Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Analysis of Algorithms

Running Time Most algorithms transform ■ best case ■ average case input objects into output ■ worst case objects. 120 The running time of an 100 algorithm typically grows **Running Time** 80 with the 60 Average case time is often difficult to determine. 40 We focus on the case running time. 1000 Easier to analyze **Input Size** Crucial to applications such as games, finance and robotics Analysis of Algorithms

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Analysis of Algorithms

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the , n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Analysis of Algorithms

5

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Analysis of Algorithms

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

Algorithm *method* (arg [, arg...])

Input ...

Output ...

- Method call
 - method (arg [, arg...])
- Return value
 - return expression
- Expressions:
 - ← Assignment
 - = Equality testing
 - n² Superscripts and other mathematical formatting allowed

Analysis of Algorithms

.

The Random Access Machine (RAM) Model

A RAM consists of

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Analysis of Algorithms

11

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
/** Returns the maximum value of a nonempty array of numbers. */
   public static double arrayMax(double[] data) {
    int n = data.length;
3
     double currentMax = data[0];
                                            // assume first entry is biggest (for now)
4
5
     for (int j=1; j < n; j++)
                                            // consider all other entries
                                            // if data[j] is biggest thus far...
6
       if (data[j] > currentMax)
        currentMax = data[j];
                                            // record it as the current max
8
    return currentMax;
        □ Step 3: 2 ops, 4: 2 ops, 5: 2n ops,
           6: _____ ops, 7: 0 to ____ ops, 8: 1 op
                                    Analysis of Algorithms
```

Estimating Running Time

- □ Algorithm arrayMax executes 5n + 2 primitive operations in the worst case, 4n + 3 in the best case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a (4n + 3) \le T(n) \le b(5n + 2)$
- \Box Hence, the running time T(n) is bounded by two linear functions

Analysis of Algorithms

13

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time
 T(n) is an intrinsic property of algorithm
 arrayMax

Analysis of Algorithms

Analysis of Algorithms

Big-Oh Notation

- \Box Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that
- □ Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

More Big-Oh Examples

□ 7n - 2

7n-2 is O(n)

need c > 0 and $n_0 \ge 1$ such that 7 n - 2 \le c n for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$

 $3 n^3 + 20 n^2 + 5$

 $3 n^3 + 20 n^2 + 5 is O(n^3)$

need c > 0 and $n_0 \ge 1$ such that $3 n^3 + 20 n^2 + 5 \le c n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$

 \square 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$

need c>0 and $n_0\geq 1$ such that 3 log $n+5\leq c$ log n for $n\geq n_0$ this is true for c=8 and $n_0=2$

Analysis of Algorithms

19

Big-Oh and Growth Rate

- The big-Oh notation gives an _____ on the growth rate of a function
- □ The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Analysis of Algorithms

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Analysis of Algorithms

21

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm $\frac{1}{2}$ when $\frac{1}{2}$ we say that algorithm $\frac{1}{2}$ when $\frac{1}{2}$ in $\frac{1}{2}$ when $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2$
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Analysis of Algorithms

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- □ The *i*-th prefix average of an array X is average of the first (*i* + 1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

Analysis of Algorithms

23

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm *prefixAverages1(X, n)*

Input array X of n integers

Output array A of prefix averages of X

 $A \leftarrow$ new array of n integers

for
$$i \leftarrow 0$$
 to $n-1$ do

$$s \leftarrow 0$$

for
$$j \leftarrow 0$$
 to i do

$$s \leftarrow s + X[j]$$

$$A[i] \leftarrow s / (i+1)$$

return A

prefixAverages1 runs in $O(n^2)$ time

Arithmetic Progression

- □ The running time of prefixAverage1 is O(1+2+...+n)
- \Box The sum of the first *n* integers is n(n+1)/2
 - There is a simple visual proof of this fact
- \Box Thus, algorithm prefixAverage1 runs in $O(n^2)$ time

Analysis of Algorithms

25

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm *prefixAverages2(X, n)*

Input array X of n integers

Output array A of prefix averages of X

 $A \leftarrow$ new array of n integers

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n-1 do

$$s \leftarrow s + X[i]$$

$$A[i] \leftarrow s / (i+1)$$

return A

◆ Algorithm prefixAverages2 runs in O(n) time

Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

Properties of powers:

$$a^{(b+c)} = a^b a^c$$

 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$

$$b = a \frac{\log_a b}{b^c}$$
$$b^c = a \frac{c*\log_a b}{a}$$

Properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bxa = alog_bx$$

$$log_ba = log_xa/log_xb$$

Analysis of Algorithms

27

Relatives of Big-Oh

big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0
 and an integer constant n₀ ≥ 1 such that
 f(n) ≥ c g(n) for n ≥ n₀

big-Theta

■ f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c'g(n) \le f(n) \le c''g(n)$ for $n \ge n_0$

Analysis of Algorithms

Intuition for Asymptotic Notation

big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

• f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

Analysis of Algorithms

29

Example Uses of the Relatives of Big-Oh

- \blacksquare 5n² is $\Omega(n^2)$
 - f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

let
$$c = 5$$
 and $n_0 = 1$

- \bullet 5n² is $\Omega(n)$
 - f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

let
$$c = 1$$
 and $n_0 = 1$

- $5n^2$ is $\Theta(n^2)$
 - f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c g(n)$ for $n \ge n_0$

Let
$$c = 5$$
 and $n_0 = 1$

Analysis of Algorithms

BIG IDEA! Asymptotic Analysis

- 1. Ignore machine dependent constants
- 2. Look at growth of running time T(n) as $n \rightarrow infinity$

Let n be size of program's input.

Let f(n) be function for running time

Let g(n) be another function — preferably simple.

Let f and g are non-negative functions over non-negative integers.

Definition: [Big-Oh] f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.

Example:

The function $T(n) = 3n^3 + 2n^2$ is $O(n^3)$.

To see this, let $n_0 = 0$ and c = 5. $3n^3 + 2n^2 \le 5n^3$

You need to show that for all $n \ge 0$.

$$3n^3 + 2n^2 \le 5n^3 = n^2 \le n^3$$

if
$$n = 0$$
, $0 \le 0$

otherwise,
$$1 \le n$$
.

otherwise,
$$1 \le n$$
. $\therefore 3n^3 + 2n^2 = O(n^3) \square$

Example:

 $T(n) = 3^n \text{ is not } O(2^n).$

Suppose that there were constants n_0 and c such that for all $n \ge n_0$, we had $3^n \le c2^n$. Then $c \ge (3/2)^n$ for any $\lim (3/2)^n = \infty$. Therefore, no constant c can exceed $(3/2)^n$ for all

n. \square

- The statement f(n) = O(g(n)) only states that g(n) is an <u>upper bound</u> on the growth rate of f(n) for all n, $n \ge n_0$

Set definition:

 $O(g(n)) = \{ f(n): \text{ there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

Example:

The
$$n = O(n^2)$$
, $n = O(n^{2.5})$, $n = O(n^3)$, $n = O(2^n)$.

In order for the statement f(n) = O(g(n)) to be informative, g(n) should be <u>as small a</u> function of n <u>as</u> one can come up with for which f(n) = O(g(n)).

Analysis of Algorithms

33

 $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0 \text{ means } g(n) \text{ is asymptotically bigger than } f(n) \text{ and } f(n) \text{ is asymptotically smaller than } g(n).$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty \text{ means vice versa.}$$

To prove f(n) = O(g(n)), we only need to show $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ or Constant C

$$\begin{split} \lim_{n\to\infty} \frac{n\log_2 n}{n^2} &= \frac{1}{\ln 2} \lim_{n\to\infty} \frac{n\ln n}{n^2} = \frac{1}{\ln 2} \lim_{n\to\infty} \frac{\ln n + 1}{2n} \\ &= \frac{1}{\ln 2} (\lim_{n\to\infty} \frac{\ln n}{2n} + \lim_{n\to\infty} \frac{1}{2n}) = \frac{1}{\ln 2} \lim_{n\to\infty} \frac{1}{2n} = 0 \end{split}$$

Therefore, $nlog_2 n = O(n^2)$.

35

Summary

- Programs can be evaluated by comparing their Big-Oh functions.
 - Drop low-order terms and ignore leading constants.

Ex)
$$3n^2 + nlog_2 n = O(n^2)$$

• The common Big-Oh functions provide a "yardstick" for classifying different algorithms. Algorithms of the same Big-Oh can be considered as equally good.

For example, a program with $O(\log n)$ is better than one with O(n).

Warnings!

1. Fallacious proof:

 $n^2 = O(n)$ Proof: Choose c = n, $n_0 = 1$. Then $n^2 \le n^2$.

--> WRONG! c must be constant.

2. " $e^{3n} = O(e^n)$ because constant factors don't matter" \longrightarrow Bigger by a factor of e^{2n}

" $10^n = O(2^n) ==>$ WRONG! _-> Bigger by a factor of 5^n

37

3. Big-Oh notation doesn't always tell whole story.

Big-Oh is meaningful only when n is sufficiently large ($n \ge n_0$).

This implies that we only care about large size problems.

$$T(n) = nlog_2 n$$
, $U(n) = 100n$

T(n) dominates U(n) asymptotically.

But, if $\log_2 n < 50$ in practice, what algorithm would you like to choose?

Definition: [Big-Theta] $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 and c_2 and an n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all n, $n \ge n_0$.

Example:
$$3n^2 + 4n = \Theta(n^2)$$

Proof) choose
$$c_1=3$$
 and $c_2=7$ and $n_0=0$. We have $3n^2\leq 3n^2+4n\leq 7n^2$ for all $n,\ n\geq n_0$.

39

• Ω(f(n)): Big Omega

Definition: [Big-Omega] $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all n, $n \ge n_0$.

Example: f(n) = 3n+2 >= 3n for all n, so $f(n) = \Omega(n)$