

Learning Objectives

- Overall: To promote individual learning and analytical thinking skills.
- More detailed objectives:
 - 1. Be able to prove correctness of algorithms.
 - Some people spend their whole career to prove something.
 - 2. Have deep understanding of differences and advantages of iterative and recursive algorithms.
 - 3. Have a knowledge base of (many) existing algorithms.
 - 4. Understand speed vs. space trade-off, importance of data-structures, and data preprocessing.
 - Search for an item: hash, tree, and traverse all.
 - 5. Be able to design new algorithms.
 - Correctness.
 - Efficiency.

Overview

- Acknowledgement: Dr. Zhang Wei, Dr. LIU Fang, Dr. Donny course materials
- Appointment by email:
 - Pohkok.Loo@singaporetech.edu.sg
 - AF Alfred.Whang@singaporetech.edu.sg
- References:
 - Algorithm Design, Jon Kleinberg and Eva Tardos.
 - Introduction to Algorithms, Thomas Cormen, Charles Lieserson, et al.
 - Introduction to the Design and Analysis of Algorithms, Anany Levitin.

• Cours and activities

Source: https://eden.uktv.co.uk/animals/birds/article/weaver-birds/

Tentative Dates and Grading Policy

• Marks:

- 28% Assignment (group of 5/6 students)
- 12% Tutorial participation/quiz no makeup
- 30% Midterm
- 30% Final Exam
- Part 1: week 1 to 6 (Loo)
 - 1 assignment (group 14%), week 5, Due on 25/9/23 23:59
 - 5 tutorial participation/quiz (6%), during each tutorial
 - 1 midterm (30%), week 6, <mark>3/10/23 2-3pm</mark>
- Part 2: week 8 to 13 (Alfred)
 - 1 assignment (group 14%), week 12, Due on 13/11/23
 - 5 tutorial participation/quiz (6%), during each tutorial
 - 1 Final (30%), week 13, 21/11/23 (TBA)

Tentative Dates and Grading Policy

- Blended learning
 - All lecture content/video/zoom recording will be posted before the tutorial.
 - The key face to face session is during the tutorial where you will work on tutorial questions, ask questions and complete quizzes.
- Enrol yourself in xSit follows the below guide. Minor variation may occur due to dynamic enrolment add/drop situation.
 - P1: 5 groups of 6 students, 2 groups of 5 students
 - P2: 4 groups of 6 students, 3 groups of 5 students
 - P3: 5 groups of 6 students, 2 groups of 5 students
 - P4: 6 groups of 6 students, 1 groups of 5 students
 - Can only join students within the same tutorial group

Tentative Dates and Grading Policy

- Peer review
 - If a group with 5 students received 72 for the assignment, then

Student	Contribution	Final score
S1	80/100	80/120*72=48.0
S2	95/100	95/120*72=50.5
S3	95/100	95/120*72=50.5
S4	110/100	110/120*72=66.0
S5	120/100	120/120*72=72.0
	Max=120	

- Be careful when allocating percentage for each member. It should not vary too much.
- A student contribution = average contribution given by all other members and yourself.

- History: A self-enforcing college admission process, or job recruiting process.
 - Each student has his/her preference list of the universities.
 - Each university has her preference list of the students.
 - Normal that the preferences do not align perfectly.
 - How to make both sides satisfied?

- Example to be more intuitive (in time order):
 - (May 1) Jon accepted the offer from Apple.
 - (May 2) Google offers Jon and Jon likes Google more.
 - (May 3) Jon retracts his acceptance of Apple and accepts Google's offer. (Apple has one free slot now.)
 - (May 4) Apple soon offers David and he likes Apple more.
 - (May 5) David retracks his Facebook offer and accepts Apple's offer.
 (Facebook has one free slot now.)
 - (May 6) Facebook moves to X, and X turns down Y and accepts Facebook.
 - (May 7) Y moves to Z ... Situation gets out of control.

- Things can be different, possibly even worse.
 - Jon, David and the others have communication channels.
 - They hear something and accordingly do something.
 - The **network** of the communication will be **fully connected** with around $O(n^2)$ links.
 - Suppose 50 students, 50 companies, then we have 10,000 communication links.
 - Each link can trigger a change of the offer distribution.
 - Chaos happens. Everyone tired and unhappy.
- Basic issue?
 - People cannot act in their self-interest, otherwise system may crash.

Source: http://ictusmarketing.com/blog/2014/5/23/what-happens-when-the-buyer-knows-more-than-the-seller

- Basic issue?
 - People cannot act in their self-interest, otherwise system may crash.
- Our desired process stable situation:
 - Use intelligence to guide the process.
 - Idea: self-interest prevents retracting offers.
 - Company, with its offers all being accepted, gets a call from another applicant
 - -> "No, we prefer each applicant we have accepted than you, so we will not change." Chaos avoided.
 - Student, with an offer, gets a call from a university.
 - -> "No. I am happy where I am." No chaos.

Stable Matching

- Question: given employer E and applicant $A \notin E$, can we have:
 - E prefers her accepted applicants than A (another applicant).
 - A prefers his/her current employer over working for E.
- Obj: design algorithm -> produce stable situations.
- Similar application: residents and hospitals matching.
 - Even a decade earlier than the employee and employer one.
 - Still widely used today in USA.
- Intuition: personal interest & system interest.
- Problem formulation -> algorithm design -> algorithm analysis.

Problem Formulation

- Problem: As clean as possible. As simple as possible. Improve step by step.
 - Apply to programming as well.
- Complex situation: a company can hire multiple employees.
 - 1-to-many relationship.
- Simple: marriage problem.
 - A man can only marry a woman.
 - A woman can only marry a man.
 - 1-to-1 relationship.
- Math definition.
 - $n \text{ men}: M = \{m_1, m_2, \cdots, m_n\}.$
 - $n \text{ women: } W = \{w_1, w_2, \dots, w_n\}.$
 - Matching: S, a set of pairs, pair $(m, w) \in S$ has a man $m \in M$ and a woman $w \in W$.
 - Requirement: each man/woman only appears at most once in S.
 - Perfect matching: everyone married & married to one person. Or |M| = |W| = |S| = n.

Problem Formulation

- Preference: each man m ranks all women. The order is m's preference list.
 - m prefers w to w' if he ranks w higher than w'.
 - Ties not allowed.
 - Each woman w also ranks all the men, also her preference list.
- Perfect matching all we want? (All men and women in the matching)
- Unstable pair (m, w) and (m', w') in a perfect matching S:
 - m prefers w'.
 - w' prefers m.
 - (m,w') is called an **instability**. The pair is not in S.
 - m and w' prefer each other but they are assigned to a different person
 - Objective: find a perfect matching, without any instability -> stable matching.
- Questions:
 - Is stable matching possible?
 - If true, how to find it fast?

Possible - Proven with Examples

- Two men m, m' and two women w, w'.
 - m prefers w to w'
 - m' prefers w to w'
 - \mathbf{w} prefers \mathbf{m} to m'
 - w' prefers m to m'

Focus is the pair where they want each other (m,w)

- Do we have complete agreement?
 - The men agree on the order of women.
 - The women agree on the order of men.
 - Unique stable matching: (m, w) and (m', w').
 - Although m' prefers w, w didn't prefer m'
- Another perfect matching $(\mathbf{m}, \mathbf{w}')$ and $(\mathbf{m}', \mathbf{w})$.
 - Is this stable? No (m and w prefer each other)
- A more complicated example in the next slide.

n = 2, n² possibilities, 2²=4 (m,w), (m,w'), (m',w), (m',w') 6 possible combinations (m,w), (m,w') – not possible (m,w), (m',w) – not possible (m,w), (m',w') - ok (m,w'), (m',w) – ok, but unstable (m,w'), (m',w') – not possible (m',w), (m',w') – not possible

> m and w wants each other but now they are both refused their choice and with others

We have a situation where 2 parties want each other but yet they have someone else

Possible - Proven with Examples

- A more complicated example.
 - m prefers w to w'
 - m' prefers w' to w
 - w prefers m' to m
 - w' prefers m to m'

No situation where both parties want each other but yet get someone else

- Men's preferences meshes well -> (m, w) and (m', w') perfect for men.
- Women's preferences meshes well -> (m, w') and (m', w) perfect for women.
- Any problem?
 - Both are stable matchings, but they clash.
 - No happy ending for all men and women.
- Conclusion: ≥ 1 stable matching possible.

(m,w), (m,w'), (m',w'), (m',w)
6 possible combinations
(m,w), (m,w') – not possible
(m,w), (m',w') – ok (fr men)
(m,w), (m',w) – not possible
(m,w'), (m',w') – not possible
(m,w'), (m',w) – ok (fr woman)
(m',w'), (m',w) – not possible

Design the Algorithm

- Our plan:
 - Show that a stable matching exists.
 - Propose an efficient algorithm accordingly.
- Some basic ideas 3 Stages.
 - Free. In the beginning.
 - Engagement. Intermediate state. (Still can change)
 - Married. The algorithm or matching terminates. Engagements declared final.
- Why engage?
 - Bob likes Alice the most and proposes to her.
 - Shall Alice accept?
 - Accepts: what if Alice loves Jon the most and Jon proposes to her later? Regret?
 - If not, what if Bob is the best she can get? Lonely in the end?
 - Engagement is helpful to deal with the above situation.
- Procedure: all free in the beginning, eventually get engaged, and finally married.

Gale-Shapley Algorithm


```
Initially all m \in M and w \in W are free
While there is a man m who is free and hasn't proposed to
every woman
   Choose such a man m
   Let w be the highest-ranked woman in m's preference list
      to whom m has not yet proposed
   If w is free then
      (m, w) become engaged
   Else w is currently engaged to m'
      If w prefers m' to m then
         m remains free
      Else w prefers m to m'
         (m, w) become engaged
         m' becomes free
      Endif
   Endif
Endwhile
Return the set S of engaged pairs
```

- Can return a stable matching?
- How to prove our judgement?

Woman w will become engaged to m if she prefers him to m'.

Figure 1.2 An intermediate state of the G-S algorithm when a free man m is proposing to a woman w.

Demo 1

Iteration	Man Proposes to	Woman	Engagement	Free Males	Reason
0				A, B, C	
1					
2					
3					
4					
5					
6					

Man	Preference List	Woman	Preference List
А	W_1, W_2, W_3	w_1	C, B, A
В	W_1, W_2, W_3	W_2	C, B, A
С	W_1, W_2, W_3	W_3	С, В, А

Demo 1 - Result

Male proposes, but woman get to select the most preferred man

Iteration	Man Proposes to	Woman	Engagement	Free Males	Reason
0				A, B, C	
1	А	w_1	(A, w_1)	В, С	1 st proposal to w_1
2	В	w_1	(B, w_1)	A, C	w_1 likes B more than A
3	А	w_2	$(B, w_1), (A, w_2)$	С	1 st proposal to w_2
4	С	w_1	$(C, w_1), (A, w_2)$	В	w_1 likes C more than B
5	В	w_2	$(C, w_1), (B, w_2)$	Α	w_2 likes B more than A
6	А	w_3	$(C, w_1), (B, w_2), (A, w_3)$	END	1 st proposal to w_3

Man	Preference List	Woman	Preference List
Α	W_1, W_2, W_3	w_1	С, В, А
В	W_1, W_2, W_3	W_2	C, B, A
С	W_1, W_2, W_3	W_3	C, B, A

Demo 2 (Let Women propose for fairness)

Iteration	Wm Proposes to	Man	Engagement	Free Wms	Reason
0				A, B, C	
1					
2					
3					
4					
5					
6					

Wms	Preference List	Man	Preference List
Α	m_1, m_2, m_3	m_1	A, B, C
В	m_1, m_2, m_3	m_2	A, B, C
С	m_1, m_2, m_3	m_3	A, B, C

Demo 2 - Result

Iteration	Wm Proposes to	Man	Engagement	Free Wms	Reason
0				A, B, C	
1	Α	m_1	(A,m_1)	B, C	1st proposal to m_1
2	В	m_1	(A, m_1)	B, C	m_1 (with A) rejects B
3	В	m_2	$(A, m_1), (B, m_2)$	С	1st proposal to m_2 (SUC)
4	С	m_1	$(A, m_1), (B, m_2)$	С	m_1 (with A) rejects C
5	С	m_2	$(A, m_1), (B, m_2)$	С	m_2 (with B) rejects C
6	С	m_3	(A, m_1), (B, m_2), (C, m_3)	END	1st proposal to m_3 (SUC)

Wms	Preference List	Man	Preference List
Α	m_1, m_2, m_3	m_1	A, B, C
В	m_1, m_2, m_3	m_2	A, B, C
С	m_1, m_2, m_3	m_3	A, B, C

Analyze the Algorithm

- (Assume men proposing)
- Fact 1.1. Woman w remains engaged from the point at which she receives her first proposal; and the sequence of partners to which she is engaged gets better and better.
 - From the woman's perspective.
 - Only changes her mind if a more preferred man proposes.
- Fact 1.2. The seq. of women to whom man m proposes gets worse and worse.
 - From the man's perspective.
 - Only proposes again if he is free or his engaged more preferred woman left him.
- Fact 1.3. The algorithm terminates after at most $O(n^2)$ iterations.
 - Proof trick: focus on the terminate condition of the while loop.
 - One man proposes to one different woman (he never proposed to) in each iteration.
 - How many men? How many woman? n x n

n = 2, n² possibilities, 2²=4 (m,w), (m,w'), (m',w), (m',w')

Analyze the Algorithm

- Fact 1.4. If man m is free at some point in the execution of the algorithm, then there is a woman to whom he has not yet proposed.
 - Proof idea: Contradiction analysis. Suppose the man has proposed to all, but now he is free. The only possibility is that all his proposed women are engaged with other men.
 - We have n women, engaged to n men, which does not include the man m. Now, we have n+1 men. But it cannot be true.
- Fact 1.5. The set S returned at termination is a perfect matching.
 - Proof idea: The algorithm terminates only if there is no free man. So, all men and women are in the matching.

Analyze the Algorithm

- Fact 1.6. The algorithm returns a stable matching.
 - Proof idea: at least know it is perfect, so prove there is no instability.
 - Contradiction analysis again. Suppose we really have one:
 - (m, w) and (m', w') that:
 - Man m prefers w' more && woman w' prefers m more $\rightarrow (m, w')$?
 - If man m is together with w, he must have proposed to w' before, as he like w' more.

• So w' rejected m for m'? No way, as w' like m more than m'. (Fact 1.1)

Wms	Preference List	Man	Preference List
W		m	w', w
w'	m, m′	m'	

Computational Tractability

Computational Tractability

- Resources in computer systems?
 - Time, space, communication.
 [https://ieeexplore.ieee.org/document/9063714]
 - Which one is the most important?
 - We focus on time, and space is also considered.
 - Why do we consider space?
- Obj: quantify computational tractability. How it changes?
 - Proposing an algorithm is easy.
 - An efficient (and correct) algorithm will be challenging.

Computational Tractability

- Informal efficiency def.: runs quickly on real input.
 - Problem 1: run the algorithm in what environment?
 - Problem 2: how fast is fast?
 - Special case: a poor-designed algorithm runs super fast with tiny data input
 - Special case: a well-designed algorithm runs super slow with huge data
 - Problem 3: what is real input? Crash with large input?
- We want: platform-independent and instance-independent.

Worst-Case Running Time

- Quantify the input size: N
 - n men and n women (eg. n=3)
 - 2n preference lists, each list of length n (eg. 2x3 plist x 3)
 - $N = 2n \cdot n = 2n^2$
- Task: analyze the running time as a function of N.
- Worst-case running time: the largest possible running time with input N.
- Benchmark: brute-force algorithm (brainless design).

Man	Preference List	Woman	Preference List
Α	W_1, W_2, W_3	w_1	С, В, А
В	W_1, W_2, W_3	W_2	C, B, A
С	W_1, W_2, W_3	W_3	C, B, A

Redefine Efficiency

- Informal efficiency def.: achieves better worst-case performance, at an analytical level, than brute-force search.
- Polynomial time: quantify "reasonable" running time.
 - Search space: often grows exponentially.
 - Reasonable may be: from n to n+1, running time increases by a constant.
- Informal efficiency def.: an alg. is efficient if runs in polynomial time.
 - Extreme cases exists like the worst-case concept, i.e., $n^{10000000}$?
 - Again, in reality, the polynomial concept works well.

Running Times

n is the		п	$n \log_2 n$	n^2		n^3	1.5 ⁿ	2 ⁿ	n!
number of data	n - 10	< 1 sec	< 1 sec	< 1 sec		< 1 sec	< 1 sec	< 1 sec	4 sec
points	n = 30	< 1 sec	< 1 sec	< 1 sec		< 1 sec	< 1 sec	18 min	10 ²⁵ years
•	n = 50	< 1 sec	< 1 sec	< 1 sec		< 1 sec	11 min	36 years	very long
	n = 100	< 1 sec	< 1 sec	< 1 sec		1 sec	12,892 years	10 ¹⁷ years	very long
	n = 1,000	< 1 sec	< 1 sec	1 sec		18 min	very long	very long	very long
	n = 10,000	< 1 sec	< 1 sec	2 min		12 days	very long	very long	very long
	n = 100,000	< 1 sec	2 sec	3 hours		32 years	very long	very long	very long
	n = 1,000,000	1 sec	20 sec	12 days	31,7	710 years	very long	very long	very long

• Assumptions:

- 1m instructions per second
- Very long -> runs over 10^{25} years.

1,000,000 instructions per second (1mins = 60secs) $n^3 = 1,000^3 = 1,000,000,000$ 1,000,000,000 / 1,000,000 = 1,000secs x 1/60 = 17mins

• Intelligence does not necessarily produce polynomial algorithms.

Asymptotic Order of Growth - Upper Bound

- Target: worst-case time, given input n, grows at a rate at most proportional to f(n).
 - We also call f(n) a **bound**.
- Too specific expressions unnecessary, i.e., runs in $1.62n^2 + n + 4$ steps.
 - Constants vary for different architectures
 - Determined by the highest order (e.g. n²)
- How do you plan to quantify the above terms concisely?
 - We ignore the constants and We ignore the lower order items.

- The worst-case running time T(n) of a certain algorithm on an input of size n.
 - Expresses only an upper bound.
- $f(n) = pn^2 + qn + r$ for constants p, q, and $r \rightarrow O(n^2)$.

Asymptotic Order of Growth - More bounds

- How to justify our proven bound $O(\cdot)$ is good?
 - i.e., we are almost always true if we say it is $O(n^{100000n})$.
- Asymptotic Lower Bounds : $\Omega(n)$.
 - The func. T(n) is at least a constant "c" multiple of f(n) = c.g(n).
 - $T(n) = pn^2 + qn + r$ for constants p, q, and $r \rightarrow \Omega(n^2)$.
- Asymptotically Tight Bounds $\Theta(n)$: $f(n) = \Omega(g(n)) = O(g(n))$ (optimal bound)
 - i.e., $f(n) = pn^2 + qn + r = \Omega(n^2) = O(n^2) = \Theta(n^2)$.
- Note: consider $n \to \infty$.
 - ullet Only matters when n is large.
 - $f(n) = \Theta(g(n))$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$.
 - *c* is a positive constant.

c.g(n) is the estimated bound cg(n) f(n) cg(n) f(n) $c_1g(n)$ $c_1g(n)$ (a) Big-O Notation (b) Big-Omega Notation (c) Big-Theta Notation

- f(n) = 2n + 3
- f(n) = O(g(n)) where g(n) = n
- $f(n) \le c_1.g(n) = c_1.$ n where $n > n_0, c_1 > 0, n_0 > = 1$
- 2n+3 <= c₁.n where the RHS, big-O is larger than actual function
- If $n_0=1$ and $c_1=5$, then 5 <= 5: ok
- If $n_0=2$ and $c_1=5$, then 7 <= 10: ok

- $f(n) = \Omega(g(n))$ where g(n) = n
- $f(n) >= c_2.g(n) = c_2.$ n where $n>n_0$, $c_2>0$, $n_0>=1$
- $2n+3 >= c_2.n$ where RHS, big-omega is smaller than the actual function
- If $n_0=1$ and $c_2=1$, then 5>=1: ok
- If $n_0 = 2$ and $c_2 = 1$, then 7 > = 2: ok
- Conclude that the big-omega of the function 2n+3 is $\Omega(n)$ where $c_2=1$, $n_0>=1$. This is the best case of this algorithm (the algo will never be better than this)

•
$$f(n) = 2n + 3$$

- $f(n) = \theta(g(n))$ where g(n) = n
- c_2 . $n = c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n) = c_1$. n where $n > n_0$, $c_1, c_2 > 0$, $n_0 > = 1$
- $2n+3 \le c_1.n$ where the RHS is the worst case
- Conclude that the worst case of the function 2n+3 is $\theta(n)$ where $c_1=5$, $n_0>=1$. This is the best worst case of this algorithm
- c₂.n <= 2n+3 where LHS, is the best case
- Conclude that the best case of the function 2n+3 is $\theta(n)$ where $c_2=1$, $n_0>=1$. This is the best case of this algorithm (the algo will never be better than this)
- theta is the average case of the algorithm

Common Times - O(n)

- Long-time goal: recognize common styles of analyzing the running time.
- Linear time: O(n), time scales by a constant factor times the input size n.
- Find the maximum: a_1, a_2, \dots, a_n .
 - Each needs a comparison, in constant time.
 - O(n) * O(1) = O(n).
- Merge sorted lists. The same O(n), but more complex.
 - List a_1, a_2, \dots, a_n and list b_1, b_2, \dots, b_n , both in ascending order.
 - Objective: c_1, c_2, \cdots, c_{2n} .
 - i.e., 2, 3, 11, 19 and 4, 9, 16, 25 \rightarrow 2, 3, 4, 9, 11, 16, 19, 25.
 - A non-intelligent solution: concatenate the lists \rightarrow sort all the items.
 - Record pa, pb, and pc, where pa = pb = pc = 1 in the beginning.
 - While $pa \le n$ and $pb \le n$:
 - If $a_{pa} > b_{pb} \rightarrow$ smaller b_{pb} to $c_{pc} \rightarrow pb + +$ and pc + +.
 - If $a_{pa} \leq b_{pb}$ \rightarrow smaller a_{pa} to c_{pc} \rightarrow pa++ and pc++.
 - Whatever left, append to c.

 $max = a_1$ For i = 2 to nIf $a_i > max$ then set $max = a_i$ Endif
Endfor

Append the smaller of a_i and b_j to the output.

Common Times - $O(n \log n)$, $O(n^2)$, $O(n^3)$, $O(n^k)$

- O(n log n): the time of any alg. splits input into equal-sized pieces,
 solves each recursively, and combines the two solutions in linear time.
 - Popular example: sorting.
 - Analyze the basic idea: sorting is expensive -> sort less -> combine.
 - i.e., $100^2 = 10,000 \rightarrow 2 \times 50^2 = 5,000 \rightarrow 5,000 + 100 = 5,100$, around half time.
- $O(n^2)$: i.e., n points in a plane, what the nearest points?
 - Brute-force sol.: for each pt, compute the dist. between it and another pt.
 - O(n) points, each O(n) distances, each distance $O(1) \to O(n^2)$.
- $O(n^3)$: nested loops, i.e., 3-variable solver: 2x + 5y + 9z = 100.
 - For $x \rightarrow$ for $y \rightarrow$ for $z \rightarrow$ check the sum.
- $O(n^k)$: Any idea on getting $O(n^k)$?
 - Independent sets in a graph with k nodes.
 - Brute-force, choose k from n: $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdots k} \le \frac{n^k}{k!} \le n^k$.

Beyond Polynomial Time

- $O(2^n)$ vs. O(n!). Which one is faster?
 - $O(2^n)$: the number of the subsets of n nodes.
 - O(n!): the number of perfect matchings; traveling salesman problem.
- Sublinear time: better than linear, i.e., $O(\log n)$.
 - Binary search.
 - Query the inputs instead of traversing them.
 - Half → half → half → half ...