COMP4421 (Fall 2018)

Assignment #3

Name: Kristian Suhartono StudentID : 20313207 E-mail: <u>ksuhartono@connect.ust.hk</u>

I. Exercises

1. Huffman Coding

Original So	urce		Source I	Reducti	on							
Intensity	Prob	Code	1		2		3		4		5	
1	0.25	10	0.25	10	0.25	10	0.3125	11	0.4375	0	0.5625	1
3	0.25	01	0.25	01	0.25	01	0.25	10	0.3125	11	0.4375	0
9	0.1875	00	0.1875	00	0.1875	00	0.25	01	0.25	10		
7	0.125	110	0.125	110	0.1875	111	0.1875	00				
2	0.0625	1110	0.125	1111	0.125	110						
12	0.0625	11111	0.0625	1110								
15	0.0625	11110										

Intensity	Frequency	Compressed(bits)	Original Size	Compressed Size
1	4	2	16	8
3	4	2	16	8
9	3	2	12	6
7	2	3	8	6
2	1	4	4	4
12	1	5	4	5
15	1	5	4	5
Total	·		64	42

Compression Ratio: 64 / 42 = 1.523809524 = 1.5238

2. Adaboost Classifier

T = 1:

Sample weights:

0.1111	0.1111	0.1111	0.1111	0.1111	0.1111	0.1111	0.1111	0.1111
--------	--------	--------	--------	--------	--------	--------	--------	--------

Error: 0.2222

Classifier Weight: 1/2 * ln((1 - 0.4444) / 0.4444) = 0.1117

T = 2:

Sample weights before normalization:

0.0994 0.0994 0.0994 0.0994 0.0994 0.1111 0.1111 0.1111 0.1111
--

Sum: 0.9414

Sample weights after normalization:

Error: 0.6708

Classifier Weight: 1/2 * ln((1 - 0.6708) / 0.6708) = -0.3559

T = 3:

Sample weights before normalization:

Sum: 1.1101

Sample weights after normalization:

								i
0 00 0 4	0 40 50	0 40 50	0.0951	0 00 0 4	0 4 0 0 4	0 4 0 0 4	0 4004	0 4 4 0 0
nnasi	111111	111111	1 /1 /1051	1 /1 /1451	1 () 1()()1	1 () 1()()1	1 (1 1(1(1)	111111
0.0331	0.1336	0.1336	0.0331	1 0.0331	1 0.1001	1 0.1001	1 0.1001	I U.1423

Error: 0.2903

Classifier Weight: 1/2 * ln((1-0.2903) / 0.2903) = 0.4470

T = 4:

Sample weights before normalization:

0.0711	0.1016	0.1016	0.0951	0.0951	0.1001	0.0749	0.0749	0.1069
--------	--------	--------	--------	--------	--------	--------	--------	--------

Sum: 0.8213

Sample weights after normalization:

0.0865	0.1237	0.1237	0.1157	0.1157	0.1219	0.0912	0.0912	0.1301
--------	--------	--------	--------	--------	--------	--------	--------	--------

Error: 0.7683

Classifier Weight: 1/2 * ln((1 - 0.7683) / 0.7683) = -0.5994

T = 5:

Sample weights before normalization:

	0.0865	0.1237	0.1237	0.2107	0.2107	0.1219	0.0912	0.0912	0.1301
--	--------	--------	--------	--------	--------	--------	--------	--------	--------

Sum: 1.1897

Sample weights after normalization:

0.0727 0.1040 0.1040 0.1771 0.1771 0.1024 0.0767 0.0767 0.1094
--

Error: 0.5419

Classifier Weight: 1/2 * ln((1-0.5419)/0.5419) = -0.0840

a. Two best classifiers at T = 3 and T = 1, so H3 and H1

b. Final classifier response:

[1, 1, -1, 1, -1, -1, -1, 1, -1]

II. Programming Tasks

1. Digit Segmentation

The algorithm:

- Preprocessing the image to remove noise
- Thresholding the input to get binary images
- Horizontal and vertical projection to get the digits (finding the peaks in each projection)
- Clearing of excess empty spaces
- Resizing of image to 20x20
- Padding to 28x28
- Centering of image based on the center of gravity

a. Image 1:

b. Image 2:

c. Image 3:

2. Classification via Adaboost Classifier used: Decision Tree

a. Accuracy of Image 1: 15/16 = 93.75%b. Accuracy of Image 2: 11/12 = 91.67%c. Accuracy of Image 3: 11/16 = 68.75%