$	
1982. 35 1982. 73 1982. 92 1987. 80 1989. 41		$ \begin{array}{c} 15 \\ 1 \\ 20 \\ 25 \\ 30 \end{array} $	50445. 1 50435. 5 50430. 7 50301. 9 50266. 1	$ \begin{array}{r} -0.9 \\ -0.8 \\ -0.3 \\ -4.6 \\ -0.4 \end{array} $	$\begin{array}{c} a\ ^{6}\mathrm{D}_{312}-55162_{212}^{5}\\ a\ ^{6}\mathrm{S}_{214}-57856_{214}^{5}\\ a\ ^{6}\mathrm{D}_{014}-50430_{114}^{6}\\ a\ ^{6}\mathrm{D}_{312}-55022_{314}^{3}\\ a\ ^{6}\mathrm{D}_{412}-56418_{414}^{3}\end{array}$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Compiliation	effect
Vac.						
1990. 07 1990. 86 1993. 15 1993. 53 1993. 74		15 12 6 1 3	50249. 4 50229. 6 50171. 8 50162. 3 50156. 9	$ \left\{ \begin{array}{l} -0.1 \\ -1.1 \\ +0.3 \\ -1.9 \\ -3.3 \\ -0.3 \end{array} \right. $	$\begin{array}{c} a\ ^{4}\mathrm{F}_{2}\mathrm{_{2}}-61550_{3}^{\circ}\mathrm{_{3}}\mathrm{_{2}}\\ a\ ^{6}\mathrm{D}_{2}\mathrm{_{2}}-53422_{1}^{\circ}\mathrm{_{2}}\mathrm{_{2}}\\ a\ ^{6}\mathrm{D}_{4}\mathrm{_{2}}-56376_{5}^{\circ}\mathrm{_{2}}\mathrm{_{2}}\\ a\ ^{4}\mathrm{D}_{2}\mathrm{_{3}}-65141_{2}^{\circ}\mathrm{_{2}}\mathrm{_{2}}\\ a\ ^{6}\mathrm{D}_{2}\mathrm{_{3}}-53338_{3}^{\circ}\mathrm{_{3}}\mathrm{_{2}}\\ a\ ^{6}\mathrm{D}_{2}\mathrm{_{2}}-53329_{1}^{\circ}\mathrm{_{2}}\mathrm{_{2}}\end{array}$	
1994. 21 1995. 545 1997. 46 1998. 54 1998. 99		15 25 6 3 3	50145. 1 50111. 6 50063. 7 50036. 6 50025. 2	-0. 9 -0. 3 -0. 3 -0. 1 0. 0	$\begin{array}{c} a\ ^4\mathrm{F}_{414}-65003_{414}^{\circ}\\ a\ ^4\mathrm{F}_{412}-64969_{512}^{\circ}\\ a\ ^4\mathrm{F}_{112}-60656_{512}^{\circ}\\ a\ ^4\mathrm{F}_{112}-58747_{112}^{\circ}\\ a\ ^4\mathrm{F}_{212}-61326_{312}^{\circ}\\ \end{array}$	-
Air						
1999. 83 2001. 70 2002. 59 2002. 73 2005. 60	3	12 30 2 3 1	49988. 1 49941. 4 49919. 2 49915. 7 49844. 3	$ \begin{array}{r} -0.2 \\ +0.4 \\ 0.0 \\ +0.4 \\ +1.0 \end{array} $	$\begin{array}{c} a \ ^6\mathrm{D}_{3\frac{1}{2}} - 54704_{2\frac{1}{2}\frac{1}{2}} \\ a \ ^6\mathrm{D}_{2\frac{1}{2}} - 53113_{2\frac{1}{2}\frac{1}{2}} \\ a \ ^6\mathrm{D}_{1\frac{1}{2}} - 51438_{2\frac{1}{2}\frac{1}{2}} \\ a \ ^4\mathrm{P}_{0\frac{1}{2}} - 58747_{1\frac{1}{2}}^{\circ} \\ a \ ^4\mathrm{D}_{3\frac{1}{2}} - 64990_{2\frac{1}{2}\frac{1}{2}}^{\circ} \end{array}$	
2006. 07 2008. 08 2009. 37 2009. 98 2010. 24	4 1 3	$\begin{array}{c} 3 \\ 40 \\ 2 \\ 12 \\ 15 \end{array}$	49832. 6 49782. 7 49750. 8 49735. 7 49729. 3	$ \begin{array}{r} +0.4 \\ +0.5 \\ +1.6 \\ +0.1 \\ +0.1 \end{array} $	$\begin{array}{c} a~^{4}\mathrm{P}_{2^{1}\!4}-63266^{3}_{3^{1}\!4}\\ =a~^{6}\mathrm{D}_{3^{1}\!4}-54498^{3}_{3^{1}\!4}\\ a~^{4}\mathrm{D}_{3^{1}\!2}-64896^{3}_{3^{1}\!4}\\ a~^{6}\mathrm{D}_{1^{1}\!4}-51254^{1}_{1^{1}\!4}\\ a~^{6}\mathrm{D}_{2^{1}\!4}-52901^{3}_{3^{1}\!4} \end{array}$	
2010. 66 2012. 18 2013. 06 2014. 23 2014. 43	2 4 3 3	$\begin{array}{c} 1 \\ 5 \\ 4 \\ 15 \\ 10 \end{array}$	49718. 9 49681. 3 49659. 6 49630. 7 49625. 8	$\begin{array}{c} +1.\ 1 \\ 0.\ 0 \\ +0.\ 1 \\ +0.\ 2 \\ +0.\ 1 \end{array}$	$\begin{array}{c} a~^4G_{414}-66270^2_{414}\\ a~^4G_{332}-66270^2_{432}\\ a~^6D_{332}-54375^2_{332}\\ a~^6D_{232}-52803^2_{132}\\ a~^4F_{132}-58336^2_{232} \end{array}$	
2015. 44 2017. 26 2019. 08 2019. 55 2021. 43		8 2 1 5 3	49601. 0 49556. 2 49511. 6 49500. 0 49454. 0	$ \begin{array}{r} +1.1 \\ +0.7 \\ -0.2 \\ +0.5 \\ -0.6 \end{array} $	$\begin{array}{c} a\ ^4\Gamma_{212}-60900^\circ_{232}\\ a\ ^4\Gamma_{212}-62989^\circ_{232}\\ a\ ^4\Gamma_{212}-56932^\circ_{132}\\ a\ ^4\Gamma_{442}-64356^\circ_{332}\\ a\ ^6S_{212}-56874^\circ_{232} \end{array}$	
2023. 25 2023. 63 2023. 79 2025. 45 2025. 62 2026. 07	1 8	$ \begin{array}{c} 1 \\ 3 \\ 3 \\ 4 \\ 2 \\ 30 \end{array} $	49409. 5 49400. 3 49396. 4 49355. 9 49351. 7 49340. 8	$ \begin{array}{r} + 0.1 \\ + 0.6 \\ + 0.4 \\ + 0.5 \\ + 1.4 \\ + 0.6 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{G}_{242} - 65644_{332}^*\\ a\ ^4\mathrm{P}_{132} - 59992_{232}^*\\ a\ ^4\mathrm{P}_{132} - 64030_{232}^*\\ a\ ^4\mathrm{F}_{232} - 60656_{232}^*\\ a\ ^4\mathrm{F}_{442} - 64207_{432}^*\\ a\ ^6\mathrm{D}_{332} - 54056_{432}^*\end{array}$	
2027. 30 2027. 55 2027. 87 2029. 12 2029. 99	1 2 2 1 5	$ \begin{array}{c} 12 \\ 3 \\ 5 \\ 15 \\ 50 \end{array} $	49310. 8 49304. 8 49296. 9 49266. 6 49245. 5	+0.9 +0.8 +0.6 +0.1 +0.3	$\begin{array}{c} a \ ^6\mathrm{D}_{312} - 54026^{\circ}_{212} \\ a \ ^4\mathrm{F}_{332} - 62715^{\circ}_{412} \\ a \ ^4\mathrm{F}_{132} - 58007^{\circ}_{132} \\ a \ ^4\mathrm{G}_{512} - 66703^{\circ}_{512} \\ a \ ^6\mathrm{D}_{412} - 55392^{\circ}_{412} \end{array}$	
2030. 87 2031. 44 2032. 16 2032. 92 2033. 38		3 12 3 12 10	49224. 2 49210. 4 49192. 9 49174. 5 49163. 4	$\begin{array}{c} +0.4 \\ +0.7 \\ +0.6 \\ -0.4 \\ +0.4 \end{array}$	$\begin{array}{c} a~^{4}\mathrm{P}_{134}-59816^{\circ}_{134}\\ a~^{4}\mathrm{D}_{332}-64356^{\circ}_{332}\\ a~^{9}\mathrm{S}_{232}-56612^{\circ}_{332}\\ a~^{4}\mathrm{P}_{032}-58007^{\circ}_{132}\\ a~^{4}\mathrm{D}_{332}-64310^{\circ}_{232} \end{array}$	
2033. 73 2034. 19 2035. 02 2035. 87 2036. 40 2037. 58	5 5 3	$\begin{array}{c} 8 \\ 3 \\ 25 \\ 40 \\ 2 \\ 40 \end{array}$	49154. 9 49143. 8 49123. 8 49103. 3 49090. 5 49062. 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} a\ ^6\mathrm{D}_{0^1 \! 4} - 49154_0^4 \mathrm{b}_{4} \\ a\ ^4\mathrm{F}_{1^1 \! 4} - 57856_{2^1 \! 2}^2 \\ a\ ^6\mathrm{S}_{2^1 \! 4} - 56544_{2^1 \! 2}^2 \\ a\ ^6\mathrm{D}_{2^1 \! 4} - 52275_{3^1 \! 2}^2 \\ a\ ^4\mathrm{G}_{4^1 \! 4} - 65644_{3^1 \! 4}^2 \\ a\ ^4\mathrm{D}_{2^1 \! 4} - 64030_{2^1 \! 2}^2 \end{array} $	

Table 3. Classified lines of Wii—Continued

Wavelength	Inter	nsity	Wave num	per (cm ⁻¹)	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	. Combination	effect
Air						
2037. 89 2039. 10 2040. 86 2042. 00	$-\frac{2}{4}$ 1	15 4 20 6	49054. 6 49025. 5 48983. 3 48956. 0	$ \begin{array}{r} +0.3 \\ +0.4 \\ +0.4 \\ +0.6 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{G}_{3\flat_2}{-}6564\rlap/43\flat_3\\ a\ ^4\mathrm{F}_{3\flat_4}{-}62437^*_4\flat_2\\ a\ ^6\mathrm{D}_{0\flat_4}{-}48982^*_1\flat_2\\ a\ ^4\mathrm{F}_{2\flat_4}{-}60256^*_3\flat_2 \end{array}$	
2042. 55 2043. 02	2	5 8	48942. 7 48931. 3	+0.9 +0.3	$\begin{array}{c} 19070_{41/2}68012_{51/2}^{\circ} \\ a {}^{4}F_{41/2}63788_{31/2}^{\circ} \end{array}$	
2043, 52 2043, 72 2043, 82 2044, 33 2045, 05	5 2 3	30 15 3 10 3	48919. 6 48914. 7 48912. 3 48900. 1 48883. 0	$ \begin{array}{c} -1.6 \\ +0.2 \\ +0.1 \\ +1.0 \\ -0.3 \end{array} $	$\begin{array}{c} a^{4}\mathrm{F}_{312}-62333_{214}^{8}\\ a^{6}\mathrm{D}_{212}-52087_{314}^{8}\\ a^{6}\mathrm{D}_{112}-50430_{134}^{9}\\ a^{4}\mathrm{P}_{212}-62333_{214}^{2}\\ a^{4}\mathrm{D}_{312}-64030_{214}^{2} \end{array}$	
2045, 32 2047, 07 2047, 76 2048, 03 2049, 62	2 2 5 8	$ \begin{array}{c} 15 \\ 20 \\ 2 \\ 30 \\ 25 \end{array} $	48876. 4 48834. 8 48818. 2 48811. 8 48773. 9	$ \begin{array}{c} +0.7 \\ +0.9 \\ -2.2 \\ +0.4 \\ +0.3 \end{array} $	$\begin{array}{c} a~^6\mathrm{D}_{4/2}-550223_{3/4}\\ a~^4\mathrm{G}_{5/2}-66270_{3/4}\\ a~^4\mathrm{D}_{2/2}-63788_{3/4}\\ a~^6\mathrm{D}_{4/2}-54958_{5/4}\\ a~^6\mathrm{D}_{1/2}-50292_{2/4}^2 \end{array}$	
2050. 36 2051. 32 2053. 10 2053. 35 2054. 67	1? 5	12 1 15 3 50	48756. 3 48733. 5 48691. 3 48661. 6 48654. 0	$ \begin{array}{c} +0.8 \\ +0.4 \\ +0.2 \\ +0.8 \\ +0.2 \\ +0.4 \end{array} $	$\begin{array}{c} a~^{4}G_{2}{}_{2}-64990_{3}{}_{3}{}_{4}\\ a~^{4}D_{3}{}_{4}-63880_{3}{}_{3}{}_{4}\\ a~^{4}F_{2}{}_{4}-59992_{3}{}_{3}{}_{4}\\ a~^{6}D_{2}{}_{2}-51863_{3}{}_{3}{}_{4}\\ a~^{6}G_{2}{}_{2}-64896_{3}{}_{4}\\ a~^{6}D_{3}{}_{4}-53369_{4}{}_{4}{}_{2} \end{array}$	
2055. 19 2055. 54 2055. 99 2058. 30 2059. 03	2 1? 2 12 1	3 3 10 15 8	48641. 8 48633. 5 48622. 8 48568. 3 48550. 9	$\begin{array}{c} +0.6 \\ +0.9 \\ +1.0 \\ +0.2 \\ -1.0 \end{array}$	$\begin{array}{c} a~^{4}\mathrm{D}_{3}1_{2}-63788\$_{3}1_{4}\\ a~^{4}\mathrm{F}_{2}1_{2}-59933\$_{3}1_{4}\\ a~^{6}\mathrm{D}_{3}1_{2}-53338\$_{3}1_{4}\\ a~^{4}\mathrm{F}_{2}1_{2}-59869\$_{3}1_{4}\\ a~^{4}\mathrm{G}_{3}1_{2}-65141\$_{2}1_{4}\end{array}$	
2059. 45 2060. 53 2063. 34 2064. 76 2065. 06	$\begin{array}{c} 4\\3\\2\\6A\end{array}$	8 2 1 6 3	48541. 1 48515. 7 48449. 7 48416. 3 48409. 4	$ \begin{array}{r} +0.4 \\ +0.5 \\ -0.4 \\ +0.3 \\ +0.3 \end{array} $	$\begin{array}{c} a ^4\mathrm{F}_{1^1\!2} - 57252 ^3_{2^1\!4} \\ a ^4\mathrm{F}_{2^1\!4} - 59816 ^3_{1^4\!4} \\ a ^4\mathrm{G}_{4^1\!2} - 65003 ^3_{4^1\!4} \\ a ^4\mathrm{G}_{4^1\!2} - 64969 ^3_{3^4\!4} \\ a ^4\mathrm{F}_{4^1\!4} - 63266 ^3_{3^4\!4} \end{array}$	
2065. 57 2067. 52 2067. 87 2069. 36 2069. 77	3 —? —?	30 30 10 10 3	48397. 3 48351. 7 48343. 5 48308. 8 48299. 1	$ \begin{array}{r} +0.1 \\ +0.3 \\ +0.4 \\ +2.2 \\ +0.6 \end{array} $	$\begin{array}{c} a\ ^6\mathrm{D}_{312}-53113_{234}^2\\ a\ ^6\mathrm{D}_{412}-54498_{334}^2\\ a\ ^4\mathrm{G}_{432}-64896_{334}^2\\ a\ ^4\mathrm{G}_{332}-64896_{334}^2\\ a\ ^4\mathrm{D}_{232}-63266_{334}^2\\ \end{array}$	
2071. 19 2071. 95 2074. 63 2075. 59 2075. 93	2	40 3 15 30 10	48265. 9 48248. 3 48185. 9 48163. 8 48155. 9	$ \begin{array}{r} +0.4 \\ +0.5 \\ +0.5 \\ +0.1 \\ +0.5 \end{array} $	$\begin{array}{c} a\ ^6\mathrm{D}_{2^1\!4}-51438_{2^1\!4}^2\\ a\ ^4\mathrm{G}_{3^1\!4}-65684_{3^1\!4}^2\\ a\ ^6\mathrm{D}_{3^1\!2}-52901_{3^1\!4}^2\\ a\ ^4\mathrm{F}_{1^1\!4}-56874_{2^1\!4}^2\\ a\ ^4\mathrm{P}_{1^1\!4}-58747_{1^1\!4}^2 \end{array}$	-
2076. 92 2077. 36 2077. 61		2 5 6	48132. 9 48122. 6 48116. 9	$ \begin{array}{r} +0.3 \\ +0.7 \\ +0.4 \end{array} $	$\begin{array}{c} a \ ^4\mathrm{P}_{21/2} - 61566^{\circ}_{21/2} \\ a \ ^4\mathrm{G}_{21/2} - 64356^{\circ}_{31/2} \\ a \ ^4\mathrm{P}_{21/2} - 61550^{\circ}_{31/2} \end{array}$	
2077. 92 2078. 32 2079. 11 2081. 75 2083. 70 2084. 23 2084. 88	1 1 20 1	10 40 80 3 10 12 5	48109. 7 48100. 3 48082. 2 48021. 2 47976. 4 47964. 1 47949. 1	$\begin{array}{c} +0.4 \\ +0.7 \\ \{+0.3 \\ +0.3 \\ -0.6 \\ +0.7 \\ +0.9 \\ +0.5 \end{array}$	$\begin{array}{c} a^{4}\mathrm{F}_{4},_{2}-62966_{5}^{6},_{2}\\ a^{4}\mathrm{P}_{0},_{2}-56932_{1}^{6},_{3}\\ a^{6}\mathrm{D}_{2},_{2}-51254_{1}^{6},_{3}\\ a^{6}\mathrm{D}_{2},_{2}-54229_{3}^{6},_{4}\\ a^{4}\mathrm{D}_{2},_{2}-62989_{2}^{6},_{4}\\ a^{4}\mathrm{F}_{2},_{2}-59276_{3}^{6},_{4}\\ a^{4}\mathrm{G}_{4},_{2}-64516_{4}^{6},_{4}\\ a^{4}\mathrm{F}_{3},_{2}-61360_{4}^{6},_{4}\end{array}$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Comomavon	effect
Air						
2086. 37 2086. 58 2087. 34 2087. 46 2088. 18	2 5 2 5 60	$\begin{array}{c} 3 \\ 4 \\ 2 \\ 4 \\ 30 \end{array}$	47914. 9 47910. 0 47892. 6 47889. 9 47873. 4	$ \begin{array}{c} +0.6 \\ +0.6 \\ +0.4 \\ +0.5 \\ +0.7 \end{array} $	$\begin{array}{c} a^{4}\mathrm{F}_{3},_{2}-61326_{3}^{2},_{4}\\ a^{6}\mathrm{D}_{4},_{2}-54056_{4}^{2},_{2}\\ a^{4}\mathrm{P}_{2},_{2}-61326_{3}^{2},_{2}\\ a^{4}\mathrm{G}_{5},_{4}-65326_{5}^{2},_{4}\\ a^{6}\mathrm{D}_{2},_{4}-51045_{3}^{2},_{4} \end{array}$	
2089. 13 2089. 49 2091. 23 2093. 79 2094. 72	40 2 20 50	$\begin{array}{c} 20 \\ 4 \\ 4 \\ 20 \\ 25 \end{array}$	47851. 6 47843. 4 47803. 5 47745. 1 47723. 9	$ \begin{array}{c} +0.8 \\ +0.8 \\ -0.1 \\ +0.6 \\ +0.6 \end{array} $	$\begin{array}{c} a~^6D_{3 \downarrow 4} - 52567^*_{4 \downarrow 4} \\ a~^4D_{3 \downarrow 4} - 62989^*_{2 \downarrow 2} \\ a~^4C_{4 \downarrow 4} - 64356^*_{3 \downarrow 4} \\ a~^4P_{1 \downarrow 4} - 58336^*_{2 \downarrow 4} \\ a~^6D_{1 \downarrow 2} - 49242^*_{2 \downarrow 2} \end{array}$	
2095. 78 2097. 76 2098. 22 2098. 58 2098. 69	$\begin{array}{c} 2 \\ 60A \\ 70 \\ 3 \end{array}$	$\begin{array}{c} 1 \\ 3 \\ 30 \\ 40 \\ \end{array}$	47699. 8 47654. 6 47644. 2 47636. 2 47633. 7	$ \begin{array}{c} +1.0 \\ +0.2 \\ +0.4 \\ +0.5 \\ +0.9 \end{array} $	$\begin{array}{c} a\ ^{4}\mathrm{D}_{114}-62333_{234}^{\circ}\\ a\ ^{4}\mathrm{G}_{412}-64207_{412}^{\circ}\\ a\ ^{4}\mathrm{F}_{33}-61055_{432}^{\circ}\\ a\ ^{6}\mathrm{D}_{114}-49154_{614}^{\circ}\\ 19070_{412}-66703_{512}^{\circ}\end{array}$	
2099. 37 2100. 06 2100. 66 2101. 05 2101. 66	$\frac{2}{50}$	$\begin{array}{c} 1 \\ 1 \\ 20 \\ 3 \\ 4 \end{array}$	47618. 3 47602. 6 47589. 0 47580. 1 47566. 4	$ \begin{array}{r} +0.5 \\ +0.2 \\ +0.4 \\ +0.3 \\ +0.2 \end{array} $	$\begin{array}{c} a~^4G_{334}-64207^*_{434}\\ a~^6S_{232}-55022^*_{332}\\ a~^6D_{04}-47588^*_{132}\\ a~^4F_{432}-62437^*_{432}\\ a~^4G_{532}-65003^*_{432} \end{array}$	
2101. 96 2102. 21 2103. 16 2105. 07 2106. 04	10 3 30 2	$\begin{array}{c}2\\1\\15\\3\end{array}$	47559. 6 47553. 9 47532. 5 47489. 3 47467. 4	$ \begin{array}{r} +0.6 \\ +0.5 \\ +0.4 \\ +0.3 \\ +0.5 \end{array} $	$\begin{array}{c} a\ ^6\mathrm{D}_{3 1 4}-52275\ _{3 1 2}^{\circ}\\ a\ ^4\mathrm{G}_{2 1 2}-63788\ _{3 1 2}^{\circ}\\ a\ ^4\mathrm{G}_{3 1 4}-64969\ _{3 1 2}^{\circ}\\ a\ ^4\mathrm{F}_{3 1 4}-60900\ _{2 1 2}^{\circ}\\ a\ ^4\mathrm{P}_{2 1 2}-60900\ _{2 1 2}^{\circ}\\ \end{array}$	
2106. 17 2107. 26 2108. 38 2108. 65 2110. 33	50 —? —? 50	$\begin{array}{c} 30 \\ 3 \\ 25 \\ 15 \\ 30 \end{array}$	47464. 5 47440. 0 47414. 8 47408. 6 47371. 0	$ \begin{array}{r} +0.4 \\ -0.7 \\ -0.3 \\ +0.1 \\ +0.3 \end{array} $	$\begin{array}{c} a~^6\mathrm{D}_{112}-48982^\circ_{112}\\ a~^4\mathrm{G}_{312}-64030^\circ_{312}\\ a~^4\mathrm{P}_{114}-58007^\circ_{112}\\ a~^4\mathrm{F}_{212}-58709^\circ_{312}\\ a~^6\mathrm{D}_{312}-52087^\circ_{212} \end{array}$	
2113. 92 2114. 16 2115. 08 2115. 35 2115. 65	20 10 20 2	2 1 2	47290. 5 47285. 1 47264. 5 47258. 6 47251. 8		$\begin{array}{c} a\ ^4\mathrm{G}_{332}-63880^{\circ}_{232}\\ a\ ^4\mathrm{D}_{332}-62437^{\circ}_{432}\\ a\ ^6\mathrm{S}_{232}-54704^{\circ}_{232}\\ a\ ^4\mathrm{P}_{132}-57856^{\circ}_{232}\\ a\ ^6\mathrm{D}_{232}-50430^{\circ}_{132}\\ a\ ^4\mathrm{P}_{032}-56084^{\circ}_{132} \end{array}$	
2115. 91 2116. 94 2118. 03 2118. 34 2118. 87	25 15 40	$\begin{array}{c} 2 \\ 2 \\ 5 \\ 2 \\ 20 \end{array}$	47246. 1 47223. 1 47198. 8 47191. 8 47180. 1	$ \begin{array}{c} +1.5 \\ +0.3 \\ +0.3 \\ +0.9 \\ +0.2 \end{array} $	$\begin{array}{c} a {}^{4}F_{312} - 60656^{\circ}_{232} \\ a {}^{6}D_{412} - 53369^{\circ}_{412} \\ a {}^{4}G_{312} - 63788^{\circ}_{332} \\ a {}^{6}D_{412} - 53338^{\circ}_{332} \\ a {}^{6}D_{012} - 47179^{\circ}_{112} \end{array}$	
2120. 38 2121. 60 2123. 42 2124. 14 2125. 58	$ \begin{array}{c} 1 \\ 100 \\ 15 \end{array} $	$\begin{array}{c} 1 \\ 25 \\ 20 \\ 1 \\ 10 \end{array}$	47146. 4 47119. 3 47079. 0 47063. 0 47031. 1	$ \begin{array}{c} -0.3 \\ -0.5 \\ -0.4 \\ +0.3 \\ -0.4 \end{array} $	$\begin{array}{c} -a\ ^6\mathrm{D}_{3 \downarrow q} - 51863_{3 \downarrow q}^{\circ} \\ a\ ^6\mathrm{D}_{2 \downarrow q} - 50292_{2 \downarrow q}^{\circ} \\ a\ ^4\mathrm{G}_{5 \downarrow q} - 64516_{3 \downarrow q}^{\circ} \\ a\ ^4\mathrm{F}_{3 \downarrow q} - 60474_{2 \downarrow q}^{\circ} \\ a\ ^4\mathrm{G}_{2 \downarrow q} - 63266_{3 \downarrow q}^{\circ} \end{array}$	
2126. 86 2127. 44 2129. 00 2130. 05 2131. 73	2 12 10 20 4	$ \begin{array}{c} 4 \\ 20 \\ 2 \\ 2 \\ 3 \end{array} $	47002. 8 46990. 0 46955. 6 46932. 4 46895. 5	$ \left\{ \begin{array}{l} +0.3 \\ +0.4 \\ 0.0 \\ +0.2 \\ +0.1 \\ 0.0 \end{array} \right. $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Wavelength	Inter	nsity	Wave numb	$ m cer~(cm^{-1})$	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air						
2134. 044 2135. 04 2137. 135 2137. 636 2138. 133	$ \begin{array}{r} 25 \\ \hline 20A \\ 25 \\ 40 \end{array} $	10 20 10 6 30	46844. 61 46822. 8 46776. 87 46765. 9 46755. 0	$ \begin{array}{r} +0.12 \\ +0.4 \\ +0.12 \\ +0.2 \\ +0.4 \end{array} $	$\begin{array}{c} a^{4}\mathrm{F}_{3\!1\!4}-60256_{3\!1\!4}^{2}\\ a^{4}\mathrm{P}_{2\!1\!4}-60256_{3\!1\!4}^{2}\\ a^{4}\mathrm{F}_{1\!1\!4}-55488_{1\!1\!4}^{2}\\ a^{6}\mathrm{D}_{1\!1\!4}-48284_{2\!1\!4}^{2}\\ a^{6}\mathrm{D}_{4\!1\!4}-52901_{3\!1\!4}^{2} \end{array}$	
2139. 16 2139. 646 2139. 86 2140. 03 2140. 94	30 12 1 5	12 6 6 2	46732. 6 46722. 0 46717. 3 46713. 6 46693. 7	$ \begin{array}{r} +0.4 \\ +0.3 \\ +0.5 \\ +0.4 \\ +0.3 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{4 2}\!-\!61589_{5 2}^{\circ}\\ a{}^{6}\mathrm{D}_{3 2}\!-\!51438_{5 2}^{\circ}\\ a{}^{6}\mathrm{S}_{2 2}\!-\!54137_{1 2}^{\circ}\\ a{}^{4}\mathrm{G}_{4 2}\!-\!63266_{3 2}^{\circ}\\ a{}^{4}\mathrm{F}_{4 2}\!-\!61550_{3 2}^{\circ}\\ \end{array}$	
2142. 49 2142. 736 2143. 257 2144. 08 2145. 28	$15 \\ 3 \\ 15A \\ 40 \\ 6$	4 1 3 4	46660. 0 46645. 61 46643. 27 46625. 4 46599. 3	$ \begin{array}{r} +0.5 \\ +0.26 \\ +0.35 \\ +0.1 \\ +0.4 \end{array} $	$\begin{array}{c} a^{4}\mathrm{P}_{1 2}\!-\!57252_{2 2}^{\circ}\\ a^{4}\mathrm{P}_{0 2}\!-\!55488_{1 2}^{\circ}\\ a^{4}\mathrm{D}_{0 2}\!-\!59816_{1 2}^{\circ}\\ a^{4}\mathrm{D}_{0 2}\!-\!46625_{0 2}^{\circ}\\ a^{4}\mathrm{D}_{2 2}\!-\!61566_{2 2}^{\circ}\end{array}$	
2146. 02 2146. 13 2147. 17 2147. 31 2148. 84	$\begin{array}{c} 8\\25\\1\\35A \end{array}$	3 8 3 8	46583. 1 46580. 8 46558. 3 46555. 2 46522. 1	$ \begin{array}{r} +0.3 \\ +0.6 \\ +0.2 \\ -0.4 \\ +0.4 \end{array} $	$\begin{array}{c} a\ ^{4}\mathrm{D}_{2}\mathrm{_{3}}-61550_{3}^{\circ}\mathrm{_{3}}\mathrm{_{4}}\\ a\ ^{4}\mathrm{F}_{3}\mathrm{_{3}}-59992_{2}^{\circ}\mathrm{_{2}}\mathrm{_{2}}\mathrm{_{2}}\\ a\ ^{4}\mathrm{P}_{2}\mathrm{_{4}}-59992_{3}^{\circ}\mathrm{_{2}}\mathrm{_{2}}\\ a\ ^{4}\mathrm{F}_{2}\mathrm{_{4}}-57856_{2}^{\circ}\mathrm{_{4}}\\ a\ ^{4}\mathrm{F}_{3}\mathrm{_{3}}-59933_{3}^{\circ}\mathrm{_{3}}\mathrm{_{2}}\end{array}$	
2149. 136 2149. 69 2151. 28 2151. 83 2152. 126	3 — 20	12 3 3 4 25	46515. 69 46503. 7 46469. 3 46457. 4 46451. 07	$ \begin{array}{r} +0.02 \\ +0.4 \\ +0.2 \\ +0.2 \\ +0.03 \end{array} $	$\begin{array}{c} 18000_{314} - 64516_{414}^2 \\ a^4 F_{412} - 61360_{412}^2 \\ a^4 F_{413} - 61326_{314}^2 \\ a^4 F_{314} - 59869_{314}^3 \\ a^4 F_{112} - 55162_{212}^2 \end{array}$	
2152. 85 2153. 15 2153. 550 2153. 870 2154. 31	5 8 40 4 4	$ \begin{array}{c} -1 \\ 20 \\ 20 \\ 3 \end{array} $	46435. 5 46429. 0 46420. 36 46413. 46 46404. 0	$ \begin{array}{r} +0.5 \\ +0.2 \\ +0.37 \\ +0.10 \\ +0.4 \end{array} $	$\begin{array}{c} a~^{4}\mathrm{P}_{252}-59869^{3}_{352}\\ a~^{4}\mathrm{F}_{252}-57729^{3}_{352}\\ a~^{6}\mathrm{D}_{452}-52567^{4}_{352}\\ a~^{4}\mathrm{G}_{452}-62966^{5}_{552}\\ a~^{4}\mathrm{D}_{352}-61550^{3}_{352} \end{array}$	
2155. 25 2155. 31 2156. 00 2156. 42 2157. 798 2159. 96	3 4 4 4 4	$\begin{array}{c} 2\\ 4\\ 20\\ 20\\ 8 \end{array}$	46383. 7 46382. 5 46367. 61 46358. 6 46328. 98 46282. 6	$ \begin{array}{r} +0.1 \\ +0.3 \\ +0.13 \\ +0.1 \\ +0.05 \\ +0.1 \end{array} $	$\begin{array}{c} a^{4}\mathrm{F}_{412}\!-\!61240_{512}^{6}\\ a^{4}\mathrm{P}_{212}\!-\!59816_{112}^{6}\\ 19276_{212}\!-\!65644_{312}^{4}\\ a^{4}\mathrm{P}_{212}\!-\!61326_{312}^{3}\\ a^{6}\mathrm{D}_{312}\!-\!51045_{312}^{3}\\ a^{4}\mathrm{P}_{112}\!-\!56874_{212}^{4}\\ \end{array}$	
2160. 69 2161. 83 2162. 36 2163. 49 2163. 880	2 2	3 5 3 30	46267. 0 46242. 6 46231. 2 46207. 1 46198. 78	$ \begin{array}{r} +0.4 \\ +0.3 \\ 0.0 \\ +0.3 \\ +0.20 \end{array} $	$\begin{array}{c} a\ ^{4}\mathrm{D}_{1}\mathrm{y}_{2}-60900^{\circ}_{2}\mathrm{y}_{2}\\ 19442_{8}\mathrm{y}_{2}-65684^{\circ}_{5}\mathrm{y}_{2}\\ 20039_{3}\mathrm{y}_{2}-66270^{\circ}_{4}\mathrm{y}_{2}\\ 18000_{3}\mathrm{y}_{2}-64207^{\circ}_{4}\mathrm{y}_{2}\\ a\ ^{4}\mathrm{F}_{4}\mathrm{y}_{2}-61055^{\circ}_{4}\mathrm{y}_{2} \end{array}$	6
2164. 800 2165. 264 2165. 56 2166. 316 2167. 185	3 40 10	5 6 80 20	46179. 15 46169. 25 46163. 0 46146. 84 46128. 33	$\begin{array}{c} -0.12 \\ +0.10 \\ +0.2 \\ +0.11 \\ +0.21 \end{array}$	$\begin{array}{c} a\ ^{4}\mathrm{D}_{3}\mathrm{_{2}}-61326^{\circ}_{3}\mathrm{_{2}}\\ 20534_{5}\mathrm{_{2}}-66703^{\circ}_{5}\mathrm{_{2}}\\ a\ ^{4}\mathrm{G}_{4}\mathrm{_{2}}-62715^{\circ}_{4}\mathrm{_{2}}\\ a\ ^{6}\mathrm{D}_{3}\mathrm{_{2}}-50863^{\circ}_{4}\mathrm{_{2}}\\ a\ ^{6}\mathrm{D}_{4}\mathrm{_{2}}-52275^{\circ}_{3}\mathrm{_{2}}\end{array}$	
2167. 276 2168. 590 2169. 936 2172. 206 2172. 926 2173. 26	4 15	$\begin{array}{c} 1 \\ 10 \\ 40 \\ -12 \\ 6 \\ 2 \end{array}$	46126. 40 46098. 45 46069. 86 46021. 72 46006. 47 45999. 40	$ \begin{cases} +0.09 \\ +0.09 \\ 0.00 \\ +0.28 \\ -0.43 \\ -0.15 \\ +0.04 \end{cases} $	$\begin{array}{c} a\ ^4G_{3 \cancel{4}}-62715^{\circ}_{4 \cancel{4}} \\ a\ ^4G_{2 \cancel{4}}-62333^{\circ}_{2 \cancel{4}} \\ a\ ^6D_{1 \cancel{4}}-47588^{\circ}_{1 \cancel{4}} \\ a\ ^6D_{2 \cancel{4}}-4924^{\circ}_{2 \cancel{4}} \\ a\ ^6D_{2 \cancel{4}}-60656^{\circ}_{2 \cancel{4}} \\ 19637_{2 \cancel{4}}-65644^{\circ}_{3 \cancel{4}} \\ 18990_{1 \cancel{4}}-64990^{\circ}_{2 \cancel{4}} \end{array}$	
2173. 55 2173. 825 2175. 494 2175. 54 2176. 424	25 5 12 2	50 15 8 3 12	45993. 27 45987. 45 45952. 17 45951. 1 45932. 54	$ \begin{vmatrix} -0.08 \\ +0.07 \\ +0.17 \\ +0.29 \\ +0.2 \\ +0.02 \end{vmatrix} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{154}\!-\!54704_{234}^{2}_{34}\\ a{}^{4}\mathrm{F}_{352}\!-\!59399_{452}^{4}\\ a{}^{6}\mathrm{D}_{252}\!-\!4912_{4352}^{4}\\ a{}^{4}\mathrm{P}_{152}\!-\!56544_{256}^{2}\\ a{}^{4}\mathrm{F}_{252}\!-\!57252_{252}^{2}\\ 19070_{452}\!-\!65003_{452}^{2}\end{array}$	

Table 3. Classified lines of W II—Continued

Wavelength	Inte	nsity	Wave numb	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Compiliation	effect
Air						
2176. 88 2177. 13 2177. 52 2177. 546 2178. 04 2178. 72	$\frac{3}{3}$ $\frac{4}{4}$	$15\ 4\ 30$ }	45922. 9 45917. 65 45909. 42 45908. 88 45898. 46 45884. 14	$\begin{array}{c} -0.2 \\ +0.01 \\ +0.14 \\ +0.10 \\ +0.04 \\ +0.24 \end{array}$	$\begin{array}{c} 20780_{41/2}-66703_{51/4}^2\\ a~^6S_{21/2}-533383_{3/4}^3\\ a~^6S_{21/2}-53329_{11/2}^2\\ a~^4D_{31/2}-61065_{41/2}^2\\ 19070_{41/2}-64969_{51/2}^3\\ a~^4G_{41/2}-62437_{41/2}^4\end{array}$	
2178. 92 2179. 634 2180. 46	10 20	30 8 40	45879. 9 45864. 9 45847. 53	$ \left\{ \begin{array}{l} +0.5 \\ +0.1 \\ -0.1 \\ +0.16 \end{array} \right. $	$\begin{array}{c} 18000_{312} - 63880_{212}^{\circ} \\ a\ ^{4}\mathrm{F}_{312} - 59276_{312}^{\circ} \\ 19276_{212} - 65141_{212}^{\circ} \\ a\ ^{4}\mathrm{G}_{312} - 62437_{412}^{\circ} \end{array}$	
2180. 68	20	8	45842. 9	+0.2	$a^{4}P_{2\frac{1}{2}} - 59276_{3\frac{1}{2}}^{3\frac{1}{2}}$	
2181. 49 2182. 225 2183. 32 2183. 94 2185. 42	15A 2 —	3 40 40 50	45825. 9 45810. 45 45787. 48 45774. 48 45743. 49	$ \begin{array}{r} +0.4 \\ +0.11 \\ -0.02 \\ +0.14 \\ -0.04 \end{array} $	$\begin{array}{c} 19070_{4}\sqrt{-}64896_{3}^{3}\\ a~^{6}D_{2}\sqrt{-}48982_{1}^{6}\\ 18000_{3}\sqrt{-}63788_{3}^{3}\\ a~^{4}F_{1}\sqrt{-}54485_{0}^{6}\\ a~^{4}G_{3}\sqrt{-}62333_{2}^{3}\end{array}$	
2185. 75 2186. 738 2186. 835 2187. 82 2188. 06	5 30 4 3	40 40 10 1 2	45736. 58 45715. 92 45713. 89 45693. 3 45688. 3	$\begin{array}{c} -0.02 \\ +0.05 \\ +0.09 \\ +0.2 \\ -0.4 \end{array}$	$\begin{array}{c} 20534_{5}\%-66270_{4}^{6}\%\\ a\ ^{6}\mathrm{D}_{4}\%-51863_{3}^{8}\%\\ 19276_{2}\%-64990_{3}^{2}\%\\ a\ ^{6}\mathrm{S}_{2}\%-53113_{2}^{2}\%\\ a\ ^{4}\mathrm{D}_{2}\%-60656_{2}^{6}\%\\ \end{array}$	
2189. 19 2189. 364 2189. 494 2189. 740 2189. 850	$ \begin{array}{r} 30A \\ 40 \\ 50 \\ 6 \\ 40 \end{array} $	30 40 50 10 80	45664. 7 45661. 09 45658. 38 45653. 25 45650. 96	$ \begin{array}{r} +0.1 \\ -0.07 \\ +0.20 \\ +0.31 \\ +0.08 \end{array} $	$\begin{array}{c} a~^{4}\mathrm{F}_{1}{}_{5}=54375{}^{2}{}_{2}{}_{3}\\ a~^{6}\mathrm{D}_{1}{}_{5}=47179{}^{6}{}_{1}{}_{2}\\ a~^{6}\mathrm{D}_{2}{}_{2}=48830{}^{3}{}_{3}{}_{4}\\ a~^{4}\mathrm{P}_{0}{}_{2}=54485{}^{6}{}_{0}{}_{4}\\ a~^{4}\mathrm{G}_{5}{}_{2}=63087{}^{6}{}_{6}{}_{2}\end{array}$	
2190. 80 2191. 34 2192. 094 2193. 440 2193. 542 2193. 88	$\begin{array}{c} 4 \\ 4 \\ 30 \\ 25 \end{array}$	6 12 6 40 40 1	45631. 2 45619. 9 45604. 23 45576. 25 45574. 13 45567. 1	$\begin{array}{c} 0.0 \\ +0.2 \\ -0.03 \\ +0.24 \\ +0.22 \\ +0.2 \end{array}$	$\begin{array}{c} a {}^{4}\mathrm{F}_{2}{}_{12}-56932_{14}^{\circ}\\ 19276_{2}{}_{2}-64896_{3}^{\circ}\\ 20039_{3}{}_{2}-65444_{3}^{\circ}\\ a {}^{6}\mathrm{D}_{3}{}_{2}-50292_{3}^{\circ}\\ a {}^{4}\mathrm{F}_{2}{}_{2}-56874_{2}^{\circ}\\ a {}^{4}\mathrm{F}_{2}{}_{2}-60424_{3}^{\circ}\\ \end{array}$	
2194. 515 2195. 680 2195. 816 2196. 654 2196. 780	70 12	50 2 25 1	45593. 92 45529. 76 45526. 94 45509. 57 45506. 96	$ \begin{array}{r} +0.22 \\ +0.28 \\ +0.38 \\ +0.08 \\ +0.11 \end{array} $	$\begin{array}{c} a~^6\mathrm{D}_{032}-45553^{\circ}_{132}\\ a~^4\mathrm{G}_{532}-62966^{\circ}_{332}\\ 19442^{\circ}_{642}-64969^{\circ}_{332}\\ a~^4\mathrm{D}_{332}-60656^{\circ}_{232}\\ a~^4\mathrm{D}_{232}-60474^{\circ}_{232} \end{array}$	
2196. 914 2197. 504 2197. 585 2198. 008 2198. 676	8 1 40	3 10 6 60	45504. 18 45491. 97 45490. 3 45481. 54 45467. 72	$\begin{array}{c} 0.\ 00 \\ +0.\ 19 \\ -0.\ 3 \\ +0.\ 23 \\ +0.\ 19 \end{array}$	$\begin{array}{c} 19637_{2}\sqrt{-6514}I_{2}^{2}\sqrt{2} \\ a^{4}P_{1}\sqrt{-5608}I_{1}^{2}\sqrt{2} \\ 20780_{4}\sqrt{-66270}I_{3}^{2}\sqrt{2} \\ a^{6}S_{2}\sqrt{-5290}I_{3}^{2}\sqrt{2} \\ a^{4}F_{2}\sqrt{-56768}I_{3}^{2}\sqrt{2} \end{array}$	
2199. 166 2199. 742 2200. 696 2200. 907 2201. 984	40 2 2	20 8 12 12	45457. 59 45445. 69 45426. 0 45421. 64 45399. 42	+0.57 0.00 $+0.1$ $+0.15$ $+0.19$	$\begin{array}{c} a\ ^6\mathrm{D}_{012}-45457^\circ_{012} \\ 19070_{412}-64516^\circ_{412} \\ a\ ^4\mathrm{F}_{112}-54137^\circ_{112} \\ a\ ^4\mathrm{F}_{412}-60278^\circ_{412} \\ a\ ^4\mathrm{F}_{412}-60256^\circ_{312} \end{array}$	
2203. 798 2203. 986 2204. 482 2205. 460 2205. 886	$ \begin{array}{c} 10 \\ 20 \\ 100 \\ 6 \\ 1 \end{array} $	25 70 150 8 3	45362. 06 45358. 19 45347. 98 45327. 88 45319. 12	$\begin{array}{c} +0.44 \\ +0.35 \\ +0.14 \\ +0.23 \\ +0.08 \end{array}$	$\begin{array}{c} a ^4\mathrm{F}_{4^1\!2}\!-\!60218_{5^1\!4}^{\rm s}_{12} \\ a ^4\mathrm{D}_{1^1\!2}\!-\!59992_{2^1\!2}^{\rm s}_{2} \\ a ^6\mathrm{D}_{4^1\!2}\!-\!z ^6\mathrm{F}_{5^1\!3}^{\rm s}_{12} \\ a ^4\mathrm{D}_{3^1\!2}\!-\!60474_{2^1\!4}^{\rm s}_{2} \\ 18990_{1^1\!2}\!-\!64310_{2^1\!2}^{\rm s} \end{array}$	
2206, 060 2206, 134 2206, 237 2206, 588 2206, 922	15 8 2 40 20	15 12 80 30	45315, 55 45314, 03 45311, 91 45304, 71 45297, 85	$\begin{array}{c} -0.21 \\ +0.19 \\ +0.25 \\ +0.17 \\ +0.25 \end{array}$	$\begin{array}{c} a~^{4}G_{2}\downarrow_{4}-61550^{3}_{3}\downarrow_{4}\\ a~^{4}P_{2}\downarrow_{2}-58747^{5}_{1}\downarrow_{4}\\ a~^{4}F_{2}\downarrow_{2}-56612^{3}_{3}\downarrow_{4}\\ a~^{4}P_{0}\downarrow_{4}-54137^{5}_{1}\downarrow_{4}\\ a~^{4}F_{3}\downarrow_{2}-58709^{3}_{3}\downarrow_{2} \end{array}$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave numb	per (cm ⁻¹)	Combination	Zeeman
(Å)	Arc	Spark	Observed	<i>O</i> – <i>C</i>	Combination	effect
Air						
2207. 435 2207. 914 2207. 986 2208. 813 2209. 564	$-\frac{15}{30}$	5 20 40 40 6	45287. 33 45277. 50 45276. 02 45259. 07 45243. 69	$ \begin{array}{r} +1.31 \\ -0.04 \\ +0.10 \\ +0.23 \\ +0.37 \end{array} $	$\begin{array}{c} 19070_{452} - 64356_{354}^{\circ} \\ a^{4}\text{G}_{552} - 62714_{652}^{\circ} \\ a^{4}\text{F}_{352} - 58687_{452}^{\circ} \\ 19637_{252} - 64896_{352}^{\circ} \\ a^{4}\text{F}_{252} - 56544_{252}^{\circ} \end{array}$	
2216. 023 2216. 296 2217. 582 2217. 765	60 8 4 12	40 5 3 15	45111. 84 45106. 28 45080. 13 45076. 41	$ \begin{array}{c} -0.12 \\ -0.21 \\ -0.05 \\ -0.03 \end{array} $	$\begin{array}{c} a ^6\mathrm{D}_{24} \!$	res
2219. 588 2219. 740 2219. 882 2220. 938 2221. 525	$\begin{array}{c} 6 \\ 10 \\ 2 \\ 30 \\ 10 \end{array}$	12 15 2 60 15	45039. 39 45036. 31 45033. 42 45012. 01 45000. 12	$ \begin{array}{r} +0.01 \\ -0.01 \\ -0.06 \\ +0.09 \\ +0.10 \end{array} $	$\begin{array}{c} 18990_{112} -\!\!-\!\!64030_{312}^{2} \\ a^{4}G_{412} -\!\!-\!\!61589_{512}^{2} \\ 19276_{212} -\!\!-\!\!64310_{212}^{2} \\ a^{4}F_{412} -\!\!-\!\!59869_{312}^{2} \\ a^{4}G_{512} -\!\!-\!\!62437_{412}^{2} \end{array}$	
2221, 652 2222, 070 2223, 206 2223, 326 2223, 450	$ \begin{array}{c} 5 \\ 10 \\ 2 \\ 4 \\ 12 \end{array} $	5 30 2 6 12	44997. 55 44989. 08 44966. 10 44963. 67 44961. 17	+0.09 $+0.18$ $+0.26$ $+0.21$ $+0.24$	$\begin{array}{c} a{}^{4}\mathrm{G}_{4\downarrow 2}\!-\!61550_{342}^{3}\\ 18000_{342}\!-\!62989_{242}^{2}\\ a{}^{4}\mathrm{D}_{2\downarrow 2}\!-\!59933_{342}^{2}\\ 20039_{342}\!-\!65003_{4\downarrow 2}^{3}\\ a{}^{4}\mathrm{G}_{3\downarrow 4}\!-\!61550_{3\downarrow 2}^{3} \end{array}$	
2225. 230 2225. 882 2226. 320 2226. 40 2226. 56	$ \begin{array}{c} 15A \\ 60 \\ 12 \\ 8 \\ 50 \end{array} $	5 80 15 15 60	44925. 20 44912. 05 44903. 21 44901. 6 44898. 4	+0.18 $+0.42$ $+0.33$ $+0.3$	$\begin{array}{c} a^{4}\mathrm{F}_{3}\!_{3}\!_{-}\!_{-}\!_{5}8336^{\circ}_{2}\!_{3}\!_{4} \\ a^{6}\mathrm{D}_{0}\!_{4}\!_{-}\!_{-}\!_{4}4911^{\circ}_{1}\!_{3}\!_{4} \\ a^{4}\mathrm{P}_{2}\!_{3}\!_{-}\!_{-}\!_{5}8336^{\circ}_{2}\!_{3}\!_{4} \\ a^{4}\mathrm{D}_{2}\!_{3}\!_{-}\!_{-}\!_{5}9869^{\circ}_{3}\!_{3}\!_{4} \\ a^{6}\mathrm{D}_{4}\!_{3}\!_{-}\!_{5}\!_{104}\!_{5}^{\circ}_{3}\!_{3}\!_{4} \end{array}$	res
2226. 68 2226. 77 2228. 29 2228. 70 2228. 88 2229. 026	20 20 1 5 12 10	25 70 3 2 80 6	44895. 95 44894. 14 44863. 5 44855. 26 44851. 64 44848. 70	+0.46 -0.1 $+0.41$ $+0.22$	$ \begin{array}{c} a ^{4}\mathrm{P}_{11\!/\!_{2}}\!\!-\!\!55488_{11\!/\!_{2}}^{\circ} \\ 20780_{41\!/\!_{2}}\!\!-\!\!65644_{43\!/\!_{2}} \\ a ^{6}\mathrm{S}_{21\!/\!_{2}}\!\!-\!\!52275_{31\!/\!_{2}}^{\circ} \\ a ^{4}\mathrm{D}_{21\!/\!_{2}}\!\!-\!\!59816_{11\!/\!_{2}}^{\circ} \end{array} $	
2229, 620 2229, 730 2231, 080 2231, 84 2232, 11	75 8 12 15 3	100 25 30 5 3	44836, 76 44834, 54 44807, 42 44792, 16 44786, 74	$ \begin{array}{r} +0.14 \\ +0.32 \\ +0.02 \\ +0.11 \\ +0.10 \end{array} $	$\begin{array}{c} a~^{6}\mathrm{D}_{1},_{2}-46355_{2},_{3}\\ a~^{4}\mathrm{D}_{0},_{2}-58007_{1}^{\circ},_{2}\\ a~^{4}\mathrm{G}_{4},_{4}-61360_{4}^{\circ},_{5}\\ 20534_{5},_{2}-65326_{5},_{2}\\ a~^{4}\mathrm{D}_{3},_{4}-59933_{3}^{\circ},_{4} \end{array}$	
2232. 284 2232. 56 2232. 80 2234. 63 2235. 00	6 4 3 5? 4	4 8 2 12 2	44783. 25 44777. 72 44772. 90 44736. 24 44728. 84	$ \begin{array}{r} +0.03 \\ +0.09 \\ -0.25 \\ -0.38 \\ -0.07 \end{array} $	$\begin{array}{c} a^{4}\mathrm{F}_{2}!_{2}\!-\!56084_{1}^{a}!_{2}\\ 23234_{4}!_{2}\!-\!68012_{5}^{a}!_{2}\\ a^{4}\mathrm{G}_{4}!_{2}\!-\!61326_{3}^{a}!_{2}\\ a^{4}\mathrm{G}_{3}!_{2}\!-\!61326_{3}^{a}!_{2}\\ a^{4}\mathrm{F}_{1}!_{4}\!-\!53440_{5}^{a}!_{2} \end{array}$	
2235. 48 2235. 64 2235. 856 2237. 06 2237. 84	2 20 8 15 10	30 8 100 4	44719. 24 44716. 03 44711. 71 44687. 65 44672. 08	$\begin{array}{c} -0.08 \\ +0.14 \\ -0.01 \\ -0.02 \\ -0.54 \end{array}$	$\begin{array}{c} 19637_{214} - 643563_{34} \\ a \ ^6\mathrm{D}_{414} - 50863_{414}^2 \\ a \ ^4\mathrm{F}_{112} - 53422_{112}^2 \\ a \ ^4\mathrm{G}_{414} - 61240_{314}^2 \\ 19637_{214} - 64310_{214}^2 \end{array}$	
2238. 10 2240. 53 2241. 080 2241. 282 2242. 71	2 2? 30 50 A 7	50 10 7	44666. 8 44618. 4 44607. 5 44603. 48 44575. 08	$\begin{array}{c} +0.2 \\ 0.0 \\ 0.0 \\ -0.10 \\ +0.12 \end{array}$	$\begin{array}{c} a\ ^6\mathrm{S}_{2^{1}\!\!/2}-52087^{\frac{5}{2}\!\!/2}\\ a\ ^4\mathrm{F}_{1^{1}\!\!/4}-53329^{\circ}_{1^{1}\!\!/2}\\ a\ ^4\mathrm{P}_{0^{1}\!\!/4}-53440^{\circ}_{0^{1}\!\!/4}\\ 19276_{2^{1}\!\!/2}-63880^{\frac{5}{2}\!\!/2}\\ a\ ^4\mathrm{F}_{3^{1}\!\!/4}-57986^{\circ}_{4^{1}\!\!/2} \end{array}$	6
2242. 965 2244. 15 2244. 75 2245. 19 2245. 90	10 10 2 25 5	12 25 3 40 3	44570. 02 44546. 48 44534. 6 44525. 8 44511. 8	$\begin{array}{c} +0.24 \\ +0.46 \\ +0.2 \\ 0.0 \\ +0.1 \end{array}$	$\begin{array}{c} a^{4}P_{132} - 55162_{232}^{5}\\ 20780_{434} - 65326_{334}^{6}\\ 20455_{134} - 64990_{334}^{5}\\ a^{6}P_{334} - 49242_{334}^{5}\\ 19276_{234} - 63788_{334}^{5} \end{array}$	

Table 3. Classified lines of W II—Continued

Wavelength	Inter	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air						
2246. 35 2246. 64 2247. 67 2248. 27 2248. 75	$ \begin{array}{c} 8 \\ 15 \\ 6 \\ 25 \\ 60A \end{array} $	$ \begin{array}{c} 10 \\ 20 \\ 40 \\ 40 \\ 100 \end{array} $	44502. 86 44497. 12 44476. 73 44464. 86 44455. 37	$\begin{array}{c} +0.20 \\ +0.07 \\ +0.10 \\ +0.14 \\ +0.19 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{G}_{4},_{2}-61055_{4}^{a},_{2}\\ a{}^{4}\mathrm{P}_{0},_{3}-53329_{1}^{a},_{2}\\ 20039_{3},_{2}-64516_{4}^{a},_{2}\\ a{}^{6}\mathrm{D}_{3},_{2}-49181_{4}^{a},_{2}\\ a{}^{6}\mathrm{D}_{0},_{3}-44465_{0}^{a},_{2} \end{array}$	d
2249. 28 2249. 38 2249. 702 2249. 804 2250. 45	$ \begin{array}{r} 6 \\ 15 \\ 5 \\ 20A \\ 1 \end{array} $	5 12 5 ? 8	44444. 9 44442. 9 44436. 56 44434. 54 44421. 79	$ \begin{array}{r} +0.2 \\ +0.3 \\ +0.22 \\ -0.21 \\ +0.12 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{354}\!-\!57856_{354}^{2}\\ a{}^{6}\mathrm{S}_{254}\!-\!51863_{354}^{2}\\ 18000_{352}\!-\!62437_{454}^{2}\\ 20534_{552}\!-\!64969_{354}^{2}\\ a{}^{4}\mathrm{G}_{254}\!-\!60656_{254}^{2} \end{array}$	
2250. 560 2250. 730 2251. 14 2251. 434 2251. 924	$\begin{array}{c} 3 \\ 30 \\ 30 \\ 18 \\ 5 \end{array}$	$\begin{array}{c} 3 \\ 50 \\ 40 \\ 25 \\ 25 \end{array}$	44419. 62 44416. 26 44408. 17 44402. 38 44392. 71	$ \begin{array}{r} +0.03 \\ +0.14 \\ -0.03 \\ +0.12 \\ -0.25 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{4}\mathrm{_{2}}\!-\!592763_{\mathrm{3}2}\\ a{}^{6}\mathrm{D}_{2}\mathrm{_{3}}\!-\!47588_{\mathrm{1}3}^{\mathrm{o}}\\ a{}^{6}\mathrm{D}_{3}\mathrm{_{3}}\!-\!49124_{\mathrm{3}3}^{\mathrm{o}}\\ a{}^{4}\mathrm{F}_{1}\mathrm{_{3}}\!-\!53113_{\mathrm{3}2}^{\mathrm{o}}\\ 19637_{2}\mathrm{_{3}}\!-\!64030_{\mathrm{3}3}^{\mathrm{o}}\end{array}$	res 6
2254. 98 2255. 715 2255. 770 2256. 18 2256. 85	$ \begin{array}{c} 10 \\ 10A \\ 1 \\ 2 \\ 12 \end{array} $	$ \begin{array}{c} 20 \\ 10 \\ 1 \\ 6 \\ 30 \end{array} $	44332. 56 44318. 12 44317. 04 44308. 98 44295. 8	$\begin{array}{c} +0.06 \\ +0.16 \\ +0.08 \\ -0.01 \\ 0.0 \end{array}$	$\begin{array}{c} 18000_{31\!4} - 623333_{34\!4} \\ a\ ^4 F_{31\!4} - 57729_{31\!4}^2 \\ 20039_{31\!4} - 64356_{31\!4}^2 \\ a\ ^4 P_{21\!4} - 59276_{31\!4}^2 \\ a\ ^4 P_{21\!4} - 57729_{31\!4}^2 \end{array}$	
2258. 12 2259. 07 2259. 56 2259. 66 2259. 72	40 10 10? 3 6	$\begin{array}{c} 30 \\ 25 \\ 15 \\ 3 \\ 20 \end{array}$	44270. 9 44252. 3 44242. 7 44240. 8 44239. 6	+0.6 0.0 0.0 0.0 -0.2	$\begin{array}{c} 20039_{31\!-}\!-\!64310_{^3\!2\!4}^{}\\ a^4\mathrm{D}_{31\!-}\!-\!59399_{41\!4}^{}\\ 19637_{21\!-}\!-\!63880_{21\!4}^{}\\ a^6\mathrm{D}_{21\!-}\!-\!47413_{^31\!4}^{}\\ a^4\mathrm{G}_{21\!4}\!-\!60474_{^31\!4}^{}\end{array}$	
2260. 58 2261. 946 2262. 30 2262. 406 2263. 40	4 1 6 4 1	$ \begin{array}{c} 6 \\ 25 \\ 20 \\ 4 \\ 2? \end{array} $	44222. 8 44196. 04 44189. 13 44187. 06 44167. 66	$\begin{array}{c} 0.\ 0 \\ +0.\ 42 \\ -0.\ 17 \\ +0.\ 13 \\ +0.\ 12 \\ -0.\ 10 \end{array}$	$\begin{array}{c} 20780_{41/2}-65003_{41/2}^{\circ}\\ 19070_{41/2}-63266_{31/2}^{\circ}\\ a^{4}G_{21/2}-60424_{31/2}^{\circ}\\ a^{4}F_{21/2}-55488_{11/2}^{\circ}\\ a^{4}P_{11/2}-54760_{01/2}^{\circ}\\ 20039_{31/2}-64207_{41/2}^{\circ}\\ \end{array}$	
2263. 53 2264. 178 2265. 338 2265. 67 2266. 05	15 8 7 35 3	80 35 35 20 8?	44165. 12 44152. 48 44129. 87 44123. 4 44116. 0	$ \begin{array}{c} -0.04 \\ +0.04 \\ +0.08 \\ -0.1 \\ +0.2 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{G}_{5 2}\!-\!61602_{6 2}^{\circ}\\ a{}^{4}\mathrm{G}_{5 2}\!-\!61589_{5 2}^{\circ}\\ a{}^{4}\mathrm{G}_{3 2}\!-\!59276_{3 2}^{\circ}\\ 23955_{5 2}\!-\!68078_{6 2}^{\circ}\\ 20780_{4 2}\!-\!64896_{3 2}^{\circ} \end{array}$	
2266. 12 2266. 25 2267. 30 2268. 064 2269. 08	15 15 4 2 2	80 80 4 2 4	44114. 6 44112. 1 44091. 69 44076. 84 44057. 1	$\begin{array}{c} +0.2 \\ 0.0 \\ +0.05 \\ -0.03 \\ 0.0 \end{array}$	$\begin{array}{c} a\ ^6\mathrm{D}_{3 ^1 \! 2} - 4883 \theta_{3 ^1 \! 2} \\ a\ ^4\mathrm{P}_{1 ^1 \! 2} - 5470 \theta_{2 ^1 \! 2}^2 \\ a\ ^4\mathrm{F}_{1 ^1 \! 2} - 5280 \theta_{1 ^1 \! 2}^2 \\ 22194_{3 ^1 \! 2} - 6627 \theta_{3 ^1 \! 2}^2 \\ 23955_{5 ^1 \! 2} - 6801 2_{5 ^1 \! 2}^2 \end{array}$	
2270. 232 2270. 905 2271. 105 2271. 64 2272. 09	$ \begin{array}{c} 25 \\ 6 \\ 10 \\ \underline{2} \\ - \end{array} $	$ \begin{array}{c} 125 \\ \hline 6 \\ 12 \\ \hline 3 \end{array} $	44034. 75 44021. 70 44017. 82 44007. 4 43998. 74	$ \left\{ \begin{array}{l} -0.17 \\ +0.23 \\ +0.1 \\ +0.22 \\ 0.0 \\ +0.10 \end{array} \right. $	$\begin{array}{c} a\ ^{6}\mathrm{D}_{1},_{2}\cdots45553_{1}^{6},_{2}\\ a\ ^{4}\mathrm{F}_{4},_{2}\cdots58891_{5}^{6},_{2}\\ a\ ^{4}\mathrm{G}_{2},_{4}\cdots60256_{3}^{6},_{4}\\ a\ ^{6}\mathrm{S}_{2},_{2}\cdots51438_{2}^{9},_{2}\\ a\ ^{6}\mathrm{D}_{2},_{2}\cdots47179_{1}^{6},_{2}\\ 18990_{1},_{2}\cdots62989_{2}^{9},_{2}\end{array}$	
2272. 510 2272. 96 2273. 55 2275. 22 2275. 98	8 5? 6 5 3	25 15 10 ?	43990. 61 43981. 9 43970. 49 43938. 2 43923. 5	$\begin{array}{c} +0.01 \\ -0.1 \\ +0.15 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 20039_{3\downarrow 4}-64030_{2\downarrow 4}^{\circ}\\ 20534_{5\downarrow 2}-64516_{4\downarrow 4}^{\circ}\\ a^{4}P_{0\downarrow 4}-52803_{1\downarrow 4}^{\circ}\\ a^{6}D_{1\downarrow 2}-45457_{0\downarrow 4}^{\circ}\\ a^{4}G_{5\downarrow 4}-61360_{4\downarrow 4}^{\circ} \end{array}$	
2277. 416 2277. 583 2277. 977 2278. 108 2278. 704	$\begin{array}{c} 3 \\ 60A \\ 10 \\ 25 \\ 10 \end{array}$	$\begin{array}{c} 4 \\ 20 \\ 35 \\ 30 \\ 12 \end{array}$	43895. 86 43892. 64 43885. 05 43882. 52 43871. 05	$ \begin{array}{r} +0.04 \\ -0.44 \\ +0.05 \\ +0.06 \\ +0.05 \end{array} $	$\begin{array}{c} 19070_{4}, -62966_{5}, \\ a^{4}P_{1}, -54486_{6}, \\ a^{4}G_{3}, -60474_{2}, \\ a^{4}G_{3}, -60474_{2}, \\ a^{4}F_{1}, -52593_{6}, \\ a^{4}G_{4}, -60424_{3}, \end{array}$	

Table 3. Classified lines of W 11—Continued

Wavelength	Inter	nsity	Wave numb	e^{-1}	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air						
2279. 213 2279. 672 2280. 300 2280. 621 2280. 802	10 1- 8 30 10?	$ \begin{array}{r} 3 \\ -? \\ 30 \\ 12 \\ 10 \end{array} $	43861. 25 43852. 42 43840. 34 43834. 18 43830. 7	$ \begin{array}{r} +0.03 \\ +0.08 \\ -0.02 \\ +0.21 \\ 0.0 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{2}{}_{2}-5516\mathcal{Z}_{2}^{2}{}_{3}\\ a{}^{4}\mathrm{F}_{4}{}_{2}-58709_{3}^{3}{}_{2}\\ 20039_{3}{}_{2}-63880_{2}^{3}{}_{2}\\ a{}^{6}\mathrm{S}_{2}{}_{2}-51254_{1}^{6}{}_{1}{}_{2}\\ a{}^{4}\mathrm{F}_{4}{}_{2}-58687_{4}^{6}{}_{3}{}_{2} \end{array}$	
2282. 202 2283. 266 2283. 437 2284. 436 2284. 619	$25 \\ 25A \\ 4 \\ 20 \\ 10$	$75 \\ 5 \\ 3 \\ 18 \\ 40$	43803. 81 43783. 40 43780. 12 43760. 98 43757. 47	$ \begin{array}{r} +0.02 \\ +0.10 \\ 0.00 \\ -0.08 \\ +0.11 \end{array} $	$\begin{array}{c} a~^{4}\mathrm{G}_{512}-61240_{512}^{\circ}\\ a~^{4}\mathrm{P}_{112}-54375_{512}^{\circ}\\ a~^{4}\mathrm{P}_{212}-58747_{112}^{\circ}\\ a~^{4}\mathrm{P}_{012}-52593_{012}^{\circ}\\ a~^{4}\mathrm{G}_{212}-52993_{212}^{\circ}\end{array}$	6 6 6
2285. 09 2285. 75 2286. 28 2286. 476 2286. 94	? 1 5? 6 1	1 3 8 4 1	43748. 45 43735. 82 43725. 69 43721. 94 43713. 07	$\begin{array}{c} -0.01 \\ -0.17 \\ +0.12 \\ +0.16 \\ -0.01 \end{array}$	$\begin{array}{c} 20039_{34} - 63788_{34}^{3} \\ 20780_{44} - 64516_{44}^{2} \\ a^{4}G_{44} - 60278_{44}^{2} \\ a^{4}F_{24} - 55022_{34}^{3} \\ 19276_{24} - 62989_{24}^{2} \end{array}$	
2287. 46 2289. 01 2289. 41 2290. 48 2290. 564	$ \begin{array}{c} 8 \\ 12A \\ 5 \\ 2 \\ 15 \end{array} $	5 8 7 2 20	43703. 13 43673. 5 43665. 9 43645. 5 43643. 92	$ \begin{array}{r} -0.18 \\ +0.3 \\ +0.2 \\ +0.1 \\ +0.07 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{G}_{4}\!,_{2}\!-\!60256^{\circ}_{3}\!,_{2}\!\\ 20534_{5}\!,_{2}\!-\!64207^{\circ}_{4}\!,_{2}\!\\ a{}^{4}\mathrm{G}_{4}\!,_{2}\!-\!60218^{\circ}_{5}\!,_{2}\!\\ 19442_{6}\!,_{2}\!-\!63087^{\circ}_{6}\!,_{2}\!\\ a{}^{4}\mathrm{F}_{1}\!,_{2}\!-\!52355^{\circ}_{6}\!,_{2}\!\end{aligned}$	
2291. 376 2291. 56 2294. 20 2294. 55 2294. 84	$\frac{4}{7}$ $\frac{10}{10}$?	7 8 3 35 20	43628, 45 43625, 0 43574, 7 43568, 1 43562, 6	$ \begin{array}{c} -0.47 \\ +0.2 \\ +0.3 \\ -0.1 \\ +0.1 \end{array} $	$\begin{array}{c} 19637_{212} - 63266_{314}^{\circ} \\ a~^{6}S_{212} - 51045_{312}^{\circ} \\ 20455_{112} - 64030_{214}^{\circ} \\ a~^{6}D_{312} - 48284_{212}^{\circ} \\ a~^{4}D_{312} - 58709_{312}^{\circ} \end{array}$	res
2295. 52 2295. 78 2295. 985 2296. 873 2296. 956	$\begin{array}{c} 3 \\ 15 \\ 15 \\ 4 \\ 8 \end{array}$	$\begin{array}{c} 3 \\ 20 \\ 25 \\ 5 \\ 6 \end{array}$	43549. 7 43544. 8 43540. 88 43524. 05 43522. 47	$ \begin{array}{r} -0.2 \\ +0.1 \\ +0.02 \\ +0.09 \\ +0.02 \end{array} $	$\begin{array}{c} 18000_{3}\%-61550_{3}\%\\ a^{4}\mathrm{P}_{1}\%-54137_{1}\%\\ a^{4}\mathrm{D}_{3}\%-58687_{4}\%\\ 19442_{6}\%-62966_{5}\%\\ a^{4}\mathrm{P}_{0}\%-52355_{0}\% \end{array}$	6
2297. 930 2298. 23 2299. 807 2300. 078 2301. 284 2301. 642	1 8 6 1 3 20	$ \begin{array}{c} 10 \\ 20 \\ 18 \\ 5 \\ 5 \\ 30 \end{array} $	43504. 03 43498. 4 43468. 53 43463. 40 43440. 63 43433. 87	$egin{array}{c} 0.\ 00 \\ +0.\ 2 \\ -0.\ 10 \\ +0.\ 37 \\ -0.\ 26 \\ +0.\ 15 \\ \end{array}$	$\begin{array}{c} 22140_{2}\%-65644\%_{3}\%\\ a^{4}P_{2}\%-56932\%_{1}\%\\ 23234_{4}\%-66706\%_{3}\%\\ a^{4}F_{3}\%-56874\%_{2}\%\\ a^{4}P_{2}\%-56874\%_{3}\%\\ a^{4}P_{1}\%-54026\%_{2}\%\\ \end{array}$	res
2302. 139 2303. 274 2303. 819 2304. 474 2305. 219	$\begin{array}{c} -25\\ 25\\ -4 \end{array}$	$\begin{array}{c} 1 \\ 50 \\ 75 \\ 2 \\ 8 \end{array}$	43424. 49 43403. 10 43392. 83 43380. 50 43366. 48	+0.32 $+0.57$ -0.02 -0.12	$\begin{array}{c} 20455_{1}, -63880_{2}, \\ a^{4}G_{3}, -59992_{2}, \\ a^{6}D_{1}, -44911_{1}, \\ a^{4}G_{4}, -59933_{3}, \\ 19070_{4}, -62437_{4}, \end{array}$	res
2305. 553 2305. 705 2305. 972 2306. 419 2306. 511		$\begin{matrix}1\\1\\1\\3\\4\end{matrix}$	43360. 20 43357. 34 43352. 32 43343. 92 43342. 19	$ \begin{array}{r} + 0.36 \\ + 0.69 \\ + 0.10 \\ - 0.07 \\ - 0.05 \end{array} $	$\begin{array}{c} 18000_{332} - 61360_{432}^{\circ} \\ a ^{4}\mathrm{F}_{334} - 56768_{332}^{\circ} \\ 19637_{232} - 62989_{232}^{\circ} \\ a ^{4}\mathrm{G}_{334} - 59933_{332}^{\circ} \\ 18990_{132} - 62333_{232}^{\circ} \end{array}$	
2306. 918 2307. 392 2307. 930 2309. 850 2310. 244	$ \begin{array}{c} 15 \\ 2 \\ 5 \\ 8 \\ 4 \end{array} $	$\begin{array}{c} 40 \\ 3 \\ 10 \\ 25 \\ 12 \end{array}$	43334. 55 43325. 64 43315. 54 43279. 54 43272. 16	$ \begin{array}{r} + 0.04 \\ + 0.05 \\ - 0.46 \\ + 0.07 \\ + 0.14 \end{array} $	$\begin{array}{c} a^{4}\mathrm{P}_{2\flat_{2}}\!-\!56768^{\circ}_{3\flat_{2}}\\ 18000_{3\flat_{2}}\!-\!61326^{\circ}_{3\flat_{2}}\\ a^{4}\mathrm{G}_{4\flat_{2}}\!-\!59869^{\circ}_{3\flat_{2}}\\ a^{4}\mathrm{G}_{3\flat_{2}}\!-\!59869^{\circ}_{3\flat_{2}}\\ 19442_{6\flat_{2}}\!-\!62714^{\circ}_{6\flat_{2}}\end{array}$	res
2312. 800 2312. 907 2314. 084 2314. 637 2315. 022	$\frac{-6}{10}$ 20	$\begin{array}{c} 4 \\ 20 \\ 6 \\ 25 \\ 50 \end{array}$	43224. 35 43222. 35 43200. 36 43190. 04 43182. 87	$ \begin{array}{r} +0.20 \\ +0.01 \\ -0.42 \\ +0.08 \\ -0.01 \end{array} $	$\begin{array}{c} 23046_{312} - 66270^4_{134} \\ a^4 D_{114} - 57856^3_{214} \\ a^4 F_{314} - 56612^3_{314} \\ a^4 D_{314} - 58336^3_{214} \\ a^6 D_{214} - 46355^3_{214} \end{array}$	

Table 3. Classified lines of W II—Continued

Wavelength	Inter	nsity	Wave numb	per (cm ⁻¹)	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air						
2315. 246 2317. 722 2317. 88 2318. 916 2320. 832	3 4 6 3 6	$\begin{array}{c} 4 \\ 6 \\ 10 \\ 6 \\ 5 \end{array}$	43178. 69 43132. 57 43129. 62 43110. 36 43074. 76	$\begin{array}{c} +0.05 \\ +0.13 \\ -0.08 \\ +0.06 \\ +0.02 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{2},_{2}-566123_{3},_{2}\\ a^{4}\mathrm{F}_{3},_{2}-565442_{3},_{3}\\ a^{4}\mathrm{F}_{4},_{4}-57986_{4},_{2}\\ a^{4}\mathrm{F}_{4},_{5}-565442_{3},_{2}\\ a^{4}\mathrm{P}_{2},_{5}-565442_{3},_{3}\\ a^{4}\mathrm{P}_{2},_{5}-543752_{3},_{5} \end{array}$	
2321. 807 2322. 594 2322. 720 2323. 038 2324. 291	$-\frac{2}{5}$ 15 7	$\begin{array}{c} 1 \\ 3 \\ 8 \\ 25 \\ 5 \end{array}$	43056. 68 43042. 10 43039. 76 43033. 87 43010. 67	$\begin{array}{c} 0.\ 00 \\ +0.\ 13 \\ -0.\ 02 \\ -0.\ 01 \\ +0.\ 15 \end{array}$	$\begin{array}{c} 19276_{212} - 62333_{212}^2 \\ a^4G_{212} - 59276_{312}^2 \\ a^4D_{212} - 58007_{112}^2 \\ a^6D_{412} - 49181_{412}^4 \\ a^6S_{212} - 50430_{112}^2 \end{array}$	6
2324. 714 2324. 776 2326. 091 2327. 592 2327. 737	$ \begin{array}{c} 1 \\ 3 \\ 15 \\ 8A \\ \end{array} $	$egin{array}{c} 1 \\ 10 \\ 60 \\ 5 \\ 1 \\ \end{array}$	43002. 84 43001. 70 42977. 38 42949. 67 42947. 0	$ \begin{cases} -0.06 \\ +0.02 \\ +0.11 \\ +0.02 \\ -0.19 \\ -0.5 \end{cases} $	$\begin{array}{c} a\ ^{6}\mathrm{D}_{252}\!-\!46175_{352}\\ a\ ^{4}\mathrm{F}_{334}\!-\!56413_{452}^{4}\\ 22139_{254}\!-\!65141_{254}^{2}\\ a\ ^{6}\mathrm{D}_{452}\!-\!49124_{352}^{4}\\ 20039_{352}\!-\!62989_{252}^{5}\\ 22194_{354}\!-\!65141_{252}^{2}\\ \end{array}$	
2328. 314 2329. 691 2330. 89 2331. 778 2331. 816	$ \begin{array}{c} 20 \\ 6 \\ 5 \\ 3 \\ 1 \end{array} $	$\begin{array}{c} 35 \\ 15 \\ 8 \\ 4 \\ 1 \end{array}$	4293 6. 35 4291 0. 98 42888. 91 42872. 57 42871. 87	$\begin{array}{c} -0.05 \\ +0.06 \\ +0.03 \\ -0.13 \\ -0.03 \end{array}$	$\begin{array}{c} a\ ^{6}\mathrm{D}_{1},_{2}-44455_{0},_{2}\\ a\ ^{4}\mathrm{D}_{0},_{4}-56084_{1},_{2}\\ a\ ^{4}\mathrm{D}_{2},_{4}-57856_{2},_{2}\\ a\ ^{4}\mathrm{F}_{4},_{2}-57729_{3},_{2}\\ a\ ^{6}\mathrm{S}_{2},_{4}-50292_{2},_{2} \end{array}$	res
2333. 146 2353. 462 2333. 57 2333. 770 2334. 070	$\begin{array}{c} 25A \\ \hline 3 \\ 15 \\ 5 \end{array}$	$ \begin{array}{c} 12 \\ 1 \\ 8 \\ 35 \\ 5 \end{array} $	42847. 44 42841. 64 42839. 66 42835. 98 42830. 48	$\begin{array}{c} -0.21 \\ -0.05 \\ +0.24 \\ -0.06 \\ +0.02 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{1^{1}2}\!-\!53440_{0^{1}2}\\ a^{4}\mathrm{G}_{5^{1}2}\!-\!60278_{4^{1}2}^{a}\\ a^{4}\mathrm{D}_{3^{1}2}\!-\!57986_{4^{1}2}^{a}\\ a^{4}\mathrm{D}_{1^{1}2}\!-\!44354_{2^{1}2}^{a}\\ a^{4}\mathrm{P}_{1^{1}2}\!-\!53422_{1^{1}2}^{a} \end{array}$	res
2335. 205 2335. 548 2335. 933 2336. 716 2337. 799	6 2 6 6	$25 \\ 5 \\ 8 \\ 15 \\ 20$	42809. 66 42803. 38 42796. 32 42781. 98 42762. 17	$\begin{array}{c} -0.01 \\ +0.16 \\ +0.08 \\ +0.16 \\ +0.07 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{G}_{3}{}_{5}-59399_{4}^{4}{}_{2}\\ 25209_{4}{}_{5}-68012_{5}^{5}{}_{5}\\ 22194_{3}{}_{5}-64990_{2}^{5}{}_{2}\\ a{}^{4}\mathrm{G}_{5}{}_{5}-60218_{5}^{5}{}_{2}\\ a{}^{4}\mathrm{G}_{2}{}_{5}-57729_{3}^{3}{}_{5}\end{array}$	
2338. 125 2338. 582 2339. 16 2339. 732 2339. 817	-? 15 10 1	2 1 30 8 ?	42756. 21 42747. 86 42737. 29 42726. 84 42725. 29	$\begin{array}{c} -0.04 \\ -0.24 \\ +0.10 \\ +0.07 \\ +0.13 \end{array}$	$\begin{array}{c} 22139_{212} - 64896_{312}^* \\ 23955_{514} - 66703_{514}^* \\ a^4 P_{114} - 53329_{114}^* \\ a^4 F_{112} - 51438_{212}^* \\ a^4 F_{212} - 54026_{212}^* \end{array}$	
2339. 904 2340. 668 2341. 074 2341. 368 2341. 442	$\begin{array}{c} 6 \\ 4 \\ 4 \\ 25 \\ 1- \end{array}$	$ \begin{array}{c} 20 \\ 6 \\ 15 \\ 35 \\ 2? \end{array} $	42723. 70 42709. 76 42702. 35 42696. 99 42695. 64	$\begin{array}{c} +0.03 \\ +0.08 \\ +0.21 \\ -0.02 \\ -0.18 \end{array}$	$\begin{array}{c} a~^4\mathrm{G}_{412} - 59276_{312}^* \\ a~^4\mathrm{D}_{312} - 57856_{212}^* \\ 22194_{314} - 64896_{312}^* \\ a~^6\mathrm{D}_{312} - 47413_{212}^* \\ 19637_{212} - 62333_{212}^* \end{array}$	res
2341. 903 2346. 864 2347. 644 2348. 015 2349. 262 2349. 839	1 1 1 3 6	$\begin{array}{c} 6 \\ 5 \\ 3 \\ 7 \\ 20 \\ 10 \end{array}$	42687. 24 42597. 01 42582. 86 42576. 13 42553. 53 42543. 09	$\begin{array}{c} +0.10 \\ -0.15 \\ -0.04 \\ +0.39 \\ -0.02 \\ -0.05 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{G}_{3}{}_{2}\!-\!59276_{3}^{2}{}_{2}\\ 23046_{3}{}_{2}\!-\!65644_{3}^{4}{}_{2}\\ a{}^{4}\mathrm{D}_{3}{}_{2}\!-\!57729_{3}^{4}{}_{3}\\ 18990_{1}{}_{2}\!-\!61566_{2}^{2}{}_{2}\\ 20534_{5}{}_{2}\!-\!63087_{6}^{4}{}_{2}\\ a{}^{4}\mathrm{F}_{1}{}_{2}\!-\!51254_{1}^{4}{}_{2}\end{array}$	6
2350. 362 2351. 052 2351. 168 2351. 496 2352. 924	$\begin{array}{c} 2 \\ 2 \\ 1 - \\ 4 \end{array}$	$ \begin{array}{c} 10 \\ 6 \\ 1 \\ 12 \\ 4 \end{array} $	42533. 62 42521. 14 42519. 04 42513. 11 42487. 31	$\begin{array}{c} -0.05 \\ +0.14 \\ +0.26 \\ +0.01 \\ +0.07 \end{array}$	$\begin{array}{c} 20455_{1 \downarrow 2} - 62989_{2 \downarrow 2}^{9} \\ a^{4} P_{1 \downarrow 2} - 53113_{2 \downarrow 2}^{9} \\ 19070_{4 \downarrow 2} - 61589_{5 \downarrow 2}^{8} \\ a^{4} G_{2 \downarrow 2} - 58747_{1 \downarrow 2}^{9} \\ 22503_{1 \downarrow 2} - 64990_{2 \downarrow 2}^{9} \end{array}$	
2353. 334 2353. 667 2354. 018 2355. 019 2356. 469	2 1	8 5 2 4 2	42479. 91 42473. 90 42467. 57 42449. 52 42423. 40	$\begin{array}{c} -0.01 \\ -0.07 \\ +0.46 \\ -0.41 \\ -0.04 \end{array}$	$\begin{array}{c} 19070_{4},_{2}-61550_{3}^{3},_{2}\\ 18000_{3},_{4}-60474_{3}^{3},_{4}\\ 23803_{3},_{4}-66270_{4}^{4},_{2}\\ 23234_{4},_{2}-65684_{3}^{8},_{2}\\ 18000_{3},_{4}-60424_{3}^{3},_{4} \end{array}$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave numb	e^{-1}	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air					-	
2357. 268 2357. 931 2358. 816 2361. 194 2362. 108 2362. 484	$1 \\ 12 \\ 12A \\ 3 \\ 1$	5 1 18 10 15 10	42409. 02 42397. 10 42381. 19 42338. 51 42322. 13 42315. 40	$\begin{array}{c} -0.11 \\ -0.20 \\ +0.01 \\ -0.09 \\ -0.16 \\ -0.15 \end{array}$	$\begin{array}{c} 23234_{412} - 656444_{334} \\ 20039_{314} - 62427_{414} \\ a^6 D_{212} - 45553_{112}^2 \\ a^4 G_{414} - 58891_{514}^2 \\ 22194_{314} - 64516_{414}^2 \\ 23955_{512} - 66270_{414}^2 \end{array}$	res
2362. 528 2363. 464 2363. 721 2363. 910 2364. 225	$\begin{matrix} 1 \\ 8 \end{matrix}$ $\begin{matrix} 6 \\ 10 \end{matrix}$	4? 14 1 30 50	42314. 61 42297. 85 42293. 25 42289. 87 42284. 24	$\begin{array}{c} -0.02 \\ -0.06 \\ -0.21 \\ +0.01 \\ +0.06 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{D}_{0}\!\!{}_{2}\!$	
2364. 577 2365. 832 2366. 684 2367. 132 2368. 021	3 4 1	1 7 6 3 2	42277. 94 42255. 52 42240. 31 42232. 32 42216. 46	$ \begin{array}{c c} -0.07 \\ -0.09 \\ -0.32 \\ +0.08 \\ -0.27 \end{array} $	$\begin{array}{c} 18000_{3}\%-60278\%_{4}\%\\ 19070_{4}\%-61326\%_{3}\%\\ a^4\text{D}_{1}\%-5687\%_{2}\%\\ a^4\text{F}_{4}\%-57089\%_{4}\%\\ 22139_{2}\%-64356\%_{3}\%\\ \end{array}$	
2368. 36 2369. 755 2370. 056 2370. 624 2371. 058	8 6 10 5 1	14 8 45 12 7	42210. 42 42185. 57 42180. 22 42170. 11 42162. 40	$ \begin{array}{c} -0.06 \\ 0.00 \\ +0.01 \\ -0.02 \\ -0.22 \end{array} $	$\begin{array}{c} a ^4\mathrm{P}_{1/2} - 52803^\circ_{1/4} \\ a ^6\mathrm{D}_{4/2} - 48332^\circ_{5/2} \\ 20534^\circ_{5/2} - 62714^\circ_{6/2} \\ 19070^\circ_{4/2} - 61240^\circ_{5/2} \\ 22194^\circ_{3/2} - 64356^\circ_{3/2} \end{array}$	
2371. 218 2371. 936 2372. 610 2373. 305 2373. 462	2 5 5	5 20 30 1 4	42159. 55 42146. 79 42134. 82 42122. 48 42119. 69	$\begin{array}{c c} -0.09 \\ -0.13 \\ +0.08 \\ +0.58 \\ -0.20 \end{array}$	$\begin{array}{c} 19442_{6} - 61602_{6}^{\circ} \\ 19442_{6} - 61589_{5}^{\circ} \\ a^{4}G_{1} - 58687_{4}^{\circ} \\ a^{4}F_{2} - 53422_{1}^{\circ} \\ a^{4}G_{3} - 58709_{3}^{\circ} \end{array}$	
2373. 679 2374. 454 2375. 044 2377. 172 2377. 393	1 5? 4 6 6	3 35 20 12 8	42115. 84 42102. 10 42091. 64 42053. 96 42050. 06	$\begin{array}{c c} -0.08 \\ -0.04 \\ +0.11 \\ +0.05 \\ +0.29 \end{array}$	$\begin{array}{c} 22194_{312}-64310_{234}^{\circ}\\ a^{4}G_{214}-58336_{234}^{\circ}\\ 23234_{134}-65326_{334}^{\circ}\\ a^{4}P_{234}-55488_{134}^{\circ}\\ 19276_{232}-61326_{334}^{\circ} \end{array}$	res
2378. 130 2378. 603 2379. 466 2380. 159 2380. 708	8 10 1 4 3	15 15 2 9 5	42037. 02 42028. 67 42013. 42 42001. 19 41991. 51	$\begin{array}{c} +0.03 \\ +0.04 \\ 0.00 \\ -0.01 \\ +0.01 \end{array}$	$\begin{array}{c} a ^4\mathrm{F}_{2}{}_{2}-53338^3{}_{3}{}_{4}\\ a ^4\mathrm{F}_{2}{}_{2}-53329^a{}_{1}{}_{2}\\ 22194^3{}_{3}-64207^4{}_{4}{}_{4}\\ a ^4\mathrm{P}_{1}{}_{4}-52593^a{}_{0}{}_{4}\\ 1800{}_{3}{}_{2}-59992^a{}_{2}{}_{2}{}_{2}\end{array}$	
2381. 065 2381. 333 2382. 243 2382. 364 2382. 700	1 6 2 7	2 8 2 20 25	41985. 22 41980. 47 41964. 45 41962. 32 41956. 40	$\begin{array}{c} +0.\ 10 \\ +0.\ 06 \\ 0.\ 00 \\ 0.\ 00 \\ 0.\ 00 \end{array}$	$\begin{array}{c} 19070_{4}\% - 61055_{4}\% \\ a~^{4}\mathrm{F}_{3}\% - 55392_{4}\% \\ a~^{4}\mathrm{D}_{2}\% - 56932_{1}\% \\ a~^{4}\mathrm{G}_{5}\% - 59399_{4}\% \\ 23046_{3}\% - 65003_{4}\% \end{array}$	
2383. 500 2383. 884 2384. 033 2385. 253 2385. 335	$\begin{array}{c} 2 \\ 1 - \\ 3 \\ 7 \\ 5 \end{array}$	$\begin{array}{c} 3 \\ 1 \\ 6 \\ 15 \\ 7 \end{array}$	41942, 32 41935, 57 41932, 95 41911, 48 41910, 04	$\begin{array}{c} -0.12 \\ -0.03 \\ -0.01 \\ +0.09 \\ 0.00 \end{array}$	$\begin{array}{c} a~^{4}\mathrm{D}_{3}\!_{3}\!_{4}\!_{-}\!57089_{4}^{a}\!_{3}\!_{4} \\ 20780_{4}\!_{2}\!_{-}\!-\!62715_{4}^{a}\!_{4} \\ 18000_{3}\!_{4}\!_{-}\!-\!59933_{3}^{a}\!_{3}\!_{4} \\ a~^{4}\mathrm{F}_{4}\!_{3}\!_{-}\!-\!56768_{3}^{a}\!_{3}\!_{4} \\ a~^{4}\mathrm{D}_{1}\!_{2}\!_{-}\!-\!56544_{2}^{a}\!_{2}\!_{4} \end{array}$	
2385, 500 2386, 447 2387, 708 2388, 536 2388, 798	8 2 2 2 2 2	12 9 5 8 8	41907. 14 41890. 51 41868. 39 41853. 88 41849. 28	$\begin{array}{c} -0.03 \\ +0.14 \\ -0.05 \\ +0.12 \\ -0.14 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{D}_{234} - 56874_{234}^2 \\ 22139_{232} - 64030_{234}^2 \\ 18000_{332} - 59869_{334}^3 \\ 26158_{432} - 68012_{534}^2 \\ 23046_{332} - 64896_{334}^3 \end{array}$	6 6
2389. 541 2390. 371 2390. 890 2391. 218 2391. 574	$\begin{array}{c} 25 \\ 4 \\ 1 \\ 2 \end{array}$	1 75 30 3	41836. 28 41821. 75 41812. 68 41806. 94 41800. 71	$\begin{array}{c c} +0.02 \\ +0.08 \\ +0.24 \\ 0.00 \\ -0.08 \end{array}$	$\begin{array}{c} 22194_{3/2}-64030^\circ_{23/4}\\ a^6\mathrm{S}_{2/2}-49242^\circ_{23/4}\\ a^4\mathrm{F}_{24}-53113^\circ_{23/4}\\ 22503_{1/2}-64310^\circ_{23/4}\\ a^4\mathrm{D}_{2/2}-56768^\circ_{3/4} \end{array}$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	-	effect
Air						
2391. 717 2392. 932 2393. 171 2393. 768 2394. 162	$\begin{array}{c} 4 \\ 20 \\ 4 \\ 1 \\ 7 \end{array}$	8 60 10 3 25	41798. 22 41777. 00 41772. 83 41762. 41 41755. 54	$\begin{array}{c} -0.05 \\ -0.11 \\ +0.07 \\ -0.18 \\ +0.02 \end{array}$	$\begin{array}{c} 19442_{6} - 61240_{5} \\ a \ ^6D_{3} - z \ ^6F_{3} \\ a \ ^4G_{2} - 58007_{1} \\ a \ ^4G_{1} - 52355_{0} \\ a \ ^4F_{1} - 52355_{0} \\ a \ ^4F_{4} - 56612_{3}^2 \end{array}$	res
2394. 444 2394. 636 2395. 036 2395. 104 2395. 384	12 1 1 9	7 7 5 10 1	41750. 62 41747. 27 41740. 30 41739. 12 41734. 24	$\begin{array}{c} +0.28 \\ -0.04 \\ +0.17 \\ +0.01 \\ +0.01 \end{array}$	$\begin{array}{c} a ^4\mathrm{F}_{314} - 55162^{3}_{212} \\ a ^4\mathrm{G}_{334} - 58336^{3}_{212} \\ 22139_{212} - 63880^{2}_{212} \\ a ^4\mathrm{D}_{212} - 44911^{\circ}_{112} \\ 23234_{43} - 64969^{\circ}_{312} \end{array}$	
2395. 664 2395. 730 2396. 221 2397. 097 2397. 997	1 5 7	3 8 10 200 15	41729. 36 41728. 21 41719. 66 41704. 42 41688. 77	$ \begin{cases} -0.04 \\ +0.01 \\ +0.24 \\ -0.03 \\ -0.24 \\ -0.14 \end{cases} $	$\begin{array}{c} 23955_{5 2} - 65684_{5 2}^{\circ} \\ a^{4}P_{2 2} - 55162_{5 2}^{\circ} \\ a^{4}P_{3 4} - 56874_{2 4}^{\circ} \\ a^{4}F_{1 2} - 50430_{1 2}^{\circ} \\ a^{6}P_{2 2} - z^{6}F_{3 2}^{\circ} \\ 19637_{2 2} - 61326_{3 2}^{\circ} \end{array}$	res res
2398, 149 2399, 332 2399, 574 2400, 358 2400, 519	4 1 1 5	7 12 4 6 8	41686. 12 41665. 57 41661. 37 41647. 76 41644. 97	$\begin{array}{c} +0.10 \\ +0.02 \\ +0.02 \\ -0.47 \\ +0.05 \end{array}$	$\begin{array}{c} 22194_{3 \downarrow 2} - 63880_{2 \downarrow 2}^{\circ} \\ 18990_{1 \downarrow 2} - 60656_{3 \downarrow 2}^{\circ} \\ 23234_{4 \downarrow 2} - 64896_{3 \downarrow 2}^{\circ} \\ 22139_{2 \downarrow 2} - 63788_{3 \downarrow 2}^{\circ} \\ a \ ^{4}\mathrm{D}_{2 \downarrow 2} - 56612_{3 \downarrow 2}^{\circ} \end{array}$,
2400. 866 2401. 863 2402. 480 2403. 074 2403. 222	$ \begin{array}{c} 4 \\ 5 \\ 2 \\ 5 \\ 10 \end{array} $	$\begin{array}{c} 2\\ 12\\ 7\\ 10\\ 15 \end{array}$	41638. 95 41621. 67 41610. 98 41600. 69 41598. 13	$\begin{array}{c} -0.13 \\ +0.08 \\ +0.08 \\ +0.03 \\ -0.16 \end{array}$	$\begin{array}{c} a\ ^6\mathrm{D}_{3 \downarrow 2} - 46355^{\circ}_{2 \downarrow 2} \\ a\ ^4\mathrm{D}_{3 \downarrow 2} - 56768^{\circ}_{3 \downarrow 2} \\ a\ ^4\mathrm{F}_{3 \downarrow 4} - 55022^{\circ}_{3 \downarrow 2} \\ a\ ^4\mathrm{F}_{2 \downarrow 2} - 52901^{\circ}_{3 \downarrow 2} \\ a\ ^4\mathrm{P}_{0 \downarrow 2} - 50430^{\circ}_{1 \downarrow 2} \end{array}$	
2403, 455 2403, 762 2405, 280 2405, 631 2406, 576	4 1 —? 1—	10 2 8 1 1	41594. 10 41588. 79 41562. 54 41556. 48 41540. 16	$\begin{array}{c} -0.02 \\ +0.03 \\ +0.11 \\ +0.06 \\ +0.34 \end{array}$	$\begin{array}{c} 22194_{3}, -63788_{3}, 4\\ a^{4}P_{2}, -55022_{3}, 2\\ a^{6}S_{2}, -48982_{1}, 4\\ a^{4}F_{4}, -56418_{4}, 2\\ 23450_{2}, -64990_{2}, 2\\ \end{array}$	
2407. 286 2407. 787 2408. 282 2409. 226 2409. 474	$ \begin{array}{c} 1 \\ 5 \\ 12A \\ 5 \\ 3 \end{array} $	6 12 15 20 18	41527, 92 41519, 27 41510, 73 41494, 48 41490, 21	$ \begin{array}{r} +0.64 \\ +0.04 \\ -0.13 \\ -0.02 \end{array} $	$\begin{array}{c} 22503_{11/2}-64030^\circ_{21/2}\\ a^4\mathrm{F}_{41/2}-56376^\circ_{51/2}\\ 20039_{31/2}-61550^\circ_{31/2}\\ a^4\mathrm{P}_{11/2}-52087^\circ_{21/2} \end{array}$	res
2409. 827 2410. 694 2410. 854 2411. 287 2411. 538	$-\frac{1}{7}$	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 3 \\ 20 \end{array}$	41484. 13 41469. 21 41466. 46 41459. 01 41454. 70	$\begin{array}{c} +0.42 \\ -0.36 \\ +0.18 \\ -0.09 \\ -0.02 \end{array}$	$\begin{array}{c} 18990_{1/2} - 60474_{2/4}^{\circ} \\ 23046_{3/2} - 64516_{3/2}^{\circ} \\ 24804_{3/4} - 66270_{3/4}^{\circ} \\ a \ ^{6}\mathrm{D}_{3/4} - 46175_{3/4}^{\circ} \\ a \ ^{4}\mathrm{G}_{5/2} - 58891_{5/4}^{\circ} \end{array}$	
2411. 820 2412. 064 2412. 76 2414. 118 2414. 806	$ \begin{array}{c} 10 \\ 2 \\ 5 \\ 4 \\ 6 \end{array} $	25 2 8 7 25	41449. 86 41445. 66 41433. 72 41410. 40 41398. 60	$\begin{array}{c} -0.08 \\ -0.06 \\ -0.06 \\ +0.13 \\ -0.04 \end{array}$	$ \begin{array}{c} a^{4}\mathrm{D}_{1}_{1}\!$	4
2414. 888 2416. 063 2416. 416 2417. 430 2419. 350	3 1 2 8	3 3 1 4 35	41397. 20 41377. 06 41371. 02 41353. 67 41320. 85	$\begin{array}{c} -0.05 \\ +0.02 \\ +0.02 \\ +0.21 \\ +0.05 \end{array}$	$\begin{array}{c} a{}^{4}G_{334}\!-\!57986_{444}^{\circ}\\ 22503_{142}\!-\!63880_{244}^{\circ}\\ 23955_{542}\!-\!65326_{544}^{\circ}\\ 19070_{442}\!-\!60424_{334}^{\circ}\\ 20039_{342}\!-\!61360_{444}^{\circ}\end{array}$	
2419. 848 2419. 987 2420. 990 2421. 358 2421. 662	$\begin{array}{c} 4 \\ 3 \\ 12 \\ 1 \\ 3 \end{array}$	5 8 35 3 12	41312. 34 41309. 98 41292. 86 41286. 59 41281. 40	$\begin{array}{c} +0.12 \\ +0.08 \\ +0.21 \\ +0.04 \\ -0.10 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{D}_{0}\!_{3}\!$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inter	nsity	Wave numb	per (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	A.	effect
Air						
2421. 974 2422. 292 2422. 529 2422. 726 2425. 975	$5 \\ 30A \\ 8 \\ 1 \\ 10A$	12 20 25 4 6	41276. 09 41270. 67 41266. 63 41263. 28 41208. 02	$\begin{array}{c} -0.02 \\ +0.16 \\ +0.01 \\ +0.08 \\ -0.01 \end{array}$	$\begin{array}{c} 18000_{31_2} - 59276_{31_2}^3 \\ a\ ^4P_{21_2} - 54704_{21_2}^3 \\ a\ ^4D_{1_2} - 564413_{11_2}^3 \\ 23046_{31_2} - 64310_{21_2}^3 \\ 19070_{41_2} - 60278_{41_2}^3 \end{array}$	
2426. 482 2426. 558 2427. 493 2427. 807 2428. 758	1 4 10 4 4	$\begin{array}{c} 4 \\ 10 \\ 40 \\ 6 \\ 10 \end{array}$	41199. 42 41198. 13 41182. 26 41176. 93 41160. 80	$egin{array}{l} +0.06 \\ -0.02 \\ -0.04 \\ +0.15 \\ +0.10 \\ \hline \end{array}$	$\begin{array}{c} 23803_{312} - 65003_{412}^{\circ} \\ 19276_{212} - 60474_{212}^{\circ} \\ a \ ^{6}D_{212} - 44354_{212}^{\circ} \\ a \ ^{4}G_{12} - 57729_{312}^{\circ} \\ 23046_{312} - 64207_{412}^{\circ} \end{array}$	6 6 res
2429. 396 2429. 489 2429. 528 2429. 971 2430. 788	4 4 3 1 3	10 6 8 6 10	41149. 99 41148. 42 41147. 76 41140. 26 41126. 44	$ \begin{array}{r} +0.43 \\ +0.26 \\ +0.14 \\ +0.01 \\ +0.11 \end{array} $	$\begin{array}{c} 26929_{512} - 68078_{612}^{8} \\ 19070_{12} - 60218_{312}^{8} \\ 19276_{212} - 60424_{312}^{8} \\ a_{1}^{4}G_{312} - 57729_{312}^{8} \\ 22139_{212} - 63266_{312}^{8} \end{array}$	6
2431. 373 2431. 714 2432. 797 2433. 139 2433. 982	55 5 $25A$	18 12 6 8 20	41116. 54 41110. 78 41092. 47 41086. 70 41072. 47	+0.06 $+0.01$ $+0.09$ $+0.09$ $+0.25$	$\begin{array}{c} a\ ^{4}\mathrm{D}_{2^{1}\!\!/2}-56084_{1}^{\alpha}_{1^{4}}\\ 20455_{1^{1}\!\!/2}-61566_{2^{1}\!\!/2}^{2}\\ 23803_{3^{1}\!\!/2}-64896_{3^{1}\!\!/2}^{2}\\ a\ ^{4}\mathrm{F}_{3^{1}\!\!/2}-54498_{3^{1}\!\!/2}^{2}\\ 22194_{_{3}\!\!/2}-63266_{3^{1}\!\!/2}^{2} \end{array}$	6 res
2434. 254 2434. 453 2435. 008 2435. 445 2437. 155	$10A \\ 5 \\ 10 \\ 4 \\ 1-$	12 8 50 20 1	41067. 88 41064. 53 41055. 17 41047. 80 41019. 00	$\begin{array}{c} +0.05 \\ +0.06 \\ +0.06 \\ 0.00 \\ -0.13 \end{array}$	$\begin{array}{c} 20534_{5}, -616028_{5}, \\ a\ ^4P_{2}, -544983, \\ 20534_{5}, -61589_{5}, \\ 23955_{5}, -65003_{14}, \\ 19637_{2}, -60656_{2}, \end{array}$	
2437. 332 2437. 471 2439. 473 2439. 808 2439. 913	3 4 4 2 2	6 15 12 7 7	41016. 02 41013. 68 40980. 03 40974. 40 40972. 64	$ \begin{array}{r} -0.04 \\ -0.02 \\ +0.10 \\ +0.20 \\ +0.01 \end{array} $	$\begin{array}{c} 20039_{312} - 61055^{\circ}_{412} \\ 23955_{512} - 64969^{\circ}_{512} \\ 19276_{212} - 60256^{\circ}_{312} \\ a^{4}\mathrm{F}_{212} - 52275^{\circ}_{312} \\ 23234_{412} - 64207^{\circ}_{412} \end{array}$	6
2440. 432 2441. 612 2441. 790 2443. 858 2446. 394	10 7 25	$ \begin{array}{c} 20 \\ 12 \\ 7 \\ 2 \\ 120 \end{array} $	40963. 93 40944. 13 40941. 14 40906. 51 40864. 10	+0.11 -0.58 $+0.31$ $+0.05$	$\begin{array}{c} a~^{4}\mathrm{D}_{0\downarrow 4}\!\!-\!\!54137^{\circ}_{1\downarrow 4} \\ \\ a~^{4}\mathrm{P}_{2\downarrow 4}\!\!-\!\!54375^{\circ}_{2\downarrow 4} \\ 23450_{2\downarrow 4}\!\!-\!\!64356^{\circ}_{3\downarrow 4} \\ a~^{6}\mathrm{S}_{2\downarrow 4}\!\!-\!\!48284^{\circ}_{2\downarrow 4} \end{array}$	6
2446. 570 2447. 255 2447. 52 2448. 00 2448. 237	1 4 5 4	$1 \\ 12 \\ 1 \\ 15 \\ 50$	40861. 16 40849. 73 40845. 3 40837. 3 40833. 34	$ \begin{array}{r} -0.07 \\ +0.10 \\ -0.2 \\ 0.0 \\ +0.04 \end{array} $	$\begin{array}{c} 20039_{314} - 60900_{214}^{\circ} \\ 22139_{212} - 62989_{212}^{\circ} \\ a \ ^{4}P_{114} - 51438_{214}^{\circ} \\ 19637_{214} - 60474_{214}^{\circ} \\ 23046_{314} - 63880_{214}^{\circ} \end{array}$	
2448. 662 2448. 719 2449. 694 2450. 324 2451. 032	4 3 4 2 3	$\begin{array}{c} 8 \\ 4 \\ 20 \\ 7 \\ 7 \end{array}$	40826. 26 40825. 31 40809. 06 40798. 57 40786. 78	$egin{array}{c} +0.07 \\ -0.03 \\ -0.02 \\ +0.11 \\ +0.02 \\ \end{array}$	$\begin{array}{c} 20534_{514} - 61860_{414}^4 \\ 18990_{134} - 59816_{134}^2 \\ 20780_{434} - 61589_{314}^2 \\ 19070_{414} - 59869_{314}^3 \\ 19637_{214} - 60424_{314}^3 \end{array}$	
2451. 468 2451. 660 2453. 760 2455. 506 2455. 722	$\begin{array}{c} 3\\40A\\2\end{array}$	$50 \\ 1 \\ 10 \\ 10 \\ 5$	40779. 53 40776. 33 40741. 44 40712. 48 40708. 90	$egin{array}{c} +0.11 \\ +0.03 \\ 0.04 \\ -0.05 \\ +0.04 \\ \end{array}$	$\begin{array}{c} a\ ^6\mathrm{D}_{1^{1}\!2}-4 2298_{1^{1}\!4}^{\circ}\\ 19442_{8^{1}\!4}-60218_{5^{1}\!4}^{\circ}\\ 23046_{3^{1}\!4}-63788_{3^{1}\!4}^{\circ}\\ 23803_{3^{1}\!4}-64516_{4^{1}\!4}^{\circ}\\ 18000_{3^{1}\!4}-58709_{3^{1}\!4}^{\circ}\\ \end{array}$	
2455. 866 2456. 072 2457. 043 2458. 529 2458. 564	6 4 1 3 5	35 8 3 4? 30	40706. 51 40703. 09 40687. 01 40662. 42 40661. 84	$egin{array}{l} +0.05 \\ -0.01 \\ -0.17 \\ +0.09 \\ -0.04 \\ \hline \end{array}$	$\begin{array}{c} 20534_{5 \downarrow 2} - 61240_{5 \downarrow 2}^{\circ} \\ a^{4} P_{2 \downarrow 4} - 544137_{1 \downarrow 2}^{\circ} \\ 18000_{3 \downarrow 4} - 58687_{4 \downarrow 2}^{\circ} \\ a^{4} G_{3 \downarrow 4} - 57252_{2 \downarrow 2}^{\circ} \\ a^{4} P_{1 \downarrow 4} - 51254_{1 \downarrow 2}^{\circ} \end{array}$	6

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave numb	per (cm ⁻¹)	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air 2458, 838	3	20	40657. 31	+0. 17	$19276_{244} - 59933_{314}$	
2459, 602 2459, 876 2461, 148 2461, 294	20 4 5 3	10 30 20 8	40644. 68 40640. 15 40619. 15 40616. 74	$ \begin{array}{c} +0.17 \\ +0.10 \\ 0.00 \\ +0.08 \\ -0.03 \end{array} $	$\begin{array}{c} a ^{4}\mathrm{F}_{3}{}_{2}-5 4056{}_{3}{}_{2}\\ a ^{4}\mathrm{G}_{2}{}_{2}-56874{}_{2}{}_{2}\\ 19637{}_{2}{}_{2}-60256{}_{3}{}_{2}\\ 20039{}_{3}{}_{2}-60656{}_{2}{}_{2}\\ \end{array}$	6
2461, 442 2464, 616 2464, 70 2465, 148 2465, 598	5 15 1 2	15 40 4 15 7	40614. 30 40562. 00 40560. 6 40553. 25 40545. 85	$\begin{array}{c} +0.02 \\ +0.05 \\ -0.4 \\ -0.08 \\ -0.06 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{F}_{342} - 54026_{242} \\ a\ ^4\mathrm{F}_{242} - 51863_{342} \\ 23955_{542} - 64516_{442} \\ 23234_{442} - 63788_{342} \\ 20780_{442} - 61326_{342} \end{array}$	
2465, 667 2465, 962 2466, 176 2466, 330 2466, 522	2 4 2 5 35	20 30 5 10 80	40544. 72 40539. 87 40536. 35 40533. 82 40530. 66	$ \begin{array}{c} -0.04 \\ +0.09 \\ +0.03 \\ +0.05 \\ -0.01 \\ -0.18 \end{array} $	$\begin{array}{c} 26158_{45} - 66703_{514}^{\circ} \\ 19276_{254} - 59816_{152}^{\circ} \\ a^{4}G_{454} - 57089_{452}^{4} \\ a^{4}G_{254} - 56768_{342}^{\circ} \\ a^{6}G_{154} - 56768_{344}^{\circ} \\ a^{6}G_{154} - 2678_{344}^{\circ} \\ a^{4}F_{154} - 49242_{154}^{\circ} \end{array}$	7 7 res
2467. 078 2468. 006 2468. 404 2469. 206 2469. 873	3 2 6 2 3	9 10 15 6 25	40521. 53 40506. 29 40499. 76 40486. 61 40475. 67	$ \begin{array}{r} +0.08 \\ +0.13 \\ -0.03 \\ +0.07 \\ +0.15 \end{array} $	$\begin{array}{c} 20534_{512} - 61055_{412} \\ 23803_{332} - 64310_{332}^2 \\ a^4 G_{332} - 57089_{332}^2 \\ 22503_{112} - 62989_{232}^2 \\ 25209_{432} - 65684_{532}^2 \end{array}$	4
2470. 804 2471. 740 2472. 380 2473. 752 2474. 278	8 15 1	70 40 3 1 2	40460. 43 40445. 11 40434. 64 40412. 21 40403. 62	$\begin{array}{c} 0.\ 00 \\ +0.\ 07 \\ -0.\ 29 \\ -0.\ 01 \\ -0.\ 04 \end{array}$	$\begin{array}{c} 20780_{4} {}_{3} - 61240_{5}^{\circ}{}_{3} {}_{2} \\ 20455_{1} {}_{3} - 60900_{3}^{\circ}{}_{3} {}_{4} \\ 20039_{3} {}_{4} - 60474_{2}^{\circ}{}_{3} {}_{4} \\ 19404_{0} {}_{4} - 59816_{1}^{\circ}{}_{5} {}_{2} \\ 23803_{3} {}_{3} - 64207_{3}^{\circ}{}_{4} {}_{2} \end{array}$	res
2475. 474 2475. 588 2475. 844 2477. 284 2477. 796	$ \begin{array}{c} 1 \\ 3 \\ 4 \\ 3 \\ 30 \end{array} $	3 50 10 15 200	40384. 43 40382. 24 40378. 07 40354. 60 40346. 26	+0.03 $+0.17$ -0.22 -0.01	$\begin{array}{c} 20039_{31\!2}\!-\!60424_{31\!2}^3 \\ a {}^4\mathrm{G}_{21\!2}\!-\!56612_{31\!2}^3 \\ 19637_{21\!2}\!-\!59992_{21\!2}^3 \\ a {}^6\mathrm{D}_{41\!2}\!-\!z {}^6\mathrm{F}_{41\!2}^3 \end{array}$	6
2478. 313 2478. 402 2478. 874 2480. 041 2480. 867	2 2 4 3 3	20 6 10 4 6	40337. 84 40336. 40 40328. 72 40309. 74 40296. 32	$ \begin{array}{r} +0.14 \\ +0.12 \\ +0.06 \\ +0.18 \\ +0.04 \end{array} $	$\begin{array}{c} 23450_{244} - 63788_{314} \\ 18000_{314} - 58336_{214}^{\circ} \\ 19070_{414} - 59399_{414}^{\circ} \\ a \ ^4\text{G}_{214} - 56544_{214}^{\circ} \\ 19637_{214} - 59933_{314}^{\circ} \end{array}$	
2481. 546 2482. 154 2482. 390 2482. 688 2483. 592	10 3 3 4	30 3 2 4 12	40285. 30 40275. 43 40271. 60 40266. 77 40252. 11	$\begin{array}{c} -0.02 \\ +0.01 \\ 0.00 \\ -0.02 \\ +0.01 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{G}_{334} - 56874_{234}^2\\ 20780_{434} - 61055_{434}^4\\ a\ ^4\mathrm{F}_{134} - 48982_{134}^2\\ a\ ^4\mathrm{D}_{034} - 53440_{034}^2\\ 23955_{532} - 64207_{434}^4\\ \end{array}$	
2483. 744 2484. 008 2484. 404 2484. 848 2485. 160	5 7 7 2 1	7 20 40 4 2	40249. 64 40245. 37 40238. 95 40231. 76 40226. 71	$\begin{array}{c} +0.04 \\ +0.02 \\ -0.02 \\ 0.00 \\ +0.21 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{D}_{0\downarrow 4}\!-\!53422_{1\downarrow 4}^{\circ}\\ a\ ^4\mathrm{D}_{3\downarrow 4}\!-\!55392_{4\downarrow 4}^{\circ}\\ 20039_{3\downarrow 4}\!-\!60278_{4\downarrow 2}^{\circ}\\ 19637_{2\downarrow 4}\!-\!59869_{3\downarrow 4}^{\circ}\\ 23803_{3\downarrow 4}\!-\!64030_{2\downarrow 4}^{\circ} \end{array}$	
2485. 606 2485. 779 2486. 429 2486. 776 2487. 155	$ \begin{array}{c} 1 \\ 5 \\ 6 \\ 3 \\ 2 \end{array} $	3 15 18 6 1	40219. 50 40216. 70 40206. 18 40200. 57 40194. 45	$egin{array}{c} 0.\ 00 \\ -0.\ 01 \\ +0.\ 05 \\ -0.\ 01 \\ -0.\ 03 \end{array}$	$\begin{array}{c} 23046_{342} - 63266_{342} \\ 20039_{344} - 60256_{342} \\ 19070_{444} - 59276_{342} \\ 20455_{144} - 60656_{244} \\ a \ ^4D_{244} - 55162_{242}^2 \end{array}$	res
2487. 231 2488. 120 2488. 780 2488. 932 2489. 231	3 8 30 15 40	5 30 120 7 200	40193. 22 40178. 86 40168. 21 40165. 76 40160. 93	$ \begin{cases} -0.01 \\ -0.08 \\ -0.06 \\ 0.00 \\ +0.12 \\ +0.07 \end{cases} $	$\begin{array}{c} 22139_{2}{}_{2}-62333_{2}{}_{2}{}_{2}\\ a~^{4}G_{3}{}_{4}-56768_{3}{}_{4}\\ 19637_{2}{}_{4}-59816_{1}{}_{1}{}_{2}\\ a~^{6}S_{2}{}_{4}-47588_{1}{}_{2}\\ a~^{4}F_{4}{}_{4}-550223_{3}{}_{4}\\ a~^{6}D_{3}{}_{2}-z~^{6}F_{3}{}_{4}\\ \end{array}$	7 4 res

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave number	$\mathrm{per}\ (\mathrm{cm}^{-1})$	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Combination	effect
Air		,				
2489. 514 2489. 900 2490. 586 2490. 718 2492. 252	$5 \\ 4 \\ 12 \\ 4$	12 10 15 25 14	40156. 37 40150. 14 40139. 08 40136. 95 40112. 25	$\begin{array}{c} +0.04 \\ -0.06 \\ -0.04 \\ 0.00 \\ +0.04 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{D}_{0}\!,_{2}\!-\!53329_{1}^{\circ}\!,_{3}\\ a{}^{4}\mathrm{P}_{0}\!,_{4}\!-\!48982_{1}^{\circ}\!,_{3}\\ 22194_{3}\!,_{2}\!-\!62333_{3}^{\circ}\!,_{3}\\ a{}^{4}\mathrm{F}_{2}\!,_{4}\!-\!51438_{2}^{\circ}\!,_{4}\\ 26158_{4}\!,_{2}\!-\!66270_{4}^{\circ}\!,_{4}\end{array}$	
2492. 928 2493. 54 2494. 738 2494. 872 2495. 522	8 3 5	80 7 2 7 10	40101. 38 40091. 54 40072. 29 40070. 14 40059. 70	$ \begin{array}{r} +0.02 \\ -0.01 \\ +0.07 \\ -0.11 \\ +0.10 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{41\!/4}\!-\!54958_{51\!/4}^{5}\\ 24804_{31\!/2}\!-\!64896_{31\!/2}^{3}\\ 24918_{11\!/2}\!-\!64990_{21\!/2}^{2}\\ a{}^{4}\mathrm{D}_{11\!/2}\!-\!54704_{21\!/2}^{2}\\ a{}^{4}\mathrm{G}_{41\!/2}\!-\!56612_{31\!/2}^{3}\\ \end{array}$	
2496. 648 2497. 480 2498. 076 2499. 223 2499. 330	50 35 2 8 2	120 75 3 16 4	40041. 63 40028. 29 40018. 74 40000. 38 39998. 67	$\begin{array}{c} -0.15 \\ +0.03 \\ 0.00 \\ +0.09 \\ -0.09 \end{array}$	$\begin{array}{c} a\ ^6\mathrm{D}_{312}-44758^4_{12}\\ a\ ^6\mathrm{D}_{452}-46175^3_{342}\\ 20455_{112}-60474^2_{234}\\ 19276_{232}-59276^3_{332}\\ 24991_{112}-64990^3_{234} \end{array}$	5 5
2499. 692 2499. 934 2500. 11 2500. 217 2501. 020	15 3 12 1 1	100 4 30 3 10	39992. 88 39989. 00 39986. 19 39984. 48 39971. 64	$\begin{array}{c} -0.02 \\ +0.12 \\ -0.03 \\ +0.12 \\ -0.05 \end{array}$	$\begin{array}{c} a\ ^6\mathrm{S}_{21\!4}-47413^\circ_{21\!4}\\ a\ ^4\mathrm{F}_{21\!4}-53422^\circ_{11\!4}\\ 18000_{31\!4}-57986^\circ_{41\!4}\\ 23803_{31\!4}-63788^\circ_{31\!4}\\ 25169_{11\!4}-65141^\circ_{21\!4} \end{array}$	res
2501. 877 2502. 072 2502. 162 2502. 836 2505. 264	2 3 1	10 10 4? 3 1	39957. 95 39954. 84 39953. 40 39942. 64 39903. 93	$\begin{array}{c} -0.06 \\ +0.11 \\ +0.08 \\ -0.16 \\ -0.04 \end{array}$	$\begin{array}{c} a {}^{4}\mathrm{F}_{3 \downarrow 2} - 53369_{4 \downarrow 2}^{a} \\ a {}^{4}\mathrm{G}_{3 \downarrow 2} - 56544_{3 \downarrow 2}^{a} \\ a {}^{4}\mathrm{F}_{2 \downarrow 4} - 51254_{1 \downarrow 2}^{a} \\ 23046_{3 \downarrow 2} - 62989_{2 \downarrow 2}^{a} \\ a {}^{4}\mathrm{P}_{2 \downarrow 2} - 53338_{3 \downarrow 2}^{a} \end{array}$	
2505. 790 2506. 048 2507. 994 2508. 274 2508. 582	$\frac{3}{12}$? $\frac{2}{1}$	5 80 30 3 3	39895. 56 39891. 45 39860. 50 39856. 05 39851. 16	$\begin{array}{c} -0.05 \\ +0.15 \\ 0.00 \\ +0.05 \\ -0.08 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{21\!4}\!-\!53329_{11\!4}^{\circ}\\ 28187_{61\!2}\!-\!68078_{61\!2}^{\circ}\\ a^{4}\mathrm{G}_{41\!4}\!-\!56413_{13}^{\circ}\\ 18000_{31\!2}\!-\!57856_{21\!4}^{\circ}\\ a^{4}\mathrm{D}_{11\!2}\!-\!54485_{01\!2}^{\circ}\end{array}$	6 6
2508. 690 2509. 386 2509. 955 2510. 246 2510. 348	—? 2 6 —?	4 3 40 3 2	39849. 44 39838. 39 39829. 35 39824. 74 39823. 12	$\begin{array}{c} -0.02 \\ -0.04 \\ -0.05 \\ -0.16 \\ -0.19 \end{array}$	$\begin{array}{c} a~^4\mathrm{G}_{232}\!-\!56084_{132}^{\circ}\\ a~^4\mathrm{P}_{132}\!-\!50430_{132}^{\circ}\\ 20039_{332}\!-\!59869_{332}^{\circ}\\ 28187_{632}\!-\!68012_{532}^{\circ}\\ a~^4\mathrm{G}_{432}\!-\!56376_{332}^{\circ}\\ \end{array}$	7
2510. 482 2510. 799 2512. 186 2513. 435 2514. 358	8 2 1 2	80 3 4 30 4	39821. 00 39815. 97 39793. 99 39774. 22 39759. 62	$\begin{array}{c} -0.06 \\ +0.17 \\ +0.07 \\ +0.06 \\ +0.11 \end{array}$	$\begin{array}{c} 19070_{41/2} - 58891_{51/2}^{\circ} \\ 23450_{21/2} - 63266_{31/2}^{\circ} \\ 25209_{41/2} - 65003_{41/2}^{\circ} \\ 26929_{51/2} - 66703_{51/2}^{\circ} \\ a ^{6}\mathrm{S}_{21/2} - 47179_{11/2}^{\circ} \end{array}$	6
2514. 526 2515. 324 2515. 508 2515. 806 2516. 138	3 3 5 2	20 30 8 10 10	39756. 96 39744. 35 39741. 44 39736. 73 39731. 49	$ \begin{cases} -0.02 \\ +0.18 \\ -0.01 \\ -0.02 \\ -0.06 \\ -0.14 \end{cases} $	$\begin{array}{c} 18990_{1/2}-58747^{\circ}_{1/4}\\ a^{4}\mathrm{F}_{2/2}-51045^{\circ}_{3/2}\\ 20534_{5/2}-60278^{\circ}_{4/2}\\ a^{4}\mathrm{D}_{1/4}-54375^{\circ}_{2/2}\\ a^{4}\mathrm{D}_{2/2}-54704^{\circ}_{2/2}\\ 23234_{4/2}-62966^{\circ}_{5/2} \end{array}$	res
2516. 284 2517. 406 2518. 144 2518. 973 2519. 126	1 1 6 4	$\begin{array}{c} 3 \\ 25 \\ 50 \\ 4 \\ 7 \end{array}$	39729. 18 39711. 48 39699. 84 39686. 78 39684. 37	$ \begin{array}{c} -0.04 \\ -0.22 \\ +0.03 \\ -0.16 \\ -0.12 \end{array} $	$\begin{array}{c} 18000_{334} - 57729_{332}^{\circ} \\ 24804_{332} - 64516_{432}^{\circ} \\ a^{4}P_{132} - 50292_{332}^{\circ} \\ 25209_{432} - 64896_{332}^{\circ} \\ 20534_{332} - 60218_{532}^{\circ} \end{array}$	5

Table 3. Classified lines of Wii—Continued

Wavelength	Intensity		Wave numb	per (cm ⁻¹)	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Combination	effect
Air						
2519. 444 2520. 10 2521. 156 2521. 686 2521. 853	$\begin{array}{c} 8\\1\\3\\3A\\3\end{array}$	30 3 10 3 3	39679. 36 39669. 0 39652. 42 39644. 09 39641. 46	$ \begin{array}{c} -0.06 \\ -0.2 \\ -0.02 \\ +0.33 \\ +0.11 \end{array} $	$\begin{array}{c} a^{4}\mathrm{P}_{2\backslash 4}\!-\!531133_{3/4} \\ 23046_{3\backslash 2}\!-\!62715_{4/5}^{2} \\ a^{4}\mathrm{G}_{5/4}\!-\!57089_{4/2}^{2} \\ 20780_{4/2}\!-\!60424_{3/2}^{2} \\ a^{4}\mathrm{F}_{4/2}\!-\!54498_{3/2}^{2} \end{array}$	res
2522. 039 2522. 270 2526. 208 2527. 200 2527. 552	30 3 4 2 2	60 8 10 15 10	39638. 54 39634. 91 39573. 12 39557. 59 39552. 08	$\begin{array}{c} +0.04 \\ +0.21 \\ -0.10 \\ 0.00 \\ +0.05 \end{array}$	$\begin{array}{c} a~^6\mathrm{D}_{332}-44354^{\circ}_{232}\\ 28377_{532}-68012^{\circ}_{332}\\ a~^4\mathrm{F}_{132}-48284^{\circ}_{232}\\ a~^4\mathrm{D}_{332}-54704^{\circ}_{232}\\ 24804_{332}-64356^{\circ}_{332} \end{array}$	res
2528. 560 2528. 913 2529. 209 2530. 54 2530. 70	$-\frac{?}{5}$ $\frac{2}{1}$ $\frac{1}{10}$	8 20 8 4 8	39536, 32 39530, 80 39526, 17 39505, 38 39502, 88	$ \begin{array}{r} +0.05 \\ +0.05 \\ +0.11 \\ +0.05 \\ +0.04 \end{array} $	$\begin{array}{c} 20455_{1}, -59992_{2}, \\ a^{4}D_{2}, -54498_{3}, \\ 26158_{4}, -65684_{5}, \\ 24804_{3}, -64310_{2}, \\ a^{4}D_{1}, -54137_{1}, \end{array}$	res
2530. 986 2532. 085 2532. 414 2532. 711 2532. 842	5 1 4 2 2	50 1 7 5 3	39498. 42 39481. 28 39476. 15 39471. 52 39469. 48	$ \begin{array}{r} +0.09 \\ +0.17 \\ +0.08 \\ +0.10 \\ +0.08 \end{array} $	$\begin{array}{c} 20780_{412} - 60278_{412}^{\circ} \\ 23234_{412} - 62715_{412}^{\circ} \\ 20780_{412} - 60256_{312}^{\circ} \\ 19276_{212} - 58747_{112}^{\circ} \\ 25672_{212} - 65141_{212}^{\circ} \end{array}$	
2532. 960 2533. 278 2534. 140 2534. 829 2535. 178	6 2 5 5	15 7 30 50 3	39467. 64 39462. 69 39449. 27 39438. 55 39433. 12	$\begin{array}{c} 0.\ 00 \\ +0.\ 23 \\ +0.\ 07 \\ +0.\ 09 \\ +0.\ 08 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{2}\!$	7 7
2535. 573 2536. 000 2536. 622 2536. 789 2537. 133	1 6 2 1 1	10 40 25 1 30	39426, 98 39420, 34 39410, 67 39408, 07 39402, 73	$ \begin{array}{r} +0.25 \\ 0.00 \\ +0.04 \\ +0.07 \\ -0.10 \end{array} $	$\begin{array}{c} 22139_{21/2} - 61566_{23/4}^2 \\ a^4 D_{03/2} - 52593_{03/4}^2 \\ 22139_{21/2} - 615503_{33/4}^2 \\ a^4 D_{21/2} - 54375_{23/2}^2 \\ 24804_{33/2} - 64207_{43/2}^4 \end{array}$	7
2539. 313 2539. 869 2539. 919 2540. 101 2540. 431	7 1 3 1 1	35 8 20 4	39368. 91 39360. 29 39359. 52 39356. 70 39351. 58	$ \begin{array}{r} +0.01 \\ -0.08 \\ -0.08 \\ +0.18 \\ +0.03 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{P}_{2}{}_{2}-52803{}^{\circ}_{1}{}_{4}\\ 2045{}^{5}{}_{1}{}_{2}-59816{}^{\circ}_{1}{}_{2}\\ 2003{}^{3}{}_{3}-59399{}^{4}_{3}{}_{2}\\ 22194{}^{3}{}_{2}-61550{}^{3}_{3}{}_{4}\\ a{}^{4}\mathrm{D}_{3}{}_{2}-54498{}^{3}_{3}{}_{4} \end{array}$	4
2540. 807 2540. 925 2541. 063 2542. 598 2543. 308	$10A \\ 6 \\ 1 \\ 2$	$\begin{array}{c} 2\\ 4\\ 20\\ 30\\ 25 \end{array}$	39345. 76 39343. 93 39341. 80 39318. 05 39307. 07	$\begin{array}{c} -0.26 \\ +0.07 \\ +0.19 \\ -0.11 \\ -0.02 \end{array}$	$\begin{array}{c} 18990_{1}, -58336_{2}, \\ 19404_{0}, -58747_{1}, \\ 26929, -66270_{3}, \\ 25672, -64990_{2}, \\ 25209_{4}, -64516_{4}, \end{array}$	6 6
2544. 658 2546. 283 2546. 790 2546. 912 2547. 838	3 1 1	$ \begin{array}{c} 1 \\ 30 \\ 15 \\ 2 \\ 5 \end{array} $	39286. 22 39261. 15 39253. 33 39251. 45 39237. 19	-0.18 $+0.16$ $+0.15$ $+0.12$	$\begin{array}{c} 23046_{3\frac{1}{2}} - 62333^{\frac{2}{2}\frac{1}{2}} \\ a\ ^4G_{2\frac{1}{4}} - 55488^{\frac{5}{1}\frac{1}{2}} \\ 18000_{3\frac{1}{4}} - 57252^{\frac{5}{2}\frac{1}{2}} \\ 20039_{3\frac{1}{2}} - 59276^{\frac{5}{3}\frac{1}{2}} \end{array}$	res
2548. 378 2548. 690 2549. 096 2550. 10 2550. 295	6 1 5 5	20 6 15 4 8	39228. 88 39224. 08 39217. 83 39202. 38 39199. 39	$ \begin{array}{r} +0.08 \\ +0.02 \\ +0.08 \\ +0.21 \\ +0.07 \end{array} $	$\begin{array}{c} a~^{4}\mathrm{D}_{3 \cdot 4} - 54375^{\circ}_{2 \cdot 3 \cdot 4} \\ 25672_{2 \cdot 2} - 64896^{\circ}_{3 \cdot 3 \cdot 4} \\ a~^{6}\mathrm{D}_{2 \cdot 4} - 42390^{\circ}_{3 \cdot 4} \\ 23235_{4 \cdot 2} - 62437^{\circ}_{4 \cdot 4} \\ a~^{4}\mathrm{F}_{4 \cdot 2} - 54056^{\circ}_{4 \cdot 2} \end{array}$	res
2551. 157 2551. 450 2552. 249 2552. 362 2553. 168	$1\\5\\4\\70A$	$\begin{array}{c c} 10 \\ 15 \\ 5 \\ 40 \\ 50 \end{array}$	39186. 15 39181. 65 39169. 38 39167. 65 39155. 29	$\begin{array}{c} -0.17 \\ -0.08 \\ 0.00 \\ -0.01 \\ +0.10 \end{array}$	$\begin{array}{c} 22139_{2 / 2} - 61326_{3 / 4}^{\circ} \\ a^{4} D_{0 / 4} - 52355_{0 / 2}^{\circ} \\ a^{4} D_{2 / 4} - 54187_{1 / 2}^{\circ} \\ 26158_{4 / 2} - 65326_{5 / 4}^{\circ} \\ a^{4} F_{3 / 2} - 52567_{4 / 2}^{\circ} \end{array}$	res 7 res

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air						
2553. 308 2553. 693 2554. 665	1 15	7 1 70	39153. 14 39147. 24 39132. 34	$ \begin{array}{c} -0.14 \\ -0.18 \\ -0.16 \\ +0.13 \end{array} $	$\begin{array}{c} 20780_{4\frac{1}{2}}-59933_{3\frac{1}{2}}\\ 25209_{4\frac{1}{2}}-64356_{3\frac{1}{2}}\\ 23955_{5\frac{1}{2}}-63087_{6\frac{1}{2}}\\ 22194_{3\frac{1}{2}}-61326_{3\frac{1}{2}} \end{array}$	
2554. 864 2555. 106	$\frac{40}{40}$	60 100	39129. 30 39125. 59	$ \begin{array}{c c} -0.11 \\ -0.09 \end{array} $	$a {}^{6}\mathrm{D}_{012} - z {}^{6}\mathrm{F}_{112}^{\circ} - a {}^{6}\mathrm{D}_{212} - 42298_{112}^{\circ}$	
2556. 092 2557. 511 2558. 582 2559. 170 2559. 500	7	6 2 12 1 40	39110. 50 39088. 80 39072. 44 39063. 46 39058. 43	$\begin{array}{c} -0.06 \\ +0.04 \\ +0.26 \\ -0.18 \\ +0.01 \end{array}$	$\begin{array}{c} 19637_{21/2} - 58747_{11/2}^{\circ} \\ 18000_{31/2} - 57089_{41/2}^{\circ} \\ 19637_{21/2} - 58709_{31/2}^{\circ} \\ 22503_{11/2} - 61566_{21/2}^{\circ} \\ a \ ^{4}\mathrm{D}_{21/2} - 54026_{21/2}^{\circ} \end{array}$	6
2560. 788 2562. 244 2562. 594 2563. 166 2563. 432	$\begin{array}{c} 1 \\ 1 \\ 20 \end{array}$	9 9 8 200 5	39038. 78 39016. 60 39011. 27 39002. 57 38998. 52	$\begin{array}{c} 0.\ 00 \\ -0.\ 04 \\ +0.\ 17 \\ -0.\ 01 \\ +0.\ 30 \end{array}$	$\begin{array}{c} 24991_{1 ^{1} 2} - 64030_{2 ^{1} 2} \\ 18990_{1 ^{1} 2} - 58007_{1 ^{1} 2} \\ 23955_{5 ^{1} 2} - 62966_{5 ^{1} 2} \\ a + G_{3 ^{1} 2} - 564\beta 9_{5 ^{1} 2} \\ 25209_{4 ^{1} 2} - 64207_{4 ^{1} 2}^{4} \end{array}$	6 4
2563. 534 2563. 914 2564. 424 2565. 834 2567. 320	1 12	$\begin{array}{c} 4\\ 30\\ 8\\ 7\\ 1 \end{array}$	38996. 97 38991. 19 38983. 43 38962. 01 38939. 46	$\begin{array}{c} -0.12 \\ -0.06 \\ -0.10 \\ +0.01 \\ +0.03 \end{array}$	$\begin{array}{c} 27273_{314} - 662704_{14} \\ a^4 F_{214} - 50292_{214}^2 \\ 24804_{314} - 63788_{314}^3 \\ 24918_{114} - 63880_{214}^2 \\ a^4 G_{512} - 56376_{514}^2 \end{array}$	6 res 7
2567. 620 2568. 108 2568. 850 2569. 123 2569. 298	10 2 10 1 8	30 10 30 3 80	38934. 92 38927. 52 38916. 28 38912. 14 38909. 49	$\begin{array}{c} -0.05 \\ +0.06 \\ +0.03 \\ 0.00 \\ -0.03 \end{array}$	$\begin{array}{c} a ^6\mathrm{S}_{234} - 46355 _{234} \\ a ^4\mathrm{G}_{234} - 55162 _{234} ^2 \\ 19070 _{434} - 57986 _{432} ^4 \\ 23803 _{334} - 62715 _{434} ^4 \\ a ^4\mathrm{D}_{334} - 54056 _{434} ^4 \end{array}$	6 res 6 5
2570. 701 2571. 459 2571. 632 2572. 240 2572. 366	50 3 8 8	$ \begin{array}{c} 2 \\ 150 \\ 15 \\ 45 \\ 30 \end{array} $	38888. 26 38876. 79 38874. 18 38864. 99 38863. 08	$\begin{array}{c} -0.28 \\ -0.14 \\ -0.11 \\ 0.00 \\ -0.24 \end{array}$	$\begin{array}{c} 24991_{132} - 63880_{234} \\ a \ ^6D_{234} - z \ ^6F_{234}^2 \\ 18000_{334} - 56874_{234}^2 \\ 20534_{534} - 593994_{34} \\ a \ ^4F_{332} - 52275_{334}^2 \end{array}$	res
2572. 572 2573. 605 2573. 820 2573. 952 2576. 168	$\begin{array}{c} 3\\15A\\7\end{array}$	25 9 12 7 30	38859. 97 38844. 38 38841. 13 38839. 14 38805. 73	-0. 50 -0. 08 -0. 05 -0. 09 -0. 08	$\begin{array}{c} 25169_{134} - 64030_{234}^{\circ} \\ 26158_{432} - 65003_{434}^{\circ} \\ a \ ^{4}P_{232} - 52275_{332}^{\circ} \\ a \ ^{4}G_{432} - 55392_{432}^{\circ} \\ a \ ^{4}D_{132} - 53440_{034}^{\circ} \end{array}$	
2576. 372 2577. 308 2578. 695 2579. 266 2579. 497	8 20	40 5 3 70 20	38802. 66 38788. 57 38767. 71 38759. 13 38755. 66	$ \begin{array}{c} -0.04 \\ -0.05 \\ -0.20 \\ -0.03 \\ \{ -0.32 \\ +0.20 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{G}_{334}-55392_{434}^{\circ}\\ a\ ^4\mathrm{D}_{132}-53422_{132}^{\circ}\\ 18000_{334}-56768_{334}^{\circ}\\ 23955_{532}-62714_{632}^{\circ}\\ a\ ^4\mathrm{P}_{034}-47588_{132}^{\circ}\\ 26929_{332}-65684_{532}^{\circ}\end{array}$	7
2579. 542 2581. 140 2581. 206 2582. 527 2582. 746	$ \begin{array}{c} 20 \\ 2 \\ 18 \\ 1 \\ 1 \end{array} $	100 8 30 5 4	38754. 98 38730. 99 38730. 00 38710. 19 38706. 90	$ \begin{array}{c} -0.01 \\ -0.09 \\ -0.02 \\ -0.04 \\ +0.01 \end{array} $	$\begin{array}{c} a ^6\mathrm{S}_{2},_{2} - 46175 ^8_{3},_{2} \\ 19276 ^6_{2},_{2} - 58007 ^9_{1},_{2} \\ a ^6\mathrm{D}_{4},_{2} - z ^6\mathrm{F}_{3},_{4} \\ 25169 _{1},_{2} - 63880 ^9_{2},_{2} \\ 22194 _{3},_{2} - 60900 ^9_{2},_{2} \end{array}$	res
2583, 520 2584, 236 2585, 146 2585, 934 2586, 350	$\begin{matrix} 3 \\ 12A \\ 6 \\ 8 \end{matrix}$	5 5 4 30 25	38695. 31 38684. 59 38670. 97 38659. 18 38652. 97	$\begin{array}{c} -0.04 \\ +0.05 \\ +0.03 \\ -0.06 \\ +0.05 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{D}_{11\!/2}-53329_{11\!/2}^{\alpha}\\ 25672_{21\!/2}-64356_{31\!/2}^{\alpha}\\ 29341_{41\!/2}-68012_{51\!/2}^{\alpha}\\ 19070_{41\!/2}-57729_{31\!/2}^{\alpha}\\ a\ ^4\mathrm{P}_{21\!/2}-52087_{31\!/2}^{\alpha} \end{array}$	6
2586, 586 2587, 367 2587, 676 2589, 171 2589, 661	$\begin{array}{c} 1 \\ 2 \\ 30 \\ 4 \end{array}$	5 6 9 90 9	38649. 44 38637. 78 38633. 17 38610. 86 38603. 56	$\begin{array}{c} -0.14 \\ -0.06 \\ -0.03 \\ -0.08 \\ +0.04 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{1},_{2}-49242^{3}_{2},_{4}\\ 25672_{2},_{5}-64310^{3}_{2},_{5}\\ 23803_{3},_{2}-62437^{4}_{4},_{2}\\ a^{6}\mathrm{D}_{4},_{5}-44758^{4}_{4},_{5}\\ 19404_{0},_{2}-58007^{\circ}_{1},_{5} \end{array}$	

Table 3. Classified lines of W II—Continued

Wavelength	Inter	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air					,	
2591. 229 2591. 492 2591. 738 2592. 458 2593. 686	14 1 3 1	$\begin{array}{c} 2 \\ 12 \\ 4 \\ 3 \\ 2 \end{array}$	38580, 20 38576, 28 38572, 62 38561, 91 38543, 65	$\begin{array}{c} +0.02 \\ -0.04 \\ -0.01 \\ -0.07 \\ -0.05 \end{array}$	$\begin{array}{c} 19276_{212} - 57856_{214}^2 \\ a \ ^6D_{012} - z \ ^2S_{014}^2 \\ a \ ^4G_{312} - 5516z_{214}^2 \\ a \ ^4P_{112} - 49154_{012}^4 \\ 18000_{312} - 56544_{214}^2 \end{array}$	
2594. 645 2595. 506 2595. 580 2595. 764 2596. 867	2 5 3 3	$\begin{array}{c} 2 \\ 7 \\ 5 \\ 8 \\ 15 \end{array}$	38529. 41 38516. 63 38515. 53 38512. 80 38496. 44	$ \begin{array}{r} +0.05 \\ +0.09 \\ -0.37 \\ +0.05 \\ +0.01 \end{array} $	$\begin{array}{c} 23803_{3}\cancel{1} - 62333_{2}^{5}\cancel{1}\\ 22139_{2}\cancel{1} - 60656_{2}^{5}\cancel{1}\\ 28187_{6}\cancel{1}_{2} - 66703_{5}^{5}\cancel{1}\\ a^{4}F_{4}\cancel{1}_{2} - 53369_{4}^{4}\cancel{1}\\ 20780_{4}\cancel{1}_{2} - 59276_{3}^{5}\cancel{1}\\ \end{array}$	7 6 7
2597. 866 2598. 672 2598. 748 2599. 174 2599. 652	$ \begin{array}{c} 2 \\ 7A \\ 20 \\ 1 \\ 3 \end{array} $	$\begin{array}{c} 25 \\ 7 \\ 35 \\ 1 \\ 7 \end{array}$	38481. 64 38469. 71 38468. 58 38462. 27 38455. 20	$ \begin{cases} 0.00 \\ -0.06 \\ -0.01 \\ -0.10 \\ -0.16 \\ +0.04 \end{cases} $	$\begin{array}{c} 23955_{5}\cancel{1}\cancel{-}62437^4_{4}\cancel{1}\cancel{2}\\ a^4G_{2}\cancel{1}\cancel{-}54704^3_{2}\cancel{1}\cancel{2}\\ a^4G_{4}\cancel{1}\cancel{-}55022^3_{3}\cancel{1}\cancel{2}\\ a^4F_{1}\cancel{1}\cancel{-}47179^4_{1}\cancel{2}\\ 22194_{3}\cancel{1}\cancel{-}60656^2_{2}\cancel{1}\cancel{2}\\ a^4D_{2}\cancel{1}\cancel{-}53422^4_{1}\cancel{1}\cancel{2}\\ \end{array}$	7
2599. 772 2601. 141 2601. 430 2602. 166 2602. 516	$\begin{array}{c} 4 \\ 1 \\ 8 \\ 2 \\ 12 \end{array}$	$ \begin{array}{c} 20 \\ 6 \\ 30 \\ \hline 1 \\ 75 \end{array} $	38453. 42 38433. 19 38428. 92 38418. 06 38412. 89	$\begin{array}{c} +0.02 \\ 0.00 \\ -0.01 \\ +0.03 \\ -0.05 \end{array}$	$\begin{array}{c} 19276_{2\flat_2} - 57729_{3\flat_2}^3 \\ a^4 G_{3\flat_2} - 55022_{3\flat_2}^2 \\ a^4 P_{2\flat_2} - 51863_{3\flat_2}^3 \\ a^6 D_{1\flat_2} - 39936_{3\flat_2}^2 \\ 18000_{3\flat_2} - 56413_{3\flat_2}^3 \end{array}$	res res
2603. 018 2603. 609 2604. 042 2605. 410 2605. 973	20 2 ? 7	$ \begin{array}{c} 120 \\ 3 \\ 6 \\ 5 \\ \hline 15 \end{array} $	38405. 48 38396. 76 38390. 38 38370. 23 38361. 94	$\begin{array}{c} +0.04\\ -0.30\\ +0.04\\ -0.02\\ +0.01\\ +0.05 \end{array}$	$\begin{array}{c} a~^{4}G_{412}-54958_{512}^{5}\\ 26929_{512}-65326_{512}^{5}\\ a~^{4}P_{112}-489821_{12}^{5}\\ a~^{4}D_{212}-53338_{32}^{3}\\ 19637_{212}-58007_{132}^{5}\\ a~^{4}D_{224}-53329_{132}^{5}\\ \end{array}$	7 6 res
2606. 227 2606. 273 2606. 472 2606. 974 2607. 822	2 4 4	2? 20 40 12 20	38358, 20 38357, 52 38354, 59 38347, 21 38334, 74	$ \begin{cases} +0.02 \\ -0.11 \\ +0.13 \\ 0.00 \\ -0.07 \\ +0.04 \end{cases} $	$\begin{array}{c} 25672_{234} - 64030_{334}^2 \\ 26158_{434} - 64516_{334}^2 \\ 20534_{534} - 58891_{534}^2 \\ 23234_{434} - 61589_{534}^2 \\ a \ ^4P_{014} - 47179_{134}^2 \\ 22139_{234} - 60474_{234}^2 \end{array}$	7
2608. 440 2609. 116 2609. 250 2610. 370 2611. 264	2 4 1 1	5 7 40 3 8	38325. 66 38315. 72 38313. 76 38297. 32 38284. 21	$\begin{array}{c} -0.04 \\ -0.01 \\ +0.02 \\ -0.08 \\ +0.04 \end{array}$	$\begin{array}{c} 28377_{514} - 66703_{514}^{5} \\ 23234_{412} - 61550_{314}^{5} \\ 23046_{314} - 61360_{414}^{5} \\ 20039_{314} - 58336_{214}^{5} \\ 22139_{214} - 60424_{314}^{5} \end{array}$	5
2611. 510 2611. 592 2612. 667 2612. 848 2614. 956	$\frac{1}{4}$	$\begin{array}{c} 1 \\ 6 \\ 15 \\ 2 \\ 2 \end{array}$	38280. 60 38279. 40 38263. 65 38261. 00 38230. 16	$ \begin{array}{r} +0.01 \\ -0.09 \\ -0.08 \\ -0.04 \\ +0.10 \end{array} $	$\begin{array}{c} 22194_{314} - 60474_{314} \\ 23046_{314} - 61326_{314} \\ a^4G_{214} - 54498_{314} \\ 18990_{114} - 57252_{314} \\ 22194_{314} - 60424_{314} \end{array}$	6
2615. 446 2615. 701 2617. 162 2617. 636 2618. 072	20 3 1	$ \begin{array}{c} 80 \\ 15 \\ 2 \\ 5 \\ 7 \end{array} $	38223. 00 38219. 27 38197. 94 38191. 02 38184. 66	+0.05 -0.05 -0.02 -0.03 -0.27	$\begin{array}{c} a{}^{4}\mathrm{D}_{3}\mathrm{i}_{2}-533694_{3}\mathrm{i}_{2}\\ 19637_{2}\mathrm{i}_{3}-57856_{2}\mathrm{i}_{3}\\ 26158_{4}\mathrm{i}_{4}-64356_{3}\mathrm{i}_{4}\\ a{}^{4}\mathrm{D}_{3}\mathrm{i}_{2}-53338_{3}\mathrm{i}_{4}\\ 24804_{3}\mathrm{i}_{2}-62989_{2}\mathrm{i}_{4} \end{array}$	6
2619. 18 2620. 215 2620. 757 2621. 074 2621. 601	$ \begin{array}{c} 40A \\ 50A \\ 7 \end{array} $	$ \begin{array}{c} 15 \\ 60 \\ 30 \\ 2 \\ 12 \end{array} $	38168. 50 38153. 43 38145. 54 38140. 93 38133. 26	$\begin{array}{c} -0.14 \\ -0.02 \\ -0.16 \\ -0.05 \\ -0.01 \end{array}$	$ \begin{array}{c} a^{4}\mathrm{D}_{1}\!$	4 res

Table 3. Classified lines of Wii—Continued

Wavelength	Inter	nsity	Wave numb	$ m er~(cm^{-1})$	Combination	Zeeman
(Å)	Arc	Spark	Observed	<i>O</i> – <i>C</i>		effect
Air			-			
2621. 826 2622. 778 2622. 873 2623. 114 2623. 890	1 1 6 2	$\begin{array}{c} 1 \\ 5 \\ 2 \\ 50 \\ 8 \end{array}$	38129. 99 38116. 15 38114. 77 38111. 27 38100. 00	+0.29 -0.05 -0.17 -0.09 -0.10	$\begin{array}{c} 26227_{21/4}-64356^3_{31/4}\\ 23450_{21/2}-61566^3_{21/2}\\ a^4\text{G}_{31/4}-54704^3_{21/2}\\ 20780_{41/2}-58891^8_{51/2}\\ 23450_{21/2}-61550^3_{31/2} \end{array}$	res
2624. 401 2624. 488 2624. 952 2625. 058 2625. 863	2	$\begin{array}{c} 3 \\ 15 \\ 4 \\ 3 \\ 4 \end{array}$	38092. 58 38091. 32 38084. 59 38083. 05 38071. 38	$ \begin{array}{r} + 0.04 \\ -0.10 \\ -0.04 \\ + 0.05 \\ -0.12 \end{array} $	$\begin{array}{c} 19637_{23^{\prime}} - 57729_{34}^{\ast} \\ 23234_{43^{\prime}} - 61326_{33^{\prime}} \\ 22194_{33^{\prime}} - 60278_{43^{\prime}}^{\ast} \\ 26227_{23^{\prime}} - 64310_{23^{\prime}}^{\ast} \\ 24918_{13^{\prime}} - 62989_{23^{\prime}}^{\ast} \end{array}$	
2626. 486 2626. 851 2627. 722 2628. 045 2628. 996	$\begin{array}{c} 4 \\ 1 \\ 7 \end{array}$	12 3 10 8 35	38062. 35 38057. 06 38044. 44 38039. 76 38026. 00	$\begin{array}{c} -0.02 \\ +0.04 \\ -0.08 \\ 0.00 \\ -0.07 \end{array}$	$\begin{bmatrix} 22194_{312} - 60256_{312}^* \\ 25209_{412} - 63266_{312}^* \\ a^4F_{412} - 52901_{312}^* \\ 26929_{512} - 64969_{512}^* \\ a^4F_{312} - 51438_{212}^* \end{bmatrix}$	6
2629. 496 2630. 177 2630. 384 2630. 534 2630. 946	1 3 3 6	$\begin{array}{c} 5 \\ 7 \\ 20 \\ 9 \\ 2 \end{array}$	38018. 78 38008. 93 38005. 94 38003. 78 37997. 83	$ \begin{array}{c} 0.00 \\ -0.07 \\ 0.00 \\ -0.15 \\ -0.21 \end{array} $	$\begin{array}{c} 19070_{41\!2} - 57089_{41\!2}^{\circ} \\ 23046_{31\!2} - 61056_{41\!2}^{\circ} \\ 23234_{41\!2} - 61240_{51\!4}^{\circ} \\ a^{4}\mathrm{P}_{21\!2} - 51438_{21\!2}^{\circ} \\ 24991_{11\!2} - 62989_{21\!2}^{\circ} \end{array}$	6 7 res
2632. 485 2632. 768 2633. 886 2634. 578 2635. 379	$ \begin{array}{c} 35A \\ 7? \\ 4 \\ 6 \\ 6 \end{array} $	$\begin{array}{c} 7 \\ 7 \\ 25 \\ 35 \\ 30 \end{array}$	37975. 61 37971. 53 37955. 41 37945. 45 37933. 91	$ \begin{array}{r} +0.13 \\ -0.08 \\ +0.06 \\ +0.02 \\ -0.01 \end{array} $	$ \begin{array}{c} 19276_{21/2} - 57252_{21/2}^{\circ} \\ 22503_{11/2} - 60474_{31/2}^{\circ} \\ a~^{4}G_{31/2} - 55392_{41/2}^{\circ} \\ a~^{4}G_{41/2} - 54498_{31/2}^{\circ} \\ a~^{4}D_{21/2} - 52901_{31/2}^{\circ} \end{array} $	
2635. 723 2636. 772 2636. 953 2637. 209 2637. 576	$ \begin{array}{c} 1\\1\\-?\\15A \end{array} $	$\begin{array}{c} 1 \\ 2 \\ 20 \\ 10 \\ 25 \end{array}$	37928. 96 37913. 87 37911. 27 37907. 59 37902. 32	$\begin{array}{c} -0.22 \\ -0.14 \\ -0.04 \\ +0.09 \\ -0.04 \end{array}$	$\begin{bmatrix} 20780_{412} - 58709_{312}^{8} \\ a^{4}F_{112} - 46629_{612}^{6} \\ 24804_{312} - 62719_{412}^{4} \\ 20780_{412} - 58687_{412}^{6} \\ a^{4}G_{212} - 54137_{112}^{6} \end{bmatrix}$	res
2638. 220 2638. 870 2639. 052 2639. 432 2641. 076	1 2	7 1 3 1 8	37893. 06 37883. 73 37881. 12 37875. 67 37852. 09	$\begin{array}{c} -0.09 \\ -0.30 \\ +0.07 \\ -0.12 \\ -0.14 \end{array}$	$\begin{array}{c} 28377_{512} - 66270_{312}^{\circ} \\ 18990_{112} - 56874_{232}^{\circ} \\ 20455_{112} - 58336_{232}^{\circ} \\ 23450_{212} - 61326_{332}^{\circ} \\ 22139_{212} - 59992_{232}^{\circ} \end{array}$	6
2643. 086 2643. 253 2643. 296 2645. 692 2647. 309	$-$? $ \begin{array}{c} -?\\ 4\\25A\\ 1 \end{array} $	$ \begin{array}{c} 10 \\ 10 \\ 30 \\ 7 \\ 4 \end{array} $	37823. 31 37820. 92 37820. 31 37786. 06 37762. 98	$\begin{array}{c} -0.13 \\ -0.01 \\ +0.01 \\ -0.09 \\ +0.12 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{F}_{2\flat2}\!-\!49124_{3\flat4}^{3}\!$	
2647. 726 2647. 894 2648. 453 2648. 958 2649. 682	7 1	70 2 2 2 2 10	37757. 03 37754. 63 37746. 67 37739. 47 37729. 16	$ \begin{array}{c c} -0.19 \\ -0.09 \\ -0.09 \\ -0.11 \\ -0.01 \end{array} $	$\begin{array}{c} 25209_{4}, -62966_{3}, \\ a \ ^{4}D_{3}, -52901_{3}, \\ 23803_{3}, -61550_{3}, \\ 22194_{3}, -59933_{3}, \\ 22139_{2}, -59869_{3}, \end{array}$	4
2650, 276 2650, 580 2651, 035 2651, 881 2542, 298	3 1 1 4 1	7 3 8 30 3	37720. 70 37716. 38 37709. 90 37697. 87 37691. 95	$\begin{array}{c} -0.05 \\ -0.08 \\ -0.03 \\ -0.06 \\ -0.01 \end{array}$	$\begin{array}{c} a~^{4}\mathrm{D}_{1},_{2}-52355_{0},_{4}\\ 27273_{3},_{2}-64990_{3},_{4}\\ a~^{4}\mathrm{F}_{4},_{2}-52567_{4},_{4}\\ 19070_{4},_{2}-56768_{3},_{4}\\ a~^{4}\mathrm{P}_{1},_{2}-48284_{3},_{4}\\ \end{array}$	6
2652. 433 2653. 015 2653. 424 2653. 568 2654. 841	$10A \\ 7 \\ 10 \\ 1$	4 8 35 35 5	37690, 03 37681, 76 37675, 96 37673, 91 37655, 84	$\begin{array}{c c} -0.15 \\ -0.02 \\ +0.04 \\ -0.04 \\ +0.09 \end{array}$	$\begin{bmatrix} 20039_{3}, -57729_{3}, \\ a^{4}F_{2}, -48982_{1}, \\ a^{4}G_{4}, -54229_{3}, \\ a^{6}G_{3}, -42390_{3}, \\ 19276_{2}, -56932_{1}, \end{bmatrix}$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave numb	$ m cer~(cm^{-1})$	Combination	Zeeman
(Å)	Arc	Spark	Observed	<i>O</i> – <i>C</i>		effect
Air						
2655. 485 2655. 667 2656. 027 2656. 435 2656. 706	3 15 —?	25 20 10 8 10	37646. 71 37644. 13 27639. 03 37633. 25 37629. 41	$\begin{array}{c} -0.07 \\ -0.01 \\ -0.06 \\ -0.04 \\ -0.05 \end{array}$	$\begin{array}{c} 23955_{5}\%-61602_{6}^{\circ}\%}\\ a^{4}F_{1}\%-46355_{3}^{\circ}\%\\ 28631_{3}\%-66270_{4}^{\circ}\%\\ a^{4}F_{3}\%-51045_{3}^{\circ}\%\\ 26158_{4}\%-63788_{3}^{\circ}\% \end{array}$	
2657. 745 2658. 036 2659. 171 2659. 703 2661. 852	$\begin{array}{c} 1 \\ 25 \\ 1? \\ 1 \\ 1 \end{array}$	6 100 10 15 20	37614. 71 37610. 59 37594. 53 37587. 02 37556. 67	$ \begin{array}{r} +0.09 \\ -0.04 \\ +0.39 \\ -0.01 \\ -0.03 \end{array} $	$\begin{array}{c} 19637_{232} - 57252_{232} \\ a \ ^6\mathrm{D}_{134} - z \ ^6\mathrm{F}_{134} \\ 25672_{332} - 63266_{334} \\ 26929_{532} - 64516_{342} \\ 23803_{332} - 61360_{332}^{\circ} \end{array}$	res
2662. 214 2663. 874 2664. 346 2665. 644 2666. 086	$\begin{array}{c} 3 \\ 2 \\ 80 \\ 2 \\ 1 \end{array}$	30 15 200 8 40	37551. 57 37528. 17 37521. 52 27503. 25 37497. 03	$\begin{array}{c} -0.10 \\ -0.02 \\ -0.04 \\ -0.15 \\ -0.17 \end{array}$	$\begin{array}{c} 20455_{11/2}-58007_{11/2}^{\circ}\\ 19404_{01/2}-56932_{11/2}^{\circ}\\ a^{4}G_{51/2}-54958_{51/2}^{\circ}\\ a^{4}G_{41/2}-54056_{41/2}^{\circ}\\ 28187_{61/2}-65684_{51/2}^{\circ}\\ \end{array}$	res
2666. 446 2666. 493 2668. 245 2668. 961 2669. 250	$ \begin{array}{c} 8 \\ 20 \\ 1 \\ 5 \\ 10 \end{array} $? 60 5 5 25	37491, 97 37491, 31 37466, 69 37456, 64 37452, 59	$\begin{array}{c} -0.12 \\ +0.11 \\ -0.18 \\ -0.11 \\ -0.07 \end{array}$	$\begin{array}{c} 19276_{2}\% - 56768_{3}^{8}\% \\ a~^{6}S_{2}\% - 44911_{1}^{6}\% \\ a~^{4}G_{3}\% - 54056_{4}^{6}\% \\ a~^{6}S_{2}\% - z~^{6}F_{3}^{8}\% \\ a~^{4}D_{1}\% - 52087_{2}^{8}\% \end{array}$	
2669. 371 2670. 395 2671. 040 2671. 580 2672. 647	5 10 8	30 50 2 18 15	37450. 89 37436. 52 37427. 49 37419. 92 37404. 98	$\begin{array}{c} -0.20 \\ -0.04 \\ -0.38 \\ -0.21 \\ -0.16 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{F}_{3}{}_{3}-50863_{4}^{\circ}{}_{4}\\ a{}^{4}\mathrm{G}_{3}{}_{4}-54026_{3}^{\circ}{}_{2}\\ 23046_{3}{}_{4}-60474_{2}^{\circ}{}_{3}\\ a{}^{4}\mathrm{D}_{3}{}_{2}-52567_{4}^{\circ}{}_{4}\\ 23955_{5}{}_{5}-61360_{4}^{\circ}{}_{4}\end{array}$,
2672. 956 2673. 608 2674. 471 2674. 628 2675. 734	$ \begin{array}{c} 1\\20 \end{array} $	3 60 4 10 20	37400. 66 37391. 54 37379. 48 37377. 29 37361. 84	$-0.11 \\ -0.13 \\ 0.00 \\ -0.05 \\ -0.10$	$\begin{array}{c} 20455_{152} - 57856_{254}^{\circ} \\ 18000_{352} - 55392_{352}^{\circ} \\ 30633_{452} - 68012_{552}^{\circ} \\ 23046_{352} - 60424_{352}^{\circ} \\ 29341_{452} - 66703_{352}^{\circ} \end{array}$	res
2677. 579 2677. 796 2679. 638 2679. 758 2680. 546	$\begin{array}{c} 3 \\ 20 \\ 20 \\ 3 \end{array}$	6 60 70 18 10	37336. 10 37333. 07 37307. 41 37305. 74 37294. 77	$-0.12 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.12$	$\begin{array}{c} 19276_{2}\cancel{\ } - 56612^3\cancel{\ } \cancel{\ } \cancel{\ } 4^6 D_{3}\cancel{\ } - z^6 F_{3}\cancel{\ } \cancel{\ } \cancel{\ } 4^4 D_{2}\cancel{\ } - 52275^3\cancel{\ } \cancel{\ } \cancel{\ } 19070_{4}\cancel{\ } - 56376^5\cancel{\ } \cancel{\ } \cancel{\ } 19637_{2}\cancel{\ } - 56932^\circ_{1}\cancel{\ } \cancel{\ } \end{array}$	
2681, 568 2681, 730 2683, 226 2683, 512 2683, 632	8 1 4	2 1 80 35 30	37280. 55 37278. 30 37257. 52 37253. 56 37251. 89	$ \begin{array}{r} +0.05 \\ +0.14 \\ -0.05 \\ \hline -0.07 \end{array} $	$\begin{array}{c} 22535_{032} - 59816_{132}^{\circ} \\ 26929_{532} - 64207_{332}^{\circ} \\ a \ ^{4}\mathrm{D}_{032} - 50430_{132}^{\circ} \\ 23803_{332} - 61055_{332}^{\circ} \end{array}$	
2684, 301 2685, 068 2685, 366 2686, 946 2687, 000	$ \begin{array}{c} 12 \\ 12 \\ 6 \\ 4 \\ 5 \end{array} $	20 25 12 100 70	37242. 60 37231. 96 37227. 84 37205. 95 37205. 20	$ \begin{array}{r} +0.09 \\ +0.05 \\ +0.08 \\ -0.06 \\ -0.06 \end{array} $	$\begin{array}{c} 27273_{332} - 64516^{\circ}_{432} \\ 23046_{332} - 60278^{\circ}_{332} \\ 25209_{432} - 62437^{\circ}_{432} \\ 23450_{232} - 60656^{\circ}_{232} \\ 22194_{332} - 59399^{\circ}_{432} \end{array}$	res
2688. 230 2690. 036 2690. 153 2690. 710 2691. 952	7 —? 2 2	35 2 1 35 5	37188. 17 37163. 21 37161. 59 37153. 90 37136. 74	$ \begin{array}{r} +0.03 \\ -0.12 \\ -0.01 \\ -0.10 \end{array} $	$\begin{bmatrix} a \ ^4G_{21/4} - 53422^\circ_{11/4} \\ 25169_{11/2} - 62333^\circ_{21/4} \\ 18000_{31/2} - 55162^\circ_{21/4} \\ 22139_{21/2} - 59276^\circ_{31/4} \end{bmatrix}$	
2692. 358 2693. 228 2694. 080 2694. 382 2694. 594	4 20 6	18 1 4? 60 70	37131. 14 37119. 14 37107. 40 37103. 24 37100. 32	$ \begin{vmatrix} -0.09 \\ -0.06 \\ -0.16 \\ +0.01 \\ -0.08 \end{vmatrix} $	$\begin{array}{c} 19637_{2}\sqrt{-56768}3_{34}\\ a\ ^{4}D_{2}\sqrt{-52087}3_{4}\\ 26158_{4}\sqrt{-63266}3_{4}\\ a\ ^{4}G_{2}\sqrt{-53338}3_{4}\\ 23955_{5}\sqrt{-61056}3_{4}-61$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inter	nsity	Wave numb	ber (cm ⁻¹)	Combination	Zeeman	
(Å)	Arc	Spark	Observed	<i>O</i> - <i>C</i>		effect	
Air							
2694, 828 2694, 994 2695, 111 2695, 874 2696, 914	2 6 3 2	6 30 1 10 35	37097. 10 37094. 82 37093. 21 37082. 72 37068. 41	-0. 03 -0. 05 -0. 13 -0. 01	$\begin{array}{c} 23803_{3}, -60900_{2}^{\circ}, \\ a^{4}G_{2}, -53329_{1}^{\circ}, \\ 18990, -5608, -5608, -59276_{3}, \\ 22194_{3}, -59276_{3}, \end{array}$	6	
2697. 714 2698. 265 2698. 706 2699. 041 2699. 270	80 1 1 8 1	160 1? 3 12 10	37057. 42 37049. 86 37043. 80 37039. 21 37036. 06	$ \begin{array}{r} -0.12 \\ +0.14 \\ -0.04 \\ -0.09 \\ -0.08 \end{array} $	$\begin{array}{c} a \ ^6\mathrm{D}_{152} - z \ ^2\mathrm{S}_{012}^{\circ} \\ 20039_{332} - 57089_{332}^{\circ} \\ 23234_{432} - 60278_{432}^{\circ} \\ 26227_{232} - 63266_{332}^{\circ} \\ 27273_{332} - 64310_{232}^{\circ} \end{array}$	res	
2700. 320 2701. 036 2701. 485 2702. 115 2702. 188 2703. 066	$\begin{array}{c} 3 \\ 8A \\ 20 \\ 25 \\ 4 \\ 8 \end{array}$	50 10 60 250 ?	37021. 67 37011. 85 37005. 70 36997. 07 36996. 07 36984. 05	$\begin{array}{c} +0.09 \\ -0.29 \\ -0.11 \\ +0.01 \\ -0.05 \\ +0.08 \end{array}$	$\begin{array}{c} 23234_{412} - 60256^3_{34} \\ 28631_{332} - 65644^3_{342} \\ a^4 F_{412} - 51866^3_{332} \\ 19442_{612} - 564_39^3_{612} \\ a^4 P_{112} - 47588^*_{112} \\ 23234_{412} - 60218^*_{512} \end{array}$	res 6	
2703. 118 2703. 467 2703. 698 2703. 829 2705. 599	8 12 1	$ \begin{array}{c} 10 \\ 120 \\ 5 \\ 1 \\ 35 \end{array} $	36983. 36 36978. 57 36975. 41 36973. 62 36949. 43	$ \begin{array}{c} -0.04 \\ +0.13 \\ +0.05 \\ -0.02 \\ -0.11 \end{array} $	$\begin{array}{c} a ^4\mathrm{F}_{2 \downarrow _{2}} - 48284_{2 \downarrow _{4}}^{2} \\ 31100_{5 \downarrow _{2}} - 68078_{5 \downarrow _{2}}^{2} \\ 19637_{2 \downarrow _{3}} - 56612_{3 \downarrow _{4}}^{2} \\ 23450_{2 \downarrow _{2}} - 60424_{3 \downarrow _{4}}^{3} \\ 20780_{4 \downarrow _{2}} - 57729_{3 \downarrow _{2}}^{3} \end{array}$	5	
2705. 895 2706. 702 2706. 733 2707. 067 2708. 360	6 $4A$	12 ? 50 25 2	36945. 40 36934. 38 36933. 95 36929. 40 36911. 77	$\begin{array}{c} 0.\ 00 \\ -0.\ 01 \\ +0.\ 04 \\ +0.\ 01 \\ -0.\ 27 \end{array}$	$\begin{array}{c} 23046_{312} - 59992_{314}^2 \\ a \ ^6S_{212} - 44354_{314}^2 \\ 19442_{612} - 56376_{314}^2 \\ 29341_{412} - 66270_{414}^2 \\ 31100_{512} - 68012_{314}^2 \end{array}$	6	
2709. 582 2710. 678 2710. 792 2711. 336 2712. 704	20 2 5 5	$ \begin{array}{c} 80 \\ 1 \\ 40 \\ 3 \\ 50 \end{array} $	36895. 12 36880. 20 36878. 65 36871. 26 36852. 66	- 0. 09 - 0. 17 - 0. 03 - 0. 16 - 0. 01	$\begin{array}{c} a\ ^{4}\mathrm{D}_{2^{1}2}-51863_{3^{1}2} \\ a\ ^{4}\mathrm{F}_{3^{1}4}-50292_{3^{1}2}^{2} \\ a\ ^{4}\mathrm{G}_{2^{1}2}-53113_{2^{1}2}^{2} \\ 28118_{2^{1}2}-64990_{2^{1}2}^{2} \\ 23803_{3^{1}2}-60656_{2^{1}2}^{2} \end{array}$	6 res	
2713. 478 2714. 016 2714. 950 2715. 346 2716. 020	$ \begin{array}{c} 4 \\ 1 \\ 25 \\ 2 \end{array} $	2 1 5 80 3	36842. 15 36834. 85 36822. 18 36816. 81 36807. 67	$ \begin{array}{c} -0.29 \\ -0.40 \\ -0.16 \\ -0.02 \\ -0.11 \\ -0.09 \end{array} $	$\begin{array}{c} a^{4}\mathrm{F}_{1},_{2}\!-\!45553_{1}^{\circ},_{2}\\ 20039_{3},_{2}\!-\!56874_{2}^{\circ},_{2}\\ 23046_{3},_{2}\!-\!59869_{3}^{\circ},_{2}\\ a^{4}\mathrm{G}_{4},_{2}\!-\!53369_{4}^{\circ},_{4}\\ 19276_{2},_{2}\!-\!56084_{1}^{\circ},_{2}\\ 26158_{4},_{2}\!-\!62966_{3}^{\circ},_{2} \end{array}$	6	
2716. 147 2716. 322 2716. 890 2717. 180 2717. 702	$\begin{array}{c} 3 \\ 30 \\ 35A \\ 10 \\ 3 \end{array}$	15 80 35 40 18	36805. 95 36803. 58 36795. 90 36791. 96 36784. 90	0. 00 - 0. 09 - 0. 17 - 0. 08 - 0. 03	$\begin{array}{c} 23450_{21/2} - 60256^3_{31/4} \\ a\ ^4D_{11/4} - 51438^3_{31/4} \\ 20455_{11/4} - 57252^3_{21/4} \\ a\ ^4G_{51/4} - 54229^3_{51/4} \\ a\ ^4G_{41/4} - 53338^3_{31/4} \end{array}$	6 res	
2718. 044 2718. 257 2719. 232 2719. 392 2719. 798	8	120 2 3 10 1	36780. 26 36777. 38 36764. 20 36762. 03 36756. 54	$\begin{array}{c} -0.04 \\ +0.06 \\ -0.09 \\ 0.00 \\ +0.06 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{G}_{3^{1}\!4}\!-\!53369{}^{4}_{4^{1}\!4}\\ 28118_{2^{1}\!4}\!-\!64896{}^{3}_{3^{1}\!4}\\ a{}^{6}\mathrm{D}_{2^{1}\!4}\!-\!39936{}^{2}_{2^{1}\!4}\\ 24804_{3^{1}\!4}\!-\!61566{}^{2}_{2^{1}\!4}\\ 27273_{3^{1}\!4}\!-\!64030{}^{2}_{2^{1}\!4} \end{array}$	4	
2720. 404 2720. 594 2721. 850 2722. 805 2723. 704	$\begin{array}{c} 6 \\ 4 \\ 20 \\ 3 \end{array}$	30 40 15 70 5	36748. 36 36745. 80 36728. 83 36715. 95 36703. 84	$ \begin{array}{c} -0.04 \\ +0.04 \\ -0.04 \\ -0.06 \\ -0.07 \end{array} $	$\begin{array}{c} a {}^{4}\mathrm{G}_{3}{}_{4}\!$	6	
2724. 081 2725. 457 2726. 445 2728. 880 2729. 532	5 3 1 1	60 8 4 6 6	36698. 75 36680. 23 36666. 94 36634. 22 36625. 48	$ \begin{array}{r} -0.04 \\ +0.01 \\ +0.04 \\ -0.05 \\ +0.08 \end{array} $	$\begin{array}{c} 23234_{41/4} - 59933^{\circ}_{31/4} \\ 19404_{01/2} - 56084^{\circ}_{11/4} \\ a \ ^{4}G_{21/4} - 52901^{\circ}_{31/4} \\ 23234_{41/4} - 59869^{\circ}_{31/4} \\ 28377_{51/4} - 65003^{\circ}_{41/4} \end{array}$		

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity-	Wave numb	$cor(cm^{-1})$	Combination	Zeeman	
(Å)	Arc	Spark	Observed	O-C		effect	
Air							
2729. 620 2729. 936 2730. 846 2732. 078 2732. 378	25 5 3 2 4	75 30 8 8 4	36624. 30 36620. 06 36607. 86 36591. 35 36587. 33	$\begin{array}{c} -0.06 \\ +0.02 \\ -0.11 \\ +0.05 \\ -0.09 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{0},_{2}-45457_{0}^{\circ},_{2}\\ a^{4}\mathrm{D}_{1},_{2}-51254_{0}^{\circ},_{2}\\ 22139_{2},_{2}-5874_{0}^{\circ},_{3}\\ 28377_{3},_{2}-64969_{3}^{\circ},_{2}\\ a^{4}\mathrm{P}_{1},_{2}-47179_{1}^{\circ},_{2} \end{array}$	res 6 6	
2733. 448 2733. 704 2734. 627 2734. 737 2735. 784	5 5 2	35 3 3 40 10	36573. 01 36569. 58 36557. 24 36555. 77 36541. 78	$\begin{array}{c} +0.01 \\ -0.01 \\ 0.00 \\ -0.10 \\ +0.08 \end{array}$	$\begin{array}{c} 20039_{314} - 56612^{3}_{312} \\ 22139_{214} - 58709^{3}_{314} \\ 26158_{412} - 62715^{4}_{414} \\ 24804_{314} - 61360^{4}_{414} \\ 23450_{214} - 59992^{3}_{212} \end{array}$	6	
2737. 135 2737. 756 2737. 840 2738. 962 2739. 080	$\begin{array}{c} 1\\2\\1\\4 \end{array}$	3 5 3 5 4	36523. 74 36515. 46 36514. 34 36499. 38 36497. 81	$\begin{array}{c} -0.11 \\ -0.02 \\ 0.00 \\ +0.06 \\ -0.06 \end{array}$	$\begin{array}{c} a\ ^4G_{312}-53113^\circ_{212}\\ 22194_{312}-58709^\circ_{312}\\ 27273_{312}-63788^\circ_{312}\\ 28491_{112}-64990^\circ_{212}\\ 18000_{312}-54498^\circ_{312} \end{array}$	7	
2739. 140 2739. 384 2740. 187 2740. 801 2742. 471	$\begin{array}{c} 4 \\ 6 \\ 6 \\ 20 \\ 15 \end{array}$	$ \begin{array}{c} 15 \\ 30 \\ 20 \\ 200 \\ 30 \end{array} $	36497. 01 36493. 76 36483. 06 36474. 90 36452. 68	$\begin{array}{c} -0.04 \\ -0.04 \\ -0.10 \\ +0.03 \\ +0.07 \end{array}$	$\begin{array}{c} 18990_{1/4} -55488^{\circ}_{1/4} \\ 22194_{3/4} -58687^{\circ}_{4/4} \\ 23450_{2/4} -59933^{\circ}_{3/4} \\ 23803_{3/4} -60278^{\circ}_{4/4} \\ 23803_{3/4} -60256^{\circ}_{3/4} \end{array}$	7 4 6 res	
2742. 903 2745. 036 2748. 312 2748. 418 2750. 023	$ \begin{array}{c} 8 \\ 2 \\ 20 \\ 2 \\ 1 \end{array} $	$\begin{array}{c} 40 \\ 30 \\ 15 \\ 12 \\ 9 \end{array}$	36446. 94 36418. 62 36375. 21 36373. 82 36352. 61	$\begin{array}{c} +0.02 \\ -0.02 \\ +0.09 \\ -0.08 \\ +0.07 \end{array}$	$\begin{array}{c} 19637_{24} - 56084_{14}^{\circ}\\ 23450_{24} - 59869_{34}^{\circ}\\ 18000_{34} - 54375_{24}^{\circ}\\ 20039_{34} - 56413_{44}^{\circ}\\ 23046_{34} - 59399_{44}^{\circ}\\ \end{array}$	4 res	
2750. 325 2750. 728 2750. 880 2752. 242 2752. 360	10 2 3 5 1?	$ \begin{array}{c} 20 \\ 15 \\ 12 \\ 30 \\ 2 \end{array} $	36348, 60 36343, 28 36341, 28 36323, 28 36321, 72	$\begin{array}{c} 0.\ 00 \\ +0.\ 04 \\ -0.\ 04 \\ -0.\ 03 \\ +0.\ 03 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{G}_{4/2}-52901_{3/2}^*\\ 29341_{4/2}-65684_{5/2}^*\\ 25209_{4/2}-61550_{3/2}^*\\ 23955_{5/2}-60278_{4/2}^*\\ 19070_{4/2}-55392_{4/2}^*\end{array}$	res	
2753. 094 2753. 320 2753. 826 2754. 695 2755. 036	6 1 1	$\begin{array}{c} 6 \\ 25 \\ 6 \\ 2 \\ 3 \end{array}$	36312. 03 36309. 05 36302. 37 36290. 93 36286. 44	$\begin{array}{c} -0.04 \\ -0.03 \\ -0.07 \\ -0.08 \\ -0.14 \end{array}$	$\begin{array}{c} a~^4G_{312}-52901^*_{312}\\ 20780_{412}-57089^4_{412}\\ 29341_{412}-65644^*_{312}\\ a~^4D_{312}-514^38^*_{212}\\ a~^4D_{212}-51254^*_{112} \end{array}$	7	
2755, 661 2756, 776 2757, 710 2758, 182 2758, 333	2 18	6 20 6 4 20	36278. 21 36263. 54 36251. 26 36245. 05 36234. 07	$\begin{array}{c} -0.09 \\ +0.10 \\ +0.13 \\ +0.17 \\ -0.04 \end{array}$	$\begin{array}{c} 26158_{4}\% - 62437^4_{4}\% \\ 23955_{5}\% - 60218^5_{5}\% \\ 24804_{3}\% - 61055^4_{4}\% \\ 22503_{1}\% - 58747^1_{1}\% \\ a \ ^6\mathrm{D}_{4}\% - 42390^3_{3}\% \end{array}$	6 res	
2759. 338 2760. 691 2760. 742 2761. 587 2761. 837	$\begin{array}{c} 1\\ 3\\ 12A\\ 40\\ 2 \end{array}$	10 15 10 100 6	36229. 87 36212. 11 36211. 44 36200. 37 36197. 09	$\begin{array}{c} -0.14 \\ -0.03 \\ -0.05 \\ 0.00 \\ +0.08 \end{array}$	$\begin{array}{c} 23046_{3/4} - 59276_{3/4} \\ 22535_{0/2} - 58747_{1/4}^2 \\ 19276_{2/2} - 55488_{1/2}^2 \\ a \ ^4F_{1/2} - 44911_{1/2}^2 \\ 22139_{2/2} - 58336_{2/2}^2 \end{array}$	7 6 res	
2762. 499 2764. 263 2764. 768 2765. 340 2765. 986	6 200 8 2	$ \begin{array}{c} 15 \\ 400 \\ 50 \\ 10 \\ 1 \end{array} $	36188. 42 36165. 33 36158. 72 36151. 24 36142. 80	$\begin{array}{c} +0.06 \\ -0.02 \\ +0.16 \\ -0.02 \\ -0.10 \end{array}$	$\begin{array}{c} 23803_{34} - 59992_{244}^{\circ} \\ a \ ^{6}D_{04} - z \ ^{6}F_{644} \\ 26929_{34} - 63087_{644}^{\circ} \\ 25209_{44} - 61360_{442}^{\circ} \\ 22194_{344} - 58336_{244}^{\circ} \end{array}$	5 6	
2766. 318 2766. 981 2767. 967 2768. 326 2770. 496	$\begin{array}{c} 1\\4\\4\\30\\2\end{array}$	35 35 25 50 5	36138. 46 36129. 80 36116. 93 36112. 25 36083. 96	$\begin{array}{c} -0.11 \\ -0.02 \\ -0.08 \\ 0.00 \\ +0.03 \end{array}$	$\begin{array}{c} 28377_{512} - 64516_{412}^{\circ} \\ 23803_{312} - 59993_{312}^{\circ} \\ 25209_{412} - 61326_{312}^{\circ} \\ a \ ^{4}F_{212} - 47413_{212}^{\circ} \\ 19404_{012} - 55488_{112}^{\circ} \end{array}$	7 6 6	

Table 3. Classified lines of Wii—Continued

Wavelength	Intensity		Wave numb	$cor(cm^{-1})$	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	Compiliation	effect
Air						
2771, 005 2771, 531 2771, 927 2772, 658 2773, 849	5 5 2 2 5	20 3 6 8 25	36077. 34 36070. 50 36065. 34 36055. 83 36040. 35	$\begin{array}{c} -0.09 \\ +0.02 \\ +0.04 \\ -0.01 \\ -0.09 \end{array}$	$ \begin{array}{c} a~^{4}\mathrm{D}_{212}-51045_{334} \\ 30633_{412}-66703_{344}^{2}\\ 23803_{312}-59869_{344}^{2}\\ 18000_{312}-54056_{414}^{2}\\ a~^{4}\mathrm{G}_{212}-52275_{344}^{2} \end{array} $	
2774. 092 2774. 433 2774. 988 2775. 878 2776. 509	? 6 1 20	30 10? 20 5 100	36037. 20 36032. 76 36025. 56 36014. 01 36005. 84	$ \begin{array}{r} +0.04 \\ +0.01 \\ +0.02 \\ 0.00 \\ +0.01 \end{array} $	$\begin{array}{c} 26929_{5}\cancel{\ }-62966_{5}^{5}\cancel{\ }\\ a^{4}\mathrm{P}_{1}\cancel{\ }-4662\cancel{\ }_{0}^{5}\cancel{\ }\\ 18000_{3}\cancel{\ }-54026_{3}^{5}\cancel{\ }\\ a^{4}\mathrm{G}_{4}\cancel{\ }-52567_{4}^{5}\cancel{\ }\\ a^{4}\mathrm{F}_{4}\cancel{\ }-50863_{4}^{3}\cancel{\ }\\ \end{array}$	6
2777. 536 2777. 870 2778. 124 2778. 281 2778. 429	2 8 5	10 30 2 3 6	35992. 51 35988. 18 35984. 90 35982. 86 35980. 95	$egin{array}{c} +0.07 \\ -0.05 \\ +0.06 \\ -0.01 \\ -0.17 \\ \hline \end{array}$	$\begin{array}{c} 27273_{3}, -63266_{3}, \\ 20780_{4}, -56768_{3}, \\ 29341_{4}, -65326_{3}, \\ 24918_{1}, -60900_{3}, \\ a \ ^{4}\mathrm{D}_{0}, -49154_{0}, \end{array}$	
2778. 694 2780. 285 2782. 142 2783. 979 2784. 290	$20 \\ 60A \\ 20 \\ 2 \\ 2$	80 40 80 6 15	35977. 51 35956. 94 35932. 93 35909. 22 35905. 21	$\begin{array}{c} +0.03 \\ +0.05 \\ -0.02 \\ -0.19 \\ -0.04 \end{array}$	$\begin{array}{c} a~^4\mathrm{G}_{312}-52567^\circ_{414}\\ a~^6\mathrm{D}_{212}-z~^6\mathrm{F}^\circ_{112}\\ a~^4\mathrm{G}_{512}-53369^\circ_{412}\\ 24991^{}_{112}-60900^\circ_{212}\\ 20534^{}_{512}-56439^\circ_{612} \end{array}$	res
2785, 126 2785, 634 2786, 300 2786, 340 2788, 403	1 12 4 3	3 50 20 2	35894. 43 35887. 90 35879. 31 35878. 80 35852. 25	$\begin{array}{c} -0.11 \\ 0.00 \\ +0.02 \\ -0.06 \\ +0.07 \end{array}$	$\begin{array}{c} 25672_{2}\sqrt{-}61566_{2}^{2}\sqrt{4} \\ 19070_{4}\sqrt{-}54958_{5}^{2}\sqrt{4} \\ 20534_{5}\sqrt{-}56413_{4}^{3}\sqrt{4} \\ a~^{4}\mathrm{F}_{2}\sqrt{-}47179_{1}^{2}\sqrt{4} \\ a~^{4}\mathrm{G}_{2}\sqrt{-}52087_{2}^{2}\sqrt{4} \end{array}$	7
2788. 536 2789. 197 2790. 160 2790. 433 2790. 998	$\begin{array}{c} 4 \\ 10 \\ 2 \\ 5 \\ 3 \end{array}$	6 20 18 50 3	35850. 54 35842. 04 35829. 67 35826. 17 35818. 92	$\begin{array}{c} -0.09 \\ -0.06 \\ -0.03 \\ -0.14 \\ -0.08 \end{array}$	$\begin{array}{c} 19637_{21/2} - 55488_{13/4}^{\circ} \\ 20534_{31/2} - 56376_{33/4}^{\circ} \\ 28377_{51/2} - 64207_{41/2}^{\circ} \\ 23450_{21/2} - 59276_{33/2}^{\circ} \\ 28491_{11/2} - 64310_{23/2}^{\circ} \end{array}$	7 res
2791, 740 2791, 850 2793, 622 2796, 674 2796, 866	$ \begin{array}{c} 2 \\ \hline 1 \\ 1 \\ 3 \end{array} $	5 1 4 3 6	35809. 40 35807. 98 35785. 28 35746. 23 35743. 77	$\begin{array}{c} -0.08 \\ -0.02 \\ +0.06 \\ -0.11 \\ -0.15 \end{array}$	$\begin{array}{c} a~^{4}\mathrm{D}_{0\downarrow 2}-48982_{1\downarrow 2}^{q}\\ a~^{4}\mathrm{P}_{2\downarrow 2}-49242_{2\downarrow 2}^{2}\\ 26929_{5\downarrow 2}-62714_{6\downarrow 2}^{q}\\ 19276_{2\downarrow 2}-55022_{3\downarrow 4}^{q}\\ a~^{4}\mathrm{F}_{1\downarrow 2}-44455_{6\downarrow 2}^{q} \end{array}$	res
2797. 298 2797. 879 2798. 353 2799. 042 2799. 248	20 1	2 1 3 100	35738. 25 35730. 83 35724. 78 35715. 98 35713. 36	$\begin{array}{c} -0.16 \\ -0.27 \\ -0.06 \\ -0.05 \\ -0.29 \end{array}$	$\begin{array}{c} 24918_{1}, -60656_{3}, \\ 25169_{1}, -60900_{2}, \\ 28631_{3}, -64356_{3}, \\ a^{4}D_{3}, -50863_{4}, \\ 18990_{1}, -54704_{2}, \end{array}$	5
2799. 312 2801. 058 2801. 430 3802. 705 2803. 068	1 4	30 10 3 4	35712. 54 35690. 28 35685. 54 35669. 31 35664. 70	$\begin{array}{c c} -0.02 \\ -0.14 \\ -0.07 \\ +0.01 \\ -0.25 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{F}_{3},_{2}-49124_{3}^{5},_{4}\\ a{}^{4}\mathrm{P}_{2},_{2}-49124_{3}^{5},_{4}\\ a{}^{4}\mathrm{G}_{3},_{2}-52275_{3}^{5},_{4}\\ 28118_{2},_{2}-63788_{3}^{5},_{4}\\ 24991_{1},_{2}-60656_{2}^{5},_{4} \end{array}$	6_re
2803. 233 2803. 302 2803. 604 2803. 682 2803. 909	4 1 8	10 3 25 3 5	35662. 60 35661. 71 35657. 87 35656. 88 35654. 00	$\begin{array}{c} -0.02 \\ +0.07 \\ -0.10 \\ +0.01 \\ -0.13 \end{array}$	$\begin{array}{c} 22194_{3}, -57856_{3}, \\ 29341_{4}, -65003_{4}, \\ a^{4}D_{1}, -50292_{3}, \\ 23234_{4}, -58891_{3}, \\ 25672_{2}, -61326_{3}, \end{array}$	res
2804. 922 2805. 177 2805. 546 2805. 936	3 2 20	$ \begin{array}{c} 12 \\ 15 \\ 7 \\ 120 \end{array} $	35641. 12 35637. 88 35633. 20 35628. 24	$ \begin{array}{c c} +0.04 \\ -0.05 \\ -0.06 \\ \hline -0.13 \end{array} $	$\begin{array}{c} 23046_{312} - 58687_{41/2}^{\circ} \\ 30633_{41/2} - 66270_{41/2}^{\circ} \\ 20780_{41/2} - 56413_{41/2}^{\circ} \\ 20455_{11/2} - 56084_{11/2}^{\circ} \end{array}$	6 6
2806. 392	3	4	35622, 45	$\begin{bmatrix} 1 & +0.05 \\ -0.07 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave numb	$\mathrm{cer}\ (\mathrm{cm}^{-1})$	Combination	Zeeman	
(Å)	Arc	Spark	Observed	O-C		effect	
Air							
2806. 626 2808. 474 2808. 956 2810. 085 2811. 743	3 4 3	10 40 50 3 6	35619. 48 35596. 04 35589. 93 35575. 64 35554. 65	$\begin{array}{c} +0.01 \\ -0.03 \\ -0.02 \\ 0.00 \\ -0.01 \end{array}$	$\begin{array}{c} 24804_{312} - 60424_{312}^* \\ 20780_{412} - 56376_{512}^* \\ 22139_{212} - 57729_{312}^* \\ 28631_{312} - 64207_{412}^* \\ 29341_{412} - 64896_{312}^* \end{array}$	6 res res	
2812, 210 2813, 228 2814, 106 2814, 798 2815, 720	8 3 4	50 15 2 30 2	35548. 76 35535. 90 35524. 81 35516. 07 35504. 44	$\begin{array}{c} 0.00 \\ +0.06 \\ -0.11 \\ +0.03 \\ -0.10 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{2},_{2} - 48982_{1}^{\circ},_{2} \\ 22194_{3},_{4} - 57729_{3},_{2} \\ 19637_{2},_{4} - 55162_{2},_{4} \\ 19442_{3},_{2} - 54958_{5},_{2} \\ 22503_{1},_{2} - 58007_{1},_{2} \end{array}$	res	
2816. 283 2816. 478 2817. 422 2819. 002 2819. 897	6 1 4 4	10 2 3 12 20	35497. 35 35494. 90 35483. 00 35463. 11 35451. 85	$\begin{array}{c} 0.\ 00 \\ +0.\ 26 \\ -0.\ 11 \\ -0.\ 02 \\ +0.\ 07 \end{array}$	$\begin{array}{c} a~^4G_{314}-52087^{\circ}_{214}\\ 18990_{114}-54485^{\circ}_{014}\\ 24991_{114}-60474^{\circ}_{214}\\ a~^4D_{214}-50430^{\circ}_{114}\\ 24804_{314}-60256^{\circ}_{314} \end{array}$	7 res	
2820, 532 2821, 800 2822, 542 2824, 144 2824, 306	$\begin{matrix} 3\\5\\25\\4\end{matrix}$	$ \begin{array}{r} 8 \\ 35 \\ 125 \\ 4 \\ 4 \end{array} $	35443. 87 35427. 95 35418. 64 35398. 54 35396. 52	$\begin{array}{c} -0.07 \\ -0.14 \\ -0.10 \\ +0.06 \\ -0.08 \end{array}$	$\begin{array}{c} 23955_{5 4} - 59399_{4 4}^{a} \\ 19276_{2 4} - 54704_{2 4}^{a} \\ a \ ^{4}F_{3 4} - 48830_{3 4}^{a} \\ 28631_{3 4} - 64030_{2 4}^{a} \\ a \ ^{4}P_{2 4} - 48830_{3 4}^{a} \end{array}$	res res	
2824. 680 2824. 896 2825. 188 2826. 482 2827. 542	2 1 1 3	6 7 6 15 8	35391. 83 35389. 12 35385. 47 35369. 27 35356. 00	$ \begin{array}{r} -0.03 \\ +0.02 \\ -0.01 \\ 0.00 \\ +0.02 \end{array} $	$\begin{array}{c} 26158_{4},_{2}-61550_{3},_{2} \\ 28491_{1},_{4}-63880_{2},_{4} \\ 19637_{2},_{4}-55022_{3},_{2} \\ 18000_{3},_{2}-53369_{4},_{2} \\ 19404_{0},_{4}-54760_{0},_{4} \end{array}$	7	
2830, 064 2831, 236 2831, 643 2832, 215 2832, 848	12 7 1	80 35 2 3 1	35324. 50 35309. 88 35304. 80 35297. 67 35289. 80	$\begin{array}{c} -0.01 \\ -0.01 \\ 0.00 \\ +0.23 \\ -0.38 \end{array}$	$\begin{array}{c} a {}^{4}\mathrm{D}_{2}\!_{5}\!_{2}\!_{-}\!$	6	
2834. 208 2835. 334 2838. 422 2839. 820 2839. 936	8 <i>A</i> 5 3 1	50 5 4 10 10	35272. 85 35258. 85 35220. 50 35203. 15 35201. 71	$\begin{array}{c} -0.51 \\ -0.21 \\ -0.01 \\ -0.04 \\ -0.09 \end{array}$	$\begin{array}{c} a\ ^4\mathrm{G}_{3/4}-518633_{12} \\ 23450_{2/4}-58709_{3/4} \\ a\ ^6\mathrm{D}_{3/4}-39936_{2/4}^2 \\ a\ ^4\mathrm{G}_{2/4}-51438_{2/2}^2 \\ 26158_{4/4}-61360_{4/4}^2 \end{array}$	6	
2841, 080 2842, 460 2842, 700 2843, 045 2843, 449	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{c} 6 \\ 6 \\ 15 \\ 2 \\ 5 \end{array}$	35187. 54 35170. 46 35167. 50 35163. 22 35158. 23	$ \begin{array}{r} +0.01 \\ -0.03 \\ -0.05 \\ +0.04 \\ -0.15 \end{array} $	$\begin{array}{c} 24804_{314} - 59992^{\circ}_{214} \\ 31100_{514} - 66270^{\circ}_{414} \\ 26158_{414} - 61326^{\circ}_{314} \\ 27273_{314} - 62437^{\circ}_{414} \\ 19070_{414} - 54229^{\circ}_{514} \end{array}$		
2843. 603 2844. 426 2844. 500 2845. 725 2846. 357	1 2 3	12 1 8 10 1	35156. 32 35146. 15 35145. 24 35130. 11 35122. 31	$\begin{array}{c} -0.02 \\ -0.09 \\ -0.07 \\ -0.02 \\ -0.25 \end{array}$	$\begin{array}{c} 28631_{3/2} - 63788_{3/2}^{\circ} \\ 18990_{1/2} - 54137_{1/2}^{\circ} \\ a \ ^4\mathrm{G}_{3/4} - 50292_{2/4}^{\circ} \\ a \ ^4\mathrm{G}_{5/4} - 52567_{4/2}^{\circ} \\ 20039_{3/2} - 55162_{3/2}^{\circ} \end{array}$	res res	
2847. 140 2848. 234 2849. 678 2850. 808 2851. 068	$egin{array}{c} 3 \\ 2 \\ 35A \end{array}$	18 5 1 8 4	35112. 65 35099. 16 35081. 38 35067. 48 35064. 28	$ \begin{cases} -0.17 \\ -0.14 \\ -0.13 \\ -0.04 \\ +0.25 \\ -0.19 \end{cases} $	$\begin{array}{c} 18000_{332} - 53113^{\circ}_{232} \\ 19276_{232} - 54375^{\circ}_{232} \\ 26227_{232} - 61326^{\circ}_{332} \\ 19404_{032} - 54485^{\circ}_{032} \\ 19637_{232} - 54704_{232} \\ 24804_{332} - 59869^{\circ}_{332} \end{array}$	res	
2851. 554 2852. 083 2852. 460 2853. 440 2853. 694	3 3	3 70 1 20 4	35058. 30 35051. 80 35047. 17 35035. 13 35032. 02	$\begin{array}{c} +0.38 \\ +0.02 \\ 0.00 \\ -0.15 \\ -0.06 \end{array}$	$\begin{array}{c} 22194_{312} - 57252_{234}^{\circ} \\ 30633_{432} - 65684_{534}^{\circ} \\ 25209_{432} - 60256_{334}^{\circ} \\ 18990_{132} - 54026_{234}^{\circ} \\ 20455_{132} - 55488_{134}^{\circ} \end{array}$	5 res	

Table 3. Classified lines of W II—Continued

	Inter	nsity	Wave numb	per (cm ⁻¹)	G II	7.	
Wavelength (Å)	Arc	Spark	Observed	O-C	Combination	Zeeman effect	
Air							
2854. 719 2855. 524 2856. 256 2857. 470 2857. 695	3	$\begin{array}{c} 4 \\ 25 \\ 2 \\ 1 \\ 6 \end{array}$	35019. 44 35009. 56 35000. 60 34985. 72 34982. 97	-0. 12 0. 00 -0. 04 -0. 14 -0. 15	$\begin{array}{c} a{}^{4}G_{234} - 51254_{134}^{\circ} \\ 25209_{432} - 60218_{534}^{\circ} \\ 24991_{132} - 59992_{334}^{\circ} \\ 19070_{432} - 54056_{332}^{\circ} \\ 20039_{332} - 55022_{334}^{\circ} \end{array}$	6	
2859. 484 2860. 898 2861. 058 2861. 21 2861. 518	8 2 2	$ \begin{array}{c} 30 \\ 12 \\ 6 \\ 10 \\ 2 \end{array} $	34961. 08 34943. 80 34941. 85 34939. 99 34936. 23	-0. 10 -0. 01 -0. 13 -0. 11	$\begin{array}{c} a~^{4}\mathrm{P}_{1\!/\!2}-\!$	res	
2864. 036 2864. 395 2864. 473 2864. 744 2864. 858	1 2 1 3	15 8 10	34905. 52 34901. 14 34900. 20 34896. 90 34895. 51	$\begin{array}{c} -0.20 \\ +0.10 \\ -0.10 \\ -0.16 \\ +0.13 \end{array}$	$\begin{array}{c} 23803_{3}, -58709_{3}, \\ 18000_{3}, -52901_{3}, \\ 28187_{6}, -63087_{6}, \\ 26158_{4}, -61055_{4}, \\ 22194_{3}, -57089_{4}, \end{array}$	6 7	
2865, 603 2865, 804 2866, 322 2866, 600 2866, 751	3 8 4 6	$\begin{array}{c} 6 \\ 20 \\ 10 \\ 8 \\ 20 \end{array}$	34886. 43 34884. 00 34877. 68 34874. 30 34872. 46	$\begin{array}{c} -0.05 \\ -0.04 \\ -0.09 \\ -0.04 \\ -0.06 \end{array}$	$\begin{bmatrix} 23450_{2}\sqrt{-58336}\frac{2}{2}\sqrt{2} \\ 23803_{3}\sqrt{-58687}\frac{2}{3}\sqrt{2} \\ a ^6S_{2}\sqrt{-42298}\frac{2}{3}\sqrt{4} \\ a ^4F_{2}\sqrt{-46175}\frac{2}{3}\sqrt{2} \\ a ^4F_{3}\sqrt{-48284}\frac{2}{2}\sqrt{2} \end{bmatrix}$	6 res	
2866. 910 2867. 409 2867. 697 2867. 934 2868. 736	6 4 4 8	1 15 3 20 80	34870. 53 34864. 46 34860. 96 34858. 08 34848. 33		$\begin{array}{c} 28118_{212} - 62989_{314}^2 \\ a \ ^4P_{112} - 45457_{012}^2 \\ 19637_{212} - 54498_{312}^2 \\ 19276_{212} - 54137_{112}^2 \\ 20534_{512} - 55392_{312}^3 \\ a \ ^4G_{312} - 51438_{212}^2 \end{array}$	res	
2870. 906 2871. 902 2873. 352 2873. 836 2874. 478	$ \begin{array}{c} 18A \\ 2 \\ 2? \\ 2 \end{array} $	10 12 10 12 12 12	34822. 00 34809. 92 34792. 35 34786. 50 34778. 72	$\begin{array}{c c} -0.33 \\ +0.02 \\ +0.05 \\ -0.02 \\ -0.18 \end{array}$	$\begin{array}{c} 25169_{1} & -59992_{2} \\ 23046_{3} & -57856_{2} \\ 22139_{2} & -56932_{1} \\ 19442_{6} & -54229_{3} \\ 28187_{6} & -62966_{3} \\ \end{array}$	res	
2875. 110 2876. 684 2876. 934 2877. 827 2878. 083	1-20A $10A$	4 2 10 2 8	34771. 08 34752. 06 34749. 01 34738. 26 34735. 16	$\begin{array}{c} -0.02 \\ +0.08 \\ +0.07 \\ -0.18 \\ +0.14 \end{array}$	$\begin{array}{c} 25045_{0}\cancel{\cancel{\downarrow}} - 59816^{\circ}\cancel{\cancel{\downarrow}} \\ 25672_{2}\cancel{\cancel{\downarrow}} - 60424^{\circ}\cancel{\cancel{\downarrow}} \\ 22503_{1}\cancel{\cancel{\downarrow}} - 57252^{\circ}\cancel{\cancel{\jmath}} \\ 19637_{2}\cancel{\cancel{\downarrow}} - 54375^{\circ}\cancel{\cancel{\jmath}} \\ 22139_{2}\cancel{\cancel{\downarrow}} - 56874^{\circ}\cancel{\cancel{\jmath}} \end{aligned}$	6	
2878. 316 2880. 164 2881. 538 2882. 400 2883. 152	$ \begin{array}{c} 2 \\ 1 - \\ 3 \\ 3 \end{array} $	40 8 8 20 3	34732. 35 34710. 07 34693. 52 34683. 14 34674. 10	$ \begin{array}{c} -0.13 \\ -0.03 \\ +0.14 \\ +0.02 \\ +0.13 \end{array} $	$\begin{array}{c} 23955_{51/2} - 58687_{41/2} \\ 28377_{51/2} - 63087_{61/2} \\ 30633_{41/2} - 65326_{51/2} \\ 23046_{31/2} - 57729_{31/2} \\ 26227_{21/2} - 60900_{21/2}^{\circ} \end{array}$	6	
2883. 247 2883. 915 2884. 310 2885. 463 2886. 464	6 2 1	$\begin{array}{c} 4 \\ 2 \\ 20 \\ 2 \\ 6 \end{array}$	34672. 95 34664. 92 34660. 18 34646. 33 34634. 31	$ \begin{array}{r} +0.11 \\ +0.05 \\ +0.06 \\ -0.24 \\ -0.13 \end{array} $	$\begin{bmatrix} 26929_{5}\cancel{1}\cancel{-}61602_{6}^{8}\cancel{1} \\ 20039_{3}\cancel{1}\cancel{-}54704_{2}^{3}\cancel{1} \\ 26929_{5}\cancel{1}\cancel{-}61589_{5}^{3}\cancel{1} \\ a~^{6}\mathrm{D}_{1}\cancel{1}\cancel{-}2~^{6}\mathrm{F}_{0}^{8}\cancel{1} \\ 28631_{3}\cancel{1}\cancel{-}63266_{3}^{3}\cancel{1} \end{bmatrix}$	6	
2886. 896 2886. 923 2888. 318 2888. 699 2889. 780	5 $15A$ 4	$\left. egin{array}{c} 35 \\ 8 \\ 4 \\ 50 \end{array} \right.$	34629. 13 34628. 81 34612. 08 34607. 52 34594. 58	$\begin{array}{c} +0.11 \\ +0.17 \\ +0.09 \\ -0.22 \\ -0.09 \end{array}$	$\begin{array}{c} a~^6\mathrm{S}_{23/2} - z~^6\mathrm{F}_{23/2}^2\\ 22139_{23/2} - 56768_{33/2}^2\\ 20780_{43/2} - 55392_{43/2}^2\\ a~^4\mathrm{D}_{13/2} - 49242_{23/2}^2\\ 24804_{33/2} - 59399_{43/2}^2 \end{array}$	d	
2890. 634 2891. 456 2892. 912 2894. 924 2895. 441	2 3 2 2 2	$25 \\ 20 \\ 10 \\ 10 \\ 10$	34584. 35 34574. 52 34557. 12 34533. 10 34526. 94	$ \begin{array}{c} +0.01 \\ -0.01 \\ +0.02 \\ -0.04 \\ -0.02 \end{array} $	$\begin{array}{c} 31100_{5}4-65684_{5}^{\circ}4\\ 22194_{3}4-56768_{3}^{\circ}4\\ 23450_{2}4-58007_{1}^{\circ}4\\ 23803_{3}4-58336_{2}^{\circ}4\\ 28187_{6}4-62714_{6}^{\circ}4\end{array}$	6 6 res 6	

Table 3. Classified lines of Wii—Continued

Wavelength	Intensity		Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	-	effect
Air						
2897, 726 2898, 102 2898, 360 2901, 174 2901, 448	2	$\begin{array}{c} & 3 \\ & 2 \\ & 1 \\ & 25 \\ & 3 \end{array}$	34499. 71 34495. 24 34492. 17 34458. 71 34455. 46	$ \begin{array}{c} -0.11 \\ +0.19 \\ +0.06 \\ -0.12 \\ -0.12 \end{array} $	$\begin{array}{c} 19637_{23} - 54137_{134}^{\circ} \\ 23234_{43} - 57729_{334}^{\circ} \\ a \ ^{4}G_{43} - 51045_{334}^{\circ} \\ 20039_{334} - 54498_{334}^{\circ} \\ a \ ^{4}G_{34} - 51045_{334}^{\circ} \end{array}$,
2902. 201 2903. 500 2904. 081 2904. 556 2904. 843	30A 8 2 —?	20 50 80 8 5	34446. 52 34431. 11 34424. 22 34418. 58 34415. 18	-0. 12 -0. 09 -0. 01 -0. 08 -0. 08	$\begin{array}{c} 29341_{4} - 63788_{3}^{8} \times \\ 26929_{54} - 61360_{4}^{4} \times \\ 20534_{3}^{4} - 54958_{5}^{5} \times \\ 22194_{3}^{4} - 56612_{3}^{8} \times \\ a^{4} D_{04} - 47588_{14}^{8} \end{array}$	6 6
2905. 602 2906. 416 2908. 504 2910. 332 2911. 542	$ \begin{array}{c} 8A \\ 2 \\ 3 \\ 2 \\ 2 \end{array} $	$ \begin{array}{r} 12 \\ 12 \\ 25 \\ 10 \\ 20 \end{array} $	34406. 20 34396. 57 34371. 87 34350. 30 34336. 01	$ \begin{array}{c} 0.\ 00 \\ +0.\ 10 \\ -0.\ 06 \\ -0.\ 02 \\ -0.\ 07 \\ -0.\ 07 \end{array} $	$\begin{array}{c} 23450_{214} - 57856_{214}^2 \\ 22535_{014} - 56982_{114}^0 \\ 22503_{114} - 56874_{214}^2 \\ 22194_{334} - 56544_{214}^2 \\ 20039_{314} - 54875_{214}^2 \\ 30633_{414} - 64969_{314}^2 \end{array}$	6
2912. 464 2912. 584 2912. 986 2913. 614 2913. 748	2 3 1 12	$ \begin{array}{c} 25 \\ 5 \end{array} $ $ \begin{array}{c} 2 \\ 30 \end{array} $	34325. 15 34323. 73 34319. 00 34311. 60 34310. 02	$ \begin{array}{r} -0.09 \\ -0.11 \\ +0.13 \\ +0.11 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{F}_{434} - 49181_{434}^{\circ} \\ a\ ^4\mathrm{P}_{134} - 44911_{134}^{\circ} \\ 26929_{532} - 61240_{534}^{\circ} \\ a\ ^4\mathrm{G}_{432} - 50863_{334}^{\circ} \end{array}$	6
2914. 272 2914. 655 2916. 347 2916. 584 2916. 768	2 3 3	30 15 5 8 10	34303. 85 34299. 34 34279. 44 34276. 66 34274. 50	$ \begin{array}{c} -0.28 \\ +0.05 \\ +0.02 \\ -0.08 \\ \left\{ \begin{array}{c} +0.22 \\ -0.08 \end{array} \right. \end{array} $	$\begin{array}{c} 20455_{134} - 54760_{044} \\ 19070_{434} - 53369_{434}^4 \\ 23450_{234} - 57729_{334}^4 \\ 27273_{334} - 61550_{334}^4 \\ 4 49_{234} - 49242_{234}^2 \\ 18000_{334} - 52275_{334}^2 \end{array}$	6
2916. 896 2917. 389 2917. 540 2917. 895 2918. 633	2 3 1 25	$ \begin{array}{c} 12 \\ 5 \\ 5 \\ 3 \\ 100 \end{array} $	34273. 00 34267. 20 34265. 42 34261. 25 34252. 58	$\begin{array}{c} -0.38 \\ -0.10 \\ +0.02 \\ -0.25 \\ -0.04 \end{array}$	$\begin{array}{c} a {}^{4}\mathrm{G}_{334} - 50863_{444}^{\circ} \\ a {}^{4}\mathrm{F}_{432} - 49124_{332}^{\circ} \\ 26158_{434} - 60424_{332}^{\circ} \\ 25672_{234} - 59933_{332}^{\circ} \\ a {}^{4}\mathrm{F}_{232} - 45553_{132}^{\circ} \end{array}$	7
2918. 976 2919. 508 2920. 903 2921. 908 2922. 674	$\begin{array}{c} \frac{2}{2} \\ \frac{10}{4} \end{array}$	10 12 6 12 5	34248. 57 34242. 33 34225. 98 34214. 21 34205. 24	$\begin{array}{c} -0.11 \\ -0.15 \\ +0.04 \\ -0.09 \\ +0.04 \end{array}$	$\begin{array}{c} 20455_{14} - 54704_{234}^{\circ} \\ 20780_{44} - 55022_{334}^{\circ} \\ 31100_{534} - 65326_{534}^{\circ} \\ 28118_{234} - 62333_{334}^{\circ} \\ 23046_{334}^{\circ} - 57252_{234}^{\circ} \end{array}$	d
2923. 382 2923. 451 2923. 980 2924. 996 2925. 834	5A 1 3 4 5	$ \begin{array}{c} 10 \\ 10 \\ 12 \\ 40 \\ 125 \end{array} $	34196. 95 34196. 15 34189. 96 34178. 08 34168. 30	$\begin{array}{c} -0.03 \\ +0.04 \\ -0.10 \\ -0.12 \\ -0.04 \end{array}$	$\begin{array}{c} 25672_{214} - 59869_{314}^{\circ} \\ a\ ^4G_{214} - 50430_{114}^{\circ} \\ 25209_{414} - 59399_{414}^{\circ} \\ 20780_{414} - 54968_{514}^{\circ} \\ 33910_{514} - 68078_{614}^{\circ} \end{array}$	6 5 5
2926, 836 2926, 990 2927, 710 2929, 984 2931, 530	$ \begin{array}{c} 3 \\ 40A \\ 3 \\ 3 \\ 2 \end{array} $	15 10 20 20 20	34156. 60 34154. 80 34146. 40 34119. 90 34101. 90	$\begin{array}{c} -0.\ 10 \\ +0.\ 26 \\ -0.\ 06 \\ -0.\ 07 \\ -0.\ 04 \end{array}$	$\begin{array}{c} a^{4}\mathrm{D}_{252}\!-\!49124_{3}^{4}\!_{2}\\ a^{4}\mathrm{P}_{234}\!-\!47588_{154}^{2}\\ 19276_{252}\!-\!53422_{152}^{2}\\ 26158_{452}\!-\!60278_{452}^{2}\\ 33910_{554}\!-\!68012_{552}^{2}\end{array}$	res 7 6 6
2931, 895 2932, 864 2933, 068 2935, 201 2935, 358	5 3 1 2 8	35 20 1 6 25	34097. 65 34086. 39 34083. 80 34059. 25 34057. 43	$\begin{array}{c} -0.06 \\ +0.07 \\ -0.32 \\ +0.01 \\ -0.06 \end{array}$	$\begin{array}{c} 26158_{4}, -60256_{3}, 4\\ 18000_{3}, -52087_{3}, 4\\ 28631_{3}, -62715_{4}, 4\\ 28377_{5}, -62437_{4}, 4\\ a \ ^{4}\text{G}_{2}, -50292_{3}, 4\\ \end{array}$	res res
2935. 726 2935. 806 2936. 61 2937. 200 2937. 61	$ \frac{2}{40A} $ 8? 10A	$ \begin{array}{r} 10 \\ 4 \\ 125 \\ 15 \\ 12 \end{array} $	34053. 16 34052. 23 34042. 92 34036. 07 34031. 33	$\begin{array}{c} -0.03 \\ -0.20 \\ +0.26 \\ -0.02 \\ -0.19 \end{array}$	$\begin{array}{c} 19276_{2}\sqrt{-533}29_{1}^{\circ}\sqrt{2}\\ 27273_{3}\sqrt{-613}26_{3}^{\circ}\sqrt{2}\\ 23046_{3}\sqrt{-57089_{4}^{\circ}\sqrt{2}}\\ 19404_{0}\sqrt{-534}40_{0}^{\circ}\sqrt{2}\\ 23955_{5}\sqrt{-57986_{4}^{\circ}\sqrt{2}} \end{array}$	6

Table 3. Classified lines of Wii—Continued

Wavelength	Intensity		Wave num	ber (cm^{-1})	Combination	Zeeman	
(Å)	Arc	Spark	Observed	O-C		effect	
Air							
2937. 774 2938. 685 2938. 872 2939. 757 2940. 204	2 ? 2 6 8	$\begin{array}{c} 4 \\ 4 \\ 12 \\ 35 \\ 60 \end{array}$	34029. 42 34018. 87 34016. 71 34006. 47 34001. 30	$\begin{array}{c} -0.03 \\ -0.03 \\ -0.09 \\ -0.09 \\ -0.07 \end{array}$	$\begin{array}{c} 26227_{2}\backslash_{2}-60256_{3}\backslash_{4}\\ 19404_{0}\backslash_{2}-53422_{1}^{\circ}\backslash_{2}\\ 20039_{3}\backslash_{2}-54056_{3}^{\circ}\backslash_{4}\\ a~^{4}\mathrm{D}_{0}\backslash_{2}-47179_{1}^{\circ}\backslash_{2}\\ a~^{4}\mathrm{F}_{3}\backslash_{2}-47413_{2}^{\circ}\backslash_{2} \end{array}$		
2941. 476 2942. 128 2942. 263 2942. 618 2945. 137	$\begin{array}{c} 4\\12A\\2\\3\\-\end{array}$	5 10 10 10 6	33986. 60 33979. 07 33977. 49 33973. 41 33944. 35	$\begin{array}{c} +0.10 \\ -0.16 \\ -0.01 \\ -0.07 \\ +0.02 \end{array}$	$\begin{array}{c} 20039_{3}, -54026_{2}, \\ a^{4}P_{2}, -47413_{3}, \\ a^{4}P_{3}, -49124_{3}, \\ a^{4}P_{3}, -48124_{3}, \\ a^{4}F_{4}, -48830_{3}, \\ 22139_{2}, -56084_{1}, \end{array}$,	
2946. 454 2947. 136 2950. 453 2952. 262 2952. 974	$-\frac{}{4}$? $75A$ $4A$	25 2 40 100 4	33929. 18 33921. 33 33883. 20 33862. 44 33854. 27		$\begin{array}{c} 34091_{412} - 68012_{512}^{2} \\ 24804_{312} - 58687_{412}^{2} \\ a~^{4}P_{112} - 44455_{012}^{2} \\ 18000_{312} - 51863_{312}^{2} \\ 23234_{412} - 57089_{412}^{2} \end{array}$	d	
2954. 070 2954. 482 2955. 007 2955. 256 2956. 67	$egin{array}{c} 4A \\ 4 \\ 8 \\ 2 \\ 20A \end{array}$	3 15 15 10 10	33841. 71 33836. 99 33830. 98 33828. 13 33811. 96	$\begin{array}{c} -0.49 \\ -0.01 \\ -0.08 \\ -0.06 \\ -0.08 \end{array}$	$\begin{array}{c} 28491_{11/2} - 62333_{21/4}^2 \\ 19276_{21/2} - 53113_{21/4}^2 \\ 19070_{41/2} - 52901_{31/4}^3 \\ 23046_{31/2} - 56874_{21/4}^2 \\ 18990_{11/2} - 52803_{11/4}^3 \end{array}$	6 re	
2957. 266 2957. 590 2958. 972 2959. 312 2959. 910	1 1 —	12 4 2 10	33805. 12 33801. 43 33785. 65 33781. 77 33774. 94	$\begin{array}{c} -0.06 \\ -0.07 \\ +0.05 \\ -0.17 \\ +0.02 \end{array}$	$\begin{array}{c} 28631_{312} - 62437^4_{14} \\ 23450_{212} - 57252^3_{212} \\ 19637_{212} - 53422^2_{14} \\ 27273_{312} - 61055^4_{412} \\ 26158_{412} - 59933^3_{312} \end{array}$		
2960. 771 2961. 020 2961. 558 2964. 412 2964. 898		$\begin{array}{c} 1 \\ 50 \\ 2 \\ 1 \\ 20 \end{array}$	33765. 12 33762. 28 33756. 15 33723. 65 33718. 12	$-0.08 \\ -0.02 \\ -0.23 \\ -0.03 \\ -0.07$	$\begin{array}{c} 26227_{2}\sqrt{-}59992_{2}^{2}y_{4} \\ a^{4}P_{1}\sqrt{-}44354_{2}^{2}y_{4} \\ 24991_{1}\sqrt{-}5874_{1}^{2}y_{4} \\ 30633_{4}\sqrt{-}64356_{3}^{2}y_{4} \\ 20780_{4}\sqrt{-}54498_{3}^{2}y_{4} \end{array}$	res	
2965. 589 2966. 417 2967. 926 2970. 908 2973. 092	$\begin{array}{c}2\\4A\\4\\2\\-\end{array}$	15 2 20 5 3	33710. 27 33700. 86 33683. 73 33649. 92 33625. 24	$\begin{array}{c} -0.13 \\ +0.17 \\ +0.05 \\ -0.20 \\ +0.02 \end{array}$	$\begin{array}{c} 26158_{4}, -59869_{3}, 4\\ 19637_{2}, -53338_{3}, 4\\ a^{4}D_{3}, -48850_{3}, 4\\ a^{4}D_{1}, -48284_{2}, 4\\ 19276_{2}, -52901_{3}, 4\\ \end{array}$	6	
2974. 377 2975. 078 2976. 476 2976. 985 2977. 442	20 3 15 —	35 10 50 2 3	33610. 67 33602. 75 33586. 97 33581. 23 33576. 08	$\begin{array}{c} +0.12 \\ -0.01 \\ +0.03 \\ -0.01 \\ -0.02 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{F}_{2}\!_{2}\!-\!44911^{\circ}_{1}\!_{4}\\ 18990_{1}\!_{2}\!-\!52593^{\circ}_{0}\!_{4}\\ a{}^{4}\mathrm{F}_{1}\!_{4}\!-\!42298^{\circ}_{1}\!_{4}\\ 22503_{1}\!_{2}\!-\!56084^{\circ}_{1}\!_{4}\\ a{}^{4}\mathrm{F}_{2}\!_{2}\!-\!z{}^{6}\mathrm{F}^{\circ}_{3}\!_{4} \end{array}$	res	
2977. 580 2977. 950 2978. 332 2981. 319 2982. 219	4 3 1 1 2	40 20 6 25	33574. 52 33570. 35 33566. 05 33532. 41 33522. 29	$\begin{array}{c} +0.04 \\ +0.04 \\ +0.11 \\ +0.10 \\ +0.10 \end{array}$	$\begin{array}{c} 30633_{4}, -64207_{4}, \\ 20445_{1}, -54026_{2}, \\ 23046_{3}, -56612_{3}, \\ 24804_{3}, -58336_{2}, \\ 20534_{5}, -54056_{4}, \end{array}$	6	
2984, 426 2985, 830 2986, 103 2986, 382 2987, 294	5 3 15	6 6 25 20 60	33497. 50 33481. 75 33478. 69 33475. 57 33465. 35	$\begin{array}{c} -0.10 \\ -0.02 \\ +0.09 \\ +0.06 \\ -0.19 \end{array}$	$\begin{array}{c} 23046_{34} - 56544_{234}^2 \\ 23450_{24} - 56932_{14}^2 \\ 25209_{44} - 58687_{44}^2 \\ a \ ^4F_{44} - 48332_{54}^2 \\ a \ ^4P_{04} - 42298_{14}^2 \end{array}$	6 res res	
2988. 502 2988. 771 2990. 850 2991. 470 2991. 855	4	$ \begin{array}{c} 12 \\ 12 \\ 12 \\ 4 \\ 3 \end{array} $	33451, 82 33448, 81 33425, 56 33418, 63 33414, 33	$\begin{array}{c} -0.07 \\ +0.13 \\ -0.47 \\ -0.25 \\ -0.25 \end{array}$	$\begin{array}{c} a^{4}\mathrm{D}_{034}-46625_{034}^{6}\\ 20780_{432}-54229_{534}^{6}\\ a^{4}\mathrm{G}_{542}-50863_{434}^{8}\\ 24918_{134}-58336_{234}^{5}\\ 28187_{632}-61602_{634}^{6}\end{array}$	res	

Table 3. Classified lines of Wii—Continued

Wavelength	Intensity		Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C	-	effect
Air						
2992. 043 2994. 700 2995. 129 2997. 685 2998. 050	3	18 60 6 8 5	33412. 23 33382. 59 33377. 81 33349. 35 33345. 29	- 0. 06 - 0. 06 - 0. 02 - 0. 13	$\begin{array}{c} 27273_{332} - 60656^{\circ}_{232} \\ 23234_{432} - 56612^{\circ}_{332} \\ 26929_{532} - 60278^{\circ}_{432} \\ 24991_{132} - 58336^{\circ}_{232} \end{array}$	
2998. 693 3000. 499 3000. 624 3002. 287 3003. 070	$\begin{array}{c} 15 \\ 5 \\ 2 \\ 4 \end{array}$	50 3 50 40 10	33338. 14 33318. 07 33316. 69 33298. 23 33289. 55	$\begin{array}{c} -0.05 \\ -0.04 \\ +0.03 \\ -0.10 \\ +0.05 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{F}_{1}\!_{1/2}\!=\!z{}^{6}\mathrm{F}_{3/4}^{2}\\ 23450_{2}\!_{1/2}\!-\!56768_{3/4}^{2}\\ a{}^{4}\mathrm{D}_{2}\!_{1/2}\!-\!48284_{2}^{2}\!_{1/2}\\ 20039_{3/2}\!-\!53338_{3/2}^{2}\\ 26929_{5/2}\!-\!60218_{5/2}^{2}\end{array}$	res 6 res 6
3003, 435 3004, 284 3007, 511 3008, 946 3010, 131	2	15 5 4? 25 3	33285. 51 33276. 10 33240. 40 33224. 55 33211. 47	$\begin{array}{c} -0.11 \\ -0.06 \\ -0.20 \\ +0.17 \\ -0.19 \end{array}$	$\begin{array}{c} 23803_{33^2} - 57089_{43^2}^4 \\ 20780_{43^2} - 54056_{43^2}^4 \\ 26158_{43^2} - 59399_{43^2}^4 \\ 28377_{53^2} - 61602_{63^2}^2 \\ 28377_{53^2} - 61589_{53^2}^2 \end{array}$	7
3010. 750 3011. 102 3011. 327 3012. 102 3013. 093	4	80 2 4 15 1	33204. 64 33200. 76 33198. 27 33189. 74 33178. 82	$\begin{array}{c} +0.04 \\ -0.05 \\ -0.02 \\ +0.10 \\ +0.05 \end{array}$	$\begin{array}{c} 19070_{4},_{2}-52275_{3},_{4}\\ 27273_{3},_{4}-60474_{2},_{2}\\ 22194_{3},_{4}-55392_{4},_{2}\\ 19404_{0},_{4}-52593_{0},_{4}\\ 23234_{4},_{2}-56413_{4},_{2}\\ \end{array}$	res
3014. 200 3014. 606 3015. 694 3017. 148 3018. 624	$\begin{array}{c} 6A \\ 2 \\ 1 \\ 2 \\ 1 \end{array}$	$\begin{array}{c} 3 \\ 25 \\ 8 \\ 25 \\ 20 \end{array}$	33166. 63 33162. 17 33150. 20 33134. 23 33118. 03	$\begin{array}{c} -0.48 \\ -0.07 \\ -0.08 \\ +0.17 \\ -0.04 \end{array}$	$\begin{array}{c} 25169_{1},_{2}-58336_{2},_{3}\\ 23450_{2},_{2}-56612_{3},_{2}\\ 27273_{3},_{2}-60424_{3},_{3}\\ 23955_{5},_{2}-57089_{4},_{2}\\ 26158_{4},_{2}-59276_{3},_{2} \end{array}$	res 6
3019. 628 3020. 630 3021. 982 3022. 482 3022. 672	$\begin{matrix} 4\\20 \end{matrix}$	3 20 80 20 30	33107. 08 33096. 04 33081. 23 33075. 76 33073. 68	$ \begin{array}{c} +0.04 \\ -0.02 \\ -0.24 \\ -0.02 \\ +0.06 \\ -0.10 \end{array} $	$\begin{array}{c} 31100_{5},_{2}-64207,_{4},_{2}\\ 18990,_{1},_{2}-52087,_{2},_{2}\\ a^{4}F_{3},_{2}-z^{6}F_{4},_{4}\\ 25672,_{2},_{2}-58747,_{4}\\ 28491,_{2}-61566,_{2},_{2}\\ 20039,_{3},_{2}-53113,_{2},_{2}\\ \end{array}$	
3022. 906 3024. 502 3025. 993 3027. 369 3028. 750	$\begin{array}{c}2\\25\end{array}$	$\begin{bmatrix} 6 \\ 250 \\ 1 \\ 6 \\ 10 \end{bmatrix}$	33071. 12 33053. 67 33037. 38 33022. 33 33007. 31	$\begin{array}{c} -0.03 \\ -0.07 \\ -0.02 \\ 0.00 \\ +0.05 \end{array}$	$\begin{array}{c} 23803_{33'} - 56874^2_{23'} \\ a^4 F_{25'} - 44354^3_{23'} \\ 25672_{21'} - 58709^3_{33'} \\ 22139_{23'} - 55162^2_{23'} \\ a^4 G_{23'} - 49242^3_{23'} \end{array}$	res
3028. 975 3029. 524 3030. 793 3031. 000 3032. 450	3	$ \begin{array}{c} 8 \\ 4 \\ 2 \\ 25 \\ 15 \end{array} $	33004. 86 32998. 88 32985. 06 32982. 81 32967. 04	$ \begin{array}{r} +0.01 \\ +0.12 \\ +0.11 \\ +0.07 \\ -0.01 \end{array} $	$\begin{array}{c} 27273_{312} - 60278_{314}^4 \\ 19276_{212} - 52276_{314}^2 \\ 22503_{112} - 55488_{114}^6 \\ 28377_{512} - 61360_{314}^4 \\ 20455_{112} - 53422_{114}^2 \end{array}$	res
3032. 660 3033. 626 3033. 790 3033. 913 3036. 311	4	8 30 2 20 1	32964. 76 32954. 26 32952. 48 32951. 14 32925. 11	$\begin{array}{c} -0.\ 01 \\ -0.\ 02 \\ +0.\ 27 \\ +0.\ 11 \\ -0.\ 14 \end{array}$	$\begin{bmatrix} 23803_{3}\cancel{1}\cancel{-}56768^*_{3}\cancel{1}_{4}\\ a\ ^{4}\mathrm{D}_{1}\cancel{1}\cancel{-}47588^*_{1}\cancel{1}_{4}\\ 22535_{0}\cancel{1}\cancel{-}55488^*_{1}\cancel{1}_{4}\\ 19404_{0}\cancel{1}\cancel{-}52355^*_{0}\cancel{1}_{4}\\ 24804_{3}\cancel{1}\cancel{-}57729^*_{3}\cancel{1}_{2} \end{bmatrix}$	res
3036. 670 3039. 578 3044. 400 3044. 564 3045. 216	5 3	50 20 10 1 15	32921. 23 32889. 73 32837. 64 32835. 88 32828. 85	$\begin{array}{c} -0.07 \\ +0.05 \\ -0.09 \\ +0.26 \\ +0.07 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{2}\!_{3}\!$	res 6
3046. 911 3047. 060 3048. 604 3049. 563 3049. 850	$ \begin{array}{c} 1\\1\\4\\-\\5 \end{array} $	5 15 40 3 50	32810. 57 32808. 97 32792. 36 32782. 03 32778. 96	$\begin{array}{c} +0.07 \\ +0.07 \\ +0.01 \\ -0.04 \\ -0.01 \end{array}$	$\begin{bmatrix} 19276_{2}\sqrt{-52087^{\circ}_{2}} \\ 23803_{3}\sqrt{-56612^{\circ}_{3}} \\ 19070_{4}\sqrt{-51863^{\circ}_{3}} \\ 28118_{2}\sqrt{-60900^{\circ}_{2}} \\ a^{4}D_{1}\sqrt{-47413^{\circ}_{2}} \end{bmatrix}$	6 res

Table 3. Classified lines of W II—Continued

Wavelength _	Inte	nsity	Wave number (cm ⁻¹)		Combination	Zeeman	
(Å)	Arc	Spark	Observed	O-C		effect	
Air							
3051. 29 3053. 354 3053. 420 3054. 129 3058. 452	25 6	250 ?\ 20} 1 20	32763. 49 32741. 34 32740. 64 32733. 03 32686. 79	$ \begin{array}{r} +0.03 \\ +0.02 \\ +0.08 \\ +0.03 \\ -0.04 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{3}\!_{3}\!_{-}\!_{-}\!_{4}6175_{3}^{3}\!_{3}\!_{4} \\ a{}^{4}\mathrm{P}_{2}\!_{3}\!_{-}\!_{-}\!_{4}6175_{3}^{3}\!_{3}\!_{4} \\ 23803_{3}\!_{3}\!_{-}\!_{-}\!_{5}65_{4}^{4}\!_{2}\!_{3}\!_{4} \\ 26158_{4}\!_{4}\!_{-}\!_{5}8891_{5}^{3}\!_{4} \\ 25169_{1}\!_{2}\!_{-}\!_{5}7856_{2}^{2}\!_{3}\!_{4} \end{array}$	res	
3059. 268 3061. 027 3061. 678 3063. 422 3063. 972	6 4	3 10 15 8 30	32678. 06 32659. 28 32652. 35 32633. 74 32627. 89	$\begin{array}{c} +0.06 \\ +0.04 \\ -0.08 \\ -0.06 \\ -0.01 \end{array}$	$\begin{array}{c} 28377_{512} - 61055_{412}^{\circ} \\ 22503_{132} - 55162_{232}^{\circ} \\ a^{4}G_{332} - 49242_{332}^{\circ} \\ 23450_{232} - 56084_{132}^{\circ} \\ a^{4}G_{432} - 49181_{432}^{\circ} \end{array}$	res	
3064. 635 3066. 976 3067. 410 3067. 572 3067. 856	6 3 5 6	3 60 6 50 60	32620. 83 32595. 93 32591. 32 32589. 61 32586. 59	$\begin{array}{c} +0.01 \\ +0.07 \\ -0.05 \\ +0.02 \\ +0.08 \end{array}$	$\begin{array}{c} a^{4}\mathrm{D}_{212}-47588^{\circ}_{134} \\ a^{4}\mathrm{G}_{212}-48830^{\circ}_{332} \\ a^{4}\mathrm{G}_{314}-49181^{\circ}_{414} \\ 20780_{412}-53369^{\circ}_{414} \\ 19276_{212}-51863^{\circ}_{334} \end{array}$	7 6 7	
3069. 288 3071. 234 3071. 730 3072. 740 3073. 403	8 1 5 4	80 15 50 30 4	32571. 38 32550. 74 32545. 48 32534. 78 32527. 77	$\begin{array}{c} 0.00 \\ -0.08 \\ -0.10 \\ -0.07 \\ +0.36 \end{array}$	$\begin{array}{c} a{}^{4}G_{4 2}-49124_{3 2}^{*}\\ 26158_{4 2}-58709_{3 2}^{*}\\ a{}^{4}D_{1 2}-47179_{1 2}^{*}\\ a{}^{4}G_{3 2}-49124_{3 2}^{*}\\ 20039_{3 2}-52567_{4 2}^{*}\\ \end{array}$	res res res	
3075. 963 3077. 520 3078. 868 3079. 992 3080. 787	30 ?	8 300 15 20 2	32500. 70 32484. 26 32470. 03 32458. 19 32449. 81	$ \begin{array}{r} +0.06 \\ +0.03 \\ -0.05 \\ +0.17 \end{array} $	$\begin{array}{c} 23955_{514} - 56439 \aleph_{14} \\ 26929_{514} - 59399 \aleph_{144} \\ 23955_{514} - 56413 \aleph_{144} \\ 19637_{214} - 52087 \aleph_{144} \end{array}$	5 res 4	
3081. 042 3081. 215 3083. 520 3087. 394 3089. 742	$\begin{array}{c} 4\\1\\2\\10\end{array}$	40 3 20 50 6	32447. 13 32445. 30 32421. 05 32380. 37 32355. 77	$\begin{array}{c} +0.06 \\ -0.21 \\ 0.00 \\ +0.05 \\ 0.00 \end{array}$	$\begin{array}{c} 18990_{11/2}-51438_{21/2}^{\circ}\\ a^{4}D_{21/4}-47413_{21/2}^{\circ}\\ 23955_{51/2}-56376_{51/2}^{\circ}\\ a^{4}D_{01/2}-45553_{11/2}^{\circ}\\ 28118_{21/2}-60474_{21/2}^{\circ}\end{array}$	res 6 res	
3090. 712 3091. 870 3094. 629 3095. 870 3098. 031	2 5	$\begin{array}{c} 2 \\ 3 \\ 4 \\ 50 \\ 2 \end{array}$	32345. 62 32333. 49 32304. 67 32291. 73 32269. 20	$\begin{array}{c} +0.07 \\ +0.01 \\ +0.18 \\ +0.10 \\ +0.09 \end{array}$	$\begin{array}{c} 23046_{312} - 55392_{412}^{\circ} \\ 30633_{112} - 62966_{512}^{\circ} \\ 22194_{312} - 54498_{312}^{\circ} \\ 18000_{312} - 50292_{212}^{\circ} \\ 28631_{312} - 609002_{12}^{\circ} \end{array}$	res	
3098. 300 3098. 580 3098. 870 3100. 074 3100. 736	2 	12 12 8 5 50	32266. 40 32263. 48 32260. 47 32247. 93 32241. 05	$ \begin{array}{r} +0.09 \\ +0.04 \\ +0.03 \\ +0.03 \\ +0.02 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{D}_{312}-47413_{212}^{\circ} \\ 18990_{112}-51254_{112}^{\circ} \\ 24991_{112}-57252_{212}^{\circ} \\ 29341_{412}-61589_{512}^{\circ} \\ a\ ^4\mathrm{G}_{312}-48830_{312}^{\circ} \end{array}$	res	
3101. 224 3102. 204 3103. 517 3104. 534 3106. 180	5 2	4 50 12 3 8	32235, 98 32225, 79 32212, 16 32201, 61 32184, 55	$ \begin{array}{r} +0.13 \\ +0.14 \\ +0.04 \\ +0.06 \\ +0.01 \end{array} $	$\begin{array}{c} 22139_{214} - 54375_{214}^{\circ} \\ 19637_{214} - 51863_{314}^{\circ} \\ a^{4} D_{214} - 47179_{114}^{\circ} \\ 22503_{114} - 54704_{214}^{\circ} \\ 25672_{214} - 57856_{214}^{\circ} \end{array}$	res	
3106. 632 3108. 386 3108. 778 3110. 690 3111. 887	6 4 1	20 3 60 40 4	32179. 86 32161. 71 32157. 65 32137. 89 32125. 52	$\begin{array}{c} -0.07 \\ +0.20 \\ +0.15 \\ +0.10 \\ +0.04 \end{array}$	$\begin{array}{c} 34091_{4 2} - 66270_{4 2}^{\circ} \\ 19404_{2 2} - 51438_{5 2}^{\circ} \\ 23234_{4 2} - 55392_{4 2}^{\circ} \\ 20455_{1 2} - 52593_{0 2}^{\circ} \\ 27273_{3 2} - 59399_{4 2}^{\circ} \end{array}$	6 res res	
3112. 463 3112. 860 3113. 384 3116. 100 3117. 263	$\begin{array}{c} 1 \\ 20 \end{array}$	4 50 12 3 1	32119. 58 32115. 48 32110. 08 32082. 09 32070. 12	$\begin{array}{c} -0.02 \\ -0.02 \\ +0.10 \\ -0.04 \\ -0.20 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{234}-45553^{\circ}_{134} \\ 23046_{334}-55162^{\circ}_{234} \\ 26227_{234}-58337^{\circ}_{334} \\ 25169_{134}-57252^{\circ}_{234} \\ 24804_{334}-56874^{\circ}_{234} \end{array}$	res 6	

Table 3. Classified lines of Wii—Continued

Wavelength (Å)	Inte	ensity	Wave num	ber (cm^{-1})	Combination	Zeeman
	Arc	Spark	Observed	O-C	-	effect
Air						
3118. 475 3118. 981 3119. 237 3121. 032 3125. 700	5 1	$\begin{array}{c} 5 \\ 1 \\ 12 \\ 10 \\ 2 \end{array}$	32057. 66 32052. 46 32049. 83 32031. 40 31983. 59	$ \begin{array}{c} -0.10 \\ 0.00 \\ +0.19 \\ +0.16 \\ -0.08 \end{array} $	$\begin{array}{c} 25672_{21_{2}}-57729_{31_{2}}^{3}\\ 19442_{61_{2}}-z^{6}F_{31_{2}}^{3}\\ a^{4}G_{21_{2}}-48284_{21_{2}}^{2}\\ 28187_{61_{2}}-60218_{51_{2}}^{5}\\ 28491_{11_{2}}-60474_{21_{2}}^{3}\end{array}$	
3125. 790 3126. 420 3127. 750 3128. 982 3129. 682	$ \begin{array}{c} 1 \\ 4 \\ 1 \\ 2 \\ 1 \end{array} $	8 40 50 40 25	31982. 64 31976. 20 31962. 60 31950. 01 31942. 87	$ \begin{array}{r} +0.10 \\ +0.14 \\ +0.20 \\ +0.21 \end{array} $	$\begin{array}{c} 22503_{1}\%-54485_{0}\% \\ 23046_{3}\%-55022_{3}\% \\ 26929_{5}\%-58891_{5}\% \\ 22535_{0}\%-54485_{0}\% \end{array}$	6 res 6 res res
3129. 907 3133. 780 3133. 965 3135. 156 3135. 238	3	2 3 20 4 4	31940. 57 31901. 10 31899. 22 31887. 10 31886. 27	$ \begin{cases} -0.14 \\ +0.19 \\ -0.03 \\ +0.04 \\ +0.03 \\ 0.00 \end{cases} $	$\begin{array}{c} 24991_{1}_{1}_{2}_{5}6932^{\circ}_{1}_{2}\\ 28377_{5}_{2}_{-}602^{\circ}8^{\circ}_{1}_{2}\\ 29341_{4}_{2}_{-}61240^{\circ}_{5}_{2}\\ 20455_{1}_{2}_{-}52355^{\circ}_{0}_{2}\\ 25045_{0}_{2}_{-}56932_{1}_{2}\\ 22139_{2}_{2}_{-}54026^{\circ}_{2}_{2}\end{aligned}$	
3135. 838 3137. 224 3137. 57 3138. 770 3139. 517	1 4	12 8 2 6 12	31880. 17 31866. 08 31862. 56 31850. 39 31842. 81	$\begin{array}{c} -0.01 \\ +0.04 \\ +0.10 \\ +0.07 \\ 0.00 \end{array}$	$\begin{array}{c} 25209_{4}\% - 57089_{4}^{\circ}\% \\ 31100_{5}\% - 62966_{5}^{\circ}\% \\ 22194_{3}\% - 54066_{4}^{\circ}\% \\ 19404_{0}\% - 51254_{1}^{\circ}\% \\ 28631_{3}\% - 60474_{2}^{\circ}\% \end{array}$	6 res
3140, 577 3140, 96 3142, 928 3143, 348 3143, 670	2	$\begin{array}{c} 2 \\ 2 \\ 3 \\ 20 \\ 4 \end{array}$	31832. 06 31828. 18 31808. 25 31804. 00 31800. 74	$-0.10 \\ 0.00 \\ +0.18 \\ -0.02 \\ +0.09$	$\begin{array}{c} 22194_{3 \downarrow 4} - 54026_{2 \downarrow 4} \\ 26158_{4 \downarrow 4} - 57986_{3 \downarrow 4} \\ 24804_{3 \downarrow 4} - 56612_{3 \downarrow 4} \\ 30633_{4 \downarrow 4} - 62437_{4 \downarrow 4} \\ 19637_{2 \downarrow 4} - 51438_{2 \downarrow 4} \end{array}$	6 res
3144. 493 3145. 768 3146. 292 3146. 836 3147. 474	20 ? 	25 200 20 4 3	31792. 42 31779. 53 31774. 24 31768. 75 31762. 31	$\left\{ \begin{array}{l} +0.05 \\ +0.14 \\ -0.06 \\ 0.00 \\ +0.02 \\ -0.09 \end{array} \right.$	$\begin{array}{c} 19070_{41\!/4} - 50863_{41\!/4}^{\circ} \\ 28631_{31\!/4} - 60424_{31\!/4}^{\circ} \\ a ^4G_{41\!/4} - 48332_{51\!/4}^{\circ} \\ 33910_{51\!/4} - 65684_{51\!/4}^{\circ} \\ 19276_{21\!/4} - 51046_{31\!/4}^{\circ} \\ 25169_{11\!/4} - 56932_{11\!/4}^{\circ} \end{array}$	5 7
3147. 825 3148. 678 3149. 856 3151. 304 3151. 568	$\begin{array}{c} 1 \\ 30 \\ 5 \\ 5 \end{array}$	$ \begin{array}{c} 15 \\ 10 \\ 300 \\ 125 \\ 20 \end{array} $	31758. 77 31750. 17 31738. 29 31723. 71 31721. 05	$\begin{array}{c} +0.23 \\ -0.07 \\ +0.04 \\ 0.00 \\ +0.01 \end{array}$	$\begin{array}{c} 26929_{5}\cancel{4} - 58687^{\circ}_{4}\cancel{4} \\ 28118_{2}\cancel{4} - 59869^{\circ}_{3}\cancel{4} \\ a^{4}D_{0}\cancel{4} - 44911^{\circ}_{1}\cancel{4} \\ 23234_{4}\cancel{4} - 54958^{\circ}_{5}\cancel{4} \\ a^{4}D_{1}\cancel{4} - 46355^{\circ}_{2}\cancel{4} \end{array}$	res res 5
3152. 238 3152. 484 3152. 749 3153. 134 3153. 934	25 5	$\begin{array}{c} 4 \\ 100 \\ 6 \\ 2 \\ 2 \end{array}$	31714. 31 31711. 84 31709. 17 31705. 30 31697. 28	$\begin{array}{c} +0.07 \\ +0.04 \\ +0.19 \\ +0.18 \\ -0.12 \end{array}$	$\begin{array}{c} 29341_{4}, -61055_{4}, \\ 23450_{2}, -55162_{3}, \\ a ^{6}\mathrm{S}_{2}, -2 ^{6}\mathrm{F}_{1}, \\ 25169_{1}, -56874_{2}, \\ 28118_{2}, -59816_{1}, \end{array}$	6
3154. 172 3158. 925 3160. 026 3160. 673 3161. 942	$\begin{array}{c} 5 \\ 1 \\ 20 \\ 1 \end{array}$	$ \begin{array}{c} 10 \\ 2 \\ 200 \\ 4 \\ 10 \end{array} $	31694. 87 31647. 18 31636. 15 31629. 68 31616. 98	$\begin{array}{c} +0.06 \\ +0.33 \\ -0.06 \\ -0.02 \\ -0.04 \end{array}$	$\begin{array}{c} a {}^{4}\mathrm{G}_{3}{}_{4}\!$	6 6 res
3162. 225 3164. 262 3164. 794 3165. 657 3166. 534	1	15 10 30 4 12	31614. 15 31593. 80 31588. 49 31579. 88 31571. 13	$\begin{array}{c} +0.05 \\ +0.02 \\ -0.04 \\ +0.04 \\ -0.05 \end{array}$	$\begin{array}{c} 31100_{5}\% - 62714_{6}\% \\ 34091_{4}\% - 65684_{6}\% \\ 23803_{3}\% - 55392_{4}\% \\ 25672_{2}\% - 57252_{2}\% \\ 26158_{4}\% - 57729_{3}\% \end{array}$	
3167. 736 3168. 372 3171. 355 3173. 564 3174. 221	1	6 2 6 8 1	31559. 16 31552. 82 31523. 14 31501. 20 31494. 68	$\begin{array}{c c} -0.17 \\ -0.02 \\ -0.04 \\ 0.00 \\ -0.22 \end{array}$	$\begin{array}{c} 25209_{412} - 56768_{314}^{8} \\ 24991_{112} - 56544_{234}^{2} \\ 22503_{112} - 54026_{232}^{2} \\ 28491_{112} - 59992_{232}^{2} \\ 20780_{412} - 52275_{332}^{2} \end{array}$	7

Table 3. Classified lines of W II—Continued

Wavelength	Intensity		Wave number (cm ⁻¹)		Combination	Zeeman
(Å)	Arc	Spark	Observed	O-C		effect
Air						
3175. 958 3177. 200 3178. 036 3178. 672 3179. 436	$\begin{array}{c} 20 \\ 30 \\ 6 \end{array}$	$ \begin{array}{c} 200 \\ 120 \\ 60 \\ 8 \\ 120 \end{array} $	31477. 46 31465. 15 31456. 88 31450. 58 31443. 02	-0.07 -0.07 -0.05 -0.06	$\begin{array}{c} a~^{4}\mathrm{P}_{2}_{2}-44911_{1}^{\circ}_{1}_{2}\\ a~^{4}\mathrm{F}_{3}_{3}_{2}-z~^{6}\mathrm{F}_{3}^{\circ}_{2}\\ a~^{4}\mathrm{P}_{1}_{1}_{2}-z~^{6}\mathrm{F}_{2}^{\circ}_{2}_{2}\\ \end{array}\\ a~^{4}\mathrm{P}_{2}_{2}-z~^{6}\mathrm{F}_{3}^{\circ}_{2}_{2}\end{array}$	res 6 res
3180. 060 3182. 194 3183. 000 3183. 441 3183. 965	2	60 30 2 12 10	31436. 85 31415. 77 31407. 82 31403. 47 31398. 30	$\begin{array}{c} -0.12 \\ -0.07 \\ -0.05 \\ +0.01 \\ +0.01 \end{array}$	$\begin{array}{c} 23955_{5}\cancel{1}\cancel{-}55392^4_{4}\cancel{1}\cancel{2}\\ 33910_{5}\cancel{1}\cancel{-}65326^5_{3}\cancel{2}\cancel{2}\\ 19637_{2}\cancel{1}\cancel{-}51045^3_{3}\cancel{2}\\ 25209_{4}\cancel{1}\cancel{2}\cancel{-}56612^3_{3}\cancel{2}\\ 20039_{3}\cancel{1}\cancel{-}51438^5_{2}\cancel{2}\end{array}$	res
3185. 057 3186. 396 3187. 116 3188. 016 3188. 495	2 2 1	20 15 80 6 10	31387. 54 31374. 35 31367. 26 31358. 40 31353. 69	-0. 04 -0. 18 -0. 06 -0. 11	$\begin{array}{c} a~^{4}\mathrm{D}_{2 \ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	6 7
3189. 238 3191. 016 3192. 117 3193. 825 3195. 708	50A 2	100 20 8 25 5	31346. 39 31328. 92 31318. 12 31301. 37 31282. 93	$ \begin{cases} -0.02 \\ +0.25 \\ -0.10 \\ -0.08 \\ 0.00 \\ -0.08 \end{cases} $	$\begin{array}{c} a^{4}\mathrm{D}_{3}\!_{3}\!_{2}\!=\!z^{6}\mathrm{F}_{4}^{4}\!_{2}\\ a^{4}\mathrm{F}_{3}\!_{3}\!_{2}\!=\!44758_{4}^{4}\!_{2}\\ 23046_{3}\!_{3}\!_{2}\!=\!54375_{2}^{2}\!_{3}\!_{2}\\ a^{4}\mathrm{F}_{4}\!_{3}\!_{2}\!=\!46175_{3}^{3}\!_{3}\!_{4}\\ 18990_{1}\!_{2}\!_{2}\!=\!50292_{2}^{2}\!_{2}\!_{2}\\ 22139_{2}\!_{2}\!_{2}\!=\!53422_{1}^{2}\!_{3}\!_{2}\end{array}$	res
3200. 380 3200. 565 3201. 583 3202. 254 3203. 343	20 12	6 6 60 10 60	31237. 26 31235. 46 31225. 53 31218. 98 31208. 37	$ \begin{array}{c} -0.02 \\ +0.08 \\ -0.02 \\ -0.04 \\ -0.01 \end{array} $	$\begin{array}{c} 28631_{3/2} - 59869_{3/4}^8 \\ 34091_{4/2} - 65326_{5/4}^5 \\ a^4 F_{1/2} - 39936_{2/4}^5 \\ 23803_{3/2} - 55022_{3/4}^3 \\ a^4 D_{3/2} - 46355_{2/4}^5 \end{array}$	res 6 res
3203. 433 3203. 752 3203. 909 3204. 400	6 2 2	30 10 30	31207. 49 31204. 39 31202. 86 31198. 07	$\begin{array}{c} -0.11 \\ +0.03 \\ +0.03 \\ -0.03 \end{array}$	$\begin{array}{c} a^{4}\mathrm{D}_{2}\!$	
3205. 262 3206. 420 3206. 680 3207. 580 3207. 671	6 -?	$560 \\ 12 \\ 8 \\ 6$	31189. 69 31178. 42 31175. 89 31167. 15 31166. 26	$\begin{array}{c} -0.05 \\ -0.07 \\ 0.00 \\ -0.02 \\ +0.06 \end{array}$	$\begin{array}{c} 22139_{2^{1}2} - 53329_{1^{1}4}^{\circ} \\ a^{4}G_{2^{1}2} - 47413_{2^{1}4}^{\circ} \\ 22194_{3^{1}2} - 53369_{4^{1}2}^{\circ} \\ 25209_{4^{1}2} - 56376_{3^{1}2}^{\circ} \\ 24918_{1^{1}2} - 56084_{1^{1}2}^{\circ} \end{array}$	res
3209. 968 3215. 275 3215. 648 3216. 308 3218. 806	4 2 ? 2	80 40 30 30 6	31143. 96 31092. 56 31088. 95 31082. 57 31058. 45	$ \begin{cases} -0.03 \\ -0.08 \\ -0.18 \\ -0.24 \\ -0.08 \\ -0.01 \\ -0.09 \end{cases} $	$\begin{array}{c} 22194_{3^{1}2}-53338_{3^{1}2}\\ 33910_{5^{1}2}-65003_{4^{1}2}^{4}\\ 24991_{1^{1}2}-56084_{1^{1}2}^{6}\\ a^{4}F_{2^{1}2}-42390_{3^{1}2}^{3}\\ 20780_{4^{1}2}-51863_{3^{1}2}^{3}\\ 29341_{4^{1}2}-60424_{3^{1}2}^{4}\\ 33910_{5^{1}2}-64969_{5^{1}2}^{6}\\ \end{array}$	res
3219. 890 3221. 914 3222. 274 3222. 646 3223. 22	60A	5 20 3 20 2	31048. 00 31028. 49 31025. 03 31021. 45 31015. 90	$\begin{array}{c} -0.07 \\ +0.09 \\ +0.03 \\ -0.09 \\ +0.09 \end{array}$	$\begin{array}{c} 23450_{2\downarrow_2}\!-\!54498_{3\downarrow_4}^*\\ a{}^4\mathrm{D}_{3\downarrow_2}\!-\!46175_{3\downarrow_2}^*\\ 26227_{2\downarrow_2}\!-\!57252_{3\downarrow_4}^*\\ 28377_{3\downarrow_2}\!-\!59399_{4\downarrow_4}^*\\ 19276_{2\downarrow_2}\!-\!50292_{2\downarrow_4}^*\end{array}$	
3223. 900 3224. 320 3224. 550 3225. 170 3225. 480	$\begin{matrix} 3 \\ 6 \\ 1 \\ 2 \end{matrix}$	8 4 15 2 20	31009. 38 31005. 34 31003. 13 30997. 17 30994. 19	$\begin{array}{c} -0.36 \\ -0.17 \\ -0.05 \\ +0.05 \\ 0.00 \end{array}$	$\begin{array}{c} 23046_{3}\cancel{1} - 54056_{4}^{4}\cancel{1}\\ 20039_{3}\cancel{1} - 51045_{3}^{4}\cancel{2}\\ 23955_{3}\cancel{1} - 54958_{3}^{5}\cancel{2}\\ a^{4}F_{2}\cancel{1} - 42298_{1}^{6}\cancel{2}\\ 23234_{4}\cancel{2} - 54229_{3}^{6}\cancel{2}\end{array}$	6 res
3226. 750 3227. 020 3228. 990 3229. 422 3230. 604	$\frac{1}{3}$	5 6 15 8 20	30981. 99 30979. 40 30960. 50 30956. 36 30945. 03	$\begin{array}{c c} -0.11 \\ -0.04 \\ -0.15 \\ -0.08 \\ -0.07 \end{array}$	$\begin{bmatrix} 20455_{1}\cancel{1}\cancel{2} - 51438^{\circ}_{2}\cancel{1}_{2} \\ 23046_{3}\cancel{1}\cancel{2} - 54026^{\circ}_{2}\cancel{1}_{2} \\ 20534_{5}\cancel{1}\cancel{2} - 2^{\circ}F^{\circ}_{5}\cancel{1}_{2} \\ 30633_{4}\cancel{1}\cancel{2} - 61589^{\circ}_{5}\cancel{1}_{2} \\ a^{4}G_{2}\cancel{1}\cancel{2} - 47179^{\circ}_{1}\cancel{1}_{2} \end{bmatrix}$	res

Table 3. Classified lines of W II—Continued

Wavelength	Inter	nsity	Wave num	ber (cm^{-1})	Combination	Zeeman
(Å)	Are	Spark	Observed	O-C	Combination	effect
Air						
3230. 846 3231. 053 3231. 442 3232. 132 3233. 140	8 $15A$ 3	$ \begin{array}{c} 12 \\ 4 \\ 1 \\ 6 \\ 8 \end{array} $	30942. 71 30940. 73 30937. 01 30930. 40 30920. 76	$\begin{array}{c} -0.15 \\ +0.15 \\ -0.10 \\ -0.32 \\ +0.04 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{F}_{3}{}_{2}-44354{}^{2}{}_{2}{}_{3}\\ 25672{}^{1}{}_{2}-56612{}^{3}{}_{3}{}_{4}\\ 22503{}^{1}{}_{1}{}_{2}-53440{}^{0}{}_{3}{}_{4}\\ 26158{}^{4}{}_{2}-57089{}^{4}{}_{4}{}_{4}\\ a{}^{4}\mathrm{P}_{2}{}_{3}-44354{}^{3}{}_{2}{}_{3}{}_{4}\end{array}$	res
3233. 286 3233. 46 3233. 820 3234. 50 3235. 774	1-	20 1 2 4 8	30919. 36 30917. 70 30914. 25 30904. 40 30895. 59	$ \begin{cases} -0.08 \\ +0.02 \\ +0.12 \\ -0.18 \\ +0.03 \\ -0.12 \end{cases} $	$\begin{array}{c} 22194_{3}\cancel{1}\cancel{-}53113\cancel{3}\cancel{1}\cancel{2} \\ a\ ^4\textup{D}_{1}\cancel{1}\cancel{-}45553\cancel{3}\cancel{1}\cancel{2} \\ 30633_{4}\cancel{1}\cancel{-}61550\cancel{3}\cancel{3}\cancel{2} \\ 25169_{1}\cancel{2}\cancel{-}56084\cancel{3}\cancel{1}\cancel{2} \\ 22535_{0}\cancel{2}\cancel{-}53440\cancel{3}\cancel{2} \\ a\ ^4\textup{G}_{5}\cancel{2}\cancel{-}4833\cancel{2}\cancel{3}\cancel{2}\cancel{3}\cancel{2} \end{array}$	7 6
3236. 644 3236. 744 3237. 684 3238. 220 3243. 008	3 1 5	$25 \\ 6 \\ 30 \\ 2 \\ 40$	30887. 29 30886. 33 30877. 37 30872. 25 30826. 67	+0.11 $+0.09$ $+0.01$ $+0.02$	$\begin{array}{c} 22535_{0\%} - 53422_{1\%}^{\circ} \\ 29341_{4\%} - 60218_{5\%}^{\circ} \\ 25672_{2\%} - 56544_{2\%}^{\circ} \\ 22503_{1\%} - 53329_{1\%}^{\circ} \end{array}$	res
3243. 334 3245. 273 3245. 937 3246. 413 3246. 498	15	$ \begin{array}{c} 100 \\ 6 \\ 2 \\ 1 \\ 12 \end{array} $	30823. 58 30805. 16 30798. 86 30794. 35 30793. 54	$\begin{array}{c} -0.08 \\ -0.04 \\ +0.39 \\ +0.44 \\ -0.03 \end{array}$	$\begin{array}{c} a {}^{4}G_{312} - 47413_{314}^{2} \\ 34091_{412} - 64896_{314}^{2} \\ 20455_{112} - 51254_{112}^{2} \\ 22535_{012} - 53329_{114}^{2} \\ 19637_{212} - 50430_{112}^{2} \end{array}$	5 res
3249. 848 3251. 262 3254. 848 3255. 012 3255. 582	$ \begin{array}{c} 10 \\ 40A \\ 1 \end{array} $	30 40 4 30 20	30761. 80 30748. 42 30714. 54 30713. 00 30707. 62	$\begin{array}{c} +0.03 \\ +0.05 \\ -0.08 \\ -0.05 \\ -0.04 \end{array}$	$\begin{array}{c} 22139_{2\backslash 2} - 52901_{3\backslash 2} \\ a{}^{4}F_{2\backslash 2} - z{}^{6}F_{2\backslash 2} \\ 20780_{4\backslash 2} - z{}^{6}F_{3\backslash 2} \\ 27273_{3\backslash 2} - 57986_{4\backslash 2} \\ 22194_{3\backslash 2} - 52901_{3\backslash 2} \end{array}$	res res
3255. 824 3255. 957 3257. 815 3260. 32 3261. 937	60A	$\begin{array}{c} 1 \\ 20 \\ 12 \\ 3 \\ 8 \end{array}$	30705. 33 30704. 08 30686. 57 30663. 00 30647. 79	$ \begin{array}{r} +0.06 \\ -0.06 \\ -0.13 \\ -0.03 \\ -0.20 \end{array} $	$\begin{array}{c} 26227_{21/2} - 56932_{11/2}^{\circ} \\ 28187_{61/2} - 58891_{51/2}^{\circ} \\ 23450_{21/2} - 54137_{11/2}^{\circ} \\ 22139_{21/2} - 52803_{11/2}^{\circ} \\ 26227_{21/2} - 56874_{21/2}^{\circ} \end{array}$	
3262. 244 3265. 988 3267. 430 3268. 353 3268. 882	3 2 —?	60 12 40 30 4	30644. 91 30609. 78 30596. 27 30587. 63 30582. 68	$ \begin{array}{r} -0.04 \\ -0.09 \\ -0.07 \\ -0.16 \end{array} $	$\begin{array}{c} 28631_{314} - 59276_{314}^{\circ} \\ 26158_{414} - 56768_{314}^{\circ} \\ 24804_{314} - 55392_{414}^{\circ} \\ 27273_{314} - 57856_{214}^{\circ} \end{array}$	6 res
3269. 622 3270. 049 3273. 300 3274. 788 3277. 608	50A 1 1 3	$ \begin{array}{c} 10 \\ 3 \\ 8 \\ 12 \\ 3 \end{array} $	30575. 76 30571. 77 30541. 41 30527. 53 30501. 27	$\begin{array}{c} +0.02 \\ -0.21 \\ -0.20 \\ -0.05 \\ -0.45 \end{array}$	$\begin{array}{c} 23450_{2},_{2}-54026_{2},_{3}\\ 23803_{3},_{2}-54375_{2},_{4}\\ 2627_{2},_{4}-56768_{3},_{4}\\ 29341_{4},_{2}-59869_{3},_{4}\\ 31100_{5},_{2}-61602_{6},_{4} \end{array}$	
3278. 148 3278. 924 3282. 478 3282. 693 3283. 765	12 <i>A</i> —?	$ \begin{array}{c} 15 \\ 20 \\ 4 \\ 5 \\ 20 \end{array} $	30496. 24 30489. 02 30456. 01 30454. 02 30444. 08	$\begin{array}{c} -0.21 \\ +0.02 \\ -0.05 \\ +0.02 \end{array}$	$\begin{array}{c} 24991_{1}, -55488_{1}, \\ 31100_{5}, -61589_{3}, \\ 27273_{3}, -57729_{3}, \\ 26158_{4}, -56612_{3}, \end{array}$	7
3285. 820 3286. 566 3290. 10 3291. 45 3293. 138	$\begin{array}{c} 1 \\ 25 \end{array}$	$15 \\ 75 \\ 1 \\ 3 \\ 25$	30425. 04 30418. 13 30385. 46 30373. 00 30357. 43	$\begin{array}{c} -0.31 \\ -0.02 \\ -0.28 \\ -0.07 \\ -0.20 \end{array}$	$\begin{array}{c} 34091_{4}, -64516_{4}, \\ a^{4}F_{1}, -2^{6}F_{1}, \\ 26227_{2}, -56612_{3}, \\ 22194_{3}, -52567_{4}, \\ 24804_{3}, -55162_{3}, \end{array}$	res
3297. 418 3297. 497 3298. 284 3299. 39 3299. 741	6	$\begin{array}{c} 4 \\ 4 \\ 40 \\ 4 \\ 25 \end{array}$	30318. 03 30317. 30 30310. 07 30299. 91 30296. 69	$ \begin{array}{r} -0.11 \\ -0.10 \\ -0.01 \\ -0.03 \\ -0.06 \end{array} $	$\begin{array}{c} 25169_{1}{}_{1}{}_{2}-55488_{1}^{\circ}{}_{2}\\ 26227_{2}{}_{4}-56544_{2}^{\circ}{}_{3}\\ 28377_{5}{}_{4}-58687_{3}^{\circ}{}_{4}\\ 22503_{1}{}_{2}-52803_{1}^{\circ}{}_{2}\\ a^{4}\mathrm{P}_{0}{}_{3}-z^{6}\mathrm{F}_{1}^{\circ}{}_{3} \end{array}$	

Table 3. Classified lines of W II—Continued

	Inter	nsity	Wave number (cm ⁻¹)				
Wavelength (Å)	Are	Spark	Observed	O-C	Combination	Zeeman effect	
Air							
3300. 344 3301. 870 3303. 216 3303. 736 3304. 324	$\frac{5}{4A}$	12 8 6 2 3	30291. 15 30277. 15 30264. 81 30260. 05 30254. 66	$ \begin{array}{c} -0.12 \\ -0.12 \\ -0.06 \\ -0.03 \\ -0.24 \end{array} $	$\begin{array}{c} 23046_{34} - 53338_{34} \\ a \ ^4D_{13} - 44911_{13}^{\circ} \\ 20780_{43} - 51045_{34}^{\circ} \\ 31100_{34} - 61360_{44}^{\circ} \\ 26158_{43} - 56413_{434}^{\circ} \end{array}$	6	
3304. 548 3305. 46 3308. 358 3310. 190 3312. 163	1 3 1—	80 1 60 20 4	30252. 62 30244. 27 30217. 77 30201. 05 30183. 06	$ \begin{cases} -0.08 \\ +0.03 \\ +0.07 \\ +0.06 \end{cases} $ $ -0.03 $	$\begin{array}{c} 23803_{312} - 54056_{412}^{\circ} \\ 20039_{312} - 50292_{312}^{\circ} \\ 24918_{112} - 55162_{212}^{\circ} \\ 26158_{412} - 56376_{512}^{\circ} \\ 25209_{412} - 55392_{412}^{\circ} \end{array}$	5	
3313. 532 3314. 323 3316. 820 3317. 412 3319. 488	2 1	$\begin{array}{c} 4 \\ 8 \\ 3 \\ 15 \\ 10 \end{array}$	30170. 59 30163. 39 30140. 68 30135. 31 30116. 47	$ \begin{array}{c} -0.15 \\ -0.15 \\ +0.33 \\ +0.00 \\ +0.21 \\ -0.01 \end{array} $	$\begin{array}{c} 24991_{1 2} - 55162_{2 2}^{\circ} \\ 18990_{1 2} - 49154_{0 2}^{\circ} \\ 31100_{5 2} - 61240_{3 2}^{\circ} \\ 22139_{2 2} - 52275_{3 2}^{\circ} \\ 23234_{4 2} - 53369_{4 2}^{\circ} \\ 34091_{4 2} - 64207_{4 2}^{\circ} \end{array}$	6	
3320. 944 3322. 345 3323. 414 3325. 980 3333. 280	15 2 1	10 6 10 8 8	30103. 26 30090. 57 30080. 89 30057. 68 29991. 85	$\begin{array}{c} +0.06 \\ -0.09 \\ -0.31 \\ -0.10 \\ -0.05 \end{array}$	$\begin{array}{c} 23234_{4/2} - 53338^*_{3/4} \\ 22503_{1/4} - 52593^*_{0/4} \\ 22194^*_{3/4} - 52275^*_{3/4} \\ 29341_{4/2} - 59399^*_{4/4} \\ 18990_{1/4} - 48982^*_{1/2} \end{array}$	6	
3334. 806 3335. 404 3336. 170 3337. 352 3338. 276	1	5 3 2 3 12	29978. 13 29972. 75 29965. 87 29955. 26 29946. 97	$\begin{array}{c} -0.01 \\ +0.27 \\ +0.29 \\ -0.08 \\ -0.08 \end{array}$	$\begin{array}{c} 27273_{3/4} - 57252_{3/4}^2 \\ 23450_{2/4} - 53422_{1/4}^2 \\ 19276_{2/4} - 49242_{2/4}^2 \\ 31100_{5/4} - 61055_{4/4}^2 \\ 22139_{2/4} - 52087_{2/4}^2 \end{array}$	7	
3338. 632 3339. 036 3339. 590 3342. 468 3343. 095	5 5 25 12	25 30 8 120 60	29943. 78 29940. 15 29935. 19 29909. 41 29903. 80	$\begin{array}{c} -0.03 \\ -0.14 \\ -0.06 \\ +0.05 \\ +0.04 \end{array}$	$\begin{array}{c} a\ ^{4}\mathrm{D}_{2},_{2}\ -44911_{1},_{2}\\ a\ ^{4}\mathrm{G}_{4},_{2}\ -z\ ^{6}\mathrm{F}_{4}^{2},_{2}\\ 29341_{4},_{2}\ -59276_{3},_{2}\\ a\ ^{4}\mathrm{D}_{2},_{3}\ -z\ ^{6}\mathrm{F}_{3},_{2}\\ a\ ^{4}\mathrm{G}_{3},_{2}\ -z\ ^{6}\mathrm{F}_{4}^{3},_{2}\\ \end{array}$	res res res	
3343. 410 3344. 898 3345. 858 3347. 458 3348. 296	$15 \\ 3 \\ 100A \\ 1 \\ 4$	80 25 80 2 80	29900. 99 29887. 69 29879. 11 29864. 83 29857. 36	$\begin{array}{c} +0.\ 11 \\ +0.\ 12 \\ -0.\ 10 \\ -0.\ 23 \\ +0.\ 06 \end{array}$	$\begin{bmatrix} a \ ^4F_{4 \mid 2} - 44758^{\circ}_{4 \mid 2} \\ 23450_{2 \mid 4} - 53338^{\circ}_{3 \mid 4} \\ 23450_{2 \mid 4} - 53329^{\circ}_{1 \mid 4} \\ a \ ^4F_{1 \mid 2} - z \ ^2S^{\circ}_{0 \mid 2} \\ 26227_{2 \mid 4} - 56084^{\circ}_{1 \mid 2} \end{bmatrix}$	6 7 7	
3348. 876 3349. 323 3350. 634 3352. 388 3352. 954	$\begin{array}{c} 4 \\ 3 \\ 12 \\ 3 \\ 20A \end{array}$	$\begin{array}{c} 40 \\ 8 \\ 30 \\ 10 \\ 15 \end{array}$	29852. 18 29848. 20 29836. 52 29820. 91 29815. 88	$\begin{array}{c} +0.13 \\ +0.20 \\ +0.12 \\ +0.09 \\ +0.03 \end{array}$	$\begin{array}{c} 22503_{1}\cancel{\ -} 52355_{0}\cancel{\ -} \\ 19276_{2}\cancel{\ -} 49124_{3}\cancel{\ -} \\ 20455_{1}\cancel{\ -} 50292_{2}^{\circ} \\ a~^{4}\mathrm{D}_{1}^{\circ}\cancel{\ -} 44455_{0}^{\circ}\cancel{\ -} \\ 25672_{2}\cancel{\ -} 55488_{1}^{\circ}\cancel{\ -} \end{array}$	6 res	
3356. 241 3358. 292 3358. 608 3359. 274 3360. 326	4 <i>A</i> 50 3	2 5 200 10 30	29786. 68 29768. 49 29765. 69 29759. 79 29750. 47	$\begin{array}{c} +0.17 \\ -0.01 \\ -0.04 \\ -0.23 \\ +0.05 \end{array}$	$\begin{array}{c} 24918_{132} - 54704_{234}^{\circ} \\ 24991_{132} - 54760_{034}^{\circ} \\ a \ ^{4}G_{334} - 46355_{234}^{\circ} \\ 19070_{432} - 48830_{334}^{\circ} \\ 19404_{032} - 49154_{034}^{\circ} \end{array}$	4 res	
3361. 104 3361. 748 3362. 595 3363. 721 3364. 351	40 <i>A</i> 10	100 6 3 30 4	29743. 58 29737. 89 29730. 39 29720. 44 29714. 88	$\begin{array}{c} -0.08 \\ +0.09 \\ +0.23 \\ -0.02 \\ +0.02 \end{array}$	$\begin{array}{c} a^{4}\mathrm{P}_{0}\!_{3}\!$	res	
3364. 588 3366. 718 3369. 561 3369. 795 3370. 240	$\frac{1}{2}$	3 30 3 4 3	29712. 79 29693. 99 29668. 93 29666. 87 29662. 96	$\begin{array}{c} -0.26 \\ +0.09 \\ -0.02 \\ 0.00 \\ -0.06 \end{array}$	$\begin{array}{c} 24991_{134} - 54704_{234}^2 \\ 24804_{334} - 54498_{334}^2 \\ 22194_{334} - 51868_{334}^2 \\ 23234_{434} - 52901_{334}^2 \\ 23450_{234} - 53113_{234}^2 \end{array}$	res	

Table 3. Classified lines of Wii—Continued

Wavelength (Å)	Inter	nsity	Wave numb	e^{-1}	Combination	Zeeman	
	Arc	Spark	Observed	<i>O</i> – <i>C</i>		effect	
Air		-					
3372. 202 3374. 866 3376. 146 3379. 028 3379. 825	2 3 30 4	$ \begin{array}{r} 15 \\ 30 \\ 300 \\ 40 \\ 2 \end{array} $	29645. 70 29622. 30 29611. 07 29585. 81 29578. 84	$\begin{array}{c} +0.01 \\ +0.02 \\ -0.01 \\ +0.06 \\ +0.06 \end{array}$	$\begin{array}{c} 30633_{4}, -60278_{4}, \\ a^{4}G_{4}, -46175_{3}, \\ a^{4}D_{3}, -44758_{4}, \\ a^{4}D_{3}, -46175_{3}, \\ a^{4}G_{3}, -46175_{3}, \\ 19404_{0}, -48982_{1}, \end{array}$	6 res res res	
3380. 681 3382. 598 3383. 091 3384. 888 3386. 502	$\begin{array}{c} 1 \\ 50A \\ 2 \\ 25 \\ 4 \end{array}$	8 40 50 20 20	29571. 35 29554. 59 29550. 28 29534. 60 29520. 52	$ \begin{array}{r} +0.20 \\ +0.41 \\ +0.10 \\ -0.14 \\ +0.17 \end{array} $	$\begin{array}{c} 24804_{312} - 54375_{214}^{\circ} \\ 19276_{214} - 48830_{314}^{\circ} \\ 29341_{412} - 58891_{514}^{\circ} \\ 25169_{112} - 54704_{214}^{\circ} \\ 23046_{312} - 52567_{112}^{\circ} \end{array}$		
3386. 933 3387. 634 3389. 544 3389. 985 3390. 324	1	$\begin{array}{c} 3 \\ 15 \\ 2 \\ 1 \\ 20 \end{array}$	29516. 76 29510. 66 29494. 03 29490. 19 29487. 24	$egin{array}{l} + 0.16 \\ + 0.40 \\ - 0.01 \\ + 0.05 \\ + 0.10 \\ \end{array}$	$\begin{array}{c} 28491_{114} - 58007_{114}^{\circ} \\ 26929_{514} - 56439_{614}^{\circ} \\ 24991_{114} - 54485_{014}^{\circ} \\ 25672_{214} - 55162_{214}^{\circ} \\ 19637_{214} - 49124_{314}^{\circ} \end{array}$	res	
3394. 450 3394. 907 3395. 712 3398. 690 3398. 922	2 1 15	$ \begin{array}{c} 15 \\ 3 \\ 2 \\ 1 \\ 120 \end{array} $	29451. 40 29447. 44 29440. 45 29414. 66 29412. 65	$ \begin{array}{r} +0.16 \\ +0.33 \\ +0.05 \\ +0.09 \\ +0.02 \end{array} $	$\begin{array}{c} 23450_{2}, -52901_{3}, \\ 26929_{5}, -56376_{5}, \\ 25045_{0}, -54485_{0}, \\ 23955_{5}, -53369_{4}, \\ 1800_{3}, -47413_{2}, \end{array}$	7	
3401. 884 3402. 194 3404. 082 3406. 086 3406. 588	30 2 1	$ \begin{array}{r} 300 \\ 40? \\ \hline 1 \\ 12 \\ 20 \end{array} $	29387. 04 29384. 37 29368. 07 29350. 79 29346. 47	$ \begin{array}{r} +0.04 \\ +0.11 \\ +0.07 \\ +0.09 \\ +0.15 \end{array} $	$\begin{array}{c} a\ ^4\mathrm{D}_{23'}-44354^{\circ}_{23'}\\ 24991_{13'}-54375^{\circ}_{23'}\\ 29341_{43'}-58709^{\circ}_{33'}\\ 25672_{23'}-55022^{\circ}_{33'}\\ 29341_{43'}-58687^{\circ}_{43'} \end{array}$	res	
3406. 824 3407. 450 3408. 214 3410. 170 3412. 736	$ \begin{array}{c} 30A \\ 2 \\ 2 \\ 1 \\ 3 \end{array} $	$ \begin{array}{c} 40 \\ 10 \\ 5 \\ 25 \\ 30 \end{array} $	29344. 43 29339. 04 29332. 47 29315. 64 29293. 60	+0.14 $+0.16$ $+0.19$ -0.09 $+0.08$	$\begin{array}{c} a ^4\mathrm{P}_{11\!/2} - 39936^{\circ}_{21\!/2} \\ 27273_{31\!/2} - 56612^{\circ}_{31\!/2} \\ 23234_{41\!/2} - 52567^{\circ}_{41\!/2} \\ 25169_{11\!/2} - 54485^{\circ}_{01\!/2} \\ 18990_{11\!/2} - 48284^{\circ}_{21\!/2} \end{array}$	res	
3415. 406 3416. 370 3416. 623 3417. 620 3419. 720	4 20	$\begin{array}{c} 6 \\ 2 \\ 100 \\ 3 \\ 5 \end{array}$	29270. 70 29262. 44 29260. 27 29251. 74 29233. 77	+0.16 $+0.39$ -0.13 $+0.14$	$\begin{array}{c} 27273_{312} - 56544_{234}^2 \\ 19070_{432} - 48332_{532}^2 \\ 24804_{332} - 54056_{332}^2 \\ 26158_{432} - 55392_{432}^2 \end{array}$		
3421. 134 3421. 430 3422. 742 3424. 436 3426. 20	4 1 5	$ \begin{array}{c} 40 \\ 5 \\ 6 \\ 50 \\ 4 \end{array} $	29221. 69 29219. 17 29207. 97 29193. 52 29178. 5	$ \begin{array}{r} +0.12 \\ +0.07 \\ +0.17 \\ +0.20 \\ +0.3 \end{array} $	$\begin{array}{c} 24804_{3}, -54026_{2}, \\ 24918_{1}, -54137_{1}, \\ a \ ^4D_{3}, -44354_{2}, \\ 19637_{2}, -48830_{3}, \\ 31100_{5}, -60278_{4}, \end{array}$	4 res	
3430. 558 3430. 739 3435. 636 3435. 710 3437. 233	$\begin{array}{c} 1-\\ 30A\\ 3\end{array}$	$ \begin{array}{c} 1 \\ 8 \\ 4 \\ 6 \\ 20? \end{array} $	29141. 42 29139. 89 29098. 35 29097. 73 29084. 83	$ \begin{array}{r} +0.12 \\ +0.11 \\ +0.29 \\ -0.17 \\ +0.05 \end{array} $	$\begin{array}{c} 20039_{34} - 49181^{4}_{44} \\ 27273_{32} - 56418^{4}_{44} \\ 28631^{3}_{34} - 57729^{3}_{34} \\ 23803^{3}_{34} - 52901^{3}_{34} \\ 20039_{34} - 49124^{3}_{34} \end{array}$	d res	
3440. 583 3440. 644 3442. 493 3443. 167 3444. 934	4 2	$ \begin{array}{c} 20 \\ 200 \\ 20 \\ 2 \\ 2 \end{array} $	29056. 51 29056. 00 29040. 40 29034. 71 29019. 82	$ \begin{array}{r} + 0.10 \\ + 0.06 \\ + 0.18 \\ + 0.03 \\ + 0.04 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{G}_{5 \underline{4}}\!-\!z{}^{6}\mathrm{F}_{4 \underline{4}}^{2}\\ 33910_{5 \underline{4}}\!-\!62966_{5 \underline{4}}^{2}\\ 23046_{3 \underline{4}}\!-\!52068_{3 \underline{4}}^{2}\\ 24991_{1 \underline{4}}\!-\!54026_{2 \underline{4}}^{2}\\ 25209_{4 \underline{4}}\!-\!5422\theta_{5 \underline{4}}^{2}\end{array}$	res	
3449. 862 3451. 166 3452. 494 3454. 962 3455. 015		$ \begin{array}{r} 100 \\ 10 \\ 30 \\ 30d \end{array} $	$28978. \ 36$ $28967. \ 41$ $28956. \ 27$ $\left\{\begin{array}{c} 28935. \ 54 \\ 28935. \ 14 \end{array}\right.$	$ \begin{array}{c} + 0.05 \\ + 0.08 \\ + 0.10 \\ + 0.24 \\ + 0.17 \end{array} $	$\begin{array}{c} a{}^{4}\mathrm{F}_{3 \downarrow 4}-42390_{3 \downarrow 4}^{\circ} \\ 25169_{1 \downarrow 2}-54137_{1 \downarrow 4}^{\circ} \\ a{}^{4}\mathrm{P}_{2 \downarrow 2}-42390_{3 \downarrow 4}^{\circ} \\ 26227_{2 \downarrow 4}-55162_{2 \downarrow 4}^{\circ} \\ 22503_{1 \downarrow 2}-51438_{2 \downarrow 4}^{\circ} \end{array}$	6 7 res 5	

Table 3. Classified lines of Wii—Continued

Wavelength (Å)	Inter	nsity	Wave number (cm^{-1})		Combination	Zeeman	
	Arc	Spark	Observed	O-C		effect	
Air							
3460. 377 3463. 510 3464. 446 3465. 062 3468. 225 3469. 266	$\begin{array}{c} 1 \\ 20 \\ 1 \\ 1 \\ 4 \\ 2 \end{array}$	$ \begin{array}{c} 10 \\ 150 \\ 20 \\ 10 \\ 6 \\ 25 \end{array} $	28890. 31 28864. 18 28856. 38 28851. 25 28824. 94 28816. 29	$ \begin{array}{r} +0.12 \\ +0.08 \\ +0.01 \\ +0.08 \\ +0.16 \\ +0.60 \end{array} $	$\begin{array}{c} 19442_{6} - 4832_{54}^{\circ} - 4832_{54}^{\circ} \\ a^{4} P_{23} - 42298_{14}^{\circ} \\ 25169_{13} - 54026_{23}^{\circ} \\ 22194_{34} - 51046_{34}^{\circ} \\ 23450_{23} - 52276_{34}^{\circ} \\ 23046_{33} - 51863_{34}^{\circ} \end{array}$	7 res 6	
3470. 746 3471. 230 3471. 698 3472. 310 3472. 896	1	$\begin{bmatrix} 1 & 6 & \\ 3 & \\ 10 & 4 \end{bmatrix}$	28804. 00 28799. 99 28796. 10 28791. 03 28786. 17	$ \begin{array}{c} 0.00 \\ +0.15 \\ +0.24 \\ +0.07 \\ 0.00 \end{array} $	$\begin{array}{c} 33910_{512} - 62714_{614} \\ 26158_{412} - 54958_{314} \\ 26227_{212} - 55022_{314} \\ 20039_{312} - 48850_{314} \\ 20455_{114} - 49242_{314} \end{array}$		
3475. 288 3475. 936 3476. 496 3477. 092 3481. 910	$\begin{array}{c} 2 \\ 1 \\ 30A \\ 1 \\? \end{array}$	80 10 8 4 10	28766. 36 28761. 00 28756. 36 28751. 43 28711. 65	$egin{array}{c} +0.04 \\ 0.00 \\ +0.27 \\ +0.09 \\ -0.01 \end{array}$	$\begin{array}{c} 30633_{4}, -593994_{12} \\ 28491_{13}, -57252_{34} \\ 28118_{23}, -56874_{23} \\ 22503_{13}, -51254_{13} \\ 28377_{53}, -570894_{32} \end{array}$	res 7 6	
3483. 490 3486. 122 3487. 080 3489. 42 3489. 785	10	3 50 3 3 3	28698. 63 28676. 96 28669. 08 28649. 86 28646. 86	+0.06 $+0.17$ $+0.11$ $+0.15$ $+0.17$	$\begin{array}{c} 20455_{1}, -49154_{0}, \\ a^{4}G_{2}, -44911_{1}, \\ 22194_{3}, -50863_{4}, \\ 28118_{2}, -56768_{3}, \\ 20534_{5}, -49181_{4}, \end{array}$	res	
3490. 313 3490. 912 3491. 127 3492. 056 3492. 46	8 12 8 3 1	40 50 25 40 3	28642. 53 28637. 61 28635. 85 28628. 23 28624. 92	$ \begin{array}{r} +0.19 \\ +0.12 \\ +0.12 \\ +0.07 \\ -0.04 \end{array} $	$\begin{array}{c} a {}^{4}\mathrm{G}_{2}{}_{5}-z{}^{6}\mathrm{F}_{3}{}_{3}{}_{5}\\ a{}^{4}\mathrm{F}_{3}{}_{5}-z{}^{6}\mathrm{F}_{2}{}_{5}{}_{5}\\ a{}^{4}\mathrm{F}_{2}{}_{5}-39936{}_{2}{}_{3}{}_{5}\\ 23234{}_{4}{}_{5}-51863{}_{3}{}_{5}{}_{2}\\ 34091{}_{4}{}_{5}-62715{}_{4}{}_{3}{}_{5}\end{array}$	res 4 6 re	
3493. 62 3498. 134 3503. 22 3503. 656 3505. 05 3507. 17	1 — 1	5 3 30 2 2	28615. 42 28578. 49 28537. 00 28533. 45 28522. 1 28504. 87	+0.07 $+0.11$ $+0.05$ 0.0 -0.01	$\begin{array}{c} a\ ^4\mathrm{P}_{2\flat_2} - z\ ^6\mathrm{F}_{2\flat_2}^\circ\\ a\ ^4\mathrm{P}_{1\flat_2} - z\ ^6\mathrm{F}_{1\flat_2}^\circ\\ 24804_{3\flat_2} - 53338_{3\flat_2}^\circ\\ 24918_{1\flat_2} - 53440_{0\flat_2}^\circ\\ 24918_{1\flat_2} - 53422_{1\flat_2}^\circ\end{array}$		
3508. 54 3508. 664 3511. 269 3512. 077 3512. 98	1 2 1	3 50 15 20 3	28493. 73 28492. 73 28471. 59 28465. 04 28457. 72		$\begin{array}{c} 28118_{21/2} - 56612^3_{31/2} \\ 18000_{31/2} - z^6 F_{31/2} \\ 23803_{31/2} - 52276^3_{31/2} \\ 25672_{21/2} - 54137^3_{11/2} \\ 28631_{31/2} - 57089^3_{41/2} \end{array}$	res	
3514. 106 3514. 990 3516. 234 3517. 39 3518. 56	1	20 4 15 3 2	28448. 60 28441. 45 28431. 39 28422. 04 28412. 60	$ \begin{array}{r} -0.01 \\ +0.18 \\ -0.03 \\ -0.33 \\ +0.07 \end{array} $	$\begin{array}{c} 24991_{11/2}-53440_{8/4}\\ 28491_{11/2}-56932_{11/2}^{\circ}\\ 24991_{11/2}-53422_{11/2}^{\circ}\\ 18990_{11/2}-47413_{21/2}^{\circ}\\ 23450_{21/2}-51863_{31/2}^{\circ}\\ \end{array}$		
3521. 57 3522. 102 3523. 133	1	2 10 8	28388. 31 28384. 02 28375. 71	$ \begin{array}{c} -0.05 \\ +0.03 \end{array} $	$\begin{array}{c} 29341_{4\frac{1}{2}} -57729_{3\frac{1}{2}} \\ 28491_{1\frac{1}{2}} -56874_{2\frac{1}{2}} \end{array}$		
3525. 733 3526. 817	3	30 50	28354. 79 28346. 08	$+0.09 \\ +0.06$	$\begin{array}{c} 18000_{3\frac{1}{2}} - 46355_{\frac{9}{2}\frac{1}{2}} \\ 34091_{\frac{4}{2}} - 62437_{\frac{4}{4}\frac{1}{2}} \end{array}$	res 6	
3527. 040 3529. 546 3531. 440 3532. 680 3534. 12	—? 10 2	30 100 5 3 5	28344. 28 28324. 16 28308. 97 28299. 03 28287. 50	$ \begin{array}{r} +0.14 \\ +0.12 \\ +0.12 \\ +0.15 \\ -0.01 \end{array} $	$\begin{array}{c} 20780_{4 \downarrow 2} - 49124_{3 \downarrow 4} \\ a~^{4}G_{4 \downarrow 4} - z~^{6}F_{3 \downarrow 4} \\ 24804_{3 \downarrow 2} - 53113_{2 \downarrow 4}^{2} \\ 31100_{5 \downarrow 2} - 59399_{4 \downarrow 2}^{2} \\ a~^{4}G_{3 \downarrow 2} - z~^{6}F_{3 \downarrow 2}^{3} \end{array}$	res	
3534. 498 3536. 12 3536. 268 3538. 40 3538. 55	3 4 (—?)	25 5 80 2 3	28284. 48 28271. 50 28270. 32 28253. 29 28252. 09	$\begin{array}{c c} -0.03 \\ -0.07 \\ +0.02 \\ +0.18 \\ +0.09 \end{array}$	$\begin{array}{c} 25045_{0}\cancel{\ \ } -53329^\circ_{1}\cancel{\ \ } \\ 26227_{2}\cancel{\ \ } -54498^\circ_{3}\cancel{\ \ } \\ 25169_{1}\cancel{\ \ } -53440^\circ_{3}\cancel{\ \ } \\ 25169_{1}\cancel{\ \ } -53422^\circ_{1}\cancel{\ \ } \\ 28187_{0}\cancel{\ \ } -56439^\circ_{3}\cancel{\ \ } \end{array}$	6? 6?	

Table 3. Classified lines of Wii—Continued

Wavelength (Å)	Intensity		Wave number (cm ⁻¹)		Combination	Zeeman	
	Arc	Spark	Observed	O-C		effect	
Air							
3539. 455 3544. 460 3546. 474 3547. 00 3548. 258	$ \begin{array}{c} 3A \\ 5 \\ 3A \\ 1 \\ 15A \end{array} $	$\begin{array}{c} 4 \\ 25 \\ 3 \\ \end{array}$	28244. 87 28204. 98 28188. 97 28184. 79 28174. 79	$\begin{array}{c} +0.13 \\ +0.02 \\ -0.01 \\ +0.23 \\ +0.07 \end{array}$	$\begin{array}{c} 20039_{34} - 48284_{234}^2 \\ a^4 G_{432} - 44758_{434}^2 \\ 1899_{013} - 47179_{034}^2 \\ 19404_{012} - 47588_{134}^2 \\ 18000_{332} - 46175_{332}^2 \end{array}$	res res	
3549. 052 3550. 14 3551. 528 3553. 020 3554. 068	25 1	150 3 10 5 3	28168. 49 28159. 86 28148. 85 28137. 03 28128. 74	$\begin{array}{c} +0.06 \\ +0.02 \\ +0.03 \\ +0.22 \\ -0.05 \end{array}$	$\begin{array}{c} a {}^{4}\mathrm{G}_{33_{2}}\!-\!44758_{43_{2}}^{*}\\ 25169_{13_{2}}\!-\!53329_{13_{2}}^{*}\\ 26227_{23_{2}}\!-\!54375_{23_{2}}^{*}\\ 19276_{23_{2}}\!-\!47413_{23_{2}}^{*}\\ 25209_{43_{2}}\!-\!53338_{33_{2}}^{*}\end{array}$	res	
3554, 93 3555, 166 3557, 914 3560, 67 3561, 456	12 5	2 120 30 2 5	28121. 92 28120. 05 28098. 33 28076. 58 28070. 39	$\begin{array}{c} -0.04 \\ +0.07 \\ +0.08 \\ +0.04 \\ +0.07 \end{array}$	$\begin{array}{c} 24991_{132} - 53113^{\circ}_{232} \\ a^{4}G_{232} - 44354^{\circ}_{232} \\ 22194_{332} - 50292^{\circ}_{232} \\ 30633_{432} - 58709^{\circ}_{332} \\ 26158_{432} - 54229^{\circ}_{332} \end{array}$	res	
3562. 508 3563. 59 3563. 998 3565. 834 3566. 73	1 1 1	5 3 2 3 3	28062. 10 28053. 6 28050. 37 28035. 92 28028. 9	$ \begin{array}{r} +0.30 \\ +0.2 \\ +0.05 \\ +0.08 \\ -0.3 \end{array} $	$\begin{array}{c} 28377_{51\!/2} - 56439_{61\!/2}^8 \\ 28491_{11\!/2} - 56544_{21\!/2}^4 \\ 20780_{41\!/2} - 48830_{31\!/2}^3 \\ 28377_{51\!/2} - 56413_{41\!/2}^4 \\ 26929_{51\!/2} - 54958_{51\!/2}^8 \end{array}$	4	
3571. 972 3572. 474 3572. 830 3574. 82 3577. 59	3 60 1	8 200 5 2 2	27987. 75 27983. 82 27981. 03 27965. 4 27943. 8	$\begin{array}{c} +0.22 \\ +0.02 \\ +0.15 \\ 0.0 \\ +0.2 \end{array}$	$\begin{array}{c} 23450_{2}\% - 51438_{2}\% \\ a^{4}P_{1}\% - z^{2}P_{3}\% \\ 28631_{3}\% - 566612_{3}\% \\ 28118_{2}\% - 56084_{1}\% \\ 25169_{1}\% - 53113_{2}\% \end{array}$	res 6	
3579. 64 3581. 876 3582. 75 3583. 458 3584. 68	2 1 1	3 6 2 8 3	27927. 8 27910. 36 27903. 56 27898. 04 27888. 53	$\begin{array}{c} -0.1 \\ +0.16 \\ +0.14 \\ +0.24 \\ +0.09 \end{array}$	$\begin{array}{c} 22503_{13^{\prime}} - 50430_{13^{\prime}}^{\circ} \\ 26227_{23^{\prime}} - 54137_{13^{\prime}}^{\circ} \\ 19276_{23^{\prime}} - 47179_{13^{\prime}}^{\circ} \\ 26158_{43^{\prime}} - 54056_{43^{\prime}}^{\circ} \\ 27273_{33^{\prime}} - 55162_{23^{\prime}}^{\circ} \end{array}$	res	
3592. 418 3596. 171 3597. 48 3598. 45 3600. 594	$ \begin{array}{c} 50 \\ \hline 2 \\ \hline 2 \end{array} $?	150 30 2 20 1	27828. 46 27799. 42 27789. 31 27781. 8 27765. 27	$ \begin{cases} -0.09 \\ +0.13 \\ +0.18 \\ +0.04 \\ 0.0 \\ +0.12 \end{cases} $	$\begin{array}{c} 20455_{1}\cancel{\cancel{4}} - 48284^\circ_{2}\cancel{\cancel{4}}\\ a^4 F_{2}\cancel{\cancel{4}} - z^6 F^\circ_{1}\cancel{\cancel{4}}\\ 26227_{2}\cancel{\cancel{4}} - 54026^\circ_{2}\cancel{\cancel{4}}\\ 22503_{1}\cancel{\cancel{4}} - 50292^\circ_{3}\cancel{\cancel{4}}\\ 28631_{3}\cancel{\cancel{4}} - 56413^\circ_{4}\cancel{\cancel{4}}\\ a^4 G_{3}\cancel{\cancel{4}} - 44354^\circ_{2}\cancel{\cancel{4}} \end{array}$	5 r 4	
3600. 933 3601. 55 3602. 455 3602. 700 3608. 280	1 3 —?	6 1 8 1 10	27762. 66 27757. 90 27750. 93 27749. 04 27706. 13	$\begin{array}{c} +0.18 \\ +0.10 \\ +0.11 \\ +0.04 \end{array}$	$\begin{array}{c} 24804_{3\downarrow_2} - 52567^4_{4\downarrow_4} \\ 25045_{0\downarrow_2} - 52803^*_{1\downarrow_2} \\ 25672_{2\downarrow_2} - 53422^*_{1\downarrow_2} \\ 27273_{3\downarrow_2} - 55022^*_{3\downarrow_2} \end{array}$		
3610. 044 3611. 826 3613. 530 3613. 785 3614. 606	1 1 30 1	20 20 4 150 8	27692. 59 27678. 92 27665. 88 27663. 93 27657. 64	$\begin{array}{c} +0.13 \\ +0.02 \\ -0.03 \\ +0.09 \\ +0.09 \end{array}$	$\begin{array}{c} 25209_{4}, -52901_{3}, \\ 33910_{5}, -61589_{3}, \\ 25672, -53338_{3}, \\ a^{4}D_{1}, -42298_{1}, \\ 25672, -53329_{1}, \end{array}$	res 6	
3617. 652 3618. 434 3628. 413 3628. 924 3630. 080	1 3 2 2	4 25 30 25 3	27634. 36 27628. 39 27552. 40 27548. 52 27539. 75	$ \left\{ \begin{array}{l} +0.05 \\ +0.17 \\ +0.21 \\ +0.05 \\ 0.00 \\ 0.15 \end{array} \right. $	$\begin{array}{c} 18990_{132} - 46625_{332} \\ 23803_{332} - 51438_{332}^2 \\ 23234_{432} - 50863_{332}^2 \\ 20780_{432} - 48332_{532}^2 \\ 25045_{032} - 52593_{032}^2 \\ 23955_{532} - z ^6\mathrm{F}_{332}^2 \end{array}$	res	
3630. 950 3639. 213 3641. 403 3645. 594 3646. 577	60 10 10	8 1 120 100 50	27533. 15 27470. 64 27454. 12 27422. 56 27415. 16	$\begin{array}{c} +0.10 \\ +0.03 \\ +0.03 \\ +0.11 \\ +0.07 \end{array}$	$\begin{bmatrix} a^{4}\mathrm{F}_{4\%} - 42390_{334}^{\circ}\\ 24804_{332} - 52275_{332}^{\circ}\\ a^{4}\mathrm{F}_{132} - z^{6}\mathrm{F}_{512}^{\circ}\\ a^{4}\mathrm{D}_{232} - 42390_{332}^{\circ}\\ a^{4}\mathrm{D}_{132} - z^{6}\mathrm{F}_{232}^{\circ} \end{bmatrix}$	7 res	

Table 3. Classified lines of Wii—Continued

Wavelength	Inte	nsity	Wave numb	$\mathrm{er}\ (\mathrm{cm}^{-1})$	Combination	Zeeman	
(Å)	Arc	Spark	Observed	O-C	. Company	effect	
Air							
3652. 114 3653. 324 3654. 74 3657. 583 3657. 871	10 2 40 10	20 10 10 120 40	27373. 60 27364. 54 27353. 94 27332. 67 27330. 52	$ \begin{array}{c} + 0.01 \\ + 0.10 \\ + 0.04 \\ - 0.02 \\ + 0.14 \end{array} $	$\begin{array}{c} 20039_{3\downarrow2}-47413_{3\downarrow4}^{\circ}\\ 18990_{1\downarrow2}-46355_{2\downarrow4}^{\circ}\\ 30633_{4\downarrow2}-57986_{4\downarrow2}^{\circ}\\ a^{4}P_{0\downarrow2}-z^{6}F_{0\downarrow4}^{\circ}\\ a^{4}D_{2\downarrow2}-42298_{1\downarrow2}^{\circ} \end{array}$	res	
3660. 604 3670. 65 3672. 547 3677. 405 3678. 210	$\begin{array}{c} 30A \\ 5 \\ 1 \\ 1 \end{array}$	8 1? 25 8 10	27310. 12 27235. 37 27221. 31 27185. 35 27179. 40	$ \begin{array}{c} + 0.21 \\ + 0.10 \\ + 0.12 \\ + 0.11 \\ + 0.07 \end{array} $	$\begin{array}{c} 25045_{01/2} - 52355_{01/2} \\ 34091_{41/2} - 61326_{31/2} \\ 19404_{01/2} - 46625_{01/2} \\ 25169_{11/2} - 52355_{01/2} \\ 26158_{41/2} - 53338_{31/2} \end{array}$	6 res	
3687, 510 3689, 596 3691, 463 3691, 846 3692, 864	$\frac{1}{4}$	2 10 2 40 2	27110. 85 27095. 52 27081. 82 27079. 01 27071. 55	$ \begin{array}{r} -0.22 \\ +0.06 \\ +0.19 \\ +0.13 \\ -0.53 \end{array} $	$\begin{array}{c} 26227_{214} - 53338^3_{314} \\ 24991_{132} - 52087^2_{232} \\ a^4 D_{232} - z^6 F^3_{314} \\ 19276_{232} - 46355^2_{232} \\ 29341_{432} - 56413^3_{432} \end{array}$	res	
3694. 525 3705. 310 3707. 478 3708. 494 3712. 202	40 <i>A</i> 1 3 8 3	40 4 2 60 12	27059. 38 26980. 62 26964. 84 26957. 45 26930. 53	$ \begin{array}{c} + 0.17 \\ + 0.17 \\ + 0.06 \\ + 0.05 \\ + 0.09 \end{array} $	$\begin{array}{c} 23803_{312} - 50863_{412}^{\circ} \\ 23450_{232} - 50430_{132}^{\circ} \\ 34091_{432} - 61055_{432}^{\circ} \\ 20455_{132} - 47413_{232}^{\circ} \\ 22194_{332} - 49124_{332}^{\circ} \end{array}$	5	
3714, 033 3715, 832 3716, 062 3716, 550 3719, 66	$\begin{smallmatrix} 3\\10\\2\end{smallmatrix}$	2 8 50 2 3	26917. 25 26904. 22 26902. 55 26899. 02 26876. 53	$egin{array}{l} +0.\ 10 \\ +0.\ 26 \\ +0.\ 12 \\ +0.\ 12 \\ +0.\ 05 \end{array}$	$\begin{array}{c} 25169_{11/2}-52087^{\circ}_{21/2}\\ 28118_{21/2}-55022^{\circ}_{31/2}\\ a^{4}\mathrm{D}_{31/2}-z^{6}\mathrm{F}^{\circ}_{21/2}\\ 19276_{21/2}-46175^{\circ}_{31/2}\\ 18000_{31/2}-z^{6}\mathrm{F}^{\circ}_{31/2} \end{array}$	res	
3721. 102 3732. 684 3736. 213 3736. 91 3741. 706	$2 \\ 12 \\ 30A$	$ \begin{array}{c} 10 \\ 2 \\ 60 \\ 2 \\ 12 \end{array} $	26866. 12 26782. 76 26757. 46 26752. 5 26718. 18	+0.08 $+0.06$ $+0.1$ $+0.16$	$\begin{array}{c} 27273_{31/2} - 54056_{31/2}^{4} \\ 18000_{31/2} - 44758_{41/2}^{4} \\ 27273_{31/2} - 54026_{21/2}^{2} \\ 19637_{21/2} - 46355_{31/2}^{2} \end{array}$	res	
3745. 530 3750. 744 3753. 162 3753. 620 3760. 364	4 1 2	40 8 3 10 20	26690. 90 26653. 80 26636. 63 26633. 38 26585. 61	$ \begin{array}{r} +0.17 \\ +0.05 \\ +0.01 \\ +0.02 \\ -0.10 \end{array} $	$\begin{array}{c} 22139_{2 / 2} - 48830^{8}_{3 / 2} \\ 25209_{4 / 2} - 51866^{3}_{3 / 2} \\ 22194_{3 / 2} - 48830^{3}_{3 / 2} \\ 24804_{3 / 2} - 51478^{2}_{2 / 2} \\ 28118_{2 / 2} - 54704^{3}_{2 / 2} \end{array}$	7	
3763. 616 3768. 97 3772. 05 3774. 14 3777. 35	$ \begin{array}{c} 2 \\ 8A \\ \hline 1 \end{array} $	$\begin{array}{c} 2\\ 4\\ 3\\ 20\\ 10 \end{array}$	26562, 64 26524, 91 26503, 25 26488, 58 26466, 07	$ \begin{array}{r} -0.10 \\ +0.06 \\ +0.54 \\ +0.09 \\ +0.01 \end{array} $	$\begin{array}{c} 18990_{1/2}-45553_{1/2}^{\circ}\\ a^{4}\mathrm{F}_{3/2}-39936_{2/2}^{\circ}\\ a^{4}\mathrm{P}_{2/2}-39936_{3/2}^{\circ}\\ 23803_{3/2}-50292_{2/2}^{\circ}\\ 18990_{1/2}-45457_{0/2}^{\circ} \end{array}$		
3778. 686 3785. 58 3789. 726 3804. 481 3814. 418	$30A$ $\begin{array}{c} 1 \\ 5 \end{array}$	8 20 20 2 2 6	26456. 71 26408. 5 26379. 64 26277. 3 26208. 88	$ \begin{array}{r} +0.27 \\ +0.1 \\ -0.03 \\ +0.1 \\ -0.32 \end{array} $	$\begin{array}{c} 30633_{4}, -57089_{4}, \\ 26158_{4}, -52567_{4}, \\ 28118_{2}, -54498_{3}, \\ 19276_{2}, -45553_{1}, \\ 25045_{0}, -51254_{1}, \end{array}$		
3822. 198 3823. 062 3827. 89 3833. 61 3837. 238	2 3 2 4	4 10 4 10	26155. 53 26149. 62 26116. 6 26077. 7 26053. 02	+0. 10 0. 00 +0. 1 0. 0 +0. 08	$\begin{array}{c} a{}^{4}\mathrm{G}_{21_{2}}\!-\!42390^{\circ}_{31_{2}} \\ 19404_{03_{2}}\!-\!45553^{\circ}_{31_{2}} \\ 26158_{41_{2}}\!-\!52275^{\circ}_{31_{2}} \\ 23046_{31_{2}}\!-\!49124^{\circ}_{31_{2}} \\ 19404_{03_{2}}\!-\!45457^{\circ}_{01_{2}} \end{array}$	res	
3846, 688 3851, 131 3851, 570 3856, 828 3859, 986	$\frac{2}{12}$? $\frac{1}{3}$? $\frac{1}{2}$	2 60 6 6	25989. 02 25959. 03 25956. 07 25920. 69 25899. 48	$\begin{array}{c} +0.02 \\ -0.05 \\ +0.04 \\ +0.02 \\ +0.01 \end{array}$	$\begin{array}{c} 31100_{5 \downarrow 2} - 57089_{4 \downarrow 4}^{\circ} \\ 20534_{5 \downarrow 2} - z^{6}F_{4 \downarrow 4}^{\circ} \\ a^{4}D_{0 \downarrow 2} - z^{6}F_{1 \downarrow 4}^{\circ} \\ 18990_{1 \downarrow 2} - 44911_{1 \downarrow 4}^{\circ} \\ 20455_{1 \downarrow 2} - 46355_{2 \downarrow 4}^{\circ} \end{array}$	res 6	

Table 3. Classified lines of W 11—Continued

Wavelength	Intensity		Wave number (cm ⁻¹)		Combination	Zeeman
(Å)	Arc	Spark	Observed	<i>O</i> – <i>C</i>		effect
Air						
3872. 656 3877. 29 3877. 65 3883. 336 3887. 951	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 2 \\ 1 \end{array}$	10 15 3 3	25814. 75 25783. 9 25781. 5 25743. 76 25713. 20	$ \begin{array}{r} +0.14 \\ 0.0 \\ +0.1 \\ -0.20 \\ +0.15 \end{array} $	$\begin{array}{c} a ^4\mathrm{G}_{232} \! - z ^6\mathrm{F}_{234}^\circ \\ 23046_{332} \! - \! 48830_{334}^\circ \\ 22503_{132} \! - \! 48284_{234}^\circ \\ 28631_{332} \! - \! 54375_{234}^\circ \\ 20780_{432} \! - \! z ^6\mathrm{F}_{432}^\circ \end{array}$	6
3890. 658 3891. 83 3896. 930 3899. 782 3900. 879	—? 1 3 2 2	2 1 20 3 8	25695. 31 25687. 57 25653. 95 25635. 19 25627. 98	$\begin{array}{c} 0.\ 00 \\ +0.\ 15 \\ +0.\ 18 \\ +0.\ 08 \\ +0.\ 10 \end{array}$	$\begin{array}{c} a{}^{4}\mathrm{P}_{2}\mathrm{_{2}}\!$	6
3905. 79 3909. 276 3915. 456 3935. 43 3936. 653	$ \begin{array}{c} 1 \\ 2 \\ 4 \\ 1 \end{array} $	3 2 5 10 5	25595. 8 25572. 94 25532. 57 25403. 0 25395. 10	$\begin{array}{c} 0.\ 0 \\ +0.\ 11 \\ +0.\ 21 \\ +0.\ 1 \\ +0.\ 06 \end{array}$	$\begin{array}{c} 23234_{4}, -48830_{3}, 4\\ a^{4}P_{1}, -z^{6}F_{0}, 4\\ 23450_{2}, -48982_{1}, 4\\ a^{4}D_{0}, -z^{2}S_{0}, 4\\ 20780_{4}, -46175_{3}, 4\end{array}$	
3936. 782 3938. 10 3939. 43 3951. 067 3955. 606	1 8 3 1	1 3 6 1	25394. 27 25385. 8 25377. 2 25302. 45 25273. 42	$\begin{array}{c} -0.11 \\ 0.0 \\ 0.0 \\ 0.00 \\ +0.06 \end{array}$	$\begin{array}{c} 28631_{3}, -54026_{2}, \\ 25045_{0}, -50430_{1}, \\ 23803_{3}, -49181_{4}, \\ a & ^{4}\mathrm{D}_{1}, -39936_{2}, \\ 22139_{2}, -47413_{2}, \end{array}$	
3960. 87 3691. 192 3964. 096 3983. 292 3986. 38	$\begin{array}{c} 2 \\ -? \\ -? \\ 50A \end{array}$	6 3 6 5 1	25239. 83 25237. 78 25219. 29 25097. 76 25078. 3	$ \begin{array}{r} +0.03 \\ +0.10 \\ +0.04 \\ -0.01 \\ 0.0 \end{array} $	$\begin{array}{c} 19637_{21/2} - z \ ^6F_{31/2} \\ 23046_{31/2} - 48284_{21/2} \\ 22194_{31/2} - 47413_{21/2}^2 \\ 2045_{51/2} - 45553_{11/2}^2 \\ 19276_{21/2} - 44354_{21/2}^2 \end{array}$	6, d
3990. 42 3994. 56 4000. 10 4001. 883 4060. 166	2 1 1 1	2 1 4 2	25052. 9 25027. 0 24992. 3 24981. 17 24622. 58	$ \begin{array}{r} +0.1 \\ +0.1 \\ +0.1 \\ -0.01 \\ +0.06 \end{array} $	$\begin{array}{c} 22535_{0}\text{\ensuremath{\sc i}} - 47588_{14}^{\circ}\\ 23803_{3}\text{\ensuremath{\sc i}} - 48830_{3}\text{\ensuremath{\sc i}}\\ 28377_{5}\text{\ensuremath{\sc i}} - 53369_{4}\text{\ensuremath{\sc i}}\\ 33910_{5}\text{\ensuremath{\sc i}} - 58891_{5}\text{\ensuremath{\sc i}}\\ 28491_{14}\text{\ensuremath{\sc i}} - 53113_{2}\text{\ensuremath{\sc i}} \end{array}$	6
4069. 61 4081. 294 4114. 19 4144. 41 4146. 62	$\begin{array}{c} 1 \\ 4 \\ 1 \\ 1 \\? \end{array}$	10 2	24565. 4 24495. 12 24299. 3 24122. 1 24109. 2	$\begin{array}{c} -0.3 \\ +0.07 \\ -0.08 \\ -0.1 \\ -0.1 \end{array}$	$\begin{array}{c} 26929_{51/2} - z \ ^6F_{51/2}^{\circ} \\ a \ ^4D_{11/2} - z \ ^6F_{11/2}^{\circ} \\ 22194_{31/2} - z \ ^6F_{41/2}^{\circ} \\ 22503_{11/2} - 46625_{01/2}^{\circ} \\ 25045_{01/2} - 49154_{01/2}^{\circ} \end{array}$	6
4157, 030 4165, 60 4175, 58 4257, 82 4262, 75	2 1 5 1 1	5 2 5	24048. 86 23999. 4 23942. 0 23479. 6 23452. 4	$ \begin{array}{c} +0.11 \\ +0.2 \\ 0.0 \\ -0.2 \\ 0.0 \end{array} $	$\begin{array}{c} 18000_{3} \\ 20455_{1} \\ 20455_{1} \\ 44456_{3} \\ 34_{1} \\ 24$	
4263. 81 4289. 28 4298. 26 4323. 392 4335. 58	1 2 1 1 1?	2 6 6	23446. 6 23307. 4 23258. 7 23123. 49 23058. 5	$ \begin{cases} 0.0 \\ 0.0 \\ +0.2 \\ +0.1 \\ +0.04 \\ 0.0 \end{cases} $	$\begin{array}{c} 23046_{312} - z \ ^6F_{412}^{\circ} \\ 28187_{612} - z \ ^6F_{312}^{\circ} \\ 18990_{112} - 42298_{112}^{\circ} \\ 23234_{412} - z \ ^6F_{412}^{\circ} \\ 25209_{412} - 48332_{512}^{\circ} \\ 18990_{112} - z \ ^6F_{212}^{\circ} \end{array}$	
4342, 40 4343, 20 4348, 108 4361, 534 4393, 80	$\begin{array}{c} 2\\ 20A\\ 8A\\ 1 \end{array}$	2 5 25 3 2	23022. 3 23018. 0 22992. 05 22921. 28 22753. 0	$\begin{array}{c} 0.\ 0 \\ +\ 0.\ 1 \\ +\ 0.\ 08 \\ +\ 0.\ 06 \\ +\ 0.\ 1 \end{array}$	$\begin{array}{c} 26158_{4}, -49181_{4}^{\circ} \\ 22535_{0}, -45553_{1}^{\circ} \\ a + 0_{0}, -z + 7_{0}^{\circ} \\ 22535_{0}, -45457_{0}^{\circ} \\ 19637_{2}, -42390_{3}^{\circ} \end{array}$	res res

Table 3. Classified lines of W II—Continued

	1	ABLE 5. C	iassijiea tines	0) W 11—C0.		
Wavelength	Intensity		Wave number (cm ⁻¹)		Combination	Zeeman
(Å)	Arc	Spark	Observed	<i>O</i> – <i>C</i>		effect
Air						
4396. 88	2	2	22737. 0	$\left\{ \begin{array}{c} -0.2 \\ 0.0 \end{array} \right.$	22139 _{21/2} —z ⁶ F _{31/2}	
4421. 836	15A	3	22608. 69	+0.03	$\begin{array}{c} 30633_{4\frac{1}{2}} - 53369_{4\frac{1}{2}} \\ 24804_{3\frac{1}{2}} - 47413_{2\frac{1}{2}} \end{array}$	
4438. 92 4468. 72		$\frac{2}{1}$	22521. 7 22371. 5	$\begin{array}{c} 0.0 \\ -0.1 \end{array}$	$\begin{array}{c} 34091_{412} - 56612_{312}^{3} \\ 23803_{312} - 46175_{312}^{3} \end{array}$	
4508. 50		$\frac{1}{2}$	22174. 1	+0.1	$26158_{4\frac{1}{2}} - 48332_{5\frac{1}{2}}^{2}$	
4542. 144	1	2	22009. 86	$\begin{cases} -0.21 \\ -0.15 \end{cases}$	$25169_{1\frac{1}{2}}$ $-47179_{1\frac{1}{2}}$ $20039_{3\frac{1}{2}}$ $-z^{6}F_{2\frac{1}{2}}$	
4554. 045	1	2 3	21952. 35	$\begin{array}{c c} +0.15 \\ +0.23 \end{array}$	22503114-44455014	
4604. 576 4658. 24	$\frac{1}{2}$	3	21711. 44 21461. 3	+0.14 +0.19	$23046_{3\frac{1}{2}}$ $-44758_{4\frac{1}{2}}^{\circ}$	
4665. 76	$\overset{\scriptscriptstyle 2}{4}A$	2 3	21401. 3 21426. 74	+0.19 +0.06	$\begin{array}{c} 23450_{21/2}44911_{11/2}^{\circ} \\ 23450_{21/2}z_{} {}^{6}\mathrm{F}_{31/2}^{\circ} \end{array}$	
4691. 74	1	2	21308. 1	+0.1	$23046_{31/2}$ — $44354_{21/2}$	
4718. 91 4768. 25	1 1	$\begin{array}{c}2\\3\\2\\1\end{array}$	21185. 4 20966. 2	$\begin{array}{c c} -0.1 \\ +0.1 \end{array}$	$\begin{bmatrix} 25169_{1\frac{1}{2}} - 46355_{\frac{9}{2}\frac{1}{2}} \\ 25209_{\frac{4}{2}} - 46175_{\frac{9}{3}\frac{1}{2}} \end{bmatrix}$	
4782. 35	1		20904. 4	+0.1	$23450_{2\frac{1}{2}}$ $-44354_{2\frac{1}{2}}$	
4864. 565	2	3	20551. 08	+0.10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ū
4959. 33 5021. 324	3 5	$\frac{2}{2}$	20158. 4 19909. 51	$\begin{array}{c c} +0.2 \\ +0.03 \end{array}$	$22139_{21/2}$ $-42298_{11/2}^{\circ}$ $22139_{21/2}$ $-z$ ${}^{6}F_{21/2}^{\circ}$	
5104. 427	6	$\frac{2}{6}$	19585. 37	+0.01	$18990_{1\frac{1}{2}}$ — $z^2S_{0\frac{1}{2}}$	
5114. 59 5131. 83	$\frac{3}{2}$	$\frac{3}{2}$	19546. 46 19480. 8	+0.07 -0.1	$egin{array}{c} 22503_{11/2}-z\ {}^6\mathrm{F}^{\circ}_{21/2}\ 20455_{11/2}-39936^{\circ}_{21/2} \end{array}$	
5214. 41			19172. 3	+0.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
5219. 04	$\frac{2}{3}$?	19155. 3	-0.1	$23234_{41/9}$ — $42390_{31/9}^{\circ}$	
5260. 92 5278. 38	$\frac{4}{8}$	$rac{4}{2}$	19002. 8 18939. 9	$+0.2 \\ +0.1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5304. 17	10	$\frac{2}{4}$	18847. 8	+0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,0
5353. 677	5	3	18673. 54	+0.06	$20455_{1\frac{1}{2}}$ — z 6 F $^{\circ}_{1\frac{1}{2}}$	
5375. 103	3	2	18599. 12	$\left\{ \begin{array}{l} -0.24 \\ +0.17 \end{array} \right.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5410. 89	$\frac{2}{2}$	9	18476. 12	-0.01	$34091_{4\frac{1}{2}}$ $-52567_{4\frac{1}{2}}^{\circ}$	10
5597. 056 5698. 47	3 1	3 1	17861. 63 17543. 7	+0.06 + 0.1	$\begin{array}{c} 28631_{31/2} - z {}^{6}\mathrm{F}_{41/2}^{2} \\ 28631_{31/2} - 46175_{31/2}^{2} \end{array}$	
5821. 00	4A	1	17174. 42	+0.03	$18990_{1\frac{1}{2}}$ — z^{6} F $_{0\frac{1}{2}}^{\circ}$	
5884. 32 5964. 48	$\frac{2}{3}$	2 5 5	16989. 6 16761. 28	$+0.2 \\ +0.01$	$22139_{21/2}$ — $z^{6}F_{11/2}^{\circ}$ $19404_{01/2}$ — $z^{6}F_{01/2}^{\circ}$	
6024. 64	$\frac{3}{2}$		16593. 91	+0.30	22535 _{01/2} —z ⁶ F _{11/2}	
6219. 77	2	8	16073. 32	+0.06	$22503_{1\frac{1}{2}}$ — $z^2S_{0\frac{1}{2}}$	

I gratefully acknowledge the assistance of Dr. C. C. Kiess, who supplied most of the spectrograms, and of Mrs. Isabel Murray, who carefully prepared press-copy of the tables.

4. References

- [1] O. Laporte, Regelmässigkeiten im Bogenspektrum des Wolframs, Naturwissenschaften **13**, 627–628 (1925).
- [2] O. Laporte and J. E. Mack, The spectrum of neutral tungsten, W I. Phys. Rev. 63, 246–297 (1943).
- [3] D. D. Laun, Preliminary lists of terms for the arc and spark spectra of tungsten, J. Res. NBS 21, 207-224 (1938) RP 1125.
 [4] D. D. Laun, Arc spectrum of tungsten; University of
- [4] D. D. Laun, Arc spectrum of tungsten; University of Chicago, Dissertation; University of Chicago Libraries, Chicago, Ill. (1934).

- [5] C. D. Coleman, W. R. Bozman, and W. F. Meggers, Table of wavenumbers, NBS Mono. 3, U.S. Government Printing Office, Washington; 1960.
- [6] Charlotte E. Moore, Atomic energy levels, NBS Cir. 467, vol. III, 161–163 (1958).
 [7] E. Back and A. Landé, Zeemaneffekt und Multiplett-
- [7] E. Back and A. Landé, Zeemaneffekt und Multiplettstruktur der Spectrallinien, 168–169 (Julius Springer, Berlin, 1925).
- Berlin, 1925).
 [8] W. F. Meggers, C. H. Corliss, and B. F. Scribner, Tables of spectral-line intensities, NBS Mono. 32, pt. 1, 402–415 (U.S. Government Printing Office, Washington, 1961).
- (U.S. Government Printing Office, Washington, 1961).
 [9] C. C. Kiess, C. J. Humphreys, and D. D. Laun, Preliminary description and analysis of the first spectrum of uranium, J. Res. NBS 37, 57–72 (1946) RP 1729.

(Paper 68A2—270)

Publications of the National Bureau of Standards*

Selected Abstracts

Gaussian wave functions for polyatomic molecules: integral formulas, M. Krauss, $J.\ Res.\ 68B\ (Math.\ and\ Math.\ Phys.),$

No. 1, 35-41 (Jan.-Mar. 1894).

Explicit formulas are given for the molecular coulomb integrals that arise for all Gaussian basis functions. These results should expedite computational efforts with these basis functions.

A Fabry-Perot spectrometer for high-resolution spectroscopy and laser work, K. D. Mielenz, R. B. Stephens, and K. F. Nefflen, J. Res. **68C** (Eng. and Instr.), No. 1, 1–6 (Jan.—Mar.

A Fabry-Perot spectrometer with a piezoelectric spacer was constructed to record with a recorder, or display with an ocilloscope, the fine structure of the Haidinger fringes. spectrometer is of the fixed spacer design, which provides great stability of adjustment. It was used to record the Zeeman splitting of the green line of Hg 198, as well as to exhibit, on the oscilloscope screen, the multimode output signal of a He-Ne gas laser.

A laser with a multihole diaphragm, T. Morokuma, J. Res. NBS 68C (Eng. and Instr.), No. 1, 25–34 (Jan.–Mar. 1964). The properties of a laser with a multihole diaphgram were both theoretically and experimentally examined. This laser may be called a multibeam laser. Laser action was observed in the optical paths which were defined by the position of the holes and the cavity configuration. Interference fringes were observed on one of the cavity mirrors. A wavelength dependent interaction among the beams was observed. believed that the wavelength of a beam can be stabilized by the intensities of the other beams. A possible method will be proposed for the stabilization.

Principles of cryometric impurity determination as applied to samples of small sizes, C. P. Saylor and G. S. Ross, J. Res. NBS 68C (Eng. and Instr.), No. 1, 35-39 (Jan.-Mar. 1964). A consideration of the factors that tend to prevent attainment of thermal and thermodynamic equilibrium during thermometric methods of purity analysis suggests that the problems largely originate from spontaneously introduced inequalities in composition. During either a freezing or melting cycle, the solid phase settles in the liquid. This results in a greater average purity in the bottom than in the upper part of the vessel. The effects would be particularly strong during a melting sequence where the liquid released by melting of the solid would provide the compositional environment for the establishemnt of final temperature. This hypothesis has been tested by the design of a new cell for small samples. The design incorporates use of small gold pans to hold solid and liquid in close contact. The results are comparable in precision to those from conventional time-temperature curves with much larger samples, a condition not ordinarily possible with small samples.

Reference tables for thermocouples of iridium-rhodium alloys versus iridium, G. F. Blackburn and F. R. Caldwell, J. Res. NBS 68C (Éng. and Instr.), No. 1, 41-59 (Jan.-

Mar. 1964).

The program at the National Bureau of Standards to establish reference tables of temperature versus emf for thermocouples of iridium-rhodium alloys versus iridium has been extended to cover all three of the currently used thermocouples of this type. In addition to the values published in 1962 for the 40 Ir-60 Rh versus Ir thermocouples, tables now are available for thermocouples of 60 Ir-40 Rh and 50 Ir-50 Rh versus Ir. These tables give emfs for temperatures in degrees Celsius from 0 to 2150 °C and in degrees Fahrenheit from 32 to 3900 °F, and temperatures in these units with emf in millivolts as the argument.

In addition to the reference tables for these thermocouples, temperature-emf relationships are presented for other alloys containing 10, 25, 75, and 90 percent iridium versus iridium. It appears from the information obtained on all of the alloy versus iridium combinations tested that the 50 Ir-50 Rh alloy versus iridium gives about the maximum thermal emf (12.2) my at 2150 °C), and as a result may provide the optimum thermocouple combination of this type.

A simplified theory of diffraction at an interface separating two dielectrics, J. Kane and S. N. Karp, Radio Sci. J. Res. NBS/USNC-URSI 68D No. 3, 303-310 (Mar. 1964). Many electromagnetic problems involving more than one dielectric medium are not susceptible of an exact solution, when appropriate boundary conditions are considered. purpose of the present paper is to formulate a new boundary condition, which is capable of leading to mathematically tractable problems, with limited sacrifices in accuracy.

Propagation of plasma waves in a "spoke-wheel" magnetic field, R. L. Liboff, Radio Sci. J. Res. NBS/USNC-URSI **68D** No. 3, 325-331 (Mar. 1964).

A study of the cold plasma cylindrical waves that may propagate in a specific type of two-dimensional magnetic field is initiated in this paper. The plasma is assumed to be of uniform density and collisionless, and a "spoke-wheel" magnetic field is considered which is both anisotropic and inhomogeneous (varying as the inverse radius), as defined in the text. Perturbation series solutions are obtained for the first Fourier component of the electric field for the four extreme cases: large and small magnetic field; large and small plasma densities.

Compilation of the melting points of the metal oxides, S. J. Schneider, NBS Mono. 68 (Oct. 10, 1963), 25 cents. A compilation has been made of the melting points of 70 metal oxides published prior to January 1963. Both the original melting point and the equivalent value based on the International Practical Temperature Scale of 1948 are pre-

sented. Included in the survey is information on pertinent experimental details such as the method of temperature measurement, purity, furnace type, and environmental conditions.

Calibration and test services of the National Bureau of Standards, NBS Misc. Publ. 250 (Nov. 22, 1963), 70 cents.

This publication is a listing of the numerous calibration and testing services provided to science and industry by the National Bureau of Standards. The Bureau promotes accuracy and uniformity of measurement through its program of measurement services, including the calibration and testing of standards and standard instruments. An up-to-date listing of the Bureau's calibration and test fee schedules was printed in recent issues of the Federal Register, with a large proportion of the fees being changed at that time. publication contains all of this material, but in larger, more legible type, and fully indexed. Besides listing all NBS calibration services and their cost, the publication includes a statement of the Bureau's statutory functions, testing policy, and routine for securing the Bureau's calibration and test services—from original request to the reporting and use of test results.

A comparison of two melting-pressure equations constrained to the triple point using data for eleven gases and three metals, R. D. Goodwin and L. A. Weber, NBS Tech. Note184 (Oct. 9, 1963), 25 cents.

Parameters have been determined by a least-squares method for the reduced Simon equation and for a new, empirical melting equation using data for H₂, D₂, T₂, Ne, Ar, Kr, Xe, N₂, O₂, CO₂, H₂O, Na, K, and Hg. The new equation, $(P-P^3)/(T-T^3) = A \exp(-\alpha/T) + BT$, represents experimental data with essentially the same accuracy as the Simon equation. It provides a sensitive difference method for graphical examination of data.

Carbon resistors for cryogenic liquid level measurements, R. C. Muhlenhaupt and P. Smelser, NBS Tech. Note 200

(Oct. 8, 1963), 25 cents.

Data are shown in graphical form. One set of plots presents resistance ratio R_G/R_L as a function of "warming up" time at various levels of constant power dissipation. set of plots presents resistance ratio R_L/R_O as a function of nominal resistance at various levels of constant power dissipation.

The use of the data and the design of a practical liquid level

indicator are discussed in the appendix.

Absolute calibration of the National Bureau of Standards photoneutron source: III. Absorption in a heavy water solution of manganous sulfate, R. H. Noyce, E. R. Mosburg, Jr., S. B. Garfinkel, and R. S. Caswell, J. Nucl. Eng. 17, No. 7, 313–318 (1963).

The neutron emission rate for the National Bureau of Standards radium-beryllium (γ,n) standard source (NBS-I) has been redetermined by a relative comparison to an antimonyberyllium source which had been calibrated absolutely in a heavy water manganous sulfate solution through an indirect method involving $4\pi\beta - \gamma$ coincidence counting of the induced Mn⁵⁶ activity. Correction was made for absorption of neutrons by other elements present in the bath. The emission rate of NBS-I was found to be $1.25_2 \times 10^6$ neutrons per second, as of June 1961 with an uncertainty of 1 percent. This measurement, when suitably averaged with previous determinations (DeJuren, Padgett, and Curtiss, 1955; and DeJuren and Chin, 1955), yields the best value $1.25_7 \times 10^6$ neutrons per second with an uncertainty of 1 percent.

Heating rate as a test of adiabatic calorimeters and the heat **capacity of** α **alumina**, E. D. West, *Trans. Faraday Soc.* **59**, *No.* 489, pt. 9, 2200–2203 (Sept. 1963).

The constancy of heat capacities measured in an adiabatic calorimeter at different heating rates does not demonstrate the absence of heat leak errors due to departures of the surface temperature from the "isothermal" condition. On the contrary, the total heat exchange between the calorimeter and its shield is virtually independent of the heating rate. The test tends to obscure a real source of error due to the variation in the total heat exchange between experiments with the empty and the full calorimeter.

A new standard of spectral irradiance, R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, No. 11, 1151-1154

(Nov. 1963).

The National Bureau of Standards has made available a new standard of spectral irradiance in the form of a 200-watt quartz-iodine lamp with a coiled-coil tungsten filament operating at about 3000° K and calibrated over the spectral range of 0.25 to 2.6 microns. The calibration of this standard is based upon the radiance of a blackbody as defined by the Planck law of radiation since it was done by comparisons with the NBS standards of spectral radiance, of luminous intensity, and of total irradiance, each of which was established through the use of blackbodies. This standard is used without auxiliary optics. Because of its small physical size and high operating temperature, relatively high spectral irradiances may be obtained through its use.

Intercomparisons of the standard thermal-neutron flux density of the National Bureau of Standards, W. M. Murphey and J. Chin, (Proc. Symp. Neutron Detection, Dosimetry and Standardization, International Atomic Energy Agency, Atomic Energy Research Establishment, Harwell, England, Dec. 10-14, 1062), Book, Neutron Dosimetry II, 513-521 (International Atomic Energy Agency, Vienna, 1963).
The standard thermal neutron flux maintained at the Na-

tional Bureau of Standards since 1951 consists of two radiumberyllium (α,n) sources in a geometry of lead, paraffin and carbon. The flux has been absolutely measured twice by NBS; once in terms of the absorption cross section of boron, and once in terms of the absorption cross section of gold (1,2) A neutron flux with a cadmium ratio of about 7 (for 40 mg/cm² gold foils and 0.040 inch cadmium covers) and a conventional thermal neutron flux density of 4231 (Apr. 62) neutrons per cm² per second was obtained. It has also been absolutely measured twice through the intercomparison program; once by NPL, UK and once by PTB, Federal Republic of Germany.

The agreement between most laboratories at present is about 1.5%. This is in addition to the uncertainty in the absolute measurement which is about 1.5% or more for each laboratory. Intercomparisons of NBS with CEA, France; Oak Ridge National Laboratory, USA; Electrotechnical Laboratory, Japan; National Physical Laboratory, UK; and Physikalisch. Technische Bundesanstalt, Federal Republic of Germany will

be shown.

Interpretation of pH measurements in alcohol-water solvents, R. G. Bates, M. Paabo, and R. A. Robinson, J. Phys. Chem.

67. 1833–1838 (1963).

The operational pH numbers for solutions in alcohol-water solvents obtained from the e.m.f. of the cell with hydrogen (or glass) electrode, salt bridge, and calomel reference electrode, standardized with aqueous buffer standards, are subject to no simple interpretation. Because of the indeterminate potential at the junction Soln. X (alc.—H₂O)|KCl bridge (aq.), they do not lie on a conventional scale of hydrogen ion activity referred either to the aqueous standard state $(pa_{\rm H})$ or to the standard state in the alcoholic medium $(pa_{\rm H}^*)$. Values of $\overline{E}_i + \log_{m\gamma_{C1}}$ (where \overline{E}_i is the liquid-junction potential expressed in pH units and $m\gamma_{C1}$ is the primary medium effect of chloride ion) were found to be as constant for different buffer solutions in alcoholic solvents of fixed composition as for the strictly aqueous medium. Inasmuch as $m_{\gamma_{Cl}}$ at a given temperature is dependent only on solvent composition, the liquid-junction potential must therefore also be nearly constant for a given solvent medium. Correction terms $\overline{E}_i - \log_{m\gamma_{\rm H}} = \delta$ have been calculated, and it is shown that $pH-\delta$ closely approximates pa_H^* under optimum conditions of measurement. An operational scale of pH^* (which is related to $pa_{\rm H}^*$ in the same way that pH is related to $pa_{\rm H}$) is described. Values of $pa_{\rm H}^2$ were obtained for 12 solutions in methanol-water solvents (0 to 68.1 wt. % MeOH) and for 3 solutions in ethanol-water solvents (0 to 100 % EtOH).

Short-duration visible afterglow in helium, A. L. Schmeltekopf, Jr., and H. P. Broida, J. Chem. Phys. 39, 1261–1268

(Sept. 1963).

A bright, reproducible afterglow which consists of helium atomic and molecular emissions has been observed in the products of an electrical discharge in a deLaval nozzle clearly separated from the discharge. This afterglow has been obseparated from the discharge. This afterglow has been observed at pressures from 0.4 to 20 mm Hg and with flows from 10 to 1000 cm³/sec NTP. At the low pressure the existence of the afterglow is extremely sensitive to small changes in pressure. Metastable He atom concentration decreases after the discharge and then increases in the region of afterglow emission. The afterglow is very sensitive to impurities greater than a few parts in 105 and emission intensity is reduced by the presence of an rf field, possibly because heating the electrons retards recombination.

Infrared transmission of the atmosphere to solar radiation, D. M. Gates and W. J. Harrop, Appl. Opt. 2, 887-898 (Sept.

Infrared solar spectrum observations taken on 12 January 1955 in Denver, Colorado, with a double pass NaCl prism spectrometer have been analyzed for transmission coefficients for the "selective" absorption and for the "continuum" extinction. The analysis was performed over the range 1.0 to 12.5 μ . The goodness of fit for the average transmission for a random band model and for a regular band model is given for each of 203 data points distributed throughout the spectrum.

Some topics in quantum statistics. The Wigner function and transport theory, H. Mori, I. Oppenheim, and J. Ross, Book, Studies in Statistical Mechanics, ed. DeBoer and Uhlenbeck, I, Pt. C, 218–298 (North Holland Publ. Co., Amsterdam, the

Netherlands, 1962).

This article is devoted to a discussion of Wigner functions and their application in quantal statistical mechanics, as well as some recent work in the theory of non-equilibrium systems. An analysis of these systems also requires the inclusion of some other topics: scattering theory, representative ensembles, and factors influencing the derivation of a transport equation for irreversible phenomena. We begin with the description of a quantum mechanical system. In Section I we first present some definitions and then discuss scattering theory. The description of equilibrium systems is given in Section II with primary emphasis on the construction of ensembles. A basis for the discussion of non-equilibrium systems is given in Section III and the construction of ensembles are treated in some detail. In Section IV, a derivation of a transport equation for non-uniform systems (the Maxwell-Boltzmann equation) is outlined. Section V is devoted to an alternative approach to transport theory for gases and liquids (the correlation function method).

Thermodynamic study of the thorium phosphide with a mass spectrometer, J. Efimenko and K. A. Gingerich, *Proc. Symp. Thermodynamics of Nuclear Materials, Vienna, May 21–25, 1963, pp. 477–486 (International Atomic Energy Agency,*

Vienna, Austria, Sept. 1962).

For the thorium-phosphorous system the ion intensity variation with temperature over the range $1100^{\circ}-2250^{\circ}$ K and composition range $ThP_{1.3}$ – $ThP_{0.5}$ has been obtained for the phosphorus vapor species. No molecules containing both thorium and phosphorus have been observed in the vapor below 2245° K. With the aid of a silver calibration the ion intensities have been related to the partial pressures of the effusing phosphorus vapor species, P, P₂, and P₄. From these data the "apparent" molar free energies of formation have been obtained with reference to gaseous P₂ for different compositions of the solid and the dissociation energy for P₂ has been computed. The vaporization of the thorium phosphides occurs incongruently by decomposition into gaseous phosphorus and a condensed phase of lower phosphorus content. The rate of phosphorus loss from the Th_3P_4 phase appears to be diffusion controlled. There is a marked increase of thermodynamic stability with decreasing phosphorus content within the homogeneity range of the lower phosphide. The phase boundaries of the lower phosphide have been estimated to correspond to $ThP_{0.7}$ and $ThP_{0.9}$. The thermodynamic stability of the thorium phosphides is compared with that of selected lower phosphides of transition metals.

Low energy levels of neutral cerium (Ce 1), W. C. Martin, J. Opt. Soc. Am. 53, No. 9, 1047-1050 (Sept. 1963). The first results of a continuing analysis of the Ce 1 spectrum show the ground level to be $4/5d6s^2$ 1 G 2 , with gJ=0.945. Of

twelve other low odd levels for which the energies, J- and g-values are given, six have been assigned to $4f5d6s^2$ and three to $4f5d^26s$.

A study of stress relaxation with finite strain, B. Bernstein, E. A. Kearsley, and L. J. Zapas, *Trans. Soc. Rheology* VII, 391–410 (1963).

Two simple types of constitutive equations appropriate to materials exhibiting elasticity are presented, one of a basic solid nature and one of a basic fluid nature. The predictions of the equations for a stress relaxation experiment are worked out and compared to the data from some experiments on various elastomers. The fluid theory is shown to be most appropriate in a certain sense.

Measurement of weak magnetic fields by optical pumping methods, P. L. Bender, $Bull.\ Ampere\ 9^\circ$, $Pl.\ II,\ 261-628$

(1960)

Three new types of magnetometer, the dc alkali vapor magnetometer, the self-oscillating alkali vapor magnetometer, and the helium magnetometer, all based on optical pumping, are compared. Practical limitations and performance in various environmental circumstances are considered.

Three-body bound state in He⁴, J. M. Blatt, J. N. Lyness, and S. Y. Larsen, *Phys. Rev.* **131**, *No.* 5, 2131–2132 (Sept. 1, 1963).

The binding energy of three He⁴ atoms, subject to pair forces, is investigated numerically for a number of proposed intermolecular potentials and for a series of square wells. For some potentials a 3-body bound state is found, for others not. However, a direct correlation is found between 2-body and 3-body binding. The need for more accurate experimental data is discussed.

Momentum autocorrelation functions and energy transport in harmonic crystals containing isotopic defects, R. J. Rubin,

Phys. Rev. 131, 964 (1963).

In this paper we review and extend the investigation of the effect of isotopic impurities on two statistical dynamical properties of harmonic crystals: the decay of the momentum autocorrelation function and the transport of energy. spectral representation is obtained for the momentum autocorrelation functions. The spectral density is directly related to the normal mode frequency distribution of the crystal; the recent investigations of the classical momentum autocorrelation function in a perfect one-dimensional crystal and a one-defect crystal are discussed as special cases of this general Wiener-Khinchin formula. The corresponding quantum mechanical autocorrelation function is also treated. A formal relation involving the average momentum autocorrelation function of an isotopically disordered crystal and the frequency spectrum of the crystal is derived. energy transport property is studied in terms of the timedependent dispersion of the momentum of a lattice particle when the crystal is characterized initially by a spatially nonuniform temperature. The local temperature, which is related to the momentum dispersion, is studied analytically in the case of the perfect one-dimensional crystal and the one-defect one-dimensional crystal. The local temperature is studied numerically with the aid of an IBM 7090 for several isotopically disordered one-dimensional crystals.

Galvanostalametry, a new technique based on the negative pressure of liquids, for investigating electrochemical phenomena at an electrode, J. Sligh and A. Brenner, J. Electrochem.

Soc. **110**, No. 11, 1136–1142 (Nov. 1963).

A procedure based on the negative pressure of water has been used as a sensitive indicator for the study of electrochemical phenomena. The apparatus consisted of a vertical glass tube, closed at the upper end, which was evacuated and filled with an electrolyte. The latter remained suspended in the column in a metastable state of tension. The column of electrolyte was dropped by producing a minute amount of electrolysis between an indicator electrode sealed in the top of the column and a companion electrode which could also be at the top or in the reservoir at the bottom of the column. The time or current required to drop the column was used for making the following experiments and/or observations: (A) The decomposition potential of water was determined by observing the lowest applied voltage required to drop the column. (B) The time required to drop the column (on passage of a constant current) was proportional to the concentration of iodide ion in the electrolyte. (C) The current required to drop the column was proportional to the area of the indicator electrode, regardless of the irregularity of its shape. (D) The formation of the gas required to drop the column occurred in less than 15 µsec after closing the circuit.

Electrical resistance-strain characteristics of thin evaporated metal films, R. L. Parker and A. Krinsky, J. Appl. Phys.

34, No. 9, 2700–2708 (Sept. 1963).

The electrical resistance-strain coefficients of thin evaporated films of Aluminum, Gold, Cobalt, Nickel, Palladium, Platinum, Antimony, and Tellurium have been measured. The coefficients (strain-sensitivity coefficient or "gauge-factor" γ) depend on the specific resistance R_s of the films. For relatively thick films (small R_s), γ tends to approach the bulk value γ_b ; for relatively thin films (large R_s), γ , may be many times greater than γ_b ; for films of intermediate thickness γ has a minimum value. The resistance change was found to be proportional to strain for all the above films except those of Ni and Sb. Some possible mechanisms

for the observed behavior are discussed; it was found that free-path effects are predominant in films of intermediate thickness, and that the tunnelling conduction mechanism plays an important role in producing the high strain-sensitivity of very thin (high R_s) films of separated particles.

Other NBS Publications

J. Res. NBS 68B (Math. and Math. Phys.), No. 1 (Jan.-Mar. 1964) 75 cents.

A note on a generalized elliptic integral. G. H. Weiss.

An asymptotic expansion for the multivariate normal distribution and Mills' ratio. H. Ruben.

Calculation of certain multiple generating functions. G. H.

Weiss

Some infinite sums involving zeros of $J_0(x)$. L. F. Epstein. Optimal matchings and degree-constrained subgraphs. A. J. Goldman.

Effects of a distribution on gap acceptance functions on pedestrian queues. G. H. Weiss.

Gaussian wave functions for polyatomic molecules: integral formulas. M. Krauss. (See above abstracts.)

J. Res. NBS 68C (Eng. and Instr.), No. 1 (Jan.-Mar. 1964)

A Fabry-Perot spectrometer for high-resolution spectroscopy and laser work. K. D. Mielenz, R. B. Stephens, and K. F. Nefflen.

Variable impedance power meter, and adjustable reflection coefficient standard. G. F. Engen.
A laser with a multihole diaphragm. T. Morokuma.

Principles of cryometric impurity determination as applied to samples of small sizes. C. P. Saylor and G. S. Ross.

Reference tables for thermocouples of iridium-rhodium alloys versus iridium. G. F. Blackburn and F. R. Caldwell.

Radio Sci. J. Res. NBS/USNC-URSI, Vol. 68D, No. 3 (Mar. 1964). \$1.00.

An interpretation of rapid changes in the phase of horizontally polarized VLF waves recorded at night over a short path in the southwestern United States. E. E. Gossard and M. R. Paulson.

Precise phase and amplitude measurements on VLF signals propagated through the Arctic zone. F. H. Reder, C. J. Abom, and G. M. R. Winkler.

On the long term phase stability of the 19.8 kc/s signal transmitted from Hawaii, and received at Boulder, Colorado. A. H. Brady.

Oblique propagation of groundwaves across a coastline. Part

III. J. R. Wait. Impedance of a monopole antenna with a radial-wire ground system on an imperfectly conducting half space, Part III. S. W. Maley and R. J. King.

A simplified theory of diffraction at an interface separating two dielectrics. J. Kane and S. N. Karp. (See above abstract.)

Variational solution for the admittance of long cylindrical antenna. R. A. Hurd.

Admittance of annular slot antennas radiating into a plasma layer. J. Galejs.

Propagation of plasma waves in a "spoke-wheel" magnetic field. R. L. Liboff. (See above abstract.)

An experimental investigation of signal strength in the area around a transmitter's antipode. R. M. Pipp and J. B. Webster

Relationship between simultaneous geomagnetic and ionospheric oscillations. H. Rishbeth and O. K. Garriott.

Bibliography on ignition and spark-ignition systems, G. F. Blackburn, NBS Misc. Publ. 251 (Nov. 22, 1963), 15 cents. (Supersedes NBS Circular 580.)

Recommended unit prefixes; Defined values and conversion factors; General physical constants, NBS Misc. Publ. 253 (Oct. 1963), 5 cents (wallet-size plastic card).

Lunar occultations of two discrete radio sources in 1963-1964, J. A. Eddy, NBS Tech. Note 184 (Oct. 11, 1963), 20 cents. Expanded vinyl fabrics for apparel use, CS 258-63 (Sept. 19, 1963), 10 cents.

Steel spirals for reinforced concrete columns, SPR 53-63, (Oct. 1, 1963), 10 cents.

Determination of differential X-ray photon flux and total beam energy, H. W. Koch and J. S. Pruit, Ed. L. C. Yugan and C. Wu, Nuclear Physics, 5, ch. 2.8.2, 508-553 (1963).

Metallurgical microanalysis with the electron probe, J. R. Cuthill, L. L. Wyman, and H. Yakowitz, J. Metals AIME 15, No. 10, 763–768 (Oct. 1963).

Large longitudinal retarded elastic deformation of rubberlike network polymers. II. Application of a general formulation of nonlinear response, H. Leaderman, F. L. McCrackin, and O. Nakada, Trans. Soc. Rheology VII, 111–123 (1963).

The error rate in a multiple-frequency shift system and the output signal/noise ratio in a frequency modulation and a pulse-code-modulation/frequency-shift system, H. Akima, Intern. Conf. Satellite Communication, London, Nov. 22–28, 1963, pp. 305–309 (Programme and Conference Digest, London, England, 1963.)

Synoptic variations and vertical profiles of large-scale ionospheric irregularities, R. G. Merrill, R. S. Lawrence, and N. J. Roper, J. Geophys. Res. 68, No. 19, 5453-5459

(Oct. 1, 1963).

Excitation of the red and green coronal lines, C. Pecker and R. N. Thomas, Ann. Astrophys. **25**, No. 2, 100–108 (1962). Normal congruence subgroups of the $t \times t$ modular group, M.

Newman, Bull. Am. Math. Soc. Res. Announcement **69**, No. 5, 719–720 (Sept. 1963).

Radiation impedance of a source near reflectors, R. V. Waterhouse, J. Acoust Soc. Am. 35, No. 8, 1144–1151 (Aug. 1963).

The energy environment in which we live, D. M. Gates, Am. Scientist 51, No. 3, 327-348 (Sept. 1963).

Evidence for field-aligned ionization irregularities between Widence for field-aligned formulation friegularities between 400 to 100 km above the earth's surface, T. E. VanZandt, W. Calvert, R. W. Knecht and G. B. Goe, Third Intern. Space Sci. Symp. Proc., Wash., D.C., May 2–8, 1962, pp. 271–273 (John Wiley & Sons Inc., New York, N.Y., 1962).

Studies in the geomagnetic micropulsation frequency range. W. H. Campbell, IEEE Intern. Conv. Record 11, Pt. 9,

25–28 (Mar. 25–28, 1963).

Determination of the electronic energy levels of molecules by low energy electron impact spectroscopy, J. A. Simpson and S. R. Mielczarek, J. Chem. Phys. Letter 39, 1606 (1963).

Experimental evaluation of a thallium beam frequency standard, R. E. Beehler and D. J. Glaze, Proc. 17th Annual Frequency Control Symp. (1963)

Gas-phase radiolysis of *n*-butane, R. P. Borkowski and P. J. Ausloos, J. Chem. Phys. 39, No. 3, 818–824 (Aug. 1, 1963).

Temperature control of the structure and variations of the quiet ionosphere, J. W. Wright, Proc. Intern. Conf. Ionosphere, July 1962, pp. 19–25 (Institute of Physics and the Physical Society, London, England, 1963).

Some factors affecting the creep behavior of an age-hardenable alloy, W. D. Jenkins and W. A. Willard, Trans. Quart. ASM **56**, No. 3, 427–441 (Sept. 1963).

A note on contingency tables involving zero frequencies and the 2I test, H. H. Ku, Technometrics 5, No. 3, 398-400 (Aug. 1963).

Wilmer Souder, pioneer in dental research, G. C. Paffenbarger, N. Y. J. Dentistry **33**, No. 5, 191–192 (May 1963).

Equatorial electron density profiles to 5000 KM, Using the incoherent scatter technique, K. L. Bowls, Third Intern Space Sci. Symp. Proc. Washington, D.C., May 2–8, 1962, pp. 253–264 (John Wiley & Sons, Inc., New York, N.Y.,

Physical measurements and experiment design, W. J. Youden, Scuola Azione No. 10, 181–200 (Scuola de Studi Sugli Idrocarburi, San Donato Milanese, Italy, 1961–1962)

Strain release in complete dentures, J. B. Woelfel, G. C. Paffenbarger, and W. T. Sweeney, J. Am. Dental Assoc. 67, No. 2, 321 (Aug. 1963).

Questions of general background and methodology relating to aerodynamic phenomena in stellar atmosphere, J. C. Pecker and R. N. Thomas, Il Nuovo Cimento Suppl. 22, No. X, Pt. I, 1-43 (1961).

Observation on reference electrodes for fused-salt systems, M. A. Reid and J. A. Lloyd, Rev. Sci. Instr. **34**, No. 8, 940–941 (Aug. 1963).

Primary processes in the photolysis of ethyl nitrate, R. E. Rebbert, J. Phys. Chem. 67, No. 9, 1923-1925 (Sept. 1963).

High-field liquid H₂-cooled aluminum-wound magnet, J. R. Purcell and E. G. Payne, Rev. Sci Instr. 34, 893–897 (Aug.

Complicating factors in the gas phase photolysis of azomethane, R. E. Rebbert and P. J. Ausloos, J. Phys. Chem. 67,

No. 9, 1925–1928 (Sept. 1963)

Use of transistors in Van de Graaff source leak controls, A. C. B. Richardson and L. Costrell, Nuclear Instr. Methods Letter to Editor 24, No. 1, 129–130 (July 1963). The formulation of F.D.I. specifications, G. C. Paffenbarger,

Intern. Dental J. 13, No. 1, 133–134 (Mar. 1963).

The F-region seasonal anomaly, J. W. Wright, J. Geophys. Res. 68, No. 14, 4379–4381 (July 15, 1963).

Effect of hydrostatic pressures on the crystallization kinetics of natural rubber, G. M. Martin and L. Mandelkern, J. Appl. Phys. **34**, No. 8, 2312–2317 (Aug. 1963).

The redefinition of the second and the velocity of light, G. E. Hudson and W. Atkinson, Phys. Today 16, No. 5, 30-32,

34, 36 (May 1963).

The shifts and widths of some stark broadened oxygen lines in an arc plasma, W. L. Wiese and P. W. Murphy, Phys. Rev. 131, 2108–2115 (Sept. 1, 1963).

The ionization constants of o-nitrophenol and 4-nitro-m-cresol from 5 to 60°, R. A. Robinson and A. Peiperl, J. Phys. Chem. 67, 1723 (1963).

Recent developments in neutron source standardization, R. S. Caswell, R. H. Novce, S. B. Garfinkel, and E. R. Mosburg, Jr., (Proc. Symp. Neutron Detection, Dosimetry and Standardization, International Atomic Energy Agency, Atomic Energy Research Establishment, Harwell England, Dec. 10-14, 1962), Book, Neutron Dosimetry II, 547-555 (International Atomic Energy Agency, Vienna, 1963).

The following papers were published in Proc. Mountain States Navy Research and Development Clinic, Raton, N. M., Sept. 28–29, 1961, (Raton, Communications and

Electronics Foundation, 1963).

Recent progress in cryogenic engineering, R. B. Scott, pp. D1-D4.

Remarks presented at panel discussion on modulation, J. L. Auterman, pp. A131-A132.

Predicting the performance of tropospheric communication links singly and in tandem, A. P. Barsis, K. A. Norton, and

P. L. Rice, pp. A71-A104.

Required signal-to-noise ratios, carrier power, and bandwidth to achieve a given performance for multichannel radio communication systems, E. R. Florman and J. J. Tary, pp. A135-A140.

VLF propagation, W. L. Taylor and A. G. Jean, pp. A45–A66. Millimeter wave research at the National Bureau of Standards,

R. W. Zimmerer, pp. A109–A112.

Some low temperature properties of materials, R. H. Kropschot, pp. D5-D6.

Aspects of radio meteorology, J. D. Horn, pp. C51–C56.

Problems and prospects in electrical properties of materials, J. L. Dalke, pp. D7-D14. Noise in VLF to HF bands and prediction of communication

reliability, W. Q. Crichlow, pp. A67–A70. Signal-to-noise characteristics of some typical systems and their comparisons, H. Akima, pp. A125–A130.

Cyclotron resonances in slightly ionized gases, F. Fehsenfeld,

J. Chem. Phys. 39, No. 7, 1653–1661 (Oct. 1, 1963). Some physical properties of organic denture base materials, J. B. Woelfel, G. C. Paffenbarger, and W. T. Sweeney, J. Am. Dental Assoc. 67, 489-504 (Oct. 1963).

Dependence of power output of a gas laser on the length and rate of excitation of the discharge, J. A. White, Appl. Phys. Letters 3, No. 7, 107–109 (Oct. 1, 1963)

Shifts and widths of some stark-broadened oxygen lines in an arc plasma, W. L. Wiese and P. W. Murphy, Phys. Rev. 131, No. 5, 2108–2115 (Sept. 1963).

The adsorption of methane and nitrogen on silica gel, synthetic zeolite and charcoal, A. J. Kidnay and J. M. Hiza, J

Phys. Chem. **67**, 1725–1727 (1963).

Studying the lunar tidal variations in the D region of the ionosphere by means of very-low-frequency phase observations, A. H. Brady and D. D. Crombie, J. Geophys. Res.

68, No. 19, 5437–5442 (Oct. 1, 1963). Natural electromagnetic field fluctuations in the 3.0 to 0.02 cps range, W. H. Campbell, Proc. IEEE 51, 1337-1342

(Oct. 1963).

Current development in an electronically scanned antenna. H. V. Cottony, Proc. Symp. Electromagnetic Theory and Antennas, Copenhagen, June 25–30, 1962, pp. 1289–1294 (Pergamon Press, Oxford, London, 1963).

Airglow research, F. E. Roach, Trans. Am. Geophys. Union

44, No. 2, 431–432 (June 1963).

Velocity-depth relationship in microelectrophoresis cell for asphaltenes in nitromethane, J. R. Wright and R. R. Minesinger, J. Colloid Sci. 18, 802–804 (Oct. 1963).

Some results of a new method for obtaining ionospheric N(h) profiles and their bearing on the structure of the lower F region, A. K. Paul and J. W. Wright, J. Geophys. Res. 68, No. 19, 5413–5420 (Oct. 1, 1963).

A 100 megapulse per second binary counter with impedance steering, S. B. Geller and P. A. Mantek, IEEE Trans. Electronic Computers **EC-12**, No. 5, 568 (Oct. 1963).

Mathematics and experimental science, W. J. Youden, Sci. Teacher **30**, No. 5, 23–26 (Sept. 1963).

Line shapes, saturation behavior, and temperature studies in the nuclear resonance of nickel, R. L. Streever and L. H. Bennett, Phys. Rev. **131**, No. 5, 2000–2009 (Sept. 1, 1963).

Impedance of Leclanche cells and batteries, R. J. Brodd and H. J. DeWane, J. Electrochem. Soc. **110**, No. 11, 1091–1097 (Nov. 1963).

Hyperfine structure and isotope shifts in the 2537-A line of mercury by a new interferometric method, W. G. Schweitzer, Jr., J. Opt. Soc. Am. 53, No. 9, 1055–1072 (Sept. 1963).

Absolute scale of oscillator strenghts, C. W. Allen and C. H. Corliss, Monthly Notices Roy. Astron. Soc. 126, No. 1, 37-40 (1963).

Stable 6300 A auroral arcs in mid-latitudes, F. E. Roach and J. R. Roach, Planet. Space Sci. 11, 523-545 (1963).

Relation of partial (110) pole figures to thickness and microstructure of electrodeposited copper, F. Ogburn and C. J. Newton, J. Electrochem. Soc. **110**, No. 11, 1148–1150 (Nov. 1963).

Regulation of ionization gauge emission current to better than 0.05%, K. W. Yee and R. J. Carpenter, Rev. Sci. Instr. **34.** No. 10, 1101–1103 (Oct. 1963).

Errors in "drop" calorimetry due to sample container transitions, D. C. Ginnings, J. Phys. Chem. 67, 1917–1918 (1963).

A theory of incoherent scattering of radio waves by a plasma. III Scattering in a partially ionized gas, J. P. Dougherty and D. T. Farley, Jr., J. Geophys. Res. **68**, 5473–5486 (Oct. 1, 1963).

Energy dependence of proportional-counter fast-neutron dosimeters, R. S. Caswell, W. B. Beverly and V. Speigel, Jr., (Proc. Symp. Neutron Detection, Dosimetry and Standardization, Atomic Energy, Atomic Energy Research Establishment, Harwell, England, Dec. 10–14, 1962), Book, Neutron Dosimetry **H**, 227–237 (July 1963).

Projection X-ray microscopy of roofing materials, S. B. Newman and S. H. Greenfeld, Mater. Res. Std. 3, No. 11,

893-898 (Nov. 1963).

Normal congruence subgroups of the $t \times t$ modular group, M. Newman, Bull. Am. Math. Soc. 69, No. 5, 719-720 (Sept. 1963).

Growth and evaporation kinetics and surface diffusion of K and Hg crystal whiskers, R. L. Parker, R. L. Anderson, and S. C. Hardy, Applied Phys. Letters 3, No. 6, 93-95 (Sept. 15, 1963).

Very-low-frequency phase observations of solar flare ionization in the D region of the ionosphere, C. J. Chilton, F. K. Steele, and R. B. Norton, J. Geophys. Res. **68**, No. 19, 5421–5435 (Oct. 1, 1963).

Generalized variational principles for electromagnetic vibrations; application to the theory of waveguide junctions, D. M. Kerns, Proc. Symp. Electromagnetic Theory and Antennas, Copenhagen, June 25–30, 1962, pp. 253–259 (Pergamon Press, Oxford, London, 1963).

The following papers were published in Advances in Cryogenic

Engineering, Volume 8 (1963).

Some idealized solutions for choking, two-phase flow of hydrogen, nitrogen, and oxygen, R. V. Smith, Paper J-10,

pp. 563-573.

 $P_{-\rho}$ -T values for neon from 27° to 300° K for pressures to 200 atm using corresponding states theory, R. D. McCarty, R. B. Stewart, and K. D. Timmerhaus, Paper C-3, pp. 135 - 145.

An apparatus to determine the solid-vapor equilibria of binary cryogenic systems, M. J. Hiza and R. N. Herring,

Paper C-5, pp. 158-161.

A comparison of the low-temperature adsorption of nitrogen and methane from hydrogen gas on three different adsorbents, M. J. Hiza and A. J. Kidnay, Paper C-7, pp. 174–182.

A refrigeration system incorporating a low-capacity, highspeed, gas-bearing-supported expansion turbine, D. B. Mann, H. Sixsmith, W. A. Wilson, and B. W. Birmingham, Paper D-5, pp. 221–227.

Experimental determination of the bulk density of boiling liquid oxygen, R. W. Arnett, D. R. Millhiser, and W. H. Probert, Paper E-4, pp. 256-262.

Thermal conductivity of solid H_2O and D_0O at low temperatures, J. W. Dean and K. D. Timmerhaus, Paper E-5,

pp. 263-267.

Linear thermal expansion of elastomers in the range 300° to 76° K, R. F. Robbins, Y. Ohori, and D. H. Weitzel, Paper E-8, pp. 287-299 (1963).

Solid formation in flowing cryogenic fluids, D. B. Chelton, B. W. Birmingham, and J. W. Dean, Paper E-11, pp. 311 - 314.

Temperature measurements in cryogenic engineering, R. J. Corruccini, Paper F-1, pp. 315-333.

Pressure measurements in cryogenic systems, P. Smelser,

Paper F-7, pp. 378-386.

Perlite for cryogenic insulation, R. H. Kropschot and R. W. Burgess, Paper G-7, pp. 425-436.

Force and seal evaluation of elastomeric O-rings, Ludtke and D. H. Weitzel, Paper H-6, pp. 467-477.

Experimental investigation of liquid-hydrogen cooling by helium gas injection, A. F. Schmidt, Paper J-5, pp. 521-528. Liquid requirements for the cool-down of cryogenic equipment, R. B. Jacobs, Paper J-6, pp. 529-535. Cool-down and warm-up of large powder-insulated dewars,

F. Kreith, J. W. Dean, and L. Brooks, Paper J-7, pp.

536 - 543.

*Publications for which a price is indicated are available by purchase from the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402 (foreign postage, one-fourth additional). Reprints from outside journals and the NBS Journal of Research may often be obtained directly from the authors.