A 5th Real Business Cycle Model

Major Features of the Model

Add money and a cash-in-advance constraint to model 4 Add stochastic money growth about a deterministic trend Two sources of uncertainty: z and g Stochastic technology growth about a deterministic trend Labor-leisure decision with indivisible labor hours Population growth follows a deterministic trend

We first define the important terms that will be used throughout:

Endogenous variables that change over time:

- z productivity
- g money growth
- K capital stock owned by households
- h labor supplied by a single individual
- c consumption by a single individual
- w wage rate
- r interest rate
- Y output of final goods
- N number of persons per household
- m money balances per household
- M aggregate money supply
- P price of good in terms of money

Parameters:

- α capital share in output from a Cobb-Douglas production function
- δ rate of depreciation
- β time discount factor; β <1
- a trend in z
- μ trend in g
- n trend in N
- γ elasticity of substitution, $\gamma > 0$
- D leisure weight in utility
- h_0 hours worked by household that have a job
- ρ_i autocorrelation parameter for i=z,g; $0<\rho_i<1$
- σ_z standard deviations of the shocks to i=z,g; $0 < \sigma_i$

Nonstationary Model

Households have increasing numbers of members, denoted N.

The law of motion for *N* is:

$$N' = e^n N \text{ or } N = e^{nt} N_0$$
 (1.1)

Households face both a budget constraint and a cash-in-advance constraint. These are:

$$C = \frac{m}{PN} + \frac{(\mu + g)M}{PN}$$

$$wh + (1 - \delta + r)\frac{K}{N} + \frac{m}{PN} + \frac{gM}{PN} = c + \frac{K'}{N} + \frac{m'}{PN}$$

Substituting the first into the second and solving for c & h gives the definitions in the problem below.

Given information on prices and shocks, $\Omega = \{w, r, z, g\}$, the household solves the following non-linear program when the factor markets clear.

$$V(K, m, \mathbf{\Omega}) = \max_{K', m', h} \left[\frac{1}{1-\gamma} (c^{1-\gamma} - 1) + he^{(1-\gamma)at} \widetilde{D} + \widetilde{F}e^{(1-\gamma)at} - \widetilde{F} \right] N + \beta E\{V(K', m', \mathbf{\Omega}')\}$$

$$\widetilde{D} \equiv \frac{1}{H_0} D[(1 - h_0)^{1 - \gamma} - 1] < 0, \quad \widetilde{F} \equiv D \frac{1}{1 - \gamma}$$

$$c = \frac{m}{PN} + \frac{(\mu + g)M}{PN} \tag{1.2}$$

$$h = \frac{K'}{wN} + \frac{m'}{wPN} - (1 + r - \delta) \frac{K}{wN}$$
 (1.3)

The first-order conditions are:

$$e^{(1-\gamma)at}\widetilde{D}(-\frac{1}{wN})N + \beta E\{V_K(K',\Omega')\} = 0$$

$$e^{(1-\gamma)at}\widetilde{D}(-\frac{1}{wPN})N + \beta E\{V_m(K',\Omega')\} = 0$$

The envelope conditions are:

$$V_K(K,\Omega) = e^{(1-\gamma)at}\widetilde{D}(-\frac{1}{wPN})(1-\delta+r)N$$

$$V_m(K,\Omega) = c^{-\gamma} \frac{1}{PN} N$$

The Euler equations are:

$$e^{(1-\gamma)at}\widetilde{D}_{w}^{\perp} = \beta E\{e^{(1-\gamma)a(t+1)}\widetilde{D}(\frac{1}{w})(1-\delta+r')\}$$

$$e^{(1-\gamma)at}\widetilde{D}(-\frac{1}{wP}) = \beta E\{c^{-\gamma}\frac{1}{P}\}$$

Simplifying:

$$1 = \beta E \{ e^{(1-\gamma)a} \frac{w}{w!} (1 - \delta + r') \}$$
 (1.4)

$$-e^{(1-\gamma)at}\widetilde{D} = \beta E\{c^{-\gamma} \frac{wP}{P}\}\tag{1.5}$$

Additional Behavioral Equations

Money changes over time according to:

$$M' = e^{\mu + g} M = M_0 \prod_{s=1}^{t+1} e^{\mu + g_s}$$
 (1.6)

The law of motion for *g* is:

 $g' = \rho_g g + \varepsilon_g'$; where ε_g' is distributed normal with a mean of 0 and a variance of $\sigma_g^2(1.7)$

The law of motion for z is:

 $z' = \rho_z z + \varepsilon_z'$; where ε_z' is distributed normal with a mean of 0 and a variance of σ_z^2 (1.8) An assumption of competition in the goods market along with a Cobb-Douglas production function gives the following shares in output for labor & capital. Market clearing conditions have already been imposed.

$$Y = K^{\alpha} (e^{at+z}H)^{1-\alpha} \tag{1.9}$$

$$wH = (1 - \alpha)Y\tag{1.10}$$

 $rK = \alpha Y$ (1.11) Aggregating over household members gives: H = Nh (1.12) Money market clearing gives: M = m (1.13) Definitions: $I \equiv K' - (1 - \delta)K$ (1.14) $A \equiv e^{at+z}$ (1.15)

Eqs (1.1)-(1.15) are the system.

Transformation & Simplifications

Without loss of generalization set $\hat{N} = N_0 = 1$, and eliminate it from the system.

Use (1.12) to eliminate H from the system.

Use (1.13) to eliminate m from the system.

Transform the problem by dividing:

$$c, w, A$$
 by e^{at}

$$K, Y, I$$
 by $e^{(a+n)t}$

$$M$$
 by $e^{\mu t + G_t}$; $G_t = \sum_{s=1}^{t} g_s$ M has a unit root.

$$P$$
 by $e^{(\mu-a-n)t+G_t}$

r & h do not need to be transformed.

$$g' = \rho_g g + \varepsilon_g' \tag{2.1}$$

$$z' = \rho_z z + \varepsilon_z' \tag{2.2}$$

$$\hat{M}' = \hat{M} = M_0 \tag{2.3}$$

$$\hat{c} = \frac{(1+\mu+g)\hat{M}}{\hat{p}} \tag{2.4}$$

$$h = \frac{\hat{K}'(1+a+n)}{\hat{w}} + \frac{\hat{M}'(1+\mu+g')}{\hat{w}\hat{\rho}} - (1+r-\delta)\frac{\hat{K}}{\hat{w}}$$
(2.5)

$$1 = \beta E \{ e^{-\gamma a} \frac{\hat{w}}{\hat{w}'} (1 - \delta + r') \}$$
 (2.6)

$$-\widetilde{D} = \beta E\{ [\hat{c}'e^a]^{-\gamma} \frac{\hat{w}\hat{p}}{\hat{p}'(1+\mu-a-n+g')} \}$$
 (2.7)

$$\hat{Y} = \hat{K}^{\alpha} (e^z h)^{1-\alpha} \tag{2.8}$$

$$\hat{w}h = (1 - \alpha)\hat{Y} \tag{2.9}$$

$$r\hat{K} = \alpha \hat{Y} \tag{2.10}$$

$$\hat{I} = (1 + a + n)\hat{K}' - (1 - \delta)K \tag{2.11}$$

$$\hat{A} \equiv e^z \tag{2.12}$$

These are the equations we will use in Dynare.

The endogenous variables are $\hat{c}, \hat{K}, h, \hat{Y}, \hat{w}, r, \hat{M}, \hat{P}, \hat{I}, \hat{A}, g \& z$.

The exogenous variables are $\varepsilon_z \& \varepsilon_g$.

The parameters are $\alpha, \delta, \beta, a, \mu, \gamma, \rho_z, \sigma_z, \rho_g, \sigma_g, D, h_0 \& M_0$.