	第六章 信号与系统的时域和频威特性
	故事从 FT 的 模和相位表示开始说起:
	X(iw)在 Yuu下 为一个复数 而一个复数可以有两种表示方式:
	$ke^{j\theta} = k\cos\theta + jk\sin\theta$,因此可视为模长+相位角 较有: $\chi(jw) = \chi(jw) e^{j \neq \chi(jw)}$ (1) $\chi(e^{jw}) = \chi(e^{jw}) e^{j \neq \chi(e^{jw})}$ (2)
	—
_	$\chi'(e^{jw}) = \chi(e^{jw}) e^{j + \chi(e^{jw})} $ (2)
	(X(jw)) 抽述的是一个10号基本规算管重,即组成
	Meti的各复指数信号相对振幅信息。 IX(jw) 2可看成
	1(t) 能谱密度 (因为 Parseval)。
	而文K(jw)提供复指数信号相对相位信息。一般
	X(jw)相位函数变化会导致 ntb 时域特性改变。
	コアノーファークラムが大人 エログ・フィンチェー
	那么LTI 问应的模与相位形式表示: H(jw) = [H(jw) e j + H(jw) (3).
e	$H(jw) = H(jw) e^{j + H(jw)} $ $Y(iv) = H(jw) E^{j + H(jw)} $ $Y(iv) = H(jw) E^{j + H(jw)} $ $Y(iv) = H(jw) E^{j + H(jw)} $
	$Y(jw) = H(jw) \cdot X(jw) = IX(jw) IH(jw) e^{j + H(jw)} (4).$ $E = A + A + A + A + A + A + A + A + A + A$
	因上式,IHC/w/ 移为系统的增益(gain),文HCjw 移为相移(phase shift)若 K(jw)的模相位在不被希望改变的情况下被
	H(jw) 与文H(jw) 改变,则移为幅度与相位失真(distortion)
	(119w) -) > 119w 1/2, 1/3/1/2/1/1112/2/
	对于 H(jw)=e-jwto, [H(jw)=1, +H(jw)=-wto 关于w线性
	对于H(jw)=e-jwto, H(jw) =1, +H(jw)=-wto, 关于w线性 则Y(jw)= X(jw) ·ej*x(jw)-wto=X(jw)e-jwto
	$y(t) = \alpha(t - t_0) \tag{5}$
	相移为w线性函数时,输出体现出输入的时移.
	孩系统因此得名: Linear phase system 而 Non Linear phase system 中:
	Mon Linear phase system +:
	$\frac{ - (jw) = H_1(jw) - _2(jw) , \text{ where } : (H(jw)=1)}{ H_1(jw) = e^{-jwt_0} , H_2(jw) = e^{j \leftrightarrow H_2(jw)}} $ (6).
·	$H((jw) = e^{-jww}, H_2(jw) = e^{j\sqrt{\pi} \prod_{i=1}^{2} (jw)}$

No. 大: (jw). イ(jw) 校在W=W。左右附近有值 (i.e., 把H(jw) 析成了时移 + 相位变化两步 (ボル)来流, 可用线性关系近何5系统相位特性: エート(jw) ニーター wa (フ). 別: Y(jw) ニーター wa (ス). (8).

サH(jw) $\triangle - \phi - wa$ (7).

別: $Y(jw) \triangle X(jw)$ [H(jw)| $e^{-j\phi e^{-jw\alpha}}$ (8).

发现: 延迟了 α 种,这种为在w=w。的群延迟 (group delay) 在每个频率上的群延迟就等于在那个频率上相位特性斜率负值:

 $\mathcal{J}(w) = -\frac{d\{AHCjw\}\}}{dw}.$ (9)

之前提过: |Y(jw)| = |H(jw)| | X(jw)|, 故可以用对数:
|og|Y(jw)| = |og|H(jw)|+|og|X(jw)| (10)
伯德图: 对数频 章坐标: 20(log10 |H(jw)|和文H(jw) 对于
|og10(w) 的图称为伯德图。

理想频率选择性滤波器时域特征,一个连续时间理想低通滤波器:

$$H(jw) = \begin{cases} 1 & |w| \leq w_c \\ 0 & |w| \leq w_c \end{cases}$$
 (11)

- 午离散时间理想低通滤波器:

它们有零相位/特性, 故不引入相位失真(11)的单位冲激响应是: sin(Wet)

 $h(t) = \frac{\sin(W_0 t)}{\pi t}$

Campus (12) 是: $h[n] = \frac{\sin(\dot{W}_{c}n)}{\pi n}$

_	
	非理想滤波器的时域和频域特性讨论略
	- 阶与- 阶连续时间争绕:
	$-\beta f: $
	PH(jw)= jwT+1, h(t)= te-t/Tu(t) (14)
	附於: $s(t) = h(t) * u(t) = [1 - e^{-t/\tau}]u(t)$ (15)
	这个厂是什么参数?它移为时间常数、控制一阶系统响应的快慢
	· ·
	S(t). 1- = TU, 所跃上升起快
	$\frac{1}{\sqrt{1}} \rightarrow t.$
	(1) Bold Plot: 20 log 10 H(jw) ~ 0, , w << 1/7 ->0log 10(w) ->0log 10(τ), w >> 1/7
	$\frac{-20\log_{10}(w)-20\log_{10}(\tau)}{w}>>1/\tau$
	可见:在低高频中,渐近线的为直线。
	PL AUT)
	$-\beta \dot{\eta}: \frac{\partial \dot{\gamma}(t)}{\partial t^2} + 2\zeta w_n \frac{\partial \dot{\gamma}(t)}{\partial t} + \omega_n^2 \dot{\gamma}(t) = w_n^2 \chi(t). (16).$
	$H(jw) = \frac{10n^2}{(17)}$
	$(j\omega) + 2 \subseteq \omega_n(j\omega) + \omega_n$
	若S=1,刚 critically damped: hit)= Wn'te-Wntuit)(18)
	$\overline{t_0} \leq \neq 1, H(jw) = \frac{M_1}{jw - C_1} - \frac{M_2}{jw - C_2} $ (19)
	$C_{1.2} = -5 w_n \pm w_n \sqrt{5^*-1}, M = \frac{w_n}{2\sqrt{5^*-1}} = M_{1/2}$
	$h(t) = M[e^{(t} - e^{C_2 t}] u(t) $ (20).
	C1.C2 均为实数 ; ちも(0,1) , 久阳尼; ちも(1.+00), 迂阳尼
	Impulse $\int \zeta < 1$: χ PIR: $h(t) = \frac{\omega_n e^{-swnt}}{\sqrt{1-\zeta^2}} \left[\sin(\omega_n \sqrt{1-\zeta^2}t) \right] u(t)$
	$3 = 1$; $h(t) = W_n + e^{-sun} u(t)$
	Response $ z > 1$. If $ z = \frac{w_n}{2\sqrt{z-1}} [e^{C_1 t} - e^{C_2 t}] u(t)$
	KOKUYO