Algèbre 1 Test Nº 1

AU 2015-2016 CPI 1 Durée: 2h

Exercice 1:

Décrire les parties de R aux lesquelles appartient x pour que les assertions suivantes soient vraies :

- a) (x > -4 et x < 3) ou x = 2
- b) x > 3 et x < 5 et x = 4
- c) (x < 0 et x > 1) ou x = 4
- d) $x > -2 \Rightarrow x > 3$.

Exercice 2:

Montrer que:

$$\forall n \in \mathbb{N}\{0,1\}, 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} > \frac{3n}{2n+1}$$

Exercice 3:

Soient E un ensemble et $f: E \to E$ telle que f o f o f = f. Montrer que f est injective si, et seulement si, f est surjective.

Exercice 4:

Soit A une partie d'un ensemble E.

On associe à A l'application 1_A , de E vers $\{0,1\}$, définie par : $1_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$

$$1_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

Montrer que $f: A \mapsto 1_A$ est une bijection de $\mathcal{P}(E)$ vers $\mathcal{F}(E, \{0,1\})$.

Exercice 5:

Soit $n \in \mathbb{N}^*$.

Résoudre dans C l'équation :

$$(z+i)^n = (z-i)^n$$

Observer que celle-ci admet exactement n-1 solutions, chacune réelle.

Exercice 6:

Déterminer module et argument de $e^{i\theta} + 1$ et de $e^{i\theta} - 1$ pour $\theta \in \mathbb{R}$. Déterminer module et argument de $e^{i\theta} + e^{i\theta'}$ pour $\theta, \theta' \in \mathbb{R}$.