中国科学技术大学

2017—2018学年第一学期考试试卷

	考试科目	概率论与数	理统计(B)	得	寻分	
	所在系 _	姓	名	 	学号	
	考试时	村间: 2018年1月	月10日上午8:30-	-10:30;	使用简单计算器	
(20)公 包 小 販 9 公)	持 穴 販 武 苗 ‡	生師 父安司	11古控气	7九:13米上	
)分,每小题3分)					_ (_)
(1)	设随机事件 A 和 $P(AC AB \cup C)$				β和C互斥. 若P(A) =	= P(B) = 1/2,
(2)	一只蚂蚁从等边	D三角形△A	BC的顶点 A	出发开始	台沿着边爬行,设它	每次爬行到一
	个顶点后, 会休	憩片刻再随	机选择一条运	力继续爬	27,则第 n 次爬行是	:往A爬的概率
	为					
(3)	设连续型随机变	E 量X的密度	函数 $f(x)$ 满足	$\exists f(1+a)$	$f(x) = f(1-x), \ \text{Im} \int_0^2 f(x) dx$	$f(x)\mathrm{d}x = 0.4,$
	则 $P(X < 0) = 0$					
	$(A) 0.2 \qquad (B)$	0.3 (C)	0.4 (D)	0.5		
(4)	设随机变量X的	的分布函数为	F(x) = 0.54	p(x) + 0.	$.5\Phi(\frac{x-4}{2})$, 其中 $\Phi(x)$	为标准正态分
	布函数,则X的			,		
(5)				布为P(X	X = 1) = P(X = -1)	1) = 1/2, Y服
()					$Cov(X, Z) = \underline{\hspace{1cm}}$	
(6)					E记为 X ,另一段长原	
()	则X与Y的相关		,		,	,
	(A) 1 (B) -	` ,	-1/3 (D)	1/3		
(7)					1简单随机样本,则	下列统计量中
	服从F分布的是	:()	•	•		
	(A) $\frac{X_1^2 + X_2^2 + X_3^2}{X_1^2 + X_2^2 + \dots + X_n^2}$	$\frac{1}{2}$ (B) $\frac{X_1^2 + X_2^2}{X_1^2 + X_2^2}$	$\frac{X_2^2 + X_3^2 + X_4^2 + X_5^2}{X_2^2 + X_2^2 + X_2^2 + X_2^2 + X_2^2}$	(C) $_{\bar{2}}$	$\frac{X_1^2 + X_2^2 + X_3^2}{2(X_4^2 + X_5^2 + \dots + X_9^2)}$ (D	$\frac{2(X_1^2 + X_2^2 + X_3^2)}{X_1^2 + X_2^2 + \dots + X_2^2}$
(8)					样本,以 \overline{X} 和 S^2 分别	
	和样本方差. 若				, , , ,	
	(A) S 是 σ 的无偏			及大似然	《估计量	
	(C) S 与 \overline{X} 相互 X					
(9)	设来自总体X~	$\sim N(\mu, 0.9^2)^{-1}$	一组容量为91	的简单随	直机样本, 其样本均值	直 $\overline{X} = 5$,则未
					(保留到小	
(10)					且简单随机样本, 据,	
` /			**	*	已知常数,则()	
					Δ 验水平 $\alpha=0.01$ 下。	必接受 H_0

(C) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 , 那么在检验水平 $\alpha = 0.01$ 下必拒绝 H_0 (D) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 , 那么在检验水平 $\alpha = 0.01$ 下必拒绝 H_0

二. (16分)设二维随机向量(X,Y)的联合密度函数为

$$f(x,y) = Ce^{-2x^2 + 2xy - y^2}, -\infty < x, y < \infty.$$

- (1) 求常数C的值;
- (2) 在X = x的条件下, 求Y的条件密度 $f_{Y|X}(y|x)$.
- 三. (16分)设二维随机向量(X,Y)服从二元正态分布 $N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$,其中 $\mu_1=\mu_2=1$, $\sigma_1^2=\sigma_2^2=0.5$, $\rho=0.5$. 记

$$Z = |X - Y|$$
, $U = \max(X, Y)$, $V = \min(X, Y)$.

- (1) 求Z的密度函数 $f_Z(z)$;
- (2) 求数学期望E(U+V);
- (3) 分别求数学期望EU和EV.
- 四. (18分)设总体X的密度函数为

$$f(x) = \frac{2x}{a^2}, \quad 0 \le x \le a,$$

其中a > 0为未知参数, 而 X_1, X_2, \dots, X_n 是来自该总体的一组简单随机样本.

- (2) 求 $p = P(0 < X < \sqrt{a})$ 的极大似然估计量 \hat{p} ;
- (3) 问 \hat{a}_1 和 \hat{a}_2 是否为无偏估计? 若是, 请证明你的结论; 若不是, 请修正之.
- **五.** (10分) 为了检验某种体育锻炼对减肥的效果, 随机抽取了10名减肥者进行测试. 在进行体育锻炼前后这些减肥者的体重(单位:千克)数据列表如下, 问该体育锻炼方法对降低体重是否具有显著性(设人的体重服从正态分布, 取显著性水平α=0.05)?

锻炼前体重	70	65	67	58	69	72	74	61	63	67
锻炼后体重	68	60	68	58	67	70	70	60	60	65

六. (10分)上海证券综合指数简称"上证指数", 反映了上海证券交易所上市股票价格的变动情况. 自上证指数诞生的二十七年(1991年1月至2017年12月)以来, 所有月份上涨或下跌的情况如下:

月份			三	四	五.	六	七	八	九	十	+-	十二
上涨月数	14	21	16	15	14	14	13	15	11	13	18	13
下跌月数	13	6	11	12	13	13	14	12	16	14	9	14

结合你所学的知识, 我们能否认为上证指数的涨跌与月份有关?

附录: 上分位数表

 $u_{0.025} = 1.96, u_{0.05} = 1.645;$

 $t_8(0.025) = 2.306, t_8(0.05) = 1.86, t_9(0.025) = 2.262, t_9(0.05) = 1.833;$

 $\chi_{11}^2(0.05) = 19.675.$

参考答案

一. (每小题3分)

$$\frac{1}{4}$$
; $\frac{1}{3}[1-(-\frac{1}{2})^{n-1}]$; B; 2; λ ; B; D; C; [4.412, 5.588]; A.

二. (1) (8分)由

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2x^2 + 2xy - y^2} dx dy = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-(x-y)^2} dy = \pi$$

可知 $C = \frac{1}{\pi}$;

(2) (8分) 由于X的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \frac{1}{\sqrt{\pi}} e^{-x^2},$$

从而,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{\sqrt{\pi}} e^{-(x-y)^2}, \quad -\infty < y < \infty.$$

 Ξ . (1) (6分) 由E(X - Y) = 0,

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$

= $0.5 + 0.5 - 2 \times 0.25 = 0.5$,

及二元正态分布的性质可知 $X - Y \sim N(0, 0.5)$,从而Z = |X - Y|的密度函数为

$$f_Z(z) = \frac{2}{\sqrt{\pi}} e^{-z^2}, \quad z > 0.$$

- (2) (4分) 易知, E(U+V) = E(X+Y) = 2.
- (3) (6分) 由E $U EV = EZ = \frac{1}{\sqrt{\pi}}$,可知E $U = 1 + \frac{1}{2\sqrt{\pi}}$,E $V = 1 \frac{1}{2\sqrt{\pi}}$
- 四. (1) (6分) 矩估计量 $\hat{a}_1 = \frac{3}{2}\overline{X}$, 极大似然估计量 $\hat{a}_2 = X_{(n)}$;
 - (2) (4分) 由 $p = \frac{1}{a}$ 知其极大似然估计量为 $\hat{p} = 1/X_{(n)}$;
 - (3) (8分) 矩估计 \hat{a}_1 是无偏的, 因 $E(\hat{a}_1) = \frac{3}{2}E(\overline{X}) = \frac{3}{2}E(X) = a$; 而由 $X_{(n)}$ 的密度函数为

$$h(x) = n[F(x)]^{n-1}f(x) = \frac{2n}{a^{2n}}x^{2n-1}, \quad 0 < x < a,$$

知 $E(\hat{a}_2) = \frac{2n}{2n+1}a$. 故 \hat{a}_2 不是无偏估计,可修正为 $\hat{a}_2^* = \frac{2n+1}{2n}X_{(n)}$.

五. (10分) 成对数据. 首先可算得相减之后, 有 $\overline{X} = 2, S^2 = 28/9$. 故由

$$t = \frac{\sqrt{nX}}{S} = 3.59 > t_9(0.05) = 1.833,$$

可拒绝原假设(H_0 : 锻炼前后体重无显著变化), 即认为该体育锻炼方法对降低体重具有显著性.

六. (10分) 列联表齐一性检验. 两行的和分别为177和147, 每列之和均为27. 由此可算得 χ^2 统计量的值为11.394 $<\chi^2_{11}(0.05) = 19.675$, 故可认为"无充分证据表明上证指数的涨跌与月份有关"或"上证指数的涨跌与月份无关".

3