Tema 3 Conexión y compacidad

Definición

Un espacio topológico (X, τ) es conexo si para todo A, B abiertos y $A \cap B = \emptyset$ con $A \cup B = X$, entonces $A, B \subset \{\emptyset, X\}$

Propiedad

Son equivalentes:

Si $f:(X,\tau)\to (Y,\tau')$ es un aplicación y B'es una base de τ' entonces:

- (a) (X, τ) es conexo
- (b) El único $A \subset X$ que son abiertos y cerrados son $\emptyset y X$
- (c) Si $f:(X,\tau)\to (Y,\tau')$ es continua entonces es constante.

Teorema

Si (X, τ) es conexo y $f: (X, \tau) \to (Y, \tau')$ es continua entonces f(X) es conexo en Y.

Estudiar conexión, componentes conexas y conexión total del conjunto de R^2 :

$$X = ([0,1]x\{0\}) \cup \bigcup_{n \in \mathbb{N}} \left\{ \left(1, \frac{1}{n}\right) \right\}$$

Sea (N,τ) $\tau=\{A_n:n\in N\}\cup\{\emptyset,N\}$, con $A_n=\{1,2,\ldots,n\}$. Estudiar qué subconjuntos son conexos y cuáles son compactos.

En la recta de Sorgenfrey (R, au_S) , estudiar si [0,1] es conexo y si es compacto.

Sea $O=(0,0), p_n=\left(1,\frac{1}{n}\right)$ $n\in N$ y $X=\{(1,0)\}\cup_{n=1}^{\infty}[O,p_n]$. Estudiar si es conexo y si es compacto.

Estudiar si las siguientes afirmaciones son ciertas:

- $(a)\;(Rx\{0\})\cup(\{0\}xR)$ es homeomorfo a R^2 .
- (b) En un espacio (X, au), si $A\subset X$ es conexo, también lo es A° .

Probar que cada par de espacios de conjuntos no son homeomorfos (topología usual):

- (a) N y Q.
- (b) $A =]-1,0[\cup]0,1[y B =]-1,0[\cup]0,1]$
- $(c) \ A = \left\{ (x,y) \in R^2 \colon x^2 + y^2 \le 1 \right\} \ \mathsf{y} \ B = \left\{ (x,y) \in R^2 \colon x^2 + y^2 \ge 1 \right\}$

Probar que cada par de espacios de conjuntos no son homeomorfos (topología usual):

$$(a) R^2 y RP^2.$$

$$(b) \ A = \left\{ (x,y) \in R^2 \colon y = sen\left(\frac{1}{x}\right), x > 0 \right\} \ \mathsf{y} \ B = A \cup \{(0,0)\}$$

$$(c) \ A = (\{0\}x] - 1, 1]) \cup ([0, 1]x\{0\}) \ \mathsf{y} \ B = (\{0\}x] - 1, 1[) \cup ([0, 1]x\{0\})$$

(d)
$$S^1x[0,1]$$
 y $S^1x[0,1]$.

En $Rx\{1,9\}$ se considera la familia de conjuntos

$$\mathcal{B} = \{]a, b[x\{1,9\}: a < b \in R \}$$

- a.- Demostrar que \mathcal{B} es una base de una topología τ sobre $Rx\{1,9\}$.
- b.- Estudiar si los conjuntos

$$A = [3,5]x\{1\} \cup [3,5]x\{9\}$$
 $B = [3,5]x\{1\} \cup [3,5]x\{9\}$

 $YA \cap B = [3, 5[x{1,9}] \text{ son compactos en } (Rx{1,9}, \tau).$

c.- Calcular las componentes conexas de $(Rx\{1,9\},\tau)$.

En $X = Rx\{2, 0, 1, 9\}$ se considera la relación de equivalencia:

$$(x,y)R(x',y') \Leftrightarrow (x,y) = (x',y') \ o \ x,x' \leq -1 \ o \ x,x' \geq 1$$

a.- Estudiar si la proyección $p:(X, au_{uX}) o ig(X/_R,{}^{ au_{uX}}/_Rig)$ es abierta o cerrada.

b.- Razonar si $({}^X\!/_{\!R}$, ${}^{\tau_{uX}}\!/_{\!R})$ es homeomorfo a alguno de los siguientes subespacios de (R^3,τ_u) :

- i) $S^1x\{2,0,1,9\}$
- ii) $\left(S^1x\{0\}\right)\cup\left(\{0\}xS^1\right)$
- iii) RxS^1

Solución

a.-

Se considera la recta de Sorgenfrey (R, τ_s) y la recta usual (R, τ_u) :

- a.- Estudiar si la aplicación identidad, au_u : $(R, au_s) o (R, au_u)$ es continua, abierta o cerrada.
- b.- Razonar si [0,2[es un subespacio conexo o compacto de (R, au_s) .
- c.- Razonar si [0,2] es un subespacio conexo o compacto de (R, au_s) .

En $Rx\{1,9\}$ se considera la familia de conjuntos

$$\mathcal{B} = \{]a, b[x\{1,9\}: a < b \in R \}$$

- a.- Demostrar que ${\mathcal B}$ es una base de una topología τ sobre $Rx\{1,9\}$.
- b.- Estudiar si la topología au es metrizable, es decir, si proviene de una distancia.
- c.- ¿Es $(Rx\{1,9\}, au)$ homeomorfo a $\left(Rx\{1,9\},(au_u)_{Rx\{1,9\}}
 ight)$? ¿Por qué?

En $X = Rx\{2, 0, 1, 9\}$ se considera la relación de equivalencia:

$$(x,y)R(x',y') \Leftrightarrow (x,y) = (x',y') \quad o|x|,|x'| \geq 1$$

a.- Estudiar si la proyección $p:(X, au_{uX}) o ig(X/_R,{}^{ au_{uX}}/_Rig)$ es abierta o cerrada.

b.- Razonar si $(^X\!/_R$, $^{\tau_{uX}}\!/_R)$ es homeomorfo a alguno de los siguientes subespacios de (R^3, τ_u) :

- i) $S^1x\{2,0,1,9\}$
- ii) $\left(S^1x\{0\}\right)\cup\left(\{0\}xS^1\right)$
- iii) RxS^1

Solución

a.-

Se considera la recta de Sorgenfrey (R, au_s) .

- a.- Calcular las componentes conexas de $R-\{1,2\}$.
- b.- Razonar si $\{0,2\}$ es un subespacio conexo o compacto de (R, au_s) .
- c.- Razonar si existen subconjuntos compactos infinitos en este espacio.

Para cada $\alpha \in R$ se denota $R_{\alpha} = \{(x,y) \in R^2 : y = \alpha\}$. Se considera la topología τ en R^2 con base $\mathcal{B} = \{R_{\alpha} : \alpha \in R\}$.

a.- Estudiar si $au \leq au_u$ y si $au_u \leq au$, donde au_u es la topología usual en R^2 .

b.- ¿Es (R^2, τ) un espacio de Hausdorff?

c.- Calcular el cierre, el interior y la frontera de los ejes coordenados.

d.- ¿Es cierto que todo conjunto acotado en \mathbb{R}^2 tiene interior vacío?

e.- Identificar la topología inducida por au sobre cada R_{lpha} y sobre $L=\{0\}xR$.

f.- Construir explícitamente un homeomorfismo $f:(R^2,\tau) \to (R^2,\tau')$ donde τ' es la topología en R^2 con base $\mathcal{B}'=\{R_{\alpha}':\alpha\in R\}$ con $R_{\alpha}'=\{(x,y)\in R^2:x=\alpha\}$.

g.- Probar que $A\subseteq R^2$ es conexo en $\left(R^2,\tau\right)$ si y solo sí, existe $\alpha\in R$ tal que $A\subseteq R_\alpha$. Determinar las componentes conexas de $\left(R^2,\tau\right)$.

h.- Probar que $A\subseteq R^2$ es compacto en $\left(R^2,\tau\right)$ si y solo sí, existe $J\subseteq R$ finito tal que $A\subseteq \bigcup_{\alpha\in J}R_\alpha$.

Estudia de forma razonada las siguientes cuestiones:

a.- ¿Es cierto que todo subconjunto finito no vacío de un espacio topológico es discreto?

¿Y si el espacio es metrizable?

b.- Sea (R, τ_S) la recta de Sorgenfrey. Definamos $f: (RxR, \tau_S x \tau_S) \to (RxR, \tau_S x \tau_S)$ como $f(x,y) = (x,-y^3)$. Analizar si f es continua, abierta o cerrada.

c.- Un aplicación $f:(X,\tau)\to (Y,\tau')$ es propia si para cada C' compacto de (Y,τ') se verifica que $f^{-1}(C')$ es compacto en (X,τ) . Probar que si f es propia, (X,τ) es de Hausdorff e (Y,τ') es compacto, entonces f es continua.

En R se considera la topología dada por

$$\boldsymbol{\tau} = \{ \boldsymbol{A} \cup \boldsymbol{B} : \boldsymbol{A} \in \boldsymbol{\tau}_{\boldsymbol{u}}, \boldsymbol{B} \subseteq \boldsymbol{Q} \}$$

- a.- Para cada $x \in R$ obtener una base de entornos de x en (R, τ) .
- b.- Calcular la clausura y el interior de [a,b[en (R, au). ¿Es R/Q denso en (R, au)?
- c.- Probad que si $C\subseteq R$ es compacto en (R,τ) entonces C es compacto en (R,τ_u) . ¿Es cierto el enunciado recíproco?
- d.- Probad que si $C \subseteq R$ es conexo en (R, τ) entonces $C = \{x\}$ con $x \in R$.

Si $f:(X,\tau)\to (Y,\tau')$ una aplicación continua, donde (X,τ) es compacto e (Y,τ') es de Hausdorff, entonces $f^{-1}(\mathcal{C}')$ es compacto en (X,τ) para cada \mathcal{C}' compacto en (Y,τ') .

Sea $X=R\cup\{\alpha\}$ donde $\alpha\notin R$. En X se considera la topología τ de la que conocemos una base $\mathfrak B$ dada por:

$$\mathfrak{B} = \{(a,b): a,b \in R, a < b\} \cup \{(-\varepsilon,0) \cup \{\alpha\} \cup (0,\varepsilon): \varepsilon > 0\}$$

- a.- Decidir si (X, τ) es un espacio de Hausdorff.
- b.- Probar que $au_{X-\{lpha\}}= au_u$ y que $\left(X-\{0\}, au_{X-\{0\}}
 ight)$ es homeomorfo a (R, au_u) .
- c.- Estudiar la conexión en (X, τ) del conjunto $A = (a, b) \cup \{\alpha\}$.
- d.- ¿Es el conjunto C = [-1, 1] cerrado en (X, τ) ? ¿Es compacto en (X, τ) ?

Sea (X,τ) un espacio compacto y $A\subseteq X$ infinito. Demostrar que $A'\neq\emptyset$, donde A' es el conjunto de puntos de acumulación de A en (X,τ) .

Sea (R, τ_S) , estudiar la continuidad de $f: (R, \tau_S) \to (R, \tau_S)$, f(x) = senx. Estudiar cuando un subconjunto A de (R, τ_S) es conexo.

Ejercicio 21

Componentes conexas de $\left\{ 1/_n : n \in N \right\}$ y $R^2 - \left\{ (x,y) \in R^2 : y \in \{-1,1\} \right\}$.

Estudiad la compacidad de (R, au_d) . Caracterizar los subconjuntos compactos.

Sea p
otin R. En $X = R \cup \{p\}$ se considera la topología au que tiene por base

$$\beta = \beta_u \cup \{]-\infty, \alpha[\cup]b, +\infty[\cup \{p\}: \alpha < b\}$$

Estudiar la conexión y compacidad de (X, τ) .

Consideramos el espacio (X, τ) con X =]0, 1[y $\tau = \{\emptyset, X\} \cup \{]0, a[: a < 1\}$. Caracterizar los conjuntos compactos y estudiar si es localmente compacto.

- a.- Poner un ejemplo de un espacio topológico y dos subconjuntos suyos compactos cuya intersección no es compacta.
- b.- En R con la topología del punto incluido para p=0, hallar un subconjunto A que sea compacto, pero \overline{A} no lo sea.

Se considera el espacio topológico $X=R\cup\{p,q\}$ donde $p,q\not\in R$ cuya base es

$$\beta = \{]a, b[: a, b \in R, a < b\} \cup \{] - \infty, a[\cup \{p\}: a \in R\} \cup \{]a, + \infty[\cup \{q\}: a \in R\}$$

Probar que (X, τ) es compacto y que $(X, i: R \to X)$ es una compactificación de (R, τ_u) .

- a.- Razonar si puede existir una biyección abierta del plano $\left(R^2, au_u\right)$ en la esfera $\left(S^2, au_{/S^2}\right)$.
- b.- Probar que si $m{\beta}$ es base de (R^2, au_u) , entonces las componentes conexas de los elementos de $m{\beta}$ forman otra base de (R^2, au_u) .

Razonar si los siguientes subespacios de $\left(R^3, au_u
ight)$ son homeomorfos:

$$\text{a.-}\left(S^1x\{0\}\right)\cup\left(\{0\}xS^1\right) \ \text{b.-} \ S^2 \ \text{c.-} \ S^2-\{N,S\} \ \text{d.-} \ S^1xR \quad \text{e.-} \ (Rx\{(0,0)\})\cup S^2$$

En $Rx{0,1}$ se consideran la familia de subconjuntos

$$\beta = \{ a, b | x\{0,1\} : a, b \in R, a < b \}$$

- a.- Demostrar que β es base de una topología τ sobre $Rx\{0,1\}$.
- b.- Estudiar si los conjuntos

$$A = [2,3]x\{0\} \cup]2,3[x\{1\} \quad B =]2,3[x\{0\} \cup [2,3]x\{1\}$$

 $YA \cap B =]2, 3[x\{0,1\} \text{ son compactos en } (Rx\{0,1\}, \tau).$

c.- Calcular las componentes conexas de $(Rx\{0,1\},\tau)$.

Razonar si los siguientes subespacios de $\left(R^3, \tau_u\right)$ son homeomorfos:

a.-
$$X = [-1,1]x\{-1,1\} \cup \{-1,1\}x[-1,1]$$
 b.- S^1 c.- $S^1 \cup Rx\{1\}$ d.- $X \cup Rx\{1\}$ e.- $S^1 \cup Rx\{0\}$

Estudiad en cada uno de los siguientes casos si son homeomorfos:

a.-
$$X = \{(x, y, z) \in R^3 : x^2 + y^2 + z^2 = 1, z > 0\}$$
 e $Y = R^2$.

b.-
$$X = S^1 x R e Y = S^2$$
.

c.-
$$X = [0, 1] e Y = S^1 x[0, 1]$$
.

Probar que los espacios de cada pareja son homeomorfos entre sí:

a.-
$$A = \{(x, y) \in R^2 : x^2 + y^2 = 1, x \ge 0\}, B = [0, 1].$$

b.-
$$A = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}, B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}.$$

$$c.-A =]0,1[\cup [2,3], B =]5,7[\cup [10,12].$$

Se considera el conjunto $X = \{a, b, c, d, e\}$ con la topología:

$$\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$$

- a.- Hallar las componentes conexas de (X, τ) ,
- b.- Probar que toda biyección abierta $f\colon (X, au) o (X, au)$ es un homeomorfismo.

Estudiar la compacidad del espacio ([-1,1, au]), donde

$$\boldsymbol{\tau} = \{\boldsymbol{0} \subset [-1,1] \colon \boldsymbol{0} \notin \boldsymbol{0}\} \cup \{\boldsymbol{0} \subset [-1,1] \colon]-1,1[\subset \boldsymbol{0}\}$$

Estudiar qué subconjuntos son compactos.

- a.- Probar que $B=(Rx\{0\})x(\{0\}xR)-\{(0,0)\}$ tiene exactamente cuatro componentes conexas.
- b.- En un espacio (X, τ) , sea $\{x_n \to x\}$. Probar que $A = \{x_n : n \in N\} \cup \{x\}$ es compacto.