Clustering

Part 1

Prof. Bisbee

Vanderbilt University

Slides Updated: 2024-08-10

Agenda

- 1. Structure in data
- 2. "Clustering"
- 3. Application

Structure

- Patterns in data
- Behind everything we've done thus far
 - Theory Testing: structure answers research question
 - Prediction: structure improves accuracy
- A third "camp" in data science: Learning

Learning

- No research question, no prediction goal
 - Just want to learn about structure of data
- Existing tools can do it
 - Run 1m regressions
 - Visualize a thousand variables
 - But these are slow
- This topic: letting algorithms learn for you!
 - Today: clustering

Clustering

- Identify observations that belong to groups
 - Similarities → group belonging
- Part of broader set of methods to identify underlying "structure"
 - Today: *k*-means clustering algorithm

k-means Clustering

- k: number of clusters (i.e., groups)
- Algorithm assigns each observation to these $1 \dots k$ groups
 - 1. Choose initial "centroids" at random
 - 2. Assign observations to each centroid based on "Euclidean distance"
 - 3. Calculate new centroid based on mean of each variable
 - 4. Repeat until assignments stabilize

•
$$c^2 = a^2 + b^2 \rightarrow c = \sqrt{a^2 + b^2}$$

$$ullet a^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 \ \& \ b^2 = (x_3 - x_2)^2 + (y_3 - y_2)^2$$

• General:
$$\sqrt{\sum_i (q_i - p_i)^2}$$

Centroids

• The center of some data

Centroids

• Initially chosen at random by the algorithm

Recalculate Centroids

ullet Set new centroids to mean of x and y among members

A simulation

Clustering to Learn about MCs

```
library(tidyverse)
dat <-
read_csv('https://raw.githubusercontent.com/jbisbee1/DS1000_F2024/main/
glimpse(dat)</pre>
```

```
## Rows: 445
## Columns: 22
## $ congress
                                     <dbl> 97, 97, 97, 97, 97, ...
## $ chamber
                                     <chr> "President", "House"...
                                     <dbl> 99907, 10717, 10721,...
## $ icpsr
## $ state icpsr
                                     <dbl> 99, 41, 41, 41, 41, ...
## $ district code
                                     <dbl> 0, 2, 1, 4, 3, 5, 7,...
                                     <chr> "USA", "AL", "AL", "...
## $ state abbrev
## $ party code
                                     <dbl> 200, 200, 200, 100, ...
                                     <dbl> 0, 0, 0, 0, 0, 0, 0, ...
## $ occupancy
                                     <dbl> 0, 1, 1, 1, 1, 1, 1,...
## $ last means
## $ bioname
                                     <chr>> "REAGAN, Ronald Wils...
## $ bioguide id
                                     <chr> NA, "D000326", "E000...
## $ born
                                     <dbl> 1911, 1925, 1928, 19...
## $ died
                                     <dbl> 2004, 2008, 2019, 20...
## $ nominate dim1
                                     <dbl> 0.692, 0.398, 0.177,...
## $ nominate dim2
                                     <dbl> -0.713, -0.057, 0.16...
```

DW-NOMINATE

- DW-NOMINATE is a measure of how frequently different legislators vote together
- Often interpreted as "ideology"
- Two-dimensions:
 - 1. Standard left-right ideology (size of gov, redistribution, etc.)
 - 2. Second dimension changes, but typically salient social issues
- Can k-means clustering help us learn about legislators?

97th Congress (1981-1983)

97th Congress (1981-1983)

Intuition Check

- Can we see some clusters?
 - What do we think these are?
- Let's try estimating k-means!
- Function kmeans(x,centers,iter.max,nstart)
 - x is the data (only select the columns of interest!)
 - centers is the number of centroids
 - iter.max maximum amount of "steps"
 - nstart how many times to re-estimate

First, some light wrangling (convert numeric party code to character)

Second, estimate kmeans() function

```
## K-means clustering with 2 clusters of sizes 214, 231
##
  Cluster means:
##
     nominate dim1 nominate dim2
         0.2607991
                        -0.2443271
## 1
        -0.3019524
                        0.1529177
##
##
   Clustering vector:
##
##
##
##
##
##
   [163<sup>-</sup>
```

Easier to see output with the help of tidymodels package

```
require(tidymodels)
tidy(m)
```

- First two columns are the **locations** of the centroids
- size is the number of observations associated with each group
- withinss is the errors each centroid makes

Third, plot points and color by cluster

```
ggplotly(ggClust,tooltip = 'text')
```


More Clusters

More Clusters

More Clusters

How many clusters?

- Recall from regression that we are interested in errors
- What are "errors" in the context of clustering?

How many clusters?

- Recall from regression that we are interested in errors
- What are "errors" in the context of clustering?

How many clusters?

- Recall from regression that we are interested in errors
- What are "errors" in the context of clustering?
- Just the sum of each observation's distance from its centroid!
 - Within Sum of Squares (WSS)

```
tidy(m)
```

```
m.cluster <- datClust %>%
  select(-nameParty) %>% # Same as selecting two dimensions
  kmeans(centers = 3)
```



```
m.cluster <- datClust %>%
  select(-nameParty) %>%
  kmeans(centers = 4)
```



```
m.cluster <- datClust %>%
  select(-nameParty) %>%
  kmeans(centers = 5)
```



```
m.cluster <- datClust %>%
  select(-nameParty) %>%
  kmeans(centers = 10)
```



```
m.cluster <- datClust %>%
  select(-nameParty) %>%
  kmeans(centers = 30)
```


- But there's a trade-off!
 - Accuracy versus parsimony
- Simple rule: look for the "elbow"

Looking for the "elbow"

```
totWSS %>%
  ggplot(aes(x = k,y = totWSS)) +
  geom_line() + geom_point() +
  labs(x = 'Number of Clusters',y = 'Total WSS') +
  scale_x_continuous(breaks = 1:10)
```


• Note that we need to set.seed()! Centroid starting points are random!

Note that we need to set.seed()! Centroid starting points are random!

Note that we need to set.seed()! Centroid starting points are random!

• Note that we need to set.seed()! Centroid starting points are random!

Clustering Randomness

- Can overcome with nstart
 - Attempts multiple initial centroids and chooses the "best"

```
set.seed(42)
c1 <- kmeans(datClust %>% select(-nameParty),centers = 2,nstart = 25)
set.seed(123)
c2 <- kmeans(datClust %>% select(-nameParty),centers = 2,nstart = 25)
table(c1$cluster,c2$cluster)
```

```
##
## 1 166 0
## 2 0 279
```

Is Polarization Increasing?

Compare 97th Congress (1981-1983) to 117th Congress (2021-2023)

Check for the "elbow"

```
totWSS <- NULL
for(k in 1:10) {
    m.cluster <- datClust %>%
        select(-nameParty) %>% kmeans(centers = k,nstart = 25)
    totWSS <- data.frame(totWSS = m.cluster$tot.withinss,k = k) %>%
        bind_rows(totWSS)
}
```

Check for the "elbow"

```
totWSS %>%
  ggplot(aes(x = k,y = totWSS)) +
  geom_line() + geom_point() +
  labs(x = 'Number of Clusters',y = 'Total WSS') +
  scale_x_continuous(breaks = 1:10)
```


Growing polarization?

Conclusion

- Clustering is part of a third camp of data science
 - 1. Theory Testing
 - 2. Prediction
 - 3. Learning
- Next lecture: clustering applied to **TEXT**
- Homework:
 - o Problem set 9
 - Homework 18