Complexity Analysis

Yu-Shuen Wang, CS, NCTU

Program running time

When is the running time (waiting time for user) noticeable/important?

Program running time – Why?

When is the running time (waiting time for user) noticeable/important?

- web search
- database search
- real-time systems with time constraints

Factors that determine running time of a program

- problem size: n
- basic algorithm / actual processing
- memory access speed
- CPU/processor speed
- # of processors?
- compiler/linker optimization?

Running time of a program or transaction processing time

- amount of input: n → min. linear increase
- basic algorithm / actual processing

 depends on algorithm!
- memory access speed → by a factor
- CPU/processor speed → by a factor
- # of processors? → yes, if multi-threading or multiple processes are used.
- compiler/linker optimization? → ~20%

Time Complexity

- measure of algorithm efficiency
- has a big impact on running time.
- Big-O notation is used.
- To deal with n items, time complexity can be O(1), O(log n), O(n), O(n log n), O(n²), O(n³), O(2ⁿ), even O(nⁿ).

```
for ( i=0 ; i<n ; i++ )

m += i;
```

```
for ( i=0 ; i<n ; i++ )
    for( j=0 ; j<i ; j++ )
    m += j;</pre>
```

```
i = 1;
while (i < n) {
    tot += i;
    i = i * 2;
}</pre>
```

```
for ( i=0 ; i<n ; i++ )
  for( j=0 ; j<n ; j++ )
    for( k=0 ; k<n ; k++ )
    sum[i][j] += entry[i][j][k];</pre>
```

```
for ( i=0 ; i<n ; i++ )
        for( j=0 ; j<n ; j++ )
             sum[i] += entry[i][j][0];
for ( i=0 ; i<n ; i++ )
        for (k=0; k< n; k++)
             sum[i] += entry[i][0][k];
```

```
for ( i=0 ; i<n ; i++ )
    for( j=0 ; j< sqrt(n) ; j++ )
        m += j;</pre>
```

```
for ( i=0 ; i<n ; i++ )
    for( j=0 ; j< sqrt(995) ; j++ )
    m += j;</pre>
```

```
int total (int n)
   for (i=0; i < n; i++)
    subtotal += i;
main()
   for ( i=0 ; i<n ; i++ )
    tot += total(i);
```

Compare running time growth rates

n	O(1)	$O(\log_2 n)$	O(n)	$O(n\log_2 n)$	$O(n^2)$
10^{2}	$1\mu\mathrm{sec}$	$1~\mu { m sec}$	$1\mu\mathrm{sec}$	$1\mu\mathrm{sec}$	$1\mu\mathrm{sec}$
10^{3}	$1\mu\mathrm{sec}$	$1.5~\mu\mathrm{sec}$	$10~\mu { m sec}$	$15~\mu\mathrm{sec}$	$100~\mu\mathrm{sec}$
10^{4}	$1\mu\mathrm{sec}$	$2~\mu { m sec}$	$100~\mu{ m sec}$	$200~\mu{ m sec}$	10 msec
10^{5}	$1\mu\mathrm{sec}$	$2.5~\mu{ m sec}$	1 msec	2.5 msec	1 sec
10^{6}	$1\mu\mathrm{sec}$	$3~\mu { m sec}$	10 msec	30 msec	1.7 min
10^{7}	$1\mu\mathrm{sec}$	$3.5~\mu{ m sec}$	100 msec	350 msec	2.8 hr
10^{8}	$1\mu\mathrm{sec}$	$4~\mu { m sec}$	1 sec	4 sec	11.7 d

n	$O(n^2)$	$O(2^n)$
100	$1\mu\mathrm{sec}$	$1\mu\mathrm{sec}$
110	$1.2~\mu\mathrm{sec}$	1 msec
120	$1.4~\mu\mathrm{sec}$	1 sec
130	$1.7~\mu\mathrm{sec}$	18 min
140	$2.0~\mu\mathrm{sec}$	13 d
150	$2.3~\mu{ m sec}$	37 yr
160	$2.6~\mu\mathrm{sec}$	37,000 yr