

Contenido

- 1. Introducción a la optimización
- 2. Aplicaciones de la optimización
- 3. Software de optimización
- 4. Ejercicios

Introducción a la optimización

Castillo García

Definiciones

Optimización

Es un proceso que consiste en **seleccionar el mejor elemento** de un conjunto de elementos disponibles con respecto a algún criterio.

Definiciones (continuación)

Problema de optimización

Es un problema en el que hay muchas posibles soluciones y alguna forma clara de comparación entre ellas.

Definiciones (continuación)

Programación lineal

Es el campo de la optimización dedicado a maximizar o minimizar una función lineal, denominada función objetivo, de tal forma que las variables de dicha función están sujetas a una serie de restricciones expresadas mediante un sistema de ecuaciones o inecuaciones (o una combinación de ambas) también lineales.

Modelos de Programación Lineal

Modelo general:

Maximizar o minimizar sujeto a:

Función objetivo

Restricciones

Ejemplo:

minimizar:

$$z=3x_1-2x_2$$

$$5x_1+4x_2\leq 40$$

$$5x_1+2x_2\geq 20$$

$$x_1+5x_2\geq 10$$

$$x_1, x_2 \geq 0$$

Variables de Decisión

Fundamentalmente, las variables de decisión se pueden dividir en tres tipos:

- ▶ **Continuas.** Pueden tomar cualquier valor real (e.g., 1.5, -10.84 o $\pi \approx 3.1416$).
- ► Enteras. Pueden tomar valores no fraccionarios (e.g., 1 o 2).
- ▶ Binarias. Pueden tomar valores de cero o uno.

NOTA: Por lo general, las variables de decisión se denotan con la letra x (en itálica) y un subíndice, por ejemplo: x_1 .

Función Objetivo

En programación lineal, las funciones objetivo son **funciones reales de varias variables** y éstas deben ser **lineales**.

- Ejemplos de funciones objetivo lineales:
 - $f(x_1,x_2) = x_1 + x_2$
 - $f(x_1, x_2, x_3) = 3x_1 2x_2 + 7x_3$ Castillo García
- Ejemplos de funciones objetivo no lineales:
 - $f(x_1,x_2)=3x_1^2-7\sqrt{x_2}$
 - $f(x_1,x_2) = \ln(x_1 + x_2)$

Nota: Una función objetivo se desea maximizar o minimizar.

Restricciones

Las restricciones pueden ser de tres tipos:

- Menor o igual. Por ejemplo: $x_1 + x_2 \le 30$
- Mayor o igual. Por ejemplo: $x_1 + x_2 \ge 0$
- **Igual.** Por ejemplo: $x_1 + x_2 = 1$

Aplicaciones de la optimización Norberto

¿En donde se aplica la optimización?

- Toma de decisiones en proyectos de inversión.
- Programación de horarios en escuelas.
- Programación de quirófanos (cirugías) en hospitales.
- Secuenciación de cortado de cables UTP para cableado estructurado.
- Programación de recursos materiales y humanos en una terminal portuaria.
- Encontrar la mejor ruta para las empresas de reparto (p.ej., DHL o estafeta).
- Reducir los costos de producción y las emisiones de contaminantes en la generación de energía eléctrica.
- ¡Y muchas más!
- ► ¿Conoces alguna otra?

Ejemplo de aplicación

- ► Una empresa se dedica a la fabricación de ropa. El próximo mes planea fabricar camisas y pantalones. Cada camisa se vende en \$135 y cada pantalón en \$290. Para fabricar una camisa se requiere de 2.5 m² de tela y 1.5 horas-máquina. Para fabricar un pantalón se requiere de 4 m² de tela y 2.5 horas-máquina. En total se dispone de 300 m² de tela y 120 horas-máquina al mes.
- ¿Cuál es la cantidad de camisas y pantalones que se deben fabricar al mes para que la utilidad esperada sea máxima?

Ejemplo de aplicación (continuación)

Variables de desición:

- x_1 cantidad de camisas a producir mensualmente.
- x₂ cantidad de pantalones a producir mensualmente.

Modelo de PL:

maximizar:

$$z = 135x_1 + 290x_2$$

$$2.5x_1 + 4x_2 \le 300$$

$$1.5x_1 + 2.5x_2 \le 120$$

$$x_1, x_2 \ge 0$$
 y enteras

Software de optimización

NOTDETO

Castillo García

Diferentes motores de optimización

- ► Software libre (GNU):
 - >> GLPK (www.gnu.org/software/glpk/)
 - >> Lpsolve (www.sourceforge.net/projects/lpsolve/)
 - >> COIN-OR (www.coin-or.org/)
- Software propietario:
 - >> Lindo (www.lindo.com/)
 - >> Gurobi(www.gurobi.com/)
 - >> CPLEX (www.ibm.com/mx-es/analytics/cplex-optimizer)

¿Qué es CPLEX?

- Es un software de optimización.
- Resuelve problemas de programación lineal, programación entera y programación cuadrática, entre otros.
- Ofrece interfaces a otros lenguajes de programación como C++, C# y Java (a través de API's).
- Desafortunadamente, es un software comercial (de paga).
- Sin embargo, para fines académicos es completamente gratuito, gracias a la iniciativa académica de IBM.

Declaración del modelo

En la API de CPLEX para Java, un modelo se declara de la siguiente manera:

```
IloCplex modelo = new IloCplex();
```

Donde modelo es el nombre que le asignamos a nuestro modelo.

Declaración de variables

Para declarar una variable se puede utilizar la siguiente instrucción:

Declaración de expresiones

- Las expresiones se componen uno o más términos algebraicos.
- ➤ Si en una expresión todas las variables están elevadas a la potencia 1, entonces se denomina expresión lineal.
- ▶ Una expresión lineal es del tipo: $a_1x_1 \pm a_2x_2 \pm \cdots \pm a_nx_n$. **Ejemplos:**
 - $x_1 2x_2$
 - $>> 135x_1 + 290x_2$
 - $x_1 8x_2 + 4x_3$
- Si en una expresión hay una multiplicación de dos variables, entonces es una expresión cuadrática, por ejemplo: $5x_1^2 3x_1x_2 + 11x_2^2$.
- Las expresiones son importantes ya que con ellas se construyen tanto en la función objetivo como las restricciones.

Declaración de expresiones (continuación)

En CPLEX, las expresiones se manejan con múltiples interfaces y subinterfaces. Algunos ejemplos son:

- ► IloNumExpr
- ► IloLinearNumExpr
- ► IloIntExpr

Declaración de expresiones (continuación)

Una expresión se puede declarar utilizando **IloLinearNumExpr** y el método **addTerm** de la siguiente manera:

```
IloLinearNumExpr exprLineal = modelo.linearNumExpr();
exprLineal.addTerm(c, x);

variable tipo double

Objeto de tipo IloNumVar
```

Nota: El método addTerm agrega un sólo término a la expresión.

Declaración de expresiones (continuación)

La expresión anterior también puede ser ingresada utilizando el método **scalProd** (producto escalar):

Declaración de la función objetivo

Para declarar una función objetivo podemos usar cualquiera de las siguientes declaraciones:

- Para funciones objetivo de maximización:
 - >> modelo.addMaximize(IloNumExpr ine);
 - >> modelo.add(modelo.maximize(IloNumExpr ine));
- Para funciones objetivo de minimización:
 - >> modelo.addMinimize(IloNumExpr ine);
 - >> modelo.add(modelo.minimize(IloNumExpr ine));

Declaración de las restricciones

- ▶ Para declarar restricciones de tipo menor o igual (≤):
 - >> modelo.addLe(IloNumExpr ine, double d, String str)
- ► Para declarar restricciones de tipo mayor o igual (≥):
 - >> modelo.addGe(IloNumExpr ine, double d, String str)
- ► Para declarar restricciones de tipo igual (=):
 - >> modelo.addEq(IloNumExpr ine, double d, String str)

Resolución del modelo

Para resolver el modelo de Programación Lineal, se utiliza el método solve de la siguiente manera:

```
>> modelo.solve();
```

- Este método retorna un valor booleano.
- Si el valor de retorno es **true**, entonces el modelo pudo resolverse.
- ► Si el valor de retorno es **false**, entonces no fue posible resolver el modelo.

Recuperación de los valores de interés

► Para obtener el valor objetivo:

```
>> modelo.getObjValue();
```

Para obtener el valor de la variable x (de tipo IloNumVar):

```
>> modelo.getValue(x);
```

Ejercicios Norberto Castillo García

Resolver el siguiente modelo de Programación Lineal utilizando la API de CPLEX para Java:

$$z=3x_1-2x_2$$

$$5x_1 + 4x_2 < 40$$

$$5x_1 + 2x_2 \ge 20$$

$$x_1 + 5x_2 \ge 10$$

$$x_1, x_2 \geq 0$$

Resolver el siguiente modelo de Programación Lineal utilizando la API de CPLEX para Java:

maximizar:
$$z = 135x_1 + 290x_2$$

$$2.5x_1 + 4x_2 \le 300$$

$$1.5x_1 + 2.5x_2 \le 120$$

$$x_1, x_2 \ge 0$$
 y enteras

Resolver el siguiente modelo de Programación Lineal utilizando la API de CPLEX para Java:

maximizar:
$$z = 325x_1 + 400x_2 + 100x_3 + 540x_4 + 270x_5$$

$$118x_1 + 232x_2 + 63x_3 + 325x_4 + 78x_5 \le 500$$

$$x_1, x_2, x_3, x_4, x_5$$
 binarias

Resolver el siguiente modelo de Programación Cuadrática utilizando la API de CPLEX para Java:

maximizar:
$$z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

sujeto a:

$$x_1 + 2x_2 \le 2$$
$$x_1, x_2 > 0$$

Referencias I

J. P. Ignizio and T. M. Cavalier.

Linear programming.

Prentice-Hall, Inc., 1994.

A. D. Muñoz.

Metaheurísticas, volume 22.

Librería-Editorial Dykinson, 2007.

H. A. Taha.

Investigación de operaciones.

Pearson Educación, 2004.