R 프로그래밍

(4주차)

2016.03.26(토)

장운호

(ADP 002-0004)

목차

- ※ 지난 주 복습
- I. 벡터 인덱싱(Indexing)
- **Ⅱ**. 연산자(Operator)
- 皿. 내장함수(Built-in Function)

※ 벡터 생성법

벡터는 R의 모든 데이터구조의 기본이 되는 형태로, 많은 연습을 통해 익숙하게 사용할 수 있도록 훈련해 둘 필요가 있음.

[벡터 생성 함수 소개 및 사용법]

벡터 생성 함수명	사용법
"·" •	from:end # from부터 end까지의 정수를 벡터로 생성해줌
seq	seq(from, to, by=1) # from부터 to까지 by간격으로 벡터를 생성
rep	rep(x, times, each=1) # x를 times만큼 반복한 벡터를 생성
sample	sample(x, y, replace=FALSE) # x벡터에서 y번 반복하여 비복원(replace=FALSE) 또는 복원(replace=TRUE) 샘플링을 시행하여 벡터를 생성
seq_along	seq_along(x) #1부터 x의 원소의 개수까지 일련번호를 생성

※ 벡터화(Vectorization)

R에서 벡터를 사용하는 이유는 여러 개의 원소들을 한번에 처리하기 위함임.

- 이러한 기능이 구현된 함수들을 "벡터화(Vectorize)"되었다고 표현함.

16 + 17

I. 벡터 Indexing

1. 벡터 Indexing 개요

벡터의 원소들을 개별적으로, 또는 부분집합으로 다룰 필요가 있을 때, 객체명 옆에 대괄호("[")를 열고, 아래의 Rule에 따른 Index방법을 표기한 후, 대괄호("]")를 닫음으로써 지정이 가능함

[벡터 인덱싱(Indexing) Rule 요약]

- 1) 양의 정수가 사용되면, 해당 위치의 원소를 의미한다.
- 2) 빈칸으로 둔 경우는 모든 원소를 지정하는 것이 된다.
- 3) 음의 정수가 사용되면, 해당 위치의 원소가 제외한다는 의미다.
- 4) 조건식을 넣으면 조건식의 참인 원소가 선택된다.
- 5) 정수로 이뤄진 벡터를 넣으면, 해당 벡터의 위치에 있는 원소를 선택한다.

2. 벡터 Indexing 연습

R에서 벡터의 첫번째 원소의 index는 "1" 임.

- Java나 Python 등의 프로그래밍언어에서는 0으로 시작됨.

```
str_vector <- c("hello,", "me","?", "it", "looking", "is", "you", "for")
bool_vector <- c(TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE)
length(str_vector); str_vector[1]; str_vector[3]
sum(bool_vector)
```

```
str_vector[4 : length(str_vector)]
str_vector[4 : length(str_vector) - 1]; str_vector[4 : (length(str_vector) - 1)]
str_vector[bool_vector]
```

3. 벡터 Indexing 연습 – for loop

for 문은 특정한 명령어를 반복적으로 실행할 때, 유용하게 사용 가능함.

- 벡터 자체 혹은 벡터의 인덱스 번호 등을 반복의 기준으로 사용 가능함.

```
str_vector <- c("hello,", "me","?", "it", "looking", "is", "you", "for")
```

```
for (i in str_vector) {
    print(i)
}
```

```
word_arrange <- c(1,6,4,2,7,5,8,3)
for (i in word_arrange) {
    print(str_vector[i])
}</pre>
```

4. 벡터 관련 내장함수 정리

객체 관리 및 파일관리 등에 활용되는 함수들에 대한 연습도 함께 수행 필요

구분	기능	함수
벡터	원소들을 벡터로 결합	c(x,)
	정수로 된 일련번호순의 벡터생성	from:to
	일정한 간격으로 Sequence 생성	seq(from, to, by)
^그 생성	특정한 숫자 혹은 벡터를 반복	rep(x, times, each)
	특정 모집단에서 랜덤 샘플링된 벡터 생성	sample(x, y, replace=FALSE) #replace 키워드로 복원/비복원 구분
	동일한 랜덤 샘플링이 되도록 seed 생성	set.seed(임의의 정수)
	벡터의 길이(원소의 개수) 산출	length(x)
	상/하위 6개 데이터 확인	head(x); tail(x)
 	조건에 맞는 벡터의 인덱스만 추출	which(x 조건비교 y)
벡터 관리	x벡터 원소중 y벡터에 없는 원소 추출	setdiff(x, y) # x,y의 순서가 중요
	벡터간의 교집합 / 합집합	intersect(x, y); union(x, y)
	중복제거 기준 벡터간의 동일원소 여부 비교	setequal(x, y)
	원소의 개수만큼 일련변호 생성	seq_along(x)

Ⅱ. 연산자 (Operator)

1. 연산자의 종류

연산자의 활용은 프로그래밍의 기본이 되는 사항으로, 이를 활용하여 명령어 표현식(Expression)을 간결하게 코딩하는 능력이 중요함.

※ 모두 Vectorization이 적용되어 있음

[산술 연산자]

연산자	설명
+	더하기
-	빼기
*	곱하기
/	나누기
^ or **	제곱
x %% y	나머지
	(5%%2 는 1)
x %/% y	몫
	(5%/%2 는 2)

[논리 연산자]

연산자	설명
<	작다
<=	작거나 같다
>	크다
>=	크거나 같다
==	같다
!=	같지 않다
!x	Not x
x y	x OR y
x & y	x AND y
isTRUE(x)	test if X is TRUE

2. 연산자 우선순위(Precedence)

괄호를 활용하여 우선순위를 적절히 조절하는 것이 중요함.

연산자	설명	적용순서	참조
۸	N제곱 계산	오른쪽 → 왼쪽	
-X, +X	음수/양수 기호	왼쪽 → 오른쪽	
:	정수 벡터 생성	from:to	
%%	나머지 계산	П	%in%, %*%
*, /	곱하기, 나누기 계산	II	
+, -	더하기, 빼기 계산	II	
<, >, <=, >=,	비교 연산자	"	
==, !=	(TRUE, FALSE 반환)		
!	부정 조건 (상동)	и	
&	And 조건 (상동)	и	&&
	Or 조건 (상동)	u	
->	우측 할당	и	->>
<-	좌측 할당	오른쪽 → 왼쪽	<<-
=	좌측 할당	오른쪽 → 왼쪽	

Ⅲ. 내장함수

1. 주요 내장함수 I

객체 관리 및 파일관리 등에 활용되는 함수들에 대한 연습도 함께 수행 필요

구분	기능	함수
패키지 관리	패키지 인스톨	install.packages("패키지명")
	패키지 메모리 로딩	library(패키지명)
	패키지를 메모리에서 삭제	detach("package:패키지명", character.only=TRUE)
객체 관리	메모리상의 객체 리스트 추출	ls(x)
	메모리상의 객체 삭제	rm(x) 또는 rm(list="객체명")
	디렉토리내 파일 리스트 추출	dir("파일PATH")
형변환	데이터 모드(mode)전환	as.~~~(x)
조건 비교	벡터화된 ifelse 함수	Ifelse(조건문, 참일때 실행값, 거짓일때 실행값)
	원소가 모두/하나라도 주어진 조건을 만족하는지 여부 검출	all(x 조건비교 y), any(x 조건비교 y)
특이 데이터	결측값 여부 검출	is.na(x)
	미확정값(NULL) 여부 검출	is.null(x)

2. 주요 내장함수 🎞

주요 내장함수의 용도, Argument의 개수 등을 반복적인 연습을 통해 숙달 필요

구분	기능	함수
	절대값	abs(x)
	제곱근	sqrt(x)
	N제곱, n제곱근	x^n, x^(1/n)
수 식	올림/내림	ceiling(x), floor(x)
	지수함수값	exp(x)
	소수점 n자리 반올림	round(x, digits=n)
	자연로그, 상용로그	log(x), log10(x)
	숫자 ↔ 문자열 전환	as.numeric("x"), as.character(x)
문자열	문자열 글자수	nchar("x")
	문자열 일부선택	substr("x", 시작위치, 끝위치)
	단어 붙이기	paste("x", "y", sep=" ")
	근의 ᇀ의기 	paste0("x","y")

3. 수식 및 내장함수 사용 연습

Sigmoid 함수

$$Prob1 = \frac{e^3}{1 + e^3}$$

$$Prob2 = \frac{e^{5\sqrt{9}}}{1 + e^{5\sqrt{9}}}$$

Prob2 = 0.8251801

End of Document.

감사합니다.