1. PRINCÍPIOS GERAIS

1.1 – Mecânica

- Mecânica: ramo da física que estuda corpos sob a ação de forças
- Divisão da mecânica:
 - Mecânica dos sólidos
 - Mecânica dos fluidos
- Divisão da mecânica quanto ao movimento:
 - Estática: corpos em repouso ou movimento com velocidade constante
 - Dinâmica: corpos em movimento acelerado

1.2 - Conceitos Fundamentais

- Quantidades básicas utilizadas em mecânica:
 - Comprimento
 - Tempo
 - Massa
 - Força ação de um corpo sobre outro
- Definição de partícula e corpo rígido:
 - Partícula: corpo cujas dimensões podem ser desprezadas
 - Corpo rígido: corpo com dimensões não desprezíveis; indeformável
 - Corpo deformável: corpo com dimensões não desprezíveis; deformável
- Leis do movimento de Newton:
 - 1ª Lei de Newton: uma partícula em repouso (ou em movimento retilíneo com velocidade constante) tende a permanecer nesse estado, desde que a força resultante atuando na partícula seja nula
 - 2^a Lei de Newton:

$$\Sigma \vec{F} = m \cdot \vec{a} \tag{1.1}$$

 $\Sigma \vec{F}$ — Força resultante atuando na partícula

m − Massa da partícula

 \vec{a} – Aceleração da partícula

- 3ª Lei de Newton: as forças mútuas de ação e reação entre duas partículas são iguais, opostas e colineares
- <u>Lei de Newton da Atração Gravitacional</u>. Força de atração gravitacional entre dois corpos quaisquer:

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2} \tag{1.2}$$

F – Força de atração gravitacional entre dois corpos

G − Constante universal da gravitação:

$$G = 66,73 \cdot 10^{-12} \; \frac{m^3}{kg \cdot s^2}$$

 m_1 e m_2 — Massa de cada corpo

r — Distância entre os corpos

- Força Peso. Se uma das massas da Equação (1.2) for a massa da Terra M_T , a força gravitacional é denominada força peso W:

$$W = G \cdot \frac{m \cdot M_T}{r^2} = m \cdot \frac{G \cdot M_T}{r^2}$$

$$\Rightarrow W = m \cdot g \tag{1.3}$$

g − Aceleração da gravidade:

$$g = \frac{G \cdot M_T}{r^2}$$

1.3 – Sistema Internacional de Unidades

TABELA 1.1 Sistema Internacional de Unidades.							
Quantidade	Comprimento	Tempo	Massa	Força			
Unidades do SI	metro	segundo	quilograma	newton*			
	m	S	kg	$\binom{\frac{N}{kg\cdot m}}{s^2}$			

^{*} Unidade derivada.

TABELA 1.2	Prefixos.			
		Forma exponencial	Prefixo	Símbolo SI
Múltiplos				
1.000.000.000		109	giga	G
1.000.000		10^{6}	mega	M
1.000		10^{3}	quilo	k
Submúltiplos				
0,001		10^{-3}	mili	m
0,000001		10^{-6}	micro	μ
0,000000001		10^{-9}	nano	n

^{*} O quilograma é a única unidade básica definida com um prefixo.

• Hibbeler, R. C. Estática: mecânica para engenharia. 14ª Edição. 2017. Pearson.

⁻ Bibliografia Básica:

Exemplos

Exemplo 1. Determine o peso em newtons de um corpo que tenha massa de:

- (a) 25 kg
- (b) 0,08 kg
- (c) 500 Mg

Exemplo 2. Utilizando as unidades básicas do SI, mostre que a Equação (1.2) é uma equação dimensionalmente homogênea, da qual resulta a força F em newtons.

Exemplo 3. Determine a força gravitacional atuando entre duas esferas que estão se tocando. A massa de cada esfera é 200 kg e o raio de cada esfera é 300 mm.

Exemplo 4. Um foguete possui massa de 3,529*10⁶ kg na Terra. Determine:

- (a) O peso do foguete na Terra
- (b) O peso do foguete na Lua
- (c) A massa do foguete na Lua

Dados:

- Aceleração da gravidade na Terra: $g_T = 9.81 \text{ m/s}^2$
- Aceleração da gravidade na Lua: $g_L = 1,61 \ m/s^2$

Respostas dos Exemplos:

1. (a) 245,25 N; (b) 0,785 N; (c) 4905000 N

2.

3. 7,41*10⁻⁶ N

4. (a) $3,462*10^7$ N; (b) $0,568*10^7$ N; (c) $3,529*10^6$ kg

Exercícios Propostos

Exercício 1. Determine o peso em newtons de um corpo que tenha massa de:

- (a) 1500 mg
- (b) 0,02 kg
- (c) 0.850 Mg

Exercício 2. Determine a massa em kg de um corpo que tenha peso na Terra de:

- (a) 20 mN
- (b) 150 kN
- (c) 60 MN

Exercício 3. Duas partículas possuem massa de 8 kg e 12 kg, respectivamente. Se elas estão separadas por uma distância de 800 mm, determine a força da gravidade que atua entre elas. Compare essa força com a força peso de cada partícula.

Exercício 4. Um homem pesa 690 N na Terra. Determine:

- (a) Sua massa, em kg, na Terra
- (b) Seu peso, em N, se o homem estiver na Lua
- (c) Sua massa, em kg, se o homem estiver na Lua

Dados:

- Aceleração da gravidade na Terra: $g_T = 9.81 \ m/s^2$
- Aceleração da gravidade na Lua: $g_L = 1,61 \text{ m/s}^2$

Respostas dos Exercícios Propostos:

- 1. (a) 14,715 N; (b) 0,196 N; (c) 8338500 N
- 2. (a) 0,002 kg; (b) 15290,52 kg; (c) 6116207,95 kg
- 3. $1,00*10^{-8}$ N; comparar com os pesos W₁ = 78,48 N e W₂ = 117,72 N
- 4. (a) 70,34 kg; (b) 113,25 N; (c) 70,34 kg
