TP n°3: Additionneur, Soustracteur et Multiplicateur

I. Introduction:

Dans ce TP, nous allons utiliser MM Logic pour appliquer ce que nous avons vu dans le TD 5: l'étude d'un additionneur, d'un soustracteur et d'un multiplieur binaire. Nous allons construire ces modules sur MM Logic.

II. Travaux:

a. Additionneur binaire à retenue série

Schémas représentant un additionneur binaire élémentaire (1bit) et un additionneur binaire 4 bits en série.

On récupère les équations faites en TD:

$$S_i = A_i \oplus B_i \oplus R_i$$

$$R_{i+1} = R_i B_i + A_i B_i + R_i A_i$$

$$= A_i B_i + R_i (B_i + A_i)$$

ID n°3

b. Soustracteur binaire 4 bits

On sait: A - B = A + (-B)

De plus, pour représenter un nombre négatif, on utilise le complément à 2:

$$\tilde{N} = -N = N + 1$$

On va utiliser la base de notre additionneur binaire 4 bits, pour faire une soustraction, en ajoutant des XOR programmables relier à une entrée binaire c où l'on décidera si on fait une addition ou une soustraction.

TD n°3

c. Additionneur à retenue anticipée 4 bits

L'avantage par rapport à un additionneur à retenue en série est que cela est beaucoup plus rapide lorsque les retenues sont calculées avant (anticipée).

Cela permet également de faire les calculs en même temps.

ID n°3

d. Multiplication de 2 nombres binaires

i. Multiplication de deux nombres de 1 bit

$$P_i = A_i * B_i$$

Ça ressemble à la table de vérité du ET :

A _i	B _i	P _i
0	0	0
0	1	0
1	0	0
1	1	1

ii. Fabrication d'un multiplicateur 2 bits

Table de vérité du multiplicateur :

a_0	b_0	a_1	b_1	S_3	s_2	S ₁	S ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

ID n°3 5//

Tableaux de Karnaugh du multiplicateur 2 bits :

 $S_0 =$

a_1b_1 / a_0b_0	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

$$S_1 = \overline{a_0} b_0 a_1 + b_0 a_1 \overline{b_1} + a_0 \overline{a_1} b_1 + a_0 \overline{b_0} b_1$$

a_1b_1/a_0b_0	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	0	1	0	1
10	0	1	1	0

 S_2 :

a_1b_1 / a_0b_0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	0	1
10	0	0	1	1

TD n°3

Schéma représentant un multiplicateur 2 bits

III. Conclusion:

Nous avons appris dans ce TP à se servir des notions de logique apprises afin de fabriquer des opérations arithmétiques sur des nombres binaires.

TD n°3