代数结构第十次习题参考答案

梁后军

ahlhj@mail.ustc.edu.cn

page113, 10

证: 1) 对任 $g \in G$ 有 $e^*g=g^*e=>e \in H$, 即 H 是 G 的非空子集。

- 2) 对任 a,b ∈ H, (a*b)*g=a*(b*g)=a*(g*b)=(a*g)*b=(g*a)*b=g*(a*b) => a*b ∈ H 即 H 是封闭的。
- 3) 若 $a \in H$,则对于 $g \in G$, 有 $a*g=g*a=>g=a^{-1}*g*a =>g*a^{-1}=a^{-1}*g*a*a^{-1}=a^{-1}*g$ $=>a^{-1}\in H$

由 1) 2) 3) 知<H,*> 是 <G, *>的子群。

page113, 12

page114, 15

设 $G=\{g^0=e,g^1,g^2,g^3,g^4,g^5\}$ 由 104 页定理 5.12 知子群 $H(H=<g^s>)$ 的阶|H|=n/(n,s) g^s 是 G 的生成元⇔ $(n,s)=1=>g^1,g^5$ 为 G 的 6 阶生成元。各子群:

$$<\{g^0=e\}, *>, <\{g^0=e, g^3\}, *>, <\{g^0=e, g^2, g^4\}, *>, G$$

page114, 18

证:设 n=dm, $G=\langle a \rangle$,则 a^m 的阶为 d,{ a^m , a^{2m} , a^{3m} ,..., $a^{(d-1)m}$, e }是 G 的一个 d 阶子群。

设 H 是 G 的任一 d 阶子群,由于 H \subseteq G=>H 中的元素都是 a 的幂次方。若能证明 H 中的元素都是由 a^m 所生成的,则 H 就只能是 { a^m , a^{2m} , a^{3m} ,..., $a^{(d-1)m}$, e } 了。若 d=1,则必有唯一的平凡子群< $\{e\}$,*>.

若 d>1. 则 H 中必有 a^s ,其中 s 是 H 中元素的最小幂次且 $s \neq 1$, 即 H 中的元素都是由 a^s 生成的。设 n=st+r, $0 \leq r < s$.

 $a^r = a^n \ a^{-st} = (a^s)^{(-t)} \in H = > r = 0 = > s \mid n$. 故 a^s 的阶为 d = n/s = > s = n/d = m = > H 是以 a^m 为生成 元的 d 阶子群 .

由H的任意性知原命题成立。

page114 , 21

- 证: 1) 由于偶置换与偶置换的合成仍为偶置换=>Sn 的某些子群可以全部由偶置换构成。
 - 2) 由于奇置换与奇置换的合成为偶置换,

若某子群含有奇置换则必含偶置换。设此子群为 $D=\{p_1,p_2,...,p_m, q_1,q_2,...,q_n\};$

 p_i , i=1,2,...,m, 为 奇置换 q_j , j=1,2,...,n, 为偶置换。 令 $A=\{\ p_1,p_2,...,p_m\}$ 为 奇置换的集合, $B=\{\ q_1,q_2,...,q_n\ \}$ 为偶置换 的 集合。 因奇置换与奇置换的合成为偶置换=> $p_{1o}\ p_i$ \in B. 由 $p_{1o}\ p_i$ 各不相同且 D 是群=>m<=n 因奇置换与偶置换的合成仍为奇置换=> $p_{1o}\ q_j$ \in A 由 $p_{1o}\ q_j$ 各不相同且 D 是群=>n<=m 于是 m=n,即奇置换与偶置换各占一半。