

Solución de problemas con GRE

Nombre del Alumno:

Jireh Hernández Castillo

Matricula:

1717110620

Nombre del Docente:

MTI. Oscar Lira Uribe

Materia:

Aplicación de las Telecomunicaciones

Universidad:

Universidad Tecnológica de Tulancingo

Carrera:

ING. En Tecnologías de la Información y Comunicación

Grupo:

IT191

Fecha:

05 de julio de **2020**

Packet Tracer: Solución de problemas con GRE

Topología

Tabla de Direccionamiento

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Gateway predeterminado
RA	G0/0	172.31.0.1	255.255.255.0	N/D
	S0/0/0	209.165.122.2	255.255.255.252	N/D
	Tunnel 0	192.168.1.1	255.255.255.252	N/D
RB	G0/0	172.31.1.1	255.255.255.0	N/D
	S0/0/0	64.103.211.2	255.255.255.252	N/D
	Tunnel 0	192.168.1.2	255.255.255.252	N/D
PC-A	NIC	172.31.0.2	255.255.255.0	172.31.0.1
PC-C	NIC	172.31.1.2	255.255.255.0	172.31.1.1

Objetivos

- Encontrar y corregir todos los errores de red
- Verificar la conectividad

Situación

Contrataron para establecer un túnel GRE entre dos sitios y no pudo a un administrador de red menor completar la tarea. Se le ha solicitado corregir los errores de configuración de la red de la empresa.

Parte 1: Identificar y corregir todos los errores de red

Dispositivo	Error	Corrección	
RA	La dirección IP de G0/0 es incorrecta, la dirección del Tunnel debe eliminarse	RA(config)#int tunnel 0 RA(config-if)#no ip address RA(config-if)#exit RA(config)#int g0/0 RA(config-if)#ip address 172.31.0.1 255.255.255.0	
RA	La dirección de Tunnel 0 es incorrecta	RA(config)#int tunnel 0 RA(config-if)#ip address 192.168.1.1 255.255.255.252 RA(config-if)#end	
RA	La ruta estática no es correcta		
RB	El puerto de origen del Tunnel no es correcto	RB(config)#int tunnel 0 RB(config-if)#no tunnel destination RB(config-if)#tunnel destination 209.165.122.2	
RB	La dirección de destino del Tunnel es incorrecto	interface Tunnel0 ip address 192.168.1.2 255.255.255.252 mtu 1476 tunnel source Serial0/0/0 tunnel destination 209.165.122.2	

Parte 2: Verificar la conectividad

Paso 1: Ping PCA PCB.

a) Intente hacer ping a la dirección IP de PCA PCB. El ping debería realizarse correctamente.

```
Packet Tracer PC Command Line 1.0
C:\>ping 172.31.0.2

Pinging 172.31.0.2 with 32 bytes of data:

Request timed out.
Reply from 172.31.0.2: bytes=32 time=10ms TTL=126
Reply from 172.31.0.2: bytes=32 time=19ms TTL=126
Reply from 172.31.0.2: bytes=32 time=11ms TTL=126

Ping statistics for 172.31.0.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:

Minimum = 10ms, Maximum = 19ms, Average = 13ms
```

Paso 2: Rastree la ruta de PCA a PCB.

b) Intente rastrear la ruta de PCA al PCB. Observe la falta de direcciones IP públicas en el resultado.

```
C:\>tracert 172.31.1.2
Tracing route to 172.31.1.2 over a maximum of 30 hops:
       1 \text{ ms}
                  l ms
                              0 \text{ ms}
                                          172.31.0.1
                              11 ms
  2
      3 ms
                  2 \text{ ms}
                                          192.168.1.2
                                          172.31.1.2
  3
       2 ms
                   2 ms
                              14 ms
Trace complete.
```


Conclusión

GRE administra el transporte del tráfico multiprotocolo y de multidifusión IP entre dos o más sitios, que probablemente solo tengan conectividad IP, admite el tunneling de multidifusión IP. Esto significa que se pueden utilizar los protocolos de routing a través del túnel, lo que habilita el intercambio dinámico de información de routing en la red virtual.