Cryptographic Challenges in and around Tor

Nick Mathewson The Tor Project 9 January 2013

Summary

- Very quick Tor overview
- Tor's cryptography, and how it's evolving
- Various opportunities for more Tor crypto work

Disclaimer:

This is not exhaustive; these are only our most interesting crypto needs, not all of them; these are not our most urgent needs in general.

Part 1: Tor overview

Ordinarily, traffic analysis and censorship are easy.

Ordinarily, traffic analysis and censorship are easy.

Tor makes traffic analysis and censorship harder...

...by using a network of relays to anonymize traffic.

(Use non-public entry relays to resist censorship.)

(But an end-to-end traffic correlation attack still works.)

Tor is the largest deployed network of its kind

- 3000 relays
- 1000 public bridges
- > 2 GiB/sec
- > 500,000 users each day (estimated)
 - (With a pretty broad diversity of interest)

Part 2: Tor could use better crypto

Tor uses TLS for its link protocol...

... with all the problems that entails.

- Easy to detect TLS variants based on:
 - Cipher choice
 - Certificate structure
 - List of extensions
- More secure: less common. Can't use any unpopular TLS feature.

(Did you know I have an effective veto over any new TLS features?)

Maybe other link protocols are better for anticensorship?

There are a number of these "Pluggable Transports" in development, but we need even more. *Even weak stego can help*.

...Do we still need "normal-looking" TLS?

Tor needs a one-way-authenticated handshake to build circuits

Tor needs a one-way-authenticated key exchange to build circuits

We're replacing this protocol...

- Original protocol ("TAP") did hybrid encryption with RSA,DH-1024, badly. [Goldberg 2006]
- Replacement ("ntor") does approximately

```
C->S: g^x
S->C: g^y, H1(inp=H( g^x g^y g^xb g^xy ...))
K = KDF(H2(inp))
[Goldberg, Stebila, Ustaoglu 2011]
(We're using DJB's curve25519 for DH group)
```

...and might replace it again

Alternative ("ace") does approximately:

```
C->S: g^x1, g^x2
```

S->C: g^y

 $K = KDF(g^{bx1} + yx2])$

[Backes, Kate, Mohammedi 2012]

- Best choices will depend on implementation tweaks.
- Can you do better?

 Used for symmetric crypto once we have shared keys.

Zeros (2)	Bad "MAC"	Payload
	(4)	(503)

 Used for symmetric crypto once we have shared keys.

Zeros (2)	Bad "MAC" (4)	Payload		
AES_CTR(Key1)				
AES_CTR(Key2)				
AES_CTR(Key3)				

 Used for symmetric crypto once we have shared keys.

Zeros (2)	Bad "MAC" (4)	Payload		
AES_CTR(Key1)				
AES_CTR(Key2)				
AES_CTR(Key3)				

To handle a cell:

- Remove a layer of encryption.
- If Zeros == 0, and "MAC" = H(Key3_M, Previous cells | Payload):

This cells is for us!

• Else, relay the cell

 Used for symmetric crypto once we have shared keys.

Zeros Bad "MAC"
(4)

AES_CTR(Key1)

AES_CTR(Key2)

AES_CTR(Key3)

But this is malleable!

Hang on, does it matter that it's malleable?

- Honest exit (probably) rejects M"
- Evil exit detects tag, but could just as easily do traffic correlation, for same result at less risk of detection.
- So, don't worry? (Dingledine, Mathewson, Syverson 2004)

Hang on, does it matter that it's malleable?

- Honest exit (probably) rejects M"
- Evil exit detects tag, but could just/als/leasily do traffic correlation, fbt/sbt/bs/ths/ths/lit at less risk of detection.
- Actually, it's not so clear-cut.

We could use an encrypt-and-mac structure

We could use an encrypt-and-mac structure

But that requires one MAC per hop, and leaks path length.

A chained wide-block cipher seems like a much better idea!

A chained wide-block cipher seems like a much better idea!

Any attempt to change the block renders the whole circuit unrecoverable.

What wide-block cipher to use?

- Not enough time to discuss all of them (LIONESS, CMC, XCB, HCTR, XTS, XEX, HCH, TET)
- Needs to be fast, proven, secure, easy-toimplement, non-patent-encumbered, sidechannel-free,...
- One promising approach in progress by Bernstein, Sarkar, and Nandi – HFFH Feistel structure, fast, not yet finished.
- Other ideas?

Tor gets blocked too much.

- Some services mistake Tor for abuse
- Some services use IP blocking as a proxy for people-blocking, and can't not block Tor. (Wikipedia edits, some IRC nets.)

Can we do better?

Provide a way for users to make themselves blockable.

- Slightly expensive pseudonyms?
 - (Expensive how? SA model?)
- Anonymous blacklistable credentials?
 (Nymble, BNymble, BLACR, VERBS, Jack...)
 - Time to try this out in the wild?
 - What will we learn about their usability? Are they right?

There are more crypto issues in Tor

- Directory protocol
- Hidden service protocol
- Better DOS resistance
- SHA1, RSA1024 for node identity

Questions?

- See https://www.torproject.org/ for links to documentation, specifications, and more info about various Tor issues.
- See http://freehaven.net/anonbib/ for an incomplete but nonetheless useful anonymity bibliography.
- Grab me during a break for non-crypto Tor questions