LG 부트캠프 10기

프로젝트 결과보고서

SOLE snow

밸런스 보드를 활용한 2D 스키 게임 구현

Linux System 반 5팀

이승엽, 예종호, 남주형, 김재욱

목차구성 CONTENTS COMPOSITION

- 1. 주제 및 개발 아이디어
- 2. 게임 소개 및 조작 방법
- 3. 핵심 기술
- 4. 시연 영상

1. 주제 및 개발 아이디어

더운 여름에도 스노우 보드의 재미를 느낄 수 있을까?

밸런스 보드 움직임 활용한 스노우 보드 액션 게임을 구상

쏠쏠한 코어 근육 운동

열심히 배운 임베디드 지식 활용을 통한 게임 개발

2. 게임 소개 및 조작 방법 (메인 화면 및 HW)

게임은 누구나 쉽게 접할 수 있으면서도 모두가 재미있게 해야 하는 것

남녀노소 누구나 손쉽게 조작할 수 있는 <mark>직관적인 UI를</mark> 표현

게임 메인 화면

HW 설계 구조

2. 게임 소개 및 조작 방법 (게임 플레이)

게임은 누구나 쉽게 접할 수 있으면서도 모두가 재미있게 해야 하는 것

남녀노소 누구나 손쉽게 조작할 수 있는 직관적인 UI를 표현

게임 플레이 화면

2. 게임 소개 및 조작 방법 (기록 확인)

결승선 완주할 경우, 완주 시간을 랭킹 보드에 기록

완주 기록은 서버에서 상위 5개 레코드까지 저장하고 있다가 Ranking Board 버튼을 누를 시 보여줌

결승선 완주 화면

Ranking Board

3. 핵심 기술 (커널)

커널 포팅 및 개발 환경 구성

Ubuntu 24.04 LTS

Ubuntu 24.04 LTS

▼ Visual Studio Code

Visual Studio Code 1.101

Copilot 1.341.0

Ubuntu upgrade 후 최신버전 vscode 설치를 통해 copilot 사용을 위한 개발 환경 세팅

최신 Linux 커널 포팅

The Linux Kernel Archives

Linux 6.12.35 LTS 커널

BCM2837(라즈베리파이3) 보드 최적화

BCM2837(BCM2835 계열) 보드에 맞는 커널 빌드, 하드웨어 호환성 보장

실시간 센서 데이터 처리

실시간 커널 프리엠션, 고해상도 타이머로 센서 데이터 신속 처리

다양한 인터페이스 지원

이더넷, USB, 시리얼 등 다양한 통신 인터페이스 지원 (센서 데이터 송수신 및 보드 간 통신)

루트 파일 시스템 구성

Glibc(GCC Linaro Toolchain)

ubuntu 16.04에서는 7.5-2019.12이 최신 ubuntu 24.04에서는 14.0.0-2023.06 사용 가능

ALSA

최신 버전의 alsa-lib-1.2.14, 최신 버전의 alsa-utils-1.2.14 적용

부팅 설정

부팅 시 바로 모든 설정이 완료되고 게임 실행되도록 설정

3. 핵심 기술 (디바이스 드라이버)

가속도 센서 드라이버 포팅 및 각도 환산 알고리즘 설계

가속도 센서 각도 환산 로그

3. 핵심 기술 (디바이스 드라이버)

GPIO KEY 인터럽트 구현 및 응용

GPIO KEY 인터럽트 구현

커널 버전	GPIO PIN 번호
Linux 6.1.63	17번
Linux 6.12.35	529번 (17+512)

Linux 커널 버전에 따른 GPIO PIN 번호 변동 사항

버튼	용도
SW2	게임 시작 (Play 버튼)
SW3	기록 확인 (Ranking Board 버튼)

bcm2837 보드 내 SW2, SW3 버튼 용도 정리

모니터 화면에 게임 실행 화면을 보여줌 (터치 기능 사용 불가) 보드 기본 버튼 조작을 통해 세부적인 메뉴를 실행

게임 앱 내에서 GPIO 컨트롤 및 관련 디바이스 탐색 로직 설계

GPIO PIN	가상 키보드 활용
GI IO I IIV	70 71 20
GPIO 529	KEY_SPACE 매핑
GPIO 530	KEY_ENTER 매핑

Space

Enter

앱에서 이벤트 발생을 컨트롤 하기 가상 키보드 활용

각 버튼에 대한 이벤트 실행 시 다른 버튼 비활성화

root@HT2837:/mnt/nfs# ./snow board

Attribute Qt::AA_EnableHighDpiScaling must be set before QCoreApplication is created. Found device by direct check: "/dev/input/eventO"

Found device by direct check: "/dev/input/event1" Found device by direct check: "/dev/input/event2"

Found input device: "/dev/input/event0" Name: "ST LIS3LVO2DL Accelerometer" Found input device: "/dev/input/event1" Name: "深▼市全▼▼子技▼有限公司 ByQDtech ▼控USB且▼" Found input device: "/dev/input/event2" Name: "GPIO Key Input"

Found GPIO device: "/dev/input/event2"

게임 앱 실행 시 자동으로 연결된 디바이스를 탐색하여 GPIO 관련 디바이스를 찾는 로직 추가

3. 핵심 기술 (어플리케이션)

실시간 데이터 전송을 위한 비연결성 프로토콜(UDP) 활용

3. 핵심 기술 (어플리케이션)

네트워크 환경 구축

이더넷 스위칭 허브 서로 다른 IP 간 통신 여러 기기 연결 가능

3. 핵심 기술 (어플리케이션)

UI

QPainter 기반 2D 그래픽 렌더링

QPainter를 활용해 스키어, 나무, 배경, 정보 UI 등 모든 게임 오브젝트 표현 스키어의 좌우 회전과 중심 기준 구현

충돌 판정 영역 커스터마이징

스키어와 나무 각각 실체 크기와 모양에 맞춰 충돌 영역을 별도로 계산하여, 현실감 있는 충돌 판정 구현

월드 좌표계와 화면 좌표계 변환

월드 좌표계를 화면 좌표계로 변환하면서 맵 스크롤 효과 구현

월드 좌표계 => 맵 기준 게임 오브젝트의 고정 위치화면 좌표계 => 실제 화면에 표현할 위치

```
for (const auto& tree : m_trees) {
    QPointF treePos = tree.position();
    int screenY = m_mapOffset - treePos.y(); // 월드 y → 화면 y
    int screenX = width()/2 + treePos.x() - m_cameraOffsetX; // 월드 x → 화면 x

    // 실제 그리기
    // painter.drawRect(screenX + ..., screenY + ..., ...);
}
```