Sampling on Parametric Polynomial Curves — the errror

Apostolos Chalkis & Christina Katsamaki Geometry, Probability and Compating Seminar UT San Antonio

Josué Tonell- Cueto Invia Paris & IMJ-PRG 5/May/2022

Part I:

Sampling, how hard can it be?

The Problem:

Given a random vector xER, is there an algorithm such that its output is identically distributed to x?

Discrete case I

Classical source of randomness: XE {0,1} uniform

We can produce almost any "reasonable" discrete distribution on M

All probabilities should be computable in the Turing sense

Discrete case I

How to produce y \(\{ \{0,1,...,n-1\} \} \) out of uniform × E { 0,13 ? For $i \in \{0, ..., \lfloor l \cdot g(u) \rfloor + 1\}$ Sample $x \in \{0, 1\}$, $y \leftarrow 2y + x$ How much time? O(log(4)) in expectation If y \le n-1, out put y

Other wise: restart

Discrete case II

And if we don't have random sources?

BIG PROBLEMI

If we can do this,
then P+NP

Continuous Case I: Exact sampling Given continuous random sources X1,..., Xx ER, which random vectors y ERN can we sample using a BSS machine? - Like Turing machine but can handle real numbers and operations (+,-,x,/, I <==)

at cost one

Example: Normals are more powerful than uniforms

Sample x, y, Z ~ N(0,1)

$$u \leftarrow \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

Output u

THM. u~ U[-1,1]

Q: And the converse?

If we need exactness, it looks as extremely hard.

If we allow approximation,
we definitely can

(at least in practice)

Continuous Case II: Approximate sampling

Def. Given x, y ERh random vectors, their TV distance is given by

Given random sources $x_1,...,x_K \in \mathbb{R}$ and a are reasonable target $y \in \mathbb{R}^n$ is there a BSS machine that for $l \in \mathbb{N}$ computes Fast $\widetilde{y} \in \mathbb{R}^n$ s.t. $dist_{TV}(y,\widetilde{y}) < 2^{-l}$?

Should we allow off-live What does this mean? computations? poly(e)? Or poly log(e)?

Bridging the discrete and the continuous I

FACT: BSS machines cannot be constructed!

How can we deal with this?

We cannot store real numbers and operate them at cost one; (

Big issue! $dist_{TV}(\widehat{x}, x) = 0$ if \widehat{x} cont & x disc.

Bridging the discrete and the continuous II

Idea: We get a discrete random variable $x \in \mathbb{R}^n$ with support $\{x_1, ..., \times_k\}$, the last step is to turn x in continuous as follows:

Sample x

If x=x;, then sample e;

Ontput x+e;

where en,..., Ck are continuous random vectors that are "easy to sample".

Bridging the discrete and the continuous III

What we can produce $X_e \in \mathcal{U}\{0, \frac{1}{2}e, ..., \frac{2^{e-1}}{2^{e}}\}$ Inwhich sense does this happen? An universal method: Inverse Transform Sampling
Thm.Let q: I=[0,6] > (0,00) be a continuous function
such that

$$\int_{\mathbb{I}} \varphi = 1$$

Let $\Phi(t):=\int_a^t \varphi(s) ds$ and $u \in U[0,1]$, then

$$x := \underline{\Phi}^{-1}(u)$$

has density 4

Lots of questions...

-how to solve $\Phi(x) = u$?

-how to deal with errors and hard-to-compute Φ ?

More questions than answers...

- Q1. What is the hierarchy among randomness sources?
- Q2. How fast can we approximate in general?
- Q3. Is TV dist the right notion?
- QY. How good is inv. trans. sampling when all details are taken into account?

Part II:

Sampling

on a parametric polynomial curve

THE PROBLEM

Given a parametric polynomial curve $Y: I:=[-1,1] \longrightarrow \mathbb{R}^n$

can we sample x E imy uniformly with respect the arc-length?

Sample t∈ I with density & ||x|||₂ = √∑ (x:)²

Why do we care?

- · TDA in algebraic geometry
- · Bridging gap between what we assume and what we can produce
 - · Simplest case for sampling in algebraic geometry

Condition of sampling y

$$C(y) := \sup_{t \in I} \frac{\|y\|_{o}}{\|y'(t)\|_{2}} \in [1, \infty]$$

where
$$\|\chi\|_{o:=} = \sum_{i,j} j \chi_{i,j}$$
 with $\chi = (\sum \chi_{i,j} T^{j})$

Intuition: The nearer a curve is to have a point of zero speed, the harder is to sample

Main THM

Let $y: I \to \mathbb{R}^n$ a parametric polynomial curve of degree d. Then there is a sampler for y that, on ℓ , runs on $\mathcal{O}(\ell^3(1+\log dC(y))^3d^3C(y)^3)$

on-line arithmetic operations.

It produces tE[-1,1] with TV dist \le 2-e
to target random variable.

Method (Olver & Townsed)

- · Approximate $\varphi(t) := || \gamma'(t) ||_{2}$ with Chebyshev
- · Inverse Transform Sampling with bijection

Q: How fast is this?

Di How Fast can we approximate of.

(via Chebyshev)

Inv. Transf. Sampling through Bijection Imput: $\psi: [-1, 1] \rightarrow (0, \infty)$, e Output: Xe distributed according to 9 approx.
-sample uECO.D uniformly -Bisection of [-1, 1] e times until we get J=[K/ze, K+1/ze] with solution of $\Phi(x)=u$ - Output XEJ uniform THM. $dist_{TV}(x_{e_i}x) \leq 2^{1-\ell} \max_{x \in I} |\varphi^{l}(x)|$ Fact. $x \sim \varphi \quad y \sim \gamma \quad dist_{TV}(x,y) \leq \| \varphi - \gamma \|_{1}$ We only have to control the L' norm.

Where condition appears...

$$\varphi'(t) = (\|y(t)\|_2)' = \frac{\langle y', y'' \rangle}{\|y'\|_2^2} \leq \frac{\|y''(t)\|_2}{\|y'(t)\|_2} \leq \frac{d}{d} C(y)$$

Chebysher Interpolation I

Chebysher olynomials

$$\begin{aligned}
\Psi_{K}(x) &= \cos(K \operatorname{avccos}(x)) & \text{for } x \in \mathbb{C}^{-1,1} \\
&= \sum_{i=0}^{K} {K \choose 2i} (1-x^{2})^{i} x^{k-2i}
\end{aligned}$$

$$g: I \to \mathbb{R}$$
 $4I_{\kappa}(8)$ kth degree interpolation $4I_{\kappa}(8)$ $(g_{a,\kappa+1}) = g(g_{a,\kappa+1})$

Chebysher Interpolation II: Advantages

1st Advantage: Easy to compute $4I_{K}(8) = \frac{C_{0}}{2} + \sum_{i=1}^{K} C_{a} 4a \iff C_{a} = \frac{2}{K+1} \sum_{i=0}^{K} f(g_{i,K+1}) 4a(g_{i,K+1})$

2nd Advantage: Fast to evaluate.

If $p = \sum_{\alpha=0}^{K} C\alpha Y_{\alpha}$, then

$$P(x) = \frac{1}{2} \left(\mathcal{F}_0(x) - \mathcal{F}_2(x) \right)$$

$$\int B_{K+1}(x) = 0 = B_{K+2}(x)$$

$$\int B_{\alpha}(x) = 2x G_{\alpha+1}(x) - G_{\alpha+2}(x) + C_{\alpha}$$
3rd Advantage Fast to integrate

Interpolation III: Speed of convergence Chebyshev

THM. Let

and
$$g: int E_{p} \xrightarrow{\omega} \mathbb{C}$$
 analytic
$$\|g\|_{E_{p}} = \|g\|_{E_{p}} = \|g\|_{E_{p}}$$

The speed I $\varphi:=||y'||_2$ 0651. φ^2 admits

 $\varphi = \sqrt{\rho}$

Obs 1. φ^2 admits an ext to the Full complex plane Obs 2. As long as $Z(p) \cap \overline{t} = \emptyset$, φ admits analytic ext. to intep

Prop. If p has no zeros inside E_p , then φ has an analytic extension $\widetilde{\psi}$ to int. of E_p and $\int_{\mathbb{R}^n} |\varphi||_{\mathcal{E}_p} \leq \|\varphi\|_{\mathcal{A}_p} p^d$

The speed IT

How big can p be?

THM We can pick $\rho \geq 1 + \frac{1}{3d C(8)}$

Open Questions

- Effect of subdivision in sampling

 $[-1, 1] \longrightarrow [-1, 0] \quad [0, 1]$

- Why not Newton? (Assume q'>0)

 $\Phi(x) = \alpha$

 $Y_{e}(M) = \begin{cases} 1 & \text{if } e = 0 \\ N_{\overline{\Phi}} - n(Y_{e-1}(M)) & \text{if } e > 0 \end{cases}$

||Ye - ₱11 ≈ small not good enough,
we need ||Ye' - (₱-1)11, small

- Complexity without C(8)

Mank You!