Real Analysis

August Bergquist

March 21, 2023

1 The Uniformly Convergent Limit of Continuous Functions is Continuous

Proposition 1. Let X and Y be metric spaces, and let $f_n: X \to Y$ be a uniformly convergent sequence of continuous functions, which converge to some function $f: X \to Y$. Then f is continuous.

Proof. Let everything be instantiated as above. Suppose for the sake of contradiction that f is not continuous. Then there exists some point of discontinuity $a \in X$. Hence there exists some $\epsilon > 0$ such that for all $\delta > 0$, there exists some $x \in X$ with $d_X(x,a) < \delta$ and $\epsilon \le d_Y(f(x),f(a))$.

By uniform convergence of f_n , there exists natural number N such that for all n > N, and for all $x \in X$, $d_Y(f(x), f_n(x)) < \epsilon/3$. In particular, $d_Y(f_n(a), f(a)) \le \epsilon/3$.

Moreover, by assumption that each f_n is continuous, it is continuous in particular at a. Hence there exists some $\delta > 0$ such that for any $x \in X$ with $d_X(x,a) < \delta$, we must have $d_Y(f_n(x), f_n(a)) < \epsilon/3$.

But by construction of ϵ , there exists some $b \in X$ such that $d_X(b, a) < \delta$ and $< \epsilon \le d_Y(f(a), f(b))$. But $d_Y(f(a), f_n(a)) < \epsilon/3$, $d_Y(f_n(a), f_n(x)) < \epsilon/3$ and

 $d_Y(f_n(x), f(x)) < \epsilon/3$, Hence by the triangle inequality we have

$$\epsilon \le d_Y(f(a), f_n(a))
\le d_Y(f(a), f_n(a)) + d_Y(f_n(a), f_n(x)) + d_Y(f_n(x), f(x))
< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$
(1)

Hence $\epsilon < \epsilon$, which is a contradiction.

2 Uniform Convergence and Arithmetic

Lemma 1. Let X be a metric space, and let $f_n: X \to \mathbb{R}$ be a uniformly convergent sequence of functions, which converge to $f: X \to \mathbb{R}$. Suppose f is bounded by $M \in \mathbb{R}$, such that for all $x \in X$,

$$|f(x)| \leq M$$
.

Then for all $\epsilon > 0$ there exists a natural number $N \in \mathbb{N}$ such that for all n > N, and for all $x \in X$,

$$|f_n(x)| \le M + \epsilon.$$

Proof. Let everything be instantiated as above. Let $\epsilon > 0$. By uniform convergence of (f_n) , we have some natural number N such that for all n > N, $|f(x) - f_n(x)| < \epsilon$. Take any n > N. Then by the Triangle Inequality, we have

$$|f_n(x)| = |f_n(x) - 0|$$

$$|f_n(x) - f(x)| + |f(x) - 0| = |f_n(x) - f(x)| + |f(x)|.$$
(2)

But $x \in X$, so $|f(x)| \le M$. Moreover, since n > N, by construction of N we have $|f_n(x) - f(x)| < \epsilon$, hence

$$|f(x)| < M + \epsilon.$$

For what follows, let X be a metric space, and let f_n and g_n be sequences of functions $X \to \mathbb{R}$, which uniformly converge to functions $f, g: X \to \mathbb{R}$ respectively.

Proposition 2. The sequence of pointwise defined sums, $f_n + g_n$, converges uniformly to the pointwise sum f + g.

Proof. For let $\epsilon > 0$. Then $\epsilon/2 > 0$. By uniform convergence of f_n to f, there exists some natural number N_1 such that for all $n > N_1$, and for all $x \in X$, $|f_n(x) - f(x)| < \epsilon/2$. Similarly, there exists some natural number N_2 such that for all $n > N_2$, and for all $x \in X$, $|g_n(x) + g(x)| < \epsilon/2$.

Consider $N = \max(N_1, N_2)$. Let n > N, and let $x \in X$. Since n > N, $n > N_1, N_2$, hence $|f_n(x) - f(x)| < \epsilon/2$ and $|g_n(x) - (x)| < \epsilon/2$. From this it follows that

$$|(f_n + g_n)(x) - (f + g)(x)| = |f_n(x) + g_n(x) - (f(x) + g(x))|$$

$$= |(f_n(x) - f(x) + (g_n(x) - g(x))|$$

$$\leq |f_n(x) - f(x)| + |g_n(x) - g(x)| < \epsilon/2 + \epsilon/2 = \epsilon.$$
(3)

This concludes the proof.

Proposition 3. If, in addition, f and g are both bounded, then the pointwise product $f_n g_n$ converges uniformly to the pointwise product fg.

Proof. Let $\epsilon > 0$. Since f and g are bounded, there exist real numbers F, G > 0 such that for all $x \in X$, $|f(x)| \le F$ and $|g(x)| \le G$. Hence

$$\eta = \frac{\epsilon}{F + G} > 0.$$

By the above lemma, it follows that there exists some natural N_1 such that for all $n > N_1$, and for all $x \in X$, $|f_n(x)| \le F + \eta$. By the same lemma, there exists some natural number N_2 such that for all $n > N_2$, and for all $x \in X$, $|g_n(x)| < G + \eta$. Moreover, by uniform convergence of f_n to f, there exists some natural number N_3 such that for all $n > N_3$, and for all $x \in X$, $|f_n(x) - f(x)| < \eta$. By uniform convergence of g_n to g, there exists some natural number N_4 such that for all $n > N_4$, and for all $x \in X$,

 $|g_n(x)-g(x)|<\eta.$ Let $N=\max\{N_1,N_2,N_3,N_4\},$ and suppose n>N and $x\in X.$ Then

$$|(f_{n}g_{n})(x) - fg(x)| = |f_{n}(x)g_{n}(x) - f(x)g(x)|$$

$$= |f_{n}(x)g_{n}(x) - f_{n}(x)g(x) + f_{n}(x)g(x) - f(x)g(x)|$$

$$\leq |f_{n}(x)g_{n}(x) - f_{n}(x)g(x)| + |f(x)g(x) - f_{n}(x)g(x)|$$

$$= |f_{n}(x)||g_{n}(x) - g(x)| + |g(x)||f(x) - f_{n}(x)|$$

$$< (F + \eta)\eta + G\eta = (\eta + F + G)\eta < (F + G)\eta$$

$$= (F + G)\frac{\epsilon}{F + G} = \epsilon.$$
(4)

Generalizing and stuff, by definition of uniform convergence, f_ng_n converges uniformly to fg as desired.