CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

IO Organization

Lecture No.- 01

Recap of Previous Lecture

Topic Floa

Floating-Point Numbers

Topic

Biased Exponent

Topic

Number Range /

Topic

IEEE-754 Floating Point Representation

Topic

Denormalized Number

Topics to be Covered

Topic: IEEE-754 Floating Point Representation

S	E	M	Number
0	00	00	ナロ
1	0	0	_ 0
0	11 1	0 - · 0	+∞
1	1/ 1	0 6	_ ~
0/1	111	M \$00	N.A.N.
0/1	00 0	m ≠ o	Denormalized
0/1	£ \$00	χ× x X	Implicit normalizat

[NAT]

#Q. How to represent +1 and -1 in IEEE-754 single precision floating point number?

1.0 * 2°
$$\Rightarrow$$
 e = 0

$$E = 0 + 127 = (27)_{10} = (0111111)_{2}$$

$$M = 0....0$$

[NAT]

How to represent +0.0000101) in IEEE-754 single precision floating point #Q. number?

Implicit

normalizat

$$E = -5 + 127 = (22)_{10} = 011||0|0$$

The value of a float type variable is represented using the single-precision #Q. 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -14.25. The representation of X in hexadecimal notation is

C1640000H

416C0000H

41640000H

C16C0000H
$$(14.25)_{10} = (1110.01)_{2}$$

 $|.11001 *2^{3}$
 $|.11001 *2^{3}$
 $E = 3 + 127 = 130 = (0000010)_{2}$
 $M = 11001$

#Q. Consider the following representation of a number in IEEE 754 singleprecision floating point format with a bias of 127.

Here S, E and F denote the sign, exponent and fraction components of the floating-point representation.

The decimal value corresponding to the above representation (rounded to 2 decimal places) is_____

$$value = 1.1111 * 2$$

$$= 1.1111 * 2^{2}$$

$$= (111.11)_{2}$$

$$= (7.75)_{10}$$

Sign	Exponent	mantissa

Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?

- A. exponent = 00000001 and mantissa = 0000000000000000000001
- - D. exponent = 00000000 and mantissa = 0000000000000000000001

Topic: Peripheral Device

(I/O devices)

Devices connected to CPU externally except memory.

Types

Input devices

output devices

storage devices

Topic: CPU Connected to IO Directly?

I/O devices are connected to CPU through I/O interface.

Topic: Need For Interface

- Peripherals are electromechanical or electromagnetic devices; and their manner of operation is different from the operation of the CPU and memory. Which are electronic devices. So conversion of signal required.
- The data transfer rate of peripherals is usually slow. So synchronization is required.
- Data codes and format in peripherals differ from the word format in the CPU and memory. So conversion of formats is required.
- The operating modes of peripherals are different from each other and each must be controlled so a peripheral does not disturb the operation of other peripherals.

Topic: IO vs Memory Buses

There are 3 ways, the CPU can connect with I/O and mem.

Each I/O device has an address and CPU selects one I/O device by sending it's address through add.)

Topic: 1. Separate Buses for Both

Disadu. => Costly because at a time cpu con communicate With either mem. or I/o
dwice hence 2 sets of buses are not necessary.

Topic: 2. Common Data, Address Bus mem. Read

I/O mapped I/O

Part mapped I/O

or

Isolated I/O

Topic: 3. Common Address, Data & Control Bus

Memory Mapped I/O

Topic: 3. Common Address, Data & Control Bus

Assume a system with 8 bytes (byte addressable) mem.

& 2 I/o devices

Mem. some mem. addresses one assigned to I/o devices.

000	Ī ~
001	~
010	
ااه	
100	
101	
110	
11 1	

Assume	assigned	addresses
device 1	010	
device 2	101	

Topic: Memory Mapped IO vs IO Mapped IO

1 No Mem wastage 2 I/o devices do not have their 2 I/o devices have own address space 3. All mem access inst ^{ns} and addressing modes can be used to access I/o devices also of memory 4. I/o access inst ^{ns} and add modes 4. I/o access inst ^{ns} & add modes are lest are more are lest.

Topic: Memory Mapped IO vs IO Mapped IO

Memory Mapped IO	IO Mapped IO
5. More I/O devices can be Connected to CPU.	5. Lesser I/O devices can be connected to CPU.
6. I/o data con be sent to ALU directly	6. I/o data can not be sent to ALU directly.

2 mins Summary

Topic

Peripheral Device

Topic

10 vs Memory Buses

Topic

Memory Mapped IO vs IO Mapped IO

Topic

Asynchronous Data Fransfer

Sal. => 4-6 PM? classes Sun => 9-11 am?

(2 PM = discussion)

Happy Learning

THANK - YOU