Appendix A

Normed Spaces

To be able to assess convergence, or how close our approximations are to the exact solution, we need to define a way to measure distances in a vector space. The most common way to do this is through a *norm*.

Definition A.1 (Norm). *Let* V *be a vector space. A norm is a function* $\|\cdot\|: V \to \mathbb{R}$ *such that for* $v, u \in V$ *and* $\alpha \in \mathbb{R}$:

- 1. **N.1.** $||v|| \ge 0$, and ||v|| = 0 if and only v = 0.
- 2. **N.2.** $\|\alpha v\| = |\alpha| \|v\|$.
- 3. **N.3.** $||v + u|| \le ||v|| + ||u||$ (triangle inequality).

The typical norm that you are familiar with is the "Euclidean norm" in \mathbb{R}^3 . For example, if $x=(x_1,x_2,x_3)$, then $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$. Clearly if $\|x\|\geq 0$, and if $\|x\|=0$, then x=0. The second condition, N.2, is also simple to verify, and the triangle inequality is the common statement that the sum of the lengths of two sides of a triangle is always greater or equal than the length of the third. These three conditions are intuitive to understand in the case of \mathbb{R}^n , and the fact that the Euclidean norm satisfies them is easy to see. Defining a norm for vector spaces of functions is more delicate, and less intuitive. Let's look at some examples.

Examples:

A.1 For $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, the function $g(x) = \sqrt{2x_1^2 + 3x_2^2 + 4x_3^2}$ is also a norm in \mathbb{R}^3 . We will not prove this.

The importance of this example is to illustrate that we can endow the same set of vectors with different norms. A simple way to think about this example is that we are using different units to measure distances in each coordinate direction.

A.2 For $v \in V_1 = \{f : [a, b] \to \mathbb{R} \text{ smooth } \}$, we define the L^{∞} -norm

$$\|v\|_{0,\infty} = \max_{x \in [a,b]} |v(x)|.$$
 (A.1)

Let's check the conditions for this to be a norm, since it is simple in this case. For N.1, since $|v(x)| \ge 0$ for all $x \in [a,b]$, then $||v||_{0,\infty} \ge 0$. Also, if $0 = ||v||_{0,\infty} = \max_{x \in [a,b]} |v(x)| \ge |v(x)| \ge 0$ for any $x \in [a,b]$, then v = 0. For N.2,

$$\|\alpha v\|_{0,\infty} = \max_{x \in [a,b]} |\alpha v(x)| = \max_{x \in [a,b]} |\alpha| |v(x)| = |\alpha| \max_{x \in [a,b]} |v(x)| = |\alpha| \|v\|_{0,\infty}.$$

Finally, for N.3,

$$\begin{split} \|\, u + v \,\|_{0,\infty} &= \max_{x \in [a,b]} |u(x) + v(x)| \leq \max_{x \in [a,b]} |u(x)| + |v(x)| \\ &\leq \max_{x \in [a,b]} |u(x)| + \max_{x \in [a,b]} |v(x)| = \|\, u \,\|_{0,\infty} + \|\, v \,\|_{0,\infty}. \end{split}$$

For instance, let $[a, b] = [0, \pi]$, then:

i. If $v(x) = \cos(x)$, then $||v||_{0,\infty} = 1$.

ii. If
$$v(x) = x(x - \pi)$$
, then $||v||_{0,\infty} = -v(\pi/2) = \pi^2/4$.

A.3 For $v \in V_1$ from Example A.2, we define the L^2 -norm

$$\|v\|_{0,2} = \left[\int_a^b v(x)^2 dx\right]^{1/2}.$$
 (A.2)

We will not check that this is a norm, but just state it. For $[a, b] = [0, \pi]$:

i. If
$$v(x) = \cos(x)$$
, then $||v||_{0,2} = \left[\int_0^{\pi} \cos(x)^2 dx\right]^{1/2} = \sqrt{\pi/2}$.

ii. If
$$v(x) = x(x-\pi)$$
, then $||v||_{0,2} = \left[\int_0^\pi x^2(x-\pi)^2 dx\right]^{1/2} = \pi^{5/2}/\sqrt{30}$.

A.4 For $v \in V_2 = \{w \in V_1 \mid w(a) = w(b) = 0\}$, we define the H^1 -seminorm

$$|v|_{1,2} = \left[\int_a^b v'(x)^2 dx \right]^{1/2}.$$
 (A.3)

The fact that this is a norm requires a discussion of condition N.1: Why does it hold? To answer this, notice that if $|v|_{1,2} = 0$, we can conclude that v'(x) = 0 for all $x \in [0,1]$, since the integrand $v'(x)^2 \ge 0$ everywhere. Therefore, v(x) is a constant function. Since v(a) = 0, then v(x) = 0 for $x \in [a,b]$.

Because of this discussion, $|\cdot|_{1,2}$ is not a norm in the space V_1 in Example A.2, since functions therein need not be zero at the boundaries, and hence condition N.1 is not satisfied. All we would be able to say if $|v|_{1,2} = 0$ is that v is a constant function. For example, let [a, b] = [0, 1],

i. If
$$v(x) = \sin(\pi x)$$
, $v \in V_2$, then $|v|_{1,2} = \left[\int_0^1 (\pi \cos(\pi x))^2 dx \right]^{1/2} = \frac{\pi}{\sqrt{2}}$.

ii. If
$$v(x) = 3$$
, $v \notin V_2$, then $|v|_{1,2} = \left[\int_0^1 0 \ dx \right]^{1/2} = 0$.

A.5 For $v \in V_1$ from Example A.2, we define the H^1 -norm

$$\|v\|_{1,2} = \left[\int_{a}^{b} v(x)^{2} dx + \int_{a}^{b} v'(x)^{2} dx \right]^{1/2}$$

$$= \left[\|v\|_{0,2}^{2} + |v|_{1,2}^{2} \right]^{1/2}.$$
(A.4)

In contrast to what happens with $|v|_{1,2}$ in Example A.4, condition N.1 is satisfied in this case, since it is satisfied for $||v||_{0,2}$.

Notice that we talked about three different norms for space V_1 above: We defined the L^{∞} -norm, the L^2 -norm and the H^1 -norm. The three norms measure distance differently, emphasizing different aspects of the functions.

We can now define the notion of a normed space.

Definition A.2 (Normed Space.). A vector space V with a norm defined over it $\|\cdot\|: V \to \mathbb{R}$ is called a **normed space**, and denoted by $(V, \|\cdot\|)$.

Examples:

- A.6 The space \mathbb{R}^n , $n \in \mathbb{N}$, with the Euclidean norm $\|\cdot\|$ is a normed space $(\mathbb{R}^n, \|\cdot\|)$, since the norm is defined for every element of \mathbb{R}^n .
- A.7 Consider the space $V_1 = \{f : [a,b] \to \mathbb{R} \text{ smooth} \}$ with the L^{∞} -norm $\|\cdot\|_{0,\infty}$. Since all smooth functions are bounded in [a,b], the L^{∞} -norm is well defined for every function in V_1 , and hence $(V_1,\|\cdot\|_{0,\infty})$ is a normed space.
- A.8 Consider again the space $V_1 = \{f : [a,b] \to \mathbb{R} \text{ smooth} \}$ with the L^2 -norm $\|\cdot\|_{0,2}$. Since all smooth functions are bounded in [a,b], the integrals needed to compute the L^2 -norm are well defined for every function in V_1 , and hence $(V_1, \|\cdot\|_{0,2})$ is a normed space. It is, however, a different normed space than $(V_1, \|\cdot\|_{0,\infty})$, since functions that are close in one may not be close in the other, as we shall see.
- A.9 Consider the space $V_2 = \{f : (a,b) \to \mathbb{R} \text{ smooth} \}$ (notice the open interval) with the L^2 -norm $\|\cdot\|_{0,2}$. The function f(x) = 1/(x-a) is in V_2 , since it is smooth in (a,b), but

$$||f||_{0,2}^2 = \int_a^b \frac{1}{(x-a)^2} dx = +\infty,$$

so the norm is not defined for f . Therefore, $(V_2, \|\cdot\|_{0,2})$ is *not* a normed space.

A.10 Let $\Omega \subset \mathbb{R}^n$, $n \in \mathbb{N}$. For such domain Ω , the norm $||v||_{0,2}$ of $v: \Omega \to \mathbb{R}$ is defined as

$$\|v\|_{0,2} = \left[\int_{\Omega} v(x)^2 d\Omega\right]^{1/2}.$$
 (A.5)

The set

$$L^{2}(\Omega) = \{ \nu \colon \Omega \to \mathbb{R} \mid ||\nu||_{0,2} < \infty \}$$
(A.6)

is called the $L^2(\Omega)$ **space**, and $(L^2(\Omega), \|\cdot\|_{0,2})$ is a normed space. The space $L^2(\Omega)$ is said to contain all *square-integrable* functions, and these need not be smooth. For example, if $\Omega = [-1, 1]$, it contains the Heaviside function

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0. \end{cases}$$

In contrast, $H(x) \notin L^2(\mathbb{R})$, since $||H||_{0,2} = \infty$ in this case.

A.11 Let $\Omega \subset \mathbb{R}^n$, $n \in \mathbb{N}$. For such domain Ω , we define the H^1 -norm as

$$\|v\|_{1,2} = \left[\|v\|_{0,2}^2 + \sum_{i=1}^n \left\| \frac{\partial v}{\partial x_i} \right\|_{0,2}^2 \right]^{1/2}.$$

With it, we can define the $H^1(\Omega)$ -space as

$$H^{1}(\Omega) = \{ v \colon \Omega \to \mathbb{R} \mid ||v||_{1,2} < \infty \},$$
 (A.7)

and $(H^1(\Omega), \|\cdot\|_{1,2})$ is normed space. Functions in $H^1(\Omega)$ contain all functions in which both the function and each one of its partial derivatives is square integrable. Alternatively, the function and each one of its partial derivatives is in $L^2(\Omega)$. Therefore, if a funtion $v \in H^1(\Omega)$, then $v \in L^2(\Omega)$. For example: Let $\Omega = [-1,1] \times [-1,1]$, then

i. The function $v(x_1, x_2) = x_1^2 + x_2^3 \in H^1(\Omega)$, since

$$\|v\|_{1,2}^{2} = \int_{-1}^{1} \int_{-1}^{1} (x_{1}^{2} + x_{2}^{3})^{2} dx_{1} dx_{2} + \int_{-1}^{1} \int_{-1}^{1} (2x_{1})^{2} dx_{1} dx_{2}$$
$$+ \int_{-1}^{1} \int_{-1}^{1} (3x_{2}^{2})^{2} dx_{1} dx_{2} = \frac{292}{21} < \infty.$$

ii. The function $v(x_1, x_2) = \ln(1 + x_1) + \ln(1 + x_2) \not\in H^1(\Omega)$, but $v \in L^2(\Omega)$, since

$$\|v\|_{0,2}^2 = \int_{-1}^1 \int_{-1}^1 (\ln(1+x_1) + \ln(1+x_2))^2 dx_1 dx_2$$

$$= 24 + 8\ln(4)(\ln(2) - 2) < \infty.$$

$$\|v\|_{1,2}^2 = \|v\|_{0,2}^2$$

$$\|v\|_{1,2}^{2} = \|v\|_{0,2}^{2} + \int_{-1}^{1} \frac{1}{(1+x_{1})^{2}} dx_{1} dx_{2} + \int_{-1}^{1} \frac{1}{(1+x_{2})^{2}} dx_{1} dx_{2} = \infty.$$

A.12 Let $\Omega \subset \mathbb{R}^n$, $n \in \mathbb{N}$. For $v \in H^1(\Omega)$ we can define the H^1 -seminorm as

$$|\nu|_{1,2} = \left[\int_{\Omega} \|\nabla \nu\|^2 \, d\Omega \right]^{1/2}. \tag{A.8}$$

The definition of H^1 here is incomplete. We will have an opportunity to complete the definition later.

Notice that

$$|v|_{1,2}^2 = \int_{\Omega} \|\nabla v\|^2 d\Omega = \int_{\Omega} \sum_{i=1}^n \left| \frac{\partial v}{\partial x_i} \right|^2 d\Omega = \sum_{i=1}^n \int_{\Omega} \left| \frac{\partial v}{\partial x_i} \right|^2 d\Omega$$
$$= \sum_{i=1}^n \left\| \frac{\partial v}{\partial x_i} \right\|_{0,2}^2.$$

This allows us to write the H^1 -norm as

$$\|v\|_{1,2}^2 = \|v\|_{0,2}^2 + |v|_{1,2}^2. \tag{A.9}$$

A.13 Let $\Omega \subset \mathbb{R}^n$, $n \in \mathbb{N}$ and $m \in \mathbb{N}_0 = \{0\} \cup \mathbb{N}$. The H^m -seminorm of a function $u \colon \Omega \to \mathbb{R}$ is defined as

$$|u|_{m,2}^{2} = \sum_{\substack{i_{1},\dots,i_{n} \geq 0\\i_{1}+\dots+i_{n}=m}} \left\| \frac{\partial^{m} u}{\partial x_{1}^{i_{1}} \dots \partial x_{n}^{i_{n}}} \right\|_{0,2}^{2}, \tag{A.10}$$

where $\partial^m u/\partial x_k^0 = u$.

For example, the H^2 -seminorm in \mathbb{R}^2 is

$$|u|_{2,2}^2 = \left\| \frac{\partial^2 u}{\partial x_1^2} \right\|_{0,2}^2 + 2 \left\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \right\|_{0,2}^2 + \left\| \frac{\partial^2 u}{\partial x_2^2} \right\|_{0,2}^2,$$

and the H^0 -seminorm is directly the L^2 -norm.

The H^m -norm is then defined as

$$\|u\|_{m,2}^2 = \sum_{i=0}^m |u|_{i,2}^2 \tag{A.11}$$

With it, we can define the $H^m(\Omega)$ -space as

$$H^{m}(\Omega) = \left\{ v \colon \Omega \to \mathbb{R} \mid \|u\|_{m,2} < \infty \right\}. \tag{A.12}$$