Introductory Course on Design of Surface Permanent Magnet Motors

Ali Jamali Fard

Objective

$$P_{out} = 20HP$$

$$Speed = 3600RPM$$

$$V_{t,L-L} = 415V$$

PRELIMINARY DESIGN

Calculation of main dimensions & parameters

Classification of variables

Design Variables

Dependent

Dependent

Fixed

Adjusted by Designer

Direct Dependent

Indirect Dependent P_{out}, D_o

 $B_{av}, ar = \frac{L_{stk}}{\tau_p}$

 $T_{out} = \frac{P_{out}}{\omega_m}$

 $w_{st}, N_{tc}, KgRotor$

Design workflow

Requirements

MATLAB

Excel Maxwell

Check Conditions Run Preliminary Design

Calculate Motor Performance

Adjust Design

Some direct dependents

$$T_{out} = \frac{P_{out}}{\omega_m}$$
 Rated frequency of supply $RPM = \frac{120 \times f}{p}$

Number of poles

Rated output torque

Calculation of input power (input VA)

$$P_{in} = rac{P_{out}}{\eta_d}$$
 $Q_{in} = rac{P_{out}}{\eta_d imes \cos(arphi)}$

Desired power factor

https://ComProgExpert.com

Desired efficiency

Calculation of terminal current

$$I_{t} = \frac{P_{in}}{\sqrt{3}V_{t}\cos(\varphi)}$$

We should assume a desired power factor

Calculation of phase voltage & current

Calculation of phase voltage & current

Calculation of coil voltage & current

Number of parallel paths

Calculation of coil voltage & current

$$V_{ph} = \frac{V_c \times \frac{N_s}{m}}{N_p}$$
 Number of stator slots Number of phases

$$\frac{N_s}{m}$$
 = Number of coils in each phase in double layer winding

Motor output equation

Revolutions per second

Calculation of motor output constant

Ampere loading [kA/m] $G = 1.11 \times \pi^2 \times K_w \times B_{av} \times ac$

Winding factor

Magnetic loading [Tesla]

Calculation of main dimensions

$$D^{2}L = \frac{G}{P_{out} \times rps} \qquad ar = \frac{L}{\tau_{p}}$$

$$\tau_p = \frac{\pi D}{p}$$
 Pole pitch

Pole flux

Total air gap flux←

$$\varphi_{total} = B_{av} \times \pi DL$$

Flux under the pole

$$\varphi_p = \frac{\varphi_{total}}{p}$$

Stator slot dimensions

Calculation of width of stator tooth

Width of stator tooth at tip

$$\varphi_{st,\text{max}} = B_{st} \times w_{st1} \times L \times k_i$$

Stator tooth flux

$$\varphi_{st,\text{max}} = \int B.ds = \int_{\frac{-\pi}{N_s}}^{\frac{\pi}{N_s}} B_r(\theta) \times \frac{D}{2} d\theta \times L$$

$$B_r(\theta) = B_m \cos(p\theta) = \frac{\pi}{2} B_{av} \cos(p\theta)$$

$$\varphi_{st,\text{max}} = \frac{B_{av} \times \pi DL}{2p} \times \sin\left(\frac{\pi p}{N_s}\right) = \frac{\varphi_p}{2} \times \sin\left(\frac{\pi p}{N_s}\right)$$

Calculation of stator slot dimensions

Calculation of width of stator yoke

Width of stator yoke

$$\frac{\varphi_p}{2} = B_{sy} \times w_{sy} \times L \times k_i$$

Calculation of width of rotor yoke

Width of rotor yoke

$$\frac{\varphi_p}{2} = B_{ry} \times w_{ry} \times L \times k_i$$

Calculation of BEMF

Lower than 1: Motor operation

Grater than 1: Generator operation

Calculation of number of Ntph and Ntc (initial guess)

Number of turns per phase <

$$E_{ph} = 4.44 \times f \times N_{tph} \times k_{w} \times \varphi_{p}$$

$$N_{tph} = N_{tc} \times \frac{N_s}{m} \times \frac{1}{N_p}$$

Number of turns per coil ←

Calculation of Slot Area

Calculation of cAsc (initial guess)

Maximum current density in stator winding

After Calculation of cAsc we should update it with SWG or AWG table

Calculation of stator slot dimensions

$$\begin{cases} \frac{(b_{s1} + b_{s2})}{4} \times h_{s2} = gAca \\ b_{s2} = 2 \left(\tan(\pi/N_s) \times \left(\frac{D}{2} + h_{s0} + h_{s1} + h_{s2} \right) - \frac{w_{st2}/2}{\cos(\pi/N_s)} \right) \end{cases}$$

$$a \times h_{s2}^2 + b \times h_{s2} + c = 0$$

Operating point

Updating some parameters

$$N_{tc} \longrightarrow N_{tph} \longrightarrow \varphi_p \longrightarrow L$$

$$E_{ph} = 4.44 \times k_{w} \times f \times N_{tph} \times \varphi_{p}$$

$$\varphi_{p,new} = \frac{E_{ph}}{4.44 \times k_w \times f \times N_{tph,new}}$$

$$\varphi_p = B_{av} \times \frac{\pi DL}{p_{ex}}$$

$$\frac{\varphi_{p,new}}{\varphi_{p,old}} = \frac{L_{new}}{L_{old}}$$

Calculation of phase resistance

Number of stator phases

AUTOMATIC GENERATION OF FEA MODEL

Developing a MATLAB mfile for coupling excel file to ANSYS maxwell

Coupling Excel to ANSYS Maxwell

Developing Excel file

Developing Matlab script for auto generation of vbs file

```
MATLAB R2018b
                                                                                                🔎 🛕 Sign In
            PLOTS
           ▶ C: ▶ Users ▶ Ali Jamali Fard ▶ OneDrive ▶ emdlab-package ▶
Editor - C:\Users\Ali Jamali Fard\OneDrive\Amit-BLDC\GenerateMaxwellDesign.m
                                                                                                                                           ▼ 🖽 🗴
  GenerateMaxwellDesign.m × update_maxwell.m × +
 1 -
         clc;
 2 -
        clear;
 3
        % read excel file
        [~, ~, data] = xlsread('SPMSM-20HP-3600RPM.xlsx', 'Main Dimensions', 'A3:N80');
 5 -
 6
 7
        % needed variables
        varNames = {'D', 'Do', 'hs0', 'hs1', 'hs2', 'bs0', 'bs1', 'bs2', 'Ns', 'g', 'g m', 'Dsh', 'Nm', 'Lstk', 'Ntc', 'Ic', 'dm'};
 8 -
        varStruct = struct;
 9 –
        Nvars = length(varNames);
10 -
        units = cell(1,Nvars);
11 -
12 -
        values = zeros(1,Nvars);
13
        %% loop over data for extraction of needed variables
14
15 -
      \Box for i = 1:size(data,1)
16
17 -
            for j = 1:size(data,2)
18
19 -
                 for k = 1:Nvars
20
                     if strcmp(varNames{k}, data{i,j})
21 -
                                                                                                         script
                                                                                                                                   Ln 5 Col 43
```

FINITE ELEMENT ANALYSIS

FEA of machine and derivation of main characteristics

Motor sketch

Applying boundary condition (A=0)

Definition of steel material

Definition of magnets

Calculation of magnetic loading (Bav)

Calculation of magnetic loading (finding proper magnet arc)

Calculation of magnetic loading (Bav)

Demagnetization study (HB curve of magnet)

Demagnetization study (DQ reference frame of rotor)

Demagnetization study (DQ reference frame of rotor)

$$\begin{cases} i_{ds} = I_s \cos(\alpha_i^e) \\ i_{qs} = I_s \sin(\alpha_i^e) \end{cases}$$

$$\begin{cases} i_{a} = i_{ds} \\ i_{b} = -\frac{1}{2}i_{ds} + \frac{\sqrt{3}}{2}i_{qs} \\ i_{c} = -\frac{1}{2}i_{ds} - \frac{\sqrt{3}}{2}i_{qs} \end{cases}$$

Definition of stator winding

Finding magnetic axis of phase A

Demagnetization study

Calculation of armature field

Calculation of armature field

Calculation of static torque

Calculation of BEMFs (motion setup)

Calculation of BEMFs (setting of simulation time)

Phase back EMFs

Line-to-Line back EMFs

Phase flux linkages

Cogging torque

Rotor reference frame quantities

$$F^{s} = Fe^{j\theta_{s}}$$

$$F^{r} = Fe^{j\theta_{r}} = Fe^{j(\theta_{s} - \omega t)}$$

$$F^r = F^s e^{-j\omega t}$$

$$F^{r} = (F_{d}^{s} + jF_{q}^{s}) \times (\cos(\omega t) - j\sin(\omega t))$$

$$\begin{cases} F_d^r = F_d^s \cos(\omega t) + F_q^s \sin(\omega t) \\ F_q^r = -F_d^s \sin(\omega t) + F_q^s \cos(\omega t) \end{cases}$$

Steady state simulation

Rotor reference frame is moving

Is set for coinciding rotor Daxis and magnetic axis of phase A at start

Mechanical degree
$$\theta_{r\!M} = \omega_{\!\scriptscriptstyle m} t + \theta_{r0}$$

$$\omega_m = 2 \times \pi \times rps = 2 \times \pi \times 60$$

$$\theta_{rE} = \frac{p}{2} \, \theta_{rM}$$

$$\alpha_i^e = 80 \deg + 2 \times \pi \times 60 \times \frac{4}{2} \times time$$

Phase induced voltage

Line-to-Line induced voltage

Phase Flux linkages

Steady state torque

3D Skew analysis for reduction of cogging torque

