The Effect of Weibo Activity on TV Viewership—Instrumental Variable

Professor Song YaoOlin Business School

Customer Analytics

Requirements of a Valid IV

Key assumptions

- Relevance
 - ▶ The IV is strongly correlated with Treatment
- Exogeneity (or Independence)
 - ▶ The IV is independent of any confounders
- Exclusion Restriction
 - ▶ The IV does not directly affect the outcome
 - ▶ Its effect is only through the treatment

Why are censor_dummy and weibo_active_level reasonable IVs?

censor_dummy

- Relevance
 - ▶ Comments were reduced during the censor event
- Independence
 - ▶ The censor is targeted at the platform, not at TV shows or TV watching
- Exclusion restriction
 - ▶ The censor is targeted at the platform, not at TV shows or TV watching

3

Why are censor_dummy and weibo_active_level reasonable IVs?

weibo_active_level

- Relevance
 - ▶ Comments on TV shows are part of the audience's Weibo activity level, hence the two correlate with one another
- Independence
 - Weibo activity level focues on the overall activity at the platform, not about TV watching
- Exclusion restriction
 - Weibo activity level focues on the overall activity at the platform, not about TV watching

OLS Estimation

Biased Estimate of Effect

```
### OLS without IV
formula='log_rating ~ log_comment + C(weekday)'
OLS_model = smf.ols(formula=formula, data=df).fit()
print(OLS_model.summary())
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0159	0.166	-0.096	0.924	-0.342	0.310
C(weekday)[T.2]	0.2180	0.155	1.406	0.160	-0.086	0.522
C(weekday)[T.3]	0.0606	0.151	0.401	0.688	-0.236	0.357
C(weekday)[T.4]	0.1246	0.147	0.849	0.396	-0.163	0.412
C(weekday)[T.5]	-0.0877	0.151	-0.579	0.562	-0.385	0.209
C(weekday)[T.6]	0.0257	0.149	0.172	0.863	-0.267	0.318
C(weekday)[T.7]	0.1633	0.154	1.062	0.288	-0.138	0.465
log_comment	0.3588	0.012	30.236	0.000	0.336	0.382
						====
Omnibus:		0.073	Durbin-Watson:		1.952	
Prob(Omnibus):		0.964	Jarque-Bera (JB):		0.027	
Skew:		0.006	Prob(JB):		0.987	

Kurtosis: 3.023 Cond. No. 86.6

5

IV by Hand

2nd Stage

<pre>### IV by hand ### Second Stage df['log_comment_fitted'] = first_stage.fittedvalues</pre>	
<pre>formula = 'log_rating ~ C(weekday) + log_comment_fitted' second_stage = smf.ols(formula=formula, data=df).fit() print(second_stage.summary().tables[1])</pre>	

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.6075	0.261	9.993	0.000	2.095	3.120
C(weekday)[T.2]	0.3135	0.211	1.483	0.138	-0.101	0.728
C(weekday)[T.3]	0.1924	0.206	0.933	0.351	-0.212	0.597
C(weekday)[T.4]	0.3393	0.200	1.694	0.091	-0.054	0.732
C(weekday)[T.5]	0.0088	0.206	0.043	0.966	-0.396	0.414
C(weekday)[T.6]	0.0377	0.203	0.185	0.853	-0.361	0.437
C(weekday)[T.7]	0.3776	0.210	1.800	0.072	-0.034	0.789
log_comment_fitted	0.1167	0.020	5.801	0.000	0.077	0.156

6

Using the 2SLS Library

```
## Import IV2SLS from linearmodels
## This is a more efficient way to run IV regression
from linearmodels.iv import IV2SLS

formula = 'log_rating ~ C(weekday) + [log_comment ~ censor_dummy + weibo_active_level]'
iv2sls = IV2SLS.from_formula(formula = formula, data = df).fit()
print(iv2sls.summary.tables[1])
```

Parameter Estimates

	Parameter	Std. Err.	T–stat	P-value	Lower CI	Upper CI
C(weekday)[1]	2.6075	0.2155	12.101	0.0000	2.1852	3.0298
C(weekday)[2]	2.9210	0.2461	11.869	0.0000	2.4387	3.4034
C(weekday)[3]	2.8000	0.2356	11.883	0.0000	2.3381	3.2618
C(weekday)[4]	2.9468	0.2464	11.961	0.0000	2.4640	3.4297
C(weekday)[5]	2.6163	0.2339	11.186	0.0000	2.1579	3.0748
C(weekday)[6]	2.6452	0.2203	12.009	0.0000	2.2135	3.0770
C(weekday)[7]	2.9851	0.2511	11.888	0.0000	2.4930	3.4773
log_comment	0.1167	0.0176	6.6484	0.0000	0.0823	0.1511

7

Diagnoses (Check the Three Assumptions)

```
## Check the strength of the instruments (Relevance)
      # Get first stage F-stat from the IV2SLS model
      first_stage_f = iv2sls.first_stage.diagnostics['f.stat'].iloc[0]
      print("\nFirst Stage F-statistic:")
      print(f"{first_stage_f:.2f}")
      # Rule of thumb: F-stat > 10 indicates strong instruments
      print(f"Instruments are {'not weak' if first_stage_f > 10 else 'weak'}")
     First Stage F-statistic:
                                     F = \frac{(R_{\text{WithIV}}^2 - R_{\text{NoIV}}^2) / \#IV}{(1 - R_{\text{WithIV}}^2) / (\#Obs - \#IV - \#X - 1)}
     Instruments are not weak
 ## Check the IV's exclusion restriction and exogeneity
 ### The lucky case: If we have more IVs than endogenous variables:
 j_stat = iv2sls.sargan
 print(j_stat)
 ## A p-value > 0.05 indicates that we cannot reject the null hypothesis, that is, all IVs are valid!
Sargan's test of overidentification
HO: The model is not overidentified.
Statistic: 0.2206
P-value: 0.6386
Distributed: chi2(1)
```